

# Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15010007302

# FCC REPORT (BLE)

**Applicant:** Binatone Electronics International Limited

Address of Applicant: Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong

**Equipment Under Test (EUT)** 

Product Name: SCOUT5000

Model No.: SCOUT5000

Trade mark: motorola

FCC ID: VLJ-SCOUT5000

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 Jan., 2015

**Date of Test:** 27 Jan., 2015 to 05 Feb., 2015

Date of report issued: 06 Feb., 2015

Test Result: PASS \*

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.





# 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 06 Feb., 2015 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Prepared by:

Report Clerk

Date: 06 Feb., 2015

Reviewed by: Date: 06 Feb., 2015

**Project Engineer** 



# 3 Contents

|   |       |                                | Page |
|---|-------|--------------------------------|------|
| 1 | COV   | /ER PAGE                       | 1    |
| 2 | VER   | SION                           | 2    |
| 3 |       | NTENTS                         |      |
| 4 |       | T SUMMARY                      |      |
| 5 |       | IERAL INFORMATION              |      |
|   | 5.1   | CLIENT INFORMATION             |      |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T.  |      |
|   | 5.2   | TEST ENVIRONMENT AND MODE      |      |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS   |      |
|   | 5.5   | LABORATORY FACILITY            |      |
|   | 5.6   | LABORATORY LOCATION            |      |
|   | 5.7   | TEST INSTRUMENTS LIST          |      |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA | 9    |
|   | 6.1   | ANTENNA REQUIREMENT:           |      |
|   | 6.2   | CONDUCTED EMISSION             |      |
|   | 6.3   | CONDUCTED OUTPUT POWER         |      |
|   | 6.4   | OCCUPY BANDWIDTH               |      |
|   | 6.5   | Power Spectral Density         |      |
|   | 6.6   | BAND EDGE                      | 20   |
|   | 6.6.1 |                                |      |
|   | 6.6.2 |                                |      |
|   | 6.7   | Spurious Emission              |      |
|   | 6.7.1 |                                |      |
|   | 6.7.2 | 2 Radiated Emission Method     | 30   |
| 7 | TES   | T SETUP PHOTO                  | 35   |
| R | FUT   | CONSTRUCTIONAL DETAILS         | 36   |





# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(3)     | Pass   |
| 6dB Emission Bandwidth           | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.





# 5 General Information

### 5.1 Client Information

| Applicant:               | Binatone Electronics International Limited                                                                |
|--------------------------|-----------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong                                                   |
| Manufacturer:            | ShenZhen Concox Information Technology Co., Ltd                                                           |
| Address of Manufacturer: | 4F, Building B, Gaoxinqi Industrial Park, Liuxian 1st Road, District 67, Bao'an, Shenzhen, china          |
| Factory:                 | Huizhou Goldenchip Electronics Co., Ltd                                                                   |
| Address of Factory:      | No. 12 Factory, Songyang Road, Zhongkai Hi-tech Development Zone, Huizhou City, Guangdong Province, China |

# 5.2 General Description of E.U.T.

| Product Name:          | SCOUT5000                                                                                                                                                                                                                                                                                                                       |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:             | SCOUT5000                                                                                                                                                                                                                                                                                                                       |
| Operation Frequency:   | 2402-2480 MHz                                                                                                                                                                                                                                                                                                                   |
| Channel numbers:       | 40                                                                                                                                                                                                                                                                                                                              |
| Channel separation:    | 2 MHz                                                                                                                                                                                                                                                                                                                           |
| Modulation technology: | GFSK                                                                                                                                                                                                                                                                                                                            |
| Data speed :           | 1Mbps                                                                                                                                                                                                                                                                                                                           |
| Antenna Type:          | Internal Antenna                                                                                                                                                                                                                                                                                                                |
| Antenna gain:          | 4.9 dBi                                                                                                                                                                                                                                                                                                                         |
| Power supply:          | Rechargeable Li-ion Battery DC3.7V-1880mAh                                                                                                                                                                                                                                                                                      |
| AC adapter:            | (1) Model: S006WM0500100 Input:100-240V AC,50/60Hz 0.3A Output:5V DC MAX 1A (2) Model: YW1200M Input:100-240V AC,50/60Hz 0.17A Output:5V DC MAX 1.2A (3) Model: MLF-A00060501000DP0021 Input:100-240V AC,50/60Hz 0.18A Output:5V DC MAX 1A (4) Model: MLF-A00060501000U0021 Input:100-240V AC,50/60Hz 0.18A Output:5V DC MAX 1A |





| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 0                                   | 2402MHz   | 10      | 2422MHz   | 20      | 2442MHz   | 30      | 2462MHz   |
| 1                                   | 2404MHz   | 11      | 2424MHz   | 21      | 2444MHz   | 31      | 2464MHz   |
| 2                                   | 2406MHz   | 12      | 2426MHz   | 22      | 2446MHz   | 32      | 2466MHz   |
| 3                                   | 2408MHz   | 13      | 2428MHz   | 23      | 2448MHz   | 33      | 2468MHz   |
| 4                                   | 2410MHz   | 14      | 2430MHz   | 24      | 2450MHz   | 34      | 2470MHz   |
| 5                                   | 2412MHz   | 15      | 2432MHz   | 25      | 2452MHz   | 35      | 2472MHz   |
| 6                                   | 2414MHz   | 16      | 2434MHz   | 26      | 2454MHz   | 36      | 2474MHz   |
| 7                                   | 2416MHz   | 17      | 2436MHz   | 27      | 2456MHz   | 37      | 2476MHz   |
| 8                                   | 2418MHz   | 18      | 2438MHz   | 28      | 2458MHz   | 38      | 2478MHz   |
| 9                                   | 2420MHz   | 19      | 2440MHz   | 29      | 2460MHz   | 39      | 2480MHz   |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2442MHz   |
| The Highest channel | 2480MHz   |



5.3 Test environment and mode

| Operating Environment: |                                                         |  |  |
|------------------------|---------------------------------------------------------|--|--|
| Temperature:           | 24.0 °C                                                 |  |  |
| Humidity:              | 54 % RH                                                 |  |  |
| Atmospheric Pressure:  | 1010 mbar                                               |  |  |
| Test mode:             |                                                         |  |  |
| Operation mode         | Keep the EUT in continuous transmitting with modulation |  |  |

Report No: CCIS15010007302

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

### 5.4 Description of Support Units

N/A

# 5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

#### • IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

# 5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





# 5.7 Test Instruments list

| Rad  | Radiated Emission:                   |                                   |                             |                  |                         |                             |  |
|------|--------------------------------------|-----------------------------------|-----------------------------|------------------|-------------------------|-----------------------------|--|
| Item | Test Equipment                       | Manufacturer                      | Model No.                   | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| 1    | 3m Semi- Anechoic<br>Chamber         | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001         | 08-23-2014              | 08-22-2017                  |  |
| 2    | BiConiLog Antenna                    | SCHWARZBECK<br>MESS-ELEKTRONIK    | VULB9163                    | CCIS0005         | 04-19-2014              | 04-19-2015                  |  |
| 3    | Double -ridged waveguide horn        | SCHWARZBECK<br>MESS-ELEKTRONIK    | BBHA9120D                   | CCIS0006         | 04-19-2014              | 04-19-2015                  |  |
| 4    | EMI Test Software                    | AUDIX                             | E3                          | N/A              | N/A                     | N/A                         |  |
| 5    | Amplifier<br>(10kHz-1.3GHz)          | HP 8447D                          |                             | CCIS0003         | 04-01-2014              | 03-31-2015                  |  |
| 6    | Amplifier<br>(1GHz-18GHz)            | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011         | 06-09-2014              | 06-05-2015                  |  |
| 7    | Pre-amplifier<br>(18-26GHz)          | Rohde & Schwarz                   | AFS33-18002<br>650-30-8P-44 | GTS218           | 04-01-2014              | 03-31-2015                  |  |
| 8    | Horn Antenna                         | ETS-LINDGREN                      | 3160                        | GTS217           | 03-30-2014              | 03-29-2015                  |  |
| 9    | Printer                              | HP                                | HP LaserJet P1007           | N/A              | N/A                     | N/A                         |  |
| 10   | Positioning Controller               | UC                                | UC3000                      | CCIS0015         | N/A                     | N/A                         |  |
| 11   | Spectrum analyzer<br>9k-30GHz        | Rohde & Schwarz                   | FSP                         | CCIS0023         | 04-19-2014              | 04-19-2015                  |  |
| 12   | EMI Test Receiver                    | Rohde & Schwarz                   | ESPI                        | CCIS0022         | 04-01-2014              | 03-31-2015                  |  |
| 13   | Loop antenna                         | Laplace instrument                | RF300                       | EMC0701          | 04-01-2014              | 03-31-2015                  |  |
| 14   | Universal radio communication tester | Rhode & Schwarz                   | CMU200                      | CCIS0069         | 05-29-2014              | 05-28-2015                  |  |
| 15   | Signal Analyzer                      | Rohde & Schwarz                   | FSIQ3                       | CCIS0088         | 04-19-2014              | 04-19-2015                  |  |

| Con  | Conducted Emission: |                    |                       |                  |                         |                             |  |
|------|---------------------|--------------------|-----------------------|------------------|-------------------------|-----------------------------|--|
| Item | Test Equipment      | Manufacturer       | Model No.             | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| 1    | Shielding Room      | ZhongShuo Electron | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | 11-10-2012              | 11-09-2015                  |  |
| 2    | EMI Test Receiver   | Rohde & Schwarz    | ESCI                  | CCIS0002         | 04-10-2014              | 04-09-2015                  |  |
| 3    | LISN                | CHASE              | MN2050D               | CCIS0074         | 04-10-2014              | 04-10-2015                  |  |
| 4    | Coaxial Cable       | CCIS               | N/A                   | CCIS0086         | 04-01-2014              | 03-31-2015                  |  |
| 5    | EMI Test Software   | AUDIX              | E3                    | N/A              | N/A                     | N/A                         |  |



### 6 Test results and Measurement Data

### 6.1 Antenna requirement:

# Standard requirement: FC0

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 4.9 dBi.





# 6.2 Conducted Emission

| Tost Poquiroment:     | FCC Part 15 C Section 15.207                                                                                                                                                                                                                                                             | 7                                                                                                                                                                |                                                                                                                       |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Requirement:     |                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                         |                                                                                                                       |  |  |  |
| Test Method:          | ANSI C63.4:2009                                                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                                                       |  |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                        |                                                                                                                                                                  |                                                                                                                       |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                       |  |  |  |
| Receiver setup:       | RBW=9kHz, VBW=30kHz                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                       |  |  |  |
| Limit:                | Frequency range (MHz)                                                                                                                                                                                                                                                                    | Limit (d                                                                                                                                                         |                                                                                                                       |  |  |  |
|                       |                                                                                                                                                                                                                                                                                          | Quasi-peak                                                                                                                                                       | Average                                                                                                               |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                 | 66 to 56*                                                                                                                                                        | 56 to 46*                                                                                                             |  |  |  |
|                       | 0.5-5<br>5-30                                                                                                                                                                                                                                                                            | 56<br>60                                                                                                                                                         | 46<br>50                                                                                                              |  |  |  |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                           |                                                                                                                                                                  | 50                                                                                                                    |  |  |  |
|                       | a line impedance stabilizes 50ohm/50uH coupling im 50ohm/50uH coupling im 2. The peripheral devices through a LISN that prowith 50ohm termination. test setup and photograp 3. Both sides of A.C. lin interference. In order to positions of equipment changed according to measurement. | pedance for the measure are also connected ovides a 500hm/50uH (Please refer to the hs).  The are checked for a find the maximum of and all of the interference. | to the main power coupling impedance block diagram of the maximum conducted emission, the relative ace cables must be |  |  |  |
| Test setup:           | LISN 40cm                                                                                                                                                                                                                                                                                |                                                                                                                                                                  | er — AC power                                                                                                         |  |  |  |
| Test Instruments:     | Refer to section 5.7 for details                                                                                                                                                                                                                                                         |                                                                                                                                                                  |                                                                                                                       |  |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                         | <b>S</b>                                                                                                                                                         |                                                                                                                       |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                       |  |  |  |

#### **Measurement Data**





#### Neutral:



Trace: 3

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 0073RF Condition

Job No. : SCOUT 5000 : SCOUT 5000 EUT Model Test Mode : BLE mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: A-bomb Remark

| Kemark                                    |       | 3227 NO       | 5000000        | 32/52/52/     |       | 1207 1500     |               |         |  |
|-------------------------------------------|-------|---------------|----------------|---------------|-------|---------------|---------------|---------|--|
|                                           | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |  |
| -                                         | MHz   | dBu∜          | dB             | ₫B            | dBu₹  | dBu∀          | <u>dB</u>     |         |  |
| 1                                         | 0.277 | 5.30          | 0.26           | 10.74         | 16.30 | 50.90         | -34.60        | Average |  |
| 2                                         | 0.299 | 6.30          | 0.26           | 10.74         | 17.30 | 50.28         | -32.98        | Average |  |
| 3                                         | 0.318 | 7.15          | 0.26           | 10.74         | 18.15 | 49.75         | -31.60        | Average |  |
| 4                                         | 0.337 | 6.78          | 0.26           | 10.73         | 17.77 | 49.27         | -31.50        | Average |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.358 | 6.54          | 0.25           | 10.73         | 17.52 | 48.78         | -31.26        | Average |  |
| 6                                         | 0.402 | 3.97          | 0.25           | 10.72         | 14.94 | 47.81         | -32.87        | Average |  |
| 7                                         | 0.406 | 26.46         | 0.25           | 10.72         | 37.43 | 57.73         | -20.30        | QP      |  |
| 8                                         | 0.527 | 23.18         | 0.27           | 10.76         | 34.21 | 56.00         | -21.79        | QP      |  |
| 9                                         | 0.658 | 24.19         | 0.20           | 10.77         | 35.16 | 56.00         | -20.84        | QP      |  |
| 10                                        | 0.767 | 23.95         | 0.19           | 10.80         | 34.94 | 56.00         | -21.06        | QP      |  |
| 11                                        | 0.813 | 24.53         | 0.20           | 10.81         | 35.54 | 56.00         | -20.46        | QP      |  |
| 12                                        | 0.862 | 23.39         | 0.20           | 10.83         | 34.42 | 56.00         | -21.58        | QP      |  |
|                                           |       |               |                |               |       |               |               |         |  |

Report No: CCIS15010007302







Trace: 1

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

Job No. : 0073RF
EUT : SCOUT 5000
Model : SCOUT 5000
Test Mode : BLE mode
Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: A-bomb

Remark

|     | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-----|-------|---------------|----------------|---------------|-------|---------------|---------------|---------|
| -   | MHz   | dBu∀          | <u>dB</u>      | ₫B            | dBu₹  | dBu∜          | <u>dB</u>     |         |
| 1   | 0.318 | 8.90          | 0.26           | 10.74         | 19.90 | 49.75         | -29.85        | Average |
| 2   | 0.337 | 8.43          | 0.27           | 10.73         | 19.43 |               |               | Average |
|     | 0.358 | 6.70          | 0.27           | 10.73         | 17.70 | 48.78         | -31.08        | Average |
| 4 5 | 0.410 | 29.09         | 0.28           | 10.72         | 40.09 | 57.64         | -17.55        | QP      |
| 5   | 0.582 | 24.70         | 0.26           | 10.77         | 35.73 | 56.00         | -20.27        | QP      |
| 6   | 0.658 | 24.38         | 0.23           | 10.77         | 35.38 | 56.00         | -20.62        | QP      |
| 7   | 0.759 | 4.45          | 0.23           | 10.80         | 15.48 | 46.00         | -30.52        | Average |
| 8   | 0.771 | 23.50         | 0.23           | 10.80         | 34.53 | 56.00         | -21.47        | QP      |
| 9   | 0.857 | 23.12         | 0.24           | 10.83         | 34.19 | 56.00         | -21.81        | QP      |
| 10  | 1.100 | 20.31         | 0.25           | 10.88         | 31.44 | 56.00         | -24.56        | QP      |
| 11  | 3.346 | 2.68          | 0.27           | 10.91         | 13.86 | 46.00         | -32.14        | Average |
| 12  | 3.720 | 2.08          | 0.28           | 10.90         | 13.26 | 46.00         | -32.74        | Average |

#### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



# **6.3 Conducted Output Power**

| Test Requirement: | FCC Part 15 C Section 15.247 (b)(3)                                          |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2009 and KDB558074                                                |  |  |  |  |  |
| Limit:            | 30dBm                                                                        |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane        |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                             |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                             |  |  |  |  |  |
| Test results:     | Passed                                                                       |  |  |  |  |  |
| Remark:           | Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2 |  |  |  |  |  |

#### Measurement Data

| Test CH | Maximum Conducted Output Power (dBm) | Limit(dBm) | Result |
|---------|--------------------------------------|------------|--------|
| Lowest  | -4.76                                |            |        |
| Middle  | -3.78                                | 30.00      | Pass   |
| Highest | -4.11                                |            |        |

Test plot as follows:







# 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(2)                                   |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2009 and KDB558074                                         |  |  |  |  |  |
| Limit:            | >500kHz                                                               |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |  |

#### Measurement Data

| Test CH | 6dB Emission Bandwidth (MHz) | Limit(kHz) | Result |
|---------|------------------------------|------------|--------|
| Lowest  | 0.762                        |            |        |
| Middle  | 0.762                        | >500       | Pass   |
| Highest | 0.762                        |            |        |

| Test CH | 99% Occupy Bandwidth (MHz) | Limit(kHz) | Result |  |
|---------|----------------------------|------------|--------|--|
| Lowest  | 1.042                      |            |        |  |
| Middle  | 1.042                      | N/A        | N/A    |  |
| Highest | 1.042                      |            |        |  |

Test plot as follows:









Highest channel









Highest channel



# 6.5 Power Spectral Density

| Test Requirement: | FCC Part 15 C Section 15.247 (e)                                      |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.4:2009 and KDB558074                                         |  |  |  |  |
| Limit:            | 8 dBm                                                                 |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |

#### Measurement Data

| Test CH | Power Spectral Density (dBm) | Limit(dBm) | Result |
|---------|------------------------------|------------|--------|
| Lowest  | -5.52                        |            |        |
| Middle  | -4.62                        | 8.00       | Pass   |
| Highest | -4.96                        |            |        |

Test plots as follow:









Highest channel





# 6.6 Band Edge

### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2009 and KDB558074                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                   | Spectrum Analyzer  E.U.T  Non-Conducted Table                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                   | Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |

Test plots as follow:





Highest channel



### 6.6.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Section 15.209 and 15.205 |                 |              |         |               |  |  |
|-----------------------|-----------------------------------------|-----------------|--------------|---------|---------------|--|--|
| Test Method:          | ANSI C63.4:200                          | 09              |              |         |               |  |  |
| Test Frequency Range: | 2.3GHz to 2.5G                          | Hz              |              |         |               |  |  |
| Test site:            | Measurement D                           | istance: 3m     |              |         |               |  |  |
| Receiver setup:       |                                         |                 |              |         |               |  |  |
| ·                     | Frequency                               | Detector        | RBW          | VBW     | Remark        |  |  |
|                       | Above 1GHz                              | Peak            | 1MHz         | 3MHz    | Peak Value    |  |  |
| 11. %                 |                                         | Peak            | 1MHz         | 10Hz    | Average Value |  |  |
| Limit:                | Freque                                  | ency            | Limit (dBuV/ | /m @3m) | Remark        |  |  |
|                       |                                         |                 |              |         |               |  |  |
|                       | Above 1                                 | GHZ             |              |         | Peak Value    |  |  |
| Test setup:           | Above 1GHz 54.00 Average Value          |                 |              |         |               |  |  |
| Test Instruments:     | Refer to section 5.7 for details        |                 |              |         |               |  |  |
| Test mode:            | Refer to section                        | 5.3 for details |              |         |               |  |  |
| Test results:         | Passed                                  |                 |              |         |               |  |  |





Test channel: Lowest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: SCOUT 5000 : SCOUT 5000 EUT Model Test mode : BLE Mode L Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: A-bomb

REMARK

|        | Freq                 |      | Antenna<br>Factor |                |                     |        |           |  |
|--------|----------------------|------|-------------------|----------------|---------------------|--------|-----------|--|
| -      | MHz                  | dBu∜ | dB/m              | <br><u>d</u> B | $\overline{dBuV/m}$ | dBuV/m | <u>dB</u> |  |
| 1<br>2 | 2390.000<br>2390.000 |      |                   | 0.00<br>0.00   |                     |        |           |  |





Test channel: Lowest

Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: SCOUT 5000 : SCOUT 5000 EUT Model Test mode : BLE Mode L Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Test Engineer: A-bomb Huni:55%

REMARK

| <br>Freq             |      | Antenna<br>Factor |    |    |        |        |    |  |
|----------------------|------|-------------------|----|----|--------|--------|----|--|
| MHz                  | dBu∀ | dB/m              | ₫B | ab | dBuV/m | dBuV/m | ₫B |  |
| 2390.000<br>2390.000 |      |                   |    |    |        |        |    |  |





Test channel: Highest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: SCOUT 5000 : SCOUT 5000 EUT Model Test mode : BLE Mode H Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: A-bomb

REMARK

| Freq                 |      | Antenna<br>Factor |           |           |        |        |           |  |
|----------------------|------|-------------------|-----------|-----------|--------|--------|-----------|--|
| MHz                  | dBu∜ |                   | <u>dB</u> | <u>dB</u> | dBuV/m | dBuV/m | <u>dB</u> |  |
| 2483.500<br>2483.500 |      |                   |           |           |        |        |           |  |





Test channel: Highest

Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : SCOUT 5000 : SCOUT 5000 Condition

EUT Model Test mode : BLE Mode H Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: A-bomb

REMARK

|   | Freq                 | Read<br>Level | Antenna<br>Factor | Cable<br>Loss | Preamp<br>Factor | Level               | Limit<br>Line | Over<br>Limit | Remark |   |
|---|----------------------|---------------|-------------------|---------------|------------------|---------------------|---------------|---------------|--------|---|
| - | MHz                  | dBu₹          | <u>dB</u> /m      | <u>d</u> B    | <u>dB</u>        | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u>     |        | - |
|   | 2483.500<br>2483.500 |               |                   |               |                  |                     |               |               |        |   |





# 6.7 Spurious Emission

#### 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2009 and KDB558074                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |

Test plot as follows:



#### Lowest channel



Date: 29.JAN.2015 21:20:06

#### 30MHz~25GHz

### Middle channel



Date: 5.FEB.2015 20:09:52

30MHz~25GHz



#### Highest channel



Date: 29.JAN.2015 21:21:32

30MHz~25GHz





### 6.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:          | ANSI C63.4:200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Test Frequency Range: | 9KHz to 25GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Receiver setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| ·                     | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RBW                                                                                                                                                                                                                                                                                                                    | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                       | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120KHz                                                                                                                                                                                                                                                                                                                 | 300KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                       | 710070 10112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                   | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average Value                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Limit:                | <sub> </sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                       | Frequency Limit (dBuV/m @3m) Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                       | 30MHz-88MHz 40.0 Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                       | 88MHz-216MHz 43.5 Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                       | 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                       | 900101112-113112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.0                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average Value                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.0                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak Value                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Test Procedure:       | the ground top of a rocamber at determine to the EUT of antenna, we tower.  3. The antenna the ground Both horizon make the make the make the make the make the make to find the make the make to find the make the limit spends the limit spends to determine the specified Bake to find the make the limit spends the limit spends the EUT have 10 dBake to make the limit spends the limit spends the EUT have 10 dBake the limit spends the linitial spends the limit spends the limit spends the limit spends | at a 3 meter stating table cove 1GHz. The position of was set 3 meter was more and the position of the position of the determinantal and verne asurement. The suspected end the anterest of the rota table maximum reasurement of the ceiver system of the position level of the position level of the position level of the position of the p | camber below 1.5 meters at The table of the highest of the highest of teters away of unted on the to raried from on the the maximum tical polarization tical polarization tical polarization mission, the Enna was tuned the was turned ding. In Maximum Home EUT in peresting could to ported. Other did be re-tested | w 1GHz and bove the gradiation. From the interpretation of a variance meter to the second of the sec | ele 0.8 meters above d was placed on the ground at a 3 meter ed 360 degrees to atterference-receiving liable-height antenna of four meters above of the field strength. It is antenna are set to a stranged to its worst its from 1 meter to 4 rees to 360 degrees detect Function and as 10 dB lower than and the peak values missions that did not be using peak, quasing reported in a data |  |  |  |  |











#### **Below 1GHz**

Horizontal:



Site : 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: SCOUT 5000 : SCOUT 5000 EUT Model : BLE mode Test mode Power Rating: AC120V/60Hz
Environment: Temp:25.5°C
Test Engineer: Carey
REMARK:

Huni:55%

| LMAKK |         |       |                   |      |            |                     |               |        |    |
|-------|---------|-------|-------------------|------|------------|---------------------|---------------|--------|----|
|       | Freq    |       | Antenna<br>Factor |      |            |                     | Limit<br>Line |        |    |
| _     | MHz     | —dBu∜ | — <u>d</u> B/m    |      | <u>d</u> B | $\overline{dBuV/m}$ | dBuV/m        |        |    |
| 1     | 97.456  | 41.72 | 13.00             | 0.94 | 29.54      | 26.12               | 43.50         | -17.38 | QP |
| 2     | 170.793 | 38.52 | 9.03              | 1.35 | 29.04      | 19.86               | 43.50         | -23.64 | QP |
| 3     | 180.649 | 38.99 | 9.76              | 1.36 | 28.97      | 21.14               | 43.50         | -22.36 | QP |
| 4     | 185.138 | 38.69 | 10.16             | 1.36 | 28.93      | 21.28               | 43.50         | -22.22 | QP |
| 5     | 482.216 | 41.54 | 16.13             | 2.35 | 28.92      | 31.10               | 46.00         | -14.90 | QP |
| 6     | 499.425 | 40.19 | 16.58             | 2.40 | 28.95      | 30.22               | 46.00         | -15.78 | QP |





#### Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : SCOUT 5000 : SCOUT 5000 Condition

EUT Model : Test mode : BLE mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey

REMARK

| T. HILLIAN  | 1.5     | Read  | Antenna | Cable | Preamp     |                     | Limit  | Over       |        |
|-------------|---------|-------|---------|-------|------------|---------------------|--------|------------|--------|
|             | Freq    |       | Factor  |       |            |                     |        |            | Remark |
| _           | MHz     | dBu₹  | dB/m    |       | <u>d</u> B | $\overline{dBuV/m}$ | dBuV/m | <u>d</u> B |        |
| 1           | 32.406  | 43.08 | 12.32   | 0.45  | 29.97      | 25.88               | 40.00  | -14.12     | QP     |
| 2           | 86.503  | 38.78 | 10.89   | 0.89  | 29.59      | 20.97               | 40.00  | -19.03     | QP     |
| 3           | 97.456  | 38.25 | 13.00   | 0.94  | 29.54      | 22.65               | 43.50  | -20.85     | QP     |
| 2<br>3<br>4 | 169.599 | 38.48 | 8.95    | 1.35  | 29.05      | 19.73               | 43.50  | -23.77     | QP     |
| 5           | 213.763 | 39.09 | 11.00   | 1.45  | 28.74      | 22.80               | 43.50  | -20.70     | QP     |
| 6           | 482.216 | 38.79 | 16.13   | 2.35  | 28.92      | 28.35               | 46.00  | -17.65     | QP     |



#### **Above 1GHz**

| Т                  | Test channel:           |                             |                       | Lowest                   |                   | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00            | 45.41                   | 31.53                       | 8.90                  | 40.24                    | 45.60             | 74.00                  | -28.40                | Vertical     |
| 4804.00            | 47.65                   | 31.53                       | 8.90                  | 40.24                    | 47.84             | 74.00                  | -26.16                | Horizontal   |

| Т                  | Test channel:           |                             |                       | Lowest                   |                   | vel:                   | Average               |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00            | 35.03                   | 31.53                       | 8.90                  | 40.24                    | 35.22             | 54.00                  | -18.78                | Vertical     |
| 4804.00            | 37.56                   | 31.53                       | 8.90                  | 40.24                    | 37.75             | 54.00                  | -16.25                | Horizontal   |

| Test channel:      |                         |                             | Middle                |                          | Le                | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00            | 48.74                   | 31.58                       | 8.98                  | 40.15                    | 49.15             | 74.00                  | -24.85                | Vertical     |
| 4884.00            | 46.79                   | 31.58                       | 8.98                  | 40.15                    | 47.20             | 74.00                  | -26.80                | Horizontal   |

| Т                  | Test channel:           |                             |                       | Middle                   |                   | vel:                   | Average               |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00            | 38.78                   | 31.58                       | 8.98                  | 40.15                    | 39.19             | 54.00                  | -14.81                | Vertical     |
| 4884.00            | 36.02                   | 31.58                       | 8.98                  | 40.15                    | 36.43             | 54.00                  | -17.57                | Horizontal   |

| Т                  | Test channel:           |                             |                       | Highest                  |                   | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4960.00            | 47.23                   | 31.69                       | 9.08                  | 40.03                    | 47.97             | 74.00                  | -26.03                | Vertical     |
| 4960.00            | 45.88                   | 31.69                       | 9.08                  | 40.03                    | 46.62             | 74.00                  | -27.38                | Horizontal   |

| Т                  | Test channel:           |                             |                       | Highest                  |                   | vel:                   | Average               |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4960.00            | 37.88                   | 31.69                       | 9.08                  | 40.03                    | 38.62             | 54.00                  | -15.38                | Vertical     |
| 4960.00            | 35.72                   | 31.69                       | 9.08                  | 40.03                    | 36.46             | 54.00                  | -17.54                | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366