Math110Hw2

Trustin Nguyen

January 2023

Homework 2

Exercise 1: Prove or disprove (i.e, provide a counterexample): if U_1, U_2, W are subspaces of V such that

$$U_1 + W = U_2 + W,$$

then $U_1 = U_2$.

Proof. False. Consider $W = \mathbb{R}^3$ which is a vector space and

$$U_1 = \{(x, 0, 0) : x \in \mathbb{R}\}$$

$$U_2 = \{(x, y, 0) : x, y \in \mathbb{R}\}$$

Clearly, $U_1 + W = \mathbb{R}^3 = U_2 + W$ and U_1 is a subspace:

- 1. $0 \in U_1$
- 2. If $(x,0,0), (y,0,0) \in U_1$, then

$$(x,0,0) + (y,0,0) = (x+y,0,0) \in U_1$$

3. If $(x, 0, 0) \in U_1, \lambda \in \mathbb{R}$,

$$\lambda(x,0,0) = (\lambda x, 0, 0) \in U_1$$

The n same properties hold for U_2 also. Then $U_1+W=U_2+W$ but $U_1\neq U_2$. \square

Exercise 2: Suppose $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and let

$$U = \{(x, y, x + 2y, -x - y, 2x) \in \mathbb{F}^5 : x, y \in \mathbb{F}\}.$$

Find three subspaces W_1, W_2, W_3 of \mathbb{F}^5 , none of which equals $\{0\}$, such that $\mathbb{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$.

When x = 0 or y = 0 we get

$$(0, y, 2y, -y, 0)$$
 $(x, 0, x, -x, 2x)$

To ensure that no element can be written as two different sums, elements in W_1, W_2, W_3 cannot have that form. Observe that

$$W_1 = \{(0,0,z,0,0) : z \in \mathbb{F}\}$$

$$W_2 = \{(0,0,0,z,0) : z \in \mathbb{F}\}$$

$$W_3 = \{(0,0,0,0,z) : z \in \mathbb{F}\}$$

have no elements in the same form as that of U so their intersection is the 0 vector only. If we imagine the coverage of U, it is the two dimensional xy plane. The sum of W_1, W_2, W_3 will allow us to reach vectors in \mathbb{F}^5 by modifying the three last components.

Exercise 3: Let V be a vector space over \mathbb{F} . Suppose that $1+1\neq 0$ in \mathbb{F} and the list v_1, v_2, v_3, v_4 is linearly independent in V. Show that the list $v_1 - v_2, v_1 + v_2, v_3 - v_2, v_4 - v_1$ is also linearly independent in V.

Proof. Since v_1, v_2, v_3, v_4 are independent,

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 + \lambda_4 v_4 = 0$$

implies that

$$\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$$

So we look to see what happens with a linear combination of the other vectors:

$$\lambda_5(v_1 - v_2) + \lambda_6(v_2 + v_1) + \lambda_7(v_3 - v_2) + \lambda_8(v_4 - v_1) = 0$$
$$(\lambda_5 - \lambda_8 + \lambda_6)v_1 + (\lambda_6 - \lambda_5 - \lambda_7)v_2 + \lambda_7v_3 + \lambda_8v_4 = 0$$

We have the coefficients of v_1, \ldots, v_4 so we set them to 0:

$$\lambda_5 - \lambda_8 + \lambda_6 = 0$$
 $\lambda_5 + \lambda_6 = 0$ $\lambda_5 = 0$ $\lambda_6 - \lambda_5 - \lambda_7) = 0$ $\lambda_6 - \lambda_5 = 0$ $\lambda_6 = 0$ $\lambda_7 = 0$ $\lambda_7 = 0$ $\lambda_8 = 0$ $\lambda_8 = 0$ $\lambda_8 = 0$

And we're done.

Exercise 4: Does the statement of Problem 3 still hold if we replaced 'linearly independent' by 'a basis'?

The statement should still hold since v_1, v_2, v_3, v_4 being a basis of V implies that V is four dimensional. Since $v_1 - v_2, v_1 + v_2, v_3 - v_2, v_4 - v_1$ are all linearly independent and there are four of them, they should span the same space as v_1, v_2, v_3, v_4 . Therefore, these vectors are also a basis.

Exercise 5: Prove that the space $\mathbb{C}^{\mathbb{C}}$ is infinite-dimensional.

Proof. By definition, the space is defined as

$$\mathbb{C}^{\mathbb{C}} = \{ f : \mathbb{C} \mapsto \mathbb{C} \}$$

We can make the observation that any field \mathbb{F}^S for some set S will have dimension |S|. In this question, the dimension would be $|\mathbb{C}|$ which is a set that is infinitely uncountable. The idea is that if

$$\mathbb{F}^S = \{ f : S \mapsto \mathbb{F} \}$$

Then we define function for $1 \le i \le |S|$,

$$f_{s_i}(x) = \begin{cases} 1 & \text{if } x = s_i \\ 0 & \text{if otherwise} \end{cases}$$

Observe that now, each $f(x) \in \mathbb{F}^S$ can be written as a linear combination of the functions

$$\lambda_1 f_{s_1} + \lambda_2 f_{s_2} + \dots + \lambda_{|S|} f_{s_{|S|}} = f(x)$$

where

$$f(s_i) = \lambda_i$$

which concludes the proof.

Exercise 6: Determine, with explanation, the dimension of

(a) \mathbb{C} as a vector space over \mathbb{C} ;

The dimension would be 1 by the previous problem where our function $f: \mathbb{C} \mapsto 1$ can be multiplied by a singular valued scalar in \mathbb{C} to get any other function in \mathbb{C} .

(b) \mathbb{C} as a vector space over \mathbb{R} ;

Unlike the previous problem, the scalar must be from \mathbb{R} . Therefore, we need two functions to span all of \mathbb{C} which are $f:\mathbb{C}\mapsto 1$ and $g:\mathbb{C}\mapsto i$. Taking a linear combination of these functions gives us another function with the form $h:\mathbb{C}\mapsto a+bi$ for some a,b.

(c) \mathbb{C}^2 as a vector space over \mathbb{C} ;

By the previous problem, similar to (a), it is 2.

(d) \mathbb{C}^5 as a vector space over \mathbb{R} .

We encounter the same issue as in (b), and applying the same solution method gives us a dimension of 10.