```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [2]: #A1, A4, A5, A6, A8, A9, A11, A12 are categorical attributes. #A2, A3, A7, A10, A13, A14 are numerical attributes. #A10, A13, A14 are integers. #A15 is class attribute: 1 (or '+' at df org) means approval of the cr edit, and 0 (or '-') means refusal. #below is the table as it is published at UCI ML Repository: attribute names and values are anonymous, and, #values for categorical attributes are in integer format, which is in line with the original hierarchy among them #in such a way that the bigger the number the bigger the likelihood of approval, within each attribute. df = pd.read excel("australian.xlsx") df dum = pd.get dummies(df) #and this is the table as it is at its source: attribute names and val ues are anonymous, and, # values for categorical attributes are in string format. df org = pd.read excel("australian org.xlsx") df org dum = pd.get dummies(df org) df_org_dum_model = df org dum.iloc[:,:-1]

In [3]: | df.head()

Out[3]:

	A1	A2	А3	A 4	A 5	A6	A 7	A8	A9	A10	A11	A12	A13	A14	A15
0	1	22.08	11.46	2	4	4	1.585	0	0	0	1	2	100	1213	0
1	0	22.67	7.00	2	8	4	0.165	0	0	0	0	2	160	1	0
2	0	29.58	1.75	1	4	4	1.250	0	0	0	1	2	280	1	0
3	0	21.67	11.50	1	5	3	0.000	1	1	11	1	2	0	1	1
4	1	20.17	8.17	2	6	4	1.960	1	1	14	0	2	60	159	1

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 690 entries, 0 to 689
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	A1	690 non-null	int64
1	A2	690 non-null	float64
2	A3	690 non-null	float64
3	A4	690 non-null	int64
4	A5	690 non-null	int64
5	A6	690 non-null	int64
6	A7	690 non-null	float64
7	A8	690 non-null	int64
8	A9	690 non-null	int64
9	A10	690 non-null	int64
10	A11	690 non-null	int64
11	A12	690 non-null	int64
12	A13	690 non-null	int64
13	A14	690 non-null	int64
14	A15	690 non-null	int64
.11	61	1 (1 (2) - 1 (1 (1 2	

dtypes: float64(3), int64(12)

memory usage: 81.0 KB

In [5]: df.describe()

Out[5]:

	A1	A2	A3	A 4	A 5	A6	A7	
count	690.000000	690.000000	690.000000	690.000000	690.000000	690.000000	690.000000	6
mean	0.678261	31.568203	4.758725	1.766667	7.372464	4.692754	2.223406	
std	0.467482	11.853273	4.978163	0.430063	3.683265	1.992316	3.346513	
min	0.000000	13.750000	0.000000	1.000000	1.000000	1.000000	0.000000	
25%	0.000000	22.670000	1.000000	2.000000	4.000000	4.000000	0.165000	
50%	1.000000	28.625000	2.750000	2.000000	8.000000	4.000000	1.000000	
75%	1.000000	37.707500	7.207500	2.000000	10.000000	5.000000	2.625000	
max	1.000000	80.250000	28.000000	3.000000	14.000000	9.000000	28.500000	

```
In [ ]: plt.figure(figsize=(24,24))
    sns.pairplot(df)
    plt.show()
```

```
In [ ]: | plt.figure(figsize=(24,24))
        sns.heatmap(df org dum.corr(),linewidths=0.5, annot=True)
        plt.show()
In [ ]: from sklearn.model_selection import train_test_split, KFold, cross_val
        score
        from sklearn.metrics import accuracy score, confusion matrix, classifi
        cation report, fbeta score
        from sklearn.model selection import GridSearchCV
        X = df.drop('A15', 1).values
        y = df["A15"].values
        X train, X test, y train, y test = train test split(X, y, test size =
        0.3)
        #Naive Bayes methods:
        from sklearn.naive bayes import GaussianNB
        from sklearn.naive bayes import MultinomialNB
        from sklearn.naive_bayes import BernoulliNB
        #Support Vector Machines (SVMs):
        from sklearn.svm import LinearSVC
        from sklearn.svm import SVC
        from sklearn.svm import NuSVC
        #Nearest Neighbors Classification (NNC):
        from sklearn.neighbors import KNeighborsClassifier
        #Others:
        from sklearn.linear model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.discriminant analysis import LinearDiscriminantAnalysis
        models = [
        ('GSB' , GaussianNB()),
        ('MNB' , MultinomialNB()),
               , BernoulliNB()),
        ('BNB'
        ('LSVM' , LinearSVC()),
        ('SVM' , SVC()),
        ('NSVM', NuSVC()),
        ('KNNC', KNeighborsClassifier()),
        ('LR', LogisticRegression()),
        ('DTC', DecisionTreeClassifier()),
        ('RFC', RandomForestClassifier()),
        ('LDA', LinearDiscriminantAnalysis())
        ]
```

```
In [ ]: fig = plt.figure(figsize=(11,5))
    fig.suptitle('Comparison of Cross Validation Scores for df')
    ax = fig.add_subplot()
    plt.boxplot(results)
    ax.set_xticklabels(names)
    plt.show()
```

```
In [ ]: | modelsx = [
        ('GSB' , GaussianNB()),
        ('MNB' , MultinomialNB()),
               , BernoulliNB()),
        ('BNB'
        ('LSVM' , LinearSVC()),
        ('SVM' , SVC()),
        ('NSVM', NuSVC()),
        ('KNNC', KNeighborsClassifier()),
        ('LR', LogisticRegression()),
        ('DTC', DecisionTreeClassifier()),
        ('RFC', RandomForestClassifier()),
        ('LDA', LinearDiscriminantAnalysis())
        Xx = df org dum model.drop('A15 +', 1).values
        yx = df org dum model["A15 +"].values
        Xx train, Xx test, yx train, yx test = train test split(Xx, yx, test s
        ize = 0.3)
        resultsx = []
        namesx = []
        scoringx = 'recall'
        for namex, modelx in modelsx:
                kfoldx = KFold(n splits=20)
                cv resultsx = cross val score(modelx, Xx train, yx train, cv=k
        foldx, scoring=scoringx)
                resultsx.append(cv resultsx)
                namesx.append(namex)
                nmsx = "%s: %f (%f)" % (namex, cv resultsx.mean(), cv resultsx
        .std())
                print(nmsx)
```

```
In [ ]: fig = plt.figure(figsize=(11,5))
    fig.suptitle('Comparison of Cross Validation Scores for df_org_dum_mod
    el')
    ax = fig.add_subplot()
    plt.boxplot(resultsx)
    ax.set_xticklabels(namesx)
    plt.show()
```

```
blind df = df org dum model.iloc[:, :-1]
        fn = blind df.columns
        clf = DecisionTreeClassifier()
        clf = clf.fit(Xx train, yx train)
        yx pred = clf.predict(Xx test)
        fig, axes = plt.subplots(nrows = 1,ncols = 1,figsize = (24,24), dpi=30
        0)
        tree.plot_tree(clf,
                   feature names = fn,
                   class names=['0','1'],
                   filled = True,
                   rotate = True,
                   proportion = True,
                   precision=1);
        fig.savefig('CreditApproval.png')
In [ ]: import statsmodels.api as sm
        yxx = df org dum model.iloc[:,-1]
        Xxx = df org dum model.iloc[:,:-1]
        logit model = sm.Logit(yxx,Xxx)
        resultxx = logit model.fit()
        print(resultxx.summary())
In [ ]: import statsmodels.api as sm
        yxxx = df.iloc[:,-1]
        Xxxx = df.iloc[:,:-1]
        logit model = sm.Logit(yxxx, Xxxx)
        resultxxx = logit model.fit()
        print(resultxxx.summary())
```

In []: from sklearn import tree

from sklearn.tree import plot tree