## New Method 4

Table 1. Housing Project Areas Description

|                                     | All     |          | C       | City     | Suburb  |          |
|-------------------------------------|---------|----------|---------|----------|---------|----------|
|                                     | Const.  | Unconst. | Const.  | Unconst. | Const.  | Unconst. |
| Number of Projects                  | 166     | 139      | 84      | 92       | 82      | 47       |
| Area (km2)                          | 1.20    | 1.18     | 1.19    | 1.00     | 1.22    | 1.53     |
| Median Construction Yr.             | 2006    | 2006     | 2005    | 2006     | 2006    | 2005     |
| Delivered Houses                    | 298     | 0        | 409     | 0        | 184     | 0        |
| House Price in 1 km $(R^{\dagger})$ | 200,919 | 230,175  | 214,620 | 242,025  | 186,691 | 209,249  |
| Distance to CBD <sup>‡</sup> (km)   | 32.4    | 28.0     | 23.1    | 21.1     | 42.0    | 41.6     |

**Table 2.** Dwelling Characteristics at Baseline from 2001 Census

|                              | Constructed | Unconstructed | All Small Areas |
|------------------------------|-------------|---------------|-----------------|
| Flush Toilet                 | 0.65        | 0.45          | 0.82            |
| Piped Water in Home          | 0.14        | 0.21          | 0.42            |
| Electricity for Cooking      | 0.34        | 0.41          | 0.71            |
| Electricity for Heating      | 0.29        | 0.38          | 0.68            |
| Electricity for Lighting     | 0.58        | 0.48          | 0.80            |
| Number of Rooms              | 2.64        | 2.63          | 3.47            |
| Household Size               | 3.39        | 3.27          | 3.40            |
| % Area Overlap with Projects | 0.89        | 0.82          | 0.17            |
| N                            | 1,062       | 226           | 6,803           |

<sup>&</sup>quot;Constructed" and "Unconstructed" include census small-areas with over 30%area overlap with constructed and unconstructed projects respectively. "All" includes all small areas.

Const. refers to constructed projects and unconst. refers to unconstructed projects.

\*Calculated from *expected* completion dates using Gauteng National Treasury budget reports.

† The USD averaged to about 7.70 Rands during the 2001-2011 period.

\*Measured as the average minimum distance with respect to Johannesburg and Pretoria CBDs. City includes projects whose centroids are within 30.4 km of their nearest CBD. Suburb includes projects whose centroids are further than 30.4 km from their nearest CBD.

|                                                     | (1)<br>Total                       | (2)<br>Formal                      | (3)<br>Informal                    | (4)<br>Informal<br>Bkyd.          | (5)<br>Informal<br>Non-Bkyd.      |
|-----------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|
| inside × constr                                     | 614.84 <sup>a</sup> (113.91)       | 589.33 <sup>a</sup> (74.19)        | 57.66<br>(88.81)                   | 535.91 <sup>a</sup> (97.04)       | -297.04 <sup>a</sup> (79.26)      |
| $0$ -200m outside $\times$ constr                   | 33.33<br>(44.35)                   | 37.13<br>(23.18)                   | -26.16<br>(36.33)                  | 35.37<br>(29.65)                  | -32.81<br>(30.39)                 |
| 200-400m outside $\times$ constr                    | -44.69<br>(33.13)                  | 1.02<br>(18.80)                    | -68.15 <sup>b</sup> (28.67)        | -33.49<br>(25.71)                 | -37.65<br>(22.91)                 |
| inside                                              | 213.40 <sup>a</sup> (60.60)        | 74.69 <sup>a</sup> (22.43)         | 139.56 <sup>a</sup> (52.49)        | 41.54 <sup>c</sup> (22.31)        | 142.26 <sup>a</sup> (48.50)       |
| 0-200m outside                                      | 126.79 <sup>a</sup> (23.98)        | 53.29 <sup>a</sup> (12.53)         | 105.98 <sup>a</sup> (20.77)        | 62.52 <sup>a</sup> (15.75)        | 68.37 <sup>a</sup> (19.13)        |
| 200-400m outside                                    | 105.46 <sup>a</sup> (22.83)        | 54.03 <sup>a</sup> (12.20)         | 93.29 <sup>a</sup> (21.96)         | 80.37 <sup>a</sup> (19.54)        | 30.99 <sup>b</sup> (15.26)        |
| constr                                              | 102.95 <sup>a</sup> (21.63)        | 53.87 <sup>a</sup> (10.77)         | 128.65 <sup>a</sup> (21.15)        | 94.93 <sup>a</sup><br>(18.77)     | 15.29 <sup>c</sup> (9.01)         |
| lag outcome                                         | 0.20 <sup>a</sup><br>(0.02)        | -0.03 <sup>a</sup> (0.01)          | 0.11 <sup>a</sup> (0.03)           | 0.33 <sup>a</sup> (0.06)          | -0.15 <sup>a</sup> (0.04)         |
| Mean dep. var.<br># Projects<br>R <sup>2</sup><br>N | 381.7<br>316<br>0.136<br>1,855,507 | 199.2<br>316<br>0.144<br>1,855,507 | 182.5<br>316<br>0.033<br>1,855,507 | 97.1<br>316<br>0.115<br>1,855,507 | 85.4<br>316<br>0.039<br>1,855,507 |

**Figure 1.** Pre-Period Housing Densities in Constructed and Unconstructed projects



Figure 2. Housing Densities in Constructed and Unconstructed projects



Table 3. Effect of Housing Projects on Socio-demographics

|                                             | (1)<br>Age                  | (2)<br>P.O.B. not<br>Gauteng   | (3)<br>Unemployed             | (4)<br>Years of<br>Education   | (5)<br>Monthly<br>Income         |
|---------------------------------------------|-----------------------------|--------------------------------|-------------------------------|--------------------------------|----------------------------------|
| inside $\times$ constr $\times$ post        | -1.192 <sup>a</sup> (0.214) | -0.066 <sup>a</sup> (0.018)    | 0.109 <sup>a</sup><br>(0.016) | -1.144 <sup>a</sup><br>(0.119) | -2697.579 <sup>a</sup> (322.905) |
| $0-200$ m out $\times$ constr $\times$ post | -0.969 <sup>a</sup> (0.306) | -0.033<br>(0.020)              | 0.088 <sup>a</sup><br>(0.020) | -1.059 <sup>a</sup> (0.123)    | -2770.531 <sup>a</sup> (452.937) |
| 200-400m out $\times$ constr $\times$ post  | -0.706 <sup>a</sup> (0.249) | -0.047 <sup>a</sup><br>(0.013) | 0.093 <sup>a</sup><br>(0.017) | -1.365 <sup>a</sup> (0.100)    | -2863.673 <sup>a</sup> (493.604) |
| Mean Outcome 2001                           | 27.53                       | 0.36                           | 0.46                          | 8.35                           | 2,627.57                         |
| Mean Outcome 2011                           | 28.53                       | 0.43                           | 0.32                          | 9.76                           | 5,005.47                         |
| $\mathbb{R}^2$                              | 0.441                       | 0.579                          | 0.378                         | 0.505                          | 0.393                            |
| # projects                                  | 314                         | 314                            | 314                           | 314                            | 314                              |
| N project areas                             | 3,658                       | 3,658                          | 3,658                         | 3,658                          | 3,658                            |
| N spillover areas                           | 2,849                       | 2,846                          | 2,844                         | 2,847                          | 2,845                            |
| N                                           | 14,251                      | 14,245                         | 14,237                        | 14,243                         | 14,239                           |

Standard errors clustered at the project level in parenthesis.  $^{c}$  p<0.10,  $^{b}$  p<0.05,  $^{a}$  p<0.01 P.O.B. means "place of birth." Monthly income is in Rands.

Figure 3. Price Estimates over Distance from Project



Table 4. Effect of Housing Projects on Socio-demographics

|                                            | (1)                 | (2)                 | (3)                 | (4)                 | (5)                    |
|--------------------------------------------|---------------------|---------------------|---------------------|---------------------|------------------------|
|                                            | Àge                 | P.O.B. not          | Unemployed          |                     | Monthly                |
|                                            | O                   | Gauteng             | 1 ,                 | Education           | Income                 |
| inside $\times$ constr $\times$ post       | -1.192 <sup>a</sup> | -0.066 <sup>a</sup> | 0.109 <sup>a</sup>  | -1.144 <sup>a</sup> | -2697.579 <sup>a</sup> |
|                                            | (0.214)             | (0.018)             | (0.016)             | (0.119)             | (322.905)              |
| 0-200m out × constr × post                 | -0.969 <sup>a</sup> | -0.033              | $0.088^{a}$         | -1.059 <sup>a</sup> | -2770.531a             |
|                                            | (0.306)             | (0.020)             | (0.020)             | (0.123)             | (452.937)              |
| 200-400m out $\times$ constr $\times$ post | -0.706 <sup>a</sup> | -0.047 <sup>a</sup> | $0.093^{a}$         | -1.365 <sup>a</sup> | -2863.673 <sup>a</sup> |
|                                            | (0.249)             | (0.013)             | (0.017)             | (0.100)             | (493.604)              |
| inside $\times$ post                       | $0.962^{a}$         | $0.029^{c}$         | -0.141 <sup>a</sup> | 1.471 <sup>a</sup>  | 880.980 <sup>a</sup>   |
|                                            | (0.166)             | (0.016)             | (0.013)             | (0.099)             | (252.503)              |
| 0-200m out × post                          | $1.013^{a}$         | $0.039^{b}$         | $-0.106^{a}$        | $1.109^{a}$         | $1679.019^{a}$         |
|                                            | (0.240)             | (0.017)             | (0.016)             | (0.097)             | (374.141)              |
| 200-400m out × post                        | $0.869^{a}$         | $0.050^{a}$         | $-0.100^{a}$        | $1.305^{a}$         | 2346.577 <sup>a</sup>  |
|                                            | (0.216)             | (0.010)             | (0.013)             | (0.083)             | (440.341)              |
| $constr \times post$                       | $1.257^{a}$         | $0.049^{a}$         | -0.132 <sup>a</sup> | $1.347^{a}$         | 2167.915 <sup>a</sup>  |
|                                            | (0.109)             | (0.005)             | (0.006)             | (0.032)             | (169.883)              |
| inside $\times$ constr                     | 0.124               | $0.072^{c}$         | $-0.094^{a}$        | $0.700^{a}$         | 2701.694a              |
|                                            | (0.419)             | (0.037)             | (0.021)             | (0.206)             | (592.490)              |
| 0-200m out × constr                        | 0.721 <sup>b</sup>  | 0.032               | $-0.075^{a}$        | $0.731^{a}$         | 2908.312a              |
|                                            | (0.364)             | (0.027)             | (0.020)             | (0.150)             | (512.040)              |
| 200-400m out × constr                      | $0.857^{a}$         | 0.017               | $-0.089^{a}$        | $1.048^{a}$         | 2784.175 <sup>a</sup>  |
|                                            | (0.291)             | (0.021)             | (0.019)             | (0.120)             | (388.503)              |
| inside                                     | -2.165a             | $0.090^{a}$         | $0.173^{a}$         | -1.684a             | -3442.485a             |
|                                            | (0.375)             | (0.032)             | (0.018)             | (0.186)             | (560.873)              |
| 0-200m out                                 | -1.708 <sup>a</sup> | 0.022               | $0.115^{a}$         | -1.062 <sup>a</sup> | -3144.437 <sup>a</sup> |
|                                            | (0.283)             | (0.020)             | (0.016)             | (0.112)             | (468.800)              |
| 200-400m out                               | -1.512 <sup>a</sup> | 0.004               | $0.106^{a}$         | -1.084 <sup>a</sup> | -2903.031a             |
|                                            | (0.235)             | (0.017)             | (0.015)             | (0.095)             | (357.620)              |
| constr                                     | -0.367              | -0.033              | $0.107^{b}$         | -1.201 <sup>a</sup> | -2801.184 <sup>a</sup> |
|                                            | (0.420)             | (0.033)             | (0.044)             | (0.192)             | (948.021)              |
| Mean Outcome 2001                          | 27.53               | 0.36                | 0.46                | 8.35                | 2,627.57               |
| Mean Outcome 2011                          | 28.53               | 0.43                | 0.32                | 9.76                | 5,005.47               |
| $\mathbb{R}^2$                             | 0.441               | 0.579               | 0.378               | 0.505               | 0.393                  |
| # projects                                 | 314                 | 314                 | 314                 | 314                 | 314                    |
| N project areas                            | 3,658               | 3,658               | 3,658               | 3,658               | 3,658                  |
| N spillover areas                          | 2,849               | 2,846               | 2,844               | 2,847               | 2,845                  |
| N                                          | 14,251              | 14,245              | 14,237              | 14,243              | 14,239                 |

Standard errors clustered at the project level in parenthesis.  $^{\rm c}$  p<0.10,  $^{\rm b}$  p<0.05,  $^{\rm a}$  p<0.01 P.O.B. means "place of birth." Monthly income is in Rands.

Figure 4. Price Estimates over Distance from Project Het



7

**Table 5.** Census Household-level Estimates

|                                                          | (1)<br>Flush<br>Toilet | (2)<br>Water<br>Indoors     | (3)<br>Electricity<br>Cooking | (4)<br>Electricity<br>Heating | (5)<br>Electricity<br>Lighting | (6)<br>Number of<br>Rooms   | (7)<br>Household<br>Size   | (8)<br>Population<br>Density     |
|----------------------------------------------------------|------------------------|-----------------------------|-------------------------------|-------------------------------|--------------------------------|-----------------------------|----------------------------|----------------------------------|
| inside $\times$ constr $\times$ post                     | 0.085<br>(0.075)       | -0.046<br>(0.041)           | 0.117<br>(0.073)              | 0.085<br>(0.067)              | 0.026<br>(0.078)               | -0.251 <sup>c</sup> (0.139) | 0.316 <sup>a</sup> (0.099) | -1457.547<br>(1286.317)          |
| $0-200$ m out $\times$ constr $\times$ post              | -0.051<br>(0.045)      | -0.126 <sup>a</sup> (0.043) | -0.078 <sup>c</sup> (0.041)   | -0.039<br>(0.046)             | -0.083 <sup>b</sup> (0.040)    | -0.250 <sup>c</sup> (0.133) | 0.226 <sup>a</sup> (0.064) | 17.555<br>(1046.311)             |
| 200-400m out $\times$ constr $\times$ post               | -0.027<br>(0.032)      | -0.168 <sup>a</sup> (0.035) | -0.060 <sup>c</sup> (0.032)   | -0.034<br>(0.036)             | -0.058 <sup>b</sup> (0.028)    | -0.207 <sup>b</sup> (0.105) | 0.268 <sup>a</sup> (0.051) | -1327.593 <sup>b</sup> (646.170) |
| Mean Outcome 2001<br>Mean Outcome 2011<br>R <sup>2</sup> | 0.78<br>0.83<br>0.389  | 0.34<br>0.52<br>0.380       | 0.63<br>0.80<br>0.453         | 0.60<br>0.70<br>0.425         | 0.75<br>0.81<br>0.413          | 3.25<br>3.51<br>0.429       | 3.51<br>3.17<br>0.477      | 8,544.01<br>9,932.98<br>0.393    |
| # projects<br>N project areas<br>N spillover areas       | 313<br>3,655<br>2,849  | 313<br>3,655<br>2,849       | 313<br>3,655<br>2,849         | 313<br>3,655<br>2,849         | 313<br>3,655<br>2,849          | 313<br>3,649<br>2,844       | 313<br>3,655<br>2,847      | 313<br>3,655<br>2,849            |
| N                                                        | 11,470                 | 11,470                      | 11,470                        | 11,470                        | 11,470                         | 11,448                      | 11,468                     | 11,471                           |

All regressions include project Fixed-Effects. Standard errors clustered at the project level in parenthesis. c p<0.10,b p<0.05,a p<0.01

 $\infty$ 

**Table 6.** Census Household-level Estimates

|                                             | (1)<br>Flush<br>Toilet | (2)<br>Water<br>Indoors | (3)<br>Electricity<br>Cooking | (4)<br>Electricity<br>Heating | (5)<br>Electricity<br>Lighting | (6)<br>Number of<br>Rooms | (7)<br>Household<br>Size | (8)<br>Population<br>Density |
|---------------------------------------------|------------------------|-------------------------|-------------------------------|-------------------------------|--------------------------------|---------------------------|--------------------------|------------------------------|
| inside $\times$ constr $\times$ post        | 0.085                  | -0.046                  | 0.117                         | 0.085                         | 0.026                          | -0.251 <sup>c</sup>       | 0.316 <sup>a</sup>       | -1457.547                    |
| 0.200                                       | (0.075)                | (0.041)                 | (0.073)                       | (0.067)                       | (0.078)                        | (0.139)                   | (0.099)                  | (1286.317)                   |
| $0-200$ m out $\times$ constr $\times$ post | -0.051                 | -0.126 <sup>a</sup>     | -0.078 <sup>c</sup>           | -0.039                        | -0.083 <sup>b</sup>            | -0.250 <sup>c</sup>       | $0.226^{a}$              | 17.555                       |
| 200,400                                     | (0.045)                | (0.043)                 | (0.041)                       | (0.046)                       | (0.040)                        | (0.133)                   | (0.064)                  | (1046.311)                   |
| 200-400m out $\times$ constr $\times$ post  | -0.027                 | -0.168 <sup>a</sup>     | -0.060 <sup>c</sup>           | -0.034                        | -0.058 <sup>b</sup>            | -0.207 <sup>b</sup>       | $0.268^{a}$              | -1327.593 <sup>b</sup>       |
|                                             | (0.032)                | (0.035)                 | (0.032)                       | (0.036)                       | (0.028)                        | (0.105)                   | (0.051)                  | (646.170)                    |
| inside $\times$ post                        | 0.061                  | $0.100^{a}$             | $0.212^{a}$                   | $0.193^{a}$                   | $0.165^{b}$                    | $0.438^{a}$               | -0.205 <sup>b</sup>      | 3292.680a                    |
|                                             | (0.062)                | (0.033)                 | (0.065)                       | (0.060)                       | (0.067)                        | (0.114)                   | (0.080)                  | (1169.403)                   |
| 0-200m out × post                           | 0.050                  | $0.100^{a}$             | $0.114^{a}$                   | 0.060                         | $0.080^{b}$                    | 0.213 <sup>c</sup>        | $-0.258^{a}$             | 770.983                      |
|                                             | (0.038)                | (0.033)                 | (0.035)                       | (0.038)                       | (0.035)                        | (0.108)                   | (0.053)                  | (914.607)                    |
| 200-400m out × post                         | 0.017                  | $0.129^{a}$             | $0.085^{a}$                   | $0.047^{c}$                   | $0.049^{b}$                    | 0.175 <sup>b</sup>        | -0.266 <sup>a</sup>      | 1711.139 <sup>a</sup>        |
|                                             | (0.025)                | (0.026)                 | (0.025)                       | (0.027)                       | (0.021)                        | (0.083)                   | (0.036)                  | (538.307)                    |
| $constr \times post$                        | $0.039^{a}$            | $0.197^{a}$             | $0.108^{a}$                   | $0.061^{a}$                   | $0.034^{a}$                    | $0.259^{a}$               | -0.331 <sup>a</sup>      | 1085.229a                    |
|                                             | (0.015)                | (0.019)                 | (0.018)                       | (0.021)                       | (0.009)                        | (0.043)                   | (0.026)                  | (312.182)                    |
| inside $\times$ constr                      | 0.089                  | 0.017                   | -0.018                        | -0.021                        | 0.054                          | 0.221                     | -0.187                   | 1639.067                     |
|                                             | (0.090)                | (0.066)                 | (0.086)                       | (0.081)                       | (0.094)                        | (0.244)                   | (0.123)                  | (1170.824)                   |
| 0-200m out × constr                         | 0.028                  | 0.026                   | 0.046                         | 0.014                         | 0.053                          | 0.052                     | -0.248 <sup>a</sup>      | 36.041                       |
|                                             | (0.047)                | (0.046)                 | (0.046)                       | (0.049)                       | (0.045)                        | (0.161)                   | (0.074)                  | (960.080)                    |
| 200-400m out × constr                       | $0.076^{b}$            | $0.139^{a}$             | $0.086^{a}$                   | $0.059^{c}$                   | $0.089^{a}$                    | 0.241 <sup>c</sup>        | -0.156 <sup>b</sup>      | 968.034                      |
|                                             | (0.037)                | (0.041)                 | (0.032)                       | (0.034)                       | (0.030)                        | (0.139)                   | (0.063)                  | (1085.098)                   |
| inside                                      | -0.284 <sup>a</sup>    | -0.248 <sup>a</sup>     | $-0.385^{a}$                  | -0.367 <sup>a</sup>           | $-0.346^{a}$                   | -1.082 <sup>a</sup>       | -0.113                   | -1178.054                    |
|                                             | (0.078)                | (0.056)                 | (0.075)                       | (0.072)                       | (0.080)                        | (0.217)                   | (0.101)                  | (1039.823)                   |
| 0-200m out                                  | -0.122 <sup>a</sup>    | $-0.097^{a}$            | -0.168 <sup>a</sup>           | -0.127 <sup>a</sup>           | $-0.150^{a}$                   | $-0.387^{a}$              | $0.139^{b}$              | -253.029                     |
|                                             | (0.035)                | (0.036)                 | (0.034)                       | (0.036)                       | (0.033)                        | (0.127)                   | (0.055)                  | (864.857)                    |
| 200-400m out                                | $-0.097^{a}$           | -0.121 <sup>a</sup>     | -0.141 <sup>a</sup>           | $-0.112^{a}$                  | -0.122a                        | $-0.308^{a}$              | $0.126^{a}$              | -1248.255                    |
|                                             | (0.028)                | (0.033)                 | (0.022)                       | (0.024)                       | (0.021)                        | (0.115)                   | (0.044)                  | (1007.933)                   |
| constr                                      | -0.373 <sup>a</sup>    | -0.187 <sup>b</sup>     | $-0.127^{b}$                  | -0.085                        | -0.092                         | -0.653 <sup>c</sup>       | 0.125                    | -2994.950 <sup>c</sup>       |
|                                             | (0.130)                | (0.080)                 | (0.063)                       | (0.074)                       | (0.067)                        | (0.356)                   | (0.133)                  | (1551.645)                   |
| Mean Outcome 2001                           | 0.78                   | 0.34                    | 0.63                          | 0.60                          | 0.75                           | 3.25                      | 3.51                     | 8,544.01                     |
| Mean Outcome 2011                           | 0.83                   | 0.52                    | 0.80                          | 0.70                          | 0.81                           | 3.51                      | 3.17                     | 9,932.98                     |
| $R^2$                                       | 0.389                  | 0.380                   | 0.453                         | 0.425                         | 0.413                          | 0.429                     | 0.477                    | 0.393                        |
| # projects                                  | 313                    | 313                     | 313                           | 313                           | 313                            | 313                       | 313                      | 313                          |
| A.T                                         | 0.455                  | 0.455                   | 2.655                         | 2 (55                         | 0.455                          | 2 (40                     | 2 (55                    | 0.455                        |