ij.
1,
Ţ
11.4
12 mm 121
indi.
16.34
18
1000
W
nufi.
13
, i

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSHAH

Designation	Species	Epitope	Western Blot	HC	FACS	Epitope sequence
29C11	rabbit	Pro2	Yes	yes**	n.d.	IDELKECFLNQTDETLSNVE
31A5	rabbit	Pro3	Yes	yes**	yes	ELLQEFIDDNATTNAIDELK
6A1	rabbit	Pro2-3	Yes	n.d.	2	TTNAIDELKECFLNQ
14A12	rabbit	Pro3	Yes	n.d.	yes	ELLQEFIDDNATTNAIDELK
6812	rabbit	Pro3	Yes	n.d.	yes	ELLQEFIDDNATTNAIDELK
203	rabbit	Pro5	Yes	n.d.	yes	SQHCYAGSGCPLLENVISKTI
16D8	rabbit	Pro3	Yes	n.d.	yes	ELLQEFIDDNATTNAIDELK
31-1H7	mouse	n.d.	Yes	n.d.	yes	
197-1H11	mouse	Pro5	Yes	n.d.	0	SQHCYAGSGCPLLENVISKTI
32-1611	mouse	n.d.	Yes	n.d.	yes	
304-1A5	mouse	n.d.	Yes	n.d.	yes	
98-1F4	mouse	n.d.	Yes	n.d.	2	

[2]

IJ.

Ö

::4:

CACCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCA GTCGCTGGAGGAGTCCGGCGGTCGCCTGGTAACGCCTGGAGGATCCCTGACACTCACCTGCAC AGTCTCTGGAATCGACCTCAGTAGCTATGGAGTGGGCTGGGTCCGCCAGGCTCCAGGGAAGG GGCTGGAATACATCGGAATCATTAGTAAAATTGATAACACATACTACGCGAACTGGGCGAAA GGCCGATTCACCATCTCCAAAACCTCGTCGACCACGGTGGATCTGAAAATGACCAGTCTGACA ACCGAGGACACGGCCACCTATTTCTGTACCAGAGGGTCTTTTGATCCCTGGGGCCCAGGCACC CTGGTCACCGTCTCCTCAGGGCAACCTAA

pc.h.mam.16d8.cell-22.394.1.t7

CACCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCA GTCGGTGGAGGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCAC AGTCTCTGGATTCTCCCTCAGCAGCTACGACATGACCTGGGTCCGCCAGGCTCCAGGGAAGGG GCTGGAATGGATCGGAACCATTAGTACTATTGGTAGCCCATTTTACGCGAGCTGGGCGAGAGAG CCGATTCACCATCTCCAAAACCTCGACCACGGTGGATCTGAAAATCACCAATCCGACAACCGA GGACACGGCCACGTATTTTTGCGGCAGATTTCGGATTGCTGGTGA TGGTGCCTTCTGGGGCCC AGGCACGCTGGTCACCGTCTCCTCAGGGCAACCTAA

pc.h.mam.16d8.cell-21.393.2.t7

CACCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCA GTCGGTGGAGGAGTCCGGGGGTCGCCTGGTCACGCCTAGGACACCCCTGACACTCACCTGCAC AGTCTCTGGATTCTCCCTCAGCAGCTACGACATGACCTGGGTCCGCCAGGCTCCAGGGAAGGG GCTGGAATGGATCGGAACCATTAGTACTATTGGTAGCCCATTTTACGCGACCTGGGCGAGAGG CCGATTCACCATCTCCAAAACCTCGACCACGGTGGATCTGAAAATCACCAATCCGACAACCGA GGACACGGCCACGTATTTTTGCGGCAGATTTCGGATTGCTGGTGATGGTGCCTTCTGGGGCCC AGGCACGCTGGTCACCGTCTCCTCAGGGCAACCTAA

pc.h.mam.6b12.cell-19.339.4.t7

CACCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCGGTGTCA GTCGGTGGAGGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGAGATTCACCTGCAC AGTCTCTGGAATCGACCTCAGCACCTACGACATGACCTGGGTCCGCCAGGCTCCAGGGAAGG GACTGGAATGGATCGGAACCATTAGTACTCTTGGTACCCCTTTTTCCGCCAATTGGGCGAGAG GCCGATTCACCATCTCCAAGACCTCGACCACGGTGGATCTGAAAATCGCCAGTCCGACGACCG AAGACACTGCCACATATTTTTGTGGCAGATTGCGGATTGCTCATGATGGTGCCTTCTGGGGCC CAGGCACGCTGGTCACCGTCTCCTCAGGGCAACCTAA

Fig. 1B

ļŌ

Ų

CCCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAG GAGCAGCTGAAGGAGTCCGGAGGAGGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTG CACAGTGTCTGGAATCGACCTCAATATCGATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGA AGGGGCTGGAATGGATCGGAATTATTGGTACTCGTGGTGGCACATGGTTCGCGAGCTGGGCG AAAGGCCGATTCACCATCTCCAAAACCCCGACCACAGTGGATCTGAAAATCCCCAGTCCGAC AACCGAGGACACGGCCACCTATTTCTGTGCCAGTATCTATTCTGATAGTGGTACTTATACGAC CTTGTGGGGCCCAGGCACCCCGGTCACCGTCTCCTCAGGGCAACCTAA

pc.h.mam.14a12.cell-3.333.1.t7

CACCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCA GTCGGTGGAGGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCAC CGTCTCTGGATTCTCCCTCAGCAGCGTCGACATGACCTGGGTCCGCCAGGCTCCAGGGAAGGG GCTGGAATGGATCGGAACCATTAGTACTCGTAGTAGCACATACTACGCGAGCTGGGCGAAAG GCCGATTCACCATCTCCAAAACCTCGACCACGGTGGATCTGAAAATCACCAGTCCGACAACCG AGGACACGGCCACGTATTTCTGTGGCAGATTTCGGATTGCTGGTGATGGTGCCTTCTGGGGCC CAGGCACGCTGGTCACCGTCTCCTCAGGGCAACCTAA

pcr.g.mam.29c11.c211.11779.780com

GGAAGGCTGCGCTGTTTTCCTGGTCGCTGTGCTCAGAGGTGTCCAGTGTCAGTCGCTGGAG GAGTCCGGGGGTNGCCTGGTAACGCCTGGGACACCCCTGANANTCACCTGCACAGCCTTTGG ATTITCCCTCAGTAGCTGGTCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATG GATCGGAATGATTGGTATTGTTGGTAGTGGCACATAATANGCGACCTGGGCGAAAGGCCGAT TCACCATTTCCAAAACCTTGTGACCACGGTCGATTTGAAAATGACCAGTTTGACAACCGAGGA CACGGCCACCTATTTTTGTGTCAGAGGGGGTAGTTTTANTTTTGCTACCGCCTTGTGGGGCCCA GGCACCCTGGTCACCGTNTCCTCAGGGCAACCTAA

pcr.g.mam.31a5.c178.11884.780 com

TTGCAGGCTGCGTGGTTTTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGAGG AGTCCGGGGTNGCCTGGTAACNCCTGGGACACCCCTGACANTTTTTTGCAAAGTNTTTGGAT TTTCCCTCAGCAGNTACGANATGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGG ATNGGAACCATTAGTANTTGTGGTAATGGATAATACGCGACCTGGGCGAAAGGCCGATTCAC CATTTCCAAAACCTTGACCACCGTGGATTTGAAAATCACCAGTCCGACAACCGAGGACACGG CCAAGTATTTTGTGGCAGATTTCGGATTGCTGGTGATGGTGCTTTTGGGGCCCCGGGCACGCT GGTCACCGTNTCCTCAGGGCAACCTAA

Inventor(s): Gary R

CLASS SUBCLASS APPROVED OUG. FIG. DRAFTSHAN >-(1)

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTN**AIDELKECFL**NQTDETLSNVEVFMQLIYDSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDET**LSNVEVFNQLIYDSSLCDLF** MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNA**IDELKECFLNQTDETLSNVE**VFMQLIYDSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENV**ISKTINPQVSKTEYKELLQ**EFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF MKLLMVLMLAAL**SQHCYAGSGCPLLENVISKTI**NPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVF**NQ**L**IYDSSLCDLF** MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETL**SNVEVFMQLIY**DSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQV**SKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLS**NVEVFMQLIYDSSLCDLF Glob-2 Pro-20 Pro-9 Pro-1 Pro-5 Pro-2 Pro-3 Pro-4 Pro-7 Pro-8

Mammaglobin sequence . HCYAGSGCPLLENVISK GSGMKETAAAKFERQHMDSPDLGTDDDDKAMAISDPNS......... Peptide with Enterokinase and Thrombin cleavage sites N-terminal recombinant

Fig. 2

Title: COMPOSITIONS AND METHODS FOR THE THERAPY, DIAGNOSIS AND MONITORING OF BREAST CANCER
Inventor(s): Gary R Jer et al. Serial No. 09/757,417 Docket No. 210121.479C1

APPROVED O.G. FIG.

OY CLASS SUBCLASS
DRAFTSHAR

	Reactivit	y of Mous	Reactivity of Mouse Monoclonal	1	lies to Mc	ımmaglobi	n with pe	ptides an	antibodies to Mammaglobin with peptides and recombinants	ıts	
Antibody	Pro2	Pro-3	Pro-4	Pro-5	Pro-6	Pro-7	Pro-8		Mamma-Trx	Glob-2 Mamma-Trx N-term recomb	TRX
31-1H7	0.065	0.059	0.059	0.061	90.0	990.0	0.07	0.063	2.788	0.074	0.116
32-1611	0.056	0.055	0.054	0.054	0.022	0.057	0.055	0.022	2.75	0.057	0.07
197-1H11	0.055	0.054	0.053	1.139	0.054	0.022	0.055	0.022	2.502	2.596	0.064
304-145	0.054	0.054	0.053	0.053	0.054	0.053	0.053	0.054	2.7	0.056	0.064
98-1F4	0.068	0.055	0.053	0.022	0.029	0.064	0.11	0.112	2.819	0.118	0.121
967 967	0.055	0.057	0.056	0.056	0.055	0.62	0.026	0.637	1.566	0.069	0.159
Blank	0.056	0.055	0.053	0.055	0.052	0.053	0.053	0.053	0.056	0.052	90.0

Fig. 3A

CLASS SUBCLASS

fin by the the same than the test than

1.6

1.4

1.2

0.

0.8

OD 420

9.0

0.2

0.4

0.0

DRAFTSMAN

APPROVED O.C. FIG.

ن

40

8

stanoo

20

90

8

20-

40

8 stanoo

8

CLASS SUBCLASS

}--£.12

DRAFTSMAN

APPROVED O.G. FIG.

Staining of permeabilized human breast tumor cell lines with murine anti-mammaglobin monoclonal antibodies

Western blot analysis of Mammaglobin from MB415 cells

SUBCLASS 1G11 1F4 1H11 1H7 **1A5** APPROVED C. G. F1G. 7 **2D3** 14<u>A</u>12 Į.J e saka

Mouse monoclonal: 1G11, 1F4, 1H11,1H7, 1A5 Rabbit monoclonal: 14A12, 6B12, 2D3, 6A1 Rabbit polyclonal: 967

Rec.: bacterially expressed recombinant mammaglobin

IHC analysis of mammaglobin expression in normal tissue.

Normal Tissue	Mam-29C11/31A5
Breast	3-
Adrenal	0
Cervix	0
Colon	0
Duodenum	0
Gall bladder	0
lleum	0
Kidney	0
Ovary	0
Pancreas	0
Paroud gland	0
Prostate	0
Skeletal muscle	0
Spleen	0
Testis	0

Fig. 6

Fig. 7A

Fig. 7B

31-1H7 with 2D3 or 31A5 biotinylated (PBS)

Fig. 7C

Fig. 8

0.6. FIG.	CLASS SUBCLASS	
APPROVED	'n	DRAFISHAH

Οl
sera
.⊑
Q
응
mamma
BE
4
ion
Detectio
8

	MRNA in blood*	not tested	+	+	weakly +	+	+	pu	not tested	not tested	pu	not tested							
Sandwich ELISA 967 Ab capture, 2D3 mAb secondary	Mammaglobin [pg/ml]**	8732	2392	1443	2298	1498	847	356	2333	636	284	188	43	149	96	18	363	443	10.8
, e's .	9	3.8	2.6	1.7	1.5	9.0	9.0	0.38	0.21	0.2	0.19	0.18	0.16	0.14	0.13	0.05	0.01	0.01	XXX
Sandwich ELISA 2D3 mAb capture 29C11 secondary	Mammaglobin [pg/ml]	4980-9600	560-1245	311-622	311-622	149-311	149-311	74-149	38-74	38-74	38-74	38-74	&	8	\$	<17	√17	<17	XXX
	Western	+	pu	pu	pu	pu	pu	pu	pu	pu	ы	pu	pu	멑	ри	pu	pu	멑	pu
	Status	BrCA	BrCA	BrCA	BrCA	BrCA	BrCA	BrCA	Normal F	Normal M	BrCA	Normal F							
	Serum #	6 (aka 3534)	က	4	12	17	11	10	-	18	∞	6	2	2	7	14	16	13	15

Fig. 9

 MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

AMKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

peptide #	AA sequence	AA location within mmgb
la	MKLLMVLMLAALSQHCYAGS	1-20
2a	ALSQHCYAGSGCPLLENVIS	11-30
3a	GCPLLENVISKTINPQVSKT	21-40
4a	KTINPQVSKTEYKELLQEFI	31-50
5a	EYKELLQEFIDDNATTNAID	41-60
6a	DDNATTNAIDELKECFLNQT	51-70
7a	ELKECFLNQTDETLSNVEVF	61-80
8a	DETLSNVEVFMQLIYDSSLCDLF	71-93

Fig. 11A

Ü إيا - de

Fig. 11B

Title: COMPOSITIONS AND METHODS FOR THE THERAPY, DIAGNOSIS AND MONITORING OF BREAST CANCER Inventor(s): Gary R ger et al. Serial No. 09/757,417 Docket No. 210121.479C1

APPROVED: O.G. FIG.

BY CLASS SUBCLASS

GRAFTSMAN

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

#	Start positon	sequence (length)	score
1	2	KLLMVLMLA (9)	148
2	3	LLMVLMLAA (9)	72
3	4	LMVLMLAAL (9)	60
4	66	FLNQTDETL (9)	48
6	83	LIYDsSLCDL (10)	151
7	2	KLLMVLMLAA (10)	148
8	80	FMQLiYDSSL (10)	71
9	58	AIDE1KECFL (10)	26
10	45	LLQEFIDDNA (10)	17

Fig. 12

The state of the s

APPROVED U.G. FIG.
BY CLASS SUBCLASS

ľŪ

L.J

Normal Testes-4C Normal Stomach-73A Normal Stomach-137A Normal Stomach-137A Normal Small Intestine-66B Normal Skin-138A Normal Skin-60A Normal Skeletal Muscel-128A Normal Retina-32263 Normal Ovary-93B Normal Lung-Clontech Normal Lung-58A Normal Lung-51C Normal Liver-56A Normal Liver-136A Normal Kidney-69A Normal Kidney-119A Normal Esophagus-1375 Normal Colon-50B Normal Brain-Clontech Normal Brain-75A Normal Bone Marrow-74A Normal Bladder-S9-1 Normal Aorta-1375 Normal Prostate-131A Normal Prostate-48B Normal Prostate-45A Normal Prostate-34C Normal Prostate-117A Prostate Tumor-40A Prostate Tumor-35A Prostate Tumor-135A Prostate Tumor-115A Ovary Tumor-120A

Lung Tumor-Squamous-96A

Fig. 15B

Fig. 16

Copies/Mammaglobin/ng B-actin

APPROVED . 0. G. F1G.

Title: COMPOSITIONS AND METHODS FOR THE THERAPY, DIAGNOSIS AND MONITORING OF BREAST CANCER Inventor(s): Gary R et al. Serial No. 09/757,417 Docket No. 210121.479C1

CLASS SUBCLASS

BY ORAFTSMAN

APPROVID O.G. FIG.

D117 mgb CD4 proliferation - large assay #2 June 2, 2000

		•																				
mgb B 5A	886	296	1264	295	417	135	1177	2954	492	689	2353	478	167	563	40	562	380	204	222	1217	20	220
ν Ε	329	137	465	1264	22045	4095	5836	11635	3829	1752	8379	11797	3049	1358	38	499	266	97	181	1496	93	157
5 A	12599	17260	12876	5850	112	426	2628	2836	3355	3487	2964	3658	605	2925	39	127	1301	341	15534	985	2582	11029
3 A	454	159	198	965	4500	396	9277	3156	2004	1489	24070	674	21542	22252	86	184	849	254	146	1616	162	271
1A-7A	5478	13737	7815	18113	15648	6633	29047	16814	7754	7563	23408	16769	20866	12641	- 29	1073	2001	486	22726	2408	1669	21053
DMSO	549	8	551	1725	683	376	1602	2258	992	1577	2523	691	520	328	48	477	329	181	164 401	2048	167	720
media	551	155	582	1309	588	478	1802	2142	1553	1607	3101	878	124	1439	76	173	948	223	247	2125	91	411
priming pep	5A	5A	5 A	5A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	5A	5A	5A	5A	5A	5A	5 A						
name	AB:C9	AB:C11	AB:E7	AB:H12	AB:A7	AB:A9	AB:B8	AB:C9	AB:G7	AB:G9	AB:H12	AB:H4	CD:A4	CD:A5	CD:C7	AB:G7	AB:H12	AB:C10	AB: C11	AB:G6	AB:G7	AB:H2
line #	1	8	က	4	2	9	7	80	6	9	7	12	13	14	15	16	17	1 8	19	20	21	22

Fig. 184

- ±

1																			
57	135	455	105	946	430	1567	, 230	6354	966	624	92	266	3	103	96	80	2610	424	131
125	177	48	7519	4081	1822	13029	12379	629	329	2941	628	1314	103	45	06	91	3247	438	128
276	1195	2148	891	3131	1186	1817	206	15480	2462	3753	10183	1691	24392	6497	22005	2504	2634	23992	17835
412	191	70	190	6496	1199	14627	2718	703	7694	1018	3891	4280	46	161	138	115	3372	306	324
204	330	5014	14133	13318	4205	18628	15470	17558	8374	8278	14322	10295	29912	16874	26356	12775	8808	29772	24760
909	457	295	192	1522	1614	3865	525	797	455	710	175	2270	72	152	178	2	2507	290	227
	315	465	545	1852	1448	5572	1072	540	551	652	109	824	177	230	146	129	2293	430	542
5A -	5A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A
- AB:D1	AB:E9	AB:G6	AB:H4	AB:D12	AB:D1	AB:H1	AB:A7	AB:B12	AB:F7	AB:G7	CD:C7	CD:D8	CD:G4	CD:G5	CD:G3	CD:G6	CD:C9	CD:H10	CD:H11
	24	25	5 6	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	45

Fig. 18B

HOPETH THE BETTER

Fig. 19

Title: COMPOSITIONS AND METHODS FOR THE THERAPY, DIAGNOSIS AND MONITORING OF BREAST CANCER Inventor(s): Gary Figer et al. Serial No. 09/757,417 Docket No. 210121.479C1

AFPROVED O.G. FIG.

WY CLASS SUBCLASS
ORAFISMAN

The letter with the second second second

 H₃N-Met | His tag 6aa | Ral12 (short) 30aa | Hindlll 2aa | Human mammaglobin (full length) 93aa | -C00-

Fig. 20

