Cocke-Younger-Kasami (CYK) algoritmus

Input: Egy környezetfüggetlen $G = \langle T, N, P, S \rangle$ grammatika Chomskynormálformában adva és egy $u \in T^*$ szó.

Output: $u \stackrel{?}{\in} L(G)$

Legyen $u = t_1 \dots t_n$, $t_i \in T$, $n \ge 1$. Legyen A_i a $P_i \in P$ szabály bal-, β_i pedig a jobboldala. $(A_i \in N, \beta_i \in T \cup N^2.)$

A CYK algoritmus rekurzíven definiál $H_{i,j}$, $1 \le i \le j \le n$ halmazokat (j-i) szerint növekvő sorrendben.

$$H_{i,i} := \{ A_j \mid \beta_j = t_i \}$$

$$H_{i,j} := \{ A_k \mid \beta_k \in \bigcup_{h=i}^{j-1} H_{i,h} H_{h+1,j} \} \quad (i < j)$$

 $u \in L(G) \iff S \in H_{1,n}.$

Az algoritmus helyességéhez elég belátni, hogy minden $1 \le i \le j \le n$ esetén $H_{i,j} = \{X \in N \mid X \Rightarrow_G^* t_i \cdots t_j\}$.

Ezt (j-i)-re vonatkozó teljes indukcióval bizonyítjuk.

j-i=0esetén világos, hogy t_i éppen ${\cal H}_{i,i}$ nemterminálisaiból vezethető le.

Tegyük fel, hogy az állítás igaz minden olyan $1 \le k \le \ell \le n$ -re, melyre $\ell - k < j - i$ és legyen $1 \le i < j \le n$.

Tekintsük egy $X \Rightarrow^* t_i \cdots t_j$ levezetést. Mivel a levezetendő szó legalább 2 hosszú ezért a levezetés első lépése $X \Rightarrow YZ$ valamely $Y, Z \in N$ -re. Ekkor létezik egy olyan $i \leq h < j$, melyre $Y \Rightarrow^* t_i \cdots t_h$ és $Z \Rightarrow^* t_{h+1} \cdots t_j$. Mivel h - i < j - i és j - (h + 1) < j - i ezért az indukciós feltevés szerint $Y \in H_{i,h}, Z \in H_{h+1,j}$ és így $X \in H_{i,j}$.

Fordítva, ha $X \in H_{i,j}$ (j > i), akkor van olyan $i \le h < j$ és $Y \in H_{i,h}, Z \in H_{h+1,j}$, melyre $X \to YZ \in P$, azaz $Y \Rightarrow^* t_i \cdots t_h$ és $Z \Rightarrow^* t_{h+1} \cdots t_j$. Ekkor $X \Rightarrow YZ \Rightarrow^* t_i \cdots t_h Z \Rightarrow^* t_i \cdots t_j$.

Példa: A $G = \langle \{S, A, B, C, U, V, W, X, Y, Z\}, \{a, b, c\}, P, S \rangle$ Chomsky normálformájú grammatika esetén CYK algoritmussal döntsük el, hogy az aabbcc szót generálja-e G, ahol P:

$$\begin{split} S &\rightarrow AB \mid BC \\ A &\rightarrow XA \mid a \\ X &\rightarrow a \\ C &\rightarrow YC \mid c \\ Y &\rightarrow c \\ B &\rightarrow UV \mid VW \\ U &\rightarrow XX \\ W &\rightarrow YY \\ V &\rightarrow ZZ \\ Z &\rightarrow b \end{split}$$

$$\{S\}$$

$$\{S\}$$

$$\{S\}$$

$$\{S\}$$

$$\{B\}$$

$$\{B\}$$

$$\{B\}$$

$$\{B\}$$

$$\{B\}$$

$$\{A,U\}$$

$$\{B\}$$

$$\{C,W\}$$

$$\{A,X\}$$

$$\{A,X\}$$

$$\{A,X\}$$

$$\{Z\}$$

$$\{Z\}$$

$$\{Y,C\}$$

$$\{Y,C\}$$

$$\{Y,C\}$$

$$\{C,W\}$$

$$\{A,X\}$$

$$\{A,X\}$$

$$\{A,X\}$$

$$\{B\}$$

$$\{C,W\}$$

$$\{C,W\}$$

Mivel $S \in H_{1,6}$, ezért $aabbcc \in L(G)$.