Fonctions Numériques Limites de fonctions MPSI 2

1 Dfinitions

Définition 1.0.1

Soit $f \in \mathcal{F}(I, \mathbb{R})$

Soit $x_0 \in \mathbb{R}$, tel que $x_0 \in I$ ou x_0 est une extrmit de I. Soit $l \in \mathbb{R}$

• f(x) tend vers l quand x tend vers x_0 :

$$\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Définition 1.0.2

Soit $f \in \mathcal{F}(I, \mathbb{R})$

Soit $x_0 \in \mathbb{R}$, tel que $x_0 \in I$ ou x_0 est une extrmit de I.

• f(x) tend vers $+\infty$ quand x tend vers x_0 :

$$\forall K \in \mathbb{R}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow K < f(x)$$

• f(x) tend vers $-\infty$ quand x tend vers x_0 :

$$\forall K \in \mathbb{R}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow f(x) < K$$

Propriété 1.0.1

Si $x_0 \in I$, alors la seule limite ventuelle de f(x) en x_0 est $f(x_0)$

On suppose qu'il existe l dans \mathbb{R} , tel que $f(x) \underset{x \to x_0}{\longrightarrow} l$

HA
$$l \neq f(x_0)$$

① $l \in \mathbb{R}$

Alors $\forall \varepsilon \in \mathbb{R}^{+*}$, $\exists \alpha \in \mathbb{R}^{+*}$, $\forall x \in I$, $|x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$ Supposons $l > f(x_0)$

Posons $\varepsilon = \frac{l - f(x_0)}{2}$

Alors $f(x_0) \notin]\hat{l} - \varepsilon, l + \varepsilon[.$

Soit α vrifiant les conditions de limites.

Donc $\forall x \in I, |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$

En particulier, avec $x = x_0$, on a $f(x_0) \in]l - \varepsilon, l + varepsilon[$

On a donc une contradiction.

② $l = +\infty$

Alors $\forall K \in \mathbb{R}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow K < f(x)$

Soit K un rel strictement suprieur à $f(x_0)$

Soit α un rel vrifiant les condition de limites.

Donc $\forall x \in I, |x - x_0| < \alpha \Rightarrow f(x) > K$

En particulier, avec $x = x_0$, on a $f(x_0) > K$

On a donc une contradiction.

(3) $l=-\infty$

On procde de même.

Conclusion: $l = f(x_0)$

Définition 1.0.3

Soit $f \in \mathcal{F}(I, \mathbb{R})$

• f(x) tend vers $l \in \mathbb{R}$ lorsque x tend vers $+\infty$:

$$\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow |f(x) - l| < \varepsilon$$

• f(x) tend vers $+\infty$ lorsque x tend vers $+\infty$:

$$\forall K \in \mathbb{R}, \ \exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow f(x) > K$$

Propriété 1.0.2

Soit $f \in \mathcal{F}(I, \mathbb{R})$.

Soit $x_0 \in \mathbb{R}$ tel que x_0 soit un lment de I ou une extrmit de I.

Soit $(l, l') \in \overline{\mathbb{R}} \times \overline{\mathbb{R}}$.

Si f admet l et l' comme limite en x_0 , alors l = l'

Notations:
$$\lim_{\substack{x \to x_0 \\ x \in I}} f(x) = l \text{ et } f(x) \underset{x \in I}{\longrightarrow} l$$

Cas où $x_0 \in \mathbb{R}$ et $l \in \mathbb{R}$ et $l' \in \mathbb{R}$

- ①: $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha_1 \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x x_0| < \alpha_1 \Rightarrow |f(x) l)| < \varepsilon$
- ②: $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha_2 \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x x_0| < \alpha_2 \Rightarrow |f(x) l'| < \varepsilon$

Supposons $l \neq l'$, et l > l'

Posons
$$\varepsilon = \frac{l-l'}{2}$$

On a donc $]l - \varepsilon, l + \varepsilon[\cap]l' - \varepsilon, l' + \varepsilon[=\varnothing]$

Soit α_1 et α_2 vrifiant ① et ②.

Soit $\alpha = \min(\{\alpha_1, \alpha_2\})$

Alors $\forall x \in I$, $|x - x_0| < \alpha \Rightarrow (|f(x) - l| < \varepsilon \text{ et } |f(x) - l'| < \varepsilon)$

Autrement dit: $\forall x \in I, |x - x_0| < \alpha \Rightarrow f(x) \in]l - \varepsilon, l + \varepsilon[\cap]l' - \varepsilon, l' + \varepsilon[$

On a donc une contradiction.

Conclusion: l = l'

Remarques:

- Soit $l \in \mathbb{R}$. Alors $f(x) \underset{x \in I}{\longrightarrow} l \iff f(x) l \underset{x \in I}{\longrightarrow} 0$
- Soit $l \in \mathbb{R}^{+*}$. Alors $f(x) \underset{\substack{x \to x_0 \\ x \in I}}{\overset{x \to z}{\longrightarrow}} l \iff \frac{f(x)}{l} \underset{\substack{x \to x_0 \\ x \in I}}{\overset{x \to z}{\longrightarrow}} 1$ Soit $x_0 \in I$. Alors $f(x) \underset{\substack{x \to x_0 \\ x \in I}}{\overset{x \to z}{\longrightarrow}} l \iff f(x_0 + h) \underset{\substack{x_0 + h \in I \\ h \to 0}}{\overset{x \to z}{\longrightarrow}} l$

Propriété 1.0.3

On suppose que f(x) tend vers $l \in \overline{\mathbb{R}}$ quand x tend vers $x_0 \in I$