ALGEBRAIC GEOMETRY - LOTHAR GÖTTSCHE LECTURE 14

WANG YUNLEI

Theorem 1 (Noether Normalization). (1) Let $Z(F) \subset \mathbb{A}^n$ be a hyperplane, then there exists a finite surjective morphism

$$\Pi: Z(F) \to \mathbb{A}^{n-1}$$
.

(2) If $X \neq \emptyset$ is an affine variety, then there exists a finite surjective morphism

$$\Pi:X\to\mathbb{A}^k$$

for some positive integer k.

Lemma 1. Let F be a nonzero polynomial in $k[x_1, ..., x_n]$, then there exists a point $p \in \mathbb{A}^n$ s.t. $f(p) \neq 0$.

Proof. Prove it by induction. For n=0 and n=1, it is obvious. Now assume n-1 is true, for $f \in k[x_1, \ldots, x_n]$ we can write $f = \sum_i f_i x_n^i$ with $f_i \in k[x_1, \ldots, x_{n-1}]$.

There exists j such that $f_j \neq 0$, by induction on n, there exists $(b_1, \ldots, b_{n-1}) \in \mathbb{A}^{n-1}$ such that $f_j(b_1, \ldots, b_{n-1}) \neq 0$. Then we get $g(X) := f(b_1, \ldots, b_n, x)$ in $k[x]\{0\}$. Of course there exists b_n such that $g(b_n) \neq 0$, i.e. $f(b_1, \ldots, b_n) \neq 0$. \square

Proof of Theorem 1. (1) Let $F^{(d)}$ be the homogeneous part of F with the top degree, then $F^{(d)}(x_1,\ldots,x_{n-1})\neq 0$. Thus there exists $(b_1,\ldots,b_{n-1})\in \mathbb{A}^{n-1}$ such that $F^{(d)}(b_1,\ldots,b_{n-1},1)\neq 0$. By change of coordinates and multiplying F by a constant, we can get $F^{(d)}(0,\ldots,0,1)=1$, it is equivalent to say the coefficient of x_n^d in F is 1. Let $\Pi=(x_1,\ldots,x_{n-1}):Z(F)\to \mathbb{A}^{n-1}$ and $w_n\in A(Z(F))$ be the class of the last variable x_n . Then we have

$$A(Z(F)) = \Pi^*(k[x_1, \dots, x_{n-1}])[w_n].$$

Since $F = x_n^d + \sum_{i=1}^{d-1} a_i x_n^i$ with $a_i \in k[x_1, \dots, x_{n-1}]$, in A(Z(F)) we can get

$$0 = w_n^d + \sum_{i=1}^{d-1} \Pi^*(a_i) w_n^i.$$

Thus A(Z(F)) is finite over $\Pi^*(k[x_1,\ldots,x_{n-1}])$, i.e $\Pi:Z(F)\to\mathbb{A}^{n-1}$ is finite. Let $b=(b_1,\ldots,b_{n-1})\in\mathbb{A}^{n-1}$, to see $\Pi^{-1}(b)\neq\emptyset$. Put $g(x):=F(b_1,\ldots,b_{n-1},x)\in k[x]$, the coefficient of x_n of F is 1, then g(x) is not constant. Hence g has a zero $b_n\in k$,

$$\Pi^{-1}(b) = \{(b_1, \dots, b_{n-1}, b_n) | F(b_1, \dots, b_{n-1}, b_n) = 0\} \neq \emptyset.$$

So the morphism is surjective.

Date: June 19, 2017.

(2) If $X = \mathbb{A}^n$, then it is clear. Assume $\emptyset \neq X \subsetneq \mathbb{A}^n$ is a closed subvariety, we prove the statement by induction on n. Let $F \in I(X) \setminus \{0\}$ be irreducible. By (1) there exists a finite surjective morphism

$$\Pi: Z(F) \to \mathbb{A}^{n-1}$$

where $X \subset Z(F)$ is closed. The embedding of $i: X \to Z(F)$ is finite, so $\tilde{\Pi} = \Pi \circ i : X \to \mathbb{A}^{n-1}$ is a finite morphism. Let $Y \subset \mathbb{A}^{n-1}$ be the image of X. By induction on n there is a finite surjective morphism $\varphi: Y \to \mathbb{A}^k$ for some k, then $\varphi \circ \Pi \circ i$ is a finite surjective morphism from $X \to \mathbb{A}^k$ for some k.

Lemma 2. Let $\varphi: X \to Y$ be a finite surjective morphism, let Z, W be closed subvarieties of X and $Z \subsetneq W$, then $\varphi(Z) \subsetneq \varphi(W)$.

Proof. We can assume X=W and Y=f(W), thus the lemma is equivalent to : if $Z \subsetneq X$ is a closed subvariety, then $f(Z) \subsetneq Y$. Let $g \in A(X) \setminus \{0\}$ such that g|Z=0, since φ is finite, g satisfies a monic equation

$$g^{n} + \sum_{i=0}^{n-1} \varphi^{*}(a_{i})g^{i} = 0$$

with $a_i \in Y$. Take the one with the smallest degree n, then $\varphi^*(a_0) \neq 0$ (otherwise divide by g), then we get

$$0 \neq \varphi^*(a_0) = -g(g^{n-1} + \sum_{i=1}^{n-1} \varphi^*(a_i)g^{i-1}).$$

The right hand side of the equation is in $\langle g \rangle$, thus $\varphi^*(a_0)|Z=0 \Rightarrow a_0|_{\varphi(Z)}=0$ $\varphi(Z) \subsetneq Y(\text{if } \varphi(Z) = Y, \text{ then } a_0 = 0 \in A(Y) \Rightarrow \varphi^*(a_0) =, \text{ it makes a contradiction}).$

Corollary 1. Let $\varphi: X \to Y$ be a finite surjective morphism, then all the fibres of φ are finite.

Proof. It is enough to show that every irreducible component Z of $\varphi^{-1}(y)$ is a point. Let $z \in Z$ be a point, then $\varphi(z) = y = \varphi(Z)$, by lemma 2 we get $\{0\} = Z$.

Definition 1 (Dimension of Varieties). Let X be a variety, $\emptyset \neq X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_n \downarrow X$ $X_n = X$ be a chain of irreducible closed subsets on X, we call it a chain in X, n is called length of the chain. The dimension of X is the maximal n such that there exists a chain of length n in X or ∞ if this maximum does not exist.

(1) Let $Y \subset X$ be a closed subvariety, then $\dim Y \leq \dim X$. If $Y \subseteq X$ and $dimY < \infty$, then dimY < dimX.

- (2) Let $f: X \to Y$ be a surjective closd morphism, then $\dim X \ge \dim Y$.
- (1) Let $Y_0 \subsetneq Y_1 \subsetneq \cdots \subsetneq Y_k$ be a chain in Y, it is also a chain in X, thus $\dim X \supset \dim Y$. If $Y \subsetneq X$, then $Y_0 \subsetneq Y_1 \subsetneq \cdots \subsetneq Y_k \subsetneq X$ is a chain in X, hence if the dimension of Y is finite, we get $\dim Y < \dim X$.
 - (2) Let $Y_0 \subsetneq \cdots \subsetneq Y_n$ be a chain in Y, we need to show that there exists a chain $X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_n$ in X such that $\varphi(X_i) = Y_i$ for all i. Use induction on n, it is obvious for n = 0. Let Z_1, \ldots, Z_r be irreducible components

of $f^{-1}(Y_{n-1})$, then $\bigcup_{i=1}^r \varphi(Z_i) = Y_{n-1}, f(Z_i)$ are closed, Y_{n-1} is irreducible. Thus one of the $f(Z_i)$ is equal to Y_{n-1} . Since $\varphi: Z_i \to Y_{n-1}$ is a surjective closed morphism, by induction we get a chain $X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_{n-1} = Z_i$ in X with $f(X_i) = Y_i$ for $i = 0, \ldots, n-1$, then $X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_{n-1} \subsetneq X_n = X$ is a chian with $f(X_i) = Y_i$ for all i.

Theorem 2. Let $\varphi: X \to Y$ be a finite surjective morphism of varieties, then dimX = dimY.

Proof. We already know $\dim X \geq \dim Y$ because φ is surjective and closed. To show $\dim Y \geq \dim X$, let $X_0 \subsetneq \ldots, \subsetneq X_n$ be a chain in X, for i let $Y_i = f(X_i)$, then by lemma $2 Y_0 \subsetneq Y_1 \subsetneq \cdots \subsetneq Y_n$ is also a chain in Y.

Theorem 3. (1) $dim \mathbb{A}^n = n$.

- (2) Let $F \in k[x_1, ..., x_n] \setminus k$ be a irreducible polynomial, then $\dim Z(F) = n 1$.
- (3) Conversely any subvariety $X \subset \mathbb{A}^n$ of dimension n-1 is a hypersurface, i.e. X = Z(F) with F irreducible.

Proof. We first prove $\dim Z(F) = \dim \mathbb{A}^{n-1}$ for $F \in k[x_1, \dots, x_n] \setminus k$. By theorem 1 we know therre exists a surjective finite morphism from Z(F) to \mathbb{A}^{n-1} , thus $\dim Z(F) = \dim \mathbb{A}^{n-1}$.

(1) Let
$$Z_i = Z(x_{i+1}, \dots, x_n) \subset \mathbb{A}^n$$
, then $Z_i \simeq \mathbb{A}^i$ and thus $Z_0 \subsetneq Z_1 \subsetneq Z_2 \subsetneq \dots \subsetneq Z_n = \mathbb{A}^n$

is a chain in \mathbb{A}^n of length n, it implies $\dim \mathbb{A}^n \geq n$. Now we prove the opposite inequality by induction on n. For n=0, it is true, let $X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_{k-1} = X \subsetneq \mathbb{A}^n$ be a chain in \mathbb{A}^n . Then $X \subsetneq \mathbb{A}^n$ is a closed subvariety, we can choose $F \in I(X)$ and F is irreducible, then $X \subset Z(F)$. Thus $k-1 \leq \dim Z(F) = \dim \mathbb{A}^{n-1} = n-1$ by induction. Since the chain we choose is arbitrary, we get $\dim \mathbb{A}^n \leq n$. Hence $\dim \mathbb{A}^n = n$.

- (2) It follows from (1) immediately.
- (3) Let $\emptyset \neq X \subsetneq \mathbb{A}^n$ and dimX = n 1, then there exists $F \in I(X) \setminus k$ being irreducible, thus $X \subset Z(F)$, X and Z(F) are both irreducible of the same dimension, hence X = Z(F).

 $E ext{-}mail\ address: wcghdpwyl@126.com}$