250B: Commutative Algebra For the Morbidly Curious

Nir Elber

Spring 2022

CONTENTS

Contents		2
_	Introduction to Dimension 1.1 March 17	9
Lis	st of Definitions	8

THEME 1

INTRODUCTION TO DIMENSION

In this sense the algebraic geometers have never left paradise: There is no snake (that is, Peano curve) in the garden.

—David Eisenbud

1.1 March 17

We're back, y'all.

1.1.1 A Quick Exercise

Let's start with an exercise, to review for the midterm. Recall the following result.

Lemma 1.1 (Eisenbud 6.4). Fix R a ring and $S:=R[x_1,\ldots,x_n]/(f)$, where f is some polynomial. Then S is a flat R-algebra if and only if $\mathrm{cont}\, f=R$.

Proof. This was on the homework.

And here is our exercise.

Exercise 1.2. Fix R := k[x, y] with maximal ideal $\mathfrak{m} := (x, y)$, and we consider the blow-up ring

$$S := B_{\mathfrak{m}} R := R \oplus \mathfrak{m} \oplus \mathfrak{m}^2 \oplus \cdots.$$

Now, we ask if S is a flat R-module.

Proof. Heuristically, the fiber at any point except for (0,0) is a point, but the fiber over (0,0) is the full projective line. So these fibers are pretty poorly behaved, so we expect this to not be a flat module.

Well, by staring hard at our grading, we see that

$$S \cong k[x, y, tx, ty] \cong \frac{k[x, y, z, w]}{(yz - xw)},$$

1.1. MARCH 17 250B: COMM. ALGEBRA

where the point is that we induce the right-hand isomorphism by $tx \mapsto z$ and $ty \mapsto w$. As such, we see that this module is not flat because the polynomial f(z,w) = yz - xw has coefficients which generate $\cot(f) = (x,y) \neq R$. In particular, we have "detected" the fiber over the origin.

1.1.2 The Krull Dimension

Warning 1.3. For effectively the rest of the course, all of our rings will be Noetherian.

Recall the following definition.

Definition 1.4 (Krull dimension). The Krull dimension of a ring R, denoted $\dim R$, is the supremum of the length r of a chain of distinct primes

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_r.$$

This gives rise to the following definitions.

Definition 1.5 (Krull dimension, ideals). Fix a ring R and an ideal $I \subseteq R$. Then we define the *dimension* of an ideal I to be $\dim I := \dim R/I$.

Definition 1.6 (Codimension). Fix I a prime ideal of a ring R. Then we define the *codimension* of I to be $\operatorname{codim} R_I$. For an arbitrary ideal I, we define

$$\operatorname{codim} I := \min_{\mathfrak{p} \supseteq I} \operatorname{codim} \mathfrak{p}.$$

Note that the above definition for codimension is well-defined because there are only finitely many minimal primes over an ideal.

Remark 1.7. Intuitively, the codimension of \mathfrak{p} , which is the dimension of $R_{\mathfrak{p}}$, can be computed as the length of the largest chain which goes up to \mathfrak{p} , because after that we can localize our chain. More explicitly, we are asking for the longest chain of the form

$$\mathfrak{p}_1 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_r \subsetneq \mathfrak{p}.$$

Example 1.8. Fix $R := \mathbb{Z}$, which has $\dim \mathbb{Z} = 1$. Then $\operatorname{codim}(0) = \dim \mathbb{Q} = 0$; in fact, $\dim(0) = 1$. Similarly, $\operatorname{codim}(p) = \dim \mathbb{Z}_p = 1$ (it helps to use the above remark), and $\dim(p) = \dim \mathbb{Z}/p\mathbb{Z} = 0$.

In all these examples, we see that

$$\dim \mathfrak{p} + \operatorname{codim} \mathfrak{p} = \dim R.$$

As such, we have the following statement.

Proposition 1.9. Fix \mathfrak{p} a prime ideal of a ring R. Then

$$\dim \mathfrak{p} + \operatorname{codim} \mathfrak{p} \leq \dim R.$$

Proof. Use Remark 1.7 so that the left-hand side is the maximal length of a chain containing p.

Remark 1.10. Equality in Proposition 1.9 holds for affine domains (i.e., the ring of functions over a reduced variety).

1.1. MARCH 17 250B: COMM. ALGEBRA

Example 1.11. Consider $R := k[x] \times k[y, z]$, which is the coordinate. Here, $\dim R = 2$, but $\operatorname{codim}(x) = 1$ and $\dim(x) = 0$.

1.1.3 Dimension in Families

Here is a basic example of an affine variety.

Proposition 1.12. Fix R a ring.

- (a) We have $\dim R = 0$ if and only if R is Artinian. In this case, R is the product of finitely many Artinian local rings.
- (b) If X is an algebraic set, then $\dim A(X) = 0$ if and only if X is finite.

In algebraic geometry, we are interested in families of varieties, which in our algebraic context means morphisms of algebras. A helpful case to consider will be when we take an integral extension; this corresponds to the notion of a finite morphism of algebraic sets.

Proposition 1.13. Fix a ring homomorphism $\varphi: R \to S$ which makes S into an integral R-algebra. Then, for any $\mathfrak{p} \in \operatorname{Spec} R$ such that $\ker \varphi \subseteq \mathfrak{p}$, there exists $\mathfrak{q} \in \operatorname{Spec} S$ such that

$$\mathfrak{p}=\varphi^{-1}(\mathfrak{q}).$$

In fact, for any ideal $I \subseteq S$, we have $\dim S/I = \dim R/\varphi^{-1}(I)$.

Proof. By replacing R with $R/\ker \varphi$, we may assume that φ is an embedding. Now the point is to lift our prime $\mathfrak p$ upwards, which we know will give us our prime $\mathfrak q$ such that $\mathfrak p=\mathfrak q\cap R=\varphi^{-1}(\mathfrak q)$.

For the latter statement, we first mod out by I to not have to worry about quotients, and we note that any chain

$$\mathfrak{p}_0 \subseteq \mathfrak{p}_1 \subseteq \cdots \subseteq \mathfrak{p}_n \subseteq R$$

can be lifted to a chain

$$\mathfrak{q}_0 \subseteq \mathfrak{q}_1 \subseteq \cdots \subseteq \mathfrak{q}_n$$
.

In fact, we know that the lifts q_{\bullet} of a particular prime \mathfrak{p} are incomparable, so we cannot make a chain like the one above longer, lest we be able to pull it back to R for a longer chain. This finishes proving the dimension statement.

Corollary 1.14. Fix $\varphi: X \to Y$ a morphism of algebraic varieties giving rise to a map $\varphi^*: A(Y) \to A(X)$. Further, suppose A(X) is a finitely generated A(Y)-module. Then the following are true.

- (a) The fibers of φ are finite.
- (b) If $Z \subseteq X$ is Zariski closed, then $\varphi(Z) \subseteq Y$ is also Zariski closed.
- (c) If φ^* is an injection, then φ is surjective.

Proof. We go one at a time.

(a) Fix a maximal ideal $\mathfrak{m} \subseteq R$. We want to compute the coordinate ring $S/\mathfrak{m}S$; in particular, we note

$$\dim S/\mathfrak{m}S = \dim R/\varphi^{-1}(\mathfrak{m}S) = \dim R/\mathfrak{m} = 0,$$

so the corresponding algebraic set is finite.

1.1. MARCH 17 250B: COMM. ALGEBRA

- (b) We will show (c) first.
- (c) Again, pick up a maximal ideal $\mathfrak{m}\subseteq R$, which is prime. Lifting to S, we can find some prime ideal $\mathfrak{q}\in\operatorname{Spec} S$ such that $\mathfrak{q}\cap R=\mathfrak{m}$, so because of the aforementioned incomparability, we conclude that \mathfrak{q} must be maximal now. This gives our surjectivity.
- (d) The point is to look at $R/\ker \varphi$ so that $Z(\ker \varphi) = \overline{\varphi(X)}$. At this point, we can apply (c) to see that φ is surjecting onto a Zariski closed set.

Example 1.15. Fix $S := k[x,y]/(x-y^2)$ and R := k[x] so that we have a mapping $R \hookrightarrow S$. The mapping between the algebraic curves is in fact surjective, though this is not apparent from the image in \mathbb{R} .

We close this discussion with the following lemma.

Lemma 1.16. Fix a multiplicatively closed subset $U \subseteq R$, and set $S := R \left[U^{-1} \right]$, which gives the natural map $\varphi : R \to S$. Then, for any prime $\mathfrak{p} \subseteq R \left[U^{-1} \right]$, we have

$$\operatorname{codim} \varphi^{-1}(\mathfrak{p}) = \operatorname{codim} \mathfrak{p}.$$

Proof. Proceed directly from the definition and how our primes behave in localization.

1.1.4 The Principal Ideal Theorem

Here is our statement.

Theorem 1.17 (Principal ideal). Fix a Noetherian ring R. Given $x \in R$, set \mathfrak{p} to be a minimal prime over (x). Then

$$\operatorname{codim} \mathfrak{p} \leq 1.$$

Proof. By moving from R to $R_{\mathfrak{p}}$, we may assume that R is local with maximal ideal \mathfrak{p} . We will show that, if we can find a prime $\mathfrak{q} \subsetneq \mathfrak{p}$ is strictly smaller than \mathfrak{p} , then $\operatorname{codim} \mathfrak{q} = 0$, which will be enough. As such, we look at $R_{\mathfrak{q}}$ and show that the ideal $\mathfrak{q}_{\mathfrak{q}}$ is nilpotent so that it has codimension 0. With this in mind, we set

$$\mathfrak{q}^{(n)} := \mathfrak{q}_{\mathfrak{q}}^n \cap R = \{r \in R : rs \in \mathfrak{q}^n \text{ for some } s \notin \mathfrak{q}\}.$$

We now return to our hypotheses. The fact that $\mathfrak p$ is minimal over (x) implies that $\mathfrak p/(x)$ is a maximal (by being local) and minimal ideal of R/(x), so R/(x) is an Artinian ring! As such, the descending chain

$$\mathfrak{q}^{(1)} + (x) \supseteq \mathfrak{q}^{(n)} + (x) \subseteq \cdots$$

must stabilize eventually. So we find our n for which $\mathfrak{q}^{(n)}+(x)=\mathfrak{q}^{(n+1)}+(x)$. In particular, $\mathfrak{q}^{(n)}\subseteq\mathfrak{q}^{(n+1)}+(x)$, so

$$\mathfrak{q}^{(n)} = x\mathfrak{q}^{(n)} + \mathfrak{q}^{(n+1)}.$$

Thus, Nakayama's lemma (note that x lives in the Jacobson radical) tells us that $\mathfrak{q}^{(n)}=\mathfrak{q}^{(n+1)}$. But now, looking in $R_{\mathfrak{q}}$, which is again a local ring, we see that $\mathfrak{q}^{(n)}=\mathfrak{q}^{(n+1)}$ forces $\mathfrak{q}^{(n)}=0$, which is what we wanted.

Remark 1.18. The analogous statement in linear algebra is that the codimension of a line in a space is 1 if the equation has a nonzero solution and 0 otherwise. More rigorously, by the implicit function theorem in differential geometry, having one equation in a tangent space will have a solution set with either the same dimension or one fewer dimension.

We can extend this result to any finitely generated ideal by an induction.

Theorem 1.19. Fix a Noetherian ring R and a minimal prime $\mathfrak p$ over the (finitely generated) ideal $I=(x_1,\ldots,x_s)\subseteq R$. Then $\operatorname{codim}\mathfrak p\le s$.

Proof. We proceed by induction. We have already done the case of s = 1. For the inductive step, we would like some prime \mathfrak{p}_1 containing \mathfrak{p} which is minimal over an ideal generated by s - 1 elements.

Well, if $x_s \in \mathfrak{p}_1$, then $\mathfrak{p} = \mathfrak{p}_1$ will do, so we assume henceforth that $x_s \notin \mathfrak{p}_1$. As before, we may pass to $R_{\mathfrak{p}}$ to assume that R is local with maximal ideal \mathfrak{p} . The idea, now, is to note that

$$\mathfrak{p}/(x_1,\ldots,x_s)$$

is nilpotent, using the same argument as in the previous theorem. Thus, there exists m such that

$$x_i^n \equiv 0 \pmod{\mathfrak{p}_1, x_s}$$

for any i. As such, we can write

$$x_i^n = a_i x_s + y_i,$$

where $y_i \in \mathfrak{p}_1$. So now we claim that \mathfrak{p}_1 is minimal over (y_1, \ldots, y_{s-1}) , which holds by more or less looking at it, I guess. So we are done by induction.

Remark 1.20. The analogous statement in linear algebra is that we now have s equations, which will give rise to codimension s.

We close with some applications.

Example 1.21. Fix $R := k[x_1, \dots, x_n]$. Then the codimension of $\mathfrak{p} := (x_1, \dots, x_r)$ is upper-bounded by r by the above theorem, but we also have a chain

$$(0) \subseteq (x_1) \subseteq (x_1, x_2) \subseteq \cdots (x_1, \dots, x_r) = \mathfrak{p},$$

so $\operatorname{codim} \mathfrak{p} = r$ follows.

Corollary 1.22. Fix $\mathfrak p$ a prime ideal of a ring R with codimension r. Then there are elements x_1, \ldots, x_r such that $\mathfrak p$ is minimal over (x_1, \ldots, x_r) .

Proof. The point is to do an induction. Starting with r=1, we choose a minimal prime. Then we can choose an element x_2 which does not live in any of these finitely many minimal primes and finish by induction.

LIST OF DEFINITIONS

Codimension, 4

Krull dimension, 4 Krull dimension, ideals, 4