

F16. 2

Check if any piece of the large frame is still missing when the end-of-frame command is received. If any is still missing, request retransmission of the subframe at position, specifying length.

Both Sender and Receiver know the ratio of sub-frames received with errors and received without errors. They also know the average sub-frame length for each sub-channel. Then they can update the optimum sub-frame size for each sub-channel

F1G. 4

F1G. 6

Note that the transission sub-layer described here does not have to ensure perfect integrity. The large frame includes it's own CRC and other higher layer protocol elements to ensure data integrity. An error in the sub-layer described here is equivalent to bit error perceived at the higher layer. The sub-layer only strives to improve BER, not generate absolute data integrity.

F1G. 7

Sub-Frame Structure

Field	Proposed Number of Bits
Data/Command Indicator	
Large Frame sequence number (Window of 2)	_
Character offset of sub-frame into large frame	
Sub-Channel sequence number (Window of 7)	3
Data	O to 2048
CRC	12
Shared Flag (Hex 7E)	8

This sub-frame structure is suitable for sub-channel utilization (Multi-link) use on media with high Bit Error Rates (BER)

F1G. 8

F1G. 9 transfer rates Sub-Channel Cumulative 4000 30000 104000 138000 transfer rate sub-channel **E**ffective 2000 0009 8000 #of Sub-Channels characteristics with same 8 ~ S $\overline{\mathbf{c}}$ High One bit error every n bits 500 | Med on "raw" sub-channels 5000 Low 20 TOTAL

