

ML4IoT Implementation of different projects

Edoardo Fantolino s286008

Data Science and Engineering, Politecnico di Torino

Introduction

Use Deep Learning to:

Classify images

Connect Devices as:

• Sensors

Smartphones

System interaction between sensors, server and smartphone

Sound Recognition and Classification

Image Recognition and Classification

THE SENSORS ALLOW TO COOK

MORE EFFICIENTLY

WE CAN KEEP TRACK OF OUR NUTRITIONAL HABITS AND TAILOR THEM IN CASE OF NEEDS

WE CAN BE HELPED BY THE SENSORS TO COOK BETTER

WE CAN KEEP TRACK OF OUR WORKING ACTIVITY

WE UNDERSTAND WHEN WE NEED A BREAKE TO PLAY SOMETHING FUN

THE SENSORS WILL KEEP OUR HOME SAFE WHEN WE ARE OUT

Nutritional help

Activity tracking

Alarm systems

To store data and perform analysis a DBMS is created

aid	name	category	time	sid	hid
2111	microwave_oven	cooking	1640877987	1	1
2112	microwave_oven	cooking	1640877990	1	1
2113	microwave_oven	cooking	1640877992	1	1
2114	microwave_oven	cooking	1640877996	1	1
2115	silence_kitchen	NULL	1640877998	1	1
2116	silence_kitchen	NULL	1640878001	1	1
2117	silence_kitchen	NULL	1640878004	1	1
2118	silence_kitchen	NULL	1640878006	1	1

ML4IoT

SCAN FOOD

DIET SCHEDULE

ALARM SETTINGS

ACTIVITY HISTORY

User experience is the core of our business

Mobile Application

The app makes the system user friendly.

The customers can easily keep track of
their activity

Notification System

The notification alerting feature makes the application quickly interact with the user in case of need

Example of enhanced cooking

The microphone monitors the state of the water and as soon as the water is boiling a notification is sent to the user.

The camera sees the type of pasta and consequently how much time it should cook. After the correct cooking time is ended, a notification is sent to the user.

Penne 9 min.

Conchiglie 8 min.

READY TO EAT!

= a notification is sent to the user

Example of food schedule and alerting

Banana, 10:30

H 21:00 and 4/5 fruits.

Notification:

You are almost there! Eat just another orange to reach the optimal daily dose of fruit.

H 09:15:01.

Notification

Warning. Do not eat other fruits, your level of glucose could exceed the safe threshold.

Or: need another dose of insulin.

Example of Safety and Alarms

During a working day, you can turn on the alarm and the microphone will detect the sounds of the dogs as normal.

Instead, the walking noise of a thief/intruder and sounds like closing and opening doors will be identified as anomalies and the system will immediately send a notification to the user or directly to the competent authority.

Thank you for your attention