Objective: To explore various AutoEDA capabilities and perform analysis on a given dataset

This notebook will focus on DataPrep

2. AutoEDA - DataPrep

Dataset Reference: Loan Prediction dataset from Kaggle

Features:

- General Overview Quick insights of all variables in the dataset using the plot dataframe.
- Details about each variables / features in the dataset by using create_report overview, variables, interactions, correlations, missing values
- Interactions based on x-axis and y-axis scatter plots
- Correlations between variables Pearson's Correlation Coefficient, Spearman's Rank Correlation Coefficient, Kendall's Rank Correlation Coefficient
- Missing Values Bar chart, Spectrum, Heatmap, Dendogram representations
- We can pick one particular feature and analyze Stats, Bar chart, Pie chart, Word Count, Word Frequency etc as per applicability

When To Use?

- Dataset size is fairly very large (this seems to be 10X faster than Pandas Profiling tools due to it's highly optimized Dask-based computing module)
- Need some quick insights about an unknown dataset
- Use this as a basis for your further EDA analysis on top of it

```
import pandas as pd
import warnings

warnings.filterwarnings("ignore")
```

In [37]: | !pip --disable-pip-version-check install dataprep # Please use it for the first time if it is not installed in your environment

```
from dataprep.eda import create report, plot, plot correlation, plot missing, plot diff
           df train = pd.read csv("../input/loan-eligible-dataset/loan-train.csv")
In [39]:
            df train.head()
                       Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_Hist
Out[39]:
               Loan ID
           0 LP001002
                          Male
                                                      Graduate
                                                                                                             0.0
                                    No
                                                                         No
                                                                                         5849
                                                                                                                        NaN
                                                                                                                                           360.0
           1 LP001003
                          Male
                                    Yes
                                                      Graduate
                                                                         No
                                                                                        4583
                                                                                                          1508.0
                                                                                                                        128.0
                                                                                                                                           360.0
           2 LP001005
                          Male
                                                      Graduate
                                                                                         3000
                                                                                                             0.0
                                                                                                                         66.0
                                                                                                                                           360.0
                                    Yes
                                                                         Yes
                                                          Not
           3 LP001006
                          Male
                                                                         No
                                                                                         2583
                                                                                                         2358.0
                                                                                                                        120.0
                                                                                                                                           360.0
                                    Yes
                                                      Graduate
           4 LP001008
                          Male
                                    No
                                                      Graduate
                                                                         No
                                                                                         6000
                                                                                                             0.0
                                                                                                                        141.0
                                                                                                                                           360.0
           df test = pd.read csv("../input/loan-eligible-dataset/loan-test.csv")
In [40]:
            df test.head()
Out[40]:
               Loan ID Gender Married Dependents Education Self Employed ApplicantIncome CoapplicantIncome LoanAmount Loan Amount Term Credit Hist
           0 LP001015
                          Male
                                    Yes
                                                      Graduate
                                                                         No
                                                                                         5720
                                                                                                              0
                                                                                                                        110.0
                                                                                                                                           360.0
           1 LP001022
                                                                                         3076
                                                                                                           1500
                                                                                                                        126.0
                                                                                                                                           360.0
                          Male
                                    Yes
                                                      Graduate
                                                                         No
           2 LP001031
                                                                                                                        208.0
                          Male
                                    Yes
                                                      Graduate
                                                                         No
                                                                                         5000
                                                                                                           1800
                                                                                                                                           360.0
           3 LP001035
                          Male
                                    Yes
                                                      Graduate
                                                                         No
                                                                                         2340
                                                                                                           2546
                                                                                                                        100.0
                                                                                                                                           360.0
                                                          Not
           4 LP001051
                                                                                         3276
                                                                                                              0
                                                                                                                         78.0
                                                                                                                                           360.0
                          Male
                                    No
                                                                         No
                                                      Graduate
           df_train.shape
 In [41]:
           (614, 13)
Out[41]:
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
            df test.shape
In [42]:
```

Out[42]: (367, 12)

2.1 Analyze distributions

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

- plot(df): plots the distribution of each column and computes dataset statistics
- plot(df, col1): plots the distribution of column col1 in various ways, and computes its statistics
- plot(df, col1, col2): generates plots depicting the relationship between columns col1 and col2

4

In [45]: # plots the distribution of column x in various ways and calculates column statistics plot(df_train, "Property_Area")

Out[45]:	Stats	Bar Chart	Pie Chart	Word Clou	ud Wo	ord Frequency	Word Length	Value Table
			Overview				Sample	
		Approxima	ate Distinct C	ount	3		1st row	Urban
		Approx	cimate Unique	e (%)	0.5%		2nd row	Rural
			Mis	ssing	0		3rd row	Urban
			Missing	g (%)	0.0%		4th row	Urban
			Memory	Size 4	2.9 KB		5th row	Urban

Length		Letter	
Mean	6.5179	Count	4002
Standard Deviation	1.9426	Lowercase Letter	3388
Median	5	Space Separator	0
Minimum	5	Uppercase Letter	614
Maximum	9	Dash Punctuation	0
		Decimal Number	0

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

2.2 Analyze correlations

- plot_correlation(df): plots correlation matrices (correlations between all pairs of columns)
- plot_correlation(df, col1): plots the most correlated columns to column col1
- plot_correlation(df, col1, col2): plots the joint distribution of column col1 and column col2 and computes a regression line

	2.3.0	. 55.75611		rman KandallTau
Out[48]:	Stats	Pearson	Spearman	KendallTau
	plot_correlation	n(df_train)		
In [48]:	# plots correla	tion matrices (corr	elations between all	pairs of columns)

	Pearson	Spearman	KendallTau
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js	0.571	0.515	0.372

	Pearson	Spearman	KendallTau
Highest Negative Correlation	-0.117	-0.32	-0.23
Lowest Correlation	0.001	0.002	0.002
Mean Correlation	0.044	0.038	0.029

plots the most correlated columns to column x In [53]: # Please ensure x are numerical columns to be analyzed for this plot_correlation(df_train, "LoanAmount")

Out[54]:

Scatter Plot & Regression Line

2.3 Analyze missing values

- plot_missing(df): plots the amount and position of missing values, and their relationship between columns
- plot_missing(df, col1): plots the impact of the missing values in column col1 on all other columns
- plot_missing(df, col1, col2): plots the impact of the missing values from column col1 on column col2 in various ways.

In [56]:

plots the amount and position of missing values, and their relationship between columns

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Out[56]:	Stats	Bar Chart	Spectrum	Heat Map	Dendrogram
			Missing Statis	stics	
				Missing Cel	Is 149
				Missing Cells (%	6) 1.9%
				Missing Column	rs 7
				Missing Row	/s 134
			Avg Missi	ng Cells per Colum	n 11.46
			Avg M	issing Cells per Ro	w 0.24

In [60]: # plots the impact of the missing values from column col1 on column col2 in various ways
 plot_missing(df_train, "Credit_History", "Loan_Status")

Out[60]: Missing impact of Credit_History by Loan_Status

2.4 Analyze difference between dataframes

• plot_diff(): explores the difference of column distributions and statistics across multiple datasets

2.5 Create Profile Report

- Captures a consolidated report with summary
 - Overview: detect the types of columns in a dataframe
 - Variables: variable type, unique values, distint count, missing values
 - Quantile statistics like minimum value, Q1, median, Q3, maximum, range, interquartile range
 - Descriptive statistics like mean, mode, standard deviation, sum, median absolute deviation, coefficient of variation, kurtosis, skewness
 - Text analysis for length, sample and letter
 - Correlations: highlighting of highly correlated variables, Spearman, Pearson and Kendall matrices
 - Missing Values: bar chart, heatmap and spectrum of missing values

Overview

Missing Cells (%)	1.9%	LoanAmount has 22 (3.58%) missing values	Missin
Duplicate Rows	0	Loan_Amount_Term has 14 (2.28%) missing values	Missin
Duplicate Rows (%)	0.0%	Credit_History has 50 (8.14%) missing values	Missir
· · · · · · · · · · · · · · · · · · ·	316.6 KB	ApplicantIncome is skewed	Skewe
Total Size in Memory		CoapplicantIncome is skewed	Skewe
Average Row Size in Memory	528.0 B	(LoanAmount) is skewed	Skewe
Variable Types	Categorical: 8 GeoGraphy: 1	(Loan_Amount_Term) is skewed	Skewe
	Numerical: 4	1 2	

Variables

Interactions

Correlations

Missing Values

	Rar Chart	Spectrum	Heat Map	Dendogram
Loading [MathJax]/jax/output/CommonHTML,	/fonts/TeX/fontdata.is	Оресиин	ricat Map	Dendogram

Report generated with DataPrep