Методы семплирования токенов из распределения

(не успели в прошлый раз)

Методы семплирования токенов

Генеративная модель выдает распределение вероятностей токенов

Как выбрать токен из этого распределения?

Жадное семплирование Greedy Sampling

Можно всегда выбирать токен с максимальной вероятностью

$$y_t = \underset{y \in V}{\operatorname{argmax}} p(y \mid y_{< t})$$

Плюсы:

• Максимизируем вероятность текста

Минусы:

• Теряем разнообразие текста

Жадное семплирование Greedy Sampling

Можно всегда выбирать токен с максимальной вероятностью

$$y_t = \underset{y \in V}{\operatorname{argmax}} p(y | y_{< t})$$

Плюсы:

• Максимизируем вероятность текста

Минусы:

• Теряем разнообразие текста

- Плохо, если генерация безусловная
- Не страшно, если **условная** (seq2seq)

- Попробуем максимизировать вероятность текста еще больше
- При жадном семплировании мы не учитываем влияние токена на следующие за ним
- Будем строить предсказания на несколько токенов вперед, а затем выбирать токен с наибольшей совокупной вероятностью

- На каждом шаге генерируем k продолжений для каждой траектории
- Оставляем только k самых вероятных

- На каждом шаге генерируем k продолжений для каждой траектории
- Оставляем только k самых вероятных

- На каждом шаге генерируем k продолжений для каждой траектории
- Оставляем только k самых вероятных

- На каждом шаге генерируем k продолжений для каждой траектории
- Оставляем только k самых вероятных

- На каждом шаге генерируем к продолжений для каждой траектории
- Оставляем только k самых вероятных

Идея: Поддерживаем k наиболее вероятных траекторий

- На каждом шаге генерируем k продолжений для каждой траектории
- Оставляем только k самых вероятных

Траектория с "лежит" имеет максимальную вероятность

=> выбираем "лежит"

Beam Search vs Жадное семплирование

- Beam Search работает лучше для всех seq2seq задач
- Beam Search работает гораздо медленнее (зависит от k)
- Популярные значения k 3 или 5

Безусловная генерация

Оба метода уменьшают разнообразие безусловной генерации!

Безусловная генерация

Оба метода поощряют повторения!

Семплирование с температурой

- При обычном семплировании с вероятностями вероятностная масса случайных токенов слишком велика
- Сделаем распределение более вырожденным, добавив температуру $\tau \in [0,1]$

$$p_{\tau}(y | y_{< t}) = \frac{\exp \frac{l(y | y_{< t})}{\tau}}{\sum_{w \in V} \exp \frac{l(w | y_{< t})}{\tau}}$$

Тор-к семплирование

- Даже с температурой остается ненулевая генерация выдать случайный токен
- Оставим только k самых вероятных токенов и будем семплировать из них

На улице светит

Тор-к семплирование

- Не во всех ситуациях самых вероятных токенов одинаковое число
- Из-за этого невозможно подобрать идеальное k

Тор-р семплированиеNucleus sampling

• Будем выбирать из минимального числа токенов, суммарная вероятность которых больше p.

$$\sum_{w \in V^{(p)}} p(w \mid y_{< t}) \ge p$$

$$|V^{(p)}| \rightarrow \min$$

Популярное значение для p – 0.9 или 0.95

BERT II GPT

План

- BERT
 - И его модификаци
- GPT
 - И почему она так хороша
- Трюки для обучения трансформерных моделей

Трансформер

- Модель для Seq2seq, состоящая из Encoder и Decoder
- Encoder извлекает информацию из текста
- **Decoder** генерирует новый текст на основе этой информации
- Хорошо работает благодаря механизму внимания

Трансформер

Можно ли адаптировать эту модель под другие виды задач?

Какие бывают задачи?

many-to-many одинаковая длина

Классификация токенов:

- Named Entity Recognition
- Part-of-speech tagging

many-to-many разная длина

Seq2seq:

- Машинный перевод
- Суммаризация
- Перенос стиля

many-to-one

- Классификация
- Регрессия

Какие бывают задачи?

many-to-many одинаковая длина

Классификация токенов:

- Named Entity Recognition
- Part-of-speech tagging

many-to-many разная длина

Seq2seq:

- Машинный перевод
- Суммаризация
- Перенос стиля

many-to-one

- Классификация
- Регрессия

Не нужно генерировать текст Можем взять отдельно **Encoder**!

Нужно генерировать текст

BERT (2018) Bidirectional Encoder Representations

- Модель на основе **Encoder**'а Трансформера
- В основном используется для решения произвольных задач классификации
- Самое важное способ обучения BERT

BERT: Мотивация

- Трансформерные модели могут быть огромными
- Базовый BERT содержит 110М параметров
- Для обучения такой модели требуется очень много данных
- В задачах классификации размеченных данных обычно недостаточно

BERT: Мотивация

- Трансформерные модели могут быть огромными
- Базовый BERT содержит 110М параметров
- Для обучения такой модели требуется очень много данных
- В задачах классификации размеченных данных обычно недостаточно

Предобучим модель понимать язык на неразмеченных данных!

BERT: Обучение

Для предобучения любой модели без разметки необходимо создать искусственную задачу

BERT предобучается одновременно решая две задачи:

- Masked Language Modelling (MLM)
- Next Sentence Prediction (NSP)

Masked Language Modelling (MLM)

Идея: Маскируем несколько случайных токенов и просим модель их восстановить. Модель учится понимать, что значат слова и как они связаны между собой.

Алгоритм обучения:

- Случайно выбираем 15% токенов. Из них
 - 80% маскируем
 - 10% заменяем случайными токенами (чтобы модель не переобучалась под [MASK])
 - 10% оставляем без изменений (чтобы модель не считала все токены неправильными)
- Считаем ошибку для всех выбранных токенов

Masked Language Modelling (MLM)

Алгоритм обучения:

- Случайно выбираем 15% токенов. Из них
 - 80% маскируем
 - 10% заменяем случайными токенами
 - 10% оставляем без изменений
- Считаем ошибку для всех выбранных токенов

Next Sentence Prediction (NSP)

Идея: Хотим научить модель извлекать информацию из текста целиком. Полезно для классификации текста.

- Подаем в BERT два склеенных текста
- В половине случаев второй текст является продолжением первого, а в другой половине он случайный
- Добавляем [CLS] токен в начало и [SEP] в конец каждого текста
- Задача модели по векторному представлению [CLS] предсказать, связаны ли тексты

Next Sentence Prediction (NSP)

Комбинация двух задач

BERT учится решать две задачи одновременно.

BERT: Результат

- Использование предобучения позволило обучить модель хорошо понимать текст
- На момент создания BERT обгонял ближайшего конкурента на 7% на бенчмарке GLEU А так же уволил с работы половину ресерчеров

Датасеты (16 гб):

- BooksCorpus (800М слов)
- English Wikipedia (2500М слов)

Время обучения:

• 4 дня на 16 TPU

Как BERT извлекает признаки?

BERT на каждом слое извлекает все более сложные признаки с точки зрения лингвистики

ЛОЯ

задачи

Сложность

Модификации BERT

Создание BERT стало революционным. Появилась модель, которая хорошо решает BCE задачи классификации.

Исследователи принялись изучать BERT и предлагать модификации.

Примеры:

- RoBERTa
- ALBERT
- DistilBERT
- DeBERTa
- ELECTRA

Robustly optimized BERT approach

Оказалось, что BERT обучен очень неоптимально

RoBERTa учится

- Дольше (в 5 раз)
- На большем объеме данных (в 10 раз больше)
- С большим размером батча (8к токенов)
- С динамическим маскированием

Перед началом обучения BERT для каждого текста генерировалось 10 разных вариантов маскирования

RoBERTa маскирует текст случайно на каждой итерации

ALITTE (2019) A Little BERT

- С увеличением размера модели качество растет
- Однако так же растет сложность вычислений и затраты по памяти
- Можем уменьшить число параметров двумя трюками:
 - Факторизуем матрицу эмбеддингов, так как она очень большая
 - Будем делить одни параметры между несколькими слоями (parameter sharing)
- Задача NSP заменяется на Sentence Order Prediction (SOP). Два предложения из одного текста идут либо в правильном порядке, либо в обратном

ALBERT: Факторизация матрицы

- Матрица эмбеддингов E имеет размер $|V| \times D$, где |V| размер словаря, а D размер скрытого пространства.
- Чтобы уменьшить число параметров, приблизим E произведением двух матриц $E = \underbrace{A} \times \underbrace{B}_{|V| \times H \ H \times D}$
- При этом $H \ll D$ (низкоранговое приближение)

ALBERT: Parameter sharing

- Оказывается, что если применить один и тот же слой несколько раз, информации извлечется больше, чем когда он применяется один раз
- Используем эту идею и разделим параметры одного слоя между всем слоями модели
- Если в модели L слоев, то затраты по памяти уменьшатся в L раз
- Удалось уменьшить число параметров в 10 раз без потери в качестве

GPT (2018) Generative Pre-Training

- Второй класс моделей на основе Трансформера, способных предобучаться
- Применяется для генерации текста
- Использует **декодер** Трансформера без Cross Attention

GPT: Обучение

- GPT учится **языковому моделированию** (безусловная генерация текста)
- Благодаря способности Трансформера масштабироваться, GPT запоминает очень много информации в процессе обучения

Из-за этого GPT отлично дообучается на частные задачи

• Любую задачу NLP можно свести к генерации текста

	Параметры	Данные
GPT-1	117M	5 гб
GPT-2	1.5B	40 гб
GPT-3	175B	45 тб

GPT обучается решать разные задачи

Задача	Пример текста, обучающий этой задаче	
Грамматика	В свободное время я люблю (читать, табуретка)	
Лексическая семантика	Я пошел в магазин, чтобы купить манго, апельсин и (яблоки, енота)	
Знания о мире	Столица Франции – (Париж, Вена)	
Классификация тональности	Я в восторге от декораций и игры актеров, спектакль был (хорошим, плохим)	
Перевод	"Стол" по-английски будет ("table", "apple")	
Пространственное мышление	Леша сидел на диване в гостиной, рядом с ним сидел Саша. Через 15 минут Саша встал и вышел из (гостиной, кухни)	
Математика	Если прибавить 4 к 3, то будет (7, 8)	

GPT > Трансформер

- Оказалось, что модели вида GPT работают лучше даже для многих seq2seq задач, чем encoder-decoder Трансформеры при одинаковом размере
- Объясняется это тем, что лучше выучить одну большую **decoder**-модель, чем разделить веса на две модели

Трюки для обучения Трансформеров

Warm-up

Постепенное увеличение скорости обучения на ранних шагах оптимизации.

Warm-up

- Трансформеры не обучаются без warm-up!
- Чем глубже Трансформер, тем нужнее warm-up
- Без warm-up градиенты начинают затухать

Размер батча

- Обычно с небольшим размером батча трансформер хуже учится
- Но не всегда!
- Оптимальный размер батча зависит от размера модели

- SGD работает гораздо хуже, чем Adam (AdamW, LAMB, AdaFactor, ...)
- Gradient clipping
- Аккумулирование градиентов
- Группировка текстов по длине в батчах
- Mixed-precision
- Очистка данных

- Gradient clipping
- Аккумулирование градиентов
- Группировка текстов по длине в батчах
- Mixed-precision
- Очистка данных

Из-за self-attention разные параметры получают разные по норме градиенты.

Adam настраивает шаг обучения для каждого параметра отдельно

- SGD работает гораздо хуже, чем Adam (AdamW, LAMB, AdaFactor, ...)
- Gradient clipping Защищает от взрыва градиентов
- Аккумулирование градиентов
- Группировка текстов по длине в батчах
- Mixed-precision
- Очистка данных

- SGD работает гораздо хуже, чем Adam (AdamW, LAMB, AdaFactor, ...)
- Gradient clipping
- Аккумулирование градиентов

—— | ПОЛЕ ВЛЕЗ

Полезно, если большой батч не влезает в память

- Группировка текстов по длине в батчах
- Mixed-precision
- Очистка данных

- SGD работает гораздо хуже, чем Adam (AdamW, LAMB, AdaFactor, ...)
- Gradient clipping
- Аккумулирование градиентов
- Группировка текстов по длине в батчах -

Редко применяется, но позволяет ускорить обучение

- Mixed-precision
- Очистка данных

- SGD работает гораздо хуже, чем Adam (AdamW, LAMB, AdaFactor, ...)
- Gradient clipping
- Аккумулирование градиентов
- Группировка текстов по длине в батчах
- Mixed-precision

 Уменьшает затраты по памяти
- Очистка данных

- SGD работает гораздо хуже, чем Adam (AdamW, LAMB, AdaFactor, ...)
- Gradient clipping
- Аккумулирование градиентов
- Группировка текстов по длине в батчах
- Mixed-precision
- Очистка данных -

Данные должны максимально cooтветствовать downstream задаче

Чистые данные избавлены от

- Жаргонных текстов
- Ложной информации
- Специальных символов разметки