

Sistemas Dinámicos Capitulo 4 Modelos de sistemas electromecánicos

Ing. Carlos E. Cotrino B. M Sc.

1

Modelos de sistemas físicos

- Preparar y ejecutar el plan de acción para formular y resolver un modelo. (CDIO 2.1.1.4)
- 2. Obtener modelos conceptuales y cualitativos de diversos sistemas físicos. (CDIO 2.1.2.2)
- 3. Establecer las conexiones entre los fenómenos físicos y el modelo. (CDIO 2.1.2.3)
- 4. Usar modelos cuantitativos y soluciones. (CDIO 2.1.2.4)

CCB-Mar-2023 2

Modelos de sistemas físicos

- 5. Generalizar suposiciones para simplificar ambientes y sistemas complejos (CDIO 2.1.2.1)
- 6. Discutir una aproximación desde varias disciplinas para asegurar que el sistema se entienda desde todas las perspectivas relevantes. (CDIO 2.3.1.2)
- 7. Establecer prioridades dentro de las metas generales (CDIO 2.1.1.3).
- 8. Identificar sistemas propios y sistemas con interacción entre áreas (CDIO 2.3.2.4)

CCB-Mar-2023

3

Clase 1

Contenido

- Definir transductores, actuadores y generadores
- Modelar elementos de acople electro-mecánico por variación de resistencia eléctrica.
- Definir sensores para:
 - Posición
 - Temperatura

Temas para repasar

Circuitos tipo puente-

CCB-Mar-2023

Sistemas Electromecánicos

- Elementos sensores o de medición: micrófonos, celdas de carga etc.
- Elementos actuadores y producción de fuerza como solenoides, electroimanes y relevadores.
- Equipos convertidores de energía de régimen continuo y mayor potencia como motores y generadores.

CCB-Mar-2023

5

Sistemas Flectromecánicos

- Estudiar el proceso de conversión de energía implicado: campo eléctrico, campo magnético o resistivo.
- Plantear un modelo que describa las características fundamentales y que se pueda emplear en el diseño de equipos y soluciones.
- Comprender las características de los elementos físicos reales que realizan las conversiones

CCB-Mar-2023 6

Conversión electro-mecánica: Actuadores

 La energía convertida en calor se debe a la corriente que circula por los arrollamientos de resistencia no nula y por la fricción de los elementos mecánicos.

CCB-Mar-2023

7

7

Eficiencia

 En sistemas reales, existen perdidas y se define la eficiencia como:

$$\eta = \frac{\textit{Energ\'ia\'util de salida}}{\textit{Energ\'ia\'total de entrada}}$$

En un motor eléctrico:

$$\eta = \frac{Potencia\ mecánica}{Potencia\ Eléctrica}$$

CCB-Mar-2023

Ejemplo 1. Eficiencia

Un motor maneja un polipasto que eleva a un ascensor de 907.2 kg (1 ton US) a una altura de 36.6m (120 ft) en 10 segundos. La eficiencia del motor es de 80%, la del polipasto es de 50%. Cual es la potencia entregada al elevador, al polipasto y al motor?

CCB-Mar-2023

9

Generadores Eléctricos

- Definición electromecánica: dispositivo electromecánico que convierte energía mecánica en energía eléctrica.
- Mas general: generador eléctrico es un dispositivo que convierte una forma de energía de entrada en energía eléctrica.
- Las energías de entrada pueden ser mecánica, térmica, solar, química, eólica, hidráulica, termoeléctrica etc.

CCB-Mar-2023

Transductores

- Dispositivo de dos puertos que convierte o TRADUCE energía de un dominio a otro.
 - De potencia: convierten niveles altos
 - De medición: bajos niveles de energía, normalmente se convierte a energía eléctrica
- Término muy genérico, no se recomienda su uso: Sensor

CCB-Mar-2023 11

11

Sensor

- Un sensor eléctrico o electrónico, es un dispositivo que detecta un parámetro físico desconocido (por ejemplo, velocidad, calor, radiación etc.) o químico (por ejemplo, pH, O2 etc.) y lo convierte en una variable eléctrica que puede ser medida y transmitida a un sistema eléctrico o electrónico
- A separate or integral part or function of a loop or an instrument that first senses the value of a process variable, that assumes a corresponding predetermined and intelligible state, and/or generates an output signal indicative of or proportional to the process variable; see also detector and primary element." (ISA 51.1)

CCB-Mar-2023

Sensor

- Quién suministra la energía para el sensor?
- Pasivo: la energía de entrada la suministra el medio medido: i.e: TC, Tubo Bourdon.
- Activo: la energía de entrada la suministra una fuente externa. i.e: ultrasónicos

CCB-Mar-2023 13

13

Sensor analógico

 Genera señal continua en magnitud y en tiempo. La salida es directamente proporcional al mesurando.

CCB-Mar-2023

Sensor discreto

 Discreto: genera señal que existe en instantes discretos de tiempo. La salida es una representación del mesurando.

CCB-Mar-2023

15

15

Acople Resistivo

- Una variable mecánica modifica la resistencia eléctrica de un elemento sensor.
- Posición (translación o rotación) →Resistencia
- Temperatura → Resistencia.
- Fuerza (peso, presión)
 → Resistencia

CCB-Mar-2023

Resistencia vs Posición (Lineal)

 En un potenciómetro un elemento conductor se desliza sobre un elemento resistivo fijo en función de la posición lineal o angular de un eje mecánico.

$$R_1(x) + R_2(x) = R(t)$$

$$= X_{MAX}$$

$$E_0 = \left(\frac{1}{Rt}\right) x(t) E_s$$

$$E_0 = \left(\frac{1}{X_{MAX}}\right) x(t) E_s$$

CCB-Mar-2023

17

17

Potenciómetro desplazamiento lineal

Specifications ¹	
Standard Electric	cal Travel
	0.15, 0.25, 0.35 in.
	(3.81, 6.35, 8.89 mm)
Standard Resista	ances
1	K to 50K ohms (±20 %)
Independent Line	earity±5 %
	Infinite
Power Rating @	70 °C (158 °F)
	0.125 watt
Operating Tempe	erature Range
	55 °C to +125 °C
Temperature Coe	efficient1000 PPM/°C
Insulation Resist	ance50 megohms
	@ 500 VDC
Backlash	Negligible
Shaft Actuating I	Force2N max. @21 °C
	500,000 cycles
Shock	50 G for 7ms
Vibration	20 G, 10-2K Hz

CCB-Mar-2023

Potenciómetro aplicación industrial

Atek Sensor Technology A.S

Thanks to its high resolution of 0.01 mm, precise measurements can be made. Since they are analogue outputs, they operate as ABSOLUTE, they do not lose their position during power / power cuts and continue to measure from where they left off.

Easy installation via adjustable connecting legs on the body
Potentiometric measurement
Measuring distances from 50 mm to 1000 mm
0.01 mm Resolution
Long life with 100 million moves
High operating speed 5 m / s
5 K 10 K resistor options (other resistor values optional)
Potentiometric (conductive plastic)
High independent linearity 0,3 %

CCB-Mar-2023

19

Acople Resistivo: R vs Θ

Suitable for use in different industrial applications which include construction, agricultural, military and utility vehicles

Cuando no hay c arg a
$$R_{2}(\theta)$$

$$= \left(\frac{R_{T}}{\theta_{MAX}}\right) \theta(t)$$

$$V_{out} = \frac{R_{2}(\theta)}{R_{T}} V_{s}$$

$$V_{out} = \left(\frac{\theta}{\theta_{max}}\right) (s)$$

CCB-Mar-2023 20

Acople Resistivo

Torque: operar dentro del rango de torque recomendado garantiza la vida útil del potenciómetro

Electrical Characteristics ¹	3500 Wirewound Element	3501 Hybritron ^o Element
Standard Resistance Range	50 to 200 K ohms	1 K to 200 K ohms
Total Resistance Tolerance	±3 %	±10 %
Independent Linearity	±0.20 %	±0.25 %
Effective Electrical Angle	3600 ° +10 °, -0 °	3600 ° +10 °2 °
Absolute Minimum Resistance/Minimum Vo	ltage1 ohm or 0.1 % maximum (whichever is greater)	0.2 % maximum
Noise	100 ohms ENR maximum	Output smoothness 0.1 % max.
Dielectric Withstanding Voltage (MIL-STD-2		
Sea Level		1.500 VAC minimum
70.000 Feet		400 VAC minimum
Power Rating (Voltage Limited By Power Di	ssipation or 325 VAC, Whichever Is Less)	
+70 °C	2 watts	2 watts
+125 °C	0 watt	0 watt
Insulation Resistance (500 VDC)	1,000 megohms minimum	1,000 megohms minimum
Resolution	See recommended part nos	Essentially infinite

CCB-Mar-2023 21

21

Resistance Temperature Detector: R vs T

- La resistencia de un sensor cambia con la temperatura de una forma reproducible.
 - Elemento conductor: RTD
 - Elemento semiconductor: Termistor
- La resistencia de los metales varia con la temperatura según la ecuación: (R₀ = resistencia para T = 0):

$$R = R_0(1 + a_1T + a_2T^2 + ...)$$

RTD (Resistance Temperature Detector)

Tomando los dos primeros términos y para un cambio de temperatura de 0 a 100°C

$$\begin{split} R &= R_0 (1 + \alpha T) \\ \alpha &= \frac{R_{100} - R_0}{100 R_0} \left(\frac{\Omega}{\Omega^{\circ} C} \right) \end{split}$$

Calibración SAMA: α = 0.00392

Calibración IEC: α = 0.00385

Platino: Ro = $100~\Omega$ para T = $0^{\circ}C$. Níquel: Ro = $235.11~\Omega$ para T = $0^{\circ}C$. Cobre: Ro = $10~\Omega$ para T = $0^{\circ}C$.

CCB-Mar-2023

23

23

RTDs - Características

Element type	Temperature range	Resistivity (Ω / circular mil foot at 20°C)	Benefits	Base resistance	TCR (Ω/Ω/°C)	Sensitivity (avg. Ω/°C, 0 to 100°C)	
	-259 to 1235°C (-434 to 2255°F)		Greatest range Best stability Good linearity	100 Ω• at 0°C	0.003926	0.392	
DI .:	-259 to 630°C (-434 to 1166°F)			100 Ω• at 0°C	0.00391	0.391	
Platinum	-200 to 850°C (-328 to 1562°F)	63.8		100 •Ω at 0°C	0.00385	0.385	4
	-200 to 850°C (-328 to 1562°F)			1000 •Ω at 0°C	0.00385	3.85	
Copper	-100 to 260°C	10.7	Best linearity	10 Ω• at 25°C	0.00427	0.039	
Nickel	-100 to 260°C	41.5	Low cost Best sensitivity	120 Ω• at 0°C	0.00672	0.806	
Nickel-iron	-100 to 204°C 120.0			604 Ω• at 0°C	0.00518	3.133	1
		Low cost Highest sensitivity	1000 Ω •at 70°F	0.00527	4.788	1	
			- I Jensidari	2000 Ω •at 70°F	0.00527	9.576	1

Comparison of resistance thermometer element types

CCB-Mar-2023 24

RTD (Resistance Temperature Detector)

- RTD dos hilos: baja exactitud, corta distancia: HVAC
- RTD tres hilos: disminuye efecto de los cables, mejor exactitud. Procesos industriales
- RTD cuatro hilos: mayor exactitud. Laboratorio

CCB-Mar-2023 25

25

Ejemplo 2 Medición con RTD

- a. Calcular voltaje de salida.
- b. Condiciones de balance
- c. Como se reduce el efecto de la resistencia de los cables

CCB-Mar-2023 26

Fuente de corriente

No se recomienda exceder la corriente más allá de 1 mA

100 Ω	500 Ω	1000 Ω	2000 Ω	10000 Ω
1 mA	0.5 mA	0.3 mA	0.2 mA	0.1 mA

CCB-Mar-2023

27

27

Autocalentamiento

La corriente empleada para detectar el cambio de Resistencia, produce disipación de potencia y autocalentamiento.

$$\Delta T = \frac{RI^2}{E}$$

R: resistencia en $k\Omega$; I en mA, o sea P en mW y E coeficiente de autocalentamiento en $\frac{mW}{\kappa}$

El auto calentamiento si la excitación es de 5 mA, la temperatura leída es de 100 °C y el coeficiente de autocalentamiento es E = 50mW/°C.

Cual es error de temperatura? ¿Qué corriente de excitación se recomienda?

Medición con RTD

- Baja incertidumbre, (error de medida bajo), típico ±0.5°C, Clase A
- Característica lineal de baja sensibilidad.
- Rango de medición bajo.
- Permite aplicaciones criogénicas y rango con cero elevado (cero de temperatura por encima del valor mínimo del rango calibrado).
- Menor incertidumbre: emplear el procedimiento y las ecuaciones de calibración de Callender & van Dussen.

CCB-Mar-2023 29

29

Termistor

- Material semiconductor
- Oxido metálico: manganeso, níquel, cobre, cobalto (NTC)
- Resistencias sensibles a la temperatura
- Coeficiente de variación es grande, preciso, predecible y estable.
- Positivo o negativo
- No lineal

CCB-Mar-2023 30

Termistor NTC Modelo Beta

· Conducción intrínseca:

$$\ln(R_T) = A + \frac{\beta}{T}$$

 Para un termistor a una temperatura de referencia To:

$$\ln(R_{To}) = A + \frac{\beta}{T_o}$$

Restando:

$$ln\left(\frac{R_T}{R_{To}}\right) = \beta\left(\frac{1}{T} - \frac{1}{T_o}\right)$$

Modelo Beta:

$$R_T = R_{To} e^{\beta \left(\frac{1}{T} - \frac{1}{T_o}\right)}$$

 La temperatura desconocida:

$$T = \left[\left(\frac{1}{\beta} \right) \ln \left(\frac{R_T}{R_{To}} \right) + \frac{1}{T_0} \right]^{-1}$$

La sensibilidad:

$$S = \frac{dR}{dT} = -\frac{\beta}{T^2} R \left(\frac{\Omega}{\Omega \, ^{\circ} \text{C}}\right)$$

R en Ωy T en K

CCB-Mar-2023

31

31

Termistor

- Si β = 4000 a temperatura ambiente el coeficiente de temperatura es -0.045.
- Una RTD de platino tiene un coeficiente +0.0039
- Modelo aceptable para aplicaciones con gama de temperatura menor o igual a 20 °C.
- El ß es dependiente de la temperatura, lo cual adiciona más error a la medición de temperatura sobre gamas mayores.
- Gama o "span" es igual a la resta entre el máximo valor calibrado y el mínimo valor calibrado.

Ecuación Steinhart-Hart

 Ecuación de Steinhart - Hart da una aproximación de la temperatura absoluta en función de la resistencia:

$$\frac{1}{T} = A + B(lnR_T) + C(lnR_T)^3$$

• Constantes A, B y C se determinan experimentalmente o a partir de los datos del fabricante. Ten K y R en Ω .

CCB-Mar-2023 33

33

Ecuación Steinhart-Hart

Para tres mediciones:

T (°C)	R (Ω)
0	16,330
25	5000
50	1801

A = 0.001284 $B = 2.364 \times 10^{-4}$ $C = 9.304 \times 10^{-8}$

Ejemplo 3 Steinhart - Hart

 Para un termistor NTC se obtienen tres puntos de la característica:

Temperatura °C	Resistencia Ω
0	94.980,0
25	30.000,0
70	5.357,4

 $\frac{http://www.thinksrs.com/downloads/programs/Therm\%20Calc/NTCC}{alibrator/NTCcalculator.htm.}$

$$\frac{1}{T} = 0.9339 \times 10^{-3} + 2.2128 \times 10^{-4} (lnR) + 1.2668 \times 10^{-7} (lnR)^{3}$$

Si se obtiene una medición de resistencia de 10.000 Ω los modelos generan las temperaturas:

$$T(^{\circ}C) = 52,467 (S-H) y T(^{\circ}C) = 53,499 (B)$$

35

35

CCB-Mar-2023

Medición

- El termistor NTC se puede emplear en tres modos de operación diferentes:
 - Modo Voltaje vs Corriente. la resistencia del sensor varía en función del calor generado por la potencia disipada por el elemento
 - Modo Corriente vs Tiempo: emplear para supresión de transitorios y limitación de corriente.

Medición

These thermistors are usually voltaje o la integrated into the corriente d computer's motherboard.

Modo Resistencia
vs. Temperatura:
requiere que no se
presente auto
calentamiento
producido por el
voltaje o la
corriente de
excitación

CCB-Mar-2023 37

37

Thermistor: Temperature regulation in newborns¹

- A neonatal incubator is a device consisting of a rigid box-like enclosure in which an infant may be kept in a controlled environment for medical care.
- It may also contain a servocontrol to help regulate incubator air temperature. The servocontrol uses a temperature sensing thermistor, which is taped to the child's abdomen.

Accuracy according to ISO 10993 (+/-0.1 $^{\circ}C$ at 25-45 $^{\circ}C$) Measuring principle: NTC

CCB-Mar-2023 38

Biomedical chipThermistor

Tolerance Code and Temperature Range

- Repeatability and fast response
- Intermittent use: oral and rectal fever measurements
- Continuous patient temperature monitoring: inducedhypothermia and general anesthesia

	Tolerance Code			
Temperature Range °F (°C)	A ±°F (±°C)	B ±°F (±°C)	C ±°F (±°C)	
32 to 68 (0 to 20)	0.27 (0.15)	0.36 (0.2)	0.45 (0.25)	
68 to 95 (20 to 35)	0.18 (0.1)	0.27 (0.15)	0.36 (0.2)	
95 to 102 (35 to 39)	0.09 (0.05)	0.18 (0.1)	0.27 (0.15)	
102 to 107.60 (39 to 42)	0.14 (0.075	0.27 (0.15)	0.36 (0.2)	
107.60 to 113 (42 to 45)	0.18 (0.1)	0.27 (0.15)	0.36 (0.2)	
113 to 122 (45 to 50)	0.27 (0.15)	0.36 (0.2)	0.45 (0.25)	

Thermal Response Time (63% Response)

Series	Still Air	Still Water*		
MA100 Catherter Assembly	15 seconds	2.0 seconds		
MA200 Oral-Rectal Assembly	35 seconds	0.6 seconds		
MA300 Skin Surface Assembly	45 seconds 2.0 seconds			
*Response time provided is for assembly plunged from 77°F (25°C) air to 41°F (5°C) water.				

CCB-Mar-2023 39

39

Temperature detection and temperature compensation for smartphones and tablets

CCB-Mar-2023 40

Basic circuits for temperature detection and temperature compensation

CCB-Mar-2023 41

41

Clase 2

Contenido

- Definir y aplicar Strain Gage.
- Describir elemento piezorresistivos
- Analizar medición de peso

Temas para repasar

Circuitos tipo puente-

Temas futuros

 Medición de fuerza y torque

CCB-Mar-2023

42

PIEZO-RESISTIVIDAD

- "Piezo", del griego "piezein" (presionar o comprimir) y "Resistencia" del latín "resistere" (parar o detener).
- Cambio de la resistencia eléctrica de un material conductor o semiconductor, definida por:

$$R_0 = \rho \frac{L_0}{A_0}$$

- Cambio macro: L y A, strain gages
- · Cambio micro: resistividad (ρ) semiconductores
- · Elementos pasivos: requieren excitación externa

CCB-Mar-2023 43

43

Stress & Strain

 La aplicación de fuerzas externas a un cuerpo sólido produce una deformación del mismo. El termino "STRESS" es usado para describir la carga o fuerza externa y el termino "STRAIN" describe la deformación.

Stress & Strain

· Stress: fuerza sobre unidad de área:

$$\sigma = \frac{F}{A} \frac{N}{m^2}$$

• El "Strain" longitudinal resultante es el cambio de longitud dividido por la longitud inicial.

$$\varepsilon_L = \frac{\Delta L}{L} \ (\frac{m}{m})$$

• El "Strain" transversal:

$$\varepsilon_T = \frac{\Delta T}{T} \left(\frac{m}{m} \right)$$

- Como unidad es común usar el "microstrain": $\frac{\mu m}{m}$

CCB-Mar-2023 45

45

Ley de Hooke

Experimental Determination of Elastic Constants

- Relaciona "stress" con "strain"
- Para materiales elásticos, el "stress" es linealmente proporcional al "strain".
- Mas allá del limite elástico se presenta deformación permanente
- Más allá del punto de ruptura se destruye el material

CCB-Mar-2023 46

Stress & Strain

 En la región lineal se define: E Módulo de Young:

$$E = \frac{\sigma_L}{\varepsilon_L} \left(\frac{N}{m^2} \right)$$

CCB-Mar-2023

47

47

Stress & Strain

- La relación de Poisson v es la relación del "strain" de contracción transversal al "strain" de extensión longitudinal, medido en la dirección de la fuerza aplicada. Deformación de "tensión" se considera positiva y deformación de "compresión" se considera negativa.
- La definición de la relación de Poisson tiene un signo negativo, tal que materiales normales tienen una relación positiva:

$$v = - \varepsilon_{transversal} / \varepsilon_{longitudinal}$$

CCB-Mar-2023 48

Ejemplo 4. Stress & Strain

Una fuerza de tensión (Tensile stress) de 1000N se aplica a una varilla de L=10m, y $A=4*10^{-4}m^2$.

Calcular la deformación resultante si la varilla es de:

- Aluminio
- . Acero

CCB-Mar-2023 49

49

Strain gauge

- Alambre o lamina conductora en forma de grilla y montada en un substrato aislante.
- Elemento sensible a la deformación en la dirección longitudinal
- Aproximación: el volumen se mantiene constante.

CCB-Mar-2023 50

Strain gauge

- Dirección principal: dirección en la cual se experimenta ELONGACION pero no CIZALLAMIENTO.
- Cuando la muestra se somete a un "stress" se produce, en la dirección sensible, un cambio en L y en A
- $V = A_0 L_0 = (A_0 \Delta A)(L_0 + \Delta L)$

CCB-Mar-2023

51

51

Strain gauge

· La resistencia del alambre conductor cambia a:

$$R = \rho \frac{L_0 + \Delta L}{A_0 - \Delta A} = \rho \frac{(L_0 + \Delta L)^2}{A_0 L_0}$$
$$R \approx R_0 (1 + 2\frac{\Delta L}{L_0})$$
$$\Delta R = R - R_0 = 2R_0 \frac{\Delta L}{L_0}$$

· El cambio porcentual de la resistencia:

$$\frac{\Delta R}{R_0} = 2\varepsilon_L$$

CCB-Mar-2023

Strain gauge

 Cuando se combinan los efectos longitudinal, transversal y de temperatura:

• Se define el Factor de "Gauge" G_F que relaciona cambio de resistencia con "strain":

$$G_F = \frac{\Delta R/R}{\Delta L/L} = \frac{1}{\varepsilon} \frac{\Delta R}{R}$$

El cambio en Resistencia es igual al factor de celda multiplicado por el strain

CCB-Mar-2023 53

53

Strain gauge

- Valores típicos:
 - Resistencias de "Gauge": 120, 350, 500 & 1000 ohms
 - Valores de "Strain":
 - ϵ_{min} = $1\mu\epsilon$ = 1μ in/in = 0.000001 in/in
 - Para análisis: $ε_{max}$ = 50,000+ με
 - Para transductor: ϵ_{max} = 1,000 $\mu\epsilon$
 - Factor de "Gage" = 2 (valor más común)

$$\frac{dR}{R} = S\epsilon_a, \text{ or } dR = RS\epsilon_a = (120 \ \Omega)(2.0)(10^{-6} \ \text{to} \ 10^{-3}),$$
 i.e. $dR = 0.00024 \ \Omega \ \text{to} \ 0.24 \ \Omega$

Strain gauge

No hay compensación de temperatura. Sólo para aplicaciones con T constante

CCB-Mar-2023 55

55

Ejemplo 5

- Un alambre de aluminio de resistencia Ro = 120 Ω experimenta una deformación ϵ_L = 1000 μ m/m; el coeficiente de temperatura es a = 0,00429 Ω/Ω -°C. G_L = 2 y ϵ_T es despreciable. El cambio de temperatura es de 1°C.
- Comparar las variaciones de resistencia debidas a la deformación longitudinal y a la temperatura.

Compensación de temperatura

- A: activa, se elonga con F
- B: pasiva, transversal a la fuerza F.

- A: pasiva, transversal a la fuerza F.
- B: activa, se elonga con F

CCB-Mar-2023

57

57

Configuración cuarto de puente

Valor nominal de las resistencias es el mismo.

Un elemento sensible, de extensión, el otro de compensación.

$$V_0 = V_{exc} \left[\frac{R_D}{R_D + R_G + \Delta R} - \frac{R_2}{R_1 + R_2} \right] \label{eq:v0}$$

$$V_0 = -\frac{(\Delta R/R)V_S}{4\left(1 + \frac{1}{2}\frac{\Delta R}{R}\right)}$$

$$V_o = -\frac{1}{4}G_F \varepsilon \frac{V_s}{1 + \frac{G_F \varepsilon}{2}}$$

CCB-Mar-2023

58

Configuración medio puente

Dos elementos activos (extensión) y dos de compensación

$$V_0 = V_s \frac{\Delta R/R}{2 + \Delta R/R} = \frac{V_s}{2} \frac{G_F \varepsilon}{1 + \frac{G_F \varepsilon}{2}}$$

CCB-Mar-2023

59

59

Configuración puente completo

Cuatro elementos activos, R₂ y R₄ de extensión y R₁ y R₃ de compresión.

$$V_0 = -\frac{\Delta R}{R} V_s = -V_s G_F \varepsilon$$

CCB-Mar-2023 60

Ejemplo 6 Celda de carga

Una celda de carga sencilla consiste de una sección de acero cilíndrica de r = 2.5 cm sobre la cual se han adosado un "strain gauge" sensible, Ra, y otro para compensación de temperatura, conectados en configuración sencilla. Vs = 2V; Ro = R1 = R2 = 120 Ω , $G_{\rm F} = 2.13$ Cuál es el voltaje de salida para cargas desde 0 hasta 5000 lb. Para el acero E = 20.7×10^{10} N/m^2

CCB-Mar-2023

61

61

Flementos semiconductores

- La resistividad (o conductividad) de un semiconductor altamente dopado cambia cuando hay una compresión o una elongación de la estructura cristalina.
- El efecto "Piezoresistivo" se manifiesta al nivel atómico del cristal, es menos evidente que el cambio geométrico, pero es más sensible

Medición absoluta y manométrica 60 mbar a 2.5 bar (1 a 30 psi) Dispositivos médicos invasivos – no invasivos. Electrodomésticos

CCB-Mar-2023 62

Elementos semiconductores

- · Ventajas:
- Alta sensibilidad: factor de "gage" es aproximadamente 100 veces la de un "strain gage" de tipo conductor.
- Buena linealidad a temperatura constante
- Buena repuesta dinámica y baja histéresis.

- Desventajas:
- Gran dependencia de la temperatura: corrimiento de la curva característica cercano a 1%/kelvin)
- Gran offset inicial
- Gran corrimiento del offset con la temperatura.

CCB-Mar-2023 63

63

Elementos semiconductores

Salida analógica

Salida Digital

CCB-Mar-2023 64

Wearable sensors

Applications of piezoresistive sensor for realtime monitoring of human activities. Resistance change waveforms of the wearable sensor in detecting human movements: (a) elbow swing, (b) wrist bending, (c) finger bending, (d) facial expressions, (e) wrist pulse, and (f) knee bending.

CCB-Mar-2023

65

65

Clase 3

Contenido

- Definir acople por variación de capacidad eléctrica
- 2. Modelar generador termo eléctrico.

Temas para repasar

Efecto Seebeck

Temas futuros

Medición por Radiación Infrarroja (IR)

CCB-Mar-2023 66

Acople por variación de capacidad eléctrica

- El proceso de conversión de energía mecánica a eléctrica se realiza por medio de variaciones en la capacidad de un condensador variable.
- También se genera una variación en el campo eléctrico.

CCB-Mar-2023 67

67

Celda de capacidad variable

 La capacidad de dos placas paralelas de área A separadas una distancia d por un material con constante dieléctrica ε y despreciando los efectos de los bordes es:

$$C(x) = \frac{\varepsilon A}{x}$$

CCB-Mar-2023 68

Celda de capacidad variable

 Si ε se mantiene constante (no se afecta por el voltaje aplicado), la carga q en las placas y el voltaje v entre ellas están relacionados por:

$$q = C(x)v = \varepsilon A\left(\frac{v}{x}\right)$$

 La energía almacenada en el campo eléctrico del condensador ejerce una fuerza sobre las placas del condensador: al variar x varia la fuerza ejercida sobre la placa del condensador.

$$U = \frac{1}{2}v^2C(x)$$

CCB-Mar-2023 69

69

Celda de capacidad variable

 Considerando solamente movimiento en la dirección x:

$$F_e = -\frac{\partial U}{\partial x} = -\frac{1}{2}v^2 \frac{\partial C(x)}{\partial x}$$

- La fuerza es opuesta al sentido del campo.
- El sentido positivo de **Fe** coincide con el sentido positivo de **x**.

$$F_e = -\frac{1}{2} \frac{1}{\varepsilon A} q^2$$

$$F_e = -\frac{1}{2} \varepsilon A \left(\frac{v}{r}\right)^2$$

CCB-Mar-2023 70

Ejemplo 7

El acople por campo eléctrico se emplea en los sensores de fuerza (presión). Sea M la masa de la placa, f_a la fuerza externa aplicada y V_S el voltaje externo aplicado.

1.Obtener las ecuaciones que describen al sistema.

2.Plantear el modelo de estado linealizado alrededor del punto de equilibrio. La salida es el voltaje sobre el condensador.

CCB-Mar-2023 71

71

Microfono de capacidad variable

Condenser microphone elements use a conductive diaphragm and an electrically charged backplate to form a sound-sensitive "condenser" (capacitor). Sound waves move the diaphragm in an electric field to create the electrical signal.

CCB-Mar-2023 72

Celdas de presión diferencial

 Un aumento en la presión hace que la distancia entre las placas disminuya (C aumenta).
 Consecuentemente, una disminución de la presión aumenta la distancia entre placas (C disminuye).

CCB-Mar-2023

73

73

Integrated Capacitive Pressure Sensors

A micro "plate capacitor" with a thin diaphragm deflecting under pressure.

The sensor capacitance is a function of the distance between the top polysilicon and the bottom n+ doped silicon electrode which varies with the applied pressure."

CCB-Mar-2023 74

Sensor transponder and application

As an implantable device the micro implant transponder consists of an integrated capacitive pressure sensor chip and a coil including some discrete electronic components for the transmission of power and data

For patients suffering from glaucoma the intraocular pressure has to be regularly monitored. An implanted pressure sensor system allows a direct measurement of the intraocular pressure

CCB-Mar-2023

75

75

Foot dynamic pressure distribution measurement

Pressure distribution measuring system for monitoring local loads between the foot and the shoe.

Sensors use capacitive technology - known to provide the best accuracy for pressure measurement on the human body

https://www.novel.de/products/pedar/

https://www.firstpodiatry.co.uk/patient-information/analysis/tekscan-matscan-

CCB-Mar-2023 76

SENSORES QUE TRANSFORMAN LA TEMPERATURA EN UNA VARIABLE ELÉCTRICA

• TERMOPAR: Si se conectan dos alambres de metales diferentes y las dos uniones están a diferentes temperaturas se genera una fuerza electromotriz $E_{\it FEM}$.

https://www.youtube.com/watch?v=9wp9U9wCqQ0

CCB-Mar-2023 77

77

Termopares

- Magnitud de la FEM, E, depende de:
 - Coeficiente Seebeck absoluto (Propiedad del material)
 - Temperatura
- E es distribuido a lo largo del alambre y existe sobre el alambre aislado.
- El coeficiente de Seebeck σ es función de Temperatura y de la posición x en el alambre: $\sigma(x,T)$
- El voltaje E es función del gradiente de temperatura y de σ (x,T)

$$E_{\sigma}(x,T) = \int_{x_1}^{x_2} \sigma(x,T) \frac{dT}{dx} dx$$

CCB-Mar-2023 78

 Se asume que el material es homogéneo: σ sólo depende de la T

$$E_{\sigma}(T) = \int_{T_1}^{T_2} \sigma(T) dT = E_{\sigma}(T_2) - E_{\sigma}(T_1)$$

- El voltaje es producido por la diferencia de temperatura.
- La falta de homogeneidad del material es una de las fuentes de error en termopares

CCB-Mar-2023 79

79

Termopares

 Para un termopar (dos metales) el coeficiente de Seebeck relativo es la diferencia de los coeficientes individuales.

$$E = \int_{T_1}^{T_2} \sigma_A dT - \int_{T_1}^{T_2} \sigma_B dT = \int_{T_1}^{T_2} \sigma_{AB} dT$$

 Para usarla en medición la temperatura de una de las uniones se debe conocer.

CCB-Mar-2023 80

$$E_{meas} = \int_{0}^{T_{meas}} \sigma_{AB} dT = \int_{0}^{T_{ref}} \sigma_{AB} dT + \int_{Tref}^{Tmeas} \sigma_{AB} dT$$
 $E_{meas} = E_{ref} + E_{fem}$

- Cuando E_{ref} corresponde a CERO grados la lectura es directa.
- Cuando E_{ref} corresponde a otra temperatura es necesario efectuar la suma.

CCB-Mar-2023 81

81

Termopares

Туре	Couples	Seebeck Coefficient				
		μV/K				
E	Chromel-Constantan	60				
J	Iron-Constantan	51				
Т	Copper-Constantan	40				
K	Chromel-Alumel	40				
N	Nicrosil-Nisil	38				
S	Pt (10% Rh)-Pt	11				
В	Pt (30% Rh)-Pt (6% Rh) 8				
R	Pt (13% Rh)-Pt	12				

CCB-Mar-2023 82

https://srdata.nist.gov/its90/type_k/0to300.html

CCB-Mar-2023

83

Termopares

- El termopar se describe por una tabla E (mV) vs. T (por ejemplo, tipo J)
- Una de las uniones, llamada unión de referencia, esta a una temperatura conocida (generalmente 0 °C).

```
Thermoelectric Voltage in mV
                    0.101 0.151
                                      0.202 0.253
                                                       0.303
                                                                0.354
                                                                        0.405
                                                                                 0.456
                                      1.226
   1.019
            1.071
                             1.174
                                              1.277
                     1.122
                                                       1.329
                                                               1.381
                                                                        1.433
                                                                                 1.485
                                                                                         1.537
                     2.164
                             2.216
                                      2.269
                                                                2.427
                                                                        2.480
                                                                                 2.532
    2.585
                     2.691
                                               2.850
                                                       2.903
                                                                2.956
                                                                         3.009
                                                                                          3.116
   3.116
3.650
            3.169
3.703
                     3.222
                             3.275
3.810
                                      3.329
3.864
                                              3.382
                                                       3.436
                                                                3.489
4.025
                                                                        3.543
4.079
                                                                                 3.596
4.133
                                                                                         3.650
4.187
60
70
                                      4.402
4.943
                                              4.456
4.997
                                                       4.510
5.052
                                                                         4.618
```

CCB-Mar-2023 84

Aproximación polinomial

Coeficientes directos

name: reference function on ITS-90 temperature units: °C emf units: mV $E = sum(i=0 to n) c_i t^i.$ Temperature Range (°C) 0.304758369300E-04 -0.856810657200E-07 0.132281952950E-09 -0.170529583370E-12 0.209480906970E-15 -0.125383953360E-18 0.156317256970E-22 range: 760.000, 1200.000, 5 0.296456256810E+03 -0.149761277860E+01 0.317871039240E-02 -0.318476867010E-05 0.157208190040E-08 -0.306913690560E-12

Coeficientes inversos

```
Inverse coefficients for type J:
                                                                                     0.0000000E+00 0.00000E+00 -3.11358187E+03
1.9528268E+01 1.976425E+01 3.00543688E+02
1.2286185E+00 -2.01204E-01 9.49773230E+00
-1.0752178E+00 1.03689E9-02 1.70276830E-01
5.9069633E-01 2.389687E-09 4.14303468E-30
-1.131313E-02 -3.441285E-08 0.0000000E+00
-8.3823321E-05 0.000000E+00 0.0000000E+00
```

CCB-Mar-2023 85

85

Ejemplo 9

Para un termopar tipo J la T_{ref} es de $15^{\circ}C$, y el voltaje E_{fem} es de 1,030 mV. Cuál es la temperatura medida?

- a. Emplear interpolación lineal.
- b. Emplear la aproximación polinómica

86 CCB-Mar-2023

- Para medir temperatura a partir de mediciones de voltaje se debe conocer la temperatura de una de las uniones.
- La caída de voltaje a lo largo de los alambres debe ser mínima.
- Como no se puede asegurar que T_{ref} sea igual a cero se emplea un conector isotérmico y se mide su temperatura con un sensor semiconductor.

CCB-Mar-2023 87

87

Leyes de interconexión¹⁴

- LEY 1: Si los metales empleados son homogéneos la FEM generada es independiente de las Temperaturas en otras partes del circuito.
- APLICACIÓN: Los conductores que conectan a las dos uniones se pueden exponer a temperaturas desconocidas o variables sin afectar el voltaje producido.

CCB-Mar-2023

Leyes de interconexión

- LEY 2: Si se inserta un tercer metal homogéneo C la FEM generada no cambiará si las dos nuevas uniones están a la misma temperatura T₃.
- APLICACIONES: se puede insertar un instrumento de medida; se pueden soldar las uniones.

CCB-Mar-2023

89

89

Leyes de interconexión

- LEY 3: Si (T_1-T_2) produce la FEM $_1$ y (T_2-T_3) la FEM $_2$, cuando el termopar este sometido a la diferencia (T_1-T_3) se producirá FEM $_1$ + FEM $_2$.
- APLICACIÓN: para medir una temperatura desconocida.
- Ej. T₁, la temperatura de la otra unión de debe determinar por otro método. Las tablas de calibración están referidas a 0°C

CCB-Mar-2023 9

Termopilas

- Conexión serie de varios termopares para generar una fuerza electromotriz (fem) mucho mayor.
- Las termopilas se emplean como generadores termoeléctricos, para medición de energía radiada (como se estudiará en radiación IR), detección de llama en quemadores, detección de gases etc.

CCB-Mar-2023 91

91

Ejemplo 10. Termopila

 Termopares se pueden configurar en forma de termopila para aumentar el voltaje de salida. Cinco termopares tipo K (Positivo Cr-Ni; Negativo Ni-Al) se conectan en configuración termopila. Cuál es el voltaje total generado?

CCB-Mar-2023 92

Radioisotope Power System

- Radioisotope power systems (RPS) convert heat generated by the natural decay of a radioactive isotope—into electrical power.
- The natural decay of plutonium-238 produces heat that is then transferred to one side of the thermocouple.
- The temperature difference between the fuel and the atmosphere allows the device to convert this heat into electricity. The most current RTG model, the Multi-Mission Radioisotope
 Thermoelectric Generator (MMRTG), provides approximately 110 Watts of electrical power when freshly fueled.

CCB-Mar-2023

93

93

Clase 4

Contenido

- Modelar elementos piezo - eléctricos
- 2. Efecto directo: generador
- Describir aplicaciones como sensor: vibración, aceleración, fuerza, análisis de marcha

Temas para repasar

Stress - Strain

Temas futuros

- Medición de distancia
- Medición de nivel

CCB-Mar-2023 94

Piezo-eléctricos

- En algunos materiales el efecto piezoeléctrico causa que un cristal produzca un potencial eléctrico cuando se somete a una vibración mecánica.
- El efecto reverso hace que el cristal vibre cuando se coloca en un campo eléctrico.
- Materiales naturales: sal de Rochelle y el cuarzo, la primera de baja estabilidad y el segundo de un limitado grado de libertad.

CCB-Mar-2023 95

95

Piezo-eléctricos

Compuestos como el titanato de bario (BaTiO3), para sensores ultrasónicos, y compuestos de plomo - titanio - zirconio, PZT; de alta eficiencia en la conversión y estabilidad con la temperatura.

CCB-Mar-2023 96

Piezo-eléctricos: directo o generador

Efecto piezo eléctrico directo o de generador: cuando una fuerza externa actúa sobre el cuerpo del material induce desplazamientos en los elementos positivos y negativos de la red cristalina, que generan momentos en los dipolos y llevan a la formación de un campo eléctrico sobre un par de electrodos conectados al material.

CCB-Mar-2023 97

97

Piezo-eléctricos: inverso o motor

En el efecto piezo eléctrico inverso o motor la aplicación de un voltaje eléctrico a un material piezo eléctrico no restringido lo deforma. La cantidad de movimiento es función de la polaridad del voltaje aplicado y la dirección del vector de polarización. Cuando el material está restringido, por ejemplo asegurado a un marco, se produce una fuerza.

CCB-Mar-2023 98

Piezo-eléctricos

 Para pequeñas variaciones eléctricas y mecánicas, régimen cuasi-estático se puede establecer un modelo linealizado que relaciona Stress, Strain, Campo eléctrico y desplazamiento dieléctrico:

$$D = dT + \varepsilon^T E$$
$$S = s^E T + dE$$

- D = Desplazamiento dieléctrico, q/A (C/m²)
- T = "Stress" (N/m²) Notado también por σ
- E = intensidad de campo eléctrico (V/m)
- S = Strain (m/m)
- d = coeficiente piezo eléctrico
- ε^T = permitividad (medida para T constante)
- s^E = compliancia o coeficiente de elasticidad (medida para E constante) (m²/N)

CCB-Mar-2023

99

99

Asignación de ejes

- Material anisotrópico: las propiedades físicas dependen de la dirección.
- Las variables físicas se definen por medio de tensores.
- Dirección de polarización,
- a lo largo del eje 3 se establece
- Durante la fabricación por un campo eléctrico fuerte

X, Y,Z se representan por 1, 2,3. Las rotaciones por 4,5 y 6

CCB-Mar-2023

Permitividad E

- Es una medida de la capacidad de polarización de un material.
- También denominada coeficiente dieléctrico.

$$\varepsilon_r = \frac{\varepsilon}{\varepsilon_0}$$

$$= \frac{Permitividad\ absoluta}{Permitividad\ vacio}$$

- $\varepsilon_0 = 8.85 \, x \, 10^{-12} \, (F/m)$
- ε_{33}^T permitividad en la dirección de polarización (eje 3), cuando se aplica un campo eléctrico externo en la dirección 3, con stress constante.
- ε_{11}^S permitividad cuando el campo eléctrico externo u el desplazamiento del dieléctrico (D) están en la dirección 1, con strain constante.

CCB-Mar-2023

101

Parámetros de los piezoeléctricos

- Coeficiente de carga o Módulo piezoeléctrico:
- Relación entre la Carga eléctrica inducida y el stress aplicado, o entre el strain alcanzable y el campo eléctrico aplicado, con stress T constante.
- d₃₃ strain inducido por unidad de campo eléctrico aplicado. O la densidad de carga (C/m²) por unidad de presi'on (N/m²), ambos en la dirección de polarización (3)

- Coeficiente de voltaje g_{ij}
- Relación entre el campo Eléctrico y el stress T.
- g_{ij} se obtiene dividiendo d_{ij} por la permitividad correspondiente.
- g₃₁ describe el campo eléctrico inducido en la dirección 3 por unidad de stress mecánico actuando en la dirección 1.

CCB-Mar-2023

Compliancia Elástica s_{ij}

- Relación entre la deformación S (strain) y el stress (T).
- Energías mecánica y eléctrica son mutuamente dependientes. Se deben establecer las condiciones de la definición del parámetro
- s_{33}^E relación entre el strain en dirección 3 y el stress en dirección 3, con campo constante (cuando E = 0: condición de corto circuito).
- s_{55}^D relación entre el strain cizallamiento y el stress de cizallamiento, con desplazamiento del dieléctrico constante (Cuando D = 0: electrodos abiertos).

CCB-Mar-2023

103

Pontificia Universidad JAVERIANA

103

Temperatura Curie

- Por debajo de la
 Temperatura Curie la
 estructura del cristal PZT
 se deforma y se vuelve
 asimétrica: esto va a
 permitir la formación de los
 dipolos y las deformaciones
 necesarias para los efectos
 generador y motor.
- Por encima de la T.C. el material pierde sus propiedades piezoeléctricas

T > Tc: Celda con estructura simétrica

T < Tc Celda con estructura deformada y dipolo formado

104

CCB-Mar-2023

Formas, efecto motor y efecto directo

CCB-Mar-2023 105

105

PZT piezoelectricos

- PIC 151: alta permitividad, alto factor de acople, alto coeficiente de carga.
- PIC 152: Muy alta temperatura Curie. Usable hasta 250°C
- PIC 153: Valores muy altos para permitividad, factor de acople. Alto coeficiente de carga, Tc aprox. 185°C
- PIC 155: Muy alta Tc, bajo factor de calidad mecánico, baja permitividad, alta sensibilidad.
- PIC 255: Muy alta Tc. Alta permitividad, factor de acople y factor de carga. Bajo factor de calidad mecánico. Bajo corrimiento con Temperatura

CCB-Mar-2023 106

SPECIFIC PARAMETERS OF THE STANDARD MATERIALS

			Soft PZ	T materia	ls			Hard PZ	ZT materia	ıls			Lead-Free	Materials
		Unit	PIC151	PIC255	PIC155	PIC153	PIC152	PIC181	PIC1841)	PIC144 ¹⁾	PIC241	PIC300	PIC7001)	PIC701 ¹⁾
Physical and dielectric properties														
Density	ρ	g/cm ³	7.80	7.80	7.75	7.60	7.75	7.85	7.75	7.90	7.80	7.75	5.70	5.76
Curie temperature	To	°C	250	350	340	160	340	330	320	320	270	370	1902)	2302)
Relative in the polarization direction permittivity \perp to polarity	$\varepsilon_{33}^{T/}\varepsilon_{0}$ $\varepsilon_{n}^{T/}\varepsilon_{n}$		2400 1980	1850 1750	1550 1400	4500 3500	1350 1100	1100 1250	1200 1250	1400 1500	1650 1550	1050 950	750 800	550 650
Dielectric loss factor	tan ô	10 ⁻³	20	20	25	30	15	3	3	3	5	3	30	30
Electro-mechanical properties														
Coupling factor	k _p		0.62	0.62	0.62	0.62	0.48	0.56	0.55	0.60	0.58	0.48	0.13	0.14
	<i>k</i> t		0.53	0.47	0.48	0.49	0.41	0.46	0.44	0.48	0.46	0.43	0.45	0.39
	<i>k</i> 31		0.38	0.35	0.35	0.33	0.25	0.32	0.30	0.30	0.32	0.25	0.08	0.08
	k33		0.69	0.69	0.69	0.72	0.58	0.66	0.63	0.66	0.64	0.46	0.41	0.38
	<i>k</i> 15		0.65	0.66	0.65	0.66	0.46	0.63	0.65	0.65	0.63	0.32	0.31	0.32
Piezoelectric charge coefficient	d31	10 ⁻¹² C/N	-210	-180	-165	-295	-90	-120	-99	-105	-130	-80	-20	-17
	d33		500	400	360	600	240	265	220	225	290	155	120	80
	d15		610	550	540	780	235	475	421	419	265	155	120	110
Piezoelectric voltage coefficient	g 31	10 ⁻³ Vm/N	-11.5	-11.3	-12.9	-8.1	-8.7	-11.2	-11.1	-11.0	-9.8	-9.5	2.9	3.5
	g33		22	25	27	17	23	25	24.6	23.6	21	16	15	15
Acousto-mechanical properties														
Frequency coefficient	N _P	Hz·m	1950	2000	1960	1990	2250	2270	2195	2180	2240	2350	3000	3100
	N ₁		1500	1420	1500	1380	1570	1640	1590	1620	1590	1700	2270	2330
	N3*		1750	1370	1340	1345	1530	1560	1560	1540	1550	1700	2240	2300
	Nt⁻		1950	2000	1990	2020	2100	2110	2035	2035	2140	2100	2340	2540
	Ns*		830	870	820	890	1130	1000	960	960	980	1075	1470	1470
Elastic compliance coefficient	SnE	10-12 m ² /N	15.0	16.1	15.6	17.2	13.1	11.8	12.7	12.4	12.6	11.1	8.50	8.00
	S33E		19.0	20.7	19.7	20.0	14.8	14.2	14.0	14.6	14.3	11.8	9.00	8.44
Elastic stiffness coefficient	C33D	1010 N/m ²	10.0	15.6	11.1	15.3	16.6	16.6	14.8	14.6	13.8	16.4	15.2	17.2
Mechanical quality factor	Q _m		100	80	80	50	100	2000	400	1000	1200	1400	100	100

CCB-Mar-2023 107

107

Ecuaciones. Efecto directo

Para campo externo E=0, la carga eléctrica desarrollada al aplicar una fuerza externa al sensor en el mismo sentido de la polarización es:

$$\frac{q}{A} = d_{33} \frac{F}{A}$$

$$q = d_{33}F$$

$$V = \frac{q}{C} = \frac{d_{33}F}{C}$$

$$C = \varepsilon_{33} \frac{A}{t}$$

$$V = \frac{d_{33}}{\varepsilon_{33}} t \frac{F}{A} = \frac{g_{33}tF}{A}$$

CCB-Mar-2023 108

Energía disponible

$$U = \frac{1}{2}CV^{2} = \frac{1}{2}qV$$

$$q = d_{33}AT$$

$$V = g_{33}tT$$

$$U = \frac{1}{2}d_{33}g_{33}\underbrace{(Axt)}_{Volumen}T^{2}$$

· Densidad de energía:

$$u = \frac{U}{Vol} = \frac{1}{2}d_{33}g_{33}T^2$$

CCB-Mar-2023 109

109

Ejemplo 11 Efecto directo

- Un sensor referencia PIC 255 de PI ceramic tiene un espesor de 5 mm.
- ¿Qué voltaje genera si se somete a una presión de 1,38 Mpa?
- · ¿Qué energía esta disponible?

CCB-Mar-2023 110

Factor de acople k_{ij}

- Describe la capacidad de un material piezoeléctrico para convertir energía eléctrica en energía mecánica y viceversa.
- Esta determinado por la raíz cuadrada de la relación entre la energía mecánica almacenada y la energía total absorbida.
- En la frecuencia de resonancia depende de la oscilación del cuerpo, en la dirección correspondiente

- k₃₃ coeficiente de acople para oscilación longitudinal.
- k₃₁ coeficiente de acople para oscilación transversal.
- k_p factor de acople para la oscilación planar radial de un cristal de forma disco.
- k₊ factor de acople para la oscilación transversal (espesor) de un cristal en forma de placa.
- k₁₅ factor de acople para la oscilación de cizallamiento (thickness shear) de un cristal en forma de placa.

CCB-Mar-2023

111

111

Coeficiente de frecuencia Ni

- Relación entre la dimensión geométrica A de un cuerpo y la frecuencia de resonancia serie.
- El índice define la dirección de oscilación.

$$N = f_s A$$

- N₃ describe el coeficiente de frecuencia para la oscilación longitudinal de una varilla delgada (slim rod), polarizada en la dirección longitudinal.
- N₁ es el coeficiente de frecuencia para la oscilación transversal de una varilla delgada (slim rod), polarizada en la dirección 3.
- . N₅ es el coeficiente de frecuencia para la oscilación de cizallamiento transversal de un disco delgado.
- N_P es el coeficiente de frecuencia para la oscilación planar de un disco.
- N_t es el coeficiente de frecuencia para la oscilación transversal (thickness oscillation) de un disco delgado polarizado en la dirección transversal (thickness direction.)

CCB-Mar-2023

Formas y modos de oscilación

Shape		Oscillations							
		Туре	Mechanical deformation	Series resonance frequency					
Thin disk 1 ³ 2 1111		radial	(1)	$f_z = \frac{N_z}{OD}$					
Thin disk 13 2 11	U P OD »TH	thickness		$f_s = \frac{N_s}{TH}$					
Plate 13 2 1 TH	U P L>>W>>TH	transverse		$f_i = \frac{N_i}{L}$					
Rod ∫1 ³ 2 L	U P L>>W>>TH	longitudinal		$f_i = \frac{N_i}{L}$					
Shear plate 2 3	U L«W»TH	thickness shear		$f_* = \frac{N_*}{TH}$					
Tube	TH OD	transversal		$f_i = \frac{N_i}{L}$					
2 3	U L≫OD≫TH	thickness		$f_i = \frac{N_i}{TH}$					

CCB-Mar-2023 113

113

Modelo mecánico pequeña señal

· La ecuación dinamica es:

$$M\ddot{y} + B\dot{y} + Ky = 0$$

En forma general:

$$\ddot{y} + \frac{\omega_0}{Q_m} \dot{y} + \omega_0^2 y = 0$$

 La frecuencia natural del sistema:

$$\omega_0 = \sqrt{\frac{K}{M}}$$

 El factor de calidad mecánico:

$$Q_m = \frac{\sqrt{KM}}{B}$$

CCB-Mar-2023 114

Circuito equivalente

- El comportamiento dinámico se puede representar por un circuito resonante que resalta los modos de vibración internos del material.
- Análisis válido para pequeña señal y frecuencias vecinas a la frecuencia de resonancia del cristal

C₀: capacidad del dieléctrico. El circuito serie RLC describe a las propiedades mecánicas, tales como elasticidad,(1/C); la. inercia (L) y las pérdidas debidas a la fricción (R)

CCB-Mar-2023

115

115

Respuesta de frecuencia

- Dos frecuencias de resonancia.
- Resonancia serie, impedancia cero

$$f_{s} = \frac{1}{2\pi\sqrt{L_{1}C_{1}}}$$

 Resonancia paralelo, impedancia máxima

$$f_{p} = \frac{1}{2\pi \sqrt{L_{1} \frac{C_{0}C_{1}}{C_{0} + C_{1}}}}$$

CCB-Mar-2023

116

Factor de calidad mecánico Q_m

- El factor de calidad mecánico Q_m define la "agudeza de la resonancia" ("sharpness of the resonance") de un cristal piezoeléctrico o resonador y, está determinado por el ancho de banda 3 dB de la curva de resonancia serie.
- El reciproco del factor de calidad es el factor de pérdidas mecánicas

CCB-Mar-2023

117

117

Aplicación: osciladores

 Cuando se aplica un voltaje externo al cristal, se genera una vibración (strain), que genera un cambio en el stress (T) y en el desplazamiento D, y se genera una señal eléctrica de una frecuencia dada por la vibración mecánica del cristal y que está en fase con el stress.

CCB-Mar-2023 118

Sensores Piezoeléctricos

- Cuando se aplica una fuerza externa al material piezoeléctrico del sensor el centro de carga se desplaza en una dirección especifica dentro de la estructura cristalina
- Este movimiento genera una carga que se detecta empleando electrodos en las superficies externas del cristal.

Piezoelectric transducer components

CCB-Mar-2023

119

119

Circuito equivalente sensor

- C_P es la capacidad del sensor.
- R_p la resistencia interna en baja frecuencia típicamente en el rango de $G\Omega$.
- La corriente generada debe conectarse a la entrada del amplificador de carga.

CCB-Mar-2023 120

Amplificador de Carga

$$V_0 = \frac{A}{C_t + C_c + (A+1)C_r}(-q)$$

Amplificador de alta ganancia A y alta impedancia de entrada:

$$V_o = -\frac{q}{C_r}$$

Cr y Rt definen la ganancia del amplificador complete asi como el rango de frecuencia util.

CCB-Mar-2023

Vo = output voltage

A = open loop Gain

C, = sensor capacitance

C_c = cable capacitance

121

121

Aplicaciones: Force Plate

R_i = insulation resistance of input circuit (cable and sensor)

q = charge generated by the sensor

- A force plate is a measuring platform with a piezoelectric force sensor in every corner.
- Force plates can be used to characterize biomechanical processes such as walking, running or jumping, for performance diagnostics in sport, for clinical analyses or in research.

A three-component force plate contains piezoelectric sensors that measure the forces in the three main axes: the vertical, the horizontal and the transverse direction.

CCB-Mar-2023 122

Aplicación: Peso en movimiento (WiM)

- Weigh-in-Motion (WIM) systems are an array of sensors used to measure various features of vehicles in motion.
- WIM systems are comprised of not only the electronics and sensors but include just as importantly flat, smooth, and straight roadways.
- Data collected from WIM systems include time and date, speed, vehicle axle counts, axle spacing, axle weight, gross vehicle weight (GVW), weight violations, vehicle classification, and overall length

CCB-Mar-2023 123

123

Weigh in Motion WiM

± 2% GVW in ideal road ± 5% GVW in almost any road

Enforcement of tire properties Detects single and dual tires. Identifies flat tires

CCB-Mar-2023 124

Clase 5

Contenido

- Modelar Efecto motor
- Describir aplicaciones como actuador: válvula, bomba de insulina

Temas para repasar

Stress - Strain

Temas futuros

https://www.youtube.com/watch?v=qaxOAqEoHG4

CCB-Mar-2023 125

125

Efecto Motor

- Actuadores rígidos (Stiff)
 o de baja compliancia (C =
 1/K), generan gran fuerza,
 pero pequeño
 desplazamiento.
- Actuadores flexibles (Alta compliancia) producen un movimiento significativo, pero pequeña fuerza.
- Deflexión libre, X_f, es el desplazamiento que se obtiene cuando se aplica el máximo voltaje y el actuador es completamente libre para moverse sin desarrollar fuerza alguna.
- Fuerza bloqueado (Blocked force), Fb, fuerza que se desarrolla cuando se aplica el máximo voltaje y el actuador está totalmente bloqueado y fijo (sin posibilidad de desplazarse).

CCB-Mar-2023 126

Característica Fuerza - Deflexión

CCB-Mar-2023

127

127

Motores

- Extensión longitudinal
- Cuando no hay fuerza externa ($\sigma = 0$) el strain y la deflexión son máximos:

$$S = \frac{\Delta x}{L} = d_{33\varepsilon} E$$

- De la tabla lámina 105: $\Delta X = d_{33\varepsilon} LE$
- Campo limitado por el voltaje de ruptura

Con el elemento restringido, la fuerza bloqueado, con S = 0 es:

$$0 = (1/E)\sigma + d_{-}E$$

La dirección de la fuerza es opuesta al campo.

$$F/A = Ed_{33} = F = |AEd_{33}|$$

CCB-Mar-2023 128

Ejemplo 12 Curva característica

- Obtener la curva característica de un actuador piezoeléctrico que tiene una deflexión libre, X_f de 30 µm y una rigidez (stiffness) de 200 $\frac{N}{\mu m}$
- ¿Cuál es la rigidez de un resorte de carga para la cual el actuador entrega la máxima energía?
- ¿Cuál es el punto de operación si la carga es un resorte de K = 600 N/μm?

CCB-Mar-2023 129

129

Bimorph Piezoelectric Multilayer Bender Actuators

- Dos capas de material piezoeléctrico.
- Separados por una capa delgada de metal.
- Dos electrodos de níquel superficies externas

CCB-Mar-2023 130

Bimorph Piezoelectric Multilayer Bender Actuators

The curvature of a bending motor is due to the expansion of one layer and

- La aplicación de un voltaje al elemento de dos capas produce un efecto similar al de la aplicación de una diferencial de temperatura a un bimetálico: una capa se expande y la otra se contrae.
- El resultado de este cambio de longitud genera una curvatura mayor y una deflexión de la punta del material, mucho mayor que los cambios que se logran en una lámina sola

CCB-Mar-2023 131

131

Configuraciones de conexión

CCB-Mar-2023

CCB-Mar-2023 133

133

Ecuaciones motores

Standard mounting techniques for bending motors

movimiento vertical restringido

CCB-Mar-2023 134

Bomba de Insulina

IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, VOL. SU-25, NO. 3, MAY 1978

An Electronically Controlled Piezoelectric Insulin Pump and Valves

W. J. SPENCER, FELLOW, IEEE, WAYNE T. CORBETT, L. R. DOMINGUEZ, MEMBER, IEEE, AND BLYNN D. SHAFER

The pump valve open-closure sequence is as follows. At the start of the pump cycle, the intake valve is opened and the pump is actuated for an intake stroke for 100 ms. The intake valve is then closed and the outlet valve opened. The voltage is removed from the pump returning it to its normal position and providing the insulin output to the pump outlet for 200 ms. At this point the outlet valve is closed.

Medtronic

CCB-Mar-2023 135

135

Piezo-eléctricos¹⁹

Use of the direct piezo effect	Use of the inverse piezo effect					
Mechano-electrical	Electro-mechanical					
- Accelerometers - Igniters - Igniters - Plezo Keyboards - Generators (stand-alone energy sources) - Passive damping - etc.	Actuators, e. g. translators, bender elements, piezo motors, for: Micro- and nanopositioning - Loser funing - Active vibration damping - Micropumps - Pneumatic valves - etc.					
Acousto-electrical	Electro-acoustical					
- Acoustic and ultrasonic receivers - Noise analysis - Acoustic emission spectroscopy - etc.	Signal generator (buzzer) High-voltage sources / transformers Delay lines High-powered ultrasonic generators (cleaning, welding, aerosol production) etc.					

Use of both effects	
- Level measurement - Flow-rate measurement - Object recognition - Medical diagnostics - High-resolution materials testing	
- Sonar and echo sounders - Adaptive structures - etc.	

CCB-Mar-2023 136

Piezo-eléctricos

Sensores ultrasónicos: transmisor, receptor o transmisor/receptor para alarmas, detectores de rango, puertas automáticas y control remoto

Part Number	Construction	Using Method	Nomina Freq. (kHz)	Overall Sensitivity (dB)	Sensitivity (dB)	S.P.L. (dB)	Directivity (1)	Cap. (pF)	Operating Temp. Range (°C)	Detectable Range (m)	Resolu tion (mm)	Max. Input Voltage (Vp-p)
MA40B8R	Open struct.	Receiver	40		-63 (0dB+10WPa)		50 (typ.)	2000	-30 to 85	0.2 to 6	9	4
MA40B8S	Open struct.	Transmitter	40	-	15	120 (0dB=0.02mPa)	50 (typ.)	2000	-30 to 85	0.2 to 6	9	40 Continuous signal
MA40S4R	Open struct.	Receiver	40		-63 (0dB=10V/Pa)		80 (typ.)	2550	-40 to 85	0.2 to 4	9.	×
MA40S4S	Open struct.	Transmitte	40			120 (0dB=0.02mPa)	80 hyp.)	2550	-40 to 85	0.2 to 4	9	20 Continuous signal
MA40S5	Open struct.	Dual Use	40	-54 +/-6dB 0dB=10Vpp at 30cm (from 10mVpp) to 40mVpp)	.0.	1.50	60 (typ.)	2550	-30 to 85	0.5 to 2	9	20 Pulse width 0.4ms Interval 100ms

CCB-Mar-2023

137

137

Piezo-eléctricos

- Sensibilidad como receptor: medida en dB con referencia de 0 dB = 10V/Pa
- Presión de sonido transmitida: medida en dB respecto a 0 dB = 0.02 mPa
- Directividad: patrón de recepción o transmisión, en grados.
- Respuesta en frecuencia: sensitividad vs. Frecuencia (recepción) o SPL vs. Frecuencia (transmisión)

CCB-Mar-2023 138

Piezo-eléctricos

 Detectores de choque: generan un voltaje proporcional a la aceleración de un impacto o a una vibración.

CCB-Mar-2023 139

139

Ejemplo 13 Medidor de distancia

- Medición de distancia basado en el método de "reflexión de pulso".
- La relación entre distancia y tiempo de viaje T es:
 - $L = v x \left(\frac{T}{2}\right)$
- V es la velocidad del sonido en el medio y a la temperatura ambiente. (Aire a 25°C es de 346 m/s)
- Tiempo de latencia de 1 ms
- · Zona muerta de detección?
- Distancia máxima?

https://www.youtube.com/watch?v=gybpNcJsT9I

CCB-Mar-2023 140

Referencias

Ver el listado de referencias actualizado en el documento Word del capitulo 4to.

CCB-Mar-2023 141