```
In [1]:
         import pandas as pd
          import matplotlib.pyplot as plt
          import numpy as np
         # Load the data
In [2]:
         file path = '/Users/alanoudalturki/..'
         data = pd.read excel(file path, sheet name='Sheet')
          # Display
          data.head()
Out[2]:
                Key performance
                                   Jul,
                                                    Sep,
                                                            Oct,
                                                                     Nov,
                                                                             Dec.
                                           Aug,
                                                                                     Jan,
                                                                                            F
                       indicator
                                  2022
                                           2022
                                                   2022
                                                            2022
                                                                    2022
                                                                             2022
                                                                                    2023
                                                                                            2
                      Different %
            prescriptions filled per
                                          0.9100
                                                  0.9500
                                  0.920
                                                          0.9300
                                                                   0.9400
                                                                           0.9600
                                                                                    0.970
                                                                                           0.
                     month (av...
             Dispensing: error rate
          1
                   per 1000 items
                                  0.015
                                          0.0143
                                                  0.0145
                                                           0.0141
                                                                   0.0145
                                                                            0.0145
                                                                                    0.004
                                                                                           0.
                       dispensed
              Average patient wait
          2
                                 15.000 14.0000 14.0000 13.0000 14.0000 15.0000
                                                                                   10.000
                                                                                           11.
                       time (min)
                      Pharmacist
                     productivity
         3
                                 15.000 14.0000 11.0000 12.0000 13.0000 10.0000 22.000 15.
                    (prescriptions
                       dispens...
                         Patient
         4 interaction/counselling
                                  2.000
                                         3.0000
                                                  1.0000
                                                          2.0000
                                                                   3.0000
                                                                            1.0000
                                                                                    8.000
                                                                                           6.
                       time (min)
In [3]:
         # Convert all columns (excluding the first KPI column) to numeric, forcin
         data numeric = data.copy()
          # Apply numeric conversion to all columns except the first (KPI column)
          for col in data.columns[1:]:
              data numeric[col] = pd.to numeric(data[col], errors='coerce')
         # Display the numeric data to confirm it has been correctly converted
```

data numeric.head()

Out[3]:		Ke	ey performar indica	•	Aug, 2022	Sep, 2022	Oct, 2022	Nov, 2022	Dec, 2022	Jan, 2023	F 20	
	0	prescr	Different iptions filled month (a	oer 0.920	0.9100	0.9500	0.9300	0.9400	0.9600	0.970	0.	
	1	Dispe	nsing: error r per 1000 ite dispens	ms 0.015	0.0143	0.0145	0.0141	0.0145	0.0145	0.004	0.	
	2	Aver	rage patient w time (m	וח וווווו	14.0000	14.0000	13.0000	14.0000	15.0000	10.000	11.	
	3		Pharmad productiv (prescription dispen	vity 15.000	14.0000	11.0000	12.0000	13.0000	10.0000	22.000	15.	
	4	interac	Pation/counsell time (m	ing 2.000	3.0000	1.0000	2.0000	3.0000	1.0000	8.000	6.	
In [4]:	da	ıta_nuı	meric.fill	na(method	='ffill	', inpla	ce =True)				
<pre>In [5]: # non-numeric values non_numeric_data = data_numeric.apply(lambda x: pd.to_numeric(x, e) # Show columns with non-numeric values</pre>							, erron	rs='				
	<pre>non_numeric_data_summary = non_numeric_data.sum() print(non_numeric_data_summary[non_numeric_data_summary > 0])</pre>											
	<pre>Key performance indicator 5 dtype: int64</pre>											
In [6]:	<pre># Exclude the first column ('Key performance indicator') and calculate pc data_numeric_no_kpi = data_numeric.iloc[:, 1:]</pre>											
	<pre># Calculate percentage change across the months data_pct_change = data_numeric_no_kpi.pct_change(axis=1) * 100</pre>											
		<pre># Display data_pct_change</pre>										
Out[6]:		Jul, 2022	Aug, 2022	Sep, 2022	2 Oct, 2	2022 No	v, 2022	Dec, 2022	2 Jan,	2023	Feb,	
	0	NaN	-1.086957	4.395604	1 -2.10	5263 1.	075269	2.127660	1.04	11667	1.0:	
	1	NaN	-4.666667	1.39860	1 -2.75	8621 2.	836879	0.000000	72.41	3793 -	25.00	
	2	NaN	-6.666667	0.000000	7.14	2857 7.	692308	7.142857	7 -33.33	3333	10.00	
	3	NaN	-6.666667	-21.42857	1 9.090	0909 8.	333333	-23.076923	3 120.00	0000	-31.8	
	4	NaN	50.000000	-66.66666	7 100.000	0000 50.	000000	-66.666667	7 700.00	0000 -	25.00	

```
In [7]: # Reattach the 'Key performance indicator' column to the percentage chang
   data_pct_change_with_kpi = pd.concat([data['Key performance indicator'],
        # Display the result with KPI
   data_pct_change_with_kpi
```

Out[7]:		Key performance indicator	Jul, 2022	Aug, 2022	Sep, 2022	Oct, 2022	Nov, 2022	Dec, 20
	0	Different % prescriptions filled per month (av	NaN	-1.086957	4.395604	-2.105263	1.075269	2.1276
,	1	Dispensing: error rate per 1000 items dispensed	NaN	-4.666667	1.398601	-2.758621	2.836879	0.0000
	2	Average patient wait time (min)	NaN	-6.666667	0.000000	-7.142857	7.692308	7.1428
	3	Pharmacist productivity (prescriptions dispens	NaN	-6.666667	-21.428571	9.090909	8.333333	-23.0769
	4	Patient interaction/counselling time (min)	NaN	50.000000	-66.666667	100.000000	50.000000	-66.6666

```
In [8]: ##control chart
        # Load data
        file path = '/Users/alanoudalturki/Desktop/CQI Project/Pharmacy Automatio
        data = pd.read excel(file path, sheet name='Sheet')
        # Clean KPI names
        data['Key performance indicator'] = data['Key performance indicator'].str
        # Define pre- and post-robotic columns
        columns_pre_robotic = ['Jul, 2022', 'Aug, 2022', 'Sep, 2022', 'Oct, 2022'
        columns post robotic = ['Jan, 2023', 'Feb, 2023', 'Mar, 2023', 'Apr, 2023'
        all_columns = columns_pre_robotic + columns_post_robotic
        # Function to create control charts with a single shifting line for pre a
        def create control charts(data, kpi list, pre columns, post columns, all
            plt.figure(figsize=(16, len(kpi_list) * 6))
            for i, kpi in enumerate(kpi_list):
                # Extract KPI data
                kpi_data = data.loc[data['Key performance indicator'] == kpi]
                if kpi data.empty:
                    print(f"No data found for KPI: {kpi}")
                    continue
                values_pre = kpi_data[pre_columns].values.flatten()
                values_post = kpi_data[post_columns].values.flatten()
```

```
# Skip KPIs with insufficient data
        if len(values pre) == 0 or len(values post) == 0:
            print(f"Insufficient data for KPI: {kpi}")
            continue
        # Combine pre and post values
        combined_values = np.concatenate([values_pre, values_post])
        # Calculate means and control limits
        mean pre = np.mean(values pre)
        std_pre = np.std(values_pre, ddof=1)
        mean_post = np.mean(values_post)
        std post = np.std(values post, ddof=1)
        combined_mean = [mean_pre] * len(pre_columns) + [mean_post] * len
        combined_ucl = [mean_pre + 2 * std_pre] * len(pre_columns) + [mea
        combined lcl = [mean pre - 2 * std pre] * len(pre_columns) + [mea
        # Plot the control chart
        plt.subplot(len(kpi list), 1, i + 1)
        plt.plot(all columns, combined values, 'o-', color='blue', label=
        plt.plot(all_columns, combined_mean, '--', color='green', label='
plt.plot(all_columns, combined_ucl, '-.', color='red', label='UCL
        plt.plot(all_columns, combined_lcl, '-.', color='red', label='LCL
        # Annotate pre- and post-intervention means
        plt.text(pre_columns[-1], mean_pre, f"Mean Pre: {mean_pre:.3f}\nS
                 color='blue', fontsize=10, ha='center', bbox=dict(faceco
        plt.text(post_columns[0], mean_post, f"Mean Post: {mean_post:.3f}
                 color='green', fontsize=10, ha='center', bbox=dict(facec
        # Add a vertical line to indicate the transition from pre to post
        plt.axvline(x=pre columns[-1], color='gray', linestyle='--', line
        # Highlight pre- and post-intervention periods
        plt.axvspan(0, len(pre_columns) - 1, color='lightgray', alpha=0.3
        plt.axvspan(len(pre_columns), len(all_columns) - 1, color='lightb
        # Add titles, labels, and legend
        plt.title(kpi, fontsize=14)
        plt.xlabel('Months', fontsize=12)
        plt.ylabel('Value', fontsize=12)
        plt.xticks(rotation=45)
        plt.legend(loc='upper left', fontsize=10)
        plt.grid(True, linestyle='--', alpha=0.7)
    plt.tight_layout()
    plt.show()
# List of KPIs
kpi list = [
    'Different % prescriptions filled per month (average)',
    'Dispensing: error rate per 1000 items dispensed',
    'Average patient wait time (min)',
    'Pharmacist productivity (prescriptions dispensed per staff hour)',
    'Patient interaction/counselling time (min)'
]
```

Generate control charts create_control_charts(data, kpi_list, columns_pre_robotic, columns_post_r


```
In [9]: # Extract UCL and LCL Pre and Post for each KPI
        # Placeholder for results
        ucl lcl values = []
        # Function to calculate UCL and LCL for Pre and Post periods
        def calculate_ucl_lcl(data, kpi_list, pre_columns, post_columns):
            for kpi in kpi_list:
                # Extract KPI data
                kpi data = data.loc[data['Key performance indicator'] == kpi]
                if kpi data.empty:
                    continue
                # Get pre and post values
                values pre = kpi data[pre columns].values.flatten()
                values post = kpi_data[post_columns].values.flatten()
                # Calculate UCL and LCL for pre and post
                if len(values_pre) > 0:
                    mean_pre = np.mean(values_pre)
                    std pre = np.std(values pre, ddof=1)
                    ucl pre = mean pre + 2 * std pre
                    lcl_pre = mean_pre - 2 * std_pre
                else:
                    ucl_pre, lcl_pre = None, None
                if len(values_post) > 0:
                    mean_post = np.mean(values_post)
                    std_post = np.std(values_post, ddof=1)
                    ucl_post = mean_post + 2 * std_post
                    lcl_post = mean_post - 2 * std_post
                else:
                    ucl post, lcl post = None, None
                 # Append results
                ucl_lcl_values.append({
                    "KPI": kpi,
                     "UCL Pre": ucl_pre,
                     "LCL Pre": lcl_pre,
                    "UCL Post": ucl post,
                    "LCL Post": lcl_post
                })
        # Call the function
        calculate ucl lcl(data, kpi list, columns pre robotic, columns post robot
        # Convert results to a DataFrame
        ucl_lcl_df = pd.DataFrame(ucl_lcl_values)
        # Display the DataFrame
        ucl 1cl df
```

Out[9]:		КРІ	UCL Pre	LCL Pre	UCL Post	LCL Post
	0	Different % prescriptions filled per month (av	0.972417	0.897583	0.992417	0.917583
	1	Dispensing: error rate per 1000 items dispensed	0.015082	0.013884	0.004598	0.000402
	2	Average patient wait time (min)	15.672212	12.661121	11.366129	9.300538
	3	Pharmacist productivity (prescriptions dispens	16.241657	8.758343	28.642661	11.957339

Patient interaction/counselling time (min) 3.788854 0.211146 9.088787 4.244546

```
In [10]: ##Trend Comparison and Improvemnt Charts
         # Define columns for 2022 and 2023
         columns_2022 = ['Jul, 2022', 'Aug, 2022', 'Sep, 2022', 'Oct, 2022', 'Nov,
         columns_2023 = ['Jan, 2023', 'Feb, 2023', 'Mar, 2023', 'Apr, 2023', 'May,
         # Combine columns for labeling purposes
         columns = columns 2022 + columns 2023
         # Loop through each KPI and plot its values for both 2022 and 2023
         for index, kpi in enumerate(data['Key performance indicator']):
             # Extract values for 2022 and 2023
             values 2022 = data numeric no kpi.loc[index, columns 2022]
             values_2023 = data_numeric_no_kpi.loc[index, columns_2023]
             # Calculate averages for 2022 and 2023
             avg_2022 = values_2022.mean()
             avg 2023 = values 2023.mean()
             # Calculate percentage improvement
             if avg_2022 != 0 and avg_2022 != avg_2023: # to Avoid division by ze
                 percentage improvement = ((avg 2023 - avg 2022) / avg 2022) * 100
             else:
                 percentage improvement = 0
             # Determine whether to show "Increase by X%" or "Decrease by X%"
             if percentage_improvement > 0:
                  improvement_text = f'Increase by {percentage_improvement:.2f}%'
             elif percentage improvement < 0:</pre>
                  improvement text = f'Decrease by {abs(percentage improvement):.2f
                  improvement text = 'No Change'
             # Debugging: Print the calculated averages and percentage improvement
             print(f"KPI: {kpi}")
             print(f"Average 2022: {avg 2022:.2f}, Average 2023: {avg 2023:.2f}, {
             # Create the plot
             plt.figure(figsize=(10, 6))
             # Plot the values for 2022
             plt.plot(columns 2022, values 2022, marker='o', linestyle='-', color=
```

```
# Plot the values for 2023
plt.plot(columns 2023, values 2023, marker='o', linestyle='-', color=
# Add trendline for 2022
z_2022 = np.polyfit(range(len(values_2022)), values_2022, 1)
p_2022 = np_poly1d(z_2022)
plt.plot(columns 2022, p 2022(range(len(values 2022))), "b--", label=
# Add trendline for 2023
z 2023 = np.polyfit(range(len(values 2023)), values 2023, 1)
p 2023 = np.poly1d(z 2023)
plt.plot(columns 2023, p 2023(range(len(values 2023))), "q--", label=
# Add lighter shaded background to indicate before and after "Rowa sy
plt.axvspan(-0.5, 5.5, color='lightgray', alpha=0.15, label='Before R
plt.axvspan(5.5, 11.5, color='lightblue', alpha=0.15, label='After Ro
# Highlight max and min values for both years
plt.scatter([columns 2022[np.argmax(values 2022)]], [max(values 2022)]
plt.scatter([columns 2022[np.argmin(values 2022)]], [min(values 2022)]
plt.scatter([columns 2023[np.argmax(values 2023)]], [max(values 2023)]
plt.scatter([columns_2023[np.argmin(values_2023)]], [min(values_2023)]
# Add titles and labels
plt.title(f'Trend Comparison for {kpi}: 2022 vs 2023\n{improvement_te
plt.xlabel('Months', fontsize=12)
plt.ylabel('Value', fontsize=12)
# Add gridlines and legend
plt.grid(True)
plt.legend()
# Rotate x-axis labels for readability
plt.xticks(rotation=45)
# Adjust the position of the percentage improvement text
plt.text(0.5, 0.3, f'{improvement_text}', transform=plt.gca().transAx
# Show the plot
plt.tight_layout()
plt.show()
# Print the percentage improvement for each KPI
print(f'Percentage Improvement for {kpi} from 2022 to 2023: {improvem
```

KPI: Different % prescriptions filled per month (average) Average 2022: 0.94, Average 2023: 0.96, Increase by 2.14%

Trend Comparison for Different % prescriptions filled per month (average): 2022 vs 2023 Increase by 2.14%

Percentage Improvement for Different % prescriptions filled per month (average) from 2022 to 2023: Increase by 2.14%

KPI: Dispensing: error rate per 1000 items dispensed
Average 2022: 0.01, Average 2023: 0.00, Decrease by 82.74%

Trend Comparison for Dispensing: error rate per 1000 items dispensed: 2022 vs 2023

Decrease by 82.74%

Percentage Improvement for Dispensing: error rate per 1000 items dispense d from 2022 to 2023: Decrease by 82.74%

KPI: Average patient wait time (min)

Average 2022: 14.17, Average 2023: 10.33, Decrease by 27.06%

Trend Comparison for Average patient wait time (min): 2022 vs 2023 Decrease by 27.06%

Percentage Improvement for Average patient wait time (min) from 2022 to 2 023: Decrease by 27.06%

KPI: Pharmacist productivity (prescriptions dispensed per staff hour)
Average 2022: 12.50, Average 2023: 20.30, Increase by 62.40%

Trend Comparison for Pharmacist productivity (prescriptions dispensed per staff hour): 2022 vs 2023 Increase by 62.40%

Percentage Improvement for Pharmacist productivity (prescriptions dispensed per staff hour) from 2022 to 2023: Increase by 62.40%

KPI: Patient interaction/counselling time (min)

Average 2022: 2.00, Average 2023: 6.67, Increase by 233.33%

Trend Comparison for Patient interaction/counselling time (min): 2022 vs 2023 Increase by 233.33%

Percentage Improvement for Patient interaction/counselling time (min) fro m 2022 to 2023: Increase by 233.3%

In []:	
--------	--