A Computational Cluster Cookbook

Head Empty, No Thoughts
(Rafael Bertolotto, Fiona Han, Logan White)*

*Names in alphabetical order.

I. A simple recipe to bake a stellar cluster

Baking initial conditions

- We need the following ingredients:
 - Masses
 - Positions
 - Velocities

Baking initial conditions... that don't go boom

- We need the following ingredients:
 - Masses
 - Positions
 - Velocities
- We want them to start in equilibrium

- We need the following ingredients:
 - Masses
 - Positions
 - Velocities
- We want them to start in equilibrium

We want the cluster to actually look like a cluster

IMF model

IMF model — Draw masses

IMF model — Draw masses

Density profile

Draw positions

IMF model ■ Draw masses

Density profile Draw positions

Poisson's equation
$$f(\vec{r},\vec{v})=f(E)$$
 $\nabla \phi = -4\pi G \rho$

$$abla \phi = -\dot{4}\pi G
ho$$

Boltzmann's equation

$$ec{v}\cdot
abla_{ec{r}}f=
abla_{ec{r}}\dot{\phi}\cdot
abla_{ec{v}}f$$

IMF model Draw masses

Density profile

Draw positions

Draw velocities

Poisson's equation $\overrightarrow{-}f(\vec{r},\vec{v})=f(E)$

$$abla \phi = -4\pi G
ho$$

Boltzmann's equation

$$ec{v}\cdot
abla_{ec{r}}f=
abla_{ec{r}}\dot{\phi}\cdot
abla_{ec{v}}f$$

Our recipe for a perfectly baked stellar cluster

Piecewise power-law IMF: $\ \Phi(m) \propto m^{-lpha}$

Our recipe for a perfectly baked stellar cluster

Piecewise power-law IMF: $~\Phi(m) \propto m^{-lpha}$

Plummer sphere cluster:
$$\,\phi(ec{r})=rac{GM}{\sqrt{r^2-r_0^2}}\,$$

Our recipe for a perfectly baked stellar cluster

Piecewise power-law IMF: $~\Phi(m) \propto m^{-lpha}$

Plummer sphere cluster:
$$ho(ec{r})=rac{3Mr_0^2}{4\pi(r^2+r_0^2)^{5/2}}$$

A (10,000 particles) freshly baked cluster!

II. How to Make One Raisin on the Bread

N-body Problem

- Chaotic dynamics: almost guaranteed to not have a stable solution
- Used in everything from cluster to galactical to cosmological simulations!
 - Can only numerically solve these equations.

N-body Problem: traditional

- Solves the system fully;
- Expensive simulations: O(N^2)
- Python is usually slow.

N-body Problem: traditional

- Solves the system fully;
- Expensive simulations: O(N^2)
- Python is usually slow.
- Vectorization!
 - Replace Python for loop with NumPy array operations based in C.
 - Fancy way of saying "np.einsum is fast".

Performance & Error

- Implemented RK4 and leapfrog.
 - RK4: higher precision
 - Leapfrog: bounded energy
- Leapfrog seems to have slightly better performance...
 - It is the "default" for longer runs.

Performance & error

Longest run: 1 million years, dt = 10. Finished in 13 minutes.

ASTR 513 Midterm: Head Empty, No Thoughts

20

What about a 15th order IRK? (you read that right)

What about a 15th order IRK? (you read that right)

What about a 15th order IRK? (you read that right)

We see mass segregation!

Pretty simulation

The stars in this cluster is color coded. (1 million years)

III. An N-body Sourdough Starter

N-body Problem: Large scale?

- O(N^2) grows very fast!

- Barnes-Hut algorithm.

How could we possibly get bigger?

Say hello to the Barnes-Hut algorithm (Barnes & Hut, 1986)! We're going to take a brief compsci interlude and talk about trees.

This is a **quadtree**. It has a **root**, with four **leaves**.

Building our simulation as a tree puts each of our particles in its own box. This means we can perform **averaged force calculations** with our algorithm.

For a single body we don't want to calculate the force from all of the other particles in a large (n > 10⁴) simulation– it's expensive.

Instead, we define a threshold **theta** (θ), the ratio between **node width** (s) and **distance to center of mass** (d). If:

- 1. ratio $\langle \theta_i \rangle$ we do a direct force computation.
- 2. otherwise, we use the node's center of mass and total mass to get net force.

def.
$$\theta = s / d$$

(a) Decomposing the spatial domain

(a) Decomposing the spatial domain

(b) Checking opening angle

(a) Decomposing the spatial domain

(b) Checking opening angle

(c) Taking approximation

Hey, a home-cooked pair of clusters!

globr has the capability to model a cluster(s) of ~10⁴ stars in three dimensions.

Because of Barnes-Hut, we can utilize a simple leapfrog integration scheme!

pros. We can model medium to large systems with ease!

cons. Because of the B-H approximation, we have higher error (no energy cons.)

Two globular clusters intersecting!

 $n_1 = 2000, R_0 = 0.5 pc$ $n_2 = 4000, R_0 = 0.3 pc$ Krouppa IMF

Hey, a home-cooked pair of clusters!

globr has the capability to model a cluster(s) of ~10⁴ stars in three dimensions.

Output files provide star mass, positions, and simulation and physical diagnostics such as:

- 1. Physical time,
- 2. Kinetic and potential energy, 🦠
- Simulation size (physical)

Two globular clusters intersecting!

 $n_1 = 2000, R_0 = 0.5 pc$ $n_2 = 4000, R_0 = 0.3 pc$ Krouppa IMF

Krouppa IMF
$$n_1 = 10^4$$
, $R_0 = 0.5 pc$

Salpeter IMF
$$n_1 = 10^4$$
, $R_0 = 0.5 pc$

What if we change the initial conditions?

Two globular clusters intersecting (and merging)!

 $n_1 = 2000, R_0 = 0.5 pc$ $n_2 = 4000, R_0 = 0.3 pc$ Krouppa IMF

Questions?

Thanks for listening!

N-Body Problem: Applied

 Simulate real cluster dynamics using an integrated IMF as the initial condition in our simulated cluster.

Cool plots to do

- Performance plots:
 - a. DeltaE/E0 vs t done(python), vs dt might also be fun
 - b. Final DeltaE/E0 vs N also done
 - c. Total t vs N
 - d. Theta vs t (or N)
- 2. Mass segregation and core-collapse: r-r_cm vs t for different mass bins
- Evolution of virial factor Q=T/U vs t
- 4. Previous plots for very steep IMF and not steep IMF