THE STABLE MATCHING ALGORITHM

- Two heterogenous populations (X and Y)
- Every $x \in X$ has a preference ordering over the elements of Y.
- Every $y \in Y$ has a preference ordering over the elements of X.
- Questions: Who should be matched with whom?

- Two heterogenous populations (X and Y)
- Every $x \in X$ has a preference ordering over the elements of Y.
- Every $y \in Y$ has a preference ordering over the elements of X.
- Questions: Who should be matched with whom?

- Examples:
- Marriage / Dating market (X women, Y men)

- Two heterogenous populations (X and Y)
- Every $x \in X$ has a preference ordering over the elements of Y.
- Every $y \in Y$ has a preference ordering over the elements of X.
- Questions: Who should be matched with whom?

- Examples:
- Marriage / Dating market (X women, Y men)
- ii. Labor contract (X CEOs, Y firms; ...)

- Two heterogenous populations (X and Y)
- Every $x \in X$ has a preference ordering over the elements of Y.
- Every $y \in Y$ has a preference ordering over the elements of X.
- Questions: Who should be matched with whom?

- Examples:
- i. Marriage / Dating market (X women, Y men)
- ii. Labor contract (X CEOs, Y firms; ...)
- iii. Credit (X firms, Y banks)
- iv. (X buyers, Y sellers, Z products), etc.

- Two heterogenous populations (X and Y)
- Every $x \in X$ has a preference ordering over the elements of Y.
- Every $y \in Y$ has a preference ordering over the elements of X.
- Questions: Who should be matched with whom?

Examples:

- i. Marriage / Dating market (X women, Y men)
- ii. Labor contract (X CEOs, Y firms; ...)
- iii. Credit (X firms, Y banks)
- iv. (X buyers, Y sellers, Z products), etc.

Extensions:

Many to many: s (x1, ..., xn, y1, ..., yk): Campus Placements.

The Matching Problem: Marriage

- This presentation: marriage market.
- Assume Monogamy: One to One Matching
- Assume n(X) = n(Y): equal sized population.
- How to "optimally" match?
- What do we mean by "optimal" ?
- Let's look at an example.

Example

Preferences:

Hrithik: Kangana, Suzanne

John: Kangana, Suzanne

Kangana: Hrithik, John

Suzanne: Hrithik, John

```
    Matching 1: {Hrithik – Suzanne , John – Kangana}
    Matching 2: {Hrithik – Kangana , John – Suzanne}
```

```
    Matching 1: {Hrithik – Suzanne , John – Kangana}
    Matching 2: {Hrithik – Kangana , John – Suzanne}
```

In Matching 1: Hrithik prefers Kangana over Suzanne. Kangana too prefers Hrithik over John. So both prefer each other over their mates.

So they'll cheat!

Matching 1: {Hrithik – Suzanne , John – Kangana}
 Matching 2: {Hrithik – Kangana , John – Suzanne}

- In Matching 1: Hrithik prefers Kangana over Suzanne. Kangana too prefers Hrithik over John. So both prefer each other over their mates. So they'll cheat!
- Rogue Couple: Given a matching M, two individuals X & Y form a rogue couple if they prefer each other over their mates.

- Matching 1: {Hrithik Suzanne , John Kangana}
 Matching 2: {Hrithik Kangana , John Suzanne}
- In Matching 1: Hrithik prefers Kangana over Suzanne. Kangana too prefers Hrithik over John. So both prefer each other over their mates.
 So they'll cheat!
- **Rogue Couple:** Given a matching M, two individuals X & Y form a rogue couple if they prefer each other over their mates.
- In Matching 1: Hrithik & Kangana form a "rogue couple"
- Matching 2 has no rogue couples.

Stable Matching

 Perfect Matching: A matching where all individuals are paired is called a perfect matching.

Stable Matching: A perfect matching is said to be stable if there are no "rogue couples"

■ In the example: Matching 2 is "stable".

Example

Preferences:

SRK: Aamir, Salman, John

Salman: SRK, Aamir, John

Aamir: Salman, SRK, John

John's preferences are inconsequential.

There does NOT exist a stable match.

There does NOT exist a stable match.

Proof by contradiction:

There does NOT exist a stable match.

Proof by contradiction:

Assume that there exists a stable match M.

⇒John will be matched with someone. (WLOG by symmetry let's say John matches with SRK)

There does NOT exist a stable match.

Proof by contradiction:

- ⇒John will be matched with someone. (WLOG by symmetry let's say John matches with SRK)
- ⇒ Salman is matched with Aamir.

There does NOT exist a stable match.

Proof by contradiction:

- ⇒John will be matched with someone. (WLOG by symmetry let's say John matches with SRK)
- ⇒ Salman is matched with Aamir.
- ⇒ Salman & SRK form a "rogue couple".

There does NOT exist a stable match.

Proof by contradiction:

- ⇒John will be matched with someone. (WLOG by symmetry let's say John matches with SRK)
- ⇒ Salman is matched with Aamir.
- ⇒ Salman & SRK form a "rogue couple".
- \Rightarrow M is NOT stable.

If we only allow opposite gender relationships

i.e the representative graph is bipartite (with the set of girls & the set of boys being the two partitions) then a stable match necessarily exists.

What Next?

Proof of Existence of a stable match.

• Algorithm to find the stable match.

First we'll propose the algorithm & then claim that it leads to a stable match.

Example:

■ Five Girls: A,B,C,D,**E**

• Five Boys: 1,2,3,4,5

Example:

- Five Girls: A,B,C,D,E
- Five Boys: 1,2,3,4,5
- Preference of Boys:

1: C, B, E, A, D

2: A, B, E, C, D

3: D, C, B, A, E

4: A, C, D, B, E

5: A, B, D, E, C

Preference of Girls:

A: 3, 5, 2, 1, 4

B: 5, 2, 1, 4, 3

C: 4, 3, 5, 1, 2

D: 1, 2, 3, 4, 5

E: 2, 3, 4, 1, 5

- Start with Boy 1 and allocate him the "best" possible girl (i.e highest in his list)
- Now allocate to Boy 2 the "best available" girl.

- Start with Boy 1 and allocate him the "best" possible girl (i.e highest in his list)
- Now allocate to Boy 2 the "best available" girl.

1: C, B, E, A, D A: 3, 5, 2, 1, 4 2: A, B, E, C, D B: 5, 2, 1, 4, 3 3: D, C, B, A, E C: 4, 3, 5, 1, 2 4: A, C, D, B, E D: 1, 2, 3, 4, 5 5: A, B, D, E, C E: 2, 3, 4, 1, 5

- Start with Boy 1 and allocate him the "best" possible girl (i.e highest in his list)
- Now allocate to Boy 2 the "best available" girl.

• • • • •

1 -> C

Preference List

- Start with Boy 1 and allocate him the "best" possible girl (i.e highest in his list)
- Now allocate to Boy 2 the "best available" girl.

• • • • •

1 -> C

2 -> A

Preference List

- Start with Boy 1 and allocate him the "best" possible girl (i.e highest in his list)
- Now allocate to Boy 2 the "best available" girl.

• • • • •

1 -> C

2 -> A

3 -> D

Preference List

- Start with Boy 1 and allocate him the "best" possible girl (i.e highest in his list)
- Now allocate to Boy 2 the "best available" girl.

• • • • •

1 -> C

2 -> A

3 -> D

4 -> B

Preference List

- Start with Boy 1 and allocate him the "best" possible girl (i.e highest in his list)
- Now allocate to Boy 2 the "best available" girl.

• • • • •

1 -> C

2 -> A

3 -> D

4 -> B

5 -> E

Preference List

- Start with Boy 1 and allocate him the "best" possible girl (i.e highest in his list)
- Now allocate to Boy 2 the "best available" girl.

```
••••
```

```
1 -> C
```

$$4 -> B$$

Is this match stable?

Preference List

1: C , B , E , A , D	A:3,5,2,1,4
2: A , B , E , C , D	B:5,2,1,4,3
3: D , C , B , A , E	C: 4, 3, 5, 1, 2
4: A , C , D , B , E	D: 1, 2, 3, 4, 5
5: A , B , D , E , C	E: 2,3,4,1,5

- Start with Boy 1 and allocate him the "best" possible girl (i.e highest in his list)
- Now allocate to Boy 2 the "best available" girl.

```
....
```

1 -> C

2 -> A

3 -> D

4 -> B

5 -> E

- Is this match stable?
- (Boy 4, Girl C) form a "rogue couple".

Preference List

The Stable Matching Algorithm

- Everyday a boy will go and stand in front of the balcony of the girl he likes the most.
- Each day a girl will either tell a boy waiting near her balcony to "come back next day" or "reject".
- Once the girl has "rejected" a boy, the boy crosses the girl off his list of possibilities.
- This continues till all the girls have exactly one boy standing under her balcony.
- Initially all girls are present in every boy's list.

DAY - 1

```
A -> 2, 4, 5
```

B ->

C -> 1

D -> 3

E ->

Preference List

1: C, B, E, A, D 2: A, B, E, C, D 3: D, C, B, A, E C: 4, 3, 5, 1, 2 4: A, C, D, B, E 5: A, B, D, E, C

A: 3, 5, 2, 1, 4 B: 5, 2, 1, 4, 3 D: 1,2,3,4,5 E: 2, 3, 4, 1, 5

The Updated List

1: C, B, E, A, D

2: A, B, E, C, D

3: D, C, B, A, E

4: A, C, D, B, E

5: A, B, D, E, C

Preference List

1: C, B, E, A, D 2: A, B, E, C, D 3: D, C, B, A, E 4: A, C, D, B, E D: 1, 2, 3, 4, 5 5: A, B, D, E, C E: 2, 3, 4, 1, 5

A: 3, 5, 2, 1, 4 B: 5, 2, 1, 4, 3 C: 4, 3, 5, 1, 2

DAY - 2

A -> 5

B -> 2

C -> 1, 4

D -> 3

E ->

Preference List

1: C, B, E, A, D

2: A, B, E, C, D

3: D, C, B, A, E C: 4, 3, 5, 1, 2

4: A, C, D, B, E

5: A, B, D, E, C

A: 3, 5, 2, 1, 4

B: 5, 2, 1, 4, 3

D: 1,2,3,4,5

E: 2, 3, 4, 1, 5

The Updated List

```
1: C, B, E, A, D
```

2: A, B, E, C, D

3: D, C, B, A, E

4: A, C, D, B, E

5: A, B, D, E, C

Preference List

DAY - 3

A -> 5

B -> 1, 2

C -> 4

D -> 3

E ->

Preference List

1: C, B, E, A, D

2: A, B, E, C, D

3: D, C, B, A, E

4: A, C, D, B, E

5: A, B, D, E, C

A: 3, 5, 2, 1, 4

B: 5, 2, 1, 4, 3

C: 4, 3, 5, 1, 2

D: 1, 2, 3, 4, 5

E: 2, 3, 4, 1, 5

The Updated List

```
1: C, B, E, A, D
```

2: A, B, E, C, D

3: D, C, B, A, E

4: A, C, D, B, E

5: A, B, D, E, C

Preference List

DAY - 4

```
A -> 5
```

B -> 2

C -> 4

D -> 3

E -> 1

1: C, B, E, A, D A: 3, 5, 2, 1, 4 2: A, B, E, C, D B: 5, 2, 1, 4, 3 3: D, C, B, A, E C: 4, 3, 5, 1, 2 4: A, C, D, B, E D: 1, 2, 3, 4, 5

E: 2, 3, 4, 1, 5

5: A, B, D, E, C

- This is where the algorithm terminates.
- Is the match stable?

Stability Test

Preference of E

Preference of Girls:

Matching

$$A -> 5$$

$$B -> 2$$

$$C -> 4$$

$$D -> 3$$

$$E -> 1$$

Desirable Properties of SMA!!

- SMA terminates.
- ii. Terminates quickly.
- iii. Everybody gets married / paired.
- iv. No rogue couple (stability).

SMA terminates is $\leq N^2 + 1$ days.

■ *Proof:*

Every day (i.e in every iteration of the algorithm) at least one boy crosses out one girl from his list.

 \Rightarrow Every day is characterized by at least ONE cross out.

Since there are N girls & N boys (thereby N lists), so there are at max N^2 cross outs.

=> SMA NOT terminating in N^2 + 1 days is an impossibility.

Everybody gets married / paired.

Proof:

Assume that there is a boy B who is NOT married at the end.

- ⇒B has been rejected by every girl.
- \Rightarrow Every girl is married.
- ⇒ Every boy is married (since we have equal number of boys & girls)
- ⇒ B is married (contradiction)

SMA produces Stable matching.

Proof: Let's say there exists a rogue couple (Johnny, Amber).

CASE –I: Amber rejected Johnny

- ⇒Amber must have had a more preferred suitor serenading her.
- ⇒ Amber prefers her husband over Johnny

CASE – II: Johnny never serenaded Amber

- ⇒Johnny never had to come down to Amber in his Pref. List.
- ⇒ Johnny prefers his wife over Amber