Introducción a WebGL

Katia Leal Algara

Web: http://gsyc.urjc.es/~katia/
Email: katia/

Dept. Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación (GSyC) Escuela Superior De Ingeniería De Telecomunicación (ETSIT) Universidad Rey Juan Carlos (URJC)

Bibliografía WebGL

Origenes de WebGL: OpenGL

- OpenGL (Open Graphics Library) es una especificación estándar que define una API multilenguaje y multiplataforma para escribir aplicaciones que produzcan gráficos 2D y 3D.
- La interfaz consiste en más de 250 funciones diferentes que pueden usarse para dibujar escenas tridimensionales complejas a partir de primitivas geométricas simples, tales como puntos, líneas y triángulos.
- Fue desarrollada originalmente por Silicon Graphics Inc.
 (SGI) en 1992.
- Última versión estable 4.6, julio 2017.

Orígenes de WebGL: OpenGL ES 2.0

- WebGL (Web Graphics Library) es una especificación estándar que define una API implementada en JavaScript para la renderización de gráficos en 3D dentro de cualquier navegador web.
- Deriva de OpenGL ES (Embedded Systems)
 originalmente desarrollada en 2004 y actualizada a la
 versión 2.0 en 2007, que es en la que se basa WebGL.
 - Se trata de una especificación que elimina muchas características innecesarias, lo que resulta en una especificación ligera con poder suficiente para generar gráficos potentes en 3D.
- Última versión estable 2.0, enero de 2017.
- WebGL está diseñado y gestionado por el consorcio de tecnología sin ánimo de lucro Khronos Group.

Orígenes de WebGL: OpenGL ES 2.0

Introducción a WebGL: shaders

- OpenGL 2.0: capacidad para crear funciones shader o simplemente shaders.
- Un shader es un código que permite programar efectos visuales sofisticados por medio de un lenguaje de programación especial parecido a C denominado shading language.
 - OpenGL shading language (GLSL).
 - OpenGL ES shading language (GLSL ES).

Introducción a WebGL: desarrollo

- Combinado con HTML5 y JavaScript, hace los gráficos 3D accesibles a desarrolladores web.
 - Mejores interfaces de usuario.
- Desarrollo muchos más sencillo:
 - Antes: C/C++ y OpenGL o Direct3D.
 - Ahora: Editor texto y Navegador (Chrome).
- Tarjetas soportadas: www.khronos.org/webgl/ wiki/BlacklistsAndWhitelists
 - Intel Corporation Device 5912.
 - NVIDIA Corporation GK106 [GeForce GTX 645 OEM].
- **Ejemplos**: http://webglsamples.org/.

Un ejemplo sencillo

OpenGL WebGL

Introducción a OpenGL

- El rendimiento se obtiene utilizando la GPU en lugar de usar la CPU.
- Podemos programar la GPU con unos programas especiales llamados, shaders.
- Nuestra aplicación debe suministrar los datos para que trabaje la GPU.
- La GPU realiza todo el trabajo pesado:

Funcionamiento de una aplicación WebGL/OpenGL

- WebGL/OpenGL trabaja en un bucle infinito:
 - Sitúa elementos en la escena(puntos, líneas, polígonos,..).
 - Describe la cámara (posición, orientación, field of view).
 - Atiende los eventos del teclado (keyboard events).
 - Dibuja la escena.

Estado de una aplicación WebGL/OpenGL

- WebGL/OpenGL tiene un estado:
 - El programa OpenGL tiene multitud de posibles configuraciones.
 - La configuración actual se almacena en el estado de OpenGL.
 - Los comandos de OpenGL afectan al estado del programa.

Tipos de primitivas

- GL_POINTS
- GL_LINE
 - -{S | _STRIP | _LOOP}
- GL_TRIANGLE
 - -{S | _STRIP | _FAN}
- GL_QUAD
 - -{S | _STRIP}

Tipos de primitivas

Estructura de una aplicación WebGL

- Las páginas web dinámicas se crean utilizando 3 lenguajes:
 - 1. HTML5 (Hypertext Markup Language).
 - 2. JavaScript.
 - 3. GLSL ES: este último normalmente se escribe en JavaScript, por lo que la estructura de ficheros de las páginas WebGL es básicamente la misma que la de una página web estándar.

Estructura de una aplicación WebGL

