Resolución de sudokus con simulated annealing

Santiago Rebolledo Domingo Ruiz

ÍNDICE

- Presentación del problema
- Simulated Annealing:
 Descripción del método
 Resultados
- Quantum Simulated Annealing

PRESENTACIÓN DEL PROBLEMA

- SUDOKU ES NP COMPLETO
- NOS CENTRAMOS EN EL CASO N=3

Simulated annealing

Función de costo
Estado inicial
Vecindad
Temperatura y Probabilidad de aceptación

Simulated annealing

• Estado incial: Llenar sudoku al azar respetando restricción en cuadrados de 3x3

 Función de costo: Cantidad total de números repetidos en filas y columnas

1	5	2	Ŷ		, ^	
3	6	4				>
8	9	7				
)
						>

Estados adyacentes: Intercambiamos
 2 posiciones entre si en el mismo
 cuadrado de 3x3

 Temperatura: t0 desviación estándar de la función de costo en 200 estados iniciales ti+1=a*ti

Pseudo código

Inicialización

- TØ=tempinicial
- Estado inicial<-Llenar sudoku
- n=#cuadros libres en sudoku

Iteraciones(Durante N pasos)

- Durante n pasos: generar estado adyacente e intercambiar con probabilidad P
- TØ<-a*TØ
- Repetir hasta llegar a costo Ø o hasta alcanzar el límite de pasos N

• Retornar estado de costo mínimo encontrado

Resultados

Resultados

<u>Alpha</u>	<u>Costo final</u>				
0.1	00020001000				
0.3	202000000				
0.5	030200000				
0.7	000200000				
0.9	00000000				

Quantum Simulated annealing

Gracias por su atención!