8장 | 내포 효과 (NESTED EFFECT) 모형

SAS를 이용한 실험 계획과 분산 분석 (자유아카데미)

교차 요인

- 실험의 조건을 결정하는 요인(factor)의 수준이 다른 요인의 수준과 관계없이 일정하게 정의될 때, 이 두 요인을 교차요 인(crossed factor)라고 한다.
- A, B 두 요인이 교차요인이면 다음과 같은 실험조건이 형성 된다.

	A1	A2
B1	(A1, B1)	(A2,B1)
B2	(A1,B2)	(A2,B2)

• (예) A=온도, B=압력

내포 요인

- 실험의 조건을 결정하는 요인(B)의 수준이 다른 요인(A)의 수준에 따라 성질이 바뀌게 정의된다.
- B 요인은 A요인에 내포되었다 (B is nested within A)
- B 요인은 내포요인(nested factor)라고 한다.

• B1(A1) 와 B1(A2) 는 서로다른 실험조건

내포 요인

- 내포설계(nested design)라고 하기도 한다.
- 전체 구조가 나무가지가 자라는 모양이라고 해서, `지분 설계'라고도 한다.
- 피라밋과 같은 상위구조를 갖는다고 해서 '계층설계 (hierarchical design)' 라고도 한다.

내포 모형의 예

• 요인의 수준을 일정하게 유지하기 힘든 경우 A = 오븐의 종류, B=화력 (강/약/중간) 2단계 랜덤화를 통해 학생표본을 추출할 경우 A=대학교, B=학과 한국외 계명대 경제학 통계학 통계학 영어과 과 과

내포 모형의 예

돼지 사육자가 돼지 사료의 종류에 따라 아기 돼지의 체중증가량이 같은지/다른지 알아보고 싶다고 가정하자. 돼지 사료의 종류가 A1, A2이고, A1 사료를 주는 돼지 사육장을 두 군데 선정하여 B1, B2라 하고, A2사료를 주는 사육장을 두 군데 선정하여 B1, B2라고 하자. 이 경우 두 개 사육장을 B1, B2라고 표기했지만 사실 A1사료를 사용하는 첫 번째 사육장 B1과 A2사료를 사용하는 첫 번째 사육장 B1은 서로 다른 사육장이고 편의상 B1으로 같게 표기한 것이다. 따라서 실험에 참가한 4개 사육장은 실제로는 B1(A1), B2(A1), B1(A2), B2(A2)가 되어 사육장의 종류(B요인)는 사료의 종류(A요인)에 내포(nested)된 형태가 된다.

내포모형의 모형식

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk}$$
, 교치 유인
$$y_{ijk} = \mu + \alpha_i + \beta_{j(i)} + \epsilon_{ijk}$$
 내포요인
$$\sum_{i=1}^n \alpha_i = 0$$

$$\sum_{j=1}^b \beta_{j(i)} = 0$$

$$\epsilon_{ijk} \sim \text{i.i.d. } N(0, \sigma^2)$$
proc glm data=a; class A B; model y=A B(A) /test; run;

내포모형의 분산 분석표

Source	d.f.	SS	MS	F_0
A	a-1	SSA	MSA	$\frac{\text{MSA}}{\text{MSE}}$
B(A)	b-1	SSB	MSB(A)	$\frac{\text{MSB}(A)}{\text{MSE}}$
Error	ab(n-1)	SSE	MSE	
Total	abn-1	SST		

내포모형의 ANOVA

	SS		source	df	SS
a-1	SSA		Α	a-1	SSA
b-1	SSB		B(A)	a(b-1)	SSB(A)
(a-1)(b-1)	SSAB				
ab(n-1)	SSE		Error	ab(n-1)	SSE
abn-1	SST		Total	abn-1	SST
	b-1 (a-1)(b-1) ab(n-1)	b-1 SSB (a-1)(b-1) SSAB ab(n-1) SSE	b-1 SSB (a-1)(b-1) SSAB ab(n-1) SSE	b-1	b-1

예

• 학교나 담임선생님에 따라 학생들의 모의고사 성적이 차이가 나는지 알아보기 위해 임의로 세개의 학교를 선정하고 (AI,A2,A3), 각 학교에서 임의로 2개의 반을 선정하였다 (BI,B2). 모의고사 후 각 반에서 3명의 학생에 대한 성적을 조사한 결과 다음의 표와 같다.

A1		A2		A3	
В1	B2	B1	B2	B1	B2
20	19	14	12	13	9
18	20	18	12	16	4
14	20	14	9	13	4

예

제곱합을 계산하면

$$\begin{aligned} &\mathrm{SST} = \sum_{i=1}^{3} \sum_{j=1}^{2} \sum_{k=1}^{3} y_{ijk}^{2} - \frac{y_{...}^{2}}{18} = 428.500 \\ &\mathrm{SSA} = \sum_{i=1}^{3} \frac{y_{i..}^{2}}{6} - \frac{y_{...}^{2}}{18} = 229.333 \\ &\mathrm{SSB} = \sum_{j=1}^{2} \frac{y_{.j.}^{2}}{9} - \frac{y_{...}^{2}}{18} = 53.388 \\ &\mathrm{SSAB} = \sum_{i=1}^{3} \sum_{j=1}^{2} \frac{y_{ij.}^{2}}{3} - \sum_{i=1}^{3} \frac{y_{i..}^{2}}{6} - \sum_{j=1}^{2} \frac{y_{.j.}^{2}}{9} + \frac{y_{...}^{2}}{18} = 87.111 \\ &\mathrm{SSE} = \mathrm{SST} - \mathrm{SSA} - \mathrm{SSB} - \mathrm{SSAB} = 58.666 \end{aligned}$$

가 되는데

$$SSB(A) = SSB + SSAB = 140.500$$

	Parameter and the same and the		
d.f.	SS	MS	F_0
2	229.333	114.666	2.448
3	140.500	46.833	9.58**
12	58.666	4.888	
17	428.500		
	2 3 12	2 229.333 3 140.500 12 58.666	2 229.333 114.666 3 140.500 46.833 12 58.666 4.888

예 (다중검정)

```
proc glm data=a;
  class School Class;
  model Y = School Class(School);
  random School Class(School) / test;
  lsmeans Class(School) / adjust=tukey lines;
run;
```

예 (다중검정)

	COUNTRY STATE	son Lines for Leas			
	L5-means w	y LSMEAN	class	school	LSMEAN Number
	Α	19.666667	B2	A1	2
	A				
	А	17.333333	B1	A1	1
	A				
В	A	15.333333	B1	A2	3
В	Α				
В	Α	14,000000	B1	A3	5
В					
в с	С	11.000000	B2	A2	4
	С				
	C	5,666667	82	A3	6