

FCC Test Report

FCC Part 15.247 for FHSS systems

FOR:

ShotSpotter, Inc 1060 Terra Bella Ave Mountain view, CA 94043

FCC ID: WLI-L3ALV900

TEST REPORT #: EMC_SHOTS_001_08001_15.247_2009

DATE: 2009-2-5

FCC listed **A2LA Accredited**

IC recognized # 3462B

© Copyright by CETECOM

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: +1 (408) 586 6200 ◆ Fax: +1 (408) 586 6299 ◆ E-mail: info@cetecomusa.com ◆ http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2113686 Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

The BLUETOOTH trademarks are owned by Bluetooth SIG, Inc., U.S.A. and licensed to CETECOM Inc.

Date of Report: 2009-2-5 Page 2 of 35

TABLE OF CONTENTS

2 Administrative Data	est Report4
	est Report4
2.1 Identification of the Testing Euporatory issuing the Exite 1	
2.2 Identification of the Client	
3 Equipment under Test (EUT)	5
3.1 Specification of the Equipment under Test	5
3.2 Identification of the Equipment Under Test (EUT)	
3.3 Identification of Accessory equipment	
4 Subject Of Investigation	
5 Measurements (Radiated)	
5.1 MAXIMUM PEAK OUTPUT POWER 5.1.1 Test Result:	
5.2 TRANSMITTER SPURIOUS EMISSIONS RADIATED § 1 5.2.1 LIMITS	15.247/15.205/15.209 14
5.2.2 RESULTS	
6 Measurements (Conducted)	
6.1 MAXIMUM PEAK OUTPUT POWER § 15.247 (CONDUC 6.1.1 LIMIT SUB CLAUSE § 15.247 (b) (1)	(T ED) 19
6.1.2 RESULTS:	19
6.2 6dB BANDWIDTH	20
6.2.1 LIMIT SUB CLAUSE § 15.247 (a) (2)	
6.3 POWER SPECTRAL DENSITY	
6.4 TIME OF OCCUPANCY (DWELL TIME)	21
6.4.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)	21 21
6.5 CONDUCTED SPURIOUS EMISSION	
6.5.1 LIMIT SUB CLAUSE § 15.247 (d)	
6.6 AC POWER LINE CONDUCTED EMISSIONS § 15.107/20	
6.6.2 Test Results:	30
7 TEST EQUIPMENT AND ANCILLARIES USED FOR TEST	TS32
8 BLOCK DIAGRAMS	33
9 REPORT HISTORY	35

Test Report #:

EMC_SHOTS_001_08001_15.247_2009

Date of Report:

2009-2-5

Page 3 of 35

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Part 15.247 of the Code of Federal Regulations.

Company	Model #
ShotSpotter, Inc	L3-ALV900

This report is reviewed by:

EMC & Radio

2009-2-5

Lothar Schmidt (Director Regulatory and Antenna Services)

Date Section Name Signature

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

This report is prepared by:

		Peter Mu	
2009-2-5	EMC & Radio	(EMC Project Engineer)	
Date	Section	Name	Signature

Date of Report: 2009-2-5 Page 4 of 35

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	EMC
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Responsible Test Lab Manager:	Lothar Schmidt
Responsible Project Leader:	Peter Mu
Date of test:	2008-8-1 to 2008-11-10

2.2 Identification of the Client

APPLICANT			
Applicant (Company Name)	ShotSpotter, Inc.		
Street Address	1060 Terra Bella Ave		
City/Zip Code	Mountain View, CA 94043		
Country	USA		
Contact Person	Gouglas McFarlin		
Telephone	650-960-9200		
Fax			
e-mail	dmcfarlin@shotspotter.com		

Date of Report: 2009-2-5 Page 5 of 35

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Marketing Name:	L3ALV900
Model No:	L3ALV900
Antenna Type:	External Panel MT-263006/N, 12.5dBi External Panel WRP900-100, 10.0dBi
Type(s) of Modulation:	GFSK DTS/FHSS hybrid
Frequency Band(s) of Operation:	904.0 - 926.0MHz
Equipment Classification: (CLASS)	■FIXED □VEHICULAR □PORTABLE □MODULE
Equipment Classification: (POWER(AC MAINS))	□110VAC (GROUND) ■ 110VAC (NO GROUND) □12VDC

3.2 Identification of the Equipment Under Test (EUT)

EUT#	TYPE	MODEL	SERIAL #
1	EUT	L3ALV900	L3B-00-B36-0556

3.3 Identification of Accessory equipment

AE#	TYPE	MODEL
1	AC Adapter Power Supply	MDR-20-12

Date of Report: 2009-2-5 Page 6 of 35

4 Subject Of Investigation

This report supports an application for FCC approval of a final device under the FCC ID: **WLI-L3ALV900**.

All testing was performed on the product referred to in Section 3 as EUT. This test report contains full radiated and conducted testing results as per FCC15.247. Frequency hopping timing characteristics were measured at Alvarion's laboratory in Carlsbad, CA. All other FCC tests were performed at Compliance Certification Services, 571F Monterey Road, Morgan Hill, CA 95037 Conducted values are verified by Cetecom.

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations. The maximization of portable equipment is conducted in accordance with ANSI C63.4.

During the testing process the EUT was tested with manufacture' testing software in normal modulation with carrier placed on the first, middle, and the last transmitting channels in the band. Maximum output power is used for all testing. All data in this report shows the worst case between horizontal and vertical polarization for above 1GHz.

From the test data collected this device complies with applicable FCC rules in Part 15.247.

Date of Report: 2009-2-5 Page 7 of 35

5 Measurements (Radiated)

5.1 MAXIMUM PEAK OUTPUT POWER

5.1.1 Test Result:

EIRP with 10 dBi antenna:

TEST CON	NDITIONS	MAXIMUM	PEAK OUTPUT P	OWER (dBm)
Frequency (MHz)		904	915	926
T _{nom} (23)°C	V _{nom} VDC	31.24	30.60	31.73
Measuremen	uncertainty ±0.5dBm		±0.5dBm	

EIRP with 12.5 dBi antenna:

TEST CONDITIONS		MAXIMUM PEAK OUTPUT POWER (dBm)		
Frequency (MHz)		904	915	926
T _{nom} (23)°C	V _{nom} VDC	34.93	34.23	35.64
Measuremen	t uncertainty	±0.5dBm		

Note: End users are cautioned to only use the supplied external panel antennae and RF cable assembly to ensure that the power output meets applicable FCC requirements. For detail see users manual.

Test conducted with EUT operating at 1.5dBm higher than normal operation as a built-in safety margin per applicant's request. Thus EIRP under normal operation can only be lower than what is measured and all emission should also comply with applicable FCC requirements.

2009-2-5 Date of Report: Page 8 of 35

EIRP LOW CHANNEL

900MHz Acoustic Sensor

Customer:: Shotspotter
Test Mode: 904MHz

ANT Orientation: V EUT Orientation: V Test Engineer: Chris Voltage: AC Adapter

Comments:

SWEEP TABLE: "EIRP 904MHz V"

Start Detector Meas. IF Transducer Stop

Frequency Frequency 899.0 MHz 909.0 MHz MaxPeak Time Bandw.

Coupled 3 MHz DUMMY-DBM

MaxPeak

Date of Report: 2009-2-5 Page 9 of 35

EIRP MIDDLE CHANNEL

EUT: 900MHz Acoustic Sensor

Customer:: Shotspotter Test Mode: 915MHz

ANT Orientation: V EUT Orientation: V Test Engineer: Chris AC Adapter Voltage:

Comments:

SWEEP TABLE: "EIRP 915MHz V"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

910.0 MHz 920.0 MHz MaxPeak Coupled 3 MHz DUMMY-DBM

		MaxPeak			
Marke	r: 9	915.470942 MHz	30.6 dB	m	
Love	ol [dDm]				
	el [dBm]				
120					
100					
80					
60					
40			\Diamond		
20			V		
0					
-20	910M	912M 914I	M 916	M 918ľ	M 920M
		Freque	ncy [Hz]		

Page 10 of 35 Date of Report: 2009-2-5

EIRP HIGH CHANNEL

900MHz Acoustic Sensor

Customer:: Shotspotter
Test Mode: 926MHz ANT Orientation: V

EUT Orientation: V Test Engineer: Chris Voltage: AC Adapter

Comments:

SWEEP TABLE: "EIRP 926MHz V"

Start Detector Meas. IF Transducer Stop

Frequency Frequency Time Bandw.

Coupled 3 MHz 921.0 MHz 931.0 MHz MaxPeak DUMMY-DBM

MaxPeak

2009-2-5 Date of Report: Page 11 of 35

EIRP LOW CHANNEL

EUT: sensor Customer:: shotspotter Test Mode: 904mhz

ANT Orientation: vEUT Orientation: H Test Engineer: peter Voltage: AC

Comments:

SWEEP TABLE: "EIRP 904MHz V"

IF Transducer Start Stop Detector Meas.

Frequency Frequency Time Bandw.

899.0 MHz 909.0 MHz MaxPeak 100.0 ms 3 MHz DUMMY-DBM

Page 12 of 35 Date of Report: 2009-2-5

EIRP MID CHANNEL

EUT: sensor Customer:: shotspotter Test Mode: 915mhz

ANT Orientation: v EUT Orientation: H Test Engineer: peter Voltage: AC

Comments:

SWEEP TABLE: "EIRP 915MHz V"

Start Stop Detector Meas. Transducer

Frequency Frequency Time Bandw.

910.0 MHz 920.0 MHz MaxPeak 100.0 ms 3 MHz DUMMY-DBM

MaxPeak

2009-2-5 Date of Report: Page 13 of 35

EIRP HIGH CHANNEL

EUT: sensor Customer:: shotspotter Test Mode: 926mhz

ANT Orientation: v EUT Orientation: H Test Engineer: peter Voltage: AC

Comments:

SWEEP TABLE: "EIRP 926MHz V"

Start Stop Detector Meas. IF Transducer

Bandw. Frequency Frequency Time

921.0 MHz 931.0 MHz MaxPeak DUMMY-DBM Coupled 3 MHz

 ${\tt MaxPeak}$

Date of Report: 2009-2-5 Page 14 of 35

5.2 TRANSMITTER SPURIOUS EMISSIONS RADIATED § 15.247/15.205/15.209

5.2.1 LIMITS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

^{*}PEAK LIMIT= 74dBuV/m

NOTE:

- 1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.
- 2. All measurements are done in peak mode using an average limit, unless specified with the plots.

Results for the radiated measurements below 30MHz according § 15.33

Frequency	Measured values	Remarks
9KHz – 30MHz	No emissions found, caused by the EUT	This is valid for all the tested channels

^{*}AVG. LIMIT= 54dBuV/m

Date of Report: 2009-2-5 Page 15 of 35

5.2.2 RESULTS 30MHz – 1GHz Antenna: vertical

Note: This plot shows worse case emission for low, mid, and high channel.

EUT: 900MHz Acoustic Sensor

Customer:: Shotspotter
Test Mode: 915MHz

Test Mode: 915MHz
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter

Comments:

QuasiPeak @ 70.82MHz 36.62 dBuV/m QuasiPeak @ 72.77MHz 35.09 dBuV/m QuasiPeak @ 74.71MHz 36.87 dBuV/m QuasiPeak @ 84.43MHz 38.85 dBuV/m QuasiPeak @ 86.37MHz 34.77 dBuV/m

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Vert

2009-2-5 Date of Report: Page 16 of 35

30MHz - 1GHz

Antenna: horizontal.

Note: This plot shows worse case emission for low, mid, and high channel.

EUT: 900MHz Acoustic Sensor

Customer:: Shotspotter Test Mode: 915MHz

ANT Orientation: H EUT Orientation: V Test Engineer: Chris Voltage: AC Adapter

Comments:

QuasiPeak @ 177.74 37.73 dBuV/m

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start IF Transducer Stop Detector Meas.

Frequency Frequency Bandw. Time

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

2009-2-5 Date of Report: Page 17 of 35

1-3**GHz**

Note: Peak Reading vs. Average limit

Note: This plot shows worse case emission for low, mid, and high channel.

900MHz Acoustic Sensor

Customer:: Shotspotter Test Mode: 926MHz ANT Orientation: V EUT Orientation: V Test Engineer: Chris Voltage: AC Adapter

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

IF Start Stop Detector Meas. Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

2009-2-5 Page 18 of 35 Date of Report:

3-18GHz

Note: Peak Reading vs. Average limit

Note: This plot shows worse case emission for low, mid, and high channel.

EUT: 900MHz Acoustic Sensor

Customer:: Shotspotter Test Mode: 926MHz ANT Orientation: V EUT Orientation: V Test Engineer: Chris Voltage: AC Adapter

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

IF Transducer Stop Detector Meas.

Frequency Frequency Bandw. Time

3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

Date of Report: 2009-2-5 Page 19 of 35

6 Measurements (Conducted)

6.1 MAXIMUM PEAK OUTPUT POWER § 15.247 (CONDUCTED)

6.1.1 LIMIT SUB CLAUSE § 15.247 (b) (1)

Frequency range	RF power output
2400-2483.5 MHz	30dBm

^{*}limit is based upon antenna gain of less than or equal to 6dBi.

6.1.2 RESULTS:

Test conducted by Compliance Certification Services, 571F Monterey Road, Morgan Hill, CA 95037. Test report date 5/31/2003.

TEST CONDITIONS	MAXIMUM PEAK OUTPUT POWER (dBm)			
Frequency (MHz)	904	915	926	
Antenna Port	24.24	24.56	23.9	
Measurement uncertainty	±0.5dBm			

Test Report #:

EMC_SHOTS_001_08001_15.247_2009

Date of Report:

2009-2-5

Page 20 of 35

6.2 6dB BANDWIDTH

6.2.1 LIMIT SUB CLAUSE § 15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.2.2 RESULTS:

Test conducted by Compliance Certification Services, 571F Monterey Road, Morgan Hill, CA 95037. Test report date 5/31/2003.

TEST CONDITIONS		6dB Bandwidth (MHz)		
Frequency (MHz)		904	915	926
T _{nom} (23)°C	V _{nom} VDC	1.725	1.713	1.725
Measurement uncertainty			±0.5dBm	

6.3 POWER SPECTRAL DENSITY

Test conducted by Compliance Certification Services, 571F Monterey Road, Morgan Hill, CA 95037. Test report date 5/31/2003.

		Power Spectral Density (dBm)		
Frequency (MHz)		904	915	926
T _{nom} (23)°	V _{nom} VDC	7.57	7.23	7.80

LIMITS: Clause 5.2.2

Under normal test conditions only	≤ -20dBW/MHz (10dBm/MHz)	

Date of Report: 2009-2-5 Page 21 of 35

6.4 TIME OF OCCUPANCY (DWELL TIME)

6.4.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

FREQUENCY RANGE	AVERAGE TIME OF	
	OCCUPANCY PER	
	31.6 SECONDS (LIMIT)	
2400-2483.5	0.4 SECONDS	

6.4.2 RESULTS:

Test conducted by Compliance Certification Services, 571F Monterey Road, Morgan Hill, CA 95037. Test report date 5/31/2003. Below assessment and plots are extracted from the test report.

Plot 1 is the plot of hopping from 904 - 926 (inclusive) step 2 MHz, total 12 channels.

Plot 2 shows the 4.8s sweep on 926MHz, 0 span. (12 hops * 0.4 = 4.8s)

Plot 3 is the same as above but on 904 MHz.

Plot 4 is the same as above but on 916 MHz. (2 - 4 shows the same number of hops and duration of hop per 4.8s period for 3 representative hop channels)

Plot 5 shows the duration of the transmission on the hop as 126mS each. As shown in 2-4, the average time occupied is 126mS per hop 4.8s period.

Plot 6 shows hopping on 6 channels, 904 - 914 MHz.

Plot 7 shows the same average time occupied for the 2.4s period (6 hops * 0.4s = 2.4s) is the same as for 12 hop

Date of Report: 2009-2-5 Page 22 of 35

Date of Report: 2009-2-5 Page 23 of 35

Date of Report: 2009-2-5 Page 24 of 35

Date of Report: 2009-2-5 Page 25 of 35

Date of Report: 2009-2-5 Page 26 of 35

Date of Report: 2009-2-5 Page 27 of 35

Date of Report: 2009-2-5 Page 28 of 35

Date of Report: 2009-2-5 Page 29 of 35

6.5 CONDUCTED SPURIOUS EMISSION

6.5.1 LIMIT SUB CLAUSE § 15.247 (d)

FREQUENCY RANGE	limit	
30M-25GHz	-20dBc	

6.5.2 RESULTS: Out of band emission is well below -20dBc limit.

6.6 AC POWER LINE CONDUCTED EMISSIONS § 15.107/207

6.6.1 LIMITS

Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002)

Limit

Frequency of Emission (MHz)	Conducted Limit (dBμV)		
	Quasi-Peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 – 30	60	50	
* Decreases with logarithm of the frequency			

ANALYZER SETTINGS: RBW = 10KHz

VBW = 10KHz

Date of Report: 2009-2-5 Page 30 of 35

6.6.2 Test Results:

Results TX Line

EUT: 900MHz Acoustic Sensor

Manufacturer: Shotspotter
Test Mode: 904 MHz
ANT Orientation:: LISN
EUT Orientation:: H
Test Engineer:: Marc
Power Supply: 120V
Comments: Line

Marker: 5 MHz 56 dBµV

Level [dBµV]

- + MES 55022 V AV Avg1 MES 55022 cond MaxPk
 - MES 55022 cond Avg
 - LIM EN 55022 V QPVoltage QP LimitVoltage AV Limit

Date of Report: 2009-2-5 Page 31 of 35

Results TX Neutral

EUT: 900MHz Acoustic Sensor

Manufacturer: Shotspotter
Test Mode: 904 MHz
ANT Orientation:: LISN
EUT Orientation:: H

Test Engineer:: Marc
Power Supply:: 120V
Comments:: Neutral

Date of Report: 2009-2-5 Page 32 of 35

7 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancillar	Type	Manufacturer	Serial No.	Cal Due	Interval
	y					
01	Spectrum Analyzer	ESIB 40	Rohde &	100107	May 2009	1 year
			Schwarz			
02	Spectrum Analyzer	FSEM 30	Rohde &	100017	May 2009	1 year
			Schwarz			
03	Signal Generator	SMY02	Rohde &	836878/011	May 2009	1 year
			Schwarz			
04	Power-Meter	NRVD	Rohde &	0857.8008.02	May 2009	1 year
			Schwarz			
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2009	1 year
06	Horn Antenna (1-	SAS-	AH Systems	325	June 2009	1 year
	18GHz)	200/571				
07	Horn Antenna (18-	3160-09	EMCO	1240	June 2009	1 year
	26.5GHz)					
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2009	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4-	Miteq	00616	May 2009	1 year
		00102600				
13	Power Sensor	URV5-Z2	Rohde &	DE30807	May 2009	1 year
13			Schwarz			
14	Digital Radio Comm.	CMD-55	Rohde &	847958/008	May 2009	1 year
	Tester	CMD-33	Schwarz	04/930/000		
15	Universal Radio	CMU 200	Rohde &	832221/06	May 2009	1 year
	Comm. Tester	CIVIO 200	Schwarz	032221/00		
16	LISN	ESH3-Z5	Rohde &	836679/003	May 2009	1 year
			Schwarz			
17	Loop Antenna	6512	EMCO	00049838	July 2010	2 years

Date of Report: 2009-2-5 Page 33 of 35

8 BLOCK DIAGRAMS

Conducted Testing

Test Report #:

EMC_SHOTS_001_08001_15.247_2009

Date of Report: 2009-2-5

Page 34 of 35

Radiated Testing

ANECHOIC CHAMBER

Date of Report: 2009-2-5 Page 35 of 35

9 REPORT HISTORY

2008-11-11: First issue.

2009-2-5: Revision 1. Added conducted measurement data.