Convolutional Neural Network - 1

CNN or ConvNet

Computer Vision Challenges

Image Classification

Is it Cat? [0/1]

Object Detection

Neural Style Transfer Content Image + Style Image = Generated Imgae

Arun Kumar Anala alaarun.k@gmail.cor

Image - RGB vs B&W

3	4	6	2	1	7
3	5	4	9	8	8
1	7	5	4	6	6
7	2	6	5	4	5
6	1	7	7	2	4
5	3	3	1	4	3

6 x 6 x 1

		3	4	6	5 2	2 1	7
	3	4	6	2	1	7	8
3	4	6	2	1	7	8	6
3	5	4	9	8	8	6	5
1	7	5	4	6	6	5	4
7	2	6	5	4	5	4	3
6	1	7	7	2	4	3	
5	3	3	1	4	3		

6 x 6 x 3

Fully Connected Network on Images

Since this layer has too much capacity, this may lead to overfitting.

Image Classification

Is it Cat? [0/1]

64 X 64 X 3 = 12288

Fully Connected Network on Images

Image Classification

Is it Cat? [0/1]

1000 X 1000 X 3 = 3 million

CNN - High Level

Detect Vertical Edge

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

$$[10 \times 1 + 10 \times 0 + 10 \times (-1)] + [10 \times 1 + 10 \times 0 + 10 \times (-1)] + [10 \times 1 + 10 \times 0 + 10 \times (-1)] = 0$$

Detect Vertical Edge

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

$$[10 \times 1 + 10 \times 0 + 0 \times (-1)] + [10 \times 1 + 10 \times 0 + 0 \times (-1)] + [10 \times 1 + 10 \times 0 + 0 \times (-1)] = 30$$

Detect Vertical Edge

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Detect Horizontal Edge

0	0	0	0
30	30	30	30
30	30	30	30
0	0	0	0

Filter - I don't know, but let CNN learn it

Detect Pattern in Images

112	76	144	55	43	23
164	43	43	34	25	13
12	13	30	67	44	14
6	45	24	77	87	89
64	64	60	67	65	67
34	35	54	60	44	56

Valid Convolution

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

f x f 3 x 3

*

(n - f + 1) x (n - f + 1) 4 x 4

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Output size is less than the input size

Same Convolution - Padding

a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅	a ₁₆
a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	a ₂₆
a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅	a ₃₆
a ₄₁	a ₄₂	a ₄₃	a ₄₄	a ₄₅	a ₄₆
a ₅₁	a ₅₂	a ₅₃	a ₅₄	a ₅₅	a ₅₆
a ₆₁	a ₆₂	a ₆₃	a ₆₄	a ₆₅	a ₆₆

Pad so that the output size is same as the input size

Strided Convolution

$$\left[\frac{(n+2p-f)}{s} + 1\right] \times \left[\frac{(n+2p-f)}{s} + 1\right]$$

$$3 \times 3$$

a ₁₁	a ₁₂	a ₁₃	
a ₂₁	a ₂₂	a ₂₃	
a ₃₁	a ₃₂	a ₃₃	

Filter for RGB

6 x 6 x 3

Filter for RGB

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

3

			3	5	4	9	O	O
			1	7	5	4	6	6
3	4	6	2	1	7	5	4	5
3	5	4	9	8	8	7	2	4
1	7	5	4	6	6	1	4	3

3	4	6	2	1	7
3	5	4	9	8	8
1	7	5	4	6	6
7	2	6	5	4	5
6	1	7	7	2	4
5	3	3	1	4	3

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

			3	4	6	2	1	7
			3	5	4	9	8	8
			1	7	5	4	6	6
3	4	6	2	1	7	5	4	5
3	5	4	9	8	8	7	2	4
1	7	5	4	6	6	1	4	3

3	4	6	2	1	7	
3	5	4	9	8	8	
1	7	5	4	6	6	
7	2	6	5	4	5	
6	1	7	7	2	4	
5	3	3	1	4	3	

Arun Kumar Anala alaarun.k@gmail.com

Multiple Filters for RGB

6 x 6 x 3

*

			n		30		30	_0
		0	3	0	3	0	0	0
	0	30)	30)	0	0	0
0	30		30		0	0	0	
0	30	3	30		0	0	0	0
0	30	3	30		0	0		
0	30		30		0			

4 x 4 x 4

Question

In a layer, if you have 20 filters of dimension 3x3x3 each, then how many parameter does that layer have?

```
For 1 filter

3 x 3 x 3 = 27 weights

1 = bias

So 28 parameter for 1 layer
```

```
For 20 filters in a layer 28 x 20 = 560 parameters
```

https://www.linkedin.com/in/arun-kumar-anala-35760523

Example of Convolutional layer

6 x 6 x 3

108

3 x 3 x 4 https://w

https://www.linkedin.com/in/arun-kumar-anala-35760523/

Types of layer in Convolutional Network

Convolution

6 x 6 x 3

Pool

Fully Connected

Max Pooling Layer

3	4	6	2	1	7
3	5	4	9	8	8
1	7	5	4	6	6
7	2	6	5	4	5
6	1	7	7	2	4
5	3	3	1	4	3

2 x 2 x 1

Max Pooling Layer

2 x 2 x 3

Average Pooling Layer

3	4	6	2	1	7
3	5	4	9	8	8
1	7	5	4	6	6
7	2	6	5	4	5
6	1	7	7	2	4
5	3	3	1	4	3

2 x 2 x 1

POOL 2

5 x 5 x 16

400

 $n^{L} = 10/2 = 5$

maxpool

f=2

CNN Example Image Classification using CIFAR10 dataset

10 x 10 x 16

1600

Exercise Image Classification

Load Dataset

Analyze Dataset

Prepare Dataset

Define Model

Train & Evaluate Model

Summarize Results

Predict New Image

Model Summary

Layer (type)	Filter/Kernel for CNN Neurons for FCN	Output Shape	Params #	Comments
Input		(32, 32, 3)		
CONV 1	5 x 5 x 3 x 6	(28, 28, 6)	456	(5 x 5 x 3 + 1) x 6
POOL 1	2 x 2	(14, 14, 6)	0	
CONV 2	5 x 5 x 6 x 16	(10, 10, 16)	2416	(5 x 5 x 6 + 1) x 16
POOL 2	2 x 2	(5, 5, 16)	0	
FC 1	5 x 5 x 16 = 400	120	48120	(400 + 1) x 120
FC 2	120	84	10164	(120 + 1) x 84
Softmax Output	84	10	850	(84 + 1) x 10
Total			62,006	

CNN vs Fully Connected Network on Images

Image Classification

Is it Cat? [0/1]

64 X 64 X 3 = 12288

CNN Back Prop

CNN Back Prop

$$y = f\left(x\right)$$

$$\frac{\partial y}{\partial x} = f'\left(x\right)$$

$$O_1 = I_1 W_1 + I_2 W_2 + I_3 W_3$$

$$O_2 = I_2 W_1 + I_3 W_2 + I_4 W_3$$

∂0₁/∂I₁	∂0 ₁ / ∂1 ₂	∂0 ₁ /∂1 ₃	∂O₁ / ∂I₄
$\partial O_2 / \partial I_1$	$\partial O_2 / \partial I_2$	$\partial O_2 / \partial I_3$	∂0 ₂ /∂1 ₄

$$y = f\left(x\right)$$

$$\frac{\partial y}{\partial x} = f'\left(x\right)$$

$$O_1 = I_1 W_1 + I_2 W_2 + I_3 W_3$$

$$O_2 = I_2 W_1 + I_3 W_2 + I_4 W_3$$

∂0 ₁ / ∂1 ₁	∂0 ₁ / ∂1 ₂	∂0 ₁ / ∂I ₃	∂0 ₁ / ∂1 ₄
20 ₂ / 21 ₁	$\partial O_2 / \partial I_2$	$\partial O_2 / \partial I_3$	20 ₂ / 21 ₄

W ₁		

$$y = f\left(x\right)$$

$$\frac{\partial y}{\partial x} = f'\left(x\right)$$

$$O_{1} = I_{1}W_{1} + I_{2}W_{2} + I_{3}W_{3}$$

$$O_{2} = I_{2}W_{1} + I_{3}W_{2} + I_{4}W_{3}$$

∂0 ₁ / ∂1 ₁	∂0 ₁ / ∂1 ₂	∂0 ₁ / ∂I ₃	∂0 ₁ / ∂1 ₄
∂0 ₂ /∂1 ₁	$\partial O_2 / \partial I_2$	$\partial O_2 / \partial I_3$	20 ₂ / 21 ₄

W ₁	W ₂	

$$y = f\left[x\right]$$

$$\frac{\partial y}{\partial x} = f'\left[x\right]$$

$$O_{1} = I_{1} W_{1} + I_{2} W_{2} + I_{3} W_{3}$$

$$O_{2} = I_{2} W_{1} + I_{3} W_{2} + I_{4} W_{3}$$

W ₁	W ₂	W ₃	0
0	W ₁	W ₂	W_3

CNN Back Prop - Just Kernal & Output

$$y = f\left(x\right)$$

$$\frac{\partial y}{\partial x} = f'\left(x\right)$$

=

$$O_{1} = I_{1}W_{1} + I_{2}W_{2} + I_{3}W_{3}$$

$$O_{2} = I_{2}W_{1} + I_{3}W_{2} + I_{4}W_{3}$$

$$\begin{array}{c|c}
\partial & O_1 \\
\hline
O_2 \\
\hline
\end{array}$$

$$\partial & W_1 \\
\hline
W_2 \\$$

 W_3

$\partial O_1 / \partial W_1$	∂0 ₁ / ∂W ₂	$\partial O_1 / \partial W_3$
$\partial O_2 / \partial W_1$	$\partial O_2 / \partial W_2$	$\partial O_2 / \partial W_3$

I ₁	l ₂	l ₃
l ₂	l ₃	I ₄

$$y = f \left[x \right]$$

$$\frac{\partial y}{\partial x} = f \left[x \right]$$

CNN - Translation Invariance

