

tmRDKit: 200k RDKit-parseable SMILES strings of transition metal complexes from the CCDC

Jan H. Jensen

Department of Chemistry, University of Copenhagen

With Maria Rasmussen, Magnus Strandgaard, Julius Seumer, Angelo Frei (York), David Balcells

What

SMILES for TMCs with bond orders, formal charges, atom types, etc.

Why?

Synthetic accessibility for *de novo* TMC catalyst design

Test xyz2mol for TMCs

Baseline models (e.g. RF/ECFP4) for ML on TMCs

Options

CCSD has SMILES but many cannot be read by RDKit w/o sanitize=False (no aromaticity or implicit H's)

CCSD has coordinates (including H's) but xyz2mol difficult to apply to TMCs

xyz2mol needs the atomic valence and molecular charge No single atomic valence (oxidation state) for TMs

Fixing CCDC SMILES

Main problems

KekulizeException & AtomValenceException

Countless smaller problems (many not fixed)

SMILES from xyz2mol (DFT)

Magnus Strandgaard

Deep learning metal complex properties with natural quantum graphs†

2023

tmQMg

Hannes Kneiding, [©] ^a Ruslan Lukin, ^a Lucas Lang, [©] ^a Simen Reine, [©] ^a Thomas Bondo Pedersen, [©] ^a Riccardo De Bin [©] ^b and David Balcells [©] *

Determine ligand charges from DFT NBO calculations on the TMCs

DFT calc. \rightarrow bond & LP MOs \rightarrow assign to ligands \rightarrow ligand charge = # electrons - \sum nuclear charges

→ TM-ligand bonds

TM oxidation state = total charge + ∑ ligand charges

xyz2mol (ligand charges) → ligand SMILES + TM-L bonds → TMC SMILES

60,799 TMCs → 44,737 SMILES

Maria Rasmussen

SMILES from xyz2mol (Hückel)

Hückel MOs

Individual Hückel calcs on ligands

 \rightarrow Fill MOs up to threshold \rightarrow ligand charge = # electrons - \sum nuclear charges

-10 eV*

Connectivity from distances (a la OpenBabel)

*-9 eV if -10 eV gives positive ligand; -10.2 eV if -10 eV gives -2 ligand charge

60,799 TMCs → 59,886 SMILES

Hückel approach: most fail because of Boron

Comparing SMILES

Same TMC SMILES?

Resonance Mol Supplier

MetalDisconnector

Same ligand SMILES?

Same TM-ligand connectivity?

Magnus Strandgaard

We're still learning how to use ResonanceMolSupplier (RMS)

RMS on ligand

SMILES validation by comparing different approaches for Balcells 61k set

60,799 TMCs

Deep learning metal complex properties with natural quantum graphs†

Hannes Kneiding, [©] ^a Ruslan Lukin, ^a Lucas Lang, [©] ^a Simen Reine, [©] ^a Thomas Bondo Pedersen, [©] ^a Riccardo De Bin [©] ^b and David Balcells [©] *

Deep learning metal complex properties with natural quantum graphs†

Hannes Kneiding, Da Ruslan Lukin, Lucas Lang, Da Simen Reine, Da Thomas Bondo Pedersen, Da Riccardo De Bin Db and David Balcells D*

Angelo Frei (York)

tmRDKit

224,656 CSD entries with a single TM

Preliminary numbers

Summary and Outlook

200k TMC dataset

xyz2mol for TMC

Hacky CCDC SMILES fixer code

Everything to be released soon + preprint

Feel free to pitch in

Hooray for

ResonanceMolSupplier

(But it still freezes up for large systems)