Machine Learning: (Bayesian) Neural Networks & Automatic Relevance Determination

Matthias Blaschke
University of Augsburg

Memorial University of Newfoundland

Gartner Hype Cycle for Artificial Intelligence, 2019

gartner.com/SmarterWithGartner

Talk Outline

- Neural Networks
 (fancy)
- Bayesian Neural Networks (that's even fancier)
- Hierarchical Bayesian Neural Networks (Ok. That's awesome)
- Automatic Relevance Determination (concentrate on the important things...)

What is a Neural Network?

Highly nonlinear function of the inputs

Deep Networks

$$y = f_5 \left(w_{3,1} f_3 \left(w_{2,1} f_1(w_{1,1} x) + w_{2,2} f_2(w_{1,2} x) \right) + \left(w_{3,2} f_4 \left(w_{2,3} f_1(w_{1,1} x) + w_{2,4} f_2(w_{1,2} x) \right) \right) \right)$$

Common Activation Functions

Hyper Tangent Function

ReLU Function

Sigmoid Function

Identity Function

https://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1547672259/4_jouacz.png

How can we use it?

Nonlinear regression

Classification

0

Universal approximation theorem

Many different formulations. For example:

Networks with Relu activation functions with width n+1 are sufficient to approximate any continuous convex function of n input variables

How can we train it?

- Step 1: Initialize all weights randomly
- Step 2: Calculate output y with training data
- Step 3: Compare output y and desired output y
 → Define Loss function
- Step 4: Update weights

How do we update the weights?

Backpropagation:

-Error function for N outputs and Input j

$$E_j(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

-Total error function: i=1

$$E(w) = \sum_{j=1}^{M} E_j(w)$$

Batch: M points from the training data

Epoch: The whole dataset was trained once

How do we update the weights?

Update the weights using gradient descent:

$$w^{(t+1)} = w^{(t)} - \eta \nabla E_n(w^{(t)}); \quad \eta = \text{learning rate}$$

Calculate the gradient using backpropagation:

$$\frac{\partial E_n}{\partial w_{ji}} = \underbrace{\frac{\partial E_n}{\partial a_j}}_{0} \underbrace{\frac{\partial a_j}{\partial w_{ji}}}_{0} = \delta_j \phi_i$$

$$\delta_j \quad \phi_i = \phi(a_i)$$

How do we update the weights?

- Calculate δ_j
 - For output units $\delta_k = y_k \hat{y}_k$

$$\delta_k = y_k - \hat{y}_k$$

For hidden units

$$\delta_j = \sum_k \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial a_j}$$

$$\delta_j = \phi_j' \sum_k w_{kj} \delta_k$$

BACKpropagation...

Regression example

That's enough math. Let's have a look at an example:

Regression example

 Very easy to implement (using Python and Keras):

```
1 #set up data X,y
2
3 model = models.Sequential()
4 model.add(layers.Dense(16, input_dim=1, activation='relu'))
5 model.add(layers.Dense(32, activation='relu'))
6 model.add(layers.Dense(16, activation='relu'))
7 model.add(layers.Dense(1))
8 model.compile(loss='mae', optimizer='adam')
9 model.fit(X, y, epochs=15000, batch_size=100)
10
11 #just some plotting
```

Problem: Overfitting

Network architecture: 1 - 16 - 32 - 16 - 1 (Relu) 10000 training epochs

Universal Approximation Theorem strikes back...

Solution: Overfitting

Dropout

Randomly drop units from the neural network

https://miro.medium.com/max/1044/1*iWQzxhVlvadk6VAJjsgXgg.png

Kernel regularization

Adds regularizing term to loss function (e.g. L₂)

$$loss \to loss + \frac{\lambda}{2m} \sum_{l=1}^{L} ||w_l||^2$$

Solution: Dropout

Network architecture: 1 - 16 - 32 - 16 - 1 (Relu)

10000 training epochs

Dropout rate layer 3 = 0.2

Dropout rate layer 4 = 0.01

Solution: Regularization

Network architecture: 1 – 16 – 32 – 16 – 1 (Relu) 10000 training epochs L2 regularization with $\lambda=0.01$

Problem: Local minima

Summary Neural Networks

- Simple implementation (even on GPUs)
- Proven capacity
- Scalability
- ...

- Many hyperparameters: Network architecture, learning rate, number hidden neurons -> Trial and Error
- Overfitting, Estimating Uncertainties (Cross-Validation : Huge training / validation data set needed)
- Black Box
- And ...

Fundamental Problem

No (good) information about uncertainty!

→ We should go Bayesian....

Bayesian Neural Networks

https://miro.medium.com/max/438/1*P48tfTLHDom0IbZkmG4RmQ.png

$$p(y|x,D) = \int \underline{p(y|x,w)} \underline{p(w|D)} dw$$

Set to 1.

 $D = \{x^{(i)}, y^{(i)}\}$ Training Dataset w Weights

Posterior over weights

→ Intractable because of nonlinearity

Approximation of the posterior p(w|D)

Laplace Approximation

Replace posterior by a Gaussian centered at the "true" posterior

MC Dropout

 Train Network with Dropout and sample from it using Dropout

Monte Carlo Methods

Variational Inference

Implemented in several software libraries (Pymc,...)

Variational Inference

- Bayes theorem $p(w|D) \propto p(D|w)p(w)$ \rightarrow Untractable \rightarrow Approximate Posterior
- Find variational distribution $q(w|\theta)$ of known functional form (e.g. Gaussian $\theta=(\mu,\sigma)$, ...)

$$p(w|\theta) \stackrel{?}{\leftrightarrow} p(w|D)$$

Minimize Kullback-Leibler divergence w.r.t to $\, heta$

Variational Inference

The minimization problem can be written as:

$$\mathcal{F}(D,\theta) = \mathrm{KL}\left(q(w|\theta)||p(w)\right) - \mathrm{E}_{q(w|\theta)}\log(p(D|w))$$

$$\downarrow (\ldots)$$

$$\mathcal{F}(D,\theta) \approx \underbrace{\frac{1}{N}\sum_{i=1}^{N}\left[\underbrace{\log(q(w^{(i)}|\theta) - \log(p(w^{(i)}))}_{\text{Complexity cost}} - \underbrace{\underbrace{\log(p(D|w^{(i)}))}_{\text{Likelihood cost}}\right]}_{\text{Likelihood cost}}$$

Variational Inference: Network Training

Forward-
pass:

-Draw sample from variational posterior

-Evaluate cost function ${\mathcal F}$ with sample

Backwardpass:

-Calculate gradients of (μ,σ)

<u>-BUT:</u> stochastic sampling \leftrightarrow gradient?

→ re-parameterization with deterministic function (where gradient can be defined)

Bayesian Neural Network: Example

Network structure: 1-20-20-1 (Relu)

5000 training epochs

1000 samples for evaluation

Bayesian Neural Network: Uncertainty

- About what is our network uncertain?
 - Uncertainty of weights?
 - Uncertainty about observation caused by noisy data set?

 \rightarrow The example can only cover uncertainty of weights (we set p(y|x,w)=1)

Summary Bayesian Neural Networks

- Calculate error associated with predictions (BUT: future research required, efficient implementation)
- No validation data needed
- Avoids overfitting
- Less weights and training data needed

- Difficult to scale up
- Approximations to Bayesian approach (e.g. uncorrelated weights)

Example following:

https://twiecki.io/blog/2018/08/13/hierarchical

bayesian neural network/

(all figures taken from there)

Classification Problem

Train "normal Bayesian NN"

Find the limits of "normal" Bayesian Neural Network:

- -Generate 16 different groups by rotating the data
- -only a few training points per group

Train one normal BNN for every group:

- "Z-Shape" not detected
- We should take advantage of the similarities between the groups

From Moritz' talk

A simple example

Simple Hierarchical

 $\theta \sim \text{shared parameters}$

 $b_i \sim \text{cluster-specific param}$.

 $\Sigma_b \sim \text{distr. over } b_i$

 $y_{ij} \sim \text{observables}$

Setup

 $\theta = (\mu, \sigma_b^2, \sigma_y^2)$ shared $b_i \sim \mathcal{N}(0, \sigma_b^2)$ deviations $\mu_i = \mu + b_i$ specific mean $y_{ij} \sim \mathcal{N}(\mu_i, \sigma_v^2)$

6

35

Train a hierarchical model:

(omitting layer index for simplicity)

Train a hierarchical model:

1 2 3

-3 -2 -1

https://resizing.flixster.com/JITvzaGqtRxPU IUFXTrZo2wQ9ZI=/206x305/v1.bTsxMTE2O TU5NDtqOzE4MzU0OzEyMDA7ODAwOzEy

 Imagine dataset with many features, but not all are important

- →Bad performance, because weights of irrelevant inputs are not set to 0
- → Determine relevant inputs

• Set prior with hyperparameter α on weights:

$$P(w|\alpha_i) \propto \mathcal{N}(0,\alpha_i)$$

Posterior over weights becomes:

$$P(w,\alpha|D) = \underbrace{P(w|D,\alpha)}_{\text{Assumption}} \underbrace{P(\alpha|D)}_{\text{Bayes}}$$

$$P(w,\alpha|D) \propto \underbrace{\mathcal{N}(\mu,\Sigma)}_{\text{Controlled by }\alpha} \underbrace{P(D|\alpha)P(\alpha)}_{\text{Controlled by }\alpha}$$

$$P(w, \alpha|D) \propto \mathcal{N}(\mu, \Sigma) P(D|\alpha) P(\alpha)$$

• Maximize likelihood $P(D|\alpha)$ (assume uniform hyperprior $P(\alpha)$):

$$P(D|\alpha) = \int P(D|w)P(w|\alpha)dw$$

$$\downarrow \text{(...)}$$

$$\frac{\mathrm{d}}{\mathrm{d}\alpha_i}\ln(P(D|\alpha)) = 0 \xrightarrow{\text{(...)}} \alpha_i = \frac{1 - \alpha_i \Sigma_{ii}}{\mu_i^2}$$

→Implicit equation (Solved by Iteration)

• Some α will tend to ∞ \longrightarrow weight prior is $\mathcal{N}(0,0) \text{ distributed}$ \longrightarrow weight is 0

- ARD can be applied to a huge amount of Models (Regression, Neural Networks,...)
- Let's have a look at an example...

https://scikit-learn.org/stable/_images/sphx_glr_plot_ard_001.png

Take-Home Message

Problem / Task	Solution
Nonlinear Regression, Classification	Neural Network
Uncertainty Estimation	Bayesian Neural Network
Learn from different groups with similarities & Transfer Learning	Hierarchical Bayesian Neural Network
Dataset with irrelevant features	Automatic Relevance Determination

Regression example

 https://mybinder.org/v2/gh/blaschma/regression_example/m aster

References

- Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.
- Neal, Radford M. Bayesian learning for neural networks. Vol. 118. Springer Science & Business Media, 2012.
- Fletcher, Tristan. "Relevance vector machines explained." *University College London: London, UK* (2010).
- https://twiecki.io/blog/2018/08/13/hierarchical_bayes ian_neural_network/
- http://krasserm.github.io/2019/03/14/bayesianneural-networks/