INVERSE KINEMATICS

Introduction to Robotics: Discussion 3
Robert Peter Matthew
20150915

ADMINISTRIVA

- HW1 Self Grades: Thursday 17th @1700
- HW2 Due: Thursday 17th @1700
- Discussion sections: Tues 1000-1100, Wed 1100-1200
- Office hours: Mon, Thurs 1100-1200
- DSP Students: Letters of Accommodation required asap.

TERMINOLOGY

Forward Kinematics

 Given joint positions, find end effector coordinates

Inverse Kinematics

 Given end effector coordinates, find required joint positions

Forward Dynamics

 Given joint torques, find end effector forces/torques

Inverse Dynamics

 Given a desired end effector force/torque, find required joint torques

RIGID BODY MOTION

Translation of Origin

Relative Rotation

HOMOGENEOUS COORDINATES

$$\overline{m{q}}_A = egin{bmatrix} m{q}_A \ 1 \end{bmatrix} = egin{bmatrix} R_{AB} & m{p}_{AB} \ m{0} & 1 \end{bmatrix} egin{bmatrix} m{q}_B \ 1 \end{bmatrix} = \overline{m{g}}_{AB} \overline{m{q}}_B$$

$$\overline{\boldsymbol{q}}_{B} = \begin{bmatrix} q_{B,1} \\ q_{B,2} \\ q_{B,3} \\ 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{q}_{B} \\ 1 \end{bmatrix} \in \mathbb{R}^{4} \qquad \overline{\boldsymbol{v}} = \begin{bmatrix} \boldsymbol{q}_{B} - \boldsymbol{q}_{A} \\ 0 \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ 0 \end{bmatrix} \in \mathbb{R}^{4}$$

Points

Vectors

RIGID BODY MOTION

$$\boldsymbol{q}_A = \boldsymbol{p}_{AB} + R_{AB}\boldsymbol{q}_B$$

Homogeneous Coordinates:

$$\overline{\boldsymbol{q}}_A = \begin{bmatrix} \boldsymbol{q}_A \\ 1 \end{bmatrix} = \begin{bmatrix} R_{AB} & \boldsymbol{p}_{AB} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_B \\ 1 \end{bmatrix} = \overline{\boldsymbol{g}}_{AB} \overline{\boldsymbol{q}}_B$$

Note: all configurations are **RELATIVE.**

FORWARD KINEMATICS

The *Kinematics* of a robotic manipulator describes the relationship between the *motion of the joints* and the *motion of the rigid bodies* that make up the manipulator.

$$\begin{bmatrix} \mathbf{q}_{A} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{AB} & \mathbf{p}_{AB} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{q}_{B} \\ 1 \end{bmatrix} \\
\begin{bmatrix} \mathbf{q}_{B} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{BC} & \mathbf{p}_{BC} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{q}_{C} \\ 1 \end{bmatrix} \\
\begin{bmatrix} \mathbf{q}_{A} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{AB} & \mathbf{p}_{AB} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{BC} & \mathbf{p}_{BC} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{q}_{C} \\ 1 \end{bmatrix}$$

Note: all configurations are **RELATIVE**.

FORWARD KINEMATICS

$$\begin{bmatrix} q_A \\ 1 \end{bmatrix} = \begin{bmatrix} R_{AB} & P_{AB} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{BC} & P_{BC} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q_C \\ 1 \end{bmatrix}
R_{AB} = R_Z \quad R_{BC} = R_Y
P_{AB} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \quad P_{BC} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}
q_C = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$$

FORWARD KINEMATICS

$$\begin{bmatrix} q_A \\ 1 \end{bmatrix} = \begin{bmatrix} R_{AB} & p_{AB} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{BC} & p_{BC} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q_C \\ 1 \end{bmatrix}$$

$$R_{AB} = R_Z \quad R_{BC} = R_Y$$

$$p_{AB} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \quad p_{BC} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$$

$$q_{\mathcal{C}} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$$

RELATIVE TRANSFORMS

Rigid body motion as:

coordinate transforms

$$\begin{bmatrix} \boldsymbol{q}_A \\ 1 \end{bmatrix} = \begin{bmatrix} R_{AB} & \boldsymbol{p}_{AB} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_B \\ 1 \end{bmatrix}$$

EXPONENTIAL COORDINATES

Rigid body motion as:

coordinate transforms

$$\begin{bmatrix} \boldsymbol{q}_A \\ 1 \end{bmatrix} = \begin{bmatrix} R_{AB} & \boldsymbol{p}_{AB} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_B \\ 1 \end{bmatrix}$$

solutions to differential equations

$$\bar{\boldsymbol{p}}\left(\theta\right) = e^{\widehat{\boldsymbol{\xi}}\widehat{\boldsymbol{\theta}}}\bar{\boldsymbol{p}}\left(0\right)$$

$$\widehat{\boldsymbol{\xi}} = \begin{bmatrix} \hat{\boldsymbol{\omega}} & \boldsymbol{v} \\ \mathbf{0} & 0 \end{bmatrix}$$

FORWARD KINEMATICS

The effect of multiple RBMs can be found via the composition of multiple matrix exponents.

For any reference frame at a **zero configuration**, we can write:

$$g(\theta) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} g(0)$$

Note: all configurations are in **ABSOLUTE** coordinates.

FORWARD KINEMATICS

$$g(\theta) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} g(0)$$

$$\boldsymbol{\xi_1} = \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix} \quad \boldsymbol{\xi_2} = \begin{bmatrix} \begin{bmatrix} -3 \\ 0 \\ 3 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{bmatrix}$$

$$g(0) = \begin{bmatrix} \begin{bmatrix} \mathbb{I}_3 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 3 \end{bmatrix} \\ \mathbf{0} & 1 \end{bmatrix}$$

DISCUSSION 2

FORWARD KINEMATICS

FORWARD KINEMATICS

$$g(\theta) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} g(0)$$

$$\boldsymbol{\xi_1} = \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix} \quad \boldsymbol{\xi_2} = \begin{bmatrix} \begin{bmatrix} -3 \\ 0 \\ 3 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{bmatrix}$$

$$g(0) = \begin{bmatrix} \begin{bmatrix} \mathbb{I}_3 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 3 \end{bmatrix} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$g(\theta) = e^{\hat{\xi}_1 \theta_1} g(0)$$

$$\xi_{1} = \begin{bmatrix} -\omega \times q \\ \omega \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}$$

$$g(0) = \begin{bmatrix} \begin{bmatrix} \mathbb{I}_3 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{0} & 1 \end{bmatrix}$$

DISCUSSION 3 INVEI

INVERSE KINEMATICS

$$g(\theta) = e^{\hat{\xi}_1 \theta_1} g(0)$$

$$\boldsymbol{\xi_1} = \begin{bmatrix} -\omega \times q \\ \omega \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}$$

$$g(0) = \begin{bmatrix} \begin{bmatrix} \mathbb{I}_3 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$g(\theta) = e^{\hat{\xi}_1 \theta_1} g(0)$$

$$\boldsymbol{\xi_1} = \begin{bmatrix} -\omega \times q \\ \omega \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}$$

$$g(0) = \begin{bmatrix} \begin{bmatrix} \mathbb{I}_3 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{0} & 1 \end{bmatrix}$$

Discussion 3

INVERSE KINEMATICS

$$g(\theta) = e^{\hat{\xi}_1 \theta_1} g(0)$$

$$\xi_1 = \begin{bmatrix} -\omega \times q \\ \omega \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}$$

$$g(0) = \begin{bmatrix} \begin{bmatrix} \mathbb{I}_3 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{0} & 1 \end{bmatrix}$$

INVERSE KINEMATICS

INVERSE KINEMATICS

INVERSE KINEMATICS

$$g_{d}(\theta_{1}) = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3\sqrt{2} \\ 3\sqrt{2} \\ 0 \\ 1 \end{bmatrix} \rightarrow 0$$

INVERSE KINEMATICS

$$g_{d}(\boldsymbol{\theta_{1}}) = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3\sqrt{2} \\ 3\sqrt{2} \\ 0 \\ 1 \end{bmatrix}$$

$$g(\theta) = e^{\hat{\xi}_1 \theta_1} g(0)$$

INVERSE KINEMATICS

$$g_{d}(\theta_{1}) = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3\sqrt{2} \\ 3\sqrt{2} \\ 0 \\ 1 \end{bmatrix} \rightarrow 0$$

$$g(\theta) = e^{\hat{\xi}_1 \theta_1} g(0)$$

$$g(0) = \begin{bmatrix} \begin{bmatrix} \mathbb{I}_3 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{0} & 1 \end{bmatrix}$$

DISCUSSION 3

INVERSE KINEMATICS

INVERSE KINEMATICS

$$g_{d}(\boldsymbol{\theta_{1}}) = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3\sqrt{2} \\ 3\sqrt{2} \\ 0 \end{bmatrix} \rightarrow 0$$

$$e^{\hat{\xi}_1\theta_1} = g(\theta)g^{-1}(0)$$

$$e^{\hat{\xi}_1\theta_1} = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0\\ \sqrt{2}/2 & \sqrt{2}/2 & 0\\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \\ \mathbf{0} & 1 \end{bmatrix}$$

DISCUSSION 3

INVERSE KINEMATICS

$$e^{\hat{\xi}_1\theta_1} = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0\\ \sqrt{2}/2 & \sqrt{2}/2 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

$$\mathbf{0}$$

$$\xi_1 \theta_1 = \begin{bmatrix}
0 & -\pi/4 & 0 \\
\pi/4 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

$$\xi_{1}\theta_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \pi/4 \end{bmatrix} \qquad \theta_{1} = \pi/4$$

INVERSE KINEMATICS

INVERSE KINEMATICS

Given a valid configuration in the workspace, find θ_1 .

If the point is not in the workspace it is infeasible, and no angle θ_1 can be found.

INVERSE KINEMATICS

Given a valid configuration in the workspace, find θ_1 .

If the point is not in the workspace it is infeasible, and no angle θ_1 can be found.

The closest feasible point however can be found

EXAMPLE I

Given a point (x, y), find the corresponding joint angles (θ_1, θ_2)

EXAMPLE I

Given a point (x, y), find the corresponding joint angles (θ_1, θ_2)

Think of this problem in polar coordinates. Each target point (x, y) has a corresponding (r, ϕ)

EXAMPLE I

Given a point (x, y), find the corresponding joint angles (θ_1, θ_2)

Think of this problem in polar coordinates. Each target point (x,y) has a corresponding (r,ϕ)

For (x, y) to be in the workspace, $r \leq l_1 + l_2$

EXAMPLE I

Given a point (x, y), find the corresponding joint angles (θ_1, θ_2)

Think of this problem in polar coordinates. Each target point (x,y) has a corresponding (r,ϕ)

For (x, y) to be in the workspace, $r \leq l_1 + l_2$

EXAMPLE I

Given a point (x, y), the lengths r, l_1 , l_2 are known.

EXAMPLE I

Given a point (x, y), the lengths r, l_1 , l_2 are known.

Using the law of cosines:

$$\alpha = a\cos\left(\frac{l_1^2 + l_2^2 - r^2}{2l_1 l_2}\right)$$

EXAMPLE I

Given a point (x, y), the lengths r, l_1 , l_2 are known.

Using the law of cosines:

$$\alpha = a\cos\left(\frac{l_1^2 + l_2^2 - r^2}{2l_1 l_2}\right)$$

Therefore

$$\theta_2 = \pi \pm \alpha$$

EXAMPLE I

Similarly:

$$\phi = atan2(y, x)$$

EXAMPLE I

Similarly:

$$\phi = atan2(y, x)$$

Using the law of cosines:

$$\beta = a\cos\left(\frac{r^2 + l_1^2 - l_2^2}{2l_1r}\right)$$

EXAMPLE I

Similarly:

$$\phi = atan2(y, x)$$

Using the law of cosines:

$$\beta = a\cos\left(\frac{r^2 + l_1^2 - l_2^2}{2l_1 r}\right)$$

Therefore

$$\theta_1 = \phi \pm \beta$$

EXAMPLE I

Given a point (x, y), find the corresponding joint angles (θ_1, θ_2)

$$\theta_1 = \phi \pm \beta$$

$$\theta_2 = \pi \pm \alpha$$

EXAMPLE I

Given a point (x, y), find the corresponding joint angles (θ_1, θ_2)

$$\theta_1 = \phi \pm \beta$$

$$\theta_2 = \pi \pm \alpha$$

While (θ_1, θ_2) both determine the point (x, y), they separately control the radial position and distance

EXAMPLE I

Given a point (x, y), find the corresponding joint angles (θ_1, θ_2)

$$\theta_1 = \phi \pm \beta$$

$$\theta_2 = \pi \pm \alpha$$

While (θ_1, θ_2) both determine the point (x, y), they separately control the radial position and distance

Separation is a useful IK strategy

EXAMPLE II

Given a valid end effector configuration, find the corresponding joint angles $(\theta_1 - \theta_6)$

EXAMPLE II

Separation of joints:

EXAMPLE II

Separation of joints:

 θ_3 :

EXAMPLE II

Separation of joints:

 θ_3 : Distance $\|q_w - p_b\|$

EXAMPLE II

Separation of joints:

 θ_3 : Distance $\|q_w - p_b\|$

 $\theta_{1,2}$:

EXAMPLE II

Separation of joints:

 θ_3 : Distance $\|q_w - p_b\|$

 $\theta_{1,2}$: Polar position of q_w

EXAMPLE II

Separation of joints:

 θ_3 : Distance $\|q_w - p_b\|$

 $\theta_{1,2}$: Polar position of q_w

 $\theta_{4,5,6}$:

EXAMPLE II

Separation of joints:

 θ_3 : Distance $\|q_w - p_b\|$

 $\theta_{1,2}$: Polar position of q_w

 $\theta_{4,5,6}$: Orientation of the end

effector

INVARIANT POINTS

The points q_w and p_b are special:

 p_b does not change with rotations about $\, \theta_{1,2} \,$

 q_w does not change with rotations about $\theta_{4,5,6}$

These points are said to be invariant

INVARIANT POINTS

Invariant points line on axes of rotation:

$$p = e^{\hat{\xi}_i \theta_i} p$$

INVARIANT POINTS

Invariant points line on axes of rotation:

$$p = e^{\hat{\xi}_i \theta_i} p$$

ie:

$$p_b = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b$$

INVARIANT POINTS

Invariant points line on axes of rotation:

$$p = e^{\hat{\xi}_i \theta_i} p$$

ie:

$$p_{b} = e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}p_{b}$$

$$q_{w} = e^{\hat{\xi}_{4}\theta_{4}}e^{\hat{\xi}_{5}\theta_{5}}e^{\hat{\xi}_{6}\theta_{6}}q_{w}$$

EXAMPLE II

Given a desired end effector configuration g_d and an initial configuration g_0 find θ_{1-6}

EXAMPLE II

Given a desired end effector configuration g_d and an initial configuration g_0 find θ_{1-6}

$$g_d = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} g_0$$

Discussion 3

INVERSE KINEMATICS

EXAMPLE II

Given a desired end effector configuration g_d and an initial configuration g_0 find θ_{1-6}

$$g_d = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} g_0$$

$$g_1 = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6}$$

PADEN-KAHAN SUBPROBLEMS

Analytical solutions for inverse kinematics:

Fast, efficient

Other methods (numerical) exist and will be explored in the labs.

PADEN-KAHAN SUBPROBLEM I

Rotations about a single axis

PADEN-KAHAN SUBPROBLEM I

Rotations about a single axis ω

Given two points p and q find the angle of rotation θ_1

PADEN-KAHAN SUBPROBLEM I

Rotations about a single axis **\omega**

Given two points p and q find the angle of rotation θ_1

Relative coordinates of p and $q \sim 0$ can be found from a point on the axis of rotation r

$$u = p - r$$
$$v = q - r$$

PADEN-KAHAN SUBPROBLEM I

These relative points can then be projected on the circle of revolution:

$$u' = u - \omega \omega^T u$$
$$v' = v - \omega \omega^T v$$

PADEN-KAHAN SUBPROBLEM I

These relative points can then be projected on the circle of revolution:

$$u' = u - \omega \omega^T u$$
$$v' = v - \omega \omega^T v$$

$$u' \times v' = \omega sin(\theta_1) ||u'||_2 ||v'||_2$$

$$u' \cdot v' = cos(\theta_1) ||u'||_2 ||v'||_2$$

PADEN-KAHAN SUBPROBLEM I

These relative points can then be projected on the circle of revolution:

$$u' = u - \omega \omega^T u$$
$$v' = v - \omega \omega^T v$$

$$u' \times v' = \omega sin(\theta_1) ||u'||_2 ||v'||_2$$

$$u' \cdot v' = cos(\theta_1) ||u'||_2 ||v'||_2$$

$$\boldsymbol{\theta_1} = atan2(\boldsymbol{\omega}^T(\boldsymbol{u}' \times \boldsymbol{v}'), \boldsymbol{u}'^T\boldsymbol{v}')$$

PADEN-KAHAN SUBPROBLEM II

Rotations about subsequent axes ω_1 , ω_2 .

$$g_{AB}(\theta_1, \theta_2) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} g_{AB}(0)$$

PADEN-KAHAN SUBPROBLEM II

Rotations about subsequent axes ω_1 , ω_2 .

$$g_{AB}(\theta_1, \theta_2) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} g_{AB}(0)$$

Given two points p and q find the angles θ_1 , θ_2

PADEN-KAHAN SUBPROBLEM II

Rotations about subsequent axes ω_1 , ω_2 .

$$g_{AB}(\theta_1, \theta_2) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} g_{AB}(0, 0)$$

Given two points p and q find the angles θ_1 , θ_2

PADEN-KAHAN SUBPROBLEM II

Rotations about subsequent axes ω_1 , ω_2 .

$$g_{AB}(\theta_1, \theta_2) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} g_{AB}(0, 0)$$

Given two points p and q find the angles θ_1 , θ_2

Find intersection point *c*.

PADEN-KAHAN SUBPROBLEM II

$$\mathbf{q} = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

PADEN-KAHAN SUBPROBLEM II

$$\mathbf{q} = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

$$e^{-\hat{\xi}_1 \theta_1} \mathbf{q} = e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

PADEN-KAHAN SUBPROBLEM II

$$\mathbf{q} = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

$$e^{-\hat{\xi}_1 \theta_1} \mathbf{q} = e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

$$e^{-\hat{\xi}_1 \theta_1} \mathbf{q} = c = e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

PADEN-KAHAN SUBPROBLEM II

$$\mathbf{q} = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

$$e^{-\hat{\xi}_1 \theta_1} \mathbf{q} = e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

$$e^{-\hat{\xi}_1 \theta_1} \mathbf{q} = \mathbf{c} = e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

find a point common to both axes *r*

PADEN-KAHAN SUBPROBLEM II

$$\mathbf{q} = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

$$e^{-\hat{\xi}_1 \theta_1} \mathbf{q} = e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

$$e^{-\hat{\xi}_1 \theta_1} \mathbf{q} = c = e^{\hat{\xi}_2 \theta_2} \mathbf{p}$$

find a point common to both axes r

$$u = p - r$$

$$z = c - r$$

$$v = q - r$$

$$e^{-\hat{\xi}_1\theta_1}q=c=e^{\hat{\xi}_2\theta_2}p$$

$$u = p - r$$

$$z = c - r$$

$$v = q - r$$

$$e^{-\hat{\xi}_1\theta_1}\boldsymbol{v} = \boldsymbol{z} = e^{\hat{\xi}_2\theta_2}\boldsymbol{u}$$

$$e^{-\hat{\xi}_1\theta_1}\boldsymbol{v} = \boldsymbol{z} = e^{\hat{\xi}_2\theta_2}\boldsymbol{u}$$

PADEN-KAHAN SUBPROBLEM II

$$e^{-\hat{\xi}_1\theta_1}\boldsymbol{v} = \boldsymbol{z} = e^{\hat{\xi}_2\theta_2}\boldsymbol{u}$$

 ω_1 , ω_2 are linearly independent

PADEN-KAHAN SUBPROBLEM II

$$e^{-\hat{\xi}_1\theta_1}\boldsymbol{v} = \boldsymbol{z} = e^{\hat{\xi}_2\theta_2}\boldsymbol{u}$$

 ω_1 , ω_2 are linearly independent

$$\mathbf{z} = \alpha \mathbf{\omega_1} + \beta \mathbf{\omega_2} + \gamma (\mathbf{\omega_1} \times \mathbf{\omega_2})$$

PADEN-KAHAN SUBPROBLEM II

$$e^{-\hat{\xi}_1\theta_1}\boldsymbol{v} = \boldsymbol{z} = e^{\hat{\xi}_2\theta_2}\boldsymbol{u}$$

 ω_1 , ω_2 are linearly independent

$$z = \alpha \omega_1 + \beta \omega_2 + \gamma (\omega_1 \times \omega_2)$$

$$\alpha = \frac{(\omega_{1}^{T}\omega_{2})\omega_{2}^{T}u - \omega_{1}^{T}v}{(\omega_{1}^{T}\omega_{2})^{2} - 1}$$

$$\beta = \frac{(\omega_{1}^{T}\omega_{2})\omega_{1}^{T}v - \omega_{2}^{T}u}{(\omega_{1}^{T}\omega_{2})^{2} - 1}$$

$$\gamma^{2} = \frac{\|u\|^{2} - \alpha^{2} - \beta^{2} - 2\alpha\beta\omega_{1}^{T}\omega_{2}}{\|\omega_{1} \times \omega_{2}\|^{2}}$$

PADEN-KAHAN SUBPROBLEM II

$$e^{-\hat{\xi}_1\theta_1}\boldsymbol{v} = \boldsymbol{z} = e^{\hat{\xi}_2\theta_2}\boldsymbol{u}$$

 ω_1 , ω_2 are linearly independent

$$z = \alpha \omega_1 + \beta \omega_2 + \gamma (\omega_1 \times \omega_2)$$

$$\alpha = \frac{(\omega_{1}^{T}\omega_{2})\omega_{2}^{T}u - \omega_{1}^{T}v}{(\omega_{1}^{T}\omega_{2})^{2} - 1}$$

$$\beta = \frac{(\omega_{1}^{T}\omega_{2})\omega_{1}^{T}v - \omega_{2}^{T}u}{(\omega_{1}^{T}\omega_{2})^{2} - 1}$$

$$\gamma^{2} = \frac{\|u\|^{2} - \alpha^{2} - \beta^{2} - 2\alpha\beta\omega_{1}^{T}\omega_{2}}{\|\omega_{1} \times \omega_{2}\|^{2}}$$

Two solutions!

PADEN-KAHAN SUBPROBLEM II

$$e^{-\hat{\xi}_1\theta_1}\boldsymbol{v} = \boldsymbol{z} = e^{\hat{\xi}_2\theta_2}\boldsymbol{u}$$

 ω_1 , ω_2 are linearly independent

$$\mathbf{z} = \alpha \mathbf{\omega_1} + \beta \mathbf{\omega_2} + \gamma (\mathbf{\omega_1} \times \mathbf{\omega_2})$$

$$\alpha = \frac{(\omega_{1}^{T}\omega_{2})\omega_{2}^{T}u - \omega_{1}^{T}v}{(\omega_{1}^{T}\omega_{2})^{2} - 1}$$

$$\beta = \frac{(\omega_{1}^{T}\omega_{2})\omega_{1}^{T}v - \omega_{2}^{T}u}{(\omega_{1}^{T}\omega_{2})^{2} - 1}$$

$$\gamma^{2} = \frac{\|u\|^{2} - \alpha^{2} - \beta^{2} - 2\alpha\beta\omega_{1}^{T}\omega_{2}}{\|\omega_{1} \times \omega_{2}\|^{2}}$$

Two solutions!

$$e^{-\hat{\xi}_1\theta_1}\boldsymbol{v} = \boldsymbol{z} = e^{\hat{\xi}_2\theta_2}\boldsymbol{u}$$

$$e^{-\hat{\xi}_1\theta_1}\boldsymbol{v} = \boldsymbol{z} = e^{\hat{\xi}_2\theta_2}\boldsymbol{u}$$
$$\boldsymbol{z}_1 = \alpha\boldsymbol{\omega}_1 + \boldsymbol{\beta}\boldsymbol{\omega}_2 + \boldsymbol{\gamma}_1(\boldsymbol{\omega}_1 \times \boldsymbol{\omega}_2)$$

$$e^{-\hat{\xi}_1\theta_1}v = z = e^{\hat{\xi}_2\theta_2}u$$

$$z_1 = \alpha\omega_1 + \beta\omega_2 + \gamma_1(\omega_1 \times \omega_2)$$

$$z_2 = \alpha\omega_1 + \beta\omega_2 + \gamma_2(\omega_1 \times \omega_2)$$

DISCUSSION 3

INVERSE KINEMATICS

PADEN-KAHAN SUBPROBLEM II

$$e^{-\hat{\xi}_1\theta_1}v = z = e^{\hat{\xi}_2\theta_2}u$$

$$z_1 = \alpha\omega_1 + \beta\omega_2 + \gamma_1(\omega_1 \times \omega_2)$$

$$z_2 = \alpha\omega_1 + \beta\omega_2 + \gamma_2(\omega_1 \times \omega_2)$$

Solve as PK I:

$$e^{-\hat{\xi}_1\theta_1}\boldsymbol{v} = \mathbf{z}_1 = e^{\hat{\xi}_2\theta_2}\boldsymbol{u}$$
$$e^{-\hat{\xi}_1\theta_1}\boldsymbol{v} = \mathbf{z}_2 = e^{\hat{\xi}_2\theta_2}\boldsymbol{u}$$

PADEN-KAHAN SUBPROBLEM III

Rotations about axis ω_1 to a distance δ

$$\boldsymbol{\delta} = \left\| \boldsymbol{q} - e^{\hat{\xi}_1 \theta_1} \boldsymbol{p} \right\|$$

Given two points ${\color{red}p}$ and ${\color{red}q}$ find the angles ${\color{red}\theta_1}$

PADEN-KAHAN SUBPROBLEM III

Rotations about axis ω_1 to a distance δ

$$\boldsymbol{\delta} = \left\| \boldsymbol{q} - e^{\hat{\xi}_1 \theta_1} \boldsymbol{p} \right\|$$

Given two points p and q find the angles θ_1

δ can be thought of as a ball around q

PADEN-KAHAN SUBPROBLEM III

Given a point r on the rotational axis, the relative coordinates can be found:

$$u = p - r$$
$$v = q - r$$

PADEN-KAHAN SUBPROBLEM III

Given a point *r* on the rotational axis, the relative coordinates can be found:

$$u = p - r$$
$$v = q - r$$

The projection on the plane of rotation is given by:

$$u' = u - \omega \omega^T u$$
$$v' = v - \omega \omega^T v$$

PADEN-KAHAN SUBPROBLEM III

The projection of δ on the rotational plane can also be found:

$$\boldsymbol{\delta}'^2 = \boldsymbol{\delta}^2 - |\boldsymbol{\omega}^T(\boldsymbol{p} - \boldsymbol{q})|^2$$

PADEN-KAHAN SUBPROBLEM III

The projection of δ on the rotational plane can also be found:

$$\boldsymbol{\delta}'^2 = \boldsymbol{\delta}^2 - |\boldsymbol{\omega}^T(\boldsymbol{p} - \boldsymbol{q})|^2$$

PADEN-KAHAN SUBPROBLEM III

The projection of δ on the rotational plane can also be found:

$$\boldsymbol{\delta}'^2 = \boldsymbol{\delta}^2 - |\boldsymbol{\omega}^T(\boldsymbol{p} - \boldsymbol{q})|^2$$

This defines two angles of rotation:

$$\theta = \theta_0 \pm \theta_d$$

Two solutions!

PADEN-KAHAN SUBPROBLEM III

The two solutions have the form:

$$\theta = \theta_0 \pm \theta_d$$

where:

$$\theta_0 = atan2(\boldsymbol{\omega}^T(\boldsymbol{u}' \times \boldsymbol{v}'), \boldsymbol{u}'^T \boldsymbol{v}')$$
$$\theta_d = \cos^{-1}\left(\frac{\|\boldsymbol{u}'\|^2 + \|\boldsymbol{v}'\|^2 - \boldsymbol{\delta}'^2}{2\|\boldsymbol{u}'\|\|\boldsymbol{v}'\|}\right)$$

PADEN-KAHAN SUBPROBLEM III

If the desired point is on the edge of the ball there is only one solution

PADEN-KAHAN SUBPROBLEM III

If the desired point outside the edge of the ball there are no solutions

EXAMPLE II

Separation of joints:

 θ_3 : Distance $\|q_w - p_b\|$

 $\theta_{1,2}$: Polar position of q_w

 $\theta_{4,5,6}$: Orientation of the end

effector

EXAMPLE II

Given a desired end effector configuration g_d and an initial configuration g_0 find θ_{1-6}

$$g_1 = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6}$$

EXAMPLE II

Given a desired end effector configuration g_d and an initial configuration g_0 find θ_{1-6}

$$g_1 = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6}$$

Consider the invariant points p_h and q_w :

$$p_b = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b$$

Discussion 3

INVERSE KINEMATICS

EXAMPLE II

Given a desired end effector configuration g_d and an initial configuration g_0 find θ_{1-6}

$$g_1 = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6}$$

Consider the invariant points p_b and q_w :

$$p_{b} = e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}p_{b}$$

$$q_{w} = e^{\hat{\xi}_{4}\theta_{4}}e^{\hat{\xi}_{5}\theta_{5}}e^{\hat{\xi}_{6}\theta_{6}}q_{w}$$

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b \\ q_w &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \end{split}$$

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b \\ q_w &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \end{split}$$

$$g_1 q_w = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w$$

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b \\ q_w &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \end{split}$$

$$\begin{split} g_1 q_w &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \\ g_1 q_w &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} q_w \end{split}$$

$$g_{1} = e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}e^{\hat{\xi}_{4}\theta_{4}}e^{\hat{\xi}_{5}\theta_{5}}e^{\hat{\xi}_{6}\theta_{6}}$$

$$p_{b} = e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}p_{b}$$

$$q_{w} = e^{\hat{\xi}_{4}\theta_{4}}e^{\hat{\xi}_{5}\theta_{5}}e^{\hat{\xi}_{6}\theta_{6}}q_{w}$$

$$\begin{split} g_1 q_w &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \\ g_1 q_w &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} q_w \\ g_1 q_w - p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} q_w - p_b \end{split}$$

DISCUSSION 3

INVERSE KINEMATICS

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b \\ q_w &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \end{split}$$

$$\begin{split} g_1 q_w &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \\ g_1 q_w &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} q_w \\ g_1 q_w - p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} q_w - p_b \\ g_1 q_w - p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \left(e^{\hat{\xi}_3 \theta_3} q_w - p_b \right) \end{split}$$

Discussion 3

INVERSE KINEMATICS

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b \\ q_w &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \end{split}$$

$$\begin{split} g_{1}q_{w} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}e^{\hat{\xi}_{4}\theta_{4}}e^{\hat{\xi}_{5}\theta_{5}}e^{\hat{\xi}_{6}\theta_{6}}q_{w}\\ g_{1}q_{w} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}q_{w}\\ g_{1}q_{w} - p_{b} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}q_{w} - p_{b}\\ g_{1}q_{w} - p_{b} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\left(e^{\hat{\xi}_{3}\theta_{3}}q_{w} - p_{b}\right)\\ \|g_{1}q_{w} - p_{b}\| &= \left\|e^{\hat{\xi}_{3}\theta_{3}}q_{w} - p_{b}\right\| \end{split}$$

DISCUSSION 3

INVERSE KINEMATICS

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b \\ q_w &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \end{split}$$

$$\begin{split} g_{1}q_{w} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}e^{\hat{\xi}_{4}\theta_{4}}e^{\hat{\xi}_{5}\theta_{5}}e^{\hat{\xi}_{6}\theta_{6}}q_{w} \\ g_{1}q_{w} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}q_{w} \\ g_{1}q_{w} - p_{b} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}q_{w} - p_{b} \\ g_{1}q_{w} - p_{b} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\left(e^{\hat{\xi}_{3}\theta_{3}}q_{w} - p_{b}\right) \\ \|g_{1}q_{w} - p_{b}\| &= \left\|e^{\hat{\xi}_{3}\theta_{3}}q_{w} - p_{b}\right\| \\ \delta &= \left\|e^{\hat{\xi}_{3}\theta_{3}}q_{w} - p_{b}\right\| \end{split}$$

Discussion 3

INVERSE KINEMATICS

EXAMPLE II

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b \\ q_w &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \end{split}$$

$$\begin{split} g_{1}q_{w} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}e^{\hat{\xi}_{4}\theta_{4}}e^{\hat{\xi}_{5}\theta_{5}}e^{\hat{\xi}_{6}\theta_{6}}q_{w} \\ g_{1}q_{w} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}q_{w} \\ g_{1}q_{w} - p_{b} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}q_{w} - p_{b} \\ g_{1}q_{w} - p_{b} &= e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\left(e^{\hat{\xi}_{3}\theta_{3}}q_{w} - p_{b}\right) \\ \|g_{1}q_{w} - p_{b}\| &= \left\|e^{\hat{\xi}_{3}\theta_{3}}q_{w} - p_{b}\right\| \\ \delta &= \left\|e^{\hat{\xi}_{3}\theta_{3}}q_{w} - p_{b}\right\| \end{split}$$

PADEN KAHAN Subproblem III

EXAMPLE II

Separation of joints:

 θ_3 : Distance $\|q_w - p_b\|$

 $\theta_{1,2}$: Polar position of q_w

 $\theta_{4,5,6}$: Orientation of the end

effector

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b \\ q_w &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \end{split}$$

$$g_1 q_w = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} q_w$$

DISCUSSION 3 INV

INVERSE KINEMATICS

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b \\ q_w &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \end{split}$$

$$g_{1}q_{w} = e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}q_{w}$$

$$g_{1}q_{w} = e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\left(e^{\hat{\xi}_{3}\theta_{3}}q_{w}\right)$$

DISCUSSION 3 INVI

INVERSE KINEMATICS

EXAMPLE II

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ p_b &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} p_b \\ q_w &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} q_w \end{split}$$

$$g_{1}q_{w} = e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}q_{w}$$

$$g_{1}q_{w} = e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\left(e^{\hat{\xi}_{3}\theta_{3}}q_{w}\right)$$

PADEN KAHAN Subproblem II

EXAMPLE II

Separation of joints:

 θ_3 : Distance $\|q_w - p_b\|$

 $\theta_{1,2}$: Polar position of q_w

 $\theta_{4,5,6}$: Orientation of the end

effector

$$g_1 = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6}$$

$$g_1 = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6}$$

$$g_1 = g_d g_0^{-1}$$

$$g_{1} = e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}e^{\hat{\xi}_{3}\theta_{3}}e^{\hat{\xi}_{4}\theta_{4}}e^{\hat{\xi}_{5}\theta_{5}}e^{\hat{\xi}_{6}\theta_{6}}$$

$$g_{1} = g_{d}g_{0}^{-1}$$

$$g_{2} = g_{1}e^{-\hat{\xi}_{3}\theta_{3}}e^{-\hat{\xi}_{2}\theta_{2}}e^{-\hat{\xi}_{1}\theta_{1}}$$

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \end{split}$$

EXAMPLE II

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \end{split}$$

Consider a point p_6 on the ξ_6 axis

EXAMPLE II

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \end{split}$$

Consider a point p_6 on the ξ_6 axis $p_6 = e^{\hat{\xi}_6 \theta_6} p_6$

EXAMPLE II

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \end{split}$$

Consider a point p_6 on the ξ_6 axis $p_6=e^{\hat{\xi}_6\theta_6}p_6$

$$g_2 p_6 = e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} p_6$$

EXAMPLE II

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \end{split}$$

Consider a point p_6 on the ξ_6 axis

$$p_6 = e^{\hat{\xi}_6 \theta_6} p_6$$

$$g_2 p_6 = e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} p_6$$
$$g_2 p_6 = e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} p_6$$

EXAMPLE II

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \end{split}$$

Consider a point p_6 on the ξ_6 axis $p_6=e^{\hat{\xi}_6\theta_6}p_6$

$$g_{2}p_{6} = e^{\hat{\xi}_{4}\theta_{4}}e^{\hat{\xi}_{5}\theta_{5}}e^{\hat{\xi}_{6}\theta_{6}}p_{6}$$
$$g_{2}p_{6} = e^{\hat{\xi}_{4}\theta_{4}}e^{\hat{\xi}_{5}\theta_{5}}p_{6}$$

PADEN KAHAN Subproblem II

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \end{split}$$

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_3 &= g_2 e^{-\hat{\xi}_5 \theta_5} e^{-\hat{\xi}_4 \theta_4} \end{split}$$

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_3 &= g_2 e^{-\hat{\xi}_5 \theta_5} e^{-\hat{\xi}_4 \theta_4} \\ g_3 &= e^{\hat{\xi}_6 \theta_6} \end{split}$$

EXAMPLE II

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_3 &= g_2 e^{-\hat{\xi}_5 \theta_5} e^{-\hat{\xi}_4 \theta_4} \\ g_3 &= e^{\hat{\xi}_6 \theta_6} \end{split}$$

Consider a point p_E not on the ξ_6 axis

EXAMPLE II

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_3 &= g_2 e^{-\hat{\xi}_5 \theta_5} e^{-\hat{\xi}_4 \theta_4} \\ g_3 &= e^{\hat{\xi}_6 \theta_6} \end{split}$$

Consider a point p_E not on the ξ_6 axis $g_3 p_E = e^{\hat{\xi}_6 \theta_6} p_E$

EXAMPLE II

$$\begin{split} g_1 &= e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_1 &= g_d g_0^{-1} \\ g_2 &= g_1 e^{-\hat{\xi}_3 \theta_3} e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \\ g_2 &= e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6} \\ g_3 &= g_2 e^{-\hat{\xi}_5 \theta_5} e^{-\hat{\xi}_4 \theta_4} \\ g_3 &= e^{\hat{\xi}_6 \theta_6} \end{split}$$

Consider a point p_E not on the ξ_6 axis

$$g_3 p_E = e^{\hat{\xi}_6 \theta_6} p_E$$

PADEN KAHAN Subproblem I

