FORMULÁRIO

Analogia com circuitos elétricos:

$$\dot{Q} = \frac{\Delta T}{R}$$
;

$$R = R_1 + R_2 + R_3 + \cdots$$

Em série:
$$R = R_1 + R_2 + R_3 + \cdots$$

Em paralelo: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$

Condução

Paredes Planas:

$$\dot{Q}_{cond} = \frac{k.A}{L} \cdot (T_1 - T_2)$$
 $R = \frac{L}{(k.A)}$

$$R = \frac{L}{(k,A)}$$

Cilindros:

$$\dot{Q}_{cond} = \frac{2.\pi.k.l.(T_1 - T_2)}{\ln(\frac{d_2}{d_1})} \qquad R = \frac{\ln\frac{d_2}{d_1}}{2.\pi.k.l}$$

$$R = \frac{\ln \frac{d_2}{d_1}}{2.\pi.k.l}$$

Convecção

$$\dot{Q}_{conv} = h_{conv}.A.(T_s - T_f)$$
 $R = \frac{1}{(h_{conv}.A)}$

$$R = \frac{1}{(h_{conv}.A)}$$

Radiação

$$\sigma = 5,669x10^{-8}$$
 $R = \frac{1}{(h_{rad}A)}$

$$R = \frac{1}{(h_{rad}A)}$$

$$\dot{Q}_{rad} = h_{rad}.A.(T_s - T_{\infty})$$

Corpo em um ambiente com área muito maior que a do corpo:

$$\dot{Q}_{rad} = \varepsilon_{s}. A_{s}. \sigma_{s}. (T_{s}^{4} - T_{\infty}^{4})$$

$$h_{rad} = \varepsilon \sigma (T_s^2 + T_\infty^2)(T_s + T_\infty)$$

Paredes planas paralelas:

$$\dot{Q}_{rad} = \frac{\sigma.A.(T_1^4 - T_2^4)}{((\frac{1}{\varepsilon_1}) + (\frac{1}{\varepsilon_2}) - 1)}$$

Cilindros Concêntricos

$$\dot{Q}_{rad} = \frac{\sigma. A_1. (T_1^4 - T_2^4)}{(\frac{1}{\varepsilon_1} + \frac{A_1}{A_2}. (\frac{1}{\varepsilon_2} - 1))}$$