

Demonstration of Capability to Simulate Particle Irregular Shape and Poly-Disperse Mixtures Within Lunar Lander Plume-Surface Interaction

Peter A. Liever

CFD Research Corporation
Jacobs Space Exploration Group

Jeffrey S. West

NASA MSFC

Fluid Dynamics Branch
NASA Marshall Space Flight Center, Huntsville, Alabama

Earth and Space 2022 Conference April 25-28, 2022

NASA Game Changing Development Multi-Year Project

Objective: Develop an integrated modeling, simulation, instrumentation capability, and testing approach to predict propulsive landing Plume-Surface Interaction (PSI) effects

Predictive Simulation Capability

Ground Testing

Flight-Focused Instrumentation

- **Developing PSI modeling and simulation** capability for full-scale Moon and Mars vehicles
 - Plume physics
 - **Erosion/cratering physics**
 - Ejecta dynamics

- Subscale, inert gas, supersonic cratering test in MSFC TS300 vacuum facility, CY21/22
- Hot-fire cratering tests planned with Robotic-Scale lander engine and Human-Scale lander engine at MSFC TS300 and GRC Plumbrook Station
- Novel test techniques and diagnostics for Lunar and Mars relevant environments

- · Design/Development completed, with validation and testing underway:
 - Millimeter Wave Doppler Radar (MWDR)
 - SCALPSS stereo camera (2021 flight on **Nova-C CLPS lunar lander)**
 - Dust Concentration Monitor (DCM)

PSI - Predictive Simulation Capability (PSC) Development

FOUR SPECIFIC TASKS were defined for the <u>Predictive Simulation Capability (PSC)</u> Development element of the PSI Project sponsored by NASA Game Changing Development (GCD).

- Task 1 Plume Flow in Low-Pressure/Vacuum Environments
 - Accurately model plume expansion, dynamics, and impingement in Martian and Lunar low-pressure/vacuum environments
- Task 2 Effect of Plume Flow on Crater Development and Ejecta Sheets
 - ➤ Simulate complete range of soil material erosion and fluidization mechanism with gasparticle two-phase simulations to accurately predict crater shape and size
- Task 3 Regolith Particle Phase Modeling
 - ➤ Refine soil mixture particle-particle interaction modeling to capture extreme cohesiveness of irregular shape, poly-disperse lunar regolith
- Task 4 Gas-Particle Interaction Modeling
 - Close fundamental modeling gaps for gas-particle interaction in supersonic ejecta streams and clouds

Gas-Granular Flow Solver (GGFS) Simulation of Crater Development and Ejecta Sheets

Gas-Granular Flow Solver (GGFS): Gas-Particle Two-Phase Simulations

- **GGFS** features Eulerian-Eulerian modeling approach, treating both gas and granular material as mixing continuum phases. Directly computes the interaction of gas and granular phases and simulate erosion, cratering and ejecta processes.
- GGFS has been ported to highly scalable Loci framework under PSI project. **Loci/GGFS** enables NASA project applications on HPC supercomputer assets.
- Eulerian particle phase modeling avoids modeling of intractable number of individual particle interactions. Requires constitutive closure models (stress, dissipation, friction, drag, ...) in governing equations.
- Particle Kinetic Theory can be applied for sphere closure models.
- Closure models for non-spherical particles are generated from small-scale detailed DEM simulations.
- The Eulerian-Eulerian gas/granular flow solution framework is then applied to efficiently simulate the gas-granular multi-phase flow.

Influence of Particle Shape and Mixture in Realistic Environment

- PFGT-1: Physics Focused Ground Test MSFC TS300 Vacuum Chamber FY21
 - Scaled supersonic plume impingement at Martian and near-Lunar background pressures
 - > Six simulants: Glass spheres, mono- and bi-disperse sand, sieved BP-1, tri-disperse mix, full BP-1
 - Progression in simulant complexity designed to provide validation for irregular particle and polydispersity effects Loci/GGFS models
- Example shown below: P=0.053 torr, h/D=10
- Dramatic difference in crater characteristics between mono-disperse sand particles and full composition BP-1 poly-disperse irregular particle mix

Connections for high-pressure N₂ (T_{0,j} = 500 K)

Supersonic nozzle $(M_e = 5.3, A_e/A^* = 31.7)$

Splitter Plate (30° leading edge)

Transparent Polycarbonate
Viewing Pane (1.27 cm thick)

PFGT-1 Pre-Test Simulant Particle Scans

PFGT-1 Simulant: Glass Spheres

PFGT-1 Simulant: Quartz Sand Irregular, sub-rounded/sub-angular

PFGT-1 Simulant: BP-1 Irregular, sub-angular/angular

Particle Phase Property Modeling Capabilities in Loci/GGFS

- Loci/GGFS particle mixture modeling framework designed to accommodate mono-disperse and polydisperse mixtures of ideal (spherical) and irregular particle shapes
- Lunar regolith mixture may require databases with N=8+ discrete particle size bins
- Spherical Particles Particle Kinetic Theory
 - Spherical shapes use particle kinetic theory closure model formulations
 - Poly-disperse mixture: Garzo-Hrenya-Dufty (GHD) mixture property model
 - GHD solves coupled set of equations for mixture property using particle kinetic theory for each species in mixture. Recent Loci code optimizations have led to orders of magnitude speed-up.
- Irregularly Shaped Particles DEM based database generation with runtime interpolation
 - Particle shape and angular features modeled with sphere clumps. DEM particle-particle interaction performed to extract properties (stress, dissipation, ...). Use Python scripted parametric LIGGGHTS DEM database generation.
 - Tabular datasets accessed by Loci/GGFS during execution.
 - Previously limited to bi-disperse data sets. Efficient Loci 2-D interpolation modules were readily available. Recent extension to general Loci N-dimensional interpolation modules.

Focus of this Presentation is on Capabilities of GHD Based Spherical Shape Modeling

Poly-disperse composition

Application Demonstration of Loci/GGFS Particle Shape and Mixture Effects on Apollo LM Surface Cratering

- Loci/GGFS overall maturation has reached level that warrants evaluation of available soil modeling options for a full-scale relevant scenario
- Selected Apollo Lunar Module terminal landing phase PSI cratering -- quasi-steady simulation

Demonstration served multiple purposes:

- Simulation in near-vacuum environments test robustness of two-phase flow solver for simulations on edge of continuum flow with orders of magnitude range between gas and particle densities
- Assess and demonstrate capabilities and robustness of currently available particle model implementation In GGFS
- > Demonstrate ability to predict effects postulated as first order: irregular shape and poly-dispersity
- Application readiness: Identify computational cost drivers for timely large scale computational modeling for customer support

Application Demonstration of Loci/GGFS Particle Shape and Mixture Effects on Apollo LM Surface Cratering

- Apollo Lunar Module full scale geometry model
- Elevation 5m from soil surface to engine exit
- Engines throttled to 2200 lbf
- Farfield pressure set to 0.1 Pa (Near Lunar)

Assessed particle shape and mixture effects with four models:

- Single size spherical particles, D=30 micron, D=100 micron
- ➤ Bi-disperse spherical particles, D=30+100 micron
- ➤ Single size irregular particle shape, Cylinder AR=4 with volume equivalent to 100 micron
- ➤ Tri-disperse spherical particles, D=10+30+100 micron

Mach Number

Temperature

Particle Volume Fraction (log10)

Ejecta Sheet Evolution: Effects of Poly-dispersity

- Initial stir-up of particles from impulsive plume startup and impingement on soil slowly rising up as farfield flow forms
- Near surface ejecta sheet forming from soil surface outside of crater; ejecta sheet angle ~ 5-10deg
- Secondary ejecta stream ejected from crater edge
- Poly-disperse mixture composition results in wider spread of eject sheets

Mono-disperse 100mi spheres

Bi-disperse 30-100mi spheres

Tri-disperse 10-30-100mi spheres

Plume Dynamics and Crater Evolution

- Poly-disperse mixtures result in progressively shallower crater
- Noticeable increase in surface erosion effects outside of crater

Mono-disperse 100mi spheres

Time: 0.01 sec

Bi-disperse 30-100mi spheres

Tri-disperse 10-30-100mi spheres

Animations

Effect of Particle Mixture on Crater Shape/Depth

- Comparison of crater shape shown at t=1.5 sec
- Continuous reduction in crater depth with polydispersity
- More pronounced surface erosion effects outside of crater for tri-dispersed

Loci/GGFS Simulations Capture Crater
Characteristics Expected For Particle Size,
Shape And Mixture Effects.

Bi-disperse 30-100mi spheres

100mi spheres

Tri-disperse 10-30-100mi spheres

Effect of Particle Shape/Mixture on Crater Depth

- Crater depth profile comparison shown at t=1.5 sec
- Continuous reduction in crater depth with poly-dispersity
- Started next level simulation with N=4 for analytical GHD sphere model (10-30-100-300 micron)
- Further poly-dispersity effects assessment will begin using results of DEM modeling

Computational Speed-up for Production Applications

- Simulations currently require 3 weeks+; Cost scales with number of particle bins in poly-disperse modeling
- This is too slow to satisfy customer needs in project support production application
- Loci/GGFS implemented in Loci highly scalable, rule based computational framework. Current Loci/GGFS version constitutes robust implementation of all features.
- Entered next phase focusing on algorithm optimization on all levels already demonstrating significant improvements. Solution of two-phase gas-granular mixture models present numerous occurrences of stiff, high-gradient coupled algorithms.
- Graphical Processing Units (GPU) were recognized as providing potential for significant computational speed increases, in particular for large number of repetitive granular phase sub-models and mixture computations.
- Heterogenous implementation (GPU/CPU) could provide significant speed-up. A Loci-based mini-application
 for GPU execution was funded by a NASA HPC Modernization Effort and completed in early FY21—results
 indicated significant acceleration of Loci/GGFS and Loci-base CFD tools in general were likely.
- This will require funding not allocated under the PSI GCD project.

Conclusion

- Presented application demonstration of Loci/GGFS capabilities for Apollo Lunar Module PSI surface cratering.
- Demonstrated capabilities and robustness of currently available particle models In GGFS
- Results obtained to date indicate that increased poly-dispersity results in increased resistance to erosion and continuous reduction in crater depth
- Future simulations will begin using DEM based models to assess cost and scaling. For irregular shapes, database lookup is the only way to perform poly-disperse simulations.

