Missing Data 2
MSBBSS01: Survey data analysis

Stef van Buuren, Gerko Vink

Nov 16, 2020

Generating imputations, univariate

Generating imputations, multivariate

Workflow after generating imputation

Special topic 1: Practicalities

Special topic 2: Multilevel data

Wrap up

### Schedule

| Slot | Time        | What | Topic                     |
|------|-------------|------|---------------------------|
| A    | 10.00-10.45 | L    | Generating imputations    |
|      | 10.45-11.00 |      | COFFEE/TEA                |
| В    | 11.00-11.45 | L    | Workflows, special topics |
|      | 11.45-12.00 |      | COFFEE/TEA                |
| C    | 12.00-13.00 | Р    | Three vignettes           |

Generating imputations, univariate

#### Relation between temperature and gas consumption



#### We delete gas consumption of observation 47



## Predict imputed value from regression line



## ${\sf Predicted\ value} + {\sf noise}$



## ${\sf Predicted\ value+noise+parameter\ uncertainty}$



## Imputation based on two predictors



## Drawing from the observed data



# Predictive mean matching



## PMM: Add two regression lines



## PMM: Predicted given 5°,C, 'after insulation'



PMM: Define a matching range  $\hat{\mathbf{y}} \pm \delta$ 



PMM: Select potential donors



PMM: Bayesian PMM: Draw a line



PMM: Define a matching range  $\hat{\mathbf{y}} \pm \delta$ 



## PMM: Select potential donors



### Imputation of a binary variable

► Logistic regression

$$\Pr(y_i = 1 | X_i, \beta) = \frac{\exp(X_i \beta)}{1 + \exp(X_i \beta)}$$

## Fit logistic model



### Draw parameter estimate



### Read off the probability



## Impute ordered categorical variable

- ightharpoonup K ordered categories  $k=1,\ldots,K$
- ordered logit model, or
- proportional odds model

$$\Pr(y_i = k | X_i, \beta) = \frac{\exp(\tau_k + X_i \beta)}{\sum_{k=1}^K \exp(\tau_k + X_i \beta)}$$

### Fit ordered logit model



### Read off the probability



### Built-in imputation functions

https://amices.org/mice/reference/index.html

Generating imputations, multivariate

#### Issues in multivariate imputation

- ▶ The predictors  $Y_{-j}$  themselves can contain missing values; ▶ "Circular" dependence can occur, where  $Y_j^{\rm mis}$  depends on  $Y_h^{\text{mis}}$ , and vice versa;
- ▶ Variables are often of different types (e.g., binary, unordered, ordered, continuous);
- $\triangleright$  Especially with large p and small n, collinearity or empty cells can occur;
- ▶ The ordering of the rows and columns can be meaningful, e.g., as in longitudinal data;
- The relation between  $Y_j$  and predictors  $Y_{-j}$  can be complex, e.g., nonlinear, or subject to censoring processes;
- Imputation can create impossible combinations, such as pregnant grandfathers.

#### Missing data patterns



## Three general strategies

- ► Monotone data imputation
- Joint modeling
   Fully conditional specification (FCS)

## Imputation of monotone pattern



## Imputation of monotone pattern



## Imputation of monotone pattern



## Imputation of monotone pattern



## Imputation by joint modelling



## Imputation by joint modelling



## Imputation by joint modelling



## Imputation by joint modelling



## Imputation by joint modelling - next iteration



## Imputation by joint modelling - next iteration



## Imputation by fully conditional specification



## Imputation by fully conditional specification



## Imputation by fully conditional specification



## Imputation by fully conditional specification



## Imputation by fully conditional specification



Imputation by fully conditional specification - next iteration



Imputation by fully conditional specification - next iteration



### How many iterations?

- Quick convergence5–10 iterations is adequate for most problems
- lacktriangle More iterations is  $\lambda$  is high
- ► Inspect the generated imputations
- ▶ Monitor convergence to detect anomalies

#### Non-convergence



### Convergence



#### Number of iterations

Watch out for situations where

- ▶ the correlations between the Y<sub>j</sub>'s are high;
   ▶ the missing data rates are high; or
- constraints on parameters across different variables exist.

# Multiple imputation in mice

Workflow after generating imputation



#### Workflow 1: mids workflow using saved objects

#### Workflow 2: mids workflow using pipes

```
# mids workflow using saved objects
library(mice)
imp <- mice(nhanes, seed = 123, print = FALSE)
fit <- with(imp, lm(chl ~ age + bmi + hyp))
est1 <- pool(fit)</pre>
```

```
# mids workflow using pipes
library(magrittr)
est2 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  with(lm(chl ~ age + bmi + hyp)) %>%
  pool()
```

#### Workflow3: mild workflow using base::lapply

```
Workflow4: mild workflow using pipes and base::Map
```

```
# mild workflow using base::lapply
est3 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("all") %>%
  lapply(lm, formula = chl ~ age + bmi + hyp) %>%
  pool()
```

```
# mild workflow using pipes and base::Map
est4 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("all") %>%
  Map(f = lm, MoreArgs = list(f = chl ~ age + bmi + hyp)) ;
  pool()
```

## Workflow5: mild workflow using purrr::map

#### Workflow6: long workflow using base::by

```
# mild workflow using purrr::map
library(purrr)
est5 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("all") %>%
  map(lm, formula = chl ~ age + bmi + hyp) %>%
  pool()
```

```
# long workflow using base::by
est6 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("long") %>%
  by(as.factor(.$.imp), lm, formula = chl ~ age + bmi + hyp
pool()
```

#### Workflow7: long workflow using a dplyr list-column

```
# long workflow using a dplyr list-column
library(dplyr)
est7 <- nhanes %>%
    mice(seed = 123, print = FALSE) %>%
    mice::complete("long") %>%
    group_by(.imp) %>%
    do(model = lm(formula = chl ~ age + bmi + hyp, data = .))
as.list() %>%
.[[-1]] %>%
    pool()
```

#### Special topic 1: Practicalities

#### How to set up the imputation model

- 1. MAR or MNAR
- 2. Form of the imputation model
- 3. Which predictors
- 4. Derived variables
- 5. What is *m*?
- 6. Order of imputation
- 7. Diagnostics, convergence

#### Which predictors?

- Include all variables that appear in the complete-data model, including transformations and interactions
- ▶ Include the variables that are related to the nonresponse
- Include variables that explain a considerable amount of variance
- ► Remove variables that have too many missing values within the subgroup of incomplete cases

Functions mice::quickpred() and mice::flux()

#### Derived variables

- ratio of two variables
- sum score
- ▶ index variable
- quadratic relations
- interaction term
- conditional imputation
- compositions

## Derived variables: summary

- ► Derived variables pose special challenges
- ► Plausible values should respect data dependencies
- ▶ If you can, create derived variables after imputation
- ▶ Best option: Probably model-based imputation
- ► More work needed to verify

## Special topic 2: Multilevel data

#### Imputation of multilevel data

- ▶ Avoid multilevel imputation . . . if you can
- ► Considerably more complex than *flat-file* imputation
- ▶ One of the hot spots in statistical technology
- Standard multilevel model does not deal with missing predictors
- ▶ Know the complete-data statistical analysis

#### brandsma data

- ▶ Brandsma and Knuver, Int J Ed Res, 1989.
- Extensively discussed in Snijders and Bosker (2012), 2nd ed.
- ▶ 4106 pupils, 216 schools, about 4% missing values

```
library(mice)
head(brandsma[, c(1:6, 9:10, 13)], 3)
```

```
## sch pup iqv iqp sex ses lpr lpo den
## 1 1 1 -1.35 -3.72 1 -17.67 33 NA 1
## 2 1 2 2.15 3.28 1 NA 44 50 1
## 3 1 3 3.15 1.27 0 -4.67 36 46 1
```

#### brandsma data subset

```
d <- brandsma[, c("sch", "lpo", "sex", "den")]
head(d, 2)</pre>
```

```
##  sch lpo sex den
## 1  1  NA  1  1
## 2  1  50  1  1
```

- ▶ sch: School number, cluster variable, C = 216;
- ▶ 1po: Language test post, outcome at pupil level;
- ▶ sex: Sex of pupil, predictor at pupil level (0-1);
- ▶ den: School denomination, predictor at school level (1-4).

#### Model of scientific interest

#### Predict 1po from the

- ▶ level-1 predictor sex
- ▶ level-2 predictor den

## Level notation - Bryk and Raudenbush (1992)

$$1po_{ic} = \beta_{0c} + \beta_{1c}sex_{ic} + \epsilon_{ic}$$
 (1)

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \text{den}_c + u_{0c} \tag{2}$$

$$\beta_{1c} = \gamma_{10} \tag{3}$$

- ightharpoonup lpo $_{ic}$  is the test score of pupil i in school c
- ightharpoonup sex $_{ic}$  is the sex of pupil i in school c

pupil level

- ightharpoonup den<sub>c</sub> is the religious denomination of school c
- $\blacktriangleright$   $eta_{0c}$  is a random intercept that varies by cluster
- ▶  $\beta_{1c}$  is a sex effect, assumed to be the same across schools. ▶  $\epsilon_{ic} \sim N(0, \sigma_{\epsilon}^2)$  is the within-cluster random residual at the

#### Level 2 equations: interpretation

The first level-2 model

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \mathrm{den}_c + \mathit{u}_{0c},$$

describes the variation in the mean test score between schools as a function of

- $\blacktriangleright$  the grand mean  $\gamma_{00},$
- $\blacktriangleright\,$  a school-level effect  $\gamma_{01}$  of denomination, and a
- **>** school-level random residual  $u_{0c} \sim N(0, \sigma_{u_0}^2)$

The second level 2 model

$$\beta_{1c} = \gamma_{10}$$

specifies  $\beta_{1c}$  as a fixed effect equal in value to  $\gamma_{10}$ 

#### Unknown parameters

$$1po_{ic} = \beta_{0c} + \beta_{1c}sex_{ic} + \epsilon_{ic}$$
 (4)

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \text{den}_c + u_{0c} \tag{5}$$

$$\beta_{1c} = \gamma_{10} \tag{6}$$

The unknowns to be estimated are the fixed parameters:

- γ<sub>00</sub>,
- $ightharpoonup \gamma_{01}$ , and
- $ightharpoonup \gamma_{10}$ ,

and the variance components:

- $\sigma_{\epsilon}^2$  and  $\sigma_{u_0}^2$ .

#### Where are the missings?

In single level data, missingness may be in the outcome and/or in the predictors

With multilevel data, missingness may be in:

- 1. the outcome variable;
- 2. the level-1 predictors;
- 3. the level-2 predictors;
- 4. the class variable.

## Univariate missing, level-1 outcome



## Univariate missing, level-1 predictor, sporadically missing



## Univariate missing, level-1 predictor, systematically missing



### Univariate missing, level-2 predictor



#### Multivariate missing



### Fully conditional specification

$$\begin{split} & 1\dot{p}o_{ic} \sim N(\beta_0 + \beta_1 den_c + \beta_2 sex_{ic} + u_{0c}, \sigma_{\epsilon}^2) \\ & s\dot{e}x_{ic} \sim N(\beta_0 + \beta_1 den_c + \beta_2 1po_{ic} + u_{0c}, \sigma_{\epsilon}^2) \end{split} \tag{8}$$

## Theoretical problem with FCS

Conditional expectation of  $sex_{ic}$  in a random effects model depends on

▶ 1po<sub>ic</sub>,
 ▶ 1po<sub>i</sub>, the mean of cluster i, and

Resche-Rigon & White (2018) suggest the imputation model

▶ should incorporate the cluster means of level-1 predictors

▶ be heteroscedastic if cluster sizes vary

#### Methods for multilevel imputation in mice

| Package    | Method         | Description                  |
|------------|----------------|------------------------------|
| Continuous |                |                              |
| mice       | 21.lmer        | normal, lmer                 |
| mice       | 2l.pan         | normal, pan                  |
| miceadds   | 21.continuous  | normal, lmer , blme          |
| micemd     | 2l.jomo        | normal, jomo                 |
| micemd     | 2l.glm.norm    | normal, lmer                 |
| mice       | 21.norm        | normal, heteroscedastic      |
| micemd     | 21.2stage.norm | normal, heteroscedastic      |
| Generic    |                |                              |
| miceadds   | 2l.pmm         | pmm, homoscedastic, lmer     |
| micemd     | 21.2stage.pmm  | pmm, heteroscedastic, mymeta |

## Methods for multilevel imputation in mice

methods is available as a function called mice.impute.[method] in the specified R package

| Package  | Method         | Description                 |
|----------|----------------|-----------------------------|
| Binary   |                |                             |
| mice     | 2l.bin         | logistic, glmer             |
| miceadds | 21.binary      | logistic, glmer             |
| micemd   | 21.2stage.bin  | logistic, mvmeta            |
| micemd   | 21.glm.bin     | logistic, glmer             |
| Count    |                |                             |
| micemd   | 21.2stage.pois | Poisson, mvmeta             |
| micemd   | 21.glm.pois    | Poisson, glmer              |
| countimp | 2l.poisson     | Poisson, glmmPQL            |
| countimp | 21.nb2         | negative binomial, glmmadmb |
| countimp | 21.zihnb       | zero-infl neg bin, glmmadmb |

## Methods for multilevel imputation in mice

Table 7.4: Overview of mice.impute.[method] functions to perform univariate multilevel imputation

| Package  | Method             | Description                 |
|----------|--------------------|-----------------------------|
| Level-2  |                    |                             |
| mice     | 2lonly.mean        | level-2 manifest class mean |
| miceadds | 21.groupmean       | level-2 manifest class mean |
| miceadds | 21.latentgroupmean | level-2 latent class mean   |
| mice     | 2lonly.norm        | level-2 class normal        |
| mice     | 2lonly.pmm         | level-2 class pmm           |
| miceadds | 2lonly.function    | level-2 class, generic      |
| miceadds | ml.lmer            | $\geq 2$ levels, generic    |
|          |                    |                             |

## Summary

- Impact of missing data
   Ad-hoc techniques
   Theory of multiple imputation
   Generating imputations
- ► Workflows
- Specification of imputation modelMultilevel data

## Wrap up