

Problem Statement

- Climate change and population growth have combined to put people, animals and infrastructure at high risk of wildfire
- General public lack an easy-to-use reliable tool to predict the daily spread of wildfire
- This potentially leads to untimely evacuation plan and decisions, and potential loss of life

Current Prediction Models / Tools

- Empirical/physics based models
 - FARSITE (USA)
 - Prometheus (Canada)

- Mathematical growth prediction models
 - Wildfire Management Tool (World Wind Earth)
 - US Forest Service
- Physics-based models
 - National Center for Atmospheric Research (NCAR) Coupled Atmosphere-Wildland Fire-Environment (CAWFE) model
 - WRF-Fire
- Video/Image Monitoring
 - Alert Wildfire
- Machine Learning
 - Firecast F-score of 6.4% (vs random of 1%)

HOTzone

- Existing approaches use exclusive data, are computationally expensive, and/or are not for general public use
 - HOTzone solves all these problems
- Uses publicly available fire data and weather data, a Convolutional Neural Network (CNN), and delivers predictions via a web application
- Users submit an address
 - A map displays the potential spread of an active fire near that area in the next 24 hours

HOTzone Web App

Project Infrastructure

- Data Wrangling and Cleaning
 - Numpy / Pandas
 - GeoPandas, Rasterio, Earthpy (GIS)
 - Storage on shared AWS S3 bucket
- Modeling
 - Keras, Tensorflow backend
 - AWS GPU
- Website / Webapp
 - HTML / Javascript / Python
 - Mapbox / Mapboxgl
 - Flask/Gunicorn/Nginx on AWS EC2 ML server

Fire Data - Global Fire Atlas

- Daily fire progression, 2003-2016
- Rasterized GeoTIFFs with ~500m x 500m pixels:
 - Day of year on fire
 - Speed of fire
 - Direction of fire movement
- Shapefiles with: Fire Ignition Point, Final Fire Size, Final Duration
- Localized to California/Nevada and then further to sub-section of CA
- Sparse Data

Weather Data - DarkSky

Weather Data

- Request by Lat/Long/Time
- Historical-training ⇒ Forecast-prediction
- Daily Averages
 - Rain Intensity
 - High/Low Temps
 - Wind Speed/Direction
 - Relative Humidity
- Interpolate (upsample) to match fire data grid

HOTzone Model: CNN

Why a CNN

- Identify hierarchical patterns in data
- Assemble more complex patterns using smaller and simpler patterns
- Learn dependencies between different pixels
- Learn whether a pixel will be on fire based on whether pixels around it are on fire

Data Used

- 32x32 matrix of pixels around a pixel of interest
- Vector of normalized weather data
- Downsampled "no fire" to 80/20 "no fire"/"fire" split

HOTzone Architecture

HOTzone Performance

Model	Accuracy	Recall	F1 Score	AUC
Previous Work				
Farsite *	0.678 (Wet Fuel) 0.636 (Dry Fuel)	0.748 (Wet Fuel) 0.811 (Dry Fuel)	, ,	-
FireCast **	0.877	0.911	-	-
HOTzone				
Random Classifier	0.680	0.202	0.203	0.502
Naive Bayes	0.936	0.680	0.809	0.840
Logistic Regression	0.953	0.766	0.867	0.882
CNN	0.996	0.984	0.989	0.996

^{*} Farsite is a physics-based fire growth model used by the US Forest Service and National Park Service

^{**} Wildfire prediction CNN created by a joint team from the University of Waterloo and Colorado College

HOTzone Performance

MVP - Where to go Next?

- Data and Feature Engineering
 - Vast variation in Volume/Type of data
 - Improving speed & ease of reprojecting coordinate systems
 - Fire data resolution: 500m x 500m pixels = 60 acres each
 - Weather data resolution: \$ vs hyper-locality
 - Other types of data: Vegetation, Fuel Type, Terrain, Altitude
- Characteristics of Data
 - Fires may not burn for a long enough insufficient measurements
 - Extremely high pixel volume (630k pixels in each image)
 - Data is highly imbalanced 1-2% of samples are "fire"
- Modeling
 - Expand to all of California/all of United States Tiling/Regional
 - Opportunities for CNN refinement
 - Expand to different kinds of neural nets (LSTMs) that can remember more of a fire's history
- Web Application
 - Productionize and speed up prediction.

Thank you.

Questions?

Appendix

HOTzone Performance by Epoch

Fire Data EDA

FireData
Distributions
(for sample area)

Daily Fire Data

- shows 'daily' fire progression
- Shapefiles give final fire data
- Rasterized GeoTIFFs with ~500m x
 500 m pixels give for each pixel:
 - Day of year on fire
 - Speed of fire
 - Direction of fire movement
 - Day of burn

Sparse Fire Data

Fire data for 2016¹

- localized to California/Nevada and then further to sub-section of CA
- sparse coverageFor Toy Data: Coverage ~1.65% of Total area

For Comparison: in 2008, the year with most burned ha in our study, 1.8% of the State's surface area was burned.

Thanh's contributions ...

- Research
 - Map (google and mapbox) related research
 - Map coding for product prototype
 - Satellite image researching
 - NDVI Python codes for NDVI calculation from satellite image
 - EDA on data source
- Data Engineering
 - Model Development (Naive Bayes model)
 - API connection to active fire database
 - Gather geolocation data for input to model, output for mapping, references for checking active fires and boundary
 - Mapbox coding
 - Reverse & forward geocoding
 - Mapping visualization of predictions
- Capstone website & web app development
 - HTML / Python / Javascript coding for website and app
 - Mapbox implementation & integration with ML model
 - Flask implementation / development

Laura's contributions ...

- Data Sourcing
 - GIS Fire Historical Data
 - Weather Historical Hyperlocal data
 - EDA
- Data Engineering
 - GIS Model Inputs (GeoTiffs and Shapefiles); changing geo references; cropping, reprojecting, resampling
 - Casting weather data into geo format with same coordinate reference system
 - Data pipelines
 - Implementing Flask App with WSGI (Gunicorn) and Nginx on AWS EC2 Ubuntu Server, built custom Geostack
- General:
 - Code review
 - Website/app updates and troubleshooting
 - Domain and Application Resource Management and Maintenance

Keane's contributions ...

- Data Engineering
 - Turn fire data tiffs into matrices that can be fed to a CNN
 - Relate weather data to individual pixels
- Model Research and Development
 - Identify and understand previous models
 - Develop a CNN in Keras
- Data Viz
 - Turning predictions into plotable lat/long coords
- AWS Implementation