Plano de Aula: Ensinar a lei de Planck e a radiação do corpo negro através de exemplos

relacionados ao clima

Como professor de física do ensino médio ou de graduação, você pode usar esse conjunto de ferramentas computacionais para ajudá-lo a ensinar

a lei de Planck, a lei de Stefan Boltzmann e a radiação de corpos negros.

Este plano de aula permite aos alunos visualizar os espectros de emissão associados a temperaturas específicas, entender como a Lei de Planck

pode ser usada para traçar curvas de corpos negros de objetos com diferentes temperaturas e aprender a relação entre temperatura e comprimentos de onda no pico no espectro eletromagnético. A atividade também apresenta o tópico de temperaturas planetárias de objetos no

sistema solar e mostra o efeito estufa da atmosfera da Terra.

Assim, o uso deste kit de ferramentas permite integrar o ensino de um tópico de ciências climáticas com um tópico central em Física.

Use este plano de aula para ajudar seus alunos a encontrar respostas para:

• Como a Lei de Planck pode ser usada para traçar curvas de corpos negros em diferentes temperaturas?

• Como a lei de Stefan-Boltzmann pode ser usada para calcular a temperatura da superfície dos corpos negros?

• Por que a temperatura da superfície da Terra aumenta devido ao efeito estufa da atmosfera da Terra?

Sobre o Plano de Aula

Nível de Ensino: Ensino Médio, Graduação

Disciplina: Física

Topico(s) na Disciplina: Lei de Planck, Lei de Wien, Radiação de corpos negros, Lei de Stefan Boltzmann, Relação entre temperatura e comprimento de onda do pico do espectro eletromagnético, Temperaturas planetárias em função da energia solar recebida, Efeito estufa da atmosfera da Terra

Tópico Climático: Climas planetários, balanço energético planetário, efeito estufa

Localização: Global

Acesso: Online, Offline

Língua(s): Português

Tempo aproximado necessário: 120 – 150 minutos.

1 Conteúdos

1. Visualização e atividade associada (aproximadamente 45 min)

Uma visualização e atividade associada para explicar como a Lei de Planck pode ser usada para traçar curvas de corpos negros de objetos com diferentes temperaturas, a relação entre temperatura e comprimentos de onda de pico no espectro eletromagnético e o efeito estufa da atmosfera da Terra.

Visualização:

https://phet.colorado.edu/en/simulation/blackbody-spectrum

A versão em português do Brasil dessa visualização esta disponible em:

https://phet.colorado.edu/en/simulations/translated/pt BR

Atividade Associada:

http://static.nsta.org/connections/highschool/201512Worksheets.pdf

2. Sala de Aula/ Atividade de Laboratório (60 – 90 min)

Atividade em sala de aula / laboratório para entender o balanço energético do planeta Terra, a Lei de Stefan-Boltzmann e o fluxo de energia solar recebido pelo planeta Terra para calcular sua temperatura superficial. Este recurso pode ser usado para demonstrar o efeito estufa da atmosfera.

http://cybele.bu.edu/courses/gg612fall99/gg612lab/lab1.html

3. Questões Sugeridas / Tarefas para Avaliação da Aprendizagem

- Como a Lei de Planck pode ser usada para traçar curvas de corpos negros em diferentes temperaturas?
- Como a lei de Stefan-Boltzmann pode ser usada para calcular a temperatura da superfície dos corpos negros?
- Por que a temperatura da superfície da Terra aumenta devido ao efeito estufa da atmosfera da Terra?

Passo a passo Guia do Usuário

Aqui está um guia passo a passo para usar este plano de aula na sala de aula / laboratório. Sugerimos essas etapas como um possível plano de ação. Você pode personalizar o plano de aula de acordo com suas preferências e requisitos.

1. Introduza o tópico

- Discuta o conceito de radiação eletromagnética.
- Prossiga com o plano de aula existente para explicar a Lei de Planck.

2. Conduza uma atividade usando uma ferramenta interativa visual

• Em seguida, discuta como a equação de Planck pode ser usada para traçar curvas de corpos negros de objetos com diferentes temperaturas e a relação entre temperatura e comprimentos de onda de pico no espectro eletromagnético.

Agora, explore o tópico de maneira interativa e envolvente por meio de uma ferramenta de visualização e atividade associada:

• Faça o download da ferramenta do PhET, "Espectro do Corpo Negro ", em

https://phet.colorado.edu/en/simulation/blackbody-spectrum

A versão em português do Brasil dessa visualização esta disponible em:

https://phet.colorado.edu/en/simulations/translated/pt BR

 Faça o download de uma atividade desenvolvida pela Associação Nacional de Ensino de Ciências, intitulada "Explorando a Lei de Planck", projetada para ser usada com a ferramenta "Radiação do corpo negro" do PhET.

Esta atividade pode ser baixada em

http://static.nsta.org/connections/highschool/201512Worksheets.pdf.

Com a ajuda dessa atividade, você pode explicar como a Lei de Planck pode ser usada para traçar curvas de corpos negros de objetos com diferentes temperaturas e a relação entre temperatura e comprimentos de onda de pico no espectro eletromagnético.

A atividade contém várias perguntas a serem respondidas ao usar a ferramenta "Radiação do corpo negro" do PhET.

• Uma chave de resposta para professores pode ser encontrada em

http://static.nsta.org/connections/highschool/201512WorksheetsKeys.pdf

3. Conduza a sala de aula/laboratório

- Introduzir a lei de Stefan-Boltzmann como um meio de calcular o fluxo total de energia emitida por um corpo negro. Enfatize como essa lei pode ser usada para calcular as temperaturas da superfície de diferentes corpos negros.
- Discuta o tópico balanço de energia e temperaturas planetárias no sistema solar e estresse no cálculo da temperatura da superfície do planeta Terra com base no fluxo de energia solar recebido.
- Introduzir o efeito estufa que ocorre na atmosfera da Terra e discutir como a temperatura da superfície da Terra aumenta de um corpo negro vazio terrestre para um corpo negro com uma camada de atmosfera.

Agora, explore o tópico em detalhes por meio de uma atividade em sala de aula / laboratório, "A aproximação do modelo de camadas ao efeito estufa", (The Layer Model Approximation to the Greenhouse Effect),

projetado por David Archer, Universidade de Chicago:

- Acesse http://cybele.bu.edu/courses/gg612fall99/gg612lab/lab1.html.
- Conduza a atividade neste exercício.

4. Perguntas / Tarefas

Use as ferramentas e os conceitos aprendidos até agora para discutir e determinar respostas para as seguintes perguntas:

- Como a Lei de Planck pode ser usada para traçar curvas de corpos negros em diferentes temperaturas?
- Como a lei de Stefan-Boltzmann pode ser usada para calcular a temperatura da superfície dos corpos negros?
- Por que a temperatura da superfície da Terra aumenta devido ao efeito estufa da atmosfera da Terra?

Resultados da Aprendizagem

As ferramentas deste plano de aula ajudarão os alunos a:

- aplicar a lei de Planck para traçar a curva do corpo negro de um objeto em uma temperatura específica
- aplicar a lei de Stefan Boltzmann para determinar a temperatura da superfície de um corpo negro

- calcular a temperatura da superfície da Terra com base no fluxo de energia solar
- explicar o efeito do efeito estufa da atmosfera da Terra na temperatura da superfície da Terra

4 Recursos Adicionais

Se você ou seus alunos quiserem explorar mais o assunto, esses recursos adicionais serão úteis.

1. Leitura

Uma leitura, "Balanço Energético e Temperaturas Planetárias", da American Chemical Society (ACS):

https://www.acs.org/content/acs/en/climatescience/energybalance.html

2. Leitura

Uma leitura, "Um modelo de atmosfera de camada única, como funciona o aquecimento atmosférico", da American Chemical Society (ACS):

https://www.acs.org/content/acs/en/climatescience/atmosphericwarming/singlelayermodel.html

3. Micro palestra (vídeo)

Uma micro palestra (vídeo), "Nosso Primeiro Planeta Nú Modelo Climático", de David Archer, Universidade de Chicago:

http://www.kaltura.com/index.php/extwidget/preview/partner_id/1090132/uiconf_id/20652192/entry_id/1_9fnkm5sc/embed/auto

4. Micro palestra (vídeo)

Uma micro palestra (vídeo), "Balanço Energético com Atmosfera de Estufa", de David Archer, Universidade de Chicago:

http://www.kaltura.com/index.php/extwidget/preview/partner_id/1090132/uiconf_id/20652192/entry_id/1_zngmr7tt/embed/auto

5. Visualização

Uma ferramenta de visualização, "Balanço Energético Planetário", do Centro de Educação Científica da UCAR:

https://scied.ucar.edu/planetary-energy-balance

5 Créditos/Direitos Autorais

Todas as ferramentas de ensino em nossa lista pertencem aos criadores / autores / organizações correspondentes, listados em seus sites. Veja os detalhes individuais de direitos autorais e propriedade de cada ferramenta seguindo os links individuais fornecidos. Selecionamos e analisamos as ferramentas que se alinham ao objetivo geral do nosso projeto e fornecemos os links correspondentes. Não reivindicamos propriedade ou responsabilidade por qualquer uma das ferramentas listadas.

1. Visualização, "Espectro de corpo negro"

Simulações interativas PhET, Universidade do Colorado em Boulder

Atividade associada, "Explorando a lei de Planck"

Associação Nacional de Ensino de Ciências

2. Atividade em sala de aula / laboratório, "A aproximação do modelo de camada ao efeito estufa"

David Archer, Universidade de Chicago

3. Recursos Adicionais

Sociedade Americana de Química;

David Archer, Universidade de Chicago;

Centro de Educação Científica da UCAR