0 復習(1変数関数の微積分)

問題 **0.1.** 関数 $f(x) = \frac{e^x - e^{-x}}{2}$ の逆関数 $f^{-1}(x)$ が

$$f^{-1}(x) = \log\left(x + \sqrt{x^2 + 1}\right)$$

となることを示せ、また、 $f^{-1}(x)$ の導関数を計算せよ、

問題 **0.2.** $f(x) = \frac{1}{1-x}$ とおく. このとき, 次の問いに答えよ.

- (1) f(x) の k 階導関数 $f^{(k)}(x)$ を求めよ.
- (2) f(x) を x = 0 のまわりでテイラー展開せよ (剰余項の評価は考えなくてよい).
- (3) $(\log(1-x))' = -\frac{1}{1-x}$ を利用して、 $\log(1-x)$ を x = 0 のまわりでテイラー展開せよ。

問題 0.3. 次の極限を求めよ.

$$\lim_{x \to 0} \frac{e^{x^2} - \cos x}{r^2}$$

問題 0.4. 次の有理関数の不定積分を求めよ.

$$\frac{x+1}{(x-2)(x-1)}$$

問題 0.5. 次の定積分を計算せよ.

(1)
$$\int_0^1 x\sqrt{2x+1} \, dx$$

$$(2) \int_0^{\pi/2} \frac{1}{\sin x + \cos x} \, dx$$

$$(3) \int_0^1 \frac{x+1}{\sqrt{x}} \, dx$$