Roll	No.:

National Institute of Technology, Delhi

Name of the Examination: B. Tech.

Branch : CSE, ECE, EEE Semester : 2nd
Title of the Course : Linear Algebra and Complex Analysis Course Code : MAL 151
Time: 1 Hour 30 Mins Maximum Marks: 25

Note: All questions are compulsory

Q.1. Let A be an $n \times n$ matrix. Its only eigenvalues are 1, 2, 3, 4, 5 possibly with multiplicities. What is the dimension of the Null space of the matrix $A+I_n$, where I_n is the $n \times n$ identity matrix? Explain your answer.

(02 Marks)

Q.2. Find all 3x3 matrices which are in reduced row echelon form and have rank 2. (02 Marks)

Q.3. Is it possible to have a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ for which T(2,2) = (8,-6) and T(5,5) = (3,-2)? Explain your answer. (02 Marks)

Q.4. Let $A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$ and I be the 3x3 identity matrix. If $6A^{-1} = aA^2 + bA + cI$ for $a, b, c \in R$

then find the value of a,b,c.

(02 Marks)

Q.5. Let $\vec{\mathbf{u}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation such that $T(\vec{\mathbf{x}}) = proj_{\vec{\mathbf{u}}}\vec{\mathbf{x}}$. Find the

matrix of transformation A s.t. $T(\vec{x}) = A\vec{x}$.

(02 Marks)

Q.6. Let W be the subspace of R^4 generated by the vectors (1,-2,5,-3), (2,3,1,-4) and (3,8,-3,-5). Extend the Basis of W to a Basis of the whole space R^4 . (03 Marks)

Q.7. Consider $\vec{\mathbf{u}} = \begin{bmatrix} 0 \\ 1 \\ -2 \\ 5 \end{bmatrix}$ in \mathbb{R}^4 . Find a basis for the orthogonal complement $\vec{\mathbf{u}}^{\perp}$ of $\vec{\mathbf{u}}$. (03 Marks)

Q.8. Discuss the solutions of the system of equations in unknowns x_1, x_2, x_3 :

$$ax_1 + bx_2 + 2x_3 = 1$$

 $ax_1 + (2b-1)x_2 + 3x_3 = 1$
 $ax_1 + bx_2 + (b+3)x_3 = 2b-1$ (03 Marks)

Q.9. Let V be the vector space over C of all polynomials P(x) in a variable x of degree at most 3. Let $T:V\to V$ be the linear transformation given by differentiation with respect to x, i.e. $T[P(x)] = \frac{dP(x)}{dx}$. Let A be the matrix of T with respect to some basis of V.

(i) Check whether A is diagonalizable or not.

(ii) Find the null space of A-I and eigen values of $(A+I)^2-I$. (03 Marks)

Q.10. Let $v_1 = \begin{bmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}^T$ be a vector in \mathbb{R}^3 . Use the Gram - Schmidt process to produce an orthonormal basis for \mathbb{R}^3 containing the vector v_1 .