Lecture 26: Lagrange Multipliers (§14.8)

Goal:

- 1. Apply the Method of Lagrange Multipliers to determine the points on a constraint curve at which a function of two variables may have a local maximum or minimum value (relative to its values on the curve).
- 2. Apply the Method of Lagrange Multipliers to determine the points on a constraint surface at which a function of three variables may have a local maximum or minimum value (relative to its values on the curve).

Constrained optimization. A constrained optimization problem is: minimize (or maximize) a function f(x, y, z) subject to a constraint g(x, y, z) = 0.

For example, to find the distance from the origin to the plane x + 2y + 3z = 4, we minimize $d(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ subject to the constraint g(x, y, z) = 0, where g(x, y, z) = x + 2y + 3z - 4.

The method of Lagrange multipliers

The Orthogonal Gradient Theorem: Suppose f(x, y, z) is differentiable in a region whose interior contains a smooth curve C:

$$\overrightarrow{r}(t) = \langle x(t), y(t), z(t) \rangle.$$

If $P_0 = \overrightarrow{r}(t_0)$ is a point on C where f has a local max or min relative to its values along C, then

$$\nabla f \cdot \overrightarrow{r}'(t_0) = 0.$$

$$\frac{d}{dt} f(\vec{r}(t)) = \underbrace{\frac{d}{dt}}_{ov} \underbrace{\frac{dx}{dt}}_{t} \underbrace{\frac{\partial f}{\partial t}}_{t} \underbrace{\frac{dy}{\partial t}}_{t} \underbrace{\frac{\partial f}{\partial t}}_{ov} \underbrace{\frac{\partial f}{\partial$$

Example. Let $f(x,y) = (1-x^2-y^2)^2$. Find the minimal value of f along the curve y = x, for $x \in [-10, 10]$.

$$\nabla^{2}(t) = \langle 1, 1 \rangle$$

$$\nabla^{$$

 $f(x,y)=(1-x^2,y^2)^2$ | 0,0) $(\frac{1}{16},\frac{1}{16})$ $(\frac{1}{16},\frac{1}{16})$ $(\frac{1}{10},\frac{1}{10})$ | $(\frac$

The Orthogonal Gradient Theorem can be generalized to surfaces. Suppose we have differentiable functions f(x, y, z) and g(x, y, z).

The Method of Lagrange multipliers

Suppose f(x, y, z) and g(x, y, z) are differentiable, and $\nabla g \neq 0$. To find the local maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = 0, we find x, y, z and λ , such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$
 and $g(x, y, z) = 0$.

Note that such points (x, y, z) are only **candidates** for a local maximum or minimum.

Example. Let $f(x,y) = x^2 - y^2$ and let S be the circle of radius 1 centered at the origin. Find the maximum and minimum values and points of f(x, y) on S.

Write
$$g(x,y) = x^2 + y^2 - 1$$

the constrain is $g(x,y) = 0$

$$\nabla g = \langle \frac{\partial g}{\partial x}, \frac{\partial g}{\partial y} \rangle = \langle 2x, 2y \rangle$$
 | $\neq 0$ on the sincle

we get 4 condidates

Example. Maximize f(x, y, z) = x + z subject to the constraint $x^2 + z$ $y^2 + z^2 = 1.$

$$g(x,y,t)=0$$
 is the constraint

By LMT we should consider the conditions

$$g(x,y,t) = x^2 + y^2 + t^2 - 1 = 0 = 7$$
 $x = t = \frac{t1}{\sqrt{2}}$

conditates are The

$$(\frac{1}{5}, 0, \frac{1}{5}), (\frac{-1}{5}, 0, \frac{1}{5})$$

$$f=x+2$$

$$\frac{2}{\sqrt{2}}=12$$
maxina

For example, to find the distance from the origin to the plane x + 2y + 3z = 4, we minimize $d(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ subject to the constraint g(x, y, z) = 0, where g(x, y, z) = x + 2y + 3z - 4.

Take
$$f(x,y,z) = d(x,y,z)^{L} = x^{2}+y^{2}+z^{2}$$

Applying LMT we get

 $\nabla g = \lambda \nabla f$
 $\nabla g = (1, 2, 3)$
 $\nabla f = (2x, 2y, 2z)$
 $\lambda \nabla g = \nabla f$
 $\lambda \nabla g = \nabla g$
 $\lambda \nabla g = \nabla$

$$\begin{array}{lll}
x + 2y + 3 + 2x + 3 \cdot \frac{2}{2}x = 4 & = 7 & 7 = \frac{4}{7} \\
\Rightarrow & \langle x_{1}y_{1}t_{2}\rangle = \langle \frac{1}{7}, \frac{4}{7}, \frac{6}{7}\rangle \\
\Rightarrow & d = \sqrt{x^{2}+y^{2}+2^{2}} = \sqrt{\frac{4}{49}} + \frac{16}{49} + \frac{36}{49} = \frac{\sqrt{56}}{7}
\end{array}$$