Programme n°3

PROPAGATION D'UN SIGNAL

P1 . Propagation d'un signal, ondes progressives

Cours et exercices

P2. Les interférences mécaniques ou acoustiques

Cours et exercices

P3. Ondes stationnaires mécaniques (Cours uniquement)

• Etude théorique

- Résultats observés
- Expression de la vibration résultante
- Etude de l'amplitude
- Etude de la phase

· Corde de Melde

- Cas d'une ode progressive sinusoïdale entre deux extrémités fixes
- Onde stationnaire et résonance
- Les différents modes
- Corde vibrante

Ondes stationnaires mécaniques.	Décrire une onde stationnaire observée par stroboscopie sur la corde de Melde.
	Caractériser une onde stationnaire par l'existence de nœuds et de ventres.
	Exprimer les fréquences des modes propres connaissant la célérité et la longueur de la corde.
	Savoir qu'une vibration quelconque d'une corde accrochée entre deux extrémités fixes se décompose en modes propres.
	Mettre en œuvre un dispositif expérimental permettant d'analyser le spectre du signal acoustique produit par une corde vibrante.

P4. Diffraction à l'infini (Cours uniquement)

- Observations
- Interprétation Principe de Huygens Fresnel
 - Diffraction de la lumière par une fente
 - Diffraction la lumière par deux fentes
 - Cas d'un réseau
 - Cas d'une ouverture circulaire

Diffraction à l'infini.	Utiliser la relation sinθ ≈ λ/d entre l'échelle angulaire du phénomène de diffraction et la taille caractéristique de l'ouverture.
	Choisir les conditions expérimentales permettant de mettre en évidence le phénomène de diffraction en optique ou en mécanique.

ATOMISTIQUE

AT1 Atomes et éléments

Cours et exercices

AT2 Structure électronique de l'atome (Cours et exercices)

- Configuration électronique d'un atome dans son état fondamental- Edification du cortège électronique : trois règles
 - Irrégularités à ces règles
 - Electrons de cœur, électrons de valence

ΤP

Ondes ultra sonores

Détermination de la vitesse de propagation des ondes par plusieurs méthodes.