ASSIGNMENT-3

Using Microsoft Sql Server, Power BI: Here, I have connected Sql Server to PowerBI to visualize the data

1) Analyze Product Sales

a) Perform basic drill-down operations to evaluate sales performance in a single region over the most recent year.

The below sql query analyzes sales data for the 'South' region in 2018. It selects the Category, Sub_Category, and the sum of Sales for each group. The WHERE clause filters the data to include only records from the 'South' region and the year 2018. The GROUP BY groups the data by Category and Sub_Category to calculate total sales for each combination. The results are ordered in descending order of Total_Sales to highlight top-performing categories. This query provides a detailed view of sales performance by category and subcategory. The plot gives the total sales for each category – for technology it is >40k, office Supplies = 40k, furniture >30k. The entire bar chart gives which sub categories under each category, the total sum of sales at each category, each category sale. Here, technology category has highest number of phones for sales and minimal is copiers, office supplies storage category highest number of sales and minimal is labels, for furniture tables are maximal and minimal is furnishings

b) Identify top-selling products in this region.

This query aggregates sales data from the dbo.train table for the 'South' region. It extracts the month from the Ship_Date using MONTH(), and groups the data by Segment and Ship_Mode. The SUM(Sales) function calculates the total sales for each combination of month, segment, and shipping mode, product_name. The results are ordered first by month, then by segment, ship mode, and finally by total sales in descending order. This query helps in analyzing sales performance across different months, customer segments, and shipping methods. The below graph clearly explains about "Cisco Telepresence system" product has highest number of sales – which is from segment home office. And the next is HP design – which is from Consumer segment. Some of the products comes from 2 or 3 segments.

Sum of Total_Sales by Product_Name and Segment Seament

Consumer

Corporate

Home Office Sum of Total_Sales Logitech diNo... Sam sun g Gala... HON 5400 Ser... Fellowes PB30... Advanta... Plantronics CS... 24 Capacity M... Martin Yale Ch.. Tenn sco Doub. Tennsco Singl.. Global Deluxe .. Pan asonic KX-High-Back L 9971 GBC Ibima Product_Name

2) Customer Segmentation

a) Use simple OLAP operations to segment customers based on a limited set of criteria (e.g., purchase frequency or average spend).

Drill-down Operation:

This query analyzes customer purchasing behavior by calculating two key metrics: purchase frequency and average spend. It first groups the data by Customer_ID and the month of the ship date. The COUNT(Order_ID) function counts the number of orders placed by each customer within a given month, which represents the purchase frequency. The AVG(Sales) function calculates the average amount spent by each customer, representing the average spend. The query then orders the results in descending order based on purchase frequency and average spend, helping to identify the most frequent and highest-spending customers.

100 % 🔻 🖣							
⊞ Results							
	Customer_ID	Purchase_Frequency	Avg_Spend				
1	WB-21850	19	127.147052752344				
2	SV-20365	17	439.253758795121				
3	JA-15970	16	356.667988687754				
4	Dp-13240	14	276.667998245784				
5	AC-10615	14	171.90200306688				
6	KM-16720	14	101.889430216381				
7	IM-15070	13	239.838769289163				
8	RL-19615	13	237.710537250225				
9	KD-16495	13	107.332155924577				
10	GG-14650	13	95.1200020129864				
11	CD-12280	13	92.7372307410607				
12	SJ-20125	12	262.66816786925				
13	JL-15835	12	255.093329509099				
14	CB-12025	12	214.506664594014				
15	SV-20785	12	181.444670756658				
16	FM-14290	12	145.562496781349				
17	JD-15895	12	114.574665387472				

Roll-up Operation:

This SQL query performs a roll-up operation on the Customer_ID and Category columns from the dbo.train table. It counts the number of orders (Order_ID) for each combination of customer and category, and calculates the total count at both the customer and category levels. The HAVING clause filters out rows where either Customer_ID or Category is null, which can result from the roll-up operation. The results are then ordered by Customer_ID and Category. This allows for an organized view of the order counts by customer and category. As you can see highest number of category count in below chart, describing the count which customer bought from which categories.

Slice Operation:

This query performs customer segmentation by focusing on the Corporate segment. It calculates the total number of orders and total sales for each customer within this segment. Using the WHERE clause, it filters records to include only customers from the Corporate segment. The GROUP BY clause groups data by Customer_ID and Segment, allowing aggregation of sales and orders. Finally, the results are sorted in descending order of Total_Sales, providing a ranking of Corporate customers by their sales contribution.

Dice Operation:

This SQL query retrieves the number of distinct customers and total sales for specific segments and states. It filters the data for customers in the 'Consumer' and 'Corporate' segments and located in 'California' and 'Texas'. The query counts distinct Customer_ID for each combination of segment and state. The results are grouped by Segment and State, allowing segmentation of customers based on these criteria. The bar chart clearly explains about states and type of segment and the customer count.

Sum of Customer_Count by Segment and State

This query calculates the total number of unique customers using each shipping mode from the dbo.train table. The COUNT(DISTINCT Customer_ID) function ensures that duplicate customers are not counted multiple times. The results are grouped by Ship_Mode to show customer totals for each shipping method. The ORDER BY Total_Customers DESC clause sorts the output in descending order of customer count, highlighting the most popular shipping modes first. The below analysis provides insights into customer preferences based on shipping modes.

■ Results					
	Ship	_Mode	Total_Customers		
1	Standard Class		774		
2	Second Class		545		
3	First Class		490		
4	Same Day		225		

Sum of Total_Customers by Ship_Mode

3) Sales Forecasting

a) Use basic aggregation techniques to forecast sales for the next quarter, considering simple factors like historical sales trends.

This query calculates the forecasted quarterly sales for each region and state. It aggregates the total sales per region and state in 2018. The SUM(Sales) calculates the total sales for each group, and AVG over partition by computes the average quarterly sales for each region and state. The WHERE clause filters the data for the year 2018. The GROUP BY clause ensures the sales are aggregated by region and state for meaningful analysis.

```
SQLQuery1.sql - L...NJ48D\SRUTHI (60))* - × LAPTOP-IPNJ48D\S...dbms1 - dbo.train

SELECT

Region,
State,
AVG(SUM(Sales)) OVER (PARTITION BY Region, State) AS Forecasted_Quarterly_Sales
FROM
dbo.train
WHERE
YEAR(Ship_Date) = 2018
GROUP BY
Region,
State;
```

■ Results ■ Messages					
	Region	State	Forecasted_Quarterly_Sales		
1	Central	Illinois	23722.0628856421		
2	Central	Indiana	13476.1299183369		
3	Central	Iowa	535.459998130798		
4	Central	Kansas	885.669997215271		
5	Central	Michigan	25623.9488902092		
6	Central	Minnesota	6728.2500166893		
7	Central	Missouri	9350.79974842072		
8	Central	Nebraska	3579.34995174408		
9	Central	North D	891.530012130737		
10	Central	Oklahoma	6225.9099984169		
11	Central	South D	1153.41001224518		
12	Central	Texas	43180.5153669119		
13	Central	Wisconsin	6321.92008876801		
14	East	Connecti	5307.21004390717		

Sum of Forecasted_Quarterly_Sales by State and Region

4) Basic OLAP Queries

a) Construct basic OLAP queries involving a single dimension and measure.

Drill down:

This query calculates the total sales for each combination of State and City from the dataset. It groups the data by State and City, summing up the sales for each group. The SUM(Sales) function aggregates sales figures for each State-City pair. The results are ordered in descending order based on the total sales, showing the highest sales first. This allows you to identify which states and cities contribute the most to total sales.

Roll up:

This query performs a ROLLUP operation on the Category column. It calculates the count of orders (Order_Count) for each category in the dbo.train table. The ROLLUP function aggregates the data hierarchically, providing both individual category counts and a grand total at the end. The HAVING clause filters out any null rows that appear as a result of the ROLLUP operation. Finally, the results are ordered by Category for a clearer presentation of the data.

Dice:

This query selects the Category and counts the distinct Product_IDs for each category from the dbo.train table. It filters the data to include only the categories 'Furniture' and 'Office Supplies' using the WHERE clause. The COUNT(DISTINCT Product_ID) function calculates the number of unique products within each category. The results are grouped by Category, meaning a separate count is returned for each specified category. The query provides an overview of how many unique products exist in each of the specified categories.

Sum of Product_Count by Category

Slice:

This query identifies top-selling products in the "Office Supplies" category for 2018. It filters data by category and year, groups sales by product name, and calculates total sales for each product. The results are sorted in descending order to prioritize high-performing products.

Pivot:

This query aggregates sales data by state and separates it by category. It uses a CASE statement to conditionally sum sales for each category (Office Supplies, Furniture, and Technology). The SUM function calculates the total sales for each category within each state. The GROUP BY clause groups the results by state, ensuring the sales data is segmented by state. This allows the analysis of sales performance across different categories for each state.

b) Focus on queries that are straightforward and demonstrate basic under-standing.

In OLAP (Online Analytical Processing), the basic operations focus on analyzing data across multiple dimensions, below are the olap operations explained in above examples, below is the functionality:

Roll-up: This operation aggregates data by climbing up a hierarchy, like summing sales data from months to quarters or years. Drill-down: The opposite of roll-up, drill-down allows you to go into finer details by breaking down data into more granular levels, such as viewing sales by day instead of by month.

Slice: This operation selects a single level of data (one dimension) from a multidimensional dataset, like viewing sales for only a specific region or product category.

Dice: A more advanced operation that allows you to perform a slice along multiple dimensions, for example, examining sales data for a specific product category and region in a given time period.

Pivot: This operation reorganizes or rotates data to view it from different perspectives, such as swapping rows and columns in a report for better analysis.