PROCESS MEASUREMENT & MONITORING LABORATORY 2

การใช้งาน DAQ

วัตถุประสงค์

- 1. เพื่อทำความรู้จักกับ DAQ
- 2. สามารถเชื่อมต่อและนำไปประยุกต์ใช้งาน DAQ ได้อย่างถูกต้อง
- 3. ศึกษาการใช้งานโหมดต่างๆของ DAQ

อุปกรณ์ที่ใช้ในการทดลอง

- 1. โปรแกรม LabView 2014®
- 2. Notebook
- 3. DAQ
- 4. ตัวต้านทาน, LED, LDR
- 5. Multi-meter

ทฤษฎีที่เกี่ยวข้อง

DAQ

ระบบ DAQ (Data acquisition) เป็นการเก็บรวบรวมวิเคราะห์ข้อมูลจริงในงานวิจัยทดลองวิทยาศาสตร์และ
ทดสอบงานทางด้านวิศวกรรมเชิงคุณภาพ และประสิทธิผลผ่านคอมพิวเตอร์ โดยมีความแตกต่างจากงานระบบ
คอมพิวเตอร์ทั่วไปตรงที่มี Hardwareพิเศษเพื่อตรวจจับสัญญาณทางกายภาพทางวิทยาศาสตร์ อาทิเช่น อุณหภูมิ
ความดันอากาศ ก๊าซ อัตราการไหล เป็นต้น แปลงเข้าสู่ระบบคอมพิวเตอร์เป็นรูปแบบในลักษณะสัญญาณทางไฟฟ้า เข้าสู่
ระบบคอมพิวเตอร์ผ่าน Software ประยุกต์ที่พัฒนาตามคุณลักษณะของงานวิจัยทดลองนั้นๆ ในลักษณะเวลาจริง (
Real Time) ซึ่งในอดีตมักใช้เป็นระบบเฉพาะเจาะจงลงไปตามประเภท งาน ไม่สามารถใช้งานร่วมกับงานวิจัยอื่นได้
ทั้งยังมีราคาที่สูงมาก ทว่าด้วยความสามรถของคอมพิวเตอร์ส่วนบุคคลในปัจจุบัน ประกอบกับการใช้งานที่ง่ายขึ้นของ
Softwareระบบปฏิบัติการในลักษณะที่เป็นวินโดว์หรือการฟฟิก ทำให้การประยุกต์เพื่อนาคอมพิวเตอร์มาใช้ในงาน
ด้าน Data Acquisition นี้มีความเป็นไปได้อย่างไม่ ยุ่งยาก และให้ความคร่องตัวกับนักวิทยาศาสตร์ นักวิจัย
ทดลองและวิศวกร เพื่อพัฒนาระบบงานดังกล่าวได้เองจาก Hardware และ Software งานด้าน Data
Acquisition ที่มีให้เลือกมากมายหลากหลายผู้ผลิต และสามารถใช้งานร่วมกันได้โดยส่วนใหญ่ ทาให้ราคาระบบ
โดยรวมมีราคาไม่สูง และให้ประสิทธิผลในการพัฒนา ประเทศเชิงเทคโนโลยีได้ดีกว่า

รูปร่างลักษณะของ DAQ

Feature	NI USB-6008	NI USB-6009
AI resolution	12 bits differential, 11 bits single-ended	14 bits differential, 13 bits single-ended
Maximum AI sample rate, single channel*	10 kS/s	48 kS/s
Maximum AI sample rate, multiple channels (aggregate)*	10 kS/s	48 kS/s
DIO configuration	Open collector [†]	Each channel individually programmable as open collector or active drive [†]

^{*} System-dependent.

ตารางความแตกต่างระหว่าง NI USB-6008 และ NI USB-6009

Port ของ NI USB-6008 และ NI USB-6009

[†] This document uses NI-DAQmx naming conventions. Open-drain is called open collector and push-pull is called active drive.

การใช้งาน DAQ ในโหมดต่างๆ

1. Analog Input (AI)

เป็นการนำค่าใดค่าหนึ่งจากวงจรอิเล็กทรอนิกส์เพื่อนำค่านั้นมาใช้งานต่อในโปรแกรม LabView 2014®

Block Diagram

Front Panel

การเชื่อมต่อ DAQ กับ Protoboard

2. Analog Output (AO)

เป็นการนำค่าจากในโปรแกรม LabView 2014® นำมาแสดงผลที่ DAQ

Block Diagram

3. Digital Input (DI)

เป็นการนำสัญญาณดิจิตอลมาใช้ตัด-ต่อสวิตช์

Block Diagram

แสดงสถานะของ LED ที่สถานะ OFF โดยไม่ได้ใช้ Invert Line

แสดงสถานะของ LED ที่สถานะ ON โดยไม่ได้ใช้ Invert Line

แสดงสถานะของ LED ที่สถานะ ON โดยใช้ Invert Line

แสดงสถานะของ LED ที่สถานะ OFF โดยใช้ Invert Line

4. Digital Output (DO)

เป็นการเขียนโปรแกรมควบคุมผ่าน LabView 2014® โดยสั่งการให้ Output มีลักษณะเป็นสัญญาณดิจิตอล คือ สถานะLogic 1 กับสถานะLogic 0

Block Diagram

แสดงการเชื่อมต่อของการทดลองใช้งานโหมด Digital Output

Exercise

ออกแบบไม้บรรทัดอิเล็กทรอนิกส์ใช้ ตัวต้านทานปรับค่าได้โดยกำหนดให้

Hardware

• มี LED เตือนเมื่อค่าที่วัดสูงหรือต่ำเกินไปโดยกำหนดให้

Show (Low/High Alarm) ด้วย RED LED

Show (Normal Status) ด้วย GREEN LED

Low Alarm ค่าระยะที่วัดต่ำกว่า 10% ของช่วงการวัด

High Alarm ค่าระยะที่วัดต่ำกว่า 90% ของช่วงการวัด

สามารถเลือกแสดงระยะที่วัดในหน่วยมิลลิเมตร หรือนื้ว โดยใช้สวิตซ์ควบคุมภายนอก

Block Diagram

สวิตซ์ควบคุมภายนอก

สรุปผลการทดลอง

จากการทดลอง ทำให้ผู้ทดลองได้ลองฝึกการใช้โปรแกรม LabVIEW โดยใช้คู่กับ DAQ เพื่อรับ Output หรือจ่าย Input เพื่อสามารถนำไปประยุกต์ใช้งานกับงานจริงได้อย่างมีประสิทธิภาพได้