IV Variables aléatoires :

1) Définition :

<u>Définition</u>: Soit (Ω, \mathcal{T}, P) un espace probabilisé. On appelle variable aléatoire une application de Ω dans \mathbb{R} .

$$X: \Omega \to \mathbb{R}$$

$$\omega \mapsto X(\omega)$$

<u>Définition</u>: Soit (Ω, \mathcal{T}, P) un espace probabilisé. On appelle variable aléatoire une application de Ω dans \mathbb{R} .

$$X: \Omega \to \mathbb{R}$$

 $\omega \mapsto X(\omega)$

Si l'ensemble des images $X(\Omega)$ est dénombrable, la variable aléatoire est **discrète**.

<u>Définition</u>: Soit (Ω, \mathcal{T}, P) un espace probabilisé. On appelle variable aléatoire une application de Ω dans \mathbb{R} .

$$X: \Omega \to \mathbb{R}$$

 $\omega \mapsto X(\omega)$

Si l'ensemble des images $X(\Omega)$ est dénombrable, la variable aléatoire est **discrète**. Si l'ensemble des images $X(\Omega)$ est un intervalle de \mathbb{R} , la variable aléatoire est **continue**.

2) Loi de probabilité :

Définition:

Soit X une variable alétoire discrète à valeurs dans $\{x_1; x_2; ...\}$. Définir la loi de probabilité de X, c'est associer à chaque valeur de x_k la probabilité $P(X = x_k)$.

Lorsque la variable aléatoire est finie, on peut présenter les résultats sous la forme d'un tableau :

X _k	<i>x</i> ₁	<i>x</i> ₂	 Xn
$P(X=x_k)$	p_1	p ₂	 p_n

Exemple: Une urne contient 10 jetons numérotés de 1 à 10. Si on obtient les numéros 1 ou 2, on gagne 1 euro, si on obtient les numéros 3, 4 ou 5, on gagne 2 euros, si on obtient les numéros 6, 7, 8 ou 9, on gagne 5 euros, si on obtient le numéro 10, on perd 30 euros.

Exemple: Une urne contient 10 jetons numérotés de 1 à 10. Si on obtient les numéros 1 ou 2, on gagne 1 euro, si on obtient les numéros 3, 4 ou 5, on gagne 2 euros, si on obtient les numéros 6, 7, 8 ou 9, on gagne 5 euros, si on obtient le numéro 10, on perd 30 euros.

Soit X la variabe aléatoire qui donne le gain à ce jeu.

Exemple: Une urne contient 10 jetons numérotés de 1 à 10. Si on obtient les numéros 1 ou 2, on gagne 1 euro, si on obtient les numéros 3, 4 ou 5, on gagne 2 euros, si on obtient les numéros 6, 7, 8 ou 9, on gagne 5 euros, si on obtient le numéro 10, on perd 30 euros.

Soit X la variable aléatoire qui donne le gain à ce jeu. La loi de probabilté de X est :

X_k	-30	1	2	5	Total
$P(X=x_k)$	0, 1	0, 2	0,3	0,4	1

Une autre manière de définir la loi de probabilité d'une variable aléatoire est de considérer sa fonction de répartition.

<u>Définition</u>: Soit X une variable aléatoire sur l'espace probabilisé (Ω, \mathcal{T}, P) , la fonction de répartition de X est la fonction F définie par :

$$F: \mathbb{R} \to [0; 1]$$
$$t \mapsto P(X \le t)$$

x_k	-30	1	2	5	Total
$P(X=x_k)$	0, 1	0, 2	0,3	0,4	1

La fonction de répartion F de X est définie par :

t	-30	1	2	5
$F(t) = P(X \le t)$	0, 1	0,3	0,6	1

3) Espérance, variance et écart-type :

Définition:

Soit X une variable alétoire discrète prenant les valeurs x_1, x_2, \dots

L'espérance de X, note E(X) est définie par :

$$E(X) = P(X = x_1)x_1 + P(X = x_2)x_2 +$$

ou plus précisément

$$E(X) = \sum_{x_k \in X(\Omega)} P(X = x_k) x_k$$

X _k	-30	1	2	5	Total
$P(X=x_k)$	0, 1	0,2	0,3	0,4	1

X _k	-30	1	2	5	Total
$P(X=x_k)$	0, 1	0,2	0,3	0,4	1

$$E(X) = 0, 1 \times (-30) + 0, 2 \times 1 + 0, 3 \times 2 + 0, 4 \times 5 =$$

X _k	-30	1	2	5	Total
$P(X=x_k)$	0, 1	0,2	0,3	0,4	1

$$E(X) = 0, 1 \times (-30) + 0, 2 \times 1 + 0, 3 \times 2 + 0, 4 \times 5 = -0, 2$$

Propriété:

Soient X, Y des variables aléatoires et a, b des nombres réels. On a :

- $\bullet \ E(X+Y)=E(X)+E(Y)$
- $\bullet \ E(aX+b)=aE(X)+b$

Propriété :

Soient X, Y des variables aléatoires et a, b des nombres réels. On a :

- $\bullet \ E(X+Y)=E(X)+E(Y)$
- $\bullet \ E(aX+b)=aE(X)+b$

Remarque: Attention, pour deux variables aléatoires quelconques, en général on a $E(XY) \neq E(X)E(Y)$

<u>Définition</u>: Soit X une variable alétoire discrète d'espérance $E(X) = \mu$.

• La variance de X, notée Var(X), est définie par $Var(X) = E(X - \mu)^2$ $= \sum_{x_k \in X(\Omega)} (x_k - \mu)^2 P(X = x_k)$

<u>Définition</u>: Soit X une variable alétoire discrète d'espérance $E(X) = \mu$.

• La variance de X, notée Var(X), est définie par $Var(X) = E(X - \mu)^2$ $= \sum_{k} (x_k - \mu)^2 P(X = x_k)$

• L'écart-type de X, noté $\sigma(X)$, est défini par : $\sigma(X) = \sqrt{\operatorname{Var}(X)}$

 $x_{\nu} \in X(\Omega)$

Exemple: Avec les données précédentes, l'espérance de X est E(X) = -0, 2 et la loi de probabilté de X est :

X_k	-30	1	2	5	Total
$P(X=x_k)$	0, 1	0,2	0,3	0,4	1

$$Var(X) = 0, 1 (-30 - (-0, 2))^{2} + 0, 2 (1 - (-0, 2))^{2} + 0, 3 (2 - (-0, 2))^{2} + 0, 4 (5 - (-0, 2))^{2} = 101, 3$$

Exemple: Avec les données précédentes, l'espérance de X est E(X) = -0, 2 et la loi de probabilté de X est :

x_k	-30	1	2	5	Total
$P(X=x_k)$	0, 1	0,2	0,3	0,4	1

$$Var(X) = 0, 1 (-30 - (-0, 2))^{2} + 0, 2 (1 - (-0, 2))^{2} + 0, 3 (2 - (-0, 2))^{2} + 0, 4 (5 - (-0, 2))^{2} = 101, 3$$

$$\sigma(X) = \sqrt{Var(X)} = 0$$

Exemple: Avec les données précédentes, l'espérance de X est E(X) = -0, 2 et la loi de probabilté de X est :

X_k	-30	1	2	5	Total
$P(X=x_k)$	0, 1	0,2	0,3	0,4	1

$$Var(X) = 0, 1 (-30 - (-0, 2))^{2} + 0, 2 (1 - (-0, 2))^{2} + 0, 3 (2 - (-0, 2))^{2} + 0, 4 (5 - (-0, 2))^{2} = 101, 3$$

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{101, 3} \approx 10, 07$$

Propriété:

Soient X une variable alétoire, et a et b deux réels.

- $Var(X) = E(X^2) E(X)^2$ (Formule de Koening)
- $Var(aX + b) = a^2Var(X)$ et $\sigma(aX + b) = |a|\sigma(X)$.

Remarque: Attention, pour deux variables aléatoires quelconques, en général on a $Var(X + Y) \neq Var(X) + Var(Y)$