Lecture WS 2018/2019 Deep learning for speech & language processing

Thang Vu, Heike Adel, Daniel Ortega, Sabrina Jenne

Lecture organizations

Date	Topic
21.01.2019	Projects – No Lecture
24.01.2019	Projects – No Lecture
28.01.2019	Projects – No Lecture
01.02.2019	Optional Test Project Submission
04.02.2019	Projects – No Lecture
08.02.2019	Final Project Submission
14.02.2019	Written Exam

Policy

Projects:

- You have to submit a solution to be able to write the final exam
- BONUS points for written exam
 - Max. 20 points
- Written exam:
 - 100 points
 - You are allowed to write only if you meet the requirements of the exercises and submit a project solution
 - 60 points needed to pass

Projects - Policy

- Individual submissions (no group work)
- We offer two topics you choose one of them
- We provide you with
 - Labeled training data
 - Test data (without labels)
- You submit the results (labels) of your network on the test data as well as your final running code
- For each topic, we will create a ranking of results

Topics (I)

- Topic 1: Dialog Act Classification from Text
- Topic 2: Emotion Recognition from Speech

- Develop a classifier which predicts the dialog acts (e.g. question/statement/backchannel) given an utterance and its context using lexical cues
- Example:
 - "what is that" → question
 - "anyway it 's the only car that says you know sporty and class uh" → opinion

- Two files are given for the training:
 - utterances.train
 - utterances.valid
- with following format:

```
- utt_ID dialog_act(utt_t) utt_t-3; utt_t-2; utt_t-1; utt_t
```

- One test file without label is given: utterances.test
- with the following format:
 - utt ID utt t-3; utt t-2; utt t-1; utt t

Some statistics:

- Training: 196,502

– Validation: 20,000

- Test: 20,000

Dialog act set: (see README file for more details)

– % : Indecipherable

– %--: Abandoned

2 : Collaborative-Completion

– aa : Accept, Yes Answers

– aap : Partial Accept

– ar : Reject, No Answers

– b : Backchannel

ba : Appreciation

bc : Misspeak Correction

– bd : Downplayer

bh : Rhetorical-Question Backchannel

bk : Acknowledgment

br : Signal Non understanding

– bs : Reformulation

—

- Your best results should be submitted in a .txt file with the following format:
 - uttID dialog_act_label, e.g.
 - 2121_2 qw
 - 2121_11 ar
 - •

- Scoring:
 - Accuracy = #correct_predictions/#utt_in_test_set

 Develop a classifier which can recognize emotion expressed in a given speech independent of the spoken language

 For each audio file, two feature sets are given: logMel and prosody

logMel

Given files:

- data_logMel.train
- data_prosody.train
- data_logMel.valid
- data_prosody.valid
- data_logMel.test with anonymuous labels
- data_prosody.test with anonymuous labels
- Each file contains a DataArray with filename (= dataID), features and labels
- A script is provided to read these files

- Label set with four emotion classes
 - Angry
 - Happy
 - Sad
 - Neutral
- Some statistics:
 - Training: 5,531
 - Validation: 2576
 - Test: 3900

- Your best results should be submitted in a .txt file with the following format:
 - dataID emotion_category, e.g.
 - data01 neutral
 - data02 happy
- Scoring:
 - Accuracy = #correct_predictions/#utt_in_test_set

Example Research Questions (I)

- Which optimizer works best?
- Comparison between different non-linear units
 - E.g. ReLU vs tanh
- Visualization
 - Attention weights using TensorBoard
 - Or other things
- Comparison of loss functions
 - Cross entropy vs. MLE
 - Cross entropy vs. hinge loss

Example Research Questions (II)

- Batch normalization:
 - Where to apply: before or after affine transformation
 - Relation to dropout
 - Relation to L2 regularization
- Relation between learning rate vs. batch size
- Adversarial Examples
 - How to poison a network

How To Submit Results

- Submit your results via Ilias
- Two dates:
 - February 01: Optional submission of results on test data
 - We will score the results and create a ranking
 - Idea: to get a feeling how your current model performs
 - February 08: Submission of results on test data and code
- Submission on February 01 is optional, submission on February 08 is mandatory to be able to write the exam!

What To Submit

Results on test data:

- Text file with one line per test item
- Example for topic 1:

uttID aap
uttID aap
emotion category

dataID happy
dataID sad

dialog act type

– Example for topic 2:

Final running code:

- Python file (using Keras, PyTorch, Tensorflow... for neural network design and training - your choice)
- Executable and understandable code

File names:

- matriculationnumber_lastname_topicX_result.txt

Thanks for listening!

