1 Question 1

1.1

A	B	C	D	minterms	
0	0	0	0	$\neg A \neg B \neg C \neg D$	(m_0)
0	0	0	1	$\neg A \neg B \neg CD$	(m_1)
0	0	1	0	$\neg A \neg BC \neg D$	(m_2)
0	0	1	1	$\neg A \neg BCD$	(m_3)
0	1	0	0	$\neg AB \neg C \neg D$	(m_4)
0	1	0	1	$\neg AB \neg CD$	(m_5)
0	1	1	0	$\neg ABC \neg D$	(m_6)
0	1	1	1	$\neg ABCD$	(m_7)
1	0	0	0	$A \neg B \neg C \neg D$	(m_8)
1	0	0	1	$A \neg B \neg CD$	(m_9)
1	0	1	0	$A \neg BC \neg D$	(m_{10})
1	0	1	1	$A \neg BCD$	(m_{11})
1	1	0	0	$AB \neg C \neg D$	(m_{12})
1	1	0	1	$AB \neg CD$	(m_{13})
1	1	1	0	$ABC \neg D$	(m_{14})
1	1	1	1	ABCD	(m_{15})

1.1.a

 $F_1(A, B, C, D) = \Sigma m(0, 1, 4, 5, 8, 9, 10, 12, 13)$

AB	00	01	11	10
00	1	1	0	0
01	1	1	0	0
11	1	1	0	0
10	1	1	0	1

$$F_1(A, B, C, D) = A \neg B \neg D + \neg C$$

1.1.b

 $F_2(A, B, C, D) = \Sigma m(3, 5, 7, 8, 9, 10, 11, 13, 15)$

AB	00	01	11	10
00	0	0	1	0
01	0	1	1	0
11	0	1	1	0
10	1	1	1	1

$$F_2(A, B, C, D) = A \neg B + BD + CD$$

1.2

Logic circuit of F_1

Logic circuit of F_2

1.3

Logic circuit of \mathcal{F}_1 with only NAND gate

Logic circuit of F_2 with only NAND gate

2 Question 2

2.1

$$F = A \neg B(C + \neg C)(D + \neg D) + AD(B + \neg B)(C + \neg C) + BC(A + \neg A)(D + \neg D) + C \neg D(A + \neg A)(B + \neg B) + \neg A \neg B \neg C \neg D$$

$$= A \neg BCD + A \neg BC \neg D + A \neg B \neg CD + A \neg B \neg C \neg D + ABCD + ABC \neg D + \neg ABCD + \neg ABC \neg D + \neg ABCD + \neg ABC \neg D$$

$$+ \neg A \neg BC \neg D + \neg A \neg B \neg C \neg D$$

A	В	С	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2.2

AB CD	00	01	11	10
00	1	0	0	1
01	0	0	1	1
11	0	1	1	1
10	1	1	1	1

2.3

AB CD	00	01	11	10
00	1	0	0	1
01	0	0	1	1
11	0	1	1	1
10	1	1	1	1

$$F = \neg B \neg D + BC + AD$$

2.4

AB CD	00	01	11	10
00	1	0	0	1
01	0	0	1	1
11	0	1	1	1
10	1	1	1	1

$$\neg F = \neg A \neg BD + \neg A \neg CD + B \neg C \neg D$$

2.5

Logic circuit of F

Logic circuit of $\neg F$

