STAT 3690 Lecture 18

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Mar 11, 2022

Testing for nested models

- $H_0: E(\mathbf{Y} \mid \mathbf{X}) = \mathbf{X}_{(0)} \mathbf{B}_{(0)}$ (nested model) vs. $H_1: E(\mathbf{Y} \mid \mathbf{X}) = \mathbf{X}_{(0)} \mathbf{B}_{(0)} + \mathbf{X}_{(1)} \mathbf{B}_{(1)}$ (full model)
 - $\mathbf{X} = [\mathbf{X}_{(0)}, \mathbf{X}_{(1)}]$
 - When $\mathbf{X}_{(0)}$ has only the column of ones, we are testing the empty model (i.e., only the intercept) against the full model.
 - When $\mathbf{X}_{(1)}$ only contains one column, we are testing for the significance of that variable.
- Likelihood ratio

$$\lambda = \left(\frac{\det \widehat{\mathbf{\Sigma}}_{\mathrm{ML}, H_0}}{\det \widehat{\mathbf{\Sigma}}_{\mathrm{ML}}}\right)^{-n/2} = \left[\det \left\{ (\widehat{\mathbf{\Sigma}}_{\mathrm{ML}, H_0} - \widehat{\mathbf{\Sigma}}_{\mathrm{ML}}) \widehat{\mathbf{\Sigma}}_{\mathrm{ML}}^{-1} + \mathbf{I} \right\} \right]^{-n/2}$$

- Alternatives to likelihood ration
 - Suppose $\eta_1 \ge \cdots \ge \eta_p$ are eigenvalues of $(\widehat{\Sigma}_{\mathrm{ML},H_0} \widehat{\Sigma}_{\mathrm{ML}})\widehat{\Sigma}_{\mathrm{ML}}^{-1}$ Wilks' lambda: $\prod_i (1 + \eta_i)^{-1}$

 - Pillai's trace: $\sum_{i} \{ \eta_i (1 + \eta_i)^{-1} \}$
 - Hotelling-Lawley trace: $\sum_{i} \eta_{i}$ Roy's largest root: $\eta_{1}(1 + \eta_{1})^{-1}$

 - When $\mathbf{X}_{(1)}$ has only one column, all four tests are equivalent; as n increases, all four tests give similar results.

Information criteria

- Akaike's information criterion (AIC)
 - $-\ln Likelihood + 2 \times \text{number of parameters to estimate}$
 - Number of parameters to estimate in **B** and Σ : p(q+1) + p(p+1)/2
 - Smaller is better
- Bayesian information criterion (BIC)
 - $-\ln Likelihood + \ln n \times \text{number of parameters to estimate}$
- Model selection using information criteria proceeds as follows
 - Select models of interest M_1, \ldots, M_K . They do not need to be nested.
 - * Candidate models should be selected using domain-specific expertise, if possible. Or, you can go through all possible models.
 - Compute the specific information criterion for each model.
 - Select the model with the smallest value of the information criterion.