## Билет 15. Вычисление площадей плоских фигур в полярных координатах.

Задача: Пусть нам надо вычислить площадь сектора, ограниченного линиями  $\varphi = \alpha$ ,  $\varphi = \beta$  и  $r = r(\varphi)$  при  $\varphi \in [\alpha; \beta]$  (Здесь r – полярный радиус, т.е. расстояниеот точки кривой до начала координат, а  $\varphi$  - полярный угол, т.е. угол, отсчитываемый против часовой стрелки, между положительным направлением оси Ох и лучом, направленным из начала координат в данную точку)

**Теорема:** Если в полярной системе координат площадь ограничена кривой  $r=r(\varphi)$  и лучами  $\varphi=\alpha,\, \varphi=\beta,$  то площадь S равна

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) \, d\varphi$$



**Доказательство:** Разобъем сектор  $\alpha\beta$  на элементы сектора  $\Delta\varphi_k$ . При  $\Delta\varphi_k \to 0$  площадь сектора  $S_k$  приблизительно равна  $\frac{1}{2}r^2\Delta\varphi_k$  (площади сектора).  $C_k \in \Delta\varphi_k$  - опорная точка на интервале  $\Delta\varphi_k$ . Тогда

$$S = \sum_{k=1}^{n} S_k \approx \sum_{k=1}^{n} \frac{1}{2} r^2(C_k) \Delta \varphi_k = S = \lim_{\Delta \varphi_k \to 0} \sum_{k=1}^{n} \frac{1}{2} r^2(C_k) \Delta \varphi_k = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) d\varphi$$