US10575505 revised SEQUENCE LISTING

<110> Helmholtz-Institut fuer Infektionsforschung GmbH Ferrer, Manuel Chernikova, Tatjana Golyshin, Peter Timmis, Kenneth Yakimov, Michail <120> Transgenic organisms with lower growth temperatures <130> FERRER ET AL-1 EP 03023032.0 <150> <151> 2003-10-13 <160> 28 <170> PatentIn version 3.5 <210> <211> 97 <212> PRT <213> artificial sequence <220> <223> Cpn10 of Oleispira antarctica <400> 1 Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu 1 5 10 15 Glu Glu Thr Ala Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala Ala 20 25 30 Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile

Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val 50 60

Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly 65 70 75 80

Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu 85 90 95

Ala

<210> 2 <211> 548 <212> PRT <213> artificial sequence

US10575505 revised Cpn60 of oleispira antarctica <400> 2 Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met 1 10 15 Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly
20 25 30 Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile 35 40 45 Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp 50 60 Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln 65 70 75 80 Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Thr Ala Thr Val Leu Ala 85 90 95 Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn 100 105 110 Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val 115 120 125 Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile 130 135 140 Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg 145 150 155 160 Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr 165 170 175 Val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly
180 185 190 Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln 195 200 205 Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp 210 215 220 Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val 225 230 235 240

Page 2

Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly 245 250 255 Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys 260 265 270 Val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Lys Ala Met 275 280 285 Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu 290 295 300 Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala 305 310 315 320Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala 325 330 335 Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu 340 350 Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg 355 360 365 Val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly 370 380 Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu 385 390 395 His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly 405 410 415 Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn 420 425 430 Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala 435 440 445 Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Glu Gly Ser Val Val 450 455 460 Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser 465 470 475 480 Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala Page 3

495

Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu 500 510

Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Gly 515 520 525

Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met 530 540

Pro Gly Met Met

<210> 3 <211> 2783

<213> Oleispira antarctica

<400> 3

60 atcaaaaaat gcagcaagga cagattcctg cccaagaatt agcagaaggt ttcttgttag cactggccgg cgctttatta ttaacgccgg gttttgtcac tgatgcgctg ggttttacat 120 180 tactcgtccc cgcgacgcgt aaagcgttgg tccataaggt gattgcattt attaccctt gcatgatgac tgcaagcagc tttcaagcga cgggtagttt tcaggaaggc tcgtttaaag 240 300 atgtacattc gcacactgac tcgcaaagca gtcatgaaaa aatcacaatt gaaggcgaat 360 ataccaaaga cgataagtag gtattttttc ggctagccgt tgaaatccta gtaaaagccc 420 cgataaatta accatctatt tttcacagag gcaatttagc ctttgtttac cttattgatc 480 ctaatacttg ggatccaaca gttggagagt ctagcaaatg aaaatccgtc cattacatga 540 tcgtattgtt gttcgccgta aagaagaaga gaccgcaact gcgggtggta ttattttacc 600 gggcgctgcg gcagaaaaac caaatcaagg tgttgttatc tctgtgggta ctggccgtat tcttgataat ggttcagtgc aagcgctggc ggttaacgaa ggcgatgttg tcgtttttgg 660 720 taaatactca ggtcaaaata ctatcgatat cgatggtgaa gaattattga ttttgaatga 780 aagtgatatc tacggcgttt tagaagctta attattacac tcactttttt atttaaccta 840 caaaatttaa ggaaagatca tggctgctaa agacgtatta tttggtgata gcgcacgcgc 900 aaaaatgttg gtaggtgtaa acattttagc cgacgcagta agagttacct taggacctaa aggtcgtaac gttgttatag aaaaatcatt tggtgcaccg atcatcacca aagatggtgt 960 ttctgttgcg cgtgaaatcg aattgaaaga caaattcgaa aacatgggcg cacagatggt 1020 1080 taaggaagtt gcttctcaag ccaacgacca agccggtgac ggcacaacga cagcgactgt actagcacag gcgattatca gcgaaggctt gaaatctgtt gcggctggca tgaatccaat 1140

ggatcttaaa	cgtggtattg	ataaagctac	US10575505 ggctgctgtt	revised gttgccgcca	ttaaagaaca	1200
agctcagcct	tgcttggata	caaaagcaat	cgctcaggta	gggacaatct	ctgccaatgc	1260
cgatgaaacg	gttggtcgtt	taattgctga	agcgatggaa	aaagtcggta	aagaaggtgt	1320
gattaccgtt	gaagaaggca	aaggccttga	agacgagctt	gatgttgtag	aaggcatgca	1380
gttcgatcgc	ggttacttgt	ctccgtactt	catcaacaac	caagaaaaaa	tgaccgtaga	1440
aatggaaaat	ccattaattc	tattggttga	taagaaaatt	gataaccttc	aagagctgtt	1500
gccaattctt	gaaaacgtcg	ctaaatcagg	tcgtccatta	ttgatcgttg	ctgaagatgt	1560
tgaaggccaa	gcactagcaa	cattggtagt	aaacaacttg	cgcggcacat	tcaaggttgc	1620
agcggttaaa	gcccctggtt	ttggcgatcg	tcgtaaagcg	atgttgcaag	atcttgccat	1680
cttgacgggt	ggtcaggtta	tttctgaaga	gctagggatg	tctttagaaa	ctgcggatcc	1740
ttcttctttg	ggtacggcaa	gcaaggttgt	tatcgataaa	gaaaacaccg	tgattgttga	1800
tggcgcaggt	actgaagcaa	gcgttaatac	tcgtgttgac	cagatccgtg	ctgaaatcga	1860
aagctcgact	tctgattacg	acatcgaaaa	gttacaagaa	cgcgttgcta	agcttgcggg	1920
cggcgttgcc	gtgattaagg	ttggtgcggg	ttctgaaatg	gaaatgaaag	agaagaaaga	1980
ccgtgttgac	gatgcacttc	atgcaactcg	cgcagcggtt	gaagaaggtg	ttgttgcggg	2040
tggtggtgtt	gctttgattc	gcgcactctc	ttcagtaacc	gttgttggtg	ataacgaaga	2100
tcaaaacgtc	ggtattgcat	tggcacttcg	tgcgatggaa	gctcctatcc	gtcaaatcgc	2160
gggtaacgca	ggtgctgaag	ggtcagtggt	tgttgataaa	gtgaaatctg	gcacaggtag	2220
ctttggtttt	aacgccagca	caggtgagta	tggcgatatg	attgcgatgg	gtattttaga	2280
ccctgcaaaa	gtcacgcgtt	catctctaca	agccgcggcg	tctatcgcag	gtttgatgat	2340
cacaaccgaa	gccatggttg	cggatgcgcc	tgttgaagaa	ggcgctggtg	gtatgcctga	2400
tatgggcggc	atgggtggaa	tgggcggtat	gcctggcatg	atgtaatcac	tttgtgattc	2460
attgtcctga	tctgcttacc	gtgtaaaaag	atcaggctca	aggctgtctc	tataaaaagc	2520
cgtatctttg	atgagtgttg	tctttctgct	gaaaacgaca	ttcttggagt	gcggcttttt	2580
ttgattttgg	tcataaaatt	cagaatattg	tgtaatttta	tgtaactagc	tggcctataa	2640
tgttgagttc	ctctgggtgg	catgatctca	tggtacttca	cttaagcctg	attcactgcg	2700
gctttaacag	taaaataata	acgcaacgta	gaaacataat	aagcgtatgg	cattaatgaa	2760
gacggctgca	tttaattcag	atc				2783

<210> 4 <211> 333 <212> PRT <213> Oleispira antarctica

<400> 4

Met Lys Asn Thr Leu Lys Ser Ser Ser Arg Phe Ser Leu Lys Gln Leu 1 5 10 15 Gly Thr Gly Ala Leu Ile Ile Ser Ser Leu Phe Phe Gly Gly Cys Thr 20 25 30 Thr Thr Gln Gln Asp Asn Leu Tyr Thr Gly Val Met Ser Leu Ala Arg 35 40 45 Asp Ser Ala Gly Leu Glu Val Lys Thr Ala Ser Ala Gly Asp Val Asn 50 55 60 Leu Thr Tyr Met Glu Arg Gln Gly Ser Asp Lys Asp Asn Ala Glu Ser 65 70 75 80 Val Ile Leu Leu His Gly Phe Ser Ala Asp Lys Asp Asn Trp Ile Leu 85 90 95 Phe Thr Lys Glu Phe Asp Glu Lys Tyr His Val Ile Ala Val Asp Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$ Ala Gly His Gly Asp Ser Glu Gln Leu Leu Thr Thr Asp Tyr Gly Leu 115 120 125 Ile Lys Gln Ala Glu Arg Leu Asp Ile Phe Leu Ser Gly Leu Gly Val 130 135 140 Asn Ser Phe His Ile Ala Gly Asn Ser Met Gly Gly Ala Ile Ser Ala 145 150 155 160 Ile Tyr Ser Leu Ser His Pro Glu Lys Val Lys Ser Leu Thr Leu Ile 165 170 175 Asp Ala Ala Gly Val Asp Gly Asp Thr Glu Ser Glu Tyr Tyr Lys Val 180 185 190 Leu Ala Glu Gly Lys Asn Pro Leu Ile Ala Thr Asp Glu Ala Ser Phe Glu Tyr Arg Met Gly Phe Thr Met Thr Gln Pro Pro Phe Leu Pro Trp 210 220 Pro Leu Arg Pro Ser Leu Leu Arg Lys Thr Leu Ala Arg Ala Glu Ile 225 230 235 240 Asn Asn Lys Ile Phe Ser Asp Met Leu Lys Thr Lys Glu Arg Leu Gly 245 250 255 Page 6

Met Thr Asn Phe Gln Gln Lys Ile Glu Val Lys Met Ala Gln His Pro 260 265 270

Leu Pro Thr Leu Ile Met Trp Gly Lys Glu Asp Arg Val Leu Asp Val 275 280 285

Ser Ala Ala Ala Ala Phe Lys Lys Ile Ile Pro Gln Ala Thr Val His 290 295 300

Ile Phe Pro Glu Val Gly His Leu Pro Met Val Glu Ile Pro Ser Glu 305 310 315 320

Ser Ala Lys Val Tyr Glu Glu Phe Leu Ser Ser Ile Lys 325 330

<210> 5 <211> 3939

<212> DNA

<213> artificial sequence

<220>

Oleispira antarctica

<400> acaggaaaca gctatgacct tgattacgcc aagctcgaaa ttaaccctca ctaaagggaa 60 caaaagctgg agctcgcgcg cctgcaggtc gacactagtg gatcaacggc gttcatggta 120 ctggctgagt tcagcgtcat aatgccgatg cgatactggc cgtcatgact gagtacttct 180 tctgctagca ccgatttttc taatagcgca gcttctttta tttctgaacg ggcaactgat 240 300 gtagtttttt tactaaccgg ctttttaggc atggtaaact cttcgatatt caaaattatt actgttcata ttacaatcat agtacaggct agaggcccaa aattgcagct gatattcacc 360 tttattattc taagcattat tacactcatc qcqqtqttat taattqtqct aaataaaaat 420 accogtagog gaaaaattca gcaaatagoc aaagaaaacg attggcaata ccaagaattc 480 atcgattttg atgatgacat taagcaggca aactttggcc tattaaacta cagtcaaaat 540 gcaattttta gacatctcat tcaagcaact gacgaacact atggcttagc gtttaagacc 600 660 tttgactgtc gagcgttaga accttcaggt attcacaata gcagtcttat tttatttacc ctcgcactaa agactgaatt caataaccta cacatttgct taagtcgaca tattcaagat 720 aaagatgcct tcactgacat cagtcaccaa caatcaatca aacaccaata ccaatcgcaa 780 840 aaactcataa aactagccga tcaccaaatc ccaaaagcgt tcaaaaatga aacgagcacg tcacacaaaa tcaatttata cgctaacgaa ccaggtcaaa cttatcgttt ttttgagcac 900 gtttgttcca ctaatgaaag agaaaagtcg ttaattcact ggcttttggc gtatccgcac 960 Page 7

cttcacatag	aaattagtaa	tggcatgcta	ctggccttta	aaaagaatca	gttaattgaa	1020
gaaacctcgc	ttatctcagc	cattaccgct	gtagccgaat	ttgcgcttat	cctcagccat	1080
gattaaactg	acgccaatta	atataagaca	tactaattaa	taactccctt	aattgagaag	1140
aataatgaaa	aacacactca	aatcctcatc	acgttttagt	ctgaaacaac	tcggcaccgg	1200
cgctctgatt	atctccagtt	tgttcttcgg	tggttgcacc	acaacacaac	aagataattt	1260
atacacaggg	gttatgtctc	ttgcgagaga	cagcgctggc	ctagaagtta	aaacagcctc	1320
tgccggtgac	gtcaatctta	cttatatgga	acgccaaggc	agtgacaaag	ataatgccga	1380
aagcgttatt	ttattacacg	gtttctctgc	tgataaagat	aactggattc	tttttaccaa	1440
agaattcgat	gaaaaatatc	atgttatcgc	tgtcgattta	gcgggacatg	gcgattcaga	1500
acaattatta	acgactgatt	acggtctcat	aaaacaagcc	gagcgtttag	atatcttctt	1560
atctggctta	ggggttaact	catttcacat	cgccggtaat	tcaatggggg	gggctatcag	1620
cgcaatctac	agtttgagtc	acccagagaa	agttaaaagt	cttacattga	tcgatgcagc	1680
aggtgtcgat	ggcgatactg	aaagcgaata	ctacaaagtt	ttggcagaag	gtaagaatcc	1740
tttaattgca	actgatgaag	caagttttga	ataccgcatg	ggtttcacca	tgactcagcc	1800
tcctttccta	ccttggccac	taagaccttc	tttattacgt	aaaacgctag	cccgtgccga	1860
gatcaataac	aaaatttttt	ccgatatgct	gaaaaccaaa	gaacgtttag	gaatgactaa	1920
ctttcaacag	aaaattgaag	tgaaaatggc	tcaacatcca	ttgccaacac	tgattatgtg	1980
gggcaaagaa	gatcgcgttc	ttgacgtatc	cgcagcagcg	gccttcaaaa	aaataattcc	2040
acaagcaact	gttcatattt	ttcctgaagt	aggccaccta	cctatggtag	aaattcctag	2100
tgaaagcgct	aaagtttatg	aagagttttt	gtcctctatt	aaataagagc	acataatcat	2160
gactgactta	taaacagcca	agcatttaaa	atgcttggct	gtttatttta	atggccaaat	2220
tattcaacga	ccaagctctg	cggtaaaatc	gcagtgggtt	tcttgttttc	atcaacagca	2280
acaaacgtga	aataccccgt	aatcgcattt	ttctgattat	caaaatacat	actttccacc	2340
agcatattaa	cttcaacttt	taaactcgtc	cgccctacct	ctataacact	ggcagtcaat	2400
tcgacaatgg	tacctgcggg	aacaggatgc	ttaaaatcga	ttcgatcact	gctgacggtt	2460
acgatgcttt	gtcgagaaaa	acgagtcgct	gcaataaaag	aaacctcatc	catccactgc	2520
attgcagtgc	caccgaataa	cgtatcatga	tgatttgttg	tctctggaaa	taccgcttta	2580
gaaatagtgg	tttttgatac	gcgctttcgc	tgcgcaataa	tatcttctct	gctaagagtt	2640
gcggatggca	tacataaact	cgcttgatta	agattaataa	taaatagtta	acagtatatt	2700
gaactgaggg	tctgaagaac	tctaatacct	ctgaagaact	ttgaggccgc	tagagagaaa	2760
agaccagtga	taatatttca	tcttgccatg	agagcttatc	atgaaagcct	gtgcttaaaa	2820

			US10575505			
tcaatcatta	tatttattca	tctttaattg	aaataatacc	aatatatttc	atatataatt	2880
tcacactacc	cttatctcac	tagacttccc	gcgcataggc	gcaaacaatc	aacgcaagtt	2940
cacaataaag	cggttcgctg	caacacatgc	cctagcgtct	aaagtagcac	gcacaacact	3000
ggccagtcgt	actagcccct	ttgcgattcg	tgcagacgag	caacaagcgc	tattaaactt	3060
acctaaattt	ctaaccacca	ccattggttc	ttttccacaa	actcaaaaaa	ctcgtcaaat	3120
ccgcttgcaa	tttaaacgcg	atgacataga	tctaatcgat	tatcaaaccc	gcattcaagc	3180
gctcattaaa	aacgcaccac	tggcaagaag	ttctacctgc	actgaccaat	atgcaagcgg	3240
cggcggaaga	gctgcctttg	atcgatcaag	aagaagggag	cagcaaagag	gaaaacaatc	3300
aaaaagagga	gagcaatcaa	ataaaaacga	gttattgagg	attttaattt	taaaacaggt	3360
atattaatac	cctctctcgt	agtaaacaat	gactgtattt	acacaaaaat	aaatagaggt	3420
ataccatgtc	aaacatctgg	tttgaagtac	caaagattga	agtattaaac	cgtcaaatgg	3480
aaaatactgc	ctgcagcaac	ttaggcattc	aaattacaga	aattggcgat	gattatatca	3540
ctggcacaat	gccagcagat	gcacgtacct	tccagccaat	gggactgatt	catggcggct	3600
caaatgtatt	gctggcagaa	acactgggca	gcatggcagc	taactgctgt	attaatttgt	3660
ctcaagaata	ttgtgttggc	caagaaatta	acgccaacca	catacgcggt	gttcgttccg	3720
gcatagtgac	tggcacagca	acgctagtac	acaaaggaag	aacctcccag	atttgggaaa	3780
ttcgcatcgt	taacgatcca	aagaattcaa	aaagcttctc	gagagtactt	ctagagcggc	3840
cgcgggccca	tcgattttcc	acccgggtgg	ggtaccaggt	aagtgtaccc	aattcgccct	3900
atagtgagtc	gtattacaat	tcactggccg	tcgttttac			3939

<210> <211> <212> <213>

Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Glu Glu Thr Ala Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala Ala 20 25 30

Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile 35 40 45

Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val 50 60 Page 9

⁹⁷

PRT

artificial sequence

<220>

<223> cpn10 of oleispira antarctica

<400>

Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly 65 70 75 80

Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu 85 90 95

Ala

<210> 7

<211> 548 <212> PRT

<213> artificial sequence

<220>

<223> Cpn10 of oleispira antarctica

<400> 7

Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly 20 25 30

Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile 35 40 45

Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp 50 60

Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln 65 70 75 80

Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Thr Ala Thr Val Leu Ala 85 90 95

Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn $100 \hspace{1cm} 105 \hspace{1cm} 110$

Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val 115 120 125

Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile 130 135 140

Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg 145 150 155 160

Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr 165 170 175 Val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly
180 185 190 Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln
195 200 205 Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp 210 215 220 Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly 245 250 255 Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys Val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Lys Ala Met 275 280 285 Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala 310 Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala 325 330 335 Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu 340 345 350 Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg 355 360 365 Val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly 370 380 Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu 385 390 395 400 His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly 405 410 415 Page 11

Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn 420 425 430 Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala 435 440 445 Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Glu Gly Ser Val Val 450 455 460 Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser 465 470 475 480 Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala 485 490 495 Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu 500 505 510 Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Gly Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met 530 540 Pro Gly Met Met 545 <210> <211> 333 <212> PRT <213> Oleispira antarctica <400> Met Lys Asn Thr Leu Lys Ser Ser Ser Arg Phe Ser Leu Lys Gln Leu $10 \ 15$ Gly Thr Gly Ala Leu Ile Ile Ser Ser Leu Phe Phe Gly Gly Cys Thr 20 25 30Thr Thr Gln Gln Asp Asn Leu Tyr Thr Gly Val Met Ser Leu Ala Arg 35 40 45 Asp Ser Ala Gly Leu Glu Val Lys Thr Ala Ser Ala Gly Asp Val Asn 50 60

Leu Thr Tyr Met Glu Arg Gln Gly Ser Asp Lys Asp Asn Ala Glu Ser 65 70 75 80

Page 12

Val Ile Leu Leu His Gly Phe Ser Ala Asp Lys Asp Asn Trp Ile Leu 85 90 95 Phe Thr Lys Glu Phe Asp Glu Lys Tyr His Val Ile Ala Val Asp Leu 100 105 110 Ala Gly His Gly Asp Ser Glu Gln Leu Leu Thr Thr Asp Tyr Gly Leu 115 120 125 Ile Lys Gln Ala Glu Arg Leu Asp Ile Phe Leu Ser Gly Leu Gly Val Asn Ser Phe His Ile Ala Gly Asn Ser Met Gly Gly Ala Ile Ser Ala 145 150 155 160 Ile Tyr Ser Leu Ser His Pro Glu Lys Val Lys Ser Leu Thr Leu Ile Asp Ala Ala Gly Val Asp Gly Asp Thr Glu Ser Glu Tyr Tyr Lys Val 180 185 190 Leu Ala Glu Gly Lys Asn Pro Leu Ile Ala Thr Asp Glu Ala Ser Phe 195 200 205 Glu Tyr Arg Met Gly Phe Thr Met Thr Gln Pro Pro Phe Leu Pro Trp 210 215 220 Pro Leu Arg Pro Ser Leu Leu Arg Lys Thr Leu Ala Arg Ala Glu Ile Asn Asn Lys Ile Phe Ser Asp Met Leu Lys Thr Lys Glu Arg Leu Gly 245 250 255 Met Thr Asn Phe Gln Gln Lys Ile Glu Val Lys Met Ala Gln His Pro 260 265 270 Leu Pro Thr Leu Ile Met Trp Gly Lys Glu Asp Arg Val Leu Asp Val 275 280 285 Ser Ala Ala Ala Ala Phe Lys Lys Ile Ile Pro Gln Ala Thr Val His 290 295 300 Ile Phe Pro Glu Val Gly His Leu Pro Met Val Glu Ile Pro Ser Glu 305 310 315 320 Ser Ala Lys Val Tyr Glu Glu Phe Leu Ser Ser Ile Lys

Page 13

<210> 9 <211> 5373 <212> DNA

<213> artificial sequence

<220>

<223> fusion of native chaperonin-coding fragments with esterase of
 Oleispira antarctica

<400> acaggaaaca gctatgacct tgattacgcc aagctcgaaa ttaaccctca ctaaagggaa 60 caaaagctgg agctcctaat acttgggatc caacagttgg agagtctagc aaatgaaaat 120 ccgtccatta catgatcgta ttgttgttcg ccgtaaagaa gaagagaccg caactgcggg 180 tggtattatt ttaccgggcg ctgcggcaga aaaaccaaat caaggtgttg ttatctctgt 240 gggtactggc cgtattcttg ataatggttc agtgcaagcg ctggcggtta acgaaggcga 300 tgttgtcgtt tttggtaaat actcaggtca aaatactatc gatatcgatg gtgaagaatt 360 attgattttg aatgaaagtg atatctacgg cgttttagaa gcttaattat tacactcact 420 tttttattta acctacaaaa tttaaggaaa gatcatggct gctaaagacg tattatttgg 480 tgatagcgca cgcgcaaaaa tgttggtagg tgtaaacatt ttagccgacg cagtaagagt 540 taccttagga cctaaaggtc gtaacgttgt tatagaaaaa tcatttggtg caccgatcat 600 caccaaagat ggtgtttctg ttgcgcgtga aatcgaattg aaagacaaat tcgaaaacat 660 gggcgcacag atggttaagg aagttgcttc tcaagccaac gaccaagccg gtgacggcac 720 780 aacgacagcg actgtactag cacaggcgat tatcagcgaa ggcttgaaat ctgttgcggc tggcatgaat ccaatggatc ttaaacgtgg tattgataaa gctacggctg ctgttgttgc 840 cgccattaaa gaacaagctc agccttgctt ggatacaaaa gcaatcgctc aggtagggac 900 aatctctgcc aatgccgatg aaacggttgg tcgtttaatt gctgaagcga tggaaaaagt 960 1020 cggtaaagaa ggtgtgatta ccgttgaaga aggcaaaggc cttgaagacg agcttgatgt tgtagaaggc atgcagttcg atcgcggtta cttgtctccg tacttcatca acaaccaaga 1080 aaaaatgacc gtagaaatgg aaaatccatt aattctattg gttgataaga aaattgataa 1140 ccttcaagag ctgttgccaa ttcttgaaaa cgtcgctaaa tcaggtcgtc cattattgat 1200 cgttgctgaa gatgttgaag gccaagcact agcaacattg gtagtaaaca acttgcgcgg 1260 cacattcaag gttgcagcgg ttaaagcccc tggttttggc gatcgtcgta aagcgatgtt 1320 gcaagatett gccatettga egggtggtea ggttatttet gaagagetag ggatgtettt 1380 agaaactgcg gatccttctt ctttgggtac ggcaagcaag gttgttatcg ataaagaaaa 1440 caccgtgatt gttgatggcg caggtactga agcaagcgtt aatactcgtg ttgaccagat 1500

tgctaagctt gcgggcggcg ttgccgtgat taaggttggt gcgggttctg aaatggaaat gaaagagaag aaagaccgtg ttgacgatgc acttcatgca actcgcgcag cggttgaaga aggtgttgtt gcgggtggtg gtgttgcttt gattcgcgca ctctcttcag taaccgttgt tggtgataac gaagatcaaa acgtcggtat tgcattggca cttcgtgcga tggaagctcc tatccgtcaa atcgcgggta acgcaggtgc tgaagggtca gtggttgttg ataaagtgaa atctggcaca ggtagctttg gtttaacgc cagcacaggt gagtatggcg atatgattgc	1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220
gaaagagaag aaagaccgtg ttgacgatgc acttcatgca actcgcgcag cggttgaaga aggtgttgtt gcgggtggtg gtgttgcttt gattcgcgca ctctcttcag taaccgttgt tggtgataac gaagatcaaa acgtcggtat tgcattggca cttcgtgcga tggaagctcc tatccgtcaa atcgcgggta acgcaggtgc tgaagggtca gtggttgttg ataaagtgaa atctggcaca ggtagctttg gtttaacgc cagcacaggt gagtatggcg atatgattgc	1680 1740 1800 1860 1920 1980 2040 2100 2160 2220
aggtgttgtt gcgggtggtg gtgttgcttt gattcgcgca ctctcttcag taaccgttgt tggtgataac gaagatcaaa acgtcggtat tgcattggca cttcgtgcga tggaagctcc tatccgtcaa atcgcgggta acgcaggtgc tgaagggtca gtggttgttg ataaagtgaa atctggcaca ggtagctttg gttttaacgc cagcacaggt gagtatggcg atatgattgc	1740 1800 1860 1920 1980 2040 2100 2160 2220
tggtgataac gaagatcaaa acgtcggtat tgcattggca cttcgtgcga tggaagctcc tatccgtcaa atcgcgggta acgcaggtgc tgaagggtca gtggttgttg ataaagtgaa atctggcaca ggtagctttg gttttaacgc cagcacaggt gagtatggcg atatgattgc	1800 1860 1920 1980 2040 2100 2160 2220
tatccgtcaa atcgcgggta acgcaggtgc tgaagggtca gtggttgttg ataaagtgaa atctggcaca ggtagctttg gttttaacgc cagcacaggt gagtatggcg atatgattgc	1860 1920 1980 2040 2100 2160 2220
atctggcaca ggtagctttg gttttaacgc cagcacaggt gagtatggcg atatgattgc	1920 1980 2040 2100 2160 2220
	1980 2040 2100 2160 2220
	2040 2100 2160 2220
gatgggtatt ttagaccctg caaaagtcac gcgttcatct ctacaagccg cggcgtctat	2100 2160 2220
cgcaggtttg atgatcacaa ccgaagccat ggttgcggat gcgcctgttg aagaaggcgc	2160 2220
tggtggtatg cctgatatgg gcggcatggg tggaatgggc ggtatgcctg gcatgatgta	2220
atcactttgt gattcattgt cctgatctgc ttaccgtgtc gacatattca agataaagat	
gccttcactg acatcagtca ccaacaatca atcaaacacc aataccaatc gcaaaaactc	
ataaaactag ccgatcacca aatcccaaaa gcgttcaaaa atgaaacgag cacgtcacac	2280
aaaatcaatt tatacgctaa cgaaccaggt caaacttatc gttttttga gcacgtttgt	2340
tccactaatg aaagagaaaa gtcgttaatt cactggcttt tggcgtatcc gcaccttcac	2400
atagaaatta gtaatggcat gctactggcc tttaaaaaga atcagttaat tgaagaaacc	2460
tcgcttatct cagccattac cgctgtagcc gaatttgcgc ttatcctcag ccatgattaa	2520
actgacgcca attaatataa gacatactaa ttaataactc ccttaattga gaagaataat	2580
gaaaaacaca ctcaaatcct catcacgttt tagtctgaaa caactcggca ccggcgctct	2640
gattatctcc agtttgttct tcggtggttg caccacaaca caacaagata atttatacac	2700
aggggttatg tctcttgcga gagacagcgc tggcctagaa gttaaaacag cctctgccgg	2760
tgacgtcaat cttacttata tggaacgcca aggcagtgac aaagataatg ccgaaagcgt	2820
tattttatta cacggtttct ctgctgataa agataactgg attctttta ccaaagaatt	2880
cgatgaaaaa tatcatgtta tcgctgtcga tttagcggga catggcgatt cagaacaatt	2940
attaacgact gattacggtc tcataaaaca agccgagcgt ttagatatct tcttatctgg	3000
cttaggggtt aactcatttc acatcgccgg taattcaatg gggggggcta tcagcgcaat	3060
ctacagtttg agtcacccag agaaagttaa aagtcttaca ttgatcgatg cagcaggtgt	3120
cgatggcgat actgaaagcg aatactacaa agttttggca gaaggtaaga atcctttaat	3180
tgcaactgat gaagcaagtt ttgaataccg catgggtttc accatgactc agcctccttt	3240
cctaccttgg ccactaagac cttctttatt acgtaaaacg ctagcccgtg ccgagatcaa	3300
taacaaaatt ttttccgata tgctgaaaac caaagaacgt ttaggaatga ctaactttca	3360
acagaaaatt gaagtgaaaa tggctcaaca tccattgcca acactgatta tgtggggcaa Page 15	3420

agaagatcgc	gttcttgacg	tatccgcagc	agcggccttc	aaaaaaataa	ttccacaagc	3480
aactgttcat	atttttcctg	aagtaggcca	cctacctatg	gtagaaattc	ctagtgaaag	3540
cgctaaagtt	tatgaagagt	ttttgtcctc	tattaaataa	gagcacataa	tcatgactga	· 3600
cttataaaca	gccaagcatt	taaaatgctt	ggctgtttat	tttaatggcc	aaattattca	3660
acgaccaagc	tctgcggtaa	aatcgcagtg	ggtttcttgt	tttcatcaac	agcaacaaac	3720
gtgaaatacc	ccgtaatcgc	atttttctga	ttatcaaaat	acatactttc	caccagcata	3780
ttaacttcaa	cttttaaact	cgtccgccct	acctctataa	cactggcagt	caattcgaca	3840
atggtacctg	cgggaacagg	atgcttaaaa	tcgattcgat	cactgctgac	ggttacgatg	3900
ctttgtcgag	aaaaacgagt	cgctgcaata	aaagaaacct	catccatcca	ctgcattgca	3960
gtgccaccga	ataacgtatc	atgatgattt	gttgtctctg	gaaataccgc	tttagaaata	4020
gtggtttttg	atacgcgctt	tcgctgcgca	ataatatctt	ctctgctaag	agttgcggat	4080
ggcatacata	aactcgcttg	attaagatta	ataataaata	gttaacagta	tattgaactg	4140
agggtctgaa	gaactctaat	acctctgaag	aactttgagg	ccgctagaga	gaaaagacca	4200
gtgataatat	ttcatcttgc	catgagagct	tatcatgaaa	gcctgtgctt	aaaatcaatc	4260
attatattta	ttcatcttta	attgaaataa	taccaatata	tttcatatat	aatttcacac	4320
tacccttatc	tcactagact	tcccgcgcat	aggcgcaaac	aatcaacgca	agttcacaat	4380
aaagcggttc	gctgcaacac	atgccctagc	gtctaaagta	gcacgcacaa	cactggccag	4440
tcgtactagc	ccctttgcga	ttcgtgcaga	cgagcaacaa	gcgctattaa	acttacctaa	4500
atttctaacc	accaccattg	gttcttttcc	acaaactcaa	aaaactcgtc	aaatccgctt	4560
gcaatttaaa	cgcgatgaca	tagatctaat	cgattatcaa	acccgcattc	aagcgctcat	4620
taaaaacgca	ccactggcaa	gaagttctac	ctgcactgac	caatatgcaa	gcggcggcgg	4680
aagagctgcc	tttgatcgat	caagaagaag	ggagcagcaa	agaggaaaac	aatcaaaaag	4740
aggagagcaa	tcaaataaaa	acgagttatt	gaggatttta	attttaaaac	aggtatatta	4800
ataccctctc	tcgtagtaaa	caatgactgt	atttacacaa	aaataaatag	aggtatacca	4860
tgtcaaacat	ctggtttgaa	gtaccaaaga	ttgaagtatt	aaaccgtcaa	atggaaaata	4920
ctgcctgcag	caacttaggc	attcaaatta	cagaaattgg	cgatgattat	atcactggca	4980
caatgccagc	agatgcacgt	accttccagc	caatgggact	gattcatggc	ggctcaaatg	5040
tattgctggc	agaaacactg	ggcagcatgg	cagctaactg	ctgtattaat	ttgtctcaag	5100
aatattgtgt	tggccaagaa	attaacgcca	accacatacg	cggtgttcgt	tccggcatag	5160
tgactggcac	agcaacgcta	gtacacaaag	gaagaacctc	ccagatttgg	gaaattcgca	5220
tcgttaacga	tccaaagaat	tcaaaaagct	tctcgagagt	acttctagag	cggccgcggg	5280

5340 5373

<210> 10

<211> 97

<212> PRT

artificial sequence

<220>

fusion protein <223>

<400>

Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu 1 5 10 15

Glu Glu Thr Ala Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala Ala 20 25 30

Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile 35 40 45

Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val 50 60

Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly 65 70 75 80

Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu 85 90 95

Ala

<210> 11

548

<211> <212>

artificial sequence <213>

<220>

<223> mutant protein

<400> 11

Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met
1 10 15

Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly 20 25 30

Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile 35 40 45 Page 17

Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp 50 55 60 Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln 65 70 75 80 Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Thr Ala Thr Val Leu Ala 85 90 95 Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn 100 105 110 Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val 115 120 125 Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile 130 135 140 Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg
145 150 155 160 Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr 165 170 175 Val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly 185 190 Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln 195 200 205 Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp 210 215 220 Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val 225 230 235 240 Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly 245 250 255 Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys 260 265 270 Val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Arg Lys Ala Met 275 280 285 Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu Page 18

295

Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala 305 315 320 Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala 325 330 335 Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu 340 345 350Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg 355 360 365 Val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly 370 380 Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu 385 390 395 400 His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly 405 410 415 Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn 420 425 430 Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala 435 440 445 Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Ala Gly Ala Ala Val 450 455 460 Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser 465 470 475 465 Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala 485 490 495 Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu 500 510 Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met 530 540 Pro Gly Met Met

<210> 12

<211> 333 <212> PRT

<213> Oleispira antarctica

<400> 12

Met Lys Asn Thr Leu Lys Ser Ser Ser Arg Phe Ser Leu Lys Gln Leu 10 15

Gly Thr Gly Ala Leu Ile Ile Ser Ser Leu Phe Phe Gly Gly Cys Thr 20 25 30

Thr Thr Gln Gln Asp Asn Leu Tyr Thr Gly Val Met Ser Leu Ala Arg 35 40 45

Asp Ser Ala Gly Leu Glu Val Lys Thr Ala Ser Ala Gly Asp Val Asn 50 60

Leu Thr Tyr Met Glu Arg Gln Gly Ser Asp Lys Asp Asn Ala Glu Ser 65 70 75 80

Val Ile Leu Leu His Gly Phe Ser Ala Asp Lys Asp Asn Trp Ile Leu 85 90 95

Phe Thr Lys Glu Phe Asp Glu Lys Tyr His Val Ile Ala Val Asp Leu 100 105 110

Ala Gly His Gly Asp Ser Glu Gln Leu Leu Thr Thr Asp Tyr Gly Leu 115 120 125

Ile Lys Gln Ala Glu Arg Leu Asp Ile Phe Leu Ser Gly Leu Gly Val 130 135 140

Asn Ser Phe His Ile Ala Gly Asn Ser Met Gly Gly Ala Ile Ser Ala 145 150 155 160

Ile Tyr Ser Leu Ser His Pro Glu Lys Val Lys Ser Leu Thr Leu Ile 165 170 175

Asp Ala Ala Gly Val Asp Gly Asp Thr Glu Ser Glu Tyr Tyr Lys Val 180 185 190

Leu Ala Glu Gly Lys Asn Pro Leu Ile Ala Thr Asp Glu Ala Ser Phe 195 200 205

US10575505 revised Glu Tyr Arg Met Gly Phe Thr Met Thr Gln Pro Pro Phe Leu Pro Trp 210 215 220								
Pro Leu Arg Pro Ser Leu Leu Arg Lys Thr Leu Ala Arg Ala Glu Ile 225 230 240								
Asn Asn Lys Ile Phe Ser Asp Met Leu Lys Thr Lys Glu Arg Leu Gly 245 250 255								
Met Thr Asn Phe Gln Gln Lys Ile Glu Val Lys Met Ala Gln His Pro 260 265 270								
Leu Pro Thr Leu Ile Met Trp Gly Lys Glu Asp Arg Val Leu Asp Val 275 280 285								
Ser Ala Ala Ala Phe Lys Lys Ile Ile Pro Gln Ala Thr Val His 290 295 300								
Ile Phe Pro Glu Val Gly His Leu Pro Met Val Glu Ile Pro Ser Glu 305 310 315 320								
Ser Ala Lys Val Tyr Glu Glu Phe Leu Ser Ser Ile Lys 325 330								
<210> 13 <211> 5373 <212> DNA <213> artificial sequence								
<220> <223> expression cassette for fusion protein								
<400> 13 acaggaaaca gctatgacct tgattacgcc aagctcgaaa ttaaccctca ctaaagggaa	60							
caaaagctgg agctcctaat acttgggatc caacagttgg agagtctagc aaatgaaaat	120							
ccgtccatta catgatcgta ttgttgttcg ccgtaaagaa gaagagaccg caactgcggg	180							
tggtattatt ttaccgggcg ctgcggcaga aaaaccaaat caaggtgttg ttatctctgt	240							
gggtactggc cgtattcttg ataatggttc agtgcaagcg ctggcggtta acgaaggcga	300							
tgttgtcgtt tttggtaaat actcaggtca aaatactatc gatatcgatg gtgaagaatt	360							
attgattttg aatgaaagtg atatctacgg cgttttagaa gcttaattat tacactcact	420							
tttttattta acctacaaaa tttaaggaaa gatcatggct gctaaagacg tattatttgg	480							
tgatagcgca cgcgcaaaaa tgttggtagg tgtaaacatt ttagccgacg cagtaagagt	540							
taccttagga cctaaaggtc gtaacgttgt tatagaaaaa tcatttggtg caccgatcat	600							
caccaaagat ggtgtttctg ttgcgcgtga aatcgaattg aaagacaaat tcgaaaacat	660							

gggcgcacag	atggttaagg	aagttgcttc	US10575505 tcaagccaac	-	gtgacggcac	720
aacgacagcg	actgtactag	cacaggcgat	tatcagcgaa	ggcttgaaat	ctgttgcggc	780
tggcatgaat	ccaatggatc	ttaaacgtgg	tattgataaa	gctacggctg	ctgttgttgc	840
cgccattaaa	gaacaagctc	agccttgctt	ggatacaaaa	gcaatcgctc	aggtagggac	900
aatctctgcc	aatgccgatg	aaacggttgg	tcgtttaatt	gctgaagcga	tggaaaaagt	960
cggtaaagaa	ggtgtgatta	ccgttgaaga	aggcaaaggc	cttgaagacg	agcttgatgt	1020
tgtagaaggc	atgcagttcg	atcgcggtta	cttgtctccg	tacttcatca	acaaccaaga	1080
aaaaatgacc	gtagaaatgg	aaaatccatt	aattctattg	gttgataaga	aaattgataa	1140
ccttcaagag	ctgttgccaa	ttcttgaaaa	cgtcgctaaa	tcaggtcgtc	cattattgat	1200
cgttgctgaa	gatgttgaag	gccaagcact	agcaacattg	gtagtaaaca	acttgcgcgg	1260
cacattcaag	gttgcagcgg	ttaaagcccc	tggttttggc	gatcgtcgta	aagcgatgtt	1320
gcaagatctt	gccatcttga	cgggtggtca	ggttatttct	gaagagctag	ggatgtcttt	1380
agaaactgcg	gatccttctt	ctttgggtac	ggcaagcaag	gttgttatcg	ataaagaaaa	1440
caccgtgatt	gttgatggcg	caggtactga	agcaagcgtt	aatactcgtg	ttgaccagat	1500
ccgtgctgaa	atcgaaagct	cgacttctga	ttacgacatc	gaaaagttac	aagaacgcgt	1560
tgctaagctt	gcgggcggcg	ttgccgtgat	taaggttggt	gcgggttctg	aaatggaaat	1620
gaaagagaag	aaagaccgtg	ttgacgatgc	acttcatgca	actcgcgcag	cggttgaaga	1680
aggtgttgtt	gcgggtggtg	gtgttgcttt	gattcgcgca	ctctcttcag	taaccgttgt	1740
tggtgataac	gaagatcaaa	acgtcggtat	tgcattggca	cttcgtgcga	tggaagctcc	1800
tatccgtcaa	atcgcgggta	acgcaggtgc	tgcaggggca	gcggttgttg	ataaagtgaa	1860
atctggcaca	ggtagctttg	gttttaacgc	cagcacaggt	gagtatggcg	atatgattgc	1920
gatgggtatt	ttagaccctg	caaaagtcac	gcgttcatct	ctacaagccg	cggcgtctat	1980
cgcaggtttg	atgatcacaa	ccgaagccat	ggttgcggat	gcgcctgttg	aagaaggcgc	2040
tggtggtatg	cctgatatgg	gcggcatggg	tggaatgggc	ggtatgcctg	gcatgatgta	2100
atcactttgt	gattcattgt	cctgatctgc	ttaccgtgtc	gacatattca	agataaagat	2160
gccttcactg	acatcagtca	ccaacaatca	atcaaacacc	aataccaatc	gcaaaaactc	2220
ataaaactag	ccgatcacca	aatcccaaaa	gcgttcaaaa	atgaaacgag	cacgtcacac	2280
aaaatcaatt	tatacgctaa	cgaaccaggt	caaacttatc	gtttttttga	gcacgtttgt	2340
tccactaatg	aaagagaaaa	gtcgttaatt	cactggcttt	tggcgtatcc	gcaccttcac	2400
atagaaatta	gtaatggcat	gctactggcc	tttaaaaaga	atcagttaat	tgaagaaacc	2460
tcgcttatct	cagccattac	cgctgtagcc	gaatttgcgc	ttatcctcag	ccatgattaa	2520
actgacgcca	attaatataa	gacatactaa	ttaataactc Page		gaagaataat	2580

gaaaaacaca	ctcaaatcct	catcacgttt	tagtctgaaa	caactcggca	ccggcgctct	2640
gattatctcc	agtttgttct	tcggtggttg	caccacaaca	caacaagata	atttatacac	2700
aggggttatg	tctcttgcga	gagacagcgc	tggcctagaa	gttaaaacag	cctctgccgg	2760
tgacgtcaat	cttacttata	tggaacgcca	aggcagtgac	aaagataatg	ccgaaagcgt	2820
tattttatta	cacggtttct	ctgctgataa	agataactgg	attcttttta	ccaaagaatt	2880
cgatgaaaaa	tatcatgtta	tcgctgtcga	tttagcggga	catggcgatt	cagaacaatt	2940
attaacgact	gattacggtc	tcataaaaca	agccgagcgt	ttagatatct	tcttatctgg	3000
cttaggggtt	aactcatttc	acatcgccgg	taattcaatg	gggggggcta	tcagcgcaat	3060
ctacagtttg	agtcacccag	agaaagttaa	aagtcttaca	ttgatcgatg	cagcaggtgt	3120
cgatggcgat	actgaaagcg	aatactacaa	agttttggca	gaaggtaaga	atcctttaat	3180
tgcaactgat	gaagcaagtt	ttgaataccg	catgggtttc	accatgactc	agcctccttt	3240
cctaccttgg	ccactaagac	cttctttatt	acgtaaaacg	ctagcccgtg	ccgagatcaa	3300
taacaaaatt	ttttccgata	tgctgaaaac	caaagaacgt	ttaggaatga	ctaactttca	3360
acagaaaatt	gaagtgaaaa	tggctcaaca	tccattgcca	acactgatta	tgtggggcaa	3420
agaagatcgc	gttcttgacg	tatccgcagc	agcggccttc	aaaaaaataa	ttccacaagc	3480
aactgttcat	atttttcctg	aagtaggcca	cctacctatg	gtagaaattc	ctagtgaaag	3540
cgctaaagtt	tatgaagagt	ttttgtcctc	tattaaataa	gagcacataa	tcatgactga	3600
cttataaaca	gccaagcatt	taaaatgctt	ggctgtttat	tttaatggcc	aaattattca	3660
acgaccaagc	tctgcggtaa	aatcgcagtg	ggtttcttgt	tttcatcaac	agcaacaaac	3720
gtgaaatacc	ccgtaatcgc	atttttctga	ttatcaaaat	acatactttc	caccagcata	3780
ttaacttcaa	cttttaaact	cgtccgccct	acctctataa	cactggcagt	caattcgaca	3840
atggtacctg	cgggaacagg	atgcttaaaa	tcgattcgat	cactgctgac	ggttacgatg	3900
ctttgtcgag	aaaaacgagt	cgctgcaata	aaagaaacct	catccatcca	ctgcattgca	3960
gtgccaccga	ataacgtatc	atgatgattt	gttgtctctg	gaaataccgc	tttagaaata	4020
gtggtttttg	atacgcgctt	tcgctgcgca	ataatatctt	ctctgctaag	agttgcggat	4080
ggcatacata	aactcgcttg	attaagatta	ataataaata	gttaacagta	tattgaactg	4140
agggtctgaa	gaactctaat	acctctgaag	aactttgagg	ccgctagaga	gaaaagacca	4200
gtgataatat	ttcatcttgc	catgagagct	tatcatgaaa	gcctgtgctt	aaaatcaatc	4260
attatattta	ttcatcttta	attgaaataa	taccaatata	tttcatatat	aatttcacac	4320
tacccttatc	tcactagact	tcccgcgcat	aggcgcaaac	aatcaacgca	agttcacaat	4380
aaagcggttc	gctgcaacac	atgccctagc	gtctaaagta	gcacgcacaa	cactggccag	4440

	5 5	5 . 5 5	5 5	3 3				
atttctaacc	accaccattg	gttcttttcc	acaaactcaa	aaaactcgtc aaatccgctt				
gcaatttaaa	cgcgatgaca	tagatctaat	cgattatcaa	acccgcattc aagcgctcat				
taaaaacgca	ccactggcaa	gaagttctac	ctgcactgac	caatatgcaa gcggcggcgg				
aagagctgcc	tttgatcgat	caagaagaag	ggagcagcaa	agaggaaaac aatcaaaaag				
aggagagcaa	tcaaataaaa	acgagttatt	gaggatttta	attttaaaac aggtatatta				
ataccctctc	tcgtagtaaa	caatgactgt	atttacacaa	aaataaatag aggtatacca				
tgtcaaacat	ctggtttgaa	gtaccaaaga	ttgaagtatt	aaaccgtcaa atggaaaata				
ctgcctgcag	caacttaggc	attcaaatta	cagaaattgg	cgatgattat atcactggca				
caatgccagc	agatgcacgt	accttccagc	caatgggact	gattcatggc ggctcaaatg				
tattgctggc	agaaacactg	ggcagcatgg	cagctaactg	ctgtattaat ttgtctcaag				
aatattgtgt	tggccaagaa	attaacgcca	accacatacg	cggtgttcgt tccggcatag				
tgactggcac	agcaacgcta	gtacacaaag	gaagaacctc	ccagatttgg gaaattcgca				
tcgttaacga	tccaaagaat	tcaaaaagct	tctcgagagt	acttctagag cggccgcggg				
cccatcgatt	ttccacccgg	gtggggtacc	aggtaagtgt	acccaattcg ccctatagtg				
agtcgtatta	caattcactg	gccgtcgttt	tac					
<210> 14 <211> 97 <212> PRT <213> artificial sequence <220>								
<223> Cpn:	10 of oleis	pira antarc	tica, nucleo	otides 458 - 751				
<400> 14								
Met Lys Ilo 1	e Arg Pro L 5	eu His Asp /	Arg Ile Val 10	Val Arg Arg Lys Glu 15				
Glu Glu Th	r Ala Thr A 20		Ile Ile Leu 25	Pro Gly Ala Ala Ala 30				
Glu Lys Pro 35	o Asn Gln G	ly Val Val : 40	Ile Ser Val	Gly Thr Gly Arg Ile 45				
Leu Asp Asi 50	n Gly Ser V	al Gln Ala I 55	_eu Ala Val	Asn Glu Gly Asp Val 60				
val val Phe 65	e Gly Lys T		Gln Asn Thr 75	Ile Asp Ile Asp Gly 80				

tcgtactagc ccctttgcga ttcgtgcaga cgagcaacaa gcgctattaa acttacctaa

US10575505 revised
Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu
85 90 95

Ala

<210> 15

<211> 548

<212> PRT <213> artificial sequence

<220>

<223> Cpn60 of oleispira antarctica, nucleotides 458 - 751

<400> 15

Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met 1 5 10 15

Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly
20 25 30

Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile 35 40 45

Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp 50 55 60

Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln 65 70 75 80

Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Thr Ala Thr Val Leu Ala 85 90 95

Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn 100 105 110

Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val 115 120 125

Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile 130 140

Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg 145 150 155 160

Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr 165 170 175

Val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly Page 25 Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln
195 200 205 Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp 210 215 220 Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val 225 230 235 240 Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly 245 250 255 Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys 260 265 270 Val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Lys Ala Met 275 280 285 Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu 290 295 300 Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala 305 310 315 320 Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala 325 330 335 Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu 340 345 350 Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg 355 360 365 Val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly 370 380 Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu 385 390 395 400 His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly 405 410 415 Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn 420 430

US10575505 revised Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala 435 440 445	
Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Ala Gly Ala Ala Val 450 455 460	
Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser 465 470 475 480	
Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala 485 490 495	
Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu 500 505 510	
Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Gly 515 520 525	
Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met 530 535 540	
Pro Gly Met Met 545	
<210> 16 <211> 2783 <212> DNA <213> artificial sequence	
<220> <223> coding sequence encoding mutant protein	
<400> 16 atcaaaaaat gcagcaagga cagattcctg cccaagaatt agcagaaggt ttcttgttag	60
cactggccgg cgctttatta ttaacgccgg gttttgtcac tgatgcgctg ggttttacat	120
tactcgtccc cgcgacgcgt aaagcgttgg tccataaggt gattgcattt attacccctc	180
gcatgatgac tgcaagcagc tttcaagcga cgggtagttt tcaggaaggc tcgtttaaag	240
atgtacattc gcacactgac tcgcaaagca gtcatgaaaa aatcacaatt gaaggcgaat	300
ataccaaaga cgataagtag gtatttttc ggctagccgt tgaaatccta gtaaaagccc	360
cgataaatta accatctatt tttcacagag gcaatttagc ctttgtttac cttattgatc	420
ctaatacttg ggatccaaca gttggagagt ctagcaaatg aaaatccgtc cattacatga	480
tcgtattgtt gttcgccgta aagaagaaga gaccgcaact gcgggtggta ttattttacc	540
gggcgctgcg gcagaaaaac caaatcaagg tgttgttatc tctgtgggta ctggccgtat	600

660

tcttgataat ggttcagtgc aagcgctggc ggttaacgaa ggcgatgttg tcgtttttgg

taaatactca	ggtcaaaata	ctatcgatat	US10575505 cgatggtgaa	revised gaattattga	ttttgaatga	720
aagtgatatc	tacggcgttt	tagaagctta	attattacac	tcacttttt	atttaaccta	780
caaaatttaa	ggaaagatca	tggctgctaa	agacgtatta	tttggtgata	gcgcacgcgc	840
aaaaatgttg	gtaggtgtaa	acattttagc	cgacgcagta	agagttacct	taggacctaa	900
aggtcgtaac	gttgttatag	aaaaatcatt	tggtgcaccg	atcatcacca	aagatggtgt	960
ttctgttgcg	cgtgaaatcg	aattgaaaga	caaattcgaa	aacatgggcg	cacagatggt	1020
taaggaagtt	gcttctcaag	ccaacgacca	agccggtgac	ggcacaacga	cagcgactgt	1080
actagcacag	gcgattatca	gcgaaggctt	gaaatctgtt	gcggctggca	tgaatccaat	1140
ggatcttaaa	cgtggtattg	ataaagctac	ggctgctgtt	gttgccgcca	ttaaagaaca	1200
agctcagcct	tgcttggata	caaaagcaat	cgctcaggta	gggacaatct	ctgccaatgc	1260
cgatgaaacg	gttggtcgtt	taattgctga	agcgatggaa	aaagtcggta	aagaaggtgt	1320
gattaccgtt	gaagaaggca	aaggccttga	agacgagctt	gatgttgtag	aaggcatgca	1380
gttcgatcgc	ggttacttgt	ctccgtactt	catcaacaac	caagaaaaaa	tgaccgtaga	1440
aatggaaaat	ccattaattc	tattggttga	taagaaaatt	gataaccttc	aagagctgtt	1500
gccaattctt	gaaaacgtcg	ctaaatcagg	tcgtccatta	ttgatcgttg	ctgaagatgt	1560
tgaaggccaa	gcactagcaa	cattggtagt	aaacaacttg	cgcggcacat	tcaaggttgc	1620
agcggttaaa	gcccctggtt	ttggcgatcg	tcgtaaagcg	atgttgcaag	atcttgccat	1680
cttgacgggt	ggtcaggtta	tttctgaaga	gctagggatg	tctttagaaa	ctgcggatcc	1740
ttcttctttg	ggtacggcaa	gcaaggttgt	tatcgataaa	gaaaacaccg	tgattgttga	1800
tggcgcaggt	actgaagcaa	gcgttaatac	tcgtgttgac	cagatccgtg	ctgaaatcga	1860.
aagctcgact	tctgattacg	acatcgaaaa	gttacaagaa	cgcgttgcta	agcttgcggg	1920
cggcgttgcc	gtgattaagg	ttggtgcggg	ttctgaaatg	gaaatgaaag	agaagaaaga	1980
ccgtgttgac	gatgcacttc	atgcaactcg	cgcagcggtt	gaagaaggtg	ttgttgcggg	2040
tggtggtgtt	gctttgattc	gcgcactctc	ttcagtaacc	gttgttggtg	ataac <u>g</u> aaga	2100
tcaaaacgtc	ggtattgcat	tggcacttcg	tgcgatggaa	gctcctatcc	gtcaaatcgc	2160
gggtaacgca	ggtgctgcag	gggcagcggt	tgttgataaa	gtgaaatctg	gcacaggtag	2220
ctttggtttt	aacgccagca	caggtgagta	tggcgatatg	attgcgatgg	gtattttaga	2280
ccctgcaaaa	gtcacgcgtt	catctctaca	agccgcggcg	tctatcgcag	gtttgatgat	2340
cacaaccgaa	gccatggttg	cggatgcgcc	tgttgaagaa	ggcgctggtg	gtatgcctga	2400
tatgggcggc	atgggtggaa	tgggcggtat	gcctggcatg	atgtaatcac	tttgtgattc	2460
attgtcctga	tctgcttacc	gtgtaaaaag	atcaggctca	aggctgtctc	tataaaaagc	2520
cgtatctttg	atgagtgttg	tctttctgct	gaaaacgaca Page	ttcttggagt 28	gcggcttttt	2580

ttgatt	ttgg tcataaaatt ca	gaatattg	tgtaatttta	tgtaactagc	tggcctataa	2640
tgttga	gttc ctctgggtgg ca	itgatctca	tggtacttca	cttaagcctg	attcactgcg	2700
gcttta	acag taaaataata ac	gcaacgta	gaaacataat	aagcgtatgg	cattaatgaa	2760
gacggc	tgca tttaattcag at	c ·				2783
<210> <211> <212> <213>	17 22 DNA artificial sequen	ıce				
<220> <223>	Forward Primer					
<220> <221> <222> <223>		ne				
<400> gcngcn	17 ggna tgaayccnat gg	ı				22
<210> <211> <212> <213>	DNA	ıce				
<220> <223>	Reverse Primer					
<220> <221> <222> <223>		gnates inc	osine			
<400> ccnccn	18 ccng cnacnacncc yt	c				23
<210> <211> <212> <213>	19 13 PRT Oleispira antarct	cica				
<400>	19					
Ser Va 1	l Ala Ala Gly Met 5	Asn Pro N	Met Asp Leu 10	Gln Arg		
<210> <211> <212> <213>	20 16 PRT Oleispira antarct	:ica				
<400>	20		Do mo	20		

Page 29

Val Gl 1	u Glu Gly Val Val Ala Gly Gly Val Ala Ala Leu Leu Arg 5 10 15	
<210> <211> <212> <213>	21 42 DNA artificial sequence	
<220> <223>	Oligonucleotide	
<400> ggtggt	21 cagt ggttgttgtt gatacagtga aatctggcac ag	42
<210> <211> <212> <213>	22 37 DNA artificial sequence	
<220> <223>	Oligonucleotide	
<400> cctgtg	22 ccag atttcactgt atcaacaacc actgacc	37
<210> <211> <212> <213>	23 30 DNA artificial sequence	
<220> <223>	Oligonucleotide	
<400> ggtgat	23 aaag tgaaaggtgg cacaggtagc	30
<210> <211> <212> <213>	24 30 DNA artificial sequence	
<220> <223>	Oligonucleotide	
<400> gctacc	24 tgtg ccacctttca ctttatcaac	30
<211> <212>		
<220> <223>	Oligonucleotide	
	25 tggt tgttgataca gtgaaaggtg gcacaggtag ctttgg Page 30	46

	26 46 DNA artificial sequence	
<220> <223>	Oligonucleotide	
	26 ctac ctgtgccacc tttcactgta tcaacaacca ctgacc	46
<212>	42	
<220> <223>	Oligonucleotide	
	27 gcag gtgctgcagg ggcagcggtt gttgataaag tg	42
<220> <223>	Oligonucleotide	
<400> ctcttt	28 atca acaaccgctg cccctgcagc acctgcgtta cc	42