

Aplicación de Redes Neuronales LSTM en Series Temporales

Aplicación de Redes Neuronales LSTM en Series Temporales

Ahora que los pasos para construir una red neuronal LSTM para pronosticar series de tiempo están claros, vamos a aplicarlos en un problema un poco más grande.

```
from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np
import matplotlib.pyplot as plt
```

1. Generación de datos de serie de tiempo sintética:

Se generan datos de serie de tiempo sintética creciente con ruido aleatorio agregado.

```
# Generar datos para una serie de tiempo sintética
np.random.seed(0) # Fijar semilla para reproducibilidad
n_samples = 200 # Número de puntos de datos en la serie de tiempo
t = np.arange(n_samples) # Valores de tiempo
# Crear una serie de tiempo sintética (en este caso, creciente)
time_series = 0.1*t +np.random.randn(n_samples)
```

2. División de datos:

Los datos de serie de tiempo se dividen en conjuntos de entrenamiento y prueba, con un 80% de los datos destinados al entrenamiento y el 20% restante al prueba.

```
train_size = int(len(time_series) * 0.8) # Tamaño del conjunto de entrenamiento
train_data, test_data = time_series[:train_size], time_series[train_size:]
```


3. Visualización de la serie de tiempo:

Se grafica la serie de tiempo sintética para visualizar los datos.

```
# Graficar la serie de tiempo
plt.figure(figsize=(10, 6))
plt.plot(t, time_series, label='Serie de Tiempo')
plt.title('Ejemplo de Serie de Tiempo Sintética')
plt.xlabel('Tiempo')
plt.ylabel('Valor')
plt.legend()
plt.grid(True)
plt.show()
```


4. Preparación de datos para LSTM:

Se define una función llamada **create_dataset** que crea secuencias de datos de entrada y salida a partir de la serie de tiempo original, estas secuencias se utilizarán para entrenar el modelo LSTM.

```
# transformamos nuestros datos en secuencias
def create_dataset(data, seq_length):
    X, y = [], []
    for i in range(len(data) - seq_length):
        X.append(data[i:i + seq_length])
        y.append(data[i + seq_length])
    return np.array(X), np.array(y)

# Definimos el número de pasos de tiempo para la serie temporal
seq_length = 16

# Creamos conjuntos de entrenamiento y prueba en formato 3D
X_train, y_train = create_dataset(train_data, seq_length)
X_test, y_test = create_dataset(test_data, seq_length)
```

5. Construcción del modelo LSTM:

Se crea un modelo secuencial en Keras y se agregan capas LSTM con 32 unidades cada una, utilizando la función de activación ReLU. Se añade una capa densa para la salida.

6. Compilación del modelo:

El modelo se compila utilizando el optimizador Adam y la función de pérdida de error cuadrático medio (MSE).

```
model.compile(optimizer='adam', loss='mse')
```

7. Entrenamiento del modelo:

El modelo se entrena utilizando los datos de entrenamiento durante 100 épocas.

```
# Entrenamiento del modelo
model.fit(X_train, y_train, epochs=100)
```

8. Evaluación del modelo:

Se evalúa el desempeño del modelo utilizando los datos de prueba, calculando la pérdida obtenida por el modelo.

```
# Evaluación del modelo |
Evaluación = model.evaluate(X_test, y_test)
print(Evaluación)
```

9. Predicción:

Se realizan predicciones utilizando el modelo entrenado en los datos de prueba.

```
print("y_test: \n",y_test)
# Predicción
y_pred = model.predict(X_test)
print("y_pred: \n",y_pred)
```


10. Visualización de las predicciones:

Se grafican los datos de prueba (y_test) junto con las predicciones (y_pred) para comparar el rendimiento del modelo. Las dos series de tiempo se visualizan en el mismo gráfico para facilitar la comparación.

```
# Graficar de la data de test vs pronostico la serie de tiempo
plt.figure(figsize=(10, 6))
plt.plot(y_test, label='y_test')
plt.plot(y_pred, label='y_pred')
plt.title('Test')
plt.xlabel('Tiempo')
plt.ylabel('Valor')
plt.legend()
plt.grid(True)
plt.show()
```


Actividad para los estudiantes

Ejercicios y preguntas relacionadas con el ejercicio anterior proporcionado

1. Conceptos básicos de LSTM y series de tiempo:

- ¿Qué es una serie de tiempo y por qué es importante en el análisis de datos?
- Describa brevemente cómo funciona una red neuronal LSTM y cuál es su ventaja para modelar series de tiempo.

2. Preprocesamiento de datos:

- ¿Por qué es importante dividir los datos de serie de tiempo en conjuntos de entrenamiento y prueba?
- ¿Qué hace la función create_dataset en el código?

3. Construcción y entrenamiento del modelo:

- Explique la estructura del modelo LSTM creado en el código.
- ¿Qué significan el parámetros epochs en la función fit?

4. Evaluación del modelo:

- ¿Por qué es importante evaluar el modelo con datos de prueba después del entrenamiento?
- ¿Qué medida se utiliza para evaluar el rendimiento del modelo en este caso?

5. Predicción y visualización:

- ¿Qué representa la variable y_pred en el código?
- ¿Qué significan los gráficos resultantes de la predicción? ¿Qué conclusiones se pueden sacar de ellos?

6. Experimentación y ajuste del modelo:

- ¿Cómo podría mejorar el rendimiento del modelo LSTM en este caso?
- ¿Qué pasaría si aumentara el número de unidades LSTM o la cantidad de épocas de entrenamiento?

7. Aplicaciones prácticas:

- ¿Puede pensar en algunos escenarios del mundo real donde el pronóstico de series de tiempo con LSTM podría ser útil?
- ¿Cuáles son algunas industrias o campos que podrían beneficiarse especialmente de esta técnica?

8. Desafío adicional:

- Modifique los parámetros del modelo LSTM o la serie de tiempo de entrada y observe cómo cambian los resultados de la predicción.
- Intente implementar un modelo diferente para comparar su rendimiento con el LSTM. ¿Qué modelo obtiene mejores resultados y por qué?

