

ZZN – Řešení

3. 1. 2018

A. Kvapilová (xkvapi12), T. Coufal (xcoufa09)

Dolovací úloha

Míra znečištění v závislosti na teplotě a vlhkosti

Úloha předpokládá závislost míry znečištění na okolních podmínkách a zkoumá trendy, které změny počasí provází. Na základě vysledovaných závislostí lze určit míru rizik spojených především s denní dobou, teplotou a vlhkostí. Míra znečištění je určena na základě evropských norem pro kvalitu ovzduší.

Rozbor úlohy

Určení míry znečištění je definováno pomocí tzv. AQI indexu. Ten je v různých zemích počítán jinak. V Evropské unii je tento index zjišťován z šesti různých faktorů¹:

- 8h průměr koncentrace CO
- 8h průměr koncentrace O₃
- aktuální hodinová koncentrace NO₂
- aktuální denní koncentrace PT₂₅
- aktuální denní koncentrace PT₁₀
- aktuální denní koncentrace SO₂

V daném datasetu byly ovšem k dispozici pouze první tři zmiňované. Naopak jsou k dispozici hodnoty ² koncentrací těžkých kovů, benzenu a NMHC a dalších, pro které ovšem existují pouze roční bezpečné limity – neexistuje specifikace pro určení kvality ovzduší na základě jejich momentálních hodnot. Z toho důvodu nebyly při výpočtu uvažovány.

Takto získaný AQI index definuje kvalitu ovzduší a míru znečištění jako kategorie: **Good**, **Moderate**, **Unhealthy**, **Very Unhealthy**, **Hazardous**, **Very Hazardous**.

V řešené úloze jsme tuto kategorii znečištění predikovali pouze na základě teploty, absolutní vlhkosti, relativní vlhkosti, data a času, tedy pro takový systém, který by nemusel nutně měřit koncentrace látek v ovzduší.

Schéma řešení

- 1. Fltrace a předzpracování dat odstraněním irelevantních atributů a chybějících hodnot
- 2. Výpočet 8h půměrů pro CO a O₃ (*Moving Average* z rozšíření *Value Series*)
- 3. Klasifikace do AQI kategorií podle evropských norem (*Generate Attributes*, *Map*, *Set Role*)
- 4. Výpočet dílčích klasifikátorů, pro lepší predikci (*Generate Attributes*)
- 5. Klasifikace znečištění pomocí Naive Bayes (*Validation*, *Select Attributes*, *Naive Bayes*, *Apply Model*, *Performance*)

Pro lepší výsledky predikce jsme vedle zřejmých charakteristik jako teplota a vlhkost přidali klasifikátory pro:

- Den v týdnu
- Denní doba (noc, siesta, práce)
- Roční období
- Pracovní dny (resp. dny s charakteristicky nižší produkcí škodlivin: Sobota, Neděle a Pondělí)
- Hodina měření

Pro naučení prediktivního modelu jsme použili Naive Bayes klasifikaci, která je vhodná pro menší soubory dat a navíc dobře klasifikuje numerické hodnoty.

¹ https://www.airqualitynow.eu/about indices definition.php

² https://archive.ics.uci.edu/ml/datasets/Air+quality

³ http://www.haze.gov.sg/docs/default-source/computation-of-the-pollutant-standards-index-(psi).pdf

Závěr

Výsledný model predikuje míru znečištění s 60% úspěšností. To je způsobeno především nízkou kvalitou vstupních dat:

- chybějící faktory znečištění
- vychýlením dat směrem k vysokému znečištění
- mnoho chybějících hodnot
- malý soubor dat (1 rok pozorování)
- Nedostatek meteorologických údajů (např. tlak)

I přesto byla klasifikace relativně úspěšná a pokud nebyl testovací vzorek zařazen do správné kategorie, byl modelem přiřazen do vedlejší (tzn. Pokud měl být vzorek Hazardous byl chybně zařazen jako Very Hazardous), nikdy však nedošlo k jeho zařazení do opačné části spektra znečištění.

Predikovaná klasifikace	Správná klasifikace			Class
	Very Unhealthy	Hazardous	Very Hazardous	precision
Very Unhealthy	600	173	253	58.48%
Hazardous	124	92	67	32.51%
Very Hazardous	278	184	892	65.88%
Class recall	59.88%	20.49%	73.60%	