世界知的所有権機関

PCT

国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C12N 1/14, C12P 7/64, C11C 3/00,

(11) 国際公開番号

W096/33263

A23K 1/16, A23L 1/30

(43) 国際公開日

1996年10月24日(24.10.96)

(21) 国際出版番号 (22) 国際出版日

PCT/JP96/01049

A1

1996年4月17日(17.04.96)

(30) 優先権データ

特顧平7/115183 1995年4月17日(17.04.95) 特顯平7/236669 1995年9月14日(14.09.95) JP æ

特顏平7/263921

1995年10月12日(12.10.95)

æ

(71) 出版人(米国を除くすべての指定国について)

工業技術院長が代表する日本国(JAPAN AS REPRESENTED BY

DIRECTOR-GENERAL OF AGENCY OF INDUSTRIAL SCIENCE AND

TECHNOLOGY)[JP/JP]

〒100 東京都千代田区霞が開1丁目3番1号 Tokyo, (JP)

ナガセ生化学工業株式会社

(NAGASE BIOCHEMICALS, LTD.)(JP/JP)

〒550-91 大阪府大阪市西区新町1丁目1番17号 Osaka, (JP)

サントリー株式会社(SUNTORY LIMITED)[JP/JP]

〒530 大阪府大阪市北区堂島浜2丁目1番40号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出順人(米国についてのみ)

模地俊弘(YOKOCHI, Toshihiro)[JP/JP]

中原東鮮(NAKAHARA, Toro)[JP/JP]

東原孝規(HIGASHIHARA, Takanori)[JP/JP]

〒305 茨城県つくば市東1丁目1番3

工業技術院 生命工学工業技術研究所內 Ibaraki, (JP)

田中悟広(TANAKA, Satchiro)[JP/JP]

〒671-41 兵庫県宍栗郡一宮町公文400 Hyogo, (JP)

矢口敏昭(YAGUCHI, Toshiski)[JP/JP]

〒567 大阪府茨木市西中条町4番5号

サントリー第2茨木寮307号 Osaka, (JP)

(74) 代理人

弁理士 青山 葆,外(AOYAMA, Tamotsu et al.) 〒540 大阪府大阪市中央区域見1丁目3番7号

IMPビル 青山特許事務所 Osaka, (JP)

(81) 指定国

AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, KE, KG, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO特許(KE, LS, MW, SD, SZ, UG), ユーラシア特許(AM, AZ, BY, KG, KZ, MD, RU, TJ. TMD. 欧州特許(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPIOPF(BF, BJ, CF, CG, CI, CM, GA, GN, ML,

MR. NE. SN, TD, TG).

能付公開書類

請求の範囲の補正の期限前であり、補正書受領の際には再公開される。

(54) Title: NOVEL MICROORGANISMS CAPABLE OF PRODUCING HIGHLY UNSATURATED FATTY ACIDS AND PROCESS FOR PRODUCING HIGHLY UNSATURATED FATTY ACIDS BY USING THE MICROORGANISMS

(54) 発明の名称 高度不飽和脂肪酸生産能を有する新規微生物および該徴生物を利用する高度不飽和脂肪酸の製造方法

(57) Abstract

A microorganism which is Schizochytrium SR21 strain capable of producing (n-3) docosahexaenoic acid (DHA) and (n-6) docosapentaenoic acid (DPA), one which belongs to the same genus as that of this strain, and one which has substantially the same mycological properties as those of these microorganisms; and a process for producing (n-3) DHA and (n-6) DPA by using these microorganisms. They are excellent in reproduction properties and the capability of accumulating fats and have an extremely high (n-3) DHA and (n-6) DPA productivity. Thus, (n-3) DHA and/or (n-6) DPA, which are useful in the fields of foods and drugs, can be efficiently produced by using these microorganisms. Also, fats obtained by incubating these microorganisms are provided. When added to various feeds or foods, these fat compositions containing (n-3) DHA having various physiological activities together with (n-6) DPA it possible to stably and efficiently supply (n-3) DHA and/or (n-6) DPA to the subjects requiring the same. (57) 要約

本発明は、(n-3)系ドコサヘキサエン酸(DHA)および(n-6)系ドコサペンタエン酸(DPA)の生産能を有するシゾキトリウム属SR21株および該SR21株と同一の種に属するかもしくは実質的に同一の菌学的性質を有する微生物、ならびに、該微生物を利用する(n-3)系DHAおよび(n-6)系DPAの製造方法を提供する。本発明の微生物は、増殖性および油脂蓄積性に優れ、(n-3)系DHAおよび(n-6)系DPAの生産能が非常に高い。従って、本発明の微生物を用いて、食品および医薬品の分野で有用な(n-3)系DHAおよび/または(n-6)系DPAを効率的に製造することができる。

また本発明は、本発明の微生物を培養して得られる油脂を提供する。この油脂組成物は、種々の生理活性を有する(n-3)系DHAとともに(n-6)系DPAを含有するため、これを種々の飼料または食品に添加して、(n-3)系DHAおよび/または(n-6)系DPAを必要とする対象にこれら高度不飽和脂肪酸を安定的かつ効率的に供給することができる。

情報としての用途のみ PCTに基づいて公司される国際出版をパンフレット第一頁にPCT加盟国を同定するために使用されるコード アルバニア
アルバニア
アルメニア
オーストラリア
オーストラジャン
オーストグジャン
アポストバーへ
バルギー
アルズ・ファソ
ブルガリア
ズアンジャン
ブルガリア
ブラジャン
ブラジャ ポーランド ボルトガル シーマニア PPRRSSSSSSSSTTTTTTTÜÜÜV LLCKRSTUVCDGK DDEEFFGGGGGHIIIII/KKKKK AL AM AU ルーマニアロシア連邦 ABBBBBBBBBBCCCCCCCC ベナン ブラジル ベラルーシ カナゲ 中央プラリカ共和国 コンニ M L M N M R -ド・トバゴ MXX NE NO NO NO NO グータ イスタン 前が民主主義人民共和国 大戦民国 カザフスタン キューパ チェフコ共和国

明細音

高度不飽和脂肪酸生産能を有する新規微生物および 該微生物を利用する高度不飽和脂肪酸の製造方法

技術分野

本発明は、(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸を含む油脂を生産する能力を有するシゾキトリウム属SR21株および該SR21株と同一の種に属するかもしくは実質的に同一の菌学的性質を有する微生物、ならびに、該微生物を利用する(n-3)系ドコサヘキサエン酸および/または(n-6)系ドコサペンタエン酸の製造方法に関する。

さらに、本発明は、上記微生物が産生する油脂、該油脂を添加した種々の飼料および食品、ならびに、該油脂を種々の飼料および食品のための添加物として利用する方法に関する。

背景技術

動物体内において、ドコサヘキサエン酸(DHA)やドコサペンタエン酸 (DPA)などの高度不飽和脂肪酸は、種々の生理活性を有するものと考えられている。これら高度不飽和脂肪酸は、その不飽和結合の位置の相違により(n-3)系および(n-6)系に分けられることが知られている。動物体内では(n-3)系と(n-6)系の高度不飽和脂肪酸は別の代謝経路に属しており、動物は両者を必須脂肪酸として要求する。

(n-3)系の高度不飽和脂肪酸には、例えばエイコサペンタエン酸[20:5(n-3)]やドコサヘキサエン酸[22:6(n-3)]などが含まれ、これらは抗炎症活性、抗血栓活性などの生理活性を有することが知られてお

り、機能性食品や医薬品の素材として注目されている。

一方、(n-6)系の高度不飽和脂肪酸には、例えば τ -リノレン酸[18:3(n-6)]、ジホモ- τ -リノレン酸[20:3(n-6)]、アラキドン酸[20:4(n-6)]などが含まれ、これらは局所ホルモンと呼ばれるプロスタグランジン、ロイコトリエンなどのエイコサノイドの1群あるいは2群への中間代謝物質として注目されている。

動物体内においては、組織により変わるものの、(n-3)系はドコサヘキサエン酸が、そして(n-6)系はアラキドン酸が最終代謝産物となっている。例えば、ヒト赤血球のリン脂質の脂肪酸組成は、(n-3)系はエイコサペンタエン酸 0.70 %、ドコサペンタエン酸 2.09 %、ドコサヘキサエン酸 4.37 %であり、一方、(n-6) 系はリノール酸 12.67 %、ジホモ- γ -リノレン酸 0.62 %、アラキドン酸 16.93 %、ドコサペンタエン酸 0.86 %であり [Hardyら、Biochem. J.、vol. 274、p133(1991)]、(n-6) 系のドコサペンタエン酸は極めて少ない。

(n-3)系の最終代謝産物である(n-3)系ドコサヘキサエン酸(DHA)は、動物の脳や網膜に特異的に存在し、これら器官において何らかの機能を果たしていると考えられている。この(n-3)系DHAは、青魚に属する魚油に含まれ、特にイワシやマグロ由来の油には20%前後含まれている。近年、マグロの眼窩脂肪などのDHAを高濃度に含有する原料が発見され、また脂肪酸の高度精製技術が発達したことなどから、DHAの生理活性機能の解明や実用化の研究が活発に進められている。DHAの生理活性機能としてコレステロール低下作用、抗血液凝固作用、制癌作用、さらには脳代謝系に関連して記憶学習能力の向上、老人性痴呆症の予防、アルツハイマー疾病の治療薬、稚魚の成長必須脂肪酸などが明らかとなり、また健康食品やベビーミルク等の素材として使用されている。

一方、動物体内で(n-6)系ドコサペンタエン酸(DPA)の組成が大きくなる場合は、(n-3)系必須脂肪酸の欠乏に対する代償と考えられる。例えば、(n-6)系が極めて多いサフラワー油を含む食餌を与え続けた3世代目のラットの視神経脈絡膜糞の脂肪酸組成は、(n-3)系DHAが1/3に減少するが、その一方で、(n-6)系DPAが4倍になった[Homayo unら, J. Neurochem., vol. 51, p. 45 (1988)]。さらに、ビタミンA欠乏症ラットの肝臓ミクロソームにおいて(n-6)系DPA組成が正常値の0.9%から10.5%へ急増すること[Hammら, Biochem.J., vol. 245, p907(1987)]、および、(n-3)系の少ないパーム油を与えたラットにおいて(n-3)系DHAが減少し、(n-6)系DPAが増加すること[Rebhungら, Biosci. Biotech. Biochem., vol. 58, p314 (1994)]などが報告されている。

このように、動物の脳や網膜において何らかの機能を果たしていると考えられる(n-3) 系DHAの代債として(n-6) 系DPAが生体内で作られることは、(n-6) 系DPAが何らかの生理的役割を有していることを示唆し、また、アラキドン酸のアンタゴニストとしても期待できる。

さらに、現在知られている(n-6)系DPAの利用法としては、精神安定剤を脳へ運びやすくする基剤として使用すること(特開昭61-204136号)、ならびに、(n-6)系の炭素数22の不飽和脂肪酸が正常値よりも減少している疾患、例えば、ウイルス、特にワート(wart)ウイルスによる感染;白血病、乳癌および他の種の癌;月経前症候群および良性胸部疾患;高血圧、高脂血症および肥満症、ドライ・アイ(dry eye)症候群;強皮症、リューマチ性関節炎、クローン病、潰瘍性太腸炎および他の形の自己免疫および炎症性疾患;不妊症;糖尿病;および精神分裂病およびアルコール中毒(過度および禁酒の両方の影響を含む)を含む精神病的疾患などの治療に(n-6)系DPAを(n-6)系ドコサテトラエン酸と組み合せて

使用すること(特開昭60-38324号)が挙げられる。

この(n-6)系DPAは、一般的に供給される油脂の中には全く存在せず、魚油の中に(n-3)系DPAとともにわずかに含まれているにすぎない。魚油から(n-6)系DPAを分離濃縮する方法が特許出願されているが[特開平1-180849]、魚油中の(n-6)系DPAの含量が1%程度と微量であり、アラキドン酸、エイコサペンタエン酸、ドコサヘキサエン酸などの構造の類似した高度不飽和脂肪酸を多く含み、さらに(n-3)系DPAが(n-6)系DPAより数倍高い含量で含まれるため、多段のクロマト処理が必要であるなど効率の良い分離・濃縮が困難である。

以上のように、魚油には注目すべき生理機能を有する(n-3)系DHA および(n-6)系DPAが存在するが、(n-3)系DHAおよび(n-6)系DPAを多量に含んでいる油脂は未だ知られていない。さらに、魚油の場合、魚類の回遊性等から安定な供給源となりにくいことや、魚油特有の異臭があるなどの欠点がある。また、魚油にはアラキドン酸(AA)やエイコサペンタエン酸(EPA)などの高度不飽和脂肪酸も含まれるため、酸化され易く、安定した品質の油脂を得ることが困難である。さらに、高純度の(n-3)系DHAまたは(n-6)系DPAを得ようとする場合、その分離精製が困難である。特に、乳児用ミルクに添加する場合、エイコサペンタエン酸の含有割合が低いものが望ましいが、供給源が魚油の場合にはエイコサペンタエン酸のみを効率的に除去することは極めて困難である。

魚油以外の(n-3)系ドコサヘキサエン酸の供給源として、(n-3)系ドコサヘキサエン酸生産能を有する微生物の培養菌体中に蓄積した油脂が知られている。(n-3)系ドコサヘキサエン酸生産能を有する微生物としては、深海から分離された細菌ビブリオ・マリナス($Vibrio\ marinus$)(ATCC 15381)や深海魚の腸内から分離されたビブリオ属細菌、微細薬

類であるシクロテラ・クリプティカ(Cyclotella cryptica)やクリプテコディニウム・コーニー(Crypthecodinium cohnii)(特表平5-503425)、鞭毛菌類であるスラウストキトリウム・アウレウム(Thraustochytri um aureum)(ATCC 34304)[Kendrick, Lipids, vol. 27, pl5 (1992)]やジャポノキトリウム・エスピー(Japonochytrium sp.)(ATCC 28207)(特開平1-199588)などが知られている。しかし、これらの徴生物を用いる方法によると、培地1L(リットル)当たりのドコサヘキサエン酸の生産量は、数10mg~500mg程度と極めて低い水準に止どまっている。

一方、微細藻類の一部には、ドコサペンタエン酸を含む脂質を生産するものが存在するが、これはいずれも(n-3)系のドコサペンタエン酸である。また、鞭毛菌類のスラウストキトリウム・アウレウム $(ATCC\ 34\ 304)$ やジャポノキトリウム・エスピー $(ATCC\ 28207)$ などにもドコサペンタエン酸が含まれることが知られているが、これらも(n-3)系であると報告されている。即ち、これら微生物によって生産された油脂中に(n-6)系ドコサペンタエン酸が十分量で存在することは知られていない。

発明の開示

本発明者らは、上記のような(n-3)系ドコサヘキサエン酸(DHA)および/または(n-6)系ドコサペンタエン酸(DPA)の含有量が高く、かつエイコサペンタエン酸(EPA)の含有量が低い油脂を高生産する微生物を広く海洋性微生物に求めた。

この結果、ある種の海洋性微生物(シゾキトリウム属に属する新種)が、 (n-3)系DHAを高含有するだけでなく、(n-6)系DPAをも含有し、 さらにEPAの含有量の低い油脂を高生産することを見い出し、本発明を

完成するに至った。

即ち、本発明は、(n-3)系ドコサヘキサエン酸(DHA)および(n-6) 系ドコサペンタエン酸(DPA)を含む油脂を生産する能力を有するシゾキトリウム属SR21株および該SR21株と同一の種に属するかもしくは 実質的に同一の菌学的性質を有する微生物を提供するものである。

また、本発明は、上記微生物を培養し、その培養物から上記油脂を採取することを特徴とする、(n-3)系DHAおよび(n-6)系DPAを含む油脂の製造方法を提供する。

また、本発明は、上記油脂から(n-3)系DHAまたは(n-6)系DPAを単離する工程をさらに包含することを特徴とする、(n-3)系DHAまたは(n-6)系DPAの製造方法を提供する。

さらに、本発明者らは、上記油脂が種々の飼料および食品のための(n-3)系DHAおよび/または(n-6)系DPAの供給源として有用であることを見い出した。

即ち、本発明は、上記油脂を添加した種々の飼料および食品を提供する。 また、本発明は、上記油脂を種々の飼料および食品のための添加物とし て利用する方法を提供する。

図面の簡単な説明

図1は、シゾキトリウム属SR21株の遊走子の形態を示す光学顕微鏡 写真である。

図2は、シゾキトリウム属SR21株の遊走子の鞭毛の構造を示す透過 型電子顕微鏡写真である。

図3は、シゾキトリウム属SR21株の栄養細胞塊と原形質とのネット ワークを示す光学顕微鏡写真である。

図4は、シゾキトリウム属SR21株由来の(n-6)系ドコサペンタエ

ン酸のGC/MSスペクトルを測定した結果を示すチャートである。

図5は、シゾキトリウム属SR21株由来の中性油脂中のトリグリセリドを液体クロマトグラフィーにより分離した結果を示すチャートである。

図 6 は、シゾキトリウム属 SR21 株由来のトリグリセリド(分子種 1 6:0-16:0-22:6)をリパーゼ処理し、次いでトリメチルシリル化した後に GC/MS で測定した結果を示すチャートである。

発明を実施するための最良の形態

以下において、本発明を詳しく説明する。

なお、本明細書中に記載した「油脂」、「脂質」、および「オイル」なる用語は同じ意味で使用した。

本発明の海洋性微生物であるSR21株は、ミクロネシア連邦のヤップ 島沿岸の海水から分離したものである。当初、この菌株は、スラウストキ トリウム(Thraustochytrium)属の微生物であると考えられた。しかし、そ の菌学的性質を詳しく調べた結果、この菌株はシゾキトリウム(Schizochy trium)属の新種と認められる微生物であることがわかった。このシゾキト リウム属SR21株の菌学的性質は下記の通りである。

SR21株の菌学的性質は、栄養培地および海水中で培養することによって調べた。

まず、人工海水(トロピックマリン)1Lにグルコース2g、酵母エキス 0.2gおよびグルタミン酸ナトリウム0.5gを加えた栄養培地を小シャー レに入れ、同じ培地によるSR21株のフラスコ前培養液を1滴接種し、 倒立顕微鏡により細胞形態を追跡した。この場合、アメーバ状の不定形細 胞の放出が見られた。

次に、同様の追跡をフィルター滅菌した天然海水中で行った。この場合 にはアメーバ状の不定形細胞の放出は見られず、2分裂を繰り返した後の

栄養細胞塊のいくつかの細胞から、遊走子の放出が観察された。また、2 分裂をせずに1個の栄養細胞から直接遊走子へと分化したものも観察された。

遊走子放出が多く認められたサンプルにグルタルアルデヒドを10容量 %加え、光学顕微鏡により遊走子の観察を行った。

図1は、SR21株の遊走子の形態を示す光学顕微鏡写真であり、2本の長さの異なる鞭毛を示している。

さらに酢酸ウランを用いたネガティブ染色法により、鞭毛の電子顕微鏡 観察を行った。図2は、SR21株の遊走子の鞭毛の構造を示す透過型電 子顕微鏡写真であり、鞭毛のマスチゴネマの基部、軸、頂毛からなる三部 構造を示している。

また、上記2通りの倒立顕微鏡による細胞形態観察において、栄養細胞が2分裂を繰り返し、細胞塊および原形質のネットワークを形成するものが見られた。図3は、SR21株の栄養細胞塊と原形質とのネットワークを示す光学顕微鏡写真である。

SR21株が寒天平板培地上で形成するコロニーは、酵母のコロニーと同様の滑らかな黄土色を呈する。また、このSR21株を液体培地で増殖させると、その初期に2本の長さの異なる鞭毛を持つ遊走子が観察され(図1)、2本の鞭毛のうちの長鞭毛にある毛状構造(マスチゴネマ)が基部、軸、頂毛の三部構造をとる(図2)。これらのことから、SR21株は、クロミスタ界(Kingdom Chromista)、不等毛門(Phylum Heterokonta)に属する。さらに原形質のネットワーク形成性、ゴルジ体由来の鱗片から、SR21株は、ラビリンチュラ網(Class Labyrinthulea)ラビリンチュラ目(Order Labyrinthulida)に属する。そして、栄養細胞が球形または精円形であること、および原形質のネットワーク中の滑走運動がないことから、S

R21株がスラウストキトリウム科(Family Thraustochytriidae)に属することは明らかである。

さらに、SR21株の栄養細胞は2分裂を繰り返し、8~32個の栄養細胞塊を形成する。その後、いくつかの細胞からアメーバ状の不定形細胞が放出され、細胞塊から徐々に離れ、1~2時間後に球形細胞になる。この球形細胞はその後遊走子嚢として8ないし16個の遊走子へ分化する。その際、遊走子嚢の膜は観察されない。さらに、2分裂をせずに1個の栄養細胞から直接遊走子嚢へ分化したり、2分裂をして栄養細胞塊となった後に不定形細胞を経ないで遊走子へ分化する細胞もあり、複雑な生活環を有する。

スラウストキトリウム科は、ポーター[D. Porter, "Handbook of Protoc tista", Jones and Bartlett Publishers (1990)]によれば7属30種よりなる。その後、コラロキトリウム(Corallochytrium)属[Raghukumar, S., Botanica Marina, 30:83 (1987)]が加えられ、モス[Moss. S. T., "The B iology of Free-living Heterotrophic Tagellates", Oxford University Press (1991)]によれば8属33種とされる。

これらスラウストキトリウム科 8 属の特徴は次の通りである。ラビリンチュロイデス(Labyrinthuloides)属の栄養細胞は球状であるが、原形質ネットワーク上を不規則に滑走する。アプラノキトリウム(Aplanochytrium)属は不動胞子、即ち鞭毛を持たない胞子によって増殖する。アルソーニア(Althornia)属は原形質ネットワークを形成せず、浮遊性である。ジャポノキトリウム(Japonochytrium)属は細胞外に胞嚢(apophysis)を生じる。ウルケニア(Ulkenia)属は遊走子嚢からアメーバ状の不定形細胞が放出された後にそれが遊走子へ分化する。スラウストキトリウム(Thraustochytrium)属は1個の遊走子へ分化する。スラウストキトリウム(Thraustochytrium)属は1個の遊走子の1個の栄養細胞となり、それが1個の遊走子嚢を

形成する。シゾキトリウム(Schizochytrium)属は1個の遊走子が着生した後に2分裂を行い、複数個の栄養細胞塊を形成し、それぞれが遊走子嚢となる。コラロキトリウム(Corallochytrium)属はコウラナメクジ状の胞子を形成し、鞭毛を持った遊走子を形成しない。

尚、上記8属のうちウルケニア属については、ゲルトナー[Gaertner, A... Veroff. Inst. Meeresforsch. Bremerh. 16:139 (1977)]は、遊走子嚢から裸の原形質塊(アメーバ状の不定形細胞)が放出された後に遊走子へ分化する形質を属の分類基準に用い、それまでスラウストキトリウム属に分類されていたスラウストキトリウム・ヴィサージェンス(Thraustochytrium visurgense)[Ulken, A., Veroff. Inst. Meeresforsch. Bremerh. 9:289 (1965)]およびスラウストキトリウム・アモエボイダム(Thraustochytrium a moeboidum)[Bahnweg, 0. およびSparrow, F. K... Jr. Am. J. Bot. 61:754 (1974)]の2種をウルケニア属に移し、それらにラグクーマーによる新種ウルケニア・ミヌータ(Ulkenia minuta)[Raghukumar, S... Veroff. Inst. Meeresforsch. Bremerh. 16:158 (1977)]とさらに3種の新種を併せてウルケニア属6種として新属ウルケニア属を提唱した。

しかし、それ以後にウルケニア属の新しい種について記載した論文はみられない。カーリング[Karring, J. S., "Predominantly Holocarpic and E ucarpic Simple Biflagellate Phycomycetes", J. Cramer (1981)]は、ウルケニア属が独立した属として成立するかどうかについては疑問としており、暫定的なものとして掲げた。ただし、ボーターおよびモスの文献には前述の記載がされている。

SR21株はアメーバ状の不定形細胞を形成するので、その形質を重視するとウルケニア属に属するとも考えられる。しかし、ラグクーマーはスラウストキトリウム・ストリアタム(Thraustoc

hytrium striatum)が、栄養培地ではバクテリアを捕食するアメーバ状の不定形細胞を形成することを報告している[Raghukumar, S., Marine Biology, 113:165 (1992)]。さらに、ラグクーマーは、シゾキトリウム属の新種としたシゾキトリウム・マングローヴァイ(Schizochytrium mangrovei)は栄養培地ではアメーバ状不定形細胞を形成するが、海水に松花粉のみを添加した栄養の希薄な培地で培養した場合はアメーバ状不定形細胞を形成しないことを示した[Raghukumar, S., Trans, Br. Mycol, Soc., 80:627 (1988)]。

そこでラグクーマーは、アメーバ状の不定形細胞を形成するという形質が培地組成や培養条件によって影響を受けることから、基準となる培地を使ってこの形質を調査する必要があるとした。その基準培地としては、従来から伝統的によく用いられており、また、これまでの属や種の原記載の中で形態形質を観察する際に用いられることの多かった前述の海水/松花粉培地を挙げている。ウルケニア属に分類されている6種はすべて、この海水/松花粉培地中でアメーバ状不定形細胞を形成することが知られている。一方、スラウストキトリウム・ストリアタムとシゾキトリウム・マングローヴァイは、栄養培地では前述のようにアメーバ状不定形細胞を形成するが、海水/松花粉培地ではアメーバ状不定形細胞を形成しないことから、ウルケニア属に分類されていない。以上に基づくと、SR21株は栄養培地ではアメーバ状不定形細胞を形成するが、海水のみの培地ではこれが観察されなかったので、ウルケニア属に分類するのは適当ではないと思われる。

一方、1個の遊走子が着生した後の栄養細胞が2分裂を繰り返し、複数個の栄養細胞塊を形成し、それぞれが遊走子嚢となる形質は、培地組成によらず安定であり、SR21株の生活環の中で常に観察される形質である。

この形質およびその他のSR21株で観察される性質は、ゴールドシュタインら[Goldstein, S. およびBelsky, M., Am. J. Bot., 51:72 (1964)]およびブーツら[Booth, T. およびMiller, C. E., Can. J. Bot., 47:2051 (1969)]により報告されているシゾキトリウム属の記載に矛盾することがない。よって、SR21株はシゾキトリウム属に分類するのが妥当であると判断される。

現在、シゾキトリウム属微生物としては、次の4種が文献に記載されている。

シゾキトリウム・アグレガタム(Schizochytrium aggregatum)は、その 栄養細胞が、連続する分裂によって多数の細胞が互いに接着した塊を形成 する。その細胞塊のうち、3~4個またはそれ以上の細胞が遊走子嚢へ分 化する。また、1個の遊走子嚢は16~64個の遊走子を形成する。さら に、2個の細胞からは遊走子放出は見られないと記載されている[Goldste in, S. およびBelsky, N. . Am. J. Bot. . 51:72 (1964)、Booth. T. およびNill er, C. B. . Can. J. Bot. . 47:2051 (1969)]。

シゾキトリウム・ミヌータム(Schizochytrium minutum)は、シゾキトリウム・アグレガタムと同様に栄養細胞の分裂の結果、4~8個または数百の細胞塊を形成し、各遊走子嚢から2個の遊走子を放出する。遊走子は豆型であり、2本の鞭毛の長さは8.5 μmと3.0 μm程度である[Gaertner. A., Veroff. Inst. Neerestorsch. Bremer., 19:61 (1981)]。

また、シゾキトリウム・オクトスポラム(Schizochytrium octosporum) は、1個の遊走子嚢から8個の遊走子が放出される点でシゾキトリウム・ ミヌータムと異なっている[Raghukumar, S., Trans. Br. Mycol. Soc. . 90:2 73 (1988)]。

さらに、1987年にラグクーマーがゴア(インド)のマングローブの腐朽葉

より分離したスラウストキトリウム科の微生物は、栄養細胞が連続する分裂によって細胞塊を形成することからシゾキトリウム属に分類された。しかし、それまでに記載されていた上記3種の遊走子はいずれも遊走子嚢という袋の中で形成されるのに対して、この微生物では栄養細胞の連続的な2分裂により、4、6、8または12個の細胞となり、それぞれの細胞が直接遊走子となる過程をとり、遊走子嚢の形態をとらなかった。ラグクーマーはこの特徴に注目し、新種シゾキトリウム・マングローヴァイ(Schiz ochytrium mangrovei)を設けた[Raghukumar, S., Trans. Br. Mycol. Soc., 90:627 (1988)]。

ラグクーマーは同じ文献において、それまで知られていたシゾキトリウム属の検索表を提案した(表1)。

表1. シゾキトリウム属の4種の検索表(ラグクーマーによる)

1. 着生した遊走子は繰り返し行われる2分割	낁	
によって細胞塊を形成し、それぞれの細胞	包	
は遊走子嚢に分化する・・・	• • • •	2
1. 着生した遊走子は繰り返し行われる2分	깆	
によって細胞塊を形成し、それぞれの細胞	包	
は遊走子に分化する・・・	• • • •	S. mangrovei
2. 遊走子嚢の直径は15~25μmで遊	走	
子鬟は16~64個の遊走子を形成す	る・・・	S. aggregatum
2. 遊走子嚢の直径は14μm以下で遊走	子	
嚢は2または8個の遊走子を形成する	• • • •	3
3. 遊走子嚢は8個の遊走子を形成する		S. octosporum
3. 遊走子嚢は2個の遊走子を形成する	• • • •	S. minutum

表1に示した検索表および既知の4種を記載した原報と、SR21株の 菌学的性質を比較してみる。まず、シゾキトリウム属SR21株は、分裂 した栄養細胞が遊走子嚢の形態をとらずに、ひとつひとつの遊走子になる シゾキトリウム・マングローヴァイとは異なる。また、遊走子嚢の径が1 4μ回以下であって、各遊走子嚢から2個の遊走子が形成される場合は、 シゾキトリウム・ミヌータムに、同じく8個の遊走子が形成される場合は、 シゾキトリウム・オクトスポラムにそれぞれ帰属されるが、SR21株は 8ないし16個の遊走子へ分化することからこれらのどちらとも異なる。

さらに、遊走子嚢の径が15~25μmであって遊走子嚢から16ないし64個の遊走子(ただし、記載のある原報には多くのという表現のみ)が形成される場合は、シゾキトリウム・アグレガタムとされるが、この種においてはアメーバ状の不定形細胞は観察されていないため、SR21株はこれとも異なる。さらにSR21株では、2分裂をしない栄養細胞または不定形細胞を経ないで遊走子へ分化する細胞も見られる。以上のことから、SR21株はシゾキトリウム属の既存の4種には該当せず、シゾキトリウム属の新種であると認められた。

尚、このシゾキトリウム属SR21株は、工業技術院生命工学工業技術研究所に「海生菌SR21菌株」の名称で平成7年3月6日付けで寄託され、受託番号FERM BP-5034を取得している。さらに、財団法人発酵研究所に平成7年3月17日付けで寄託され、受入番号IFO 32693を取得している。

本発明のDHAおよびDPA含有油脂の製造方法に用いる微生物は、前記FERM BP-5034またはIFO 32693に限らず、上述したシゾキトリウム属SR21株の菌学的性質に照らして該SR21株と同一の種に属するかもしくは実質的に同一の菌学的性質を有すると認められる菌株であればいずれの菌株も使用することができる。

また、ここで用いられる微生物には、野性株、変異株あるいは組換え型の微生物が含まれる。本発明の特徴の一つは、微生物の特殊な脂質特性を有する油脂産生能力の認識と、それに伴うこのような高機能および高付加価値を有する油脂の安定かつ信頼できる経済的な供給源の維持の問題の解決である。従って、(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸を高水準で産生する野性株、ならびに、これら高度不飽和脂肪酸を高水準で産生するように設計された変異株および組換え微生物はす

べて本発明の範囲内にある。このような変異株または組換え微生物には、同じ基質を用いて培養したときに、元の野性株が産生する量と比べて、油脂中の(n-3)系ドコサヘキサエン酸および/または(n-6)系ドコサペンタエン酸の量が多くなるように、または総油脂量が多くなるように、あるいはその両方を意図して設計されたものが含まれる。

さらに、費用効果の優れた基質を効率よく用いて、匹敵する野性型と同量の(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸を含有する油脂を産生するように設計された微生物も含まれる。

本発明の(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸を含有する油脂を生産することができる微生物は、例えば、次のようなスクリーニング法に従って選択することができる。即ち、採取した海水を0.4μmの滅菌フィルターを用いて濾過および集菌し、このフィルターを90%天然海水、グルコース、酵母エキス、ペプトンよりなる寒天培地上に張り付け、20~30℃で培養する。この寒天平板培地のフィルター上に形成したコロニーを、上記と同じ組成の寒天培地上で培養し、得られた菌体をスパーテルで採取し、常法に従って菌体から脂肪酸を直接メチルエステル化し、その組成をガスクロマトグラフィーで分析し、(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸を産生している菌株を選択する。さらに、菌体内に油脂を乾燥菌体あたり10重量%以上、好ましくは20重量%以上の量で蓄積し、そして/または全脂肪酸中にエイコサペンタエン酸が1重量%未満、好ましくは0.5重量%未満である菌株を選択することができる。

本発明のシゾキトリウム属SR21株は、乾燥菌体あたり油脂を20重量%以上蓄積することができる。また、油脂中の総脂肪酸あたり(n-3)系ドコサヘキサエン酸を25~45重量%、および(n-6)系ドコサペン

タエン酸を $6\sim11$ 重量%含有し、エイコサペンタエン酸の含有割合は1重量%未満である。また、本発明の油脂は、(n-3)系脂肪酸中に(n-3)系ドコサヘキサエン酸を98重量%以上含有している。

従って、本発明の範囲内にあるシゾキトリウム属SR21株と同一の種 に属するかもしくは実質的に同一の菌学的性質を有する菌株は、乾燥菌体 あたり油脂を10重量%以上蓄積するのが好ましく、さらに好ましくは2 0重量%以上、最も好ましくは30重量%以上蓄積する。また、油脂中の 全脂肪酸あたり、(n-3)系ドコサヘキサエン酸は、15重量%以上であ るのが好ましく、さらに好ましくは20重量%以上、最も好ましくは35 重量%以上である。また、油脂中の全脂肪酸あたり、(n-6)系ドコサペ ンタエン酸は、4重量%以上であるのが好ましく、さらに好ましくは5重 量%以上、最も好ましくは6~11重量%である。さらに、油脂中のエイ コサペンタエン酸の含有割合は、2重量%未満であるのが好ましく、さら に好ましくは1重量光未満、最も好ましくは0.5重量光未満である。さ らに、本発明の油脂は、(n-3)系脂肪酸中に(n-3)系ドコサヘキサエン 酸を90重量%以上、好ましくは95重量%以上含有しており、また、(n -3)系ドコサヘキサエン酸と(n-6)系ドコサペンタエン酸を、(n-6)系 ドコサペンタエン酸1重量部に対して(n-3)系ドコサヘキサエン酸が3 ~6重量部の比率で含有している。

本発明の油脂は、前述の微生物を、天然海水または人工海水を用いて調製した適当な培地に接種し、常法に従って培養を行うことにより得ることができる。

培地に添加する炭素源としては、グルコース、フルクトース、キシロース、サッカロース、マルトース、可溶性デンプンなどの炭水化物の他、オレイン酸、大豆油などの油脂類や、糖密、グリセロール、マンニトール、

酢酸ナトリウムなどが例示できるが、これらに限られるものではない。これらの炭素源を、例えば、培地1リットル当たり20~120gの濃度で使用することができる。

窒素源としてはペプトン、酵母エキス、麦芽エキス、肉エキス、カザミノ酸、コーンスチープリカーなどの天然窒素源の他に、グルタミン酸ナトリウム、尿素などの有機窒素源、または酢酸アンモニウム、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、硫酸ナトリウムなどの無機 窒素源などが例示できるが、これらに限られるものではない。

この他、必要に応じてリン酸カリウム、リン酸二水素カリウムなどのリン酸塩、硫酸アンモニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸鉄、硫酸銅、塩化マグネシウム、塩化カルシウムなどの無機塩およびビタミン類も微量栄養源として使用できる。これらの培地成分は微生物の成育を害しない濃度であれば特に制限はない。

培地を調製した後、適当な酸または塩基を用いてpHを $4.0\sim6.5$ の範囲に調整し、オートクレーブにより殺菌する。菌の培養は、 $10\sim35$ で、好ましくは $17\sim30$ でにて通常 $3\sim7$ 日間、通気撹拌培養、振臺培養あるいは静置培養などによって行う。

また、(n-3)系ドコサヘキサエン酸および/または(n-6)系ドコサペンタエン酸の産生を促進するため、(n-3)系ドコサヘキサエン酸および/または(n-6)系ドコサペンタエン酸の前駆体を培地に添加することができる。前駆体としては、テトラデカン、ヘキサデカン、オクタデカンなどの炭化水素、テトラデカン酸、ヘキサデカン酸、オクタデカン酸、オレイン酸などの脂肪酸、またはその塩(例えば、ナトリウム塩またはカリウム塩)、脂肪酸エステル、または脂肪酸を構成成分として含む油脂(例えば、オリーブ油、大豆油、綿実油、ヤシ油)などを挙げることができるが、こ

れらに限られるものではない。

本発明の油脂を商品化が可能な収率で産生するための条件として、次のような条件が挙げられる。シゾキトリウム属SR21株の培養条件の検討により、該SR21株およびこれと同一の種に属するかもしくは実質的に同一の菌学的性質を有する菌株は、天然海水もしくは人工海水または2分の1濃度の天然海水もしくは人工海水を含む培地において、 $pH3.5\sim6.0$ 、望ましくは $pH4.0\sim4.5$ で良好に生育することがわかった。

培地に添加する炭素源および窒素源は、上記のような通常用いられるものであってよい。窒素源は有機窒素または無機窒素のいずれであってもよく、窒素濃度として一定になるようにすれば、菌体の生育量、脂質含量、DHA、DPAの蓄積量に影響を与えずに有機窒素と無機窒素の比率を変えることができる。これらを通常の微生物培養に用いる濃度で添加して良好な生育が得られる。リン酸塩を、通常の微生物培養に用いられる濃度で用いて良好な生育を達成することができる。

培地中の炭素源濃度とともに窒素源濃度も同じ割合で増加させることで、 高濃度培養が可能である。炭素源、窒素源の増加割合に応じて乾燥菌体量、 脂質量も増加し、DHA、DPAの生産量も増加する。

高濃度培養の際には、培養開始時に、炭素源、例えばグルコースの濃度のみを増加させておき、窒素源、例えばコーンスチープリカー/硫酸アンモニウムについては通常の量を添加し、グルコース消費量に応じて後から不足する量を添加する方法を用いることもできる。また、高濃度培養の際には、培養開始時に、炭素源、窒素源を低い濃度にしておき、グルコースの消費に応じて、後から、炭素源、窒素源を増加することもできる。

上記条件での培養は通常の撹拌式発酵槽を用いて実施できる。また、気 泡塔型培養装置も用いることもできる。通気撹拌培養の条件としては通常

の後生物の培養条件を用いることができる。通気撹拌培養においては、回 転数を上昇させ、溶存酸素量を増加させるとフラスコ培養に比べて、顕著 な生育速度および菌体収量の増加が観察される。

培養初期においては、特に溶存酸素量を高く維持することが生育速度の 増加に重要である。

このようにして、培養物中に(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸含有油脂を蓄積した菌体を、培地1Lあたり10g以上、好ましくは20g以上、更に好ましくは40g以上の高い濃度で生産させることができる。また、この油脂は、培養中期以降、良好に菌体内に蓄積され、乾燥菌体あたり30重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上とすることができる。

培養物から菌体を集める方法は、従来から用いられている遠心分離法や 濾過などの方法が使用できる。

集められた菌体は、例えば、ダイノミルや超音波などにより破砕した後、クロロホルム、ヘキサン、メタノール、エタノールなどによる溶媒抽出を行うことにより、(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸含有油脂を得ることができる。乾燥菌体 1 gあたり(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸含有油脂は約0.3 g以上が好ましく、0.6 g以上が更に好ましい。

本発明は、このようにしてシゾキトリウム属SR21菌株またはこれと同一の種に属するかもしくは実質的に同一の菌学的性質を有する菌株から得られる油脂に関するものであり、該油脂の脂質特性は、通常は次の通りである。中性脂質の割合が極めて高く、全脂質中の90重量%以上を占める。中性脂質中の脂肪酸組成は、パルミチン酸45~55重量%、(n-3)系ドコサペンタエン酸30~40重量%、(n-6)系ドコサペンタエン酸

 $5\sim10$ 重量%、(n-3)系エイコサペンタエン酸 $0\sim1$ 重量%、7ラキドン酸 $0\sim0.6$ 重量%、その他の脂肪酸 $10\sim20$ 重量%程度である。なおこの時、DPAとDHAの比率はDPA1重量部に対し、DHAが $3\sim6$ 重量部である。

また得られる中性脂質は、約85重量%以上、好ましくは90重量%以上がトリグリセリドであり、ジグリセリド、モノグリセリドはほとんど含まれていない。また、遊離ステロール、ステロールエステルが2~3%含まれている。また、上記脂肪酸組成を有する油脂中のトリグリセリドの分子種は、主に14:0-16:0-16:0、16:0-16:0-16:0、14:0-16:0-22:6、16:0-16:0-22:5、16:0-16:0-22:6、16:0-22:6、22:6である(脂肪酸残基の結合位置は限定されない)。上記の「14:0」なる記載は、14が脂肪酸の炭素数を、0が脂肪酸の持つ二重結合の数を表すものであり、例えば、「16:0」は炭素数16で二重結合を持たない脂肪酸を表す。

また、該トリグリセリドには、(n-3)系DHAがグリセリンの 2位のみに結合しているもの、または、(n-3)系DHAがグリセリンの 1 および 2位、または 1 および 3位に結合しているものが含まれている。

極性脂質としては、フォスファチジルコリンが大部分を占め、他にフォスファチジルエタノールアミン、フォスファチジルイノシトールなどを含む。

(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸含有油脂から(n-3)系ドコサヘキサエン酸または(n-6)系ドコサペンタエン酸を分離するには、混合脂肪酸あるいは脂肪酸エステルの状態で、常法により、例えば、尿素付加法、冷却分離法、カラムクロマトグラフィー法な

どにより濃縮採取することにより行う。また、培養菌体などから採取した油脂からの(n-3)系ドコサヘキサエン酸および/または(n-6)系ドコサペンタエン酸含有トリグリセリドの分離は、常法により、例えば冷却分離法、カラムクロマトグラフィー法などにより行う。本発明のシゾキトリウム属SR21株を用いた場合、不飽和脂肪酸としてアラキドン酸、EPAがほとんど含まれていないため、(n-3)系ドコサヘキサエン酸と(n-6)系ドコサペンタエン酸の濃縮採取が容易に行え、高濃度生産には好都合である。

本発明の油脂は、種々の飼料または食品などの製品に(n-3)系DHA および/または(n-6)系DPAの供給源として利用することができる。本発明の油脂を製品に利用するにあたっては、培養菌体から採取した油脂またはそれを精製して得られる(n-3)系DHAおよび/または(n-6)系DPAを使用することもできるが、例えば、該油脂を菌体培養によって製造する途中の培養液もしくはその殺菌した培養液、または培養終了時の培養液もしくはその殺菌した培養液、または培養という集菌した培養菌体もしくはその殺菌した培養液、またはそれぞれから集菌した培養菌体もしくはその乾燥物、または培養液もしくは菌体から該油脂を採取した後の残渣も使用することができる。

さらに本発明は、本発明の油脂を配合した動物用飼料に関する。本発明の動物用飼料としては、ドッグフードやキャットフードなどのペットフード、鶏などの家禽のための飼料、豚や牛などの家畜のための飼料、養魚用飼料などが挙げられる。(n-3)系DHAおよび(n-6)系DPAを含有する油脂を産生、蓄積した本発明の微生物の菌体または培養細胞は、油脂が菌体内に保護されていることによって酸化が防止され、また加熱殺菌にも安定であるため好ましい。また、微生物の培養菌体から(n-3)系DHAおよび(n-6)系DPAを含有する油脂を抽出した後の抽出残渣も本発明

の動物飼料に使用できる。この抽出残渣は、(n-3)系DHAや(n-6)系DPAの他に、蛋白質や灰分、炭水化物を含んでいるため好ましい。

さらに本発明は、本発明の油脂を産生、蓄積した培養菌体または培養液を含んでなる微小餌料生物用餌料に関する。従来、魚貝類や甲殻類の養殖において、種苗(稚仔魚)生産には、微小餌料生物(シオミズツボワムシ、ブラインシュリンプなどの動物プランクトン)が用いられており、稚仔魚の養殖には先ずこれらの微小生物を養殖する必要がある。これらの微小生物を培養する場合には、後にそれを餌料として摂取する稚仔魚の栄養要求性を考えて微小餌料生物に与える餌料が決められる。本発明の油脂を含有する培養菌体または培養液を微小餌料生物に与えることにより、(n-3)系DHAおよび(n-6)系DPAを含有し、稚仔魚の栄養要求性を満足できる微小餌料生物が得られる。

さらに本発明には、上記の微小餌料生物を含有する魚貝類用餌料も含まれる。

さらに本発明は、本発明の油脂を、(n-3)系DHAおよび/または(n-6)系DPAを強化した家禽卵の生産に利用すること、ならびに(n-3)系DHAおよび/または(n-6)系DPAを強化した卵黄油の製造に利用することに関する。本発明の(n-3)系DHAおよび/または(n-6)系DPAを強化した家禽卵は、上述の動物用飼料を採卵用家禽、特に鶏に与えて飼育することによって産生される。また、このような家禽卵、特に卵黄から常法に従って油脂を抽出することによって、本発明の(n-3)系DHAおよび/または(n-6)系DPAを強化した卵黄油が得られる。また、この卵黄油を乳児用調製乳、未熟児用調製乳、幼児用食品、妊産婦用食品に添加することも本発明に含まれる。

さらに本発明は、本発明の油脂を含有する乳児用調製乳、未熟児用調製

乳、幼児用食品、妊産婦用食品に関する。特に育児用粉乳に関しては、その成分をできるだけ人乳に近似させようとする試みが古くから行われており、人乳中の主要成分である蛋白質、脂肪、糖質などのそれぞれに関して人乳に類似化することが重要課題となっている。特に脂肪に関しては本来母乳に含まれている高度不飽和脂肪酸が、従来の育児用粉乳に欠乏していることが問題となっている。なお、母乳中の不飽和脂肪酸の組成については、種々の報告があり、例えば、「INFORM」[Vol. 6, No. 8, pp. 940-946(1995年8月)]にはアメリカ人、ヨーロッパ人およびアフリカ人の母乳中の高度不飽和脂肪酸組成が、「JJPEN」[Vol. 13, No. 9, pp. 765-772(1991)]には日本人の母乳の高度不飽和脂肪酸組成が記載されている。

最近ではアラキドン酸およびDHAは同じく人乳中に含まれており、乳児の発育に役立つとの報告がある[「Advances in Polyunsaturated Fatty Acid Research」, Elsevier Science Publishers, pp. 261-264. (1993)]。さらに、胎児の身長や脳の発育における重要性が報告されている[Proc. Natl. Acad. Sci. USA. 90. 1073-1077 (1993)、 Lancet. 344. 1319-1322 (1994)]。

そこで、人乳と調製粉乳の脂肪酸組成の大きな違いであるアラキドン酸およびDHAを調製粉乳に添加しようとする動きがある。このようにDHAを添加する目的で、魚油添加の調製粉乳が上市されてきているが、本来、母乳中には魚油に含まれるEPAはほとんど含まれていない。最近の研究によりEPAは未熟児の成育には不都合であることが明らかとなり[「Advances in Polyunsaturated Fatty Acid Research」, Elsevier Science Publishers、pp. 261-264. (1993)]、米国特許第5374657号には、EPAが少ないDHA含有細胞食用油とアラキドン酸含有細胞食用油を組み合わせた幼児用調製乳添加用の油脂が開示されている。しかし、従来知ら

れている調製乳や調製乳添加用油脂において、本来母乳に含まれている(n-3)系DHAおよび(n-6)系DPAを含有する油脂を使用することは全く知られていなかった。

本発明のシゾキトリウム属SR21株またはこれと同一の種に属するかもしくは実質的に同一の菌学的性質を有する菌株由来の油脂は、(n-6) 系DPA1重量部に対して(n-3)系DHAを3~6重量部含有しており、EPAをほとんど含有していないため、さらに85%以上がトリグリセリドであるため、母乳に類似した育児用調製乳を製造するのに適している。

さらに本発明は、本発明の油脂を配合した栄養補助食品、老人用食品、 健康食品などの食品に関する。本発明の食品は、(n-3)系DHAおよび /または(n-6)系DPAを補うことを目的とし、健康維持などに用いら れる。その形態は、固形または液状の食品または嗜好品のいずれであって もよい。油脂を含む食品として、例えば、肉、魚、ナッツ等の天然食品、 中華料理、ラーメン、スープ等の調理時に油脂を加える食品、天ぷら、フ ライ、油揚げ、チャーハン、ドーナッツ、かりん糖等の熱媒体として油脂 を用いた食品、バター、マーガリン、マヨネーズ、ドレッシング、チョコ レート、即席ラーメン、キャラメル、ビスケット、クッキー、ケーキ、ア イスクリーム等の油脂食品または加工時に油脂を加えた加工食品、おかき、 ハードビスケット、あんパン等の加工仕上げ時に油脂を噴霧または塗布し た食品等を挙げることができる。しかし、本発明の食品は油脂を含む食品 に限定されるわけではなく、例えば、パン、めん類、ごはん、菓子類(キャ ンデー、チューインガム、グミ、錠菓、和菓子)、豆腐およびその加工品 などの農産食品、清酒、薬用酒、みりん、食酢、醤油、味噌などの発酵食 品、ヨーグルト、ハム、ベーコン、ソーセージなどの畜産食品、かまぼこ、 揚げ天、はんぺんなどの水産食品、果汁飲料、清涼飲料、スポーツ飲料、

アルコール飲料、茶などの飲料等も挙げることができる。

本発明の食品は、所定量の本発明の油脂を、食品原料とともに配合し、一般の製造法により加工製造することができる。その配合量は剤形、食品の形態性状により異なり、特に限定されるものではないが、一般には食品全量に対して0.001~50重量%が好ましい。

さらに本発明は、本発明の油脂を配合した機能性食品(特定保健用食品を含む)に関する。本発明の機能性食品は、(n-3)系DHAおよび/または(n-6)系DPAの有する生理活性機能を発揮することを目的とし、機能低下した状態を健康な状態に戻し、維持するための、または機能低下を予防するための食品である。形態としては医薬製剤の形態であってもよいし、また、例えば蛋白質(蛋白質源としてはアミノ酸バランスのとれた栄養価の高い乳蛋白質、大豆蛋白質、卵アルブミン等の蛋白質が最も広く使用されるが、これらの分解物、卵白のオリゴペプチド、大豆加水分解物等の他、アミノ酸単体の混合物も使用される)、糖類、脂肪、微量元素、ビタミン類、乳化剤、香料等に本発明の油脂が配合された自然流動食、半消化態栄養食および成分栄養食や、ドリンク剤、経腸栄養剤等の加工形態を挙げることができるが、前記の飲食品の形態であってもよい。

本発明の機能性食品、栄養補助食品は、本発明の油脂を用いて、散剤、 顆粒剤、錠剤、カプセル剤、トローチ、内用液剤、懸濁剤、乳剤、シロッ プ剤、ドリンク剤、自然流動食、半消化態栄養食、成分栄養食、経腸栄養 剤等の形態を有する飲食品として製造することができる。この際、本発明 の油脂とともにいずれの栄養成分あるいは機能性成分を配合してもよい。 また、医師の指示に基づく栄養士の管理下に、病院給食の調理の際に任意 の食品に本発明の油脂を加え、その場で調整した食事を、(n-3)系DH Aおよび/または(n-6)系DPAが低下している患者に与えることもで

きる。

さらに本発明は、本発明の油脂を、医薬品単体の製造に利用することに関する。即ち、本発明の油脂を出発原料として、(n-3)系DHAもしくは(n-6)系DPAまたはこれらの誘導体を製造することに関する。(n-3)系DHAもしくは(n-6)系DPAまたはそれらの混合物は、遊離の形であっても、また薬剤として許容されうる塩、例えばナトリウム塩、カリウム塩、リチウム塩、または他のアルカリ金属塩、亜鉛塩、カルシウム塩、マグネシウム塩のような他の金属の塩の形態や、モノグリセライド、ジグリセライド、トリグリセライド、低級アルコールのエステル、リン脂質、糖脂質、アミド等の種々の形態であってもよい。ここで低級アルコールとは炭素数6以下の一価アルコールを指し、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、ヘキサノールなどを例示することができる。

さらに本発明は、本発明の油脂を含有する化粧品に関する。本発明の化粧品は、常法に従い本発明の油脂を、通常の化粧料として知られる種々の形態の基剤に配合して調製することができる。化粧料の形態の例としては、特に限定されないが、例えば、乳液、クリーム、化粧水、パック、分散液、洗浄料等の化粧品とすることができる。化粧料の基剤としては、化粧料の形態に応じた基剤、例えば、精製水、低級アルコール類、多価アルコール類、油脂類、界面活性剤、各種美容成分、紫外線吸収剤、増粘剤、色素、防腐剤、香料等を用いることができる。

さらに本発明は、本発明の油脂を含有する洗浄剤に関する。本発明の洗 浄剤としては、薬用、非薬用にかかわらず、身体を清浄に保つために一般 に用いられる石鹸、シャンプー、フェイシアルクリーム、リンスなどの他、 入浴剤なども含むものであり、また食器などの日常の家庭で用いる器具な

どの洗剤であってもよい。

実施例

以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれ ら実施例に限定されるものではない。

実施例1 シゾキトリウム属SR21株による油脂の生産(1)

フラスコに50%濃度の人工海水(トロピックマリン)1Lを入れ、次いで、表2に示した量の炭素源(グルコースまたはグリセロール)および窒素源(コーンスチープリカー;以下、CSLと略記することもある)を添加して培地を調製した。これに、シゾキトリウム属SR21株を接種して、26℃で5日間、振盪培養を行った。

得られた培養物 2 回る採取して遠心分離法で菌体を集めた。この菌体を洗浄し、オーブン中、110 で 5 時間乾燥することにより乾燥菌体を得た。この乾燥菌体の重量を測定して、培地 1 L 当たりの菌体量を求めた。この結果を表 2 に示す。

次いで、常法に従って、乾燥菌体から直接的な油脂の抽出および脂肪酸メチルエステルの調製を行った。即ち、乾燥菌体をねじ口試験管に入れ、これに10%塩酸メタノールおよびジクロロメタンを加え、60℃の温浴中で3時間加熱して反応させた。次いで、ヘキサンにて脂肪酸メチルエステル成分を抽出し、ガスクロマトグラフ分析により脂肪酸メチルエステル成分の脂肪酸組成を求めて、ドコサヘキサエン酸(DHA)の含有割合を求めた。また、前記の反応の際に既知量の内部標準物質を添加することによる内部標準法にて、ガスクロマトグラフ分析により検出された脂肪酸メチルエステル量から菌体中に含まれていた全脂肪酸量を、また、ドコサヘキサエン酸メチルエステル検出量からDHA生成量を求めた。このようにし

て、培地1L当たりの全脂肪酸量、乾燥菌体当たりの脂肪酸含有割合、全脂肪酸中のDHA含有割合、および培地1L当たりのDHA量を求めた。これらの結果を表2に示す。

なお、DHAは、ガスクロマトグラフ質量分析法により標準物質との比較を行って確認した。

表 2

実験	炭素源	炭素源	CSL	菌体量	全脂肪	脂肪酸	DHA	DHA
No.		添加量	添加量		酸量	含有	含有	2
						割合	割合	
		(g)	(g)	(g)	(g)	(重量%)	(重量%)	(g)
				*1)	*1)	*2)	*3)	*1)
101	グルコース	60	10	24. 2	14. 1	58. 0	26. 8	3. 77
102	グルコース	90	10	28. 0	13. 2	47. 0	25. 7	3. 38
103	グルコース	120	10	27.7	10. 5	37. 7	29. 0	3. 03
104	グルコース	60	20	26. 9	8. 2	30. 3	29. 7	2. 43
105	グルコース	90	20	35. 9	14. 1	39. 3	29. 7	4. 20
106	グリセロール	60	10	24. 2	12. 9	53. 2	26. 8	3. 45
107	グリセロール	90	10	21. 9	11. 9	54. 3	25. 5	3. 04
108	グリセロール	60	20	28. 3	11. 3	39. 9	28. 0	3. 16
109	グリセロール	90	20	35. 4	13. 9	39. 3	26. 5	3. 68
110	グリセロール	120	_20	35. 6	14. 6	41.0	28. 4	4. 15

^{*1)} 培地1 L 当たりの量

^{*2)} 乾燥菌体当たりの含有割合

^{*3)} 全脂肪酸中の含有割合

培地1L当たりの炭素原量が60~120gと高い場合であっても、良好な菌体増殖が行われ、21.9~35.9g/Lの菌体が得られた。また、培地1L当たりの脂肪酸量は8.2~14.6gであり、乾燥菌体当たり30.3~58.0重量%の高い含量でDHA含有脂肪酸が蓄積されていることが示された。さらに、全脂肪酸中のDHAの含量は、25.5~29.7重量%と高く、培地1L当たりのDHAの生産量が2.43~4.20gと高いことが示された。

実施例2 シゾキトリウム属SR21株による油脂の生産(2)

フラスコに、50%濃度の人工海水1L、炭素源としてグルコース60g、リン酸ーカリウム4.0g、酵母エキス1.0g、有機窒素源としてコーンスチープリカー1.0gを入れ、さらに無機窒素源として硝酸アンモニウムを表3に示した量で添加することにより培地を調製した。これにシゾキトリウム属SR21株を接種し、25℃で4日間、振盪培養を行った。

実施例1と同様の方法で培養後の培地1L当たりの菌体量、培地1L当たりの全脂肪酸量、乾燥菌体当たりの脂肪酸含有割合、全脂肪酸中のDHA含有割合、および培地1L当たりのDHA量を求めた。これらの結果を表3に示す。

表3

実験	窒素源	窒素源	菌体量	全脂肪	脂肪酸	DHA	DHA
No.		添加量		酸量	含有	含有	囊
					割合	割合	
		(g)	(g)	(g)	(重量%)(重量%)		(g)
	· · · · · · · · · · · · · · · · · · ·		*1)	*1)	*2)	*3)	*1)
201	硝酸アンモニウム	0. 6	14. 6	7. 6	51. 8	30. 7	2. 32
202	硝酸アンモニウム	1. 0	19. 2	7. 4	38. 8	30. 0	2. 24
203	酢酸アンモニウム	0. 7	17. 8	8. 1	45. 3	29. 1	2. 35
204	酢酸アンモニウム	1. 2	23. 0	9. 2	40. 1	32. 9	3. 03

- *1) 培地1 L 当たりの量
- *2) 乾燥菌体当たりの含有割合
- *3) 全脂肪酸中の含有割合

これらの結果から、SR21株は窒素源として無機窒素を使用しても良好に増殖できること、およびSR21株は高いDHA生産性を有することが示された。

実施例3 シゾキトリウム属SR21株による油脂の生産(3)

グルコース60g、ポリペプトン20g、酵母エキス10gおよび50% 濃度の人工海水1Lからなる培地(A)、またはグルコース90g、ポリペ プトン10g、コーンスチープリカー10gおよび50%濃度の人工海水1 Lからなる培地(B)を用いて、ジャーファーメンター(培養槽容量5L、 培地量3L)での培養を行った。培養は、培養温度25℃、通気量0.5vv

m、撹拌速度200rpmとして行った。

培養後、遠心分離法により菌体を集めて凍結乾燥し、重量法により培地 1 L当たりの菌体量を求めた。その結果を表 4 に示す。

次いで、この乾燥菌体にクロロホルム/メタノール(2:1、v/v)混合液を加え、ガラスビーズの存在下でホモジナイズすることにより、菌体の破砕と油脂の抽出を行った。抽出液をFolch法により洗浄した後、溶媒を留去して精製油脂を得、その重量を求めた。得られた油脂の一部について常法により脂肪酸メチルエステルを調製し、ガスクロマトグラフ法により油脂量および全油脂中のDHA含有割合を求めた。DHA生成量は、油脂生成量にDHA含有割合を乗じた値として求めた。これらの結果を表4に示す。

表 4

実験	培地	培養日数	菌体量	全油脂量	油脂	DHA	DHA
No.					含有割合	含有割合	量
		(日)	(g)	(g)	(重量%)	(重量%)	(g)
			*1)	*1)	*2)	*3)	*1)
301	(A)	7	35. 0	8. 7	24. 8	43. 7	3. 8
302	(B)	14	39. 6	21. 2	53. 5	34.0	7. 2

- *1) 培地1 L 当たりの量
- *2) 乾燥菌体当たりの含有割合
- *3) 全脂肪酸中の含有割合

また、このDHA含有油脂の脂肪酸組成をガスクロマトグラフ法により 分析した結果を以下の表5に示す。

表 5. 脂肪酸組成(重量%)

実験	14:0	15:0	16:0	17:0	18:0	20:4	20:5	22:5	22:6
No.						(AA)	(EPA)	(DPA)	(DHA)
301	1. 6	10. 1	25. 0	1. 8	1. 0	_	0. 4	11. 1	43. 7
302	2. 8	6. 7	44. 6	1. 6	1. 3		0. 4	_ 8. 5	34. 0

以上の結果から、シゾキトリウム属SR21株は、実用的な培養法である通気撹拌培養でも良好な増殖を示すとともに、DHA含量の高い油脂を効率よく蓄積することが示された。DHAの生産量は、最大で培地1し当たり7.2gに達し、その生産性はきわめて優れている。

また、表 5 から、高度不飽和脂肪酸としては、ドコサヘキサエン酸(D HA)が極めて高い濃度で含有され、さらにドコサペンタエン酸(DPA)も含有されているが、アラキドン酸(AA)およびエイコサペンタエン酸(E PA)をほとんど含まないことが示された。従って、それらの脂肪酸を10重量%前後含んでいる魚油と比べて、DHAの濃縮分離操作が容易であるということが示された。

実施例4

実施例 $1 \sim 3$ により得られた油脂に含まれるドコサヘキサエン酸(DHA)、エイコサペンタエン酸(EPA)などの(n-3)系脂肪酸それぞれの含有割合と、2(n-3)系脂肪酸に対するDHAの割合を表6に示す。

シゾキトリウム属SR21株より得られるDHA含有油脂は魚油に多く含まれるEPAの含有割合が1.0重量%以下であり、また、全(n-3)系脂肪酸に対するDHA含有割合が98重量%以上である。これらのことは、魚油がEPAを10重量%前後含んでいることに比べると、該菌株がDHAの濃縮、分離および精製の操作を容易にする利点を持っていることを示すものである。

表 6. (n-3) 系脂肪酸組成(重量%)

実験	EPA	DPA	DHA	全(n-3)系脂肪酸に
No.				対するDHAの割合
101	0.3	0.1	26.8	98.5
102	0.2	Τr	25.7	99.2
103	0.2	0.1	29.0	98.9
104	0.1	0.1	29.7	99.5
105	0.3	Tr	29.7	98.9
106	0.3	0.1	26.8	98.7
107	0.1	0.1	25.5	99.2
108	0.3	0.1	28.0	98.5
109	0.1	0.1	26.5	99.4
110	0.3	0.1	28.4	98.8
201	0.3	0.1	30.7	98.7
202	0.5	0.1	30.0	98.0
203	0.2	0.1	29.1	99.0
204	0.2	0.2	32.9	98.8
301	0.4	0.2	43.7	98.6
302	0.4	0.1	34.0	98.6

Tr:0.05重量%未満

参考例 既知微生物との比較

既知の微生物と、本発明のシゾキトリウム属SR21株とのDHA生産 能の比較を行った。

表7に、微生物としてスラウストキトリウム・アウレウム(ATCC3 4304)を用いて培養を行ってDHAの生産を行った場合[P,Bajapai,P.K.Bajapaiおよび0.P.Ward. Appl.Microbiol.Biotechnol. 35:706 (1991)、A.KendricおよびC.Ratledge, Lipids 27:15 (1992)、およびP.K.Bajapai,P.Bajapaiおよび0.P.Ward,J.Am.Oil Chem.Soc., 68:509 (1991)を引用]、後生物としてジャポノキトリウム sp.(ATCC28207)を用いて培養を行ってDHAの生産を行った場合(特開平1-199588号公報を引用)、および後生物としてシゾキトリウム・アグレガタム(ATCC28209)を用いて培養を行ってDHAの生産を行った場合[A.KendricおよびC.Ratledge,Lipids 27:15 (1992)を引用]、ならびに、本発明のシゾキトリウム属SR21株を用いて培養を行ってDHAの生産を行った上記の実験No.105、204および302の、培地1L当たりの菌体量、乾燥菌体当たりの油脂または脂肪酸含有割合、全脂肪酸中のDHA含有割合および培地1L当たりのDHA量を示す。

表7. 既知欲生物とのDHA生産能の比較

微生物	引用文献	菌体量	油脂また	DHA	EPA	DHA
	または		は脂肪酸	含有	含有	量
	実験No.		含有割合	割合	割合	
•		(g)	(重量%)	(重量%)(重量%)	(mg)
		*1)	*2)	*3)	*3)	*1)
ジャポノキトリウム sp.						
(ATCC28207)	(a)	1. 7	8. 2	30. 0	6. 4	42
スラウストキトリウム・アウレウム						
(ATCC34304)	(b)	5. 0	20. 2	51. 0	記載なし	511
スラウストキトリウム・アウレウム						
(ATCC34304)	(c)	3. 8	16. 5	48. 5	3. 6	270
スラウストキトリウム・アウレウム						
(ATCC34304)	(d)	4.0	10. 0	24. 1	9. 3	96
シゾキトリウム・アグレガタム						
(ATCC28209)	(d)	1.4	1. 7	6. 0	6. 1	1
シソキトリウム属SR21株	No. 105	35. 9	39. 3	29. 7	0. 3	4200
シソキトリウム属SR21株	No. 204	23. 0	40. 1	32. 9	0. 2	3030
シソキトリウム属SR21株	No. 302	39. 6	53. 5	34. 0	0. 4	7200

- *1) 培地1 L 当たりの量
- *2) 乾燥菌体当たりの含有割合

(SR21株:脂肪酸含有割合;他の菌株:油脂含有割合)

- *3) 全脂肪酸中の含有割合
- (a) 特開平1-199588号公報

(b) P. K. Bajapai、 P. BajapaiおよびO. P. Ward, J. Am. Oil Chem. Soc., 68:509 (1991)

- (c) P. Bajapai、P. K. BajapaiおよびO. P. Ward, Appl. Microbiol. Biotechnol. 35:706 (1991)
- (d) A. KendricおよびC. Ratledge, Lipids 27:15 (1992)

表7に示したように、本発明のシゾキトリウムSR21株を用いて培養を行うと既知の微生物と比較して培地当たりの菌体量が非常に多く、SR21株は増殖性が優れるということがわかる。また、本発明のシゾキトリウムSR21株は既知の微生物と比較して油脂の含有割合も非常に高い。また、本発明によれば、全脂肪酸中のDHA含有割合も30重量%と高いことから、培地1L当たりのDHA量は、従来公知の微生物を用いた場合と比較して10~100倍程度と高い値となり、SR21株はきわめて高いDHA生産能を有することが明らかである。さらに、既知の微生物によれば、EPA含有割合が数重量%の油脂が得られるのに対し、シゾキトリウム属SR21株によれば、EPA含有割合が0.5重量%以下と極めて低い油脂が得られることがわかる。

実施例5 シゾギトリウム属SR21株による油脂の生産(4)

グルコース60g/L、コーンスチープリカー0.5g/L、リン酸カリウム3g/L、硫酸アンモニウム2g/Lおよび50%人工海水からなる培地を用いて、ジャーファーメンター(5L容量、培地量3L)により約60時間培養を行った。培養条件は、培養温度28℃、通気量1.0v.v.m.、 搅拌速度300rpm、10%水酸化ナトリウムによりpH4にコントロールして行った。

培養終了後、遠心分離により集菌し、凍結乾燥後に秤量することにより、 培地1Lあたり約20gの乾燥菌体を得た。

油脂の抽出は、常法に従い、乾燥菌体にクロロホルム/メタノール(2:1、v/v)を混合し、ガラスビーズの存在下でホモジナイズすることにより行った。60gの乾燥菌体より得られた粗抽出油脂は36gであった。この粗抽出油脂を、常法に従い、メチルエステル化し、ガスクロマトグラフィーにより脂肪酸組成を調べたところ表8に示す組成であった。

表8. 粗抽出油脂中の脂肪酸組成

脂肪酸	14:0	15:0	16:0	17:0	18:0	20:4	20:5	22:5	22:6
								n-6	n-3
						AA	EPA	DPA	DHA
含有割合(%)	2. 3	5. 8	44. 6	2. 0	1. 4	0. 6	0. 8	8. 4	34. 0

実施例6 ドコサペンタエン酸の単離および同定

粗抽出脂肪酸の高度不飽和脂肪酸の濃度を上昇させるため、常法に従い、 尿素付加を行って飽和脂肪酸を除去した。即ち、実施例5に示した方法で 調製した粗抽出脂肪酸約9gに尿素20g、メタノール200mlを加え、6 0℃で3時間加熱した後、10℃まで徐冷した。析出した尿素結晶を濾過 後、非結晶溶液分を機縮し、尿素非付加物約4gを得た。この尿素非付加 物の脂肪酸組成は、ドコサペンタエン酸17.7%、ドコサヘキサエン酸 77.9%であり、その他の脂肪酸の混入率は5%以下であった。

上記処理によって得た尿素非付加物につき、液体クロマトグラフィー(ODSカラム、移動相 アセトニトリル:水=97.5:2.5、検出 UV)

を行ってドコサペンタエン酸を分取した。これにより、純度99%以上のドコサペンタエン酸を約3.2g得た。

実施例7 シゾキトリウム属SR21株の脂肪酸分析

粗抽出油脂は、実施例5により得られたものを用いた。この粗抽出油脂を、常法に従い、ヘキサンと90%メタノールによる液/液分配により、中性脂質と極性脂質を分離した。得られた脂質量はそれぞれ極性脂質1.8g、中性脂質32.9gであった。この脂質を加水分解後、メチルエステル化し、ガスクロマトグラフィーにより脂肪酸組成を分析した。

分析結果は下記の通りである。

表 9. 粗抽出油脂中の極性/中性脂質組成

	極性脂質(%)	中性脂質(%)
1 4:0	1.3	3.2
15:0	0.6	1.0
16:0	32.4	49.2
20:4(n-6)	0.2	0.6
20:5(n-3)	0.6	0.8
2 2:5(n-6)	10.6	7.9
22:6(n-3)	5 2. 1	33.7

実施例8 シゾキトリウム属SR21株の脂質分析

実施例で得られた中性脂質と極性脂質を、常法に従い、薄層クロマトグラフィーにより分析を行った。発色は硫酸を用いて行い、得られるスポットの同定は各標準脂質とのRf値により決定した。中性脂質は90%以上がトリグリセリドであった。また、極性脂質は、大部分がフォスファチジルコリンであり、次いでフォスファチジルエタノールアミン、フォスファチジルイノシトールであった。

また中性脂質中のトリグリセリドを、常法に従い、液体クロマトグラフィー(ODSカラム、移動相アセトン:アセトニトリル=3:2、示差屈折検出計)により分子種を分離し(図5)、分取後、加水分解メチルエステル化し、ガスクロマトグラフィーにより脂肪酸残基を決定した。

結果は下記の通りである。

ピーク	分子種	量比(%)
No.		
1	14:0-16:0-16:0	3.4
2	16:0-16:0-16:0	8.0
3	14:0-16:0-22:6	4.0
4	16:0-16:0-22:5	7.8
5	16:0-16:0-22:6	27.4
6	16:0-22:5-22:6	8.4
7	16:0-22:6-22:6	16.9

表10. 中性脂質中のトリグリセリドの分析

この7種類のトリグリセリドが、全トリグリセリド中の70重量%以上を占めた。このトリグリセリドの最大分子種は、16:0-16:0-22:6であり、全トリグリセリドの約27重量%を占めていた。

実施例9 トリグリセリドの脂肪酸残基結合位置決定

実施例8で分画したトリグリセリド(分子種16:0-16:0-22:6)を、乾燥後、1.3位に特異的なリパーゼで処理し、得られる2-モノグリセリドをトリメチルシリル化した後にGC/MSにより脂肪酸残基を決定した。リパーゼ処理は、50mM酢酸緩衝液(pH5.5)2m1、リパーゼ1000単位、<math>35 ∞ 、30 分間行った。反応終了後、エーテルにより抽出し、市販のトリメチルシリル化剤を用いて、<math>2-モノグリセリドをトリメチルシリル化力を用いて、2-モノグリセリドをトリメチルシリル化した。結果は図6に示したように、22:6 が結合したモノグリセリドの分子量に相当するフラグメントピークが得られ、本トリグ

リセリドは22:6の脂肪酸残基がグリセロール骨格の2位に結合している、16:0-22:6-16:0であった。

実施例10 窒素濃度の影響

培地1L当たり、60gのグルコース、3gのリン酸二水素カリウム、0.5gのコーンスチープリカーを加えた2分の1濃度の人工海水培地に表11に示す濃度で硫酸アンモニウムを添加し、この培地3Lを5L容積のジャーファーメンターに入れた。この培地に、実施例5と同様に調製した前培養液60mlを添加し、培養を行った。培養は28℃、1v.v.m.、300rpm、pH4.0の条件で行った。

グルコースの消費後に、培養液100mlを採取して遠心分離法で菌体を 集めた。この菌体を洗浄し、凍結乾燥装置によって乾燥菌体を得た。この 乾燥菌体の重量を測定して、培地1L当たりの菌体量を求めた。

次いで、実施例5と同様の方法で培地1L当たりの菌体量、培地1L当たり全脂肪酸含有割合、および培地1L当たりのDHA量、DPA量を求めた。その結果を表11に示す。

表11. 分析結果

(NH ₄) ₂ SO ₄	菌体量	全脂肪	脂肪酸	DHA含有	DHA量	DPA含有	DPA#
		酸量	含有割合	割合		割合	
	(g)	(g)	(重量%)	(重量%)	(g)	(重量%)	(g)
0. 5	6. 5	4. 8	74. 5	31. 4	1. 5	7. 9	0. 38
1. 0	8.6	6. 0	69. 8	32. 0	1. 9	8. 0	0. 48
2. 0	15. 3	9. 1	59. 6	35 . 0	3. 2	8. 8	0. 81
3. 0	20. 5	10. 7	52 . <u>2</u>	35. 8	3. 8	8. 9	0. 90

硫酸アンモニウム濃度を $2.0\sim3.0$ g/Lとした場合に良好な生育を示した。また、硫酸アンモニウム濃度を $0.5\sim1.0$ g/Lとすると脂肪酸含有割合が7.0 %以上に増加していた。

実施例11 有機窒素源と無機窒素源の影響

培地1L当たり、60gのグルコース、3gのリン酸二水素カリウム、0.5gのコーンスチープリカーを加えた2分の1濃度の人工海水培地に、表12に示す濃度で窒素源の濃度を一定にして、有機窒素源としてコーンスチープリカー(CSL)と無機窒素源として硫酸アンモニウムの2つの割合を変えて添加した。この培地3Lを5L容積のジャーファーメンターに入れ、実施例5と同様に調製した前培養液60mlを添加し、実施例5と同一の条件で培養を行った。

グルコースの消費後に、培養液100mlを採取して遠心分離法で菌体を 集めた。この菌体を洗浄し、凍結乾燥装置によって乾燥菌体を得た。この 乾燥菌体の重量を測定して、培地1L当たりの菌体量を求めた結果を表1

2に示す。

次いで、実施例5と同様の方法で培地1L当たりの菌体量、培地1L当たりの全脂肪酸含有割合、および培地1L当たりのDHA量、DPA量を求めた。その結果を表12に示す。

表12. 分析結果

実験	CSL	硫酸	菌体	全脂肪	脂肪酸	DHA含	DHA	DPA含	DPA
No.		アンモニ	畫	酸量	含有割	有割合	重	有割合	量
	(g)	74(g)	(g)	(g)	合(%)	(重量%)	(g)	(重量%)	(g)
501	0.7	2. 0	21. 0	14. 8	70. 5	31. 8	4. 7	8. 1	1. 2
502	2. 0	1. 7	20.0	13. 7	68. 5	31. 7	4. 3	7. 3	1. 0
503	3. 3	1. 3	23. 2	14. 5	62. 4	30. 7	4. 5	6. 9	1. 0
504	5. 3	0.7	21. 0	13. 7	68. 5	29. 9	4. 3	8. 0	1.1
505_	8. 0	0	20.6	13. 4	65. 2	27. 9	3. 8	6. 7	0. 9

いずれの組成比においても良好な生育を示し、本菌は有機窒素、無機窒素の区別なく消費して生育する。また、DHA、DPAの生産性にもあまり変化は見られない。

実施例12 高濃度培養

培地1L当たり、3gのリン酸二水素カリウムを加えた2分の1濃度の 人工海水培地に、表13に示す濃度でグルコース、コーンスチープリカー、 硫酸アンモニウムを添加した。この培地3Lを5L容ジャーファーメンタ ーに入れ、実施例5に示す培養条件で培養を行った。 グルコースの消費後に、培養液100mlを採取して遠心分離法で菌体を 集めた。この菌体を洗浄し、凍結乾燥装置によって乾燥菌体を得た。この 乾燥菌体の重量を測定して、培地1L当たりの菌体量を求め、次いで、実 施例5と同様の方法で培地1L当たりの菌体量、培地1L当たりの全脂肪 酸量、乾燥菌体当たりの脂肪酸含有割合、全脂肪酸中のDHA、DPA含 有割合、および培地1L当たりのDHA、DPA量を求めた。その結果を 表13に示す。

表13. 分析結果

実験	7 %	CSL	硫酸	培養	乾燥	全脂	脂肪酸	DHA	DHA	DPA	DPA
No.	コース		7ソモニ	時間	菌体	防酸	含有	含有	±	含有	
			りょ量		*	# 1	割合	割合	(g)	割合	(g)
	(g)		(g)	(時間)(g)	(g) (重量%)	(重量)	()	(重量%)
601	60	0. 7	2. 0	60	21. 9	14. 8	67. 6	34. 5	5. 11	6.8	1. 01
602	80	0. 93	2. 7	84	32. 0	21. 9	68. 6	34. 7	7. 62	7. 1	1. 55
603	100	1. 17	3. 3	92	37. 7	31. 15	82. 6	33. 3	10. 37	6. 3	2. 03
604	120	1. 4	4. 0	108	48. 1	37. 3	77. 5	35. 6	13. 26	7. 4	2. 76
605	150	1. 75	5	120	<u>59. 2</u>	41.6	70. 3	<u>37. 3</u>	15. 52	8. 2	<u>3. 43</u>

これらの結果から、本菌は炭素源と窒素源濃度を増加させることにより、 グルコース濃度の増加に応じて、DHA、DPAの生産量も増加すること が明らかとなった。

実施例13 撹拌数の影響

実施例5と同一の培地組成および培養条件で、培養槽の撹拌数を100 rpmおよび300rpmにして培養を行った。グルコース消費時間が、100 rpmでは100時間程度かかっていたのが、300rpmでは約半分の50~60時間となった。一方、培地1L当たりの脂肪酸量、DHA量、DPA量については300rpmの方がわずかに多かった(表14)。

回転数 菌体量 全脂肪 脂肪酸 DHA含 DHA量 DPA含 DPA量 酸量 含有割 有割合 有割合 (rpm) (g) (g) 合(%) (%) (g) (%) (g) 100 15. 3 9. 1 **59.** 6 **35.** 0 3. 2 8. 4 0.76 300 20. 5 10. 7 52. 2 35. 8 3. 9 **8**. 5 0. 91

表14. 分析結果

<u>実施例14</u>

実施例12に従って製造した培養液を集め、フィルタープレスにて液を除去し乾燥させ、水分10%含有の菌体10kgを得た。この菌体を常法に従いヘキサン抽出し、ヘキサンを除去した後、5.9kgの油脂を得た。またヘキサン抽出後の菌体を乾燥させヘキサンを除去した後、3.9kgの油油出残菌体を得た。この油脂には、35%のDHAと8%のDPAを含有していた。また油油出残菌体には、1.2%のDHAと0.3%のDPAを含有していた。

実施例15

イザブラウン種200食日の採卵鶏1群5羽として2群にわけた。1群は対照群として通常の飼料で25日間飼育した。残りの群は実験群として、実施例14により得られた油脂を毎日5gを通常の飼料に加え25日間飼育した。

25日目の卵3個分の卵の重量、卵黄重量、DHA濃度、DPA濃度、 卵黄の照り、卵黄の味を測定した。結果を表15に示す。油脂を加えて飼育することにより、明らかに卵黄中のDHA、DPA含有率は増加した。 また、照りがよく、とろける感じの卵黄を得ることができた。

表15

		実験群	対照群
卵の重量(3個	国分)g	2 1 3	2 1 1
卵黄重量	g	5 5	5 2
DHA(%)		3.5	1.5
DPA(%)		0.8	痕跡量
卵黄の照		照りが良い	ざらざらした感じ
卵黄の味		とろける感じ	水っぽい

実施例16

イザブラウン種 200 食日の採卵鶏を 2 群にわけた。 1 群は対照群として 5 羽を通常の飼料で 25 日間飼育した。残りの群は実験群として 3 羽を、通常の飼料を対照群より 50 g減じ、その分を補うために実施例 14 により得られた油抽出残菌体 50 gを加え 25 日間飼育した。

25日目の卵3個分の卵の重量、卵黄重量、DHA濃度、DPA濃度、 卵黄の照り、卵黄の味を測定した。結果を表16に示す。油抽出残菌体を 加えて飼育することにより、明らかに卵黄中のDHA、DPA含有率は増 加した。また、照りがよく、とろける感じの卵黄を得ることができた。

表16

	<u>-</u>	実験群	対照群
卵の重量(3個	i分)g	212	2 1 1
卵黄重量	g	5 3	5 2
DHA(%)		2.1	1.5
DPA(%)		0.2	痕跡量
卵黄の照		照りが良い	ざらざらした感じ
卵黄の味		とろける感じ	水っぽい

<u>実施例17</u> (n-6)系ドコサペンタエン酸およびDHA含有ミルクの調製

粉末ミルク100gに、実施例15で得られた卵黄から常法に従って抽出した(n-6)系ドコサペンタエン酸およびDHA含有卵黄油[(n-6)系ドコサペンタエン酸0.8、DHA3.5%含有]6gを混合することにより(n-6)系ドコサペンタエン酸およびDHA含有ミルクを調製した。このミルクの全脂肪酸に対する(n-6)系ドコサペンタエン酸の割合は0.19%、DHAの割合は0.84%となり、従来の調製乳に不足していた(n-6)系ドコサペンタエン酸およびDHAを母乳に近づけることができた。

実施例18 (n-6)系ドコサベンタエン酸およびDHA含有ミルクの 調製

実施例7で得られた租抽出油脂を、常法に従い、ヘキサンと90%メタノールによる液/液分配により、中性脂質と極性脂質とに分離し、(n-6) 系ドコサペンタエン酸およびDHAを含有する中性脂質[(n-6)系ドコサペンタエン酸7.9、DHA33.7%含有]を得た。この油0.6gを、粉末ミルク100gに混合することにより(n-6)系ドコサペンタエン酸およびDHA含有ミルクを調製した。このミルクの全脂肪酸に対する(n-6) 系ドコサペンタエン酸の割合は0.19%、DHAの割合は0.80%となり、従来の調製乳に不足していた(n-6)系ドコサペンタエン酸およびDHAを母乳に近づけることができた。

<u>実施例19</u> (n-6)系ドコサペンタエン酸およびDHA含有セプセルの調製

表17. カプセル

70.0%
0 1 5 0/
0.15%
0.51%
遺畫
100%
_

上記成分からなるソフトカプセル剤皮の中に、実施例12で得られた(n

-6)系ドコサペンタエン酸およびDHA含有微生物オイルを300mgを常法により充填し、ソフトカプセル剤を得た。

実施例 20 (n-6)系ドコサペンタエン酸およびDHA含有飲料の調製

容器中に市販のプレーンヨーグルト50gと実施例12で得られた(n-6)系ドコサペンタエン酸およびDHA含有微生物オイル50%とβーシクロデキストリン1gを入れ、これを約3分間撹拌して乳化させ、W/O/W、O/W/O型などが混在するエマルジョンを得た。

実施例21 DHAとDPAを含有する微小餌料生物用餌料の製造

実施例5に従って製造した培養液を集め、フィルタープレスにて液を除去し菌体を得た。得られた菌体を105℃で3時間、加熱乾燥し、コーヒーミルにより、パウダー化した。得られたパウダーまたはコントロールとしてパン酵母を用いて、ワムシ、およびブラインシュリンプの培養を行った。

培養方法は、海水200Lを300Lの水槽に入れ、通気条件下、23℃で、ワムシは1mlあたり100個体、ブラインシュリンプは1mlあたり20個体放養し、飼料として、それぞれ1g/10⁶個ワムシ1日、1g/10⁵個ブラインシュリンプ1日になるように上記の歯体パウダーまたはパン酵母を与えた。ワムシまたはブラインシュリンプにこれらを摂取して生育し、3日目にサンプリングして構成脂肪酸組成を調べた結果、表18および表19のようになった。

結果が示す通り、ワムシにおいてもブラインシュリンプにおいても、D HA、DPAの蓄積がパン酵母より好成績であった。

表18. ワムシ

	脂肪酸組成(%)			
	DHA	DPA		
コントロール(パン酵母)	0	0		
試 験 (SR21株)	26	5		

表19. ブラインシュリンプ

	脂肪酸組成(%)	
	DHA	DPA
コントロール(パン酵母)	0	0
試 験 (SR21株)	23	4

産業上の利用可能性

本発明の海洋性微生物は、増殖性および油脂蓄積性に優れ、(n-3)系DHAおよび(n-6)系DPAの生産能が高く、かつEPAの生産が極めて少ない。従って、本発明の微生物を用いると、食品および医薬品の分野で有用な(n-3)系DHAおよび(n-6)系DPAの含有量が高く、かつEPAの含有量が低い油脂を高収率で製造することができる。また、この油脂から純度の高い(n-3)系DHAまたは(n-6)系DPAを分離することもできる。

また、本発明の油脂組成物は、種々の生理活性を有する(n-3)系DH Aとともに(n-6)系DPAを特定の比率で含有するため、該油脂組成物

を各種製品(乳児用調製乳、未熟児用調製乳、幼児用食品、老人用食品、栄養補助食品、機能性食品、経腸栄養剤、動物用飼料または動物用飼料添加物、微小餌料生物用餌料など)に添加して、(n-3)系DHAおよび(n-6)系DPAを必要とする対象にこれら高度不飽和脂肪酸を安定的かつ効率的に供給することができる。特に、動物用飼料または動物用飼料添加物、微小餌料生物用餌料では、DHAおよびDPAを含有する培養菌体の抽出残渣等を使用できるため、非常に経済的である。また、上記の動物用飼料を家禽に与えることによって、今までになかったDHAおよび/またはDPAを強化した家禽卵または卵黄油を得ることができる。

請求の範囲

- 1. (n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸の生産能を有するシゾキトリウム属SR21株(FERM BP-5034)または該SR21株と同一の種に属するかもしくは実質的に同一の菌学的性質を有する微生物。
- 2. (n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸の生産能を有するシゾキトリウム属SR21株(FERM BP-5034)または該SR21株と同一の種に属するかもしくは実質的に同一の菌学的性質を有する微生物を培地中で培養し、培養物から油脂を採取することを特徴とする、(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸を含む油脂の製造方法。
- 3. 請求項1または2に記載の(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸を含む油脂から(n-3)系ドコサヘキサエン酸を単離することを特徴とする、(n-3)系ドコサヘキサエン酸の製造方法。
- 4. 請求項1または2に記載の(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸を含む油脂から(n-6)系ドコサペンタエン酸を単離することを特徴とする、(n-6)系ドコサペンタエン酸の製造方法。
- 5. (n-6)系ドコサペンタエン酸および(n-3)系ドコサヘキサエン酸の生産能を有するシゾキトリウム属 SR21株 $(FERM\ BP-5034)$ または該 SR21株と同一の種に属するかもしくは実質的に同一の菌学的性質を有する微生物を培地中で培養して得られる油脂。
- 6. 前記油脂が、(n-3)系ドコサヘキサエン酸および(n-6)系ドコサペンタエン酸の生産能を有するシゾキトリウム属 SR21株 (FERMB) P-5034)または該 SR21株と同一の種に属するかもしくは実質的

に同一の菌学的性質を有する後生物を培地中で培養し、その培養物から採取することによって得られる油脂または該油脂を精製して得られる油脂である請求項5に記載の油脂。

- 7. 前記油脂が、該油脂を菌体培養によって製造する途中の培養液もしくはその殺菌した培養液、または培養終了時の培養液もしくはその殺菌した培養液、またはそれぞれから集菌した培養菌体もしくはその乾燥物、または該油脂を培養液から採取した後の残渣に含まれるものであることを特徴とする請求項5に記載の油脂。
- 8. 前記油脂が、(n-6)系ドコサペンタエン酸を全脂肪酸重量に対し 少なくとも1%含有することを特徴とする請求項5~7のいずれかに記載 の油脂。
- 9. 前記油脂が、(n-3)系エイコサペンタエン酸を全脂肪酸重量に対し多くても2%しか含有しないことを特徴とする請求項5~8のいずれかに記載の油脂。
- 10. 前記油脂が、(n-6)系ドコサペンタエン酸1重量部に対し(n-3)系ドコサヘキサエン酸を3~6重量部含有することを特徴とする請求項5~9のいずれかに記載の油脂。
- 11. 前記油脂が、中性脂質であることを特徴とする請求項5~10のいずれかに記載の油脂。
- 12. 前記油脂において、(n-3)系ドコサヘキサエン酸が、グリセリンの2位のみに結合しているグリセリドを含有することを特徴とする請求項5~11のいずれかに記載の油脂。
- 13. 前記油脂において、(n-3)系ドコサヘキサエン酸が、グリセリンの1および2位、または1および3位に結合しているグリセリドを含有することを特徴とする請求項5~11のいずれかに記載の油脂。

PCT/JP96/01049

- 14. 前記中性脂質がその85重量%以上がトリグリセリドであることを特徴とする請求項11に記載の油脂。
- 15. 請求項5~14のいずれかに記載の油脂を含有することを特徴とする栄養補助食品。
- 16. 前記油脂をゼラチンカプセルに封入して成ることを特徴とする請求項15に記載の栄養補助食品。
- 17. 前記栄養補助食品が、前記油脂組成物を含有するドリンク剤また は顆粒剤もしくは錠剤の形態を有する飲食品であることを特徴とする請求 項15に記載の栄養補助食品。
 - 18. 請求項5~14のいずれかに記載の油脂を含有する乳児用調製乳。
- 19. 請求項5~14のいずれかに記載の油脂を含有する未熟児用調製乳。
 - 20. 請求項5~14のいずれかに記載の油脂を含有する幼児用食品。
 - 21. 請求項5~14のいずれかに記載の油脂を含有する老人用食品。
 - 22. 請求項5~14のいずれかに記載の油脂を含有する経腸栄養剤。
 - 23. 請求項5~14のいずれかに記載の油脂を含有する動物用飼料。
- 24. 請求項5~14のいずれかに記載の油脂を含有する動物用飼料添加物。
- 25. 請求項5~14のいずれかに記載の油脂を含有する微小餌料生物 用餌料。
- 26. 請求項5~14のいずれかに記載の油脂を与えて飼育することにより得られる家禽卵。
- 27. (n-3)系ドコサヘキサエン酸生産能を有するシゾキトリウム属 SR21株(FERM BP-5034)または該SR21株と同一の種に 属するかもしくは実質的に同一の菌学的性質を有する微生物。

28. (n-3)系ドコサヘキサエン酸生産能を有するシゾキトリウム属 SR21株(FERM BP-5034)または該SR21株と同一の種に 属するかもしくは実質的に同一の菌学的性質を有する微生物を培地中で培養し、培養物から油脂を採取することを特徴とする、(n-3)系ドコサヘキサエン酸を含む油脂の製造方法。

- 29. (n-6)系ドコサペンタエン酸生産能を有するシゾキトリウム属 SR21株(FERM BP-5034)または該 SR21株と同一の種に 属するかもしくは実質的に同一の菌学的性質を有する微生物。
- 30. (n-6)系ドコサペンタエン酸生産能を有するシゾキトリウム属 SR21株(FERM BP-5034)または該SR21株と同一の種に 属するかもしくは実質的に同一の菌学的性質を有する微生物を培地中で培養し、培養物から油脂を採取することを特徴とする、(n-6)系ドコサペンタエン酸を含む油脂の製造方法。

図1

1/6

図2

2/6

図3

X

X

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP96/01049

			_				-, -, -, -, -, -, -, -, -, -, -, -, -, -
A.			TION OF SUBJEC			•	
	Int.	C16	C12N1/14,	C12P7/64,	C11C3/00,	A23K1/16,	A23L1/30
Acc	ording to	Internati	onal Patent Classific	ation (IPC) or to be	th national classific	cation and IPC	
B.	FELI	S SEAF	RCHED	· -			
Min	imum doc	wmentatio	on searched (classifica	tion system followed	by classification syn	nbols)	
	Int.	C16	C12N1/14.	C12P7/64.	C11C3/00	A23K1/16	32211/20

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPI/L

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP, 5-276963, A (Kawasaki Steel Corp.), October 26, 1993 (26. 10. 93) & EP, 657543, A1	1 - 4, 15 - 30
A	JP, 5-308978, A (Onoda Cement Co., Ltd.), November 22, 1993 (22. 11. 93)(Family: none)	1 - 4, 15 - 30
x	JP, 59-190948, A (Roussel Huchaf), October 29, 1984 (29. 10. 84) & EP, 120169, A & US, 4701468, A	5 - 14
х	JP, 1-180849, A (Nippon Oil and Fats Co., Ltd.), July 18, 1989 (18. 07. 89) (Family: none)	5 - 14

Ш	Further documents are listed in the continuation of Box C.	See patent family annex.		
-A	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or pric date and not in conflict with the application but cited to underst the principle or theory underlying the invention		
"E"	earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	considered novel or cannot be considered to involve an invent	mot be reative	
~O~	special reason (as specified) document referring to an oral disclosure, use, exhibition or other means	combined with one or more other such documents, such combinati	is	
	document published prior to the international filling date but later than the priority date claimed	"&" document member of the same patent family		
Date	of the actual completion of the international search	Date of mailing of the international search report		
	August 12, 1996 (12. 08. 96)	August 27, 1996 (27. 08. 96)		
Name and mailing address of the ISA/		Authorized officer		
	Japanese Patent Office			
Facsimile No. Telephone No.		Telephone No.		

Form PCT/ISA/210 (second sheet) (July 1992)

国際調査報告

国際出願番号 PCT/JP96/01049

A. 発明の属する分野の分類 (国際特許分類 (IPC)) Int.Cl ⁶ C12N1/14,C12P7/64,C11C3/00,A23K1/16,A23L1/30				
B. 調査を	<u> </u>			
	したのま 最小限資料(国際特許分類(IPC))			
	C1° C12N1/14,C12P7/64,C	1 1 C 3/0 0, A 2 3 K 1/1 6, A 2 3	L 1/3 0	
最小限資料以外	トの資料で調査を行った分野に含まれるもの			
国際開査で使り WPI/L	目した 電 子データベース(データベースの名称	、調査に使用した用語)		
C. 関連する	。 なと認められる文献			
引用文献の	7/17/4/4/4		関連する	
カテゴリー*	引用文献名 及び一部の箇所が関連する JP,5-276963,A (川崎製鉄株式会	ときは、その関連する箇所の表示	請求の範囲の番号	
A.	0.93) & EP,657543,A1	ен.), 26. ГОЯ. 1993 (26. 1	1-4 15-30	
Α	JP,5-308978,A (小野田セメント	、株式会社), 22.11月.1993 (2	1-4	
x	2.11.93) (ファミリーなし JP,59-190948,A (ルセルーユク	·==\ 00 10F 1004 /00	15-30	
Λ.	10.84) & EP, 120169, A& U	US. 4701468. A	5-14	
X	JP,1-180849,A (日本油脂株式会 89) (ファミリーなし)	注),18.7月.1989 (18.07.	5-14	
□ C欄の統	にも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。	
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示す もの		の日の後に公表された文献 「T」国際出願日又は優先日後に公表さ て出顧と矛盾するものではなく、		
「E」先行文制 の	ではあるが、国際出願日以後に公表されたも	輪の理解のために引用するもの 「X」特に関連のある文献であって、当	(#***************	
	- 張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考え		
日若しくは他の特別な理由を確立するために引用する		「Y」特に関連のある文献であって、当	経文献と他の1以	
	!由を付す) : る開示、使用、展示等に官及する文献	上の文献との、当業者にとって自 よって進歩性がないと考えられる		
	(日前で、かつ優先権の主張の基礎となる出願	よって選歩性かないと考えられる 「&」同一パテントファミリー文献		
国際調査を完了	した月 08.96	国際商金報告の発送日 27.0	8.96	
国際調査機関の名称及びあて先		特許庁審査官(権限のある職員)	4B 7432	
日本国	特許庁 (ISA/JP)	谷口博 印		
	便番号100 千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内鏡 3448	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.