SNA网络切割

一、维护指引

手动执行以下步骤,维护nodes_del数据集,请勿加入跑批代码,建议nodes_del数据集更新频率为一个月。

一共分5步:

1. 声明切割网络编号

```
%LET CLUS = 10001;
```

2. 获取链接信息

```
DATA LINKS;
SET &ODS..LINKS2;
WHERE CLUSTER_ID = "&CLUS.";
RUN;
```

3. 执行optgraph

```
PROC OPTGRAPH

LINKS = LINKS OUT_NODES = NODES_OUT;

LINKS_VAR FROM = FROM_NODE_ID TO = TO_NODE_ID;

BICONCOMP;

QUIT;
```

4. 选择切割实体

```
DATA NODES_DEL;
SET NODES_OUT;
WHERE ARTPOINT = 1;
RUN;

PROC SQL;
CREATE TABLE NODES_D AS
SELECT A.*
FROM &ODS..NODES2 A
INNER JOIN NODES_DEL B
ON A.UID = B.NODE;
QUIT;
```

5. 存储切割实体数据集

```
DATA &ODS..NODES_DEL;
SET NODES_D;
WHERE NODE_TYPE ^= "APPNO";
RUN;
```

二、优化网络质量

1. 丰富网络评价变量

2. 网络规模庞大原因

3. 提升数据质量

数据质量问题描述	清洗字段	清洗规则条数
存在连续相同数字数大于等于8	idcard	1
存在连续相同数字数大于等于6	mobile	1
存在连续相同数字数大于等于6	linkman1mobile	1
存在连续相同数字数大于等于6	imfamilymobile	1
特殊字符null等	refereeno	1
1、连续相同字符大于3个; 2、ABABAB型; 3、连续递增; 4、长度小于5	homephone	4
1、连续相同字符大于3个; 2、ABABAB型; 3、连续递增; 4、长度小于5	companyphone	4
1、连续相同字符大于6个; 2、连续递增5位以上; 3、qq邮箱为1234; 4、特殊字符	email	4

4. 网络切割-算法切割

5. 网络切割-OPTGRAPH

删除团C,详见OPTGRAPH算法。

6. 网络规模分布

规模分布-网络切割前		
网络规模	网络数量	
1、2-3	157394	
2、4-6	51191	
3、7-12	22413	
4、13-20	6197	
5、21-30	2294	
6、31-50	1154	
7、51-80	321	

规模分布-网络切割后		
网络规模	网络数量	
1、2-3	192265	
2、4-6	61205	
3、7-12	27898	
4、13-20	8607	
5、21-30	3456	
6、31-50	2119	
7、51-80	743	

三、OPTGRAPH算法

1. PROC OPTGRAPH简介

PROC OPTGRAPH过程步,包括许多图形理论、组合优化和网络分析算法。

参考 SAS Help,算法种类见下表:

Table 1.1: Algorithm Classes in PROC OPTGRAPH

Algorithm Class	PROC OPTGRAPH Statement
Biconnected components	BICONCOMP
Centrality metrics	CENTRALITY
Maximal cliques	CLIQUE
Community detection	COMMUNITY
Connected components	CONCOMP
Core decomposition	CORE
Cycle detection	CYCLE
Eigenvector problem	<u>EIGENVECTOR</u>
Weighted matching	LINEAR_ASSIGNMENT
Minimum-cost network flow	MINCOSTFLOW
Minimum cut	MINCUT
Minimum spanning tree	MINSPANTREE
Reach networks	REACH
Shortest path	<u>SHORTPATH</u>
Graph summary	SUMMARY
Transitive closure	TRANSITIVE_CLOSURE
Traveling salesman	<u>TSP</u>

如上 <mark>代码3</mark> ,网络切割的核心用到了BICONCOMP,即**Biconnected Component**(**重连通分** 量)。

2. 图论基础

无向图, 边没有方向的图称为**无向图**。

如果图中任意两点都是连通的,那么图被称作 连通图。

在一个无向图中,如果删除某个顶点及其相关联的边后,原来的图被分割为两个及以上的连通 分量,则称该顶点为无向图中的一个**关节点**。

如图,是连通图但不是重连通图,图中有4个关节点,分别是: A、B、D 和 G。 比如删除顶点 B 及相关联的边后,原图就变为:

可以看到,图被分割为各自独立的 3 部分,顶点集合分别为: $\{A \setminus C \setminus F \setminus L \setminus M \setminus J\} \setminus \{G \setminus H \setminus I \setminus K\}$ 和 $\{D \setminus E\}$ 。

了解什么是关节点后, 重连通图其实就是没有关节点的连通图。

即在删除某个顶点及该顶点相关的边后,图中各顶点之间的连通性也不会被破坏。

重连通分量,一个连通图如果不是重连通图,那么它可以包括几个重连通分量。

3. 重连通图的实际应用

在重连通图中,只删除一个顶点及其相关联的边,肯定不会破坏其连通性。如果一味地做删除顶点的操作,直到删除 K 个顶点及其关联的边后,图的连通性才遭到破坏,则称此重连通图的**连通度**为 K。

同样,小到城市之间,大到国家之间的航空网也可以看作是一个连通图,但如果此图建设成为重连通图,当某条航线因为天气等因素关闭时,飞机仍可以从别的航线到达目的地。在战争中,有"兵马未动,粮草先行"的说法,可见后勤补给对军队的重要性。如果补给线是一个重连通图,就不用过于担心补给线被破坏的问题,因为即使破坏一条,还有其它的,只要连通度足够大。

4. SAS案例

Biconnected Components of a Simple Undirected Graph

无向图 G 可以由以下链接数据集表示 LINKSETINBICC:

```
DATA LINKSETINBICC;

INPUT FROM $ TO $ @@;

DATALINES;

A B A F A G B C B D

B E C D E F G I G H

H I

;
```


以下语句计算重连通分量和关节点,并输出结果的数据集 LINKSETOUT 和 NODESETOUT:

```
PROC OPTGRAPH

DATA_LINKS = LINKSETINBICC

OUT_LINKS = LINKSETOUT

OUT_NODES = NODESETOUT;

BICONCOMP;

RUN;
```

数据集 LINKSETOUT:

from	to	biconcomp
Α	В	2
Α	F	2
Α	G	4
В	С	1
В	D	1
В	Е	2
С	D	1
Е	F	2
G	1	3
G	Н	3
Н	1	3

数据集 NODESETOUT:

node	artpoint
Α	1
В	1
F	0
G	1
С	0
D	0
Е	0
ı	0
Н	0

结果解释:

数据集 LINKSETOUT ,即根据关联关系分团,得到团号 biconcomp 1、2、3、4对应 C^1 、 C^2 、 C^3 、 C^4 : $C^1=\{B,C,D\}$:

 $C^2=\{A,B,E,F\}$:

 $C^3=\{G,H,I\}$:

 $C^4 = \{A,G\}$:

数据集 NODESETOUT ,得到关节点A、B、G,即 代码4 中artpoint=1的点,并据此拆分。

三、综述

据此方法,将非重连通图的大规模SNA团,根据关节点进行网络切割。