

Imperative Programming in Asteroid – the Basics

Imperative programming -

- Explicit statements that change the program state
- The program state is defined by the values assigned to the variables in a program
- The most common way to change the state in imperative programming is through an explicit assignment of a new value to an existing variable

Imperative Programming in Asteroid – the Basics

- All three of our programming languages are at their core imperative programming languages.
- We start by looking at types.

- Let's review basic type theory for programming languages
- This is important in order to understand
 - Type hierarchies
 - Type checking
 - Type promotion

A Type is a Set of Values

Consider the Rust statement:

let n : i32 = 3;

Here we constrain n to take on any value from the set of all 32bit integer values.

Def: A type is a set of values.

Def: A <u>primitive type</u> is a type that is built into the language, e.g., integer, string.

Def: A <u>constructed type</u> is a user defined type, e.g., any type introduced by the user. In Asteroid this is done through the 'structure' statement.

Example: Asteroid, primitive type

q:%real = 1.1;
q is of type float, only a value that is a member of the set of all floating point values can be assigned to q. possible floating point values

Example: Rust, constructed type

```
struct Rectangle {
    xdim: i32,
    ydim: i32,
}

fn main() {
    let r:Rectangle = Rectangle { xdim: 3, ydim: 4 };
}
```

Now the variable r only accepts values that are members of type Rectangle; object instantiations of struct Rectangle.

Example: Asteroid, constructed type

```
structure Rectangle with
  data xdim.
  data ydim.
end

let r:%Rectangle = Rectangle(4,2).

an element of
```

type Rectangle.

Def: a <u>subtype</u> is a <u>subset</u> of the elements of a type.

Example: C The notation A < B means A is a subtype of B.

Short is a subtype of int: short < int

Observations:

- (1) converting a value of a subtype to a values of the super-type is called <u>widening</u> type conversion. (safe)
- (2) converting a value of a supertype to a value of a subtype is called <u>narrowing</u> type conversion. (not safe)

Example: C, partial type hierarchy

char < short < int < float < double

Subtypes give rise to type hierarchies and type hierarchies allow for automatic type coercion – widening conversions!

Subtypes

- A convenient way to visualize subtypes is using Venn diagrams
- Consider, short < int
- It is easy to see that the shorts are a subset of the integer values
- The green arrow represents a widening type conversion is always safe
- The red arrow represents a narrowing type conversion and is never safe

Why do we use types?

- Types allow the language system to assist the developer write <u>better programs</u>. <u>Type</u> <u>mismatches</u> in a program usually indicate some sort of <u>programming error</u>.
 - Static type checking check the types of all statements and expressions at compile time.
 - Rust
 - <u>Dynamic type checking</u> check the types at <u>runtime</u>.
 - Asteroid
 - Python

Type Equivalence

- Fundamental to type checking is the notion of type equivalence:
 - Figuring out whether two type description are equivalent or not
 - This is especially important for constructed types like class/struct objects.

Type Equivalence

I. <u>Name (nominal) Equivalence</u> – two objects are of the same type if and only if they share the same <u>type name</u>.

Example: Rust – constructed type

```
struct Type1 {x:i64, y:i64}

struct Type2 {x:i64, y:i64}

fn main () {
    let x: Type1 = Type1{x:1,y:2};
    let y: Type2 = x;
    println!("{:?}",y);
}

Error; even though the types look the same, their names are different, therefore, Rust will not compile.

PRust uses name equivalence
```


Type Equivalence

II. <u>Structural Equivalence</u> – two objects are of the same type if and only if they share the same <u>type structure</u>.

Example: Haskell

```
type Type1 = (Integer, Integer)
type Type2 = (Integer, Integer)

x :: Type1
y :: Type2

x = (1,2)
y = x
```

Even though the type names are different, Haskell correctly recognizes this statement.

Haskell uses <u>structural equivalence</u>.

Type checking

 Type checking refers to the process of making sure that all expressions and statements are properly typed.

Type Checking

- Here is the Python type checker in action
 - int and str are not related in Python

```
Python 3.8.10 (default, Nov 14 2022, 12:59:47)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> "my string" + 1
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

>>> ■
```


Type Checking

- Here is the type checker of the Rust compiler in action
 - i16 < i32

```
fn main () {
    let x:i32 = 3;
    let y:i16 = 2*x;
    print!("{}",y);
}
                           ubuntu$ rustc assign.rs
                           error[E0308]: mismatched types
                           --> assign.rs:3:16
                                 let v:i16 = 2*x;
                                            ^^^ expected `i16`, found `i32`
                                       expected due to this
                           help: you can convert an `i32` to `i16` and panic if the converted value wouldn't fit
                           3
                                 let y:i16 = (2*x).try_into().unwrap();
                           error: aborting due to previous error
                           For more information about this error, try `rustc --explain E0308`.
                           ubuntu$
```


Type Checking in Asteroid

- The Asteroid type checker in action
 - Integer < real

```
Asteroid Version 1.1.4

(c) University of Rhode Island

Type "asteroid -h" for help

Press CTRL-D to exit

[ast> let x:%real = 3.1.

[ast> let y:%integer = x.

error: pattern match failed: expected type 'integer' got a term of type 'real'

ast>
```


Type Promotion

- Convert a subtype to a supertype (automatically)
 - Widening conversion
- This usually happens at the operator level

Type Promotion - Python

- The addition operation is only defined for operands of the same type
- In order to apply the operator in a mixed-type situation one of the operands needs to be promoted
 - If promotion is not possible then flag a type error

```
Python 3.8.10 (default, Nov 14 2022, 12:59:47)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> isinstance(3.5 + 1, float)
True
>>>
```


Type Promotion - Asteroid

```
Asteroid Version 1.1.4

(c) University of Rhode Island
Type "asteroid -h" for help
Press CTRL-D to exit
[ast> load system type.
[ast> type @gettype (3.5 + 1).
real
ast>
```

 $Promotion\ integer \rightarrow real$

Primitive Types & Constants in Asteroid

- Constants are available for all the primitive data types,
 - integer, e.g. 1024
 - real, e.g. 1.75
 - string, e.g. "Hello, World!"
 - boolean, e.g. true

Type Hierarchies

- Asteroid arranges primitive data types in a type hierarchy,
 - boolean < integer < real < string
- As we have seen, type hierarchies facilitate automatic type promotion

```
let x:%string = "value: " + 1.
In002/let2.ast
```

Type promotion: plus as string concatenate op

Structured Data Types

- Asteroid also supports the built-in data types:
 - list
 - tuple
- These are structured data types in that they can contain entities that belong to other data types.
- Lists are mutable objects whereas tuples are immutable.
- Some examples,

```
Note: (1,) \neq (1)
```

```
let l = [1,2,3]. -- this is a list
let t = (1,2,3). -- this is a tuple
let one_tuple = (1,). -- this is a 1-tuple
```

In002/let1.ast

Structured Data Types

- Lists and tuples themselves are also embedded in type hierarchies, although very simple ones:
 - list < string
 - tuple < string
- That is, any list or tuple can be viewed as a string. This is very convenient for printing lists and tuples,

```
Asteroid Version 1.1.4

(c) University of Rhode Island

Type "asteroid -h" for help

Press CTRL-D to exit

ast> load system io.

ast> io @println ("this is my list: " + [1,2,3]).

this is my list: [1,2,3]

ast>
```


The None Type

- o Asteroid supports the none type.
- The none type has only one member
 - A constant named none.
 - The empty set of parentheses () can be used as a shorthand for the none constant.
 - That is: none = ()

Other Data Types

- o In Asteroid we also have additional data types:
 - function
 - pattern
 - user defined data types via structures

```
load system type.

-- define a function
function inc with x do
    return x+1.
end

-- show that 'inc' is of type 'function'
assert (type @gettype(inc) == "function").
```

In002/ftype.ast

The Basics

asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#the-basics