

Võtmed

Arhitekt Timothy on loonud uue põgenemismängu. Selles mängus on n tuba, nummerdatud 0 kuni n-1. Algselt on igas toas täpselt üks võti. Igal võtmel on liik, mis on täisarv vahemikus 0 kuni n-1 (kaasaarvatud). Võtme liik toas i ($0 \le i \le n-1$) on r[i]. Mitu tuba võivad sisaldada sama liiki võtit, s.t väätused r[i] ei ole tingimata kõik erinevad.

Mängus on ka m kahesuunalist ühenduslüli, nummerdatud 0 kuni m-1. Ühenduslüli j ($0 \le j \le m-1$) ühendab kaht erinevat tuba u[j] ja v[j]. Iga ruumipaari võib ühendada mitu ühenduslüli.

Mängu mängib üks mängija, kes korjab võtmeid ja liigub tubade vahel ühenduslülide kaudu. Ütleme, et mängija **reisib** ühenduslüli j kaudu, kui ta kasutab seda ühenduslüli toast u[j] tuppa v[j] või vastupidi liikumiseks. Mängija võib reisida ühenduslüli j kaudu ainult siis, kui nad on enne korjanud üles c[j] liiki võtme.

Ükskõik mis hetkel mängu jooksul võib mängija toas x teha kaht tüüpi käike:

- korjata üles võtme ruumis x, mille liik on r[x] (kui nad seda võtit juba korjanud ei ole),
- reisida ühenduslüli j kaudu, kus u[j] = x või v[j] = x, kui mängija on eelnevalt korjanud üles c[j] tüüpi võtme. Mängija **ei viska kunagi** juba korjatud võtit minema.

Mängija **alustab** mängu mingis toas s ja tal ei ole võtmeid. Tuba t on **kättesaadav** toast s, kui mängija, kes alustab mängu toas s, saab sooritada mingi koguse eespool kirjeldatud käike ja jõuda tuppa t.

Olgu iga toa i ($0 \le i \le n-1$) jaoks toast i kättesaadavate tubade arv p[i]. Timothy tahab teada, missuguste indeksite i ($0 \le i \le n-1$) puhul on väärtus p[i] vähim.

Realisatsioon

Lahendusena tuleb realiseerida funktsioon:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: massiiv pikkusega n. Iga i ($0 \le i \le n-1$) jaoks kuulub võti toas i liiki r[i].
- u,v: kaks massiivi pikkusega m. Iga j ($0 \le j \le m-1$) jaoks ühendab ühenduslüli j tube u[j] ja v[j].
- c: massiiv pikkusega m. Ühenduslüli j läbimiseks vajalik võti kuulub liiki c[j] ($0 \le j \le m-1$).
- See funktsioon peab tagastama massiivi a pikkusega n. Iga $0 \le i \le n-1$ jaoks peab a[i] väärtus olema 1 iga toa j jaoks, mille puhul $0 \le j \le n-1$, $p[i] \le p[j]$. Vastasel juhul peab

a[i] väärtus olema $\,0.\,$

Näited

Näide 1

Vaatame järgmist väljakutset:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Kui mängija alustab mängu toas 0, siis võib ta teha järgmiseid käike:

Praegune tuba	Käik
0	Korja 0-liiki võti
0	Reisi ühenduslüli 0 kaudu tuppa 1
1	Korja 1-liiki võti
1	Reisi ühenduslüli 2 kaudu tuppa 2
2	Reisi ühenduslüli 2 kaudu tuppa 1
1	Reisi ühenduslüli 3 kaudu tuppa 3

Seega on tuba $\,3\,$ toast $\,0\,$ kättesaadav. Sarnaselt võime koostada käigujadad, mis näitavad, et kõik toad on toast $\,0\,$ kättesaadavad, mis tähendab, et $\,p[0]=4.$ Allolev tabel näitab kättesaadavaid tube kõikidest alguspunktidest:

Alguspunkt i	Kättesaadavad toad	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

p[i] vähim väärtus üle kõigi tubade on $\,2$, see on nii $\,i=1\,$ ja $\,i=2\,$ jaoks. Seega peab funktsioon tagastama $\,[0,1,1,0].$

Näide 2

Allolev tabel näitab kättesaadavaid tube:

Alguspunkt i	Kättesaadavad toad	p[i]
0	[0,1,2,3,4,5,6]	7
1	[1,2]	2
2	[1,2]	2
3	[3, 4, 5, 6]	4
4	[4,6]	2
5	[3, 4, 5, 6]	4
6	[4,6]	2

p[i] vähim väärtus üle kõigi tubade on $\,2$, see on nii $\,i\in\{1,2,4,6\}\,$ jaoks. Seega peab funktsioon tagastama $\,[0,1,1,0,1,0,1].$

Näide 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

Allolev tabel näitab kättesaadavaid tube:

Alguspunkt $\it i$	Kättesaadavad toad	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

p[i] vähim väärtus üle kõigi tubade on $\,1$, see on nii $\,i=2\,$ jaoks. Seega peab funktsioon tagastama $\,[0,0,1].$

Piirangud

- $2 \le n \le 300\,000$
- 1 < m < 300000
- $0 \leq r[i] \leq n-1$ kõigi $0 \leq i \leq n-1$ jaoks
- $0 \leq u[j], v[j] \leq n-1$ ja u[j]
 eq v[j] kõigi $0 \leq j \leq m-1$ jaoks

• $0 \leq c[j] \leq n-1$ kõigi $0 \leq j \leq m-1$ jaoks

Alamülesanded

- 1. (9 punkti) c[j]=0 kõigi $0\leq j\leq m-1$ ja $n,m\leq 200$ jaoks
- 2. (11 punkti) $n, m \le 200$
- 3. (17 punkti) $n, m \leq 2000$
- 4. (30 punkti) $c[j] \leq 29$ (kõigi $0 \leq j \leq m-1$ jaoks) ja $r[i] \leq 29$ (kõigi $0 \leq i \leq n-1$ jaoks)
- 5. (33 punkti) Lisapiirangud puuduvad.

Näidishindaja

Näidishindaja loeb sisendit järgmises vormingus:

- rida 1: n m
- rida 2: r[0] r[1] \dots r[n-1]
- rida 3+j ($0\leq j\leq m-1$): u[j] v[j] c[j]

Näidishindaja väljastab funktsiooni find_reachable tagastatud väärtuse järgmises vormingus:

• rida 1: a[0] a[1] ... a[n-1]