第一部分 专项同步练习

第一章 行列式

一、单项选择题

1.	下列排列是	5 阶偶排列的是	().

- (A) 24315 (B) 14325 (C) 41523 (D)24351

- (A) k (B) n k (C) $\frac{n!}{2} k$ (D) $\frac{n(n-1)}{2} k$

3. n 阶行列式的展开式中含
$$a_{11}a_{12}$$
的项共有 ()项.

- (A) 0
- (B) n-2 (C) (n-2)! (D) (n-1)!

4.
$$\begin{vmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{vmatrix} = ().$$

- (A) 0
- (B) -1 (C) 1 (D) 2

5.
$$\begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{vmatrix} = ().$$

- (A) 0

- (B) -1 (C) 1 (D) 2

6. 在函数
$$f(x) = \begin{vmatrix} 2x & x & -1 & 1 \\ -1 & -x & 1 & 2 \\ 3 & 2 & -x & 3 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
 中 x^3 项的系数是 ().

- (A) 0
- (B) -1
- (C) 1
- (D) 2

7. 若 D =
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \frac{1}{2}$$
 , 则 D₁ = $\begin{vmatrix} 2a_{11} & a_{13} & a_{11} - 2a_{12} \\ 2a_{21} & a_{23} & a_{21} - 2a_{22} \\ 2a_{31} & a_{33} & a_{31} - 2a_{32} \end{vmatrix} = ($).

(A) 4

8. 若
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a$$
,则 $\begin{vmatrix} a_{12} & ka_{22} \\ a_{11} & ka_{21} \end{vmatrix} = ($).

(A) ka (B) -ka (C) k^2a (D) $-k^2a$

9. 已知 4 阶行列式中第 1 行元依次是 -4,0,1,3, 第 3 行元的余子式依次为

(A) 0

(B) -3 (C) 3 (D) 2

10. 若 D =
$$\begin{vmatrix} -8 & 7 & 4 & 3 \\ 6 & -2 & 3 & -1 \\ 1 & 1 & 1 & 1 \\ 4 & 3 & -7 & 5 \end{vmatrix}$$
 , 则 D 中第一行元的代数余子式的和为 ().

(A) -1 (B) -2 (C) -3 (D) 0

(A) -1 (B) -2 (C) -3 (D) 0

12. k 等于下列选项中哪个值时,齐次线性方程组
$$x_1 + x_2 + kx_3 = 0$$
 $x_1 + kx_2 + x_3 = 0$ 有非零解 . $kx_1 + x_2 + x_3 = 0$

(A) -1 (B) -2 (C) -3

(D) 0

二、填空题

- 1. 2n 阶排列 24 (2n)13 (2n –1) 的逆序数是 .
- 2. 在六阶行列式中项 a₃₂a₅₄a₄₁a₆₅a₁₃a₂₆所带的符号是 .
- 3. 四阶行列式中包含 a22a43且带正号的项是
- **4** . 若一个 n 阶行列式中至少有 $n^2 n + 1$ 个元素等于 0 ,则这个行列式的值等于

5. 行列式
$$\begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix} = _____.$$

7.行列式
$$\begin{vmatrix} a_{11} & \cdots & a_{1(n-1)} & a_{1n} \\ a_{21} & \cdots & a_{2(n-1)} & 0 \\ & \cdots & & & \\ a_{n1} & \cdots & 0 & 0 \end{vmatrix} = \underline{\qquad}.$$

8 . 如果 D =
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 = M ,则 D₁ = $\begin{vmatrix} a_{11} & a_{13} - 3a_{12} & 3a_{12} \\ a_{21} & a_{23} - 3a_{22} & 3a_{22} \\ a_{31} & a_{33} - 3a_{32} & 3a_{32} \end{vmatrix}$ = _____.

9. 已知某 5 阶行列式的值为 5,将其第一行与第 5 行交换并转置,再用 2 乘所有元素,则所得的新行列式的值为 _____.

11. n 阶行列式
$$\begin{vmatrix} 1+\lambda & 1 & \cdots & 1 \\ 1 & 1+\lambda & \cdots & 1 \\ & \cdots & \cdots & \\ 1 & 1 & \cdots & 1+\lambda \end{vmatrix} = ____.$$

12. 已知三阶行列式中第二列元素依次为 1,2,3, 其对应的余子式依次为 3,2,1,则该行列式的值为 .

13 .设行列式 D =
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 4 & 3 & 2 & 1 \\ 8 & 7 & 6 & 5 \end{vmatrix}$$
 , A_{4j} ($j=1,2,3,4$) 为 D 中第四行元的代数余子式,

则
$$4A_{41} + 3A_{42} + 2A_{43} + A_{44} =$$
 .

15 . 设行列式
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 4 & 4 \\ 1 & 5 & 6 & 7 \\ 1 & 1 & 2 & 2 \end{vmatrix} = -6$$
 , A_{4j} 为 A_{4j} 为 A_{4j} ($j = 1, 2, 3, 4$) 的代数余子式,则

.

18 . 若齐次线性方程组
$$\begin{cases} x_1 + 2x_2 + x_3 = 0 \\ 2x_2 + 5x_3 = 0 \text{ 有非零解,则 } k = \underline{\hspace{1cm}} \\ -3x_1 - 2x_2 + kx_3 = 0 \end{cases}.$$

三、计算题

1.
$$\begin{vmatrix} a & b & c & d \\ a^{2} & b^{2} & c^{2} & d^{2} \\ a^{3} & b^{3} & c^{3} & d^{3} \\ b+c+d & a+c+d & a+b+d & a+b+c \end{vmatrix}; 2 \cdot \begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix};$$

3.解方程
$$\begin{vmatrix} 0 & 1 & x & 1 \\ 1 & 0 & 1 & x \\ x & 1 & 1 & 0 \\ 1 & x & 1 & 0 \end{vmatrix} = 0;$$

4.
$$\begin{vmatrix} a_1 & x & a_2 & \cdots & a_{n-2} & 1 \\ a_1 & a_2 & x & \cdots & a_{n-2} & 1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & x & 1 \\ a_1 & a_2 & a_3 & \cdots & a_{n-4} & 1 \end{vmatrix}$$

5.
$$\begin{vmatrix} a_0 & 1 & 1 & \cdots & 1 \\ 1 & a_1 & 1 & \cdots & 1 \\ 1 & 1 & a_2 & \cdots & 1 \\ & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & a_n \end{vmatrix}$$
 $(a_j \neq 1, j = 0,1,\cdots, n);$

6.
$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 3 & 1-b & 1 & \cdots & 1 \\ 1 & 1 & 2-b & \cdots & 1 \\ & \cdots & & \cdots & \\ 1 & 1 & 1 & \cdots & (n-1)-b \end{vmatrix}$$

7.
$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ b_1 & a_1 & a_1 & \cdots & a_1 \\ b_1 & b_2 & a_2 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & b_3 & \cdots & a_n \end{vmatrix}$$
;

9.
$$\begin{vmatrix} 1 + x_1^2 & x_1 x_2 & \cdots & x_1 x_n \\ x_2 x_1 & 1 + x_2^2 & \cdots & x_2 x_n \\ & \cdots & \cdots & & \\ x_n x_1 & x_n x_2 & \cdots & 1 + x_n^2 \end{vmatrix};$$

四、证明题

1. 设 abcd = 1, 证明:
$$\begin{vmatrix} a^2 + \frac{1}{a^2} & a & \frac{1}{a} & 1 \\ b^2 + \frac{1}{b^2} & b & \frac{1}{b} & 1 \\ c^2 + \frac{1}{c^2} & c & \frac{1}{c} & 1 \\ d^2 + \frac{1}{d^2} & d & \frac{1}{d} & 1 \end{vmatrix} = 0.$$

3.
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{vmatrix} = (b-a)(c-a)(d-a)(c-b)(d-b)(d-c)(a+b+c+d).$$

$$\mathbf{4} . \begin{bmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ & \cdots & \cdots & & \\ a_1^{n-2} & a_2^{n-2} & \cdots & a_n^{n-2} \\ a_1^n & a_2^n & \cdots & a_n^n \end{bmatrix} = \sum_{i=1}^n a_i \prod_{1 \le i < j \le n} (a_j - a_i).$$

参考答案

- 一.单项选择题
- ADACCDABCDBB
- 二.填空题
- 1. n; 2. "-"; 3. $a_{14}a_{22}a_{31}a_{43}$; 4. 0; 5. 0; 6. $(-1)^{n-1}n!$;

- $7. \, (-1)^{\frac{-2}{2}} \, a_{1n} \, a_{2(n-1)} \cdots \, a_{n1} \, ; \quad 8. \, -3M \, \, ; \quad 9. \, -160 \, ; \quad 10. \, x^4 \, ; \quad 11. \, (\lambda + n) \, \lambda^{n-1} \, ; \quad 12. \, -2 \, ;$

- 13.0; 14.0; 15.12, -9; 16.n! $(1 \sum_{k=1}^{n} \frac{1}{k})$; 17. $k \neq -2,3$; 18. k = 7
- 三.计算题
- 1. -(a+b+c+d)(b-a)(c-a)(d-a)(c-b)(d-b)(d-c); 2. $-2(x^3+y^3)$;
- 3. x = -2,0,1;

4. $\prod_{k \triangleq 1} (x - a_k)$

- 5. $\prod_{k=0}^{n} (a_k 1) (1 + \sum_{k=0}^{n} \frac{1}{a_k 1});$
- 6. -(2+b)(1-b) ((n-2)-b);

7. $(-1)^n \prod_{k=1}^n (b_k - a_k)$;

8. $(x + \sum_{k=1}^{n} a_k) \prod_{k=1}^{n} (x - a_k)$;

9. $1 + \sum_{k=1}^{n} x_k$;

10. n+1;

- 11. $(1-a)(1+a^2+a^4)$.
- 四.证明题 (略)

第二章 矩阵

一、单项选择题

1. A 、B 为 n 阶方阵,则下列各式中成立的是 ()。

(a)
$$|A^2| = |A|^2$$

(b)
$$A^2 -$$

(a)
$$|A^2| = |A|^2$$
 (b) $A^2 - B^2 = (A - B)(A + B)$ (c) $(A - B)A = A^2 - AB$

$$(A - B) A = A^2 - AB$$

(d)
$$(AB)^T = A^T B^T$$

2. 设方阵 A、B、C满足 AB=AC当 A 满足() 时, B=Q

3. 若 A 为 n 阶方阵 , k 为非零常数 , 则 |kA| =() 。

(a)
$$k \mid A$$
 (b) $k \mid A$

(c)
$$k^n A$$

(d)
$$|k|^n |A|$$

4. 设 A 为 n 阶方阵,且 |A| = 0,则()。

(a) A中两行(列)对应元素成比例 (b) A中任意一行为其它行的线性组合

(c) A中至少有一行元素全为零 (d) A中必有一行为其它行的线性组合

5. 设 A , B 为 n 阶可逆矩阵,下面各式恒正确的是 () 。

(a)
$$|(A + B)^{-1}| = |A^{-1}| + |B^{-1}|$$
 (b) $|(AB)^{T}| = |A||B|$

(b)
$$\left| (AB)^{\mathsf{T}} \right| = |A|B$$

(c)
$$|(A^{-1} + B)^{T}| = |A^{-1}| + |B|$$
 (d) $(A + B)^{-1} = A^{-1} + B^{-1}$

$$(A + B)^{-1} = A^{-1} + B^{-1}$$

6. 设 A 为 n 阶方阵,A^{*} 为 A 的伴随矩阵,则() 。

(a) (a)
$$|A^*| = |A^{-4}|$$
 (b) $|A^*| = |A|$ (c) $|A^*| = |A|^{n+1}$ (d) $|A^*| = |A|^{n-4}$

$$|A^*| = |A|$$

$$|A^*| = |A^{n+1}|$$

(d)
$$|A^*| = |A|^{n-1}$$

7. 设 A 为 3 阶 方 阵,行 列 式 | A = 1 , A 为 A 的 伴 随 矩 阵 , 则 行 列 式

$$|(2A)^{-4} - 2A^*| = ()$$

(a)
$$-\frac{27}{8}$$
 (b) $-\frac{8}{27}$ (c) $\frac{27}{8}$ (d) $\frac{8}{27}$

(b)
$$-\frac{8}{27}$$

$$\frac{8}{2}$$

- 8. 设 A , B 为 n 阶方矩阵 , $A^2 = B^2$, 则下列各式成立的是 () 。
- (a) A = B (b) A = -B (c) |A| = |B| (d) $|A|^2 = |B|^2$
- 9. 设 A , B 均为 n 阶方矩阵 , 则必有() 。
- (a) |A + B| = |A| + |B| (b) AB = BA (c) |AB| = |BA| (d) $|A|^2 = |B|^2$
- 10. 设 A为 n 阶可逆矩阵,则下面各式恒正确的是()。
- (a) $|2A| = 2|A^T|$ (b) $(2A)^{-1} = 2A^{-1}$
- (c) $[(A^{-1})^{-1}]^{T} = [(A^{T})^{T}]^{-1}$ (d) $[(A^{T})^{T}]^{-1} = [(A^{-1})^{T}]^{T}$
- 11. 如果 $A \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} 3a_{31} & a_{12} 3a_{32} & a_{13} 3a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$,则 A = ()。
- 12. 已知 A = $\begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 0 \\ 3 & 1 & 1 \end{pmatrix}$, 则 ()。
 - (a) $A^{T} = A$ (b) $A^{-1} = A$
 - (c) $A \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}$
- 13. 设 A,B,C,I 为同阶方阵 , I 为单位矩阵 , 若 ABC = I ,则 ()。
- (a) ACB = I (b) CAB = I (c) CBA = I (d) BAC = I
- 14. 设 A 为 n 阶方阵,且 | A | ≠ 0,则()。
- (a) A经列初等变换可变为单位阵 I
- (b)由 AX = BA,可得 X = B

- (c) 当 (A|I) 经有限次初等变换变为 (I|B) 时,有 $A^{-1}=B$
- (d)以上(a)(b)(c)都不对
- 15. 设 A 为 m×n 阶矩阵, 秩 (A) = r < m < n,则()。
- (a) A中r 阶子式不全为零 (b) A中阶数小于 r 的子式全为零
- $\begin{pmatrix} c \end{pmatrix}$ A 经行初等变换可化为 $\begin{pmatrix} I, & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} d \end{pmatrix}$ A 为满秩矩阵
- 16. 设 A 为 m × n 矩阵 , C 为 n 阶可逆矩阵 , B = AC ,则() 。
- (a) 秩(A)> 秩(B) (b) 秩(A)= 秩(B)
- (c) 秩(A)< 秩(B) (d) 秩(A)与秩(B)的关系依 C而定
- 17. A, B为 n 阶非零矩阵,且 AB = 0,则秩(A)和秩(B)()。
- (a) 有一个等于零 (b) 都为 n (c) 都小于 n (d) 一个小于 n ,一个等于 n 18.n 阶方阵 A 可逆的充分必要条件是 () 。
- (a) r(A) = r < n
- (b) A 的列秩为 n
- A的每一个行向量都是非零向量 (d) 伴随矩阵存在
- 19.n 阶矩阵 A 可逆的充要条件是 () 。
- (a) A的每个行向量都是非零向量
- (b) A中任意两个行向量都不成比例
- (c) A的行向量中有一个向量可由其它向量线性表示
- (d) 对任何 n 维非零向量 X , 均有 AX ≠0

二、填空题

- 1. 设 A 为 n 阶方阵,I 为 n 阶单位阵,且 $A^2 = I$,则行列式 A = 1

3. 设 2 A =
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 则行列式 $|(A+3I)^{-1}(A^2-9I)|$ 的值为 ______

4. 设
$$A = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
 , 且已知 $A^6 = I$, 则行列式 $|A^{11}| =$ ______

- 5. 设 A 为 5 阶方阵 , A 是其伴随矩阵 , 且 | A = 3 , 则 | A = _____
- 6. 设 4 阶方阵 A的秩为 2,则其伴随矩阵 A*的秩为 ______

- 8. 设 A 为 100 阶矩阵,且对任何 100 维非零列向量 X ,均有 AX ≠ 0 ,则 A 的秩为_____
- 9. 若 A = (a_{ij}) 为 15 阶矩阵,则 A^T A 的第 4 行第 8 列的元素是 _____
- 10. 若 方 阵 A 与 4I 相 似 , 则 A= _____

11.
$$\lim_{K \to \infty} \left(\frac{\frac{1}{2^K}}{\frac{1}{K}} \cdot \frac{\frac{2K}{K+1}}{\frac{1}{3^K}} \right) = \underline{\qquad}$$

12.
$$\lim_{n \to \infty} \begin{pmatrix} \frac{1}{2} & -1 & 2 \\ 0 & \frac{1}{3} & 1 \\ 0 & 0 & -\frac{1}{4} \end{pmatrix} = \underline{\qquad}$$

三、计算题

1. 解下列矩阵方程 (X 为未知矩阵).

1)
$$\begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix} X = \begin{pmatrix} 2 & 2 \\ 3 & 2 \\ 0 & -2 \end{pmatrix}$$
; 2) $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} X \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & -1 \\ 1 & 0 \end{pmatrix}$

3)
$$X(I - B^{-1}C)^{T}B^{T} = I$$
, $\not\exists P = \begin{pmatrix} 3 & 1 & 0 \\ 4 & 0 & 4 \\ 4 & 2 & 2 \end{pmatrix}$; $C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix}$.

4)
$$AX = A^2 + X - I$$
, $\sharp h A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$;

5)
$$AX = A + 2X$$
, $\sharp P A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$;

2. 设 A 为 n 阶对称阵,且 $A^2 = 0$,求 A.

3. 已知 A =
$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$
, 求 $(A + 2I)(A^2 - 4I)^{-1}$.

4. 设
$$A_1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $A_4 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, 求 $\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$

5. 设
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \\ 3 & 3 & 6 \end{pmatrix}$$
, 求一秩为 2的方阵 B, 使 $AB = 0$.

6. 设
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}, 求非奇异矩阵 C, 使 $A = C^{T}BC$.$$

7. 求非奇异矩阵 P, 使 P⁴AP 为对角阵.

1)
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 2) $A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & -3 & 1 \\ -2 & 0 & -1 \end{pmatrix}$

8. 已知三阶方阵 A的三个特征根为 1,1,2, 其相应的特征向量依次为 (0,0,1) 「,(-1,1,0)」,(-2,1,1)」,求矩阵 A.

9. 设 A =
$$\begin{pmatrix} 5 & -3 & 2 \\ 6 & -4 & 4 \\ 4 & -4 & 5 \end{pmatrix}$$
, 求 A¹⁰⁰.

四、证明题

- 1. 设 A、 B均为 n 阶非奇异阵, 求证 AB 可逆.
- 2. 设 A^k = 0(k 为整数), 求证 I A 可逆.
- 3. 设 $a_1.a_2$, 川, a_k 为 实 数 ,且 如 果 $a_k \neq 0$,如 果 方 阵 A 满 足 $A^k + a_1 A^{k-1} + \prod + a_{k-1} A + a_k I = 0$,求证 A 是非奇异阵 .
- 4. 设 n 阶方阵 A 与 B 中有一个是非奇异的 , 求证矩阵 AB 相似于 BA.
- 5. 证明可逆的对称矩阵的逆也是对称矩阵
- 6. 证明两个矩阵和的秩小于这两个矩阵秩的和
- 7. 证明两个矩阵乘积的秩不大于这两个矩阵的秩中较小者
- 8. 证明可逆矩阵的伴随矩阵也可逆,且伴随矩阵的逆等于该矩阵的逆矩阵的伴随矩阵.
- 9. 证明不可逆矩阵的伴随矩阵的逆不大于 1.
- 10. 证明每一个方阵均可表示为一个对称矩阵和一个反对称矩阵的和。

第二章参考答案

- —: 1. a ; 2. b ; 3.c ; 4.d ; 5.b ; 6.d ; 7.a ; 8.d ; 9.c ; 10.d ; 11.b ; 12.c ; 13.b ; 14.a ; 15.a ; 16.b ; 17.c ; 18.b ; 19.d.
- 二.1.1或-1;2.0;3.-4;4.1;5.81;6.0;7.1;8.100;9. ∑ a_{i4} a_{i8};
- 10. I ; 12. 0 ; 11. $\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$.
- $\equiv \begin{bmatrix} 1.1 \\ 16 \end{bmatrix} \begin{bmatrix} -10 \\ -13 \\ 16 \end{bmatrix} ; 2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ 2 \\ 1 \\ 2 \end{bmatrix} ; 3 \end{bmatrix} ; 3 \end{bmatrix} \begin{bmatrix} 1 \\ -4 \\ -3 \\ 1 \\ -5 \\ -3 \end{bmatrix} ; 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} ; 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} ; 4 \end{bmatrix} ; 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} ; 4 \end{bmatrix} ; 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} ; 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} ; 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\$
- 5. $\begin{pmatrix} -3 & -1 & -1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ 不唯一; 6. $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; 7. 1), $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$. 2) 、 $\begin{pmatrix} 1 & 1 & -3 \\ -2 & 1 & 1 \\ 1 & 2 & 2 \end{pmatrix}$;
- 8. $\begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 0 \\ -1 & -1 & 1 \end{pmatrix}$; 9. $\begin{pmatrix} 3^{100} + \cancel{2}(2^{100} 1) & 2 2^{100} 3^{100} & 3^{100} 1 \\ \cancel{2}(2^{100} + 3^{100}) 4 & 4 2^{100} \cancel{2}(3^{100}) & \cancel{2}(3^{100} 1) \\ \cancel{2}(3^{100} 1) & \cancel{2}(1 3^{100}) & \cancel{2}(3^{100}) 1 \end{pmatrix}$.

第三章 向量

	畄	项	诛	ţ棸	旦而
—、	半	坝	兀	作	正火

1. $\alpha_1, \alpha_2, \alpha_3$, β_1, β_2 都是四维列向量,且四阶行列式

 $|\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \beta_1| = m, |\alpha_1 \quad \beta_2 \quad \alpha_3 \quad \alpha_2| = n, \text{则行列式}$

 $\begin{vmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \beta_1 + \beta_2 \end{vmatrix} = ($

- (a) m + n (b) m n (c) -m + n (d) -m n
- 2. 设 A 为 n 阶方阵,且 |A| = 0,则()。
 - (a)A中两行(列)对应元素 成比例
 - (b)A中任意一行为其它行的 线性组合
 - (c) A中至少有一行元素全为 零
 - (d)A中必有一行为其它行的 线性组合
- 3. 设 A为 n 阶方阵 , r(A) = r < n ,则在 A的 n 个行向量中 ()。
 - (a)必有 r 作量提关
 - (b)任意 r个行向量线性无关
 - (c)任意 r个行向量都构成极大线 性无关组
 - (d)任意一个行向量都能被 其它 r 个行向量线性表示
- 4. n 阶方阵 A 可逆的充分必要条件是 ()
 - (a)r(A) = r < n
 - (b)A的列秩为 n

	(d)A的伴随矩阵存在
5.	n 维向量组 α_1,α_2,\cdots , α_s 线性无关的充分条件是 ()
	(a) α ₁ ,α ₂ ,·····,α _s 都不是零向量
	(b) $\alpha_1, \alpha_2, \cdots, \alpha_s$ 中任一向量均不能由其它向量线性表示
	(c) α ₁ , α ₂ , ······, α _s 中任意两个向量都不成比例
	(d) α ₁ , α ₂ , ······, α _s 中有一个部分组线性无关
6.	n 维向量组 α ₁ ,α ₂ ,······,α _s (s ≥ 2) 线性相关的充要条件是 ()
	(a) α ₁ ,α ₂ ,·····,α _s 中至少有一个零向量
	(b) α ₁ , α ₂ , ^{·····} , α _s 中至少有两个向量成比例
	(c)¤₁,¤₂, ^{·····} ,¤₅中任意两个向量不成比例
	(d) $lpha_1$, $lpha_2$, \cdots $lpha_s$ 中至少有一向量可由其它向量线性表示
7.	n 维向量组 α ₁ ,α ₂ , ,α _s (3 ≤ s ≤ n) 线性无关的充要条件是 ()
	(a)存在一组不全为零的数 k ₁ ,k ₂ , ^{******} ,k _s 使得 k ₁ α ₁ + k ₂ α ₂ + ****** k _s α _s ≠ 0
	(b)¤ ₁ ,¤ ₂ , ^{·····} ,¤ _s 中任意两个向量都线性无关
	$(c)^{\alpha_1,\alpha_2,\cdots,\alpha_s}$ 中存在一个向量,它不能被其余向量线性表示
	(d)α ₁ ,α ₂ , ^{·····} ,α _s 中任一部分组线性无关
8.	设向量组 $\alpha_1 \alpha_2 \cdots \alpha_n$ 的秩为 $r_1 \cup l$ ()

(c) A的每一个行向量都是非 零向量

- $(a)\alpha_1,\alpha_2,\dots,\alpha_s$ 中至少有一个由 r 个向量组成的部分组线性无关
- $(b)\alpha_1,\alpha_2,\dots,\alpha_s$ 中存在由 r+1个向量组成的部分组线性无关
- $(c)\alpha_1,\alpha_2,\cdots,\alpha_s$ 中由 r 个向量组成的部分组都线性无关
- $(d)\alpha_1,\alpha_2,\cdots,\alpha_s$ 中个数小于 r 的任意部分组都线性无关
- **9.** 设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 均为 n 维向量,那么下列结论正确的是 ()
 - (a) 若 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$,则 $\alpha_1,\alpha_2,\cdots ,\alpha_s$ 线性相关
 - (b) 若对于任意一组不全为零的数 k_1, k_2, \cdots, k_s ,都有 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s \neq 0, y \alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关
 - (c) 若 $\alpha_1, \alpha_2, \cdots$, α_s 线性相关 ,则对任意不全为零的数 k_1, k_2, \cdots , k_s ,都有 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$
 - (d) 若 $0\alpha_1 + 0\alpha_2 + \cdots + 0\alpha_s = 0$,则 $\alpha_1,\alpha_2,\cdots + \alpha_s$ 线性无关
- **10.** 已知向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关,则向量组 ()
 - (a) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$ 线性无关
 - $(b)\alpha_1 \alpha_2, \alpha_2 \alpha_3, \alpha_3 \alpha_4, \alpha_4 \alpha_1$ 线性无关
 - $(c)\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 \alpha_1$ 线性无关
 - $(d)^{\alpha_1} + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 \alpha_4, \alpha_4 \alpha_1$ 线性无关
- **11.** 若向量 β 可被向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表示,则()
 - (a) 存在一组不全为零的数 k_1, k_2, \cdots, k_s 使得 $\beta = k_1 \alpha_1 + k_2 \alpha_2 + \cdots k_s \alpha_s$

(c) 存在一组数 k_1, k_2, \cdots, k_s 使得 $\beta = k_1\alpha_1 + k_2\alpha_2 + \cdots k_s\alpha_s$
(d) 对 ^β 的表达式唯一
12. 下列说法正确的是()
(a) 若有不全为零的数 k_1, k_2, \cdots, k_s , 使得 $k_1 \alpha_1 + k_2 \alpha_2 + \cdots k_s \alpha_s = 0$, 则
α ₁ ,α ₂ ,·····,α _s 线性无关
(b) 若有不全为零的数 k₁, k₂, ^{······} , k₅ , 使得 k₁α₁ + k₂α₂ +····· k₅α ₅ ≠ 0 , 则
α ₁ ,α ₂ , ,α _s 线性无关
(c) 若 $lpha_1,lpha_2,$ \cdots , $lpha_s$ 线性相关,则其中每个向量均可由其余向量线性表示
(d) 任何 n +1 个 n 维向量必线性相关
13. 设 $^{\beta}$ 是向量组 α_1 = (1, 0, 0) T , α_2 = (0, 1, 0) T 的线性组合 , 则 $^{\beta}$ = (
$(a)(0, 3, 0)^{T}$ $(b)(2, 0, 1)^{T}$ $(c)(0, 0, 1)^{T}$ $(d)(0, 2, 1)^{T}$
14. 设有向量组 $\alpha_1 = (1, -1, 2, 4)^{T}$, $\alpha_2 = (0, 3, 1, 2)^{T}$,
$\alpha_3 = (3, 0, 7, 14)^{\text{T}}, \alpha_4 = (1, -2, 2, 0)^{\text{T}}, \alpha_5 = (2, 1, 5, 10)^{\text{T}},$ 则该向量组的极大线性无关组为(
$(a)^{\alpha_1}, \alpha_2, \alpha_3$ $(b)^{\alpha_1}, \alpha_2, \alpha_4$
$(c)\alpha_1, \alpha_2, \alpha_5$ $(d)\alpha_1, \alpha_2, \alpha_4, \alpha_5$
15. ig $\alpha = (a_1, a_2, a_3)^T$, $\beta = (b_1, b_2, b_3)^T$, $\alpha_1 = (a_1, a_2)^T$, $\beta_1 = (b_1, b_2)^T$
下列正确的是()
(a)若α, ^β 线性相关,则 α ₁ , β ₁ 也线性相关 ;
40

(b) 存在一组全为零的数 k_1, k_2, \cdots, k_s 使得 $\beta = k_1\alpha_1 + k_2\alpha_2 + \cdots k_s\alpha_s$

- (b)若 α , β 线性无关,则 α_1 , β_1 也线性无关;
 - (c)若 α_1 , β_1 线性相关 , 则 α , β 也线性相关 ;
 - (d)以上都不对

二、填空题

- **1.** 若 $\alpha_1 = (1, 1, 1)^T$, $\alpha_2 = (1, 2, 3)^T$, $\alpha_3 = (1, 3, t)^T$ 线性相关,则 t=
- 2. n 维零向量一定线性 关。
- 3. 向量 α 线性无关的充要条件是 。
- 4. 若 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,则 $\alpha_1, \alpha_2, \dots, \alpha_s$ (s > 3) 线性 关。
- 5. n 维单位向量组一定线性
- 6. 设向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的秩为 r, 则 $\alpha_1, \alpha_2, \dots, \alpha_s$ 中任意 r 个 的向量都是它的极大线性无关组。
- 7. 设向量 $\alpha_1 = (1, 0, 1)^{\mathsf{T}} 与 \alpha_2 = (1, 1, a)^{\mathsf{T}}$ 正交 , 则 a = 。
- 8. 正交向量组一定线性
- 9. 若向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 与 $\beta_1,\beta_2,\cdots,\beta_t$ 等价,则 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的秩与 $\beta_1,\beta_2,\cdots,\beta_t$ 的秩 。
- **10.** 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 可由向量组 $\beta_1, \beta_2, \dots, \beta_t$ 线性表示,则 $r(\alpha_1, \alpha_2, \dots, \alpha_s) \qquad r(\beta_1, \beta_2, \dots, \beta_t).$
- 11. 向量组 $\alpha_1 = (a_1, 1, 0, 0)^T$, $\alpha_2 = (a_2, 1, 1, 0)^T$, $\alpha_3 = (a_3, 1, 1, 1)^T$ 的 线性关系是
- 12. 设 n 阶方阵 $A = (\alpha_1, \alpha_2; \cdots, \alpha_n) \alpha_1 = \alpha_2 + \alpha_3, \emptyset | A =$
- 13. 设 $\alpha_1 = (0, y, -\frac{1}{\sqrt{2}})^{\mathsf{T}}, \alpha_2 = (x, 0, 0)^{\mathsf{T}}, 若 \alpha n^{\beta} 是标准正交向量,则 x$

和y的值

14. 两向量线性相关的充要条件是

三、计算题

- 1. $i \oplus \alpha_1 = (1 + \lambda, 1, 1)^{\top}$, $\alpha_2 = (1, 1 + \lambda, 1)^{\top}$, $\alpha_3 = (1, 1, 1 + \lambda)^{\top}$, $\beta = (0, \lambda, \lambda^2)^{\top}$, \Box
 - (1) λ 为何值时 , β 能由 $\alpha_1,\alpha_2,\alpha_3$ 唯一地线性表示?
 - (2) λ 为何值时, β 能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,但表达式不唯一?
 - (3) λ 为何值时 , β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示?
- - (1) a,b 为何值时 , β 不能表示为 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的线性组合?
 - (2) a,b 为何值时 , β 能唯一地表示为 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的线性组合?
- **3.** 求向量组 $\alpha_1 = (1, -1, 0, 4)^{\mathsf{T}}$, $\alpha_2 = (2, 1, 5, 6)^{\mathsf{T}}$, $\alpha_3 = (1, 2, 5, 2)^{\mathsf{T}}$, $\alpha_4 = (1, -1, -2, 0)^{\mathsf{T}}$, $\alpha_5 = (3, 0, 7, 14)^{\mathsf{T}}$ 的一个极大线性无关组,并将其余向量用该极大无关组线性表示。
- **4.** 设 $\alpha_1 = (1, 1, 1)^T$, $\alpha_2 = (1, 2, 3)^T$, $\alpha_3 = (1, 3, t)^T$, t 为何值时 $\alpha_1, \alpha_2, \alpha_3$ 线性相 关 , t 为何值时 $\alpha_1, \alpha_2, \alpha_3$ 线性无关 ?
- **5.** 将向量组 $\alpha_1 = (1, 2, 0)^{\mathsf{T}}$, $\alpha_2 = (-1, 0, 2)^{\mathsf{T}}$, $\alpha_3 = (0, 1, 2)^{\mathsf{T}}$ 标准正交化。 四、证明题
- 1. 设 $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = 3\alpha_2 \alpha_1$, $\beta_3 = 2\alpha_1 \alpha_2$, 试证 β_1 , β_2 , β_3 线性相关。

- **2.** 设 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关,证明 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \cdots, \alpha_n + \alpha_1$ 在 n 为奇数时 线性无关;在 n 为偶数时线性相关。
- 设α₁,α₂,······,α_s,β线性相关,而α₁,α₂,······,α_s线性无关,证明β能由α₁,α₂,······,α_s线性表示且表示式唯一。
- **4.** 设 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关,求证 α_4 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示。
- **5.** 证明:向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ (s ≥ 2) 线性相关的充要条件是其中至少有一个向量是其余向量的线性组合。
- **6.** 设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 中 $\alpha_1\neq 0$, 并且每一个 α_i 都不能由前 i-1个向量线性表示 ($i=2,3,\cdots,s$) , 求证 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关。
- 7. 证明:如果向量组中有一个部分组线性相关,则整个向量组线性相关。 8.设 $\alpha_0, \alpha_1, \alpha_2, \cdots, \alpha_s$ 是线性无关向量组,证明向量组

 $\alpha_0, \alpha_0 + \alpha_1, \alpha_0 + \alpha_2, \cdots, \alpha_0 + \alpha_s$ 也线性无关。

第三章向量参考答案

一、单项选择

1.b 2.d 3.a 4.b 5.b 6.d 7.d 8.a 9.b 10.c 11.c 12.d 13.a 14.b 15. a

二、填空题

1. 5 2.相关 3. α ≠ 0 4.相关 5.无关 6.线性无关 7. -1

8.无关 9.相等 10. ≤ 11.线性无关 12. 0 13. $x = \pm 1, y = \pm \frac{1}{\sqrt{2}}$

14.对应分量成比例

三、解答题

1. \mathbf{M} : $\mathbf{\mathcal{G}} = \mathbf{X}_1 \alpha_1 + \mathbf{X}_2 \alpha_2 + \mathbf{X}_3 \alpha_3$

则对应方程组为
$$\begin{cases} (1+\lambda)x_1 + x_2 + x_3 = 0 \\ x_1 + (1+\lambda)x_2 + x_3 = \lambda \\ x_1 + x_2 + (1+\lambda)x_3 = \lambda^2 \end{cases}$$

其系数行列式
$$|A| = \begin{vmatrix} 1+\lambda & 1 & 1 \\ 1 & 1+\lambda & 1 \\ 1 & 1 & 1+\lambda \end{vmatrix} = \lambda^2 (\lambda + 3)$$

(1) 当 $\lambda \neq 0$, $\lambda \neq -3$ 时, $A \neq 0$,方程组有唯一解,所以 β 可由 α_1 , α_2 , α_3 唯一 地线性表示;

$$(2) 当 \lambda = 0 \text{ 时,方程组的增广阵 } \stackrel{-}{A} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

r(A) = r(A) = 1 < 3,方程组有无穷多解,所以 β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,但表示式不唯一;

(3) 当 $\lambda = -3$ 时,方程组的增广阵

$$\frac{-}{A} = \begin{pmatrix} -2 & 1 & 1 & 0 \\ 1 & -2 & 1 & -3 \\ 1 & 1 & -2 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 & -3 \\ 0 & -3 & 3 & -12 \\ 0 & 0 & 0 & -18 \end{pmatrix}, r(A) \neq r(A), 方程组无解,$$

所以 β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

2.解:以 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\beta$ 为列构造矩阵

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 2 & 1 \\
2 & 3 & a+2 & 4 & b+3 \\
3 & 5 & 1 & a+8 & 5
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 2 & 1 \\
0 & 0 & 1 & -\frac{a+1}{4} & 0 \\
0 & 0 & 0 & -\frac{1-a^2}{4} & b
\end{pmatrix}$$

- (1) 当a = ±1且b ≠ 0时, β 不能表示为 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的线性组合;
- (2) 当a ≠ ±1,b任意时, β 能唯一地表示为 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的线性组合。

$$3.\text{$M: (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) = \begin{pmatrix} 1 & 2 & 1 & 1 & 3 \\ -1 & 1 & 2 & -1 & 0 \\ 0 & 5 & 5 & -2 & 7 \\ 4 & 6 & 2 & 0 & 14 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}}$$

 $\alpha_1, \alpha_2, \alpha_4$ 为一个极大无关组,且 $\alpha_3 = -\alpha_1 + \alpha_2 + 0\alpha_4$, $\alpha_5 = 2\alpha_1 + \alpha_2 - \alpha_4$

4.
$$|\alpha_1, \alpha_2, \alpha_3| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & t \end{vmatrix} = t - 5$$
,

当 t = 5 时 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,当 $t \neq 5$ 时 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。

5.解:先正交化:

再单位化:

$$\gamma_{1} = \frac{\beta_{1}}{\|\beta_{1}\|} = \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right)^{T}, \quad \gamma_{2} = \frac{\beta_{2}}{\|\beta_{2}\|} = \left(-\frac{2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{5}{\sqrt{30}}\right)^{T},$$

$$\gamma_{3} = \frac{\beta_{3}}{\|\beta_{3}\|} = \left(\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{T}$$

 $\gamma_1, \gamma_2, \gamma_3$ 为标准正交向量组。

四、证明题

1.证:
$$3(\beta_1 + \beta_2) - 4(2\beta_1 - \beta_3) = 0$$

 $-5\beta_1 + 3\beta_2 + 4\beta_3 = 0$
 $\beta_1, \beta_2, \beta_3$ 线性相关

2.证:设
$$k_1(\alpha_1 + \alpha_2) + k_2(\alpha_2 + \alpha_3) + \cdots + k_n(\alpha_n + \alpha_1) = 0$$

则
$$(k_1 + k_n)\alpha_1 + (k_1 + k_2)\alpha_2 + \cdots (k_{n-1} + k_n)\alpha_n = 0$$

$$\alpha_1, \alpha_2, \dots, \alpha_n$$
 线性无关

$$\begin{cases} k_1 + k_n = 0 \\ k_1 + k_2 = 0 \\ \dots \\ k_{n-4} + k_n = 0 \end{cases}$$

当 n 为奇数时 , k_1, k_2, \dots, k_n 只能为零 , $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关 ;

当 n 为偶数时 , k_1, k_2, \dots, k_n 可以不全为零 , $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关。

3.证: $\alpha_1, \alpha_2, \dots, \alpha_s, \beta$ 线性相关

存在不全为零的数 k_1, k_2, \dots, k_s, k 使得

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s + k\beta = 0$$

若
$$k = 0$$
 , 则 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$, $(k_1, k_2, \cdots, k_s$ 不分零

与 $\alpha_1,\alpha_2,\dots,\alpha_s$ 线性无关矛盾

所以 k ≠ 0

于是
$$\beta = -\frac{k_1}{k}\alpha_1 - \frac{k_2}{k}\alpha_2 - \cdots - \frac{k_s}{k}\alpha_s$$

β能由 α₁,α₂,·····,α_s线性表示。

设
$$\beta = k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_s \alpha_s$$

$$\beta = |\alpha_1 + \alpha_2 + \cdots + \alpha_s|$$

则 - 得
$$(k_1 - l_1)\alpha_1 + (k_2 - l_2)\alpha_2 + \cdots + (k_s - l_s)\alpha_s = 0$$

 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关

$$k_i - l_i = 0, (i = 1, 2, \dots, s)$$

4.证:假设 α_4 能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示

 $\alpha_2, \alpha_3, \alpha_4$ 线性无关, α_2, α_3 线性无关

 $\alpha_1, \alpha_2, \alpha_3$ 线性相关 , α_1 可由 α_2, α_3 线性表示 ,

 α_4 能由 α_2 , α_3 线性表示,从而 α_2 , α_3 , α_4 线性相关,矛盾

 α_4 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

5.证:必要性

设向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关

则存在不全为零的数 k_1, k_2, \dots, k_s ,使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$

不妨设
$$k_s \neq 0$$
 , 则 $\alpha_s = -\frac{k_1}{k_s}\alpha_1 - \frac{k_2}{k_s}\alpha_2 - \cdots - \frac{k_{s\perp}}{k_s}\alpha_{s\perp}$,

即至少有一个向量是其余向量的线性组合。

充分性

设向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 中至少有一个向量是其余向量的线性组合

不妨设
$$\alpha_s = k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_{s-1} \alpha_{s-1}$$

则
$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_{s}\alpha_{s}\alpha_{s}\alpha_{s}\alpha_{s}\alpha_{s}$$
 - $\alpha_s = 0$,

所以 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关。

6.证:用数学归纳法

当 s=1 时, α₁ ≠ 0, 线性无关,

当 s=2 时 , α_2 不能由 α_1 线性表示 , α_1 , α_2 线性无关 ,

设 s=i-1 时 , α₁,α₂,^{.....},α_{i 4}线性无关

则 S=i 时,假设 $\alpha_1,\alpha_2,\cdots,\alpha_i$ 线性相关, $\alpha_1,\alpha_2,\cdots,\alpha_{i-1}$ 线性无关, α_i 可

由 $\alpha_1, \alpha_2, \cdots, \alpha_{i-4}$ 线性表示,矛盾,所以 $\alpha_1, \alpha_2, \cdots, \alpha_i$ 线性无关。得证

7.证:若向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 中有一部分组线性相关,不妨设 $\alpha_1, \alpha_2, \cdots, \alpha_s$ (r<s)

线性相关,则存在不全为零的数 k_1, k_2, \dots, k_r ,使得

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r = 0$$

于是
$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r + 0\alpha_{r+1} + \cdots + 0\alpha_s = 0$$

因为 $k_1, k_2, \dots, k_r, 0$, 0 不全为零

所以 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关。

8.证:设
$$k_0\alpha_0 + k_1(\alpha_0 + \alpha_1) + k_2(\alpha_0 + \alpha_2) + \cdots + k_s(\alpha_0 + \alpha_s) = 0$$

则
$$(k_0 + k_1 + k_2 + \cdots + k_s)\alpha_0 + k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

因 $\alpha_0, \alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,

所以
$$\begin{cases} k_0 + k_1 + k_2 + \cdots + k_s = 0 \\ k_1 = 0 \end{cases}$$
 解得 $k_0 = k_1 = k_2 = \cdots = k_s = 0$... $k_s = 0$

所以向量组 $\alpha_0, \alpha_0 + \alpha_1, \alpha_0 + \alpha_2, \cdots, \alpha_0 + \alpha_s$ 线性无关。

第四章 线性方程组

—、	单项选择题

1 .	设 n 元齐次线性方程组	AX =0的系数矩阵的秩为	r	,则 $AX = 0$ 有非零解的充
	分必要条件是()			

(A)
$$r = n$$

(B) r < n

(D) r > n

2. 设 A 是 $m \times n$ 矩阵,则线性方程组 AX = b 有无穷解的充要条件是()

(A)
$$r(A) < m$$

(B) r(A) < n

(C)
$$r(Ab) = r(A) < m$$

(C) r(Ab) = r(A) < m (D) r(Ab) = r(A) < n

3. 设 A 是 $m \times n$ 矩阵,非齐次线性方程组 AX = b 的导出组为 AX = 0,若 m < n, 则()

(C)
$$AX = 0$$
 必有非零解 (D) $AX = 0$ 必有唯一解

$$x_1 + 2x_2 - x_3 = 4$$
4 . 方程组
$$x_2 + 2x_3 = 2$$
 无解的充分条件是 $\lambda = ($)
$$(\lambda - 2)x_3 = -(\lambda - 3)(\lambda - 4)(\lambda - 1)$$

(A) 1 (B) 2 (C) 3 (D) 4

5 . 方程组
$$\begin{cases} x_1 + x_2 + x_3 = \lambda - 1 \\ 2x_2 - x_3 = \lambda - 2 \\ x_3 = \lambda - 4 \end{cases}$$
 有唯一解的充分条件是 $\lambda = ($)
$$(\lambda - 1)x_3 = -(\lambda - 3))(\lambda - 1))$$

- (A) 1 (B) 2 (C) 3 (D) 4

$$x_1 + 2x_2 - x_3 = \lambda - 1$$
6. 方程组
$$3x_2 - x_3 = \lambda - 2$$
 有无穷解的充分条件是 $\lambda = ($)
$$\lambda x_2 - x_3 = (\lambda - 3)(\lambda - 4) + (\lambda - 2)$$

- (A) 1 (B) 2 (C) 3 (D) 4

7. 已知 β_1 , β_2 是非齐次线性方程组 AX = b 的两个不同的解 , α_1 , α_2 是导出组

AX = 0的基本解系 , k_1, k_2 为任意常数 ,则 AX = b的通解是 (

(A)
$$k_1\alpha_1 + k_2(\alpha_1 + \alpha_2) + \frac{\beta_1 - \beta_2}{2}$$
 (B) $k_1\alpha_1 + k_2(\alpha_1 - \alpha_2) + \frac{\beta_1 + \beta_2}{2}$

(B)
$$k_1 \alpha_1 + k_2 (\alpha_1 - \alpha_2) + \frac{\beta_1 + \beta_2}{2}$$

(C)
$$k_1\alpha_1 + k_2(\beta_1 + \beta_2) + \frac{\beta_1 - \beta_2}{2}$$
 (D) $k_1\alpha_1 + k_2(\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$

- 8. 设 A 为 m×n矩阵,则下列结论正确的是(
 - (A) 若 AX = 0 仅有零解 ,则 AX = b 有唯一解
 - (B) 若 AX = 0 有非零解 ,则 AX = b 有无穷多解
 - (C) 若 AX = b 有无穷多解 ,则 AX = 0 仅有零解
 - (D) 若 AX =b 有无穷多解 ,则 AX = 0 有非零解
- 9. 设 A 为 $m \times n$ 矩阵,齐次线性方程组 AX = 0 仅有零解的充要条件为(
 - (A) A的列向量线性无关 (B) A的列向量线性相关
- - (C) A的行向量线性无关 (D) A的行向量线性相关

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 + 2x_2 + 3x_3 = 0 \\ 4x_1 + 7x_2 + 10x_3 = 1 \end{cases}$$

- 无解 (B) 有唯一解 (C) 有无穷多解 (D) 其导出组只 有零解
 - 二、填空题
- **1.** 设 A 为 100 阶矩阵,且对任意 100 维的非零列向量 X ,均有 AX ≠ 0,则 A 的 秩为 ____.
- $\int kx_1 + 2x_2 + x_3 = 0$ **2.** 线性方程组 $\frac{1}{1}$ $2x_1 + kx_2 = 0$ 仅有零解的充分必要条件是 _____. $x_1 - x_2 + x_3 = 0$
- 3. 设 $X_1, X_2, \coprod X_3$ 和 $c_1X_1 + c_2X_2 + \coprod + c_3X_3$ 均为非齐次线性方程组 AX = b 的解 (a, c₂, Ⅲ c₅ 为常数) , 则 a +c₂ + Ⅲ + c₅ = ____.
- **4.** 若线性方程组 AX = b的导出组与 BX = O(r(B) = r)有相同的基础解系,则
- **5.** 若线性方程组 $A_{m,n}X = b$ 的系数矩阵的秩为 m ,则其增广矩阵的秩为 _____.
- **6.** 设 $10^{\times}15$ 矩阵的秩为 8 ,则 AX = 0 的解向量组的秩为 ____.

- **7.** 如果 n 阶方阵 A 的各行元素之和均为 0 ,且 r (A) ≠ 1 ,则线性方程组 AX = 0 的通解为 ____.
- 8. 若 n 元齐次线性方程组 AX = 0 有 n 个线性无关的解向量 , 则 $A = ____$.
- 9. 设 $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$,若齐次线性方程组 AX = 0只有零解,则 $a = \underline{\hspace{1cm}}$.
- **10.** 设 $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, 若线性方程组 AX = b 无解,则

- **11.** n 阶方阵 A , 对于 AX = 0 , 若每个 n 维向量都是解 , 则 $r(A) = ____.$
- **12.** 设 5×4 矩阵 A 的秩为 3 , α_1 , α_2 , α_3 是非齐次线性方程组 AX = b 的三个不同的解向量 , 若 α_1 + α_2 + 2 α_3 = (2,0,0,0) $^{\mathsf{T}}$, 3 α_1 + α_2 = (2, 4,6,8) $^{\mathsf{T}}$, 则 AX = b 的通解为_____.
- **13.** 设 A 为 m×n 矩阵 , r(A) = r < min(m,n) , 则 AX = 0 有_____个解 , 有_____个线性无关的解 .

三、计算题

- **1.** 已知 $\alpha_1, \alpha_2 \alpha_3$ 是齐次线性方程组 AX = 0的一个基础解系,问 $\alpha_1 + \alpha_2 \alpha_3 + \alpha_3 + \alpha_4 \alpha_3 \alpha_3 + \alpha_4 \alpha_4 \alpha_5 \alpha_5$ 是否是该方程组的一个基础解系?为什么?
- 2. 设 $A = \begin{bmatrix} 5 & 4 & 3 & 3 & -1 \\ 0 & 1 & 2 & 2 & 6 \\ 3 & 2 & 1 & 1 & -3 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & -2 & 0 & 1 & 0 \\ 5 & -6 & 0 & 0 & 1 \\ 1 & -2 & 1 & 0 & 0 \\ 1 & -2 & 3 & -2 & 0 \end{bmatrix}$, 已知 B 的行向量都是线

性方程组 AX = 0的解,试问 B的四个行向量能否构成该方程组的基础解系?为什么?

- 3. 设四元齐次线性方程组为 (): $\begin{cases} x_1 + x_2 = 0 \\ x_2 x_4 = 0 \end{cases}$
- 1) 求()的一个基础解系
- 2) 如果 $k_1(0,1,1,0)^{T} + k_2(-1,2,2,1)^{T}$ 是某齐次线性方程组(II)的通解,问方程组()和(II)是否有非零的公共解?若有,求出其全部非零公共解;若无,说明理由。
- **4.** 问 a, b 为何值时,下列方程组无解?有唯一解?有无穷解?在有解时求出全部解(用基础解系表示全部解)。

$$\begin{cases} x_1 + ax_2 + x_3 = a \\ ax_1 + x_2 + x_3 = 1 \\ x_1 + x_2 + ax_3 = a^2 \end{cases} \qquad \begin{cases} x_1 + x_2 + bx_3 = 4 \\ -x_1 + bx_2 + x_3 = b^2 \\ x_1 - x_2 + 2x_3 = -4 \end{cases}$$

5. 求一个非齐次线性方程组,使它的全部解为

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix} + \begin{pmatrix} 2$$

6. 设 $A = \begin{bmatrix} 2 & -2 & 1 & 3 \\ 9 & -5 & 2 & 8 \end{bmatrix}$, 求 4×2 一个矩阵 B , 使得 AB = 0 , 且 r(B) = 2 。

参考答案

- 一、单项选择题
- 1.B 2.D 3.C 4.B 5.A 6.C 7.B 8.D 9.A 10.C
 - 二、填空题
- 1. 100 2. k ≠ -2且k ≠3 3. 1 4. r 5. m 6. 7
- 7. k(1,1,|||,1)^T (k为任意实数) 8.0 9. a ≠ −1或3 10. a = −1 11.
- 12. $(\frac{1}{2},0,0,0)^{\top} + k(0,2,3,4)^{\top}, k$ 任意实数 13. 无穷 , n-r

三、计算题

- 1. 是 2. 不能
- 3. 1) $v_1 = (0,0,1,0)^{\mathsf{T}}, v_2 = (-1,1,0,1)^{\mathsf{T}}$ 2) $k(-1,1,1,1)^{\mathsf{T}}$ (其中 k为任意非零常数)
- 4. 1) 当 a = -2 时,无解;当 $a \neq -2$ 且 $a \neq 1$ 时有唯一解: $\left(-\frac{1+a}{2+a}, \frac{1}{2+a}, \frac{(1+a)^2}{2+a}\right)^T$; 当 a = 1时有无穷多解: $c_1(-1,1,0)^T + c_2(-1,0,1)^T + (1,0,0)^T$ (其中 c_1,c_2 为任意常数)
- 2) 当 b=-1 时 , 无 解 ; 当 $b\neq -1$ 且 $b\neq 4$ 时 有 唯 一 解 : $(\frac{b(b+2)}{b+1}, \frac{b^2+2b+4}{b+1}, -\frac{2b}{b+1})^{\top} \quad ; \quad \exists \quad b=4 \quad \text{时 有 无 穷 多 解 :} \\ c(-3,-1,1)^{\top} + (0,4,0)^{\top} (其中 c 为任意常数)$
- 5. $9x_1 + 5x_2 3x_3 = -5$
- 6. $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 11/2 & 1/2 \\ -5/2 & 1/2 \end{pmatrix}$

第五章 特征值与特征向量

一、单项选择题

- 1. 设 $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, 则 A的特征值是() 。
- (a) -1,1,1 (b) 0,1,1 (c) -1,1,2 (d) 1,1,2
- 2. 设 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, 则 A的特征值是() 。
- (a) 0,1,1 (b) 1,1,2 (c) -1,1,2 (d) -1,1,1
- 3. 设A为n阶方阵, $A^2 = I$,则()。
- (a) |A|=1 (b) A的特征根都是 1 (c) r(A)=n (d) A一定是对称阵
- 4. 若 x_1, x_2 分别是方阵 A 的两个不同的特征值对应的特征向量 ,则 $k_1 x_1 + k_2 x_2$ 也是 A 的特征向量的充分条件是 () 。
- (a) $k_1 = 0 \pm k_2 = 0$ (b) $k_1 \neq 0 \pm k_2 \neq 0$ (c) $k_1 k_2 = 0$ (d) $k_1 \neq 0 \pm k_2 = 0$
- 5. 若 n 阶方阵 A, B 的特征值相同,则() 。
- (a) A=B (b) |A|=B| (c) A与B相似 (d) A与B合同
- 6. 设 A 为 n 阶可逆矩阵 , λ 是 A 的特征值 , 则 $A^{\hat{i}}$ 的特征根之一是 () 。
- (a) $\lambda^{-4} |A|^n$ (b) $\lambda^{-4} |A|$ (c) $\lambda |A|$ (d) $\lambda |A|^n$
- 7. 设 2 是非奇异阵 A 的一个特征值,则 $(\frac{1}{3}A^2)^4$ 至少有一个特征值等于 $(\)$ 。
- (a) 4/3 (b) 3/4 (c) 1/2 (d) 1/4
- 8. 设 n 阶方阵 A 的每一行元素之和均为 a(a ≠ 0),则 2A⁻¹ + E 有一特征值为

() 。				
(a)a (b)2a (c)2	a+1 (d)	$\frac{2}{3}$ +1		
9. 矩阵 A 的属于不同特征(a) 线性相关(c) 两两相交	E值的特征向量((b) (d)	a 。 线性无关 其和仍是特征向量		
10. A ╡B 是 n 阶矩阵 A	与 B 相似的()	•		
(a) 充要条件	(b)	充分而非必要条件		
(c) 必要而非充分条件	(d)	既不充分也不必要条件		
11. n阶方阵 A有n个不同	司的特征根是 A!	与对角阵相似的 () 。		
(a) 充要条件	(b)	充分而非必要条件		
(c) 必要而非充分条件	(d)	既不充分也不必要条件		
12. 设矩阵 $A = \begin{pmatrix} 1 & \alpha & 1 \\ \alpha & 1 & \beta \\ 1 & \beta & 1 \end{pmatrix}$) 相似,则α,β的值分别为()。 2		
(a) 0,0 (b) 0,1 (c) 1,0 (d) 1,1				
13. 设 A, B 为相似的 n 阶方	ī阵,则() 。			
(a) 存在非奇异阵 P, 使 P	$^{4}AP = B$ (b)	存在对角阵 D,使 A与B都相似于 D		
(c) 存在非奇异阵 P, 使 P ^T	AP = B (d)	A 与 B 有相同的特征向量		
14. 若 n 阶方阵 A 与某对角]阵相似,则()	0		
(a) $r(A) = n$	(b)	A有 n 个不同的特征值		
(c) A有 n 个线性无关的特15. 若 A 相似于 B, 则()	` ,	A必为对称阵		
(a) $\lambda I - A = \lambda I - B$	(b)	$ \lambda - A = \lambda - B $		
(c) A及 B与同一对角阵机	目似 (d)	A和 B有相同的伴随矩阵		

16. 设
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, 则与 A 相似的矩阵是()。

(a)
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

- 17. 下列说法不妥的是 (
- (a) 因为特征向量是非零向量,所以它所对应的特征向量非零
- (b) 属于一个特征值的向量也许只有一个
- (c) 一个特征向量只能属于一个特征值
- (d) 特征值为零的矩阵未必是零矩阵
- 18. 若 A B,则下列结论错误的是 ()

|A| = |B|

- (a) $\lambda E A = \lambda E B$ (b)
- (c) 存在可逆矩阵 P,使 P⁻¹AP = B (d) trA = trB
- 二、填空题 1. n 阶零矩阵的全部特征值为 _____
- 2. 设 A 为 n 阶方阵,且 $A^2 = I$,则 A 的全部特征值为 _______。
- 3. 设 A 为 n 阶方阵,且 $A^m = 0$ (m是自然数),则 A 的特征值为 _____。
- 4. 若 $A^2 = A$,则 A的全部特征值为 ______。
- 5. 若方阵 A 与 4I 相似,则 A = ______。
- 6. 若 n 阶矩阵 A 有 n 个相应于特征值 λ 的线性无关的特征向量 , 则 A = ______。
- 8. 设二阶矩阵 A 满足 $A^2 3A + 2E = O$,则 A的特征值为 ______。

9. 特征值全为 1 的正交阵必是 阵。

三、计算题

- 1. 若 n 阶方阵 A 的每一行元素之和都等于 a , 试求 A 的一个特征值及该特征值对应的一个特征向量 .
- 2. 求非奇异矩阵 P,使 P¹AP为对角阵.

1)
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 2) $A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & -3 & 1 \\ -2 & 0 & -1 \end{pmatrix}$

3. 已知三阶方阵 A的三个特征根为 1,1,2, 其相应的特征向量依次为 (0,0,1)^T,(-1,1,0)^T,(-2,1,1)^T, 求矩阵 A.

4. 设
$$A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$$
, 有一个特征向量 $\alpha = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$, 求 a,b 的值,并求出对应

5. 设
$$A = \begin{pmatrix} 3 & 3 & -1 \\ t & -2 & 2 \\ 3 & s & -1 \end{pmatrix}$$
, 有一个特征向量 $\alpha = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$, 求 s,t 的值。

6. 设
$$A = \begin{pmatrix} 0 & 0 & 1 \\ x & 1 & y \\ 1 & 0 & 0 \end{pmatrix}$$
有三个线性无关的特征向量,求 x, y 满足的条件。

7. 求正交阵 P , 使
$$P^{-1}AP$$
 为对角阵 , 其中 $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ 。

- 8. 设三阶矩阵 A 的特征值为 -1,2,5 ,矩阵 B = $3A A^2$,求
- (1) B的特征值;
- (2) B可否对角化,若可对角化求出与 B相似的对角阵;
- (3) 求 |B|, |A-3E|.
- 9. 已知矩阵 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$ 与 $B = \begin{pmatrix} 2 \\ 2 \\ y \end{pmatrix}$ 相似,
- (1) 求y;
- (2) 求一个满足 $P^{1}AP = B$ 的可逆阵 P。

10.
$$i \Re A = \begin{pmatrix} 5 & -3 & 2 \\ 6 & -4 & 4 \\ 4 & -4 & 5 \end{pmatrix}, \ \vec{X} \ A^{100}.$$

四、证明题

- 1. 设 A 是非奇异阵 , λ 是 A 的任一特征根 ,求证 $\frac{1}{\lambda}$ 是 A $^{-1}$ 的一个特征根 ,并且 A 关于 λ 的特征向量也是 A $^{-1}$ 关于 $\frac{1}{\lambda}$ 的特征向量 .
- 2. 设 $A^2 = E$, 求证 A的特征根只能是 ±1.
- 3. 设 n 阶方阵 A 与 B 中有一个是非奇异的 , 求证矩阵 AB 相似于 BA.
- 4. 证明: 相似矩阵具有相同的特征值
- 5. 设 n 阶矩阵 A ≠ E , 如果 r(A+E)+r(A-E) = n , 证明: -1 是 A 的特征值。
- 6. 设 A L B , 证明 A l B l .
- 7. 设 α_1, α_2 是 n 阶矩阵 A 分别属于 λ_1, λ_2 的特征向量,且 $\lambda_1 \neq \lambda_2$, 证明 $\alpha_1 + \alpha_2$ 不是 A 的特征向量。

第五章 参考答案

一、单项选择题

7.b 8.d 9.b 10.c 11.b 12.a 1.a 2.c 3.c 4.d 5.b 6.b 13.a 14.c 15.b 16.b 17.a 18.a

二、填空题

3.0 4.0,1 5.4l 6. λl 7.7 8.1,2 9. 单 位 1.0 2.1,-1 10.24 11.-17,-12

三、计算题

1. a, (1,1), (1,1)

$$2.(1) \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \qquad (2) \begin{pmatrix} 1 & 1 & -3 \\ -2 & 1 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

$$\begin{array}{ccccc}
3. & \begin{pmatrix} 0 & -2 & 0 \\ 1 & 3 & 0 \\ 1 & 2 & 1 \end{pmatrix}
\end{array}$$

4. a = 3 b = 0
$$\lambda$$
 = -1

4.
$$a = 3, b = 0, \lambda = -1$$
 5. $s = 9, t = -2, \lambda = -6$ 6. $x + y = 0$

6.
$$x + y = 0$$

7.
$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, P^{-1}AP = \begin{pmatrix} a+b & 0 \\ 0 & a-b \end{pmatrix}$$

8.(1)-4,2,-10 (2)
$$\begin{pmatrix} -4 \\ 2 \\ -10 \end{pmatrix}$$
, (3)8

9. (1)
$$y = 6$$
, (2) 特征值 2,2,6; $p = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}$

10.
$$\begin{pmatrix} 3^{100} + 2(2^{100} - 1) & 2 - 2^{100} - 3^{100} & 3^{100} - 1 \\ 2(2^{100} + 3^{100}) - 4 & 4 - 2^{100} - 2 \cdot 3^{100} & 2(3^{100} - 1) \\ 2(3^{100} - 1) & 2(1 - 3^{00}) & 2 \cdot 3^{00} - 1 \end{pmatrix}$$

四.证明题 (略)

第六章 二次型

	一、单项选择题	
1 .	n 阶对称矩阵 A 正定的充分	必要条件是()。
	(a) $ A > 0$	(b) 存在阶阵 C,使 A=C ^T C
	(c) 负惯性指数为零	(d) 各阶顺序主子式为正
2 .	设 A 为 n 阶方阵,则下列结	论正确的是()。
	(a)A 必与一对角图	译合同
	(b) 若 A 的所有顺风	亨主子式为正,则 A 正定
	(c) 若 A 与正定阵	B 合同,则 A 正定
	(d) 若 A 与一对角	自阵相似,则 A 必与一对角阵合同
3 .	设 A 为正定矩阵 ,则下列约	告论不正确的是 ()。
	(a) A 可逆	(b) A ⁻¹ 正定
	(c) A 的所有元素为正	(d) 任给 X = (x₁, x₂, , xₙ) ^T ≠ 0,均有 X TAX > 0
4 .	方阵 A 正定的充要条件是 (),
	(a)A 的各阶顺序主子式为	正; (b) A ^一 是正定阵;
	(c) A 的所有特征值均大于零	厚; (d) A A ^T 是正定阵。
5 .	下列 f (x, y, z) 为二次型的是	()。
	(a) $ax^{2} + by^{2} + cz^{2}$	(b) $ax + by^2 + cz$
	(c) axy +byz +cxz +dxyz	(d) $ax^2 + bxy + czx^2$
6 .	设 A、B 为 n 阶方阵 , 〉	$X = (x_1, x_2, , x_n)^T$ 且 $X^T A X = X^T B X 则 A = B 的充要$
条件	件是 ()。	
	(a) $r(A) = r(B)$	(b) $A^T = A$
	(c) $B^T = B$	(d) $A^T = A$, $B^T = B$,
7.	正定二次型 f(x ₁ , x ₂ , x ₃ , x ₄)	的矩阵为 A,则()必成立.

(a) A 的所有顺序主子式为非负数 (b) A 的所有特征值为非负数

- (c) A 的所有顺序主子式大于零 (d) A 的所有特征值互不相同
- 8. 设 A , B 为 n 阶矩阵 , 若 () , 则 A 与 B 合同.
- (a). 存在 n 阶可逆矩阵 P,Q 且 PAQ = B
- (b) 存在 n 阶可逆矩阵 P , 且 P¹AP = B
- (c) 存在 n 阶正交矩阵 Q , 且 Q ¹AQ = B
- (d) 存在 n 阶方阵 C,T ,且 CAT = B
- 9. 下列矩阵中,不是 二次型矩阵的为 (

(a).
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

(b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

(c)
$$\begin{pmatrix} 3 & 0 & -2 \\ 0 & 4 & 6 \\ -2 & 6 & 5 \end{pmatrix}$$

- (d) $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$
- 10. 下列矩阵中是正定矩阵的为(
- (a) $\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$ (b) $\begin{pmatrix} 3 & 4 \\ 2 & 6 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -3 \\ 1 & 0 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
- 11 . 已知 A 是一个三阶实对称且正定的矩阵,那么 A 的特征值可能是(
 - (a) 3, i, -1; (b) 2, -1, 3; (c) 2, i, 4; (d) 1, 3, 4

- 二、填空题
- **1.** 二次型 $f(x_1, x_2, x_3) = x_1x_2 + 2x_2x_3 + x_3^2$ 的秩为 _______。
- 2. 二次型 $f(x_1, x_2) = x_1^2 x_2 + 6x_1 x_2 + 3x_2^2$ 的矩阵为 ______。

3. 设
$$A = \begin{pmatrix} 1 & 0 & 4 \\ 2 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
,则二次型 $f = X^T AX$ 的矩阵为______。

- 4. 若 f $(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$ 正定,则 t 的取值范围是 ______。
- 6. 任何一个二次型的矩阵都能与一个对角阵 _____。

7.设A =
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & a & 0 \\ 0 & 0 & a^2 \end{pmatrix}$$
是正定矩阵,则 a 满足条件 _____。

- 8. 设实二次型 $f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 2x_2^2 + ax_3^2$ 则当 a 的取值为 ______时 , 二次型 $f(x_1, x_2, x_3)$ 是正定的。
- **9**. 二次型 $f(x_1, x_2) = x_1x_2$ 的负惯性指数是 _______。

10 . 二次型
$$(x_1, x_2)$$
 $\begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$ 的矩阵为 _______。

三、计算题

1. 求一个非退化的线性变换,将下列二次型化为标准型。

1)
$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

2)
$$f(x_1, x_2, x_3) = 2x_1x_2 - 4x_1x_3 + 2x_2^2 - 2x_2x_3$$

2. 设
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, 求非奇异矩阵 C , 使 $A = C^{T}BC$ 。

- **3** . 用配方法化二次型 $f(x_1,x_2,x_3) = x_1x_2 + x_1x_3$ 为标准形,并写出相应的满秩线性变换
- 4. 求非奇异矩阵 P,使 P[→]AP为对角阵.

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & -3 & 1 \\ -2 & 0 & -1 \end{pmatrix}$$

四、证明题

- **1.** 已知二次型 $f(x_1, x_2, x_3) = x^T Ax$ 在正交变换 x = Qy 下的标准形为 $y_1^2 + y_2^2$, 且 Q 的第 3 列为 $\left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^T$.
 - () 求矩阵 A ; (Ⅱ) 证明 A+E 为正定矩阵, 其中 E 为 3 阶单位矩阵.
- **2**. 设 A、B 为同阶正定矩阵, λ , $\stackrel{\mathsf{L}}{=} 0$, 求证 $\lambda A + \stackrel{\mathsf{L}}{=} B$ 也是正定矩阵。
- 3. 设 A, B 是同阶正定矩阵, 试证 A+B 也是正定矩阵。

第六章 参考答案

- 一、单项选择题
 - 1. (d) 2. (c) 3. (c) 4. (b) 5. (a) 6. (d) 7. (c) 8. (c)
 - 9. (d) 10. (c) 11. (d)
- 二、填空题
- 1.3 2. $\begin{pmatrix} 1 & 3 \\ 3 & 3 \end{pmatrix}$ 3. $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 0 & 3 \end{pmatrix}$, 4. $(-\sqrt{2}, \sqrt{2})$
- **5** . < 0
- 6. 合同
- 7 . a >1
- 8. a > 0
- 9.1
- $\mathbf{10} \, \cdot \, \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$
- 三、计算题
- 1.

$$\begin{cases} x_1 = y_1 - y_2 \\ x_2 = y_2 - y_3 \\ x_3 = y_3 \end{cases}$$

$$\begin{cases} x_1 = y_1 + y_2 + y_3 \\ x_2 = y_1 - y_2 + 2y_3 \\ x_3 = y_3 \end{cases}$$

$$\begin{array}{cccc} \mathbf{2} & & \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \end{array}$$

3.解:
$$\Rightarrow$$
 $\begin{cases} x_1 = y_1 \\ x_2 = y_1 + y_2 \\ x_3 = y_3 \end{cases}$ 即 $X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} Y = C_1 Y$

$$f(x_1, x_2, x_3) = y_1^2 + y_1 y_2 + y_1 y_3$$

$$\emptyset:$$

$$= (y_1 + \frac{1}{2} y_2 + \frac{1}{2} y_3)^2 - \frac{1}{4} (y_2 + y_3)^2$$

$$\begin{cases} w_1 = y_1 + \frac{1}{2} y_2 + \frac{1}{2} y_3 \\ w_2 = y_2 + y_3 \end{cases} \qquad \emptyset Y = \begin{pmatrix} 1 & -\frac{1}{2} & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} W = C_2 W$$

$$\begin{cases} w_3 = y_3 \end{cases}$$

即 X = C_1C_2 W 使 f (x_1, x_2, x_3) = $w_1^2 - \frac{1}{4}w_2^2$

4.
$$\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 1 & -3 \\ -2 & 1 & 1 \\ 1 & 2 & 2 \end{pmatrix}$

四、证明题

1. 解:由题意 A 的特征值为 1,1,0. 且 $\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)^{1}$ 为特征值 O 的特征血量 所以 1 的特征向量若为 $\left(x_1,x_2,x_3\right)^{T}$ 时有

$$\frac{\sqrt{2}}{2} x_1 + \frac{\sqrt{2}}{2} x_3 = 0$$

解方程即得 Q 的前 2 列为 (0,1,0) , $\left[-\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right]$

$$\therefore Q = \begin{pmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

第二部分 历年期末试题

山 西 财 经 大 学

2006—2007 学年第二学期期末

2007 级《线性代数》 课程试卷(A)

题号	_	=	三	四	五	总分
分 数						
评卷人						
复核人						

- 1、本卷考试形式为 闭卷 , 考试时间为 两小时。
- 2、考生不得将装订成册的试卷拆散,不得将试卷或答题卡带出考场。
- 3、考生只允许在密封线以外答题,答在密封线以内的将不予评分。
- 4、考生答题时一律使用蓝色、黑色钢笔或圆珠笔(制图、制表等除外)。。
- 5、考生禁止携带手机、耳麦等通讯器材。否则,视为为作弊。
- 6、不可以使用普通计算器等计算工具。
- 一、单项选择题(共 5小题,每题 2分,共计 10分)
- 二、填空题(共 10小题,每题 2分,共计 20分)
- 三、计算题(一)(共4小题,每题8分,共计32分)
- 四、计算题(二)(共3小题,每题 10分,共计 30分)
- 五、证明题(共 2小题,每题 4分,共计 8分)

一、单项选择题(共 5小题,每题 2分,共计 10分) 答题要求:(每题只有一个是符合题目要求的,请将 所选项填在题后的括号内,错选、多选或未选均无分)

- 1、设 n 阶方阵 A与B 等价,则必有 ()
 - (A) 当 |A| = a(a ≠ 0)时 ,B| = a (B) 当 |A| = a(a ≠ 0)时 ,B| = -a
 - (C) 当 | A| ≠ 0时 | B| = 0 (D) 当 | A| = 0时 | B| = 0
- 2、设 A,B 为同阶可逆矩阵,则
 - (A) 矩阵 A与B等价 (B) 矩阵 A与 B相似
 - (C) 矩阵 A与B合同 (D) 矩阵 A与B可交换
- 3、向量组 : $\alpha_1, \alpha_2, |||, \alpha_r;$ 可由向量组 : $\beta_1, \beta_2, |||, \beta_s$ 线性表示,则(
 - (A) 当 r < s 时,向量组 必线性相关
 - (B) 当 r > s 时,向量组 必线性相关
 - (C) 当 r < s 时 , 向量组 必线性相关
 - (D) 当 r > s 时,向量组 必线性相关
- 4、已知 β_1 和 β_2 是非奇次线性方程组 Ax = b的两个不同的解 α_1, α_2 是对应导出

组的基础解系 , k_1, k_2 为任意常数 ,则方程组 Ax = b的通解 (一般解)为 ()

(A)
$$k_1\alpha_1 + k_2(\alpha_1 + \alpha_2) + \frac{\beta_1 - \beta_2}{2}$$
 (B) $k_1\alpha_1 + k_2(\beta_1 + \beta_2) + \frac{\beta_1 - \beta_2}{2}$
(C) $k_1\alpha_1 + k_2(\alpha_1 - \alpha_2) + \frac{\beta_1 + \beta_2}{2}$ (D) $k_1\alpha_1 + k_2(\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$

(C)
$$k_1\alpha_1 + k_2(\alpha_1 - \alpha_2) + \frac{\beta_1 + \beta_2}{2}$$
 (D) $k_1\alpha_1 + k_2(\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$

5、若方阵 C = $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$,则 C 的特征值为

(A) 1 , 0 , 1 (B) 1 , 1 , 2 (C) -1 , 1 , 2 (D) -1 , 1 , 1

- 二、填空题(共 10小题,每题 2 分,共计 20 分) 答题要求:将正确答案填写在横线上
- 1、已知 α_1 , α_2 为 2 维列向量 , 矩阵 $A = (2\alpha_1 + \alpha_2, \alpha_1 \alpha_2)$, $B = (\alpha_1, \alpha_2)$, 若行列式 |A| = -6 , 则 $|B| = ______$ 。
- 2、设 3 阶方阵 $A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 1 & 1 \end{pmatrix}$ 则 A 的逆矩阵 $A^{-1} = \underline{\qquad}$
- 3、设_A = 2 1 0 1 2 0 0 0 1 , 矩阵 B 满足 ABA* = 2BA*+E , 其中 A*为 A 的伴随矩阵 , E

为三阶单位矩阵,则 B的行列式 B =____。

- 4、设 A是 3×5 阶矩阵 , A 的秩 r(A) = 2 , 而 $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$, 则 r(BA) =________。
- 5、已知四阶行列式中第二列元素依次为 1,2,3,4,其对应的余子式依次为 4,3,2,1,则该行列式的值为 _____。
- 6、设三阶矩阵 $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}$, 三维列向量 $\alpha = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$, 已知 $A\alpha = \alpha$ 线性相关,则

- 7、设四阶矩阵 A相似于 B , A的特征值为 2 , 3 , 4 , 5 , E 为四阶单位矩阵 ,则行列式 |B-E| = _____。
- 8、如果 10 阶方阵 A 的各行元素之和均为 0,且 r(A) → 9,则线性方程组 Ax = 0的 通解为 ______。
- 10、若二次型 $f(x_1,x_2,x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$ 正定,则 t 的所属区间

为____。

本题 得分

三、计算题(一)(共4小题,每题8分,共计32分)答题要求:(请将答案写在指定位置上,解题时应写出文字说明或计算步骤)

1、解方程 $\begin{vmatrix} 1 & -1 & 1 & x-1 \\ 1 & -1 & x+1 & -1 \\ 1 & x-1 & 1 & -1 \\ x+1 & -1 & 1 & -1 \end{vmatrix} = 0$

2、求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 的一个极大无关组,并用该极大无关组表示其余的向量。 其中 α_1 =(1 , 4 , 0 , 2) $^{\text{T}}$, α_2 = (-2,-7,1,-4) $^{\text{T}}$, α_3 = (1,4,-1,3) $^{\text{T}}$ α_4 =(-4,-4,3,1) $^{\text{T}}$, α_5 =(2,5,1,0) $^{\text{T}}$ 。

3、设 A =
$$\begin{pmatrix} 1 & -1 & 1 & 2 \\ 3 & 5 & -1 & 2 \\ 5 & 3 & \lambda & 6 \end{pmatrix}$$
, 求 A的秩。

4、求矩 阵 X ,使 XA = 2 XB+ C。其中 A =
$$\begin{pmatrix} 2 & 4 & 9 \\ 6 & 5 & 7 \\ -5 & 3 & -2 \end{pmatrix}$$
 , B = $\begin{pmatrix} 1 & 1 & 4 \\ 2 & 3 & 2 \\ -1 & 0 & 1 \end{pmatrix}$, (1 2 3)

$$C = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -3 & 1 \end{pmatrix}$$

四、计算题(二)(共3小题,每题 10分,共30分)答题要求:(请将答案写在指定位置上,解题时应写出文字说明或计算步骤)

1、已知向量
$$\beta = \begin{pmatrix} 2 \\ -1 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -3 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 5 \\ -5 \\ 12 \\ 11 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -3 \\ 6 \\ 3 \end{pmatrix}$, 判断向量 β 能否由向量组

 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,若能,写出它的一般表示方式;若不能,请说明理由。

2、设A =
$$\begin{pmatrix} 1 & -8 & 1 \\ 4 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$
, $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

- (1) 计算二次型 X^TAX ,写出该二次型所对应的矩阵;
- (2)将二次型 X^TAX 化为标准形,写出所用的可逆线性变换及变换矩阵。

3、设 A =
$$\begin{pmatrix} 1 & -2 & -4 \\ -2 & x & -2 \\ -4 & -2 & 1 \end{pmatrix}$$
, B = $\begin{pmatrix} 5 \\ y \\ -4 \end{pmatrix}$, 如果 A, B 相似,求

- (1) x,y的值
- (2)相应的正交矩阵 $P, \oplus P^{-1}AP = B$ 。

五、证明题(共 2小题,每题 4分,共计 8分) 答题要求:(请将答案写在指定位置上,并写清证明 过程)

1、设 A 为 n 阶方阵 , E 为 n 阶单位矩阵 , H $A^2 - 2A - 4E = 0$ 。 试证 : A - 3E 可逆 , 并 求 $(A - 3E)^{-1}$ 。

2、若向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关,向量组 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$ 是否线性相关?说明其理由。

2008—2009 学年第二学期期末

线性代数 课程试卷(A)

本题 得分

一、单项选择题(共 5小题,每题 2分,共计 10分) 答题要求:(每题只有一个是符合题目要求的,请将 所选项填在题后的括号内,错选、多选或未选均无分)

- 1. 行列式 $\begin{vmatrix} 4 & x & 0 \end{vmatrix}$ 的展开式中 $\begin{vmatrix} x^2 \end{vmatrix}$ 的系数为 (1 0 x
 - (A) -1 (B) 2 (C) 3 (D) 4
- 2.设 A,B 为 n 阶非零矩阵,且 AB = 0,则 (

 - (A) $r(A) + r(B) \le n$ (B) r(A) = n, r(B) = 0

 - (C) r(A) + r(B) < n (D) r(A) + r(B) > n
- 3. 向量组 $\alpha_1, \alpha_2, ||||, \alpha_s$ 线性无关的充要条件是

- (A) 向量组 ^α₁, ^α₂, **Ⅲ**, ^α_s不含零向量
- (B) 向量组 $\alpha_1, \alpha_2, 111, \alpha_s$ 中任意两个线性无关
- (C) 向量 α_1 不能由向量组 $\alpha_2, \alpha_3, ||||, \alpha_s$ 线性表出
- (D) 任一组不全为零的数 $k_1, k_2, |||, k_s|$, 都使

$$k_1^{\alpha}_1 + k_2^{\alpha}_2 + \prod + k_s^{\alpha}_s \neq 0$$

- 4. 已知四阶方阵 A 有特征值 0,1,2,3,则方程组 AX = 0的基础解系所含解 向量个数为
 - (A) 1 (B) 2 (C) 3 (D) 4

5.n 阶对称阵 A 为正定矩阵的充分必要条件是 ()

- (A) |A| > 0 (B) A 等价于单位矩阵 E
- (C) A的特征值都大于 0 (D) 存在 n 阶矩阵 C , 使 $A = C^T C$

二、填空题(共 10 小题,每题 2 分,共计 20 分) 答题要求:将正确答案填写在横线上

- 1. 三阶行列式 $\left|a_{ij}\right|$ 的展开式中, $a_{32}a_{11}a_{23}$ 前面的符号应是 ______。
- $2. \ \mathcal{U}_{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$, A_j 为 A 中元 a_{ij} 的代数余子式,则

- 3 . 设 n 阶矩阵 A 的秩 r(A) < n 1 , 则 A 的伴随矩阵 A* 的元素之和 Σ Σ Σ A_j = ______。 i ≠ j ≠ A
- 4. 三阶初等矩阵 E(1,2)的伴随矩阵为 _____。
- 5. 若非齐次线性方程组 AX = B 有唯一解,则其导出组 AX = 0 解的情况是_____。
- $6. 若向量组 \ \alpha_1 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \beta_1 = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} 线性相关,则向量组 \ \alpha_2 = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \beta_2 = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$

的线性关系是 _____。

7. 设矩阵 A的特征多项式为 $\lambda E - A = (\lambda - 1)^2 (\lambda + 2)$, 则行列式

8. 如果 n 阶方阵 A 的各行元素之和均为 2,则矩阵 A 必有特征值 。

9. 设
$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$
为正交矩阵,则其逆矩阵 $A^{-1} =$ ______。

10. 二次型 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2$ 的正惯性指数为。

本题 得分 三、计算题(一)(共4小题,每题8分,共计32分)答题要求:(请将答案写在指定位置上,解题时应写出文字说明或计算步骤)

2. 设
$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
 (1) 用初等变换法求 A^{-1} ; (2) 将 A^{-1} 表示为初等矩

阵之积。

3.设
$$A = \begin{pmatrix} 3 & 0 & -1 \\ 1 & 3 & 0 \\ -1 & -1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$, 且满足 $AX - 2X = B$, 求 X 。

4.化二次型 $f(x_1,x_2,x_3) = x_1^2 + 2x_3^2 + 2x_1x_3 - 2x_2x_3$ 为标准形,并写出可逆的线性变换。

四、计算题(二)(共3小题,每题 10分,共30分)答题要求:(请将答案写在指定位置上,解题时应写出文字说明或计算步骤)

1. 当 a 为何值时,方程组

$$\begin{cases} 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = 0 \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 3 \\ x_1 + x_2 + x_3 + x_4 + x_5 = 1 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = a \end{cases}$$

有无穷多组解?在有无穷多组解时,用导出组的基础解系表示全部解。

2. 判别向量组 $\beta_1 = (1,2,5,2)^T$, $\beta_2 = (3,0,7,14)^T$ 能否由向量组 $\alpha_1 = (1,-1,-2,0)^T$, $\alpha_2 = (2,1,5,6)^T$, $\alpha_3 = (1,-1,-2,0)^T$ 线性表出,并求向量组 $\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2$ 的一个极大无关组。

3.设A =
$$\begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$
 求正交矩阵 P,使 P⁻¹AP 为对角矩阵,并写出相应
2 2 4

的对角阵。

本题 得分

五、证明题(共 2小题,每题 4分,共计 8分) 答题要求:(请将答案写在指定位置上,并写清证明 过程)

1.设 n 阶方阵 A 有不同的特征值 λ_1,λ_2 ,相应的特征向量分别是 α_1,α_2 ,证明: 当 $\mathbf{k}_1,\mathbf{k}_2$ 全不为零时,线性组合 $\mathbf{k}_1\alpha_1+\mathbf{k}_2\alpha_2$ 不是 A 的特征向量。

2. 设 n 维列向量组 $\alpha_1, \alpha_2, |||, \alpha_s$ 线性相关 , A为 n 阶方阵 , 证明:向量组 $A\alpha_1, A\alpha_2, |||, A\alpha_s$ 线性相关。

附:《线性代数》(A卷)答案要点及评分标准

- 一.选择题(共5小题,每题2分,共计10分)
- 1.B; 2 .A; 3 .D; 4.A; 5 .C.
- 二.填空题(共 10 小题, 每题 2 分, 共计 20 分)

1.负号; 2.1; 3.0; 4.
$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
,或 $-E(1,2)$; 5.唯一解(或只

有零解); 6 . 线性相关 ; 7 . -27 ; 8 . 2 ; 9 .
$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$
 ; 10 . 3.

- 三、计算题(一)(共4小题,每题8分,共计32分)
- 1、解:按照第一行展开得到

$$D_{n} = \begin{vmatrix} 1 & 0 & ||| & 0 & 0 \\ 1 & 1 & ||| & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & ||| & 1 & 0 \\ 0 & 0 & ||| & 1 & 1 \end{vmatrix} + (-1)^{n+1} \begin{vmatrix} 1 & 1 & 0 & ||| & 0 \\ 0 & 1 & 1 & ||| & 0 \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & ||| & 1 \end{vmatrix} = 1 + (-1)^{n+1}$$

$$= \begin{cases} 2 & n \to 5 \\ 0 & n \to 6 \end{cases}$$

2、解:

$$\rightarrow \begin{pmatrix}
1 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & -2 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} & 1
\end{pmatrix}$$

3、解:方法一:由 AX -2X = B, 得到 (A - 2E) X= B,2 分

$$(A-2E,E) = \begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ -1 & -1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \qquad5$$

所以,
$$A-2E$$
可逆, $X = (A-2E)^{-1}B = \begin{pmatrix} 2 & 2 \\ -2 & -1 \\ 1 & 1 \end{pmatrix}$8分

方法二:由 AX −2X = B, 得到 (A −2E) X = B ,2 分

用初等行变换求 X

$$(A-2E,B) = \begin{pmatrix} 1 & 0 & -1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ -1 & -1 & 1 & 1 & 0 \end{pmatrix}$$

所以,
$$A-2E$$
可逆, $X = (A-2E)^{-1}B = \begin{pmatrix} 2 & 2 \\ -2 & -1 \\ 1 & 1 \end{pmatrix}$8分

四、计算题(二)(共3小题,每题 10分,共计 30分) 1、解:由

$$r(A,b) = \begin{pmatrix} 3 & 2 & 1 & 1 & -3 & 0 \\ 0 & 1 & 2 & 2 & 6 & 3 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 5 & 4 & 3 & 3 & -1 & a \end{pmatrix} \rightarrow \cdots$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 6 & 3 \\ 0 & 0 & 0 & 0 & 0 & a - 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

方程组有无穷多组解,所以 r(A) = r(A,b) = 2,故 a = 24分

$$\begin{cases} x_1 = -2 + x_3 + x_4 + 5x_5 \\ x_2 = 3 - 2x_3 - 2x_4 - 6x_5 \end{cases}$$

取
$$x_3 = x_4 = x_5 = 0$$
 , 得到特解 $^{1} = (-2,3,0,0,0) ^{T}$ 7 分

令
$$\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
, 分别代入等价方程组的齐次线性方程组中求得基础解系

为

$$\xi_1 = (1,-2,1,0,0)^{\mathsf{T}}$$
, $\xi_2 = (1,-2,0,1,0)^{\mathsf{T}}$, $\xi_3 = (5,-6,0,0,1)^{\mathsf{T}}$

方程组的全部解为

$$x = \frac{1}{2} + k_1 + k_2 + k_3 + k_3 + k_3 + k_4 + k_5 + k_4 + k_5 + k_5 + k_6 + k$$

......10分

2、解:初等行变换矩阵 $(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2)$ 到行最简梯矩阵为

$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}) = \begin{pmatrix} 1 & 2 & 1 & 1 & 3 \\ -1 & 1 & -1 & 2 & 0 \\ 0 & 5 & -2 & 5 & 7 \\ 4 & 6 & 0 & 2 & 14 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 & 2 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

......6分

可得到 β_1 , β_2 能由 α_1 , α_2 , α_3 线性表示,且

$$\beta_1 = -\alpha_1 + \alpha_2$$
, $\beta_2 = 2\alpha_1 + \alpha_2 - \alpha_3$

向量组 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ 的一个极大无关组为 $\alpha_1, \alpha_2, \alpha_3$ 10 分

3、解:

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - 4 & -2 & -2 \\ -2 & \lambda - 4 & -2 \\ -2 & -2 & \lambda - 4 \end{vmatrix} = (\lambda - 8)(\lambda - 2)^{2} \qquad \dots \qquad 4 \text{ }$$

得到矩阵 A的全部特征值为 $\lambda_1 = \lambda_2 = 2, \lambda_3 = 8$

当
$$\lambda_1 = \lambda_2 = 2$$
 时,由(2E-A)x=0得一个基础解系

$$\xi_1 = (-1,1,0)^T, \xi_2 = (-1,0,1)^T$$

正交化,单位化
$$\beta_1 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)^{\mathsf{T}}$$
 , $\beta_2 = (-\frac{\sqrt{6}}{6}, -\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3})^{\mathsf{T}}$ … 7分

当 $\lambda_3 = 8$ 时,由 (8E - A)x = 0 的一个基础解 $\xi_3 = (1,1,1)^T$

则正交阵
$$P = (\beta_1, \beta_2, \beta_3) = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}}{6} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{\sqrt{6}}{6} & \frac{1}{\sqrt{3}} \\ 0 & \frac{\sqrt{6}}{3} & \frac{1}{\sqrt{3}} \end{bmatrix}$$
, 使 $P^{-1}AP = B$,

相应的对角阵为
$$\Lambda = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$
 10 分

五、证明题(共 2小题,每题 4分,共计 8分)

1、证明:
$$A(k_1\alpha_1 + k_2\alpha_2) = Ak_1\alpha_1 + Ak_2\alpha_2 = k_1A\alpha_1 + k_2A\alpha_2$$
 因为
$$A\alpha_1 = \lambda_1\alpha_1, A\alpha_2 = \lambda_2\alpha_2$$

$$A(k_1\alpha_1 + k_2\alpha_2) = k_1\lambda_1\alpha_1 + k_2\lambda_2\alpha_2 \quad \overline{m} \lambda_1 \neq \lambda_2$$

所以 $k_1\alpha_1 + k_2\alpha_2$ 不是 A的特征向量 4 分

2、证明:由 $\alpha_1,\alpha_2,|||,\alpha_s$ 线性相关,根据定义,存在不全为 0 的 $k_1,k_2,|||,k_s$,使 得 $k_1\alpha_1+k_2\alpha_2+|||+k_s\alpha_s=0$, 用 矩 阵 A 左 乘 等 号 两 边 得 到 A $k_1\alpha_1+A$ A $k_2\alpha_2+|||+A$ A $k_3\alpha_3+|||+A$ A $k_3\alpha_4+|||+A$ A $k_3\alpha_4+|||+A$ A $k_3\alpha_4+|||+A$ A $k_3\alpha_4+|||+A$ A $k_3\alpha_4+||+A$ A $k_4\alpha_4+||+A$ A $k_4\alpha_4+||+A$ A $k_4\alpha_4+||+A$ A $k_4\alpha_4+||+A$ A $k_5\alpha_4+||+A$ A $k_5\alpha_5+||+A$ A $k_5\alpha_5+||+A$

k_i不全为 0,根据线性相关的定义

得到向量组 $k_1\alpha_1, k_2\alpha_2, |||, k_s\alpha_s$ 线性相关 4 分

山 西 财 经 大 学

2009-2010 学年第二学期期末

本题 得分

一、单项选择题(共 5小题,每题 2分,共计 10分) 答题要求:(每题只有一个是符合题目要求的,请将 所选项填在题后的括号内,错选、多选或未选均无分)

1. 在 f (x) =
$$\begin{vmatrix} 1 & -1 & x+1 \\ 1 & x-1 & 1 \\ x+1 & -1 & 1 \end{vmatrix}$$
 展开式中, x^2 的系数为 () (A) -1 (B) 0 (C) 1 (D) 2

 $(A) - 1 \quad (B) \cup (C) \setminus (D) \setminus 2$

2. A是 $m \times n$ 矩阵 , r(A) = r, B 是 m阶可逆矩阵 , C 是 m阶不可逆矩阵 , 且

r(C) < r ,则

- (A) BAX =O的基础解系由 n-m 个向量组成
- (B) BAX = O 的基础解系由 n-r 个向量组成
- (C) CAX =O 的基础解系由 n-m 个向量组成
- (D) CAX =O的基础解系由 n-r 个向量组成
- 3. 设 n 阶矩阵 A,B有共同的特征值, 且各自有 n 个线性无关的特征向量, 则()
 - (A) A = B (B) $A \ne B$, |B| = 0
 - (C) A B (D) A与B不一定相似,但 | A = | B |
- 4. 设 A,B,C 均为 n 阶矩阵,且 AB=BC=CA=E,其中 E 为 n 阶单位阵,则

$$A^2 + B^2 + C^2 =$$

(A) O (B) E (C) 2E (D) 3E

5. 设
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, 则 A与B$$
 ()

- (A) 合同,且相似 (B) 不合同,但相似
- (C) 合同,但不相似 (D) 既不合同,又不相似

本题填空题(共 二、填空题(共 10小题,每题 2分,共计 20 分) 答题要求:将正确答案填写在横线上

1 . 已知
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = m \neq 0$$
 , 则 $\begin{vmatrix} 2a_1 & b_1 + c_1 & 3c_1 \\ 2a_2 & b_2 + c_2 & 3c_2 \\ 2a_3 & b_3 + c_3 & 3c_3 \end{vmatrix} = \underline{\hspace{1cm}}$ 。

2.设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, 若三阶矩阵 Q满足 $AQ + E = A^2 + Q$, 则 Q 的第一行的行

向量是

- 3.已知 β 为 n 维单位列向量 , β^{T} 为 β 的转置 , 若 $C = \beta\beta^{T}$, 则 $C^2 =$
- 4.设 α_1, α_2 分别是属于实对称矩阵 A的两个互异特征值 λ_1, λ_2 的特征向量,则 $\alpha_1^T \alpha_2 = \underline{\hspace{1cm}}$
- 5.设 A是四阶矩阵 , A^* 为其伴随矩阵 , α_1,α_2 是齐次方程组 AX = 0 的两个线 性无关解 , 则 r(A*) = _____。
- 6 .向量组 α_1 = $(1,3,0,5,0)^{\mathsf{T}}$, α_2 = $(0,2,4,6,0)^{\mathsf{T}}$, α_3 = $(0,3,0,6,9)^{\mathsf{T}}$ 的线性关系 是_____。

$$x_1 + 2x_2 - 2x_3 = 0$$
 7. 已知三阶非零矩阵 B的每一列都是方程组 $2x_1 - x_2 + \lambda x_3 = 0$ 的解,则 $3x_1 + x_2 - x_3 = 0$

8. 已知三维向量空间 R^3 的基底为 $\alpha_1 = (1,1,0)^T$ $\alpha_2 = (1,0,1)$ $\alpha_3 = (0,1,1)$, 则向量

β =(2,0,0) ^T 在此基底下的坐标是 _____。

9.设A=
$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 4 \end{pmatrix}$,则a=_____。

10. 二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_4x_2 + 2x_4x_3 - 2x_2x_3$ 的秩为 ______。

本题得分

三、计算题(一)(共4小题,每题8分,共计32分)答题要求:(请将答案写在指定位置上,解题时应写出文字说明或计算步骤)

2.
$$\[\] A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}, \ \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \$$

3.设n阶方阵 A,B满足 A+2B = AB,已知 B = $\begin{pmatrix} 1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$,求矩阵 A.

4.设二次型 $f(x_1,x_2,x_3)=ax_1^2+2x_2^2-2x_3^2+2bx_1x_3(b>0)$ 中,二次型的矩阵 A的特征值之和为 1,特征值之积为 -12.(1)求 a,b 的值;(2)用配方法化该二次型为标准形 .

四、计算题(二)(共3小题,每题10分,共30分)答题要求:(请将答案写在指定位置上,解题时应写出文字说明或计算步骤)

1. 当 λ 为何值时, 方程组

$$\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1 \\ \lambda x_1 - x_2 + x_3 = 2 \\ 4x_1 + 5x_2 - 5x_3 = -1 \end{cases}$$

无解、有唯一解或有无穷多组解?在有无穷多组解时, 用导出组的基础解系表示全部解.

2 已知向量组 $\alpha_1 = (1, 3, 2, 0)$, $\alpha_2 = (7,0,14,3)^T$, $\alpha_3 = (2,-1,0,1)^T$, $\alpha_4 = (5,1,6,2)^T$, $\alpha_5 = (2,-1,4,1)^T$, $\alpha_4 = (5,1,6,2)^T$, $\alpha_5 = (2,-1,4,1)^T$, $\alpha_5 = (2,-1,4,1)^$

3. 已知矩阵 A =
$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
;判断 A能否对角化,若可对角化,求正交矩

阵 P , 使 P ⁻¹ AP 为对角矩阵 , 并写出相应的对角矩阵。

本题 得分

五、证明题(共 2小题,每题 4分,共计 8分) 答题要求:(请将答案写在指定位置上,并写清证明 过程)

1 .设 α 是 n 阶矩阵 A 的属于特征值 λ 的特征向量 . 证明 : α 也是 A 5 – 4 A 3 + E 的特征向量 . 其中 E 为 n 阶单位矩阵 .

2. 设 n 维向量组 α , β , γ 线性无关 , 向量组 α , β , δ 线性相关 , 证明 : δ 必可 由 α , β , γ 线性表示 .

2009—2010 学年第二学期期末

《线性代数》(A卷)答案要点及评分标准

- 一. 选择题(共 5 小题, 每题 2 分, 共计 10 分)
- 1.A; 2 .B; 3 .C; 4.D; 5 .C.
- 二.填空题(共 10 小题, 每题 2 分, 共计 20 分)
- 1.6m; 2.(2,0,1); 3. $\beta\beta^T$; 4.0; 5.0;
- 6.线性无关; 7.1; 8.1,1,-1; 9.1; 10.2.
- 三、计算题(一)(共4小题,每题8分,共计32分)
- 1、解:

$$A_{41} + A_{42} + A_{43} + A_{44} = \begin{vmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \end{vmatrix}$$
4分

2、
$$\mathbf{m}$$
: $\mathbf{\hat{h}}$: $\mathbf{\hat{h}$: $\mathbf{\hat{h}}$: $\mathbf{\hat{h}$: $\mathbf{\hat{h}}$: \mathbf

......2分

$$(AB \quad E) = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 \\ 0 & 9 & 3 & 0 & 0 & 1 \end{pmatrix}$$

所以
$$(AB)^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{3}{2} & \frac{1}{3} \end{pmatrix} \qquad \dots 8$$
 分

(2)方法二:

$$(AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{3}{2} & \frac{1}{3} \end{pmatrix} \dots 8$$

3、解:方法一:由 A+2B = AB, 得到 A(E-B) = -2B,2分

$$(E-B,E) = \begin{pmatrix} 0 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 0 & 0 & 1 \end{pmatrix}$$

所以,E-B可逆,A=-2B(E-B)⁻¹=
$$\begin{pmatrix} 3 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
.8分

用初等列变换求 A

$$\begin{pmatrix}
\mathsf{E} - \mathsf{B} \\
-2\mathsf{B}
\end{pmatrix} = \begin{pmatrix}
0 & -2 & 0 \\
1 & -1 & 0 \\
0 & 0 & -2 \\
-2 & -4 & 0 \\
2 & -4 & 0 \\
0 & 0 & -6
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
3 & -2 & 0 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix}$$

......6分

所以,
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
8分

4、 解: 二次型的矩阵
$$A = \begin{pmatrix} a & 0 & b \\ 0 & 2 & 0 \\ b & 0 & -2 \end{pmatrix}$$
 根据题意得到

$$a + 2 + (-2) = 1, -4a - 2b^2 = -12$$
 $a = 1, b = 2$ $4 + 5$
 $f = x_1^2 + 2x_2^2 - 2x_3^2 + 4x_1x_3 = (x_1 + 2x_3)^2 + 2x_2^2 - 6x_3^2$

四、计算题(二)(共3小题,每题 10分,共计 30分)

1、解:
$$|A| = \begin{vmatrix} 2 & \lambda & -1 \\ \lambda & -1 & 1 \\ 4 & 5 & -5 \end{vmatrix} = (\lambda - 1)(5\lambda + 4)$$
 由克莱姆法则

当
$$\lambda \neq 1$$
且 $\lambda \neq -\frac{4}{5}$ 时,方程组有唯一解;2 分

当
$$\lambda = -\frac{4}{5}$$
 时

$$r(A,b) = \begin{pmatrix} 2 & -\frac{4}{5} & -1 & 1 \\ -\frac{4}{5} & -1 & 1 & 2 \\ 4 & 5 & -5 & -1 \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 10 & -4 & -5 & 5 \\ -4 & -5 & 5 & 10 \\ 0 & 0 & 0 & 9 \end{pmatrix}$$

当 λ =1 时

$$r(A,b) = \begin{pmatrix} 2 & 1 & -1 & 1 \\ 1 & -1 & 1 & 2 \\ 4 & 5 & -5 & -1 \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

有 r(A) = r(A,b) = 2 < 3 , 方程 组有 无穷 多组 解 , 原 方程 组等 价于 方程组 为

$$\begin{cases} x_1 = 1 \\ x_2 - x_3 = -1 \end{cases}$$

取 $x_3 = 0$, 得到特解 $^{n} = (1,-1,0)^{T}$

令 $x_3 = 1$,代入等价方程组的齐次线性方程组中求得基础解系为

$$\xi = (1,0,1)^{T}$$

方程组的全部解为

2、解:初等行变换矩阵 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$ 到行最简梯矩阵为

$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}, \boldsymbol{\alpha}_{5}) = \begin{pmatrix} 1 & 7 & 2 & 5 & 2 \\ 3 & 0 & -1 & 1 & -1 \\ 2 & 14 & 0 & 6 & 4 \\ 0 & 3 & 1 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 1 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

.....6分

可得向量组的秩为 3,

向量组的一个极大无关组为 $\alpha_1, \alpha_2, \alpha_3$, 且

$$\alpha_4 = \frac{2}{3}\alpha_1 + \frac{1}{3}\alpha_2 + \alpha_3, \alpha_5 = -\frac{1}{3}\alpha_1 + \frac{1}{3}\alpha_2$$
 10 \(\frac{1}{3}\)

3、解: A的特征多项式为

得到矩阵 A的全部特征值为 $\lambda_1 = \lambda_2 = -1, \lambda_3 = 5$

当
$$\lambda_1 = \lambda_2 = -1$$
 时,由 $(-E - A)x = 0$ 得一个基础解系

$$\xi_1 = (-1,1,0)^T, \xi_2 = (-1,0,1)^T$$

正交化,单位化
$$\beta_1 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)^{\mathsf{T}}$$
 , $\beta_2 = (-\frac{\sqrt{6}}{6}, -\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3})^{\mathsf{T}}$

当
$$\lambda_3 = 5$$
 时,由 (5E - A) x = 0的一个基础解 $\xi_3 = (1,1,1)^T$

将其单位化得
$$\beta_3 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})^{\mathsf{T}}$$
8 分

因此 A能对角化

且正交阵
$$P = (\beta_1, \beta_2, \beta_3) = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}}{6} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{\sqrt{6}}{6} & \frac{1}{\sqrt{3}} \\ 0 & \frac{\sqrt{6}}{3} & \frac{1}{\sqrt{3}} \end{bmatrix}$$
, 使 $P^{-1}AP = \Lambda$,

相应的对角阵为
$$\Lambda = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
 10 分

五、证明题(共 2小题,每题 4分,共计 8分)

1、证明: 因为
$$A^{\alpha} = \lambda^{\alpha}$$
, 有
$$(A^{5} - 4A^{3} + E)^{\alpha} = A^{5} \alpha - 4A^{3} \alpha + \alpha$$

$$= \lambda^{5} \alpha - 4\lambda^{3} \alpha + \alpha = (\lambda^{5} - 4\lambda^{3} + 1)\alpha$$

根据特征值和特征向量的定义得 α 也是 $A^{5}-4A^{3}+E$ 的特征向量.

......4分

2、证明:由 α , β , γ 线性无关,得到 α , β 线性无关,又 α , β , δ 线性相关,则 δ 可以由 α , β 线性表示,所以 δ 必可由 α , β , γ 线性表示.

......4分

山西财经大学华商学院

2008-2009 学年第二学期期末

线性代数 课程试卷(A)

- 1 、本卷考试形式为 闭卷 , 考试时间为 两小时。
 - 2、考生不得将装订成册的试卷拆散,不得将试卷或答题卡带出考场。
 - 3、考生只允许在密封线以外答题,答在密封线以内的将不予评分。
 - 4、考生答题时一律使用蓝色、黑色钢笔。
 - 5、考生禁止携带手机、耳麦等通讯器材。否则,视为作弊。
 - 6、禁止使用电子翻译工具和字典。

客观题:

- 一、单项选择题(共 10题,每题 2分,共 20分,1—10题)
- 二、判断题 (共 10 题, 每题 1 分, 共 10 分, 11--20 题)

主观题:

S1: 填空题 (共5题, 每题 2分, 共 10分)

S2: 计算题 (一) (共3题,每题6分,共18分)

S3: 计算题 (二) (共 2 题, 每题 8 分, 共 16 分)

S4: 计算题 (三) (共2题,每题 10分,共 20分)

第一部分 客观题(共 30分) 一、单项选择题(共 10 小题,每小题 2分,共 20分) $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} = d , 则 \begin{vmatrix} a_{21} & 2a_{22} & 3a_{23} \\ a_{11} & 2a_{12} & 3a_{13} \end{vmatrix} 等于 ()$ $\begin{vmatrix} a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{31} & 2a_{32} & 3a_{33} \end{vmatrix}$ (A) 2d (B) 3d (C) 6d (D) -6d 2. 设 A = $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$, M_{ij}是 A 中元素 a_{ij}的余子式,则 M₃₁ – M₃₂ + M₃₃ = () (A) 0 (B) 1 (C) 2 (D) 3 3. 设 A 为 n 阶可逆矩阵,则下列各式恒成立的是() (A) $|2A|=2|A^{T}|$ (B) $(2A)^{-1}=2A^{-1}$ (C) $|A^*| = |A^{-1}|$ (D) $[(A^T)^T]^{-1} = [(A^{-1})^T]^T$ 4. 初等矩阵满足() (A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为 1 5. 下列不是 n 阶矩阵 A 可逆的充要条件为 ((B) A可以表示成有限个初等阵的乘积 (A) A ≠0 (C) 伴随矩阵存在 (D) A的等价标准型为单位矩阵 6. 设 A 为 m×n 矩阵 , C 为 n 阶可逆矩阵 , B = AC , 则 ((A) 秩(A)> 秩(B) (B) 秩(A)= 秩(B)

S5: 证明题 (共 1 题, 每题 6 分, 共 6 分)

(C) 秩(A)< 秩(B) (D) 秩(A)与秩(B)的关系依 C 而定
7. 如果向量 β 可由向量组 $\alpha_1,\alpha_2, ,\alpha_s$ 线性表示 ,则下列结论中正确的是 (
(A) 存在一组不全为零的数 k_1, k_2, k_s ,使得 $\beta = k_1 \alpha_1 + k_2 \alpha_2 + + k_s \alpha_s$ 成立
(B) 存在一组全为零的数 k_1 , k_2 , $ k_s$, 使得 $\beta = k_1 \alpha_1 + k_2 \alpha_2 + + k_s \alpha_s$ 成立
(C) 存在一组数 k_1 , k_2 , $ k_s$, 使得 $ \beta = k_1 \alpha_1 + k_2 \alpha_2 + + k_s \alpha_s$ 成立
(D) 对 ^β 的线性表达式唯一
8. 设气, 52 是齐次线性方程组 AX = 0的解, 11, 12 是非齐次线性方程组 AX = b的解,则()
(A) $2^{\frac{1}{5}} + \frac{1}{1}$ 为 AX = 0 的解 (B) $\frac{1}{1} + \frac{1}{1} = \frac{1}{2}$ 为 AX = b 的解
(C) $\frac{\xi_1 + \xi_2}{3}$ 为 AX = 0 的解 (D) $\frac{\eta_1 - \eta_2}{3}$ 为 AX = b 的解
9. 设 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ 则 A 的特征值是 () 。
(A) 0,1,1 (B) 1,1,2 (C) -1,1,2 (D) -1,1,1
10. 若 n 阶方阵 A 与某对角阵相似,则 ()。
(A) r(A) = n (B) A有 n 个互不相同的特征值
(C) A有n个线性无关的特征向量 (D) A必为对称矩阵
二、判断题(共 10 小题,每小题 1 分,共 10 分)注:正确选择 A,错误选择 B.
11. 设 A 和 B 为 n 阶方阵,则有 (A + B)(A - B) = A² - B²。()
12. 当 n 为奇数时 , n 阶反对称矩阵 A 是奇异矩阵。()

13. 设 A , B , C 为同阶方阵 , AB = AC , 则 B = C。()

- 14. 若矩阵 A有一个 r 阶子式 D \neq 0 , 且 A中有一个含有 D 的 r + 1 阶子式等于零 , 则 A的秩等于 r 。()
- 15. 若非齐次线性方程组 AX = b有无穷多解 ,则其导出组 AX = 0一定有非零解。
- 16 若向量组 $\alpha_1, \alpha_3, \alpha_5$ 线性无关,则向量组 $\alpha_1, \alpha_2, ||||, \alpha_9$ 线性无关。()
- 17. 等价的向量组的秩相等。()
- 18. 设 A 与 B 都是 n 阶正交矩阵,则 A+B 也是正交矩阵。()
- 19. 矩阵 A 不同特征值对应的特征向量必线性无关。 ()
- 20. 两个相似的方阵必等价,两个合同的方阵也必等价。 ()

第二部分 主观题(共 70分)

题 号	得分
s1	

三、填空题(共 5小题,每小题 2分,共 10分)

- 1. 在5阶行列式中, a₁₂a₂₅a₃₁a₄₃a₅₄的符号是 ______
- 2. 若 A 为 3 阶方阵 , A^{-1} 为 A 的逆矩阵且 $A^{-1} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 1 \end{pmatrix}$, 则 A = ______.

$$\lambda x_1 + x_2 + x_3 = 0$$

3.线性方程组 $2x_1 + x_2 + x_3 = 0$ 仅有零解的充要条件是 ______.
 $x_1 - x_2 + 3x_3 = 0$

- 4.已知三阶矩阵 A的特征值为 1,2,3 ,则 A³ −5A² +7A =_____.
- 5. 实二次型 f(x₁,x₂,x₃) = x₁²+2x₁x₂+tx₂²+3x₃², 当 t = _____ 时, 其秩为 2.。

题 号	得分
s2	

四、计算题(一)(共3小题,每小题6分,共18分)

 1. 计算 4 阶行列式
 2 1 2 3 1 0 0 0 0 2 3 1 2 6 2 3 1

2. 已知向量组 $\alpha_1 = (1, 1, 2, 1)^T$, $\alpha_2 = (1, 0, 0, 2)^T$, $\alpha_3 = (-1, -4, -8, k)^T$ 线性相关,求 k.

3. 设 $\alpha_1 = (1, -2, 2)^T$, $\alpha_2 = (-1, 0, -1)^T$, $\alpha_3 = (5, -3, -7)^T$, 用施密特正交化法将该向量组正交化。

题 号	得分
s3	

五、计算题(二)(共2小题,每小题8分,共16分)

1. 设
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 2 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$
 , $B = \begin{pmatrix} 1 & 4 \\ -1 & 3 \\ 3 & 2 \end{pmatrix}$, 若矩阵 X 满足 $AX - X = B$, 求 X 。

2. 设 A =
$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & a \\ 1 & 0 & 0 \end{pmatrix}$$
 , 问 a 为何值时 , 矩阵 A 能对角化 ?

题 号	得分
s4	

六、计算题(三)(共2小题,每小题 10分,共20分)

1.当 λ 为何值时,线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = 0 \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 3 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = \lambda \end{cases}$$

有解?在有解的情况下, 求其全部解(若有无穷解,用其导出组的基础解系表示)。

2. 求向量组 $\alpha_1 = (2,1,\frac{1}{4},\frac{1}{4},\frac{1}{4}) = (-1,1,-6,6)^{T}$ 、 $\alpha_3 = (-1,-2,2,-9)^{T}$ 、 $\alpha_4 = (1,1,-2,7)^{T}$ 、 $\alpha_5 = (2,4,4,9)^{T}$ 的一个极大无关组,并将其余向量用极大无关组线性表示。

题 号	得分
s5	

七、证明题(共 1小题,每题 6分,共计 6分)

设 λ_1 和 λ_2 是矩阵 A的两个不同的特征值,对应的特征向量依次为 p_1 和 p_2 ,证明 p_1 + p_2 不是 A的特征向量。

山西财经大学华商学院

2009-2010 学年第二学期期末

线性代数 课程试卷(A)及答案

本题

一、单项选择题(共 10小题,每题 2分,共计 20分) 答题要求:请将正确选项前的字母填在题后的括号内

- 1. 若 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ 都是四维列向量,且四阶行列式 $|\alpha_1 \alpha_2 \alpha_3, \beta_1| = m$, $|\alpha_1 \alpha_2 \beta_2 \alpha_3| = n$, 则四阶行列式 $|\alpha_3 \alpha_2 \alpha_1 (\beta_1 + \beta_2)| = (C)$

 - (A)m+n (B)-(m+n) (C)n-m (D)m-n

- 2. 设矩阵 $\begin{pmatrix} 1 & 2-a & 3 \\ 2 & 6 & 5c \end{pmatrix} = \begin{pmatrix} 1 & a & 3 \\ b & 6 & c-8 \end{pmatrix}$, 则(B)

 - (A) a = 1 b = -2 c = 2 (B) a = 1 b = 2 c = -2

 - (C) a = -1 b = -2 c = 2 (D) a = -1 b = 2 c = -2
- 3. 若 A B 均为非零方阵,且 AB-O,则有 A B(D)
 - (A) 都可逆 (B) 至少有一个可逆 (C)r(A)=r(B) (D)
- 都不可逆
- 4. 下列向量中,可由 $\alpha_1 = (0,1,0)^{\mathsf{T}} 与 \alpha_2 = (1,0,0)^{\mathsf{T}}$ 线性表示的是(B)
 - (A) $(0,0,1)^{\mathsf{T}}$ (B) $(0,3,0)^{\mathsf{T}}$ (C) $(0,2,1)^{\mathsf{T}}$ (D) $(2,0,1)^{\mathsf{T}}$

- 5. 设矩阵 A满足 $A^2 + 4A 5E = O$,则(A)
 - (A)A 与 A+4E同时可逆

(B)A+5E

一定可逆

6.	若 n 阶矩阵 A 的行列式 A = 1 , 则 A 的秩为 (D)
	(A)1 (B)0 (C)n-1 (D)n
7.	设 A 为 n 阶方阵,且 A = 0 ,有 (C)
	(A)A 中必有两行(列)元素对应成比例
	(B)A 中至少有一行(列)元素全为零
	(C)A 中必有一行(列)向量是其余各行(列)向量的线性组合
	(D)A 中任意一行(列)向量是其余各行(列)向量的线性组合
8.	设 A 为 m×n 矩阵,则齐次线性方程组 AX-Q仅有零解的充要条件是 (D)
	(A)A 的行向量线性相关 (B)A 的列向量线性相关
	(C)A 的行向量线性无关 (D)A 的列向量线性无关
9.	可逆矩阵 A与矩阵(A)有相同的特征值
	(A) A^{T} (B) A^{-1} (C) A^{2} (D)A+E
10). α_1 与 α_2 分别是 n 阶方阵 A 的属于特征值 λ_1 , λ_2 的特征向量 , 若 $\lambda_1 \neq \lambda_2$,
则	$\alpha_1 \subseteq \alpha_2 (B)$
	(A) 线性相关 (B) 线性无关 (C) 相等 (D) 正交
L	得分 合义安水:判断止误,止佣选择 A,错误选择 B
L	

(C) 齐次线性方程组 (A +5E X = O有非零解 (D)A-E 一定可逆

11. 若方阵 A^T 可逆,则 A*也可逆 (A)

- 13. 对任意 n 阶方阵(n>1)A 与 B ,都有 (A+B)(A-B) = A² B² (B)
- 14. 若向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 与 $\beta_1, \beta_2, \cdots, \beta_t$ 等价 ,则 s = t (B)
- 15. 若齐次线性方程组 AX→O存在基础解系 , 则方程组 AX=b(b 0) 有无穷多解 (B)
- 16. 若同阶矩阵 A与 B的秩相等,则 A可经过有限次的初等变换化成 B (A)
- 17. 若 λ 是方阵 A的特征值,则 λ^{n} 是 A^{n} 的特征值(其中 n为自然数)(A)
- 18. 若 n 阶方阵 A 相似于对角矩阵,则 A 有 n 个互异特征值 (B)
- 19. 设 X_1 与 X_2 是 A 的任意两个特征向量,则 $X_1 + X_2$ 也是其特征向量

(B)

20. 若 A 为正交矩阵,则 |A| = ±1 (A)

本题 得分 三、填空题(共 10小题,每题 2分,共计 20分) 答题要求:请将最终答案直接填在题中横线上 .

21. 设 A 为三阶矩阵,且 | A = 2 , 则 | 3A = <u>54</u>

22.
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
, $\mathbb{N} (A + E)^{-1} (A^2 - E) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

23. 设矩阵 A可逆,则其伴随矩阵 A^* 可逆,且 $(A^*)^{-1} = \frac{1}{|A|}$ A

24. 如果 4×5 阶矩阵 A 的行向量组线性无关,则齐次线性方程组 AX→O的基础解系中含有 1个向量

- 25. 若向量组中含有零向量,则此向量组线性相关
- 26. 若 $\alpha_1 = (1,2,k,4)^{\mathsf{T}}$ 与 $\alpha_2 = (4,3,2,-2)^{\mathsf{T}}$ 正交,则 k = -1
- 27. 设 A 为正交矩阵,则 | A A = 1
- 28. 设三阶矩阵 A的特征值为 -2、1、4,则|A| = -8
- 29. 已知-5 是方阵 A的特征值,则 A-2E 一定有一个特征值 -7
- 30. 设 n₁, n₂, ··· , n_s 为非齐次线性方程组 AX=b的一组解 , 如果

$$c_1 \stackrel{\eta}{\eta}_1 + c_2 \stackrel{\eta}{\eta}_2 + \cdots + c_s \stackrel{\eta}{\eta}_s$$
 也是该方程组的一个解,则 $\sum_{i=1}^s c_i = 1$

本题 得分

S1: 计算题一(共 2小题, 每题 8分, 共 16分)

答题要求:写出文字说明和主要验算步骤

1. 计算四阶行列式 1 2 3 4 1 2 0 5 1 0 1 2

$$=2\begin{vmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 3 & 5 \end{vmatrix} = 2\begin{vmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 6 \end{vmatrix} = -36$$

2. 解矩阵方程
$$(E - A)X = B$$
 , 其中 $A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & 3 \end{pmatrix}$

解:
$$E - A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 2 \end{pmatrix}$$

$$(E - A, B) = \begin{pmatrix} 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & -1 & 2 & 0 \\ 1 & 0 & 2 & 5 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 1 & 1 \\ 0 & 1 & 2 & 4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 1 & 1 \\ 0 & 0 & 3 & 3 & 3 \end{pmatrix}$$

本题 得分

S2: 计算题二(共 3小题, 每题 10分, 共 30分)

答题要求:写出文字说明和主要验算步骤

1. 给定向量组 $\alpha_1 = (1,1,1,1)^{\mathsf{T}}$, $\alpha_2 = (1,-1,1,-1)^{\mathsf{T}}$, $\alpha_3 = (1,3,1,3)^{\mathsf{T}}$, $\alpha_4 = (1,-1,-1,1)^{\mathsf{T}}$, 求该向量组的秩 , 并确定一个极大无关组 , 将其余向量用该极大无关组线性表示。

$$\text{\mathbf{H}}: \\ \begin{pmatrix} \alpha_1 \alpha_2 \alpha_3 \alpha_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 3 & -1 \\ 1 & 1 & 1 & -1 \\ 1 & -1 & 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & 2 & -2 \\ 0 & 0 & 0 & -2 \\ 0 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以: $r(\alpha_1 \alpha_2 \alpha_3 \alpha_4) = 3$, $\alpha_1, \alpha_2, \alpha_4$ 是一个极大无关组,且 $\alpha_3 = 2\alpha_1 - \alpha_2$

2. 用其导出组的基础解系表示下面方程组的全部解

$$\begin{cases} x_1 + 2x_2 - x_3 - 2x_4 = 0 \\ 2x_1 - x_2 - x_3 + x_4 = 1 \\ 3x_1 + x_2 - 2x_3 - x_4 = 1 \end{cases}$$

$$\begin{aligned} \mathbf{H} : & \overrightarrow{A} = \begin{pmatrix} 1 & 2 & -1 & -2 & 0 \\ 2 & -1 & -1 & 1 & 1 \\ 3 & 1 & -2 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & -2 & 0 \\ 0 & -5 & 1 & 5 & 1 \\ 0 & -5 & 1 & 5 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ & \rightarrow \begin{pmatrix} 1 & -3 & 0 & 3 & 1 \\ 0 & -5 & 1 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \end{aligned}$$

$$\begin{cases} x_1 = 1 - 3x_4 + 3x_2 \\ x_3 = 1 - 5x_4 + 5x_2 \end{cases}$$

令 $x_2 = x_4 = 0$, 得线性方程组的一个特解 $\gamma_0 = (1,0,1,0)^T$

其导出组的一般解为:
$$\begin{cases} x_1 = 3x_4 + 3x_2 \\ x_3 = 5x_4 + 5x_2 \end{cases}$$

令
$$\begin{pmatrix} x_2 \\ x_4 \end{pmatrix}$$
 分别为 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

得导出组的基础解系为:
$$\xi_1 = \begin{pmatrix} 3 \\ 1 \\ 5 \\ 0 \end{pmatrix}, \xi_2 = \begin{pmatrix} -3 \\ 0 \\ -5 \\ 1 \end{pmatrix}$$

所以,方程组的全部解为: $\gamma_0 + c_1 \xi_1 + c_2 \xi_2$ (c_1, c_2 为任意实数)

3.已知
$$A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 1 \end{bmatrix}$$
的特征值为 -1,2 ,5,求正交矩阵 P ,使得 $P^{-1}AP$

为对角矩阵。

 \mathbf{m} : 当 $\lambda_1 = -1$ 时,由 (-E - A)X = O,得基础解系为 $p_1 = (2, 2, 1)^T$

当 $\lambda_2 = 2$ 时,由(2E - A)X = O,得基础解系为 $p_2 = (2,-1,-2)^T$

当 $\lambda_3 = 5$ 时,由 (5E - A) X = O ,得基础解系为 $p_3 = (1,-2,2)^T$

不难验证 p₁, p₂, p₃ 是正交向量组,把 p₁, p₂, p₃单位化,得

$$\eta_1 = \frac{p_1}{\|p_1\|} = (2/3, 2/3, 1/3)^T;
\eta_2 = \frac{p_2}{\|p_2\|} = (2/3, -1/3, -2/3)^T$$

$$\eta_3 = \frac{p_3}{\|p_3\|} = (1/3, -2/3, 2/3)^T$$

取P = (η_1, η_2, η_3) , 有P 4 AP = Λ = diag (-1, 2, 5)

本题 得分

S3: 证明题(共 1小题,共计 4分)

答题要求:应写出文字说明

已知 n 维向量 α₁,α₂,α₃线性无关,则向量组 α₁ +α₂,α₂ +α₃,α₃ +α₁线性
 无关。

证明:
$$k_1(\alpha_1 + \alpha_2) + k_2(\alpha_2 + \alpha_3) + k_3(\alpha_3 + \alpha_1) = 0$$

整理得:
$$(k_1 + k_3)\alpha_1 + (k_1 + k_2)\alpha_2 + (k_2 + k_3)\alpha_3 = 0$$

α₁,α₂,α₃线性无关

$$\begin{cases}
k_1 + k_3 = 0 \\
k_1 + k_2 = 0 \\
k_2 + k_3 = 0
\end{cases}$$

解得:
$$k_1 = k_2 = k_3 = 0$$

所以,向量组 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关。

第三部分 近六年考研试题

一、单项选择题

1.[2006-3] 若 a_1 , a_2 , , a_s 均为 n 维列向量 , A是 $m \times n$ 矩阵 , 下列选项正确的是

- (A) 若 a₁, a₂, , a_s线性相关,则 Aa₁, Aa₂, , Aa_s线性相关.
- (B) 若 a₁, a₂, , a_s线性相关,则 Aa₁, Aa₂, , Aa_s线性无关.
- (C) 若 a_1, a_2, \dots, a_s 线性无关,则 Aa_1, Aa_2, \dots, Aa_s 线性相关.

2.[2006-3、4] 设 A 为 3 的阶矩阵 , 将 A 的第 2 行加到第 1 行得 B , 再将 B 的第 1 列的 -1 倍

(A)
$$C = P^{-1}AP$$
. (B) $C = PAP^{-1}$. (C) $C = P^{T}AP$. (D) $C = PAP^{T}$. [B]

3.[2007-3 、 4] 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则下列向量组线性相关的是

(A)
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$$
 (B) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$

(B)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$$

(C)
$$\alpha_1 - 2\alpha_2, \alpha_2 - 2\alpha_3, \alpha_3 - 2\alpha_4$$

(C)
$$\alpha_1 - 2\alpha_2, \alpha_2 - 2\alpha_3, \alpha_3 - 2\alpha_1$$
 (D) $\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1$ [A]

$$4[2007-3、4]$$
设矩阵 $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则 A与 B

(A) 合同 , 且相似

(B) 合同,但不相似

(C) 不合同 , 但相似

5. [2008-3] 设 A 为 n 阶非零矩阵 , E 为 n 阶单位矩阵 , 若 $A^3 = 0$, 则

- (A) E A 不可逆 , E + A 不可逆 . (B) E A 不可逆 , E + A 可逆 .
- (C) E-A可逆, E+A可逆. (D) E-A可逆, E+A不可逆 [C]

[B]

6. [2008-3] 设 $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$,则在实数域上与 A 合同的矩阵为

(A)
$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$
 (B) $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ (C) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$ [D]

7. [2009-3] 设 A, B 均为 2 阶矩阵 , A^* , B^* 分别为 A, B 的伴随矩阵 , 若 A^* = 2 , B^* = 3 , 则

(A)
$$\begin{pmatrix} \mathbf{O} & 3\mathbf{B}^{\dagger} \\ 2\mathbf{A}^{\dagger} & \mathbf{O} \end{pmatrix}$$
 (B) $\begin{pmatrix} \mathbf{O} & 2\mathbf{B}^{\dagger} \\ 3\mathbf{A}^{\dagger} & \mathbf{O} \end{pmatrix}$ (C) $\begin{pmatrix} \mathbf{O} & 3\mathbf{A}^{\dagger} \\ 2\mathbf{B}^{\dagger} & \mathbf{O} \end{pmatrix}$ (D) $\begin{pmatrix} \mathbf{O} & 2\mathbf{A}^{\dagger} \\ 3\mathbf{B}^{\dagger} & \mathbf{O} \end{pmatrix}$ [B]

8. [2009-3] 设 **A**, **P** 均为 3 阶矩阵 \mathbf{P}^{T} 为 **P** 的转置矩阵 \mathbf{P}^{T} **AP** = $\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix}$. 若

$$P = (\alpha_1, \alpha_2, \alpha_3)$$
 , $Q = (\alpha_1 + \alpha_2, \alpha_2, \alpha_3)$, 则 $Q^T AQ$ 为

9. [2010-3] 设向量组 $\mathbb{I}: \alpha_1, \alpha_2, M, \alpha_r$ 可由向量组 $\mathbb{II}: \beta_1, \beta_2, M, \beta_s$ 线性表出 .下列命题正确的是

- (A) 若向量组 I线性无关,则 r ≤ s (B) 若向量组 I线性相关,则 r > s
- [A]

10. [2010-3] 设 **A** 为 4 阶实对称矩阵,且 $A^2 + A = O$.若 **A** 的秩为 3,则 **A** 相似于

11.[2011-3] 设 A 为 3 阶方阵,将 A 的第 2 列加到第一列得到矩阵 B,再交换 B的第二行与

第三行得单位矩阵,记
$$P_1=\begin{pmatrix}1&0&0\\1&1&0\\0&0&1\end{pmatrix}, P_2=\begin{pmatrix}1&0&0\\0&0&1\\0&1&0\end{pmatrix}$$
,则 $A=$

 $(A) P_1 P_2$

(B) $P_1^{-1}P_2$ (C) P_2P_1 (D) $P_1P_2^{-1}$ [D]

12. [2011-3] 设 A 为 4×3 矩阵 $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}$ 是非齐次线性方程组 $Ax = \frac{\beta}{1}$ 的 3 个线性无关的解 $\frac{1}{1}$ k_1, k_2 为任意常数,则 $Ax = \beta$ 的通解为

(A)
$$\frac{\eta_2 + \eta_3}{2} + k_1(\eta_2 - \eta_1)$$

(B)
$$\frac{\eta_2 - \eta_3}{2} + k_1(\eta_2 - \eta_1)$$

(C)
$$\frac{\eta_2 + \eta_3}{2} + k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$$

(D)
$$\frac{\eta_2 - \eta_3}{2} + k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$$
 [C]

填空题

- 1.[2006-3、4] 已知 a_1, a_2 为 2 维列向量,矩阵 $A = (2a_1 + a_2, a_1 a_2)$, $B = (a_1, a_2)$.若 行列式 |A| = 6,则 $|B| = ____2$
- 2.[2006-4] 设矩阵 $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, E 为 2 阶单位矩阵,矩阵 B 满足矩阵 BA = B + 2E ,则 B = $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$

3.[2007-3、4] 设矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
,则 A^3 的秩为 ______

4. [2008-3] 设 3 阶矩阵 A 的特征值是 1, 2, 2, E 为 3 阶单位矩阵,则 $|4A^{-1} - E| = ___3__$

5. [2009-3] 设
$$\alpha = (1,1,1)^T$$
, $\beta = (1,0,k)^T$ 。若矩阵 $\alpha \beta^T$ 相似于 $\begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,则 $k = \underbrace{ 2}_{}$.

- 6. [2010-3] 设 **A** , **B** 为 3 阶矩阵,且 | **A** |= 3 , | **B** |= 2 , | **A** ⁻¹ + **B** |= 2 ,则 | **A** + **B** ⁻¹ |= <u>3</u>.
- 7. [2011-3] 设二次型 $f(x_1, x_2, x_3) = xA^T x$ 的秩为 1 , A 的各行元素之和为 3 , 则 f 在正交变换 x = Qy 下的标准形为 $3y_1^2$.

三、解答题

- 1.[2006-3、4] 设 4 维向量组 $a_1 = (1 + a_1, 1, 1)$, $a_2 = (2, 2 + a_1, 2, 2)$, $a_3 = (3, 3, 3 + a_1, 3)$, $a_4 = (4, 4, 4, 4 + a)$, 问 a 为何值时, a_1, a_2, a_3, a_4 线性相关?当 a_1, a_2, a_3, a_4 线性相关时, 求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出 .
- 2.[2006-3、4] 设 3 阶实对称矩阵 A 的各行元素之和均为 3,向量 $a_1 = (-1,2,-1)$, $a_2 = (0,-1,1)$ 是线性方程组 Ax = 0的两个解.
 - (I) 求 A 的特征值与特征向量; (II) 求正交矩阵 Q 和对角矩阵 Λ , 使得 Q $^{\mathsf{T}}$ AQ $=\Lambda$; (III) 求 A 及 $\left(\mathsf{A} \frac{3}{2} \mathsf{E} \right)^{\mathsf{G}}$, 其中 E 为 3 阶单位矩阵 .