23 EJERCICIOS de DERIVADAS

Derivada de una función en un punto [f'(a)]:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 (2)

1. Para cada una de las funciones que figuran a continuación, hallar el valor de su derivada en el punto indicado, utilizando la fórmula que se señala:

a)
$$f(x)=x^2$$
 en x=2 mediante (1)

b)
$$f(x)=2x^2-1$$
 en x=-3 mediante (1)

c)
$$f(x)=2x-5$$
 en $x=1$ mediante (2)

d)
$$f(x)=x^3$$
 en x=2 mediante (1)

e)
$$f(x) = \sqrt{x}$$
 en x=4 mediante (2)

f)
$$f(x)=1/x$$
 en $x=-1$ mediante (1)

f)
$$f(x)=1/x$$
 en x=-1 mediante (1)
g) $f(x)=x^2+x+1$ en x=0 mediante (2)

(Soluc: a) 4; b) -12; c) 2; d) 12; e) 1/4; f) -1; g) 1)

- 2. Volver a hacer el ejercicio anterior por la fórmula alternativa en cada caso, y comprobar que se obtiene idéntico resultado.
- 3. Hallar la derivada de $f(x)=x^2-x$ en x=1. Dibujar la función y trazar la recta tangente en dicho punto. Hallar el ángulo que dicha tangente forma con OX⁺ e interpretar el resultado.

Función derivada f'(x):

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- 4. Hallar la derivada de las funciones del ejercicio 1 y sustituir el punto indicado en cada caso, para comprobar que se obtiene el mismo resultado.
- 5. Hallar la derivada de cada una de las siguientes funciones, y a partir de ella obtener f'(2), f'(-1) y f'(0):

a)
$$f(x)=3x-2$$

b)
$$f(x)=x^2-5x+6$$

c)
$$f(x)=x^3+1$$

(3)

b)
$$f(x)=x^2-5x+6$$
 c) $f(x)=x^3+1$ **d)** $f(x)=\sqrt{x^2+1}$

e)
$$f(x) = \frac{1}{x+1}$$

6. Hallar la derivada de $f(x)=x^2-3x$ en x=1 mediante la definición de derivada (es decir, mediante un límite). (Sol: -1)

Reglas de derivación. Tabla de derivadas:

7. Utilizando la derivada de la función potencial, $y=x^n \Rightarrow y'=n \cdot x^{n-1} \ (\forall n \in \mathbb{R})$, hallar la derivada, **simplificada**, de las siguientes funciones:

a)
$$y=x^2$$

b)
$$y=x^{3}$$

d)
$$y=-2x^5$$

e)
$$y = \frac{3}{2}x^4$$

f)
$$y = \frac{x^2}{4}$$

g)
$$y = \sqrt{x}$$

g)
$$y = \sqrt{x}$$
 h) $y = \sqrt{x^3}$

i)
$$y = \sqrt[3]{x^2}$$

j)
$$y = 2\sqrt[4]{x^3}$$

k)
$$y = \frac{1}{\sqrt{x}}$$

$$i) y = x^2 \sqrt{x}$$

1)
$$y = x^2 \sqrt{x}$$
 m) $y = \frac{\sqrt{x}}{x^2}$ n) $y = -2x^6$

n)
$$y = -2x^6$$

o)
$$y = \frac{x^8}{4}$$

p)
$$y = 2\sqrt{x}$$

p)
$$y = 2\sqrt{x}$$
 q) $y = 3\sqrt[5]{x^3}$ **r)** $y = \frac{\sqrt{x}}{x^3}$

$$\mathbf{r)} \ \mathbf{y} = \frac{\sqrt{\mathbf{x}}}{\mathbf{x}}$$

(Soluc: a)
$$y'=2x$$
; b) $y'=3x^2$; c) $y'=12x^3$; d) $y'=-10x^4$; e) $y'=6x^3$; f) $y'=x/2$; g) $y'=\frac{1}{2\sqrt{x}}$; h) $y'=\frac{3}{2}\sqrt{x}$; i) $y'=\frac{2}{3\sqrt[3]{x}}$; j) $y'=\frac{3}{2\sqrt[4]{x}}$; k) $y'=\frac{-1}{2x\sqrt{x}}$; l) $y'=\frac{5}{2}\sqrt{x^3}$; m) $y'=\frac{-3\sqrt{x}}{2x^3}$; n) $y'=-12x^5$; o) $y'=2x^7$; p) $y'=\frac{1}{\sqrt{x}}$; q) $y'=\frac{9}{5\sqrt[5]{x^2}}$; r) $y'=\frac{-\sqrt{x}}{2x^2}$

8. Utilizando la fórmula de la derivada de la suma de funciones, hallar la derivada simplificada de las

a)
$$v=x^2+x+1$$

b)
$$y=2x^3-3x^2+5x-3$$

c)
$$y = \frac{x^2}{3} - \frac{x}{5} + 1$$

a)
$$y=x^2+x+1$$
 b) $y=2x^3-3x^2+5x-3$ **c)** $y=\frac{x^2}{2}-\frac{x}{5}+1$ **d)** $y=\sqrt[3]{x}-\sqrt[4]{x^3}+2\sqrt{x}$

(Soluc: **a**)
$$y'=2x+1$$
; **b**) $y'=6x^2-6x+5$; **c**) $y'=\frac{2}{3}x-\frac{1}{5}$; **d**) $y'=\frac{1}{3\sqrt[3]{x^2}}-\frac{3}{4\sqrt[4]{x}}+\frac{1}{\sqrt{x}}$

9. Utilizando en cada caso la fórmula más apropiada de la tabla de derivadas, hallar la derivada simplificada de las siguientes funciones compuestas:

a)
$$y = \frac{1}{x^2}$$

a)
$$y = \frac{1}{x^2}$$
 b) $y = \frac{1}{x^2 + 2x - 3}$ **c)** $y = \sqrt{x^2 + 1}$ **d)** $y = (x^2 - 3)^2$ **e)** $y = \frac{2}{x^3}$

c)
$$y = \sqrt{x^2 + 1}$$

d)
$$y = (x^2 - 3)^2$$

e)
$$y = \frac{2}{x^3}$$

f)
$$y = (x^2 + x + 1)^3$$

g)
$$y = \sqrt[3]{2x^3 - 3}$$

f)
$$y = (x^2 + x + 1)^3$$
 g) $y = \sqrt[3]{2x^3 - 3}$ **h)** $y = \frac{1}{\sqrt{x^2 + 4}}$ **i)** $y = 3(x^2 + 1)^{10}$ **j)** $y = 2(3x^2 - 1)^4$

i)
$$y = 3(x^2 + 1)^{10}$$

j)
$$y = 2(3x^2 - 1)^4$$

k)
$$y = \frac{2}{(x^2 + 1)^3}$$

(Sol: **a)**
$$y' = \frac{-2}{x^3}$$
; **b)** $y' = -\frac{2x+2}{(x^2+2x-3)^2}$; **c)** $y' = \frac{x}{\sqrt{x^2+1}}$; **d)** $y' = 4x^3 - 12x$; **e)** $y' = \frac{-6}{x^4}$; **f)** $y' = 3(2x+1)(x^2+x+1)^2$; **g)** $y' = \frac{2x^2}{\sqrt[3]{(2x^3-3)^2}}$; **h)** $y' = \frac{-x}{\sqrt{(x^2+4)^3}}$; **i)** $y' = 60x(x^2+1)^9$; **j)** $y' = 48x(3x^2-1)^3$; **k)** $y' = \frac{-12x}{(x^2+1)^4}$

10. Ídem:

$$a) y = x\sqrt{x^3}$$

b)
$$y = (2x - 3)(x^2 - 5)$$

c)
$$y = x^2 \sqrt[3]{x}$$

d)
$$y = (2x - 3) \sqrt[4]{x^3}$$

a)
$$y = x\sqrt{x^3}$$
 b) $y = (2x - 3)(x^2 - 5)$ **c)** $y = x^2 \sqrt[3]{x}$ **d)** $y = (2x - 3) \sqrt[4]{x^3}$ **e)** $y = (2x + 1)(x^2 - 3)^2$

$$f) \quad y = \sqrt{x} \left(\frac{1}{x+1} \right)^2$$

(Soluc: **a)**
$$y' = \frac{5}{2} \sqrt{x^3}$$
; **b)** $y' = 6x^2 - 6x - 10$; **c)** $y' = \frac{7}{3} \sqrt[3]{x^4}$; **d)** $y' = \frac{14x - 9}{4\sqrt[4]{x}}$; **e)** $y' = 10x^4 + 4x^3 - 36x^2 - 12x + 18$;

11. Utilizando la fórmula para el cociente de funciones, hallar la derivada simplificada de las siguientes funciones:

a)
$$y = \frac{x^2 - 5}{x + 2}$$

b)
$$y = \frac{\sqrt{x}}{x^2}$$

c)
$$y = \frac{x+2}{x^2-5}$$

a)
$$y = \frac{x^2 - 5}{x + 2}$$
 b) $y = \frac{\sqrt{x}}{x^2}$ **c)** $y = \frac{x + 2}{x^2 - 5}$ **d)** $y = \frac{3x}{(2x^2 + 1)^2}$ **e)** $y = \frac{x^2}{\sqrt{x + 1}}$

e)
$$y = \frac{x^2}{\sqrt{x+1}}$$

(Sol: **a**)
$$y' = \frac{x^2 + 4x + 5}{(x + 2)^2}$$
; **b**) $y' = -\frac{3}{2x^2\sqrt{x}}$; **c**) $y' = -\frac{x^2 + 4x + 5}{(x^2 - 5)^2}$; **d**) $y' = \frac{3 - 18x^2}{(2x^2 + 1)^3}$; **e**) $y' = \frac{3x^2 + 4x}{2(x + 1)\sqrt{x + 1}}$

12. Derivar las siguientes funciones, utilizando en cada caso el procedimiento más apropiado, y simplificar:

a)
$$y = \frac{x^2 + 1}{x^2}$$

a)
$$y = \frac{x^2 + 1}{x^2}$$
 b) $y = \frac{2x^2 - 3x + 1}{x}$ **c)** $y = \frac{x + 1}{1 - x}$ **d)** $y = \frac{x^2}{\sqrt{x}}$

c)
$$y = \frac{x+1}{1-x}$$

d)
$$y = \frac{x^2}{\sqrt{x}}$$

e)
$$y = \frac{3x^4 - 2x^2 + 5}{2}$$

f)
$$y = (3x^2 + 5)^{\frac{1}{2}}$$

f)
$$y = (3x^2 + 5)^5$$
 g) $y = \frac{2x}{x^2 + x + 1}$

(Sol: **a)**
$$y' = \frac{-2}{x^3}$$
; **b)** $y' = \frac{2x^2 - 1}{x^2}$; **c)** $y' = \frac{2}{(1 - x)^2}$; **d)** $y' = \frac{3\sqrt{x}}{2}$; **e)** $y' = 6x^3 - 2x$; **f)** $y' = 30x(3x^2 + 5)^4$

g)
$$y' = \frac{-2x^2 + 2}{(x^2 + x + 1)^2}$$

13. Hallar la fórmula para la derivada de $y = \frac{u}{v \cdot w}$ e $y = \frac{u \cdot v}{w}$, siendo u, v y w funciones.

Ecuación de la recta tangente:

14. Hallar la ecuación de la recta tangente a las curvas en los puntos que se indican:

a)
$$f(x)=3x^2+8$$
 en $x=1$

(Sol: 6x-y+5=0) | **c)**
$$f(x)=x^4-1$$
 en x=0 (Sol: y=-1)
(Sol: 10x-y+12=0) | **d)** $f(x)=\frac{x^3-2}{x^2-3}$ en x=2 (Sol: y=-12x+30)

b)
$$y=2x^5+4$$
 en $x=-1$

1)
$$f(x) = \frac{x^3 - 2}{x^2 - 3}$$
 en x=2

(Sol:
$$y=-12x+30$$
)

- 15. ¿En qué punto de la gráfica de la parábola $f(x)=x^2-6x+8$ la tangente es paralela al eje de abscisas? ¿Qué nombre recibe ese punto? ¿Cuál es la ecuación de la tangente? Dibujar la situación. (Soluc: y=-1; vértice (3,-1))
- 16. ¿En qué punto de la gráfica de la función anterior la tangente es paralela a la bisectriz del primer (Soluc: (7/2,-3/4)) cuadrante? Dibujar la situación.
- 17. (S) Determinar los puntos de la curva $y=x^3+9x^2-9x+15$ en los cuales la tangente es paralela a la recta y=12x+5 (Soluc: (1,16) y (-7,176))

Intervalos de crecimiento. M y m. Representación de funciones:

18. Hallar los intervalos de crecimiento y decrecimiento y los M y m de las siguientes funciones. Representarlas gráficamente.

a)
$$f(x) = x^2$$

b)
$$f(x) = x^4 - 2x^2$$

c)
$$v = x^3 - 3x^2 + 1$$

d)
$$f(x) = x^3 - 6x^2 + 9x - 8$$

e)
$$f(x) = x^3 - 4x^2 + 7x - 6$$

f)
$$f(x) = x^3$$

g)
$$f(x) = x^4 + 8x^3 + 18x^2 - 10$$

h)
$$y = x^3 - 3x^2 - 9x + 1$$

i)
$$f(x) = x^4 - 4x^3 + 1$$

j)
$$y = \frac{x^3}{3} - \frac{x^2}{2} - 6x + 3$$

k)
$$y=2x^3-9x^2$$

k)
$$y=2x^3-9x^2$$

I) $f(x)=x^3-6x^2+9x$

m)
$$y=x^3-12x$$

(Soluc: **a)**
$$\varnothing$$
 $(0,\infty)$ \odot $(-\infty,0)$; **b)** \varnothing $(-1,0)U(1,\infty)$ \odot $(-\infty,-1)U(0,1)$; **c)** \varnothing $(-\infty,0)U(2,\infty)$ \odot $(0,2)$; **d)** \varnothing $(-\infty,1)U(3,\infty)$ \odot $(1,3)$; **e)** \varnothing \forall $x \in \mathbb{R}$; **f)** \varnothing \forall $x \in \mathbb{R}$; **g)** \odot $(-\infty,0)$ \varnothing $(0,\infty)$; **h)** \varnothing $(-\infty,-1)U(3,\infty)$ \odot $(-1,3)$; **i)** \odot $(-\infty,3)$ \varnothing $(3,\infty)$

- **19.** Dada $f(x)=2x^3-3x^2$ se pide: i) Dom (f) ii) Posible Simetría. iii) Posibles cortes con los ejes. iv) Intervalos de crecimiento a partir de f'(x), y posibles M y m que se deducen. v) Ecuación de las asíntotas, en caso de existir. vi) Con la información anterior, representarla gráficamente.
- 20. Ídem para:

a)
$$f(x)=x^3-3x$$

a)
$$f(x)=x^3-3x$$
 b) $y=\frac{x+2}{x-1}$ **c)** $y=x^4-2x^2$

c)
$$y=x^4-2x^2$$

d)
$$y = \frac{2x}{x^2 + x^2}$$

d)
$$y = \frac{2x}{x^2 + 1}$$
 e) $f(x) = x^3 - 3x^2$

f)
$$f(x) = \frac{x^2}{x^2 + 1}$$

g)
$$y=-x^3+12x$$

f)
$$f(x) = \frac{x^2}{x^2 + 1}$$
 g) $y = -x^3 + 12x$ h) $f(x) = \frac{9}{x^2 - 9}$ i) $f(x) = \frac{16 - 8x}{x^2}$ j) $y = \frac{x}{x^2 + x + 1}$

i)
$$f(x) = \frac{16-8x}{x^2}$$

j)
$$y = \frac{x}{x^2 + x + 1}$$

k)
$$y = \frac{x}{x^2 - x + 1}$$

1)
$$y = \frac{4x}{(x-1)^2}$$

k)
$$y = \frac{x}{x^2 - x + 1}$$
 I) $y = \frac{4x}{(x - 1)^2}$ **m)** $y = \sqrt{-x^2 + 4x + 5}$

21. Hallar los máximos y mínimos de las siguientes funciones, y a partir de ellos los intervalos de monotonía y su representación gráfica:

a)
$$y = \frac{x^2}{x+2}$$

a)
$$y = \frac{x^2}{x+2}$$
 b) $f(x) = \frac{1}{x^2+1}$ **c)** $f(x) = \frac{1}{x^4+3}$ **d)** $y = \frac{1}{x^3+x}$ **e)** $f(x) = |x|$

c)
$$f(x) = \frac{1}{x^4 + 3}$$

d)
$$y = \frac{1}{x^3 + x}$$

(Soluc: **a)** M(-4,-8) m(0,0); **b)** M(0,1); **c)** M(0,1/3); **d)** no tiene; **e)** m(0,0))

22. Hallar los M y m y los intervalos de crecimiento y decrecimiento de la función

$$f(x) = \sqrt[3]{x^2 + 2x + 3}$$

(Soluc:
$$m(-1.\sqrt[3]{2})$$
: $(-\infty,-1) \varnothing (-1,\infty)$)

23. Hallar los intervalos de crecimiento y decrecimiento de la función

$$f(x) = \frac{4x+5}{2x-3}$$

(Solución: decreciente $\forall x \in Dom(f)$)

