MATHEMATIK FÜR PHYSIKER 1 Aufgabenblatt 2

Abgabe: 02.11.2021 bis 14:00 Uhr in der Übungsgruppe

Hausaufgaben (20 Punkte)

A2.1 i) Zeigen Sie, dass die Abbildung aus Bsp. 1.15 b)

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad (n,m) \mapsto 2^{n-1}(2m-1)$$

eine Bijektion ist. (3)

- ii) Zeigen Sie, dass für zwei abzählbare Mengen M_1 und M_2 auch $M_1 \times M_2$ abzählbar ist. (2)
- **A2.2** i) Es seien $f:A\to B$ und $g:B\to C$ injektiv. Zeigen Sie, dass dann auch $g\circ f$ injektiv ist. (3)
 - ii) Zeigen Sie, dass die Umkehrung falsch ist, indem Sie eine injektive Funktion $g \circ f$ angeben, bei der f oder g nicht injektiv ist. (2)
- **A2.3** Zeigen sie, mithilfe der folgende Beweisskizze, die Überabzähbarkeit des Intervalls $(0,1) \subset \mathbb{R}$ in sauberer mathematischer Notation. (5)
 - 1. Nehme an, es gäbe eine Abzählung $\varphi: \mathbb{N} \to (0,1)$.
 - 2. Konstruiere eine Zahl z die nicht aufgezählt werden kann, indem z an der n-ten Nachkommastelle von $\varphi(n)$ abweicht.
 - 3. Es gilt $z \in (0,1)$ aber $z \notin Bild(\varphi)$ was ein Widerspruch zur Surjektivität von φ ist. Also war die Annahme falsch \square .

Hinweis: Für jede Zahl $z \in (0,1)$ gibt es $a_i \in \{0,1,2,3,4,5,6,7,8,9\}$ für $i \in \mathbb{N}$, sodass $z = 0, a_1 a_2 a_3 a_4 \dots$ Also entspricht a_i der i - ten Nachkommastelle von z.

- **A2.4** i) Es sei K ein Körper. Zeigen Sie, dass $a \cdot 0 = 0$ für alle $a \in K$. (1)
 - ii) Zeigen Sie, dass \mathbb{F}_n kein Körper ist, falls $n \in \mathbb{N}$ keine Primzahl ist. (2)
 - iii) Für $m \in \mathbb{N}$ definieren wir

$$m\mathbb{Z} := \{ m \cdot z \mid z \in \mathbb{Z} \}$$
.

Zeigen Sie dass $(m\mathbb{Z}, +)$ mit der von \mathbb{Z} induzierten Addition eine abelsche Gruppe ist. Zeigen Sie weiter, dass für alle $z \in \mathbb{Z}$ und $a \in I$ gilt, dass $az \in m\mathbb{Z}$. (2)