SMPL: A Skinned Multi-Person Linear Model

Thai Thanh Tuan, YoungSik Yun Create: 6th July 2021

Introduction

- Paper: https://files.is.tue.mpg.de/black/papers/SMPL2015.pdf
- Project: https://smpl.is.tue.mpg.de/
- Github: SMPL-X

https://github.com/vchoutas/smplx/tree/master/transfer model

Introduction

Optimization based:

+SMPlify

+SMPLifyX

Deep learning:

- +HMR
- +SPIN
- +Graph CNN based

Body and shape parameters

Store 3D data

Introduction

- Aim: Present a learned model of human body shape and pose dependent shape variation
 - More accurate
 - Comparable with existing graphics pipeline
- Parameters of the model(학습 데이터로부터 얻어옴)
 - rest pose template(zero pose:팔 벌린 상태에서 vertex의 위치 T)
 - Blend weights(₩ joint와 vertex간 연관관계의 척도)
 - Pose blendshape(\$\mathcal{P}\$ template)
 - Shape(Identity blend shape(\$\mathcal{S}\$ template)
 - Joint regressor matrix(g)

People deform with pose

Low-polygon count
Simple vertex topology
Clean quad structure
Standard rig
Reasonable hand and face detail

Template mesh

Align

1786 high resolutions
3D scan:
+diff subjects
+wide variety of poses

Training set
(aligned scans)

optimize

Blend weights

Pose-dependent blend shapes

Mean template shape (rest pose)

Joints = Regressor(shape)

Linear models of male and female body shape

- CAESAR dataset [Robinette et al. 2002]
 - ~2000 scans / gender

Related work: Blend skinning

- Skeleton subspace deformation methods
- Attach the surface of a mesh to an underlying skeletal structure

Related work: Auto rigging

Model formulation

- Mesh N = 6890 Vertices
- K = 23 joints
- A segmentation into parts
- Initial blend weights
- Skeletal rig

Mean template shape $\ \bar{\mathbf{T}} \in \mathbb{R}^{3N}$

- Zero pose: $\vec{\theta}^*$
- Blend weights: $\mathcal{W} \in \mathbb{R}^{N \times K}$

- A blend shape function: $B_S(\vec{\beta}) : \mathbb{R}^{|\vec{\beta}|} \mapsto \mathbb{R}^{3N}$
- Shape parameters: $\vec{\beta}$
- Output: blend shape sculpting the subject identity
- Function to predict K = 23 joint locations: white dots

$$J(\vec{\beta}): \mathbb{R}^{|\vec{\beta}|} \mapsto \mathbb{R}^{3K}$$

• Pose-dependent blend shape function: $B_P(\vec{\theta}): \mathbb{R}^{|\vec{\theta}|} \mapsto \mathbb{R}^{3N}$

• Pose parameters: $\vec{\theta}$,

(c)
$$T_P(\vec{\beta}, \vec{\theta}) = \bar{\mathbf{T}} + B_S(\vec{\beta}) + B_P(\vec{\theta})$$

- Standard blend skinning function $W(\cdot)$ (LBS or DQBS)
- Rotate the vertices around the estimated joint centers with smoothing
- Result: $M(\vec{\beta}, \vec{\theta}; \Phi) : \mathbb{R}^{|\vec{\theta}| \times |\vec{\beta}|} \mapsto \mathbb{R}^{3N}$
- ullet Learned model parameters Φ

(d) $W(T_P(\vec{\beta}, \vec{\theta}), J(\vec{\beta}), \vec{\theta}, \mathcal{W})$

- Particular vertex: $\mathbf{x}_i \in \mathbb{R}^3$
- Axis-angle between part k to its parents in the kinematic tree: $\vec{\omega}_k \in \mathbb{R}^3$
- K = 23 joints \rightarrow $\vec{\theta} = [\vec{\omega}_0^T, \dots, \vec{\omega}_K^T]^T$
- $|\vec{\theta}| = 3 \times 23 + 3 = 72$ parameters
- Unit norm axis of rotation: $\bar{\omega} = \frac{\bar{\omega}}{\|\vec{\omega}\|}$
- Each joint j → Rodrigues formula

$$\exp(\vec{\omega}_j) = \mathcal{I} + \widehat{\bar{\omega}}_j \sin(\|\vec{\omega}_j\|) + \widehat{\bar{\omega}}_j^2 \cos(\|\vec{\omega}_j\|)$$

$$\widehat{\bar{\omega}} \text{ is the skew symmetric matrix of the 3-vector } \bar{\omega}$$

Standard linear blend skinning function

$$W(\mathbf{\bar{T}}, \mathbf{J}, \vec{\theta}, \mathcal{W}) : \mathbb{R}^{3N \times 3K \times |\vec{\theta}| \times |\mathcal{W}|} \mapsto \mathbb{R}^{3N}$$

- Rest pose: $\bar{\mathbf{T}}$
- Joint locations: J
- A pose: $\vec{\theta} = [\vec{\omega}_0^T, \dots, \vec{\omega}_K^T]^T$
- Blend weights: W
- Return: The posed vertices
- Each vertex $\bar{\mathbf{t}}_i$ in $\bar{\mathbf{T}} \rightarrow \text{transformed } \bar{\mathbf{t}}_i'$

$$\mathbf{\bar{t}}_i' = \sum_{k=1}^K w_{k,i} G_k'(\vec{\theta}, \mathbf{J}) \mathbf{\bar{t}}_i$$

$$G'_k(\vec{\theta}, \mathbf{J}) = G_k(\vec{\theta}, \mathbf{J})G_k(\vec{\theta}^*, \mathbf{J})^{-1}$$

$$G_k(\vec{\theta}, \mathbf{J}) = \prod_{j \in A(k)} \begin{bmatrix} \exp(\vec{\omega}_j) & \mathbf{j}_j \\ \hline \vec{0} & 1 \end{bmatrix}$$

- Element of blend weight matrix $w_{k,i}$
 - How much the rotation of part k effect vertex i
- 3x3 rotation matrix $\exp(\vec{\theta}_j)$ corresponding $G'_k(\vec{\theta}, \mathbf{J}) = G_k(\vec{\theta}, \mathbf{J})G_k(\vec{\theta}^*, \mathbf{J})^{-1}$ to join j.
- World transformation of joints k: $G_k(\vec{\theta}, \mathbf{J})$
- \rightarrow remove transformation of rest pose $\vec{\theta}^*$:

$$G'_k(\vec{\theta}, \mathbf{J})$$

- Joints j location: j_i
- Ordered set of joint ancestors of join k: A(k)

$$\mathbf{\bar{t}}_i' = \sum_{k=1}^K w_{k,i} G_k'(\vec{\theta}, \mathbf{J}) \mathbf{\bar{t}}_i$$

$$G'_k(\vec{\theta}, \mathbf{J}) = G_k(\vec{\theta}, \mathbf{J})G_k(\vec{\theta}^*, \mathbf{J})^{-1}$$

$$G_k(\vec{\theta}, \mathbf{J}) = \prod_{j \in A(k)} \begin{bmatrix} \exp(\vec{\omega}_j) & \mathbf{j}_j \\ \hline \vec{0} & 1 \end{bmatrix}$$

• SMPL blend skinning model: $M(\vec{\beta}, \vec{\theta}; \Phi)$

$$M(\vec{\beta}, \vec{\theta}) = W(T_P(\vec{\beta}, \vec{\theta}), J(\vec{\beta}), \vec{\theta}, \mathcal{W})$$

 $T_P(\vec{\beta}, \vec{\theta}) = \bar{\mathbf{T}} + B_S(\vec{\beta}) + B_P(\vec{\theta})$

- Vectors of vertices representing offsets from the template.
 - Shape blend shape $B_S(\vec{\beta})$
 - Pose blend shape: $B_P(\vec{\theta})$

Explain in next slides

• Then:

$$\bar{\mathbf{t}}_{i}' = \sum_{k=1}^{K} w_{k,i} G_{k}'(\vec{\theta}, J(\vec{\beta})) (\bar{\mathbf{t}}_{i} + \mathbf{b}_{S,i}(\vec{\beta}) + \bar{\mathbf{b}}_{P,i}(\vec{\theta}))$$

Shape blend shapes

Body shapes of different people represented by a linear function

$$B_S(\vec{\beta}; \mathcal{S}) = \sum_{n=1}^{|\vec{\beta}|} \beta_n \mathbf{S}_n$$
$$\vec{\beta} = [\beta_1, . |\vec{\beta}| \beta_{|\vec{\beta}|}]^T$$

- Number of linear shape coefficients: $|\vec{\beta}|$
- Orthonormal principal components of shape displacements: $\mathbf{S}_n \in \mathbb{R}^{3N}$
- S: learned from registered training meshes, Sec. 4

Pose blend shapes

- Maps function: $R: \mathbb{R}^{|\vec{\theta}|} \mapsto \mathbb{R}^{9K}$
- Vector of concatenated part relative rotation matrices: $R(\vec{\theta})$: 23 x 9, non-linear with $\vec{\theta}$. (functions of sines and cosines)
- $R^*(\vec{\theta}) = (R(\vec{\theta}) R(\vec{\theta}^*))$ where $\vec{\theta}^*$ denotes the rest pose.

$$B_P(\vec{\theta}; \mathcal{P}) = \sum_{n=1}^{9K} (R_n(\vec{\theta}) - R_n(\vec{\theta}^*)) \mathbf{P}_n$$

$$\mathbf{P}_n \in \mathbb{R}^{3N}$$

learned from registered training meshes, Sec. 4

- Matrix of all 207 pose blend shapes: $\mathcal{P} = [\mathbf{P}_1, \dots, \mathbf{P}_{9K}] \in \mathbb{R}^{3N \times 9K}$
- In rest pose, pose blend shapes is zero.

Joint locations

• Joints as a function of the body shape, $\vec{\beta}$,

$$J(\vec{\beta}; \mathcal{J}, \bar{\mathbf{T}}, \mathcal{S}) = \mathcal{J}(\bar{\mathbf{T}} + B_S(\vec{\beta}; \mathcal{S}))$$

- ullet Matrix that transforms rest vertices into rest joints: ${\cal J}$
 - Models which mesh vertices are important
 - How to combine them to estimate the joint locations.

SMPL model

• SMPL model:

$$\Phi = \{\bar{\mathbf{T}}, \mathcal{W}, \mathcal{S}, \mathcal{J}, \mathcal{P}\}\$$

- How to lean these in Sec. 4
- After learned, SMPL model:

$$M(\vec{\beta}, \vec{\theta}; \Phi) = W\left(T_P(\vec{\beta}, \vec{\theta}; \bar{\mathbf{T}}, \mathcal{S}, \mathcal{P}), J(\vec{\beta}; \mathcal{J}, \bar{\mathbf{T}}, \mathcal{S}), \vec{\theta}, \mathcal{W}\right)$$

- Vertex transformed: $\mathbf{t}_i' = \sum_{k=1}^{N} w_{k,i} G_k'(\vec{\theta}, J(\vec{\beta}; \mathcal{J}, \mathbf{\bar{T}}, \mathcal{S})) \mathbf{t}_{P,i}(\vec{\beta}, \vec{\theta}; \mathbf{\bar{T}}, \mathcal{S}, \mathcal{P})$
- Vertex i after applying the blend shapes

$$\mathbf{t}_{P,i}(\vec{\beta}, \vec{\theta}; \mathbf{\bar{T}}, \mathcal{S}, \mathcal{P}) = \mathbf{\bar{t}}_i + \sum_{m=1}^{|\beta|} \beta_m \mathbf{s}_{m,i} + \sum_{n=1}^{9K} (R_n(\vec{\theta}) - R_n(\vec{\theta}^*)) \mathbf{p}_{n,i}$$

4. Training

- Aligned meshes: "registrations"
- Multi-pose dataset:
 - 1786 registrations of 40 individuals
 - 891 of 20 females
 - 895 of 20 males
- Multi-shape dataset: registrations to the CAESAR dataset
 - 1700 registration for males
 - 2100 for females
- jth mesh in multi-pose dataset: \mathbf{V}_{j}^{P} ; and in multi-shape dataset: \mathbf{V}_{j}^{S}
- Minimize vertex reconstruction error

Training

Pose parameter training

Compute rest template???

 $\mathbf{\hat{T}}_{i}^{P}$

$$E_{D}(\mathbf{\hat{T}}^{P}, \mathbf{\hat{J}}^{P}, \mathcal{W}, \mathcal{P}, \Theta) =$$

$$\sum_{j=1}^{P_{\text{reg}}} ||\mathbf{V}_{j}^{P} - W(\mathbf{\hat{T}}_{s(j)}^{P} + B_{P}(\vec{\theta}_{j}; \mathcal{P}), \mathbf{\hat{J}}_{s(j)}^{P}, \vec{\theta}_{j}, \mathcal{W})||^{2}$$

Multi-pose dataset

Compute joint location for each subject i

$$\Theta = \left\{ ec{ heta}_1, \dots, ec{ heta}_{P_{ ext{reg}}}
ight\}$$

$$\mathbf{\hat{T}}^P = \{\mathbf{\hat{T}}_i^P\}_{i=1}^{P_{ ext{subj}}}$$
 $\mathbf{\hat{J}}^P = \{\mathbf{\hat{J}}_i^P\}_{i=1}^{P_{ ext{subj}}}$

All rest poses

$$\mathbf{\hat{J}}^P = {\{\mathbf{\hat{J}}_i^P\}}_{i=1}^{P_{\mathrm{sub}}}$$

All rest joints

 P_{reg}

Number of meshes

 P_{subj}

Number of subjects

Compute pose parameters for each registration j

Pose parameter training

- Regularization term:
 - Penalizes left-right asymmetry $\hat{\mathbf{J}}^P$ and $\hat{\mathbf{T}}^P$

$$E_Y(\mathbf{\hat{J}}^P, \mathbf{\hat{T}}^P) = \sum_{i=1}^{P_{\text{subj}}} \lambda_U ||\mathbf{\hat{J}}_i^P - U(\mathbf{\hat{J}}_i^P)||^2 + ||\mathbf{\hat{T}}_i^P - U(\mathbf{\hat{T}}_i^P)||^2,$$
$$\lambda_U = 100$$

- $U(\mathbf{T})$ finds a mirror image of vertices T, by flipping across the sagittal plane
- Encourages symmetric template meshes and joint locations.

Initial estimate of the joir

- Model is hand segmented into 24 parts.
- \mathcal{J}_I average ring of vertices connecting two parts.
- The estimating joints need to be close to the initial prediction

$$E_J(\mathbf{\hat{T}}^P, \mathbf{\hat{J}}^P) = \sum_{i=1}^{P_{\mathrm{subj}}} ||\mathcal{J}_I \mathbf{\hat{T}}_i^P - \mathbf{\hat{J}}_i^P||^2$$

Regularization

Pose-dependent blend shapes towards zero:

$$E_P(\mathcal{P}) = ||\mathcal{P}||_F^2$$

$$\|A\|_{ ext{F}} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}:$$

Blend weights towards the initial weights

$$E_W(\mathcal{W}) = ||\mathcal{W} - \mathcal{W}_I||_F^2$$
.

The initial weights are computed by simply diffusing the segmentation.

-→ not simple for me

Training {W, P}

$$E_*(\mathbf{\hat{T}}^P, \mathbf{\hat{J}}^P, \Theta, \mathcal{W}, \mathcal{P}) =$$

$$E_D + \lambda_Y E_Y + \lambda_J E_J + \lambda_P E_P + E_W,$$
where $\lambda_Y = 100$, $\lambda_J = 100$ and $\lambda_P = 25$.

Joint regressor

Figure 7: Joint regression. (left) Initialization. Joint locations can be influenced by locations on the surface, indicated by the colored lines. We assume that these influences are somewhat local. (right) Optimized. After optimization we find a sparse set of vertices and associated weights influencing each joint.

Shape parameter training

• $\{\bar{\mathbf{T}}, \mathcal{S}\}$: mean and principal shape directions

Principal component analysis (PCA)

Reduce dimensionality

Application to face

$$\hat{\mathbf{T}}_{\mu}^{P}$$
 and $\hat{\mathbf{J}}_{\mu}^{P}$

From multi-pose dataset

mean shape

Mean joint locations

• An edge of the model and the registration $W_e(\hat{\mathbf{T}}_{\mu}^P, \hat{\mathbf{J}}_{\mu}^P, \vec{\theta}, \mathcal{W}), \mathbf{V}_{i,e}^S \in \mathbb{R}^3$

Raw registration mesh

Estimate pose blend shape

$$\{\mathcal{J},\mathcal{W},\mathcal{P}\}$$

Find pose

$$\hat{\mathbf{J}}_{j} = \underset{\vec{\theta}}{\operatorname{arg\,min}} \sum_{e} ||W_{e}(\hat{\mathbf{T}}_{\mu}^{P} + B_{P}(\vec{\theta}; \mathcal{P}), \hat{\mathbf{J}}_{\mu}^{P}, \vec{\theta}, \mathcal{W}) - \mathbf{V}_{j,e}^{S}||^{2}$$

From multi-pose dataset

Find pose-normalized template

$$\mathbf{\hat{T}}_{j}^{S} = \underset{\mathbf{\hat{T}}}{\arg\min} ||W(\mathbf{\hat{T}} + B_{P}(\vec{\theta}_{j}; \mathcal{P}), \mathcal{J}\mathbf{\hat{T}}, \vec{\theta}_{j}, \mathcal{W}) - \mathbf{V}_{j}^{S}||^{2}$$

Evaluation