<u>FIG. 1A</u>

Met 1	Leu	Ala	Arg	Ala 5	Leu	Leu	Leu	Cys	Ala 10	Val	Leu	Ala	Leu	Ser 15	His
Thr		Asn 0	Pro	Суѕ	Сув		His 5	Pro	Cys	Gln	Asn 3		Gly	Val	Cys
Met	Ser	Val 35	Gly	Phe	Asp	Gln	Tyr 40	Lys	Cys	Asp	Cys	Thr 45	Arg	Thr	Gly
Phe	Tyr 50	Gly	Glu	Asn	Cys	Ser 55	Thr	Pro	Glu	Phe	Leu 60	Thr	Arg	Ile	Lys
Leu 65	Phe	Leu	Lys	Pro	Thr 70	Pro	Asn	Thr	Val	His 75	Tyr	Ile	Leu	Thr	His 80
Phe	Lys	Gly	Phe	Trp 85	Asn	Val	Val	Asn	Asn 90	Ile	Pro	Phe	Leu	Arg 95	Asn
Ala	Ile	Met	Ser 100	Tyr	Val	Leu	Thr	Ser 105	Arg	Ser	His	Leu	Ile 110	Asp	Ser
Pro	Pro	Thr 115	Tyr	Asn	Ala	Asp	Туг 120	Gly	Tyr	Lys	Ser	Trp 125	Glu	Ala	Phe
Ser	Asn 130	Leu	Ser	Tyr	Tyr	Thr 135	Arg	Ala	Leu	Pro	Pro 140	Val	Pro	Asp	Asp
Cys 145	Pro	Thr	Pro	Leu	Gly 150	Val	Lys	Gly	Lys	Lys 155	Gln	Leu	Pro	Asp	Ser 160
Asn	Glu	Ile	Val	Glu 165	Lys	Leu	Leu	Leu	Arg 170	Arg	Lys	Phe	Ile	Pro 175	Asp
Pro	Gln	Gly	Ser 180	Asn	Met	Met	Phe	Ala 185	Phe	Phe	Ala	Gln	His 190	Phe	Thr
His	Gln	Phe 195	Phe	Lys	Thr	Asp	His 200	Lys	Arg	Gly	Pro	Ala 205	Phe	Thr	Asn
Gly	Leu 210	Gly	His	Gly	Val	Asp 215	Leu	Asn	His	Ile	Туг 220	Gly	Glu	Thr	Leu
Ala 225	Arg	Gln	Arg	Lys	Leu 230	Arg	Leu	Phe	Lys	Asp 235	Gly	Lys	Met	Lys	Tyr 240
Gln	Ile	Ile	Asp	Gly 245	Glu	Met	Tyr	Pro	Pro 250	Thr	Val	Lys	Asp	Thr 255	Gln
Ala	Glu	Met	11e 260	Tyr	Pro	Pro	Gln	Val 265	Pro	Glu	His	Leu	Arg 270	Phe	Ala
Val	Gly	Gln 275	Glu	Val	Phe	Gly	Leu 280	Val	Pro	Gly	Leu	Met 285	Met	Tyr	Ala
Thr	Ile 290	Trp	Leu	Arg	Glu	His 295	Asn	Arg	Val	Суз	Asp 300	Val	Leu	Lys	Gln

FIG. 1B

Glu His P 305	ro Glu Tı	p Gly As	p Glu	Gln	Leu	Phe 315	Gln	Thr	Ser	Arg	Leu 320
Ile Leu I	le Gly Gi 32		e Lys	Ile	Val 330	Ile	Glu	Asp	Tyr	Val 335	Gln
His Leu S	er Gly Ty 340	r His Ph	e Lys	Leu 345	Lys	Phe	Asp	Pro	Glu 350	Leu	Leu
Phe Asn L	ys Gln Pl 55	ne Gln Ty	r Gln 360	Asn	Arg	Ile	Ala	Ala 365	Glu	Phe	Asn
Thr Leu T 370	yr His Tı	p His Pr 37		Leu	Pro	Asp	Thr 380	Phe	Gln	Ile	His
Asp Gln L 385	ys Tyr As	n Tyr Gl 390	n Gln	Phe	Ile	Tyr 395	Asn	Asn	Ser	Ile	Leu 400
Leu Glu H	is Gly II		n Phe	Val	Glu 410	Ser	Phe	Thr	Arg	Gln 415	Ile
Ala Gly A	rg Val Al 420	a Gly Gl	y Arg	Asn 425	Val	Pro	Pro	Ala	Val 430	Gln	Lys
Val Ser G 4	ln Ala Se 35	er Ile As	p Gln 440	Ser	Arg	Gln	Met	Lys 445	Tyr	Gln	Ser
Phe Asn G 450	lu Tyr Ai	g Lys Ar 45		Met	Leu	Lys	Pro 460	Tyr	Glu	Ser	Phe
Glu Glu L 465	eu Thr G	y Glu Ly 470	s Glu	Met	Ser	Ala 475	Glu	Leu	Glu	Ala	Leu 480
Tyr Gly A	sp Ile As		l Glu	Leu	Tyr 490	Pro	Ala	Leu	Leu	Val 495	Glu
Lys Pro A	rg Pro As 500	sp Ala Il	e Phe	Gly 505	Glu	Thr	Met	Val	Glu 510	Val	Gly
Ala Pro P 5	he Ser Le 15	eu Lys Gl	y Leu 520	Met	Gly	Asn	Val	11e 525	Суз	Ser	Pro
Ala Tyr T 530	rp Lys P	o Ser Th		Gly	Gly	Glu	Val 540	Gly	Phe	Gln	Ile
Ile Asn T 545	hr Ala Se	er Ile Gl 550	n Ser	Leu	Ile	Cys 555	Asn	Asn	Val	Lys	Gly 560
Cys Pro P	he Thr Se		r Val	Pro	Asp 570	Pro	Glu	Leu	Ile	Lys 575	Thr
Val Thr I	le Asn A	la Ser Se	r Ser	Arg 585	Ser	Gly	Leu	Asp	Asp 590	Ile	Asn
Pro Thr V 5	al Leu Le 95	eu Lys Gl	u Arg 600		Thr	Glu	Leu	(SE	Q ID	NO:	10)

FIG. 2A

GTCCAGGAAC	TCCTCAGCAG	CGCCTCCTTC	AGCTCCACAG	CCAGACGCCC	TCAGACAGCA	60
AAGCCTACCC	CCGCGCCGCG	CCCTGCCCGC	CGCTGCGATG	CTCGCCCGCG	CCCTGCTGCT	120
GTGCGCGGTC	CTGGCGCTCA	GCCATACAGC	AAATCCTTGC	TGTTCCCACC	CATGTCAAAA	180
CCGAGGTGTA	TGTATGAGTG	TGGGATTTGA	CCAGTATAAG	TGCGATTGTA	CCCGGACAGG	240
ATTCTATGGA	GAAAACTGCT	CAACACCGGA	ATTTTTGACA	AGAATAAAAT	TATTTCTGAA	300
ACCCACTCCA	AACACAGTGC	ACTACATACT	TACCCACTTC	AAGGGATTTT	GGAACGTTGT	360
GAATAACATT	CCCTTCCTTC	GAAATGCAAT	TATGAGTTAT	GTGTTGACAT	CCAGATCACA	420
TTTGATTGAC	AGTCCACCAA	CTTACAATGC	TGACTATGGC	TACAAAAGCT	GGGAAGCCTT	480
CTCTAACCTC	TCCTATTATA	CTAGAGCCCT	TCCTCCTGTG	CCTGATGATT	GCCCGACTCC	540
CTTGGGTGTC	AAAGGTAAAA	AGCAGCTTCC	TGATTCAAAT	GAGATTGTGG	AAAAATTGCT	600
TCTAAGAAGA	AAGTTCATCC	CTGATCCCCA	GGGCTCAAAC	ATGATGTTTG	CATTCTTTGC	660
CCAGCACTTC	ACGCACCAGT	TTTTCAAGAC	AGATCATAAG	CGAGGGCCAG	CTTTCACCAA	720
CGGGCTGGGC	CATGGGGTGG	ACTTAAATCA	TATTTACGGT	GAAACTCTGG	CTAGACAGCG	780
TAAACTGCGC	CTTTTCAAGG	ATGGAAAAAT	GAAATATCAG	ATAATTGATG	GAGAGATGTA	840
TCCTCCCACA	GTCAAAGATA	CTCAGGCAGA	GATGATCTAC	CCTCCTCAAG	TCCCTGAGCA	900
TCTACGGTTT	GCTGTGGGGC	AGGAGGTCTT	TGGTCTGGTG	CCTGGTCTGA	TGATGTATGC	960
CACAATCTGG	CTGCGGGAAC	ACAACAGAGT	ATGTGATGTG	CTTAAACAGG	AGCATCCTGA	1020
ATGGGGTGAT	GAGCAGTTGT	TCCAGACAAG	CAGGCTAATA	CTGATAGGAG	AGACTATTAA	1080
GATTGTGATT	GAAGATTATG	TGCAACACTT	GAGTGGCTAT	CACTTCAAAC	TGAAATTTGA	1140
CCCAGAACTA	CTTTTCAACA	AACAATTCCA	GTACCAAAAT	CGTATTGCTG	CTGAATTTAA	1200
CACCCTCTAT	CACTGGCATC	CCCTTCTGCC	TGACACCTTT	CAAATTCATG	ACCAGAAATA	1260
CAACTATCAA	CAGTTTATCT	ACAACAACTC	TATATTGCTG	GAACATGGAA	TTACCCAGTT	1320
TGTTGAATCA	TTCACCAGGC	AAATTGCTGG	CAGGGTTGCT	GGTGGTAGGA	ATGTTCCACC	1380
CGCAGTACAG	AAAGTATCAC	AGGCTTCCAT	TGACCAGAGC	AGGCAGATGA	AATACCAGTC	1440
TTTTAATGAG	TACCGCAAAC	GCTTTATGCT	GAAGCCCTAT	GAATCATTTG	AAGAACTTAC	1500
AGGAGAAAAG	GAAATGTCTG	CAGAGTTGGA	AGCACTCTAT	GGTGACATCG	ATGCTGTGGA	1560
GCTGTATCCT	GCCCTTCTGG	TAGAAAAGCC	TCGGCCAGAT	GCCATCTTTG	GTGAAACCAT	1620
GGTAGAAGTT	GGAGCACCAT	TCTCCTTGAA	AGGACTTATG	GGTAATGTTA	TATGTTCTCC	1680
TGCCTACTGG	AAGCCAAGCA	CTTTTGGTGG	AGAAGTGGGT	TTTCAAATCA	TCAACACTGC	1740

FIG. 2B

CTCAATTCAG	TCTCTCATCT	GCAATAACGT	GAAGGGCTGT	CCCTTTACTT	CATTCAGTGT	1800
TCCAGATCCA	GAGCTCATTA	AAACAGTCAC	CATCAATGCA	AGTTCTTCCC	GCTCCGGACT	1860
AGATGATATC	AATCCCACAG	TACTACTAAA	AGAACGGTCG	ACTGAACTGT	AGAAGTCTAA	1920
TGATCATATT	TATTTATTTA	TATGAACCAT	GTCTATTAAT	TTAATTATTT	AATAATATTT	1980
АТАТТАААСТ	CCTTATGTTA	CTTAACATCT	TCTGTAACAG	AAGTCAGTAC	TCCTGTTGCG	2040
GAGAAAGGAG	TCATACTTGT	GAAGACTTTT	ATGTCACTAC	TCTAAAGATT	TTGCTGTTGC	2100
TGTTAAGTTT	GGAAAACAGT	TTTTATTCTG	TTTTATAAAC	CAGAGAGAAA	TGAGTTTTGA	2160
CGTCTTTTTA	CTTGAATTTC	AACTTATATT	ATAAGGACGA	AAGTAAAGAT	GTTTGAATAC	2220
TTAAACACTA	TCACAAGATG	CCAAAATGCT	GAAAGTTTTT	ACACTGTCGA	TGTTTCCAAT	2280
GCATCTTCCA	TGATGCATTA	GAAGTAACTA	ATGTTTGAAA	TTTTAAAGTA	CTTTTGGGTA	2340
TTTTTCTGTC	ATCAAACAAA	ACAGGTATCA	GTGCATTATT	AAATGAATAT	TTAAATTAGA	2400
CATTACCAGT	AATTTCATGT	CTACTTTTTA	AAATCAGCAA	TGAAACAATA	ATTTGAAATT	2460
TCTAAATTCA	TAGGGTAGAA	TCACCTGTAA	AAGCTTGTTT	GATTTCTTAA	AGTTATTAAA	2520
CTTGTACATA	TACCAAAAAG	AAGCTGTCTT	GGATTTAAAT	CTGTAAAATC	AGATGAAATT	2580
TTACTACAAT	TGCTTGTTAA	AATATTTTAT	AAGTGATGTT	CCTTTTTCAC	CAAGAGTATA	2640
AACCTTTTTA	GTGTGACTGT	TAAAACTTCC	TTTTAAATCA	AAATGCCAAA	TTTATTAAGG	2700
TGGTGGAGCC	ACTGCAGTGT	TATCTCAAAA	TAAGAATATC	CTGTTGAGAT	ATTCCAGAAT	2760
CTGTTTATAT	GGCTGGTAAC	ATGTAAAAAC	CCCATAACCC	CGCCAAAAGG	GGTCCTACCC	2820
TTGAACATAA	AGCAATAACC	AAAGGAGAAA	AGCCCAAATT	ATTGGTTCCA	AATTTAGGGT	2880
TTAAACTTTT	TGAAGCAAAC	TTTTTTTTAG	CCTTGTGCAC	TGCAGACCTG	GTACTCAGAT	2940
TTTGCTATGA	GGTTAATGAA	GTACCAAGCT	GTGCTTGAAT	AACGATATGT	TTTCTCAGAT	3000
TTTCTGTTGT	ACAGTTTAAT	TTAGCAGTCC	ATATCACATT	GCAAAAGTAG	CAATGACCTC	3060
ATAAAATACC	TCTTCAAAAT	GCTTAAATTC	ATTTCACACA	TTAATTTTAT	CTCAGTCTTG	3120
AAGCCAATTC	AGTAGGTGCA	TTGGAATCAA	GCCTGGCTAC	CTGCATGCTG	TTCCTTTTCT	3180
TTTCTTCTTT	TAGCCATTTT	GCTAAGAGAC	ACAGTCTTCT	CAAACACTTC	GTTTCTCCTA	3240
TTTTGTTTTA	CTAGTTTTAA	GATCAGAGTT	CACTTTCTTT	GGACTCTGCC	TATATTTTCT	3300
TACCTGAACT	TTTGCAAGTT	TTCAGGTAAA	CCTCAGCTCA	GGACTGCTAT	TTAGCTCCTC	3360
TTAAGAAGAT	тааааааааа	AAAAAAG (S	EQ ID NO: 1	1)		3387

<u>FIG. 1A</u>

Met 1	Leu	Ala	Arg	Ala 5	Leu	Leu	Leu	Cys	Ala 10	Val	Leu	Ala	Leu	Ser 15	His
Thr		Asn 0	Pro	Суѕ	Суѕ		His 5	Pro	Cys	Gln	Asn 3		Gly	Val	Cys
Met	Ser	Val 35	Gly	Phe	Asp	Gln	Tyr 40	Lys	Cys	Asp	Cys	Thr 45	Arg	Thr	Gly
Phe	Tyr 50	Gly	Glu	Asn	Cys	Ser 55	Thr	Pro	Glu	Phe	Leu 60	Thr	Arg	Ile	Lys
Leu 65	Phe	Leu	Lys	Pro	Thr 70	Pro	Asn	Thr	Val	His 75	Tyr	Ile	Leu	Thr	His 80
Phe	Lys	Gly	Phe	Trp 85	Asn	Val	Val	Asn 90	Asn 90	Ile	Pro	Phe	Leu	Arg 95	Asn
Ala	Ile	Met	Ser 100	Tyr	Val	Leu	Thr	Ser 105	Arg	Ser	His	Leu	Ile 110	Asp	Ser
Pro	Pro	Thr 115	Tyr	Asn	Ala	Asp	Tyr 120	Gly	Tyr	Lys	Ser	Trp 125	Glu	Ala	Phe
Ser	Asn 130	Leu	Ser	Tyr	Tyr	Thr 135	Arg	Ala	Leu	Pro	Pro 140	Val	Pro	Asp	Asp
Cys 145	Pro	Thr	Pro	Leu	Gly 150	Val	Lys	Gly	Lys	Lys 155	Gln	Leu	Pro	Asp	Ser 160
Asn	Glu	Ile	Val	Glu 165	Lys	Leu	Leu	Leu	Arg 170	Arg	Lys	Phe	Ile	Pro 175	Asp
Pro	Gln	Gly	Ser 180	Asn	Met	Met	Phe	Ala 185	Phe	Phe	Ala	Gln	His 190	Phe	Thr
His	Gln	Phe 195	Phe	Lys	Thr	Asp	His 200	Lys	Arg	Gly	Pro	Ala 205	Phe	Thr	Asn
Gly	Leu 210	Gly	His	Gly	Val	Asp 215	Leu	Asn	His	Ile	Tyr 220	Gly	Glu	Thr	Leu
Ala 225	Arg	Gln	Arg	Lys	Leu 230	Arg	Leu	Phe	Lys	Asp 235	Gly	Lys	Met	Lys	Туг 240
Gln	Ile	Ile	Asp	Gly 245	Glu	Met	Tyr	Pro	Pro 250	Thr	Val	Lys	Asp	Thr 255	Gln
Ala	Glu	Met	Ile 260	Tyr	Pro	Pro	Gln	Val 265	Pro	Glu	His	Leu	Arg 270	Phe	Ala
Val	Gly	Gln 275	Glu	Val	Phe	Gly	Leu 280	Val	Pro	Gly	Leu	Met 285	Met	Tyr	Ala
Thr	Ile 290	Trp	Leu	Arg	Glu	His 295	Asn	Arg	Val	Сув	Asp 300	Val	Leu	Lys	Gln

Annotated Sheets Showing Changes

<u>FIG. 1B</u>

Glu 305	His	Pro	Glu	Trp	Gly 310	Asp	Glu	Gln	Leu	Phe 315	Gln	Thr	Ser	Arg	Leu 320
Ile	Leu	Ile	Gly	Glu 325	Thr	Ile	Lys	Ile	Val 330	Ile	Glu	Asp	Tyr	Val 335	Gln
His	Leu	Ser	Gly 340	Tyr	His	Phe	Lys	Leu 345	Lys	Phe	Asp	Pro	Glu 350	Leu	Leu
Phe	Asn	Lys 355	Gln	Phe	Gln	Tyr	Gln 360	Asn	Arg	Ile	Ala	Ala 365	Glu	Phe	Asn
Thr	Leu 370	Tyr	His	Trp	His	Pro 375	Leu	Leu	Pro	Asp	Thr 380	Phe	Gln	Ile	His
Asp 385	Gln	Lys	Tyr	Asn	Tyr 390	Gln	Gln	Phe	Ile	Tyr 395	Asn	Asn	Ser	Ile	Leu 400
Leu	Glu	His	Gly	Ile 405	Thr	Gln	Phe	Val	Glu 410	Ser	Phe	Thr	Arg	Gln 415	Ile
Ala	Gly	Arg	Val 420	Ala	Gly	Gly	Arg	Asn 425	Val	Pro	Pro	Ala	Val 430	Gln	Lys
Val	Ser	Gln 435	Ala	Ser	Ile	Asp	Gln 440	Ser	Arg	Gln	Met	Lys 445	Tyr	Gln	Ser
Phe	Asn 450	Glu	Tyr	Arg	Lys	Arg 455	Phe	Met	Leu	Lys	Pro 460	Tyr	Glu	Ser	Phe
Glu 465	Glu	Leu	Thr	Gly	Glu 470	Lys	Glu	Met	Ser	Ala 475	Glu	Leu	Glu	Ala	Leu 480
Tyr	Gly	Asp	Ile	Asp 485	Ala	Val	Glu	Leu	Tyr 490	Pro	Ala	Leu	Leu	Val 495	Glu
Lys	Pro	Arg	Pro 500	Asp	Ala	Ile	Phe	Gly 505	Glu	Thr	Met	Val	Glu 510	Val	Gly
Ala	Pro	Phe 515	Ser	Leu	Lys	Gly	Leu 520	Met	Gly	Asn	Val	Ile 525	Сув	Ser	Pro
Ala	Tyr 530	Trp	Lys	Pro	Ser	Thr 535	Phe	Gly	Gly	Glu	Val 540	Gly	Phe	Gln	Ile
Ile 545	Asn	Thr	Ala	Ser	Ile 550	Gln	Ser	Leu	Ile	Cys 555	Asn	Asn	Val	Lys	Gly 560
Сув	Pro	Phe	Thr	Ser 565	Phe	Ser	Val	Pro	Asp 570	Pro	Glu	Leu	Ile	Lys 575	Thr
Val	Thr	Ile	Asn 580	Ala	Ser	Ser	Ser	Arg 585	Ser	Gly	Leu	Asp	Asp 590	Ile	Asn
Pro	Thr	Val 595	Leu	Leu	Lys	Glu	Arg 600	Ser	Thr	Glu	Leu	(SE	Q ID	NO:	10)

Annotated Sheets Showing Changes

<u>FIG. 2A</u>

GTCCAGGAAC	TCCTCAGCAG	CGCCTCCTTC	AGCTCCACAG	CCAGACGCCC	TCAGACAGCA	60
AAGCCTACCC	CCGCGCCGCG	CCCTGCCCGC	CGCTGCGATG	CTCGCCCGCG	CCCTGCTGCT	120
GTGCGCGGTC	CTGGCGCTCA	GCCATACAGC	AAATCCTTGC	TGTTCCCACC	CATGTCAAAA	180
CCGAGGTGTA	TGTATGAGTG	TGGGATTTGA	CCAGTATAAG	TGCGATTGTA	CCCGGACAGG	240
ATTCTATGGA	GAAAACTGCT	CAACACCGGA	ATTTTTGACA	AGAATAAAAT	TATTTCTGAA	300
ACCCACTCCA	AACACAGTGC	ACTACATACT	TACCCACTTC	AAGGGATTTT	GGAACGTTGT	360
GAATAACATT	CCCTTCCTTC	GAAATGCAAT	TATGAGTTAT	GTGTTGACAT	CCAGATCACA	420
TTTGATTGAC	AGTCCACCAA	CTTACAATGC	TGACTATGGC	TACAAAAGCT	GGGAAGCCTT	480
CTCTAACCTC	TCCTATTATA	CTAGAGCCCT	TCCTCCTGTG	CCTGATGATT	GCCCGACTCC	540
CTTGGGTGTC	AAAGGTAAAA	AGCAGCTTCC	TGATTCAAAT	GAGATTGTGG	AAAAATTGCT	600
TCTAAGAAGA	AAGTTCATCC	CTGATCCCCA	GGGCTCAAAC	ATGATGTTTG	CATTCTTTGC	660
CCAGCACTTC	ACGCACCAGT	TTTTCAAGAC	AGATCATAAG	CGAGGGCCAG	CTTTCACCAA	720
CGGGCTGGGC	CATGGGGTGG	ACTTAAATCA	TATTTACGGT	GAAACTCTGG	CTAGACAGCG	780
TAAACTGCGC	CTTTTCAAGG	ATGGAAAAAT	GAAATATCAG	ATAATTGATG	GAGAGATGTA	840
TCCTCCCACA	GTCAAAGATA	CTCAGGCAGA	GATGATCTAC	CCTCCTCAAG	TCCCTGAGCA	900
TCTACGGTTT	GCTGTGGGGC	AGGAGGTCTT	TGGTCTGGTG	CCTGGTCTGA	TGATGTATGC	960
CACAATCTGG	CTGCGGGAAC	ACAACAGAGT	ATGTGATGTG	CTTAAACAGG	AGCATCCTGA	1020
ATGGGGTGAT	GAGCAGTTGT	TCCAGACAAG	CAGGCTAATA	CTGATAGGAG	AGACTATTAA	1080
GATTGTGATT	GAAGATTATG	TGCAACACTT	GAGTGGCTAT	CACTTCAAAC	TGAAATTTGA	1140
CCCAGAACTA	CTTTTCAACA	AACAATTCCA	GTACCAAAAT	CGTATTGCTG	CTGAATTTAA	1200
CACCCTCTAT	CACTGGCATC	CCCTTCTGCC	TGACACCTTT	CAAATTCATG	ACCAGAAATA	1260
CAACTATCAA	CAGTTTATCT	ACAACAACTC	TATATTGCTG	GAACATGGAA	TTACCCAGTT	1320
TGTTGAATCA	TTCACCAGGC	AAATTGCTGG	CAGGGTTGCT	GGTGGTAGGA	ATGTTCCACC	1380
CGCAGTACAG	AAAGTATCAC	AGGCTTCCAT	TGACCAGAGC	AGGCAGATGA	AATACCAGTC	1440
TTTTAATGAG	TACCGCAAAC	GCTTTATGCT	GAAGCCCTAT	GAATCATTTG	AAGAACTTAC	1500
AGGAGAAAAG	GAAATGTCTG	CAGAGTTGGA	AGCACTCTAT	GGTGACATCG	ATGCTGTGGA	1560
GCTGTATCCT	GCCCTTCTGG	TAGAAAAGCC	TCGGCCAGAT	GCCATCTTTG	GTGAAACCAT	1620
GGTAGAAGTT	GGAGCACCAT	TCTCCTTGAA	AGGACTTATG	GGTAATGTTA	TATGTTCTCC	1680
TGCCTACTGG	AAGCCAAGCA	CTTTTGGTGG	AGAAGTGGGT	TTTCAAATCA	TCAACACTGC	1740

Annotated Sheets Showing Changes

FIG. 2B

CTCAATTCAG	TCTCTCATCT	GCAATAACGT	GAAGGCTGT	CCCTTTACTT	CATTCAGTGT	1800
TCCAGATCCA	GAGCTCATTA	AAACAGTCAC	CATCAATGCA	AGTTCTTCCC	GCTCCGGACT	1860
AGATGATATC	AATCCCACAG	TACTACTAAA	AGAACGGTCG	ACTGAACTGT	AGAAGTCTAA	1920
TGATCATATT	TATTTATTTA	TATGAACCAT	GTCTATTAAT	TTAATTATTT	AATAATATTT	1980
ATATTAAACT	CCTTATGTTA	CTTAACATCT	TCTGTAACAG	AAGTCAGTAC	TCCTGTTGCG	2040
GAGAAAGGAG	TCATACTTGT	GAAGACTTTT	ATGTCACTAC	TCTAAAGATT	TTGCTGTTGC	2100
TGTTAAGTTT	GGAAAACAGT	TTTTATTCTG	TTTTATAAAC	CAGAGAGAAA	${\tt TGAGTTTTGA}$	2160
CGTCTTTTTA	CTTGAATTTC	AACTTATATT	ATAAGGACGA	AAGTAAAGAT	GTTTGAATAC	2220
ттааасаста	TCACAAGATG	CCAAAATGCT	GAAAGTTTTT	ACACTGTCGA	TGTTTCCAAT	2280
GCATCTTCCA	TGATGCATTA	GAAGTAACTA	ATGTTTGAAA	TTTTAAAGTA	CTTTTGGGTA	2340
TTTTTCTGTC	ATCAAACAAA	ACAGGTATCA	GTGCATTATT	AAATGAATAT	TTAAATTAGA	2400
CATTACCAGT	AATTTCATGT	CTACTTTTTA	AAATCAGCAA	TGAAACAATA	ATTTGAAATT	2460
TCTAAATTCA	TAGGGTAGAA	TCACCTGTAA	AAGCTTGTTT	GATTTCTTAA	AGTTATTAAA	2520
CTTGTACATA	TACCAAAAAG	AAGCTGTCTT	GGATTTAAAT	CTGTAAAATC	AGATGAAATT	2580
TTACTACAAT	TGCTTGTTAA	AATATTTTAT	AAGTGATGTT	CCTTTTTCAC	CAAGAGTATA	2640
AACCTTTTTA	GTGTGACTGT	TAAAACTTCC	TTTTAAATCA	AAATGCCAAA	TTTATTAAGG	2700
TGGTGGAGCC	ACTGCAGTGT	TATCTCAAAA	TAAGAATATC	CTGTTGAGAT	ATTCCAGAAT	2760
CTGTTTATAT	GGCTGGTAAC	ATGTAAAAAC	CCCATAACCC	CGCCAAAAGG	GGTCCTACCC	2820
TTGAACATAA	AGCAATAACC	AAAGGAGAAA	AGCCCAAATT	ATTGGTTCCA	AATTTAGGGT	2880
TTAAACTTTT	TGAAGCAAAC	TTTTTTTTAG	CCTTGTGCAC	TGCAGACCTG	GTACTCAGAT	2940
TTTGCTATGA	GGTTAATGAA	GTACCAAGCT	GTGCTTGAAT	AACGATATGT	TTTCTCAGAT	3000
TTTCTGTTGT	ACAGTTTAAT	TTAGCAGTCC	ATATCACATT	GCAAAAGTAG	CAATGACCTC	3060
ATAAAATACC	TCTTCAAAAT	GCTTAAATTC	ATTTCACACA	TTAATTTTAT	CTCAGTCTTG	3120
AAGCCAATTC	AGTAGGTGCA	TTGGAATCAA	GCCTGGCTAC	CTGCATGCTG	TTCCTTTTCT	3180
TTTCTTCTTT	TAGCCATTTT	GCTAAGAGAC	ACAGTCTTCT	CAAACACTTC	GTTTCTCCTA	3240
TTTTGTTTTA	CTAGTTTTAA	GATCAGAGTT	CACTTTCTTT	GGACTCTGCC	TATATTTTCT	3300
TACCTGAACT	TTTGCAAGTT	TTCAGGTAAA	CCTCAGCTCA	GGACTGCTAT	TTAGCTCCTC	3360
TTAAGAAGAT	ТАААААААА	AAAAAAG (S	EQ ID NO: 1	1)		3387