ÁLGEBRA LINEAL II Y CUADRÁTICA

 $Con\ ejemplos\ e\ ilustraciones$

Segunda Edición

Diego Huaraca Jaime Toaquiza EPN, Ecuador.

Índice general

1.	Geometría Afín		
	1.1.	Introducción	
	1.2.	Espacio Afín	ŗ

4 ÍNDICE GENERAL

1

Geometría Afín

1.1. Introducción

1.2. Espacio Afín

Definición 1

Sean ${\mathcal E}$ un conjunto no vacío y E un ${\mathbb K}-{\operatorname{espacio}}$ vectorial, además sea φ una aplicación definida por:

$$\varphi: \quad \mathcal{E} \times \mathcal{E} \quad \rightarrow \quad E$$

$$(P,Q) \quad \mapsto \quad \varphi(P,Q) = \overrightarrow{PQ} = \overrightarrow{x}$$

se dice que la terna $(\mathcal{E}, E, \varphi)$ es un espacio afín sobre \mathbb{K} con espacio vectorial director E si verifica las propiedades:

a) $\forall P \in \mathcal{E}$

$$\varphi_p: \mathcal{E} \to E$$

$$Q \mapsto \varphi_p(Q) = \varphi(P, Q)$$

es biyectiva. Es decir, si fijamos P_1 , $\forall Q \in \mathcal{E}$ existe un único $\overrightarrow{x} \in E$ tal que $\varphi(P_1, Q) = \overrightarrow{x}$ o equivalentemente, $\forall P \in \mathcal{E}$, $\forall \overrightarrow{x} \in E$ existe un único $Q \in \mathcal{E}$ para el cual se verifica que $\overrightarrow{x} = \overrightarrow{PQ}$.

b) $\forall P, Q, R \in \mathcal{E}$

$$\varphi(P,Q) = \varphi(Q,R) = \varphi(P,R)$$