

GRUP A - Sessió 13-14

Tema 2. Àlgebra booleana i portes lògiques (II)



- 2.1. Algebra de Boole (4 POSTULATS)
- 2.2. Funcions booleanes
- 2.3. Operacions booleanes (portes lògiques)
- 2.4. Formes canoniques
- 2.5. Teoremes booleans
- 2.6. Implementació de funcions amb portes lògiques
- 2.7. Disseny i implementació de sistemes mitjançant portes lògiques



#### 2.7. Disseny i implementació de sistemes mitjançant portes lògiques

- Manera d'implementar les funcions lògiques.
- Hi ha una sèrie de circuits integrats (C.I.) disponibles al mercat que implementen portes de tipus NAND, NOR, AND, OR, XOR, etc.
- La seva interconnexió permet implementar funcions lògiques.
- Els circuits integrats:
  - S'alimenten amb un voltatge de 5 volts / 0 volts (massa).
  - Disposen d'un conjunt de pins d'entrada i sortida.



#### 2.7. Disseny i implementació de sistemes mitjançant portes lògiques

Exemple d'implementació per la funció:

$$f(a,b,c) = \overline{a + \overline{b}} \times \overline{c}$$







#### 2.7. Disseny i implementació de sistemes mitjançant portes lògiques





#### 2.7. Disseny i implementació de sistemes mitjançant portes lògiques

Taula de circuits integrats més utilitzats per implementar funcions amb les portes lògiques que fins al moment hem estudiat. La majoria es troben a la sèrie 74 del fabricant Texas Instruments:

| Dispositivo | Descripción                           |
|-------------|---------------------------------------|
| 7400        | 4 puertas NAND de 2 entradas cada una |
| 7402        | 4 puertas NOR de 2 entradas cada una  |
| 7404        | 6 puertas NOT de 1 entrada cada una   |
| 7408        | 4 puertas AND de 2 entradas cada una  |
| 7432        | 4 puertas OR de 2 entradas cada una   |
| 7486        | 4 puertas XOR de 2 entradas cada una  |
| 7410        | 3 puertas NAND de 3 entradas cada una |
| 7427        | 3 puertas NOR de 3 entradas cada una  |
| 7411        | 3 puertas AND de 3 entradas cada una  |



#### 2.6. Implementació de funcions amb portes lògiques de tipus NAND o NOR





#### 2.6. Implementació de funcions amb portes lògiques de tipus NAND o NOR

 Qualsevol funció booleana es pot implementar NOMÉS amb combinacions de portes de tipus NAND o NOR.



Un sol tipus de porta = Un sol tipus de XIP

- NAND: per aconseguir-ho, hem d'aplicar operacions algebraiques fins arribar a obtenir una expressió a on només apareguin productes negats de dues o tres variables.  $\boxed{\overline{a \cdot b} \cdot \overline{a \cdot c} \cdot ...}$
- NOR: per aconseguir-ho, hem d'aplicar operacions algebraiques fins arribar a obtenir una expressió a on només apareguin sumes negades de dues o tres variables.  $\overline{a+b}+\overline{a+c}+...$
- Les transformacions s'acostumen a fer mitjançant Morgan (T-7).



### 2.6. Implementació de funcions amb portes lògiques de tipus NAND o NOR Resum dels passos:

- 1. Fer transformacions per obtenir la funció simplificada.
- 2. Un cop simplificada, realitzar transformacions segons el cas:
- NAND: Si l'operació més general és una suma → negar l'expressió sencera 2 vegades (fer la doble complementada) per tal de poder aplicar la llei de Morgan que permeti convertir la suma en un producte.

$$\overline{a+b} + \overline{a+c} \rightarrow \overline{\overline{a+b} + \overline{a+c}} \rightarrow (Morgan) \rightarrow \overline{\overline{a+b} \cdot \overline{\overline{a+c}}}...$$

• NOR: <u>Si</u> l'operació <u>més general</u> és un producte → negar l'expressió (fer la complementada) 2 vegades per tal de poder aplicar la llei de Morgan que permeti convertir la multiplicació en una suma.

$$\overline{a \cdot b} \cdot \overline{a \cdot c} \rightarrow \overline{\overline{\overline{a} \cdot \overline{b}} \cdot \overline{a \cdot c}} \rightarrow (Morgan) \rightarrow \overline{\overline{\overline{a} \cdot \overline{b}} + \overline{\overline{a} \cdot \overline{c}}}...$$



### 2.6. Implementació de funcions amb portes lògiques de tipus NAND o NOR Resum dels passos:

- 1. Fer transformacions per obtenir la funció simplificada.
- 2. Un cop simplificada, realitzar transformacions segons el cas:
- NAND: Si l'operació més general és una suma → negar l'expressió sencera 2 vegades (fer la doble complementada) per tal de poder aplicar la llei de Morgan que permeti convertir la suma en un producte.
- NOR: Si l'operació <u>més general</u> és un producte → negar l'expressió (fer la complementada) 2 vegades per tal de poder aplicar la llei de Morgan que permeti convertir la multiplicació en una suma.
- 3. Repetir el procés de forma iterativa fins que només quedin multiplicacions pel cas de les NANDs i sumes pel cas de les NORs.

No puc deixar cap bloc sense negar com a mínim una vegada





#### Exemple 2.14: Implementar la següent funció mitjançant portes NAND

$$f(a,b,c) = \bar{a} \times b + c \leftarrow$$
 Suposem que ja no es pot simplificar més

Pas 1. Neguem dues vegades la funció:  $(\overline{\overline{a} \times b}) + \overline{c}$ .

D'aquesta manera podem utilitzar Morgan per canviar la suma per un producte:

$$\overline{\overline{a} \times b} \times \overline{c}$$

Ara ja tenim tots els termes negats i multiplicant ← CONDICIÓ



↑ Per negar una variable ho fem connectant les dues entrades a la porta



#### **EXERCICI 5 (30 minuts)**

1. Implementar la següent funció mitjançant portes NAND

$$f(a,b,c,d) = a + \overline{\overline{b \times c} + d}$$

2. Implementar la següent funció mitjançant portes NOR

$$f(a,b,c) = a \times b + b \times \bar{c}$$

$$f(a,b,c,d) = \bar{a} \times \bar{b} + \bar{c} \times (\bar{d} \times (a+b))$$

## SOLUCIÓ



1. Portes NAND 
$$\rightarrow f(a, b, c, d) = a + \overline{b \times c} + d$$

• Neguem dues vegades per convertir la suma en multiplicació: CONVOLUCIÓ + MORGAN

$$\overline{a + \overline{b \times c} + d} \implies \overline{a \otimes \overline{b \times c} + d}$$

1. Portes NAND 
$$\rightarrow f(a, b, c, d) = a + \overline{b \times c} + \overline{d}$$

• Neguem dues vegades per convertir la suma en multiplicació: CONVOLUCIÓ + MORGAN

$$\overline{a + \overline{b \times c} + d} \implies \overline{a \times \overline{b \times c} + d}$$

$$\overline{a} \times \overline{\overline{b} \times c} + \overline{d} \qquad \Rightarrow \quad \overline{\overline{a} \times \overline{b} \times c \times \overline{d}}$$

1. Portes NAND 
$$\rightarrow f(a, b, c, d) = a + \overline{b \times c} + d$$

• Neguem dues vegades per convertir la suma en multiplicació: CONVOLUCIÓ + MORGAN

$$\overline{a + \overline{b \times c} + d} \implies \overline{a \times \overline{b \times c} + d}$$

$$\overline{a} \times \overline{\overline{b} \times \overline{c} + \overline{d}} \implies \overline{\overline{a} \times \overline{b} \times \overline{c} \times \overline{d}}$$
Si NANDs de 2 entrades  $\Rightarrow$ 

$$\overline{\overline{a} \times \overline{\overline{b} \times \overline{c} \times \overline{d}}}$$

1. Portes NAND 
$$\rightarrow f(a, b, c, d) = a + \overline{b \times c} + d$$

• Neguem dues vegades per convertir la suma en multiplicació: CONVOLUCIÓ + MORGAN

$$\overline{a + \overline{b \times c} + d} \implies \overline{a \times \overline{b \times c} + d}$$



1. Portes NAND 
$$\rightarrow f(a, b, c, d) = a + \overline{b \times c} + d$$

Neguem dues vegades per convertir la suma en multiplicació: CONVOLUCIÓ + MORGAN

$$\overline{a + \overline{b \times c} + d} \implies \overline{a \times \overline{b \times c} + d}$$



1. Portes NOR 
$$\rightarrow f(a, b, c, d) = a + \overline{b \times c} + d$$

- Quina és la primera operació que hem de fer?
- Què és el que volem?

#### Passos bàsics (no els únics):

- 1. Trobar l'operador més general a canviar.
- 2. Aplicar Morgan segons convingui.
- 3. Iterar fins arribar al context més profund.

- 2. Portes NOR  $\rightarrow f(a, b, c) = a \times b + b \times \bar{c}$
- Neguem dues vegades per convertir les multiplicacions en suma: CONV. + MORGAN





Ho podíem haver fet millor?

2. Portes NOR 
$$\rightarrow f(a, b, c) = a \times b + b \times \bar{c}$$

Neguem dues vegades per convertir les multiplicacions en suma: CONV. + MORGAN

$$\frac{\overline{a \times b} + \overline{b \times \overline{c}}}{\overline{a} + \overline{b} + \overline{b} + \overline{\overline{c}}} \Rightarrow \frac{\overline{\overline{a} + \overline{b}} + \overline{\overline{b}} + \overline{\overline{c}}}{\overline{a} + \overline{b} + \overline{\overline{c}}}$$



#### SN7402 (Portes NOR)



Sí → No hem simplificat



2. Portes NOR 
$$\rightarrow f(a, b, c) = a \times b + b \times \bar{c}$$

Neguem dues vegades per convertir les multiplicacions en suma: CONV. + MORGAN

$$\frac{\overline{\overline{a} \times \overline{b}} + \overline{\overline{b} \times \overline{c}}}{\overline{\overline{a} + \overline{b}} + \overline{\overline{b}} + \overline{\overline{b}} + \overline{\overline{c}}}$$

$$a \times b + b \times \bar{c} = b \times (a + \bar{c}) \leftarrow \text{aplicant P3 + Convolució}$$

$$= \overline{b \times (a + \bar{c})} = \overline{b + a + \bar{c}}$$

2. Portes NOR 
$$\rightarrow f(a, b, c) = a \times b + b \times \bar{c}$$

Neguem dues vegades per convertir les multiplicacions en suma: CONV. + MORGAN

$$\frac{\overline{a \times b} + \overline{b \times \overline{c}}}{\overline{a} + \overline{b} + \overline{b} + \overline{\overline{b}} + \overline{\overline{c}}} \qquad \qquad \overline{\overline{a} + \overline{b} + \overline{b} + \overline{\overline{c}}}$$

$$a \times b + b \times \bar{c} = b \times (a + \bar{c}) \leftarrow \text{aplicant P3 + Convolució}$$

$$=\overline{b \times (a + \overline{c})} = \overline{b} + \overline{a + \overline{c}}$$







#### **EXERCICI 5 (30 minuts)**

1. Implementar la següent funció mitjançant portes NAND

$$f(a,b,c,d) = a + \overline{\overline{b \times c} + d}$$

2. Implementar la següent funció mitjançant portes NOR

$$f(a,b,c) = a \times b + b \times \bar{c}$$

$$f(a,b,c,d) = \overline{\bar{a} \times \bar{b} + \bar{c} \times (\bar{d} \times (a+b))}$$

3. Portes NOR 
$$\rightarrow f(a,b,c,d) = \bar{a} \times \bar{b} + \bar{c} \times (\bar{d} \times (a+b))$$



3. Portes NOR 
$$\rightarrow f(a,b,c,d) = \bar{a} \times \bar{b} + \bar{c} \times (\bar{d} \times (a+b))$$

• Doble neguem el primer terme amb multiplicació:

$$\frac{\overline{a} \times \overline{b} + \overline{c} \times (\overline{d} \times (a+b))}{\overline{(a+b)} + \overline{c} \times (\overline{d} \times (a+b))} \Rightarrow \overline{\overline{a} \times \overline{b}} + \overline{c} \times (\overline{d} \times (a+b))$$

$$\overline{(a+b)} + \overline{c + (\overline{d} \times (a+b))} \implies \overline{(a+b)} + \overline{c + d + \overline{a+b}}$$

3. Portes NOR 
$$\rightarrow f(a,b,c,d) = \bar{a} \times \bar{b} + \bar{c} \times (\bar{d} \times (a+b))$$

• Doble neguem el primer terme amb multiplicació:

$$\frac{\overline{a} \times \overline{b} + \overline{c} \times (\overline{d} \times (a+b))}{\overline{(a+b)} + \overline{\overline{c} \times (\overline{d} \times (a+b))}} \Rightarrow \overline{\overline{a} \times \overline{b}} + \overline{c} \times (\overline{d} \times (a+b))$$

$$\overline{(a+b)} + \overline{c + \overline{(\underline{d} \times (a+b))}} \implies \overline{(a+b)} + \overline{c + \underline{d + \overline{a + b}}}$$



Per defecte, la implementació és amb portes NOR de dos entrades, però ens ho haurien d'especificar



### $\bar{a} \times \overline{\overline{b \times c} + d}$

#### **Errades: Procediment** → **MORGAN**

- Respectar el { context } → Parèntesis :
- 2. Mantenir l'ordre de les operacions.  $\longrightarrow \overline{b \times c} + d$
- 3. Dos negats s'anul·len, però si ens demanen una implementació amb **NANDs** o **NORs**, potser ens interessi conservar-los o afegir-los.

$$\frac{}{b \times c}$$
 ?

#### → Una operació a cada pas!

#### Errades: Implementació

 Implementació només amb les portes indicades, en aquest cas Portes NANDs or NORs (no es poden usar inversores).



# PROBLEMES DE DISSENY



#### Problemes de disseny

En la vida real ens demanaran solucions a una necessitat i no que implementem una funció algebraica, per tant, hem de saber com afrontar el desenvolupament de problemes reals.

#### **PAUTES**

- 1. Identificació de la funció booleana que resol el problema plantejat. En general aquesta funció s'expressa mitjançant taula de veritat, en tant que per a cada combinació de les variables d'entrada hem d'anar "raonant" el valor que ha de prendre la sortida de la funció segons els requisits indicats en l'enunciat.
- 2. Obtenció de la funció booleana simplificada (o adaptada al tipus d'implementació a partir d'aquesta: portes NAND, NOR).
- **3.** Implementació de la funció amb portes lògiques. Aquesta pot ser, o usant portes NAND o NOR, o bé, fent servir qualsevol tipus de porta lògica.



#### **Problemes de disseny**

#### **EXEMPLE 1**

- Volem dissenyar un sistema que compari 2 nombres digitals.
- El sistema tindrà **2 entrades** 'a' i 'b', cadascuna de **2 bits**, de manera que realment tindrem 4 variables d'entrada **a1, a2, b1, i b2**. El sistema tindrà 2 sortides anomenades 's' i 'c'.
- Quan les dues entrades 'a' i 'b' presentin el mateix valor, és a dir que a0 = b0 i a1 = a1 llavors activarem → s = 1 i c = 0.
- En canvi, si són diferents llavors activarem s = 0 i c = 1 quan el valor binari de 'a' sigui més gran que el de 'b', o bé, les sortides valdran s=0 i c=0 quan el valor binari de 'a' sigui menor que el de 'b'.
- a) Obtenir la expressió algebraica per mitjà de MINTERMS
- b) Un cop obtingudes, implementar-les per mitjà de portes lògiques



c

 $\mathbf{a_1}$ 

 $\mathbf{a}_0$ 

 $\mathbf{b_1}$ 

 $\mathbf{b}_0$ 

#### Problemes de disseny

#### **EXEMPLE 1**

PAS 1: Construir la taula de la veritat del sistema.

|       |       |       |        |   | , |
|-------|-------|-------|--------|---|---|
| $a_1$ | $a_0$ | $b_1$ | $b_0$  | S | С |
| 0     | 0     | 0     | 0      | 1 | 0 |
| 0     | 0     | 0     | 1      | 0 | 0 |
| 0     | 0     | 1     | 0      | 0 | 0 |
| 0     | 0     | 1     | 1      | 0 | 0 |
| 0     | 1     | 0     | 0      | 0 | 1 |
| 0     | 1     | 0     | 1      | 1 | 0 |
| 0     | 1     | 1     | 0      | 0 | 0 |
| 0     | 1     | 1     | 1      | 0 | 0 |
| 1     | 0     | 0     | 0      | 0 | 1 |
| 1     | 0     | 0     | 1      | 0 | 1 |
| 1     | 0     | 1     | 0      | 1 | 0 |
| 1     | 0     | 1     | 1      | 0 | 0 |
| 1     | 1     | 0     | 1<br>0 | 0 | 1 |
| 1     | 1     | 0     | 1      | 0 | 1 |
| 1     | 1     | 1     | 0      | 0 | 1 |
| 1     | 1     | 1     | 1      | 1 | 0 |

**PAS 2:** Obtenir la expressió algebraica per mitjà de MINTERMS

$$\begin{split} s &= \overline{a_1} \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= \overline{a_1} \times a_0 \times \overline{b_1} \times b_0 + \\ &= a_1 \times \overline{a_0} \times b_1 \times \overline{b_0} + \\ &= a_1 \times a_0 \times b_1 \times b_0 + \\ c &= \overline{a_1} \times a_0 \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times b_0 + a_1 \times a_0 \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times a_0 \times \overline{b_1} \times b_0 + a_1 \times a_0 \times b_1 \times \overline{b_0} + \\ &= a_1 \times a_0 \times \overline{b_1} \times b_0 + a_1 \times a_0 \times b_1 \times \overline{b_0} + \\ &= a_1 \times a_0 \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + \\ &= a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_1} \times \overline{b_0} + a_1 \times \overline{a_0} \times \overline{b_0} + a_1 \times \overline{b_0}$$

PAS 3: Un cop obtingudes, implementar-les per mitjà de portes lògiques

#### Problemes de disseny

#### **EXEMPLE 1**

PAS 3: Implementació de 's':





# VHDL



#### Problemàtica:

- Necessitat d'un mètode per dissenyar sistemes complexos de forma ràpida.
- Esquemes i equacions booleanes són insuficients per circuits amb milions de portes.

#### Solució:

- Un llenguatge de descripció de hardware (HDL) per expressar el disseny.
- Dispositius lògics programables per una ràpida implementació de hardware.

#### Dos llenguatges HDLs utilitzats en l'actualitat:

- VHDL (Very High Speed Integrated Circuit HDL) (estàndard IEEE des de 1987).
- Verilog HDL (Cadence Design Systems, estàndard IEEE en l'actualitat).



#### Plantilla genèrica VHDL

- Llibreries
- Entitat: defineix els ports de connexió amb l'exterior (entrades i sortides).
- Arquitectura: descriu el funcionament d'una entitat.

```
library <library name>;
use brary name>.<package name>.<object name>;
entity <entity name> is
   port (
        -- Input ports
        <name> :in <type>
        <name> :in <type>
        -- Output ports
        <name> :out <type>
        <name> :out <type>
end <entity name>
architecture <arch name> of <entity name> is
begin
    Concurrent Statement;
    Concurrent Statement;
    Concurrent Statement;
end <arch name>
```



#### Plantilla genèrica VHDL

#### **Entitat**

- Es podria entendre com la caixa negra que conté el sistema que es vol implementar, amb les seves entrades i sortides.
- Parts: entity <entity\_name> is -- Nom de la entitat

```
port(
    -- Input ports
    a, b : in std_logic;

    -- Output ports
    solAnd : out std_logic;
    solOr : out std_logic;
    solNand : out std_logic;
    solNor : out std_logic;
    solXor : out std_logic;
    solXor : out std_logic;
    solNxor : out std_logic;
}
```



```
LIBRARY ieee:
USE ieee.std logic 1164.ALL;
entity myGate is
   port (
        -- Input ports
        a, b : in std logic;
        -- Output ports
        solAnd : out std logic;
        solOr
                : out std logic;
        solNand : out std logic;
        solNor : out std logic;
        solXor : out std logic;
        solNxor : out std logic
    );
end myGate;
architecture solGate of myGate is
   begin
        solAnd <= a and b:
        solNand <= not (a and b);
       solOr <= a or b;
        solNor <= not (a or b);
        solXor <= a xor b;
        solNxor <= not (a xor b);
end solGate;
```

#### → Aquest codi equivaldria amb el següent circuit





#### Programació d'un descodificador

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use ieee.numeric std.all;
entity myDecode is
  port (
      data in : in std logic vector(2 downto 0);
      data out : out std logic vector (7 downto 0)
   );
end myDecode;
architecture solDecode of myDecode is
   begin
      data out <=
         "00000001" when data in="000" else
         "00000010" when data in="001" else
         "00000100" when data in="010" else
         "00001000" when data in="011" else
         "00010000" when data in="100" else
         "00100000" when data in="101" else
         "010000000" when data in="110" else
         "100000000" when data in="111";
end solDecode:
```





# Sessió QUARTUS



#### Tabla de la verdad:

$$f = (a \cdot \overline{b}) + c$$



| <u>a</u> | <u>م</u> | <u>C</u> | <u>f</u> |
|----------|----------|----------|----------|
| 0        | 0        | 0        | 0        |
| 0        | 0        | 1        | 1        |
| 0        | 1        | 0        | 0        |
| 0        | 1        | 1        | 1        |
| 1        | 0        | 0        | 1        |
| 1        | 0        | 1        | 1        |
| 1        | 1        | 0        | 0        |
| 1        | 1        | 1        | 1        |
|          |          |          |          |





# EXERICI QUARTUS: Disseny en esquemàtic + simulació del següent circuit (A Entregar)

Entregar tot el contingut de dins la carpeta del projecte en un zip. Exemple: c:\projectes\EX02\ → ZIP





# Aspecte d'una carpeta de projecte del QUARTUS

| Nombre                | Fecha de modificación | Tipo             | Tamaño |
|-----------------------|-----------------------|------------------|--------|
| db                    | 13/10/2021 12:59      | Carpeta de archi |        |
| incremental_db        | 07/10/2020 9:00       | Carpeta de arc   |        |
| output_files          | 06/10/2021 9:31       | Carpeta de a     | ZIP    |
| simulation            | 07/10/2020 9:12       | Carpeta de       |        |
| c5_pin_model_dump.txt | 07/10/2020 9:01       | Docume e         | 5 KB   |
| PR01.bdf              | 06/10/2021 9:21       | Archiv           | 4 KB   |
| PR01.bsf              | 05/10/2021 21:29      | Arch             | 2 KB   |
| PR01.qpf              | 07/10/2020 8:59       | Ar F             | 2 KB   |
| PR01.qsf              | 06/10/2021 9:45       | QSF              | 3 KB   |
| PR01.qws              | 13/10/2021 12:59      | 6 QWS            | 1 KB   |
| Waveform.vwf          | 07/10/2020 9:12       | ivo VWF          | 5 KB   |
| Waveform1.vwf         | 05/10/2021 21:39      | chivo VWF        | 5 KB   |
| Waveform2.vwf         | 06/10/2021 9:31       | Archivo VWF      | 5 KB   |



Introducció als ordinadors