Junhao Ke

© 0000-0002-1177-1834

💆 junhao.ke@sydney.edu.au

(+61) 0 451 559 391

Faculty of Engineering and Information Technology

The University of Sydney New South Wales 2006

Education

The University of Sydney

NSW, Australia

Doctor of Philosophy March 2017 – May 2021

Thesis: Direct numerical simulation of an unsteady natural convection boundary layer

Advisors: Dr. Nicholas Williamson & Prof. Steven Armfield

The University of Sydney

NSW, Australia

Master of Professional Engineering

March 2015 – December 2016

Advisors: Dr. Nicholas Williamson & Prof. Steven Armfield East China University of Science and Technology

Shanghai, China

Bachelor of Engineering

September 2010 - July 2014

Research Interests

Buoyant Driven Flows, Heat Transfer, Computational Fluid Dynamics, Statistical Computing, Turbulence, Boundary Layer Theory

Publications

- **Ke**, **J**., Williamson, N., Armfield, S. W., Komiya, A., & Norris, S. E. (2021). High Grashof number turbulent natural convection on an infinite vertical wall. *Journal of Fluid Mechanics*, 929, A15.
- **Ke, J.**, Williamson, N., Armfield, S. W., Norris, S. E., & Komiya, A. (2020). Law of the wall for a temporally evolving vertical natural convection boundary layer. *Journal of Fluid Mechanics*, 902, A31.
- **Ke, J.**, Williamson, N., Armfield, S. W., McBain, G. D., & Norris, S. E. (2019). Stability of a temporally evolving natural convection boundary layer on an isothermal wall. *Journal of Fluid Mechanics*, 877, 1163-1185.
- **Ke, J.**, Williamson, N., Armfield, S. W., Norris, S. E., & Kirkpatrick, M. (2018). Direct numerical simulation of a temporally developing natural convection boundary layer on a doubly-infinite isothermal wall, *In Proceedings of IHTC-16. Begell House.*

Work in Progress

Ke, J., Williamson, N., Armfield, S. W., Komiya, A., & Norris, S. E. Turbulence statistics and budgets of a temporally developing natural convection boundary layer. (Submitted to *International Journal of Heat and Mass Transfer*)

Conferences & Talks

Turbulence statistics in a temporally evolving turbulent natural convection boundary layer. In 18th International Conference on Flow Dynamics, Sendai, Miyagi Japan, 28-29 October 2021.

Integral modelling of an unsteady natural convection boundary layer. In 22nd Australasian Fluid Mechanics Conference, Brisbane, QLD Australia, 7-10 December 2020.

Application of an integral model to an unsteady natural convection boundary layer. In 11th Australasian Natural Convection Workshop, Sydney, NSW Australia, 9-10 December 2019.

DNS of a temporally evolving vertical natural convection boundary layer. In 17th European Turbulence Conference, Torino, Italy, 3-6 September 2019.

DNS study of a parallel vertical natural convection boundary layer. In Australia-Japan Fluid Dynamics Workshop, Sydney, NSW Australia, 31 January-1 February 2019.

Direct numerical simulation of a temporally developing natural convection boundary layer on a doubly-infinite isothermal wall. In 16th International Heat Transfer Conference, Beijing, China, 10-15 August 2018.

Direct numerical simulation of an unsteady natural convection boundary layer adjacent to a doubly-infinite isothermal wall. In 10th Australasian Natural Convection Workshop, Auckland, New Zealand, 30 November-1 December 2017.

Honors & Awards

Postgraduate Research Support Scheme, Faculty of Engineering and IT, USyd	2018, 2020, 2021
Charles Kolling Travelling Fund, Faculty of Engineering and IT, USyd	2019
Best Student Paper Award in 10th Australasian Natural Convection Workshop	2017
Natural Convection Supplementary Scholarship, Faculty of Engineering and IT, USyd	2017
USyd-IS Strategic Scholarship Award, USyd	2016
Dean's Excellency Award, Faculty of Engineering and IT, USyd	2015
Merit Academic Award, Faculty of Engineering and IT, USyd	2015
Third Prize Scholarship, East China University of Science and Technology	2014
Fei-yang Award, East China University of Science and Technology	2014

Teaching Experience

Teaching Assistant

March 2017 - Present

NSW

Faculty of Engineering and IT, USyd

• Deliver tutorial and lead discussion sessions to reinforce material covered in lectures. Supervise quizzes and evaluate student assignments, quizzes, exams, and other assessments. Course includes: Fluid Dynamics II (MECH3261), Thermal Engineering II (MECH3260), Advanced Computational Fluid Dynamics (AMME5202)

Research Experience

Postdoctoral Research Associate

March 2021 - Present

School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney

NSW, Australia

• Turbulent flows; Direct numerical simulation; Buoyancy induced flows; Boundary layers

Visiting Researcher

September 2019 - October 2019

Advanced Fluid Information Research Center, Institute of Fluid Science, Tohoku University Sendai, Japan

• International cooperation on the natural convection/ventilation project

Industry Experience

Project Engineer

November 2015 - February 2016

Shanghai, China

- Experiment design & validation
- Statistical analysis for experimental data
- Algorithm development for acoustic analysis programs

Department of Research & Development, Inalfa Co., Ltd.

Assistant Manager

 $June\ 2014\ -\ December\ 2014$

Department of Construction & Excavation Machinery, Yanmar Engines Co.,

Shanghai, China

- Statistical analysis for recurrent event data
- Inventory control

Service

Volunteer of China Open Day (USyd)

2015

• Providing assistance on behalf of the faculty of Engineering and IT with the USyd global student recruitment team.

Language

English (fluent), Japanese (fluent), Mandarin (native) and Shanghai Dialect (native)