

ANÁLISE EM DESENVOLVIMENTO DE SISTEMAS FUNDAMENTOS DA MATEMÁTICA PROFESSOR SANTINHO LISTA 3 - FUNÇÕES POLINOMIAIS

EQUAÇÃO DO 1º GRAU

- 1) Resolva as equações afins:
- a) 4x + 3 = 3x + 4
- b) $\frac{2x+1}{3} + \frac{3x+7}{5} = \frac{x+14}{5}$
- c) $3x \frac{x+3}{2} = 5 \frac{x-2}{3}$
- 2) Resolvendo a equação: $-\frac{x}{2} + \frac{x+1}{5} = 2x$ obtemos uma

fração irredutível $\frac{a}{b}$. Então, a + b vale :

- a) 25
- c) 29 b) 27
- e)33

INEQUAÇÃO DO 1º GRAU

- 3) (PUC-RJ-2016) Assinale a menor solução inteira da inequação 4x - 10 >2.
- a)2
- b)3
- c)4
- d) 12
- e)60
- 4) Resolva, em IR, a inequação:
- a) $-7x + 5 \ge 20$
- b) $3x + 5 \ge 2$

d)31

- c) 4 < -2x < 6
- d) 4 < 2x + 2 < 16
- 5) (PUC-RJ-2016) Considere as funções reais $f(x) = x^2 +$ 4x e g(x) = x. Qual é o maior inteiro para o qual vale a desigualdade f(x) < g(x)?
- a)-3
- b)-1
- c) 0
- d)3
- e)4
- 6) (PUC-RJ-2012-adaptada) Determine o conjunto das soluções inteiras da inequação $x^2 - 3x \le 0$.
- 7) (FGV-2015) Quantos são os valores inteiros de x que satisfazem $-2 \le 2x + 5 \le 10$?
- a) Infinitas
- b)6
- c)4
- d)7
- e)5

FUNÇÃO DO 1º GRAU

- 8) Esboce o gráfico das funções reais:
- a) f(x) = 2x 6
- b) f(x) = 2x + 6
- c) f(x) = -2x + 6

- d) f(x) = -2x 6
- e) f(x) = 3x
- f) f(x) = -3x

- g) f(x) = 7
- 9) (SELECON-2017) Admita que a raiz da função polinomial do primeiro grau f(x) = ax + 3 seja 3/4. O valor de a é igual a:
- a)-6
- b)-4
- c)-3
- d) -1/2
- 10) (PUC-2016) Considere a função real da forma f(x) = ax + b. Sabendo que f(1) = -1 e f(0) = 2, qual é o valor do produto a.b?
- a)1
- b)6
- c)-3
- d)-4
- 11) (IFSP-2013) Se f (x) = $(x + 550)^2 x^2$, o valor de f(225) é
- a)550000
- b) 375 000
- c) 302 500

- d) 275 000
- e) 252 500

EQUAÇÃO DO 2º GRAU

- 12) Resolva, em IR, as equações:
- a) $x^2 + 4x + 3 = 0$ b) $x^2 5x + 6 = 0$ c) $-x^2 + 4x 3 = 0$
- e) $x^2 7x = 0$ d) $x^2 - 6x + 9 = 0$

- $g' x^2 4 = 0$
 - h) $x^2 = 0$
- 13) (FUNECE-2017) A equação do 2º grau com raízes
- 1/2 e -5/2 é

- a) $4x^2 + 8x + 5 = 0$. c) $4x^2 8x 5 = 0$.
- b) $4x^2 + 8x 5 = 0$. d) $4x^2 8x + 5 = 0$.
- 14) (IFBA-2011) Considere a equação do 2º grau, em x. dada por $5x^2 + bx + c = 0$. Se as raízes dessa equação são $r_1 = -1$ e $r_2 = 2/5$, então o produto b.c é igual a:
- a)1
- b)5
- c)-5
- e)-6
- 15) (FGV-2016) Na resolução de um problema que recaía em uma equação do 2º grau, um aluno errou apenas o termo independente da equação e encontrou como raízes os números 2 e -14. Outro aluno, na resolução do mesmo problema, errou apenas o coeficiente do termo de primeiro grau e encontrou como raízes os números 2 e 16.

As raízes da equação correta eram:

- a) -2 e -14
- b) 4e 8
- c) -2 e 16

- d) -2 e -16
- e)4e14

INEQUAÇÃO DO 2º GRAU

- 16) Resolva, em IR, a inequação:
- a) $x^2 + 5x + 6 > 0$
- b) $x^2 \le 4x + 3$
- c) $-x^2 5x 6 > 0$
- d) $x^2 < 4x$
- e) $x^2 4x + 4 \ge 0$
- f) $x^2 4x + 4 > 0$
- g) $x^2 4x + 4 \le 0$
- h) $x^2 4x + 4 < 0$ j) $-x^2 4 < 0$
- $i) -x^2 4 > 0$
- 17) (COPEVE-2016) Considere a função $f(x) = x^2 + 2x 3$. O conjunto solução da inequação f(x) < f (2) em IR, é dado por
- a) $\{x \in R \mid -5 < x < 2\}$
- b) $\{x \in R \mid -4 < x < 3\}$
- c) $\{x \in R \mid -4 < x < 2\}$
- d) $\{x \in R \mid -3 < x < 1\}$

d) 1 < k < 6

- e) $\{x \in R \mid -3 < x < 2\}$
- 18) (FCC-2012) Sabe-se que o quadrado de um número natural k é maior que seu quíntuplo somado com 6. Então, está correto afirmar que
 - FUNÇÃO DO 2º GRAU

b)k < 6

- 19) Esboce o gráfico das funções reais:
- a) $f(x) = x^2 + 4x + 3$ c) $f(x) = -x^2 + 4x 3$

a)k<1ek>6

- b) $f(x) = x^2 5x + 6$
- d) $f(x) = x^2 6x + 9$
- e) $f(x) = x^2 7x$
- $f(x) = -x^2 + 4$

c)k > 6

- $g) f(x) = -x^2 4$
- $h) f(x) = x^2$

20) (UECE-2015) No plano, com o sistema de coordenadas cartesianas usual, o gráfico da função f: IR -> IR definida por $f(x) = x^2 + 2mx + 9$ é uma parábola que tangencia o eixo das abcissas, e um de seus pontos com ordenada igual a 9 tem abscissa negativa. Nessas condições, o valor do parâmetro m está entre

a) 1,5 e 2,5 b) 2,5 e 3,5 c) 3,5 e 4,5 d) 4,5 e 5,5

21) (UERJ-2016) No plano cartesiano a seguir, estão representados o gráfico da função definida por f $(x) = x^2 +$ 2, com $x \in IR$, e os vértices dos quadrados adjacentes

ABCD e DMNP. Observe que B e P são pontos do gráfico da função f e que A, B, D e M são pontos dos eixos coordenados. Desse modo, a área do polígono ABCPNM,

formado pela união dos dois quadrados, é:

a)20

b) 28

c) 36

d)40

22) (UCS-2015) Dada a função f definida por $f(x) = -0.5x^2$ + 4x + 40, analise as proposições a seguir, quanto à sua veracidade (V) ou falsidade (F).

- () A função é decrescente em todo o seu domínio.
- () A função tem um máximo que ocorre em x = 4 e é igual a 48.
 - () A função não tem zeros reais.

Assinale a alternativa que preenche correta e respectivamente os parênteses, de cima para baixo.

a) V – V – F

b) V - F - V

c)F-V-V

d)V-F-F

e)F-V-F

23) (UNICAMP-2014) Seja a um número real. Considere as parábolas de equações cartesianas $y = x^2 + 2x + 2 e y$ =2x² + ax + 3. Essas parábolas não se interceptam se e somente se

a) |a |= 2

b) |a| < 2 c) |a - 2| < 2

d) |a - 2| = 2

POLINÔMIOS - PRINCÍPIOS

24) (EsSA-2016) O grau do polinômio:

$$(4x - 1).(x^2 - x - 3).(x + 1)$$
 é

a)6

c)3

d)4

e)2

25) (UNIUV-2015) O valor numérico do polinômio P(x) = $3x^4 - x^3 + 4x^2 - x + 5$ para x = -2 é:

a)51

b)59

c)65

d) 79

e)81

26) (EEAR-2015) Dado o polinômio: $ax^{3} + (2a + b)x^{2} + cx$ + d - 4 = 0, os valores de a e b para que ele seja um polinômio de 2º grau são

a) a = 0 e b = 0

b) $a = 1 e b \neq 0$

c) $a = 0 e b \neq 0$

d)a = -1 e b = 0

27) (UNICAMP-2017) Sejam c um número real e $f(x) = x^2$ - 4x + c uma função quadrática definida para todo número

real x. No plano cartesiano, considere a parábola dada pelo gráfico de y = f(x). Determine c no caso em que a abscissa e a ordenada do vértice da parábola têm soma nula e esboce o respectivo gráfico para $0 \le x \le 4$.

28) (MS-2014-adaptada) São dados três polinômios: P(x) $= x^{2} - 3x + 1$, Q(x) = (x + 4)(2x - 5) e R(x) = $ax^{2} + (b+4)x - ax^{2}$ 2c. A fim de que tenhamos P(x) + Q(x) = R(x), quais devem ser os valores de a, b e c, respectivamente?

DIVISÃO DE POLINÔMIOS

29) (EAM-2009) Na divisão de um polinômio P(x) por (x² + 1), obtém-se quociente (3x + 2) e resto 3. Então P(x) é;

a) $3x^3 - 2x^2 - 3x + 5$

b) $3x^3+2x^2+2x+5$

c) $3x^3-2x^2-2x+5$

d) $3x^3-4x^2-2x+5$

 $e) 3x^3 + 2x^2 + 3x + 5$

30) (FUNDEP-2014) Dividindo-se o polinômio p(x) por x -1, obtêm-se como quociente $x^2 + 3x + 3$ e resto 4. O polinômio p(x) é:

a) $x^3 + 2x^2 + 1$ b) $x^3 + 2x^2 - 3$ c) $x^2 + 4x + 6$ d) $x^2 + 2x$

31) (IE-2016) Utilizando o dispositivo prático de Briot-Ruffini para efetuar a divisão entre os polinômios $f(x) = 3x^4$ $+5x^3 - 11x^2 + 2x - 3$ e q(x) = x + 3, assinale a alternativa CORRETA que contenha o resultado da divisão:

a) $4x^3 - 3x^2 + x - 1$, resto 0 b) $3x^3 - 3x^2 + x - 2$, resto 0

c) $3x^3 - 4x^2 + x - 1$, resto 0 d) Nda

32) (ExPCEx-2014) O polinômio $f(x) = x^5 - x^3 + x^2 + 1$

,quando dividido por $q(x) = x^3 - 3x + 2$ deixa resto r(x). Sabendo disso, o valor numérico de r(-1) é

a)-10.

b) -4.

c) 0.

d)4. e) 10.

33) (EEAR-2016) Ao dividir $3x^3 + 8x^2 + 3x + 4 por x^2 + 3x$

+ 2 obtém-se ____ como resto.

a)6

b)5

c) 4

d)3

34) (CONSULPAN-2014) Multiplicando-se cada monômio do polinômio q(x) por $2x^3$ - 1, obtém-se o polinômio p(x). Ao somar $x^2 + 3$ ao polinômio p(x), o resultado será o polinômio $r(x) \equiv 8x^4 + 4x^3 + x^2 - 4x + 1$. Dessa forma, é correto afirmar que

a) $q(x) = x^2 + 1$

b) $q(x) = x^2 + 2$ c) $q(x) = 2x^2 + 1$ e) $q(x) = 4x^2 + 2$.

d) q(x) = 4x + 2

35) (IDECAN-2017) O quociente da divisão do polinômio $P(x) = x^{2} + kx - 2 \text{ por } D(x) = x + 5 \text{ \'e igual a } x - 2 \text{ e o resto}$ dessa divisão é r. Assim, k + r é igual a:

b)11

c) 13

d)7.

36) (VUNESP-2013) O resto da divisão do polinômio P(x) $= x^4 + 2x^3 + mx^2 - 2$ pelo binômio x + 1 é igual a 8, sendo m uma constante real. Portanto m vale

a)8.

b) 10.

c) 11.

e)9.

37) (BIO-RIO-2015) O resto da divisão de $P(x) = \alpha x^3 - 10x^2$ -x+5 por (x - 2) é igual a -13. Assim, α é igual a:

a)2

b)3

c)4

d)5

38) (CESGRANRIO-2010) O polinômio $p(x) = x^3 + bx^2 +$ cx + d, com b, c, d reais, \acute{e} divisível por (x - 2). Se p(0) =30 e p(1) = 16, então o valor de b - c - d é

- b)-44
- c)-26
- d) 23
- e)15

EQUAÇÕES POLINOMIAIS

- 39) (IFAL-2017) Podemos dizer que o polinômio $p(x) = x^3 2x^2 5x + 6$
- a) tem três raízes reais.
- b) tem duas raízes reais e uma imaginária.
- c) tem uma raiz real e duas imaginárias.
- d) não tem raiz real.
- e) tem duas raízes reais e duas imaginárias.
- 40) (MACKENZIE-2016) A equação $2x^3 + 3x^2 3x 2 = 0$ tem como raízes -1/2, m e n. Então, mⁿ é igual a
- a)-1 ou 0
- b) -1/2 ou 2
- c)-2 ou -1

- d) 1/2 ou -1/2
- e) -2 ou 1
- 41) (CEPERJ-2011) Uma das raízes complexas da equação x^3 $3x^2$ + 8x 6 = 0 \acute{e} :
- a)1+i√2
- b)1+i $\sqrt{3}$
- c)2+i√3

- d)1+i $\sqrt{5}$
- e) 2 + i √6
- 42) (CESGRANRIO-2014) Considere a equação polinomial $x^3+x^2+kx=0$, onde k é um coeficiente real. Se uma das raízes dessa equação é 4, as outras raízes são
- a) 20 e 0
- b) 5 e 0
- c) 4e + 5

- d) + 4e 5
- e) + 20 e 0
- 43) (UECE-2017) Sejam $P(x)=x^5+x^4+x^3+x^2+x+1$ um polinômio e M o conjunto dos números reais k tais que P(k)=0. O número de elementos de M é
- a)1
- b)2
- c)4
- d)5
- 44) (CONSULPLAN-2010) Sobre as raízes da equação $x^4 + 6x^3 x^2 54x 72 = 0$, é correto afirmar que:
- a) 2 são positivas e 2 são negativas.
- b) 3 são positivas e 1 é nula.
- c) 1 é positiva e 3 são negativas.
- d) Todas são positivas.
- e) Todas são negativas.
- 45) (CESGRANRIO-2014) A equação $2x^5$ $6x^4$ + x^3 $3x^2$ x + 3 = 0 possui uma raiz inteira. O núm ero total de raíz es reais dessa equação será
- a)1
- b)2
- c)3
- d)4
- e)5
- 46) (UECE-2016) O polinômio de menor grau, com coeficientes inteiros, divisível por 2x-3, que admite x=2i como uma das raízes e P(0)=-12 é
- a) $P(x) = 2x^3 3x^2 8x 12$.
- b) $P(x) = 2x^3 + 3x^2 8x 12$.
- c) $P(x) = -2x^3 3x^2 8x 12$.
- d) $P(x) = 2x^3 3x^2 + 8x 12$.

FUNÇÕES POLINOMIAIS

- 47) (UCS-2015) Na figura, está representada parte do gráfico de uma função polinomial, em que se visualizam todas as raízes (zeros) da função.
- Analise as proposições a seguir, quanto à sua veracidade (V) ou falsidade (F).

- () O produto dos zeros da função é -2.
- () O valor mínimo da função é -20.
- () O termo independente do polinômio que define a função é maior do que zero.

Assinale a alternativa que preenche correta e respectivamente os parênteses, de cima para baixo.

- a) V V F
- b)V-F-V
- $c\,)\;F-V-V$

- d)V-F-F
- e)F-V-F
- 48) (FUNRIO-2008) Na figura abaixo, temos o esboço do gráfico da função y = p(x), sendo p(x) um polinômio. Podese afirmar que p(x) é divisível

por

- a) x-2
- b)x + 3
- c) (x + 2)(x + 3)
- d)(x + 3)(x 2)
- e)(x + 2)(x 3)
- 49) (UCS-2015) A figura abaixo representa parte do gráfi-

co de uma função polinomial f, em que se visualizam todos os zeros da função. O gráfico pode ser da função definida por

- a) $f(x) = x^3 4x$
- b) $f(x) = x^3 x$
- c) $f(x) = -x^3 + 4x$
- d) $f(x) = -x^3 + x$
- $e) f(x) = x^2 4$

Texto para as questões 50 e 51

(INSPER-2015) Considere o polinômio dado por $p(x) = x^3 - x^2 - 22x + 40$. A figura a seguir mostra parte do gráfico da função f, dada por $f(x) = \alpha \cdot p(x)$, em que α é um número real.

- 50) O valor de α é
- a)0,05 b)0,5 d)5 e)20
- 51) A diferença entre a maior e a menor raiz de p(x) é igual a

- c) 7.

c)2

- d)8.
 - e) 9.
- 52) (IFBA-2016) Para que a equação x^5 $2x^4$ + $4x^3$ $11x^2$ + 9x + (m 3) tenha pelo menos uma raiz real compreendida entre 0 e 2, devemos ter
- a) m > 2 ou m < -2.
- b) -2 < m < 2.
- c) m > 3 ou m < -3.
- d) 3 < m < 3.
- e) m múltiplo de 3.

Pergunta básica: Isso é uma equação?