Project_logboek_Genexpressie

Mark van de Streek

2023-03-17

Gen expressie Logboek

In dit logboek wordt een onderzoek uitgelicht naar het roken van sigaretten en de elektronische sigaret, ook wel de vape genoemd. In het onderzoek is gebruikt gemaakt van RNA-seq data. Er is dus gekeken naar expressie van bepaalde genen. Om precies te zijn is er gekeken naar genen die aanwezig zijn in leukocyten (witte bloedcellen).

Het onderzoek

Er is gekeken naar de activiteit van genen van de volgende groepen mensen:

- Vapers (mensen die een elektronische sigaret roken)
- Mensen die de traditionele sigaret roken
- Mensen die geen tabaksproducten gebruiken

Om mensen te verkrijgen voor het onderzoek werd er om te beginnen een online vragenlijst gemaakt. Vervolgens werd er voor deze vragenlijst reclame gemaakt online, op bijvoorbeeld Reddit en Twitter. Aan de hand van de deze vragenlijst werden de mensen die geschikt leken voor het onderzoek uitgenodigd voor een gesprek. In dit gepsprek werden nog een aantal vragen en checklists gemaakt om er zeker van te zijn dat de persoon geschikt is voor het onderzoek.

Uit de resultaten bleek dat de mensen die op dit moment Vapen, maar vroger niet rookten, een significant andere genregulatie hebben ten opzichte van mensen uit de controle groep. Ook mitochondriale genen en immuunresponsgenen waren significant ontregeld.

Verdeling van de groepen

In alle verschillende groepen waren een aantal mensen die voor het onerzoek werden gebruikt. Onderstaand de aantallen in een kleine tabel.

Table 1: Aantal mensen per groep

Vapers	Traditionele rokers	Niet-rokers
37	22	23

Er werd bij de deelnemers ook gekeken naar geslacht, leeftijd, etniciteit, rassen en ook naar mensen die kunnen lezen en schrijven in het Engels. Het onderzoek vond plaats in Los Angeles.

De opzet van het onderzoek was om de verschillen tussen alle drie de groepen duidelijk weer te geven. In vele eerdere onderzoeken werden vaak deelnemers gekozen die vapen, maar vaak met een geschiedenis in andere rookgewoonten. Er namen dus mensen deel aan het onderzoek die eerder traditionele sigaretten rookten en op latere tijd zijn overgestapt naar elektronische sigaretten.

De groep die werd geclassificeerd als vapers in dit onderzoek heeft in de 6 maanden voor het onderzoek

geen traditionele sigaret gebruikt. De onderzoekers hebben bewust voor een periode van 'maar' 6 maanden gekozen, omdat de elektronische sigaret nog niet zo heel lang bestaat. door het kiezen van een periode van 6 maanden, zijn er meer mensen die deel konden nemen aan het onderzoek. Voor de traditionele rokers groep werd een periode van 1 jaar gebruikt voor deelname.

Met behulp van bioinformatische bevindingen zijn in dit onderzoek onderscheid gemaakt tussen gezonde volwassen vapers, met en zonder geschiedenis van roken, en 'exclusieve' sigaretten rokers. Ook is specifiek de expressie van genen in rokers (zowel e-sigaret als traditionele rokers) vergeleken met niet-rokers.

Inladen van de Data

Onderstaand wordt de data van het bestand ingeladen. Helaas is er in het bestand nog niet duidelijk welke samples precies bij welke groep horen. Vandaar dat er nog een aantal stappen moeten worden uitgevoerd om de juiste namen bij de juiste samples te krijgen.

```
data <- read.table("GSE169757_Partek_Hum_BC_RNA_Jan2018_UnfilteredCounts_82.txt", header = T, sep = "\t
Sys.setenv(VROOM_CONNECTION_SIZE=50007200)
# Opzoeken van het ID en defineren in een object
gse <- getGEO("GSE169757")</pre>
## Found 1 file(s)
## GSE169757_series_matrix.txt.gz
## Rows: 0 Columns: 83
## -- Column specification -------
## Delimiter: "\t"
## chr (83): ID_REF, GSM5213644, GSM5213645, GSM5213646, GSM5213647, GSM5213648...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
## File stored at:
## /tmp/RtmpOFGRJq/GPL18573.soft
# Defineren van de specifieke kolom met alle namen
gse_groups_column <- gse[[1]]@phenoData@data$characteristics_ch1.1</pre>
# Lege vector om de uiteindelijke namen in op te slaan
all_modified_group_names <- c()</pre>
# Het door lopen van alle kolomnamen en het opzoeken van de namen.
# Allereerst worden de indexen verkregen van alle namen
# Met die indexen worden de juiste namen eruit gehaald.
for (name in names(data[,9:ncol(data)])) {
  name <- gsub("\\.", "-", name)
  all_group_names <- gse_groups_column[which(gse[[1]]@phenoData@data$title %in% name)]
  group_names <- strsplit(all_group_names, ": ")[[1]][2]</pre>
  all_modified_group_names <- c(all_modified_group_names, group_names)
# Uniek maken door een getal erachter te zetten.
unique_group_names <- make.unique(all_modified_group_names, sep = "_")
```

```
# Het veranderen van de kolom namen in de data
names(data)[9:ncol(data)] <- unique_group_names
```

Eerste kijk op data

Nu de data goed is ingeladen met alle juiste namen kunnen we kijken hoe het precies er uit ziet. Ook kunnen we kijken wat het precieze aantal rijen en kolommen zijn, ook wel de dimenties.

```
pander(head(data[1:4, c(1, 2, 8, 9, 10, 11)]))
```

Chromosome	Start	havana_gene	Control	Smoker	Control_1
4	67439992	_	2	2.602	5
6	5.3e + 07	_	466	73.82	357.3
19	58345178	OTTHUMG00000183507.2	324.4	96.5	258.9
19	58347751	OTTHUMG00000183508.1	286.5	81.92	181.3

```
dims <- dim(data)
sprintf("Aantal rijen: %.f en aantal kolommen: %.f", dims[1], dims[2])</pre>
```

```
## [1] "Aantal rijen: 38921 en aantal kolommen: 90"
```

We weten nu hoe de data eruit ziet en hoe groot het precies is. Vanaf kolom nummer negen beginnen de 'samples'. De samples staan dus niet onder elkaar, maar naast elkaar.

Classificatie van variabelen

Omdat we niet de hele tijd willen opzoeken welke kolomnummers bij welke groep hoeren, gaan we dit defineren. Op deze manier kunnen we makkelijk een variabel invullen om vervolgens snel alle data van de bijhorende groep te krijgen.

```
smoker <- grep("Smoker", names(data))
vaper <- grep("Vaper", names(data))
control <- grep("Control", names(data))</pre>
```

Grep() geeft de nummers van kolommen terug waar het woord in voorkomt.

Verdeling van de data

De groepen zijn nu geclassificeerd en we kunnen dus kijken hoe de data is verdeeld. We kunnen het duidelijk weergeven op twee manieren. Allereerst een boxplot. Als de boxen van de figuren allemaal rond een lijn zitten, is de data goed dicht bij elkaar. Echter zal het met zo'n grote dataset nooit helemaal duidelijk verdeeld zijn. Er zijn bijvoorbeeld bij elke sample heel veel nullen aanwezig. Deze nullen 'trekken' de andere waren behoorlijk naar beneden. De boxplot heeft geen details meer en zegt dan niks meer.

Om dit probleem op te lossen, moeten we alle waarden met 0 'wegfilteren'. Dit is makkelijk te doen met een log2 transformatie. Het bereik tussen de samples wordt op deze manier kleiner. De waarden met 0 domineren minder in de data.

Onderstaand de boxplot van de controle groep, met getransformeerde data.

```
boxplot(log2(data[control] + 1), las = 2, col = "#83A3EE", main = "log2 transformatie van de verdeling
```

log2 transformatie van de verdeling van de control groep

Zoals je kunt zien op het figuur liggen alle boxen behoorlijk dicht bij elkaar. Je zou dus zeggen dat deze data goed is verdeeld. Echter is dit nog maar een simpele log2 transformatie en kunnen we dus nog verder kijken naar normalisatie.

Een andere manier om uitschieters in de data weer te geven is een dichtheids grafiek. Dit plot geeft ook de verdeling van de data weer. Als alle lijnen van de grafiek op elkaar liggen, is de data goed verdeeld. Eventuele uitschieters zijn goed zichtbaar.

```
library(affy)
plotDensity(log2(data[9:ncol(data)] + 0.05),
main = "Dichtheidsplot van alle data samples",
ylab = "Dichtheid")
abline(v = -2, col = "red", lwd = 1, lty = 1)
```

Dichtheidsplot van alle data samples

Zoals je kunt zien zit er een hele groot piek links van de rode lijn. Zoals eerder opgemerkt bevat de data heel veel nullen. De data is getransformeerd. De $\log 2$ van 0.05 is ~ -4.3 . Deze piek zijn dus alle waarden met nul en kunnen genegeerd worden (daarom is er om die reden ook een rode lijn geplaatst).

In de figuur is op twee plekken een duidelijk ander verloop te zien. Aan het begin en aan het einde van de stijging is andere verloop tussen de samples. Hier is de data dus niet helemaal gelijk verdeeld. Na het normaliseren van de data is het mogelijk om eventuele afwijkende samples weg te gooien, om deze uitschieters eruit te filteren.

Normalisatie van de data en de afstand tussen de samples

Om zoveel mogelijk ruis uit de data te halen is het mogelijk om te normaliseren. Onderstaand zal er een simpele normalisatie worden uitgevoerd met het DESeq2 pakket. De meest basale vorm van normalisatie wordt toegepast.

```
for (cols in names(data[9:ncol(data)])) {
    data[[cols]] <- as.integer(data[[cols]])
}

(ddsMat <- DESeqDataSetFromMatrix(countData = data[c(smoker, control, vaper)],
    colData = data.frame(samples = names(data[c(smoker, control, vaper)])),
    design = ~ 1))

## class: DESeqDataSet
## dim: 38921 82
## metadata(1): version
## assays(1): counts
## rownames: NULL
## rowData names(0):
## colnames(82): Smoker Smoker_1 ... Vaper_35 Vaper_36
## colData names(1): samples</pre>
```

```
# uitvoeren van de normalisatie
rld.dds <- vst(ddsMat)
# waarden ophalen
rld <- assay(rld.dds)</pre>
```

Nu de data genormaliseerd is kunnen we de afstand berekenen tussen de samples om aan te tonen hoever de data bij elkaar is. Deze afstanden kunnen we weergeven in een heatmap.

Door de vele aanwezige samples is de heatmap zeer lastig af te lezen. Wel kun je mooi zien dat de eerste vier

samples verder wegliggen dan de andere samples. Het is echter lastig om hier meer over te vertellen, omdat er zoveel samples aanwezig zijn.

Multi-dimensionele schaling (MDS)

Op de data kunnen we ook multi-dimensionale schaling (MDS) toepassen. Dit is vergelijkbaar met de heatmap, maar hierbij worden de afstanden op een andere manier berekend. Ook worden ze 2d weergegeven. Bij MDS wordt Poisson afstandsberekening toegepast. Er wordt gekeken welke genen bij elkaar horen. De genen die bij elkaar horen, vormen een groepje in de grafiek.

```
# Note: uses the raw-count data, PoissonDistance performs normalization
# set by the 'type' parameter (uses DESeq)
dds <- assay(ddsMat)
poisd <- PoissonDistance( t(dds), type = "deseq")
# Extract the matrix with distances
samplePoisDistMatrix <- as.matrix(poisd$dd)
# Calculate the MDS and get the X- and Y-coordinates
mdsPoisData <- data.frame( cmdscale(samplePoisDistMatrix) )
# And set some better readable names for the columns
names(mdsPoisData) <- c('x_coord', 'y_coord')</pre>
```

En natuurlijk het maken van de grafiek.

Zoals je kunt zien zijn er heel veel samples die verspreid zijn. Er zijn niet echt groepen. Toch kun je duidelijk zien dat de groepen vaper en control samen een groep vormen met blauw en groen. Er zijn van de rokers groep wel een aantal samples die ook in de groep vallen, maar dat zijn er niet veel. Ook vertoond de rokers groep behoorlijke individuele afwijkingen.

Differentieel tot expressie gebrachte genen (DEG's)

Het uiteindelijke doel is om genen te vinden die afwijken van de 'normale' genen. Het is ook belangrijk om genen te vinden die ook significant verschillen van de normaal. Hiervoor gaan we testen uitvoeren. Echter zijn de testen heel erg gevoelig voor buitenliggende waarden. Om deze reden voeren we nog een normalisatie uit, maar dan op een andere manier. We kunnen altijd later nog makklijk samples verwijderen en we kunnen daarom voor de zekerheid zoveel mogelijk visualitaties hebben om dit goed te onderbouwen.

We gaan de data normaliseren door middel van de counts per miljoen. Het aantal counts wordt berekend per miljoen. Deze data transformeren we vervolgens met de log2.

```
#counts.fpm <- log2( (counts / (colSums(counts) / 1e6)) + 1 )</pre>
```