

Follow up of questions on the video on Herceptin by Susan Desmond-Hellmann

Link to the video

Questions for the video

- 1. What is the **indication** of *Herceptin*? (Her2 positive breast cancer) What is its generic (USAN, or United States Adopted Name) name? (Trastuzumab)
- 2. What is the **gene target** of Herceptin? (Her2, ERBB2)
- 3. In which year was the **target** of Herceptin described? When was Herceptin **approved**? (1987; 1998 in metastatic cancer and 2005 in the adjuvant setting)
- 4. What was the **improvement** of Herceptin compared with earlier antibodies? (humanized)
- 5. Why does a **biomarker** matter besides developing drugs? (diagnostic, higher chance of success due to patient stratification)
- 6. In the clinical trial of *Herceptin* for **metastatic breast cancer**, how much improvement in the **median survival** did Herceptin achieve? And how much improvement is in the **adjuvant setting** (Herceptin applied directly after operation)? (5.1 months improvement in median survival for metastatic breast cancer. Time to remission doubled in the adjuvant setting)

AMIDD Lecture 2: The Central Dogma and Drug Discovery

Source:

https://www.genome.g ov/genetics-glossary/ Central-Dogma

Dr. Jitao David Zhang, Computational Biologist

¹ Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche

² Department of Mathematics and Informatics, University of Basel

Today's goals

- Linear and multiscale view of drug discovery and development
- The central dogma of molecular biology in context of drug discovery
- Case study: discovery of Vemurafenib

Risks and costs associated with each stage of the linear view of drug discovery

pTS: probability of technical success. **WIP**: work in progress; **Capitalized cost**: Out-of-pocket cost corrected for cost of capital, standard for long-term investments; **Out-of-pocket cost**: total cost required to expect one drug launch, taking into account attrition, but not the cost of capital; **Cost of capital**: annual rate of return expected by investors based on the level of risk of the investment. Paul *et al.*, Nature Reviews Drug Discovery, 2010.

Factors causing failures in Phase II and Phase III clinical trials, 2013-2015

- Commercial
- Operational
- Efficacy
- Safety
- Strategy

Harrison, Richard K. "Phase II and Phase III Failures: 2013–2015." *Nature Reviews Drug Discovery* 15 (November 4, 2016): 817–18. https://doi.org/10.1038/nrd.2016.184.

Zhang, Jitao David, Lisa Sach-Peltason, Christian Kramer, Ken Wang, and Martin Ebeling. 2020. "Multiscale Modelling of Drug Mechanism and Safety." Drug Discovery Today 25 (3): 519–34. https://doi.org/10.1016/j.drudis.2019.12.009.

Five fundamental views of cells

- Material
- Producer and consumer of energy
- Vehicle of Information
- Product of evolution
- Computation unit

The human biological system is hierarchical

Cells: basic building blocks, variable morphologies and functions

Tissues: groups Organ: group of specialized cells that communicate and collaborate

of tissues to perform specific **functions**

Organ systems: group of organs and tissues

The human cell as a material entity *The Physics*

Left: Illustration showing the structures of an animal cell. Image credit: Genome Research Limited. Right: Figure from The Human Protein Atlas

The human cell as a material entity

Left: Cell membrane, copyright of Encylopedia Britannica, Inc. Right: Chemical composition of a human cell, by Scitable Nature Education.

tissue	protein synthesis	Na ⁺ /K ⁺ ATPase	Ca ⁺² ATPase	other		
liver	20%	5-10%	5%	gluconeogenesis (15-40%), substrate recycling (20%), proton leak (20%), urea synthesis (12%)		
kidney	6%	40-70%	*	gluconeogenesis (5%)		
heart	3%	1-5%	15-30%	actinomyosin ATPase (40-50%), proton leak (15% max)		
brain	5%	50-60%	significant	a single cortical action potential was estimated to require 10 ⁸ -10 ⁹ ATP, BNID 111183)		
skeletal muscle	17%	5-10%	5%	proton leak (50%), nonmitochondrial (14%)		

Energy metabolism: glycolysis takes place in the cytoplasm. Within the mitochondrion, the citric acid cycle occurs in the mitochondrial matrix, and oxidative metabolism occurs at the internal folded mitochondrial membranes (cristae). Source: Nature Education.

Distribution of major oxygen-consuming processes to total oxygen consumption rate of rate tissues in standard state, from Cell Biology By The Numbers. The total energy production rate is about 100W (or ~1W/kg) at rest.

The central dogma of molecular biology: the human cell as an information vehicle

The Central Dogma can be represented by a graph of chemical information vehicles (nodes) and biological information flows (edges)

DNA: sequences and structure

Photo 51, X-ray diffraction image of DNA

Franklin R, Gosling RG (1953)
"Molecular Configuration in Sodium
Thymonucleate". *Nature* 171: **740–741.**

From the textbook OpenStax Anatomy and Physiology, discovered through Wikimedia, reused under the CC license.

RNA: transcription and the secondary structure

Downloaded and adapted from https://commons.wikimedia.org/wiki/File:DNA_transcriptie.svg and https://en.m.wikipedia.org/wiki/File%3AHAR1F_RF00635_rna_secondary_structure.jpg. Original work by wikipedia user: OrgreBot and user: Ppgardne. Used under CC-SA 3.0 license.

Translation of RNA into proteins

UNI BASEL

Codes of the central dogma

Left: Genetic codes (OpenChart, public domain); Right: Dancojocari, CC BY-SA 3.0, via Wikimedia Commons

Break-out

- 1. Think of **three** drugs that you have used and/or used.
- Look for their chemical structures, and identify whether they belong to small molecule, antibodies, oligonucleotides, or others.
- 3. Try to look after **their pharmacological targets**, and tell which part of the central dogma do they target?
- 4. (Optional) Try to learn their mechanism-of-action or mode-of-action (MoA), *i.e.* how do they work, and their indications, *i.e.* the diseases they try to cure.

Drugs work by targeting nodes or edges of the central dogma

Target	Example drugs or therapeutic candidates						
Protein	 Most small-molecules, for instance GPCR modulators, kinase inhibitors, ion channel inhibitors Most large-molecules (antibodies) 						
Translation	 Antimicrobial protein synthesis inhibitors mTOR-pathway modulating drugs such as rapamycin 						
RNA	 Anti-sense oligonucleotides (ASO), for instance siRNA (silencing RNA) or locked nucleotide acids (LNA) 						
Transcription	 Antimicrobials such as actinomycin D and α-Amanitin Evrysdi (Risdiplam, SMN2 splicing modulator) 						
Reverse transcription	Reverse transcriptase inhibitors such as AZT (Zidovudine)						
DNA	Genome-editing therapies such as chimeric activated receptors in T-cells (CAR-T) or CRISPR-CAS9						
DNA replication	 Topoisomerase inhibitors such quinolones Chemotherapies 						

Table 1 | Molecular targets of FDA-approved drugs

	Targets			Drugs		
Drug target class	Total targets	Small- molecule drug targets	Biologic drug targets	Total drugs	Small molecules	Biologics
Human protein	667	549	146	1,194	999	195
Pathogen protein	189	184	7	220	215	5
Other human biomolecules	28	9	22	98	63	35
Other pathogen biomolecules	9	7	4	79	71	8

The list also includes antimalarial drugs approved elsewhere in the world.

Proportion of human protein drug targets in major families

Proportion of small-molecule drugs that target major families

Left: Rask-Andersen, Mathias, Markus Sällman Almén, and Helgi B. Schiöth. 2011. "Trends in the Exploitation of Novel Drug Targets." Nature Reviews Drug Discovery 10 (8): 579–90. https://doi.org/10.1038/nrd3478.

Right: Santos, Rita, Oleg Ursu, Anna Gaulton, A. Patrícia Bento, Ramesh S. Donadi, Cristian G. Bologa, Anneli Karlsson, et al. 2017. "A Comprehensive Map of Molecular Drug Targets." *Nature Reviews Drug Discovery* 16 (1): 19–34. https://doi.org/10.1038/nrd.2016.230.

Extending the Central Dogma with small molecules, feedback regulations, and Big Data

Cognition, signaling, life's origins, probes, drugs

Schreiber, Stuart L. "Small Molecules: The Missing Link in the Central Dogma." Nature Chemical Biology 1, no. 2 (July 2005): 64–66. https://doi.org/10.1038/nchembio0705-64.

Many references. Two for ENCODE are selected here: Moore, Jill E., Michael J. Purcaro, Henry E. Pratt, Charles B. Epstein, Noam Shoresh, Jessika Adrian, Trupti Kawli, et al. "Expanded Encyclopaedias of DNA Elements in the Human and Mouse Genomes." Nature 583, no. 7818 (July 2020): 699–710. https://doi.org/10.1038/s41586-020-2493-4; Van Nostrand, Eric L., Peter Freese, Gabriel A. Pratt, Xiaofeng Wang, Xintao Wei, Rui Xiao, Steven M. Blue, et al. "A Large-Scale Binding and Functional Map of Human RNA-Binding Proteins." Nature 583, no. 7818 (July 2020): 711–19. https://doi.org/10.1038/s41586-020-2077-3.

ARCHS4 and recount3

Questions about Bollag et al., Nature 2010

- What is the indication of PLX4032?
- 2. What is the **gene target** of *PLX4032*?
- 3. The malignancy depends on which biological pathway?
- 4. What is the **Mechanism of Action** of *PLX4032?*
- 5. What went wrong in the first **Phase I clinical trial**? And how was it solved?
- 6. What was the **dosing regimen** in the final Phase I clinical trial, and what is the **response rate**?

Questions for further thinking

- In the video that you watched offline, Susan Desmond-Hellmann summarizes great drug development in four key concepts: (1) Having a deep understanding of the basic science and the characteristics of the drug. (2) Target the right patients. (3) Set a high bar in the clinic. (4) Work effectively with key regulatory decision makers. What parts of this abstract reflect these points?
- Susan Desmond-Hellmann emphasized the importance of collaboration. Is that true when you consider this abstract?
- How do you like the abstract? Anything that you can learn from it about writing?

Offline activities

- Read the paper <u>Bollag et al.</u>, <u>2010</u>, and answer questions <u>here in Offline Activities</u>.
- Optional read: Santos, Rita, Oleg Ursu, Anna Gaulton, A. Patrícia Bento, Ramesh S. Donadi, Cristian G. Bologa, Anneli Karlsson, et al. "A Comprehensive Map of Molecular Drug Targets." Nature Reviews Drug Discovery 16, no. 1 (January 2017): 19–34. https://doi.org/10.1038/nrd.2016.230.

Questions for Bollag et al., 2010

- 1. We learned that many drugs target one of the four protein types: GPCRs, ion channels, kinases, and nuclear receptors. Which type does the target of PLX4032 belong to?
- 2. How was the efficacy of PLX4032 tested?
- 3. Why was PLX4032 chosen for further development, but not PLX4720?
- 4. How was the exposure of PLX4032 in the blood quantified? Which mathematical operation was used?
- 5. How was the final dosing regimen (960-mg BID) determined?
- 6. How did patients with the V600K mutation in BRAF respond?
- 7. What measures were taken to demonstrate the effect of BRAF inhibition in patient biopsies?
- 8. What side effects of PLX4032 were reported?
- 9. What measures were taken against side effects and safety concerns of PLX4032?
- 10. Where do you think mathematics and informatics is used in the discovery and development of PLX4032?

Backup slides

Source: The Human Protein Atlas. Among N=12813 cells, 55% (n=7106) of the proteins were detected in more than one location (*multilocalizing* proteins), and 25% (n=3141) displayed single-cell variation in expression level or spatial distribution.

Three basic visual metaphors to display proteins

The bond diagram (balls-and-sticks)

Color codes: Charged Nitrogen, Charged Oxygen, Uncharged Nitrogen, Unchard Oxygen, Carbon (gray/white), Sulfur

The space-filling diagram

Goodsell, David S. "Visual Methods from Atoms to Cells." Structure 13, no. 3 (March 1, 2005): 347–54. https://doi.org/10.1016/j.str.2005.01.012.