ERRATA: Peter H Zipfel "Modeling and Simulation of Aerospace Vehicle Dynamics", AIAA Educational Series, 2000. 2nd Printing, July 2003 --- As of 18 Oct 04, PHZ ---

	Page	Erroneous	Correct
32	2 nd eq. down	$\begin{bmatrix} y_1^A \\ y_1^A \\ y_1^A \end{bmatrix}$	$\begin{bmatrix} y_1^A \\ y_2^A \\ y_3^A \end{bmatrix}$
65	Last three equations Credit: Mark Smith	$[a_2]^B = \frac{[S_{AB}]^B [g]^B}{ S_{AB} g }$	$[a_2]^B = \frac{[S_{AB}]^B [g]^B}{[S_{AB}]^B [g]^B}$
		$[a_3]^B = [A_1]^B [a_2]^B = -\frac{[S_{AB}]^B [S_{AB}]^B [g]^B}{ s_{AB} ^2 g }$	$[a_3]^B = \dots = -\frac{[S_{AB}]^B [S_{AB}]^B [g]^B}{ S_{AB} [S_{AB}]^B [g]^B}$
		$[T]^{BA} = \left[-\frac{[s_{AB}]^B}{ s_{AB} } - \frac{[s_{AB}]^B [g]^B}{ s_{AB} [g]} - \frac{[s_{AB}]^B [s_{AB}]^B [g]^B}{ s_{AB} ^2 g } \right]$	$[T]^{BA} = \left[\dots \frac{[S_{AB}]^B [g]^B}{[[S_{AB}]^B [g]^B]} -\frac{[S_{AB}]^B [S_{AB}]^B [g]^B}{[S_{AB}]^B [S_{AB}]^B [g]^B} \right]$
113	4 th line from bottom up	$D^R v_I^M$	$D^R v_T^M$
142	Ex. 5.1	$\mathbf{p}_{\Sigma B_k}^I = \sum_k \mathbf{p}_{B_k}^I = \sum_k m^{B_k} \mathbf{v}_{B_k}^I = \dots$	$\mathbf{p}_{\Sigma B_k}^{\scriptscriptstyle R} = \sum_{\scriptscriptstyle k} \mathbf{p}_{\scriptscriptstyle B_k}^{\scriptscriptstyle R} = \sum_{\scriptscriptstyle k} m^{\scriptscriptstyle B_k} \mathbf{v}_{\scriptscriptstyle B_k}^{\scriptscriptstyle R} = \dots$
147	2 nd Eq, 2 nd line	$\begin{aligned} \mathbf{p}_{_{2B_{k}}}^{'} &= \sum_{k} \mathbf{p}_{_{B_{k}}}^{'} = \sum_{k} m^{_{B_{k}}} \mathbf{v}_{_{B_{k}}}^{'} = \dots \\ &= m^{_{B}} D^{_{12}} \left(D^{_{12}} \mathbf{s}_{_{B_{12}}} \right) + \mathbf{\Omega}^{_{12}I_{1}} \left(D^{_{12}} \mathbf{s}_{_{B_{12}}} \right) = \dots \end{aligned}$	$\begin{aligned} \mathbf{p}_{\Sigma B_{k}}^{R} &= \sum_{k} \mathbf{p}_{B_{k}}^{R} = \sum_{k} m^{B_{k}} \mathbf{v}_{B_{k}}^{R} = \dots \\ &= m^{B} D^{I_{2}} (D^{I_{2}} \mathbf{s}_{BI_{2}}) + m^{B} \Omega^{I_{2}I_{1}} (D^{I_{2}} \mathbf{s}_{BI_{2}}) = \dots \end{aligned}$
222	Unnamed eq. after Eq.(7.21) Credit: M. Weiss	$D^{I}\mathbf{p}_{B}^{I}=$	$D^{\prime} \varepsilon \mathbf{p}_{\scriptscriptstyle B}^{\prime} = \dots$
270	Eq. 8.20	$C_L = C_{L_{\alpha 0}} + C_{L_a} \alpha$	$C_L = C_{L_{\alpha 0}} + C_{L_{\alpha}} \alpha$
280	1 st Eq.	$F_r = \frac{C_D S}{\cos \alpha} q_c$	$C_{L} = C_{L_{\alpha 0}} + C_{L_{\alpha}} \alpha$ $F_{r} = \frac{C_{D} S}{\cos \alpha} \bar{q}_{c}$
346	Fig. 9.45 Credit: M. Weiss	G1 Environment	G2 Environment
462	Line above Eq. 10.133	the covariance σ_{xy}^2	the covariance σ_{xy}
462	Eq. 10.133	$\sigma_{xy}^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \mu_{x})(y_{i} - \mu_{y})}{n-1}$	$\sigma_{xy} = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{n - 1}$
462	4 th Eq.	$\rho_{xy} = \frac{\sigma_x \sigma_y}{\sigma_{xy}}$	$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$