```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

Table of Contents

- 1. Step 1: Understanding the Problem and the Data
- 2. Step 2: Import and Inspect the Data
 - o Statistical summary for numerical columns and Unique values for categorical data
 - Step 3: Handling Missing Values
- 3. Step 4: Explore Data Characteristics
 - o Univariate and Bivariate Analysis
 - Univariate analysis of User_ID and Purchase column
 - Univariate analysis of Product_ID column
 - Bivariate analysis of Product and Gender
 - Bivariate analysis of Product and Marital Status
 - Bivariate analysis of Product Category and Gender, Purchase
 - Univariate analysis of Gender column
 - Bivariate analysis of Gender and Purchase column
 - Univariate analysis of Age column
 - Bivariate analysis of Age and Gender column
 - Univariate Analysis of Occupation
 - Bivariate Analysis of Occupation and Age Group
 - Bivariate Analysis of City_Category and Purchase
 - Bivariate Analysis of City_Category and User_ID
 - Bivariate Analysis of City_Category and Gender
 - Bivariate Analysis of City_Category and Age Group
 - Bivariate Analysis of City_Category and Occupation
 - Bivariate Analysis of City_Category and Product Category
 - Bivariate Analysis of Stay_In_Current_City_Years and User_ID
 - Bivariate Analysis of Stay_In_Current_City_Years and Stay Duration
 - Bivariate Analysis of Marital_Status and Gender
 - Bivariate Analysis of Marital_Status and Age Category
 - Bivariate Analysis of Marital_Status and Occupation
 - Bivariate Analysis of Marital_Status and City
 - Bivariate Analysis of Marital_Status and Stay Duration
 - Univariate Analysis of Purchase column

- 4. Answering Questions asked in Case Study
 - o Are women spending more money per transaction than men? Why or Why not
 - Confidence intervals and distribution of the mean of the expenses by female and male customers
 - Effect of sample size on the confidence interval
 - Effect of significance level on width of the confidence interval
 - Are confidence intervals of average male and female spending overlapping?
 - Are confidence intervals of Married vs Unmarried spending overlapping?
 - Are confidence intervals of spending habits of different Age Groups overlapping?
- 5. Business Insights

6. Recommedations

LEGEND

Analysis Steps in Red color

Sub Headings in orange color

These are insights got from analysing the data, in Blue color

" code sections are notes to self, some quick code snippets, or some notes while doing analysis

```
1 ''' Notes to Self
2 my markdown templates
3 <span style="font-size:50px; font-family:Arial;color:red">Use this for heading/span>
4 style="font-size:30px; font-family:Arial;color:orange">Sub Headings in orange color
5 <span style="font-size:25px; font-family:Arial;color:#8DDBF2">Use this for insight </span>>
6 '''
```

' Notes to Self\nmy markdown templates\nUse this for heading/span> \nSub Headings in orange color\nSub Headings in orange color\nSub Headings in orange color\nSub Headings in orange color size:25px; font-family:Arial;color:#8DDBF2">Use this for insight \n'

× 1.0

Step 1: Understanding the Problem and the Data

About Walmart

Walmart is an American multinational retail corporation that operates a chain of supercenters, discount departmental stores, and grocery stores from the United States. Walmart has more than 100 million customers worldwide.

Business Problem

The Management team at Walmart Inc. wants to analyze the customer purchase behavior (specifically, purchase amount) against the customer's gender and the various other factors to help the business make better decisions. They want to understand if the spending habits differ between male and female customers: Do women spend more on Black Friday than men? (Assume 50 million customers are male and 50 million are female).

Key points:

- 1. WHAT: Analyse customer purchase behavior, focussing on the purchase amount wrt gender and other factors
- 2. WHY: Identify the spending habits of Men and Women to see if we can gain any insights out of the analysis

Dataset The company collected the transactional data of customers who purchased products from the Walmart Stores during Black Friday.

The dataset has the following features: Dataset link: Walmart_data.csv

- User ID: User ID
- Product_ID: Product ID
- · Gender: Sex of User
- · Age: Age in bins
- · Occupation: Occupation(Masked)
- City_Category: Category of the City (A,B,C)
- StayInCurrentCityYears: Number of years stay in current city
- · Marital_Status: Marital Status
- ProductCategory: Product Category (Masked)
- · Purchase: Purchase Amount

× 2.0

Step 2: Import and Inspect the Data

```
1 ' ' '
 2 Notes to Self
 3 During this step, looking into the statistics is critical to gain initial know-how of its structure, variable kinds, and capabi
 5 '''
🚁 ' \nNotes to Self\nDuring this step, looking into the statistics is critical to gain initial know-how of its structure,
    variable kinds, and capability issues.\n\n'
 1 df =pd.read csv("walmart data.csv")
 2 df.head()
\overline{\Rightarrow}
```

→ ▼		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category	Pι
	0	1000001	P00069042	F	0- 17	10	А	2	0	3	_
	1	1000001	P00248942	F	0- 17	10	А	2	0	1	
	2	1000001	P00087842	F	0- 17	10	А	2	0	12	
	4										•

1 df.columns

```
→ Index(['User ID', 'Product ID', 'Gender', 'Age', 'Occupation', 'City Category',
            'Stay_In_Current_City_Years', 'Marital_Status', 'Product_Category',
           'Purchase'],
          dtype='object')
```

× 2.1

Statistical summary for numerical columns and Unique values for categorical data

```
1 #Instead of manually creating tables and collecting values
 2 #lets automate it.
 3 #We will generate a table of all columns in Markdown format
4 #We will paste this table into a markdown cell and then we may add additional analysis
 5 #!pip install tabulate
 6 from tabulate import tabulate
 7 def generate markdown table with details(df):
      column details = []
      for col in df.columns:
9
10
          dtype = str(df[col].dtype)
          if df[col].dtype == 'object':
11
              cat_or_num = 'Categorical'
12
13
              details = df[col].unique().tolist()
14
              if(len(details)>10):
15
                  details= f'{df[col].nunique()} unique values'
16
           else:
              cat_or_num = 'Numerical'
17
              details = f"Min: {df[col].min()}, Max: {df[col].max()}"
18
19
          column_details.append([col, dtype, cat_or_num, details, ''])
20
21
      # Create a DataFrame for the table
      table df = pd.DataFrame(column details, columns=['Column Name', 'Data Type', 'Categorical or Numerical', 'Details', 'Busine
22
23
24
      # Convert DataFrame to Markdown
25
      markdown_table = tabulate(table_df, headers='keys', tablefmt='pipe', showindex=False)
26
       return markdown table
27
28 markdown table = generate markdown table with details(df)
29 print(f'There are a total of {df.shape[0]} rows and {df.shape[1]} columns')
30 print(markdown_table)
31
   There are a total of 550068 rows and 10 columns
                                  Data Type | Categorical or Numerical
```

WallMart.ipynb - Colab

User_ID	int64	Numerical	Min: 1000001, Max: 1006040
Product_ID	object	Categorical	3631 unique values
Gender	object	Categorical	['F', 'M']
Age	object	Categorical	['0-17', '55+', '26-35', '46-50', '51-55', '36-45', '
Occupation	int64	Numerical	Min: 0, Max: 20
City_Category	object	Categorical	['A', 'C', 'B']
Stay_In_Current_City_Years	object	Categorical	['2', '4+', '3', '1', '0']
Marital_Status	int64	Numerical	Min: 0, Max: 1
Product_Category	int64	Numerical	Min: 1, Max: 20
Purchase	int64	Numerical	Min: 12, Max: 23961

```
1 '''
2 Notes to Self
3 Adding insights about columns and data size.
4 We identify which columns are numerical, which are categorical
5 Within categorical, we identify if it is nominal or ordinal data. This helps us to decide best graph to use
6 Also ordinal data can be converted into numeric using codes thereby making it available for some kind of graphs.
7 '''
```


💮 ' \nNotes to Self\nAdding insights about columns and data size. \nWe identify which columns are numerical, which are categorical\nWithin categorical, we identify if it is nominal or ordinal data. This helps us to decide best graph to use \nAlso ordinal data can be converted into numeric using codes thereby making it available for some kind of graphs.\n'

There are a total of 550068 rows and 10 columns

Column Name	Data Type	Categorical or Numerical	Details	Business Description(fill manually)
User_ID	int64	Cat(Nominal)	Min: 1000001, Max: 1006040	
Product_ID	object	Cat(Nominal)	3631 unique values	
Gender	object	Cat(Nominal)	['F', 'M']	
Age	object	Cat(Ordinal)	['0-17', '55+', '26-35', '46-50', '51-55', '36-45', '18-25']	Age in Bins
Occupation	int64	Cat(Nominal)	Min: 0, Max: 20	Has been encoded into numerical values
City_Category	object	Cat(Nominal)	['A', 'C', 'B']	Category of the City (A,B,C)
Stay_In_Current_City_Years	object	Cat(Ordinal)	['2', '4+', '3', '1', '0']	Number of years stay in current city
Marital_Status	int64	Cat(Nominal)	Min: 0, Max: 1	Has been encoded into numerical values
Product_Category	int64	Cat(Nominal)	Min: 1, Max: 20	Has been encoded into numerical values
Purchase	int64	Numerical	Min: 12, Max: 23961	

There is only ONE column that has real numerical data, the purchase column, rest all columns are categorical in nature

```
1 '''
2 Notes to Self
3 Let's get a quick summary of the dataset using the pandas describe() method.
4 The describe() function applies basic statistical computations on the dataset like extreme values, count of data points standar
5 Any missing value or NaN value is automatically skipped. describe() function gives a good picture of the distribution of data.
6 '''
7 df.describe(include ='all')
```

		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Prod
_	count	5.500680e+05	550068	550068	550068	550068.000000	550068	550068	550068.000000	Ę
	unique	NaN	3631	2	7	NaN	3	5	NaN	
	top	NaN	P00265242	M	26-35	NaN	В	1	NaN	
	freq	NaN	1880	414259	219587	NaN	231173	193821	NaN	
	mean	1.003029e+06	NaN	NaN	NaN	8.076707	NaN	NaN	0.409653	
	std	1.727592e+03	NaN	NaN	NaN	6.522660	NaN	NaN	0.491770	
	min	1.000001e+06	NaN	NaN	NaN	0.000000	NaN	NaN	0.000000	
	25%	1.001516e+06	NaN	NaN	NaN	2.000000	NaN	NaN	0.000000	
	50%	1.003077e+06	NaN	NaN	NaN	7.000000	NaN	NaN	0.000000	
	75%	1.004478e+06	NaN	NaN	NaN	14.000000	NaN	NaN	1.000000	
	max	1.006040e+06	NaN	NaN	NaN	20.000000	NaN	NaN	1.000000	

× 2.2

Step 3: Handling Missing Values

```
1 ...
 2 Notes to Self
 3 Missing Data can also refer to as NA(Not Available) values in pandas. There are several useful functions for detecting, removin
 5 isnull()
 6 notnull()
 7 dropna()
 8 fillna()
 9 replace()
10 interpolate()
11 '''
💮 ' \nNotes to Self\nMissing Data can also refer to as NA(Not Available) values in pandas. There are several useful functions
    for detecting, removing, and replacing null values in Pandas DataFrame
    :\n\nisnull()\nnotnull()\ndropna()\nfillna()\nreplace()\ninterpolate()\n'
 1 #Now let's check if there are any missing values in our dataset or not.
 2 df.isnull().sum()
→ User_ID
                                  0
    Product ID
    Gender
                                  0
    Age
    Occupation
                                  0
    City_Category
    Stay_In_Current_City_Years
                                  0
    Marital_Status
                                  0
    Product_Category
                                  0
    Purchase
    dtype: int64
```

Awesome! the data does not have any missing values

Lets add some columns for analysing the categorical and numerical data better

- For categorical data- we will add some codes
- For numerical data -we will add some labels after binning the data

```
1 #REMOVE IF NOT NEEDED
2
3 # Create a new column with the binned values
```

```
4 # df['IncomeGroup'] = pd.cut(df['Income'], bins=income_bin_edges, labels=["Less than 60k","More than 60K"])
5 # df['AgeGroup'] = pd.cut(df['Age'], bins=age_bin_edges, labels=["Less than 24","24-35","36 and above"])
```

3.0

Step 4: Explore Data Characteristics

```
1 '''
2 Notes to self
 3 By exploring the characteristics of your information very well, you can gain treasured insights into its structure, pick out ca
4 Let's start by exploring the data according to the dataset.
5
6 for categorical columns, use
7 -----
8 sns.countplot(data=df, x='Product')
9 df.Product.value_counts().plot.bar()
10 df['Product'].value_counts().plot.pie(autopct='%1.1f%%', startangle=90, colors=sns.color_palette('pastel'))
11
12
13
14 for numerical columns use
15 -----
16 df.hist() # Quickly create histograms for all numeric columns
17 sns.histplot(data=df["Age"], kde=True)
18 df.Age.plot.hist() #hist for Specific column
19 df.Age.plot.kde()
20 df.Age.plot.box()
22 df.plot.box()#Print boxplots of all numerical columns in one go
24 sns.violinplot(data=df , x='Age')
25
26
27
28
29 '''
```

'\nNotes to self\nBy exploring the characteristics of your information very well, you can gain treasured insights into its structure, pick out capability problems or anomalies, and inform your subsequent evaluation and modeling choices. Documenting any findings or observations from this step is critical, as they may be relevant for destiny reference or communication with stakeholders.\nLet\'s start by exploring the data according to the dataset.\n\nfor categorical columns, use\n----------\nsns.countplot(data=df, x=\'Product\')\ndf.Product.value_counts().plot.bar()\ndf[\'Product\'].value_counts().plot.pie(autopct=\'%1.1f%\', startangle=90, colors=sns.color_palette(\'pastel\'))\n\n\n\nfor numerical columns use\n-----\ndf.hist() # Quickly create histograms for all numeric columns\nsns.histplot(data=df["Age"], kde=True)\ndf.Age.plot.hist() #hist for Specific column\ndf.Age.plot.kde()\ndf.Age.plot.box()\n\ndf.plot.box()#Print boxplots of all numerical columns in one go\n\nsns.violinplot(data=df , x=\'Age\')\n\n\n\n\n'

3.1

Univariate and Bivariate Analysis (Analysis of one attribute at a time.)

> 3.1.1

Analysis of User_ID and Purchase column

```
1 frequentUsers = df.groupby('User_ID').Purchase.count().reset_index()
2 frequentUsers.describe()
3
4
```


We have data of 5891 customers

- Each user has shopped multiple times, from a minimum of 6 to a maximum of 1026 times
- On average, each user has shopped for 93 times.
- This is a very decent number to be able to quantify some individual user's buying habit

1 # The user data in the original dataset can be separated out as a separate dataframe so that we can run analysis on users indep
2 users = df[['User_ID','Gender', 'Age', 'Occupation', 'City_Category','Stay_In_Current_City_Years', 'Marital_Status','Purchase']
3 users

$\overline{\Rightarrow}$	User_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Purcha	se	
								count	sum	mean
0	1000001	F	0- 17	10	А	2	0	35	334093	9545.514286
1	1000002	. M	55+	16	С	4+	0	77	810472	10525.610390
2	1000003	8 M	26- 35	15	А	3	0	29	341635	11780.517241
3	1000004	. M	46- 50	7	В	2	1	14	206468	14747.714286
4	1000005	i M	26- 35	20	А	1	1	106	821001	7745.292453
588	36 1006036	5 F	26- 35	15	В	4+	1	514	4116058	8007.894942
588	37 1006037	F	46- 50	1	С	4+	0	122	1119538	9176.540984
4	100000	_			^		^	10	^^^^	

^{1 #} Flatten the column names

² users.columns = [''.join(col).strip() for col in users.columns]

³ users

7	User_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Purchasecount	Purchasesum I
0	1000001	F	0- 17	10	А	2	0	35	334093
1	1000002	M	55+	16	С	4+	0	77	810472
2	1000003	M	26- 35	15	А	3	0	29	341635
3	1000004	M	46- 50	7	В	2	1	14	206468
4	1000005	M	26- 35	20	А	1	1	106	821001
5886	1006036	F	26- 35	15	В	4+	1	514	4116058
5887	1006037	F	46- 50	1	С	4+	0	122	1119538
5888	1006038	F	55+	1	С	2	0	12	90034
5889	1006039	F	46- 50	0	В	4+	1	74	590319
5890	1006040	M	26- 35	6	В	2	0	180	1653299

5891 rows × 10 columns

1 users.describe()

→		User_ID	Occupation	Marital_Status	Purchasecount	Purchasesum	Purchasemean
	count	5.891000e+03	5891.000000	5891.000000	5891.000000	5.891000e+03	5891.000000
	mean	1.003025e+06	8.153285	0.419963	93.374300	8.650166e+05	9568.839914
	std	1.743379e+03	6.323140	0.493594	107.190049	9.436445e+05	1890.087105
	min	1.000001e+06	0.000000	0.000000	6.000000	4.668100e+04	2318.733333
	25%	1.001518e+06	3.000000	0.000000	26.000000	2.376780e+05	8287.212366
	50%	1.003026e+06	7.000000	0.000000	54.000000	5.212130e+05	9386.208333
	75%	1.004532e+06	14.000000	1.000000	117.000000	1.119250e+06	10654.633199
	max	1.006040e+06	20.000000	1.000000	1026.000000	1.053691e+07	18577.893617

Average spend per user is 9568, with maximum spend at 18577 and minimum at 2318

> 3.1.2

Analysis of Product_ID column

```
1 products = df.groupby(['Product_Category','Product_ID'],as_index=False).agg(
2     Revenue=('Purchase', 'sum'),
3     Quantity=('Purchase', 'count'),
4     Male_count=('Gender', lambda x: (x == 'M').sum()),
5     Female_count=('Gender', lambda x: (x == 'F').sum()),
6     Married_count=('Marital_Status', lambda x: (x == 1).sum()),
7     Unmarried_count=('Marital_Status', lambda x: (x == 0).sum())
8 )
9 products
```


	Product_Category	Product_ID	Revenue	Quantity	Male_count	Female_count	Married_count	Unmarried_count
0	1	P00000642	7635578	512	441	71	203	309
1	1	P00000942	581125	55	48	7	17	38
2	1	P00001042	6922380	503	427	76	193	310
3	1	P00001542	640313	69	58	11	35	34
4	1	P00002042	889731	93	86	7	33	60
3626	19	P00370293	28790	785	543	242	331	454
3627	19	P00370853	30588	818	609	209	326	492
3628	20	P00371644	326257	899	643	256	375	524
3629	20	P00372445	313817	837	603	234	345	492
3630	20	P00375436	304653	814	581	233	350	464

3631 rows × 8 columns

⁴ products

\Rightarrow	Product_Category	Product_ID	Revenue	Quantity	Male_count	Female_count	Married_count	Unmarried_count	Price	MalePe
0	1	P00000642	7635578	512	441	71	203	309	14913.0	
1	1	P00000942	581125	55	48	7	17	38	10566.0	
2	1	P00001042	6922380	503	427	76	193	310	13762.0	
3	1	P00001542	640313	69	58	11	35	34	9280.0	
4	1	P00002042	889731	93	86	7	33	60	9567.0	
3626	19	P00370293	28790	785	543	242	331	454	37.0	
3627	19	P00370853	30588	818	609	209	326	492	37.0	
3628	20	P00371644	326257	899	643	256	375	524	363.0	
3629	20	P00372445	313817	837	603	234	345	492	375.0	
3630	20	P00375436	304653	814	581	233	350	464	374.0	

3631 rows × 11 columns

¹ Start coding or generate with AI.

¹ products['Price'] = round(products.Revenue/products.Quantity,0)

² products['MalePercentage'] = round(products.Male_count*100/(products.Male_count+products.Female_count),0)

¹ products.sort_values(by='Revenue', ascending=False)

Y		Product_Category	Product_ID	Revenue	Quantity	Male_count	Female_count	Married_count	Unmarried_count	Price	MaleP
	31	1	P00025442	27995166	1615	1267	348	652	963	17334.0	
	129	1	P00110742	26722309	1612	1247	365	648	964	16577.0	
3	545	16	P00255842	25168963	1383	1008	375	535	848	18199.0	
1	807	6	P00059442	24338343	1406	1048	358	577	829	17310.0	
2	253	1	P00184942	24334887	1440	1141	299	597	843	16899.0	
1	853	5	P00012942	1717	1	1	0	0	1	1717.0	
3	287	11	P00325342	1656	1	1	0	1	0	1656.0	
3	312	11	P00353042	1545	1	1	0	1	0	1545.0	
3	355	12	P00309042	726	1	0	1	1	0	726.0	
3	375	13	P00091742	405	1	1	0	0	1	405.0	

3631 rows × 11 columns

1 products.describe()

\Rightarrow		Product_Category	Revenue	Quantity	Male_count	Female_count	Married_count	Unmarried_count	Price	Male
	count	3631.000000	3.631000e+03	3631.000000	3631.000000	3631.000000	3631.000000	3631.000000	3631.000000	3
	mean	6.484164	1.403419e+06	151.492151	114.089507	37.402644	62.059212	89.432939	7874.911319	
	std	3.801726	2.647138e+06	212.852932	163.547026	53.307847	86.409797	127.347006	3873.754005	
	min	1.000000	4.050000e+02	1.000000	0.000000	0.000000	0.000000	0.000000	37.000000	
	25%	5.000000	1.152100e+05	19.500000	13.000000	5.000000	9.000000	11.000000	5386.000000	
	50%	6.000000	4.378210e+05	71.000000	51.000000	17.000000	29.000000	41.000000	6943.000000	
	75%	8.000000	1.517297e+06	194.000000	142.000000	49.000000	81.000000	113.000000	10154.500000	
	max	20.000000	2.799517e+07	1880.000000	1372.000000	508.000000	793.000000	1087.000000	21257.000000	

• There are 3631 products

3 top1PercentProducts

- Average product price is 7874, with maximum at 21257 and minimum at \$37

2 top1PercentProducts = products[:int(round(len(products)*0.01,0))]

3, 0.33	I IVI	waliwart.ipyrib - Golab										
<u>-</u>	Product_Category	Product_ID	Revenue	Quantity	Male_count	Female_count	Married_count	Unmarried_count	Price	MaleF		
(1	P00000642	7635578	512	441	71	203	309	14913.0			
,	1	P00000942	581125	55	48	7	17	38	10566.0			
2	2 1	P00001042	6922380	503	427	76	193	310	13762.0			
4	1	P00001542	640313	69	58	11	35	34	9280.0			
4	1 1	P00002042	889731	93	86	7	33	60	9567.0			
į	5 1	P00002142	10424160	735	578	157	315	420	14183.0			
(5 1	P00004242	1269862	113	95	18	38	75	11238.0			
7	7 1	P00004442	1632933	147	127	20	53	94	11108.0			
8	1	P00006942	6165491	498	425	73	167	331	12381.0			
(1	P00007042	351139	44	40	4	20	24	7980.0			
1	0 1	P00008842	1299569	109	93	16	38	71	11923.0			
1	1 1	P00009342	3964157	351	288	63	127	224	11294.0			
1	2 1	P00009642	24539	3	3	0	1	2	8180.0			
1	3 1	P00010742	22164153	1350	1069	281	574	776	16418.0			
1	4 1	P00010942	4073491	305	265	40	110	195	13356.0			
1	5 1	P00013542	15836	1	0	1	0	1	15836.0			
1	6 1	P00014042	2471491	194	175	19	75	119	12740.0			
1	7 1	P00014842	4255327	412	329	83	138	274	10328.0			
1	8 1	P00015542	2644080	295	247	48	107	188	8963.0	- 1		
1	9 1	P00015842	3579328	267	225	42	100	167	13406.0	- 1		
2	0 1	P00016042	6406520	447	384	63	168	279	14332.0			
2	1 1	P00016342	2168552	191	138	53	79	112	11354.0			
2	2 1	P00016542	1883681	159	132	27	52	107	11847.0	- 1		
2	3 1	P00016742	2710920	266	232	34	101	165	10191.0	- 1		
2	4 1	P00016842	2902550	315	280	35	122	193	9214.0			
2	5 1	P00017642	333018	51	42	9	17	34	6530.0			
2	6 1	P00019342	4330757	330	284	46	120	210	13124.0	- 1		
2	7 1	P00019942	1224440	107	95	12	42	65	11443.0			
2	8 1	P00020342	3649188	358	289	69	130	228	10193.0			
2	9 1	P00022142	785570	75	69	6	27	48	10474.0			
3	0 1	P00024542	136554	10	8	2	6	4	13655.0			
3	1 1	P00025442	27995166	1615	1267	348	652	963	17334.0			
3	2 1	P00027842	12128	1	0	1	1	0	12128.0			
3	3 1	P00028042	4597211	376	314	62	141	235	12227.0			
3	4 1	P00028442	5332834	418	335	83	159	259	12758.0			
3	5 1	P00029542	2545638	218	198	20	85	133	11677.0			
										_		

[•] The highest grossing Top 1% products are all from Product_Category 1.

Bivariate analysis of Product and Gender

- 1 top1MalePreferredProducts = products.sort_values(by='MalePercentage', ascending=False)
- 2 top1MalePreferredProducts

\Longrightarrow	Product_Category	Product_ID	Revenue	Quantity	Male_count	Female_count	Married_count	Unmarried_count	Price	MalePe
2734	8	P00262742	11882	2	2	0	1	1	5941.0	
1954	7	P00135942	16954	1	1	0	1	0	16954.0	
1966	7	P00194942	55208	4	4	0	3	1	13802.0	
1965	7	P00188142	25185	2	2	0	0	2	12592.0	
1964	7	P00172242	54146	3	3	0	2	1	18049.0	
1400	5	P00231642	7181	1	0	1	0	1	7181.0	
3419	14	P00152042	52338	4	0	4	1	3	13084.0	
1726	5	P00350742	6989	1	0	1	0	1	6989.0	
90	1	P00060842	15737	1	0	1	0	1	15737.0	
1583	5	P00301942	7147	1	0	1	1	0	7147.0	

3631 rows × 11 columns

1 sns.displot(data=top1MalePreferredProducts.MalePercentage)

The breakup in percentages per product for male-females largely is in line with the overall count of 75%-25% across all products

1 top1MalePreferredProducts.query('MalePercentage>90').Product_ID.count()

→ 429

1 top1MalePreferredProducts.query('MalePercentage>99').Product_ID.count()

→ 264

There are 264 products bought exclusively by males

1 top1MalePreferredProducts.query('MalePercentage<1').Product_ID.count()</pre>

→ 43

There are 43 products bought exclusively by females

analysis

1 sns.displot(data=products.UnmarriedPercentage)

> 3.1.4

Bivariate analysis of Product and Marital Status

1 products.query('UnmarriedPercentage>99').Product_ID.count()

→ 117

There are 117 products bought exclusively by Unmarried customers

1 products.query('UnmarriedPercentage<1').Product_ID.count()</pre>

→ 107

There are 107 products bought exclusively by Married customers

× 3.1.5

Bivariate analysis of Product Category and Gender. Purchase

```
1 product_categories = products.groupby('Product_Category', as_index=False).agg(
2     Revenue=('Revenue','sum'),
3     Male_count=('Male_count', 'sum'),
4     Female_count=('Female_count', 'sum'),
5     Married_count=('Married_count', 'sum'),
6     Unmarried_count=('Unmarried_count', 'sum')
```

7)

8 product_categories.sort_values(by='Revenue', ascending=False, inplace=True)

9 product_categories

10

$\overrightarrow{\Rightarrow}$		Product_Category	Revenue	Male_count	Female_count	Married_count	Unmarried_count
-	0	1	1910013754	115547	24831	56003	84375
	4	5	941835229	108972	41961	61277	89656
	7	8	854318799	80367	33558	48514	65411
	5	6	324150302	15907	4559	8327	12139
	1	2	268516186	18206	5658	9726	14138
	2	3	204084713	14207	6006	7854	12359
	15	16	145120612	7426	2402	4115	5713
	10	11	113791115	19548	4739	9619	14668
	9	10	100837301	3963	1162	2347	2778
	14	15	92969042	5244	1046	2667	3623
	6	7	60896731	2778	943	1681	2040
	3	4	27380488	8114	3639	4576	7177
	13	14	20014696	900	623	677	846
	17	18	9290201	2743	382	1484	1641
	8	9	6370324	340	70	163	247
	16	17	5878699	516	62	280	298
	11	12	5331844	2415	1532	1913	2034
	12	13	4008601	4087	1462	2387	3162
	19	20	944727	1827	723	1070	1480
	18	19	59378	1152	451	657	946

¹ product_categories['MalePercentage'] = round(product_categories.Male_count*100/(product_categories.Male_count+product_categorie
2 product_categories['UnmarriedPercentage'] = round(product_categories.Unmarried_count*100/(product_categories.Unmarried_count+pr

³ product_categories

3		Product_Category	Revenue	Male_count	Female_count	Married_count	Unmarried_count	MalePercentage	UnmarriedPercentage
_	0	1	1910013754	115547	24831	56003	84375	82.0	60.0
	4	5	941835229	108972	41961	61277	89656	72.0	59.0
	7	8	854318799	80367	33558	48514	65411	71.0	57.0
	5	6	324150302	15907	4559	8327	12139	78.0	59.0
	1	2	268516186	18206	5658	9726	14138	76.0	59.0
	2	3	204084713	14207	6006	7854	12359	70.0	61.0
	15	16	145120612	7426	2402	4115	5713	76.0	58.0
	10	11	113791115	19548	4739	9619	14668	80.0	60.0
	9	10	100837301	3963	1162	2347	2778	77.0	54.0
	14	15	92969042	5244	1046	2667	3623	83.0	58.0
	6	7	60896731	2778	943	1681	2040	75.0	55.0
	3	4	27380488	8114	3639	4576	7177	69.0	61.0
	13	14	20014696	900	623	677	846	59.0	56.0
	17	18	9290201	2743	382	1484	1641	88.0	53.0
	8	9	6370324	340	70	163	247	83.0	60.0
	16	17	5878699	516	62	280	298	89.0	52.0
	11	12	5331844	2415	1532	1913	2034	61.0	52.0
	12	13	4008601	4087	1462	2387	3162	74.0	57.0

• Product Category 1 is the highest grossing category with USD 1.91 Billion in revenue

944727

59378

1827

1152

• For this category, 82% buyers are male. However, as overall we have 75% male customers for Walmart, it would be prudent to check if the 82% is statistically significantly different from the average.

723

451

1070

657

1480

946

72.0

72.0

- This category contains ALL the Top 1% revenue-grossing products for Walmart
- Categories 5,8,6,2,3,16,11,10 are the other 1 Billion plus categories

20

19

• Category 19 is the lowest grossing category with just \$59378 revenue

> 3.1.6

19

18

4

Univariate analysis of Gender column

- 1 users['Gender'].value_counts().plot.pie(
- 2 autopct='%1.1f%%',
- 3 startangle=90, colors=sns.color_palette('pastel'))
- 4 plt.title("Gender breakup in overall users")

58.0

59.0

-

→ Text(0.5, 1.0, 'Gender breakup in overall users')

Gender breakup in overall users

1 users['Gender'].value_counts()

Gender
M 4225
F 1666
Name: count, dtype: int64

> 3.1.7

Bivariate analysis of Gender and Purchase column

1 df['Gender'].value_counts().plot.pie(
2 autopct='%1.1f%%',
3 startangle=90, colors=sns.color_palette('pastel'))
4 plt.title("Gender breakup in overall purchases")

→ Text(0.5, 1.0, 'Gender breakup in overall purchases')

Gender breakup in overall purchases

- There are 5891 unique users
- Out of these 4225(72%) are males, 1666 (28%) are females
- In terms of purchases too, 75% of purchases are by males and 25% are by females

```
1 males= df[df.Gender=='M']
2 females = df[df.Gender=='F']
3
4 PopMeanFemales = females.Purchase.mean()
5 PopMeanMales = males.Purchase.mean()
6 print(f'Population Mean purchase amount for females is ${PopMeanFemales:.2f}')
7 print(f'Population Mean purchase amount for males is ${PopMeanMales:.2f}')
Population Mean purchase amount for females is $8734.57
Population Mean purchase amount for males is $9437.53

1 # plot the sample_means_male to see the distribution
2 sns.histplot(males.Purchase, kde=True)
3 plt.xlabel('Purchase')
4 plt.ylabel('Frequency')
5 plt.title('Distribution of Purchase amounts for Male Customers')
6 plt.show()
```


Distribution of Purchase amounts for Male Customers 20000 17500 15000 12500 Frequency 10000 7500 5000 2500 5000 10000 15000 20000 25000 Purchase

- The distribution of purchase amounts for males is not really normal. However we can use CLT to estimate the mean value with some confidence.
- Instead of giving exact average, it is better to give an interval for the mean purchase amount.
- We can do this by using the Central limit theorem
- We will select a sample, and use the sample mean to calculate an interval

3.1.8

Univariate analysis of Age column

```
1 age = users.groupby(['Age','Gender'],as_index=False).size().sort_values(by="Age")
2 age
```

7		Age	Gender	size
	0	0-17	F	78
	1	0-17	M	140
	2	18-25	F	287
	3	18-25	M	782
	4	26-35	F	545
	5	26-35	M	1508
	6	36-45	F	333
	7	36-45	M	834
	8	46-50	F	182
	9	46-50	M	349
	10	51-55	F	142

```
1 # Univariate Analysis
2
3 plt.figure(figsize=(10, 6))
4 sns.barplot(data=age, x='Age', y='size', hue='Gender')
5 plt.title('Count of Users by Age Group and Gender')
6 plt.xlabel('Age Group')
7 plt.ylabel('Count')
8 plt.show()
```

339

99

273

11 51-55

12

13

55+

> 3.1.9

Bivariate analysis of Age and Gender column

```
1 #select all records where gender is M
 3 male_users = age[age['Gender'] == 'M']
 4 male users
 6 # Insights from the age distribution plot
 7 total_users = age['size'].sum()
 8 male_users_count = male_users['size'].sum()
 9 female_users_count = total_users - male_users_count
11 print(f"Total Users: {total users}")
12 print(f"Male Users: {male_users_count} ({(male_users_count / total_users) * 100:.2f}%)")
13 print(f"Female Users: {female_users_count} ({(female_users_count / total_users) * 100:.2f}%)")
15 # Age group distribution
16 age_groups = age.groupby('Age')['size'].sum().reset_index()
17 age_groups['percentage'] = (age_groups['size'] / total_users) * 100
18 print("\nAge Group Distribution:")
19 print(age_groups)
20
21 # Gender distribution within each age group
22 age gender_distribution = age.pivot(index='Age', columns='Gender', values='size').fillna(0)
23 age gender distribution['Total'] = age gender distribution.sum(axis=1)
24 age_gender_distribution['Male_Percentage'] = (age_gender_distribution['M'] / age_gender_distribution['Total']) * 100
25 age_gender_distribution['Female_Percentage'] = (age_gender_distribution['F'] / age_gender_distribution['Total']) * 100
26 print("\nAge and Gender Distribution:")
27 print(age_gender_distribution)
→ Total Users: 5891
    Male Users: 4225 (71.72%)
    Female Users: 1666 (28.28%)
    Age Group Distribution:
        Age size percentage
    0 0-17 218
                    3.700560
    1 18-25 1069
                    18.146325
    2 26-35 2053
                    34.849771
    3 36-45 1167
                    19.809879
    4 46-50 531
                    9.013750
    5 51-55
              481
                     8.164997
       55+
              372
                     6.314717
    Age and Gender Distribution:
    Gender F M Total Male_Percentage Female_Percentage
    0-17
            78 140
                      218
                                   64.220183
                                                     35.779817
    18-25 287 782 1069
                                   73.152479
                                                     26.847521
    26-35 545 1508
36-45 333 834
                       2053
                                   73.453483
                                                     26.546517
                       1167
                                   71.465296
                                                     28.534704
    46-50 182 349
                       531
                                 65.725047
                                                     34.274953
    51-55 142 339
                        481
                                   70.478170
                                                     29.521830
    55+
            99
                 273
                        372
                                   73.387097
                                                     26.612903
```

- The highest number of users are in 26-35 age category and comprise 34% of overall users
- 19% users are in 36-45 age group and 18% of users belong to 18-25 age group
- In the 0-17 age group, while only 3.7% of users lie, 35% of them are females, which is highest female ratio in any age group.

Bivariate Analysis of Occupation and Gender

```
1 occ = users.groupby(['Occupation','Gender'],as_index=False).size().sort_values(by="Occupation")
2 occ
```


	Occupation	Gender	size
0	0	F	226
1	0	M	462
2	1	F	203
3	1	M	314
4	2	F	88
5	2	M	168
6	3	F	98
7	3	M	72
8	4	F	228
9	4	M	512
11	5	M	80
10	5	F	31
12	6	F	99
13	6	M	129
14	7	F	137
15	7	M	532
16	8	F	3
17	8	M	14
18	9	F	85
19	9	M	3
21	10	M	126
20	10	F	66
22	11	F	22
23	11	M	106
24	12	F	46
25	12	M	330
26	13	F	33
27	13	M	107
28	14	F	78
29	14	M	216
31	15	M	112
30	15	F	28
32	16	F	49
33	16	M	186
34	17	F	50
35	17	M	441
36	18	F	4
37	18	M	63
38	19	F	15
39	19	M	56
40	20	F	77
41	20	M	196

Univariate Analysis of Occupation

```
1 # Insights from the occupation distribution plot
2 occ_groups = occ.groupby('Occupation')['size'].sum().reset_index()
3 occ_groups['percentage'] = (occ_groups['size'] / total_users) * 100
4 print("Occupation Distribution:")
5 print(occ_groups)
 Occupation Distribution:
      Occupation size percentage
             0 688 11.678832
                        8.776099
  1
              1 517
                  256
                         4.345612
              3 170
  3
                        2.885758
              4 740 12.561535
              5 111
                        1.884230
  5
                  228
                         3.870311
                       11.356306
  7
                  669
                  17
                        0.288576
  9
              9
                  88
                        1.493804
  10
             10
                  192
                         3.259209
                  128
  11
             11
                         2,172806
  12
             12
                  376
                         6.382618
  13
             13
                  140
                         2.376507
                  294
                         4.990664
  15
             15
                  140
                         2.376507
  16
             16
                  235
                         3.989136
  17
             17
                  491
                         8.334748
  18
             18
                   67
                         1.137328
  19
             19
                   71
                         1,205228
             20
                  273
                         4.634188
  20
```

Occupations 0,4 and 7 have the maximum number of users, each have 11-12% users

```
1 # Gender distribution within each Occupation
2 occ_gender_distribution = occ.pivot(index='Occupation', columns='Gender', values='size').fillna(0)
3 occ_gender_distribution['Total'] = occ_gender_distribution.sum(axis=1)
4 occ_gender_distribution['Male_Percentage'] = (occ_gender_distribution['M'] / occ_gender_distribution['Total']) * 100
5 occ_gender_distribution['Female_Percentage'] = (occ_gender_distribution['F'] / occ_gender_distribution['Total']) * 100
6 print("\Occupation and Gender Distribution:")
7 print(occ_gender_distribution)
  \Occupation and Gender Distribution:
               F M Total Male_Percentage Female_Percentage
  Occupation
              226 462
                                    67.151163
                                                       32.848837
              203 314
                                    60.735010
                                                       39.264990
  1
                          517
  2
               88 168
                          256
                                    65.625000
                                                       34.375000
              98 72
                         170
                                    42.352941
                                                       57.647059
  3
             228 512
                         740
                                    69.189189
                                                       30.810811
  5
              31 80
                         111
                                    72.072072
                                                       27.927928
               99 129
                          228
                                    56.578947
                                                       43.421053
              137 532
  7
                          669
                                    79.521674
                                                       20.478326
  8
              3 14
                          17
                                    82.352941
                                                       17.647059
  9
              85
                   3
                          88
                                     3.409091
                                                       96.590909
  10
               66 126
                          192
                                    65.625000
                                                       34.375000
              22 106
  11
                         128
                                    82.812500
                                                       17,187500
              46 330
                          376
                                    87.765957
                                                       12.234043
  13
              33 107
                         140
                                    76,428571
                                                       23.571429
               78 216
                          294
                                                       26.530612
                                    73.469388
  15
              28 112
                         140
                                    80.000000
                                                       20.000000
              49 186
                         235
                                    79.148936
                                                       20.851064
               50 441
  17
                         491
                                    89.816701
                                                       10.183299
                   63
                                    94.029851
               4
                          67
                                                        5.970149
               15 56
                          71
  19
                                    78.873239
                                                       21.126761
               77 196
                         273
                                    71.794872
                                                       28.205128
  <>:6: SyntaxWarning: invalid escape sequence '\0'
  <>:6: SyntaxWarning: invalid escape sequence '\0'
  C:\Users\Admin\AppData\Local\Temp\ipykernel_37668\2747592413.py:6: SyntaxWarning: invalid escape sequence '\0'
```

print("\Occupation and Gender Distribution:")

1 sns.displot(data=occ_gender_distribution['Male_Percentage'])

<seaborn.axisgrid.FacetGrid at 0x1a455b648c0>

The gender wise breakup for occupation is similar to overall gender breakup. One Way ANOVA on Occupation and Male Percentage column can be used to confirm this further Occupation 9 is a occupation where 96.5% of users are males Occupation 18 is a occupation where 94% of users are females

> 3.1.12

Bivariate Analysis of Occupation and Age Group

```
1 occAge = pd.crosstab(users.Age, users.Occupation)
2 occAge
```

$\overline{\Rightarrow}$	Occupation	0	1	2	3	4	5	6	7	8	9	 11	12	13	14	15	16	17	18	19	20
	Age																				
	0-17	26	4	3	0	3	0	0	2	1	0	 1	1	1	2	0	0	2	0	11	0
	18-25	101	44	42	18	518	18	9	17	1	6	 7	58	0	37	12	17	50	10	30	46
	26-35	292	152	109	67	197	52	75	251	6	28	 50	177	0	129	71	56	197	22	15	106
	36-45	131	115	46	41	14	24	57	213	3	34	 31	83	5	67	25	56	129	16	9	67
	46-50	62	80	29	16	3	10	29	71	1	9	 17	32	7	25	17	37	56	8	2	20
	51-55	43	68	17	16	5	6	38	76	2	7	 16	19	27	19	8	45	35	9	2	23
	55+	33	54	10	12	0	1	20	39	3	4	 6	6	100	15	7	24	22	2	2	11

7 rows × 21 columns

```
1 # Plot the line chart
2 plt.figure(figsize=(10, 6))
3
4 for column in occAge.columns:
5    plt.plot(occAge.index, occAge[column], marker='o', label=column)
6
7 # Customize the plot
8 plt.title('Age Group vs Number of People by Occupation')
9 plt.xlabel('Age Group')
10 plt.ylabel('Number of People')
```

```
11 plt.legend(title='Occupation')
12 plt.grid(True)
13 plt.show()
```

₹


```
1 #find which occupation has maximum value for 26-35 age group
 2 # Total number of users in the 26-35 age group
 3
 4 def age_group_top3_occupations(age_group):
       total_users_in_age_group = cTrans[age_group].sum()
 5
 6
       top_3 = cTrans.nlargest(3, age_group)[age_group]
 7
       print(f'{age_group} occupations {top_3.index.values}')
 8
       print(f'Total users in {age_group} = {(top_3/total_users_26_35).sum()*100}')
 9
10
12 age_group_top3_occupations('18-25')
13 age_group_top3_occupations('26-35')
14 age_group_top3_occupations('36-45')
→ 18-25 occupations [ 4 0 12]
    NameError
                                             Traceback (most recent call last)
    Cell In[181], line 12
          8
                print(f'{age_group} occupations {top_3.index.values}')
                print(f'Total users in {age_group} = {(top_3/total_users_26_35).sum()*100}')
    ---> 12 age_group_top3_occupations('18-25')
         13 age_group_top3_occupations('26-35')
         14 age_group_top3_occupations('36-45')
    Cell In[181], line 9, in age_group_top3_occupations(age_group)
          7 top_3 = cTrans.nlargest(3, age_group)[age_group]
          8 print(f'{age_group} occupations {top_3.index.values}')
    ----> 9 print(f'Total users in {age_group} = {(top_3/total_users_26_35).sum()*100}')
    NameError: name 'total users 26 35' is not defined
```

- For 26-35 age group, 36% of users are from occupations 0,4,7
- For 18-25 age group, 32% of users are from occupations 0,4,12
- For 36-45 age group, 23% of users are from occupations 0,7,17

```
1 # Plot the line chart
2 plt.figure(figsize=(10, 6))
3 cTrans = occAge.T
4 for column in cTrans.columns:
5    plt.plot(cTrans.index, cTrans[column], marker='o', label=column)
6
7 # Customize the plot
8 plt.title('Occupation vs Number of People by Age Group')
9 plt.xlabel('Occupation')
10 plt.ylabel('Number of People')
11 plt.legend(title='Age Group')
12 plt.grid(True)
13 plt.show()
```


Bivariate Analysis of City_Category and Purchase

```
1 city = df.groupby('City_Category',as_index=False).size().sort_values(by="City_Category")
2 city['percent'] = round(city['size']*100/len(df),0)
3 city
```

		City_Category	size	percent
	0	А	147720	27.0
	1	В	231173	42.0
	2	С	171175	31.0

42% of purchases are from City B, 31% from city C

> 3.1.14

Bivariate Analysis of City_Category and User_ID

```
1 cityUser = users.groupby('City_Category',as_index=False).size().sort_values(by="City_Category")
2 cityUser['percent'] = round(cityUser['size']*100/len(users),0)
```

3 cityUser

₹		City_Category	size	percent
	0	А	1045	18.0
	1	В	1707	29.0
	2	С	3139	53.0

53% of users are from City C, 29% from City B

> 3.1.15

Bivariate Analysis of City_Category and Gender

- 1 cityGender = pd.crosstab(users.City_Category, users.Gender, margins=True)
- 2 cityGender['percent'] = cityGender.M*100/cityGender.All
- 3 cityGender

→	Gender	F	M	All	percent
	City_Category				
	Α	295	750	1045	71.770335
	В	503	1204	1707	70.533099
	С	868	2271	3139	72.347881
	AII	1666	4225	5891	71.719572

The gender distribution across the three cities is same.

> 3.1.16

Bivariate Analysis of City_Category and Age Group

- 1 cityAge= pd.crosstab(users.City_Category, users.Age,margins=True)
 2
 3 #cityAge['percent'] = cityAge.M*100/cityGender.All
 4 cityAge
- $\overline{\Rightarrow}$ Age 0-17 18-25 26-35 36-45 46-50 51-55 55+ City_Category Α 25 214 461 176 53 67 49 1045 В 50 331 652 335 146 135 58 1707 С 143 524 940 656 332 279 265 3139 All 218 1069 2053 1167 531 481 372 5891
 - 1 cityAge= pd.crosstab(users.City_Category, users.Age,normalize = 'index')
 - 2 cityAge*100

$\overline{\Rightarrow}$	Age	0-17	18-25	26-35	36-45	46-50	51-55	55+
	City_Category							
	Α	2.392344	20.478469	44.114833	16.842105	5.071770	6.411483	4.688995
	В	2.929115	19.390744	38.195665	19.625073	8.553017	7.908612	3.397774
	С	4.555591	16.693214	29.945843	20.898375	10.576617	8.888181	8.442179

```
1 cityAge= pd.crosstab(users.City_Category, users.Age,normalize = 'columns',margins= True)
2 round(cityAge*100,0)

Age 0-17 18-25 26-35 36-45 46-50 51-55 55+ All
```

```
City_Category
      Α
                 11.0
                         20.0
                                 22.0
                                         15.0
                                                10.0
                                                        14.0
                                                              13.0
                                                                    18.0
      В
                 23.0
                                 32.0
                                        29.0
                                                27.0
                                                              16.0 29.0
                         31.0
                                                        28.0
      С
                 66.0
                         49.0
                                 46.0
                                        56.0
                                                63.0
                                                        58.0 71.0 53.0
```

- In City A, 44% of users are from 26-35 age group
- While 53% of users are from City C, it has 71% of all 55+ aged users

Bivariate Analysis of City_Category and Occupation

```
1 cityOcc= pd.crosstab(users.City Category, users.Occupation,margins=True)
3 #cityAge['percent'] = cityAge.M*100/cityGender.All
4 cityOcc
       Occupation
                                                            8
                                                                         12
                                                                              13
                                                                                    14
                                                                                         15
                                                                                                   17
                                                                                                                     A11
                                                                                              16
                                                                                                      18 19
                                                                                                                20
    City_Category
                                                                                                                    1045
          Α
                   129
                         94
                              68
                                   34
                                       172
                                             14
                                                  24
                                                      113
                                                            4
                                                                          77
                                                                               12
                                                                                    53
                                                                                         25
                                                                                              35
                                                                                                   62
                                                                                                        7
                                                                                                           14
                                                                                                                59
          В
                                                                               30
                   203
                        140
                              80
                                   47
                                       236
                                             40
                                                  74
                                                      170
                                                            2
                                                               25
                                                                        113
                                                                                    83
                                                                                         43
                                                                                             61
                                                                                                  136
                                                                                                       12 18
                                                                                                               106
                                                                                                                    1707
          C
                   356
                        283
                             108
                                   89
                                             57
                                                 130
                                                      386
                                                            11
                                                               56
                                                                        186
                                                                               98
                                                                                   158
                                                                                         72
                                                                                             139
                                                                                                  293
                                                                                                       48
                                                                                                               108
                                                                                                                    3139
                        517
                             256
                                  170
                                       740
                                            111
                                                 228
                                                      669
                                                           17 88
                                                                        376
                                                                             140 294
                                                                                        140
                                                                                            235
                                                                                                 491 67
   4 rows × 22 columns
1 cityOcc= pd.crosstab(users.City_Category, users.Occupation,normalize = 'index')
2
```

```
1 cityOcc= pd.crosstab(users.City_Category, users.Occupation,normalize = 'index')
2
3 round(cityOcc*100,0)
4
```

Occupation 1 2 3 4 5 6 7 8 9 ... 11 12 13 14 15 16 17 18 19 City_Category Α 12.0 9.0 7.0 ... 2.0 7.0 1.0 5.0 2.0 3.0 6.0 3.0 16.0 1.0 2.0 11.0 0.0 1.0 1.0 1.0 6.0 В 12.0 8.0 5.0 3.0 14.0 2.0 4.0 10.0 0.0 1.0 ... 3.0 7.0 2.0 5.0 3.0 4.0 8.0 11.0 9.0 3.0 3.0 11.0 2.0 4.0 12.0 0.0 2.0 ... 2.0 6.0 3.0 5.0 2.0 4.0 9.0 2.0 1.0 3.0

3 rows × 21 columns

 \overline{z}

```
1 cityOcc.loc['A'].sum()
```

```
1 cityOccTrans= cityOcc.T
2 def city_group_top3_occupations(city_group):
3    top_3 = cityOccTrans.nlargest(3, city_group)[city_group]
4    print(f'{city_group} occupations {top_3.index.values}')
5    print(f'% users in top 3 occupations for {city_group} = {(top_3).sum()*100}')
6
7
8 city_group_top3_occupations('A')
9 city_group_top3_occupations('B')
10 city_group_top3_occupations('C')
```

```
A occupations [4 0 7]
% users in top 3 occupations for A = 39.61722488038278
B occupations [4 0 7]
% users in top 3 occupations for B = 35.67662565905097
C occupations [7 0 4]
% users in top 3 occupations for C = 34.21471806307741
```

Bivariate Analysis of City_Category and Product Category

- 1 cityProdCat= pd.crosstab(df.City_Category, df.Product_Category,margins=True)
 2 cityProdCat
- Product_Category City_Category Α В С All 140378 23864 150933 20466 113925 410 5125

× 3.1.19

Bivariate Analysis of Stay_In_Current_City_Years and UserID

- 1 stayDuration= users.groupby('Stay_In_Current_City_Years',as_index=False).size().sort_values('Stay_In_Current_City_Years')
- 2 stayDuration['percent'] = round(stayDuration['size']*100/stayDuration['size'].sum(),0)
- 3 stayDuration

→		Stay_In_Current_City_Years	size	percent
	0	0	772	13.0
	1	1	2086	35.0
	2	2	1145	19.0
	3	3	979	17.0
	4	4+	909	15.0

35% of users have stayed in same city for 1-2 yrs

> 3.1.20

Bivariate Analysis of Stay_In_Current_City_Years and Stay Duration

- 1 cityStayDuration = pd.crosstab(users.City_Category,users.Stay_In_Current_City_Years, normalize='index')
- 2 cityStayDuration

→	Stay_In_Current_City_Years	0	1	2	3	4+
	City_Category					
	А	0.140670	0.354067	0.175120	0.172249	0.157895
	В	0.123609	0.356180	0.200351	0.172818	0.147042
	C	0 131880	0 352070	0 107515	0.160561	0.157056

⁴ rows × 21 columns

The duration of stay in the city is similar in all three cities across various duration categories.

0.132071 0.350769 0.193373 0.164024 0.159763

× 3.1.21

Bivariate Analysis of Marital_Status and Gender

F

M

```
1 maritalStatusGender= pd.crosstab(users.Marital_Status, users.Gender,margins=True)
2 maritalStatusGender
```

→ ▼	Gender	F	М	All
	Marital_Status			
	0	947	2470	3417
	1	719	1755	2474
	All	1666	4225	5891

```
1 print('Unmarried % = ',round(100*maritalStatusGender.at[0,'All'] /maritalStatusGender.at['All','All'],1))
2 print('Unmarried male% = ',round(100*maritalStatusGender.at[0,'M'] /maritalStatusGender.at['All','M'],1))
3 print('Unmarried female% = ',round(100*maritalStatusGender.at[0,'F'] /maritalStatusGender.at['All','F'],1))
```

```
Unmarried % = 58.0
Unmarried male% = 58.5
Unmarried female% = 56.8
```

58% of users are unmarried Ratio of unmarried users is same across genders

> 3.1.22

Bivariate Analysis of Marital_Status and Age Category

```
1 maritalStatusAge= pd.crosstab(users.Marital_Status, users.Age,margins=True)
2 maritalStatusAge
```

```
\overline{\Rightarrow}
                       0-17 18-25 26-35 36-45 46-50 51-55 55+
                                                                             A11
      Marital_Status
             0
                         218
                                 825
                                       1244
                                                 705
                                                         156
                                                                 136
                                                                      133
                                                                           3417
             1
                           0
                                 244
                                         809
                                                 462
                                                         375
                                                                345
                                                                     239
                                                                           2474
             ΑII
                         218
                                1069
                                       2053
                                                1167
                                                         531
                                                                481 372
                                                                          5891
```

```
1 # Calculate percentages
2 maritalStatusAge_percent = maritalStatusAge.div(maritalStatusAge['All'], axis=0) * 100
3 maritalStatusAge_percent
```

4 5

- 1 print(24/(9+24))
 2 print(36.4/(36.4+32))
 3 print(20.6/(20.6+18.6))
- 0.7272727272727273 0.5321637426900584 0.5255102040816326
- 72% of users in 18-25 age group are unmarried
- 53% of users in 26-35 age group are unmarried
- 52% of users in 36-45 age group are unmarried

Bivariate Analysis of Marital_Status and Occupation

- 1 maritalStatusOcc= pd.crosstab(users.Marital_Status, users.Occupation,margins=True)
- 2 maritalStatusOcc

$\overline{\Rightarrow}$	Occupation	0	1	2	3	4	5	6	7	8	9	 12	13	14	15	16	17	18	19	20	All	
	Marital_Status																					
	0	402	279	144	90	544	65	102	355	11	41	 219	50	151	73	110	288	35	57	144	3417	
	1	286	238	112	80	196	46	126	314	6	47	 157	90	143	67	125	203	32	14	129	2474	
	All	688	517	256	170	740	111	228	669	17	88	 376	140	294	140	235	491	67	71	273	5891	

3 rows × 22 columns

- 1 #Calculate the breakup of the married unmarried group acorss occupations
- 2 maritalStatusOcc_percent = maritalStatusOcc.div(maritalStatusOcc['All'], axis=0) * 100
- 3 maritalStatusOcc_percent

$\overline{\Rightarrow}$	Occupation	0	1	2	3	4	5	6	7	8	9	 12
	Marital_Status											
	0	11.764706	8.165057	4.214223	2.633889	15.920398	1.902253	2.985075	10.389230	0.321920	1.199883	 6.409131
	1	11.560226	9.620049	4.527082	3.233630	7.922393	1.859337	5.092967	12.691997	0.242522	1.899757	 6.345998
	All	11.678832	8.776099	4.345612	2.885758	12.561535	1.884230	3.870311	11.356306	0.288576	1.493804	 6.382618

3 rows × 22 columns

```
1 #Calculate the breakup of the married unmarried group within each occupation
```

- 2 sum_first_two = maritalStatusOcc_percent.iloc[0:2].sum()
- 3 # Calculate the percentages for each column
- 4 percentage_row = round((maritalStatusOcc_percent.iloc[0:1] / sum_first_two) * 100,1)

5

- 6 # Add the percentage row to the DataFrame
- 7 maritalStatusOcc_percent = pd.concat([maritalStatusOcc_percent,percentage_row])
- 8 maritalStatusOcc_percent

```
Findex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
          20, 'All'],
         dtype='object', name='Occupation')
   dtype='object', name='Occupation')
        Occupation
                          0
                                                                          5
                                                                                   6
                                                                                                                  . . .
    Marital_Status
                   11.764706
                             8.165057
                                       4.214223
                                                2.633889
                                                         15.920398
                                                                    1.902253
                                                                             2.985075
                                                                                     10.389230
                                                                                                0.321920
                                                                                                          1.199883
          1
                   11.560226
                             9.620049
                                       4.527082
                                                3.233630
                                                          7.922393
                                                                    1.859337
                                                                             5.092967
                                                                                      12.691997
                                                                                                0.242522
                                                                                                          1.899757
          ΑII
                   11.678832
                             8.776099
                                       4.345612
                                                2.885758
                                                         12.561535
                                                                    1.884230
                                                                             3.870311
                                                                                      11.356306
                                                                                                0.288576
                                                                                                          1.493804
                   50.400000 45.900000 48.200000 44.900000 66.800000 50.600000 37.000000 45.000000 57.000000 38.700000
```

• 66% of users in Occupation 4 are unmarried

4 rows × 22 columns

- 50% of users in Occupation 0 are unmarried
- 45% of users in Occupation 7 are unmarried
- 75% of users in Occupation 19 are unmarried

> 3.1.24

Bivariate Analysis of Marital_Status and City

1 maritalStatusCity= pd.crosstab(users.Marital_Status, users.City_Category,margins=True)
2 maritalStatusCity

$\overline{\Rightarrow}$	City_Category	А	В	С	A11
	Marital_Status				
	0	652	1004	1761	3417
	1	393	703	1378	2474
	All	1045	1707	3139	5891

- 1 #Calculate the breakup of the married unmarried group across each city
- $2 \ {\tt maritalStatusCity_percent = maritalStatusCity.div(maritalStatusCity['All'], \ axis=0)} \ * \ 100 \\$
- 3 maritalStatusCity_percent

₹	City_Category Marital_Status	А	В	С	All
	0	19.081065	29.382499	51.536435	100.0
	1	15.885206	28.415521	55.699272	100.0
	All	17.738924	28.976405	53.284672	100.0

• The breakup of married-unmarried users is same as the general breakup of users across the cities

```
1 #Calculate the breakup of the married unmarried group within each city
2 sum_first_two = maritalStatusCity_percent.iloc[0:2].sum()
3 # Calculate the percentages for each column
4 percentage_row = round((maritalStatusCity_percent.iloc[0:1] / sum_first_two) * 100,1)
5
6 # Add the percentage row to the DataFrame
7 maritalStatusCity_percent = pd.concat([maritalStatusCity_percent,percentage_row])
8 maritalStatusCity_percent
```

City_Category	А	В	С	All
Marital_Status				
0	19.081065	29.382499	51.536435	100.0
1	15.885206	28.415521	55.699272	100.0
All	17.738924	28.976405	53.284672	100.0
0	54.600000	50.800000	48.100000	50.0

• While overall we have 58% unmarried users, in City C we have only 48% of unmarried users

> 3.1.25

Bivariate Analysis of Marital_Status and Stay Duration

```
1 maritalStatusStayDuration= pd.crosstab(users.Marital_Status, users.Stay_In_Current_City_Years,margins=True)
2 maritalStatusStayDuration
3
4 #Calculate the breakup of the married unmarried group across each city
5 maritalStatusStayDuration_percent = maritalStatusStayDuration.div(maritalStatusStayDuration['All'], axis=0) * 100
6 maritalStatusStayDuration_percent
7
8
9
```

₹	Stay_In_Current_City_Years	0	1	2	3	4+	All
	Marital_Status						
	0	13.666959	34.182031	19.402985	16.944688	15.803336	100.0
	1	12.328213	37.105901	19.482619	16.168149	14.915117	100.0
	All	13.104736	35.409947	19.436428	16.618571	15.430317	100.0

• The breakup of married-unmarried users is same as the general breakup of duration of stay of users irrespective of marital status. So marital status does not have any impact on duration of stay in a city for a user

> 3.1.26

Univariate Analysis of Purchase column

```
1 df.Purchase.mean()
```

→ 9263.968712959126

1 sns.histplot(data=df["Purchase"], kde=True)

```
<Axes: xlabel='Purchase', ylabel='Count'>
```



```
1 data=df.Purchase #Only this one line is to be updated
 2
 3 fig, ax = plt.subplots(figsize=(15, 5))
 4 # Create boxplot
 5 boxplot = ax.boxplot(data, vert=False, patch_artist=True)
 6
7 # Calculate the five-number summary + mean
8 mean = np.mean(data)
9 min_val = np.min(data)
10 q1 = np.percentile(data, 25)
11 median = np.median(data)
12 q3 = np.percentile(data, 75)
13 max_val = np.max(data)
14
15 # Annotate the five-number summary on the boxplot
16 ax.annotate(f'Min: {min_val:.2f}', xy=(min_val, 1), xytext=(min_val, 1.2),
               arrowprops=dict(facecolor='black', shrink=0.05), ha='center')
18
19 ax.annotate(f'Q1: {q1:.2f}', xy=(q1, 1.07), xytext=(q1, 1.2),
20
               arrowprops=dict(facecolor='black', shrink=0.05), ha='center')
21
22 ax.annotate(f'Median: {median:.2f}', xy=(median, 1.07), xytext=(median, 1.3),
               arrowprops=dict(facecolor='black', shrink=0.05), ha='center')
23
25 ax.annotate(f'Q3: {q3:.2f}', xy=(q3, 1.07), xytext=(q3, 1.2),
               arrowprops=dict(facecolor='black', shrink=0.05), ha='center')
26
27
28 ax.annotate(f'Max: {max_val:.2f}', xy=(max_val, 1), xytext=(max_val, 1.2),
29
               arrowprops=dict(facecolor='black', shrink=0.05), ha='center')
30
31 ax.annotate(f'Mean: {mean:.2f}', xy=(mean, 1.07), xytext=(mean, 1.2),
32
               arrowprops=dict(facecolor='red', shrink=0.05), ha='center')
33
35 # Display plot
36 plt.show()
37
38
```


- 50% of customers shop between 5823 and 12054
- Overall range of purchase amount is from 12to23961

< 4.0

Answering Questions asked in Case Study

4.1

Are women spending more money per transaction than men? Why or Why not

We have already established that Mean purchase amount for males is 9437.53 Mean purchase amount for females is 8734.57

So women are not spending more money per transaction than men as per this data. Later we have statistically established that the spending habits of the two groups is different

Why are women spending less?

We observe that only 25% of customers are women as per given data.

Possible reasons

- Walmart's marketing strategies might be more appealing to men, leading to higher male foot traffic and spending
- Cultural norms and societal expectations might influence shopping behaviors. For example, women might be more likely to shop for groceries and household items, while men might shop for higher-ticket items
- · Gender Roles: Traditional gender roles might play a part in determining who does the shopping and what they buy.

It could indicate that shopping experience of women needs improvement

This can be done by

- keeping more items relevant to women. The product mix at Walmart might cater more to male preferences, such as electronics and automotive products, which could result in higher spending by men
- · making it easier to reach
- · helpful and women friendly staff
- · ensuring women safety
- · Women are more likely to use coupons and look for discounts, which might lead them to shop at stores that offer better deals

× 4.2

Confidence intervals and distribution of the mean of the expenses by female and male customers

```
1 # select a random sample of 1000 rows for each gender
 2 sample males = males.sample(n=1000)
 3 sample_females = females.sample(n=1000)
5 # identify confidence interval for the mean of the purchase
 6 from scipy import stats
8 def my_decorator(func):
9
      def wrapper(data, confidence=0.95, text="Mean"):
          mean, lower,upper = func(data, confidence)
10
11
           return f'Using CLT and single sample of {len(data)} rows, {text} = {mean:.2f}, CI = [{lower:.2f}, {upper:.2f}] with {c
12
       return wrapper
13
14 #We want to decorate the function mean_confidence_interval to add some text to the output
16 def mean_confidence_interval_decorated(data, confidence=0.95):
      return mean_confidence_interval(data, confidence)
17
18
19 #Function to calculate the confidence interval for the mean of the purchase amount
20 def mean_confidence_interval(data, confidence=0.95):
21
      a = 1.0 * np.array(data)
      n = len(a)
22
      m, se = np.mean(a), stats.sem(a)
23
24
      h = se * stats.t.ppf((1 + confidence) / 2., n-1) #dof is n-1
      return m,m-h,m+h
26
27
29 print(f'Using actual population of {len(males)} rows, Population Mean purchase amount for males is ${PopMeanMales:.2f}')
30 print(f'{mean confidence interval decorated(sample males.Purchase, confidence=0.95, text="Mean Purchase amount for Males")}')
31 print()
32 print(f'Using actual population of {len(females)} rows, Population Mean purchase amount for females is ${PopMeanFemales:.2f}')
33 print(f'{mean_confidence_interval_decorated(sample_females.Purchase, confidence=0.95, text="Mean Purchase amount for Females")}
34
35
36
37
   Using actual population of 414259 rows, Population Mean purchase amount for males is $9437.53
   Using CLT and single sample of 1000 rows, Mean Purchase amount for Males = 9191.12, CI = [8889.37, 9492.87] with 95.0% confiden
   Using actual population of 135809 rows, Population Mean purchase amount for females is $8734.57
   Using CLT and single sample of 1000 rows, Mean Purchase amount for Females = 8811.79, CI = [8514.98, 9108.60] with 95.0% confid
 1 #Utility function to plot sample means distribution and confidence interval
 2
 3 import matplotlib.patches as mpatches
4
 5 def plotConfidenceIntervals(sample_means,pop_mean,text,xlabel):
           #Plot the second and third colummns of sample means which are the lower and upper bounds of the confidence interval
 6
 8
      totalIntervalCount = len(sample means)
9
      plt.figure(figsize=(10, 5+round(totalIntervalCount/10,0)))
10
      missed=0
11
12
       #Plot 1000 confidence intervals to see how many contain the population mean
13
       for i in range(totalIntervalCount):
          # Plot the horizontal line for the confidence interval
14
15
          mean, lower,upper = sample_means[i]
           #Plot the confidence interval that miss the population mean in red
16
17
          if(lower<=pop mean<=upper):
              plt.hlines(i*4, lower,upper, color='g', linewidth=2, label=f'95% CI for {mean:.2f}')
18
20
              missed=missed+1
              plt.hlines(i*4, lower,upper, color='r', linewidth=2, label=f'95% CI for {mean:.2f}')
21
22
          # Plot the sample mean as a dot
23
           plt.plot(mean, i*4, 'ro', label='Mean')
```

```
25
      # Plot the population mean
      plt.axvline(pop_mean, color='b', linestyle='dashed', linewidth=2, label='Mean')
26
27
28
      # Add custom legend
29
      red line = mpatches.Patch(color='red', label=f'{missed}({missed*100/totalIntervalCount}) Intervals that missed the populati
30
       green_line = mpatches.Patch(color='green', label=f'{totalIntervalCount-missed}({(totalIntervalCount-missed)*100/totalIntervalCount-missed)
       blue_line = mpatches.Patch(color='blue', label=f'Population mean = {pop_mean:.2f}')
31
       \label{eq:continuous} red\_dot = plt.Line2D([0], [0], marker='o', color='w', label='Mean of the sample', markerfacecolor='red', markersize=10)
32
33
34
      plt.legend(handles=[red_line, green_line, red_dot,blue_line], loc='upper left')
35
36
37
      plt.title(f'Population Mean {pop_mean:.2f} and {totalIntervalCount} 95% Confidence Interval {text}')
38
      plt.xlabel(xlabel)
39
      plt.yticks([]) # Remove y-axis ticks
40
41
42 def plotSampleMeanDistributionAndConfidenceIntervals(data,
43
                               sample_size,
44
                               pop_mean,
45
                               confidence=0.95,
46
                               text="for"):
47
48
      sample_means=[]
49
      for _ in range(1000):
          sample = data.sample(n=sample_size)
50
51
          m,l,u = mean_confidence_interval(sample, confidence)
52
           sample_means.append([m,1,u])
      #select first column of the sample means male, which is the mean
53
54
      sample_means = np.array(sample_means)
      # plot the sample_means_male to see the distribution
55
56
      sns.histplot(sample_means[:,0], kde=True)
57
      plt.xlabel(data.name)
      plt.ylabel('Frequency')
58
59
      plt.title(f'Distribution of Sample means of {data.name} amounts {text}')
60
61
62
      plotConfidenceIntervals(sample_means,pop_mean,text,data.name)
63
       return sample_means
64
65
66
```

1 male_sample_means = plotSampleMeanDistributionAndConfidenceIntervals(males.Purchase, 1000, PopMeanMales, confidence=0.95, text=

Distribution of Sample means of Purchase amounts for Male Customers

Population Mean 9437.53 and 1000 95% Confidence Interval for Male Customers

1 female_sample_means = plotSampleMeanDistributionAndConfidenceIntervals(females.Purchase, 1000, PopMeanFemales, confidence=0.95,

Distribution of Sample means of Purchase amounts for Female Customers

Population Mean 8734.57 and 1000 95% Confidence Interval for Female Customers

