### Wealth Distribution

Prof. Lutz Hendricks

Econ890, Spring 2021

January 24, 2021

# Key facts

Wealth is more concentrated than earnings and income.

Wealth Gini: 0.8.

Top 1% hold 35% of wealth

Bottom 10% hold negative wealth

Bottom 40% hold negligible wealth.

# The role of age

Age does not account for wealth inequality.



Source: Rodríguez et al. (2002)

# Age profiles



Source: Rodríguez et al. (2002)

The figure shows mean wealth / income / earnings by age.

Wealth peaks much later than earnings.

### A benchmark model

Can the standard life-cycle model account for wealth concentration? Starting point: Huggett (1996)

### Purpose:

- Explore implications of the simplest, reasonable models
- What is hard to get?

### Model Features

### Demographics:

- ▶ In each period,  $1/a_D$  identical households are born.
- ▶ Each lives for  $a_D$  periods (years).
- ▶ Age of retirement is fixed  $(a_R)$ .

#### Preferences:

$$\mathbb{E}\sum_{a=1}^{a_D} \beta^a u(c_a) \tag{1}$$

### Model Features

### Technology:

$$F(K,L) = (1 - \delta)K + C + G + K'$$
 (2)

#### **Endowments:**

- Working agents are endowed with labor efficiency  $\eta_a e_a$
- $ightharpoonup e_a$ : labor efficiency (wage) shock; Markov chain

### Model Features

#### Government:

- ► Taxes labor income:  $T = \tau_w w L$
- ► Eats *G*
- Pays transfers X to retired households (annuitized income in the data)
- ▶ Balanced budget: G + X = T

#### Markets:

- ► Labor: wage w
- Capital rental: r
- Goods: numeraire.

## Household problem

Exogenous state variables s = (a, e) are

- ► age *a*
- ▶ labor endowment e: .

Endogenous state variable: wealth k.

Borrowing constraint:  $k \ge 0$ .

# Household Dynamic Program

$$V(k,s) = \max u \left( y(k,s) - k' \right) + \beta \mathbb{E} V \left( k',s' \right) \tag{3}$$

with

$$y(k,s) = Rk + w(1 - \tau_w) \eta_a e + \varpi(s)$$
 (4)

subject to  $k' \ge 0$  (or a fixed borrowing limit).

Euler equation:

$$u'(c) \ge \beta R \mathbb{E} u'(c')$$
 (5)

with equality if k' > 0.

Solution is a consumption function c(k, a, e)

## Stationary equilibrium: objects

- $ightharpoonup \Gamma(k,s)$ : distribution of households over states
- ▶ Household policy function c(k,s) and value function V(k,s).
- ightharpoonup Aggregate quantities: K, L, X.
- ▶ Price functions: r(K,L), w(K,L).

### Equilibrium conditions

Household policy and value functions are optimal.

Prices equal marginal products:

$$ightharpoonup r = F_K(K, L), w = F_L(K, L).$$

Goods market clears: Y = C + I + G.

Labor market clears:  $L = \sum_{s} e(s) \eta(s) \Lambda(s)$ .

Capital market clears:  $K = \sum_{s} \int_{k} \Gamma(k, s) k \, dk$ .

Distribution of households is stationary.

### Calibration

Standard functional forms (e.g., Cobb Douglas technology).

This is an "old fashioned" calibration

the number of data moments exactly matches the number of calibrated parameters.

Calibrated parameters:  $\beta$ ,  $\delta$ , A.

Calibration targets: K/Y, w = 1, R.

Labor efficiencies: approximate an AR(1) that is estimated from panel data (PSID).

### Results

| , ,            |      |      |      | l    | Fraction neg. wealth |
|----------------|------|------|------|------|----------------------|
| Huggett (1996) | 10.8 | 32.4 | 68.9 | 0.70 | 19%                  |
| U.S. data      | 34.7 | 57.8 | 81.7 | 0.80 | 11%                  |

The model has too many households without wealth.

Still, the wealth Gini is lower than in the data.

The key failure: the top 1% are not rich enough.

The literature has been preoccupied with matching the top 1% ever since.

# Age profiles



The old dissave much too fast.

This is from a model with borrowing.

# Age matters too much



Source: Rodríguez et al. (2002) and my calculations.

## An accounting problem

Given the estimated earnings process, it is not feasible for Huggett's households to accumulate the highest SCF wealth observations.

- ▶ The earnings process is estimated from the PSID.
- Wealth is estimated from the SCF.
- The SCF over-samples the rich; the PSID does not.

The model cannot account for the highest wealth observations by construction.

▶ The highest PSID incomes are simply not large enough.

Problem: There is no publicly available U.S. dataset from which an untruncated earnings process could be estimated.

### Possible solutions

One solution: Castaneda et al. (2003)

► Invent an earnings process that is consistent with the cross-sectional distribution of earnings from the SCF

Use administrative data: (De Nardi et al., 2018)

# Wealth and earnings

Wealth and lifetime earnings are too strongly correlated.



Life-cycle model versus Venti and Wise (2000) data (5th lifetime income decile)

### Conclusion

Huggett's model goes a long way towards accounting for wealth inequality.

### Main discrepancies:

- Model misses the very top of the distribution. This may be due to the truncated earnings process.
- Wealth is decumulated too slowly at old age.
- ► The model only accounts for the cross-sectional distribution How does it do with respect to other moments?

## Surveys

- ▶ De Nardi and Fella (2017)
- ▶ Benhabib and Bisin (2018)

### References I

```
Benhabib, J., Bisin, A., 2018. Skewed Wealth Distributions: Theory and Empirics. Journal of Economic Literature 56, 1261–1291. URL: http://www.aeaweb.org/articles?id=10.1257/jel.20161390, doi:10.1257/jel.20161390.
```

Castaneda, A., Diaz-Gimenez, J., Rios-Rull, J.V., 2003. Accounting for the US earnings and wealth inequality. Journal of political economy 111, 818–857. URL:

https://www.jstor.org/stable/10.1086/375382.

De Nardi, M., Fella, G., 2017. Saving and wealth inequality. Review of Economic Dynamics 26, 280–300. URL:

http://www.sciencedirect.com/science/article/pii/S1094202517300546, doi:10.1016/j.red.2017.06.002.

### References II

De Nardi, M., Fella, G., Pardo, G.P., 2018. Nonlinear Household Earnings Dynamics, Self-insurance, and Welfare. Technical Report w24326. National Bureau of Economic Research. Cambridge, MA. URL: http://www.nber.org/papers/w24326.pdf,

http://www.nber.org/papers/w24326.pdf, doi:10.3386/w24326.

Huggett, M., 1996. Wealth distribution in life-cycle economies. Journal of Monetary Economics 38, 469–494. doi:10.1016/S0304-3932(96)01291-3.

Rodríguez, S.B., Díaz-Giménez, J., Quadrini, V., Ríos-Rull, J.V., 2002. Updated facts on the us distributions of earnings, income, and wealth. Federal Reserve Bank of Minneapolis Quarterly Review 26, 2–35.

### References III

Venti, S.F., Wise, D.A., 2000. Choice, Chance, and Wealth Dispersion at Retirement. Working Paper 7521. National Bureau of Economic Research. URL:

http://www.nber.org/papers/w7521.