Deep Learning in MIR: Demystifying the Dark

Part II: The State-of-the-Art

by Philippe Hamel (hamelphi@google.com)
National Institute of Advanced Industrial Science and Technology (AIST), Japan

Google Inc., Mountain View, USA

ISMIR 2013 November 4 Curitiba, Brazil

Overview

The state-of-the-art in deep learning

- Pre-training and initialization
- Dropouts
- Activation functions
- Structure (convolution, recurrent)
- Parallelization

Deep learning in MIR

Pre-training

What is pre-training?

- Greedy layerwise unsupervised training.
- Typically, stacked RBMs or DAEs.

What does it do?

- Learns features from input data distribution.
- Initializes a network with good parameters.
- Helps prevent underfitting and overfitting. [Ehran et al. (2010)]

Deep learning without pretraining

Second-order method: Hessian-Free Optimization

• Martens et al. (2010)

First-order method: Stochastic gradient descent (SGD)

• Glorot & Bengio (2010), Mohamed et al. (2012), Krizhevsky et al. (2012)

Parameter initialization

Instead of pretraining, initialize parameters at a "sensible" scale.

What is "sensible"?

It's complicated...

• Glorot & Bengio(2010)
$$W \sim U\left[-\frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}}\right]$$

• Sutskever et al. (2012)

Should I use pretraining?

It depends...

Do you have a lot of labeled data?

Probably NO

Do you have a lot of unlabeled data and few labeled examples?

Probably YES

Combining Models

Principle: Train many models independently and combine them at test time.

Successful applications of model combination:

- Netflix prize winners
- Random forests (Kaggle competions)

Neural Network Ensemble Learning

Problem: Combining neural networks is costly in terms of training time

Solution: sharing weights between models

In practice: turn off units with probability 0.5

At test time: divide all weights by 2.

For a single layer network:

• Equivalent of taking the geometric mean of the output of 2^N networks.

For a deep network:

• Close enough approximation. Works very well in practice.

- Better regularization than L2
- Prevents co-adaptation of feature detectors
- Allow to train larger networks
- Better performance

Dropout results

MNIST

Method	Unit Type	Error %
2 layer NN [19]	Logistic	1.60
SVM gaussian kernel	-	1.4
Dropout	ReLU	1.25
Dropout + weight	ReLU	1.05
norm constraint		
DBN + finetuning	Logistic	1.18
DBN + dropout fine-	Logistic	0.92
tuning	1000	
DBM + finetuning	Logistic	0.96
DBM + dropout	Logistic	0.79
finetuning	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	120

Dropout results

Street view house numbers

Method	
Binary Features (WDCH) [14]	36.7
HOG [14]	15.0
Stacked Sparse Autoencoders [14]	10.3
KMeans [14]	9.4
Multi-stage Conv Net with average pooling [18]	9.06
Multi-stage Conv Net + L2 pooling [18]	5.36
Multi-stage Conv Net + L4 pooling + padding [18]	4.90
Conv Net + max-pooling	3.95
Conv Net + max pooling + dropout in fully connected layers	3.02
Conv Net + max pooling + dropout in all layers	2.78
Conv Net + max pooling + dropout in all layers + input translations	2.68
Human Performance	2.0

Dropout results

TIMIT

Method	Phone Error Rate%
Neural Net (6 layers) [12]	23.4
Dropout Neural Net (6 layers)	21.8
DBN-pretrained Neural Net (4 layers)	22.7
DBN-pretrained Neural Net (6 layers) [12]	22.4
DBN-pretrained Neural Net (8 layers) [12]	20.7
mcRBM-DBN-pretrained Neural Net (5 layers) [2]	20.5
DBN-pretrained Neural Net (4 layers) + dropout	19.7
DBN-pretrained Neural Net (8 layers) + dropout	19.7

Dropping out inputs

Denoising Auto-Encoders (DAE)

[Vincent et al. (2008)]

Activation functions

NNet with non-linear activation function: universal approximator for continuous functions. [Cybenko 1989, Hornik 1991]

$$a(x) = f(Wx + b)$$

Sigmoid:

$$S(t) = \frac{1}{1 + e^{-t}}$$

Rectified linear units (ReLUs)

- Learns faster than sigmoid or tanh function.
- Outputs are sparse.

$$rectifier(x) = max(0, x)$$

 $softplus(x) = log(1 + e^x)$

ReLUs results

[Glorot et al. (2011)]

Table 1: **Test error on networks of depth 3.** Bold results represent statistical equivalence between similar experiments, with and without pre-training, under the null hypothesis of the pairwise test with p = 0.05.

Neuron	MNIST	CIFAR10	CIFAR10 NISTP		
	With unsupervised pre-training				
Rectifier	1.20%	49.96%	32.86%	16.46%	
Tanh	1.16%	50.79%	35.89%	17.66%	
Softplus	1.17%	49.52%	33.27%	19.19%	
Without unsupervised pre-training					
Rectifier	1.43%	50.86%	32.64%	16.40%	
Tanh	1.57%	52.62%	36.46%	19.29%	
Softplus	1.77%	53.20%	35.48%	17.68%	

ReLUs results

[Glorot et al. (2011)]

Norb dataset

Maxout:

Piecewise linear units

Combination of linear functions.

$$h_i(x) = \max_{j \in [1,k]} z_{ij}$$

Can approximate an abitrary convex function. $z_{ij} = x^T W_{...ij} + b_{ij}$

$$z_{ij} = x^T W_{\cdots ij} + b_{ij}$$

Maxout

Street view house numbers

Метнор	TEST ERROR
(SERMANET ET AL., 2012A)	4.90%
STOCHASTIC POOLING (ZEILER & FERGUS, 2013)	2.80 %
RECTIFIERS + DROPOUT (SRIVAS- TAVA, 2013)	2.78 %
RECTIFIERS + DROPOUT + SYNTHETIC TRANSLATION (SRIVAS-TAVA, 2013)	2.68 %
Conv. maxout + dropout	2.47 %

Structure

Spatial structure

- Convolutional neural networks (CNN)
- Local receptive fields

Sequential structure (e.g. in time)

- Recurrent neural networks (RNN)
- Long short-time memory (LSTM)

Convolutional Deep Belief Network

[Lee (2009)]

Convolutional Deep Belief Network

[Lee (2009)]

Convolutional Deep Belief Network

Table 5: Test accuracy for 5-way music genre classification

Train examples	RAW	MFCC	CDBN L1	CDBN L2	CDBN L1+L2
1	51.6%	54.0%	66.1%	62.5%	64.3%
2	57.0%	62.1%	69.7%	67.9%	69.5%
3	59.7%	65.3%	70.0%	66.7%	69.5%
5	65.8%	68.3%	73.1%	69.2%	72.7%

Recurrent Networks

- Vanishing gradient problem [Bengio (1997)]
- HF optimisation [Martens & Sutskever (2011)]
- Deep RNN (Bidirectionnal LSTM) [Graves et al. (2013)]

DistBelief (Google) [Dean (2012)]

Model

Consider your favorite deep learning model, layered graphical model, or classical neural network

Model

Consider your favorite deep learning model, layered graphical model, or classical neural network

DistBelief allows you to easily distribute computation within your model across multiple machines and multiple cores.

Model

Consider your favorite deep learning model, layered graphical model, or classical neural network

DistBelief allows you to easily distribute computation within your model across multiple machines and multiple cores.

- Machine (Model Partition)
- Core

Basic DistBelief Model Training

Model

Training Data

- Unsupervised or Supervised Objective
- Mini-batch Stochastic Gradient Descent (SGD)
- Model parameters sharded by partition
- 10s, 100s, or 1000s of cores per model

Larger model + more data = better quality at test time.

Asynchronous SGD with AdaGrad

Significant gains by adding more models

Number of models limited by optimization stability

AdaGrad: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization COLT 2010 Duchi, Hazan and Singer

Diagonal Approximation to the Hessian

Allows having 100 or more models

Asynchronous SGD with AdaGrad

To reach the same model quality DistBelief reached in 4 days took 55 days using a GPU

Learning on Youtube images

10M 200x200 images

1 billion parameters

1000 machines (16,000 cores)

3 types of layer:

- Filtering (local receptive fields)
- Pooling
- Local Contrast Normalization (LCN)

3x3 = 9 layers

Unsupervised training

[Le et al. (2012)]

Learning on Youtube images

Figure 3. Top: Top 48 stimuli of the best neuron from the test set. Bottom: The optimal stimulus according to numerical constraint optimization.

[Le et al. (2012)]

Cats!

[Le et al. (2012)]

Learning on Youtube images

ImageNet

Dataset version	2009 (∼9M images, ∼10K categories)	2011 (~14M images, ~22K categories)		
State-of-the-art	16.7% (Sanchez & Perronnin, 2011)	9.3% (Weston et al., 2011)		
Our method	16.1% (without unsupervised pretraining) 19.2% (with unsupervised pretraining)	13.6% (without unsupervised pretraining) 15.8% (with unsupervised pretraining)		

Hinton's recipe for training deep nets

- Use pretraining if few labeled data, else initialize W to sensible values
- Use LOTS of neurons
- Use rectified units
- Use dropouts
- If spatial structure, use convolutional front-end

Adapting ML to MIR

- Occultation vs. interference
- Monophony vs. polyphony
- Scaling
- Long time dependencies

Instrument Recognition with DBNs

	SVM	MLP	DBN	%
Bass	0.88	0.88	0.88	13.85%
Brass	0.87	0.88	0.91	22.37%
Guitar	0.0	0.0	0.21	2.13%
Organ	0.96	0.89	0.96	7.46%
Piano	0.45	0.43	0.57	6.39%
Strings	0.94	0.95	0.97	9.59%
Woodwind	0.82	0.85	0.89	29.83%
Global	0.84	0.84	0.88	

Solo instruments

	SVM	MLP	DBN	%
Bass	0.86	0.83	0.85	50.00%
Brass	0.38	0.45	0.63	25.90%
Guitar	0.05	0.15	0.28	11.94%
Organ	0.84	0.84	0.85	62.99%
Piano	0.83	0.80	0.83	64.44%
Strings	0.37	0.37	0.36	18.82%
Woodwind	0.31	0.41	0.52	31.81%
Global	0.72	0.72	0.74	

Poly instruments

[Hamel et al. (2009)]


```
    * * * blues
    * * * classical
    * * country
    + + + disco
    * * reggae
    * * hiphop
    * ooo rock
```

[Hamel et al. (2010)]

Genre recognition (GTZAN)

	Accuracy
MFCCs	0.790
Layer 1	0.800
Layer 2	0.837
Layer 3	0.830
All Layers	0.843

Auto-tagging (majorminer)

	Mean Accuracy	Standard Error
DBN	0.73	0.02
MIM	0.70	0.02

[Hamel et al. (2010)]

[Hamel et al. (2011)]

MagnaTagatune (compared to MIREX 2009)

Measure	Manzagol	Zhi	Mandel	Marsyas	Mel-spec+PFC	PMSC+PFC	PSMC+MTSL
Average AUC-Tag	0.750	0.673	0.821	0.831	0.820	0.845	0.861
Average AUC-Clip	0.810	0.748	0.886	0.933	0.930	0.938	0.943
Precision at 3	0.255	0.224	0.323	0.440	0.430	0.449	0.467
Precision at 6	0.194	0.192	0.245	0.314	0.305	0.320	0.327
Precision at 9	0.159	0.168	0.197	0.244	0.240	0.249	0.255
Precision at 12	0.136	0.146	0.167	0.201	0.198	0.205	0.211
Precision at 15	0.119	0.127	0.145	0.172	0.170	0.175	0.181

Deep learning in MIR

- Music Transcription
- Chord recognition
- Music recommendation
- Onset Detection
- Feature Learning
- Classification (genre, instrument, etc.)
- Autotagging

Deep learning in MIR

Audio chord recognition with RNNs [Boulanger-Lewandowsky et al. 2013]

Deep content-based music recommendation [van den Oord et al. (2013)]

Musical Onset Detection with CNN [Schlüter & Boch (2013)]

Learning Rhythm And Melody Features With DBNs [Schmidt & Kim (2013)]

Moving Beyond Feature Design: Deep Architectures and Automatic Feature Learning in Music Informatics [Humphrey et al. (2012)]

Onset detection with RNNs [Böck et al. (2012)]

Polyphonic piano transcription with DBNs [Nam et al. (2011)]

Audio-based music classification with a pretrained CNN [Dieleman et al. (2011)]

