Clase 12 Polarización y Energía

Sadiku, M. (2018). *Elements of Electromagnetics*. 7th Edition: pp. 498 – 505

Javier Silva Orellana

jisilva8@uc.cl

Contexto

- Nos centraremos en 2 aspectos.
- Por un lado, solo hemos tomado ejemplos donde los campos eléctrico y magnético tienen una única componente. Generalizaremos el caso.
- Por otro lado, nos hemos limitado a estudiar la geometría y la forma en la que se propagan las ondas, pero no hemos considerado la energía de estas.

Objetivos de Aprendizaje involucrados:

• OA-11: Determinar las expresiones correspondientes a ondas eléctricas, magnéticas y potencia asociada para condiciones de propagación libre en distintos tipos de medios.

Contenidos

- Polarización
- Energía en Ondas EM
- Teorema de Poynting
- Valores instantáneos y RMS
- Energía e Impedancia

• En clases anteriores vimos el caso de ondas con una única componente.

$$\mathbf{E}(z,t) = \mathbf{E_0}\cos(\omega t - \beta z + \theta_0) \mathbf{a}_x$$

 Si agregamos una segunda componente de igual o distinta magnitud, pero que está en fase, entonces:

$$\begin{bmatrix} \mathbf{E}_{\mathbf{x}}(z,t) \\ \mathbf{E}_{\mathbf{y}}(z,t) \end{bmatrix} = \begin{bmatrix} \mathbf{E}_{0x} \\ \mathbf{E}_{0y} \end{bmatrix} \cos(\omega t - \beta z + \theta_0) = \begin{bmatrix} E_{0x}E_x \\ E_{0y}E_y \end{bmatrix}$$

• Y se cumple que:

$$E_{x} = \left(\frac{E_{0x}}{E_{0y}}\right) E_{y}$$

• Esto se denomina polarización lineal.

• Si las amplitudes en ambas componentes son iguales y están desfasadas por un múltiplo impar de $\pi/2$ entonces:

$$\begin{bmatrix} E_{x}(z,t) \\ E_{y}(z,t) \end{bmatrix} = E_{0} \begin{bmatrix} \cos(\omega t - \beta z + \theta_{0x}) \\ \cos(\omega t - \beta z + \theta_{0y}) \end{bmatrix} = \begin{bmatrix} E_{0}E_{x} \\ E_{0}E_{y} \end{bmatrix}$$

• Y se cumple que:

$$\left(\frac{E_x}{E_0}\right)^2 + \left(\frac{E_y}{E_0}\right)^2 = 1$$

- Esto se conoce como polarización circular.
- En este caso, dependiendo de cómo se de el desfase, tenemos polarización con rotación hacia la izquierda (LHCP) y derecha (RHCP).

 Si los valores de amplitud son distintos, tendremos una polarización elíptica, donde:

$$\begin{bmatrix} E_x(z,t) \\ E_y(z,t) \end{bmatrix} = \begin{bmatrix} E_{0x}\cos(\omega t - \beta z + \theta_{0x}) \\ E_{0y}\cos(\omega t - \beta z + \theta_{0y}) \end{bmatrix} = \begin{bmatrix} E_{0x}E_x \\ E_{0y}E_y \end{bmatrix}$$

$$\left(\frac{E_x}{E_{0x}}\right)^2 + \left(\frac{E_y}{E_{0y}}\right)^2 - 2\left(\frac{E_x}{E_{0x}}\right)\left(\frac{E_y}{E_{0y}}\right)\cos(\theta_{0x} - \theta_{0y}) = \sin^2(\theta_{0x} - \theta_{0y})$$

 Del mismo modo, tenemos polarización con rotación hacia la izquierda (LHEP) y derecha (RHEP).

• Como mencionamos en clases anteriores, las ondas transportan energía.

• Empleando las Ecuaciones de Maxwell, podemos deducir la tasa de cambio de esa energía en el tiempo.

• Tomemos la ecuación:
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\mathbf{H} \cdot (\mathbf{\nabla} \times \mathbf{E}) = -\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t}$$

Análogamente:

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\mathbf{E} \cdot (\mathbf{\nabla} \times \mathbf{H}) = \mathbf{E} \cdot \mathbf{J} + \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t}$$

Restamos las 2 ecuaciones obtenidas:

$$\mathbf{H} \cdot (\mathbf{\nabla} \times \mathbf{E}) - \mathbf{E} \cdot (\mathbf{\nabla} \times \mathbf{H}) = -\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} - \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} - \mathbf{E} \cdot \mathbf{J}$$

$$\mathbf{E} \cdot (\mathbf{\nabla} \times \mathbf{H}) - \mathbf{H} \cdot (\mathbf{\nabla} \times \mathbf{E}) = -\mathbf{H} \cdot \frac{\partial (\mu \mathbf{H})}{\partial t} - \mathbf{E} \cdot \frac{\partial (\varepsilon \mathbf{E})}{\partial t} - \mathbf{E} \cdot (\sigma \mathbf{E})$$

$$\mathbf{\nabla} \cdot (\mathbf{E} \times \mathbf{H}) = -\mu \mathbf{H} \cdot \frac{\partial \mathbf{H}}{\partial t} - \varepsilon \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t} - \sigma E^{2}$$

• Notemos que: $\frac{\partial A^2}{\partial t} = 2A \frac{\partial A}{\partial t} \iff A \frac{\partial A}{\partial t} = \frac{1}{2} \frac{\partial A^2}{\partial t}$

Aplicando la observación anterior:

$$\nabla \cdot (\mathbf{E} \times \mathbf{H}) = -\mu \frac{1}{2} \frac{\partial H^2}{\partial t} - \varepsilon \frac{1}{2} \frac{\partial E^2}{\partial t} - \sigma E^2$$

$$\nabla \cdot (\mathbf{E} \times \mathbf{H}) = -\frac{\partial}{\partial t} \left[\frac{\varepsilon E^2}{2} + \frac{\mu H^2}{2} \right] - \sigma E^2$$

• Integramos en torno a un volumen:

$$\int_{V} \mathbf{\nabla} \cdot (\mathbf{E} \times \mathbf{H}) \ dV = -\frac{\partial}{\partial t} \int_{V} \left[\frac{\varepsilon E^{2}}{2} + \frac{\mu H^{2}}{2} \right] dV - \int_{V} \sigma E^{2} \ dV$$

Aplicamos Teorema de Divergencia:

$$\oint_{S} (\mathbf{E} \times \mathbf{H}) \cdot d\mathbf{S} = -\frac{\partial}{\partial t} \int_{V} \left[\frac{\varepsilon E^{2}}{2} + \frac{\mu H^{2}}{2} \right] dV - \int_{V} \sigma E^{2} dV$$

• Y definiremos el **vector de Poynting** como:

$$\mathcal{P} = \mathbf{E} \times \mathbf{H}$$

Teorema de Poynting

• Reordenando la expresión, tenemos el Teorema de Poynting:

$$\frac{\partial}{\partial t} \int_{V} \left[\frac{\varepsilon E^{2}}{2} + \frac{\mu H^{2}}{2} \right] dV = -\oint_{S} \mathcal{P} \cdot d\mathbf{S} - \int_{V} \sigma E^{2} \ dV$$

Tasa de cambio de la energía total para el campo EM dentro de V

Flujo de energía que abandona el volumen V

Pérdidas óhmicas debido a que el campo ejerce trabajo sobre las cargas al interior del volumen V

- Volvamos por hoy al caso de materiales no conductores.
- Hasta ahora solo hemos trabajado con valores de tipo instantáneo. Es decir, valores del tipo:

$$\mathbf{E}(\mathbf{r}, t) = \mathbf{E_0} \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \theta_0)$$

- Esto es verdaderamente molesto, pues necesitamos conocer para cada instante de tiempo el valor del campo.
- En la práctica, esto es infactible.

• Sería ideal tener un valor "promedio". Como si la sinusoide en realidad fuera un valor constante todo el tiempo.

• ¡Una primera alternativa sería usar directamente el promedio!

$$\bar{E} = \frac{1}{T} \int_0^T E_0 \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \theta_0) dt$$

• Sería ideal tener un valor "promedio". Como si la sinusoide en realidad fuera un valor constante todo el tiempo.

- ¡Una primera alternativa sería usar directamente el promedio!
- Pero sabemos que en un periodo de sinusoide

$$\bar{E}=0$$

• Una alternativa es emplear el valor eficaz o RMS.

• Este se define como la raíz del promedio de cuadrados (*Root Mean Square*).

$$E_{RMS} = \langle E \rangle = \sqrt{\frac{1}{T} \int_0^T E_0^2 \cos^2(\omega t - \mathbf{k} \cdot \mathbf{r} + \theta_0) dt}$$

Realicemos el cálculo:

$$\langle E \rangle = \sqrt{\frac{E_0^2}{T}} \int_0^T \cos^2(\omega t - \mathbf{k} \cdot \mathbf{r} + \theta_0) dt$$

$$\langle E \rangle = \sqrt{\frac{E_0^2}{T} \int_0^T \frac{1 - \cos(2\omega t - \mathbf{k} \cdot \mathbf{r} + \theta_0)}{2} dt} = \sqrt{\frac{E_0^2}{2T} \int_0^T 1 dt} = \sqrt{\frac{E_0^2}{2T}} T$$

$$\langle E \rangle = \frac{E_0}{\sqrt{2}}$$

 De este modo, el valor RMS nos permite hacer más sencillos los cálculos, pues podemos despreocuparnos de la componente temporal.

$$\langle E \rangle = \frac{E_0}{\sqrt{2}} \qquad \langle H \rangle = \frac{H_0}{\sqrt{2}}$$

• Del Teorema de Poynting notamos unas expresiones familiares:

$$\frac{\partial}{\partial t} \int_{V} \left[\frac{\varepsilon E^{2}}{2} + \frac{\mu H^{2}}{2} \right] dV = -\oint_{S} \mathcal{P} \cdot d\mathbf{S} - \int_{V} \sigma E^{2} \ dV$$

• Los términos destacados corresponden a las densidades de energía del campo eléctrico y magnético.

 Podemos reescribir dichas densidades de energía empleando los valores RMS que vimos anteriormente:

$$\langle w_E \rangle = \frac{\varepsilon \langle E \rangle^2}{2}$$

$$\langle w_H \rangle = \frac{\mu \langle H \rangle^2}{2}$$

$$\langle w_E \rangle = \frac{\varepsilon E_0^2}{4}$$

$$\langle w_H \rangle = \frac{\mu H_0^2}{4}$$

 Notemos qué ocurre al calcular la razón entre las densidades de energía:

$$\frac{\langle w_E \rangle}{\langle w_H \rangle} = \frac{\varepsilon E_0^2}{\mu H_0^2} = \frac{\varepsilon E_0^2}{\mu \frac{B_0^2}{\mu^2}} = \mu \varepsilon \frac{E_0^2}{B_0^2} = \mu \varepsilon u^2 = \mu \varepsilon \left(\frac{1}{\sqrt{\mu \varepsilon}}\right)^2$$

$$\frac{\langle w_E \rangle}{\langle w_H \rangle} = 1$$

• De modo que la energía se comparte **a partes iguales** entre ambos campos.

• Anteriormente definimos el vector de Poynting como:

$$\mathcal{P} = \mathbf{E} \times \mathbf{H}$$

 Adicionalmente, la clase pasada definimos la impedancia del medio como:

$$\eta = \frac{E_0}{H_0}$$

• Luego:

$$\mathbf{\mathcal{P}} = \mathbf{E} \cdot \frac{\mathbf{H}}{\eta} \mathbf{a}_k = \frac{E^2}{\eta} \mathbf{a}_k = \eta H^2 \mathbf{a}_k$$

• Estas expresiones corresponden al **flujo instantáneo** de energía por unidad de tiempo que atraviesa perpendicularmente una superficie:

$$\mathbf{\mathcal{P}} = \frac{E^2}{\eta} \mathbf{a}_k \qquad \qquad \mathbf{\mathcal{P}} = \eta H^2 \mathbf{a}_k$$

• Empleando nuevamente los valores RMS, podemos definir el **flujo promedio** de energía:

$$\langle \mathbf{\mathcal{P}} \rangle = \frac{E_0^2}{2\eta} \mathbf{a}_k \qquad \qquad \langle \mathbf{\mathcal{P}} \rangle = \frac{\eta H_0^2}{2} \mathbf{a}_k$$

• Equivalentemente, podemos reescribir este flujo en términos de la energía promedio:

$$\langle \mathbf{\mathcal{P}} \rangle = \frac{E_0^2}{2\eta} \mathbf{a}_k \qquad \langle w_E \rangle = \frac{\varepsilon E_0^2}{4}$$

$$\langle \mathbf{\mathcal{P}} \rangle = \frac{2\langle w_E \rangle}{\varepsilon \eta} \mathbf{a}_k = \frac{\langle w_E + w_E \rangle}{\varepsilon \sqrt{\frac{\mu}{\varepsilon}}} \mathbf{a}_k = \langle w_E + w_H \rangle \sqrt{\frac{1}{\varepsilon \mu}} \mathbf{a}_k$$

$$\langle \mathbf{\mathcal{P}} \rangle = \langle w \rangle \, \mathbf{u}$$

Resumen

- Analizamos el balance de energía para una onda EM, y logramos deducir el Teorema de Poynting.
- Definimos el valor RMS como una alternativa para trabajar las ondas en términos de valores promedio.
- En base al valor RMS, redefinimos las formulaciones para la energía y analizamos su comportamiento para los campos EM en medios no conductores.

Cerrando la clase de hoy

 Con el análisis realizado, solamente nos falta extendernos otra vez al caso de materiales conductores.

Próxima Clase (16/Abril):

Ondas en Conductores

Bibliografía:

Sadiku, M. (2018). *Elements of Electromagnetics*. 7th Edition: pp. 489 – 498