CSCI971 Advance Computer Security: Homework #2

 ${\bf Mei\ Wangzhihui\ 2019124044}$

Problem 1

Solution

We define the outputs as O_0, O_1 for 0^{64} , there is

$$R_0 = 0^{32}, \ L_0 = 0^{32}$$

$$L_1 = R_0 = 0^{32}, \ R_1 = F(k_1, R_0) \oplus L_0 = F(k_1, R_0)$$

$$L_2 = R_1 = F(k_1, R_0), \ R_2 = F(k_2, R_1) \oplus L_1 = F(k_2, F(k_1, 0^{32}))$$

Similarly, for $1^{32}0^{32}$, there is

$$L_2 = \bar{F}(k_1, 0^{32}), \ R_2 = F(k_2, \bar{F}(k_1, 0^{32}))$$

thus we can define, $m_0 = F(k_1, 0^{32})$, $c_0 = F(k_2, m_0)$, $m_1 = \bar{F}(k_1, 0^{32}) = \bar{m_0}$, $c_1 = F(k_2, m_1)$ if two outputs are from PRP, then the left 32 bits of $O_1 \oplus O_2$ is 1^{32} we can easily find that 2) is from PRP, and the other 3 is from random permutation.

Problem 2

Solution

We can draw the whole process of the protocol

Step1:
$$r \leftarrow Z_p$$
, $x_b = r(b + k_0) + k_1$
Step2: $x = rx_a - x_b$
Step2: $x_a = a + k_0$
Step3: $x = rx_a - x_b$
Step3: $x = rx_a - x_b$

Figure 1: The protocol procedure

As $\Delta = x + k_1 = r(a - b)$ so we get the condition that $r \neq 0$