Procesor MIPS

1)Instructiuni alese

Tip R:

Nand: RF[rd]<- RF[rs] nand RF[rt]
nand \$5, \$1, \$3
b"000000_00001_00011_00101_00000_000001"

Tip I:

Andi: RF[rt] <- RF[rs] & Z_Ext(imm) andi \$1, \$2, b"000011_00010_00001_0000000000101"

Ori: RF[rt] <- RF[rs] | Z_Ext(imm) ori \$1, \$2, 3 b"000101_00010_00001_0000000000011"

2) Tabel semnale de control

Instr	Opcode	RegDst	ExtOp	AluSrc	Branch	Jump	MemWrite	MemtoReg	RegWrite	AluOp	func	ALUctrl
ADD	000000	1	Χ	0	0	0	0	0	1	000	000000	000(+)
SUB	000000	1	Χ	0	0	0	0	0	1	000	000010	010(-)
SLL	000000	1	Χ	0	0	0	0	0	1	000	000011	011(<<)
SRL	000000	1	Χ	0	0	0	0	0	1	000	000100	100(>>)
AND	000000	1	Χ	0	0	0	0	0	1	000	000101	101(&)
OR	000000	1	Χ	0	0	0	0	0	1	000	000110	110()
XOR	000000	1	Χ	0	0	0	0	0	1	000	000111	111(^)
NAN	000000	1	Χ	0	0	0	0	0	1	000	000001	001(NAND)
D												
ADDI	000001	0	1	1	0	0	0	0	1	001(+)	-	000(+)
ORI	000010	0	0	1	0	0	0	0	1	010()	-	110()
ANN	000011	0	0	1	0	0	0	0	1	011(&	-	101
DI)		
LW	000100	0	1	1	0	0	0	1	1	100	-	000(+)
SW	000101	Х	1	1	0	0	1	Х	0	101	-	000(+)
BEQ	000110	Х	1	0	1	0	0	0	0	110	-	010(-)
JUMP	000111	Х	Х	Х	Х	1	0	Х	0	111	-	XXX

3) Program implementat

#1C000004: beq \$0, \$0, 4

```
#4010001: addi $1, $0, 1
                              # Inițializează contorul buclei ($1) la 1
#4020007: addi $2, $0, 7
                              # Inițializează indexul memoriei ($2) la 7
                              #Încarcă valoarea Nîn $3
#4030000: addi $3, $0, 0
#4040000: addi $4, $0, 0
                              # Inițializează suma la 0
                             #Încarcă elementul curent din memorie în $5
#C250001: lw $5, 1($1)
                             # Încarcă elementul curent din memorie în $5
#C050002: lw $5, 2($0)
#812000: lw $4, 0($1)
                            #Încarcă elementul curent din memorie în $4
#1C00000B: beq $0, $0, 11
                               # Sare la Sfârșit dacă condiția este îndeplinită
#222800: sw $5, 0($2)
                            # Stochează rezultatul curent în memorie
#20800: sw $0, 0($0)
                           # Stochează 0 în locația de memorie 0
#872000: sw $7, 0($4)
                            # Stochează rezultatul în memorie
#4210001: addi $1, $1, 1
                             # Incrementare contor buclă
#4630001: addi $3, $3, 1
                             # Incrementare index memorie
#18410001: lw $4, 1($2)
                             #Încarcă elementul curent din memorie în $4
```

Sare la începutul buclei