SIMPLIFYING POLYNOMIALS IN ONE VARIABLE USING QUADRATIC FORM THEORY.

University of British Colombia

SYLVAIN GAULHIAC, WITH THE HELP OF ZINOVY REICHSTEIN

July 2014

Introduction

Let $n \geq 3$ be an integer, and k a field. One can define the field $K = k(a_1, \ldots, a_n)$ where a_1, \ldots, a_n are algebraically independent variables over k.

Let $P(X) = X^n + a_1 X^{n-1} + \ldots + a_n \in K[X]$ be the 'general polynomial' of degree n. P is an irreducible polynomial over K, so that

$$L := \frac{K[X]}{(P)}$$

is a field.

If X_1 denotes the image of X over the natural projection $K[X] \to L$, then $L = K(X_1)$, the degree of the field extension L/K is n, and P is the minimal polynomial of X over K. Let Y be another generator of L over K, and $Q := X^n + b_1 X^{n-1} + b_2 X^{n-2} + \ldots + b_n \in K[X]$ its minimal polynomial. The question we ask here is whether one can find Y such that $b_1 = b_2 = 0$.

Furthermore, we have:

$$\begin{cases} tr(Y) = -b_1 \\ tr(Y^2) = b_1^2 - 2b_2 \end{cases}$$

Therefore, if $char(K) \neq 2$, the condition $b_1 = b_2 = 0$ is equivalent to

$$tr(Y) = tr(Y^2) = 0 \ (*)$$

The aim of this paper is to prove the following result:

THEOREM 0.1. Let k be a field such that $\operatorname{char}(k) \nmid 2n$, and let K and L the fields defined as above. Let write $n = \sum_{i=1}^r 2^{n_i}$ with $n_i \neq n_j$ when $i \neq j$. Then there exists a generator y of L over K such that $\operatorname{tr}_{L/K}(y) = \operatorname{tr}_{L/K}(y^2) = 0$ if and only if the polynomial system

$$\sum_{i=1}^{r} 2^{n_i} y_i^2 = 0$$

$$\sum_{i=1}^{r} 2^{n_i} y_i = 0$$

has a non zero solution (y_1, \ldots, y_r) in k^r .

ACKNOWLEDGMENTS I would like to thank Zinovy Reichstein for the time he devoted to me and through whom I learned lots of things.

1. Preliminaries

In the remainder of this section we present two results which will be used in the sequel.

1.1. Springer's Theorem.

Let F be a field and (V,q) a F-quadratic space, that is to say V is a finite dimensional F-vector space, and q is a quadratic form in V. If F' is an extension of the field F, we can construct a F'-quadratic space $(V_{F'}, q^{F'})$. The underlying space $V_{F'}$ is taken to be $V \bigotimes_F F'$, and the F'-quadratic form $q^{F'} := q \otimes_F id_{F'}$ is given by

$$q^{F'}(v \otimes x) = x^2 q(v) \ (v \in V, x \in F')$$

Theorem 1.1. (Springer) Let K/F be a field extension of odd degree. If an F-quadratic form q is anisotropic over F, then q^K is also anisotropic over K.

Proof.

Let us assume the contrary. Suppose (K/F, q) is a counterexample with n = [K : F] minimal among the extensions of odd degree such that q^F is anisotropic and q^K is isotropic. Clearly $n \ge 1$ and K = F(x) for some $x \in K$. Let $P(t) \in F[t]$ be the minimal polynomial of x over F. Since q^K in isotropic, there exists an equation

(1)
$$q(f_1(t), \dots, f_d(t)) = P(t)h(t) \in F[t],$$

where d = dim(q) and the f'_is are polynomials in F[t] which are not all zero and whose degrees are lower than n-1: $m = max_i(\deg f_i) \leq n-1$. Since q is anisotropic, the LHS of (1) has degree $2m \leq 2n-2$, and therefore h(t) has odd degree $\leq n-2$. Now pick up any root $y \in \overline{F}$ of an irreducible odd degree factor of h in F[t], where \overline{F} denotes the algebraic closure of F. Plugging y into (1) we see that $q^{F(y)}(f_1(y),\ldots,f_d(y))=0$. We may assume that no irreducible polynomial f(t) divides all the f'_is , otherwise $f^2|h$ and we could have cancelled out f^2 from (1). Consequently we have $\sum_i F[t].f_i(t) = F[t]$, so in particular the f'_is can't have a common zero in \overline{F} . Therefore $(f_1(y),\ldots,f_d(y))$ is a nonzero isotropic vector for $q^{F(y)}$. But by construction [F(y):F] is odd and $\leq n$, which contradicts the minimality of n. Thus our first assumption is wrong, and for any extension K/F of odd degree the quadratic form q^K is anisotropic.

1.2. Number of orbits of Sylow 2-subgroup of S_n .

In this subsection, we show how the number of orbits of a Sylow 2-subgroup of the symmetric group S_n is related to n.

Remark 1.2. One can notice that this number is independent of the choice of the Sylow 2-subgroup since the Sylow 2-subgroups are conjugates in S_n .

LEMMA 1.3. Let ν be the 2-valuation in \mathbb{N} , $m \in \mathbb{N}$ and $0 \le k < 2^m$.

(1)
$$\nu(2^m!) = 2^m - 1$$

(2)
$$\nu((2^m + k) \times (2^m + k - 1) \times ... \times (k + 1)) = \nu(2^m!) = 2^m - 1.$$

Proof. We will prove (1) by induction on m. The cases m=0 or m=1 are trivial. Assume $\nu(2^j!)=2^j-1$ for $0\leq j\leq m$. We have :

$$\begin{split} \nu(2^{m+1}!) &= \nu(2^m!) + \nu\left(2^{m+1}(2^{m+1}-2)(2^{m+1}-4)\dots(2^m+2)\right) \\ &= \nu(2^m!) + \nu\left(2\times 2^m.2(2^m-1).2(2^m-2)\dots2(2^{m-1}+1)\right) \\ &= \nu(2^m!) + 2^m - 2^{m-1} + \nu\left(2^m(2^m-1)(2^m-2)\dots(2^{m-1}+1)\right) \\ &= \nu(2^m!) + 2^m - 2^{m-1} + \nu(2^m!) - \nu(2^{m-1}!) \\ &= 2^m - 1 + 2^m - 2^{m-1} + 2^m - 1 - (2^{m-1}-1) \\ &= 2^{m+1} - 1 \end{split}$$

For the proof of (2) it is sufficient to show that if $0 \le k < 2^m$ then $\nu(2^m + k) = \nu(k)$. Indeed in this case we can write:

$$\nu\left((2^{m}+k)(2^{m}+k-1)\dots(k+1)\right)$$

$$=\nu\left((2^{m}+k)(2^{m}+k-1)\dots(2^{m}+1)\right)+\nu\left(2^{m}(2^{m}-1)\dots(k+1)\right)$$

$$=\nu\left(k!\right)+\nu\left(2^{m}(2^{m}-1)\dots(k+1)\right)$$

$$=\nu(2^{m}!)$$

$$=2^{m}-1$$

We will show this property by induction. It is clearly true for m=0 and m=1. Assume now that for $0 \le j \le m$, if $0 \le i < 2^j$ then $\nu(2^j+i) = \nu(i)$. Let k be an integer such that $0 \le k < 2^{m+1}$.

If k is odd, then $2^{m+1} + k$ is also odd, so $\nu(2^{m+1} + k) = \nu(k) = 0$.

If k is even then one can write: $\nu(2^{m+1}+k)=1+\nu(2^m+k/2)$. But as $0 \le k/2 < 2^m$, using the induction hypothesis we get $\nu(2^m+k/2)=\nu(k/2)$, so that eventually $\nu(2^{m+1}+k)=1+\nu(k/2)=\nu(k)$, which completes the proof.

LEMMA 1.4. Let n_1, n_2, \ldots, n_r be r distinct integers. Then,

$$\nu\left(\left(\sum_{i=1}^{r} 2^{n_i}\right)!\right) = \sum_{i=1}^{r} (2^i - 1) = 2^{r+1} - (r-2)$$

Proof. We will show this property by induction on $r \ge 1$. The case r = 1 is given by the first part of Lemma 1.3. Assume $r \ge 2$ and this property holds for r - 1. One can assume $n_1 < n_2 < \ldots < n_r$. We have :

$$\nu\left((\sum_{i=1}^{r} 2^{n_i})!\right) = \nu\left((\sum_{i=1}^{r-1} 2^{n_i})!\right) + \nu\left(\left(2^{n_r} + \sum_{i=1}^{r-1} 2^{n_i}\right) \times \left(2^{n_r} + \sum_{i=1}^{r-1} 2^{n_i} - 1\right) \times \ldots \times \left(\sum_{i=1}^{r-1} 2^{n_i} + 1\right)\right)$$

Noticing that $0 \le \sum_{i=1}^{r-1} 2^{n_i} < 2^{n_r}$ and using the second part of Lemma1.3, we get

$$\nu\left(\left(\sum_{i=1}^{r} 2^{n_i}\right)!\right) = \nu\left(\left(\sum_{i=1}^{r-1} 2^{n_i}\right)!\right) + 2^{n_r} - 1$$

By the induction hypothesis we have $\nu\left((\sum_{i=1}^{r-1} 2^{n_i})!\right) = \sum_{i=1}^{r-1} (2^i - 1)$, so that : $\nu\left((\sum_{i=1}^r 2^{n_i})!\right) = \sum_{i=1}^r (2^i - 1)$

PROPOSITION 1.5. If r(n) denotes the sum of the digits in the writing of n in base 2, then the number of orbits of a Sylow 2-subgroup of S_n is exactly r(n). More precisely, if $n = \sum_{i=1}^{r(n)} 2^{n_i}$ with $n_i \neq n_j$ if $i \neq j$, then the set of the lengths of the orbits is exactly $\{2^{n_i}, 1 \leq i \leq r(n)\}$.

Proof.

Let $\mathcal{N}(n)$ be the number of orbits of a Sylow 2-subgroup of S_n .

In a first step, we show that $\mathcal{N}(2^m)=1$ for any $m\geq 0$. Indeed, it is obvious if m=0 or m=1. It is easy to see the property for m=2, because the subgroup of S_4 generated by the double transpositions (1,2)(3,4);(1,3)(2,4);(1,4)(2,3) is a 2-group, so it is contained in a Sylow 2-subgroup of S_4 . And as there is just one orbit over this subgroup, we get the result for m=2. Assume $m\geq 3$ and $\mathcal{N}(2^{m-1})=1$. If $G_{2^{m-1}}$ is a Sylow 2-subgroup of $S_{2^{m-1}}$, one can consider it as subgroup of S_{2^m} acting on the set $\{1,\ldots,2^{m-1}\}$ (let $G_{2^{m-1}}^{(1)}$ be this group) and also as a group acting on $\{2^{m-1}+1,2^{m-1}+2,\ldots,2^m\}$ (let $G_{2^{m-1}}^{(2)}$ be this group). Then $G_{2^{m-1}}^{(1)}\times G_{2^{m-1}}^{(2)}$ is a subgroup of S_{2^m} . We can define $\sigma:=(1,2^{m-1}+1)(2,2^{m-1}+2)\ldots(i,2^{m-1}+i)\ldots(2^{m-1},2^m)\in S^{2^m}$. The group $\langle\sigma\rangle$ has order 2, and is contained in the normalizer of $(G_{2^{m-1}}^{(1)}\times G_{2^{m-1}}^{(2)})$ in S_{2^m} . Moreover $(G_{2^{m-1}}^{(1)}\times G_{2^{m-1}}^{(2)})\cap \langle\sigma\rangle=\{1\}$, therefore we can consider the subgroup $G_{2^m}:=(G_{2^{m-1}}^{(1)}\times G_{2^{m-1}}^{(2)})\cap \langle\sigma\rangle=\{1\}$, therefore we can consider the subgroup. Now we want to show that G_{2^m} is a Sylow 2-subgroup of S_{2^m} . By the first part of Lemma 1.3 $\nu(2^m!)=2^m-1$. Therefore the order of a Sylow 2-subgroup of S_{2^m} is 2^{2^m-1} . Moreover G_{2^m} is a 2-group, and $\nu(|G_{2^m}|)=\nu(2^{m-1}!)+\nu(2^{m-1}!)+1=2(2^{m-1}-1)+1=2^m-1=\nu(2^m!)$. Consequently G_{2^m} is a Sylow 2-subgroup of S_{2^m} and $\mathcal{N}(2^m)=1$.

In the second step we show that $\mathcal{N}(n) = r(n)$. If n is not a power of 2, one can write $n = \sum_{i=1}^r 2^{n_i}$, with $r = r(n) \geq 2$ and $n_i \neq n_j$ if $i \neq j$. For $1 \leq i \leq r$ let $G_{2^{n_i}}$ be a Sylow 2-subgroup of $S_{2^{n_i}}$. Considering the inclusion $S_{2^{n_1}} \times S_{2^{n_2}} \times \dots S_{2^{n_r}} \subset S_{2^n}$, we can see $(G_{2^{n_1}} \times \dots \times G_{2^{n_r}})$ as a 2-subgroup of S_{2^n} such that $\nu(|(G_{2^{n_1}} \times \dots \times G_{2^{n_r}})|) = \sum_{i=1}^r \nu(2^{n_i}!) = \sum_{i=1}^r (2^{n_i}-1)$. Moreover, as we know $\mathcal{N}(2^{n_i}) = 1$, then this group has exactly r = r(n) orbits. Now by Lemma 1.4 we have $\nu((\sum_{i=1}^r 2^{n_i})!) = \sum_{i=1}^r (2^{n_i}-1)$, therefore $(G_{2^{n_1}} \times \dots \times G_{2^{n_r}})$ is a Sylow 2-subgroup of S_n .

Remark 1.6. We have a similar result replacing 2 by any other prime number p: the number of orbits of a Sylow p-subgroup of S_n (with $n \ge p$) is the sum of the digits in the writing of n in base p.

1.3. ÉTALE ALGEBRAS.

The results and the proofs of this subsection are taken from [Rei] from Zinovy Reichstein.

DEFINITION 1.7. If F is a field, an F-algebra E is called étale if $E = E_1 \oplus ... \oplus E_r$, where each E_i is a finite separable field extension of F. If $\alpha = (\alpha_1, ..., \alpha_n)$ is an

n-tuple of algebraically independent over F, then we define the $F(\alpha)$ -algebra $E(\alpha)$ by

$$E(\alpha) = E \otimes_F F(\alpha) = E_1(\alpha) \oplus \ldots \oplus E_r(\alpha).$$

We say that E is a n-dimensional étale-algebra if its dimension as a F-vector space is n. As in the case of field, if $x \in E$ we shall write $tr_{E/F}(x)$ for the trace of multiplication by x. Let write $\sigma^{(i)}(x) \in F$ for the coefficient of X^{n-i} for the characteristic polynomial of the F-linear transformation $E \to E$ given by $y \mapsto xy$.

LEMMA 1.8. Let F be a field containing k, and E be an F-étale algebra of dimension n. Then the following conditions are equivalent:

- (1) There exists an embedding of fields $K \hookrightarrow F$ such that as F-algebras $E \approx L \otimes_K F$.
- (2) There exists an element $y \in E$ such that $\sigma^{(1)}(y), \ldots, \sigma^{(n)}(y)$ are algebraically independent over k.

Proof. Recall that $K = k(a_1, ..., a_n)$ where $a_1, ..., a_n$ are algebraically independent variables over k, and $L = K[X]/(P) = K(X_1)$ where $P = X^n + a_1X^{n-1} + ... + a_0 \in K[X]$.

In order to show that (1) implies (2) it is sufficient to take $y = X_1 \otimes 1_F$, thus $\sigma^{(i)}(y) = \sigma^{(i)}(X_1) \otimes 1_F = a_i \otimes 1_F$, so that $\sigma^{(1)}(y), \ldots, \sigma^{(n)}(y)$ are algebraically independent.

We shall now prove that (2) implies (1). Suppose (2) holds, then we can define an embedding of fields $\phi: K \hookrightarrow F$ given by $\phi(a_i) = \sigma^{(i)}(y)$ and ϕ is the identity on k. We want to show that this embedding has the property claimed in (1). Indeed, the tensor product $L \otimes_K F$ formed via ϕ is isomorphic as an F-algebra to F[T]/(Q), where

$$Q(T) = T^{n} - \sigma^{(1)}(y)T^{n-1} + \ldots + (-1)^{n}\sigma^{(n)}(y) \in F[T].$$

Let $\psi: F[T]/(Q) \to E$ be the homomorphism of F-algebra given by $\psi(T) = y$. We claim that ψ is an isomorphism. Since both F[T]/(Q) and E are n-dimensional F-algebras, it is sufficient to show that ψ is injective, which is equivalent to show that $1, y, \ldots, y^{n-1}$ are algebraically independent over F. Assume, to the contrary, that y is a root of a polynomial of degree $\leq n-1$ in F[T]. Therefore the characteristic polynomial Q(T) of the linear transformation $E \to E$ given by the multiplication by y has multiple roots. However this polynomial has a non zero discriminant since its coefficient are supposed to be algebraically independent over k. Thus Q has distinct roots, which leads to a contradiction. Therefore $1, y, \ldots, y^{n-1}$ are algebraically independent and ψ is an isomorphism.

THEOREM 1.9. Let F be a field containing k, E be an F-étale algebra of dimension n and $\alpha = (\alpha_1, \ldots, \alpha_n)$ be an n-tuple of algebraically independent variables over F. Then there exists an inclusion of fields $K \hookrightarrow F(\alpha)$ which induces an isomorphism $E(\alpha) = L \otimes_K F(\alpha)$ of $F(\alpha)$ -algebras.

Proof.

By Lemma 1.8 it is sufficient to find an element $y \in E(\alpha)$ such that $\sigma^{(1)}(y), \ldots, \sigma^{(n)}(y)$ are algebraically independent over k. Let (v_1, \ldots, v_n) be a F-basis of E and $y = \alpha_1 v_1 + \ldots + \alpha_n v_n$. We claim that

y has the desired property. Indeed, let \overline{F} be the algebraic closure of F. Then $E \otimes_F \overline{F} \approx \overline{F} \stackrel{\oplus n}{=}$. Write

$$v_i \otimes 1_{\overline{F}} = v_{i1} \oplus \ldots \oplus v_{in},$$

where $v_{ij} \in \overline{F}$. Since (v_1, \ldots, v_n) is a F-basis of E, $(v_1 \otimes 1_{\overline{F}}, \ldots, v_n \otimes 1_{\overline{F}})$ is a \overline{F} -basis of $E \otimes_F \overline{F}$. Therefore the matrix $\mathcal{M} = (v_{ij})_{1 \leq i,j \leq n}$ is non-singular. The element $y \in E(\alpha) \subset \overline{F}(\alpha)^{\oplus n}$ can thus be written

$$y = l_1(\alpha) \oplus \ldots \oplus l_n(\alpha),$$

where $l_j(\alpha) = \alpha_1 v_{1j} + \ldots + \alpha_n v_{nj} \in \overline{F}(\alpha)$. Since the matrix \mathcal{M} is not singular, $l_1(\alpha), \ldots, l_n(\alpha)$ are linearly independent over \overline{F} . Hence,

$$\operatorname{trdeg}_{\overline{F}}\overline{F}\left(l_1(\alpha),\ldots,l_n(\alpha)\right) = \operatorname{trdeg}_{\overline{F}}\overline{F}\left(\alpha_1,\ldots,\alpha_n\right) = n.$$

Note that $l_1(\alpha), \ldots, l_n(\alpha)$ are the eigenvalues of y, so up to sign $\sigma^{(i)}(y)$ is the i-th elementary symmetric polynomial in $l_1(\alpha), \ldots, l_n(\alpha)$. Consequently:

$$\operatorname{trdeg}_{\overline{F}}\overline{F}\left(\sigma^{(1)}(y),\ldots,\sigma^{(n)}(y)\right)=\operatorname{trdeg}_{\overline{F}}\overline{F}\left(l_1(\alpha),\ldots,l_n(\alpha)\right)=n.$$

This means $\sigma^{(1)}(y), \ldots, \sigma^{(n)}(y)$ are algebraically independent over \overline{F} , hence they are algebraically independent over k.

COROLLARY 1.10. Let F be an infinite field containing k, E be an F-étale algebra of dimension n, and e_1, \ldots, e_d be positive integers. Suppose $tr_{L/K}(x^{e_1}) = \ldots = tr_{L/K}(x^{e_d}) = 0$ for some $0 \neq x \in L$. Then there exists an element $0 \neq y \in E$ such that $tr_{E/F}(y^{e_1}) = \ldots = tr_{E/F}(y^{e_d}) = 0$.

Proof. By Theorem 1.9, we can write $E(\alpha) = L \otimes_K F(\alpha)$ where $\alpha = (\alpha_1, \dots, \alpha_n)$ is a *n*-tuple of algebraically independent variables over F. Let $z = x \otimes 1 \in E(\alpha)$. Then,

$$tr_{E(\alpha)/F(\alpha)}(z^{e_1}) = \dots = tr_{E(\alpha)/F(\alpha)}(z^{e_d}) = 0.$$

The idea now is to construct y by specializing $\alpha = (\alpha_1, \dots, \alpha_n)$ to an n-tuple of elements of F. Let (v_1, \dots, v_n) be an F-basis of E, and write

$$z = r_1(\alpha)v_1 + \ldots + r_n(\alpha)v_n,$$

where $r_i(\alpha) \in F(\alpha)$. Since $z \neq 0$ we may assume without loss of generality that $r_1(\alpha) \neq 0$. Since F is an infinite field, we can choose $t = (t_1, \ldots, t_n) \in F^n$ such that $r_1(t), \ldots, r_n(t)$ are well defined at $\alpha = t$ and $r_1(t) \neq 0$. Let set

$$y = r_1(t)v_1 + \ldots + r_n(t)v_n \in E.$$

Thus $y \neq 0$ and $tr_{E/F}(y^{e_1}) = \ldots = tr_{E/F}(y^{e_d}) = 0$, as desired.

2. Proof of the main theorem

In this section we prove the main theorem :

THEOREM 2.1. Let k be a field such that $\operatorname{char}(k) \nmid 2n$, and let K and L the fields defined as usual. Let write $n = \sum_{i=1}^r 2^{n_i}$ with $n_i \neq n_j$ when $i \neq j$. Then there exists a generator y of L over K such that $\operatorname{tr}_{L/K}(y) = \operatorname{tr}_{L/K}(y^2) = 0$ if and only if the polynomial system

$$\sum_{i=1}^{r} 2^{n_i} y_i^2 = 0$$
$$\sum_{i=1}^{r} 2^{n_i} y_i = 0$$

has a non zero solution (y_1, \ldots, y_r) in k^r .

The 'if' part will be proved in Subsection 2.1 and the 'only if' part will be proved in Subsection 2.2.

COROLLARY 2.2. Let k be a field such that $\operatorname{char}(k) \nmid 2n$, and let K and L be as above.

- (1) If n can be written $n = 2^m$ or $n = 2^{m_1} + 2^{m_2}$, with $m, m_1, m_2 \in \mathbb{N}$ then the answer is negative: it is impossible to find a generator Y satisfying the condition $tr_{L/K}(Y) = tr_{L/K}(Y^2) = 0$.
- (2) Otherwise, when k contains the quadratic closure of its prime subfield (i.e. when k contains a square root of every element of its prime subfield) there exists a generator $Y \in L^*$ such that $b_1 = b_2 = 0$, which is equivalent to $tr(Y) = tr(Y^2) = 0$.

Proof. (of the Corollary) This corollary is an immediate consequence of Theorem 2.1. Indeed if r=1 or r=2 the above polynomial system has no non zero solution in k^r since $\operatorname{char}(k) \nmid 2$.

If r=3 and k contains the quadratic closure of its prime subfield one can choose $y=(1,y_2,y_3=-2^{n_1-n_3}-2^{n_2-n_3}y_2)$ as a non zero solution of the above polynomial system where y_2 is a solution in k of the following polynomial equation in one variable:

$$(2^{2n_2-n_3}+2^{n_2})X^2+2^{n_1+n_2-n_3+1}X+(2^{n_1}+2^{2n_1-n_3})=0.$$

Such a solution exists because of the hypothesis made on k. Indeed the discriminant of this polynomial is in the prime subfield of k:

$$\Delta = 4\left((2^{n_1+n_2-n_3+1})^2 - 2^{n_1+n_2} - 2^{n_1+2n_2-n_3} - 2^{2n_1+n_2-n_3} \right).$$

If r > 3, under the same hypothesis we can choose $y = (1, y_2, y_3, 0, \dots, 0)$ as a non zero solution of the above polynomial system with y_2 and y_3 given by the case r = 3.

Remark 2.3. The hypothesis which appears in the second point of this corollary can be weakened. Indeed, let write $n = \sum_{i=1}^r 2^{n_i}$ with $n_i \neq n_j$ when $i \neq j$, then by the same kind of argument if $r \geq 3$ and if there exist three distinct integers $1 \leq i \neq j \neq l \leq r$ such that there exists a square root in k of the following element

$$(2^{n_i+n_j-n_l+1})^2 - 2^{n_i+n_j} - 2^{n_i+2n_j-n_l} - 2^{2n_i+n_j-n_l} \in k$$

(which is automatically the case when k contains the quadratic closure of its prime subfield) then the answer is positive, there exists a generator $Y \in L^*$ such that $tr(Y) = tr(Y^2) = 0$.

Let L^{norm} be the normal closure of L in \bar{L} . We can assume $L^{norm} = k(X_1, \ldots, X_n)$ with X_1, \ldots, X_n algebraically independent variables over k such that for $1 \le i \le n$,

$$a_i = (-1)^i s_i(X_1, \dots, X_n)$$

where s_i denotes the *ith* elementary symmetric polynomial in n variables.

 L^{norm}/K and L^{norm}/L are Galois extensions such that

$$\operatorname{Gal}(L^{norm}/K) \simeq S_n$$

and

$$\operatorname{Gal}(L^{norm}/L) \simeq S_{n-1}.$$

Remark 2.4. In the case n=3 and $k=\mathbb{C}$ it is easy to see one can't find a generator Y such that $tr(Y)=tr(Y^2)=0$. Indeed, if we assume the contrary such a generator Y would have a minimal polynomial $X^3-\lambda=0$, with $\lambda\in K$. But K contains a primitive 3rd-root of unity ζ , such that the conjugates of Y which are Y, ζY and $\zeta^2 Y$ would be in L. So $L=L^{norm}$ which leads to a contradiction because L should be different from L^{norm} as we can see in $\mathrm{Gal}(L^{norm}/L)\simeq S_2\neq\{1\}$.

Remark 2.5. It is impossible to find any intermediate field extension between K and L. By Galois theory an intermediate field extension would correspond to a group H such that $S_{n-1} \subsetneq H \subsetneq S_n$, but it is impossible. Indeed, if we assume such a group H exists, there exists an element $h \in H$ and $1 \le i_0 \le n$ such that $h(1) = i_0$. Let $1 \le j \le n$ an integer. We show that $h(1) \in H$. If $h(j) \ne 1$ then $h(i_0, h(j)) \in H$, so $h^{-1}(i_0, h(j)) = h$. If $h(j) \in H$. If h(j) = 1 and $h(j) \in H$ and $h(j) = h^{-1}(j, h^{-1}(j)) \in H$. If $h(j) \in H$ and $h(j) \in H$ and $h(j) \in H$. If $h(j) \in H$. If $h(j) \in H$ and $h(j) \in H$ and $h(j) \in H$. Therefore every transposition $h(j) \in H$, so $h(j) \in H$. Therefore every transposition $h(j) \in H$, so if $h(j) \in H$. Therefore every transposition $h(j) \in H$, so if $h(j) \in H$. Consequently, if an element $h(j) \in H$ is such that $h(j) \in H$. Therefore every $h(j) \in H$ is such that $h(j) \in H$. Therefore every $h(j) \in H$ is such that $h(j) \in H$. Therefore every $h(j) \in H$ is such that $h(j) \in H$. Therefore every $h(j) \in H$ is such that $h(j) \in H$.

Let q be the trace form in L/K: for any $x \in L$, $q(x) = tr_{L/K}(x^2) = tr(x^2)$. Let $W \subset L$ be the K-vector subspace $W = \{x \in L, tr(x) = 0\}$. W is the kernel of the nonzero K-linear form tr(.), so W is a K vector space of dimension n-1. Our goal is to show that q_W is an isotropic quadratic form (where q_W denotes q restricted to W). The idea here is to construct a field extension $K \subset K'$ of odd degree such that $(q_W)^{F'}$ is an isotropic quadratic form on $W_{K'} = W \bigotimes_K K'$, and to use Springer's Theorem. Let L' be $L \bigotimes_K K'$. Let $W' \subset L'$ be the K'-vector space $W' = \{x \in L', tr_{L'/K'} = 0\}$. W' is the kernel of the nonzero K'-linear form $tr_{L'/K'}(.)$, so W' is a K' vector space of dimension n-1. But it is easy to see that $W_{K'} \subseteq W'$ and considering the dimension as K'-vector spaces we have : $W_{K'} = W'$. Therefore showing that $(q_W)^{F'}$ is an isotropic form is equivalent to find $y \in L'$ such that y satisfies the following condition (**):

$$q^{K'}(y) = tr_{L'/K'}(y) = 0.$$

The idea is to choose K' such that the trace form in L' is easier to compute than the trace form in L. If we take $K' = L^{norm}$, then the polynomial P splits into

n polynomials of degree 1, so as a K'-algebra $L' \approx \underbrace{K' \times \ldots \times K'}$, and the trace

form here is very easy to compute. However, $[L^{norm}:K]=n!$, so the degree of this extension is not odd.

Therefore we are led to choose $K' = (L^{norm})^G$ where G is a Sylow 2-subgroup of S_n , that is to say K' is the field of fixed points over the action of G in L^{norm} . The degree of this new field extension K'/K is odd since $[K':K] = \frac{n!}{2^{\nu(n!)}}$. Let us write $n = \sum_{i=1}^r 2^{n_i}$, with $r = r(n) \ge 1$ and $n_i \ne n_j$ if $i \ne j$. By Proposition 1.5 we know that G has exactly r orbits, and the set of the lengths of these orbits is exactly $\{2^{n_1}, \ldots, 2^{n_r}\}$. Therefore in K'[X] the polynomial P splits into r irreducible polynomials P_1, \ldots, P_r of degree $2^{n_1}, \ldots, 2^{n_r}$, so as a K'-algebra

$$L' \approx L'_1 \times \ldots \times L'_r$$

where $L_i' = \frac{K'[X]}{(P_i)}$ is an extension of K' such that $[L_i':K'] = 2^i$.

Let q_i denotes the trace form on L'_i/K' . By the above isomorphism of K'-algebras, $q^{K'} \approx q'' := \sum_{i=1}^r q_i$. Consequently, finding an element in L' satisfying the condition (**) is equivalent to find an element in $y = (y_1, \ldots, y_r) \in L'_1 \times \ldots \times L'_r$ such that y satisfies the following condition (***):

$$\begin{cases} q''(y) = \sum_{i=1}^{r} q_i(y_i^2) = 0 \\ \sum_{i=1}^{r} tr_{L_i/K'}(y_i) = 0 \end{cases}$$

2.1. Positive Answer.

Assume that the polynomial system

$$\sum_{i=1}^{r} 2^{n_i} y_i^2 = 0$$
$$\sum_{i=1}^{r} 2^{n_i} y_i = 0$$

has a non zero solution (y_1, \ldots, y_r) in k^r .

Since $k \subset K' \subset L'_i$ we can consider $y = (y_1, \ldots, y_r) \in L'_1 \times \ldots \times L'_r$. Then y satisfies the condition (***) because in this case this condition is equivalent to:

$$\sum_{i=1}^{r} 2^{n_i} y_i^2 = 0$$
$$\sum_{i=1}^{r} 2^{n_i} y_i = 0$$

2.2. Negative Answer.

If there is no non zero solution in k^r for the following polynomial system :

$$\sum_{i=1}^{r} 2^{n_i} y_i^2 = 0$$
$$\sum_{i=1}^{r} 2^{n_i} y_i = 0$$

we shall see that it is impossible to find any element $x \in L^*$ such that tr(x) = 0 and $tr(x^2) = 0$.

Let r be a positive integer, t_1, \ldots, t_r some algebraically independent variables over k, and $I = (i_1, \ldots, i_r)$ an element of \mathbb{Z}^r . In order to avoid multiple subscripts, we will denote $k(t_1, \ldots, t_r)$ by k(t) and $t_1^{i_1} \ldots t_r^{i_r}$ by t^I . In the remainder we shall write $Q = \ll t_1, \ldots, t_r \gg$ for the r-fold Pfister form $\langle 1, t_1 \rangle \otimes \ldots \otimes \langle 1, t_r \rangle$. An easy computation shows that

$$Q(x) = \sum_{(i_1, \dots, i_r) \in \{0,1\}^r} t_1^{i_1} \dots t_r^{i_r} x_{i_1, \dots, i_r}^2 \in k(t)[x_{i_1, \dots, i_r}]$$

Proposition 2.6. With the above notation, the quadratic $Q(x) = \ll t_1, \ldots, t_r \gg is \ anisotropic \ over \ k(t) \ for \ any \ arbitrary \ field \ k.$

Proof. For $z \in k[t]$, let $\deg_i(z)$ be the degree of z in t_i . We now want to define a valuation

$$deg: k[t] \to \mathbb{Z}^r \cup \{(-\infty, \dots, -\infty)\},\$$

where \mathbb{Z}^r is viewed as an ordered group as respect to the lexicographic order. If z is a monomial in t_1, \ldots, t_n , set $\deg(z) := (\deg_1(z), \ldots, \deg_r(z))$. In general, set $deg(z) = max\{deg(z_0)\}\$ as z_0 ranges over the monomials of z. In particular z = 0 if and only if $deg(z) = (-\infty, ..., -\infty)$.

Assume, to the contrary, that there is a non-zero vector $y = (y_I)_{I \in \{0,1\}^r}$ with $y_I \in k(t)$ for every I and $y_I \neq 0$ for some I, such that Q(y) = 0, that is to say

(2)
$$Q(y) = \sum_{I \in \{0,1\}^r} t^I y_I^2 = 0$$

Multiplying through by a common denominator, we may assume without loss of generality that $y_I \in k[t]$ for every $I \in \{0,1\}^r$. Set $d_I := \deg(t^I y_I^2)$. Choose $I_0 \in \{0,1\}^r$ such that $d_{I_0} = max\{d_I, I \in \{0,1\}^r\}$ in respect to the lexicographic order on $\mathbb{Z}^r \cup \{(-\infty, \dots, -\infty)\}$. Clearly $y_{I_O} \neq 0$ and $d_{I_0} \neq (-\infty, \dots, -\infty)$. Let $I \in \{0, 1\}^r \setminus \{I_0\}$. By the choice of I_0 , we have $d_I \leq d_{I_0}$. If $y_I \neq 0$, then $d_I \equiv I + 2 \deg(y_I) \equiv I \mod 2$. Similarly $d_{I_0} \equiv I_0 \mod 2$. Thus by our choice of $I, d_I \neq d_{I_0}$, which implies $d_I < d_{I_0}$. However, since this inequality is true for any $I \in \{0,1\}^r \setminus \{I_0\}$, (2) implies

$$\deg(Q(y)) = d_{I_0} \neq (-\infty, \dots, -\infty),$$

i.e. $Q(y) \neq 0$, contradicting our assumption.

If E/F is a finite field extension we will write $q_{E/F}$ for the trace form $x \mapsto tr_{E/F}(x^2)$ and $q_{E/F}^{\alpha}$ for the scaled trace form $x \mapsto tr_{E/F}(\alpha x^2)$.

Lemma 2.7. Let E'/E and E/F be finite field extensions. Suppose $q_{E'/E} = \langle \alpha_1, \dots, \alpha_r \rangle$. Then:

- (1) $q_{E'/F} = q_{E/F}^{\alpha_1} \oplus \ldots \oplus q_{E/F}^{\alpha_r}$ (2) If every α_i lies in F then $q_{E'/F} = \langle \alpha_1, \ldots, \alpha_r \rangle \otimes q_{E/F}$.

Proof. Let (v_1, \ldots, v_r) be a *E*-basis of E' in which $q_{E'/E}$ has the form $\langle \alpha_1, \ldots, \alpha_r \rangle$. Then $E' = Ev_1 \oplus \ldots \oplus Ev_r$ as an F-vector space. With respect to $q_{E'/F}$ we have $Ev_i \perp Ev_j$ for $i \neq j$ since $q_{E'/F} = tr_{E/F} \circ q_{E'/E}$. Moreover if $x \in E$ $q_{E'/F}(xv_i) = tr_{E/F} (q_{E'/E}(xv_i)) = tr_{E/F}(x^2\alpha_i)$, therefore $q_{E'/F} = q_{E/F}^{\alpha_i}$ on Ev_i , and part (1) follows.

If $\alpha_i \in F$, then $q_{E/F}^{\alpha_i} = \langle \alpha_i \rangle \otimes q_{E/F}$, and thus the desired equality is an immediate consequence of the first point of this lemma.

PROPOSITION 2.8. Let $\alpha_1, \ldots, \alpha_r$ be algebraically independent variables over an arbitrary field $k, F := k(\alpha_1, \ldots, \alpha_r)$ and $E := k(\sqrt{\alpha_1}, \ldots, \sqrt{\alpha_r})$. Then E/F is a field extension of degree 2^r and

$$q_{E/F} = \langle 2^r \rangle \otimes \ll \alpha_1, \dots, \alpha_r \gg .$$

Proof. Define $F_0 := F$ and $F_i = F_{i-1}(\sqrt{\alpha_i})$ for $1 \le i \le r$, that is to say $F_i = F(\sqrt{\alpha_1}, \ldots, \sqrt{\alpha_i})$ and $F_r = E$. We will prove by induction on i that $q_{F_i/F} = \langle 2^i \rangle \otimes \ll \alpha_1, \ldots, \alpha_i \gg$.

The Gram matrix of $q_{F_1/F}$ in the F-basis of F_1 $\{1, \sqrt{\alpha_1}\}$ is $\begin{pmatrix} 2 & 0 \\ 0 & 2\alpha_1 \end{pmatrix}$, so $q_{F_1/F} = \langle 2 \rangle \otimes \langle 1, \alpha_1 \rangle = \langle 2 \rangle \otimes \ll \alpha_1 \gg$.

Assume now that $q_{F_i/F} = \langle 2^i \rangle \otimes \ll \alpha_1, \ldots, \alpha_i \gg \text{ with } i \leq r-1$. Similarly we have $q_{F_{i+1}/F_i} = \langle 2, 2\alpha_i \rangle$, and by the second part of Lemma 2.7 one obtain :

$$q_{Fi+1/F_i} = \langle 2, 2\alpha_{i+1} \rangle \otimes q_{F_i/F}$$

$$= \langle 2 \rangle \otimes \ll \alpha_{i+1} \gg \otimes \langle 2^i \rangle \otimes \ll \alpha_1, \dots, \alpha_i \gg$$

$$= \langle 2^{i+1} \rangle \otimes \ll \alpha_1, \dots, \alpha_{i+1} \gg$$

and we get the result.

THEOREM 2.9. Let write $n = \sum_{i=1}^{r} 2^{n_i}$ with $n_i \neq n_j$ when $i \neq j$. Assume that the polynomial system

$$\sum_{i=1}^{r} 2^{n_i} y_i^2 = 0$$

$$\sum_{i=1}^{r} 2^{n_i} y_i = 0$$

has no non zero solution in k^r . If $x \in L^*$ is such that $tr_{L/K}(x) = 0$, then $tr_{L/K}(x^2) \neq 0$.

Remark 2.10. If r=1 we are in the case of the above theorem, but moreover in this special case we have $tr_{L/K}(x^2) \neq 0$ for every $x \in L^*$, which is a stronger result.

Indeed, if $n=2^m$, by Corollary 1.10 it is sufficient to construct an infinite field F containing k and a field extension E/F of degree 2^m such that $q_{E/F}$ is anisotropic. Let α_1,\ldots,α_m be algebraically independent variables over $k,F:=k(\alpha_1,\ldots,\alpha_m)$ and $E:=k(\sqrt{\alpha_1},\ldots,\sqrt{\alpha_m})$. Then by Proposition 2.8 E/F is a field extension of degree 2^m such that $q_{E/F}=\langle 2^r\rangle \otimes \ll \alpha_1,\ldots,\alpha_m\gg$. By Proposition 2.6, the form $\ll \alpha_1,\ldots,\alpha_m\gg$ is anisotropic, thus $q_{E/F}$ is also anisotropic.

Proof. In order to prove Theorem 2.9, by Corollary 1.10 it is sufficient to construct an infinite field F containing k and an n-étale F-algebra E such that $tr_{E/F}(x^2) \neq 0$ for any $x \neq 0$ in E satisfying $tr_{E/F}(x) = 0$.

Let $\alpha_1^{(1)},\ldots,\alpha_{n_1}^{(1)},\alpha_1^{(2)},\ldots,\alpha_{n_2}^{(2)},\ldots,\alpha_1^{(r)},\ldots,\alpha_{n_r}^{(r)}$ be algebraically independent variables over k. We will write $\alpha^{(i)}=(\alpha_1^{(i)},\ldots,\alpha_{n_i}^{(i)})$ and $\sqrt{\alpha^{(i)}}=(\sqrt{\alpha_1^{(i)}},\ldots,\sqrt{\alpha_{n_i}^{(i)}})$. Set $F:=k(\alpha^{(1)},\ldots,\alpha^{(r)})$ and $E:=\bigoplus_{i=1}^r E_i$ with

$$E_i := k\left(\alpha^{(1)}, \dots, \sqrt{\alpha^{(i)}}, \dots, \alpha^{(r)}\right) = F\left(\sqrt{\alpha^{(i)}}\right)$$

E is clearly an n-étale F-algebra. If $x=(x_1,\ldots,x_r)\in E$, then :

$$tr_{E/F}(x) = \sum_{i=1}^{r} tr_{E_i/F}(x_i)$$
$$tr_{E/F}(x^2) = q_{E/F}(x) = \sum_{i=1}^{r} q_{E_i/F}(x_i)$$

By Proposition 2.8 we have:

$$q_{E_i/F} = \langle 2^{n_i} \rangle \otimes \ll \alpha_1^{(i)}, \dots, \alpha_{n_i}^{(i)} \gg$$

Set $N := n_1 + \ldots + n_r$. Similarly to the beginning of this subsection, $q_{E/F}(x)$ is given by

$$\begin{split} q_{E/F}(x) &= \sum_{(i_1,\dots,i_{n_1})\in\{0,1\}^{n_1}} 2^{n_1} (\alpha_1^{(1)})^{i_1} \dots (\alpha_{n_1}^{(1)})^{i_{n_1}} x_{i_1,\dots,i_{n_1}}^2 \\ &+ \sum_{(i_{n_1+1},\dots,i_{n_1+n_2})\in\{0,1\}^{n_2}} 2^{n_2} (\alpha_{n_1+1}^{(2)})^{i_{n_1+1}} \dots (\alpha_{n_1+n_2}^{(2)})^{i_{n_1+n_2}} x_{i_{n_1+1},\dots,i_{n_1+n_2}}^2 \\ &\vdots \\ &+ \sum_{(i_{N-n_r+1},\dots,i_N)\in\{0,1\}^{n_r}} 2^{n_r} (\alpha_{N-n_r+1}^{(r)})^{i_{N-n_r+1}} \dots (\alpha_N^{(r)})^{i_N} x_{i_{N-n_r+1},\dots,i_N}^2 \end{split}$$

where $q_{E/F}(x)$ is considered as an element of $k(\alpha^{(1)}, \ldots, \alpha^{(r)})[x_{i_1,\ldots,i_N}]$. We will write $t = (\alpha^{(1)}, \ldots, \alpha^{(r)})$. If $I \in \{0,1\}^N$ we can write $I = (I_1, \ldots, I_r)$ with $I_i \in \{0,1\}^{n_i}$.

Assume that there is an element $y \in E$ satisfying $q_{E/F}(y) = 0$, such that $y = (y_I)_{I \in \{0,1\}^N}$ with $y_I \in k(t) = F$ for every I, and $y_I = 0$ if $\{\exists \ 1 \le i \ne j \le r, I_i \ne 0 \ and \ I_j \ne 0\}$. Then we can write

$$Q(y) = \sum_{I \in \{0,1\}^N} 2^{n_I} t^I y_I^2 = 0$$

with $n_I = n_i$ when $I_i \neq 0$ (and if we are not in one of those cases $y_I = 0$). Multiplying through by a common denominator, we may assume without loss of generality that $y_I \in k[t]$ for every $I \in \{0,1\}^N$. By Proposition 2.6, all the $2^{n_I}y_I$'s are zero, so all the y_I 's are zero since $\operatorname{char}(k) \neq 2$. However, this doesn't mean y is zero, it just means that $y_I = 0$ for any $I \in \{0,1\}^N \setminus \{(0,\ldots,0)\}$. Indeed, E_i corresponds to the indexes $\{I = (I_1,\ldots,I_r) \in \{0,1\}^N, I_j = 0, \forall j \neq i\}$. However the index $(0,\ldots,0)$ is in the intersection of these sets of indexes, and it corresponds

to $k \oplus \ldots \oplus k \subset E$. Therefore $y = (y_1, \ldots, y_r)$ with $y_i \in k$, and $q_{E/F}(y) = 0$ can be written:

$$\sum_{i=1}^{r} 2^{n_i} y_i^2 = 0$$

This equation has several solutions in k, but if we add the other condition $tr_{E/F}(y) = 0$, it gives rise to the following system :

$$\sum_{i=1}^{r} 2^{n_i} y_i^2 = 0$$
$$\sum_{i=1}^{r} 2^{n_i} y_i = 0,$$

$$\sum_{i=1}^{r} 2^{n_i} y_i = 0,$$

which only solution is $(0, \ldots, 0)$ by assumption.

Therefore there is no non-zero element $x \in E$ such that $tr_{E/F}(x) = 0$ and $tr_{E/F}(x^2) = 0$, which completes the proof.

BIBLIOGRAPHY

[Lam] T.Y. LAM.— Introduction to quadratic forms over fields, Graduate Studies in Mathematics Volume 67, American Mathematical Society.

[Rei] Z. Reichstein.— On a theorem of Hermite and Joubert, Canad. J. Math. 51 (1999), 69-95. [K-R] Z. REICHSTEIN and D.S. KANG.— Trace forms of Galois field extensions in the presence of roots of unity, J. reine angew. Math. 549 (2002), 79-89.

SYLVAIN GAULHIAC, STUDENT AT THE ECOLE NORMALE SUPÉRIEURE DE RENNES.