

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA **W KRAKOWIE**

Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Dokumentacja

COVID-19 Outbreak Simulation

Autorzy: Vyacheslav Trushkov, Mikita Karabeinikau, Andrei Zhyunou

Opiekun projektu: Robert Lubaś

Kraków

2020

Spis treści

Spis treści	2
Opis	3
Algorytm	3
Model SEIR	4
Dodatki	6
Źrodła	7

Opis

Celem projektu jest symulacja rozpowszechniania się wirusa COVID-19 od momentu pojawienia 8 grudnia 2019 roku (rys. 2) do momentu osłabienia kwarantanny. Taki końcowy punkt został wybrany dlatego że funkcje wykorzystywane w symulacji dla opisu kwarantanny nie pozwalają na rozpatrywanie osłabień. Symulacja jest oparta na algorytmu opisanym niżej.

Algorytm

Na potrzeby symulacji został stworzony algorytm który odpowiada za zarażenia innych państw państwem rozpatrywanym. Ten algorytm bazuje się na plikach z informacją o pieszych i lotniczych przekroczeniach granic państwa. Za pomocą algorytmu oblicza się prawdopodobieństwo zarażenia do momentu wprowadzenia kwarantanny. Ono zależy od ilości zakażonych w państwie i ilości turystów w państwach sąsiadujących w przypadku pieszego przekroczenia granicy oraz jakichkolwiek państw w przypadku lotniczych przekroczeń granic. Dla każdego państwa po zakażeniu pierwszej osoby zaczynamy rozpatrywać deterministyczny model SEIR osobno.

Model SEIR

Deterministyczny model SEIR jest oparty na klinicznym postępie choroby, statusie epidemiologicznym osób i środkach interwencyjnych (ryc. 1). Stratyfikujemy populacje jako podatne (S), narażone (E), zakażone (I), hospitalizowane (H) i wyleczone (R) przedziały, a następnie stratyfikujemy populację do podatnych na kwarantannę (Sq) i poddanych kwarantannie osób podejrzanych (B). Rozszerzamy naszą strukturę modelową, w tym przedział podejrzany poddany kwarantannie, który składa się z narażonych osób zakaźnych wynikających ze śledzenia kontaktów oraz osób ze wspólną gorączką potrzebujących leków klinicznych.

Wymuszając śledzenie kontaktów, część osób narażonych na wirusa q jest poddawana kwarantannie i może albo przenieść się do przedziału B lub Sq, w zależności od tego, czy są one skutecznie zainfekowane, czy nie, podczas gdy druga część, l - q, która składa się z osób narażonych na wirusa, którego brak jest w śledzeniu kontaktu, i przenosi się do narażonego przedziału E po skutecznym zakażeniu lub pozostania w przedziale S w inny sposób.

Niech prawdopodobieństwo transmisji wynosi β , a szybkość kontaktu wynosi c. Następnie osoby poddane kwarantannie, jeśli są zarażone (lub niezarażone), przenoszą się do przedziału B (lub Sq) w tempie βcq (lub $(1 - \beta)cq)$). Ci, którzy nie zostali poddani kwarantannie, jeśli zostaną zainfekowani, przeniosą się do przedziału E w tempie $\beta c(1 - q)$. Niech stała m będzie szybkością przejścia z klasy podatnej do podejrzanego przedziału za pomocą ogólnych leków klinicznych z powodu gorączki lub objawów podobnych do choroby.

Dane dotyczące podejrzanych osób, a także większości potwierdzonych przypadków pochodzą z tego przedziału. Podejrzane osoby opuszczają ten przedział w tempie *b*, z proporcją f, jeżeli było potwierdzono, że jest zakażony COVID-19, idąc do przedziału hospitalizowanego, podczas gdy udowodniono, że inna proporcja, *1- f* nie była zainfekowana przez COVID-19 i wraca do podatnej klasy po wyleczeniu. (Tabela 1)

$$\begin{cases} S' = -\frac{\left(\beta c(t) + c(t)q(t)(1-\beta)\right)SI}{N} - mS + \lambda S_q + b(1-f)B, \\ E' = \frac{\beta c(t)(1-q(t))SI}{N} - \sigma E, \\ I' = \sigma E - \left(\delta_I(t) + \alpha + \gamma_I\right)I, \\ B' = \frac{\beta c(t)q(t)SI}{N} + mS - bB, \\ S_q' = \frac{\left(1-\beta\right)c(t)q(t)SI}{N} - \lambda S_q, \\ H' = \delta_I(t)I + bfB - (\alpha + \gamma_H)H, \\ R' = \gamma_I I + \gamma_H H. \end{cases}$$

Szybkość kontaktu c(t) jest funkcją malejącą w stosunku do czasu t:

$$c(t) = (c_0 - c_b)e^{-r_1t} + c_b$$

gdzie c_0 oznacza częstość kontaktu w dniu 23 stycznia 2020 r. gdzie $c(0) = c_0$, c_b oznacza minimalną częstość kontaktu w ramach obecnych strategii kontroli z $\lim_{x\to\infty} c(t) = c_b$, gdzie $c_b < c_0$, c_0 , r₁ oznacza wskaźnik kontaktu modelowany jako wykładniczy

wskaźnik malejący, przy założeniu, że kontakty zmniejszają się stopniowo, biorąc pod uwagę realizację interwencji.

q(t) jest funkcją rosnącą w odniesieniu do czasu t:

$$q(t) = (q_0 - q_m)e^{-r_2t} + q_m,$$

gdzie q_0 to początkowa część poddana kwarantannie osób narażonych przy $q(0) = q_0$, q_m to maksymalna część poddana kwarantannie w ramach obecnych strategii kontroli z $\lim_{x\to\infty} q(t) = q_m$ i $q_m > q_0$, a r2 to stawka poddana kwarantannie modelowana jako stawka wykładnicza rosnąca. Ta funkcja stopniowo ulepsza śledzenie kontaktów.

Szybkość przejścia $\delta I(t)$ jest funkcją rosnącą w stosunku do czasu t, okres diagnozy $1/\delta I(t)$ (t) jest funkcją malejącą w stosunku do czasu t:

$$\frac{1}{\delta_I(t)} = \left(\frac{1}{\delta_{I0}} - \frac{1}{\delta_{If}}\right) e^{-r_3 t} + \frac{1}{\delta_{If}},$$

gdzie $\delta I0$ jest początkową częstością diagnozowania, δIf jest najszybszą częstością diagnozowania, a r3 jest wykładniczą malejącą szybkością okresu wykrywania. δI (0) = $\delta I0$ i $\lim_{x\to\infty} \delta I(t) = \delta If$ gdzie $\delta If > \delta I0$. Następnie definiujemy efektywny numer reprodukcji jako:

$$R(t) = \frac{\beta c(t)(1 - q(t))}{\delta_I(t) + \alpha + \gamma_I}.$$

Dodatki

Rysunek 1

Rysunek 2

Tabela 1

c_0	Contact rate at the initial time	14.781	14.781	9
c_b	Minimum contact rate under the current control strategies	5.00(0.0039)	8.00(0.066)	Estimated
r_1	Exponential decreasing rate of contact rate	0.20(0.0067)	0.15(0.0352)	Estimated
β	Probability of transmission per contact	0.2068(0.0048)	0.1911(0.0175)	Estimated
q_0	Quarantined rate of exposed	0.0051(0.0052)	1.00	Estimated
	individuals at the initial time		$\times 10^{-4} (0.0037)$	
q_m	Maximum quarantined rate of exposed individuals under the current control strategies	0.6297(0.0134)	0.98(0.0087)	Estimated
r_2	Exponential increasing rate of quarantined rate of exposed individuals	0.10(0.00062)	0.1531(0.004)	Estimated
S(0)	Initial susceptible population	$9.00 \times 10^6 (3.52)$	$2.00 \times 10^7 (1.23)$	Estimated
		$\times 10^5$)	$\times 10^7$)	
E(0)	Initial exposed population	$4.00 \times 10^3 (390)$	9.00×10^{3} (Estimated
			2.11×10^{3})	
I(0)	Initial infected population	935(60)	$1.2405 \times 10^3 (642)$	Estimated
B(0)	Initial suspected population	800(13)	1072	Data
$S_q(0)$	Initial quarantined susceptible	2132	7347	Data
- "	population			
H(0)	Initial quarantined infected population	494	771	Data

Źrodła:

https://www.researchgate.net/publication/339984251

https://jamanetwork.com/journals/jama/fullarticle/2762130