

Tentamen med lösningar IE1204-5 Digital Design Fredag 13/1 2017 08.00-12.00

Allmän information (TCOMK, Ask for an english version of this exam if needed)

Examinator: Ingo Sander.

Ansvarig lärare: Kista, William Sandqvist tel 08-7904487

Ansvarig lärare: Valhallavägen, Ahmed Hemani tel 08-7904469

Tentamensuppgifterna behöver **inte** återlämnas när du lämnar in din skrivning.

Hjälpmedel: Inga hjälpmedel är tillåtna!

Tentamen består av tre delar med sammanlagt 14 uppgifter, och totalt 30 poäng:

Del A1 (Analys) innehåller åtta korta uppgifter. Rätt besvarad uppgift ger en poäng. Felaktig besvarad ger 0 poäng. Det totala antalet poäng i del A1 är **10 poäng**. För **godkänt på del A1 krävs minst 6p**, *är det färre poäng rättar vi inte vidare*.

Del A2 (Konstruktionsmetodik) innehåller två metodikuppgifter om totalt **10 poäng**. För att bli **godkänd på tentamen** krävs **minst 11 poäng** från A1+A2, *är det färre poäng rättar vi inte vidare*.

Del B (Designproblem) innehåller två friare designuppgifter om totalt 10 poäng.

OBS! I slutet av tentamenshäftet finns ett inlämningsblad för del A1, som ska avskiljas för att lämnas in tillsammans med lösningarna för del A2 och del B.

För ett godkänt betyg (**E**) krävs **minst 11 poäng på hela tentamen**. Vid exakt 10p från A1(6p)+A2(4p) erbjuds komplettering (FX) till godkänt.

Betyg ges enligt följande:

0 –	11 –	16 –	19 –	22 –	25
F	Е	D	C	В	A

Resultatet beräknas meddelas före fredagen den 3/2 2017.

Del A1: Analysuppgifter

Endast svar krävs på uppgifterna i del A1. Lämna svaren på inlämningsbladet för del A1 som du hittar på sista sidan av tentahäftet.

1. 1p/0p

En funktion f(x, y, z) är angiven på minimerad SoP form (Summa av produkter):

$$f(x, y, z) = \{SoP\}_{\min} = y + x \cdot \overline{z}$$

Ange funktionen som minimerad produkt av summor.

$$f(x, y, z) = \{PoS\}_{\min} = ?$$

1. Lösningsförslag.

$$f(x, y, z) = \{SoP\}_{\min} = y + x \cdot z$$

$$yz \qquad f \qquad yz \qquad f$$

$$00 \quad 01 \quad 11 \quad 10$$

$$0 \quad 0 \quad 0 \quad 11 \quad 10$$

$$x \cdot z \qquad y \quad (x+y) \quad (y+z)$$

$$f(x, y, z) = \{PoS\}_{\min} = (x + y) \cdot (y + \overline{z})$$

2. 1p/0p

Oanvändbar koppling (!). En 5-bits adderare är kopplad så att den multiplicerar ett binärt teckenlöst 4-bitstal $x = x_3x_2x_1x_0$ med en konstant k, $y = k \cdot x$. Antag att talet $x = 1010_2$ vad blir då summan $y = y_5y_4y_3y_2y_1y_0$ (6 bitar)?

2. Lösningsförslag.

Utan Carry out (5 bitars svar) utför kretsen operationen $y = (2 \cdot x - 1 \cdot x) = 1 \cdot x$ talet x förblir opåverkat av adderaren (k = 1). $1010 \rightarrow 01010$. Med Carry out (6 bitars svar) $1010 \rightarrow 101010$. Ja den kopplingen är verkligen oanvändbar utanför tentamen men väl där är den värd 1p.

3. 1p/0p

Ett tvåkomplement 16-bitstal är (hexadecimalt) x_{16} = FFFB. Talet placeras som tvåkomplementtal i ett 4-bitsregister (bitarnas antal reduceras med bibehållande av tecken). Ange talet som decimaltal med tecken och belopp $\pm x_{10}$ = ?

2

3. Lösningsförslag.

De tolv överskjutande teckenbitarna stryks. $x = B = 1011 = -(0100+1) = -0101_2 = -5_{10}$

Ett Karnaughdiagram för en funktion av fyra variabler $Y = f(x_3, x_2, x_1, x_0)$ ges nedan. Ange funktionen minimerad Y_{\min} som en summa av produkter, på **SoP** form. "-" i diagramet står för "don't care".

x ₃ x ₂ x ₁	х _о 00	01	11	10
00	⁰ 1	_ I	ფ	² 0
01	4 -	⁵ 1	⁷ 1	⁶ 0
11	¹ 0	13	15	¹ / ₁
10	⁸ 0	9	¹¹ 1	1 <u>0</u>

4. Lösningsförslag.

$$Y_{\min} = f(x_3, x_2, x_1, x_0) = f(x_3, x_1, x_0) =$$

$$= x_0 + \overline{x_3} x_1 + x_3 x_1 = x_0 + \overline{x_3} \oplus x_1$$

5. 1p/0p

Figuren nedan visar ett grindnät med två NOR grindar och två NAND-grindar. Förenkla funktionen Y = f(a, b, c, d) så långt som möjligt och ange den på SoP-form.

$$Y = \overline{\overline{a \cdot b} + (\overline{c} + \overline{d})} = \{dM\} = a \cdot b \cdot (c + \overline{d}) = abc + ab\overline{d}$$

Ange den logiska funktion som realiseras av CMOS kretsen i figuren till höger.

Ange funktionen på SoP-form. F = f(A, B, C, D) = ?

6. Lösningsförslag.

Pulldown net

$$\overline{F} = B + A \cdot (C + D)$$

$$\Rightarrow F = \overline{B + A \cdot (C + D)} = \overline{B} \cdot \overline{A \cdot (C + D)} =$$

$$= \overline{B} \cdot (\overline{A} + (\overline{C + D})) = \overline{B} \cdot (\overline{A} + \overline{C} \cdot \overline{D}) = \overline{B} \cdot \overline{A} + \overline{B} \cdot \overline{C} \cdot \overline{D}$$

7. 1p/0p

Tillståndsmaskiner kan ritas antingen som tillståndsdiagram (state diagram) eller som ASM chart (Algorithmic State Machine chart). Figuren visar ett ASM chart. Rita om detta som ett Moore-tillståndsdiagram. Använd cirklarna i figuren. Cirklarna finns också på svarsblanketten.

En synkron räknare enligt figuren ovan startar med tillståndet $q_2q_1q_0 = 000$. Vad blir tillståndet efter fyra klockpulser?

8. Lösningsförslag.

Räknaren är en Möbiusräknare som räknar "Creeping Code".

$$q_2q_1q_0: 000 \to 001 \to 011 \to 111 \to 110$$

$$q_2 q_1 q_0 = 110$$

9. 1p/0p

Figuren visar ett slags låskrets. Rita färdigt tidsdiagrammet. Figuren finns också på svarsblanketten.

Vid laborationerna har vi använt kretsar från 74-serien. De används numera mest som reservdelar, men finns alla beskrivna med VHDL kod.

Kretsen 7421 visas till höger. Nedan finns delar av kretsens VHDL kod.

```
I koden har vi dolt raden för o1 ( med tecknen \bullet ). Skriv VHDL koden för raden
```

```
02 <= ( );
```



```
library ieee;
use ieee.std_logic_1164.all;
entity A74XX21 is
  port (
           a1 : in std_logic;
           b1 : in std_logic;
           c1 : in std_logic;
           d1 : in std_logic;
           a2 : in std_logic;
           b2 : in std_logic;
           c2 : in std_logic;
           d2 : in
                    std_logic;
           o1 : out std logic;
           o2 : out std_logic );
end entity;
```

architecture dataflow of A74XX21 is
begin

```
o1 <= ( •• •• •• •• •• •• ) ;
o2 <= ( ) ;
```

end architecture;

```
10. Lösningsförslag.
```

```
o2 \le (a2 and b2 and c2 and d2);
```

Del A2: Konstruktionsmetodik

Observera! Del A2 rättas endast om Du är godkänd på del A1

11. 4p

ANDON signalljus. Vid tillverkning i fabriker med löpande band använder man ett system med varningsljus Grönt (G) Gult (Y) Rött (R) vid stationerna. Operatörerna har en stoppknapp (med en lina) som stoppar det löpande bandet och alla stationer signalerar då **rött**. Operatören har också en varningsknapp för att tillkalla hjälp. Den signalerar **gult** ljus vid egna stationen och alla tidigare stationer längs bandet, men utan att stoppa bandet.

När alla hinder är undanröjda kan bandet startas igen med en startpuls (Start). Alla stationer signalerar då **grönt** ljus. Se figuren som visar tre stationer med operatörsknappar och lampor. Pilen anger transportbandets rörelseriktning.

- a) (a+b=1p) (**Grönt**) En kort puls Start = 1 kan starta bandet om Ready = 1. Konstruera en krets som ger signalen Ready = 1 om *ingen* av stoppsignalerna s_1 s_2 s_3 är 1. Ready = $f(s_1, s_2, s_3)$.
- **b**) (**Rött**) Man Stoppar bandet genom att Reset =1. Konstruera en krets som ger signalen Reset = 1 om $n\mathring{a}gon$ av signalerna s_1 s_2 s_3 är 1. Reset = $f(s_1, s_2, s_3)$.

Rita de två kretsarna tillsammans, använd få men valfria grindar.

c) (2p) (**Gult**) Operatörena kan varna för problem genom att tända en Gul lampa. Signalerna w_1 w_2 w_3 ska dels tända den egna gula lampan (y_1 vid w_1 eller y_2 vid w_2 eller y_3 vid w_3), men också tända de gula lampor som hör till de stationer som ligger *före* i bandets rörelseriktning (stationerna efter ska *inte* varnas).

Ställ upp sanningstabell för $y_1y_2y_3 = f(w_1, w_2, w_3)$.

Tag fram funktionerna $y_1 = f(w_1, w_2, w_3)$ $y_2 = f(w_1, w_2, w_3)$ $y_3 = f(w_1, w_2, w_3)$ med inspektion av sanningstabellen eller med hjälp av Karnaughdiagram. Konstruera nätet med få och valfria grindar.

d) (1p) Det är vanligt med fler än tre arbetsstationer längs transportbandet. I figuren har tillkommit en varningssignal w_{IN} från en efterföljande grupp av stationer och en varningssignal w_{OUT} till en föregående grupp av stationer.

Komplettera kretsen från uppgift c) med signalerna w_{IN} och w_{OUT} på ett sådant sätt att den fungerar tillsammans med fler stationer. (Regel: alla stationer före ska också varna med gult ljus).

a) Ready =
$$\overline{s_1} \cdot \overline{s_2} \cdot \overline{s_3} = \overline{\overline{s_1} \cdot \overline{s_2} \cdot \overline{s_3}} = \{dM\} = \overline{s_1 + s_2 + s_3}$$

b) Reset =
$$s_1 + s_2 + s_3$$

c)							
	w_1	w_2	w_3	\mathcal{Y}_1	y_2	y_3	
	0	0	0	0	0	0	
	0	0	1	1	1	1	
	0	1	0	1	1	0	
	0	1	1	1	1	1	
	1	0	0	1	0	0	
	1	0	1	1	1	1	
	1	1	0	1	1	0	
	1	1	1	1	1	1	

$$y_3 = w_3$$
 (inspection of t-table)
 $y_1 = w_1 + w_2 + w_3$ (inspection)
 $y_2 = w_2 + w_3$ (K-map)

d) w_{IN} is or-ed together with w_3 .

$$y_3 = (w_3 + w_I)$$

$$y_2 = w_2 + (w_3 + w_I)$$

$$y_1 = w_1 + w_2 + (w_3 + w_{IN})$$

 w_{OUT} will now be the same as y_1 .

$$w_{OUT} = y_1 = w_1 + w_2 + (w_3 + w_I)$$

12. 6p

En modulo-6 synkronräknare är uppbyggd med tre D-vippor en XOR-grind och en AND-grind enligt figuren.

a) (1p) Tag fram uttrycken för nästa tillstånd

$$q_3^+ = ? \quad q_2^+ = ? \quad q_1^+ = ?$$

b) (1p) Ställ upp den fullständiga tillståndstabellen

$$q_3^+ q_2^+ q_1^+ = f(q_3 q_2 q_1)$$

c) (1p) Rita det fullständiga tillståndsdiagrammet.

d) (1p) Vilka tillstånd är det som *inte* ingår i modulo-6 räknesekvensen? Vad händer om räknaren hamnar i något av dessa tillstånd?

Konstruera nu om räknaren med bibehållande av funktionen, men använd två 2:1 multiplexorer i stället för grindarna. Se figuren.

e) (2p) Vilka signaler ska anslutas till multiplexorernas ingångar för att ersätta grindarna?

$$q_3^+: mux_0 = ?, \quad mux_1 = ?$$

$$q_1^+: mux_0 = ?, \quad mux_1 = ?$$

Del B. Designproblem

Observera! Del B rättas endast om Du har mer än 11p på del A1+A2.

13. 5p Synkront sekvensnät. Detektor för specifik händelse.

Ett skiftregister används till att detektera när en **viss sekvens** uppträder i en följd av bitar på skiftingången w. Signalen w är synkroniserad med klockpulserna c. Varje gång den rätta bitsekvensen uppträder blir z = 1. Vid start är w = 0.

a) (1p) Vilken bitsekvens är det som detekteras?

Man kan konstruera en Moore-automat med *färre* D-vippor som detekterar samma sekvens.

- **b**) (1p) Rita **tillståndsdiagram** för en sådan sekvensdetektor.
- c) (2p) Ställ upp **tillståndstabell** och **kodad tillståndstabell**, använd *binärkod* som tillståndskod. Tag fram minimerade utryck för **nästa tillståndsavkodare** och **utgångsavkodare**. Du behöver *inte* rita något kretsschema.
- **d**) (1p) Tillståndsminimera följande tillståndsdiagram. Rita sedan det tillståndsminimerade tillståndsdiagrammet. Observera att detta är en helt fristående uppgift utan någon koppling till den tidigare sekvensdetektorn.

- 13. Lösningsförslag.
- a) In-sekvensen är $1 \rightarrow 1 \rightarrow 0 \rightarrow 0$.
- b)

	w			
	0	1	Z	
a	а	b	0	
<i>b</i>	а	c	0	
c	d	c	0	
d	e	\boldsymbol{b}	0	
e	а	b	1	

$$z = q_2 \quad q_2^+ = q_1 q_0 \overline{w} \quad q_1^+ = q_1 \overline{q}_0 + \overline{q}_1 q_0 w \quad q_0^+ = q_1 \overline{q}_0 w + \overline{q}_1 q_0 w + q_1 q_0 w$$

d) Fristående uppgift.

14. 5p Registrering av dubbla flanker.

Pulser inkommer på två ingångar a och b till ett asynkront sekvensnät. Så fort totalt två positiva flanker (övergångar från 0→1) har inkommit till ingångarna så ska sekvensnätets utgång y bli 1 (och sedan förbli 1 oavsett insignalerna).

Två flanker innebär att det antingen inkommer två pulser till någon av ingångarna eller så inkommer det en puls till vardera ingången. Pulserna kan komma när som helst till ingångarna och inget antagande kan göras om pulsernas längd.

Vid start gäller att båda insignalerna är a = b = 0. Inga samtidiga insignalsändringar kan förekomma.

- a) (2p) Studera de möjliga insignalerna och ställ upp en korrekt flödestabell för sekvensnätet. Rita tillståndsdiagram.
- b) (2p) Gör en lämplig tillståndstilldelning med en exitations-tabell som ger nät som är fria från kritisk kapplöpning (kommentera hur Du uppnått detta). Du skall även ta fram de hasardfria uttrycken för nästa tillstånd (kommentera hur Du uppnått detta) samt ett uttryck för utgångsvärdet.
- c) (0.5p) Rita grindnätet. (Använd valfria grindar).
- d) (0,5p) För att vara användbart behöver sekvensnätet en Reset-ingång så att man kan återstarta kretsen. Komplettera grindnätet med en sådan funktion. (Använd valfria grindar).

B and D are on Hamming distance 2. For ab = 11 in B, unstable state C will forward B to D.

d) An active low Reset could be inserted with two and-gates as the initial state A has the code 00.

Lycka till!

Inlämningsblad för del A Blad 1

(ta loss och lämna in som blad 1 tillsammans med lösningarna för del A2 och del B)

Efternamn: Förnamn:

Personnummer: Blad:

1

Skriv in dina svar för uppgifterna från del A1 (1 till 10)

SKriv	in dina svar för uppgifterna från del A1 (1 till 10)
Fråga	Svar
1	$f(x,y,z) = \{PoS\}_{\min} = ?$
2	$x = 1010_2 \rightarrow y = k \cdot x = y_5 y_4 y_3 y_2 y_1 y_0 = ?$
3	$x_{16} = \text{FFFB} \rightarrow 4\text{-bit} \rightarrow \pm x_{10} = ?$
4	$Y = \{SoP\}_{\min}$
5	Y = f(a, b, c, d)
6	F = f(A, B, C, D)
7	
8	$q_2q_1q_0 = 000 \to \to \to ??$
9	
10	02 <= (

Nedanstående del fylls i av examinatorn!

1 todalistacijae del 13 lis 1 a v ezaminacelis							
Del A1 (10)	Del A2 (10)		Del B (10)		Totalt (30)		
Poäng	11	12	13	14	Summa	Betyg	