### BULANIK MANTIK VE YAPAY SİNİR AĞLARINA GİRİŞ

HAFTA - 1

GİRİŞ

DR. ÖĞR. ÜYESİ M. FATİH ADAK

# DERS İÇERİĞİ

- Bulanık mantık, insan mantık çıkarım sistemlerini lineer olmayan karmaşık çözümlenmesi amacı ile modeller.
- Yapay sinir ağları (YSA), beynin belirli bir işi veya fonksiyonu gerçekleştirme yöntemini/yolunu modellemek için tasarlanan yapılardır.
- Bu ders bulanık mantık ve yapay sinir ağları ile ilgili temel bilgiler verir ve uygulama örnekleri sunar.



# HAFTALIK AKIŞ

| Hafta | Konular                                              |
|-------|------------------------------------------------------|
| 1     | Giriş                                                |
| 2     | Klasik Kümeler, Bulanık Kümeler                      |
| 3     | Klasik ve Bulanık İlişkiler                          |
| 4     | Üyelik Fonksiyonları, Bulanıklaştırma ve Durulama    |
| 5     | Mamdani Bulanık Çıkarım ve Kurallar                  |
| 6     | Sugeno Bulanık Çıkarım ve Kurallar                   |
| 7     | Jfuzzylogic Kütüphane Tanıtımı ve Örnekler           |
| 8     | Jfuzzylogic Kütüphanesi ile Mühendislik Uygulamaları |
| 9     | Beynin Yapısı ve Yapay Sinir                         |
| 10    | Perceptron Kavramı ve Öğrenme                        |
| 11    | Çok Katmanlı Sinir Ağları                            |
| 12    | Geri Yayılım Algoritması                             |
| 13    | Java Ortamında ANN Kütüphanesinin Tanıtımı           |
| 14    | Java ile Yapay Sinir Ağlarının Gerçekleştirimi       |

## DEĞERLENDİRME

| İsim      | Katkı Yüzdesi |
|-----------|---------------|
| Ara Sınav | 18            |
| I. Ödev   | 21            |
| II. Ödev  | 21            |
| Final     | 40            |

Ara Sınav : Klasik

I. Ödev : Bulanık MantıkII. Ödev : Yapay Sinir Ağları

Final : Klasik

#### **KULLANILACAK ORTAM**

- Bulanık Mantık için
  - Jfuzzylogic Bir Java Kütüphanesi
     <a href="http://jfuzzylogic.sourceforge.net/html/index.html">http://jfuzzylogic.sourceforge.net/html/index.html</a>
- Yapay Sinir Ağları için
  - Neuroph Java Neural Network Framework
     <a href="http://neuroph.sourceforge.net/download.html">http://neuroph.sourceforge.net/download.html</a>

# İÇERİK

- Bulanık mantık tanıtımı
- Bulanık mantık günümüzde kullanımı
- Kısa tarihçe
- Bulanık mantık amacı
- Geleneksel yaklaşım ile karşılaştırma
- Olasılık ve Olabilirlik
- Bulanık mantık temel kavramları

#### **BULANIK MANTIK NASIL TANITILDI?**

- İlk defa Prof. Lotfi Zadeh tarafından 1965 yılında tanıtıldı.
  - «Karmaşıklık arttıkça kesin ifadeler anlam kaybetmeye ve anlamlı ifadeler kesinliği kaybetmeye başlar» Prof. Lotfi Zadeh
- Kesin ifadeyi anlamlı kılan eşik değeri nedir?
- Bir olay gerçekliği kaybetmeye hangi değerden başlar?
- Gerçek bir probleme ne kadar yaklaşırsak, bulanıklık onun çözümü olacaktır.



# BULANIK MANTIK NEDİR?

- Bulanık mantık, belirsizlik ve kesin olmama durumlarını ele almak için klasik mantığı genişleten matematiksel ve hesaplamalı bir çerçevedir.
- Bulanık mantık, kısmi üyelik kavramını ortaya koyar.



### **BULANIK MANTIK**

• Tam küme üyeliği yerine kısmi üyeliğe izin veren bir tanımdır.





#### **BULANIK MANTIK**

- Birçok bilim adamı tarafından Bulanık mantık yapay zekanın bir alt dalı olarak kabul edilmez.
- Başlarda çok kabul görmese de üzerinde yapılan çalışmalar ve geçen zamanla rüştünü ispatlamıştır.
- 1987 yılında Japonya'da sürücüsüz çalışan ilk metro sistemi inşa edildi. Kontrol bulanık mantık temelli otomatik kontrol ünitesindeydi.



## GÜNÜMÜZDE BULANIK MANTIK KULLANIMI

- Araç motorlarında
- Otomatik vites ünitelerinde
- Klimalarda
- TV ünitelerinde
- Çamaşır makinelerinde
- Robotlarda
- Verinin sıralanması ve taşınması
- Bilgi sistemleri
- Örüntü tanıma
- Trafik kontrol sistemleri

## BULANIK MANTIK KISA TARİHÇESİ

- 1965: Bulanık mantık teorisinin tanıtımı (Zadeh)
- 1972 : Japonya'da Bulanık mantık üzerine çalışan ilk grup
- 1973 : Zadeh tarafından Bulanık algoritmaların anlatıldığı ilk makale
- 1974: Mamdani tarafından kontrol edilen buharlı motor (İngiltere)



## BULANIK MANTIK KISA TARİHÇESİ

- 1977 : Kredi başvurusunun değerlendirilmesi için ilk bulanık temelli uzman sistem (Almanya)
- 1980 : İlk endüstriyel uygulama (Danimarka)
   Bulanık mantık kullanan satranç oyunu (Amerika)
- 1984 : Su arıtmada kimyasal kontrol (Japonya)
- 1985 : İlk bulanık chip (Japonya)
- 1986: Hastalık teşhisinde bulanık temelli uzman sistem (Japonya)
- 1987: Hava aracının piste indirilmesi (Amerika)
  - Robot askerler (Amerika)
- 1990 : Bulanık mantık kullanan TV (Sony, Japonya)

#### **TANIM**

- Kesin olarak belirtilemeyen fakat kendi bağlamlarında anlam kazanan bilginin temsilidir.
- Bulanık mantık insan duyularından yararlanır.
- Bulanık mantık kararlı bir yapı olmadığı durumlarda en çok işe yarayacak yaklaşımdır.



#### TANIM DEVAM

- Bulanık karar mekanizmaları sayısal değerler yerine sembolik dilsel ifadeler kullanırlar.
- Bu sembolik dilsel ifadelerin bilgisayarlara aktarılması matematiksel bir temele dayanır. Bu matematiksel temel bulanık mantıktır.







Bulanık Yaklaşım

## **AMAÇ**

- Bulanık mantık, insan düşünmesini ve mantık yürütmesini modellemeye ve karşılaşılan problemlerde ihtiyaç doğrultusunda kullanmayı amaçlar.
- Bilgisayarlara, insanların özel verileri işleyebilme, deneyimlerinden ve önsezilerinden yararlanarak çalışabilme yeteneğini vermeye çalışır.
- İnsan mantığı karşılaştığı problemleri çözerken;
   Eğer <gerçekleşen olay> ise <sonuç> şeklinde dilsel kurallar oluşturur.
- Bulanık mantık insanın bu dilsel kurallar ile karar verme kabiliyetini makinelere/ bilgisayarlara uyarlamaya çalışır.

## GELENEKSEL YAKLAŞIM BULANIK YAKLAŞIM





Yavaş hiz=0

Hızlı hiz=1

```
bool hiz;
scanf(hiz);
if(hiz == 0){
      // yavaş
}
else{
      // hızlı
}
```









```
double hiz;
Çok Yavaş
                  scanf (hiz);
                  if(hiz >= 0 && hiz < 0.25){
  hiz=[0.0-0.25]
                      // çok yavaş
                  else if (hiz >= 0.25 && hiz < 0.5) {
                      // yavaş
 Yavaş
                  else if (hiz >= 0.5 && hiz < 0.75) {
   hiz=[0.25-0.5]
                       // hızlı
                  else{
                       // çok hızlı
  Hızlı
    hiz=[0.5-0.75]
```

```
Çok Hızlı
hiz=[0.75 – 1.0]
```

#### **BULANIK MANTIK VE OLASILIK**

- Bulanık mantığın belirsizlik ortamında çıkarım yapan varsayımlara dayalı diğer teorilerden ayrılır.
- Varsayımlara dayalı çıkarımın temelinde "olasılık teorisi" vardır.
- Fakat, bulanık mantığın dayandığı "olasılık" 'tan ziyade "olabilirlik" esasıdır.



## **OLASILIK VE OLABİLİRLİK**

#### Olasılık

- Kavram olarak bir olayın olabilme ihtimali ve tekrar sıklığı, bir kümeye dahil olma ihtimali, doğruluk veya yanlış olabilme ihtimali, vb., ile ilgilidir.

#### Olabilirlik

- Olabilirlik ise ihtimalden ziyade olayların gerçekleşme düzeyi, olayla ilgili verdiğimiz kararın düzeyi, olayı algılama derecemiz ile bir kümeye ait olama derecesi, doğruluk derecesi, vb., ile ilgilidir.

• Bulanık mantıkta kullanılan üyelik fonksiyonları aslında bir olabilirlik dağılımıdır.

## **OLASILIK**



$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Bir aralık için olasılık

$$\int_{a}^{b} f(x) dx < 1$$

## **OLABİLİRLİK**



Bir aralık için olabilirlik, o bölgedeki maksimum üyelik derecesidir.

$$\max \{ \mu_A(x) | x \in I \}$$

## **OLASILIK VE OLABİLİRLİK**

Örnek:

#### Olasılık ifadesi:

şişenin içindeki sıvı %50 ihtimal ile saf sudur.

#### Olabilirlik ya da bulanık mantık ifadesi:

şişenin içindeki sıvı %50 oranında saf sudur.



### **BULANIK MANTIK TEMEL KAVRAMLARI**

- Bulanık mantık sistemleri dört temel kavrama dayanmaktadır.
  - Bulanık kümeler
  - Dilsel değişkenler, dilsel terimler
  - Üyelik fonksiyonları
  - Bulanık kurallar

#### KAYNAKLAR

- Ross, Timothy J. Fuzzy logic with engineering applications. John Wiley & Sons, 2005.
- Nguyen, Hung T., and Elbert A. Walker. A first course in fuzzy logic. CRC press, 2005.
- Dubois, Didier J. Fuzzy sets and systems: theory and applications. Vol. 144. Academic press, 1980.
- Bishop, Christopher M. "Pattern recognition and machine learning, 2006." 60.1 (2012): 78-78.
- Önerilen Kaynak: Fuzzy Logic With Engineering Applications 3Ed, Timothy J. Ross.