Lista de Exercícios:

Tratabilidade

Teoria da Computação Prof^a. Jerusa Marchi

- 1. Defina Tratabilidade.
- 2. Diferencie e exemplifique problemas das classes de complexidade \mathcal{P} , \mathcal{NP} , \mathcal{NP} -Completo, \mathcal{NP} -Hard, \mathcal{EXP} , \mathcal{PS} , co- \mathcal{NP}
- 3. O que são problemas de decisão? Dê um exemplo de problema e a sua transformação para um problema de Decisão.
- 4. Por que $\mathcal{P} = \text{co-}\mathcal{P}$? Dado Π , o que é necessário fazer para obter Π^c ?
- 5. A classe \mathcal{NP} tem a propriedade de ser *verificável* em tempo polinomial. O que isso quer dizer?
- 6. Apresente um exemplo de linguagem polinomialmente equilibrada.
- 7. O problema da Satisfazibilidade Booleana é \mathcal{NP} -Completo. Descreva como é construída a prova desta asserção.
- 8. Por que é possível afirmar que $\mathcal{P} \subseteq \mathcal{NP}$ e que $\mathcal{NP} \subseteq \mathcal{EXP}$?
- 9. Qual são as implicações (teóricas e práticas) da comprovação das seguintes asserções?
 - (a) $\mathcal{P} = \mathcal{N}\mathcal{P}$
 - (b) $\mathcal{NP} = \mathcal{EXP}$
 - (c) $\mathcal{P} = \mathcal{E}\mathcal{X}\mathcal{P}$
 - (d) $\mathcal{NP} \neq co \mathcal{NP}$
- 10. O que uma redução polinomial?
- 11. Dados três problemas Π_1 , Π_2 e Π_3 . Sendo $\Pi_1 \in \mathcal{NP}$ -Completo, $\Pi_2 \in \mathit{NP}$ e $\Pi_3 \in \mathcal{P}$. Qual o significado das seguintes reduções:
 - (a) $\Pi_3 \varpropto \Pi_1$
 - (b) $\Pi_3 \varpropto \Pi_2$
 - (c) $\Pi_2 \propto \Pi_1$
 - (d) $\Pi_2 \propto \Pi_3$
 - (e) $\Pi_1 \propto \Pi_2$
 - (f) $\Pi_1 \propto \Pi_3$