Digital Image Processing (261453)

Computer Assignment 3

วรธรรม ฆังตระกูล 570610597

บทน้ำ

ในการตรวจข้อสอบกากบาท นักศึกษาได้พัฒนาโปรแกรมขึ้นมาเพื่อวิเคราะห์รูปภาพ โดยมีข้อมูลเบื้องต้นคือรูปแบบกระดาษ และจุดบอกตำแหน่งสองจุด วิธีการที่นักศึกษาใช้คือเมื่อป้อนรูปภาพข้อสอบเข้ามา โปรแกรมจะตรวจหาจุดสองจุด แล้ว คำนวณระยะห่างและมุม จากนั้นนำไปเปรียบเทียบกับต้นฉบับเพื่อปรับให้ตรงกัน เมื่อตรงกันแล้วนักศึกษานำภาพต้นฉบับมา ลบออกจากภาพข้อสอบเพื่อให้เหลือแค่รอยกากบาท จากนั้นตรวจหาจุดกลางของกากบาท เมื่อทราบแล้วก็ตรวจสอบว่าอยู่ คอลัมน์ไหน เมื่อได้แล้วตรวจสอบว่าอยู่แถวไหนและข้อไหน จากนั้นรวบรวมผลลัพธ์

วิธีการ

1. ตรวจหาจุด

นักศึกษาได้ทำการ crop ภาพจุดดำจากรูปต้นฉบับ จากนั้นนำไปคิด cross-correlation กับรูปที่ป้อนมา ค่า max ของ correlation คือจุดดำหนึ่งในสองจุด นำมาย้อนหาตำแหน่งจุดก็จะได้มา จากนั้นนักศึกษาลบจุดนั้นออกจาก correlation จะได้ค่า max ที่สองที่บอกตำแหน่งจุดที่สอง เมื่อได้ทั้งสองจุดแล้วนักศึกษาคำนวณขนาดส่วนของ เส้นตรงและมุมระหว่างมัน ได้แล้วนำมาเปรียบเทียบกับต้นฉบับ จากนั้นหมุน ปรับขนาด และเลื่อนรูปที่ป้อนเข้ามา เพื่อให้จุดดำทับของรูปต้นฉบับพอดี

2. ลบกรอบ

นักศึกษา dilate รูปต้นฉบับเพื่อให้เส้นหนาขึ้น จากนั้นลบออกจากรูปที่ได้มาหลังจากปรับขนาด เท่านี้จะได้รูปที่เหลือ แต่กากบาท ที่นักศึกษาทำตรงนี้เพราะในรูปต้นฉบับมีตัวอักษรอยู่และอาจรบกวนขั้นตอนต่อไปได้

3. ตรวจหากากบาท

นักศึกษา crop ภาพกากบาทจากรูปตัวอย่าง โดย crop มาแค่ส่วนกลางเพราะเป็นส่วนที่คงที่มากที่สุด จากนั้น นักศึกษาได้ลองสองวิธีการด้วยกัน วิธีแรกคือเปลี่ยนภาพกากบาทนี้ให้เป็นแบบ binary แล้วใช้เป็น neighborhood กับ median filter วิธีที่สองคือนำไปคำนวณ cross-correlation กับรูปที่ป้อนมา พบว่าวิธีที่สองดีกว่า เพราะรูปที่ได้ นำไปแยกอกได้ง่ายกว่า

4. นับข้อ

จากการที่นักศึกษามีรูปต้นฉบับ จึงไม่เป็นเรื่องยากที่จะเขียนโปรแกรมวนตามคอลัมน์ วนตามแถว แล้วนับข้อ อย่างไร ก็ตามหากมีการเปลี่ยนรูปแบบกระดาษคำตอบ โปรแกรมส่วนนี้ต้องแก้ไขเอง ซึ่งเป็นสิ่งที่ไม่พึงประสงค์นัก

	A	В	C	D	Е
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26 27					
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					

	A	В	С	D	Е
41					
42					
43					
44					
45					
46					
47					
48					
49					
50					
51					
52					
53					
54					
55					
56					
57					
58					
59					
60			1 1 1 1 1		
61					
62					
63					
64					
65					
66					
67					
68					
69					
70					
71					
72					
73					
74					
75					
76					
77					
78					
79					
80					

	Α	В	С	D	Е
81					
82					
83					
84					
85					
86					
87					
88					
89					
90					
91					
92					
93					
94					
95					
96					
97					
98					
99					
100					
101					
102					
103					
104					
105					
106					
107					
108					
109					
110					
111					
112					
113					
114					
115					
116					
117					
118					
119					
120					

A B C D E 41

ผลการทดลอง

ในขั้นตอนการลบกรอบ ผลการทดลองไม่เป็นไปตามที่คาดหวัง เพราะโปรแกรมตรวจหาจุดดำทั้งสองจุดคลาดเคลื่อน ทำให้ลบกรอบออกไปไม่หมด มิหนำซ้ำยังไปลบกากบาทออกบางส่วน อย่างไรก็ตามหากไม่ถูกลบตรงกลางโปรแกรมยังคง ทำงานต่อไปตามที่หวังไว้

รูปที่ 1. ลบกรอบออกไม่หมด

ในส่วนการตรวจหากากบาท นักศึกษาได้ทดลองแบบ median filter ก่อน ได้ผลลัพธ์ดังรูปที่ 2 สังเกตได้ว่าในบาง ช่องกากบาทจะเหลือเป็นรอยขาดๆ ซึ่งไม่เป็นผลดีกับการนำไปตรวจสอบต่อ เพราะยากและโอกาสผิดพลาดสูง

รูปที่ 2. ตรวจหากากบาทโดยใช้ median filter

วิธีทีที่สองที่ใช้คือ cross-correlation กับรูปกากบาท โดยได้ผลลัพธ์ดังรูปที่ 3 สังเกตได้ว่าจุดที่มีกากบาทจะเป็นจุด ขาวที่มีความหนา ซึ่งเหมาะสมแก่การนำไปทำขั้นตอนต่อไป

รูปที่ 3. ตรวจหากากบาทโดยใช้ cross-correlation

ในการนับข้อ เพื่อให้ง่ายนักศึกษาได้แปลงรูปให้เป็น binary จากนั้นก็นับข้อตามรูปแบบกระดาษ คือไล่ตามคอลัมน์ ไล่ตามแถว แล้วดูว่าตำแหน่งแกน x ของจุดสีขาวควรจัดเป็นข้ออะไร

รูปที่ 4. รูป binary สำหรับนับข้อ

สนทนา

วิธีการหนึ่งที่นำมาช่วยในการนับข้อกากบาทได้คือการเก็บรูปแบบกากบาท บางค้นอาจกาตวัด บางคนกาแข็ง โดย นักศึกษาสามารถเก็บข้อมูล นำมาจัดแบ่งให้เป็นหมวดเหมือนแบ่งลายมือ แล้วจัดเก็บเป็น kernel bank เพื่อนำไปใช้ วิธีนี้จำ ช่วยให้รองรับรูปแบบกากบาทได้มากขึ้นและลดหย่อนว่าผู้สอบต้องกาให้สมบูรณ์

จากการทำการบ้านครั้งนี้ทำให้นักศึกษาได้เห็นว่าข้อสอบที่ฝนเป็นวงกลมนั้นสร้างความสะดวกสบายให้แก่ผู้ตรวจ ผู้ดูแลระบบเป็นอย่างมาก อีกทั้งลดโอกาสความผิดพลาด ลดภาระที่ต้องใช้คนมาตรวจสอบ

สรุป

การนำ image processing มาใช้ตรวจข้อสอบกากบาทมีข้อดีคือผู้ตรวจไม่ต้องคอยตรวจเองทีละข้อ ทุกๆคน แต่ใช้ โปรแกรมมาช่วยตรวจแทน อย่างไรก็ตามต้องระวังถึงโอกาสผิดพลาด เพราะกากบาทเหมือนกับลายมือ แต่ละคนมีไม่ เหมือนกัน การที่จะเขียนโปรแกรมเพื่อรองรับลายมือให้ครบถ้วนนั้นลำบาก วิธีการหนึ่งคือใช้ machine learning เข้ามาช่วย ทำให้ผู้พัฒนาไม่จำเป็นต้องมาคอยปรับแต่งโปรแกรมทุกๆครั้ง

ข้อจำกัดของโปรแกรมที่นักศึกษาเขียนคือจำเป็นต้องรู้รูปแบบกระดาษล่วงหน้า โดยจะเปลี่ยนแปลงไปนิดเดียวไม่ได้ และกากบาทควรมีความสมบูรณ์ระดับหนึ่ง แต่หากนักศึกษาแก้ไขให้โปรแกรมสามารถลบกรอบออกไปได้สมบูรณ์ ถึงกากบาท จะบิดเบี้ยวแค่ไหน ขอให้ยังเป็นกากบาทคือมีการขีดตัดกันตรงกลาง โปรแกรมนักศึกษาจะนับได้

```
blackcirc = im2bw(mat2gray(imread('circle.png')(:,:,1)), 0.8);
train = im2bw(mat2gray(imread('Choice_train01.jpg')), 0.8);
test1 = im2bw(mat2gray(imread('Choice test01.jpg')), 0.8);
test2 = im2bw(mat2gray(imread('Choice Rtest01.jpg')), 0.8);
xcross = im2bw(mat2gray(imread('xcross.png')(:,:,1)), 0.8);
function [C] = myxcorr2(A, B)
  s1 = max(size(A)(1), size(B)(1));
  s2 = max(size(A)(2), size(B)(2));
  C = real(ifft2(
      conj(fft2(imcomplement(A), s1, s2))
      fft2(imcomplement(B), s1, s2)));
 C = flipud(C);
end
function [x1,y1,x2,y2] = getpivot(C, blackcirc)
  [ssr,snd] = max(C(:));
  [y1,x1] = ind2sub(size(C),snd);
  p1 = padarray(blackcirc,[size(C)(1)-size(blackcirc)(1),size(C)(2)-
size(blackcirc)(2)],255,'post');
  p1 = circshift(p1, [y1-floor(size(blackcirc)(1)/2),x1-
floor(size(blackcirc)(2)/2)]);
  C_ = imsubtract(mat2gray(C), imcomplement(mat2gray(p1)));
  [ssr,snd] = max(C(:));
  [y2,x2] = ind2sub(size(C),snd);
  if x1 > x2
    tmp1 = x1;
    tmp2 = y1;
   x1 = x2;
   y1 = y2;
   x2 = tmp1;
   y2 = tmp2;
 end
 #y1 = size(C)(1) - y1;
 #y2 = size(C)(1) - y2;
end
function [dis] = getdis(x1,y1,x2,y2)
 dis = sqrt((x1-x2)^2+(y1-y2)^2);
end
function [ang] = getang(x1,y1,x2,y2)
  ang = atan2(y2-y1,x2-x1) * 180 / pi;
end
function [dis,ang,x1,y1,x2,y2] = getpivot2(A, B)
 C = myxcorr2(A, B);
  [x1,y1,x2,y2] = getpivot(C, B);
 dis = getdis(x1,y1,x2,y2);
  ang = getang(x1,y1,x2,y2);
end
```

```
function [A, B] = padeq(A, B)
  d1 = size(A)(1) - size(B)(1);
  d2 = size(A)(2) - size(B)(2);
  if d1 < 0
   A = padarray(A, [-d1, 0], 255, 'post');
  else
    B = padarray(B,[d1,0],255,'post');
  end
  if d2 < 0
   A = padarray(A,[0,-d2],255,'post');
  else
    B = padarray(B,[0,d2],255,'post');
  end
end
function [E,F] = test(A, B, C, xcross)
  [dis0,ang0,x01,y01,x02,y02] = getpivot2(A, C);
  [dis2,ang2,x21,y21,x22,y22] = getpivot2(B, C);
  [test2size1 test2size2] = size(B);
 test2 = imrotate(B,ang0-ang2,'bilinear','crop');
 test2 = imresize(B,dis0/dis2);
  ang2 = (ang0-ang2) * pi / 180;
  x21_ = x21 - test2size2/2;
 y21_ = y21 - test2size1/2;
  x21_{-} = x21_{-} * cos(ang2_{-}) - y21_{-} * sin(ang2_{-});
  y21_{-} = x21_{-} * sin(ang2_{-}) + y21_{-} * cos(ang2_{-});
  x21_ = x21_ + test2size2/2;
 y21_ = y21_ + test2size1/2;
 x21_ *= dis0/dis2;
 y21_ *= dis0/dis2;
 x21_ += size(C)(2)/2;
  #y21 -= size(blackcirc)(1)/2;
  x21_ = floor(x21_);
 y21_ = floor(y21_);
 test2 = imtranslate(B,x21_-x01,y21_-y01,'crop');
 [A, B] = padeq(A, B);
 se = strel('disk', 2, 0);
 A = imdilate(imcomplement(A), se);
 E = imsubtract(imcomplement(B), (A));
 imshow(imcomplement(E));
 F = myxcorr2(E, imcomplement(xcross));
end
[E1,1F] = test(train, test1, blackcirc, xcross);
[E2,F2] = test(train, test2, blackcirc, xcross);
```