22-23 年第二学期光学期末考试考纲

章小明

2023年7月11日

月录

光与光的传播 几何光学成像 干涉 1 衍射 $\mathbf{2}$ 偏振

1

光与光的传播

- 1. Huygens 原理: 介质中波动传播到的各点都可以看作是发射子波的波源, 而在其后的任意时刻, 这些子波的包络就 是新的波前.
- 2. Fermat 原理: 两点间的实际路径就是光程 (或所需传播时间) 取**平稳**的路径. 3. 棱镜的最小偏向角 δ_m 满足 $\frac{\sin\frac{\alpha+\delta_m}{2}}{\sin\frac{\alpha}{2}}=n$

作业题:1-10,13,15.

几何光学成像

- 1. 单折射球面成像公式 $\frac{n}{s} + \frac{n'}{s'} = \frac{n'-n}{r}$,反射球面成像公式 $\frac{1}{s} + \frac{1}{s'} = -\frac{2}{r}$. 焦距 f 是 $s' = \infty$ 时的 s, f' 同理. 2. 折射球面成像放大率 $V = -\frac{ns'}{n's}$,反射球面成像放大率 $V = -\frac{s'}{s}$. |V| > (<)1 则为放大(缩小)像;V > (<)0 则为正立(倒立)像;s' > (<)0 则为实(虚)像.
- 3. 薄透镜 (n=n'): $\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$, 成像放大率 $V = -\frac{s'}{s}$. 磨镜者公式: $f = f' = \left[\left(\frac{n_L}{n} 1 \right) \left(\frac{1}{r_1} \frac{1}{r_2} \right) \right]^{-1}$.
- 4. 光焦度 $P = \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$, 单位为屈光度 $D=m^{-1}$. 5. 作图基本方法: 三条特殊光线作图法, 一般光线作图法 (主副光轴).
- 6. 光学仪器 (待补充)

作业题:2-5,10,15,24,40,41,43.

干涉 3

1. 分波型干涉装置 (以 Young 双缝干涉为代表): 计算条纹及其间隔 记 R 为光源到双缝距离,D 为双缝到屏幕距离,d 为缝距, 则在 $x=k\frac{\lambda D}{d}$ 处相干极大, $x=\left(k+\frac{1}{2}\right)\frac{\lambda D}{d}$ 处相干极 小, 条纹间距为 $\Delta x = \frac{\lambda D}{d}$.

条纹位移 δx 与点光源位移 δs 关系为 $\delta x = -\frac{D}{R}\delta s$.

类 Young 双镜装置:Fresnel 双镜, $\Delta x = \frac{(B + \widetilde{C})\lambda}{2\alpha B_-}$, 其中 α 是双镜所夹锐角,B 是双缝到双镜连接处距离,C 是双 镜连接处到屏幕距离;Fresnel 双棱镜, $\Delta x = \frac{\lambda(B+C)}{2(n-1)\alpha B}$, 其中 α 是棱镜角,B 是光源到棱镜距离,C 是棱镜到屏幕 距离;Lloyd 镜, $\Delta x = \frac{D\lambda}{2a}$, 其中 a 是光源到镜的垂直距离,D 是光源 (缝) 到屏幕距离.

2. 干涉相干条件,干涉看

干涉条纹衬比度 $\gamma=\dfrac{I_{\max}-I_{\min}}{I_{\max}+I_{\min}}\in[0,1]$. 光源宽度的极限 $b=\dfrac{R}{d}\lambda$. 光场的空间相干性: 给定宽度 b 后, 在多大范围取出的两个次波源还是相干的, 称为两次波源的空间相干性. 相干 线宽 d, 相干面积 d^2 , 相干孔径角 $\Delta\theta_0 = \frac{d}{R}$. 空间相干性反比公式 $b\Delta\theta_0 = \lambda$.

- 3. 分振幅干涉装置 (薄膜干涉)
 - (a) 等厚干涉: 明纹暗纹, 劈尖干涉, 等等

 $\Delta L = 2nh\cos i = k\lambda$ 或 $\left(k + \frac{1}{2}\right)\lambda$ 时取到相干极大或极小, $\Delta h = \frac{\lambda}{2n}$. 折射角 i 充分小时 $\Delta L \approx 2nh$. 注

意: $n_1 < n > n_2$ 或 $n_1 > n < n_2$ 时会有半波损失. 对于劈尖, 条纹间隔为 $\Delta x = \frac{\lambda}{2n\alpha}$. 对于楔形薄膜, 可测量楔角 $\theta = \frac{\lambda}{2nb}$, b 为条纹间隔, 也可以测量其厚度 $e = N \frac{\lambda}{2n}$, N 为条纹出现的次数,n 为薄膜折射率.

Newton 环: 明环半径 $r_k = \sqrt{\left(k+\frac{1}{2}\right)\frac{R\lambda}{n}}$, 暗环半径 $r_k = \sqrt{k\frac{R\lambda}{n}}$, $k \geq 0$. 由此可以测量透镜曲率半径 . $R=n\frac{r_{k+m}^2-r_k^2}{m\lambda}.$ 注意, $n_1< n_2< n_3$ 时有半波损失, 此时相干极大极小 (即明暗纹) 颠倒. (b) 等倾干涉: 搞懂书上例题 (PPT P_{165} 例 $1,P_{171}$ 例 2)

定义: 具有同一倾角的反射光线汇聚于同一级次上的干涉条纹.

光程差公式与相干极大位置同等厚干涉,条纹间距 $\Delta r = r_{k+1} - r_k \propto i_{k+1} - i_k = -\frac{\lambda}{2nh\sin i}$. 注意: $n_1 < n > n_k$ n_2 或 $n_1 > n < n_2$ 时会有半波损失.

薄膜厚度增加则条纹变密, 条纹外扩 (中心吐条纹), 反之变稀, 中心吞条纹. 吞吐一根条纹 $\Delta h = \frac{\lambda}{2n}$.

(c) Michelson 干涉仪

衬比度变换的空间频率 $\nu = \frac{1}{2N_1\lambda_1} \approx \frac{\Delta\lambda}{\lambda^2}$. 其中 $N_1 \approx \frac{\lambda}{2\Delta\lambda}$.

作业题:3-2,7,9,11,12,13,17,23.

衍射

1. 衍射的基本概念: 光波在传播过程遇到障碍物时光束偏离直线传播, 强度发生重新分布的现象.

与干涉的联系:干涉是有限个离散波的相干叠加, 衍射是无限个连续波的相干叠加.

Fresnel 衍射 (Fraunhofer 衍射): 光源和接受屏距离衍射屏幕有限 (无限) 远.

2. Huygens-Fresnel 原理: 波前 Σ 上每个面元 d Σ 都可以看成是新的振动中心, 它们发出次波. 在空间某一点 P 的振 动是所有这些次波在该点的相干叠加.

Babinet 原理: 两个互补的屏在像平面上产生的衍射图样完全一样 (像点除外).

3. Fresnel 圆孔/圆屏衍射: 半波带法 + 矢量图法 (习题 + 例题, 书 P_{176} 例 $3,P_{177}$ 例 4)

半波带法: $A(P_0) = \frac{A_1 + (-1)^{n+1} A_n}{2}$, 其中 $A_k \propto f(\theta_k) \frac{\pi R \lambda}{R+b}$. 自由传播时波前在 P_0 处振幅 $A_0 = \frac{A_1}{2}$, 即为第一 个半波带的一半; 圆孔衍射中, 随着圆孔增大, 中心强度明暗交替变化; 圆屏衍射中, 中心场点总是亮的. 半波带法 只适合圆孔/圆屏能整分半波带的情况.

矢量图法: 将半波带分为 m 个更窄的小环带 (在一个半圆上), 写出每个小环带的复振幅, 画出矢量图再得到其和.

Fresnel 波带片: 半波带半径 $\rho_k = \sqrt{\frac{Rb}{R+b}k\lambda}, k$ 奇亮偶暗. 成像公式 $\frac{1}{R} + \frac{1}{b} = \frac{k\lambda}{\rho_*^2} = \frac{1}{f}$, 其有一系列焦点

$$\pm \frac{f}{2k+1}, k \ge 0.$$

4. Fraunhofer 单缝衍射 + 光栅衍射 (必考): 计算主次极大位置, 缺级现象, 计算级次, 缝宽, 光栅常数, 明纹暗纹位

单缝衍射因子
$$I_{\theta} = I_0 \left(\frac{\sin \alpha}{\alpha}\right)^2$$
, 其中 $\alpha = \frac{\pi a}{\lambda} \sin \theta$. 矩孔衍射的强度公式 $I(P) = I_0 \left(\frac{\sin \alpha}{\alpha}\right)^2 \left(\frac{\sin \beta}{\beta}\right)^2$.

次极大位置在 $\frac{\mathrm{d}}{\mathrm{d}\alpha}\frac{\sin\alpha}{\alpha}=0$ 处, 即 $\tan\alpha=\alpha$ 的解, 而暗斑则在 $\sin\alpha=0$ 处, 即 $\alpha=\pm k\pi$ 处. 半角宽 $\Delta\theta=\frac{\lambda}{a}$ 是衍射效应强弱的标志. 线宽 $\Delta l=2f\Delta\theta$.

Airy 斑 (第一暗环的半角宽) $\Delta\theta=1.22\frac{\lambda}{D}$ (书 P_{190} 例 6,7)

光栅常数
$$d = a + b, N$$
 缝 Fraunhofer 衍射的光强分布 $I = I_0 \left(\frac{\sin \alpha}{\alpha}\right)^2 \left(\frac{\sin N\beta}{\beta}\right)^2, \alpha = \frac{\pi a}{\lambda}, \beta = \frac{\pi d}{\lambda} \sin \theta.$

主极大位置 $\beta=k\pi$, 大小 $I_{\max}=N^2I_{\hat{\mu}\hat{u}}$, 最大级 $k=\frac{d\sin\theta}{\lambda}<\frac{d}{\lambda}$. 零点位置 $\beta=\left(k+\frac{m}{N}\right)\pi, m\in[N-1]$. 相邻

主极大间有 N-1 条暗线, 有 N-2 个次极大. 普遍半角宽度 $\Delta \theta_k = \frac{\lambda}{Nd\cos\theta_k}$

缺级现象 $k = m^d, m = \mathbb{Z} - 0.$

- 5. 圆孔衍射: 计算最小分辨角和半角宽度
- 5. 圆孔闭别: 耳鼻取小刀粉用作于用处反 6. 望远镜物镜的最小分辨角 $\delta\theta_{\min}=1.22\frac{\lambda}{D}$ 和视角放大率 $M=\frac{\delta\theta_{\rm e}}{\delta\theta_{\min}}=\frac{2.9\times10^{-4}{
 m rad}}{1.22}\frac{D}{\lambda}$. 光学仪器分辨率 R=
- $\frac{1}{\delta \theta_{\min}}$. 7. 光栅光谱仪: 色分辨本领 (书 P_{207} 例 $12,P_{208}$ 例 13) 和色散本领 (PPT P_{275} 例 11) 光栅方程 $d\sin\theta = k\lambda$.

两条谱线中心的波长间隔 $\delta\lambda$ 与被分开的角距离 $\delta\theta$ 或在屏幕上被分开的线距离 δl 之比分别称为角色散本领 D_{θ} 和线色散本领 D_{l} . 光栅的角色散本领 $D_{\theta}=\frac{k}{d\cos\theta_{k}}$, 线色散本领 $D_{l}=\frac{kf}{d\cos\theta_{k}}$.

光栅的色分辨本领 $R = \frac{\lambda}{\delta \lambda} = kN$.

作业题:4-1,2,9,14,15,29,30.

偏振

- 1. Malus 定律 $I=I_0\cos^2\theta$ (线偏振光), 偏振度 $P=\frac{I_{\max}-I_{\min}}{I_{\max}+I_{\min}}$.
- 2. Brewster 角的计算 $i_B = \arctan \frac{n_2}{n}$.
- 3. 五种偏振光的区分: 先旋转检偏器, 若光强不变则为圆偏振光或自然光, 若有消光则为线偏振光, 否则为椭圆偏振 光或部分偏振光. 将前者依次通过 $\frac{\lambda}{4}$ 波晶片和偏振片并旋转偏振片, 若有消光则为圆偏振光, 否则为自然光. 将后 者通过偏振片并将偏振片旋至光强最强位置,再在其后放置 $rac{\lambda}{4}$ 波晶片,将光轴旋至与偏振片透振方向平行.将偏 振片移前并旋转一周, 若有消光则为椭圆偏振光, 否则为部分偏振光
- 4. 双折射的概念与原因: 双折射是光束入射到各向异性晶体中, 被分解为两束光而沿不同方向折射的现象. 形成原因 是两束折射光在晶体内的传播速度不同.
 - o 光服从折射定律,e 光不服从;o 光和 e 光仅在光轴上不分开; $n_0v_0 = c$.
- 5. 偏振光的 Huygens 作图法
- 6. 圆偏振光的获得 (用偏振片 + 波晶片) 与检验 (用 $\frac{\lambda}{4}$ 波晶片 + 偏振片).

$$\begin{split} \delta_{\mathrm{LL}} &= \delta_{\lambda} + \delta = \pm \pi + \frac{2\pi}{\lambda} (n_{\mathrm{o}} - n_{\mathrm{e}}) d, A_{\mathrm{e}} = A \cos \alpha, A_{\mathrm{o}} = A \sin \alpha. \\ \mathbf{B}偏振光: &\alpha = \frac{\pi}{4}, \delta = \pm \frac{\pi}{2}. \quad \mathsf{MB} \mathsf{G} \mathsf{G} \mathsf{ME} : \delta = \pm \frac{\pi}{2}, \alpha \neq 0, \frac{\pi}{4}, \frac{\pi}{2}. \end{split}$$

7. 通过 $\frac{\lambda}{4}$ 波晶片后光束偏振态的变化: 线偏振: 若 e 轴或 o 轴与偏振方向一致, 则得到线偏振光; 若 e 轴或 o 轴与偏振方向成 $\frac{\pi}{4}$ 角, 得到圆偏振光, 除此之外得到椭圆偏振光. 圆偏振通过后得到线偏振. 椭圆偏振的主轴若与 e 轴

或 o 轴一致则得到线偏振, 否则得到椭圆偏振.

8. 偏振光的干涉 (必考, 例题 + 作业).

自然光 ^{倫振片 P₁} 线偏振光 ^{波晶片上} 相位差为 $\delta_{\lambda} = 0$ 或 π , 且 $A_{\rm e} = A_1 \cos \alpha$, $A_{\rm o} = A_1 \sin \alpha$ 的偏振光 ^{波晶片出射后} 相位差为 $\delta_{\lambda} + \frac{d}{2\pi} (n_{\rm o} - n_{\rm e})$ ^{倫振片 P₂} 相位差为 $\delta = \delta_{\lambda} + \Delta + \delta', \delta' = 0$ 或 π , 且 $A_{\rm e2} = A_1 \cos \alpha \cos \beta$, $A_{\rm o2} = A_1 \sin \alpha \sin \beta$, $I_2 = A_2^2 = A_{\rm e2}^2 + A_{\rm o2}^2 + 2A_{\rm e2}A_{\rm o2}\cos \delta$. 其中 δ' 是坐标轴投影相位差,即 e 轴和 o 轴正方向向 P_2 透振方向投影,若同向则取 0 否则取 π

若 $P_1 \perp P_2$ 则 $I_2 = \frac{A_1^2}{2}(1-\cos\Delta)$, $P_1 \parallel P_2$ 则 $I_2 = \frac{A_1^2}{2}(1+\cos\Delta)$. 当 $\Delta = 2k\pi$ 或 $(2k+1)\pi$ 时,偏振片透振方向垂直或平行会使得透射光消光.

干涉条纹成像于屏幕上, 设 $P_1 \perp P_2$, 在 $d = \frac{k\lambda}{n_0 - n_e}$ 处 $I_{\perp} = 0$. 干涉条纹的间距 $\Delta x = \frac{\lambda}{(n_0 - n_e)\alpha}$, 其中 α 是波晶片晶楔夹角.

9. 旋光的概念: 线偏振光在石英晶体内沿光轴传播时, 偏振面被旋转了一个角度 $\psi=\alpha d, \alpha$ 被称为旋光率. 在量糖术中 $\psi=[\alpha]Nl, [\alpha]$ 被称为比旋光率.

作业题:6-1,2,20,33,34,38.