# **Weak Convergence and Empirical Processes**

## **Chapter 2.2: Maximal Inequalities and Covering Numbers**

Bart Eggen

Leiden University

October 21, 2019

# What are we going to discuss?

- Introduction
- Orlicz norm
- Finite Maximal Inequalities
- Maximal Inequalities

## What are maximal inequalities?

$$\left\| \max_{1 \le i \le m} X_i \right\| \le K \max_{1 \le i \le m} \|X_i\|$$

## What are maximal inequalities?

$$\left\| \max_{1 \le i \le m} X_i \right\| \le K \max_{1 \le i \le m} \|X_i\|$$

Can we do the same for an infinite amount of random variables?

#### **Orlicz norm**

### **Definition (Orlicz norm)**

Let  $\psi$  be a nondecreasing, convex function with  $\psi(0) = 0$  and X a random variable. Then the *Orlicz norm*  $\|X\|_{\psi}$  is defined as

$$\|X\|_{\psi}=\inf\left\{C>0: E\psi\left(rac{|X|}{C}
ight)\leq 1
ight\}.$$

### **Orlicz norm**

## **Definition (Orlicz norm)**

Let  $\psi$  be a nondecreasing, convex function with  $\psi(0)=0$  and X a random variable. Then the *Orlicz norm*  $\|X\|_{\psi}$  is defined as

$$\|X\|_{\psi} = \inf \left\{ C > 0 : E\psi\left(rac{|X|}{C}
ight) \leq 1 
ight\}.$$

# **Definition (Norm)**

Given a vector space V over  $\mathbb{R}$ , a *norm* on V is a function  $\|\cdot\|:V\to\mathbb{R}_+$  with the following properties: For all  $a\in\mathbb{R}$  and all  $\mathbf{u},\mathbf{v}\in V$ .

- 1)  $\|\mathbf{u} + \mathbf{v}\| < \|\mathbf{u}\| + \|\mathbf{v}\|$ .
- **2)**  $\|a\mathbf{v}\| = |a| \cdot \|\mathbf{v}\|.$
- 3) If  $\|\mathbf{v}\| = 0$ , then  $\mathbf{v} = 0$ .

### **Orlicz norm**

### **Definition (Orlicz norm)**

Let  $\psi$  be a nonzero, nondecreasing, convex function with  $\psi(0)=0$  and X a random variable. Then the *Orlicz norm*  $\|X\|_{\psi}$  is defined as

$$\|X\|_{\psi} = \inf \left\{ C > 0 : E\psi\left(rac{|X|}{C}
ight) \leq 1 
ight\}.$$

# **Definition (Norm)**

Given a vector space V over  $\mathbb{R}$ , a *norm* on V is a function  $\|\cdot\|:V\to\mathbb{R}_+$  with the following properties: For all  $a\in\mathbb{R}$  and all  $\mathbf{u},\mathbf{v}\in V$ .

- 1)  $\|\mathbf{u} + \mathbf{v}\| < \|\mathbf{u}\| + \|\mathbf{v}\|$ .
- **2)**  $\|a\mathbf{v}\| = |a| \cdot \|\mathbf{v}\|.$
- 3) If  $\|\mathbf{v}\| = 0$ , then  $\mathbf{v} = 0$ .

### **Example**

For  $p \ge 1$ , let  $\psi(x) = x^p$ . Then for any random variable X

$$\|X\|_{\psi} = \inf \left\{ C > 0 : E\left(rac{|X|}{C}
ight)^{
ho} \leq 1 
ight\}$$

## **Example**

For  $p \ge 1$ , let  $\psi(x) = x^p$ . Then for any random variable X

$$\|X\|_{\psi} = \inf \left\{ C > 0 : E\left(\frac{|X|}{C}\right)^{p} \le 1 \right\} = \|X\|_{p}$$

## **Example**

For  $p \ge 1$ , let  $\psi(x) = x^p$ . Then for any random variable X

$$\|X\|_{\psi} = \inf \left\{ C > 0 : E\left(\frac{|X|}{C}\right)^{p} \le 1 \right\} = \|X\|_{p}$$

# **Example**

For  $p \ge 1$ , let  $\psi(x) = e^{x^p} - 1$ 

## **Example**

For  $p \ge 1$ , let  $\psi(x) = x^p$ . Then for any random variable X

$$\|X\|_{\psi} = \inf \left\{ C > 0 : E\left(\frac{|X|}{C}\right)^p \le 1 \right\} = \|X\|_p$$

# **Example**

For  $p \ge 1$ , let  $\psi_p(x) = e^{x^p} - 1$ 





#### Difference between the functions



# Inequality

For all  $p \ge 1$  we have

$$||X||_p \leq ||X||_{\psi_p}$$

#### Tail bound

Let X be a random variable and suppose  $\|X\|_{\psi}$  exists. Then for any  $x \in \mathbb{R}$ :

$$P(|X| > x) \le P(\psi(|X|/\|X\|_{\psi}) \ge \psi(x/\|X\|_{\psi}))$$

$$\le \frac{E\psi(|X|/\|X\|_{\psi})}{\psi(x/\|X\|_{\psi})}$$

$$\le \frac{1}{\psi(x/\|X\|_{\psi})}$$

#### **Tail bound**

Let X be a random variable and suppose  $\|X\|_{\psi}$  exists. Then for any  $x \in \mathbb{R}$ :

$$P(|X| > x) \le P(\psi(|X|/\|X\|_{\psi}) \ge \psi(x/\|X\|_{\psi}))$$

$$\le \frac{E\psi(|X|/\|X\|_{\psi})}{\psi(x/\|X\|_{\psi})}$$

$$\le \frac{1}{\psi(x/\|X\|_{\psi})}$$

## Taking $\psi_{D}$

$$P(|X| > x) \lesssim e^{-Cx^p}$$

#### Lemma 2.2.1.

Let X be a random variable with  $P(|X| > x) \le Ke^{-Cx^p}$  for every x, for constants K and C, and for  $p \ge 1$ . Then its Orlicz norm satisfies  $\|X\|_{\psi_p} \le ((1+K)/C)^{1/p}$ .

#### Lemma 2.2.1.

Let X be a random variable with  $P(|X| > x) \le Ke^{-Cx^p}$  for every x, for constants K and C, and for  $p \ge 1$ . Then its Orlicz norm satisfies  $\|X\|_{\psi_p} \le ((1+K)/C)^{1/p}$ .

#### **Proof Idea**

Our goal is to find the smallest D' such that

$$E\psi_{\rho}\left(\frac{|X|}{D'}\right)=E\left(e^{D|X|^{\rho}}-1\right)\leq 1.$$

#### Lemma 2.2.1.

Let X be a random variable with  $P(|X| > x) \le Ke^{-Cx^p}$  for every x, for constants K and C, and for  $p \ge 1$ . Then its Orlicz norm satisfies  $\|X\|_{\psi_p} \le ((1+K)/C)^{1/p}$ .

### **Proof Idea**

Our goal is to find the smallest D' such that

$$E\psi_{p}\left(\frac{|X|}{D'}\right)=E\left(e^{D|X|^{p}}-1\right)\leq 1.$$

Idea: write

$$e^{D|X|^p}-1=\int_0^{|X|^p}De^{Ds}ds$$

and use Fubini's theorem.

$$\left\| \max_{1 \le i \le m} X_i \right\|_{\psi}$$

$$\left\| \max_{1 \le i \le m} X_i \right\|_{p} = \left( E \max_{1 \le i \le m} |X_i|^p \right)^{1/p}$$

$$\leq \left( E \sum_{i=1}^m |X_i|^p \right)^{1/p}$$

$$\leq \left( m \cdot \max_{1 \le i \le m} E|X_i|^p \right)^{1/p}$$

$$= m^{1/p} \cdot \max_{1 \le i \le m} \|X_i\|_{p}$$

$$\left\| \max_{1 \le i \le m} X_i \right\|_{p} \le m^{1/p} \cdot \max_{1 \le i \le m} \|X_i\|_{p}$$

$$\left\|\max_{1\leq i\leq m}X_i\right\|_p\leq \psi^{-1}(m)\cdot\max_{1\leq i\leq m}\|X_i\|_p$$

#### Lemma 2.2.2.

Let  $\psi$  be a convex, nondecreasing, nonzero function with  $\psi(\mathbf{0})=\mathbf{0}$  and

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(cxy)}<\infty$$

for some constant c. Then, for any random variables  $X_1, \ldots, X_m$ ,

$$\left\|\max_{1\leq i\leq m}X_i\right\|_{\psi}\leq K\psi^{-1}(m)\max_{1\leq i\leq m}\|X_i\|_{\psi},$$

for a constant K depending only on  $\psi$ .

#### Lemma 2.2.2.

Let  $\psi$  be a convex, nondecreasing, nonzero function with  $\psi(\mathbf{0})=\mathbf{0}$  and

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(cxy)}<\infty$$

for some constant c. Then, for any random variables  $X_1, \ldots, X_m$ ,

$$\left\|\max_{1\leq i\leq m}X_i\right\|_{\psi}\leq K\psi^{-1}(m)\max_{1\leq i\leq m}\|X_i\|_{\psi},$$

for a constant K depending only on  $\psi$ .

$$\left\|\max X_i\right\|_{\psi} \leq K\psi^{-1}(m)\max \left\|X_i\right\|_{\psi}$$

### **Assumption**

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

$$\left\|\max X_i
ight\|_{\psi} \leq K\psi^{-1}(m)\max \|X_i\|_{\psi}$$

### **Assumption**

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

1) Suppose there exists a constant *c* such that

$$\psi(x)\psi(y) \leq \psi(cxy)$$
 for all  $x, y \geq 1$ 

$$\left\|\max X_i\right\|_{\psi} \leq K\psi^{-1}(m)\max \|X_i\|_{\psi}$$

## **Assumption**

$$\psi(x)\psi(y) \leq \psi(cxy)$$
 for all  $x, y \geq 1$ 

$$\left\|\max X_i
ight\|_{\psi} \leq K\psi^{-1}(m)\max \|X_i\|_{\psi}$$

## **Assumption**

$$\psi(x)\psi(y) \le \psi(cxy)$$
 for all  $x, y \ge 1$ 

$$\psi\left(\frac{\max|X_i|}{Cy}\right) \le \max\psi\left(\frac{|X_i|}{Cy}\right)$$

$$\left\|\max X_i
ight\|_{\psi} \leq K\psi^{-1}(m)\max \|X_i\|_{\psi}$$

$$\psi(x)\psi(y) \leq \psi(cxy)$$
 for all  $x, y \geq 1$ 

$$\psi\left(\frac{\max|X_i|}{Cy}\right) \le \max\psi\left(\frac{|X_i|}{Cy}\right)$$

$$\leq \max\left[\frac{\psi(\textbf{\textit{c}}|\textbf{\textit{X}}_i|/\textbf{\textit{C}})}{\psi(\textbf{\textit{y}})}\mathbb{1}\left\{\frac{|\textbf{\textit{X}}_i|}{\textbf{\textit{C}}\textbf{\textit{y}}}\geq 1\right\} + \psi\left(\frac{|\textbf{\textit{X}}_i|}{\textbf{\textit{C}}\textbf{\textit{y}}}\right)\mathbb{1}\left\{\frac{|\textbf{\textit{X}}_i|}{\textbf{\textit{C}}\textbf{\textit{y}}}< 1\right\}\right]$$

$$\left\|\max X_i\right\|_{\psi} \leq K\psi^{-1}(m)\max \|X_i\|_{\psi}$$

$$\psi(x)\psi(y) \leq \psi(cxy)$$
 for all  $x, y \geq 1$ 

$$\psi\left(\frac{\max|X_i|}{Cy}\right) \le \max\psi\left(\frac{|X_i|}{Cy}\right)$$

$$\leq \max \left[ \frac{\psi(\textbf{\textit{C}}|\textbf{\textit{X}}_i|/\textbf{\textit{C}})}{\psi(\textbf{\textit{y}})} \mathbb{1} \left\{ \frac{|\textbf{\textit{X}}_i|}{\textbf{\textit{C}}\textbf{\textit{y}}} \geq 1 \right\} + \psi\left(\frac{|\textbf{\textit{X}}_i|}{\textbf{\textit{C}}\textbf{\textit{y}}}\right) \mathbb{1} \left\{ \frac{|\textbf{\textit{X}}_i|}{\textbf{\textit{C}}\textbf{\textit{y}}} < 1 \right\} \right]$$

$$\left\|\max X_i \right\|_{\psi} \leq K\psi^{-1}(m) \max \left\|X_i \right\|_{\psi}$$

$$\psi(x)\psi(y) \le \psi(cxy)$$
 for all  $x, y \ge 1$ 

$$\psi\left(\frac{\max|X_i|}{Cy}\right) \leq \max\psi\left(\frac{|X_i|}{Cy}\right)$$

$$\leq \max \left[ rac{\psi(c|X_i|/C)}{\psi(y)} 
ight] + \psi(1)$$

$$\psi(x)\psi(y) \le \psi(cxy)$$
 for all  $x, y \ge 1$ 

$$\psi\left(\frac{\max|X_i|}{Cy}\right) \leq \sum \frac{\psi(c|X_i|/C)}{\psi(y)} + \psi(1)$$

$$C = c \max ||X_i||_{\psi}$$

$$\psi(x)\psi(y) \le \psi(cxy)$$
 for all  $x, y \ge 1$ 

$$E\left[\psi\left(\frac{\max|X_i|}{cy\max\|X_i\|_{\psi}}\right)\right] \leq \sum \frac{E\psi(|X_i|/\max\|X_i\|_{\psi})}{\psi(y)} + \psi(1)$$

$$\psi(x)\psi(y) \le \psi(cxy)$$
 for all  $x, y \ge 1$ 

$$E\left[\psi\left(\frac{\max|X_i|}{cy\max|X_i|_{\psi}}\right)\right] \leq \sum \frac{E\psi(|X_i|/||X_i||_{\psi})}{\psi(y)} + \psi(1)$$

$$\left\|\max X_i
ight\|_{\psi} \leq K\psi^{-1}(m)\max \left\|X_i
ight\|_{\psi}$$

### **Assumption**

$$\psi(x)\psi(y) \le \psi(cxy)$$
 for all  $x, y \ge 1$ 

$$E\left[\psi\left(\frac{\max|X_i|}{cy\max|X_i|\psi}\right)\right] \leq \frac{m}{\psi(y)} + \psi(1)$$

$$\left\|\max X_i\right\|_{\psi} \leq K\psi^{-1}(m)\max \left\|X_i\right\|_{\psi}$$

$$\psi(x)\psi(y) \le \psi(cxy)$$
 for all  $x, y \ge 1$ 

$$E\left[\psi\left(\frac{\max|X_i|}{cy\max|X_i|\psi}
ight)
ight] \leq \frac{m}{\psi(y)} + \psi(1)$$

$$\psi(1) \le \frac{1}{2}$$
  $y = \psi^{-1}(2m)$ 

$$\left\|\max X_i
ight\|_{\psi} \leq K\psi^{-1}(m)\max \left\|X_i
ight\|_{\psi}$$

### **Assumption**

$$\psi(x)\psi(y) \leq \psi(cxy)$$
 for all  $x, y \geq 1$  and  $\psi(1) \leq 1/2$ 

1) Then also  $\psi(x/y) \le \psi(cx)/\psi(y)$  for all  $x \ge y \ge 1$ 

$$E\left[\psi\left(\frac{\max|X_i|}{c\psi^{-1}(2m)\max|X_i||_{\psi}}\right)\right] \leq 1$$

$$\left\|\max X_i\right\|_{\psi} \leq K\psi^{-1}(m)\max \|X_i\|_{\psi}$$

### **Assumption**

$$\psi(x)\psi(y) \leq \psi(cxy)$$
 for all  $x,y \geq 1$  and  $\psi(1) \leq 1/2$ 

1) Then also  $\psi(x/y) \le \psi(cx)/\psi(y)$  for all  $x \ge y \ge 1$ 

$$\|\max |X_i|\| \le \psi^{-1}(2m)c \max \|X_i\|_{\psi}$$

$$\left\|\max X_i \right\|_{\psi} \leq K\psi^{-1}(m) \max \|X_i\|_{\psi}$$

### **Assumption**

$$\psi(x)\psi(y) \leq \psi(cxy)$$
 for all  $x, y \geq 1$  and  $\psi(1) \leq 1/2$ 

1) Then also  $\psi(x/y) \le \psi(cx)/\psi(y)$  for all  $x \ge y \ge 1$ 

$$\|\max |X_i|\| \leq 2\psi^{-1}(m)c \max \|X_i\|_{\psi}$$

$$\left\|\max X_i
ight\|_{\psi} \leq K\psi^{-1}(m)\max \left\|X_i
ight\|_{\psi}$$

### **Assumption**

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

### 1) OK when

$$\psi(x)\psi(y) \leq \psi(cxy)$$
 for all  $x, y \geq 1$  and  $\psi(1) \leq 1/2$ 

$$\left\|\max X_i\right\|_{\psi} \leq K\psi^{-1}(m)\max \|X_i\|_{\psi}$$

### **Assumption**

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

1) OK when

$$\psi(x)\psi(y) \leq \psi(cxy)$$
 for all  $x, y \geq 1$  and  $\psi(1) \leq 1/2$ 

2) There exist  $\sigma \le 1$  and  $\tau > 0$  such that  $\phi(x) = \sigma \psi(\tau x)$ 

$$\left\|\max X_i \right\|_{\psi} \leq K\psi^{-1}(m) \max \left\|X_i \right\|_{\psi}$$

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(cxy)}<\infty$$

1) OK when

$$\psi(x)\psi(y) \leq \psi(cxy)$$
 for all  $x, y \geq 1$  and  $\psi(1) \leq 1/2$ 

2) There exist  $\sigma \le 1$  and  $\tau > 0$  such that  $\phi(x) = \sigma \psi(\tau x)$ 

$$\|X\|_{\psi} \le \frac{\|X\|_{\phi}}{\sigma \tau} \le \frac{\|X\|_{\psi}}{\sigma}$$

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

• 
$$\psi(x) = x^p$$
?

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

• 
$$\psi(x) = x^p$$
? **OK**

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

- $\psi(x) = x^p$ ? **OK**
- $\psi_p(x) = e^{x^p} 1$ ?

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

- $\psi(x) = x^p$ ? **OK**
- $\psi_p(x) = e^{x^p} 1?$  OK

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

- $\psi(x) = x^p$ ? **OK**
- $\psi_p(x) = e^{x^p} 1?$  OK
- For  $\psi_1, \psi_2$  satisfying the condition:  $\psi_1 \cdot \psi_2$  (pointwise)?

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

- $\psi(x) = x^p$ ? **OK**
- $\psi_p(x) = e^{x^p} 1?$  OK
- For  $\psi_1, \psi_2$  satisfying the condition:  $\psi_1 \cdot \psi_2$  (pointwise)? OK, take  $c = \max\{c_1, c_2\}$ .

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

- $\psi(x) = x^p$ ? **OK**
- $\psi_p(x) = e^{x^p} 1?$  OK
- For  $\psi_1, \psi_2$  satisfying the condition:  $\psi_1 \cdot \psi_2$  (pointwise)? OK, take  $c = \max\{c_1, c_2\}$ .
- For  $\psi_1, \psi_2$  satisfying the condition:  $\psi_1 + \psi_2$ ?

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

- $\psi(x) = x^p$ ? **OK**
- $\psi_p(x) = e^{x^p} 1?$  OK
- For  $\psi_1, \psi_2$  satisfying the condition:  $\psi_1 \cdot \psi_2$  (pointwise)? OK, take  $c = \max\{c_1, c_2\}$ .
- For  $\psi_1, \psi_2$  satisfying the condition:  $\psi_1 + \psi_2$ ?

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

- $\psi(x) = x^p$ ? **OK**
- $\psi_p(x) = e^{x^p} 1?$  OK
- For  $\psi_1, \psi_2$  satisfying the condition:  $\psi_1 \cdot \psi_2$  (pointwise)? OK, take  $c = \max\{c_1, c_2\}$ .
- For  $\psi_1, \psi_2$  satisfying the condition:  $\psi_1 + \psi_2$ ?
- For  $a \in \mathbb{R}_{>0}$ , and  $\psi$  satisfying the condition:  $a\psi$ ?

$$\limsup_{x,y\to\infty}\frac{\psi(x)\psi(y)}{\psi(\mathit{cxy})}<\infty$$

- $\psi(x) = x^{p}$ ? **OK**
- $\psi_p(x) = e^{x^p} 1?$  OK
- For  $\psi_1, \psi_2$  satisfying the condition:  $\psi_1 \cdot \psi_2$  (pointwise)? OK, take  $c = \max\{c_1, c_2\}$ .
- For  $\psi_1, \psi_2$  satisfying the condition:  $\psi_1 + \psi_2$ ?
- For  $a \in \mathbb{R}_{>0}$ , and  $\psi$  satisfying the condition:  $a\psi$ ? OK

## **Maximal Inequality**

$$\left\|\max_{1\leq i\leq m}X_i\right\|_{\psi}\leq K\psi^{-1}(m)\max_{1\leq i\leq m}\|X_i\|_{\psi}$$

# **Maximal Inequality**

$$\left\|\sup_{t\in T}|X_t|\right\|_{\psi}\leq ?$$

## **Covering numbers**

#### **Definition**

Let (T,d) be an arbitrary semi-metric space. Then the covering number  $N(\epsilon,d)$  is the minimal number of balls of radius  $\epsilon$  needed to cover T. Call a collection of points  $\epsilon$ -separated if the distance between each pair of points is strictly larger than  $\epsilon$ . The packing number  $D(\epsilon,d)$  is the maximum number of  $\epsilon$ -separated points in T.

## **Covering numbers**

#### **Definition**

Let (T,d) be an arbitrary semi-metric space. Then the covering number  $N(\epsilon,d)$  is the minimal number of balls of radius  $\epsilon$  needed to cover T. Call a collection of points  $\epsilon$ -separated if the distance between each pair of points is strictly larger than  $\epsilon$ . The packing number  $D(\epsilon,d)$  is the maximum number of  $\epsilon$ -separated points in T.



# **Maximal Inequalities**

#### **Theorem**

Let  $\psi$  be a convex, nondecreasing, nonzero function with  $\psi(0)=0$  and  $\limsup_{x,y\to\infty}\psi(x)\psi(y)/\psi(cxy)<\infty$ , for some constant c. Let  $\{X_t:t\in T\}$  be a separable stochastic process with

$$\|X_s - X_t\|_{\psi} \le C \ d(s,t),$$
 for every  $s,t$ ,

for some semimetric d on T and a constant C. Then, for any  $\eta,\delta>0$ ,

$$\|\sup_{d(s,t)\leq \delta}|X_s-X_t|\|_{\psi}\leq K\left[\int_0^{\eta}\psi^{-1}\left(D(\epsilon,d)\right)d\epsilon+\delta\psi^{-1}\left(D^2(\eta,d)\right)\right],$$

for a constant K depending on  $\psi$  and C only.

Separable may be understood in the sense that  $\sup_{d(s,t)<\delta} |X_s-X_t|$  remains almost surely the same if the index set T is replaced by a suitable countable subset.











- For every  $s, t \in T_j$ , we have  $d(s, t) > \eta 2^{-j}$
- The T<sub>j</sub> are maximal, meaning no point can be added without destroying the validity of the inequality
- $\bullet |T_j| \leq D(\eta 2^{-j}, d)$
- Every  $t_{j+1} \in T_{j+1}$  is linked to a unique  $t_j \in T_j$  such that  $d(t_j, t_{j+1}) \le \eta 2^{-j}$









- $\bullet |T_j| \leq D(\eta 2^{-j}, d)$
- $d(t_j, t_{j+1}) \leq \eta 2^{-j}$

Let  $s_{k+1}, t_{k+1} \in T_{k+1}$ , then we have two chains  $t_{k+1}, t_k, \ldots, t_0$  and  $s_{k+1}, s_k, \ldots, s_0$ .

$$\bullet |T_j| \leq D(\eta 2^{-j}, d)$$

•  $d(t_j, t_{j+1}) \leq \eta 2^{-j}$ 

Let  $s_{k+1}, t_{k+1} \in T_{k+1}$ , then we have two chains  $t_{k+1}, t_k, \ldots, t_0$  and  $s_{k+1}, s_k, \ldots, s_0$ .

$$egin{aligned} |(X_{s_{k+1}}-X_{s_0})-(X_{t_{k+1}}-X_{t_0})| &= \left|\sum_{j=0}^k (X_{s_{j+1}}-X_{s_j}) - \sum_{j=0}^k (X_{t_{j+1}}-X_{t_j})
ight| \\ &\leq \sum_{j=0}^k |X_{s_{j+1}}-X_{s_j}| + |X_{t_{j+1}}-X_{t_j}| \\ &\leq 2\sum_{j=0}^k \max|X_{u}-X_{v}|, \end{aligned}$$

where for every j the maximum is taken over all links (u, v) from  $T_{j+1}$  to  $T_j$ . At most  $|T_{j+1}| \leq D(\eta 2^{-j-1}, d)$  links!

- $\bullet |T_j| \leq D(\eta 2^{-j}, d)$
- $d(t_j, t_{j+1}) \leq \eta 2^{-j}$

$$|(X_{s_{k+1}}-X_{s_0})-(X_{t_{k+1}}-X_{t_0})| \leq 2\sum_{j=0}^k \max |X_u-X_v|$$

- $\bullet |T_j| \leq D(\eta 2^{-j}, d)$
- $d(t_j, t_{j+1}) \leq \eta 2^{-j}$

$$\max_{s,t \in T_{k+1}} |(X_s - X_{s_0}) - (X_t - X_{t_0})| \leq 2 \sum_{j=0}^k \max |X_u - X_v|$$

- $\bullet |T_j| \leq D(\eta 2^{-j}, d)$
- $d(t_j, t_{j+1}) \leq \eta 2^{-j}$

$$\left\| \max_{s,t \in \mathcal{T}_{k+1}} |(X_s - X_{s_0}) - (X_t - X_{t_0})| \right\|_{\psi} \leq 2 \sum_{j=0}^k \left\| \max |X_u - X_v| \right\|_{\psi}$$

- $\bullet |T_j| \leq D(\eta 2^{-j}, d)$
- $d(t_j, t_{j+1}) \leq \eta 2^{-j}$

$$\left\| \max_{s,t \in \mathcal{T}_{k+1}} |(X_s - X_{s_0}) - (X_t - X_{t_0})| \right\|_{\psi} \leq 2 \sum_{j=0}^k \left\| \max |X_u - X_v| \right\|_{\psi}$$

$$\left\| \max_{1 \le i \le m} X_i \right\|_{\psi} \le K \psi^{-1}(m) \max_{1 \le i \le m} \|X_i\|_{\psi}$$

• 
$$|T_j| \le D(\eta 2^{-j}, d)$$
  
•  $d(t_j, t_{j+1}) \le \eta 2^{-j}$ 

• 
$$d(t_j, t_{j+1}) \leq \eta 2^{-j}$$

$$\left\| \max_{s,t \in \mathcal{T}_{k+1}} |(X_s - X_{s_0}) - (X_t - X_{t_0})| \right\|_{\psi} \le 2 \sum_{j=0}^{k} K \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \max \|X_u - X_v\|_{\psi}$$

- $\bullet |T_j| \leq D(\eta 2^{-j}, d)$
- $\bullet \ d(t_j,t_{j+1}) \leq \eta 2^{-j}$

$$\begin{split} \left\| \max_{s,t \in \mathcal{T}_{k+1}} \left| \left( X_s - X_{s_0} \right) - \left( X_t - X_{t_0} \right) \right| \right\|_{\psi} \leq \\ 2 \sum_{j=0}^k K \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \max \left\| X_u - X_v \right\|_{\psi} \end{split}$$

$$||X_s - X_t||_{\psi} \leq C d(s, t)$$
, for every  $s, t$ 

- $\bullet |T_j| \leq D(\eta 2^{-j}, d)$
- $d(t_j,t_{j+1}) \leq \eta 2^{-j}$

$$\left\| \max_{s,t \in T_{k+1}} |(X_s - X_{s_0}) - (X_t - X_{t_0})| \right\|_{\psi} \le 2KC \sum_{j=0}^{k} \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \max d(u, v)$$

- $|T_j| \le D(\eta 2^{-j}, d)$   $d(t_j, t_{j+1}) \le \eta 2^{-j}$

$$\left\| \max_{s,t \in T_{k+1}} |(X_s - X_{s_0}) - (X_t - X_{t_0})| \right\|_{\psi} \le 2KC \sum_{j=0}^k \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \max d(u, v)$$

- $\bullet |T_j| \leq D(\eta 2^{-j}, d)$
- $d(t_j, t_{j+1}) \leq \eta 2^{-j}$

$$\left\| \max_{s,t \in T_{k+1}} |(X_s - X_{s_0}) - (X_t - X_{t_0})| \right\|_{\psi} \le K \sum_{j=0}^k \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \eta 2^{-j}$$

$$\left\| \max_{s,t \in T_{k+1}} |(X_s - X_{s_0}) - (X_t - X_{t_0})| \right\|_{\psi} \leq 2K \sum_{i=0}^k \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \eta 2^{-j-1}$$

$$\left\| \max_{s,t \in T_{k+1}} |(X_s - X_{s_0}) - (X_t - X_{t_0})| \right\|_{\psi} \le 2K \sum_{j=0}^{k} \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \eta 2^{-j-1}$$
$$\le 2K \int_{0}^{k+1} \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \eta 2^{-j-1}$$

$$\left\| \max_{s,t \in T_{k+1}} |(X_s - X_{s_0}) - (X_t - X_{t_0})| \right\|_{\psi} \le 2K \sum_{j=0}^{k} \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \eta 2^{-j-1}$$

$$\le 2K \int_0^{\infty} \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \eta 2^{-j-1} dt$$

$$\le \frac{2}{\log 2} K \int_0^{\frac{\eta}{2}} \psi^{-1} \left( D(\epsilon, d) \right) d\epsilon$$

$$\left\| \max_{s,t \in T_{k+1}} |(X_s - X_{s_0}) - (X_t - X_{t_0})| \right\|_{\psi} \le 2K \sum_{j=0}^{k} \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \eta 2^{-j-1}$$

$$\le 2K \int_{0}^{\infty} \psi^{-1} \left( D(\eta 2^{-j-1}, d) \right) \eta 2^{-j-1} dt$$

$$\le 4K \int_{0}^{\eta} \psi^{-1} \left( D(\epsilon, d) \right) d\epsilon$$

#### We want to bound

$$\left\|\sup_{d(s,t)\leq\delta}|X_s-X_t|\right\|_{\psi}$$

By  $\{X_t : t \in T\}$  being separable, we can bring it to

$$\left\| \max_{\substack{s,t,\in T_{k+1}\\d(s,t)\leq \delta}} |X_s - X_t| \right\|_{\psi},$$

letting  $k \to \infty$ .

By  $\{X_t : t \in T\}$  being separable, we can bring it to

$$\left\| \max_{\substack{s,t,\in T_{k+1}\\d(s,t)\leq \delta}} |X_s - X_t| \right\|_{\psi},$$

letting  $k \to \infty$ . Note that we have

$$\begin{aligned} |X_s - X_t| &= |(X_s - X_{s_0}) - (X_t - X_{t_0}) + X_{s_0} - X_{t_0}| \\ &\leq |(X_s - X_{s_0}) - (X_t - X_{t_0})| + |X_{s_0} - X_{t_0}| \end{aligned}$$

#### Two terms to bound

$$\left\|\max_{\substack{s,t,\in T_{k+1}\\d(s,t)\leq \delta}}\left|\left(X_s-X_{s_0}\right)-\left(X_t-X_{t_0}\right)\right|\right\|_{\psi}, \qquad \left\|\max_{\substack{s,t,\in T_{k+1}\\d(s,t)\leq \delta}}\left|X_{s_0}-X_{t_0}\right|\right\|_{\psi}$$

#### Two terms to bound

$$4K\int_0^\eta \psi^{-1}(D(\epsilon,d))d\epsilon$$

$$4K \int_0^{\eta} \psi^{-1}(D(\epsilon, d)) d\epsilon \qquad \qquad \left\| \max_{\substack{s, t, \in T_{k+1} \\ d(s, t) \leq \delta}} |X_{s_0} - X_{t_0}| \right\|_{\psi}$$

#### Two terms to bound

$$4K \int_0^{\eta} \psi^{-1}(D(\epsilon, d)) d\epsilon \qquad \left\| \max_{\substack{s,t,\in T_{k+1}\\d(s,t)\leq \delta}} |X_{s_0} - X_{t_0}| \right\|_{\psi}$$

Circular argument: For every pair of endpoints  $s_0, t_0$  of chains starting at two points  $s, t \in T_{k+1}$  with  $d(s, t) \leq \delta$ , choose exactly one pair  $s_{k+1}, t_{k+1} \in T_{k+1}$  with  $d(s_{k+1}, t_{k+1}) \leq \delta$ , whose chains end at  $s_0, t_0$ . At most  $D(\eta, d)^2$  pairs!

#### Two terms to bound

$$4K \int_0^{\eta} \psi^{-1}(D(\epsilon, d)) d\epsilon \qquad \left\| \max_{\substack{s,t,\in \mathcal{T}_{k+1} \\ d(s,t) \leq \delta}} |X_{s_0} - X_{t_0}| \right\|_{\psi}$$

Circular argument: For every pair of endpoints  $s_0$ ,  $t_0$  of chains starting at two points  $s,t\in T_{k+1}$  with  $d(s,t)\leq \delta$ , choose exactly one pair  $s_{k+1},t_{k+1}\in T_{k+1}$  with  $d(s_{k+1},t_{k+1})\leq \delta$ , whose chains end at  $s_0,t_0$ . At most  $D(\eta,d)^2$  pairs! Then we have

$$|X_{s_0} - X_{t_0}| \leq |(X_{s_{k+1}} - X_{s_0}) - (X_{t_{k+1}} - X_{t_0})| + |X_{s_{k+1}} - X_{t_{k+1}}|$$

$$\left\| \max_{\substack{s,t,\in\mathcal{T}_{k+1}\\d(s,t)\leq\delta}} |X_s-X_t| \right\|_{\psi} \leq 8K \int_0^{\eta} \psi^{-1}(D(\epsilon,d))d\epsilon + \left\| \max|X_{s_{k+1}}-X_{t_{k+1}}| \right\|_{\psi},$$

where the maximum is taken over the pairs  $s_{k+1}, t_{k+1} \in T_{k+1}$  uniquely attached to the pairs  $s_0, t_0$  as before (at most  $D(\eta, d)^2$ ).

$$\left\|\max_{\substack{s,t,\in T_{k+1}\\d(s,t)\leq \delta}}|X_s-X_t|\right\|_{\psi}\leq 8K\int_0^{\eta}\psi^{-1}(D(\epsilon,d))d\epsilon+\left\|\max|X_{s_{k+1}}-X_{t_{k+1}}|\right\|_{\psi},$$

where the maximum is taken over the pairs  $s_{k+1}$ ,  $t_{k+1} \in T_{k+1}$  uniquely attached to the pairs  $s_0$ ,  $t_0$  as before (at most  $D(\eta, d)^2$ ).

#### Lemma 2.2.2

$$\left\|\max_{1\leq i\leq m}X_i\right\|\leq K\psi^{-1}(m)\max_i\|X_i\|_{\psi}$$

$$\left\|\max_{\substack{s,t,\in T_{k+1}\\d(s,t)\leq \delta}}|X_s-X_t|\right\|_{\psi}\leq 8K\int_0^{\eta}\psi^{-1}(D(\epsilon,d))d\epsilon+K\psi^{-1}(D(\eta,d)^2)$$
 
$$\cdot \max\|X_{s_{k+1}}-X_{t_{k+1}}\|_{\psi}$$

$$\left\| \max_{\substack{s,t,\in T_{k+1}\\d(s,t)\leq \delta}} |X_s - X_t| \right\|_{\psi} \leq 8K \int_0^{\eta} \psi^{-1}(D(\epsilon,d)) d\epsilon + K\psi^{-1}(D(\eta,d)^2) \cdot C\delta$$

$$\left\| \max_{\substack{s,t,\in T_{k+1}\\d(s,t)\leq \delta}} |X_s - X_t| \right\|_{\psi} \leq K \left[ \int_0^{\eta} \psi^{-1}(D(\epsilon,d)) d\epsilon + \delta \psi^{-1}(D(\eta,d)^2) \right].$$

Let  $k \to \infty$  to finish the proof.

#### **General bound**

#### Corollary 2.2.5

The constant *K* can be chosen such that

$$\left\| \sup_{s,t} |X_s - X_t| \right\|_{\psi} \leq K \int_0^{\mathsf{diam}T} \psi^{-1}(D(\epsilon, d)) d\epsilon$$

#### **General bound**

#### Corollary 2.2.5

The constant K can be chosen such that

$$\left\|\sup_{s,t}|X_s-X_t|\right\|_{\psi}\leq K\int_0^{\mathsf{diam}T}\psi^{-1}(D(\epsilon,d))d\epsilon$$

#### **Proof**

$$\left\|\sup_{d(s,t)\leq \delta}|X_s-X_t|\right\|_{\psi}\leq K\left[\int_0^{\eta}\psi^{-1}(D(\epsilon,d))d\epsilon+\delta\psi^{-1}(D(\eta,d)^2)\right].$$

Take  $\eta = \operatorname{diam} T$ .

# **Corollary of the corrolary**

$$\left\|\sup_{t}|X_{t}|\right\|_{\psi}\leq\|X_{t_{0}}\|_{\psi}+K\int_{0}^{\operatorname{diam}\,T}\psi^{-1}(D(\epsilon,d))d\epsilon$$

### **Assumptions**

#### **Assummption Theorem 2.2.4**

- ullet Standard assumptions on  $\psi$
- $\{X_t : t \in T\}$  separable
- $||X_s X_t||_{\psi} \leq Cd(s, t)$ , for every s, t