3. EKSPERYMENTALNE METODY WYZNACZANIA MODELI MATEMATYCZNYCH

3.1. Sposób wyznaczania charakterystyki czasowej

Charakterystykę czasową otrzymuje się na wyjściu obiektu, przez podanie na jego wejście w chwili t=0 wymuszenia standardowego. Schemat blokowy układu pomiarowego składa się z generatora funkcji wymuszającej, przetworników pomiarowych wielkości wejściowej i wyjściowej oraz rejestratora Y - f lub oscyloskopu (rys 3.1) [13].

Rys. 3.1

3.2. Określanie właściwości dynamicznych obiektów na podstawie charakterystyk czasowych

a) Obiekt zerowego rzędu

Obiekt zerowego rzędu (bezinercyjny, proporcjonalny) jest to obiekt idealny (niezniekształcający). Równanie takiego obiektu i jego transmitancja mają postać:

$$y(t) = kx(t)$$

$$G(s) = k$$

gdzie $k = \frac{b_0}{a_0}$ -współczynnik wzmocnienia statycznego dla ogólnej postaci modelu obiektu:

$$a_k y^k(t) + a_{k-1} y^{(k-1)}(t) + \dots + a_2 \ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 x(t)$$

Charakterystyki dynamiczne obiektu zerowego rzędu przedstawia rysunek 3.2.

b) Obiekt pierwszego rzędu

Obiektem pierwszego rzędu (inercjalnym) nazywamy obiekt zawierający jeden element konserwatywny (jeden pierwiastek rzeczywisty ujemny w równaniu charakterystycznym, jeden biegun transmitancji). Równanie obiektu oraz jego transmitancja mają postać:

$$T\ddot{y} + y = kx$$

$$G(s) = \frac{k}{1 + Ts}$$
gdzie $T = \frac{a_1}{a_0} [s]$ - stała czasowa.

Charakterystykę skokową oraz wyznaczenie stałej czasowej T obiektu pierwszego rzędu przedstawiono na rysunku 3.3.

Biegun s_B transmitancji tego obiektu wyliczamy z równania:

$$1 + Ts_B = 0 \rightarrow s_B = -\frac{1}{T} = -\frac{1}{3.5} \approx -0.3$$

Charakterystyka (odpowiedź) skokowa na wymuszenie skokowe x(t) = A * 1(t) jest krzywą wykładniczą. Jest to rozwiązanie równania różniczkowego. Charakterystyka ta dąży do stanu ustalonego o wartości $k \cdot A$, a stała czasowa T określa zdolność przenoszenia sygnałów szybkozmiennych. Im stała ta jest mniejsza, tym obiekt jest szybszy, dokładniejszy, bardziej zbliżony do idealnego [6, 7, 13].

Charakterystykę impulsową obiektu, oraz wyznaczenie transmitancji w oparciu o nią przedstawiono na rysunku 3.4, gdzie czas trwania impulsu jednostkowego $a \le 0.1T$.

c) obiekt drugiego rzędu

Obiekt drugiego rzędu jest to obiekt, który posiada elementy konserwatywne, magazynujące energie kinetyczną i energię potencjalną oraz elementy dyssypacyjne, powodujące straty energii. Należy tu nadmienić, że może on posiadać tylko jeden rodzaj energii (co najmniej dwa elementy).

Obiekt drugiego rzędu opisuje następujące równanie różniczkowe:

$$a_2\ddot{y} + a_1\dot{y} + a_0y = b_0x$$

Wprowadzając następujące parametry:

 $k = \frac{b_0}{a_0}$ - stosunek sygnału wyjściowego do sygnału wejściowego w stanie

ustalonym,

$$\omega_0 = \sqrt{\frac{a_0}{a_2}}$$
 pulsacja drgań swobodnych nietłumionych, pulsacja naturalna,

$$q = \frac{a_1}{2\sqrt{a_0 a_2}}, \left(2\xi\omega_0 = \frac{a_1}{a_2}\right)$$
 - tłumienie względne (bezwymiarowe),

otrzymuje się następujące równanie:

$$\ddot{y} + 2\xi\omega_0\dot{y} + \omega_0^2y = \omega_0^2kx$$

Transmitancja ma postać:

$$G(s) = \frac{\omega_0^2 k}{s^2 + 2\xi\omega_0 s + \omega_0^2}$$
 (*)

a oznaczając $T = \frac{1}{\omega_0}$, otrzymujemy:

$$G(s) = \frac{k}{T^2 s^2 + 2\xi T s + 1}$$
 (**)

Postać transmitancji (*) i (**) jest używana kiedy $O < \xi < 1$ (dla pary pierwiastków zespolonych w równaniu charakterystycznym, czyli dla obiektów oscylacyjnych).

W odpowiedzi oscylacyjnej tłumionej występują drgania o tłumieniu wykładniczym $\exp(-\xi\omega_0t)$ i pulsacji tłumionej ω_1 (praktycznie dla $\xi>0.7$ oscylacje są prawie niezauważalne):

$$\omega_1 = \omega_0 \sqrt{1 - \xi^2}$$
 lub $T_0 = T_1 \sqrt{1 - \xi^2}$ (***)

Tłumienie charakteryzuje przebieg przejściowy, a prędkość odpowiedzi obiektu zależy przede wszystkim od wartości ω_0 .

Rozpatrując graniczny przypadek dla ξ = l, transmitancja (**) przyjmuje postać:

$$G(s) = \frac{k}{(1+Ts)^2}$$

Dlatego parametr *T* jest stałą czasową dla przypadków odpowiedzi czasowej aperiodycznej. Równanie charakterystyczne posiada tylko pierwiastki rzeczywiste, a więc odpowiedź skokowa nie może mieć oscylacji. Charakterystyki skokowe obiektu drugiego rzędu dla różnych tłumień przedstawiono na rysunku 3.5.

d) Obiekt nieoscylacyjny

Rozpatrując przypadek ξ >1 na wstępie należy ocenić, czy jest to obiekt pierwszego rzędu (prowadzimy styczną do charakterystyki skokowej przechodzącą przez początek układu współrzędnych), czy też wyższego rzędu (występuje przegięcie). W tym drugim przypadku na charakterystyce skokowej prowadzi się styczną przez punkt przegięcia. Na osi czasu otrzymuje się punkt przecięcia się stycznej z osią czasu oraz punkt przecięcia się stycznej z asymptotą na wysokości wartości ustalonej odpowiedzi.

Uproszczony i mało dokładny sposób określenia transmitancji obiektu nieoscylacyjnego, dla którego $\xi > 1$, polega na przyjęciu, że obiekt jest tylko drugiego rzędu lub pierwszego z opóźnieniem (rys. 3.6).

Transmitancja ma postać:

$$G(s) = \frac{k}{(1 + T_z s)(1 + T_m s)}$$

lub, przyjmując stałą czasową T_m jako opóźnienie

$$G(s) = \frac{k}{(1+T_{z}s)}e^{-T_{m}s}$$

Ogólną i dokładną metodę dla obiektów nieoscylacyjnych n-tego rzędu zaproponował Strejc [5]. Aproksymuje on charakterystykę skokową przy pomocy modelu składającego się z n członów inercjalnych o jednakowych stałych czasowych i członu opóźniającego $e^{-\tau s}$

Rys. 3.6

Postepowanie jest następujące:

• Na eksperymentalnie wyznaczonej charakterystyce skokowej nanosi się styczną przechodzącą przez punkt przegięcia A, następnie wyznaczamy wartości t_i , T_m i T_z oraz wyliczamy stosunek $\left(\frac{T_m}{T_z}\right)_{\rm exp}$ z odpowiedzi skokowej obiektu (rys. 3.7).

n	T_m/T_z	t_i / T
1	0,000	0
2	0,104	1
3	0,218	2
4	0,319	3
5	0,410	4
6	0,493	5
7	0,570	6
8	0,642	7
9	0,709	8
10	0,773	9

Rys. 3.7

- Z tablicy określamy rząd n modelu na podstawie wyliczonego stosunku. Jeżeli wartość $\left(\frac{T_m}{T_z}\right)_{\rm exp}$ znajduje się między dwiema wartościami w tablicy, należy przyjąć
 - mniejszy rząd obiektu a T_m zmniejszyć o taką wartość τ , aby nowy stosunek odpowiadał dokładnie modelowi n-tego rzędu. W literaturze [5] można znaleźć więcej parametrów określanych z charakterystyki co zwiększa dokładność metody.
- Stałą czasową obiektu otrzymujemy z trzeciej kolumny tabelki, po podstawieniu wartości t_i dla wcześniej określonego rzędu obiektu.

Ostatecznie otrzymujemy następujący model

$$G(s) = \frac{k}{(1+Ts)^n} \cdot e^{-\tau s}$$

Dla przykładu z rysunku 3.7. mamy:

$$k = 18$$
 dla $x(t) = 1$

$$T_m = 2$$
; $t_i = 5$; $\left(\frac{T_m}{T_z}\right)_{\text{exp}} \approx 0.333$

Z tabeli otrzymujemy $\left(\frac{T_m}{T_z}\right)_{\rm exp} = 0.319$ czyli rząd obiektu jest 4 oraz $\frac{t_i}{T} = 3$, stąd:

$$\tau = \left[\left(\frac{T_m}{T_z} \right)_{\text{exp}} - \left(\frac{T_m}{T_z} \right)_{\text{tab}} \right] \cdot T_z \approx 0.084 \left[s \right]$$

$$T = \frac{t_i}{3} \approx 1.7 [s]$$

Model ma następującą postać:

$$G(s) = \frac{18}{(1+1.7s)^4} \cdot e^{-0.084s}$$

Praktycznie sprowadza się to do tego, że sygnał wyjściowy do chwili i jest zerowy, a dopiero od tego momentu stosunek $\frac{T_m}{T_z}$ dokładnie odpowiada modelowi n-tego rzędu.

e) Obiekt oscylacyjny

Na podstawie charakterystyki skokowej określamy:

• stosunek przeregulowania Δy_m do wartości ustalonej y_∞ i wyznaczamy tłumienie względne ξ z wykresu dla obliczonego stosunku $\frac{\Delta y_m}{v_m}$ lub z zależności:

$$\Delta y_m = 100 \cdot \exp\left(-\frac{\xi \pi}{\sqrt{1-\xi^2}}\right) \left[\%\right]$$

• okres drgań tłumionych T_1 , a z zależności (***) podstawiając $\omega_1 = \frac{2\pi}{T_1}$ wyznaczamy pulsację drgań nietłumionych:

$$\omega_0 = \frac{2\pi}{T_1 \sqrt{1 - \xi^2}}$$

Ostatecznie otrzymuje się następujący model obiektu:

$$G(s) = \frac{\omega_0^2 k}{s^2 + 2\xi \omega_0 s + \omega_0^2}$$

f) Wskaźniki liczbowe

Nie zawsze podaje się pełną charakterystykę dynamiczną. Często opisuje się właściwości dynamiczne obiektów za pomocą wskaźników liczbowych, które charakteryzują pewne ich cechy i umożliwiają ich porównanie. Przy omawianiu charakterystyk wystąpiły takie wskaźniki jak:

- stała czasowa T,
- stała czasowa zastępcza T_z ,
- czas opóźnienia (zwłoki) τ,
- czas opóźnienia zastępczy T_m ,
- przeregulowanie Δy_m ,

Rys. 3.8

Ponadto stosuje się:

- czas regulacji t_r; jest to czas, po upływie którego wielkość wyjściowa nie odchyla się od wartości ustalonej więcej niż o (2÷5)% (rys.3.8.). Dla obiektów pierwszego rzędu czas ten wynosi około 3 T (rys. 3.3). W przybliżeniu czas ten rozgranicza nam odpowiedź na tzw. stan przejściowy do chwili t_r oraz stan ustalony po chwili t_r. Charakterystyka skokowa jest graficznym rozwiązaniem równania różniczkowego opisującego obiekt. W przybliżeniu do chwili t_r występuje składowa swobodna i wymuszona, natomiast po chwili t_r pozostaje tylko składowa wymuszona rozwiązania.
- czas połówkowy $t_{0,5}$, po upływie którego odpowiedź skokowa osiąga połowę swej wartości ustalonej,
- czas narastania odpowiedzi $t_{0,1/0,9}$, czyli czas narastania odpowiedzi od 10% do 90% wartości ustalonej y_{∞} .

3.3. Sposób wyznaczania charakterystyki częstotliwościowej

Charakterystykę częstotliwościową otrzymujemy wprowadzając na wejście obiektu sygnał harmoniczny (sinusoidalny) o stałej amplitudzie, w kolejnych przedziałach czasowych o różnej pulsacji (częstości). Podstawowym przyrządem jest generator przebiegów sinusoidalnych, np.: generator elektryczny, pneumatyczny, elektryczny z wejściem pneumatycznym i inne. W praktyce do pomiaru obiektów wielkości mechanicznych potrzebny jest zakres częstotliwości bardzo niski od około 0,01 Hz do kilkudziesięciu Hz. Schemat układu pomiarowego jest identyczny jak w pierwszym rozdziale (rys. 3.1.).

Generator funkcji wymuszającej ma możliwość ustawiania wybranej pulsacji. Po ustawieniu wybranej pulsacji ω_1 należy odczekać, aż stan przejściowy praktycznie zniknie. Odpowiedź obiektu na wymuszenie sinusoidalne $x(t)=X_m\sin\omega t$ jest (po zaniku stanu przejściowego) sinusoidą o tej samej częstotliwości, ale innej amplitudzie Y_m i przesuniętą w fazie o $\varphi(\omega)$ względem sinusoidy wejściowej

$$y(t) = X_m |G(j\omega)| \sin[\omega t - \varphi(\omega)]$$

gdzie $G(j\omega)$ – transmitancjia widmowa, którą otrzymuje się przez podstawienie do transmitancji operatorowej $j\omega$ w miejsce s

$$G(j\omega) = G(s)|_{s=j\omega}$$

Transmitancja widmowa ma węższy sens fizyczny niż transmitancja operatorowa, gdyż opisuje tylko odpowiedź wymuszoną, stan ustalony (identycznie jak rachunek symboliczny w elektrotechnice). Transmitancja widmowa jest funkcją zespoloną, więc:

$$G(j\omega) = P(\omega) + jQ(\omega) = |G(j\omega)|e^{j\varphi(\omega)}$$
 gdzie:
$$P(\omega) - \text{część rzeczywista transmitancji widmowej,}$$

$$Q(\omega) - \text{część urojona transmitancji widmowej,}$$

$$|G(j\omega)| = \sqrt{P^2(\omega) + Q^2(\omega)} - \text{moduł transmitancji widmowej,}$$

$$\varphi(\omega) = arc\operatorname{tg} \frac{Q(\omega)}{P(\omega)} - \text{argument transmitancji widmowej.}$$

Praktycznie moduł transmitancji widmowej $|G(j\omega)|$ jest równy stosunkowi amplitud sygnały wyjściowego i wejściowego.

$$|G(j\omega)| = \frac{Y_m}{X_m}$$

3.4. Określanie właściwości dynamicznych obiektów na podstawie charakterystyk częstotliwościowych

Na podstawie wyznaczonych charakterystyk częstotliwościowych amplitudowej i fazowej można jedynie stwierdzić, że obiekt jest nieoscylacyjny, bądź też oscylacyjny z określoną pulsacją rezonansową. Celem określenia właściwości dynamicznych niezbędne jest przerysowanie wyznaczonych charakterystyk w skali logarytmicznej.

Oś rzędnych określa się w decybelach [dB], które są miarą stosunku amplitud (tłumienia, wzmocnienia) w/g zależności:

$$L|G(j\omega)[dB] = 20 \log |G(j\omega)|$$

dla $\omega = 0$ [dB] = $20 \log k$
np.: -20 [dB] to wzmocnienie 0,1
-3 [dB] to wzmocnienie $1/\sqrt{2} \approx 0,71$
1 [dB] to wzmocnienie 1,12
40 [dB] to wzmocnienie 100
100 [dB] to wzmocnienie 10⁵

Oś odciętych jest w skali logarytmicznej. Opisuje się ją w pulsacji ω lub log ω . Każda zmiana logarytmu pulsacji o jeden nosi nazwę dekady (dziesięciokrotna zmiana pulsacji). Na jedną dekadę logarytmiczną charakterystyka amplitudowa może opadać ("-" dla członów całkujących $1/s^n$ " 1/1+Ts) lub wzrastać ("+" dla członów różniczkujących s^n , 1+Ts) o n*20 dB/dek

Logarytmiczne charakterystyki dla pulsacji dążących do nieskończoności przyjmują wartości:

a) amplitudowa

$$\lim_{n \to \infty} L|G(j\omega)| = -(n-m)20 \text{ dB/dek}$$

gdzie:

m – stopień licznika transmitancji;

n – stopień mianownika transmitancji;

b) fazowa

$$\lim_{\omega\to\infty}\varphi(\omega)=-(n-m)\frac{\pi}{2}$$

Rys. 3.9 Wartości nachyleń w ramach jednej dekady

a) Obiekt zerowego rzędu

Jest to obiekt idealny, bezinercyjny. Charakterystyka logarytmiczna ma postać jak na rysunku 3.10.

Rys. 3.10

b) Obiekt pierwszego rzędu

Obiekt pierwszego rzędu (inercyjny) ma następującą transmitancję widmową:

$$G(j\omega) = \frac{k}{1 + jT\omega}$$

stad:

$$|G(j\omega)| = \frac{k}{\sqrt{1 + (T\omega)^2}}$$
$$\varphi(\omega) = \arg G(j\omega) = -arc \operatorname{tg} \omega T$$

Logarytmiczna charakterystyka amplitudowa jest określona równaniem:

$$L|G(j\omega)| = 20 \log \frac{k}{\sqrt{1 + (\omega T)^2}} = 20 \log k - 20 \log \sqrt{1 + (\omega T)^2}$$

Charakterystykę tę można aproksymować dwiema półprostymi o równaniach:

$$L |G(j\omega)| \approx 20 \log k$$
 $gdy \omega T << 1$
 $L |G(j\omega)| \approx 20 \log k - 20 \log \omega T$ $gdy \omega T >> 1$

Stąd otrzymamy charakterystykę amplitudową, przedstawioną na rysunku 3.11.

Z wykresu widać, że obiekt wiernie przenosi tylko te sygnały wejściowe, dla których spełniony jest warunek $\omega T \ll 1$, czyli dla pulsacji $\omega \ll \omega_z = 1/T$, gdzie ω_z nosi nazwę pulsacji załamania. Maksymalna różnica pomiędzy charakterystyką eksperymentalną a złożoną z dwóch półprostych wynosi około 3 dB.

Metoda określania transmitancji obiektu jest następująca. Po wyznaczeniu charakterystyki amplitudowej i fazowej, wykreślamy je w skali logarytmicznej i jeżeli charakterystyka amplitudowa nie ma wartości większych niż 20 log k oraz asymptota dla $\omega \to \infty$ opada 20 dB/dek, to jest to obiekt pierwszego rzędu. Punkt przecięcia asymptoty dla $\omega \to \infty$ oraz prostej dla wartości 20 log k określa pulsację załamania ω_z , a stąd wyznacza się stałą czasową

$$T = \frac{1}{\omega_z} \text{ oraz transmitancję}$$
$$G(s) = \frac{k}{1 + Ts}.$$

c) Obiekt drugiego rzędu nieoscylacyjny

Praktycznie, gdy tłumienie jest większe od około 0,707, charakterystyka logarytmiczna nie ma większych wartości amplitudy niż 20 $\log k$. Jest to więc obiekt nieoscylacyjny. Po wyznaczeniu charakterystyk częstotliwościowych i narysowaniu ich w skali logarytmicznej określamy nachylenie asymptoty dla $\omega \to \infty$. Określamy rząd n obiektu, przyjmując, że w liczniku występuje tylko współczynnik wzmocnienia. Następnie rysujemy styczne do wykresu o odpowiednio mniejszych nachyleniach, będących wielokrotnościami nachylenia 20 dB/dek, co odpowiada jednemu pierwiastkowi, jednej stałej czasowej. Punkty przecięcia się kolejnych stycznych oraz stycznej o nachyleniu 20 dB/dek z prostą dla wartości 20 $\log k$, określają poszczególne pulsację załamania. Ich odwrotności pozwalają określić transmitancję typu

$$G(s) = \frac{k}{(1 + T_1 s)(1 + T_2 s)...(1 + T_n s)}$$

Dla przykładu, na rysunku 3.12 przedstawiono charakterystykę logarytmiczną. Transmitancja ma postać:

$$G(s) = \frac{k}{(1 + T_1 s)(1 + T_2 s)}$$

$$G(j\omega) = \frac{k}{(1+j\omega T_1)(1+j\omega T_2)} g$$
dzie:
$$T_1 = \frac{1}{\omega_1}$$

$$T_2 = \frac{1}{\omega_2}$$

Rys. 3.12

d) Obiekt drugiego rzędu oscylacyjny

Parametry obiektu oscylacyjnego drugiego rzędu można określić bezpośrednio z charakterystyki amplitudowej, ale dokładniej oraz z możliwością ocenienia rzędu obiektu z charakterystyki logarytmicznej (rys 3.13). Największa wartość charakterystyki amplitudowej w stosunku do jej wartości w zerze wynoszącej $G(0) = 20 \log k$, nosi nazwę amplitudy rezonansowego M_r .

$$M_r = \frac{1}{2\xi\sqrt{1-\xi^2}}$$
$$\omega_r = \omega_0\sqrt{1-\xi^2}$$

Z powyższych zależności wyznacza się tłumienie ξ , oraz pulsację naturalną ω_0 (można ją również wyznaczyć bezpośrednio z charakterystyki logarytmicznej).

W ten sposób otrzymuje się transmitancję:

$$G(s) = \frac{\omega_0^2 k}{s^2 + 2\xi \omega_0 s + \omega_0^2}$$

e) wskaźniki liczbowe

Najczęściej stosowanymi wskaźnikami są:

- pulsacja załamania $\omega_z = 1/T$,
- pulsacja rezonansowa ω_r ,
- szczyt rezonansowy M_r ,
- pulsację graniczną trzydecybelowa. Jest to wartość pulsacji, przy której moduł transmitancji zmniejsza się o wartość 3 dB, czemu odpowiada zmniejszenie wzmocnienia do $\frac{1}{\sqrt{2}} \approx 0,707$, tzn. o około 30% (rys.3.13).

$$\omega_z \approx \omega_g (3dB) = \omega_g (30\%) = \omega_g \left(\frac{1}{\sqrt{2}}\right)$$

Stosowane są różne inne definicje pulsacji granicznej, np.:

- ω_g (6dB) zmniejszenie modułu transmitancji o 6 dB,
- $\omega_g(10\%)$ zmniejszenie amplitudy o 10%,
- $\omega_g(30^\circ)$ lub $\omega_g(45^\circ)$ przesunięcie fazowe osiąga po raz pierwszy -30° lub -45°.

Rys. 3.13

Przedstawione metody wyznaczania modeli matematycznych obiektów dotyczą obiektów jednowymiarowych tzn. z jednym wejściem i jednym wyjściem. Jest to tzw. identyfikacja obiektów jednowymiarowych przy użyciu eksperymentu czynnego tzn. przy użyciu standardowych sygnałów wymuszających: skoku jednostkowego, impulsu jednostkowego lub wymuszenia sinusoidalnego.