MA-207 Differential Equations II

Ronnie Sebastian

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 12th October, 2017 S2 - Lecture 7

Bessel functions

Bessel equation is the second-order linear ODE

$$x^{2}y'' + xy' + (x^{2} - p^{2})y = 0 p \ge 0 (*)$$

For real p, define

$$J_p(x) := \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \, \Gamma(p+n+1)} \left(\frac{x}{2}\right)^{2n+p}$$

- The above is a well defined power series once we know that the Gamma function never vanishes.
- ② If $p \notin \{0, 1, 2, ...\}$ $J_p(x)$ and $J_{-p}(x)$ are the two independent solutions of the Bessel equation.
- **3** If $p \in \{0,1,2,\ldots\}$ then $J_{-p}(x) = (-1)^p J_p(x)$. Thus, in this case the second solution is not $J_{-p}(x)$.

Bessel identities

$$\frac{d}{dx}[x^{-p}J_p(x)] = -x^{-p}J_{p+1}(x)$$

The above two can be obtained by formally differentiating the power series.

$$J_p'(x) + \frac{p}{x} J_p(x) = J_{p-1}(x)$$

$$J_p'(x) - \frac{p}{r} J_p(x) = -J_{p+1}(x)$$

These follow from (1) and (2). Expand LHS and divide by $x^{\pm p}$:

$$J_{p-1}(x) - J_{p+1}(x) = 2J'_p(x)$$

6
$$J_{p-1}(x) + J_{p+1}(x) = \frac{2p}{x}J_p(x)$$

Add and subtract (3) and (4) to get (5) and (6).

Consequences of Bessel identities

Problem: Show that between any two <u>consecutive</u> zeros of $J_p(x)$, there exists <u>precisely one</u> zero of $J_{p-1}(x)$ and precisely one zero of $J_{p+1}(x)$

Problem: Find a and c so that $J_2(x) - J_0(x) = aJ_c''(x)$.

Theorem (Sturm separation theorem)

If $y_1(x)$ and $y_2(x)$ are linearly independent solns of

$$y'' + P(x)y' + Q(x)y = 0$$

P,Q continuous on (a,b). Then

- (1) $y_1(x)$ and $y_2(x)$ have no common zero in (a,b).
- (2) Between any two successive zeros of $y_1(x)$, there is exactly one zero of $y_2(x)$ and vice versa.

Given any ODE in the "standard" form y'' + P(x)y' + Q(x)y = 0 can be written in the "normal" form u'' + q(x)u = 0.

Define
$$v(x) := \exp \left(\int_{a_0}^x -\frac{1}{2} P(t) dt \right)$$
 and set $u(x) = \frac{y(x)}{v(x)}$.

One easily checks that u(x) satisfies the differential equation

$$u'' + q(x)u = 0 q(x) := Q(x) - \frac{1}{4}P(x)^2 - \frac{1}{2}P'(x)$$

It is clear that the zeros of u are the same as those of y.

Let u(x) be a non-trivial solution of u'' + q(x)u = 0 on finite interval (a,b), with q(x) continuous. Then u(x) has <u>at most</u> finite number of zeros in (a,b).

Hence if u(x) has infinitely many zeros on $(0,\infty)$, then the set of zeros of u(x) are not bounded.

Theorem

Let u(x) be a non-trivial solution of u''+q(x)u=0. If q(x)<0 in (a,b) and continuous then u(x) has <u>atmost one zero</u> in (a,b).

Remarks and Corrections

Remark

In the previous class, we had stated application 1 of the Bessel identity only for p>0. This condition is not required, as the Bessel identities hold for all p for the functions $J_p(x)$.

Correction.

The function $y(x)=x\sin\frac{1}{x}$, satisfies the differential equation $y''+\frac{1}{x^2}y=0$ on the interval $(0,\infty)$. In the interval (0,1) this function has infinitely many zeros, contradicting the theorem stated in the previous lecture.

The problem in this example is that the zeros= $\{x_n=\frac{1}{n\pi}\}_{n\geq 1}$ tend to 0, which is not a point of (0,1). The proof that we gave in the previous class breaks down as $x_0=0$ is not in the domain of definition of the function y(x).

Remarks and Corrections

Therefore, the correct statement of the theorem is the following

Theorem (Corrected)

Let u(x) be a non-trivial solution of u''+q(x)u=0 on the interval (α,β) , with q(x) continuous. Let $[a,b]\subset (\alpha,\beta)$ be a finite interval. Then u(x) has <u>at most</u> finite number of zeros in [a,b].

With this statement, the proof given in the previous class works.

Let u(x) be a non-trivial solution of u''+q(x)u=0 Let q(x) be continuous and q(x)>0 for all $x>x_0>0$.

If
$$\int_{x_0}^{\infty} q(x) \, dx = \infty$$
,

then u(x) has infinitely many zeros on $(0, \infty)$.

Proof. Assume u(x) has only finitely many zeros on $(0, \infty)$.

Then there is $x_1 > x_0$ such that $u(x) \neq 0$ for $x \geq x_1$. Assume u(x) > 0 for $x \geq x_1$.

Then u''(x) = -q(x)u(x) < 0 for $x \ge x_1$. Hence u'(x) is decreasing for $x \ge x_1$.

If we show that $u^{\prime}(x_2)<0$ for some $x_2>x_1$, then we get for $x>x_2$

$$u(x) = \int_{x_2}^x u'(t)dt + u(x_2) \le \int_{x_2}^x u'(x_2)dt + u(x_2)$$

$$\le u'(x_2)(x - x_2) + u(x_2)$$

Thus if x is sufficiently large, then u(x) < 0, a contradiction.

To show that u'(x) < 0 for some $x > x_1$. Put

$$v(x) = -\frac{u'(x)}{u(x)}, \quad \text{for } x \ge x_1$$

$$v' = \frac{-u''u + u'^2}{u^2} = \frac{q(x)u^2 + u'^2}{u^2} = q(x) + v(x)^2$$

Integrating we get

$$v(x) - v(x_1) = \int_{x_1}^x q(x) dx + \int_{x_1}^x v(x)^2 dx$$

$$\int_{x_0}^{\infty} q(x) \, dx = \infty \implies v(x) > 0 \text{ for large } x.$$

Thus, u'(x) = -u(x)v(x) and this shows that u'(x) < 0 for x large.

In Bessel equation $\ x^2y''+xy'+(x^2-p^2)y=0$ Substituting $u(x)=\sqrt{x}y(x)$, we get

$$u'' + \left[1 + \frac{1 - 4p^2}{4x^2}\right]u = 0$$

 $q(x)=1+rac{1-4p^2}{4x^2}$ is continuous and q(x)>0 for $x>x_0>0$.

Further,

$$\int_{x_0}^{\infty} \left(1 + \frac{1 - 4p^2}{4x^2} \right) dx = \infty$$

By previous theorem, u(x), hence any Bessel function has infinitely many zeros on $(0,\infty)$.

Corollary

Let $Z^{(p)}$ be the set of zeros of Bessel function $J_p(x)$ on $(0, \infty)$. Since $Z^{(p)}$ is an infinite set, it is not bounded.

We will conside the following question.

Write $Z^{(p)} = \{x_1, x_2, \ldots\}$ as increasing sequence $x_n < x_{n+1}$.

Question. What is the limit of $x_{n+1} - x_n$ as $n \to \infty$?

We will need the Sturm comparison theorem.

Theorem (Sturm Comparison theorem)

Let y(x) be a non-trivial solutions of

$$y'' + q(x)y = 0$$

and z(x) be a non-trivial solutions of

$$z'' + r(x)z = 0$$

where q(x) > r(x) > 0 are continuous.

Then y(x) vanishes at least once between any two consecutive zeros of z(x).

Compare y'' + 4y = 0 and z'' + z = 0.

Here
$$(q(x) =) 4 > (r(x) =) 1 > 0$$

Zeros of y(x) are $\pi/2$ apart and that of z(x) are π apart.

Proof of Sturm Comparison theorem.

Let $x_1 < x_2$ be consecutive zeros of z(x).

Assume y(x) has no zero in (x_1, x_2) .

We may assume z(x)>0 and y(x)>0 on (x_1,x_2) . Hence $z'(x_1)>0$ and $z'(x_2)<0$.

Consider the function W(x) = y(x)z'(x) - y'(x)z(x)

$$W'(x) = yz'' - y''z = y(-rz) - (-qy)z = (q-r)yz > 0$$

on (x_1, x_2) .

Integrating from x_1 to x_2 , we get

$$W(x_2) - W(x_1) > 0 \implies W(x_2) > W(x_1)$$

But $W(x_1) = y(x_1)z'(x_1) > 0$ and $W(x_2) = y(x_2)z'(x_2) < 0$, a contradiction.

Substituting $u(x)=\sqrt{x}y(x)$ in Bessel equation, we get Bessel equation in normal form $(p\geq 0)$

$$u'' + q(x)u = 0$$
, $q(x) = 1 + \frac{1 - 4p^2}{4x^2}$

- $p = 1/2 \implies q(x) = 1$ (Well known, hence, uninteresting)
- $p > 1/2 \implies q(x) < 1$

Use z'' + z = 0 and Sturm comparison theorem.

Let $y_p(x)$ be a non-trivial solution of Bessel equation. Then we get

. . .

- p < 1/2 \implies Between any two roots of $\alpha \cos x + \beta \sin x$ there is a root of $y_p(x)$.
- $\bullet \mid \overline{p = 1/2} \mid \implies x_2 x_1 = \pi$
- p > 1/2 \Longrightarrow Between any two roots of $y_p(x)$ there is a root of $\alpha \cos x + \beta \sin x$.

We can say more than the above. Suppose p < 1/2 and a < b < c are consecutive roots of u(x). Then b-a < c-b. That is, the difference between the successive roots keeps increasing.

To see this, consider the function f:=u(x-b+a) defined on the interval (b,∞) .

It is a trivial check that f satisfies the differential equation

$$f'' + r(x)f = 0$$
 $r(x) := q(x - b + a)$

Since p<1/2 the function q is strictly decreasing. Thus, on (b,∞) we have r(x)>q(x)>0.

Applying Sturm's comparison theorem we get that there is a $b < x_0 < c$ such that $f(x_0) = u(x_0 - b + a) = 0$.

Clearly,

$$\bullet$$
 $b < x_0 \implies a < x_0 - b + a$

$$\bullet$$
 $a < b \implies x_0 - b + a < x_0$

Thus,

$$a < x_0 - b + a < x_0 < c$$

However, a < b < c are successive roots of u(x). This forces that

$$x_0 - b + a = b$$
 that is $x_0 = 2b - a$

As $x_0 < c$ we get that 2b - a < c, that is, b - a < c - b.

Next we claim that the difference between any two successive roots of u is strictly less than π .

If not, then let a < b be successive roots such that $b - a \ge \pi$ Since u has infinitely many roots, and their difference is strictly increasing, we may assume that $b - a > \pi$.

But now we can choose $\alpha, \beta \in \mathbb{R}$ such that $\alpha \cos x + \beta \sin x$ has two roots in (a, b), which contradicts Sturm's comparison theorem.

Thus, we have proved that if $\{x_n\}$ are the roots of u in increasing order, then the difference $x_{n+1}-x_n$ is strictly increasing and bounded above by π .

Next let us show that these differences converge to π . If not, then $(x_{n+1}-x_n) \to \gamma < \pi$. Choose $1 < \delta$, sufficiently close to 1 such that $\gamma < \frac{\pi}{\delta} < \pi$.

The function q(x) is decreasing to 1. Therefore, there is a $x_0 \in \mathbb{R}$, sufficiently large, such that $q(x_0) < \delta^2$. Apply Sturm's comparison on the interval (x_0, ∞) to the differential equations u'' + q(x)u = 0 and $z'' + \delta^2 z = 0$.

Thus, between any two roots of u there is a root of z. Let a and b be two consecutive roots of u such that $x_0 < a < b$. Since $b-a < \gamma < \frac{\pi}{\delta}$, find a' and b' such that $x_0 < a' < a < b < b'$ and $b'-a' = \frac{\pi}{\delta}$.

Find α and β such that the function $\alpha\cos\delta\,x+\beta\sin\delta\,x$ vanishes at a'. This function is a solution to the ODE $z''+\delta^2z=0$. The next root of this function is at $a'+\frac{\pi}{\delta}=b'$. Thus, we get a contradiction to Sturm's theorem which says that there is a root of this function in the interval (a,b).

Thus, we have proved

Theorem

If p < 1/2 then the sequence of differences of roots of u, $x_{n+1} - x_n$ is increasing and tends to π .

Similarly, we can prove that if p>1/2 then the sequence of difference of roots of u is decreasing and tends to π .

The first few zeroes of Bessel functions are tabulated below.

	$J_0(x)$	$J_1(x)$	$J_2(x)$	$J_3(x)$	$J_4(x)$	$J_5(x)$
1			5.1356			
			8.4172			
3	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002
4	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801
5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178

Question. Why are we concerned with zeros of Bessel function $J_p(x)$?

It is often required in mathematical physics to expand a given function in terms of Bessel functions.

Simplest and most useful expansions are of the form

$$f(x) = \sum_{n=1}^{\infty} a_n J_p(\lambda_{p,n} x) = a_1 J_p(\lambda_{p,1} x) + a_2 J_p(\lambda_{p,2} x) + \dots$$

where f(x) is defined on, (say) [0,1], and $\lambda_{p,n}$'s are zeros of Bessel function $J_p(x)$, $p \geq 0$.

Qn. How to compute the coefficients a_n ?

Remark: For a scalar a, the scaled Bessel functions $J_p(ax)$ are solutions of

$$x^2y'' + xy' + (a^2x^2 - p^2)y = 0$$

known as scaled Bessel equation.

Orthogonality

Define an inner product on functions on [0,1] by

$$\langle f, g \rangle := \int_0^1 x f(x) g(x) \, dx$$

This is similar to the previous inner product except that f(x)g(x) is now multiplied by x and the interval of integration is from 0 to 1.

We call a function on $\left[0,1\right]$ square integrable with respect to this inner product if

$$\int_0^1 x f(x)^2 dx < \infty$$

The multiplying factor x is called a weight function.

Fix $p \ge 0$. Let $Z^{(p)} = \{\lambda_{p,1}, \lambda_{p,2}, \ldots\}$ denote the set of zeros of $J_p(x)$ on $(0, \infty)$.

Theorem

The set of scaled Bessel functions

$$\{J_p(\lambda_{p,1}x), J_p(\lambda_{p,2}x), \ldots\}$$

form an orthogonal family w.r.t. above inner product, i.e. $\langle J_p(\lambda_{n,k}x), J_p(\lambda_{n,l}x) \rangle :=$

$$\int_0^1 x J_p(\lambda_{p,k} x) J_p(\lambda_{p,l} x) dx = \begin{cases} \frac{1}{2} [J_{p+1}(\lambda_{p,k})]^2 & \text{if } k = l\\ 0 & \text{if } k \neq l \end{cases}$$

Fix $p \geq 0$ and $Z^{(p)} = \{\lambda_{p,1}, \lambda_{p,2}, \ldots\}$: zeros of $J_p(x)$ on $(0, \infty)$. Any square-integrable function f(x) on [0,1] can be expanded in a series of scaled Bessel functions $J_p(\lambda_{p,n}x)$ as

$$f(x) = \sum_{n \ge 1} c_n J_p(\lambda_{p,n} x)$$

where

$$c_n = \frac{2}{[J_{p+1}(\lambda_{p,n})]^2} \int_0^1 x f(x) J_p(\lambda_{p,n} x) dx$$

This is Fourier-Bessel series of f(x) for parameter p.

Example. Let us compute the Fourier-Bessel series (for p=0) of f(x)=1 in the interval $0 \le x \le 1$.

Use $\frac{d}{dx}(x^pJ_p(x)) = x^pJ_{p-1}(x)$ for p = 1.

$$\int_0^1 x J_0(\lambda_{0,n} x) dx = \frac{1}{\lambda_{0,n}} x J_1(\lambda_{0,n} x) \Big|_0^1 = \frac{J_1(\lambda_{0,n})}{\lambda_{0,n}}$$

$$c_n = \frac{2}{[J_1(\lambda_{0,n})]^2} \int_0^1 x f(x) J_0(\lambda_{0,n} x) dx = \frac{2}{\lambda_{0,n} J_1(\lambda_{0,n})}$$

Thus, the Fourier-Bessel series of f(x) is

$$\sum_{n>1} \frac{2}{\lambda_{0,n} J_1(\lambda_{0,n})} J_0(\lambda_{0,n} x)$$

By next theorem, this converges to 1 for 0 < x < 1.

Convergence in norm

Fourier-Bessel series converges to f(x) in norm, i.e.

$$\|f(x) - \sum_{n=1}^m c_n J_p(\lambda_{p,n} x)\|$$
 converges to 0 as $m \to \infty$

For pointwise convergence, we have

Bessel expansion theorem

Assume f and f' have at most a finite number of jump discontinuities in [0,1], then the Bessel series converges for 0 < x < 1 to

$$\frac{f(x_-) + f(x_+)}{2}$$

At x=1, the series always converges to 0 for all f, at x=0, if p=0 then it converges to $f(0_+)$. at x=0, if p>0 then it converges to 0.