ENSAE

ITS 1

ALGEBRE 1': CONTROLE 2

Exercice 1

On consdère dans \mathcal{E}_{12} , la permutation :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 7 & 10 & 6 & 8 & 2 & 11 & 12 & 5 & 1 & 4 & 3 & 9 \end{pmatrix}$$

- 1. Décomposer σ en cycles disjoints et en produits de transpositions.
- 2. Calculer le nombre d'inversions et la signature de σ | $I(\sigma)$ et $\varepsilon(\sigma)$
- 3. Déterminer l'ordre de σ et calculer σ^{2018}

Exercice 2

- 1. Rappeler la définition des termes suivants :
 - Elément inversible d'un anneau.
 - Elément nilpotent d'un anneau
 - Anneau intègre.
- 2. Donner un exemplaire d'un anneau intègre et d'un anneau non intègre.
- 3. Soit $(A, +, \bullet)$ un anneau commutatif unitaire.
 - 3-1 Montrer $J=\{x\in A/\exists n\in\mathbb{N}^*: x^n=0_A\}$ est un ideal de A.
 - 3 2 Soit $x \in A$ tel que $1_A x \in J$. Montrer que x est inversible et $1 x^{-1} \in J$.

Exercice 3

- 1. Factoriser dans $\mathbb{R}[x]$ les polynômes suivants : $A=x^6+1, B=x^9+x^6+x^3+1$
- 2. Soient:

$$P = 2x^3 - x^2 - 5x - 2$$

$$Q = 2x^2 - x - 3$$

- a) Véterminer pgcd(P,Q).
- b) En déduire les polynômes U et V tels que pgdc(P,Q) = U.P + V.Q

Exercice 4

Décomposer en éléments simples.

- 1. Dans $\mathbb{R}(x)$ $F_1 = \frac{x^3+3}{(x^2+1)(x^2-1)^2}$
- 2. Dans $\mathbb{C}(x)$ $F_2 = \frac{x^3+3}{(x^2+1)(x^2-1)}$.