The RAM Model and Runtime Analysis COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

What is an Algorithm?

What is an Algorithm?

Computational procedure to solve a computational problem

What is an Algorithm?

- Computational procedure to solve a computational problem
- Mathematical abstraction of a computer programme

What is an Algorithm?

- Computational procedure to solve a computational problem
- Mathematical abstraction of a computer programme

Discussion Points?

What is an Algorithm?

- Computational procedure to solve a computational problem
- Mathematical abstraction of a computer programme

Discussion Points?

Which individual steps can an algorithm do?

What is an Algorithm?

- Computational procedure to solve a computational problem
- Mathematical abstraction of a computer programme

Discussion Points?

 Which individual steps can an algorithm do?
 Depends on computer, programming language, . . .

What is an Algorithm?

- Computational procedure to solve a computational problem
- Mathematical abstraction of a computer programme

Discussion Points?

- Which individual steps can an algorithm do?
 Depends on computer, programming language, . . .
- How long do these steps take?

What is an Algorithm?

- Computational procedure to solve a computational problem
- Mathematical abstraction of a computer programme

Discussion Points?

- Which individual steps can an algorithm do?
 Depends on computer, programming language, . . .
- How long do these steps take?
 Depends on computer, compiler optimization, ...

Real Computers are complicated

Real Computers are complicated Memory hierarchy

Real Computers are complicated Memory hierarchy, floating point operations

Real Computers are complicated

Memory hierarhy, floating point operations, garbage collector

Real Computers are complicated

Memory hierarchy, floating point operations, garbage collector, how long does x^y take?

Real Computers are complicated

Memory hierarchy, floating point operations, garbage collector, how long does x^y take?, compiler optimizations

Real Computers are complicated

Memory hierarchy, floating point operations, garbage collector, how long does x^y take?, compiler optimizations, different programming languages,

Real Computers are complicated

Memory hierachy, floating point operations, garbage collector, how long does x^y take?, compiler optimizations, different programming languages, . . .

Real Computers are complicated

Memory hierarchy, floating point operations, garbage collector, how long does x^y take?, compiler optimizations, different programming languages, . . .

Real Computers are complicated

Memory hierarchy, floating point operations, garbage collector, how long does x^y take?, compiler optimizations, different programming languages, . . .

Models of Computation:

Simple abstraction of a Computer

Real Computers are complicated

Memory hierarchy, floating point operations, garbage collector, how long does x^y take?, compiler optimizations, different programming languages, . . .

- Simple abstraction of a Computer
- Defines the "Rules of the Game":

Real Computers are complicated

Memory hierarchy, floating point operations, garbage collector, how long does x^y take?, compiler optimizations, different programming languages, . . .

- Simple abstraction of a Computer
- Defines the "Rules of the Game":
 - Which operations is an algorithm allowed to do?

Real Computers are complicated

Memory hierarchy, floating point operations, garbage collector, how long does x^y take?, compiler optimizations, different programming languages, . . .

- Simple abstraction of a Computer
- Defines the "Rules of the Game":
 - Which operations is an algorithm allowed to do?
 - What is the cost of each operation?

Real Computers are complicated

Memory hierarchy, floating point operations, garbage collector, how long does x^y take?, compiler optimizations, different programming languages, . . .

- Simple abstraction of a Computer
- Defines the "Rules of the Game":
 - Which operations is an algorithm allowed to do?
 - What is the cost of each operation?
 - Cost of an algorithm $=\sum$ cost of all its operations

Real Computers are complicated

Memory hierachy, floating point operations, garbage collector, how long does x^y take?, compiler optimizations, different programming languages, . . .

Models of Computation:

- Simple abstraction of a Computer
- Defines the "Rules of the Game":
 - Which operations is an algorithm allowed to do?
 - What is the cost of each operation?
 - Cost of an algorithm $=\sum$ cost of all its operations

See also:

COMS20007: Programming Languages and Computation

	R <i>A</i>	ΑM
1		
2		
3		
4		
5		
6		
7		
8		
9		
	:	:
	Regi	sters
1		
2		
3		
4		

RAM Model: Random Access Machine Model

 Infinite Random Access Memory (an array), each cell has a unique address

	R/	MΑ
1		
2		
3		
4		
5		
6		
7		
8		
9		
	:	:
	Regi	sters
1		
2		
3		
4		

- Infinite Random Access Memory (an array), each cell has a unique address
- Each cell stores one *word*, e.g., an integer, a character, an address, etc.

	R/	١M٨
1		
2		
3		
4		
5		
6		
7		
8		
9		
	:	÷
	Regi	sters
1		
2		
3		
4		

- Infinite Random Access Memory (an array), each cell has a unique address
- Each cell stores one *word*, e.g., an integer, a character, an address, etc.
- Input: Stored in RAM

RAM
: :
Registers

- Infinite Random Access Memory (an array), each cell has a unique address
- Each cell stores one *word*, e.g., an integer, a character, an address, etc.
- Input: Stored in RAM
- Output: To be written into RAM

	K/	₹IVI
1		
2		
3		
4		
5		
6		
7		
3		
9		
	:	:
	Regi	sters
1		
2		
4		

- Infinite Random Access Memory (an array), each cell has a unique address
- Each cell stores one *word*, e.g., an integer, a character, an address, etc.
- Input: Stored in RAM
- Output: To be written into RAM
- A finite (constant) number of registers (e.g., 4)

	RAM
1	
2	
2 3 4	
5	
6	
7	
8 9	
9	
	: :
	Б

_	Registers
Ī	
Γ	

RAM Model: Random Access Machine Model

- Infinite Random Access Memory (an array), each cell has a unique address
- Each cell stores one *word*, e.g., an integer, a character, an address, etc.
- Input: Stored in RAM
- Output: To be written into RAM
- A finite (constant) number of registers (e.g., 4)

In a single Time Step we can:

	RAM
1	
2	
3	
4	
5 6	
6	
7	
8 9	
9	

Registers

RAM Model: Random Access Machine Model

- Infinite Random Access Memory (an array), each cell has a unique address
- Each cell stores one *word*, e.g., an integer, a character, an address, etc.
- Input: Stored in RAM
- Output: To be written into RAM
- A finite (constant) number of registers (e.g., 4)

In a single Time Step we can:

• Load a word from memory into a register

	RAM
1	
2	
3	
4	
5	
6	
7	
8	
9	

Registers

RAM Model: Random Access Machine Model

- Infinite Random Access Memory (an array), each cell has a unique address
- Each cell stores one *word*, e.g., an integer, a character, an address, etc.
- Input: Stored in RAM
- Output: To be written into RAM
- A finite (constant) number of registers (e.g., 4)

In a single Time Step we can:

- Load a word from memory into a register
- Compute (+, -, *, /), bit operations, comparisons, etc. on registers

	RΑ	M
1		
2		
3		
4		
5		
6		
7		
8		
9		
	:	:
	Regi	sters
1		

Registers

RAM Model: Random Access Machine Model

- Infinite Random Access Memory (an array), each cell has a unique address
- Each cell stores one word, e.g., an integer, a character, an address, etc.
- Input: Stored in RAM
- Output: To be written into RAM
- A finite (constant) number of registers (e.g., 4)

In a single Time Step we can:

- Load a word from memory into a register
- Compute (+, -, *, /), bit operations, comparisons, etc. on registers
- Move a word from register to memory

	R/	MA
1		
2		
3		
4		
5		
6		
7		
8		
9		
	:	:
	Regi	sters

	Registers
1	
2	
3	
4	

RAM Model (2)

Algorithm in the RAM Model

RAM Model (2)

Algorithm in the RAM Model

Sequence of elementary operations (similar to assembler code)

Algorithm in the RAM Model

Sequence of elementary operations (similar to assembler code)

Example: Compute the sum of two integers

- Assume that M[0] and M[1] contain the integers
- Write output to position *M*[2]

Algorithm in the RAM Model

Sequence of elementary operations (similar to assembler code)

Example: Compute the sum of two integers

- Assume that M[0] and M[1] contain the integers
- Write output to position M[2]

Cost of an Algorithm:

Algorithm in the RAM Model

Sequence of elementary operations (similar to assembler code)

Example: Compute the sum of two integers

- Assume that M[0] and M[1] contain the integers
- Write output to position M[2]

Cost of an Algorithm:

• Runtime: Total number of elementary operations

Algorithm in the RAM Model

Sequence of elementary operations (similar to assembler code)

Example: Compute the sum of two integers

- Assume that M[0] and M[1] contain the integers
- Write output to position M[2]

Cost of an Algorithm:

- Runtime: Total number of elementary operations
- Space: Total number of memory cells used (excluding the cells that contain the input)

Algorithm in the RAM Model

Sequence of elementary operations (similar to assembler code)

Example: Compute the sum of two integers

- Assume that M[0] and M[1] contain the integers
- Write output to position M[2]

Cost of an Algorithm:

- Runtime: Total number of elementary operations
- Space: Total number of memory cells used (excluding the cells that contain the input)

Assumption:

Algorithm in the RAM Model

Sequence of elementary operations (similar to assembler code)

Example: Compute the sum of two integers

- Assume that M[0] and M[1] contain the integers
- Write output to position M[2]

Cost of an Algorithm:

- Runtime: Total number of elementary operations
- Space: Total number of memory cells used (excluding the cells that contain the input)

Assumption:

• Input for algorithm is stored on read-only cells

Algorithm in the RAM Model

Sequence of elementary operations (similar to assembler code)

Example: Compute the sum of two integers

- Assume that M[0] and M[1] contain the integers
- Write output to position M[2]

Cost of an Algorithm:

- Runtime: Total number of elementary operations
- Space: Total number of memory cells used (excluding the cells that contain the input)

Assumption:

- Input for algorithm is stored on read-only cells
- This space is not accounted for

How to specify an Algorithm

We specify algorithms using pseudo code or English language

How to specify an Algorithm

- We specify algorithms using pseudo code or English language
- We however always bear in mind that every operation of our algorithm can be implemented in $\mathcal{O}(1)$ elementary operations in the RAM model

How to specify an Algorithm

- We specify algorithms using pseudo code or English language
- We however always bear in mind that every operation of our algorithm can be implemented in $\mathcal{O}(1)$ elementary operations in the RAM model
- O-notation gives us the necessary flexibility for a meaningful definition of runtime

How to specify an Algorithm

- We specify algorithms using pseudo code or English language
- We however always bear in mind that every operation of our algorithm can be implemented in O(1) elementary operations in the RAM model
- O-notation gives us the necessary flexibility for a meaningful definition of runtime

Exercise: How to implement in RAM model?

Require: Array of
$$n$$
 integers A

$$S \leftarrow 0$$

$$\mathbf{for} \ i = 0, \dots, n-1 \ \mathbf{do}$$

$$S \leftarrow S + A[i]$$

$$\mathbf{return} \ S$$

Runtime on Specific Input

Given a specific input X, what is the number of elementary operations of the algorithm on X?

Runtime on Specific Input

Given a specific input X, what is the number of elementary operations of the algorithm on X?

Worst-case

Consider the set of all inputs of length n. What is the maximum number of elementary operations executed by the algorithm when run on every input of this set?

Runtime on Specific Input

Given a specific input X, what is the number of elementary operations of the algorithm on X?

Worst-case

Consider the set of all inputs of length n. What is the maximum number of elementary operations executed by the algorithm when run on every input of this set?

Best-case

Consider the set of all inputs of length n. What is the minimum number of elementary operations executed by the algorithm when run on every input of this set?

Runtime on Specific Input

Given a specific input X, what is the number of elementary operations of the algorithm on X?

Worst-case

Consider the set of all inputs of length n. What is the maximum number of elementary operations executed by the algorithm when run on every input of this set?

Best-case

Consider the set of all inputs of length n. What is the minimum number of elementary operations executed by the algorithm when run on every input of this set?

Average-case

Consider a set of inputs (e.g. the set of all inputs of length n). What is the average number of elementary operations executed by the algorithm when run on every input of this set?

Hierachy

Runtime Hierachy:

Best-case = O(Average-case) = O(Worst-case)

Runtime/Space Analysis of Algorithms

Goals:

Goals:

• **Runtime:** Count number of elementary operations when implemented in RAM model

Goals:

- Runtime: Count number of elementary operations when implemented in RAM model
- **Space:** Count number of cells used when implemented in RAM model

Goals:

- Runtime: Count number of elementary operations when implemented in RAM model
- **Space:** Count number of cells used when implemented in RAM model

However...

Goals:

- Runtime: Count number of elementary operations when implemented in RAM model
- **Space:** Count number of cells used when implemented in RAM model

However...

Algorithms are usually not stated to run in RAM model

Goals:

- Runtime: Count number of elementary operations when implemented in RAM model
- **Space:** Count number of cells used when implemented in RAM model

However...

- Algorithms are usually not stated to run in RAM model
- We would like to state and analyze our algorithms in pseudo code (or a programming language, natural language, ...)

Goals:

- Runtime: Count number of elementary operations when implemented in RAM model
- **Space:** Count number of cells used when implemented in RAM model

However...

- Algorithms are usually not stated to run in RAM model
- We would like to state and analyze our algorithms in pseudo code (or a programming language, natural language, ...)

Solution:

Goals:

- Runtime: Count number of elementary operations when implemented in RAM model
- **Space:** Count number of cells used when implemented in RAM model

However...

- Algorithms are usually not stated to run in RAM model
- We would like to state and analyze our algorithms in pseudo code (or a programming language, natural language, ...)

Solution:

• Analyze algorithm as specified in pseudo code directly

Goals:

- Runtime: Count number of elementary operations when implemented in RAM model
- **Space:** Count number of cells used when implemented in RAM model

However...

- Algorithms are usually not stated to run in RAM model
- We would like to state and analyze our algorithms in pseudo code (or a programming language, natural language, ...)

Solution:

- Analyze algorithm as specified in pseudo code directly
- Make sure that every instruction can be implemented in the RAM model using O(1) elementary operations

Require: Integer array
$$A$$
 of length n $s \leftarrow 0$ for $i \leftarrow 0 \dots n-1$ do $s \leftarrow s + A[i]$ return s

```
Require: Integer array A of length n
s \leftarrow 0
for i \leftarrow 0 \dots n-1 do
s \leftarrow s + A[i]
return s
```

Require: Integer array
$$A$$
 of length n

$$s \leftarrow 0 \qquad \qquad \text{O(1)}$$
for $i \leftarrow 0 \dots n-1$ **do**

$$s \leftarrow s + A[i]$$
return s

Require: Integer array
$$A$$
 of length n

$$s \leftarrow 0 \qquad \qquad \text{O}(1)$$

$$\textbf{for } i \leftarrow 0 \dots n-1 \ \textbf{do}$$

$$s \leftarrow s + A[i]$$

$$\textbf{return } s$$

Require: Integer array
$$A$$
 of length n

$$s \leftarrow 0 \qquad \qquad \text{O}(1)$$
for $i \leftarrow 0 \dots n-1$ **do**

$$s \leftarrow s + A[i] \qquad \qquad \text{O}(1)$$
return s

Require: Integer array
$$A$$
 of length n $s \leftarrow 0$ O(1) for $i \leftarrow 0 \dots n-1$ do $s \leftarrow s + A[i]$ O(1) return s

Require: Integer array A of length n	
$s \leftarrow 0$	O(1)
for $i \leftarrow 0 \dots n-1$ do	n times
$s \leftarrow s + A[i]$	O(1)
return s	O(1)

Runtime:

Runtime: $O(1) + n \cdot O(1) + O(1) =$

Runtime:
$$O(1) + n \cdot O(1) + O(1) = O(1) + O(n) + O(1) =$$

Runtime:
$$O(1) + n \cdot O(1) + O(1) = O(1) + O(n) + O(1) = O(n)$$
.

```
Require: Integer array A of length n s \leftarrow 0 for i \leftarrow 0 \dots n-1 do for j \leftarrow i \dots 2i do s \leftarrow s + A[i] return s
```

Require: Integer array A of length n	
$s \leftarrow 0$	O(1)
for $i \leftarrow 0 \dots n-1$ do	
for $j \leftarrow i \dots 2i$ do	
$s \leftarrow s + A[i]$	O(1)
return s	O(1)

Require: Integer array A of length n	
$s \leftarrow 0$	O(1)
for $i \leftarrow 0 \dots n-1$ do	
for $j \leftarrow i \dots 2i$ do	
$s \leftarrow s + A[i]$	O(1)
return s	O(1)

```
 \begin{array}{lll} \textbf{Require:} & \text{Integer array $A$ of length $n$} \\ s \leftarrow 0 & \text{O}(1) \\ \textbf{for } i \leftarrow 0 \dots n-1 \ \textbf{do} \\ \textbf{for } j \leftarrow i \dots 2i \ \textbf{do} & \textbf{i+1 times} \\ s \leftarrow s + A[i] & \text{O}(1) \\ \textbf{return } s & \text{O}(1) \\ \end{array}
```

$$O(1) + \sum_{i=0}^{n-1} \left((i+1) \cdot O(1) \right) + O(1)$$

$$O(1) + \sum_{i=0}^{n-1} ((i+1) \cdot O(1)) + O(1) = O(1) + O(1) \sum_{i=0}^{n-1} (i+1)$$

$$O(1) + \sum_{i=0}^{n-1} ((i+1) \cdot O(1)) + O(1) = O(1) + O(1) \sum_{i=0}^{n-1} (i+1)$$

$$= O(1) + O(1) \sum_{i=1}^{n} i$$

$$O(1) + \sum_{i=0}^{n-1} ((i+1) \cdot O(1)) + O(1) = O(1) + O(1) \sum_{i=0}^{n-1} (i+1)$$

$$= O(1) + O(1) \sum_{i=1}^{n} i = O(1) + O(1) \frac{n(n+1)}{2}$$

$$\begin{array}{lll} \textbf{Require:} & \textbf{Integer array } A \textbf{ of length } n \\ s \leftarrow 0 & \textbf{O}(1) \\ \textbf{for } i \leftarrow 0 \dots n-1 \textbf{ do} & \textbf{n times} \\ \textbf{for } j \leftarrow i \dots 2i \textbf{ do} & \textbf{i}+1 \textbf{ times} \\ s \leftarrow s + A[i] & \textbf{O}(1) \\ \textbf{return } s & \textbf{O}(1) \end{array}$$

$$O(1) + \sum_{i=0}^{n-1} ((i+1) \cdot O(1)) + O(1) = O(1) + O(1) \sum_{i=0}^{n-1} (i+1)$$

$$= O(1) + O(1) \sum_{i=1}^{n} i = O(1) + O(1) \frac{n(n+1)}{2}$$

$$= O(1) + O(\frac{n^2}{2} + \frac{n}{2})$$

$$O(1) + \sum_{i=0}^{n-1} ((i+1) \cdot O(1)) + O(1) = O(1) + O(1) \sum_{i=0}^{n-1} (i+1)$$

$$= O(1) + O(1) \sum_{i=1}^{n} i = O(1) + O(1) \frac{n(n+1)}{2}$$

$$= O(1) + O(\frac{n^2}{2} + \frac{n}{2}) = O(1) + O(n^2)$$

$$O(1) + \sum_{i=0}^{n-1} ((i+1) \cdot O(1)) + O(1) = O(1) + O(1) \sum_{i=0}^{n-1} (i+1)$$

$$= O(1) + O(1) \sum_{i=1}^{n} i = O(1) + O(1) \frac{n(n+1)}{2}$$

$$= O(1) + O(\frac{n^2}{2} + \frac{n}{2}) = O(1) + O(n^2) = O(n^2).$$

Algorithm: Given is an integer array of length n. Run through the array from left to right and maintain the minimum seen so far.

Algorithm: Given is an integer array of length n. Run through the array from left to right and maintain the minimum seen so far.

Algorithm: Given is an integer array of length n. Run through the array from left to right and maintain the minimum seen so far.

Runtime: O(n)