From Contextualized to Static Word Embeddings

Hannes Hansen, M.Sc. Informatik Betreuer: Niklas Deckers

Word Embedding

Numerische Repräsentation eines Wortes, die die semantische Bedeutung widerspiegelt

Beispiele: Word2Vec, GloVe

Large Language Models

- Transformer basierte Sprachmodelle wie BERT und GPT-2 (Wang et.al, 2018)
- abhängig vom Kontext! -> kontextualisierte Word Embeddings

Transformer

Aggregierung

Warum die Kontextualisierung entfernen?

es gibt nicht immer Kontext und die Erzeugung ist rechenaufwendig

Word Similarity

- Ähnlichkeiten zwischen Wörtern basierend auf menschlichen Einschätzungen
 - Wordsim-353 (Wertebereich 1-10, 353 Paare; Hill et. al, 2015)
 - Simlex-999 (Wertebereich 1-10, 999 Paare; Agirre et. al, 2009)
- Korrelation zwischen Ähnlichkeitsvektoren
- Kosinusähnlichkeit als Ähnlichkeitsmetrik für Word Embeddings

Ähnlichkeit

 klassische Wortähnlichkeit wird durch paarweise Einschätzung durch Menschen erhoben

 Problem: unklar, welche Eigenschaft/Dimension für die Ähnlichkeit entscheidend ist

Dimensions-basierte Ähnlichkeit

- THINGS dataset (Hebart et. al. 2019)
 - 1854 Begriffe (für häufig sowie selten vorkommende Objekte)
- 49 interpretierbare Dimensionen wie animal-related, round-shaped, valuable (Hebart et. al. 2020)
 - basierend auf menschlichen Ähnlichkeitseinschätzungen

	animal-related	valuable
Dog	2.36	0.16
Money	0.001	0.97

Dimensions-basierte Ähnlichkeit

Ähnlichkeit basierend auf Word Embeddings

THINGS

Forschungsfragen und Ziele

- 1. Wie gut lassen sich menschliche Ähnlichkeitseinschätzungen anhand von Word Embeddings nachempfinden?
 - a. Word Similarity (Wordsim-353, Simlex-999)
 - b. Dimensionen-basierte Ähnlichkeit (THINGS)
 - c. Wie ist der Einfluss von Aggregation und verschiedenen Hyperparametern?
- Können dekontextualisierte Word Embeddings mit Hilfe von Transformern erstellt werden?
 - a. mit dem Ziel diese Ähnlichkeit nachzubilden
 - b. Was ist der Effekt von Aggregation?

Extraktion & Aggregation

Problem: Corpus - Worthäufigkeiten

Wieviele von n annotierten Wörtern kommen im Corpus vor?	THINGS n = 1.854	Wordsim-353 ∪ Simlex-999 n = 1.341
Wikitext-2	770	1.247
Wikitext-103	1.728	1.341
Wikidumps	1.854	1.341

Entscheidung für Wikidumps, da es alle Wörter abgedeckt sind und mehr Kontexte liefert

Wikidumps

THINGS

Ziel: 1000 Kontexte pro Wort

Schwer zu erreichen für selten verwendete Wörter

Wordsim/Simlex

Ergebnisse - Simlex-999

- Ergebnisse:
 - Höhere Korrelation für Transformer-basierte Embeddings
- Diskussion:
 - Transformer-basierte Embeddings, vor allem aggregiert, spiegeln direkt erhobene menschliche Einschätzungen am besten wider (Bommasani et al., 2020)

Ergebnisse - THINGS

- Ergebnisse:

- Transformer-basierte Embeddings erreichen niedrigere Korrelation als Word2Vec-Embeddings
- Aggregation führt zu höherer Korrelation

- Diskussion:

Word2Vec-Embeddings reflektieren die dimensionsbasierte Ähnlichkeit besser

Retraining eines Heads

Motivation:

- Herausfinden, ob dimensions-basierte Ähnlichkeit wirklich schlechter reflektiert ist oder die Information in pretrained Embeddings nicht ausgenutzt wird
- Modell zur Vorhersage von Ähnlichkeitswerten erstellen (als Ersatz für Menschen)

Ansatz:

- Sentence-BERT: Siamese Netzwerk mit BERT und verschiedene Loss Funktionen (Reimers et al., 2019)
- kleines Netzwerk als Head auf den Embeddings
- Groundtruth: menschliche Ähnlichkeitseinschätzung

Retraining eines Heads

- Contrastive Loss:
 - Distanz ähnlicher Paare verkleinern
 - Distanz unähnlicher Paare vergrößern
- Architektur:
 - 3 Layer (768x600x300)
 - 1 ReLU
- Train-Test Split
- BERT-base

Retraining eines Heads

- Ergebnisse:
 - Korrelation von retrained Embeddings steigt auf 0.6
- Diskussion:
 - Modell zur Vorhersage basierend auf BERT Word Embeddings

_

Zusammenfassung

- Methode zur Erstellung von dekontextualisierten Word Embeddings
- Intrinsische Evaluierungen von verschiedene Word Embeddings durchgeführt
 - Wortähnlichkeiten (Simlex-999, Wordsim-353)
 - Neue Ähnlichkeitsmetrik angewendet (THINGS)
 - Effekt von Aggregierung untersucht

- Ergebnisse:

- Kontextualisierte Embeddings kodieren Wortähnlichkeit bereits sehr gut (Wordsim-353/Simlex-999)
- Aggregierung erhöht Korrelation mit allen Ähnlichkeitsmetriken über alle Modelle und Hyperparameter hinweg

Diskussion

- 1. Warum sinkt die Korrelation in späteren Layern?
 - wegen (zu) hoher Kontextualisierung? (Ethayarajh et. al, 2019)
 - wegen Lernens von Informationen für Training Objective? (Li et. al, 2020)
- 2. Warum hilft Aggregierung?
 - verschiedene Kontexte spiegeln verschiedene Bedeutungen wieder?
 - Aggregation wirkt Kontextualisierung entgegen?
- 3. Warum ist die Korrelation mit THINGS Ähnlichkeit schlechter?
 - THINGS auch selten vorkommende Objekte beinhaltet?
 - Viele visuell geprägte Dimensionen schlechter in Text kodierbar?
 - nur Substantive

Ausblick

- Vorhersage der Dimensionswerte
- Einfluss von Textcorpora
- End-to-End finetuning
- Einfluss von Kontext Fenster
 - Word2vec 5-10
 - BERT 512 tokens

Backup

Kodieren Layer Ähnlichkeit anders?

Diskussion - Word Similarity

- 1. einfache contextualized embeddings kodieren Wortähnlichkeit
- 2. aber schlechter in späteren Layern
 - wegen Anisotropie und/oder wegen (zu) hoher Kontextualisierung? (Ethayarajh, Kawin 2019)
 - wegen Lernens von Informationen für Training Objective?
- 3. mehr Kontext verbessert allgemein
 - verschiedene Kontexte spiegeln verschiedene Bedeutungen wieder?
 - Aggregation wirkt Anisotropie entgegen?
 - aber limitiert
- 4. GPT-2 insgesamt schlechter geeignet für Word Embeddings
 - unidirectional
- 5. Empfehlung:
 - Wenn Word Embeddings, dann entweder
 - Aggregierte Embeddings aus späteren Layern aus Encoder Modellen
 - oder statische Embeddings aus ersten Layer
 - kontextualisierte Word Embeddings nur wenn Satzkontext wichtig ist

Word Embeddings

Unterschiede Similarity

	Wordsim (0-10)	Simlex (0-10)	THINGS (0-1)
clothes - closet	8.0	3.2	0.87
woman - man	7.0	3.3	0.88
dog - cat	-	1.8	0.92
money - bank	8.5	-	0.4
train - car	6.3	-	0.96

THINGS Dimensionen

- 1854x90 embedding space
- Cross Entropy Loss +L1 Regularisierung

Kontextualisierung

Ethayarajh, Kawin 2019

Reimers et al. 2019

Kontextualisierung

Layer 0

Layer 10

Ethayarajh et al. 2019

Extraktion & Aggregation

Anzahl Kontexte und Layer

- Motivation:
 - Wieviele Kontexte?
- Ansatz:
 - Wörter mit > 500 Kontexten
 - then use 1-1000 contexts to aggregate
- Ergebnisse
 - mehr Kontexte erhöhen
 - vor allem in späteren Layern
 - aber ab 50-100 keine Veränderung mehr
- Diskussion:
 - Aggregierung verbessert die Embeddings nicht unbegrenzt

Category prediction

Results:

- Transformer based embeddings perform worse than static embeddings
- decontextualized embedding perform better than single contextualized embeddings
- later layers are more predictive
- especially when aggregation over contexts is used

- Discussion:

- Word2Vec captures global similarity really well
- later layers seem to encode more information about global conceptual similarity

Anisotropy - Modelle

Anisotropy - Finetuning

Dimensionsvorhersage

THINGS

Simlex

Homonyme

Ausblick

- End to end learning on whole LM instead of finetuning
- RSA with THINGs brain data
- fine tuning on different task not similarity
- DeBERTa statt BERT
- BERT-flow
- Einfluss von Textcorpus -> preprocessed Wikitext vs Wikidump
- Einfluss von Context Window -> LM haben großes Window ~500 Tokens in BERT (Word2Vec ~5-10)
- STS with static word embeddings verglichen mit SBERT
 - performance vs accuracy
- Vorhersage der Dimensionswerte