

Video Compression

INSTRUCTOR: YAN-TSUNG PENG
DEPT. OF COMPUTER SCIENCE, NCCU
CLASS 3&4

Entropy Coding

Introduction

How many bits do we need to transmit the info?

Examples of "Information"

- ☐ I saw a cat that cannot fly
- ☐ I saw a flying cat
- ☐ I saw a cat chasing a mouse
- ☐ I saw a cat riding a motorcycle
- ☐ I saw a cat with four feet
- ☐ I saw a cat with wings

Information Measurement

- Amount of information carried based on the occurring probability
 - ☐ High probability carries little information
 - ☐ When a thing occurs rarely bare a lot of information
- lacktriangle Amount of information carried by an event S is based on the occurring probability p
- $\square I(S) = \log_{2}(\frac{1}{p}) = -\log_{2}p \text{ in bits}$
 - $\Box p = 1, I(S) = 0$
 - $\square p$ small, I large
 - \square $I(S) \ge 0$ for $1 \ge p \ge 0$
 - $\square I(S_k) > I(S_i)$ for $p_k < p_i$
 - $\square I(S_kS_i)=I(S_k)+I(S_i)$ if S_k and S_i are independent

Def. of information

Entropy

1055/055

- Ideal compressed code length for a symbol *S* in lossless compression should be equal to the number of bits that need to be used for information *S* has (shortest possible)
- ☐ We would like to know the minimum number of bits per symbol required to fully represent the message
- Entropy H
 - ☐ Definition: Ideal average bits that need to be used for the information per symbol carries
 - ☐ Average compression bits
- ☐ Because of overhead of coding, the compressed bits per symbol used are larger than H.
 - For lossy compression, the average bits can be smaller than H
- ☐ Entropy coding: code length used to represent a symbol is proportional to the amount of the information carried in symbol

Def. of Entropy Coding

frequent symbols: short codes

- . uncertainty lettre seeing a message
- · information gained after observing it

Entropy Coding

☐ Entropy of message *M*: amount of information

$$E(M) = -\sum_{i} p(m_i) \log_2 p(m_i)$$

Assume we have message m_i with its probability $p(m_i)$

- ☐ For example:
 - \square Tossing a fair coin. p(head) = p(tail) = 0.5
 - \square Tossing a unfair coin. p(head) = 0.25 p(tail) = 0.75

Oef. of Shanon Entropy

The maximal E(M) for n messages ???

When you have n equally likely messages,
$$P(m_i) = \frac{1}{n}$$
, $\forall i$

$$E(N) = -\frac{1}{n} \log_{n}(\frac{1}{n}) = \log_{n} n$$

Common Compression Techniques

Run Length Coding - Lossless

Run-Length Coding (RLC) is a **simple lossless compression method** that encodes **consecutive repeated values (runs)** as a **single value and count**, reducing data size.

Message: aabbcaaaabbbbbccc

aa bb c aaaa bbbbb ccc

Code:

a2 b2 c1 a4 b5 c3 or (a, 2) (b, 2) (c, 1) (a, 4) (b, 5) (c, 3)

Run: repeated occurrence of the same character

Length: number of repetition

A special character can be used to specify the following character occurs more than 1 time

For example: sssgnnnnn

@s3g@n5

@: special character

sssgnnnhn

Where is Run-Length Coding Used?

•Image Compression: Used in TIFF, BMP, and

Fax (CCITT Group 3 & 4) formats.

•Video Compression: Applied in MPEG and

Motion JPEG.

•Text Compression: Used in simple document

formats.

- ☐ Shorter code is used for a symbol that occurs more frequent
- ☐ Short code for frequent symbols, long code for rare symbols.
 - ☐ Ex: Morse code
 - designed according to the frequency of occurrence of each character
 - ☐ the code length is inversely proportional to the frequency
- \square Assume the code for symbol s_i has l_i bits, the average code length is:

$$L_{avg} = \Sigma_i p_i l_i$$
 , where p_i is the probability of s_i

- ☐ Unique Prefix Property:
 - ☐ no code is a prefix to any other code
 - □Code must be uniquely decodable:

e.g.
$$M = \{a, b, c\}, C = \{01, 101, 011\}$$
 (Counterexample) \rightarrow What is 01101?

International Morse Code

- 1. The length of a dot is one unit.
- 2 A dash is three units
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

Figure's taken from https://en.wikipedia.org/wiki/Morse_code

Shannon's Source Coding Theorem

- \square Let the entropy of message M be E(M)
 - \square The average code length for any source encoding technique is bounded as: $L_{avg} \ge E(M)$
- lacksquare The coding efficiency of an encoder is defined as $r_c = rac{E(M)}{L_{avg}}$

lower bound

Ex:

Message (M)	Probability	Code length
Α	0.2	20
В	0.4	5
С	0.3	10
D	0.1	30

$$r_c = \frac{-(0.2\log_2 0.2 + 0.4\log_2 0.4 + 0.3\log_2 0.3 + 0.1\log_2 0.1)}{0.2 \times 20 + 0.4 \times 5 + 0.3 \times 10 + 0.1 \times 30} \approx 0.154$$

☐ Fixed length coding for a set of 7 symbols

☐ Fixed length coding for a set of 7 symbols

- ☐ Huffman algorithm
 - ☐ greedy strategy
 - ☐ Bottom-up approach from the pair with the least probabilities
 - ☐ If prior statistics are available, then Huffman coding is near optimal
 - ☐ Decoded uniquely

Message	Probability
a	11/60
e	16/60
i	12/60
0	13/60
u	3/60
t	4/60
Z	1/60

HUFFMANTREE

```
HuffmanTree (node list L; integer m)

//Each of the m nodes in L has an associated frequency f, and L is

//ordered by increasing frequency; algorithm builds the Huffman tree

for (i = 1 \text{ to } m - 1) do

create new node z

let x, y be the first two nodes in L

//minimum frequency nodes

f(z) = f(x) + f(y)

insert z in order into L

left child of z = \text{node } x

right child of z = \text{node } y

end for

end HuffmanTree
```

https://www.cs.mtsu.edu/~xyang/3080/huffman.html

Message	Probability
a	11/60
е	16/60
i	12/60
0	13/60
u	3/60
t	4/60
Z	1/60

 \Box Tossing an unfair coin. p(head) = 0.25 p(tail) = 0.75

- \Box Average length = 0.25*1+ 0.75*1=1
- ☐ However, its entropy is less than 1

Coding Efficiency
$$C_c = \frac{E_m}{L_{avg}}$$

$$\approx 0.81 / 1 = 0.8$$

$$\begin{array}{c} \text{h} & \text{t} \\ \text{h} & \text{t} \\ \end{array}$$
Entropy = $-\sum_{i} p(m_{i}) \log_{1} p(m_{i})$
= $-\left[0.25 \log_{1}(0.25) + 0.75 \log_{1}(0.75)\right]$
 ≈ 0.8

Limitation of Huffman Coding

As known, the lower bound of the average code length L_{avg}^h of Huffman coding is the entropy Let $E(M) \leq L_{avg}^h \leq E(M) + k$, where E(M) + k is its upper bound.

It can be proved that k correlates with p_{max} , where p_{max} represents the largest probability of a symbol that occurs

Thus, if the probability distribution is more balanced and the alphabet (table of symbols) is large, p_{max} will be small, and Huffman coding will perform efficiently to close to the entropy.

If the probability is highly skewed, p_{max} will be large. Then, the coding efficiency of Huffman coding will be lower.

Integer Codeword Length

- ☐ Huffman codes always assign integer number of bits to each symbols
 - Tossing a unfair coin. p(head) = 0.25 p(tail) = 0.75
 - Using Huffman Coding: The average length $L_{avg} = 0.25*1+0.75*1=1$
 - However, the optimal length should be $-0.25\log_2(0.25)-0.75\log_2(0.75)\approx0.811$
- In an extreme case, if p(head) = 0.9, it's average codeword length would be 0.152, which is far shorter than 1

Limitation of Huffman Coding

- ☐ Huffman coding works inefficiently if the probability tends to be highly skewed.
 - \square ex: tossing an unfair coin. p(head)=0.25 p(tail)=0.75
 - □ solution: creating more longer symbols
 - However, it is more expensive since the Huffman tree MAY grow exponentially as the number of messages increases. (code length grows exponentially for a highly-skewed distribution)
 - ☐ Storage size for it would be impractical.

Example: Grouping Symbols

Huffman code for three letters

Symbol (M)	Code 🕽 🐧	Prob	skewed
А	0	0.95	1
В	11 2	0.02	
С	10 2	0.03	

Coding Efficiency c = average length Lavg

entropy E(M)

Huffman code for an extended alphabet (group symbol)

Symbol (M)	Code	Prob
AA	0	0.9025
AB	111	0.019
AC	100	0.0285
ВА	1101	0.019
ВВ	110011	0.0004
ВС	110001	0.0006
CA	101	0.0285
СВ	110010	0.0006
CC	110000	0.0009

(group symbols)

flatten
probability
distribution

The average length = 1.222 bits/symbol

-> for one-letter symbols, it is 0.611 bits/symbol Coding Efficiency = $0.335/0.611 \approx 55\%$

Summary

☐ Huffman coding works inefficiently if the probability tends to be highly skewed.

 \square ex: tossing an unfair coin. p(head)=0.25 p(tail)=0.75

☐ solution: creating more longer symbols

☐ However, it is more expensive since the Huffman tree will grow exponentially as the number of

messages increase

Message	Probability
a	11/60
е	16/60
i	12/60
0	13/60
u	3/60
t	4/60
Z	1/60

Message	Probability
а	10/60
е	14/60
i	11/60
0	10/60
u	3/60
t	4/60
Z	1/60
out	1/60

Golomb Coding

- ☐ Lossless Compression
- ☐ Invented by Solomon W. Golomb in the 1960s.
- Golomb coding is an optimal prefix coding to messages that conform to a geometric distribution
 - ☐ The occurrence of small values in the input stream is significantly more likely than large values.

Geometric Distribution

☐ It is a type of discrete probability distribution, requiring a number of trials before achieving a successful one, meaning having a certain number of failures before getting the first success.

Under the probability distribution of the number X of Bernoulli trials

- Considering a sequence of <u>Bernoulli trials</u>, where each trial has only two possible outcomes (e.g. failure or success, head or tail, etc.).
- The probability of any one of the outcomes is assumed to be the same for each trial.
- The geometric distribution is used to model the probability of the number of one outcome occurring before the first the other outcome Failure/Tail vs. Success/Head

Geometric Distribution

☐ Example:

Considering rolling a dice repeatedly until a 5 is obtained is a success and getting the other numbers is a failure. Then, the probability of success is $\frac{1}{6}$. Let a random variable, X be the number of trails needed for getting the first success. We say X conforms to a geometric distribution as

geometric distribution

This pattern continues ($k \uparrow$), showing that **longer sequences before the first success become increasingly unlikely**.

Golomb-Rice Coding

- ☐ A subset of the family of Golomb codes
- Generating a simpler (but possibly suboptimal) prefix code
- Golomb code is tunable using any positive integer whereas Rice codes only use a power of two. $M = 2^{K}$
- ☐ Efficient for binary operations (shifts and masks)
- ☐ Compared to Huffman Coding, primarily based on the probability from the data, it's based on a simple model of the probability of the values (A smaller value means it is more like to occur)

Golomb, S. W. "" Run-length encodings", IEEE Trans. Inform. Theory, vol. IT12, pp. 399-401." (1966).

Motivation

- \square Assume we aim to encode 0, 1, 2, ... 32.
- ☐ Using 5 bits can only encode 0, 1, ..., 31. For example, 00000 is for 0, and 11111 is for 31.
- ☐ Thus, we need to use 6 bits to encode this sequence, resulting in a waste of 64-33 = 31 codewords.

☐ If the code conforms to a geometric distribution, where small values have higher probabilities, we can utilize a variable-length coding method to code this sequence.

Unary Code

- ☐ Representing a non-negative integer n by
 - n 1's followed by a 0
 - □ n 0's followed by a 1
- ☐ For example
 - ☐ Message Code
 - 3 0001
 - 3 000001
 - \bigcirc 0-1

Golomb Coding

chosen parameter

- ☐ Integer Coding
- \square Determine the tunable parameter m as the divisor
 - ☐ chosen based on the probability distribution of values
- \Box Given a message X, we have
 - \square Quotient: $q = \left| \frac{X}{m} \right|$ (unary coding)
 - \blacksquare Remainder: r = X qm represented as truncated binary code (binary number with certain length)
- ☐ Golomb Coding
 - **The Golomb coding:** Use $m = \lceil \frac{\ln(2)}{p} \rceil$ or estimate from **mean values** as $m \approx 2^{\lceil \log_2 E(X) \rceil}$.
 - ☐ Estimate from **mean values:** m is a **power of two**, simplifying encoding and reducing computational costs.
 - \square Quotient q: sent as unary code
 - \square Remainder r: truncated binary encoding

X= q.m+ -

Golomb Coding - Representing r

- \square If m=1, it reduces to unary coding (q = X)
- \square If m is a power of two (Rice code)
 - \square *m* is a pre-defined parameter
 - \square Represent r with $k = \log_2 m$ bits

- ☐ Otherwise (Golomb code)
 - \Box Let $b = \lceil log_2 m \rceil$
 - \square For the first 2^b-m values, use binary representation with b-1 bits (smaller values use shorter code)
 - \Box For the rest values, use binary representation with b bits for representing $r + 2^b m$

$$m - (2^{b} - m)$$

lacksquare Why Use 2^b-m and Represent $r+2^b-m$ in Golomb Coding?

In Golomb coding, when m is not a power of 2, we split an integer X into:

$$X = q \cdot m + r$$

where q is encoded in unary and r is encoded in binary. The challenge is to represent the remainder r efficiently and prefix-free.

\bullet Why Use the First $2^b - m$ Values for Shorter Codes?

We define $b = \lceil \log_2 m \rceil$, giving us 2^b binary codewords of length b. However, we only need to encode m remainders. To avoid wasting code space and to favor smaller, more probable values:

- The first $2^b m$ values of r are encoded with shorter b 1-bit codes.
- The remaining $m (2^b m)$ values are assigned longer b-bit codes.

This structure efficiently fills the available code space while preserving the prefix-free property.

To avoid gaps and collisions in the binary code space, the remainders beyond the first group are shifted upward. Instead of encoding these r values directly, we encode:

$$r' = r + (2^b - m)$$

This maps them to unused positions in the full *b*-bit code space, ensuring:

- A continuous, collision-free code assignment
- ullet All m remainders are uniquely encoded
- · Prefix-freeness is maintained

Summary

Using $2^b - m$ short codes and shifting the rest by that same amount allows Golomb coding to:

- · Encode all remainders efficiently
- Minimize average code length
- · Maintain a prefix-free structure using a full binary code tree

Rice Coding - Representing X

Example $\exists X = 11 \text{ and } m = 4$ $\exists k = \log_2 4 = 2$ $\exists q = \left\lfloor \frac{11}{4} \right\rfloor = 2$ $\exists r = X \mod m = 3$ Unary code for q = 001, which is 2 $\exists r = 11$ Output: 001 11

3 = 0 × 5 f 3

Golomb Coding - Representing X

- Example
- 7 possible remainder

$$\square X = 3$$
 and $m = 5$

$$\square X = 3 \text{ and } m = 5$$

$$\square q = \left| \frac{3}{5} \right| = 0$$

$$\Box r = X - qm = 3$$

- \square Unary code for q=0, which is 1
- $\Box r = 110$

- \blacksquare Final Golomb code for X=3 and m=5
 - \Box q r = 1 110

$$b = [\log_2 5] = 3$$

Since m is not a power of two

Encode the remainder using variable-length binary encoding Split the remainder range into **two parts**:

- (i) For the first $2^b 5$ values (starting from 0), use binary representation with $[log_2 5]$ -1 bits
 - using b 1 = 2 bits to represent 0, 1, 2 (first 3) values)
 - 00, 01, 10
- (ii) For the rest values, use binary representation with b=3 bits for representing $r+(2^b-5)$
 - using 3 bits to represent 3 and 4
 - (3 + 3) and (4 + 3) with code 110 and 111

- Decoding Golomb Code

 Code: 0001 01 with m = 5Code: 0001 01 with m = 5Code: 0001 01 with m = 5Code: 0001 01 with m = 5
- ☐ Read the bits from the message until the stopping bit is hit.
 - $\Box \text{ For } 000\underline{1}: q = 3 \cdots \text{ find } q$
- ☐ For 01
 - For 0, 1, and 2, their codes are 00, 01, and 10.
 - For 3 and 4, their codes are 110 and 111.

$$\square$$
 So, $r=1$... find

$$b = \lceil \log_{1} m \rceil = \lceil \log_{1} 5 \rceil = 3$$

 $2^{b} - m = 2^{3} - 5 = 3$

Golomb-Rice Code

- \Box For q, it is coded using unary coding
- \square If m is a power of two (Rice coding)
 - \square Represent r with $\log_2 m$ bits
- \Box If m=4, for numbers up to 15

Value	Quotient q	Reminder r	Code
0	0	0	1 00
1	0	1	1 01
2	0	2	1 10
3	0	3	1 11
4	1	0	01 00
5	1	1	01 01
6	1	2	01 10
7	1	3	01 11
8	2	0	001 00
9	2	1	001 01
10	2	2	001 10
11	2	3	001 11
12	3	0	0001 00
13	3	1	0001 01
14	3	2	0001 10
15	3	3	0001 11

Applications: Exp - Golomb Coding For coding headers in video coding standards, such as H.265 and H.266 Len (**1) + Prepared k 0's

- Exp-Golomb coding for Message X
 - □ Do X+1 in binary code with the least length
 - ☐ Preceding X+1, add *k* starting zero bits, where
 - \square k =(the length of the binary code of X+1) 1

Encoding X=3

- Compute X + 1 = 3 + 1 = 4
- Binary representation of 4 is '100', which has 3 bits.
- Calculate k = 3 1 = 2
- Prepend 2 zeros to '100', resulting in '00100'.

X+1 🖖	∨ Code
1 0	1
10	010
11	011
100 💄	00 100
101	00 101
110 💄	00 110
111	00 111
1000	000 1000
1001 3	000 1001
1010	000 1010
	1 0 10 1 11 1 100 2 101 2 110 1 110 1 1000 3 1001 3

Exp-Golomb Decoding

- **☐** Decoding Process:
 - □ Count leading zeros (k):
 - ☐ Determine the number of leading zeros in the codeword.
 - **□**Extract the following k+1 bits:
 - ☐ These bits represent X+1 binary.
 - **□**Compute X:
 - ☐ Convert the extracted bits to a decimal number and subtract one: X=binary_to_decimal(bits)-1

Example: Decoding '00100'

- 1.Count leading zeros: 2.
- 2.Extract the next 3 bits (2+1): '100'.
- 3.'100' in binary is 4.
- 4.Compute X = 4 1 = 3

Therefore, the decoded value is X = 3

F=X.
$$000 | 00 |$$

$$| 5 + 1 = 1$$

$$(| 100 |)_{2} = 9$$

Arithmetic Coding

- □ Arithmetic coding is a type of a large block coding method, which can assign code to a longer sequence without generating code for all possible symbols
 □ A lossless compression method better than Huffman Coding
 □ First approached in 1976, by Rissanen from IBM
- ☐ It addresses two main issues Huffman coding has:
 - ☐Integer codeword length
 - ☐ Hard to make Huffman coding adaptive to the data
- □ Arithmetic coding is to use the cumulative density function as a hash function to code a long message
 (CDF)
- ☐ A unique code for a sequence with a given length can be solely generated without generating code for all possible sequences of that length.

Introduction to Arithmetic Coding

 \square Code each symbol i into a real number in the interval [0, 1)

☐ If the symbol occurs more (with higher probability), the representing interval is larger

Arithmetic Coding

- \square Let $X = \{m_1, m_2, ...\}$ be a symbol set. The probability model for it is $P(X = m_i) = P(i)$
- \square The CDF of X is $F_X(i) = \sum_{j=1}^i P(j)$

Example

Encode "EAII@":

X	Probability	Range
А	0.2	[0, 0.2)
E	0.3	[0.2, 0.5)
1	0.1	[0.5, 0.6)
0	0.2	[0.6, 0.8)
U	0.1	[0.8, 0.9)
@	0.1	[0.9, 1)

Arithmetic Coding – Example (cnt.)

- The final output interval is [0.23354,0.2336)
- Any number in the interval can represent the message "EAII@" as long as the decoder knows when to stop (here, "@" is the stopping symbol)
- Generating a tag for the message

 We can choose the mid-point of the interval as the tag with the interval value T as $P(i-1) + \frac{1}{-}P(i)$

$$T_X(m_i) = F_X(i-1) + \frac{1}{2}P(i)$$

☐ Then a binary code for **T** is the binary representation of the value truncated to fit the length of $\left|\log(\frac{1}{P(x)})\right| + 1$ bits, where P(x) is the probability of this message.

Arithmetic Coding – Example (cnt.)

For example, $\mathcal{A} = \{ a_1, a_2, a_3, a_4 \}$ with probabilities $\{ 0.5, 0.25, 0.125, 0.125 \}$, a binary code for each symbol is as follows:

Symbol	F_X	\overline{T}_X	In Binary	$\lceil \log \frac{1}{P(x)} \rceil + 1$	Code
1	.500	.2500	.0100	2	01
2	.750	.6250	.1010	3	101
3	.875	.8125	.1101	4	1101
4	1.000	.9375	.1111	4	1111

Generating a Binary Code

lacktriangle After obtaining the interval, we can choose the mid-point of it as the tag, denoted as $\overline{T}_X(x)$

Let the interval be $l^{(n)}$ and $u^{(n)}$, $l^{(n)} \leq t < u^{(n)}$ (n is the length of the symbol)

$$\overline{T}_X(x) = \frac{(l^{(n)} + u^{(n)})}{2} = \frac{(F_X(x-1) + F_X(x))}{2}$$

A binary code for **T** is the binary representation of the value truncated to fit the length of $l(x) = \left[\log(\frac{1}{P(x)})\right] + 1$ bits, where P(x) is the probability of this message.

To show the code is uniquely decodable, we first show it is unique, meaning

 $[\overline{T}_X(x)]_{l(x)}$ is unique if it is still falls into the interval $[F_X(i-1), F_X(i))$

Uniqueness of $[\overline{T}_X(x)]_{l(x)}$

To show $[\overline{T}_X(x)]_{l(x)}$ is unique, we only need to prove $F_X(x-1) \leq [\overline{T}_X(x)]_{l(x)} < F_X(x)$

Since $[\overline{T}_X(x)]_{l(x)}$ is a truncated representation of $\overline{T}_X(x)$, we know

$$0 < \overline{T}_X(x) - \lfloor \overline{T}_X(x) \rfloor_{l(x)} \le \frac{1}{2^{l(x)}}$$

1.
$$|\overline{T}_X(x)|_{l(x)} < \overline{T}_X(x) = \frac{(F_X(x-1)+F_X(x))}{2} < F_X(x)$$

2. To show $[\overline{T}_X(x)]_{l(x)} \ge F_X(x-1)$

Uniqueness of $[\overline{T}_X(x)]_{l(x)}$

1.
$$|\overline{T}_X(x)|_{l(x)} < \overline{T}_X(x) = \frac{(F_X(x-1) + F_X(x))}{2} < F_X(x)$$

2. To show $[\overline{T}_X(x)]_{l(x)} \ge F_X(x-1)$

$$\frac{1}{2^{l(x)}} = \frac{1}{2^{\left\lceil \log_2(\frac{1}{P(x)}) \right\rceil + 1}} < \frac{1}{2^{\left\lceil \log_2(\frac{1}{P(x)}) + 1 \right\rceil}} = \frac{1}{2\frac{1}{P(x)}} = \frac{P(x)}{2}$$
Since $\overline{T}_X(x) - F_X(x - 1) = \frac{(F_X(x - 1) + F_X(x))}{2} - F_X(x - 1) = \frac{(F_X(x - 1) + F_X(x - 1) + P(x))}{2} - F_X(x - 1) = \frac{P(x)}{2}$

$$\overline{T}_X(x) - F_X(x - 1) > \frac{1}{2^{l(x)}}$$

As
$$0 < \bar{T}_X(x) - \lfloor \bar{T}_X(x) \rfloor_{l(x)} \le \frac{1}{2^{l(x)}} \to \bar{T}_X(x) - F_X(x-1) > \bar{T}_X(x) - \lfloor \bar{T}_X(x) \rfloor_{l(x)}$$

$$\to |\bar{T}_X(x)|_{l(x)} > F_X(x-1)$$

 \Box For example, when at time t

Encode "B":

Initial

X	Probability	Range
Α	1/3	[0, 0.3333)
В	1/3	[0.3333, 0.6667)
С	1/3	[0.6667, 1)

Time *t*

X	Probability	Range
Α	1/4	[0.3333, 0.4167)
В	2/4	[0.4167, 0.5834)
С	1/4	[0.5834, 0.6667)

For next encoding

 \Box For example, when at time t+1

Encode "C":

Time *t*

X	Probability	Range
Α	1/4	[0.3333, 0.4167)
В	2/4	[0.4167, 0.5834)
С	1/4	[0.5834, 0.6667)

Time *t+1*

X	Probability	Range
Α	1/5	[0.5834, 0.6001)
В	2/5	[0.6001, 0.6334)
С	2/5	[0.6334, 0.6667)

For next encoding

 \Box For example, when at time t+2

Encode "C":

Time *t+1*

X	Probability	Range
Α	1/5	[0.5834, 0.6001)
В	2/5	[0.6001, 0.6334)
С	2/5	[0.6334, 0.6667)

Time *t+2*

Х	Probability	Range
Α	1/6	[0.6334, 0.6390)
В	2/6	[0.6390, 0.6501)
С	3/6	[0.6501, 0.6667)

For next encoding

 \Box For example, when at time t+3

Enc	code "B":				
	_ 1	0.6667	0.6667	0.6667	0.6501
C	_	_			
Α	-	-	-		
	0	0.3333	0.5834	0.6334	0.6390

Х	Probability	Range
Α	1/6	[0.6334, 0.6390)
В	2/6	[0.6390, 0.6501)
С	3/6	[0.6501, 0.6667)

Time *t+3*

X	Probability
Α	1/7
В	3/7
С	3/7

$$\frac{0.639 + 0.650)}{2} = 0.64475 \approx 0.64$$

 \Box For example, when at time t+3

Time *t+2*

X	Probability	Range	
Α	1/6	[0.6334, 0.6390)	
В	2/6	[0.6390, 0.6501)	
С	3/6	[0.6501, 0.6667)	\

We can chose 0.64 to encode for "BCCB"

$$\begin{array}{ccc} 0.64_{10} & \approx & 0.1010001111_2 \\ & & 0.6396484375_{10} \end{array}$$

Code: 1010001111

Decoding Process

 \square When receiving $0.1010001111_2 = 0.6396484375_{10}$

 $\sim 0.63964_{10}$

Initial X Probability Range

A 1/3 [0, 0.3333)

B 1/3 [0.3333, 0.6667)

C 1/3 [0.6667, 1)

Once decoding 'B,' updating the table

X	Probability	Range
Α	1/4	[0.3333, 0.4167)
В	2/4	[0.4167, 0.5834)
C	1/4	[0.5834, 0.6667)

Decoding 'C,' updating the table

Х	Probability	Range
А	1/5	[0.5834, 0.6001)
В	2/5	[0.6001, 0.6334)
С	2/5	[0.6334, 0.6667)

P

Video Encoder Diagram

VLC in Video Coding

- ☐ Huffman coding is based on the statistics of the symbol occurrences
- ☐ Arithmetic coding can achieve better coding efficiency but more complex
- ☐ Unary and Golomb coding is usually used for encoding headers