Performance evaluation of parallel programs

Pacheco, Section 2.6

Gianluigi Zavattaro
Dip. di Informatica—Scienza e Ingegneria (DISI)
Università di Bologna
gianluigi.zavattaro@unibo.it

Slides realized using material provided by Prof. Moreno Marzolla

Copyright © 2013, 2014, 2017–2020 Moreno Marzolla, Università di Bologna, Italy http://www.moreno.marzolla.name/teaching/APAI/

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Scalability

- How much faster can a given problem be solved with p workers instead of one?
- How much more work can be done with p workers instead of one?
- What impact for the communication requirements of the parallel application have on performance?
- What fraction of the resources is actually used productively for solving the problem?

Speedup

- Let us define:
 - -p = Number of processors / cores
 - T_{serial} = Execution time of the serial program
 - $T_{\text{parallel}}(p)$ = Execution time of the parallel program with p processors / cores

Speedup

Speedup S(p)

$$S(p) = \frac{T_{\text{serial}}}{T_{\text{parallel}}(p)} \approx \frac{T_{\text{parallel}}(1)}{T_{\text{parallel}}(p)}$$

- In the ideal case, the parallel program requires 1/p the time of the sequential program
- S(p) = p is the ideal case of linear speedup
 - Realistically, $S(p) \le p$
 - Is it possible to observe S(p) > p?

Warning

- Never use a serial program to compute T_{serial}
 - If you do that, you might see a spurious superlinear speedup that is not there
- Always use the parallel program with p = 1 processors

Non-parallelizable portions

- Suppose that a fraction α of the total execution time of the serial program can not be parallelized
 - E.g., due to:
 - Algorithmic limitations (data dependencies)
 - Bottlenecks (e.g., shared resources)
 - Startup overhead
 - Communication costs
- Suppose that the remaining fraction (1 α) can be fully parallelized
- Then, we have:

$$T_{\text{parallel}}(p) = \alpha T_{\text{serial}} + \frac{(1-\alpha)T_{\text{serial}}}{p}$$

Example

Example

- Suppose that a program has $T_{\text{serial}} = 20$ s
- Assume that 10% of the time is spent in a serial portion of the program
- Therefore, the execution time of a parallel version with p processors is

$$T_{\text{parallel}}(p) = 0.1 T_{\text{serial}} + \frac{0.9 T_{\text{serial}}}{p} = 2 + \frac{18}{p}$$

Example (cont.)

The speedup is

$$S(p) = \frac{T_{\text{serial}}}{0.1 \times T_{\text{serial}} + \frac{0.9 \times T_{\text{serial}}}{p}} = \frac{20}{2 + \frac{18}{p}}$$

 What is the maximum speedup that can be achieved when p → +∞?

Amdahl's Law

What is the maximum speedup?

$$S(p) = \frac{T_{\text{serial}}}{T_{\text{parallel}}(p)}$$

$$= \frac{T_{\text{serial}}}{\alpha T_{\text{serial}} + \frac{(1-\alpha)T_{\text{serial}}}{p}}$$

Gene Myron Amdahl (1922-2015)

Amdahl's Law

From

$$S(p) = \frac{1}{\alpha + \frac{(1-\alpha)}{p}}$$

we get an asymptotic speedup $1/\alpha$ when p grows to infinity

If a fraction α of the total execution time is spent on a serial portion of the program, then the maximum achievable speedup is $1/\alpha$

Scaling Efficiency

Objective:

- Evaluate the impact of Amdahl's law on your parallel program
- Quantify the effect on the execution time for each processor/core that is added
- Solution: measure Strong Scaling
 - Increase the number of processors p keeping the total problem size fixed
 - The total amount of work remains constant, while the amount of work for each processor decreases as p increases
 - How to quantify the impact of each added processor/core?
 - Divide the speedup for the number of processors/cores
 - Goal: understand how much the total execution time is reduced by adding more processors

Strong Scaling Efficiency

• E(p) = Strong Scaling Efficiency

$$E(p) = \frac{S(p)}{p} = \frac{T_{\text{parallel}}(1)}{p \times T_{\text{parallel}}(p)}$$

where

- $T_{\text{parallel}}(p)$ = Execution time of the parallel program with p processors / cores

Strong Scaling Efficiency and Amdahl's Law

16

Negative result on strong scaling efficiency

- The efficiency always tends to zero because the speedup is limited by the constant 1/α
- But in many cases (remember the initial discussion about the need for more computational power) we want to use parallelism to do more computational work
 - If we consider increasing work, i.e., bigger input, the speedup could grow indefinitely
 - An example: vector sum reduction recalled in the next slide

Vector sum reduction

• In principle, with n processors we sum n values in $O(\log_2 n)$ time

Speedup with increasing work

Observations:

- Summing *n* values requires *O*(*n*) work (*n* constant operations)
- To increase the work by a factor *p*, we consider *p* x *n* values
- Speedup(p)= $\frac{T_{seq}(p)}{T_{par}(p)}$ = $\frac{O(p\times n)}{O(\log(p\times n))}$ hence $\lim_{p\to +\infty} Speedup(p)$ =+ ∞

This means:

- if we increase both work and number of processors / cores, the speedup can increase (in principle) unboundedly
- In these cases, according to Amdahl's terminology, we have that the serial fraction α decreases when the work increases

Weak Scaling Efficiency

- An alternative measure that considers increasing problem size is Weak Scaling:
 - Increase the number of processors p keeping the perprocessor work fixed
 - The total amount of work grows as *p* increases
 - Goal: solve larger problems within the same amount of time
- W(p) = Weak Scaling Efficiency

$$W(p) = \frac{T_1}{T_p}$$

where

- T_1 = time required to complete 1 work unit with 1 processor
- $\frac{T_p}{p}$ = time required to complete p work units with p processors

Example

See omp-matmul.c

- demo-strong-scaling.sh computes the times required for strong scaling
- demo-weak-scaling.sh computes the times required for weak scaling

Important note

- For a given n, the amount of "work" required to compute the product of two $n \times n$ matrices is $\sim n^3$
- To double the total work, do not double n!
 - The amount of work required to compute the product of two $(2n \ Y2n)$ matrices is $\sim 8n^3$, eight times the $n \times n$ case
- To double the work, we must use matrices of size $(\sqrt[3]{2}n \times \sqrt[3]{2}n)$
- In general, with p processes we use matrices of size $(\sqrt[3]{p}n \times \sqrt[3]{p}n)$

Taking times

 To compute speedup and efficiencies one needs to take the program wall clock time, excluding the input/output time

```
#include <omp.h>
...
double start, finish;
/* read input data; this should not be measured */

start = omp_get_wtime();
/* actual code that we want to time */
finish = omp_get_wtime();

printf("Elapsed time = %e seconds\n", finish - start);

/* write output data; this should not be measured */
```