Regularization

ESM5205 Learning from Big Data | Oct 2, 2019

Seokho Kang

Generalization

- Suppose that a training dataset $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ is given.
- We use a supervised learning algorithm to train a model f by minimizing the **training error** (the error on the training set D)
- The model f must perform well on new, previously unseen data points, which is called **Generalization**.
- To evaluate generalization performance, we use a **test set** $D^{(\text{test})}$ consisting of $n^{(\text{test})}$ data points that were collected separately from the training set D.
- We want the **generalization error**, a.k.a. **test error** (the error on the test set) to be low as well.

Generalization Failures

- Overfitting: the gap between the training error and test error is too large.
- Underfitting: the model is not able to obtain a sufficiently low error value on the training set.
- We can control whether a model is more likely to overfit or underfit by altering the capacity.

Generalization Failures

• Example: in Regression...

• **Example:** in Classification...

- Generalization is related to "Bias" and "Variance"
 - What is a Bias?
 - What is a Variance?

Bias-Variance Decomposition

- Bias-Variance Decomposition of MSE (Regression Case)
 - Suppose that there's an unknown true function with noise $y = f^*(x) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$
 - We want to find a prediction \hat{y} that best approximates the true value $f^*(x)$ by means of a learning algorithm.
 - (Expected) Generalization error (in squared error) on an unseen data point x is :

$$E[(y - \hat{y})^2] = (f^*(x) - E[\hat{y}])^2 + E[(\hat{y} - E[\hat{y}])^2] + \sigma^2$$

bias
$$[\hat{y}]^2 = (f^*(x) - E[\hat{y}])^2$$

$$Var[\hat{y}] = E[(\hat{y} - E[\hat{y}])^2]$$

proof: try yourself!

Bias-Variance Decomposition of MSE (Regression Case)

$$\begin{split} & \operatorname{E}[(y-\hat{y})^2] = \operatorname{E}[(f^*(x) + \epsilon - \hat{y})^2] \\ & = \operatorname{E}[(f^*(x) + \epsilon - \hat{y} + E[\hat{y}] - E[\hat{y}])^2] \\ & = \operatorname{E}[((f^*(x) - E[\hat{y}]) + \epsilon - (\hat{y} - E[\hat{y}]))^2] \\ & = \operatorname{E}[(f^*(x) - E[\hat{y}])^2] + \operatorname{E}[\epsilon^2] + \operatorname{E}[(\hat{y} - E[\hat{y}])^2] \\ & \quad + 2\operatorname{E}[\epsilon(f^*(x) - E[\hat{y}])] - 2\operatorname{E}[\epsilon(\hat{y} - E[\hat{y}])] - 2\operatorname{E}[(f^*(x) - E[\hat{y}])(\hat{y} - E[\hat{y}])] \\ & = (f^*(x) - E[\hat{y}])^2 + \operatorname{E}[\epsilon^2] + \operatorname{E}[(\hat{y} - E[\hat{y}])^2] \\ & \quad + 2\operatorname{E}[\epsilon](f^*(x) - E[\hat{y}]) - 2\operatorname{E}[\epsilon]\operatorname{E}[\hat{y} - E[\hat{y}]] - 2(f^*(x) - E[\hat{y}])\operatorname{E}[\hat{y} - E[\hat{y}]] \\ & = (f^*(x) - E[\hat{y}])^2 + \operatorname{E}[\epsilon^2] + \operatorname{E}[(\hat{y} - E[\hat{y}])^2] \\ & = \operatorname{bias}[\hat{y}]^2 + \sigma^2 + \operatorname{Var}[\hat{y}]^2 \end{split}$$

Bias and Variance in Supervised Learning

- **Bias** (typically, lower capacity → higher bias)
 - The difference between the model prediction and the true value
 - With too high bias, a model pays little attention to the training data, thus can be oversimplified.

 underfitting
 - Example

low bias: linear regression applied to linear data, deep neural network high bias: constant function, linear regression applied to non-linear data

- Variance (typically, higher capacity → higher variance)
 - The variability of the model prediction for a given data point.
 - With too high variance, a model pays much attention to the training data, thus does not generalize on unseen data. → overfitting
 - Example

low variance: constant function, linear regression high variance: polynomial regression with high degree, deep neural network

- Bias and Variance in Supervised Learning
 - The bias and variance by a learning algorithm
 - The number of parameters/hyperparameters
 - The choice of hyperparameters
 - Randomness in the learning algorithm used (e.g., neural network parameter initialization)
 - Other sources of the bias and variance
 - Characteristics of the data (e.g., size, dimensionality, etc.)
 - Noise in the data (input and output variables)

• **Example:** k-nearest neighbors regression

$$\hat{y} = \frac{1}{k} \sum_{(x_{(i)}, y_{(i)}) \in kNN(x)} y_{(i)}$$

- bias
$$[\hat{y}]^2 = \left[f^*(x) - \frac{1}{k} \sum_{(x_{(i)}, y_{(i)}) \in kNN(x)} f^*(x_{(i)}) \right]^2$$

-
$$\operatorname{Var}[\hat{y}] = \operatorname{Var}\left[\frac{1}{k}\sum_{(x_{(i)},y_{(i)})\in kNN(x)}y_{(i)}\right] = \frac{\sigma^2}{k}$$

- What if we increase the hyperparameter *k*?

bias↑, variance↓

bias
$$[\hat{y}]^2 = (f^*(x) - E[\hat{y}])^2$$

Var $[\hat{y}] = E[(\hat{y} - E[\hat{y}])^2]$

k-NN - Regression

• **Example:** k-nearest neighbors classification

$$\hat{y} = \underset{j}{\operatorname{argmax}} \sum_{(x_{(i)}, y_{(i)}) \in kNN(x)} I(y_{(i)} = j)$$

1-Nearest Neighbor Classifier

O

15-Nearest Neighbor Classifier

- Example: the effect of the size of training data
 - bigger data → lower variance

- Bias-Variance Trade-off in Supervised Learning
 - In general, <u>low bias ↔ high variance</u> and <u>high bias ↔ low variance</u>

Regularization

- Regularization: Any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error
- It works by reducing variance significantly while not overly increasing the bias.

→ to avoid overfitting

- Regularization Strategies for Neural Networks
 - Data Augmentation
 - Parameter Norm Penalties
 - Early Stopping
 - Dropout
 - Batch Normalization
 - Multitask Learning
 - Transfer Learning
 - Ensemble (Bagging, etc.)
 - ...

Data Augmentation

- The best (but often not easy) way to make a machine learning model generalize better is to train it on more data.
- But, in practice, the amount of data we have is limited. (data collection cost...)

Data Augmentation

- Create fake data and add them to the training set.
- Practically very effective! But application is limited.
- Example: Various possible (label-preserving) transformations for image data
 - flip, rotate, crop, translation, distortion, rescale, contrast, noise, etc...

- If the parameters θ are unconstrained, they can explode \rightarrow high variance
- Regularizing parameter norms

: Adding a norm penalty $\Omega(\boldsymbol{\theta})$ to the cost function $J(\boldsymbol{\theta})$

$$\tilde{J}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda \Omega(\boldsymbol{\theta})$$

 λ controls the trade-off

- L2 Regularization (weight decay)
 - $\Omega(\boldsymbol{\theta}) = \frac{1}{2} \|\boldsymbol{\theta}\|_2^2$
- L1 Regularization
 - $\Omega(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_1$

• **L2 Regularization:** Adding a L2-norm penalty to $J(\theta)$

$$\tilde{J}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

In the gradient descent,

$$\theta \coloneqq \theta - \epsilon \nabla_{\theta} \tilde{J}(\theta) = \theta - \epsilon (\nabla_{\theta} J(\theta) + \lambda \theta)$$
$$= (1 - \epsilon \lambda)\theta - \epsilon \nabla_{\theta} J(\theta)$$

shrinking the parameter vector

• **L2 Regularization:** Adding a L2-norm penalty to $J(\theta)$

$$\tilde{J}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

- Linear regression with L2 Regularization (Ridge Regression)

$$\tilde{J}(\mathbf{w}) = \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

▶ optimization → a closed-form solution (normal equation)

$$\nabla_{\mathbf{w}} \tilde{J}(\mathbf{w}) = \frac{1}{n} \nabla_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2 + \lambda \mathbf{w} = 0$$

••

•••

• •

$$\mathbf{w}^* = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

• L1 Regularization: Adding a L1-norm penalty to $J(\theta)$

$$\tilde{J}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_1$$

In the gradient descent,

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} - \epsilon \nabla_{\boldsymbol{\theta}} \tilde{J}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \epsilon \left(\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) + \lambda \cdot \operatorname{sign}(\boldsymbol{\theta}) \right)$$
$$= \left(\boldsymbol{\theta} - \epsilon \lambda \cdot \operatorname{sign}(\boldsymbol{\theta}) \right) - \epsilon \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

encourage θ_i to be zero

(sparsity property: some parameters have an optimal value of zero)

• L1 Regularization: Adding a L1-norm penalty to $J(\theta)$

$$\tilde{J}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_1$$

- Linear regression with L1 Regularization (Lasso Regression)

$$\tilde{J}(\mathbf{w}) = \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|_1$$

▶ optimization → use gradient descent

Example: Ridge Regression vs Lasso Regression

$$- y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

Early Stopping

- The most commonly used form of regularization in neural network training
- "Don't train the network too much to prevent overfitting!"
- Use the validation error to decide when to stop training
 - : Choose the parameters that minimize the validation error (hopefully, lower the test error)
- The number of training epochs is a hyperparameter.

Early stopping: terminate while validation set performance is better

Training with Early Stopping

- 1. Start with small random parameters
- 2. Update the parameters to minimize the training error
- 3. Stop when the validation error fails to decrease

- Dropout: Improving generalization by preventing complex co-adaptations on training data
 - "randomly set some units to zero for each iteration"
 - helps to break "symmetry" between different units in a layer
 - approximately combines exponentially many (~2ⁿ, n is the number of hidden units)
 different sub-networks by random sampling of hidden units

(a) Standard Neural Net

(b) After applying dropout.

Training Phase: At each iteration, randomly drop hidden units. Each unit is retained
and updated with a probability p (how?)

(a) Standard network

$$z_i^{(l+1)} = \mathbf{w}_i^{(l+1)} \mathbf{y}^l + b_i^{(l+1)},$$

 $y_i^{(l+1)} = f(z_i^{(l+1)}),$

(b) Dropout network

$$r_j^{(l)} \sim \text{Bernoulli}(p),$$
 $\widetilde{\mathbf{y}}^{(l)} = \mathbf{r}^{(l)} * \mathbf{y}^{(l)},$
 $z_i^{(l+1)} = \mathbf{w}_i^{(l+1)} \widetilde{\mathbf{y}}^l + b_i^{(l+1)},$
 $y_i^{(l+1)} = f(z_i^{(l+1)}).$

Test Phase: Each unit is scaled by p

• Example: Empirical study (Srivastava et al., 2014)

Batch Normalization

- Batch Normalization: Reparameterization of a neural network to improve optimization
 - Normalize distribution of each hidden unit to zero mean and one variance across each minibatch
 - Training phase: μ and σ are calculated from the minibatch
 - Test phase: use running averages of μ and σ during training
 - Simply normalizing each hidden unit may change what it can represent
 - learn the scale and shift (parameters γ and β) for each hidden unit
 - Benefits of Batch Normalization
 - accelerate the training of a neural network
 - reduce effects of exploding and vanishing gradients
 - improve generalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$

Algorithm 1: Batch Normalizing Transform, applied to 28 activation x over a mini-batch.

Multitask Learning

 Multitask Learning: Improving generalization by pooling the data arising out of several related tasks. Different tasks share the input and some hidden layers.

* multi-class/multi-label classification?

Example data for multi-task learning

id	X_1	X_2	X_3	•••	X_d
1	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	:	x_{1d}
2	<i>x</i> ₂₁	x_{22}	x_{23}	•••	x_{2d}
3	<i>x</i> ₃₁	<i>x</i> ₃₂	x_{33}	•••	x_{3d}
4	<i>x</i> ₄₁	x_{42}	x_{43}	•••	x_{4d}
5	<i>x</i> ₅₁	<i>x</i> ₅₂	x_{53}	:	x_{5d}
6	<i>x</i> ₆₁	<i>x</i> ₆₂	<i>x</i> ₆₃	:	x_{6d}
7	<i>x</i> ₇₁	<i>x</i> ₇₂	<i>x</i> ₇₃	•••	x_{7d}
	•••	•••	•••	•••	•••

Y_A	Y_B	Y_C	
y_{1a}	_	y_{1c}	
-	y_{2b}	y_{2c}	
-	y_{3b}	-	
-	y_{4b}	-	
y_{5a}	-	y_{5c}	
-	y_{6b}	y_{6c}	
-	y_{7b}	-	
•••	•••	•••	

Multitask Learning

- Multitask Learning Approach for Neural Networks: Parameter Sharing
 - **Task-specific parameters:** only for the target task, benefit from the data of the target task
 - **Generic parameters:** shared across all the tasks, benefit from the pooled data of all the tasks

Transfer Learning

- **Transfer Learning**: Improving generalization in a new task through the transfer of knowledge from a related task that has already been learned.
 - Take a "source model" trained for a related "source task", and adapt the source model to build a "target model" for the "target task"
 - → faster/efficient training, requires less training data

Transfer Learning

- Transfer Learning Approaches for Neural Networks
 - Use the source model as a feature extractor, train a off-the-shelf model with new data
 - which hidden layer (from general to specific)?, how to train the new model?
 - Use the source model as an initialization, fine-tune the model with new data
 - learning rate for backpropagation?

Ensemble Learning

- Ensemble: Improving generalization by combining several different models.
 - The output of the *i*-th base model: $\hat{y} = f_i(x)$
 - The output of an ensemble: $\hat{y} = g(f_1(x), ..., f_k(x))$

$$f_i(x) \neq f_j(x)$$
 for diversity!

Ensemble Learning

- Two main steps of constructing an ensemble: (1) Diversity generation, (2) Combination
 - Diversity Generation
 - Data manipulation
 - : Data points / Variables
 - : Sampling / Partitioning
 - Learning algorithm
 - : Homogeneous / Heterogeneous
 - ...
 - Combination
 - Equal / Weighted
 - Linear / Non-linear
 - Static / Dynamic
 - ...
 - Different ensemble methods construct the ensemble of models in different ways.
 - Some of them work as **regularization**.

Ensemble Learning: Bagging

- Bagging ("bootstrap aggregating")
 - One of the most popular ensemble methods. Simple but very effective!
 - [Training Phase] for a training set D,
 - 1. Take k bootstrap samples (sampling with replacement) from D
 - 2. Train *k* different base models on these bootstrap samples

Output:
$$f_1(x), \dots, f_k(x)$$

- **[Test Phase]** for a test data point x,
 - 1. let all models predict
 - 2. take an average (for regression) or majority vote (for classification)

Output:
$$\hat{y} = \frac{1}{k} \sum_i f_i(x)$$
 (for regression) or $\hat{y} = \underset{j}{\operatorname{argmax}} \sum_i I(f_i(x) = j)$ (for classification)

Ensemble Learning: Bagging

- Bagging ("bootstrap aggregating")
 - If the base models make **uncorrelated** errors, then their ensemble can improve performance.
 - Bagging reduces the variance of the prediction. why?
 - **Example:** Regression Case
 - $\hat{y} = \frac{1}{k} \sum_{i} \hat{y}_{i}$
 - $\operatorname{Var}[\hat{y}] = \frac{1}{k^2} \operatorname{Var}[\sum_i \hat{y}_i] = \frac{1}{k^2} \{ \sum_i \operatorname{Var}[\hat{y}_i] + 2 \sum_{i>j} \operatorname{Cov}[\hat{y}_i, \hat{y}_j] \}$
 - if $Var[\hat{y}_i] = \delta^2$ and $Cov[\hat{y}_i, \hat{y}_j] = 0$, $\forall i, j \rightarrow Var[\hat{y}] = \frac{\delta^2}{k}$

