COL872 Problem Set 4

Mallika Prabhakar (2019CS50440) Sayam Sethi (2019CS10399) Satwik Jain (2019CS10398)

${\rm April}\ 2023$

Contents

1	Question 1	2
	.1 Question 1.1	2
	.2 Question 1.2	2
	.3 Question 1.3	3
2	Question 2	4
	.1 Question 2.1	4
	.2 Question 2.2	4
3	Question 3	5
	.1 Question 3.1	5
	.2 Question 3.2	5
	.3 Question 3.3	6
	.4 Question 3.4	
4	Question 4	7
	.1 Question 4	7
5	Question 5	8
	.1 Question 5.1	8
	.2 Question 5.2	
	3 Question 5.3	

1.1 Question 1.1

Question 1.1

Question. Give an example of two projective measurements \mathcal{P}, \mathcal{Q} that are non-commutative

Proof. Let us consider s, t = 2 and the projective measurements be defined as follows:

$$\mathcal{P} = \left\{ \mathbf{P}_0 = |0\rangle \langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{P}_1 = |1\rangle \langle 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$\mathcal{Q} = \left\{ \mathbf{Q}_0 = |+\rangle \langle +| = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}, \mathbf{Q}_1 = |-\rangle \langle -| = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix} \right\}$$
(1)

Let us apply the projective methods in both orders: i.e. $\mathbf{Q}_0\mathbf{P}_0$ and $\mathbf{P}_0\mathbf{Q}_0$ to the qubit $|0\rangle$, which is the probability of getting 00 on $|0\rangle$

 $\mathbf{Q}_0 \mathbf{P}_0 |0\rangle = |+\rangle$ with probability $= \frac{1}{2}$

$$\mathbf{Q}_0 \mathbf{P}_0 |0\rangle = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} = \frac{1}{\sqrt{2}} |+\rangle \tag{2}$$

 $\mathbf{P}_0\mathbf{Q}_0|0\rangle = |0\rangle$ with probability = $\frac{1}{4}$

$$\mathbf{P}_0\mathbf{Q}_0|0\rangle = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 0 \end{pmatrix} = \frac{1}{2}|0\rangle \tag{3}$$

Since both the residual states and respective probabilities of seeing 00 after both measurements are different, the two are NOT commutative

1.2 Question 1.2

Question 1.2: Show that the projective measurements $\mathcal{P} = \{\mathbf{P}_i\}_{i \in [s]}$ and $\mathcal{Q} = \{\overline{\mathbf{Q}_i}\}_{i \in [t]}$ are commutative.

Question. question

Proof. proof

1.3 Question 1.3

Question 1.3: Is this the only case in which projective measurements are commutative? I or disprove.	Prove
Question. question	
Proof. proof	

2.1 Question 2.1

Question 2: Collapsing hash from claw-free functions

Question. Show that $\{H_k \equiv f_k\}_{k \in K}$ is a collapsing hash function.

Proof. We will Begin the proof by stating that the claw free function is a post-quantum CRHF. This can be said because For two bit-strings (x_0, x_1) in the domain of claw-free function, there can be two cases:

- 1. x_0 and x_1 have the same first bit. In this case no collision is possible between x_0 and x_1 as the claw-free function $f_k(b,\cdot)$ is injective $\forall k \in \mathcal{K}, b \in \{0,1\}$
- 2. x_0 and x_1 have different first bit. In this case as well there is no collision possible due to the security definition of claw free function.

2.2 Question 2.2

Question 2: Collapsing hash from claw-free functions

Question. Construct a hash function family $\mathcal{H}' = \{\mathcal{H}'_k : \{0,1\}^{n+2} \to \{0,1\}^n\}$ using \mathcal{F} , and prove that \mathcal{H}' is collapsing, assuming \mathcal{F} is a claw-free function family.

Proof. proof

3.1 Question 3.1

Question 3: Quantum Proof of Knowledge for Blum's protocol

Question. Show that $p'_{Ext} \geq poly(\varepsilon)$.

Proof. proof \Box

3.2 Question 3.2

Question x: description

Question. Let $|\psi\rangle$ be a pure state, and $\mathbf{P} = (\mathbf{P}, \mathbf{I} - \mathbf{P})$ any projective measurement such that $\operatorname{Tr}(\mathbf{P} \cdot |\psi\rangle\langle\psi|) = 1 - \epsilon$. Let $\rho = |\psi\rangle\langle\psi|$ and ρ' the post-measurement state, conditioned on measurement output being 0. Show a bound on $||\rho - \rho'||_{tr}$ in terms of ϵ .

Proof. The post-measurement state and ρ' can be computed as follows:

$$|\psi'\rangle = \frac{\mathbf{P}|\psi\rangle}{\sqrt{\mathrm{Tr}\left(\mathbf{P}\cdot|\psi\rangle\langle\psi|\right)}} = \frac{\mathbf{P}|\psi\rangle}{\sqrt{1-\epsilon}}$$

$$\rho' = |\psi'\rangle\langle\psi'| = \frac{\mathbf{P}|\psi\rangle\langle\psi|\mathbf{P}^{\dagger}}{\mathrm{Tr}\left(\mathbf{P}\cdot|\psi\rangle\langle\psi|\right)} = \frac{\mathbf{P}\rho\mathbf{P}}{1-\epsilon}$$
(4)

Note that the post-measurement state ρ' is also a pure state. We now state and prove the following claim,

Claim 3.1. For any two pure states, $|\psi\rangle$ and $|\phi\rangle$, we have

$$|| |\psi\rangle \langle\psi| - |\phi\rangle \langle\phi| ||_{tr} = \sqrt{1 - |\langle\psi|\phi\rangle|^2}$$
 (5)

Proof. Since $|\psi\rangle$ and $|\phi\rangle$ are pure states, we can represent $|\phi\rangle$ as a rotation of $|\psi\rangle$ by some angle θ . Therefore, we can write $\rho_{\psi} - \rho_{\phi}$ as,

$$|\psi\rangle\langle\psi| - |\phi\rangle\langle\phi| = |\psi\rangle\langle\psi| - \left((\cos\theta\,|\psi\rangle + \sin\theta\,|\psi^{\perp}\rangle)(\cos\theta\,\langle\psi| + \sin\theta\,\langle\psi^{\perp}|)\right)$$

$$= (1 - \cos^{2}\theta)\,|\psi\rangle\langle\psi| - \sin\theta\cos\theta\,|\psi\rangle\langle\psi^{\perp}| - \sin\theta\cos\theta\,|\psi\rangle\langle\psi^{\perp}|$$

$$- \sin^{2}\theta\,|\psi^{\perp}\rangle\langle\psi^{\perp}|$$
 (6)

Now, if we represent this matrix in the $|\psi\rangle$, $|\psi^{\perp}\rangle$ basis, we get the eigenvalues as $\sin\theta$ and $-\sin\theta$. Therefore, the trace norm will be,

$$||\rho_{\psi} - \rho_{\phi}||_{tr} = \sum_{i} ||\lambda_{i}|, \text{ (trace norm is sum of absolute values of eigenvalues)}$$

$$= 2|\sin \theta| = 2\sqrt{1 - \cos^{2} \theta}$$

$$= 2\sqrt{1 - |\langle \phi | \psi \rangle|^{2}}$$
(7)

Hence, we have proven the result of the claim.

Now, since we started with a pure state $|\psi\rangle$, the post-measurement state will also be a pure state (conditioned on the output). Therefore, we get the trace distance as,

$$||\rho - \rho'||_{tr} = 2\sqrt{1 - |\langle \psi | \psi' \rangle|^{2}}$$

$$= 2\sqrt{1 - \left| \operatorname{Tr} \left(\langle \psi | \frac{\mathbf{P} | \psi \rangle}{\sqrt{1 - \epsilon}} \right) \right|^{2}}$$

$$= 2\sqrt{1 - \left| \operatorname{Tr} \left(\frac{\mathbf{P} | \psi \rangle \langle \psi |}{\sqrt{1 - \epsilon}} \right) \right|^{2}}$$

$$= 2\sqrt{1 - \left(\sqrt{1 - \epsilon} \right)^{2}}$$

$$= 2\sqrt{\epsilon}$$
(8)

3.3 Question 3.3

Question x: description	
Question. question	
Proof. proof	

3.4 Question 3.4

Question x: description	
Question. question	
Proof. proof	

4.1 Question 4

Question x: description	
Question. question	
Proof. proof	

5.1 Question 5.1

Question x: description	
Question. question	
Proof. proof	

5.2 Question **5.2**

Question x: description	
Question. question	
Proof. proof	

5.3 Question 5.3

Question x: description	
Question. question	
Proof. proof	