Theoretische Physik II Elektrodynamik

Vorlesung von Prof. Dr. Michael Thoss im Wintersemester 2018

Markus Österle Andréz Gockel

14. November 2018

Inhaltsverzeichnis

0	Einführung		
	0.1	Zur Vo	orlesung
	0.2	Einfüh	rung und Überblick
		0.2.1	Rückblick
		0.2.2	Elektrodynamik
	0.3	Aufbai	u der Vorlesung
1	Elektrostatik		
	1.1	Elektri	ische und Coulombsches Gesetz
		1.1.1	Coulombsches Gesetz
	1.2	Elektri	isches Feld
		1.2.1	Feld eines Systems von Punktladungen
		1.2.2	Feld einer kontinuierlichen Ladungsverteilung
		1.2.3	Ladungsdichte einer Punktladung
		1.2.4	Flächenladungsdichte
		1.2.5	Linenladungsdichte
	1.3	Feldgle	eichungen und elektrostatische Potential
		1.3.1	Elektrostatisches Potential
		1.3.2	Feldgleichugn (differentielle Form)
		1.3.3	Divergenz (Quellen)
		1.3.4	Zusammenfassung:
		1.3.5	Integralsätze der Vektoranalysis
		1.3.6	Integrale Form der Feldgleichung
		1.3.7	Gaußsches Gesetz
		1.3.8	Satz von Stokes
		1.3.9	Zusammenfassung: Feldgleichungen der Elektrostatik 1'
	1.4		ostatische Energie
		1.4.1	Elektrostatische Potentielle Energie
	1.5	Verhal	ten des el. Feldes an Grenzflächen mit Flächenladung
		1.5.1	Randbedingungen an el. Leitern
	1.6		vertprobleme (RWP) der Elektrostatik und
			$gsmethoden \dots \dots$
		1.6.1	Formulierung des Randwertproblems
			Methode der Bildladung (Spiegelladung)
		1.6.3	Formale Lösungen des elektrostatischen Randwertproblems mit
		1.0.0	Greenschen Funktionen
		1.6.4	Greensche Funktion des Dirichlet Randwertproblems einer Ebene 29
		1.6.5	Separation der Variablen und Entwicklung nach orthogonalen Funktionen 30
		1.6.6	Vollständige Orthonormale Funktionensysteme (VONS)
		1.6.7	Laplace-Gleichung in Kugelkoordinaten
		1.0.1	- Dapiace Cicionand in Mageneoramaten

Kapitel 0

Einführung

0.1 Zur Vorlesung

Dozent Michael Thoss

Übungen Donnerstag/Freitag (ILIAS) beginnt 18./19.10.18

Übungsleiter Jakob Bätge

Abgabe der Hausaufgaben bus Dienstag 12:00 - Briefkasten GuMi

Klausur 13.02.19, 10-12 Uhr, Hörsaal Anatomie (Nachklausur: 26.19, 10-12 Uhr)

Ankündigungen ILIAS Pass: theophy2.thoss18

Angaben Vorlesung: 4 SWS, Übung: 2 SWS, ECTS: 7

Vorkenntnisse Mathematik: Analysis für Physiker (Vektor Rechnung), Theoretische Physik I, Experimental Physik II.

Hinweis zu den Übungen

- Keine Anwesenheitspflicht.
- Keine Punktzahl nötig für Klausurzulassung.
- Kann auch wehrend Übungen abgegeben werden.

Lehrbücher:

- W. Nolting, Grundkurs Theoretische Physik 3: Elektrodynamik (Springer)
- D.J. Griffiths, Elektrodynamik: Eine Einführung (Pearson)
- T. Fließbach, Elektrodynamik (Spektrum Akademischer Verlag)
- J.D. Jackson, Klassische Elektrodynamik (Walter de Gruyter) geht dieser Vorlesung hinaus

0.2 Einführung und Überblick

Die vier fundamentalen Wechselwirkungen (WW):

- Starke WW
- Elektromagnetische WW Wird in dieser Vorlesung betrachtet
- Schwache WW
- Gravitation

0.2.1 Rückblick

Theoretische Physik 1:

- Mechanik
- Punktmechanik: Bahnkurven von Körpern
- \bullet Bewegungsgleichung: $m \pmb{\ddot{r}} = \pmb{F}$

0.2.2 Elektrodynamik

- Grundlegende Größen
- Felder

•

$$m{E}(m{r},t)$$
 $m{B}(m{r},t)$

elektrisches Feld Magnetfeld

→ Feldtheorie sehr wichtiges Konzept

Wie sind Elektrische Felder definiert?

Experimentelle Definition als Messgröße: Kraft auf Ladung

$$F = q(E(r,t) + v \times B(r,t))$$

Theoretische Definition ist Mathematisch: Feldgleichungen-Maxwellgleichungen

$$abla \cdot E = \frac{1}{\varepsilon_0} \rho$$
 $\nabla \cdot B = 0$ ∂E

$$\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
 $\nabla \times \boldsymbol{B} - \mu_0 \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} = \mu_0 \boldsymbol{j}$

Hierbei steht ρ für die Ladungsdichte und \boldsymbol{j} für die Stromdichte.

0.3 Aufbau der Vorlesung

1./2. Statische Phänomene: $\frac{\partial E}{\partial t} = 0 = \frac{\partial B}{\partial t}$

$$\Rightarrow \nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \qquad \nabla \cdot \boldsymbol{B} = 0$$

$$\underbrace{\nabla \times \boldsymbol{E} = 0}_{\text{1. Elektrostatik}} \qquad \underbrace{\nabla \times \boldsymbol{B} = 0}_{\text{2. Magnetostatik}}$$

- 3. Zeitabhängige magnetische/elektrische Felder
- 4. Relativistische Formulierung der Elektrodynamik

Kapitel 1

Elektrostatik

Wir beschäftigen uns in diesem Kapitel mit **ruhenden Ladungen** und **zeitunabhängigen Feldern**. Das Grundproblem besteht darin, dass wir eine Ladungsverteilung haben und das Elektrische Feld und dessen Potential bestimmen wollen.

 \rightarrow Feld $\boldsymbol{E}(\boldsymbol{r}),$ el. Potential $\varPhi(\boldsymbol{r})$

• q₂ q₁ • q₃

1.1 Elektrische und Coulombsches Gesetz

Ladung: Beobachtungstatsachen:

- i) Zwei Arten "+", "-"
- ii) Abgeschlossenes System: Ladung erhalten: $q = \sum_i q_i = \text{const.}$
- iii) Ladung ist quantisiert in Einheiten der Elementarladung:

$$q = ne, \ n \in \mathbb{Z}, \ e = 1,602 \cdot 10^{-19} \,\mathrm{C}$$

n=-1: für ein Elektron wäre ein Beispiel einer Punktladung

Kontinuierliche Ladungsverteilung Ladungsdichte $\rho(\boldsymbol{r}) = \frac{\text{Ladung}}{\text{Volumen}} = \frac{\Delta q}{\Delta V} \text{ Gesamtladung in } V \text{:}$

$$Q = \int_{V} d^3 r \, \rho(\boldsymbol{r})$$

1.1.1 Coulombsches Gesetz

Die Kraft, welche eine am Ort r_2 lokalisierte Punktladung auf eine Punktladung am Ort r_1 ausübt, ist gegeben durch:

$$oldsymbol{F}_{12} = k rac{q_1 q_2}{|oldsymbol{r}_1 - oldsymbol{r}_2|^2} rac{oldsymbol{r}_1 - oldsymbol{r}_2}{|oldsymbol{r}_1 - oldsymbol{r}_2|}$$

- 1. $F_{12} \sim q_1 q_2$
- 2. $\mathbf{F}_{12} \sim \frac{1}{|\mathbf{r}_1 \mathbf{r}_2|^2}$

- 3. $F_{12} \sim q_1 q_2 e_{r_{12}}$
- 4. $F_{12} = -F_{21}$

Es gilt das Superpositionsprinzip: Das heißt, durch vektorielle Addition der Kräfte kann die Gesamtkraft ermittelt werden.

$$F_1 = k \sum_{j=2}^{N} \frac{q_1 q_j}{r_{1j}^2} e_{r_{1j}}$$

Zur Konstanten k:

Die Konstante ist abhängig von dem verwendeten Maßsystemen.

- i) Gauß-System (cgs): $k \equiv 1$, dyn = $\frac{\text{g-cm}}{\text{s}^2} = 10^{-5} \,\text{N}$ 1 dyn = $\frac{(1\text{ESE})^2}{\text{cm}^2}$ 1ESE = $\frac{\sqrt{\text{g-cm}^3}}{\text{s}}$
- ii) SI (MKSA-System): Definition von A = Ampère

$$\frac{\Delta F}{\Delta l} = 2 \cdot 10^{-7} \, \frac{\text{N}}{\text{m}}$$

$$\frac{1 \, \text{m}}{1 \, \text{m}} \xrightarrow{1 \, \text{m}} \frac{1 \, \text{m}}{1 \, \text{m}}$$
Strom = $\frac{\text{Ladung}}{\text{Zeit}} \Rightarrow 1 \, \text{A} = \frac{1 \, \text{C}}{1 \, \text{s}} \rightarrow e = 1,602 \cdot 10^{-19} \, \text{C} \qquad c \approx 3 \cdot 10^8 \, \frac{\text{m}}{\text{s}}$

$$\frac{\Delta F}{\Delta l} = k \frac{2 \, l^2}{c^2 \, l} \qquad \rightarrow k = 2 \cdot 10^{-7} \, \frac{\text{N}}{\text{m}} \frac{c^2 \, \text{lm}}{2 \, (1 \, \text{A})^2} = 10^{-7} c^2 \, \frac{\text{N}}{\text{A}^2}$$

$$k = \frac{1}{4 \pi \varepsilon_0}$$

Damit erhalten wir für die Dielektrizitätskonstante des Vakuums:

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$$

1.2 Elektrisches Feld

1.2.1 Feld eines Systems von Punktladungen

N-Ladungen q_1, \ldots, q_N ruhen an den Orten r_1, \ldots, r_N . Nun bringen wir eine Testladung q am Ort r mit ein.

Kraft von q_1 , q_2 auf q

$$\boldsymbol{F} = \frac{1}{4\pi\varepsilon_0} q \sum_{j=1}^{N} q_n \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3} = q \boldsymbol{E}(\boldsymbol{r})$$

Somit ist das elektrisches Feld:

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{N} q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3}$$

Bemerkung

- i) Testladung klein (formal: $\lim_{q\to 0} \frac{F}{q}$)
- ii) math. $\boldsymbol{E}(\boldsymbol{r})$ Vektorpfeil

kartesisch:
$$\boldsymbol{E}(\boldsymbol{r}) = \begin{pmatrix} E_x(\boldsymbol{r}) \\ E_y(\boldsymbol{r}) \\ E_z(\boldsymbol{r}) \end{pmatrix}$$

iii) Wechselwirkungsprozess: 2 Teile

$$q_j \to \boldsymbol{E}(\boldsymbol{r}) \to \boldsymbol{F} = q\boldsymbol{E}(\boldsymbol{r})$$

iv) Superpositionsprinzip gilt

Feld einer kontinuierlichen Ladungsverteilung $\rho(r)$ 1.2.2

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \underbrace{\int\limits_{V} d^3r' \, \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3}}_{\substack{\text{schließt alle} \\ \text{Ladungen ein}}}$$

$$ho(m{r}_j) = rac{\Delta q_j}{\Delta V_j}$$

$$E(\mathbf{r}) = k \sum_{j} \Delta q_{j} \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}}$$

$$= k \sum_{j} \Delta V_{j} \rho(\mathbf{r}_{j}) \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}}$$
mit $\Delta V_{j} \rightarrow 0 \rightarrow k \int_{V} d^{3}r' \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3}}$

Ladungsdichte einer Punktladung 1.2.3Deltafunktion

$$\rho(\mathbf{r}) = q\delta(\mathbf{r} - \mathbf{r}_0)$$

Punktladung in $\mathbf{r}_0 \Rightarrow \rho(\mathbf{r}) = 0 \quad \mathbf{r} \neq \mathbf{r}_0$ Ladungsdichte divergiert in r_0

$$\rho(\mathbf{r}_0) = \infty$$

 $ho({m r}_0) = \infty$ Modell für Punktladung:

Ladung q in Kugel mit Radius ε um $\mathbf{r}_0, \ \varepsilon \to 0$

$$\rho_2(\mathbf{r}) = \left\{ \begin{array}{cc} \frac{q}{v_k} & |\mathbf{r}| \le \varepsilon \\ 0 & \text{sonst} \end{array} \right\} = \frac{q}{\frac{4}{3}\pi\varepsilon^3} \underbrace{\Theta(\varepsilon - |\mathbf{r}|)}_{\text{Stufenfunktion}}$$

$$\rho(\mathbf{r}) = \lim_{\varepsilon \to 0} \rho_{\varepsilon}(\mathbf{r}) = \begin{cases} \infty & \mathbf{r} = 0 \\ 0 & \mathbf{r} \neq 0 \end{cases}$$

Divergenz muss so sein, dass

$$\int\limits_{\substack{V \\ \boldsymbol{r}_0 \in V}} d^3r \ \rho(\boldsymbol{r}) = q$$

Definition Delta-Funktion (Diracsche Deltafunktion)

1.

$$\delta(\boldsymbol{r} - \boldsymbol{r}_0) = \left\{ \begin{array}{ll} 0 & \boldsymbol{r} \neq \boldsymbol{r}_0 \\ \infty & \boldsymbol{r} = \boldsymbol{r}_0 \end{array} \right.$$

2.

$$\int_{V} d^{3}r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_{0}) = \left\{ \begin{array}{cc} f(\boldsymbol{r}_{0}) & \boldsymbol{r}_{0} \in V \\ 0 & \boldsymbol{r}_{0} \notin V \end{array} \right.$$

Mathematik

Distribution - Funktional

Funktional: Abb. Funktionen $\mapsto \mathbb{R}, \mathbb{C}$

$$\delta_{\boldsymbol{r}_0}: f \mapsto f(\boldsymbol{r}_0)$$

Physik

$$\int d^3r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_0) = f(\boldsymbol{r})$$

 δ -Fkt. als Grenzwert einer Folge von Funktionen im Integral

$$\int d^3r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \lim_{\varepsilon \to 0} \quad \int d^3 \ f(\boldsymbol{r}g_{\varepsilon}(\boldsymbol{r}-\boldsymbol{r}_0))$$

mit

$$egin{aligned} \lim_{arepsilon o 0} g_{arepsilon}(m{r} - m{r}_0) &= \left\{egin{array}{ll} 0 & m{r}
eq m{r}_0 \ \infty & m{r} &= m{r}_0 \end{array}
ight. \ \int_{V} d^3r \ g_{arepsilon}(m{r} - m{r}_0) &= 1 \end{aligned}$$

Beispiel: $g_{\varepsilon}(\boldsymbol{r}-\boldsymbol{r}_0)=\frac{\Theta(\varepsilon-|\boldsymbol{r}|)}{\frac{4}{3}\pi\varepsilon^3}$ Mehrere Punktladungen q_j in \boldsymbol{r}_j

$$ho(m{r}) = \sum_j q_j \delta(m{r} - m{r}_j)$$

$$\Rightarrow \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \ \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \ \sum_j q_j \delta(\boldsymbol{r} - \boldsymbol{r}_j) \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \sum_j q_j \int_V d^3r' \ \delta(\boldsymbol{r} - \boldsymbol{r}_j) \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \sum_j q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3} \quad \checkmark$$

1.2.4 Flächenladungsdichte

$$\sigma({m r}) = rac{ ext{Ladung}}{ ext{Fläche}} = rac{\Delta q}{\Delta A}$$

erzeugtes elektrisches Feld:

$$E(r) = \frac{1}{4\pi\varepsilon_0} \int_{A} \underbrace{df'}_{\text{Elächenelement}} \sigma(r) \frac{r - r'}{|r - r'|^3}$$

Beispiel: Elektrisches Feld einer homogenen Flächenladung

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dy' \ \sigma \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} \qquad \boldsymbol{r}' = (x', y', 0)$$

Symmetrie: \boldsymbol{E} unabhängig von x, y $\boldsymbol{r} = (0, 0, z)$

$$r - r' = (-x', -y', z), |r - r'|^3 = (x'^2 + y'^2 + z^2)^{3/2}$$

$$E_x \sim \sigma \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dy' \frac{(-x')}{(x'^2 + y'^2 + z^2)^{3/2}} = 0 = E_y$$

 $\mathbf{E} = (0, 0, E_z)$

$$E_{z} = \frac{1}{4\pi\varepsilon_{0}} \sigma_{z} \int_{-\infty}^{+\infty} dx' \underbrace{\int_{-\infty}^{+\infty} dy' \frac{(x')}{(x'^{2} + y'^{2} + z'^{2})^{3/2}}}_{\frac{1}{x'^{2} + z^{2}} \frac{y'}{(x'^{2} + y'^{2} + z^{2})^{3/2}} \Big|_{-\infty}^{+\infty} = \frac{1}{x'^{2} + z^{2}} \frac{\operatorname{sgn}(y')}{\sqrt{1 + \frac{x'^{2} + z^{2}}{y'^{2}}}} \Big|_{-\infty}^{+\infty} = \frac{2}{x'^{2} + z^{2}}$$

$$= \frac{1}{2\pi\varepsilon_{0}} \sigma_{z} \underbrace{\int_{-\infty}^{+\infty} dx' \frac{1}{x'^{2} + z^{2}}}_{\frac{1}{z} \arctan\left(\frac{x'}{2}\right) \Big|_{-\infty}^{+\infty} = \frac{1}{z} \operatorname{sgn}(z)\pi$$

$$E_{z} = \frac{\sigma}{2\varepsilon_{0}} \operatorname{sgn}(z)$$

Grenzfläche: $z \to 0$

$$\boldsymbol{E} \underset{z \to 0}{\longrightarrow} \left\{ \begin{array}{ll} \frac{\sigma}{2\varepsilon_0} \boldsymbol{e}_z & z > 0\\ -\frac{\sigma}{2\varepsilon_0} \boldsymbol{e}_z & z < 0 \end{array} \right.$$

$$\frac{2\varepsilon_0}{2\varepsilon_0}$$

$$m{E}_{\perp_+} - m{E}_{\perp_-} = rac{\sigma}{arepsilon_0}, \qquad m{E}_{\parallel} = 0$$

1.2.5 Linenladungsdichte

$$\lambda(\boldsymbol{r}) = \frac{\text{Ladung}}{\text{Länge}} = \frac{\Delta q}{\Delta s}$$

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \underbrace{\int_{\gamma} ds' \ \lambda(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}}_{\text{Linienintegral}}$$

Beispiel: Elektrisches Feld einer homogenen Linienladung $\lambda = \text{const.}$

$$E(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\gamma} ds' \, \lambda \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \qquad \gamma : z' \mapsto \mathbf{r}'(z') = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$$

$$\downarrow y \qquad \qquad = \frac{\lambda}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \, \frac{\mathbf{r} - \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}}{(x^2 + y^2 + (z - z')^2)^{3/2}}$$

$$E_x = \frac{\lambda x}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \, \frac{1}{(x^2 + y^2 + (z - z')^2)^{3/2}} = \frac{\lambda x}{4\pi\varepsilon_0} \underbrace{\int_{-\infty}^{\infty} d\tilde{z} \, \frac{1}{(x^2 + y^2 + \tilde{z}^2)^{3/2}}}_{\frac{2}{x^2 + y^2}} = \frac{\lambda}{2\pi\varepsilon_0} \frac{x}{x^2 + y^2}$$

$$E_y = \frac{\lambda}{2\pi\varepsilon_0} \frac{x}{x^2 + y^2}$$

$$E_z = \frac{\lambda}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \, \frac{z - z'}{(x^2 + y^2 + (z - z')^2)^{3/2}} = 0$$

$$E(\mathbf{r}) = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{x^2 + y^2} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

$$\rho = \sqrt{x^2 + y^2} = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{\rho} \mathbf{e}_{\rho}, \qquad \mathbf{e}_{\rho} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \\ 0 \end{pmatrix}$$

1.3 Feldgleichungen und elektrostatische Potential

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \ \rho(\boldsymbol{r'}) \frac{\boldsymbol{r} - \boldsymbol{r'}}{|\boldsymbol{r} - \boldsymbol{r'}|^3}$$

1.3.1 Elektrostatisches Potential

elektrische Feld ist ein Potentialfeld $\boldsymbol{E}(\boldsymbol{r}) = -\nabla \phi(\boldsymbol{r}) = -\left(\boldsymbol{e}_x \frac{\partial \phi}{\partial x} + \boldsymbol{e}_y \frac{\partial \phi}{\partial y} + \boldsymbol{e}_z \frac{\partial \phi}{\partial z}\right)$

$$\frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} = -\nabla \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|}$$

$$-\frac{\partial}{\partial x} \frac{1}{[(x-x')^2 + (y-y')^2 + (z-z')^2]^{1/2}} = \frac{-\left(-\frac{1}{2}\right)}{[(x-x')^2 + (y-y')^2 + (z-z')^2]^{3/2}} = \frac{(x-x')}{|\mathbf{r} - \mathbf{r}'|^3}$$

$$\Rightarrow \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \ \rho(\mathbf{r}') \left(-\nabla_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}'|}\right) = \nabla_F \frac{1}{4\pi\varepsilon_0} \int d^3r' \ \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

 \rightarrow elektrostatisches Potential

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \, \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + c$$

übliche Konvention: $c = 0 \ (\phi(r) \ |r| \xrightarrow{\rightarrow} \infty \ 0)$

Potential einer Punktladung in r_0 :

$$\begin{split} \rho(\boldsymbol{r}) &= q\delta(\boldsymbol{r} - \boldsymbol{r}_0) \\ \phi(\boldsymbol{r}) &= \int_{\mathbb{R}^3} d^3r' \; \frac{q\delta(\boldsymbol{r}' - \boldsymbol{r}_0)}{|\boldsymbol{r} - \boldsymbol{r}'|} = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\boldsymbol{r} - \boldsymbol{r}_0|} \\ \boldsymbol{E}(\boldsymbol{r}) &= -\boldsymbol{\nabla}\phi = \frac{1}{4\pi\varepsilon_0} q\boldsymbol{\nabla} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}_0|} = \frac{1}{4\pi\varepsilon_0} q \frac{\boldsymbol{r} - \boldsymbol{r}_0}{|\boldsymbol{r} - \boldsymbol{r}_0|^3} \end{split}$$

(Funktional-Analysis Siegfried Großmann Springer) (Landau-Lipschitz Buch geht weit der Vorlesung hinaus)

1.3.2 Feldgleichugn (differentielle Form)

Rotation (Wirbel)

$$\operatorname{rot} \mathbf{E} \nabla \times \mathbf{E} = \mathbf{e}_{x} \left(\frac{\partial E_{z}}{\partial y} - \frac{\partial E_{x}}{\partial z} \right) + \mathbf{e}_{y} \left(\frac{\partial E_{x}}{\partial z} - \frac{\partial E_{z}}{\partial x} \right) + \mathbf{e}_{z} \left(\frac{\partial E_{y}}{\partial x} - \frac{\partial E_{x}}{\partial y} \right) \Rightarrow \nabla \times \mathbf{E} = -\nabla \times (\nabla \phi) = 0$$

Mathe: Es sind äquivalent

i
$${m E} = - \nabla \phi$$

ii $\nabla \times \mathbf{E} = 0$ (auf einfach zusammenhängendem Gebiet)

iii Kurvenintegral $\int_{\gamma} d\mathbf{r} \cdot \mathbf{E}$ ist Wegunabhängig

$$\int_{r_1}^{r_2} d\mathbf{r} \cdot \mathbf{E} = -\int_{r_1}^{r_2} dt \underbrace{\frac{d\mathbf{r}}{dt} \times \nabla \phi(\mathbf{r}(t))}_{\frac{d\phi}{dt}} = \underbrace{(\phi(\mathbf{r}_2) - \phi(\mathbf{r}_1))}_{\text{Potential differenz}}$$

1.3.3 Divergenz (Quellen)

$$\div \mathbf{E} = \nabla \cdot \mathbf{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$$

$$\nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \nabla_{\boldsymbol{r}} \cdot \frac{1}{4\pi\varepsilon_0} \int d^3r' \ \rho(\boldsymbol{r}') \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$
$$= \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \rho(\boldsymbol{r}') \nabla_{\boldsymbol{r}} \cdot \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

x-Anteil:

$$\frac{\partial}{\partial x} \frac{x - x'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{1 \cdot [\dots]^{3/2} (x - x') (x - x')^{3/2} \cdot 2[\dots]^{1/2}}{[\dots]^3}$$

$$= \frac{[\dots]^{1/2} ((x - x')^2 + (y - y')^2 + (z - z')^2 - 3(x - x')^2)}{[\dots]^{3/2}}$$

$$= \frac{(y - y')^2 + (z - z')^2 - 2(x - x')^2}{[\dots]^{3/2}}$$

$$\frac{\partial}{\partial y} \frac{y - y'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{(x - x')^2 + (z - z')^2 - 2(y - y')^2}{[\dots]^{3/2}}$$

$$\frac{\partial}{\partial z} \frac{z - z'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{(x - x')^2 + (y - y')^2 - 2(z - z')^2}{[\dots]^{3/2}}$$

$$\nabla \frac{r - r'}{[\dots]^{3/2}} = 0 \quad \text{follows} \quad m \neq m'$$

$$\nabla \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} = 0$$
 falls $\mathbf{r} \neq \mathbf{r}'$

 \Rightarrow falls $r \notin V$, d.h. r in Gebiet ohne Ladungsdichte $\rho(r) = 0$

$$\Rightarrow \nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = 0$$

 $r \in V$: Grenzwertbetrachtung (Regularisierung des Integranden)

statt

$$\frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} = \frac{\boldsymbol{r} - \boldsymbol{r}'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}}$$

betrachten wir:

$$\boldsymbol{f}_a(\boldsymbol{r}-\boldsymbol{r}') = \frac{\boldsymbol{r}-\boldsymbol{r}'}{[(x-x')^2+(y-y')^2+(z-z')^2]^{3/2}} = \frac{\boldsymbol{r}-\boldsymbol{r}'}{[(\boldsymbol{r}-\boldsymbol{r}')^2+a^2]^{3/2}} \quad a \in \mathbb{R}, \ a > 0$$

am Ende Grenzwert lim

$$abla \cdot \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \lim_{a \to 0} \int_V d^3r' \; \rho(\boldsymbol{r}') \, \nabla_{\boldsymbol{r}} \cdot f_a(\boldsymbol{r} - \boldsymbol{r}')$$

$$\frac{\partial}{\partial x} \frac{x - x'}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{3/2}} = \frac{[\dots + a^2]^{3/2} - (x - x')\frac{3}{2} \cdot 2(x - x')[\dots + a^2]^{3/2}}{[\dots + a^2]^3}$$
$$= \frac{(y - y')^2 + (z - z')^2 + a^2 - 2(x - x')^2}{[\dots + a^2]^{3/2}}$$

$$\nabla_{\boldsymbol{r}} \cdot f_a(\boldsymbol{r} - \boldsymbol{r}') = \frac{3a^2}{[(\boldsymbol{r} - \boldsymbol{r}')^2 + a^2]^{5/2}}$$
$$\lim_{a \to 0} f_a(\boldsymbol{r} - \boldsymbol{r}') = \begin{cases} 0 & \boldsymbol{r} \neq \boldsymbol{r}' \\ \infty & \boldsymbol{r} = \boldsymbol{r}' \end{cases}$$

 \Rightarrow zum Integral $\int_V d^3r'\dots$ trägt (in Limes $a\to 0)$ nur der Bereich ${\bm r}'\approx {\bm r}$ bei

$$K_R(\boldsymbol{r}) = \{ \boldsymbol{r}' \in \mathbb{R}^3 : |\boldsymbol{r} - \boldsymbol{r}'| \le R \}$$

$$\lim_{a \to 0} \int_{V} d^{3}r' \ \rho(\mathbf{r}') \nabla_{\mathbf{r}} \cdot f_{a}(\mathbf{r} - \mathbf{r}')$$

$$= \lim_{a \to 0} \int_{K_{R}(\mathbf{r})} d^{3}r' \ \rho(\mathbf{r}') \frac{3a^{2}}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{5/2}}$$

$$+ \lim_{a \to 0} \int_{V/K_{R}(\mathbf{r})} d^{3}r' \rho(\mathbf{r}') \frac{3a^{2}}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{5/2}}$$

Wähle R klein genug, dass man innerhalb $K_R(r)$ $\rho(r')$ in Taylorreihe um r entwickeln kann.

$$\begin{split} \tilde{\bm{r}} &= \bm{r}' - \bm{r}, \ d^3r' = d^3\tilde{r} \\ \int_{K_R(\bm{r})} d^3r' \ \rho(\bm{r}') \frac{3a^2}{[(\bm{r} - \bm{r}')^2 + a^2]^{5/2}} &= \int_{K_R(0)} d^3\tilde{r} \ \rho(\bm{r} + \tilde{\bm{r}}) \frac{3a^2}{[\tilde{\bm{r}}^2 + a^2]^{5/2}} \end{split}$$

Taylorentwicklung von $\rho(\mathbf{r} + \tilde{\mathbf{r}})$ zum $\tilde{\mathbf{r}} = 0$

$$\rho(\mathbf{r} + \tilde{\mathbf{r}}) = \rho(\mathbf{r}) + \tilde{\mathbf{r}} \cdot \nabla \rho(\mathbf{r}) + \dots$$

$$= \int_{K_R(0)} d^3 \tilde{r} \left(\rho(\mathbf{r}) + \tilde{\mathbf{r}} \cdot \nabla \rho(\mathbf{r}) + \dots \right) \frac{3a^2}{\left[\tilde{\mathbf{r}}^2 + a^2\right]^{5/2}}$$

1. Integral:

$$\int_{K_{R}(0)} d^{3}\tilde{r} \ \rho(\mathbf{r}) \frac{3a^{2}}{(\tilde{r}^{2} + a^{2})^{5/2}} = \rho(\mathbf{r}) \underbrace{\int_{0}^{R} d\tilde{r} \frac{3a^{2}}{(\tilde{r}^{2} + a^{2})^{5/2}}}_{\left[\frac{\tilde{r}^{3}}{(\tilde{r}^{2} + a^{2})^{3/2}}\right]_{0}^{R}} \underbrace{\int_{0}^{\sin\theta a\theta a\varphi}}_{=4\pi}$$

$$= 4\pi \rho(\mathbf{r}) \frac{R^{3}}{(R^{2} + a^{2})^{3/2}} \xrightarrow[a \to 0]{} 4\pi \rho(\mathbf{r})$$

2. Integral:

$$\int_{K_R(0)} d^3\tilde{r} \underbrace{\tilde{\boldsymbol{r}}}_{\tilde{\boldsymbol{r}}} \cdot \nabla_{\boldsymbol{r}} \rho(\boldsymbol{r}) \frac{3a^2}{(\tilde{r}^2 + a^2)^{5/2}} = \underbrace{\int_0^R d\tilde{r}}_{\tilde{\boldsymbol{r}}} \frac{3a^2\tilde{r}^3}{(\tilde{r}^2 + a^2)^{3/2}} \underbrace{\int d\Omega \ \boldsymbol{e_{\tilde{r}}} \cdot \nabla \rho(\boldsymbol{r})}_{\text{unabh. von } a} \xrightarrow[a \to 0]{} 0$$

gilt auch für alle höheren Terme

$$\begin{split} \lim_{a \to 0} \int_{V} d^{3}r' \rho(\boldsymbol{r}) \nabla_{\boldsymbol{r}} \cdot \frac{(\boldsymbol{r} - \boldsymbol{r}')}{[(\boldsymbol{r} - \boldsymbol{r}')^{2} + a^{2}]^{3/2}} &= 4\pi \rho(\boldsymbol{r}) \\ \Rightarrow \nabla \cdot \boldsymbol{E}(\boldsymbol{r}) &= \frac{1}{4\pi\varepsilon_{0}} \lim_{a \to 0}^{\prime\prime} = \frac{1}{\varepsilon_{0}} \rho(\boldsymbol{r}) \end{split}$$

$$abla oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon_0}
ho(oldsymbol{r}) \quad oldsymbol{r} \in \mathbb{R}^3$$

1.3.4 Zusammenfassung:

Feldgleichungen der Elektrostatik

Mathe: partielle DGL

$$abla oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon_0}
ho(oldsymbol{r}) ext{ inhomogene DGL}$$
 $abla imes oldsymbol{E}(oldsymbol{r}) = 0 ext{ homogene DGL}$

DGL für Potential $\phi \colon \boldsymbol{E} = -\nabla \phi$

$$\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla \phi) = -\nabla \cdot \begin{pmatrix} \partial_x \phi \\ \partial_y \phi \\ \partial_z \phi \end{pmatrix}$$
$$= -\underbrace{\left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}\right)}_{=:\Delta \phi}$$

Partielle DGL 2. Ordnung:

Poissongleichung

$$\Delta \varPhi(\boldsymbol{r}) = -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

für Gebiete mit $\rho(\mathbf{r}) = 0$:

$$\Delta \phi(\mathbf{r}) = 0$$
 Laplacegleichung

Darstellung der Deltafunktion:

$$\lim_{a \to 0} \int_{\mathbb{R}^3} d^3 r' \ \rho(\mathbf{r}') \underbrace{\nabla_{\mathbf{r}} \cdot \frac{(\mathbf{r} - \mathbf{r}')}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{3/2}}}_{\frac{3a^2}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{5/2}} =: g_a(\mathbf{r}' - \mathbf{r})} = 4\pi \rho(\mathbf{r})$$

 $\frac{1}{4\pi}g_a$ liefert Grenzwertdarstellung der δ -funktion.

$$\lim_{a\to 0} \int_{\mathbb{R}^3} d^3r' \ \rho(\boldsymbol{r}') \frac{1}{4\pi} g_a(\boldsymbol{r}'-\boldsymbol{r}) = \rho(\boldsymbol{r})$$

$$\lim_{a \to 0} g_a(\mathbf{r}' - \mathbf{r}) = \begin{cases} 0 & \mathbf{r} \neq \mathbf{r}' \\ \infty & \mathbf{r} = \mathbf{r}' \end{cases}$$

$$\delta(\mathbf{r}) = \lim_{a \to 0} \frac{1}{4\pi} \nabla_{\mathbf{r}} \cdot \frac{r^2}{(r^2 + a^2)^{3/2}}$$

$$\stackrel{\text{formal}}{=} \frac{1}{4\pi} \nabla \cdot \underbrace{\frac{\mathbf{r}}{r^3}}_{= -\nabla_{\frac{1}{r}}} = -\frac{1}{4\pi} \nabla \cdot \left(\nabla_{\frac{1}{r}}\right) = \frac{-1}{4\pi} \Delta_{\frac{1}{r}}^1 \Rightarrow \Delta_{\frac{1}{r}}^1 = -4\pi \delta(\mathbf{r})$$

z.B. Potential einer Punktladung ρ q in r_0 :

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_0|}$$

$$\Delta\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} q \underbrace{\Delta_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}_0|}}_{=-4\pi\delta(\mathbf{r} - \mathbf{r}_0)} = -\frac{1}{\varepsilon_0} \underbrace{q\delta(\mathbf{r} - \mathbf{r}_0)}_{=\rho(\mathbf{r})} = \frac{1}{\varepsilon_0} \rho(\mathbf{r})$$

Wiederholung

$$\nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

$$\nabla \times \boldsymbol{E}(\boldsymbol{r}) = 0$$

$$\Rightarrow \boldsymbol{E} = -\nabla \Phi$$

$$\Rightarrow \Delta \Phi(\boldsymbol{r}) = -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

1.3.5 Integralsätze der Vektoranalysis

1) Gaußscher Satz:

Sei $\mathbf{A}(\mathbf{r})$ ein Vektorfeld im Volumen $V \subset \mathbb{R}^3$, so gilt:

$$\int_V d^3r \ \nabla \cdot \boldsymbol{A}(\boldsymbol{r}) = \int_{\partial V} d\boldsymbol{f} \ \cdot \boldsymbol{A}(\boldsymbol{r})$$

$$\partial V \ \text{Rand von } V$$

$$d\boldsymbol{f} = \boldsymbol{n} \ df$$
 nach aussen orientierter Normaleneinheutsvektor

Bemerkung:

i) Analogie 1D: Fundamentalsatz der Integralrechnung:

$$\int_{a}^{b} dx \frac{df}{dx} = f(b) - f(a)$$

ii) Geometrische / physikalische Integration:

Fluss des Vektorfeldes \boldsymbol{A} durch ∂V

$$\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{A}$$

Integral über die Quellen von \boldsymbol{A}

$$\int_V d^3r \boldsymbol{\nabla} \cdot \boldsymbol{A}$$

$$\mathbf{A} = \text{const.} \rightarrow \mathbf{\nabla} \cdot \mathbf{A} = 0$$

 $\textit{Beispiel: } \text{Geschwindigkeit einer Flüssigkeit: } \boldsymbol{A}(\boldsymbol{r}) = \boldsymbol{v}(\boldsymbol{r})$

$$v = \text{const.}$$
 $\nabla \cdot v = 0$ $\int_{\partial V} d\mathbf{f} \cdot v = 0$

 \Rightarrow Es gibt keine Quellen von \boldsymbol{v}

$$\nabla \cdot \boldsymbol{r} \neq 0$$
 $\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{v} \neq 0$

iii)

$$\int_{V} d^{3}r \boldsymbol{\nabla} \cdot \boldsymbol{A}(\boldsymbol{r}) = \int_{0}^{\Delta x} dx \int_{0}^{\Delta y} dy \int_{0}^{\Delta z} \left(\frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z} \right)$$

$$\begin{split} &\int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy \underbrace{\int_{0}^{\Delta x} dx \frac{\partial A_{x}}{\partial x}}_{A_{x}(\Delta x, y, z) - A_{x}(0, y, z)} \\ &= \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} A_{x}(\Delta x, y, z) - \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy A_{x}(0, y, z) \\ &= \int_{F_{A}^{+}} d\boldsymbol{f} \cdot \boldsymbol{A} + \int_{F_{A}^{-}} d\boldsymbol{f} \cdot \boldsymbol{A} \end{split}$$

$$F_x^+: d\mathbf{f} = \mathbf{e}_x dy dz$$
 $F_x^-: d\mathbf{f} = -\mathbf{e}_x dy dz$

ebenso gilt dann für die anderen Koordinaten:

$$\int_{0}^{\Delta x} dx \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy \frac{\partial A_{y}}{\partial y} = \int_{F_{y}^{+}} d\mathbf{f} \cdot \mathbf{A} + \int_{F_{y}^{-}} d\mathbf{f} \cdot \mathbf{A}$$
$$\int_{0}^{\Delta x} dx \int_{0}^{\Delta y} dy \int_{0}^{\Delta z} dz \frac{\partial A_{z}}{\partial z} = \int_{F_{z}^{+}} d\mathbf{f} \cdot \mathbf{A} + \int_{F_{z}^{-}} d\mathbf{f} \cdot \mathbf{A}$$

$$\Rightarrow \int_{V} d^{3}r \nabla \cdot \boldsymbol{A} = \int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{A}$$

2) Stokescher Satz

Sei A(r) ein Vektorfeld, F eine Fläche mit Randkurve ∂F , so gilt:

$$\int\limits_{\text{Linienintegral}\to\,\partial F} d\boldsymbol{r} \boldsymbol{A}(\boldsymbol{r}) = \int\limits_{F\,\leftarrow\,\text{Oberflächenint.}} d\boldsymbol{f}\cdot (\nabla\times\boldsymbol{A}(\boldsymbol{r}))$$

$$d\mathbf{f} = \mathbf{n}df$$

Richtung von $d\mathbf{f}$ und Umlauf sinn von ∂F : rechte Hand Regel. Beispiel:

$$\mathbf{A}(\mathbf{r}) = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$

$$\mathbf{\nabla} \times \mathbf{A} = \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_y}{\partial x} - \frac{\partial A_z}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1+1 \end{pmatrix} = 2\mathbf{e}_z$$

$$\mathbf{r}(\varphi) = R \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix} \qquad \varphi \in [0, 2\pi]$$

$$\frac{\partial \mathbf{r}}{\partial \varphi} = R \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}$$

$$\int_{\partial F} d\mathbf{r} \cdot \mathbf{A}(\mathbf{r}) = \int_0^{2\pi} d\varphi \frac{\partial \mathbf{r}}{\partial \varphi} \cdot \mathbf{A}(\mathbf{r}(\varphi))$$

$$= \int_0^{2\pi} d\varphi R(+\sin^2 \varphi + \cos^2 \varphi) = 2\pi R^2$$

$$\int_{-\infty}^{2\mathbf{e}_z} d\mathbf{r} \cdot \mathbf{A}(\mathbf{r}) = 2\pi R^2$$

Vektorfeld ohne Wirbel z.B. $\mathbf{A} = \text{const.}$

$$\nabla \times \boldsymbol{A} = 0$$

Bemerkung:

1.3.6 Integrale Form der Feldgleichung

1.3.7 Gaußsches Gesetz

$$oldsymbol{
abla} oldsymbol{
abla} \cdot oldsymbol{E} = rac{1}{arepsilon_0} \int_V d^3r oldsymbol{
abla} \cdot oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon_0} Q_V \\ = \int_V doldsymbol{f} \cdot oldsymbol{E}(oldsymbol{r}) \\ \int_{\partial V} doldsymbol{f} \cdot oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon} Q_V \end{aligned}$$

Berechnung elektrischer Felder für hochsymmetrische Ladungsverteilungen

Beispiel:

Homogen geladene Kugel mit Radius R und Gesamtladung Q. Damit ist die Ladungsdichte innerhalb der Kugel:

$$\rho = \frac{Q}{V} = \frac{Q}{\frac{4}{3}\pi R^3}$$

$$\boldsymbol{E}(\boldsymbol{r}) = E_r(r)\boldsymbol{e}_r$$

$$r = r \begin{pmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix}$$

$$e_r = \frac{r}{r}$$

 $\boldsymbol{e}_r = \frac{\boldsymbol{r}}{r}$ Fluss von \boldsymbol{E} durch Oberfläche einer Kugel mit Radius r

$$d\mathbf{f} = \mathbf{e}_r r^2 \sin \theta d\theta d\varphi \Rightarrow d\mathbf{f} \cdot \mathbf{E} = E_r(r) r^2 \sin \theta d\theta d\varphi$$

$$\begin{split} \int_{\partial K_r(0)} d\boldsymbol{f} \ \boldsymbol{E} &= \int_0^T d\theta \ \int_0^{2\pi} d\varphi E_r(r) r^2 \sin\theta \\ &= E_r(r) r^2 4\pi \\ &= \frac{1}{\varepsilon_0} Q_{K_r(0)} = \frac{1}{\varepsilon_0} \int_{K_r(0)} d^3 r \ \rho(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \left\{ \begin{array}{l} Q & r > R \\ Q \frac{r^3}{R^3} & r \leq R \end{array} \right. \\ &\Rightarrow E_r(r) = \frac{Q}{4\pi\varepsilon_0} \left\{ \begin{array}{l} \frac{1}{r^2} & r > R \\ \frac{r}{R^3} & r \leq R \end{array} \right. \end{split}$$

Satz von Stokes 1.3.8

$$\nabla \times \boldsymbol{E} = 0$$

Definition: $\gamma = \partial F$

 \int_{γ} ist dann ein Linienintegral über eine geschlossene Kurve

$$\int_{\gamma} d\boldsymbol{r} \cdot \boldsymbol{E} = \int_{F} d\boldsymbol{f} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E}) = 0$$

Zusammenfassung: Feldgleichungen der Elektrostatik differentielle Darstellung:

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \quad \nabla \times \boldsymbol{E} = 0 \quad \rightarrow \quad \boldsymbol{E} = -\nabla \Phi \quad \rightarrow \quad \Delta \Phi = -\frac{1}{\varepsilon_0} \rho$$

Integral Darstellung:

$$\int_{\partial V} d\mathbf{f} \cdot \mathbf{E} = \frac{1}{\varepsilon_0} Q_V \qquad , \qquad \oint_{\gamma} d\mathbf{r} \cdot \mathbf{E} = 0$$

17

1.4 Elektrostatische Energie

potentielle Energie einer Punktladung im äußeren elektrischen Feld Kraft auf Ladung q:

$$\boldsymbol{F} = q\boldsymbol{E}$$

Die Arbeit bei Verschiebung der Ladung von \boldsymbol{a} nach \boldsymbol{b}

$$\begin{split} W &= -\int_{\boldsymbol{a}}^{\boldsymbol{b}} d\boldsymbol{r} \cdot \boldsymbol{F} = -q \int_{\boldsymbol{a}}^{\boldsymbol{b}} d\boldsymbol{r} \cdot \boldsymbol{E}(\boldsymbol{r}) \\ &= q \int_{\boldsymbol{a}}^{\boldsymbol{b}} d\boldsymbol{r} \cdot \boldsymbol{\nabla} \Phi = q \underbrace{(\Phi(\boldsymbol{b}) - \Phi(\boldsymbol{a})}_{\text{Potential differenz}} \end{split}$$

Die Arbeit um q aus dem unendlichen ∞ nach \boldsymbol{r} zu bringen ist dann:

$$W = q(\Phi(\mathbf{r}) - \Phi(\infty))$$

Zur Referenz: $\Phi(\infty) = 0$

Damit ist die Energie der Ladung q im äußeren Feld:

$$\Rightarrow W = q(\Phi(\mathbf{r}))$$
$$\mathbf{E} = -\nabla \Phi$$

Elektrostatische Potentielle Energie

Energie einer Verteilung von Punktladungen

N Ladungen q: an Orten r_i

Zunächst: $\underbrace{i-1}_{\text{erzeugen am Ort } \boldsymbol{r}_i}$ Ladungen q_j bei \boldsymbol{r}_j

Das Potential

$$\Phi(\mathbf{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{i-1} \frac{q_i}{|\mathbf{r}_j - \mathbf{r}_i|}$$

Arbeit um $i\text{--}\mathrm{te}$ Ladung aus dem unendlichen nach \boldsymbol{r} zu bringen:

$$W_i = q_i \Phi(\mathbf{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{j-1} \frac{q_i q_j}{r_{ij}}$$

Somit ergibt sich die gesamte Arbeit für N Ladungen als:

$$W = \sum_{i=2}^{N} W_i = \frac{1}{4\pi\varepsilon_0} \sum_{i=2}^{N} \sum_{j=1}^{i-1} \frac{q_i q_j}{r_{ij}}$$
$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{q_i q_j}{r_{ij}}$$

$$\Rightarrow W = \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\i\neq j}} \frac{q_i q_j}{r_{ij}}$$

$$W = \frac{1}{2} \sum_{i=1}^{N} q_i \left(\sum_{\substack{j\\j\neq i}} \frac{1}{4\pi\varepsilon_0} \frac{q_i}{r_{ij}} \right)$$

$$= \frac{1}{2} \sum_{i=1}^{N} q_i \Phi_{i}(\mathbf{r}_i)$$

Energie einer kontinuierlichen lokalisierten Ladungsverteilung

$$W = \frac{1}{8\pi\varepsilon_0} \int d^3r \int d^3r' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}_j - \mathbf{r}_i|}$$

$$= \frac{1}{2} \int d^3r \ \rho(\mathbf{r}) \frac{1}{4\pi\varepsilon_0} \underbrace{\int_{\mathbb{R}^3} d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r}_j - \mathbf{r}_i|}}_{\Phi(\mathbf{r})}$$

$$E_{\text{ext}}$$

$$W_{\text{ext}} = \int d^3r \ \rho(\mathbf{r}) \Phi_{\text{ext}}(\mathbf{r})$$

Energie W durch E ausdrücken:

$$\begin{split} \boldsymbol{\Delta}\boldsymbol{\Phi} &= -\frac{1}{\varepsilon_0}\boldsymbol{\rho} \quad \Rightarrow \quad \boldsymbol{W} = -\frac{1}{2}\int d^3r\varepsilon_0 \underbrace{\boldsymbol{\Delta}\boldsymbol{\Phi}(\boldsymbol{r})\boldsymbol{\Phi}(\boldsymbol{r})}_{\boldsymbol{\nabla}\cdot(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi})^{-}(\boldsymbol{\nabla}\boldsymbol{\Phi})^{2}} \\ &= -\frac{\varepsilon_0}{2}\underbrace{\int_{\mathbb{R}^{3}}d^3r\boldsymbol{\nabla}\cdot(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi})}_{\boldsymbol{R}\rightarrow\infty} + \frac{\varepsilon_0}{2}\int d^3r\boldsymbol{E}(\boldsymbol{r}) \\ &\lim_{R\rightarrow\infty}\int_{K_{R}(0)}d^3r\boldsymbol{\nabla}\cdot(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi}) = \lim_{R\rightarrow\infty}\int_{\partial K_{R}(0)}d\boldsymbol{f}\cdot\underbrace{(\boldsymbol{\Phi}\boldsymbol{\nabla}\boldsymbol{\Phi})}_{\boldsymbol{R}\rightarrow\infty\frac{1}{R^{3}}} = 0 \\ &= \frac{\varepsilon_0}{2}\int d^3r\boldsymbol{E}(\boldsymbol{r}) \end{split}$$

Zur Umformung oben wurde benutzt:

$$\Phi \overset{R \to \infty}{\sim} \frac{1}{R} \qquad \nabla \Phi \sim \frac{1}{R^2} \qquad d\mathbf{f} = \mathbf{n} \underbrace{d\mathbf{f}}_{\sim R^2}$$

Damit ergibt sich für die Energie einer Verteilung von Punktladungen

$$\Rightarrow \qquad W = \frac{\varepsilon_0}{2} \int d^3r \ E^2(r)$$

nicht für Punkladungen

Energiedichte des elektrostatischen Feldes

$$w(m{r}) = rac{arepsilon_0}{2} m{E}^2(m{r})$$

Beispiel: Plattenkondensator

Fläche F, Ladung $\rightarrow r = \frac{q}{F} \rightarrow \mathbf{E} = \frac{r}{\varepsilon_0} \mathbf{e}_x$

- \rightarrow Die Energiedichte ist: $w = \frac{\varepsilon_0}{2} \mathbf{E}^2 = \frac{\sigma^2}{2\varepsilon_0}$ (nicht für Punktladungen)
- \rightarrow Die Energie beträgt: $W=\int d^3r w({\bm r})=l\cdot F\cdot \frac{\sigma^2}{2\varepsilon_0}$

Potentialdifferenz - Spannung

$$\Phi(\mathbf{r}) - \Phi(0) = -\int_0^{\mathbf{r}} d\mathbf{r}' \cdot \mathbf{E}(\mathbf{r}') = -\int_0^x dx' \frac{\sigma}{\varepsilon_0} = -\frac{\sigma}{\varepsilon} x$$

Die Spannung zwischen zwei Kondensatorplatten ist dann:

$$U = \varPhi(0) - \varPhi(l) = \frac{\sigma}{\varepsilon_0} l = \frac{q}{\varepsilon_0 F} l$$

Die Kapazität ist also:

$$C = \frac{q}{U} = \frac{\varepsilon_0 F}{I}$$

Was ist die Energie bei einer Verteilung von Punktladungen und bei einer kontinuierlichen Ladungsverteilung. Bei einer kontinuierlichen Ladungsverteilung haben wir herausgefunden:

$$W = \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\i\neq j}} \frac{q_i q_j}{r_{ij}} \qquad \text{für Punktladungen}$$

Die Energie der Punktladung selbst steckt hier nicht drinnen. Man muss dabei aufpassen, welche Gleichung man für welches Modell benutzt.

$$E = \frac{1}{4\pi\varepsilon_0} q \frac{\mathbf{r}}{r^3}$$

$$\int d^3r \ E^2 = \int d^3r \ \frac{1}{r^4} = \infty$$

20

1.5 Verhalten des el. Feldes an Grenzflächen mit Flächenladung

\rightarrow Diskontinuitäten von \boldsymbol{E}

Beispiel: Wir betrachten eine homogene Flächenladung.

$$\Rightarrow \mathbf{E} = \frac{\sigma}{2\varepsilon_0} \mathrm{sgn}(z) \mathbf{e}_z$$

$$m{E}_{\perp} = \pm rac{\sigma}{2arepsilon_0} m{e}_z \ m{E}_{\parallel} = 0$$

Das elektrische Feld $\boldsymbol{E}_{\parallel}$ ist gleich der Ableitung des elektrischen Potentials:

Das elektrische Potential ist also stetig.

Normalkomponente E_{\perp}

Gaußscher Satz für V:

$$\begin{split} \int_{V} d^{3}r' \; \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r}) &= \int_{\partial V} d\boldsymbol{f}' \; \boldsymbol{E}(\boldsymbol{r}) \\ &= \int_{\text{Mantel}} d\boldsymbol{f}' \; \boldsymbol{E} + \int_{\partial V_{+}} d\boldsymbol{f}' \; \boldsymbol{E}(\boldsymbol{r}) + \int_{\partial V_{-}} d\boldsymbol{f}' \; \boldsymbol{E} \\ &\downarrow^{\Delta z \to 0} \qquad \qquad \downarrow^{\Delta z \to 0} \qquad \downarrow^{\Delta z \to 0} \\ &\downarrow^{\Delta f'} \; \boldsymbol{n} \cdot \boldsymbol{E}_{+} \qquad - \int_{F} d\boldsymbol{f}' \; \boldsymbol{n} \cdot \boldsymbol{E}_{-} \end{split}$$

 \boldsymbol{E}_{\pm} ist das Feld auf beiden Seiten der Grenzfläche

$$\int_{\partial V} d\boldsymbol{f}' \boldsymbol{E} \overset{\Delta z \to 0}{\longrightarrow} \int_{F} df \boldsymbol{n} \cdot (\boldsymbol{E}_{+} - \boldsymbol{E}_{-}) \overset{F \to 0}{\longrightarrow} F \ \boldsymbol{n} \cdot \left(\boldsymbol{E}_{+}(\boldsymbol{r}) - \boldsymbol{E}_{-}(\boldsymbol{r})\right)$$

$$\int_{V} d^{2}r' \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r'}) = \frac{1}{\varepsilon_{0}} \int_{V} d^{3}r' \rho(\boldsymbol{r}) = \frac{1}{\varepsilon_{0}} \int_{F} df' \sigma(\boldsymbol{r'}) \overset{F \to 0}{\longrightarrow} \frac{1}{\varepsilon_{0}} F \sigma(\boldsymbol{r})$$

$$\frac{1}{\varepsilon_{0}} \rho(\boldsymbol{r'})$$

$$\Rightarrow \boldsymbol{n} \cdot (\boldsymbol{E}_{+}(\boldsymbol{r}) - \boldsymbol{E}_{-}(\boldsymbol{r})) = \frac{1}{\varepsilon_{0}} \sigma(\boldsymbol{r})$$

$$E_{\perp_{\pm}} = \boldsymbol{n} \cdot \boldsymbol{E}_{\pm}$$
 $E_{\perp_{+}}(\boldsymbol{r}) - E_{\perp_{-}}(\boldsymbol{r}) = \frac{1}{\varepsilon_{0}} \sigma(\boldsymbol{r})$

Tangentialkomponente $E \parallel$

Satz von Stokes:

$$0 = \oint_{\gamma} d\mathbf{r}' \cdot \mathbf{E} \xrightarrow{\Delta z \to 0} \int_{-\frac{L}{2}}^{-\frac{L}{2}} ds \mathbf{t} \cdot (\mathbf{E}_{+} - \mathbf{E}_{-}) \xrightarrow{L \to 0} L \mathbf{t} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = 0$$
$$\to \mathbf{t} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = 0$$

 \rightarrow Die Tangentialkomponente ist stetig

$$E_{\parallel_+} = E_{\parallel_-}$$

Insgesamt ergibt sich damit:

$${m E}_+({m r}) - {m E}_-({m r}) = rac{\sigma}{arepsilon_0} {m n}$$

Das elektrische Potential Φ ist damit stetig.

$$\underbrace{\Phi(\boldsymbol{r}_b) - \Phi(\boldsymbol{r}_a)}_{\Phi_+(\boldsymbol{r}) - \Phi_-(\boldsymbol{r})} = \int_{\boldsymbol{r}_a}^{\boldsymbol{r}_b} d\boldsymbol{r}' \cdot \boldsymbol{E} \quad \stackrel{\Delta z \to 0}{\longrightarrow} 0$$

1.5.1 Randbedingungen an el. Leitern

Leiter: Material mit freibeweglichen Ladungsträgern (Metall)

Eigenschaften von \boldsymbol{E} im Leiter:

i)
$$E = 0$$

ii)
$$0 = \boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho, \qquad \rho(\boldsymbol{r}) = 0$$

iv) Potential
$$\Phi(\mathbf{r}_b) - \Phi(\mathbf{r}_a) = 0 \rightarrow \Phi(\mathbf{r}) = \text{const.}$$

Randbedingungen

$$egin{aligned} m{E}_{+} - m{E}_{-} &= rac{\sigma^{-}}{arepsilon_{0}} m{n} \ m{E}_{-} &= 0 \ \
ightarrow m{E}_{+}(m{r}) &= rac{\sigma(m{r})}{arepsilon_{0}} m{n}(m{r}) \end{aligned}$$

[Folie: Ladung an Oberfläche eines Leiters]

Randwertprobleme (RWP) der Elektrostatik und 1.6 Lösungsmethoden

Formulierung des Randwertproblems

Das elektrische Potential: $\Phi(\mathbf{r})$: $\mathbf{E}(\mathbf{r}) = -\nabla \Phi(\mathbf{r})$

$$\Delta \Phi(r) = -\frac{1}{\varepsilon_0} \rho(r)$$
 Poisson-Gleichung

Für eine gegebene lokale Ladungsverteilung ρ gilt:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$\to \Phi(\mathbf{r}) \stackrel{|\mathbf{r}| \to 0}{\longrightarrow} 0$$

Typische Problemstellung:

Ladungsverteilung ρ + Werte des Potentials auf Randfläche

Beispiel:

Randwertproblem: Gegeben: $\rho(\mathbf{r}')$ im Raumbereich V $\Phi(\mathbf{r})$ oder $\mathbf{E}(\mathbf{r})$ auf Randfläche ∂V

Gesucht: $\Phi(\mathbf{r})$, $\mathbf{E}(\mathbf{r})$ überall in V

Zwei Fälle:

- i) $\Phi(r)$ ist auf der Randfläche gegeben \rightarrow Dirichlet-Randbedingung
- ii) $\boldsymbol{E}(\boldsymbol{r})$ ist auf der Randfläche gegeben
 - \rightarrow Neumannsche Randbedingung

Gegeben sei: $n \cdot E$ dies ist gleich der Normalenableitung:

$$oldsymbol{n}\cdotoldsymbol{E}=-oldsymbol{n}oldsymbol{
abla}\Phi=-rac{\partial\Phi}{\partial n}$$

Wir beschränken uns vorwiegend auf den ersten Fall. Zur Lösung dieser Probleme gibt es einige Methoden. Zum Einstieg und zur Wiederholung betrachten wir zunächst die Methode der Spiegelladung.

1.6.2 Methode der Bildladung (Spiegelladung)

Punktladung vor leitender, geerdeter Metallplatte

$$oldsymbol{\Delta} \Phi(oldsymbol{r}) = -rac{1}{arepsilon_0}
ho(oldsymbol{r}) = -rac{q}{arepsilon_0} \delta(oldsymbol{r} - oldsymbol{r}_0) \ oldsymbol{r} \in V \qquad oldsymbol{r}_0 = (d,0,0) \qquad V = \{oldsymbol{r} \in \mathbb{R}^3, x > 0\}$$

Randbedingungen:

$$\Phi(\mathbf{r}) = 0$$
 für $\mathbf{r} \in \partial V$, d.h. $\mathbf{r} = (0, y, z)$

Idee: Ersetze ursprüngliche Problem durch "Fiktives" Problem mit zusätzlichen Ladungen außerhalb von V, welche die Randbedingungen simulieren.

Potential der Punkladungen in r_0 :

$$\Phi_q(m{r}) = rac{1}{4\piarepsilon_0} rac{q}{|m{r} - m{r}_0|}$$

addiere Ladung -q in $\mathbf{r}'_0 = (-d, 0, 0) = -\mathbf{r}_0$

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{|\mathbf{r} - \mathbf{r}_0|} - \frac{q}{|\mathbf{r} + \mathbf{r}_0|} \right)$$

Schauen wir nun nach ob dies die Poisson-GLeichung erfüllt:

$$\begin{split} \boldsymbol{\Delta}\boldsymbol{\Phi} &= \frac{q}{4\pi\varepsilon_0} \Bigg(\underbrace{\boldsymbol{\Delta} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}_0|}}_{=-4\pi\delta(\boldsymbol{r} - \boldsymbol{r}_0)} - \underbrace{-\boldsymbol{\Delta} \frac{1}{|\boldsymbol{r} + \boldsymbol{r}_0|}}_{=-4\pi\delta(\boldsymbol{r} + \boldsymbol{r}_0)} \Bigg) \\ &= -\frac{q}{\varepsilon_0} \delta(\boldsymbol{r} - \boldsymbol{r}_0) + \frac{q}{\varepsilon_0} \underbrace{\delta(\boldsymbol{r} + \boldsymbol{r}_0)}_{=0 \text{ für } \boldsymbol{r} \neq -\boldsymbol{r}_0 \checkmark}_{\forall \boldsymbol{r} \in V} \forall \boldsymbol{r} \in V \end{split}$$

Diskussion der Lösung

i) Struktur

$$\Phi(\boldsymbol{r}) = \underbrace{\frac{q}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}_0|}}_{=: \Phi_{\text{s}}(\boldsymbol{r})} + \underbrace{\frac{(-q)}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} + \boldsymbol{r}_0|}}_{=: \Phi_{\text{hom}}(\boldsymbol{r})}$$

$$r \in V$$

$$\Delta \Phi_{
m s}(m{r}) = -rac{1}{arepsilon_0}
ho(m{r})$$
 Poisson-Gleichung $\Delta \Phi_{
m hom}(m{r}) = 0$ Laplace-Gleichung

Mathematisch: Lösung inhomogener DGL

$$\Phi(\mathbf{r}) = \Phi_{\mathrm{s}}(\mathbf{r}) + \Phi_{\mathrm{hom}}(\mathbf{r})$$

 \varPhi_{hom} wird so gewählt, dass die Randbedingungen erfüllt werden:

$$r \in \partial V : \quad \Phi_{\text{o}}(r) = \Phi_{\text{s}}(r) + \Phi_{\text{hom}}(r)$$

ii) Elektrisches Feld

$$\boldsymbol{E} = -\boldsymbol{\nabla}\Phi = \frac{q}{4\pi\varepsilon_0} \left(\frac{(x-d,y,z)}{|\boldsymbol{r} - \boldsymbol{r}_0|^3} - \frac{(x+d,y,z)}{|\boldsymbol{r} + \boldsymbol{r}_0|^3} \right)$$

An der Oberfläche $x \to 0, x \ge 0$ $|\mathbf{r} \pm \mathbf{r}_0|^3 \to (d^2 + y^2 + z^2)$

$$\left. \boldsymbol{E}(\boldsymbol{r}) \right|_{\boldsymbol{r} \in \partial V} = -\frac{qd}{2\pi\varepsilon_0} \frac{1}{(d^2 + y^2 + z^2)^{3/2}} \boldsymbol{e}_x$$

Durch das externe elektrische Feld verschieben sich die Ladungsträger im Metall und es entsteht eine Influenzladung an der Oberfläche.

iii) Influenzladung auf Metalloberfläche

$$oldsymbol{E}_{+}-oldsymbol{E}_{-}=rac{\sigma}{arepsilon_{0}}oldsymbol{n} \qquad oldsymbol{n}=oldsymbol{e}_{x}$$

 $r \in \partial V$:

$$\sigma(\mathbf{r}) = \varepsilon_0 \mathbf{E}_+(\mathbf{r}) = -\frac{qd}{2\pi (d^2 + y^2 + z^2)^{3/2}}$$

gesamte influenzierte Ladung

$$q_i = \int_{\partial V} df \ \sigma(\boldsymbol{r}) = \dots = -q$$

iv) Kraft zwischen Punktladungen und Metallplatte

$$oldsymbol{F} = q ilde{oldsymbol{E}}(oldsymbol{r}_0) = rac{-q^2}{4\piarepsilon_0 (2d)^2} oldsymbol{e}_x$$

Eindeutigkeit der Lösung des Randwertproblems

Dirichlet-Randwertproblem:

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 $\mathbf{r} \in V$
$$\Phi(\mathbf{r}) = \Phi_0(\mathbf{r})$$
 $\mathbf{r} \in \partial V$

Annahme: $\Phi_1,\ \Phi_2$ lösen RWP

d.h.
$$\Delta \Phi_1(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \rho(\boldsymbol{r}) = \Delta \Phi_2(\boldsymbol{r}) \qquad \boldsymbol{r} \in V$$

$$\Phi_1(\boldsymbol{r}) = \Phi_0(\boldsymbol{r}) = \Phi_2(\boldsymbol{r}) \qquad \boldsymbol{r} \in \partial V$$

Setze:

$$\psi(\mathbf{r}) := \Phi_1(\mathbf{r}) - \Phi_2(\mathbf{r})$$

$$\Delta \Phi(\mathbf{r}) = 0 \quad \mathbf{r} \in V$$

$$\mathbf{r} \in \partial V \quad \psi(\mathbf{r}) = \Phi_1(\mathbf{r}) - \Phi_2(\mathbf{r}) = 0$$

Greensche Identität:

g, h Funktionen an V:

$$\int_{V} d^{3}r \left[(\boldsymbol{\nabla}(\boldsymbol{r})) \cdot (\boldsymbol{\nabla}h(\boldsymbol{r})) + g(\boldsymbol{r})\Delta h(\boldsymbol{r}) \right]$$

$$= \int_{\partial V} d\boldsymbol{f} \cdot (g(\boldsymbol{r})\boldsymbol{\nabla}h(\boldsymbol{r})$$

$$= \int_{\partial V} d\boldsymbol{f}g(\boldsymbol{r}) \underbrace{\boldsymbol{n} \cdot \boldsymbol{\nabla}h(\boldsymbol{r})}_{=\frac{\partial h}{\partial n}(\boldsymbol{r})}$$

$$h = g = \psi$$

$$\Rightarrow \int_{V} d^{3}r \ ((\nabla \psi)^{2} + \psi(\mathbf{r}) \underbrace{\Delta \psi(\mathbf{r})}_{=0}) = \int_{\partial V} d\mathbf{f} \ \underbrace{\psi(\mathbf{r})}_{=0} \frac{\partial \psi(\mathbf{r})}{\partial n}$$

$$\Rightarrow \int_{V} d^{3}r \ (\nabla \psi(\mathbf{r}))^{2} = 0 \Rightarrow \nabla \psi(\mathbf{r}) = 0 \qquad \mathbf{r} \in V$$

$$\psi(\mathbf{r}) = \text{const.} \qquad \psi(\mathbf{r}) = 0 \text{ in } V \Rightarrow \Phi_{1}(\mathbf{r}) = \Phi_{2}(\mathbf{r})$$

1.6.3 Formale Lösungen des elektrostatischen Randwertproblems mit Greenschen Funktionen

GF: generelle Methode um inhomogene DGL zu lösen

$$\Delta \Phi(\boldsymbol{r}) = -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

Greensche Funktionen der Poisson-Gleichung: $\mathcal{G}(r,r')$ mit

Greensche Funktionen der Poisson-Gleichung

$$\Delta_{m{r}}\mathcal{G}(m{r},m{r}') = -rac{1}{arepsilon_0}\delta(m{r}-m{r}')$$

Diese Gleichung geht vor einer Punktladung mit q=1 aus, ist hier aber zunächst einmal eine Definition.

 \mathcal{G} bekannt

$$ightarrow \Delta_{m{r}} \mathcal{G}(m{r}, m{r}') = -rac{1}{arepsilon_0} \delta(m{r} - m{r}')$$
 $ightarrow \Delta_{m{r}} \mathcal{G}(m{r}, m{r}') \underset{|m{r}|
ightarrow \infty}{\longrightarrow} 0$

Dirichlet-Randwertproblem

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r}) \quad \mathbf{r} \in V$$
$$\Phi(\mathbf{r}) = \Phi_0(\mathbf{r}) \quad \mathbf{r} \in \partial V$$

GF:

$$\Delta_{\boldsymbol{r}} \mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = \frac{1}{\varepsilon_0} \delta(\boldsymbol{r} - \boldsymbol{r}') \quad \boldsymbol{r}, \boldsymbol{r}' \in V$$
$$\mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = 0 \text{ für } \underset{\boldsymbol{r}' \in V}{\boldsymbol{r} \in \partial V}$$

Hiermit haben wir das Grenzwertproblem auf eine Integration zurückgeführt. Dies werden wir nun Beweisen:

Die 2. Greensche Identität lautet:

$$\int_{V} d^{3}r' \left(g(\mathbf{r}')\Delta_{\mathbf{r}'}h(\mathbf{r}') - h(\mathbf{r}')\Delta_{\mathbf{r}'}g(\mathbf{r}')\right)$$

$$= \int_{\partial V} d\mathbf{f}' \cdot \left(g(\mathbf{r}')\nabla_{\mathbf{r}'}h(\mathbf{r}') - h(\mathbf{r}')\nabla_{\mathbf{r}'}g(\mathbf{r}')\right)$$

$$g(\mathbf{r}') := \Phi(\mathbf{r}') \qquad h(\mathbf{r}') := \mathcal{G}(\mathbf{r}', \mathbf{r})$$

$$\Rightarrow \int_{V} d^{3}r' \left[\Phi(\mathbf{r}')\underbrace{\Delta_{\mathbf{r}'}\mathcal{G}(\mathbf{r}', \mathbf{r}) - \mathcal{G}(\mathbf{r}', \mathbf{r})}_{=-\frac{1}{\varepsilon_{0}}\rho(\mathbf{r}')}\underbrace{\Delta_{\mathbf{r}'}\Phi(\mathbf{r}')}_{=-\frac{1}{\varepsilon_{0}}\rho(\mathbf{r}')}\right]$$

$$= \int_{\partial V} d\mathbf{f}' \left[\underbrace{\Phi(\mathbf{r}')}_{=\Phi_{0}(\mathbf{r}')} \nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}', \mathbf{r}) - \underbrace{\mathcal{G}(\mathbf{r}', \mathbf{r})}_{=0} \nabla_{\mathbf{r}'}\Phi(\mathbf{r}')\right]$$

$$\Rightarrow = -\frac{1}{\varepsilon_{0}}\Phi(\mathbf{r}) + \frac{1}{\varepsilon_{0}}\int_{V} d^{3}\mathbf{r}' \ \mathcal{G}(\mathbf{r}, \mathbf{r}')\rho(\mathbf{r})$$

$$= \int_{\partial V} d\mathbf{f}' \ \Phi_{0}(\mathbf{r}')\nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}, \mathbf{r}')$$

$$= \int_{\partial V} d\mathbf{f}' \ \Phi_{0}(\mathbf{r}')\frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')$$

$$\Rightarrow \Phi(\mathbf{r}) = \int_{V} d^{3}\mathbf{r}' \ \mathcal{G}(\mathbf{r}, \mathbf{r}')\rho(\mathbf{r}') - \varepsilon_{0}\int_{\partial V} d\mathbf{f}' \ \Phi_{0}(\mathbf{r}')\frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')$$
Es gilt (HA):
$$\mathcal{G}(\mathbf{r}, \mathbf{r}') = \mathcal{G}(\mathbf{r}', \mathbf{r}) \quad \text{Reziprozität}$$

$$\to \nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}, \mathbf{r}') = \nabla_{\mathbf{r}'}\mathcal{G}(\mathbf{r}', \mathbf{r}')$$

$$\Delta_{\mathbf{r}}\mathcal{G}(\mathbf{r}, \mathbf{r}') = \Delta_{\mathbf{r}'}\mathcal{G}(\mathbf{r}, \mathbf{r}')$$

$$\Phi(\mathbf{r}) = \int_{V} d^{3}r' \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') - \varepsilon_{0} \int_{\partial V} df' \Phi_{0}(\mathbf{r}') \frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')$$

Bemerkungen:

- i) Spezialfälle:
 - 1) V Ladungsfrei $(\rho(\mathbf{r}) = 0 \text{ in } V)$ $\rightarrow \Phi(\mathbf{r}) = -\varepsilon \int_{\partial V} \mathrm{d}f' \Phi_0(\mathbf{r}) \frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')$

$$\Rightarrow \Phi(\mathbf{r}) = -\varepsilon \Phi_0 \underbrace{\int_{\partial V} \mathrm{d}f' \frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')}_{\int \mathrm{d}f' \mathbf{n} \cdot \nabla_{\mathbf{r}'} \mathcal{G}}$$

$$= -\varepsilon \Phi_0 \int \mathrm{d}\mathbf{f}' \cdot \nabla_{\mathbf{r}'} \mathcal{G}$$

$$\stackrel{\mathrm{S.v.G.}}{=} \int_{V} \mathrm{d}^3 \mathbf{r}' \underbrace{\nabla_{\mathbf{r}'} \cdot (\nabla_{\mathbf{r}'} \mathcal{G})}_{\Delta_{\mathbf{r}'} \cdot \mathcal{G} = -\frac{1}{\varepsilon_0} \delta(\mathbf{r} - \mathbf{r}')}$$

$$= -\frac{1}{\varepsilon_0}$$

$$\Rightarrow \Phi(\mathbf{r}) = \Phi_0$$

2) $V = \mathbb{R}^3$, lokalisierte Ladungsverteilung ρ

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3 \mathbf{r}' \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

$$\mathcal{G}(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\mathbf{r} - \mathbf{r}'|} \qquad \int_{\partial V} \cdots \to 0$$

eine spezielle Lösung für \mathcal{G}

ii) \mathcal{G} ist auch die Lösung einer inhomogenen partiellen DGL

$$\mathcal{G}(m{r},m{r}') = \underbrace{\mathcal{G}_s(m{r},m{r}')}_{\substack{ ext{spezielle} \ ext{L\"osung} \ ext{ugeh\"origen} \ ext{homogenen}}}_{\substack{ ext{DGL}} + \ ext{DGL}} + \underbrace{F(m{r},m{r}')}_{\substack{ ext{L\"osung} \ ext{zugeh\"origen} \ ext{homogenen}}}$$

$$\begin{split} \Delta_{\boldsymbol{r}'}\mathcal{G}_s(\boldsymbol{r},\boldsymbol{r}') &= -\frac{1}{\varepsilon_0}\delta(\boldsymbol{r}-\boldsymbol{r}')\\ \Delta_{\boldsymbol{r}'}F(\boldsymbol{r},\boldsymbol{r}') &= 0 \end{split}$$

$$\mathcal{G}_j(\boldsymbol{r},\boldsymbol{r}') = \frac{1}{4\pi\varepsilon_0}\frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|} \quad \text{Laplace anwenden !} \\ \mathcal{G}(\boldsymbol{r},\boldsymbol{r}') &= \underbrace{\frac{1}{4\pi\varepsilon_0}\frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|}}_{\text{immer zur Lösung}} \quad + \underbrace{\underbrace{F(\boldsymbol{r},\boldsymbol{r}')}_{\text{so wählen, dass}}}_{\text{Randbedingungen erfüllt}} \end{split}$$

F(r, r') so wählen, dass die Randbedingungen erfüllt sind: G(r, r') = 0 $r \in \partial V$.

1.6.4 Greensche Funktion des Dirichlet Randwertproblems einer Ebene

$$\Delta_{\boldsymbol{r}'}\mathcal{G}(\boldsymbol{r},\boldsymbol{r}') = -\frac{1}{\varepsilon_0}\delta(\boldsymbol{r}-\boldsymbol{r}') \qquad \qquad \boldsymbol{r},\boldsymbol{r}' \in V$$

$$\mathcal{G}(\boldsymbol{r},\boldsymbol{r}') = 0 \qquad \qquad \boldsymbol{r} \in \partial V \ \ (\mathbf{z}=0), \quad \boldsymbol{r} \in V$$

$$V = \{\boldsymbol{r} \in \mathbb{R}^3 | z < 0\}$$

$$x \qquad \qquad V = \{\mathbf{r} \in \mathbb{R}^3 | z < 0\}$$

Analog: Punktladung q = 1 in r' vor leitender Ebene mit Potential 0

$$\Phi(\mathbf{r}) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} - \frac{1}{|\mathbf{r} - \tilde{\mathbf{r}}'|} \right) \qquad \tilde{\mathbf{r}}' = (x', y', -z')$$

$$\mathcal{G}(\boldsymbol{r},\boldsymbol{r}') = \frac{1}{q}\Phi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0}\left(\frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|} - \frac{1}{|\boldsymbol{r}-\tilde{\boldsymbol{r}}'|}\right)$$

Beweis:

$$\Delta_{\mathbf{r}} = \frac{1}{4\pi\varepsilon_0} \left(\Delta_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}'|} - \Delta_{\mathbf{r}} \frac{1}{|\mathbf{r} - \tilde{\mathbf{r}}'|} \right) = -\frac{1}{\varepsilon_0} \delta(\mathbf{r} - \mathbf{r}')$$

$$\parallel \qquad \qquad \parallel$$

$$-4\pi\delta(\mathbf{r} - \mathbf{r}') \qquad -4\pi\delta(\mathbf{r} - \tilde{\mathbf{r}}') = 0$$

1. Teil:
$$\mathbf{r} \in \partial V$$
 : $z = 0$, 2. Teil = 0: $\tilde{\mathbf{r}}' \notin V$.

$$\begin{aligned} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} &= \frac{1}{\sqrt{(x - x')^2 + (y - y')^2 + (z')^2}} = \frac{1}{\sqrt{(x - x')^2 + (y - y')^2 + (-z)^2}} \\ &= \frac{1}{|\boldsymbol{r} - \tilde{\boldsymbol{r}}'|} \end{aligned}$$

$$G(\mathbf{r}, \mathbf{r}') = 0 \quad \mathbf{r} \in \partial V$$

Bemerkung:

i)
$$\mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} + F(\boldsymbol{r}, \boldsymbol{r}')$$

 $F(\boldsymbol{r}, \boldsymbol{r}') = -\frac{1}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \tilde{\boldsymbol{r}}'|}$
 $\Delta_{\boldsymbol{r}} F(\boldsymbol{r}, \boldsymbol{r}') = 0$

ii) Symmetrie der Greenschen Funktion (Reziprozitätsrelation):

$$G(r, r') = G(r', r)$$

 \to formale Lösung des Randwertproblems für eine beliebige Ladungsverteilung und Randwerte $\Phi_0(r)$ in der Ebene:

$$\Phi(\mathbf{r}) = \int_{V} d^{3}r' \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') - \varepsilon_{0} \int_{\partial V} df' \Phi(\mathbf{r}') \frac{\partial \mathcal{G}}{\partial n'} \qquad \Phi_{0}(x, y, 0) \xrightarrow{z} \Phi \equiv 0$$

$$\rho \equiv 0 \quad \Rightarrow \quad \Phi(\mathbf{r}) = \varepsilon_{0} \int_{\sqrt{x^{2} + y^{2}} \leq R} dy' dx' \Phi_{0}(x', y', 0) \frac{\partial \mathcal{G}}{\partial n'} \qquad x$$

1.6.5 Separation der Variablen und Entwicklung nach orthogonalen Funktionen

Eine allgemeine Methode zur Lösung partieller DGL.

Zur Vereinfachung: Laplace.Gl $\Delta \Phi = 0 + \text{Randbedingung}$

Verbindung zur Poisson-Gl: $\Delta \varPhi({\bm r}) = -\frac{1}{\varepsilon_0} \rho({\bm r})$

$$\Phi(\mathbf{r}) = \Phi_s(\mathbf{r}) + \Phi_{
m hom} \qquad \Phi(\mathbf{r}) = rac{1}{4\piarepsilon_0} \int \mathrm{d}^3 r' rac{
ho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} + \Phi_{
m hom}$$

Motivation: 1-Dim Randwertproblem

Randbedingungen:

$$\begin{split} \varPhi(0) &= c_1 = \varPhi_1 \qquad \varPhi(l_x) = \varPhi_1 + c_2 l_x = \varPhi_2 \\ &\to c_2 = \frac{\varPhi_2 - \varPhi_1}{l_x} \quad \to \quad \varPhi(x) = \varPhi_1 + \frac{\varPhi_2 - \varPhi_1}{l_x} x \\ &\Rightarrow \pmb{E} = - \pmb{\nabla} \varPhi = - \frac{\varPhi_2 - \varPhi_1}{l_x} e_x \end{split}$$

2-Dim Randwertproblem

Wir suchen: $\Phi = \Phi(x, y)$ mit $\rho = 0$

$$0 = \Delta \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2}$$

Randbedingungen:

i)
$$\Phi(\mathbf{r}) = 0$$
 $y = 0$

ii)
$$\Phi(\mathbf{r}) = 0$$
 $x = 0$

iii)
$$\Phi(\mathbf{r}) = 0$$
 $x = l_x$

iv)
$$\Phi(\mathbf{r}) = \Phi_R(x)$$
 $y = l_y$

Separationsansatz: $\Phi(x,y) = f(x)g(y)$

$$0 = \Delta \Phi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(x)g(y)$$
$$= \frac{\partial^2 f}{\partial x^2} g(y) + f(x) \frac{\partial^2 g}{\partial y^2}$$
$$= \Delta \Phi = \frac{\mathrm{d}^2 f}{\mathrm{d} x^2} g(y) + f(x) \frac{\mathrm{d}^2 g}{\mathrm{d} y^2}$$

$$0 = \Delta \Phi = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} g(y) + f(x) \frac{\mathrm{d}^2 g}{\mathrm{d}y^2} \qquad \left| \cdot \frac{1}{f g} \right|$$

umformen:

$$\Rightarrow \underbrace{\frac{1}{f(x)} \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}}_{\text{Fkt. von}x} = -\underbrace{\frac{1}{g(y)} \frac{\mathrm{d}^2 g}{\mathrm{d}y^2}}_{\text{Fkt. von}y} = \text{const.} = -\alpha^2$$

$$\frac{\mathrm{d}^2 f}{\mathrm{d}x^2} = -\alpha^2 f(x) \quad \text{mit } e^{i\alpha x} \qquad \frac{\mathrm{d}^2 g}{\mathrm{d}y^2} = \alpha^2 g(y) \quad \text{mit } e^{\alpha y}$$

$$e^{i\alpha x} \Rightarrow f(x) = a\sin(\alpha x) + b\cos(\alpha x)$$
 $e^{\alpha y} \Rightarrow g(x) = c\sinh(\alpha y) + d\cosh(\alpha y)$

$$\Phi(x,y) = f(x) \cdot g(y)$$

Randbedingungen:

i)
$$0 = \Phi(x,0) = f(x) \cdot d \Rightarrow d = 0$$

ii)
$$0 = \Phi(0, y) = b \cdot q(y) \implies b = 0$$

$$\Rightarrow \Phi(x,y) = a\sin(\alpha x)c\sinh(\alpha y) = A\sin(\alpha x)\sinh(\alpha y)$$

$$\parallel$$

$$a \cdot c$$

iii)
$$0 = \Phi(l_x, y) = A\sin(\alpha l_x)\sinh(\alpha y) \rightarrow \sin(\alpha l_x) = 0 \quad \Rightarrow \quad \alpha = \frac{n\pi}{l_x} \qquad n \in \mathbb{Z}(\text{oder } n \in \mathbb{N})$$

$$\rightarrow \Phi_n(x,y) = A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_y}\right)$$

iv) $\Phi(x, l_y) = \Phi_R(x)$

$$\Rightarrow \Phi_R(x) = A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi l_y}{l_x}\right) \qquad \forall x \in [0, l_y]$$

im allgemeinen ist dies nicht möglich, aber da es sich um eine lineare DGL ($\Delta \Phi = 0$) handelt:

 \rightarrow Linearkombinationen von Lösungen sind auch Lösungen

Ansatz für allgemeine Lösung:

$$\Phi(x,y) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_x}\right)$$

Der Ansatz erfüllt $\Delta \Phi = 0$ und erfüllt die Randbedingungen i), ii), iii). Um iv) zu erfüllen fordern wir:

$$\Phi_R(x) \stackrel{!}{=} \underbrace{\sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l_x}\right)}_{\text{Entwicklung}} \underbrace{\sinh\left(\frac{n\pi l_y}{l_x}\right)}_{\text{const.}}$$

Der erste Teil des Ausdrucks entspricht der Entwicklung von $\Phi_R(x)$ nach Funktionen $\sin\left(\frac{n\pi x}{l_x}\right)$ also einer Fourier-Reihe.

Bestimmung von A_n : Multipliziere mit $\sin\left(\frac{n\pi x}{l_x}\right)$ $m \in \mathbb{N}$ und danach Integration:

$$\int_{0}^{l_{x}} \mathrm{d}x \sin\left(\frac{m\pi x}{l_{x}}\right) \varPhi_{R}(x) = \sum_{n=1}^{\infty} A_{n} \sinh\left(\frac{m\pi l_{y}}{l_{x}}\right) \int_{0}^{l_{x}} \mathrm{d}x \underbrace{\sin\left(\frac{m\pi x}{l_{x}}\right) \sin\left(\frac{n\pi x}{l_{x}}\right)}_{=\frac{l_{x}}{2}\delta_{nm}}$$

$$= A_{m} \frac{l_{x}}{2} \sinh\left(\frac{n\pi l_{y}}{l_{x}}\right)$$

$$A_{m} = \frac{2}{l_{x} \sinh\left(\frac{n\pi l_{y}}{l_{x}}\right)} \int_{0}^{l_{x}} \mathrm{d}x \sin\left(\frac{n\pi x}{l_{x}}\right) \varPhi_{R}(x)$$

in $\Phi(x,y)$ einsetzen

Wiederholung
$$\Delta \Phi(\mathbf{r}) = 0 + \text{Randbedingungen}$$

$$\Phi = \Phi(x, y) = f(x)g(y)$$

$$\Phi_n(x, y) = A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_x}\right)$$

$$n \in \mathbb{N}$$

$$\Phi(x, y) = \sum_n A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_x}\right)$$

$$A_n = \frac{2}{l_x \sinh\left(\frac{n\pi l_y}{l_x}\right)} \int_0^{l_x} dx \sin\left(\frac{n\pi x}{l_x}\right) \Phi_R(x)$$

1.6.6 Vollständige Orthonormale Funktionensysteme (VONS)

Betrachte Funktionen g(x), h(x) auf $I = [a, b] \subset \mathbb{R}$

$$h, q: I \to \mathbb{R} (\mathbb{C})$$

Skalar
produkt:
$$(g,h)=\int_a^b \mathrm{d}x\ g^*(x)h(x)$$
 $(g,h)=0$: g
und h orthogonal, $(g,g)=1$: g normiert Norm:
 $||g||=\sqrt{(g,g)}$

Ein abzählbarer Satz von Funktionen $\{f_n\} = \{f_1, f_2, \dots\}$

Heißt orthonormiert falls: $(f_m, f_n) = \delta_{nm} \rightarrow \text{Orthonormal}$ system

Vollständigkeit: Ein Satz von Funktionen heißt vollständig (VONS) falls jede quadratintegrable Funktion $g: I \to \mathbb{R}(\mathbb{C})$ in der Form $g(x) = \sum_{n=1}^{\infty} a_n f_n(x)$ dargestellt werden kann. Genauer: $\lim_{n \to \infty} \int_a^b \mathrm{d}x \mid g(x) - \sum_{n=1}^{\infty} a_n f_n(x) \mid = 0$

Bestimmung der Koeffizient a_n :

$$g(x) = \sum_{n} a_n f_n(x) \qquad \left| \int dx \ f_m^*(x) \right|$$

$$\int_a^b dx \ f_m^*(x) g(x) = \sum_{n=1}^\infty \underbrace{\int_a^b dx \ f_m^*(x) f_n(x)}_{=\delta_{nm}} = a_m$$

$$g(x) = \sum_{n} a_n f_n(x) = \sum_{n} (f_n, g) f_n(x)$$

$$= \sum_{n} \int_a^b dx' \ f_n^*(x') g(x') f_n(x)$$

$$= \int_a^b dx' \ g(x') \underbrace{\sum_{n=1}^\infty f_n(x) f_n^*(x')}_{=\delta(x-x')}$$

da $\int_a^b \mathrm{d}x' g(x') = g(x)$

Vollständigkeitsrelation

$$\sum_{n=1}^{\infty} f_n(x) f_n^*(x') = \delta(x - x')$$

Beispiele:

$$f_n(x) = \sqrt{\frac{l}{2}} \sin\left(\frac{n\pi x}{l}\right) \qquad I = [0, l]$$

 $(f_n, f_m) = \delta_{nm}$ $g: I \to \mathbb{R} \quad g(0))0 = g(l)$

$$g(x) = \sum_{n} a_n \sqrt{\frac{l}{2}} \sin\left(\frac{n\pi x}{l}\right)$$

2) Fourierreihe: $\{f_n\}$:

$$n = 0: \quad \frac{1}{\sqrt{l}}$$

$$n \in \mathbb{N}: \qquad \sqrt{\frac{2}{l}} \sin\left(\frac{n\pi x}{l}\right) \quad ; \qquad \sqrt{\frac{2}{l}} \cos\left(\frac{n\pi x}{l}\right) \qquad I = [0, l]$$

$$g(x) = a_0 \frac{1}{\sqrt{l}} + \sum_{n=1}^{\infty} \left[a_n \sqrt{\frac{2}{l}} \sin\left(\frac{2\pi x}{l}\right) + b_n \sqrt{\frac{2}{l}} \cos\left(\frac{n\pi x}{l}\right) \right]$$

¹Falls $\int dx |g(x)|^2$ existient

1.6.7 Laplace-Gleichung in Kugelkoordinaten

Separationsansatz:

$$\Phi(r, \theta, \varphi) = \frac{U(r)}{r} P(\cos \theta) Q(\varphi)$$

1. Term:

$$\frac{1}{r} \frac{\partial^2}{\partial r^2} \left(r' \frac{U(r)}{r'} P(\cos \theta) Q(\varphi) \right) = P(\cos \theta) Q(\varphi) \frac{1}{r} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2}$$

$$\Rightarrow 0 = PQ \frac{1}{r} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2} + UQ \frac{1}{r^3 \sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) + UP \frac{1}{r^3 \sin^2 \theta} \frac{\mathrm{d}^2 Q}{\mathrm{d}\varphi^2} \quad \left| \cdot \frac{r^3 \sin^2 \theta}{UPQ} \right|$$

$$\Rightarrow \underbrace{-r^2 \sin^2 \theta \frac{1}{U} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \sin \theta \frac{1}{P} \frac{\mathrm{d}^2}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) = \underbrace{\frac{1}{Q} \frac{\mathrm{d}^2 Q}{\mathrm{d}\varphi^2}}_{\text{unabhängig von } \varphi} = \text{const.} := -m^2$$

$$\underbrace{-m^2 \sin^2 \theta \frac{1}{U} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \sin \theta \frac{1}{P} \frac{\mathrm{d}^2 U}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) = \underbrace{\frac{1}{Q} \frac{\mathrm{d}^2 Q}{\mathrm{d}\varphi^2}}_{\text{unabhängig von } r, \theta}$$

für Q:

i)
$$\frac{\mathrm{d}^2 Q}{\mathrm{d} \phi^2} + m^2 Q = 0$$

Lösung:

$$\begin{split} Q(\varphi) &= e^{im\varphi} = \cos(m\varphi) + i\sin(m\varphi) \\ Q(\varphi + 2\pi) &= Q(\varphi) \quad e^{im(\varphi + 2\pi)} = e^{im\varphi} \quad \Rightarrow \quad m = \mathbb{Z} \\ \frac{r^2}{U} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2} + \frac{1}{P\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}P}{\mathrm{d}\theta}\right) = \frac{m^2}{\sin^2\theta} \\ \underbrace{\frac{r^2}{U} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2}}_{\text{unabh. von }\theta} &= -\underbrace{\frac{1}{P\sin\theta} \frac{\mathrm{d}P}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}P}{\mathrm{d}\theta}\right)}_{\text{unabh. von }V} = \mathrm{const...} := \lambda \end{split}$$

ii)
$$\frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \frac{\lambda}{r^2} U(r) = 0$$
 \to Lösung für $\lambda = l(l+1)$ (Warum das so ist, ist in iii) erklärt)
$$U(r) = a_l r^{l+1} + b_l r^{-l}$$

 \rightarrow Spezielle Lösung für m=0:

$$\Phi(r,\theta) = \frac{U(r)}{r} P_l(\cos \theta) = (a_l r^l + b_l r^{-l-1}) P_l(\cos \theta)$$

allg. Lösung: $\Delta \varPhi = 0$ für $\frac{\partial \varPhi}{\partial \varphi} = 0$

$$\Phi(r,\theta) = \sum_{l=0}^{\infty} (a_l r^l + b_l r^{-l-1}) P_l(\cos \theta)$$
durch Randbedingungen festgelegt

iii) $\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) + \left(\lambda - \frac{m^2}{\sin^2 \theta} \right) P(\cos \theta) = 0$ $x := \cos \theta$ P(x): DGL für P(x) $\frac{\mathrm{d}}{\mathrm{d}\theta} P(x(\theta)) = \frac{\mathrm{d}P}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin \theta \frac{\mathrm{d}P}{\mathrm{d}x}$ $\mathrm{d}x = -\frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta}$ $\Rightarrow -\frac{\mathrm{d}}{\mathrm{d}x} \left(-\sin^2 \theta \frac{\mathrm{d}P}{\mathrm{d}x} \right) + \left(\lambda - \frac{m^2}{1 - x^2} \right) P(x) = 0$

Zugeordnete Legendresche DGL

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left((1 - x^2) \frac{\mathrm{d}P}{\mathrm{d}x} \right) + \left(\lambda - \frac{m^2}{1 - x^2} \right) P(x) = 0$$

Spezialfall: Zylindersymmetrische Probleme: Φ unabhängig von φ

 \rightarrow Legendre-Polynome

$$\frac{\partial \Phi}{\partial \varphi} = 0, \quad Q(\varphi) = e^{im\varphi} \Rightarrow m = 0 \Rightarrow Q(\varphi) = 1$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left((1 - x^2) \frac{\mathrm{d}P}{\mathrm{d}x} \right) + \lambda P(x) = 0$$

Legendresche DGL

$$(1 - x^2) \frac{d^2 P}{dx^2} - 2x \frac{dP}{dx} + \lambda P(x) = 0$$

Potenzreihenansatz: $P(x) = \sum_{k=0}^{\infty} a_k x^k$

- \rightarrow Fließbach
- → Legendre Polynome
- $\rightarrow\,$ relevante Lösung nur für $\lambda=l(l+1)$ $l \in \mathbb{N}_0$