3. Un mol de gas ideal (C_V=(3/2)R) realiza el siguiente ciclo reversible.

AB) Se expande a presión constante (5 atm) hasta triplicar el volumen inicial de

BC) Se traba el pistón y se reduce la presión hasta 2 atm.

CD) Se comprime a presión constante (2 atm) hasta un dado volumen (V_D)

DA) Se comprime de forma isotérmica hasta el estado inicial.

- a) Calcule el trabajo, el calor y la variación de la energía en cada etapa del proceso. Determine el valor de V_D. Dibuje el diagrama P-V del ciclo.
- Calcule la eficiencia de la máquina. ¿Es una máquina térmica o es un refrigerador? Justifique.
- c) Suponga que ahora las etapas AB y CD se realizan de forma irreversible.
 Calcule la variación de la energía del ciclo.

	P(atm)	V(L)	T(K)	W(atmL)	Q(atmL)	dU(atm L)
A-B	5	_	_	10	25	15
В-С	_	3	_	0	- 13.5	-13,5
C-D	2,5	_	_	-1	-2,5	-1,5
D-A				-4,6	-4.6	0

Cloud to variation de to compare det case.

(2)
$$V_{NB} = \int_{A}^{B} P \, dV = P \, (V_{B} - V_{R}) = 5 \text{ schorx} \, (3L - 1L) = 10 \text{ schorn} \, L$$

(3) $V_{NB} = \int_{A}^{B} P \, dV = P \, (V_{B} - V_{R}) = 5 \text{ schorx} \, (3L - 1L) = 10 \text{ schorn} \, L$

(4) $V_{CD} = V_{CD} = V$

 $\Delta U_{CD} = \Delta CD - W_{CD} = -2.5 \text{ ATML} - (-1 \text{ ANML}) = -1.5 \text{ ATML}$ $\Delta U_{DA} = 0 , \quad W_{DA} = \int_{V_D}^{V_A} p \, dV = \int_{V_D}^{V_A} \frac{mRT}{V} \, dV = mRT \ln \left(\frac{V_A}{V_D}\right) = p_A V_A \ln \left(\frac{V_A}{V_D}\right) = 5 \text{ATM} \ln \left(\frac{1L}{2.5L}\right)$ = -4.6 ATML

b) Moquina termica ya que WNETO = (10-1-4,6) ATRL = 4,4 ATRL > 0 - hace trabajo

$$e = \frac{W_{NETO}}{Q > 0} = \frac{4.4}{25} = 0.176$$

C) DUCICLO = O porque la energía es una función de stado