MATH101

Intensive School

Sample Solutions to Tutorial 1

Question 1. (a)

$$u_{n+1} - u_n = \frac{n+1}{(n+1)^2 + 1} - \frac{n}{n^2 + 1}$$

$$= \frac{(n+1)(n^2 + 1) - n((n+1)^2 + 1)}{((n+1)^2 + 1)(n^2 + 1)}$$

$$= \frac{-(2n^2 + 2n - 1)}{((n+1)^2 + 1)(n^2 + 1)}$$

$$= -\frac{2(n + \frac{1}{2})^2 - \frac{3}{2}}{((n+1)^2 + 1)(n^2 + 1)}$$

Thus $0 \le u_{n+1} < u_n$ for all $n \ge 1$. On the other hand, $u_0 = 0 < \frac{1}{2} = u_1$, whence the sequence $(u_n)_{n \in \mathbb{N}}$ is not monotonic.

$$0 \le \frac{n}{n^2 + 1} < \frac{n}{n^2} = \frac{1}{n}$$

Since $\lim_{n\to\infty}\frac{1}{n}=0$, we have $\lim_{n\to\infty}u_n=0$

(b) $u_{n+1} - u_n = (n+1)^2 - n^2 = 2n+1 > 0$

Thus $(u_n)_{n\in\mathbb{N}}$ is monotonically increasing.

Moreover, since $n^2 > n$ for n > 1 and $n \to \infty$ as $n \to \infty$, $u_n \to \infty$ as $n \to \infty$.

(c)
$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^{n+1}}{n^n} = (n+1)(1+\frac{1}{n})^n > 1$$

Since $u_n > 0$ for every $n \in \mathbb{N}^*$, $(u_n)_{n=1}^{\infty}$ is monotonically increasing. Moreover, since $n^n > n$ for n > 1 and $n \to \infty$ as $n \to \infty$, $u_n \to \infty$ as $n \to \infty$.

Since $\frac{n+1}{(n+1)^2+1} < \frac{n}{n^2+1}$ for $n \ge 1$, we see that $u_{n+1} > u_n$ for all $n \ge 1$. Since there is

Since $u_n = \frac{n^2 + 1}{n} = n + \frac{1}{n} > n$, $u_n \to \infty$ as $n \to \infty$.

(e) $u_{n+1} - u_n = 2(n+1) - (-1)^{n+1} - 2^n + (-1)^n = 2(1 + (-1)^n) = \begin{cases} 4 & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$

Thus $u_{n+1} \geq u_n$ for all n. Thus $(u_n)_{n \in \mathbb{N}}$ is monotonically non-decreasing. Since $u_n \ge 2n - 1 \ge n$, $u_n \to \infty$ as $n \to \infty$.

(f) $u_n = \frac{n^2 - 1}{n^3 - 1} = \frac{n+1}{n^2 + n + 1}$ for n > 1. Thus

$$u_{n+1} - u_n = \frac{n+2}{(n+1)^2 + (n+1)1} - \frac{n+1}{n^2 + n+1}$$

$$= \frac{(n+2)(n^2 + n+1) - (n+1)(n^2 + 3n+3)}{((n^2 + 3n+3)(n^2 + n+1))}$$

$$= \frac{-(n^2 + 3n+1)}{(n^2 + 3n+3)(n^2 + n+1)}$$

$$< 0$$

Hence,
$$(u_n)_{n=2}^{\infty}$$
 is monotonically decreasing.
Since $u_n = \frac{n+1}{n^2+n+1} < \frac{2n}{n^2+n+1} < \frac{2}{n}$, we see that $\lim_{n\to\infty} u_n = 0$.

(g)
$$u_{n+1} - u_n = \frac{(n+1)^3 + 2(n+1) + 1}{1 - 10(n+1)^2 - (n+1)^3} - \frac{n^3 + 2n + 1}{1 - 10n^2 - n^3}$$

Since we are only interested in whether this is positive or negative, it is enough to work with

 ν , the numerator obtain when $u_{n+1} - u_n$ is written as a rational function of n. Since $(n+1)^3 = n^3 + 3n^2 + 3n + 1$ and $(n+1)^2 = n^2 + 2n + 1$, we obtain, successively,

$$(n+1)^3 + 2(n+1) + 1 = n^3 + 3n^2 + 5n + 4$$

$$1 - 10(n+1)^2 - (n+1)^3 = -(n^3 + 13n^2 + 23n + 10)$$

$$((n+1)^3 + 2(n+1) + 1)(1 - 10n^2 - n^3) = -(n^6 + 13n^5 + 35n^4 + 53n^3 + 37n^2 - 5n - 4)$$

$$(n^3 + 2n + 1)(-(n^3 + 13n^2 + 23n + 10)) = -(n^6 + 13n^5 + 25n^4 + 37n^3 + 59n^2 + 43n + 11)$$

$$\nu = -(10n^4 + 16n^3 - 22n^2 + 38n + 7)$$

$$= -(10n^2(n^2 - 1) + 12n^2(n - 1) + 4n^3 + 38n + 7)$$

$$< 0 \qquad \text{for all } n \in \mathbb{N}$$

Thus $(u_n)_{n\in\mathbb{N}}$ is monotonically decreasing. Moreover, since $\lim_{n\to\infty}\frac{1}{n^k}=0$ for k>0,

$$u_n = \frac{n^3 + 2n + 1}{1 - 10n^2 - n^3}$$
$$= -\frac{1 + \frac{2}{n^2} + \frac{1}{n^3}}{1 + 10\frac{1}{n} - \frac{1}{n^3}}$$
$$\to -1 \quad \text{as } n \to \infty$$

(h) $0 < u_{n+1} := 2^{-(n+1)} = \frac{1}{2}2^{-n} = \frac{1}{2}u_n$ Hence, $(u_n)_{n \in \mathbb{N}}$ is monotonically decreasing.

Moreover, since $2^n > n$ for all $n \in \mathbb{N}$, $0 < u_n < \frac{1}{n}$, whence $\lim_{n \to \infty} u_n = 0$.

(i)
$$\frac{u_{n+1}}{u_n} = \frac{(n+1)!n^n}{(n+1)^{n+1}n!} = \left(\frac{n}{n+1}\right)^n < 1$$
Since $u_n > 0$ for $n \in \mathbb{N}^*$, $(u_n)_{n \in \mathbb{N}^*}$ is monotonically decreasing.

Moreover, since $\frac{j}{n} < 1$ for 1 < j < n,

$$\frac{n!}{n^n} = \frac{n \cdot (n-1) \dots 2 \cdot 1}{n \cdot n \dots n} < \frac{1}{n},$$

whence $0 < u_n < \frac{1}{n}$ and so $\lim_{n \to \infty} u_n = 0$.

Question 2.

Since $(n)_{n\in\mathbb{N}}$ is monotonically increasing, so is $\left(n+\sqrt{\kappa^2-\frac{\gamma^2}{c^2}}\right)_{n\in\mathbb{N}}$. Since this is a sequence of positive terms, each of

$$\left(\frac{\frac{\gamma^2}{c^2}}{n + \sqrt{\kappa^2 - \frac{\gamma^2}{c^2}}}\right)_{n \in \mathbb{N}}$$

$$\left(1 + \frac{\frac{\gamma^2}{c^2}}{n + \sqrt{\kappa^2 - \frac{\gamma^2}{c^2}}}\right)_{n \in \mathbb{N}}$$

$$\left(\sqrt{1 + \frac{\frac{\gamma^2}{c^2}}{n + \sqrt{\kappa^2 - \frac{\gamma^2}{c^2}}}}\right)_{n \in \mathbb{N}}$$

is monotonically decreasing. Thus $(E_n)_{n\in\mathbb{N}}$ is monotonically increasing.

Since
$$n \to \infty$$
 as $n \to \infty$, we have $\frac{\frac{\gamma^2}{c^2}}{n + \sqrt{\kappa^2 - \frac{\gamma^2}{c^2}}} \to 0$ and $E_n \to mc^2$ as $n \to \infty$.

Question 3.

Recall that $2^n > n$ for every $n \in \mathbb{N}$, or, equivalently, $0 < 2^{-n} < \frac{1}{n}$ for all $n \in \mathbb{N}$.

Take $K \in \mathbb{R}$.

Since \mathbb{N} , the set of all natural number, is not bounded above, there is an $N \in \mathbb{N}$ with N > K. If $n \ge N$, then $2^n > n \ge N > K$.

Thus, given $K \in \mathbb{R}$, there is an $N \in \mathbb{N}$ with $2^n > K$ whenever $n \geq N$, proving that

$$2^n \to \infty$$
 as $n \to \infty$.

(b) Take $\varepsilon > 0$. Then $\frac{1}{\varepsilon} > 0$.

Since \mathbb{N} is not bounded above, there is an $N \in \mathbb{N}$ with $N > \frac{1}{\varepsilon}$, or, equivalently, $0 < \frac{1}{N} < \frac{!}{\varepsilon}$. If $n \ge N$, then $0 < 2^{-n} < \frac{1}{n} \le \frac{1}{N} < \varepsilon$.

Thus, given $\varepsilon > 0$, there is an $N \in \mathbb{N}$ with $|2^{-n} - 0| < \varepsilon$ whenever $n \ge N$, proving that

$$\lim_{x \to \infty} 2^{-n} = 0.$$

Question 4.

Let h_n be the height of the ball after the n^{th} bounce, and d_n the distance travelled by the ball upto the n^{th} bounce.

Then $h_0 = 20$ and $h_{n+1} = \frac{4}{5}h_n$ for every $n \in \mathbb{N}$. Thus $h_n = 20\left(\frac{4}{5}\right)^n$. In particular, $h_3 = 20\frac{64}{125} = \frac{256}{25}$, so that the height of the third bounce is $10 \cdot 24$ metres. Now $d_0 = h_0 = 20$ and for $n \in \mathbb{N}$

$$d_{n+1} = d_n + h_n + h_{n+1} = d_n + \frac{9}{5}h_n = d_n + 36\left(\frac{4}{5}\right)^n$$

Thus,

$$d_{n+1} = 36\left(1 + \frac{4}{5} + \dots + \left(\frac{4}{5}\right)^n\right) = 36\frac{1 - \left(\frac{4}{5}\right)^{n+1}}{1 - \frac{4}{5}} = 180\left(1 - \left(\frac{4}{5}\right)^{n+1}\right)$$

Since $\lim_{n\to\infty} d_n = 180$, the ball travels 180 metres before coming to rest.

Since $2^0 = 1 > 0$, and $2^1 = 2 > 1$, the proposition is true for n = 0, 1.

Suppose that for some $n \in \mathbb{N}^*$, $2^n > n$. Then $2^{n+1} = 2 \cdot 2^n > 2n > n+1$.

By the Principle of Mathematical Induction, $2^n > n$ for every $n \in \mathbb{N}$.

¹We repeat a proof for the benefit of those who have forgotten,