Fourier-Methoden: Theorie und Anwendungen

Felix Wager

14. September 2025

Inhaltsverzeichnis

1	Abstract	
2	Einleitung2.1 Motivation	3
3	Mathematische Grundlagen	3
	3.1 Komplexe Zahlen und die Eulerformel	3
	3.2 Das Skalarprodukt von Funktionen und Orthonormalsysteme	
	3.3 Die Fourierreihe	
	3.4 Von der Fourierreihe zur Fouriertranformation	
	3.5 Die Foureirtransformation in der Praxis: Die DFT	
	3.6 Die Foureirtransformation in der Praxis: Die FFT	8
4	Von der Theorie zu Praxis: Eigenentwicklung eines Audioanalyzers mi	t
	$\mathrm{C}{+}{+}$	10
	4.1 Eigenständige Herleitung der DFT	10
	4.2 Berechnung der Koeffizienten	14
	4.3 Eigenschaften und Konvergenz	14
5	Von der Reihe zur Fourier-Transformation	14
0	5.1 Übergang zum Integral	
	5.2 Fourier-Transformation und inverse Transformation	
	5.3 Eigenschaften	14
6	Diskrete Fourier-Transformation (DFT)	14
U	6.1 Definition und Motivation	
	6.2 Herleitung aus der Fourier-Transformation	
	6.3 Beweise für die Korrektheit	
	6.4 FFT als effiziente Berechnung	
7	Eigene Beiträge	14
	7.1 Eigene Herleitung der DFT	
	7.2 Beweise	
	7.3 Eigener FFT-Algorithmus in Python	

	7.4 Audio-Programm zur Echtzeit-Visualisierung			
	7.5	Bildverarbeitung: Moiré-Muster entfernen mit 2D-FFT	14	
8	Anv		14	
	8.1	Audio	14	
		Bild		
9	Anh	ang	15	
	9.1	Eigene Beweise	15	
	9.2	Bedeutung im größeren Kontext	19	
10	Fazi	t und Ausblick	19	
	10.1	Zusammenfassung der Ergebnisse	19	
		Ausblick: Erweiterungen und Anwendungen		

1 Abstract

2 Einleitung

2.1 Motivation

Warum Fourier-Methoden heute so wichtig sind.

2.2 Zielsetzung der Arbeit

2.3 Aufbau der Arbeit

3 Mathematische Grundlagen

3.1 Komplexe Zahlen und die Eulerformel

Um sich die Arbeit mit Fourier Transformationen, Reihen und sonstigem erheblich zu erleichtern ist es sehr sinnvoll mit komplexen Zahlen zu arbeiten. Doch was sind komplexe Zahlen? Komplexe Zahlen sind prinzipiell nichts anderes, als eine Erweiterung der Menge der Reellen Zahlen, welche es ermöglicht die Wurzel von negativen Zahlen zu ziehen. Dafür wird die Wurzel von -1 als die imaginäre Einheit i definiert. Mathematisch korrekt sieht das wie folgt aus:

$$i^2 := -1$$

Die Menge der komplexen Zahlen wird mit dem Symbol \mathbb{C} abgekürzt. Eine typische komplexe Zahl hat in der algebraischen Schreibweise die Form:

$$z = a + ib$$
 mit $a, b \in \mathbb{R}$

a ist hierbei der Realteil $\Re(z)$ und b der Imaginärteil $\Im(z)$ von z.

Um mit komplexen Zahlen bei Fourier Reihen zu arbeiten, benötigt man auch ein paar Rechenoperationen. Die wichtigsten beiden sind hier der Betrag und das komplex konjugierte einer komplexen Zahl. Eine komplexe Zahl lässt sich auch als Vektor im \mathbb{R}^2 betrachtet, so ist dann der Betrag als euklidische Norm dieses Vektors definiert.

$$|z| := ||z|| = \sqrt{a^2 + b^2}$$

Bedeutet in einem Koordinatensystem, bei dem der Real- und Imaginärteil einer Zahl auf den x- und y-Achsen festgehalten wird, ist der Betrag die Länge vom Ursprung bis zum Punkt im Koordinatensystem dieser Zahl. Und das komplex konjugierte einer Zahl ist eine Abbildung, welche lediglich den Imaginärteil mit -1 multipliziert:

$$\bar{z} : \mathbb{C} \to \mathbb{C}, \ z = x + iy \mapsto \bar{z} := x - iy$$

Mithilfe von komplexen Zahlen und den Taylorreihen von Sinus, Cosinus und der Exponentialfunktion e^x kann man nun die Eulerformel herleiten.

Wenn man den Betrag dieses Ausdrucks bildet, so fällt auf, dass hier das Ergebnis, unabhängig von x, 1 ist. Dies bedeutet, dass e^{ix} als ein gegen den Uhrzeigersinn rotierender Vektor, für steigende Werte für x, gesehen werden kann. Im vorher genannten Koordinatensystem, welches man auch die Gaußsche Zahlenebene nennt, sieht das so aus:

3.2 Das Skalarprodukt von Funktionen und Orthonormalsysteme

Des Weiteren spielen Orthonormalsysteme eine große Rolle, wenn man sich mit der Fourier Analyse beschäftigt. Allgemein lässt sich sagen, dass ein Orthonormalsystem eine Menge von Vektoren oder Funktionen, aus einem Vektorraum mit Skalarprodukt, sind, welche sowohl orthogonal zueinander, aber auch normiert zu sich selbst sind. Orthogonal sind sie, wenn das Skalarprodukt zweier unterschiedlicher Vektoren 0 ergibt und normiert, wenn das Skalarprodukt eines Vektors mit sich selbst 1 ergibt. Für alle Vektoren v_n im \mathbb{R}^n muss also folgendes gelten, damit die Menge der Vektoren ein Orthonormalsystem bildet:

1. Orthogonalität:
$$\langle v_i, v_j \rangle = 0 \quad \forall i \neq j$$

2. Normiertheit:
$$\langle v_i, v_j \rangle = \sum_{i=1}^n v_i^2 = ||v_i||^2 = 1 \quad \text{mit } i = j$$

$$\left(\text{Skalarprodukt: } \langle v, w \rangle := \sum_{i=1}^{n} v_i * w_i \right)$$

Hier sieht man auch, dass das Skalarprodukt eines Vektors mit sich selbst, das gleiche ist wie die quadrierte euklidische Norm des Vektors, wodurch der Begriff der Normiertheit anschaulicher wird. Wie schon erwähnt lassen sich diese Eigenschaften auch auf Funktionen anwenden. Hierfür definiert man die Normiertheit und die Orthogonalität auch, exakt gleich wie bei Vektoren, über das Skalarprodukt. Das Skalarprodukt für zwei Funktionen ist wie folgt definiert:

$$\langle v, w \rangle := \int_a^b v(x) * w(x) dx \quad \text{für } v, w : [a, b] \to \mathbb{R}$$

Falls eine Menge von Funktionen Orthogonalität und Normiertheit erfüllt, ist diese Menge auch ein Orthogonalsystem. Anschaulich kann man sich die Funktionen v(x) und w(x) noch als zwei Vektoren mit unendlich vielen Dimensionen vorstellen, wobei der x Wert angibt in welcher Dimension man sich befindet. Da das Skalarprodukt die jeweiligen Dimensionen von Vektoren multipliziert und diese schließlich aufsummiert, macht es Sinn, dass man bei Funktionen ähnlich vorgeht. So lässt sich also die Erweiterung der Summe zum Integral erklären. Die Formel für die Norm von Funktionen $\left(\|f\| = \sqrt{\int_a^b |f(x)|^2 dx}\right)$ ergibt sich, wenn man das für Funktionen definierte Skalarprodukt ähnlich wie bei Vektoren auf die Funktion selbst anwendet. Im komplexen Fall wird das Skalarprodukt leicht

angepasst, indem der zweite Faktor komplex konjugiert wird:

$$\langle v, w \rangle := \int_a^b v(x) * \overline{w(x)} dx \quad \text{für } v, w : [a, b] \to \mathbb{C}$$

3.3 Die Fourierreihe

Der erste große Schritt, um die Fourier Transformation herzuleiten, ist die Fourier Reihe. Eine Reihe selbst ist in der Mathematik ist ein Begriff für eine unendliche Summe von Termen. Die Fourier Reihe ist hierbei eine besondere Reihe. Ihr Sinn ist es periodische Funktionen mithilfe von Sinus- und Kosinustermen zu approximieren. Joseph Fourier hat in seinem Werk "Théorie analytique de la chaleur" schließlich auch beweisen, dass jede periodische Funktion auf diese Weise dargestellt werden kann. Die Approximation selbst geschieht durch trigonometrische Polynome, mit welchen man später die Fourierreihe einer Funktion bildet. Ein trigonometrisches Polynom ist hier eine Funktion der Form:

$$p(x) = a_0 + \sum_{k=1}^{n} a_k \cos(kx) + b_k \sin(kx) \quad a_k, b_k \in \mathbb{R}$$

Ziel ist es nun die Faktoren a_k und b_k in Abhängigkeit zur anzunähernden Funktion zu bestimmen. Denn durch die Zählervariable k, welche die Periodenlänge der Sinus- und Kosinusterme bestimmt, kann man durch die Faktoren a_k und b_k festlegen wie dominant die Anteile der Sinus und Kosinusterme, mit der jeweiligen Periodenlänge, in der zu approximierende Funktion sind. Um die Berechnung der Faktoren kompakter zu gestalten, kann man mit dem Zusammenhang $2\cos x = e^{ix} - e^{-ix}$ und $2i\sin x = e^{ix} + e^{-ix}$, einer Umstellung der Eulerformel, nun das trigonometrische Polynom zu dem komplexen trigonometrischen Polynom zusammenfassen:

$$p(x) = \sum_{k=-n}^{n} c_k e^{ikx}$$
 für geeignete $c_k \in \mathbb{C}$

Um jetzt den komplexen Faktor c_k , zunächst für 2π periodische Funktionen, zu berechnen, verwendet man ein Orthonormalsystem, welches aus den Funktionen $\varphi_n(x)$ besteht:

$$\phi_n(x): [-\pi, \pi] \to \mathbb{C}, \quad \phi_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx} \quad \text{mit } n \in \mathbb{Z}$$

Dass die Menge an Funktionen ϕ_n ein Orthonormalsystem ist, habe ich im Anhang gezeigt (Beweis A. 1). Um endlich c_k zu berechnen, setzt man zunächst die zu approximierende Funktion f, mit der Periodizität 2π , mit dem trigonometrischen Polynom gleich und schränkt sie zudem ein:

$$f: [-\pi, \pi] \to \mathbb{C}, \quad f(x) = \sqrt{2\pi} * \sum_{k=-n}^{n} c_k \phi_k(x)$$

Anschließend bildet man das Skalarprodukt von f und ϕ_m , was möglich ist, da f auf der Definitionsbereich von f und ϕ_m gleich ist.

$$\langle f, \phi_m \rangle = \int_{-\pi}^{\pi} f(x) \overline{\phi_m(x)} dx = \int_{-\pi}^{\pi} \sqrt{2\pi} \sum_{k=-n}^{n} c_k \phi_k(x) \overline{\phi_m(x)} dx$$

Da Integral und Summe beide linear sind, darf man die Summe mit dem Integral vertauschen. Zudem hängt c_k nicht von x ab, wodurch der Faktor c_k für das Integral eine

Konstante ist. Nach einer Abwandlung des Distributivgesetzes darf er somit herausgezogen werden. Man erhält also diesen Ausdruck:

$$\int_{-\pi}^{\pi} f(x)\overline{\phi_m(x)}dx = \sqrt{2\pi} \sum_{k=-n}^{n} c_k \int_{-\pi}^{\pi} \phi_k(x)\overline{\phi_m(x)}dx$$

Aufgrund dessen, dass die Menge der Funktionen ϕ_m ein Orthonormalsystem ist, ist jeder Summand, außer k=m,0. Durch die Normiertheit des Orthonormalsystems bleibt übrig:

$$c_m = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) \overline{\phi_m(x)} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{imx} dx$$

Jetzt ist es möglich mit dieser Formel und dem komplexen trigonometrischem Polynom eine 2π periodische Funktion zu approximieren. Jedoch wäre es hilfreich, wenn dies für alle Perioden möglich wäre. Um auch Funktionen mit einer Periodizität von 2L annähern zu können, muss man den Faktor c_k und das komplexe trigonometrische Polynom auf einer Periodizität von 2L ausweiten. Damit das trigonometrische Polynom 2L periodisch wird muss folgendes gelten:

$$e^{i\omega x} = e^{i\omega(x+2L)}$$

 ω gilt es dabei herauszufinden, damit das trigonometrische Polynom 2L periodisch wird:

$$e^{i\omega x} = e^{i\omega(x+2L)} \Leftrightarrow e^{i\omega 2L} = 1 \Leftrightarrow \omega 2L = 2\pi k \Leftrightarrow \omega_k = \frac{k\pi}{L}$$

Das neue trigonometrische Polynom sieht also so aus:

$$\sum_{k=-n}^{n} c_k e^{i\omega_k x} \Leftrightarrow \sum_{k=-n}^{n} c_k e^{i\frac{k\pi}{L}x}$$

Um c_k zu berechen, nimmt man sich eine 2L periodische Funktion f und definiert sich eine 2π periodische Hilfsfunktion g in Abhängigkeit von f wie folgt:

$$g(t) := f\left(\frac{L}{\pi}t\right)$$

Da g eine 2π periodische Funktion ist, kann man mit der hergeleiteten Formel c_k von g berechnen. Um die Formel für 2L periodische Funktionen zu erhalten, ist das Ziel die Formel über g auf f auszuweiten. Das funktioniert über die Substitutionsregel bei Integralen. Um sie anzuwenden, führen wir die Ableitung der inneren Funktion von f, also $\frac{L}{\pi}$ in Form einer 1 ein und erhalten die Formel für c_k , für die Periodizität 2L:

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(t)e^{-ikt}dt \Leftrightarrow c_k = \frac{1}{2\pi} * \frac{\pi}{L} \int_{-\pi}^{\pi} \frac{L}{\pi} f\left(\frac{L}{\pi}t\right)e^{-i\omega_k t}dt$$

Wendet man jetzt die Substitutionsregel an, erhält man:

$$c_k = \frac{1}{2L} \int_{-L}^{L} f(x)e^{-i\omega_k x} dx = \frac{1}{2L} \int_{-L}^{L} f(x)e^{-i\frac{k\pi}{L}x} dx$$

3.4 Von der Fourierreihe zur Fouriertranformation

Die Fourierreihe erlaubt es uns, periodische Signale als Summe von Sinus- und Kosinusfunktionen oder komplexen Exponentialfunktionen darzustellen. Doch viele Signale in der Praxis sind nicht-periodisch. Um auch diese Signale in ihre Frequenzanteile zerlegen zu können, verallgemeinern wir das Konzept der Fourierreihe zur Fouriertransformation. Mit der Fouriertransformation werden wir so eine Funktion erhalten, welche uns sagen wird wie groß der Anteil einer Frequenz oder Periodenlänge in einem Signal ist. Dazu nehmen wir die Fourierreihe einer Funktion f mit der Periode 2L und der Frequenz ω_k :

$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{i\omega_k x}, \quad c_k = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-i\omega_k x} dx$$

Dazu definieren wir eine Hilfsfunktion $F(\xi)$:

$$F: \mathbb{K} \to \mathbb{C}, \quad F(\xi) = \int_{-L}^{L} f(x)e^{-i\xi x} dx$$

damit gilt

$$c_k = \frac{1}{2L}F(\omega_k)$$

Setzt man den neu gewonnen Ausdruck für c_k in die Fourierreihe ein, so erhält man

$$f(x) = \sum_{n = -\infty}^{\infty} F(\omega)e^{i\omega x}$$

Anschließend bildet man $\Delta\omega$ aus ω_k :

$$\omega_k = k \frac{\pi}{L} \Rightarrow \Delta \omega = \frac{\pi}{L} \Rightarrow \frac{1}{2L} = \frac{\Delta \omega}{2\pi}$$

Und setzt die Gleichung auch in die Fourierreihe ein:

$$\frac{1}{2\pi} \sum_{k=-\infty}^{\infty} F(\omega_k) e^{i\omega_k x} \Delta \omega$$

Dies ist eine Riemann Summe. Lässt man nun $L \to \infty$ laufen, erhält man ein Integral, welches die inverse Fouriertransformation ist:

$$\lim_{L \to \infty} \frac{1}{2\pi} \sum_{n = -\infty}^{\infty} F(\omega_k) e^{i\omega_k x} \Delta \omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega x} d\omega$$

Die Funktion $F(\omega)$ selbst ist die Fouriertransformation von f:

$$F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x}dx$$

Man kann das Integral in der Fouriertransformation am besten verstehen, wenn man es als eine Art Durchschnitt betrachtet. Ähnlich wie beim Berechnen eines Mittelwerts summiert das Integral nicht nur eine endliche Anzahl von Werten auf, sondern unendlich viele, unendlich kleine Beiträge von f(x). Im Integral steht dabei das Produkt $f(x) \cdot e^{-i\omega x}$. Dieses Produkt misst, wie stark die Frequenz ω in f(x) enthalten ist:

- Ist der Anteil der Frequenz ω in f(x) hoch, dann verstärkt $e^{i\omega_k x}$ den Wert der Funktion f(x) im Integral konstruktiv und $F(\omega)$ wird groß.
- Enthält f(x) diese Frequenz nicht, heben sich die positiven und negativen Anteile im Integral weitgehend auf und $F(\omega)$ wird klein.

So zeigt die Fouriertransformation, wie groß der Anteil jeder einzelnen Frequenz ω in der Funktion f ist.

3.5 Die Foureirtransformation in der Praxis: Die DFT

In der Praxis arbeitet man selten mit kontinuierlichen Funktionen, sondern mit diskreten Messwerten, zum Beispiel bei Audiosignalen oder digitalen Bildern. Um diese Signale in ihre Frequenzanteile zu zerlegen, verwendet man die diskrete Fouriertransformation (DFT). Formell lässt sich die DFT für eine endliche Folge von N Messwerten

$$x_0, x_1, ..., x_{N-1}$$

durch die folgende Formel darstellen:

$$X_k = \sum_{j=0}^{N-1} x_n e^{-i2\pi \frac{kj}{N}} \quad \text{mit } k \in [0, N-1]$$

Anzumerken ist aber noch, dass es eine Besonderheit gibt. Wenn das Eingangssignal reell ist, liefert die DFT zwar N Koeffizienten, jedoch sind die Frequenzen oberhalb von N/2 wegen des Nyquist-Theorems lediglich Spiegelungen der tieferen Frequenzen und enthalten keine neuen Informationen. Warum das so ist, werde ich hier nicht näher eingehen. Wie man die Formel für die DFT herleitet, erkläre ich im nächsten Kapitel.

3.6 Die Foureirtransformation in der Praxis: Die FFT

Obwohl die DFT so in der Praxis anwendbar ist, ist sie heutzutage in fast keinem Programm oder Algorithmus zu finden. Denn will man eine Funktion oder Signal mit N Werten komplett transformieren, dann muss man für N verschiedene Frequenzen den Wert über die obere Formel berechnen. Also sind es insgesamt N^2 Berechnungen, die man durchführen muss. In der Informatik spricht man für den Abschnitt der DFT in einem Programm von einer Laufzeit von: $O(N^2)$

Im Jahre 1965 aber, entdeckte James W. Cooley und John W. Tukey eine neue Art die DFT zu berechnen, was die Laufzeit auf $O(N \log N)$ verringerte. Somit konnte man die DFT erheblich schneller berechnen. Daher kommt auch der Name FFT für den neuen Algorithmus, was für Fast Fourier Transform, also schnelle Fouriertransformation, steht. Um die Umformung gut zu sehen, kann man die diskrete Fouriertransformation etwas umschreiben. Dafür definiere ich die Folge $(\omega_n)_{n\in\mathbb{N}}$ wie folgt:

$$\omega_n := e^{-2\pi i/n}$$

Schreibt man jetzt die Werte der Ausgangsfunktion f als Vektor, kann man aufgrund der Struktur der Matrixmultiplikation, diesen Vektor mit einer besonderen Matrix multiplizieren und erhält das Ergebnis der Transformation auch in Form eines Vektors derselben Länge, mit den Werten \hat{f} .

$$\begin{bmatrix} \hat{f}_0 \\ \hat{f}_1 \\ \hat{f}_2 \\ \vdots \\ \hat{f}_n \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_n & \omega_n^2 & \cdots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \cdots & \omega_n^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \cdots & \omega_n^{(n-1)^2} \end{bmatrix} \cdot \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix} \left(= \begin{bmatrix} \omega_n^{0 \cdot 0} & \omega_n^{0 \cdot 1} & \cdots & \omega_n^{0 \cdot (n-1)} \\ \omega_n^{1 \cdot 0} & \omega_n^{1 \cdot 1} & \cdots & \omega_n^{1 \cdot (n-1)} \\ \omega_n^{2 \cdot 0} & \omega_n^{2 \cdot 1} & \cdots & \omega_n^{2 \cdot (n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ \omega_n^{(n-1) \cdot 0} & \omega_n^{(n-1) \cdot 1} & \cdots & \omega_n^{(n-1)^2} \end{bmatrix} \cdot \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix} \right)$$

Jeder Eintrag im Ergebnisvektor entsteht, indem man die Zahlen in der Zeile der Matrix mit den Zahlen im Vektor multipliziert und die Produkte zusammenzählt. Deshalb

muss jeder Eintrag der Matrix aus ω_n noch mit k, der die Frequenz bestimmt, und der Zählvariable j, die über die Zeilen läuft, als Exponent potenziert werden.

Was Cooley und Tukey herausgefunden haben ist, dass man diesen Ausdruck wie so umschreiben kann:

$$\hat{f} = F_N \cdot f = \begin{bmatrix} I_{N/2} & D_{N/2} \\ I_{N/2} & -D_{N/2} \end{bmatrix} \cdot \begin{bmatrix} F_{N/2} & 0 \\ 0 & F_{N/2} \end{bmatrix} \cdot \begin{bmatrix} f_{gerade} \\ f_{ungerade} \end{bmatrix}$$

F ist die DFT-Matrix, mit der der ursprüngliche Wertevektor f multipliziert wurde. I_N ist die Einheitsmatrix: Alle Einträge außerhalb der Diagonale sind 0, auf der Diagonale stehen 1, von links oben nach rechts unten. D_N ist ebenfalls eine Diagonalmatrix wie I_N , jedoch bestehen die Diagonaleinträge aus ω_N^k , wobei k von 0 bis N-1 läuft. Der Index der Matrizen gibt jeweils die Anzahl der Zeilen und Spalten an. f wurde den Indizes nach aufgeteilt.

Wichtig ist, diese Formel funktioniert nur, wenn die Anzahl der Werte der Ausgangsfunktion eine Zweierpotenz ist. Zumal das genau der Grund ist, warum die Umstellung es überhaupt schafft die Laufzeit so drastisch zu reduzieren. Das was diese Formel ausmacht sind eigentlich nur die letzen beiden Faktoren des Produkts. Denn multipliziert man diese Faktoren miteinander, dann fällt auf, dass man diesen Ausdruck erhält:

$$\begin{bmatrix} F_{N/2} \cdot f_{gerade} & 0 \\ 0 & F_{N/2} \cdot f_{ungerade} \end{bmatrix}$$

Auffällig ist jetzt, dass man zwei mal das Anfangsproblem, in halber Größe erhält. Man könnte zunächst denken, dies mache keinen Unterschied, aber dadurch dass die Berechnung der komplette Matrix, einen Aufwand von $O(N^2)$ erfordert, reduziert man mit jeder Anwendung der Formel die Laufzeit für die Berechnung von $F_{N/2} \cdot f$ auf $O((N/2)^2)$. Wendet man diese Formel rekursiv, also immer wieder auf sich selbst, an, bis man Matrizen mit einer Größe von 1 oder 2 erhält, so schafft man es, durch ein zeitsparendes zusammenfügen, die Laufzeit der Berechnung auf $O(N \log N)$ zu kürzen. Die Struktur einer FFT mit 8 Werten, kann man auch so darstellen:

In meinem Programm, zu welchem ich im nächsten Kapitel komme, mit welchem ich eine Audiospur aufnehme und verarbeite, nutze ich eine auf meinem Gerät eine Samplerate von 44800. Bedeutet ich nehme pro Sekunde 44800 Datenpunkte auf. Wenn man nun

die Laufzeit einer DFT und einer FFT grob skizziert, sieht man, dass bei der Verarbeitung eines Signals, mit nur einer Sekunde, bei meinem Programm die DFT mehr als doppelt so lang dauert, wie die FFT.

4 Von der Theorie zu Praxis: Eigenentwicklung eines Audioanalyzers mit C++

Nachdem im vorherigen Kapitel die mathematischen Grundlagen der Fouriertransformation und ihrer diskreten Varianten vorgestellt wurden, möchte ich nun zeigen, wie ich diese Konzepte praktisch umgesetzt habe. Angefangen hat alles mit der Idee einen eigenen Audioanalyzer zu programmieren. Dieser soll live ein Audiosignal aufnehmen, dieses Visualisieren und anschließend die Frequenzanteile, die in dem Signal enthalten sind, anzeigen. Somit könnte ich mithilfe meines eigenen Programms Musik genauer unter die Lupe nehmen, die Funktion der Fouriertransformation so manipulieren, dass Rauschen unterdrückt wird. Töne von Tieren oder Instrumenten erkennen oder auch Raumresonanzen sichtbar machen. Als ich mit dem Programmieren begann und alles zur Liveaufnahme eines Audiosignals implementiert hatte, stieß ich auf eine erste Schwierigkeit. Mein Problem war der Ubergang von der Theorie der Fouriertransformation zur Praxis. Denn ich hatte ein Signal in Form einer Liste von Zahlen, wodurch die normale Formel für die Fouriertransformation durch das Integral nicht anwendbar war. Da ich zum damaligen Zeitpunkt die diskrete Fouriertransformation nicht kannte, versuchte ich eigenständig eine Approximation der Formel für endliche Werte zu finden. Im folgenden Abschnitt zeige ich also, wie ich eigenständig die DFT mit einer minimalen Abweichung hergeleitet habe.

4.1 Eigenständige Herleitung der DFT

Da ich, wie zuvor erwähnt, die DFT noch nicht kannte, versuchte ich zunächst aus den Punkten, also die Daten der Audioaufnahme, eine Funktion zu erstellen, auf welche die Formel anwendbar ist. Ein Hauptkriterium, um die Formel zu realisieren ist, dass die Funktion integrierbar ist. Natürlich kann man ausgehend von den Punkten viele Rechtecke

nutzen und diese als Approximation für die Fläche des Integrals zu benutzen. Das sähe so aus:

Im Prinzip ist dies nichts anders als die Treppenfunktion einer Funktion, wobei man im nicht die Ober- oder Untersumme der Funktion nimmt, also sup $\{f(x)|x\in I_n\}$ oder inf $\{f(x)|x\in I_n\}$ als obere Grenze der Rechtecke Intervall $I_n=[f(n),f(n+1))$ wählt, sondern eine Art Mischung aus beidem.

Wenn man eine große Menge an Datenpunkten hat und diese sehr nah aneinander liegen, dann ist diese Methode eine gute Approximation des tatsächlichen Integrals. Trotzdem habe ich mich dazu entschieden, die Punkte durch eine jeweilige stetige Fortsetzung zu verbinden und dann das Integral davon zu bilden, um die Approximation noch etwas genauer zu gestalten. Meine stetige Fortsetzng besteht aus geraden Linien, welche die Puntkte zu einer stetigen Funktion am Ende verbinden. Bei wenigen Punkten wie in meinem Beispiel ist der Unterschied zwischen den zwei Approximationen gut zu erkennen.

Die Funktionenfolge, die ich dabei als Fortsetzung für die jeweiligen Punkte genutzt habe

ist folgende:

$$(g_n(x))_{n\in\mathbb{N}_0} = \frac{f(n+1) - f(n)}{n+1-n} \cdot x + \frac{nf(n+1) - (n+1)f(n)}{n+1-n} \quad \text{mit } x \in \mathbb{R}$$

Die Nenner der beiden Brüche fallen weg, doch ich habe sie hier da gelassen, damit man sieht, dass die Steigung beispielsweise der Differenzenquotient zweier Punkte ist.

Um auch sicherzustellen, dass meine resultierende Funktion wirklich stetig ist, habe ich es bewiesen. Da man es bei einem Punkt jeweils von zwei Seiten zeigen muss, dass die Funktion dort stetig ist, habe ich die Stetigkeit auf zwei Arten bewiesen. Einmal über das Epsilon-Delta-Kriterium und einmal über die Folgenstetigkeit. Die Beweise findet man beide im Anhang (LÜCKE). Da ich die Funktion a(x) bestehend aus den Daten und der Funktionen folge g_n aber noch mit dem Faktor $e^{-i\omega x}$ multiplizieren muss, habe ich dazu noch bewiesen, dass dieser Ausdruck stetig ist. Dazu musste ich nur beweisen, dass das Produkt aus zwei stetigen Funktionen auch stetig ist. Denn es gibt einen Satz aus der komplexen Analysis, welcher besagt, dass eine Komplexe Funktion genau dann stetig ist, wenn ihre Real- und Imaginärteile stetig sind. Und da der Sinus und Kosinus stetige Funktionen sind, ist lediglich zu zeigen, dass das Produkt zweier stetiger Funktionen stetig ist (Anhang LÜCKE). Bedeutet man könnte theoretisch mit einem Stift die Funktion nachzeichnen, ohne diesen abzusetzen.

Anschließend müsste man noch beweisen, dass man die Funktion $a(x) \cdot e^{-i\omega x}$ auf die gleiche Weise fortsetzen kann wie a(x), un so die Funktion z(x) zu erhalten. Das habe ich hier, aber nicht gemacht, da der Beweis sehr ähnlich zum Stetigkeitsbeweis zuvor ist. Anschließend bleibt noch die tatsächliche Fläche, also das Integral, der neu gebildeten Funktion z(x) zu berechnen. Dazu habe ich zunächst gezeigt, dass die Funktion z(x), eine Zusammensetzung aus a(x) und $e^{-i\omega x}$, eine Regelfunktion ist und so auch integrierbar ist (Anhang, Eigene Beweise, Theorem 9.5). Die Berechnung des Integrals von z(x) bin ich wiefolgt angegangen:

$$\begin{split} &\int_{-\infty}^{\infty} f(x)e^{-i\omega x}dx \approx \int_{-\infty}^{\infty} z(x)dx \\ &\text{Einschränkung der Integralgrenzen auf den Definitionsbereich von } z(x) \text{:} \\ &= \int_{-N}^{N} z(x)dx = \int_{0}^{N} z(x)dx \\ &= \sum_{k=0}^{N-1} \frac{1}{2}(x_{j+1} - x_{j})(z(j) + z(j+1)) \qquad y := (x_{j+1} - x_{j}) \\ &= \frac{1}{2}y\sum_{j=0}^{N-1} z(j) + z(j+1) \qquad \text{in unserem Fall ist } y \text{, unabhängig von } j \text{, gleich 1} \\ &= \frac{1}{2}\sum_{j=0}^{N-1} z(j) + z(j+1) \\ &= \frac{1}{2} \cdot \left(z(0) + z(N) + \sum_{j=1}^{N-1} 2 \cdot z(j)\right) \\ &= \frac{1}{2} \cdot (z(0) + z(N)) + \sum_{j=1}^{N-1} z(j) \end{split}$$

$$= \frac{1}{2} \cdot \left(f(0) \cdot e^{-i\omega 0} + f(N) \cdot e^{-i\omega N} \right) + \sum_{j=1}^{N-1} f(j) \cdot e^{-i\omega j}$$

Um das ω noch aufzulösen, fande ich den Weg über die physikalischen Formeln hilfreich, um eine modelhafte Vorstellung der Mathematik zu haben, und so die Brücke zu den Frequenzen zu finden. In der Mathematik bestimmt man die Periodenlänge über $p=\frac{2\pi}{b}$, mit b als die gewünschte Länge der Streckung. In der Physik berechnet man die Winkelgeschwindigkeit so: $\omega=\frac{2\pi}{T}$, mit T als Zeit für eine Periode einer Schwingung. Wie man sieht sind beide Formeln sehr ähnlich, da die physikalische auch von der Mathematik abhängt. Deshalb habe ich vereinfacht mit der physikalischen Formel für ein einfacheres Verständnis gearbeitet. Und in der Physik gilt auch, dass $\omega=2\pi f$ ist, da $T=\frac{1}{f}$ gilt. Diese Formel habe ich nun für ω eingesetzt, um näher an die Frequenz zu kommen:

$$= \frac{1}{2} \cdot \left(f(0) \cdot e^{-i2\pi f 0} + f(N) \cdot e^{-i2\pi f N} \right) + \sum_{j=1}^{N-1} f(j) \cdot e^{-i2\pi f j}$$

Um jetzt die Frequenz f aufzulösen, habe ich mein Modell weiter verwendet. In der Physik gilt: $f = \frac{n}{t}$ mit n als Anzahl der Perioden und t als die vergangene Zeit. Jetzt wieder die Umwandlung zurück in den mathematischen Kontext. Die Zeit ist in der Mathematik die Länge gewesen, also gilt t = N und die Anzahl der Perioden bestimmt in diesem Fall nicht n, sondern die Variable k, welche schlussendlich die Frequenz bestimmt. Daraus folgt:

$$\begin{split} &\frac{1}{2} \cdot \left(f(0) \cdot e^{-i2\pi f 0} + f(N) \cdot e^{-i2\pi f N} \right) + \sum_{j=1}^{N-1} f(j) \cdot e^{-i2\pi f j} \\ &= \frac{1}{2} \cdot \left(f(0) \cdot e^{-i2\pi \frac{k}{N} \cdot 0} + f(N) \cdot e^{-i2\pi \frac{k}{N} N} \right) + \sum_{j=1}^{N-1} f(j) \cdot e^{-i2\pi \frac{k}{N} j} \end{split}$$

Somit ist die Formel

$$F(k) = \frac{1}{2} \cdot \left(f(0) + f(N) \cdot e^{-i2\pi \frac{k}{N}N} \right) + \sum_{j=1}^{N-1} f(j) \cdot e^{-i2\pi \frac{k}{N}j} \quad \text{mit } k \in \mathbb{N}_0 \cap [0, N-1]$$

mein Ergebnis für die DFT gewesen. Mein Ergebnis lässt sich auch wie folgt umstellen:

$$F(k) = \frac{1}{2} \left(f(N) \cdot e^{-i2\pi h} + f(0) \right) - f(0) + \sum_{j=0}^{N-1} f(j) \cdot e^{-i2\pi \frac{k}{N}j}$$
$$= \frac{1}{2} \cdot \left(f(N) \cdot e^{-i2\pi k} - f(0) \right) + \sum_{j=0}^{N-1} f(j) \cdot e^{-i2\pi \frac{k}{N}j}$$

Somit ist die tatsächliche Formel der DFT enthalten und der Unterschied zwischen meiner Formel und der tatsächlichen DFT ist lediglich der Summand $\frac{1}{2} \cdot \left(f(N) \cdot e^{-i2\pi k} - f(0) \right)$. Der Unterschied kommt daher, dass die tatsächliche DFT die Berechnung über die gleiche Approximation, wie in der ersten Graphik des Abschnitts, führt.

- 4.2 Berechnung der Koeffizienten
- 4.3 Eigenschaften und Konvergenz
- 5 Von der Reihe zur Fourier-Transformation
- 5.1 Übergang zum Integral
- 5.2 Fourier-Transformation und inverse Transformation
- 5.3 Eigenschaften

Linearität, Verschiebung, Faltung.

- 6 Diskrete Fourier-Transformation (DFT)
- 6.1 Definition und Motivation
- 6.2 Herleitung aus der Fourier-Transformation

Eigene Herleitung

- 6.3 Beweise für die Korrektheit
- 6.4 FFT als effiziente Berechnung
- 7 Eigene Beiträge
- 7.1 Eigene Herleitung der DFT
- 7.2 Beweise
- 7.3 Eigener FFT-Algorithmus in Python
- 7.4 Audio-Programm zur Echtzeit-Visualisierung
- 7.5 Bildverarbeitung: Moiré-Muster entfernen mit 2D-FFT
- 8 Anwendungen
- 8.1 Audio

Echtzeitaufnahme und Visualisierung, Tonhöhenerkennung oder Noise Cancelling, Ergebnisse.

8.2 Bild

Röntgenbild und Moiré-Filterung, Ergebnisse.

Abbildung 1: Vergleich der FFT-Methoden anhand der Benchmarks.

Abbildung 2: Vergleich der FFT-Methoden für die zweite Messreihe.

9 Anhang

9.1 Eigene Beweise

Theorem 9.1. Die Menge $\{\phi_n(x)\}_{n\in\mathbb{Z}}$ mit $\phi_n: [-\pi, \pi] \to \mathbb{C}$, $\phi_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$ bildet ein Orthonormalsystem.

Beweis. Ich zeige die Orthonormalität in zwei Schritten:

Abbildung 3: Vergleich der FFT-Methoden für die zweite Messreihe.

1. Orthogonalität: Für $m \neq n$ gilt

$$\langle \phi_n, \phi_m \rangle = \int_{-\pi}^{\pi} \phi_n(x) \overline{\phi_m(x)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)x} dx$$

Jetzt definiere ich l := n - m

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)x} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(lx) + i\sin(lx) dx$$

$$= \frac{1}{2\pi l} \left(\int_{-\pi}^{\pi} \cos(lx) dx + i \int_{-\pi}^{\pi} \sin(lx) dx \right) = \frac{1}{2\pi l} \left(\sin(lx) \Big|_{-l\pi}^{l\pi} - i \cos(lx) \Big|_{-l\pi}^{l\pi} \right)$$

$$= \frac{1}{2\pi l} \cdot \left(\sin(l^2\pi) - \sin(-l^2\pi) - i \left(\cos(l^2\pi) - \cos(-l^2\pi) \right) \right)$$

Da $l \in \mathbb{Z}$ ist $l^2 \in \mathbb{Z}$. Ein ganzzahliges Vielfaches von π eingesetzt im Sinus ist zudem immer 0. Denn der Sinus ist eine 2π periodische Funktion, und da sowohl $\sin(0) = 0$, als auch $\sin(\pi) = 0$ ist, ist jedes ganzzahliges Vielfaches von π eingesetzt im Sinus 0. Hinzu kommt, dass der Kosinus Achsensymmetrisch bezüglich der Y-Achse ist, also gilt: $\cos(x) = \cos(-x)$. Daraus folgt:

$$= \frac{1}{2\pi l} \cdot (0 - 0 - i \cdot (\cos(l\pi) - \cos(l\pi))) = \frac{1}{2\pi l} \cdot 0 = 0$$

2. Normiertheit: Für m = n gilt

$$\langle \phi_n, \phi_m \rangle = \int_{-\pi}^{\pi} \phi_n(x) \overline{\phi_n(x)} \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-n)x} \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\cdot 0} \, dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} 1 \, dx = \frac{1}{2\pi} \cdot x \Big|_{-\pi}^{\pi} = \frac{1}{2\pi} \cdot (\pi - (-\pi)) = 1$$

Damit ist gezeigt, dass $\{\phi_n(x)\}_{n\in\mathbb{Z}}$ ein Orthonormalsystem bildet.

Theorem 9.2. Sei eine Funktion $a : \mathbb{R} \to \mathbb{R}$ definiert als

$$a(x) = \begin{cases} f(x) & \text{für } x \in \mathbb{Z} \\ f(\lceil x \rceil) - f(\lfloor x \rfloor) \cdot (x - \lfloor x \rfloor) + f(\lfloor x \rfloor) & \text{für } x \notin \mathbb{Z} \end{cases}$$

dann ist gilt \forall Folgen $x_n < n$ mit $\lim_{n \to \infty} x_n = n$ mit $n \in \mathbb{Z}$, dann gilt $f(x_n) \xrightarrow[n \to \infty]{} f(n)$

Beweis.

$$a(x_n) = \left(f(\lceil x_n \rceil) - f(\lfloor x_n \rfloor) \right) \cdot (x_n - \lfloor x_n \rfloor) + f(\lfloor x_n \rfloor)$$

$$= \left(f(\lfloor x_n \rfloor) - f(\lfloor x_n \rfloor) \right) \cdot (x_n - n) + f(\lfloor x_n \rfloor)$$

$$\stackrel{n \to \infty}{=} \left(f(\lceil n \rceil) - f(\lfloor n \rfloor) \right) \cdot (n - n) + f(\lfloor n \rfloor)$$

$$= f(n) = a(n)$$

Damit ist die Funktion auf den Intervallen $I_n = (n; n+1]$ stetig.

Theorem 9.3. Sei $x \in \mathbb{R}$. Sei $\varepsilon > 0$. Wählen wir

$$\delta = \frac{\varepsilon}{|f(n+1) - f(n)|} - 2,$$

dann gilt für alle $x \in \mathbb{R}$ mit $x - n \leq \delta$ und mit $n \in \mathbb{Z}$:

Beweis.

$$|a(x) - a(n)| = |(f(n+1) - f(n)) \cdot (x - n + 1) + f(n+1) - f(n)|$$

$$= |(f(n+1) - f(n)) - (n+1) \cdot (f(n+1) - f(n)) + f(n+1) - f(n)|$$

$$= |2f(n+1) - 2f(n) - (x - n) \cdot (f(n+1) - f(n))|$$

$$= |2 \cdot (f(n+1) - f(n)) - (x - n) \cdot (f(n+1) - f(n))|$$

$$< |2 \cdot (f(n+1) - f(n)) - (x - n) \cdot (f(n+1) - f(n))|$$

$$= |(f(n+1) - f(n)) \cdot (2 - (x - n))|$$

$$= |f(n+1) - f(n)| \cdot |2 + (-(x - n))|$$

$$\leq \int_{Ugl.} |f(n+1) - f(n)| \cdot (|2| + |-(x - n)|)$$

$$= |f(n+1) - f(n)| \cdot (2 + |x - n|)$$

$$< |f(n+1) - f(n)| \cdot (2 + \delta)$$

$$< \varepsilon.$$

Damit ist die Funktion auf den Intervallen $I_n = [n; n+1)$ stetig. Da Folgenstetigkeit und Stetigkeit auf metrischen Räumen äquivalent sind, (QUELLE) folgt, dass die Funktion a(x) in \mathbb{R} stetig ist.

Theorem 9.4. Sei $f: A \to \mathbb{R}$ mit $A \subseteq \mathbb{R}$ und $g: A \to \mathbb{R}$ mit $A \subseteq \mathbb{R}$ eine stetige Funktion. Dann ist $f \cdot g$ auch stetig.

Beweis.

$$\forall y \in A \ \forall \varepsilon_0 > 0 \ \exists \delta > 0 \ \text{dann gilt für } |x - y| < \delta_1 : |f(x) - f(y)| < \varepsilon_1$$

$$\forall y \in A \ \forall \varepsilon_0 > 0 \ \exists \delta > 0 \ \text{dann gilt für } |x-y| < \delta_2 : |g(x) - g(y)| < \varepsilon_2$$

$$\begin{split} |(f \cdot g)(x) - (f \cdot g)(y)| &= |f(x)g(x) - f(y)g(y)| \\ &= |f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)| \\ &= |f(x) \cdot (g(x) - g(y)) + (f(x) - f(y)) \cdot g(y)| \\ &\leq |f(x) \cdot (g(x) - g(y))| + |g(y) \cdot (f(x) - f(y))| \end{split}$$

für inf $\{\delta_1, \delta_2\}$ klein genug

$$<|f(x)| \cdot \varepsilon + |g(y)| \cdot \varepsilon$$

= $\varepsilon \cdot (|f(x)| + |g(y)|)$.

 $= \varepsilon \cdot (|J(x)| + |g(y)|)$

Wähle $\inf\{\delta_1, \delta_2\}$ klein genug, sodass

$$|\varepsilon| = \frac{\varepsilon_0}{F+G} \quad \text{, mit } F := \sup\{|f(x)| \mid x \in A\}, \text{ und } G := \sup\{|g(x)| \mid x \in A\}.$$

Dann gilt $|(f \cdot g)(x) - (f \cdot g)(y)| \le \varepsilon_0$. Somit ist für $|x - y| < \inf\{\delta_1, \delta_2\}$ $|(f \cdot g)(x) - (f \cdot g)(y)| < \varepsilon_0$. Somit ist das Produkt zweier stetiger Funktionen stetig.

Theorem 9.5. Die Funktion

$$z(x) = \begin{cases} f(x) \cdot e^{-i\omega x} & \text{für } x \in \mathbb{Z}, \\ e^{-i\omega \lceil x \rceil} \cdot \left(f(\lfloor x \rfloor) - e^{i\omega \lfloor x \rfloor} f(\lfloor x \rfloor)(x - \lfloor x \rfloor) \right) \cdot e^{-i\omega \lceil x \rceil} & \text{für } x \notin \mathbb{Z} \end{cases}$$

ist eine Regelfunktion

Beweis. Sei
$$(c_n(x))_{n\in\mathbb{N}} := \inf_{y\in\left[x,x+\frac{1}{n}\right)} \{z(y)\}$$
. Dann ist

$$I_n = \left[x, \ x + \frac{1}{n}\right)$$

eine Intervallschachtelung. Denn $I_{n+1} \subset I_n$, und sei $\varepsilon > 0$. Sei $n > \varepsilon$, dann ist

$$|I_n| = b_n - a_n = \left| x + \frac{1}{n} - x \right| = \left| \frac{1}{n} \right| < \varepsilon.$$

Dadurch, dass I_n eine Intervallschachtelung ist, gilt:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x.$$

Also ist

$$\sup_{x \in \mathbb{R}} \left| \inf_{y \in I_n} z(y) - z(x) \right| \xrightarrow[n \to \infty]{} \sup_{x \in \mathbb{R}} \left| \inf \{ z(x) \} - z(x) \right| = \sup_{x \in \mathbb{R}} |z(x) - z(x)| = 0.$$

Somit ist die Funktionenfolge c_n gleichmäßig stetig mit z(x). Zudem wurden alle Funktionen der Funktionenfolge c_n so deklariert, dass sie Treppenfunktionen sind. Das bedeutet: es gibt eine Funktionenfolge an Treppenfunktionen, welche gleichmäßig stetig bezüglich z(x) ist, und somit ist z(x) eine Regelfunktion.

- 9.2 Bedeutung im größeren Kontext
- 10 Fazit und Ausblick
- 10.1 Zusammenfassung der Ergebnisse
- 10.2 Ausblick: Erweiterungen und Anwendungen