Homework 4

Due: Wednesday, 29. Sept. 2021

READING: Before next Monday, please read the section "Understanding simplicial sets" from the notes.

Exercise 1. Recall that a groupoid is a category in which all morphisms are invertible. We denote by $\mathsf{Grpd} \subset \mathsf{Cat}$ the full subcategory whose objects are the groupoids.

1. Given a groupoid 9, let

$$\pi_0(\mathfrak{G}) := ob(\mathfrak{G})/_{\sim}$$

be the set of equivalence classes of objects under the relation $x \sim y$ if there exists $g: x \to y$ in \mathfrak{G} . Show that the assignment

$$\pi_0: \mathsf{Grpd} \to \mathsf{Set}; \quad \mathfrak{G} \mapsto \pi_0(\mathfrak{G})$$

on objects defines a functor.

2. We call a groupoid \mathcal{G} path-connected if $\pi_0(\mathcal{G})$ is a singleton. Show that, for any path-connected groupoid \mathcal{G} , there is a group G and an equivalence of categories

BG
$$\simeq$$
 9.

Exercise 2. A (2,1)-category is a 2-category \mathbb{C} such that, for all $x,y\in\mathbb{C}$, the category $\mathbb{C}(x,y)$ is a groupoid.

- 1. Show that, given a (2,1)-category C, there is a 1-category $h\mathbb{C}$ such that
 - $ob(h\mathbb{C}) = ob(\mathbb{C})$
 - for all $x, y \in \mathbb{C}$, $h\mathbb{C}(x, y) = \pi_0(\mathbb{C}(x, y))$.

Exercise 3. Denote by $\iota: \Delta \to \mathsf{Cat}$ the functor that sends each totally ordered set [n] to the associated category, and define the *nerve functor* by

$$N: \mathsf{Cat} \to \mathsf{Set}_{\Delta}; \quad \mathsf{C} \mapsto \mathsf{Cat}(\iota(-), \mathsf{C}).$$

Let $\tau_1: \mathsf{Set}_\Delta \to \mathsf{Cat}$ be the left Kan extension of ι along the Yoneda embedding $\Delta \to \mathsf{Set}_\Delta$.

- 1. Argue that τ_1 is left adjoint to N.
- 2. Consider the functor $E: \Delta \to \mathbf{Grpd}$ which sends [n] to the groupoid E([n]) with objects $0, 1, \dots n$ and a unique isomorphism between every pair of objects. Show that the functor

$$M: \mathsf{Grpd} \to \mathsf{Set}_{\Delta}; \quad \mathsf{C} \mapsto \mathsf{Grpd}\,(E(-),\mathsf{C})$$

is naturally isomorphic to the restriction of N to Grpd .

3. Show that M admits a left adjoint. Is this left adjoint the same as τ_1 ?