

Listado 8: Matriz asociada a compuesta de transformaciones lineales. Producto de matrices y sus propiedades. Ecuaciones matriciales.

Los problemas marcados con (P) serán resueltos en práctica.

1. Transformaciones lineales

En los problemas de esta sección te pedimos definir algunas transformaciones lineales. Recuerda que para definir una transformación lineal debes señalar: espacio de partida, espacio de llegada y

- ullet vector en el espacio de llegada que resulta de evaluar la transformación en un vector cualquiera del espacio de partida $oldsymbol{o}$
- ullet vectores en el espacio de llegada que resultan de evaluar la transformación en una base del espacio de partida $oldsymbol{o}$
- matriz asociada a la transformación con respecto a bases de los espacios de partida y llegada.

Con la información en cualquiera de los tres puntos anteriores es posible evaluar la transformación en cualquier vector del espacio de partida y también es posible estudiar sus propiedades.

1. Dados los siguientes pares de transformaciones lineales T y L, determine, si es posible, $T \circ L$ y $L \circ T$, $(T \circ L)(u)$, $(L \circ T)(v)$

(a)
$$T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$$
, $L: \mathbb{R}^3 \to \mathbb{R}^2$ tales que

$$[T]_B^C = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}, \qquad [L]_C^D = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

con

$$B = \{1, x, x^2\}, \qquad C = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}, \qquad D = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

Además,

$$u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \qquad [v]_B = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

(b) (P) $T: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}^3, L: \mathbb{R}^3 \to \mathcal{M}_2(\mathbb{R})$ tales que

$$[T]_{B}^{C} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \qquad [L]_{C}^{B} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

con

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}, \qquad C = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Además,

$$u = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \qquad v = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}.$$

2. Matrices

Recuerda que una matriz $A \in \mathcal{M}_n(\mathbb{R})$ es invertible si y solo si

- existe B tal que AB = BA = I,
- el núcleo de A solo contiene al vector nulo de \mathbb{R}^n (que es equivalente a que la aplicación $T: \mathbb{R}^n \to \mathbb{R}^n$ definida mediante T(x) = Ax es inyectiva y, por tanto, biyectiva),
- el espacio generado por las columnas de A, es decir, la imagen de A, tiene dimensión n (que es equivalente a que la aplicación $T: \mathbb{R}^n \to \mathbb{R}^n$ definida mediante T(x) = Ax es sobreyectiva y, por tanto, biyectiva).

En los problemas propuestos puedes utilizar cualquiera de las tres opciones anteriores para analizar si una matriz es invertible.

1. Sean A, B, C, D, E y F las siguientes matrices

$$A = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 & 2 \end{pmatrix},$$

$$C = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 2 & 1 \\ 3 & -1 & 2 \end{pmatrix},$$

$$E = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad F = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 2 & 1 \end{pmatrix}$$

- (a) Calcule, si es posible, AB, BA, $CC = C^2$, CD, DF, CE, EC.
- (b) ¿Qué otros productos son posibles?
- 2. Considere las matrices

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

(a) Calcule

1) $2(AB - BA)^{T}$, 3) $AC^{2} - I$, 5) $A^{2} - C^{2}$. ¿Es igual a (A + C)(A - C)?

(b) Encuentre una matriz $X \in \mathcal{M}_{2\times 2}(\mathbb{R})$ tal que

1) 2X + 3B = 5C,

2) $(A - \frac{3}{4}X)^{\mathrm{T}} = C$.

3. Sean $A \in M_{n \times n}(\mathbb{R})$ y $x \in \mathcal{M}_{n \times 1}(\mathbb{R})$ tales que para cada par de valores $i, j \in \{1, 2, \dots, n\}$ se cumple que

$$A(i,j) = \begin{cases} 1, & \text{si } i = j, \\ -1, & \text{si } 1 \le i \le n-1 \text{ y } j = i+1, \\ -1, & \text{si } i = 1 \text{ y } j = n, \\ -1, & \text{si } i = n \text{ y } j = 1, \\ 0, & \text{en otro caso.} \end{cases}, \qquad x(i,1) = i.$$

- (a) Escriba A y x cuando n = 2 y n = 3.
- (b) Calcule $Ax y x^{T}A$ en los dos casos anteriores.
- (c) Calcule $Ax y x^{T}A$ considerando que n es un número natural cualquiera.

4. (P) Sean A y B las siguientes matrices

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}.$$

- (a) Demuestre que A no es invertible, pero B sí lo es.
- (b) Encuentre, si es posible, matrices $C, D \in \mathcal{M}_2(\mathbb{R})$, distintas entre sí, de modo que AC =AD.
- (c) Encuentre, si es posible, matrices $C, D \in \mathcal{M}_2(\mathbb{R})$, distintas entre sí, de modo que BC =BD.
- (d) Sea $A \in \mathcal{M}_n(\mathbb{R})$. En general, no es cierto que si C y D son tales que AC = AD, entonces C = D. Sin embargo, si A es invertible, entonces AC = AD sí implica que C = D. Demuéstrelo.

5. **(P)** Sea

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) Demuestre que A es invertible.
- (b) Encuentre números reales a y b tales que $A^2 + aA + bI = \Theta$.
- (c) Usando la relación demostrada en 5b, encuentre una expresión para la inversa de A y calcúlela.
- (d) Compruebe el resultado obtenido en 5c.

6. Sea $C \in \mathcal{M}_4(\mathbb{R})$ la matriz triangular superior que satisface que para cada par de valores $i, j \in \{1, 2, 3, 4\}$

$$C(i,j) = \begin{cases} 1, & \text{si } 1 \le i \le 4 \text{ y } j = i, \\ 1, & \text{si } 1 \le i \le 3 \text{ y } j = i+1, \\ 0, & \text{en otro caso.} \end{cases}$$

- (a) Determine N = C I (I es la matriz identidad de orden 4).
- (b) Determine N^i , i = 0, 1, 2, 3, 4.
- (c) Muestre que C = N + I es invertible y

$$C^{-1} = I - N + N^2 - N^3$$

7. Sea $A \in \mathcal{M}_n(\mathbb{R})$. Se dice que A es *idempotente* si y solo si $A^2 = A$ y que A es *involutiva* si y solo si $A^2 = I$.

Demuestre que si A es involutiva, entonces las matrices P y Q definidas por

$$P = \frac{1}{2}(I + A)$$
 y $Q = \frac{1}{2}(I - A)$

son idempotentes y $PQ = \Theta$.

- 8. (P) Sea $M \in \mathcal{M}_{m \times n}(\mathbb{R})$ tal que $M^{\mathrm{T}}M$ es invertible.
 - (a) Muestre que $M^{\mathrm{T}}M$ es simétrica.
 - (b) Demuestre que la matriz

$$P = I - M(M^{\mathrm{T}}M)^{-1}M^{\mathrm{T}}$$

es simétrica, idempotente y satisface $PM = \Theta$.

9. (P) Sean $J \in \mathcal{M}_n(\mathbb{R})$ y $e \in \mathbb{R}^n$ tales que

$$J = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{pmatrix}, \qquad e = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}.$$

- (a) Demuestre que Je = ne y $J^2 = nJ$.
- (b) Muestre que $e \in \ker(I \frac{1}{n}J)$. Note que esto significa que $I \frac{1}{n}J$ no es invertible.

4

- (c) Sea $\alpha \in \mathbb{R}$, $\alpha \neq \frac{1}{n}$. Determine $\beta \in \mathbb{R}$ de modo que $(I \alpha J)^{-1} = I + \beta J$.
- (d) ¿Qué valores tienen nulidad y rango de $I \alpha J$ cuando $\alpha \neq \frac{1}{n}$?