Objective-first optimization for nanophotonics

- adjoint method
- objective-first approach
- field constraint: boundary-value problem
- structure constraint: level-set formulation
- example
- ongoing and future work

Adjoint method

Typical formulation of a structural optimization problem:

decrease
$$f(x)$$
 (1)

subject to
$$g(x,p) = 0$$
 (2)

- $f(x): \mathbf{C}^n \to \mathbf{R}$ is the design objective
- $g(x,p): \mathbf{C}^n \times \mathbf{R}^n \to \mathbf{C}^n$ is the governing physics
- $x \in \mathbf{C}^n$ is the field
- $p \in \mathbf{R}^n$ is the structure
- ullet x is the dependent variable, p is the independent variable

 problem is generally non-convex, so we optimize using only the first-order approximations,

$$f(x_0 + dx) \approx f(x_0) + \frac{\partial f}{\partial x} dx$$
 (3)

$$g(x_0 + dx, p_0 + dp) \approx g(x_0, p_0) + \frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial p} dp$$
 (4)

ullet assuming that $g(x_0,p_0)=0$, the equality constraint is satisfied via

$$dx = -\left(\frac{\partial g}{\partial x}\right)^{-1} \frac{\partial g}{\partial p} dp \tag{5}$$

• now we can decrease $f(x_0 + dx)$,

$$f(x_0 + dx) \approx f(x_0) + \frac{\partial f}{\partial x} dx$$
 (6)

$$\approx f(x_0) - \frac{\partial f}{\partial x} \left(\frac{\partial g}{\partial x} \right)^{-1} \frac{\partial g}{\partial p} dp \tag{7}$$

$$\approx f(x_0) + \frac{\partial f}{\partial p} dp \tag{8}$$

by choosing dp in the direction of $dp \propto -\frac{\partial f}{\partial p}$

• computing $\frac{\partial f}{\partial p}$ can be reduced to a single field solve (i.e. solving g(x,p) for x, given p)

Characteristics of the adjoint method:

- can use existing field solvers
- ullet each iteration requires two solves, one to calculate $rac{\partial f}{\partial p}$, and the other to calculate the new x
- need good initial guess, since this heavily influences what the final structure will be
- optimization generally "stalls" on local minima

Objective-first approach

ob-1 means that we prioritize the design objective over satisfying physics

decrease
$$||g(x,p)||^2$$
 (9)

subject to
$$f(x) = 0$$
 (10)

- $r(x,p) = ||g(x,p)||^2$ is the physics residual
- ullet x always satisfies our design objective, we change x and p only to increasingly satisfy physics
- x and p are both independent variables

• this problem is still non-convex, use linear approximation

$$r(x_0 + dx, p_0 + dp) \approx r(x_0, p_0) + \frac{\partial r}{\partial x} dx + \frac{\partial r}{\partial p} dp$$
 (11)

$$f(x_0 + dx) \approx f(x_0) + \frac{\partial f}{\partial x} dx$$
 (12)

- ullet decrease r by choosing $dp \propto -\frac{\partial r}{\partial p}$
- decrease r by choosing $dx \propto -(I P_{fx}) \frac{\partial r}{\partial x}$
- P_{f_x} is the projector onto the vector space defined by $\frac{\partial f}{\partial x}$, used to satisfy equality constraint
- computing P_{fx} requires solving for $\left(\frac{\partial f}{\partial x}^T \frac{\partial f}{\partial x}\right)^{-1}$, but this is often *trivial*

ob-1 requires only matrix multiplication (and trivial matrix solve)

- \bullet For 3D structures, most field solvers are based on (often > 10,000) matrix multiplies
- this means that is may be possible to solve larger design problems in the same amount of time needed for a field solve

ob-1 should be less dependent on starting guess

- some previous problems (using a similar approach) did not depend at all on initial structure
- such a formulation may result in fewer local minima to stall on

Field constraint: boundary-value problem

our problem is

decrease
$$||g(x,p)||^2$$
 (13)

subject to
$$f(x) = 0$$
 (14)

physics residual is the error in Maxwell's sourceless, time-harmonic equations

$$||g(x,p)||^2 = ||A(p)x||^2 = \left\| \begin{bmatrix} \nabla \times & i\mu\omega \\ -ip\omega & \nabla \times \end{bmatrix} \begin{bmatrix} x_E \\ x_H \end{bmatrix} \right\|^2$$
(15)

ullet here p determines the values of ϵ

- key issue: formulation of the constraint
- a sufficient constraint for most devices is to match field values along the border

$$f(x) = ||x^{\text{border}} - x_0^{\text{border}}||^2 = 0$$
 (16)

ullet here, p is a waveguide structure, and the design objective is a perfect waveguide mode at input and output

ullet to experiment, we fix $p=p_0$, which convexifies the ob-1 formulation

$$minimize ||A(p_0)x||^2 (17)$$

subject to
$$x^{\text{border}} = x_0^{\text{border}}$$
 (18)

• for general structures and design objectives, this results in a "soft physics" field solve

- prioritizing the design objective means we allow physics to be "bent"
- here, reflected waves from the junction magically disappear as they approach the border

• matlab files available at https://github.com/JesseLu/wave-tools, look for em_bval_2dte/demo.m

Structure constraint: level-set method

• a more detailed statement of our problem is

decrease
$$||g(x,p)||^2$$
 (19)

subject to
$$f(x) = 0$$
 (20)

$$p \in \{p_{\mathsf{manufacturable}}\}\tag{21}$$

- need to constrain possible p to what can be fabricated
- for nanophotonics this means two distinct materials only
- ullet however, using $p_i \in \{\epsilon_1, \epsilon_2\}$ defeats the purpose of using linear approximations

- need ability to *incrementally* update the topology of the structure
- describe p using the *interface* between the two materials
- \bullet implicitly describe boundary using the <code>level-set</code> of higher-dimensional function ϕ

source: public domain

• updating $p(\phi)$ proceeds in the following way:

$$\phi^n \xrightarrow{\text{interp.}} \gamma \xrightarrow{\text{ratio}} p \xrightarrow{-\frac{\partial r}{\partial p}} dp \xrightarrow{\left(\frac{\partial p}{\partial \phi}\right)^{-1} dp} d\phi \xrightarrow{\phi + d\phi} \phi^{n+1}$$
 (22)

- ullet $\phi = 0$ defines the boundary between materials
- \bullet boundary points γ are linearly interpolated between adjacent ϕ of opposite sign
- ullet p_i approximated by ratio of each material within cell
- \bullet solve least-squares problem $\frac{\partial p}{\partial \phi} d\phi = dp$ to obtain $d\phi$

• to test, hold x constant, and update p (iterations 0, 5, 10, 15, 20 shown)

- code at https://github.com/JesseLu/level-set (demo_indep_levelset.m)
- new code at https://github.com/JesseLu/lset-opt

Example

put it all together and let'er rip!