L1-MASS - FONCTIONS DE 2 VARIABLES

FEUILLE DE TRAVAUX DIRIGÉS N° 2

Limites - Continuités

Enseignant: H. El-Otmany

A.U.: 2013-2014

Déterminer tous les couples $(a,b) \in (\mathbb{R}^{+*})^2$ pour lesquels il existe $M \in \mathbb{R}$ tel que Exercice n°1

$$\forall x, y > 0 : x^a y^b \leqslant M(x+y).$$

Soit A une partie non vide de \mathbb{R}^2 et x un point de \mathbb{R}^2 . On note $d(x,A) = \inf_{x \in A} \|x - a\|$. Montrer que $d: \mathbb{R}^2 \longrightarrow \mathbb{R}$ est lipschitzienne.

Exercice n°3 On considère : $f(x,y) = \frac{x+y}{\sqrt{x}+\sqrt{y}}$

- 1. Déterminer l'ensemble de définition D de f.
- 2. Montrer que $\forall (x,y) \in D, |f(x,y)| \leq \sqrt{x} + \sqrt{y}$.
- 3. En déduire $\lim_{(x,y)\to(0,0)} f(x,y)$.

1) Étudier l'existence d'une limite en (0,0) pour les fonctions f suivantes Exercice n°4

a)
$$f(x,y) = \frac{xy}{x+y}$$

b)
$$f(x,y) = \frac{1+x^2+y^2}{y} \sin y$$

c)
$$f(x,y) = \frac{xy}{x^2+y^2}$$

d)
$$f(x,y) = \frac{xy}{\sqrt{x^2+y^2}}$$

e)
$$f(x,y) = \frac{x^3 + y^3}{\sqrt{x^2 + y^2}}$$

f)
$$f(x,y) = \frac{(x+y)^2}{(x^2+y^2)}$$

$$g) f(x,y) = x^y.$$

a)
$$f(x,y) = \frac{xy}{x+y}$$
 b) $f(x,y) = \frac{1+x^2+y^2}{y} \sin y$ c) $f(x,y) = \frac{xy}{x^2+y^2}$ d) $f(x,y) = \frac{xy}{\sqrt{x^2+y^2}}$ e) $f(x,y) = \frac{x^3+y^3}{\sqrt{x^2+y^2}}$ f) $f(x,y) = \frac{(x+y)^2}{(x^2+y^2)}$ g) $f(x,y) = x^y$. h) $f(x,y) = (x+y)\sin\left(\frac{1}{x^2+y^2}\right)$ i) $f(x,y) = \frac{x^2-y^2}{x^2+y^2}$. j) $f(x,y) = \frac{e^x-e^y}{x-y}$

i)
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
.

$$j) f(x,y) = \frac{e^x - e^y}{x - y}$$

Soit $f, g: \mathbb{R}^n \longrightarrow \mathbb{R}$ deux fonctions continues. Montrer que $\{x \in \mathbb{R}^n : f(x) = g(x)\}$ est un sous ensemble fermé de \mathbb{R}^n .

Exercice n°6 Vérifier que les projections canoniques :

$$P_x: \mathbb{R}^2 \longrightarrow \mathbb{R} \quad ; \qquad P_y: \mathbb{R}^2 \longrightarrow \mathbb{R} \quad (x,y) \longmapsto x \qquad (x,y) \longmapsto y$$

$$P_u: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto x$$

$$(x,y) \longmapsto y$$

sont continues en tout point de \mathbb{R}^2 .

Comment faut-il choisir le nombre réel α pour que la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par Exercice n°7

$$f(x,y) = \begin{cases} \frac{1 - \cos \sqrt{x^2 + y^2}}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ \alpha & \text{si } (x,y) = (0,0) \end{cases}$$

soit continue au point (0,0)?

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par Exercice n°8

$$f(x,y) = \begin{cases} (x+y)^2 \cos \frac{1}{x} \cos \frac{1}{y} & \text{si } xy \neq 0\\ 0 & \text{si } xy = 0 \end{cases}$$

 $\text{Montrer que} \lim_{y \to 0} \ \left(\lim_{x \to 0} f(x,y) \right) \text{ et} \lim_{x \to 0} \ \left(\lim_{y \to 0} f(x,y) \right) \text{ n'existent pas, mais} \lim_{(x,y) \to (0,0)} f(x,y) = 0.$

Exercice n°9 1) Étudier l'existence d'une limite en (0,0) pour les fonctions f suivantes

a)
$$f(x,y) = \frac{xy}{x+y}$$
 b) $f(x,y) = \frac{1+x^2+y^2}{y} \sin y$ c) $f(x,y) = \frac{(x+y)^2}{(x^2+y^2)}$ d) $f(x,y) = x^y$.

- 2) La fonction $f:(x,y;z)\longrightarrow \dfrac{xyz}{x+y+z}$ a-t-elle une limite en (0,0,0). 3) La fonction $f:(x,y;z)\longrightarrow \dfrac{x+y}{x^2-y^2+z^2}$ a-t-elle une limite en (2,-2,0).

Exercice n°10 Pour $(x,y)\in\mathbb{R}^2$ on définit $f_{x,y}:[-1,1]\longrightarrow\mathbb{R}$ par pour tout $t\in[-1,1]$, $f_{x,y}(t)=(-1,1]$ $xt^{2} + yt$ et $F(x, y) = \sup_{t \in [-1, 1]} f_{x,y}(t)$.

- 1. Calculer F(x,y)
- 2. Étudier la continuité de la fonction F sur \mathbb{R}^2 .

Montrer que la fonction $f:(x,y)\in\mathbb{R}^2\longmapsto\sqrt{x^2-y^2}$ n'est pas uniformément Exercice n°11 continue sur \mathbb{R}^2 .

Soit $f, g: \mathbb{R}^n \longrightarrow \mathbb{R}$ deux fonctions continues Montrer que $\{x \in \mathbb{R}^n : f(x) = g(x)\}$ Exercice n°12 est un sous ensemble fermé de \mathbb{R}^n .

Comment faut-il choisir le nombre réel α pour que la fonction $f:\mathbb{R}^2 \to \mathbb{R}$ définie par Exercice n°13

$$f(x,y) = \begin{cases} \frac{1 - \cos\sqrt{x^2 + y^2}}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ \alpha & \text{si } (x,y) = (0,0) \end{cases}$$

soit continue au point (0,0)?

Exercice n°14 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} (x+y)^2 \cos \frac{1}{x} \cos \frac{1}{y} & \text{si } xy \neq 0\\ 0 & \text{si } xy = 0 \end{cases}$$

Montrer que $\lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right)$ et $\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right)$ n'existent pas, mais $\lim_{(x,y)\to(0,0)} f(x,y)=0$.

Exercice n°15

1. Étudier l'existence d'une limite en (0,0) pour les fonctions f suivantes :

a)
$$f(x,y) = \frac{xy}{x+y}$$
 b) $f(x,y) = \frac{1+x^2+y^2}{2y} \sin y$ c) $f(x,y) = \frac{(x+y)^2}{(x^2+y^2)}$

- 2. La fonction $f(x,y,z) = \frac{xyz}{x+y+z}$ a-t-elle une limite en (0,0,0).
- 3. La fonction $f(x,y,z)=\frac{x+y}{x^2-y^2+z^2}$ a-t-elle une limite en (2,-2,0).

Exercice n°16

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{1}{2}x^2 + y^2 - 1 & \text{si } x^2 + y^2 > 1 \\ -\frac{1}{2}x & \text{sinon} \end{cases}$$

Montrer que la fonction f est continue.

Exercice n°17 Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe C^1 et $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la fonction définie par

$$F(x,y) = \begin{cases} \frac{f(x) - f(y)}{x - y} & \text{si } x \neq y \\ f'(x) & \text{si } x = y \end{cases}$$

Montrer que la fonction F est continue.

Exercice n°18 Soit A une partie convexe non vide de \mathbb{R}^2 et $f:A\longrightarrow\mathbb{R}$ une fonction continue. Soit a et b deux points de A et y un réel tels que $f(a)\leqslant y\leqslant f(b)$. Montrer qu'il existe $x\in A$ tel que f(x)=y.

Exercice n°19 6 Montrer que

$$\lim_{y \to +\infty} \int_0^1 \left(2xye^{-x^2y}\right) dx \neq \int_0^1 \lim_{y \to +\infty} \left(2xye^{-x^2y}\right) dx.$$

Exercice n°20 Soit $g:]0, +\infty[\longrightarrow \mathbb{R}$, la fonction définie par $g(y) = \int_0^{\pi/2} \log(y^2 \cos^2 x + \sin^2 x) dx$

- 1. Calculer g'(y)
- 2. En déduire g(y) et $\lim_{y\to 0^+} g(y)$
- 3. Montrer que $\int_{0^+}^{\pi/2} \log \left(\sin^2 x\right) dx$ converge et que $0 \leqslant g(y) \int_{0^+}^{\pi/2} \log \left(\sin^2 x\right) dx \leqslant y + y(2 + \log^2)$
- 4. En déduire que : $\int_{0^+}^{\pi/2} \log \sin x \ dx = -\pi \log \sqrt{2}$, $\int_{0}^{\pi/2} \log \cos x \ dx = -\pi \log \sqrt{2}$ et $\int_{0}^{\pi/2} \log (\tan x) \ dx = 0$.

Exercice n°21 On considère la fonction f définie sur $\mathbb{R}^2 \setminus \Delta$ dans \mathbb{R} par

$$f(x,y) = \frac{\cos x - \cos y}{x - y}$$

avec $\Delta=\{(x,y)\in\mathbb{R}^2\quad/\ x=y\}\ :$ la diagonale de $\mathbb{R}^2.$ Prolonger f par continuité sur la diagonale $\Delta.$

Exercice n°22 Soit la fonction définie sur \mathbb{R}^2 par :

$$f(x,y) = \begin{cases} (x+y)^2 \cos \frac{1}{x} \cos \frac{1}{y} & \text{si } xy \neq 0\\ 0 & \text{si } sy = 0 \end{cases}$$

 $\text{Montrer que} \lim_{y \to 0} \left(\lim_{x \to 0} f(x,y) \right) \text{ et} \lim_{x \to 0} \left(\lim_{y \to 0} f(x,y) \right) \text{ n'existent pas mais } \lim_{(x,y) \longmapsto (0,0)} \ f(x,y) = 0.$

Exercice n°23

- 1. Montrer que $e^{x-y}=1+x+y$ définit implicitement une fonction $\Phi: x \longmapsto y=\Phi(x)$ au voisinage de (0,0).
- 2. Calculer $\lim_{x\to 0} \frac{\Phi(x)}{x^2}$.