AS A DEGENERATE FIELD THEORY

1. The P_0 structure

In this section we will describe the P_0 structure on the higher dimensional Kac-Moody factorization algebra at level zero.

2. Example: The boundary of a 7d gauge theory

In this section we will see how the six-dimensional Kac-Moody degenerate field theory arises as the boundary of a supersymmetric gauge theory in seven dimensions.

2.1. The gauge theory we consider arises as a deformation of a partial twist of maximally supersymmetric Yang-Mills gauge theory in seven dimensions.

2.2.

Theorem 2.1. Suppose we put $\widetilde{\mathcal{Y}}_{\theta}$, the deformation of the twisted N=2 gauge theory we considered above, on a seven manifold of the form $X \times \mathbb{R}_{\geq 0}$ where X is a Calabi-Yau six-fold. Then, there is a boundary condition on $X \times \{0\} \subset X \times \mathbb{R}_{\geq 0}$ whose associated boundary theory is equivalent to the degenerate field theory \mathcal{K}_{θ} on X.