MATH20510 (S25): Analysis in Rn III (accelerated)

Lecturer: Zhimeng Ouyang Notes by: Aden Chen

Monday 24th March, 2025

Contents

1	Integration of Differential Forms		
	1.1 Integration on a Cell		1

1 Integration of Differential Forms

1.1 Integration on a Cell

Definition 1.1. A *k*-cell in \mathbb{R}^k is a set of the form $I^k := \{x \in \mathbb{R}^k : a_i \le x_i \le b_i, i = 1, \dots, k\}.$

Definition 1.2. Let $f \in C(I^k)$ be real valued and write $f_k := f$. Define for each i = k, ..., 1

$$f_{i-1}(x_1,\ldots,x_{k-1}) \coloneqq \int_{a_i}^{b_i} f_i(x_1,\ldots,x_i) \, \mathrm{d}x_i.$$

We define

$$\int_{I_k}^{f(x)} dx := \int_{a_1}^{b_1} \cdots \int_{a_k}^{b_k} f_k(x_1, \dots, x_k) dx_k \dots dx_1 = f_0.$$

Remark 1.3.

- Since f is continuous on a compact set, it is uniformly continuous. Thus all iterated integrals are well-defined and uniformly continuous on I^i ($1 \le i \le k$).
- The integral over a *k*-cell is independent of the order of integration, by the following result:

Theorem 1.4. If $f \in C(I^k)$, then L(f) = L'(f), where L(f) is the integral of f over I^k as defined above, and L'(f) is the integral of f over the same domain with a different order of integration.

Proof. If $h(x) = f_1(x_1) \dots h_k(x_k)$, where $h_i \in C([a_i, b_i])$, then

$$L(h) = \prod_{i=1}^{k} \int_{a_i}^{b_i} h_i(x_i) \, dx_i = L'(h).$$

If \mathcal{A} is the set of all finite sums of such functions h, it follows that L(g) = L'(g) for all $g \in \mathcal{A}$. The Stone-Weierstrass theorem shows that \mathcal{A} is dense in $C(I^k)$. Put $V = \prod_{i=1}^k (b_i - a_i)$. If $f \in C(I^k)$ and $\epsilon > 0$, there exists $g \in \mathcal{A}$ such that $\|f - g\| < \epsilon/V$, where $\|f\|$ is defined as $\max_{x \in I^k} |f(x)|$. Then $|L(f - g)| < \epsilon$, $L'(f - g) < \epsilon$, and since

$$L(f) - L'(f) = L(f - g) + L'(g - f),$$

we conclude that $|L(f) - L'(f)| < 2\epsilon$.

Definition 1.5. The **support** of function f on \mathbb{R}^k is the closure of the set of all points $x \in \mathbb{R}^k$ at which $f(x) \neq 0$. We write $f \in C_c(\mathbb{R}^k)$ if f is a continuous function with compact support, that is, if $K := \text{supp } f \subset I^k$ for some k-cell I^k . In this case we define

 $\int_{\mathbb{R}^k} f(x) \, \mathrm{d}x \coloneqq \int_{I^k} f(x) \, \mathrm{d}x.$

Theorem 1.6. Let T be a one-to-one C^1 mapping from an open set $E \in \mathbb{R}^k$ into \mathbb{R}^k such that $J_T(x) \neq 0$ for all $x \in T$. If f is a continuous function on \mathbb{R}^k whose support is compact and lies in T(E), then

$$\int_{\mathbb{R}^k} f(y) \, \mathrm{d}y = \int_{\mathbb{R}^k} f(T(x)) |J_T(x)| \, \mathrm{d}x.$$