Usi non lineari dell'OpAmp

Francesco Sacco, Lorenzo Cavuoti

Novembre 2015

1)

a. Abbiamo collegato il circuito e alimentato a $\pm 15V$, i componenti, misurati con il multimetro digitale, risultano:

- $C_T = 0.95 \pm 0.04 nF$
- $C_F = 1.02 \pm 0.04 nF$
- $R_1 = 99.7 \pm 0.8k\Omega$
- $R_2 = 99.3 \pm 0.8\Omega$
- $C_1 = 21.0 \pm 0.9 nF$

Il potenziomentro è stato regolato in modo da produrre una tensione $V_P=184.3\pm0.9mV$ misurata con il multimetro digitale

b. Per spiegare il circuito dell'amplificatore di carica è meglio analizzarlo con i suoi due sotto-circuiti separatamente, e poi vedere come questi funzionano assieme

Il primo sottocircuito è quello che è collegato al voltaggio in ingresso V_S , esso si può vedere nella figura , risolvere il circuito equivale a risolvere questo sistema di 3 equazioni

$$\begin{cases} V_S - V_- = \frac{Q_T}{C_T} \\ V_- - V_{sh} = I_1 R_1 \\ V_- - V_{sh} = \frac{Q_F}{C_F} \end{cases}$$
 (1)

Risolvendo il sistema usando $I_T = I_1 + I_F$ e facendo il limite in cui A è molto grande si ottiene:

$$\frac{dV_{-}}{dt} \approx -\frac{V_{-}}{C_{F}R_{1}} \qquad A\frac{dV_{-}}{dt} \approx -A\frac{V_{-}}{C_{F}R_{1}} \qquad \frac{dV_{sh}}{dt} \approx -\frac{V_{sh}}{C_{F}R_{1}}$$

In particolare V_{sh} è data dall'equazione:

$$V_{sh} = \pm V_S e^{-t/C_F R_1} \tag{2}$$

Figura 1: sotto-circuito 1

L'OpAmp è in grado di amplificare il segnale correttamente solo se V_{S-} $A(V_{+}-V_{-}) < V_{S+}$, se per caso $A(V_{+}-V_{-}) > V_{S+}$, l'amplificatore porta V_{out} al massimo voltaggio che può dare, cioè V_{S+} , e se $A(V_+ - V_-) < V_{S-} V_{out} = V_{S-}$.

Essendo A molto grande basta una differenza di potenziale molto piccola ai capi dei terminali + e - per mandare l'OpAmp a V_{S+} e V_{S-} , questo viene usato per dire in modo binario se un voltaggio è maggiore di un'altro voltaggio, infatti se $A|V_+ - V_-| >> 1$ si ha che $V_{out} = V_{S+}$ se $V_+ > V_-$ e $V_{out} = V_{S-}$ se $V_+ < V_-$.

Adesso che sappiamo ciò possiamo spiegare il secondo sottocircuito figura, il terminale positivo è collegato a V_{sh} attraverso una resistenza di 100Ω , quindi visto che la corrente che passa per il terminale positivo è circa zero possiamo assumere che la differenza di potenziale ai capi sia trascurabile.

Chiamerò V_P^1 il potenziale che entra nel terminale negativo dell'OpAmp, esso è possibile regolarlo grazie al potenziometro che funge da partitore di tensione. Essendo (quasi sempre) $A|V_{sh}-V_P| >> 1$ si ha che

$$\begin{cases} V_{discr} = V_C \text{ se } V_{sh} > V_P \\ V_{discr} = V_E \text{ se } V_{sh} < V_E \end{cases}$$
 (3)

Unendo i due sottocircuiti come in figura si uniscono i risultati dei paragrafi precedenti:

$$V_{sh} = \pm V_S e^{-t/C_F R_1} \quad e \quad \begin{cases} V_{discr} = V_C \text{ se } V_{sh} > V_P \\ V_{discr} = V_E \text{ se } V_{sh} < V_E \end{cases}$$
 (4)

Se si vuole ricavare per quanto tempo $V_{discr} = V_C$ basta risolvere rispetto al tempo $V_{sh} > V_P$, quindi

$$V_S e^{-t/C_F R_1} > V_P \qquad -\frac{t}{C_R R_1} > \ln\left(\frac{V_P}{V_S}\right) \qquad t < C_R R_1 \ln\left(\frac{V_S}{V_P}\right) \qquad (5)$$
¹P sta per potenziometro

Figura 2: secondo sotto-circuito

Figura 3: Circuito completo

c. Per vedere la relazione tra durata del segnale in uscita e ampiezza del segnale in ingresso abbiamo tenuto $V_P=184.3\pm0.9mV$ costante e abbiamo fatto variare l'ampiezza V_S , i dati raccolti sono mostrati in tabella . E' stato fatto anche un fit dei dati con la funzione $t=a\log(bx)$ lasciando a e b come parametri di fit (figura), per il fit non si sono considerati i punti in cui la durata del segnale in uscita è nulla, ovvero non è presente un segnale, in quanto questi punti vanno a formare una retta t=0 e non ha neanche senso parlare di durata del segnale di uscita. Il fit è stato fatto con absolute-sigma=False in quanto gli errori non sono statistici, i parametri risultano $a=102.7\pm0.4\mu s$ $b=8.02\pm0.09V^{-1}$ con un $\chi^2_{ridotto}=0.036$, il chi quadro risulta basso probabilmente a causa della sovrastima degli errori di misura del voltaggio con l'oscilloscopio. Confrontando i parametri ottenuti con la teoria

Facendo variare la tensione fornita dal potenziometro V_P abbiamo misurato la minima tensione V_S richiesta per avere un segnale V_{discr} , le misure sono riportate in . Abbiamo anche eseguito un fit dei dati ottenuti con la funzione f=ax+b usando absolute-sigma=False, i parametri ottimali risultano $a=1.06\pm0.01$ $b=0.012\pm0.004V$ con un $\chi^2_{ridotto}=0.09$, il chi quadro risulta basso probabilmente a causa della sovrastima degli errori di misura del voltaggio con l'oscilloscopio.

2) Abbiamo montato il circuito il figura

Figura 4: Fit della durata del segnale in uscita in funzione dell'ampiezza ${\cal V}_S$

Figura 5: Fit della tensione minima per avere un segnale V_{Smin} in funzione di V_P

$V_S[V]$	$t[\mu s]$
$63.2 \pm 0.3 \text{m}$	0
0.200 ± 0.001	0
0.412 ± 0.002	$(1.23 \pm 0.01) \times 10^2$
1.34 ± 0.007	$(2.44 \pm 0.01) \times 10^2$
3.32 ± 0.02	$(3.36 \pm 0.02) \times 10^2$
9.52 ± 0.05	$(4.46 \pm 0.02) \times 10^2$

Tabella 1: Durata del segnale in uscita in funzione dell'ampiezza di ${\cal V}_S$

$V_P[V]$	$V_{Smin}[V]$
$184.3 \pm 0.9 \mathrm{m}$	$208 \pm 1 \mathrm{m}$
0.308 ± 0.002	0.338 ± 0.002
0.49 ± 0.003	0.54 ± 0.003
0.937 ± 0.005	1.02 ± 0.005
1.823 ± 0.009	1.92 ± 0.01

Tabella 2: Tensione minima per avere un segnale V_{Smin} in funzione di V_P

a.