Problem 7

a) To show that the Poisson distribution belongs to the single parameter exponential family, we need to express it's probability mass function (PMF) in the following form:

$$p(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta))$$

where:

- η is the natural parameter.
- T(y) is the sufficient statistic.
- $a(\eta)$ is the log-partition function.
- b(y) is the base measure.

PMF of the Poisson distribution:

$$P(Y = y) = \frac{e^{-\lambda} \lambda^y}{y!}, \quad y = 0, 1, 2, \dots$$

Rewriting the PMF:

$$\lambda^y = e^n$$

where,

$$n = \log(\lambda^y) \implies n = y \log(\lambda)$$

We can rewrite the PMF as:

$$P(Y = y) = \frac{e^{-\lambda}e^{y\log(\lambda)}}{y!}, \quad y = 0, 1, 2, \dots$$

$$\implies P(Y=y) = \frac{1}{y!} \exp(-\lambda + y \log(\lambda))$$

Comparing with exponential family form

- $\eta = \log(\lambda)$ (natural parameter)
- T(y) = y (sufficient statistic)
- $a(\eta) = \lambda = \exp(\eta)$ (log-partition function)
- $b(y) = \frac{1}{y'}$ (base measure)

Expressing the PMF in exponential family form:

Substituting these components into the general form, we get:

$$P(Y = y) = \frac{1}{y!} \exp(\log(\lambda) \cdot y - \exp(\log(\lambda)))$$
$$= b(y) \exp(\eta^T T(y) - a(\eta))$$

b) (a) The log-likelihood function of θ , given S.

Given the dataset $S = \{(x^{(i)}, y^{(i)}), x^{(i)} \in \mathbb{R}^k, y^{(i)} \in \mathbb{Z}^+, i = 1, 2, ..., n\}$, and the assumption that given x, y follows a Poisson distribution with rate $e^{\theta^T x}$, the likelihood function is:

$$\begin{split} L(\theta) &= \prod_{i=1}^{n} P(y^{(i)}|x^{(i)};\theta) \\ &= \prod_{i=1}^{n} \frac{e^{-e^{\theta^{T}x^{(i)}}}(e^{\theta^{T}x^{(i)}})^{y^{(i)}}}{y^{(i)}!} \end{split}$$

The log-likelihood function is then:

$$\begin{split} l(\theta) &= \log L(\theta) \\ &= \sum_{i=1}^{n} \log \left(\frac{e^{-e^{\theta^{T} x^{(i)}}} (e^{\theta^{T} x^{(i)}})^{y^{(i)}}}{y^{(i)}!} \right) \\ &= \sum_{i=1}^{n} \left(-e^{\theta^{T} x^{(i)}} + y^{(i)} \theta^{T} x^{(i)} - \log(y^{(i)}!) \right) \end{split}$$

(b) The gradient of the log-likelihood with respect to θ is:

$$\begin{split} \nabla l(\theta) &= \frac{\partial l(\theta)}{\partial \theta} \\ &= \sum_{i=1}^{n} \left(-e^{\theta^T x^{(i)}} x^{(i)} + y^{(i)} x^{(i)} \right) \\ &= \sum_{i=1}^{n} \left(y^{(i)} - e^{\theta^T x^{(i)}} \right) x^{(i)} \end{split}$$

(c) Since we want to maximize the log-likelihood, we will use gradient ascent, which is the same algorithm but with a positive step size.

1.Initialization: Choose an initial value for θ , say $\theta^{(0)}$.

2.Iteration: Update θ using the following rule:

$$\theta^{(t+1)} = \theta^{(t)} + \alpha \nabla l(\theta^{(t)})$$

where $\alpha > 0$ is the learning rate (step size) and $\nabla l(\theta^{(t)})$ is the gradient of the log-likelihood evaluated at $\theta^{(t)}$.

3.Convergence: Repeat step 2 until convergence, which can be determined by monitoring the change in $l(\theta)$ or in θ itself. For example, stop if $||\theta^{(t+1)} - \theta^{(t)}|| < \epsilon$ for some small tolerance ϵ .

Substituting the gradient we derived earlier, the update rule for gradient ascent becomes:

$$\theta^{(t+1)} = \theta^{(t)} + \alpha \sum_{i=1}^{n} \left(y^{(i)} - e^{\theta^{T} x^{(i)}} \right) x^{(i)}$$