Rapport 2025-10-28 : Système de Reconnaissance Automatique des Plaques d'Immatriculation

Du Monolithique à l'Hybride : Une Évolution Stratégique

Équipe de Recherche en Intelligence Artificielle

UATM GASA FORMATION info@uatm-gasa.com

28 Octobre 2025

Équipe IA (UATM) ALPR 28 Oct 2025 1/

Plan de la Présentation

- 1 Introduction
- 2 Le Passé : Approche Monolithique
- 3 Le Présent : Architecture Hybride
- 4 Le Future : Perspectives d'Amélioration
- **5** Glossaire des Métriques
- **6** Conclusions

2/16

Contexte et Enjeux

Problématique

La lecture des numéro de plaque d'immatriculation pose des défis majeurs :

- Variabilité des conditions d'éclairage
- Diversité des angles de vue et des polices d'écriture
- Résolutions d'image variables liée à celle de la caméra de prise de vue
- Formats de plaques différents

Notre Objectif

Développer un système performant optimisant le compromis entre précision, coût et déploiement.

Architecture Monolithique YOLOv11

Caractéristiques principales :

- Architecture unifiée
- Détection + classification simultanées
- Pipeline simple
- Traitement temps réel

Formule de complexité :

$$T_{annotation} = n \times t_{caracteres} \times c_{complex}$$

Limitation majeure : Annotation très coûteuse en temps et ressources humaines afin d'atteindre de bonne précision dans la classification des caractères.

Performances du Modèle Monolithique

Métrique	Valeur
mAP50	96.87%
mAP50-95	69.20%
Précision	94.97%
Rappel	92.23%
Score F1	93.58%
Temps d'inférence	333 ms
Précision (conf. > 92%)	83.54%

Problèmes identifiés

- mAP50-95 modeste (69.20%)
- Optimisation conflictuelle détection/classification
- Annotation très coûteuse (plusieurs minutes par image)

Nouvelle Architecture : Approche Hybride

Conception en Deux Modules

- 1 Module de détection : YOLO optimisé pour localiser les caractères
- 2 Module de classification : Réseau neuronal dédié à l'identification

Gain d'annotation

$$Gain = \frac{t_{monolithique} - t_{hybride}}{t_{monolithique}} = 25\%$$

Annotation plus rapide!

Performances de l'Architecture Hybride

Métrique	Valeur
mAP50	99.47%
mAP50-95	74.01%
Précision	97.25%
Rappel	95.85%
Score F1	97.06%
Inférence	587 ms
Conf. > 92%	99.21%
<u> </u>	•

Amélioration notable:

- +3.48% sur le F1-score
- +2.60% sur mAP50
- +15.67% sur précision haute confiance

Classes excellentes:

F1 = 0.99 pour 2, 4, 9, C, E, K, M

Comparaison des Deux Approches

Critère	Monolithique	Hybride
Score F1	93.58%	97.06%
mAP50	96.87%	99.47%
Précision (conf. > 92%)	83.54%	99.21%
Temps d'inférence	333 ms	587 ms
Coût d'annotation	Élevé	-25%
Flexibilité	Limitée	Élevée

Compromis

Gain substantiel en précision contre augmentation du temps de calcul

Équipe IA (UATM) ALPR 28 Oct 2025 8/16

Avantages de l'Architecture Hybride

Avantages techniques:

- Spécialisation des modules
- Optimisation indépendante
- Gestion améliorée des variations (police de caractères, couleur des caractères, etc...)

Avantages opérationnels:

- Réduction de 25% du temps d'annotation, donc plus rapide
- Infrastructure évolutive
- Maintenance facilitée

Bilan

L'approche hybride offre un meilleur équilibre performance/coût avec une architecture adaptable.

Objectifs Futurs

Cibles Quantifiées

$$F1$$
-score_{cible} = 99%

$$\mathcal{L}_{\text{CrossEntropy}} = 1 \times 10^{-3}$$

Stratégies données:

- Collecte massive d'échantillons
- Data augmentation avancée
- Focus sur classes faibles

Stratégies modèles:

- Fine-tuning architecture
- Apprentissage par transfert
- Optimisation du temps de calcul

10/16

Feuille de Route Stratégique

- 1 Court terme (1-3 mois)
 - Augmentation du dataset
 - Amélioration des classes faibles (O, J, P, D)
- Moyen terme (3-6 mois)
 - Optimisation architecturale
 - Réduction temps de calcul (objectif : 50 FPS)
- 3 Long terme (6-12 mois)
 - Atteinte F1-score = 99%
 - Déploiement industriel

Métriques Clés : Définitions

Précision

$$Pr\'{e}cision = \frac{Vrais\ Positifs}{Vrais\ Positifs + Faux\ Positifs}$$

Parmi les prédictions positives, quelle proportion est correcte?

Rappel

$$\mbox{Rappel} = \frac{\mbox{Vrais Positifs}}{\mbox{Vrais Positifs} + \mbox{Faux N\'egatifs}}$$

Parmi les vrais positifs, quelle proportion est correctement prédicte?

Équipe IA (UATM) ALPR 28 Oct 2025 12/16

Score F1 et Cross-Entropy

Score F1

Moyenne harmonique entre précision et rappel :

$$\text{F1} = 2 \times \frac{\text{Pr\'ecision} \times \text{Rappel}}{\text{Pr\'ecision} + \text{Rappel}}$$

Exemple : Précision = 90%, Rappel = $95\% \rightarrow F1 = 92.4\%$

Cross-Entropy Loss

Mesure l'erreur entre distributions prédites et réelles :

$$\mathcal{L}_{\mathsf{CE}} = -\sum_{i=1}^{N} y_i \log(\hat{y}_i)$$

Plus cette valeur est faible, meilleure est la confiance du modèle.

Conclusions et Perspectives

Résultats Obtenus

- Architecture hybride supérieure à l'approche monolithique
- F1-score de **97.06%** (+3.48%)
- Réduction de **25%** du temps d'annotation
- Infrastructure évolutive et maintenable

Vision Future

Objectif F1 = 99% positionne cette solution comme **compétitive pour des applications industrielles exigeantes**.

Prochaines Étapes

Focus sur l'optimisation des classes faibles et la réduction du temps de calcul.

Remerciements

Merci pour votre attention!

 Équipe IA (UATM)
 ALPR
 28 Oct 2025
 15/16

Questions?

Commentaires et discussions

info@uatm-gasa.com