Practical Statistical Learning (F18)

Feng Liang

Changbo Zhu

Yinyin (Elaine) Chen

Joshua Daniel Loyal

Overview

- Types of statistical learning problems
- * Why learning is difficult?
- * Bias variance tradeoff
- An example: kNN vs Linear Regression (in a separate pdf file)
- * Not all about prediction

Problems (I)

- * <u>Project 1 (Ames Housing Data)</u>: Predict the sale price of a house given its features.
- * Project 2 (Sales Forecasting): Provide sales forecasting for Walmart for each department in each store based on historical data.

Y: Target

X: Feature / Covariates

Problems (II)

- * Project 3 (Lending Club): Determine the chance that a borrower will miss a payment next month given various characteristics of the borrower and the loan.
- * Project 4 (Sentiment Analysis): Determine whether a movie review is positive or negative.

Y: Target

X: Feature / Covariates

Problems (III)

- * Based on the recent real estate transactions at Ames, Iowa, can we identify any home buying/selling trends? Further, can we identify distinctive groups of buyers?
- * Based on the transaction data at Walmart, can we recommend any marketing strategies to Walmart?

Association Rule (chap 14.2 of ESL)

Market Segmentation (cluster customers)

Problems (III)

- * Based on the recent real estate transactions at Ames, Iowa, can we identify any home buying/selling trends? Further, can we identify distinctive groups of buyers?
- * Based on the transaction data at Walmart, can we recommend any marketing strategies to Walmart?

Y. Target

X: Feature / Covariates

Types of Statistical Learning Problems

- * Supervised Learning
 - * Regression: response is a number
 - * <u>Classification</u>: response is a label (binary or multiclass)

Semi-supervised Learning

Recommender System

* <u>Unsupervised Learning</u>: identify latent structures in the data, e.g., clustering, association rule, HMM, etc.

How does Supervised Learning Work?

Data: $\{x_i, y_i\}$ i=1, 2, ..., n

Goal: learn w y < ---- f(x; w)

Minimize an objective function

$$F(w) = \sum_{i=1}^{n} loss(y_i, f(x_i; w))$$

$$loss = \left[y_i - f(x_i; w) \right]^2$$

$$loss = \mathbf{1} \left\{ y_i \neq f(x_i; w) \right\}$$

$$loss = \begin{cases} -\log f(x_i; w) & \text{if } y_i = 1 \\ -\log(1 - f(x_i; w)) & \text{if } y_i = 0 \end{cases}$$

How does Supervised Learning Work?

- 1. The minimizer w^* may be in closed form.
- 2. Try optimization algorithms that can guarantee to converge to the global minimizer.
- 3. In the worst case, try gradient descent.

Overview

- Types of statistical learning problems
- * Why learning is difficult?
- * Bias variance tradeoff
- An example: kNN vs Linear Regression (in a separate pdf file)
- * Not all about prediction

Challenges

- * Training error underestimates test/generalization error.
- * Overfitting: perform well on the training data but not on the future (unseen) data.
- * *p* denotes the number of parameters the regression/classification function *f* has, i.e., the number of parameters we need to learn from the data.
- * The gap between the two errors (training *vs.* test) gets large when *p* is large.

Curse of Dimensionality

- * Curse of Dimensionality in Classification:
 - 1NN (one-nearest-neighbor) predicts perfectly on the training data
 - * Illustration on how dimensionality changes the performance of linear classifiers: http://www.visiondummy.com/2014/04/cursedimensionality-affect-classification/

Curse of Dimensionality

Curse of Dimensionality in Regression

Curse of Dimensionality

$$y_{n\times 1} = X_{n\times n} w_{n\times 1}$$

n equations and n parameters
Perfect fit on the training data!

Overview

- Types of statistical learning problems
- * Why learning is difficult?
- Bias variance tradeoff
- An example: kNN vs Linear Regression (in a separate pdf file)
- Not all about prediction

Goal of ML: Minimize *generalization error* (i.e., error on unseen future datasets), not training error.

- * Bias
- * Variance

Goal of ML: Minimize *generalization error* (i.e., error on unseen future datasets), not training error.

- * Bias
- * Variance

Goal of ML: Minimize *generalization error* (i.e., error on unseen future datasets), not training error.

- * Bias
- * Variance

Goal of ML: Minimize *generalization error* (i.e., error on unseen future datasets), not training error.

Goal of ML: Minimize *generalization error* (i.e., error on unseen future datasets), not training error.

- * Bias
- * Variance

What'll be Covered in Stat542

- * Flexible modeling techniques to reduce bias
- Useful strategies to achieve the tradeoff between bias and variance

Two Successful Strategies

* Regularization: Restrict the parameters to a low-dimensional space, which is *adaptively* determined by the data.

Two Successful Strategies

* Regularization: Restrict the parameters to a low-dimensional space, which is *adaptively* determined by the data.

Two Successful Strategies

- * Regularization: Restrict the parameters to a low-dimensional space, which is *adaptively* determined by the data.
- * Ensemble: Average many low-bias high-variance models; averaging reduces variance.

FIGURE 2.11. Test and training error as a function of model complexity.

Overview

- Types of statistical learning problems
- Why learning is difficult?
- * Bias variance tradeoff
- * An example: kNN vs Linear Regression
- Not all about prediction

Not All About Prediction

- * Although the focus of this course is prediction, statistical learning \neq prediction
- * Exploration vs. Prediction
- * Data product vs. decision making
- * Make your model to generate actionable insights