Distribution	pmf/pdf	Mean	Variance	Moment Generating Function: $\psi(t) = E[e^{tX}]$	Notes
X~Bernoulli(p)	$f_X(x) = p^x (1-p)^{1-x} * \mathbb{I}_{\{x=0,1\}}$	E[X] = p	Var(X) = p(1-p)	$\psi(t) = 1 - p + pe^t$	X = binary event w/P(success) = p $E[X] = E[X^2] = \cdots = E[X^k] = p$
$X \sim Binomial(n, p)$	$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x} * \mathbb{I}_{\{x=0,1,\dots,n\}}$	E[X] = np	Var(X) = np(1-p)	$\psi(t) = (1 - p + pe^t)^n$	X = # of successes in n trials.
$X \sim Poisson(\lambda)$ $\lambda > 0$	$f_X(x) = e^{-\lambda} \frac{\lambda^x}{x!} * \mathbb{I}_{\{x=0,1,\dots\}}$	$E[X] = \lambda$	$Var(X) = \lambda$	$\psi(t) = \exp\{\lambda(e^t - 1)\}$	$X=\#$ of events occurring in a fixed time-period with a known rate λ .
X~Geometric(p)	$f_X(x) = (1-p)^x p * \mathbb{I}_{\{x=0,1,\dots\}}$	$E[X] = \frac{1-p}{p}$	$Var(X) = \frac{1-p}{p^2}$	$\psi(t) = \frac{p}{1 - e^t(1 - p)}$	X = # of unsuccessful trials preceding the first success
$X \sim Hypergeom(n, N, m)$	$f_X(x) = \frac{\binom{m}{x} \binom{N-m}{n-x}}{\binom{N}{n}}$	$E[X] = \frac{nm}{N}$	$Var(X) = \frac{nm}{N} * \frac{(N-m)(N-n)}{N(N-1)}$	-	N= population size , $n=$ # of selections , $m=$ # of successes . NO REPLACEMENT.
$X \sim NegativeBin(r,p)$	$f_X(x) = {r+x-1 \choose x} p^r (1-p)^x * \mathbb{I}_{\{x=0,1,\dots\}}$	$E[X] = \frac{r(1-p)}{p}$	$Var(X) = \frac{r(1-p)}{p^2}$	$\psi(t) = \left[\frac{p}{1 - (1 - p)e^t}\right]^r$	$X=\#$ of failures that occur before the r^{th} success.
X~Uniform(a, b)	$f_X(x) = \frac{1}{b-a} * \mathbb{I}_{\{a \le x \le b\}}$	$E[X] = \frac{a+b}{2}$	$Var(X) = \frac{(b-a)^2}{12}$	$\psi(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}$	$Unif(0,1) \equiv Beta(1,1)$
$X \sim Exponential(\lambda)$ $\lambda > 0$	$f_X(x) = \lambda e^{-\lambda x} * \mathbb{I}_{\{x \ge 0\}}$	$E[X] = \frac{1}{\lambda}$	$Var(X) = \frac{1}{\lambda^2}$	$\psi(t) = \frac{\lambda}{\lambda - t} * \mathbb{I}_{\{t < \lambda\}}$	Memoryless Distribution: P(X > s + t X > s) = P(X > t)
$X \sim Gamma(\alpha, \beta)$ $\alpha, \beta > 0$	$f_X(x) = \frac{\beta^{\alpha} e^{-\beta x} x^{\alpha - 1}}{\Gamma(\alpha)} * \mathbb{I}_{\{x \ge 0\}}$	$E[X] = \frac{\alpha}{\beta}$	$Var(X) = \frac{\alpha}{\beta^2}$	$\psi(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha} * \mathbb{I}_{\{t < \beta\}}$	$X \sim Gamma(1, \beta)$ $\equiv Exponential(\beta)$ $\Gamma(\alpha) = (\alpha - 1)!$
$X \sim Beta(\alpha, \beta)$ $\alpha, \beta > 0$	$f_X(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} * \mathbb{I}_{\{0 \le x \le 1\}}$	$E[X] = \frac{\alpha}{\alpha + \beta}$	$Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	-	$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$
$X \sim Normal(\mu, \sigma^2)$ $\sigma^2 < 0$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\} * \mathbb{I}_{\{x \in \mathbb{R}\}}$	$E[X] = \mu$	$Var(X) = \sigma^2$	$\psi(t) = \exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$	-
$X \sim \chi_m^2$	$f_X(x) = \frac{1}{2^{m/2}\Gamma(m/2)} x^{(m/2)-1} e^{-(x/2)} * \mathbb{I}_{\{x>0\}}$	E[X] = m	Var(X) = 2m	$\psi(t) = (1 - 2t)^{-m/2} * \mathbb{I}_{\{t < 1/2\}}$	$Gamma\left(\alpha = \frac{m}{2}, \beta = \frac{1}{2}\right) \equiv \chi_m^2$
CHI-SQUARE DIST. m degrees of freedom.					Exponential $\left(\beta = \frac{1}{2}\right) \equiv \chi_2^2$
$X{\sim}t_m$ t-DISTRIBUTION	$f_X(x) = \frac{\Gamma(\frac{m+1}{2})}{(m\pi)^{1/2}\Gamma(m/2)} \left(1 + \frac{x^2}{m}\right)^{-(m+1)/2} * \mathbb{I}_{\{x \in \mathbb{R}\}}$	-	$Var(X) = \frac{m}{m-2} , \qquad m > 2$	-	$Y \sim \chi_m^2$ and $Z \sim N(0,1)$: $X = \frac{Z}{\sqrt{Y/m}} \sim t_m$

Prior : $\xi(\theta)$	Likelihood : $f_n(\mathbf{x} \theta)$	Posterior : $\xi(\theta \mathbb{X} = \mathbb{X})$
$\theta \sim Beta(\alpha, \beta)$	$X_1,, X_n \sim iid Bernoulli(\theta)$	Beta $\left(\alpha + \sum x_i, \beta + n - \sum x_i\right)$
$\theta \sim Gamma(\alpha, \beta)$	$X_1, \dots, X_n \sim iid \ Poisson(\theta)$	$Gamma\left(\alpha+\sum x_i,\beta+n\right)$
$\theta \sim Gamma(\alpha, \beta)$	$X_1, \dots, X_n \sim iid Exponential(\theta)$	$Gamma\left(\alpha+n,\beta+\sum x_i\right)$
$\theta \sim N(\mu_0, v_0^2)$	$X_1, \dots, X_n \sim iid \ N(\theta, \sigma^2)$ $\sigma^2 > 0 \text{ is known.}$	$\mu_1 = \frac{N(\mu_1, v_1^2)}{\sigma^2 + n v_0^2 \bar{x}_n} \; ; \; v_1^2 = \frac{\sigma^2 v_0^2}{\sigma^2 + n v_0^2}$

Theorem (7.2.1): Suppose that the *n* random variables $X_1, ..., X_n$ form a random sample from a distribution for which the pdf is $f(x|\theta)$. Suppose also that the value of the parameter θ is unknown and the prior pdf of θ is $\xi(\theta)$. Then the posterior pdf is given by,

$$\xi(\theta|x_1,\dots,x_n) = \frac{\xi(\theta)f(x_1,\dots,x_n|\theta)}{g_n(x_1,\dots,x_n)} \stackrel{iid}{=} \frac{\xi(\theta)\prod_{i=1}^n f(x_i|\theta)}{g_n(x_1,\dots,x_n)} \text{ for } \theta \in \Omega$$

$$(1.1)$$

Where $g_n(x_1, ..., x_n)$ is the marginal joint pdf of $X_1, ..., X_n$. Furthermore, we can depict equation (1) equivalently:

$$\xi(\theta|x_1,...,x_n) \propto f_n(x_1,...,x_n|\theta)\xi(\theta) \tag{1.2}$$

Where the proportionality symbol \propto is used to convey that the left-hand side is equal to the right-hand side except possibly up to a constant. The appropriate constant can be determined by using the fact that $\int_{\theta \in \Omega} \xi(\theta|x_1, ..., x_n) d\theta = 1$ or $g_n(x_1, ..., x_n) = \int_{\Omega} f_n(x_1, ..., x_n|\theta) \xi(\theta) d\theta$.

Definition (7.3.1): (Conjugate Family/Hyperparameters). Let $X_1, X_2, ...$ be conditionally iid given θ with common pdf $f(x|\theta)$. Let Ψ be a family of possible distributions over the parameter space Ω . Suppose that no matter which prior distribution ξ we choose from Ψ , no matter how many observations $X = (X_1, ..., X_n)$ we observe, and no matter what are their observed values $\mathbf{x} = (x_1, ..., x_n)$, the posterior distribution $\xi(\theta|x_1, ..., x_n)$ is a member of Ψ . Then Ψ is called a *conjugate family of prior distributions under sampling* from the distributions $f(x|\theta)$. It is also said that the family Ψ is closed under sampling from the distributions $f(x|\theta)$. Finally, if the distributions in Ψ are parameterized by further parameters, then the associated parameters for the prior distribution are called the *prior hyperparameters* and the associated parameters of the posterior distribution are called the *posterior hyperparameters*.

Definition (7.3.2): (Improper Prior). Let ξ be a nonnegative function whose domain includes the parameter space of a statistical model. Suppose that $\int \xi(\theta)d\theta = \infty$. If we pretend as if $\xi(\theta)$ is the prior pdf of θ , then we are using an improper prior for θ .

Definition (7.4.3): (Bayes Estimator/Estimate). Let $L(\theta, a)$ be a loss function. For each possible value $x_1, ..., x_n$ of $X_1, ..., X_n$ let $\delta^*(x_1, ..., x_n)$ be a value of a such that $E[L(\theta, a)|x_1, ..., x_n] = \int_{\theta \in \Omega} L(\theta, a)\xi(\theta|x_1, ..., x_n)d\theta$ is minimized. Then δ^* is called a Bayes estimator of θ . Once $X_1 = x_1, ..., X_n = x_n$ is observed $\delta^*(x_1, ..., x_n)$ is called a Bayes estimate of θ .

Definition (7.4.4): (Squared Error Loss Function). The loss function $L(\theta, a) = (\theta - a)^2$ is called the squared loss error.

Corollary (7.4.1): Let θ be a real-valued parameter. Suppose that the squared error loss function $L(\theta, a) = (\theta - a)^2$ is used and the posterior mean of θ , $E[\theta|X_1, ..., X_n]$, is finite. Then the Bayes estimator of θ is $\delta^*(X_1, ..., X_n) = E[\theta|X_1, ..., X_n]$. **Definition** (7.4.5): (Absolute Error Loss Function). The loss function $L(\theta, a) = |\theta - a|$ is called the absolute error loss.

For every observed value $x_1, ..., x_n$, the Bayes estimate $\delta^*(x_1, ..., x_n)$ will now be the value of a for which the expectation $E[(|\theta - a|)|x_1, ..., x_n]$ is a minimum. This is when a is the median of the posterior distribution.

Consider a distribution for which the pdf is $f(x|\theta)$, where θ belongs to some parameter space Ω . It is said that the family of distributions obtained by letting θ vary over all values in Ω is an exponential family, if $f(x|\theta)$ can be written as follows for $\theta \in \Omega$ and all values of x:

$$f(x|\theta) = a(\theta)b(x)\exp\{c(\theta)d(x)\}$$

Here $a(\theta)$ and $c(\theta)$ are arbitrary functions of θ , and b(x) and d(x) are arbitrary functions of x.