Seminar on Moduli Theory Lecture 16

Neeraj Deshmukh

December 18, 2020

Last Week

- Hironaka's examples
- 4 Hilbert scheme of a proper scheme need not be representable

Castelnuovo-Mumford regularity

Definition

Let $\mathcal F$ be a coherent sheaf on $\mathbb P^n_k$. Let m be an integer. $\mathcal F$ is said to be m-regular if we have

$$H^i(\mathbb{P}^n_k,\mathcal{F}(m-i))=0$$
 for each $i\geq 1$.

Lemma (Castelnuovo)

Let \mathcal{F} be a m-regular on \mathbb{P}^n_k . Then the following statements hold:

- ① The canonical map $H^0(\mathbb{P}^n_k, \mathcal{O}(1)) \otimes H^0(\mathbb{P}^n_k, \mathcal{F}(r)) \to H^0(\mathbb{P}^n_k, \mathcal{F}(r+1))$ is surjective whenever $r \geq m$.
- ② $H^i(\mathbb{P}^n_k,\mathcal{F}(r))=0$ whenever $i\geq 1$ and $r\geq m-i$. That is, if \mathcal{F} is m-regular then it also m'-regular for all m' $\geq m$.
- **3** The sheaf $\mathcal{F}(r)$ is generated by global sections, and all its higher cohomologies vanish, whenever $r \geq m$.

(2) $H^i(\mathbb{P}^n_k, \mathcal{F}(r)) = 0$ whenever $i \geq 1$ and $r \geq m - i$. That is, if \mathcal{F} is m-regular then it also m'-regular for all $m' \geq m$.

(1) The canonical map $H^0(\mathbb{P}^n_k, \mathcal{O}(1)) \otimes H^0(\mathbb{P}^n_k, \mathcal{F}(r)) \to H^0(\mathbb{P}^n_k, \mathcal{F}(r+1))$ is surjective whenever r > m.

The sheaf $\mathcal{F}(r)$ is generated by global sections, and all its higher cohomologies vanish, whenever $r \geq m$.

Theorem (Mumford)

Given any non-negative integers p and n, there exists a polynomial $F_{p,n}$ in n+1-variables with the following property: If $\mathcal{F} \subset \oplus^p \mathcal{O}_{\mathbb{P}^n_l}$ is any coherent subsheaf with Hilbert polynomial

$$\chi(\mathcal{F},r) = \sum_{i=0}^{n} a_i \begin{pmatrix} r \\ i \end{pmatrix},$$

then \mathcal{F} is $F_{p,n}(a_0,\ldots,a_n)$ -regular.

Idea of Proof