Def Explan

$$X \sim N(0,1)$$
 Let $W \stackrel{d}{\sim} Below condition$
 $\Rightarrow P(W=1) = \frac{1}{2}$
 $\Rightarrow W \perp X$
 $\Rightarrow z = WX$

$$Z \sim N(0,1)$$
 (conjude mgf of Z using $E(E[e^{tz}(w)] = E(e^{tz})$

is my Normal? (X, Z) N N (M, o2)

Show a vector at
$$(\frac{x}{2})$$
 is not normally distributed the a= $(\frac{1}{2})$ then

$$0^T = \begin{pmatrix} x \\ z \end{pmatrix} = x+Z = x + wx = (l+w)x$$

How to Show X + Z 15 NOT normal?

$$P(X+Z=0) = P(W=-1) = \frac{1}{2}$$
 $P(X+Z>0) = P(W=1, X70)$
 $P(X>0) = \frac{1}{2}$

1. $X+Z$ is not normal RV.

How to Construct MutiRandom Vor! able normal,

THM:

Theorem 4.6. Let $Z_1, Z_2 \stackrel{iid}{\sim} \mathcal{N}(0,1)$. Then, the bivariate random variable (X,Y) defined by $X \doteq \sigma_X Z_1 + \mu_X$, $Y \doteq \sigma_Y (\rho Z_1 + \sqrt{1 - \rho^2} Z_2) + \mu_Y$, follows a $\mathcal{N}_2(\boldsymbol{\mu}, \Sigma)$ distribution, where

$$\boldsymbol{\mu} = (\mu_X, \mu_Y), \quad \Sigma = \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix}.$$

Theorem 4.7. Suppose that (X, Y) are jointly normal. Then X and Y are independent if and only if Cov(X, Y) = 0.

Browlan Bridge

Pf: if X U Y CON (X,Y):

$$= 0$$

$$= \sum_{x \in X} (x) = (x) = (x) = (x)$$

$$= \sum_{x \in X} (x) = (x) = (x) = (x)$$

$$= \sum_{x \in X} (x) = (x) = (x) = (x)$$

Suppose COV (x, y)=0

Denote mean vector (x y) by (ux, My)

Syma -> E by (o Gy)

$$Z_1, Z_2$$
 $\stackrel{iid}{\sim} N(0,1)$ define
 $\bar{X} = G_X Z_1 + M_X$
 $\bar{Y} = G_Y Z_2 + M_Y$

THM \Rightarrow $(\overline{X},\overline{Y}) \stackrel{d}{=} (x, y)$

Proposition 4.8. Let $X \sim \mathcal{N}_d(\boldsymbol{\mu}, \Sigma)$, and let $A \in \mathbb{R}^{n \times d}$ be a deterministic matrix. Then, $AX \sim \mathcal{N}_n(A\boldsymbol{\mu}, A\Sigma A^T)$.

=> Linear Transformation of MUN is Ms. MUN.

Definition 4.9. An \mathbb{R} -valued stochastic process $\{W_t\} = \{W_t\}_{t \geq 0}$ is said to be a **standard Brownian** motion (SBM) or Wiener process if:

- (1) The increments of $\{W_t\}$ are stationary and independent.
- (2) For each $t \ge 0$, $W_t \sim \mathcal{N}(0, t)$.
- (3) $\mathbb{P}(W_t \text{ is continuous at all } t \geq 0) = 1$. Coutin ous Cample Poth Property

hes Continous State Space, Continous Everynlese but not PP State space = discrete differniable

Is there a Stochastic Process Satisfy all 3 properties? There (5 to Process SX+3 Satisfyl) mil 3 properties.

B SXt IId RVS

B yor (xt) 70

@ P(xt is a Cont @ all t>0)=1

Simple Random Walk W/ {Xi} /id P(Xi=1) = P(Xi=-1) = {

D'screte Continous

CLT: Sn & NLO, n)

pourt nous

Xt: Connected 5m

n Jumps in [0,1]

Fach W/ She: In