BIOL 4620 Molecular Biology Exam 3 Apr 3,2012

	The state of the s
Name	

!	PLEASE WRITE LEGIBLY. IF	THE GRADER CANNOT READ	VOLID ANGUARD	
1	l-18. Multiple choice. (18 pts/1 pt each) Entorthole	TOOK ANSWERIT WILL	BE MARKED WRONG.
ŗ	provided. (circled sentend	ces will NOT receive credit)	etter of choice that best a	BE MARKED WRONG. Inswers question in the space
	$Q \vee$,		•
-	1) 1. Association of [DNA with core histones		
<u>م</u>	: is stable and occurs only	lina seguonos cas alcia.	ır	
\"	yr cquires energy to affer	Structure and avaluate		
	, , see in least of	ISE LU dii increated concent	ion of socuence DALALE	
D	. occurs completely at rar	idom.	and or sequence DNA DIP	naing protein.
	\bigcap			
	C_2. Methylation of I	+3 at K9 or K27		
Α.	occurs in extremely act	ive regions of chromatin.		
Б.	is randomly distributed	throughout euchromatin and	heterochromatia	
- (ブ	, is really in the resolution	Tatin and regions that are not	A	
Ď,	requires ATP-depender	t chromatin remodeling comp	expressed.	
	\sim	comparing comp	rexes,	,
<i>-</i>	3. Which of the foll	Owing statements about the		
(A)	Deacetylation of H3K9 oc	owing statements about the p curs after methylation of the l	rocess of silencing a regi	on of chromatin is FALSE?
	Once methylated, H3K9r	Acruite HD1	ysine. 🛪	
VC,	HP1 recruits DNA methylt	rancforação		
vD.	Methylation of H3K9 caus	es methylation of DNA at CpG	islands	
(' 17			
	4. Changes in chrom	natin independent of DNA seq	Jencethat persist these	efe . Let a
cal.	lea		and persist till out	gn multiple cell divisions are
Α. ι	ranslational effects.	B. remodeling effects.	C. epigenetic effe	ects. 🔀 prions.
F	5 Tho HD1			
(A)	pinding to mothylated by	lays a key role in formation of cone H3	heterochromatin in mar	nmals by:
B∕h				,.
0.0ر ۲/۱۵	inding to methylated hist	one H5.		
را . <i>ور</i>	inding to acetylated histo	ne H1.		
J. b	inding to acetylated histo	ne H2B.		
了	`			
<u></u> ∧∕+l	6. Imprintingisatern	n used to describe:		
	e maternal and paternal s	specific acetylation pattern or specific pattern of methyl grou	histones, which influen	cas shramatic at the
D. LI	e maternal and paternal s	specific acetylation pattern or specific pattern of methyl grou specific pattern of acetyl groun	ips on histones, which in	fluences chromatin activity.
(D)th	e maternal and paternal s	pecific pattern of methyl group pecific pattern of acetyl group specific pattern of methyl group	os on DNA, which influen	oces activity of an all all.
9	Vacernal and paternal s	specific pattern of acetyl group specific pattern of methyl grou	ips on DNA, which influe	nces activity of an allele.
B	7. What is the EIRST of			anele.
th بحر	e 2'-OH of the even attac	epinvolved in transesterificates the bond at the 3' splice site.	tion during RNA splicing?	
(B) the	e 2'-OH of the invariant h	ranchpoint A attacks bond at t	e.	
Æ. Ex	ons are joined and linear i	nation point A attacks bond at t	he 5' splice site.	
DY Th	O intronia alla	ntron's released.		
<i>J</i> D. 111	e injujori is released unon	Cleavage at the plant:		
λ. III	e intron is released upon			
<u>C</u>			rooth	
X		IRNA are marked by t <u>wo unive</u> s.	rsally conserved sequentials of the ends of	ces-contained

In the middle of the intron.

عبهر

BIOL 4620 Molecular Biology
Exam 3 Apr 3,2012
9. U1 snRNA is required for mRNA splicing. What is its role?
single stranded region in 5' end of U1 snRNA forms complementary base pairs with 3' splice site of the introp
\bigvee B, is inglest randed region in 5' end of U1 snRNA forms complementary base pairs with 5' splice site of the intron
single stranded region in 5' end of U1 snRNA forms complementary base pairs with branch site of the intron
an the unbasepairid A nucleotide becomes branchpoint of Jariat
Single stranded region of U1 snRNA binds consensus sequences in the exon adjacent to the 5' splice site.
\sim \vee
A. a sequence spanning the first exon—intron boundary.
the 3' splice site of the intron.
C. a sequence spanning the intron–second exon boundary.
the branch sequence within the intron.
N V
11. As a general rule, alternative splicing involving different 5' sites may be influenced by:
M. formation of secondary structures that contains several domains formed by base-paired stems and single-
<u>st</u> randed loops.
B proteins that either stimulate or repress the usage of one of the possible sites for splicing.
\star . a protein encoded in intron that directs modification of bases and results in suppression of splice sites usage
the type of RNA ligase that functions in the reaction.
12 In the Drocanhile covidate was in atlantical most
12. In the Drosophila sex determination pathway **X. development of male flies requires default splicing of Sxl and alternative splicing of Tra/Tra2.
development of female flies requires default splicing of Sxl and default splicing of Tra/Tra2.
C development of male flies requires alternative splicing of Sxl and Tra/Tra 2.
Odevelopment of female flies requires alternative splicing of Sxl and Tra/Tra2.
\sim
H 13. Maturation of pre rRNA includes
specific cleavages to yield mature sized rRNA and base modifications.
B. nucleolar intron splicing and base modifications.
C. autocatalytic intron splicing and base modifications.
D. base modifications only,
R 14. The maturation of the tRNA requires the year and of interest.
14. The maturation of the tRNA requires the removal of intron sequences via mechanism thatinvolves cleavage and ligation via a ribozyme.
B) results in cleavage and release of linear intron followed by ligation of 2 halves of tRNA.
C. results in two transesterifications and release of circular intron.
D. results in two transesterifications and release of linear intron.
\wedge
15. Cellular protein synthesis proceeds in which direction?
A. 5' to 3' D. carboxyl to amino to carboxyl terminus
C 16 Fach and to the second se
16. Each aminoacyl tRNA synthetase
🔌 is specific for a certain anticodon, and would normally recognize several different amino acids.
s, is specific for a specific variable loop of the tRNA, and would normally recognize several different amino acids. is specific for an certain amino acid, and would normally recognize several tRNAs with different anticodons.
D. Is specific for the D-loop of a tRNA, and would normally recognize several amino acids

25. The sequence AAUAAA is a signal for cleavage to generate a 3' end of mRNA to which polyA polymerase may ocationic

True, in eukaryotes, the sequence AAUAAA binds to cleavage and

V belyadenylation recognition factor which along with Willy a endedleave

activity and potential paymerase, generates as I end of mena by cleavage at a repeat site and allow toly a polymerase to add

adds non template A residues.

hon-template A residues.

tacter.

dicationic facter

and a

3

		•
	BIOL 4620 Molecular Biology Exam 3 Apr 3,2012 Name	
	26. snoRNAs have a role in tRNA base modification. False, snoRNAs have a role in rRNA base modifications	
Fc	27. Guide RNAs provide the template for deamination of specific bases in trypanosome mRNA. alse, The Guide RNAs provide the template for inserted in (majority of time) and deletion of writine bases in trypanosome backeria, resulting in frame shift, more at translation elongation requires energy from ATP hydrolysis. The Table; translation examples energy from each of the hydrolysis. (EG 6712) EG 602) (EF-TU 672) EF-TU 602)	nd Vletions
	29. (2pts) What would be the effect on transcription of addition an HDAC inhibitor to a cell?	
	HDAC & historie reacetylare & responsible for generalization.	
	In the case that a certain gene (DUA sequence) is acetulated	
	and an HDAC inhibitor it prevent, to there will be active ~ transcription.	
	- GIBCHPRON:	
	30. (4pts) Why does it make sense that chromatin remodelers do not recognize promoters directly, but rather are recruited by site-specific factors? Chromatin remodelers are recruited by site-specific factors and activaters. If chromatin remodelers had affinity for teccephized promoters directly, then all genes in a genome curved be activated even when they are not needed by an organism, causing waste of energy and other consequences detrimental consequences as concernets.	
	31. (4pts) HP1 recognizes H3 methylated on lysine 9 but NOT H3 methylated on lysine 4. Why is this specificity critical? HP4 protein is a Chromodomain protein that is a socialted with heterochromatin formation in mammals. H3 methylation on lysine 9 signals for gene deactivation. On the other hand, H3 methylation on lysine 4 Signals for activation. The without HPI specificity, it established bind to H3 methylation on lysine 4, leading to gene deactivation rather than expected activation.	
	32. (4pts) Eukaryotic DNA is methylated at the C of a CG doublet. This requires both a maintenance methylase and a de novo methylase. What is the role of the maintenance methylase? Maintenance methylase? Maintenance methylase?	trande
	DUASequence at the C of a Est double let, in which are strand how a ready been metro	u loited.
	What is the role of the de novo methylase? De novo methylase methylates a obuble strand DNA sequence at the C of a Co doublet that has not been methylated at year of either strand.	Jeal 1.

Makes sure parent methylation upaderns are followed and are inherited.

33. (4pts) Explain how the correct 5' and 3' splice sites are recognized by the cell splicing apparatus.			
Correct 5' and 3' splice sites are recognized by the cell-splicing			
apparatus becaused the end of intrans to be spriced have a conserved			
51-GU AG-3' sequence that is directly recognized by cellsplining apparatul			
along with the nuclective A that forms a branch (presplisascmal A) when bound			
by UZSNRNP. Riperifically UZSNRNP binds 5' intro splicesile Will UZAFES binds			
34. (2pts) Why are exon junction complexes important?			
Exon junction completes are important blo they have a protein called REF			
ausociated with them that helps RNA transport out of the nucleus through the			
huckar pore into the cyteplasm. REF proteins initially bind the splicing apparatus			
and after splicing, associate with exon junction complexes.			
and are spreng, assessed with early prenonced			
35. (4pts) The sexual development of female Drosophila results from a cascade of alternative splicing events.			
Functional Trais an SR protein which is produced only in female flies. What is an SR protein?			
Serine-arginine rich protein that binds ESE sequences			
Give one function of an SR protein in splicing involved when intrans are too long or splice sites are weak			
binds Est sequences and connects utsnew to unappes-35			
Chrings together 5' end of intron closer to 3' and of intron so that			
Splicing our take place)			
36. (4pts) Compare processes of trans-splicing and pre-mRNA splicing . Your answer should include at least one similarity and one difference between these processes.			
Similarity: trans-spliding and pre-meion splicing both splice out			
Introns and ligate exans together			
Difference! trans-spircing ligates exons of different RNA transcripts together			
pre-mana splicing is cis-splicing in the same that it			
ligates exons belonging to a single menua tegether.			

Name

cure not recognized by (fret tena) but regular (met-tena).

:
bind. noution reation) release to at point sites and for science to the sisse oc these cheese hade
lation. ≯ra

BIOL 4620 Molecular Biolog
Exam 3 Apr 3,2012

Exam 3 Apr 3,2012	Name	
46. (2pts) What features of a tRI	NA allow its unique recognition by a	an aminoacyl tRNA synthetase?
> The distinguish	er sequence between or	edocated between acceptor steman
3' end of ERNA.		
-> 19+ least one. Lave	of the anticodon.	

painer

47 (2pts) How is selenocysteine incorporated at certain UGA codons?

Selenacysteine incorporation at certain USA catons requires

the gene cluster selfa-b. self encodes the form that any toden 32-Acu-51

trapa synthetese. Selfa and D modify serine amino acid on the Host

selenacysteine becomes incorporated of usa coden intervaluation.

Selfa encodes and alternate FF- Tu so translation of elongation with

te 6f-Tu so translatten of elongation with selenccycleine am-continue. U6+

UUU] Phe UUC] Phe UUA] Leu	UCU UCC Se	UAU Tyr UAC Tyr 'UAA STOI	UGU Cys UGC Cys UGA STOP UGG Top
CUU CUC CUA CUG	CGU CCA CCG.	CAU]-His CAC]-Gin CAG]-Gin	CGC CGA CGG
AUU -He AUG -He AUG Met	ACU ACC ACA ACGJ	AAU Asn AAC Lys AAG Lys	AGU Ser AGC AGA AGG AGG
GUU GUC GUA GUG	GCU GCC GCA GCG	GAU]-Asp GAC]-GIU GAG]-GIU	GGU GGC GGA GGG

Bonus (2pts)

Some viroids and virusoids encode endonuclease activity. Why are these of interest to genetic engineering?

Viroid) and virusoids encode endonuclease activity as a result of the function

Of their hammerhead sacondary structure. Viroids and virusoid micha does not

Contain expect caps, allowing hammerhead endonuclease activity to function

on viroid and virusoid micha but not on echaryotic micha plac it contains

Q 5' cop.
