xAutoML Course Project 1

Building Meta-Model for AutoML Federated Time-Series Forecasting Algorithms

Team 6

Institute of Computer Science, University of Tartu

Agenda

- 1. Motivation and Problem Statement
- 2. Dataset Description
- 3. Project Methodology
- 4. Results and Discussion

Motivation

Problem Statement

- Train the best meta-model that can recommend regression forecasting algorithms (Algorithm Selection) that can be used on a time-series federated dataset.
- The meta-model acts as the domain expert that recommends the search space to be optimized later.

Dataset Description

- 542 Time-Series Datasets with > 2500 instances
 - 512 Synthetic Datasets generated by varying several factors, such as seasonality components, sampling frequencies,
 SNR, missing values %
 - 30 Real Datasets From (Kaggle / Nasdaq Stock Market)
 - Splitted across randomly selected (5, 10, 15, 20) clients with time-series splits

Meta-Feature	Meta-Feature Type	Method of Aggregation
No. of Clients	Statistical	NA
Sampling Rate	Time-Series	NA
No. of Instances	Statistical	Sum, Avg, Min, Max, Stddev
Dataset/Target Missing Values %	Statistical	Avg, Min, Max, Stddev
No. of Stationary Features	Time-Series	Avg, Min, Max, Stddev
Target Stationarity	Time-series	Entropy of Target Stationarity across clients
No. of Stationary Features after 1st Order Diff	Time-Series	Avg, Min, Max, Stddev
No. of Stationary Features after 2nd Order Diff	Time-Series	Avg, Min, Max, Stddev
Significant Lags using pACF in target	Time-Series	Avg, Min, Max, Stddev
Insignificant lags between 1st and last significant ones	Time-Series	Avg, Min, Max, Stddev
No. of seasonality components in target	Time-Series	Avg, Min, Max, Stddev
Skewness of target feature	Statistical	Avg, Min, Max, Stddev
Kurtosis of target feature	Time-Series	Avg, Min, Max, Stddev
Fractal dimension analysis of target	Statistical	Avg
Periods of seasonality components in target	Time-Series	Min, Max
KL Divergence among clients' distribution of target feature	Statistical	Avg, Min, Max, Stddev

Dataset Description

Constructed Dataset:

- **X:** Aggregated meta-features
- y: best performing forecasting regression algorithm among defined search space

Splits:

- Training: 400 instances (80%)
- Testing: 100 instances (20%)

Algorithm	Hyperparameters	Values			
Lasso	alpha	$(log(e^{-5}), log(10))$			
Regressor	selection	{cyclic, random}			
LinearSVR	С	[1:10]			
Regressor	epsilon	[0.01:0.1]			
ElasticNetCV	l1_ratio	[0.3:10]			
Regressor	selection	{cyclic, random}			
XGB	n_estimators	[5:20]			
Regressor	max_depth	[2:10]			
	learning_rate	[0.01:1]			
	reg_lambda	[0.8:10]			
	subsample	[0.1:1]			
Huber	epsilon	{1.0, 1.35, 1.5}			
Regressor	alpha	$[log_{10}(e^{-3}): log_{10}(e^{2})]$			
Quantile	alpha	$[log_{10}(e^{-3}):log_{10}(e^2)]$			
Regressor	quantile	[0.1:1]			

class r	um_clien S	Sum of Inst Ma	ax. Of Ins Mir	n. Of Ins St	tddev of Ir Average Da M						ea No. Of N	Nur No. Of Ca	nt Sampling F	Average Sk N	Minimum § N	1aximum (S	Stddev Ske	Average Kı Mi
XGBRegree	10	13821	1383	1382	0.3 4.9924658 4	.1214750 5.5716353	0.4489697 4.9924	658 4.1214750 5.	.57163530.4	489697	3	3	0.1666666	0.072567 1	1.12891511	.30530500	.2456136	1.3473565 0.3
XGBRegree	5	4031	807	806	0.4 4.7629458 3	3.9702233 6.203474	0.8750409 4.7629	458 3.9702233 6	6.203474 0.8	750409	1	1	0 1	0.20165274	1.5231737	0.902781	0	1.1917040 0.1
HUBERRE(5	17280	3456	3456		4.74537 5.2951388					5	5	0.1666666	2.1255588	0.000482	4.400823 0	.5678388	9.354913 1.0
LinearSVR	5	6911	1383	1382	0.4 4.9341131 4	.0520984 5.5716353	0.5240857 4.9341	131 4.0520984 5.	.5716353 0.5	240857	4	4						1.3472348 0.2
XGBRegree	15	24181	1613	1612 0.	.2494438 4.9667173 3						2	2	0.1666666	0.19358721	1.4382909 1	.62682500	.3241073	1.280996 0.3
HUBERRE(10	13821	1383	1382		.1968162 5.7887120					3	3						1.2066428 0.8
1 4660	E	10266	2074	מ כדחנ	20000000 4 0717102 4	4000E10 E 4007070	n 227200 1 0717	102/1 1002510	אח סדמדפחו	227200	E	A	1 05	1 2042620	0 004740	1612027	SEUUSEN	e neeso401

- Baselines with default hyper-parameters:
 - Random Forest
 - Decision Tree
 - o KNN
 - SVM
 - Logistic Regression
 - Gradient Boosting

- AutoML Frameworks:
 - Hyper-Opt (100 iterations) with 3-fold CV
 - Search Space:
 - Random Forest:
 - Max_depth, n_estimators, min_samples_split
 - Decision Tree
 - Max_depth, min_samples_split
 - KNN
 - n_neighbors
 - SVM
 - Kernel, C
 - Logistic Regression
 - Solver, C
 - Gradient Boosting
 - Max_depth, n_estimators, min_samples_split, learning_rate

- Evaluation Metrics:
 - Log Loss
 - Micro F1-Score
 - Acc@3 (Accuracy of Top-3 Predicted Labels)

- Statistical Test
 - Wilcoxon Signed Rank Test

Baselines with default hyper-parameters:

- Random Forest
- Decision Tree
- KNN
- o SVM
- Logistic Regression
- Gradient Boosting

Model	Acc@3	Micro F1	Log Loss		
SVM	83%	44%	1.45		
Logistic Regression	84%	54%	1.38		
Random Forest	90%	61%	1.34		
Decision Tree	75%	66%	15.9		
Gradient Boosting	91%	60%	1.25		
KNN	80%	44%	9.0		

Evaluation Metrics:

- Log Loss
- o Micro F1-Score
- Acc@3 (Accuracy of Top-3 Predicted Labels)

Model	Acc@3	Micro-F1	Log Loss		
Gradient Boosting	91%	60%	1.25		
HyperOpt (objective F1) Gradient Boosting • Lr: 0.04 • Max_depth: 14 • N_estimators: 270 • Min_samples_split: 3	91%	65%	1.02		
HyperOpt (objective Acc3) Random Forest Max_depth: 7 N_estimators: 70 Min_samples_split: 5	91%	62%	1.06		
HyperOpt (objective LogLoss) Random Forest Max_depth: 10 N_estimators: 240 Min_samples_split: 4	94%	65%	1.01		

AutoML Frameworks:

- Hyper-Opt (1000 iterations)
- Search Space:
 - Random Forest:
 - Decision Tree
 - KNN
 - SVM
 - Logistic Regression
 - Gradient Boosting

Evaluation Metrics:

- Log Loss
- o Micro F1-Score
- Acc@3 (Accuracy of Top-3 Predicted Labels)

Statistical Test

Wilcoxon Signed Rank Test

- Wilcoxon Signed-Rank Test: P-value = 0.85.
- There is no significant difference between the optimized pipeline and baseline in terms of log loss.

Thanks for your attention!

Team Members:

- Ahmed Wael
- 2. Noel Bosch
- 3. Mohamed Maher

Find more about our work:

Source Code:

