

TCP/IP vs ISO\OSI

TCP/IP e ISO/OSI: confronto

II Modello TCP/IP

- Modello a strati di riferimento per <u>Internet</u>
- Prende il nome da due dei suoi protocolli più importanti:
 - □ Transmission Control Protocol (TCP)
 - □ Internet Protocol (IP)

Applicazione

Trasporto

Rete

Network Access

Livelli del TCP/IP

Comunicazione nel modello OSI

TCP/IP

Applicazioni e comunicazioni in TCP/IP

Livello di RETE

IP Internet Protocol

Scambio di datagrammi senza garanzia di consegna

Livello di TRASPORTO

TCP Transmission Control Protocol

- flusso di byte bidirezionale lungo un canale virtuale
- ordinamento dei dati
- dati non duplicati
- controllo di flusso
- controllo degli errori

UDP User Datagram Protocol

- Scambio di messaggi inaffidabile
- Senza connessione e senza ordine6

TCP/IP vs OSI

I vantaggi del TCP/IP sull'OSI sono fondamentalmente due:

- Quando nacque OSI, TCP/IP era già presente nel mondo accademico.
- 2. Lo stack TCP/IP è enormemente più semplice dello stack OSI.

Il TCP/IP parte dai protocolli mentre l'OSI parte dai livelli.

TCP/IP vs OSI

Protocolli e reti nel modello TCP/IP

Confronto tra OSI e TCP/IP

- Concetti centrali nel modello OSI
 - □ Servizi
 - □ Interfacce
 - □ Protocolli

■ Il modello TCP/IP originale non aveva una chiara distinzione tra questi concetti.

Problemi del modello OSI

- Perchè l'OSI è rimasto solo un modello di riferimento?
 - Momento sbagliato (troppo tardi!)
 - □ Cattiva tecnologia (non open-source)
 - Non buone implementazioni

Problemi del modello TCP/IP

- Limiti del modello:
 - □ Non è generale.
 - □ Non distingue tra livelli, interfacce e protocolli.
 - □ Il livello Host-to-Network non è un livello.
 - □ Non sono definiti i livelli Fisico e Data link.

Esempi di reti

- ARPANET, NFSNET, Internet
- Reti Connection-Oriented: X.25, Frame Relay, e ATM
- Ethernet
- Wireless LAN 802.11

ARPANET

■ La struttura originale di ARPANET

IMP = Interface Message Processor (equivale al router)

ARPANET

Dicembre 1969

Luglio 1970

Marzo 1971

LBL MCCLELLAN UTAH ILLINOIS MIT CCAO AMES TIP BBN Ø HARVARD of O IX-PARC QAMES IMP ABERDEEN O **STANFORD** NBS **ETAC** OFNWC RAND) TINKER ARPA Q MITRE Q RADC QUCSB QUCSD SAAC Q BELVOIR CMU USC **UCLA** SDC NOAA **GWC** CASE (e)

April 1972

(d)

September 1972.

NSFNET

La dorsale NSFNET nel 1988

Internet

- È nata dall'interconnessione di Arpanet e NSFNET, e si è velocemente estesa in tutto il mondo
- Applicazioni tradizionali (1970 1990)
 - □ E-mail
 - □ News
 - □ Remote login (telnet)
 - ☐ File transfer
- Dai primi anni '90: World Wide Web, sviluppato al CERN di Ginevra

Ethernet

Architettura originale Ethernet

