LCS: Compressive Sensing based Device- Free Localization for Multiple Targets in Sensor Networks

Ju Wang⁺, Dingyi Fang⁺, Xiaojiang Chen⁺, Zhe Yang^{*}, Tianzhang Xing⁺, Lin Cai^{*}

⁺School of Information Science and Technology, Northwest University+, Xi'an, China

*University of Victoria, Victoria, BC, Canada

Real-world Examples

Application1

Snub-nosed monkey monitoring

Current problem:

• It is difficult for wildlife to carry tags

Application2

• • •

Intrusion Detection

Current problem:

• It is infeasible to install such devices on objects

Real-world Examples

Application1 **Device-Free** Localization Application 2 is Needed! 图 / 杨忠奎

Current problem:

• It is difficult for wildlife to carry tags

Current problem:

• It is infeasible to install such devices on objects

Challenges of Device-free Localization

Existing Methods:

- •High energy cost ,e.g., RTI system in Fig 1.
- Deployment with highdensity, e.g, Fig 2.
- Poor for multiple targets, e.g, Fig 3.

Application Needs:

- Device free localization
- Sparse deployment
- Multiple target counting and localization
- Scalability

Fig. 1 Joey Wilson, MOBILE COMPUTING, 2010

Fig. 2 Dian Zhang, *PerCom*, 2007

Fig. 3 Dian Zhang, PerCom, 2010

Device-free Localization Based on RSSI is Not Easy

Application Requirements

Existing Methods
Limitation

Key Issues

How to count and locate multiple targets using a device-free localization method under a large sparse deployment area?

From Previous Work To LCS

Wilson, MOBILE COMPUTING, 2010

Zhang, PerCom, 2007

Zhang, PerCom, 2010

Let,
K be the number of targets
M be the number of targets
N be the number of grids

CS based DFL is promising!

The Deployment of LCS

Set Up:

Monitor area $a \times b$ Side length ω Grids number N (=ab/ ω ^2) Transceiver pairs M (=a/ ω) Targets number K

The RSS dynamic measurement is used to quantify the interferences caused by the target:

RSS dynamic measurement
$$AR_{i,j} = R_{i,j} - F_i$$
 RSS of link i at the absence of any target
$$RSS \text{ of link i when a}$$
 target locates at grid j

The Model of LCS

The location of targets is:

$$\Theta = [\theta_1, \theta_2, \dots, \theta_j, \dots \theta_N]^T$$

where $\theta_i \in \{0,1\}$. If there is one target located at grid j, $\theta_j = 1$; otherwise $\theta_j = 0$.

The vector Θ has k -sparse nature which meets CS

The Model of LCS

The location of targets is:

$$\Theta = [\theta_1, \theta_2, \dots, \theta_j, \dots \theta_N]^T$$

where $\theta_i \in \{0,1\}$. If there is one target located at grid j, $\theta_i = 1$; otherwise $\theta_i = 0$.

Based on compressive sensing:

$$A_{M\times N} = \begin{bmatrix} \Delta R_{1,1} & \Delta R_{1,2} & \cdots & \Delta R_{1,N} \\ \Delta R_{2,1} & \Delta R_{2,2} & \cdots & \vdots \\ \vdots & \vdots & \Delta R_{i,j} & \vdots \\ \Delta R_{M,1} & \cdots & \cdots & \Delta R_{M,N} \end{bmatrix}$$

The Model of LCS

The location of targets is:

$$\Theta = [\theta_1, \theta_2, \dots, \theta_j, \dots \theta_N]^T$$

where $\theta_j \in \{0,1\}$. If there is one target located at grid j, $\theta_j = 1$; otherwise $\theta_j = 0$.

Based on compressive sensing:

Estimate locations:

$$\min \|\Theta\|_{\ell_1}$$
 subject to $\|A\Theta - Y\|_{\ell_2} < \varepsilon$

Localization Under Large-Scale

Drawbacks of above method

It cannot cover the large-scale area due to the limitation of the transmission range.

The noise may submerge the RSS dynamics caused by targets.

Localization Under Large-Scale

Large-scale area:

- •Covered by T equal size subareas.
- •Subarea-t has the M by N sensing matrix A_t
- K targets are scattered in the total area

NETWORK AND INFORMATION SECURITY LABORATORY

Sensing matrix A_{total} of total area:

$$A_{total} = \begin{bmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \dots & \dots & A_t & \dots \\ 0 & 0 & \dots & A_T \end{bmatrix}_{MT \times NT}$$

Unknown vector of K targets:

$$\Theta_{total} = \left[\Theta_1; \Theta_2; \cdots \Theta_t; \cdots; \Theta_T\right]^T$$

where θ_t denotes the location of targets in subarea-t.

Then CS can be applied to locate K targets from large area.

Localization Accuracy and Formulation Validity

How to choose ω ?

Theorem 3.1: The sufficient condition to achieve high localization accuracy is that the grid side length ω satisfies

$$\sqrt{ab/K} 10^{-\frac{1}{2}\sqrt{\frac{a}{bK}}} < \omega < \sqrt{ab/K} , \qquad (9)$$

where *K* is the number of targets, and $a \times b$ is the size of areas.

Does A obey RIP?

Theorem 3.2: When the number of sensors $M=O(k\log(N/k))$, the probability for A (after normalization) to satisfy

$$1 - \delta \le \|\mathbf{A}x\|_{\ell_2}^2 / \|\mathbf{x}\|_{\ell_2}^2 \le 1 + \delta \tag{15}$$

for all k-sparse vector x tends to 1 (i.e., A obeys RIP).

Performance Evaluation: Setup

Implementation

- Sensor nodes: MICAZ with Chipcon CC2420 and it is 0.95m off the ground.
- Experiment site: a playground of size $12m \times 12m$.
- Targets: 12 people with the height of 1.75m.

TABLE I. EXPERIMENTAL PARAMENTERS

	Subarea number (T)	Subarea size (A)	Subarea links number (M)	Subarea grids number (N)
Exp. 1	1	12m×12m	24	576
Exp. 2	4	6m×6m	12	144
Exp. 3	9	4m×4m	8	64
Exp. 4	16	3m×3m	6	36

Experimental Verification

Experimental Verification

Performance metrics:

 $= \frac{\textit{miss} - \textit{counted target number}}{\textit{total target number N}}$

 $= \frac{\textit{distance between true and estimated}}{\textit{grid side length } \omega}$

Results:

The worst performance of the 4 experiments (i.e., Exp. 1) is that Counting error = 33.3% and Localization error = 8.3%.

Assumption of LCS

Assume that if a particular link be interfered then it must be interfered by only one target.

This can be easily satisfied in practice since the effective location area is limited, please refer to figures below:

Conclusions

- Proposed a CS based multiple target device-free localization method and proved that the product of the sensing matrix obeys RIP.
- Develop a approach to locate targets in a large area and show how to choose the grid size to achieve high localization accuracy.
- Performance of the LCS method has been evaluated through extensive experiments.

