A Basic PID Algorithm

Definition of terms (memory elements in *Italics*):

Counting indices:

j = represents the index of the current cycle

j-1 = represents the index of the previous cycle

Temperature measurement:

 T_i = current temperature of this cycle [${}^{\circ}C$], also can be written as just T

 T_{i-1} = temperature of the last cycle [°C]

 $\delta T = T_j - T_{j-1}$ temperature change since the last cycle

Time measurement:

 t_i = current time of this cycle (sec), also can be written as just t

 t_{j-1} = time of the last cycle (sec)

 $\delta t = t_i - t_{i-1}$ elapsed time since the last cycle

Control Parameters:

 T_s = Setpoint (desired temperature) [${}^{\circ}C$]

allowing us to define the error signal:

 $\varepsilon_i = T_i - T_s$ Error Signal [°C], also can be written as just $\varepsilon = T - T_s$

 $\epsilon_{j-1} = T_{j-1} - T_s$ Error Signal for the previous cycle [°C]

 $\delta \epsilon = \epsilon_{j} - \epsilon_{j-1} = T_{j} - T_{j-1}$ error change since the last cycle [°C],

equal to the temperature change since the last cycle

 Δ = Control bandwidth [${}^{\circ}$ C]

S = Settle bandwidth [°C]

 τ_i = Integral time (sec)

I_{on} = Integral control on, Boolean, True = on, False = off

 τ_d = Derivative time (sec)

 $D_{on} = Derivative control on, Boolean, True = on, False = off$

 t_s = Settle time [sec]

 $T_H = T_s + \Delta/2$ High limit of control band $T_L = T_s - \Delta/2$ Low limit of control band $T_{SH} = T_s + S/2$ High limit of settle band

 $T_{SL} = T_s - S/2$ Low limit of settle band

Power terms:

 P_p = Proportional power [normalized]

 k_i = current count of the number of cycles outside the control band

 k_{i-1} = count of the number of cycles outside the control band on the last cycle

 P_{Ij} = current integral power [normalized], also can be written as just P_{I}

 $P_{Ij-1} =$ integral power of last cycle [normalized]

 P_d = Derivative power [normalized]

 $P_r \quad = \quad P_p + P_{Ij} + P_d \qquad \qquad Raw \ total \ power \ [normalized]$

 P_t = Final total power [normalized $\hat{0}$ -1]

Settle terms:

 G_o = Temperature is settled, Boolean, True = on, False = off

 t_{ej} = current elapsed running time in the settle band [sec]

 t_{ej-1} = elapsed running time in the settle band of the previous cycle [sec]

Power Algorithm:

Proportional power:

$$\begin{array}{llll} Pp &=& 1/2 \mbox{-}\epsilon/\Delta & & if & & T_L \leq T_j \leq T_H & & or \\ &=& 1 & & if & T_j < T_L & & or \\ &=& 0 & & if & T_H < T_j & \end{array}$$

Derivative power:

$$\begin{array}{lll} P_d &=& -\left[\tau_d/\Delta\right] * \left[\delta\epsilon/\delta t\right] & if & D_{on} = True & or \\ &=& 0 & if & D_{on} = False \end{array}$$

Out counter:

$$\begin{array}{llll} k_j & = & k_{j\text{-}1}+1 & & if & & T_j < T_L & or & T_H < T_j \\ & = & 0 & and & k_{j\text{-}1} = 0 & if & & T_L \le T_j \le T_H \end{array}$$

Integral power:

$$\begin{array}{lll} P_{Ij} & = & P_{Ij\text{-}1} \text{-} [(\epsilon^*\delta t]/[\Delta*\tau_i] \ \ if & & T_L \leq T_j \leq T_H \quad and & I_{on} = True \\ & = & 0 \quad and \quad P_{Ij\text{-}1} = 0 & & if \quad k_j > 1 \quad or \quad I_{on} = False \end{array}$$

Raw power:

$$P_r \quad = \quad P_p + P_{Ij} + P_d$$

Final total power:

$$\begin{array}{llll} P_t & = & P_r & & if & 0 < P_r < 1 \\ P_t & = & 1 & & if & 1 < P_r \\ P_t & = & 0 & & if & P_r < 0 \end{array}$$

Settle Algorithm:

Settle time tracking:

$$\begin{array}{lll} t_{ej} & = & t_{ej-1} + \delta t & & if & T_{SL} < T_j < T_{SH} \\ & = & 0 & & if & T_j < T_{SL} \\ & = & 0 & & if & T_{SH} < T_j \end{array}$$

Determination of settled condition:

$$G_o = True \qquad \qquad if \qquad t_s < t_{ej}$$

Initialization:

$$\begin{array}{lll} T_{j\text{-}1} & = & T_j \\ t_{j\text{-}1} & = & t_j \\ k_{i\text{-}1} & = & 0 \end{array}$$

$$P_{Ij-1} = \quad 0$$

 $\begin{array}{lll} t_{ej\text{-}1} & = & 0 \\ P_d & = & 0 \\ P_{Ij} & = & 0 \end{array}$

Reasonable Starting Values for the "bug":

Δ	=	4	Control bandwidth [°C]
S	=	1	Settle bandwidth [°C]
τ_{i}	=	30	Integral time (sec)
τ_{d}	=	0.5	Derivative time (sec)
t_s	=	60	Settle time [sec]