Série 12

Exercice 1. 1. Calculer les parametres complexes des symetries axiales, s_1 et s_2 par rapport aux droites d'equation

$$3x + 4y = 2$$
, $-2x + 5y = 3$.

2. A quoi est egale la composee

$$s_1 \circ s_2$$
?

quels sont ses parametres complexes?

3. Meme question pour les droites

$$3x + 4y = 2$$
, $6x + 8y = 6$.

Exercice 2. Soit $r_{\alpha,\mu}$ et $s_{\beta,\nu}$ des isometries affines (rotation et symetrie) associees aux parametres complexes $\alpha, \beta \in \mathbb{C}^1, \mu, \nu \in \mathbb{C}$.

1. Calculer les parametres de l'isometrie conjuguee

$$r_{\alpha,\mu} \circ s_{\beta,\nu} \circ r_{\alpha,\mu}^{-1};$$

interpreter geometriquement le resultat.

2. Que dire si $s_{\beta,\nu}$ est une symetrie axiale? Si $s_{\beta,\nu}$ est une symetrie glissee?

Exercice 3. Soit r_{ρ} la rotation lineaire de parametre complexe $\rho \in \mathbb{C}^1$ et s_1 la symetrie lineaire de parametre complexe 1 (la symetrie par rapport a l'axe reel).

1. Trouver les parametre complexe ρ' tel que

$$r_{\rho} = s_{\rho'} \circ s_1.$$

2. Que vaut $r_{\rho'}^2$? Comment interpretez vous geometriquement ce resultat (c'est bien connu.)

Exercice 4. Soit φ une isometrie et

$$\mathrm{Fix}(\varphi)=\{P\in\mathbb{R}^2,\ \varphi(P)=P\}$$

l'ensemble des points fixes de φ . Plus generalement pour $\Phi \subset \text{Isom}(\mathbb{R}^2)$ un ensemble quelconque d'isometries, soit

$$\operatorname{Fix}(\Phi) = \{ P \in \mathbb{R}^2, \ \forall \varphi \in \Phi, \ \varphi(P) = P \}$$

l'ensemble des points qui sont fixes par tous les element de Φ (l'intersection des Fix (φ) pour $\varphi \in \Phi$.)

- 1. Soit ψ une autre isometrie, et $\varphi' = \operatorname{Ad}(\psi)(\varphi) = \psi \circ \varphi \circ \psi^{-1}$ l'isometrie conjuguee; que vaut $\operatorname{Fix}(\varphi')$ en fonction de $\operatorname{Fix}(\varphi)$. Meme question pour $\operatorname{Ad}(\psi)(\Phi)$.
- 2. Montrer (sans calcul) que le conjugue d'une symetrie axiale par une isometrie est une symetrie axiale; meme question pour une symetrie glisssseeeee.
- 3. Montrer que toute droite (affine) peut etre envoyee sur toute autre droite par une rotation (affine). En deduire que toute symetrie axiale est conjuguee a la symetrie lineaire $s_1 = s_{1,0}$.
- 4. Etant donne $s_{\beta,\nu}$ une symetrie axiale ou glissee donner une condition necessaire et suffisante sur (β,ν) pour que $s_{\beta,\nu}$ soit conjuguee a $s_{1,0}$ par une rotation; quand c'est le cas quels sont les parametres de cette rotation et retrouver ainsi les formules qui donnent l'axe d'une symetrie axiale en fonction de (β,ν) .