Podatkovne baze

Modeliranje realnosti

- Predmeti, osebe in dogodki v realnosti so entitete
- Entiteta ima svoje lastnosti (atribute) in pomen
- Človek nekatere entitete zaznava, sprejema vtise in iz njih oblikuje koncepcije

Modeliranje realnosti

- Koncepcije povezuje in dopolnjuje ter v glavi oblikuje model realnosti
- Model realnosti sestavljajo le tisti deli, ki nas v določenem primeru zanimajo – okrnjena realnost
- Entitete s skupnimi lastnostmi lahko združimo v entitetno množico oz. entitetni tip in jo poimenujemo z entitetnim imenom

Informacijski sistem - IS

- Ali neko podjetje, ustanova, ..., lahko deluje ne da bi na nek način zbirali podatke o svojem delovanju? (Zakaj jih potrebuje?)
- Katere podatke potrebuje za svoje delovanje neko podjetje, šola, šolska kuhinja, ...
- Kaj se dogaja v npr. privatni zobozdravstveni ordinaciji?

Informacijski sistem

- Informacijski sistem je sistem, v katerem se generirajo, arhivirajo in pretakajo podatki.
- IS ne more obstajati sam zase, ampak le kot del ali podsistem nekega drugega sistema (organizacije), k s posredovanjem podatkov pomaga ljudem v organizaciji, da svoje delo opravijo lažje, hitreje, bolje in ceneje.

IS podpira poslovni sistem

Elementi informacijskega sistema

- Strojna oprema
- Omrežje
- Programska oprema
- Podatkovna baza
- Postopki in metode
- Ljudje

Naloge IS

- zbiranje podatkov,
- hranjenje podatkov,
- obdelava podatkov,
- varovanje podatkov,
- posredovanje podatkov uporabnikom.

Idealen IS posreduje prave podatke ob pravem Času z minimalnimi stroški.

Modeliranje pri razvoju IS

Pri modeliranju sveta z računalnikom predstavimo stvarnost z modelom, ki ga imenujemo podatkovna baza.

Podatkovna baza

Je model v računalniku, ki:

- Vsebuje lastnosti ki jih pručujemo
- Vsebuje povezave, ki nas zanimajo
- Njegovo delovanje ustreza razmeram v realnosti

Opredelitev baze podatkov

ANSI (1975) zahteve za bazo podatkov:

- 1. Podatki so v bazi povezani in urejeni po določenem vrstnem redu
- 2. BP je urejena tako, da lahko podatke v njej istočasno uporablja en ali več uporabnikov
- 3. Isti podatki se v bazi ne ponavljajo
- 4. Baza podatkov je shranjena v računalniku

AOP – sistem za obdelavo podatkov

Z obdelavo podatkov:

- Zbiramo podatke
- Vnašamo v podatke v sistem
- Spreminjamo posredujemo
- Varujemo pred izgubo in zlorabo

SUPB – sistem za upravljanje podatkovnih baz (npr. Access) omogoča funkcionalno obdelavo podatkov.

Obdelava podatkov

Naloge funkcionalne obdelave podatkov so:

- Zagotoviti pravilnost in ažurnost podatkov
- Sočasno nuditi podatke vsem uporabnikom brez ogrožanja celovitosti baze podatkov
- Posredovati podatke takrat, ko jih uporabniki potrebujejo
- Omogočiti vsem uporabnikom dostopnost do tistih podatkov, ki jih potrebujejo pri svojem delu
- Posredovati podatke o tem, kaj se je zgodilo (zgodovina) in o tem kaj se lahko zgodi (napovedi)

Obdelava podatkov

Podatkovna baza je z vidika upravljanja organizirana kot:

- Centralizirana podatkovna baza celotna baza se upravlja z enim sistemom upravljanja
- Porazdeljena podatkovna baza nameščena na več računalnikih na različnih lokacijah medsebojno povezanih v omrežje in je upravljana z več sistemi za upravljanje

Vprašanja za ponovitev

- 1. Opredeli elemente informacijskega sistema (IS)!
- 2. Naštej in razloži glavne funkcije IS! Kakšen naj bi bil idealen IS?
- 3. Kaj v IS predstavlja model realnosti?
- 4. Kako v modelu realnosti poimenujemo predmete, osebe in dogodke?
- 5. Naštejte ANSI zahteve za podatkovno bazo!

Podatkovni model

Podatkovni model je strukturiran mehanizem za opis realnosti s podatki.

Model vsebuje množico pravil, ki določajo

- Organizacijo podatkov strukturo
- Operacije nad podatki

Kako do modela?

z analizo
obstoječih
dokumentov
(od spodaj)

z analizo
delovanja
"podjetja"
(od zgoraj)

1. Podatkovna analiza

Izdelava PB "od spodaj"

1. Zbiranje in analiza dokumentov in ostalih podatkov: pregled vseh "nastopajočih" atributov ...

2. Oblikovanje logičnega modela

2. Analiza realnega procesa

- 1. Analiza realnega procesa -> globalni model.
- 2. Določitev "enot" (entitet), ki nastopajo v tem procesu: konceptualni model
- Zapis logičnega modela (glede na SUPB)
- 4. Izdelava fizične podatkovne baze -> fizični model

Globalni model

Konceptualni model

Določimo:

- 1. entitete,
- 2. njihove atribute in
- 3. razmerja (povezave) med njimi
- 4. števnost razmerja

Model: model E-R (diagram)
(Entety Relationship = model Entiteta-Razmerje)

E-R model

- obstaja več verzij te diagramske tehnike
- prednosti:
 - enostavnost
 - možnost pretvorbe v različne podatkovne modele
 - neodvisnost od konkretnih komercialnih izvedb baz podatkov in njihovih SUPB

Dogovorjeni simboli

p

a

0

Element	Simbol	
Entiteta	pravokotnik	Ime entitete
Razmerje	romboid	razmerje
Atribut	elipsa	lastnost

u

a

0

d

- Števnost (kardinalnost) pove koliko primerkov ene entitete nastopa v povezavi z enim primerkom druge entitete.
- Pri binarnih povezavah (v povezavi sta udeležena dva tipa entitet) poznamo 3 osnovna razmerja števnosti:
 - 1:1 (ena proti ena),
 - 1 : N (ena proti več) (pravzaprav ena proti ena ali več),
 - N: M (več proti več) (pravzaprav ena ali več proti ena ali več).

1:1 (ena proti ena)

En primerek tipa entitete A sodeluje v povezavi z enim primerkom tipa entitete B.

e

p

u

a

1 : N (ena proti več)

En primerek tipa entitete A sodeluje v povezavi z enim ali več primerki tipa entitete B.

K

n

C

p

U

d

N: M (ena proti več)

En ALI več primerkov tipa entitete A sodeluje v povezavi z enim ali več primerki tipa entitete B.

n

C

p

u

a

Razvoj modela E-R

Model E-R razvijamo po korakih:

- Določimo entitete in izdelamo seznam entitet
- 2. Entitetam **opredelimo atribute**, ki so pomembni in nas zanimajo
- 3. Določimo razmerja med entitetami
- 4. Slikovni prikaz modela E-R izvedemo z diagramom entiteta-razmerje, v katerem uporabljamo dogovorjene simbole:

n

C

e

u

a

n

Izdelaj model E-R branja knjige

- Imamo:
 - 2 entiteti: oseba, knjiga
 - Eno razmerje: bere
 - Pri osebi atributa: spol, starost
 - Pri knjigi atributa : avtor, naslov

Izdelaj model E-R izbiranja maturitetnih predmetov

- Imamo:
- 2 **entiteti**: dijak, predmet
- Eno razmerje: izbiranje
- Pri dijak atribut: ime, priimek, razred
- Pri predmet atribut: ime, št. ur
- Števnost

(Vsak dijak lahko izbere le en predmet, isti predmet lahko izbere več dijakov)

e

p

u

a

n

Primer E-R diagrama

Nariši model E-R izposoje knjige!

POSTOPEK:

določimo

- 1. entitete
- 2. razmerja
- 3. atribute entitet
- 4. števnost

- 1. entitete
- 2. razmerja
- 3. atributi
- 4. števnost

konceptualni model Izposoja knjige

Šifra izposojevalca

Ime

Priimek

Spol

Razred

Datum rojstva

Ulica

Poštna številka

N si sposodi M

<u>Šifra knjige</u>

0

n

C

e

p

u

a

n

M

0

d

e

Naslov

Avtor

Letnica izdaje

Založba

Kraj izdaje

Vprašanja za ponavljanje

- Navedite ANSI zahteve za podatkovno bazo!
- Predstavite dva osnovna principa za izdelavo baze podatkov!
- Kakšna je razlika med globalnim in konceptualnim podatkovnim modelom?
- Opišite model ER:
 - Predstavi razvoj modela ER!
 - Predstavi posamezne pojme v modelu ER! (entiteta, razmerje, atribut, števnost)

Logični podatkovni model

- Izhodišče je razviti konceptualni model
- V njem zajamemo vse entitete in razmerja med njimi,
- vsako entiteto podrobno opišemo z njenimi atributi tako, da je vsaka entiteta v modelu enolično določena.

Vrste logičnih podatkovnih modelov (PB)

- mrežni podatkovni model
- hierarhični podatkovni model
- relacijski podatkovni model

Klasični podatkovni modeli

objektni podatkovni model

Vrsta logičnega modela PB= f(SUPB)

Objektni podatkovni model

- Pri objektno orientiranem pristopu je BP sestavljena iz množice objektov, kjer vsak objekt predstavlja neko entiteto iz realnega sveta.
- Eden od ciljev objektnega pristopa pri modeliranju podatkov je obdržati ustrezno zvezo med realnimi objekti in njihovo predstavitvijo v bazi.
- Pri klasičnih modelih je ta zveza zabrisana.

Hierarhični podatkovni model

Mrežni podatkovni model

- Odlikujejo ga naslednje lastnosti:
 - formalno je definiran in osnovan na matematičnih strukturah – relacijah;
 - ne vsebuje elementov fizičnega shranjevanja podatkov, s čimer je zagotovljena podatkovna neodvisnost;
 - relacije so predstavljive s tabelami, ki so človeku dobro razumljive.
- Vsaka entitetna množica je predstavljen z eno ali več matematičnimi relacijami = TABELAMI.

- Stolpci v tabeli (relaciji) predstavljajo atribute entitetne množice.
- Vrstice predstavljajo primerke entitetne množice (zapis/record).
- Povezave med relacijami niso vnaprej določene in vgrajene v strukturo (kot je to pri hierarhični oz. mrežni strukturi).
- Vzpostavijo se v skladu s trenutnimi informacijskimi potrebami.

- V terminologiji relacijskega modela se
 - cela tabela imenuje relacija,
 - vrstica n-terka ali zapis (record)
 - stolpec atribut-

DIJAK

IME	VPISNA ŠT.	LETNIK	SPOL
000001	Pak	4.	M
000002	Žak	2.	M
000008	Mak	1.	М

Vrednost atributa

- V terminologiji relacijskega modela se
 - relacijiska shema je naslovna vrstica tabele
 - vsak atribut svojo domeno zalogo vrednosti.
 - atribut starost pri entiteti Najstnik lahko zavzame vrednosti med 11 in 19,
 - atribut **spol** lahko zavzame vrednosti m ali ž ...
 - ključ primarni ključ, (sekundarni, tuji ključ)

Primer 1:

relacija (celotna tabela)

atribut

primarni ključ
DIJAK

VPIS_ŠT	IME	LETNIK	SPOL	NASLOV	TEL_ŠT.
13012	Janko	1	M	Strma 5	523343
13017	Marko	1	M	Pod lipo 3	null
13021	Metka	2	Ž	Ob reki 4	5434554
13067	Janko	1	M	Na hribu 1	513456

Primer 1:

- <u>ČLAN (**Šifra člana#**, Ime, Priimek, Naslov, Poštna št</u>)
- POŠTA (**Poštna št#**, Ime_pošte)
- KNJIGA (<u>Šifra knjige#</u>, Naslov, Avtor)
- IZPOSOJA
 (<u>Šifra knjige+Šifra člana+Datum izposoje#</u>, Datum vrnitve)

ŠIFRA_ ČLANA	IME	PRIIMEK	NASLOV	POŠTNA_ ŠT
111	Aleš	Knavs	Glavni trg 2	3000
112	Julči	Koren	Prečna 3	3000
113	Jure	Mirt	Pod mizo 12	3320

POŠTNA_ŠT	IME_ POŠTE
3000	Celje
3320	Velenje
3310	Žalec

ŠIFRA_ KNJIGE	ŠIFRA_ ČLANA	DATUM IZPOSOJE	DATUM VRNITVE
K1	111	20.10.2003	1.11.2003
K2	111	20.10.2003	1.11.2003
K1	112	2.11.2003	1.12.2003
K2	112	2.11.2003	1.12.2003
K3	112	5.11.2003	null
K1	113	5.11.2003	null
K2	113	5.12.2003	7.12.2003
K2	111	10.12.2003	null

ŠIFRA_ KNJIGE	NASLOV	AVTOR
K1	Zveri	A. Logar
K2	Pod krinko	J. Smith
K3	Lepa Suzana	V.Pavlov
K4	Moj svet	D. Bizgec

E-R diagram -> relacijski podatkovni model

- 1. Pretvorba iz konceptualnega v logični podatkovni model je pravzaprav pretvorba E-R diagrama v relacijski podatkovni model (logični).
- Konceptualni model iz faze analize najprej dodelamo tako, da upoštevamo zahteve relacijskega modela.
- 3. Vsako entiteto iz tako dobljenega E-R diagrama nato prevedemo v eno relacijo (tabelo).
- 4. Pazimo na ključe.
- 5. Atributom določimo domene in podatkovne tipe.

E-R diagram -> relacijski podatkovni model

- Razmerje M:N
- Povezavo M:N razstavimo na dve povezavi 1:N in tako dobimo novo, povezovalno entiteto.
 - Vanjo damo oba primarna ključa prvotnih entitet in morebitne atribute povezave.
 - Oba primarna ključa tvorita skupaj sestavljeni ključ povezovalne entitete (ki se mu včasih pridruži še kak atribut).

E-R diagram -> relacijski podatkovni model

Razmerje M:N

<u>Šifra člana</u>, Ime, Priimek, Naslov

ČLAN

N Datum_izposoje,
Datum vrnitve

M

KNJIGA

<u>Šifra knjige</u>, Naslov, Avtor

Ponovitev

- Kaj so osnovni elementi relacijskega podatkovnega modela?
 - Kaj je relacija (v relacijskem podatkovnem modelu)?
 - Kako so predstavljeni atributi?
 - Kaj je relacijska shema?
 - Kaj je predstavlja domena pri atributu?
 - Kakšno funkcijo ima primarni ključ?
 - Kaj je sestavljen ključ?
 - Kako je predstavljena entiteta?

Model E-R

Dijak

Šifra dijaka
Ime in priimek
Spol
Datum rojstva
Ulica
Poštna številka
Telefon

Dijak - Dejavnost

N

Sifra dijaka
Sifra tečaja
Datum
Ocena
Opr_ure

N

Dejavnost

Sifra tečaja
Ime tečaj
Število ur
Nosilec tečaja
Cena tečaja
Cena tečaja