Project2___EDA-ML

February 13, 2024

1 Predict Diabetes Data

1.0.1 import required packages

```
import pandas as pd #import panda
import numpy as np #import numpy
import matplotlib.pyplot as plt #import pyplot
import seaborn as sns #import seaborn
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score , confusion_matrix ,u
classification_report
from sklearn.tree import DecisionTreeClassifier
```

1.0.2 import dataset from csv

```
[3]: df = pd.read_csv('./diabetes.csv')
df.head()
```

```
[3]:
        Pregnancies
                      Glucose
                                BloodPressure
                                                 SkinThickness
                                                                 Insulin
                                                                            BMI
                                                                           33.6
                   6
                           148
                                                             35
     1
                   1
                            85
                                             66
                                                             29
                                                                        0
                                                                           26.6
     2
                   8
                           183
                                             64
                                                             0
                                                                        0
                                                                           23.3
     3
                            89
                                             66
                                                             23
                                                                       94
                                                                           28.1
                   1
     4
                   0
                           137
                                             40
                                                             35
                                                                      168
                                                                          43.1
```

```
DiabetesPedigreeFunction Age
                                     Outcome
0
                        0.627
                                 50
                        0.351
1
                                 31
                                            0
2
                        0.672
                                 32
                                            1
3
                        0.167
                                            0
                                 21
                        2.288
                                 33
                                            1
```

```
[4]: df.shape #dimenssion
```

[4]: (768, 9)

1.0.3 Check data type

[4]: df.dtypes	#types of column
----------------	------------------

[4]: Pregnancies int64 Glucose int64 BloodPressure int64 SkinThickness int64 Insulin int64 BMI float64 DiabetesPedigreeFunction float64 int64 Outcome int64

1.0.4 Find missing data

dtype: object

```
[5]: df.isnull().sum() #check missing data
```

[5]:	Pregnancies	0
	Glucose	0
	BloodPressure	0
	SkinThickness	0
	Insulin	0
	BMI	0
	DiabetesPedigreeFunction	0
	Age	0
	Outcome	0

dtype: int64

1.0.5 Statistics to verify the quality of data

```
[6]: outliers = df.loc[df['Pregnancies'] < 0 , 'Pregnancies'] #check for anomalies outliers
```

[6]: Series([], Name: Pregnancies, dtype: int64)

[7]: df.describe()

[7]:		Pregnancies	Glucose	${\tt BloodPressure}$	SkinThickness	Insulin	\
cc	ount	768.000000	768.000000	768.000000	768.000000	768.000000	
me	ean	3.845052	120.894531	69.105469	20.536458	79.799479	
st	td	3.369578	31.972618	19.355807	15.952218	115.244002	
mi	in	0.000000	0.000000	0.000000	0.000000	0.000000	
25	5%	1.000000	99.000000	62.000000	0.000000	0.000000	
50	0%	3.000000	117.000000	72.000000	23.000000	30.500000	
75	5%	6.000000	140.250000	80.000000	32.000000	127.250000	
ma	ЭX	17.000000	199.000000	122.000000	99.000000	846.000000	

	BMI	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000
mean	31.992578	0.471876	33.240885	0.348958
std	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.078000	21.000000	0.00000
25%	27.300000	0.243750	24.000000	0.00000
50%	32.000000	0.372500	29.000000	0.00000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

1.0.6 Calculate the correlation between variables

[8]: df.corr()	#calculate	correlation
----------------	------------	-------------

:	Pregnancie	es Glucos	e BloodPressure	SkinThickness
Pregnancies	1.00000	0.12945	9 0.141282	-0.081672
Glucose	0.12945	9 1.00000	0.152590	0.057328
BloodPressure	0.14128	32 0.15259	0 1.000000	0.207371
SkinThickness	-0.08167	2 0.05732	8 0.207371	1.000000
Insulin	-0.07353	35 0.33135	7 0.088933	0.436783
BMI	0.01768	33 0.22107	1 0.281805	0.392573
DiabetesPedigreeFunction	-0.03352	23 0.13733	7 0.041265	0.183928
Age	0.54434	1 0.26351	4 0.239528	-0.113970
Outcome	0.22189	0.46658	1 0.065068	0.074752
	Insulin	BMI 1	DiabetesPedigreeF	unction \
Pregnancies	-0.073535	0.017683	-0	.033523
Glucose	0.331357	0.221071	0	. 137337

Pregnancies	-0.073535	0.017683	-0.033523
Glucose	0.331357	0.221071	0.137337
BloodPressure	0.088933	0.281805	0.041265
SkinThickness	0.436783	0.392573	0.183928
Insulin	1.000000	0.197859	0.185071
BMI	0.197859	1.000000	0.140647
${\tt DiabetesPedigreeFunction}$	0.185071	0.140647	1.000000
Age	-0.042163	0.036242	0.033561
Outcome	0.130548	0.292695	0.173844

	Age	Outcome
Pregnancies	0.544341	0.221898
Glucose	0.263514	0.466581
BloodPressure	0.239528	0.065068
SkinThickness	-0.113970	0.074752
Insulin	-0.042163	0.130548
BMI	0.036242	0.292695
${\tt DiabetesPedigreeFunction}$	0.033561	0.173844
Age	1.000000	0.238356
Outcome	0.238356	1.000000

1.0.7 plot the correlation

```
[9]: sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title('Matrice of correlation')
plt.show()
```


1.0.8 split dataframe into actual data and labels

```
[10]: data = df.iloc[: , :-1] labels = df.iloc[: , -1]
```

1.0.9 verifie distribution and values

```
[11]: plt.figure(figsize=(10,18))

for i,col in enumerate(data , 1):
    plt.subplot(3,3,i)
```

```
sns.histplot(df[col], bins = 30 , kde=True , color = 'yellow')
plt.title('Distrubution de '+col)
plt.xlabel(col)
plt.ylabel('frequence')
```


1.0.10 correcting outliers

```
[12]: df.loc[df['Glucose']==0 ,'Glucose'].count()
      outlier_col = ['Glucose', 'BloodPressure', 'SkinThickness' , 'Insulin', 'BMI']
[13]: for i in outlier_col:
          df[i] = df[i].replace(0 , np.nan)
      df.isnull().sum()
[13]: Pregnancies
                                    0
      Glucose
                                    5
      BloodPressure
                                   35
      SkinThickness
                                  227
      Insulin
                                  374
      BMI
                                   11
     DiabetesPedigreeFunction
                                    0
      Age
                                    0
      Outcome
                                    0
      dtype: int64
[14]: for i in outlier_col:
          df[i].fillna(df[i].median() , inplace=True)
      df.isnull().sum()
[14]: Pregnancies
                                   0
      Glucose
                                  0
      BloodPressure
                                   0
      SkinThickness
                                  0
      Insulin
                                  0
      BMI
      DiabetesPedigreeFunction
                                  0
      Age
      Outcome
                                  0
      dtype: int64
     1.0.11 Split data into training data and test data
[16]: data_train , data_test , labels_train , labels_test = train_test_split(data ,__
       ⇔labels , test_size=0.2 , random_state=0)
      data_train.shape , labels_train.shape , data_test.shape , labels_test.shape
[16]: ((614, 8), (614,), (154, 8), (154,))
```

1.0.12 Train Logistic regression model

```
[17]: lrmodel = LogisticRegression(random_state=0 , max_iter=700)
lrmodel.fit(data_train , labels_train)
```

[17]: LogisticRegression(max_iter=700, random_state=0)

1.0.13 Calculate Accuracy score

```
[18]: accuracy1= lrmodel.score(data_test , labels_test)
    labels_predicted = lrmodel.predict(data_test)
    accuracy2 = accuracy_score(labels_test , labels_predicted)
    accuracy1 , accuracy2
```

[18]: (0.8246753246753247, 0.8246753246753247)

1.0.14 Calculate metrics

```
[19]: #confusion matrix
confusion_mat = confusion_matrix(labels_test , labels_predicted)
confusion_mat
```

```
[19]: array([[98, 9], [18, 29]], dtype=int64)
```

```
[20]: #report cassification
report = classification_report(labels_test , labels_predicted)
report
```

```
[20]: '
                     precision
                                  recall f1-score
                                                      support\n\n
      0.84
                0.92
                          0.88
                                      107\n
                                                               0.76
                                                                         0.62
                                                                                   0.68
      47\n\n
                                                    0.82
                                                                154\n
                accuracy
                                                                        macro avg
      0.80
                0.77
                          0.78
                                      154\nweighted avg
                                                               0.82
                                                                         0.82
                                                                                   0.82
      154\n'
```

Class: 0

Precision: 0.84 Recall: 0.92 F1-score: 0.88 Class: 1

Precision: 0.76 Recall: 0.62 F1-score: 0.68

1.0.15 Train Decision tree classifier model

```
[22]: dtmodel = DecisionTreeClassifier()
    dtmodel.fit(data_train , labels_train)

labels_predicted_2 = dtmodel.predict(data_test)

score_2 = dtmodel.score(data_test , labels_test)
    accuracy_2 = accuracy_score(labels_test , labels_predicted)
    confusion_mat_2 = confusion_matrix(labels_test , labels_predicted)
    score_2, accuracy_2, confusion_mat_2
```

1.0.16 Calculate metrics

Class: 0

Precision: 0.88
Recall: 0.79
F1-score: 0.83

Class: 1

Precision: 0.61 Recall: 0.74 F1-score: 0.67

```
[26]: #importance of each variable
      dtmodel.feature_importances_
[26]: array([0.05589521, 0.31432593, 0.11775423, 0.01689698, 0.04949311,
            0.17705803, 0.13027364, 0.13830288])
[27]: for col , feat in zip(df.columns , dtmodel.feature_importances_):
         print('features : ',col , ' \t\t | importance : ' , feat)
     features : Pregnancies
                                                      | importance :
     0.05589521436556582
     features : Glucose
                                              | importance : 0.3143259288118616
     features : BloodPressure
                                                      | importance :
     0.11775422684549706
     features : SkinThickness
                                                      | importance :
     0.01689697569805338
     features : Insulin
                                              | importance :
                                                              0.04949310924496884
     features : BMI
                                              | importance :
                                                              0.17705803194112185
     features : DiabetesPedigreeFunction
                                                              | importance :
     0.1302736363771514
                                              | importance : 0.13830287671578
     features : Age
```