ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий

Высшая школа программной инженерии

ЛАБОРАТОРНАЯ РАБОТА №4

по дисциплине «Машинное обучение»

Студент гр. 3530202/90202

А. М. Потапова

Руководитель

И. А. Селин

Санкт-Петербург 2022 г

Содержание

Задание 1	3
Задание 2	5
Залание 3	7

Задание 1

Исследуйте зависимость качества классификации от количества классификаторов в ансамбле для алгоритмов бэггинга на наборе данных glass.csv с различными базовыми классификаторами. Постройте графики зависимости качества классификации при различном числе классификаторов, объясните полученные результаты.

Исходные данные:

	RI	Na	Mg	Al	Si	К	Ca	Ва	Fe	Туре
0	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.0	0.0	1
1	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.0	0.0	1
2	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.0	0.0	1
3	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.0	0.0	1
4	1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0.0	0.0	1

Алгоритм бэггинга – BaggingClassifier
Базовые классификаторы – Perceptron, SVC и DecisionTreeClassifier
Метрика классификатора – balanced_accuracy_score

• Используем классификатор Perceptron. Зависимость значения метрики от количества классификаторов:

• Используем классификатор SVC. График зависимости:

• Используем классификатор DecisionTreeClassifier. График зависимости:

Вывод

Исходя из полученных результатов можно отметить, что среди этих 3 классификаторов наилучшие значения метрики balanced_accuracy_score показал классификатор DecisionTreeClassifier, т. к. его качество классификации в среднем равна 0.6. Для него же наблюдаем периодический рост качества классификации в виде часто встречающихся пиков. При использовании алгоритмов бэггинга с ростом числа классификаторов видим несущественный рост качества классификации для базового классификатора Perceptron. У SVC не видим существенного роста качества классификации, а лишь довольно редкие пики.

Задание 2

Исследуйте зависимость качества классификации от количества классификаторов в ансамбле для алгоритма бустинга (например, AdaBoost) на наборе данных vehicle.csv с различными базовыми классификаторами. Постройте графики зависимости качества классификации при различном числе классификаторов, объясните полученные результаты.

Исходные данные:

Алгоритм бустинга – AdaBoostClassifier Базовые классификаторы – GaussianNB и DecisionTreeClassifier

Метрика классификатора – balanced_accuracy_score

• Используем классификатор GaussianNB. Зависимость значения метрики от количества классификаторов:

• Используем классификатор DecisionTreeClassifier. График зависимости:

Вывод

В обоих случаях видим сначала резкий спад качества классификации, а затем значительный рост. Базовый классификатор DecisionTreeClassifier оказался немного лучше базового классификатора GaussianNB, т. к. качество классификации у него выше (больше 0.7). Оба случая показали достаточно большие значения метрики balanced_accuracy_score.

Задание 3

Постройте мета-классификатор для набора данных titanic_train.csv используя стекинг и оцените качество классификации на titanic train.csv

Исходные данные:

Базовые классификаторы – GaussianNB, SVC, KNeighborsClassifier и DecisionTreeClassifier

• Используем классификатор GaussianNB. Полученные значения метрики balanced accuracy score:

```
gaussian = GaussianNB()
gaussian.fit(X_train, y_train)
print('Balanced accuracy score for GaussianNB:', balanced_accuracy_score(y_test,
gaussian.predict(X_test)))
Balanced accuracy score for GaussianNB: 0.7659273545483767
```

Результат для GaussianNB: 0.7659273545483767

• Используем классификатор SVC. Полученные значения метрики balanced accuracy score:

```
svc = SVC(probability=True)
grid_search_cv_svc = GridSearchCV(svc, {'C': range(1, 500)}, cv=5, n_jobs=-1)
grid_search_cv_svc.fit(X_train, y_train)
print('Best params for SVC:', grid_search_cv_svc.best_params_)
best_svc = grid_search_cv_svc.best_estimator_
print('Balanced accuracy score for SVC:', balanced_accuracy_score(y_test, best_svc.predict(X_test)))

Best params for SVC: {'C': 311}
Balanced accuracy score for SVC: 0.7524911603985857
```

Результат для SVC: 0.7524911603985857

• Используем классификатор KNeighborsClassifier. Полученные значения метрики balanced_accuracy_score:

• Используем классификатор DecisionTreeClassifier. Полученные значения метрики balanced accuracy score:

Результат для DecisionTreeClassifier: 0.7151076824172292

• Теперь мы можем узнать значение balanced accuracy score для мета-классификатора:

```
best_score = 0

for ratio in np.arange(0.25, 1, 0.01):
    slr = StackedClassifier(ratio=float(ratio), estimators=estimators)
    slr.fit(X_train, y_train)
    slr_predictions = slr.predict(X_test)
    score = balanced_accuracy_score(y_test, slr_predictions)
    if (best_score < score):
        best_score = score

print('Balanced accuracy score for meta-classifier:', best_score)

Balanced accuracy score for meta-classifier: 0.803953712632594</pre>
```

Результат для мета-классификатора: 0.803953712632594

Вывол

Исходя из полученного результата можно отметить, что качество классификации при построении мета-классификатора, используя стекинг, возросло. При использовании отдельных классификаторов среднее значение balanced_accuracy_score составило 0,7454, а в случае с мета-классификатором -0,8.