SLRS027 - D2624, DECEMBER 1976 - REVISED APRIL 1993

HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS

- 500-mA Rated Collector Current (Single Output)
- High-Voltage Outputs . . . 50 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay Driver Applications
- Designed to Be Interchangeable With Sprague ULN2001A Series

(TOP VIEW) 16 1 1C 1В [2В П 15 2C 2 3B **∏** 3 14 🛮 3C 13**∏** 4C 4B **∏** 5В П 12 5C 5 11 1 6C 6В Г 6 7В П 7 10 7C 8 **9**]] сом Ε

D OR N PACKAGE

description

The ULN2001A, ULN2002A, ULN2003A, and ULN2004A are monolithic high-voltage, high-current Darlington transistor arrays. Each consists of seven npn Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of a single Darlington pair is 500 mA. The Darlington pairs may be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. For 100-V (otherwise interchangeable) versions, see the SN75465 through SN75469.

The ULN2001A is a general-purpose array and can be used with TTL, P-MOS, CMOS, and other MOS technologies. The ULN2002A is specifically designed for use with 14- to 25-V P-MOS devices. Each input of this device has a zener diode and resistor in series to control the input current to a safe limit. The ULN2003A has a 2.7-k Ω series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices. The ULN2004A has a 10.5-k Ω series base resistor to allow its operation directly from CMOS or P-MOS devices that use supply voltages of 6 to 15 V. The required input current of the ULN2004A is below that of the ULN2003A, and the required voltage is less than that required by the ULN2002A.

logic symbol†

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram

ULN2001A THRU ULN2004A DARLINGTON TRANSISTOR ARRAYS

SLRS027 - D2624, DECEMBER 1976 - REVISED APRIL 1993

schematics (each Darlington pair)

All resistor values shown are nominal.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-emitter voltage	50 V
Input voltage, V _I (see Note 1)	30 V
Peak collector current (see Figures 14 and 15)	500 mA
Output clamp current, I _{OK}	500 mA
Total emitter-terminal current	–2.5 A
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range	–20°C to 85°C
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.

DISSIPATION RATING TABLE

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C POWER RATING			
D	950 mW	7.6 mW/°C	494 mW			
N	1150 mW	9.2 mW/°C	598 mW			

ULN2001A THRU ULN2004A DARLINGTON TRANSISTOR ARRAYS

SLRS027 - D2624, DECEMBER 1976 - REVISED APRIL 1993

electrical characteristics, $T_A = 25^{\circ}C$ (unless otherwise noted)

PARAMETER		TEST COND		ULN2001		A ULN		N2002	N2002A			
	PARAWEIER	FIGURE	1231 00	TEST CONDITIONS		TYP	MAX	MIN	TYP	MAX	UNIT	
V _{I(on)}	On-state input voltage	6	V _{CE} = 2 V,	IC = 300 mA						13	V	
			Ιι = 250 μΑ,	I _C = 100 mA		0.9	1.1		0.9	1.1		
V _{CE(sat)}	Collector-emitter saturation voltage	5	Ιן = 350 μΑ,	I _C = 200 mA		1	1.3		1	1.3	V	
` `	Saturation voltage		$I_I = 500 \mu A$,	$I_C = 350 \text{ mA}$		1.2	1.6		1.2	1.6		
٧F	Clamp forward voltage	8	I _F = 350 mA			1.7	2		1.7	2	V	
		1	V _{CE} = 50 V,	I _I = 0			50			50		
ICEX	Collector cutoff current	1	V _{CF} = 50 V,	$I_I = 0$			100			100	μΑ	
		2	T _A = 70°C	V _I = 6 V						500		
I(off)	Off-state input current	3	V _{CE} = 50 V, T _A = 70°C	I _C = 500 μA,	50	65		50	65		μΑ	
IĮ	Input current	4	V _I = 17 V						0.82	1.25	mA	
I _R	Clamp reverse current	7	$V_R = 50 V$,	T _A = 70°C			100			100	μΑ	
h _{FE}	Static forward current transfer ratio	5	V _{CE} = 2 V,	I _C = 350 mA	1000							
I _R	Clamp reverse current	7	V _R = 50 V				50			50	μΑ	
Ci	Input capacitance		$V_{I} = 0$,	f = 1 MHz		15	25		15	25	pF	

electrical characteristics, $T_A = 25^{\circ}C$ (unless otherwise noted)

PARAMETER TEST FIGURE		TEST CONDITIONS		NULTIONS	ULN2003A			ULN2004A			UNIT	
		TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNII		
	O. alah isada da la	6	V _{CE} = 2 V	I _C = 125 mA						5		
				I _C = 200 mA			2.4			6	V	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				I _C = 250 mA			2.7					
V _{I(on)}	On-state input voltage			I _C = 275 mA						7		
				I _C = 300 mA			3					
				I _C = 350 mA						8		
	VCE(sat) Collector-emitter saturation voltage 5 I _I = 350 μ.Α	$I_I = 250 \mu A$,	$I_C = 100 \text{ mA}$		0.9	1.1		0.9	1.1			
VCE(sat)		5	$I_I = 350 \mu A$,	$I_C = 200 \text{ mA}$		1	1.3		1	1.3	V	
			$I_I = 500 \mu A$,	$I_C = 350 \text{ mA}$		1.2	1.6		1.2	1.6		
	Collector cutoff current	1	$V_{CE} = 50 \text{ V},$	I _I = 0			50			50	μΑ	
ICEX			V _{CE} = 50 V,	I _I = 0			100			100		
		2	T _A = 70°C	V _I = 1 V						500		
٧F	Clamp forward voltage	8	$I_F = 350 \text{ mA}$			1.7	2		1.7	2	V	
II(off)	Off-state input current	3	V _{CE} = 50 V, T _A = 70°C	$I_C = 500 \mu A$,	50	65		50	65		μΑ	
	Input current	4	V _I = 3.85 V			0.93	1.35				mA	
l _l			V _I = 5 V						0.35	0.5		
			V _I = 12 V						1	1.45		
IR	Clamp reverse current	7	V _R = 50 V				50			50		
			$V_R = 50 V$,	T _A = 70°C			100			100	μΑ	
Ci	Input capacitance		V _I = 0,	f = 1 MHz		15	25		15	25	pF	

ULN2001A THRU ULN2004A DARLINGTON TRANSISTOR ARRAYS

SLRS027 - D2624, DECEMBER 1976 - REVISED APRIL 1993

switching characteristics, $T_A = 25^{\circ}C$

	PARAMETER TEST CONDITIONS				MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	See Figure 9		0.25	1	μs
tPHL	Propagation delay time, high-to-low-level output	See Figure 9		0.25	1	μs
Vон	High-level output voltage after switching	$V_S = 50 \text{ V}$, $I_O \approx 300 \text{ mA}$, See Figure 10	V _S -20			mV

PARAMETER MEASUREMENT INFORMATION

Figure 1. I_{CEX} Test Circuit

Figure 3. I_{I(off)} Test Circuit

NOTE: I_I is fixed for measuring $V_{CE(sat)}$, variable for measuring h_{FE} .

Figure 5. h_{FE}, V_{CE(sat)} Test Circuit

Figure 7. I_R Test Circuit

Figure 2. I_{CEX} Test Circuit

Figure 4. I_I Test Circuit

Figure 6. V_{I(on)} Test Circuit

Figure 8. V_F Test Circuit

PARAMETER MEASUREMENT INFORMATION

Figure 9. Propagation Delay Time Waveforms

- NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_O = 50 Ω .
 - B. C_I includes probe and jig capacitance.
 - C. For testing the ULN2001A and the ULN2003A, $V_{IH} = 3$ V; for the ULN2002A, $V_{IH} = 13$ V; for the ULN2004A, $V_{IH} = 8$ V.

Figure 10. Latch-Up Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

COLLECTOR-EMITTER

COLLECTOR-EMITTER SATURATION VOLTAGE TOTAL COLLECTOR CURRENT (TWO DARLINGTONS PARALLELED)

Figure 11 Figure 12

COLLECTOR CURRENT

0

0

100

200

300

400

I_C - Collector Current - mA

500

600

700

800

ULN2001A THRU ULN2004A DARLINGTON TRANSISTOR ARRAYS

SLRS027 - D2624, DECEMBER 1976 - REVISED APRIL 1993

THERMAL INFORMATION

Figure 14

Figure 15

APPLICATION INFORMATION

VCC

ULN2003A

Figure 16. P-MOS to Load

Figure 17. TTL to Load

Figure 18. Buffer for Higher Current Loads

Figure 19. Use of Pullup Resistors to Increase Drive Current

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated

http://www.21icsearch.com

http://www.21icsearch.com