Reference Based Image Inpainting

Hamza Pehlivan Hakan Sivuk

Outline

- Background Information
- Our Task
- Method
- Visual Results
- Evaluation

Image Inpainting

- Diffusion based
- Exemplar based
- Deep neural networks

Our Task

Dataset*: Real Estate 10K. Image pairs from a moving camera.

Reference Image

Target Image

^{*} Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification: Learning view synthesis using multiplane images. In SIGGRAPH, 2018.

Pipeline

Image Alignment Based Inpainting

- SIFT keypoints and descriptors
- Matching with NNDR
- Calculating homography with RANSAC

$$I_f = I_t \odot M + I_{r \to t} \odot (1 - M)$$

David G. Lowe. Distinctive image features from scale-invariant key- points. *Int. J. Comput. Vision*, 60(2):91–110, November 2004.

Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. *Commun. ACM*, 24(6):381–395, jun 1981.

Original

Masked

Reference

Warped

2 Problems

- 1-) Cannot align some regions (Red arrows)
- 2-) Cannot align flat regions

Flat Region

Exemplar Based Image Inpainting

S: Source Region (Yellow and Blue Regions)

 Ω : The hole (White region)

 $\partial \Omega$: Boundary of the hole. (Red)

ψ: Patch around a pixel.

Huaming Liu, Xuehui Bi, Guanming Lu, and Weilan Wang. Exemplar-based image inpainting with multi-resolution information and the graphcut technique. IEEE Access, 7:101641–101657, 2019.

Priority for Inpainting

Criminisi et al. proposes to calculate two terms: **Confidence Term** and **Data Term**. (We slightly modified this terms in the implementation)

Confidence Term: Ratio of known regions to patch size

Data Term: Edge information near to boundary.

$$P(x) = C(x)D(x)$$

Filling Holes

Holes are filled with exemplar based inpainting.

Original

Masked

After Some Iteration

 Flat Regions are inpainted with Exemplar Based Inpainting.

Result

Poisson Blending

$$\min \int \int_{\Omega} (\nabla R - \nabla I_r)^2$$
s.t. $R(x, y) = I_t(x, y) \quad \forall (x, y) \in \delta\Omega$

Change color values so that they can match with target.

Applying Poisson Editing

Before Poisson

After Poisson

Applying Poisson Editing

Before Poisson

After Poisson

Visual Results - Extreme Viewpoint Change

Reference

Target

Blending

Visual Results - Extreme Lightning Change

Reference Target Aligned Blending

Visual Results - Object Removal

Reference Target Aligned Blending

Visual Results - Object Addition

Target Result

Reference

Ablation Study

SSIM: Structural Similarity. Higher is better.

PSNR: Peak signal-to-noise ratio. Higher is better.

	SSIM	PSNR
With Poisson Blending	0.9693	33.7108
Without Poisson Blending	0.9662	32.8033

Comparison with Other Works

TransFill: Classical Methods + Attention Based Network (CVPR 2021)

ProFill: Attention Based Deep Neural Network for single image inpainting (ECCV 2020)

	SSIM	PSNR
TransFill*	0.9914	38.83
Ours	0.9693	33.71
ProFill**	0.9690	30.95

^{*}Zhou, Yuqian, et al. "Transfill: Reference-guided image inpainting by merging multiple color and spatial transformations." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2021.

^{**}High-Resolution Image Inpainting with Iterative Confidence Feedback and Guided Upsampling (ECCV 2020). Yu Zeng, Zhe Lin, Jimei Yang, Jianming Zhang, Eli Shechtman, Huchuan Lu