计算机组成原理

翁睿

哈尔滨工业大学

第1章 计算机系统概论

1.1 计算机系统简介

1.2 计算机的基本组成

1.3 计算机硬件的主要技术指标

1.4 教材结构

1.1 计算机系统简介

一、计算机的软硬件概念

计算机的实体, 如主机、外设等 机系统 软件 由具有各类特殊功能 的信息(程序)组成

1.1

用来管理整个计算机系统 系统软件 语言处理程序 操作系统 服务性程序 数据库管理系统 网络软件

应用软件 按任务需要编制成的各种程序

计算机系统的层次结构

用编译程序翻译 成汇编语言程序

用汇编程序翻译 成机器语言程序

用机器语言解释操作系统

用微指令解释机器指令

由硬件直接执行微指令

三、计算机体系结构和计算机组成

1.1

有无乘法指令

计算机

程序员所见到的计算机系统的属性

体系结构

概念性的结构与功能特性

Architecture

(指令系统、数据类型、寻址技术、I/0机理)

计算机

实现计算机体系结构所体现的属性

组成

(具体指令的实现)

Organization

如何实现乘法指令

1.2 计算机的基本组成

- 一、冯·诺依曼计算机的特点
 - 1. 计算机由五大部件组成
 - 2. 指令和数据以同等地位存于存储器, 可按地址寻访
 - 3. 指令和数据用二进制表示
 - 4. 指令由操作码和地址码组成
 - 5. 存储程序
 - 6. 以运算器为中心

第一台von Neumann 系统结构的计算机 2.1

EDVAC (1949)

冯·诺依曼计算机硬件框图

1.2

二、现代计算机硬件框图

1.2

指令格式举例

		–
操作码	地址码	
取数	α	$[\alpha] \longrightarrow ACC$
000001	000001000	
存数	β	$[ACC] \rightarrow \beta$
加	γ	$[ACC]+[\gamma] \longrightarrow ACC$
乘	δ	$[ACC] \times [\delta] \longrightarrow ACC$
打印	σ	[σ] → 打印机
停机		

2. 计算机的解题过程

1.2

(1)存储器的基本组成

存储单元 存放一串二进制代码

存储体

MAR MDR

主存储器

存储字

存储单元中二进制代码的组合

存储字长 存储单元中二进制代码的位数

按地址寻访 每个存储单元赋予一个地址号

MAR

存储器地址寄存器

反映存储单元的个数

MDR

存储器数据(缓冲)寄存器

反映存储字长

(2)运算器的基本组成及操作过程

	ACC	MQ	X
加法	被加数 和		加数
减法	被减数差		减数
乘法	乘积高位	乘数 乘积低位	被乘数
除法	被除数 余数	商	除数

(3)控制器的基本组成

 完成
 取指令
 PC

 一条
 分析指令
 IR

 指令
 执行指令
 CU

PC 存放当前欲执行指令的地址, 具有计数功能(PC)+1→PC

IR 存放当前执行的指令

(4) 主机完成一条指令的过程 以取数指令为例

(4) 主机完成一条指令的过程 以存数指令为例

(5) $ax^2 + bx + c$ 程序的运行过程

1.2

- 将程序通过输入设备送至计算机
- 程序首地址 → PC
- 启动程序运行
- 取指令 $PC \rightarrow MAR \rightarrow M \rightarrow MDR \rightarrow IR$, $(PC)+1 \rightarrow PC$
- 分析指令 OP(IR) → CU
- 执行指令 Ad(IR) → MAR → M → MDR → ACC

•

- 打印结果

1. 机器字长

CPU 一次能处理数据的位数 与 CPU 中的 寄存器位数 有关

- ◆由加法器、寄存器的位数决定;
- ◆一般与内部寄存器的位数相等(字长);
- ◆字长越长,表示数据的范围就越大,精确度越高;
- ◆目前常见的有32位和64位字长。

2. 总线宽度 数据总线一次能并行传输的 最大二进制位数

寻址范围 地址总线能够支持寻址的 最大地址空间范围

3. 存储容量和存储带宽

存储容量: 是指一台计算机的主存/辅存所能存储的二进制信息的数量。

存储带宽: 指单位时间内CPU与主存/辅存交换的二进制信息量常用单位B/s(字节/秒)。

影响主存存储带宽的指标包括:

数据位宽和数据传输速率。

21

1.3

3. 存储容量 存放二进制信息的总位数

存储单元个数×存储字长 容量 如 **MDR** MAR 1 K×8位 10 主存容量 32 64 K×32位 **16** 如 $2^{13} b = 1 KB$ $2^{21}b = 256 \text{ KB}$ 字节数 辅存容量 **500 GB** $1GB = 2^{30}B$

 $egin{align*} ext{ } & ext{ } &$

4. 运算速度的计算举例

例1 某计算机指令系统中各类指令所占比例及CPI如下表所示,求程序的CPI。

指令类型	CPI	指令比例
算术和逻辑	1	60%
Load/Store	2	18%
转移	4	12%
Cache缺失访存	8	10%

4. 运算速度的计算举例

例2某计算机主频为1GHZ,在其上运行的目标代码包含2x10⁵条指令,分4类,各类指令所占比例和各自CPI如下表所示,求程序的MIPS。

指令类型	CPI	指令混合比例
算术和逻辑	1	60%
Load/Store	2	18%
转移	4	12%
Cache缺失访存	8	10%

第1篇 概论

第3篇 CPU

第2章 计算机的发展及应用

2.1 计算机的发展史

2.2 计算机的应用

2.3 计算机的展望

• 什么是计算机?

计算机通常指的是<u>电子数字计算机</u>,它是一种以电子器件为基础,不需要人的直接干预,能够对各种数字化信息进行快速算术运算和逻辑运算的工具。

• 世界上第一台电子计算机ENIAC (1946)

靠手动拨动开关和插拔电缆来编程

十进制运算 5000次加法/秒 18000个电子管 1500个继电器 重达30t 功耗150kW 1955年退役

- 晶体管的发明
 - -1947年
 - 贝尔实验室

哈尔滨工业大学计算学部

- 1958年,出现了集成电路
 - TI的Jack Kilby
 - → 发明了触发器
 - Fairchild的Robert Noyce
 - → 电阻-晶体管逻辑电路
 - Fairchild的Gordon Moore

• IBM/360 Model 91 (1964)

这是一台为NASA服务的大型机,它的出现具有重

大历史意义。

由中小规模 集成电路构成 120000门 20级流水线 高速缓存 虚拟存储器

- 自1962年出现基于MOSFET的集成电路以来,由于工艺受限,对静电和栅氧缺陷很敏感,大部分厂商处于观望状态
- 到了1971年11月,Intel公司开始了新的 尝试,发布第一款微处理器4004:
 - P沟道硅栅工艺
 - 运行频率108kHz
 - 功耗0.3W

硬件技术对计算机更新换代的影响

2.1

代	时间	硬件技术	速度/(次/秒)
	1946—1957	电子管	40 000
	1958—1964	晶体管	200 000
\equiv	1965—1971	中小规模 集成电路	1 000 000
四	1972—1977	大规模 集成电路	10 000 000
五	1978-现在	超大规模集成电路	100 000 000

计算机未来的发展趋势:

*只要还是硅材料半导体集成电路计算机,并遵循 冯•诺依曼体系结构,我们统称为第五代计算机。

在组织结构和功能上,计算机正向着:

- @ 巨型化
- @ 微型化
- @ 网络化
- @智能化

的方向发展,同时人们也在寻求其他提高计算机性能的方法,如光计算机、量子计算机、生物计算机等,促使计算机技术向多学科融合发展。

2.1

• Intel的微处理器发展见证了技术的进步

年代	型号	工艺	MOS管数量	指令字长
1971	4004	PMOS 8μm	2,250	4位
1974	8080	NMOS 6µm	4,500	8位
1978	8086	NMOS 3µm	29,000	16位
1982	80286	NMOS 2.3µm	130,000	16位
1985	80386	CMOS 2µm	275,000	32位
1989	80486	CMOS 1µm	1,250,000	32位
1994	Pentium	CMOS 0.6µm	3,200,000	32位
2000	Pentium 4	CMOS 0.18µm	42,000,000	64位
Now	i9-13900K (24c 32t)	CMOS 7nm	101,000,000,000	64位

Moore 定律

Intel 公司的缔造者之一 Gordon Moore 提出

微芯片上集成的

晶体管数目每三年翻两番

摩尔定律是非常了不起的一项预言,计算机技术发展至今,仍然适用。

40

三、软件技术的兴起和发展

2.1

1. 各种语言

机器语言 面向机器

汇编语言 面向机器

高级语言 面向问题

FORTRAN 科学计算和工程计算

PASCAL 结构化程序设计

C++ 面向对象

Java 适应网络环境

Python 适合AI应用

2.1

2. 系统软件

语言处理程序 汇编程序 编译程序 解释程序

操作系统

DOS UNIX Windows

服务性程序

装配 调试 诊断 排错

数据库管理系统 数据库和数据库管理软件

网络软件

网络协议栈和网络管理软件

42

2.1

3. 软件发展的特点

- (1) 开发周期长
- (2) 制作成本昂贵
- (3) 检测软件产品质量的特殊性

软件是程序以及开发、使用和维护

程序所需要的所有文档的集合

2.2 计算机的应用

- 一、科学计算和数据处理
- 二、工业控制和实时控制
- 三、网络技术
 - 1. 电子商务
 - 2. 网络教育
 - 3. 敏捷制造

44

四、虚拟现实

五、办公自动化和管理信息系统

六、CAD/CAM/CIMS

七、多媒体技术

八、人工智能

2.3 计算机的展望

一、计算机将具有类似人脑的一些超级智能功能

要求计算机的速度达1015/秒

- 二、芯片集成度的提高受以下三方面的限制
 - 芯片集成度受物理极限的制约
 - 按几何级数递增的制作成本
 - 芯片的功耗、散热、线延迟

三、谁来替代传统的硅芯片?

- 1. 光计算机 利用光子取代电子进行运算和存储
- 2. DNA生物计算机 通过控制DNA分子间的生化反应
- 3. 量子计算机 利用原子所具有的量子特性

Part 1 课后作业

P19, T1.6, T1.9

用A4纸书写答案,下次课交上来。

义.6 画出计算机硬件组成框图,说明各部件的作用及计算机硬件的主要技术指标。

▲ 面出主机框图,分别以存数指令"STA M"和加法指令"ADD M"(M 均为主存地址)为例,在图中按序标出完成该指令(包括取指阶段)的信息流程(如——)。假设主存容量为 256 M×32 位,在指令字长、存储字长、机器字长相等的条件下,指出图中各寄存器的位数。

