

## Universidad Politécnica de Guanajuato Departamento de Ingeniería Robótica Mecanismos y máquinas

| Nombre de la práctica           | Modelado y simulación de un                                                                                                                                        | No. de práctica              | 4                     |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|
|                                 | mecanismo de cuatro barras                                                                                                                                         | ao praotioa                  | •                     |
| Objetivo de la práctica         | Que el alumno obtenga los conocimie                                                                                                                                | entos y habilidades          | necesarias para el    |
| _                               | modelado y simulación de un mecanismo                                                                                                                              | de cuatro barras.            | -                     |
| Marco teórico                   |                                                                                                                                                                    |                              |                       |
|                                 | El mecanismo de cuatro barras es una cadena cinemática cerrada compuesta por                                                                                       |                              |                       |
|                                 | cuatro eslabones y cuyas uniones son todas revolutas (RRRR). Uno de los                                                                                            |                              |                       |
|                                 | eslabones permanecerá fijo y será la referencia o bancada, los otros eslabones describirán movimientos de rotación completa (manivela), oscilatorios (balancín) o  |                              |                       |
|                                 | complejos (acoplador), dependiendo de la geometría de los mismos eslabones. La                                                                                     |                              |                       |
|                                 | ley de Grashof se suele utilizar para                                                                                                                              |                              |                       |
|                                 | describirán los componentes de un med                                                                                                                              | •                            | •                     |
|                                 | dimensiones del mismo.                                                                                                                                             |                              |                       |
| Equipos y motoriales            | DC can Duthan v MSC Adama instalada                                                                                                                                |                              |                       |
| Equipos y materiales requeridos | PC con Python y MSC Adams instalado.                                                                                                                               |                              |                       |
| Desarrollo de la                |                                                                                                                                                                    |                              |                       |
| práctica                        | Actividad 1. Modele y simule el mecanismo de cuatro barras mostrado en la figura.                                                                                  |                              |                       |
| •                               | Considere que en la posición mostrada, la barra AB tiene una velocidad angular                                                                                     |                              |                       |
|                                 | constante de 4 rad/s en el sentido de las manecillas del reloj.                                                                                                    |                              |                       |
|                                 | $  \leftarrow 7 \text{ in.} \rightarrow   \stackrel{4 \text{ in.}}{\leftarrow}  $                                                                                  |                              |                       |
|                                 |                                                                                                                                                                    |                              |                       |
|                                 |                                                                                                                                                                    |                              |                       |
|                                 | A                                                                                                                                                                  |                              |                       |
|                                 |                                                                                                                                                                    |                              |                       |
|                                 | 8 in.                                                                                                                                                              |                              |                       |
|                                 |                                                                                                                                                                    |                              |                       |
|                                 | <u> </u>                                                                                                                                                           |                              |                       |
|                                 | 3 in. D                                                                                                                                                            |                              |                       |
|                                 | <u> </u>                                                                                                                                                           |                              |                       |
|                                 |                                                                                                                                                                    | E                            |                       |
|                                 | Figura 1. Mecanismo de cuatr                                                                                                                                       | o barras. Fuente: (Beer, 201 | .0)                   |
|                                 | Calcule:                                                                                                                                                           |                              |                       |
|                                 | a) La velocidad angular de la barra Bl                                                                                                                             | D.                           |                       |
|                                 | b) La velocidad angular de la barra D                                                                                                                              |                              |                       |
|                                 | c) La aceleración angular de la barra                                                                                                                              | BD.                          |                       |
|                                 | d) La aceleración angular de la barra                                                                                                                              | DE.                          |                       |
|                                 | e) La velocidad del punto D.                                                                                                                                       |                              |                       |
|                                 | f) La velocidad relativa del punto B re                                                                                                                            | especto a D.                 |                       |
|                                 | Actividad 2 Modele v simule el mecanism                                                                                                                            | no de cuatro harras r        | nostrado en la figura |
|                                 | Actividad 2. Modele y simule el mecanismo de cuatro barras mostrado en la figura.  Considere que el eslabón 2 tiene una velocidad angular constante de 60 rad/s en |                              |                       |
|                                 | sentido antihorario.                                                                                                                                               |                              |                       |
|                                 |                                                                                                                                                                    |                              |                       |



### Universidad Politécnica de Guanajuato Departamento de Ingeniería Robótica Mecanismos y máquinas



Calcule u obtenga lo siguiente:

- a) La velocidad del punto C.
- b) La aceleración del punto C.
- c) La trayectoria descrita por el punto C para una revolución completa del eslabón motriz.

Actividad 3. Modele y simule un mecanismo de cuatro barras de doble manivela y en donde el eslabón de salida tenga las mismas dimensiones que el de entrada.

|                         | Además, el eslabón acoplador deberá tener las mismas dimensiones que el eslabó fijo. Considere simular para una rotación completa del eslabón motriz.                                                                                                                                                       |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                         | <ul> <li>a) ¿Cuál es el tipo de movimiento que describe cada uno de los eslabones?</li> <li>b) ¿Cuál es la velocidad angular del eslabón acoplador?</li> <li>c) Trace las trayectorias descritas por al menos tres puntos pertenecientes al eslabón acoplador. ¿Qué tipo de geometría describen?</li> </ul> |  |
| Cuestionario individual | Describa de manera general el método gráfico utilizado para realizar el análisis de posición, ¿qué ventajas y desventajas observa respecto a la forma analítica?                                                                                                                                            |  |
|                         | <ol> <li>Los ángulos de Euler son un método o manera de representación de la<br/>orientación para sólidos rígidos. Investigue acerca de estos y descríbalos<br/>brevemente.</li> </ol>                                                                                                                      |  |
|                         | 3. Usualmente MSC Adams hace uso de los ángulos de Euler ZXZ para describir la orientación de sólidos rígidos. Defina un Marker y modifique su orientación, de tal modo que esta sea (0,90,90). Describa en qué dirección apunta cada uno de les ejes del Marker respecto al sistema global.                |  |
|                         | 4. ¿Para qué se utilizan las Measures en MSC Adams?, describa el procedimiento para obtener la medida de orientación de un eslabón rígido.                                                                                                                                                                  |  |
|                         | 5. Describa el procedimiento para trazar las trayectorias descritas por un punto perteneciente a un sólido rígido.                                                                                                                                                                                          |  |
| Entregables             |                                                                                                                                                                                                                                                                                                             |  |

- 1. Un archivo PDF (ACTP04 XXXX.pdf) que contenga los resultados solicitados en cada una de las actividades.
- 2. Un archivo PDF (RP04 XXXX.pdf) que contenga las respuestas del



### Universidad Politécnica de Guanajuato Departamento de Ingeniería Robótica Mecanismos y máquinas

| cuestionario individual, así como las conclusiones de la práctica.                                                       |
|--------------------------------------------------------------------------------------------------------------------------|
| Los entregables deben subirse vía Google Drive en la carpeta correspondiente, en la fecha de realización de la práctica. |
| * Remplace <b>xxxx</b> por las iniciales de su nombre y apellidos.                                                       |

# Referencias

Beer, F. P. (2010). *Mecánica Vectorial para Ingenieros*. México: McGraw-Hill.