Tutorial 09 - Protocols and randomness

Exercise 1. Miller–Rabin test

In this exercice we want to show that testing if a number is prime belongs to RP. To do so, suppose that p is an odd number and denote $p - 1 = 2^s d$, where d is odd. We consider the following two sets:

$$W_1 = \left\{ a \in \mathbb{Z}_p \setminus \{0\} \colon a^d = 1 \text{ or } -1 \in \{a^d, a^{2d}, \dots, a^{2^{s-1}d}\} \right\},$$

$$W_2 = \left\{ a \in \mathbb{Z}_p \setminus \{0\} \colon a^{2^s d} \neq 1 \text{ or } \left(a^d \neq 1 \text{ and } -1 \notin \{a^d, a^{2d}, \dots, a^{2^{s-1}d}\}\right) \right\}.$$

(All operations in this exercice are in \mathbb{Z}_p , unless stated otherwise.)

- **1.** Prove that if $a \in W_1$, then $a^{2^sd} = 1$. What can you say about the sequence $(a^d, a^{2d}, \dots, a^{2^{s-1}d}, a^{2^sd})$? If $a^d = 1$, then $a^{2^sd} = 1$. If $a^{2^td} = -1$ for some t < s, then $a^{2^{t+1}d} = 1$, $a^{2^{t+2}d} = 1$ etc. In other words, this sequence is either equal to $(1, 1, \dots, 1)$ or it finishes by $(\dots, (-1), 1, 1, \dots, 1)$.
- **2.** Prove that $W_1 \cap W_2 = \emptyset$ and $W_1 \cup W_2 = \mathbb{Z}_p \setminus \{0\}$.

The set W_1 consists of $a \in \mathbb{Z}_p \setminus \{0\}$ such that the sequence $(a^d, a^{2d}, \dots, a^{2^{s-1}d}, a^{2^sd})$ ends with 1 and either starts with 1 or contains -1. The set W_2 contains all the other elements of $a \in \mathbb{Z}_p \setminus \{0\}$: the sequence $(a^d, a^{2d}, \dots, a^{2^{s-1}d}, a^{2^sd})$ either ends with something different than 1 or it does not start with 1 and does not contain -1.

3. Prove that if p is prime, then $W_2 = \emptyset$. *Hint: Use Fermat's little theorem and the fact that* \mathbb{Z}_p *is a field.*

If p is prime, then $a^{p-1}=a^{2^sd}=1$ by Fermat's little theorem for all $a\in\mathbb{Z}_p\setminus\{0\}$. Moreover, since \mathbb{Z}_p is a field, the polynomial $x^2=1$ has exactly two roots in \mathbb{Z}_p , namely 1 and -1. In particular, the sequence $(a^d,a^{2d},\ldots,a^{2^{s-1}d},a^{2^sd})$ is either equal to $(1,1,\ldots,1)$ or contains -1 (more precisely, it finishes by $(\ldots,(-1),1,1,\ldots,1)$). Thus, $W_2=\emptyset$ and $W_1=\mathbb{Z}_p\setminus\{0\}$.

4. Suppose that p is a power of a prime number, $p = q^k$ for some $k \ge 2$. Let $a = 1 + q^{k-1}$. Prove that $a^p = 1$ and $a^{p-1} \ne 1$. In particular, $a \in W_2$.

If we take $a = 1 + q^{k-1}$, then $a^p = (1 + q^{k-1})^p = 1 + pq^{k-1} + (\text{higher powers of } q) = 1$ by the binomial expansion. Therefore $a^{p-1} \neq 1$, because this would imply that $1 = a^p = a$.

5. Suppose that p is a power of a prime number as above. Show that $|W_2| \ge |W_1|$. Hint: Consider the set $aW_1 = \{ab \colon b \in W_1\}$, where $a = 1 + q^{k-1}$.

Let $a=1+q^{k-1}$ and $b\in W_1$. Then, $(ab)^{p-1}=a^{p-1}\neq 1$, so $ab\in W_2$. Moreover, if $b,b'\in W_1$, then $ab\neq ab'$, because ab=ab' would imply that $b=a^pb=a^pb'=b'$. Hence, $|aW_1|=|W_1|$ and $aW_1\subseteq W_2$.

6. The Chinese Reminder Theorem states that if $n_1, n_2 \in \mathbb{N}$ are relatively prime and $p = n_1 n_2$, then the map $\mathbb{Z}_p \ni x \to (x \mod n_1, x \mod n_2) \in \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ is a bijection. Prove this theorem.

This map is an injection. Indeed, if $(x \mod n_1, x \mod n_2) = (y \mod n_1, y \mod n_2)$, then x - y is divisible by both n_1 and n_2 . Since they are relatively prime, we get p|x-y and hence x=y because $x,y \in \mathbb{Z}_p$. Moreover, the sets \mathbb{Z}_p and $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ have the same cardinality, so this map is a bijection.

- 7. Suppose that $p = n_1 n_2 \in \mathbb{N}$, where $n_1, n_2 > 1$ are relatively prime odd numbers. Prove that there exists $c \in \mathbb{Z}_p$ such that $c \neq \pm 1$ but $c^2 = 1$.
- **8.** Let p be as above. Prove that if the equation $x^k = -1$ has a solution in \mathbb{Z}_p , then the equation $x^k = c$ also has a solution.
- **9.** Let p be as above. Show that $|W_2| \ge |W_1|$. Hint: let $0 \le t \le s$ be the highest number such that $x^{2^t d} = -1$ has a solution. Let r be a solution of $x^{2^t d} = c$. Consider the set rW_1 .
- **10.** Construct a probabilistic TM M whose expected running time is polynomial that, given $n \ge 0$ written in binary, outputs a random number in the interval $\{0, 1, ..., n-1\}$ (with uniform distribution).
- 11. Prove that testing if a number is prime belongs to RP.

Definition (Interaction of deterministic functions). Let $f,g:\{0,1\}^* \xrightarrow{\{} 0,1\}^*$ be functions. A k-round interaction of f and g on input $x \in \{0,1\}^*$, denoted by $\langle f,g \rangle(x)$ is the sequence of the following strings $a_1,...,a_k \in \{0,1\}^*$ defined as follows:

$$a_1 = f(x)$$

 $a_2 = g(x, a_1)$
...
 $a_{2i+1} = f(x, a_1, ..., a_{2i}) \text{ for } 2i < k$
 $a_{2i+2} = g(x, a_1, ..., a_{2i}) \text{ for } 2i + 1 < k$

The output of f at the end of the interaction denoted $\mathbf{out}_f \langle f, g \rangle(x)$ is defined to be $f(x, a_1, ..., a_k)$ and we assume that this output is in $\{0, 1\}$

We can extend the notion of interaction to probabilistic functions (actually, we only need to do so for the verifier). To model an interaction between f and g where f is probabilistic, we add an additional m-bit input r to the function f, that is having $a_1 = f(x,r)$, $a_3 = f(x,r,a_1,a_2)$, etc. The interaction $\langle f,g\rangle(x)$ is now a random variable over $r \in_R \{0,1\}^m$. Similarly the output $\operatorname{out}_f \langle f,g\rangle(x)$ is also a random variable.

Definition (IP). For an integer $k \ge 1$, we say that language L is in IP[k] if there is a probabilistic Turing machine V that runs in time polynomial in |x| which can have a k-round interaction with a function $P: \{0,1\}^* \to \{0,1\}^*$ such that

$$x \in L \implies \text{ there exists } P \text{ such that } \Pr[\mathbf{out}_V \langle V, P \rangle(x)] \geqslant \frac{2}{3}$$
 (Completeness) $x \notin L \implies \text{ for all } P \text{ , } \Pr[\mathbf{out}_V \langle V, P \rangle(x)] \leqslant \frac{1}{3}$ (Soundness)

Exercise 2. Arthur–Merlin

The class AM (Arthur–Merlin) is defined as the class of decision problems that can be verified by an *Arthur–Merlin protocol* in which the random bits are public. More precisely, Arthur is the polynomial-time verifier, and Merlin is the prover. Given x, Arthur generates a vector of random bits r and sends (x,r) to Merlin. Then, Merlin sends back a proof y. As a result, Arthur has a tuple (x,r,y). Given this tuple, Arthur must decide in *deterministic* polynomial-time whether to accept or not. Completeness means that if $x \in L$, then Merlin should be able to convince Arthur to accept with probability 2/3, and soundness means that if $x \notin L$, then Arthur should reject with probability 2/3, no matter what Merlin does. More formally,

a language L belongs to AM if there exist polynomials p,q and a polynomial-time Turing machine M such that

$$x \in L \implies \Pr_{r \in \{0,1\}^{p(|x|)}} [\exists y \in \{0,1\}^{q(|x|)} M(x,r,y) \text{ accepts}] \ge 2/3 \text{ (completeness)}$$

$$x \notin L \implies \Pr_{r \in \{0,1\}^{p(|x|)}} [\forall y \in \{0,1\}^{q(|x|)} M(x,r,y) \text{ rejects}] \ge 2/3 \text{ (soundness)}.$$

- **1.** Show that $NP \subseteq AM$, $BPP \subseteq AM$, and $AM \subseteq IP$.
- 2. How to amplify the probabilities in the definition of AM?
- **3.** If *A*, *B* are two languages, then we say that *A* reduces to *B* under a *randomized* polynomial-time reduction if there exists a probabilistic polynomial-time Turing machine *M* such that

$$\forall x \in \{0,1\}^*, \Pr[x \in A \iff M(x) \in B] \ge 2/3.$$

Show that $L \in AM$ if and only if L reduces to SAT under a randomized polynomial-time reduction (this class is also denoted as BP · NP).

- **4.** Show that $AM \subseteq NP/poly$.
- **5.** Show that $AM \subseteq \Sigma_3^p$.

Exercise 3. Quadratic residuosity

For $n \ge 1$ we denote by $\mathbb{Z}^* \subset \{1, 2, \dots, n-1\}$ the set of all numbers that are relatively prime with n. We

For $n \ge 1$ we denote by $\mathbb{Z}_n^* \subseteq \{1, 2, ..., n-1\}$ the set of all numbers that are relatively prime with n. We say that $x \in \mathbb{Z}_n^*$ is a *quadratic residue modulo* n if there exists $y \in \mathbb{Z}_n^*$ such that $y^2 = x \mod n$. The *Quadratic Residuosity* problem asks, given (x, n), to decide if x is a quadratic residue modulo n or not.

- **1.** Prove that \mathbb{Z}_n^* forms a group (with multiplication modulo n as the group operation).
- **2.** Prove that quadratic residues form a subgroup in \mathbb{Z}_n^* .
- **3.** Prove that if x is a quadratic residue, then the cardinality of the set $\{y \in \mathbb{Z}_n^* : y^2 = x \bmod n\}$ does not depend on x (i.e., it depends only on n).
- **4.** Give an interactive proof for showing that x is not a quadratic residue modulo n. Hint: If x is not a quadratic residue, then xy^2 also is not.