Dynamic Games of Complete Information

Subgame-Perfect Equilibrium

Repeated game

- A repeated game is a dynamic game of complete information in which a (simultaneous-move) game is played at least twice, and the previous plays are observed before the next play.
- We will find out the behavior of the players in a repeated game.

Two-stage repeated game

- Two-stage prisoners' dilemma
 - Two players play the following simultaneous move game twice
 - The outcome of the first play is observed before the second play begins
 - > The payoff for the entire game is simply the sum of the payoffs from the two stages. That is, the discount factor is 1.

		1 ldy01 Z					
		${f L_2}$	R_2				
Player 1	$\mathbf{L_1}$	1 , 1	5 , 0				
	R_1	0 , 5	4 , 4				

Player 2

Game tree of the two-stage prisoners' dilemma

Informal game tree of the two-stage prisoners' dilemma

Informal game tree of the two-stage prisoners' dilemma

two-stage prisoners' dilemma

The subgame-perfect Nash equilibrium (L₁ L₁L₁L₁L₁, L₂ L₂L₂L₂L₂)
 Player 1 plays L₁ at stage 1, and plays L₁ at stage 2 for any outcome of stage 1.
 Player 2 plays L₂ at stage 1, and plays L₂ at stage 2 for any outcome of stage 1.

		$\mathtt{L_2}$			R_2		
Player 1	$\mathbf{L_1}$	1	,	1	5	,	0
	R_1	0	,	5	4	,	4

Finitely repeated game

- A finitely repeated game is a dynamic game of complete information in which a (simultaneous-move) game is played a finite number of times, and the previous plays are observed before the next play.
- The finitely repeated game has a unique subgame perfect Nash equilibrium if the stage game (the simultaneous-move game) has a unique Nash equilibrium. The Nash equilibrium of the stage game is played in every stage.

What happens if the stage game has more than one Nash equilibrium?

- Two players play the following simultaneous move game twice
- The outcome of the first play is observed before the second play begins
- The payoff for the entire game is simply the sum of the payoffs from the two stages. That is, the discount factor is 1.
- Question: can we find a subgame perfect Nash equilibrium in which M₁, M₂ are played? Or, can the two players cooperate in a subgame perfect Nash equilibrium?

		Player 2					
		L_2		M_2	2	R_2	2
	L ₁	1 ,	1	5 ,	0	0 ,	0
Player 1	M_1	0 ,	5	4 ,	4	0 ,	0
	R_1	0 ,	0	0 ,	0	<u>3</u> ,	<u>3</u>

Two-stage repeated game

- Subgame perfect Nash equilibrium:
 - player 1 plays M₁ at stage 1, and at stage 2, plays R₁ if the first stage outcome is (M₁,M₂), or plays L₁ if the first stage outcome is not (M₁,M₂)
 - player 2 plays M₂ at stage 1, and at stage 2, plays R₂ if the first stage outcome is (M₁, M₂), or plays L₂ if the first stage outcome is not (M₁, M₂)

Player 2

		L_2		M_2		R_2	
	L ₁	<u>1</u> ,	<u>1</u>	5 ,	0	0 ,	0
Player 1	M_1	0 ,	5	4 ,	4	0 ,	0
	R_1	0 ,	0	0 ,	0	<u>3</u> ,	<u>3</u>

Two-stage repeated game

- Subgame perfect Nash equilibrium:
 - \rightarrow At stage 1, player 1 plays M_1 , and player 2 plays M_2 .
 - At stage 2,
 - player 1 plays R₁ if the first stage outcome is (M₁, M₂), or plays L₁ if the first stage outcome is not (M₁, M₂)
 - player 2 plays R₂ if the first stage outcome is (M₁, M₂), or plays L₂ if the first stage outcome is not (M₁, M₂)

The payoffs of the 2nd stage has been added to the first stage game.

L₁
Player 1 M₁
R₁

Caveat of Backward Induction and Subgame Perfection

- The chain-store paradox (Selton 1978): (Entry game repeated)
- A chain-store has branches in K cities. In each city k there is a single potential competitor, player k.
- In each period k, player k decides to compete or not with the chain-store, and then the chain-store can decide to fight or acquiesce.
- Assume that at all players know all the actions previously taken(perfect info.) and that the payoff the chain-store is the sum of its payoffs in the K cities.
- Intuitively, it's in the myopic interest of the chain-store to acquiesce,
- It may be in its long-term interest to build a reputation for aggressivebehavior, in order to deter future competition.)
- How long is the construction \reputation needed

Infinitely repeated game

- A infinitely repeated game is a dynamic game of complete information in which a (simultaneous-move) game called the stage game is played infinitely, and the outcomes of all previous plays are observed before the next play.
- Precisely, the simultaneous-move game is played at stage 1, 2, 3, ..., *t*-1, *t*, *t*+1, The outcomes of all previous *t*-1 stages are observed before the play at the *t*th stage.
- Each player discounts her payoff by a factor δ , where $0 < \delta < 1$.
- A player's payoff in the repeated game is the present value of the player's payoffs from the stage games.

Present value

Definition: Given a discount factor δ , the present value of an infinite sequence of payoffs π_1 , π_2 , π_3 , π_4 ,..... is

$$\pi_1 + \delta \pi_2 + \delta^2 \pi_3 + \delta^3 \pi_4 + \dots = \sum_{t=1}^{\infty} \delta^{t-1} \pi_t$$

Example 1: The present value of an infinite sequence of payoffs 1, 1, 1, $(\pi_t = 1, \text{ for all } t)$ is $\frac{1}{1-\delta}$.

Example 2: The present value of an infinite sequence of payoffs 4, 1, 4, 1, 4, 1(4 in every odd stage, 1 in every even stage) is $\frac{4}{1-\delta^2} + \frac{\delta}{1-\delta^2}.$

Infinitely repeated game: example

- The following simultaneous-move game is repeated infinitely
- The outcomes of all previous plays are observed before the next play begins
- Each player's payoff for the infinitely repeated game is present value of the payoffs received at all stages.
- Question: what is the subgame perfect Nash equilibrium?

			2	R	R_2		
Player 1	$\mathbf{L_1}$	<u>1</u> ,	<u>1</u>	5 ,	0		
	R_1	0 ,	5	4 ,	4		

Example: subgame

Every subgame of an infinitely repeated game is identical to the game as a whole.

Example: strategy

- A strategy for a player is a complete plan. It can depend on the history of the play.
- One strategy for player i: play L_i at every stage (or at each of her information sets)
- An other stategy called *trigger strategy* for player i: play R_i at stage 1, and at the t^{th} stage, if the outcome of each of all t-1 previous stages is (R_1, R_2) then play R_i ; otherwise, play L_i .

Example: subgame perfect Nash equilibrium

- Check whether there is a <u>subgame perfect Nash</u> equilibrium in which player i plays L_i at every stage (or at each of her information sets).
- This can be done by the following two steps.
- Step 1: check whether the combination of strategies is a Nash equilibrium of the infinitely repeated game.
 - If player 1 plays L_1 at every stage, the best response for player 2 is to play L_2 at every stage.
 - If player 2 plays L_2 at every stage, the best response for player 1 is to play L_1 at every stage.
 - Hence, it is a Nash equilibrium of the infinitely repeated game.

Example: subgame perfect Nash equilibrium cont'd

- Step 2: check whether the Nash equilibrium of the infinitely repeated game induces a Nash equilibrium in every subgame of the infinitely repeated game.
 - Recall that every subgame of the infinitely repeated game is identical to the infinitely repeated game as a whole
 - Obviously, it induces a Nash equilibrium in every subgame
- Hence, it is a subgame perfect Nash equilibrium.

Trigger strategy: step 1

- Suppose that player 1 plays the trigger strategy.
- Can player 2 be better-off if she deviates from the trigger strategy at stage *t*?
- If she continues to play the trigger strategy at stage t and after, then she will get a sequence of payoffs 4, 4, 4, ... (from stage t to stage t). Discounting these payoffs to stage t gives us

$$4 + 4\delta + 4\delta^2 + 4\delta^3 + \dots = \frac{4}{1 - \delta}$$

• If she deviates from the trigger strategy at stage t then she will trigger noncooperation. Player 1 will play L_1 after stage t forever. Player 2' best response is L_2 . So player 2 will get a sequence of payoffs 5, 1, 1, 1 ... (from stage t to stage t). Discounting these payoffs to stage t gives us

$$5 + 1\delta + 1\delta^2 + 1\delta^3 + \dots = 5 + \frac{\delta}{1 - \delta}$$

Trigger strategy: step 1 cont'd

Stage 1:
$$(R_1, R_2)$$

Stage t-1:
$$(R_1, R_2)$$

Stage t:
$$(R_1, L_2)$$

Stage t+1:
$$(L_1, L_2)$$

Stage t+2:
$$(L_1, L_2)$$

$$\frac{4}{1-\delta} \ge 5 + \frac{\delta}{1-\delta} \iff \delta \ge \frac{1}{4}$$

- Hence, if $\delta \ge \frac{1}{4}$, player 2 cannot be better off if she deviates from the trigger strategy.
- This implies that if player 1 plays the trigger strategy the player 2's best response is the trigger strategy for $\delta \ge \frac{1}{4}$.
- By symmetry, if player 2 plays the trigger strategy then player 1's best response is the trigger strategy.
- Hence, there is a Nash equilibrium in which both players play the trigger strategy if $\delta \ge \frac{1}{4}$.

Trigger strategy: step 2

```
Stage 1:
           (R_1, R_2)
Stage 2:
           (R_1, R_2)
Stage t-1: (\mathbf{R}_1, \mathbf{R}_2)
Stage t: (R_1, R_2)
Stage t+1: (R_1, R_2)
Stage t+2: (R_1, R_2)
```

- Step 2: check whether the Nash equilibrium induces a Nash equilibrium in every subgame of the infinitely repeated game.
 - Recall that every subgame of the infinitely repeated game is identical to the infinitely repeated game as a whole

Trigger strategy: step 2 cont'd

- We have two classes of subgames:
 - > subgame following a history in which the stage outcomes are all (R_1, R_2)
 - > subgame following a history in which at least one stage outcome is not (R_1, R_2)
- The Nash equilibrium of the infinitely repeated game induces a Nash equilibrium in which each player still plays trigger strategy for the first class of subgames
- The Nash equilibrium of the infinitely repeated game induces a Nash equilibrium in which (L_1, L_2) is played forever for the second class of subgames.

Discussion

- Multiple equilibrium [Friedman's Theorem]
- Social norm
 - Coordination on certain equilibrium