Samir Khadka Linear Algebra Assignment 3

Question 1:

Reducing to row echelon form:

 $R1 \rightarrow R1/8$:

1	-3/8	0	-7/8	1/4
-9	4	5	11	-7
6	-2	2	-4	4
5	-1	7	0	10

 $R2 \rightarrow R2 + 9R1, R3 \rightarrow R3 - 6R1, R4 \rightarrow R4 - 5R1$

1	-3/8	0	-7/8	1/4
0	5/8	5	25/8	-19/4
0	1/4	2	5/4	5/2
0	7/8	7	35/8	35/4

 $R2 \rightarrow 8R2/5$:

1	-3/8	0	-7/8	1/4
0	1	8	5	-38/5
0	1/4	2	5/4	5/2

0 7/8 7 35/8 35/4

 $R1 \rightarrow R1 + 3 \ R2/8, \ R3 \rightarrow R3 - R2/4, \ R4 \rightarrow R4 - 7 \ R2/8$

1	 -3/8	0	-7/8	1/4
0	1	8	5	-38/5
0	0	0	0	22/5
0	0	0	0	77/5

Swapping the rows as row 3 and column 4 i.e. the pivot elements are zero.

 $\text{R3} \rightarrow 5\text{R3/22}$

1	-3/8	0	-7/8	1/4
0	1	8	5	-38/5
0	0	0	0	1
0	0	0	0	77/5

 $R1 \rightarrow R1 + 13R3/5$, $R2 \rightarrow R2 + 38R3/5$, $R4 \rightarrow R4 - 77/5$ R3:

1	-3/8	0	-7/8	1/4
0	1	8	5	-38/5
0	0	0	0	1
0	0	0	0	0

The pivot columns are 1st, 2nd and 5th. Thus, matrix B becomes:

Given: Bx = 0:

Reducing to row echelon form:

 $R1 \rightarrow R1/8$

 $R2 \rightarrow R2 + 9 R1$, $R3 \rightarrow R3 - 6 R1$, $R4 \rightarrow R4 - 5 R1$:

1	-3/8	1/4
0	5/8	-19/4
0	1/4	5/2
0	7/8	35/4

 $R2\rightarrow 8 R2/5$

 $R1 \rightarrow R1$ + 3 R2/ 8, R3 \rightarrow R3 - R2/4, R4 \rightarrow R4 - 7 R2/8

1	0	-13/5
0	1	-38/5
0	0	22/5
0	0	77/5

 $R3 \rightarrow 5 R3/22$

 $R1 \rightarrow R1$ + 13 R3/5, R2 \rightarrow R2 + 38 R3/5, R4 \rightarrow R4 - 77 R3/5

1	0	0	
0	1	0	
0	0	1	
0	0	0	

The solution becomes:

$$x_1 = 0$$
, $x_2 = 0$, $x_3 = 0$

Thus, Bx = 0 has a trivial solution.

b.

Performing reduced row echelon method:

 $R1 \rightarrow R1/12$

 $R2 \rightarrow R2 \text{ +7 R1, R3} \rightarrow R3 \text{ -9 R1, R4} \rightarrow R4 \text{ + 4 R1, R5} \rightarrow R5 \text{ -8 R1}$

 $R2 \rightarrow -6 R2$

	_				
1	5/6	-1/2	-1/3	7/12	5/6
0	1	-3	-63/2	59/2	-65
0	3/2	-9/2	-11/4	-1/4	-17/2
0	1/3	-1	5	-17/3	37/3
0	1/3	-1	-7	19/3	-44/3

 $R1 \rightarrow R1$ - 5R2/6, $R3 \rightarrow R3$ - 3 R2/2, $R4 \rightarrow R4$ -

R2/3, R5 \rightarrow R5 - R2/3

1	5/6	-1/2	-1/3	7/12	5/6
0	1	-3	-63/2	59/2	-65
0	0	0	89/2	-89/2	89
0	0	0	31/2	-31/2	34
0	0	0	7/2	-7/2	7

Swapping the rows as row 3 and column 3 i.e. the pivot elements are zero. $R3 \rightarrow 2\ R3/89$

1	0	2	26	-24	55
0	1	-3	-63/2	59/2	-65
0	0	0	1	-1	2
0	0	0	31/2	-31/2	34
0	0	0	7/2	-7/2	7

 $R1 \rightarrow R1 - 26R3,\, R2 \rightarrow R2 + 63\,R3/2,\, R4 \rightarrow R4 - 31\,R3/2,\, R5 \rightarrow R5 - 7\,R3/2$

1	0	2	0	2	3
0	1	-3	0	-2	-2
0	0	0	1	-1	2
0	0	0	0	0	3
0	0	0	0	0	0

Swapping the rows as row 4 and column 5 i.e. the pivot elements are zero. $\mbox{R4} \rightarrow \mbox{R4/3}$

		•	•	•	
1	0	2	0	2	3
0	1	-3	0	-2	-2
0	0	0	1	-1	2
0	0	0	0	0	1
0	0	0	0	0	0

 $R1 \rightarrow R1$ - 3 R4, R2 \rightarrow R2 + 2 R4, R3 \rightarrow R3 - 2 R4:

	_					
1	0	2	0	2	3	
0	1	-3	0	-2	-2	
0	0	0	1	-1	0	
0	0	0	0	0	1	
0	0	0	0	0	0	

The pivot columns are 1, 2, 4 and 5, Here, matrix B is

12	10	-3	10
-7	-6	7	5
9	9	-5	-1
-4	-3	6	9
8	7	-9	-8

 $R1 \rightarrow R1 / 12$

	_		
1	5/6	-1/4	5/6
-7	-6	7	5
9	9	-5	-1
-4	-3	6	9
8	7	-9	-8

 $R2 \rightarrow R2 + 7R1,\, R3 \rightarrow R3 - 9\;R1,\, R4 \rightarrow R4 + 4R1,\, R5 \rightarrow R5 - 8R1$

1	5/6	-1/4	5/6
0	-1/6	21/4	65/6
0	3/2	-11/4	-17/2
0	1/3	5	37/3
0	1/3	-7	-44/3

 $R2 \rightarrow -6R2$

9	_		
1	5/6	-1/4	5/6
0	1	-63/2	-65
0	3/2	-11/4	-17/2
0	1/3	5	37/3
0	1/3	-7	-44/3

 $R1 \rightarrow R1$ - 5R2/6, $R3 \rightarrow R3$ - 3R2/2, $R4 \rightarrow R4$ - R2/3, $R5 \rightarrow R5$ - R2/3

1	0	26	55
0	1	-63/2	-65
0	0	89/2	89
0	0	31/2	34
0	0	7/2	7

 $R3 \rightarrow 2 R3/89$

1	0	26	55
0	1	-63/2	-65
0	0	1	2
0	0	31/2	34
0	0	7/2	7

 $R1 \rightarrow R1$ - 26 R3, R2 \rightarrow R2 + 63 R3/2, R4 \rightarrow R4 - 31 R3/2, R5 \rightarrow R5 - 7 R3 /2

1	0	0	3
1 0 0 0	1	0	-2
0	0	1	2
0	0	0	3

0	0	0	0	

 $R4 \rightarrow R4/3$

1	0	0	3
0	1	0	-2
0	0	1	2
0	0	0	1
0	0	0	0

 $R1 \to R1 - 3 R4, R2 \to R2 + 2 R4, R3 \to R3 - 2 R4$

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1
0	0	0	0
	0 0 0	0 1 0 0 0 0	0 1 0 0 0 1 0 0 0

Hence, the solution is $x_1 = 0$, $x_2 = 0$, $x_3 = 0$

Thus, Bx = 0 has only the trivial solution.

Question 2:

Since $\{v_{1,}^{}v_{2}^{}, v_{3}^{}\}$ is a linearly dependent set in \mathbb{R}^{n} , there exist scalars $a_{1,}^{}a_{2}^{}, a_{3}^{}$, not all zero, such that

$$a_1 v_1 + a_2 v_2 + a_3 v_3 = 0$$

Applying the linear transformation T to both sides of the equation, we get $T(a_1v_1+a_2v_2+a_3v_3)=T(0)$

Since T is linear, it preserves scalar multiplication and vector addition, so we have $a_1T(v_1)+a_2T(v_2)+a_3T(v_3)=T(0)$

The image of the zero vector under any linear transformation is the zero vector in the codomain.

Thus,
$$T(0)=0$$
 in R^m . Therefore, we have $a_1T(v_1) + a_2T(v_2) + a_3T(v_3) = 0$

Since at least one of a_1 , a_2 , a_3 is non-zero, the set $\{T(v_1), T(v_2), T(v_3)\}$ is linearly dependent in R^m .

Question 3:

To show: $T(x_1, x_2) = (4x_1 - 2x_2, 3|x_2|)$ is not linear.

Let the vector $u=(x_1, x_2)$ where $x_2<0$ (i.e. u=(0, -1)) and a scalar c=-1.

We know, T(cu) = cT(u), according to the homogeneity property.

For T(cu):

We have $cu = (-x_1, -x_2)$:

$$T(-x_1, -x_2) = (4(-x_1) - 2(-x_2), 3|-x_3|) = (-4x_1 + 2x_2, 3x_2)$$

Since
$$x_2 < 0$$
, $|x_2| = -x_2$ and $|-x_2| = x_2$

Now,

For cT(u):

We have, $u = (x_1, x_2)$:

$$cT(x_1, x_2) = -1 * (4x_1 - 2x_2, 3|x_3|) = (-4x_1 + 2x_2, -3|x_2|)$$

Comparing T(cu) and cT(u):

$$(-4x_1 + 2x_2, 3x_2) \neq (-4x_1 + 2x_2, -3|x_2|)$$

This inequality demonstrates that T does not satisfy the homogeneity property for all vectors in its domain and scalars c, thus proving that T is not a linear transformation.

Question 4:

We have, Ax = 0, for all x such that T(x) = 0We need null space of matrix A.

Given,

A =

Converting into row reduction echelon form:

R1=R1/4

1	-1/2	5/4	-5/4
0	5/2	13/4	-45/4
0	1	25/2	-9/2
0	-1/2	7/4	9/4

R2 = 2 * R2/5

1	-1/2	5/4	-5/4
0	1	13/10	-9/2
0	1	25/2	-9/2
0	-1/2	7/4	9/4

R1 = R1 + R2/2, R3 = R3 - R2, R4 = R4 + R2/2

1	0	19/10	-7/2
'	ŭ		1,2
0	1	13/10	-9/2
0	0	56/5	0
0	0	12/5	0

R3 = 5R3/56

1	0	19/10	-7/2
0	1	13/10	-9/2
0	0	1	0
0	0	12/5	0

R1 = R1 - 19 R3/10, R2 = R2 - 13 R3/10, R4 = R4 - 12 R3/5

1	0	0	-7/2
0	1	0	-9/2
0	0	1	0
0	0	0	0

From above, we know that,

 $\boldsymbol{x}_{_{4}}$ can be a free variable so, $\boldsymbol{x}_{_{4}}=\boldsymbol{x}_{_{4}}$

$$x_3 = 0$$

Then,

$$x_1^{} - \frac{7}{2}x_4^{} = 0$$

or,
$$x_1 = \frac{7}{2}x_4$$

Again,
$$x_2 - \frac{9}{2}x_4 = 0$$

or,
$$x_2 = \frac{9}{2}x_4$$

We can define the variables in terms of x_4 . Let x_4 be t.

$$x_1 = \frac{7}{2}t, x_2 = \frac{9}{2}t$$

Thus, x =

$$or, x = \begin{bmatrix} \frac{7}{2} \\ \frac{9}{2} \\ 0 \\ 1 \end{bmatrix} \cdot t$$

Which is the null space of matrix A.

Question 5:

Given:

$$T(e_1) = \begin{bmatrix} & & & & \\ & 3 & & \\ & & 1 & \\ & & 3 & \\ & & 1 & \end{bmatrix}$$

$$T(e_2) = \begin{bmatrix} & & & & & \\ & -5 & & & \\ & 2 & & & \\ & 0 & & & \\ & & 0 & & \\ & & & \end{bmatrix}$$

For the standard matrix A for the linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$,

Taking $T(e_1)$ and $T(e_2)$ as its columns:

Taking
$$T(e_1)$$
 and $T(e_2)$ as its columns
$$A = [T(e_1) \ T(e_2)] = \begin{bmatrix} 3 & -5 \\ 1 & 2 \\ 3 & 0 \\ 1 & 0 \end{bmatrix}$$

Therefore, the standard matrix *A* of the linear transformation *T* is:

$$A = \begin{bmatrix} 3 & -5 \\ 1 & 2 \\ 3 & 0 \\ 1 & 0 \end{bmatrix}$$

This matrix represents the linear transformation T from R^2 to R^4 .

Question 6:

To find:

The standard matrix representation of T which reflects through $x_1 - axis$ and through the line $x_2 = x_1$

Let R_{x1} be the reflection through the x_1-axis and $R_{x2=x1}$ be the reflection through the line $x_{2} = x_{1}$.

The standard matrix for $R_{\chi 1}$ is:

Through $x_1 - axis$,

$$(x, y)$$
 ----> $(x, -y)$

The standard matrix for $R_{x1=x2}$ is:

Through the line $x_1 = x_2$,

$$(x, y)$$
 ----> (y, x)

For standard matrix of T,

$$T = R_{x1=x2} \cdot R_{x1} = \begin{bmatrix} & & & & & & & & & & & & & & & & \\ & 1 & & & 0 & & & & & & & & & \\ & 0 & & -1 & & & & & & & & & & \end{bmatrix}$$

For angle of rotation θ ,

We need the standard form of a 2D rotation matrix $R(\theta)$:

$$R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Comparing T with $R(\theta)$,

$$cos(\theta) = 0$$
 and $sin(\theta) = 1$

Which corresponds to

 $\theta=90^{^{\circ}}$ i.e. counterclockwise rotation about the origin.

Question 7:

Given that:

$$A = [a_1, a_2]$$

Where $\boldsymbol{a}_{\!_{1}}$ and $\boldsymbol{a}_{\!_{3}}$ are given in the figure.

Let $\boldsymbol{a}_{_{1}}$ and $\boldsymbol{a}_{_{3}}$ be the vectors such that

$$a_1 = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}, a_2 = \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix}$$

To find the image of the vector $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$,

$$T\begin{bmatrix} -1\\ 3 \end{bmatrix} = A\begin{bmatrix} -1\\ 3 \end{bmatrix} = [a_1, a_2]\begin{bmatrix} -1\\ 3 \end{bmatrix} = -a_1 + 3a_2 \rightarrow (1)$$

From the figure,

$$a_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, a_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

From eq (1),

$$-a_1 + 3a_2 = -1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Plotting the vectors in a graph,