Phys 245 Quantum Computation Homework 5

- 1. [30] Filling in the details. In class, we derived the displacement operator by first transforming the driven harmonic oscillator Hamiltonian, $H=\hbar\omega\left(\hat{a}^{\dagger}\hat{a}+\frac{1}{2}\right)+\hbar\beta\sin(\omega t+\phi)(\hat{a}+\hat{a}^{\dagger})$ into the interaction picture with respect to the bare harmonic oscillator Hamiltonian, $H_o=\hbar\omega\left(\hat{a}^{\dagger}\hat{a}+\frac{1}{2}\right)$. Prove the following identities which we used in class:
 - a. [15] $e^{\frac{iH_0t}{h}} \hat{a} e^{-\frac{iH_0t}{h}} = \hat{a} e^{-i\omega t}$ b. [15] $e^{\frac{iH_0t}{h}} \hat{a}^{\dagger} e^{-\frac{iH_0t}{h}} = \hat{a}^{\dagger} e^{i\omega t}$
- 2. [40] Displacement operator via QuTip. For this problem, use QuTip to make a coherent state via the displacement operator (it's a built-in operator) acting on the vacuum state as $|\alpha\rangle = \widehat{D}(\alpha)|0\rangle$.
 - a. [15] Plot the expectation value of position and momentum in the (x,p) plan for the following states:

i.
$$\alpha = 1$$

ii. $\alpha = i$
iii. $\alpha = 1 + i$

b. [25] Now, define a Python function that that takes time, t, as its input and returns the time evolution operator a time t for the Hamiltonian $H_o = \hbar\omega\left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right)$. Use that function to calculate $|\alpha(t)\rangle = \hat{U}(t)|\alpha\rangle$ for various times during the oscillation period of the oscillator. Plot the expectation value of position and momentum in the (x,p) plane for the following states (you can choose m = 1 and $\omega = 2\pi$ for simplicity):

i.
$$\alpha=1$$

ii. $\alpha=i$
iii. $\alpha=1+i$

- 3. [40] "Ramsey" spectroscopy with a QHO?! Suppose at t = 0 a vacuum state is displaced by a displacement oscillator with $\alpha=1$. Then after a variable time t_w a second displacement operator with $\alpha=-1$ is applied. For m = 1 kg, $\omega=2\pi$ rad/s do the following (HINT: For this problem I recommend using QuTiP and the time evolution operator you constructed in Prob. 2.)
 - a. [20] Plot the probability of being in the vacuum state as a function of $t_{\it w}$.
 - b. [10] Fix t_w = 0.5 and make a plot of the oscillator's evolution as a function of time. Make sure to include the effects of the displacement operator, however, you may assume the displacements happen instantaneously.
 - c. [10] Fix $t_w = 1$ and make a plot of the oscillator's evolution as a function of time. Make sure to include the effects of the displacement operator, however, you may assume the displacements happen instantaneously.

Harmonic Oscillators.	and