L1 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2007 ACS on STN

AN 1954:919 CAPLUS

DN 48:919

OREF 48:184d-e

TI Polyether compounds

PA Sandoz Ltd.

DT Patent

LA Unavailable

FAN.CNT 1

PATENT NO. KIND DATE APPLICATION NO. DATE

PI CH 283986 19521130 CH

AB In addn. to the intermediates prepd. in Swiss 273,395 (C.A. 46, 3558g), p-Me3CH2CMe2C6 H4O(C2H4O)5 CH2CO2H was prepd.

SCHWEIZERISCHE EIDGENOSSENSCHAFT

EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

PATENTSCHRIFT

Veröffentlicht am 17. November 1952

Klasse 36o

35

Gesuch eingereicht: 1. September 1948, 19 Uhr. — Patent eingetragen: 30. Juni 1952.

Zusatzpatent zum Hauptpatent Nr. 273395.

Sandoz AG., Basel (Schweiz).

Verfahren zur Herstellung einer neuen Polyätherverbindung.

Gegenstand vorliegender Erfindung ist ein Verfahren zur Herstellung einer neuen Verbindung der Formel

$$CH_3$$
 CH_3 CH_3 CH_2 CH_2 CH_2 CH_2 CH_3 CH_3

welches dadurch gekennzeichnet ist, daß man die Additionsverbindung aus einem Alkalihydroxyd und p-(1,1,3,3-Tetramethyl-butyl)-phenyl-pentaglykoläther mit Monochloressigsäure umsetzt.

Beispiel:

In 215 g p-(1,1,3,3-Tetramethyl-butyl)phenyl-pentaglykoläther trägt man unter gutem Rühren 25 g pulverisiertes Ätznatron ein und dann unter schwacher Kühlung 65 g chloressigsaures Natrium bei 40 bis 50° C. 40 Das Reaktionsprodukt wird anschließend zwei Stunden auf 50° C und eine Stunde auf 75° C erwärmt. Man erhält eine helle, dickflüssige Masse, die durch das ausgeschiedene Kochsalz etwas trüb ist. Das Produkt bildet in Wasser 45 klare, schäumende Lösungen, welche sehr gute Netzwirkung besitzen.

PATENTANSPRUCH:

Verfahren zur Herstellung der neuen Verbindung der Formel

$$\begin{array}{c|c} \operatorname{CH_3} & \operatorname{CH_2} \\ & | & | \\ \operatorname{CH_3-C-CH_2-C} \\ & | & | \\ \operatorname{CH_3} & \operatorname{CH_3} \end{array} - \operatorname{O}\left(\operatorname{CH_2CH_2O}\right)_5 \operatorname{CH_2COOH},$$

dadurch gekennzeichnet, daß man die Additionsverbindung aus einem Alkalihydroxyd und p-(1,1,3,3 - Tetramethyl - butyl) - phenylpentaglykoläther mit Monochloressigsäure umsetzt.

Das neue Produkt stellt eine helle, dickflüssige Masse dar, die durch das ausgeschiedene Kochsalz etwas trüb ist. Das Produkt bildet in Wasser klare, schäumende Lösungen, 60 welche sehr gute Netzwirkung besitzen.

Sandoz AG.

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

® Offenlegungsschrift

_® DE 197 12 486 A 1

Aktenzeichen:

197 12 486.0

Anmeldetag:

25. 3.97

Offenlegungstag:

1. 10. 98

C 09 B 45/22 B 01 F 17/42 // C09B 29/52,B41J 2/01

C 09 B 57/04

(7) Anmelder:

Bayer AG, 51373 Leverkusen, DE

(7) Erfinder:

Nyssen, Roger, Dipl.-Ing., 41542 Dormagen, DE; Pfützenreuter, Dirk, 51377 Leverkusen, DE; Richter, Rolf, Dipl.-Phys: Dr., 51373 Leverkusen, DE; Puchner, Fritz, Dipl.-Chem. Dr., 50996 Köln, DE; Hassenrück, Karin, Dr., Mt. Pleasant, S.C., US

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Verwendung von Pigmentpräparationen für den Ink-Jet Druck
- Verwendung von Pigmentpräparationen als Drucktinten für den Ink-Jet Druck, enthaltend
 - a) Wasser
 - b) Dispergiermittel und
 - c) mindestens ein Pigment aus der Gruppe der durch Methin- oder Azogruppen-haltigen Reste substituierten Barbitursäure oder deren Derivate, wobei das Pigment gegebenenfalls in Form eines Salzes, Komplexes, als feste Lösung, als Einschlußverbindung oder als Interkalationsverbindung vorliegt.

Beschreibung

Die Erfindung betrifft die Verwendung von Pigmentpräparationen spezieller organischer Pigmente als Drucktinten für den Ink-Jet Druck sowie neue Pigmentpräparationen und Dispergiermittel.

Wäßrige Drucktinten für den Intenstrahldruck sind sowohl auf Basis wasserlöslicher organischer Farbstoffe als auch Wäßrige Drucktinten für den Intenstrahldruck sind sowohl auf Basis wasserlöslicher organischer Farbstoffe als auch auf Basis organischer Farbpigmente an sich bekannt und in vielen Veröffentlichungen beschrieben. Gegenüber den löslichen Farbstoffen liefem Pigmente generell eine verbesserte Lichtechtheit der erhaltenen Ausdrucke; allerdings ist auch bekannt, daß die Ink-Jet Drucke der meisten Pigmente nicht die gleiche Brillanz erreichen wie Farbstoffe, Zwar kann die Brillanz der Drucke durch eine besonders hohe Feinverteilung der Pigmentpartikel verbessert werden, damit einher geht jedoch in der Regel ein Verlust an Lichtechtheitseigenschaften (vgl. Herbst, Hunger: Industrielle Organische Pigmente, VCM, Verlagsgesellschaft, Weinheim (1987), S. 135–136).

VCM, Verlagsgesenschaft, weinnehm (1907), S. 133–130).

Gemäß EP-A-633 142 kann die Brillanz beispielsweise durch Wahl geeigneter Additive für die Tinten oder durch Wahl geeigneter Drucksubstrate wie beispielsweise entsprechend beschichteter Papiere verbessert werden. Das Problem Sowohl brillante als auch lichtechte Pigmente für den Ink-Jet Druck bereitzustellen, ist jedoch vom Stand der Technik noch nicht befriedigend gelöst worden. Dies gilt insbesondere für den Farbtonbereich gelb.

noch nicht betriedigend gelöst worden. Dies gill insbesondere in der in der haben der Beiselbergen gelöst worden. Im Trotz der Vielzahl der Veröffentlichungen ist die obengenannte Aufgabe noch nicht befriedigend gelöst worden. Im Trotz der Vielzahl der Veröffentlichungen ist die obengenannte Aufgabe noch nicht befriedigend gelöst worden. Im tübrigen werden nur in einigen wenigen Dokumenten Beispiele von Gelbpigmenten aufgeführt, die in ihrer Lichtechtheitseigenschaft für den konventionellen Ink-Jet Druck zwar grundsätzlich geeignet sind, die jedoch für hochwertigere Einsatzgebiete des Ink-Jet Drucks, beispielsweise fotografische Bildreproduktionen (Fotoreproduktion, z. B. Anwendung Außenbereich, oder Display), den dort geforderten Lichtechtheitseigenschaften nicht genügen (EP 518 225).

Die Erfindung betrifft daher die Verwendung von Pigmentpräparationen als Drucktinten für den Ink-Jet Druck, enthal-

a) Wasser

25

40

50

- b) Dispergiermittel und c) mindestens ein Pigment aus der Gruppe der durch Methin- oder Azogruppen-haltigen Reste substituierten Barbitursäure oder deren Derivate, wobei das Pigment gegebenenfalls in Form eines Salzes, Komplexes, als feste Lösung, als Einschlußverbindung oder als Interkalationsverbindung vorliegt.
- In einer besonders bevorzugten Ausführungsform wird als Komponente c) mindestens ein Pigment der Formeln (I) bis (III) oder deren tautomeren Formen eingesetzt,

$$Z^{2} \xrightarrow{N} O O R^{4}$$

$$(1)$$

$$Z^{6} = N$$

$$R^{1} Z^{5}$$

$$B = A$$

$$R^{2} O$$

$$(II)$$

worin R¹, R², R³ und R⁴ unabhängig voneinander für Wasserstoff, Alkyl, insbesondere C₁-C₆-Alkyl, Cycloalkyl, insbesondere C₅-C₅-Cycloalkyl, Aryl, insbesondere gegebenenfalls substituiertes Phenyl, Aralkyl, insbesondere C₆-C₁₀-Aryl-C₁-C₄-Alkyl, wie Benzyl oder Ethyl-Phenyl, oder Hetaryl stehen, B den Rest eines Isoindolins der Formel

$$R^{6}$$
 R^{7}
 R^{8}
 R^{7}
 R^{8}

bedeutet, wobei die Verknüpfung mit den beiden Doppelbindungen in der 1- und 3-Position des Isoindolenins erfolgt,

 \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^7 und \mathbb{R}^8 unabhängig voneinander für Wasserstoff, Halogen, insbesondere F, Cl und Br, C_1 - C_6 -Alkyl, C_1 -Ckoxy oder C6-C10-Aryloxy stehen,

A den Rest eines Cyanmethylens der Formel

bedeutet, worin R⁹ für einen elektronenanziehenden Rest steht und

 Z^1 bis Z^{10} unabhängig voneinander für O oder NR^{10} stehen,

worin Die Pigmente der Formel (I) sind beispielsweise aus DE-A-39 35 858 bekannt, die der Formel (II) beispielsweise aus R¹⁰ für Wasserstoff oder Cyan steht.

US-A-5.177.209 und die der Formel (III) beispielsweise aus EP-A-74 515 bekannt.

Bevorzugte Pigmente der Formel (I) sind symmetrische Isoindolin-Pigmente, die der Formel (IV) entsprechen

$$\begin{array}{c|c}
R_{11}^{11} & O & \longrightarrow & O & R_{11}^{11} \\
O & \longrightarrow & N & \longrightarrow & O & N_{11}^{11}
\end{array}$$
(IV),

R11 Wasserstoff, C1-C6-Alkyl oder Phenyl bedeutet. Ganz besonders bevorzugte Pigmente der Formel (I) entsprechen der Formel (IV), worin R¹¹ für Wasserstoff steht, Vorzugsweise steht R⁹ für einen Rest, dessen Hammett'sche Substituentenkonstante σ (para) > 0 ist. Eine entsprechende Auflistung von Hammett'schen Substituentenkonstanten findet sich z.B. in Sykes, Reaktionsmechanismen der organischen Chemie, 9. Auflage, Weinheim, VCM Verlagsgesellschaft, 1988, oder kann nach bekannten Verfahren bestimmt werden.

Bevorzugte Pigmente der Formel (II) sind unsymmetrische Isoindolin-Pigmente der Formel (V)

 $R^{9} \ CN, \ gegebenen falls \ durch \ C_{1}-C_{6}-Alkyl, \ C_{5}-C_{7}-Cycloalkyl, \ Aralkyl, \ insbesondere \ C_{6}-C_{10}-Aryl-C_{1}-C_{4}-alkyl, \ oder \ C_{6}-C_{10}-Aryl-C_{1}-C_{1}-C_{1}-C_{2}-alkyl, \ oder \ C_{10}-C_{10}-Aryl-C_{10}-C_{10$ C₁₀-Aryl substituiertes Aminocarbonyl, insbesondere CONHCH₃, C₁-C₆-Alkoxycarbonyl, C₆-C₁₀-Aryloxycarbonyl oder Hetaryl, insbesondere einen Rest der Formel (VI) oder (VII) bedeutet

65

60

5

10

15

20

25

30

35

40

worin

R¹³ und R¹⁴ unabhängig voneinander Wasserstoff, Halogen, insbesondere Cl, Br und F, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder
C₁-C₆-Alkoxycarbonyl bedeuten oder
R¹³ und R¹⁴ zusammen den Rest eines ankondensierten Benzolringes bedeuten

R¹³ und R¹⁴ zusammen den Rest eines ankondensierten henzoringes bedeute G für O, S, NH oder N(C₁-C₄-Alkyl) steht,

und

10

40

45

R¹² Wasserstoff, C₁-C₆-Alkyl oder Phenyl bedeutet.

Ganz besonders bevorzugte Pigmente der Formel (V) sind solche, worin R⁹ für CONHCH₃ steht und R¹² die obengenannte Bedeutung hat, insbesondere solche, worin R⁹ für CONHCH₃ und R¹² für Wasserstoff steht.

Bevorzugte Pigmente sind Salze, Komplexe, Einschlußverbindungen, feste Lösungen sowie Interkalationsverbindungen der Formel (III). Solche sind beispielsweise aus HP-A 74 515 bekannt. Als Salze und Komplexe der Verbindungen der Formel (III) kommen vorzugsweise die Salze und Komplexe der Mono-, Di-, Ti- und Tetraanionen mit den Metallen Li, Cs, Mg, Cd, Co, Al, Cr, Sn, Pb, besonders bevorzugt Na, K, Ca, Sr, Ba, Zn, Fe, Ni, Cu, Mn, in Betracht. Besondere Li, Cs, Mg, Cd, Co, Al, Cr, Sn, Pb, besonders bevorzugt Na, K, Ca, Sr, Ba, Zn, Fe, Ni, Cu, Mn, in Betracht. Besondere Bedeutungen kommen den Nickel salzen, bzw. -komplexen und deren Instellußerbindungen zu. Besonders bevorzugt ist eine Einschlußverbindung, Interkalationsverbindung, feste Lösung eines Salzes oder eines Komplexes der Azobarbitursäure, besonders bevorzugt des Azobarbitursäure-Nickel-1: 1-Komplexes,

Bei der eingeschlossenen Verbindung handelt es sich vorzugsweise um eine cyclische oder acyclische organische Verbindung, vorzugsweise um Carbonsäure- oder Sulfonsäureamide, Harnstoff oder substituierte Harnstoffe sowie Heterocyclen, insbesondere 2,4,6-Triamino-1,3,5-triazin, Acetoguanamin und Benzoguanamin.

Besonders bevorzugte Pigmente der Formel (III) entsprechen den Formeln (VIII) und (IX)

insbesondere in Form ihrer Einschlußverbindungen oder Interkalationsverbindung, wobei als eingeschlossene Verbindung 2,4,6-Triamino-1,3,5-triazin, Acetoguanamin oder Benzoguanamin bevorzugt ist.

Besonders bevorzugte Pigmente der Pormeln (I) bis (III) oder diese enthaltende Mischungen sind solche, deren Drucke den Parbtonbereich abdecken, der im coloristischen Sinne vorzugsweise mit den Parametern des CIELAB-Systems (1976) bestimmten Buntton-Wertebereich H* von 80 bis 100°, vorzugsweise von 85 bis 100° beschrieben werden kann. (CIELAB-System (1976) = farbmetrisches Ordnungssystem z. B. Brockes, A. et al., Farbmessung in der Textilindustrie, JSSN 0722-0391, 1986 Mitteilungen für die Farbstoffe verarbeitende Industrie, 24. Jahrgang).

dustrie, JSSN 0722-0391, 1900 Mitterlungen in die Faussche Vertagebrach und 1900 Mitter Landsche Vertagebrach und 1900 Mitter Fein partikulär wird vorzugsweise eine Feinverteilung von 0,001 bis 5 μm verstanden, vorzugsweise von 0,005 bis 1 μm, insbesondere von 0,005 bis 0,5 μm.

Geeignete Dispergiermittel sind beispielsweise anionisch, kationisch, amphoter oder nichtionogen.

Geeignete anionische Dispergiermittel sind insbesondere Kondensationsprodukte von aromatischen Sulfonsäuren mit Formaldehyd, wie Kondensationsprodukte aus Formaldehyd und Alkylnaphthalinsulfonsäuren oder aus Formaldehyd, Naphthalinsulfonsäuren und/oder Benzolsulfonsäuren, Kondensationsprodukte aus gegebenenfalls substituiertem Phenol mit Formaldehyd und Natriumbisulfit. Geeignet sind außerdem Dispergiermittel aus der Gruppe der Sulfobernsteinsäureester sowie Alkylbenzolsulfonate. Weiterhin kommen vor allem Ligninsulfonate in Betracht, z. B. solche, die nach dem Sulfit- oder Kraft-Verfahren gewonnen werden. Vorzugsweise handelt es sich um Produkte, die zum Teil hydrolysiert, oxidiert, propoxyliert, sulfoniert, sulfoniert oder desulfoniert und nach bekannten Verfahren fraktioniert werden, z. B. nach dem Molekulargewicht oder nach dem Sulfonierungsgrad. Auch Mischungen aus Sulfit- und Kraftligninsulfonaten sind gut wirksam. Besonders geeignet sind Ligninsulfonate mit einem durchschnittlichen Molekulargewicht zwischen 1000 und 100 000, einem Gehalt an aktivem Ligninsulfonat von mindestens 80% und vorzugsweise mit niedrigem Gehalt an mehrwertigen Kationen. Der Sulfonierungsgrad kann in weiten Grenzen variieren.

Als nichtionische Dispergiermittel kommen beispielsweise in Frage: Umsetzungsprodukte von Alkylenoxiden mit alkylierbaren Verbindungen, wie z. B. Fettalkoholen, Fettaminen, Fettsäuren, Phenolen, Alkylphenolen, Arylalkylphenolen, wie Styrol-Phenol-Kondensate, Carbonsäureamiden und Harzsäuren. Hierbei handelt es sich z. B. um Ethylenoxidaddukte aus der Klasse der Umsetzungsprodukte von Ethylenoxid mit:

20

30

35

40

50

60

a) gesättigten und/oder ungesättigten Fettalkoholen mit 6 bis 20 C-Atomen oder

b) Alkylphenolen mit 4 bis 12 C-Atomen im Alkylrest oder

c) gesättigten und/oder ungesättigten Fettaminen mit 14 bis 20 C-Atomen oder

d) gesättigten und/oder ungesättigten Fettsäuren mit 14 bis 20 C-Atomen oder e) hydrierte und/oder unhydrierte Harzsäuren.

Als Ethylenoxid-Addukte kommen insbesondere die unter a) bis e) genannten alkylierbaren Verbindungen mit 5 bis 120, insbesondere 5 bis 100, vorzugsweise 5 bis 100, insbesondere 5 bis 60, besonders bevorzugt 5 bis 30 Mol Ethylen-

oxid in Frage. Als Dispergiermittel eignen sich ebenfalls die aus der prioritätsälteren, aber nicht vorveröffentlichten DE-A 195 35 246 teilweise bekannten Mischungen aus Alkoxylierungsprodukten von mindestens einem Styrol-Phenol-Kondensat der Formel (X)

in der R15 Wasserstoff oder C1-C4-Alkyl bedeutet,

R16 für Wasserstoff oder CH3 steht,

R¹⁷ Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxycarbonyl oder Phenyl bedeutet,

m eine Zahl von 1 bis 4 bedeutet, n eine Zahl von 6 bis 120 bedeutet, R¹⁸ für jede durch n indizierte Einheit gleich oder verschieden ist und für Wasserstoff, CH₃ oder Phenyl steht, wobei im

Falle der Mitanwesenheit von CH3 in den verschiedenen -(-CH2-CH(R¹⁸)-O-)-Gruppen in 0 bis 60% des Gesamtwertes von n R¹⁸ für CH₃ und in 100 bis 40% des Gesamtwertes von n R¹⁸ für Wasserstoff steht und wobei im Falle der Mitanwesenheit von Phenyl in den verschiedenen -(-CH₂-CH(R¹⁸)-O-)-Gruppen in 0 bis 40% des Gesamtwertes von n R¹⁸ für Phenyl und in 100 bis 60% des Gesamtwertes von n R¹⁸ für Wasserstoff steht,

und Estern der Alkoxylierungsprodukte (X) der Formel (XI)

$$\begin{bmatrix} R^{1\theta'} & CH_{2} & CH_{2}$$

 \mathbb{R}^{15} , \mathbb{R}^{16} , \mathbb{R}^{17} , \mathbb{R}^{18} , m' und n' den Bedeutungsumfang von \mathbb{R}^{15} , \mathbb{R}^{16} , \mathbb{R}^{17} , \mathbb{R}^{18} , m bzw. n, jedoch unabhängig hiervon, and

X die Gruppe -SO3⁶, -SO2⁶, -PO3⁶⁶ oder -CO-(R¹⁹)-COO⁶ bedeutet,

Kat ein Kation aus der Gruppe von H[®], Li[®], Na[®], K[®], NH₄[®] oder HO-CH₂CH₂-NH₃[®] ist, wobei im Falle von X = -PO300 zwei Kat vorliegen und

R¹⁹ für einen zweiwertigen aliphatischen oder aromatischen Rest steht, vorzugsweise für C₁-C₄-Alkylen, insbesondere Ethylen, C2-C4- einfach ungesättigte Reste, insbesondere Acetylen oder gegebenenfalls substituiertes Phenylen, insbesondere ortho-Phenylen steht, wobei als mögliche Substituenten vorzugsweise C1-C4-Alkyl, C1-C4-Alkoxy, C1-C4-Alkoxycarbonyl oder Phenyl in Frage kommen.

Gemische der Formeln (X) und (XI) sind beispielsweise aus der nicht vorveröffentlichten DE-A-195 35 256 bekannt,

die Bestandteil dieser Anmeldung sind.

Die Erfindung betrifft weiterhin die noch neuen Verbindungen der Formel (XI), worin

X für einen Rest der Formel -CO-(R19)-COO steht und

R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, Kat, m' und n' die oben angegebenen Bedeutungen besitzen.

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der Formel (XI), das dadurch gekennzeichnet ist, daß man die entsprechende Verbindung der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, n und m die gleiche Bedeutung haben wie die entsprechenden Reste R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren der Formel (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', mit Dicarbonsäuren (X), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, m' und n', m' mel (XII)

10 HOOC-(R19)-COOH (XII)

oder deren Derivaten, insbesondere deren Anhydriden, worin R19 die oben genannte Bedeutung besitzt,

Entsprechende Umsetzungen können beispielsweise analog dem in DE-A 195 35 256 offenbarten Verfahren, dessen Offenbarung hiermit ebenfalls als Gegenstand dieser Anmeldung anzusehen ist, hergestellt werden.

Die besonders bevorzugten Verbindungen der Formel (XI) können durch Umsetzung von Verbindungen der entspre-

chenden Formel (X) mit Bernsteinsäure-, Maleinsäure- oder Phthalsäureanhydrid erhalten werden.

Die Erfindung betrifft weiterhin Mischungen enthaltend mindestens eine Verbindung der Formel (XI), worin X einen Rest der Formel -CO-(R19)-COO® bedeutet und R19 die oben angegebene Bedeutung besitzt, und mindestens eine Verbindung der Formel (X).

Vorzugsweise enthalten diese erfindungsgemäßen Mischungen 5 bis 99 Gew.-% der Verbindung (XI) und 1 bis

95 Gew.-% der Verbindung (X).

Die Erfindung betrifft weiterhin die gegenüber DE-A 19 535 246 noch neuen Tensidgemische, enthaltend eine Verbindung der Formel (XI), worin R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁵, R¹⁶, R¹⁷ und R¹⁸, n, m, n' und m' die oben angegebene Bedeutung besitzen, X für -SO₃⁶N, SO₂⁶ oder -PO₃² steht, wobei solche Mischungen ausgenommen sind, worin n oder n' eine Zahl kleiner gleich 3 oder m oder m' eine Zahl von 6 bis 100 bedeutet.

Im übrigen sind die Verbindungen der Formel (XI) in der breitesten Bedeutung sowie ihre Mischungen mit den ihnen zugrundeliegenden Verbindungen der Formel (X) hervorragend als Dispergiermittel geeignet, auch andere als die hier genannten Pigmente in Ink-Jet-Drucktinten zu stabilisieren. Als geeignete Pigmente sind in diesem Zusammenhang bei-

spielsweise die folgenden zu nennen:

55

Ruße, insbesondere saure bis alkalische Ruße aus der Gruppe der Furnace- oder Gas-Ruße sowie chemisch oder physikalisch modifizierte oder nachbehandelte Ruße, anorganische Pigmente, wie beispielsweise Zinksulfide, Ultramarin, Eisenoxide, Kobaltblau sowie Chromoxidpigmente sowie Pigmente in Form fein partikulärer Oxide wie Siliziumdioxid, Titandioxid, Nickeloxide, Chromantimontitandioxide, Aluminiumoxid sowie fein partikuläre Metalle wie Kupfer, Eisen oder Aluminium und organische Farbpigmente wie beispielsweise solche der Azo-, Disazo-, Polyazo-, Anthrachinon-, Thioindigoreihe, ferner andere polycyclische Pigmente wie beispielsweise aus der Phthalocyanin-, Chinacridon-, Dioxazin-, Isoindolinon-, Naphthalintetracarbonsäure- und Perylen- und Perylentetracarbonsäurereihe, ferner solche aus der Perinon-, Indigoid-, Thioindigoid- und Diketopyrrolopyrrol-Reihe, sowie Metallkomplex-Pigmente von Azo-, Azomethin-oder Methinfarbstoffen oder verlackte Farbstoffe wie Ca-, Mg-, Al-Lacke von sulfonsäure- und/oder carbonsäuregruppenhaltigen Farbstoffen.

Als polymere Dispergiermittel kommen beispielsweise wasserlösliche sowie wasser-emulgierbare Typen in Frage,

z. B. Homo- sowie Co-Polymerisate, wie statistische- oder Block-Copolymerisate.

Besonders bevorzugte Dispergiermittel sind polymere Dispergiermittel wie beispielsweise AB-, BAB- und ABC-Blockcopolymere. In den AB- oder BAB-Blockcopolymeren ist das A-Segment ein hydrophobes Homopolymer oder Copolymer, das eine Verbindung zum Pigment sicherstellt und der B-Block ein hydrophiles Homopolymer oder Copolymer oder ein Salz davon und stellt das Dispergieren des Pigmentes im wäßrigen Medium sicher. Derartige polymere Dispergiermittel und deren Synthese sind beispielsweise aus EP-A 518 225 sowie EP-A 556 649 bekannt.

Das eingesetzte Dispergiermittel wird vorzugsweise in einer Menge von 0,1 bis 100 Gew.-%, insbesondere 0,5 bis

60 Gew.-%, bezogen auf das eingesetzte Pigment, in der Pigmentpräparation verwendet.

In einer bevorzugten Ausführungsform enthält die erfindungsgemäß verwendete Pigmentpräparation

a) 10 bis 98 Gew.-%, insbesondere 30 bis 98 Gew.-% Wasser

b) 0,1 bis 100. Gew.-%, insbesondere 0,5 bis 60 Gew.-% Dispergiermittel, bezogen auf eingesetztes Pigment, und c) 0,2 bis 60 Gew.-%, vorzugsweise 0,2 bis 20 Gew.-%, insbesondere 0,2 bis 20 Gew.-%, besonders bevorzugt 0,2 bis 10 Gew.-% mindestens eines Pigments der Formeln (I) bis (III).

Die erfindungsgemäß verwendeten Pigmentpräparationen können selbstverständlich neben den Komponenten a), b) und c) auch weitere Zusätze enthalten.

Als gegebenenfalls weitere Zusätze kommen für Drucktinten für den Ink-Jet Druck übliche Zusatzstoffe in Frage. 60 So können beispielsweise als weitere Komponente d) organische Lösungsmittel zugegen sein. Besonders geeignet sind in Wasser lösliche organische Lösungsmittel. Bevorzugt sind solche, die eine Löslichkeit von größer als 0,5 g/100 g Wasser aufweisen.

Als geeignete organische Lösungsmittel kommen beispielsweise in Frage: aliphanische C1-C4-Alkohole, wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol, Isobutanol oder tert.-Butanol, aliphatische Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Diacetonalkohol Polyole, wie Ethylenglykol, Propylenglykol, Butylenglykol, Diethylenglykol, Triethylenglykol, Trimethylolpropan, Polyethylenglykol mit einem mittleren Molgewicht von 100 bis 4000, vorzugsweise 400 bis 1500 g/mol oder Glycerin, Monohydroxyether,

vorzugsweise Monohydroxyalkylether, besonders bevorzugt Mono-C1-C4-alkylglykolether wie Ethylenglykolmonoalkyl-, -monomethyl-, -diethylenglykolmonomethylether oder Diethylenglykolmonoethylether, Diethylenglykolmonobutylether, Dipropylenglykolmonoethylether, Thiodiglykol, Triethylenglykolmonomethylether oder -monoethylether, ferner 2-Pyrrolidon, N-Methyl-2-pyrrolidon, N-Ethyl-pyrrolidon, N-Vinyl-pyrrolidon, 1,3-Dimethyl-imidazolidon, Dimethylacetamid sowie Dimethylformamid.

Es kommen auch Gemische der erwähnten Lösungsmittel in Betracht.

Die Menge des organischen Lösungsmittels beträgt vorzugsweise 1 bis 40, insbesondere 2 bis 20 Gew.-%, bezogen auf die Pigmentpräparationen.

Bevorzugt beträgt die Menge an Wasser und organischem Lösungsmittel 20 bis 99 Gew.-%, vorzugsweise 30 bis 97 Gew.-%, bezogen auf die Pigmentpräparationen.

Weiterhin kann die Pigmentpräparation Mittel zur Einstellung der Viskosität der Tinte enthalten wie beispielsweise Polyvinylalkohol, Polyvinylpyrrolidon, Methylcellulose u. a. dem Fachmann bekannte Mittel, soweit sie die Stabilität der Drucktinte, das Druckverhalten und das Trocknungsverhalten auf Papier nicht negativ beeinflussen,

Zusätzlich zu den genannten Komponenten können die erfindungsgemäß als Drucktinten verwendeten Pigmentpräparationen noch einen Anteil von 0 bis 15 Gew.-%, vorzugsweise 0,5 bis 10 Gew.-%, bezogen auf Tinte, oberflächenaktives Mittel enthalten. Diese können grundsätzlich eingesetzt werden z.B. zur Regulierung der Oberflächenspannung der Tinte, ferner zur Verhinderung der Tropfenbildung oder des Auslaufens an der Düsenaustrittsfläche des Druckkopfes und zur Einstellung des Benetzungs- und Trocknungsverhaltens der Tinte auf unterschiedliche Substratarten (Papiere). Derartige oberflächenaktive Mittel sind dem Fachmann in Form von am Markt zugänglichen Produkten bekannt. Bei der Auswahl der oberflächenaktiven Mittel dürsen diese nicht die Stabilität der Pigmentpräparation oder die verwendeten Druckkopfmaterialien beeinträchtigen.

Außerdem können die erfindungsgemäß verwendeten Pigmentpräparation weitere ionogene als auch nicht-ionogene Hilfsmittel enthalten. Sofern das Dispergiermittel ionische Gruppen enthält, sollten diese Hilfsmittel vorzugsweise nichtionogen oder von gleicher Ionogenität sein.

Grundsätzlich können die Pigmentpräparationen noch Konservierungsmittel, Lichtschutzmittel, weitere Tenside und 25 gegebenenfalls auch pH-Regler enthalten.

Beispiele für pH-Regler sind NaOH, Ammoniak oder Aminomethylpropanol, N,N-Dimethylaminoethanol.

Beispiele für Konservierungsmittel sind Methyl- und Chlormethyl-isothiazolin-3-on, Benzisothiazolin-3-on oder Mischungen davon.

Beispiele für Lichtschutzmittel sind UV-Absorber.

Die Erfindung betrifft weiterhin Pigmentpräparationen enthaltend

a) Wasser

b) Dispergiermittel

c) mindestens ein Pigment aus der Gruppe der durch Methin- oder Azogruppen-haltigen Reste substituierten Barbitursäure oder deren Derivate, wobei das Pigment gegebenenfalls in Form eines Salzes, Komplexes, als feste Lösung, als Einschlußverbindungen oder als Interkalationsverbindung vorliegt, vorzugsweise ein Pigment der Formeln (I) bis (III) und

d) mindestens ein organisches Lösungsmittel aus der Gruppe: aliphatische C₁-C₄-Alkohole, wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol, Isobutanol oder tert.-Butanol, aliphatische Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Diacetonalkohol, Polyole, wie Ethylenglykol, Propylenglykol, Butylenglykol, Diethylenglykol, Triethylenglykol, Trimethylolpropan, Polyethylenglykol mit einem mittleren Molgewicht von 100 bis 4000, vorzugsweise 400 bis 1500 g/mol oder Glycerin, Monohydroxyether, vorzugsweise Monohydroxyalkylether, besonders bevorzugt Mono-C1-C4-alkylglykolether wie Ethylenglykolmonoalkyl-, -monomethyl-, -diethylenglykolmonomethylether oder Diethylenglykolmonoethylether, Diethylenglykolmonobutylether, Dipropylenglykolmonoethylether, Thiodiglykol, Triethylenglykolmonomethylether oder -monoethylether, ferner 2-Pyrrolidon, N-Methyl-2-pyrrolidon, N-Ethylpyrrolidon, N-Vinyl-pyrrolidon, 1,3-Dimethyl-imidazolidon, Dimethylacetamid sowie Dimethylformamid.

Die bevorzugten Ausführungsformen der einzelnen Komponenten entsprechen den oben angegebenen. Die Erfindung betrifft weiterhin Pigmentpräparationen, enthaltend

b') eine Verbindung der Formel (XI), worin X für einen Rest der Formel -CO-(R¹⁹)-COO[©] steht und die übrigen Reste die angegebenen Bedeutungen besitzen und

c') ein Pigment.

Bevorzugt sind dabei solche Präparationen, die gegebenenfalls die Verbindung der Formel (XI) in Mischung mit einer entsprechenden Verbindung der Formel (X) enthalten, wobei die bevorzugten Mengen denen der Komponente b) der obigen Pigmentpräparation entsprechen.

Die bevorzugten Angaben zu den Komponenten c') sowie gegebenenfalls ein organisches Lösungsmittel der Komponente d') entsprechen den Angaben zu den Komponenten c) und d) der oben beschriebenen Pigmentpräparaten.

Auch die Verwendung entspricht wie oben angegeben, vorzugsweise als Drucktinte für den Ink-Jet-Druck wie oben beschrieben.

Die Erfindung betrifft weiterhin die Herstellung der erfindungsgemäß verwendeten Pigmentpräparationen als Drucktinten für den Ink-Jet Druck, die dadurch gekennzeichnet ist, daß man mindestens ein Pigment der Formeln (I) bis (III) mit dem Dispergiermittel und gegebenenfalls weiteren Zusätzen homogenisiert und naßzerkleinert.

Im allgemeinen wird das Pigment in Pulverform oder in Form des wasserfeuchten Preßkuchens zusammen mit einem

10

30

50

55

Teil des Dispergiermittels und Wasser, vorzugsweise deionisiertem Wasser, zu einer homogenen Mahlsuspension beispielsweise mittels Rührwerksbütte, Dissolver und ähnlichen Aggregaten gegebenenfalls nach einer Vorzerkleinerung angeschlagen (d. h. eingebracht und homogenisiert).

Die Mahlsuspension kann außerdem Anteile niedrigsiedender Lösungsmittel (Siedepunkt < 150°C) enthalten, die im Verlauf der anschließenden Peinmahlung durch Verdampfung ausgetragen werden können. Sie kann aber auch Anteile höhersiedender Lösungsmittel oder weiterer Zusätze, wie sie oben beschrieben sind z.B. Mahlhilfs-, Entschäumungs-

oder Benetzungsmittel, enthalten.

Die Naßzerkleinerung umfaßt sowohl die Vorzerkleinerung als auch die Peinmahlung. Vorzugsweise liegt die Pigmentkonzentration der Suspension dabei oberhalb der gewünschten Konzentration der fertigen Pigmentpräparation bzw. Drucktinte. Die gewünschte Pigmentendkonzentration wird vorzugsweise erst im Anschluß an die Naßzerkleinerung eingestellt. Im Anschluß an die Vorzerkleinerung erfolgt eine Mahlung auf die gewünschte Partikelfeinverteilung von 0,001 bis 5 μm, vorzugsweise 0,005 bis 1 μm. Pür diese Mahlung kommen Aggregate wie z. B. Kneter, Walzenstühle, Knetschnecken, Kugelmühlen, Rotor-Stator-Mühlen, Dissolver, Korundscheibenmühlen, Schwingmühlen und insbesondere schnelllaufende, kontinuierlich oder diskontinuierlich beschickte Rührwerkskugelmühlen mit Mahlkörpern mit einem Durchmesser von 0,1 bis 2 mm in Frage. Die Mahlkörper können dabei aus Glas, Keramik oder Metall, z. B. Stahl sein. Die Mahltemperatur liegt vorzugsweise im Bereich von 0 bis 250°C, in der Regel jedoch bei Raumtemperatur, insbesondere unterhalb des Trübungspunktes des eingesetzten Dispergiermittels der Komponente b) und des gegebenenfalls eingesetzten ob erflächenaktiven Mittels.

In einer ebenfalls bevorzugten Verfahrensweise kann die Mahlung teilweise oder vollständig in einem Hochdruckhomogenisator oder in einem sogenannten Strahldispergator (bekannt aus der nicht vorveröffentlichten Anmeldung DE-A 195 36 845) erfolgen, wodurch der Gehalt an Mahlkörperabrieb in der Suspension bzw. die Abgabe von löslichen Stoffen aus den Mahlkörpern (z. B. Ionen aus Glaskörpern) auf ein Minimum reduziert bzw. vollständig vermieden werden

kann.

In einem Verdünnungs-Schritt wird die erhaltene Pigmentpräparation in an sich bekannter Weise in Wasser gegebenenfalls mit den restlichen Dispergiermittelmengen und gegebenenfalls weiteren Zusätzen eingemischt und homogenisiert, sowie auf die gewünschte Pigmentendkonzentration bzw. Farbstärke der Präparation bzw. Drucktinte eingestellt, Hierbei kann gegebenenfalls noch ein Teil des Dispergiermittels zugesetzt werden, um beispielsweise eine Reagglomeration feiner Pigmentpartikel in der Verdünnung zu vermeiden.

Von besonderem Vorteil ist ein Verfahren zur Herstellung der Pigmentpräparationen, in dem im Mahlschritt zur Herstellung des Pigmentkonzentrates für die Stabilisierung ausreichend Dispergiermittel zur Verfügung gestellt wird. Im Anschluß daran oder nach Verdünnung mit Wasser wird in Lösung befindliches, nicht am Pigment adsorbiertes Dispergiermittel und/oder überschüssige oberflächenaktive Mittel vorzugsweise entfernt und anschließend die gewünschte Pig-

mentpräparation durch Zugabe der restlichen Anteile der Pigmentpräparation eingestellt.

Ein Verfahren zur Entfernung von in Lösung befindlichem Dispergiermittel ist beispielsweise die Zentrifugation der

Suspension und anschließendes Abdekantieren des Überstandes.

Ferner können andere Additive wie z. B. Polyurethan- oder Acrylpolymere zugesetzt werden, um gegebenenfalls die Wasserechtheit weiter zu verbessern. Diese können sowohl wasser-löslicher als auch wasser-emulgierbarer Art sein, oder in einer der in d) enthaltenen Komponenten löslich sein,

In einer bevorzugten Verfahrensweise erfolgt die Mischung und Homogenisierung der Pigmentpräparationen unter Verwendung eines Strahldispergators oder Hochdruckhomogenisators, um die Entstehung von Schaum zu unterbinden und mögliche Reagglomeration zu vermeiden.

Mit der Einstellung der gewünschten Pigmentpräparationen erfolgt auch die Einstellung auf die gewünschte Viskosi-

tät, Farbstärke, Farbton, Dichte und Oberflächenspannung der Tinte.

Vor Gebrauch der Pigmentpräparationen als Drucktinten werden die Tinten gegebenenfalls fein-filtriert beispielsweise

mittels 1 bis 5 µm Membran- oder Glasfiltern.

Im allgemeinen werden die physikalischen Tinteneigenschaften auf die Verwendung in üblichen Tintenstrahl-Drukkern eingestellt, wobei die Oberflächenspannung zwischen 20 und 70 mN/m und die Viskosität kleiner als 20 mPa·s, vorzugsweise 0,5 bis 10 mPa·s betragen sollte.

Die erfindungsgemäß verwendeten sowie die erfindungsgemäßen Drucktinten liefern als Drucktinte im Ink-Jet-Druck verwendet Drucke mit ausgezeichneter Lichtechtheit und Brillanz und besitzen darüber hinaus folgende Vorteile; hervorragende Dispersions- und Lagerstabilität in einem weiten Temperaturbereich, keine sogenannte Kogation oder Clogging oder Verstopfung im Druckkopf, hohe Wasser- und Migrationsechtheit der Drucke auf unterschiedlichen Substraten, z. B. auf holzfreiem Papier, mittl. Papierqualität, geleimtem und beschichtetem Papier, polymeren Filmen, Transparentfolien für Overhead-Projektion, kein Ausbluten im Mehrfarbendruck, auch bei Verwendung zusammen mit Parbstoff-Tinten oder anderen pigmentierten Tinten.

Die oben beschriebenen Pigmentpräparationen werden als Drucktinten für den Ink-Jet-Druck verwendet.

Der Ink-Jet-Druck ist an sich bekannt und erfolgt im allgemeinen so, daß die Drucktinte in ein Aufnahmegefäß eines Tintenstrahl-Druckkopfes gefüllt wird und in kleinen Tröpfehen auf das Substrat gesprüht wird. Der Tintenausstoß in Tröpfehenform erfolgt dabei vorzugsweise über einen piezoelektrischen Kristall, eine beheizte Kanüle (Bubble- oder Thermo-Jet-Verfahren) oder mechanische Druckerhöhung, wobei Druck auf das Tintensystem ausgeübt wird und so Tintentropfen herausgeschleudert werden. Dabei werden die Tröpfehen aus einer oder mehreren kleinen Düsen gezielt auf das Substrat wie z. B. Papier, Holz, Textilien, Kunststoff oder Metall geschossen. Durch elektronische Aussteuerung werden die einzelnen Tröpfehen auf dem Substrat zu Schriftzeichen oder graphischen Mustern zusammengefaßt.

Möglich ist auch ein Verfahren, bei dem mittels elektrostatischer Ablenkung aus einem Tintenstrahl kleinste Volumina

in Form von Tropfen auf ein Substrat gebracht werden.

Beispiele

Beispiel 1		
Herstellung einer besonders bevorzugten Einschlußverbindung des Pigmentes gemäß Formel (IX)	5	
25 g Benzolsulfonsäurehydrazid, 200 ml Wasser, 20 ml 10 N Salzsäure und 1,25 g eines Kondensationsproduktes von Stearinsäure mit Taurin wurden 30 Minuten verrührt. Man fügte 60 g Eis hinzu und tropfte anschließend in ca. 30 Minuten 34 ml einer wäßrigen Natriumnitritlösung mit einem Gehalt von 30 g Natriumnitrit in 100 ml Lösung hinzu. Der Ansatz wurde 30 Minuten gerührt, wobei man einen Nitritüberschuß aufrechterhielt. Anschließend zerstörte man den Nitritüberschuß mit wenig Amidosulfonsäure und neutralisierte mit ca. 5 ml 10 N Natronlauge. Man erhielt eine Emulsion von	10	
Benzolsulfonsäureazid. Zu der so hergestellten Emulsion gab man 38,2 g Barbitursäure, verrührte 10 Minuten und stellte dann mit ca. 33 ml 10 N Natronlauge auf pH 8. Der Ansatz wurde 2 Stunden bei 50°C gerührt, danach mit 3 ml Essigsäure und ca. 14 ml 10 N Salzsäure auf pH 4,8 gestellt und noch 1 Stunde auf 70°C und 3 Stunden auf 80°C erhitzt. Man erhielt eine Suspension des Natriumsalzes der Azobarbitursäure; zusätzlich waren noch ca. 22 g des als Nebenprodukt entstandenen Benzolsul-	15	
fonamids gelöst vorhanden. Eine so hergestellte Suspension wurde auf 95°C bis 100°C aufgeheizt, abgesaugt und mit ca. 11 siedend heißem Wasser in mehreren Portionen gewaschen. Man erhielt einen Preßkuchen des Natriumsalzes der Azobarbiursäure. Der so hergestellte Preßkuchen wurde mit 500 ml Wasser angerührt. Bei 80°C tropfte man in ca. 5 Minuten eine Lösung von 34,5 g NiCl ₂ -6H ₂ O und 13 g wasserfreiem Natriumacetat in 100 ml Wasser hinzu. Die Mischung wurde 1 Stunde gerührt bei 80°C, danach 42 g Melamin zugefügt und nochmals 1 Stunde bei 80°C und 2 Stunden bei 95°C gerührt, anschließend heiß abgesaugt und mit heißem Wasser gewaschen.	20	
Man erhielt einen wasserseuchten Pigment-Preßkuchen mit einem Trockengehalt von 42,6 Gew%.	25	
Beispiel 2 bis 4		
Herstellung von Pigmentpräparationen		
(Teile = Gewichtsteile, Prozente = Gewichtsprozente)	30	
Beispiel 2		
Zu	35	
89,9 Teilen des feuchten Preßkuchen des Pigmentes gemäß Formel (IX) hergestellt nach Beispiel 1 mit einem Trockengehalt von 42,6% wurden 6,9 Teile eines Naphthalinsulfonsäurekondensationsproduktes (Tamol® NN 9401, BASF AG) sowie 3,2 Teile deionisiertes Wasser zugesetzt und mittels eines Dissolvers homogenisiert. Der pH-Wert der Suspension betrug 5,5. Im Anschluß wurde die Suspension in eine offene diskontinuierlich betriebene 1 l-Rührwerkskugelmühle (Fabrikat Sussmeyer, Brüssel) eingebracht und mit Zirkoniumoxid-Perlen (Durchmesser 0,4 bis 0,6 mm) unter Kühlung über eine Dauer von 3 Stunden gemahlen. Das erhaltene wäßrige Pigmentkonzentrat wurde mit 0,1 Teilen eines Konservierungsmittels (Benzisothiazolin-3-on) sowie deionisiertem Wasser auf eine Pigmentkonzentration von 35% eingestellt.	40	•
Die Pigmentpräparation besitzt eine ausgezeichnete Fließfähigkeit und eine einwandfreie Suspensionsstabilität bei Lagerung über 3 Monate bei Raumtemperatur und 50°C. Wäßrige Verdünnungen dieser Präparation bis zu einer Pigmentkonzentration von 2% sind ebenso stabil. Die Zusammensetzung kann Tabelle 1 entnommen werden.	45	
Beispiel 3		
22 Teile des getrockneten Pigmentes gemäß Formel (V) (R ⁹ = CONHCH ₃ , R ¹² = H), hergestellt gemäß Beispiel 10, von	50	
US 5 177 209, und 8,8 Teile eines Ligninsulfonats (Ultrazine® NA, Fa. Lignotech, Düsseldorf) wurden in 69,2 Teilen deionisiertem Wasser mittels eines Dissolvers angeschlagen und homogenisiert. Im Anschluß erfolgte eine Mahlung wie in Beispiel 2 beschrieben. Das so erhaltene Pigmentkonzentrat wurde mit 0,1 Teilen des gleichen Konservierungsmittels wie in Beispiel 2 und deionisiertem Wasser auf eine Pigmentkonzentra- tion von 20%, und der pH-Wert mittels verdünnter Schwefelsäure auf 8 eingestellt. Die Präparation besitzt ebenfalls aus- gezeichnete Stabilitäts- und Fließeigenschaften. Die Zusammensetzung kann Tabelle 1 entnommen werden.	55	
Beispiel 4	60	
Zu 90,9 Teilen des feuchten Preßkuchens des Pigmentes gemäß Formel (IV) (R ¹¹ = H), hergestellt nach Beispiel 8, DE 39 35 858 A1, mit einem Trockengehalt von 40,4% wurden 1,8 Teile eines Dispergiermittelgemisches aus Alkoxylierungsprodukten gemaß Formel (X) und (XI) mit einer Zusammensetzung von 51% gemäß Formel X und	65	
menseizing von 51% gemaß Fornier X und $R^{15} = CH_3, R^{16,17,18} = H$ $m = 2,8$ $n = 50$	_	

und
49% gemäß Formel (XI) und
R¹⁵ = CH₃, R^{16,17,18} = H
m' = 2,8
n' = 50
X = SO₃
Kat = NH₄+

15

55

60

7,3 Teilen deionisiertem Wasser zugesetzt und mittels eines Dissolvers homogenisiert. Der pH-Wert wurde mittels verdünnter Natronlauge auf 7,0 gestellt. Im Anschluß wurde die Suspension wie in Beispiel 2 beschrieben gemahlen und das so erhaltene Pigmentkonzentrat mit

0,1 Teilen des gleichen Konservierungsmittels wie in Beispiel 2 und deionisiertem Wasser auf eine Pigmentkonzentration von 30% eingestellt. Die Zusammensetzung kann Tabelle 1 entnommen werden.

Tabelle 1

(Angaben in Gew.-%, bezogen auf das Pigmentkonzentrat)

	Beispiel	2	3	4
	Deionisiertes Wasser	58,6	71,9	68,43
	Ultrazine® NA	-	8,0	-
Dispergiermittel	Tamol® NN 9401	6,3	-	•
. •	Dispergiermittelgemisch	-	-	1,47
Pigmente	Pigment gem. Formel (IX) (trocken)	35	-	-
	Pigment gem. Formel (V) (trocken)	-	20	-
	Pigment gem. Formel (IV) (trocken)	-	· -	30
weitere Zusätze	Konservierungsmittel	0,1	0,1	0,1
Eigenschaften	pH-Wert	6,5	8,0	6,9
2.50moumion	max. Teilchengröße* (μm)	<0,2	<0,2	<0,2

Bestimmt aus der Partikelgrößenverteilung (Gewichtsmittel)
 Meßapparatur: Scheibenzentrifuge Typ DCP[®] 1000 der Fa. Brookhaven

Anwendungsbeispiele

Beispiele 5 bis 7

Die Pigmentpräparationen gemäß den Beispielen 2 bis 4 wurden zur Verwendung als Drucktinten für den Ink-Jet-Druck auf eine Pigmentkonzentration von jeweils 4 Gew.-% unter Einsatz von deionisiertem Wasser sowie mit organischen Lösungsmitteln eingestellt. Die Zusammensetzungen der als Drucktinten zu verwendenden Pigmentpräparationen wurden jeweils so gewählt, daß die Viskosität der Drucktinten in einem Bereich von 3 bis 5 mPa·s lag.

Die Herstellung erfolgte ausgehend von den Pigmentpräparationen der Beispiele 2 bis 4 durch Mischen und Rühren mit der erforderlichen Menge an Wasser sowie sonstigen Zusätzen wie organischen Lösungsmittel in einem Glasbehälter. Im Anschluß erfolgte eine Ultraschallbehandlung über 1 Minute und die Zugabe von Konservierungsmittel und gegebe-

nenfalls pH-Einstellung mittels verdünnter NaOH. Die Zusammensetzung der als Drucktinten verwendeten Pigmentpräparationen geht aus Tabelle 2 hervor.

Diese Pigmentpräparationen wurden vor dem Drucken durch ein 1,2 µm Filter filtriert, um gegebenenfalls vorhandenen Mahlgutabrieb und Grobanteil aus der Suspension zu entfernen.

Tabelle 2

Zusammensetzung und Eigenschaften der als Drucktinten verwendeten Präparationen (Angaben in Gew.-%, bezogen auf Präparation)

Beispiel		5	6	7
Deionisiertes Wasser	%	79,0	70,4	77,1
Polyethylenglykol (Mol.Gew. 400 g/mol)	%	4,0	4,0	4,0
2-Pyrrolidon	%	3,9	3,9	3,9
Isopropanol	%	1,5	1,5	1,5
Pigmentkonzentrat				
gemäß Bsp. 2	%	11,4		
gemäß Bsp. 3	%		20	
gemäß Bsp. 4	%			13,3
Konservierungsmittel	%	0,2	0,2	0,2
pH-Wert	-	6,7	8,0	7,5
Oberflächenspannung	mN/m	>30	>30	>30
max. Teilchengröße (Scheibenzentrifuge)	μm	<0,2	<0,2	<0,2

Eigenschaften der als Drucktinten verwendeten Pigmentpräparationen gemäß den Beispielen 5 bis 7

Es wurden Drucke auf einem handelsüblichen Tintenstrahldrucker der Fa. Hewlett Packard (HP Deskjet® 1600 C) unter Verwendung einer gereinigten Kartusche erstellt.

Die Drucktinten ließen sich einwandfrei drucken und ergaben brillante Druckbilder mit hoher Farbstärke und gutem Kontrast.

Die Lichtechtheitsprüfung der Drucke auf unterschiedlichen Substraten wurde mit dem Xenon Test 450® (Gerät der Fa. Heraeus) durchgeführt und ergab – bewertet mit dem gleichermaßen belichteten Blaumaßstab (DIN 54 004) die in Tabelle 3 dargestellten Ergebnisse:

Tabelle 3

	Lichtechtheitsnote auf Substrat				
Druck- tinte gemäß	Normal- papier AGFA® 701	Glossy Paper (HP-C 3831A®)	Beschichtete Folie HP-C 3828A/32-A [®])	HP Spezialpapier (HP-516342 [®])	
Beispiel 5	7 - 8	6 - 7	7	7 - 8	
Beispiel 6	6 - 7	6	nicht geprüft	nicht geprüft	
Beispiel 7	7 - 8	7 - 8	6 - 7	7	

20 Anm: 8 A kein Farbverlust

I △ vollständiger Farbverlust

25 Die Drucke zeigten darüberhinaus eine gute Wasser- und Textmarkerechtheit.

Beispiel 8

30

Herstellung eines Dispergiermittels gemäß Formel (XI)

In einer mit Stickstoff gespülten 2 l Rührwerksapparatur wurden (0,9 mol) 1500 g Tristyrylphenyloxyethylat-Emulgator der Formel (X)

35
$$\begin{bmatrix} R^{16} & & & \\ & C & & \\ & C & & \\ & & C & \\ & & & \\ &$$

worin

m: 2,7

n: 29

45 R2: H R15: H und

R₁₇: H bedeutet,

R₁₈: H

60

mit einer statistischen Kettenlänge von ca. 29 EO-Einheiten (aufgeschmolzen bei 90°C) vorgelegt und bei 90 bis 100°C mit

50 (0,9 mol) 90,1 g Bernsteinsäureanhydrid versetzt.

Man rührte unter schwachem Stickstoffstrom 2 Stunden bei 100°C, anschließend 3 Stunden bei 150°C nach, wobei die anfangs cremige weiße Masse dünnflüssiger und schwach bräunlich wurde.

Man kühlte auf 100°C ab und filtrierte über eine G-2 Glasfritte. Es wurden 1.480 g einer viskosen, leicht trüben bräunlichen Flüssigkeit mit folgenden Eigenschaften gewonnen:

pH-Wert 1%ig in vollentsalztem Wasser = 4,6

Trübungspunkt 1% ig in vollents. Wasser = 94-96°C

Erstarrungspunkt = ca. 25°C

Säurezahl = 29,5 mg KOH/g.

Die so erhaltene Mischung besitzt mehr als 90% des Dicarbonsäurehalbesters gemäß Formel (XI).

Beispiel 9

4,3 Teile des in Beispiel 8 beschriebenen Dispergiermittelgemisches wurden bei 80°C aufgeschmolzen und zu 7,9 Teilen deionisiertem Wasser hinzugegeben und vollständig gelöst. Die Lösung wurde in

87,8 Teilen des wasserfeuchten Preßkuchens von Color Index Pigment Rot 122 mit einem Trockengehalt von 31,9% eingetragen und anschließend die Mischung mittels eines Dissolvers vorzerkleinert und homogenisiert. Hierbei wurde der pH-Wert der Suspension mittels verdünnter Natronlauge auf 8,0 eingestellt. Im Anschluß erfolgte eine Mahlung wie in Beispiel 2 beschrieben. Die erhaltene wäßrige Pigmentpräparation wurde mit

0,1 Teilen eines Konservierungsmittels (Benzisothiazolin-3-on) sowie deionisiertem Wasser auf eine Pigmentkonzentration von 25% eingestellt.

Diese Präparation besitzt eine sehr gute Fließfähigkeit und einwandfreie Suspensionsstabilität bei Lagerung über 3 Monate sowohl bei Raumtemperatur als auch bei 50°C.

Die so erhaltene Präparation wurde zur Verwendung als Drucktinte für den Ink-Jet-Druck auf eine Pigmentkonzentration von 4% verdünnt. Die Zusammensetzung und Eigenschaften der Drucktinte wurde dabei wie folgt gewählt:

Deionisiertes Wasser: 69% Polyethylenglykol (MW: 800 g/mol): 10% o. beschr. 25%ige Pigmentpräparation: 16% 2-Pyrrolidon: 5%

pH-Wert: 7,2 Oberflächenspannung: > 30 mN/m

max. Teilchengröße (Scheibenzentrifuge): < 0,2 μm.

Die Drucktinte ließ sich auf einem handelsüblichen Tintenstrahldrucker (analog Beispiel 5 bis 7) einwandfrei verdrukken und ergab Druckbilder mit hoher Farbstärke und hoher Brillanz, sowie guter Wasser- und Textmarkerechtheit.

Patentansprüche

1. Verwendung von Pigmentpräparationen als Drucktinten für den Ink-Jet Druck, enthaltend

- b) Dispergiermittel und c) mindestens ein Pigment aus der Gruppe der durch Methin- oder Azogruppen-haltigen Reste substituierten Barbitursäure oder deren Derivate, wobei das Pigment gegebenenfalls in Form eines Salzes, Komplexes, als feste Lösung, als Einschlußverbindung oder als Interkalationsverbindung vorliegt.
- 2. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß als Komponente c) mindestens ein Pigment der Formeln (I) bis (III) oder deren tautomeren Formen

$$Z^{2} \xrightarrow{N} O O R^{4}$$
(I)

$$Z^{6} \xrightarrow{N} B = A$$

$$R^{2} O$$
(II)

$$Z^{8} \xrightarrow{N} N = N \xrightarrow{N} N = X^{10}$$

$$R^{2} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{4} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{2} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{4} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

$$R^{50} \longrightarrow N = N \xrightarrow{N} N = X^{10}$$

eingesetzt wird, worin R¹, R², R³ und R⁴ unabhängig voneinander für Wasserstoff, Alkyl, insbesondere C₁-C₆-Alkyl, Cycloalkyl, insbesondere C5-C8-Cycloalkyl, Aryl, insbesondere gegebenenfalls substituiertes Phenyl, Aralkyl oder Hetaryl,

60 B den Rest eines Isoindolins der Formel

65

10

15

20

5

10

15

20

25

30

35

40

45

50

55

60

65

bedeutet, wobei die Verknüpfung mit den beiden Doppelbindungen in der 1- und 3-Position des Isoindolins erfolgt, und

 R^5 , R^6 , R^7 und R^8 unabhängig voneinander für Wasserstoff, Halogen, insbesondere F, Cl und Br, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder C_6 - C_{10} -Aryloxy stehen,

A den Rest eines Cyanmethylens der Formel

bedeutet, worin

R⁹ für einen elektronenanziehenden Rest steht und

Z1 bis Z10 unabhängig voneinander für O oder NR10 stehen,

worin

R¹⁰ für Wasserstoff oder Cyan steht.

3. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß Pigmente der Formel (I) der Formel (IV) entsprechen

worin

 R^{11} Wasserstoff, C_1 - C_6 -Alkyl oder Phenyl bedeutet,

4. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß die Pigmentpräparation ein Pigment der Formel

$$\begin{array}{c|c}
H & O & H \\
\hline
H & O & H \\
\hline
H & O & H
\end{array}$$

enthält,

5. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß Pigmente der Formel (II) der Formel (V) entsprechen

worin

R⁹ CN, gegebenenfalls durch C₁-C₆-Alkyl, C₅-C₇-Cycloalkyl, Aralkyl, insbesondere C₆-C ₁₀-Aryl-C₁-C₄-alkyl, oder C₆-C₁₀-Aryl substituiertes Aminocarbonyl, insbesondere CONHCH₃, C₁-C₆-Alkoxycarbonyl, C₆-C₁₀-Aryloxycarbonyl oder Hetaryl, insbesondere einen Rest der Formel (VI) oder (VII) bedeutet

(VII),

worm

R¹³ und R¹⁴ unabhängig voneinander Wasserstoff, Halogen, insbesondere Cl, Br und F, C₁-C₆-Alkyl, C₁-C₆-Alkoxy

20 oder C₁-C₆-Alkoxycarbonyl bedeuten oder

R¹³ und R¹⁴ zusammen den Rest eines ankondensierten Benzolringes bedeuten

G für O, S, NH oder N(C₁-C₄-Alkyl) steht,

und

R¹² Wasserstoff, C₁-C₆-Alkyl oder Phenyl bedeutet.

6. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß das Pigment der Formel (I) der Formel

entspricht.
7. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß Pigmente der Formel (III) der Formel (VIII) oder (IX) entsprechen

$$0 = \bigvee_{N=N}^{H} \bigvee_{N=N}^{O} \bigvee_{N=N}^{H} \bigvee_{N=N}^{H} O \qquad (IX).$$

50

8. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß das Pigment der Formel (III) in Form eines Salzes, Komplexes, als feste Lösung, als Einschlußverbindung oder als Interkalationsverbindung vorliegt.

9. Verwendung gemäß Anspruch 8, dadurch gekennzeichnet, daß das Pigment der Formel (III) in Form einer Einschlußverbindung oder Interkalationsverbindung vorliegt, wobei die eingeschlossene Verbindung eine cyclische oder acyclische Verbindung, vorzugsweise Carbonsäure- oder Sulfonsäureamide, Harnstoff oder substituierte Harnstoffe sowie Heterocyclen, insbesondere 2,4,6-Triamino-1,3,5-triazin, Acetoguanamin und Benzoguanamin ist.

65

10. Pigmentpräparationen enthaltend

- a) Wasser
- b) Dispergiermittel

c) mindestens ein Pigment der Formeln (I) bis (III) oder deren tautomeren Formen

$$Z^{2} \xrightarrow{N} O O R^{4}$$
(I)

(II)

$$Z^{\theta} \xrightarrow{N} Q^{\theta} Q^{\theta} = N \qquad \qquad X^{\theta} \qquad X^{\theta}$$

R1, R2, R3 und R4 unabhängig voneinander für Wasserstoff, Alkyl, insbesondere C1-C6-Alkyl, Cycloalkyl, insbesondere C5-C8-Cycloalkyl, Aryl, insbesondere gegebenenfalls substituiertes Phenyl, Aralkyl oder Hetaryl,

B den Rest eines Isoindolins der Formel

$$R^{6}$$
 R^{7}
 R^{8}
 R^{8}

10

15

20

25

30

35

40

45

50

55

60

65

bedeutet, wobei die Verknüpfung mit den beiden Doppelbindungen in der 1- und 3-Position des Isoindolins er-R⁵, R⁶, R⁷ und R⁸ unabhängig voneinander für Wasserstoff, Halogen, insbesondere F, Cl und Br, C₁-C₆-Alkyl,

C1-C6-Alkoxy oder C6-C10-Aryloxy stehen,

A den Rest eines Cyanmethylens der Formel

bedeutet, worin

 R^9 für einen elektronenanziehenden Rest steht und Z^1 bis Z^{10} unabhängig voneinander für O oder NR^{10} stehen, worin

R¹⁰ für Wasserstoff oder Cyan steht, und

d) mindestens ein organisches Lösungsmittel aus der Gruppe: aliphatische C1-C4-Alkohole, wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol, Isobutanol oder tert.-Butanol, aliphatische Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Diacetonalkohol, Polyole, wie Ethylenglykol, Propylenglykol, Butylenglykol, Diethylenglykol, Triethylenglykol, Trimethylolpropan, Polyethylenglykol mit einem mittleren Molgewicht von 100 bis 4000, vorzugsweise 400 bis 1500 g/mol oder Glycerin, Monohydroxyether, vorzugsweise Monohydroxyalkylether, besonders bevorzugt Mono-C1-C4-alkylglykolether wie Ethylenglykolmonoalkyl-, -monomethyl-, -diethylenglykolmonomethylether oder Diethylenglykolmonoethylether, Diethylenglykolmonobutylether, Dipropylenglykolmonoethylether,

Thiodiglykol, Triethylenglykolmonomethylether oder -monoethylether, femer 2-Pyrrolidon, N-Methyl-2-pyrrolidon, N-Ethyl-pyrrolidon, N-Vinyl-pyrrolidon, 1,3-Dimethylimidazolidon, Dimethylacetamid sowie Dimethylformamid.

11. Pigmentpräparationen gemäß Anspruch 10, dadurch gekennzeichnet, daß das Pigment der Formel (III) in Form eines Salzes, Komplexes, als feste Lösung, als Einschlußverbindung oder als Interkalationsverbindung vorliegt.

12. Pigmentpräparationen gemäß Anspruch 10, dadurch gekennzeichnet, daß das Pigment der Formel (III) in Form einer Einschlußverbindung oder Interkalationsverbindung vorliegt, wobei die eingeschlossene Verbindung eine cyclische oder acyclische Verbindung, vorzugsweise Carbonsäure- oder Zulfonsäureamide, Hamstoff oder substituierte Harnstoffe sowie Heterocyclen, insbesondere 2,4,6-Triamino-1,3,5-triazin, Acetoguanamin und Benzoguanamin ist.

13. Verbindungen der Formel (XI)

10

20

25

30

45

65

in der R¹⁵ Wasserstoff oder C₁-C₄-Alkyl bedeutet,

R16 für Wasserstoff oder CH3 steht,

R¹⁷ Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxycarbonyl oder Phenyl bedeutet,

m' eine Zahl von 1 bis 4 bedeutet,

n' eine Zahl von 6 bis 120 bedeutet,

 R^{18} für jede durch n indizierte Einheit gleich oder verschieden ist und für Wasserstoff, CH₃ oder Phenyl steht, wobei im Falle der Mitanwesenheit von CH₃ in den verschiedenen -(-CH₂-CH(R^{18})-O-)-Gruppen in 0 bis 60% des Gesamtwertes von n R^{18} für CH₃ und in 100 bis 40% des Gesamtwertes von n R^{18} für Wasserstoff steht und wobei im Falle der Mitanwesenheit von Phenyl in den verschiedenen -(-CH₂-CH(R^{18})-O-)-Gruppen in 0 bis 40% des Gesamtwertes von n R^{18} für Phenyl und in 100 bis 60% des Gesamtwertes von n R^{18} für Wasserstoff steht, X für einen Rest der Formel -CO-(R^{19})-COO[©] steht,

R¹⁹ für einen zweiwertigen aliphatischen oder aromatischen Rest steht, und

Kat ein Kation aus der Gruppe von He, Lie, Nae, Ke, NH4 oder HO-CH2CH2-NH3 ist.

14. Mischungen, enthaltend eine Verbindung der Formel (XI) und eine Verbindung der Formel (XI)

$$\begin{bmatrix} R^{16} & C & CH_2 - CH_2 -$$

in der

R15 Wasserstoff oder C1-C4-Alkyl bedeutet,

R16 für Wasserstoff oder CH3 steht,

 R^{17} Wasserstoff, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxycarbonyl oder Phenyl bedeutet,

m eine Zahl von 1 bis 4 bedeutet,

n eine Zahl von 6 bis 120 bedeutet,

R¹⁸ für jede durch n indizierte Einheit gleich oder verschieden ist und für Wasserstoff, CH₃ oder Phenyl steht, wobei im Falle der Mitanwesenheit von CH₃ in den verschiedenen -(-CH₂-CH(R¹⁸)-O-)-Gruppen in 0 bis 60% des Gesamtwertes von n R¹⁸ für CH₃ und in 100 bis 40% des Gesamtwertes von n R¹⁸ für Wasserstoff steht und wobei im Falle der Mitanwesenheit von Phenyl in den verschiedenen -(-CH₂-CH(R¹⁸)-O-)-Gruppen in 0 bis 40% des Gesamtwertes von n R¹⁸ für Phenyl und in 100 bis 60% des Gesamtwertes von n R¹⁸ für Wasserstoff steht,

in der R^{15} , R^{16} , R^{17} , R^{18} , m' und n' den Bedeutungsumfang von R^{15} , R^{16} , R^{17} , R^{18} , m bzw. n, jedoch unabhängig hiervon,

Kat ein Kation aus der Gruppe von H[⊕], Li[⊕], Na[⊕], K[⊕], NH₄[⊕] oder HO-CH₂CH₂-NH₃[⊕] ist, wobei im Falle von X = PO₃[⊕] zwei Kat vorliegen,

wobei Mischungen ausgenommen sind, worin n oder n' eine Zahl kleiner oder gleich 3 oder in oder m' eine Zahl von

	DE 197 12 486 A 1
5	 6 bis 100 bedeutet. 15. Pigmentpräparationen enthaltend a') Wasser, b') eine Verbindung gemäß Anspruch 13 und/oder eine Mischung gemäß Anspruch 14 und c') ein Pigment. 16. Verwendung der Pigmentpräparationen gemäß Anspruch 15 als Drucktinte für den Ink-Jet-Druck. 17. Verwendung der Verbindungen gemäß Anspruch 13 oder der Mischungen gemäß Anspruch 14 als Dispergiermittel.
10	
15	
20	
25	
30	
35 .	
40	
45	
50	