Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 13

Esercizi svolti

Es.1. Si progetti il circuito di controllo di un ascensore che rilevi i seguenti eventi

- chiusura delle porte difettosa
- arresto brusco al piano
- tempo di risposta alla chiamata lento
- fermata improvvisa durante la corsa

e che dia in output un segnale di warning ogni volta che si verificano almeno due di questi eventi simultaneamente (cioè nella stessa corsa dell'ascensore).

SOLUZIONE:

La prima parte dell'esercizio richiede di progettare un circuito combinatorio per una funzione booleana (e quindi non sono richiesti FF). Associamo ad ogni evento una variabile booleana:

•	chiusura delle porte difettosa	\rightarrow	C
•	arresto brusco al piano	\rightarrow	Α
•	tempo di risposta alla chiamata lento	\rightarrow	T
•	fermata improvvisa durante la corsa	\rightarrow	F
•	segnale di warning	\rightarrow	W

La funzione booleana è:

 C	A	T	F	W
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Utilizzando le mappe di K. si ottiene:

T F	0 0	0 1	1 1	1 1 0)
C A 0 0	0	0	1	0	_
0 0	U		1	1 0	l
0 1	0	1	1	1	
1 1 [1	1	1	1	
1 0	0	1	1	1	

da cui $W = T \cdot F + C \cdot A + A \cdot F + A \cdot T + C \cdot F + C \cdot T$

Il circuito ottenuto è pertanto:

Es. 2. Si progetti un circuito combinatorio che riceve in ingresso 7 bit X6X5...X0 e produce in uscita 8 bit: i 7 più significativi (Y7Y6..Y1) sono uguali a X6X5...X0, rispettivamente, e Y0=1 se X3X2X1X0 contiene un numero di "1" pari, mentre Y0=0 altrimenti.

SOLUZIONE:

Evidentemente, $Y_i=X_{i-1}$ per i=1,...,7. Per quanto riguarda Y0, la sua tabella di verità è la seguente:

X3	X2	X1	X0	Y0
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Pertanto, la mappa di Karnaugh corrispondente è

da cui

$$Y0 = \frac{\bar{X}_{3}\bar{X}_{2}\bar{X}_{1}\bar{X}_{0} + \bar{X}_{3}\bar{X}_{2}X_{1}X_{0} + \bar{X}_{3}X_{2}\bar{X}_{1}X_{0} + \bar{X}_{3}X_{2}X_{1}\bar{X}_{0} + X_{3}X_{2}\bar{X}_{1}\bar{X}_{0} + X_{3}X_{2}\bar{X}_{1}\bar{X}_{0} + X_{3}\bar{X}_{2}\bar{X}_{1}\bar{X}_{0} + X_{3}\bar{X}_{2}\bar{X}_{1}\bar{X}_{0} + X_{3}\bar{X}_{2}\bar{X}_{1}\bar{X}_{0}}{}$$

Tale EB può essere espressa in modo più compatto usando porte XNOR (che, ricordiamo, sono la negazione dello XOR):

$$\begin{split} Y0 &= \overline{X}_{3}\overline{X}_{2}(\overline{X}_{1}\overline{X}_{0} + X_{1}X_{0}) + \overline{X}_{3}X_{2}(\overline{X}_{1}X_{0} + X_{1}\overline{X}_{0}) + X_{3}X_{2}(\overline{X}_{1}\overline{X}_{0} + X_{1}X_{0}) \\ &= (X_{1}X_{0}) + X_{3}\overline{X}_{2}(\overline{X}_{1}X_{0} + X_{1}\overline{X}_{0}) \\ &= (\overline{X}_{3}\overline{X}_{2} + X_{3}X_{2})(\overline{X}_{1}\overline{X}_{0} + X_{1}X_{0}) + (\overline{X}_{3}X_{2} + X_{3}\overline{X}_{2})(\overline{X}_{1}X_{0} + X_{1}\overline{X}_{0}) \\ &= (X_{3}XNOR\ X_{2})(X_{1}XNOR\ X_{0}) + (X_{3}XOR\ X_{2})(X_{1}XOR\ X_{0}) \\ &= (X_{3}XNOR\ X_{2})XNOR(X_{1}XNOR\ X_{0}) \end{split}$$

Di conseguenza, lo schema circuitale è molto semplice.

Es. 3. Si progetti un circuito che, presi in input due naturali A e B rappresentati con 2 bit, dà in output A+B, se tale numero è rappresentabile con 2 bit, altrimenti dà i due bit più significativi di A+B. (Si risolva l'esercizio dando prima la tavola di verità della funzione desiderata, la si minimizzi con la tecnica di Karnaugh e in seguito con gli assiomi dell'algebra di Boole per ottenere la minima espressione equivalente, ed infine se ne disegni il circuito ottenuto).

SOLUZIONE:

 a_1	a_0	b_1	b_0	c_1 c_0
0	0	0	0	0 0
0	0	0	1	0 1
0	0	1	0	1 0
0	0	1	1	1 1
0	1	0	0	0 1
0	1	0	1	1 0
0	1	1	0	1 1
0	1	1	1	1 0
1	0	0	0	1 0
1	0	0	1	1 1
1	0	1	0	1 0
1	0	1	1	1 0
1	1	0	0	1 1
1	1	0	1	1 0
1	1	1	0	1 0
1	1	1	1	1 1

La mappa di K. per c_1 è :

$b_1 b_0$ $a_1 a_0$	C	00	01	1	1	10	
00	C)	0	1	_	1	
01	C)	1	1	-	1	
11	1	_	1	1	-	1	\dagger
10	1		1	1		1	
							_

da cui $C^1_{min} = a_1 + b_1 + a_0 b_0$, che non è ulteriormente semplificabile. La mappa per c_0 è :

$b_1 b_0$	00	01	11	10
$a_1 a_0$				
00	0	1	1	0
01	1	0	0	1
11	1	0	1	0
10	0	1	0	0

da cui
$$C^{2}_{min} = a_{1}a_{0}b_{0} + a_{0}b_{1}b_{0} + a_{1}a_{0}b_{0} + a_{0}b_{1}b_{0} + a_{1}a_{0}b_{1}b_{0}$$

$$= a_{1}(a_{0}b_{0} + a_{0}b_{0}) + b_{1}(a_{0}b_{0} + a_{0}b_{0}) + a_{1}a_{0}b_{1}b_{0}$$

$$= (a_{1} + b_{1})(a_{0} XOR b_{0}) + a_{1}a_{0}b_{1}b_{0} = (a_{1} \cdot b_{1})(a_{0} XOR b_{0}) + a_{1}a_{0}b_{1}b_{0}$$

Pertanto il circuito desiderato è:

Esercizi da svolgere

- **Es. 1.** Siano dati due numeri binari di due bit A=a1a0 e B=b1b0. Progettare con porte logiche, secondo lo schema di sintesi illustrato a lezione, il circuito con 4 linee di ingresso, chiamate a1, a0, b1, b0, e tre linee di uscita, chiamate c2, c1, c0, che realizza:
 - A+B se A e' minore o uguale a B
 - A-B se A e' maggiore di B
- **Es. 2.** Siano dati due numeri binari di due bit A=a1a0 e B=b1b0. Progettare con porte logiche, secondo lo schema di sintesi illustrato a lezione, il circuito con 4 linee di ingresso, chiamate a1, a0, b1, b0, e tre linee di uscita, chiamate c2, c1, c0, che realizza:
- * A*2 se A + B e' dispari
- * A+B+1 se A + B e' pari

- Es. 3. Si progetti un circuito che riceve 3 ingressi X2X1X0 e produce Y=1 se X0=X1vX2 (OR) oppure se $X1=X0 \land X2$ (AND).
- **Es. 4.** Si dia un circuito combinatorio che, preso un numero intero A di 4 bit rappresentato in complemento a due, restituisca l'intero B tale che:

$$B = \begin{cases} A & \text{se A \`e pari} \\ A-1 & \text{se A \`e dispari ed \`e positivo} \\ A+1 & \text{se A \`e dispari ed \`e negativo} \end{cases}$$
 Si assuma che A sia sempre diverso dalla sequenza 1000.