

AE 240, AE 240M & AE 713

Slot No. 3

Monday – 1035 to 1130

Tuesday – 1135 to 1230

Thursday – 0830 to 0925

Venue

Virtual

Instructor

Ashok Joshi

Introduction to the Subject

Space Fundamentals

Space has always been of keen **interest** to mankind as it is believed to **contain** information relevant to formation, existence and **continued** sustenance of our planet.

In this regard, **astrophysics**, which is an important **space science**, employs the principles of **physics** and **chemistry** to provide information about **nature** of space & objects.

Similarly, **astronomy**, an old natural **science**, provides information about **origin & evolution** of celestial objects e.g. planets, stars, galaxies etc. using **observed** data.

Concept of Space Exploration

However, as **terrestrial** instruments e.g. telescopes, have a **limited** reach, there is a limitation on the **amount** and quality of information **accessed** through such means.

Further, many **Earth** related activities e.g. communication, etc. **also** are also found to be **better** performed with instruments positioned at higher **altitudes**.

These have **resulted** in the concept of space-based **objects** to address both the terrestrial as well as **exploration** needs.

Course Plan

Broad Course Objectives

To **understand** fundamental principles governing **ascent** mission design including **configuration** design of launch vehicles.

To provide **exposure** to basic concepts of spacecraft **orbital** mechanics and interplanetary **travel**.

To **highlight** issues concerning entry/reentry phase and strategies to address these.

Ascent Trajectory

Introduction: Space missions and role of launch vehicles and spacecraft.

Ascent Mission: Objectives, mathematical models, rectilinear motion, effect of gravity and aerodynamic drag on the mission performance, gravity turn concept.

Rocket Configuration

Multi-staging: Basic concept, series staging formulation and solution, optimal staging concept, strategy and benefits of parallel staging.

Special Topics: Air-breathing and photonic rocket concepts, Rocket attitude stability and jet damping effect.

Spacecraft Orbital Mechanics

Orbits: Two-body problem & Kepler's laws, orbits from initial conditions, types of orbits, orbits in geographical context.

Operations & Manoeuvres: Orbit raising, Hohmann and low thrust transfers, orbit inclination / perigee change, fast transfers and launch window concepts, rendezvous and docking manoeuvres.

Inter-planetary and Reentry Missions

Interplanetary Missions: Interplanetary motion basics, non-Keplerian formulation and restricted three-body problem, departure and arrival solutions, gravity assist trajectories.

Reentry Mission: Concept of re-entry, orbit decay solution, ballistic, lifting and other reentry concepts.

Texts / References

Thompson, 'Introduction to Space Dynamics', Dover Publications, New York, 1986.

Hale, 'Introduction to Space Flight', Prentice Hall, 1994.

Wiesel, 'Spaceflight Dynamics', McGraw-Hill, 1997.

Curtis, 'Orbital Mechanics for Engineering Students', 2nd Ed., Elsevier, 2010.

Walter, 'Astronautics: The Physics of Space Flight', Wiley-VCH, 2012.

Pre-requisites

Course does not have any formal pre-requisites.

However, good **familiarity** with basic Newtonian **mechanics** and mathematical / numerical **techniques** for solving differential equation, is **desirable**.

Further, some **understanding** of basic aerodynamics and **propulsion**, as applicable to space vehicles, will be **useful**.

Evaluation & Attendance Policies

1 Assignment - 20% (Written, Viva, Upload on Moodle)

2 Quizzes - 20% (Written, Upload on Moodle)

Mid-semester - 20% (Written, Upload on Moodle)

Class Tests - 20% (MCQ, Through Moodle)

End-semester - 20% (**Written**, Upload on Moodle)

No DX grade

Audit based on minimum passing marks.

Compensation Policy

Missed class tests will **not** be compensated. However, only best **80%** of all class tests will be **counted** towards the 20% weightage.

Missed quizzes & mid-semester, for medical and other compelling reasons e.g. long duration internet glitches, power cuts etc., will be compensated as deemed fit.

Compensation for missed **end-semester** will be as per the institute **rule**.

Course Delivery Mechanism

Course will be **conducted** mainly through **Moodle**.

Lecture **slides** pertaining to each **week** will be uploaded on Moodle at the **start** of the week.

Class hours will be used for **discussion** on lectures, clarifications of **doubts**, problem solving and class tests.

Google Meet will be used as the VC platform for class hours, whose recordings would be available through link posted on Moodle.

All exams, including class **tests**, will be proctored.