LARSON—MATH 511—CLASSROOM WORKSHEET 12 SVD Image Compression!

Sage/CoCalc

- 1. (a) Start the Chrome browser.
 - (b) Go to http://cocalc.com
 - (c) Login (likely using your VCU email address).
 - (d) You should see an existing Project for our class. Click on that.
 - (e) Click "New", then "Sage Worksheet", then call it **c12**.
- 2. Open your CoCalc project Handouts folder, click on "SVD_image_compression.sage".
- 3. We will run the code here step-by-step in your c12 worksheet.

SVD Algorithm (general case, A has rank r)

Suppose A is any $m \times n$ matrix.

- Find $A^T A$ (its $n \times n$). This matrix has rank r, is symmetric and is positive semi-definite.
- Find the positive eigenvalues and corresponding (unit) eigenvectors λ , \hat{v} (So $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r > 0$). The remaining eigenvalues $\lambda_{r+1}, \ldots, \lambda_n$ are 0. The remaining (unit) eigenvectors $\hat{v}_{r+1}, \ldots, \hat{v}_n$ are a basis for the nullspace of A^TA . Vectors corresponding to different eigenvalues are orthogonal. For each eigenspace with dimension greater than 1, Gram-Schmidt can be used to find an orthogonal basis.
- Let $V = [\hat{v}_1 \dots \hat{v}_r \dots \hat{v}_n]$. V is orthogonal.
- Let $\sigma_i = \sqrt{\lambda_i}$ and let Σ be the $m \times n$ matrix with diagonal entries $\sigma_1, \ldots, \sigma_r$.
- Find AA^T (its $m \times m$). This matrix has rank r, is symmetric and is positive semi-definite..
- Check that $A\hat{v_i}$ is an eigenvector for AA^T with corresponding eigenvalue λ_i . This means that these are all the non-zero eigenvalues for AA^T . Let $u_i = \frac{1}{\sigma_i}A\hat{v_i}$ for $i = 1 \dots r$. Check that these $\hat{u_i}$ are unit.
- The remaining eigenvalues of AA^T , $\lambda_{r+1}, \ldots, \lambda_m$ are 0. The remaining (unit) eigenvectors $\hat{u}_{r+1}, \ldots, \hat{u}_m$ are a basis for the nullspace of AA^T .
- Let $U = [\hat{u}_1 \dots \hat{u}_r \dots \hat{u}_m]$. U is orthogonal.
- $AV = U\Sigma$ and $A = U\Sigma V^T$.

Remaining Claims

- 4. If A is a rank r matrix then $A^T A$ is rank r.
- 5. If A is a rank r matrix then AA^T is rank r.
- 6. Show: the \hat{u} 's in U are orthogonal.
- 7. Show: $AV = U\Sigma$ and $A = U\Sigma V^T$.

Low Rank Approximation

- 8. Why does $A = \sigma_1 \hat{u}_1 \hat{v}_1^T + \ldots + \sigma_r \hat{u}_r \hat{v}_r^T$?
- 9. For $k \leq r$ let $A_k = \sigma_1 \hat{u}_1 \hat{v}_1^T + \ldots + \sigma_k \hat{u}_k \hat{v}_k^T$.
- 10. Coming Soon! A_k is the "best" low rank approximation to A.

Getting your classwork recorded

When you are done, before you leave class...

- 1. Click the "Make pdf" (Adobe symbol) icon and make a pdf of this worksheet. (If CoCalc hangs, click the printer icon, then "Open", then print or make a pdf using your browser).
- 2. Send me an email with an informative header like "Math 511—c12 worksheet attached" (so that it will be properly recorded).
- 3. Remember to attach today's classroom worksheet!