#### **Basic Logic Gates**

**Object:** To investigate the properties of the various types of logic gates, and construct some useful combinations of these gates.

Parts: NAND gate, NOR gate, inverter, AND gate, OR gate and XOR gate

#### 1.OR gate function (A + B)

Set the switches as indicated in the truth table of Figure 1 and record the light conditions (on = 1), (off = 0).

| SW1 | SW2 | LA |
|-----|-----|----|
| 0   | 0   | 0  |
| 0   | 1   | 1  |
| 1   | 0   | 1  |
| 1   | 1   | 1  |



#### 2.Two-level 3-input OR gate

|     |     | . • |    |    |
|-----|-----|-----|----|----|
| SW1 | SW2 | SW3 | LA | LB |
| 0   | 0   | 0   | 0  | 0  |
| 0   | 0   | 1   | 0  | 1  |
| 0   | 1   | 0   | 1  | 1  |
| 0   | 1   | 1   | 1  | 1  |
| 1   | 0   | 0   | 1  | 1  |
| 1   | 0   | 1   | 1  | 1  |
| 1   | 1   | 0   | 1  | 1  |
| 1   | 1   | 1   | 1  | 1  |

Make the connections as shown in the figure below. Set the switches as shown in the truth table of the figure and record the light conditions.



# 3.Three-level 4-input OR gate

| SW1 | SW2 | SW3 | SW4 | LA | LB | LC |
|-----|-----|-----|-----|----|----|----|
| 0   | 0   | 0   | 0   |    |    |    |
| 0   | 0   | 0   | 1   |    |    |    |
| 0   | 0   | 1   | 0   |    |    |    |
| 0   | 0   | 1   | 1   |    |    |    |
| 0   | 1   | 0   | 0   |    |    |    |
| 0   | 1   | 0   | 1   |    |    |    |
| 0   | 1   | 1   | 0   |    |    |    |
| 0   | 1   | 1   | 1   |    |    |    |
| 1   | 0   | 0   | 0   |    |    |    |
| 1   | 0   | 0   | 1   |    |    |    |
| 1   | 0   | 1   | 0   |    |    |    |
| 1   | 0   | 1   | 1   |    |    |    |
| 1   | 1   | 0   | 0   |    |    |    |
| 1   | 1   | 0   | 1   |    |    |    |
| 1   | 1   | 1   | 0   |    |    |    |
| 1   | 1   | 1   | 1   |    |    |    |



# 4.AND gate function (AB)

| SW1 | SW2 | SW3 | SW4 | LA | LB | LC |
|-----|-----|-----|-----|----|----|----|
| 0   | 0   | 0   | 0   | 0  | 0  | 0  |
| 0   | 0   | 0   | 1   | 0  | 0  | 1  |
| 0   | 0   | 1   | 0   | 0  | 1  | 1  |
| 0   | 0   | 1   | 1   | 0  | 1  | 1  |
| 0   | 1   | 0   | 0   | 1  | 1  | 1  |
| 0   | 1   | 0   | 1   | 1  | 1  | 1  |
| 0   | 1   | 1   | 0   | 1  | 1  | 1  |
| 0   | 1   | 1   | 1   | 1  | 1  | 1  |
| 1   | 0   | 0   | 0   | 1  | 1  | 1  |
| 1   | 0   | 0   | 1   | 1  | 1  | 1  |
| 1   | 0   | 1   | 0   | 1  | 1  | 1  |
| 1   | 0   | 1   | 1   | 1  | 1  | 1  |
| 1   | 1   | 0   | 0   | 1  | 1  | 1  |
| 1   | 1   | 0   | 1   | 1  | 1  | 1  |
| 1   | 1   | 1   | 0   | 1  | 1  | 1  |
| 1   | 1   | 1   | 1   | 1  | 1  | 1  |



## 5. NOR gate function (A + B)!

| SW1 | SW2 | LA |
|-----|-----|----|
| 0   | 0   | 1  |
| 0   | 1   | 0  |
| 1   | 0   | 0  |
| 1   | 1   | 0  |



### 6.NAND gate function (AB)!

| SW1 | SW2 | LA |
|-----|-----|----|
| 0   | 0   | 1  |
| 0   | 1   | 1  |
| 1   | 0   | 1  |
| 1   | 1   | 0  |



| SW1 | SW2 | SW3 | SW4 | LA | LB | LC |
|-----|-----|-----|-----|----|----|----|
| 0   | 0   | 0   | 0   | 1  | 1  | 0  |
| 0   | 0   | 0   | 1   | 1  | 1  | 0  |
| 0   | 0   | 1   | 0   | 1  | 1  | 0  |
| 0   | 0   | 1   | 1   | 1  | 0  | 0  |
| 0   | 1   | 0   | 0   | 1  | 1  | 0  |
| 0   | 1   | 0   | 1   | 1  | 1  | 0  |
| 0   | 1   | 1   | 0   | 1  | 1  | 0  |
| 0   | 1   | 1   | 1   | 1  | 0  | 0  |
| 1   | 0   | 0   | 0   | 1  | 1  | 0  |
| 1   | 0   | 0   | 1   | 1  | 1  | 0  |
| 1   | 0   | 1   | 0   | 1  | 1  | 0  |
| 1   | 0   | 1   | 1   | 1  | 0  | 0  |
| 1   | 1   | 0   | 0   | 0  | 1  | 0  |
| 1   | 1   | 0   | 1   | 0  | 1  | 0  |
| 1   | 1   | 1   | 0   | 0  | 1  | 0  |
| 1   | 1   | 1   | 1   | 0  | 0  | 1  |

# 7. The negated-input OR and the negated-input AND concept



#### 8. The XOR function

| SW1 | SW2 | LA |
|-----|-----|----|
| 0   | 0   | 0  |
| 0   | 1   | 1  |
| 1   | 0   | 1  |
| 1   | 1   | 0  |



# 9. A mystery circuit



| B<br>SW2 | A<br>SW1 | D0<br>LA | D1<br>LB | D2<br>LC | D3<br>LD |
|----------|----------|----------|----------|----------|----------|
| 0        | 0        | 1        | 0        | 0        | 0        |
| 0        | 1        | 0        | 1        | 0        | 0        |
| 1        | 0        | 0        | 0        | 1        | 0        |
| 1        | 1        | 0        | 0        | 0        | 1        |

