

30 godina CHE Čapljina

Izdaje:

JP Elektroprivreda Hrvatske zajednice Herceg Bosne d.d., Mostar Ulica dr. Mile Budaka 106 A / 88000 Mostar / BiH Tel.: +387 36 33 57 00 / Faks: +387 36 33 57 77 / ephzhb@ephzhb.ba

Naklada:

500 primjeraka

Fotografije:

Damir Zadro - Fram Ziral i arhiv EP HZHB

Tisak:

Fram Ziral, Mostar

Mostar, 2009. godine

Sadržaj

Uz obljetnicu	5
Izgradnja	9
Osnovni tehnički podatci	15
Tehničke karakteristike CHE Čapljina	23
Sanacija i revitalizacija	27
Zanimljivosti	29
Znamenitosti južnoga dijela Hercegovine	31

Uz obljetnicu

Crpna hidroelektrana Čapljina ove, 2009., godine obilježava 30 godina rada. Puštena je u pogon 25. studenoga sada već daleke 1979. godine i po mnogo čemu jedinstvena je u elektroenergetskom sustavu JP Elektroprivreda Hrvatske zajednice Herceg Bosne, d.d. Mostar.

Ona je reverzibilna crpno-akumulacijska hidroelektrana koja koristi vode vlastitoga slivnog područja i vode rijeke Trebišnjice. U vrijeme kada je izgrađena bila je prva reverzibilna elektrana na prostoru bivše države.

Sa svoja dva motor – generatora jedinične snage 240 MVA elektrana daje svoj doprinos sigurnosti elektroenergetskoga sustava kao i pokrivanju vršnih opterećenja.

Nadalje, s dvije vertikalno postavljene crpke - turbine CHE Čapljina u razdobljima malih voda i za vrijeme manjega opterećenja sustava može raditi kao reverzibilna elektrana crpeći vodu iz donjega u gornji kompenzacijski bazen.

Zbog navedenih činjenica jasno je da njezinu vrijednost ne možemo mjeriti samo po proizvedenim kilovat satima električne energije.

Također, osim crpnoga pogona elektrana može raditi i u kompen-

zatorskom pogonu, odnosno može proizvoditi ili uzimati iz mreže reaktivnu energiju i to s turbinskim i crpnim smjerom vrtnje agregata.

Općoj slici jedinstvenosti elektrane svakako pridonosi i podatak da je u CHE Čapljina prvi put u regiji upotrijebljeno izravno vodeno hlađenje statorskoga namotaja sinkronoga generatora.

Osim ostalih prednosti koje i lokalna zajednica ima od CHE Čapljina, vrijedno je istaknuti činjenicu da su nakon njezinog puštanja u pogon, poplave u Popovom polju svedene na minimum, dok su vode rijeke Trebišnjice ostale na površini u kanalu dugom 65 kilometara.

Zbog svojih specifičnosti i spomenutog jubileja CHE Čapljina, a kako

bi ostalo zabilježeno za generacije koje dolaze, izdajemo ovu brošuru u kojoj se nalaze iscrpne tehničke karakteristike, revitalizacija, te njezino značenje i različitost od ostalih u elektroenergetskom sustavu i to ne samo u JP Elektroprivreda HZ HB Mostar, nego i šire regije.

Kako je elektrana smještena u živopisnom čapljinskom kraju (Svitava), nadomak Hutova blata, Narone i Jadrana, a njezini se objekti nalaze i na području općina Neum i Ravno, neizostavno je spomenuti neke kulturne i povijesne znamenitosti tih krajeva, a posebno čapljinskoga područja koje je svojevrsni etnološki muzej pod vedrim nebom.

generalni direktor JP Elektroprivreda HZ HB d.d. Mostar

Mato Matan Žarić, dipl. ing. el.

Izgradnja

Južni dio Hercegovine i dubrovačko zaleđe bogati su nizom vrela koja formiraju međudotok nizvodnoga dijela toka Trebišnjice. Taj dio voda tekao je neiskorišten podzemnim kanalima u more odnosno u Neretvu. S energetskoga je stanovišta od posebne

važnosti da se ove vode pojavljuju na kotama između 270 i 230 m n.m., tj. svaki m³ vode na toj visini predstavlja energetski ekvivalent od oko 0,5 kilovat sati.

Početkom 1968. godine u tijeku razmatranja vodoprivredne osnove

godina CHE Čapljina

sliva rijeke Trebišnjice, sazrela je ideja da se što bolje iskoriste sve vode sliva, uzimajući u obzir, pored energetike, potrebe vodoprivrede i poljoprivrede.

Nakon donesene vodoprivredne osnove izgrađena je studija: *Moguć-nost korištenja voda rijeke Trebišnjice nizvodno od Trebinja*, koja je završena početkom 1969. godine. Rezultati studije pokazali su da je opravdano prići odgovarajućim istražnim radovima i ispitivanjima.

13

Tako je počelo ...

Prvi projekt hidroelektrane Čapljina rađen je u prosincu 1968. godine, a krajem 1972. službeno su počeli i glavni građevinski radovi. Bila je predviđena klasična hidroelektrana s dva agregata, s turbinama za pad 205 m, odnosno protok 2x75 m³/s. Snaga je elektrane bila 270 MW, a priključak na mrežu 220 kV. U nastanku razrade projektne dokumentacije obrađeno je niz inačica. Kao konačno, usvojeno je

godina CHE Čapljina

rješenje s dvije reverzibilne skupine s Francis crpkama – turbinama jedinične snage po 210 MW.

Izabrano rješenje posljedica je napretka u tehnici gradnje reverzibilnih strojeva, koje po svojim karakteristikama odgovaraju klasičnim turbinama, a uz to, promjenom smjera vrtnje, omogućavaju crpni pogon. To rješenje, pored ostalih prednosti, isključuje potrebu fazne izgradnje. Osnovna koncepcija rješenja sastoji se u sljedećem:

 Višak voda koje se ne mogu iskoristiti u postojećoj HE Dubrovnik, i vode koje dolaze u korito nizvodno od brane Gorica sprovode se uređenim koritom rijeke Trebišnjice do dna Popova polja gdje se formira gornji kompenzacijski bazen. Voda se zatim dovodi tunelom promjera 8.0 m i duljine 8.105 m u smjeru Hutova blata gdje se gradi podzemna strojarnica s dva agregata. Iz elektrane vode se ispuštaju u donji kompenzacijski bazen iz kojega je moguće regulirano ispuštanje vode u Neretvu. To rješenje omogućuje korištenje bruto pada od 227 m.

Osnovni tehnički podatci

CHE Čapljina reverzibilna je crpnoakumulacijska hidroelektrana s vlastitim prirodnim dotokom u gornji kompenzacijski bazen. Elektrana koristi vode vlastitoga slivnog područja nizvodno od brane Gorica do gornjega kompenzacijskog bazena i preljevne vode iz međudotoka između brane Grančarevo i brane Gorica kao i preljevne vode iz akumulacije Bileća. Od brane Gorica do gornjega kompenzacijskog bazena CHE Čapljina izgrađen je dovodni kanal, uglavnom trasom korita rijeke Trebišnjice, kapaciteta 50 m³/s, izveden tehnikom prskanoga betona, kanal je dug 65 km, ukupna površina obloge je 2.200.000 m². Sam za sebe predstavlja izuzetan građevinski pothvat. Gornji kompenzacijski bazen površine 70 ha, izveden je na donjem kraju Popova polja, a njegova površina je sanirana u cilju vodonepropusnosti, dok je prema polju sagrađen nasip iz glinene jezgre i obostrane kamene obloge. Kanal je

spojen s bazenom, tunelom Klek, a na njegovom kraju prema bazenu je zatvaračnica s grednim zapornicama. Volumen je bazena 7,2 hm³, od čega je korisni 6,5 hm³. Maksimalna radna kota bazena je 231,5 m n.m., a minimalna 224 m n.m. U izvanredno kišnim godinama moguća je kota uspora do 244 m n.m. Korisni volumen bazena omogućava satno i dnevno izravnanje voda kako u turbinskom tako i u crpnom pogonu. Na ulaznoj građevini dovodnog tunela postavljena je rešetka, pomoćni zatvarač i glavni sigurnosni pločasti zatvarač pogonjen hidrauličnim servomotorom. Na ulaznoj je građevini i uređaj za čišćenje rešetki, koji ujedno služi i za manipulaciju pomoćnim zatvaračima. Na ulaznoj je građevini i transformacija 35/0,4 kV za vlastite potrebe, kao i dizel-agregat za opskrbu u nuždi.

Na kraju je dovodnoga tunela gornji vodostan s donjom i gornjom otvorenom komorom. Iz vodostana se

račvaju dvije tlačne cijevi, a u galeriji vodostanskih zatvarača su leptirasti sigurnosni zatvarači promjera 5.250 mm, po jedan za svaku cijev. Dvije vertikalne tlačne cijevi su ukupne duljine 620 m, promjera 5.250 mm, s donjim i gornjim koljenom, te donjim konusnim dijelom za prijelaz s promjera 5.250 mm na 3.000 mm, tj. na promjer predturbinskoga kuglastog zatvarača.

Duboko u kršnom masivu smještena je podzemna strojarnica do koje se stiže pristupnim tunelom (7,5x6 m) dugim 640 m. U podzemnoj su strojarnici smješteni proizvodni agregati i ostala glavna oprema, komandna zgrada – višekatnica s četiri etaže – montažni plato, mosne dizalice 2x160 t, a u proširenju pristupnoga tunela smještena su dva učinska blok-transformatora snage po 240 MVA. Crpni

19

pogon reverzibilnih agregata zahtijeva duboko potapanje crpki-turbina u odnosu na donju vodu, tako da je strojarnica duboka 77 m, širine 24 odnosno duljine 98 m, što je čini jednim od najvećih objekta te vrste u svijetu. Na kraju odvoda iz difuzora crpki-turbina smješteni su pločasti sigurnosni zatvarači na pogon hidrauličnim servomotorima, po jedan za svaku crpku-turbinu, a oba komuniciraju s donjim vodostanom smještenim na početku odvodnoga tunela pod pri-

tiskom duljine 630 m, promjera 9 m. Na izlazno-ulaznoj građevini postavljene su gredne zapornice, uređaj za njihovo posluživanje i čišćenje rešetki, kao i rešetka.

Ulazno-izlazni objekt prelazi preko betonske lepeze u donji kompenzacijski bazen *Svitava* površine 1.000 ha, maksimalnog volumena 44.000.000 m³. Donji kompenzacijski bazen pomoću pločastih zatvarača na ustavi *Krupa* i rijeke Krupe, spojen je s rijekom Neretvom. Odvojen je od polja

zemljanim nasipom. Radna kota u donjem kompenzacijskom bazenu varira od 2,30 do 5,80 m n.m.

Osim vlastite proizvodnje u turbinskom radu, koja će rasti dovođenjem voda Dabarskoga polja, kao i izgradnjom hidroelektrana na gornjim horizontima, CHE Čapljina može obavljati i druge funkcije važne za elektroenergetski sustav.

CHE Čapljina osim crpnoga pogona može raditi i kao kompenzator, tj. proizvoditi ili uzimati iz mreže jalovu energiju i to kako u turbinskom, tako i u crpnom smjeru vrtnje. U turbinskom pogonu agregati se vrte u jednom smjeru propuštajući pri neto padu od 213 m svaki po 112,5 m³/s vode. U crpnom, obrnutom, smjeru vrtnje uzimaju iz donjega kompenzacijskog bazena Svitava svaki po 85 m³/s vode koju crpljenjem prebacuju u gornji kompenzacijski bazen Popovo polje, uzimajući pri tomu iz energetskih sustava svaki po 210 MW. Moguć je brzi ulazak agregata u pogon i prijelaz iz jedne vrste pogona u drugu. Na taj način elektrana predstavlja znatnu rezervu u elektroenergetskom sustavu, omogućava davanje od 420 MW

23

do uzimanja od 420 MW, tj. omogućava regulaciju sustava u ukupnom dijapazonu od 840 MW. Kolika je važnost elektrane, vidi se iz činjenice da je njezina snaga u vrijeme puštanja u pogon iznosila više od 50% snage svih hidroelektrana u energetskom sustavu BiH.

CHE Čapljina, osim rada kao klasična hidroelektrana, može u satima maloga opterećenja u elektroenergetskom sustavu preuzimati viškove iz protočnih hidroelektrana, termoelektrana i nuklearnih elektrana, i na taj način električnu energiju niže tarife kasnijim radom u satima više tarife u turbinskom pogonu pretvoriti u vrjedniju vršnu energiju.

Time se postižu bitni učinci u elektroenergetskom sustavu – smanjuje se potreba izgradnje novih elektrana i povećava se korisnost sustava. Dodamo li tomu mogućnost davanja, odnosno uzimanja jalove energije u iznosu od 2x160 MVAr, tj. mogućnost regulacije napona u jednom od najvećih i najvažnijih energetskih čvorišta sustava (TS Mostar 4), razvidno je da je važnost toga objekta daleko izvan okvira klasičnih objekata slične veličine.

godina CHE Čapljina

Tehničke karakteristike CHE Čapljina

Crpna HE Čapljina nalazi se u Hercegovačko- neretvanskoj županiji na donjem toku rijeke Trebišnjice. Koristi vode vlastitoga slivnog područja i vode rijeke Trebišnjice kroz Popovo polje. Puštena je u pogon 1979.god.

	Broj agregata	2	
	Instalirana snaga	420	MW
	Instalirani proticaj	225	m3/sec
	Tehnički minimum po agregatu	140	MW
	Srednja godišnja proizvodnja	620	GWh
	Energija od 1 m3 vode	0,52	kWh
	Količina vode za 1 kWh	1,93	m3
	Ukupan stupanj korisnog djelovanja (crpka-turbina)	74%	
	Energetska vrijednost akumulacije	3,40	GWh
	Volumen akum. do kote norm. uspora (ukupna)	7,12	hm3
	Korisni volumen akumulacije	6,5	hm3
	Bruto pad - maksimalni	227,7	m
<u></u>	Bruto pad - minimalni Kota donje vode Tip turbine Francis-reverzibilni Maksimalna radna kota Minimalna radna kota Duljina dovodnoga tunela Promjer dovodnog tunela	221	m
<u></u>	Kota donje vode	3	m.n.m
3	Tip turbine Francis-reverzibilni		
ĭ	Maksimalna radna kota	231,5	m.n.m
₹	Minimalna radna kota	224	m.n.m
<u></u>	Duljina dovodnoga tunela	8,1	km
2	Promjer dovodnog tunela	8	m
0	Duljina tlačne cijevi	310	m
	Promjer tlačne cijevi	5,25	m
	Duljina odvodnoga tunela	630	m
	Promjer odvodnog tunela	9	m
	Volumen donjega kompezacijskog bazena - ukupni	44	hm³x106
	Duljina dovodnoga kanala Trebinje - Hutovo	65	km
	Nominalni protok dovodnog kanala	50	m3/sec
	Maks. razina jezera - turbinski rad	244	m.n.m
	Minimalna kota donjega kompezacijskog bazena	2,3	m.n.m
	Maks. kota donjega kompezacijskog bazena	5,8	m.n.m
	Duljina nasipa uz obodni kanal	5650	m
	Duljina nasipa uz rijeku Krupu	1860	m
	Duljina pregradnoga nasipa Ustava - Obodni kanal	1680	m

25

	Tip	Trofazni sinkroni	
	Proizvođač	AEG	
	Godina stavljanja u pogon	1979	
	Prividna snaga	240	MVA
	Faktor snage cos φ	0,85	
품	Maksimalna reaktivna snaga - kompezatorski pogon	±160	MVAr
GENERATOR	Nominalni stupanj iskorištenja	98,5	%
2	Napon statora	15,75	kV
z	Napon uzbude	344	V
뗭	Struja uzbude	1910	Α
	Nazivna struja	8798	Α
	Način hlađenja statora	zrak - voda	
	Način hlađenja rotora	zrak	
	Broj polova	20	
	Broj okretaja	300	o/min

Tip	Francis			
щ Proizvođač	Riva - Calcon	Riva - Calconi		
置 Instalirana snaga	250	MW		
Tehnički minimum	140	MW		
ய் Broj obrtaja - nominalni	300	obr/min		
발 Broj obrtaja - nominalni Broj obrtaja - pobjega	480	obr/min		
Fromjer radnog kola	4500	mm		
Nominalni protok - turbinski rad	112,5	m3/sec		
Nominalni protok - crpni rad	85	m3/sec		

□ Nazivna snaga	225	MW
Faktor snage cos φ	0,9	
∑ Vrsta zaleta	izravni asinkroni	

27

godina CHE Čapljina

Sanacija i revitalizacija

Nakon Domovinskoga rata pristupilo se saniranju uglavnom neizravnih ratnih šteta.

Krajem 1998. godine zamijenjena je klimatizacije komandne zgrade – strojarnice i 1999. godine izvršena je revitalizacija leptirastoga zatvarača agregata broj 1.

Do kraja 2003. godine izvršena je zamjena kompresora za odvodnju, ugradnja novoga KRD-a (registar događaja), zamjena 220 kV prekidača i zamjena klimatizacije strojarnice. Sljedećih godina izvršena je zamjena dizala u strojarnici, instaliran je novi sustav video nadzora i vatrodojave, a saniran je i asfaltiran pristupni put

prema zgradi ulazne građevine.

U posljednje vrijeme, izvršena je ugradnja novih zaštita i upravljanje za 220 kV postrojenje (SCADA), zamjena rastavljača 245 kV, AKZ-a postrojenja 220 kV i polaganje optičkog kabela od ulazne građevine Hutovo do strojarnice, duljine 9 km.

30.9.2009. godine potpisan je Ugovor s odabranim izvođačima iz zajma Europske investicijske banke (EIB, oko 6 milijuna KM) za ugradnju nove opreme: 35 kV postrojenje, kabeli 245 kV, mjerni naponski i strujni transformatori 245 kV i odvodnici prenapona. Planirana je ugradnja nove opreme na uzbudnom sustavu agregata.

Zanimljivosti

U CHE Čapljina ugrađeni su prvi sinkroni hidrogeneratori s izravnim vodnim hlađenjem statorskoga namota na prostoru bivše države. Agregati su opremljeni i izvedeni za izravni i neizravni asinhroni zalet u crpni pogon. Još uvijek predstavljaju najveće jedinice u svjetskim razmjerima koje na taj način ulaze u crpni pogon. Kod neizravnog zaleta u crpni pogon koriste se prigušnice ugrađene u zvjezdištu sinkronih motor-generatora. Prigušnice olakšavaju zalet odnosno smanjuju struju zaleta i pad napona u mreži 220 kV. Sinkroni motor-generatori opremljeni su za električno kočenje. Između sinkronih motor-generatora i blok transformatora, smještenih u proširenju prilaznog tunela, postavljene su oklopljene jednofazne sabirnice duljine 110 m. Izvodi visokog napona realizirani su uljnim jednožilnim kabelima 220 kV, položenim na policama u pristupnom tunelu do vanjskoga razvodnog postrojenja 220 kV. Vanjsko

razvodno postrojenje 220 kV izgrađeno je uz pristupni tunel strojarnici, a u njemu je i transformator 220/36,75 kV, 40 MVA s razvodnim postrojenjem 35 kV za napajanje vlastite potrošnje. Kao rezerva u nuždi služe dva dizel električna agregata, svaki snage po 1.200 kVA koji u slučaju potrebe startaju automatski. Dizel agregati smješteni su uz vanjsko razvodno postrojenje 220 kV.

godina CHE Čapljina

31

Znamenitosti južnoga dijela Hercegovine

CHE Čapljina sa svojim pogonima i postrojenjima proteže (što je svojevrstan raritet) na teritoriji triju općina: Čapljine, Neuma i Ravnog.

Čapljinsko je područje, uzimajući u obzir spomenike iz materijalne kulture iz različitih razdoblja, od neolita do kraja osmanlijskoga razdoblja, jedinstven prirodni, arheološki i etnološki muzej pod vedrim nebom.

Kompleksi starih gradova Gabele i Počitelja, srednjovjekovni stećci, rimske građevine duž nekadašnjih rimskih puteva, srednjovjekovne kule te mnogobrojne građevine etnografske i povijesne važnosti vrijedno su blago i privlačna destinacija za mnogobrojne turiste.

Općina Čapljina zauzima površinu od 249 km2 i s 27.000 stanovnika grad je na četiri rijeke: Neretvi, Trebižatu, Bregavi i Krupi, a tu su i prirodna i umjetna jezera Hutovoga blata (Deransko i Svitavsko jezero).

Intenzivno bavljenje poljoprivrednom proizvodnjom i izuzetno dobra povezanost sa susjednim općinama i Republikom Hrvatskom te posebno pogodna submediteranska klima čine tu općinu jednom od najprivlačnijih poljoprivrednih regija u Bosni i Hercegovini.

Udaljenost od stotinjak kilometara od Dubrovnika, Splita i Sarajeva, te petnaestak kilometara od Međugorja i nešto više do Mostara, čine taj prostor gotovo nezaobilaznim u turističkom, povijesnom i gospodarskom smislu.

Gabela (Drijeva) bogato je arheološko nalazište, na obali Neretve, južno od

Gabela (Drijeva) bogato je arheološko nalazište, na obali Neretve, južno od Čapljine. I danas se vide ostaci starih zidina te skulptura kamenoga lava – simbola venecijanske (mletačke) kulture.

Mogorjelo je jedan od najvažnijih spomenika rimskog doba u BiH. Vidljivi su ostaci stare vile iz 4. stoljeća, iako je već u 1. stoljeću nove ere ovdje postojalo poljoprivredno imanje.

Popovo polje je kraško polje na jugu Bosne i Hercegovine, u kojem su se razvili svi površinski i podzemni oblici. Obuhvaća prostor od Trebinja na jugoistoku do Hutova na sjeverozapadu. Unutar Popovske udoline raspoznaju se tri prirodne cjeline: Mokro polje, Trebinjska šuma, Popovo polje u užem smislu (prostor između Poljica i Hutova).

Prije izgradnje hidroakumulacije u

Popovom polju Popovci (kako sebe nazivaju stanovnici) bavili su se poljoprivredom dok je polje bilo suho i ribolovom kad bi polje poplavilo (lovili su endemičnu popovsku gaovicu).

Priroda nastanka polja samo je djelomično poznata, a najvećii dio područja izgrađuju karbonantne naslage stijena koje su se nataložile u kredi.

L≈34,5 km Al/Fe 2x360/57mm² (780A po užetu) 3 245 0.1 0.1 kV 1.100 VA; k1.0.2 (3.00 VA; k1.0.2 (3.00 VA; k1.0.5 (3.00 VA; k1.0.5 (3.00 VA; k1.0.5 (3.00 VA; k1.0.5 (3.00 VA; k1.0.2 (3.00 VA; sp.10 VA; k1.0.2 (3.00 VA; k1.0.2 (CHE Čapljina 245 kV; 1000 A JEDNOPOLNA SHEMA 220 kV; 3~ 50 Hz; 2000 A; 10 GVA 245 kV; 2000 A 245 | 01 | 01 kV , 245 kV; 400 A 245/228 10 kA REZERVA DV ULAZNA GRADJEVINA 123 kV; 400 A 1000/1 A 30 VA 5P10 DV TASOVČIĆI 600 A 2. 60 VA 5P 20 2.60 VA SP 20 220+12x12,5% kV 40 MVA Yy0 E= 0,124 0,19 123/108 kV 10 kA 3. 30 VA 5P 10 3. 30 VA 5P 10 VPO 18/39 10 kA VOP 37,5 10 kA VOP 37,5 10 kA VP0 10739; kA \rightarrow VP0 10/39; 10kA $\frac{35}{08} \sqrt{\frac{0.1}{08}} \sqrt{\frac{0.1}{3}} \text{ kV} = \frac{1.30 \text{ VA kl. } 0.2}{2.20 \text{ VA}}$ 1. 10 VA kl. 0,2 n<5 1.1 VA kl. 0,2 n<5 2. 45 VA; SP10 kl.1 2 AT 38 kV; 600A 750 MVA 2 AP 35 kV; 1000 A; 382 MVA 7. A . 1.0 VA. 5910 15.75 M. VA. 5910 15.75 M. VA. 5910 15.75 M. VA. 5910 0.513 / 0.110 kV 0.513 / 0.310 kV 1. 10 VA. 1.02 114 V 0.50 A 1.15 VA. 1.1.0 P10 0.511 AV 0 02 38 kV; 800A 750 MVA . € 50 - 100 1-1 A 38 kV 2. 45 VA; SP10 kl.1 50 - 100 1-1 A 38 kV 2. 45 VA; 5P10 kt.1 50 - 100 1-1 A 38 kV 2. 45 VA; 5P10 kl.1 $\frac{3.35}{68} \frac{0.1}{68} \frac{0.1}{3} \text{ kV} \frac{1.30 \text{ VA kI. } 0.2}{2.20 \text{ VA}}$ $\frac{3}{\sqrt{68}} \frac{35}{\sqrt{68}} \sqrt{\frac{0.1}{3}} \text{ kV } \frac{1.30 \text{ VA kl. } 0.2}{2.20 \text{ VA}}$ 2 CT 😭 VOP 37,5 10 kA VOP 37,5 10 kA VOP 37,5 10 kA 5 BT 5 AT 2 AQ 2 CV Q kabel 1kV In=4000A 3x(7x240) mm² 4 CU 4 CT 2,4 MVA Ee = 0,05 0,4 kV 2,4 MVA Ee = 0,0 10,2x2,5% kV 4,8 MVA; Dy 5 4000 A; ŠINA L≈5m/f KABEL 1 kV 3x(3x240) 240 mm² 0,5 kV; Ith = 70 kA 0,5 kV lth = 70 kA 2500 A 1. 30VA; kL0,2 3-5 A 2. 30VA; SP10 0,5 kV lth = 70 kA 1000 S A 30VA; SP10 0,5 kV Ith = 70 kA 2500 3-5 A 1. 30VA; kL0,2 2. 30VA; 5P10 0,4 kV 4000 A Ik = 70 kA 0,4 kV 4000 A Ik = 70 kA ⊕4° ⊕**,** ©H' ΘĤ ®H° ⊕4° IV 0,4 kV 3000 A 70 kA V.A 0,4 kV 3000 A 9 V.B 0,4 kV 4000 A 70 kA III 0,4 kV 3000 A 70 kA VIII 0,4 kV 3000 A 70 kA

3 ∮10,00 m 224.50 ③ (**→** 96.51 DISPOZICIJA (OSNOVA) 19.00 © (1)

CHE ČAPLJINA

- 1. OBJEKTI GORNJEG VODOSTANA
- 2. GALERIJA LEPTIR. ZATVARAČA

DISPOZICIJA (OSNOVA)

- 1. OTVORENA (IZLIVNA) KOMORA
- 2. VERTIKALNI ŠAHT IZMEĐU KOSOG ROVA I IZLIVNE KOMORE
- 3. KOSI ROV
- 4. VERTIKALNI ŠAHT IZMEĐU KOSOG ROVA I DONJE KOMORE
- 5. DONJA KOMORA (OSMICA)
- 6. DOVODNI TUNEL
- 7. PRELAZNI DIO DOVODNOG TUNELA (RAČVA)
- 8. GALERIJA ZATVARAČA
- 9. GALERIJA U OSI TLAČNIH CIJEVI
- 10. TLAČNA CIJEV "1"
- 11. TLAČNA CIJEV "2"
- 12. PRISTUPNI TUNEL GALERIJI ZATVARAČA
- 13. PRISTUPNI PUT DO TUNELA GALERIJE ZATVARAČA
- 14. POMOĆNI NISKOP ZA KOSI ROV
- 15. POMOĆNI NISKOP ZA DONJU KOMORU (OSMICU)
- 16. POMOĆNI PRISTUPNI ROVOVI ZA TLAČNE CIJEVI

