Apuntes de Sistemas Electroacústicos

Javier Rodrigo López

23 de septiembre de 2024

Índice

1.	Altavoces		
	1.1.	Introd	ucción al altavoz electrodinámico
		1.1.1.	Sección eléctrica
		1.1.2.	Sección de conversión electromećanica
		1.1.3.	Sección mecánica
		1.1.4.	Sección de conversión mecánico-acústica
		1.1.5.	Modelo completo del altavoz

Introducción

1. Altavoces

1.1. Introducción al altavoz electrodinámico

Un altavoz se compone de varios elementos:

- Imán
- Bobina
- Membrana, cono o diafragma
- Bornas de conexión (entre la membrana y la bobina)

A bajas frecuencias se puede aproximar al comportamiento de un pistón, pero a altas frecuencias pueden aparecer resonancias.

1.1.1. Sección eléctrica

1.1.2. Sección de conversión electromećanica

1.1.3. Sección mecánica

Las partes mécanicas del altavoz son la membrana y la araña (suspensión). En términos de mecánica, este sistema es equivalente a un pistón, un muelle y una masa. VER DIAGRAMA CUADERNO

$$F = -kz \tag{1}$$

$$F = -d\frac{\mathrm{d}z}{\mathrm{d}t} \tag{2}$$

Donde d es la disipación de energía por rozamiento.

$$F = m \frac{\mathrm{d}^2 z}{\mathrm{d}t^2} \tag{3}$$

$$F - kz - d\frac{\mathrm{d}z}{\mathrm{d}t} = m\frac{\mathrm{d}^2z}{\mathrm{d}t^2} \tag{4}$$

$$F = kz + d\frac{\mathrm{d}z}{\mathrm{d}t} + m\frac{\mathrm{d}^2z}{\mathrm{d}t^2} \tag{5}$$

1.1.4. Sección de conversión mecánico-acústica

Para hallar la impedancia de radiación, recordamos que una impedancia es la relación entre tensión y corriente. En nuestro modelo, la tensión se relaciona con la velocidad y la corriente con la fuerza. Por lo tanto, la impedancia de radiación es la relación entre la velocidad de la membrana y la fuerza que se ejerce sobre ella.

La impedancia acústica mide cuánto se está oponiendo el medio acústico (aire) al movimiento del pistón. El pistón comprime y expande el aire y genera una variación de la presión.

$$dp_1 = j\omega \rho_0 v_z dS_1 \frac{e^{-jkr_1}}{2\pi r_1} \tag{6}$$

Una región 1 del pistón genera una fuerza sobre otra región 2 del pistón de la siguiente manera:

$$df_{1,2} = j\omega \rho_0 v_z dS_1 \frac{e^{-jkr_1}}{2\pi r_1} dS_2$$
 (7)

$$F = \frac{j\omega\rho_0 v_z}{2\pi} \int_{S_1} \int_{S_2} \frac{e^{-jkr_{1,2}}}{r_{1,2}} dS_1 dS_2$$
 (8)

La solución de esta ecuación es:

$$Z = \frac{F}{v_z} = \pi a^2 \rho_0 c \left[\left(1 - \frac{J_1(2ka)}{ka} \right) + j \left(\frac{H_1(2ka)}{ka} \right) \right]$$
(9)

Donde J_1 y H_1 son las funciones de Bessel de primer tipo y orden 1, respectivamente.

Modelo completo del altavoz

$$e_g' = \frac{e_g}{Bl}$$

$$R_E'$$

$$R_{MS} = \frac{1}{d}$$

$$e'_g = \frac{e_g}{Bl}$$
 $R_{MS} = \frac{1}{d}$ $R_{AP-L} = \frac{1}{2} \cdot \frac{9\pi}{\rho_0 ca^2}$