Best Available Copy

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07D 239/60, A01N 43/40, C07D 405/12, A1 401/00, 233/54, 401/12

(11) International Publication Number:

WO 96/00219

(43) International Publication Date:

4 January 1996 (04.01.96)

(21) International Application Number:

PCT/EP95/02295

(22) International Filing Date:

13 June 1995 (13.06.95)

(30) Priority Data:

2045/94-1 2858/94-9 27 June 1994 (27.06.94) CH 20 September 1994 (20.09.94)

(71) Applicant (for all designated States except US): CIBA-GEIGY AG [CH/CH]; Klybeckstrasse 141, CH-4002 Basle (CH).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): LÜTHY, Christoph [CH/CH]; Zelgweg 37, CH-4142 Münchenstein (CH). LUTZ, William [CH/CH]; Auf der Bischoffhöhe 104, CH-4125 Riehen (CH).
- (74) Common Representative: CIBA-GEIGY AG; Patentabteilung, Klybeckstrasse 141, CH-4002 Basle (CH).

(81) Designated States: AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

(54) Title: PYRIMIDINYL- AND TRIAZINYL-OXY AND THIO-3-HALOALKYL-PROPIONIC ACID DERIVATIVES AS HERBI-CIDES

(57) Abstract

Compounds of formula (I), wherein R₁ is C₁-C₇ haloalkyl; X is oxygen or sulfur; and salts of compounds of formula (I) that contain a carboxy or sulfonamide group, and stereoisomers of the compounds of formula (I), are suitable as active ingredients in compositions for controlling weeds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	1E	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		

PYRIMIDINYL- AND TRIAZINYL-OXY AND THIO-3-HALOALKYL-PROPIONIC ACID DERIVATIVES AS HERBICIDES

The present invention relates to novel herbicidally active pyrimidinyl- and triazinyl-oxyand -thio-3-haloalkyl-propionic acid derivatives, to processes for the preparation thereof, to compositions comprising those compounds and to the use thereof in the control of weeds, especially in crops of useful plants or in the inhibition of plant growth.

2- and 4-pyrimidinyl- and triazinyl-oxy- and -thio-propionic acid derivatives having herbicidal activity are known and are described, for example, in EP-A-0 347 811, EP-A-0 400 741, EP-B-0 409 368, EP-B-0 411 706, EP-A-0 481 512, EP-A-0 517 215, EP-A-0 541 041, EP-A-0 549 079, EP-A-0 567 014, EP-A-0 562 510, EP-A-0 581 184, DE-A-3 807 532, WO 93/25540 and WO 94/25442.

Novel pyrimidinyl- and triazinyl-oxy- and -thio-3-haloalkyl-propionic acid derivatives having herbicidal and growth-inhibiting properties have now been found.

The present invention therefore relates to compounds of formula I

$$\begin{array}{c|c}
R_4 & Z & R_3 \\
N & Y & \\
R_1 & C & A \\
R_2 & C & C & A
\end{array}$$
(I),

wherein

- is hydrogen, C₁-C₆alkyl, C₁-C₄haloalkyl, C₁- or C₂-alkyl substituted by C₁- or C₂-alkoxy, cyano, phenyl or phenyl substituted by halogen, methyl, methoxy or trifluoromethyl, C₃-C₆alkenyl, C₃-C₆alkynyl, C₃-C₆cycloalkyl-C₁- or -C₂-alkyl, C₄-C₆cycloalkyl, C₁-C₄alkylcarbonyl or C₁-C₄alkylsulfonyl;
- R_1 is C_1 - C_7 haloalkyl;
- R₂ is hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₃-C₆cycloalkyl, phenyl, phenyl substituted by fluorine, chlorine, bromine, trifluoromethyl or methoxy, 2-, 3-

PCT/EP95/02295 WO 96/00219

-2-

or 4-pyridyl, or 2- or 3-thienyl;

- R_3 is methyl, ethyl, methoxy, ethoxy, trifluoromethyl, difluoromethoxy or 2,2,2-trifluoroethoxy;
- Z is nitrogen, methine or methine substituted by fluorine, chlorine, bromine or methyl:
- R_4 is fluorine, chlorine, methyl, ethyl, isopropyl, cyclopropyl, methoxy, ethoxy, methylthio, ethylthio, methylamino, dimethylamino, ethylamino, methoxymethyl, trifluoromethyl, chloromethyl, trichloromethyl or difluoromethoxy; or, if Z is methine, R4 forms a -O(CH₂)_m- bridge to Z, the linkage to Z being via the carbon atom;
- Y is nitrogen, or, if Z is nitrogen, Y is nitrogen, methine or methine substituted by fluorine, chlorine or bromine;
- X is oxygen or sulfur;
- is hydroxy, -OR₅, -SR₆, imidazolyl, triazolyl, 2-thionothiazolidin-3-yl, cyanamino, hydroxyamino, C₁-C₆alkoxyamino, C₁-C₃alkoxy(C₁-C₃alkyl)amino or a group of

the formula
$$\begin{array}{c|c}
R_{7} & R_{8} & (A_{1}), \\
R_{7} & R_{9}
\end{array}$$

$$\begin{array}{c|c}
R_{11} & (A_{3}), \\
R_{13} & R_{11}
\end{array}$$

$$\begin{array}{c|c}
R_{12} & (A_{4}) \text{ or } \\
R_{13} & R_{13}
\end{array}$$

$$\begin{array}{c|c}
R_{11} & (A_{5}); \text{ or } \\
R_{2} & R_{4}
\end{array}$$

A and R together form a bond;

is C₁-C₆alkyl, C₃-C₆alkenyl, C₃-C₆alkynyl, C₁-C₄alkoxy-C₁-C₄alkyl, C₁- or C₂-alkoxy-ethoxy-C₁- or -C₂-alkyl, C₃- or C₄-alkenyloxy-C₁-C₄alkyl, C₃- or C₄-alkynyloxy-C₁-C₄alkyl, C₁-C₄alkylthio-C₁-C₄alkyl, C₁-C₄alkylsulfinyl-C₁-C₄alkyl, C₂-C₄dialkylamino-C₁-C₄alkyl, tri-C₁-C₆alkyl-silyl-C₁-C₄alkyl,

 $C_1-C_4 alkylcarbonyloxy-C_1- \ or \ -C_2-alkyl, \ C_1-C_4 alkoxycarbonyl-C_1-C_6 alkyl, \ C_3- \ or \ C_4-alkenyloxycarbonyl-C_1-C_6 alkyl, \ C_3- \ or \ C_4-alkynyloxycarbonyl-C_1-C_6 alkyl, \ C_1-C_4 alkylthiocarbonyl-C_1-C_4 alkyl, benzyloxycarbonyl-C_1-C_6 alkyl, \ C_1-C_4 alkoxy-carbonylmethyl-carbonylmethyl, \ C_3-C_6 cycloalkyl, \ C_3-C_6 cycloalkyl-C_1-C_3 alkyl, \ C_3-C_6 oxacycloalkyl, \ C_3-C_6 oxacycloalkyl, \ Substituted by \ C_1-C_3 alkyl, \ C_2-C_6 oxacycloalkyl, \ C_3-C_5 dioxacycloalkyl, \ C_3-C_5 dioxacycloalkyl, \ Dyridylmethyl, \ C_1- \ or \ C_2-dialkyl-phosphinyl, \ C_1-C_4 alkylamino, dimethylamino, \ C_2-C_6 alkylideneimino, \ (C_2-C_6 alkylideneimino)-oxy-C_1- \ or -C_2-alkyl, \ phenyl, \ or \ phenyl \ substituted \ by \ fluorine, chlorine, \ bromine, \ methyl, \ methoxy \ or \ nitro;$

R₆ is C₁-C₆alkyl, C₂-C₄dialkylamino-C₁-C₄alkyl, C₁-C₄alkoxycarbonyl-C₁-C₄alkyl, phenyl, or phenyl substituted by fluorine, chlorine, bromine, methyl, methoxy or nitro;

R₇ is hydrogen or methyl;

R₉ is hydrogen, trifluoromethyl, C₁-C₄alkyl, C₁-C₄alkyl substituted by hydroxy, C₁-C₄alkoxy, mercapto, C₁-C₄alkylmercapto, phenyl, 4-hydroxyphenyl, 4-imidazolyl, 3-indolyl, carboxy, C₁-C₄alkoxycarbonyl, C₃- or C₄-alkenyloxycarbonyl, cyano, carbamoyl, methylphosphino or methylsulfoximino, C₂-C₆alkenyl, C₂-C₆alkenyl substituted by chlorine, methyl or methoxy, ethynyl, cyclopropyl, phenyl or phenyl substituted by chlorine, methyl or methoxy; or

R₇ and R₉ together are -(CH₂)_q-, -CH₂CH(OH)CH₂-, -CH₂SCH₂- or -CH₂CH₂SCH₂-; R₈ is hydroxymethyl, formyl, cyano, phosphono, phosphino, methylphosphino or a -COL group;

R₁₀ is hydrogen or methyl; or

 R_9 and R_{10} together are -(CH₂)_n-;

R₁₁ is C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl, C₃-C₆cycloalkylmethyl, C₁-C₄alkylamino, di-C₁-C₄alkylamino, C₁-C₃alkoxy-C₁-C₃alkylamino, C₃-C₆alkenylamino, C₃-C₆alkynylamino, C₃-C₆cycloalkylamino, morpholino, piperazino, piperidino, arylamino, arylamino substituted by fluorine, chlorine, methyl, trifluoromethyl, methoxy or benzylamino, pyridyl, pyridyl substituted by fluorine, chlorine, methyl, ethyl, methoxy, methylamino, C₁-C₃alkoxycarbonyl, difluoromethoxy or trifluoromethyl, benzyl, phenyl or phenyl substituted by fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxy, difluoromethoxy, ethoxy, nitro, cyano or C₁-C₃alkoxycarbonyl;

R₁₂ is hydrogen or methyl;

R₁₃ is hydrogen, C₁-C₆alkyl, phenyl or phenyl substituted by fluorine, chlorine, bromine, iodine, C₁-C₄alkyl, trifluoromethyl, C₁-C₃alkoxy, difluoromethoxy, cyano, nitro or C₁-C₄alkoxycarbonyl, pyridyl or pyridyl mono- or di-substituted by fluorine, chlorine, methyl, methoxy or trifluoromethyl;

m is 2 or 3;

n is 2, 3, 4 or 5;

q is 2 or 3;

W is oxygen or sulfur;

is hydroxy, C_1 - C_4 alkoxy, C_3 - or C_4 -alkenyloxy, amino, C_1 - C_4 alkylamino, C_1 - C_4 dialkylamino, benzyloxy or a group of the formula $\begin{array}{c|c}
 & R_{16} \\
 & R_{17}
\end{array}$ $\begin{array}{c|c}
 & R_{16} \\
 & C_{11}
\end{array}$ $\begin{array}{c|c}
 & C_{11}
\end{array}$ $\begin{array}{c|c}
 & C_{11}
\end{array}$

$$M$$
 (L_2) ;

R₁₄ is hydroxy, C₁-C₄alkoxy, 2-propenyloxy, benzyloxy, amino or a further group of the

formula
$$N - C - R_{15}$$
 (L₁₀);

R₁₄₀ is hydroxy, C₁-C₄alkoxy, 2-propenyloxy, benzyloxy or amino;

R₁₅ is hydrogen, C₁-C₄alkyl or benzyl;

R₁₇ is hydrogen; or

 R_{15} and R_{17} together are -(CH₂)₃-; and

R₁₆ is hydrogen or methyl;

and salts of compounds of formula I that contain a carboxy or sulfonamide group, and stereoisomers of the compounds of formula I.

The compounds of formula I contain at least one asymmetric carbon atom. That means that the compounds can occur in optically isomeric forms. If an aliphatic C=C double bond is present, geometric isomerism (E or Z form) can also occur. That applies especially in the case of those compounds of formula I wherein the radicals R, R_2 , R_5 , R_9 and R_{11} are alkenyl. Formula I thus includes all the possible stereoisomers present in the form of enantiomers, diastereoisomers, E/Z isomers or mixtures thereof.

In formula I the alkyl radicals may be straight-chained or branched. The same applies also to the/each alkyl moiety of alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyloxy, alkylamino, dialkylamino, alkylsilyl, alkoxycarbonyl, alkylcarbonyloxy, haloalkyl groups and other alkyl-containing groups.

In the definitions, C_1 - C_6 alkyl is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl or the isomers of pentyl, and hexyl or the isomers of hexyl.

An alkoxy-, cyano- or phenyl-substituted alkyl group is, for example, methoxyethyl, ethoxyethyl, cyanoethyl or benzyl.

Alkoxyethoxy-substituted alkyl groups in the definition of R_5 are, for example, methoxyethoxymethyl.

The C₂-C₆alkenyl, C₂-C₆haloalkenyl and C₃-C₆alkynyl radicals occurring in the substituents may likewise be straight-chained or branched, such as vinyl, allyl, methallyl, 1-methylvinyl, but-2-en-1-yl, 3-chloro-2-propenyl, 3-chloro-2-methyl-2-propenyl, 2,3-dichloro-2-propenyl, 2-propyn-1-yl, 1-methyl-2-propyn-1-yl and but-2-yn-1-yl.

Alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy or tert-butoxy.

Alkenyloxy is, for example, allyloxy, methallyloxy or but-2-en-1-yloxy.

Alkynyloxy is, for example, 2-propyn-1-yloxy, 2-butyn-1-yloxy or 3-butyn-1-yloxy.

Alkylamino is, for example, methylamino, ethylamino, n-propylamino, isopropylamino, n-butylamino or sec-butylamino.

Dialkylamino is, for example, dimethylamino or diethylamino.

Alkoxy(alkyl)amino is, for example, N-methoxy(methyl)amino.

Alkenylamino is, for example, 2-propenylamino.

WO 96/00219 PCT/EP95/02295

- 6 -

Alkynylamino is, for example, 2-propynylamino.

Cycloalkylamino is, for example, cyclopropylamino.

Alkylthio or alkylmercapto is, for example, methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, sec-butylthio or tert-butylthio.

Alkylideneimino is, for example, 2-propylideneimino or 2-butylideneimino.

Alkoxycarbonyl is, for example, methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl or tert-butoxycarbonyl.

A haloalkyl group may contain one or more halogen atoms, such as fluorine, chlorine or bromine, for example fluoromethyl, difluoromethyl, chloromethyl, dichloromethyl, dibromomethyl, 2-fluoroethyl, 2,2,2-trifluoroethyl, 2-chloroethyl or 2,2,2-trichloroethyl. There may be mentioned as examples of a polyhalogenated alkyl group trifluoromethyl, chlorodifluoromethyl, dichlorofluoromethyl, trichloromethyl, tribromomethyl, pentafluoroethyl and heptafluoropropyl.

Cycloalkyl radicals that are suitable as substituents are, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

Cycloalkyl-C₁-C₃alkyl radicals that are suitable as substituents are, for example, cyclopropyl-methyl, cyclopropyl-ethyl, cyclopropyl-propyl, cyclobutyl-methyl, cyclobutyl-ethyl, cyclopentyl-methyl, cyclopentyl-ethyl, cyclopentyl-propyl, cyclohexyl-methyl and cyclohexyl-ethyl.

Cycloalkyl- C_1 - or - C_2 -alkoxy radicals that are suitable as substituents are, for example, cyclopropyl-methoxy, cyclopropyl-ethoxy, cyclobutyl-methoxy, cyclobutyl-ethoxy, cyclopentyl-methoxy, cyclopentyl-methoxy, cyclopentyl-methoxy.

Oxacycloalkyl radicals that are suitable as substituents are, for example, oxacyclobutyl, oxacyclopentyl, oxacyclohexyl and oxacycloheptyl, especially oxetan-3-yl, 3-methyloxetan-3-yl, 3-ethyloxetan-3-yl and 2-methyloxetan-3-yl.

Oxacycloalkyl- C_1 - C_3 alkyl radicals that are suitable as substituents are, for example, oxiran-2-yl-methyl, oxacyclobutyl-methyl, oxacyclobutyl-ethyl, oxacyclobutyl-propyl, oxacyclopentyl-methyl, oxacyclopentyl-propyl, oxacyclohexyl-methyl, oxacyclohexyl-propyl, oxacyclohexyl-methyl, oxacyclohexyl-propyl, oxacycloheptyl-methyl and oxacycloheptyl-propyl.

Dioxacycloalkyl radicals that are suitable as substituents are, for example, dioxacyclopentyl, dioxacyclohexyl, dioxacycloheptyl, methyldioxacyclopentyl, dimethyldioxacyclopentyl and dimethyldioxacyclohexyl.

Dioxacycloalkyl-C₁-C₃alkyl radicals that are suitable as substituents are, for example, dioxacyclopentyl-methyl, dioxacyclopentyl-ethyl, dioxacyclopentyl-propyl, dioxacyclohexyl-methyl, dioxacyclohexyl-propyl and dioxacycloheptyl-methyl, especially (1,3-dioxolan-2-yl)-methyl, (1,3-dioxolan-2-yl)-ethyl, (1,3-dioxan-2-yl)-ethyl and [1,3-(2,2-dimethyl)-dioxolan-5-yl]-methyl.

The invention also includes the salts that the compounds of formula I are capable of forming with amines, alkali metal and alkaline earth metal bases or quaternary ammonium bases.

Suitable salts of the free carboxy groups are especially salts of alkali metals, such as lithium, sodium and potassium, salts of alkaline earth metals, such as magnesium and calcium, or salts of organic ammonium bases, such as ammonia and primary, secondary and tertiary alkylamines.

Of the alkali metal and alkaline earth metal hydroxides, as salt formers, special mention should be made of the hydroxides of lithium, sodium, potassium, magnesium and calcium, but especially those of sodium and potassium.

Examples of amines that are suitable for the formation of ammonium salts include both ammonia and primary, secondary and tertiary C_1 - C_{18} alkylamines, C_1 - C_4 hydroxyalkylamines and C_2 - C_4 alkoxyalkylamines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four isomers of butylamine, n-amylamine, isoamylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methyl-ethylamine, methyl-isopropylamine, methyl-hexylamine, methyl-nonylamine, methyl-pentadecylamine, methyl-octa-

decylamine, ethyl-butylamine, ethyl-heptylamine, ethyl-octylamine, hexyl-heptylamine, hexyl-octylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, di-n-amylamine, diisoamylamine, dihexylamine, diheptylamine, dioctylamine, ethanolamine, n-propanolamine, isopropanolamine, N,N-diethanolamine, N-ethylpropanolamine, N-butylethanolamine, allylamine, n-butenyl-2-amine, n-pentenyl-2-amine, 2,3-dimethylbutenyl-2-amine, di-butenyl-2-amine, n-hexenyl-2-amine, propylenediamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, tri-n-amylamine, methoxyethylamine and ethoxyethylamine; heterocyclic amines, such as pyridine, quinoline, isoquinoline, morpholine, piperidine, pyrrolidine, indoline, quinuclidine, azepine and imidazole; primary arylamines, such as anilines, methoxyanilines, ethoxyanilines, o,m,p-toluidines, phenylenediamines, benzidines, naphthylamines and o,m,p-chloroanilines; but especially triethylamine, isopropylamine and diisopropylamine.

When A and R together form a bond, a lactone structure as shown in compounds of formula Ir is obtained.

In preferred compounds of formula I, R₂ is hydrogen, methyl, methyl substituted by fluorine, chlorine or bromine, ethyl, pentafluoroethyl, phenyl, phenyl mono- to pentasubstituted by fluorine and mono- or di-substituted by chlorine, bromine, trifluoromethyl or methoxy, pyridyl or thienyl.

Of those compounds, especially suitable are those compounds wherein R2 is hydrogen, methyl, trifluoromethyl, chlorodifluoromethyl, dichlorofluoromethyl, dichloromethyl, trichloromethyl, dibromomethyl, ethyl, pentafluoroethyl, phenyl, phenyl mono-substituted by fluorine, chlorine, trifluoromethyl or methoxy, 2- or 3-pyridyl or 2-thienyl. Of those compounds of formula I very special preference is given to those wherein R2 is methyl, trifluoromethyl, chlorodifluoromethyl, dichlorofluoromethyl, dichloromethyl or trichloromethyl.

Preference is given also to compounds of formula I wherein R_1 is C_1 - C_3 perhaloalkyl.

Of those compounds, preference is given especially to compounds of formula I wherein R₁ is trifluoromethyl, chlorodifluoromethyl, dichlorofluoromethyl, trichloromethyl, tribromomethyl, pentafluoroethyl or heptafluoropropyl. Of those compounds of formula I very special preference is given to those wherein R_1 is trifluoromethyl.

Preference is given likewise to compounds of formula I wherein R_3 is methoxy; and R_4 is methyl, trifluoromethyl, chlorine, methoxy, difluoromethoxy, ethoxy or dimethylamino; or R_4 forms an -OCH₂CH₂- bridge to Z.

Of those compounds, compounds of formula I wherein R_3 and R_4 are methoxy are especially important.

Also preferred are those compounds of formula I wherein Z is methine.

Also suitable are compounds of formula I wherein R_3 and R_4 are methoxy; and Z is methine.

Also important are compounds of formula I wherein R is C_1 - C_4 alkyl, 2-propenyl, 2-propynyl, 2-fluoroethyl, 2-chloroethyl, 2-methoxyethyl, 2-cyanoethyl or benzyl.

Of those compounds, compounds of formula I wherein R is methyl or ethyl are especially important.

Suitable compounds are also those wherein R is hydrogen.

Also suitable are compounds wherein A and R together form a bond.

Also suitable are compounds of formula I wherein

- A is hydroxy, C₁-C₄alkoxy, 2-propenyloxy, 2-propynyloxy, benzyloxy, C₁-C₄alkyl-carbonyloxy-C₁- or -C₂-alkoxy, N,N-dimethylhydroxyamino, N-methoxyamino, cyanamino, or a group of the formula A₁, A₂, A₃ or A₄, wherein
- R₈ is a -COL group and
- L is as defined for formula I;
- R₇ is hydrogen;
- R_9 is hydrogen or C_1 - C_4 alkyl; or
- R_7 and R_9 together are -(CH_2)₃-;
- R₁₀ is hydrogen;
- R₁₁ is C₁-C₄alkyl, cyclopropylmethyl, C₃- or C₄-alkenyl, C₃- or C₄-haloalkenyl, cyclopropyl, cyclobutyl, trifluoromethyl, ethylamino, n-propylamino, 2-propynylamino, di-C₁-C₄alkylamino, morpholino, pyridyl or pyridyl substituted by halogen or by

PCT/EP95/02295 WO 96/00219

- 10 -

methoxycarbonyl, N-methoxy-methylamino, phenyl or phenyl mono- or disubstituted by fluorine, chlorine, bromine or methoxy; and is hydrogen, C₁-C₄alkyl, phenyl or phenyl mono- or di-substituted by fluorine, R_{13} chlorine, methyl, trifluoromethyl, methoxy, methoxycarbonyl or nitro.

Especially suitable are compounds of formula I wherein A is hydroxy or a group of the

formula
$$N = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
 R_{11} (A_3) or $N = \begin{bmatrix} R_{12} \\ R_{13} \end{bmatrix}$ (A_4) wherein R_{11} to R_{13} are as

defined for formula I.

Especially important are compounds of formula I wherein A is hydroxy.

Also especially suitable are compounds of formula I wherein A is a group of the formula

N —
$$\begin{bmatrix} 0 \\ | \\ s \end{bmatrix}$$
 — R_{11} (A₃) wherein R_{11} is methyl, ethyl, trifluoromethyl, 2-methyl-

2-propenyl, 3-chloro-2-propenyl, cyclopropyl, cyclopropylmethyl, dimethylamino, diethylamino, morpholino, phenyl, 2-chlorophenyl, 2-methoxycarbonylphenyl, 2-pyridyl, 3-fluoro-2-pyridyl or 3-methoxycarbonyl-2-pyridyl.

Also especially suitable are compounds of formula I wherein A is a group of the formula

$$R_{13}$$
 R_{12} R_{13} R_{13} R_{13} R_{13} is methyl, tert-butyl, phenyl,

2-chlorophenyl, 2-fluorophenyl, 2,4-difluorophenyl, 2-tolyl, 4-methoxyphenyl, 4-chlorophenyl or 3-trifluoromethylphenyl.

Also suitable are compounds of formula I wherein A is a group of the formula

$$R_7$$
 R_8 R_8 R_8 R_8 R_9 R_9 R_9 is R_9 in R_9 is R_9 is R_9 in R_9 is R_9 in R_9 is R_9 in R_9

and R_9 together are -(CH₂)₃-; and R_8 is a -COL group wherein L is as defined for

formula I.

Importance is attached to those compounds of formula If

$$\begin{array}{c|c}
\text{OCH}_3 & \text{OCH}_3 \\
\hline
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
X & \text{OH} \\
\hline
R_1 & \text{OH} \\
\hline
OR & O
\end{array}$$
(If),

wherein

R is hydrogen, methyl, ethyl, difluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-cyanoethyl, 2-methoxyethyl, 2-ethoxyethyl, n-propyl, 2-propenyl, 2-propynyl or benzyl;

R₁ is trifluoromethyl, chlorodifluoromethyl, trichloromethyl, tribromomethyl, pentafluoroethyl or heptafluoropropyl; and

R₂ is hydrogen, methyl, trifluoromethyl, chlorodifluoromethyl, dichlorofluoromethyl, dichloromethyl, trichloromethyl, dibromomethyl, ethyl, pentafluoroethyl, phenyl, phenyl mono-substituted by fluorine, chlorine, trifluoromethyl or methoxy, 2- or 3-pyridyl or 2-thienyl.

Also important are those compounds of formula Ig

wherein

WO 96/00219 PCT/EP95/02295

- 12 -

is methyl, ethyl, difluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-methoxyethyl, R 2-ethoxyethyl, n-propyl, 2-propenyl, 2-propynyl, 2-cyanoethyl or benzyl;

is methoxy or ethoxy; R_3

is methyl, trifluoromethyl, trichloromethyl, methoxy, difluoromethoxy, methyl- R_{4} amino, dimethylamino, methylthio or cyclopropyl;

is nitrogen, methine or chloromethine; and Y

Z is nitrogen or methine; or

 R_{4} forms a $-O(CH_2)_2$ - bridge to Z.

Also suitable are those compounds of formulae Ih and Ip

wherein

is hydrogen, methyl, ethyl, difluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-cyano-R ethyl, 2-methoxyethyl, 2-ethoxyethyl, n-propyl, 2-propenyl, 2-propynyl or benzyl;

is methyl, trifluoromethyl or phenyl; R_2

is methoxy, ethoxy, tert-butoxy, 2-propenyloxy, 2-propylideneiminoethoxy, N,N-di-Α methylaminooxy, methoxyamino, cyanamino, imidazolyl or a group of the formula

$$\begin{array}{c|c}
 & R_{10} \\
 & R_{7} \\
 & R_{9}
\end{array}$$

$$\begin{array}{c|c}
 & R_{8} \\
 & R_{9}
\end{array}$$

$$\begin{array}{c|c}
 & R_{10} \\
 & R_{9}
\end{array}$$

$$\begin{array}{c|c}
 & R_{10} \\
 & R_{10}
\end{array}$$

$$\begin{array}{c|c}
 & R_{10} \\
 & R_{20}
\end{array}$$

wherein

 R_7 is hydrogen;

is hydrogen, C₁-C₄alkyl or C₁-C₄alkyl substituted by carboxy, phenyl, methylphos- R_{q} phino or methylthio; or

 R_7 and R_9 together are -(CH_2)₃-;

 R_8 is methylphosphino or a -COL group, and L is hydroxy or C_1 - C_4 alkoxy; and R_{10} is hydrogen.

Preference is given also to compounds of formula Ii

$$\begin{array}{c|c} OCH_3 & OCH_3 \\ \hline & N & N \\ \hline & X & \\ CF_3 & CH & C \\ \hline & CH & C \\ \hline & NH-SO_2-R_{11} \\ \hline & OR & O \\ \end{array}$$

wherein

R is hydrogen, methyl, ethyl, difluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-cyanoethyl, 2-methoxyethyl, 2-ethoxyethyl, n-propyl, 2-propenyl, 2-propynyl or benzyl;

R₂ is methyl or trifluoromethyl; and

R₁₁ is methyl, ethyl, trifluoromethyl, 2-methyl-2-propenyl, 3-chloro-2-propenyl, cyclo-propyl, dimethylamino, diethylamino, morpholino, phenyl, 2-chlorophenyl,
 2-methoxycarbonylphenyl, 2-pyridyl, 3-fluoro-2-pyridyl or 2-fluoro-3-pyridyl.

Preference is given also to those compounds of formula Ij

$$OCH_3$$
 OCH_3 $OCH_$

wherein

R is hydrogen, methyl, ethyl, difluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-methoxyethyl, 2-ethoxyethyl, n-propyl, 2-propenyl, 2-propynyl, 2-cyanoethyl or benzyl;

R₂ is methyl, trifluoromethyl or phenyl;

R₁₂ is hydrogen or methyl; and

R₁₃ is methyl, tert-butyl, phenyl, 2-chlorophenyl, 2-fluorophenyl, 2-tolyl, 2,4-difluorophenyl, 4-chlorophenyl, 3-trifluoromethylphenyl or 4-methoxyphenyl.

Preference is given also to those compounds of formula It

$$OCH_3$$
 OCH_3 X X (It) , R_1 CH OCH_3

wherein

X is oxygen or sulfur;

R₁ is trifluoromethyl, pentafluoroethyl or heptafluoropropyl; and

R₂ is methyl, ethyl, trifluoromethyl or phenyl.

Preference is likewise given to compounds of formula Ir

$$\begin{array}{c}
R_1 \\
X \\
X \\
R_2
\end{array}$$

$$\begin{array}{c}
R_3 \\
X \\
O
\end{array}$$
(Ir),

wherein

 R_2 to R_4 , X, Y and Z are as defined for formula I and R_1 is C_1 - C_7 alkyl, or R_1 together with R_2 is -(CH₂)₄- or -(CH₂)₅-.

There may be mentioned as very especially preferred individual compounds within the

- 15 -

scope of formula I, in the form of a mixture of stereoisomers or in the form of pure isomers:

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-trifluoromethylbutyric acid;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-hydroxy-3-trifluoromethylbutyric acid;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-ethoxy-3-trifluoromethylbutyric acid;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methyl-3-trifluoromethyl-oxetanone;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-methoxy-3-trifluoromethylbutyric acid;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-ethoxy-3-trifluoromethylbutyric acid;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3,3-bis-trifluoromethylpropionic acid; and

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-hydroxy-3,3-bis-trifluoromethylpropionic acid.

The process according to the invention for the preparation of the compounds of formula-Iis carried out analogously to known processes and comprises, for the preparation of the acid derivatives of formula Ia

$$\begin{array}{c|c} R_4 & Z & R_3 \\ & X & Y \\ & X & \\ & & CH & \\$$

wherein R₁ to R₄, X, Y and Z are as defined for formula I and R is C₁-C₆alkyl, C₁-C₄haloalkyl, C₁- or C₂-alkyl substituted by C₁- or C₂-alkoxy, cyano, phenyl or phenyl substituted by halogen, methyl, methoxy or trifluoromethyl, C3-C6alkenyl, C3-C6alkynyl, C₃-C₆cycloalkyl-C₁- or -C₂-alkyl, C₄-C₆cycloalkyl, C₁-C₄alkylcarbonyl or C₁-C₄alkylsulfonyl,

a) converting a compound of formula III

$$R_4$$
 Z
 X
 X
 X
 CH_2
 CH_2
 R_{20}
 R_{20}
 R_{20}

wherein R_3 , R_4 , X, Y and Z are as defined and R_{20} is C_1 - C_6 alkoxy, chloroethoxy, 2-trimethylsilylethoxy, 2-propenyloxy, benzyloxy or benzyloxy substituted by methoxy, with a compound of formula Π

$$\begin{array}{c|c}
|l \\
R_1 - C - R_2
\end{array}$$
(II),

wherein \mathbf{R}_1 and \mathbf{R}_2 are as defined, in the presence of a suitable base into a compound of formula Ib

wherein R_1 to R_4 , X, Y, Z and R_{20} are as defined, and then alkylating, acylating or sulfonylating the compound of formula Ib with a compound of formula IX

$$R-L_5$$
 (IX),

wherein R is as defined and L_5 is a leaving group, especially chlorine, bromine, iodine or a methylsulfonyloxy, p-toluenesulfonyloxy, methoxysulfonyloxy or ethoxysulfonyloxy group, to form the compound of formula In

$$\begin{array}{c|c} R_4 & Z & R_3 \\ & X & & \\ & X & & \\ & X & & \\ & & X & & \\ & & & \\ R_1 & & & \\$$

wherein R, R_1 to R_4 , R_{20} , X, Y and Z are as defined, where appropriate in the presence of a base and a suitable solvent, and then reacting that compound of formula In further under hydrolytic or hydrogenolytic conditions or, when R_{20} is the tert- C_4H_9 -O- group, under acid-catalysed conditions; or

b) reacting a compound of formula IIIa

with a compound of formula II

$$R_1 - C - R_2$$
 (II),

in the presence of a suitable base, to form a compound of formula Ic

wherein in the compounds of formulae IIIa, II and Ic the radicals R_1 to R_4 , X, Y and Z are as defined for formula I, and then alkylating, acylating or sulfonylating the compound of formula Ic with a compound of formula IX

$$R-L_5$$
 (IX),

wherein R is as defined and L5 is a leaving group, especially chlorine, bromine, iodine or a methylsulfonyloxy, p-toluenesulfonyloxy, methoxysulfonyloxy or ethoxysulfonyloxy group, where appropriate in the presence of a base and a suitable solvent, to form a compound of formula Io

$$\begin{array}{c|c} R_4 & Z & R_3 \\ & X & & \\ & CH & & \\ & CCC(CH_3)_3 & & \\ & & &$$

and then hydrolysing the compound of formula Io with trifluoroacetic acid, sulfuric acid or a mixture of sulfuric acid and acetic acid, where appropriate in the presence of an additional solvent.

The process according to the invention for the preparation of the acid derivatives of formula Iq

$$\begin{array}{c|c}
R_4 & Z & R_3 \\
 & X & & \\
 & R_1 & & CH & \\
 & C & & C & \\
 & R_2 & & & \\
 & OH & & O
\end{array}$$
(Iq),

wherein R_2 to R_4 , X, Y and Z are as defined for formula I and R_1 is C_1 - C_7 alkyl or C_1 - C_7 haloalkyl, or R_1 together with R_2 is -(CH₂)₄- or -(CH₂)₅-, comprises reacting a compound of formula IIIa

$$R_4$$
 X
 X
 CH_2
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

with a compound of formula II

$$\begin{array}{c}
O \\
\parallel \\
R_1 - C - R_2
\end{array}$$
(II),

in the presence of a suitable base, to form a compound of formula Ic

wherein in the compounds of formulae IIIa, II and Ic the radicals R2 to R4, X, Y and Z are as defined for formula I and R_1 is C_1 - C_7 alkyl or C_1 - C_7 haloalkyl, or R_1 together with R_2 is -(CH₂)₄- or -(CH₂)₅-, and then hydrolysing the compound of formula Ic with trifluoroacetic acid, sulfuric acid, phosphoric acid or a mixture of sulfuric acid and acetic acid, where appropriate in the presence of an additional solvent.

The process according to the invention for the preparation of the compounds of formula Im

$$\begin{array}{c|c}
R_4 & Z & R_3 \\
& & Y & \\
& & X & \\
& & X & \\
R_2 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

wherein R₁ to R₄, X, Y and Z are as defined for formula I, R is C₁-C₆alkyl, C₁-C₄haloalkyl, C1- or C2-alkyl substituted by C1- or C2-alkoxy, cyano, phenyl or phenyl substituted by halogen, methyl, methoxy or trifluoromethyl, C3-C6alkenyl, C3-C6alkynyl, $C_3\text{-}C_6\text{cycloalkyl-}C_1\text{- or -}C_2\text{-alkyl, }C_4\text{-}C_6\text{cycloalkyl, }C_1\text{-}C_4\text{alkylcarbonyl or }C_1\text{-}C_4\text{alkyl-}C_4\text{-alk$ sulfonyl and A is -OR5, -SR6, cyanamino or a group A1 to A4, comprises converting a compound of formula Ia

wherein R, R₁ to R₄, X, Y and Z are as defined,

a) by reaction with a compound of formula VII

$$A_a-L_3$$
 (VII),

wherein

A_a is a leaving group, especially chlorine, bromine, 2,4,6-triisopropylphenyl-sulfonyl, imidazolyl, triazolyl, 2-thionothiazolidin-3-yl or N,N'-dicyclohexyl-isoureidyl, and
 L₃ is -S(O)Cl, -C(O)Cl, -C(O)Cl, -PCl₄, -P(O)Cl₂, -P(O)Br₂, 2,4,6-triisopropyl-phenyl-sulfonyl, imidazolyl, triazolyl, N-carbonylimidazole or N-carbonyltriazole, into the compound of formula Id

wherein R_1 to R_4 , X, Y and Z are as defined for formula I and R and A_a are as defined above, and then reacting the compound of formula Id with a compound of formula V

wherein A is $-OR_5$, $-SR_6$, cyanamino or a group A_1 to A_4 , where appropriate in the presence of a base and a solvent; or

b) by treatment with a water-removing reagent, such as phosphorus oxychloride, into the compound of formula Ie

wherein R_1 to R_4 , X, Y and Z are as defined for formula I and R is as defined above, and then reacting the compound of formula Ie with a compound of formula V

wherein A is $-OR_5$, $-SR_6$, cyanamino, hydroxyamino, C_1 - C_6 alkoxyamino, C_1 - C_3 alkoxy- $(C_1$ - C_3 alkyl)amino or a group A_1 to A_4 , where appropriate in the presence of a base and a solvent.

The process according to the invention for the preparation of the compounds of formulae Ir and Is

wherein R_2 to R_4 , X, Y, Z and A are as defined for formula I and R_1 is C_1 - C_7 alkyl or C_1 - C_7 haloalkyl, or R_1 together with R_2 is -(CH_2)₄- or -(CH_2)₅-, comprises converting a compound of formula Iq

$$\begin{array}{c|c}
R_4 & Z & R_3 \\
& X & & & \\
& X & & & \\
R_1 & & CH & & OH \\
& R_2 & & & & \\
& OH & & O & & \\
\end{array}$$
(Iq),

wherein R_1 to R_4 , X, Y and Z are as defined, by treatment with a water-removing reagent, such as phosphorus oxychloride, phosphorus trichloride, phosphorus pentachloride, phosphorus oxybromide, thionyl chloride, oxalyl chloride, acetic anhydride, sulfuric acid, dimethyl- or diethyl-aminosulfur trifluoride, into the compound of formula Ir

wherein R_2 to R_4 , X, Y and Z are as defined for formula I and R_1 is C_1 - C_7 alkyl or C_1 - C_7 haloalkyl, or R_1 together with R_2 is - $(CH_2)_4$ - or - $(CH_2)_5$ -, and then reacting the compound of formula Ir with a compound of formula V

wherein A is hydroxy, -OR₅, -SR₆, cyanamino, hydroxyamino, C_1 - C_6 alkoxyamino, C_1 - C_3 alkoxy- C_1 - C_6 alkylamino or a group A_1 to A_4 , where appropriate in the presence of a base and a solvent.

Compounds of formula IIIa

wherein R₃, R₄, X, Y and Z are as defined for formula I can be prepared by

a) reacting a compound of formula IV or IVa

wherein M^{\oplus} is a cation, such as a sodium, calcium, lithium, magnesium, dimethylammonium or triethylammonium ion, with bromo- or chloro-acetic acid tert-butyl ester in the presence of a base and a suitable solvent; or

b) reacting a compound of formula VI

$$\begin{array}{c|c}
R_4 & Z & R_3 \\
N & Y & (VI)
\end{array}$$

with hydroxy- or mercapto-acetic acid tert-butyl ester (VIII) in the presence of a base and a suitable solvent; in the compounds of formulae IV and VI the radicals R_3 , R_4 , X, Y and Z are as defined for formula I and L_4 is a leaving group, such as fluorine, chlorine, methyl-sulfonyl or benzylsulfonyl.

The process variants for the preparation of the acid derivatives of formula Ia wherein R is C₁-C₆alkyl, C₁-C₄haloalkyl, C₁- or C₂-alkyl substituted by C₁- or C₂-alkoxy, cyano, phenyl or phenyl substituted by halogen, methyl, methoxy or trifluoromethyl, C₃-C₆alkenyl, C₃-C₆alkynyl, C₃-C₆cycloalkyl-C₁- or -C₂-alkyl, C₄-C₆cycloalkyl, C₁-C₄alkylcarbonyl or C₁-C₄alkylsulfonyl, follow Reaction scheme 1, the preparation of acid derivatives of formulae Ia and Iq wherein R is hydrogen advantageously being effected using Process variant 1b) via the acid-catalysed removal of isobutylene (see Reaction scheme 3). The process variant for the preparation of the compounds of formula Im wherein A is -OR5, -SR6, cyanamino, hydroxyamino, C1-C6alkoxyamino, C₁-C₃alkoxy-C₁-C₃alkylamino or a group A₁ to A₄, and R has the meanings given, with the exception of hydrogen, follows Reaction scheme 2; the process variant for the preparation of compounds of formulae Iq, Ir and Is (and Im wherein R is hydrogen) wherein the radical R_1 is C_1 - C_7 alkyl or C_1 - C_7 haloalkyl, or R_1 together with R_2 is -(CH₂)₄or -(CH₂)₅-, and the radicals R₂ to R₄, X, Y, Z and A are as defined, follows Reaction scheme 3, and the process variants for the preparation of the novel intermediates of formula IIIa follow Reaction scheme 4.

Reaction scheme 1:

Route a):

Route b):

Reaction scheme 2:

Route a):

$$\begin{array}{c|c} R_4 & Z & R_3 \\ & X & Y \\ & X & \\ R_2 & C & C \\ & R_2 & 0 \\ & &$$

Route b):

Reaction scheme 3:

Is (or Im wherein R=H)

- 30 -

Reaction scheme 4:

Route a):

Route b):

$$\begin{array}{c} R_4 \\ Z \\ N \\ Y \end{array}$$

$$\begin{array}{c} R_3 \\ VIII \\ \\ base \ e.g. \ K_2CO_3, \ pyridine \ etc. \\ solvent \end{array}$$

$$\begin{array}{c} R_4 \\ Z \\ N \\ Y \\ X \end{array}$$

$$\begin{array}{c} CH_2 - C \\ C - OC(CH_3)_3 \\ UI \end{array}$$

$$\begin{array}{c} VIII \\ VIII \\ O \\ VIII \end{array}$$

The condensation reaction of the compounds of formulae III and IIIa with compounds of formula II in accordance with Reaction scheme 1 can advantageously be carried out in the presence of a strong base, such as lithium diisopropylamide, a potassium, sodium or lithium salt of hexamethyldisilazane, n-butyllithium, sec-butyllithium, tert-butyllithium or phenyllithium in hexane, heptane, diethoxymethane, isooctane, diethyl ether or tetrahydrofuran, especially with bis(trimethylsilyl)lithium amide in hexane and/or tetrahydrofuran, in accordance with processes known per se at temperatures of from -78°C to 0°C, preferably at temperatures of from -70°C to -50°C, in one of the solvents mentioned above and analogously to EP-A-0 409 368, EP-A-0 517 215, Japanese Patent 04 342 573 and J. Org. Chem. 54, 1543 (1989). There may be obtained an isomeric mixture of compounds of formula Ib or Ic or alternatively, depending upon the substituents $R_1,\,R_2,\,X,\,R_{20}$ and -OC(CH₃)₃ and the reaction conditions used, a concentration of one or other isomeric form may be obtained preferentially. The isomeric mixture of compounds of formula Ib or Ic can be separated by known methods, for example by means of column chromatography or by fractional crystallisation with the aid of a suitable solvent.

WO 96/00219 PCT/EP95/02295

Compounds of formula In or Io wherein R has the meaning given above, with the exception of hydrogen, can be prepared by reacting the intermediate of formula Ib or Ic with the corresponding electrophilic compound of formula IX in the presence of a base, such as sodium hydride, potassium hydride, lithium diisopropylamide, tetramethylethylenediamine, triethylamine, 4-dimethylaminopyridine or diisopropylethylamine, in the presence of a suitable solvent, such as the solvents indicated above, or N₁N-dimethylformamide, N-methylpyrrolidone, acetonitrile, toluene, dimethyl sulfoxide or a mixture thereof. The reaction is carried out at from -50°C to the boiling temperature of the reaction mixture, preferably from 0°C to 80°C. Suitable alkylating agents of formula IX are, especially for the preparation of compounds of formula I wherein R is methyl or ethyl, dimethyl sulfate and diethyl sulfate.

Advantageously, the reaction of III to In or IIIa to Io can be carried out directly *in situ* without isolation of the intermediates of formula Ib or Ic, respectively. In that case, the lithium, sodium or potassium salt obtained as intermediate at temperatures of from -78°C to 0°C during the reaction of III to Ib or IIIa to Ic is combined directly at temperatures of from -50°C to 0°C with the electrophilic compound of formula IX and then, if necessary, the reaction mixture can be heated until the reaction is complete. The resulting isomeric mixture of formula In or Io can be separated by known methods, such as column chromatography or fractional crystallisation.

Compounds of formula In wherein R₂₀ is C₁-C₆alkoxy, chloroethoxy, 2-trimethylsilylethoxy, 2-propenyloxy, benzyloxy or benzyloxy substituted by methoxy, can be converted analogously to known processes, such as those described, for example, in EP-A-0 347 811, EP-A-0 400 741, EP-A-0 409 368, EP-A-0 481 512 and EP-A-0 517 215, by hydrolysis or hydrogenolysis into the acids of formula Ia in accordance with Reaction scheme 1, Route a). Suitable hydrolysing agents are, for example, sodium and potassium hydroxide or sodium and potassium carbonate. Tris(triphenylphosphine)-rhodium(I) chloride (Wilkinson catalyst) is suitable as hydrolysing agent, for example, where R₂₀ is 2-propenyloxy, and hydrogen in the presence of a palladium/carbon catalyst is suitable as hydrolysing agent where R₂₀ is benzyloxy. Suitable solvents for the hydrolysis are, for example, water or mixtures of methanol/water, ethanol/water, tetrahydrofuran/water, diethoxymethane/water, dioxane/water or N,N-dimethylformamide/water. Suitable solvents for the hydrogenolysis are especially methanol, ethanol, ethyl acetate, acetic acid, trifluoroacetic acid, dioxane and water, and mixtures thereof.

Some of those known hydrolysis and hydrogenolysis processes, however, yield the acid of formula Ia, if at all, only in poor yields and with an insufficient degree of purity.

It has been found that hydrolysis of the compounds of formula Io (wherein R₂₀ is -OC(CH₃)₃) produces the desired acid of formula Ia very readily in a good yield and with a high degree of purity with trifluoroacetic acid, phosphoric acid, sulfuric acid or a mixture of sulfuric acid and acetic acid and, where appropriate, in the presence of an additional solvent, such as dichloromethane, n-hexane, toluene or dioxane, in accordance with Reaction scheme 1, Route b). In that process it is advantageous to work with a slight excess of trifluoroacetic acid and without an additional solvent at mild temperatures of approx. from 0°C to 25°C or at slightly elevated temperatures of up to approx. 70°C. When trifluoroacetic acid is used as reaction medium, the excess trifluoroacetic acid can subsequently be evaporated off *in vacuo*.

Compounds of formula Im wherein A is -OR5, -SR6, cyanamino, hydroxy, C1-C6alkoxyamino, C_1 - C_3 alkoxy(C_1 - C_3 alkyl)amino or a group A_1 to A_4 can be prepared, for example, by reacting an acid of formula Ia with a chlorinating agent Aa-L3 (VII), such as phosphorus oxychloride, thionyl chloride, oxalyl chloride or phosgene, phosphorus pentachloride or phosphorus oxybromide, especially phosphorus oxychloride, in the presence of a base, such as triethylamine, N,N-dimethylaniline or pyridine, and where appropriate in a solvent, such as a hydrocarbon, for example toluene, a chlorinated hydrocarbon, for example methylene chloride, or an ether, for example tetrahydrofuran, in a temperature range of from -20°C to the reflux temperature of the reaction mixture, preferably at from -5°C to 25°C, to form a compound of formula Id wherein A_a is chlorine or bromine, and reacting the corresponding acid chloride (wherein A_a is chlorine), also without isolation, directly with the corresponding nucleophilic compound of formula V, where appropriate in the presence of an additional base, especially a tertiary amine, such as triethylamine, N,N-dimethylaniline, 1,8-diazabicyclo[5.4.0]undec-7-ene, imidazole, pyridine or 2,5-dimethylpyridine, in accordance with Reaction scheme 2. The base can be used in a catalytic amount or in a stoichiometric amount or in excess, preferably in a stoichiometric amount or a slight excess. It is also possible to use as the base a slight excess, such as 2 equivalents, of the substrate of formula V used.

The reaction is preferably carried out also in the presence of a suitable solvent, for example a hydrocarbon, such as toluene; a halogenated hydrocarbon, such as dichloro-

methane, 1,2-dichloroethane or chlorobenzene; an ether, such as diethyl ether, diethoxymethane or tert-butyl methyl ether; an ester, such as ethyl acetate; an aprotic solvent, such as acetonitrile; a protic solvent, such as ethanol or water; or a two-phase system, such as a mixture of dichloromethane/water, toluene/water, ethyl acetate/water or tert-butyl methyl ether/water. The reaction temperatures may be varied within a wide range of approximately from -40°C to the boiling temperature of the solvent used. The reaction is preferably carried out, however, at temperatures of from -20°C to approx. +30°C, especially from -10°C to +10°C. The reaction times may, however, vary widely according to the temperature of the reaction mixture and the base used.

Compounds of formula Id wherein A_a is a leaving group, such as 2,4,6-triisopropylphenyl-sulfonyl, imidazolyl, triazolyl, 2-thiono-thiazolidin-3-yl or N,N'-dicyclohexyl-isoureidyl, can likewise be prepared from compounds of formula Ia in accordance with known conversion processes using 1-(2,4,6-triisopropylphenyl-sulfonyl)-imidazole as described in Tetrahedron Lett. 1973, 1353, using 1-(2,4,6-triisopropylphenyl-sulfonyl)-1H-1,2,4-triazole as described in Chem. Commun. 1974, 325, using 1,1'-carbonyl-diimidazole or 1,1'-carbonyl-di(1,2,4-triazole) as described in Angew. Chem. 74, 407 (1962), using thiazolidine-2-thione as described in Tetrahedron Lett. 21, 841 (1980), or using dicyclohexylcarbodiimide. In those cases also, the intermediates of formula Id can be reacted directly with the nucleophilic compound of formula V without being isolated.

It has now been found that the hydrolysis of the compounds of formula Ic (wherein R₂₀ is -OC(CH₃)₃) produces the desired acid of formula Iq very readily in a good yield and with a high degree of purity with trifluoroacetic acid, sulfuric acid, phosphoric acid or a mixture of sulfuric acid and acetic acid, where appropriate in the presence of an additional solvent, such as dichloromethane, n-hexane, toluene or dioxane, in accordance with Reaction scheme 3. In that process it is advantageous to work with a slight excess of trifluoroacetic acid and without an additional solvent at mild temperatures of approx. from 0°C to 25°C or at slightly elevated temperatures of up to approx. 70°C. When trifluoroacetic acid is used as reaction medium, the excess trifluoroacetic acid is subsequently evaporated off in vacuo.

The acid of formula Iq is then converted using from 0.50 to approx. 2 equivalents, preferably approx. 1 equivalent, of a water-removing agent, such as phosphorus oxychloride, and a slight excess of from 2.0 to 3.0 equivalents of triethylamine, into the corresponding oxetanone of formula Ir in accordance with Reaction scheme 3 and then reacted with the

corresponding nucleophilic compound of formula V as described for Reaction scheme 2. The novel compounds of formula Ir can either be isolated or, if desired, converted directly into the compounds of formula Is or, in the case of hydrolysis, into the compounds of formula Iq.

The novel compounds of formula IIIa can be prepared analogously to known processes, for example by

a) reacting a hydroxy- or mercapto-pyrimidine or -triazine of formula IV, or a corresponding salt of formula IVa, which may be prepared in situ,

wherein M[⊕] is a cation, such as a sodium, calcium, lithium, magnesium, dimethylammonium or triethylammonium ion, with bromo- or chloro-acetic acid tert-butyl ester in the presence of a base, such as sodium hydrogen carbonate, potassium carbonate, sodium hydride, triethylamine or pyridine, in a suitable solvent, such as acetone, acetonitrile, tetrahydrofuran, ethyl acetate, methyl Cellosolve, dimethoxyethane, toluene, N-methyl-pyrrolidone, N,N-dimethylformamide, methanol, water or a suitable mixture of the mentioned solvents, in accordance with Reaction scheme 4, Route a); or

b) reacting a corresponding fluoro- or chloro-pyrimidine or -triazine or methyl- or benzyl-sulfonylpyrimidine of formula VI under the reaction conditions mentioned under a) with hydroxy- or mercapto-acetic acid tert-butyl ester (VIII) in accordance with Reaction scheme 4, Route b).

In particular, compounds of formula III wherein X is sulfur can advantageously be prepared by first converting a compound of formula VI wherein L_4 is methylsulfonyl with sodium hydrogen sulfide into the compound of formula IVa, which is then reacted *in situ* with bromo- or chloro-acetic acid tert-butyl ester.

For the preparation of compounds of formula III wherein X is oxygen, it has proved advantageous to use bromoacetic acid tert-butyl ester and, where appropriate, to carry out the reaction in the presence of iodide ions. In addition, both in process a) and in process b), the addition of crown ethers can accelerate the reaction.

Compounds of formulae IV, V, VI, VII, VIII and IX wherein R, R_3 , R_4 , X, Y, Z, A, A_a , L_3 , L_4 and L_5 are as defined above are known and can be prepared in accordance with processes known in the literature.

(Per-)haloketones of formula II wherein R_1 and R_2 are as defined above are for the most part known or can be prepared in accordance with known processes, for example analogously to Houben-Weyl 1977, Vol. VII/2c, 2145-2170.

For the use according to the invention of the compounds of formula I, or compositions comprising them, there come into consideration all the methods of application customary in agriculture, such as preemergence application, postemergence application and seed dressing, as well as various methods and techniques, such as the controlled release of active ingredient. For that purpose a solution of the active ingredient is applied to mineral granule carriers or polymerised granules (urea/formaldehyde) and dried. If required, it is also possible to apply a coating (coated granules) which allows the active ingredient to be released in metered amounts over a specific period of time.

The compounds of formula I can be used in unmodified form, i.e. as obtained during synthesis, but are preferably formulated in customary manner together with the adjuvants conventionally employed in formulation technology, e.g. into emulsifiable concentrates, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules or microcapsules. As with the nature of the compositions, the methods of application, such as spraying, atomising, dusting, wetting, scattering or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances.

The formulations, i.e. the compositions, preparations or mixtures comprising the compound (active ingredient) of formula I or at least one compound of formula I and, where appropriate, one or more solid or liquid formulation adjuvants, are prepared in known manner, e.g. by homogeneously mixing and/or grinding the active ingredients with the adjuvants, e.g. solvents or solid carriers. Surface-active compounds (surfactants) may

WO 96/00219 PCT/EP95/02295

additionally be used in the preparation of the formulations.

Suitable solvents are: aromatic hydrocarbons, preferably the fractions containing 8 to 12 carbon atoms, such as mixtures of alkylbenzenes, e.g. xylene mixtures or alkylated naphthalenes; aliphatic and cycloaliphatic hydrocarbons such as paraffins, cyclohexane or tetrahydronaphthalene; alcohols, such as ethanol, propanol or butanol; glycols and their ethers and esters, such as propylene glycol or dipropylene glycol ether, ketones such as cyclohexanone, isophorone or diacetone alcohol, strongly polar solvents such as N-methyl-2-pyrrolidone, dimethyl sulfoxide or water; vegetable oils and their esters, such as rape oil, castor oil or soybean oil; and optionally also silicone oils.

The solid carriers used e.g. for dusts and dispersible powders are normally natural mineral fillers, such as calcite, talcum, kaolin, montmorillonite or attapulgite. In order to improve the physical properties it is also possible to add highly dispersed silicic acid or highly dispersed absorbent polymers. Suitable granulated adsorptive carriers are porous types, for example pumice, broken brick, sepiolite or bentonite; and suitable non-sorbent carriers are, for example, calcite or sand. In addition, a great number of pregranulated materials of inorganic or organic nature can be used, such as especially dolomite or pulverised plant residues.

Depending on the nature of the compound of formula I to be formulated, suitable surface-active compounds are non-ionic, cationic and/or anionic surfactants having good emulsifying, dispersing and wetting properties. The term "surfactants" will also be understood as comprising mixtures of surfactants.

Both so-called water-soluble soaps and water-soluble synthetic surface-active compounds are suitable anionic surfactants.

Suitable soaps are the alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts of higher fatty acids (C_{10} - C_{22}), e.g. the sodium or potassium salts of oleic or stearic acid, or of natural fatty acid mixtures which can be obtained e.g. from coconut oil or tallow oil; mention may also be made of fatty acid methyltaurin salts.

More frequently, however, so-called synthetic surfactants are used, especially fatty alcohol sulfonates, fatty alcohol sulfates, sulfonated benzimidazole derivatives or alkylarylsulfonates.

The fatty alcohol sulfonates or sulfates are usually in the form of alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts and contain a C_8 - C_{22} alkyl radical, which also includes the alkyl moiety of acyl radicals, for example the sodium or calcium salt of lignosulfonic acid, of dodecyl sulfate or of a mixture of fatty alcohol sulfates obtained from natural fatty acids. These compounds also comprise the salts of sulfated and sulfonated fatty alcohol/ethylene oxide adducts. The sulfonated benzimidazole derivatives preferably contain 2 sulfonic acid groups and one fatty acid radical containing 8 to 22 carbon atoms. Examples of alkylarylsulfonates are the sodium, calcium or triethanolamine salts of dodecylbenzenesulfonic acid, dibutylnaphthalenesulfonic acid or of a condensate of naphthalenesulfonic acid and formaldehyde.

Also suitable are corresponding phosphates, e.g. salts of the phosphoric acid ester of an adduct of p-nonylphenol with 4 to 14 mol of ethylene oxide, or phospholipids.

Non-ionic surfactants are preferably polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols, saturated or unsaturated fatty acids and alkylphenols, it being possible for said derivatives to contain 3 to 30 glycol ether groups and 8 to 20 carbon atoms in the (aliphatic) hydrocarbon moiety and 6 to 18 carbon atoms in the alkyl moiety of the alkylphenols.

Further suitable non-ionic surfactants are water-soluble adducts of polyethylene oxide with polypropylene glycol, ethylenediaminopolypropylene glycol and alkylpolypropylene glycol containing 1 to 10 carbon atoms in the alkyl chain, which adducts contain 20 to 250 ethylene glycol ether groups and 10 to 100 propylene glycol ether groups. These compounds usually contain 1 to 5 ethylene glycol units per propylene glycol unit.

Representative examples of non-ionic surfactants are nonylphenol polyethoxyethanols, castor oil polyglycol ethers, polypropylene/polyethylene oxide adducts, tributylphenoxypolyethoxyethanol, polyethylene glycol and octylphenoxypolyethoxyethanol.

Fatty acid esters of polyoxyethylene sorbitan, e.g. polyoxyethylene sorbitan trioleate, are also suitable non-ionic surfactants.

Cationic surfactants are preferably quaternary ammonium salts which contain, as N-substituent, at least one C_8 - C_{22} alkyl radical and, as further substituents, unsubstituted or

- 38 -

halogenated lower alkyl, benzyl or hydroxy-lower alkyl radicals. The salts are preferably in the form of halides, methyl sulfates or ethyl sulfates, for example stearyltrimethylammonium chloride or benzyldi(2-chloroethyl)ethylammonium bromide.

The surfactants customarily employed in formulation technology, which can also be used in the compositions according to the invention, are described inter alia in the following publications:

- "Mc Cutcheon's Detergents and Emulsifiers Annual", Mc Publishing Corp., Glen Rock, New Jersey, 1988.
- M. and J. Ash, "Encyclopedia of Surfactants", Vol. I-III, Chemical Publishing Co., New York, 1980-1981.
- ---Dr. Helmut Stache "Tensid-Taschenbuch" (Surfactant Handbook), Carl Hanser-Verlag, Munich/Vienna 1981.

The herbicidal compositions usually comprise 0.1 to 99 %, preferably 0.1 to 95 %, of a compound of formula I. 1 to 99 % of a solid or liquid adjuvant, and 0 to 25 %, preferably 0.1 to 25 %, of a surfactant.

Whereas commercial products are preferably formulated as concentrates, the end user will normally employ dilute formulations.

The compositions may also comprise further ingredients such as stabilisers, e.g. vegetable oils and epoxidised vegetable oils (epoxidised coconut oil, rape oil or soybean oil), antifoams, e.g. silicone oil, preservatives, viscosity regulators, binders and tackifiers, as well as fertilisers or other active ingredients for obtaining special effects.

Preferred formulations have especially the following composition (throughout, percentages are by weight)

Emulsifiable concentrates:

active ingredient:

1 to 90%, preferably 5 to 50%

surfactant:

5 to 30%, preferably 10 to 20%

solvent:

15 to 94%, preferably 70 to 85%

- 39 -

Dusts:

active ingredient:

0.1 to 50%, preferably 0.1 to 1%

solid carrier:

99.9 to 90%, preferably 99.9 to 99%

Suspension concentrates:

active ingredient:

5 to 75%, preferably 10 to 50%

water:

94 to 24%, preferably 88 to 30%

surfactant:

1 to 40%, preferably 2 to 30%

Wettable powders:

active ingredient:

0.5 to 90%, preferably 1 to 80%

surfactant:

0.5 to 20%, preferably 1 to 15%

solid carrier:

5-to-95%,-preferably-15 to 90%

Granules:

active ingredient:

0.1 to 30%, preferably 0.1 to 15%

solid carrier:

99.5 to 70%, preferably 97 to 85%

The compounds of formula I are generally used successfully at rates of application of from 0.001 to 2 kg/ha, especially from 0.005 to 1 kg/ha. The concentration required to achieve the desired effect can be determined by experiment. It is dependent upon the type of action, the stage of development of the crop plant and of the weed, and also upon the application (place, time, method) and, in dependence on those parameters, can vary within wide limits.

The compounds of formula I are distinguished by growth-inhibiting and herbicidal properties that make them outstandingly suitable for use in crops of useful plants, especially in cereals, cotton, soybeans, rape, maize and rice.

Crops are also to be understood as being those which have been rendered tolerant to herbicides or classes of herbicide by conventional methods of breeding or by genetic techniques.

The Examples that follow further illustrate, but do not limit, the invention.

WO 96/00219 PCT/EP95/02295

- 40 -

Preparation examples:

Example P1: Preparation of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-acetic acid tert-butyl ester (intermediate)

A mixture of 66.0 g of 4,6-dimethoxy-2-hydroxypyrimidine, 64.0 g of bromoacetic acid tert-butyl ester, 51.0 g of potassium carbonate, 0.5 g of potassium iodide and 0.5 g of 18-crown-6 in 300 ml of dimethylformamide is thoroughly stirred for 80 minutes at 50°C.

When the reaction mixture has cooled, it is taken up in diethyl ether and washed 3 times with water and the organic phase is dried over magnesium sulfate. The diethyl ether solution is filtered off and concentrated by evaporation and the residue is dried under a high vacuum. Subsequent distillation in a bulb tube at 125°C/0.2 torr yields the desired product, 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-acetic acid tert-butyl ester; m.p.: 63-64.5°C.

Example P2: Preparation of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-hydroxy-3-tri-fluoromethylbutyric acid tert-butyl ester

At -78°C (acetone/dry ice bath), 40 ml of a 1.5 molar solution of the lithium disopropylamide-mono-tetrahydrofuran complex in cyclohexane is placed in a reaction vessel. Then, with thorough stirring, a solution of 15.4 g of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-acetic acid tert-butyl ester (Example P1) in 20 ml of tetrahydrofuran is added. After

¹H-NMR (300 MHz, CDCl₃): 5.77 ppm (s, 1H), 5.22 ppm (s, 1H), 3.95 ppm (s, 6H), 3.68 ppm (s, 1H), 1.54 ppm (s, 3H), 1.40 ppm (s, 9H).

Example P3: Preparation of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-mesyloxy-3-phenyl-3-trifluoromethyl-propionic acid tert-butyl ester

$$H_3CO$$
 OCH_3 OCH_3 $OCC(CH_3)_3$ $OCC(CH_3)_4$ $OCC(CH_3)_5$ $OCC($

7.0 g of the isomeric mixture of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-hydroxy-3-phenyl-3-trifluoromethyl-propionic acid tert-butyl ester (Comp. No. 8.006) are heated at reflux temperature in the presence of 6.4 g of triethylamine and 0.24 g of diazabicyclo-undecene (DBU) with 3.6 g of methanesulfonic acid chloride in 20 ml of toluene. After 5 hours, the reaction mixture is washed once each with aqueous sodium hydrogen carbonate solution, dilute hydrochloric acid and saturated sodium chloride solution and concentrated by evaporation using a Rotovap. The resulting crude product is separated by chromatography on silica gel (eluant diethyl ether/hexane 3/7). There is obtained as first

fraction isomer I of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-mesyloxy-3-phenyl-3-tri-fluoromethyl-propionic acid tert-butyl ester: ¹H-NMR (300 MHz, CDCl₃): 7.94 ppm (m, 2H), 7.45 ppm (m, 3H), 6.81 ppm (s, 1H), 5.78 ppm (s, 1H), 3.93 ppm (s, 6H), 3.40 ppm (s, 3H), 1.18 ppm (s, 9H).

There is obtained as second fraction isomer II of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-mesyloxy-3-phenyl-3-trifluoromethyl-propionic acid tert-butyl ester: ¹H-NMR (300 MHz, CDCl₃): 7.75 ppm (m, 2H), 7.47 ppm (m, 3H), 6.20 ppm (s, 1H), 5.78 ppm (s, 1H), 3.91 ppm (s, 6H), 3.34 ppm (s, 3H), 1.28 ppm (s, 9H).

Example P4: Preparation of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-tri-fluoromethyl-butyric acid tert-butyl ester

3.0 g of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-hydroxy-3-trifluoromethyl-butyric acid tert-butyl ester (Comp. No. 8.001) are added at 0°C to 0.32 g of a 60 % dispersion of sodium hydride in oil and the mixture is then stirred for 5 minutes at 25°C; 1.32 ml of methyl iodide are added thereto and the reaction mixture is heated slowly to 40°C. The reaction mixture is then extracted with ethyl acetate and the organic phases are combined, washed with dilute hydrochloric acid and saturated sodium chloride solution, dried over magnesium sulfate and concentrated by evaporation using a Rotovap. The residue that remains is filtered over silica gel. There is obtained as pure isomer I 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-trifluoromethyl-butyric acid tert-butyl ester: ¹H-NMR (300 MHz, CDCl₃): 5.78 ppm (s, 1H), 5.24 ppm (s, 1H), 3.94 ppm (s, 6H), 3.50 ppm (s, 3H), 1.45 ppm (s, 9H).

Example P5: Preparation of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-tri-fluoromethyl-butyric acid tert-butyl ester (in situ method)

26.0 g of 2-[4,6-dimethoxy-pyrimidin-2-yl)-thio]-acetic acid tert-butyl ester (Comp. No. 9.001, Example P7) are added in 40 ml of absolute tetrahydrofuran at a temperature below -73°C to a prepared solution of 16.7 g of lithium bis(trimethylsilyl)amide in 100 ml of hexane and 40 ml of absolute tetrahydrofuran. When the addition is complete, the reaction mixture is stirred for 20 minutes and then, at a temperature below -70°C, 11.5 ml of 1,1,1-trifluoromethylacetone are added. The temperature of the reaction mixture is allowed to rise slowly to room temperature and then 8.7 ml of dimethyl sulfate are added. That reaction mixture is then heated at the reflux temperature for 3 hours (internal temperature of reaction vessel 60°C). The reaction mixture is cooled, taken up in diethyl ether, washed in succession with water, sodium hydrogen carbonate solution, dilute hydrochloric acid and saturated sodium chloride solution, dried over magnesium sulfate and concentrated by evaporation in vacuo. The residue that remains is purified on silica gel with 5-10 % diethyl ether in hexane as eluant. There is obtained as first fraction 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-trifluoromethyl-butyric acid tert-butyl ester in the form of an isomeric mixture in a ratio of 84/16. ¹H-NMR (300 MHz, CDCl₃): 5.78 and 5.76 ppm (2s, 1H), 5.24 and 5.16 ppm (2s, 1H), 3.94 ppm (s, 6H), 3.50 and 3.45 ppm (2s, 3H), 1.71 and 1.62 ppm (2s, 3H), 1.45 and 1.43 ppm (2s, 9H).

Further elution with 10-20% diethyl ether in hexane yields as further extracts the isomers of 2-[4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-hydroxy-3-trifluoromethyl-butyric acid tert-butyl ester (Comp. No. 8.001 and 8.002); ¹H-NMR (300 MHz, CDCl₃): isomer I: 5.80 ppm (s, 1H), 5.23 ppm (s, 1H), 5.04 ppm (s, 1H), 3.95 ppm (s, 6H), 1.48 ppm (s, 12H); isomer II: 5.84 ppm (s, 1H), 5.66 ppm (s, 1H), 4.71 ppm (s, 1H), 3.95 ppm (s, 6H), 1.58 ppm (s, 3H), 1.46 ppm (s, 9H).

Example P6: Preparation of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-tri-fluoromethyl-butyric acid

$$H_3CO$$
 OCH₃

N N
S
(1.001 and 1.002)

 CF_3
 CH
 CH_3
 CH
 CH_3
 OCH_3
 OCH_3

12.1 g of an isomeric mixture of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-trifluoromethyl-butyric acid tert-butyl ester (Example P5) are left to stand for 3 hours in 20 ml of trifluoroacetic acid at room temperature. The reaction mixture is then concentrated by evaporation *in vacuo* and, for purification, taken up in diethyl ether and extracted with ice-cold sodium hydroxide solution. The aqueous phase is adjusted to pH 3 and the product is extracted with ethyl acetate. The organic phase is washed with saturated sodium chloride solution and then dried over sodium sulfate and concentrated by evaporation *in vacuo*. There is obtained by means of crystallisation from chloroform/hexane 1/5, in the form of white crystals, an 88/12 isomeric mixture of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-trifluoromethyl-butyric acid having a melting point of 124.5-125.5°C; ¹H-NMR (300 MHz, CDCl₃): isomer I: 5.81 ppm (s, 1H), 5.22 ppm (s, 1H), 3.94 ppm (s, 6H), 3.52 ppm (s, 3H), 1.73 ppm (s, 3H); isomer II: 5.78 ppm (s, 1H), 5.08 ppm (s, 1H), 3.92 ppm (s, 6H), 3.48 ppm (s, 3H), 1.66 ppm (s, 3H).

Example P7: Preparation of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-acetic acid tert-butyl ester (intermediate)

$$H_3CO$$
 OC H_3 (9.001)
$$\begin{array}{c} & & & \\ & &$$

58.5 g of 95 % sodium hydrogen sulfide-monohydrate and 76.4 g of 4,6-dimethoxy-pyrimidine-2-methylsulfone in a mixture of 350 ml of tetrahydrofuran and 500 ml of methanol are heated with vigorous stirring for 25 minutes at 60°C. The reaction mixture is then cooled to room temperature and 78.0 g of bromoacetic acid tert-butyl ester are added dropwise thereto. After brief heating at 45°C, most of the solvent is distilled off and the residue is taken up in diethyl ether. The organic phase is washed with dilute sodium hydroxide solution and then with sodium chloride solution and evaporated. Vacuum distillation at 130°C/1x10⁻² torr yields the desired product, 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-acetic acid tert-butyl ester, in the form of a slightly yellowish liquid which changes to a wax-like state when left to stand.

Example P8: Preparation of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-hydroxy-3-tri-fluoromethylbutyric acid

1.2 g of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-hydroxy-3-trifluoromethylbutyric acid tert-butyl ester (Compound No. 8.002) are left to stand for 2 hours in 3 ml of trifluoroacetic acid at room temperature. The reaction mixture is then concentrated by evaporation in vacuo, the residue is dissolved in diethyl ether and extraction is carried out with dilute sodium hydroxide solution. The alkaline/aqueous phase is separated off, adjusted to pH 2.5 and extracted again with diethyl ether. The organic phase is concentrated by evaporation and the desired product, 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-hydroxy-3-trifluoromethylbutyric acid, is obtained in the form of crystals; m.p.: 123-124°C.

Example P9: Preparation of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-trifluoromethyl-butyric acid imidazolide

$$H_3CO$$
 OCH_3
 S
 S
 CH
 CH
 OCH_3
 OC

3.75 g of 1,1-carbonyldiimidazole are placed in 22 ml of dichloromethane. At a temperature below 5°C, 6.53 g of the isomeric mixture of 2-[(4,6-dimethoxy-pyrimidin-2-yl)thio]-3-methoxy-3-trifluoromethyl-butyric acid (Example P6) dissolved in 12 ml of dimethylformamide are added dropwise thereto. The mixture is heated to room temperature and then stirred for 1 hour and the resulting reaction mixture is extracted with dichloromethane, washed with ice-cold 5 % sodium chloride solution, dried over magnesium sulfate and concentrated by evaporation in vacuo. The resulting oily product is the isomeric mixture of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-trifluoromethyl-butyric acid imidazolide; ¹H-NMR (300 MHz, CDCl₃): 8.42 and 8.35 ppm (1H), 7.64 and 7.61 ppm (1H), 7.10 and 7.08 ppm (1H), 5.92 and 5.85 ppm (2s, 1H), 5.81 and 5.80 ppm (2s, 1H), 3.90 and 3.86 ppm (2s, 6H), 3.48 and 3.38 ppm (2s, 3H), 1.84 and 1.75 ppm (2s, 3H).

Example P10: Preparation of the isomers of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3phenyl-3-trifluoromethyl-propiolactone

3.0 g of the isomeric mixture of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-hydroxy-3phenyl-3-trifluoromethyl-propionic acid (Compound Nos. 1.092 and 1.093) are dissolved in 30 ml of dichloromethane and at -10°C first 2.7 ml of triethylamine and then 0.38 ml of phosphorus oxychloride are added and the mixture is stirred for 10 minutes at -5°C. The resulting reaction mixture is washed twice with a small amount of ice-cold water and the organic phase is separated off, dried and concentrated by evaporation. The resulting amorphous residue is an isomeric mixture of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-phenyl-3-trifluoromethylpropiolactone; m.p. 100-106°C.

Example P11: Preparation of the isomers of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxyl-3hydroxy-3-phenyl-3-trifluoromethyl-propionic acid 2-chlorophenyl hydrazide

1.5 g of the propiolactone from Example P10 are again dissolved in 10 ml of dichloromethane and at 20°C first 0.37 g of ortho-chlorophenylhydrazine-hydrochloride and then 0.57 ml of triethylamine are added thereto and the mixture is stirred for 30 minutes. Diethyl ether is added to the resulting reaction mixture which is then extracted twice with sodium carbonate solution to regenerate 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-hydroxy-3-phenyl-3-trifluoromethyl-propionic acid (Compound Nos. 1.092 and 1.093). The organic phase is then separated off, washed with dilute hydrochloric acid and then with aqueous sodium chloride solution, dried and concentrated by evaporation. The resulting residue is separated by column chromatography (eluant hexane/diethyl ether = 3/2) into the two isomers of 2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-hydroxy-3-phenyl-3-trifluoromethylpropionic acid 2-chlorophenyl hydrazide. isomer I: ¹H-NMR (300 MHz, CDCl₃): 8.21 ppm (d, 1H), 7.96 ppm (broad signal, 2H), 7.50 ppm (broad signal, 3H), 7.18 ppm (m, 1H), 6.75 ppm (m, 2H), 6.52 ppm (s, 1H), 6.08 ppm (d, 1H), 5.90 ppm (s, 1H), 5.88 ppm (s, 1H), 5.00 ppm (m, 1H), 3.99 ppm

THIS PAGE BLANK (USPTO)

(s, 6H).

isomer II: ¹H-NMR (300 MHz, CDCl₃): 8.20 ppm (d, 1H), 7.71 ppm (broad signal, 2H), 7.36 ppm (broad signal, 3H), 7.19 ppm (d, 1H), 6.96 ppm (t, 1H), 6.78 ppm (t, 1H), 6.26 ppm (d, 1H), 6.22 ppm (d, 1H), 6.12 ppm (s, 1H), 5.76 ppm (s, 1H), 5.32 ppm (s, 1H), 3.85 ppm (s, 6H).

Example P12: Preparation of 2-[4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-trifluoromethylbutyric acid 2-methyl-2-propenylsulfonamide

$$H_3CO$$
 OCH₃
 N N

 N N

 S OCH₃
 GH_3
 GH

0.54 g of methyl-2-propenylsulfonamide is added at 0-5°C to a suspension of 0.17 g of sodium hydride, in the form of a 60 % dispersion in oil, and the reaction mixture is then stirred at room temperature until the evolution of hydrogen is complete. After 30 minutes, at 0-5°C 1.63 g of 2-[4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-trifluoromethylbutyric acid imidazolide (Example P9) dissolved in 5 ml of N,N-dimethylformamide are added dropwise. Stirring is then continued for 4 hours at room temperature and the reaction mixture is then extracted with ethyl acetate. The combined organic phases are washed in succession with water, dilute hydrochloric acid and sodium chloride solution, dried over magnesium sulfate and concentrated by evaporation in vacuo. Purification by column chromatography (eluant 15 % acetone/hexane) yields the concentrated isomers of 2-[4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-trifluoromethylbutyric acid 2-methyl-2-propenylsulfonamide.

isomer I: ¹H-NMR (300 MHz, CDCl₃): 8.98 ppm (broad signal, 1H), 5.73 ppm (s, 1H), 5.14 and 5.08 ppm (2xs, 2H), 4.95 ppm (s, 1H), 4.05 ppm (broad signal, 2H), 3.94 ppm (s, 6H), 3.54 ppm (s, 3H), 1.94 ppm (s, 3H), 1.72 ppm (s, 3H); isomer II: ¹H-NMR (300 MHz, CDCl₃): 9.00 ppm (broad signal), 5.71 ppm (s, 1H), 5.02 and 4.96 ppm (2xd, 2H), 4.70 ppm (s, 1H), 4.10 ppm (broad signal, 2H), 3.94 ppm (s, 6H), 1.85 ppm (s, 3H), 1.68 ppm (s, 3H).

Example P13: Preparation of 2-[(4,6-dimethoxypyrimidin-2-yl)-thio]-3,3-bis-trifluoro-methyl-propiolactone (Compound No. 7.014)

3.5 g of 2-[(4,6-dimethoxypyrimidin-2-yl)-thio]-3-hydroxy-3,3-bis-trifluoromethylbutyric acid (Compound No. 1.094) are placed at 0°C in 20 ml of dichloromethane and treated in the presence of 0.12 ml of triethylamine with 1.9 g of N,N-dicyclohexylcarbodiimide. The reaction mixture is then stirred for approx. 30 minutes at 22°C and the N,N'-dicyclohexylurea that has precipitated is filtered off. The filtrate is concentrated to dryness by evaporation. The crude desired product is obtained; ¹H-NMR (300 MHz, CDCl₃): 7.10 ppm (s, 1H), 5.88 ppm (s, 1H), 3.92 ppm (s, 6H).

Example P14: Preparation of 2-[(4,6-dimethoxypyrimidin-2-yl)-thio]-3-hydroxy-3,3-bis-trifluoromethyl-butyric acid tert-butyl hydrazide (Compound No. 5.042)

$$\begin{array}{c|c} H_3CO & OCH_3 \\ \hline & N & N \\ & S & (5.042) \\ \hline & F_3C & CH & CH_3 \\ \hline & CH_3 & CH_3 \\ \hline \end{array}$$

3.0 g of the 2-[(4,6-dimethoxypyrimidin-2-yl)-thio]-3,3-bis-trifluoromethyl-propiolactone (Compound No. 7.014) prepared in Example P13 are dissolved in tetrahydrofuran and the solution is treated in succession at 0°C with 1.0 g of tert-butyl hydrazide hydrochloride and 1.14 ml of triethylamine. After stirring for one hour at 22°C, the reaction mixture is diluted with diethyl ether and washed in succession with 1N hydrochloric acid, 5 %

sodium hydrogen carbonate solution and 30 % sodium chloride solution. The residue is concentrated to dryness by evaporation and purified by chromatography on silica gel with ethyl acetate/hexane 1/9 to 1/3 as eluant. The desired compound is obtained as an amorphous product. ¹H-NMR (300 MHz, CDCl₃): 8.55 ppm (broad signal, NH), 8.16 ppm (broad signal, OH), 5.86 ppm (s, 1H), 5.25 ppm (s, 1H), 4.63 ppm (broad signal, NH), 3.92 ppm (s, 6H), 1.03 ppm (s, 9H).

The compounds listed in Tables 1 to 8 and the intermediates of Table 9 can be prepared in analogous manner.

Table 1: Compounds of formula If

Comp.	X	R ₁	R ₂	R	Phys. data
1.001	s	CF ₃	CH ₃	CH ₃	isomer I: Example P6
1.002	S	CF ₃	CH ₃	CH ₃	isomer II: m.p. 126-128°C
1.003	S	CF ₃	phenyl	CH ₃	isomer I: m.p. 136-138°C
1.004	S	CF ₃	phenyl	CH ₂ CH ₃	
1.005	0	CF ₃	phenyl	CH ₃	
1.006	0	CF ₃	phenyl	CH ₂ CH ₃	
1.007	О	CF ₃	CF ₃	CH ₃	
1.008	S	CF ₃	CF ₃	CH ₃	m.p. 146-147°C
1.009	0	CF ₃	CF ₂ Cl	CH ₃	
1.010	S	·CF ₃	CF ₂ Cl	CH ₃	
1.011	O	CF ₃	CCl ₃	CH_3	

Comp. No.	x	R ₁	R ₂	R	Phys. data
				CU	
1.012	S	CF ₃	CCl ₃	CH ₃	
1.013	0	CF ₂ Cl	CF ₂ Cl	CH₃	
1.014	S	CF ₂ Cl	CF ₂ Cl	CH₃	
1.015	0	CF ₂ Cl	CFCl ₂	CH ₃	
1.016	S	CF ₂ Cl	CFCl ₂	CH₃	
1.017	0	CF ₂ Cl	phenyl	CH₃	
1.018	S	CF ₂ Cl	phenyl	CH₃	
1.019	0	CF ₂ CF ₃	phenyl	CH ₃	,
1.020		CF ₂ CF ₃	-	CH ₃	•
1.021	0	CF ₂ CF ₃	CH ₃	CH ₃	
1.022	S	CF ₂ CF ₃	CH₃	CH ₃	
1.023	0	CF ₂ CF ₃	CF ₂ CF ₃	CH ₃	
1.024	S	CF ₂ CF ₃	CF ₂ CF ₃	CH ₃	
1.025	0	CF ₂ CF ₂ CF ₃	phenyl	CH ₃	
1.026	S	CF ₂ CF ₂ CF ₃	phenyl	CH ₃	
1.027	0		CH₃ CH₃	CH ₃	
1.028	S	CF ₂ CF ₂ CF ₃	phenyl	CH ₃	
1.029	O S	CCl ₃ CCl ₃	phenyl	CH ₃	•
1.030	о О		CFCl ₂	CH ₃	
1.031 1.032	S	-	CFCl ₂	CH ₃	
1.032	0	-	CHCl ₂	CH ₃	
1.033	S	-	CHCl ₂	CH ₃	
1.035	0		H	CH ₃	
1.035	S	_	H	CH ₃	
1.037	C	-	H	CH ₃	
1.038	S	-	Н	CH ₃	
1.038	C	•	H .	CH ₃	
1.040	S		Н	CH ₃	
1.041	C	_	H	CH ₃	
1.042	S		H.	CH₃	
1.043	C		H	CH ₃	

Comp.	х	R_1	R ₂	R	Phys. data	,
1.044	S	CF ₂ CF ₂ CF ₃	Н	CH ₃		
1.045	Ο	CF ₃	CHBr ₂	CH ₃		
1.046	S	CF ₃	CHBr ₂	CH ₃		
1.047	О	CF ₂ CF ₃	CHBr ₂	CH ₃		
1.048	S	CF ₂ CF ₃	CHBr ₂	CH_3		
1.049	Ο	CF ₃	F	CH ₃		
-1.050	S	CF ₃ -		CH ₃		
1.051	0	CF ₃	· — F	CH ₃		
1.052	S	CF ₃	-<	CH ₃		
1.053	o	CF ₃	cı	CH ₃		
1.054	s	CF ₃		CH ₃		
1.055	О	CF ₃	———— OCH ₃	CH ₃		
1.056	S	CF ₃	————— OCH ₃	CH ₃		
1.057	0	CF ₃	CF ₃	CH ₃		·
1.058	S	CF ₃		CH₃		• .
1.059	0	CF ₃		CH ₃		

- 53 -

Comp.	X	R ₁	R ₂	R	Phys. data
1.060	S	CF ₃	-\(\sigma_{=}\)	CH ₃	
1.061	0	CF ₃	- ⟨	CH ₃	
1.062	S	CF ₃	-√	CH ₃	
1.063	0	CF ₃	\sqrt{s}	CH ₃	
1.064	S	CF ₃	_(s)	CH ₃	
1.065	o	CF ₃	CH ₃	CH ₂ CH ₃	isomer I: m.p. 99-101°C
1.066	S	CF ₃	CH ₃	CH ₂ CH ₃	isomer I:
		-			m.p. 138.9-139.3°C
1.067	S	CF ₃	CH ₃	CH ₂ CH ₃	isomer II: ¹ H-NMR
					(300 MHz, CDCl ₃):
					5.78 ppm (s, 1H),
					5.09 ppm (s, 1H),
					3.90 ppm (s, 6H),
				•	3.72 ppm (q, 2H),
					1.66 ppm (s, 3H),
					1.17 ppm (t, 3H).
1.068	0	CF ₃	CH ₂ CH ₃	CH ₃	
1.069	S	CF ₃	CH ₂ CH ₃	CH ₃	•
1.070	0	CF ₃	CH ₂ CH ₃	CH ₂ CH ₃	
1.071	S	CF ₃	CH ₂ CH ₃	CH ₂ CH ₃	
1.072	0	CF ₃	CH ₃	CH ₂ CH=0	CH ₂ 4:1 isomeric mixture:
					m.p. 63-67°C
1.073	S	•	CH ₃	CH ₂ CH=0	_
1.074	0	CF ₃	CH ₃	CH ₂ C≡CI	
1.075	S	CF ₃	CH ₃	CH ₂ C≡CI	H

- 54 -

Comp.	x	R ₁	R ₂	R	Phys. data
					,
1.076	О	CF ₃	CH ₃	CH ₂ CH ₂ C	
1.077	S	CF ₃	CH ₃	CH ₂ CH ₂ C	
1.078	0	CF ₃	CH ₃	CH ₂ CH ₂	•
1.079	S	CF ₃	CH₃	CH ₂ CH ₂	
1.080	0	CF ₃	CH ₃	CH ₂ CH ₂	-
1.081	S	CF ₃	CH ₃	CH ₂ CH ₂	
1.082	Ο	CF ₃	CH_3		OCH ₂ CH ₃
1.083	S	CF_3	CH ₃		OCH ₂ CH ₃
1.084	0	·CF ₃	CH ₃	CH ₂ CH ₂	C=CH
1.085	S	CF ₃	CH ₃	CH_2CH_2	C≡CH
1.086	O	CF ₃	CH ₃	benzyl	3:1 isomeric mixture;
					m.p. 134-136°C
1.087	S	CF ₃	CH ₃	benzyl	
1.088	S	CF ₃	CH ₃	H	isomer I: m.p. 118-119°C
1.089	S	CF ₃	CH ₃	H	isomer II:
					m.p. 123-124°C
					(Example P8)
1.090	S	CF ₃	phenyl	H	isomer I: m.p. 172-173°C
1.091	S	CF ₃	phenyl	H	isomer II:
					m.p. 150-151°C
1.092	O	CF ₃	phenyl	H	isomer I: m.p. 159-160°C
1.093	О	CF ₃	phenyl	H	isomer II: ¹ H-NMR
		_			(300 MHz, CDCl ₃):
					7.68 ppm (broad
					signal, 2H), 7.42 ppm
					(broad signal, 3H),
					5.78 ppm (s, 1H),
					5.76 ppm (s, 1H),
					3.85 ppm (s, 3H);
					m.p. 160°C.
1.094	S	CF ₃	CF ₃	H	m.p. 173-174°C
1.095	S	,	CF ₂ Cl	H	

- 55 -

Comp.	x	R ₁	R ₂	R	Phys. data
			CCI	TT	
1.096	S	CF ₃	CCl ₃	H	
1.097	S	CF ₂ Cl	CF ₂ Cl	H	•
1.098	S	CF ₂ Cl	CFCl ₂	H	
1.099	S	CF ₂ CF ₃	CH ₃	H	
1.100	S	CF ₂ CF ₂ CF ₃	CH ₃	H	
1.101	S	CCl ₃	CFCl ₂	H	
1.102	S	CCl ₃	CHCl ₂	H	
1.103	S	CCl ₃	H	H	·
1.104	S	CBr ₃	H	H	
1.105	S	CF ₂ Cl	H	Н	
1.106	S	CF ₂ CF ₃	H	Н	
1.107	S	CF ₂ CF ₂ CF ₃	H	H	
1.108	S	CF ₃	CHBr ₂	H	
1.109	S	CF ₂ CF ₃	CHBr ₂	H H	isomer I: ¹ H-NMR
1.111	0	CF ₃	CH ₃	Н	(300 MHz, D ₆ -DMSO): 13.15 ppm (broad signal, 1H), 6.75 ppm (broad signal, 1H); 5.94 ppm (s, 1H), 5.16 ppm (s, 1H), 3.86 ppm (s, 3H), 1.50 ppm (s, 3H); m.p. 167-168°C. isomer II: ¹ H-NMR (300 MHz, D ₆ -DMSO): 13.25 ppm (broad signal, 1H), 6.65 ppm (s, 1H),
1.112	s	CH ₃	$ ext{CH}_3$	Н	5.94 ppm (s, 1H), 5.06 ppm (s, 1H), 3.86 ppm (s, 3H), 1.50 ppm (s, 3H); m.p. 146-147°C. m.p. 124-126°C

- 56 -

Comp. No.	X R ₁	R ₂	R	Phys. data
1.113	S	-(CH ₂) ₄ -	Н	m.p. 123.7-124.3°C
1.114	S CH ₃	C_2H_5	Н	¹ H-NMR (300 MHz,
	5	- 2. 3		CDCl ₃): 5.82 ppm
				(s, 1H), 4.45 ppm (s, 1H),
				3.95 ppm (s, 6H),
				1.84 ppm (m, 2H),
				1.45 ppm (s, 3H),
				0.95 ppm (s, 3H);
			* 12 /978 T.	m.p. 132-133°C; isomer I
1.115	S C ₂ H ₅	CH ₃	н	¹ H-NMR (300 MHz,
1.115	0 02-25	5		CDCl ₃): 5.82 ppm (s, 1H),
			•	4.47 ppm (s, 1H),
				3.95 ppm (s, 6H),
				1.82 ppm (q, 2H),
				1.41 ppm (s, 3H),
				1.00 ppm (t, 3H);
				isomer II.
1.116	O CH ₃	CH ₃	H	¹ H-NMR (300 MHz,
		•		CDCl ₃): 6.75 ppm
				(broad signal, 1H),
				5.75 ppm (s, 1H),
				5.00 ppm (s, 1H),
				3.88 ppm (s, 6H),
				1.03 and 1.05 ppm
				(2xs, 6H).
1.117	S CF ₃	CF ₃	н	m.p. 202-204°C;
		J		imidazolium salt of
				Comp. No. 1.094
1.118	O CH ₃	C_2H_5	H	¹ H-NMR (300 MHz,
- -,-	- -			CDCl ₃): 6.20 ppm (broad
				signal, 1H), 5.75 ppm
				(s, 1H), 5.10 ppm (s, 1H),

- 57 -

Comp. No.	X R ₁	R ₂	R	Phys. data
1.119	O C ₂ H ₅	CH ₃	Н	3.89 ppm (s, 6H), 1.78 ppm (dxq, 2H), 1.40 ppm (s, 3H), 1.00 ppm (t, 3H); m.p. 117-118°C; isomer I H-NMR (300 MHz, CDCl ₃): 6.60 ppm (broad signal, 1H), 5.78 ppm (s, 1H), 5.05 ppm (s, 1H), 3.89 ppm (s, 6H), 1.30 ppm (m, 2H), 1.38 ppm (s, 3H), 0.98 ppm (t, 3H); isomer II.
1.120	O CF ₃	CH ₃	CH ₂ CH ₃	isomer II: m.p. 116-117°C
1.121	S CF ₃	phenyl	CH ₃	isomeric mixture: m.p. 133-136°C
1.122	S CF ₃	phenyl	CH ₃	isomer II: ¹ H-NMR (300 MHz, CDCl ₃): 7.52 ppm (2H), 7.46 ppm (3H), 5.74 ppm (s, 1H), 5.27 ppm (s, 1H), 3.88 ppm (s, 6H), 3.54 ppm (s, 3H).
1.123	S CF ₃	CH ₃	CH ₂ CH ₃	isomeric mixture: m.p. 119-121°C
1.124	S CH ₃	phenyl	н	isomer I: m.p. 146°C; ¹ H-NMR (300 MHz, CDCl ₃): 5.87 ppm (s, 1H), 4.94 ppm (s, 1H), 3.98 ppm (s, 6H),

PCT/EP95/02295

- 58 -

Comp.	х	R ₁	R ₂	R	Phys. data
1.125	S	CH ₃	phenyl	н	1.70 ppm (s, 3H). isomer II: m.p. 145°C;
1.123	J	CII3	phonyi	•	¹ H-NMR (300 MHz,
					CDCl ₃): 5.77 ppm (s, 1H),
					4.62 ppm (s, 1H),
					3.92 ppm (s, 6H),
					1.83 ppm (s, 3H).
1.126	S	CF ₃	CH₃	SO ₂ CH ₃	isomer II: ¹ H-NMR
	-			•	(300 MHz, CDCl ₃):
					8.35 ppm (broad signal,
					1H), 5.80 ppm (s, 1H),
					5.78 ppm (s, 1H),
					3.92 ppm (s, 6H),
					2.86 ppm (s, 3H),
					2.18 ppm (s, 3H).
1.127	S	-CH ₂ CH ₂ C	H ₂ CH ₂ -	Н	m.p. 124-125°C

Table 2: Compounds of formula Ig

PCT/EP95/02295

- 60 -

Comp.	Y	Z	R_3	R_4	R	Phys. data	
No.						•	

Table 3: Compounds of formula Ih

Comp. No.	X	R ₂	R	Α	Phys. data
3.001	s	CH ₃	CH ₃	N N	Example P9
3.002	Ο.	CH ₃	CH ₃	NNN	isomeric mixture: resin
3.003	О	CH ₃	CH ₃	[Ala]-OC ₂ H ₅	
3.004	Ο	CH ₃	CH ₃	[Val]-O-tert-C ₄ H ₉	
3.005	Ο	CH_3	CH ₃	[Leu]-OCH ₃	
3.006	О	CH_3	CH ₃	[Phe]-OCH ₃	

Comp. No.	X	R ₂	R	A	Phys. data
				,	
3.007	Ο	CH ₃	CH ₃	[Me-Ala]-OCH ₃	
3.008	Ο	CH ₃	CH ₃	[Ala]-OCH ₃	mixture of 4 isomers m.p. 114-118°C
3.009	O	CH ₃	CH ₃	[Ala]-O-tert-C ₄ H ₉	
3.010	O	CH ₃	CH ₃	[Val]-OCH ₃	
3.011	O	CH ₃	CH ₃	[Leu]-O-tert-C ₄ H ₉	
3.012	Ο	CH ₃	CH ₃	[Me-Ala]-OH	
3.013	Ο	CH ₃	CH ₃	$[Glu]-(OCH_3)_2$	
3.014	Ο	CH ₃	CH ₃	$[Asp]-(OC_2H_5)_2$	
3.015	O	CH ₃	CH ₃	[Ala]-OH	
3.016	0	CH ₃	CH ₃	[Val]-OH	
3.017	О	CH ₃	CH ₃	[Leu]-OH	
3.018	0	CH ₃	CH_3	[Ile]-OH	
3.019	0	CH ₃	CH ₃	-NH—S	
3.020	O	CH ₃	CH ₃	-NH-OO	
3.021	O	CH ₃	CH ₃	[Glu]-(OCH ₂ CH=C	$H_2)_2$
3.022	O	CH ₃	CH ₃	[Gly]-OH	
3.023	O	CH ₃	CH ₃	[Pro]-OH	
		-	-	S-CH ₃	
3.024	0	CH ₃	CH ₃	$-NH$ $COOCH_3$	
3.025	o	CH ₃	CH ₃	$-NH - CH_3$ $-NH - CH_3$ CH_3	
3.026	o	CH₃	CH ₃	-NH-COOH	О — ОН [^] СН ₃

7.62 ppm (d, 1H),

Comp. No.	X R ₂		R	A	Phys. data
2 027	c	CH ₃	CH ₃	[Ala]-OCH ₃	
3.027	S S	CH ₃	CH ₃	[Val]-OCH ₃	
3.028	S	CH ₃	CH ₃	[Me-Ala]-OCH ₃	
3.029	S	CH ₃	CH ₃	[Leu]-OCH ₃	oil (mixture of
3.030	S	CII3	CH3	[Doug Coxx3	4 isomers); ¹ H-NMR
3.031	S	CH ₃	CH ₃	[Ile]-OCH ₃	,,
3.032	S	CH ₃	-	[Ala]-OCH ₃	
3.033	S	CH ₃		[Me-Ala]-OCH ₃	
3.034	S	CH ₃		[Leu]-OCH ₃	
3.035	O	CH ₃ .		[Ala]-OCH ₃	
3.036	0	CH ₃		[Val]-OCH ₃	·
3.037	0	CH ₃		[Me-Ala]-OCH ₃	
3.038	O	CH ₃		[Leu]-OCH ₃	
3.039	0	CH ₃		[Ile]-OCH ₃	
3.040	0	CH ₃		[Ala]-OCH ₂ CH ₃	
3.041	0	CH ₃		[Leu]-OCH ₂ CH ₃	
3.042	0	CH ₃	CH ₃	[Ala][Ala]-OCH ₃	
3.043	0	CH ₃	CH ₃	[Ala][Gly]-OCH ₃	
3.044	0	CH ₃	CH_3	[Leu][Gly]-OCH ₃	·
3.045	S	CH ₃	H	[Ala]-OC ₂ H ₅	oil (isomeric mixture)
3.046	S	CH ₃	H	[Ala]-OCH ₃	,
3.047	S	CH_3	H	[Ala]-OH	
3.048	S	CH_3	H	[Val]-OH	
3.049	S	CH_3	H	[Leu]-OH	
3.050	S	CH ₃	H	[Me-Ala]-OH	
3.051	S	CH ₃	C_2H_5	$-N \sim N$	isomer I: resin
3.052	S	CH ₃	Н	-NH-CN	m.p. 183-185°C
3.053	0	CH ₃	C_2H_5	$-N \searrow N$	isomer I: ¹ H-NMR
					(300 MHz, CDCl ₃): 8.35 ppm (s, 1H),

- 63 -

Comp. No.	X	R ₂	R	A	Phys. data
					7.08 ppm (d, 1H),
					5.85 ppm (s, 1H),
					5.72 ppm (s, 1H),
					3.62 ppm (s, 6H),
					3.60 ppm (dxq, 2H),
					1.78 ppm (s, 3H),
					0.87 ppm (t, 3H).
3.054	o	CH ₃	C_2H_5	_N_N	isomer II: ¹ H-NMR
		3	2 3	~	(300 MHz, CDCl ₃):
				-	8.46 ppm (s, 1H),
					7.68 ppm (d, 1H),
					7.00 ppm (d, 1H),
			•		5.70 ppm (s, 1H),
					5.58 ppm (s, 1H),
					3.77 ppm (s, 6H),
					3.72 ppm (q, 2H),
					1.70 ppm (s, 3H),
					1.14 ppm (t, 3H).
2.055	•	CH.	н	[Ala]-OCH ₃	mixture of 4 isomers:
3.055	0	CH ₃	11	[riii] OOLI3	oil
2.056	S	CH	н	NHOCH ₃	isomer I: ¹ H-NMR
3.056	3	CH ₃	11	Micon	(300 MHz, CDCl ₃):
					9.43 ppm (broad
					signal, 1H), 6.23 ppm
					(broad signal, 1H),
					5.72 ppm (s, 1H), 4.40
					ppm (s, 1H), 3.95 ppn
					(s, 6H), 3.78 ppm
					(s, 3H), 1.55 ppm
					(s, 3H).
			**	NITOCIT	isomer II: ¹ H-NMR
3.057	S	CH_3	H	NHOCH ₃	(300 MHz, CDCl ₃):

- 64 -

Comp. No.	X R ₂ R		R	A	Phys. data	
					9.43 ppm (broad signal, 1H), 5.77 ppm (broad signal, 1H), 5.73 ppm (s, 1H), 4.65 ppm (s, 1H), 3.93 ppm (s, 6H), 3.78 ppm (s, 3H), 1.64 ppm (s, 3H).	
3.058	S	CH_3	H	NHOH		
 -3.059 -	· O –	CH ₃	H	NHOH	gar han i sa i mai an i sa ar daman di dagaragan ya tananada i i ni jini dagaraji na ni n	
 3.060	S	CH_3	H	N(OCH ₃)CH ₃		
3.061	0	CH_3	H	N(OCH ₃)CH ₃		

Table 4: Compounds of formula Ii

Comp. No.	X	R ₂	R	R ₁₁	Phys. data
4.001	0	CH ₃	CH₃	CH₃	1:1 isomeric mixture: ¹ H-NMR (300 MHz, CDCl ₃): 8.60 and 8.45 ppm (2 broad signals, NH), 5.80 and 5.78 ppm (2xs, 1H), 5.35 and 5.28 ppm (2xs, 1H), 3.92 ppm (s, 6H), 3.55 and 3.52 ppm (2xs, 3H), 3.28 and 3.24 ppm (2xs, 3H), 1.70 and 1.64 ppm (2xs, 3H).
4.002	S	. CH₃	СН₃	СН₃	1:2 isomeric mixture: ¹ H-NMR (300 MHz, CDCl ₃): 9.00 ppm (broad signal, 1H), 5.82 and 5.80 ppm (2xs, 1H), 4.92 and 4.70 ppm (2xs, 1H), 3.94 ppm (s, 6H), 3.55 and 3.51 ppm (2xs, 3H), 3.24 and 3.22 ppm (2xs, 3H), 1.72 and 1.68 ppm (2xs, 3H).
4.003	0	CH ₃	CH ₃	C ₂ H ₅	
4.004	S	CH ₃	CH ₃	C ₂ H ₅	·
4.005	0	CH ₃	CH ₃	phenyl	
4.006	S	CH_3	CH ₃	phenyl	

Comp. No.	X	R ₂	R	R ₁₁	Phys. data
4.007	0	СН3	СН3	CI	
4.008	S	CH ₃	CH ₃		
4.009	0	CH ₃	CH ₃	CF ₃	
4.010	S	CH ₃	CH_3	CF ₃	
4.011	0	CH ₃	CH_3	$N(CH_3)_2$	•
4.012	S	CH ₃	CH ₃	$N(CH_3)_2$	
4.013	0	CH ₃	CH_3	$N(C_2H_5)_2$	
4.014	S	CH ₃	CH_3	$N(C_2H_5)_2$	
4.015	0	CH ₃	CH ₃	cyclopropyl	
4.016	S	CH ₃	CH_3	cyclopropyl	
4.017	0	CH ₃	CH ₃	cyclobutyl	
4.018	S	CH_3	CH ₃	cyclobutyl	
4.019	Ο	CH_3	CH_3	2-pyridyl	
4.020	S	CH_3	CH ₃	2-pyridyl	
4.021	0	CH_3	CH_3	NHCH ₂ CH ₃	
4.022	S	CH_3	CH ₃	NHCH ₂ CH ₃	
4.023	0	CH_3	CH_3	NHCH ₂ CH ₂ CH ₃	
4.024	S	CH_3	CH_3	NHCH ₂ CH ₂ CH ₃	
4.025	0	CH_3	CH_3	NHCH ₂ C≡CH	
4.026	S	CH_3	CH_3	NHCH ₂ C≡CH	
4.027	O.	CH ₃	CH_3	N(OCH ₃)CH ₃	
4.028	S	CH ₃	CH_3	N(OCH ₃)CH ₃	•
4.029	0	CH ₃	CH ₃	2-methyl-2-propenyl	1:1 isomeric mixture: resin
4.030	S	CH ₃	CH ₃	2-methyl-2-propenyl	1:1 isomeric mixture; Example P12

Comp. No.	x	R_2	R	R ₁₁	Phys. data	
4.031	0	CH_3	CH_3	3-chloro-2-propenyl		
4.032	S	CH_3	CH ₃	3-chloro-2-propenyl		
4.033	0	CH ₃	CH_3	2-chlorophenyl		
4.034	S	CH_3	CH ₃	2-chlorophenyl		
4.035	0	CH_3	CH ₃	2-methoxycarbonylph	nenyl	
4.036	S	CH_3	CH ₃	2-methoxycarbonylph	nenyl	
4.037	0	CH_3	H	CH ₃	isomer II: m.p.	
					184-186°C; ¹ H-NMR	
					(300 MHz, CDCl ₃):	
				and the same and the same of t	10.8 ppm (broad	
				· ·- ,	signal, NH), 5.80 ppm	
					(s, 1H), 5.26 ppm	
					(s, 1H), 3.90 ppm	
					(s, 6H), 3.23 ppm	
					(s, 3H), 1.52 ppm	
					(s, 3H).	
4.038	S	CH ₃	H	CH ₃	m.p. 85°C (isomer I)	
4.039	0	CH ₃	H	C_2H_5		
4.040	S	CH ₃	H	C_2H_5		
4.041	Ο	CH ₃	H	phenyl		
4.042	S	CH ₃	H	phenyl		
4.043	0	CH_3	H			
				CI		
4.044	S	CH ₃	H	— 《》		
				CI		
4.045	O	CH ₃	H	CF ₃		
4.046	S	CH ₃	Н	CF ₃		
4.047	0	CH ₃	Н	N(CH ₃) ₂	isomer II:	
1.0 17	•	3	- -	` J'L	m.p. 176-178°C	
4.048	s	CH ₃	Н	$N(CH_3)_2$	isomer I: resin	
1.010	0	3		· J. Z		

Comp. No.	X	R ₂	R	R ₁₁	Phys. data
4.049	0	CH ₃	Н	N(C ₂ H ₅) ₂	
4.050	S	CH ₃	H	$N(C_2H_5)_2$	
4.051	0	CH ₃	Н	CH ₂ CH ₂ C C C C C CH ₃	
4.052	s	CH ₃	н	CH ₂ CH ₂ C I CH ₃	
4.053	O	CH ₃	Ĥ	CH₂ CHCI	
4.054	S	CH ₃	Н	CH₂ CHCI	
4.055	0	CH ₃	Н	H ₃ CO - C	
4.056	S	CH ₃	H.	H ₃ CO - C	
4.057	S	CH ₃	C ₂ H ₅	F=N	isomer I:
4.058	S	CH ₃	C₂H₅		m.p. 106-107°C isomeric mixture 1:1
4.059	S	CH ₃	Н		m.p. 103-106°C isomer I:
4.060	S	CH ₃	Н		m.p. 150-151°C isomeric mixture 2:3;

Comp. No.	х	R ₂	R	R ₁₁	Phys. data
					amorphous
4.061	S	CH ₃	Н		isomer I: m.p. 155°C
4.062	O	CH ₃	н	-N_O	isomer I: m.p. 80°C
4.063	S	CH ₃	н	- N_O	isomer I:
					m.p. 146-147°C
4.064	S	CH ₃	C ₂ H ₅	CH ₃	7:3 isomeric mixture:
	•-				resin
4.065	0	CH ₃	C_2H_5	CH ₃	isomer I: ¹ H-NMR
					(300 MHz, CDCl ₃):
					8.6 ppm (broad
					signal, NH), 5.80 ppm
					(s, 1H), 5.30 ppm (s,
					1H), 3.92 ppm (s, 6H),
					3.80 ppm (q, 2H),
					3.28 ppm (s, 3H),
					1.68 ppm (s, 3H),
					1.30 ppm (t, 3H).
4.066	0	CH ₃	C_2H_5	CH ₃	1:2 isomeric mixture: resin
4.067	0	CH ₃	C_2H_5	$N(CH_3)_2$	3:2 isomeric mixture:
4.007	O	Ciri	02113	21(-4-3/2	resin
4.068	O	CH ₃	H	→ EN	isomer I: m.p.
				·	179-180°C
4.069	0	CH ₃	Н		isomer I:
				r	m.p. 171-172°C

WO 96/00219 PCT/EP95/02295

- 70 -

Comp. No.	X	R ₂	R	R ₁₁	Phys. data
4.070	0	CH ₃	C ₂ H ₅	CH ₂ CH ₂	isomer II: ¹ H-NMR
				3	(300 MHz, CDCl ₃):
					8.60 ppm (broad
					signal, NH), 5.80 ppm
					(s, 1H), 5.35 ppm
					(s, 1H), 5.08 and 5.00
					ppm (2H), 4.08 ppm
					(m, 2H), 3.94 ppm
• •		7			(s, 6H), 3.75 ppm
					(q, 2H), 1.90 ppm
					(s, 3H), 1.62 ppm
					(s, 3H), 1.28 ppm
					(t, 3H).
				CH ₂ /CH ₂	
4.071	0	CH ₃	C_2H_5	CH3	isomer I: m.p.
,					123-124°C
4.072	Ο	CH ₃	H	$N(CH_3)_2$	isomer I: m.p.
					90-92°C
4.073	0	CH ₃	H	CH ₃	isomer I: ¹ H-NMR
					(300 MHz, CDCl ₃):
					10.70 ppm (broad
					signal, NH), 5.75 ppm
					(s, 1H), 5.50 ppm
					(broad signal, OH),
					5.32 ppm (s, 1H), 3.94
					ppm (s, 6H), 3.26 ppm
					(s, 3H), 1.62 ppm
					(s, 3H).
4.074	S	CF ₃	CH_3	CH ₃	~

	~	4	
_	•		_

Comp. No.	x	R ₂	R	R ₁₁	Phys. data
				CH CH	
4.075	s	CF ₃	CH ₃	CH ₂ CH ₂	
4.076	. S	CF ₃	CH ₃	N(CH ₃) ₂	
4.077	Ş	CH ₃	CH ₃	соосн	
4.078	S	CF ₃	CH ₃	COOCH ₃	
4.079	S	CH ₃	CH ₃	CH ₂	
4.080	s	CF ₃	CH ₃	CH ₂	
4.081	S	CF ₃	H	CH ₃	m.p. 172-174°C
4.082	S	CF ₃	H	N(CH ₃) ₂	¹ H-NMR (300 MHz, CDCl ₃): 9.82 ppm (broad signal, NH), 7.10 ppm (broad signal, OH), 5.88 ppm (s, 1H), 4.96 ppm (s, 1H), 3.95 ppm (s, 6H), 2.96 ppm (s, 6H).

Table 5: Compounds of formula Ij

Comp. No.	X	R_2	R ₁₂	R ₁₃	R	Phys. data
5.008	S	CH ₃	Н	F	CH ₃	
5.009	0	CH ₃	н		CH ₃	
5.010	S	CH ₃	Н		CH ₃	
5.011	0	CH ₃	Н	CH ₃	CH ₃	
5.012	S	CH ₃	Н	CH ₃	СН₃	
5.013	0	СН3	Н	F F	CH ₃	
5.014	S	CH ₃	Н	F	СН₃	
5.015	O	CH ₃	н	-CH3	CH ₃	
5.016	s	CH ₃	Н	OCH ₃	CH ₃	
5.017	O	CH ₃	Н		CH ₃	

- 74 -

Comp. No.	X R ₂	R ₁₂	R ₁₃	R	Phys. data
5.018	S CF	Н ₃ Н	-⟨\ 	CH ₃	•
5.019	O CI	H ₃ H	-C(CH ₃) ₃	CH ₃	
5.020	s C	H ₃ H	-C(CH ₃) ₃	СН₃	1:1 isomeric mixture: H ¹ -NMR (CDCl ₃ , 300 MHz): 7.80 and 7.72 ppm (2xbroad signal, 1H), 5.78 and 5.76 ppm
			•		(2xs, 1H), 4.96 and 4.77 ppm (2xs, 1H), 4.60 ppm (broad signal, 1H), 3.92 ppm (s, 6H), 3.49 and 3.45 ppm (s, 3H), 1.73 and 1.68 ppm (2xs, 3H), 1.08 and 1.02 ppm (2xs, 9H).
5.021 5.022		-	3 CH ₃ 3 CH ₃	CH ₃ CH ₃	
5.023		nenyl H	CI	Н	isomer I: Example P11
5.024	O pl	henyl H	CI	н	m.p. 193-194°C isomer II: Example P11
5.025	S p	henyl H	CI	Н	crystalline, amorphous

Comp. No.	X R ₂	R ₁₂ R ₁₃	R	Phys. data
5.026	O CH ₃	н —	Н	isomer I:
		.cı´		m.p. 195-197°C
5.027	O CH ₃	н —	Н	isomer II:
		cı ´		m.p. 194-195°C
5.028	S CH ₃	н 🥌	Н	·
5.029	O CH ₃	H CI	Н	
5.030	S CH ₃	H F	H	3:2 isomeric mixture:
		F´		m.p. 151-155°C
5.031	O CH ₃	н —	Н	
5.032	S CH ₃	н	Н	
5.033	O CH ₃	н —	н	
5.034	S CH ₃	H CH ₃	Н	

Comp. No.	X R ₂	R ₁₂ R ₁₃	R	Phys. data
5.035	O CH ₃	н — F	Н	
5.036	S CH ₃	н ғ	Н	
5.037	O CH ₃	H — OCH3	Н	
5.038	S CH ₃	H — CD-OCH3	H	
5.039	O CH ₃	н —(Н	
5.040	S CH ₃	H — CF3	Н	
5.041	O CH ₃	H -C(CH ₃) ₃	H	
5.042	S CF ₃	H -C(CH ₃) ₃	H	
5.043	S CH ₃	H -C(CH ₃) ₃	Н	isomer I: m.p. 121-122°C
5.044	S CH ₃	H -C(CH ₃) ₃	Н	isomer II: m.p. 145-147°C
5.045	O CH ₃	CH ₃ CH ₃	Н	
5.046	S CH ₃	CH ₃ CH ₃	H	
5.047	S CH ₃	н — СІ	Н	isomer I:
				m.p. 134-136°C
5.048	S CH ₃	н — <u>(_</u> СІ	Н	isomer II:
				m.p. 136-139°C
5.049	S CF ₃	H ————CI	CH ₃	
5.050	S CF ₃	Н —СЭ—осн³	CH ₃	¹ H-NMR (300 MHz,
				CDCl ₃): 8.40 ppm

- 77 -

Comp. No.	X	R ₂	R ₁₂	R ₁₃	R	Phys. data
						(d, NH), 6.68 ppm (d, 2H), 6.61 ppm (d, 2H), 5.92 ppm (d, NH), 5.84 ppm (s, 1H), 5.39 ppm (s, 1H), 3.87 ppm (s, 6H), 3.78 ppm (s, 3H), 3.72 ppm (s, 3H); m.p. 157-158.5°C
Ŝ.051	S	CF ₃	H	C(CH ₃) ₃	CH ₃	¹ H-NMR (300 MHz, CDCl ₃): 7.88 ppm (broad signal, NH), 5.80 ppm (s, 1H), 5.44 ppm (s, 1H), 4.62 ppm (broad signal, NH), 3.94 ppm (s, 6H), 3.78 ppm (s, 3H), 1.00 ppm (s, 9H).
5.052	S	CF ₃	Н	OCH ₃	H	¹ H-NMR (300 MHz, CDCl ₃): 8.98 ppm (d, NH), 7.70 ppm (s, OH), 6.76 ppm (d, 2H), 6.66 ppm (d, 2H), 5.98 ppm (d, NH), 5.88 ppm (s, 1H), 5.25 ppm (s, 1H), 3.89 ppm (s, 6H), 3.75 ppm (s, 6H).

Table 6: Compounds of formula Ip:

$$\begin{array}{c|c} H_3CO & OCH_3 \\ & N & N \\ & X & (Ip) \\ \hline R_1 & C & C & -O & -R_5 \\ \hline R_2 & OR & 0 \\ \end{array}$$

Comp.	X R ₁	R ₂	R	R ₅	Phys. data
6.001	S CF ₃	CH₃	CH ₃	C(CH ₃) ₃	isomer I: ¹ H-NMR (300 MHz, CDCl ₃): Example P5; 5.78 ppm (s, 1H), 5.24 ppm (s, 1H), 3.94 ppm (s, 6H), 3.50 ppm (s, 3H), 1.71 ppm (s, 3H), 1.45 ppm (s, 9H).
6.002	S CF ₃	CH ₃	CH ₃	C(CH ₃) ₃	isomer II: ¹ H-NMR (300 MHz, CDCl ₃): Example P5; 5.76 ppm (s, 1H), 5.16 ppm (s, 1H), 3.94 ppm (s, 6H), 3.45 ppm (s,
6.003	S CF ₃	СН₃	CH₂CH₃	C(CH ₃) ₃	3H), 1.62 ppm (s, 3H), 1.43 ppm (s, 9H). isomer I: ¹ H-NMR (300 MHz, CDCl ₃): 5.78 ppm (s, 1H), 5.25 ppm (s, 1H), 3.97 ppm (s, 6H), 3.72 ppm (q, 2H),
6.004	S CF ₃	CH ₂	₃ CH₂CH₃	C(CH ₃) ₃	1.72 ppm (s, 3H), 1.49 ppm (s, 9H). isomer II: ¹ H-NMR (300 MHz, CDCl ₃): 5.76 ppm (s, 1H), 5.17 ppm (s, 1H), 3.94 ppm (s, 6H), 3.70 ppm (q, 2H),

Comp.	X R ₁	R ₂	R .	R ₅	Phys. data
6.005	O CF ₃	СН₃	CH ₃	C(CH ₃) ₃	1.62 ppm (s, 3H), 1.45 ppm (s, 9H). isomer I: oil; ¹ H-NMR (300 MHz, CDCl ₃): 5.74 ppm (s, 1H), 5.30 ppm (s, 1H),
					3.93 ppm (s, 6H), 3.52 ppm (s, 3H), 1.67 ppm (s, 3H), 1.46 ppm (s, 9H).
6.006	O CF ₃	CH₃	СН₃	C(CH ₃) ₃	isomer II: oil; ¹ H-NMR (300 MHz, CDCl ₃): 5.72 ppm (s, 1H), 5.25 ppm (s, 1H), 3.92 ppm (s, 6H), 3.52 ppm (s, 3H), 1.65 ppm (s, 3H), 1.42 ppm (s, 9H).
6.007	O CF ₃	CH ₃	CH ₂ CH ₃	$C(CH_3)_3$	isomer I: m.p. 84-86°C
6.008	-	_	CH ₂ CH ₃		isomer II: oil; ¹ H-NMR (300 MHz, CDCl ₃): 5.75 ppm (s, 1H), 5.26 ppm (s, 1H), 3.93 ppm (s, 6H), 3.76 ppm (m, 2H), 1.67 ppm (s, 3H), 1.42 ppm (s, 9H), 1.20 ppm (t, 3H).
6.009	O CF ₃	CH ₃	SO₂CH ₃	C(CH ₃) ₃	isomer I: ¹ H-NMR (300 MHz, CDCl ₃): 5.78 ppm (s, 1H), 5.62 ppm (s, 1H), 3.91 ppm (s, 6H), 3.20 ppm (s, 3H), 2.13 ppm (s, 3H), 1.43 ppm (s, 9H).
6.010	S CF ₃	CH ₃	SO ₂ CH ₃	C(CH ₃) ₃	isomeric mixture: ¹ H-NMR (300 MHz, CDCl ₃): 5.80 ppm (s, 1H), 5.52 and 5.42 ppm (2xs, 1H), 3.96 and 3.94 ppm (2xs, 6H), 3.18 and 3.04 ppm

Comp.	X R ₁	R ₂	R	R ₅	Phys. data
					(2xs, 3H), 2.17 and 2.14 ppm (2xs, 3H), 1.46 ppm (s, 9H).
6.011	O CF ₃		SO ₂ CH ₃	C(CH ₃) ₃	isomer I: Example P3
6.012 6.013			SO ₂ CH ₃ CH ₃	C(CH ₃) ₃ CH ₃	isomer II: Example P3 isomeric mixture: H ¹ -NMR (300 MHz, CDCl ₃ ,): 5.75 and 5.73 ppm (2xs, 1H), 5.28 and 5.18 ppm (2xs, 1H), 3.94 ppm (s, 6H), 3.65 and 3.63 ppm (2xs, 3H), 3.49 and 3.46 ppm (2xs, 3H), 1.72 and 1.62 ppm (2xs, 3H).
6.014 6.015 6.016 6.017 6.018 6.019 6.020 6.021 6.022 6.023	S CF ₃	CH ₂	CH ₃		1:3 isomeric mixture; m.p. 86-91°C
6.025 6.026 6.027 6.028 6.029	O CF ₃	CH CH CH	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	CH ₂ OCOC(CH ₃) ₃ CH(CH ₃)OCOEt CH(CH ₃)COOEt benzyl -C ₂ H ₅	oil; MS: M ⁺ 370 (8), 325 (4), 301 (12), 258 (34), 212 (31),

- 81 -

Comp. No.	X R ₁	R ₂	R	R ₅	Phys. data
6.030	S CF ₃	СН3	Н	-СН ₃	185 (100). 1:1 isomeric mixture; oil; MS: M+ 356 (58), 325 (8), 287 (34),
6.031	S CF ₃	CH ₃	H	CH ₂ CH ₂ O-N=C(CH ₃) ₂	244 (48), 212 (27), 185 (100). oil; ¹ H-NMR (300 MHz, CDCl ₃): 5.82 and 5.79 ppm (2s, 1H), 5.52 and 5.27 ppm
					(2s, 1H), 4.96 ppm (broad signal, 1H), 4.5-4.3 ppm (4H), 3.95 ppm (s, 6H), 1.9-1.8 ppm (4s, 6H), 1.62 and 1.56 ppm (2s, 3H).
6.032	O CF ₃	CH ₃	H	$N(CH_3)_2$	isomer I: m.p. 153-154°C
6.033	O CF ₃	CH ₃	H	$N(CH_3)_2$	isomer II: m.p. 117-119°C
6.034	O CF ₃	CH₃	.	CH ₂ CH=CH ₂	1:3 isomeric mixture: ¹ H-NMR (300 MHz, CDCl ₃): 5.85 ppm (m, 1H), 5.78 ppm (s, 1H), 5.33 ppm (s, 1H), 5.40-5.30 ppm (m, 2H), 4.66 ppm (m, 2H), 3.92 ppm (s, 6H), 1.65 and 1.53 ppm (2xs, 3H).
6.035	O CF	CH	CH ₂ CH	$=CH_2 C(CH_3)_3$	isomer I: m.p. 72-74°C
6.036	_			C(CH ₃) ₃	2:1 isomeric mixture: ¹ H-NMR (300 MHz, CDCl ₃): 7.40-7.20 ppm (5H), 5.72 ppm (s, 1H), 5.42 and 5.33 ppm (2xs, 1H), 4.30 ppm (m, 2H), 3.94 ppm (s, 6H), 1.78 and 1.74 ppm (2xs, 3H), 1.42 and 1.33 ppm (2xs, 9H).
6.037	O CF	CF ₃	CH ₃	$C(CH_3)_3$	

Comp.	X R ₁	R ₂	R .	R ₅	Phys. data
6.038 6.039	S CF ₃	_	-	C(CH ₃) ₃ CH ₂ OCOC(CH ₃) ₃	m.p. 84-85°C ¹ H-NMR (300 MHz, CDCl ₃): 5.81 ppm (dxd, 2H), 5.79 ppm (s, 1H), 5.70 ppm (s, 1H), 3.92 ppm (s, 6H), 3.72 ppm (s, 3H), 1.16 ppm (s, 9H).
Table 7:	Compou	nds of	formula It		
		Н	3 ^{CO}	OCH ₃	

$$R_1$$
 R_2
 OCH_3
 OCH_3

Comp.No.	X	R ₁	R ₂	Phys. data
7.001	0	CF ₃	CH ₃	isomer I: m.p. 69-70°C
7.002	S	CF ₃	CH ₃	isomer I: m.p. 73-74°C
7.003	S	CF ₃	CH ₃	isomer II: ¹ H-NMR (300 MHz,
				CDCl ₃): 6.05 ppm (s, 1H), 5.97 ppm
				(s, 1H), 3.92 ppm (s, 6H), 1.95 ppm
				(s, 3H).
7.004	0	CF ₃	-	1:1 isomeric mixture; m.p. 100-106°C (Example P10)
7.005	S	CF ₃	_	
7.006	0	C_2F_5	CH ₃	
7.007	S	C_2F_5	CH ₃	
7.008	0	C ₃ F ₇	CH ₃	
7.009	S	C ₃ F ₇	CH ₃	

Comp.No.	X	R_1	R ₂	Phys. data
7.010	0	CF ₃	C ₂ H ₅	
7.011	S	CF ₃	C_2H_5	
7.012	S	CH ₃	C ₂ H ₅	1:1 isomeric mixture; IR (KBr) 1823 cm ⁻¹ ; ¹ H-NMR (300 MHz, CDCl ₃): 5.79 ppm (s, 1H), 5.52 ppm (s, 1H), 3.94 ppm (s, 6H), 2.1-1.8 ppm (m, 2H), 1.75 and 1.58 ppm (2xs, 3H),
7.013	O	CF ₃	CH ₃	1.09 and 1.02 ppm (2xt, 3H). isomer II: ¹ H-NMR (300 MHz, CDCl ₃): 6.20 ppm (s, 1H), 5.85 ppm (s, 1H), 3.96 ppm (s, 6H), 1.95 ppm
7.014	S	CF ₃	CF ₃	(s, 3H). m.p. 108-110°C ¹ H-NMR (300 MHz, CDCl ₃): 7.10 ppm (s, 1H), 5.88 ppm (s, 1H), 3.92 ppm (s, 6H); Example P13.
7.015	0	CH ₃	CH ₃	¹ H-NMR (300 MHz, CDCl ₃): 5.81 ppm (s, 1H), 5.78 ppm (s, 1H), 3.95 ppm (s, 6H), 1.68 ppm (s, 3H), 1.57 ppm
7.016	S	CH ₃	CH ₃	(s, 3H). ¹ H-NMR (300 MHz, CDCl ₃): 5.81 ppm (s, 1H), 5.42 ppm (s, 1H), 3.93 ppm (s, 6H), 1.80 ppm (s, 3H), 1.62 ppm (s, 6H).

WO 96/00219 PCT/EP95/02295

- 84 -

Table 8: Compounds of formula Ik

$$\begin{array}{c|c} H_3CO & OCH_3 \\ & N & N \\ & X & (Ik) \\ \hline R_1 & C & C & -O - C(CH_3)_3 \\ & R_2 & OH & 0 \end{array}$$

Comp. No.	x	R ₁	R_2	Phys. data
8.001	S	CF ₃	CH ₃	isomer I: ¹ H-NMR (300 MHz, CDCl ₃):
				5.80 ppm (s, 1H), 5.23 ppm (broad signal,
				1H), 5.04 ppm (s, 1H).
8.002	S	CF ₃	CH_3	isomer II: m.p. 95-97°C
8.003	S	CF ₃	phenyl	isomer I: m.p. 110-111°C
8.004	S	CF ₃	phenyl	isomer II: m.p. 85-86°C
8.005	Ο	CF ₃	CH ₃	Example P2; isomer I: m.p. 135-137°C
8.006	Ο	CF ₃	phenyl	2:1 isomeric mixture
				¹ H-NMR (300 MHz, CDCl ₃): 5.78 and
				6.00 ppm (2xs, 1H), 5.72 and 5.75 ppm
				(2xs, 1H), 4.30 and 4.52 ppm (2xs, 1H),
				1.07 and 1.22 ppm (2xs, 9H).
8.007	Ο	CH ₃	CH ₃	m.p. 87-89°C
8.009	0	CH ₃	C_2H_5	m.p. 82-84°C
8.010	Ο	C_2H_5	CH ₃	m.p. 86-87°C
8.011	О	CF ₃	CH ₃	Example P2; isomer II: m.p. 69-70°C
8.012	S	CH ₃	phenyl	isomer I: m.p. 66-67°C
8.013	S	CH_3	phenyl	isomer II: oil; ¹ H-NMR (300 MHz,
		_		CDCl ₃): 7.55 ppm (d, 2H), 7.32 ppm
				(t, 2H), 7.24 ppm (t, 1H), 5.72 ppm
				(s, 1H), 4.96 ppm (s, 1H), 4.38 ppm
				(broad signal, 1H), 3.94 ppm (s, 6H),
				1.80 ppm (s, 3H), 0.90 ppm (s, 9H).

Comp. No.	X	R_1	R ₂	Phys. data
8.014	S	CH ₃	\triangle	isomeric mixture: ¹ H-NMR (300 MHz,
				CDCl ₃): 5.75 ppm (s, 1H), 4.72 and 4.68
				ppm (2xs, 1H), 3.95 ppm (s, 6H), 3.52 and
				3.30 ppm (2xs, 1H), 1.48 ppm (s, 9H), 1.35
				ppm (s, 3H), 1.10 ppm (broad signal, 1H),
				0.43 ppm (broad signal, 4H).
8.015	S	((CH ₂) ₄ -	m.p. 60.0-60.5°C
8.016	S	CF ₃	CF ₃	¹ H-NMR (300 MHz, CDCl ₃): 5.86 ppm
		,	3	(s, 1H), 5.06 ppm (s, 1H), 3.94 ppm
				(s, 6H), 1.51 ppm (s, 9H).

Table 9: Compounds of formula IIIb

$$\begin{array}{c|c} R_4 & Z & OCH_3 \\ & X & & \\ & X & & \\ \hline & CH_2 & & \\ & C & -O - C(CH_3)_3 & & \\ & & O & & \\ \end{array}$$

Comp. No.	X	Y	Z	R ₄	Phys. data
9.001	S	N	СН	OCH ₃	b.p. 130°C/1x10 ⁻³ torr (Example P7)
9.002	0	N	CH	OCH ₃	m.p. 63-64.5°C (Example P1)
9.003	S	N	N	OCH ₃	
9.004	0	N	N	OCH ₃	
9.005	S	CH	N	OCH ₃	
9.006	О	CH	N	OCH ₃	
9.007	S	N	-(CH ₂ CH ₂ O-	
9.008	0	N	-(CH ₂ CH ₂ O-	

- 86 -

Formulation examples for compounds of formula I (throughout, percentages are by weight)

F1. Emulsifiable concentrates	a)	b)	c)	d)	
a compound of Tables 1-8	5 %	10 %	25 %	50 %	
calcium dodecylbenzene-	6 %	8 %	6 %	8 %	
sulfonate					
castor oil polyglycol ether	4 %	-	4 %	4 %	
(36 mol of ethylene oxide)					
octylphenol polyglycol ether	-	4 %	-	2 %	
(7-8 mol of ethylene oxide)					
cyclohexanone	-		10 %	20 %	
aromatic hydrocarbon mixture	85⊦%	78 %	55 %	16.%	
CarCas					

C₉-C₁₂

Emulsions of any desired concentration can be produced from such concentrates by dilution with water.

F2. Solutions	a)	b)	c)	d)
a compound of Tables 1-8	5 %	10 %	50 %	90 %
dipropylene glycol methyl ether	-	20 %	20 %	-
polyethylene glycol mol. wt. 400	20 %	10 %	-	-
N-methyl-2-pyrrolidone	-	-	30 %	10 %
aromatic hydrocarbon mixture	75 %	60 %	-	-
C ₉ -C ₁₂				

These solutions are suitable for application in the form of micro-drops.

F3. Wettable powders	a)		b)		c)		d)	
a compound of Tables 1-8	5	ક	25	ક્ર	50	용	80 %	;
sodium lignosulfonate	4	ક	-		3	ક્ર	-	
sodium lauryl sulfate	2	f	3	ક્ર	-		4 %	;
sodium diisobutylnaphthalene	-		6	8	5	8	6 %	
sulfonate								
octylphenol polyglycol ether	_		1	8	2	ક	-	
(7-8 mol of ethylene oxide)								

PCT/EP95/02295 WO 96/00219

- 87 -

highly dispersed silicic acid	1 %	3 %	5 %	10 %
kaolin	88 %	62 %	35 %	-

The active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of the desired concentration.

F4. Coated granules	a)	b)	c)
a compound of Tables 1-8	0.1 %	5 %	15 %
highly dispersed silicic acid	0.9 %	2 %	2 %
inorganic carrier	99.0 %	93 %	83 %
(diameter 0.1 - 1 mm)			•
such as CaCO ₃ or SiO ₂	- · · · · · · · · · · · · · · · · · · ·	•••	

The active ingredient is dissolved in methylene chloride, the solution is sprayed onto the carrier, and the solvent is subsequently evaporated off in vacuo.

F5. Coated granules	a)	b)	c)
a compound of Tables 1-8	0.1 %	5 %	15 %
polyethylene glycol mol. wt. 200	1.0 %	2 %	3 8
highly dispersed silicic acid	0.9 %	1 %	2 %
inorganic carrier	98.0 %	92 %	80 %
(diameter 0.1 - 1 mm)			
such as CaCO ₃ or SiO ₂			

The finely ground active ingredient is uniformly applied, in a mixer, to the carrier moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.

F6. Extruder granules	a)	b)		c)		d)	
a compound of Tables 1-8	0.1 9	à 3	8	5	B	15	용
sodium lignosulfonate	1.5	k 2	용	3	ક્ર	4	윰
carboxymethylcellulose	1.4	t 2	*	2	ક	, 2	용
kaolin	97.0	₹ 93	8	90	윰	79	윰

The active ingredient is mixed and ground with the adjuvants, and the mixture is

- 88 -

moistened with water. The mixture is extruded and then dried in a stream of air.

F7. Dusts	a)	b)	c)
a compound of Tables 1-8	0.1 %	1 %	5 %
talcum	39.9 %	49 %	35 %
kaolin	60.0 %	50 %	60 %

Ready-for-use dusts are obtained by mixing the active ingredient with the carriers and grinding the mixture in a suitable mill.

F8. Suspension concentrates	a)	b)	c)	d)
a compound of Tables 1-8	3 %	10 %	25 %	50 %
ethylene glycol	5 %	5 %	5 %	5 %
nonylphenol polyglycol ether	-	1 %	2 %	-
(15 mol of ethylene oxide)				
sodium lignosulfonate	3 %	3 %	4 %	5 %
carboxymethylcellulose	1 %	1 %	1 %	1 %
37% aqueous formaldehyde	0.2 %	0.2 %	0.2 %	0.2 %
solution				
silicone oil emulsion	0.8 %	0.8 %	0.8 %	0.8 %
water	87 %	79 %	62 %	38 %

The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.

Biological Examples:

Example B1: Preemergence herbicidal action

Monocotyledonous and dicotyledonous test plants are sown in plastic pots containing standard soil and, immediately after sowing, are sprayed with an aqueous suspension of the test compounds, prepared from a 25 % wettable powder formulation (Formulation example F3 b)), corresponding to a rate of application of 2 kg of active ingredient/hectare (500 l of water/ha). The test plants are then cultivated in a greenhouse under optimum conditions. After 3 weeks, the test is evaluated in accordance with a scale of nine ratings (1 = total damage, 9 = no action). Ratings of 1 to 4 (especially 1 to 3) indicate good to

very good herbicidal action.

Test plants: Setaria, Cyperus, Sinapis, Stellaria, Solanum, Ipomoea.

The compounds of Tables 1 to 8 exhibit pronounced herbicidal action in this test.

Examples of the good herbicidal action are listed in Table B1.

Table B1: Preemergence action

Test plants:	Seta-	Су-	Sina-	Stel-	Sola-	Ipo-
Compound No.	ria	perus	pis	laria	num	moea
1.001 (isomer I)	1	2	2	2 .	2	2
1.002 (isomer II)	1	1	2	1	2	2
1.065 (isomer I)	2	1	2	2	2	3
1.065 (isomer II)	1	2	2	2	2	2
1.066 (isomer I)	1	1	2	2	2	2
1.088 + 1.089	3	2	5	2	2	3
(isomer I + II)						•
1.088 (isomer I)	4	1	2	2	2	2
1.089 (isomer II)	1	1	3	2	2	2
2.001 (isomer I)	1	2	2	2	2	3
2.002 (isomer II)	2	2	2	2	2	3
3.051 (isomer I)	2	1	2	2	2	2

- 90 -

Test plants: Compound No.	Seta- ria	Cy- perus	Sina- pis	Stel- laria	Sola- num	Ipo- moea	
4.002	2	2	2	2	2	2	•
(isomeric mixture)							
4.064	2	2	2	3	2	3	
(isomeric mixture)							
4.065 (isomer I)	2	2	2	2	2	3	
4.066	2	2	2	3	2	2	
(isomeric mixture)							٠
4.067	2	2	2	2	3	3	
(isomeric mixture)							
5.020	2	1	2 .	1	1	2	
(isomeric mixture)							
5.043 (isomer I)	1	1	3	2	2	3	
5.044 (isomer II)	1	1	3	2	2	2	
5.047 (isomer I)	2	1	2	2	2	2	
5.048 (isomer II)	2	1	3	2	2	2	
7.002 (isomer I)	1	1	2	2	2	2	

The same results are obtained when the compounds of formula I are formulated in accordance with Examples F1, F2 and F4 to F8.

Example B2: Post-emergence herbicidal action (contact herbicide)

Monocotyledonous and dicotyledonous test plants are raised in a greenhouse in plastic pots containing standard soil and in the 4- to 6-leaf stage are sprayed with an aqueous suspension of the test compounds of formula I, prepared from a 25 % wettable powder formulation (Formulation example F3 b)), corresponding to a rate of application of 2 kg of active ingredient/hectare (500 l of water/ha). The test plants are then grown on in the greenhouse under optimum conditions. After about 18 days the test is evaluated in accordance with a scale of nine ratings (1 = total damage, 9 = no action). Ratings of 1 to 4 (especially 1 to 3) indicate good to very good herbicidal action.

Test plants: Setaria, Sinapis, Stellaria, Solanum, Ipomoea.

The compounds of Tables 1 to 8 exhibit pronounced herbicidal action in this test.

Examples of the good herbicidal activity are shown in Table B2.

Table B2: Post-emergence action

Test plants: Compound No.	Setaria	Sina- pis	Stel- laria	Sola- num	Ipo- moea
1.001 (isomer I)	1	1	2	1	2
1.002 (isomer II)	2	1	1	1	3
1.065 (isomer I)	3	1	2	2	3
1.065 (isomer II)	2	1	2	2 .	1
1.066 (isomer I).	3 .	1	. 3.	2	2
1.088 + 1.089	6	2	3	2	2
(isomer I + II)					
1.088 (isomer I)	6	1	2	2	2
1.089 (isomer II)	5	1	2	2	2
2.001 (isomer I)	2	1	2	1	3
2.002 (isomer II)	1	1	1	1	2
3.051 (isomer I)	3	1	2	1	. 2
4.002	3	1	3	2	1
(isomeric mixture)				,	
4.065 (isomer I)	3	1	3	3	2
5.020	1	1	2	1	2
(isomeric mixture)					•
5.048 (isomer II)	3	1	3	2	. 2
7.002 (isomer I)	2	1	2	1	2

The same results are obtained when the compounds of formula I are formulated in accordance with Examples F1, F2 and F4 to F8.

What is claimed is:

1. A compound of formula I

$$\begin{array}{c|c}
R_4 & Z & R_3 \\
N & Y & \\
R_1 & C & C \\
R_2 & C & C & A \\
OR & O
\end{array}$$
(I),

wherein

- R is hydrogen, C₁-C₆alkyl, C₁-C₄haloalkyl, C₁- or C₂-alkyl substituted by C₁- or C₂-alkoxy, cyano, phenyl or phenyl substituted by halogen, methyl, methoxy or trifluoromethyl, C₃-C₆alkenyl, C₃-C₆alkynyl, C₃-C₆cycloalkyl-C₁- or -C₂-alkyl, C₄-C₆cycloalkyl, C₁-C₄alkylcarbonyl or C₁-C₄alkylsulfonyl;
- R_1 is C_1 - C_7 haloalkyl;
- R₂ is hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₃-C₆cycloalkyl, phenyl, phenyl substituted by fluorine, chlorine, bromine, trifluoromethyl or methoxy, 2-, 3- or 4-pyridyl, or 2- or 3-thienyl;
- R₃ is methyl, ethyl, methoxy, ethoxy, trifluoromethyl, difluoromethoxy or 2,2,2-trifluoroethoxy;
- Z is nitrogen, methine or methine substituted by fluorine, chlorine, bromine or methyl;
- R₄ is fluorine, chlorine, methyl, ethyl, isopropyl, cyclopropyl, methoxy, ethoxy, methylthio, ethylthio, methylamino, dimethylamino, ethylamino, methoxymethyl, trifluoromethyl, chloromethyl, trichloromethyl or difluoromethoxy; or, if Z is methine, R₄ forms a -O(CH₂)_m- bridge to Z, the linkage to Z being *via* the carbon atom;
- Y is nitrogen, or, if Z is nitrogen, Y is nitrogen, methine or methine substituted by fluorine, chlorine or bromine;
- X is oxygen or sulfur;
- A is hydroxy, $-OR_5$, $-SR_6$, imidazolyl, triazolyl, 2-thionothiazolidin-3-yl, cyanamino, hydroxyamino, C_1 - C_6 alkoxyamino, C_1 - C_3 alkoxy(C_1 - C_3 alkoxyl)amino or a group of

the formula
$$R_7$$
 R_{g_9} R_{g_9

A and R together form a bond;

is C₁-C₆alkyl, C₃-C₆alkenyl, C₃-C₆alkynyl, C₁-C₄alkoxy-C₁-C₄alkyl, C₁- or C₂-alkoxy-ethoxy-C₁- or -C₂-alkyl, C₃- or C₄-alkenyloxy-C₁-C₄alkyl, C₃- or C₄-alkynyloxy-C₁-C₄alkyl, C₁-C₄alkylthio-C₁-C₄alkyl, C₁-C₄alkylsulfinyl-C₁-C₄alkyl, C₂-C₄dialkylamino-C₁-C₄alkyl, tri-C₁-C₆alkyl-silyl-C₁-C₄alkyl, C₃- or C₁-C₄alkylcarbonyloxy-C₁- or -C₂-alkyl, C₁-C₄alkoxycarbonyl-C₁-C₆alkyl, C₃- or C₄-alkenyloxycarbonyl-C₁-C₆alkyl, C₃- or C₄-alkynyloxycarbonyl-C₁-C₆alkyl, C₁-C₄alkylthiocarbonyl-C₁-C₄alkyl, benzyloxycarbonyl-C₁-C₆alkyl, C₁-C₄alkoxycarbonylmethyl-carbonylmethyl, C₃-C₆cycloalkyl, C₃-C₆cycloalkyl, C₁-C₃alkyl, C₃-C₆oxacycloalkyl, C₃-C₆oxacycloalkyl substituted by C₁-C₃alkyl, C₂-C₆oxacycloalkyl-C₁-C₃alkyl, C₃-C₅dioxacycloalkyl-C₁-C₃alkyl, benzyl, pyridylmethyl, C₁- or C₂-dialkyl-phosphinyl, C₁-C₄alkylamino, dimethylamino, C₂-C₆alkylideneimino, (C₂-C₆alkylideneimino)-oxy-C₁- or -C₂-alkyl, phenyl, or phenyl substituted by fluorine, chlorine, bromine, methyl, methoxy or nitro;

R₆ is C₁-C₆alkyl, C₂-C₄dialkylamino-C₁-C₄alkyl, C₁-C₄alkoxycarbonyl-C₁-C₄alkyl, phenyl, or phenyl substituted by fluorine, chlorine, bromine, methyl, methoxy or nitro;

R₇ is hydrogen or methyl;

R₉ is hydrogen, trifluoromethyl, C₁-C₄alkyl, C₁-C₄alkyl substituted by hydroxy, C₁-C₄alkoxy, mercapto, C₁-C₄alkylmercapto, phenyl, 4-hydroxyphenyl, 4-imidazolyl, 3-indolyl, carboxy, C₁-C₄alkoxycarbonyl, C₃- or C₄-alkenyloxycarbonyl, cyano, carbamoyl, methylphosphino or methylsulfoximino, C₂-C₆alkenyl, C₂-C₆alkenyl substituted by chlorine, methyl or methoxy, ethynyl, cyclopropyl, phenyl or phenyl substituted by chlorine, methyl or methoxy; or

 R_7 and R_9 together are -(CH₂)_q-, -CH₂CH(OH)CH₂-, -CH₂SCH₂- or -CH₂CH₂SCH₂-;

R₈ is hydroxymethyl, formyl, cyano, phosphono, phosphino, methylphosphino or a
 -COL group;

R₁₀ is hydrogen or methyl; or

 R_9 and R_{10} together are -(CH₂)_n-;

R₁₁ is C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl, C₃-C₆cycloalkylmethyl, C₁-C₄alkylamino, di-C₁-C₄alkylamino, C₁-C₃alkoxy-C₁-C₃alkylamino, C₃-C₆alkenylamino, C₃-C₆alkynylamino, C₃-C₆cycloalkylamino, morpholino, piperazino, piperidino, arylamino, arylamino substituted by fluorine, chlorine, methyl, trifluoromethyl, methoxy or benzylamino, pyridyl, pyridyl substituted by fluorine, chlorine, methyl, ethyl, methoxy, difluoromethoxy, trifluoromethyl, methylamino or C₁-C₃alkoxy-carbonyl, benzyl, phenyl or phenyl substituted by fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxy, difluoromethoxy, ethoxy, nitro, cyano or C₁-C₃alkoxycarbonyl;

R₁₂ is hydrogen or methyl;

R₁₃ is hydrogen, C₁-C₆alkyl, phenyl or phenyl substituted by fluorine, chlorine, bromine, iodine, C₁-C₄alkyl, trifluoromethyl, C₁-C₃alkoxy, difluoromethoxy, cyano, nitro or C₁-C₄alkoxycarbonyl, pyridyl or pyridyl mono- or di-substituted by fluorine, chlorine, methyl, methoxy or trifluoromethyl;

m is 2 or 3:

n is 2, 3, 4 or 5;

q is 2 or 3;

W is oxygen or sulfur;

is hydroxy, C_1 - C_4 alkoxy, C_3 - or C_4 -alkenyloxy, amino, C_1 - C_4 alkylamino, C_1 - C_4 dialkylamino, benzyloxy or a group of the formula $\begin{bmatrix} R_{16} \\ | \\ R_{17} \end{bmatrix}$ $\begin{bmatrix} R_{16} \\ | \\ COR_{14} \end{bmatrix}$

$$M$$
 (L_2) ;

R₁₄ is hydroxy, C₁-C₄alkoxy, 2-propenyloxy, benzyloxy, amino or a further group of the

formula
$$N = C - R_{15}$$
 (L₁₀);

R₁₄₀ is hydroxy, C₁-C₄alkoxy, 2-propenyloxy, benzyloxy or amino;

R₁₅ is hydrogen, C₁-C₄alkyl or benzyl;

R₁₇ is hydrogen; or

 R_{15} and R_{17} together are -(CH₂)₃-; and

R₁₆ is hydrogen or methyl;

or a salt of a compound of formula I that contains a carboxy or sulfonamide group, or a stereoisomer of a compound of formula I.

- 2. A compound according to claim 1, wherein R₂ is hydrogen, methyl, methyl substituted by fluorine, chlorine or bromine, ethyl, pentafluoroethyl, phenyl, phenyl mono- to pentasubstituted by fluorine or mono- to di-substituted by chlorine, bromine, trifluoromethyl or methoxy, pyridyl or thienyl.
- 3. A compound according to claim 2, wherein R_2 is hydrogen, methyl, trifluoromethyl, chlorodifluoromethyl, dichloromethyl, dichloromethyl, trichloromethyl, dibromomethyl, ethyl, pentafluoroethyl, phenyl, phenyl mono-substituted by fluorine, chlorine, trifluoromethyl or methoxy, 2- or 3-pyridyl or 2-thienyl.
- 4. A compound according to claim 3, wherein R_2 is methyl, trifluoromethyl, chlorodifluoromethyl, dichloromethyl, dichloromethyl, dichloromethyl.
- 5. A compound according to claim 1, wherein R_1 is C_1 - C_3 perhaloalkyl.
- 6. A compound according to claim 5, wherein R_1 is trifluoromethyl, chlorodifluoromethyl, dichlorofluoromethyl, trichloromethyl, tribromomethyl, pentafluoroethyl or heptafluoropropyl.

- 7. A compound according to claim 6, wherein R₁ is trifluoromethyl.
- 8. A compound according to claim 1, wherein R_3 is methoxy; and R_4 is methyl, trifluoromethyl, chlorine, methoxy, difluoromethoxy, ethoxy or dimethylamino; or R_4 forms a $-OCH_2CH_2$ bridge to Z.
- 9. A compound according to claim 8, wherein R₃ and R₄ are methoxy.
- 10. A compound according to claim 1, wherein Z is methine.
- 11. A compound according to claim 1, wherein R₃ and R₄ are methoxy; and Z is methine.
- 12. A compound according to claim 1, wherein R is C_1 - C_4 alkyl, 2-propenyl, 2-propynyl, 2-fluoroethyl, 2-chloroethyl, 2-methoxyethyl, 2-cyanoethyl or benzyl.
- 13. A compound according to claim 12, wherein R is methyl or ethyl.
- 14. A compound according to claim 1, wherein R is hydrogen.
- 15. A compound according to claim 1, wherein A and R together form a bond.
- 16. A compound according to claim 1, wherein
- A is hydroxy, C_1 - C_4 alkoxy, 2-propenyloxy, 2-propynyloxy, benzyloxy, C_1 - C_4 alkyl-carbonyloxy- C_1 or - C_2 -alkoxy, N,N-dimethylhydroxyamino, N-methoxyamino, cyanamino, or a group of the formula A_1 , A_2 , A_3 or A_4 , wherein
- R₈ is a -COL group and
- L is as defined in claim 1;
- R₇ is hydrogen;
- R_0 is hydrogen or C_1 - C_4 alkyl; or
- R_7 and R_9 together are -(CH₂)₃-;
- R₁₀ is hydrogen;
- R₁₁ is C₁-C₄alkyl, cyclopropyl, cyclopropylmethyl, C₃- or C₄-alkenyl, C₃- or C₄-halo-alkenyl, cyclobutyl, trifluoromethyl, ethylamino, n-propylamino, 2-propynylamino, di-C₁-C₄alkylamino, N-methoxy-methylamino, morpholino, pyridyl or pyridyl substituted by halogen or by methoxycarbonyl, phenyl or phenyl mono- or disubstituted by fluorine, chlorine, bromine or methoxy; and

- R₁₃ is hydrogen, C₁-C₄alkyl, phenyl or phenyl mono- or di-substituted by fluorine, chlorine, methyl, trifluoromethyl, methoxy, methoxycarbonyl or nitro.
- 17. A compound according to claim 16, wherein A is hydroxy or a group of the formula

- 18. A compound according to claim 17, wherein A is hydroxy.
- 19. A compound according to claim 16, wherein A is a group of the formula

N —
$$\begin{bmatrix} 0 \\ | \\ s \end{bmatrix}$$
 — R_{11} (A₃) wherein R_{11} is methyl, ethyl, trifluoromethyl, 2-methyl-

- 2-propenyl, 3-chloro-2-propenyl, cyclopropyl, cyclopropylmethyl, dimethylamino, diethylamino, morpholino, phenyl, 2-chlorophenyl, 2-methoxycarbonylphenyl, 2-pyridyl, 3-fluoro-2-pyridyl or 3-methoxycarbonyl-2-pyridyl.
- 20. A compound according to claim 16, wherein A is a group of the formula

$$N-N$$
 R_{12}
 R_{13}
 (A_4) wherein R_{12} is hydrogen; and R_{13} is methyl, tert-butyl, phenyl,

- 2-chlorophenyl, 2-fluorophenyl, 2,4-difluorophenyl, 2-tolyl, 4-chlorophenyl, 4-methoxyphenyl or 3-trifluoromethylphenyl.
- 21. A compound according to claim 16, wherein A is a group of the formula

$$N \longrightarrow C \longrightarrow R_8$$
 (A₁*) of (S)-configuration; R₇ is hydrogen; R₉ is C₁-C₄alkyl; or R₇

and R_9 together are -(CH₂)₃-; and R_8 is a -COL group wherein L is as defined in claim 1.

22. A compound according to claim 1 of formula If

$$\begin{array}{c|c}
 & OCH_3 & OCH_3 \\
 & N & N & N \\
 & X & OCH_3 & OCH_$$

wherein

R is hydrogen, methyl, ethyl, difluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-cyanoethyl, 2-methoxyethyl, 2-ethoxyethyl, n-propyl, 2-propenyl, 2-propynyl or benzyl;

R₁ is trifluoromethyl, chlorodifluoromethyl, trichloromethyl, tribromomethyl, pentafluoroethyl or heptafluoropropyl; and

R₂ is hydrogen, methyl, trifluoromethyl, chlorodifluoromethyl, dichlorofluoromethyl, dichloromethyl, trichloromethyl, dibromomethyl, ethyl, pentafluoroethyl, phenyl, phenyl mono-substituted by fluorine, chlorine, trifluoromethyl or methoxy, 2- or 3-pyridyl or 2-thienyl.

23. A compound according to claim 1 of formula Ig

wherein

R is methyl, ethyl, difluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-cyanoethyl, 2-methoxyethyl, 2-ethoxyethyl, n-propyl, 2-propenyl, 2-propynyl or benzyl;

R₃ is methoxy or ethoxy;

R₄ is methyl, trifluoromethyl, trichloromethyl, methoxy, difluoromethoxy, methylamino, dimethylamino, methylthio or cyclopropyl;

Y is nitrogen, methine or chloromethine; and

Z is nitrogen or methine; or

 R_4 forms a -O(CH₂)₂- bridge to Z.

24. A compound according to claim 1 of formula Ih or Ip

wherein

R is hydrogen, methyl, ethyl, difluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-cyanoethyl, 2-methoxyethyl, 2-ethoxyethyl, n-propyl, 2-propenyl, 2-propynyl or benzyl;

R₂ is methyl, phenyl or trifluoromethyl;

A is methoxy, ethoxy, tert-butoxy, 2-propenyloxy, 2-propylideneiminoethoxy, N,N-dimethylaminooxy, cyanamino, methoxyamino, imidazolyl or a group of the formula

$$\begin{array}{c|c}
 & R_{10} \\
 & R_{7} \\
 & R_{9}
\end{array}$$

$$\begin{array}{c|c}
 & R_{8} \\
 & R_{9}
\end{array}$$

$$\begin{array}{c|c}
 & R_{10} \\
 & R_{10}
\end{array}$$

$$\begin{array}{c|c}
 & R_{10} \\
 & R_{2}
\end{array}$$

$$\begin{array}{c|c}
 & R_{10} \\
 & R_{2}
\end{array}$$

wherein

R₇ is hydrogen;

R₉ is hydrogen, C₁-C₄alkyl or C₁-C₄alkyl substituted by carboxy, phenyl, methylphosphino or methylthio; or

 R_7 and R_9 together are -(CH₂)₃-;

R₈ is methylphosphino or a -COL group, and L is hydroxy or C₁-C₄alkoxy; and

R₁₀ is hydrogen.

25. A compound according to claim 1 of formula Ii

wherein

is hydrogen, methyl, ethyl, difluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-cyano-R ethyl, 2-methoxyethyl, 2-ethoxyethyl, n-propyl, 2-propenyl, 2-propynyl or benzyl;

is methyl or trifluoromethyl; and R_2

is methyl, ethyl, trifluoromethyl, 2-methyl-2-propenyl, 3-chloro-2-propenyl, cyclo- R_{11} propyl, dimethylamino, diethylamino, morpholino, phenyl, 2-chlorophenyl, 2-methoxycarbonylphenyl, 2-pyridyl, 2-fluoro-3-pyridyl or 3-fluoro-2-pyridyl.

26. A compound according to claim 1 of formula Ij

$$\begin{array}{c|c}
OCH_{3} & OCH_{3} \\
N & N \\
N & N
\end{array}$$

$$CF_{3} & CH & NH-NR_{12}R_{13}$$

$$R_{2} & QR & O$$

$$CR_{2} & QR & O$$

wherein

is hydrogen, methyl, ethyl, difluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-cyano-R ethyl, 2-methoxyethyl, 2-ethoxyethyl, n-propyl, 2-propenyl, 2-propynyl or benzyl;

is methyl, trifluoromethyl or phenyl; R_2

- 101 -

R₁₂ is hydrogen or methyl; and

R₁₃ is methyl, tert-butyl, phenyl, 2-chlorophenyl, 2-fluorophenyl, 2-tolyl, 2,4-difluorophenyl, 4-chlorophenyl, 3-trifluoromethylphenyl or 4-methoxyphenyl.

27. A compound according to claim 1 of formula It

$$\begin{array}{c} OCH_3 \\ N \\ N \\ N \end{array}$$

$$X \qquad (It),$$

$$R_1 \\ R_2 \qquad O$$

wherein

X is oxygen or sulfur;

R₁ is trifluoromethyl, pentafluoroethyl or heptafluoropropyl; and

R₂ is methyl, ethyl, trifluoromethyl or phenyl.

28. A compound in the form of a mixture of stereoisomers or in the form of the pure isomer according to claim 1, selected from:

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3-trifluoromethylbutyric acid;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-hydroxy-3-trifluoromethylbutyric acid;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-ethoxy-3-trifluoromethylbutyric acid;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methyl-3-trifluoromethyl-oxetanone;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-methoxy-3-trifluoromethylbutyric acid;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-oxy]-3-ethoxy-3-trifluoromethylbutyric acid;

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-methoxy-3,3-bis-trifluoromethylpropionic acid; and

2-[(4,6-dimethoxy-pyrimidin-2-yl)-thio]-3-hydroxy-3,3-bis-trifluoromethylpropionic acid.

29. A process for the preparation of a compound of formula Ia

WO 96/00219 PCT/EP95/02295

$$\begin{array}{c|c} R_4 & Z & R_3 \\ \hline & X & \\ R_2 & C & C \\ \hline & C & OH \\ \hline & C &$$

wherein R_1 to R_4 , X, Y and Z are as defined in claim 1 and R is C_1 - C_6 alkyl, C_1 - C_4 halo-alkyl, C_1 - or C_2 -alkyl substituted by C_1 - or C_2 -alkoxy, cyano, phenyl or phenyl substituted by halogen, methyl, methoxy or trifluoromethyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_6 cycloalkyl- C_1 - or - C_2 -alkyl, C_4 - C_6 cycloalkyl, C_1 - C_4 alkylcarbonyl or C_1 - C_4 alkylsulfonyl, according to claim 1, which process comprises

reacting a compound of formula III

$$R_4$$
 X
 X
 CH_2
 CH_2
 R_3
 R_{20}
 R_{20}

with a compound of formula II

$$\begin{array}{c|c}
O \\
\parallel \\
R_1 - C - R_2
\end{array} (II),$$

in the presence of a suitable base, to form a compound of formula Ib

$$\begin{array}{c|c} R_4 & Z & R_3 \\ & X & & \\ & X & & \\ R_1 & C & & \\ R_2 & & & \\ & OH & & O \end{array}$$
 (Ib),

wherein in the compounds of formulae III, II and Ib the radicals R_1 to R_4 , X, Y and Z are as defined in claim 1 and R_{20} is C_1 - C_6 alkoxy, chloroethoxy, 2-trimethylsilylethoxy, 2-propenyloxy, benzyloxy or benzyloxy substituted by methoxy, and then alkylating, acylating or sulfonylating the compound of formula Ib with a compound of formula IX

$$R-L_5$$
 (IX),

wherein R is as defined and L_5 is a leaving group, where appropriate in the presence of a base and a suitable solvent, to form the compound of formula In

$$\begin{array}{c|c} R_4 & Z & R_3 \\ \hline & X & \\ & X & \\ \hline & X & \\ & & X & \\ \hline & & & \\ R_2 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$$

and then reacting that compound of formula In further under hydrolytic or hydrogenolytic conditions or, when R_{20} is the tert- C_4H_9 -O- group, under acid-catalysed conditions.

30. A process for the preparation of a compound of formula Iq

WO 96/00219 PCT/EP95/02295

$$\begin{array}{c|c}
R_4 & Z & R_3 \\
& X & & \\
X & & & \\
R_1 & & & \\
R_2 & & & \\
OH & & O
\end{array}$$
(Iq),

wherein R_2 to R_4 , X, Y and Z are as defined in claim 1 and R_1 is C_1 - C_7 alkyl or C_1 - C_7 halo-alkyl, or R_1 together with R_2 is -(CH₂)₄- or -(CH₂)₅-, according to claim 1, which process comprises reacting a compound of formula IIIa

with a compound of formula Π

in the presence of a suitable base, to form a compound of formula Ic

WO 96/00219 PCT/EP95/02295

- 105 -

$$\begin{array}{c|c}
R_4 & Z & R_3 \\
N & Y & \\
X & & \\
R_1 & CH & CH & OC(CH_3)_3 \\
R_2 & & & \\
OH & O & OC(CH_3)_3
\end{array}$$
(Ic),

wherein in the compounds of formulae IIIa, II and Ic the radicals R_2 to R_4 , X, Y and Z are as defined and R_1 is C_1 - C_7 alkyl or C_1 - C_7 haloalkyl, or R_1 together with R_2 is -(CH₂)₄- or -(CH₂)₅-, and then hydrolysing the compound of formula Ic with trifluoroacetic acid, sulfuric acid, phosphoric acid or a mixture of sulfuric acid and acetic acid, where appropriate in the presence of an additional solvent.

31. A process for the preparation of a compound of formula Im

$$\begin{array}{c|c} R_4 & Z & R_3 \\ & X & & \\ & X & & \\ & X & & \\ & & C & \\ R_2 & & & \\ & & C & \\$$

wherein R_1 to R_4 , X, Y and Z are as defined in claim 1, R is C_1 - C_6 alkyl, C_1 - C_4 haloalkyl, C_1 - or C_2 -alkyl substituted by C_1 - or C_2 -alkoxy, cyano, phenyl or phenyl substituted by halogen, methyl, methoxy or trifluoromethyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_6 cycloalkyl- C_1 - or - C_2 -alkyl, C_4 - C_6 cycloalkyl, C_1 - C_4 alkylcarbonyl or C_1 - C_4 alkylsulfonyl and A is - C_5 , - C_6 , cyanamino or a group C_1 to C_4 , according to claim 1, which process comprises converting a compound of formula Ia

$$\begin{array}{c|c} R_4 & Z & R_3 \\ & X & & \\ & X & & \\ & X & & \\ & & X & \\ & & & \\ R_1 & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

wherein R, $R_{\rm I}$ to $R_{\rm 4}$, X, Y and Z are as defined,

a) by reaction with a compound of formula VII

$$A_a-L_3$$
 (VII),

wherein

A_a is a leaving group, especially chlorine, bromine, 2,4,6-triisopropylphenyl-sulfonyl, imidazolyl, triazolyl, 2-thionothiazolidin-3-yl or N,N'-dicyclohexyl-isoureidyl, and
 L₃ is -S(O)Cl, -C(O)Cl, -C(O)Cl, -PCl₄, -P(O)Cl₂, -P(O)Br₂, 2,4,6-triisopropyl-phenyl-sulfonyl, imidazolyl, triazolyl, N-carbonylimidazole or N-carbonyltriazole, into the compound of formula Id

wherein R_1 to R_4 , X, Y and Z are as defined in claim 1 and R and A_a are as defined above, and then reacting the compound of formula Id with a compound of formula V

wherein A is $-OR_5$, $-SR_6$, cyanamino or a group A_1 to A_4 , where appropriate in the presence of a base and a solvent; or

b) by treatment with a water-removing reagent, such as phosphorus oxychloride, into the compound of formula Ie

$$\begin{array}{c|c}
R_4 & Z & R_3 \\
\hline
N & Y & \\
X & & \\
\hline
R_1 & & \\
\hline
C & & \\
R_2 & & \\
\hline
OR & & \\
\end{array}$$

$$\begin{array}{c|c}
R_1 & & \\
\hline
C & & \\
\hline
R_2 & & \\
\hline
OR & & \\
\end{array}$$

$$\begin{array}{c|c}
C & & \\
\hline
R_1 & & \\
\hline
C & & \\
\hline
R_2 & & \\
\hline
R_3 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
C & & \\
\hline
R_1 & & \\
\hline
C & & \\
\hline
R_2 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_1 & & \\
\hline
R_2 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_4 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_2 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_2 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_2 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_3 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_4 & & \\
\hline
\end{array}$$

wherein R_1 to R_4 , X, Y and Z are as defined in claim 1 and R is as defined above, and then reacting the compound of formula Ie with a compound of formula V

wherein A is $-OR_5$, $-SR_6$, cyanamino, hydroxyamino, C_1 - C_6 alkoxyamino, C_1 - C_3 alkoxy- $(C_1$ - C_3 alkyl)amino or a group A_1 to A_4 , where appropriate in the presence of a base and a solvent.

32. A process for the preparation of a compound of formula Ir or Is

- 108 -

wherein R_2 to R_4 , X, Y, Z and A are as defined in claim 1 and R_1 is C_1 - C_7 alkyl or C_1 - C_7 haloalkyl, or R_1 together with R_2 is -(CH_2)₄- or -(CH_2)₅-, according to claim 1, which process comprises converting a compound of formula Iq

$$\begin{array}{c|c} R_4 & Z & R_3 \\ & X & Y \\ & X & CH \\ \hline R_2 & 0H & O \end{array}$$
 (Iq),

wherein R₁ to R₄, X, Y and Z are as defined, by treatment with a water-removing reagent, such as phosphorus oxychloride, into the compound of formula Ir

$$R_4$$
 R_4
 R_3
 R_1
 R_2
 R_3
 R_1
 R_2
 R_3
 R_3
 R_1
 R_2
 R_3

wherein R_2 to R_4 , X, Y and Z are as defined in claim 1 and R_1 is C_1 - C_7 alkyl or C_1 - C_7 haloalkyl, or R_1 together with R_2 is -(CH₂)₄- or -(CH₂)₅-, and then reacting the compound of

- 109 -

formula Ir with a compound of formula V

A-H (V),

wherein A is hydroxy, -OR₅, -SR₆, cyanamino, hydroxyamino, C_1 - C_6 alkoxyamino, C_1 - C_3 alkoxy- C_1 - C_6 alkylamino or a group A_1 to A_4 , where appropriate in the presence of a base and a solvent.

33. A process for the preparation of a compound of formula IIIa

wherein R₃, R₄, X, Y and Z are as defined in claim 1, which process comprises

a) reacting a compound of formula IV or IVa

wherein M^{\bigoplus} is a cation, with bromo- or chloro-acetic acid tert-butyl ester in the presence of a base and a suitable solvent; or

b) reacting a compound of formula VI

$$\begin{array}{c|c}
R_4 & Z & R_3 \\
N & Y & (VI)
\end{array}$$

with hydroxy- or mercapto-acetic acid tert-butyl ester (VIII) in the presence of a base and a suitable solvent; in the compounds of formulae IV and VI the radicals R_3 , R_4 , X, Y and Z are as defined in claim 1 and L_4 is a leaving group, preferably fluorine, chlorine, methylsulfonyl or benzylsulfonyl.

34. A compound of formula IIIa

$$R_4$$
 X
 X
 CH_2
 CH_2
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3

wherein R_3 , R_4 , Z, Y and X are as defined in claim 1.

35. A compound of formula Ir

wherein R_2 to R_4 , X, Y and Z are as defined in claim 1 and R_1 is C_1 - C_7 alkyl, or R_1

together with R₂ is -(CH₂)₄- or -(CH₂)₅-.

- 36. A herbicidal and plant-growth-inhibiting composition, which comprises one or more compounds of formula I, according to claim 1.
- 37. A composition according to claim 36, which comprises from 0.1 % to 95 % of compound of formula I according to claim 1.
- 38. A method of controlling undesired plant growth, which comprises applying an effective amount of a compound of formula I, according to claim 1, or of a composition comprising that compound, to the plants or to the locus thereof.
- 39. A method according to claim 38, which comprises applying a compound of formula I in an amount of from 0.001 to 2 kg per hectare.
- 40. A method of inhibiting plant growth, which comprises applying an effective amount of a compound of formula I, according to claim 1, or of a composition comprising that compound, to the plants or to the locus thereof.
- 41. A method according to claim 38 for the selective pre- or post-emergence control of weeds in crops of useful plants, especially cereals, maize, rice, soybeans, rape and cotton.
- 42. The use of a composition according to claim 36 in the selective pre- or post-emergence control of weeds in crops of useful plants, especially cereals, maize, rice, soybeans, rape and cotton.

INTERNATIONAL SEARCH REPORT

Intern al Application No PCT/EP 95/02295

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D239/60 A01N43/40 C07D233/54 C07D401/00 C07D405/12 C07D401/12 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D A01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1,36 EP,A,O 517 215 (UBE INDUSTRIES,LTD.) 9 A December 1992 cited in the application see claims 1,36 EP,A,O 481 512 (UBE INDUSTRIES,LTD.) 22 A April 1992 cited in the application see claims 1,36 EP,A,O 567 014 (UBE INDUSTRIES,LTD.) 27 October 1993 cited in the application see claims -/--Patent family members are listed in annex. X Further documents are listed in the continuation of hox C. "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the investigation. Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to earlier document but published on or after the international filing date involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed in the art. '&' document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search - 5, 09, 95 29 August 1995 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NI. - 2280 IIV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016 Van Bijlen, H

1

INTERNATIONAL SEARCH REPORT

Intern: d Application No PCT/EP 95/02295

	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Reievant w ciaim 190.
1	EP,A,O 581 184 (UBE INDUSTRIES,LTD.) 2 February 1994 cited in the application see claims	1,36
1	EP,A,O 347 811 (KUMAI CHEMICAL INDUSTRY CO.) 27 December 1989 cited in the application * page 29, table 2 *	1,36
4	WO,A,93 25540 (CIBA-GEIGY AG) 23 December 1993 cited in the application * claims, r3= haloalkyl, *	1,36
P,A	WO,A,94 25442 (BASF AG) 10 November 1994 * claims, R5 = haloalkyl,*	1,36
···		e es
	·	

INTERNATIONAL SEARCH REPORT

tenormation on patent family members

Intern: Il Application No
PCT/EP 95/02295

Patent document sited in search report	Publication date		family ber(s)	Publication date
EP-A-517215	09-12-92	JP-A- CN-A-	4360887 1067651	14-12-92 06-01-93
		US-A-	5387575	07-02-95
		JP-A-	5148242	15-06-93
		JP-A-	5148245	15-06-93 20-08-93
		JP-A-	5208962 	20-00-33
 ЕР-А-481512	22-04-92	AU-B-	652961	15-09-94
LI A TOISIL		AU-A-	8597791	30-04-92
		JP-A-	5125058	21-05-93
•		US-A-	5178663	12-01-93
 EP-A-567014	27-10-93	JP-A-	6025189	01-02-94
EP-W-30/014	27 10 33	JP-A-	5306274	19-11-93
		JP-A-	6009620	18-01-94
		JP-A-	6016660	25-01-94
		DE-D-	69300253	17-08-95
		US-A-	5376620	27-12-94
		CN-A-	1079737	22-12-93
	02-02-94	JP-A-	6041091	15-02-94
Eb-W-201104	OL OL 3.	CN-A-	1084513	30-03-94
		US-A-	5389601	14-02-95
	27-12-89	DE-D-	68914197	05-05-94
EP-A-347811	27-12 03	DE-T-	68914197	10-11-94
		JP-A-	2085262	26-03-90
		US-A-	4968340	06-11-90
		US-A-	5087289	11-02-92
	23-12-93	AU-B-	4321693	04-01-94
WO-A-9325540	72-17-32	CA-A-	2110500	23-12-93
		EP-A-	0601155	15-06-94
		JP-T-	6510063	10-11-94
	10-11-94	DE-A-	4313412	27-10-94
WO-A-9425442	10-11-94	AU-B-	6568194	21-11-94

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.