Math 113 — Problem Set 4 — William Guss

(P28. 37) Suppose that * is an associative and commutative binary operation on a set S. Show that

 $H = \{a \in S \mid a*a = a\}$ is closed under *.

Proof. We need show for every $(a,b) \in H \times H$, $a*b \in H$. Clearly $a*b \in S$, we claim that $(a*b)*(a*b) \in H$. Essentially (a*b)*(a*b) = (a*b)*(b*a) by commutativity. Then (a*b)*(b*a) = a*(b*b)*a = a*b*a by associativity and idempotents of b. Finally a*b*a = b*a*a = b*(a*a) = b*a = a*b by commutativity, associativity, and commutativity again. Therefore a*b is idemopotent and in H, so H is closed under *.

(P34. 4) Determine whether or not ϕ is an isomorphism between $\langle \mathbb{Z}, + \rangle$ and $\langle \mathbb{Z}, + \rangle$ when $\phi(n) = n + 1, n \in \mathbb{Z}$.

Claim. The mapping is not an isomorphism.

Proof. We will show that despite the bijection of ϕ , it is not a homomorphism. We first show that $\phi: \mathbb{Z} \to \mathbb{Z}$ is bijective. Clearly for ever $n \in \mathbb{Z}$, $\phi^{pre}(n) = n + (-1) \in \mathbb{Z}$ so the map is surjective. Next, the map is injective since every successor of an integer is unique by Piano's axioms. Hence ϕ is a bijection. But consider $\phi(n+m) = (n+m) + 1 = (n+1) + m \neq (n+1) + (m+1) = \phi(n) + \phi(m)$, therefore the mapping is not a homomorphism. This completes the proof of the claim.

(P34. 6) Determine whether or not ϕ is an isomorphism between $\langle \mathbb{Q}, \cdot \rangle$ and $\langle \mathbb{Q}, \cdot \rangle$ when $\phi(x) = x^2$ for $x \in \mathbb{Q}$.

Claim. The mapping is not an isomorphism.

Proof. We need only show that ϕ is not a bijection. If ϕ is an isomorphism then it is in an invertible mapping. Therefore take $\phi^{-1}(2) = \sqrt{2} \notin \mathbb{Q}$. This is a contradiction to the surjection of the inverse, therefore ϕ is not an isomorphism.

(P28. 7) Determine whether or not ϕ is an isomorphism between $\langle \mathbb{R}, \cdot \rangle$ and $\langle \mathbb{R}, \cdot \rangle$ where $\phi(x) = x^3$. Claim. The mapping is an isomorphism.

Proof. We first show the bijection. Clearly if $y \neq x$ then without loss of generality y > x and $\phi(y) > \phi(x)$ by the monotonicity of x^3 , (to see this, observe that the mapping preserves sign and if (y-x)>0 then $(y-x)^3>0$), so the mapping is injective. For surjection, take $a \in \mathbb{R}$ and observe that $a^{1/3} \in \mathbb{R}$, by the completeness of \mathbb{R} (take the sequence $x_1 = a$, $x_n = \frac{1}{n} \left[(n-1)x_{n-1} + \frac{a}{x_{n-1}^3} \right]$, and see its cauchyness, then reverse Newton's method to see that the 3rd power exponentiation of the limit tends to a.) So the mapping is bijective.

Now $\phi(ab) = (ab)^3 = a^3b^3 = \phi(a)\phi(b)$ and the mapping is a homormorphism by the distributive power law.

This completes the proof. \Box

(P45. 9) Show that the group $\langle U, \cdot \rangle$ is not isomorphic to either $\langle \mathbb{R}, + \rangle$ and $\langle \mathbb{R}, \cdot \rangle$.

Proof. Since all sets have the same cardinality, it must only be that $\langle U, \cdot \rangle$ does not share structural properties with either of the real groups. It suffices to show that $\langle U, \cdot \rangle \not\simeq \langle \mathbb{R}, \cdot \rangle$, since $\langle \mathbb{R}, \cdot \rangle \simeq \langle \mathbb{R}, + \rangle$ and isomorphisms form an equivalence relation on families of groups.

Structurally, take any $z \in U$ so that $\theta = Arg(z)$, then $\theta/2\pi \in \mathbb{R}$ so $Arg(z^{n2\pi/\theta}) = n2\pi$ and so $z^{n2\pi/\theta} = 1$ for all $n \in \mathbb{N}$. It is not the case that for every $x \in \mathbb{R}$ there is are $a, r \in \mathbb{R}$ so that $x^{\phi(r)} = a$ where $\phi(r)$ is a set so that $p, q \in \phi(r) \implies p - q = nr \land p, q > 0$ for some $n \in \mathbb{Z}$. Take $x = 2, x^{r>0}$ increases monotonically :(. Since this cyclicity property is not common, there could not be a homormorphism, and so the groups are not isomorphic.

(P46. 13) Determine if the set S of $n \times n$ matrices with no zero diagonal enteries is a group under matrix multiplication.

Claim. The set S is not a group.

Proof. Consider the multiplication following two elements in S,

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

So the set is not even closed under multiplication.

(P46. 17) Determine if the set S of $n \times n$ upper triangular matrices with determinant 1 under matrix multiplication is a group.

Claim. The set S is a group.

Proof. From linear algebra we know that a matrix is invertible if and only if it has determinant $D \neq 0$. Therefore every member of S is a full rank matrix. We now show that S is closed under matrix multiplication by the determinant laws from linear algebra. If $A, B \in S$ then det(AB) = det(A)det(B) = 1 so AB is invertible and thereby upper triangular. It follows that AB is closed under multiplication. From the chapter we know the set of invertible $n \times n$ matrices is the general linear group. Since invertibility if and only if determinant non-zero, it follows that S is a sub-group, inheriting associativity of multiplication from $GL(\mathbb{R}^n)$.

(P49. 37) Let G be a group and let $a, bc \in G$. Show that if a * b * c = e then b * c * a = e.

Proof. If a*b*c=e then $a=c^{-1}b^{-1}$, $c=b^{-1}a^{-1}$ and $b=a^{-1}*c^{-1}$. Then $a*b*c*(c*b*a)^{-1}=a*b*c*a^{-1}*b^{-1}*c^{-1}$. Then by a*b*c=e we have $a*b*c*a^{-1}*b^{-1}*c^{-1}=c^{-1}*b^{-1}*a^{-1}*a^{-1}*a^{-1}*b^{-1}*c^{-1}=a*b^{-1}*c^{-1}=a*b*c*b^{-1}*c^{-1}=b^{-1}*c^{-1}$ so $c*b*a^{-1}=b^{-1}*c^{-1}=a^{-1}*b^{-1}*c^{-1}=a^{-1}*b^{-1}*c^{-1}$ so $a^{-1}=a$ without loss of generality, and $b*c*a=b*c*b*c=a^{-1}*b*c=a*b*c=e$. This completes the proof.