

Содержание

- □ Историческая справка
- □ Основные команды SQL
- □ Встроенный SQL
- □ Динамический SQL
- □ Тренинг написания запросов
- □ SQL/PSM

Технологии баз данных © М.Л. Цымбл

SQL

- □ SQL (Structured Query Language, язык структурных запросов) стандартный язык реляционных баз данных.
- В базовом варианте SQL является информационно-логическим языком, а не языком программирования.
- Спецификация SQL/PSM (Persistent Stored Modules, хранимые процедуры) представляет собой процедурное расширение SQL.
- SQL основан на реляционной алгебре.
- □ Составные части SQL:
 - язык определения данных (Data Definition Language, DDL)
 - язык манипулирования данными (Data Manipulation Language, DML)
 - □ язык определения доступа к данным (Data Control Language, DCL)
 - язык управления транзакциями (Transaction Control Language, TCL)

Технологии баз данных © М.Л. Цымблер

SQL: историческая справка

4		
Год	Название	Отличительные особенности
1970	SEQUEL	Язык управления данными экспериментальной СУБД IBM System R (SEQUEL – Structured English QUEry Language, структурированный английский язык запросов).
1986	SQL-86 или SQL-87	Первый вариант стандарта, принятый институтом ANSI и одобренный ISO в 1987.
1989	SQL-89	Доработанный вариант предыдущего стандарта.
1992	SQL-92	Значительные изменения предыдущего стандарта.
1999	SQL:1999 или SQL-3	Добавлена поддержка регулярных выражений, рекурсивных запросов, поддержка тритгеров, базовые процедурные расширения, нескалярные типы данных и некоторые объектно-ориситрованные возможности.
2003	SQL:2003	Добавлена поддержка работы с XML-данными, функции для работы с OLAP-базами данных, генераторы последовательностей и основанные на них типы данных.
2006	SQL:2006	Значительное расширение поддержки работы с XML-данными. Возможность совместно использовать в запросах SQL и XQuery.
2008	SQL:2008	Улучшение возможностей OLAP-функций, устранение некоторых неоднозначностей стандарта SQL:2003.
l		Технологии баз данных © М.Л. Цымблер

SQL: плюсы и минусы

□ Преимущества

- Независимость от конкретной СУБД
- □ Стандарты
- □ Декларативность
- □ Недостатки
 - Несоответствие классической РМД
 - Таблица ≠ отношение, строка ≠ кортеж и др.
 - □ Сложность
 - Избыточность языковых средств
 - Большой объем стандарта (более 1000 стр.)
 - □ Отступления от стандартов
 - "Hадмножества подмножества SQL": Oracle PL/SQL, MS TransactSQL, PL/pgSQL и др.

Гехнологии баз данных © М.Л. Цымбле

Команды SQL

□ DDL

- □ Создание, удаление, изменение определения доменов.
- □ Создание, удаление, изменение определения таблиц.
- □ DML
 - Выборка записей из таблиц.
 - □ Вставка записей в таблицу.
 - Обновление записей в таблице.
 - Удаление записей из таблицы.

Технологии баз ланных СМ Л. Пымблег

Операции с доменами

- □ B SQL домены не ограничивают сравнения, а являются лишь синонимами встроенных типов данных (char, int, date, time, timestamp, bit и др.)
- □ Создание домена
 - create domain Color char(10);
 - create domain Gender char default "?" constraint chk_gender (check (value in 'M', 'Ж'));
- □ Удаление домена
 - □ drop domain Color restrict;
 - □ drop domain Gender cascade;
- □ Изменение домена
 - alter domain Gender char constraint chk_gender (check (value in 'M', 'Ж'));

Технологии баз данных © М.Л. Цымблер

Модельная база данных SP ₹ PID ₹ SID ₹ PID Name Name City Qty City Rating Price Color Weight □ S – Поставщики □ Р – Детали □ SP – Поставки

Операции с таблицами: создание

- create table S (
 SID char(4) primary key,
 Name char(10) not null,
 City char(10) not null,
 Rating int not null);
- reate table P (
 PID char(4) primary key,
 Name char(10) not null,
 City City char(10) not null,
 Price int not null,
 Color char(10) not null
 Weight float not null);
- □ create table SP (
 SID char(4),
 PID char(4),
 Qty int not null,
 primary key (SID, PID),
 foreign key (SID)
 references S (SID)
 on delete cascade*
 on update cascade,
 foreign key (PID)
 references P (PID)
 on delete cascade
 on update cascade
 check (Qty>0));

*Допустимы режимы cascade, set null, set default и no action ехнологии баз данных © М.Л. Цымблер

Операции с таблицами:	
изменение и удаление	
 alter table P add column Discount float default 0; alter table P 	
<pre>add constraint check (Price>0) , add constraint check (Weight>0);</pre>	
drop table S restrict;drop table SP cascade;	
,	
Технологии баз данных	
	1
Операции со словарем БД	
□ Доступные по чтению таблицы словаря □ SCHEMATA □ DOMAINS	
□ TABLES □ VIEWS	
□ COLUMNS □ TABLE_PRIVILEGES	
COLUMN_PRIVILEGESTABLE_CONSTRAINTS	
□ REFERENTIAL_CONSTRAINTS □ и др.	
Технологии баз данных 🌼 М.Л. Цымблер	
Выборка данных из таблиц	
select [distinct] список выбираемых полей	
from список таблиц выбора [where условие отбора записей]	
[order by список упорядочиваемых полей] [group by список группируемых полей]	
[having условие отбора групп];	

Выборка

□ Получить коды, имена и семантику рейтинга поставщиков.

select S.SID, S.Name,

case

when S.Rating < 10 then 'сомнительный'

when S.Rating < 15 then 'посредственный'

when S.Rating < 20 then 'приемлемый'

when S.Rating < 25 then 'надежный'

end as Rating

from S;

Технологии баз данных © М.Л. Цымблер

Вставка данных в таблицу

□ insert

into таблица [список полей]

values (список значений);

□ Вставка одной строки □ insert

into P (PID, Color, Name, Weight, City) values (Р10', 'белый', 'Брус', 3, 'Москва');

□ Вставка нескольких строк

□ insert

into AvgRatings (City, Rating) select S.City, avg(S.Rating) from S

group by S.City;

Обновление данных в таблице

update таблица

set список обновляемых полей

[where условие отбора обновляемых записей];

- □ Обновление одной строки
 - update S

set S.SID='S007', S.Name='Бонд' where S.SID='S7';

- □ Обновление нескольких строк
 - update S

set S.Rating=S.Rating+1 $\textbf{where} \ S. \\ \texttt{Rating} \small < (select \ avg(S. \\ Rating) \ from \ S); \\$

set P.City = (select S.City from S where S.SID='S007')

where P.Color='белый';

Удаление данных из таблицы

delete

from таблица

[where условие отбора удаляемых записей];

- □ Удаление одной строки
 - delete

from S

where S.SID='S007';

- □ Удаление нескольких строк
 - delete

from S

where S.Rating<(select avg(S.Rating) from S);</pre>

■ delete from SP;

Технологии баз данных © М.Л. Цымблер

Встроенный SQL

- □ Стандарт SQL поддерживает возможность встраивания команд SQL в программу на языке программирования (Ada, C, Pascal и др.).
- □ В команду SQL могут передаваться переменные программы на базовом языке. В команде SQL можно изменять значения этих переменных.
- □ В программе на базовом языке можно анализировать результат выполнения команды SQL. В программе на базовом языке можно построчно обрабатывать результат SQL запроса.

Технологии баз данных © М.Л. Цымблер

**CTOHMOCTЬ ПОСТАВОК ЗАДАННОГО ПОСТАВЩИКА ИЛИ -1 В СЛУЧАЕ ОШИБКИ*/ int SumSP (char mySID[4]) **EXEC SQL begin declare section; float sum; char SQLSTATE[6]: EXEC SQL end declare section; EXEC SQL end declare section; EXEC SQL select sum(SP-Qty*P-Price) into sum select sum(SP-Qty*P-Price) into sum from S. P. S.P where SP-SID =: mySID and SP-PID=P-PID; if (strcmp(\$QLSTATE_00000")) return sum; else return -1; FEXIOLOGICAL GEO ДВЯНЬЕХ CM.Л. ЦАМбаер

Курсоры Курсор – указатель на область памяти, в которой хранится результат выполнения запроса SQL. Курсоры используются для сканирования результирующих отношений в программе на базовом языке программирования. Курсор представляет собой объект с методами ореп – открыть fetch – передвинуть курсор на следующую строку close – закрыть

3	a	п	b	O	C
_	_		~	_	_

- □ Получить имя поставщика, имя детали, имя проекта и количество деталей для поставок деталей из Челябинска.
- □ select distinct S.Name, P.Name, J.Name, SPJ.Qty from S, P, SPJ where S.SID=SPJ.SID and P.PID=SPJ.PID and P.City='Челябинск'

Технологии баз ланных СМ Л. Пымблег

Запрос

53

- □ Получить все тройки "код поставщика код детали – код проекта", где поставщик, деталь и проект размещены в одном городе.
- select S.SID, P.PID, J.JID from S, P, J where S.City=P.City and P.City=J.City

Технологии баз данных © М.Л. Цымбле

Запрос

54

- □ Получить все тройки "код поставщика код детали – код проекта", где поставщик, деталь и проект НЕ размещены в одном городе.
- select S.SID, P.PID, J.JID from S, P, J where not (S.City=P.City and P.City=J.City)

3	2	П	n	\sim	
J	а	ш	ν	U	u

- 55
- □ Получить все тройки "код поставщика код детали – код проекта", где никакие из двух выводимых поставщиков, деталей и проектов НЕ размещены в одном городе.
- select S.SID, P.PID, J.JID from S, P, J where S.City<>P.City and P.City<>J.City and J.City<>P.City

Запрос

- Б Полин
- □ Получить коды деталей, поставляемых поставщиками из Челябинска.
- □ select distinct SPJ.PID from SPJ where 'Челябинск' = (select S.City from S where S.SID=SPJ.SID)

ехнологии баз данных ОМ.Л. Цымбло

Запрос

- 57
- Получить названия деталей, поставляемых поставщиками из Челябинска для проектов в Челябинске.
- select distinct P.Name from SPJ, P where 'Челябинск' = (select S.City from S where S.SID=SPJ.SID) and 'Челябинск' = (select J.City from J where J.JID=SPJ.JID) and SPJ.PID=P.PID

Гехнологии баз данных

© М.Л. Цымбле

0					
٠,	a	П	n	0	
v	а	11	v	U	u

- □ Получить все пары названий городов, где поставщик из первого города обеспечивает проект из второго
- □ select distinct S.City as SCity, J.City as JCity from S, J where exists (select * from SPJ where S.SID=SPJ.SID and J.JID=SPJ.JID)

Запрос

- □ Получить номера деталей, поставляемых для всех проектов, обеспечиваемых поставщиком из того же города, где размещен проект.
- □ select distinct SPJ.PID from SPJ where (select S.City from S where S.SID=SPJ.SID) = (select J.City from J where J.JID=SPJ.JID)

Запрос

- □ Получить номера проектов, обеспечиваемых по крайней мере одним поставщиком из другого города.
- □ select distinct SPJ.JID from SPJ where (select S.City from S where S.SID=SPJ.SID) <> (select J.City from J where J.JID=SPJ.JID)

Технологии баз данных

© М.Л. Цымблер

3	2	П	n	\sim	
J	а	ш	ν	U	U

- □ Получить общее количество проектов, обеспечиваемых поставщиком S1.
- select count (distinct SPJ.JID) as N from SPJ where SPJ.SID='S1'

Гехнологии баз ланных СМЛ Цымблер

Запрос

02

- Для каждой детали, поставляемой для проекта, получить номер детали, номер проекта и общее количество.
- □ select SPJ.PID, SPJ.JID, sum(SPJ.Qty) as N from SPJ group by SPJ.PID, SPJ.JID

Технологии баз данных © М.Л. Цымбле

Запрос

63

- □ Получить номера поставщиков таких деталей, которые поставляются поставщиком, поставляющим красные детали.
- select SPJa.SID
 from SPJ as SPJa, SPJ as SPJb, SPJ as SPJc
 where SPJa.PID=SPJb.PID and SPJb.SID=SPJc.SID
 and 'красный'=(
 select P.Color
 from P
 where P.PID=SPJc.PID)

Технологии баз данных

© М.Л. Цымблер

Запрос

64

- □ Получить номера проектов из города, стоящего последним по алфавиту.
- □ select J.JID from J where J.City=(select max(J.City) from J)

Технологии баз данных © М.Л. Цымблер

Запрос

65

- Получить номера поставщиков, поставляющих одну и ту же деталь для всех проектов.
- select S.SID
 from S
 where exists (
 select * from P
 where not exists (
 select * from J
 where not exists (
 select * from SPJ
 where SPJ.SID=S.SID and
 SPJ.PID=P.PID and SPJ.JID=J.JID)))

Гехнологии баз данных С М.Л. Цымбле

SQL/PSM

create procedure Statistics(aliveS out number, deadS out number, aliveP out number, deadP out number) as declare

t number; **begin**

select count(*) into t from S; select count(*) into aliveS from SP where SP.SID=S.SID; deadS:=t-aliveS; select count(*) into t from P; select count(*) into aliveP from SP where SP.PID=P.PID;

deadP:=t-aliveP;

Технологии баз ланных СМ Л. Цымб

Заключение
or I
□ SQL – стандартный язык реляционных баз данных.
□ Составные части SQL:
■ язык определения данных (DDL)
■ язык манипулирования данными (DML)
■ язык определения доступа к данным (DCL)
 язык управления транзакциями (TCL)
□ SQL является мощным и избыточным языком
запросов, а не языком программирования.
Таупологии баз данниу СМ II Пимблер