Universidade Estadual Paulista-"Júlio de Mesquita Filho" Departamento de Matemática-FEIS-UNESP

 2^{2} Trabalho de Geometria Analítica e Álgebra Linear 2^{2} Semestre - 2017 Prof. Edson Donizete de Carvalho

Nome: RA:

1) No primeiro trabalho, pedimos para mostrar que o conjunto $\beta = \{e_1, e_2, e_3\}$ é (LI) em \mathbb{R}^3 se, e somente se, o conjunto $\alpha = \{f_1, f_2, f_3\}$ é (LI) em \mathbb{R}^3 onde

$$\begin{cases} f_1 = e_1 - e_2 \\ f_2 = e_3 \\ f_3 = e_2 + e_3 \end{cases}$$

Agora, considere $\beta = \{e_1, e_2, e_3\}$ e $\alpha = \{f_1, f_2, f_3\}$ bases de \mathbb{R}^3 , onde e_1, e_2, e_3 denotam os vetores da base canônica.

(a) Determine a matriz mudança de base $A = [T]^{\alpha}_{\beta}$. (1,0 ponto)

(b) Se
$$[v]_{\beta} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
. Então, determine $[v]_{\alpha}$.(0, 5 pontos)

(c) Determine a matriz mudança de base $A = [T]^{\beta}_{\alpha}$. (1,0 ponto)

(d) Se
$$[v]_{\alpha} = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$$
. Então, determine $[v]_{\beta}$. (0, 5 pontos)

- (e) Mostre que Determine a $A^{-1} = B$. (1,0 ponto)
- (f) Determine uma expressão algébrica para a transformação linear $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $T_A(v) = Av.(1,0 \text{ ponto})$
- (g) Determine uma expressão algébrica para a transformação linear $T_B: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $T_B(v) = Bv.(1,0$ ponto)
- (h) Seja $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ e $T_B: \mathbb{R}^3 \to \mathbb{R}^3$ as transformações lineares dos itens anteriores. Mostre que $T_A o T_B: \mathbb{R}^3 \to \mathbb{R}^3$ é transformação linear identidade, isto é, $T_A o T_B(x,y,z) = (x,y,z), \forall (x,y,z) \in \mathbb{R}^3.$ (1,0 ponto)
- (i) Mostre que a matriz associada a transformação linear $T_A o T_B : \mathbb{R}^3 \to \mathbb{R}^3$ é matriz identidade.(1,0 ponto)
- (j) Mostre que o conjunto $V_1 = \{(x, y, z) \in \mathbb{R}^3; T_A(x, y, z) = (x, y, z)\}$ é um subespaço vetorial de \mathbb{R}^3 .(1,0 ponto)
- (1) Mostre que o conjunto $V_2 = \{(x, y, z) \in \mathbb{R}^3; T_A(x, y, z) = -(x, y, z)\}$ é um subespaço vetorial de \mathbb{R}^3 .(1,0 ponto)

Bom Trabalho!!