TEORIA DOS CONJUNTOS

Andrea P. Silva

TEORIA DOS CONJUNTOS

Noções primitivas:

- Conjunto
- Elemento
- Pertinência entre elemento e conjunto

Definição de conjunto:

- Lista ou grupo de dados bem definidos com alguma especificidade entre si
- Coleção de objetos com alguma característica comum

- 1. Conjunto de moedas
- 2. Conjunto de números pares
- 3. Conjunto de vogais
- 4. Conjunto de sapatos
- 5. Conjunto de soluções para a equação x 4 = 0

Elementos de um conjunto:

São os componentes que o definem

- 1. No conjunto de moedas cada moeda é um elemento
- O número 2 é um elemento do conjunto dos números pares
- 3. u é um elemento do conjunto de vogais
- 4. O número 4 é um elemento do conjunto de soluções para a equação x 4 = 0 (na verdade é o único elemento desse conjunto)

Relação de pertinência:

- Dizemos que um elemento pertence a um conjunto se o mesmo faz parte do conjunto
- \triangleright Denotamos por: $a \in B$ (lemos: "a pertence a B")
- Quando um elemento a não pertence ao conjunto B escrevemos a ∉ B (lemos: "a não pertence a B")

- 1. O número 2 pertence ao conjunto dos números pares
- 2. *a* pertence ao conjunto das vogais
- 6 não pertence ao conjunto de soluções para a equação
 x 4 = 0

Descrição de um conjunto:

Podemos descrever um conjunto através da enumeração de seus elementos, separados por vírgula e delimitados por chaves

EXEMPLOS:

- 1. {a, e, i, o, u}
- 2. {verde, amarelo, azul, branco}
- $3. \{..., -4, -2, 0, 2, 4, ...\}$
- Geralmente nomeamos por letras maiúsculas do alfabeto latino

- 1. $A = \{a, e, i, o, u\}$
- 2. K = {verde, amarelo, azul, branco}
- 3. $P = \{..., -4, -2, 0, 2, 4, ...\}$

• Descrição de um conjunto:

Também podemos descrever os conjuntos por uma propriedade a ele referente ou mesmo uma lei que o define

- 1. A = vogais do alfabeto
- 2. K = Cores da bandeira brasileira
- 3. $P = \{x \mid x \in par\}$
- 4. $S = \{x \mid x \text{ \'e solução de } x 4 = 0\}$
- 5. $V = \{x \in \mathbb{R} \mid 0 < x < 5\}$

- Representações dos conjuntos:
 - Podemos representar os conjuntos por:
 - Diagramas de Venn-Euler

Intervalos

- 1. $V = \{x \in \mathbb{R} \mid 0 < x < 5\} = (0,5)$
- 2. $W = \{x \in \mathbb{R} \mid x \ge 10\} = [10, +\infty)$

Conjuntos especiais

- Conjunto vazio
 - ✓ É aquele que não possui elementos
 - ✓ É denotado por { } ou Ø
- Conjunto unitário
 - ✓ É aquele que possui somente um elemento
 - ✓ Exemplos: A={2}, S = {x | x é solução de x 4 = 0}, E = {x ∈ \mathbb{R} | x ≥ 10 e x ≤ 10}
- Conjunto universo
 - ✓ É aquele que possui todos os elementos referentes a um determinado assunto a ser tratado no estudo
 - √ É denotado por U
 - \checkmark Exemplos: Se estivermos estudando as soluções de equações de primeiro grau, $U = \mathbb{R}$

Conjuntos iguais

- Dados dois conjuntos A e B dizemos que A = B se, e somente se, todos os elementos que pertencem a A também pertencem a B e reciprocamente todos os elementos de B também pertencem a A.
- Simbolicamente escrevemos:

$$A = B \Leftrightarrow (\forall x)(x \in A \Leftrightarrow x \in B)$$

EXEMPLOS:

- a) $\{1,3,5,7,9\} = \{3, 3, 1, 7, 7, 7, 9, 5, 5\}$
- b) Para A = $\{x \mid x \in par\}$ e B = $\{x \in \mathbb{Z} \mid x = 2y, y \in \mathbb{Z}\}$ temos A = B

OBS:

- Observemos do exemplo a) que a ordem não é relevante nem tampouco a repetição de elementos.
- Pela observação anterior a repetição de elementos em um conjunto é algo inútil.

Subconjuntos

- Dados dois conjuntos A e B dizemos que A é um subconjunto de B se, e somente se, todos os elementos que pertencem a A também pertencem a B (nesse caso a recíproca não necessariamente deve ser verdadeira)
- > Simbolicamente escrevemos: $A \subset B$ (ou $B \supset A$) e lemos "A está contido em B" (ou "B contém A")

EXEMPLOS:

- a) Sejam A = $\{1,3,5\}$ e B = $\{1, 3, 5, 7, 9\}$, temos que A \subset B.
- b) Para $A = \{x \mid x > 0 \text{ e } x \text{ \'e par}\} \text{ e } B = \{x \in \mathbb{Z} \mid x = 2y, y \in \mathbb{Z}\} \text{ temos } A \subset B$
- c) Para A = $\{1,3,5,7,9\}$ e B = $\{3, 3, 1, 7, 7, 7, 9, 5, 5\}$ temos que A \subset B e B \subset A

OBS:

- 1) Observemos do exemplo c) que A = B se, e somente se, A \subset B e B \subset A.
- 2) Se A não está contido em B escrevemos A $\not\subset$ B.

- Propriedades da inclusão
 - Sendo A, B e C três conjuntos quaisquer, valem as seguintes propriedade:
 - 1. $\varnothing \subset A$
 - 2. $A \subset A$ (reflexiva)
 - 3. Se $A \subset B$ e $B \subset A \Rightarrow A = B$ (anti-simétrica)
 - 4. Se $A \subset B$ e $B \subset C \Rightarrow A \subset C$ (transitiva)

Conjunto das partes

- Dado um conjunto A, definimos o conjunto das partes de A e denotamos por P(A) o conjunto formado por todos os subconjuntos de A.
- \triangleright Simbolicamente: $P(A) = \{X \mid X \subset A\}$

```
EXEMPLO: Seja A = \{1,3,5\}.
Temos P(A) = \{\{1\}, \{3\}, \{5\}, \{1,3\}, \{1,5\}, \{3,5\}, \{1,3,5\} \in \emptyset\}
```

OBS:

- 1. A cardinalidade de A, denotada por #A é o número de elementos de A e #P(A) é 2^{#A}
- 2. No exemplo anterior temos que $\#P(A) = 2^3 = 8$

EXERCÍCIOS

- 1. Dados os conjuntos $A = \{a,b,c\}, B = \{a\}, C = \{1,2,3,4\}, D = \{1,2\}, E = \{5,6,7\}, F = \{1,2,3,4,5,6,7\}, classifique em verdadeiro (V) ou falso (F):$
- a) $a \in A$ ()
- b) $a \in B$ ()
- c) $c \notin A$ ()
- d) $d \notin B$ ()
- e) b ∉ B ()
- f) $c \in A$ ()
- g) $C \subset D$ ()
- h) $E \subset F$ ()
- i) $\{7,7,5,1,1\} \subset F$ ()
- $j) A \subset D$ ()

- $k) 5 \in B \qquad ()$
- $l) {3,1,2} = C ()$
- m) b \notin A ()
- n) $\{a\} \subset B$ ()
- $o) A = B \qquad ()$
- $p) \{b\} \not\subset A \qquad ()$
- q) $D \subset E$ ()
- r) $F \subset C$ ()
 - s) F = E ()
 - t) $\{a,b,b,c\} = A$ ()

EXERCÍCIOS

- 2. Seja $U = \left\{-2,1,0,\frac{1}{2},\frac{3}{4},2,\frac{10}{3},4,-5\right\}$. Explicitar os elementos de cada um dos conjuntos seguintes:
- a) $\{x \in U | x < 0\}$
- b) $\{x \in U | 2 < x < 3\}$
- c) $\{x \in U | 2x 1 = 3x + 4\}$
- d) $\{x \in U | x 4 < 0\}$
- 3. Seja $U = \left\{-1, \frac{1}{2}, 2, \frac{1}{3}, 4, 5\right\}$. Verifique se são ou não iguais os seguintes pares A e B de conjuntos:
- a) $A = \{x \in U | x + 1 = 3\}$ e $B = \{x \in U | 2x 3 = 1\}$
- b) $A = \{x \in U | x < 0\}$ e $B = \{x \in U | x + 1 = 0\}$
- c) $\left\{ x \in U \mid x > \frac{1}{2} \right\}$ e B = $\left\{ x \in U \mid x < 5 \right\}$

- Operações com conjuntos
 - União
 - Interseção
 - Diferença
 - Complementar

- União de conjuntos (∪)
 - ➤ A união dos conjuntos A e B é o conjunto formado por todos os elementos que pertencem a A ou a B ou a ambos.
 - ➤ Notação: A ∪ B

EXEMPLO: Sejam A={1,3,5,7} e B={2,4,6} então

OBS: Dois ou mais conjuntos que não possuem elementos em comum são chamados de disjuntos.

- Interseção de conjuntos (∩)
 - ➤ A interseção dos conjuntos A e B é o conjunto formado pelos elementos que pertencem a A e B simultaneamente.
 - ➤ Notação: A ∩ B

EXEMPLO: Sejam A={1,2,3,4,5} e B={4,5,6} então

$$A \cap B = \{4,5\}$$

- Diferença entre conjuntos (–) ou conjunto diferença
 - ➤ A diferença entre o conjuntos A e B é o conjunto formado pelos elementos que pertencem a A mas não pertencem a B.
 - ➤ Notação: A B

EXEMPLO: Sejam A={1,2,3,4,5} e B={4,5,6} então

- Complementar de um conjuntos
 - Sejam os conjuntos A e B, com A \subset B. Chamamos de complementar de A em relação a B o conjunto formado pelos elementos que faltam em A para que A = B, ou simplesmente B A.
 - \triangleright Notação: C_B^A

EXEMPLO: Sejam B={1,2,3,4,5} e A={4,5} então

$$C_B^A = B - A = \{1, 2, 3\}$$

Aplicações

 Uma empresa entrevistou 300 de seus funcionários a respeito de três embalagens A, B, C para o lançamento de um novo produto. O resultado foi o seguinte:

```
160 indicaram a embalagem A;
120 indicaram a embalagem B;
90 indicaram a embalagem C;
30 indicaram as embalagens A e B;
40 indicaram as embalagens A e C;
50 indicaram as embalagens B e C;
```

10 indicaram as 3 embalagens.

Pergunta-se:

- a) Dos funcionários entrevistados, quantos não tinham preferência por nenhum dos três?
- b) Quantos não indicaram a embalagem C?
- c) Quantos não indicaram as embalagens B ou C?
- d) Quantos indicaram apenas a embalagem A?

Aplicações

2. Numa cidade são consumidos três produtos A, B e C. Feito um levantamento do mercado sobre o consumo desses produtos, obteve-se o resultado disposto na tabela abaixo:

Produtos	Número de Consumidores
A	150
В	200
С	250
A e B	70
A e C	90
B e C	80
A, B e C	60
Nenhum dos três	180

Pergunta-se:

- a) Quantas pessoas consomem apenas o produto A?
- b) Quantas pessoas consomem o produto A ou o produto B ou o produto C?
- c) Quantas pessoas consomem o produto A ou o produto B?
- d) Quantas pessoas consomem apenas o produto C?
- e) Quantas pessoas foram consultadas?

Conjuntos Numéricos

• Intervalos de números reais

- Conjuntos Numéricos
 - Conjuntos dos números naturais N

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$$

Conjuntos dos números inteiros

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

- Conjuntos dos números racionais Q
 - ➤ São os números que podem ser escritos na forma de fração

$$\mathbb{Q} = \left\{ \frac{p}{q} \middle| p \in \mathbb{Z}, q \in \mathbb{Z}^* \right\}$$

$$-\frac{23}{50}$$
; $\frac{1}{8}$; 0,333 ...; 0,125; $\frac{1}{4}$; 0,25

- Conjuntos dos números irracionais I
 - ➤ São os números que não podem ser escritos na forma de fração (ou o conjunto todas as decimais infinitas não periódicas)

```
EXEMPLOS: \sqrt{2} = 1,41421356 \dots; \sqrt{3} = 1,7320508076 \dots; \pi = 3,14159265 \dots; e = 2,7182818285 \dots;
```

. . .

Conjuntos dos números reais R

$$\triangleright \mathbb{R} = \mathbb{Q} \cup \mathbb{I}$$

➤ São todos os números que podem ser representados em uma reta, chamada reta real

Intervalos

- Os intervalos são uma forma de representação bastante utilizada quando desejamos representar "partes" da reta real
- Podem ser
 - > abertos ()
 - Fechados []
 - > Semi-abertos (] ou [)

Intervalos

ightharpoonup Intervalo fechado: $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$

► Intervalo aberto: $(a,b) = \{x \in \mathbb{R} | a < x < b\}$

Intervalos

> Intervalo fechado à esquerda:

$$[a,b) = \{x \in \mathbb{R} | a \le x < b\}$$
a
b

Intervalo aberto à esquerda :

$$(a,b] = \{x \in \mathbb{R} | a < x \le b\}$$

Intervalos infinitos

$$[a, +\infty) = \{x \in \mathbb{R} | x \ge a\}$$

$$(a, +\infty) = \{x \in \mathbb{R} | x > a\}$$

$$(-\infty, a] = \{x \in \mathbb{R} | x \le a\}$$

$$(-\infty, a) = \{x \in \mathbb{R} | x < a\}$$

$$(-\infty, a) = \{x \in \mathbb{R} | x < a\}$$

$$(-\infty, a) = \{x \in \mathbb{R} | x < a\}$$

$$(-\infty, a) = \{x \in \mathbb{R} | x < a\}$$

- Interseção de intervalos
 - > Sejam A=[-1,2) e B=[0,3]

- União de intervalos
 - \triangleright Sejam A=[-1,2) e B=[0,3]

- Diferença de intervalos
 - \triangleright Sejam A=[-1,2) e B=[0,3]

- Complementar entre intervalos
 - > Sejam A=[-1,2) e B=[0,1]

> Ou seja: $[-1,0) \cup (1,2)$

Exercícios

Considerando os intervalos A=[-2,3), B=(0,2) e C=[-1,1], determine:

- a. $A \cap B$
- c. $A \cup B$
- e. $(A \cap B) \cup (B \cap C)$ f. (A B)
- g. C_A^B

- b. $A \cup C$
- d. $B \cap C$
- h. $C_{\mathbb{R}}^{A}$

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] lezzi, G. e Murakami, C., Fundamentos de matemática Elementar, vol. 1, ed. Atual, 2005.
- [2] Silva, S. M.; Silva, E. M. e Silva, E. M., Matemática: para os cursos de economia, administração, ciências contábeis, ed. Atlas, 2010.