k-means vs. GMM

Comparison of k-means and GMM iterations for the clustering of a set of data points, $\{x_i\}_{i=1}^N$.

	k-means	GMMS
Init:	Select K cluster centers $(\mathbf{m_1^{(1)}}, \dots, \mathbf{m_K^{(1)}})$	K components with means, μ_k and covariance Σ_k and mixing coefficients, P_k
E-step:	$S_i^{(t)} = \{\mathbf{x_p} : \mathbf{x_p} - \mathbf{m_i^{(t)}} ^2 \le \mathbf{x_p} - \mathbf{m_j^{(t)}} ^2 \forall \mathbf{j}\}$	$\gamma_{nk} = \frac{P_k \mathcal{N}(\mathbf{x_n} \mu_k, \mathbf{\Sigma_k})}{\sum_{j=1}^K P_j \mathcal{N}(\mathbf{x_n} \mu_j, \mathbf{\Sigma_j})}$
M-step:	$\mathbf{m}_{\mathbf{i}}^{(\mathbf{t+1})} = rac{1}{ \mathbf{S}_{\mathbf{i}}^{(\mathbf{t})} } \sum_{\mathbf{x_j} \in \mathbf{S}_{\mathbf{i}}^{(\mathbf{t})}} \mathbf{x_j}$	$N_k = \sum_{n=1}^{N} \gamma_{nk},$ $\mu_k^{new} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_{nk} \mathbf{x_n},$ $\sum_k^{new} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_{nk} (\mathbf{x_n} - \mu_k^{new}) (\mathbf{x_n} - \mu_k^{new})^{\mathbf{T}},$ $P_k^{new} = \frac{N_k}{N},$
Stop:	Based on no differences in set allocation.	When the likelihood not increasing fast enough: $\ln \Pr(\mathbf{x} \mu, \mathbf{\Sigma}, \mathbf{P}) = \sum_{\mathbf{n=1}}^{\mathbf{N}} \ln \{\sum_{\mathbf{k=1}}^{\mathbf{K}} \mathbf{P_k} \mathcal{N}(\mathbf{x_n} \mu_{\mathbf{k}}, \mathbf{\Sigma_k})\}$