A Book of Abstract Algebra (2nd Edition)

Chapter 24, Problem 3EG

Bookmark

Show all steps: (

ON

Problem

Let A and B be rings and let $h: A \rightarrow B$ be a homomorphism with kernel K. Define

$$\overline{h}: A[x] \to B[x]$$
 by

$$\bar{h}(a_0 + a_1x + \dots + a_nx^n) = h(a_0) + h(a_1)x + \dots + h(a_n)x^n$$

(We say that is induced by h.)

Prove that \int_{a}^{b} is surjective iff h is surjective.

Step-by-step solution

Step 1 of 2

Step 1 of 2

To prove: if \bar{h} is surjective $\Rightarrow h$ is surjective

Let \bar{h} is surjective then every element in $b(x) \in B[x]$ there exist an element $a(x) \in A[x]$ such that $\bar{h}(a(x)) = b(x)$

$$a(x) = a_0 + a_1 x + \dots + a_n x^n$$
 and

$$b(x) = b_0 + b_1 x + \dots + b_n x^n$$

$$\Rightarrow \bar{h}(a_0 + a_1x + \dots + a_nx^n) = b_0 + b_1x + \dots + b_nx^n$$

$$\Rightarrow h(a_0) + h(a_1)x + ... + h(a_n)x^n = b_0 + b_1x + + b_nx^n$$

$$\Rightarrow h(a_0) = b_0, h(a_1) = b_1, ..., h(a_n) = b_n$$

 $b_0, b_1, ... b_n \in B$ and are arbitrary

 \Rightarrow For every element in $b \in B$ there exist a element $a \in A$ such that h(a) = b

$\Rightarrow h$ is s	surjective			

Comment

Step 2 of 2

Step 2 of 2

To prove: if h is surjective $\Rightarrow \bar{h}$ is surjective

Let h is surjective then for every element in $b \in B$ there exist a element $a \in A$ such that h(a) = b. Suppose $b(x) = b_0 + b_1 x + \dots + b_n x^n, b(x) \in B[x]$ and $b_0, b_1, \dots b_n \in B$ then there exist $a_0, a_1, \dots a_n \in A$ such that $h(a_0) = b_0, h(a_1) = b_1, \dots, h(a_n) = b_n$ so

$$b(x) = h(a_0) + h(a_1)x + ... + h(a_n)x^n$$

= $\overline{h}(a_0 + a_1x + ... + a_nx^n)$
= $\overline{h}(a(x))$

 \Rightarrow \bar{h} is surjective

Comment