I - calcul de la différence de marche

Figure 1 – Expérience des trous de Young

On commence par

$$\delta_{2/1}(M) = (SM)_2 - (SM)_1$$

Supposons que l'expérience est fait dans un milieu homogène d'indice de fraction $n:(SM)_1 = n*SM = n*S_1M + n*SS_1 = (S_1M) + (SS_1)$, de même, $(SM)_2 = (S_2M) + (SS_2)$, on arrive à

$$\delta_{2/1}(M) = (SS_2) - (SS_1) + (S_2M) - (S_1M)$$

Car S_1 et S_2 sont symmétrique par rapport à l'axe O_z sur lequelle S se trouve, on a $SS_1 = SS_2$, donc $(SS_1) = (SS_2)$, d'où

$$\delta_{2/1}(M) = (S_2M) - (S_1M)$$

On continue le calcul en supposant on fait l'expérience dans le vide : n=1. En appliquant les coordonnées, on a

$$\delta_{2/1}(M) = S_2 M - S_1 M$$

$$= \sqrt{\left(x + \frac{a}{2}\right)^2 + (y+0)^2 + (D+0)^2} - \sqrt{\left(x - \frac{a}{2}\right)^2 + (y+0)^2 + (D+0)^2}$$

$$= D \left[\sqrt{1 + \left(\frac{x + \frac{a}{2}}{D}\right)^2 + (\frac{y}{D})^2} - \sqrt{1 + \left(\frac{x - \frac{a}{2}}{D}\right)^2 + (\frac{y}{D})^2}\right]$$

Lorsque l'on fait l'observation au voisinage de l'axe O_z , c'est à dire que $|x| \ll D, |y| \ll D$ et à grande distance $a \ll D$, on a $\left(x + \frac{a}{2}\right) \ll D$ et donc $\left(\frac{x + \frac{a}{2}}{D}\right)^2 + (\frac{y}{D})^2 \ll 1$. Par développement limité à l'ordre 1 que $\sqrt{1+x} = 1 + \frac{x}{2}$ lorsque $x \ll 1$, on a

$$\delta_{2/1}(M) = D \left[\sqrt{1 + \left(\frac{x + \frac{a}{2}}{D}\right)^2 + (\frac{y}{D})^2} - \sqrt{1 + \left(\frac{x - \frac{a}{2}}{D}\right)^2 + (\frac{y}{D})^2} \right]$$

$$= D \left[1 + \frac{1}{2} \left(\frac{x + \frac{a}{2}}{D}\right)^2 + \frac{1}{2} (\frac{y}{D})^2 - \left(1 + \frac{1}{2} \left(\frac{x - \frac{a}{2}}{D}\right)^2 + \frac{1}{2} (\frac{y}{D})^2\right) \right]$$

Finalement, on arrive à $\delta_{2/1}(M) = \frac{ax}{D}$ selon notre approximation.