Álgebra Lineal - Clase 2

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Sistemas de generadores.
- ► Independencia lineal.
- Bases y dimensión.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 1 (Sección 1.3).

Más ejemplos de subespacios

Proposición

Sea V un K-espacio vectorial, y sean S y T subespacios de V. Entonces $S \cap T$ es un subespacio de V.

Demostración.

- i) $0 \in S$ y $0 \in T \Rightarrow 0 \in S \cap T$.
- ii) $v, w \in S \cap T \Rightarrow v \in S$, $v \in T$, $w \in S$ y $w \in T$. $v, w \in S$ subespacio $\Rightarrow v + w \in S$. Idem, $v + w \in T$. $\Rightarrow v + w \in S \cap T$.
- iii) Sean $\lambda \in K$ y $v \in S \cap T$. $v \in S \cap T \Rightarrow v \in S$ y $v \in T$. $\lambda \in K$, $v \in S$ subespacio $\Rightarrow \lambda \cdot v \in S$. Idem, $\lambda \cdot v \in T$. $\Rightarrow \lambda \cdot v \in S \cap T$.

Observación.

S y T subespacios $\not\Rightarrow S \cup T$ subespacio.

Ejemplos.

► $S = \{x = (x_1, ..., x_n) \in K^n \mid Ax = 0\}$ con $A \in K^{m \times n}$ es un subespacio de K^n (conjunto solución de un sistema lineal homogéneo de m ecuaciones con n incógnitas): si $A = (a_{ii})_{1 \le i \le m, 1 \le i \le m}$, entonces $S = \bigcap_{i=1}^m S_i$ con

▶ $K_n[X] = \{ f \in K[X] \mid f = 0 \text{ o } gr(f) \leq n \}, n \in \mathbb{N}_0$, es un subespacio de K[X]:

 $S_i = \{x \in K^n \mid a_{i1}x_1 + \cdots + a_{in}x_n = 0\}$ subespacio.

- i) $0 \in K_n[X]$.
- ii) Sean $f, g \in K_n[X]$. Si f = 0, g = 0 o f + g = 0, entonces $f + g \in K_n[X]$ \checkmark . Si no, $gr(f + g) < max(gr(f), gr(g)) < n \Rightarrow f + g \in K_n[X]$.
- Si no, $\operatorname{gr}(f+g) \leq \max(\operatorname{gr}(f),\operatorname{gr}(g)) \leq n \Rightarrow f+g \in K_n[X].$ iii) Sean $\lambda \in K$ y $f \in K_n[X]$. Si $\lambda = 0$ o f = 0, $\lambda . f = 0 \in K_n[X].$
- Si no, $\operatorname{gr}(\lambda.f) = \operatorname{gr}(f) \Rightarrow \lambda.f \in K_n[X]$. Si $\lambda = 0$ o f = 0, $\lambda.f = 0 \in K_n[X]$.

Combinaciones lineales

Ejemplos.

- ▶ Si S es una recta en \mathbb{R}^2 o \mathbb{R}^3 que pasa por el origen, sus puntos son $x = \lambda v$ ($\lambda \in \mathbb{R}$), con v un vector director.
- ▶ Si *S* es un plano por el origen en \mathbb{R}^3 , sus puntos son $x = \lambda \cdot v + \mu \cdot w \ (\lambda, \mu \in \mathbb{R})$, con v, w direcciones del plano.
- Si S es el conjunto solución de un sistema lineal en K^n , podemos representar sus elementos en forma paramétrica $\mathbf{x} = \alpha_1 \cdot \mathbf{v}_1 + \cdots + \alpha_r \cdot \mathbf{v}_r \ (\alpha_1, \dots, \alpha_r \in K)$, con $\mathbf{v}_1, \dots, \mathbf{v}_r \in K^n$ fijos.

Definición.

Sea V un K-espacio vectorial y sea $G = \{v_1, \ldots, v_r\} \subseteq V$. Una combinación lineal de G es un elemento $v \in V$ tal que $v = \sum_{i=1}^r \alpha_i.v_i$ con $\alpha_i \in K$ para cada $1 \le i \le r$.

Ejemplos.

►
$$G = \{(1,1),(2,3)\} \subseteq \mathbb{R}^2$$
.
 $v = \alpha \cdot (1,1) + \beta \cdot (2,3) \text{ con } \alpha, \beta \in \mathbb{R}$.

$$G = \{1, X, \dots, X^n\} \subseteq \mathbb{R}_n[X].$$

$$P = \sum_{i=1}^{n} \alpha_i X^i \text{ con } \alpha_i \in \mathbb{R} \ \forall 0 \le i \le n.$$

Definición.

Sean V un K-espacio vectorial, I un conjunto de índices y $G = \{v_i \mid i \in I\} \subset V$. Una combinación lineal de G es un elemento

$$v = \sum_{i \in I} \alpha_i . v_i$$
 donde $\alpha_i \in K$ y $\alpha_i = 0$ salvo para finitos $i \in I$.

▶
$$G = \{X^i \mid i \in \mathbb{N}_0\} \subseteq \mathbb{R}[X]$$
.
Una combinación lineal de G es $P = \sum_{i=0}^{\infty} \alpha_i X^i$ donde $\alpha_i \in \mathbb{R}$ y $\alpha_i = 0$ salvo para finitos valores de $i \in \mathbb{N}_0$.

▶
$$G = \{(t,0) \mid t \in \mathbb{R}\} \subseteq \mathbb{R}^2$$
.
Una combinación lineal de G es $v = \sum_{t \in \mathbb{R}} \alpha_t . (t,0)$ tal que $\alpha_t \in \mathbb{R}$ y $\alpha_t = 0$ salvo para finitos $t \in \mathbb{R}$.

Sistemas de generadores

Definición.

Sea V un K-espacio vectorial y sea $G \subseteq V$. Se dice que G es un sistema de generadores de V o que V está generado por G, y se nota G > V, si todo $V \in V$ es una combinación lineal de G.

- $\mathbb{R}^2 = \langle (1,0), (0,1) \rangle$, ya que (x,y) = x(1,0) + y(0,1). $\mathbb{R}^2 = \langle (1,1), (2,3) \rangle$, ya que
 - (x, y) = (3x 2y)(1, 1) + (y x)(2, 3).
- $K^n = \langle (1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1) \rangle.$ $(x_1, x_2, \dots, x_n) =$ $x_1(1, 0, \dots, 0) + x_2(0, 1, 0, \dots, 0) + \dots + x_n(0, \dots, 0, 1).$
- $K^{m \times n} = \langle E^{ij} \rangle_{\substack{1 \le i \le m \\ 1 \le j \le n}} \text{ donde } (E^{ij})_{kl} = \begin{cases} 1 & \text{si } k = i \text{ y } j = l \\ 0 & \text{si no} \end{cases}$ $K^{2 \times 3} = \langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rangle$
- $\qquad \qquad \mathsf{K}[X] = < X^i >_{i \in \mathbb{N}_0}.$

Proposición.

Sean V un K-e.v., S un subespacio de V y $\{v_i / i \in I\} \subseteq V$. Entonces $\langle v_i, i \in I \rangle \subseteq S \iff v_i \in S \ \forall i \in I$.

 $< v_i, i \in I >$ es el subespacio más chico de V que contiene a todos los $v_i, i \in I$.

Demostración.

- (\Rightarrow) Para cada $i_0 \in I$, $v_{i_0} = \sum_{i \in I} \alpha_i v_i \text{ con } \alpha_{i_0} = 1 \text{ y } \alpha_i = 0 \text{ si } i \neq i_0.$ $\Rightarrow v_{i_0} \in \langle v_i, i \in I \rangle \subseteq S.$
- (\Leftarrow) $v_i \in S$ y S subespacio $\Rightarrow \alpha_i v_i \in S \ \forall \alpha_i \in K$. Si $\alpha_i \neq 0$ sólo para finitos $i \in I$, $\sum_{i \in I} \alpha_i v_i$ es una suma (finita) de elementos de S subespacio $\Rightarrow \sum_{i \in I} \alpha_i v_i \in S$.

Corolario.

Sea V un K-e.v. y sea $\{v_1, \ldots, v_n, v_{n+1}\} \subseteq V$. Entonces: $\langle v_1, \ldots, v_n, v_{n+1} \rangle = \langle v_1, \ldots, v_n \rangle \iff v_{n+1} \in \langle v_1, \ldots, v_n \rangle$.

Proposición

Sea V un K-e.v. y sea $\{v_1, \ldots, v_n\} \subset V$. Entonces:

1.
$$\langle v_1, ..., v_i, ..., v_j, ..., v_n \rangle = \langle v_1, ..., v_i, ..., v_i, ..., v_n \rangle$$
.

$$1. \langle v_1, \dots, v_i, \dots, v_j, \dots, v_n \rangle = \langle v_1, \dots, v_j, \dots, v_i, \dots, v_n \rangle.$$

$$2. \langle v_1, \dots, v_i, \dots, v_n \rangle = \langle v_1, \dots, \lambda v_i, \dots, v_n \rangle \text{ para}$$

2.
$$\langle v_1, \dots, v_i, \dots, v_n \rangle = \langle v_1, \dots, \lambda v_i, \dots, v_n \rangle$$
 para $\lambda \in K - \{0\}.$

3.
$$\langle v_1, \dots, v_i, \dots, v_j, \dots, v_n \rangle = \langle v_1, \dots, v_i + \lambda v_i, \dots, v_i, \dots, v_n \rangle$$
 para $\lambda \in K$.

Independencia lineal

Definición.

Sea V un K-e.v. Se dice que $\{v_i\}_{i\in I}\subset V$ es linealmente independiente (l.i.) si

$$\sum_{i \in I} \alpha_i . v_i = 0 \implies \alpha_i = 0 \quad \forall i \in I.$$

Si $\{v_i\}_{i\in I}$ no es linealmente independiente, se dice que es linealmente dependiente (l.d.).

Ejemplos.

► En \mathbb{R}^3 , $\{(1,0,1),(1,-1,0),(0,0,1)\}$ es l.i.:

$$\alpha_1(1,0,1) + \alpha_2(1,-1,0) + \alpha_3(0,0,1) = (0,0,0).$$

$$\Rightarrow \left\{ \begin{array}{rcl} \alpha_1 + \alpha_2 & = & 0 \\ -\alpha_2 & = & 0 \\ \alpha_1 + \alpha_3 & = & 0 \end{array} \right. \Rightarrow (\alpha_1, \alpha_2, \alpha_3) = (0, 0, 0).$$

► En
$$\mathbb{R}[X]$$
, $\{X^i \mid i \in \mathbb{N}_0\}$ es l.i.:

Sean $\alpha_i \in \mathbb{R}$ $(i \in \mathbb{N}_0)$ tales que $\alpha_i = 0$ para casi todo $i \in \mathbb{N}_0$ y $\sum_{i \in \mathbb{N}_0} \alpha_i X^i = 0$.

Polinomio nulo \iff todos sus coeficientes son 0. $\Rightarrow \alpha_i = 0 \ \forall i \in \mathbb{N}_0.$

▶ En
$$\mathbb{R}^3$$
, $\{(1,0,1),(1,-1,0),(0,1,1)\}$ es l.d.:

$$lpha_1(1,0,1) + lpha_2(1,-1,0) + lpha_3(0,1,1) = (0,0,0).$$

$$(\alpha_1 + \alpha_2 = 0)$$

$$\begin{cases} \alpha_1 + \alpha_2 &= 0 \\ -\alpha_2 + \alpha_3 &= 0 \\ \alpha_1 + \alpha_3 &= 0 \end{cases} \Rightarrow (\alpha_1, \alpha_2, \alpha_3) = \alpha_3(-1, 1, 1), \ \alpha_3 \in \mathbb{R}.$$

Por ejemplo:

$$(-1)\cdot(1,0,1)+1\cdot(1,-1,0)+1\cdot(0,1,1)=(0,0,0)$$

Observar que (1,0,1) = (1,-1,0) + (0,1,1) $\Rightarrow (1,0,1) \in <(1,-1,0),(0,1,1)>$

Observación.

Sea V un K-e.v. El conjunto $\{v_1,\ldots,v_n\}\subset V$ es l.i. si y sólo si

$$< v_1, \ldots, v_n > \neq < v_1, \ldots, \widehat{v_i}, \ldots, v_n > \forall \ 1 \leq i \leq n.$$

$$< v_1, \ldots, \widehat{v_i}, \ldots, v_n > =$$
 subesp. generado por $\{v_1, \ldots, v_n\} - \{v_i\}$.

Proposición

Sea V un K-e.v. y sea $\{v_1, \ldots, v_n\} \subset V$. Entonces:

- 1. $\{v_1, \ldots, v_i, \ldots, v_j, \ldots, v_n\}$ es l.i. \iff $\{v_1, \ldots, v_i, \ldots, v_i, \ldots, v_n\}$ es l.i.
- 2. $\{v_1, \ldots, v_i, \ldots, v_n\}$ es l.i. $\iff \{v_1, \ldots, \lambda v_i, \ldots, v_n\}$ es l.i. para $\lambda \in K \{0\}$.
- 3. $\{v_1, \ldots, v_i, \ldots, v_j, \ldots, v_n\}$ es l.i. \iff $\{v_1, \ldots, v_i + \lambda v_j, \ldots, v_j, \ldots, v_n\}$ es l.i. para $\lambda \in K$.

Consecuencia: para decidir si $\{v_1, \ldots, v_r\} \subset K^n$ es l.i. o l.d podemos proceder como sigue:

- \triangleright Considerar la matriz A cuyas filas son v_1, \ldots, v_r .
- Escalonar la matriz A.
- ➤ Si la matriz escalonada obtenida tiene alguna fila nula, el conjunto es l.d. De lo contrario, es l.i.

$$\begin{cases} (1,0,1), (1,-1,0), (0,0,1) \} \text{ es l.i.:} \\ \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{ sin filas nulas.}$$

$$\begin{cases} (1,0,1), (1,-1,0), (0,1,1) \} \text{ es l.d.:} \\ \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Bases y dimensión

Definición.

Sea V un K-e.v.. Una familia $\{v_i\}_{i\in I}$ se llama una base de V si $\{v_i\}_{i\in I}$ es l.i. y satisface $< v_i, i\in I>= V$.

- ► En K^n , $B = \{e_1, \dots, e_n\}$, donde $(e_i)_i = 1$ y $(e_i)_j = 0$ si $j \neq i$, es una base, llamada la base canónica de K^n .
- ▶ En $K^{m \times n}$, $B = \{E^{ij} / 1 \le i \le m, 1 \le j \le n\}$ es una base.
- ▶ En K[X], $B = \{X^i \mid i \in \mathbb{N}_0\}$ es una base.
- ▶ En \mathbb{C} como \mathbb{R} -e.v., $B = \{1, i\}$ es una base.

Teorema.

Sea V un K-e.v. Si $< v_1, \ldots, v_r > = V$ y $\{w_1, \ldots, w_s\} \subseteq V$ es l.i., entonces $s \le r$.

Demostración.

$$V = \langle v_1, \dots, v_r \rangle \Rightarrow \forall 1 \leq i \leq s, \ w_i = \sum_{j=1}^r \alpha_{ij} v_j \ \text{con } \alpha_{ij} \in K.$$

Consideremos el sistema lineal de r ecuaciones y s incógnitas:

$$\sum_{h=1}^{3} \alpha_{hj} x_h = 0, \qquad 1 \le j \le r.$$

Si $(\beta_1, \ldots, \beta_s)$ es una solución,

$$\sum_{h=1}^{s} \beta_h w_h = \sum_{h=1}^{s} \beta_h \left(\sum_{j=1}^{r} \alpha_{hj} v_j \right) = \sum_{h=1}^{s} \left(\sum_{j=1}^{r} \beta_h \alpha_{hj} v_j \right) =$$

$$= \sum_{i=1}^{r} \left(\sum_{h=1}^{s} \beta_h \alpha_{hj} v_j \right) = \sum_{i=1}^{r} \left(\sum_{h=1}^{s} \alpha_{hj} \beta_h \right) v_j = 0.$$

$$\{w_1, \dots, w_s\}$$
 l.i. $\Rightarrow (\beta_1, \dots, \beta_s) = 0$ (solución única).

$$\Rightarrow$$
 cantidad de ecuaciones $(r) \ge$ cantidad de variables (s)

Corolario.

Sea V un K-espacio vectorial y sean $B_1 = \{w_1, \ldots, w_n\}$ y $B_2 = \{v_1, \ldots, v_m\}$ bases de V. Entonces n = m.

Demostración.

- ▶ B_1 genera V y B_2 es l.i. $\Longrightarrow n \ge m$.
- ▶ B_2 genera V y B_1 es l.i. $\Longrightarrow m \ge n$.

Luego,
$$n = m$$
.

Definición.

Sean V un K-espacio vectorial y $B = \{v_1, \ldots, v_n\}$ una base de V. Decimos que n es la dimensión de V (como K-e.v.) y escribimos $n = \dim_K(V)$, o simplemente $\dim(V)$ si el cuerpo K queda claro por el contexto. Por convención, $\dim(\{0\}) = 0$.

- $ightharpoonup \dim_K(K^n) = n$
- $ightharpoonup dim_K(K^{m\times n}) = mn$

- $ightharpoonup \dim_K(K_n[X]) = n+1$
- $ightharpoonup \dim_{\mathbb{R}}(\mathbb{C})=2$

Extracción y extensión de bases

Proposición

Sea V un K-e.v. de dimensión finita.

Procedemos inductivamente.

- i) Si $\{v_1, \ldots, v_s\}$ es un sistema de generadores de V, existe $B \subseteq \{v_1, \ldots, v_s\}$ que es una base de V.
- ii) Si $\{w_1,\ldots,w_r\}$ un conjunto I.i. de V, existen $w_{r+1},\ldots,w_n\in V$ tales que $\{w_1,\ldots,w_r,w_{r+1},\ldots,w_n\}$ es una base de V.

Demostración.

i) Si $\{v_1, \ldots, v_s\}$ es l.i. \checkmark Si no, algún v_i es combinación lineal de los otros. Supongamos que $v_s \in < v_1, \ldots, v_{s-1} >$. $\Rightarrow < v_1, \ldots, v_{s-1} > = < v_1, \ldots, v_{s-1}, v_s >$ $\Rightarrow \{v_1, \ldots, v_{s-1}\}$ es un sistema de generadores de V. ii) Sea $B = \{z_1, \dots, z_n\}$ una base de V. Sea $G_0 = \{w_1, \dots, w_r\}$. Consideramos

$$G_1 := egin{cases} \{w_1, \dots, w_r, z_1\} & ext{ si } z_1 \notin < G_0 > \ \{w_1, \dots, w_r\} & ext{ si } z_1 \in < G_0 >. \end{cases}$$

Inductivamente para $2 \le i \le n$:

$$G_i := \begin{cases} G_{i-1} \cup \{z_i\} & \text{ si } z_i \notin < G_{i-1} > \\ G_{i-1} & \text{ si } z_i \in < G_{i-1} > . \end{cases}$$

Para cada $1 \le i \le n$:

- $\qquad \{w_1,\ldots,w_r\}\subseteq G_i,$
- $ightharpoonup < z_1, \ldots, z_i > \subseteq < G_i >$
- $ightharpoonup G_i$ es l.i.

En particular, $V = \langle z_1, \dots, z_n \rangle \subseteq \langle G_n \rangle$ y G_n es l.i.

 \Rightarrow G_n es una base de V.

Proposición.

Sean S y T subespacios de un K-e.v. V de dimensión finita. Entonces:

- i) $S \subseteq T \Rightarrow \dim S \leq \dim T$.
- ii) $S \subseteq T$ y dim $S = \dim T \Rightarrow S = T$.

Demostración.

- i) Sean $\{s_1, \ldots, s_r\}$ una base de S y $n = \dim T$. $S \subseteq T \Rightarrow \{s_1, \ldots, s_r\} \subseteq T$, y es l.i. $\Rightarrow \{s_1, \ldots, s_r\}$ puede extenderse a una base de $T \Rightarrow \dim S = r < n = \dim T$.
- ii) Si $\{s_1, \ldots, s_r\}$ es una base de S, como dim $S = \dim T$, al extenderla a una base de T no se agrega ningún vector.

$$\Rightarrow S = \langle s_1, \ldots, s_r \rangle = T.$$

Ejemplos.

1. Extraer una base de $S = \langle (1,0,1), (1,-1,0), (0,1,1) \rangle$ del sistema de generadores dado.

Vimos que el sistema de generadores es l.d. Más aún, que $(1,0,1)=(1,-1,0)+(0,1,1)\in <(1,-1,0),(0,1,1)>$ $\Rightarrow S=<(1,-1,0),(0,1,1)>$ Además, $\{(1,-1,0),(0,1,1)\}$ es l.i. (no son múltiplos). $\Rightarrow B_S=\{(1,-1,0),(0,1,1)\}$ es base de S.

2. Extender B_S a una base de \mathbb{R}^3 .

Consideramos una base de \mathbb{R}^3 , por ejemplo la base canónica $E = \{(1,0,0),(0,1,0),(0,0,1)\}$. Agregamos vectores de E a $G_0 = B_S = \{(1,-1,0),(0,1,1)\}$ hasta obtener una base de \mathbb{R}^3 . $(1,0,0) \notin \{(1,-1,0),(0,1,1)\}$ $\Rightarrow G_1 = \{(1,-1,0),(0,1,1),(1,0,0)\}$ es l.i. $\dim(\mathbb{R}^3) = 3$ y G_1 tiene 3 vectores l.i $\Rightarrow G_1$ es base de \mathbb{R}^3 .