Probability Theory Cheat Sheet

Chapter 10: General Notions in Probability

1. Probability Spaces

Definition 10.1

- Triplet (Ω, \mathcal{F}, P) where:
 - \circ Ω : Sample space (non-empty set of possible outcomes)
 - \circ \mathcal{F} : σ -algebra (collection of measurable events)
 - $\circ \ P$: Probability measure satisfying $P(\Omega)=1$

Key Examples

Туре	Formula	Interpretation
Discrete Uniform	$P(A)=rac{A}{\Omega}$	Equally likely outcomes
Continuous Uniform	$P(A) = rac{\lambda(A)}{\lambda(\Omega)}$	Lebesgue measure normalized
Poker Probability	$4\cdotrac{inom{13}{5}}{inom{52}{5}}pprox 0.00198$	Probability of a flush

2. Random Variables & Vectors

Core Definitions

• Random Variable: Measurable function $X:(\Omega,\mathcal{F}) o (\mathbb{R},\mathcal{B}(\mathbb{R}))$

• Random Vector: $\mathbf{X} = (X_1,...,X_k)$ where each X_i is a RV

Distribution Law:

$$P_X(B)=P(X^{-1}(B))=P(\{\omega\in\Omega:X(\omega)\in B\})$$

2.1 Discrete Distributions

Properties:

- Countable support $S \subseteq \mathbb{R}$
- Probability mass function p(x) = P(X = x)

Common Distributions

Name	PMF	Parameters
Bernoulli	$p^x(1-p)^{1-x}$	$p\in[0,1]$, $x\in\{0,1\}$
Binomial	$\binom{n}{x}p^x(1-p)^{n-x}$	$n\in\mathbb{N},p\in[0,1]$
Poisson	$e^{-\lambda}rac{\lambda^x}{x!}$	$\lambda > 0$
Geometric	$(1-p)^{x-1}p$	$p\in(0,1)$

2.2 Continuous Distributions

Properties:

- Density function $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$
- $P(X \in A) = \int_A f(x) dx$

Common Distributions

Name	Density Function	Parameters
Uniform	$rac{1}{b-a}$ on $[a,b]$	a < b
Exponential	$\lambda e^{-\lambda x}$ on $[0,\infty)$	$\lambda > 0$
Normal	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\mu\in\mathbb{R},\sigma>0$

3. Expectation and Moments

Definition:

$$\mathbb{E}[X] = \int_{\Omega} X dP = egin{cases} \sum x_i p(x_i) & ext{if discrete} \ \int x f(x) dx & ext{if continuous} \end{cases}$$

Properties:

1. Linearity: $\mathbb{E}[aX+bY]=a\mathbb{E}[X]+b\mathbb{E}[Y]$

2. Monotonicity: $X \leq Y \Rightarrow \mathbb{E}[X] \leq \mathbb{E}[Y]$

3. If $X \perp Y$, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

Important Inequalities:

• Markov: $P(|X| \geq a) \leq \frac{\mathbb{E}[|X|]}{a}$

• Chebyshev: $P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$

4. Variance and Covariance

Variance: $\mathrm{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

Covariance: $\mathrm{Cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

Properties:

1. $Var(aX + b) = a^2Var(X)$

2. If $X\perp Y$, ${
m Var}(X+Y)={
m Var}(X)+{
m Var}(Y)$ 3. Correlation: $ho(X,Y)=rac{{
m Cov}(X,Y)}{\sqrt{{
m Var}(X){
m Var}(Y)}}$

5. Distribution Functions

CDF: $F_X(x) = P(X \le x)$

Properties:

1. Right-continuous

2.
$$\lim_{x \to -\infty} F(x) = 0$$
, $\lim_{x \to \infty} F(x) = 1$

3.
$$P(a < X \le b) = F(b) - F(a)$$

Quantile Function: $Q(p) = \inf\{x \in \mathbb{R} : F(x) \geq p\}$

6. Characteristic Functions

Definition: $arphi_X(t) = \mathbb{E}[e^{itX}]$

Key Properties:

1.
$$\varphi_{aX+b}(t) = e^{itb} \varphi_X(at)$$

2.
$$arphi_{X+Y}(t) = arphi_X(t) arphi_Y(t)$$
 if $X \perp Y$

3. Inversion formula exists

Examples:

• Normal: $\varphi(t) = \exp(i\mu t - \sigma^2 t^2/2)$

• Poisson: $\varphi(t) = \exp(\lambda(e^{it}-1))$

7. Important Theorems

Law of Large Numbers:

$$rac{1}{n}\sum_{i=1}^n X_i o \mathbb{E}[X]$$
 almost surely

Central Limit Theorem:

$$rac{\sum_{i=1}^{n}X_{i}-n\mu}{\sigma\sqrt{n}}
ightarrow N(0,1)$$
 in distribution

Bayes' Theorem:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

8. Multivariate Distributions

Joint Density: $f_{X,Y}(x,y)$

Marginal Density: $f_X(x) = \int f_{X,Y}(x,y) dy$

Conditional Density:

$$f_{X|Y}(x|y) = rac{f_{X,Y}(x,y)}{f_Y(y)}$$

Multivariate Normal:

$$f(\mathbf{x}) = (2\pi)^{-k/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

Appendix: Common Notation

- Ω : Sample space
- \mathcal{F} : σ -algebra
- μ : Mean
- σ^2 : Variance
- λ : Lebesgue measure/rate parameter
- ullet C(n,k): Binomial coefficient
- 1_A: Indicator function