计算机组成原理实验

实验二运算器实验

大连海事大学 计算机专业实验室

陈媛嫄

11/16/2021

计算机组成

- ▶ 运算器
- ▶ 存储器
- ▶ 控制器
- 輸入
- 输出

运算器的概念

▶执行各种运算

计算机内部的运算

- 一二进制
- ■算术、逻辑、移位
- 一位二进制数加法
 - 全加器

运算器实验

- 一了解算术逻辑运算器 (74LS181) 的 组成和功能
- 掌握基本算术和逻辑运算的实现方法
- 一运用算术逻辑运算器74LS181实现8 位无符号数的乘法运算

74LS181

http://www.esi.uclm.es/www/isanchez/apuntes/ci/74181.pdf

→ 数据引脚

- 8个数据输入端, A0、A1、A2、A3, B0、B1、B2、B3 (其中A3和B3是高位)。
- ► 4个二进制输出端FO、F1、F2、F3,以四位二进制形式输出运算的结果
- ► CN端处理进入芯片前进位值,CN4运算后的进位
- ► GN先行进位产生端
- ► PN先行进位传递函数
- ▶ 控制引脚

➤ NEGATIVE (BIT)

- ► 4个控制端, SO、S1、S2、S3, 控制两个四位输入数据的运算, 例如加、减、与、或。
- M控制芯片的运算方式,包括算术运算和逻辑运算。

INPUT A

实验要求

	~ ~			~ ~	M=0(算术运算)₽		M=1.
	S3₽	S2₽	S1₽	S0₽	CN=1 无进位。	CN=0 有进位。	(逻辑运算)。
	0⇔	0₽	0₽	043	F= A 🕫	F=A 加 1₽	$F = \overline{A} \circ$
	0₽	0€	0€	1.0	$F = A + B \varphi$	F= (A+B) 加 1+	$F = \overline{A + B} \Leftrightarrow$
	0₽	0↔	1₽	042	$F = A + \overline{B} \varphi$	$F = (A + \overline{B}) \ln 1$	$F = \overline{AB} e$
	0₽	0.	1₽	1.0	F=0 减 1₽	F=0.	F=0 ₽
	0₽	1₽	0↔	042	$F = A \prod A \overline{B} \circ$	$F = A $ 加 $A \overline{B} $ 加 1φ	$F = \overline{AB} \ _{\varphi}$
	0₽	1₽	0€	1₽	$F = (A + B) \operatorname{m} A \overline{B} \varphi$	$F=(A+B)$ 加 $A\overline{B}$ 加 1 \circ	$F = \overline{B} \varphi$
	0₽	1₽	1₽	042	F= A 减 B 减 1₽	F= A 减 B ↔	$F = A \oplus B \Leftrightarrow$
	0₽	1₽	1₽	1₽	$F = A\overline{B}$ 减 1_{\circ}	$F = A \overline{B} \varphi$	$F = A \overline{B} \varphi$
M	1₽	0↔	0€	042	F=A D AB $⋄$	F= A 加 AB 加 1。	$F = \overline{A} + B \Leftrightarrow$
	14	0₽	0€	1₽	$F=A$ 加 B φ	F= A 加 B 加 1。	$F = \overline{A \oplus B} \varphi$
	1₽	0↔	1₽	043	$F = (A + \overline{B}) \operatorname{Im} AB$	$F=(A+\overline{B})$ 加 AB 加 1	F= B 4
	1₽	0⇔	1₽	1₽	F=AB减1₽	$F = AB \varphi$	F= <i>AB</i> ₽
	1₽	1₽	0↔	043	F= A 加 A ₽	F= A 加 A 加 1₽	F=1₽
	1₽	1.₽	0€	1₽	$F=(A+B)$ 加 A φ	F= (A+B) 加A加1₽	$F = A + \overline{B} \varphi$
	1₽	1₽	1₽	0.	$F = (A + \overline{B}) \operatorname{m} A$	$F=(A+\overline{B})$ 加A加1 $_{\circ}$	$F = A + B \varphi$
	1₽	1₽	1₽	1₽	F= A 减 1₽	F= A &	F= A ↔

74LS181

- 算术运算
- ▶逻辑运算

- 乘除法运算

74LS194移位寄存器

- 74 LS194是一个4位双向移位寄存器,最高时钟脉冲为36MHz
- ▶ D0…D3为并行输入端,Q0…Q3为并行输出端
- ► SR右移输入端
- ► SL左移输入端
- ► S0...S3模式控制端
- ► CR清零端
- ► CP时钟脉冲

S1 S0 FUNCTION	J
0 0 KEEP	
0 1 LEFT	
1 0 RIGHT	
1 1 DATA	

有无符号?

一计算机对有符号整数的表示只 采取 一套编码方式,不存在正数用原码, 负数用补码这用两套编码之说,大多 数计算机内部的有符号整数都是用补 码,就是说无论正负,这个计算机内 部只用补码来编码!!!只不过正 数和0的补码跟他原码在形式上相同, 负数的补码在形式上与其绝对值的原 码取反加一相同。