

David Maykon Krepsky Silva Havena Louise Pavão

Título do Experimento

Data de realização do experimento:
12 de maio de 2016
Série/Turma:
1000/1011
Prof. Me. Jaime Laelson Jacob

Resumo

Neste trabalho foi realizado o estudo de filtros passivos compostos indutores e capacitores (filtros LC) de forma a analisar a resposta em frequência para filtro passa baixas (FPB), filtro passa alta (FPA) e filtro passa faixa (FPF). A metodologia utilizada consiste em realizar o projeto do filtro normalizado, transformar para o tipo de filtro requerido e simular o circuito no software Orcad. Durante o laboratório foi possível observar as diferentes respostas em frequência para cada tipo de filtro estudado. Também foi visualizado a melhora no fator Q de filtros em cascata em relação a um único filtro de ordem mais alta.

Sumário

R	esumo	1				
Sι	umário	2				
1	Introdução					
2	Teoria2.1 Filtros Passivos2.2 Frequência de Corte e Largura de Banda2.3 Projeto de filtros passivos					
3	Metodologia Experimental 3.1 FPB 3.2 FPA 3.3 FPF Cascata 3.4 FPF					
4	Resultados e Análise de Dados 4.1 FPB 4.2 FPA 4.3 FPF em cascata 4.4 FPF	8 10				
5	Discussão e Conclusão	13				
6	Referências Bibliográficas	14				

1 Introdução

O experimento tem como objetivo desenvolver o conhecimento dos alunos sobre filtros passivos, em específico, filtros do tipo LC. Tais filtros são fundamentas para a área de engenharia elétrica sendo amplamente utilizados nos campos de telecomunicações, instrumentação, controle e etc.

2 Teoria

2.1 Filtros Passivos

Filtros passivos são circuitos que removem uma porção indesejada do sinal sem inserir energia no mesmo. São compostos por resistores, capacitores e indutores que utilizam as propriedades de armazenamento de energia (em forma de campo elétrico nos capacitores e campo magnético nos indutores) para alterar a amplitude do sinal de acordo com a frequência. Os filtros ativos diferem dos passivos pois possuem eletrônica de modo a amplificar (aumentar a energia) do sinal, porém, para frequências muito altas o uso de filtros ativos se torna inviável, dado a grande quantidade de capacitância parasita nos dispositivos semi-condutores.

Os filtros passivos são classificados de acordo com a faixa de frequências a qual o filtro atenua, sendo elas:

- Passa-Baixas (FPB) o qual permite a passagem das frequências abaixo de f_c (frequência de corte);
- Passa-Altas (FPA) o qual permite a passagem das frequências acima de f_c ;
- Passa-Faixa (FPF) que atenua frequências abaixo de f_1 e frequências acima de f_2 ;
- Rejeita-Faixa (FRF) que permite a passagem de frequencias entre f_1 e f_2 .

A figura 1 mostra os tipos de resposta em frequência para os filtros citados.

-3 dB (a) Low-pass (b) High-pass

Aviation

-3 dB (c) Band-pass (d) Band-stop (notch)

Figura 1: Resposta em frequência para filtros FPA, FPB, FPF e FRF

 $Fonte: \ www.dream it design it build it. word press. com.$

Uma segunda classificação para os filtros é relacionada ao *ripple* e a defasagem da resposta em frequência. Os tipos mais comuns empregados na prática são:

- Butterworth;
- Chebyshev (tipo I ou II);
- Bessel.

A figura 2 mostra as características da resposta em frequência para os filtros citados acima.

Figura 2: Características dos filtros Butterworth, Chebyshev, Bessel e Elíptico

Frequency Response Curve

Fonte: http://www.circuitstoday.com

2.2 Frequência de Corte e Largura de Banda

A frequência de corte (f_c é a frequência para qual o filtro apresentará uma atenuação de 3dB e é o parâmetro fundamental para o projeto de filtros. Outro parâmetro importante para os filtros do tipo passa-faixa e rejeita-faixa é a largura da banda de passagem, a qual é composta por uma frequência de corte inferior (denominada f_1) e uma superior (f_2).

2.3 Projeto de filtros passivos

Figura 3: Tabela para projetos de filtros Butterworth de segunda a quarta ordem.

Fonte: Abrão, T. (2002) [1].

Para o projeto de filtros passivos, o primeiro passo é o projeto de um filtro passa baixas normalizado. O valor dos componentes do filtro normalizado é obtido através de tabelas que dependem da relação entre a resposta característica desejada (Butterworth, Chebyshev e etc.), a ordem do filtro e a relação entre a resistência da fonte, R_S e a resistência da carga, R_L .

A figura 3 mostra o exemplo de uma tabela para projeto de filtros normalizados.

A segunda etapa consiste em converter o filtro normalizado para o tipo de resposta desejada (FPA, FPF, FRF) e com a frequência de corte necessária.

A figura 4 mostra o processo de conversão do filtro.

Figura 4: Desnormalização do filtro.

Elemento	P. Baixas	P. Altas	P. Faixa	Rej. Faixa
	$\frac{R_b = k_z R_n}{}$	$\frac{R_a = k_z R_n}{\sim}$	$\frac{R_f = k_z R_n}{}$	$\frac{R_r = k_2 R_n}{}$
	$L_b = \frac{k_z L_n}{\omega_0}$	$C_a = \frac{1}{k_z L_n \omega_0}$ $\longrightarrow $	$L_{f1} = \frac{k_z L_n}{BW}$ $C_{f1} = \frac{BW}{k_z L_n \omega_0^2}$	$L_{r1} = \frac{k_z L_n BW}{\omega_0^2}$ $C_{r1} = \frac{1}{k_z L_n BW}$
	$C_b = \frac{C_n}{k_z \omega_0}$	$L_a = \frac{k_z}{C_n \omega_0}$	$L_{f2} = \frac{k_z BW}{C_n \omega_0^2}$ $-C_{f2} = \frac{C_n}{k_z BW}$	$L_{r2} = \frac{k_z}{C_n BW}$ $C_{r2} = \frac{C_n BW}{k_z \omega_0^2}$

Fonte: Abrão, T. (2002) [1].

3 Metodologia Experimental

3.1 FPB

Projetar um FPB com resposta Butterworth de 3a. ordem utilizando apenas um indutor, terminações como no caso anterior, isto é, $R_S = 50\Omega$ e $R_L = 470\Omega$ e $f_c = 5, 4 \ kHz$. Implemente e caracterize a resposta em frequência do filtro passivo, determinando experimentalmente os parâmetros que caracterizam o filtro FPB:

- frequência de corte;
- atenuação fora da faixa de passagem (dB/década);
- atenuação na faixa de passagem;
- defasagem ao longo de toda a faixa de frequências (de passagem e rejeição).

3.2 FPA

Refaça o item anterior para um FPA com resposta Butterworth de 3a. ordem utilizando apenas um indutor, terminações $R_S = 470\Omega$ e $R_L = 50\Omega$ e $f_c = 4,6$ kHz. Implemente e caracterize a resposta em frequência do filtro passivo, anotando os parâmetros que caracterizam o filtro FPA.

3.3 FPF Cascata

Conecte os dois filtros em série (cascata) observando as impedâncias e meça a resposta em frequência do conjunto. Qual a função de transferência correspondente? Quais a(s) nova(s) frequência(s) de corte.

3.4 FPF

Projete um filtro Butterworth com a função de transferência resultante da associação dos filtros do item anterior a partir dos valores tabelados para os elementos LC de protótipo.

- implemente novamente o filtro, agora utilizando os elementos de projeto do item 4.
- compare a resposta em frequência (módulo) com a obtida no item 3a.

4 Resultados e Análise de Dados

4.1 FPB

O primeiro filtro projetado foi um filtro passa-baixas de terceira ordem, com resposta do tipo Butterworth utilizando apenas 1 indutor.

A figura 4.1 mostra o circuito normalizado.

Figura 5: Filtro passa-baixas normalizado.

A figura 4.1 mostra o circuito já desnormalizado, pronto para simulação.

Figura 6: Filtro desnormalizado passa-baixas.

A resposta em frequência obtida está na figura 4.1, onde foi obtido uma frequência de corte de 5,317 kHz.

Figura 7: Resposta em frequência do filtro passa-baixas.

A figura 4.1 mostra a resposta em dB, nota-se que a atenuação aumenta em aproximadamente 60 dB por década, o que corresponde a ordem 3 do filtro.

A figura 4.1 mostra a fase da resposta em frequência para o filtro passa baixas, onde é possível observar uma defasagem de 270 graus, o que condiz com a teoria pois o filtro é de ordem 3.

4.2 FPA

O segundo filtro projetado foi um filtro passa-altas de terceira ordem, com resposta do tipo Butterworth utilizando apenas 1 indutor.

Figura 8: Resposta em frequência do filtro passa-baixas em dB.

Figura 9: Fase da resposta em frequência do filtro passa-baixas.

Figura 10: Filtro passa-altas normalizado.

A figura 4.2 mostra o circuito normalizado.

A figura 4.2 mostra o circuito já desnormalizado, pronto para simulação.

Figura 11: Filtro desnormalizado passa-altas.

A resposta em frequência obtida está na figura 4.2, onde foi obtido uma frequência de corte de $4,384~\mathrm{kHz}.$

A figura 4.2 mostra a resposta em dB, nota-se que a atenuação aumenta em aproximadamente 60 dB por década, o que corresponde a ordem 3 do filtro.

Figura 12: Resposta em frequência do filtro passa-altas.

Figura 13: Resposta em frequência do filtro passa-altas em dB.

A figura 4.2 mostra a fase da resposta em frequência para o filtro passa altas, onde é possível observar uma defasagem de 270 graus, o que condiz com a teoria pois o filtro é de ordem 3.

Figura 14: Fase da resposta em frequência do filtro passa-altas.

4.3 FPF em cascata

O terceiro filtro projetado foi um filtro passa-faixas em cascata de terceira ordem, com resposta do tipo Butterworth utilizando apenas 1 indutor.

A figura 4.3 mostra o circuito já desnormalizado, pronto para simulação.

Figura 15: Filtro desnormalizado passa-faixa em cascata.

A resposta em frequência obtida está na figura 4.3, onde foi obtido uma frequência central de $4,655~\mathrm{kHz}.$

Figura 16: Resposta em frequência do filtro passa-faixa em cascata.

A figura 4.3 mostra a resposta em dB, nota-se que a atenuação aumenta em aproximadamente 60 dB por década, o que corresponde a ordem 3 do filtro.

Figura 17: Resposta em frequência do filtro passa-faixa em cascata em dB.

A figura 4.3 mostra a fase da resposta em frequência para o filtro passa altas, onde é possível observar uma defasagem de 270 graus, o que condiz com a teoria pois o filtro é de ordem 3.

4.4 FPF

O quarto e ultimo filtro foi projetado para ter uma resposta em frequência semelhante a do filtro FPF. O objetivo foi de analisar as diferenças em se utilizar um filtro FPF e um filtro

Figura 18: Fase da resposta em frequência do filtro passa-faixa em cascata.

FPB em conjunto com um filtro FPA.

O terceiro filtro projetado foi um filtro passa-faixas em cascata de terceira ordem, com resposta do tipo Butterworth utilizando apenas 1 indutor.

A figura 4.4 mostra o circuito já desnormalizado, pronto para simulação.

Figura 19: Filtro desnormalizado passa-faixa.

A resposta em frequência obtida está na figura 4.4, onde foi obtido uma frequência central de $4{,}655~\mathrm{kHz}.$

Figura 20: Resposta em frequência do filtro passa-faixa.

A figura 4.4 mostra a resposta em dB, nota-se que a atenuação aumenta em aproximadamente 60 dB por década, o que corresponde a ordem 3 do filtro.

A figura 4.4 mostra a fase da resposta em frequência para o filtro passa altas, onde é possível observar uma defasagem de 270 graus, o que condiz com a teoria pois o filtro é de ordem 3.

Figura 21: Resposta em frequência do filtro passa-faixa em dB.

Figura 22: Fase da resposta em frequência do filtro passa-faixa.

5 Discussão e Conclusão

Conclui-se que o calculo para o projeto de filtros passivos possui fundamento, pois a resposta obtida na simulação é bastante próxima da resposta desejada. Observou-se também que pode-se utilizar de vários filtros em cascata para obter uma determinada resposta em frequência. Isso ajuda a reduzir a ordem do filtro, tornando-os mais baratos e a melhorar o fator de qualidade (Q) do filtro. Sendo assim, vimos nesse laboratório conceitos fundamentais para o engenheiro eletricista, de modo a firmar os conhecimentos adquiridos durante as aulas teóricas.

6 Referências Bibliográficas

- [1] T. Abrão, Circuitos de Telecomunicações. Londrina Paraná: Dep. de Engenharia Elétrica, UEL, 2002.
- [2] L. W. Couch, Digital and Analog Communication Systeems. New Jersey: Prentice Hall Inc, 2001.