Cone Theorem

1 Preliminary

Theorem 1 (Iitaka fibration, semiample case, ref. [Laz04, Theorem 2.1.27]). Let X be a projective variety and \mathcal{L} an semiample line bundle on X. Then there exists a fibration $\varphi: X \to Y$ of projective varieties such that for any $m \gg 0$ with \mathcal{L}^m base point free, we have that the morphism $\varphi_{\mathcal{L}^m}$ induced by \mathcal{L}^m is isomorphic to φ . Such a fibration is called the *Iitaka fibration* associated to \mathcal{L} .

Theorem 2 (Rigidity Lemma, ref. [Deb01, Lemma 1.15]). Let $\pi_i: X \to Y_i$ be proper morphisms of varieties over a field k for i = 1, 2. Suppose that π_1 is a fibration and π_2 contracts $\pi_1^{-1}(y_0)$. Then there exists a rational map $\varphi: Y_1 \dashrightarrow Y_2$ such that $\pi_2 \circ \varphi = \pi_1$ and φ is well-defined near $Y_1 \setminus \{y_0\}$.

Theorem 3. Let $A, B \subset \mathbb{R}^n$ be disjoint convex sets. Then there exists a linear functional $f : \mathbb{R}^n \to \mathbb{R}$ such that $f|_A \leq c$ and $f|_B \geq c$ for some $c \in \mathbb{R}$.

Proposition 4. Let X be a normal projective variety of dimension n and H an ample divisor on X. Suppose that $K_X \cdot H^{n-1} < 0$. Then for a general point $x \in X$, there exists a rational curve Γ passing through x such that

$$0 < H \cdot \Gamma \le -2n \cdot \frac{H^n}{K_X \cdot H^{n-1}}.$$

Schetch of proof. Take a resolution $f: Y \to X$, then f^*H is nef on Y and $K_Y \cdot f^*H^{n-1} < 0$ since $E \cdot f^*H^{n-1} = 0$. Choose an ample divisor H_Y on Y closed enough to f^*H such that $K_Y \cdot H_Y^{n-1} < 0$. By [MM86, Theorem 5] and take limit for H_Y .

Lemma 5 (ref. [Kaw91, Lemma]). Let (X, B) be a projective klt pair and $f: X \to Y$ a birational projective morphism. Let E be an irreducible component of dimension d of the exceptional locus of f and $\nu: E^{\nu} \to X$ the normalization of E. Suppose that f(E) is a point. Then for any ample divisor H on X, we have

$$K_{E^{\nu}} \cdot \nu^* H^{d-1} \le K_{(X,B)}|_{E^{\nu}} \cdot \nu^* H^{d-1}.$$

Lemma 6. Let $f: Y \to X$ be a birational morphism of projective varieties with Y smooth and X has only rational singularities. Let E be an effective exceptional divisor on Y and D a divisor on X. Then we have

$$f_*(\mathcal{O}_Y(f^*D+E)) \cong \mathcal{O}_X(D), \quad R^i f_*(\mathcal{O}_Y(f^*D+E)) = 0, \quad \forall i > 0.$$

Proof. Yang: I am unable to proof this lemma.

Date: July 23, 2025, Author: Tianle Yang, My Website

2 Non-vanishing Theorem

Theorem 7 (Non-vanishing Theorem). Let (X, B) be a projective klt pair and D a Cartier divisor on X. Suppose that D is nef and $aD - K_{(X,B)}$ is nef and big for some a > 0. Then for $m \gg 0$, we have

$$H^0(X, mD) \neq 0.$$

3 Base Point Free Theorem

Theorem 8 (Base Point Free Theorem). Let (X, B) be a projective klt pair and D a Cartier divisor on X. Suppose that D is nef and $aD - K_{(X,B)}$ is nef and big for some a > 0. Then for $m \gg 0$, mD is base point free.

Remark 9. In general, we say that a Cartier divisor D is *semiample* if there exists a positive integer m such that mD is base point free. The statement in Base Point Free Theorem (Theorem 8) is strictly stronger than the semiample condition. For example, let \mathcal{L} be a torsion line bundle, then \mathcal{L} is semiample but there exists no positive integer M such that $m\mathcal{L}$ is base point free for all m > M.

4 Rationality Theorem

Lemma 10 (ref. [KM98, Theorem 1.36]). Let X be a proper variety of dimension n and D_1, \ldots, D_m Cartier divisors on X. Then the Euler characteristic $\chi(n_1D_1, \ldots, n_mD_m)$ is a polynomial in (n_1, \cdots, n_m) of degree at most n.

Theorem 11 (Rationality Theorem). Let (X, B) be a projective klt pair, $a = a(X) \in \mathbb{Z}$ with $aK_{(X,B)}$ Cartier and H an ample divisor on X. Let

$$t := \inf\{s \ge 0 : K_{(X,B)} + sH \text{ is nef}\}\$$

be the nef threshold of (X, B) with respect to H. Then $t = v/u \in \mathbb{Q}$ and

$$0 \le v \le a(X) \cdot (\dim X + 1).$$

Proof. For every $r \in \mathbb{R}_{>0}$, let

$$v(r) := \begin{cases} v, & \text{if } r = \frac{v}{u} \in \mathbb{Q} \text{ in lowest term;} \\ \infty, & \text{if } r \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

We need to show that $v(t) \leq a(\dim X + 1)$. For every $(p,q) \in \mathbb{Z}^2_{>0}$, set $D(p,q) := paK_{(X,B)} + qH$. If $(p,q) \in \mathbb{Z}^2_{>0}$ with 0 < atp - q < t, then we have D(p,q) is not nef and $D(p,q) - K_{(X,B)}$ is ample.

Step 1. We show that a polynomial $P(x,y) \neq 0 \in \mathbb{Q}[x,y]$ of degree at most n is not identically zero on the set

$$\{(p,q) \in \mathbb{Z}^2 : p,q > M, 0 < atp - q < t\varepsilon\}, \quad \forall M > 0,$$

if $v(t)\varepsilon > a(n+1)$

If $v(t) = \infty$, for any n, we show that we can find infinitely many lines L such that $\#L \cap \Lambda \ge n+1$. If so, Λ is Zariski dense in \mathbb{Q}^2 . Since $1/at \in \mathbb{R} \setminus \mathbb{Q}$, there exist $p_0, q_0 > M$ such that

$$0 < \frac{p_0}{q_0} - \frac{1}{at} < \frac{\varepsilon}{(n+1)a} \cdot \frac{1}{q_0}$$
, i.e. $0 < atp_0 - q_0 < \frac{\varepsilon t}{n+1}$.

Then $(ip_0, iq_0) \in \Lambda \cap \{p_0y = q_0x\}$ for $i = 1, \dots, n+1$. Since M is arbitrary, there are infinitely many such lines L.

Suppose $v(t) = v < \infty$ and t = v/u. Then the inequality is equivalent to $0 < aup - vq < \varepsilon v$. Note that $\gcd(au, v)|a$, then aup - vq = ai has integer solutions for $i = 1, \dots, n+1$. Since $v(t)\varepsilon > a(n+1)$, there are at least n+1 lines which intersect Λ in infinitely many points. This enforce any polynomial which vanishes on Λ has degree at least n+1.

Step 2. There exists an index set $\Lambda \subset \mathbb{Z}^2$ such that Λ contains all sufficiently large (p,q) with $0 \le atp - q \le t$ and

$$Z := \operatorname{Bs} |D(p,q)| = \operatorname{Bs} |D(p',q')| \neq \emptyset, \quad \forall (p,q), (p',q') \in \Lambda.$$

For every $(p,q) \in \mathbb{Z}_{>0}^2$ with 0 < atp - q < t, choose $k \in \mathbb{Z}_{>0}$ such that k(atp - q) > t. Then for all p', q' > kp with 0 < atp' - q' < t, we have

$$p' - kp \ge 0, \quad q' - kp > t(p' - kp).$$

It follows that

Yang: To be completed.

Step 3. Suppose the contradiction that $v(t) > a(\dim X + 1)$. Then we show that $H^0(X, D(p, q)) \neq 0$ for all $(p, q) \in \Lambda$. This is an analogue of Non-vanishing Theorem in the proof of Base Point Free Theorem (Theorem 8).

Let $P(x,y) := \chi(D(x,y))$ be the Hilbert polynomial of D(x,y). Note that $P(0,n) = \chi(nH) \neq 0$ since H is ample. Then $P(x,y) \neq 0$ and $\deg P \leq \dim X$. By $\ref{eq:thmodel}$, P is not identically zero on Λ . Note that $D(p,q) - K_{(X,B)}$ is ample for all $(p,q) \in \Lambda$, then $h^i(X,D(p,q)) = 0$ for all i > 0 by Kawamata-Viehweg vanishing theorem $\ref{eq:thmodel}$. Then

$$P(p,q) = \chi(D(p,q)) = h^{0}(X, D(p,q)) \neq 0$$

for some $(p,q) \in \Lambda$. This is equivalent to that $Z \neq X$ and hence $H^0(X,D(p,q)) \neq 0$ for all $(p,q) \in \Lambda$.

Step 4. We follow the same line of the proof of Base Point Free Theorem (Theorem 8) to show that there is a section which does not vanish on Z.

Fix $(p,q) \in \Lambda$. If $v(t) < \infty$, we assume that t = v/u and atp - q = a(n+1)/u. Let $f: Y \to X$ be a resolution such that

- (a) $K_{Y,B_Y} = f^*K_{(X,B)} + E_Y$ for some effective exceptional divisor E_Y , and Y, B_Y is a klt pair;
- (b) $f^*|D(p,q)| = |L| + F$ for some effective divisor F and a base point free divisor L, and $f(\operatorname{Supp} F) = Z$;
- (c) $f^*D(p,q) f^*K_{(X,B)} E_0$ is ample for some effective \mathbb{Q} -divisor $E_0 \in (0,1)$, and coefficients of E_0 are sufficiently small;
- (d) $B_Y + E_Y + F + E_0$ has snc support.

Yang: Such resolution exists by [KM98].

Let $c := \inf\{\lfloor B_Y + E_0 + tF \rfloor \neq 0\}$. Adjust the coefficients of E_0 slightly such that $\lfloor B_Y + E_0 + cF \rfloor = F_0$ for unique prime divisor F_0 with $F_0 \subset \operatorname{Supp} F$. Set $\Delta_Y := B_Y + cF + E_0 - F_0$. Then (Y, Δ_Y) is a klt pair.

Let

$$N(p',q') := f^*D(p',q') + E_Y - F_0 - K_{(Y,\Delta_Y)}$$

= $\left(f^*D(p',q') - (1+c)f^*D(p,q)\right) + \left(f^*D(p,q) - f^*K_{(X,B)} - E_0\right) + c\left(f^*D(p,q) - F\right).$

Note that on

$$\Lambda_0 := \{ (p', q') \in \Lambda : 0 < atp' - q' < atp - q, \ p', q' > (1+c) \max\{p, q\} \},\$$

the divisor $f^*D(p',q') - (1+c)f^*D(p,q) = f^*D(p'-(1+c)p,q'-(1+c)q)$ is ample, and hence N(p',q') is ample.

By the exact sequence

$$0 \to \mathcal{O}_Y(f^*D(p',q') + E_Y - F_0) \to \mathcal{O}_Y(f^*D(p',q') + E_Y) \to \mathcal{O}_{F_0}((f^*D(p',q') + E_Y)|_{F_0}) \to 0$$

and Kawamata-Viehweg Vanishing Theorem (??), we get a surjective map

$$H^0(Y, f^*D(p', q') + E_Y) \rightarrow H^0(F_0, (f^*D(p', q') + E_Y)|_{F_0}).$$

On F_0 , consider the polynomial $\chi((f^*D(p',q')+E_Y)|_{F_0})$. Note that dim $F_0=n-1$ and by the construction of (p,q), Λ_0 , similar to Step 3, we can show that $\chi((f^*D(p',q')+E_Y)|_{F_0})$ is not identically zero on Λ_0 . By adjunction, we have $(f^*D(p',q')+E_Y)|_{F_0}=N(p',q')|_{F_0}+K_{(F_0,\Delta_Y|_{F_0})}$ with $N(p',q')|_{F_0}$ ample and $(F_0,\Delta_Y|_{F_0})$ klt. Hence we can apply Kawamata-Viehweg Vanishing Theorem (??) to get

$$h^0(F_0, (f^*D(p', q') + E_Y)|_{F_0}) = \chi(F_0, (D(p', q') + E_Y)|_{F_0}) \neq 0.$$

This combining with the surjective map contradict to the assumption that $f(F_0) \subset Z = \text{Bs} |D(p', q')|$.

Cone Theorem

5

5 Cone Theorem and Contraction Theorem

Theorem 12 (Cone Theorem). Let (X, B) be a projective klt pair. Then there exist countably many rational curves $C_i \subset X$ with

$$0 < -K_{(X,B)} \cdot C_i \le 2 \dim X$$

such that

(a) we have a decomposition of cones

$$\operatorname{Psef}_1(X) = \operatorname{Psef}_1(X)_{K_{(X,B)} \ge 0} + \sum \mathbb{R}_{\ge 0}[C_i];$$

(b) and for any $\varepsilon > 0$ and an ample divisor H on X, we have

$$\operatorname{Psef}_1(X) = \operatorname{Psef}_1(X)_{K_{(X,B)} + \varepsilon H \ge 0} + \sum_{\text{finite}} \mathbb{R}_{\ge 0}[C_i].$$

Proof. Let $F_D := \operatorname{Psef}_1(X) \cap D^{\perp}$ for a nef divisor D on X. If dim $F_D = 1$, we also write $R_D := F_D$. Let $H_1, \dots, H_{\rho-1}$ be ample divisors on X such that they together with $K_{(X,B)}$ form a basis of $N^1(X)_{\mathbb{Q}}$. Fix a norm $\|\cdot\|$ on $N_1(X)_{\mathbb{R}}$ and let $S^{\rho-1} := S(N_1(X)_{\mathbb{R}})$ be the unit sphere in $N_1(X)_{\mathbb{R}}$.

Step 1. There exists an integer N such that for every $K_{(X,B)}$ -negative extremal face F_D and for every ample divisor H, there exists $n_0, r \in \mathbb{Z}_{>0}$ such that for all $n > n_0$, $\{0\} \neq F_{nD+rK_{(X,B)}+NH} \subset F_D$.

Let $N := (a(X)(\dim X + 1))!$, where a(X) is the number in Theorem 11. For every n, nD + H is an ample divisor and by Theorem 11, the nef threshold of $K_{(X,B)}$ with respect to nD + H is of form

$$\inf\{s \ge 0 : K_{(X,B)} + s(nD + H) \text{ is nef}\} = \frac{N}{r_n}, \quad r_n \in \mathbb{Z}_{\ge 0}.$$

Since $K_{(X,B)} + (N/r_n)((n+1)D + H)$ is nef, we have $r_n \leq r_{n+1}$. On the other hand, let $\xi \in F_D \setminus \{0\}$. Then $\xi \cdot (K_{(X,B)} + (N/r_n)(nD + H)) \geq 0$ implies that

$$r_n \le -N \cdot \frac{K_{(X,B)} \cdot \xi}{H \cdot \xi}.$$

Hence $r_n \to r \in \mathbb{Z}_{\geq 0}$. It follows that $rK_{(X,B)} + nND + NH$ is a nef but not ample divisor for all $n \gg 0$. Note that for every nef divisors N_1, N_2 , we have $F_{N_1+N_2} = F_{N_1} \cap F_{N_2}$. Then for all $n \gg 0$, there exists m large enough such that

$$\{0\} \neq F_{rK_{(X|B)}+mND+NH} \subset F_{rK_{(X|B)}+nD+NH} \subset F_D.$$

Step 2. Let $\Phi: N_1(X)_{K_{(X,B)}<0} \to \mathbb{R}^{\rho-1}$ be the map defined by

$$\alpha \mapsto \left(\frac{H_1 \cdot \alpha}{K_{(X,B)} \cdot \alpha}, \dots, \frac{H_{\rho-1} \cdot \alpha}{K_{(X,B)} \cdot \alpha}\right).$$

We show that the image of R_D under Φ lies in a \mathbb{Z} -lattice in $\mathbb{R}^{\rho-1}$.

Suppose $R = \mathbb{R}_{\geq 0}\xi$ for a class ξ . By Step 1, we have $R_{nD+rK_{(X,B)}+NH_i} = R_D$ for some integers n, r. Then $\xi \cdot (nD + rK_{(X,B)} + NH_i) = 0$ implies that

$$\frac{H_i \cdot \xi}{K_{(X,B)} \cdot \xi} = \frac{-r}{N} \in \frac{1}{N} \mathbb{Z}.$$

It follows that the image of R_D under Φ lies in $\frac{1}{N}\mathbb{Z}^{\rho-1}$.

Step 3. We show that every $K_{(X,B)}$ -negative extremal ray of $\operatorname{Psef}_1(X)$ is of the form R_D for some nef divisor D on X.

Let $R = \mathbb{R}_{\geq 0} \xi$ be a $K_{(X,B)}$ -negative extremal ray. Yang: Then R is of form $D^{\perp} \cap \operatorname{Psef}_1(X)$ for some nef \mathbb{R} -divisor D on X by Theorem 3. We need to show that D can be choose as a nef \mathbb{Q} -divisor. There is a sequence of nef but not ample \mathbb{Q} -divisors D_m such that $D_m \to D$ as $m \to \infty$. We adjust D_m such that $\dim F_{D_m} = 1$ for all n.

By re-choosing H_i , we can assume that $D = a_1H_1 + \cdots + a_{\rho-1}H_{\rho-1} + a_\rho K_{(X,B)}$ for $a_i > 0$ since aD - K is ample for $a \gg 0$. After truncation, we can assume that so is D_m . Then F_{D_m} is $K_{(X,B)}$ -negative. Note that $F_{nD_m+r_iK_{(X,B)}+NH_i} \subset F_{D_m}$ for some $r_i > 0$ and $n \gg 0$ by Step 1. If dim $F_{D_m} > 1$, then not all $H_i|_{F_{D_m}}$ are proportional to $K_{(X,B)}|_{D_m}$. We can assume that $r_1K_{(X,B)} + NH_1$ is not identically zero on F_{D_m} . Then we can choose n large enough such that $||r_1K_{(X,B)}+NH_1||/n < 1/m$. Replace D_m by $D_m + (r_1K_{(X,B)} + NH_1)/n$. Inductively we construct D_m nef \mathbb{Q} -divisor with $D_m \to D$ and dim $F_{D_m} = 1$.

Let $R_{D_m} = \mathbb{R}_{\geq 0} \xi_m$. Suppose that $\|\xi_m\| = \|\xi\| = 1$. By passing to a subsequence, we can assume that ξ_m converges. Then $\xi_m \to \xi$ since $\lim D_m \cdot \xi_m = D \cdot \lim \xi_m = 0$. However, Φ is well-defined at ξ and the image of ξ_m under Φ is discrete. Hence $\xi = \xi_m$ for all m large enough. It follows that $R = R_{D_m}$ for a nef \mathbb{Q} -divisor D_m .

Step 4. We show that any $K_{(X,B)}$ -negative extremal ray R_D contains the class of a rational curve C with $0 < -K_{(X,B)} \cdot C \le 2 \dim X$.

By Theorem 14, let $\varphi_D: X \to Y$ be the contraction associated to R_D (note that we do not need the step to proof Theorem 14). If $\dim Y < \dim X$, let F be a general fiber of φ_D . Yang: By adjunction, $(F, B|_F)$ is a klt pair and $K_{(F,B|_F)} = K_{(X,B)}|_F$. Take $H = aD - K_{(X,B)}$ for some a > 0 such that H is ample on F. By Proposition 4. Yang: In birational case, by adjunction, suppose $\varphi_D(E)$ is a point. By Lemma 5, we can use Proposition 4 to get the result.

Yang: To be completed.

Step 5. Proof of the theorem.

Given an ample divisor H on X, note that εH has positive minimum δ on $\operatorname{Psef}_1(X) \cap S^{\rho-1}$. Note that the set

$$\{\alpha \in \operatorname{Psef}_1(X) \cap S^{\rho-1} : K_{(X,B)} \cdot \alpha \le -\varepsilon H \cdot \alpha\} \subset \{\alpha : K_{(X,B)} \cdot \alpha \le -\delta\}$$

is compact, and Φ is well-defined on it. By Steps 2 and 3, there are only finitely many extremal rays on $\operatorname{Psef}_1(X)_{K_{(X,B)}+\varepsilon H\leq 0}$. By Step 4, we get (b).

For (a), note that any closed cone is equal to the closure of the cone generated by its extremal

ray. We only need to show that the cone

$$\mathcal{C} := \operatorname{Psef}_1(X)_{K_{(X,B)} \ge 0} + \sum \mathbb{R}_{\ge 0}[C_i]$$

is closed. Choose a Cauchy sequence $\{\alpha_n\} \subset \mathcal{C}$ such that $\alpha_n \to \alpha \in N_1(X)_{\mathbb{R}}$. Note that $\mathrm{Psef}_1(X)$ is closed, hence $\alpha \in \mathrm{Psef}_1(X)$. We only need to consider the case $\alpha \cdot K_{(X,B)} < 0$. We can choose an ample divisor and $\varepsilon > 0$ such that $\alpha \cdot (K_{(X,B)} + \varepsilon H) < 0$. Then $\alpha_n \cdot (K_{(X,B)} + \varepsilon H) < 0$ for all n large enough. Note that $\mathcal{C} \cap \{K_{(X,B)} + \varepsilon H \leq 0\}$ is a polyhedral cone by Step 2 and hence is closed. Then $\alpha \in \mathcal{C}$ and the conclusion follows.

Remark 13. Yang: Thanks for my friend Qin for pointing out that the extremal ray in Theorem 12 may not be exposed.

Theorem 14 (Contraction Theorem). Let (X, B) be a projective klt pair and $F \subset \operatorname{Psef}_1(X)$ a $K_{(X,B)}$ -negative extremal face of $\operatorname{Psef}_1(X)$. Then there exists a fibration $\varphi_F : X \to Y$ of projective varieties such that

- (a) an irreducible curve $C \subset X$ is contracted by φ_F if and only if $[C] \in F$;
- (b) up to linearly equivalence, any Cartier divisor G with $F \subset G^{\perp} = \{\alpha \in N_1(X) : \alpha \cdot G = 0\}$ comes from a Cartier divisor on Y, i.e., there exists a Cartier divisor G_Y on Y such that $G \sim \varphi_F^* G_Y$.

Proof. We follow the following steps to prove the theorem.

Step 1. We show that there exists a nef divisor D on X such that $F = D^{\perp} \cap \operatorname{Psef}_1(X)$. In other words, F is defined on $N_1(X)_{\mathbb{Q}}$.

We can choose an ample divisor H and n > 0 such that $K_{(X,B)} + (1/n)H$ is negative on F since $F \cap S^{\rho-1}$ is compact and $K_{(X,B)}$ is strictly negative on it, where $S^{\rho-1}$ is the unit sphere in $N_1(X)_{\mathbb{R}}$. Then by Cone Theorem (Theorem 12), F is an extremal face of a rational polyhedral cone, namely $\operatorname{Psef}_1(X)_{K_{(X,B)}+(1/n)H\leq 0}$. It follows that $F^{\perp}\subset N^1(X)_{\mathbb{R}}$ is defined on \mathbb{Q} . Since F is extremal and $K_{(X,B)}+(1/n)H$ -negative, the set $\{L\in F^{\perp}: L|_{\operatorname{Psef}_1(X)\setminus F}>0\}$ has non-empty interior in F^{\perp} by Theorems 3 and 12. Then there exists a Cartier divisor D such that $D\in F^{\perp}$ and $D|_{\operatorname{Psef}_1(X)\setminus F}>0$. It follows that D is nef and $F=D^{\perp}\cap\operatorname{Psef}_1(X)$.

Step 2. Let $\varphi: X \to Y$ be the Iitaka fibration associated to D by Theorem 1. We show that φ is the desired fibration.

Note that $\operatorname{Psef}_1(X)_{K_{(X,B)}\geq 0}\cap S^{\rho-1}$ is compact and D is strictly positive on it. Then there exist $a\geq 0$ such that $aD-K_{(X,B)}$ is strictly positive on $\operatorname{Psef}_1(X)_{K_{(X,B)}\geq 0}\cap S^{\rho-1}$. And $K_{(X,B)}$ is strictly negative on $F\setminus\{0\}$ since F is $K_{(X,B)}$ -negative. Then by Base Point Free Theorem (Theorem 8), we know that mD is base point free for all $m\gg 0$. Hence we can apply Theorem 1 to get a fibration $\varphi_D:X\to Y$.

First we show that D comes from Y. Note that mD and (m+1)D induces the same fibration φ_D for $m \gg 0$. Then there exists $D_{Y,m}$ and $D_{Y,m+1}$ such that $\varphi_D^*D_{Y,m} \sim mD$ and $\varphi_D^*D_{Y,m+1} \sim (m+1)D$. Then set $D_Y = D_{Y,m+1} - D_{Y,m}$, we have $\varphi_D^*D_Y \sim D$.

Note that $D_Y \equiv (1/m)D_{Y,m}$ and $D_{Y,m}$ is ample. Hence D_Y is ample. Then for any curve $C \subset X$, we have

$$D \cdot C = \varphi^* D_Y \cdot C = D_Y \cdot (\varphi_D)_* C.$$

It follows that C is contracted by φ_D if and only if $D \cdot C = 0$, which is equivalent to $[C] \in F$.

Let G be arbitrary Cartier divisor on X such that $F \subset G^{\perp}$. Since D is strictly positive on $\operatorname{Psef}_1(X) \setminus F$, for $m \gg 0$, let $D' \coloneqq mD + G$, we have $D'^{\perp} \cap \operatorname{Psef}_1(X) = F$. Then by the same argument as above, we get an other fibration $\varphi_{D'}: X \to Y'$ such that a curve C is contracted by $\varphi_{D'}$ if and only if $[C] \in F$. Then by Rigidity Lemma (Theorem 2), we see that $\varphi_D = \varphi_{D'}$ up to an isomorphism on Y. In particular, $D' \sim \varphi_D^* D'_Y$ for some Cartier divisor D'_Y on Y. Then G = D' - mD also comes from Y.

Remark 15. The Step 1 is amazing. If F is not $K_{(X,B)}$ -negative, then it may not be rational. For example, let $X = E \times E$ for a general elliptic curve E. By [Laz04, Lemma 1.5.4], we know that $\operatorname{Psef}_1(X)$ is a circular cone. The we see there indeed exist some irrational extremal faces of $\operatorname{Psef}_1(X)$.

Definition 16. Let (X, B) be a projective klt pair and R a $K_{(X,B)}$ -negative extremal ray of $\operatorname{Psef}_1(X)$ with contraction $\varphi_R: X \to Y$. There are three types of contractions:

- (a) Divisorial contraction: if dim $X = \dim Y$ and the exceptional locus of φ_R is of codimension one;
- (b) Small contraction: if dim $X = \dim Y$ and the exceptional locus of φ_R is of codimension at least two;
- (c) Mori fiber space: if $\dim X > \dim Y$.

Proposition 17. Let (X, B) be a \mathbb{Q} -factorial projective klt pair and R a $K_{(X,B)}$ -negative extremal ray of $\mathrm{Psef}_1(X)$. Suppose that the contraction $\varphi: X \to Y$ associated to R is either divisorial or a Mori fiber space. Then Y is \mathbb{Q} -factorial.

Proof. Let D be a prime Weil divisor on Y and $U \subset Y$ a big open smooth subset. Let $R = \mathbb{R}_{\geq 0}[C]$ for an irreducible curve C contracted by φ . Set $D_X := \overline{\varphi|_{\varphi^{-1}(U)}^{-1}D}$. Then D_X is a prime Weil divisor on X and hence is \mathbb{Q} -Cartier.

If φ is a Mori fiber space, then $D_X|_F \equiv 0$ for general fiber F of φ . Then by Contraction Theorem (Theorem 14), we see that $mD_X \sim \varphi^*D'$ for some Cartier divisor D' on Y. We have $mD|_U \sim D'|_U$ since $\varphi|_{\varphi^{-1}(U)}$ is a fibration. Then $mD \sim D'$ and hence D is \mathbb{Q} -Cartier.

If φ is a divisorial contraction, let E be the exceptional divisor of φ and assume that $\varphi^{-1}|_U$ is an isomorphism. Then $E \cdot C \neq 0$ (otherwise $E \sim_{\mathbb{Q}} f^*E_Y$ for some Cartier \mathbb{Q} -divisor E_Y on Y). Then we can choose $a \in \mathbb{Q}$ such that $(D_X + aE) \cdot C = 0$. By Contraction Theorem (Theorem 14), we have $mD_X + maE \sim \varphi^*D'$ for some Cartier divisor D' on Y. Then we also have $D|_U \sim mD'|_U$ since $\varphi|_{\varphi^{-1}(U)}$ is an isomorphism. Hence D is \mathbb{Q} -Cartier.

$$\varphi^* K_{(Y,B_Y)} \cdot C = 0 = K_{(X,B)} \cdot C < 0.$$

This is a contradiction.

References

- [Deb01] Olivier Debarre. *Higher-dimensional algebraic geometry*. Universitext. Springer-Verlag, New York, 2001, pp. xiv+233. ISBN: 0-387-95227-6. DOI: 10.1007/978-1-4757-5406-3. URL: https://doi.org/10.1007/978-1-4757-5406-3 (cit. on p. 1).
- [Kaw91] Yujiro Kawamata. "On the length of an extremal rational curve". In: *Inventiones mathematicae* 105.1 (1991), pp. 609–611 (cit. on p. 1).
- [KM98] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties. Vol. 134. Cambridge Tracts in Mathematics. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. Cambridge University Press, Cambridge, 1998, pp. viii+254. ISBN: 0-521-63277-3. DOI: 10.1017/CB09780511662560. URL: https://doi.org/10.1017/CB09780511662560 (cit. on pp. 2, 4).
- [Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I. Vol. 48. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Classical setting: line bundles and linear series. Springer-Verlag, Berlin, 2004, pp. xviii+387. ISBN: 3-540-22533-1. DOI: 10.1007/978-3-642-18808-4. URL: https://doi.org/10.1007/978-3-642-18808-4 (cit. on pp. 1, 8).
- [MM86] Yoichi Miyaoka and Shigefumi Mori. "A numerical criterion for uniruledness". In: *Annals of Mathematics* 124.1 (1986), pp. 65–69 (cit. on p. 1).