Statusbesprechung zum Verbundprojekt:

"Einsatz der Mikromechanik zur Herstellung frequenzanaloger Sensoren"

> Robert Bosch GmbH Gerlingen-Schillerhöhe

> > 17.Januar 1990

Vortrag:

Dynamische FEM-Rechnungen an resonanten Quarz-Kraftsensoren

Th. Fabula, FFMU

Dynamische FEM-Rechnungen an resonanten Quarz-Kraftsensoren

- Motivation
- Finite-Elemente Modell
- Modalanalyse
- Kraft-Frequenz-Kennlinie
- Verifikation der Ergebnisse
- Zusammenfassung/Ausblick

Motivation:

- Einarbeitung in die Methode der Finiten-Elemente anhand des kommerziellen Programmpakets ANSYS:
 - * Preprocessing: Aufbereiten der Struktur
 - * Gleichunglösung: mathematische Lösungsverfahren
 - * Postprocessing: Interpretation der Ergebnisse
- Studium der Abhängigkeit des FE-Modells von verschiedenen Parametern:
 - * Elementvernetzung
 - * Randbedingungen
 - * Materialparameter
 - * Geometrieverhältnisse
 - ---> Einfluß der Modellparameter
- Überprüfbarkeit der Rechenergebnisse am Beispiel eines bekannten Problems (ETA-Kraftsensor)

Dynamische Berechnungen: Modalanalyse

- freie, ungedämpfte, harmonische Schwingungen:

- Berechnung von Eigenfrequenzen und Eigenformen
- Reduktion des Gesamtsystems auf ausgewählte Freiheitsgrade (MDOF: i = 1...n):

$$([K_r] - w_i^2 [M_v]) \{ \phi \}_{i=0}$$

---> Eigenwertproblem

- Lösungen:

i-ter Eigenmodevektor

- Numerische Berechnung der n Werte von ω_{i} , ϕ_{i} :

$$fi = \frac{\omega_i}{2\pi}$$
 {\$\psi_i\$ uormiert

Finite-Elemente Modell:

Modellparameter:

- Doppelstimmgabel mit/ohne Verstärkungsstege
- Material: Quarz
- isotropes Materialverhalten:

* Elastizitätsmodul: 0.89 * 10E11 [N/m²]

* Poissonzahl: 0.123 (Querkontraktion)

- Materialdichte: 2.65 [g/cm3]

- Strukturdicke: 125 [μm]

Modellannahmen:

- Schwingungen nur in der x-y-Ebene zugelassen,
 Verwendung von 2D-Plattenelementen (4-, 8-knotig)
- Randbedingungen idealisiert
- Vernachlässigung der piezoelektrischen Effekte
- Cr-Au Elektroden weggelassen
- Vernachlässigung der Anisotropie

Randbedingungen:

Doppelbalkengeometrie mit Verstärkungsstäben (DETF4)

Vernetzte Struktur: 420 Elemente, 544 Knoten

Einspannungen:

Fixierung in x-, y-Richtung

Freiheitsgrade:

3.8 < x < 11.2 mm (MDOF: 218)

Eigenformen: (DETF2)

[kHz]

43.3

2.

4.

47.9

99.0

130.2

149.6

Eigenformen: (DETF4)

Berechnung von Eigenfrequenzen (DETF2):

Modell	1	2	3	4	
Elemente	: 88	158	354	352	
Knoten:	116	212	430	1204	
ELSI:	1.0	0.5	0.35	0.35 [mm]	
MDOF:	78	130	102	266	
wavefront: 58		88	84	207	
EF1	49037	44788	43838	43362 [Hz]	
EF2	54738	50513	49131	×47879	
EF3	113272	100436	98950	99001	
EF4	158921	141869	136034	130205	
EF5	172472	147216	147030	149632	

Bemerkung:

4. Modell mit 8-knotigen Element,

Rechenzeit: ca. 30 min (PC386/20)

Experimentelle Bestimmung von EF2:

46786 [Hz] : UNVERDROSS-Gerätetechnik (2.3 %)

47025 [Hz] : Messungen bei BIZERBA (1.8 %)

48385 [Hz] : Veröffentlichung ETA-ASULAB (1 %)

Kraft-Frequenz-Charakteristik:

Last	Frequenz +			Shift [Hz] 4+		
[N]	Elem4	Elem8	BIZER	. Elem	Elem8	BIZER.
0	49131	47879	47025	0	0	0
1	49212		-	81	-	
2	49301	48049		170	170	-
3	49390	-	-	259	-	-
4	49479	-		348		
5	49547	48317	47360	436	438	335
6	49655	-	-	524		-
7'.	49743	-	-	612	-	-
8	49831	-	-	700	-	-
9	49919	-	-	788	-	_
10	50006	48760	47692	875	881	667

Ergebnis für die Kraftempfindlichkeit:

n = 4f /N

FEM:

1.78 - 1.8 ‰/ N

BIZERBA:

1.42 % / N

ETA-ASULAB:

1.37 ‰/ N

Kraft-Frequenz-Kennlinie:

Zusammenfassung der Ergebnisse:

Unter den vereinfachten Annahmen (Isotropie, 2D-Rechnung, nicht piezoelektrisch) konnte eine recht gute Übereinstimmung der Eigenfrequenzen mit den experimentellen Werten (ETA-Sensor, DETF2) erzielt werden:

$$\Delta f_o = (47879 - 47025) \text{ Hz} / 47025 \text{ Hz} \approx 2 \%$$

$$\Delta \eta = (1.78 - 1.42) \%/N / 1.42 \%/N \approx 25 \%$$

Die Genauigkeit der Rechnungen hängt wie erwartet von der Anzahl der Elemente (Knoten) bzw. berücksichtigter Freiheitsgrade (MDOF) ab:

---> Kompromiß: Rechenzeit / Genauigkeit

Ausblick:

Weitere quantitative Aussagen bezüglich:

* Strukturoptimierung, Elektrodenformgebung, etc.

bedingen leistungsfähigere Rechner (Workstation: 5000 Wavefront) und verfeinerte FE-Modelle:

- * volle 3D-Modellierung
- * Berücksichtigung der piezoelektrischen Effekte
- * Berücksichtigung der Anisotropie.