Synthetic STM Imaging: a Pipeline for Deep-Learning Analysis

Vítězslav Lužný (盧偉澤)

Advisor: Prof. Ya-Ping Chiu (邱雅萍教授)

Outline

- Introduction and Motivation
- Simulation of STM Imaging
 - Tunneling Current
 - Tight-Binding Method
 - Feedback Control
 - Distortions
- Application and Results
 - Defect localization
- Conclusion
 - Summary of contributions
 - Limitations and future work

Introduction and Motivation

Introduction

Scanning Tunneling Microscopes (STM)
 enables subatomic resolution of materials'
 electronic structures.

• Measuring is very labor-intensive and relies on guesswork.

target

Introduction

- Many recent works try to address this via machine learning:
 - Denoising [1]
 - Localizing atomic-scale defects [2]
 - Autonomous tip conditioning [3]
 - Measurement workflow automation [4]
- Large labeled datasets required.

^[1] Joucken, F., Davenport, J. L., Ge, Z., Quezada-Lopez, E. A., Taniguchi, T., Watanabe, K., Velasco, J., Lagoute, J., & Kaindl, R. A. (2022) Physical Review Materials

^[2] D. Smalley, S. D. Lough, L. Holtzman, K. Xu, M. Holbrook, M. R. Rosenberger, J. C. Hone, K. Barmak, and M. Ishigami. (2024) MRS Advances

^[3] M. Rashidi and R. A. Wolkow. (2018) ACS Nano

Simulation of STM Imaging

Scanning Tunneling Microscope (STM)

Tunneling Current – Barrier Dependency

Tunneling Current – Local Density of States (LDOS)

Tunneling Current

• Final formula:

$$I(\rho_T, \rho_S, z) \propto e^{-2\kappa z} \int_0^{eV} \rho_T(E_F - eV + \epsilon) \rho_S(E_F + \epsilon) d\epsilon$$

• Discretized expression, summed over all atoms:

$$I_{ij}(V) \sim e^{-2\kappa D_{ij}} \sum_{\epsilon=0}^{eV} \rho_i (E_F - eV + \epsilon) \rho_j (E_F + \epsilon)$$
$$I(V) = \sum_{i \in \text{sample } j \in \text{tip}} I_{ij}(V)$$

LDOS Calculation – Tight Binding Method

- The system is projected onto a localized orbital basis: $H_{ij} = \langle \phi_i | \hat{H} | \phi_j
 angle$
- LDOS is then calculated: $\rho_i(E) = \sum |\langle \phi_i | \psi_n \rangle|^2 \, \delta(E E_n)$

Idealized Constant Height Mode

• Tunneling current can now be calculated for each position in a grid.

Simulated Image

Real Measurement

Idealized Constant Current Mode

• Iterative Newton's Method can be used to calculate constant current mode

Idealized Constant Current Mode

• Small initial height (1 Ångström):

Idealized Constant Current Mode

• Large initial height (5 Ångström):

Feedback Control

$$\Delta z(t) = K_p \cdot e(t) + K_i \cdot \int_{t-t^*}^t e(\tau) d\tau + K_d \cdot \frac{de(t)}{dt}$$

 K_p too low

Current too noisy

 K_p too high

Piezoelectric Actuator

Lateral Distortions

$$y(t) = y_0 + n(t), \qquad n \sim \mathcal{N}^{-18}$$

Hysteresis

Domain reorientation:

$$y(t) = \alpha V(t) + \beta H(t)$$

• Bouc-Wen model:

$$\dot{H}(t) = A\dot{V}(t) - B|\dot{V}(t)|H(t) - C\dot{V}(t)|\dot{H}(t)|$$

Hysteresis – Vertical Distortion

Hysteresis – Vertical Distortion

Hysteresis – Vertical Distortion

Simulation - Summary

- Tunneling Current calculated using Tersoff-Hamann formula.
- Electronic structure approximated via Tight-Binding.
- Additional distortions are simulated:
 - Feedback Control
 - Statistical Noise
 - Piezoelectric Creep
 - Thermal Drift
 - Piezoelectric Hysteresis
 - Tilt (Not mentioned; trivial)

Application and Results

Task

• Defect localization for Tungsten Diselenide.

Application Outline

- Simulation Configuration
 - Tight-Binding Models
 - Dataset parameters
 - Dataset omissions
- Machine Learning Model
 - Architecture
 - Training
 - Validation
- Real Sample Evaluation

Tight-Binding Models - Sample

- Empirical Single-Orbital Model was used.
- Vacancies were simulated by directly removing an atom.
- Dopants were simulated indirectly as an additional onsite energy.

Tight-Binding Models - Tip

- The most common tip orientation is (111).
 - Represented as a rotated 4x4x4 nm cube.
- (001) Tip.
 - Represented as a 6x6x3 nm cone.

 Tips are progressively dulled to increase variety.

Dataset overview

- Simulation parameters sampled from a uniform random distribution.
- 100000 samples; 64x64 resolution; 1-4nm lateral dimension

Main dataset

Control dataset

Common Target

Dataset overview - Omissions

Multi-atom tip apex

Tungsten defects

U-Net architecture

Training

- 40 epochs over 3 hours
- Batch size 16
- Learning Rate Range Test was used

• Ground truth pixel-wise target variance: 0.07096

Model	Dataset	MSE	Smooth L1 Loss
Main U-Net	Validation	0.0173	0.00864
	Training	0.0165	0.00824
Control U-Net	Validation	0.0137	0.00686
	Training	0.0131	0.00655

Validation on Simulated Samples

Real Sample Evaluation

Real measurements

Model trained on the main dataset

Model trained on the control dataset

Conclusion

Conclusion – Summary of contributions

Simulation framework of STM imaging was developed.

- This framework can be used for the training of machine learning models that show better generalization than previous approaches.
- This was demonstrated through a simple machine learning task of defect localization.

Conclusion – Limitations and Future Work

GPU parallelization could greatly speed up dataset creation.

More accurate modelling needed for more complex tasks.

• No ground truth in real STM images for quantitative evaluation.

Thank you!

Q&A

• MoS₂ defects [5]:

• (111) tip apex dull layers

Figure 3.7: Atom positions in the 4 layers modelling the tip's apex.

Multi-orbital WSe₂ Model LDOS

Multi-orbital W Model LDOS

- GUI
- Parameter selection

Classical Runge-Kutta Method

$$\hat{y}_0 \equiv y(t_0) = \alpha$$

$$k_1 = hf(t_i, \hat{y}_i)$$

$$k_2 = hf(t_i + \frac{h}{2}, \hat{y}_i + \frac{1}{2}k_1)$$

$$k_3 = hf(t_i + \frac{h}{2}, \hat{y}_i + \frac{1}{2}k_2)$$

$$k_4 = hf(t_{i+1}, \hat{y}_i + k_3)$$

$$\hat{y}_{i+1} = \hat{y}_i + \frac{1}{6}(k_1 + k_2 + k_3 + k_4)$$

Underfitting

Appropriate capacity >

Overfitting

Convolutional layer

