METABOLIC COMPASS

A Mobile Health Platform for Understanding the Impact of Circadian Behaviors on Metabolic Syndrome, and Obesity

Jeanne Clark, Dept. of Medicine (GIM)
Tom Woolf, Dept. of Physiology
Yanif Ahmad, Dept. of Computer Science
https://metaboliccompass.com

Age-adjusted Prevalence of Obesity and Diagnosed Diabetes Among US Adults

Obesity (BMI ≥30 kg/m²)

Diabetes

Global Prevalence of Obesity in Adult Females

Chronic Disease is often a job of Managing Risk

Adults with overweight and obesity: Aged 20+

NOTES: BMI is body mass index. Overweight but not obese ($25 \le BMI < 30$); Grade 1 obesity ($30 \le BMI < 35$); Grade 2 obesity ($35 \le BMI < 40$); Grade 3 obesity ($BMI \ge 40$). SOURCE: CDC/NCHS, *Health*, *United States*, *2015*, Figure 9 and Table 58. Data from the National Health and Nutrition Examination Survey (NHANES).

and care is moving from Episodic to Continuous

Technology is likely to be an important player: Digital Therapeutics

A Hopkins Connected Success Story:

Diabetes Prevention Program

Omada Health, Noom, and others

(https://nccd.cdc.gov/DDT_DPRP/City.aspx?STATE=OTH&CITY=OTH)

Diabetes Prevention Program Research Group. N Engl J Med 2002;346:393-403.

Metabolic Syndrome

Cholesterol" <1.0 mmol/L High Blood Triglycerides >1.5 mmol/L

Waist >~38" Men >~35" Women METABOLIC SYNDROME (3 or more of the 5 factors)

Blood Pressure Elevated >135/85 mmHg

High Blood Sugar >5.6 mmol/L

How many people have it then? It's not too common, right?

How does > 30% of the US population strike you?

(Obesity)
Stroke
Atheroschlorosis

Coronory Heart
Gout Disease
Type 2
Fatty Liver Diabetes
Disease
Alzheimers
Arthritis
Asthma

20% of the "Fat" are "Fit"

40% of the "lean" are unhealthy

Circadian Rhythms & Time-Restricted Feeding

Circadian Rhythms & Time-Restricted Feeding

Results from Mouse Studies

Satchin Panda: Salk

Log in

METABOLIC COMPASS

Register

Circadian Behavior Patterns

Mobile Health Frameworks

Google Fit, ResearchStack

Electronic consent

HealthKit: ~70 physiological datatypes, no cloud storage/compute

Google Fit: ~40 physiological datatypes, no HIPAA-compliant cloud

Access to Food 8 hours per Day Time-restricted

Circadian Behavior Patterns

- Less of the day spent eating
- Greater time interval between last meal and sleep
- Having the largest meal at midday, rather than after dark
- Eating fewer sugars and carbs late in the day
- Heart-rate timing for a sustained peak value

Circadian Behavior Patterns

Behavioral Variables

Circadian activity timings
Engagement: collection rates, sessions
Adherence: on circadian plans and goals

Physiological Variables

Weight, heart rate variability, blood pressure, nutrition, etc.

Recruiting now: Large population observational study

Circadian Behavior Patterns

Circadian activity timings

Engagement: collection rates, sessions

Adherence: on circadian plans and goals

Physiological Variables

Weight, heart rate variability, blood pressure, nutrition, etc.

Feedback

Just-in-time Feedback
Notifications
Self-established Goals
Group & cohort Messaging

Recruiting now: Large population observational study

Lifestyle modification and behavior change

Metabolic Compass Architecture

(Open source: https://github.com/yanif/circator)

Metabolic Compass Architecture

(Open source: https://github.com/yanif/circator)

Open Data Delivery

Data access agreement prohibits any attempt to reidentify datasets

Snapshots

- Compressed, anonymized behaviors and measures
- Sampling facilities

Streaming

- Real-time dissemination of anonymized behaviors and measures
- Delay and replay facilities

Data Synchronization and Extraction Services

elay-tolerant, orderaware client libraries

Server

Data and units standardization

Append-only in-memory arena for high-throughput writes

Robust multidevice data replication

Write boundary

Extensible in-database extraction for conflict-free time series

Dedup

Impute

Structured data boundary

Sparse time series schema, grouped by physiological relevance, partitioned by user ids

Incremental views for population statistics

Data Security & Privacy

- Anonymized, encrypted-at-rest, HIPAA compliant
- In-flight separation of PII, and physiological & behavior data

Just-in-Time Metabolic Feedback

Towards the right behavior at the right time

Sequence prediction goal:

Learn the distribution of future circadian patterns from users' health and behavioral history

Prediction techniques:
Recurrent neural
nets/LSTMs
Extended Kalman filter
Markovian models

Stochastic optimization goal:

Optimize over all possible future circadian patterns

Objective design, factoring in:

Adherence, to drive "sticky" behavior change

Assimilation, to drive messaging that "sinks in"

Acquisition, via reminders

Analytics Data Model

 Viewed as a regression problem (e.g., a general linear model) Circadian behavior features: 288 columns, behavior states for 5-minute windows throughout the day

Target measures

Physiology and nutrition features, e.g., heart rate, energy expenditure for 5-minute windows, weight history, sugar, salt, etc

Parameters

Analytics Workflow

Workflow Design Challenges:

- Model granularity
 - User-specific
 - Subpopulation
- Subpopulation identification
 - Top-down
 - Bottom-up
- Self-reporting validation
- Adaptation and feedback
- Scalable inference

Circadian Planning

Challenge: from notifications to modeling behavior vectors

Optimization desiderata:

- Regularization term
- Adherence/compliance likelihood term
- Constraints to reject undesirable behavior solutions
- Yield multiple solutions for user consideration

Current status:

- Beta test (TestFlight), seeking 2000 iOS users
- Developing a "champions"-network

Phase 1 (general population):

- Apple App Store release
- Android / Google Play Release

Phase 2 (early-adopters):

- Quantified-Self communities
- Ketogenic diet communities

Phase 3 (clinical):

- In-clinic flyers
- PaTH network
- AHA Strategically Focused Research Network on Obesity

7:12 PM

●●●○○ T-Mobile Wi-Fi 🖘

Log in

Register

Contribute Today!

https://metaboliccompass.com

METABOLIC COMPASS

A RESEARCHKIT APP FOR TRACKING AND UNDERSTANDING YOUR METABOLIC HEALTH.

Thank you!

LEARN MORE

