Applications of spectral methods (ℓ_2 theory)

Cong Ma
University of Chicago, Autumn 2021

What we have learned so far

- Classical ℓ_2 matrix perturbation theory:
 - Davis-Kahan's $\sin \Theta$ theorem
 - Wedin's $\sin \Theta$ theorem
 - Eigenvector perturbation of probability transition matrices

- Matrix concentration inequalities:
 - Matrix Bernstein inequality

What we have learned so far

- Classical ℓ_2 matrix perturbation theory:
 - Davis-Kahan's $\sin \Theta$ theorem
 - Wedin's $\sin \Theta$ theorem
 - Eigenvector perturbation of probability transition matrices

- Matrix concentration inequalities:
 - Matrix Bernstein inequality

— we will check their applications today

Outline

- Community recovery in stochastic block model
- Low-rank matrix completion
- Ranking from pairwise comparisons

Stochastic block model (SBM)

$$x_i^{\star} = 1$$
: 1st community $x_i^{\star} = -1$: 2nd community

- n nodes $\{1,\ldots,n\}$
- 2 communities
- n unknown variables: $x_1^{\star}, \dots, x_n^{\star} \in \{1, -1\}$
 - encode community memberships

A simple model: stochastic block model (SBM)

ullet observe a graph ${\mathcal G}$

$$(i,j) \in \mathcal{G}$$
 with prob. $egin{cases} p, & \text{if } i \text{ and } j \text{ are from same community} \\ q, & \text{else} \end{cases}$

Here, p > q

ullet Goal: recover community memberships of all nodes, i.e., $\{x_i^\star\}$

Adjacency matrix

Consider the adjacency matrix $A \in \{0,1\}^{n \times n}$ of \mathcal{G} : (assume $A_{ii} = p$)

$$A_{i,j} = \begin{cases} 1, & \text{if } (i,j) \in \mathcal{G} \\ 0, & \text{else} \end{cases}$$

• WLOG, suppose $x_1^\star=\cdots=x_{n/2}^\star=1$; $x_{n/2+1}^\star=\cdots=x_n^\star=-1$

Adjacency matrix

$$\mathbb{E}[\boldsymbol{A}] = \begin{bmatrix} p \mathbf{1} \mathbf{1}^\top & q \mathbf{1} \mathbf{1}^\top \\ q \mathbf{1} \mathbf{1}^\top & p \mathbf{1} \mathbf{1}^\top \end{bmatrix} = \underbrace{\frac{p+q}{2}}_{\text{uninformative bias}} + \underbrace{\frac{p-q}{2}}_{=\boldsymbol{x}^\star = [x_i]_{1 \leq i \leq n}} [\mathbf{1}^\top, -\mathbf{1}^\top]$$

Spectral clustering

- 1. computing the leading eigenvector $m{u} = [u_i]_{1 \leq i \leq n}$ of $m{A} \frac{p+q}{2} \mathbf{1} \mathbf{1}^{ op}$
- 2. rounding: output $x_i = \begin{cases} 1, & \text{if } u_i > 0 \\ -1, & \text{if } u_i < 0 \end{cases}$

Apply Davis-Kahan's result

Let
$$M^\star\coloneqq \mathbb{E}[A]-rac{p+q}{2}\mathbf{1}\mathbf{1}^ op=rac{p-q}{2}\left[egin{array}{c}\mathbf{1}\\-\mathbf{1}\end{array}
ight]\left[egin{array}{cc}\mathbf{1}^ op&-\mathbf{1}^ op\end{array}
ight], \ M\coloneqq A-rac{p+q}{2}\mathbf{1}\mathbf{1}^ op\text{, and } oldsymbol{u}^\star\coloneqqrac{1}{\sqrt{n}}\left[egin{array}{c}\mathbf{1}\\-\mathbf{1}\end{array}
ight]$$

Then the Davis-Kahan $\sin \Theta$ Theorem yields

$$dist(u, u^{*}) \leq \frac{\|M - M^{*}\|}{\lambda_{1}(M^{*}) - \|M - M\|} = \frac{\|A - \mathbb{E}[A]\|}{\frac{(p-q)n}{2} - \|A - \mathbb{E}[A]\|}$$
(5.1)

as long as
$$\|oldsymbol{A} - \mathbb{E}[oldsymbol{A}]\| < \lambda_1(oldsymbol{M}^\star) = rac{(p-q)n}{2}$$

Bounding $\| \boldsymbol{A} - \mathbb{E}[\boldsymbol{A}] \|$

Matrix concentration inequalities tell us that

Lemma 5.1

Consider SBM with p>q and $p\gtrsim \frac{\log n}{n}$. Then with high prob.

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\| \lesssim \sqrt{np \log n}$$
 (5.2)

— better concentration yields \sqrt{np} bound

Statistical accuracy of spectral clustering

Substitute (5.2) into (5.1) to reach

$$\mathsf{dist}(\boldsymbol{u},\boldsymbol{u}^\star) \leq \frac{\|\boldsymbol{A} - \mathbb{E}[\boldsymbol{A}]\|}{\frac{(p-q)n}{2} - \|\boldsymbol{A} - \mathbb{E}[\boldsymbol{A}]\|} \lesssim \frac{\sqrt{np\log n}}{(p-q)n}$$

provided that $(p-q)n \gg \sqrt{np\log n}$

Thus, under condition $\frac{p-q}{\sqrt{p}}\gg\sqrt{\frac{\log n}{n}}$, with high prob. one has

$$\mathsf{dist}(oldsymbol{u},oldsymbol{u}^\star) \ll 1 \qquad \Longrightarrow \qquad \mathsf{nearly perfect clustering}$$

Statistical accuracy of spectral clustering

$$\frac{p-q}{\sqrt{p}}\gg\sqrt{\frac{\log n}{n}}\quad\Longrightarrow\quad \text{nearly perfect clustering}$$

ullet dense regime: if $p \asymp q \asymp 1$, then this condition reads

$$p - q \gg \sqrt{\frac{\log n}{n}}$$

• "sparse" regime: if $p=\frac{a\log n}{n}$ and $q=\frac{b\log n}{n}$ for $a,b\asymp 1$, then $a-b\gg \sqrt{a}$

This condition is information-theoretically optimal (up to log factor) — Mossel, Neeman, Sly '15, Abbe '18

Proof of Lemma 5.1

To simplify presentation, assume $A_{i,j}$ and $A_{j,i}$ are independent (check: why this assumption does not change our bounds)

Proof of Lemma 5.1

Write $m{A} - \mathbb{E}[m{A}]$ as $\sum_{i,j} m{X}_{i,j}$, where $m{X}_{i,j} = \left(A_{i,j} - \mathbb{E}[A_{i,j}]\right) m{e}_i m{e}_j^{ op}$

• Since $\text{Var}(A_{i,j}) \leq p$, one has $\mathbb{E}\left[m{X}_{i,j} m{X}_{i,j}^{ op}
ight] \preceq p m{e}_i m{e}_i^{ op}$, which gives

$$\sum\nolimits_{i,j} \mathbb{E}\left[\boldsymbol{X}_{i,j} \boldsymbol{X}_{i,j}^{\top}\right] \preceq \sum\nolimits_{i,j} p \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\top} \preceq n p \boldsymbol{I}$$

Similarly, $\sum_{i,j} \mathbb{E}\left[m{X}_{i,j}^{ op} m{X}_{i,j}
ight] \preceq np \, m{I}$. As a result,

$$v = \max \left\{ \left\| \sum\nolimits_{i,j} \mathbb{E} \left[\boldsymbol{X}_{i,j} \boldsymbol{X}_{i,j}^\top \right] \right\|, \left\| \sum\nolimits_{i,j} \mathbb{E} \left[\boldsymbol{X}_{i,j}^\top \boldsymbol{X}_{i,j} \right] \right\| \right\} \leq np$$

- In addition, $\|\boldsymbol{X}_{i,j}\| \leq 1 =: B$
- Take the matrix Bernstein inequality to conclude that with high prob.,

$$\|\boldsymbol{A} - \mathbb{E}[\boldsymbol{A}]\| \lesssim \sqrt{v \log n} + B \log n \lesssim \sqrt{np \log n} \quad (\text{since } p \gtrsim \frac{\log n}{n})$$

Low-rank matrix completion

```
      ✓
      ?
      ?
      ✓
      ?
      ?

      ?
      ?
      ✓
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
```


figure credit: Candès

- ullet consider a low-rank matrix $M^\star = U^\star \Sigma^\star V^{\star op}$
- each entry $M_{i,j}^{\star}$ is observed independently with prob. p
- intermediate goal: estimate U^{\star}, V^{\star}

Spectral method for matrix completion

- 1. identify the key matrix M^{\star}
- 2. construct surrogate matrix $M \in \mathbb{R}^{n \times n}$ as

$$M_{i,j} = \begin{cases} \frac{1}{p} M_{i,j}^{\star}, & \text{if } M_{i,j}^{\star} \text{ is observed} \\ 0, & \text{else} \end{cases}$$

- \circ rationale for rescaling: ensures $\mathbb{E}[M] = M^\star$
- 3. compute the rank-r SVD $U\Sigma V^{ op}$ of M, and return (U,Σ,V)

Statistical accuracy of spectral estimate

Let's analyze a simple case where $oldsymbol{M} = oldsymbol{u} oldsymbol{v}^ op$ with

$$oldsymbol{u} = rac{1}{\| ilde{oldsymbol{u}}\|_2} ilde{oldsymbol{u}}, \quad oldsymbol{v} = rac{1}{\| ilde{oldsymbol{v}}\|_2} ilde{oldsymbol{v}}, \quad ilde{oldsymbol{u}}, ilde{oldsymbol{v}} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I}_n)$$

From Wedin's Theorem: if $p \gg \log^3 n/n$, then with high prob.

$$\max \left\{ \mathsf{dist}(\hat{\boldsymbol{u}}, \boldsymbol{u}), \mathsf{dist}(\hat{\boldsymbol{v}}, \boldsymbol{v}) \right\} \leq \frac{\|\hat{\boldsymbol{M}} - \boldsymbol{M}\|}{\sigma_1(\boldsymbol{M}) - \|\hat{\boldsymbol{M}} - \boldsymbol{M}\|} \asymp \underbrace{\|\hat{\boldsymbol{M}} - \boldsymbol{M}\|}_{\mathsf{controlled by Bernstein}} \ll 1 \quad (\mathsf{nearly accurate estimates}) \quad (5.3)$$

Sample complexity

For rank-1 matrix completion,

$$p \gg \frac{\log^3 n}{n} \qquad \Longrightarrow \qquad \text{nearly accurate estimates}$$

Sample complexity needed to yield reliable spectral estimates is

$$\underbrace{n^2p \asymp n\log^3 n}_{\text{optimal up to log factor}}$$

Proof of (5.3)

Write
$$\hat{M}-M=\sum_{i,j}m{X}_{i,j}$$
, where $m{X}_{i,j}=(\hat{M}_{i,j}-M_{i,j})m{e}_im{e}_j^{ op}$

• First,

$$\|\boldsymbol{X}_{i,j}\| \leq \frac{1}{p} \max_{i,j} |M_{i,j}| \lesssim \frac{\log n}{pn} := B$$
 (check)

ullet Next, $\mathbb{E}[oldsymbol{X}_{i,j}oldsymbol{X}_{i,j}^{ op}] = \mathsf{Var}(\hat{M}_{i,j})oldsymbol{e}_ioldsymbol{e}_i^{ op}$ and hence

$$\mathbb{E}\big[\sum\nolimits_{i,j} \boldsymbol{X}_{i,j} \boldsymbol{X}_{i,j}^{\top} \big] \preceq \Big\{ \max_{i,j} \mathsf{Var}\big(\hat{M}_{i,j}\big) \Big\} n\boldsymbol{I} \preceq \Big\{ \frac{n}{p} \max_{i,j} M_{i,j}^2 \Big\} \boldsymbol{I}$$

$$\implies \qquad \left\| \mathbb{E} \big[\sum\nolimits_{i,j} \boldsymbol{X}_{i,j} \boldsymbol{X}_{i,j}^\top \big] \right\| \leq \frac{n}{p} \max_{i,j} M_{i,j}^2 \lesssim \frac{\log^2 n}{np} \quad (\mathsf{check})$$

Similar bounds hold for $\|\mathbb{E}\left[\sum_{i,j} X_{i,j}^{\top} X_{i,j}\right]\|$. Therefore,

$$v := \max \left\{ \left\| \mathbb{E} \left[\sum\nolimits_{i,j} \boldsymbol{X}_{i,j} \boldsymbol{X}_{i,j}^\top \right] \right\|, \left\| \mathbb{E} \left[\sum\nolimits_{i,j} \boldsymbol{X}_{i,j}^\top \boldsymbol{X}_{i,j} \right] \right\| \right\} \lesssim \frac{\log^2 n}{np}$$

• Take the matrix Bernstein inequality to yield: if $p \gg \log^3 n/n$, then

$$\|\hat{\boldsymbol{M}} - \boldsymbol{M}\| \lesssim \sqrt{v \log n} + B \log n \ll 1$$

Ranking from pairwise comparisons

pairwise comparisons for ranking tennis players

figure credit: Bozóki, Csató, Temesi

Bradley-Terry-Luce (logistic) model

- \bullet n items to be ranked
- \bullet assign a latent score $\{w_i^\star\}_{1\leq i\leq n}$ to each item, so that $\text{item } i\succ \text{item } j\quad \text{if}\quad w_i^\star>w_j^\star$
- ullet each pair of items (i,j) is compared independently

$$\mathbb{P}\left\{\text{item } j \text{ beats item } i\right\} = \frac{w_j^\star}{w_i^\star + w_j^\star}$$

Bradley-Terry-Luce (logistic) model

- \bullet *n* items to be ranked
- assign a latent score $\{w_i^{\star}\}_{1 \leq i \leq n}$ to each item, so that

$$\text{item } i \succ \text{item } j \quad \text{if} \quad w_i^\star > w_j^\star$$

ullet each pair of items (i,j) is compared independently

$$y_{i,j} \stackrel{\text{ind.}}{=} \begin{cases} 1, & \text{with prob. } \frac{w_j^\star}{w_i^\star + w_j^\star} \\ 0, & \text{else} \end{cases}$$

• intermediate goal: estimate score vector w^* (up to scaling)

Spectral ranking

1. identify key matrix P^* —probability transition matrix

$$P_{i,j}^{\star} = \begin{cases} \frac{1}{n} \cdot \frac{w_j^{\star}}{w_i^{\star} + w_j^{\star}}, & \text{if } i \neq j \\ 1 - \sum_{l:l \neq i} P_{i,l}^{\star}, & \text{if } i = j \end{cases}$$

Rationale:

 \circ $oldsymbol{P}^{\star}$ obeys

$$w_i^{\star} P_{i,j}^{\star} = w_j^{\star} P_{j,i}^{\star}$$
 (detailed balance)

 \circ Thus, the stationary distribution π^\star of P^\star obeys

$$\pi^{\star} = \frac{1}{\sum_{l} w_{l}^{\star}} w^{\star}$$
 (reveals true scores)

Spectral ranking

2. construct a surrogate matrix \boldsymbol{P} obeying

$$P_{i,j} = \begin{cases} \frac{1}{n} y_{i,j}, & \text{if } i \neq j \\ 1 - \sum_{l:l \neq i} P_{i,l}, & \text{if } i = j \end{cases}$$

3. return leading left eigenvector π of P as score estimate

— closely related to PageRank

Spectral ranking

2. construct a surrogate matrix \boldsymbol{P} obeying

$$P_{i,j} = \begin{cases} \frac{1}{n} y_{i,j}, & \text{if } i \neq j \\ 1 - \sum_{l:l \neq i} P_{i,l}, & \text{if } i = j \end{cases}$$

3. return leading left eigenvector π of P as score estimate

— closely related to PageRank

Key: stability of eigenspace against perturbation $M-M^{\star}$?

Statistical guarantees for spectral ranking

— Negahban, Oh, Shah'16, Chen, Fan, Ma, Wang'19

Suppose $\max_{i,j} \frac{w_i}{w_i} \lesssim 1$. Then with high prob.

$$\frac{\|\hat{\boldsymbol{\pi}} - \boldsymbol{\pi}\|_2}{\|\boldsymbol{\pi}\|_2} \asymp \frac{\|\hat{\boldsymbol{\pi}} - \boldsymbol{\pi}\|_{\boldsymbol{\pi}}}{\|\boldsymbol{\pi}\|_2} \lesssim \underbrace{\frac{1}{\sqrt{n}}}_{\text{nearly perfect estimate}} 0$$

• a consequence of Theorem ?? and matrix Bernstein (exercise)