南京航空航天大学

第1页 (共5页)

^{学年第 学期 《》}考试试题 A

考试日期: 年 月 日 试卷类型: 试卷代号:

班号 学号 姓名

题号	 =	三	四	五	六	七	八	九	+	总分
得分										

本题分数	10分
得 分	

一、A={4,5,6},R={<x,y>|x+y 是奇数},求 R, R⁻¹, R², s(R), t(R)。

本题分数	10分
得 分	

二、证明: C×(A-B)=(C×A)-(C×B)。

本题分数	10 分
得 分	

三、偏序<A,R>的哈斯图如下所示,求 A, R, 及 $\{a,b\}$ 的最大元、极大元、上界和最小上界。

本题分数 10 分 得 分 四、 R 和 S 都是 A 上的对称关系,证明: RoS 是对称的 当且仅当 RoS=SoR。

本题分数	10分
得 分	

五、R 和 S 是集合 A 上的等价关系, A/R={{a,b},{c,d},{e}},
A/S={{c},{a,b,d,e}},
求①(A/R)∩(A/S) ②A ③R ④R-S ⑤A/(R∩S)。

本题分数	10 分
得 分	

六、R 是实数集, $f: R \times R \rightarrow R \times R$, $f(\langle x,y \rangle) = \langle x+y, x-y \rangle$,请问 f 是 否为单射? 是否为满射? 证明或举反例。

					第4页(共5页)		
	本题	分数	10 分	七、	如果集合 A 和 B 之间存在双射,	P(A)表示 A 的幂集。	证明:
	得	分			P(A)与 P(B)之间也存在双射。		
Щ_							

本题分数	30 分
得 分	

八、用斜形方法证明下列推理关系:第2题和第3题可用命题逻辑自然推理系统中的所有定理以及谓词逻辑自然推理系统中的以下两条定理:

 $\neg \exists x A(x) \vdash \forall x \neg A(x)$ 和 $\exists x \neg A(x) \vdash \neg \forall x A(x) (30 分)$

- $1, \neg (A \land B) \vdash \neg A \lor \neg B$
- 2、 $A \land \exists x B(x)$ \bowtie $\exists x (A \land B(x))$ 其中 x 不在 A 中出现
- 3. $\forall x C(x) \lor \forall y D(y) \vdash \forall x \forall y (C(x) \lor D(y))$