

M.H

PCT/ER99/02265

9/17/99

REC'D 01 OCT 1999

WIPO PCT

ENW

IA 111849

IA 111849

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:
UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

June 21, 1999

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/123,298

FILING DATE: March 04, 1999

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

P. SWAIN

Certifying Officer

PTO/SB/16 (6-95)

RPR File No. ST98032-US

AV
PROV

PROVISIONAL APPLICATION COVER SHEET

CERTIFICATE OF MAILING (37 CFR 1.10)

EE458501236US
"Express Mail" Mailing Numbermarch 4, 1999
Date of Deposit

I hereby certify that this paper (along with any referred to as being attached or enclosed) is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to: Box Provisional Patent Application, Assistant Commissioner For Patents, Washington, DC 20231.

Paula L. Dickey
(Type or print name of person mailing paper)

Paula L. Dickey
(Signature of person mailing paper)

This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53 (b)(2).

	Docket Number	ST98032-US	Type a plus sign (+) inside this box→	+ PC581 U.S. PTO 6/12/98
INVENTOR(s)/APPLICANT(s)				
LAST NAME	FIRST NAME	MIDDLE INITIAL	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)	
BRANELLEC	Didier		39 avenue de Sébastopol 94210 La Varenne Saint-Hilaire, FRANCE	

TITLE OF THE INVENTION (280 characters max.)

USE OF SPECIFIC HYBRID PROMOTERS FOR CONTROLLING EXPRESSION IN TISSUES

ENCLOSED APPLICATION PARTS (check all that apply)

<input checked="" type="checkbox"/> Specification	Number of Pages	39	Small Entity Statement
<input checked="" type="checkbox"/> Drawing(s)	Number of Sheets	6	Other (specify) _____

METHOD OF PAYMENT (check one)

A check or money order is enclosed to cover the Provisional filing fees.

PROVISIONAL FILING FEE AMOUNT(S) \$150.00

The Commissioner is hereby authorized to charge filing fees and credit Deposit Account No. 18-1982.
(Duplicate copies enclosed.)

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

No.
Yes, the name of the U.S. Government agency and Government contract number are: _____

Rhone-Poulenc Rorer Inc.
500 Arcola Road, Mail Stop 3C43
P.O. Box 5093
Collegeville, PA 19426-0997
Telephone: (610) 454-5643
Facsimile: (610) 454-3808

Respectfully submitted

R. Keith Baker
R. Keith Baker, Ph.D.
Agent for Applicants
Registration No. 38,799

Additional inventors are being named on separately numbered sheets attached hereto.

PROVISIONAL APPLICATION FILING ONLY

Send to: Box Provisional Patent Application, Assistant Commissioner For Patents, Washington, D.C. 20231

**PROVISIONAL APPLICATION COVER SHEET - Additional Page for
Inventor Information**

		Docket Number	ST98032-US	Type a plus sign (+) inside this box→	+
SECOND NAMED INVENTOR(S)/APPLICANT(S)					
LAST NAME	FIRST NAME	MIDDLE INITIAL	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)		
DARTEIL	Raphaël		30 passage Thiére 75011 Paris, FRANCE		

		Docket Number	ST98032-US	Type a plus sign (+) inside this box→	+
THIRD NAMED INVENTOR(S)/APPLICANT(S)					
LAST NAME	FIRST NAME	MIDDLE INITIAL	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)		
MARFOUDI	Abderrahim		42 rue des Pastoureaux 94440 Marolles En Brie, FRANCE		

		Docket Number	ST98032-US	Type a plus sign (+) inside this box→	+
FOURTH NAMED INVENTOR(S)/APPLICANT(S)					
LAST NAME	FIRST NAME	MIDDLE INITIAL	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)		
SCHERMAN	Daniel		10 rue Erard 75012 Paris, FRANCE		

2025 RELEASE UNDER E.O. 14176

ST 98032

BREVET D'INVENTION

RHONE-POULENC RORER S.A.

**UTILISATION DE PROMOTEURS SPECIFIQUES
HYBRIDES POUR CONTROLER L'EXPRESSION TISSULAIRE**

La présente invention concerne un promoteur hybride comprenant :

- tout ou partie de la région enhancer d'un promoteur/enhancer fort et ubiquitaire, et
- une région promoteur permettant l'expression spécifique dans les cellules musculaires lisses, ainsi que tout vecteur et cellule contenant ce promoteur, et leurs utilisations.

UTILISATION DE PROMOTEURS SPECIFIQUES HYBRIDES POUR CONTROLER L'EXPRESSION TISSULAIRE

La présente invention concerne le domaine de la biologie, et en particulier le domaine de la régulation de l'expression de gènes. Elle décrit notamment de nouvelles constructions et de nouveaux vecteurs permettant une expression ciblée et forte de gènes. La présente invention est utilisable dans de nombreux domaines, et en particulier pour la production de protéines recombinantes, pour la création de modèles animaux transgéniques, pour la création de lignées cellulaires, pour la mise au point de tests de criblage, ou encore en thérapie génique et cellulaire.

La possibilité de contrôler et de diriger l'expression de gènes constitue un enjeu très important dans le développement des biotechnologies. In vitro, elle peut permettre d'améliorer les conditions de production de protéines recombinantes, en utilisant des populations particulières de cellules. Toujours in vitro, elle peut permettre la détection ou la mise en évidence de la présence de populations spécifiques de cellules dans un échantillon, ou également de tester les propriétés d'un produit ou la régulation d'un gène dans une population spécifique de cellules. Le contrôle de l'expression de gènes est également très important pour des approches thérapeutiques ex vivo ou in vivo, dans lesquelles la possibilité de contrôler sélectivement la production d'une molécule thérapeutique est essentielle. En effet, selon les applications, selon le gène à transférer, il est important de pouvoir cibler certains tissus ou certaines parties seulement d'un organisme afin de concentrer l'effet thérapeutique et de limiter la dissémination et les effets secondaires.

Le ciblage de l'expression d'un acide nucléique donné peut être réalisé selon différentes approches. Une première approche consiste par exemple à utiliser des vecteurs ou des agents de transfert présentant une spécificité cellulaire donnée. Cependant, la spécificité conférée par ce type de vecteurs est généralement assez grossière et ne permet pas un ciblage de populations précises de cellules. Une autre approche consiste à utiliser des signaux d'expression spécifiques de certains types cellulaires. A cet égard, des promoteurs dits "spécifiques" ont été décrits dans la littérature, tels que le promoteur des gènes codant pour la pyruvate kinase, la villine,

la GFAP, le promoteur de la protéine intestinale de liaison des acides gras, le promoteur de l'actine α des cellules du muscle lisse, le promoteur SM22 ou encore le promoteur du gène de l'albumine humaine par exemple. Cependant, si ces promoteurs présentent une spécificité tissulaire, ils présentent également, en contrepartie, une puissance relativement faible. Ainsi, la grande majorité de ces promoteurs possède des niveaux d'activité qui sont bien en deçà de ceux de ceux de promoteurs dits "forts", généralement d'un facteur compris entre 10 et 100 au moins. En outre, il est généralement considéré que la spécificité d'un promoteur est inversement proportionnelle à sa force et que, plus la force est augmentée, plus le niveau d'activité non-spécifique est important.

Il serait donc particulièrement avantageux de pouvoir disposer de promoteurs qui soient à la fois spécifiques de certains tissus et forts. L'objet de la présente invention est précisément de fournir de nouvelles constructions permettant l'expression forte et ciblée de gènes.

L'invention décrit en particulier de nouveaux promoteurs chimériques permettant une expression de gènes forte et spécifique des cellules musculaires lisses. L'invention décrit également des vecteurs contenant de tels promoteurs et leur utilisation pour le transfert de gènes dans les cellules *in vitro*, *ex vivo* et *in vivo*. Les constructions de l'invention permettent pour la première fois de combiner des propriétés opposées, à savoir un grande sélectivité et une activité transcriptionnelle élevée. La présente invention offre ainsi un moyen particulièrement performant pour le ciblage de l'expression de gènes dans des cellules du muscle lisse, *in vivo* ou *in vitro*, et pour la régulation de cette expression.

L'invention repose plus particulièrement sur la construction de promoteurs chimériques (ou hybrides), comprenant des régions d'origine et de fonction différentes. Plus particulièrement, un premier objet de l'invention réside dans un promoteur hybride comprenant :

- tout ou partie de la région enhancer d'un promoteur/enhancer fort et ubiquitaire, et

- une région promoteur permettant l'expression spécifique dans les cellules musculaires lisses.

L'association de régions enhancer et de promoteurs a déjà été décrite dans l'art antérieur. Ainsi, il est connu par exemple de coupler la région enhancer du CMV avec des promoteurs non spécifiques tels que le promoteur du gène de l'actine- β de poulet (WO96/13597) afin d'augmenter leur force. Néanmoins, de telles constructions n'ont pas été décrites ou suggérées dans le but de tenter d'obtenir une expression forte et spécifique des cellules du muscle lisse. L'invention repose en partie sur la sélection et la combinaison d'éléments "enhancers" particuliers et d'éléments "promoteurs" particuliers. L'invention repose également sur la mise en évidence que cette combinaison d'éléments permet d'obtenir une expression à des niveaux élevés, sans affecter la sélectivité du promoteur pour les cellules cibles du muscle lisse. L'invention fournit donc des constructions particulièrement avantageuses puisqu'elles permettent la production ciblée et avec des niveaux importants de molécules dans les cellules du muscle lisse. En outre, la présente demande montre également que ces constructions peuvent être utilisées aussi bien *in vitro* que *in vivo*.

Dans les promoteurs hybrides selon l'invention, la région enhancer et la région promoteur sont associées de manière fonctionnelle, c'est-à-dire de sorte que la région enhancer exerce une activité stimulante sur l'activité de la région promoteur. Généralement, ces deux régions sont donc liées génétiquement et sont suffisamment proches l'une de l'autre pour permettre à la région enhancer d'activer la région promoteur. Préférentiellement, la distance séparant la région enhancer et la région promoteur est inférieure à 1 kb, plus préférentiellement inférieure à 500 pb. Dans les constructions particulièrement préférées selon l'invention, ces deux régions sont espacées de moins de 400 pb, plus préférentiellement de moins de 200 pb. En outre, comme le montrent les exemples, l'orientation respective des deux régions n'a pas d'influence significative sur l'activité des promoteurs hybrides de l'invention. De ce fait, la région enhancer peut être positionnée dans la même orientation ou dans l'orientation inverse par rapport au sens de la transcription de la région promoteur.

Dans un mode préféré de mise en œuvre, la région enhancer est choisie parmi la région enhancer du gène précoce immédiat du cytomégavirus (CMV-IE), la région enhancer du LTR du virus du sarcome de rous (LTR-RSV), la région enhancer du virus SV40, et la région enhancer du gène EF1 α . Plus préférentiellement, dans les promoteurs hybrides de l'invention, la région enhancer est la région enhancer du gène précoce immédiat du cytomégavirus (CMV-IE), de préférence du cytomégavirus humain (hCMV-IE). Une région enhancer particulière est constituée par exemple du fragment -522 à -63 du gène hCMV-IE, ou de tout fragment comprenant au moins une partie de celui-ci et présentant une activité enhancer.

S'agissant de la région promoteur, on utilise avantageusement pour la mise en œuvre de l'invention une région comprenant tout ou partie du promoteur du gène codant pour l'actine- α de cellules musculaires lisses (SMact) ou du gène SM22. Le promoteur de ces gènes a été décrit pour son caractère spécifique des cellules du muscle lisse (voir notamment Ueyama H et coll., *Mol. Cell. Biol.*, 4 (1984) 1073-1078 ; Solway J. et coll., *J. Biol. Chem.*, 270 (1995) 13460-13469).

Une première variante particulièrement avantageuse de la présente invention est constituée par un promoteur hybride comprenant:

- tout ou partie de la région enhancer du gène précoce immédiat du cytomégavirus humain (hCMV-IE), et
- tout ou partie du promoteur du gène codant pour l'actine- α de cellules musculaires lisses (SMact), de préférence du gène SMact humain

Une deuxième variante particulièrement avantageuse de la présente invention est constituée par un promoteur hybride comprenant:

- tout ou partie de la région enhancer du gène précoce immédiat du cytomégavirus humain (hCMV-IE), et
- tout ou partie du promoteur du gène SM22, de préférence du gène SM22 alpha de souris.

Par ailleurs, dans un mode de réalisation particulier de l'invention, la région promoteur utilisée est une région chimère comprenant un promoteur basal et une séquence conférant la spécificité tissulaire, ladite séquence étant dérivée du promoteur SMact ou du promoteur SM22, ou d'une combinaison des deux. Dans ce mode de

U.S. DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

***THIS IS TO CERTIFY that page (s) 5 and 6 is
missing from the U.S. Patent and Trademark Office Scanned
Image or Microform Records.***

Sue Auer
Certifying Officer

6-21-99
Date

Il est entendu que la présente invention n'est pas limitée à des exemples particuliers de protéines ou ARN, mais qu'elle peut être utilisée par l'homme du métier pour l'expression de tout acide nucléique dans les cellules du muscle lisse, par de simples opérations d'expérimentation habituelles.

Un autre objet de l'invention concerne en outre tout vecteur comprenant un promoteur hybride ou une cassette tels que définis ci-dessus. Le vecteur de l'invention peut être par exemple un plasmide, un cosmid ou tout ADN non encapsidé par un virus, un phage, un chromosome artificiel, un virus recombinant, etc. Il s'agit de préférence d'un plasmide ou d'un virus recombinant.

Parmi les vecteurs de type plasmidique, on peut citer tous les plasmides de clonage et/ou d'expression connus de l'homme du métier et qui comportent généralement une origine de réPLICATION. On peut citer également des plasmides de nouvelles générations portant des origines de réPLICATION et/ou des marqueurs perfectionnés tels que décrits par exemple dans les demandes WO96/26270 et PCT/FR96/01414.

Parmi les vecteurs de type virus recombinant, on peut citer préférentiellement les virus adénovirus, rétrovirus, virus de l'herpès ou virus adéno-associer recombinants. La construction de ce type de virus recombinants défectifs pour la réPLICATION a été largement décrite dans la littérature, ainsi que les propriétés d'infection de ces vecteurs (voir notamment S. Baeck et K.L. March (1998), Circul. Research vol. 82, pp 295-305), T. Shenk, B.N. Fields, D.M. Knipe, P.M. Howley et al (1996), Adenoviridae : the viruses and their replication (in virology). Pp 211-2148, EDS - Ravenpublishers/Philadelphia, P. Yeh et M. Perricaudet (1997), FASEB Vol. 11, pp 615-623.

Un virus recombinant particulièrement préféré pour la mise en œuvre de l'invention est un adénovirus recombinant défectif.

Les adénovirus sont des virus à ADN double brin linéaire d'une taille de 36 (kilobases) kb environ. Il existe différents sérotypes, dont la structure et les propriétés varient quelque peu, mais qui présentent une organisation génétique comparable. Plus particulièrement, les adénovirus recombinants peuvent être d'origine humaine ou animale. Concernant les adénovirus d'origine humaine, on peut citer

préférentiellement ceux classés dans le groupe C, en particulier les adénovirus de type 2 (Ad2), 5 (Ad5), 7 (Ad7) ou 12 (Ad12). Parmi les différents adénovirus d'origine animale, on peut citer préférentiellement les adénovirus d'origine canine, et notamment toutes les souches des adénovirus CAV2 [souche manhattan ou A26/61 (ATCC VR-800) par exemple]. D'autres adénovirus d'origine animale sont cités notamment dans la demande WO94/26914 incorporée à la présente par référence

Le génome des adénovirus comprend notamment une séquence inversée répétée (ITR) à chaque extrémité, une séquence d'encapsidation (Psi), des gènes précoces et des gènes tardifs. Les principaux gènes précoces sont contenus dans les régions E1, E2, E3 et E4. Parmi ceux-ci, les gènes contenus dans la région E1 notamment sont nécessaires à la propagation virale. Les principaux gènes tardifs sont contenus dans les régions L1 à L5. Le génome de l'adénovirus Ad5 a été entièrement séquencé et est accessible sur base de données (voir notamment Genebank M73260). De même des parties, voire la totalité d'autres génomes adénoviraux (Ad2, Ad7, Ad12, etc) ont également été séquencées.

Pour leur utilisation comme vecteurs recombinants, différentes constructions dérivées des adénovirus ont été préparées, incorporant différents gènes thérapeutiques. Dans chacune de ces constructions, l'adénovirus a été modifié de manière à le rendre incapable de réplication dans la cellule infectée. Ainsi, les constructions décrites dans l'art antérieur sont des adénovirus délétés de la région E1, essentielle à la réplication virale, au niveau de laquelle sont insérées les séquences d'ADN hétérologue (Levrero et al., Gene 101 (1991) 195 ; Gosh-Choudhury et al., Gene 50 (1986) 161). Par ailleurs, pour améliorer les propriétés du vecteur, il a été proposé de créer d'autres délétions ou modifications dans le génome de l'adénovirus. Ainsi, une mutation ponctuelle thermosensible a été introduite dans le mutant ts125, permettant d'inactiver la protéine de 72kDa de liaison à l'ADN (DBP) (Van der Vliet et al., 1975). D'autres vecteurs comprennent une déletion d'une autre région essentielle à la réplication et/ou à la propagation virale, la région E4. La région E4 est en effet impliquée dans la régulation de l'expression des gènes tardifs, dans la stabilité des ARN nucléaires tardifs, dans l'extinction de l'expression des protéines de la cellule

BREVET FRANÇAIS

hôte et dans l'efficacité de la réPLICATION de l'ADN viral. Des vecteurs adénoviraux dans lesquels les régions E1 et E4 sont déletées possèdent donc un bruit de fond de transcription et une expression de gènes viraux très réduits. De tels vecteurs ont été décrits par exemple dans les demandes WO94/28152, WO95/02697, WO96/22378). En outre, des vecteurs portant une modification au niveau du gène IVa2 ont également été décrits (WO96/10088)

Dans un mode préféré de mise en oeuvre de l'invention, l'adénovirus recombinant est un adénovirus humain du groupe C. De manière plus préférentielle, il s'agit d'un adénovirus Ad2 ou Ad5.

Avantageusement, l'adénovirus recombinant utilisé dans le cadre de l'invention comprend une délétion dans la région E1 de son génome. Encore plus particulièrement, il comprend une délétion des régions E1a et E1b. A titre d'exemple précis, on peut citer des délétions affectant les nucléotides 454-3328, 382-3446 ou 357-4020 (par référence au génome de l'Ad5).

Selon une variante préférentielle, l'adénovirus recombinant utilisé dans le cadre de l'invention comprend en outre une délétion dans la région E4 de son génome. Plus particulièrement, la délétion dans la région E4 affecte l'ensemble des phases ouvertes. On peut citer à titre d'exemple précis les délétions 33466-35535 ou 33093-35535. D'autres types de délétions dans la région E4 sont décrites dans les demandes WO95/02697 et WO96/22378, incorporées à la présente par référence.

La cassette d'expression peut être insérée en différents sites du génome recombinant. Elle peut être insérée au niveau de la région E1, E3 ou E4, en remplacement des séquences déletées ou en surplus. Elle peut également être insérée en tout autre site, en dehors des séquences nécessaires en cis à la production des virus (séquences ITR et séquence d'encapsidation).

Les adénovirus recombinants sont produits dans une lignée d'encapsidation, c'est-à-dire une lignée de cellules capables de complémenter en trans une ou plusieurs des fonctions déficientes dans le génome adénoviral recombinant. Parmi les lignées d'encapsidation connues par l'homme du métier, on peut citer par exemple la lignée

CONTROLE DE LA PRODUCTION

293 dans laquelle une partie du génome de l'adénovirus a été intégrée. Plus précisément, la lignée 293 est une lignée de cellules embryonnaires humaines de rein contenant l'extrémité gauche (environ 11-12 %) du génome de l'adénovirus sérotype 5 (Ad5), comprenant l'ITR gauche, la région d'encapsidation, la région E1, incluant E1a et E1b, la région codant pour la protéine pIX et une partie de la région codant pour la protéine pIVa2. Cette lignée est capable de trans-complémerter des adénovirus recombinants défectifs pour la région E1, c'est-à-dire dépourvus de tout ou partie de la région E1, et de produire des stocks viraux ayant des titres élevés. Cette lignée est également capable de produire, à température permissive (32°C), des stocks de virus comportant en outre la mutation E2 thermosensible. D'autres lignées cellulaires capables de complémer la région E1 ont été décrites, basées notamment sur des cellules de carcinome de poumon humain A549 (WO94/28152) ou sur des rétinoblastes humains (Hum. Gen. Ther. (1996) 215). Par ailleurs, des lignées capables de trans-complémer plusieurs fonctions de l'adénovirus ont également été décrites. En particulier, on peut citer des lignées complémentant les régions E1 et E4 (Yeh et al., J. Virol. Vol. 70 (1996) pp 559-565; Cancer Gen. Ther. 2 (1995) 322 ; Krougliak et al., Hum. Gen. Ther. 6 (1995) 1575) et des lignées complémentant les régions E1 et E2 (WO94/28152, WO95/02697, WO95/27071).

Les adénovirus recombinants sont habituellement produits par introduction de l'ADN viral dans la lignée d'encapsidation, suivie d'une lyse des cellules après environ 2 ou 3 jours (la cinétique du cycle adénoviral étant de 24 à 36 heures). Pour la mise en oeuvre du procédé, l'ADN viral introduit peut être le génome viral recombinant complet, éventuellement construit dans une bactérie (WO96/25506) ou dans une levure (WO95/03400), transfected dans les cellules. Il peut également s'agir d'un virus recombinant utilisé pour infecter la lignée d'encapsidation. L'ADN viral peut aussi être introduit sous forme de fragments portant chacun une partie du génome viral recombinant et une zone d'homologie permettant, après introduction dans la cellule d'encapsidation, de reconstituer le génome viral recombinant par recombinaison homologue entre les différents fragments.

Après la lyse des cellules, les particules virales recombinantes sont isolées par centrifugation en gradient de chlorure de césum. Une méthode alternative a été décrite dans la demande FR96-08164 incorporée à la présente par référence.

L'invention concerne également une composition comprenant un vecteur tel que défini ci-avant et un agent de transfert chimique ou biochimique. On entend par le terme "agent de transfert chimique ou biochimique" tout composé (i.e., autre qu'un virus recombinant) facilitant la pénétration d'un acide nucléique dans une cellule. Il peut s'agir d'agents non viraux cationiques comme des lipides cationiques, des peptides, des polymères (Polyéthylène Imine, Polylysine), des nanoparticules, ou d'agents non viraux non cationiques comme des liposomes non cationiques, des polymères ou des nanoparticules non cationiques. De tels agents sont bien connus de l'homme du métier.

L'invention concerne également une composition comprenant un virus recombinant tel que défini précédemment et un véhicule physiologiquement acceptable.

L'invention concerne également une composition pharmaceutique comprenant un vecteur tel que décrit ci-avant. Les compositions pharmaceutiques de l'invention peuvent être formulées en vue d'une administration par voie topique, orale, parentérale, intranasale, intraveineuse, intramusculaire, sous-cutanée, intraoculaire, transdermique, etc.

Préférentiellement, la composition pharmaceutique contient des véhicules pharmaceutiquement acceptables pour une formulation injectable, en particulier pour une injection intravasculaire ou dans les tissus du muscle lisse. Il peut s'agir en particulier de solutions salines (phosphate monosodique, disodique, chlorure de sodium, potassium, calcium ou magnésium, etc, ou des mélanges de tels sels), stériles, isotoniques, ou de compositions sèches, notamment lyophilisées, qui, par addition selon le cas d'eau stérilisée ou de sérum physiologique, permettent la constitution de solutes injectables. D'autres excipients peuvent être utilisés tels que par exemple un hydrogel. Cet hydrogel peut être préparé à partir de tout polymère (homo ou hétéro)

50
55
60
65
70
75
80
85
90
95

bio-compatible et non cytotoxique. De tels polymères ont par exemple été décrits dans la demande WO93/08845. Certains d'entre eux, comme notamment ceux obtenus à partir d'oxyde d'éthylène et/ou de propylène sont commerciaux. L'utilisation d'un hydrogel est particulièrement avantageuse pour le transfert d'acides nucléiques dans les parois vasculaires, et notamment dans les cellules musculaires lisses des parois vasculaires. Les doses utilisées pour l'injection peuvent être adaptées en fonction de différents paramètres, et notamment en fonction du mode d'administration utilisé, du but poursuivi (marquage, pathologie, dépistage, etc), du gène à exprimer, ou encore de la durée de l'expression recherchée. D'une manière générale, les virus recombinants selon l'invention sont formulés et administrés sous forme de doses comprises entre 10^4 et 10^{14} pfu, et de préférence 10^6 à 10^{10} pfu. Le terme pfu ("plaque forming unit") correspond au pouvoir infectieux d'une solution virale, et est déterminé par infection d'une culture cellulaire appropriée, et mesure du nombre de plages de cellules infectées. Les techniques de détermination du titre pfu d'une solution virale sont bien documentées dans la littérature. Pour une utilisation *in vitro* ou *ex vivo*, les cassettes, vecteurs ou compositions de l'invention peuvent être incubés à des doses classiques en présence des populations de cellules choisies. Ces incubations peuvent être réalisées sur des boîtes de culture, des flasques, des fermentateurs, ou tout autres dispositif choisi.

Par ailleurs, l'invention concerne également toute cellule modifiée par une cassette ou un vecteur (notamment un adénovirus) tels que décrits ci-dessus. On entend par cellule « modifiée » toute cellule contenant une construction selon l'invention. Ces cellules peuvent être utilisées pour la production de protéines recombinantes *in vitro*. Elles peuvent également être destinées à une implantation dans un organisme, selon la méthodologie décrite dans la demande WO95/14785. Ces cellules sont préférentiellement des cellules musculaires lisses humaines.

L'invention concerne également l'utilisation d'un promoteur hybride tel que défini ci-dessus pour l'expression spécifique d'un acide nucléique dans les cellules musculaires lisses, *in vitro*, *ex vivo* ou *in vivo*.

L'invention concerne aussi l'utilisation d'un promoteur hybride tel que défini ci-dessus pour la préparation d'une composition destinée à l'expression d'un acide

nucléique dans les cellules musculaires lisses *in vivo* et pas dans les cellules endothéliales qui se trouvent au voisinage dans l'artère

En raison de leur caractère spécifique des cellules du muscle lisse, les constructions selon l'invention sont également utilisables pour la création de modèles animaux de pathologies vasculaires ou pour la réalisation d'études de marquage ou dans des méthodes de détection ou de dépistage de la présence de cellules musculaires lisses dans des échantillons.

La présente invention a encore pour objet un procédé de production de protéines recombinantes comprenant l'introduction dans une population cellulaire d'un vecteur tel que défini ci-dessus, la culture de ladite population cellulaire recombinante, et la récupération de ladite protéine produite. Avantageusement, pour la mise en oeuvre du procédé de l'invention, on utilise des cellules musculaires lisses. Il peut s'agir de lignées établies ou de cultures primaires.

La présente demande sera décrite plus en détails à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.

LEGENDE DES FIGURES

Tableau I : Activités relatives des promoteurs hybrides (hSM α -actine) évaluées en transfections transitoires *in vitro* dans des cellules musculaires lisses de lapin en culture primaire (SMC lapin), dans des cellules ECV304, dans des myoblastes C2C12, dans des cellules HeLa, dans des cellules NIH 3T3, dans des cellules de carcinome TU182, ainsi que dans les cellules rénales 293. L'activité relative de chaque promoteur est exprimée en pourcentage de l'activité luciférase obtenue avec le plasmide pCMV-leadTK. Enh-X : la séquence enhancer de hCMV-IE est clonée en amont du promoteur X selon son orientation normale. HnE-X : la séquence enhancer de hCMV-IE est clonée en amont du promoteur X selon l'orientation opposée.

Tableau II : Activités relatives des promoteurs hybrides (mSM22) évaluées en transfections transitoires *in vitro* dans des cellules musculaires lisses de lapin en culture primaire (SMC lapin), dans des cellules ECV304, dans des myoblastes C2C12, dans des cellules HeLa, dans des cellules NIH 3T3, dans des cellules de carcinome TU182, ainsi que dans les cellules rénales 293. L'activité relative de chaque promoteur est exprimée en pourcentage de l'activité luciférase obtenue avec le plasmide pCMV-leadTK. Enh-X : la séquence enhancer de hCMV-IE est clonée en amont du promoteur X selon son orientation normale. HnE-X : la séquence enhancer de hCMV-IE est clonée en amont du promoteur X selon l'orientation opposée.

Tableau III . Activités des promoteurs hybrides évaluées en transfert de gène *in vivo* dans le muscle tibial cranial de souris C57BL6. L'activité relative de chaque promoteur est exprimée en pourcentage de l'activité luciférase obtenue avec le plasmide pCMV-leadTK. Enh-X : la séquence enhancer de hCMV-IE est clonée en amont du promoteur X selon son orientation normale. HnE-X : la séquence enhancer de hCMV-IE est clonée en amont du promoteur X selon l'orientation opposée.

Figure 1 : Représentations schématiques des plasmides dont la cassette d'expression contient le promoteur hybride hSM α -actine.

Figure 2 · Représentations schématiques des plasmides dont la cassette d'expression contient le promoteur hybride mSM22 α .

Figure 3 : Activités des promoteurs hybrides évaluées en transfections transitoires *in vitro* dans des cellules musculaires lisses de lapin en culture primaire (SMC de lapin), dans des cellules endothéliales issues d'un carcinome de cordon ombilical humain (ECV304), dans des myoblastes de souris (C2C12) ainsi que dans des cellules épithéliales issues d'un carcinome du col de l'utérus humain (HeLa). L'activité relative de chaque promoteur est exprimée en pourcentage de l'activité luciférase obtenue avec le plasmide pCMV-leadTK. Enh-X : la séquence enhancer de hCMV-IE est clonée en amont du promoteur X selon son orientation normale. hnE-X

: la séquence enhancer de hCMV-IE est clonée en amont du promoteur X selon l'orientation opposée.

Figure 4 : Activités des promoteurs hybrides évaluées en transfections transitoires *in vitro* dans des fibroblastes embryonnaires de souris (NIH 3T3), dans des cellules issues d'un carcinome ORL humain (TU182), ainsi que dans des cellules rénales embryonnaires humaines transformées (293). L'activité relative de chaque promoteur est exprimée en pourcentage de l'activité luciférase obtenue avec le plasmide pCMV-leadTK. Enh-X : la séquence enhancer de hCMV-IE est clonée en amont du promoteur X selon son orientation normale. hnE-X : la séquence enhancer de hCMV-IE est clonée en amont du promoteur X selon l'orientation opposée.

Figure 5 : Activités des promoteurs hybrides évaluées en transfert de gène *in vivo* dans le muscle tibial cranial de souris C57BL6. L'activité relative de chaque promoteur est exprimée en pourcentage de l'activité luciférase obtenue avec le plasmide pCMV-leadTK

MATERIELS ET METHODES

Les méthodes classiquement utilisées en biologie moléculaire telles que les extractions préparatives d'ADN plasmidique, la centrifugation d'ADN plasmidique en gradient de chlorure de césum, l'électrophorèse sur gels d'agarose, la purification de fragments d'ADN par électroélution, la précipitation d'ADN plasmidique en milieu salin par l'éthanol ou l'isopropanol, la transformation dans Escherichia coli sont bien connues de l'homme de l'art et sont abondamment décrites dans le littérature (Sambrook et coll. "Molecular Cloning, a Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989).

Le plasmide pGL3-Basic, utilisé pour les clonages des différentes régions promotrices, est d'origine commerciale (Promega Corporation). Les plasmides

pCMV β (Clontech Laboratories Inc.) et pUC18 (Boehringer Mannheim) sont également d'origine commerciale.

L'amplification enzymatique de fragments d'ADN par la technique d'ACP (Amplification en Chaîne par la Polymerase) peut être effectuée en utilisant un DNA thermal cyclerTM (Perkin Elmer Cetus) selon les recommandations du fabricant.

L'électroporation d'ADN plasmidique dans des cellules d'Escherichia coli peut être réalisée à l'aide d'un électroporateur (Bio-Rad) selon les recommandations du fabricant.

La vérification des séquences nucléotidiques peut être effectuée par le méthode développée par Sanger et coll. (*Proc. Natl. Acad. Sci. USA*, 74 (1977) 5463-5467) en utilisant le kit distribué par Applied Biosystems selon les recommandations du fabricant.

EXEMPLES

EXAMPLE 1 : Construction de promoteurs hybrides et de plasmides d'expression les contenant.

1.1. Promoteurs hSM α -actine hybrides.

Plasmide phSMact. L'ADN génomique de haut poids moléculaire a été préparé selon la méthode décrite par Sambrook et coll. ("Molecular Cloning, a Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989) à partir d'une culture primaire de cellules musculaire lisses aortiques humaines (Clonetech).

Cet ADN a été utilisé comme matrice pour une première amplification par ACP utilisant les amorces suivantes :

- Amorce 6417 (5' GATGGTCCCTACTTATGCTGCTA 3') (SEQ ID 1) commençant à la position -1034 (région promotrice) du gène de l' α -actine de muscle

lisso spéciique humain (Ueyama H. et coll., *Mol. Cell. Biol.*, **4** (1984) 1073-1078.
Accès Genbank D00618)

- Amorce 6418 (5' CTTCCATCATAACCAACTACATA 3') (SEQ ID 2) en position 1974 de la séquence D00618 se situant à l'intérieur du premier intron du gène hSMact. Le mélange réactionnel comprend 1 mg d'ADN génomique, 10 pmoles de chacune des deux amores (6417 et 6418), 100 mM de chaque désoxyribonucléotide (dATP, dCTP, dGTP, dTTP), 2 mM MgCl₂ et 5 unités de Taq ADN polymérase (PerkinElmer). Le volume réactionnel est complété à 50 ml ajusté à la concentration optimale du tampon ACP recommandée par Perkin Elmer.

L'amplification ACP est réalisée dans des tubes MicoampTM (Perkin Elmer) à l'aide d'un thermocycleur PTC-100TM (MJ Research, Inc.). Cette amplification consiste en une étape de dénaturation à 95°C pendant 2 min suivie de 30 cycles comprenant une étape de dénaturation de 15 sec à 95°C, une étape d'hybridation de 30 sec à 60°C et une étape d'extension de 1 min à 72°C. Ces trente cycles sont suivis d'une extension supplémentaire de 5 min puis les réactions ACP sont conservées à 10°C.

Un microlitre de cette réaction a été prélevé de cette première réaction puis dilué dans 10 ml d'eau. Ensuite 1 ml de cette dilution a été utilisé pour réaliser une seconde ACP dans les mêmes conditions que la première (ci-dessus) mais avec un couple d'amores différent :

- Amorce 6453 (5' CTGCTAAATTGctcgagGACAAATTAGACAAA 3') (SEQ ID 3), cette amorce introduit un site XhoI (minuscules soulignées) en amont du promoteur hSMact (position -680).

- Amorce 6456 (5' CCCTGACAaagcttGGCTGGGCTGCTCCACTGG 3') (SEQ ID 4), cette amorce introduit un site HindIII en position +30 de hSMact.

Après analyse sur un gel d'agarose puis purification, le fragment d'ADN amplifié par ACP est digéré pendant 3 heures à 37°C par XhoI et HindIII puis cloné dans le vecteur pGL3-Basic (Proméga) préalablement digéré par ces même enzymes de restriction, pour générer le plasmide phSMact (Figure 1).

Plasmides pXL3130 et pXL3131 Un fragment d'ADN correspondant à la région enhancer du promoteur du gène IE du cytomégalovirus humain (hCMV-IE)

comprise entre les positions -522 et -63 par rapport au site d'initiation de la transcription, a été amplifié par ACP en utilisant le plasmide pCMV β comme matrice et les oligonucléotides 8557 (5' ATC GAC GCG TGC CCG TTA CAT AAC TTA CGG 3') (SEQ ID 5) et 8558 (5' ATC GAC GCG TCC GCT CGA GCG TCA ATG GGG CGG AGT TG 3') (SEQ ID 6) comme amorces. Ce fragment a été digéré par MluI puis a été cloné dans le plasmide phSMact préalablement digéré par MluI et traité par la phosphatase alcaline. Selon le sens d'insertion du fragment deux plasmides différents ont été obtenus : pXL3130 et pXL3131. Les représentations schématiques de ces plasmides sont rassemblées dans la figure (figure 1). Ces plasmides comportent, sous forme d'un fragment MluI-NcoI, un promoteur hybride constitué de l'enhancer du promoteur du gène hCMV-IE et du promoteur du gène hSM α -actine.

1.2. Promoteurs mSM22 hybrides.

Plasmide pmSM22. L'ADN génomique de haut poids moléculaire a été préparé selon la méthode décrite par Sambrook et coll. ("Molecular Cloning, a Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N Y., 1989) à partir d'un foie de souris Balbc.

Cet ADN a été utilisé comme matrice pour une amplification par ACP utilisant les amorces suivantes :

- Amorce 6517 :

(5' CCAGGCTGCActcgagACTAGTTCCCACCAACTCGA 3') (SEQ ID 7), cette amorce introduit un site XhoI (minuscules soulignées) en position -436 du promoteur du gène SM22 alpha de souris (Solway J. et coll., *J. Biol. Chem.*, 270 (1995) 13460-13469 ; Accès Genbank L41161).

- Amorce 6518 :

(5' TCGTTGaaggcttGGAAAGGAGAGTAGCTTCGGTGTC 3') (SEQ ID 8), cette amorce introduit un site HindIII en position +43 de mSM22 alpha.

Un mélange réactionnel comprenant 1 mg d'ADN génomique de souris, et 10 pmoles de chacune des deux amorces (6517 et 6518) a été préparé avec les mêmes

SÉRIE DE DOCUMENTATION

réactifs que pour hSMact et aux mêmes concentrations, suivi d'une amplification ACP réalisée dans les mêmes conditions (voir exemple 1.1.).

Après analyse sur un gel d'agarose puis purification, le fragment d'ADN amplifié par ACP est digéré pendant 3 heures à 37°C par XbaI et HindIII puis cloné dans le vecteur pGL3-Basic (Proméga) préalablement digéré par ces même enzymes de restriction. Le plasmide résultant a été désigné pmSM22 (Figure 2)

Plasmide pXL3152 et pXL3153. Un fragment d'ADN correspondant à la région enhancer du promoteur du gène hCMV-IE comprise entre les positions -522 et -63 par rapport au site d'initiation de la transcription, a été amplifié par ACP en utilisant le plasmide pCMV β comme matrice et les oligonucléotides 8557 (5' ATC GAC GCG TGC CCG TTA CAT AAC TTA CGG 3') (SEQ ID 5) et 8558 (5' ATC GAC GCG TCC GCT CGA GCG TCA ATG GGG CGG AGT TG 3') (SEQ ID 6) comme amores. Ce fragment a été digéré par MluI puis a été cloné dans le plasmide pmSM22 préalablement digéré par MluI et traité par la phosphatase alcaline. Selon le sens d'insertion du fragment deux plasmides différents ont été obtenus : pXL3152 et pXL3153. Les représentations schématiques de ces plasmides sont rassemblées dans la figure 2. Ces plasmides comportent, sous forme d'un fragment MluI-NcoI, un promoteur hybride constitué de l'enhancer du promoteur du gène hCMV-IE et du promoteur du gène mSM22.

1.3. Plasmide de contrôle pCMV-leadTK.

Le vecteur d'expression pCGN précédemment décrit par Tanaka et coll. (*Cell*, **60** (1990) 375-386) contient le promoteur CMV (-522/+72) fusionné au "leader" du gène tk de HSV (+51/+101) en amont d'une séquence codant pour l'épitope de l'hémagglutinine. Le plasmide pCGN (10 ng) a été utilisé comme matrice pour une amplification ACP. La réaction ACP ainsi que l'amplification ont été réalisées dans les mêmes conditions que celles utilisées pour hSMact et mSM22 (exemples 1.1 et 1.2). Les amores qui ont été utilisées sont les suivantes :

- Amorce 6718 (5' CCCGTTACATAACTTACGGTAAATGGCCCG 3') (SEQ ID 9), cette amorce s'hybride avec le promoteur CMV en position -522 (8 nucléotides en aval du site EcoRI de pCGN).

- Amorce 6719 (5' gGGACGCGCTTCTACAAGGCGCTGGCCGAA 3') (SEQ ID 10), cette amorce s'hybride jusqu'en position 101 du "leader" tk. Le premier nucléotide G en gras est destiné à restaurer le site NcoI de pGL3-Basic comme sera explicité ci dessous.

Le fragment d' ACP ainsi obtenu est purifié puis phosphorylé à l'aide de la polynucléotide kinase du phage T4 (New England Biolabs). Parallèlement, le vecteur pGL3-Basic (Proméga) a été linéarisé par NcoI, purifié puis traité par la Klenow ADN polymérase (Boehringer Manheim) afin de remplir le site NcoI. Ce vecteur est ensuite déphosphorylé à l'aide de la phosphatase alcaline (Boehringer Manheim) puis utilisé pour l'insertion du fragment d' ACP phosphorylé. Ainsi, la guanosine (G) de l'amorce 6719 permet de restaurer le site NcoI uniquement lorsque le fragment CMV-leader tk est orienté avec la partie 5' (amorce 6718, position -522 du CMV) en aval du site HindIII de pGL3-Basic et son extrémité 3' (amorce 6719, leader tk) est ligaturée au site NcoI de pGL3-Basic (premier ATG de la luciférase). Le plasmide ainsi obtenu est désigné pCMV-leadTK.

EXAMPLE 2 : Spécificité des promoteurs hybrides *in vitro*.

Cet exemple illustre les propriétés de spécificité tissulaire des promoteurs hybrides de l'invention *in vitro*.

2.1. Cultures cellulaires.

Les cellules musculaires lisses (SMC) de lapin sont cultivées en milieu DMEMTM (Life Technologies Inc.) supplémenté avec 20% de sérum de veau foetal (SVF). Les cellules ECV304 sont cultivées en milieu 199TM (Life Technologies Inc.) supplémenté avec 10% de SVF. Les myoblastes C2C12, les cellules HeLa, les cellules NIH 3T3 ainsi que les cellules TU182 sont cultivées en milieu DMEMTM supplémenté

avec 10% de SVF. Les cellules 293 sont cultivées en milieu MEMTM (Life Technologies Inc.) supplémenté avec du pyruvate, des acides aminés non essentiels et 10% de SVF. Toutes les cultures sont réalisées dans une étuve à 37°C, en atmosphère humide et sous une pression partielle en CO₂ de 5%.

2.2. Transfections *in vitro*.

Les transfctions sont réalisées en plaques 24 puits et chaque transfection est effectuée trois fois. Vingt quatre heures avant la transfection, les cellules sont ensemencées : (i) à 5x10⁴ cellules par puits pour les cellules musculaires lisses de lapin, les cellules ECV304, NIH 3T3 et HeLa, (ii) à 10⁵ cellules par puits pour les cellules TU182, (iii) à 3x10⁴ cellules par puits pour les cellules C2C12, et (iv) à 2x10⁵ cellules par puits pour les cellules 293.

Pour chaque puits, 500 ng d'ADN plasmidique (250 ng de plasmide d'intérêt et 250 ng de pUC18) sont mélangés au lipide cationique RPR120535 B (WO 97/18185) à raison de 6 nmoles de lipide par µg d'ADN dans du milieu DMEMTM (20 µl final) comprenant 150 mM de NaCl et 50 mM de bicarbonate. Après 20 minutes à température ambiante, les 20 µl du mélange ADN/lipide sont mis en contact avec les cellules, en absence de SVF, durant 2 heures. Le milieu de culture est alors supplémenté en SVF de manière à obtenir le pourcentage de SVF requis pour la culture de chaque type cellulaire.

Quarante huit heures après la transfection, le milieu de culture est retiré et les cellules sont rincées deux fois avec du PBS (Life Technologies Inc.). L'activité luciférase est alors déterminée à l'aide du kit Luciferase Assay SystemTM (Promega Corporation) selon les recommandations du fournisseur.

2.3. Activités spécifiques des promoteurs hybrides.

Les activités luciférases relatives des promoteurs hybrides (par rapport au promoteur pCMV-lead TK) mesurées *in vitro* dans sept types cellulaires différents, sont rassemblées dans les figures 3 et 4, ainsi que dans les tableaux I et II. Les

résultats montrent que pour les promoteurs hSMact (Tableau I) et mSM22 (Tableau II), l'activité relative est une valeur qui rend bien compte de la spécificité de ces promoteurs pour les cellules musculaires lisses ; spécificité qui a déjà été décrite dans la littérature (Skalli et coll., *J. Histochem. Cytochem.*, 37 (1989) 315-321 ; Shimizu et coll., *J. Biol. Chem.*, 270 (1995) 7631-7643 ; Li et coll., *J. Cell Biol.*, 132 (1996) 849-859). En effet, l'activité relative dans les SMC de lapin est au moins 5 fois supérieure à celles observées dans les autres types cellulaires : (i) de 5 à 20 fois supérieure pour le promoteur hSMact (Tableau I), et (ii) de 5 à 25 fois supérieure pour le promoteur mSM22 (Tableau II).

Les résultats présentés dans les tableaux I et II montrent clairement que, dans les cellules musculaires lisses, l'activité des quatre promoteurs hybrides selon l'invention (Enh-hSMact, hnE-hSMact, Enh-mSM22, et hnE-mSM22) est comparable, en terme de force, à celle du promoteur CMV. D'autre part, l'activité relative de chacun de ces promoteurs, dans un autre type cellulaire, est au moins 10 fois inférieure pour les promoteurs hybrides hSMact, et au moins 4 fois inférieure pour les promoteurs hybrides mSM22, que celle observée dans les cellules musculaires lisses : (i) de 10 à 140 fois pour les promoteurs hybrides hSMact, et (ii) de 4 à 55 fois pour les promoteurs hybrides mSM22. Ces promoteurs hybrides conservent donc la même spécificité tissulaire que celle observée pour les promoteurs spécifiques hSMact et mSM22.

Ces résultats montrent en outre que l'orientation de la région enhancer dans les promoteurs hybrides de l'invention n'a pas d'influence significative sur leur activité

Les quatre promoteurs hybrides possèdent donc, *in vitro*, une activité dans les cellules musculaires lisses aussi importante que celle du promoteur CMV (qui est réputé pour être un promoteur fort), tout en conservant une spécificité tissulaire comparable, voire supérieure, à celle des promoteurs hSMact et mSM22.

EXAMPLE 3 : Spécificité des promoteurs hybrides *in vivo*.

Cet exemple illustre les propriétés de spécificité tissulaire des promoteurs hybrides de l'invention *in vivo*.

3.1. Transfert de gène dans le muscle squelettique.

Les différents plasmides ont été injectés, en intramusculaire, dans le muscle tibial cranial de souris C57BL6 femelles âgées de 5 semaines. Chaque plasmide, dilué dans une solution de NaCl à 150 mM final, est injecté à raison de 10 µg par muscle. Trois jours après injection, les muscles sont prélevés dans 2 ml de tampon Cell Culture Lysis Reagent™ (Promega Corporation), et broyés à l'aide d'un homogénéiseur Diax (Heidolph). Le broyat est ensuite centrifugé durant 15 minutes à 4000 g, puis l'activité luciférase est évaluée à l'aide du kit Luciferase Assay System™ (Promega Corporation) selon les recommandations du fournisseur.

3.2. Activités des promoteurs hybrides dans le muscle squelettique *in vivo*.

Les activités relatives des deux promoteurs spécifiques (hSMact et mSM22) ainsi que celles de deux des promoteurs hybrides de l'invention (Enh-hSMact et Enh-mSM22) ont également été évaluées *in vivo* après transfert d'ADN nu dans le muscle tibial cranial de souris. Les résultats rassemblés dans la figure 5 et dans le tableau III montrent que l'activité du promoteur Enh-hSMact est 100 fois inférieure à celle du promoteur CMV. De même, l'activité du promoteur Enh-mSM22 est 17 fois inférieure à celle du promoteur CMV. Ainsi, la spécificité tissulaire observée *in vitro*, et notamment dans les cellules C2C12 qui constituent le modèle le plus proche de celui utilisé *in vivo*, est donc conservée *in vivo*.

EXEMPLE 4 : Construction d'adénovirus recombinants exprimant la protéine GAX sous contrôle de promoteurs hybrides spécifiques.

Cet exemple a pour but de décrire un vecteur adénoviral portant le gène codant pour la protéine GAX opérationnellement lié au promoteur hybride de l'invention composé de l'enhancer CMV et du promoteur SM α -actine (enh-hSMact).

Le gène gax humain comporte 912 paires de bases et code pour un facteur de transcription de 303 acides aminés impliqué dans l'arrêt de la croissance cellulaire (growth-arrest-specific homeobox) et ayant un rôle sur la prolifération des cellules musculaires lisses humaines. Ce gène à homeodomaine a été initialement isolé de l'aorte et est exprimé en particulier dans les tissus cardiovasculaires adultes (Gorski et al. 1993).

La séquence du gène humain de gax a été cloner à partir d'une banque de cDNA de muscle squelettique par PCR (Polymerase Chain Reaction) en utilisant comme amorce une séquence dérivée du gène gax humain et publiée par Walsh et al. (Genomics (1994), 24, p535). La séquence a ensuite été clonée dans le vecteur d'expression pXL3297. Ce plasmide est dérivé du plasmide Bluescript (Stratagene) contenant l'enhancer/promoteur IE CMV humain (-522/+72) (Cell (1985), 41, p521) et le poly A de SV 40 (2538-2759)(GenBank locus SV4CG).

La construction utilise le plasmide pXL3130 décrit dans l'exemple 1 (figure 1) dans lequel le promoteur SM α -actine avait été préalablement introduit. Le plasmide pXL3297 est un vecteur d'expression contenant le gène gax humain. Il a été digéré par les enzymes HindIII et AvrII afin d'introduire le gène gax humain dans le plasmide précédent pXL3282 également digéré par les enzymes HindIII et AvrII pour donner le plasmide pXL 3300. Comme l'indique la figure 6, dans laquelle les différentes étapes de la construction des plasmides décrites ci-dessus sont détaillées, le plasmide final, pXL3310 comporte une cassette d'expression constituée de l'enhancer CMV-IE, le promoteur SM α -actine (pSMA), associés selon l'invention et opérationnellement liés au gène codant pour la protéine GAX humaine ainsi que le signal de terminaison poly A de SV40.

La cassette d'expression du gène gax humain est ensuite introduite dans un adénovirus humain recombinant de sérotype 5 (Ad5) délété des régions E1 et E3 par co-transfection et recombinaison homologue entre le plasmide porteur de la cassette d'expression du gène gax et l'adénovirus, en cellules d'encapsidation. Ces cellules sont de préférence la lignée 293. La production d'un stock d'adénovirus contenant la

cassette d'expression du gène gax humain, résulte de la lyse des cellules d'encapsidation 2 ou 3 jours après l'infection et l'isolation des particules virales recombinantes par centrifugation en gradient de chlorure de césium.

Les particules virales sont ensuite utilisées pour étudier l'expression du gène gax humain sous le contrôle du promoteur de l'invention dans des cellules musculaires lisses

L'expression de la protéine GAX est vérifiée 24 heures après l'infection des cellules primaires musculaires lisses par immunofluorescence ou par western blot en utilisant les anticorps polyclonaux anti-gax de lapin.

L'expression des ARN messagers est analysée 24 heures après l'infection des cellules musculaires lisses par dot blot et northern blot en utilisant un oligonucléotide dont la séquence est présente dans le gène gax.

L'analyse de l'activité biologique de l'adénovirus codant pour le gène gax est réalisée de la façon suivante :

Des cellules musculaires lisses en phase de croissance exponentielle sont infectées avec un adénovirus contenant le gène codant pour la protéine GAX sous le contrôle du promoteur enh-hSMact en l'absence et en présence de 125 ng de lipofectine (plaques 48 puits). Les adénovirus (dans des dilutions variables) et la lipofectamine sont incubés pendant 30 minutes à température ambiante dans un milieu privé de sérum. Le mélange ou le virus seul est mis en contact avec les cellules pendant une heure à 37°C. A la fin de la période d'infection, le milieu contenant le virus est retiré et les cellules sont incubées en milieu DMEM contenant 0,5 % de SVF. Dans les 24 heures suivants l'infection le milieu de culture est remplacé par un milieu de croissance pour la moitié des cultures et l'incubation est poursuivie 48 heures pour permettre aux cellules d'entrer en phase S. Pour l'autre moitié des cultures, un milieu faiblement mitogène est ajouté pour maintenir les cellules en quiescence. Les cellules viables sont comptées 72 heures après l'infection en utilisant le protocole Alamar.

TABLEAU I

Plasmides (Promoteurs)					
sans plasmide	pCMV-leadTK (CMV-leadTK)	phSMact (hSMact)	pXL3130 (Enh-hSMact)	pXL3131 (hnE-hSMact)	
(-)					
SMC lapin	< 0,01	100,00	0,67 ± 0,06	107,10 ± 11,23	77,9 ± 7,93
ECV304	< 0,01	100,00	0,12 ± 0,05	5,19 ± 0,99	4,68 ± 0,77
C2C12	< 0,01	100,00	0,11 ± 0,01	4,48 ± 0,28	2,81 ± 0,09
HeLa	< 0,01	100,00	0,03 ± 0,01	10,31 ± 1,13	8,00 ± 0,19
NIH 3T3	< 0,01	100,00	0,08 ± 0,01	4,25 ± 0,08	3,66 ± 0,28
TU182	< 0,01	100,00	0,03 ± 0,00	6,15 ± 0,47	8,46 ± 0,41
293	< 0,01	100,00	0,04 ± 0,00	0,77 ± 0,07	0,72 ± 0,07

TABLEAU II

Plasmides (Promoteurs)				
sans plasmide (-)	pCMV-leadTK (CMV-leadTK)	p _m SM22 (mSM22)	pXL3152 (Enh-mSM22)	pXL3153 (hnE-mSM22)
SMC lapin	< 0,01	100,00	2,13 ± 0,29	94,61 ± 13,43
ECV304	< 0,01	100,00	0,42 ± 0,13	13,81 ± 0,35
C2C12	< 0,01	100,00	0,20 ± 0,01	11,19 ± 1,84
HeLa	< 0,01	100,00	0,04 ± 0,01	12,87 ± 1,04
NH 3T3	< 0,01	100,00	0,32 ± 0,01	9,49 ± 0,41
TU182	< 0,01	100,00	0,08 ± 0,01	25,78 ± 3,04
293	< 0,01	100,00	0,09 ± 0,00	2,29 ± 0,02
				1,78 ± 0,03

TABLEAU III

Plasmides (Promoteurs)					
sans plasmide	pCMV-leadTK (CMV-leadTK)	phSMact (hSMact)	pXL3130 (Enh-hSMact)	pmSM22 (mSM22)	pXL3152 (Enh-mSM22)
(-)	100,00	< 0,01	1,06 ± 1,24	0,01 ± 0,01	5,86 ± 8,64.
< 0,01					

LISTE DE SEQUENCES

(1) INFORMATIONS GENERALES:

5

(i) DEPOSANT:

- (A) NOM: Rhone-Poulenc Rorer
- (B) RUE: 20, avenue Raymond Aron
- (C) VILLE: ANTONY
- (D) PAYS: FRANCE
- (F) CODE POSTAL: 92165
- (G) TELEPHONE: 01.55.71.69.22
- (H) TELECOPIE: 01.55.71.72.91

10

15 (ii) TITRE DE L' INVENTION: Utilisation de promoteurs
specifiques
hybrides pour controler l'expression tissulaire

20

(iii) NOMBRE DE SEQUENCES: 10

25

(iv) FORME DECHIFFRABLE PAR ORDINATEUR:

- (A) TYPE DE SUPPORT: Floppy disk
- (B) ORDINATEUR: IBM PC compatible
- (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
- (D) LOGICIEL: PatentIn Release #1.0, Version #1.30 (OEB)

(2) INFORMATIONS POUR LA SEQ ID NO: 1:

30

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 23 paires de bases
- (B) TYPE: nucléotide
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

35

(ii) TYPE DE MOLECULE: ADNc

(iii) HYPOTHETIQUE: NON

40

(iv) ANTI-SENS: NON

(ix) CARACTERISTIQUE:

- (A) NOM/CLE: -
- (B) EMPLACEMENT: 1..23

45

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

GATGGTCCCTACTTATGCTGCTA

50 23

(2) INFORMATIONS POUR LA SEQ ID NO: 2:

- 5 (i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 23 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

10 (ii) TYPE DE MOLECULE: ADNc

 (iii) HYPOTHETIQUE: NON

 (iv) ANTI-SENS: NON

15 (ix) CARACTERISTIQUE:
 (A) NOM/CLE: -
 (B) EMPLACEMENT: 1..23

20 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

CTTCCATCATACCAAACTACATA

23

25

(2) INFORMATIONS POUR LA SEQ ID NO: 3:

- 30 (i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 32 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

35 (ii) TYPE DE MOLECULE: ADNc

 (iii) HYPOTHETIQUE: NON

 (iv) ANTI-SENS: NON

40 (ix) CARACTERISTIQUE:
 (A) NOM/CLE: -
 (B) EMPLACEMENT: 1..32

45 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:

CTGCTAAATTGCTCGAGGACAAATTAGACAAA

32

50

(2) INFORMATIONS POUR LA SEQ ID NO: 4:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 33 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNC

(iii) HYPOTHETIQUE: NON

(iv) ANTI-SENS: NON

(ix) CARACTERISTIQUE:
(A) NOM/CLE: -
(B) EMPLACEMENT:1..33

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:
CCCTGACAAAGCTTGGCTGGCTGCTCCACTGG
33

(2) INFORMATIONS POUR LA SEQ ID NO: 5:

(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 30 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNC

(iii) HYPOTHETIQUE: NON

(iv) ANTI-SENS: NON

(ix) CARACTERISTIQUE:
(A) NOM/CLE: -
(B) EMPLACEMENT:1..30

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:
ATCGACGCGTGCCCCGTTACATAACTTACGG
30

(2) INFORMATIONS POUR LA SEQ ID NO: 6:

(i) CARACTERISTIQUES DE LA SEQUENCE:
5 (A) LONGUEUR: 38 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNC

10 (iii) HYPOTHETIQUE: NON

(iv) ANTI-SENS: NON

15 (ix) CARACTERISTIQUE:
(A) NOM/CLE: -
(B) EMPLACEMENT: 1..38

20 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:
ATCGACGCGTCCGCTCGAGCGTCAATGGGGCGGAGTTG
38

25 (2) INFORMATIONS POUR LA SEQ ID NO: 7:

(i) CARACTERISTIQUES DE LA SEQUENCE:
30 (A) LONGUEUR: 36 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNC
35 (iii) HYPOTHETIQUE: NON

(iv) ANTI-SENS: NON

40 (ix) CARACTERISTIQUE:
(A) NOM/CLE: -
(B) EMPLACEMENT: 1..36

45 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7:
CCAGGGCTGCACTCGAGACTAGTTCCCACCAACTCGA
36

50 (2) INFORMATIONS POUR LA SEQ ID NO: 8:

(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 36 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
5 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNC

(iii) HYPOTHETIQUE: NON

10 (iv) ANTI-SENS: NON

(ix) CARACTERISTIQUE:

(A) NOM/CLE: -

15 (B) EMPLACEMENT: 1..36

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:

20 TCGTTGAAGCTTGGAAAGGAGAGTAGCTTCGGTGTC
36

25 (2) INFORMATIONS POUR LA SEQ ID NO: 9:

(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 30 paires de bases
(B) TYPE: nucléotide
30 (C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNC

35 (iii) HYPOTHETIQUE: NON

(iv) ANTI-SENS: NON

(ix) CARACTERISTIQUE:

40 (A) NOM/CLE: -
(B) EMPLACEMENT: 1..30

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9:

45 CCCGTTACATAACTTACGGTAAATGGCCCG
30

50

(2) INFORMATIONS POUR LA SEQ ID NO: 10:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 30 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

5

(ii) TYPE DE MOLECULE: ADNC

(iii) HYPOTHETIQUE: NON

10

(iv) ANTI-SENS: NON

15

(ix) CARACTERISTIQUE:

- (A) NOM/CLE: -
(B) EMPLACEMENT: 1..30

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:

20

GGGACGCGTTCTACAAGGCCTGGCCGAA

30

S E C R E T A R Y O F T H E P R E S I D E N T

REVENDICATIONS

1. Promoteur hybride comprenant :

- 5 - tout ou partie de la région enhancer d'un promoteur/enhancer fort et ubiquitaire, et
 - une région promoteur permettant l'expression spécifique dans les cellules musculaires lisses.

10 2. Promoteur hybride selon la revendication 1 caractérisé en ce que la région enhancer est choisie parmi la région enhancer du gène précoce immédiat du cytomégalovirus (CMV-IE), la région enhancer du LTR du virus du sarcome de rous (LTR-RSV), la région enhancer du virus SV40, et la région enhancer du gène EF1 α .

15 3. Promoteur hybride selon la revendication 2 caractérisé en ce que la région enhancer est la région enhancer du gène précoce immédiat du cytomégalovirus (CMV-IE), de préférence du cytomégalovirus humain (hCMV-IE).

20 4. Promoteur hybride selon la revendication 1 caractérisé en ce que la région promoteur comprend tout ou partie du promoteur du gène codant pour l'actine- α de cellules musculaires lisses (SMact) ou du gène SM22.

25 5. Promoteur hybride comprenant:

- tout ou partie de la région enhancer du gène précoce immédiat du cytomégalovirus humain (hCMV-IE), et
 - tout ou partie du promoteur du gène codant pour l'actine- α de cellules musculaires lisses (SMact).

6. Promoteur hybride comprenant:

- tout ou partie de la région enhancer du gène précoce immédiat du cytomégalovirus humain (hCMV-IE), et
- 5 - tout ou partie du promoteur du gène SM22.

7. Promoteur hybride selon la revendication 1, caractérisé en ce que la région promoteur comprend un promoteur basal et une séquence conférant la spécificité tissulaire, ladite séquence étant dérivée du promoteur SMact et/ou du
10 promoteur SM22.

8. Cassette d'expression comprenant un acide nucléique codant pour un ARN ou un polypeptide d'intérêt, placé sous le contrôle d'un promoteur hybride selon l'une des revendications 1 à 7.

15 9. Cassette selon la revendication 8 caractérisée en ce qu'elle comprend en outre un signal de terminaison de la transcription.

10. Cassette selon la revendication 8 ou 9 caractérisée en ce que l'acide
20 nucléique code pour une protéine choisie parmi les protéines impliquées dans le cycle cellulaire, les protéines induisant l'apoptose, les protéines capables de modifier la prolifération des cellules musculaires lisses, les protéines induisant l'angiogénèse et les facteurs de transcription.

25 11. Vecteur comprenant un promoteur hybride selon la revendication 1 ou une cassette selon la revendication 8.

12. Vecteur selon la revendication 11 caractérisé en ce qu'il s'agit d'un plasmide, d'un cosmid ou de tout ADN non encapsidé par un virus.

13. Vecteur selon la revendication 11 caractérisé en ce qu'il s'agit d'un virus recombinant, de préférence dérivé d'un adénovirus, d'un rétrovirus, d'un virus de l'herpès ou d'un virus adéno-associé.

5

14. Composition comprenant un vecteur selon la revendication 12 et un agent de transfert chimique ou biochimique.

15. Composition comprenant un virus recombinant selon la revendication
10 13 et un véhicule physiologiquement acceptable.

16. Cellule modifiée par une cassette selon la revendication 8 ou un vecteur selon la revendication 11.

15 17. Utilisation d'un promoteur hybride selon l'une des revendications 1 à 7 pour la préparation d'une composition destinée à l'expression sélective d'un acide nucléique dans les cellules musculaires lisses.

18. Utilisation d'un promoteur hybride selon l'une des revendications 1 à 7
20 pour la préparation d'une composition destinée à l'expression d'un acide nucléique dans les cellules musculaires lisses et pas dans les cellules endothéliales qui se trouvent au voisinage du vaisseau sanguin.

Enhancer hCMV-IE (-522/-63)**Enhancer hCMV-IE (-63/-522)****figure 1**

figure 2

Figure 3

Figure 4

Figure 5

Construction du virus AV1.0SMA.Gax

Figure 6

