CS 480/680 Winter 2024:

Lecture Notes

1 Classic Machine Learning					2
1.1 Introduction					
Lecture notes taken, unless otherwise specified, offering of CS $480/680$, taught by Hongyang Zhang	· ·	ring section 0	02 of the	Winter	2024
Lectures	Lecture 2	Jan 11			2
Lecture 1 Jan 9					

Chapter 1

Classic Machine Learning

1.1 Introduction

There have been three historical AI booms:

Lecture 1
Jan 9

- 1. 1950s–1970s: search-based algorithms (e.g., chess), failed when they realized AI is actually a hard problem
- 2. 1980s-1990s: expert systems
- 3. 2012 present: deep learning

Machine learning is the subset of AI where a program can learn from experience.

Major learning paradigms of machine learning:

- Supervised learning: teacher/human labels answers (e.g., classification, ranking, etc.)
- Unsupervised learning: without labels (e.g., clustering, representation, generation, etc.)
- Reinforcement learning: rewards given for actions (e.g., gaming, pricing, etc.)
- Others: semi-supervised, active learning, etc.

Active focuses in machine learning research:

- Representation: improving the encoding of data into a space
- Generalization: improving the use of the model on new distributions
- Interpretation: understanding how deep learning actually works
- Complexity: improving time/space requirements
- Efficiency: reducing the amount of samples required
- Privacy: respecting legal/ethical concerns of data sourcing
- Robustness: gracefully failing under errors or malicious attack
- Applications

A machine learning algorithm has three phases: training, prediction, and evaluation.

Lecture 2 Jan 11

Definition 1.1.1 (dataset)

A <u>dataset</u> consists of a list of <u>features</u> $\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{x}'_1, \dots, \mathbf{x}'_m \in \mathbb{R}^d$ which are *d*-dimensional vectors and a label vector $\mathbf{y}^{\top} \in \mathbb{R}^n$.

Each <u>training sample</u> \mathbf{x}_i is associated with a <u>label</u> y_i . A <u>test sample</u> \mathbf{x}_i' may or may not be labelled.

Example 1.1.2 (email filtering). Suppose we have a list D of d English words.

Define the training set $X = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$ and $\mathbf{y} = [y_1, \dots, y_n] \in \{\pm 1\}^n$ such that $\mathbf{x}_{ij} = 1$ if the word $j \in D$ appears in email i (this is the <u>bag-of-words representation</u>):

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{x}'
and	1	0	0	1	1	1	1
viagra	1	0	1	0	0	0	1
the	0	1	1	0	1	1	0
of	1	1	0	1	0	1	0
nigeria	1	0	0	0	1	0	0
\overline{y}	+	_	+	_	+	_	?

Then, given a new email \mathbf{x}_1' , we must determine if it is spam or not.

Example 1.1.3 (OR dataset). We want to train the OR function:

This can be represented graphically by finding a line dividing the points:

1.2 Perceptron

Definition 1.2.1

The <u>inner product</u> of vectors $\langle \mathbf{a}, \mathbf{b} \rangle$ is the sum of the element-wise product $\sum_{j} a_{j} b_{j}$.

A <u>linear function</u> is a function $f : \mathbb{R}^d \to \mathbb{R}^d$ such that for all $\alpha, \beta \in \mathbb{R}$, $\mathbf{x}, \mathbf{z} \in \mathbb{R}^d$, $f(\alpha \mathbf{x} + \beta \mathbf{z}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{z})$.

Theorem 1.2.2 (linear duality)

A function is linear if and only if there exists $\mathbf{w} \in \mathbb{R}^d$ such that $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{w} \rangle$.

Proof. (\Rightarrow) Suppose f is linear. Let $\mathbf{w} := [f(\mathbf{e}_1), \dots, f(\mathbf{e}_d)]$ where \mathbf{e}_i are coordinate vectors. Then:

$$\begin{split} f(\mathbf{x}) &= f(x_1\mathbf{e}_1 + \dots + x_d\mathbf{e}_d) \\ &= x_1f(\mathbf{e}_1) + \dots + x_df(\mathbf{e}_d) \\ &= \langle \mathbf{x}, \mathbf{w} \rangle \end{split}$$

by linearity of f.

 (\Leftarrow) Suppose there exists w such that $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{w} \rangle$. Then:

$$f(\alpha \mathbf{x} + \beta \mathbf{z}) = \langle \alpha \mathbf{x} + \beta \mathbf{z}, \mathbf{w}, \alpha \mathbf{x} + \beta \mathbf{z}, \mathbf{w} \rangle$$
$$= \alpha \langle \mathbf{x}, \mathbf{w} \rangle + \beta \langle \mathbf{x}, \mathbf{w} \rangle$$
$$= \alpha f(\mathbf{x}) + \beta f(\mathbf{z})$$

since inner products are linear in the first argument.

Definition 1.2.3 (affine function)

A function $f(\mathbf{x})$ where there exist $\mathbf{w} \in \mathbb{R}^d$ and $\underline{\text{bias}}\ b \in \mathbb{R}$ such that $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{w} \rangle + b$.

Definition 1.2.4 (sign function)

$$\operatorname{sgn}(t) = \begin{cases} +1 & t > 0 \\ -1 & t \le 0 \end{cases}$$

It does not matter what sgn(0) is defined as.

Definition 1.2.5 (linear classifier)

$$\hat{y} = \operatorname{sgn}(\langle \mathbf{x}, \mathbf{w} \rangle + b)$$

The parameters \mathbf{w} and b will uniquely determine the linear classifier.

Example 1.2.6 (geometric interpretation). We can interpret $\hat{y} > 0$ as a halfspace (see CO 250). Then, we can draw something like:

Proposition 1.2.7

The vector \mathbf{w} is orthogonal to the decision boundary H.

Proof. Let $\mathbf{x}, \mathbf{x}' \in H$ be vectors on the boundary $H = \{x : \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\}$. Then, we must show $\mathbf{x}' - \mathbf{x} = \overrightarrow{\mathbf{x}}\overrightarrow{\mathbf{x}'} \perp \mathbf{w}$.

We can calculate
$$\langle \mathbf{w}, \mathbf{x}' - \mathbf{x} \rangle = \langle \mathbf{w}, \mathbf{x} \rangle - \langle \mathbf{w}, \mathbf{x}' \rangle = -b - (-b) = 0.$$

Originally, the inventor of the perceptron thought it could do anything. He was (obviously) wrong.

Algorithm 1 Training Perceptron

Require: Dataset $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \{\pm 1\}$, initialization $\mathbf{w}_0 \in \mathbb{R}^d$, $b_0 \in \mathbb{R}$.

Ensure: w and b for linear classifier $sgn(\langle \mathbf{x}, \mathbf{w} \rangle + b)$

$$\begin{aligned} & \textbf{for} \ t = 1, 2, \dots \ \textbf{do} \\ & \text{receive index} \ I_t \in \{1, \dots, n\} \\ & \textbf{if} \ y_{I_t} \big(\big\langle \mathbf{x}_{I_t}, \mathbf{w} \big\rangle + b \big) \leq 0 \ \textbf{then} \\ & \big| \ \mathbf{w} \leftarrow \mathbf{w} + y_{I_t} \mathbf{x}_{I_t} \\ & b \leftarrow b + y_{I_t} \end{aligned}$$

In a perceptron, we train by adjusting \mathbf{w} and b whenever a training data feature is classified "wrong" (i.e., $\mathsf{score}_{\mathbf{w},b}(\mathbf{x}) := y\hat{y} < 0 \iff \mathsf{the signs disagree}$).

The perceptron solves the feasibility problem

Find
$$\mathbf{w} \in \mathbb{R}^d$$
, $b \in \mathbb{R}$ such that $\forall i, y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) > 0$

by iterating one-by-one. It will converge "faster" (with fewer t-iterations) if the data is "easy".

Consider what happens when there is a "wrong" classification. Let $w_{k+1} = w_k + yx$ and $b_{k+1} = b_k + y$.

Then, the updated score is:

$$\begin{split} \mathsf{score}_{\mathbf{w}_{k+1},b_{k+1}}(\mathbf{x}) &= y \cdot (\langle \mathbf{x}, \mathbf{w}_{k+1} \rangle + b_{k+1}) \\ &= y \cdot (\langle \mathbf{x}, \mathbf{w}_k + y \mathbf{x} \rangle + b_k + y) \\ &= y \cdot (\langle \mathbf{x}, \mathbf{w}_k \rangle + b_k) + \langle \mathbf{x}, \mathbf{x} \rangle + 1 \\ &= y \cdot (\langle \mathbf{x}, \mathbf{w}_k \rangle + b_k) + \underbrace{\|\mathbf{x}\|_2^2 + 1}_{\text{always positive}} \end{split}$$

which is always an increase over the previous "wrong" score.