# Deckblatt für die Ausarbeitung zu Versuch 2

| Teilnehmer       | Gruppe Nr.: |
|------------------|-------------|
| Nils Helming     |             |
| Nabeel Elamaireh | A2          |
| Lukas Piening    |             |

## KV-Diagramme für Aufgabe 1:



|    |   |   | (0 | _  | Υ0       |
|----|---|---|----|----|----------|
|    | 0 | 0 | 1  | 0  |          |
| X1 | 0 | 1 | 1  | 1  |          |
|    | 1 | 1 | 0  | 1  | <br>  X3 |
| ,  | 0 | 1 | 1  | 1  |          |
|    |   |   |    | X2 |          |

|    |   | X0 |   |   |    |  |
|----|---|----|---|---|----|--|
|    | 0 | 1  | 0 | 1 |    |  |
| X1 | 1 | 0  | 1 | 0 |    |  |
| ^' | 0 | 1  | 0 | 1 | X3 |  |
| •  | 1 | 0  | 1 | 0 |    |  |
|    |   |    |   |   |    |  |

|    |   | > | _ | Y2 |    |
|----|---|---|---|----|----|
|    | 0 | 1 | 0 | 1  |    |
| X1 | 1 | 0 | 1 | 0  |    |
|    | 0 | 1 | 0 | 1  | X3 |
| ·  | 1 | 0 | 1 | 0  |    |
| X2 |   |   |   |    |    |

#### KV-Diagramme für Aufgabe 2:

|    |    | > | (0 | _ | Y        |
|----|----|---|----|---|----------|
|    | *  | 0 | 0  | 1 |          |
| X1 | 0  | * | 0  | 0 |          |
| ^' | 1  | * | 1  | * | <br>  X3 |
|    | *  | 0 | 1  | 1 |          |
|    | X2 |   |    |   |          |

|    |    | > | (0 | _ | Υ  |
|----|----|---|----|---|----|
|    | *  | 0 | 0  | 1 |    |
| X1 | 0  | * | 0  | 0 |    |
|    | 1  | * | 1  | * | X3 |
|    | *  | 0 | 1  | 1 |    |
|    | X2 |   |    |   |    |

#### Aufgabe 1:

 $Y_1$ :

$$Y = (X_3 \wedge X_2 \wedge X_1 \wedge X_0)$$

 $Y_0$ :

$$\overline{Y} = (X_3 \wedge X_2 \wedge X_1 \wedge X_0) \vee (\overline{X_3} \wedge \overline{X_1} \wedge \overline{X_0}) \vee (\overline{X_2} \wedge \overline{X_1} \wedge \overline{X_0}) \vee (\overline{X_3} \wedge \overline{X_2} \wedge \overline{X_0}) \vee (\overline{X_3} \wedge \overline{X_2} \wedge \overline{X_1})$$
 nach dem Shannonschen Gesetz:

$$Y = (\overline{X_3} \vee \overline{X_2} \vee \overline{X_1} \vee \overline{X_0}) \wedge (X_3 \vee X_1 \vee X_0) \wedge (X_2 \vee X_1 \vee X_0) \wedge (X_3 \vee X_2 \vee X_0) \wedge (X_3 \vee X_2 \vee X_1)$$

 $Y_2$ :

Disjunktive Minimalform:

$$Y = (X_0 \wedge \overline{X_1} \wedge \overline{X_2} \wedge \overline{X_3})$$

$$\vee (\overline{X_0} \wedge X_1 \wedge \overline{X_2} \wedge \overline{X_3})$$

$$\vee (\overline{X_0} \wedge \overline{X_1} \wedge X_2 \wedge \overline{X_3})$$

$$\vee (\overline{X_0} \wedge \overline{X_1} \wedge \overline{X_2} \wedge X_3)$$

$$\vee (\overline{X_0} \wedge X_1 \wedge X_2 \wedge X_3)$$

$$\vee (X_0 \wedge \overline{X_1} \wedge X_2 \wedge X_3)$$

$$\vee (X_0 \wedge \overline{X_1} \wedge X_2 \wedge X_3)$$

$$\vee (X_0 \wedge X_1 \wedge \overline{X_2} \wedge X_3)$$

$$\vee (X_0 \wedge X_1 \wedge \overline{X_2} \wedge X_3)$$

$$\vee (X_0 \wedge X_1 \wedge X_2 \wedge \overline{X_3})$$

Konjunktive Minimalform:

$$\overline{Y} = (\overline{X_0} \wedge \overline{X_1} \wedge \overline{X_2} \wedge \overline{X_3}) \vee (X_0 \wedge X_1 \wedge X_2 \wedge X_3)$$
 
$$\vee (X_0 \wedge X_1 \wedge \overline{X_2} \wedge \overline{X_3}) \vee (\overline{X_0} \wedge \overline{X_1} \wedge X_2 \wedge X_3)$$
 
$$\vee (X_0 \wedge \overline{X_1} \wedge X_2 \wedge \overline{X_3}) \vee (\overline{X_0} \wedge X_1 \wedge \overline{X_2} \wedge X_3)$$
 
$$\vee (X_0 \wedge \overline{X_1} \wedge \overline{X_2} \wedge X_3) \vee (\overline{X_0} \wedge X_1 \wedge X_2 \wedge \overline{X_3})$$
 nach dem Shannonschen Gesetz: 
$$Y = (X_0 \vee X_1 \vee X_2 \vee X_3) \wedge (\overline{X_0} \vee \overline{X_1} \vee \overline{X_2} \vee \overline{X_3})$$
 
$$\wedge (\overline{X_0} \vee \overline{X_1} \vee X_2 \vee X_3) \wedge (X_0 \vee \overline{X_1} \vee \overline{X_2} \vee \overline{X_3})$$
 
$$\wedge (\overline{X_0} \vee X_1 \vee \overline{X_2} \vee X_3) \wedge (X_0 \vee \overline{X_1} \vee X_2 \vee \overline{X_3})$$
 
$$\wedge (\overline{X_0} \vee X_1 \vee X_2 \vee \overline{X_3}) \wedge (X_0 \vee \overline{X_1} \vee \overline{X_2} \vee \overline{X_3})$$
 
$$\wedge (\overline{X_0} \vee X_1 \vee X_2 \vee \overline{X_3}) \wedge (X_0 \vee \overline{X_1} \vee \overline{X_2} \vee \overline{X_3})$$

Beide Minimalformen besitzen beide einen Aufwand von 40.

### **Aufgabe 2:**

a)

Disjunktive Minimalform:

$$Y = (X_3 \wedge X_2) \vee (\overline{X_0} \wedge \overline{X_1}) \vee (X_3 \wedge \overline{X_0})$$

Konjunktive Minimalform:

$$\overline{Y} = (X_1 \wedge \overline{X_3}) \vee (X_0 \wedge \overline{X_3}) \vee (X_0 \wedge \overline{X_2})$$

nach dem Shannonschen Gesetz:  $Y = (\overline{X_1} \vee X_3)$ 

$$Y = (\overline{X_1} \vee X_3) \wedge (\overline{X_0} \vee X_3) \wedge (\overline{X_0} \vee X_2)$$

b)

Zur Umsetzung in ein Schaltgatter mit ausschließlich NAND und Inverter-Gattern müssen die Minimalformen umgestellt werden, sodass auch diese nur NAND und Inverter verwenden:

Disjunktive Minimalform:

$$Y = (X_3 \wedge X_2) \vee (\overline{X_0} \wedge \overline{X_1}) \vee (X_3 \wedge \overline{X_0})$$
 
$$= \overline{(\overline{X_3} \wedge X_2)} \vee \overline{(\overline{X_0} \wedge \overline{X_1})} \vee \overline{(X_3 \wedge \overline{X_0})}$$
 
$$= \overline{(\overline{X_3} \wedge X_2)} \wedge \overline{(\overline{X_0} \wedge \overline{X_1})} \wedge \overline{(X_3 \wedge \overline{X_0})}$$
 nach DeMorgan:



Konjunktive Minimalform:

$$Y = (\overline{X_1} \vee X_3) \wedge (\overline{X_0} \vee X_3) \wedge (\overline{X_0} \vee X_2)$$

alle nicht negierten Eingänge doppelt negieren:  $= (\overline{X_1} \vee \overline{\overline{X_3}}) \wedge (\overline{X_0} \vee \overline{\overline{X_3}}) \wedge (\overline{X_0} \vee \overline{\overline{X_2}})$ 

 $\text{gesamten Term doppelt negieren:} \qquad = \overline{\overline{(X_1 \wedge \overline{X_3})} \wedge \overline{(X_0 \wedge \overline{X_3})} \wedge \overline{(X_0 \wedge \overline{X_2})}}$ 

