Found candidates receptor ligand pairs in self-renewal satellite cell

Collaboration with Penney GILBERT

<u>Analysis</u>: Legrand's team:

- Dr. Penney M. Gilbert
- PhD Erik JACQUES
- RA Nitya GULATI
- Trainee Saif RJAIBI

- Dr. Fabien LE GRAND
- IE Johanna GALVIS-LACROUX
- IE William JARASSIER
- IE Pauline MOULLÉ

Penney GILBERT project

Construct miniaturized versions of human skeletal muscle tissue in a dish for:

- Drug discovery effort
- Fundamental studies
 - muscle stem cell mediated repair
 - Duchenne muscular dystrophy
 - exercise ...

Objective collaboration:

Test the power of an in silico --> in vitro pipeline for discovery of satellite cell modulators

Louise A. Moyle, Erik Jacques, Penney M. Gilbert, Engineering the next generation of human skeletal muscle models: From cellular complexity to disease modeling, Current Opinion in Biomedical Engineering

Le Grand data

With the collaboration of Dr. Bénédicte CHAZAUD and Dr. Jérôme FEIGE teams RNA-seq data following this design experiment are available:

Le Grand data

With the collaboration of Dr. Bénédicte CHAZAUD and Dr. Jérôme FEIGE teams RNA-seq data following this design experiment are available:

Cell sequenced	D0	D2	D4	D7
ECs				
FAPs				
Mac-M1				
Mac-M2				
Neutrophils				
MuSc				

Pretreatment RNA-seq data

Pretreatment RNA-seq data

Natmi zoom

Network Analysis Toolkit for Multicellular Interaction (NATMI) Hou, R., Denisenko, E., Ong, H.T. et al. Predicting cell-to-cell communication networks using NATMI. Nat Commun 11, 5011 (2020).

→ Develop for single cell sequencing

Adaptation for bulk RNA sequencing:

- Considerate one replicate like one cell

Software base on:

- Expression table with TPM value
- Database Ligand Receptor Connectome DB 2020
 - \rightarrow Interaction relevate if the receptor and the ligand expressed $\geq = 0.6$ ration cell expression

Natmi zoom

Results informations:

- For receptor and ligand:
 - Type cell
 - Symbol gene
 - Detection rate or percent of replicate with expression
- For receptor, ligand and edge (product ligand receptor value):
 - Average expression value meanTPM
 - Derived specificity of average expression value

Exemple representation of results:

→ All interaction in D2 for young expression with Met in satellite cell

Cell types: Antiinflamatory Macrophages (M2) Endothelial cells (ECs)

- Fibroadipogenic Progenitors (FAPs)
- Neutrophils (Neutro)
- Proinflamatory Macrophages (M1)
- Satellite cells/MuSC (sCs)

Collaboration:

Penney Gilbert team

Objective:

- Discovery satellite cells modulators
- Focus on
 - Boosting in self-renewal states
 - Boosting in quiescence states
- Factors that we could 'add into' the system easily (ECM, GFs, cytokines, etc)

Receptor doesn't change much, and then suddenly a ligand becomes accessible

Collaboration:

Penney Gilbert team

Objective:

- Discovery satellite cells modulators
- Focus on
 - Boosting in self-renewal states
 - Boosting in quiescence states
- Factors that we could 'add into' the system easily (ECM, GFs, cytokines, etc)

Receptor doesn't change much, and then suddenly a ligand becomes accessible

Le Grand team - Bioinformatique point of view

Analyse Data

- Focus on Young RNA-seq data
- Explore Natmi result Receptor-Ligand results
- Focus on
 - Receptor expressed by satellite cells
 - Receptor expressed all days and replicats
 - Ligand expressed by all type cells
- Split analysis on two:
 - 'n' for "boosting in self-renewal states":
 - Expression D0 < D2
 - Expression D7 < D4
 - 'U' for "boosting in quiescence states"
 - Expression D0 > D2
 - Expression D7> D4

Top 40 candidates receptor-ligand

Boosting in quiescence states

Candidates receptor-ligand

Boosting in quiescent state: zoom couple Met_Dcn

Explore all interaction with ligand Dcn

Candidates receptor-ligand

Boosting in quiescent state: zoom couple Met_Dcn

Explore all interaction with receptor Met

Top 40 candidates receptor-ligand

Boosting in self-renewal states

Candidates receptor-ligand

Boosting in self-renewal states: zoom couple Cd44_Spp1

Explore all interaction with migand Spp1

Candidates receptor-ligand

Boosting in self-renewal states: zoom couple Cd44_Spp1

RNA-seq analysis of 6 cell types in regeneration muscle tissue between young and old mice

Partenariat des équipes de:

- Dr. Fabien LE GRAND
- Dr. Bénédicte CHAZAUD
- Dr. Jérôme FEIGE

Contributeurs Principaux:

- PhD Hoang DIEU-HUONG
- IE Johanna GALVIS-LACROUX
- IE William JARASSIER
- IE Pauline MOULLÉ

Objective analysis - experimental design

Found difference between expression Old and Young mice in regeneration muscle tissue.

Cell sequenced	D0	D2	D4	D7
ECs				
FAPs				
Mac-M1				
Mac-M2				
Neutrophils				
MuSc				

Steps of analyse

Steps of analyse

- On gene with on less 3 samples with raw count >= 5 (2 460 gene remove)
- DEG Old-Young for each 18 conditions TypeCell.DayPostInjury
- 25% (5902) genes are padj<0.05 on less one condition

1 Differential Expressed Genes

Proportion of genes DEG signi

ECs

FAPs M1 M2

Neutro sCs

	ECs	FAP s	sCs	M1	M2	Neut ro
D0	1.6	8.7	8.1	NA	NA	NA
D2	1.0	4.0	32.3	0.5	1.6	5.3
D4	4.7	6.6	23.4	0.3	0.6	NA
D7	10.4	7.0	10.1	NA	2.4	NA

1 Differential Expressed Genes

symbol	nbDa yDE	Dynamic	id	day	type	padj	log2Fo IdChan ge	meanCount Normalized Young	meanCou ntNormali zedOld
C4b	3	D2_UP.D4_ UP.D7_UP	ENSMUSG0000 0073418	D2	M2	2.2681428807 9248e-10	1.9075	67.5574	267.4453
C4b	3	D2_UP.D4_ UP.D7_UP	ENSMUSG0000 0073418	D4	M2	0.0003253618 3106648	0.963	317.4045	656.2569
C4b	3	D2_UP.D4_ UP.D7_UP	ENSMUSG0000 0073418	D7	M2	1.1287827149 5032e-15	1.3087	594.9828	1508.9978
C4b	2	D2_UP.D4_ UP	ENSMUSG0000 0073418	D2	M1	8.9056336779 2302e-8	1.9639	145.8828	604.7223
C4b	2	D2_UP.D4_ UP	ENSMUSG0000 0073418	D4	M1	0.0112502470 567319	0.8397	520.7154	1004.215
C4b	1	D2_UP	ENSMUSG0000 0073418	D2	Neutr o	0.0016811776 2706364	1.7635	42.3539	170.0887
C4b	1	D2_UP	ENSMUSG0000 0073418	D2	sCs	0.0000276347 552724158	1.5361	92.4862	293.1857
C4b	1	D4_UP	ENSMUSG0000 0073418	D4	FAPs	1.3517627461 7256e-9	0.9665	1399.785	2811.6533
C4b	1	D7_UP	ENSMUSG0000 0073418	D7	ECs	0.0029271505 22015 95	3.2702	1.9394	26.72

Steps of analyse

- → Algorithme : fGEA use in R
- → Database:
- ◆ Genes Set from Molecular Signatures Database (MSigDB) species Mus musculus
- category C2 subcategory = Canonical pathways
 Reactome database
 - On each days and cellType
- On "all" genes
- Sort by signed of log2FoldChange * log10(padj)
- Approx 3 000 genes with padj = NA

Proportion of pathway DE signi

	ECs	FAP s	sCs	M1	M2	Neut ro
D0	0	71	72	NA	NA	NA
D2	0	78	384	5	11	3
D4	115	4	325	4	18	NA
D7	3	0	20	NA	0	NA

AUTOPHAGY						
IN REACTOME HIERARCHIE	AUTOPHAG Y	MACROAUTOPHAGY	SELECTIVE AUTOPHAGY	AGGREPHAGY		
CELL CYCLE						
IN REACTOME HIERARCHIE	CELL CYCLE	CELL CYCLE CHECKPOINTS	G1 S DNA DAMAGE CHECKPOINTS	P53 DEPENDENT G1 S DNA DAMAGE CHECKPOINT	P53 DEPENDEN T G1 DNA DAMAGE RESPONSE	STABILIZATION OF P53
IN REACTOME HIERARCHIE	CELL CYCLE	CELL CYCLE CHECKPOINTS	G2 M CHECKPOINTS	ACTIVATION OF ATR IN RESPONSE TO REPLICATION STRESS		
IN REACTOME HIERARCHIE	CELL CYCLE	CELL CYCLE CHECKPOINTS	G2 M CHECKPOINTS	G2 M DNA DAMAGE CHECKPOINT		

Numbers conditions enrichis	1	2	3	4
Numbers pathways	254	139	46	28

Numbers conditions enrichis	5	6	7	8
Numbers pathways	34	22	3	1

CondSigni	NamePathway	link	DayTypeSens	padj	NES	NbPathWithDynam ique
D0_FAPs_down D2_FAPs_down D2_sCs_down D4_ECs_up D4_sCs_up	B WICH COMPLEX POSITIVELY REGULATES RRNA EXPRESSION	FigureSupp	D0_FAPs_down	0.00534289344241228	-1.83663650472637	12

CondSigni	NamePathway	link	DayTypeSens	padj	NES	NbPathWithDynam ique
D0_FAPs_down D2_FAPs_down D2_sCs_down D4_ECs_up D4_sCs_up	B WICH COMPLEX POSITIVELY REGULATES RRNA EXPRESSION	FigureSupp	D0_FAPs_down	0.00534289344241228	-1.83663650472637	12

Steps of analyse

Network Analysis Toolkit for Multicellular Interaction (NATMI)

Hou, R., Denisenko, E., Ong, H.T. et al. Predicting cell-to-cell communication networks using NATMI. Nat Commun 11, 5011 (2020).

→ Develop for single cell sequencing

Adaptation for bulk RNA sequencing:

- Considerate one replicate like one cell

Software base on:

- Expression table with raw Count Normalised value
- Database Ligand Receptor Connectome DB2020

3 Receptors ligands analysis

Available information by couple receptor ligand:

- Type Receptor
- DEG info: padj,log2fodchange
- Expression Young Old
- Detection rate

- Day

- Type Ligand
- DEG info: padj,log2fodchange
- Expression Young Old
- Detection rate
- Edge Infos
- Expression weight
- -Delta edge young old
- -Log2foldchange
- → Simplification : groupe type cell → Receptor or Ligand DEG at less in one condition
- → Try to curate receptor ligand with comparaison expression Ligand associated to a receptor