EE901 PROBABILITY AND RANDOM PROCESSES

MODULE -1 INTRODUCTION TO PROBABILITY THEORY

Abhishek Gupta

ELECTRICAL ENGINEERING IIT KANPUR

1

Choose a

Finite number of possibilities of possibilities of possibilities of possibilities of possibilities of possibilities

2

• Set of all possible outcomes

Examples

· Coin toss

$$\Omega = \{ H, T \}$$

· Dice roll

$$\Omega = \{1,2,3,4,5,6\}$$

• Picking a number

$$\Omega = \{1, 2, 3, 4, \ldots\} = \mathbb{N}$$

 Pick a real number between 0 & 1

4

Sample Space

- A sample space is the set of all possible outcomes
- Elements must be
 - Mutually exclusive
 - Collectively exhaustive
 - Finest grain (How to chose granularity?)

5

Sample Space of a Coin Toss

Set of all possible outcomes $\Omega = \{ H, T \}$

- Are there other outcomes possible?
 - No, but we can reorganize the outcomes!
- If we are interested in the number of turns the coin takes before hitting the ground,
 - Possible outcomes are "coin takes 0 turn", "coin takes 1 turn" and so on.
 - Sample space is $\Omega = \{0,1,2,3,4,\ldots\}$

$$Ω={H,T}$$
 $Ω={0,1,2,3,4,...}$

- If we are interested in both results,
 - An outcomes is in the form
 - The coin takes n turns and show side p
 - Denoted by (n,p)
 - Sample space is

$$\Omega = \{ (0,H),(0,T), (1,H), (1,T), \ldots \}$$

7

$$\Omega = \{ HH, HT, TH, TT \}$$

• Other possible sample spaces:

Number of coins showing Head

 $\Omega = \{0,1,2\}$

If the two coins show the same side Ω ={ YES, NO}

8

Dice as a Coin

• Suppose we need to decide between two options, but we have a dice instead of a coin.

$$\Omega = \{ 1, 2, 3, 4, 5, 6 \}$$

• So we roll the dice, and If an even number appears -> Option A If an odd number appears -> Option B

$$\Omega = \{ E, O \}$$

E denotes even number outcome O denotes odd number outcome

Events

• An event E is a set of outcomes.

Dice Roll. $\Omega = \{1,2,3,4,5,6\}$

 $A=\{1,2,3\} = A$ number less than 4 appears.

 $B=\{2,4,6\}$ = An even number appears.

C={6} = Number 6 appears.

{6} vs 6

- $E \subset \Omega$ (a subset of the sample space).
- We say that event E occurs if any outcome in event E ($\omega \in E$) has occurred.

10

Operations on Events

• Events are sets, so we can define union, intersection and complements on them

Dice Roll. $\Omega = \{1,2,3,4,5,6\}$

 $A=\{1,2\}$ = A number less than 3 appears.

 $B={3}$ = Number 3 appears.

 $C=\{2,4,6\}$ = An even number appears.

 $A \cup B = \{1,2,3\} = A$ number less than 4 appears.

A U B will occur if A or B or both occur.

11

Operations on Events

• Events are sets, so we can define union, intersection and complements on them

Dice Roll. $\Omega = \{1,2,3,4,5,6\}$

 $A=\{1,2\}$ = A number less than 3 appears.

 $B={3}$ = Number 3 appears.

 $C=\{2,4,6\}$ = An even number appears.

 $A \cap C = \{2\}$ = Number 2 occurs

A ∩ C will occur if A and C both occur.

)r		ra	tτ	\bigcirc	1 C	on		/en	+
~	ノレ	ノロ	ıa	UI.	וט	10	OII	ᆫ		u.

• Events are sets, so we can define union, intersection and complements on them

Dice Roll. $\Omega = \{1,2,3,4,5,6\}$

 $A=\{1,2\}$ = A number less than 3 appears.

 $B={3}$ = Number 3 appears.

 $C=\{2,4,6\}$ = An even number appears.

 $C^c=\{1,3,5\}$ = An odd number appears

 C^c will occur if C does not occur.

13

Mutually Exclusive Events

• A and B are mutually exclusive (also called disjoint) events, if there is no element common to both

 $A \cap B = \{\} = \phi$

14

Probability

- Each event E is assigned a probability: $\mathbb{P}(E)$
 - Denotes the collective chance of occurrence of any of the outcomes in it.
- It is a function from set of events $\mathcal F$ to set of real numbers $\mathbb R$.
- What properties should this function have?

Dice Roll. $\Omega = \{1,2,3,4,5,6\}$ A={1}, B={2}, A \cup B ={1,2}

Properties of Probability

- Each event E is assigned a probability: $\mathbb{P}(E)$
- What properties do we want in this function?

```
Dice Roll. \Omega=\{1,2,3,4,5,6\}
A=\{1\}, B=\{2\}, A \cup B =\{1,2\}

What is \mathbb{P}(\Omega)?

\Omega will always occur. Its probability should be 1. \mathbb{P}(\Omega)=1
```

16

Properties of Probability

- Each event E is assigned a probability: $\mathbb{P}(E)$
- What properties do we want in this function?

 $\begin{array}{c} \mathbb{P}(\Omega) = 1 \\ \hline \text{Dice Roll. } \Omega = & \{1,2,3,4,5,6\} \\ A = & \{1\}, \quad B = \{2\}, \quad A \cup B = \{1,2\} \\ \hline \text{Lower limit on } \mathbb{P}(E)? \\ \hline \\ \hline \text{Every event has a non-negative chance.} \\ \hline \end{array}$

17

Properties of Probability

- Each event E is assigned a probability: $\mathbb{P}(E)$
- What properties do we want in this function?

 $\begin{array}{|c|c|c|c|c|}\hline \mathbb{P}(\Omega)=1 & \mathbb{P}(E)\geq 0\\ \hline \\ \text{Dice RoII.} & \Omega=\{1,2,3,4,5,6\}\\ & A=\{1\}, & B=\{2\}, & A\cup B=\{1,2\}\\ \hline \\ \text{A and B are different singleton events.}\\ \hline \\ \text{If $\mathbb{P}(A)$ and $\mathbb{P}(B)$ are known, what will be $\mathbb{P}(A\cup B)$?} \\ \hline \end{array}$

(C)	
Α	n _A
В	n _B
	=
AUΒ	n _{AuB}

19

 n_A + n_B = $n_{A \cup B}$

20

$$\frac{n_A}{n} + \frac{n_B}{n} = \frac{n_{A \cup B}}{n}$$

 $\mathbb{P}(A) + \mathbb{P}(B) = \mathbb{P}(A \cup B)$

н	roperti		(D	1 1		
Н	roparti	മ േവ	Pro	nal	\sim 11	147
	100011	$c_{\mathcal{S}} c_{\mathcal{S}}$		\mathcal{O} aı	\smile III	114

- Each event E is assigned a probability: $\mathbb{P}(E)$
- What properties do we want in this function?

```
\mathbb{P}(\Omega) = 1 \qquad \boxed{\mathbb{P}(\mathsf{E}) \geq 0} \qquad \boxed{\mathbb{P}(\mathsf{A}) + \mathbb{P}(\mathsf{B}) = \mathbb{P}(\mathsf{A} \cup \mathsf{B})}
```

22

Probability Axioms

• Each event E is assigned a probability: $\mathbb{P}(E)$ which satisfies

$$\begin{split} \mathbb{P}(\Omega) &= 1 \\ \mathbb{P}(E) &\geq 0 \\ \mathbb{P}(A) &+ \mathbb{P}(B) = \mathbb{P}(A \cup B) \end{split}$$

for any disjoint events A and B

23

Probability Axioms

• Each event E is assigned a probability: $\mathbb{P}(E)$ which satisfies

```
\begin{split} & \mathbb{P}(\Omega) = 1 \\ & \mathbb{P}(E) \geq 0 \\ & \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) + .... = \mathbb{P}(A_1 \cup A_2 \cup A_3 \cup ....) \\ & \text{for disjoint events } A_1, A_2, A_3, ..... \end{split}
```

- Probability measure is a function from $\mathcal{F}(\text{set of events})$ to [0,1].
- Is the definition complete?

Prob	babil	lity №	1eas	ure
------	-------	--------	------	-----

• Probability measure is a function from $\mathcal{F}(\text{set of events})$ to [0,1] that satisfies

```
\begin{split} \mathbb{P}(\Omega) &= 1 \\ \mathbb{P}(E) &\geq 0 \\ \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) + \ldots &= \mathbb{P}(A_1 \cup A_2 \cup A_3 \cup \ldots) \\ &\qquad \qquad \text{for disjoint events } A_1, A_2, A_3, \ldots. \end{split}
```

- How to assign probabilities?
- How to choose \mathcal{F} ?

25

Class of Events ${\mathcal F}$

- Set of events (subsets of Ω)
- Should include Ω .
- Should include all those "interesting events" for which we want to know probabilities
- Usually

If we are interested in the probability of A, we are also interested in the probability of A not occurring. A^c

. If we are interested in the probability of A and B, we are also interested in the probability of A and B both occurring simultaneously. A \cap B

If we are interested in the probability of A and B, we are also interested in the probability of at least A or B occurring. A U B

26

Class of Events T

- Set of events (subsets of Ω)

 $\Omega \in \mathcal{F}.$

If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.

If $A \in \mathcal{F}$, and $B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$.

Class of Events \mathcal{F}

- Set/Collection of events (subsets of sample space $\Omega)$

 $\Omega \in \mathcal{F}$

If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.

If $A_i \in \mathcal{F} \ \forall \ i = 1, 2, 3, ...$, then $A_1 \cup A_2 \cup A_3 \cup ... \in \mathcal{F}$.

- Such a structure is known as σ algebra.
- $\mathcal F$ is a collection of subsets of Ω satisfying above properties.
- There can be many possibilities, we can choose as per our interest.

28

Example of $\,\mathcal{F}$

Collection of subsets of sample space Ω $\Omega \in \mathcal{F}$.

If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.

 $\text{If } \mathbf{A_i} \in \mathcal{F} \ \forall \ i=1,2,3,..., \text{then } \mathbf{A_1} \cup \mathbf{A_2} \cup \mathbf{A_3} \ \cup \ ... \ \in \mathcal{F}.$

Tetrahedral Dice Roll. Ω ={1,2,3,4}. We are interested in the exact outcome. What should be \mathcal{F} ?

$$\mathcal{F} = \begin{cases} \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,4\}, \{1,2,4\}, \{1$$

29

Example of $\,{\cal F}\,$

Collection of subsets of sample space Ω $\Omega \in \mathcal{F}$.

If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.

 $\text{If } \mathbf{A_i} \in \mathcal{F} \ \forall \ i=1,2,3,..., \text{then } \mathbf{A_1} \cup \mathbf{A_2} \cup \mathbf{A_3} \cup \ ... \ \in \mathcal{F}.$

Tetrahedral Dice Roll. Ω ={1,2,3,4}. We are interested in the knowing whether outcome is even or odd.

Example of ${\cal F}$

Collection of subsets of sample space Ω $\Omega \in \mathcal{F}$.

If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.

 $\text{If } \mathbf{A_i} \in \mathcal{F} \; \forall \; i=1,2,3,..., \text{then } \mathbf{A_1} \cup \mathbf{A_2} \cup \mathbf{A_3} \; \cup \; ... \; \in \mathcal{F}.$

Tetrahedral Dice Roll. Ω ={1,2,3,4}. What is the smallest \mathcal{F} possible?

$$\mathcal{F} = \left\{ \begin{cases} \{1,2,3,4\}, \\ \{\} \end{cases} \right\} = \{\Omega, \phi\}$$

31

Example of $\,{\cal F}$

 \mapsto Pick a number between 0 and 1, $\Omega = (0,1)$. We are interested in the 0 1 exact outcome. What is \mathcal{F} ?

$$\mathcal{F} = \begin{cases} (0,x) & \text{Ex.} (0,3), (0,4), \dots \\ [x,1) & \text{Ex.} [.3,1), [.4,1), \dots \\ (0,x) & \text{U} (y,z) \\ \dots & \{\}, \Omega \end{cases}$$

Set of all possible open intervals, and their countable unions and intersections. It will contain closed intervals also.

Termed Borel sigma algebra.

32

Probability Space

For any random experiment, we have

- Ω $\;\;$ Sample space: set of all possible outcomes
- ${\mathcal F}$ Sigma algebra: set of all events we like to consider
- ${\mathbb P}^-$ Probability measure: a function to assign probability to each event

Pro							
Prol	\sim	\sim 1	1171	<u>_</u>	n	2	ce
1 10	va.	\cup 11	IILY	J	ν	а	$\overline{}$

For any random experiment, we have

Sample space: set of all possible outcomes

Sigma algebra: set of all events we like to consider

Probability measure: a function to assign probability to each event

$$\mathcal{P} = \{\Omega,\,\mathcal{F}\,,\,\mathbb{P}\,\}$$

Probability Space

34

Probability Measure

• Probability measure is a function from $\mathcal{F}(\text{set of events})$ to [0,1] that satisfies

```
\begin{split} \mathbb{P}(\Omega) &= 1 \\ \mathbb{P}(E) &\geq 0 \\ \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) + \ldots = & \mathbb{P}(A_1 \cup A_2 \cup A_3 \cup \ldots) \\ & \text{for disjoint events } A_1, A_2, A_3, \ldots. \end{split}
```

- How to assign probabilities?
- How to choose \mathcal{F} ?

35

Probability Measure

• Probability measure is a function from $\mathcal{F}(\text{set of events})$ to [0,1] that satisfies

```
\begin{split} & \mathbb{P}(\Omega) = 1 \\ & \mathbb{P}(E) \geq 0 \\ & \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) + \ldots = & \mathbb{P}(A_1 \cup A_2 \cup A_3 \cup \ldots) \\ & \text{for disjoint events } A_1, A_2, A_3, \ldots. \end{split}
```

- How to assign probabilities?
- How to choose \mathcal{F} ?

$\overline{}$				$\mathbf{N} \cdot \mathbf{A}$	
Pro	\sim	\sim 1	11 # \ /	17.71	Agelira
		9/1	$\mathbf{H} \mathbf{V}$	$\mathbf{I} \mathbf{V} \mathbf{I}$	easure

Assignment of the probability function depends on whether there are finite, countable or uncountable number of outcomes.

Let us take finite case first i.e. Ω has finite elements.

Coin toss. Ω ={ H, T}. \mathcal{F} = { {}, {H,, T}, {H,T} }. Goal: Assign probability to each element in \mathcal{F} so that it satisfies probability axioms.

37

Coin toss. $\Omega = \{ H, T \}$. $\mathcal{F} = \{ \{ \}, \{H\}, \{T\}, \{H,T\} \}$.

Let us take finite case first i.e. Ω has finite elements.

= 1

Goal: Assign probability to each element in ${\mathcal F}$ so that it satisfies

 $\mathbb{P}(\quad \{H\}\,)$

P({H,T})

 $\mathbb{P}(\quad \{T\}\,)$

 $\mathbb{P}(\Omega) = 1$

 $\mathbb{P}(\,\mathsf{E})\geq 0$

 $\mathbb{P}(\mathsf{A}_1) + \mathbb{P}(\mathsf{A}_2) + \mathbb{P}(\mathsf{A}_3) + \dots = \ \mathbb{P}(\mathsf{A}_1 \cup \mathsf{A}_2 \cup \mathsf{A}_3 \cup \dots)$

38

Let us take finite case first i.e. Ω has finite elements.

Coin toss. $\Omega=\{\ H\ ,\ T\ \}.\ \mathcal{F}=\{\ \{\},\{H\},\{T\},\{H,T\}\ \}.$ Goal: Assign probability to each element in ${\mathcal F}$ so that it satisfies

{})

 $\mathbb{P}(\quad \{H\}\,)$

 $\mathbb{P}(\quad \{T\}\,)$

P({H,T}) = 1

$\mathbb{P}(\Omega) = 1$								
$\mathbb{P}(E) \ge 0$								
$\mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) + \dots = \mathbb{P}(A_1 \cup A_2 \cup A_3 \cup \dots)$								

Let us take finite case first i.e. Ω has finite elements.

Coin toss. $\Omega=\{\ H\ ,\ T\ \}.\ \mathcal{F}=\{\ \{\},\{H\},\{T\},\{H,T\}\ \}.$ Goal: Assign probability to each element in ${\mathcal F}$ so that it satisfies probability axioms.

{}) = 0

 $\mathbb{P}(A_1) + \mathbb{P}(A_2) = \mathbb{P}(A_1 \cup A_2)$

 $\mathbb{P}(\quad \{H\}\,)$ $\mathbb{P}(\{T\})$

P({H,T}) = 1

 $\mathbf{A}_2=\{\}.$ $A_1 \cup A_2 = \Omega$ $\mathbb{P}(\Omega) + \mathbb{P}(\{\}) = \mathbb{P}(\Omega)$ $1 \quad + \mathbb{P}(\{\}) = 1$

40

Let us take finite case first i.e. Ω has finite elements.

{T})

Coin toss. $\Omega = \{ H, T \}$. $\mathcal{F} = \{ \{ \}, \{H\}, \{T\}, \{H,T\} \}$. Goal: Assign probability to each element in ${\mathcal F}$ so that it satisfies probability axioms.

{})

P({H}) $= a \ge 0$

 $\mathbb{P}(\Omega) = 1$ $\mathbb{P}(E) \ge 0$

= 1 $\mathbb{P}(\left.\{\mathsf{H,T}\right\})$

 $\mathbb{P}(\mathbb{A}_1) + \mathbb{P}(\mathbb{A}_2) + \mathbb{P}(\mathbb{A}_3) + \ldots = \ \mathbb{P}(\mathbb{A}_1 \cup \mathbb{A}_2 \cup \mathbb{A}_3 \cup \ldots)$

41

Let us take finite case first i.e. Ω has finite elements.

Coin toss. $\Omega=\{\ H\ ,\ T\ \}.\ \mathcal{F}=\{\ \{\},\{H\},\{T\},\{H,T\}\ \}.$ Goal: Assign probability to each element in ${\mathcal F}$ so that it satisfies probability axioms.

= 0

 $\mathbb{P}(A_1) + \mathbb{P}(A_2) = \mathbb{P}(A_1 \cup A_2)$

 $A_2 = \{T\}$

 $\mathbb{P}(\quad \{H\}\,)$ = a

 $\mathbb{A}_1=\{\mathsf{H}\}\,,$

P({T}) = 1 - a

 $A_1 \cup A_2 = \Omega$ $\mathbb{P}(\{H\}) + \mathbb{P}(\{T\}) = \mathbb{P}(\Omega)$ $+ \mathbb{P}(\{T\}) = 1$

= 1 **P**({H,T})

D				\mathbf{N}	leasure	_		
$=$ \sim	nna	nii	$\Pi T V$	11//	I A SI I I A		ain	-108
1 1		\sim 11	псу	LV	i Cubui C	u U	\circ	100,

Let us take finite case first i.e. Ω has finite elements.

Coin toss. Ω ={ H , T }. \mathcal{F} = { {}, {H}, {T}, {H,T} }. Goal: Assign probability to each element in \mathcal{F} so that it satisfies probability axioms.

 $\mathbb{P}(\quad \{\}) = 0$

What should be the value of a?

 $\mathbb{P}(\quad \{\mathsf{H}\}\,) \qquad = a$

 $\mathbb{P}(\quad \{\top\}\,) \qquad = 1-a$

 $\mathbb{P}(\{\mathsf{H},\mathsf{T}\}) = 1$

43

Probability Measure for a Dice Rol

 $\begin{array}{lll} \mbox{Tetrahedral dice roll.} & \Omega = \{\ 1,2,3,4\ \}. \\ \mathcal{F} = & \{ \{ \}, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\} \}. \end{array}$

 $\mathbb{P}(\quad \{\} \quad) = 0$

 $\mathbb{P}(\{1,2,3,4\}) = 1$

44

Probability Measure for a Dice Rol

Tetrahedral dice roll. Ω ={ 1,2,3,4 }. $\mathcal{F} = \{\{\},\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,2,3,4\},\{1,2,3,4\}\}\}$

 $\mathbb{P}(\ \{1\}\) \qquad = a_1$

 $\mathbb{P}(\ \{2\}\) \qquad = a_2$

 $\mathbb{P}(\ \{3\}\) \qquad = a_3$

 $\mathbb{P}(\ \{4\}\) \qquad = 1 - a_1 - a_2 - a_3$

Probability Measure for a Dice Ro

ℙ({2})

Tetrahedral dice roll. Ω ={ 1,2,3,4 }. $\mathcal{F} = \{\{\},\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,2,3,4\},\{1,2,3,4\},\{1,2,3,4\}\}\}$

 $\mathbb{P}(\{1\}) = a_1$

 $\mathbb{P}(\{1,2\})$ = $\mathbb{P}(\{1\}) + \mathbb{P}(\{2\})$ = $a_1 + a_2$

 $\mathbb{P}(\ \{3\}\) = a_3$

 $\mathbb{P}(\ \{4\}\) = 1 - a_1 - a_2 - a_3$

 $\mathbb{P}(A_1) + \mathbb{P}(A_2) = \mathbb{P}(A_1 \cup A_2)$

46

Probability Assignment for Finite Sample Space

- · Start with singleton events
- Assign positive numbers to each event ensuring the sum is equal to 1.
- · For rest of the events
 - List all outcomes in each event.
 - List corresponding singleton events of each of these outcomes.
 - Add the probabilities of these singleton events.
- $\mathsf{E} = \{ \omega_1, \omega_2, \omega_3 \}$

Outcomes: ω_1 , ω_2 , ω_3 $\{\omega_1\} = E_1$ $\{\omega_2\} = E_2$ $\{\omega_3\} = E_3$

 $\mathbb{P}(\mathsf{E}) = \mathbb{P}(\mathsf{E}_1) + \mathbb{P}(\mathsf{E}_2) + \mathbb{P}(\mathsf{E}_3)$

47

Probability Measure for Countable Ω

The same procedure works for a countable sample space

Choose a number. Ω ={ 1,2,3,4, }.

 $\mathbb{P}(\ \{1\}\) = a_1$

 $\mathbb{P}(\ \{2\}\) = a_2$

 $\sum_i a_i = 1$

 $\mathbb{P}(\{i\}) = a_i$

Example $a_i = \frac{1}{2^i}$

...

D ' '.	/ Measure f			
Propability	/ N/IDaciira t	α r I	Incolleta	
HUDADIII	/ IVICasulc I		nicounta	

Pick a number between 0 and 1, $\Omega=(0,1)$. $\mathcal F$ is Borel sigma algebra. 0 1

Elements of sigma algebra are open intervals, their complements and their countable union/intersections

countable union/intersections Let's start with the events of the following simple interval form

A=(0,x)

Assign the length of this interval as the probability for this event $\mathbb{P}((0,x))=x$.

For singleton events of form {x}, the length is zero. Hence $\mathbb{P}(\{x\}) = 0$.

49

Probability Measure for Uncountable Ω

Pick a number between 0 and 1, $\Omega = (0,1)$. \mathcal{F} is Borel sigma algebra.

 $\mathbb{P}(\ (0,x)\)=x. \quad \ \mathbb{P}(\{x\})=0.$

For events of the form (a,b), the probability can be computed from the probability axiom

$$A_1 = (0, a)$$
 $A_2 = \{a\}$ $A_3 = (a, b)$ $A_1 \cup A_2 \cup A_3 = (0, b)$
$$\mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) = \mathbb{P}(A_1 \cup A_2 \cup A_3)$$

$$a + 0 + \mathbb{P}(A_3) = b$$

$$\mathbb{P}(A_2) = b - a$$

which is length of the interval (a, b) and is consistent with the definition.

50

Probability Measure for Uncountable Ω

 \mapsto Pick a number between 0 and 1, $\Omega=(0,1)$. $\mathcal F$ is Borel sigma algebra. 0 1

 $\mathbb{P}(\,(0,\mathsf{x})\,)=\mathsf{x}.\quad \, \mathbb{P}(\{\mathsf{x}\})=0. \qquad \, \mathbb{P}\big((a,b)\big)=\,b-a.$

Now, any set in the sigma algebra can be written as countable union of above sets. The third axiom can be used to compute the probability.

 $\mathbb{P}(\mathsf{A}_1) + \mathbb{P}(\mathsf{A}_2) + \mathbb{P}(\mathsf{A}_3) + \ldots = \ \mathbb{P}(\mathsf{A}_1 \cup \mathsf{A}_2 \cup \mathsf{A}_3 \cup \ldots)$

	N A	sure fo		\sim	
- OUG		$\mathbf{u} = \mathbf{u}$			

 \leftrightarrow Pick a number between 0 and 1, $\Omega = (0,1)$. \mathcal{F} is Borel sigma algebra.

Elements of sigma algebra are open intervals, their complements and their countable union/intersections
Let's start with the events of the following simple interval form

A=(0,x)

Assign the length of this interval as the probability for this event $\mathbb{P}((0,x)) = x$

For singleton events of form {x}, the length is zero. Hence $\mathbb{P}(\{x\}) = 0$.

52

 \rightarrow Pick a number between 0 and 1, $\Omega=(0,1)$. $\mathcal F$ is Borel sigma algebra.

Elements of sigma algebra are open intervals, their complements and their countable union/intersections Let's start with the events of the following simple interval form

A = (0, x)

Assign the any increasing function F(x) of x as the probability for this event $\mathbb{P}(\ (0,x)\)=\mathsf{F}(x)$

such that F(1)=1, F(0)=0,

For singleton events of form $\{x\}$, take $\mathbb{P}(\{x\}) = 0$.

53

ightharpoonup Pick a number between 0 and 1, $\Omega=(0,1)$. $\mathcal F$ is Borel sigma algebra.

Assign the any increasing function F(x) of x as the probability for this event

such that F(1)=1, F(0)=0.

For singleton events of form $\{x\}$, take $\mathbb{P}(\{x\}) = 0$.

For events (a, b), the probability can be computed from the probability axiom as $\mathbb{P}((a,b)) = F(b) - F(a).$

Now, any set in the sigma algebra can be written as countable union of above sets. The third axiom can be used to compute the probability.