Name	
I will adhere to the Hopkins code of academic eth	ics
Signature	
Section (please check one):	
() Diener-West () McGready	

Biostatistics 140.623 Second Term, 2014-2015 Quiz 2 March 5, 2015

Below find a set of years until death or censoring for a group of 5 patients who had a surgical intervention and a second group of 5 who received a medical intervention. The plus notation (+) indicates a censored observation.

Surgical group: 1, 1, 3, 7, 10+ **Medical group**: 1+, 2, 3+, 5, 8

Now **group** the data into 2 time intervals (bins). To aid you in answering the questions below, complete the following table using the survival data above:

Group	Interval (years)	Deaths	Person-years	Incidence (Death) rate
Surgical	0 - 2	2	1+1+3(2)=8	
	> 2 -10	2	1+5+8 =14	2/14 = 0.14
Medical	0 - 2			
	> 2 - 10	2	1+3+6=10	2/10 = 0.20

- 1. The **overall incidence (death) rate** in the **surgical group** is: (Circle only one response)
 - a) 0.045 deaths per person-year
 - b) 0.18 deaths per person-year
 - c) 0.20 deaths per person-year
 - d) 0.33 deaths per person-year
 - e) 0.80 deaths per person-year
- 2. The **total person-years** in the **time bin "0-2 years"** in the **medical group** is: (Circle only one response)
 - a) 3 person-years
 - b) 9 person-years
 - c) 0.20 deaths per year
 - d) 15 person-years
 - e) 19 person-years

Biostatistics 140.623 Quiz 2

The grouped survival data are defined as:

trt=1 if surgical, 0 if medical;

bin=1 if >2-10 years, and 0 if 0-2 years;

D= # events in bin; and N = person-weeks in bin

for the Poisson regression model: $log(\lambda j) = \beta_0 + \beta_1 trt + \beta_2 bin$

which is the same as $\log(\mu_i) = \log(N_i) + \beta_0 + \beta_1 trt + \beta_2 bin$

. poisson D trt bin, exposure(N) Number of obs Poisson regression LR chi2(2) LR chi2(2) = Prob > chi2 =

Log	likelihood	1 = -5.191916	7		Pseud	lo R2	=	0.0042
	D	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
	trt	.1492553	.7685318	0.19	0.846	-1.35		1.65555
	bin _cons	0738883 -1.807619	.7685318 .6969053	-0.10 -2.59	0.923 0.009	-1.58 -3.17		1.432406 4417101
	ln(N)	1	(exposure)					

3. In this Poisson regression model, $\beta_0 + \beta_2$ can be interpreted as: (Circle only one response)

- a) The log incidence rate in the surgical group in time bin "0-2 years".
- b) The log incidence rate ratio in the surgical versus medical group, adjusted for time bin.
- c) The log incidence rate ratio in time bin ">2-10 years" versus time bin "0-2 years", adjusted for treatment.
- d) The log incidence rate in the medical group in time bin ">2-10 years".
- e) The incidence rate adjusted for both treatment and time bin.
- 4. From the Poisson regression model, the **incidence (death) rate ratio in** the **surgical patients** as compared to the **medical patients**, after controlling for time bin, is: (Circle only one response)
 - a) 0.149
 - b) -0.074
 - c) 1.16
 - d) 0.93
 - e) -1.73
- 5. The proportional hazards assumption in a Poisson regression model means that: (Circle only one response)
 - The incidence rate in the surgical group is constant over time.
 - The incidence rate ratio of death comparing surgical to medical treatment groups is constant over time.
 - The difference in the incidence rate in the surgical group minus the medical group is constant over time.
 - The incidence rate ratio of death comparing surgical to medical treatment groups increases linearly over time.
 - The log incidence rate in the standard group is the same as the log incidence rate in the medical group.

0.04 0.9785