Linear Model Selection & Regularization

Damek Davis School of ORIE, Cornell University ORIE 4740 Lec 9–10 (Feb 22, Feb 24)

Recap: A close look at testing error

$$test error = bias^2 + variance + c$$

As model flexibility increases:

Bias: decreases Variance: increases

- ► Goal: select model with lowest test error
- Can estimate the test error from data
 E.g., by k-fold cross-validation

n data points

1 response Y, p predictor variables X_1, X_2, \dots, X_p

n data points

1 response Y, p predictor variables X_1, X_2, \dots, X_p

May not want to use all p predictors:

$$Y \approx X_1 + X_3$$

n data points

1 response Y, p predictor variables X_1, X_2, \ldots, X_p

May not want to use all *p* predictors:

$$Y \approx X_1 + X_3$$

Which of the following is **not** a valid reason to use less than *p* predictors?

- A. Some variables may be irrelevant
- **B.** More variables ⇒ Harder to interpret the fitted model
- **C.** Less variables ⇒ higher bias
- **D.** Extreme case: $p > n \Rightarrow$ Overfit
- E. Easier to build larger training sets.

n data points

1 response Y, p predictor variables X_1, X_2, \ldots, X_p

May not want to use all *p* predictors:

$$Y \approx X_1 + X_3$$

The following are valid reasons to use less than *p* predictors:

- A. Some variables may be irrelevant
- **B.** More variables ⇒ Harder to interpret the fitted model
- **C.** More variables \Rightarrow More flexible \Rightarrow Higher variance
- **D.** Extreme case: $p > n \Rightarrow$ Overfit
- **E.** Easier to build larger training sets.

n data points

1 response Y, p predictor variables X_1, X_2, \dots, X_p

May not want to use all *p* predictors:

$$Y \approx X_1 + X_3$$

The following are valid reasons to use less than *p* predictors:

- A. Some variables may be irrelevant
- **B.** More variables ⇒ Harder to interpret the fitted model
- **C.** More variables \Rightarrow More flexible \Rightarrow Higher variance
- **D.** Extreme case: $p > n \Rightarrow$ Overfit
- **E.** Easier to build larger training sets.

Model selection:

- How many variables to use?
- Which variables?

Model selection: select a subset of variables

- How many variables to use?
- Which variables?

Model selection: select a subset of variables

- How many variables to use?
- Which variables?

Select variables with small p-values?

Model selection: select a subset of variables

- How many variables to use?
- Which variables?

Select variables with small *p*-values?

- Only measures relevance on training data
- Only works well when $n \gg p$

Model selection: select a subset of variables

- How many variables to use?
- Which variables?

Select variables with small *p*-values?

- Only measures relevance on training data
- Only works well when $n \gg p$

Other ways to select variables?

(ISLR Sec 6.1.1)

Idea: exhaustive search

Enumerate all possible subsets of variables, select the "best" one

```
(ISLR Sec 6.1.1)
```

Idea: exhaustive search

Enumerate all possible subsets of variables, select the "best" one

- Subset of size 0: one model (intercept only)
- Subset of size 1: p models
- Subset of size 2: p(p-1)/2 models

:

(ISLR Sec 6.1.1)

Idea: exhaustive search

Enumerate all possible subsets of variables, select the "best" one

- Subset of size 0: one model (intercept only) (\mathcal{M}_0)
- Subset of size 1: p models (\mathcal{M}_1)
- Subset of size 2: p(p-1)/2 models (\mathcal{M}_2)

:

Algorithm:

- **1** For k = 0, 1, 2, ..., p
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the "best" one; call it \mathcal{M}_k
- **2** Among models $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$, pick a single "best" model

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the "best" one ; call it \mathcal{M}_k
- $\boldsymbol{2} \ \, \text{Among} \, \, \mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_{\textit{p}}, \, \text{pick a single "best"} \, \text{model}$

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the "best" one ; call it \mathcal{M}_k
- $\boldsymbol{2} \ \, \text{Among} \, \, \mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_{\rho}, \, \text{pick a single "best"} \, \text{model}$

What would be the ideal way to define "best"?

- A. Largest R2 statistic
- B. Smallest R2 statistic
- C. Smallest testing error
- D. Smallest training error

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- $\boldsymbol{2} \ \, \text{Among} \, \mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p, \, \text{pick the one with largest} \, \, R^2$

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- **2** Among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$, pick the one with largest \mathbb{R}^2

Choose one

Which models could be returned by this procedure?

- A. \mathcal{M}_0
- **B.** \mathcal{M}_k for any $k = 1, \dots, p-1$
- **C.** \mathcal{M}_p .

Credit Dataset

Algorithm:

- **1** For k = 0, 1, 2, ..., p
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the "best" one; call it \mathcal{M}_k
- $\boldsymbol{2} \ \, \text{Among} \, \, \mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_{\textit{p}}, \, \text{pick a single "best" model}$

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- $\boldsymbol{2} \ \, \text{Among} \, \, \mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_{\rho}, \, \text{pick a single "best"} \, \text{model}$

Algorithm:

- **1** For k = 0, 1, 2, ..., p
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- **2** Among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_{\rho}$, pick the one with largest \mathbb{R}^2

Algorithm:

- **1** For k = 0, 1, 2, ..., p
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- **2** Among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$, pick the one with largest \mathbb{R}^2

Problem?

Algorithm:

- **1** For k = 0, 1, 2, ..., p
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- **2** Among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$, pick the one with largest \mathbb{R}^2

Problem?

- ► R² always increase with more variables
- ▶ Will end up selecting all p variables

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- 2 Among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$, pick the one with largest \mathbb{R}^2

Problem?

- ▶ R² always increase with more variables
- ▶ Will end up selecting all p variables

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- 2 Among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$, pick the one with largest \mathbb{R}^2

Problem?

- ▶ R² always increase with more variables
- ▶ Will end up selecting all p variables

2 Among $\mathcal{M}_0, \dots, \mathcal{M}_p$, pick the one with lowest <u>estimated</u> test error

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- **2** Among $\mathcal{M}_0, \dots, \mathcal{M}_p$, pick the one with lowest <u>estimated</u> test error

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- **2** Among $\mathcal{M}_0, \dots, \mathcal{M}_p$, pick the one with lowest <u>estimated</u> test error

How to estimate test error?

- General: Cross-Validation (Expensive!)
- For linear regression: Make appropriate adjustments to the training error or R²

Adjusted R2, AIC, BIC, Cp

Adjusted R²

Recall:

$$R^2 = 1 - \frac{RSS}{TSS} = \frac{\text{explained variability}}{\text{total variablity}}$$

▶ More predictors \Rightarrow Larger R^2

Adjusted R2

Recall:

$$R^2 = 1 - \frac{RSS}{TSS} = \frac{\text{explained variability}}{\text{total variablity}}$$

▶ More predictors \Rightarrow Larger R^2

Using *k* predictors:

Adjusted
$$R^2 = 1 - \frac{RSS/(n-k-1)}{TSS/(n-1)}$$

- ▶ Maximize adjusted $R^2 \Leftrightarrow \text{minimize RSS}/(n-k-1)$
- Penalize large k (number of predictors)

Best Subset Selection Using Adjusted R^2

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- **2** Among $\mathcal{M}_0, \dots, \mathcal{M}_p$, pick the one with largest adjusted \mathbb{R}^2

Best Subset Selection Using Adjusted R²

Algorithm:

- **1** For k = 0, 1, 2, ..., p
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- **2** Among $\mathcal{M}_0, \dots, \mathcal{M}_p$, pick the one with largest adjusted \mathbb{R}^2

Suppose that we replaced "largest R^2 " with "largest adjusted R^2 " in part **b**. Would the final model change?

- A. Yes
- B. No

Best Subset Selection Using Adjusted R^2

Example: Credit dataset

- ► Response: Balance
- ▶ Predictors: Income, Limit, Rating, Cards, Age, Education, Gender, Student, Married, Ethnicity (3 levels)
- p = 11, n = 400

Best Subset Selection Using Adjusted R²

Example: Credit dataset

- ► Response: Balance
- ▶ Predictors: Income, Limit, Rating, Cards, Age, Education, Gender, Student, Married, Ethnicity (3 levels)
- p = 11, n = 400

(see ISLR 6.5.1 for R tutorial)

```
> library(leaps)
> regfit.full = regsubsets(Balance~., data=Credit, nvmax=11)
> summary(regfit.full)
```

```
Limit
                                                          Rating Cards Age Education GenderFemale
                         Income
                         . .
                                           **
                                                          m_{\phi_0}m
                                                                            **
                                                                                            •
            1
                         m e m
                                           **
                                               ***
                                                          m_{Ab}m
                                                                            **
                                                                                 **
                                                                                                 **
                                                                                                                               **
                                                                                                                                    ***
2
            1
3
                         n e n
                                           **
                                               **
                                                          m \approx m
                                                                            **
                                                                                 **
                                                                                                                               **
                                                                                                                                    **
                                                                            n & n
4
                         m & m
                                           H \otimes H
                                                           . .
                                                                                                                               **
                                                                                                                                    11
                         m_{\phi}m
                                           m_{\Phi}m
                                                          m_{\phi_0}m
                                                                            m_{\Phi}m
                                                                                                                               •
5
            1
                         m _{\Phi} m
                                           m_{\frac{1}{N}}m
                                                          m_{\frac{1}{2}}m
                                                                            m or m
                                                                                           H_{Ab}H
                                                                                                                               .. ..
6
                                                          n g n
                         n & n
                                           m \approx m
                                                                            m & m
                                                                                            m \approx m
                                                                                                     **
                                                                                                                               m_{\frac{1}{2}}m
8
             1
                         п<sub>ф</sub>п
                                           m \gg m
                                                          m \approx m
                                                                            m \gg m
                                                                                            m \gg m
                                                                                                     **
                                                                                                                               m \gg m
                         m_{\phi}m
                                                          m_{\phi} m
                                                                                                                               m_{\Phi}m
                                           m_{\phi}m
                                                                            m \approx m
                                                                                            Hay H H
9
                         m _{\Psi} m
                                           m \approx m
                                                          m_{Ab}m
                                                                            \mathbf{n} \neq \mathbf{n}
                                                                                            пол п
                                                                                                                               m_{\frac{1}{2}}m
10
                                                                                           non non
                         m_{\frac{1}{N}}m
                                           m_{\frac{1}{N}}m
                                                          m_{AB}m
                                                                            m g m
                                                                                                                               m_{\frac{1}{N}}m
11
                                                    MarriedYes EthnicityAsian EthnicityCaucasian
                         StudentYes
                             - 11
1
            1
                         . .
                                                                                  **
                                                                                                                        **
                                                                                                                             **
2
3
                         m_{\frac{1}{N}}m
                                                     **
                                                          **
                                                                                  **
                                                                                      **
                                                                                                                        **
                                                                                                                             **
                         m & m
                                                     **
                                                                                      **
                                                                                                                        **
4
5
                         m \approx m
                                                                                  11
                         m_{\frac{1}{2}}m
                                                     **
6
7
            1
                         m g m
                                                          ***
                                                                                 **
                                                                                     ***
                                                                                                                        **
                                                                                                                            **
                         m \gg m
                                                     **
                                                         ***
                                                                                 H \otimes H
                                                                                                                        11
                                                                                                                            **
8
                         m \approx m
                                                     m<sub>a</sub>, m
                                                                                  поп
9
                         m_{\frac{1}{2}}m
                                                     m_{\frac{1}{2}}m
                                                                                 m_{\frac{1}{2}}m
                                                                                                                       m_{\frac{1}{2}}m
10
                         m g m
                                                     m<sub>ak</sub> m
                                                                                  n <sub>w</sub> n
                                                                                                                       m_{\frac{1}{N}}m
11
              1
```

Best Subset Selection Using Adjusted R^2

Example: Credit dataset

```
> regfit.full = regsubsets(Balance~., data=Credit, nvmax=11)
> summary(regfit.full)$adjr2
[1] 0.7452098 0.8744888 0.9494991 0.9531099 0.9535789 0.9539961
[7] 0.9540098 0.9539649 0.9539243 0.9538912 0.9538287
```


- 1 For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- 2 Among $\mathcal{M}_0,\dots,\mathcal{M}_{\rho}$, pick the one with lowest <u>estimated</u> test error

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- **2** Among $\mathcal{M}_0, \dots, \mathcal{M}_p$, pick the one with lowest <u>estimated</u> test error

Lowest <u>estimated</u> test error:

- General: Lowest CV error
- Linear regression:
 - Highest adjusted R²
 - Lowest AIC (Akaike information criterion)
 - Lowest C_p estimate
 - Lowest BIC (Bayesian information criterion)
 - Measure how well the model fits training data, while accounting/penalizing for #variables

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- **2** Among $\mathcal{M}_0, \dots, \mathcal{M}_p$, pick the one with lowest <u>estimated</u> test error

Lowest estimated test error:

- General: Lowest CV error
- Linear regression:
 - Highest adjusted R²
 - Lowest AIC (Akaike information criterion)
 - Lowest C_p estimate
 - Lowest BİC (Bayesian information criterion)
 - Measure how well the model fits training data, while accounting/penalizing for #variables

Computational issue: enumerate all 2^p subsets of p variables

$$p = 10, 2^p = 1024; p = 20, 2^p \ge 10^6; p = 300, 2^p \ge 10^{90}$$

Algorithm:

- **1** For $k = 0, 1, 2, \dots, p$
 - **a** Fit all $\binom{p}{k}$ models with k variables
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_k
- **2** Among $\mathcal{M}_0, \dots, \mathcal{M}_p$, pick the one with lowest <u>estimated</u> test error

Lowest estimated test error:

- General: Lowest CV error
- Linear regression:
 - Highest adjusted R²
 - Lowest AIC (Akaike information criterion)
 - Lowest C_p estimate
 - Lowest BIC (Bayesian information criterion)
 - Measure how well the model fits training data, while accounting/penalizing for #variables

Computational issue: enumerate all 2^p subsets of p variables

- $p = 10, 2^p = 1024; p = 20, 2^p \ge 10^6; p = 300, 2^p > 10^{90}$
- ▶ Age of Earth: $\approx 10^{17}$ seconds.

Stepwise Selection

(ISLR 6.1.2)

Alternative methods for variable selection

- faster
- not guaranteed to find the exact best
- often find a good subset

Stepwise Selection

(ISLR 6.1.2)

Alternative methods for variable selection

- faster
- not guaranteed to find the exact best
- often find a good subset

- ▶ Forward selection: greedily <u>add</u> one variable at each step
- ▶ Backward selection: greedily <u>remove</u> one variable at each step

Forward Stepwise Selection

Idea: Each step, add the variable giving the greatest additional improvement

- 1 \mathcal{M}_0 = model with no variables
- **2** For $k = 0, 1, 2, \dots, p-1$
 - **a** Consider all p k models that add one variable to \mathcal{M}_k
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_{k+1}
- **3** Among $\mathcal{M}_0, \ldots, \mathcal{M}_p$, pick the one with largest adjusted \mathbb{R}^2

Forward Stepwise Selection

Idea: Each step, add the variable giving the greatest additional improvement

- 1 \mathcal{M}_0 = model with no variables
- **2** For k = 0, 1, 2, ..., p-1
 - **a** Consider all p k models that add one variable to \mathcal{M}_k
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_{k+1}
- **3** Among $\mathcal{M}_0, \ldots, \mathcal{M}_p$, pick the one with largest adjusted \mathbb{R}^2
- Fit 1 null model... plus p + (p 1) + (p 2) + (p 3) + ... + 1 models.

Idea: Each step, remove the least useful variable

Idea: Each step, remove the least useful variable

- 1 \mathcal{M}_p = model with all p variables
- **2** For k = p, p 1, ..., 1
 - **a** Consider all k models that remove one variable from \mathcal{M}_k
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_{k-1}
- **3** Among $\mathcal{M}_0, \ldots, \mathcal{M}_p$, pick the one with largest adjusted \mathbb{R}^2

Idea: Each step, remove the least useful variable

- **1** $\mathcal{M}_p = \text{model with all } p \text{ variables}$
- **2** For k = p, p 1, ..., 1
 - **a** Consider all k models that remove one variable from \mathcal{M}_k
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_{k-1}
- **3** Among $\mathcal{M}_0, \ldots, \mathcal{M}_p$, pick the one with largest adjusted \mathbb{R}^2
- Fit 1 full model...

plus
$$p + (p - 1) + (p - 2) + (p - 3) + ... + 1$$
 models.

Idea: Each step, remove the least useful variable

- **1** $\mathcal{M}_p = \text{model with all } p \text{ variables}$
- **2** For k = p, p 1, ..., 1
 - **a** Consider all k models that remove one variable from \mathcal{M}_k
 - **b** Among them, pick the one with largest \mathbb{R}^2 ; call it \mathcal{M}_{k-1}
- **3** Among $\mathcal{M}_0, \dots, \mathcal{M}_p$, pick the one with largest adjusted \mathbb{R}^2
- Fit 1 full model... plus p + (p-1) + (p-2) + (p-3) + ... + 1 models.
- Require n > p: Least squares solution not unique!

Forward Selection Using Adjusted R^2

Example: Credit dataset

ightharpoonup p = 11 predictors, n = 400 data points

(see ISLR 6.5.2 for R tutorial)

```
> regfit.fwd = regsubsets(Balance~., data=Credit,
+ nvmax=11, method = "forward")
> summary(regfit.fwd)
```

```
Income Limit Rating Cards Age Education GenderFemale
                                                .. ..
                                                                 H_{\infty}H
1
              1)
                            "*"
                                                                 H_{\frac{1}{2}}H
                                                                                     .. ..
                                                                                                                                              .. ..
2
              1
                                                .. ..
3
                            H_{\frac{1}{2k}}H
                                                .. ..
                                                                 m_{\frac{1}{2}}m
                                                                                     .. ..
                                                                                                                                              .. ..
                            m_{2k}m
                                                n_{*}n
                                                                 H_{\infty}H
                                                                                                                                              .. ..
4
                                                                                     .. ..
5
                            \Pi_{\frac{1}{2^{n}}}\Pi
                                                \Pi_{\frac{1}{2^{n}}}\Pi
                                                                 H_{\frac{1}{2}}H
                                                                                     H_{\frac{1}{2}}H
                                                                                                                                              .. ..
                                                n_{\frac{1}{2}}n
                                                                 m_{\frac{1}{2}}m
                                                                                     m_{\frac{1}{2}}m
                                                                                                      n_{\frac{1}{2}}n - n - n
6
                            m_{\frac{1}{2}}m
                                                                                                                                              .. ..
                            H_{\infty}H
                                                H_{\infty}H
                                                                 H_{\infty}H
                                                                                     H_{\infty}H
                                                                                                      n_un_n_n
                                                                                                                                              H_{\infty}H
7
                                                                 m_{\frac{1}{2}}m
                                                                                                      n_{\frac{1}{2}}n - n - n
                            \Pi_{\frac{1}{2k}}\Pi
                                                m_{\frac{1}{2}}m
                                                                                     H_{\frac{1}{2}}H
                                                                                                                                              H_{\frac{1}{2}}H
8
                                                m_{\frac{1}{2}}m
                                                                 m_{\frac{1}{2}}m
                                                                                     m_{\frac{1}{2}}m
                                                                                                      и<sub>ж</sub>и и и
                                                                                                                                              m_{\frac{1}{2}}m
9
                            "*"
                            \Pi_{\frac{1}{2^{n}}}\Pi
                                                H_{\frac{1}{2}}H
                                                                 H_{\frac{1}{2}}H
                                                                                     H_{\frac{1}{2}}H
                                                                                                      ரும் மாம
                                                                                                                                              \Pi_{\frac{1}{2^{n}}}\Pi
10
11
           (1)
                            m_{\frac{1}{2k}}m
                                                m_{\frac{1}{2}}m
                                                                 п<sub>ж</sub>п
                                                                                     m_{\frac{1}{2}}m
                                                                                                      H_{\frac{1}{2}}H = H_{\frac{1}{2}}H
                                                                                                                                              m_{\frac{1}{2}}m
                            StudentYes MarriedYes EthnicityAsian EthnicityCaucasian
```

1	(1)				" "
2	(1)				" "
3	(1)	"*"			" "
4	(1)	"*"			" "
5	(1)	"*"			" "
6	(1)	"*"			" "
7	(1)	"*"			" "
8	(1)	"*"		"*"	" "
9	(1)	"*"	"*"	"*"	" "
10	(1)	"*"	"*"	"*"	"*"
11	(1)	"*"	"*"	"*"	"*"

Backward Selection Using Adjusted R²

Example: Credit dataset

ightharpoonup p = 11 predictors, n = 400 data points

```
> regfit.bwd = regsubsets(Balance~., data=Credit,
+ nvmax=11, method = "backward")
> summary(regfit.bwd)
```

```
Income Limit Rating Cards Age Education GenderFemale
1
                          .. ..
                                            .. ..
                                                           H_{\rm sp}H
2
                         H_{\frac{1}{2}}H
                                            .. ..
                                                           H_{\frac{1}{2}}H
                                                                             .. ..
                                                                                                                                 .. ..
3
                         m_{\frac{1}{2k}}m
                                            .. ..
                                                           H_{\frac{1}{2k}}H
                                                                             •
                                                                                  •
                                                                                                                                 .. ..
                                                           m_{*}m
4
                         "*"
                                            "*"
                                                                             .. ..
                                                                                                                                 .. ..
5
                         \Pi_{\frac{1}{2k}}\Pi
                                            m_{\frac{1}{2}}m
                                                           H_{\frac{1}{2}}H
                                                                             "*"
                                                                                                                                 .. ..
                                                           m_{\frac{1}{2}}m
                                                                                             n _n n n
6
                         "*"
                                            m_{\frac{1}{2}}m
                                                                             m_{\frac{1}{2}}m
                                                                                                                                 .. ..
7
                         \Pi_{\frac{1}{2^{n}}}\Pi
                                            H_{\frac{1}{2}}H
                                                           H_{\frac{1}{2}}H
                                                                             \Pi_{\frac{1}{2^{n}}}\Pi
                                                                                             n_n n n
                                                                                                                                H_{\frac{1}{2}}H
                                                                                             и<sub>ж</sub>и и и
                         m_{\frac{1}{2}}m
                                            m_{\frac{1}{2}}m
                                                           m_{\frac{1}{2}}m
                                                                             m_{\frac{1}{2}}m
                                                                                                                                m_{\frac{1}{2}}m
8
                         "*"
                                            H_{\infty}H
                                                           H_{\infty}H
                                                                             H_{\infty}H
                                                                                             n_n n n
                                                                                                                                H_{\infty}H
9
                                                                                             n<sub>*</sub>n n n
          (1
                         H_{\frac{1}{2k}}H
                                            m_{\frac{1}{2}}m
                                                           H_{\frac{1}{2}}H
                                                                             m_{\frac{1}{2}}m
                                                                                                                                H_{\frac{1}{2}}H
10
                                                           m_{2k}m
                                                                             m_{\frac{1}{2}}m
                                                                                             \Pi_{\frac{1}{2}}\Pi = \Pi_{\frac{1}{2}}\Pi
                                                                                                                                 n_{*}n
11
          (1)
                         "*"
                                            "*"
                         StudentYes MarriedYes EthnicityAsian EthnicityCaucasian
```

1	(1)				
2	(1)				
3	(1)	"*"			
4	(1)	"*"			
5	(1)	"*"		" "	
6	(1)	"*"			
7	(1)	"*"			
8	(1)	"*"		"*"	
9	(1)	"*"	"*"	"*"	
10	(1)	"*"	"*"	"*"	"*"
11	(1)	"*"	"*"	"*"	"*"

Comparison: Best, Forward and Backward Selection

Example: Credit dataset

```
> summary(regfit.full)$adjr2
> summary(regfit.fwd)$adjr2
> summary(regfit.bwd)$adjr2
```


Forward selection

Backward selection

Comparison: Best, Forward and Backward Selection

Example: Credit dataset

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

True or False

Can we apply the subset selection technique to logistic regression.

- **A.** Yes the technique can be applied with small modifications.
- **B.** No the technique only makes sense for linear regression.

We perform best subset, forward stepwise, and backward stepwise selection on the same training data set. In each approach, we obtain p+1 models containing $0,1,2,\ldots,p$ predictors, and a final model is picked among these p+1 models.

Which one of the following is always true?

- **A** The predictors in the k-variable model identified by forward stepwise are a subset of the predictors in the (k + 1)-variable model identified by forward stepwise.
- **B** The predictors in the k-variable model identified by backward stepwise are a subset of the predictors in the (k + 1)-variable model identified by forward stepwise.
- **C** The predictors in the k-variable model identified by forward stepwise are a subset of the predictors in the (k + 1)-variable model identified by backward stepwise.
- **D** The predictors in the k-variable model identified by best subset are a subset of the predictors in the (k + 1)-variable model identified by best subset selection.

Each of the three approach outputs a final model containing some subset of the predictors. Suppose that the *number* of predictors are the same in these three models. (The subsets of predictors are in general different.)

Which one of the following is true about these three final models?

- A The *training* RSS of best subset selection is <u>always</u> no higher than the other two.
- **B** The <u>training</u> RSS of forward selection is <u>always</u> no higher than those of the <u>other</u> two.
- C The <u>training</u> RSS of backward selection is <u>always</u> no higher than those of the <u>other</u> two.
- **D** It depends.

Under the setting of the last question, which one of the following is true about the three final models?

- A The <u>test</u> RSS of best subset selection is <u>always</u> no higher than the other two.
- **B** The <u>test</u> RSS of forward selection is <u>always</u> no higher than those of the other two.
- **C** The <u>test</u> RSS of backward selection is <u>always</u> no higher than those of the other two.
- **D** It depends.

Suppose you want to perform best subset selection with $\rho=20$ variables. How many subsets will you consider?

- **A.** 400
- **B.** n^{20}
- C. 1048576
- **D.** n^{2}
- E. 211

Suppose you want to perform forward selection with p=20 variables. How many subsets will you consider?

- **A.** 400
- **B.** n^{20}
- C. 1048576
- **D.** n^2
- E. 211

Summary

- Model selection for linear regression: Select a subset of predictors
 - Better interpretability
 - Not too flexible
 - Especially when *p* is large

Summary

- Model selection for linear regression: Select a subset of predictors
 - Better interpretability
 - Not too flexible
 - Especially when *p* is large
- Algorithms:
 - Best subset selection: optimal, but slow
 - Forward/backward stepwise selection: fast, but not optimal
 - Generally different outputs

Summary

- Model selection for linear regression: Select a subset of predictors
 - Better interpretability
 - Not too flexible
 - Especially when *p* is large
- Algorithms:
 - Best subset selection: optimal, but slow
 - Forward/backward stepwise selection: fast, but not optimal
 - Generally different outputs
- Do NOT use R²/RSS to compare models with different #variables
 - Instead use adjusted R², AIC, BIC, C_p
 - Or cross-validation

https://dribbble.com/shots/3761660-Cowboy-lasso-smiley

Announcements

Recap: Linear Model Selection

- n data points
- p variables X_1, X_2, \ldots, X_p ; p large

Recap: Linear Model Selection

```
n data points p variables X_1, X_2, \dots, X_p; p large
```

Linear model selection: Use < *p* variables

- Goal: interpretability; controlled flexibility
- Algorithms: pick a subset to optimize adjusted R² (or AIC, BIC, CV)
 - Best subset selection: slow, optimal
 - Forward/backward selection: fast, suboptimal, works well

Recap: Linear Model Selection

```
n data points p variables X_1, X_2, \dots, X_p; p large
```

Linear model selection: Use < p variables

- Goal: interpretability; controlled flexibility
- Algorithms: pick a subset to optimize adjusted R² (or AIC, BIC, CV)
 - Best subset selection: slow, optimal
 - Forward/backward selection: fast, suboptimal, works well

Today:

Linear model regularization: another way to control flexibility

■ Fast, work well, optimal in some cases.

Regularization in Linear Regression

(ISLR Sec 6.2)

Subset selection: Force some β_i to zero \Rightarrow Hard selection

Regularization in Linear Regression

```
(ISLR Sec 6.2)
```

Subset selection: Force some β_i to zero \Rightarrow Hard selection

Regularization: Shrink β_j toward zero \Rightarrow Soft selection

Regularization in Linear Regression

```
(ISLR Sec 6.2)
```

Subset selection: Force some β_i to zero \Rightarrow Hard selection

Regularization: Shrink β_i toward zero \Rightarrow Soft selection

Principle: Smaller $\beta_i \Rightarrow \text{Less flexibility/freedom } \Rightarrow \text{Smaller variance}$

```
(ISLR Sec 6.2)
```

Subset selection: Force some β_i to zero \Rightarrow Hard selection

Regularization: Shrink β_i toward zero \Rightarrow Soft selection

Principle: Smaller $\beta_i \Rightarrow \text{Less flexibility/freedom} \Rightarrow \text{Smaller variance}$

Two types of regularization:

- Ridge regression: ℓ₂ regularization
- Lasso: ℓ_1 regularization

```
(ISLR Sec 6.2)

Subset selection: Force some \beta_j to zero \Rightarrow Hard selection

Regularization: Shrink \beta_j toward zero \Rightarrow Soft selection
```

Principle: Smaller $\beta_j \Rightarrow \text{Less flexibility/freedom } \Rightarrow \text{Smaller variance}$

Two types of regularization:

- Ridge regression: ℓ₂ regularization
- Lasso: ℓ₁ regularization

Have you used ridge regression?

- A. Yes
- **B.** No

```
(ISLR Sec 6.2)
```

Subset selection: Force some β_i to zero \Rightarrow Hard selection

Regularization: Shrink β_i toward zero \Rightarrow Soft selection

Principle: Smaller $\beta_j \Rightarrow \text{Less flexibility/freedom } \Rightarrow \text{Smaller variance}$

Two types of regularization:

■ Ridge regression: ℓ₂ regularization

■ Lasso: ℓ_1 regularization

Have you used Lasso?

- A. Yes
- B. No

```
(ISLR Sec 6.2)
```

Subset selection: Force some β_i to zero \Rightarrow Hard selection

Regularization: Shrink β_i toward zero \Rightarrow Soft selection

Principle: Smaller $\beta_i \Rightarrow \text{Less flexibility/freedom } \Rightarrow \text{Smaller variance}$

Two types of regularization:

■ Ridge regression: ℓ₂ regularization

■ Lasso: ℓ₁ regularization

When to use ridge?

- A. When all predictors matter
- B. When only some predictors matter
- C. Always

```
(ISLR Sec 6.2)
```

Subset selection: Force some β_i to zero \Rightarrow Hard selection

Regularization: Shrink β_i toward zero \Rightarrow Soft selection

Principle: Smaller $\beta_i \Rightarrow \text{Less flexibility/freedom } \Rightarrow \text{Smaller variance}$

Two types of regularization:

- Ridge regression: ℓ₂ regularization
- Lasso: ℓ₁ regularization

When to use Lasso?

- A. When all predictors matter
- B. When only some predictors matter
- **C.** Always

Recall: Least squares approach to linear regression: minimize

$$\mathsf{RSS} \triangleq \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2$$

Recall: Least squares approach to linear regression: minimize

$$\mathsf{RSS} \triangleq \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2$$

Ridge regression: minimize

$$\mathsf{RSS} + \lambda \sum_{j=1}^{p} \beta_j^2$$

■ Note: β_0 not regularized

Recall: Least squares approach to linear regression: minimize

$$\mathsf{RSS} \triangleq \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2$$

Ridge regression: minimize

$$\mathsf{RSS} + \lambda \sum_{j=1}^p \beta_j^2$$

- \blacksquare λ : tuning parameter
- Note: β_0 not regularized

Recall: Least squares approach to linear regression: minimize

$$\mathsf{RSS} \triangleq \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2$$

Ridge regression: minimize

$$\mathsf{RSS} + \lambda \sum_{j=1}^{p} \beta_j^2$$

 \blacksquare λ : tuning parameter

■ Note: β_0 not regularized

 \blacksquare $\lambda = 0$: Same as least squares (full model)

Which would you expect to be true?

A. $|\hat{\beta}_i|$ tends to increase with λ

B. $|\hat{\beta}_i|$ tends to decrease with λ

Recall: Least squares approach to linear regression: minimize

$$\mathsf{RSS} \triangleq \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2$$

Ridge regression: minimize

$$\mathsf{RSS} + \lambda \sum_{j=1}^{p} \beta_j^2$$

- \blacksquare λ : tuning parameter
- Note: β_0 not regularized
- \blacksquare $\lambda = 0$: Same as least squares (full model)
- $\lambda \to \infty$: All $\beta_j = 0$ for $j \ge 1$ (null model)

Which would you expect to be true?

- **A.** $|\hat{\beta}_i|$ tends to increase with λ
- **B.** $|\hat{\beta}_i|$ tends to decrease with λ

Recall: Least squares approach to linear regression: minimize

$$\mathsf{RSS} \triangleq \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2$$

Ridge regression: minimize

$$\mathsf{RSS} + \lambda \sum_{j=1}^{p} \beta_j^2$$

- \blacksquare λ : tuning parameter
- Note: β_0 not regularized
- $\lambda = 0$: Same as least squares (full model)
- $\lambda \to \infty$: All $\beta_j = 0$ for $j \ge 1$ (null model)
- Intermediate λ : encourage β_j 's to be smaller (than the LS solution)

Which would you expect to be true?

- **A.** variance tends to increase with λ
- **B.** variance tends to decrease with λ

Recall: Least squares approach to linear regression: minimize

$$\mathsf{RSS} \triangleq \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2$$

Ridge regression: minimize

$$\mathsf{RSS} + \lambda \sum_{j=1}^{p} \beta_j^2$$

- \blacksquare λ : tuning parameter
- Note: β_0 not regularized
- \blacksquare $\lambda = 0$: Same as least squares (full model)
- $\lambda \to \infty$: All $\beta_i = 0$ for $j \ge 1$ (null model)
- Intermediate λ : encourage β_i 's to be smaller (than the LS solution)

Which would you expect to be true?

- **A.** bias tends to increase with λ
- **B.** bias tends to decrease with λ

Ridge Regression

Example: Credit dataset

 $\rho=11$ predictors: Income, Limit, Rating, Cards, Age, Education, Gender, Student, Married, EthnicityAsian, EthnicityCaucasian

Scaling

Recall: Least squares approach to linear regression: minimize

$$\mathsf{RSS} \triangleq \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2$$

Call minimizer $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$.

Suppose I take the data set and scale the 1st predictor by 2 and refit a least squares model. In other words, suppose I minimize

$$\mathsf{RSS}_2 \triangleq \sum_{i=1}^n \left(y_i - \beta_0 - \frac{\beta_1(2x_{i1})}{\sum_{j=2}^p \beta_j x_{ij}} \right)^2$$

and get estimate $\hat{\beta}'_0, \hat{\beta}'_1, \dots, \hat{\beta}'_p$, what can I conclude:

- **A.** $\hat{\beta}'_1 = 2\hat{\beta}_1$
- **B.** $\hat{\beta}'_1 = (1/2)\hat{\beta}_1$
- C. Neither

Scaling

Recall: Least squares approach to ridge regression: minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Call minimizer $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$.

Suppose I take the data set and scale the 1st predictor by 2 and refit a ridge regression model. In other words, suppose I minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \beta_1(2x_{i1}) + \sum_{j=2}^{p} \beta_j x_{ij} \right)^2 - \lambda \sum_{j=1}^{p} \beta_j^2$$

and get estimate $\hat{\beta}'_0, \hat{\beta}'_1, \dots, \hat{\beta}'_p$, what can I conclude:

- **A.** $\hat{\beta}'_1 = 2\hat{\beta}_1$
- **B.** $\hat{\beta}'_1 = (1/2)\hat{\beta}_1$
- C. Neither

Ridge Regression: Computation

- Ridge regression very sensitive to coefficient scaling!
- ► <u>Always</u> standardize (center and normalize) the predictors. (Done automatically using the following commands)

Ridge Regression: Computation

- Ridge regression very sensitive to coefficient scaling!
- ► <u>Always</u> standardize (center and normalize) the predictors. (Done automatically using the following commands)
- ▶ Apply ridge regression in R (cf. ISLR 6.6)

```
> library(glmnet)
> x = model.matrix(Balance~., Credit)
> ridge.fit = glmnet(x, Credit$Balance, alpha = 0, lambda = 0.1)
```

- Computational cost: no more than LS
- Much faster than best subset selection
- Need to choose λ (later)

Ridge Regression vs. Least Squares

Simulated data:
$$p = 45$$
, $n = 50$

minimize
$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Choosing λ

λ : controls flexibility of ridge regression

- Choose λ to minimize test error
- Estimate test error by cross-validation
- After λ is chosen, refit model using all data.

Credit dataset

(ISLR 6.2.2)

(ISLR 6.2.2)

Recall:

Least squares	Ridge regression
min RSS := $\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2$	min RSS + $\lambda \sum_{j=1}^{p} \beta_j^2$

(ISLR 6.2.2)

Recall:

Least squares Ridge regression $\min \ \mathsf{RSS} := \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 \qquad \min \ \mathsf{RSS} + \lambda \sum_{j=1}^p \beta_j^2$

Lasso: minimize

$$\mathsf{RSS} + \lambda \sum_{j=1}^{p} |\beta_j|$$

(ISLR 6.2.2)

Recall:

Lasso: minimize

$$\mathsf{RSS} + \lambda \sum_{j=1}^{p} |\beta_j|$$

- Larger $\lambda \Rightarrow$ more shrinkage of β_i 's
- " ℓ_1 " instead of " ℓ_2 " regularization
- Key property: Some β_i will be shrunk to exactly zero

Ridge Regression vs. Lasso

Ridge Regression vs. Lasso

Simulated data 1:

Response depends on all p = 45 predictors

Solid: Lasso Dash: Ridge Test MSE Bias Variance

Ridge Regression vs. Lasso

Simulated data 1:

Response depends on all p = 45 predictors

Solid: Lasso Dash: Ridge Test MSE Bias Variance

Simulated data 2:

Response depends on 2 out of p = 45 predictors

Lasso: Computation

▶ Always standardize (center & normalize) the predictors

Done automatically using glmnet ()

Lasso: Computation

▶ Always standardize (center & normalize) the predictors

Done automatically using glmnet ()

► Lasso in **R** (cf. ISLR 6.6)

```
> x = model.matrix(Balance~., Credit)
> ridge.fit = glmnet(x, Credit$Balance, alpha = 1, lambda = 0.5)
```

- Computational cost: no more than LS
- Much faster than best subset selection

Regularization for linear regression:

minimize RSS +
$$\lambda$$
 × (Regularization Term)

- Shrink β_j 's towards zero
- lacktriangle Smaller $eta_j \Rightarrow {\sf Less}$ flexibility $\Rightarrow {\sf Lower}$ variance

Regularization for linear regression:

minimize RSS +
$$\lambda$$
 × (Regularization Term)

- Shrink β_j 's towards zero
- lacktriangle Smaller $eta_j \Rightarrow {\sf Less}$ flexibility $\Rightarrow {\sf Lower}$ variance

	Ridge regression	Lasso
Regularization:	$\sum_{j=1}^{p} \beta_j^2$	$\sum_{j=1}^{p} \beta_j $

Regularization for linear regression:

minimize RSS +
$$\lambda$$
 × (Regularization Term)

- Shrink β_i 's towards zero
- Smaller β_i \Rightarrow Less flexibility \Rightarrow Lower variance

	Ridge regression	Lasso
Regularization:	$\sum_{j=1}^{p} \beta_j^2$	$\sum_{j=1}^{ ho} eta_j $
Property:	All β_j become smaller	Some β_j will be exactly zero

Regularization for linear regression:

minimize RSS +
$$\lambda$$
 × (Regularization Term)

- Shrink β_i 's towards zero
- lacktriangle Smaller $eta_j \Rightarrow {\sf Less}$ flexibility $\Rightarrow {\sf Lower}$ variance

	Ridge regression	Lasso
Regularization:	$\sum_{j=1}^{p} \beta_j^2$	$\sum_{j=1}^{ ho} eta_{j} $
Property:	All β_j become smaller	Some β_j will be exactly zero
Suitable when y	depends on all predictors	depends on a few predictors

Regularization for linear regression:

minimize RSS +
$$\lambda$$
 × (Regularization Term)

- Shrink β_i 's towards zero
- Smaller β_j \Rightarrow Less flexibility \Rightarrow Lower variance

	Ridge regression	Lasso
Regularization:	$\sum_{j=1}^{p} \beta_j^2$	$\sum_{j=1}^p eta_j $
Property:	All β_j become smaller	Some β_j will be exactly zero
Suitable when y	depends on all predictors	depends on a few predictors

- ▶ Choose λ by Cross Validation
- ▶ Can easily compute RR (or Lasso) simultaneously for all values of λ

How do we use LOOCV to estimate true test error when training involves regularization?

- Split n data points into:
 - \triangleright a training set of n-1 points
 - a validation set of 1 point
- Consider all n possible ways of splitting

Estimate test error by averaging:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \underbrace{MSE_{i}}_{Error \text{ on Sample } i}$$

Α.

- Split n data points into:
 - ▶ a training set of n − 1 points
 - a validation set of 1 point
- Consider all n possible ways of splitting

Estimate test error by averaging:

$$\begin{aligned} \mathsf{CV}_{(n)} &= \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathsf{MSE}_{i}}_{\mathsf{Error \ on \ Sample \ } i} \\ &+ \frac{\lambda}{n} \times \underbrace{(\mathsf{Regularization \ Term}_{i})}_{\mathsf{Size \ of \ Reg \ on \ Sample \ } i} \end{aligned}$$

В.

(Optional) The Geometry of Ridge and LASSO

ISLR pp 220 - 227

The Geometry of Ridge and Lasso

RSS Contours

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani Slides based on Yudong Chen's slides.