

TRANSLATOR'S DECLARATION

I, Janet Hope, BSc(Hons.), MIL., MITI., translator to Messrs. Taylor and Meyer of 20 Kingsmead Road, London, SW2 3JD, Great Britain, verify that I know well both the German and the English language, that I have prepared the attached English translation of 44 pages of a German Patent application in the German language with the title:

Verfahren zur fermentativen Herstellung von D-Pantothensäure unter Verwendung coryneformer Bakterien

identified by the code number 000439 BT / IP at the upper left of each page and that the attached English translation of this document is a true and correct translation of the document attached thereto to the best of my knowledge and belief.

I further declare that all statements made of my own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements are made with the knowledge that wilful false statements and the like are punishable by fine or imprisonment, or both, under 18 USC 1001, and that such false statements may jeopardize the validity of this document.

Signed:

Dated: 15th March

FEDERAL REPUBLIC OF GERMANY

Certificate of Priority for Filing of a Patent Application

Filing number:

101 17 085.8

Filing date:

6th April 2001

Applicant/Proprietor:

Degussa AG, Düsseldorf/DE

Title:

Process for the fermentative preparation of D-

pantothenic acid using coryneform bacteria

Priority:

30.9.2000 DE 100 48 604.5

IPC:

C 12 N, C 12 P, C 07 H

Note:

The subsequently filed page 7 of the description

was received on 3rd July 2001.

The attached papers are a true and accurate reproduction of the original documents for this patent application.

Munich, 29th August 2001

On behalf of the President of the German Patent and Trade Mark Office

(signature)

Brand

Process for the fermentative preparation of D-pantothenic acid using coryneform bacteria

The invention provides a process for the fermentative preparation of D-pantothenic acid using coryneform bacteria in which the poxB gene is attenuated.

Prior art

5

10

Pantothenic acid is a vitamin of commercial importance which is used in human medicine and in the pharmaceuticals industry, in the foodstuffs industry and very particularly in animal nutrition.

Pantothenic acid can be prepared by chemical synthesis, or biotechnologically by fermentation of suitable microorganisms in suitable nutrient solutions. In the chemical synthesis, DL-pantolactone is an important intermediate stage. It is prepared in a multi-stage process from formaldehyde, isobutylaldehyde and cyanide. In further process steps, the racemic mixture is separated, D-pantolactone is subjected to a condensation reaction with β -alanine, and the desired D-pantothenic acid is obtained in this way.

The advantage of the fermentative preparation by microorganisms lies in the direct formation of the desired stereoisomeric D-form, which is free from L-pantothenic acid.

Various types of bacteria, such as e.g. Escherichia coli (E. coli), Arthrobacter ureafaciens, Corynebacterium erythrogenes, Brevibacterium ammoniagenes, and also yeasts, such as e.g. Debaromyces castellii, can produce D-pantothenic acid in a nutrient solution which comprises glucose, DL-pantoic acid and β -alanine, as shown in EP-A 0 493 060. EP-A 0 493 060 furthermore shows that in the case of E. coli, the formation of D-pantothenic acid is improved by amplification of pantothenic acid biosynthesis

. 49 .

genes from E. coli which are contained on the plasmids pFV3 and pFV5 in a nutrient solution comprising glucose, DL-pantoic acid and β -alanine.

EP-A 0 590 857 and US Patent 5,518,906 describe mutants derived from E. coli strain IFO3547, such as FV5714, FV525, FV814, FV521, FV221, FV6051 and FV5069, which carry resistances to various antimetabolites, such as salicylic acid, α -ketobutyric acid, β -hydroxyaspartic acid, 0methylthreonine and α -ketoisovaleric acid. They produce pantoic acid in a nutrient solution comprising glucose, and 10 D-pantothenic acid in a nutrient solution comprising glucose and β -alanine. It is furthermore shown in EP-A 0 590 857 and US Patent 5,518,906 that after amplification of the pantothenic acid biosynthesis genes contained on the plasmid pFV31, in the abovementioned strains the production 15 of D-pantoic acid in nutrient solutions comprising glucose and the production of D-pantothenic acid in a nutrient solution comprising glucose and β -alanine is improved.

Processes for the preparation of D-pantothenic acid with
the aid of Corynebacterium glutamicum (C. glutamicum) are
known only in some instances in the literature. Sahm and
Eggeling (Applied and Environmental Microbiology 65(5),
1973-1979 (1999)) thus report on the influence of overexpression of the panB and panC genes and Dusch et al.

(Applied and Environmental Microbiology 65(4), 1530-1539
(1999)) report on the influence of the panD gene on the
formation of D-pantothenic acid.

Object of the invention

The inventors had the object of providing new principles

for improved processes for the fermentative preparation of
pantothenic acid with coryneform bacteria.

. .

5

10

Description of the invention

When D-pantothenic acid or pantothenic acid or pantothenate are mentioned in the following text, this means not only the free acids but also the salts of D-pantothenic acid, such as e.g. the calcium, sodium, ammonium or potassium salt.

The invention provides a process for the fermentative preparation of D-pantothenic acid using coryneform bacteria in which the nucleotide sequence which codes for the enzyme pyruvate oxidase (EC 1.2.2.2) (poxB gene) is attenuated.

This invention also provides a process for the fermentative preparation of D-pantothenic acid, in which the following steps are carried out:

- a) fermentation of D-pantothenic acid-producing coryneform
 15 bacteria in which at least the nucleotide sequence
 which codes for pyruvate oxidase (EC 1.2.2.2) (poxB) is
 attenuated, in particular eliminated;
 - b) concentration of the D-pantothenic acid in the medium or in the cells of the bacteria; and
- 20 c) isolation of the D-pantothenic acid produced.

The strains employed optionally already produce D-pantothenic acid before attenuation of the poxB gene.

Preferred embodiments are to be found in the claims.

The term "attenuation" in this connection describes the

25 reduction or elimination of the intracellular activity of
one or more enzymes (proteins) in a microorganism which are
coded by the corresponding DNA, for example by using a weak
promoter or using a gene or allele which codes for a
corresponding enzyme (protein) with a low activity or

30 inactivates the corresponding gene or enzyme (protein), and
optionally combining these measures.

The microorganisms which the present invention provides can produce D-pantothenic acid from glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. They are representatives of coryneform bacteria, in particular of the genus Corynebacterium. Of the genus Corynebacterium, there may be mentioned in particular the species Corynebacterium glutamicum, which is known among experts for its ability to produce L-amino acids.

10 Suitable strains of the genus Corynebacterium, in particular of the species Corynebacterium glutamicum, are, for example, the known wild-type strains

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806

Corynebacterium acetoacidophilum ATCC13870
Corynebacterium melassecola ATCC17965
Corynebacterium thermoaminogenes FERM BP-1539
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 and

Brevibacterium divaricatum ATCC14020

and D-pantothenic acid-producing mutants prepared therefrom, such as, for example

Corynebacterium glutamicum ATCC13032\DeltailvA/pEC7panBC Corynebacterium glutamicum ATCC13032/pND-D2.

It has been found that coryneform bacteria produce pantothenic acid in an improved manner after attenuation of the poxB gene, which codes for pyruvate oxidase (EC 1.2.2.2).

"Isolated" means separated out of its natural environment.

"Polynucleotide" in general relates to polyribonucleotides and polydeoxyribonucleotides, it being possible for these to be non-modified RNA or DNA or modified RNA or DNA.

25

The nucleotide sequence of the poxB gene is shown in SEQ ID No. 1 and the resulting amino acid sequence of the enzyme protein is shown in SEQ ID No. 2.

The poxB gene described in SEQ ID No. 1 can be used according to the invention. Alleles of the poxB gene which result from the degeneracy of the genetic code or due to "sense mutations" of neutral function can furthermore be used.

A new nucleotide sequence, shown in SEQ ID No. 6, which
lies upstream of the nucleotide sequence of the poxB gene
region shown in SEQ ID No. 1 has been found. A new
nucleotide sequence, shown in SEQ ID No. 7, which lies
downstream of the nucleotide sequence of the poxB gene
region shown in SEQ ID No. 1 has furthermore been found.

15 The sequence of the poxB gene region shown in SEQ ID No. 4 has been obtained in this manner.

It has been found that these polynucleotides shown in SEQ ID No. 6 and 7 are useful in the production of mutants with an attenuated, in particular eliminated, poxB gene.

20 It has also been found that coryneform bacteria produce pantothenic acid in an improved manner after attenuation of the poxB gene.

To achieve an attenuation, either the expression of the poxB gene or the catalytic properties of the enzyme protein can be reduced or eliminated. The two measures can optionally be combined.

The decrease in gene expression can take place by suitable culturing or by genetic modification ("mutation") of the signal structures of gene expression. Signal structures of gene expression are, for example, repressor genes, activator genes, operators, promoters, attenuators, ribosome binding sites, the start codon and terminators. The expert can find information on this e.g. in the patent

application WO 96/15246, in Boyd and Murphy (Journal of Bacteriology 170: 5949 (1988)), in Voskuil and Chambliss (Nucleic Acids Research 26: 3548 (1998), in Jensen and Hammer (Biotechnology and Bioengineering 58: 191 (1998)), in Patek et al. (Microbiology 142: 1297 (1996)) and in known textbooks of genetics and molecular biology, such as e.g. the textbook by Knippers ("Molekulare Genetik", 6th edition, Georg Thieme Verlag, Stuttgart, Germany, 1995) or that by Winnacker ("Gene und Klone", VCH

10 Verlagsgesellschaft, Weinheim, Germany, 1990).

Mutations which lead to a change or reduction in the catalytic properties of enzyme proteins are known from the prior art. Examples which may be mentioned are the works of Qiu and Goodman (Journal of Biological Chemistry 272: 8611-15 8617 (1997)), Sugimoto et al. (Bioscience Biotechnology and Biochemistry 61: 1760-1762 (1997)) and Möckel ("Die Threonindehydratase aus Corynebacterium glutamicum: Aufhebung der allosterischen Regulation und Struktur des Enzyms", Reports from the Jülich Research Centre, Jül-2906, 20 ISSN09442952, Jülich, Germany, 1994). Summarizing descriptions can be found in known textbooks of genetics and molecular biology, such as e.g. that by Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986).

Possible mutations are transitions, transversions, insertions and deletions. Depending on the effect of the amino acid exchange on the enzyme activity, "missense mutations" or "nonsense mutations" are referred to.

Insertions or deletions of at least one base pair (bp) in a gene lead to "frame shift mutations", which lead to incorrect amino acids being incorporated or translation being interrupted prematurely. Deletions of several codons typically lead to a complete loss of the enzyme activity. Instructions on generation of such mutations are prior art and can be found in known textbooks of genetics and

molecular biology, such as e.g. the textbook by Knippers ("Molekulare Genetik", 6th edition, Georg Thieme Verlag, Stuttgart, Germany, 1995), that by Winnacker ("Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Germany, 1990) or that by Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986).

An example of a plasmid with the aid of which an insertion mutagenesis of the poxB gen can be carried out is pCR2.1poxBint (figure 1).

Plasmid pCR2.1poxBint comprises the plasmid pCR2.1-TOPO described by Mead at al. (Bio/Technology 9:657-663 (1991)), into which an internal fragment of the poxB gene, shown in SEQ-ID No. 3 has been incorporated. After transformation and homologous recombination in the chromosomal poxB gene (insertion), this plasmid leads to a total loss of the enzyme function.

Another example of a mutated poxB gene is the Δ poxB allele contained in the plasmid pCRB1-poxBdel (figure 2). The Δ poxB allele contains only the 5' and the 3' flank of the 20 poxB gene. The 1737 bp long section of the coding region is missing (deletion). The nucleotide sequence of the Δ poxB allele and of the 5' and 3' flank is shown in SEQ ID No. 12. This Δ poxB allele can be incorporated into coryneform bacteria by integration mutagenesis. The abovementioned 25 plasmid pCRB1-poxBdel is used for this, or the Δ poxB allele is transferred to the plasmid pK18mobsacB and the plasmid of the type pK18mobsacBpoxBdel thereby formed is used. After transfer by conjugation or transformation and homologous recombination by means of a first "cross-over" 30 event which effects integration and a second "cross-over" event which effects excision in the poxB gene, the incorporation of the Δ poxB allele is achieved and a total loss of the enzyme function in the particular strain is achieved. The invention provides the Δ poxB allele characterized by SEQ ID No. 12. 35

10

20

Further instructions and explanations on insertion mutagenesis or integration mutagenesis and gene replacement are to be found, for example, in Schwarzer and Pühler (Bio/Technology 9,84-87 (1991)), Peters-Wendisch et al. (Microbiology 144, 915-927 (1998)) or Fitzpatrick et al. (Applied Microbiology and Biotechnology 42, 575-580 (1994)).

It may furthermore be advantageous for the production of pantothenic acid, in addition to the attenuation of the gene which codes for pyruvate oxidase, for one or more of the genes chosen from the group consisting of

- the panB gene which codes for ketopantoate hydroxymethyl transferase (Sahm et al., Applied and Environmental Microbiology, 65, 1973-1979 (1999)),
- the panC gene which codes for pantothenate synthetase (Sahm et al., Applied and Environmental Microbiology, 65, 1973-1979 (1999)),
 - the ilvC gene which codes for acetohydroxy-acid isomeroreductase (EMBL gene library: Accession No. L09232), and
 - the ilvD gene which codes for dihydroxy-acid dehydratase (EP-A-1006189);

to be enhanced, in particular over-expressed.

The term "enhancement" in this connection describes the

increase in the intracellular activity of one or more
enzymes in a microorganism which are coded by the
corresponding DNA, for example by increasing the number of
copies of the gene or genes, using a potent promoter or
using a gene which codes for a corresponding enzyme having
a high activity, and optionally combining these measures.

Wiesbaden, 1994)).

5

It may furthermore be advantageous for the production of pantothenic acid, in addition to the attenuation of the gene which codes for pyruvate oxidase, for the pck gene which codes for phosphoenol pyruvate carboxykinase (PEP carboxykinase) (DE: 19950409.1, DSM 13047) to be attenuated.

Finally, in addition to attenuation of pyruvate oxidase, it may be advantageous for the production of pantothenic acid to eliminate undesirable side reactions (Nakayama:

"Breeding of Amino Acid Producing Micro-organisms", in:

Overproduction of Microbial Products, Krumphanzl, Sikyta.

"Breeding of Amino Acid Producing Micro-organisms", in:
Overproduction of Microbial Products, Krumphanzl, Sikyta,
Vanek (eds.), Academic Press, London, UK, 1982) which
reduce the production of pantothenic acid.

The microorganisms prepared according to the invention can
be cultured continuously or discontinuously in the batch
process (batch culture) or in the fed batch (feed process)
or repeated fed batch process (repetitive feed process) for
the purpose of pantothenic acid production. A summary of
known culture methods are described in the textbook by
Chmiel (Bioprozesstechnik 1. Einführung in die
Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart,
1991)) or in the textbook by Storhas (Bioreaktoren und

periphere Einrichtungen (Vieweg Verlag, Braunschweig/

The culture medium to be used must meet the requirements of the particular microorganisms in a suitable manner.

Descriptions of culture media for more various microorganisms are contained in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).

Sugars and carbohydrates, such as e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats, such as e.g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e.g.

20

25

palmitic acid, stearic acid and linoleic acid, alcohols, such as e.g. glycerol and ethanol, and organic acids, such as e.g. acetic acid, can be used as the source of carbon. These substances can be used individually or as a mixture.

Organic nitrogen-containing compounds, such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soya bean flour and urea, or inorganic compounds, such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, can be used as the source of nitrogen. The sources of nitrogen can be used individually or as a mixture.

Potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the source of phosphorus. The culture medium must furthermore comprise salts of metals, such as e.g. magnesium sulfate or iron sulfate, which are necessary for growth. Finally, essential growth substances, such as amino acids and vitamins, can be employed in addition to the abovementioned substances. Precursors of pantothenic acid, such as aspartate, β -alanine, ketoisovalerate, ketopantoic acid or pantoic acid, and optionally salts thereof, can moreover be added to the culture medium to additionally increase the pantothenic acid production. The starting substances mentioned can be added to the culture in the form of a single batch, or can be fed in during the culture in a suitable manner.

Basic compounds, such as sodium hydroxide, potassium hydroxide, ammonia, or acid compounds, such as phosphoric acid or sulfuric acid, can be employed in a suitable manner to control the pH of the culture. Antifoams, such as e.g. fatty acid polyglycol esters, can be employed to control the development of foam. Suitable substances having a selective action, e.g. antibiotics, can be added to the medium to maintain the stability of plasmids. To maintain aerobic conditions, oxygen or oxygen-containing gas

10

15

mixtures, such as e.g. air, are introduced into the culture. The temperature of the culture is usually 20°C to 45°C, and preferably 25°C to 40°C. Culturing is continued until a maximum of pantothenic acid has formed. This target is usually reached within 10 hours to 160 hours.

The concentration of pantothenic acid formed can be determined with known chemical (Velisek; Chromatographic Science 60, 515-560 (1992)) or microbiological methods, such as e.g. the Lactobacillus plantarum test (DIFCO MANUAL, 10th Edition, p. 1100-1102; Michigan, USA).

The following microorganism was deposited on 19th October 1999 as a pure culture at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest Treaty:

• Escherichia coli strain DH5 α /pCR2.1poxBint as DSM 13114.

The present invention is explained in more detail in the following with the aid of embodiment examples.

Example 1

20 Preparation of a genomic cosmid gene library from Corynebacterium glutamicum ATCC 13032

Chromosomal DNA from C. glutamicum ATCC 13032 was isolated as described by Tauch et al. (1995, Plasmid 33:168-179) and partly cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Code no. 27-0913-02). The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Code no. 1758250). The DNA of the cosmid vector SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), obtained from Stratagene (La Jolla, USA, Product Description

SuperCosl Cosmid Vector Kit, Code no. 251301) was cleaved with the restriction enzyme XbaI (Amersham Pharmacia, Freiburg, Germany, Product Description XbaI, Code no. 27-0948-02) and likewise dephosphorylated with shrimp alkaline phosphatase.

The cosmid DNA was then cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Code no. 27-0868-04). The cosmid DNA treated in this manner was mixed with the treated ATCC13032 10 DNA and the batch was treated with T4 DNA ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04). The ligation mixture was then packed in phages with the aid of Gigapack II XL Packing Extract (Stratagene, La Jolla, USA, Product Description Gigapack II XL Packing Extract, Code no. 200217). For 15 infection of the E. coli strain NM554 (Raleigh et al. 1988, Nucleic Acid Res. 16:1563-1575) the cells were taken up in 10 mM MgSO₄ and mixed with an aliquot of the phage suspension. The infection and titering of the cosmid 20 library were carried out as described by Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor), the cells being plated out on LB agar (Lennox, 1955, Virology, 1:190) with 100 µg/ml ampicillin. After incubation overnight at 37°C, recombinant individual clones 25 were selected.

Example 2

Isolation and sequencing of the poxB gene

The cosmid DNA of an individual colony was isolated with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, 30 Hilden, Germany) in accordance with the manufacturer's instructions and partly cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Product No. 27-0913-02). The DNA fragments were dephosphorylated with shrimp alkaline

phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Product No. 1758250). After separation by gel electrophoresis, the cosmid fragments in the size range of 1500 to 2000 bp were isolated with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).

The DNA of the sequencing vector pZero-1, obtained from Invitrogen (Groningen, The Netherlands, Product Description Zero Background Cloning Kit, Product No. K2500-01) was 10 cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Product No. 27-0868-04). The ligation of the cosmid fragments in the sequencing vector pZero-1 was carried out as described by Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor), the DNA mixture 15 being incubated overnight with T4 ligase (Pharmacia Biotech, Freiburg, Germany). This ligation mixture was then electroporated (Tauch et al., 1994, FEMS Microbiol Letters, 123:343-7) into the E. coli strain DH5 α MCR (Grant, 1990, 20 Proceedings of the National Academy of Sciences, U.S.A., 87:4645-4649) and plated out on LB agar (Lennox, 1955, Virology, 1:190) with 50 µg/ml zeocin.

The plasmid preparation of the recombinant clones was carried out with the Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Germany). The sequencing was carried out by 25 the dideoxy chain termination method of Sanger et al. (1977, Proceedings of the National Academies of Sciences, U.S.A., 74:5463-5467) with modifications according to Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). The "RR dRhodamin Terminator Cycle Sequencing Kit" from PE 30 Applied Biosystems (Product No. 403044, Weiterstadt, Germany) was used. The separation by gel electrophoresis and analysis of the sequencing reaction were carried out in a "Rotiphoresis NF Acrylamide/Bisacrylamide" Gel (29:1) 35 (Product No. A124.1, Roth, Karlsruhe, Germany) with the

"ABI Prism 377" sequencer from PE Applied Biosystems (Weiterstadt, Germany).

The raw sequence data obtained were then processed using the Staden program package (1986, Nucleic Acids Research, 14:217-231) version 97-0. The individual sequences of the pZerol derivatives were assembled to a continuous contig. The computer-assisted coding region analysis were prepared with the XNIP program (Staden, 1986, Nucleic Acids Research, 14:217-231).

The resulting nucleotide sequence is shown in SEQ ID No. 1. Analysis of the nucleotide sequence showed an open reading frame of 1737 base pairs, which was called the poxB gene. The poxB gene codes for a polypeptide of 579 amino acids shown in SEQ ID No. 2.

15 Example 3

5

Preparation of the integration vector pCR2.1poxBint for mutagenesis of the poxB gene

From the strain ATCC 13032, chromosomal DNA was isolated by the method of Eikmanns et al. (Microbiology 140: 1817-1828 (1994)). On the basis of the sequence of the poxB gene known for C. glutamicum from example 2, the following oligonucleotides were chosen for the polymerase chain reaction:

poxBint1:

25 5` TGC GAG ATG GTG AAT GGT GG 3`
poxBint2:

5 GCA TGA GGC AAC GCA TTA GC 3

The primers shown were synthesized by MWG Biotech (Ebersberg, Germany) and the PCR reaction was carried out by the standard PCR method of Innis et al. (PCR protocols. A Guide to Methods and Applications, 1990, Academic Press) with Pwo-Polymerase from Boehringer. With the aid of the

polymerase chain reaction, a DNA fragment approx. 0.9 kb in size was isolated, this carrying an internal fragment of the poxB gene and being shown in SEQ ID No. 3.

The amplified DNA fragment was ligated with the TOPO TA Cloning Kit from Invitrogen Corporation (Carlsbad, CA, USA; Catalogue Number K4500-01) in the vector pCR2.1-TOPO (Mead at al. (1991) Bio/Technology 9:657-663). The E. coli strain Top10F' (Grant et al. (1990) Proceedings of the National Academy of Sciences, USA, 87:4645-4649) was then

- electroporated. Selection for plasmid-carrying cells was made by plating out the transformation batch on LB agar (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), which had been supplemented with
- 15 50 mg/l kanamycin. Plasmid DNA was isolated from a transformant with the aid of the QIAprep Spin Miniprep Kit from Qiagen and checked by restriction with the restriction enzyme EcoRI and subsequent agarose gel electrophoresis (0.8%). The plasmid was called pCR2.1poxBint (figure 1).

20 Example 4

Preparation of an exchange vector for deletion mutagenesis of the poxB gene

- 4.1 Determination of the nucleotide sequence of the flanks of the poxB gene
- In further sequencing steps, the nucleotide sequence of the poxB gene region shown in SEQ ID No. 1 was extended upstream and downstream by in each case approx. 500 to 600 bp. The method described in example 2 was used for this. The extended nucleotide sequence of the poxB gene region shown in SEQ ID No. 4 was obtained in this manner. The new upstream of the poxB gene region shown in SEQ ID No. 1 is shown in SEQ ID No. 6. The new downstream of the

poxB gene region shown in SEQ ID No. 1 is shown in SEQ ID No. 7.

4.2 Construction of a ΔpoxB allele

The method of geneSOEing-PCR described by Horton (Molecular 5 Microbiology 3:93-99 (1995)) was used for construction of the Δ poxB allele. The primer pairs shown in table 1 (see also SEQ ID No. 8 to 11) were constructed for this. By means of a PCR, the 5' region before the poxB gene was amplified with primer pair 1 and the 3' region after the 10 poxB gene was amplified with primer pair 2. A further PCR was then carried out with the two amplification products and the primers pox-dell and pox-del4, as a result of which the two amplification products were joined by means of geneSOEing. The deletion fragment or $\Delta poxB$ allele obtained 15 in this way contains the flanking sequences of the poxB gene. The nucleotide sequence of the Δ poxB allele is shown in SEQ ID No. 12.

Table 1

Primer	5'-Sequence-3'	Primer pair
pox-del1	ATGAGGAACATCCGGCGGTG	
pox-del2	GAGAACAGCAGGAGTATCAATCATCACTGAACT CCTCAACGTTATGGC	. 1
pox-del3	TGATGATTGATACACCTGCTGTTCTC	0
pox-del4	TCATTGCCACCTGCTTCTCA	2

20 4.3 Construction of an exchange vector

The DNA fragment obtained in this way was ligated with the Zero Blunt TOPO PCR Cloning Kit from Invitrogen Corporation (Carlsbad, CA, USA; Catalogue Number K2800-20) in the

vector pCR-Blunt II-TOPO vector (Shuman et al., (1994) Journal of Biological Chemistry 269:32678-32684; Bernard et al., (1983) Journal of Molecular Biology 234:534-541). The E. coli strain Top10 (Grant et al. (1990) Proceedings of 5 the National Academy of Sciences, USA 87:4645-4649) was then transformed with the ligation batch. Selection for plasmid-carrying cells was made by plating out the transformation batch on LB agar (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), which had been 10 supplemented with 50 mg/l kanamycin. Plasmid DNA was isolated from a transformant with the aid of the QIAprep Spin Miniprep Kit from Qiagen and checked by restriction with the restriction enzyme EcoRI and subsequent agarose 15 gel electrophoresis (0.8%). The plasmid was called pCRB1poxBdel (figure 2).

The insert carrying the ΔpoxB allele was excised from this plasmid by means of EcoRI, isolated from the gel and ligated in the non-replicative integration vector

20 pK18mobsacB, which was also cleaved with EcoRI (Schafer et al., Gene 145, 69-73 (1994)). The clonings were carried out in E. coli DH5αmcr (Grant et al., (1990) Proceedings of the National Academy of Sciences, USA, 87: 4645-4649) as the host. The resulting plasmid was called pK18mobsacB-poxBdel.

25 Example 5

Mutagenesis of the poxB gene in the strain FERM BP-1763

The L-valine-producing strain Brevibacterium lactofermentum FERM BP-1763 is described in the patent specification US-A-5,188,948.

For deletion of the poxB gene, the integration plasmid pK18mobsacB-poxBdel was electroporated in the strain FERM BP-1763. After selection for kanamycin (25 μ g/ml), individual clones in which the inactivation vector was

present integrated in the genome were obtained. To allow excision of the vector, individual colonies were incubated in 50 ml liquid LB medium without antibiotics for 24 hours at 30°C and 130 rpm and then smeared on to sucrosecontaining agar plates (LB with 15 g/l agar and 10% sucrose). Clones which had lost the vector content again by a second recombination event were obtained by this selection (Jäger et al. 1992, Journal of Bacteriology 174:5462-5465). To identify those clones which carried the ApoxB allele, a polymerase chain reaction was carried out with the primers pox-del1 and pox-del4 (table 1 and SEQ ID No. 8 and 11). These primers amplify on the whole DNA of the starting strain FERM BP-1763 a fragment approx. 3150 bp in size, while on the DNA of poxB deletion mutants the 15 primers amplified a shortened fragment 1422 bp in size. A deletion mutant identified in this way is consequently lacking a region of the poxB gene 1.7 kb in size.

A strain produced and tested in this manner was called FERM BP-1763 Δ poxB and employed for further studies.

20 Example 6

Preparation of pantothenic acid

6.1 Production of the strains

The plasmid pND-DBC2, which carries the panB, panC and panD genes of Corynebacterium glutamicum, is known from EP-A1006192. The plasmid is deposited in the form of the strain ATCC13032/pND-DBC2 as DSM 12437 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest
Treaty.

The pantothenic acid-producing strains FERM BP-1763/pND-DBC2 and FERM BP-1763 Δ poxB were formed by transformation of

15

the strains FERM BP-1763 and FERM BP-1763 Δ poxB with the plasmid pND-DBC2.

6.2 Preparation of pantothenic acid

In each case a sample of the strains Brevibacterium lactofermentum FERM BP-1763/pND-DBC2 and FERM BP- $1763\Delta poxB/pND-DBC2$ was smeared on to HHK agar.

HHK agar comprises brain-heart agar, which was obtained from Merck KgaA (Darmstadt, Germany) and supplemented with kanamycin. The composition of the HHK agar is shown in table 2.

This agar plate culture was incubated for 17 hours at 37°C and then kept in a refrigerator at +4°C. Selected individual colonies were then propagated further on the same medium. Cell material of a clone was removed from the HHK agar with an inoculating loop and transferred to 100 mL HHK broth contained in a shaking flask of 1000 mL total volume.

HHK broth comprises brain-heart medium, which was obtained from Merck KgaA (Darmstadt, Germany) and supplemented with glucose and kanamycin. The composition of the HHK broth is shown in table 3.

Table 2
HHK agar

Substance	Amount per litre
Brain-heart agar	52.0 g
Kanamycin	25 mg

Table 3

HHK broth

Substance	Amount per litre
Brain-heart medium	37.0 g
Kanamycin	25 mg
Glucose	20.0 g

- The batches were incubated at 30°C and 150 rpm for 22 hours. After the end of the culturing, an optical density of in each case approx. 6 was measured in a photometer at a wavelength of 660 nm (OD 660). This culture of the strain was used to inoculate the production fermenter.
- 10 Medium SK-71 shown in table 4 was used for the fermentation. All the components of the SK-71 medium were initially introduced into the fermenter directly according to the working concentration and sterilized in situ.

Table 4

Medium SK-71

Amount per litre
110.0000g
5.0000g
5.0000g
0.0050g
0.1500g
0.1500g
25.0000g
0.1000g
1.0000g
0.0100g
0.0050g
0.0100g
0.0002g
0.0003g
0.60g

10 l stirred reactors from B.Braun (BBI, Germany, 5 Melsungen, Biostat E/ED model) were used as the fermenters.

For inoculation of 1950 g of the fermentation medium SK-71, in each case 100 mL of the shaking flask precultures in HHK broth described above were employed.

The batch was cultured over the entire fermentation time at a temperature of 30°C, a volume-specific aeration of 0.75 vvm, stirring, dependent on the oxygen consumption, of

800 - 1700 rpm and a pH of 7.0 and an oxygen partial pressure of 20% of the atmospheric saturation. The culture was cultured for a total of approx. 49 hours under the abovementioned conditions until an OD660 of approx. 26 was reached. An aqueous ammonia solution (25 % w/v) was used as the correcting agent for regulating the pH.

The optical density (OD) was then determined with a digital photometer of the type LP1W from Dr. Bruno Lange GmbH (Berlin, Germany) at a measurement wavelength of 660 nm and the concentration of D- pantothenic acid formed was determined by means of HPLC (Hypersil APS 2 5 μ m, 250x5 mm, RI detection).

A D-pantothenic acid concentration of approx. 0.20 g/l was measured in the end sample (approx. 49 hours) of the fermentation culture of the strain FERM BP-1763/pND-DBC2. The pantothenic acid concentration in the corresponding sample of the strain FERM BP-1763ΔpoxB/pND-DBC2 was approx. 0.23 g/l.

The following figures are attached:

- Figure 1: Map of the plasmid pCR2.1poxBint
 - Figure 2: Map of the plasmid pCRBl-poxBdel

The base pair numbers stated are approx. values obtained in the context of reproducibility.

The abbreviations and designations used have the following 25 meaning:

Figure 1:

ApR Ampicillin resistance gene

ColE1 ori Replication origin ColE1

fl ori Replication origin of phage fl

KmR Kanamycin resistance gene

lacZ Residues of the lacZ α gene fragment

poxBint Internal fragment of the poxB gene

Figure 2:

'lacZa 3' end of the lacZ α gene fragment

3'-Region 3' flank of the poxB gene

5'-Region 5' flank of the poxB gene

ccdB ccdB gene

Km Kanamycin resistance gene

lacZa' 5' end of the lacZ α gene fragment

plac. Promoter of the lac operon

pMB1 Replication origin of the plasmid pMB1

Zeocin Zeocin resistance gene

The following abbreviations have moreover been used:

BamHI: Cleavage site of the restriction enzyme

BamHI

ClaI Cleavage site of the restriction enzyme ClaI

EcoRI: Cleavage site of the restriction enzyme

EcoRI...

HindIII: Cleavage site of the restriction enzyme

HindIII

SalI: Cleavage site of the restriction enzyme SalI

```
SEQUENCE PROTOCOL
     <110> Degussa AG
 5
     <120> Process for the fermentative preparation of
           D-pantothenic acid using coryneform
           bacteria.
     <130> 000439 BT
10
     <140>
     <141>
     <160> 12
15
     <170> PatentIn Ver. 2.1
     <210> 1
     <211> 2160
20
     <212> DNA
     <213> Corynebacterium glutamicum
     <220>
     <221> CDS
25
     <222> (327)..(2063)
     <220>
     <221> -35 signal
     <222> (227)..(232)
30
     <220>
     <221> -10 signal
     <222> (256)..(261)
35
     <400> 1
     ttagaggcga ttctgtgagg tcactttttg tggggtcggg gtctaaattt ggccagtttt 60
     cgaggcgacc agacaggcgt gcccacgatg tttaaatagg cgatcggtgg gcatctgtgt 120
40
     ttggtttcga cgggctgaaa ccaaaccaga ctgcccagca acgacggaaa tcccaaaagt 180
     gggcatccct gtttggtacc gagtacccac ccgggcctga aactccctgg caggcgggcg 240
     aagcgtggca acaactggaa tttaagagca caattgaagt cgcaccaagt taggcaacac 300
45
     aatagccata acgttgagga gttcag atg gca cac agc tac gca gaa caa tta
                                   Met Ala His Ser Tyr Ala Glu Gln Leu
                                     1
50
     att gac act ttg gaa gct caa ggt gtg aag cga att tat ggt ttg gtg
     Ile Asp Thr Leu Glu Ala Gln Gly Val Lys Arg Ile Tyr Gly Leu Val
```

ggt gac agc ctt aat ccg atc gtg gat gct gtc cgc caa tca gat att

Gly Asp Ser Leu Asn Pro Ile Val Asp Ala Val Arg Gln Ser Asp Ile

449

15

30

					gtt Val												497
5					atc Ile												545
10					aca Thr												593
15					gtg Val												641
20					ttc Phe 110												689
20					tac Tyr												737
25					cac His												785
30					att Ile												833
35	ggt Gly 170	act Thr	tat Tyr	tcc Ser	aat Asn	tcc Ser 175	act Thr	att Ile	tct Ser	tct Ser	ggc Gly 180	act Thr	cct Pro	gtg Val	gtg Val	ttc Phe 185	881
40	ccg Pro	gat Asp	cct Pro	act Thr	gag Glu 190	gct Ala	gca Ala	gcg Ala	ctg Leu	gtg Val 195	gag Glu	gcg Ala	att Ile	aac Asn	aac Asn 200	gct Ala	929
40					ttg Leu												977
45	cag Gln	gtg Val	ttg Leu 220	gag Glu	ttg Leu	gcg Ala	gag Glu	aag Lys 225	att Ile	aaa Lys	tca Ser	ccg Pro	atc Ile 230	ggg Gly	cat His	gcg Ala	1025
50	ctg Leu	ggt Gly 235	ggt Gly	aag Lys	cag Gln	tac Tyr	atc Ile 240	cag Gln	cat His	gag Glu	aat Asn	ccg Pro 245	ttt Phe	gag Glu	gtc Val	ggc Gly	1073
55	atg Met 250	tct Ser	ggc Gly	ctg Leu	ctt Leu	ggt Gly 255	tac Tyr	ggc Gly	gcc Ala	tgc Cys	gtg Val 260	gat Asp	gcg Ala	tcc Ser	aat Asn	gag Glu 265	1121
	gcg Ala	gat Asp	ctg Leu	ctg Leu	att Ile 270	cta Leu	ttg Leu	ggt Gly	acg Thr	gat Asp 275	ttc Phe	cct Pro	tat Tyr	tct Ser	gat Asp 280	ttc Phe	1169

					aac Asn												1217
5		_	-		acg Thr		_		_				_	_	_	_	1265
10			-		att Ile	-				_	-			_	_		1313
15					atg Met												1361
20	_		_		aca Thr 350			-		_							1409
					tct Ser												1457
25					acc Thr												1505
30	gag Glu	aat Asn 395	ccg Pro	gag Glu	gga Gly	acg Thr	cgc Arg 400	gac Asp	ttt Phe	gtg Val	ggt Gly	tca Ser 405	ttc Phe	cgc Arg	cac His	ggc Gly	1553
35	acg Thr 410	atg Met	gct Ala	aat Asn	gcg Ala	ttg Leu 415	cct Pro	cat His	gcg Ala	att Ile	ggt Gly 420	gcg Ala	caa Gln	agt Ser	gtt Val	gat Asp 425	1601
40					gtg Val 430												1649
	_	_	- 1		ctt Leu	_				_	•						1697
45	gct Ala	gtg Val	gtg Val 4.60	ttt Phe	aac Asn	aac Asn	agt Ser	tct Ser 465	ttg Leu	ggc Gly	atg Met	gtg Val	aag Lys 470	ttg Leu	gag Glu	atg Met	1745
50					cag Gln												1793
55					gcg Ala												1841
					gtt Val 510												1889

5						gat Asp											1937
J						tgg Trp											1985
10						ggt Gly											2033
15	_	_				aat Asn 575					tgat	igatt	iga t	acad	cctgo	et	2083
	gtto	ctcat	tg a	accgo	cgago	cg ct	taad	ctgc	c aad	cattt	cca	ggat	ggca	agc t	cacq	gccggt	2143
20	gcc	catga	aga t	tgc	cct												2160
25	<212	l> 5° 2> PI	RT	ebact	ceri	ım gi	Lutar	nicur	n								
30	<400 Met 1		His	Ser	Tyr 5	Ala	Glu	Gln	Leu	Ile 10	Asp	Thr	Leu	Glu	Ala 15	Gln	
	Gly	Val	Lys	Arg 20	Ile	Tyr	Gly	Leu	Val 25	Gly	Asp	Ser	Leu	Asn 30	Pro	Ile	
35	Val	Asp	Ala 35	Val	Arg	Gln	Ser	Asp 40	Ile	Glu	Trp	Val	His 45	Val	Arg	Asn	
40	Glu	Glu 50	Ala	Ala	Ala	Phe	Ala 55	Ala	Gly	Ala	Glu	Ser 60	Leu	Ile	Thr	Gly	
40	Glu 65	Leu	Ala	Val	Cys	Ala 70	Ala	Ser	Суѕ	Gly	Pro 75	Gly	Asn	Thr	His	Leu 80	
45	Ile	Gln	Gly	Leu	Tyr 85	Asp	Ser	His	Arg	Asn 90	Gly	Ala	Lys	Val	Leu 95	Ala	
	Ile	Ala	Ser	His 100	Ile	Pro	Ser	Ala	Gln 105	Ile	Gly	Ser	Thr	Phe 110	Phe	Gln	
50	Glu	Thr	His 115	Pro	Glu	Ile	Leu	Phe 120	Lys	Glu	Cys	Ser	Gly 125	Tyr	Суѕ	Glu	
55	Met	Val 130	Asn	Gly	Gly	Glu	Gln 135	Gly	Glu	Arg	Ile	Leu 140	His	His	Ala	Ile	
<i>_</i>	Gln 145	Ser	Thr	Met	Ala	Gly 150	Lys	Gly	Val	Ser	Val 155	Val	Val	Ile	Pro	Gly 160	

	Asp	Ile	Ala	Lys	Glu 165	Asp	Ala	Gly	Asp	Gly 170	Thr	Tyr	Ser	Asn	Ser 175	Thr
5	Ile	Ser	Ser	Gly 180	Thr	Pro	Val	Val	Phe 185	Pro	Asp	Pro	Thr	Glu 190	Ala	Ala
	Ala	Leu	Val 195	Glu	Ala	Ile	Asn	Asn 200	Ala	Lys	Ser	Val	Thr 205	Leu	Phe	Cys
10	Gly	Ala 210	Gly	Val	Lys	Asn	Ala 215	Arg	Ala	Gln	Val	Leu 220	Glu	Leu	Ala	Glu
15	Lys 225	Ile	Lys	Ser	Pro	Ile 230	Gly	His	Ala	Leu	Gly 235	Gly	Lys	Gln	Tyr	Ile 240
15	Gln	His	Glu	Asn	Pro 245	Phe	Glu	Val	Gly	Met 250	Ser	Gly	Leu	Leu	Gly 255	Tyr
20	Gly	Ala	Cys	Val 260	Asp	Ala	Ser	Asn	Glu 265	Ala	Asp	Leu	Leu	Ile 270	Leu	Leu
	Gly	Thr	Asp 275	Phe	Pro	Tyr	Ser	Asp 280	Phe	Leu	Pro	Lys	Asp 285	Asn	Val	Ala
25	Gln	Val 290	Asp	Ile	Asn	Gly	Ala 295	His	Ile	Gly	Arg	Arg 300	Thr	Thr	Val	Lys
30	Tyr 305	Pro	Val	Thr	Gly	Asp 310	Val	Ala	Ala	Thr	Ile 315	Glu	Asn	Ile	Leu	Pro 320
30	His	Val	Lys	Glu	Lys 325	Thr	Asp	Arg	Ser	Phe 330	Leu	Asp	Arg	Met	Leu 335	Lys
35	Ala	His	Glu	Arg 340	Lys	Leu	Ser	Ser	Val 345	Val	Glu	Thr	Tyr	Thr 350	His	Asn
	Val	Glu	Lys 355	His	Val	Pro	Ile	His 360	Pro	Glu	Tyr	Val	Ala 365	Ser	Ile	Leu
40	Asn	Glu 370	Leu	Ala	Asp	Lys	Asp 375	Ala	Val	Phe	Thr	Val 380	Asp	Thr	Gly	Met
45	Суs 385	Asn	Val	Trp	His	Ala 390	Arg	Tyr	Ile	Glu	Asn 395	Pro	Glu	Gly	Thr	Arg 400
40	Asp	Phe	Val	Gly	Ser 405	Phe	Arg	His	Gly	Thr 410	Met	Ala	Asn	Ala	Leu 415	Pro
50	His	Ala	Ile	Gly 420	Ala	Gln	Ser	Val	Asp 425	Arg	Asn	Arg	Gln	Val 430	Ile	Ala
	Met	Cys	Gly 435	Asp	Gly	Gly	Leu	Gly 440	Met	Leu	Leu	Gly	Glu 445	Leu	Leu	Thr
55	Val	Lys 450	Leu	His	Gln	Leu	Pro 455	Leu	Lys	Ala	Val	Val 460	Phe	Asn	Asn	Ser
	Ser 465	Leu	Gly	Met	Val	Lys 470	Leu	Glu	Met	Leu	Val 475	Glu	Gly	Gln	Pro	Glu 480

```
Phe Gly Thr Asp His Glu Glu Val Asn Phe Ala Glu Ile Ala Ala Ala
 5
     Ala Gly Ile Lys Ser Val Arg Ile Thr Asp Pro Lys Lys Val Arg Glu
                                      505
     Gln Leu Ala Glu Ala Leu Ala Tyr Pro Gly Pro Val Leu Ile Asp Ile
                                  520
10
     Val Thr Asp Pro Asn Ala Leu Ser Ile Pro Pro Thr Ile Thr Trp Glu
                              535
                                                  540
     Gln Val Met Gly Phe Ser Lys Ala Ala Thr Arg Thr Val Phe Gly Gly
15
                          550
                                              555
     Gly Val Gly Ala Met Ile Asp Leu Ala Arg Ser Asn Ile Arg Asn Ile
                      565
                                          570
20
     Pro Thr Pro
25
     <210> 3
     <211> 875
     <212> DNA
     <213> Corynebacterium glutamicum
30
     <400> 3
     tgcgagatgg tgaatggtgg tgagcagggt gaacgcattt tgcatcacgc gattcagtcc 60
     accatggcgg gtaaaggtgt gtcggtggta gtgattcctg gtgatatcgc taaggaagac 120
     gcaggtgacg gtacttattc caattccact atttcttctg gcactcctgt ggtgttcccg 180
     gatectactg aggetgeage getggtggag gegattaaca acgetaagte tgteaetttg 240
35
     ttctgcggtg cgggcgtgaa gaatgctcgc gcgcaggtgt tggagttggc ggagaagatt 300
     aaatcaccga tcgggcatgc gctgggtggt aagcagtaca tccagcatga gaatccgttt 360
     gaggtcggca tgtctggcct gcttggttac ggcgcctgcg tggatgcgtc caatgaggcg 420
     gatctgctga ttctattggg tacggatttc ccttattctg atttccttcc taaagacaac 480
     gttgcccagg tggatatcaa cggtgcgcac attggtcgac gtaccacggt gaagtatccg 540
40
     gtgaccggtg atgttgctgc aacaatcgaa aatattttgc ctcatgtgaa ggaaaaaaca 600
     gatcgttcct tccttgatcg gatgctcaag gcacacgagc gtaagttgag ctcggtggta 660
     gagacgtaca cacataacgt cgagaagcat qtgcctattc accctgaata cgttgcctct 720
     attttgaacg agctggcgga taaggatgcg gtgtttactg tggataccgg catgtgcaat 780
     gtgtggcatg cgaggtacat cgagaatccg gagggaacgc gcgactttgt gggttcattc 840
45
     cgccacggca cgatggctaa tgcgttgcct catgc
                                                                        875
     <210> 4
     <211> 3248
50
     <212> DNA
     <213> Corynebacterium glutamicum
     <220>
     <221> CDS
55
     <222> (802)..(2538)
     <400> 4
     getetegeag caacaagage ecaegeagtt ggageaaaeg cageaceaag tgaagegatt 60
```

	ccg	aaaa	tgc	tcaa	gccc	at g	agga	acat	c cg	gcgg	tggc	cga	tttt	gtc	accc	aaagtg	120
	ccg	gtac	cca	aaag	aagg	cc c	gcca	tgag	c ag	ggga	tatg	cgt	tgat	gat	ccac	aacgct	180
5	tgg	gttt	cgg	tggc	tgcg	ag c	tgtt	cacg	c ag	caga	ggga	gtg	cggt	gta	gaga	atcgag	240
	ttg	tcta	cac	cgat	caga	aa g	agac	cacc	g ct	gata	acgg	cga	ggaa	agc	ccaa	cgttgg	300
10	gtt	ttcg	tag	gcgc	ttgc	gc c	tgta	aggt	t tc	tgaa	gtca	tgg	atcg	taa	ctgt	aacgaa	360
10	tgg	tcgg	tac	agtt	acaa	ct c	tttt	gttg	g tg	tttt	agac	cac	ggcg	ctg	tgtg	gcgatt	420
	taa	gacg	tcg	gaaa	tcgt	ag g	ggac	tgtc	a gc	gtgg	gtcg	ggt	tctt	tga	ggcg	cttaga	480
15	ggc	gatt	ctg	tgag	gtca	ct t	tttg	tggg	g tc	gggg	tcta	aat	ttgg	cca	gttt	tcgagg	540
	cga	ccag	aca	ggcg.	tgcc	ca c	gatg	ttta	a at	aggc	gatc	ggt	gggc	atc	tgtg	tttggt	600
20	ttc	gacg	ggc	tgaaa	acca	aa c	caga	ctgc	с са	gcaa	cgac	gga	aatc	cca	aaag	tgggca	660
20	tcc	ctgt	ttg	gtac	cgag	ta c	ccac	ccgg	g cc	tgaa	actc	cct	ggca	ggc	gggc	gaagcg	720
	tgg	caac	aac	tgga	attt	aa g	agca	caat	t ga	agtc	gcac	caa	gtta	ggc	aaca	caatag	780
25	cca	taac	gtt	gagga	agtt	ca g									tta Leu		831
30				gaa Glu													879
35	gac Asp	agc Ser	ctt Leu	aat Asn 30	ccg Pro	atc Ile	gtg Val	gat Asp	gct Ala 35	gtc Val	cgc Arg	caa Gln	tca Ser	gat Asp 40	att Ile	gag Glu	927
40	tgg Trp	gtg Val	cac His 45	gtt Val	cga Arg	aat Asn	gag Glu	gaa Glu 50	gcg Ala	gcg Ala	gcg Ala	ttt Phe	gca Ala 55	gcc Ala	ggt Gly	gcg Ala	975
10	gaa Glu	tcg Ser 60	ttg Leu	atc Ile	act Thr	Gly	gag Glu 65	ctg Leu	gca Ala	gta Val	tgt Cys	gct Ala 70	gct Ala	tct Ser	tgt Cys	ggt Gly	1023
45				aca Thr													1071
50	ggt Gly	gcg Ala	aag Lys	gtg Val	ttg Leu 95	gcc Ala	atc Ile	gct Ala	agc Ser	cat His 100	att Ile	ccg Pro	agt Ser	gcc Ala	cag Gln 105	att Ile	1119
55	ggt Gly	tcg Ser	acg Thr	ttc Phe 110	ttc Phe	cag Gln	gaa Glu	acg Thr	cat His 115	ccg Pro	gag Glu	att Ile	ttg Leu	ttt Phe 120	aag Lys	gaa Glu	1167
	tgc Cys	tct Ser	ggt Gly 125	tac Tyr	tgc Cys	gag Glu	atg Met	gtg Val 130	aat Asn	ggt Gly	ggt Gly	gag Glu	cag Gln 135	ggt Gly	gaa Glu	cgc Arg	1215

					att Ile							1263
5					ggt Gly 160							1311
10					act Thr							1359
15	_			-	gca Ala	 -	 					1407
20		_	_		tgc Cys	 	 	_	_	-	 -	1455
					gag Glu							1503
25					atc Ile 240							1551
30					tac Tyr							1599
35					ttg Leu							1647
40					gcc Ala							1695
					aag Lys							1743
45					cct Pro 320							1791
50					aag Lys							1839
55					aac Asn							1887
					ttg Leu							1935

5													agg Arg				1983
J													cgc Arg				2031
10	_	-			_								agt Ser	-	_	_	2079
15		_	_				_	_		_			ttg Leu		_	_	2127
20	_				-		_	_	_				ccg Pro 455	_	_	-	2175
25													ttg Leu				2223
23													gaa Glu				2271
30													cgc Arg				2319
35													gca Ala				2367
40		-	_		-		-	-	-			_	ctg Leu 535				2415
45													aag Lys				2463
40													gat Asp				2511
50	_			agg Arg						tgai	tgati	tga t	cacad	cctg	ct		2558
55	gtto	ctcat	tg a	accgo	cgago	cg ct	taad	ctgc	c aad	catt	cca	ggat	ggca	agc t	cac	gccggt	2618
	gcc	catga	aga t	ttgc	cctgo	eg to	ccgca	atgt	g aaa	aacgo	caca	aaat	catt	ga a	aatto	gcgcag	2678
	atgo	caggt	cg a	acgc	cggt	gc co	cgag	ggato	c aco	ctgc	gcaa	ccat	tgg	cga 🤄	ggcg	gaaatt	2738

	tttgccggcg	caggttttac	ggacatcttt	attgcatatc	cgctgtatct	aaccgatcat 2798
F	gcagtgcaac	gcctgaacgc	gatccccgga	gaaatttcca	ttggcgtgga	ttcggtagag 2858
5	atggcacagg (cgacggcggg	tttgcgggaa	gatatcaagg	ctctgattga	agtggattcg 2918
	ggacatcgta	gaagtggagt	cacggcgact	gcttcagaat	tgagtcagat	ccgcgaggcg 2978
10	ctgggcagca (ggtatgcagg	agtgtttact	tttcctgggc	attcttatgg	cccgggaaat 3038
	ggtgagcagg (cagcagctga	tgagcttcag	g gctctaaaca	acagcgtcca	gcgacttgct 3098
15	ggcggcctga (cttctggcgg	ttcctcgccg	g tctgcgcagt	ttacagacgc	aatcgatgag 3158
13	atgcgaccag (gcgtgtatgt	gtttaacgat	teccageaga	tcacctcggg	agcatgcact 3218
,	gagaagcagg	tggcaatgac	ggtgctgtct	:		3248
20	<210> 5					
	<211> 579 <212> PRT					
25	<213> Coryne	ebacterium	glutamicum	1		
	<400> 5 Met Ala His 1	Ser Tyr A	la Glu Gln	Leu Ile Asp 10	Thr Leu Glu	Ala Gln 15
30	Gly Val Lys	Arg Ile Ty	r Gly Leu	Val Gly Asp 25	Ser Leu Asn 30	Pro Ile
35	Val Asp Ala 35	Val Arg G	ln Ser Asp 40	Ile Glu Trp	Val His Val 45	Arg Asn
33	Glu Glu Ala 50	Ala Ala Ph	ne Ala Ala 55	Gly Ala Glu	Ser Leu Ile 60	Thr Gly
40	Glu Leu Ala 65	_	la Ala Ser 70	Cys Gly Pro 75	Gly Asn Thr	His Leu 80
	Ile Gln Gly	Leu Tyr As 85	sp Ser His	Arg Asn Gly 90	Ala Lys Val	Leu Ala 95
45	Ile Ala Ser	His Ile Pr 100	o Ser Ala	Gln Ile Gly 105	Ser Thr Phe 110	Phe Gln
50	Glu Thr His 115	Pro Glu II	le Leu Phe 120	Lys Glu Cys	Ser Gly Tyr 125	Cys Glu
	Met Val Asn 130	Gly Gly G	lu Gln Gly 135	Glu Arg Ile	Leu His His 140	Ala Ile
55	Gln Ser Thr 145	Met Ala G		Val Ser Val 155	Val Val Ile	Pro Gly 160
	Asp Ile Ala	Lys Glu As 165	sp Ala Gly	Asp Gly Thr 170	Tyr Ser Asn	Ser Thr 175

	Ile	Ser	Ser	Gly 180	Thr	Pro	Val	Val	Phe 185	Pro	Asp	Pro	Thr	Glu 190	Ala	Ala
5	Ala	Leu	Val 195	Glu	Ala	Ile	Asn	Asn 200	Ala	Lys	Ser	Val	Thr 205	Leu	Phe	Cys
	Gly	Ala 210	Gly	Val	Lys	Asn	Ala 215	Arg	Ala	Gln	Val	Leu 220	Glu	Leu	Ala	Glu
10	Lys 225	Ile	Lys	Ser	Pro	Ile 230	Gly	His	Ala	Leu	Gly 235	Gly	Lys	Gln	Tyr	Ile 240
15	Gln	His	Glu	Asn	Pro 245	Phe	Glu	Val	Gly	Met 250	Ser	Gly	Leu	Leu	Gly 255	Tyr
	Gly	Ala	Cys	Val 260	Asp	Ala	Ser	Asn	Glu 265	Ala	Asp	Leu	Leu	Ile 270	Leu	Leu
20	Gly	Thr	Asp 275	Phe	Pro	Tyr	Ser	Asp 280	Phe	Leu	Pro	Lys	Asp 285	Asn	Val	Ala
	Gln	Val 290	Asp	Ile	Asn	Gly	Ala 295	His	Ile	Gly	Arg	Arg 300	Thr	Thr	Val	Lys
25	Tyr 305	Pro	Val	Thr	Gly	Asp 310	Val	Ala	Ala	Thr	Ile 315		Asn	Ile	Leu	Pro 320
30	His	Val	Lys	Glu	Lys 325	Thr	Asp	Arg	Ser	Phe 330	Leu	Asp	Arg	Met	Leu 335	Lys
	Ala	His	Glu	Arg 340	Lys	Leu	Ser	Ser	Val 345	Val	Glu	Thr	Tyr	Thr 350	His	Asn
35	Val	Glu	Lys 355	His	Val	Pro	Ile	His 360	Pro	Glu	Tyr	Val	Ala 365	Ser	Ile	Leu
	Asn	Glu 370	Leu	Ala	Asp	Lys	Asp 375	Ala	Val	Phe	Thr	Val 380	Asp	Thr	Gly	Met
40	Cys 385	Asn	Val	Trp	His	Ala 390	Arg	Tyr	Ile	Glu	Asn 395	Pro	Glu	Gly	Thr	Arg 400
45	Asp	Phe	Val	Gly	Ser 405	Phe	Arg	His	Gly	Thr 410	Met	Ala	Asn	Ala	Leu 415	Pro
	His	Ala	Ile	Gly 420	Ala	Gln	Ser	Val	Asp 425	Arg	Asn	Arg	Gln	Val 430	Ile	Ala
50	Met	Cys	Gly 435	Asp	Gly	Gly	Leu	Gly 440	Met	Leu	Leu	Gly	Glu 445	Leu	Leu	Thr
	Val	Lys 450	Leu	His	Gln	Leu	Pro 455	Leu	Lys	Ala	Val	Val 460	Phe	Asn	Asn	Ser
55	Ser 465	Leu	Gly	Met	Val	Lys 470	Leu	Glu	Met	Leu	Val 475	Glu	Gly	Gln	Pro	Glu 480
	Phe	Gly	Thr	Asp	His 485	Glu	Glu	Val	Asn	Phe 490	Ala	Glu	Ile	Ala	Ala 495	Ala

```
Ala Gly Ile Lys Ser Val Arg Ile Thr Asp Pro Lys Lys Val Arg Glu
                                      505
 5
     Gln Leu Ala Glu Ala Leu Ala Tyr Pro Gly Pro Val Leu Ile Asp Ile
             515
                                  520
                                                      525
     Val Thr Asp Pro Asn Ala Leu Ser Ile Pro Pro Thr Ile Thr Trp Glu
                                                  540
10
     Gln Val Met Gly Phe Ser Lys Ala Ala Thr Arg Thr Val Phe Gly Gly
     545
                          550
                                              555
     Gly Val Gly Ala Met Ile Asp Leu Ala Arg Ser Asn Ile Arg Asn Ile
15
                     565
                                          570
     Pro Thr Pro
20
     <210> 6
     <211> 475
     <212> DNA
25
     <213> Corynebacterium glutamicum
     getetegeag caacaagage ceaegeagtt ggageaaaeg cageaceaag tgaagegatt 60
     ccgaaaatgc tcaagcccat gaggaacatc cggcggtggc cgattttgtc acccaaagtg 120
30
     ccggtaccca aaagaaggcc cgccatgagc aggggatatg cgttgatgat ccacaacgct 180
     tgggtttcgg tggctgcgag ctgttcacgc agcagaggga gtgcggtgta gagaatcgag 240
     ttgtctacac cgatcagaaa gagaccaccg ctgataacgg cgaggaaagc ccaacgttgg 300
     gttttcgtag gcgcttgcgc ctgtaaggtt tctgaagtca tggatcgtaa ctgtaacgaa 360
     tggtcggtac agttacaact cttttgttgg tgttttagac cacggcgctg tgtggcgatt 420
35
     taagacgtcg gaaatcgtag gggactgtca gcgtgggtcg ggttctttga ggcqc
     <210> 7
     <211> 613
40
     <212> DNA
     <213> Corynebacterium glutamicum
     <400> 7
     gcgtccgcat gtgaaaacgc acaaaatcat tgaaattgcg cagatgcagg tcgacgccgg 60
45
     tgcccgaggg atcacctgcg caaccattgg cgaggcggaa atttttgccg gcgcaggttt 120
     tacggacatc tttattgcat atccgctgta tctaaccgat catgcagtgc aacgcctgaa 180
     cgcgatcccc ggagaaattt ccattggcgt ggattcggta gagatggcac aggcgacggc 240
     gggtttgcgg gaagatatca aggctctgat tgaagtggat tcgggacatc gtagaaqtqq 300
     agtcacggcg actgcttcag aattgagtca gatccgcgag gcgctgggca qcaggtatqc 360
50
     aggagtgttt acttttcctg ggcattctta tggcccggga aatggtgagc aggcagcagc 420
     tgatgagett caggetetaa acaacagegt ccagegaett getggeggee tgaettetgg 480
     cggttcctcg ccgtctgcgc agtttacaga cgcaatcgat gagatgcgac caggcgtgta 540
     tgtgtttaac gattcccagc agatcacctc gggagcatgc actgagaagc aggtggcaat 600
     gacggtgctg tct
                                                                        613
55
     <210> 8
     <211> 20
     <212> DNA
```

```
<213> Artificial sequence
     <220>
     <223> Description of the artificial sequence: Primer
 5
           pox-del1
     <400> 8
     atgaggaaca tccggcggtg
                                                                          20
10
     <210> 9
     <211> 48
     <212> DNA
     <213> Artificial sequence
15
     <220>
     <223> Description of the artificial sequence: Primer
           pox-del2
20
     <400> 9
     gagaacagca ggagtatcaa tcatcactga actcctcaac gttatggc
                                                                         48
     <210> 10
25
     <211> 26
     <212> DNA
     <213> Artificial sequence
30
     <223> Description of the artificial sequence: Primer
           pox-del3
     <400> 10
     tgatgattga tacacctgct gttctc
                                                                         26
35
     <210> 11
     <211> 20
     <212> DNA
40
     <213> Artificial sequence
     <220>
     <223> Description of the artificial sequence: Primer
           pox-del4
45
     <400> 11
     tcattgccac ctgcttctca .
                                                                         20
50
     <210> 12
     <211> 1422
     <212> DNA
     <213> Corynebacterium glutamicum
55
     <220>
     <221> misc feature
     <222> (1)..(1422)
     <223> Sequence of the delta poxB allele
```

```
<220>
     <221> misc feature
     <222> (723)..(724)
     Deletion of the coding region of the poxB gene
 5
     <400> 12
     atgaggaaca tccggcggtg gccgattttg tcacccaaag tgccggtacc caaaagaagg 60
     cccgccatga gcaggggata tgcgttgatg atccacaacg cttgggtttc ggtggctgcg 120
     agctgttcac gcagcagagg gagtgcggtg tagagaatcg agttgtctac accgatcaga 180
10
     aagagaccac cgctgataac ggcgaggaaa gcccaacgtt gggttttcgt aggcgcttgc 240
     gcctgtaagg tttctgaagt catggatcgt aactgtaacg aatggtcggt acagttacaa 300
     ctcttttgtt ggtgttttag accacggcgc tgtgtggcga tttaagacgt cggaaatcgt 360
     aggggactgt cagcgtgggt cgggttcttt gaggcgctta gaggcgattc tgtgaggtca 420
     ctttttgtgg ggtcggggtc taaatttggc cagttttcga ggcgaccaga caggcgtgcc 480
15
     cacgatgttt aaataggcga tcggtgggca tctgtgtttg gtttcgacgg gctgaaacca 540
     aaccagactg cccagcaacg acggaaatcc caaaagtggg catccctgtt tggtaccgag 600
     tacccacccg ggcctgaaac tccctggcag gcgggcgaag cgtggcaaca actggaattt 660
     aagagcacaa ttgaagtcgc accaagttag gcaacacaat agccataaag ttgaggagtt 720
     cagtgatgat tgatacacct gctgttctca ttgaccgcga gcgcttaact gccaacattt 780
20
     ccaggatggc agctcacgcc ggtgcccatg agattgccct gcgtccqcat gtgaaaacqc 840
     acaaaatcat tgaaattgcg cagatgcagg tcgacgccgg tgcccgaggg atcacctgcg 900
     caaccattgg cgaggcggaa atttttgccg gcgcaggttt tacggacatc tttattgcat 960
     atccgctgta tctaaccgat catgcagtgc aacgcctgaa cgcgatcccc ggagaaattt 1020
     ccattggcgt ggattcggta gagatggcac aggcgacggc gggtttgcgg gaagatatca 1080
25
     aggetetgat tgaagtggat tegggaeate gtagaagtgg agteaeggeg aetgetteag 1140
     aattgagtca gatccgcgag gcgctgggca gcaggtatgc aggagtgttt acttttcctg 1200
     ggcattetta tggcccggga aatggtgage aggcagcage tgatgagett caggetetaa 1260
     acaacagcgt ccagcgactt gctggcggcc tgacttctgg cggttcctcg ccgtctgcgc 1320
     agtttacaga cgcaatcgat gagatgcgac caggcgtgta tgtgtttaac gattcccagc 1380
30
     agatcacctc gggagcatgc actgagaagc aggtggcaat ga
                                                                        1422
```

Patent claims

20

- 1. A process for the fermentative preparation of Dpantothenic acid, wherein the following steps are carried out:
- a) fermentation of D-pantothenic acid-producing coryneform bacteria in which at least the nucleotide sequence which codes for pyruvate oxidase (EC 1.2.2.2) (poxB) is attenuated, in particular eliminated;
- 10 b) concentration of the D-pantothenic acid in the medium or in the cells of the bacteria; and
 - c) isolation of the D-pantothenic acid produced.
- The process as claimed in claim 1, wherein the process of insertion, in particular by means of the vector pCR2.1poxBint, shown in figure 1 and deposited in E.coli as DSM 13114, is used to achieve the attenuation.
 - 3. The process as claimed in claim 1, wherein the process of deletion, in particular by means of the vector pCRB1-poxBdel, shown in figure 2, is used to achieve the attenuation.
 - 4. The process as claimed in claim 1, wherein coryneform bacteria in which further genes of the biosynthesis pathway of D-pantothenic acid are additionally enhanced are employed.
 - 5. The process as claimed in claim 1, wherein coryneform bacteria in which the metabolic pathways which reduce the formation of D-pantothenic acid are at least partly eliminated are employed.
- 30 6. The process as claimed in claim 3, wherein coryneform bacteria in which at the same time the panB gene which

codes for ketopantoate hydroxymethyl transferase is enhanced are employed.

- 7. The process as claimed in claim 3, wherein coryneform bacteria in which at the same time the panC gene which codes for pantothenate is enhanced are employed.
- 8. The process as claimed in claim 3, wherein coryneform bacteria in which at the same time the ilvC gene which codes for acetohydroxy-acid isomeroreductase is enhanced are employed.
- 10 9. The process as claimed in claim 3, wherein coryneform bacteria in which at the same time the ilvD gene which codes for dihydroxy-acid dehydratase is enhanced are employed.
- 10. The process as claimed in claim 1 or 4, wherein
 coryneform bacteria in which at the same time the pck
 gene which codes for phosphoenol pyruvate carboxykinase
 is attenuated are employed.
- 11. The process as claimed in claims 5 to 8, wherein the genes mentioned are enhanced in coryneform bacteria which already produce D-pantothenic acid.
 - 12. The process as claimed in claim 9, wherein coryneform bacteria which already produce D-pantothenic acid and in which the pck gene is attenuated are employed.
- 13. An isolated polynucleotide from coryneform bacteria
 25 which lies upstream of SEQ ID No. 1 and is shown in SEQ
 ID No. 6.
 - 14. An isolated polynucleotide from coryneform bacteria which lies downstream of SEQ ID No. 1 and is shown in SEQ ID No. 7.

- 15. An isolated polynucleotide from coryneform bacteria, containing a deletion mutation of the poxB gene shown in SEQ ID No. 12.
- 16. Coryneform bacteria which carry the deletion mutation shown in SEQ ID No. 12.

Abstract

5

10

The invention relates to a process for the preparation of D-pantothenic acid by fermentation of coryneform bacteria, in which bacteria in which the nucleotide sequence which codes for pyruvate oxidase (EC 1.2.2.2) (poxB gene) is attenuated are employed, the following steps being carried out:

- a) fermentation of D-pantothenic acid-producing bacteria in which at least the gene which codes for pyruvate oxidase is attenuated.
- b) concentration of the D-pantothenic acid in the medium or in the cells of the bacteria; and
- c) isolation of the D-pantothenic acid produced.

Figure 1: Map of the plasmid pCR2.1poxBint

Figure 2:

