UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen (utsatt prøve) i: KJM 1110 – Organisk kjemi I

Eksamensdag: 18. august 2011 Tid for eksamen: 09:00-13:00

Oppgavesettet er på 4 sider + 2 sider vedlegg

Vedlegg: 2 sider med spektroskopiske data og

periodesystemet (bakerst i oppgavesettet)

Tillatte hjelpemidler: Molekylbyggesett og enkel kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Alle 8 oppgaver teller likt.

Oppgave 1

Forbindelsene **A** og **B** som er vist nedenfor er funnet i frukter, blomster og urter av ulike slag, og har sterke og karakteristiske lukter.

- a) Tegn alle stereoisomerer som finnes for den mettede, sykliske forbindelsen **A**. Angi absolutt konfigurasjon ved karbonatomene som er merket med (2) og (5) i figuren. Angi hvilke forbindelser som er diastereomerer av hverandre, og hvilke som er enantiomerer av hverandre.
- b) Hvor mange stereoisomerer finnes det for den umettede forbindelsen **B**?
- c) (2S,5S)-isomeren av **A** har en utpreget solbæraktig duft, mens (2R,5R)-isomeren har en mer gressaktig, «grønn» duft. Hva kan den kjemiske årsaken være til at vi oppfatter duftene fra to så nært beslektede forbindelser så forskjellig?
- d) Tenk deg at du har fått utlevert en prøve av en forbindelse som er *enten* en isomer av **A** *eller* en isomer av **B**. Foreslå to metoder som kan benyttes for å finne ut hvilken av de to du har fått utlevert.

Oppgave 2

En kiral forbindelse **A** med bruttoformel $C_7H_{13}Br$ behandles med natriumetoksid (CH_3CH_2ONa) i etanol. Dette gir som hovedprodukt en akiral forbindelse **B** som i sitt 1H NMR-spektrum ikke viser noen signaler med kjemisk skift høyere enn δ 3,0. Når **B** behandles med ozon (O_3), etterfulgt av Zn i CH_3COOH , fås forbindelsen **C**. Når **C** reagerer med overskudd av Grignard-reagenset CH_3MgBr i eter, etterfulgt av opparbeiding i surt vandig miljø, fås forbindelsen **D** med bruttoformel $C_9H_{20}O_2$. 1H NMR-spekteret til forbindelse **D** er vist nedenfor.

Foreslå mulige strukturer til forbindelsene A, B, C og D som er i overensstemmelse med de opplysningene som er gitt.

Oppgave 3

- a) Tegn strukturene til alle forbindelser, inkludert stereoisomerer, som omfattes av det ufullstendige navnet «dimetylsykloheksan».
- b) Hvilken av forbindelsene *cis* og *trans*-1,2-dimetylsykloheksan er termodynamisk mest stabil? Forklar.
- c) Hvilken av strukturene i a) er den eneste som, blant andre signaler, viser en karakteristisk singlett i ¹H NMR-spekteret sitt? Forklar.

Oppgave 4

Hvilken av følgende forbindelser gir etanal ved hydrolyse i surt miljø? Hva blir det andre produktet fra denne reaksjonen? Gi en kort forklaring.

Oppgave 5

a) Angi reagenser og strukturer for mellomprodukter i denne flertrinns syntesen. Reaksjonsmekanismer trengs ikke.

b) Angi reagenser og strukturer for mellomprodukter i denne flertrinns syntesen. Reaksjonsmekanismer trengs ikke.

c) Vis hvilke Grignardforbindelser og hvilke karbonylforbindelser som kan benyttes for å fremstille alkoholen nedenfor. Ta med alle alternativer.

$$H_3C$$
OH
$$C-CH_2CH_2CH_3$$

$$CH_3$$

Oppgave 6

Oppvarming av (*R*)-2-klorpentan med natriummetoksid (CH₃ONa) i metanol gir flere produkter. Hvilke? Er noen av dem optisk aktive? Vis og forklar mekanismen for dannelse av hovedproduktet (hint: hovedproduktet inneholder ikke oksygen).

Oppgave 7

- a) Hva blir hovedproduktet når HBr reagerer med styren? Gi en kort forklaring.
- b) Tegn et energidiagram for reaksjonen mellom HBr og styren, med Gibbs fri energi (G) langs y-aksen og reaksjonsforløp (reaction progress) langs x-aksen. Anta at reaksjonen er eksergon og at det første trinnet er hastighetsbestemmende. Marker på diagrammet reaksjonens aktiveringsenergi (ΔG^{\ddagger}), fri energiforandring (ΔG°) og beliggenheten til reaktanter, intermediater og produkter.
- c) Vil du forvente at reaksjonen mellom 4-metoksystyren og HBr vil gå langsommere, omtrent like hurtig, eller vesentlig hurtigere enn reaksjonen mellom styren og HBr? Gi en kort forklaring.

Oppgave 8

Gi entydige IUPAC-navn på forbindelsene A-E.

$$O_2N$$
 O_2
 O_3
 O_4
 O_4
 O_5
 O_7
 O_8
 O_9
 O_9

¹H NMR kjemiske skift av protoner i forskjellige omgivelser. Dersom protonet er omgitt av flere funksjonelle grupper, vil effektene være omtrent additive (forsterkende).

Type proton	, vii cirektene vere omtren	K jemisk skift (δ)
Referanse	Si(CH ₃) ₄	0,0
Alkyl (primær)	—СН ₃	0,7-1,3
Alkyl (sekundær)	—С Н ₂ —	1,2-1,6
Alkyl (tertiær)	СН —	1,4-1,8
Allylisk	C=C-C	1,6-2,2
Metylketon	—с С Н 3	2,0-2,4
Aromatisk metyl	Aryl—CH ₃	2,4-2,7
Alkynyl	—С≡С—Н	2,5-3,0
Alkylhalid	CH—Halogen	2,5-4,0
Alkohol	COH	2,5-5,0
Alkohol, eter	C H	3,3-4,5
Vinylisk	C=C H	4,5-6,5
Aromatisk	Aryl— H	6,5-8,0
Aldehyd	—c(_H	9,7-10,0
Karboksylsyre	—с ^О —н	11,0-12,0

Spektroskopiske data – omtrentlige IR-absorpsjoner.

11	0 1 j
Funksjonell gruppe / bindingstype	Absorbsjon cm ⁻¹
sp ³ C–H	2850-2960
sp ² C–H	3020-3100
sp C–H	3300
C=C	1640-1680
aromatisk ring	1450-1600
C≡C	2100-2260
alkohol O–H	3400-3650 (bred)
karboksylsyre O–H	2500-3100 (meget bred)
amin N–H	3300-3500
nitril C≡N	2210-2260
karbonyl C=O	1670-1780 (sterk)

Periodesystemet

1 H																	2 He
3	4]										5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
11	12	1										13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	0s	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106					•		•					
Fr	Ra	Ac	Rf	Ha	106												

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd.	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr