

FACULDADE DE TECNOLOGIA DE JACAREÍ - Prof. Francisco de Moura

TECNOLOGIA EM DESENVOLVIMENTO DE SOFTWARE MULTIPLATAFORMA

ESTATÍSTICA APLICADA

Rita von Randow

rita.randow@fatec.sp.gov.br
1º semestre 2025

DISTRIBUIÇÃO DE FREQUÊNCIAS CASO DISCRETO

DISTRIBUIÇÃO DE FREQÜÊNCIAS

É uma **série estatística** específica.

Os dados encontram-se dispostos em classes juntamente com as frequências correspondentes. Distribuição de frequências é uma técnica estatística usada para apresentar uma coleção de objetos classificados em subconjuntos de modo a mostrar o número existente em cada um desses subconjuntos.

Quando se fala de distribuição de Frequência, estamos falando de como agrupar e apresentar dados quantitativos.

Frequência é o número de vezes em que uma característica de uma população ou amostra se repete.

Elaboração de tabelas de distribuição de frequências.

Para a elaboração de uma distribuição de frequências, tem-se dois casos a considerar: quando a variável em estudo for discreta e quando a variável for contínua.

TIPOS DE DISTRIBUIÇÃO DE FREQUÊNCIAS

- →→ Variável discreta é aquela que apresenta valores em pontos da reta real. Por exemplo: idade de pessoas. Número de filhos de um casal.
- → → Variável contínua é aquela que pode assumir teoricamente qualquer valor dentro de certo intervalo da reta real. Por exemplo: peso de determinadas peças, pois, teoricamente o peso depende do contexto do aparelho de medição. A temperatura é uma variável contínua, pois pode variar de forma suave dentro de uma escala, como de -10°C a 30°C. Os dados que possuem esta característica são também chamados de dados quantitativos.

Exemplos de VARIÁVEL DISCRETA

- 1. Número de alunos de uma classe.
- Número de acidentes numa rodovia num determinado período.
- 3. Número de livros de uma biblioteca.
- Número de peças defeituosas num lote.

TIPOS DE FREQÜÊNCIAS

FREQÜÊNCIA SIMPLES OU ABSOLUTA: fi

 São os valores que representam o número de dados de cada classe.

FREQUÊNCIA TOTAL: Σfi

É o número total de dados coletados.

FREQÜÊNCIA RELATIVA: fr;

• São valores das razões entre frequência simples da classe e frequência total. $fr_i = rac{f_i}{\Sigma f_i}$

FREQÜÊNCIA ACUMULADA: F;

 É o total das frequências de todos os valores inferiores ao limite superior do intervalo de uma dada classe.

FREQUÊNCIA ACUMULADA RELATIVA: Fr;

 É a frequência acumulada da classe dividida pela frequência total da distribuição.

$$Fr_i = \frac{F_i}{\sum f_i}$$

EXEMPLO DISTRIBUIÇÃO de FREQUÊNCIA com VARIÁVEL DISCRETA

Número de irmãos dos alunos de uma turma do 1º Tecnólogo em Aeronáutica, FATEC-São José dos Campos,

Agosto/2012

i	Nº de irmãos	fi
1	0	1
2	1	5
3	2	12
4	3	15
5	5	1
		Σfi = 34

Fonte: Prof@ Nanci

EXEMPLO DISTRIBUIÇÃO de FREQUÊNCIA com VARIÁVEL DISCRETA

Número de irmãos dos alunos de uma turma do 1º Tecnólogo em Aeronáutica, FATEC-São José dos Campos, Mas o que isso significa?

Agosto/2012

_		200			
i	Nº de irmãos	fi	fri	Fi	Fri
1	0	1	0,0294	1	0,0294
2	1	5	0,1471	6	0,1765
3	2	12	0,3529	18	0,5294
4	3	15	0,4412	33	0,9706
5	5 5	1	0,0294	34	1,0000
		Σfi = 34	$\Sigma fri = 1,0000$		

Fonte: Profa Nanci

EXERCÍCIOS

Construir uma tabela de distribuição de freqüências (freqüência simples, freqüência relativa absoluta, freqüência acumulada e freqüência acumulada relativa) para as medidas, em mm, do diâmetro de uma barra de metal (variável discreta), conforme os seguintes dados brutos (fonte desconhecida):

325	324	328	327	326
328	328	329	329	330
326	327	324	326	327
330	326	328	328	328

Construir uma tabela de distribuição de freqüências (freqüência simples, freqüência relativa absoluta, freqüência acumulada e freqüência acumulada relativa) para as medidas, em mm, do diâmetro de uma barra de metal (variável discreta), conforme os seguintes dados brutos (fonte desconhecida):

325	324	328	327	326
328	328	329	329	330
326	327	324	326	327
330	326	328	328	328

FREQÜÊNCIA SIMPLES OU ABSOLUTA: fi

 São os valores que representam o número de dados de cada classe.

FREQUÊNCIA TOTAL: Σfi

É o número total de dados coletados.

FREQÜÊNCIA RELATIVA: fr;

• São valores das razões entre frequência simples da classe e frequência total. $fr_i = rac{f_i}{\sum f_i}$

FREQÜÊNCIA ACUMULADA: Fi

 É o total das frequências de todos os valores inferiores ao limite superior do intervalo de uma dada classe.

FREQUÊNCIA ACUMULADA RELATIVA: Fr;

 É a frequência acumulada da classe dividida pela frequência total da distribuição.

$$Fr_i = \frac{F_i}{\sum f_i}$$

Exemplos de VARIÁVEL CONTÍNUA

- 1. Pesos dos alunos de uma série.
- Lucro de uma empresa.
- Tempo de duração de um transistor.
- 4. Notas dos alunos.

EXEMPLO DISTRIBUIÇÃO de FREQUÊNCIA com VARIÁVEL CONTÍNUA

Notas dos 40 estudantes aprovados no vestibular, no Curso de Manutenção de Aeronaves, FATEC - São José dos Campos, 1º sem/2012

Notas	frequência
49 53	8
53 57	12
57 61	6
61 65	5
65 69	4
69 73	4
73 78	1
	Σfi = 40

Fonte:

http://www.vestibularfatec.com.br/classificacao/sel_unidade.asp?s=1

Como Construir uma Tabela de Distribuição de Frequências com Variável Contínua?

Dados brutos: São aqueles valores a que se chegou pela simples coleta, sem qualquer preocupação quanto à sua ordenação.

50 estudantes fizeram exame em certa matéria e alcançaram os seguintes pontos:

60	33	85	52	65	77	84	65	57	74
71	81	35	50	35	64	74	47	68	54
80	41	61 55	91	55	73	59	53	45	77
41	78	55	48	69	85	67	39	76	60
94	66	98	66	73	42	65	94	89	88

ROL: é o arranjo dos dados brutos em ordem de grandeza crescente ou decrescente.

33	41	50	55	61	66	71	76	81	89
35	42	52	57	64	66	73	77	84	91
						73			
						74			
						74			

NÚMERO DE CLASSES ou LINHAS (i): O pesquisador pode estabelecer o melhor número de classes de uma distribuição de frequências, levando-se em conta um intervalo de classe que facilite os posteriores cálculos numéricos. Para unificarmos a resolução de problemas, vamos considerar uma regra, a REGRA DE STRUGES.

$$i = 1 + 3, 3 \cdot log n$$

onde

i = número de linhas

n = total de dados ou observações

Do nosso exemplo:

```
n = 50 (número total de estudantes)

i=?

i = 1 + 3, 3 \cdot \log 50 \implies i = 1 + 3, 3 \cdot (1,70)

\implies i = 1 + 5,61 \implies i = 6,61 (sem arredondamento)

\implies i = 7 (arredondando para inteiro)
```

Portanto, i = 7 é o número de classes ou linhas da distribuição de freqüências.

AMPLITUDE TOTAL DO RANGE

É a diferença entre o maior e o menor valor do rol.

AMPLITUDE DE CLASSES (h): É o "tamanho" dos intervalos de classes. Fórmula:

$$h = \frac{AT}{i}$$

onde

Usar o valor do i não arredondado

h = amplitude de classes

 $AT = (X_{max} - X_{min})do \ rol = AMPLITUDE \ TOTAL$

i = número de classes (linhas)

No nosso exemplo:

$$h = \frac{AT}{i} = \frac{98-33}{6,61} = \frac{65}{6,61} = 9,83 \approx 10 \Rightarrow h = 10$$

Para a construção dos intervalos de classe, iniciamos pelo Xmín do rol, ou seja, pelo menor valor do rol, e vamos adicionando o valor de h para cada uma das classes. Assim:

1º classe:
$$33 + 10 = 43 \rightarrow 33 \mid -43$$

$$2^{a}$$
 classe: $43 + 10 = 53 \rightarrow 43 \mid -53$

e assim sucessivamente.

A representação $33 \mid -43 \mid$ compreende todos os valores entre 33 (inclusive) e 43 (exclusive).

LIMITES DE CLASSE - são os números extremos de cada classe. No exemplo anterior:

1ª classe: 33 | $-43 \Rightarrow 33 \text{ \'e}$ o limite inferior e 43 'e o limite superior

Frequência absoluta

Frequência é o número de vezes em que uma característica de uma população ou amostra se repete.

Distribuição de Frequência

É o arranjo dos valores e o número de vezes em que se repetem. A distribuição das frequências é apresentada geralmente em forma de tabela.

Após estas definições, pode-se construir uma tabela que apresenta a frequência de ocorrência de cada grupo de interesse dos dados em análise.

Calulando as frequências do nosso exemplo

50 estudantes fizeram exame em certa matéria e alcançaram os seguintes pontos:

60	33	85	52	65	77	84	65	57	74
71	81	35	50	35	64	74	47	68	54
80	41	35 61 55	91	55	73	59	53	45	77
41	78	55	48	69	85	67	39	76	60
94	66	98	66	73	42	65	94	89	88

O Rol é:

33	41	50	55	61	66	71	76	81	89
35	42	52	57	64	66	73	77	84	91
35	45	53	59	65	67	73	77	85	94
			60						
41	48	55	60	65	69	74	80	88	98

O número de classes é: $i = 1 + 3, 3 \cdot \log 50 \implies i = 1 + 3, 3 \cdot (1,70)$

A amplitude é:
$$h = \frac{AT}{i} = \frac{98-33}{6,61} = \frac{65}{6,61} = 9,83 \cong 10 \Rightarrow h = 10$$

Calculando as frequências do nosso exemplo

(ver o significado de cada uma delas a partir da próxima página)

Notas de exame de 50 alunos em certa disciplina, Escola X, Ano Y

i	notas	f_i	fr _i	F_i	Fr_i
1	33 43	* 55%			
2	43 53				
3	53 63				
4	63 73				
5	73 83				
6	83 93				
7	93 103				

Fonte: Secretaria

Calculando as frequências do nosso exemplo

Notas de exame de 50 alunos em certa disciplina, Escola X, Ano Y

i	notas	$\mathbf{f_i}$	firi	F_{i}	Fr_i
1	33 43	7	0,140	7	0,140
2	43 53	5	0,100	12	0,240
3	53 63	9	0,180	21	0,420
4	63 73	10	0,200	31	0,620
5	73 83	10	0,200	41	0,820
6	83 93	6	0,120	47	0,940
7	93 103	3	0,060	50	1,000
		$\Sigma f_i = 50$	$\Sigma fr_i = 1,000$		2 Sc

Fonte: Secretaria

Interprete!

EXERCÍCIOS

Os salários, em número de salários mínimos, de 34 funcionários são as seguintes:

7,5	5,3	6,3	6,6	7,3	7,8	7,3	6,7	6,4	7,6
6,4	6,2	6,8	5,8	5,8	5,3	5,6	5,8	4,0	6,8
5,8	6,5	5,7	5,2	5,9	7,1	5,8	5,0	5,4	6,4
4.6	7,2	5.8	5.2						

Monte sua tabela de distribuição de frequências.

Para isso, determine:

- a) O rol
- b) A amplitude amostral
- c) O número de classes
- d) Os limites das classes e os pontos médios
- e) Contagem dos empregados em cada classe
- f) Frequência absoluta
- g) Frequência relativa

Resposta

CLASSE DE SALÁRIOS	FREQUÊNCIA ABSOLUTA	FREQUÊNCIA RELATIVA
4.0 até menos de 4.7	2	0.1
4.7 até menos de 5.4	5	0.1
5.4 até menos de 6.1	10	0.3
6.1 até menos de 6.8	8	0.2
6.8 até menos de 7.5	6	0.2
7.5 até menos de 8.2	3	0.1
soma	34.0	1.0

Com essa tabela, tem-se a distribuição de frequências dos salários dos 34 funcionários.

Passemos agora para a apresentação da distribuição de frequências para variável contínua em gráfico.

HISTOGRAMA DE FREQUÊNCIA

"Histograma é um gráfico no qual as classes são marcadas no eixo horizontal, e as frequências, as frequências relativas ou as porcentagens são marcadas no eixo vertical" (Mann, 2006).

POLÍGONOS DE FREQUÊNCIA

O **polígono de frequência** usa segmentos de reta ligados a pontos localizados aos valores dos pontos médios de cada classe. (Triola , 2005)

Referências

MANN, P. S . Introdução à estatística. Rio de Janeiro: LTC, 2006.

SANTIAGO, M. S.; AKAMINE, C. T.; MORSELLI, N. V. Estatítica Aplicada à Gestão. UNIVESP. São Paulo, 2016.