CS 224d Midterm Review (word vectors)

Peng Qi

May 5, 2015

Outline

- word2vec and GloVe revisited
- word2vec with backpropagation

Outline

- word2vec and GloVe revisited
 - ► Skip-gram revisited
 - ▶ (Optional) CBOW and its connection to Skip-gram
 - (Optional) word2vec as matrix factorization (conceptually)
 - ► GloVe v.s. word2vec
- word2vec with backpropagation

Skip-gram

- ► *Task:* given a center word, predict its context words
- ► For each word, we have an "input vector" v_w and an "output vector" v_w'

Skip-gram

We have seen two types of costs for an expected word given a vector prediction r

$$CE(w_i|r) = -\log\left(\frac{\exp(r^\top v'_{w_i})}{\sum_{j=1}^{|V|} \exp(r^\top v'_{w_j})}\right)$$

$$\begin{aligned} \textit{NEG}(w_i|r) &= -\log(\sigma(r^\top v'_{w_i})) \\ &- \sum_{k=1}^K \log(\sigma(-r^\top v'_{w_k})) \end{aligned}$$

In the case of skip-gram, the vector prediction r is just the "input vector" of the center word, v_{w_i} .

 $\sigma(\cdot)$ is the sigmoid (logistic) function.

Skip-gram

Now we have all the pieces of skip-gram, the cost for a context window $[w_{i-C}, \cdots, w_{i-1}, w_i, w_{i+1}, \cdots, w_{i+C}]$ is (w_i) is the center word)

$$J_{\text{skip-gram}}([w_{i-C}, \cdots, w_{i+C}]) = \sum_{i-C \le j \le i+C, i \ne j} F(w_j | v_{w_i})$$

where F is one of the cost functions we defined in the previous slide.

You might ask: but why are we introducing so many notations?

Skip-gram v.s. CBOW

All word2vec figures are from http://arxiv.org/pdf/1301.3781.pdf

word2vec as matrix factorization (conceptually)

Matrix factorization

$$\begin{bmatrix} M \end{bmatrix}_{n \times n} \approx \begin{bmatrix} A^{\top} \end{bmatrix}_{n \times k} \begin{bmatrix} B \end{bmatrix}_{k \times n}$$
$$M_{ij} \approx a_i^{\top} b_j$$

▶ Imagine M is a matrix of counts for events co-occurring, but we only get to observe the co-occurrences one at a time. E.g.

$$M = \left[\begin{array}{rrr} 1 & 0 & 4 \\ 0 & 0 & 2 \\ 1 & 3 & 0 \end{array} \right]$$

but we only see (1,1), (2,3), (3,2), (2,3), (1,3), ...

word2vec as matrix factorization (conceptually)

$$M_{ij} pprox a_i^ op b_j$$

- ▶ Whenever we see a pair (i,j) co-occur, we try to increasing $a_i^{\top}b_j$
- ▶ We also try to make all the other inner-products smaller to account for pairs never observed (or unobserved yet), by decreasing $a_{\neg i}^{\top}b_{j}$ and $a_{i}^{\top}b_{\neg j}$
- ▶ Remember from the lecture that the word co-occurrence matrix usually captures the semantic meaning of a word? For word2vec models, roughly speaking, M is the windowed word co-occurrence matrix, A is the output vector matrix, and B is the input vector matrix.
- Nhy not just use one set of vectors? It's equivalent to A = B in our formulation here, but less constraints is usually easier for optimization.

GloVe v.s. word2vec

	Fast training	Efficient usage of statistics	Quality affected by size of corpora	Captures complex patterns
Direct prediction (word2vec) GloVe	Scales with size of corpus	No	No*	Yes
	Yes	Yes	No	Yes

^{*} Skip-gram and CBOW are qualitatively different when it comes to smaller corpora

Outline

- word2vec and GloVe revisited
- word2vec with backpropagation

word2vec with backpropagation

$$CE(w_i|r) = -\log\left(\frac{\exp(r^{\top}v'_{w_i})}{\sum_{j=1}^{|V|}\exp(r^{\top}v'_{w_j})}\right)$$
 $CE(w_i|r) = CE(\hat{y}, y_i)$

$$CE(w_i|r) = CE(\hat{y}, y_i)$$
 $\hat{y} = \operatorname{softmax}(\theta)$
 $\theta = (V')^{\top} r$

$$\delta = \frac{\partial CE}{\partial \theta} = \hat{y} - y_i$$
 ∂CE

$$\delta = \frac{\partial CE}{\partial \theta} = y - \frac{\partial CE}{\partial V'} = r\delta^{\top}$$

$$\frac{\partial CE}{\partial r} = V'\delta$$

Thanks for your attention and best of luck with the mid-term!

Any questions?