INDIAN INSTITUTE OF TECHNOLOGY, DELHI

ASSIGNMENT REPORT

COL774: Assignment 3

APAR AHUJA | ENTRY No. 2019CS10465

Course - COL774 | Prof. Parag Singla

Contents

1	Decision Trees and Random Forests									
	1.1	Decision Tree	2							
	1.2	Decision Tree Post Pruning	4							
	1.3	Random Forests	6							
	1.4	Parameter Sensitivity	6							
2	Net	ıral Networks	8							
	2.1	C	8							
	2.2	D	15							
	2.3	E	19							
	2.4	F	21							

Chapter 1

Decision Trees and Random Forests

1.1 Decision Tree

Figure 1.1: Multi way split v/s One Hot Encoding

- 1. Training accuracy increases to nearly 100 percent with increase in. number of node. The more the nodes the better the model can fit the training data. However this is leads to over-fitting to the training data.
- 2. The initial training, testing and validation accuracy is low showing the model hasn't learnt a lot and is under-fitting. The training, testing and validation accuracy then increase to a peak and then drop back down with increase in number of nodes. This shows that the model starts over-fitting after a certain point.
- 3. Using one-hot-encoding gives higher peak accuracy. Infact one hot encoding gave close to 90% validation accuracy at it's peak. Thus, using one hot encoding gives a better model in terms of accuracy.
- 4. The number of nodes used by one-hot-encoding is less than those needed by multi way split. Thus, this model generalizes better for the same number of nodes.

1.2 Decision Tree Post Pruning

Figure 1.2: Multi way split v/s One Hot Encoding Pruning

- 1. Pruning leads to a reduce in training accuracy for both the models. The models unlearn the over-fitting and remove nodes that aren't as relevant to begin with. The final training accuracy is still around 97% 98% which is really nice and shows the model isn't over-fitting to the validation set. The increase in the testing accuracy also suggests the model didn't over-fit the validation data but rather it generalized better.
- 2. Pruning increases the validation accuracy to well over 92 %. This was expected by the very nature of the implementation where we try to pruned nodes that increase the validation accuracy.
- 3. The testing accuracy increases consistently with decrease in number of nodes. The models ended up with a near 88% accuracy. Simple pruning led to a jump of nearly a percent from it's previous values.

1.3 Random Forests

Note: One-hot-encoding was used to encode categorical data to integers.

Best Parameters: {max_features: 0.3, min_samples_split: 10, n_estimators: 350}

Out-of-bag Accuracy = 90.38%

Testing Accuracy = 89.91 %

Training Accuracy = 97.92 %

Validation Accuracy = 90.69 %

I used 5 fold validation during the grid search and multi-core processing to increase the search speed. Using random forests led to a significant increase in testing, training and validation accuracy. Growing multiple decision trees in parallel with bootstrapping leads to better trees/models.

1.4 Parameter Sensitivity

Figure 1.3: Parameter Sensitivity Analysis

Figure 1.4: Parameter Sensitivity Analysis

- 1. There is a possible increase in training accuracy with variation in optimal parameters even though the model was fit on training data. This is because of the fact that we used out-of-bag accuracy as a scoring mechanism in the grid search.
- 2. The validation and testing accuracy don't change a lot. A less than 1% change is observed in them showing the quality of the model stays put even with minor variations in a certain parameter.
- 3. The n_estimators parameter is particularly stable and doesn't lead to any major change in testing, training and validation accuracy with local changes in it's value.

Chapter 2

Neural Networks

2.1 C

I have attached at the following pages the data with learning rate = 0.1 as specified in the question. However, I noticed that the model converged even for a rate = 1 in far lesser iterations without any compromise in accuracy and an even stricter stopping criteria, mentioned below. So, I've attached my observation for 5 and 10 hidden layer nodes with a learning rate = 1.

Stricter Stopping Criteria with learning rate = 1:

a. The model must traverse the complete dataset at least once.

b. The difference in average batch MSE for two consecutive epochs¹ must fall below $5x10^{-7}$ at least 10 times and the maximum number of epochs is 10000.

Variation with number of hidden layer nodes for learning rate = 1:

1. Number of nodes = 5:

Number of epochs before stopping: 6838

Training Time: 308.79 secs
Training MSE: 0.2214

Training Accuracy: 67.9% Testing MSE: 0.2286

Testing Accuracy : 66.31%Testing Confusion Matrix

[432565]	191925	6876	6559	1952	1708	28	42	4	3
68644	230573	40746	14562	1933	288	1396	188	8	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

¹one epoch refers to traversing the whole dataset once

2. Number of nodes = 10:

Number of epochs before stopping: 10000

Training Time: 565.1 secs Training MSE: 0.1414 Training Accuracy: 84.17%

Testing MSE: 0.1529 Testing Accuracy: 82.4% Testing Confusion Matrix

472944	71478	1512	1813	3331	1887	10	2	12	0	
28265	351020	46110	19308	554	109	1414	228	0	3	l
0	0	0	0	0	0	0	0	0	0	İ
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	İ
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

Stopping Criteria for learning rate = 0.1:

- a. The model must traverse the complete dataset at least once.
- b. The difference in average batch MSE for two consecutive epochs² must fall below 10^{-6} at least 5 times and the maximum number of epochs is 10000.
- c. The intuition behind crossing the threshold difference 5 times is that the difference sometime fall just below the threshold for a single value and increases back again. Hence, a single drop below the threshold is not a consistent convergence criteria.

Data for learning rate = 0.1 is in the following pages.

²one epoch refers to traversing the whole dataset once

Variation with number of hidden layer nodes for learning rate = 0.1:

1. Number of nodes = 5:

Number of epochs before stopping: 6056

Training Time: 364.76 secs Training MSE: 0.2267 Training Accuracy: 66.4% Testing MSE: 0.2327

Testing Accuracy: 65.23% Testing Confusion Matrix

436801	207033	10283	7815	2763	1734	146	40	8	$2\rceil$
64408	215465	37339	13306	112	262	1278	190	4	1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

2. Number of nodes = 10:

Number of epochs before stopping: 5353

Training Time : 329.81 secs Training MSE : 0.1406Training Accuracy : 82.4%Testing MSE : 0.1555

Testing Accuracy: 80.09% Testing Confusion Matrix

ſ	462964	84532	828	1300	3613	1866	2	3	11	3
1	38245	337966	46794	19821	272	130	1422	227	1	0
İ	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
l	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

3. Number of nodes = 15:

Number of epochs before stopping: 5842

Training Time: 434.06 secs Training MSE: 0.0619 Training Accuracy: 91.9% Testing MSE: 0.066

Testing Accuracy: 91.62% Testing Confusion Matrix

	500268	6538	125	320	3840	1994	4	29	12	3
	941	415960	47497	20801	45	2	1420	201	0	0
İ	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
İ	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
l	0	0	0	0	0	0	0	0	0	0

4. Number of nodes = 20:

Number of epochs before stopping: 6119

Training Time: 474.28 secs

Training MSE: 0.0602

Training Accuracy: 92.33%

Testing MSE: 0.0632 Testing Accuracy: 92.27% Testing Confusion Matrix

501167	1013	2	4	3866	1996	0	0	12	3	
42	421485	47620	21117	19	0	1424	230	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

5. Number of nodes = 25:

Number of epochs before stopping: 7599

Training Time: 629.22 secs Training MSE: 0.0564 Training Accuracy: 92.33% Testing MSE: 0.0638

Testing Accuracy: 92.28% Testing Confusion Matrix

501089	741	0	142	3785	1995	0	0	12	3]
120	421757	47622	20979	100	1	1424	230	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Plots

Figure 2.1: Training Accuracy

Figure 2.2: Testing Accuracy and Time Taken Plots

- 1. The model predicts the first 2 classes all the time. The training data for other classes is not sufficient for the model to learn correctly.
- 2. Number of epochs before convergence and total time taken roughly increase with increase in number of nodes in the layer.
- 3. The data is heavily skewed and accuracy might not be the right measure for quality of a model here. We might want to use macro F1 score instead to compare models and their quality.

2.2 D

I used an initial learning rate = 5 as the rate decays way to quickly to cause any change of values in later iterations. And the updated stopping criteria is -

a. The model must traverse the complete dataset atleast once.

b. The difference in average batch MSE for two consecutive epochs³ must fall below 10^{-6} at least 5 times and the maximum number of epochs is 10000.

Variation with number of hidden layer nodes for adaptive learning rate:

1. Number of nodes = 5:

Number of epochs before stopping: 2661

Training Time: 324.93 secs

Training MSE: 0.2333

Training Accuracy: 65.45%

Testing MSE: 0.2389 Testing Accuracy: 63.9% Testing Confusion Matrix

$\lceil 42 \rceil$	3479	207018	10507	7525	2311	1718	153	39	5	3
7'	7730	215480	37115	13596	1574	278	1271	191	7	0
	0	0	0	0	0	0	0	0	0	0
-	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
L	0	0	0	0	0	0	0	0	0	0

2. Number of nodes = 10:

Number of epochs before stopping: 4763

Training Time: 340.08 secs

Training MSE: 0.1479

Training Accuracy: 82.59%

Testing MSE: 0.1614
Testing Accuracy: 80.4%
Testing Confusion Matrix

³one epoch refers to traversing the whole dataset once

T470098	88627	2132	1687	3072	1873	17	5	9	3
31111	333871	45490	19434	813	123	1407	225	3	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

3. Number of nodes = 15:

Number of epochs before stopping: 4976

Training Time : 378.05 secs

Training MSE: 0.0661 Training Accuracy: 92.1% Testing MSE: 0.0702 Testing Accuracy: 91.67% Testing Confusion Matrix

499342	5132	44	88	3762	1993	1	1	9	3
1867	417366	47578	21033	123	3	1423	229	3	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

4. Number of nodes = 20:

Number of epochs before stopping: 6704

Training Time: 450.39 secs Training MSE: 0.0584Training Accuracy: 92.33%

Testing MSE: 0.0636 Testing Accuracy: 92.14% Testing Confusion Matrix

501078	2197	5	214	3862	1996	0	14	12	3	
131	420301	47617	20907	23	0	1424	216	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

5. Number of nodes = 25:

Number of epochs before stopping: 3823

Training Time: 419.45 secs

Training MSE: 0.0562

Training Accuracy: 92.33%

Testing MSE : 0.0616

Testing Accuracy: 92.22% Testing Confusion Matrix

500615	927	0	23	3831	1994	0	0	12	3
594	421571	47622	21098	54	2	1424	230	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Plots

Figure 2.3: Training and Testing Accuracy Plots

Figure 2.4: Time Taken Plot

- 1. No change in stopping criteria was necessary, the model converged correctly with the same criteria.
- 2. The results are very similar to the part C. The accuracies are with 1% error and the confusion matrices look very close to each other.
- 3. Adaptive learning rate provides faster convergence as compared to the previous part without much compromise in performance quality.
- 4. The initial learning rate was set to 5 instead of 0.1 due to the fast decreasing nature of inverse adaptive learning.

2.3 E

Layer Architecture = [100, 100]Learning Rate = $3/\sqrt{epoch}$

Stopping Criteria –

- a. The model must traverse the complete dataset atleast once.
- b. The difference in average batch MSE for two consecutive epochs⁴ must fall below 10^{-6} at least 5 times and the maximum number of epochs is 3000.

⁴one epoch refers to traversing the whole dataset once

ReLU

Number of epochs = 253 Training Time: 59.78 secs Training MSE: 0.0397 Training Accuracy: 92.33%

Testing MSE : 0.0423

Testing Accuracy: 92.37% Testing Confusion Matrix

[501186	0	0	0	3806	1987	0	0	11	1
23	422498	47622	21121	79	9	1424	230	1	2
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Sigmoid

Number of epochs = $3000 (= MAX_ITERATIONS)$

Training Time: 1019.79 secs

Training MSE: 0.0471

Training Accuracy: 92.34%

Testing MSE: 0.0709
Testing Accuracy: 90.86%
Testing Confusion Matrix

T494612	8545	77	89	3731	1961	0	3	11	3	
6595	413945	47545	21030	153	35	1424	227	1	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

- 1. The models still classifies mostly into the first 2 classes.
- 2. Nonetheless, the training and testing accuracies are high (90+).
- 3. Max iterations were reduced to 3000 due to the fast convergence observed for both the models.
- 4. Both the activations work equally well although the ReLU activation converged very fast when compared to sigmoid which took 3000 epochs.
- 5. The results are good when compared to 2c with a single layer but the difference is statistically insignificant. Thus, a single layer with 25 neurons is learning equally well as a 2 100 node layers.

2.4 F

MLP with ReLU (constant learning rate)

Training Accuracy is: 100.0% Testing Accuracy is: 99.28% Learning Rate is constant: 0.1 Layer Architecture is: [100, 100]

Confusion Matrix:

	501160	7	5	201	3849	1782	455	0	9	3
	0	422491	29	2	0	0	0	0	0	0
	0	0	47588	0	0	0	560	0	0	0
	0	0	0	20918	0	0	8	230	0	0
İ	44	0	0	0	36	0	0	0	0	0
	5	0	0	0	0	214	0	0	3	0
	0	0	0	0	0	0	0	0	0	0
l	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

MLP with ReLU (adaptive⁵ learning rate)

Training Accuracy is: 100.0% Testing Accuracy is: 99.22%

Adaptive Learning Rate with initialization: 0.1

Layer Architecture is: [100, 100]

Confusion Matrix:

⁵adpative here does not mean the same as n_0/\sqrt{epoch}

_									_	
501064	33	305	307	3690	1925	566	0	11	3	
1	422458	134	14	0	0	0	0	0	0	
0	7	47181	21	0	0	357	0	0	0	
0	0	2	20779	0	0	89	230	0	0	
141	0	0	0	195	0	0	0	0	0	
3	0	0	0	0	71	0	0	3	0	
0	0	0	0	0	0	412	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	0	

MLP with sigmoid (adaptive learning rate)

Training Accuracy is: 99.94% Testing Accuracy is: 98.26%

Adaptive Learning Rate with initialization: 0.1

Layer Architecture is: [100, 100]

Confusion Matrix:

Γ	500972	510	1440	1998	2914	1725	110	0	6	1
	11	421620	2615	145	3	0	0	0	0	0
İ	0	367	42915	3171	0	0	73	0	0	0
	0	1	650	15756	0	0	1138	230	0	0
	218	0	0	0	968	0	0	0	4	0
	8	0	0	0	0	271	0	0	2	2
	0	0	2	51	0	0	103	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

- 1. The learning time is very low when compared to the parts above. This is possibly due to the adaptive learning rate strategy used by MLP which is much superior than using the inverse decay rate
- 2. The confusion matrix has values across all the classes thus, the model is not over-fitting to the first 2 classes as in previous parts.
- 3. The models have a very high accuracy and are learning very well from the little data available for the last 8 classes.
- 4. The MLP model has a much better macro F1 score as compared to the previous parts. The change is much more significant than the change in accuracy due to the skewed nature of the datasets.