Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Лабораторна робота З МОДвІ №2

на тему:

«Розрахунок значення функції за допомогою її розкладу в ряди»

Виконав Дем'янчук Т. М. студент II-го курсу ФЕЛ

гр. ДК-12

Дата виконання: 20.03.2023

Перевірив:

доцент Бондаренко Н. О.

Основні теоретичні відомості

- Знакопочерговим називається ряд, сусідні члени якого мають протилежні знаки.
- Ряд називається знакосталим, якщо він знакододатний або знаковід'ємний.
- Теореми збіжності рядів:
 - 1. Ознака Лейбніца

Ряд вигляду

$$\sum_{n=0}^{\infty} (-1)^n a_n = a_0 - a_1 + a_2 - a_3 + \cdots$$

де усі елементи a_n або додатні або від'ємні, називається знакопереміжним рядом.

Ознака Лейбніца: якщо послідовність $\{|a_n|\}$ спадає монотонно $^{[1]}$ і $\lim_{n o \infty} a_n = 0$, тобто:

1.
$$0 < a_{n+1} < a_n$$
;

2.
$$\lim_{n\to\infty}a_n=0,$$

то знакопереміжний ряд є збіжним.

- 2. **Теорема Рімана про умовно збіжний ряд** теорема стверджує, що перестановкою членів умовно збіжного ряду можна побудувати ряд, що збігається до якої завгодно суми чи взагалі розходиться.
- Абсолютна похибка вимірювання абсолютна різниця між результатом вимірювання та істинним значенням вимірюваної величини.
- Відносна похибка вимірювання це похибка вимірювання, виражена як відношення абсолютної похибки до результату вимірювання.
- Значущі цифри числа це всі цифри числа починаючи з першої не нульової зліва.

Значуща цифра називається вірною, якщо абсолютна похибка числа не перевищує $\frac{1}{2}$ одиниці розряду, що відповідає цій цифрі.

Приклад 1. Нехай x^* =14,537 і відомо, що $\Delta(x^*)$ =0,04. Скільки вірних значущих цифр має число x^* ?

Розв'язання. Маємо $\Delta(x^*) > 0.5 \cdot 10^{-2}$ і $\Delta(x^*) < 0.5 \cdot 10^{-1}$. Отже у числа x^* вірними будуть значущі цифри 1,4,5, а цифри 3 і 7 — сумнівні.

Приклад 2. Нехай $x^* = 8,677142$ і $\Delta(x^*) = 3 \cdot 10^{-4}$. Скільки вірних значущих цифр має число x^* ?

Розв'язання. Оскільки $\Delta(x^*)=0,3\cdot 10^{-3}<0,5\cdot 10^{-3}$, то x^* має вірні три значущі цифри після коми, тобто вірними будуть значущі цифри 8,6,7,7.

Приклад 3. Нехай x^* =0,046725 і $\Delta(x^*)$ =0,008. Скільки вірних значущих цифр має число x^* ?

Розв'язання. Маємо $\Delta(x^*)=0,0\cdot 10^{-2}>0,5\cdot 10^{-2}$. Отже у числа x^* всі значущі цифри сумнівні.

Завдання

Створити програму, яка буде обраховувати наближене значення функції **ln(x)** в заданій точці х із заданою точністю $\varepsilon=10^{-2}$, шляхом її розкладу в ряд Тейлора, або Маклорена.

Рішення

1. Розкладено функцію ln(x) в степеневий ряд та визначено інтервал збіжності цього

$$f(x)=|n(x)|$$
, programage uno no c-m $x-1$

Скористаємось формулою для розкладу функції $/ n \left(\ell + \chi \right)$ в степеневий ряд:

$$|n(1+x) = x - \frac{x^2}{a} + \frac{x^3}{3} - \dots + (-1)^{n+1} \cdot \frac{x^n}{n} + \dots, x \in (-1, 1]$$

$$|n(x) = |n(1+x-1)|, \quad Z = x - l = y |n(1+x-1) = |n(1+Z)| =$$

$$= Z - \frac{Z^2}{a} + \frac{Z^3}{3} - \dots + (-1)^{n+1} \frac{Z^n}{n} + \dots, Z \in (-1, 1]$$

$$|n(x) = (x-1) - \frac{(x-1)^2}{a} + \frac{(x-1)^3}{3} - \dots + (-1)^{n+1} \frac{(x-1)^n}{n} + \dots,$$

$$(x-1) \in (-1, 1] = y - 1 < x - 1 \le 1 = y = 0 < x \le 2 - \text{обл. збіжності ряду}$$

1.1. Перевірено ряд на збіжність

Перевірка збіжності ряду:

$$R = \lim_{h \neq \infty} \left| \frac{C_{n+1}}{C_n} \right|, \quad C_n = (-1)^{n+1} \frac{(x-1)^n}{n}, \quad C_{n+1} = (-1)^{n+2} \frac{(x-1)^{n+1}}{n+1}$$

$$R = \lim_{h \neq \infty} \left| \frac{(-1)^n + 2 \cdot (x-1)^{n+1}}{n+1} \right| \times \frac{n}{(-1)^{n+1} \cdot (x-1)^n} = \lim_{h \neq \infty} \frac{n(x-1)^{n+1}}{(n+1)(x-1)^n} = \lim_{h \neq \infty} \frac{n(x-1)^{n+1}}{(n+1)^n} = \lim_{h \neq \infty} \frac{n(x-1)^{n+1}}{$$

$$= \lim_{n \to \infty} \left| \frac{n(x-l)}{n+l} \right| = |x-l| \cdot \lim_{n \to \infty} \left| \frac{n}{n+l} \right| = |x-l| \cdot \lim_{n \to \infty} \left| \frac{1}{1+\frac{l}{n}} \right| = |x-l| = >$$

$$= R = |x-1|$$
 $|x-1| < 1 = 7 - 1 < x - 1 < 1 = 70 < x < 2$

2. Визначено 3 значення функції, з точністю $\varepsilon=10^{-2}$, що підпадають під значення функції, що можуть бути отримані в результаті підстановки значень аргумента із області

збіжності в розклад функції ln(x) до степеневого ряду, аби пізніше перевірити значення, що буде обраховувати програма.

эна тенни, що одде ображовувати програма.	
Значення функції ln(x)	Значення аргумента функції ln(x) (в межах області збіжності)
-0.223	0.8
0.182	1.2
0.405	1.5
0.642	1.9

Таблиця 1.

3. Отримано результати роботи програми для набору вхідних значень х із **таблиці 1** в пункті 2.

- 4. Обчислено абсолютну, відносну похибки, а також визначено вірні значущі ціфри результату.
- 4.1. Абсолютна похибка:

$$\Delta = 0.6403 - 0.6418 = 0.0015$$

4.2. Відносна похибка:

$$\sigma = \frac{\Delta}{0.6403} = \frac{0.0015}{0.6403} \approx 0.0023$$

4.3. Значущі цифри результату:

4.4. Вірні значущі цифри результату:

Всі значущі цифри сумнівні

Висновок

Виконуючи дану лабораторну роботу було:

- 1. На її початку наведено основні теоретичні відомості.
- 2. Сформульовано завдання.
- 3. У пункті 1 теоретично розкладено функції ln(x) в степеневий ряд.
- 4. У пункті 1.1. перевірено ряд на збіжність та знайдено радіус його збіжності.
- 5. У пункті 2. за допомогою калькулятора знайдено значення розкладуваної функції в деяких точках.
- 6. У пункті 3. наведно результат роботи написаної програми.
- 7. У пункті 4. визначено абсолютну, відносну похибки, а також значущі цифри рузультату та вірні значущі цифри результату.

Помічено, що при розрахунках деяких значень функції в конкретних точках ці значення розходять з тими, що видає калькулятор. Похибка викликана можливостями комп'ютера.