Recap: Probability

- Conditional probability
 - For any propositions a and b, the conditional probabilities is defined as

$$P(a \,|\, b) = rac{P(a \wedge b)}{P(b)}$$

which holds whenever P(b) > 0

Product rule

$$P(a \wedge b) = P(a \mid b)P(b)$$

Recap: Probability

- Marginalization rule
 - General marginalization rule for any sets of variables Y and Z:

$$\mathbf{P}\left(\mathbf{Y}
ight) = \sum_{\mathbf{z}} \mathbf{P}\left(\mathbf{Y}, \mathbf{Z} = \mathbf{z}
ight)$$

Conditioning rule

$$\mathbf{P}(\mathbf{Y}) = \sum_{\mathbf{z}} \ \mathbf{P}(\mathbf{Y} \mid \mathbf{z}) P(\mathbf{z})$$

Recap: Probability

- Bayes' Rule (Bayes' Law or Bayes' Theorem)
 - General case for multivalued variables can be written as follows:

$$\mathbf{P}(Y \mid X) = rac{\mathbf{P}(X \mid Y)\mathbf{P}(Y)}{\mathbf{P}(X)}$$

General version conditionalized on some background evidence e:

$$\mathbf{P}(Y \,|\, X, \mathbf{e}) = rac{\mathbf{P}(X \,|\, Y, \mathbf{e})\mathbf{P}(Y \,|\, \mathbf{e})}{\mathbf{P}(X \,|\, \mathbf{e})}$$

Uncertainty

Uncertainty Over Time

Discrete-Time Models

The world is viewed as a series of snapshots or time slices.

- Each snapshot/time slice contains of a set of random variables
 - Some observable
 - Some unobservable

Example

- State variable X_t:
 - e.g., weather at time t

Probabilistic Reasoning

Probabilistic Reasoning over Time

Reasoning

Transition Model

Given the previous state values X₀, X₁, X₂, ..., X_{t-1},
 the transition model specifies the probability distribution over the latest state variables as

$$P(X_t|X_{0:t-1})$$

where
$$X_{0:t-1} = X_0, X_1, X_2, ..., X_{t-1}$$

- Issue
 - \circ $X_{0:t-1}$ is unbounded in size as t increases

Markov Assumption

• The current state depends on only a **finite fixed number** of previous

state

Andrey Markov (1856-1922)

https://en.wikipedia.org/wiki/Andrey_Markov

Markov Chain (Markov Process)

 A sequence of random variables where the distribution of each variable follows the Markov assumption

Example: Markov chain

First-order Markov chain

Second-order Markov chain

$$\mathbf{X}_{t-2} - \mathbf{X}_{t-1} - \mathbf{X}_{t} - \mathbf{X}_{t+1} - \mathbf{X}_{t+2} - \mathbf{X}_{t+2}$$

$$\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-2},\mathbf{X}_{t-1})$$

Different Distribution for Each Time Step?

- Time-homogeneous process (Stationarity assumption)
 - A process of change that is governed by laws that do not themselves change over time
 - i.e., transition probabilities are the same at all times

- Let states: X = {rain, sun}
- Given initial distribution P(sun) = 1.0, and conditional probability table, CPT, P(X_t|X_{t-1}), P(X₂=sun) = ?

X _{t-1}	X _t	$P(X_t X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

- Let states: X = {rain, sun}
- Given initial distribution P(sun) = 1.0, and conditional probability table, CPT, P(X_t|X_{t-1}), P(X₂=sun) = ?

 $= 0.9 \cdot 1.0 + 0.3 \cdot 0.0$

 $P(X_2=sun)$

$$\begin{split} &= \sum_{x_1} P(X_2 = sun_1, x_1) \\ &= \sum_{x_1} P(X_2 = sun_1 x_1) P(x_1) \\ &= P(X_2 = sun_1 X_1 = sun_1) P(X_1 = sun_1) + P(X_2 = sun_1 X_1 = rain_1) P(X_1 = rain_1) P(X_1 = rain_1) P(X_2 = sun_1 X_1 = rain_2) P(X_2 = sun_1 X_1 = rain_1) P(X_2 = sun_1 X_2 = rain_2) P(X_2 = rain_2 X_2 = rain_2 X_2 = rain_2) P(X_2 = rain_2 X_2 = rain$$

$$= 0.9$$

• Given $P(X_1)$ and CPT $P(X_t|X_{t-1})$, what's $P(X_t)$ on some day t?

- Given $P(X_1)$ and CPT $P(X_t|X_{t-1})$, what's $P(X_t)$ on some day t?
- Let initial observation P(X₁=sun) = 1

$$\left\langle \begin{array}{c} 1.0 \\ 0.0 \end{array} \right\rangle$$
 $P(X_1)$

$$\left\langle \begin{array}{c} 1.0 \\ 0.0 \end{array} \right\rangle \quad \left\langle \begin{array}{c} 0.9 \\ 0.1 \end{array} \right\rangle$$

$$P(X_1) \qquad P(X_2)$$

X _{t-1}	X _t	P(X _t X _{t-1})
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

- Given $P(X_1)$ and CPT $P(X_t|X_{t-1})$, what's $P(X_t)$ on some day t?
- Let initial observation P(X₁=sun) = 1

$$\begin{bmatrix} 0.9 & 0.1 \\ 0.3 & 0.7 \end{bmatrix} = \begin{bmatrix} 0.84 & 0.16 \end{bmatrix}$$

- Given $P(X_1)$ and CPT $P(X_t|X_{t-1})$, what's $P(X_t)$ on some day t?
- Let initial observation P(X₁=sun) = 1

- Given $P(X_1)$ and CPT $P(X_t|X_{t-1})$, what's $P(X_t)$ on some day t?
- Let initial observation P(X₁=sun) = 1

Let initial observation P(X₁=rain) = 1

$$\begin{pmatrix} 0.0 \\ 1.0 \end{pmatrix}$$
 $P(X_1)$

- Given $P(X_1)$ and CPT $P(X_t|X_{t-1})$, what's $P(X_t)$ on some day t?
- Let initial observation P(X₁=sun) = 1

• Let initial observation $P(X_1=rain) = 1$

$$\begin{pmatrix}
0.0 \\
1.0
\end{pmatrix}
\begin{pmatrix}
0.3 \\
0.7
\end{pmatrix}$$

$$P(X_1) \qquad P(X_2)$$

$$\begin{bmatrix} 0.0 & 1.0 \end{bmatrix} \begin{bmatrix} 0.9 & 0.1 \\ 0.3 & 0.7 \end{bmatrix} = \begin{bmatrix} 0.3 & 0.7 \end{bmatrix}$$

- Given $P(X_1)$ and CPT $P(X_t|X_{t-1})$, what's $P(X_t)$ on some day t?
- Let initial observation P(X₁=sun) = 1

Let initial observation P(X₁=rain) = 1

$$\begin{pmatrix}
0.0 \\
1.0
\end{pmatrix}
\quad
\begin{pmatrix}
0.3 \\
0.7
\end{pmatrix}
\quad
\begin{pmatrix}
0.48 \\
0.52
\end{pmatrix}$$

$$P(X_1) \qquad P(X_2) \qquad P(X_3)$$

$$\begin{bmatrix} 0.3 & 0.7 \end{bmatrix} \begin{bmatrix} 0.9 & 0.1 \\ 0.3 & 0.7 \end{bmatrix} = \begin{bmatrix} 0.48 & 0.52 \end{bmatrix}$$

- Given $P(X_1)$ and CPT $P(X_t|X_{t-1})$, what's $P(X_t)$ on some day t?
- Let initial observation P(X₁=sun) = 1

Let initial observation P(X₁=rain) = 1

- Given $P(X_1)$ and CPT $P(X_t|X_{t-1})$, what's $P(X_t)$ on some day t?
- Let initial observation P(X₁=sun) = 1

Let initial observation P(X₁=rain) = 1

• Let initial distribution $P(X_1) = < p, 1-p >$

$$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle$$
$$P(X_1)$$

- Given P(X₁) and CPT P(X_t|X_{t-1}), what's P(X_t) on some day t?
- Let initial observation P(X₁=sun) = 1

Let initial observation P(X₁=rain) = 1

• Let initial distribution $P(X_1) = < p, 1-p >$

$$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle \qquad \dots \\
P(X_1) \qquad \qquad P(X_{\infty})$$

Stationary Distributions

- For most Markov chains:
 - Influence of the initial distribution gets less and less over time
 - The distribution we end up in is independent of the initial distribution
- The distribution we end up with is called
 the stationary distribution P_∞ of the Markov chain, and it satisfies

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

Example

Given P(X₁) and CPT P(X_t|X_{t-1}), what's P(X_∞) at time t = ∞?

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

 $\begin{array}{l} {\color{red} {\bf F}_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)} \\ {\color{red} {\bf P}_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)} \end{array}$

$$P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$$

$$egin{aligned} P_{\infty}(sun) &= 3P_{\infty}(rain) \ P_{\infty}(rain) &= 1/3P_{\infty}(sun) \ P_{\infty}(sun) + P_{\infty}(rain) &= 1 \end{aligned}$$

$$\begin{cases} P_{\infty}(sun) = 3/4 \\ P_{\infty}(rain) = 1/4 \end{cases}$$

X _{t-1}	X _t	$P(X_t X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Real World

(unknown)

Hidden State	Observation
Weather	Umbrella
Words Spoken	Audio Waveforms
User Engagement	Website or App Analytics
Robot's Position	Robot's Sensor Data

Sensor Model (Observation Model)

• The evidence variables could depend on previous evidence variables as well as the current state variables

Sensor Markov Assumption

The evidence variable depends only the corresponding state

$$\mathbf{P}(\mathbf{E}_t|\mathbf{X}_{0:t},\mathbf{E}_{1:t-1}) = \mathbf{P}(\mathbf{E}_t|\mathbf{X}_t)$$

- X_t: state variable at time t
- E_t: observable evidence variable at time t

> Xo, X, ..., Xn are hidden (unknown)

Hidden Markov Model (HMM)

- A Markov model for a system with hidden states that generate some observed event
 - Markov assumption
 - Sensor Markov assumption
- Example

Probability Model: HMM

Joint distribution for hidden Markov model:

$$\mathbf{P}(\mathbf{X}_{0:t}, \mathbf{E}_{1:t}) = \mathbf{P}(\mathbf{X}_0) \prod_{i=1}^{t} \mathbf{P}(\mathbf{X}_i | \mathbf{X}_{i-1}) \mathbf{P}(\mathbf{E}_i | \mathbf{X}_i)$$

Initial State Model Transition Model Sensor Model

Example: HMM

- HMM is defined by
 - Initial distribution/initial state model P(X₁)

Inference Tasks in Temporal Models

- Filtering (State estimation)
 - Given observations from start until now, calculate distribution for current state
- Prediction
 - Given observations from start until now, calculate distribution for a **future** state
- Smoothing
 - Given observations from start until now, calculate distribution for past state
- Most likely explanation
 - Given observations from start until now, calculate distribution for most likely sequence of states (that have generated those observations)

Prediction

o Given observations from start until now, calculate distribution for a **future** state $\mathbf{P}(X_{t+1} | e_{1:t})$

Prediction

$$1 \sim t$$

Given observations from start until now, calculate distribution for a future state

$$\mathbf{P}(X_{t+1} \mid e_{1:t})$$

Calculation:

$$\begin{split} \mathbf{P}(X_{t+1} \,|\, e_{1:t}) &= \frac{\mathbf{P}(X_{t+1}, e_{1:t})}{P(e_{1:t})} = \Sigma_{x_t} \frac{\mathbf{P}(X_{t+1}, x_t, e_{1:t})}{P(e_{1:t})} = \sum_{x_t} \frac{\mathbf{P}(X_{t+1}, x_t, e_{1:t})}{P(x_t, e_{1:t})} \frac{P(x_t, e_{1:t})}{P(e_{1:t})} \\ &= \Sigma_{x_t} \mathbf{P}(X_{t+1} \,|\, x_t, e_{1:t}) P(x_t \,|\, e_{1:t}) \end{split}$$

$$= \sum_{\mathbf{x}_t} \underbrace{\mathbf{P}\left(\mathbf{X}_{t+1}|\mathbf{x}_t\right)}_{\text{transition model}} \underbrace{P\left(\mathbf{x}_t|\mathbf{e}_{1:t}\right)}_{\text{recursion}} \quad \text{(By Markov assumption)}$$

Filtering (State Estimation)

Given observations from start until now, calculate distribution for current state

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1})$$

Filtering (State Estimation)

this

· Leenertion

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)}$$
$$\mathbf{P}(Y|X,e) = \frac{\mathbf{P}(X|Y,e)\mathbf{P}(Y|e)}{\mathbf{P}(X|e)}$$

1 ~ tyl

Given observations from start until now, calculate distribution for current state

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1})$$

Calculation:

$$\mathbf{P}\left(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}\right) = \mathbf{P}\left(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}, \mathbf{e}_{t+1}\right) \quad \text{(dividing up the evidence)}$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}, \mathbf{e}_{1:t}\right) \mathbf{P}\left(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}\right) \quad \text{(using Bayes'rule, given } \mathbf{e}_{1:t}\right)$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}\right) \mathbf{P}\left(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}\right) \quad \text{(by the sensor Markov assumption)}$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{X}_{t+1}|\mathbf{x}_{t}\right) \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{e}_{1:t}\right)$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{X}_{t+1}|\mathbf{x}_{t}\right) \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{e}_{1:t}\right)$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{e}_{1:t}\right)$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{e}_{1:t}\right)$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{e}_{1:t}\right)$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{e}_{1:t}\right)$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{e}_{1:t}\right)$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{x}_{t}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{x}_{t}\right)$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{x}_{t}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{x}_{t}\right)$$

$$= \alpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{x}_{t}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{x}_{t}\right) \sum_{\substack{\mathbf{x} \in \mathbf{x} \in \mathbf{x}}} \mathbf{P}\left(\mathbf{x}_{t}|\mathbf{x}_{t}\right)$$

transition model

Example: Filtering

Day 0: No observations

$$\mathbf{P}(R_0) = \langle 0.5, 0.5 \rangle$$

Day 1: U_1 = true, $P(R_1 | u_1)$ = ?

$$egin{array}{lcl} \mathbf{P}(R_1) &=& \sum_{r_0} \mathbf{P}(R_1|r_0)P(r_0) \ &=& \langle 0.7, 0.3
angle imes 0.5 + \langle 0.3, 0.7
angle imes 0.5 = \langle 0.5, 0.5
angle. \end{array}$$

P(R,) U,) = <0.818, 0.182>

Example: Filtering and Prediction

 $\begin{array}{c|c} R_{t-1} & P(R_t | R_{t-1}) \\ \hline t & 0.7 \\ f & 0.3 \end{array} \quad P(R_2 | U_1, U_2) = ?$

 $|P(U_t|R_t)|$

 $Rain_{t+1}$

68

 $Rain_t$

0	Day 2:	U_2 = true,	$P(R_2)$	(u_1, u_2)	= ?
---	--------	---------------	----------	--------------	-----

$$\mathbf{P}\left(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}
ight) = lpha \mathbf{P}\left(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}
ight) \mathbf{P}\left(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}
ight)$$

$$\mathbf{P}(R_2|u_1,u_2)$$

$$= \alpha \mathbf{P}(u_2|R_2)\mathbf{P}(R_2|u_1)$$

$$=lpha\left\langle 0.9,0.2
ight
angle \left\langle 0.627,0.373
ight
angle$$

$$= \ \ lpha \left< 0.565, 0.075 \right> pprox \left< 0.883, 0.117 \right>.$$

Umbrella_{t-1}

$$P(X_{t+1} | e_{1:t}) = \sum_{\mathbf{x}_t} P(\mathbf{X}_{t+1} | \mathbf{x}_t) P(\mathbf{x}_t | \mathbf{e}_{1:t})$$
transition model recursion

$$\mathbf{P}(R_2|u_1) = \sum_{r_1} \mathbf{P}(R_2|r_1) P(r_1|u_1)$$

$$= \langle 0.7, 0.3 \rangle \times 0.818 + \langle 0.3, 0.7 \rangle \times 0.182 \approx \langle 0.627, 0.373 \rangle$$

 $Rain_{t-1}$

Smoothing

Given observations from start until now, calculate distribution for past state 6405 vs

Given observations from start until now, calculate distribution for past state Gives before
$$\mathbf{P}(\mathbf{X}_k \mid \mathbf{e}_{1:t})$$
 for $0 \le k < t$.

Calculation:

$$\mathbf{P}(\mathbf{Y} \mid \mathbf{X}_k) = \mathbf{P}(\mathbf{X}_k \mid \mathbf{e}_{1:k}) = \mathbf{P}(\mathbf{E}_{k+1:t} \mid \mathbf{X}_k) = \mathbf{P}(\mathbf{E}_{k+1:t} \mid \mathbf{E}_{k+1}) = \mathbf{P}(\mathbf{E}_{k+1:t} \mid \mathbf{E}_{k+1}) = \mathbf{P}(\mathbf{E}_{k+1:t} \mid \mathbf{E}_{k+1}) = \mathbf{P}(\mathbf{E}_{k+1:t} \mid \mathbf{E}_{k+1:t}) = \mathbf{P}(\mathbf{E}_{k+1:t} \mid \mathbf{E}_{$$

AI / Spring 2024 / Wei

$$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}) = \frac{\mathbf{P}(e_{k+1:t}, X_{k})}{\mathbf{P}(X_{k})} = \sum_{x_{k+1}} \frac{\mathbf{P}(e_{k+1:t}, X_{k}, x_{k+1})}{\mathbf{P}(X_{k})}$$

$$= \sum_{x_{k+1}} \frac{\mathbf{P}(e_{k+1:t}, X_{k}, x_{k+1})}{P(x_{k+1}, X_{k})} \frac{P(x_{k+1}, X_{k})}{P(X_{k})}$$

$$= \sum_{\mathbf{X}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_{k}) \quad \text{(conditioning on } \mathbf{X}_{k+1})$$

$$= \sum_{\mathbf{X}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_{k}) \quad \text{(by conditional independence)}$$

$$=\sum P(\mathbf{e}_{k+1},\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1})\mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

$$= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}, \mathbf{e}_{k+2:t} | \mathbf{x}_{k+1}) P(\mathbf{x}_{k+1} | \mathbf{X}_k) \qquad \frac{P(e_{k+1}, e_{k+2:t}, x_{k+1})}{P(e_{k+2:t}, x_{k+1})} \frac{P(e_{k+2:t}, x_{k+1})}{P(x_{k+1})}$$

$$=\sum_{\mathbf{x}_{k+1}} \underbrace{P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1})}_{ ext{sensor model}} \underbrace{P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1})}_{ ext{recursion}} \underbrace{P(\mathbf{x}_{k+1}|\mathbf{X}_k)}_{ ext{transition model}},$$

P(R, \U, U_)=?

Example: Smoothing

Given the umbrella observations on days 1 and 2, for time k = 1,
 P(R₁|u₁,u₂) = ?

$$\begin{aligned} \mathbf{P}(\mathbf{X}_k \,|\, \mathbf{e}_{1:t}) &= \, \alpha \, \mathbf{P}(\mathbf{X}_k \,|\, \mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t} \,|\, \mathbf{X}_k) \\ &= \, \alpha \, \mathbf{P}(\mathbf{X}_k \,|\, \mathbf{e}_{1:k}) \sum_{\mathbf{x}_{k+1}} \underbrace{P(\mathbf{e}_{k+1} | \mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t} | \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1} | \mathbf{X}_k)}_{\text{The probability of observing an empty sequence is 1}} \\ &= \alpha \langle 0.818, 0.182 \rangle \sum_{\mathbf{r}_2} \underbrace{P(u_2 | r_2) P(\,| r_2) \mathbf{P}(r_2 | R_1)}_{\mathbf{r}_2: \text{ true}} \\ &= \alpha \langle 0.818, 0.182 \rangle \underbrace{\left[(0.9 \times \mathbf{1} \times \langle 0.7, 0.3 \rangle) + (0.2 \times \mathbf{1} \times \langle 0.3, 0.7 \rangle) \right]}_{= \alpha \langle 0.818, 0.182 \rangle \times \langle 0.69, 0.41 \rangle} \approx \langle 0.883, 0.117 \rangle. \end{aligned}$$

Most Likely Explanation

 Given observations from start until now, calculate distribution for most likely sequence of states (that have generated those observations)

$$\text{arg max } P(x_{1:t} | e_{1:t})$$

$$\text{Calculation:}$$

$$\circ \text{ arg max } P(x_{1:t} | e_{1:t}) = \text{arg max } \alpha P(x_{1:t}, e_{1:t})$$

$$= \text{arg max } P(x_{1:t}, e_{1:t})$$

$$= \text{arg max } P(x_0) \prod_{x_{i:t}} P(x_t | x_{t-1}) P(e_t | x_t)$$

$$\text{solution:}$$

$$\text{arg max } P(x_0) \prod_{x_{i:t}} P(x_t | x_{t-1}) P(e_t | x_t)$$

$$\text{solution:}$$

$$\text{arg max } P(x_0) \prod_{x_{i:t}} P(x_t | x_{t-1}) P(e_t | x_t)$$

$$\text{solution:}$$

$$\text{arg max } P(x_0) \prod_{x_{i:t}} P(x_t | x_{t-1}) P(e_t | x_t)$$

$$\text{solution:}$$

$$\text{arg max } P(x_0) \prod_{x_{i:t}} P(x_t | x_{t-1}) P(e_t | x_t)$$

$$\text{solution:}$$

- Graph of states and transitions over time
 - Given umbrella sequence: [true,true,false,true,true], find the most probable path

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- The product of weights on a path is proportional to that state sequence's probability
- Viterbi algorithm:
 - For each state at time t, keep track of the maximum probability of any path to it 85

transition		
model		

R_{t-1}	$P(R_t R_{t-1})$
f	0.7 0.3

R_t	$P(U_t R_t)$
\int_{f}^{t}	0.9 0.2

- **Example: Most Likely Explanation**
 - Graph of states and transitions over time
 - Given umbrella sequence: [true,true,false,true,true], find the most probable path
 - Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
 - The product of weights on a path is proportional to that state sequence's probability

R_{t-1}	$P(R_t R_{t-1})$
f	0.7 0.3

R_t	$P(U_t R_t)$
$\frac{t}{f}$	0.9 0.2

- Graph of states and transitions over time
 - Given umbrella sequence: [true,true,false,true,true], find the most probable path
 - Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
 - The product of weights on a path is proportional to that state sequence's probability

R_{t-1}	$P(R_t R_{t-1})$
t_{a}	0.7
\int	0.3

R_t	$P(U_t R_t)$
f	0.9 0.2

- Graph of states and transitions over time
 - Given umbrella sequence: [true,true,false,true,true], find the most probable path
 - Each arc has weight P(xt|xt-1)P(et|xt)
 - The product of weights on a path is proportional to that state sequence's probability

R_{t-1}	$P(R_t R_{t-1})$
\int_{f}^{t}	0.7 0.3

R_t	$P(U_t R_t)$
f	0.9 0.2

- Graph of states and transitions over time
 - Given umbrella sequence: [true,true,false,true,true], find the most probable path
 - Each arc has weight P(xt|xt-1)P(et|xt)
 - The product of weights on a path is proportional to that state sequence's probability

******* 0.03 34*0.7*0.9=0.0210 >**0.0 **1 7 3***0.3*0.9=0.0047

File: 0.0334*0.3*0.2=0.0020<0.0173*0.7*0.2=0.0024