Questions

- 1. Simplify the following expressions into sum-of-products form using the don't care conditions (d) into account.
 - a. $F(A, B, C, D) = \sum (4,5,7,12,13,14)$ $d(A, B, C, D) = \sum (1,9,11,15)$

b. $F(A, B, C, D) = \sum (1,2,12,13,14)$ $d(A, B, C, D) = \sum (8,9,10,11)$

2. Implement the following expression using only 2-input NAND gates and then repeat the problem with only 2 input NOR gates.

$$F(a,b,c,d) = ab + \bar{a}bc + \bar{a}\bar{b}\bar{c}d$$

loing 2- input NOR gates: 2 NOT gates in series cancel: 3. Design a half subtractor circuit with inputs x and y and outputs Diff. and B_{out} . The circuit subtracts the bits x-y, places the result in Diff., and borrow in B_{out} .

Inpu	et	Output			
·X-	Y	DTH.	Benj		
Ò	0	0	0		
0	Ĭ	1	1		
1.	0	1	0		
L	li.	0	0		

$$DrH = X \oplus Y$$

$$Sout = \overline{X} \cdot Y$$

4. Construct a 4-to-16 line decoder with five 2-to-4 line decoders with enable input.

4 to 16 decoder using five 2 to 4 decoder-

5. Construct a 16 x 1 multiplexer with two 8-to-1 and one 2-to-1 multiplexers. Use block diagrams.

6. Implement the following Boolean function using one 4 to 1 multiplexer and external gates. (Hint: Connect inputs A and B to the control or selection lines of the mux and then use basic gates to apply appropriate combinations of C & D to the input lines of the Mux.)

$$F(A,B,C,D) = \sum (1,3,4,11,12,13,14,15)$$

AB CD	F	
00 00	0	_
00 01	1	F=D
O1 00	0	
0011	1	
01 00	1	
01 01	٥	F=ē Ď
0110	0	1.00
0111	0	
1000	0	
1001	0	F= CD
1010	٥	L= CD
1011	1	
11 00	1	
(101)	1	Fal
11 10	1	1-1
11 11	l	

7. (i) Implement a AND gate with a 2 to 1 MUX.

(ii) Implement a NOT gate with a 2 to 1 MUX.

(iii) Now implement a NAND (a universal gate) with two 2 to 1 MUX.

8. (i) Implement the following function using a 3-to-8-lines decoder: $F(A, B, C) = \sum (3,5,6)$

(ii) Implement the above function using a 4-to-1 line multiplexer.

TA	+	В	c	F				
1	0	0	0	0	F=0		1	
1	0	0		0	 		0 -100	\? F
1	0	1	0	0	F=C		c — 10	
1	0	1	1	1	 	-	المساح	
	1	0	0	0	F=C	1		A B
	\ \	0	1,1	11		-		
	_	1 1	0	1	F= C	-		
		1 1	1	10				
	1							

(iii) Implement the above function using a 8-to-1 line multiplexer.

This shows that any truth table can be implemented with a multiplexer without any additional gates.