

planetmath.org

Math for the people, by the people.

area formula

Canonical name AreaFormula

Date of creation 2013-03-22 14:27:36 Last modified on 2013-03-22 14:27:36

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 12

Author paolini (1187) Entry type Theorem Classification msc 28A78

 $Related\ topic \qquad Change Of Variables In Integral On Mathbb Rn$

Let \mathcal{H}^m denote the Hausdorff measure. Let $m \leq n$ and consider a Lipschitz function $f \colon \mathbb{R}^m \to \mathbb{R}^n$. If $A \subset \mathbb{R}^m$ is a Lebesgue measurable set, the equality

$$\int_A J_f(x) dx = \int_{\mathbb{R}^n} \mathcal{H}^0(f^{-1}(\{y\}) \cap A) d\mathcal{H}^m y$$

holds, where

$$J_f(x) = \sqrt{\det(Df(x) \cdot Df(x)^*)}$$

is the Jacobian determinant of f in the point x and represent the m-volume of the image of the unit cube under the linear map Df(x).

If $u \in L^1(\mathbb{R}^m)$ then one has

$$\int_{\mathbb{R}^m} u(x)J_f(x) dx = \int_{\mathbb{R}^n} \sum_{x \in f^{-1}(\{y\})} u(x) d\mathcal{H}^m y.$$

Notice that this formula is a generalization of the change of variables in integrals on \mathbb{R}^n .