Before you turn this problem in, make sure everything runs as expected. First, **restart the kernel** (in the menubar, select Kernel \rightarrow Restart) and then **run all cells** (in the menubar, select Cell \rightarrow Run All).

Make sure you fill in any place that says YOUR CODE HERE or "YOUR ANSWER HERE", as well as your name and collaborators below:

```
In [ ]: NAME = ""
COLLABORATORS = ""
```


Optimization for classification

$$y=mx+c$$
 $e(y_i,x_i;m,c)= egin{cases} 0 & ext{if } mx_i+c=l_i \ |mx_i+c| & ext{if } mx_i+c
eq l_i \end{cases}$

$$e(y_i,x_i;m,c) = egin{cases} 0 & ext{if } mx_i+c=l_i \ |mx_i+c| & ext{if } mx_i+c
eq l_i \end{cases}$$
 $\mathbf{m} = egin{bmatrix} m \ c \end{bmatrix}$

$$e(y_i, x_i; \mathbf{m}) = \left\{egin{array}{ll} 0 & ext{if } \left[\,x_i & 1\,
ight] \mathbf{m} = l_i \ \left|\,\left[\,x_i & 1\,
ight] \mathbf{m}
ight| & ext{if } \left[\,x_i & 1\,
ight] \mathbf{m}
eq l_i \end{array}
ight.$$

$$abla_{\mathbf{m}} e(y_i, x_i; \mathbf{m}) = egin{cases} 0 & ext{if } \left[x_i & 1
ight] \mathbf{m} = l_i \ \left| \left[x_i & 1
ight]
ight| & ext{if } \left[x_i & 1
ight] \mathbf{m}
eq l_i \end{cases}$$

If $l_i \in \{-1,1\}$, then we can write

$$e(y_i,x_i;\mathbf{m}) = \max\{0,-l_i \left[egin{array}{cc} x_i & 1
ight]\mathbf{m}\}$$

$$abla_{\mathbf{m}} e(y_i, x_i; \mathbf{m}) = \max\{0, -l_i \left[egin{array}{cc} x_i & 1 \end{array}
ight] \}$$

$$\mu_x(I) = \sum_{x=1}^W rac{x I(x,y)}{\sum_{x=1}^W I(x,y)}$$

$$\sigma_x^2(I) = \sum_{x=1}^W rac{(x-\mu_x)^2 I(x,y)}{\sum_{x=1}^W I(x,y)}$$

```
In [ ]: | def error(X, Y, bfm):
            # YOUR CODE HERE
            raise NotImplementedError()
        def grad error(Xw, Yw, bfm):
            # YOUR CODE HERE
            raise NotImplementedError()
        def train(X, Y, lr = 0.1):
            # YOUR CODE HERE
            raise NotImplementedError()
        OPTIMAL BFM, list of bfms, list of errors = train(X, Y)
        fig, ax = plt.subplots()
        ax.plot(list of errors)
        ax.set xlabel('t')
        ax.set ylabel('loss')
        plt.show()
In [ ]: | positive_label = 1
        negative label = 0
        TP = np.sum((zero one test labels == positive label) & (zero one predic
        TP
In [ ]: | TN = np.sum((zero_one_test_labels == negative_label) & (zero_one_predi
        TN
In [ ]: | FP = np.sum((zero one test_labels != positive_label) & (zero_one_predic
        FP
```

Next

- 2. Show visualization of 1D optimization and loss functions.
- 3. Build to visualizations in the UDL book. Connect to KD tree and nearest neighbor classification.
- 4. Show the tensflow js visualization.

References

- 1. http://playground.tensorflow.org
- 2. https://knowyourdata-tfds.withgoogle.com/#tab=STATS&dataset=tf_flowers
- 3. "Flowers", The TensorFlow Team. Jan 2019. Online http://download.tensorflow.org /example_images/flower_photos.tgz