MATH 307

Chapter 6

SECTION 6.1: THE THEORY OF SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

Contents

Mixing Problems	2
Definitions	3
System of ODEs	3
Homogeneous and Non-homogeneous	3
Do Solutions to a System of ODEs Exist?	5
Existence and Uniqueness Theorem	5
Solutions as a Subspace	5
Nomenclature	
Non-homogeneous Systems	6
Wronkian	7
Definition	7
Linear Independence of Vector Functions	8
Solving Diagonal Systems	10

Created by: Pierre-Olivier Parisé Summer 2022

MIXING PROBLEMS

EXAMPLE 1. Consider two tanks each with volume 100 gallons. The two tanks are connected together by two pipes. The first tank initially contains a well-mixed solution of 5lb salt in 50gal water. The second tank initially contains 100 gal salt-free water.

A pipe from tank 1 to tank 2 allows the solution in tank 1 to enter tank 2 at a rate of 5 gal/min. A second pipe from tank 2 to tank 1 allows the solution from tank 2 to enter tank 1 at a rate of 5 gal/min.

Assume that the salt mixture in each tank is well-stirred. Find a model describing the quantity of salt in each tank.

System of ODEs

A system of n first order linear differential equations (system of n ODEs for short) is a vector-equation:

$$Y' = AY + G$$

where

• Y is an $n \times 1$ vector of unknown functions:

$$Y(x) = \begin{bmatrix} y_1(x) \\ y_2(x) \\ \vdots \\ y_n(x) \end{bmatrix}.$$

• Y' is the $n \times 1$ vector of derivatives of the unknown functions:

$$Y'(x) = \begin{bmatrix} y_1'(x) \\ y_2'(x) \\ \vdots \\ y_n'(x) \end{bmatrix}.$$

• A is an $n \times n$ matrix of functions:

$$A = \begin{bmatrix} a_{11}(x) & a_{12}(x) & \cdots & a_{1n}(x) \\ a_{21}(x) & a_{22}(x) & \cdots & a_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}(x) & a_{n2}(x) & \cdots & a_{nn}(x) \end{bmatrix}.$$

• G is an $n \times 1$ column vector of functions:

$$G(x) = \begin{bmatrix} g_1(x) \\ g_2(x) \\ \vdots \\ g_n(x) \end{bmatrix}.$$

If we add the additional conditions $Y(x_0) = B$ for some real number x_0 and an $n \times 1$ column vector B, the system of ODEs is called an **initial value problem**.

Homogeneous and Non-homogeneous

- If G(x) = 0 for every x, the system of ODEs is called **homogeneous**.
- if G(x) is not zero, then the system of ODEs is called **non-homogeneous**.

EXAMPLE 2. Consider the following system of ODEs:

$$Y' = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix} Y.$$

- 1. Is this a homogeneous or non-homogeneous system of ODEs?
- 2. Show that

$$Y(x) = \begin{bmatrix} e^{2x} + e^{3x} \\ 2e^{2x} + e^{3x} \end{bmatrix}$$

is a solution to the system.

EXAMPLE 3. Consider the following initial value problem:

$$Y' = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix} Y$$
 and $Y(0) = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$

Show that

$$Y(x) = \begin{bmatrix} 2e^{2x} + e^{3x} \\ 4e^{2x} + e^{3x} \end{bmatrix}$$

is a solution to the initial value problem.

Do Solutions to a System of ODEs Exist?

Existence and Uniqueness Theorem

Consider the initial value problem

$$Y' = AY + G$$
 and $Y(x_0) = B$. (\star)

If all the entries $a_{ij}(x)$ of A and all the entries $g_i(x)$ of G are continuous functions, then the initial value problem (\star) has a unique solution.

Solutions as a Subspace

EXAMPLE 4. Consider the following system of ODEs:

$$Y' = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix} Y.$$

If the general solution to the system is

$$Y(x) = \begin{bmatrix} c_1 e^{2x} + c_2 e^{3x} \\ 2c_1 e^{2x} + c_2 e^{3x} \end{bmatrix},$$

describe the structure of the set of solutions.

<u>Fact</u>: The set of solutions to a homogeneous system of n ODEs Y' = A(x)Y form a vector space of dimension n.

Nomenclature

- A set of n linearly independent solutions $Y_1, Y_2, ..., Y_n$ to a homogeneous system of n ODEs is called a **fundamental set of solutions**.
- A general solution, denoted by Y_H , to a homogeneous system of n ODEs with fundamental set of solutions Y_1, Y_2, \ldots, Y_n is a linear combination of Y_1, Y_2, \ldots, Y_n , that is

$$Y_H = c_1 Y_1 + c_2 Y_2 + \dots + c_n Y_n.$$

• The matrix of fundamental solutions, denoted by M, is the matrix M form by the vector functions Y_1, Y_2, \ldots, Y_n in the fundamental set of solutions:

$$M = \begin{bmatrix} Y_1 & Y_2 & \cdots & Y_n \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{nn} \end{bmatrix}.$$

Non-homogeneous Systems

Solutions to non-homogeneous systems and homogeneous system are related by one thing:

• A particular solution to a system Y' = AY + G, denoted by Y_P , is a specific solution to the system.

Therefore, every solution Y to the system Y' = AY + G has the form

$$Y = Y_H + Y_P = c_1 Y_1 + c_2 Y_2 + \dots + c_n Y_n + Y_P = MC + Y_P$$

where

- Y_H is the general solution to the system Y' = AY.
- Y_P is a particular solution to the system Y' = AY + B.

Definition

Given n column vector functions

$$Y_{1}(x) = \begin{bmatrix} y_{11}(x) \\ y_{21}(x) \\ \vdots \\ y_{n1}(x) \end{bmatrix}, \quad Y_{2}(x) = \begin{bmatrix} y_{21}(x) \\ y_{22}(x) \\ \vdots \\ y_{n2}(x) \end{bmatrix}, \quad \cdots, \quad Y_{n}(x) = \begin{bmatrix} y_{n1}(x) \\ y_{n2}(x) \\ \vdots \\ y_{nn}(x) \end{bmatrix}$$

then the **Wronkian** of $Y_1, Y_2, ..., Y_n$ is defined as

$$w(Y_1(x), Y_2(x), \cdots, Y_n(x)) := \begin{vmatrix} y_{11}(x) & y_{12}(x) & \cdots & y_{1n}(x) \\ y_{21}(x) & y_{22}(x) & \cdots & y_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1}(x) & y_{n2}(x) & \cdots & y_{nn}(x) \end{vmatrix}.$$

EXAMPLE 5. Let Y_1 and Y_2 be the vector functions

$$Y_1(x) = \begin{bmatrix} e^{2x} \\ 2e^{2x} \end{bmatrix}$$
 and $Y_2(x) = \begin{bmatrix} e^{3x} \\ e^{3x} \end{bmatrix}$.

Compute $w(Y_1(x), Y_2(x))$.

Linear Independence of Vector Functions

EXAMPLE 6. Show that the vector functions in Example 5 are linearly independent.

Main Important Fact:

Given a list Y_1, Y_2, \dots, Y_n of vector functions, if $w(Y_1(x), Y_2(x), \dots, Y_n(x)) \neq 0$ for some x, then Y_1, Y_2, \dots, Y_n are linearly independent.

Other Facts:

- If Y_1, Y_2, \ldots, Y_n are linearly dependent, then $w(Y_1(x), Y_2(x), \ldots, Y_n(x)) = 0$ for any x.
- If $Y_1, Y_2, ..., Y_n$ are solutions to Y' = AY and if $w(Y_1(x), Y_2(x), ..., Y_n(x)) = 0$ for some x, then $Y_1, Y_2, ..., Y_n$ are linearly dependent.
- If Y_1, Y_2, \ldots, Y_n is a fundamental set of solutions to Y' = AY, then

$$w(Y_1(x), Y_2(x), \dots, Y_n(x)) \neq 0$$

for every x.

SOLVING DIAGONAL SYSTEMS

Our investigations in the next chapter will focus mainly on system of n ODEs with constant coefficients. This means:

The entries of the matrix A in the equation Y' = AY + G are constants.

We begin with the case of a diagonal matrix A.

EXAMPLE 7. Solve the system

$$Y' = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} Y.$$

The general solution to a homogeneous system Y' = AX where A is a diagonal matrix

$$A = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

is given by

$$Y_{H} = \begin{bmatrix} e^{d_{1}x} & 0 & \cdots & 0 \\ 0 & e^{d_{2}x} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{d_{n}x} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix} = \begin{bmatrix} c_{1}e^{d_{1}x} \\ c_{2}e^{d_{2}x} \\ \vdots \\ c_{n}e^{d_{n}x} \end{bmatrix}.$$

EXAMPLE 8. Solve the initial value problem

$$Y' = \begin{bmatrix} -3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix} Y \quad \text{and} \quad Y(0) = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix}.$$