Problem Set 8

Jaan Tollander de Balsch

March 16, 2020

H8.1

Zero-knowledge interactive proof system for graph isomorphism problem.

RSA cryptosystem: Key pair (p, q, e, d), message x and encrypted message y.

Graph isomorphism: Graphs G=(V,E) and G'=(V',E') are isomorphic if and only if there exists a bijection

$$\chi: V \to V'$$

such that for all $(i, j) \in E$ there exists $(\chi(i), \chi(j)) \in E'$.

We say that χ is a certificate of graph isomorphism.

Alice wants to convince **Bob** with high probability that she has certificate of graph isomorphism without revealing any other information about the certificate.

Alice and **Bob** know the input x = (G, G') which is a pair of graphs G = (V, E) and G' = (V', E') such that |V| = |V'| and |E| = |E'|.

Alice claims to have a certificate χ of graph isomorphism of input x.

Protocol: In each round

1) Alice

- Creates a random permutation $\pi: V' \to V'$
- For each vertex $i \in V$: Generate RSA key pair (p_i, q_i, e_i, d_i) and compute y_i , a randomized RSA coding of $\pi(\chi(i))$ and reveals $(e_i, p_i q_i, y_i)$ to Bob.
- Reveals the permutation of the edges $E'_{\pi}=\{(\pi(i'),\pi(j'))\mid (i',j')\in E'\}$ to Bob.

(I am not sure if this needs to be encrypted as well? Bob might be able to infer knowledge from E'_{π})

- 2) **Bob** picks two random vertices $i, j \in V$ and Alice reveals values d_i, d_j .
- 3) Bob decodes y_i, y_j to obtain $i_\pi' = \pi(\chi(i)), j_\pi' = \pi(\chi(j))$ and checks

 - Bijectivity: If $i \neq j$ then $i'_{\pi} \neq j'_{\pi}$. Adjacency: If $(i,j) \in E$ then $(i'_{\pi},j'_{\pi}) \in E'_{\pi}$ otherwise $(i'_{\pi},j'_{\pi}) \notin E'_{\pi}$.

Alice must send the whole encrypted certificate so that she cannot fake the certificate for vertices $i, j \in V$ after Bob asks for them.

Bob must pick the vertices at random so that Alice cannot predict these vertices and fake the certificate for those vertices.

H8.2

$$\mathbf{P^{PP}} = \mathbf{P^{\#P}}$$

If a polynomial time Turing machine with #P oracle does a query and receive answer x, then a polynomial time Turing machine with **PP** oracle can do |x|queries to obtain x, such that first one obtains the most significant bit of x, second one the second most significant bit of x and so forth.

Since the difference between the amount of queries is linear, the classes are equal.

H8.3