Algebra 1A, lista 8.

Konwersatorium 12.12.2016, ćwiczenia 13.12.2016

0S. Materiał teoretyczny: Homomorfizm i izomorfizm pierścieni, definicja, przykłady. Produkt pierścieni. Izomorfizm pierścieni $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$, gdy m i n są względnie pierwsze.

Funkcja i twierdzenie Eulera. Pierścienie wielomianów: definicja, podstawowe własności (stopień wielomianu, R-dziedzina $\Rightarrow R[X]$ – dziedzina). Wielomiany a funkcje wielomianowe. Homomorfizm ewaluacji w punkcie. Pierścień $C(\mathbb{R})$.

- 1S. (a) Napisać tabelki działań w produkcie pierścieni $\mathbb{Z}_2 \times \mathbb{Z}_3$.
- (b) Wskazać dzielniki zera i elementy odwracalne w tym pierścieniu.
- 2K. Które z poniższych pierścieni są dziedzinami, a które ponadto ciałami?
- (a) $\mathbb{Z}_2 \times \mathbb{Z}_2$,
- (b) $(\mathcal{P}(\{a\}), \triangle, \cap)$,
- (c) pierścień Gaussa (patrz zad. 8 z listy 7),
- (d) $\mathbb{Z} \times \mathbb{R}$.
- 3K. Znaleźć wszystkie homomorfizmy $f:R\to S$ pierścieni z jednością R i S (uwaga: zgodnie z definicją, $f(1_R)=1_S$).
 - (a) $R = \mathbb{Z}, S = \mathbb{Z}_6$.
 - (b) $R = \mathbb{Z}_{15}, S = \mathbb{Z}_3.$
 - (c) $R = \mathbb{Z}_7$, $S = \mathbb{Z}_4$.
 - (d) $R = \mathbb{Z}, S = \mathbb{Z}.$
 - (e) $R = \mathbb{Q}$, $S = \mathbb{Q}$.
 - (f) $R = \mathbb{Z} \times \mathbb{Z} = S$ (wsk: rozważyć, jakie mogą być wartości f(0,1) i f(1,0)).
 - 4K. Znaleźć wszystkie dzielniki zera w pierścieniach:
 - (a) $\mathbb{Z}_4 \times \mathbb{Z}_2$
 - (b) $\mathbb{Z}_4 \times \mathbb{Z}_{10}$
 - (c) $\mathbb{Z} \times \mathbb{R}$
 - (d) $(\mathcal{P}(X), \triangle, \cap)$.
 - 5. Obliczyć $r_{35}(14^{320})$, $r_{28}(35^{320})$, $r_{45}(28^{320})$.
 - 6. Niech $\mathbb{Z}[i]$ oznacza pierścień Gaussa. Niech $R=\{\frac{x}{y}:x,y\in\mathbb{Z}[i]\ \text{i}\ y\neq 0\}\subseteq\mathbb{C}.$
 - (a) Sprawdzić, że R jest ciałem (podciałem \mathbb{C}).
 - (b) Udowodnić, że $R = \{a + bi : a, b \in \mathbb{Q}\}.$

Uwaga: R jest izomorficzne z ciałem ułamków pierścienia Gaussa.

- 7K. Załóżmy, że R jest pierścieniem pzremiennym z jednością oraz $a \in R$. Określamy funkcję $\varphi_a:R[X]\to R$ wzorem:
- $\varphi_a(W(X) = \hat{W}(a)$. Sprawdzić, że tak określona funkcja jest homomorfizmem pierścieni z jednością, zwanym homomorfizmem ewaluacji w punkcie a.
 - 8K. Znaleźć wszystkie homomorfizmy pierścieni $f: \mathbb{Z}[X] \to \mathbb{Z}$ (wsk: f(1) = 1).
- 9. Niech C(R) oznacza zbiór wszystkich funkcji ciągłych $f: \mathbb{R} \to \mathbb{R}$. W zbiorze tym określamy działania + i · następująco:
- $(f+g)(x) = f(x) + g(x), (f \cdot g)(x) = f(x) \cdot g(x).$

Zbiór C(X) z tymi działaniami jest pierścieniem przemiennym z jednościa.

- (a) Czy funkcja f(x)=x jest odwracalna w pierścieniu $C(\mathbb{R})$? Czy jest dzielnikiem zera ?
- (b) Podać przykład funkcji odwracalnej w $C(\mathbb{R})$, różnej od funkcji stale równej jeden (jedności pierścienia $C(\mathbb{R})$).
 - (c) Które funkcje w $C(\mathbb{R})$ są odwracalne?
 - (d) Podać przykład funkcji w $C(\mathbb{R})$, która jest dzielnikiem zera w $C(\mathbb{R})$.
 - (e) Które funkcje w $C(\mathbb{R})$ są dzielnikami zera?
- 10. Określić działania \oplus i \odot w zbiorze \mathbb{Z} tak, by funkcja $f:(\mathbb{Z},\oplus,\odot)\to(\mathbb{Z},+,\cdot)$ dana wzorem f(x)=x+1 była izomorfizmem. Wywnioskować stąd, że $(\mathbb{Z},\oplus,\odot)$ jest pierścieniem (jest to struktura indukowana ze struktury $(\mathbb{Z},+,\cdot)$ poprzez funkcję f). Wskazać jedność i zero pierścienia $(\mathbb{Z},\oplus,\odot)$.
 - 11. Pokazać, że

$$S = \left\{ \left[\begin{array}{cc} a & b \\ -b & a \end{array} \right] : a, b \in \mathbb{R} \right\}$$

jest podpierścieniem pierścienia $M_{2\times 2}(\mathbb{R})$, izomorficznym z ciałem liczb zespolonych \mathbb{C} .