Complement the proof of soundness and completeness of propositional logic by proving the following cases:

For soundness proof, complete the proof of the following proof rule cases:

• ∧ *e*1

It must be the case that some formula X1/X2 appears in the proof, with XK=X1. The formula X1/X2 have shorter proofs and therefore, using the hypothesis, it have the truth value T. Using the truth table for Λ , we conclude that the truth value of XK is T(X1)

• \wedge e2

It must be the case that some formula X1/X2 appears in the proof, with Xk=X2. The formula X1/X2 have shorter proofs and therefore, using the hypothesis, it have the truth value T. Using the truth table for Λ , we conclude that the truth value of Xk is T (X2)

Te:重

It must be the case that some formula \bot appears in the proof. The proof of \bot is shorter hence, according to the induction hypothesis, \bot is true. According to the truth table of \bot , every formula is always true. So We condude that the truth value of $x \ge 7$.

There must be some pair (di, L) where i < k i.e. Γ , $di \vdash L$. According to the induction hypothesis, Γ , $di \vdash L$. Since L is always F, there must be some contradiction in Γ , di. According to the definition of Le, $dk \geq di$. Thus Γ , dk is a contradiction, which means Γ , $dk \models \Phi$. Thus Xk is T

77: 0

• ¬i

It must be the case that some formula XI appears in the proof, and $Xk={}^7XI$ and that we have one box with assumptions XI and anclusion \bot

The proof of XI is shorter hence, according to the induction hypothesis, it has a track value of T.

Then the assumption X_1 of the box is true, using the induction hypothesis, its conclusion \bot is true.

and according to the truth table of \bot , we conclude that the truth table of XK is true

It must be the case that some formula

\[\text{77}\frac{1}{2} \]

\[\text{X1 appears in the proof, and } \text{xk} = \text{77}\times_1 \]

\[\text{The proof of } \times_1 \text{ is show ter hence according} \]

\[\text{to the induction hypothesis, it has a truth value of T \]

\[\text{According to truth table of } \text{7, } \text{xa} & \text{77}\times_1 \text{ is T.} \]

\[\text{Using the induction hypothesis, we conclude that the truth value of } \text{xk is T} \]

• \(\mu i1 \)

It must be the case that some formular X_1 appears in the proof, and $X_K = X_1 V X_2$.

The proof of x_1 is shorter hence according to the induction hypothesis, it has a truth value of T.

According to truth table of V, X_1VX_2 is true, Using the induction hypothesiss, we conclude that the truth value of X_k is T

It must be the case that some formular X_2 appears in the proof, and $X_K = X_1 \vee X_2$.

The proof of XZ is shorter hence according to the induction hypothesis, it has a truth value of T.

According to truth table of V, X_1VX_2 is true, Using the induction hypothesiss, we conclude that the truth value of X_k is T

 $\bullet \rightarrow i$

更 ラヤ

It must be the case that some formular x_1 appears in the proof, and that we have one box with assumptions

 χ_1 and conclusion χ_2 , and $\chi_k = (\chi_1 \rightarrow \chi_2)$

The proof of XI is shorter honce according to the induction hypothesis, it has a truth value of T.

Then, the assumption X_1 of the box is true, and using the inaution hypothesis, its condusion X_2 has the truth value T.

Actording to the truth table of -> , we conclude that XK is T

It must be the case that some formular $X_1, X_1 \rightarrow X_2$ appears in the proof, and $X_1 = X_2$.

The proof of $X_1, X_1 \rightarrow X_2$ is shorter hance X_1 is T, $X_1 \rightarrow X_2$ is T. According to the truth table of \rightarrow , we conclude that X_2 is T. Hence $X_1 \rightarrow X_2 \rightarrow X_2$ is $X_1 \rightarrow X_2 \rightarrow X_2 \rightarrow X_1 \rightarrow X_2 \rightarrow X_2 \rightarrow X_2 \rightarrow X_2 \rightarrow X_2 \rightarrow X_1 \rightarrow X_2 \rightarrow X_$

电 建型

It must be the case that some formula $X_1, ^7X_1$ appears in the proof, and $X_K = 1$.

The formulas $X_1, ^2x_1$ have shorter proofs, and using induction hypothesis, x_1 and 2x_1 have the truth value T.

According to the truth table of 7, we conclude XI is F which contradicts with XI have the truth value T.

According to the fruth value of I, we conclude I is T. Hence XK has the truth value of T

For completeness proof, complete the proof of the following cases:

更入立 一豆 V型2 natural deduction

1 II A Iz premise

2 <u>F</u>1 /e1

3 引V型 Vii

2.

可入了到 上型V至

1 PIN I Premise

2 B1 101

3 到V更2 Vii

• 3.

つ可入立と 到し立

ノ つ引入更2 Premise

マ 豆2 作2

3 東IV里2 Vi2

4.

5.

• 7.

• 9.