

**ANALYTICS** 

Plot No. 28, 4th Floor, Suraj Trade Center, Opp. Cyber Towers, Hitech City, Hyderabad - 500081, Telangana. India Tel: 040 - 66828899, Mob:+91 7842828899, Email: info@analyticspath.com



## From a spreadsheet to a decision node



Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

| Example  | Attributes |     |     |     |      |        |      |     |         |       |          |
|----------|------------|-----|-----|-----|------|--------|------|-----|---------|-------|----------|
|          | Alt        | Bar | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | T          | F   | F   | T   | Some | \$\$\$ | F    | T   | French  | 0-10  | T        |
| $X_2$    | T          | F   | F   | T   | Full | \$     | F    | F   | Thai    | 30-60 | F        |
| $X_3$    | F          | T   | F   | F   | Some | \$     | F    | F   | Burger  | 0-10  | T        |
| $X_4$    | T          | F   | T   | T   | Full | \$     | F    | F   | Thai    | 10-30 | T        |
| $X_5$    | T          | F.  | T   | F   | Full | \$\$\$ | F    | T   | French  | >60   | F        |
| $X_6$    | F          | T   | F   | T   | Some | \$\$   | T    | T   | Italian | 0-10  | T        |
| $X_7$    | F          | T   | F   | F   | None | \$     | T    | F   | Burger  | 0-10  | F        |
| $X_8$    | F          | F   | F   | T   | Some | \$\$   | T    | T   | Thai    | 0-10  | T        |
| $X_9$    | F          | T   | T   | F   | Full | \$     | T    | F   | Burger  | >60   | F        |
| $X_{10}$ | T          | T   | T   | T   | Full | \$\$\$ | F    | T   | Italian | 10-30 | F        |
| $X_{11}$ | F          | F   | F   | F   | None | \$     | F    | F   | Thai    | 0-10  | F        |
| $X_{12}$ | T          | T   | T   | T   | Full | \$     | F    | F   | Burger  | 30-60 | T        |

Classification of examples is positive (T) or negative (F)

# How do we construct the tree? ANALYTICS PATH i.e., how to pick attribute (nodes)?

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"



Patrons? is a better choice—gives information about the classification



|    |        |        | Ì      |        | Personal |
|----|--------|--------|--------|--------|----------|
| ID | Age    | Income | Family | CCAvg  | Loan     |
| 1  | Young  | Low    | 4      | Low    | 0        |
| 2  | Old    | Low    | 3      | Low    | 0        |
| 3  | Middle | Low    | 1      | Low    | 0        |
| 4  | Middle | Medium | 1      | Low    | 0        |
| 5  | Middle | Low    | 4      | Low    | 0        |
| 6  | Middle | Low    | 4      | Low    | 0        |
| 10 | Middle | High   | 1      | High   | 1        |
| 17 | Middle | Medium | 4      | Medium | 1        |
| 19 | Old    | High   | 2      | High   | 1        |
| 30 | Middle | Medium | 1      | Medium | 1        |
| 39 | Old    | Medium | 3      | Medium | 1        |
| 43 | Young  | Medium | 4      | Low    | 1        |
| 48 | Middle | High   | 4      | Low    | 1        |





Plot No. 28, 4th Floor, Suraj Trade Center, **Opp. Cyber Towers,** Hitech City, Hyderabad - 500081, Telangana. India Tel: 040 - 66828899, Mob:+91 7842828899, Email: info@analyticspath.com





Plot No. 28, 4th Floor, Suraj Trade Center, Opp. Cyber Towers, Hitech City, Hyderabad - 500081, Telangana. India Tel: 040 - 66828899, Mob:+91 7842828899, Email: info@analyticspath.com







Plot No. 28, 4th Floor, Suraj Trade Center, **Opp. Cyber Towers,** Hitech City, Hyderabad - 500081, Telangana. India Tel: 040 - 66828899, Mob:+91 7842828899, Email: info@analyticspath.com



## **Axis Aligned Splits**



Plot No. 28, 4th Floor, Suraj Trade Center, **Opp. Cyber Towers,** Hitech City, Hyderabad - 500081, Telangana. India Tel: 040 - 66828899, Mob:+91 7842828899, Email: info@analyticspath.com



PATH





### **Entropy and Information gain**



 Information gain = Entropy of the system before split – Entropy of the system after split



## Using Information gain to Split



```
ends-vowel
[9m,5f]
/ the [..,..] notation represents the class
distribution of instances that reached a node

[3m,4f] [6m,1f]

ANALYTICS

PATH
```

As you can see, before the split we had 9 males and 5 females, i.e. P(m)=9/14 and P(f)=5/14. According to the definition of entropy:

```
Entropy_before = -(5/14)*log2(5/14) - (9/14)*log2(9/14) = 0.9403
```

Next we compare it with the entropy computed after considering the split by looking at two child branches. In the left branch of ends-vowel=1, we have:

```
Entropy_left = -(3/7)*log2(3/7) - (4/7)*log2(4/7) = 0.9852
```

and the right branch of ends-vowel=0, we have:

```
Entropy_right = -(6/7)*log2(6/7) - (1/7)*log2(1/7) = 0.5917
```

We combine the left/right entropies using the number of instances down each branch as weight factor (7 instances went left, and 7 instances went right), and get the final entropy after the split:

```
Entropy_after = 7/14*Entropy_left + 7/14*Entropy_right = 0.7885
```

Now by comparing the entropy before and after the split, we obtain a measure of **information gain**, or how much information we gained by doing the split using that particular feature:

```
Information_Gain = Entropy_before - Entropy_after = 0.1518
```

Plot No. 28, 4th Floor, Suraj Trade Center, **Opp. Cyber Towers,** Hitech City, Hyderabad - 500081, Telangana. India Tel: 040 - 66828899, Mob:+91 7842828899, Email: info@analyticspath.com



#### Gini Index

$$1 - \sum_{1}^{m} p_i^2$$

- It is computed on binary splits only.
- So, if we take ccAvg (low, medium and high), it considers all binary options
- {Low}, {medium, high} or {medium}, {low, high} etc.



### Advantages

- Explicability
- They are fast
- Robust
- Requires very little experimentation
- You may also build some intuitions about your customer base. E.g. "Are customers with different family sizes truly different?



Can we use a decision tree only for classification or can we use them for predicting a numeric attribute?

PATH



### Regression Trees

• It turns out that, we are collecting very similar records at each leaf. So, we can use median or mean of the records at a leaf as the predictor value for all the new records that obey similar conditions.

Such trees are called regression trees.

## Two most popular decision tree algorithms ANALYTICS PATH

- CART (Classification and Regression Trees)
  - Binary split
  - Gini index



- C5.0
  - Multi split
  - Info gain



#### Overfitting in Decision Trees

ANALYTICS

How do we understand and over come the demon of Overfitting in **Decision Trees**