Содержание

1	Вероятностное пространство 1.1 Некоторые следствия аксиоматики	1 2 2
2	Условные вероятности и независимость	3
3	Случайные величины 3.1 Многомерные законы распределения 3.2 Независимость случайных величин	
4	Случайные величины (общий случай)	6
5	Математическое ожидание	7
6	Производящие функции	7

1 Вероятностное пространство

Определение (Алгебра). Семейство \mathcal{A} подмножеств множества Ω называется алгеброй, если выполнены след. аксиомы:

- 1. $\varnothing \in \mathcal{A}$
- $2. A \in \mathcal{A} \implies \overline{A} \in \mathbb{A}$
- 3. (аддитивность) $A_1,\ldots,A_n\in\mathbb{A}\implies A_1\cup\cdots\cup A_n\in\mathbb{A}$

Определение (σ -алгебра). Алгебра называется σ -алгеброй, если

$$A_1, \dots, A_n \in \mathcal{A} \implies \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$$

Определение (мера). $\mu : \mathcal{A} \to [0; \infty)$ - мера, если

$$A_1,...,A_n\in\mathcal{A},A_i\cap A_j=\varnothing,i
eq j: \quad \mu(\bigcup_{n=1}^\infty A_n)=\sum_{n=1}^\infty \mu(A_n)$$
 счетная аддитивность

Мера конечная, если $\mu(\Omega) < \infty$

Мера вероятностная, если $\mu(\Omega) = 1$

Определение (Вероятностное пространство). Тройка (Ω, \mathcal{A}, P) , где

- 1. Ω пространство элементарных событий;
- 2. \mathcal{A} σ -алгебра подмножеств Ω (события);
- 3. P вероятностная счетно-аддитивная мера на $\mathcal A$ (вероятность); называется вероятностным пространством.

Все элементарные исходы равновозможны

Определение (Классическая вероятность). Модель вероятностного пространства (А - событие)

- 1. $\Omega = \{\omega_1, \dots, \omega_n\}$ конечное пространство
- 2. \mathcal{A} все подмножества Ω

3.
$$P(A) = \sum_{\omega \in A} p_{\omega} = \frac{|A|}{|\Omega|}$$

Определение (Геометрическая вероятность). $V \in \mathbb{R}^n$

- 1. $\Omega = V$
- 2. \mathcal{A} борелевская σ -алгебра (минимальная σ -алгебра, содержащая все компакты) подмножеств V

3.
$$P(A) = \frac{\mu(A)}{\mu(V)}$$

1.1 Некоторые следствия аксиоматики

1.

Аксиома (Аксиома непрерывности). *Если* $A_1\supset A_2,\ldots,\supset A_n\supset \mathcal{A}, \bigcap_{i=1}^\infty A_i=\varnothing,\ mo$

$$\lim_{n \to \infty} P(A_n) = 0$$

 \mathcal{A} оказательство. Пусть $B_n \downarrow \varnothing$. Тогда обозначим $A_n = B_n \setminus B_{n+1}, n = 1, \ldots, \ldots A_n$ попарно несовместны и

$$B_1 = \sum_{n=1}^{\infty} A_n \quad B_n = \sum_{k=n}^{\infty} A_k,$$

поэтому из счетной аддитивности меры следует сходимость ряда

$$P(B_1) = \sum_{n=1}^{\infty} P(A_n),$$

и сумма остатка ряда

$$P(B_n) = \sum_{k=n}^{\infty} P(A_k) = 0.$$

2. (Формула включений и исключений)

$$P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{n} P(A_k) - \sum_{i< j}^{n} P(A_i \cap A_j) + \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n)$$

Доказательство. Выводится через обычную формулу включений и исключений для множеств по индукции

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

_

$$\begin{cases} A \cup B = A + (B \setminus AB) \\ \text{Счетная аддитивность} \\ P(B \setminus AB) = P(B) - P(AB) \text{(также по счетной аддитивности)} \end{cases}$$

1.1.1 Индикатор

Определение. Индикатор события A - это функция $I_A(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}$

Свойства индикатора

1.
$$I_{\bar{A}} = 1 - I_A$$

2.
$$I_{A_1 \cap A_2} = I_{A_1} I_{A_2}$$

3.
$$I_{A_1 \cup \dots \cup A_n} = 1 - I_{\bar{A_1} \cap \dots \cap \bar{A_n}} = 1 - I_{\bar{A_1}} \dots I_{\bar{A_n}} = 1 - (1 - I_{A_1}) \dots (1 - I_{A_n})$$

2 Условные вероятности и независимость

Определение (Условная вероятность). Пусть P(B) > 0. Условной вероятностью P(A|B) события A при условии, что произошло событие B (или просто: при условии B), назовем отношение

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Применяется также обозначение $P_B(A)$

Теорема 2.1 (Теорема умножения). Пусть события A_1, \ldots, A_n таковы, что $P(A_1, \ldots, A_{n-1}) > 0$. Тогда

$$P(A_1, \ldots, A_n) = P(A_1)P_{A_1}(A_2) \ldots P_{A_1, \ldots, A_{n-1}}(A_n)$$

Доказательство. Из условия теоремы вытекает, что существуют все условные вероятности из формулы. База индукции $P(AB) = P(B)P_B(A)$.

Переход: $B = A_1, \dots, A_{n-1}, A = A_n$, применим формулу выше

Определение (Разбиение). Систему событий A_1, \ldots, A_n будем называть конечным разбиением (в дальнейшем - просто разбиением), если они попарно несовместны и

$$A_1 + \dots A_n = \Omega$$

Теорема 2.2 (Формула полной вероятности). Если A_1, \ldots, A_n - разбиение и все $P(A_k) > 0$, то для любого события B имеет место формула

$$P(B) = \sum_{k=1}^{n} P(A_k)P(B|A_k)$$

3 Случайные величины

Определение (Случайная величина). Случайной величиной (СВ) $X(\omega)$ называется функция элементарного события ω с областью определения Ω и областью значений $\mathbb R$ такая, что событие $\{\omega: X(\omega) \leq x\}$ принадлежит σ -алгебре $\mathcal F$ при любом действительном $x \in \mathbb R$. Значения х функции $X(\omega)$ называются реализациями СВ $X(\omega)$.

Определение (Алгебра, порожденная случайной величиной). Пусть $x_1 < \dots < x_k$ - значения, принимаемые случайной величиной ξ . Каждая такая величина определяет разбиение из событий $A_i = \{\omega : \xi(\omega) = x_i\}$. Т.к $x_i \neq x_j$, то $A_i A_j = \varnothing$. Сумма - достоверное событие Ω .

Разбиение порождает алгебру событий

$$\{\xi \in B = \} = \{\omega : \xi(\omega) \in B\}$$

, В - числовое множество.

Определение (Закон распределения). Любое правило (таблица, функция), позволяющее находить вероятности всех возможных событий, связанных со случайной величиной.

Примеры законов распределения

- 1. Биномиальный закон
- 2. Гипергеометрическое распределение
- 3. Равномерное распределение

Определение (Математическое ожидание). Математическое ожидание случайной величины $\xi = xi(\omega)$ обозначается $M\xi$ и определяется как сумма

$$M\xi = \sum_{\omega \in \Omega} \xi(\omega) p(\omega)$$

Свойства мат. ожидания

1. $MI_A = P(A)$

Доказательство.

$$MI_A = \sum_{\omega \in \Omega} I_A(\omega) p(\omega) = \sum_{\omega \in A} p(\omega) = P(A)$$

2. Аддитивность: $M(\xi + \eta) = M\xi + M\eta$

 \mathcal{A} оказательство.

Из этого также следует конечная аддитивность.

3. Для любой константы С

$$M(C\xi) = cM\xi, \quad MC = C$$

4. Математическое ожидание ξ выражается через закон распределения случайной величины ξ формулой

$$M\xi = \sum_{i=1}^{k} x_k P\{\xi = x_i\}$$

Подставляя в числовую функцию случайную величину, мы также получаем случайную величину. Например, если $\eta = g(\xi)$, то

$$M\eta = Mg(\xi) = \sum_{i=1}^{k} g(x_i) P\{\xi = x_i\}$$

 Π ри этом

$$g(x_i) = \sum_{i=1}^k g(x_i) I_{\xi = x_i}$$

Определение (n-ый момент случайной величины). Математическое ожидание $M\xi^n$ называется n-ым моментом (или моментом n-ого порядка) случайной величины ξ (или ее закона распределения).

Определение (Абсолютный n-ый момент). Математическое ожидание $M|\xi|^n$.

Определение (Центральный момент n-ого порядка). $M(\xi - M\xi)^n$

Определение (Абсолютный центральный момент n-ого порядка). $M|\xi - M\xi|^n$

Определение (Дисперсия). $D\xi = M(\xi - M\xi)^2$

Определение (Среднее квадратическое отклонение (стандартное отклонение)). $\sqrt(D\xi)$

Свойства дисперсии

- 1. $D\xi = M\xi^2 (M\xi)^2$
- 2. $D\xi \leq 0$ и $D\xi = 0$ тогда и только тогда, когда существует такая константа c, что $P\{\xi = c\} = 1$
- 3. Для любой константы с $D(c\xi) = c^2 D\xi$, $D(\xi + c) = D\xi$

Теорема 3.1 (Неравенство Иенсена). Если числовая функция g(x), то для любой случайной величины ξ

$$Mg(\xi) \le g(M\xi)$$

Теорема 3.2 (Неравенство Ляпунова). Для любых положительных $\alpha \leq \beta$

$$(M|\xi|^{\alpha})^{1/\alpha} \le (M|\xi|^{\beta})^{1/\beta}$$

Теорема 3.3 (Неравенство Коши-Буняковского).

Джентльменский набор

1. Равномерное дискретное распределение

$$P\{\xi = k\} = \frac{1}{N}, \quad M\xi = \frac{1+N}{2}, \quad D\xi = \frac{N^2 - 1}{12}$$

2. Биномиальное (распределение Бернулли)

$$P\{n=k\} = C_n^k p^k (1-p)^{n-k}, \quad M\xi = np, \quad D\xi = np(1-p)$$

3. Геометрическое распределение

$$P\{n=k\} = (1-p)p^k, \quad M\xi = \frac{p}{1-p}, \quad D\xi = \frac{p}{(1-p)^2}$$

4. Распределение Пуассона

$$P\{n=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, \quad M\xi = \lambda, \quad D\xi = \lambda$$

3.1 Многомерные законы распределения

3.2 Независимость случайных величин

Определение (Независимость случайных величин). ξ_1, \dots, ξ_n называются независимыми, если порожденные ими алгебры

$$\mathcal{A}_{\xi_1},\ldots,\mathcal{A}_{\xi_n}$$

независимы.

Определение (Независимость случайных величин). ξ_1, \dots, ξ_n называются независимыми, если для любых $x_{1_{j_1}} \dots, x_{x_{j_n}}$

$$P\{\xi_1 = x_{1_{j_1}}, \xi_n = x_{1_{j_n}}\} = \prod_{i=1}^n P\{\xi_i = x_{1_{j_i}}\}$$

Теорема 3.4. Если случайные величины $\xi_1, \dots \xi_n$ независимы, а $g_i(x)$ - числовые функции, то случайные величины $\eta_1 = g_1(\xi_1), \dots \eta_n = g_n(\xi_n)$ также независимы.

Теорема 3.5 (Мультипликативное свойство математических ожиданий). Если случайные величины $\xi_1, \dots \xi_n$ независимы, то

$$M\xi_1, \dots, \xi_n = \prod_{i=1}^n M\xi_i$$

Теорема 3.6 (Аддитивное свойство дисперсии). Если случайные величины $\xi_1, \dots \xi_n$ независимы, то

$$D(\xi_1 + \dots + \xi_n) = D\xi_1 + \dots + D\xi_n$$

Евклидово пространство случайных величин Условное мат. ожидание $M(\xi|\eta)$ - ортогональная проекция ξ на линейное подпространство η

Условные математические ожидания

Определение (Условная вероятность). Условная вероятность $P(B|\mathscr{A}(\alpha))$ относительно $\mathscr{A}(\alpha)$ как случайную величину, которая принимает значение $P(B|A_k)$ при $\omega \in A_k$.

Определение (Условный закон распределения). Условный закон распределения η при заданном значении $\xi=x_k$ назовем набор условных вероятностей

$$P{\eta = y_t | \xi = x_k} = \frac{P(\eta = y_t, \xi = x_k)}{P(\xi = x_k)}, \quad t = 1, \dots, m$$

Определение (Условное мат.ожидание). Условное мат.ожидание η при заданном значении $\xi = x_k$

$$M\{\eta|\xi=x_k\} = \sum_{t=1}^{m} P\{\eta=y_t|\xi=x_k\} = \frac{\sum_{t=1}^{m} y_t P(\eta=y_t, \xi=x_k)}{P(\xi=x_k)}$$

Условное мат.
ожидание является функцией от η . Случайная величина $M(\eta|\xi)$ - условное мат.
ожидание при заданном ξ

Определение.

$$M[M(\eta|\xi)] = \sum_{k=1}^{n} P\{\xi = x_k\} M\{\eta|\xi = x_k\}$$

Теорема 3.7.

$$M[M(\eta|\xi)] = M\eta$$

Теорема 3.8 (Неравенство Чебышева). Для любого x > 0 имеют место неравенства:

$$P\{|\xi| \ge x\} \le \frac{M|\xi|}{x}$$

$$P\{|\xi - M\xi| \ge x\} \le \frac{D\xi}{x^2}$$

4 Случайные величины (общий случай)

Определение. Числовая функция $\xi = \xi(\omega)$ от элементарного события $\omega \in \Omega$ называется случайной величиной, если для любого числа х

$$\{\xi \le x\} = \{\omega : \xi(\omega) \le x\} \in \mathscr{A}$$

Определение (Функция распределения случайной величины ξ).

$$F(x) = F_{\varepsilon}(x) = P\{\xi \le x\}$$

, определенная при всех $x \in R$

При помощи этой функции можно выразить вероятность попадания ξ в интервалы.

$$P(x_1 < \xi \le x_2) = F(x_2) - F(x_1)$$

$$\{\xi < x\} : \sum_{n=1}^{\infty} \{x - \frac{1}{n-1} < \xi \le x - \frac{1}{n}\}$$

$$P(\xi = x) = F(x) - F(x - 0)$$

$$P(x_1 \le \xi \le x_2) = F(x_2) - F(x_1 - 0)$$

$$P(x_1 < \xi < x_2) = F(x_2 - 0) - F(x_1)$$

$$P(x_1 \le \xi < x_2) = F(x_2 - 0) - F(x_1 - 0)$$

Теорема 4.1 (Свойства функции распределения). Функция распределения F(x) обладает следующими свойства-

- 1. F(x) не убывает
- 2. F(x) непрерывна справа
- 3. $F(+\infty) = 1$
- 4. $F(-\infty) = 0$

Определение (Борелевская σ -алгебра). σ -алгебра \mathcal{A} числовых множеств, порожденная всевозможными интервалами вида $x_1 < x \le x_2$, называется борелевской; множества A, входящие в \mathcal{A} , называются борелевскими.

Определение (σ -алгебра, порожденная случайной величиной ξ). Совокупность $\xi^{-1}(B)$ для всех борелевских множеств борелевской алгебры.

Примеры дискретных распределений

- 1. Биномиальное
- 2. Пуассоновское
- 3. Геометрическое

Теорема 4.2. Если ξ - случайная величина, а g(x) - борелевская функция, то $\eta = g(\xi)$ есть случайная величина

Определение (Распределение вероятностей). $P_{\xi}(B)$, определенная для всех $B \in \mathcal{B}$, называется распределением вероятностей случайной величины ξ

Определение (Плотность распределения). $p(x) = p_{\xi}(x)$ - плотность распределения случайной величины ξ , если для любых $x_1 < x_2$

$$P\{x_1 < \xi < x_2\} = \int_{x_1}^{x_2} p_{\xi}(x) dx$$

5 Математическое ожидание

Определение (Простая случайная величина). Случайная величина простая, если она представима в виде

$$\xi = \xi(\omega) = \sum_{j=1}^{m} x_j I_{A_j}(\omega)$$

где события A_1,\dots,A_m составляют разбиение, т.е $A_iA_j=\varnothing$ при $i\neq j$ и $\sum_{j=1}^m A_i=\Omega$

Определение (Мат. ожидание простой случайной величины).

$$M\xi = \sum_{j=1}^{m} x_j P(A_j)$$

Определение (Мат. ожидание неотрицательной случайной величины).

$$M\xi = \lim_{n \to \infty} M\xi^n$$

Определение (Мат. ожидание в общем случае).

$$\xi = \xi^+ - \xi^-,$$

где
$$\xi^+ = \xi I_{\{\xi > 0\}}, \, \xi^+ = |\xi| I_{\{\xi < 0\}}$$

Свойства мат. ожидания

- 1. Свойство линейности
- 2. Свойство положительности
- 3. Свойство конечности

6 Производящие функции

Определение (Целочисленная случайная величина). Дискретная случайная величина ξ , принимающая только целые неотрицательные значения.

Закон распределения:

$$p_n = P\{\xi = n\}, n = 0, 1..., \sum_{n=0}^{\infty} p_n = 1$$

Определение (Производящая функция).

$$\phi_{\xi}(s) = Ms^{\xi} = \sum_{n=0}^{\infty} p_n s^n$$

Ряд абсолютно сходится при $|s| \leq 1$

Джентльменский набор

1. Равномерное дискретное распределение

$$P\{\xi = k\} = \frac{1}{N}, \quad M\xi = \frac{1+N}{2}, \quad D\xi = \frac{N^2 - 1}{12}, \quad \phi(s) = \sum_{n=1}^{\infty} \frac{s^n}{n} = -\ln(1-s)$$

2. Биномиальное (распределение Бернулли)

$$P\{n=k\} = C_n^k p^k (1-p)^{n-k}, \quad M\xi = np, \quad D\xi = np(1-p), \quad \phi(s) = \sum_{m=0}^{\infty} C_n^m p^m (1-p)^{n-m} = (ps+1-p)^n$$

3. Геометрическое распределение

$$P\{n=k\} = (1-p)p^k$$
, $M\xi = \frac{p}{1-p}$, $D\xi = \frac{p}{(1-p)^2}$, $\phi(s) = \sum_{n=1}^{\infty} p^k (1-p)s^n = \frac{p}{1-(1-p)s}$

4. Распределение Пуассона

$$P\{n=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, \quad M\xi = \lambda, \quad D\xi = \lambda, \quad \phi(s) = \sum_{n=0}^{\infty} \frac{\lambda^n s^n}{n!}e^{-\lambda} = e^{\lambda(s-1)}$$