2. Übung: Lineare dynamische Systeme

Aufgabe 2.1. Gegeben sind die beiden autonomen Systeme

$$\dot{\mathbf{x}} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}}_{\mathbf{A}_{1}} \mathbf{x} \tag{2.1}$$

und

$$\dot{\mathbf{x}} = \underbrace{\begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}}_{\mathbf{A}_{2}} \mathbf{x} . \tag{2.2}$$

Berechnen Sie die regulären Zustandstransformationen $\mathbf{x} = \mathbf{V}_1 \mathbf{z}$ und $\mathbf{x} = \mathbf{V}_2 \mathbf{z}$, die die Systeme (2.1) und (2.2) in die Jordansche Normalform transformieren. Geben Sie außerdem die Matrizen \mathbf{A}_1 und \mathbf{A}_2 in Jordanscher Normalform an.

Aufgabe 2.2. Gegeben ist das Modell eines linearen Feder-Masse-Dämpfer-Systems

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{d}{m} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u, \quad \mathbf{x}(0) = \mathbf{x}_0$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$
(2.3)

mit der Federsteifigkeit k, der Dämpfungskonstante d, der Masse m und u = F als Kraft auf die Masse. Für die Parameter gilt m = 2, d = 4 und k = 6.

Berechnen Sie die reguläre Zustandstransformation $\mathbf{x} = \mathbf{V}\mathbf{z}$, die das System (2.3) in die *reelle* Jordansche Normalform transformiert und geben Sie das entsprechende transformierte System an.

Aufgabe 2.3. Berechnen Sie die Transitionsmatrizen Φ der Systeme (2.1), (2.2) und (2.3). Berechnen Sie die Lösung $\mathbf{x}(t)$ des Systems

$$\dot{\mathbf{x}} = \mathbf{A}_1 \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \tag{2.4}$$

mit \mathbf{A}_1 aus (2.1) für die Eingangsgröße u(t) = 1 + t und dem Anfangswert $\mathbf{x}_0 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\mathrm{T}}$.

Geben Sie die Lösung $\mathbf{x}(t)$ des Systems (2.3) für den Fall u=0, $\mathbf{x}_0=\begin{bmatrix}1&0\end{bmatrix}^\mathrm{T}$ sowie die Parameterwerte $m=2,\ d=4$ und k=6 an. Zeichnen Sie den jeweiligen Lösungsverlauf im Zustandsraum mit MAPLE.

Aufgabe 2.4. Gegeben ist das folgende lineare System

$$\dot{\mathbf{x}} = \begin{bmatrix} -3 & -4 \\ 2 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u, \quad \mathbf{x}(0) = \mathbf{x}_0$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}.$$
(2.5)

Berechnen Sie die Transitionsmatrix Φ des Systems (2.5) mit Hilfe der Laplacetransformation. Berechnen Sie den Verlauf des Ausgangs y für die Anfangsbedingung $\mathbf{x}_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\mathrm{T}}$ und die Stellgröße $u = \exp(t)$. Interpretieren Sie das Ergebnis anhand der Übertragungsfunktion $G(s) = \frac{\hat{y}(s)}{\hat{u}(s)}$.

Hinweis:

- Die Inverse einer (regulären) Matrix läßt sich relativ einfach über die Adjunkte $adj(\mathbf{A})$ berechnen. Es gilt dann $\mathbf{A}^{-1} = \frac{adj(\mathbf{A})}{\det(\mathbf{A})}$, wobei für die Einträge der Adjunkten gilt $adj(\mathbf{A})_{j,i} = (-1)^{i+j}M_{ij}$, mit M_{ij} dem Wert der Unterdeterminanten, die durch Streichen der *i*-ten Zeile und der *j*-ten Spalte von \mathbf{A} entsteht.
- Es ist nicht notwendig, den Verlauf des gesamten Zustandes zu berechnen.

Aufgabe 2.5. Welche der folgenden Systeme sind asymptotisch stabil?

$$\dot{x} = x \tag{2.6}$$

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ -5 & -4 & 1 \\ 0 & 0 & -1 \end{bmatrix} \mathbf{x} \tag{2.7}$$

Begründen Sie jeweils Ihre Aussage. Was muss für die Parameterwerte des Systems (2.3) gelten, damit es asymptotisch stabil ist?