Conjuntos 2.1

Aula 2 : Diagramas de Venn e operações

Conteúdo:

- Conjunto universo
- Diagramas de Venn
- Operações e propriedades
- Identidades básicas

Introdução

Exemplos:

$$D = \{ x \mid x \in \mathbb{N} \mid e \mid x \ge 5 \} = \{ 5, 6, 7, \dots \}$$

$$A = \{ x \mid x \in \mathbb{N} \mid e \mid x^2 = 36 \} = \{ 6 \}$$

Outra notação:

$$D = \{ x \in \mathbb{N} \mid x \ge 5 \}$$

$$A = \{ x \in \mathbb{N} \mid x^2 = 36 \}$$

Conjunto universo:

Definição

O conjunto universo, U, é aquele que contém todos os conjuntos que estão sendo considerados em um dado contexto.

Notação:

Conjuntos 2.4

Diagramas de Venn:

<u>Característica</u>: representação visual de conjuntos, suas operações e relações.

Referência Histórica: matemático inglês John Venn (Século XIX).

 O conjunto universo U é representado por um retângulo e os subconjuntos próprios por regiões circulares dentro do retângulo.

Exemplo:

$$U = \mathbb{N}$$

$$A = \{ x \in \mathbb{N} \mid 10 \le x \le 100 \}$$
 $(x \ge 10 \text{ e } x \le 100)$

$$B = \{ x \in \mathbb{N} \mid 15 \le x \le 50 \}$$

$$\mathbf{B} \subset \mathbf{A} \subset \mathbf{U}$$

Conjuntos

Operações e propriedades:

- União
- Interseção
- Diferença
- Complemento

cederj

2.7

Definição de união:

Sejam A e B subconjuntos de U.

A união de A e B que denotamos por $A \cup B$ é o conjunto formado por todos os elementos que pertencem a A ou que pertencem a B.

 $A \cup B = \{ x \in U \mid x \in A \text{ ou } x \in B \}$

União

Voltar

2.9

$$A \cup B = \{ x \in U \mid x \in A \text{ ou } x \in B \}$$

Exemplo 1:

A = { 1, 2, 3, 4, 5, 6 }

B = { 5, 6, 7, 8, 9 }

A
$$\cup$$
 B = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }

União

Voltar

Propriedade:

$$A \subseteq A \cup B \quad e \quad B \subseteq A \cup B$$

Exemplo 2:

$$X = \{ x, y, z \}$$

$$\mathbf{Y} = \{ \mathbf{w}, \mathbf{v} \}$$

$$X \cup Y = \{x, y, z, w, v\}$$

União

Voltar

Conjuntos: Diagramas de Venn e operações

2.11

Exemplo 3:

U = conjunto das pessoas

 $Z = \{ x \in U \mid altura de x \ge 1,75 \}$

 $(W \subseteq Z)$

 $W = \{ x \in U \mid altura de x \ge 1,90 \}$

$$\mathbf{Z} \cup \mathbf{W} = \mathbf{Z}$$

União

Voltar

Propriedade:

$$A \subseteq B \Rightarrow A \cup B = B$$
 $ent\tilde{a}o$
 e
 $A \cup B = B \Rightarrow A \subseteq B$

$$A \subseteq B \Leftrightarrow A \cup B = B$$
se e somente se
(equivalente)

Observação:

Seja
$$A \subseteq U$$
, temos: $A \cup A = A$

$$A \cup A = A$$

$$A \cup \emptyset = A$$

Definição de interseção:

Sejam A e B subconjuntos de U.

 \neg A interseção de A e B que denotamos por A \cap B é o conjunto formado por todos os elementos que pertencem ao conjunto A e ao conjunto B.

$$A \cap B = \{x \in U \mid x \in A \in x \in B\}$$

Voltar

$$A \cap B = \{ x \in U \mid x \in A \in x \in B \}$$

Exemplo 1:

$$A = \{ 1, 2, 3, 4, 5, 6 \}$$
$$B = \{ 5, 6, 7, 8, 9 \}$$

$$\mathbf{A} \cap \mathbf{B} = \{ 5, 6 \}$$

Propriedade:

$$A \cap B \subseteq A$$
 e $A \cap B \subseteq B$

Exemplo 2:

$$X = \{ x, y, z \}$$
$$Y = \{ w, v \}$$

$$X \cap Y = \emptyset$$

Exemplo 3:

U = conjunto das pessoas

 $Z = \{ x \in U \mid altura de x \ge 1,75 \}$

 $W = \{ x \in U \mid altura de x \ge 1.90 \}$

 $(W \subseteq Z)$

$$Z \cap W = W$$

 \cap

Voltar

Propriedade:

$$A \subseteq B \iff A \cap B = A$$

Observação:

Seja $A \subseteq U$, temos:

$$A \cap A = A$$

$$A \cap \emptyset = \emptyset$$

Definição de diferença:

Sejam A e B subconjuntos de U.

→ A diferença entre A e B que denotamos por A – B
 é o conjunto formado por todos os elementos que
 estão em A mas não estão em B.

$$A - B = \{ x \in U \mid x \in A \in x \notin B \}$$

Diferença

Voltar

Conjuntos: Diagramas de Venn e operações

2.19

$$A - B = \{ x \in U \mid x \in A \text{ e } x \notin B \}$$

 $B - A = \{ x \in U \mid x \in B \text{ e } x \notin A \}$

Exemplo 1:

$$A = \{ 1, 2, 3, 4, 5, 6 \}$$
 $B = \{ 5, 6, 7, 8, 9 \}$

$$A - B = \{1, 2, 3, 4\}$$

A - B Voltar

$$B - A = \{ 7, 8, 9 \}$$

B - A

Voltar

Propriedade:

$$A - B \subseteq A \quad e \quad B - A \subseteq B$$

Exemplo 2:

$$X = \{ x, y, z \}$$
 $Y = \{ w, v \}$

$$\mathbf{Y} = \{ \mathbf{w}, \mathbf{v} \}$$

$$X - Y = X$$

$$Y - X = Y$$

Diferença

Voltar

Exemplo 3:

U = conjunto das pessoas

 $Z = \{ x \in U \mid altura de x \ge 1,75 \}$

 $W = \{ x \in U \mid altura de x \ge 1.90 \}$

 $Z - W = \{ x \in U \mid 1,75 \text{ m} \leq \text{altura de } x < 1,90 \text{ m} \}$

Z - **W**

Voltar

Resposta

$$W - Z = \emptyset$$

Propriedade:

$$A \subseteq B \iff A - B = \emptyset$$

Observação:

Seja $A \subseteq U$, temos:

$$A - A = \emptyset$$

$$A - \emptyset = A$$

Definição de complemento:

Sejam o conjunto universo U e o conjunto $A \subseteq U$.

O complemento de A que denotamos por A é o conjunto formado por todos os elementos de U que não estão em A.

Isto é,
$$\overline{A} = U - A$$

$$\overline{\mathbf{A}} = \{ x \in \mathbf{U} \mid x \notin \mathbf{A} \}$$

Exemplos:

1. $U = \mathbb{N}$ (conjunto dos números naturais)

$$\mathbf{A} = \{ \mathbf{x} \in \mathbb{N} \mid \mathbf{x} \le 50 \}$$

$$\overline{A} = \mathbb{N} - A = \{ x \in \mathbb{N} \mid x > 50 \}$$

2.
$$U = \mathbb{Z}$$

$$A = \{ x \in \mathbb{Z} \mid x > 2 \} = \{ 3, 4, 5, \dots \}$$

$$\overline{A} = \{ x \in \mathbb{Z} \mid x \le 2 \} = \{ 2, 1, 0, -1, -2, \dots \}$$

3.
$$U = \mathbb{N}$$

$$A = \{ x \in \mathbb{N} \mid x > 2 \} = \{ 3, 4, 5, \dots \}$$

$$\overline{A} = \{ x \in \mathbb{N} \mid x \le 2 \} = \{ 1, 2 \}$$

Observações:

$$A - B = A \cap \overline{B}$$

$$B - A = B \cap \overline{A}$$

$$A \cup \overline{A} = U$$

$$A \cap \overline{A} = \emptyset$$

$$\overline{U} = \emptyset \quad (\overline{U} = U - U)$$

$$\overline{\emptyset} = U \quad (\overline{\emptyset} = U - \emptyset)$$

Identidades básicas:

Comutatividade

1.
$$A \cup B = B \cup A$$

2.
$$A \cap B = B \cap A$$

Associatividade

3.
$$(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$$

4.
$$(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$$

2.30

Leis de Morgan 8.
$$(\overline{A \cap B}) = \overline{A} \cup \overline{B}$$

Prova formal da identidade 5:

$$-A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

ou seja,

(1)
$$A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$$

 \mathbf{e}

(2)
$$(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$$


```
Conjuntos: Diagramas de Venn / Identidades básicas
```

2.32

Prova de (1):

Dado $x \in A \cup (B \cap C)$, mostraremos que

$$x \in (A \cup B) \cap (A \cup C)$$
:

$$x \in A \cup (B \cap C) \Rightarrow x \in A \text{ ou } x \in (B \cap C)$$

$$x \in A$$
 ou $(x \in B \in x \in C)$

1 2 Voltar

 $(x \in A \text{ ou } x \in B) \text{ e } (x \in A \text{ ou } x \in C)$ $x \in (A \cup B) \text{ e } x \in (A \cup C)$ $x \in (A \cup B) \cap (A \cup C)$

- Prova de (2):

Faça você a prova de 2.

Conceitos

- Conjunto universo

- Operações com conjuntos:

União

Interseção

Diferença

Complemento

- Conjuntos disjuntos

Notação

Diagramas de Venn

U

 $A \cup B$

 $\mathbf{A} \cap \mathbf{B}$

A - BB - A

Ā

 $(A \cap B = \emptyset)$

Propriedades

-
$$A \subseteq A \cup B$$
, $B \subseteq A \cup B$

$$-A \cap B \subseteq A$$
, $A \cap B \subseteq B$

$$-A-B \subseteq A$$
, $B-A \subseteq B$

-
$$A \subseteq B \Leftrightarrow A \cup B = B$$

$$-A \subseteq B \Leftrightarrow A \cap B = A$$

$$-A \subseteq B \Leftrightarrow A - B = \emptyset$$

-
$$A \cap B = \emptyset \Leftrightarrow A - B = A$$

-
$$A \cap B = \emptyset \Leftrightarrow B - A = B$$

Identidades Básicas:

- Comutatividade: $A \cup B = B \cup A$

$$A \cap B = B \cap A$$

- Associatividade: $(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$

$$(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$$

- Distributividade: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

- Leis de Morgan: $(\overline{A \cup B}) = \overline{A} \cap \overline{B}$

$$(\overline{A \cap B}) = \overline{A} \cup \overline{B}$$

Observações:

-
$$A \cup A = A$$

-
$$A \cap A = A$$

-
$$A \cup \emptyset = A$$

-
$$A \cap \emptyset = \emptyset$$

-
$$A \cup \overline{A} = U$$

-
$$A \cap \overline{A} = \emptyset$$

$$- \overline{\mathbf{U}} = \emptyset$$

$$- \overline{\varnothing} = U$$

-
$$A - \emptyset = A$$

-
$$A - B = A \cap \overline{B}$$
 , $B - A = B \cap \overline{A}$

Exercícios

1. Sejam $U = \{0, 1, 2, 3, 4\}$, $A = \{0, 4\}$, $B = \{0, 1, 2, 3\}$, $C = \{1, 4\}$, $D = \{0, 1\}$.

Determine os seguintes conjuntos:

a. $A \cup B$

b. $B \cap C$

c. $A \cap \bar{B}$

d. $A \cup (B \cap C)$

e. $(A \cup B) \cap (A \cup C)$

f. $(\overline{A \cap B}) \cup (\overline{A \cap C})$

g. $A \cup \bar{B}$

h. A - B

i. $B - \overline{A}$

j. $A \cup (B \cap C \cap D)$

Conjuntos: Diagramas de Venn e operações

2.38

2. Sejam A, B e C subconjuntos de um conjunto universo U. Represente por meio de diagramas de Venn as seguintes situações.

(i)
$$A \subset B \subset C$$

(ii)
$$A \cap B = \emptyset$$
, $A \cap C = \emptyset$, $B \cap C = \emptyset$

(iii)
$$A \subseteq B \cup C$$

(iv)
$$A \subseteq \overline{B}$$

(v)
$$A \subseteq B - C$$

3. Verifique, usando os diagramas de Venn as seguintes igualdades:

(i)
$$(A - B) \cup B = A \cup B$$

(ii)
$$(A - B) \cap B = \emptyset$$

(iii)
$$(A-B) \cup (B-A) = (A \cup B) - (A \cap B)$$

(iv)
$$A - B = A \cap \bar{B}$$

$$(\mathbf{v})(\bar{\mathbf{A}}) = \mathbf{A}$$

(vi)
$$A \cap (B - C) = (A \cap B) - (A \cap C)$$

4. Mostre que

$$A \subseteq B$$
 e $A \subseteq C \Rightarrow A \subseteq B \cup C$

5. Mostre que

$$A\subseteq B \quad \Leftrightarrow \quad \overline{B}\subseteq \overline{A}$$

6. Dados os conjuntos $C = \{x \in \mathbb{N} \mid x \in \text{multiplo de } 2\}$,

$$\mathbf{D} = \{ x \in \mathbb{N} \mid x \in \text{multiplo de } 3 \},$$

$$E = \{ x \in \mathbb{N} \mid x \in \text{multiplo de 6} \},$$

verifique que $C \cap D = E$.

7. Considere A = $\{x \in \mathbb{N} \mid 5 \le x^2 \le 300 \}$,

B = { $x \in \mathbb{N} \mid 1 \le 3x - 2 \le 30$ } . Calcule:

(i) $\mathbf{A} \cup \mathbf{B}$

(ii) $A \cap B$

(iii) **A** – **B**

(iv) $\mathbf{B} - \mathbf{A}$

(v) $\bar{\mathbf{A}} \cap \bar{\mathbf{B}}$

(vi) $\bar{\mathbf{A}} \cup \bar{\mathbf{B}}$

8. Dado $C = \{2, -1, 5\}$, considere o conjunto universo sendo o conjunto de partes de C, U = P(C). Calcule:

(i) **Ā**

(ii) $A \cap B$

para $A = \{ \{2, -1\}, \{2\} \}, B = \{ \{5\}, \{2, -1, 5\}, \{-1, 2\} \}.$ cederj

9. Use a propriedade distributiva da interseção em relação a união de conjuntos para provar que $(A\cap D)\cup \bar{D}=A\cup \bar{D} \text{ . Verifique a igualdade usando o diagrama de Venn.}$

10. Prove que $A-(B-C)=(A-B)\cup (A\cap C)$. Dica: a igualdade $A-B=A\cap \bar{B}$ (vista no exercício 2 (iv)), uma propriedade distributiva de conjuntos e uma das leis de Morgan.

11. Dados os seguintes conjuntos:

$$\mathbf{A} = \{ x \in \mathbb{Z} \mid \mathbf{0} \le x \le \mathbf{7} \}$$
, $\mathbf{B} = \{ x \in \mathbb{N} \mid \mathbf{0} \le x \le \mathbf{7} \}$

Verifique que:

- $(i) \quad A = B$
- (ii) $\bar{A} \neq \bar{B}$