

Facultad de Ingeniería y Ciencias Agropecuarias Carrera de Ingeniería en Sonido y Acústica IES900 - Acústica Ambiental

Período 2017-2

1. Identificación

Número de sesiones: 48

Número total de horas de aprendizaje: 120h = 48 presenciales + 72 h de

trabajo autónomo.

Créditos – malla actual: 4.5

Profesor:

Correo electrónico del docente (Udlanet): l.bravo@udlanet.ec
Coordinador:

Ing. Christiam Garzón

Campus: Granados
Pre-requisito: IES700
Paralelo: 1

Tipo de asignatura:

Optativa	
Obligatoria	X
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	X
Unidad 3: Titulación	

Campo de formación:

Campo de formación				
Fundamentos teóricos	Praxis profesional	Epistemología y metodología de la investigación	Integración de saberes, contextos y cultura	Comunicación y lenguajes
	X			

2. Descripción del curso

En esta asignatura se abordan temas relacionados con la propagación sonora en ambientes exteriores, evaluación y predicción de ruido ambiental; se estudian los efectos nocivos de la contaminación acústica en la salud; y se analizan modelos y acciones de gestión de ruido y paisaje sonoro.

3. Objetivo del curso

Evaluar un problema de contaminación acústica según procedimientos estandarizados nacionales e internacionales para valorar su impacto en la población y en el medio ambiente.

Proponer medidas que optimicen un ambiente sonoro a través de acciones de gestión y control de ruido para mitigar el impacto de la contaminación acústica en la población y en el medio ambiente.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo en la carrera
Evalúa los resultados obtenidos en el ensayo con capacidad de presentarlos en informes de acuerdo a la norma ambiental utilizada.	Evalúa el impacto ambiental causado por todo tipo de fuentes de ruido.	Inicial () Medio () Final (X)
Propone soluciones viables y factibles enfocadas a mitigar el impacto del ruido ambiental.	Plantea de una manera detallada la solución más adecuada para resolver creados por el ruido que afectan a la salud auditiva de trabajadores y a la sociedad en general.	Inicial () Medio () Final (X)
Propone proyectos desde un enfoque generalista y con capacidad de gestión en todas sus fases, ciñéndose a modelos de calidad vigentes.	Gestiona con autonomía la consultoría de proyectos de ingeniería acústica.	Inicial () Medio () Final (X)

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Reporte de progreso 1	35%	
Evaluación		%
 Normativa fuente fija 		20.0%
• Examen de cátedra 1:		15.0%
	Total	35.0%
Reporte de progreso 2	35%	
Evaluación		%
 Predicción ruido de tráfico 		20.0%
• Examen de cátedra 2:		15.0%
	Total	35.0%

Sílabo 2017-2 (Pre-grado)

	Evaluación final	30%	
	Evaluación		%
•	Proyecto integrador acústica ambiental		20.0 %
•	Examen evaluación final:		10.0%
		Total	30.0%

Asistencia: Es obligatorio tomar asistencia en cada sesión de clase.

Examen de recuperación: Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

6.1. Escenario de aprendizaje presencial.

Clases magistrales, en las que se desarrollan los fundamentos teóricos de la asignatura, a través de exposiciones, análisis de casos, evaluación de fuentes fijas y móviles de ruido.

6.2. Escenario de aprendizaje virtual.

Desarrollo de tareas (reportes, ejercicios, y presentaciones) Lecturas de documentación relacionada con la materia. Exámenes de cátedra

6.3. Escenario de aprendizaje autónomo.

Lectura de documentación científica. Desarrollo de informes de evaluación de fuentes de ruido Propuestas de medidas de gestión de ruido ambiental

7. Temas y subtemas del curso

RdA	Temas	Subtemas
1. Evalúa las fuentes de	1. Propagación de ruido en	1.1 Atenuación sonora
ruido ambiental, utilizando	exteriores	por divergencia
descriptores de ruido que		geométrica de
relacionen la generación	Sesiones: 10	distintos tipos de
sonora, y el efecto		fuentes
provocado en las personas.		1.2 Efectos de la
		temperatura, viento, y
		absorción del suelo en
		la atenuación de
		sonido
		1.3 Difracción y

Sílabo 2017-2 (Pre-grado)

udla-
4010-

Silabo 2017-2 (Pre-grado)		
		barreras acústicas naturales 1.4 Barreras acústicas
realización de ensayos	2. Evaluación y predicción de ruido ambiental Sesiones: 18	2.1 Instrumentación 2.2 Descriptores de ruido ambiental 2.3 Requisitos normativa ISO 1996-2 2.4 Normativa aplicable
3. Evalúa los resultados obtenidos en el ensayo con capacidad de presentarlos en informes de acuerdo a la norma ambiental utilizada.		2.5 Efectos del ruido.Valoración de molestia.2.6 Modelamiento de ruido2.7 Mapas estratégicos de ruido
presentes en ambientes interiores (industria, edificaciones) y exteriores, utilizando descriptores (indicadores) de ruido que relacionen la generación sonora, y el efecto provocado en las personas.	contaminación acústica Sesiones: 8	3.1 Ruido vehicular 3.2 Ruido aéreo 3.3 Ruido comunitario 3.4 Ruido industrial
viables y factibles enfocadas a mitigar el	4. Valoración económica de ruido ambiental Sesiones: 5	4.1 Costes asociados al ruido ambiental 4.2 Método de valoración contingente 4.3 Método de precios hedónicos

5. Propone proyectos desde	5. Gestión de ruido	5.1 Actores
un enfoque generalista y	ambiental y paisaje sonoro	involucrados
con capacidad de gestión		5.2Autoridades
en todas sus fases,	Sesiones: 7	competentes
ciñéndose a modelos de		5.3 Estrategias de
calidad vigentes.		información –
		sensibilización
		5.4 Estrategia de
		corrección /control
		5.5 Estrategia de
		monitoreo y
		modelamiento
		5.6 Estrategia de
		coordinación
		5.7 Paisaje sonoro

8. Planificación secuencial del curso

	Semana 1 - 3 (fechas)				
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
1	Propagación de ruido en exteriores	1.1 Atenuación sonora por divergencia geométrica de distintos tipos de fuentes (4) 1.2 Efectos de la temperatura, viento, y absorción del suelo en la atenuación de sonido (2) 1.3 Difracción y barreras acústicas naturales (2) 1.4 Barreras acústicas (2)	Clase Magistral, Mapas conceptuales, Ejercicios.	Lectura y análisis Norma ISO 9613-2 Resolución de ejercicios	

	Semana 4 - 9 (fechas)				
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
2 - 3	Evaluación	2.1	Clase Magistral,	Lecturas: papers	
	y predicción	Instrumentación	Mapas conceptuales.	(Annoyance)	
	de ruido	(2)	Medición de ruido de		
	ambiental	2.2 Descriptores	una fuente fija	normas ISO	
		de ruido		1996-2 y 15666	
		ambiental (2)	Salida de campo:		Evaluación
		2.3 Requisitos	Medición de ruido	Good Practice	cumplimiento legal:

normativa ISO 1996-2 (2)	ambiental	Guide for Strategic Noise	20% R1 Fecha de entrega:
1996-2 (2) 2.4 Normativa aplicable (2) 2.5 Efectos del ruido. (2) Valoración de molestia (1). 2.6 Modelamiento de ruido (4) 2.7 Mapas estratégicos de ruido (3)	Modelamiento de ruido de tráfico	Strategic Noise Mapping	Fecha de entrega: 03/04/2017 Cátedra 1: 18/04/2017

	Semana 10	- 12 (fechas)			
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
1	Fuentes de contaminación acústica	3.1 Ruido vehicular (3) 3.2 Ruido aéreo (3) 3.3 Ruido comunitario	Clase magistral. Mapas conceptuales		
		(1) 3.4 Ruido industrial (1)			

	Semana 12 - 13 (fechas)				
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
4	Valoración	4.1 Costes	Clase magistral.	Lectura crítica de papers: Noise	Predicción ruido de
	económica del ruido ambiental	asociados al ruido ambiental (1) 4.2 Método de	Mapa conceptual	Mapping	tráfico rodado: 20% Fecha: 15/05/2017
		valoración contingente (2) 4.3 Método de precios hedónicos (2)			Cátedra 2: 10% Fecha: 29/05/2017

	Semana 14 - 16				
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
5	Gestión de ruido ambiental	5.1 Actores involucrados (1) 5.2Autoridades competentes (1) 5.3 Estrategias de información –	Clase magistral Presentación de propuestas de acción		Proyecto integrador: 20% Fecha: 12/06/17

sensibilización (1) 5.4 Estrategia de corrección /control (1)		
5.5 Estrategia de monitoreo y modelamiento (1)		Examen final: 10%R3 03/07/2017
5.6 Estrategia de coordinación (1) 5.7 SoundScapes (1)		, ,

9. Normas y procedimientos para el aula

Se registrará la asistencia de todo estudiante que esté presente de inicio a fin de la clase; si un estudiante llega pasados 10 minutos de iniciada la clase o se retira antes de que finalice, se lo registrará como ausente.

El uso de cualquier dispositivo electrónico se aceptará en la clase solo para fines académicos. El uso para fines no académicos equivaldrá a una inasistencia.

Se aceptará la entrega de trabajos fuera de plazo únicamente cuando se compruebe que fue por causa de fuerza mayor.

10. Referencias bibliográficas

10.1. Principales.

- Murphy, E., King, E. (2014) *Environmental Noise Pollution: Noise Mapping, Public Health and Policy*. United Stated: Elsevier.
- Bartí, R. (2010) *Acústica Medioambiental. Vol I y II.* Barcelona: Editorial Club Universitario.
- Maekawa, Z., Rindel, J. H., Lord, P. (2011). *Environmental and Architectural Acoustics*. United States: CRC Press.

10.2. Referencias complementaria

- Vásquez, F., Cerda, A., Orrego, S. (2007) Valoración económica del ambiente. Thomson, 1ra. Edición.
- Nilsson, M., Bengtsson, J., Klaeboe, R. (2014) Environmental Methods for Transport Noise Reduction. CRC Press. 1ra Edición.
- Asociación Española de Normalización y Acreditación (2009). UNE-EN ISO 1996-2: 2009. Acústica. Descripción, medición y evaluación de ruido ambiental. Parte 2: Determinación de los niveles de ruido ambiental. Madrid. España.
- Asociación Española de Normalización y Acreditación (2010). UNE-EN ISO 11202 V2. Acústica. Ruido emitido por maquinaria y equipos. Determinación de los niveles

de presión acústica en el puesto de trabajo y en otras posiciones especificadas aplicando correcciones ambientales aproximadas. Madrid. España.

- Asociación Española de Normalización y Acreditación (2010). UNE-EN ISO 11204 V2. Acústica. Ruido emitido por maquinaria y equipos. Determinación de los niveles de presión acústica en el puesto de trabajo y en otras posiciones especificadas aplicando correcciones ambientales exactas. Madrid. España.
- International Organization for Standardization (2008). ISO/FDIS 9612. Acoustics. Determination of occupational noise exposure. Engineering method. Ginebra. Suiza.
- International Organization for Standardization (2003). ISO/TS 15666. Acoustics. Assessment of noise annoyance by means of social and socio-acoustic surveys. Ginebra. Suiza.
- Ministerio del Ambiente (2015) Límites permisibles de niveles de ruido ambiente para fuentes fijas y fuentes móviles, y para vibraciones. Texto Unificado de Legislación Ambiental Secundaria. Libro VI. Anexo V. Ministerio del Ambiente. Quito, Ecuador.
- Municipio del Distrito Metropolitano de Quito (2014) Normas Técnicas de Calidad Ambiental. Norma técnica para el control de la contaminación por ruido. Quito. Ecuador.

11. Perfil del docente

Estudiante de doctorado en Ingeniería Acústica por la Universidad Politécnica de Madrid, con investigación en valoración económica de ruido de tráfico utilizando redes neuronales artificiales. Maestría en administración de empresas con mención en Marketing por la Universidad de las Américas; Ingeniero Acústico por la Universidad Austral de Chile. Experiencia en el campo de ingeniería acústica, y gestión académica y docente. Líneas de investigación y /o publicaciones: Acústica Ambiental, Valoración económica del ruido ambiental.

Horario de atención al estudiante: Lunes, Martes y Jueves de 15:40–16:40 Horario de tutoría: Lunes, Martes: de 10:15 – 11:15, y Jueves de 09:10 – 10:10