Scilab Textbook Companion for Solid State Physics: Structure And Properties Of Materials by M. A. Wahab¹

Created by
Pankaj Biswas
Electronics
Physics
Shri Mata Vaishno Devi University
College Teacher
Dr. Kamni
Cross-Checked by
Dr. Jitendra Sharma

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Solid State Physics: Structure And Properties Of Materials

Author: M. A. Wahab

Publisher: Narosa Publishing House Pvt. Ltd. New Delhi

Edition: 2

Year: 2010

ISBN: 978-81-7319-603-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
1	Atoms in Crystals	10
2	Atomic Bonding	26
3	Atomic Packing	34
4	Atomic Shape and Size	40
5	Crystal Imperfections	47
6	Atomic Diffusion	66
7	Lattice or Atomic Vibrations	79
8	Diffraction of Waves and Particles by Crystals	83
9	Thermal Properties of Materials	99
10	Free Electrons in Crystals	105
11	Band Theory	120
13	Semiconducting Properties of Materials	122
14	Dielectric Properties of Materials	129
15	Ontical Properties of Materials	135

16 Magnetic Properties of Materials	139
17 Superconductivity	143

List of Scilab Codes

Exa 1.1	Relationship among cyrstal elements	10
Exa 1.2	Primitive unit cell	10
Exa 1.3	Number of Lattice points per unit cell	11
Exa 1.4	Lattice constant of a unit cell	12
Exa 1.5	Density of diamond	13
Exa 1.6	Calculating Unit cell dimensions	14
Exa 1.17	Angle between two crystal directions	15
Exa 1.18	Angle between two directions of cubic crystal	15
Exa 1.19	Miller indices of the crystal plane	16
Exa 1.20	Indices of lattice plane	17
Exa 1.21	Length of the intercepts	17
Exa 1.22	Miller indices of lattice planes	18
Exa 1.23	Indices of tetragonal lattice	19
Exa 1.24	Miller Bravias indices for Miller indices	20
Exa 1.25	Miller Bravias indices of lattice plane	21
Exa 1.26	Lattice parameter of a cubic crystal	23
Exa 1.27	Interplanar spacing in tetragonal crystal	24
Exa 1.28	Interplanar spacing in cubic crystal	24
Exa 2.1	Molecular stability based on bond dissociation energy	26
Exa 2.2	Conversion of eV into kcal per mol	27
Exa 2.3	Potential energy of the ionic solids	27
Exa 2.4	Compressibility and energy of ionic crystal	28
Exa 2.5	Potential energy and dissociation energy of a diatomic	
	molecule	29
Exa 2.6	Binding force and critical separation of a diatomic molecule	30
Exa 2.7	Bond formation energy of ionic solid	31
Exa 2.8	Energy liberation during electron transfer	32
Exa 3.1	Packing of spheres in 2D square lattice	34

Exa 3.2	Packing efficiency in diamond structure
Exa 3.3	Radius of largest sphere at octahedral void
Exa 3.4	Radius of largest sphere at tetrahedral void
Exa 3.5	Diameter of the largest atom at tetrahedral void
Exa 3.6	Void space in cubic close packing
Exa 3.7	The Minimum value of radius ratio in a compound
Exa 4.1	Bohr orbit for the hydrogen atom
Exa 4.2	Ionization potentials of hydrogen atom
Exa 4.3	Univalent radii of ions
Exa 4.4	Ionic Radius of Si ions in silicon dioxide
Exa 4.5	Ionic Radius occupying an octahedral position
Exa 4.6	Percentage ionic character of a covalent molecule
Exa 4.7	Metallic radius from unit cell dimension
Exa 4.8	Metallic radii from unit cell dimension
Exa 4.9	Metallic diameter and unit cell dimension of aluminium
Exa 5.1	Variation of atomic fraction with temperature
Exa 5.2	Vacancy formation in copper
Exa 5.3	Concentration of Schottky imperfections
Exa 5.4	Number of Schottky imperfections in NaCl crystal
Exa 5.5	Average energy required to create one Schottky defect
Exa 5.6	Ratio of Frenkel defects at two different temperatures
Exa 5.7	Dislocation density of bcc structure of iron
Exa 5.8	Minimum dislocation density in aluminium
Exa 5.9	Total force from its resolved component in a given di-
	rection
Exa 5.10	Resolved componet of shearing force in a given direction
Exa 5.11	Dependence of applied stress on the slip direction
Exa 5.12	Resolved stress in a direction from applied stress in other
	direction
Exa 5.13	Critical resolved shear stress from applied stress in a
	given direction
Exa 5.14	Initiation of slip by the applied stress
Exa 5.15	Applied tensile stress in a direction to initiate plastic
	deformation
Exa 5.16	Dislocation width in copper
Exa 5.17	Change in number of vacancies due to disloaction motion
Exa 5.18	Minimum number of dislocations in motion from shear-
	ing rate

Exa 5.19	Elastic energy of line imperfection	62
Exa 5.20	Spacing between dislocations in a tilt boundary	63
Exa 5.21	Tilt angle from dislocation spacing in the boundary	64
Exa 5.22	Tilt angle from dislocation spacing	64
Exa 6.1	Rate of diffusion of nitrogen through steel wall	66
Exa 6.2	Rate of diffusion of copper through pure Al sheet	66
Exa 6.3	Rate of diffusion of carbon through steel bar	67
Exa 6.4	Diffusion through a cylinder	68
Exa 6.5	Diffusion length of Li in Ge	69
Exa 6.6	Diffusion time of Li in Ge	69
Exa 6.7	Diffusion coefficent of Cu in Al	70
Exa 6.8	Activation energy for diffusion of Ag in Si	71
Exa 6.9	Arrhenius rate law	71
Exa 6.10	Activation energy for diffusion rates at different temper-	
	atures	73
Exa 6.11	Time required for carburizing of steel	74
Exa 6.12	Carbon concentration of carburized steel at certain depth	75
Exa 6.13	Depth of decarburization below the surface of steel	76
Exa 6.14	Diffusion depth of P type semiconductor	77
Exa 7.1	Cut off frequency of the linear lattice of a solid	79
Exa 7.2	Comparison of frequency of waves in a monoatomic and	
	diatomic linear systems	79
Exa 7.3	Reflection of electromagentic radiation from a crystal .	81
Exa 8.1	Shortest wavelength and frequency of X rays from ac-	
	celerating potential	83
Exa 8.2	Impinging electrons on the target and characteristics of	
	X rays	84
Exa 8.3	Wavelength of characteristic X rays	85
Exa 8.4	Atomic number of an unknown element	86
Exa 8.5	Wavelength of copper using Moseley law	86
Exa 8.6	Atomic number from wavelength using Moseley law	87
Exa 8.7	Wavelengths of tin and barium using Moseley law	88
Exa 8.8	Percentage transmitted energy of X rays	89
Exa 8.9	Thickness of lead piece by using two equal intensity X	
	ray wavelengths	89
Exa 8.10	Angle of reflection by using wavelength of X rays	90
Exa 8.11	Wavelength of diffracted X rays	91

Exa 8.12	Reciprocal lattice parameters from 2D direct lattice pa-	
	rameters	92
Exa 8.13	Bragg angle and the indices of diffraction of Powder Lines	93
Exa 8.14	Minimum distance from the centre of the Laue pattern	94
Exa 8.15	Unit cell height along the axis of a rotation photograph	95
Exa 8.16	Diffraction of thermal neutrons from planes of Ni crystal	96
Exa 8.17	Diffraction of electrons from fcc crystal planes	97
Exa 9.1	Exception of Dulong Petit law at room temperature .	99
Exa 9.2	Specific heat of copper from Debye temperature	100
Exa 9.3	Vibrational frequency and molar heat capacity of dia-	
	mond	101
Exa 9.4	Debye temperature of copper at low temperature	102
Exa 9.5	Debye temperature for gold	102
Exa 9.6	Heat transference into rock salt at low temperature	103
Exa 10.1	Particle moving in one dimensional potential well	105
Exa 10.2	Motion of a ground state electron in a 3D potential well	106
Exa 10.3	Motion of an electron excited next to the ground state	
	in a 3D potential well	106
Exa 10.4	Degeneracy of energy level	108
Exa 10.5	Fermi energy of zinc at absolute zero	110
Exa 10.6	Electron probability above Fermi energy	111
Exa 10.7	The electroic specific heat of Cu	112
Exa 10.8	Electrical resitivity of sodium metal	113
Exa 10.9	Electrical conductivity of Cu	114
Exa 10.10	Electron mobility inside conductors	115
Exa 10.11	Lorentz number calculation of a solid	116
Exa 10.12	Increase in electrical resistivity of a metal with temper-	
	ature	117
Exa 10.13	Thermionic emission of a filament	118
Exa 10.14	Hall coefficient of sodium based on free electron model	119
Exa 11.2	Ratio between kinetic energy of an electron in 2D square	
	lattice	120
Exa 13.3	Intrinsic concentration of charge carriers in semiconduc-	
	tors	122
Exa 13.4	Comparison of intrinsic carrier densities of two semicon-	
	ductors	123
Exa 13.5	Shift in fermi level with change in concentration of im-	
	purities	123

Exa 13.6	Electrical resistivity of Ge	124
Exa 13.7	Electrical conductivity of intrinsic and extrinsic Si	125
Exa 13.8	Resistance of intrinsic Ge Rod	126
Exa 13.9	Hall effect in Si semiconductor	127
Exa 13.10	Forward current of a pn diode using diode equation	127
Exa 13.11	Voltage from net forward current using Diode Equation	128
Exa 14.1	Polarization of water molecule	129
Exa 14.2	Dielectric constant from electric polarizability of the	
	atom	130
Exa 14.3	Electric polarizability of a molecule from its susceptibility	130
Exa 14.4	Electric polarizability of oxygen atom	131
Exa 14.5	Dipolar polarization of HCl molecule	132
Exa 14.6	Effect of molecular deformation on polarizability	133
Exa 15.1	Photon count from Planck quantum law	135
Exa 15.2	Inicient energy of photon in photoelectric effect	135
Exa 15.3	photon count for green wavelength of Hg	136
Exa 15.4	Photoelectric effect in a photocell	137
Exa 15.5	Energy required to stimulate the emission of Na doublets	138
Exa 16.1	Response of copper to magnetic field	139
Exa 16.2	Diamagnetic susceptibility of copper	140
Exa 16.3	Magnetic induction from orientational energy equivalent	
	of thermal energy	140
Exa 16.4	Behaviour of paramagnetic salt when placed in uniform	
	magnetic field	141
Exa 17.1	Variation of critical magnetic field with temperature .	143
Exa 17.2	Temperature variation of critical magnetic field for tin	143
Exa 17.3	Critical current for a lead wire from its critical temper-	
	ature	144
Exa 17.4	Dependence of London penetration depth on tempera-	
	ture	145

Chapter 1

Atoms in Crystals

Scilab code Exa 1.1 Relationship among cyrstal elements

```
1 // Scilab Code Ex1.1 Relationship among cyrstal
     elements: Page-2 (2010)
2 f = 18; // Number of faces of the quartz crystal
            // Number of angles in the quratz crystal
3 c = 14;
4 // The relationship amongst the crystal elements can
      be
5 // expressed by the following formula:
6 // f + c = e + 2;
7 // Solving for e
8 e = f + c - 2;
9 disp (e, "The number of edges of the quartz crystal
     is : ");
10
11 // Result
12 // The number of edges of the quartz crystal is :
13 //
         30
```

Scilab code Exa 1.2 Primitive unit cell

```
1 // Scilab Code Ex1.2 Primitive unit cell: Page-4
     (2010)
2 a = 3, b = 3; // Lattice translation vectors
     along X and Y direction, angstrom
3 c_bar = 3; // Assumed translation vector along Z
     direction, angstrom
                          // Real translation vector
4 c = 1.5*(a+b+c_bar);
     along Z direction, angstrom
5 printf("\n^33.1f is the body centered position of a
     cubic unit cell defined by the primitive
     translation vectors a, b and c_bar.", c);
                 // Volume of conventional unit cell,
6 V_{con} = a^3;
      metre cube
7 V_primitive = 1/2*V_con; // Volume of primitive
     unit cell, metre cube
8 printf("\nThe volume of conventional unit cell: %2d
     angstrom cube", V_con);
 printf("\nThe volume of primitive unit cell: %4.1 f
     angstrom cube", V_primitive);
10
11 // Result
12 // 13.5 is the body centered position of a cubic
     unit cell defined by the primitive translation
     vectors a, b and c_bar.
13 // The volume of conventional unit cell: 27 angstrom
      cube
14 // The volume of primitive unit cell: 13.5 angstrom
     cube
```

Scilab code Exa 1.3 Number of Lattice points per unit cell

```
1 // Scilab Code Ex1.3 Number of Lattice points per
    unit cell Page-9 (2010)
2 a = 3.60D-10; // Lattice parameter, m:
3 M = 63.6; // Atomic weight, gram per mole
```

```
d = 8960D+03;  // Density of copper, g per metre
    cube

5 N = 6.023D+23;  // Avogadro's No.
6 // Volume of the unit cell is given by
7 // a^3 = M*n/(N*d)
8 // Solving for n
9 n = a^3*d*N/M; // Number of lattice points per unit
    cell

10 disp (n, "The number of atoms per unit cell for an
    fcc lattice of copper crystal is :");

11
12 // Result
13 // The number of atoms per unit cell for an fcc
    lattice of copper crystal
14 // 3.9588702
```

Scilab code Exa 1.4 Lattice constant of a unit cell

```
1 // Scilab Code Ex 1.4 Lattice constant of a unit
     cell: Page-9 (2010)
2 M = 58.5;
               // Atomic weight of NaCl, gram per
     mole
3 d = 2180D+03; // Density of rock salt, per metre
     cube
            // No. of atoms per unit cell for an fcc
4 n = 4;
     lattice of NaCl crystal
5 N = 6.023D+23; // Avogadro's No.
6 // Volume of the unit cell is given by
7 // a^3 = M*n/(N*d)
8 // Solving for a
9 a = (n*M/(d*N))^(1/3); // Lattice constant of
     unit cell of NaCl
10 disp (a/1D-10, "Lattice constant for the rock salt (
     NaCl) crystal, in angstrom, is: ");
11
```

```
12 // Result  
13 // Lattice constant for the rock salt (NaCl) crystal , in angstrom , is :  
14 // 5.6275
```

Scilab code Exa 1.5 Density of diamond

```
1 // Scilab Code Ex 1.5 Density of diamond: Page-9
     (2010)
2 a = 3.57D-10; // Lattice parameter of a diamond
    crystal
3 M = 12D-03; // Atomic weight of diamond, kg per
     mole
          // No. of corner atoms in the diamond
4 n1 = 8;
     cubic unit cell
5 n2 = 6;
           // No. of face centered atoms in the
     diamond cubic unit cell
6 n3 = 4; // No. of atoms completely within the
     unit cell
7 n = 1/8*n1+1/2*n2+1*n3; // No. of atoms per unit
     cell for an fcc lattice of NaCl crystal
8 N = 6.023D+23; // Avogadro's No.
9 // Volume of the unit cell is given by
10 // a^3 = M*n/(N*d)
11 // Solving for d
12 d = M*n/(N*a^3); // Density of diamond cubic unit
      cell
13 disp (round(d), "Density of diamond cubic unit cell,
      in kg per metre cube, is: ");
14
15 // Result
16 // Density of diamond cubic unit cell, in kg per
     metre cube, is:
17 // 3503
```

Scilab code Exa 1.6 Calculating Unit cell dimensions

```
1 // Scilab Code Ex 1.6 Calculating Unit cell
     dimensions: Page-9 (2010)
2 d = 2.7D+03; // Density of fcc structure of
     aluminium, kg per metre cube
3 M = 26.98D-03; // Atomic weight of aluminium, kg
     per mole
               // No. of atoms per unit cell of fcc
     lattice structure of aluminium
5 N = 6.023D+23; // Avogadro's No.
6 // Volume of the unit cell is given by
7 // a^3 = M*n/(N*d)
8 // Solving for a
9 a = ((M*n)/(N*d))^(1/3); // Lattice parameter of
     alumitnium unit cell
10 // For an fcc cryatal lattice,
11 // 2^{(1/2)} = 4R = 2D
12 // Solving for D
13 D = (a/2^(1/2)); // Diameter of aluminium atom
14 disp (a/1D-10, "The Lattice parameter of aluminium,
     in angstrom, is: ");
15 disp(D/1D-10, "The diameter of aluminium atom, in
     angstrom, is: ");
16
17 // Result
18 // The Lattice parameter of aluminium, in angstrom,
     is :
19 // 4.0486332
20 // The diameter of aluminium atom, in angstrom, is:
21 //
         2.862816
```

Scilab code Exa 1.17 Angle between two crystal directions

```
1 // Scilab Code Ex 1.17 Angle between two crystal
     directions: Page -23 (2010)
2 h1 = 1; k1 = 1; l1 = 1; // Miller indices of first set
      of planes
3 h2 = 0; k2 = 0; l2 = 1; // Miller indices of second
     set of planes
4 // We know that
11^2) * sqrt (h1^2+k1^2+l1^2)
6 // Solving for theta
7 theta = acos((h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1))
     ^2)*sqrt(h2^2+k2^2+12^2)));
8 printf("\nThe angle between [%d%d%d] and [%d%d%d]
     directions in the cubic crystal, in degrees, is:
      \%4.2 \, f", h1,k1,l1,h2,k2,l2, theta*180/%pi);
9
10 // Result
11 // The angle between [111] and [001] directions in
     the cubic crystal, in degrees, is:
12 //
     54.74
```

Scilab code Exa 1.18 Angle between two directions of cubic crystal

Scilab code Exa 1.19 Miller indices of the crystal plane

```
1 // Scilab Code Ex 1.19 Miller indices of the crystal
      plane: Page -25 (2010)
2 m = 2; n = 3; p = 6; // Coefficients of intercepts
      along three axes
3 \text{ m_inv} = 1/\text{m};
                        // Reciprocate the first
      coefficient
4 \text{ n_inv} = 1/n;
                        // Reciprocate the second
      coefficient
5 p_{inv} = 1/p;
                        // Reciprocate the third
      coefficient
6 mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.
     m. of m, n and p
7 m1 = m_inv*mul_fact; // Clear the first fraction
                           // Clear the second fraction
8 m2 = n_inv*mul_fact;
9 m3 = p_inv*mul_fact;  // Clear the third fraction
10 printf("\nThe required miller indices are : (%d %d
     \%d) ", m1,m2,m3);
11
12 // Result
13 // The required miller indices are : (3 2 1)
```

Scilab code Exa 1.20 Indices of lattice plane

```
1 // Scilab Code Ex 1.20 Indices of lattice plane:
     Page - 25 (2010)
2 m = 10000; // Coefficient of intercept along x-axis,
      can be taken as some large value
3 n = 2; // Coefficient of intercept along y-axis
4 p = 1/2; // Coefficient of intercept along z-axis
5 m_inv = 1/m; // Reciprocate m
                 // Reciprocate n
6 \text{ n_inv} = 1/n;
7 p_inv = 1/p; // Reciprocate p
8 mul_fact = n; // multiplicative factor
9 m1 = m_inv*mul_fact; // Clear the first fraction
                         // Clear the second fraction
10 m2 = n_inv*mul_fact;
11 m3 = p_inv*mul_fact; // Clear the third fraction
12 printf("\nThe required miller indices are : %d, %d,
     %d ", m1,m2,m3);
13
14 // Result
15 // The required miller indices are :
16 //
      0, 1, 4
```

Scilab code Exa 1.21 Length of the intercepts

```
5 p = 1/2; // Reciprocal of miller index on x-axis
6 q = 1/3; // Reciprocal of miller index on y-axis
7 r = 1/(-1); // Reciprocal of miller index on z-
     axis
8 11 = 1.21D-10; // Actual length of the intercept
     along x-axis, m
9 mul_fact = 11/(p*a); // Calculate multiplication
     factor
10 12 = mul_fact*q*b; // Actual length of the
     interceptalong y-axis, m
11 13 = mul_fact*r*c; // Actual length of the
     intercept along z-axis, m
12 disp(12/1D-10, "The length of the intercept along y-
     axis, in angstrom, is: ");
13 disp(13/1D-10), "The length of the intercept along z-
     axis, in angstrom, is: ");
14
15 // Result
16 // The length of the intercept along y-axis, in
     angstrom, is:
17 // 1.2266667
18 // The length of the intercept along z-axis, in
     angstrom, is:
19 // - 3.94
```

Scilab code Exa 1.22 Miller indices of lattice planes

```
1 // Scilab Code Ex 1.22 Miller indices of lattice
    plane: Page-26 (2010)
2 a = 4;    // Lattice parameter of the unit cell
3 b = 3;    // Lattice parameter of the unit cell
4 c = 2;    // Lattice parameter of the unit cell
5 l1 = 2;    // Length of the intercept along x-axis,
    m
6 l2 = 3;    // Length of the intercept along y-axis,
```

```
\mathbf{m}
7 \ 13 = 4;
             // Length of the intercept along z-axis,
8 1 = 11/a;
                 // Intercept per unit translation along
      x-axis
9 m = 12/b;
                 // Intercept per unit translation along
      v-axis
10 n = 13/c;
                // Intercept per unit translation along
       z-axis
                // Reciprocal of 1
11 r1 = 1/1;
                // Reciprocal of m
12 	 r2 = 1/m;
13 \text{ r3} = 1/n;
                // Reciprocal of n
                // miller index along x-axis
14 \text{ m1} = 2*r1;
                 // miller index along y-axis
15 \text{ m2} = 2*r2;
16 \text{ m3} = 2*r3;
                  // miller index along z-axis
17 printf ("The required miller indices of the plane are
       : %d %d %d, m1, m2, m3);
18
19 // Result
20 // The required miller indices of the plane are :
21 //
          4, 2, 1
```

Scilab code Exa 1.23 Indices of tetragonal lattice

```
7 12 = 4;
               // Length of the intercept along y-axis,
      angstrom
               // Length of the intercept along z-axis,
8 13 = 3;
     angstrom
9 1 = 11/a;
                // Intercept per unit translation along
       x-axis
                // Intercept per unit translation along
10 \ m = 12/b;
       y-axis
11 n = 13/c;
                 // Intercept per unit translation along
       z-axis
              // Reciprocal of 1
12 \text{ r1} = 1/1;
                // Reciprocal of m
13 \text{ r2} = 1/\text{m};
14 r3 = 1/n; // Reciprocal of n
15 mul_fact = double(lcm(int32([1,m,n])));
16 m1 = mul_fact*r1; // miller index along x-axis
17 m2 = mul_fact*r2; // miller index along y-axis
18 m3 = mul_fact*r3; // miller index along z-axis
19 printf("The required miller indices of the plane are
       : %d %d %d", m1, m2, m3);
20
21 // Result
22 // The required miller indices of the plane are : 4
      3 6
```

Scilab code Exa 1.24 Miller Bravias indices for Miller indices

```
1  // Scilab Code Ex 1.24 Miller-Bravias indices for
        Miller indices: Page-29 (2010)
2  function [i] = f(h,k)
3     i = -(h + k);
4  endfunction
5  h1 = 1; k1 = 1; l1 = 0; // First set of Miller
     indices
6  h2 = 1; k2 = -1; l2 = 0; // Second set of miller
     indices
```

```
7 h3 = 3; k3 = 4; 13 = 5; // Third set of miller
     indices
8 h4 = 3; k4 = -4; 14 = 5; // Fourth set of miller
     indices
9 printf("\nThe Miller-Bravias indices corresponding
     to the miller indices (%d %d %d), = (%d %d %d %d)
     ", h1, k1, l1, h1, k1, f(h1,k1), l1);
10 printf("\nThe Miller-Bravias indices corresponding
     to the miller indices (%d %d %d), = (%d %d %d %d)
     ", h2, k2, 12, h2, k2, f(h2,k2), 12);
11 printf("\nThe Miller-Bravias indices corresponding
     to the miller indices (%d %d %d), = (%d %d %d %d)
     ", h3, k3, 13, h3, k3, f(h3,k3), l3);
12 printf("\nThe Miller-Bravias indices corresponding
     to the miller indices (%d %d %d), = (%d %d %d %d)
     ", h4, k4, l4, h4, k4, f(h4,k4), l4);
13
14 // Result
15 // The Miller-Bravias indices corresponding to the
      miller indices (1 \ 1 \ 0), = (1 \ 1 \ -2 \ 0)
 // The Miller-Bravias indices corresponding to the
      miller indices (1 -1 0), = (1 -1 0 0)
  // The Miller-Bravias indices corresponding to the
     miller indices (3 \ 4 \ 5), = (3 \ 4 \ -7 \ 5)
18 // The Miller-Bravias indices corresponding to the
     miller indices (3 -4 5), = (3 -4 1 5)
```

Scilab code Exa 1.25 Miller Bravias indices of lattice plane

```
1 // Scilab Code Ex 1.25 Miller Bravias indices of
    lattice planes: Page-30 (2010)
2 function [h] = fh(H,K) // Function for
    calculating (2H-K)/3
3    h = (2*H - K)/3;
4 endfunction
```

```
6 function [k] = fk(H,K) // Function for
      calculating (2K-H)/3
      k = (2*K - H)/3;
 8 endfunction
10 function [i] = f(h,k) // Function for calculating
      i
      i = -(h + k);
11
12 endfunction
13
14 function [1] = fl(L) // Function for calculating
     1
15
       1 = L;
16 endfunction
17
18 H1 = 1; K1 = 0; L1 = 0; // First set of Miller
     indices
19 H2 = 0; K2 = 1; L2 = 0; // Second set of miller
     indices
20 H3 = 1; K3 = 1; L3 = 0; // Third set of miller
     indices
21

22 h1 = fh(H1,K1)*3;  // Call function fk

Call function fl
21
25 	 i1 = f(h1,k1);
                       // Call function
26
27 h2 = fh(H2,K2)*3;
- fk(H2,K2)*3;
                       // Call function fh
                      // Call function fk
                       // Call function 12
29 	 12 = f1(L2)*3;
                       // Call function f
30 	 i2 = f(h2,k2);
31
                       // Call function f
35 	 i3 = f(h3,k3);
36
```

Scilab code Exa 1.26 Lattice parameter of a cubic crystal

```
1 // Scilab Code Ex 1.26 Lattice parameter of a cubic
     crystal: Page-33 (2010)
2 h = 1; k = 1; l = 1; // Miller Indices for planes in
      a cubic crystal
3 d = 2D-10;
               // Interplanar spacing, m
4 // For cubic crystals, the interplanar spacing is
     given by
5 // d = a/(h^2+k^2+l^2)^1/2;
6 // Solving for a
7 a = (h^2+k^2+1^2)^{(1/2)}*d; // lattice parameter of
      cubic crystal, m
8 disp(a/1D-10, "The lattice parameter of the cubic
     crystal, in angstrom, is :");
9
10 // Result
11 // The lattice parameter of the cubic crystal, in
     angstrom, is:
12 // 3.4641016
```

Scilab code Exa 1.27 Interplanar spacing in tetragonal crystal

```
1 // Scilab Code Ex 1.27 Interplanar spacing in
        tetragonal crystal: Page-33 (2010)
2 h = 1; k = 0; l = 1; // Miller Indices for planes in
        a cubic crystal
3 a = 2.42D-10; b = 2.42D-10; c = 1.74D-10; //
        Lattice parameters of a tetragonal crystal, each
        in m
4 d = [(h^2+k^2)/a^2 + l^2/c^2]^(-1/2); // The
        interplanar spacing for cubic crystal, m
5 disp(d/1D-10, "The interplanar spacing between
        consecutive (101) planes: in angstrom, is:");
6
7 // Result
8 // The interplanar spacing between consecutive (101)
        planes: in angstrom, is:
9 // 1.4127338
```

Scilab code Exa 1.28 Interplanar spacing in cubic crystal

```
7 // Result
8 // The interplanar spacing between consecutive (321)
planes : in angstrom, is :
9 // 1.1251698
```

Chapter 2

Atomic Bonding

Scilab code Exa 2.1 Molecular stability based on bond dissociation energy

```
1 // Scilab Code Ex2.1 Stability of molecule based on
     bond dissociation energy: Page-61 (2010)
2 e = 1.6D-19; // Electronic charge, C
3 N = 6.023D+23; // Avogadro's number
4 e0 = 8.854D-12; // Absolute Electrical permittivitty
     of free space, coulomb square per newton per
     metre square
5 Re = 3D-10; // Equilibrium separation, m
6 	ext{ IE} = 502;
                // First ionization energy of A, kJ/mol
               // Electron affinity for atom B, kJ/mol
7 EA = 335;
8 	 IS = 3D-10;
                  // Interatomic separation between A+
     and B-, m
9 Ue = -(e^2*N)/(4*\%pi*e0*Re*1D+3); // Potential
     energy at equilibrium separation of A+B- molecule
     , kJ/mol
10 DE = Ue + IE - EA; // Bond dissociation energy of A+
     B- molecule, kJ/mol
11 printf("\nThe bond dissociation energy of A+B-
     molecule is : %d kJ/mol", DE);
12 \text{ if } (DE < 0)
      disp("The molecule A+B- is stable..");
```

Scilab code Exa 2.2 Conversion of eV into kcal per mol

```
1 // Scilab Code Ex2.2 Conversion of eV into kcal/mol:
      Page -64 (2010)
2 e = 1.6D-19; // Electronic charge, C
3 N = 6.023D+23; // Avogadro's number
4 J = 4.184D+3; // Joule's mechanical equivalent of
     heat
           // Potential difference, V
5 V = 1;
6 eV = e*V; // Energy equivalent of 1 electron-volt, J
7 eVpm = eV*N; // Electron-volt per mole, J/mol
8 Ecal = eVpm/J; // Energy equivalent of 1eV, kcal/
     mole
9 printf("\n1 eV is approximately equal to \%6.3 f kcal/
     mol", Ecal);
10
11 //Result
12 // 1 eV is approximately equal to 23.033 kcal/mol
```

Scilab code Exa 2.3 Potential energy of the ionic solids

```
1 // Scilab Code Ex2.3 Potential energy of the system
    of Na+ and Cl- ions: Page-68 (2010)
2 e = 1.6D-19; // Electronic charge, C
```

```
gep_0 = 8.854D-12; // Absolute electrical
    permittivity of free space, coulomb square per
    newton per metre square

Re = 2D-10; // Equilibrium separation between Na+
    and Cl- ions, m

U = -e/(4*%pi*ep_0*Re); // Potential energy of NaCl
    molecule at equilibrium separation, electron-volt
printf("\nThe potential energy of NaCl molecule at
    equilibrium separation5 is: %3.1 f eV", U);

// Result
// Result
// The potential energy of NaCl molecule at
    equilibrium separation5 is: -7.2 eV
```

Scilab code Exa 2.4 Compressibility and energy of ionic crystal

```
1 // Scilab Code Ex2.4 Compressibility and ionic
     energy of NaCl crystal: Page-68 (2010)
2 e = 1.6D-19; // Electronic charge, \dot{C}
3 \text{ ep}_0 = 8.854D-12; // Absolute electrical}
     permittivity of free space, coulomb square per
     newton per metre square
4 Re = 2.81D-10; // Equilibrium separation between Na+
      and Cl- ions, m
5 A = 1.7496; // Madelung constant
6 n = 9; // Power of R in the repulsive term of
     potential energy of two particles
7 IP_Na = 5.14; // Ionization potential of sodium, eV
8 EA_Cl = 3.61; // Electron Affinity of chlorine, eV
9 K0 = (72*\%pi*ep_0*Re^4)/((n - 1)*A*e^2); //
     Compressibilty of NaCl crystal, metre square
     newton
10 U = -(A*e)/(4*\%pi*ep_0*Re)*(1-1/n); // Potential
     energy of NaCl molecule at equilibrium separation
     , electron-volt
```

```
11 U_bar = U/2; // Potential energy per ion, electron-
      volt
12 delta_E = IP_Na - EA_Cl; // Energy required to
     produce the ion-pair, eV
13 E_ion = delta_E/2; // Energy required to produce per
      ion, eV
14 C_E = U_bar + E_ion; // Cohesive energy per ion, eV
15 printf("\nThe compressibility of NaCl crystal is %4
      .2e metre square newton", KO);
16 printf("\nThe cohesive energy of NaCl crystal is %4
     .2 \text{ f eV}", C_E);
17
18 // Result
19 // The compressibility of NaCl crystal is 3.48e-011
     metre square newton
20 // The cohesive energy of NaCl crystal is -3.21 eV
```

Scilab code Exa 2.5 Potential energy and dissociation energy of a diatomic molecule

Scilab code Exa 2.6 Binding force and critical separation of a diatomic molecule

```
1 // Scilab Code Ex2.6 Binding force and critical
     separation of a diatomic molecule: Page-69 (2010)
2 Re = 3D-10; // Equilibrium spacing of diatomic
     molecule, m
3 e = 1.6D-19; // Electronic charge, C
4 D = 4*e; // Dissociation energy of diatomic molecule
    , eV
          // Power of R in the attractive term of
5 n = 2;
     potential energy of two particles
6 m = 10; // Power of R in the repulsive term of
     potential energy of two particles
7 Ue = -D; // Potential energy of diatomic molecule at
      equilibrium separation, joule
8 A = -(\text{Ue}*\text{Re}^n)/(1-n/m); // Constant corrsponding to
     the attractive term in potential energy, joule
     metre square
9 B = A*Re^8/5; // Constant corresponding to the
     repulsive term in potential energy, joule metre
```

```
raised to power 10
10 Rc = (55/3*B/A)^(1/8); // Critical separation
     between the nuclei, m
11 F_{\min} = -2*A/Rc^3*(1-(Re/Rc)^8); // The minimum
     force required to dissociate the moleule, N
12 disp(A," The constant A corresponding to the
      attractive potential energy, in joule metre
     square, is :");
13 disp(B, "The constant B corresponding to the
     repulsive potential energy, in joule metre raised
      to power 10, is :");
14 disp(Rc/1d-10, "The critical separation between the
     nuclei, in angstrom, is: ");
15 disp(F_min, "The minimum force required to
      dissociate the molecule, in N, is: ");
16
17 //Result
18 // The constant A corresponding to the attractive
     potential energy, in joule metre square, is:
                         7.200D-38
19 // The constant B corresponding to the repulsive
     potential energy, in joule metre raised to power
     10, is: //
                      9.44D - 115
20 // The critical separation between the nuclei, in
     angstrom, is:
21 // 3.529D-10
22 // The minimum force required to dissociate the
     molecule, in N, is:
23 // -2.383D-09
```

Scilab code Exa 2.7 Bond formation energy of ionic solid

```
1 // Scilab Code Ex2.7 Bond formation Energy for K+
        and Cl- ion pair: Page-70 (2010)
2 eps_0 = 8.854D-12; // Absolute electrical
```

```
permittivity of free space, coulomb square per
     newton per metre square
3 e = 1.6D-19; // Electronic charge, C
4 IP_K = 4.1; // Ionization potential of potassium,
     electron-volt
5 EA_Cl = 3.6; // Electron affinity of chlorine,
     electron-volt
6 delta_E = IP_K - EA_Cl; // Net energy required to
     produce the ion-pair, electron-volt
  Ec = delta_E; // Coulomb energy equals net energy
     required to produce the ion pair, in electron-
8 // Since Ec = -e/(4*\%pi*eps_0*R), solving for R
9 R = -e/(4*\%pi*eps_0*Ec); // Separation between K+
     and Cl- ion pair, m
10 disp(Ec," The bond formation energy for K+ and Cl-
     ion pair, in eV, is: ");
11 disp(R/1D-10, "The separation between K+ and Cl- ion
      pair, in angstrom, is: ");
12
13 // Result
14 // The bond formation energy for K+ and Cl- ion pair
     , in eV, is :
15 // 0.5
16 // The separation between K+ and Cl- ion pair, in
     angstrom, is:
17 // - 28.760776
```

Scilab code Exa 2.8 Energy liberation during electron transfer

```
1 // Scilab Code Ex2.8 Energy liberated during
    electron transfer between ions of a molecule:
    Page-71 (2010)
2 eps_0 = 8.854D-12; // Absolute electrical
    permittivity of free space, coulomb square per
```

```
newton per metre square
3 e = 1.6D-19; // Electronic charge, C
4 R = 5D-10; // Separation between the ions M and X
     , m
5 IP_M = 5; // Ionization potential of M, eV
6 EA_X = 4; // Electron affinity of X, eV
7 U = -e/(4*\%pi*eps_0*R); // The potential energy of
     MX molecule, eV
8 delta_E = IP_M - EA_X; // The net energy required to
      produce the ion pair, eV
9 Er = delta_E + U; // Energy required to transfer an
      electron from M to X atom, eV
10 printf("\nThe energy required to transfer an
      electron from M to X atom = \%4.2 \,\mathrm{f} eV", Er);
11
12 // Result
13 // The energy required to transfer an electron from
     M\ to\ X\ atom\ =\ -1.88\ eV
```

Chapter 3

Atomic Packing

Scilab code Exa 3.1 Packing of spheres in 2D square lattice

```
1 // Scilab Code Ex3.1 Packing of equal spheres in two
       dimensional square lattice: Page-88 (2010)
\frac{2}{2} // Here we may assume square of unit length i.e. a = \frac{1}{2}
      1 such that radius of sphere, R = a/2 = 0.5
          // Length of the side of the square, unit
4 R = a/2; // Radius of the sphere, unit
5 r = (sqrt(2)-1)*R; // Radius of the sphere
     introduced within the void produced by the
      packing of equal spheres on square lattice, unit
6 A = %pi*R^2; // Area associated with a sphere,
     square units
7 \text{ FA} = a^2 - A;
                  // Free area occupied by void in
     square lattice, square units
8 \text{ FA_per} = \text{FA}*100;
                      // Percentage free area in
      square lattice
9 printf("\nFree area in square lattice is : %4.1 f
      percent", FA_per);
10 //Result
11 // Free area in square lattice is : 21.5 percent
```

Scilab code Exa 3.2 Packing efficiency in diamond structure

```
1 // Scilab Code Ex3.2 Packing efficiency in diamond
     structure: Page -92 (2010)
2 // For simplicity we may take radius of the atom, R
     = 1 unit
3 R = 1; // Radius of the atom in bcc lattice, unit
4 nc = 8; // Number of corner atoms in diamond
     structure
5 nfcc = 6; // Number of face centred atoms in
     diamond structure
6 \text{ na} = 4;
             // Number of atoms completely within the
     unit cell
7 n = 1/8*nc+1/2*nfcc+1*na; // Effective number of
     atoms in the diamond structure
8 V_{atom} = 8*4/3*\%pi*R^3; // Volume of atoms within
     the unit cell, unit cube
9 // Since for a diamond cubic crystal, the space
     lattice is fcc, with two atos per lattice point,
     such that 8*R = sqrt(3)*a, solving for a
10 a = 8*R/sqrt(3); // lattice parameter of diamond
     structure, unit
11 V_cell = a^3; // Volume of the unit cell, unit
     cube
12 eta = V_atom/V_cell*100; // Packing efficiency in
     diamond structure
13 printf("\nThe packing efficiency in diamond
     structure is : %2.0f percent", eta);
14 // Result
15 // The packing efficiency in diamond structure is :
     34 percent
```

Scilab code Exa 3.3 Radius of largest sphere at octahedral void

```
1 // Scilab Code Ex3.3 Radius of largest sphere that
     can be placed at the octahedral void: Page-100
     (2010)
2 // For simplicity we may take radius of the atom, R
     = 1 unit
            // Radius of the atom in bcc lattice, unit
4 // For a bcc lattice, 4*R = a*sqrt(3), solving for a
5 a = 4*R/sqrt(3); // lattice parameter of bcc crystal
     , unit
6 // Since R + Rx = a/2, solving for Rx
7 Rx = a/2 - R; // Radius of the largest sphere that
     will fit into the octahedral void, unit
8 printf("\nThe radius of the largest sphere that will
      fit into the octahedral void is: %5.3fR", Rx);
9 //Result
10 // The radius of the largest sphere that will fit
     into the octahedral void is: 0.155R
```

Scilab code Exa 3.4 Radius of largest sphere at tetrahedral void

```
sphere that will fit into the octahedral void,
    unit

8 printf("\nThe radius of the largest sphere that will
    fit into the tetrahedral void is : %5.3fRL", Rx)
;
9 //Result
10 // The radius of the largest sphere that will fit
    into the tetrahedral void is : 0.291RL
```

Scilab code Exa 3.5 Diameter of the largest atom at tetrahedral void

```
1 // Scilab Code Ex3.5 Diameter of the largest atom
     that would fit into the tetrahedral void:5 Page
     -101 (2010)
2 a = 3.52D-10;
                   // Lattice parameter for Ni, m
3 // For an fcc lattice, sqrt(2)*a = 4*R, solving for
     \mathbf{R}
4 R = sqrt(2)*a/4; // Radius of the atom in fcc
     lattice, m
5 R_oct = 0.414*R; // Radius of the octahedral void
      in fcc close packing, m
6 D = 2*R_oct;
                 // Diameter of the octahedral void
     in the fcc structure of nickel, m
7 disp(D/1D-10, "The diameter of the octahedral void
     in the fcc structure of nickel, in angstrom, is:
      ");
8 // Result
9 // The diameter of the octahedral void in the fcc
     structure of nickel, in angstrom, is:
10 // 1.0304526
```

Scilab code Exa 3.6 Void space in cubic close packing

```
1 // Scilab Code Ex3.6 Void space in cubic close
     packing: Page -101 (2010)
         // For simplicity, radius of the sphere, m
2 R = 1;
3 // For cubic close packing, side of the unit cell
     and the radius of the sphere is related as
          sqrt(2)*a = 4*R, solving for a
5 a = 2*sqrt(2)*R; // Lattice parameter for cubic
     close packing, m
6 V_cell = a^3; // Volume of the unit cell
7 n = 4; // Number of lattice points in fcc unit
     cell
8 V_{\text{occupied}} = 4*4/3*\%pi*((1.000)^3+(0.414))
     ^3+2*(0.225)^3; // Volume occupied by the atoms,
      metre cube
9 void_space = V_cell - V_occupied; // Void space
     in the close packing
10 percent_void = void_space/V_cell*100; // Percentage
     void space
11 printf("\nThe void space in the close packing is:
     \%2.0 \, \text{f percent}, percent_void);
12 // Result
13 // The void space in the close packing is : 19
     percent
```

Scilab code Exa 3.7 The Minimum value of radius ratio in a compound

```
// Scilab Code Ex3.7 The minimum value of radius
    ratio in AX-compound: Page-104 (2010)
// For simplicity we may assume a = 1
a = 1; // Lattice parameter of the crystal, unit
b = 2/3*a*sin(%pi/3); // Lattice parameter of the
    crystal, unit
// Here a = 2*Rx, where a is the lattice parameter
    and Rx is the radius of X-ions representing the
    bigger spheres, solving for Rx
```

Chapter 4

Atomic Shape and Size

Scilab code Exa 4.1 Bohr orbit for the hydrogen atom

```
1 // Scilab Code Ex4.1 Bohr's orbit for the hydrogen
     atom: Page - 126 (2010)
             // The ground state orbit of hydrogen atom
2 n = 1;
3 Z = 1; // The atomic number of hydrogen
4 h = 6.626D-34; // Plank's constant, Js
5 \text{ eps}_0 = 8.85D-12; // Absolute electrical
      permittivity of free space, coulomb square per
     newton per metre square
6 e = 1.602D-19; // Electronic charge, C
7 m = 9.1D-31;
                   // Electronic mass, kg
8 \text{ r_B} = (\text{n^2*h^2*eps_0})/(\text{pi*m*Z*e^2}); // \text{Radius of}
      first Bohr's orbit (Bohr radius), m
9 disp(r_B/1D-10, "The radius of first Bohr orbit, in
      angstrom, is: ");
10 // Result
11 // The radius of first Bohr orbit, in angstrom, is :
12 // 0.5295779
```

Scilab code Exa 4.2 Ionization potentials of hydrogen atom

```
1 // Scilab Code Ex4.2 Ionization potentials of
     hydrogen atom: Page-126 (2010)
          // The atomic number of hydrogen
3 h = 6.626D-34; // Plank's constant, Js
4 \text{ eps\_0} = 8.85D-12; // Absolute electrical
      permittivity of free space, coulomb square per
     newton per metre square
5 e = 1.602D-19;
                   // Electronic charge, C
6 m = 9.1D-31; // Electronic mass, kg
7 E = zeros(1, 3); // Initialize three potentials to 0
      value in a vector
  for n = 1:1:3
       select n
10
       case 1 then
           state = "First";
11
12
       case 2 then
           state = "Second";
13
14
       else
           state = "Third";
15
16
       end
17 E(1,n) = -(m*Z^2*e^4)/(8*eps_0^2*n^2*h^2*e);
     Energy of nth bohr orbit, eV
18 printf("\nThe %s Ionization Potential is: %5.3 f eV"
      ,state, E(1,n);
19 end
20 // Result
21 // The First Ionization Potential is : -13.600 eV
22 // The Second Ionization Potential is : -3.400 eV
23 // The Third Ionization Potential is : -1.511 eV
```

Scilab code Exa 4.3 Univalent radii of ions

```
1 // Scilab Code Ex4.3 Univalent radii of ions: Page
     -130 (2010)
2 S = 4.52; // Screening constant for neon like
```

```
configurations
3 Cn = 1; // A constant determined by the quantum
     number, m; for simplicity it can be assumed as
      unity
4 \ Z_Na = 11;
                 // Atomic number of sodium
5 Z_F = 9; // Atomic number of fluorine
              // Atomic number of oxygen
6 \ Z_0 = 8;
7 \text{ r_Na} = \text{Cn/(Z_Na - S)}; \text{ // Radius of sodium ion, m}
8 r_F = Cn/(Z_F - S); // Radius of fluorine ion, m
                          // Radius ratio
9 \text{ r_ratio} = \text{r_Na/r_F};
10 r_Na = r_F*r_ratio; // Calculating radius of
     sodium ion from r_ratio, m
11 // Given that r_Na + r_F = 2.31D-10,
12 // \text{ or } r_Na + r_Na/0.69 = 2.31D-10,
13 // or r_Na(1 + 1/0.69) = 2.31D-10, solving for r_Na
14 \text{ r_Na} = 2.31D-10/(1+1/0.69); // Calculating radius
      of sodium, m
15 \text{ r}_F = 2.31D-10 - r_Na;
                             // Calculating radius of
      fluorine from r<sub>Na</sub>, m
16 \quad Cn = r_Na*(Z_Na - S);
                             // Calculating Cn, m
17 r_0 = Cn/(Z_0 - S); // Radius of oxygen, m
18 disp(r_Na/1D-10, Radius of sodium ion, in angstrom,
      is :");
19 disp(r_F/1D-10, "Radius of fluorine ion, in angstrom
      , is :");
20 disp(Cn/1D-10, "Constant determined by quantum
     number is : ");
21 disp(r_0/1D-10, "Radius of oxygen, in angstrom, is:
      ");
22 // Result
23 // Radius of sodium ion, in angstrom, is :
24 // 0.9431361
25 // Radius of fluorine ion, in angstrom, is:
26 // 1.3668639
27 // Constant determined by quantum number, in
     angstrom, is:
28 // 6.1115219
29 // Radius of oxygen, in angstrom, is:
```

Scilab code Exa 4.4 Ionic Radius of Si ions in silicon dioxide

```
1 // Scilab Code Ex4.4 Ionic Radius of Si ions in
     silicon dioxide: Page-131 (2010)
2 = 7.12D-10;
                // Lattice parameter of the
     crystal. m
3 d = sqrt(3*a^2/16); // Si-Si distance from (0,0,0)
     to (1/4, 1/4, 1/4)
4 RO = 1.40D-10; // Radius of oxygen, m
  // Distance of oxygen ions between the two Si ions
     is 2*RSi+2*RO = d, solving for RSi
6 RSi = (d - 2*R0)/2; // Radius of silicon ion, m
  disp(RSi/1D-10, "The radius of Si4+ ion, in angstrom
    , is : ");
8 //Result
9 // The radius of Si4+ ion, in angstrom, is:
10 // 0.1415252
```

Scilab code Exa 4.5 Ionic Radius occupying an octahedral position

```
1 // Scilab Code Ex4.5 Ionic Radius occupying an
     octahedral position: Page-138 (2010)
2 R_ratio = 0.414; // Radius ratio for an
     octahedral void in am M+X- ionic lattice
3 R_x = 2.5D-10; // Critical radius of X- anion, m
4 R_m = R_x*0.414; // Radius of M+ cation, m
5 disp(R_m/1D-10, "The radius of cation occupying
     octahedral position in an M+X- ionic solid, in
     angstrom, is: ");
6 //Result
```

```
7 // The radius of cation occupying octahedral position in an M+X- ionic solid, in angstrom, is : 8 // 1.035
```

Scilab code Exa 4.6 Percentage ionic character of a covalent molecule

Scilab code Exa 4.7 Metallic radius from unit cell dimension

```
1 // Scilab Code Ex4.8 Calculating metallic radius
    from unit cell dimension: Page-146 (2010)
2 a = 2.81D-10; // Unit cell dimension of bcc
    structure of iron, m
3 // For bcc structure we have
4 // sqrt(3)*a = 4*R, solving for R
5 R = sqrt(3)/4*a; // Metallic radius of iron atom,
    m
6 printf("\nThe metallic radius of iron atom is %4.2f
    angstrom", R/1D-10);
7 // Result
```

Scilab code Exa 4.8 Metallic radii from unit cell dimension

```
1 // Scilab Code Ex4.9 Calculating metallic radii from
      unit cell dimensions: Page-146 (2010)
                    // Unit cell dimension of fcc
2 a_Au = 4.08e-10;
     structure of gold, m
3 a_Pt = 3.91e-10; // Unit cell dimension of fcc
     structure of platinum, m
4 // For fcc structure we have
      sqrt(2)*a = 4*R, solving for R
6 R_Au = sqrt(2)/4*a_Au; // Metallic radius of gold
      atom, m
7 R_Pt = sqrt(2)/4*a_Pt; // Metallic radius of gold
      atom, m
 printf("\nThe metallic radius of gold atom, in
     angstrom, is : \%4.2 \,\mathrm{f}", R_Au/1D-10);
9 printf("\nThe metallic radius of platinum atom, in
     angstrom, is : \%4.2 \, f", R_Pt/1D-10);
10 //Result
11 // The metallic radius of gold atom, in angstrom, is
      : 1.44
12 // The metallic radius of platinum atom, in angstrom
     , is : 1.38
```

Scilab code Exa 4.9 Metallic diameter and unit cell dimension of aluminium

```
1 // Scilab Code Ex4.10 Calculating metallic diameter
    and unit cell dimension of aluminium: Page-146
        (2010)
2 Z_Al = 13; // Atomic number of aluminium
3 A_Al = 26.98; // Atomic mass of aluminium, g
```

```
4 d_Al = 2700D3; // Density of aluminium, g per
     metre cube
             // number of atoms in the fcc structure of
5 n = 4;
      aluminium
                  // Avogadro's number
6 N = 6.023D+23;
7 // We have number of atoms per fcc unit cell given
     as
8 // n = (V*d_Al*N)/A_Al, solving for V
9 // V = (n*A_Al)/(d_Al*N), V is the volume of the
     unit cell
10 // or a^3 = (n*A_Al)/(d_Al*N), solving for a
11 a = ((n*A_A1)/(d_A1*N))^(1/3); // unit cell
     parameter of aluminium
12 // For an fcc structure we have
13 // \operatorname{sqrt}(2) * a = 4 * R = 2 * D, solving for D
14 D = a/sqrt(2); // metallic diameter of aluminium
     having fcc structure
15 printf("\nThe unit cell dimension of aluminium, is:
      \%4.2 f angstrom", a/1D-10);
16 printf("\nThe metallic diametre of aluminium, is:
     \%4.2 f angstrom", D/1D-10);
17 // Result
18 // The unit cell dimension of aluminium, is: 4.05
     angstrom
19 // The metallic diametre of aluminium, is : 2.86
     angstrom
```

Chapter 5

Crystal Imperfections

Scilab code Exa 5.1 Variation of atomic fraction with temperature

```
1 // Scilab Code Ex5.1 Variation of fraction of atoms
     in a solid with temperature Page -158 (2010)
              // Energy of the solid, electron-volt
2 E = 1.5;
              // First absolute temperature, K
3 T1 = 300;
4 T2 = 1500;
                // Second absolute temperature, K
5 k = 8.614D-5;
                 // Boltzmann constant, electron-
     volt/K
  // Now fraction of atoms = f_atom = n/N = \exp(-E/(k*))
     T
7 f_{atom_300} = exp(-E/(k*T1)); // Fraction of atoms
      in the solid at 300 K
8 f_{atom_1000} = exp(-E/(k*T2));
                                    // Fraction of
     atoms in the solid at 1000 K
9 printf("\nThe fraction of atoms in the solid at 300
     K, is : \%5.3e, f_{atom_300};
10 printf("\nThe fraction of atoms in the solid at 1000
      K, is : \%5.3e, f_atom_1000);
11 //Result
12 // The fraction of atoms in the solid at 300 \text{ K}, is :
      6.185e - 026
13 // The fraction of atoms in the solid at 1000 K, is
```

Scilab code Exa 5.2 Vacancy formation in copper

```
1 // Scilab Code Ex5.2 Vacancy formation in copper
     Page -159 (2010)
            // Energy of formation of vacancy in
2 E = 1;
     copper, electron-volt
3 T = 1356; // Melting point of copper, K
4 k = 8.614D-5; // Boltzmann constant, electron-
     volt
5 N = 6.023D23; // Avogadro's number
6 // Now fraction of vacancies = f_vacancy = n/N = exp
     (-E/(k*T)
7 f = \exp(-E/(k*T)); // Fraction of vacancies in
     the solid at 300 K
8 n = N*f; // Number of vacancy per mole
9 \text{ delta_d} = n + N;
                       // Change in the density due to
     creation of vacancy
10 	ext{ f_d = delta_d/N};
                    // Relative change in the
     density of copper due to vacancy formation
11 printf("\nThe relative change in the density of
     copper due to vacancy formation (n+N)/N, is: \%9
     .7 f : 1", f_d);
12 //Result
13 // The relative change in the density of copper due
     to vacancy formation (n+N)/N, is : 1.0001914 : 1
```

Scilab code Exa 5.3 Concentration of Schottky imperfections

```
1 // Scilab Code Ex5.3 Concentration of Schottky
    imperfections Page-159 (2010)
2 N = 6.023D23; // Avogadro's number
```

```
3 k = 8.614D-5; // Boltzmann's constant, eV/K
4 T1 = 27+273; // First absolute temperature, K
5 T2 = 1000; // Second absolute temperature, K
6 C_300 = 1D-10; // Concentration of Schottky
      defects in an fcc crystal at 300 K temperature
7 n = C_300*N;
                 // Number of Schottky imperfections
     per mole
8 d = 1D-10;
               // Interatomic spacing assumed to be
     unit angstrom, m
9 V = d^3; // Volume of the unit cube, metre cube
10 V_{mole} = V*N; // Volume occupied by one mole of
     atoms in fcc crystal, metre cube
11 V_per_defect = V_mole/n; // Volume per defect,
     metre cube
12 a = (V_per_defect)^(1/3); // Average separation
     between the defects, m
13 E_v = 23.03*k*T1; // Energy of the solid,
     electron-volt
14 C_1000 = \exp(-E_v/(k*T2)); // Schottky defect
     concentration at 1000 K
15 printf("\nThe average separation between the defects
      , is : \%3.1e m", a);
16 printf("\nThe expected concentration of Schottky
      defect at 1000 \text{ K}, n/N, is : \%3.1e", C_1000);
17 // Result
18 // The average separation between the defects, is:
      2.2e-007 m
19 // The expected concentration of Schottky defect at
     1000 \text{ K}, \text{ n/N}, \text{ is} : 1.0 \text{ e} - 003
```

Scilab code Exa 5.4 Number of Schottky imperfections in NaCl crystal

```
1 // Scilab Code Ex5.4 Number of Schottky
    imperfections in NaCl crystal Page-160 (2010)
2 N = 6.023D23; // Avogadro's number
```

```
3 k = 8.614D-5; // Boltzmann's constant, eV/K
4 T = 27+273; // Absolute room temperature, K
5 Ep = 2; // Energy required to remove a pair of Na
     + and Cl- ions, electron-volt
6 // Now Concentration of imperfections in a crystal
     is given by
7 // n/N = \exp(-Ep/(2*k*T)), solving for n
8 n = N*exp(-Ep/(2*k*T)); // No. of Schottky
     imperfections present in NaCl crystal
  printf("\nNo. of Schottky imperfections present in
     NaCl crystal is : %4.2e", n);
10 \quad V = 26.83;
              // Volume of one mole of the crystal,
     cm cube
11 n = n/V;
              // Number per mole volume of the crystal
     , per cm cube
12 printf("\nConcentration of Schottky imperfections
     present in NaCl crystal is: %4.2e per cm cube",
     n);
13 // Result
14 // No. of Schottky imperfections present in NaCl
     crystal is : 9.42e+006
15 // Concentration of Schottky imperfections present
     in NaCl crystal is: 3.51e+005 per cm cube
```

Scilab code Exa 5.5 Average energy required to create one Schottky defect

```
6 n = 5D+11; // Density of defects, per metre
     cube
7 / Ep = 2;
                   // Energy required to remove a pair
      of Na+ and Cl- ions, electron-volt
8 \ a = 2*r;
                  // Lattice parameter of unit cell of
      NaCl, m
9 \ V = a^3;
                  // Volume of the unit cell of sodium
     , metre cube
10 n_ip = 4; // Number of ion-pairs of NaCl
11 N = n_{ip}/V; // No. of ion-pairs in unit volume of
      an ideal NaCl crystal
12 // Now n/N = \exp(-Ep/(2*k*T)), solving for Ep
13 Ep = 2*k*T*log(N/n); // Average energy required
     to create one Schottky defect, electron-volt
14 printf("\nThe Average energy required to create one
     Schottky defect in NaCl crystal is: %4.2f eV",
     Ep);
15 // Result
16 // The Average energy required to create one
     Schottky defect in NaCl crystal is: 1.98 eV
```

Scilab code Exa 5.6 Ratio of Frenkel defects at two different temperatures

```
// Scilab Code Ex5.6 Ratio of Frenkel defects at two
different temperatures in an ionic crystal Page
-161 (2010)
k = 8.614D-5; // Boltzmann's constant, eV/K

Ef = 1.4; // Average energy required to create a
Frenkel defect, eV

T1 = 300; // First absolute temperature, K

T2 = 600; // Second absolute temperature, K

// The concentration of Frenkel defect for given Ef
and absolute temperature T is given by

// n = A*exp(-Ef/(2*k*T)), per metre cube, so that
// n1 = A*exp(-Ef/(2*k*T1)), per metre cube, and
```

Scilab code Exa 5.7 Dislocation density of bcc structure of iron

```
1 // Scilab Code Ex5.7 Dislocation density of bcc
     structure of iron Page -163 (2010)
               // Length of the strip, m
2 L = 0.15;
               // Thickness of the iorn strip, m
3 t = 0.02;
               // Radius of curvature of the bent, m
4 r = 0.12;
5 a = 2.81D-10;
                  // Lattice parameter of the bcc
     structure of iron, m
6 b = sqrt(3)*a/2;
                    // Magnitude of Burger vector, m
7 // For n positive edge dislocations
8 // n*b = L*t/r, solving for n/(L*t)
9 // n/(L*t) = 1/(r*b), Number of dislocation line
     piercing through a unit area of the plane of the
     paper, per metre square
10 d = 1/(r*b);
                // Dislocation density in bcc
     structure of iron, number per metre square
11 printf("\nThe dislocation density in bcc structure
     of iron: %4.2e, dislocations per Sq. m, d);
12 // Result
13 // The dislocation density in bcc structure of iron
     : 3.42e+010, dislocations per Sq. m
```

Scilab code Exa 5.8 Minimum dislocation density in aluminium

```
1 // Scilab Code Ex5.8 Minimum dislocation density in
     aluminium Page -164 (2010)
             // Magnitude of Burgers vector, m
2 b = 3D-10;
              // Radius of curvatur of the aluminium
3 r = 0.05;
     crystal, m
 // For n positive edge dislocations
5 // n*b = L*t/r, solving for n/(L*t)
6 // n/(L*t) = 1/(r*b), Number of dislocation line
     piercing through a unit area of the plane of the
     paper, per Sq.m
7 d = 1/(r*b); // Minimum dislocation density in
     aluminium, number per Sq. m
8 printf("\nThe minimum dislocation density in
     aluminium, %4.1e, dislocations per Sq. m", d);
9 // Result
10 // The minimum dislocation density in aluminium, 6.7
     e+010, dislocations per Sq. m
```

Scilab code Exa 5.9 Total force from its resolved component in a given direction

```
1 // Scilab Code Ex5.9 Determining total force from
    its resolved component in a given direction: Page
    -168 (2010)
2 h1 = 1; k1 = -1; l1 = 0 // Miller indices for first
    set of planes
3 h2 = 1; k2 = 0; l2 = 0; // Miller indices for
    second set of planes
4 F_100 = 130; // Resolved component of force along
    [100] direction, N
```

Scilab code Exa 5.10 Resolved componet of shearing force in a given direction

```
1 // Scilab Code Ex5.10 Determining resolved componet
      of shearing force in a given direction: Page-168
      (2010)
2 h1 = 1; k1 = 1; l1 = 1 // Miller indices for first
      set of planes
3 h2 = 1; k2 = 1; 12 = 0; // Miller indices for
      second set of planes
4 F_111 = 660; // Shearing force along [111]
      direction, N
5 \cos_{\text{theta}} = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1)
      ^2)*sqrt(h2^2+k2^2+12^2)); // Cosine of angle
      between \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} and \begin{bmatrix} 100 \end{bmatrix} directions
6 // As F_{110}/F_{111} = cos_{theta}, solving for F_{110}
7 F_110 = F_111*cos_theta; // Resolved component of
       shearing force along [110] direction, N
  printf("\nThe resolved component of shearing force
      along [110] direction, F_{-}110 = \%3d \, N", F_{-}110);
9 // Result
10 // The resolved component of shearing force along
      [110] direction, F_{-}110 = 538 \text{ N}
```

Scilab code Exa 5.11 Dependence of applied stress on the slip direction

```
1 // Scilab Code Ex5.11 Dependence of applied stress
      on the slip direction of a copper: Page-169
      (2010)
2 tau_critical = 1; // Critical shear stress for
      the \langle -110 \rangle \{111\} slip system, mega-pascal (MPa)
3 // For directions [001] and [-111]
4 \text{ h1} = 0; k1 = 0; l1 = 1 // Miller indices for
      first set of planes
5 h2 = -1; k2 = 1; l2 = 1; // Miller indices for
      second set of planes
6 \cos_{\text{phi}} = (h1*h2+k1*k2+l1*l2)/(\text{sqrt}(h1^2+k1^2+l1^2)*
      sqrt(h2^2+k2^2+12^2));  // Cosine of angle
      between [001] and [-111] directions
7 // For directions [001] and [101]
8 \text{ h1} = 0; \text{ k1} = 0; \text{ l1} = 1 // Miller indices for
      first set of planes
9 h2 = 1; k2 = 0; l2 = 1; // Miller indices for
      second set of planes
10 \cos_{\text{lambda}} = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1)
      ^2)*sqrt(h2^2+k2^2+12^2)); // Cosine of angle
      between [001] and [101] directions
11 sigma = tau_critical/(cos_phi*cos_lambda);
      Stress along [001] direction, newton per metre
      square
12 printf("\nThe stress required to be applied along
      [001] direction to produce slip in the [101]
      direction on the (-111) plane = \%4.2 \,\mathrm{f} MPa", sigma
13 // For directions [001] and [110]
14 h1 = 0; k1 = 0; l1 = 1 // Miller indices for
     first set of planes
15 h2 = 1; k2 = 1; l2 = 0; // Miller indices for
```

```
second set of planes
16 \cos_{\text{lambda}} = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1))
      ^2) *sqrt(h2^2+k2^2+12^2));
                                    // Cosine of angle
     between [001] and [110] directions
17 if cos_lambda <> 0 then
18
       sigma = tau_critical/(cos_phi*cos_lambda);
                                                        //
           Stress along [001] direction, newton per
          metre square
19
       printf("\nThe stress required to be applied
          along [001] direction to produce slip in the
          [110] direction on the (-111) plane = \%4.2 \,\mathrm{f}
          MPa", sigma);
20 else
       printf("\nSince cos_lambda = 0, this implies
21
          that slip cannot occur in [110] direction
          when the stress is applied along [001]
          direction");
22 end
23 // Result
24 // The stress required to be applied along [001]
      direction to produce slip in the [101] direction
     on the (-111) plane = 2.45 MPa
25 // Since cos_lambda = 0, this implies that slip
      cannot occur in [110] direction when the stress
      is applied along [001] direction
```

Scilab code Exa 5.12 Resolved stress in a direction from applied stress in other direction

```
// Miller indices for
4 \text{ h1} = 0; \text{ k1} = 1; \text{ l1} = 0
      first set of planes
5 h2 = 1; k2 = 1; 12 = 0;
                                // Miller indices for
      second set of planes
6 \cos_{\text{phi}} = (h1*h2+k1*k2+l1*l2)/(\text{sqrt}(h1^2+k1^2+l1^2)*
      sqrt(h2^2+k2^2+12^2));
                                // Cosine of angle
      between [010] and [110] directions
7 // For directions [110s] and [101]
8 \text{ h1} = 1; \text{ k1} = 0; \text{ l1} = 1
                              // Miller indices for
     first set of planes
9 h2 = 1; k2 = 1; l2 = 0; // Miller indices for
      second set of planes
10 \cos_{\text{lambda}} = (h1*h2+k1*k2+l1*l2)/(\sqrt{h1^2+k1^2+l1})
      ^2) * sqrt (h2^2+k2^2+12^2));
                                      // Cosine of angle
      between [110] and [101] directions
11 tau = sigma*cos_phi*cos_lambda; // Resolved shear
       stress in the [101] direction on the (010) plane
      , MPa
12 printf("\nThe resolved shear stress in the [101]
      direction on the (010) plane = \%4.1 f MPa", tau);
13 // Result
14 // The resolved shear stress in the [101] direction
      on the (010) plane = 43.5 MPa
```

Scilab code Exa 5.13 Critical resolved shear stress from applied stress in a given direction

```
5 h2 = 1; k2 = -1; 12 = 1; // Miller indices for
       second set of planes
6 \cos_{phi} = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1^2)*
       sqrt(h2^2+k2^2+12^2)); // Cosine of angle
       between [111] and [1 -1 1] directions
7 // For directions \begin{bmatrix} 1 - 1 & 0 \end{bmatrix} and \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}
8 \text{ h1} = 1; \text{ k1} = -1; \text{ l1} = 0 // Miller indices for
       first set of planes
9 h2 = 1; k2 = -1; 12 = 1; // Miller indices for
       second set of planes
10 \cos_{\text{lambda}} = (h1*h2+k1*k2+l1*l2)/(\sqrt{h1^2+k1^2+l1})
       ^2)*sqrt(h2^2+k2^2+12^2)); // Cosine of angle
       between \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} and \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} directions
11 tau_c = sigma_critical*cos_phi*cos_lambda; // The
        critical resolved shear stress in the \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}
       direction on the (111) plane, MPa
12 printf("\nThe critical resolved shear stress in the
       \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} direction on the (111) plane = \%4.2 \, \text{f} MPa
       ", tau_c);
13 // Result
14 // The critical resolved shear stress in the \begin{bmatrix} 1 & -1 \end{bmatrix}
       0] direction on the (111) plane = 0.95 MPa
```

Scilab code Exa 5.14 Initiation of slip by the applied stress

```
1 // Scilab Code Ex5.14 Determining the direction in
    which slip is initiated by the applied stress in
    zinc: Page-170 (2010)
2 sigma = 2.3; // Applied stress when the plastic
    deformation is first observed, MPa
3 phi = 60; // Angle which the normal to the basal
    plane makes with the tensile axis of zinc, degree
4 // Function to find the value of resolved shear
    stress
5 function[tau] = stress(lambda)
```

```
tau = sigma*cosd(phi)*cosd(lambda);
7 endfunction
8 lambda = [38 45 84]; // Angles which the three
      slip directions x1, x2 and x3 respectively makes
      with the tensile axis, degrees
9 t = zeros(1,3);
                       // Initialize a one-
     dimensional vector of three elements
10 \text{ for } i = 1:1:3
       t(i) = stress(lambda(i)); // Calculate the
11
          value of resolved shear stress by calling
          stress function
12
       printf("\ntau\%d = \%5.3 f MPa", i, t(1,i));
          Display resloved shear stress for each
          direction, MPa
13 end
14 // Locate for the largest resolved stress value
15 big = t(1,1);
16 \text{ for } i = 2:1:3
17
       if t(1,i) > big then
           big = t(1,i) // Set largest value of
18
              resolved stress if the condition meets
19
       end
20 end
21 printf("\nThe slip is initiated along direction x1
      at tau_c = \%5.3 f MPa", big);
22 // Result
23 // tau1 = 0.906 MPa
24 // tau2 = 0.813 MPa
25 // tau3 = 0.120 MPa
26 // The slip is initiated along direction x1 at tau_c
      = 0.906 \text{ MPa}
```

Scilab code Exa 5.15 Applied tensile stress in a direction to initiate plastic deformation

```
1 // Scilab Code Ex5.15 Determining applied tensile
       stress in a direction to initiate plastic
       deformation: Page -170 (2010)
2 tau_critical = 0.7; // Critical resolved shear
       stress for fcc crystal, MPa
3 // For directions [100] and [1 1 1]
4 \text{ h1} = 1; \text{ k1} = 0; \text{ l1} = 0;  // Miller indices for
       first set of planes
5 h2 = 1; k2 = 1; 12 = 1; // Miller indices for
      second set of planes
6 \cos_{\text{phi}} = (h1*h2+k1*k2+l1*l2)/(\text{sqrt}(h1^2+k1^2+l1^2)*
      sqrt(h2^2+k2^2+12^2));  // Cosine of angle
      between [100] and [1 1 1] directions
7 // For directions \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} and \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}
8 h1 = 1; k1 = 0; l1 = 0 // Miller indices for
      first set of planes
9 h2 = 1; k2 = -1; 12 = 0; // Miller indices for
      second set of planes
10 \cos_{\text{lambda}} = (h1*h2+k1*k2+l1*l2)/(\sqrt{h1^2+k1^2+l1})
      ^2)*sqrt(h2^2+k2^2+12^2)); // Cosine of angle
      between \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} and \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} directions
11 sigma_c = tau_critical/(cos_phi*cos_lambda);
      The critical resolved shear stress in the \begin{bmatrix} 1 & -1 \end{bmatrix}
       0 direction on the (1 1 1) plane, MPa
12 printf("\nThe critical resolved shear stress in the
      [1 -1 0] direction on the (1 1 1) plane = \%3.1 f
      MPa", sigma_c);
13 // Result
14 // The critical resolved shear stress in the \begin{bmatrix} 1 & -1 \end{bmatrix}
      0 direction on the (1 \ 1 \ 1) plane = 1.7 MPa
```

Scilab code Exa 5.16 Dislocation width in copper

```
1 // Scilab Code Ex5.16 Dislocation width in copper: Page -175 (2010)
```

```
2 mu = 1; // For simplicity, assume shear modulus
     of copper to be unity, netwon per metre square
3 tau_PN = mu/1e+05; // Shear stress to initiate
     plastic deformation, newton per metre square
4 a = 3.61e-010; // Lattice parameter of copper, m
5 b = a/sqrt(2); // Burger vector magnitude for fcc
      crystal of copper, m
6 // As stress necessary to move a dislocation in a
     crystal is given by
7 // tau_PN = mu*exp(-2*\%pi*w/b), solving for w
8 w = b*log(mu/tau_PN)/(2*%pi); // Width of the
     dislocation in copper, m
9 printf("\nThe width of dislocation in copper = \%4.2e
      angstrom", w/1d-10);
10 // Result
11 // The width of dislocation in copper = 4.68e-010
     angstrom
```

Scilab code Exa 5.17 Change in number of vacancies due to disloaction motion

```
1 // Scilab Code Ex5.17 Change in number of vacancies
    due to dislocation motion: Page-176 (2010)
2 l = 1e-03;    // Edge dislocation length of simple
    cubic crystal, m
3 d = 1e-06;    // Distance of dislocation climb in, m
4 a = 3e-10;    // Lattice parameter of scc, m
5 A = a^2;    // Area of the unit cell, metre square
6 A_affected = l*d;    // Affected area when the
    dislocation climbs down, metre square
7 // N.B.: Area of one unit cell in scc contributes
    one atom
8 N = A_affected/A;    // Number of vacancies created
    within the affected area
9 printf("\nThe number of vacancies lost or created =
```

```
\%3.1\,\mathrm{e} , N);  
10 // Result  
11 // The number of vacancies lost or created = 1.1e +010
```

Scilab code Exa 5.18 Minimum number of dislocations in motion from shearing rate

```
1 // Scilab Code Ex5.18 Minimum number of dislocations
      in motion from shearing rate of copper: Page-176
      (2010)
2 a = 3.61e-010; // Lattice parameter of copper, m
3 epsilon_dot = 10/60; // Strain rate of plastic
     deformation, mm per sec
4 v_d = 1e+06; // Velocity of dislocation, mm per
     sec
5 V = 1e+03; // Volume of the crystal, mm cube
6 b = a*1e+03/sqrt(2);
                        // Burger vector magnitude
     for fcc crystal of copper, mm
7 // Strain rate of plastic deformation is given by
8 // epsilon_dot = rho*b*v_d, solving for rho
9 rho = epsilon_dot/(b*v_d); // Density of the
     mobile disloacations, per mm cube
10 N = round(rho*V); // Number of dislocations in
     motion in the whole cube
11 printf("\nThe number of dislocations in motion in
     the whole cube = \%3d", N);
12 // Result
13 // The number of dislocations in motion in the whole
      cube = 653
```

Scilab code Exa 5.19 Elastic energy of line imperfection

```
1 // Scilab Code Ex5.19 Elastic energy of line
     imperfection stored in Al: Page-178 (2010)
2 \text{ rho} = 1e+010;
                   // Dislocation density of Al, per
     metre square
3 \text{ mu} = 25.94e+09;
                   // Shear molulus of aluminium,
     newton per metre square
                  // Lattice parameter of aluminium,
4 a = 4.05e-010;
      \mathbf{m}
5 b = a/sqrt(2); // Burger vector magnitude for fcc
      crystal of Al, m
6 E_bar = mu*b^2/2;
                      // Elastic energy per unit
     length of the dislocation, joule per metre
  E = E_bar*rho; // Elastic energy stored in the
     crystal, joule per metre cube
8 printf("\nThe elastic energy stored in the crystal =
      %5.2f joule per metre cube", E);
9 // Result
10 // The elastic energy stored in the crystal = 10.64
     joule per metre cube
```

Scilab code Exa 5.20 Spacing between dislocations in a tilt boundary

Scilab code Exa 5.21 Tilt angle from dislocation spacing in the boundary

```
1 // Scilab Code Ex5.21 Determining tilt angle from
     dislocation spacing in the boundary of Cu: Page
    -188 (2010)
                // Lattice parameter of Cu, m
2 = 3.61e-010;
3 b = a/sqrt(2); // Burger vector magnitude for fcc
     Cu, m
4 h = 1.5e-06; // The vertical spacing between two
    neighbouring edge dislocations, m
5 tan_theta = atand(b/h)*(%pi/180); // tangent of
     tilt angle between two tilt boundaries of Cu,
    radian
6 printf("\nThe tilt angle between two tilt boundaries
      of Cu = \%3.1e radian", theta);
7 // Result
8 // The tilt angle between two tilt boundaries of Cu
    = 1.7e - 004 radian
```

Scilab code Exa 5.22 Tilt angle from dislocation spacing

```
5 printf("\nThe tilt angle between two tilt boundaries of Cu = \%4.2\,e radian", theta);
6 // Result
7 // The tilt angle between two tilt boundaries of Cu = 1.33\,e-004 radian
```

Chapter 6

Atomic Diffusion

Scilab code Exa 6.1 Rate of diffusion of nitrogen through steel wall

```
1 // Scilab Code Ex6.1 Rate of diffusion of nitrogen
    through steel wall: Page-195 (2010)
2 D = 1e-019; // Diffusion coeffcient of nitrogen
    in steel at room temperature, metre square per
             // Concentration of nitrogen at the
3 dc = 10;
    inner surface of the tank, kg per metre cube
4 dx = 10e-03; // Thickness of the steel wall, m
                 // Fick's first law giving outward
5 J = D*(dc/dx);
      flux of nitrogen through steel wall of the tank,
     kg per metre square per second
6 printf("\nThe rate at which nitrogen escapes through
     the tank wall = \%1.0e kg per metre square per
     sec", J);
7 // Result
8 // The rate at which nitrogen escapes through the
    tank wall = 1e-016 kg per metre square per sec
```

Scilab code Exa 6.2 Rate of diffusion of copper through pure Al sheet

```
1 // Scilab Code Ex6.2 Rate of diffusion of copper
     through pure Al sheet: Page-196 (2010)
2 a = 4.05e-010; // Lattice parameter of fcc Al, m
3 N = 4; // Number of Al atoms per unit cell of fcc
      Al
4 n = N/a^3;
                // Number of Al atoms per unit volume,
      per metre cube
5 D = 5.25e-013;
                   // Diffusion coeffcient of copper
     in Al at 550 degree celsius, metre square per sec
6 c1 = 0.19e-02;
                  // Atomic percent of copper at the
      surface, per unit volume
7 c2 = 0.18e-02; // Atomic percent of copper at the
      the depth 1.2 mm from the surface, per unit
     volume
8 dc = (c2 - c1)*n; // Change in concentration of
     copper at 1.2 mm depth of the surface, per metre
     cube
9 dx = 1.2e-03; // Thickness of the pure Al sheet,
10 J = -D*(dc/dx); // Fick's first law giving
     outward flux of copper through the Al sheet, Cu
     atoms per metre square per second
11 printf("\nThe outward flux of copper through the Al
     sheet = \%4.2e Cu atoms per metre square per sec",
      J);
12 // Result
13 // The outward flux of copper through the Al sheet =
      2.63 e+015 Cu atoms per metre square per sec
```

Scilab code Exa 6.3 Rate of diffusion of carbon through steel bar

```
3 D = 3e-011; // Diffusion coeffcient of carbon in
     iron at 1000 degree celsius, metre square per sec
              // Number of unit cells per carbon atom
     at the surface of steel
5 n2 = 30; // Number of unit cells per carbon atom
     at a depth 1 mm from the surface of steel
6 c1 = 1/(n1*a^3); // Atomic percent of carbon at
     the surface, per metre cube
7 c2 = 1/(n2*a^3); // Atomic percent of carbon at a
      depth 1 mm from the surface, per metre cube
8 dx = 1e-03; // Thickness of the steel bar, m
9 J = -D*((c2-c1)/dx); // Fick's first law giving
     outward flux of carbon through the Steel bar, C
     atoms per metre square per second
10 J_uc = J*a^2*60; // The number of carbon atoms
     diffusing through each unit cell per minute
11 printf("\nThe number of carbon atoms diffusing
     through each unit cell per minute = %2d atoms per
      minute", J_uc);
12 // Result
13 // The number of carbon atoms diffusing through each
      unit cell per minute = 82 atoms per minute
```

Scilab code Exa 6.4 Diffusion through a cylinder

Scilab code Exa 6.5 Diffusion length of Li in Ge

```
1 // Scilab Code Ex6.5 Diffusion length of Li in Ge:
     Page -203 (2010)
2 D = 1e-010;
                 // Diffusion coefficient for Li in Ge
    , metre square per sec
3 t = 1*60*60;
                 // Time taken by diffusing Li to
    travel diffusion depth, sec
4 T = 500+273;
                   // absolute temperature of the
     system, kelvin
5 \times = \text{sqrt}(D*t); // Diffusion length of Li in Ge, m
6 printf("\nThe diffusion length of Li in Ge = \%1.0 e m
    ", x);
7 // Result
8 // The diffusion length of Li in Ge = 6e - 004 \text{ m}
```

Scilab code Exa 6.6 Diffusion time of Li in Ge

Scilab code Exa 6.7 Diffusion coefficient of Cu in Al

```
1 // Scilab Code Ex6.7 Diffusion coefficent of Cu in
     Al: Page 206 (2010)
2 DO = 0.25e-04; // Pre-exponential diffusion
     constant independent of temperature, metre square
      per second
3 T = 550+273;
                  // Absolute temperature of the
     system, kelvin
4 R = 8.314; // Molar gas constant, J/mol/K
5 Q = 121e+03; // The activation energy for
     diffusion, joule per mole
                 // Time taken by Cu to diffuse into
6 t = 1*60*60;
     Al, sec
7 D = D0*exp(-Q/(R*T)); // Diffusion coefficient of
      Cu in Al at 550 degree celsius, metre square per
8 x = sqrt(D*t); // Diffusion length of Cu in Al, m
9 printf("\nThe diffusion coefficient of Cu in Al at
     550~\mathrm{degree} celsius = \%4.2\,\mathrm{e} metre square per sec",
10 printf ("\nThe diffusion length of Cu in Al = \%5.3 f
     mm", x*1000);
11 // Result
```

```
12 // The diffusion coefficient of Cu in Al at 550 degree celsius = 5.22e-013 metre square per sec 13 // The diffusion length of Cu in Al = 0.043 mm
```

Scilab code Exa 6.8 Activation energy for diffusion of Ag in Si

```
1 // Scilab Code Ex6.8 Activation energy for diffusion
      of silver in silicon: Page 206 (2010)
2 R = 8.314;
              // Molar gas constant, J/mol/K
3 T1 = 1350+273; // First temperature at which
     difuusion of Ag into Si takes place, kelvin
4 T2 = 1100+273; // Second temperature at which
     difuusion of Ag into Si takes place, kelvin
             // Ratio of diffusion rates of Ag in Si
  DRR = 8;
     at T1 and T2
  // As diffusion coefficient at temperature T1 is D1
     = D0*exp(-Q/(R*T1))
7 // and that at temperature T2 is D1 = D0*exp(-Q/(R*
     T2)), so that the diffusion rates ratio
8 / D1/D2 = DRR = \exp(Q/R*(1/T2-1/T1)), solving for Q
     , we have
9 \ Q = R*log(DRR)/((1/T2-1/T1)*1000); // Activation
     energy for diffusion of Ag in Si, kJ/mol
10 printf("\nThe activation energy for diffusion of Ag
     in Si = \%3d \text{ kJ/mol}, Q);
11 // Result
12 // The activation energy for diffusion of Ag in Si =
      154 \text{ kJ/mol}
```

Scilab code Exa 6.9 Arrhenius rate law

```
1 // Scilab Code Ex6.9 Activation energy and diffusion
      constant of a diffusion system obeying Arrhenius
      rate law: Page 207 (2010)
2 R = 1.987; // Molar gas constant, cal/mol/K
                      // Diffusivity of Ga in Si at
3 D_1100 = 8e-013;
     1100 degree celsius, cm square per sec
                     // Diffusivity of Ga in Si at
4 D_1300 = 1e-010;
     1300 degree celsius, cm square per sec
                    // First temperature at which
5 T1 = 1100+273;
      diffusion of Ga into Si takes place, kelvin
6 	 T2 = 1300 + 273;
                     // Second temperature at which
      diffusion of Ga into Si takes place, kelvin
7 // Arrehenius equation in log10 form is given by
8 // \log 10 (D) = \log 10 (D0) - Q/(2.303*R*T) —— (a)
9 // Thus \log 10 (D_11100) = \log 10 (D0) - Q/(2.303*R*T1)
         --- (i)
10 // \log 10 (D_1300) = \log 10 (D0) - Q/(2.303*R*T2) --- (
     ii),
11 // On subtracting (ii) from (i), we get
12 / \log 10 \left( D_11100 / D_1300 \right) = -Q/(2.303*R)*(1/T2-1/T1),
     solving for Q
13 Q = (2.303*log10(D_1100/D_1300)*R)/(1/T2-1/T1);
     // Activation energy for diffusion of Ga in Si,
     cal/mol
14 // Putting Q in (ii) and solving for D0
15 D0 = \exp(2.303*\log 10(D_1100)+Q/(R*T1))
16 // D0 = \exp(2.303*\log 10 (D_1300)+Q/(R*T2));
     -exponential diffusion constant independent of
     temperature, cm square per sec
17 T = 1200+273; // Temperature at which diffusion
     of Ga into Si is to be calculated, kelvin
  // Substituting D0, Q, R and T in (a) and solving
     for D, we have
19 D = \exp(2.303*\log 10(D0)-Q/(R*T));
                                        // Diffusivity
     of the system, cm square per sec
20 printf("\nThe activation energy for diffusion of Ga
     in Si = \%3d \ kcal/mol", Q/1000);
21 printf("\nThe pre-exponential diffusion constant, D0
```

```
= %5d cm square per sec", D0);
22 printf("\nThe diffusivity of the system = %4.2e cm square per sec", D);
23 // Result
24 // The activation energy for diffusion of Ga in Si = 103 kcal/mol
25 // The pre-exponential diffusion constant, D0 = 24893 cm square per sec
26 // The diffusivity of the system = 1.05e-011 cm square per sec
```

Scilab code Exa 6.10 Activation energy for diffusion rates at different temperatures

```
1 // Scilab Code Ex6.10 Activation energy for
     diffusion rates at different temperatures: Page
     208 (2010)
                // Molar gas constant, J/mol/K
2 R = 8.314;
3 T1 = 500+273;
                   // First temperature at which
      diffusion of A into B takes place, kelvin
  T2 = 850+273; // Second temperature at which
      diffusion of A into B takes place, kelvi
               // Penetration depth ratio at 500
5 \text{ PDR} = 1/4;
     degree celsius and 850 degree celsius
6 // x1/x2 = sqrt(D1/D2) i.e. PDR = sqrt(DRR), DRR is
     the diffusion rate ratio
7 // solving for DRR
8 DRR = PDR^2;
                // Diffusion rate ratio D1/D2 of A
     in B
9 // As diffusion coefficient at temperature T1 is D1
     = D0*exp(-Q/(R*T1))
10 // and that at temperature T2 is D1 = D0*exp(-Q/(R*
     T2)), so that the diffusion rates ratio
11 // D1/D2 = DRR = \exp(Q/R*(1/T2-1/T1)), solving for Q
     , we have
```

Scilab code Exa 6.11 Time required for carburizing of steel

```
1 // Scilab Code Ex6.11 Time required for carburizing
     of steel: Page 209 (2010)
2 CO = 0.0018; // Intial carbon concentration of
     steel
3 Cx = 0.0030; // Carbon concentration of steel at
     0.60 mm below the surface of the gear
4 \text{ Cs} = 0.01;
                // Carbon concentration of steel at
     the surface
5 x = 0.6e - 03;
                 // Diffusion depth below the surface
      of the gear, m
6 D_927 = 1.28e-011; // Diffusion coefficient for
     carbon in iron, metre square per sec
7 \text{ erf}_Z = (Cs-Cx)/(Cs-CO); // Error function of Z
     as a solution to Fick's second law
8 	 Z1 = 1.0, 	 Z2 = 1.1;
                       // Preceding and succeeding
     values about Z from error function table
9 erf_Z1 = 0.8427, erf_Z2 = 0.8802; // Preceding
     and succeeding values about erf_Z from error
     function table
10 Z = poly(0, 'Z');
II Z = roots((Z-Z1)/(Z2-Z1)-(erf_Z-erf_Z1)/(erf_Z2-
     erf_Z1));
12 // As Z = x/(2*sqrt(D_927*t)), where Z is a constant
      argument of error function as erf(Z)
13 // Solving for t, we have
```

```
14 t = (x/(2*Z))^2/D_927;  // Time necessary to
    increase the carbon content of steel, sec
15 printf("\nThe time necessary to increase the carbon
    content of steel = %3d minutes", t/60);
16 // Result
17 // The time necessary to increase the carbon content
    of steel = 110 minutes
```

Scilab code Exa 6.12 Carbon concentration of carburized steel at certain depth

```
1 // Scilab Code Ex6.12 Carbon concentration of
      carburized steel at certain depth: Page 210
      (2010)
2 CO = 0.0020; // Initial carbon concentration of
     steel
3 \text{ Cs} = 0.012:
                // Carbon concentration of steel at
     the surface
4 t = 10*60*60; // Carburizing time of steel, sec
5 \times = 0.06*25.4*1e-03; // Diffusion depth below the
      surface of the gear, mm
6 D_927 = 1.28e-011; // Diffusion coefficient for
      carbon in iron, metre square per sec
7 Z = x/(2*sqrt(D_927*t)), // A constant argument of
     error function as erf(Z)
8 	 Z1 = 1.1, 	 Z2 = 1.2;
                        // Preceding and succeeding
      values about Z from error function table
9 \text{ erf}_Z1 = 0.8802, \text{erf}_Z2 = 0.9103; // \text{Preceding}
     and succeeding values about erf_Z from error
      function table
10 efZ = poly(0, 'efZ');
11 efZ = roots((efZ-erf_Z1)/(erf_Z2-erf_Z1)-(Z-Z1)/(Z2-erf_Z1))
     Z1)); // Error function of Z as a solution to
     Fick's second law
12 Cx = poly(0, 'Cx');
```

Scilab code Exa 6.13 Depth of decarburization below the surface of steel

```
1 // Scilab Code Ex6.13 Depth of decarburization below
      the surface of steel: Page 211 (2010)
2 C2 = 0.012; // Initial carbon concentration of
     steel
3 Cx = 0.008; // Carbon concentration of carburized
      steel at x metre depth
4 \text{ Cs} = 0;
             // Carbon concentration of steel at the
     surface
5 t = 5*60*60; // Carburizing time of steel, sec
6 D_927 = 1.28e-011; // Diffusion coefficient for
     carbon in iron, metre square per sec
7 \text{ erf}_Z = abs((Cs-Cx)/(C2-Cs)); // Error function
     of Z as a solution to Fick's second law
8 	ext{ Z1 = 0.65}, 	ext{ Z2 = 0.70}; 	ext{// Preceding and succeeding}
      values about Z from error function table
9 \text{ erf}_Z1 = 0.6420, \text{erf}_Z2 = 0.6778; // \text{Preceding}
     and succeeding values about erf_Z from error
     function table
10 \ Z = poly(0, 'Z');
11 Z = roots((Z-Z1)/(Z2-Z1)-(erf_Z-erf_Z1)/(erf_Z2-
     erf_Z1));
12 // As Z = x/(2*sqrt(D_927*t)), where Z is a constant
      argument of error function as erf(Z)
```

```
// Solving for x, we have
14 x = Z*2*sqrt(D_927*t); // Depth of decarburization
    below the surface of steel, m
15 printf("\nThe minimum depth upto which post
    machining is to be done = %4.2 f mm", x*1000);
16 // Result
17 // The minimum depth upto which post machining is to
    be done = 0.66 mm
```

Scilab code Exa 6.14 Diffusion depth of P type semiconductor

```
1 // Scilab Code Ex6.14 Diffusion depth of P-type
     semiconductor (B into Si): Page 212 (2010)
           // Initial boron concentration of silicon
2 CO = 0;
3 Cx = 1e+17; // Boron concentration at depth x
     below the silicon surface
                 // Boron concentration of silicon at
4 \text{ Cs} = 1e+18;
     the surface
5 T = 1100+273;
                   // Absolute temperature of the
     system, kelvin
6 t = 2*60*60;
                  // Time taken to diffuse boron into
     silicon, sec
7 D_1100 = 4e-013;
                    // Diffusion coefficient for
     boron in silicon, cm square per sec
8 \text{ erf}_Z = abs((Cs-Cx)/(Cs-CO)); // Error function
     of Z as a solution to Fick's second law
9 Z1 = 1.1, Z2 = 1.2; // Preceding and succeeding
     values about Z from error function table
10 erf_Z1 = 0.8802, erf_Z2 = 0.9103; // Preceding
     and succeeding values about erf_Z from error
     function table
11 Z = poly(0, 'Z');
12 \ Z = roots((Z-Z1)/(Z2-Z1)-(erf_Z-erf_Z1)/(erf_Z2-
     erf_Z1));
13 // As Z = x/(2*sqrt(D_927*t)), where Z is a constant
```

Chapter 7

Lattice or Atomic Vibrations

Scilab code Exa 7.1 Cut off frequency of the linear lattice of a solid

```
1 // Scilab Code Ex7.1 Cut-off frequency of the linear
     lattice of a solid: Page-238 (2010)
2 v = 3e+03; // Velocity of sound in the solid, m/s
3 = 3e-010;
                // Interatomic distance, m
4 // As cut-off frequency occurs at k = \%pi/a and k =
    2*%pi/lambda, this gives
 lambda = 2*a; // Cut-off wavelength for the solid
     , m
6 f = v/lambda; // Cut-off frequency (v = f*lambda)
     for the linear lattice, hertz
7 printf("\nThe cut-off frequency for the linear
     lattice of a solid = \%1.0e Hz", f);
8 // Result
9 // The cut-off frequency for the linear lattice of a
      solid = 5e+012 Hz
```

Scilab code Exa 7.2 Comparison of frequency of waves in a monoatomic and diatomic linear systems

```
1 // Scilab Code Ex7.2 Comparison of frequency of
     waves in a monoatomic and diatomic linear systems
     : Page - 238 (2010)
2 a = 2.5e-010; // Interatomic spacing between two
     identical atoms, m
3 \text{ v0} = 1\text{e}+03; // Velocity of sound in the solid, m/
4 lambda = 10e-010; // Wavelength of the sound wave
5 omega = v_0*2*%pi/lambda; // Angular frequency of
      sound wave in a monoatomic lattice, rad per sec
6 printf("\nThe frequency of sound waves in a
     monoatomic lattice = \%4.2e rad/sec", omega);
7 // For acoustic waves in a diatomic lattice (M = m),
      the angular frequency, omega = 0 at k = 0 and
8 // omega = (2*K/m)^{(1/2)} — (i) at k = \%pi
     /(2*a)
9 // As v0 = a*(2*K/m)^(1/2) --- (ii)
10\ \ //\ \ {\rm From}\ (\ {\rm i}\ ) and (\ {\rm ii}\ )\ ,\ {\rm we\ have}
11 omega_min = 0; // Angular frequency of acoustic
     waves at k = 0, rad per sec
12 omega_max = v0/a; // Angular frequency of
      acoustic waves at k = \%pi/(2*a), rad per sec
13 printf("\n\nThe frequency of acoustic waves wave in
     a diatomic lattice :\n %d rad/sec for k = 0 \ \ \%1
      .0e \text{ rad/sec for } k = pi/(2*a)", omega_min,
     omega_max);
14 // For optical waves in a diatomic lattice (M = m),
     the angular frequency
15 // omega = sqrt(2)*(2*K/m)^(1/2) --- (iii) at
     k = 0
16 // As v0 = a*(2*K/m)^{(1/2)} --- (iv)
17 // From (iii) and (iv), we have
18 omega_max = sqrt(2)*v_0/a; // Angular frequency
      of optical waves at k = 0, rad per sec
19 // For optical waves in a diatomic lattice (M = m),
     the angular frequency
20 // omega = (2*K/m)^{(1/2)} ---- (iii) at k = \%pi
```

```
/(2*a)
21 // As v0 = a*(2*K/m)^(1/2) --- (iv)
22 // From (iii) and (iv), we have
23 omega_min = v_0/a; // Angular frequency of
      optical waves at k = \%pi/(2*a), rad per sec
24 printf("\n\nThe frequency of optical swaves wave in
      a diatomic lattice :\n \%4.2e rad/sec for k = 0 \n
       \%1.0e \text{ rad/sec} for k = pi/(2*a)", omega_max,
      omega_min);
25 // Result
26 // The frequency of sound waves in a monoatomic
      lattice = 6.28e+012 \text{ rad/sec}
27
28 // The frequency of acoustic waves wave in a
      diatomic lattice:
29 // 0 \operatorname{rad/sec}  for  k = 0
30 // 4e + 012 \text{ rad/sec for } k = pi/(2*a)
31
32 // The frequency of optical swaves wave in a
      diatomic lattice :
33 // 5.66e+012 \text{ rad/sec for } k = 0
34 // 4e + 012 \text{ rad/sec for } k = pi/(2*a)
```

Scilab code Exa 7.3 Reflection of electromagentic radiation from a crystal

```
1 // Scilab Code Ex7.3 Reflection of electromagentic
    radiation from a crystal: Page-239(2010)
2 c = 3.0e+08; // Speed of electromagnetic wave in
    vacuum, m/s
3 a = 5.6e-010; // Lattice parameter of NaCl
    crystal, m
4 Y = 5e+010; // Modulus of elasticity along [100]
    direction of NaCl, newton per metre square
5 m = 23; // Atomic weight of sodium, amu
6 M = 37; // Atomic weight of chlorine, amu
```

```
7 amu = 1.67e-027; // Kg equivalent of 1 amu
8 K = a*Y; // Force constant of springs when the
     extension along [100] direction is neglected, N/m
9 omega_plus_max = (2*K*(1/(M*amu)+1/(m*amu)))^(1/2);
        // The maximum angular frequency of the
     reflected electromagnetic radiation, rad per sec
10 lambda = 2*%pi*c/omega_plus_max; // The
     wavelength at which the electromagnetic radiation
      is strongly reflected, m
11 printf("\nThe wavelength at which the
     electromagnetic radiation is strongly reflected
     by the crystal = \%4.2 \,\mathrm{e} m", lambda);
12 // Result
13 // The wavelength at which the electromagnetic
     radiation is strongly reflected by the cystal =
     3.88e - 005 \text{ m}
```

Chapter 8

Diffraction of Waves and Particles by Crystals

Scilab code Exa 8.1 Shortest wavelength and frequency of X rays from accelerating potential

```
1 // Scilab Code Ex08.1 Determination of shortest
     wavelength and frequency of X-rays from
      accelerating potential Page-250 (2010)
2 V = 50e+03; // Accelerating potential, volt
              // Speed of light in free space
3 c = 3e + 08;
4 Lambda_min = 1.24e-06/V; // Minimum wavelength,
     metre
                          // Maximum frequency, Hz
5 F_max = c/Lambda_min;
6 printf("\nThe shortest wavelength present in X-rays
     = \%4.2 \, \text{f angstrom}", Lambda_min/1D-10);
7 printf("\nThe maximum frequency present in X-rays =
     \%3.1e \text{ Hz}", F_max);
8 // Result
  // The shortest wavelength present in X-rays = 0.25
     angstrom
10 // The maximum frequency present in X-rays = 1.2e+19
      Hz
```

Scilab code Exa 8.2 Impinging electrons on the target and characteristics of X rays

```
1 // Scilab Code Ex8.2 Calculation of impinging
     electrons on the target and characteristics of X-
     rays Page -253 (2010)
2 I = 2.5e-03; // Current through X-ray tube,
     ampere
3 V = 6e+03; // Potential across the X-ray tube,
     volt
4 e = 1.6e-19; // Charge on an electron, coulomb
5 m = 9.1e-031; // mass of an electron, kg
6 t = 1; // Transit time, second
            // Total charge flowing per second
7 Q = I*t;
     through the x-ray tube, coulomb
8 n = Q/e; // Number of electrons striking the
     target per second
9 // We have eV = 1/2*m*v^2 (stopping potential =
     maximum Kinetic energy)
10 // Solving for v
11 v = sqrt(2*e*V/m); // speed of electrons striking
      the target, m/s
12 \text{ Lambda_min} = 1.24e-06/V;
                              // Minimum wavelength of
      X-rays produced, metre
13 printf("\nThe number of electrons striking the
     target = \%4.2e",n);
14 printf("\nThe velocity of electrons striking the
     target = \%4.2e m/s", v);
15 printf("\nThe shortest wavelength present in X-rays
     = \%4.2 \,\mathrm{e} m", Lambda_min);
16 // Result
17 // The number of electrons striking the target =
     1.56e+0.16
18 // The velocity of electrons striking the target =
```

```
4.59\,\mathrm{e} + 007~\mathrm{m/s} 19 // The shortest wavelength present in X-rays = 2.07e -010~\mathrm{m}
```

Scilab code Exa 8.3 Wavelength of characteristic X rays

```
1 // Scilab Code Ex8.3 Calculation of wavelength of
      characteristic X-rays Page -253 (2010)
                    // Planck's constant, Js
2 h = 6.626e - 034;
                 // Speed of light in free space, m/s
3 c = 3e+08;
4 e = 1.602e - 019;
                    // Charge on an electron, coulomb
                 // Energy of K shell for platinum, keV
5 E_K = -78;
                // Energy of L shell for platinum, keV
6 E_L = -12;
7 E_M = -3; // Energy of M shell for platinum, keV
8 E_K_alpha = E_L - E_K; // Energy of K_alpha line,
      keV
  E_K_beta = E_M - E_K;
                            // Energy of K_beta line,
     keV
  // We have E = h*f, where f = c/Lambda this implies
     E = h*c/lambda
11 // Solving for Lambda
12 // Lambda = h*c/E
13 lambda_K_alpha = h*c/(E_K_alpha*e*1e+03);
     Wavelength of K_alpha line, metre
  lambda_K_beta = h*c/(E_K_beta*e*1e+03);
     Wavelength of K_beta line, metre
15 printf("\nThe wavelength of K_alpha line = \%4.2 f
      angstrom", lambda_K_alpha/1D-10);
16 printf("\nThe wavelength of K_beta line
                                             = \%4.2 \text{ f}
      angstrom", lambda_K_beta/1D-10);
17 // Result
18 // The wavelength of K_alpha line = 0.19 angstrom
19 // The wavelength of K<sub>beta</sub> line = 0.17 angstrom
```

Scilab code Exa 8.4 Atomic number of an unknown element

```
1 // Scilab Code Ex8.4 Calculation of atomic number of
      an unknown element Page -255 (2010)
2 lambda_Pt = 1.321e-010; // Wavelength of L_alpha
     line of Pt, m
3 Z_Pt = 78; // Atomic number of platinum
4 b = 7.4; // Constant
  lambda_x = 4.174e-010; // Wavelength of unknown
     element, m
  // We have f = [a*(Z-b)]^2 (Moseley's law)
7 // As f_Pt = c/lambda_Pt = [a*(Z_Pt-b)]^2
8 // Similarly f_x = c/lambda_x = [a*(Z_x-b)]^2
9 // Dividing f_Pt by f_x and solving for x
10 Z_x = b + sqrt(lambda_Pt/lambda_x)*(Z_Pt-b);
     Atomic number of unknown element
11 printf("\nThe atomic number of unknown element = \%4
     .1 f", Z_x);
12 // Result
13 // The atomic number of unknown element = 47.1
```

Scilab code Exa 8.5 Wavelength of copper using Moseley law

```
1 // Scilab Code Ex8.5 Calculation of wavelength of
      copper using Moseley's law Page-256 (2010)
2 c = 3.0e+08; // Speed of light, m/s
3 lambda_W = 210e-010; // Wavelength of K_alpha
      line of W, m
4 Z_W = 74; // Atomic number of tungsten
5 Z_Cu = 29; // Atomic number of copper
6 b = 1; // Constant for K-series
```

Scilab code Exa 8.6 Atomic number from wavelength using Moseley law

```
1 // Scilab Code Ex8.6 Calculation of atomic number
     from wavelength using Moseley's law Page -256
     (2010)
2 c = 3.0e+08; // Speed of light, m/s
3 h = 6.626e-034; // Planck's constant, Js
4 epsilon_0 = 8.85e-012; // Absolute electrical
     permittivity of free space, coulomb square per
     newton per metre square
                  // Mass of an electron, kg
5 m = 9.1e-031;
                // Charge on an electron, C
6 = 1.6e - 019;
7 \text{ lambda} = 0.7185e-010;
                         // Wavelength of K_alpha
     line of unknown element
8 b = 1; // Mosley's constant for K-series
9 \ n_1 = 1; \ n_2 = 2; // Lower and upper energy
     levels
10 // We know that f = c/lambda = m*e^4*(Z-b)^2/(8*
     epsilon_0^2*h^3)*(1/n_2^2-1/n_1^2)
11 // This implies that lambda = (8*epsilon_0^2*c*h^3/(
     m*e^4*(Z-b)^2*(1/n_2^2-1/n_1^2)
12 // Solving for Z
```

Scilab code Exa 8.7 Wavelengths of tin and barium using Moseley law

```
1 // Scilab Code Ex8.7 Calculation of wavelengths of
     tin and barium using Moseley's law Page -257
     (2010)
2 \text{ Z_Fe} = 26;
                 // Atomic number of iron
                 // Atomic number of platinum
3 Z_Pt = 78;
4 Z_Sn = 50;
                 // Atomic number of tin
5 Z_Ba = 56;
                // Atomic number of barium
         // Mosley's constant for K-series
 lambda_Fe = 1.93e-010; // Wavelength of K_alpha
     line of Fe
  lambda_Pt = 0.19e-010; // Wavelength of K_alpha
     line of Pt
9 // From Moseley's Law,
10 // f = a*(Z-1)^2. This implies lambda = C*1/(Z-1)^2
11 // so that lambda_Fe = C*1/(Z_Fe-1)^2 and lambda_Sn
       = C*1/(Z_Sn-1)^2
12 // Dividing lambda_Sn by lambda_Fe and solving for
     lambda_Sn
  lambda_Sn = (Z_Fe-1)^2/(Z_Sn-1)^2*lambda_Fe;
                                                    //
     Wavelength of K_alpha line for tin, m
 lambda_Ba = (Z_Pt-1)^2/(Z_Ba-1)^2*lambda_Pt;
     Wavelength of K_alpha line for barium, m
15 printf("\nThe wavelengths of tin and barium = \%3.1 \,\mathrm{f}
     angstrom and %4.2f angstrom respectively",
     lambda_Sn/1D-10, lambda_Ba/1D-10);
16 // Result
```

```
17 // The wavelengths of tin and barium = 0.5 angstrom and 0.37 angstrom respectively
```

Scilab code Exa 8.8 Percentage transmitted energy of X rays

```
1 // Scilab Code Ex8.8 Percentage transmitted energy
     of X-rays: Page 259 (2010)
2 mu = 139; // Attenuation co-efficient of
     aluminium, per metre
3 x = 0.005;
                // Thickness of aluminium sheet, m
4 // If X\% is the intensity of the X-ray transmitted
     through the aluminium sheet then
5 // X\% = I/I_0
6 // or X/100 = \exp(-absorb\_coeff*x)
7 // Solving for X
8 X = 100 * exp(-mu * x); // Transmitted percentage of
     X-rays
9 printf("\nThe intensity of the X-ray transmitted
     through the aluminium sheet = \%g percent", round(
     X));
10 // Result
11 // The intensity of the X-ray transmitted through
     the aluminium sheet = 50 percent
```

Scilab code Exa 8.9 Thickness of lead piece by using two equal intensity X ray wavelengths

```
1 // Scilab code Ex8.9 : Determination of thickness of
    lead piece by using two equal intensity X-ray
    wavelengths : Page 259 (2010)
2 lambda_1 = 0.064e-010; // First wavelength of X-
    ray, metre
```

```
3 lambda_2 = 0.098e-010; // Second wavelength of X-
     ray, metre
4 I1_ratio_I2 = 3; // Ratio of attenuated beam
     intensity
5 mu_m1 = 0.164; // Mass absorption coefficient for
      first wavelength, metre square per kg
6 mu_m2 = 0.35; // Mass absorption coefficient for
     second wavelength, metre square per kg
7 d = 0.164; // Density of the lead, kg per metre
     cube
8 mu1 = mu_m1*d; // absorption co-efficient of the
     lead for first wavelength, per metre
  mu2 = mu_m2*d;
                  // absorption co-efficient of the
     lead for second wavelength, per metre
10 x = poly(0, "x"); // Declare 'x' as the thickness
     variable
11 // Now I = \exp(-ac*x) thus
12 // I1_ratio_I2 = \exp(-ac_1*x)/\exp(-ac_2*x)
13 // or 3 = \exp(2109.24) *x this implies
14 // 2104.24*x = log(3) and assume
15 p = 2104.24*x-log(3);
16 printf("\nThe thickness of lead piece = \%4.2 \,\mathrm{e} m",
     roots(p));
17 // Result
18 // The thickness of lead piece = 5.22e-004 m
```

Scilab code Exa 8.10 Angle of reflection by using wavelength of X rays

```
1 // Scilab code Ex8.10: Determining angle of
    reflection by using wavelength of X-ray Page 261
    (2010)
2 lambda = 0.440e-010; // Wavelength of X-rays, m
3 d = 2.814e-010; // Interplanar spacing of
    rocksalt crystal, m
4 // 2*d*sin(theta) = n*lambda **Bragg's law, n is
```

```
the order of diffraction
5 // Solving for theta, we have
6 // theta = asin(n*lambda/(2*d))
7 // Declare a function for converting angle into
      degrees and minutes
8 function [d,m] = degree_minute(n)
            d = int(n);
            m = (n-int(n))*60;
10
11 endfunction
12 for n = 1:1:5 // For diffraction order from 1 to
       theta = asind(n*lambda/(2*d)); // Bragg's
13
          angle
14
       [deg, mint] = degree_minute(theta);
          conversion function
       printf("\nTheta%d = %2d degree(s), %2d minute(s)
15
          ", n, deg, mint);
16 end
17 // Result
18 // Theta1 = 4 degree(s), 29 minute(s)
19 // Theta2 = 8 degree(s), 59 minute(s)
20 // Theta3 = 13 degree(s), 33 minute(s)
21 // \text{Theta4} = 18 \text{ degree(s)}, 13 \text{ minute(s)}
22 // \text{Theta5} = 23 \text{ degree(s)}, 0 \text{ minute(s)}
```

Scilab code Exa 8.11 Wavelength of diffracted X rays

```
6 // lambda = 2*d*sin(theta)/n;
7 printf("\nThe first four wavelengths of diffracted
      beam are:");
                      // For diffraction order from 1 to
8 \text{ for } n = 1:1:5
9
        lambda = 2*d*sind(theta)/n;
                                               // Wavelength of
            X-rays, m
10
        if lambda \geq 0.2e-010 \& lambda \leq 1.0e-010 then
             printf("\nLambda%d = \%6.4e angstrom", n,
11
                lambda/1D-10);
12
        end
13 end
14 // Result
15 // The first four wavelengths of diffracted beam are
16 // \text{Lambda1} = 8.8041 e - 001 \text{ angstrom}
17 // \text{Lambda2} = 4.4021 e - 001 \text{ angstrom}
18 // \text{ Lambda3} = 2.9347 e - 001 \text{ angstrom}
19 / \text{Lambda4} = 2.2010 \,\text{e} - 001 \,\text{angstrom}
```

Scilab code Exa 8.12 Reciprocal lattice parameters from 2D direct lattice parameters

```
7 // Similarly , b_prime*b = 2*%pi and b_prime*a = 0
8 // Solving for a_prime and b_prime , we have
9 a_prime = 2*%pi/(a*cosd(90-theta)); // Lattice
    vector for reciprocal lattice , per metre
10 b_prime = 2*%pi/(b*cosd(90-theta)); // Lattice
    vector for reciprocal lattice , per metre
11 printf("\nThe reciprocal lattice vectors are:\n
    a_prime = %5.2 f per angstrom and b_prime = %5.2 f
    per angstrom", a_prime*1e-010, b_prime*1e-010);
12 // Result
13 // The reciprocal lattice vectors are:
14 // a_prime = 2.42 per angstrom and b_prime = 1.45
    per angstrom
```

Scilab code Exa 8.13 Bragg angle and the indices of diffraction of Powder Lines

```
1 // Scilab code Ex8.13: Bragg angle and the indices
     of diffraction of Powder Lines Page 285 (2010)
2 n = 1; // Cosider first order diffraction
3 = 6e-010;
                 // First lattice parameter of direct
     lattice, m
4 \text{ lambda} = 1.54e-010;
                       // Wavelength used in
     diffraction of X-rays by Powder Method, m
  // Declare a function for converting angle into
     degrees and minutes
6 function [d,m] = degree_minute(n)
           d = int(n);
8
           m = (n-int(n))*60;
9 endfunction
10 // Calculate the hkl and hence interpalnar spacing '
     d' for three lowest powder lines
11 printf("\nThe Bragg angles and the indices of
     diffraction for the three lowest powder lines are
     :");
```

```
12 \quad for \quad h = 0:1:2
       for k = 0:1:2
13
           for 1 = 0:1:1
14
                if (modulo(h,2) == 1 & modulo(k,2) == 1
15
                   & modulo(1,2) == 1) | (modulo(h,2)
                   == 0 & modulo(k,2) == 0 & modulo(1)
                   ,2) == 0) then
16
                    if (h <> 0) then
                         N = h^2+k^2+1^2;
17
                         d = a/sqrt(N);
                                            // Interplanar
18
                             spacing, metre
19
                         theta = asind(n*lambda/(2*d));
20
                         [deg, mint] = degree_minute(
                                        // Call conversion
                            theta);
                             function
                         printf ("\nd [%d%d%d] = %4.2 e and
21
                            theta [\%d\%d\%d] = \%d \deg \%d \min
                            ", h, k, l, d, h, k, l, deg,
                            mint);
22
                     end
23
                end
24
             end
25
       end
26 \, \text{end}
  // Result
27
  // The Bragg angles and the indices of diffraction
      for the three lowest powder lines are:
29 / d[111] = 3.46e - 010 and theta [111] = 12 deg 50 min
30 // d[200] = 3.00e - 010 and theta [200] = 14 deg 52 min
31 // d[220] = 2.12e-010 and theta[220] = 21 deg 17 min
```

Scilab code Exa
 $8.14\,$ Minimum distance from the centre of the Laue pattern

```
1 // Scilab code Ex8.14: Minimum distance from the
```

```
centre of the Laue pattern of an fcc crystal
     Page 289 (2010)
2 n = 1; // Consider the first order diffraction
3 a = 4.5e-010; // Lattice parameter for fcc
     lattice, m
4 V = 50e+03; // Potential difference across the X-
     ray tube, volt
5 D = 5; // Crystal to film distance, cm
6 h = 1, k = 1, l = 1; // Incides for the planes of
      maximum spacing
7 \quad lambda_min = 1.24e-06/V;
                            // The cut-off
     wavelength of X-rays, m
8 d_111 = a/sqrt(h^1+k^2+l^2);
9 theta_111 = asind(n*lambda_min/(2*d_111));
10 // As \tan(2* \text{theta}_1111) = x/D, solving for x
11 x = D*tand(2*theta_111); // // Minimum distance
     from the centre of Laue pattern
12 printf("\nThe minimum distance from the centre of
     the Laue pattern at which reflections can occur
     from the planes of maximum spacing = \%4.2\,\mathrm{f} cm", x
     );
13 // Result
14 // The minimum distance from the centre of the Laue
     pattern at which reflections can occur from the
     planes of maximum spacing = 0.48 cm
```

Scilab code Exa 8.15 Unit cell height along the axis of a rotation photograph

```
1 // Scilab code Ex8.15: Calculating unit cell height
    along the axis of a rotation photograph Page 291
      (2010)
2 n = 1; // Consider the first order diffraction of
      X-rays
3 S = [0.29,0.59,0.91,1.25,1.65,2.12]; // An array
```

```
of heights of first six layers above (below) the
     zero layer, cm
                 // Radius of the camera, cm
4 R = 3;
5 lambda = 1.54e-08; // Wavelength of the X-rays,
6 // For an a-axis rotation photograph, the unit cell
     parameter is given by
7 // a = n*lambda/S(n)*(R^2 + S(n)^2)^(1/2)
8 // Calculate 'a' for six different values of n from
     1 to 6
9 \text{ for } n = 1:1:6
       a = (n*lambda/S(n))*(R^2 + S(n)^2)^(1/2);
11 end
12 printf("\nThe unit cell height of the crystal = \%2.0
     f angstrom", a/1D-8);
13
14 // Result
15 // The unit cell height of the crystal = 16 angstrom
```

Scilab code Exa 8.16 Diffraction of thermal neutrons from planes of Ni crystal

```
1) is
10 lambda = 2*d*sind(theta);  // Bragg's law, m
11 // From kinetic interpretaion of temperature, we have
12 // (1/2)*m*v^2 = (3/2)*k*T -- (a)
13 // Further from de-Broglie relation
14 // lambda = h/(m*v) -- (b)
15 // From (a) and (b), solving for T, we have
16 T = h^2/(3*m_n*k*lambda^2);  // Effective temperature of the neutrons, K
17 printf("\nThe effective temperature of neutrons = %d K", T);
18 // Result
19 // The effective temperature of neutrons = 168 K
```

Scilab code Exa 8.17 Diffraction of electrons from fcc crystal planes

```
1 // Scilab code Ex8.17: Diffraction of electrons from
      fcc crystal planes Page 295 (2010)
2 // Declare a function for converting angle into
     degrees and minutes
3 function [d,m] = degree_minute(n)
            d = int(n);
            m = (n-int(n))*60;
6 endfunction
7 h = 6.626e-034; // Planck's constant, Js 8 m = 9.1e-031; // Rest mass of electron, kg
9 e = 1.602e-019; // charge on an electron, coulomb
10 a = 3.5e-010; // Lattice parameter of fcc crystal
   , m
           // Accelerating potential for electrons,
11 V = 80;
     volt
12 lambda = h/sqrt(2*m*e*V); //de-Broglie
     wavelength of electrons, m
13 d_111 = a/sqrt(3); // Interplanar spacing for
```

```
(111) planes of fcc crystal, m

14 // Bragg's equation for first order diffraction (n = 1) is

15 // lambda = 2*d_111*sind(theta_111); // Bragg's law, m

16 theta_111 = asind(lambda/(2*d_111)); // Bragg's angle, degree

17 [deg, mint] = degree_minute(theta_111); // Call conversion function

18 printf("\nThe Bragg angle for electron diffraction = %d deg %d min", deg, mint);

19 // Result

20 // The Bragg angle for electron diffraction = 19 deg 50 min
```

Chapter 9

Thermal Properties of Materials

Scilab code Exa 9.1 Exception of Dulong Petit law at room temperature

```
1 // Scilab Code Ex9.1 Exception of Dulong-Petit law
     at room temperature: Page -303(2010)
2 h = 6.626e-034; // Planck's constant, joule
     second
3 k = 1.38e-023; // Boltzmann constant, joule/mol/
     kelvin
           // Room temperature, kelvin
4 T = 300;
                     // Vibrational frequency for
5 \text{ f}_Ag = 4.0e+012;
     silver, cycles/second
6 f_Dia = 2.4e+013; // Vibrational frequency for
     diamond, cycles/second
7 E_Ag = h*f_Ag; // Vibrational Energy for silver,
     joule
8 E_Dia = h*f_Dia;
                     // Vibrational Energy for
     diamond, joule
              // Thermal energy at room temperature
9 E_{th} = k*T;
     , joule
10 if E_th > E_Ag & E_th < E_Dia then
      printf("\nSince E_Ag < kT and E_Dia > kT,
```

```
therefore,");

printf("\nSilver metal obeys the Dulong Petit law at room temperature while diamond does not.");

and

Mesult

// Since E_Ag < kT and E_Dia > kT, therefore,

// Silver metal obeys the Dulong Petit law at room temperature while diamond does not.
```

Scilab code Exa 9.2 Specific heat of copper from Debye temperature

```
1 // Scilab Code Ex9.2 Specific heat of copper from
     Debye temperature: Page -311(2010)
2 h = 6.626e - 034;
                  // Planck's constant, joule
     second
3 k = 1.38e - 023;
                   // Boltzmann constant, joule/mol/
     kelvin
4 T = 30;
             // Given temperature, kelvin
5 N = 6.023e + 023; // Avogadro's number
6 R = N*k;
            // Universal gas constant, joule/kelvin
                    // Longitudinal velocity of
7 \text{ v_l} = 4.76e+03;
     lattice waves, m/s
8 v_t = 2.32e+03; // Tranverse velocity of lattice
     waves,
9 rho = 8.9e+03; // Density of copper, kg per metre
      cube
10 A_Cu = 63.5;
                // Gram atomic mass of Cu, g
11 \quad M = A_Cu*1e-03;
                     // Mass of 1 mole of Cu-atoms, kg
12 V = M/rho; // Volume of copper, metre cube
13 theta_D = (h/k)*((9*N)/((4*\%pi*V)*((1/v_1^3)+(2/v_t)))
     ^3))))^(1/3); // Debye temperature of copper,
     K
14 C_v = 12/5*\%pi^4*R*(T/theta_D)^3; // Specific
     heat of copper, kJ/kmol/kelvin
```

```
15 printf("\nThe specific heat of copper = %4.2 f kJ/
          kmol/kelvin", C_v);
16 // Result
17 // The specific heat of copper = 1.33 kJ/kmol/kelvin
```

Scilab code Exa 9.3 Vibrational frequency and molar heat capacity of diamond

```
1 // Scilab Code Ex9.3 Vibrational frequency and molar
      heat capacity of diamond: Page -312(2010)
2 h = 6.626e-034; // Planck's constant, joule
     second
3 k = 1.38e-023; // Boltzmann constant, joule/mol/
     kelvin
4 T = 10;
              // Given temperature, kelvin
5 N = 6.023e + 023; // Avogadro's number
6 R = N*k; // Universal gas constant, joule/kelvin
7 theta_D = 2230; // Debye temperature for diamond,
      kelvin
8 f_D = k*theta_D/h; // Debye frequency of diamond,
      hertz
9 C_v = 12/5*\%pi^4*R*1e+03*(T/theta_D)^3;
     Specific heat of diamond, J/kmol/kelvin
10 printf("\nThe highest possible vibrational frequency
      of diamond = \%4.2e per second", f_D);
11 printf("\nThe molar specific heat of diamond = \%5.3 f
      J/kmol/kelvin", C_v);
12 // Result
13 // The highest possible vibrational frequency of
     diamond = 4.64e+013 per second
14 // The molar specific heat of diamond = 0.175 \text{ J/kmol}
     /kelvin
```

Scilab code Exa 9.4 Debye temperature of copper at low temperature

```
1 // Scilab Code Ex9.4 Debye temperature of copper at
     low temperature: Page -312(2010)
2 k = 1.38e-023; // Boltzmann constant, joule/mol/
     kelvin
3 N = 6.023e + 023; // Avogadro's number
4 R = N*k; // Universal gas constant, joule/kelvin
5 C_vl = 4.6e-02; // Lattice specific heat, J/kmol/
     K
6 // Lattice specific heat C_vl = Molar lattice
     specific heat, C_v
7 // or 12/5*\%pi^4*R/(5*theta_D^3) = C_vl
8 // solving for theta_D, we have
9 theta_D = (12*\%pi^4*R*1e+03/(5*C_vl))^(1/3);
     Debye temperature of copper at low temperature, K
10 printf("\nDebye temperature of copper at low
     temperature = \%3d K", theta_D);
11 // Result
12 // Debye temperature of copper at low temperature =
     348 K
```

Scilab code Exa 9.5 Debye temperature for gold

```
9 v = 2100;  // Velocity of sound in gold medium, m/
s
10 theta_D = h*v/k*(9*N/(12*%pi*V))^(1/3);  // Debye
        temperature for gold, K
11 printf("\nDebye temperature of gold = %3d K",
        theta_D);
12 // Result
13 // Debye temperature of gold = 242 K
```

Scilab code Exa 9.6 Heat transference into rock salt at low temperature

```
1 // Scilab Code Ex9.6 Heat transference into rock
     salt at low temperature: Page -313(2010)
2 A = 464;
             // Atomic specific heat of rock salt,
     cal g/mol/kelvin
3 theta_D = 281; // Debye temperature of rock salt,
      Κ
4 delta_T = 10; // Rise in temperature in each
     class interval, K
5 // Define a function which returns lattice specific
     heat at constant volume
6 function[C_v1] = lattice_SH(T)
       C_vl = A*(T/theta_D)^3;
8 endfunction
9 Q = 0; // Initialize heat accumulator to zero,
     cal
10 \quad for \quad t = 10:10:40
      mean\_temp = (t + (t + 10))/2; // Calculate
11
         mean temperature of each class interval, K
       Q = Q + 2*delta_T*lattice_SH(mean_temp); //
12
         Acuumulate heat for each step
13 end
14 printf("\nThe amount of heat required to raise the
     temperature of 2 gmol of Rock salt from 10K to 50
     K = \%5.2 f cal, Q);
```

```
15 // Result   
16 // The amount of heat required to raise the temperature of 2 gmol of Rock salt from 10K to 50 \rm K=63.99\ cal
```

Chapter 10

Free Electrons in Crystals

Scilab code Exa 10.1 Particle moving in one dimensional potential well

```
1 // Scilab Code Ex10.1 Particle Moving in One-
     Dimensional Potential Well: Page-328 (2010)
2 a = 10^-3; //Separation between the walls of the
     well, m
3 m = 10^-9; // Mass of the dust particle, kg
4 t = 100; // Average time for successive collisons
     with the wall, s
5 h = 6.626*10^{-34}; // Plank's constant, Js
6 v = a/t; // Velocity of the particle inside the
     potential well, m/s
7 E = 1/2*m*v^2; // Kinetic energy of the particle, J
8 // For one-dimensional potential well, the energy
     eigen value is given by
                 E = h^2*n^2/(8*m*a^2)
10 // Solving for n
11 n = sqrt((8*m*a^2*E)/h^2) // Quantum number
     corresponding to the energy eigen value E
12 disp (n, "The quantum number described by this
     motion is:")
13 // Result
14 // The quantum number described by this motion is:
```

Scilab code Exa 10.2 Motion of a ground state electron in a 3D potential well

```
1 // Scilab Code Ex 10.2 Motion of a ground state
     Electron in a 3-D Potential Well: Page-329 (2010)
2 a = 0.5*10^-10; // length of the potential box, m
3 h = 6.626*10^{-34}; // Plank's Constant, Js
4 m = 9.1*10^{-31}; // Mass of an Electron, kg
5 // In 3-D, the three quantum numbers nx, ny and nz
     each will have value equal to 1 for lowest energy
      state
            // Quantum number corresponding to x-
6 \text{ nx} = 1;
      direction
7 ny = 1; // Quantum number corresponding to y-
      direction
8 \text{ nz} = 1;
             // Quantum number corresponding to z-
     direction
9 EG = h^2*(nx^2+ny^2+nz^2)/(8*m*a^2); // Energy eigen
      value for 3-D potential, J
10 EeV = EG/1.6D-19; // Convert energy from joule to eV
11 disp (EeV, "The lowest energy of an electron
     confined to move in a 3D-potential box, in eV, is
      : ")
12 // Result
13 // The lowest energy of an electron confined to move
      in a 3D-potential box, in eV, is:
14 // 452.30641
```

Scilab code Exa 10.3 Motion of an electron excited next to the ground state in a 3D potential well

```
1 // Scilab Code Ex 10.3 Motion of an Electron excited
      next to the ground state in a 3-D Potential Well
      : Page - 329 (2010)
2 a = 1D-10; // length of the cubic potential box,
3 h = 6.626*10^{-34}; // Plank's Constant, Js
4 m = 9.1*10^-31; // Mass of an Electron, kg
                   // Boltzmann Constant, J/mol-K
5 k = 1.38D-23;
6 // In 3-D, the three quantum numbers nx, ny and nz
      will have values 1, 1 and 2 respectively for
      first excited energy state
             // Quantum number corresponding to x-
7 \text{ nx} = 1;
      direction
8 \text{ ny} = 1;
              // Quantum number corresponding to y-
      direction
              // Quantum number corresponding to z-
9 \text{ nz} = 2;
      direction
10 EE = h^2*(nx^2+ny^2+nz^2)/(8*m*a^2); // Energy eigen
      value for 3-D potential for first excited state,
      J
11 // As EE(next to the lowest) = 3/2 (k/T), where T is
      the absolute temperature
12 // Solving for T
13 T = 2/3*1/k*EE; // Absolute temperature at which
      energy next to the lowest energy state = 3/2 (k/T
      ) , K
14 EeV = EE/1.6D-19; // Convert energy from joule to eV
15 disp (EeV, "The first excited state energy of the
      electron confined to move in a 3D-potential box,
      in eV, is : ")
16 disp (T, "The temperature at which the average
      energy becomes equal to first excited state
      energy, in K, is: ")
17 //
18 // Result
19 // The first excited state energy of the electron
      confined to move in a 3D-potential box, in eV, is
      :
```

```
20 // 226.15321
21 // The temperature at which the average energy becomes equal to first excited state energy, in K , is : 22 // 1748044.1
```

Scilab code Exa 10.4 Degeneracy of energy level

```
1 // Scilab Code Ex 10.4 Degeneracy of Energy Level:
     Page -332 (2010)
2 // Function to find the factorial of a number
3 function[f] = fact(num)
       f = 1;
       for i = 1:1:num
           f = f*i;
7
       end
8 endfunction
10 // Fucntion to determine degenerate energy states
11 function[degstates] = degno(a, b, c)// degno takes
      three arguments
12
       if a == b & b == c then // check if all the
          values are same
13
           degeneracy = 3;
           degstates = fact(3)/fact(degeneracy); //
14
              calculate degenerate states
15
       end
16
       if a == b | b == c | c == a then
                                           // check if
          any two values are equal
           degeneracy = 2;
17
           degstates = fact(3)/fact(degeneracy); //
18
              calculate degenerate states
19
       end
20
       if a ~= b & b ~= c then
                                   // check if all the
          values are different
```

```
21
           degeneracy = 1;
22
           degstates = fact(3)/fact(degeneracy); //
              calculate degenerate states
23
       end
24 endfunction
25 //
26 clc
27 coef = 38; // Coefficient of H^2/(8*m*a^2)
28 \text{ nx} = zeros(1,5);
                      // Quantum number corresponding
     to x-direction
29 \text{ ny} = zeros(1, 5);
                     // Quantum number corresponding
     to y-direction
30 \text{ nz} = zeros(1,5);
                      // Quantum number corresponding
     to z-direction
31 deg = zeros(1,5); // Variable to store the
      degeneracy of states
32 count = 1; // set the counter
33 sum = 0; // initialize the sum
34 // Look for all the possible set of values for nx,
     ny and ny
35 \quad for \quad i = 1:1:10
       for j = 1:1:10
36
37
           for k = 1:1:10
         // Check for the condition and avoid
38
            repetition of set of values
               if ((i^2+j^2+k^2==coef) & (i+j+k) > sum)
39
                  then
                   nx(1,count)=i; // Save current i
40
                       value
                   ny(1,count)=j; // Save current j
41
                   nz(1,count)=k; // Save current k
42
                      value
                    deg(1,count) = degno(i, j, k); //
43
                      Save degeneracy for given set of
                      values
                    count = count + 1; // Increment the
44
                      counter
```

```
sum = i + j + k; // Add the three
45
                       values of quantum numbers
46
               end
           end
47
48
       end
49
  end
50 printf("\nThe %d set(s) of values of quantum number
      are : \n", count-1);
51 deg_states = 0; // Intialize the variable
52 \text{ for } i = 1:1:count-1
       printf ("\nnx = \%d, ny = \%d, nz = \%d\n", nx(1,i),
53
           ny(1,i), nz(1,i));
54
       deg_states = deg_states + deg(1,i); //
          Accumulate the degeneracy
55 end
56
       printf("\nThe given energy level is %d-fold
          degenerate.", deg_states);
57 // Result
58 // The 2 set(s) of values of quantum number are :
59 //
             nx = 1, ny = 1, nz = 6
             nx = 2, ny = 3, nz = 5
60 //
61 // The energy level is 9-fold degenerate
```

Scilab code Exa 10.5 Fermi energy of zinc at absolute zero

```
//Scilab Code Ex 10.5 Fermi energy of zinc at
absolute zero: Page-335 (2010)

d = 7.13D+3; // Density of Zn, in kg per m cube
M = 65.4D-3; // Atomic weight of Zn, kg/mol
me = 9.1D-31; // Mass of an electron, kg
meff = 0.85*me; // Effective mass of the electron in zinc, kg
v = 2; // valency of divalent (Zn) metal
N = 6.023D+23; // Avogadro's Number
h = 6.626D-34; // Plank's constant, in Js
```

```
9 n = v*d*N/M; // Number of electrons per unit
     volume
10 Ef = h^2/(2*meff)*(3*n/(8*\%pi))^(2/3); //Fermi
     energy in zinc at absolute zero, J
11 EfeV = Ef/1.6D-19; // Fermi energy in eV
                      // Average energy of an
12 Ebar = (3/5)*EfeV;
     electron at 0K, eV
13 disp(EfeV, "The fermi energy in zinc at absolute zero
     , in eV, is : ");
14 disp(Ebar, "The average energy of an electron at OK,
     in eV, is : ");
15 // Result
16 // The fermi energy in zinc at absolute zero, in eV,
     is :
17 // 11.110065
18 // The average energy of an electron at OK, in eV, is
19 // 6.6660389
```

Scilab code Exa 10.6 Electron probability above Fermi energy

```
1 // Scilab Code Ex 10.6 Electron probability above
     Fermi energy: Page -336 (2010)
2 k = 1.38D-23; // Boltzmann constant, in J/mol-K
              // Fermi-Dirac distribution
3 \text{ FD} = 0.10;
     probability for electrons
4 Efermi = 5.5; // Fermi Energy of silver, in eV
5 E = Efermi + 0.01*Efermi; // Allowed energy for
     electrons
6 dE = E - Efermi; //Deviation of allowed energy
    from Fermi energy, in eV
7 DEeV = dE*1.6D-19; //Convert into joule
8 // The Fermi-Dirac distribution function as at any
     temperature T is given by
9 //
                F(E) = FD = 1/(exp((E-Efermi)/kT)+1)
```

Scilab code Exa 10.7 The electroic specific heat of Cu

```
1 // Scilab Code Ex 10.7 The Electroic Specific Heat
     of Cu: Page - 341 (2010)
2 k = 1.38D-23; //Boltzmann constant, in J/mol-K
3 N = 6.023D+23; // Avogadro's Number
4 \text{ Efermi} = 7.05;
                      // Fermi energy of copper, in
     eV
5 EFeV = Efermi*1.6D-19; // Fermi energy conversion,
     in J
6 T1 = 4;
             //Lower value of temperature, in K
7 T2 = 300; //Upper value of temperature, in K
8 Ce4 = (\%pi^2*k^2*T1)/(2*EFeV)*N; // Electronic
      specific heat at 4K, J/mol/K
9 Ce100 = (\%pi^2*k^2*T2)/(2*EFeV)*N; // Electronic
      specific heat at 100K, J/mol/K
10 disp(Ce4, "The Electronic specific heat at 4K, in J/
     mol/K is :");
11 disp(Ce100, "The Electronic specific heat at 100K,
     in J/mol/K is :");
12 // Result
13 // The Electronic specific heat at 4K, in J/mol/K is
14 // 0.0020072
```

```
15 // The Electronic specific heat at 100K, in J/mol/K is :   
16 // 0.1505404
```

Scilab code Exa 10.8 Electrical resitivity of sodium metal

```
1 // Scilab Code Ex 10.10 Electron mobility inside
     conductors: Page -346 (2010)
                 // Electronic charge, in C
2 = 1.6D-19;
                    // Eelctronic mass, in kg
3 m = 9.1D-31;
                    // Electrical resistivity of
4 \text{ res} = 1.54D-8;
     silver, in ohm metre
5 E = 100;
                    // Electric field applied along
     the length of the wire, V/m
6 n = 5.8D + 28;
                    // Number of conduction electrons
     per unit volume, per metre cube
7 mu = 1/(res*n*e); // Mobility of electron through
     silver, metre square per volt-sec
8 \text{ vd} = \text{mu}*E;
              // Average drift velocity of
     electrons, m/s
9 t = mu*m/e;
                // Relaxation time of the electron
10 disp(mu, "The mobility of electron through silver,
     in metre square per V-s, is: ");
11 disp(vd, "The average drift velocity of electrons,
     in m/s, is : ");
12 disp(t, "c");
13 // Result
14 // The mobility of electron through silver, in metre
      square per V-s, is:
            0.0069973
16 // The average drift velocity of electrons, in m/s,
     is :
             0.6997313
17 //
18 // The average drift velocity of electrons, in m/s,
```

```
is :
19 // 3.980D-14
```

Scilab code Exa 10.9 Electrical conductivity of Cu

```
1 // Scilab Code Ex 10.9 Electrical Conductivity of Cu
     : Page -345 (2010)
2 = 1.6D-19; // Electronic charge, C
3 N = 6.023D+23; // Avogardro's number
4 d = 8920;
                  // Density of Copper, kg per metre
     cube
5 A = 63.5; // Atomic weight of Copper, 6 I = 10; // Current through uniform copper wir
   , A
7 D = 16D-4;
                    //Diameter of circular cross-
     section of copper wire, m
                     // Radius of circular cross-
8 R = D/2;
     section of copper wire, m
9 n = d*N/63.5*1D+3; // The number of electrons per
      unit volume in copper, per metre cube
10 J = I/(%pi*R^2); // Current density of electrons
     in copper, ampere per metre square
11 vd = J/(n*e); // Drift velocity of electrons
     in copper, metre per second
12 disp(J,"The current density of electrons in copper,
     in ampere per metre square, is: ");
13 disp(vd,"The drift velocity of electrons in copper,
     in metre per second, is: ");
14 //Result
15 //The current density of electrons in copper, in
     ampere per metre square, is:
16 //
            4973592
17 // The drift velocity of electrons in copper, in
     metre per second, is:
18 //
             0.0003674
```

Scilab code Exa 10.10 Electron mobility inside conductors

```
1 // Scilab Code Ex 10.10 Electron mobility inside
     conductors: Page -346 (2010)
2 e = 1.6D-19;
                 // Electronic charge, in C
                    // Eelctronic mass, in kg
3 m = 9.1D-31;
4 res = 1.54D-8; // Electrical resistivity of
     silver, in ohm metre
5 E = 100;
                     // Electric field applied along
     the length of the wire, V/m
                  // Number of conduction electrons
6 n = 5.8D + 28;
     per unit volume, per metre cube
7 mu = 1/(res*n*e); // Mobility of electron through
     silver, metre square per volt-sec
8 \text{ vd} = \text{mu} * \text{E};
                     // Average drift velocity of
     electrons, m/s
                // Relaxation time of the electron
9 t = mu*m/e;
10 disp(mu, "The mobility of electron through silver,
     in metre square per V-s, is: ");
11 disp(vd, "The average drift velocity of electrons,
     in m/s, is : ");
12 disp(t, "c");
13 // Result
14 // The mobility of electron through silver, in metre
      square per V-s, is:
             0.0069973
15 //
16 // The average drift velocity of electrons, in m/s,
     is:
             0.6997313
17 //
18 // The average drift velocity of electrons, in m/s,
     is :
             3.980D-14
19 //
```

Scilab code Exa 10.11 Lorentz number calculation of a solid

```
1 // Scilab Code Ex 10.11 Lorentz number calculation
     of a solid: Page-347 (2010)
2 e = 1.6D-19; // Electronic charge, in C
                    // boltzmann constant, J/mol-K
3 k = 1.38D-23;
4 T = 293;
                      // Absolute temperature of the
     solid
             // Thermal conductivity of copper at 293
5 K = 390;
      K, W/m-K
            // Lenght of the copper wire, m
6 1 = 0.5;
7 d = 0.3D-3; // Diameter of cross-section of Cu, m
8 r = d/2; // Radius of copper wire, m
              // Resistance of copper wire, ohm
9 R = 0.12;
10 // As R = 1/con*l/(\%pi*r^2)
11 // Solving for R
12 con = 1/(\%pi*r^2*R); // Conductance of copper,
     per ohm per metre
13 // The Lorentz number is defined as the ratio of the
      Thermal conductivity to the
14 // Electrical conductivity of a solid per degree
     rise in temperature
                     // Experimental value of
15 Lexp = K/(con*T);
     Lorentz number, watt ohm per kelvin square
16 Lth = \%pi^2/3*(k/e)^2; // Thoeretical value of
     Lorentz number value, watt ohm per kelvin square
  disp(Lexp, "The experimetal value of Lorentz number,
     in watt ohm per kelvin square, is :");
18 disp(Lth,"The theoretical value of Lorentz number,
     in watt ohm per kelvin square, is :");
19 printf("\nThe theoretical value of Lorentz number is
      %f times higher than the experimental one.\n",
     Lth/Lexp);
20 // Result
```

```
21 // The experimetal value of Lorentz number, in watt
      ohm per kelvin square, is:
22 // 2.258D-08
23 // The theoretical value of Lorentz number, in watt
      ohm per kelvin square, is:
24 // 2.447D-08
25 // The theoretical value of Lorentz number is times
      higher than the experimental one.
26 // 1.083817
```

Scilab code Exa 10.12 Increase in electrical resistivity of a metal with temperature

```
1 // Scilab Code Ex 10.12 Increase in electrical
     resistivity of a metal with temperature: Page -349
      (2010)
2 function [res] = final_res(T)
      alpha = 0.0001;
                       // Temperature co-efficient
         of resistance
      resi = 0;
                       // Initial resistivity of the
         nichrome which is an arbitray
      //constant and can be taken to be zero
6 res = resi + alpha*T; // Final resistivity of the
      nichrome as function of T
7 endfunction
            // Initial temperature of nichrome, K
8 T1 = 300;
9 T2 = 1000; // Final temperature of nichrome, K
10 res300 = final_res(T1); // Final resistivity of the
     nichrome at 300 K
11 res1000 = final_res(T2); // Final resistivity of the
      nichrome at 1000 K
12 percent_res = (res1000 - res300)*100;
     Percentage increase in resistivity
13 printf("\nThe percentage increase in the resistivity
      of nichrome is %d percent", percent_res);
```

Scilab code Exa 10.13 Thermionic emission of a filament

```
1 // Scilab Code Ex 10.13 Thermionic emission of a
      filament: Page -352 (2010)
2 = 1.6D-19; // Electronic charge, C
                  // Mass of the electron, kg
3 m = 9.1D-31;
4 k = 1.38D-23; // Boltzmann constant, J/mol-K
5 h = 6.626D-34; // Plank's constant, Js
6 W = 4.5; // Work function of tungsten filament,
      eV
7 D = 1D-4; // Diameter of the filament, m 
 8 r = D/2; // Radius of the filament, m
9 T = 2400; // Temperature of the filament, K 10\ 1 = 0.05; // Length of the filament, m
11 A = 4*\%pi*e*m*k^2/h^3; // A constant expressed
      in ampere per metre square
12
                                 // per kelvin square
                           // Surface area of the
13 a = 2*\%pi*r*l;
      filament, meter square
14 J = A*T^2*exp(-e*W/(k*T));
                                 // Electronic current
      density of the filament,
                                 // ampere per metre
15
                                    square
16 I = a*J;
            // Electric current due to thermionic
      emission, ampere
17 disp(I,"The electric current due to thermionic
      emission, in A, is: ");
18 // Result
19 // The electric current due to thermionic emission,
     in A, is:
20 // 0.0392404
```

Scilab code Exa 10.14 Hall coefficient of sodium based on free electron model

```
1 // Scilab Code Ex 10.14 Hall coefficient calculation
      of sodium based on free electron model: Page-353
      (2010)
unit cell of sodium crystal, m
               // Number of atoms per unit cell in
4 N = 2;
    bcc structure of sodium
            // Number of electrons per unit volume
5 n = N/a^3;
      for the sodium crystal, per metre cube
6 RH = -1/(n*e); // Hall coefficient of sodium,
     metre cube per coulomb
7 disp(RH,"The Hall coefficient of sodium, in metre
     cube per coulomb, is: ");
8 // Result
9 // The Hall coefficient of sodium, in metre cube
    per coulomb, is:
10 // -2.450D-10
```

Chapter 11

Band Theory

Scilab code Exa 11.2 Ratio between kinetic energy of an electron in 2D square lattice

```
1 // Scilab Code Ex11.2 Determining ratio between K.E.
       of an electron in 2D square lattice: Page -370
      (2010)
2 h = 6.626e-034; // Planck's constant, Js
3 m = 9.1e-031; // Mass of an electron, kg
4 a = 1; // For simplicity assuming lattice
     parameter to be unity, m
5 // Case-I when k_x = k_y = \%pi/a
6 \text{ k_x} = \%\text{pi/a}, \text{ k_y} = \%\text{pi/a}; // \text{Wave numbers in X-}
     and Y- directions, rad per metre
7 E1 = h^2/(8*\%pi^2*m)*(k_x^2 + k_y^2); // Energy
      of the electron inside a Brilliouin Zone, J
8 // Case-II when k_x = \%pi/a and k_y = 0
9 k_x = \%pi/a, k_y = 0; // Wave numbers in X— and Y
     - directions, rad per metre
10 E2 = h^2/(8*\%pi^2*m)*(k_x^2 + k_y^2);
                                              // Energy
      of the electron inside a Brilliouin Zone, J
11 E_{\text{ratio}} = E1/E2; // Ratio between K.E. of an
      electron in 2D square lattice
12 printf("\nThe ratio between K.E. of an electron in 2
```

```
D square lattice = %1d", E_ratio);

13 // Result

14 // The ratio between K.E. of an electron in 2D square lattice = 2
```

Chapter 13

Semiconducting Properties of Materials

Scilab code Exa 13.3 Intrinsic concentration of charge carriers in semiconductors

```
1 // Scilab Code Ex13.3 Intrinsic concentration of
      charge carriers in semiconductors: Page-432
      (2010)
2 k = 1.38e-023; // Boltzmann constant, J/mol/K
3 h = 6.626e-034; // Planck's constant, Js
4 eV = 1.6e-019; // Joule equivalent of 1 eV
5 T = 300; // Room temperature, kelvin
6 \text{ m\_0} = 9.1\text{e-}031; // Rest mass of an electron, kg
7 \text{ m_e} = 0.12*\text{m_0}; // Effective mass of electron, kg
8 \text{ m_h} = 0.28*\text{m_0}; // Effective mass of electron, kg
9 E_g = 0.67; // Energy gap of Ge, eV
10 n_i = 2*(2*\%pi*k*T/h^2)^(3/2)*(m_e*m_h)^(3/4)*exp(-
      E_g*eV/(2*k*T)); // Intrinsic carrier
      concentration of Ge, per metre cube
11 printf("\nThe intrinsic carrier concentration of Ge
      = %3.1e per metre cube", n_i);
12 // Result
13 // The intrinsic carrier concentration of Ge = 4.7e
```

Scilab code Exa 13.4 Comparison of intrinsic carrier densities of two semiconductors

```
1 // Scilab Code Ex13.4 Comparison of intrinsic
      carrier densities of two semiconductors at room
      temperature Page -433 (2010)
2 eV = 1.6e-019; // Joule equivalent of 1 eV 3 m = 9.1e-031; // Rest mass of an electron , kg
4 m_e = m; // Effective mass of electron, kg
                // Effective mass of electron, kg
5 \text{ m_h} = \text{m};
6 \text{ Eg\_A} = 0.36; // Energy gap of A, eV
7 Eg_B = 0.72; // Energy gap of B, eV
8 k = 1.38e-023; // Boltzmann constant, J/mol/K
9 h = 6.626e-034; // Planck's constant, Js
                        // Planck's constant, Js
10 k_T = 0.052/2; // Thermal energy, eV
11 // As n_{i-ratio} = n_{i-A}/n_{i-B} = \exp(-E_{g-A}/(2*k_T))/\exp(-E_{g-A}/(2*k_T))
      (-Eg_A/(2*k_T))
12 n_{i_{ratio}} = exp(-Eg_A/(2*k_T))/exp(-Eg_B/(2*k_T));
          // Intrinsic carrier density ratio of A and B
13 printf("\nThe ratio of intrinsic carrier density =
      %4d ", n_i_ratio);
14 // Result
15 // The ratio of intrinsic carrier density = 1015
```

Scilab code Exa 13.5 Shift in fermi level with change in concentration of impurities

```
1 // Scilab Code Ex13.5 Shift in position of fermi
    level with change in concentration of impurities:
        Page-436 (2010)
2 k_T = 0.03; // Thermal energy, eV
```

```
3 dE_Fv = 0.4; // Energy difference between fermi
      level and topmost valence level, eV
4 // The hole concentration in P-type material is
5 // p = N_A = N_v * \exp(-EF - Ev) / (k_T) = N_v * \exp(-dE_F v)
      /(k_T)
6 // The new value of hole concentration in P-type
      material is
7 // p_prime = 3*N_A = N_v*exp(-EF_prime-Ev)/(k_T) = =
     N_v * exp(-dE_F_primev)/(k_T)
8 // Solving for dE_F_primev by removing exponetial
     term
9 dE_F_{primev} = dE_F_{v} - k_T * log(3); // E_{nerg_{v}}
      difference between new fermi level and topmost
      valence level, eV
10 printf("\nThe energy difference between new fermi
      level and topmost valence level = \%5.3 f eV",
     dE_F_primev);
11 // Result
12 // The energy difference between new fermi level and
      topmost valence level = 0.367 eV
```

Scilab code Exa 13.6 Electrical resistivity of Ge

Scilab code Exa 13.7 Electrical conductivity of intrinsic and extrinsic Si

```
1 // Scilab Code Ex13.7 Electrical conductivity of
     intrinsic and extrinsic Si: Page-439 (2010)
2 NA = 6.023e+23; // Avogadro's number
3 A_Si = 28.09e-03; // Kilogram atomic mass of Si,
     kg
4 e = 1.602e-019; // Charge on an electron, C
5 n_impurity = 1/1e+08; // Donor impurity atoms per
     Si atom
6 n_i = 1.5e+016; // Intrinsic carrier density of
     Si at room temperature, per metre cube
7 mu_e = 0.13; // Mobility of electrons, metre
     square per volt per second
8 mu_h = 0.05; // Mobility of holes, metre square
     per volt per second
9 T = 300;
            // Room temperature, kelvin
10 sigma_i = n_i*e*(mu_e + mu_h); // Intrinsic
     electrical conductivity, per ohm per metre
11 Si_density = 2.23e+03; // Density of silicon, kg
     per metre cube
12 N_Si = NA * Si_density/A_Si; // Number of Si
     atoms, per metre cube
13 N_D = N_Si*n_impurity; // Density of donor
     impurity, per metre cube;
14 sigma_ext = ceil(N_D)*e*mu_e; // Extrinsic
     electrical conductivity of Si, per ohm per metre
```

Scilab code Exa 13.8 Resistance of intrinsic Ge Rod

```
1 // Scilab Code Ex13.8 Resistance of intrinsic Ge Rod
     : Page-440 (2010)
2 = 1.602e-019; // Charge on an electron, C
3 T = 300;
                // Room temperature, kelvin
               // Length of the Ge rod, m
4 1 = 1e-02;
                // Width of the Ge rod, m
5 b = 1e-03;
                // Thickness of the Ge rod, m
6 t = 1e-03;
7 n_i = 2.5e+019; // Intrinsic carrier density of
     Ge, per metre cube
8 mu_e = 0.39; // Mobility of electrons, metre
     square per volt per second
9 mu_h = 0.19; // Mobility of holes, metre square
     per volt per second
10 sigma_i = n_i*e*(mu_e + mu_h); // Intrinsic
     electrical conductivity, per ohm per metre
11 \quad A = b*t;
            // Surface area of the Ge rod, metre
     square
12 rho = 1/sigma_i; // Electrical resistivity of Ge
     Rod, ohm-metre
                // Resistance of Ge Rod, ohm
13 R = rho*1/A;
14 printf("\nThe resistance of Ge Rod = \%3.1e ohm", R);
16 // The resistance of Ge Rod = 4.3e+003 ohm
```

Scilab code Exa 13.9 Hall effect in Si semiconductor

```
1 // Scilab Code Ex13.9 Hall effect in Si
     semiconductor: Page -442 (2010)
                     // Charge on an elctron, C
2 e = 1.602e - 019;
3 T = 300;
                   // Room temperature, kelvin
4 R_H = -7.35e-05; // Hall co-efficient of Si
     specimen, metre cube per coulomb
5 sigma = 200; // Electrical conductivity of Si,
     per ohm per metre
                   // Electron density in the Si
6 n = -1/(e*R_H);
     specimen
  mu_e = sigma/(n*e); // Electron mobility in the
     Si specimen, metre cube per volt per second
  printf("\nThe density of electron = \%3.1e metre cube
     ", n);
  printf("\nThe mobility of electron = \%4.2e metre
     cube per volt per second", mu_e);
10 // Result
11 // The density of electron = 8.5\,\mathrm{e} + 0.022 metre cube
12 // The mobility of electron = 1.47e-002 metre cube
     per volt per second
```

Scilab code Exa 13.10 Forward current of a pn diode using diode equation

Scilab code Exa 13.11 Voltage from net forward current using Diode Equation

```
1 // Scilab Code Ex13.11 Finding voltage from net
     forward current using Diode Equation: Page -450
     (2010)
2 e = 1.6e-019; // Charge on an electron, coulomb
3 k = 1.38e-023; // Boltzmann constant, J/mol/K
4 T = 300;
           // Room temperature, kelvin
                  // Reverse saturation current, micro-
5 \text{ Io} = 1;
     ampere, for simplicity assume I0 = 1
6 Iv = 0.9*Io; // "Diode Equation" for net forward
     current, milliamperes
7 // As Iv = Io*(exp(e*V/(k*T))-1), solving for V
8 V = log(Iv/Io+1)*k*T/e; // Potential difference
     applied across p-n junction, volt
9 printf("\nThe potential difference applied across p-
     n junction = \%6.4 \,\mathrm{f} volt", V);
10 // Result
11 // The potential difference applied across p-n
     junction = 0.0166 volt
```

Chapter 14

Dielectric Properties of Materials

Scilab code Exa 14.1 Polarization of water molecule

```
1 // Scilab Code Ex14.1 Polarization of water molecule
     : Page -456 (2010)
2 NA = 6.023e+23; // Avogadro's number
3 p = 6e-030; // Dipole moment of water molecule, C
     -\mathbf{m}
4 r = 1e-03; // Radius of water molecule, m
5 M = 18e-03;
                    // Molecular weight of water, kg
6 d = 1e+03; // Density of water, kg per metre cube
            // Volume of water, metre cube
7 V = M/d;
8 // Now M/d metre cube volume will contain NA = 6.023
     e+023 water molecules, so that 4*\%pi/3*(r^3)
     metre cube volume will contain
                               // Number of water
9 N = NA*d*4*\%pi*r^3/(M*3);
     molecules per metre cube
10 P = \mathbb{N} * p;
              // Polarization of water molecules,
     coulomb per metre square
11 printf("\nThe polarization of water molecules = \%3.1
     e coulomb per metre square", P);
12 // Result
```

```
13 // The polarization of water molecules = 8.4e-010 coulomb per metre square
```

Scilab code Exa 14.2 Dielectric constant from electric polarizability of the atom

```
1 // Scilab Code Ex14.2 Calculating dielectric
     constant from electric polarizability of the atom
     : Page -464 (2010)
2 alpha_Kr = 2.18e-040; // Electric polarizability
     of the Kr-atom, farad-metre square
3 NA = 6.023e+023; // Avogadro's number
4 epsilon_0 = 8.85e-012; // Electrical permittivity
      of free space, coulomb square per newton per
     metre square
5 N = NA/(22.4e-03); // Number of Kr atoms per
    metre cube
6 epsilon_r = N*alpha_Kr/epsilon_0 + 1; // Relative
      electrical permittivity of Kr specimen
7 printf("\nThe diectric constant of Kr specimen = \%7
     .5\,\mathrm{f} ", epsilon_r);
8 // Result
9 // The diectric constant of Kr specimen = 1.00066
```

Scilab code Exa 14.3 Electric polarizability of a molecule from its susceptibility

```
1 // Scilab Code Ex14.3 Calculating electric
    polarizability of a molecule from its
    susceptibility: Page-464 (2010)
2 NA = 6.023e+023; // Avogadro's number
```

```
3 epsilon_0 = 8.85e-012; // Electrical permittivity
      of free space, coulomb square per newton per
     metre
4 chi = 0.985e-03; // Electrical susceptibility of
     carbon-dioxide molecule
5 \text{ rho} = 1.977;
                 // Density of carbon-dioxide, kg per
      metre cube
6 M = 44e-03; // Molecular weight of CO2, kg
7 N = NA*rho/M;
                 // Number of molecules per unit
     volume, per metre cube
8 alpha = epsilon_0*chi/N; // Total electric
     polarizability of carbon-dioxide, farad-metre
     square
9 printf("\nThe total electric polarizability of
     carbon-dioxide = \%4.2e farad-metre square", alpha
     );
10 // Result
11 // The total electric polarizability of carbon-
     dioxide = 3.22e-040 farad-metre square
```

Scilab code Exa 14.4 Electric polarizability of oxygen atom

Scilab code Exa 14.5 Dipolar polarization of HCl molecule

```
1 // Scilab Code Ex14.5 Dipolar polarization of HCl
     molecule: Page -470 (2010)
2 k = 1.38e-023; // Boltzmann constant, J/mol/K
           // Temperature of the HCl vapour, kelvin
3 T = 300;
4 N = 1e+027; // Number of HCL molecuels per unit
     volume, per metre cube
5 E = 1e+06;
             // Electric field strength to which
     the HCL vapour is subjected, volt/m
6 p = 3.46e - 030;
                 // The dipole moment of HCl
     molecule, C-m
7 alpha_d = p^2/(3*k*T); // Dipolar polarizability
     of HCl molecule, farad-metre square
8 // As P = N*p = N*alpha_d*E
9 P = N*alpha_d*E;
                     // Orientational or Dipolar
     polarization of HCl molecule, coulomb per metre
     square
10 \quad E_M = p*E;
               // Magnetic energy stored in the
     dipole-field system, joule
11 E_Th = k*T;
              // Thermal energy of the HCl molecule
     , joule
```

Scilab code Exa 14.6 Effect of molecular deformation on polarizability

```
1 // Scilab Code Ex14.6 Effect of molecular
     deformation on polarizability: Page-471 (2010)
2 \text{ alpha}_309 = 2.42e-039;
                             // Polarizability of
     ammonia molecule at 309 K, farad-metre square
3 alpha_448 = 1.74e-039; // Polarizability of
     ammonia molecule at 448 K, farad-metre square
                   // Boltzmann constant, J/mol/K
4 k = 1.38e-023;
               // First temperature of the experiment,
5 T1 = 309;
      kelvin
6 	 T2 = 448;
                // Second temperature of the experiment
      , kelvin
  // As alpha = alpha_i + alpha_d = alpha_i + p^2/(3*k)
     *T) = alpha_i + bta/T
8 // where bta = p^2/(3*k)
9 // Thus alpha_309 = alpha_i + bta/309 and alpha_448
     = alpha_i + bta/448
10 // Solving for bta
11 // bta(1/309-1/448) = alpha_309 - alpha_448
12 bta = poly(0, "bta");
13 bta = roots(bta*(1/309 - 1/448) - alpha_309 +
```

```
alpha_448); // bta = p^2/(3*k), farad-kelvin
      metre square
14 // Solving for alpha_i
15 alpha_i = alpha_309 - bta/309; // Polarizability
      due to permanent dipole moment, farad-metre
      square
16 // Polarizability due to deformation of molecules =
      bta/T, bta = p^2/(3*k)
17 \text{ alpha_d_309} = \text{bta/T1};
                             // Orientational
      polarizability at 309 K, farad-metre square
18 \text{ alpha_d_448} = \text{bta/T2};
                           // Orientational
      polarizability at 448 K, farad-metre square
  printf("\nThe polarizability due to permanent dipole
       moment = %4.1e farad-metre square", alpha_i);
20 printf("\nThe orientational polarization of ammonia
      at 309 \text{ K} = \%4.2 \text{ e} \text{ farad-metre square}, alpha_d_309
      );
21 printf("\nThe orientational polarization of ammonia
      at 448 \text{ K} = \%4.2 \text{ e} \text{ farad-metre square}, alpha_d_448
      );
22 // Result
23 // The polarizability due to permanent dipole moment
       = 2.3e-040 farad-metre square
24 // The orientational polarization of ammonia at 309
      K = 2.19e-039 farad-metre square
25 // The orientational polarization of ammonia at 448
     K = 1.51e-039 farad-metre square
```

Chapter 15

Optical Properties of Materials

Scilab code Exa 15.1 Photon count from Planck quantum law

```
1 // Scilab Code Ex15.1 Determining Photon number by
     using Planck quantum law: Page-486 (2010)
2 h = 6.626e-034; // Planck's constant, Js
3 f = 1760e + 03;
                 // Frequency of the radio
    transmitter, Hz
4 P = 10e+03; // Power of radio transmitter, W
             // Energy carried by one photon from
    Planck's law, J
6 N = P/E;
              // Number of photons emitted per second,
     number per second
7 printf("\nThe number of photons emitted per second =
     \%4.2e", N);
8 // Result
9 // The number of photons emitted per second = 8.58e
    +030
```

Scilab code Exa 15.2 Inicient energy of photon in photoelectric effect

```
1 // Scilab Code Ex15.2 Finding suitable energy for
     Photoelectric Effect from Na metal: Page-486
     (2010)
4 c = 3.0e+08; // Speed of light in vacuum, m/s
            // Work function of Na metal, J
5 W = 2.3 * e;
6 lambda = 2800e-010; // Wavelength of incident
     light, m
7 f = c/lambda; // Frequency of the incident light,
      Hz
8 E = h*f; // Energy carried by one photon from
     Planck's law, J
9 printf("\nThe energy carried by each photon of
     radiation = \%4.2 \, \text{f eV}", E/e);
10 if E > W then
      printf("\nThe photoelectric effect is possible..
         ");
12 else
      printf("\nThe photoelectric effect is impossible
         ..");
14 end
15 // Result
16 // The energy carried by each photon of radiation =
     4.43 \text{ eV}
17 // The photoelectric effect is possible...
```

Scilab code Exa 15.3 photon count for green wavelength of Hg

```
1 // Scilab Code Ex15.3 Finding number of photons for
    green wavelength of Hg: Page-487 (2010)
2 h = 6.626e-034; // Planck's constant, Js
3 c = 3.0e+08; // Speed of light in vacuum, m/s
4 lambda = 496.1e-09; // Wavelength of green light
    of mercury, m
```

Scilab code Exa 15.4 Photoelectric effect in a photocell

```
1 // Scilab Code Ex15.4 Photoelectric effect in a
     photocell: Page -487 (2010)
2 e = 1.602e-019; // Charge on an electron, C
3 h = 6.626e-034; // Planck's constant, Js
4 c = 3.0e+08; // Speed of light in vacuum, m/s
5 lambda = 1849e-010; // Wavelength of incident
     light, m
               // Stopping potential for emitted
6 V_0 = 2.72;
     electrons, V
7 f = c/lambda; // Frequency of incident radiation
    , Hz
8 E = h*f; // Energy carried by one photon from
     Planck's law, J
9 \quad T_{max} = e*V_0;
                 // Maximum kinetic energy of
     electrons, J
10 // We have, T_{max} = E - h * f_{0} = h * f - W
11 f_0 = poly(0, "f_0"); // Declare f_0 as variable
12 f_0 = roots(T_max - E + h*f_0); // Threshold
     frequency for Cu metal, Hz
13 W = h*f_0/e; // Work function of Cu metal, eV
```

```
printf("\nThe threhold frequency for Cu metal = %4.2
    e Hz", f_0);
printf("\nThe work function of Cu metal = %g eV",
    round(W));
printf("\nThe maximum kinetic energy of
    photoelectrons = %4.2 f eV", T_max/e);
Printf("\nThe maximum kinetic energy of
    photoelectrons = %4.2 f eV", T_max/e);
Printf("\nThe work function of Cu metal = 9.65e+014
    Hz
Printf("\nThe work function of Cu metal = 4 eV
Printf("\nThe work function of Cu metal = 4 eV
Printf("\nThe work function energy of photoelectrons = 2.72 eV
```

Scilab code Exa 15.5 Energy required to stimulate the emission of Na doublets

```
1 // Scilab Code Ex15.5 Energy required to stimulate
    the emission of Na d-lines: Page-497 (2010)
2 = 1.6e-019; // Charge on an electron, C
3 h = 6.626e-034; // Planck's constant, Js
4 c = 3.0e+08; // Speed of light in vacuum, m/s
 lambda_mean = 5893e-010; // Wavelength of
     incident light, m
6 delta_E = h*c/(lambda_mean*e); // The energy of
     the electron which must be transferred to the
     atoms of Na
7 printf("\nThe energy which must be transferred to
     stimulate the emission of Na d-lines = \%5.3 f eV",
     delta_E);
8 // Result
9 // The energy which must be transferred to stimulate
     the emission of Na d-lines = 2.108 eV
```

Chapter 16

Magnetic Properties of Materials

Scilab code Exa 16.1 Response of copper to magnetic field

```
1 // Scilab Code Ex16.1 Response of Cu to magnetic
     field: Page -503 (2010)
2 \text{ H} = 1e+06;
                    // Applied magnetic field in
     copper, A/m
3 chi = -0.8e-05; // Magnetic susceptibility of
     copper
4 \text{ mu}_0 = 4*\%pi*1e-07; // Magnetic permeability of
     free space, henry/metre
              // Intesity of magnetization in copper
5 M = chi*H;
     , A/m
6 B = mu_0*(H + M); // Magnetic flux density in
     copper, tesla
7 printf("\nThe magnetization of copper = \%d A/m", M);
8 printf("\nThe magnetic flux density of copper = \%5.3
     f\ T" , B);
9 // Result
10 // The magnetization of copper = -8 \text{ A/m}
11 // The magnetic flux density of copper = 1.257 T
```

Scilab code Exa 16.2 Diamagnetic susceptibility of copper

```
1 // Scilab Code Ex16.2 Diamagnetic susceptibility of
     copper: Page -512 (2010)
2 = 1.6e-019; // Charge on an electron, C
3 m = 9.1e-031; // Mass of an electron, kg
4 \text{ mu}_0 = 4*\%\text{pi}*1\text{e}-07; // Magnetic permeability of
     free space, henry/metre
            // Number of electrons contributing to the
      magnetic moment
6 r = 1e-010; // Radius of copper atom, m
7 a = 3.608e-010; // Lattice parameter of copper, m
8 // For FCC lattice of Cu, there are 4 atoms per unit
      cell
9 n = 4; // Number of atoms per unit cell
10 N = n/a^3; // Number of electrons per unit volume
     , per metre cube
11 chi_dia = -mu_0*Z*e^2*N*r^2/(6*m); // Diamagnetic
      susceptibility of copper
12 printf("\nThe diamagnetic susceptibility of copper =
      \%3.1e", chi_dia);
13 // Result
14 // The diamagnetic susceptibility of copper = -5.0e
     -006
```

Scilab code Exa 16.3 Magnetic induction from orientational energy equivalent of thermal energy

```
1 // Scilab Code Ex16.3 Calculating magnetic induction
from orientational energy equivalent of thermal
energy: Page-514 (2010)
```

```
2 k = 1.38e-023; // Boltzmann constant, joule per
     mole per kelvin
3 \text{ mu}_B = 9.27e-024;
                    // Bohr's magneton, joule per
     tesla
4 mu_m = 5*mu_B; // Magnetic moment of
     paramagnetic sample, joule per tesla
5 T = 300; // Thermal energy of specimen, joule
6 // At equilibrium, mu_*m*B = k*T, solving for B
                  // Magentic induction of
7 B = k*T/mu_m;
     paramagnetic sample, weber per metre square
8 printf("\nThe magentic induction of paramagnetic
     sample = \%5.2 f weber per metre square", B);
9 // Result
10 // The magentic induction of paramagnetic sample =
     89.32 weber per metre square
```

Scilab code Exa 16.4 Behaviour of paramagnetic salt when placed in uniform magnetic field

```
1 // Scilab Code Ex16.4 Behaviour of paramagnetic salt
     when placed in uniform magnetic field: Page-514
     (2010)
2 k = 1.38e-023; // Boltzmann constant, joule per
    mole per kelvin
           // Thermal energy of specimen, joule
3 T = 300;
4 \text{ mu}_B = 9.27 \text{e} - 024; // Bohr's magneton, ampere per
    metre square
5 mu_0 = 4*%pi*1e-07; // Magnetic permeability of
    free space, henry per metre
6 N = 1e+28; // Concentration of paramagnetic ions
    in paramagnetic salt, per metre cube
7 \quad mu_m = mu_B;
8 H = 1e+06; // Applied magnetic field, A/m
9 chi = mu_0*N*mu_m^2/(3*k*T); // Paramagnetic
     susceptibility of salt at room temperature
```

Chapter 17

Superconductivity

Scilab code Exa 17.1 Variation of critical magnetic field with temperature

Scilab code Exa 17.2 Temperature variation of critical magnetic field for tin

```
1 // Scilab Code Ex17.2 Variation of critical magnetic field with temperature for tin Page -537 (2010)
```

```
2 T_c = 3.69; // Critical temperature of
      superconducting transition, kelvin
3 B_c0 = 3e+5/(4*\%pi);
                         // Critical magnetic field
      intensity to destroy superconductivity at zero
      kelvin, tesla
4 B_cT = 2e+5/(4*\%pi);
                          // Critical magnetic field
      at temperature T kelvin
5 // T = 2; // Temperature at which critical
      magnetic field is to be found out, kelvin
6 // since B_cT = B_c0*(1-(T/T_c)^2); // Critical
      magnetic field intensity as a function of
      temperature
7 // Solving for T
8 T = sqrt(1-B_cT/B_c0)*T_c; // Temperature at
      which critical magnetic field becomes B<sub>c</sub>T,
9 printf("\nThe temperature at which critical magnetic
       field becomes \%4.2 \,\mathrm{e} \,\mathrm{T} = \%4.2 \,\mathrm{f} \,\mathrm{K}, B_cT,T); //
      Display result
10 // Result
11 // The temperature at which critical magnetic field
      becomes 1.59e+04 T = 2.13 K
```

Scilab code Exa 17.3 Critical current for a lead wire from its critical temperature

```
1 // Scilab Code Ex17.3 Calculating critical current
    for a lead wire from critical temperature of lead
    Page-537 (2010)
2 T_c = 7.18; // Critical temperature of
    superconducting transition for Pb, kelvin
3 H_c0 = 6.5e+4; // Critical magnetic field
    intensity to destroy superconductivity at zero
    kelvin, A/m
4 T = 4.2; // Temperature at which critical
```

```
magnetic field becomes H_cT, kelvin
5 d = 1e-03;  // Diameter of lead wire, m
6 H_cT = H_cO*(1-(T/T_c)^2);;  // Critical magnetic field intensity at temperature T kelvin, A/m
7 I_c = %pi*d*H_cT;  // Critical current through the lead wire, A
8 printf("\nThe critical current through the lead wire = %6.2 f A", I_c);
9
10 // Result
11 // The critical current through the lead wire = 134.33 A
```

Scilab code Exa 17.4 Dependence of London penetration depth on temperature

```
1 // Scilab Code Ex17.4 Dependence of London
     penetration depth on temperature Page-548 (2010)
                  // Avogadro's number
2 N = 6.02e + 023;
3 rho = 13.55e+03; // Density of mercury, kg per
     metre cube
4 M = 200.6e-03; // Molecular mass of mercury, kg
                        // Penetration depth of
5 \ lambda_T = 750e-010;
     mercury at T kelvin, m
6 \text{ T_c} = 4.12;
                // Critical temperature of
     superconducting transition for Hg, kelvin
             // Temperature at which penetration
7 T = 3.5;
     depth for Hg becomes lambda_T, kelvin
8 lambda_0 = lambda_T*(1-(T/T_c)^4)^(1/2);
     Penetration depth of mercury at 0 kelvin, m
9 \text{ n}_0 = \text{N*rho/M}; // Normal electron density in
     mercury, per metre cube
                              // Superelectron density
10 n_s = n_0*(1-(T/T_c)^4);
      in mercury, per metre cube
11 printf("\nThe penetration depth at 0 \text{ K} = \%4.2 \text{ e m}",
```