ОПР(Эндоморфный шифр)

Шифр эндоморфный если $|\mathcal{M}| = |\mathcal{C}|$

Договоримся, что $\forall m \in \mathcal{M}: P(M=m) > 0$

Лемма

В совершенной КС $\forall m \in \mathcal{M}: E(m,\mathcal{K}) = \mathcal{C}$ т.е если мы возьмем любой открытый текст, зашифруем его на всех ключах, то получим все криптограмы

Д-ВО (O/Π)

 $\exists m \in \mathcal{M}, c \in \mathcal{C}, \forall k \in \mathcal{K} : E(m, k) \neq c$

Тогда $P(M=m|C=c)=0\Rightarrow$ [т.к в совершенной КС, М и С независимы, то условная и безусловная вероятности равны] $\Rightarrow P(M=m)=0$ \bigotimes

В частности это значит, что $|\mathcal{K}| \geq |\mathcal{C}| \geq$ [иначе бы не получалось однозначно расшифровывать] $\geq |\mathcal{M}|$

Теорема (Главная теорема билета)

Пусть $|\mathcal{K}| = |\mathcal{M}| \Rightarrow |\mathcal{K}| = |\mathcal{M}| = |\mathcal{C}|$

Тогда КС $(\mathcal{K}, \mathcal{C}, \mathcal{K}, E, D)$ - совершенная \Leftrightarrow выполняется 1) и 2)

1. $\forall m, c \; \exists !k : E(m, k) = c$

2. $\forall k \in \mathcal{K} : P(K = k) = \frac{1}{|\mathcal{K}|}$

Д-ВО \Rightarrow пункт 1

По лемме $|E(m,\mathcal{K})| = |\mathcal{C}| = |\mathcal{K}|$ $\not\preceq \forall m \in \mathcal{M} : E(m,_) : \mathcal{K} \to \mathcal{C}$

Рис. 1: воспоминания о свойствах функций

- Это сюръективная функция на множествах одинакового размера \Rightarrow эта $E(m,_)$ биекция
 - Функция это всюдуопределенное однозначное б.и

Зафиксируем $c \in \mathcal{C}.k_i$ - это такой ключ, что $E(m_i,k_i)=c$

Тогда

$$P(M = m_i) = P(M = m_i | C = c) =$$

$$\frac{P(C{=}c|M{=}m_i){\cdot}P(M{=}m_i)}{P(C{=}c)}$$
 =

• $P(C=c|M=m_i)$ - такая же как $P(K=k_i)$

$$\frac{P(K=k_i)\cdot P(M=m_i)}{P(C=c)}$$
 \Rightarrow

Получили, что $P(M=m_i) = \frac{P(K=k_i) \cdot P(M=m_i)}{P(C=c)} \Rightarrow$

$$\forall i : P(K = k_i) = P(C = c)$$

т.к С зафиксировано, то $\forall i\ P(K=k_i)$ получаем одинаковую вероятность, т.е k_i - распределены равномерно \Rightarrow $\forall i\ P(K=k_i)=\frac{1}{|\mathcal{K}|}$

Д-ВО ←

берём
$$c \in \mathcal{C}$$
 и $\angle P(C = c)$

$$P(C = c) =$$

• По формуле полной вероятности

$$\textstyle \sum_{m_i \in \mathcal{M}} (P(C = c | M = m_i) \cdot P(M = m_i)) =$$

по 1)

$$\textstyle\sum_{m_i\in\mathcal{M}}(P(K=k_i)\cdot P(M=m_i)) =$$

по 2)

$$\frac{1}{|\mathcal{K}|} \cdot \sum_{m_i \in \mathcal{M}} (P(M=m_i)) = \frac{1}{|\mathcal{K}|}$$

Получили, что $P(C=c)=\frac{1}{|\mathcal{K}|}$

$$P(M=m_i|C=c_i) =$$

$$\frac{P(C=c|M=m_i)\cdot P(M=m_i)}{P(C=c)}$$
 =

по 2)

$$\frac{\frac{1}{|\mathcal{K}|} \cdot P(M = m_i)}{\frac{1}{|\mathcal{M}|}} = P(M = m_i)$$

Получили, что условная вероятность равна безусловной, т.е случайные величины М и С - независимы

Шифр вернама - совершенный шифр