Symbolic Dynamic Programming for First-order POMDPs

AAAI 2010

Scott Sanner

Fraunhofer Institut Intellige

Intelligente Analyse- und Informationssysteme

Relational Observation Spaces: The POMDP Killer

- World is full of observations:
 - next-to (Alice, Bob)
 - in-front (Bob, door)
 - on (coffee, table)

 $|\Delta| = n$, k binary predicates $\rightarrow |O| = 2^{kn^2}$

DP backup in POMDP solution ∝ |S||Γ||O|

- Relevant observations depend on task
 - Alice wants to exit... ∃x in-front (x, door)
 - Alice wants coffee... ∃y on (coffee, y)

Can we derive relevant observations?

Most POMDPs have

carefully defined

observation spaces

Differences from Wang & Khardon (AAAI-10)

- FO-POMDP foundations same as Wang's thesis (2007) and Wang & Khardon (AAAI-10)
 - Just case notation vs. their FODDs
- Our key contribution is observation model!
 - For fixed action instance, we allow ∞ observations
 - Contribution: how to derive FOL formulae defining relevant observations?

Outline

- POMDP Background
 - Standard definition
 - Running example: Tiger-2010
- Relational observations & FO-POMDPs
 - Model
 - Symbolic dynamic programming solution
 - Extension of Boutilier, Reiter, Price (IJCAI-01)
 - Proof-of-concept evaluation
 - Lifted policies?
- Where to from here?

POMDPs

- POMDP is a tuple (S, A, O, T, Z, R)
- S: set of states
- A: set of actions
- O: set of observations
- T(s',a,s) := P(s'|s, a): transition function
- Z(o,a,s') := P(o|a,s'): observation function
- **R(s,a):** reward function

Solving POMDPs

 Maximize expected sum of discounted rewards Huge branching factor when o_i are **ground** relational: 2^{kn}

1971):

Known solution (Sondik, 1971):

- Policy π = conditional plan
- α -vector: linear value function of belief state b for π
- Value: max over $\Gamma = \{\alpha\text{-vectors }\}$
- In b': use best policy from Γ

FO-POMDP: Tiger-Door 2010

Tiger-Door 2010 as an FO-POMDP

- States
 - $\forall i, wife(d_i) \in \{t,f\}$
- Observations
 - $\forall i, noise(d_i) \in \{t,f\}$
- Actions
 - listen
 - open(d_i)

- Transition function
 - $\forall i$, wife(d_i): no change
- Reward
 - listen: -1
 - open(d_i):
 - wife(d_i): 10
 - ¬wife(d_i): -100
- Observation function...

Observations for Tiger-Door 2010

- open(d_i):
 - Generates: null observation
- listen:
 - Generates: $\forall i$, noise(d_i) ∈ {t,f}
 - Fails with probability .3 (no noise)

Handle observations as implicit observation actions

- Prob. over deterministic observation action outcomes
 - P(listenSucco | listen) = .7
 - P(listenFail | listen) = .3
- Define SitCalc effects (S → O)
 - wife(d_i) ∧ a=listenSucc_O ⊃ noise(d_i)
 - ... $\supset \neg noise(d_i)$

Effect axioms have to be progressable

- Reiter, 2001
- Vassos et al, 2008

Where are we?

FO-POMDP model is "defined"

 Now on to the Symbolic Dynamic Programming (SDP) solution...

Questions:

- (1) What is a policy tree for an FO-POMDP?
- (2) How to compute first-order α -vector?

FO-Policy Trees and α-Case

- Each policy corresponds to an α -Case
 - Compact relational α -vector

Q1: Deriving the Observations at Horizon h

Relevant States Sh:

take cross-product of all $\Gamma^{h} = \{\alpha\text{-Case}\}$

Relevant Observations O^h

 $P(o_2|s) \otimes egin{array}{c|c} Prog(\phi_1,o_2) & \\ Prog(\phi_2,o_2) & \\ Prog(\phi_3,o_2) & \\ \hline \end{array}$

$$Prog(\phi_1, o_1) \land Prog(\phi_1, o_2) \land \dots : 0.1$$
 \cdots
 $Prog(\phi_3, o_1) \land Prog(\phi_3, o_2) \land \dots : 0.2$

$$P^h(o|s) \leftarrow O^h(o|s)$$

Q2: Symbolic Dynamic Programming (SDP) for FO-POMDPs

- Painful notational details in paper
- Similar to SDP for FO-MDPs
 - But cannot max over action params (Wang & Khardon, AAAI-10)

Boutilier, Reiter,

Price (IJCAI-01)

- Can do later when dominance pruning
- When apply SDP at horizon h
 - Derive $P^h(o|s) \leftarrow$ case statement over s for each $o \in O^h$
 - ⊕ Regr(Ph(o|s), A) ⊗ [Standard FO-DTR Backup for A]
- Same as Wang (2007), Wang & Khardon (AAAI-10)
 - Except we must derive Ph(o|s) (in their case, it's fixed)

Empirical Comparison

• # of α -vectors vs. α -Cases for FO-Tiger

Future Work I

- Tractability
 - Need more structure than case statements
 - E.g., FODDs (Wang, Joshi, & Khardon, 2008)
 FOADDs (Sanner & Boutilier, 2009)
- Action abstraction
 - Can do during α -Case pruning
 - Once you've heard a noise at door(d_i), open d_i
 - dominates all other actions
 - Example in paper, need general procedure

Future Work II

- Observation models
 - Handle non-progressable observation models? Yes!
 - Functional (continuous) fluents: temperature > 44C
- Information-gathering FOMDP
 - Middle-ground between FO-MDP and FO-POMDP
 - Captures Tiger-Door 2010 (but not all FO-POMDPs)
- Factored POMDPs
 - Factored observation space!
 - Derive compact policy trees

Summary

- Rich relational observation spaces
 - very natural
 - but kill enumerated POMDP solutions
- We need FO-POMDP algorithms that can derive relevant observations

- Gave example of SDP & FO-POMDPs
 - -Rich area for further research