Importing the libraries import pandas as pd

Importing the data

import matplotlib.pyplot as plt

import seaborn as sns

import pickle

18.0

16.0

17.0

27.0

44.0

32.0

28.0

31.0

398 rows × 9 columns

393

394

395

396

397

In [11]: data.info()

Out[12]:

In [153...

In [154...

In [155...

Out[155]:

In [156...

In [157...

In [158...

In [160...

Out[160]:

In [8]:

In [10]:

Out[10]:

data = pd.read csv('car performance.csv') data

0 18.0 8 307.0

8

4

4

4

<class 'pandas.core.frame.DataFrame'> RangeIndex: 398 entries, 0 to 397 Data columns (total 9 columns):

Column Non-Null Count Dtype

0 mpg 398 non-null float64 1 cylinders 398 non-null int64

displacement 398 non-null float64 horsepower 398 non-null int64 4 weight 398 non-null int64 acceleration 398 non-null float64 6 model year 398 non-null int64 7 origin 398 non-null int64 8 car name 398 non-null object

mpg cylinders displacement horsepower weight acceleration model year origin 130 15.0

350.0 165 3693 8 318.0 150 304.0

302.0

140.0

97.0

135.0

120.0

119.0

3436 150 140

86

52

84

82

2625

2720

3433 3449

3504

10.5 2790 15.6 2130 24.6 2295 11.6

12.0

11.5

11.0

12.0

18.6 19.4

70

70

70

70

70

1 1 1

1

ford mustang gl vw pickup dodge rampage

1 chevrolet chevelle malibu

car name

buick skylark 320

plymouth satellite

amc rebel sst

ford torino

ford ranger chevy s-10

No Null Values Found In [12]: data.isnull().sum() 0 0 cylinders displacement

dtypes: float64(3), int64(5), object(1)

memory usage: 28.1+ KB

car name dtype: int64

0 0

In [152... 1 = [] for i in data["car name"]: 1.append(i.split(' ')[0]) data.insert(9,"Brand",1)

horsepower weight

acceleration model year origin

Handling Irrelevent Values make_typo_correction = { 'vw': 'volkswagen', 'chevy': 'chevrolet',

'maxda': 'mazda',

'toyouta': 'toyota', 'chevroelt': 'chevrolet'

data['Brand'] = data['Brand'].replace(make_typo_correction) data.Brand.unique() array(['chevrolet', 'buick', 'plymouth', 'amc', 'ford', 'pontiac',

'vokswagen': 'volkswagen',

'dodge', 'toyota', 'datsun', 'volkswagen', 'peugeot', 'audi', 'saab', 'bmw', 'hi', 'mercury', 'opel', 'fiat', 'oldsmobile', 'chrysler', 'mazda', 'volvo', 'renault', 'honda', 'subaru', 'capri', 'mercedes-benz', 'cadillac', 'mercedes', 'triumph', 'nissan'], dtype=object) temp_file = pd.DataFrame(data.Brand.unique(),columns=["Brand"])

data.drop('car name',axis=1,inplace=True) from sklearn.preprocessing import LabelEncoder

temp file **Brand**

chevrolet buick

2 plymouth amc 4 ford

pontiac

dodge toyota 8 datsun volkswagen 10 peugeot audi 12 saab bmw hi mercury opel fiat 18 oldsmobile 19 chrysler 20 mazda 21 volvo 22 renault honda 24 subaru

25 capri mercedes-benz cadillac 28 mercedes 29 triumph 30 nissan In [161... data["Brand"] = LabelEncoder.fit_transform(data,data["Brand"])

> 2 plymouth 3 amc 4 ford pontiac 6 dodge toyota datsun volkswagen 10 peugeot 11 audi saab 13 bmw

14

15

16

19

21

22

23

24

25

27

28

30

In [166...

Out[168]:

temp file **Brand Encoded** 0 chevrolet 6 1 buick 3 22 0 11 9

D:\Anaconda\lib\site-packages\sklearn\preprocessing_label.py:117: UserWarning: Pandas doesn't allow columns to be created via a new attribute name - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attributeself.classes_, y = _unique(y, return_inverse=True) temp file["Encoded"] = pd.DataFrame(data["Brand"].unique()) In [162... temp_file.to_csv('Temp_file.csv') In [163... In [164... Out[164]:

8

1

25

2

12

17

20

13

26

5

16

4

15

for i in range(len(corr_matrix.columns)):

col_corr.add(colname)

if abs(corr_matrix.iloc[i,j]) > threshold: colname = corr matrix.columns[i]

hi

mercury

oldsmobile

chrysler

mazda

volvo

renault

honda

subaru

capri

cadillac

mercedes

triumph

nissan

col corr = set()

return col_corr

{'displacement', 'weight'}

In [168... | correlation(data, 0.9)

def correlation(car, threshold):

corr_matrix = car.corr()

for j in range(i):

26 mercedes-benz

opel