Capa de enlace

Álvaro González Sotillo

November 27, 2017

Contents

1	Introducción	1
2	Tramas	2
3	Control de flujo	2
4	Acceso al medio	3
5	Control de errores	4
6	Corrección de errores	8
7	Referencias	10

1 Introducción

1.1 La capa de enlace

- Es la capa 2 de la arquitectura OSI.
- Se encarga de conseguir que la comunicación de datos se produzca correctamente a través de un medio físico de transmisión.
- Para lograr que dos dispositivos adyacentes se comuniquen, se necesita un control del intercambio de datos: el control del enlace.
- La capa de enlace proporciona a la capa de Red un servicio de transporte de bits fiable (asegura que los bit se trasmiten correctamente por el medio físico).
- El bloque de datos transmitido se denomina TRAMA.

1.2 Funciones de la capa de enlace

- Sincronización a nivel de trama.
- Control de flujo: las estaciones deben ponerse de acuerdo en el ritmo de trasmisión de datos.
- Control de errores: los enlaces no son perfectos. Hay que controlar que no haya errores en la transmisión.

- Direccionamiento: si hay varios posibles destinos, es necesario identificar a quien va dirigida la trama.
- Gestión del enlace:
 - Inicio de la transmisión
 - Mantenimiento de la transmisión
 - Finalización de la transmisión

1.3 MAC y LLC

- En la arquitectura IEEE 802, el nivel de enlace se divide en dos subcapas:
 - LLC: se encarga de las funciones comunes de la capa independientemente del medio físico usado
 - * Control de errores
 - * Direccionamiento
 - * Sus funciones han sido definidas por el subgrupo 802.2.
 - MAC: se encarga del acceso al medio (gestión del enlace)

2 Tramas

- Una trama es un bloque de bits agrupados que son enviados por la línea.
- El tamaño de la trama depende del tipo de red.
- Agrupar los bits en tramas facilita:
 - la detección y corrección de errores
 - la compartición del medio.
- Una trama se compone de tres partes
 - Información sobre la trama
 - Datos.
 - Redundacia.

3 Control de flujo

- Veremos el control de flujo cuando estudiemos TCP
- Algunos protocolos de nivel 2 lo soportan. No es el caso de Ethernet.

4 Acceso al medio

4.1 Clasificación general

- Medio repartido
 - FDM: multiplexación en frecuencias
 - * Cada vez menos usado: se puede infrautilizar el ancho de banda
 - TDM: multiplexación en tiempo
- Medio compartido
 - Sin colisiones
 - * Sondeo
 - * Paso de testigo (Token Bus)
 - Con colisiones
 - * CSMA/CD (Ethernet)
 - * CSMA/CA (Wifi)

4.2 FDM

- Se multiplexa el canal por frecuencia
- Cada canal se asigna a un nodo de la red
- Usado en:
 - Red telefónica (analógica)
 - Radio FM/AM
 - DSL

4.3 TDM

- Se multiplexa el canal por tiempo (a la Round Robin)
- Cada canal se asigna a un nodo de la red
- Más común en transmisiones digitales
 - GSM
 - SONET

4.4 Paso de testigo

- Cada nodo debe esperar a tener el turno de emisión
- El turno se utiliza, y se cede al siguiente por un testigo
 - Un mensaje especial que indica que no se quiere emitir más
 - Y señala el siguiente equipo que emitirá
- \bullet Ejemplos:
 - Token Bus

4.5 CSMA/CD

- Carrier-sense multiple access with collision detection
- Multiple access: Cualquiera puede emitir usando el mismo medio
- Carrier-sense: Antes de emitir, se comprueba que nadie más esté emitiendo
- Collision detection:
 - Durante la transmisión, detecto si otro también emite
 - Si se produce una colisión, dejo de emitir
 - Y espero un tiempo aleatorio para volver a intentarlo

Figure 1: Animación de una colisión en un bus

4.6 CSMA/CA

- Carrier-sense multiple access with collision avoidance
- Similar a CSMA/CD
- Collision avoidance para evitar los nodos ocultos:
 - Antes de emitir los datos se envía un RTS (request to send)
 - * Es un mensaje pequeño, con poca probalibilidad de colisión
 - Un nodo central recibe los RTS y determina quién recibe un CTS (clear to send)
 - El que recibe el CTS puede enviar sus datos sin problemas

5 Control de errores

- Consiste en enviar algunos bits añadidos a los datos con información que permita detectar o corregir los errores.
- El porcentaje de redundancia se calcula como

$$\frac{bits decontrol}{bits totales} \times 100$$

- Los errores pueden
 - Detectarse
 - Adicionalmente, corregirse

Figure 2: Los nodos de los extremos están ocultos entre sí, aunque el central detecta a los dos

5.1 Errores

- Un único bit
 - Más comunes en transmisión en paralelo
- Ráfagas de bits
 - Una interferencia actúa sobre los medios de transmisión
 - Perturban varios bits seguidos
 - Afectan más a comunicaciones en serie

5.2 Detección de errores

- ECO
 - El receptor envía una copia exacta de la información recibida al emisor.
 - El emisor confirma con otra trama que la información es correcta
- Paridad lineal. Se añade un bit extra, indicando si el número de bits con valor a 1 es par o impar.
 - 100100, con paridad par, se envía como 100100 0
 - 100100, con paridad impar, se envía como 100100 1
 - Problema: ¿Qué pasa si cambia un número **par** de bits?

5.2.1 Paridad de bloque

- Paridad de bloque. Se distribuyen los datos en una tabla y se calcula paridad por cada línea y columna.
 - Mensaje: 1100101 0110110 1011010 1001111 0111001 1100111 1010000, con paridad par

	Datos	Paridad lineal
	1100101	0
	0110110	0
	1011010	0
	1001111	1
	0111001	0
	1100111	1
	1010000	0
Paridad de bloque	1001000	0

	Datos	Paridad lineal
	1100 0 01	0
	$0110\ 1\ 10$	0
	$1011\ 0\ 10$	0
	$1001\ 1\ 11$	1
	$0111\ 0\ 01$	0
	$1100\ 1\ 11$	1
	$1010\ 0\ 00$	0
Paridad de bloque	1001 0 00	0

	Datos	Paridad lineal
	1100 0 01	0
	$0110\ 1\ 10$	0
	$1011\ 0\ 10$	0
	1001 1 11	1
	$0111\ 0\ 01$	0
	$1100\ 1\ 11$	1
	1010 0 00	0
Paridad de bloque	0001 0 00	0

• Conclusión:

- Si falla un bit, puedo arreglarlo
- Si fallan dos bits, lo detecto
- Si fallan más,
 - * Puedo no enterarme
 - * Puede parecer que ha fallado solo uno
 - * Puedo detectar el error

5.3 Actividad

- Calcular la paridad bidimensional del siguiente mensaje:
 - 1001101, 1111010, 1100110, 1110001, 1101001, 1110111, 0010111

5.4 Distancia de Hamming

- Cuando se produce un error, cambian algunos bits
- Según la codificación utilizada, no todas las combinaciones de 0s y 1s son posibles
 - Ejemplo: 4B/5B
- La distancia de Hamming de un código es la cantidad de bits que hay que cambiar en una combinación válida para llegar a otra combinación válida
- Cuanto mayor sea la distancia, más robusto es el código frente a errores
 - Si la distancia es d, se pueden detectar errores de hasta d-1 bits.
 - Si la distancia es d, se pueden corregir errores de hasta $\lfloor (d-1)/2 \rfloor$ bits.
- ¿Cuál es la distancia de Hamming de una transmisión con paridad?

5.5 **CRC**

- Al principio de la comunicación, emisor y receptor acuerdan un Polinomio Generador.
- Al iniciar la transmisión se añaden un número predeterminado de ceros a la información a enviar y se divide utilizando el polinomio generador.
- El receptor realiza nuevamente una división sobre los datos recibidos y si el resto es 0 indica que la trama se ha recibido sin errores.
- Finalmente se descartan los bits añadidos en el transmisor para quedarnos con el mensaje original.

5.5.1 ¿Por qué CRC?

- Hay versiones de CRC para diferentes longitudes de polinomio: CRC16, CRC32,...
- Los errores se producen típicamente a ráfagas
- ullet Para un CRC de n bits
 - Se detectan todos los errores de ráfagas de menos de n bits incorrectos
 - Se detecta una fracción de las ráfagas más largas $(1-2^{-n})$

Longitud de crc	Porcentaje de detección de ráfagas mayores
8	99.609375
16	99.998474
32	99.999999767169

6 Corrección de errores

- La detección de errores es el primer paso
- Una vez detectado:
 - Se puede ignorar (las capas más altas deben arreglar el error)
 - Se puede corregir
- Ethernet no corrige errores, pero veremos algunas técnicas que pueden usar otras capas 2

6.1 Retransmisión

- Es el método de corrección más sencillo.
- Se detecta el error y se pide al emisor que vuelva a enviar la trama.
- Se tienen que memorizar las tramas enviadas hasta la recepción de un ACK que confirme que el envío de información fue exitosa.

6.2 Corrección: Código Hamming

- Codificación que permite la detección y la corrección de un bit
 - Su distancia de Hamming es 1
- Se inluyen bits de paridad de la siguiente forma:
 - Los bits de las posiciones $s=2^{p-1}$ son de paridad: 1, 2, 4, 8...
 - El resto son de datos
 - -El bit de la posición s se incluye en el bit de paridad p si la expresión de s en binario tiene a 1 el bit p

	p1	p2	d1	p3	d2	d3	d4	p4	d5	d6	d7
	s1	s2	s3	s4	s5	s6	s7	s8	s9	s10	s11_
p1	X		X		X		X		X		X
p2		X	X			X	X			X	X
p3				X	X	X	X				
p4								X	X	X	X

6.2.1 Clasificación de códigos de Hamming

- La tabla anterior se puede hacer para cualquier longitud
- El ejemplo tiene 11 bits en total, 7 son de datos: Hamming(11,7)
- También es común el Hamming(7,4)

6.2.2 Ejemplo Hamming(11,7)

• Para transmitir 0110101

	p1	p2	d1	p3	d2	d3	d4	p4	d5	d6	d7
	s1	s2	s3	s4	s5	s6	s7	s8	s9	s10	s11
Datos			0		1	1	0		1	0	1
p1			0		1		0		1		1
p2			0			1	0			0	1
p3					1	1	0				
p4									1	0	1
Datos (con paridad):			0		1	1	0		1	0	1

- Para transmitir 0110101
- Se transmite 10001100101

	p1	p2	d1	p3	d2	d3	d4	p4	d5	d6	d7
	s1	s2	s3	s4	s5	s6	s7	s8	s9	s10	s11
Datos			0		1	1	0		1	0	1
p1	1		0		1		0		1		1
p2		0	0			1	0			0	1
p3				0	1	1	0				
p4								0	1	0	1
Datos (con paridad):	1	0	0	0	1	1	0	0	1	0	1

6.2.3 Detección de un error con Hamming

• Se recibe 11001100101

	p1	p2	d1	p3	d2	d3	d4	p4	d5	d6	d7	Paridad
	s1	s2	s3	s4	s5	s6	s7	s8	s9	s10	s11	
Recibida:	1	1	0	0	1	1	0	0	1	0	1	
p1	1		0		1		0		1		1	0
p2		1	0			1	0			0	1	1 (error)
p3				0	1	1	0					0
p4								0	1	0	1	0

• Hay un error, y se localiza en la posición 0010: s2 (p2)

6.2.4 Ejercicio

- Decide si las siguientes palabras de código Hamming son correctas. Si no son correctas, corrígelas.
 - -10001100101
 - $-\ 00100110010$
 - 01110111001

6.2.5 ¿Y si hay más de 1 error?

• Su distancia de Hamming es 3, así que no se puede detectar

- En Hamming extendido se añade un bit de paridad adicional
 - Permite detectar errores de dos bits, pero no corregirlos

6.3 Ejercicio

- Calcula el porcentaje de redundancia de:
 - Tramas de 1000 bytes con crc32
 - Tramas de 100 bytes con crc16
 - Hamming (7,4)
 - Hamming (11,7)
 - Hamming (11,7) extendido
 - Paridad lineal: un bit de paridad cada 7 de datos
 - Paridad de bloque: un bit de paridad lineal cada 7 de datos, bloques de 49 bits de datos

7 Referencias

- Formatos:
 - Transparencias
 - PDF
- Creado con:
 - Emacs
 - org-reveal
 - Latex