

TRAVAUX DIRIGES n°1

Conception et Fabrication 1 - 3ème Année - IA2R FISA

Centre d'intérêt: transmission de mouvement

Support d'étude : Drone DJI S900

Dossier Pédagogique

Objectif : Réaliser l'étude de la transmission de mouvement, modifier cette

transmission.

Pré-requis : C&F 1A, 2A, 3A

Durée approximative du TD : 4h

Matériel à utiliser : Poste CAO

Compétences attendues :

Critères d'évaluation : Présentation du TP, pertinence des raisonnements, rigueur de

l'analyse, justesse des calculs mis en œuvre, rapidité

d'exécution et compréhension.

<u>Travail à rendre sur Arche</u> : Maquette numérique vérin assemblée, schéma

cinématique CAO terminé

Drone DJI S900

Mise en situation

L'objet de cette étude s'articule autour du drone DJI S900.

Vous travaillez dans la société qui développe ce drone. Vous reprenez le travail en cours

d'un collègue à vous qui a partiellement réalisé une

étude sur le repli des pattes d'atterrissage.

Les pattes d'atterrissage sont contrôlées par un servo-moteur.

Afin de répondre aux questions, vous disposez de la maquette numérique du drone (_Drone_DJI S900.CATProduct) ainsi qu'une épure non documentée (_Epure.CATPart) que vous a laissé votre collègue.

Considérant que le drone replie ses jambes d'atterrissage en vol, on considérera pour tous les calculs, qu'il est soumis à une accélération contante de 2 g verticale.

Travail à réaliser

- 1- Déterminer les variations de couple dans le palonnier en fonction du poids de la jambe d'atterrissage (leg). (Il faudra veiller à déterminer le CDG à l'aide de Catia. L'épure sera utilisée pour répondre à cette question avec une étude considérée en quasi-statique. Le poids de toutes les autre pièces sera négligé)
- 2- Considérant que le rendement entre la jambe et le moteur du servo-moteur est d'environ 85%, en déduire le couple moteur à assurer pour le bon fonctionnement du mécanisme.
- 3- Déterminer l'angle de replis entre la position basse et la position haute.

- 4- En déduire le nombre de tours effectués par le moteur à l'intérieur du servo-moteur. Le moteur tourne en régime établi à environ 10 000 min⁻¹ (vitesse constante quelque soit la charge). On négligera les phases d'accélération et de décélération pour la suite des calculs.
- 5- Déterminer le temps mis pour replier les pattes du drone.

Le support de servo-moteur est une pièce qui est issue de la mise en position d'un autre type de servo-moteur.

6- Concevoir un autre type de pièce plus optimisée pour ce type de servo-moteur et l'insérer dans le mécanisme.