Welcome to SENG 480B / CSC 485B / CSC 586B Self-Adaptive and Self-Managing Systems

Dr. Hausi A. Müller Professor Department of Computer Science University of Victoria

http://courses.seng.uvic.ca/courses/2013/summer/seng/480b http://courses.seng.uvic.ca/courses/2013/summer/csc/485b http://courses.seng.uvic.ca/courses/2013/summer/csc/586b

Announcements

- Fri, June 28
 - Midterm in class
 - Prof. Venkatesh Srinivasan will administer the midterm
 - I will grade it ☺
- Midterm format
 - Closed books, closed notes, no phones or gadgets
 - Mostly essay type questions
- Midterm topics
 - Self-adaptive systems
 - Autonomic systems
 - MAPE-K loop
 - ACRA hierarchy
 - SymptomsPolicies
 - Feedback systems
 - Positive/negative/hybrid feedback
 - PID controllers
 - ULS systems
 - ULS characteristics
 - Wicked problems

Assignment 3 Part I — Utility Functions

- In Part I you are to write a tutorial for software engineering or computer science undergraduate students on the role of utility functions and how they are used in autonomic computing policies and SLA agreements.
- To get started by reading the technical report by John Wilkes of HP Labs entitled "Utility functions, prices, and negotiation," 2008.
- The answers for this question should fit into approximately 3-4 typeset pages.

Assignment 3 Part II — PID Controllers

- In Part II you are to design and simulate a simple PID controller. Moreover, you are to document your experience in the form of a tutorial.
 - . Study the PID controllers as discussed in class.
 - Watch the videos posted in the resource section on PID controllers.
 - Define a simple resource control problem.
 - Design a simple PID controller for this resource control problem.
 - Simulate your PID controller using Matlab.
 - Write a tutorial or SE or CS undergrad students on how to build a simple PID controller using Matlab.
- The answers for this question should fit into approximately 3-4 typeset pages.

Utility functions, prices & negotiation

- Communicating business intent to selfmanaging systems
- What makes automation easier?
 - a single metric to optimize against
- · What do business care about?
 - monev!
- What is money a proxy for?
 - Utility → a measure of "goodness"

John Wilkes, HP Labs: Utility functions, prices, and

SLA as Contracts

- A Service Level Agreement (SLA) is a contract
 - between mutually suspicious parties
 - if you care about something, put it in the SLA!
 - agreement can be explicit or implicit
- Assumptions
 - machine readable, can be reasoned about
 - Usually involves two-parties: provider, client

John Wilkes, HP Labs: Utility functions, prices, and

Outcome-based Pricing A better way Replace all the SLA guarantee terms by a single price function Specifies how much the service provider is paid for each possible outcome Omit all details of how the outcomes are achieved

