

Physique

Baccalauréat Scientifique Session de 2013 Série D-TI

EXERCICE I : Mouvements dans les champs de forces et leurs applications 7 points 1. Champ de pesanteur : 3 points

Une bille supposée ponctuelle de masse m = 50# est suspendue en un point O par un fil inextensible de masse négligeable et de longueur L = 50cm. Le fil étant tendu, on écarte la bille de la verticale d'un angle $\theta_0 = 60^\circ$ puis on l'abandonne avec une vitesse initiale de module $v_0 = 10m/s$. Prendre $g = 9.8m/s^2$.

1.1.A un instant quelconque, le fil fait un angle θ avec la verticale. La vitesse du pendule prend alors une valeur v. En utilisant le théorème de l'énergie cinétique, établir l'expression de la vitesse v en fonction de v_0 , L, G, θ_0 et g puis calculer sa valeur pour $G = 15^\circ$.

1.2.

- a) Faire un schéma sur lequel on présentera les forces s'exerçant sur la bille lors du mouvement.
- b) En travaillant dans le repère de Frenet, exprimer l'intensité T de la tension du fil en fonction de v, L, θ , θ_0 , m et g puis calculer sa valeur pour $\theta = 15^{\circ}$.

2. Champ électrostatique :

4 points

Un électron de masse m = 9.10^{-31} kg et de charge $q = -1,6.10^{-19}$ C et un positron de même masse et de charge opposée, pénètrent avec la même vitesse initiale horizontale de module $v_\theta = 10^7 m/s$ dans un champ électrostatique uniforme E établi entre les armatures horizontales d'un condensateur plan. Les vecteurs vitesse initiale et champ électrostatique sont orthogonaux.

Dans un repère orthonormé dont l'origine est située à l'entrée du condensateur, l'équation cartésienne de la trajectoire de l'électron dans le champ est de la forme : $y = \frac{-eE}{2mV0^2}x^2$

- a) Faire un schéma montrant le condensateur, la vitesse initiale et les axes du repère choisi.
- b) Donner sans calcul, l'équation cartésienne de la trajectoire du positron.
- c) On admet que les particules vont sortir du champ. Dans un même schéma, donner l'allure des deux trajectoires et placer les deux points de sortie S_1 et S_2 à l'autre extrémité du condensateur.
- d) Calculer la distance $d = S_1S_2$

On donne : U (ddp entre les armatures du condensateur) = 10^2 V ; L (longueur des armatures) = 10cm ; V_0 (vitesse initiale des particules) = 10^7 m/s ; d (distance entre les armatures) = 4cm.

EXERCICE II : les systèmes oscillants

4 points

Un pendule simple, écarté de sa position d'équilibre d'un angle $\theta_m = 9^\circ$ puis abandonné à lui-même sans vitesse, se met à osciller. Prendre $g = 9.8 m/s^2$.

- 1. En appliquant la deuxième loi de Newton, établir l'équation différentielle du mouvement du pendule.
- 2. La fréquence propre du mouvement est $f_0 = 0.66Hz$; calculer la longueur L de ce pendule.
- 3. Déterminer l'équation horaire $\theta = g(t)$ du mouvement en tenant compte des conditions initiales.
- 4. Tracer la courbe $\theta = g(t)$ sur un intervalle de temps de longueur égale à deux périodes. On y précisera toutes les valeurs numériques utilisées.

CollectionBrain

EXERCICE III : Radio activité et propagation des ondes

1. Radioactivité:

5 points2,5 points

Les questions 1.1) et 1.2) sont indépendantes

- 1.1. La famille radioactive de l'uranium débute à l'uranium $_{92}^{238}$ U et se termine au plomb stable $_{82}^{206}Pb$. On note x et y les nombres respectifs des désintégrations α et β qui se produisent au cours de ces transformations.
 - a) Ecrire l'équation générale de la réaction globale.
 - b) En appliquant les lois de conservation, calculer x et y.
- 1.2.Le nucléide césium $^{139}_{55}$ Cs est un émetteur β de demi-vie T=7 minutes. L'activité d'un échantillon de césium à un instant donné est $A=2.10^6$ Bq. Déterminer le temps t qu'il faudra pour qu'elle soit divisée par 1500.

2. Propagation des ondes mécaniques : 2,5 points

Les deux pointes d'une fourche fixée à un vibreur, créent en effleurant la surface d'une eau contenue dans une cuve à ondes, des ondes circulaires. Les pointes vibrent en phase à la même fréquence f = 28Hz. La longueur d'onde des perturbations produites est A = 11mm.

- 2.1.Calculer la célérité *V* des ondes.
- 2.2.La surface libre de l'eau est éclairée à l'aide d'un stroboscope dont la fréquence des éclairs est $f_e = 28Hz$. Dessiner l'aspect de la surface libre de l'eau comprise entre les deux extrémités de la fourche.
- 2.3.On augmente la fréquence du vibreur et on admet que la célérité des ondes se conserve. Donner la conséquence de cette action sur le système de lignes d'interférences.

EXERCICE IV: Exploitation d'une fiche de TP

Une fiche de T.P., exécutée au laboratoire de physique par un élève présente ci-dessous le travail effectué que vous exploiterez

Classe : TD		Titre du TP : Machine d'Atwood					
1.	Objectif: exploiter le mouvement de ce dispositif pour déterminer expérimentalement						
	l'accélération de la pesanteur du lieu de l'expérience.						
2.	Matériel	3. Schematisation					
•	Un ensemble de deux masses $M = 0.5kg$	(P) (R)					
	et $M' = M + m$ où $m = 0.01 kg$ est la masse	'\					

- de la surcharge,
 Un fil inextensible de masse négligeable, passant dans la gorge d'une poulie aussi de
- passant dans la gorge d'une poulie aussi de masse négligeable et supportant à chaque extrémité l'une des masses ci-dessus,
- Un chronomètre (*C*),
- Une règle graduée (*R*).

(P) (R) (C) (C) (M) (M)

4. Protocole expérimental :

En abandonnant le système à lui-même, les masses M et M' se mettent en mouvement. A des instants choisis, on lit sur la règle la distance x parcourue par l'une des masses. On obtient ainsi le tableau de mesures ci-dessous :

5. Tableau de mesures							
t (en s)	0	2	4	6	6,5		
x (en m)							

6. Exploitation:

6.1. Tracer la courbe $x = (t^2)$ sur le document.

Echelles: abscisse: 1cm pour 4s²; ordonnée: 1cm pour 0,1m

- 6.2. Donner la forme de la courbe puis écrire une relation simple liant x et t^2 .
- 6.3.Justifier que l'accélération de la masse M est égale à celle de M'.
- 6.4. En étudiant le mouvement de la machine, montrer que l'accélération a commune de M et de M' est de la forme : a $=\frac{m}{2M+m}$ g. En déduire la loi horaire du mouvement de (M).
- 6.5.A partir de la courbe, déterminer la valeur a_{exp} de l'accélération expérimentale du dispositif.
- 6.6.En déduire la valeur expérimentale g_{exp} de l'accélération de la pesanteur du lieu de l'expérience.

CollectionBrain