Departamento de Matemática

Universidade do Minho
Álgebra

Resolução

1º teste - 5 dez 2020

Lic. em Ciências de Computação/Lic. em Matemática - 2º ano

duração: duas horas

Nome

Curso

Número

Número

Responda no próprio enunciado, colocando uma cruz no quadrado correspondente. Cada questão está cotada com 0,8 valores numa escala de 0 a 20. Respostas erradas não têm qualquer penalização.

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

1.	Seja $(S,*)$ um grupóide não comutativo. Então, para todos $a,b\in S$, $a*b\neq b*a$.	V□	F⊠
1.	Sejam $(S,*)$ um grupóide e $a,b\in S$ tais que $a*b\neq b*a$. Então, $(S,*)$ é um grupóide não comutativo.	V⊠	F□
1.	Sejam $(S,*)$ um grupóide e $a,b\in S.$ Se $a*b=b*a$ então $*$ é comutativa.	V□	F⊠
1.	Sejam S um conjunto e $a,b\in S$. Se $*$ é uma operação binária em S , então $a*b=b*a$.	V□	F⊠
2.	Se G é um grupo e $a,b\in G$ são tais que $a^2\neq b^2$ então $a\neq b$.	V⊠	F
2.	Se G é um grupo e $a,b\in G$ são tais que $a^2=b^2$ então $a^3=b^3$.	$V \square$	F⊠
2.	Se G é um grupo e $a,b\in G$ são tais que $a^2=b^2$ então $a=b$.	$V \square$	F⊠
2.	Se G é um grupo e $a,b\in G$ são tais que $a\neq b$ então $a^2\neq b^2.$	V□	F⊠
3.	Dado um conjunto qualquer X , é possível definir em X uma operação binária \ast tal que (X,\ast) é um grupo.	۷□	F⊠
3.	Dado um conjunto finito qualquer X , é possível definir em X uma operação binária \ast tal que (X,\ast) é um grupo.	V□	F⊠
3.	Dado um conjunto finito não vazio qualquer X , é possível definir em X uma operação binária \ast tal que (X,\ast) é um grupo.	V⊠	F□
3.	Existe um conjunto finito X tal que $(X,*)$ não é grupo qualquer que seja a operação binária $*$ definida em X .	V⊠	F□
4.	Um subconjunto não vazio H de um grupo é um seu subgrupo se $ab^{-1} \in H$ sempre	\/\\\	
4	que $a,b\in H$.	VX	
	Um subconjunto H de um grupo é um seu subgrupo se $ab^{-1} \in H$ sempre que $a,b \in H$.	V	F⊠
4.	Um subconjunto não vazio H de um grupo é um seu subgrupo se $ab \in H$ sempre que $a,b \in H$.	V□	F⊠
4.	Um subconjunto não vazio H de um grupo é um seu subgrupo se $a^{-1}b^{-1}\in H$ sempre que $a,b\in H.$	V□	F⊠

V□ F⊠

5. A intersecção de dois subgrupos de um grupo pode ser vazia.

5.	A união de dois subgrupos de um grupo nunca é um subgrupo desse grupo.	V□	F⊠
5.	Se G é abeliano então a união de dois subgrupos de G é um subgrupo de G .	V□	F⊠
5.	Se G é um grupo e $H, K \subseteq G$ são tais que $H < G$ e $H \cap K < G$ então $K < G$.	V□	F⊠
5.	Se o produto de dois subgrupos de um grupo G é um subgrupo de G então G é abeliano.	V□	F⊠
6.	Um subgrupo não trivial de um grupo não abeliano é um grupo não abeliano.	V□	F⊠
6.	Um subgrupo de um grupo abeliano é um grupo abeliano.	V⊠	F□
6.	Existem grupos não abelianos que admitem subgrupos não triviais abelianos.	V⊠	F□
6.	Existem grupos abelianos que admitem subgrupos não abelianos.	V□	F⊠
7.	Qualquer subgrupo de um grupo define classes laterais esquerdas.	V⊠	F□
7.	Um subgrupo ${\cal H}$ de um grupo é uma classe lateral esquerda módulo ${\cal H}.$	V⊠	F□
7.	Se H é um subgrupo de um grupo G e $a,b\in G$ então as classes laterais aH e Hb são iguais ou disjuntas.	V□	F⊠
7.	Se H é um subgrupo de um grupo G e $a\in G$ então as classes laterais Ha e aH têm o mesmo número de elementos.	V□	F⊠
7.	Se H é um subgrupo de um grupo G e $a,b\in G$ então $aH=bH$ se e só se $ab\in H.$	V□	F⊠
8.	Se G é um grupo e $H < G$ então $ G = H [G:H].$	V	F⊠
8.	Se G é um grupo finito e $H < G$ então $[G:H] \mid G $.	V⊠	F□
8.	Se G é um grupo abeliano de ordem 18, existe $H < G$ tal que $\vert H \vert = 6$.	V⊠	F□
8.	Se G é um grupo de ordem 20 e $H < G$ é tal que $[G:H] = 10$, então, $ H = 10$.	V□	F⊠
9.	Se G é grupo e $H < G$, então, $H \lhd G$ se e só se $xyx^{-1}H \subseteq H$, para todo $x \in G$ e $y \in H$.	V⊠	F□
9.	Se G é grupo, então, $H \lhd G$ se e só se $xyx^{-1} \in H$, para todo $x \in G$ e $y \in H$.	V□	F⊠
9.	Se G é grupo e $H < G$, então, $H \lhd G$ se e só se $xyx^{-1} \in H$, para todo $x \in H$ e $y \in G$.	V□	F⊠
9.	Se G é grupo, $H \lhd G$ e $a \in G$, então, $ah = ha$ para todo $h \in H$.	V□	F⊠
10.	$\mathbb{Z}_3 \lhd \mathbb{Z}_6$.	V□	F⊠
10.	Todos os subgrupos de \mathbb{Z}_6 são normais em \mathbb{Z}_6 .	V⊠	F□
10.	\mathbb{Z}_6 admite um subgrupo que não é normal.	V□	F⊠
10.	$\{[0]_6, [3]_6, [5]_6\} \lhd \mathbb{Z}_6.$	V□	F⊠
11.	Um grupo quociente de um grupo não abeliano é não abeliano.	V□	F⊠
11.	Existem grupos quociente de grupos infinitos que são também grupos infinitos.	V⊠	F□
11.	Um grupo quociente de um grupo finito é um grupo finito.	V⊠	F□
11.	Um grupo quociente de um grupo infinito é um grupo infinito.	V□	F⊠
11.	Um grupo quociente de um grupo abeliano é abeliano.	V⊠,	F□

12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 4.	V⊠ F□
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 2.	V⊠F□
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 10.	V⊠F□
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem n , para todo $n \in \mathbb{N}$.	V⊠F□
12. O grupo aditivo \mathbb{R}/\mathbb{Z} não tem elementos de ordem 2.	V□ F⊠
13. Se $\varphi:G o G'$ é um morfismo de grupos então, para todos $a,b\in G$,	
$\varphi((ab)^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1}).$	V⊠F□
13. Se $\varphi:G\to G'$ é um morfismo de grupos e $a\in G$ então $\varphi(< a>)=<\varphi(a)>$.	V⊠F□
13. Se $\varphi:G\to G'$ é um epimorfismo de grupos então $\mathrm{Nuc}\varphi\lhd G'$.	V□ F⊠
13. Se $\varphi:G\to G'$ é um morfismo de grupos e $H\lhd G$ então $\varphi(H)\lhd G'$.	V□ F⊠
14. $\mathbb{Z}_2\otimes\mathbb{Z}_4$ é isomorfo a $\mathbb{Z}_8.$	V□ F⊠
14. Dois grupos finitos com a mesma ordem são isomorfos.	V□F⊠
14. Se G,H e K são grupos tais que $G\simeq H$ e $H\simeq K$ então $G\simeq K.$	V⊠F□
14. Dois grupos finitos isomorfos têm a mesma ordem.	V⊠F□
15. Os subgrupos gerados por dois elementos de um grupo finito G com a mesma ordem	\ <u>\</u> \
são isomorfos.	VØ F
são isomorfos. 15. Se G é grupo e $a,b\in G$ são tais que $b\in < a>$ então $a\in < b>$.	V□ F⊠
são isomorfos. 15. Se G é grupo e $a,b\in G$ são tais que $b\in < a>$ então $a\in < b>$. 15. Se G é um grupo e $a,b\in G$ são tais que $b\in < a>$, então, existe $n\in \mathbb{N}$ tal que $a=b$	V□ F⊠ ⁿ . V□ F⊠
são isomorfos. 15. Se G é grupo e $a,b\in G$ são tais que $b\in < a>$ então $a\in < b>$.	V□ F⊠
são isomorfos. 15. Se G é grupo e $a,b\in G$ são tais que $b\in < a>$ então $a\in < b>$. 15. Se G é um grupo e $a,b\in G$ são tais que $b\in < a>$, então, existe $n\in \mathbb{N}$ tal que $a=b$	V□ F⊠ ⁿ . V□ F⊠
são isomorfos. 15. Se G é grupo e $a,b\in G$ são tais que $b\in < a>$ então $a\in < b>$. 15. Se G é um grupo e $a,b\in G$ são tais que $b\in < a>$, então, existe $n\in \mathbb{N}$ tal que $a=b$ 15. Dois elementos de um grupo G com a mesma ordem geram o mesmo subgrupo de G .	V□ F⊠ n. V□ F⊠ V□ F⊠
são isomorfos. 15. Se G é grupo e $a,b\in G$ são tais que $b\in < a>$ então $a\in < b>$. 15. Se G é um grupo e $a,b\in G$ são tais que $b\in < a>$, então, existe $n\in \mathbb{N}$ tal que $a=b$ 15. Dois elementos de um grupo G com a mesma ordem geram o mesmo subgrupo de G . 16. Se G é um grupo cíclico e $a,b\in G$ então $<\{a,b\}>$ é um grupo cíclico.	V□ F⊠ ". V□ F⊠ V□ F⊠
são isomorfos. 15. Se G é grupo e $a,b \in G$ são tais que $b \in < a >$ então $a \in < b >$. 15. Se G é um grupo e $a,b \in G$ são tais que $b \in < a >$, então, existe $n \in \mathbb{N}$ tal que $a = b$ 15. Dois elementos de um grupo G com a mesma ordem geram o mesmo subgrupo de G . 16. Se G é um grupo cíclico e $a,b \in G$ então $< \{a,b\} >$ é um grupo cíclico. 16. Se G é um grupo cíclico e H $< G$ então H é um grupo cíclico.	V□ F⊠ ". V□ F⊠ V□ F⊠ V⊠ F□ V⊠ F□
são isomorfos. 15. Se G é grupo e $a,b \in G$ são tais que $b \in < a >$ então $a \in < b >$. 15. Se G é um grupo e $a,b \in G$ são tais que $b \in < a >$, então, existe $n \in \mathbb{N}$ tal que $a = b$ 15. Dois elementos de um grupo G com a mesma ordem geram o mesmo subgrupo de G . 16. Se G é um grupo cíclico e $a,b \in G$ então $< \{a,b\} >$ é um grupo cíclico. 16. Se G é um grupo cíclico e $H < G$ então H é um grupo cíclico. 16. Se G é um grupo e H G é cíclico então G é cíclico.	V□ F⊠ ". V□ F⊠ V□ F⊠ V□ F□ V□ F□ V□ F⊠
são isomorfos. 15. Se G é grupo e $a,b \in G$ são tais que $b \in < a >$ então $a \in < b >$. 15. Se G é um grupo e $a,b \in G$ são tais que $b \in < a >$, então, existe $n \in \mathbb{N}$ tal que $a = b$ 15. Dois elementos de um grupo G com a mesma ordem geram o mesmo subgrupo de G . 16. Se G é um grupo cíclico e $a,b \in G$ então $< \{a,b\} >$ é um grupo cíclico. 16. Se G é um grupo cíclico e $H < G$ então H é um grupo cíclico. 16. Se G é um grupo e $H < G$ é cíclico então G é cíclico. 16. Existem grupos cíclicos G que admitem subgrupos que não são cíclicos.	V□ F⊠ ". V□ F⊠ V□ F⊠ V□ F□ V□ F⊠ V□ F⊠
são isomorfos. 15. Se G é grupo e $a,b \in G$ são tais que $b \in < a >$ então $a \in < b >$. 15. Se G é um grupo e $a,b \in G$ são tais que $b \in < a >$, então, existe $n \in \mathbb{N}$ tal que $a = b$ 15. Dois elementos de um grupo G com a mesma ordem geram o mesmo subgrupo de G . 16. Se G é um grupo cíclico e $a,b \in G$ então $< \{a,b\} >$ é um grupo cíclico. 16. Se G é um grupo cíclico e $H < G$ então H é um grupo cíclico. 16. Se G é um grupo e $H < G$ é cíclico então G é cíclico. 16. Existem grupos cíclicos G que admitem subgrupos que não são cíclicos. 17. Sejam G e H dois grupos cíclicos. Então, o produto direto $G \otimes H$ é um grupo cíclico.	V□ F⊠ N□ F⊠ V□ F⊠ V□ F⊠ V□ F⊠ V□ F⊠ V□ F⊠
são isomorfos. 15. Se G é grupo e $a,b \in G$ são tais que $b \in < a >$ então $a \in < b >$. 15. Se G é um grupo e $a,b \in G$ são tais que $b \in < a >$, então, existe $n \in \mathbb{N}$ tal que $a = b$ 15. Dois elementos de um grupo G com a mesma ordem geram o mesmo subgrupo de G . 16. Se G é um grupo cíclico e $a,b \in G$ então $< \{a,b\} >$ é um grupo cíclico. 16. Se G é um grupo cíclico e $H < G$ então H é um grupo cíclico. 16. Se G é um grupo e $H < G$ é cíclico então G é cíclico. 16. Existem grupos cíclicos G que admitem subgrupos que não são cíclicos. 17. Sejam G e H dois grupos cíclicos. Então, o produto direto $G \otimes H$ é um grupo cíclico. 17. $\mathbb{Z}_4 \otimes \mathbb{Z}_6$ é um grupo cíclico.	V□ F⊠ N□ F⊠ V□ F⊠ V□ F⊠ V□ F⊠ V□ F⊠ V□ F⊠ V□ F⊠

 $v.s.f.f. \, \longrightarrow \,$

E	m cada uma das questões seguintes, assinale a(s) opção(ões) correta(s):	
18.	Seja $\varphi:\mathbb{Z}\otimes\mathbb{Z}\to\mathbb{Z}$ um morfismo de grupos tal que $\varphi((1,0))=12$ e $\varphi((0,1))=30$. $\varphi(\mathbb{Z}\otimes\mathbb{Z})=n\mathbb{Z}$, com	Então
	$ \boxtimes n = 6 $ $ \square n = 60 $ $ \square n = 18 $ $ \square n = 3 $	
18.	Seja $\varphi:\mathbb{Z}\otimes\mathbb{Z}\to\mathbb{Z}$ um morfismo de grupos tal que $\varphi((1,0))=30$ e $\varphi((0,1))=20$. $\varphi(\mathbb{Z}\otimes\mathbb{Z})=n\mathbb{Z}$, com	Então
	$ \boxtimes n = 10 \qquad \square \ n = 5 \qquad \square \ n = 20 \qquad \square \ n = 60 $	
18.	Seja $\varphi:\mathbb{Z}\otimes\mathbb{Z}\to\mathbb{Z}$ um morfismo de grupos tal que $\varphi((1,0))=15$ e $\varphi((0,1))=28$. $\varphi(\mathbb{Z}\otimes\mathbb{Z})=n\mathbb{Z}$, com	Então
	$ \boxtimes n = 1 \qquad \square \ n = 13 \qquad \square \ n = 43 \qquad \square \ n = 15 $	
18.	Seja $\varphi:\mathbb{Z}\otimes\mathbb{Z}\to\mathbb{Z}$ um morfismo de grupos tal que $\varphi((1,0))=20$ e $\varphi((0,1))=12$. $\varphi(\mathbb{Z}\otimes\mathbb{Z})=n\mathbb{Z}$, com	Então
	$\square \ n = 2 \qquad \boxtimes n = 4 \qquad \square \ n = 60 \qquad \square \ n = 8$	
19.	Seja G um grupo cíclico de ordem 27. O número de automorfismos em G é	
	$\square \ 27 \qquad \square \ 4 \qquad \boxtimes \ 18 \qquad \square \ 1$	
19.	Seja G um grupo cíclico de ordem 27. O número de geradores de G é	
	\boxtimes 18 \square 4 \square 27 \square 1	
19.	Seja G um grupo cíclico de ordem 27. O número de subgrupos de G é	
	\square 18 \boxtimes 4 \square 27 \square 1	
19.	Seja G um grupo cíclico de ordem 27. O número de subgrupos cíclicos de G é	
	\square 18 \square 13 \square 27 \boxtimes 4	
20.	Sejam G um grupo, $H < G$ e $K \lhd G$. Podemos concluir que:	
	$\square \ \forall h \in H, \ \forall k \in K, \ hk = kh$ $\square \ \forall h \in H, \ \forall k \in K, \ \exists h' \in H : \ kh = h'k$ $\square \ \forall h \in H, \ \forall k \in K, \ \exists h' \in H : \ kh = h'k$ $\square \ \forall h \in H, \ \forall k \in K, \ \exists h' \in H : \ hk = h'k$	
20.	Sejam G um grupo, $K < G$ e $H \lhd G$. Podemos concluir que:	

 $\square \ \forall h \in H, \, \forall k \in K, \, \exists k' \in K: \, hk = k'h$ $\square \ \forall h \in H, \ \forall k \in K, \ hk = kh$ $\boxtimes \forall h \in H, \forall k \in K, \exists h' \in H : kh = h'k$ $\boxtimes \forall h \in H, \forall k \in K, \exists h' \in H : hk = kh'$

20. Sejam G um grupo, $K, H \triangleleft G$. Podemos concluir que:

 $\square \ \forall h \in H, \ \forall k \in K, \ hk = kh$ $\boxtimes \forall h \in H, \forall k \in K, \exists k' \in K : hk = k'h$ $\boxtimes \forall h \in H, \forall k \in K, \exists h' \in H : kh = h'k$ $\boxtimes \forall h \in H, \forall k \in K, \exists h' \in H : hk = kh'$

20. Sejam G um grupo, K < G e $H \lhd G$. Podemos concluir que:

 $\square \ \forall h \in H, \ \forall k \in K, \ hk = kh$ $\square \ \forall h \in H, \ \forall k \in K, \ \exists k' \in K : \ hk = k'h$ $\square \ \forall h \in H, \, \forall k \in K, \, \exists k' \in K: \, kh = hk'$ $\boxtimes \forall h \in H, \forall k \in K, \exists h' \in H : kh = h'k$

21.	Seja $G = \mathbb{Z}_{12} \otimes \mathbb{Z}_8$. Se $H < G$ é tal que $ H = 8$, então podemos ter
	$\square H = <([2]_{12}, [4]_8) > \square H = <([6]_{12}, [3]_8) > \square H = <([0]_{12}, [5]_8) > \square H = \mathbb{Z}_8$
21.	Seja $G = \mathbb{Z}_{12} \otimes \mathbb{Z}_8$. Se $H < G$ é tal que $ H = 8$, então podemos ter
	$\square H = \mathbb{Z}_8 \qquad \boxtimes H = <([6]_{12}, [7]_8) > \qquad \square H = <([2]_{12}, [4]_8) > \qquad \boxtimes H = <([3]_{12}, [3]_8) >$
21.	Seja $G = \mathbb{Z}_6 \otimes \mathbb{Z}_{15}$. Se $H < G$ é tal que $ H = 10$, então podemos ter
	$\square H = \mathbb{Z}_2 \otimes \mathbb{Z}_5 \qquad \square H = <([2]_6, [5]_{15}) > \qquad \boxtimes H = <([3]_6, [9]_{15}) > \qquad \boxtimes H = <([3]_6, [3]_{15})$
21.	Seja $G = \mathbb{Z}_6 \otimes \mathbb{Z}_{15}$. Se $H < G$ é tal que $ H = 10$, então podemos ter
	$ \boxtimes H = <([3]_6, [3]_{15}) > \qquad \square H = \mathbb{Z}_2 \otimes \mathbb{Z}_5 \qquad \square H = <([5]_6, [2]_{15}) > \qquad \boxtimes H = <([3]_6, [6]_{15}) $
22.	Sejam G um grupo e $a \in G \backslash \{1_G\}$ tal que $a^{18} = 1_G$. Então,
	$\Box a^9 = 1_G \qquad \Box a^{24} \neq 1_G \qquad \boxtimes a^{17} \neq 1_G \qquad \Box a^3 = 1_G$
22.	Sejam G um grupo e $a \in G \backslash \{1_G\}$ tal que $a^{12} = 1_G$. Então,
	$\boxtimes a^{36} = 1_G$ $\square a^8 \neq 1_G$ $\square a^{13} = 1_G$ $\square a^3 \neq 1_G$
22.	Sejam G um grupo e $a \in G \backslash \{1_G\}$ tal que $a^{12} = 1_G$. Então,
	$\boxtimes a^{24} = 1_G$ $\boxtimes a^5 \neq 1_G$ $\Box a^7 = 1_G$ $\Box a^3 = 1_G$
22.	Sejam G um grupo e $a \in G \backslash \{1_G\}$ tal que $a^{18} = 1_G$. Então,
	$\square \ a^1 = 1_G \qquad \boxtimes \ a^7 \neq 1_G \qquad \boxtimes \ a^{36} = 1_G \qquad \square \ a^3 = 1_G$
23.	Sejam G um grupo não abeliano de ordem 21 e $a \in G$. Então,
	$\square \ o(a) \in \{1,7\} \qquad \square \ o(a) \in \{1,3,7,21\} \qquad \square \ o(a) \in \{3,7\} \qquad \boxtimes \ o(a) \in \{1,3,7\}$
23.	Sejam G um grupo não abeliano de ordem 14 e $a \in G$. Então,
	$\square \ o(a) \in \{1, 2\} \qquad \square \ o(a) \in \{1, 2, 7, 14\} \qquad \boxtimes \ o(a) \in \{1, 2, 7\} \qquad \square \ o(a) \in \{2, 7\}$
23.	Sejam G um grupo não abeliano de ordem 15 e $a \in G$. Então,
	$\square \ o(a) \in \{1, 3\} \qquad \square \ o(a) \in \{1, 3, 5, 15\} \qquad \square \ o(a) \in \{3, 5\} \qquad \boxtimes \ o(a) \in \{1, 3, 5\}$
23.	Sejam G um grupo não abeliano de ordem 10 e $a \in G$. Então,
	$\boxtimes o(a) \in \{1, 2, 5\}$ $\square o(a) \in \{1, 2, 5, 10\}$ $\square o(a) \in \{2, 5\}$ $\square o(a) \in \{1, 2\}$

24. Seja $\varphi:G\to G'$ um morfismo não nulo de grupos finitos.

$$\boxtimes |G| = 13 \Rightarrow 13 \mid |G'|$$
 $\boxtimes |G'| = 13 \Rightarrow 13 \mid |G|$
 $\square |G| = 13 \Rightarrow |G'| = 13$ $\square |G'| = 13 \Rightarrow |G| = 13$

24. Seja $\varphi:G\to G'$ um morfismo não nulo de grupos finitos.

$$\Box |G| = 5 \Rightarrow |G'| = 5$$

$$\boxtimes |G| = 5 \Rightarrow 5 |G'| = 5$$

$$\boxtimes |G'| = 5 \Rightarrow 5 |G| = 5$$

$$\boxtimes |G'| = 5 \Rightarrow 5 |G|$$

24. Seja $\varphi:G\to G'$ um morfismo não nulo de grupos finitos.

$$\Box |G| = 7 \Rightarrow |G'| = 7$$

$$\Box |G'| = 7 \Rightarrow |G| = 7$$

$$\Box |G'| = 7 \Rightarrow |G| = 7$$

$$\Box |G'| = 7 \Rightarrow 7 | |G'|$$

$$\Box |G'| = 7 \Rightarrow 7 | |G'|$$

24. Seja $\varphi:G\to G'$ um morfismo não nulo de grupos finitos.

$$igtimes |G'| = 11 \Rightarrow 11 \mid |G|$$
 $\Box |G'| = 11 \Rightarrow |G| = 11$ $\boxtimes |G| = 11 \Rightarrow 11 \mid |G'|$ $\Box |G| = 11 \Rightarrow |G'| = 11$

25. Seja $\varphi:\mathbb{Z}\to Z_{12}$ o morfismo de grupos definido por $\varphi(n)=[8n]_{12}$. Então,

$$\square$$
 Nuc $\varphi = \{0\}$ \boxtimes Nuc $\varphi = 3\mathbb{Z}$ \square Nuc $\varphi = 4\mathbb{Z}$ \square Nuc $\varphi = \mathbb{Z}_3$

25. Seja $\varphi:\mathbb{Z}\to Z_{18}$ o morfismo de grupos definido por $\varphi(n)=[15n]_{18}$. Então,

$$\square \operatorname{Nuc} \varphi = \{0\}$$
 $\square \operatorname{Nuc} \varphi = 6\mathbb{Z}$ $\square \operatorname{Nuc} \varphi = 5\mathbb{Z}$ $\square \operatorname{Nuc} \varphi = \mathbb{Z}_6$

25. Seja $\varphi:\mathbb{Z}\to Z_{18}$ o morfismo de grupos definido por $\varphi(n)=[10n]_{18}$. Então,

$$\square \operatorname{Nuc}\varphi = \{0\} \qquad \boxtimes \operatorname{Nuc}\varphi = 9\mathbb{Z} \qquad \square \operatorname{Nuc}\varphi = \mathbb{Z}_9 \qquad \square \operatorname{Nuc}\varphi = 5\mathbb{Z}$$

25. Seja $\varphi: \mathbb{Z} \to Z_{12}$ o morfismo de grupos definido por $\varphi(n) = [9n]_{12}$. Então,

$$\square \operatorname{Nuc}\varphi = \{0\} \qquad \boxtimes \operatorname{Nuc}\varphi = 4\mathbb{Z} \qquad \square \operatorname{Nuc}\varphi = 12\mathbb{Z} \qquad \square \operatorname{Nuc}\varphi = \mathbb{Z}_4$$