Log Linearization Practice Problems

Log-linearize the following equations (greek letters are fixed parameters):

- 1. $f(x) + f(y) = \alpha$ around (X^*, Y^*) satisfying the equation.
- 2. $W = \theta C/(1-N)$ around (W^*, C^*, N^*) satisfying the equation
- 3. $W = (1 \alpha) \left(\frac{K}{N}\right)^{\alpha}$ around (W^*, K^*, N^*) satisfying the equation
- 4. $\left(\frac{A}{B}\right)^{-\alpha} = \beta C$ around (A^*, B^*, C^*) satisfying the equation
- 5. $S = (1 \delta)K + K^{\alpha}N^{1-\alpha} C$ around (S^*, K^*, N^*, C^*) satisfying the equation
- 6. $Y = \sum_{i=1}^{N} \alpha_i X_i$ around $(Y^*, X_1^*, ..., X_N^*)$ satisfying the equation
- 7. $Y = \sum_{i=1}^{N} X_i^{\beta_i}$ around $(Y^*, X_1^*, ..., X_N^*)$ satisfying the equation
- 8. $A = (1 + \alpha B^{\epsilon}) \left(\frac{C}{D}\right)^{-\beta}$ around (A^*, B^*, C^*, D^*) satisfying the equation.
- 9. The system of equations:

$$C_t^{-\sigma} = \beta \left(1 + \alpha K_{t+1}^{\alpha - 1} - \delta \right) C_{t+1}^{-\sigma}$$

$$K_t^{\alpha} = K_{t+1} - (1 - \delta) K_t + C_t$$

around the steady state $K_t = K_{t+1} = K^*$, $C_t = C_{t+1} = C^*$.