Toronto Housing Market

Housing market in Toronto is hot. During this pandemic, I have heard demand for housing has been increased and prices has gone up, so it's not a bad idea to check this. I was not able to obtain recent data and only data I was able to get was from Kaggle which is provided to public by Toronto Real Estate Board. I created this analysis so once TREBB release new dataset I have my code ready.

1

Set up - Imports and Reading

```
# Importing Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

matplotlib inline

import seaborn as sns

sns.set(color_codes=True)

import itertools

import folium

from folium import Map

# Reading database
```

```
database=pd.read_csv('properties.csv')
database.head()
```

4

	Unnamed: 0	Address	AreaName	Price (\$)	lat	lng
0	0	86 Waterford Dr Toronto, ON	Richview	999888	43.679882	-79.544266
1	1	#80 - 100 BEDDOE DR Hamilton, ON	Chedoke Park B	399900	43.250000	-79.904396
2	2	213 Bowman Street Hamilton, ON	Ainslie Wood East	479000	43.251690	-79.919357
3	3	102 NEIL Avenue Hamilton, ON	Greenford	285900	43.227161	-79.767403
4	6	#1409 - 230 King St Toronto, ON	Downtown	362000	43.651478	-79.368118

Clean up

- # Cleaning data with unacceptable latitude and longitude values, and reasonable lower price
- database=database.drop(database[abs(database.lat>90)].index)
- database=database.drop(database[abs(database.lng>180)].index)
- 4 database=database.dropna()
- 5 database=database.drop(database[database['Price (\$)']<100000].index)</pre>
- print(database.size)
- 2 print(database.shape)
- 3 database['Price (\$)'].max()

133716 (22286, 6) 32500000

The dataset seems to have areaname, but I don't know the all the areas in Greater Toronto Area, so I decided to clean it up with lat and Ing information

```
# Finding distance from the centre of Toronto. I pick Allen road and eEnglinton as the centre
    # and I am going to find 40km range away from this point. This point coordinate
     # are : lat (43.73976) and long (-79.42126)
     # here a distance finder function has been created:
     from geopy.distance import geodesic
     def distance_finder (lat, lng):
       centre = (43.73976, -79.42126)
10
       point= (lat,lng)
11
       distance= geodesic(centre, point).km
12
13
       return distance
14
15
     # lambda operation on Database
    database['Distance']=database.apply(lambda x: distance finder(x['lat'],x['lng']), axis=1)
16
    # df is the area of my interest
17
    df=database[database['Distance']<15]</pre>
18
19
20
    # since the data set includes all the transaction in Ontario, I would like to check there is no record outside of the
 1
     # region of my interest
    locations = df[['lat', 'lng']]
    locationlist = locations.values.tolist()
     len(locationlist)
    map = folium.Map(location=[43.73976, -79.42126], zoom start=10)
     for i in range(0, len(locationlist)):
10
11
         folium.Marker(locationlist[i]).add to(map)
12
    map
13
14
15
```


Analysis

- 1 #quick sns distribution graph
- 2 ax = sns.distplot(df['Price (\$)'])
- 3 # Show data is skewed

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function warnings.warn(msg, FutureWarning)

- 1 #checking dataset
- 2 df.describe()

	Unnamed: 0	Price (\$)	lat	lng	Distance
count	4590.000000	4.590000e+03	4590.000000	4590.000000	4590.000000
mean	39078.920915	8.258964e+05	43.715426	-79.405040	9.271488
std	29697.845972	1.179302e+06	0.063987	0.077623	3.561755
min	0.000000	1.000000e+05	43.615078	-79.605835	0.229304
25%	6175.250000	3.499000e+05	43.656661	-79.447968	6.692606
50%	36149.500000	4.990000e+05	43.708008	-79.399605	10.194123
75%	74069.750000	7.990000e+05	43.767937	-79.369514	11.833238
max	120600.000000	2.680000e+07	43.874107	-79.235939	14.988489

```
# I am focusing near price mean region.

df_1=df[((df['Price ($)']<5.299000e+05) & (df['Price ($)']>2.5e5))]

ax = sns.distplot(df_1['Price ($)'])
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function warnings.warn(msg, FutureWarning)

le-6

6

5
```

- # I would like to now what are the hottest neighbourhoods in sale.
- 3 Area= pd.DataFrame(df['AreaName'].value_counts())
- 4 Area.sort_values(by='AreaName')
- 5 Area[0:15].plot(kind='bar', title='Top Areas in Sales')


```
# I would like to know what are the most expensive neighbourhoods.

AreaPrice=pd.DataFrame(df.groupby('AreaName')['Price ($)'].mean())

AreaPrice=AreaPrice.sort_values(by='Price ($)', ascending=False)

AreaPrice[0:25].plot(kind='bar', title='The Most Expensive Area')

6
```

7

```
<matplotlib.axes. subplots.AxesSubplot at 0x7f158a521390>
                                        The Most Expensive Area
           1e7
                                                                                            Price ($)
  1.4
  1.2
  1.0
  0.8
  0.6
  0.4
  0.2
         Bridle Path
Windfields
York Mills
Lytton Park
Edenbridge - Humber Valley
                                                           Chestnut Hills
Caribou Park
                                                                                                       Belgravia
and Lawrence
                                              Club
                               St. Andrew - Windfields
                                     Armour Heights
                                          Teddington Park
                                                  Palmerston - Little Italy
                                                      East Bayfront
                                                                    Thorncrest Village
                                                                            Old Mill
                                                                                 Leaside
Princess - Rosethorn
                                                                                         Roncesvalles Village
                                                                                                               Sunnylea
Norseman Heights
                                                                                                   Bedford Park
                                                                        West Queen West
                                                       AreaName
# Is it possible to buy a cheap house in expensive area?
```

```
# Is it possible to buy a cheap house in expensive area?

# Here I am creating df1 as data frame for 5 to 15 most expensive areas (Top 5 are too expensive).

a=AreaPrice[5:15].index

df1=pd.DataFrame()

df1 = df[df.AreaName.isin(a)]

# From following box graph, I can see Leaside and Nortown are expensive neighbourhoods with few affordable houses.

box = sns.boxplot(x='AreaName', y='Price ($)', data=df1)
```

```
box = sns.swarmplot(x='AreaName', y='Price ($)', data=df1, color=".25")
box.set_ylim([0, 0.5e7])
box.set_xticklabels(box.get_xticklabels(), rotation=40, ha="right")
[Text(0, 0, 'St. Andrew - Windfields'),
 Text(0, 0, 'Armour Heights'),
 Text(0, 0, 'Chestnut Hills'),
 Text(0, 0, 'East Bayfront'),
 Text(0, 0, 'Thorncrest Village'),
 Text(0, 0, 'Cricket Club'),
 Text(0, 0, 'West Queen West'),
 Text(0, 0, 'Palmerston - Little Italy'),
 Text(0, 0, 'Teddington Park'),
 Text(0, 0, 'Caribou Park')]
           3
        Price ($)
           1
           0
St. Andrew . Windfields
                                painerston Little halv
         Armour Heights
                      Thorncrest Village
                               West Queen West
               Chestrut Hills
                   East Bayfront
                                         Teddington Park
                              Cricket Club
                                AreaName
# I created a table with average price and number of sales for each area, called result1
```

```
Area['Area']=Area.index
Area=Area.rename({'AreaName':'#Sale'}, axis=1)
AreaPrice['AreaName']=Area.index
result = pd.merge(Area, AreaPrice, on=Area['Area'])
```

