

Advanced Computer Vision Week 07

Oct. 11, 2022 Seokju Lee

Parts of slides are by Prof. In So Kweon and Prof. Shree Nayar

Review: Edges & Corners

Review: Edges & Corners

Edge = **Gradient**

Gradient (partial derivatives) represents the direction of **most rapid change** in intensity.

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right]$$
 Pronounced as "Del I"

Gradient Magnitude
$$S = \|\nabla I\| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

Gradient Orientation
$$\theta = \tan^{-1} \left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x} \right)$$

Edge Example

h

$$h * f$$

100

200

300

$$\frac{\partial}{\partial x}(h*f)$$

600

600

700

Edge Example

$$\frac{\partial}{\partial x}h$$

Review: Edges & Corners

2) Corner = **Point** where two edges meet

Rapid changes of image intensity in **two directions** within a small region.

Scale Invariant Feature Transform (SIFT) Detector

Back to "Image Matching"

→ How to extract **generic** features?

Invariant Local Features

- ✓ Find features that are invariant to transformations:
 - **Geometric** invariance: translation, rotation, scale, ...
 - **Photometric** invariance: brightness, exposure, ...

Slide by D. Lowe.

Let's Learn SIFT Detector

Scale Invariant Feature Transform (SIFT) and its applications for <u>image alignment</u> and <u>2D object recognition</u>.

Topics:

- (1) What is an Interest Point?
- (2) Detecting Blobs
- (3) SIFT Detector
- (4) SIFT Descriptor

Interest points = keypoints, also sometimes called features.

Suppose you have to click on some point, go away and come back after I **deform** the image, and click on the same points again.

→ Which points would you choose?

"Raw images are hard to match"

Different size, orientation, lighting, brightness, etc.

"Remove the variations"

Matching becomes **easier** if we can **remove variations** like size and orientation.

"Some patches are **not** interesting"

Background

• Has **rich** image content (brightness variation, color variation, etc.) within the local window.

• Has well-defined representation (signature) for matching/comparing with other points.

Has a well-defined position in the image.

Should be invariant to image rotation and scaling.

Should be insensitive to lighting changes.

Are Lines/Edges Interesting?

→ Cannot **localize** specific position <a> □

Are Blobs Interesting?

blob

미국식[bla:b] 〇 영국식[blob] 〇

명사

(작은) 방울, (작은) 색깔 부분 a **blob** of ink □ 이 이크 한 방울

→ Yes! Blobs have **fixed position** and **definite size** 🙂

Example Code for SIFT

Updated codes are uploaded in https://view.kentech.ac.kr/f088fa7f-874e-44bc-bd6d-6084b42dfdf7

\$ cd OpenCV-Python-Tutorials/Src/FeatureDetectionAndDescription/SIFTAndSURF

\$ python SIFT.py

Q. What does circle mean?

Parts of slides are by Prof. In So Kweon and Prof. Shree Nayar

Blob Detector

Blob

- A blob is a region of an image where some properties (brightness or color, etc.)
 are constant or approximately constant.
- All the points in a blob can be considered to be similar to each other.

Corners

Blobs

Blobs as Interest Points

- To make a Blob-like feature useful, we need to:
 - → **Locate** the blob
 - → Determine its **size**
 - → Determine its **orientation**
 - → Formulate a description that is independent of size and orientation

Review: Derivative of Gaussian

→ **Extremum** of derivative of Gaussian denotes an **edge**.

Review: 2nd Derivative of Gaussian

 \rightarrow **Zero crossing** in **2nd** derivative of Gaussian denotes an **edge**.

1D Blobs

→ Examples of **1D** blob-like structures.

1D Blob and 2nd Derivative of Gaussian

1D Blob and 2nd Derivative of Gaussian

1D Blob and 2nd Derivative of Gaussian

Characteristic Scale: The σ at which σ -normalized 2^{nd} derivative attains its extreme value.

Characteristic Scale ∝ Size of Blob

Size of Blob A =
$$\frac{\sigma_A^*}{\sigma_B^*}$$
; Size of Blob B = $\frac{\sigma_B^*}{\sigma_C^*}$

Summary of 1D Blob Detection

Given: 1D signal f(x)

Compute: $\sigma^2 \frac{\partial^2 n_{\sigma}}{\partial x^2} * f(x)$ at many scales $(\sigma_0, \sigma_1, \sigma_2, ..., \sigma_k)$.

Find:
$$(x^*, \sigma^*) = \underset{(x,\sigma)}{\arg \max} \left| \sigma^2 \frac{\partial^2 n_{\sigma}}{\partial x^2} * f(x) \right|$$

x*: Blob Position

 σ^* : Characteristic Scale (Blob Size)

2D Blob Detector

Normalized Laplacian of Gaussian (NLoG) is used as the 2D Blob Detection.

Location of blobs given by local extrema after applying NLoG at many scales.

Scale Space

• Scale space: Stack created by filtering an image with Gaussian of different σ .

$$S(x,y,\sigma) = n(x,y,\sigma) * I(x,y)$$

Creating Scale Space

 $S(x, y, \sigma_1)$

 $S(x, y, \sigma_2)$

 $S(x, y, \sigma_3)$

Increasing σ , Higher Scale, Lower Resolution

Selecting sigmas to generate the scale-space:

$$\sigma_k = \sigma_0 s^k \qquad k = 0,1,2,3,...$$

s: Constant multiplier

 σ_0 : Initial Scale

Blob Detection Using Local Extrema

Blob Detection Using Local Extrema

Summary of 2D Blob Detection

Given an image I(x, y)

Convolve the image using NLoG at many scales σ

Find:

$$(x^*, y^*, \sigma^*) = \underset{(x,y,\sigma)}{\operatorname{arg max}} |\sigma^2 \nabla^2 n_{\sigma} * I(x,y)|$$

 (x^*, y^*) : Position of the blob

 σ^* : Size of the blob

Parts of slides are by Prof. In So Kweon and Prof. Shree Nayar

SIFT Detector

Fast NLoG Approximation: DoG

Difference of Gaussian (DoG) = $(n_{s\sigma} - n_{\sigma}) \approx (s - 1)\sigma^2 \nabla^2 n_{\sigma}$ NLoG

DoG approximation of LoG with $\sigma=10$ and $\Delta\sigma=1$

Sigma = 1; sigma1 = sigma / 1.6; sigma2 = sigma * 1.6

Extracting SIFT Interest Point

Image I(x,y)

Gaussian Scale-Space $S(x, y, \sigma)$

Difference of Gaussians (DoG)

$$\approx (s-1)\sigma^2 \nabla^2 S(x,y,\sigma)$$

Extracting SIFT Interest Point

Difference of Gaussians (DoG)

$$\approx (s-1)\sigma^2 \nabla^2 S(x,y,\sigma)$$

Find Extremum in every 3x3x3 grid

Interest Point
Candidates
(includes weak extrema)

Extracting SIFT Interest Point

Interest Point Candidates

(includes weak extrema)

SIFT
Interest Points
(after removing weak extrema)

- → The center corresponds to the location of the feature.
- → The **radius** is proportional to the **size** of the feature.

SIFT Detection Examples

SIFT Scale Invariance

 $\frac{{\sigma_1}^*}{{\sigma_2}^*}$: Ratio of Blob Sizes

Computing the Principal Orientation

Use the histogram of gradient directions

Image gradient directions

$$\theta = \tan^{-1} \left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x} \right)$$

Principal Orientation

Choose the most prominent gradient direction

SIFT Rotation Invariance

Use the principal orientation to undo rotation

