Algorithm Analysis

Algorithm Analysis
Textbook Ch 2,3

Outline

- Justification for analysis
- Landau symbols
- Run time of programs
- Best-, worst-, and average-case

Comparing algorithms

Suppose we have two algorithms. How can we tell which is better?

We could implement both algorithms, run them both

Expensive and error prone

Preferably, we should analyze them mathematically

Algorithm analysis

Example

- Find a item in a sorted array of length N
- Algorithm 1: Linear search (check each item from left to right)
 - Do you use this approach when looking up a word in a dictionary?
- Algorithm 2: Binary search

Implementation

Algorithm 1: Linear search

```
int lfind(int key, int a[], int n)
{  if (n==0) return -1;
  if (key == a[n-1]) return n-1;
  return lfind(key, a, n-1);
}
```

Algorithm 2: Binary search (demo)

```
int bfind(int key, int a[], int left, int right)
{
   if (left+1 == right) return -1;
   int m = (left + right) / 2;
   if (key == a[m]) return m;
   if (key < a[m]) return bfind(key, a, left, m);
   else return bfind(key, a, m, right);
}</pre>
```

linear vs binary search

linear vs binary search

linear vs binary search

Empirical comparison linear vs binary search - log/log plot

Recall: we search n times

Linear = $O(n^2)$

Binary = O(n log n)

N

Analytical comparison

- Linear search
 - O(*n*)
- Binary search
 - $O(\log n)$
- So binary search is better than linear search

Asymptotic Analysis

In general, we will always analyze algorithms with respect to one or more variables

We will begin with one variable:

- The number of items n currently stored in an array or other data structure
- The number of items expected to be stored in an array or other data structure
- The dimensions of an $n \times n$ matrix

Examples with multiple variables:

- Dealing with n objects stored in m memory locations
- Multiplying a $k \times m$ and an $m \times n$ matrix
- Dealing with sparse matrices of size $n \times n$ with m non-zero entries

Asymptotic Analysis

Given an algorithm, we want to describe its computational cost mathematically and in a machine-independent way

For this, we need Landau symbols (a.k.a. Big-O notation) and the associated asymptotic analysis

Outline

- Justification for analysis
- Landau symbols
- Run time of programs
- Best-, worst-, and average-case

Quadratic Growth

Consider the two functions

$$f(n) = n^2$$
 and $g(n) = n^2 - 3n + 2$

Around n = 0, they look very different

Quadratic Growth

Yet on the range n = [0, 1000], they are (relatively) indistinguishable:

Quadratic Growth

The absolute difference is large, for example,

$$f(1000) = 1\ 000\ 000$$

$$g(1000) = 997\ 002$$

but the relative difference is very small

$$\left| \frac{f(1000) - g(1000)}{f(1000)} \right| = 0.002998 < 0.3\%$$

and this difference goes to zero as $n \to \infty$

Polynomial Growth

To demonstrate with another example,

$$f(n) = n^6$$
 and $g(n) = n^6 - 23n^5 + 193n^4 - 729n^3 + 1206n^2 - 648n^4$

Around n = 0, they are very different

Polynomial Growth

Still, around n = 1000, the relative difference is less than 3%

Polynomial Growth

The justification for both pairs of polynomials being similar is that, in both cases, they each had the same leading term:

 n^2 in the first case, n^6 in the second

What if the coefficients of the leading terms were different?

 In this case, both functions would exhibit the same rate of growth, however, one would always be proportionally larger

However, if the two functions describe the run-time of two algorithms

 We can always run the slower algorithm on a faster computer to make them equally fast

In contrast: can we make linear search equally fast to binary search by using a faster computer (say, an Ultimate Laptop)?

Weak ordering

Consider the following definitions:

- We will consider two functions to be equivalent, $f \sim g$, if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \text{ where } 0 < c < \infty$$

- We will state that f < g if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

For functions we are interested in, these define a weak ordering

Weak ordering

Let f(n) and g(n) describe the run-time of two algorithms

- If $f(n) \sim g(n)$, then it is always possible to improve the performance of one function over the other by purchasing a faster computer
- If f(n) < g(n), then you can <u>never</u> purchase a computer fast enough so that the second function always runs in less time than the first

Some Assumptions

We will make some assumptions:

- Our functions will describe the time or memory required to solve a problem of size n
- We are restricting ourselves to certain functions:
 - They are defined for $n \ge 0$
 - They are strictly positive for all n
 - In fact, f(n) > c for some value c > 0
 - That is, any problem requires at least one instruction and byte
 - They are increasing (monotonic increasing)

Better known as big O notation

A function
$$f(n) = O(g(n))$$
 if there exists k and c such that $f(n) < c g(n)$

whenever n > k

- The function f(n) has a rate of growth no greater than that of g(n)

Another Landau symbol is Θ

A function $f(n) = \Theta(g(n))$ if there exist positive k, c_1 , and c_2 such that $c_1 g(n) < f(n) < c_2 g(n)$

whenever n > k

- The function f(n) has a rate of growth equal to that of g(n)

If f(n) and g(n) are polynomials of the same degree with positive leading coefficients:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \quad \text{where} \quad 0 < c < \infty$$

From the definition, this means given $c > \varepsilon > 0$ there

exists a k > 0 such that
$$\left| \frac{\mathbf{f}(n)}{\mathbf{g}(n)} - c \right| < \varepsilon$$
 whenever $n > k$

That is,
$$c - \varepsilon < \frac{f(n)}{g(n)} < c + \varepsilon$$
$$g(n)(c - \varepsilon) < f(n) < g(n)(c + \varepsilon)$$

If
$$\lim_{n\to\infty} \frac{\mathbf{f}(n)}{\mathbf{g}(n)} = c$$
 where $0 < c < \infty$, it follows that $\mathbf{f}(n) = \Theta(\mathbf{g}(n))$

$$g(n)(c-\varepsilon) < f(n) < g(n)(c+\varepsilon)$$

We have a similar definition for O:

If
$$\lim_{n\to\infty} \frac{\mathbf{f}(n)}{\mathbf{g}(n)} = c$$
 where $0 \le c < \infty$, it follows that $\mathbf{f}(n) = \mathbf{O}(\mathbf{g}(n))$

There are other possibilities we would like to describe:

If
$$\lim_{n\to\infty}\frac{\mathbf{f}(n)}{\mathbf{g}(n)}=0$$
, we will say $\mathbf{f}(n)=\mathbf{o}(\mathbf{g}(n))$

- The function f(n) has a rate of growth less than that of g(n)

We would also like to describe the opposite cases:

- The function f(n) has a rate of growth greater than that of g(n)
- The function f(n) has a rate of growth greater than or equal to that of g(n)

We will at times use five possible descriptions

$$f(n) = \mathbf{o}(g(n)) \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$f(n) = \mathbf{O}(g(n)) \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$f(n) = \mathbf{\Theta}(g(n)) \qquad 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$f(n) = \mathbf{\Omega}(g(n)) \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$$

$$f(n) = \mathbf{\omega}(g(n)) \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Graphically, we can summarize these as follows:

We say
$$f(n) = \begin{cases} \mathbf{O}(g(n)) & \mathbf{\Omega}(g(n)) \\ \mathbf{o}(g(n)) & \mathbf{\Theta}(g(n)) & \mathbf{\omega}(g(n)) \end{cases}$$
 if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} \mathbf{0} & 0 < \mathbf{c} < \infty \end{cases}$

For the functions we are interested in, it can be said that

$$f(n) = O(g(n))$$
 is equivalent to $f(n) = O(g(n))$ or $f(n) = o(g(n))$

and

$$f(n) = \Omega(g(n))$$
 is equivalent to $f(n) = \Theta(g(n))$ or $f(n) = \omega(g(n))$

Some other observations we can make are:

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

$$f(n) = \mathbf{O}(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

$$f(n) = \mathbf{o}(g(n)) \Leftrightarrow g(n) = \omega(f(n))$$

If we look at the first relationship, we notice that $f(n) = \Theta(g(n))$ seems to describe an equivalence relation:

- 1. $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- 2. $f(n) = \Theta(f(n))$
- 3. If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, it follows that $f(n) = \Theta(h(n))$

Consequently, we can group all functions into equivalence classes, where all functions within one class are big-theta Θ of each other

For example, all of

$$n^2$$
 100000 $n^2 - 4 n + 19$ $n^2 + 1000000$
323 $n^2 - 4 n \ln(n) + 43 n + 10$ $42n^2 + 32$
 $n^2 + 61 n \ln^2(n) + 7n + 14 \ln^3(n) + \ln(n)$

are big-Θ of each other

E.g.,
$$42n^2 + 32 = \Theta(323 n^2 - 4 n \ln(n) + 43 n + 10)$$

We will select just one element to represent the entire class of these functions: n^2

We could choose any function, but this is the simplest

The most common classes are given names:

 $\Theta(1)$ constant

 $\Theta(\ln(n))$ logarithmic

 $\Theta(n)$ linear

 $\Theta(n \ln(n))$ " $n \log n$ "

 $\Theta(n^2)$ quadratic

 $\Theta(n^3)$ cubic

 2^n , e^n , 4^n , ... exponential

Empirical comparison

	1	2	4	8	16	32
1	1	1	1	1	1	1
log n	0	1	2	3	4	5
n	1	2	4	8	16	32
$n \log n$	0	2	8	24	64	160
n^2	1	4	16	64	256	1024
n^3	1	8	64	512	4096	32768
2 ⁿ	2	4	16	256	65536	4294967296
n !	1	2	24	40326	2092278988000	26313×10^{33}

Empirical comparison plot

Logarithms and Exponentials

Recall that all logarithms are scalar multiples of each other

- Therefore $\log_b(n) = \Theta(\ln(n))$ for any base b

On the other hand, there is no single equivalence class for exponential functions:

- If
$$1 < a < b$$
, $\lim_{n \to \infty} \frac{a^n}{b^n} = \lim_{n \to \infty} \left(\frac{a}{b}\right)^n = 0$

- Therefore $a^n = \mathbf{o}(b^n)$

But any exponentially growing function is almost universally undesirable to have!

Logarithms and Exponentials

Plotting 2^n , e^n , and 4^n on the range [1, 10] already shows how significantly different the functions grow

Note:

$$2^{10} = 1024$$
 $e^{10} \approx 22 026$
 $4^{10} = 1 048 576$

We can show that, for example

$$ln(n) = \mathbf{o}(n^p)$$

for any p > 0

Proof: Using l'Hôpital's rule, we have

$$\lim_{n \to \infty} \frac{\ln(n)}{n^{p}} = \lim_{n \to \infty} \frac{1/n}{pn^{p-1}} = \lim_{n \to \infty} \frac{1}{pn^{p}} = \frac{1}{p} \lim_{n \to \infty} n^{-p} = 0$$

Conversely, $1 = o(\ln(n))$

If p and q are real positive numbers where p < q

- It follows that $n^p = \mathbf{o}(n^q)$
- For example, matrix-matrix multiplication is $Θ(n^3)$ but a refined algorithm is $Θ(n^{\lg(7)})$ where $\lg(7) \approx 2.81$
- Also, $n^p = \mathbf{o}(\ln(n)n^p)$, but $\ln(n)n^p = \mathbf{o}(n^q)$
 - n^p has a slower rate of growth than $\ln(n)n^p$, but
 - $\ln(n)n^p$ has a slower rate of growth than n^q for p < q
 - Ex: $n \ln n = \mathbf{o}(n^{1.00000000001})$

If we restrict ourselves to functions f(n) which are $\Theta(n^p)$ and $\Theta(\ln(n)n^p)$, we note:

- It is never true that f(n) = o(f(n))
- If $f(n) \neq \Theta(g(n))$, it follows that either

$$f(n) = o(g(n)) \text{ or } g(n) = o(f(n))$$

- If f(n) = o(g(n)) and g(n) = o(h(n)), it follows that f(n) = o(h(n))

This defines a weak ordering!

Graphically, we can show this relationship by marking these against the real line

Outline

- Justification for analysis
- Landau symbols
- Run time of programs
- Best-, worst-, and average-case

Algorithms Analysis

The goal of algorithm analysis is to determine the asymptotic run time or memory requirements based on various parameters

We will use Landau symbols to describe the complexity of algorithms. E.g.,

- Given an array of size n:
 - Selection sort requires $\Theta(n^2)$ time
 - Merge sort, quick sort, and heap sort all require $\Theta(n \ln(n))$ time
- However:
 - Merge sort requires $\Theta(n)$ additional memory
 - Quick sort requires $\Theta(\ln(n))$ additional memory
 - Heap sort requires $\Theta(1)$ additional memory

Algorithms Analysis

An algorithm is said to have *polynomial time complexity* if its runtime may be described by $O(n^d)$ for some fixed $d \ge 0$

We will consider such algorithms to be efficient

Problems that have no known polynomial-time algorithms are said to be *intractable*

- Traveling salesman problem: find the shortest path that visits n cities
- − Best run time: $\Theta(n^2 2^n)$

In general, you don't want to implement exponential-time or exponential-memory algorithms

Algorithms Analysis

To properly investigate the determination of run times asymptotically:

- We will begin with machine instructions and basic operations
- Control statements
- Conditional-controlled loops
- Functions
- Recursive functions

Given any processor, it is capable of performing only a limited number of operations

These operations are called *instructions*

The collection of instructions is called the *instruction set*

- The exact set of instructions differs between processors
- MIPS, ARM, x86, 6800, 68k

Any instruction runs in a fixed amount of time (an integral number of CPU cycles)

Any instruction runs in a fixed amount of time (an integral number of CPU cycles)

An example on the Coldfire is:

0x0687000000F

which adds 15 to the 7th data register

As humans are not good at hex, this can be programmed in assembly language as

ADDI.L #\$F, D7

More in ECE 222

Assembly language has an almost one-to-one translation to machine instructions

Assembly language is a low-level programming language

Other programming languages are higher-level:

Fortran, Pascal, Matlab, Java, C++, and C#

The adjective "high" refers to the level of abstraction:

- Java, C++, and C# have abstractions such as OO
- Matlab and Fortran have operations which do not map to relatively small number of machine instructions:

The C programming language (C++ without objects and other abstractions) can be referred to as a mid-level programming language

- There is abstraction, but the language is closely tied to the standard capabilities
- There is a closer relationship between operators and machine instructions

Consider the operation a += b;

Assume that the compiler has already has the value of the variable a in register D1 and perhaps b is a variable stored at the location stored in address register A1, this is then converted to the single instruction

Operators

There is a close relationship between basic operations and machine instructions, so we may assume each operation requires a fixed number of CPU cycles, i.e., $\Theta(1)$ time:

- Variable assignment
- Integer operations
- Logical operations
- Bitwise operations
- Relational operations
- Memory allocation and deallocation

=

new delete

Operators

Of these, memory allocation and deallocation are the slowest by a significant factor

- A quick test on eceunix shows a factor of over 100
- They require communication with the operation system
- This does not account for the time required to call the constructor and destructor

Note that after memory is allocated, the constructor is run

- The constructor may not run in $\Theta(1)$ time

Blocks of Operations

Each operation runs in $\Theta(1)$ time and therefore any fixed number of operations also run in $\Theta(1)$ time, for example:

```
// Swap variables a and b
int tmp = a;
a = b;
b = tmp;
```

Blocks of Operations

Seldom will you find large blocks of operations without any additional control statements

This example rearranges an AVL tree structure

```
Tree_node *Irl = left->right->left;
Tree_node *Irr = left->right->right;
parent = left->right;
parent->left = left;
parent->right = this;
left->right = Irl;
left = Irr;
```

Run time: $\Theta(1)$

Suppose you have now analyzed a number of blocks of code run in sequence

```
template <typename T> void update_capacity( int delta ) {  T *array\_old = array; \\ int capacity\_old = array\_capacity; \\ array\_capacity += delta; \\ array = new T[array\_capacity]; \\ for ( int i = 0; i < capacity\_old; ++i ) { \\ array[i] = array\_old[i]; } \\ delete[] array\_old; \\ \} \\ delete[] array\_old; \\ \Theta(1)
```

To calculate the total run time, add the entries: $\Theta(1 + n + 1) = \Theta(n)$

```
template <int M, int N>
Matrix<M, N> &Matrix<M, N>::operator= ( Matrix<M, N> const &A ) {
      if ( &A == this ) {
                                                                  \Theta(1)
                return *this:
      }
      if (capacity != A.capacity) {
                delete [] column_index;
                delete [] off_diagonal;
                capacity = A.capacity;
                column_index = new int[capacity];
                                                                   \Theta(1)
                off_diagonal = new double[capacity];
      }
      for ( int i = 0; i < minMN; ++i ) {
                                                           \Theta(\min(M, N))
                diagonal[i] = A.diagonal[i];
      }
      for ( int i = 0; i <= M; ++i ) {
                                                                  \Theta(M)
                row_index[i] = A.row_index[i];
      }
      for ( int i = 0; i < A.size(); ++i ) {
                column_index[i] = A.column_index[i];
                                                                   \Theta(n)
                off_diagonal[i] = A.off_diagonal[i];
      }
      return *this;
                                                                   \Theta(1)
}
```

$$\Theta(1+1+\min(M,N)+M+n+1) = \Theta(M+n)$$

- Note that $min(M, N) \le M$
- We cannot say anything about M and n. As a convention, we keep both.

Other examples:

- Run three blocks of code which are $\Theta(1)$, $\Theta(n^2)$, and $\Theta(n)$ Total run time $\Theta(1 + n^2 + n) = \Theta(n^2)$
- Run two blocks of code which are $\Theta(n \ln(n))$, and $\Theta(n^{1.5})$ Total run time $\Theta(n \ln(n) + n^{1.5}) = \Theta(n^{1.5})$

Recall this linear ordering from the previous topic

When considering a sum, take the dominant term

What if we have both big O and big Theta?

- if the leading term is big- Θ , then the result must be big- Θ , otherwise
- if the leading term is big-O, we can say the result is big-O

For example,

$$\mathbf{O}(n) + \mathbf{O}(n^2) + \mathbf{O}(n^4) = \mathbf{O}(n + n^2 + n^4) = \mathbf{O}(n^4)$$
 $\mathbf{O}(n) + \Theta(n^2) = \Theta(n^2)$
 $\mathbf{O}(n^2) + \Theta(n) = \mathbf{O}(n^2)$
 $\mathbf{O}(n^2) + \Theta(n^2) = \Theta(n^2)$

Next, we will look at the following control statements

These are statements which potentially alter the execution of instructions

- Conditional statements if, switch
- Condition-controlled loops for, while, do-while
- Count-controlled loopsfor i from 1 to 10 do ... end do; # Maple
- Collection-controlled loops foreach (int i in array) { ... } // C#

Given any collection of nested control statements, it is always necessary to work inside out

Determine the run times of the inner-most statements and work your way out

```
for(i=0; i<n; i++) {
    // do something...
    for(j=0; j<m; j++) {
        // do something else...
}</pre>
```

Given

```
if ( condition ) {
    // true body
} else {
    // false body
}
```

The run time of a conditional statement is:

- the run time of the condition (the test), plus
- the run time of the body which is run

In most cases, the run time of the condition is $\Theta(1)$

In some cases, it is easy to determine which statement must be run:

```
int factorial ( int n ) {
          if ( n == 0 ) {
              return 1;
          } else {
               return n * factorial ( n - 1 );
          }
}
```

In others, it is less obvious

– Find the maximum entry in an array:

```
int find_max( int *array, int n ) {
    max = array[0];

for ( int i = 1; i < n; ++i ) {
    if ( array[i] > max ) {
        max = array[i];
    }
  }

return max;
}
```

If we had information about the distribution of the entries of the array, we may be able to determine it

- if the list is sorted (ascending) it will always be run
- if the list is sorted (descending) it will never be run
- if the list is randomly distributed, then??? We don't know.

Conditional

if C then S1 else S2

Suppose you are doing a big O analysis

Time(C) + Max(Time(S1),Time(S2)) or

Time(C)+Time(S1)+Time(S2)?

Conditional Statements

Consider this example

```
void Disjoint_sets::clear() {
   if ( sets == n ) {
                                                                       \Theta(1)
       return;
   max_height = 0;
   num_disjoint_sets = n;
                                                                       \Theta(1)
   for ( int i = 0; i < n; ++i ) {
       parent[i] = i;
                                                                       \Theta(n)
       tree_height[i] = 0;
                                                              T_{clear}(n) = \begin{cases} \vdots(1) & sets = n \\ \vdots(n) & otherwise \end{cases}
```

```
The C++ for loop is a condition controlled statement: for ( int i = 0; i < N; ++i ) { // ... } is identical to int i = 0; // initialization while ( i < N ) { // condition // ... ++i; // increment }
```

The initialization, condition, and increment usually are single statements running in $\Theta(1)$

```
for ( int i = 0; i < N; ++i ) {
// ...
}
```

If the body does not depend on the variable (in this example, i), then the run time of

```
for ( int i = 0; i < n; ++i ) { // code which is Theta(f(n)) } is \Theta(n \ f(n))
```

If the body is O(f(n)), then the run time of the loop is O(n f(n))

```
For example,
  int sum = 0;
  for ( int i = 0; i < n; ++i ) {
     sum += 1;  // Theta(1)
}</pre>
```

This code has run time

$$\Theta(n \cdot 1) = \Theta(n)$$

Condition-controlled Loops

Another example

```
int sum = 0;
for ( int i = 0; i < n; ++i ) {
    for ( int j = 0; j < n; ++j ) {
        sum += 1;  // Theta(1)
    }
}</pre>
```

The previous example showed that the inner loop is $\Theta(n)$, thus the outer loop is

$$\Theta(\mathbf{n} \cdot \mathbf{n}) = \Theta(\mathbf{n}^2)$$

Analysis of Repetition Statements

Suppose with each loop, we use a linear search an array of size m:

```
for ( int i = 0; i < n; ++i ) {
      // search through an array of size m
      // O( m );
}</pre>
```

The inner loop is O(m) and thus the outer loop is O(n m)

Condition-controlled Loops

Another example

```
int sum = 0;
for ( int i = 0; i < n; ++i ) {
    for ( int j = 0; j < i; ++j ) {
        sum += i + j;
    }
}</pre>
```

The inner loop is $\Theta(i)$, hence the outer is

$$\mathbf{\Theta}\left(\sum_{i=0}^{n-1} i\right) = \mathbf{\Theta}\left(\frac{n(n-1)}{2}\right) = \mathbf{\Theta}(n^2)$$

Analysis of Repetition Statements

Final example:

```
int sum = 0;
for ( int i = 0; i < n; ++i ) {
    for ( int j = 0; j < i; ++j ) {
        for ( int k = 0; k < j; ++k ) {
            sum += i + j + k;
            }
        }
}</pre>
```

From inside to out:

```
\Theta(1)
\Theta(j)
\Theta(i^2)
\Theta(n^3)
```

Switch statements appear to be nested if statements:

```
switch(i) {
    case 1: /* do stuff */ break;
    case 2: /* do other stuff */ break;
    case 3: /* do even more stuff */ break;
    case 4: /* well, do stuff */ break;
    case 5: /* tired yet? */ break;
    default: /* do default stuff */
}
```

Thus, a switch statement would appear to run in O(n) time where n is the number of cases, the same as nested if statements

– Why then not use:

```
if ( i == 1 ) { /* do stuff */ }
else if ( i == 2 ) { /* do other stuff */ }
else if ( i == 3 ) { /* do even more stuff */ }
else if ( i == 4 ) { /* well, do stuff */ }
else if ( i == 5 ) { /* tired yet? */ }
else { /* do default stuff */ }
```

Question:

Why would you introduce something into programming language which is redundant?

There are reasons for this:

- your name is Larry Wall and you are creating the Perl (not PERL) programming language
- you are introducing software engineering constructs, for example, classes

However, switch statements were included in the original C language... why?

First, you may recall that the cases must be actual values, either:

- integers
- characters

For example, you cannot have a case with a variable, e.g.,

```
case n: /* do something */ break; //bad
```

The compiler looks at the different cases and calculates an appropriate jump

For example, assume:

- the cases are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- each case requires a maximum of 24 bytes (for example, six instructions)

Then the compiler simply makes a jump size based on the variable, jumping ahead either 0, 24, 48, 72, ..., or 240 instructions

A function (or subroutine) is code which has been separated out:

- repeated operations
 - e.g., mathematical functions
- to group related tasks
 - e.g., initialization

Because a subroutine (function) can be called from anywhere, we must:

- prepare the appropriate environment
- deal with arguments (parameters)
- jump to the subroutine
- execute the subroutine
- deal with the return value
- clean up

We will assume that the overhead required to make a function call and to return is $\Theta(1)$.

Fortunately, this is such a common task that all modern processors have instructions that perform most of these steps in one instruction

Thus, we will assume that the overhead required to make a function call and to return is $\Theta(1)$ an

We will discuss this later (stacks/ECE 222)

Because any function requires the overhead of a function call and return, we will always assume that

$$T_f = \Omega(1)$$

That is, it is impossible for any function call to have a zero run time

Given a function f(n) (the run time of which depends on n) we will associate the run time of f(n) by some function $T_f(n)$

- We may write this as T(n)
- This includes the time required to both call and return from the function

 $T_{\text{set union}} = 2T_{\text{find}} + \Theta(1)$

Consider this function:

```
void Disjoint_sets::set_union( int m, int n ) {
             m = find(m);
                                                              2T_{\text{find}} \\
             if (m == n)
                           return;
             --num_disjoint_sets;
             if ( tree_height[m] >= tree_height[n] ) {
                 parent[n] = m;
                                                                                           \Theta(1)
                if ( tree_height[m] == tree_height[n] ) {
                   ++( tree_height[m] );
                   max_height = std::max( max_height, tree_height[m] );
             } else {
                parent[m] = n;
```

A function is relatively simple (and boring) if it simply performs operations and calls other functions

Most interesting functions designed to solve problems usually end up calling themselves

Such a function is said to be recursive

As an example, we could implement the factorial function recursively:

```
int factorial( int n ) {  if (n \le 1) \{ \\ return 1; \\ } else \{ \\ return n * factorial( n - 1); \\ \}   T_!(n-1) + \tilde{}(1)  }
```

The analysis of the run time of this function yields a recurrence relation:

$$T_1(n) = T_1(n-1) + \Theta(1)$$
 $T_1(1) = \Theta(1)$

This recurrence relation has Landau symbols...

Replace each Landau symbol with a representative function:

$$T_!(n) = T_!(n-1) + 1$$
 $T_!(1) = 1$

- Then it is easy to prove that $T_!(n) = \Theta(n)$

Suppose we want to sort a array of *n* items

We could:

- go through the list and find the largest item
- swap the last entry in the list with that largest item
- then, go on and sort the rest of the array

This is called *selection sort*

```
void sort( int * array, int n ) {
   if ( n <= 1 ) {
                                      // special case: 0 or 1 items are always sorted
       return;
    int posn = 0;
                                      // assume the first entry is the smallest
    int max = array[posn];
    for (int i = 1; i < n; ++i) { // search through the remaining entries
       if ( array[i] > max ) {
                                // if a larger one is found
           posn = i;
                                      // update both the position and value
           max = array[posn];
    }
    int tmp = array[n - 1];
                                      // swap the largest entry with the last
    array[n - 1] = array[posn];
   array[posn] = tmp;
    sort( array, n - 1 );
                                     // sort everything else
}
```

We could call this function as follows:

```
int array[7] = \{5, 8, 3, 6, 2, 4, 7\};
sort( array, 7); // sort an array of seven items
```

The first call finds the largest element

The next call finds the 2nd-largest element

The third finds the 3rd-largest

And the 4th

And the 5th

Finally the 6th

And the array is sorted:

```
2
3
4
5
6
7
```

Analyzing the function, we get:

```
void sort( int * array, int n ) {
     if ( n <= 1 ) {
          return;
     }
     int posn = 0;
     int max = array[posn];
     for ( int i = 1; i < n; ++i )
          if ( array[i] > max ) {
    posn = i;
    max = array[posn];
}
                                                                    T(n) = \Theta(1) + \Theta(n) + \Theta(1) + T(n-1)
                                                                        = T(n-1) + \Theta(n)
     int tmp = array[n - 1];
array[n - 1] = array[posn];
     array[posn] = tmp;
     sort( array, n - 1 );
                                             T(n-1)
```

Thus, replacing each Landau symbol with a representative, we are required to solve the recurrence relation

$$T(n) = T(n-1) + n$$
 $T(1) = 1$

The easy way to solve this is with Maple:

```
> rsolve( {T(n) = T(n - 1) + n, T(1) = 1}, T(n) );

-1 - n + (n + 1) \left(\frac{n}{2} + 1\right)
> expand(%);
```

Consequently, the sorting routine has the run time

$$T(n) = \Theta(n^2)$$

To see this by hand, consider the following

$$T(n) = T(n-1) + n$$

$$= (T(n-2) + (n-1)) + n$$

$$= T(n-2) + n + (n-1)$$

$$= T(n-3) + n + (n-1) + (n-2)$$

$$\vdots$$

$$= T(1) + \sum_{i=2}^{n} i = 1 + \sum_{i=2}^{n} i = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Now consider binary search of a sorted list:

- Check the middle entry
- If we do not find it, check either the left- or right-hand side, as appropriate

Thus,
$$T(n) = T((n-1)/2) + \Theta(1)$$

Also, if
$$n = 1$$
, then $T(1) = \Theta(1)$

Thus we have to solve:

$$T(n) = \begin{cases} 1 & n = 1 \\ T\left(\frac{n-1}{2}\right) + 1 & n > 1 \end{cases}$$

Assume $n = 2^k - 1$ where k is an integer

Then
$$(n-1)/2 = (2^k - 1 - 1)/2 = 2^{k-1} - 1$$

Thus, we can write

$$T(n) = T(2^{k} - 1)$$

$$= T\left(\frac{2^{k} - 1 - 1}{2}\right) + 1$$

$$= T(2^{k-1} - 1) + 1$$

$$= T\left(\frac{2^{k-1} - 1 - 1}{2}\right) + 1 + 1$$

$$= T(2^{k-2} - 1) + 2$$

$$\vdots$$

Notice the pattern with one more step:

$$= T(2^{k-1} - 1) + 1$$

$$= T\left(\frac{2^{k-1} - 1 - 1}{2}\right) + 1 + 1$$

$$= T(2^{k-2} - 1) + 2$$

$$= T(2^{k-3} - 1) + 3$$

$$\vdots$$

Thus, in general, we may deduce that after k-1 steps:

$$T(n) = T(2^{k} - 1)$$

$$= T(2^{k-(k-1)} - 1) + k - 1$$

$$= T(1) + k - 1 = k$$

because T(1) = 1

Recursive Functions

Thus,
$$T(n) = k$$
, but $n = 2^k - 1$
Therefore $k = \lg(n + 1)$

Recall that
$$f(n) = \Theta(g(n))$$
 if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ for $0 < c < \infty$

$$\lim_{n \to \infty} \frac{\lg(n+1)}{\ln(n)} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)\ln(2)}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{(n+1)\ln(2)} = \frac{1}{\ln(2)}$$
Thus $T(n) = \Theta(\lg(n+1)) = \Theta(\ln(n))$

Thus,
$$T(n) = \Theta(\lg(n+1)) = \Theta(\ln(n))$$

Outline

- Justification for analysis
- Landau symbols
- Run time of programs
- Best-, worst-, and average-case

When determining the run time of an algorithm, because the data may not be deterministic, we may be interested in:

- Best-case run time
- Average-case run time
- Worst-case run time

In many cases, these will be significantly different

Searching a list linearly is simple enough

We will count the number of comparisons

- Best case:
 - The first element is the one we're looking for: O(1)
- Worst case:
 - The last element is the one we're looking for, or it is not in the list: O(n)
- Average case?
 - We need some information about the list...

Assume the item we are looking for is in the list and equally likely distributed

If the list is of size n, then there is a 1/n chance of it being in the ith location

Thus, we sum

$$\frac{1}{n}\sum_{i=1}^{n} i = \frac{1}{n}\frac{n(n+1)}{2} = \frac{n+1}{2}$$

which is O(n)

Suppose we have a different distribution:

- there is a 50% chance that the element is the first
- for each subsequent element, the probability is reduced by ½

We could write:

$$\sum_{i=1}^{n} \frac{i}{2^{i}} < \sum_{i=1}^{\infty} \frac{i}{2^{i}} = 2$$

which is O(1)

- Best-case run time
 - Not so useful
- Average-case run time
 - Need to choose a distribution over input instances
 - Average-case analysis may tell us more about the choice of distributions than about the algorithm itself.
- Worst-case run time
 - Most widely used to capture efficiency in practice.
 - Draconian view, but hard to find effective alternative.
 - Exceptions: some worst-case exponential-time algorithms are widely used because the worst-case instances seem to be rare.
 - E.g., the simplex algorithm

Previously, we had an example where we were looking for the number of times a particular assignment statement was executed:

```
int find_max( int * array, int n ) {
    max = array[0];

    for ( int i = 1; i < n; ++i ) {
        if ( array[i] > max ) {
            max = array[i];
        }
    }

    return max;
}
```

This example is taken from Preiss

- The best case was once (first element is largest)
- The worst case was n times

For the average case, we must consider:

– What is the probability that the ith object is the largest of the first i objects?

To consider this question, we must assume that elements in the array are evenly distributed

Thus, given a sub-list of size k, the probability that any one element is the largest is 1/k

Thus, given a value i, there are i + 1 objects, hence

$$\sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = ?$$

We can approximate the sum by an integral – what is the area under:

We can approximate this by the 1/(x+1) integrated from 0 to n

From calculus:

$$\int_{0}^{n} \frac{1}{x+1} dx = \int_{1}^{n+1} \frac{1}{x} dx = \ln(x) \Big|_{1}^{n+1} = \ln(n+1) - \ln(1) = \ln(n+1)$$

How about the error? Our approximation would be useless if the error was O(n)

Consider the following image which highlights the errors

- The errors can be *fit* into the box $[0, 1] \times [0, 1]$

Consequently, the error must be < 1

In fact, it converges to $\gamma \approx 0.57721566490$

– Therefore, the error is $\Theta(1)$

Thus, the number of times that the assignment statement will be executed, assuming an even distribution is $O(\ln(n))$

Thus, the total run of:

Summary

- Justification for analysis
- Landau symbols
 - $\mathbf{0}$ \mathbf{O} \mathbf{O} $\mathbf{\omega}$
- Run time of programs
 - Basic operations
 - Control statements
 - Conditional-controlled loops
 - Functions
 - Recursive functions
- Best-, worst-, and average-case