

BBM406: Fundamentals of Machine Learning

Support Vector Machines

Bias vs. Variance Trade off

- High bias (and low variance) indicates underfitting problem
- High variance (and low bias) indicates underfitting problem

Bias vs. Variance Trade off

Overfitting Underfitting

(High Variance) (High bias)

Regularization

Linear Regression Cost Function

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Regularized Linear Regression Cost Function

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$
 Regularization Parameter

Strengths of SVMs

- Good generalization
 - in theory
 - in practice
- Works well with few training instances
- Find globally best model
- Efficient algorithms
- Amenable to the kernel trick

A "Good" Separator

Noise in the Observations

Ruling Out Some Separators

Lots of Noise

Only One Separator Remains

Maximizing the Margin

Why Maximize Margin

Increasing margin reduces capacity

• i.e., fewer possible models

Lesson from Learning Theory:

- If the following holds:
 - H is sufficiently constrained in size
 - and/or the size of the training data set n is large, then low training error is likely to be evidence of low generalization error

Alternate View of Logistic Regression

Cost of a sample: $y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} \qquad z = \theta^T x$$

If y = 1 (we want $\theta^T x \gg 0$)

If y = 0 (we want $\theta^T x \ll 0$)

Based on slide by Andrew Ng

Logistic Regression to SVMs

Logistic Regression:

$$\min_{\theta} - \sum_{i=1}^{n} (y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))) + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$

Support Vector Machines:

$$\min_{\theta} C \sum_{i=1}^{n} (y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)})) + \frac{1}{2} \sum_{j=1}^{d} \theta_j^2$$

You can think of C as similar to $\frac{1}{\lambda}$

From Logistic Regression to SVM

Support Vector Machines:

$$\min_{\theta} C \sum_{i=1}^{n} (y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)})) + \frac{1}{2} \sum_{j=1}^{d} \theta_j^2$$

If y = 1 (we want $\theta^T x \gg 0$)

If y = 0 (we want $\theta^T x \ll 0$)

Based on slide by Andrew Ng

Support Vector Machine

$$\min_{\theta} C \sum_{i=1}^{n} (y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)})) + \frac{1}{2} \sum_{j=1}^{d} \theta_j^2$$

If
$$y = 1$$
 (we want $\theta^T x \ge 1$)

If
$$y = 0$$
 (we want $\theta^T x \le -1$)

Support Vector Machine

$$\min_{\theta} C \sum_{i=1}^{n} (y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)})) + \frac{1}{2} \sum_{j=1}^{d} \theta_j^2$$

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{d} \theta_j^2$$

s.t.
$$\theta^T x^{(i)} \ge 1$$
 if $y^{(i)} = 1$
 $\theta^T x^{(i)} \le -1$ if $y^{(i)} = 0$

Maximum Margin Hyperplane

Support Vectors

Large Margin Classifier in Presence of Outliers

$$\min_{\theta} C \sum_{i=1}^{n} (y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)})) + \frac{1}{2} \sum_{j=1}^{d} \theta_j^2$$

Vector Inner Product

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$||u||_2 = \sqrt{u_1^2 + u_2^2}$$

= length (u)

$$u^{T}v = v^{T}u$$

= $u_{1}v_{1} + u_{2}v_{2}$
= $||u||_{2} ||v||_{2} cos \theta$
= $p ||u||_{2} where p = ||v||_{2} cos \theta$

Understanding the Hyperplane

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{d} \theta_j^2$$

s.t.
$$\theta^T x^{(i)} \ge 1$$
 if $y^{(i)} = 1$
 $\theta^T x^{(i)} \le -1$ if $y^{(i)} = 0$

Assume $\theta_0 = 0$ so that the hyperplane is centered at the origin, and that d = 2

$$\theta^T x = \|\theta\|_2 \|x\|_2 \text{ c o s } \theta$$
$$= p \|\theta\|_2$$

Maximizing the Margin

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{d} \theta_j^2$$

s.t.
$$\theta^T x^{(i)} \ge 1$$
 if $y^{(i)} = 1$
 $\theta^T x^{(i)} \le -1$ if $y^{(i)} = 0$

Assume $\theta_0 = 0$ so that the hyperplane is centered at the origin, and that d = 2

Let p_i be the projection of \mathbf{x}_i onto the vector $\boldsymbol{\theta}$

Since p is small, therefore $\|\theta\|_2$ must be large to have p $\|\theta\|_2 \ge 1$ (or ≤ -1)

Since p is large, $\|\theta\|_2$ can be smaller to have p $\|\theta\|_2 \ge 1$ (or ≤ -1)

Size of the Margin

For the support vectors, we have $p \|\theta\|_2 = \pm 1$

• p is the length of the projection of the SVs onto heta

Therefore,

$$p = \frac{1}{\|\theta\|_2}$$

$$margin = 2p = \frac{2}{\|\theta\|_2}$$

What if Surface is Non-Linear?

Image from http://www.atrandomresearch.com/iclass/

Kernel Methods

Making the Non-Linear Linear

When Linear Separators Fail

Mapping into a New Feature Space

Input Space

Feature Space

$$\varphi\colon X\to \widehat{X}=\varphi(x)$$

• For example, with $x^{(i)} \in \mathbb{R}^2$

$$\varphi\left(\left[x_1^{(i)},x_2^{(i)}\right]\right) = \left[x_1^{(i)},x_2^{(i)},x_1^{(i)},x_2^{(i)},(x_1^{(i)})^2,(x_2^{(i)})^2\right]$$

- Rather than run SVM on \mathbf{x}_i , run it on $arphi(x^{(i)})$
 - Find non--linear separator in input space
 - What if $\varphi(x^{(i)})$ is really big?
 - Use kernels to compute it implicitly!

Kernels

Find kernel K such that

$$K(x^{(i)}, x^{(j)}) = < \varphi(x^{(i)}), \varphi(x^{(j)}) >$$

- Computing $\mathrm{K}\big(x^{(i)},x^{(j)}\big)$ should be efficient, much more so than computing $\varphi\big(x^{(i)}\big)$ and $\varphi\big(x^{(j)}\big)$
- Use $K(x^{(i)}, x^{(j)})$ in SVM algorithm rather than $x^{(i)}, x^{(j)}$
- Remarkably, this is possible!

The Kernel Trick

"Given an algorithm which is formulated in terms of a positive definite kernel K_1 , one can construct an alternative algorithm by replacing K_1 with another positive definite kernel K_2 "

> SVMs can use the kernel trick

The Gaussian Kernel

Also called Radial Basis Function (RBF) kernel

$$K(x^{(i)}, x^{(j)}) = \exp(-\frac{\|x^{(i)} - x^{(j)}\|_{2}^{2}}{2\sigma^{2}})$$

- Has value 1 when $\mathbf{x}_i = \mathbf{x}_j$
- Value falls off to 0 with increasing distance
- Note: Need to do feature scaling <u>before</u> using Gaussian Kernel

$$K(x^{(i)}, x^{(j)}) = \exp(-\frac{\|x^{(i)} - x^{(j)}\|_{2}^{2}}{2\sigma^{2}})$$

Imagine we've learned that:

$$\theta = [-0.5,1,1,0]$$

Predict +1 if
$$\theta_0 + \theta_1 K(x, l_1) + \theta_2 K(x, l_2) + \theta_3 K(x, l_3) \ge 0$$

$$K(x^{(i)}, x^{(j)}) = \exp(-\frac{\|x^{(i)} - x^{(j)}\|_{2}^{2}}{2\sigma^{2}})$$

Imagine we've learned that:

$$\theta = [-0.5, 1, 1, 0]$$

Predict +1 if
$$\theta_0 + \theta_1 K(x, l_1) + \theta_2 K(x, l_2) + \theta_3 K(x, l_3) \ge 0$$

• For $x^{(1)}$, we have $K(x^{(1)}, l_1) \approx 1$, other similarities ≈ 0

$$\theta_0 + \theta_1.1 + \theta_2.0 + \theta_2.0 = -0.5 + 1.1 + 1.0 + 0.1$$

= $0.5 \ge 0$, so predict +1

Predict +1 if
$$\theta_0 + \theta_1 K(x, l_1) + \theta_2 K(x, l_2) + \theta_3 K(x, l_3) \ge 0$$

• For $x^{(2)}$, we have $K(x^{(2)}, l_3) \approx 1$, other similarities ≈ 0

$$\theta_0 + \theta_1.0 + \theta_2.0 + \theta_2.1 = -0.5 + 1.0 + 1.0 + 0.1$$

= $-0.5 \le 0$, so predict -1

$$K(x^{(i)}, x^{(j)}) = \exp(-\frac{\|x^{(i)} - x^{(j)}\|_{2}^{2}}{2\sigma^{2}})$$

Imagine we've learned that:

$$\theta = [-0.5, 1, 1, 0]$$

Predict +1 if
$$\theta_0 + \theta_1 K(x, l_1) + \theta_2 K(x, l_2) + \theta_3 K(x, l_3) \ge 0$$

Rough sketch of decision surface

The Gaussian Kernel

Also called Radial Basis Function (RBF) kernel

$$K(x^{(i)}, x^{(j)}) = \exp(-\frac{\|x^{(i)} - x^{(j)}\|_{2}^{2}}{2\sigma^{2}})$$

Other Kernels

Sigmoid Kernel

$$K(x^{(i)}, x^{(j)}) = \tanh(\propto (x^{(i)})^T x^{(j)} + c)$$

- Neural networks use sigmoid as activation function
- SVM with a sigmoid kernel is equivalent to 2—layer perceptron
- Cosine Similarity Kernel

$$K(x^{(i)}, x^{(j)}) = \frac{(x^{(i)})^T x^{(j)}}{\|x^{(i)}\| \cdot \|x^{(j)}\|}$$

- Popular choice for measuring similarity of text documents
- L₂ norm projects vectors onto the unit sphere; their dot
 product is the cosine of the angle between the vectors

Other Kernels

Chi-squared Kernel

$$K(x^{(i)}, x^{(j)}) = \exp\left(-\gamma \sum_{k} \frac{\left(x_{k}^{(i)} - x_{k}^{(j)}\right)^{2}}{x_{k}^{(i)} + x_{k}^{(j)}}\right)$$

- Widely used in computer vision applications
- Chi--squared measures distance between probability distributions
- Data is assumed to be non--negative, often with L₁ norm of 1
- String kernels
- Tree kernels
- Graph kernels

Multi--Class Classification with SVMs

- Many SVM packages already have multi-class classification built in
- Otherwise, use one-vs-rest
 - Train K SVMs, each picks out one class from rest, yielding $\theta^{(i)}, \dots, \theta^{(K)}$
 - Predict class i with largest $(\theta^{(i)})^T x$

Practical Advice for Applying SVMs

- Use SVM software package to solve for parameters
 - e.g., SVMlight, libsvm, cvx (fast!), etc.
- Need to specify:
 - Choice of parameter C
 - Choice of kernel function
 - Associated kernel parameters

e.g.,
$$K(x^{(i)}, x^{(j)}) = \exp(-\frac{\|x^{(i)} - x^{(j)}\|_{2}^{2}}{2\sigma^{2}})$$

SVMs vs Logistic Regression (Advice from Andrew Ng)

n = # training examples d = # features

If d is large (relative to n) (e.g., d > n with d = 10,000, n = 10-1,000)

Use logistic regression or SVM with a linear kernel

If d is small (up to 1,000), n is intermediate (up to 10,000)

Use SVM with Gaussian kernel

If d is small (up to 1,000), n is large (50,000+)

Create/add more features, then use logistic regression or SVM without a kernel

Neural networks likely to work well for most of these settings, but may be slower to train

Other SVM Variations

- nu SVM
 - nu parameter controls:
 - Fraction of support vectors (lower bound) and misclassification rate (upper bound)
 - E.g., v=0.05 guarantees that $\geq 5\%$ of training points are SVs and training error rate is $\leq 5\%$
 - Harder to optimize than C-SVM and not as scalable
- SVMs for regression
- One-class SVMs
- SVMs for clustering

. . .

Conclusion

- SVMs find optimal linear separator
- The kernel trick makes SVMs learn non--linear decision surfaces

- Strength of SVMs:
 - Good theoretical and empirical performance
 - Supports many types of kernels
- Disadvantages of SVMs:
 - "Slow" to train/predict for huge data sets (but relatively fast!)
 - Need to choose the kernel (and tune its parameters)