Register								
Number								

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

Set - A

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2021-22 (Even)

Test: CLA-T2 Date: 30-05-2022

Course Code & Title: 18CSS202J - Computer Communications Duration: 100 Minutes (2 Periods)

Year & Sem: II Year / IV Sem Max. Marks: 50

Course Articulation Matrix:

S.No.	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
1	CO1	3	-	-	-	-	-	-	-	-	-	-	3
2	CO2	3	2	3	-	-	-	-	-	-	-	-	3
3	CO3	3	3	3	-	-	-	-	-	-	-	-	3
4	CO4	3	2	-	-	-	-	-	-	-	1	1	3
5	CO5	3	-	-	-	-	-	-	-	-	-	-	2
6	CO6	3	3	3	-	-	-	-	-	-	-	-	3

Part - A (20 x 1 = 20 Marks)

Instructions: 1) Answer ALL questions. 2) The duration for answering the part A is 30 minutes (this sheet will be collected after 30 minutes). 3) Encircle the correct answer 4) * denotes more than one choice may be correct

be co	rrect					
Q. No	Question	Marks	BL	CO	PO	PI Code
1	In IPV4 address, Class A uses bits for net ID and bits for host ID a) 8, 24 b) 16, 16 c) 15, 17 d) 24, 8	1	1	3	1	1.7.1
2	How many possible addresses per network are there in a class C of an IPv4 address? a) 65536 b) 128 c) 256 d) 2097152	1	1	3	1	1.7.1
3	Choose the binary notation of the IPv4 address 145.101.168.123 a) 01111011 10101000 01100101 10010001 b) 10010011 01100111 10101001 01111001 c) 10010001 01100111 11101000 11111011 d) 10010001 01100111 11101000 11111011	1	2	3	2	2.6.3
4	Choose the class of the given IPV4 address 128.28.12.128 a) A b) B c) C d) D	1	1	3	1	1.7.1
5	Find the number of addresses in 192.168.10.26/26. a) 16 b) 32 c) 64 d)128	1	2	3	1	1.7.1
6	In IPv4 datagram header there are many fields and one of the field is Time to Live -TTL. This field is used to a) optimize throughput b) reduce delay c) set priority for packets d) prevent looping	1	2	3	1	1.7.1

7	The block 224.0.0.0/4 has the a) Multicast Addresses b) loopback address	1	2	3	1	1.7.1
	c) limited broadcast address d) first address					
8*	Router operates at layer (s)of the OSI model. a) Physical Layer b) Network Layer	1	2	3	1	1.7.1
	c) Session Layer d) Presentation Layer					
9	A is a device in which the stations are completely unaware of its existence.	1	1	3	1	1.7.1
	a) passive hub b) repeater					
	c) simple bridge d) transparent bridge					
10	Slash Notation is also called as CIDR. CIDR stands for	1	1	3	1	1.7.1
	a) Classful inter-domain routing					
	b) Classless inter-domain routingc) Classful intra-domain routing					
	d) Classless intra-domain routing					
11	The Amplitude shift keying is used to convert the	1	1	4	1	1.7.1
	a) digital signal into analog data b) analog data into digital signal					
	c) digital data into analog signal					
	d) analog signal into digital data					
12	In the signal levels are on one side of the time axis, either	1	1	4	1	1.7.1
	above or below.					
	a) Unipolar b) Polar c) Bipolar d) Multilevel					
13	The is the number of signal elements sent in 1s.	1	1	4	1	1.7.1
	a) data rate b) signal rate c) pulse rate d) message rate					
14	In Binary ASK, the peak amplitude of one signal level is and	1	1	4	1	1.7.1
14	the other is	1	1	4	1	1./.1
	a) 0, same as the amplitude of the carrier frequency					
	b) same as the amplitude of the carrier frequency, 1					
	c) 1, same as the amplitude of the carrier frequency					
	d) same as the amplitude of the carrier frequency, 0					
15	Calculate the value of the signal rate for the case "One data element	1	3	4	2	2.6.3
	per one signal element" if the data rate is 1 Mbps and c = 1/2. a) 500 Kbaud b) 1 Mbaud c) 250 Kbaud d) 375 Kbaud					
	a) 500 Kbaud b) 1 Mbaud c) 250 Kbaud d) 375 Kbaud					
16	Which multiplexing technique transmits analog signals?	1	1	4	1	1.7.1
	a) TDM b) FDM c) CDM d) SDM					
17	In synchronous TDM, the data flow of each input connection	1	1	4	1	1.7.1
	is divided into units, where each input occupies one input time slot.					
	a) Synchronous TDM b) Synchronous FDM c) Synchronous CDM d) Synchronous SDM					
18	If there are n signal sources of same data rate, then the TDM link has	1	2	4	1	1.7.1
	slots. a) 2n b) n/2 c) n*2 d) n					
10		1	1	4	1	171
19	The Polar Return to Zero scheme uses voltage values. a) 1 b) 2 c) 3 d) 4	1	1	4	1	1.7.1
	α, τ ο, τ υ, τ υ, τ					
20	In cable television, many television channels are carried	1	3	4	1	1.7.1
	simultaneously on a single cable - which multiplexing is used in cable television?					
	a) TDM b) FDM c) CDM d) Synchronous TDM					
	a, 12.1. b, 12.1. c,					
1			1	1		l .

Register								
Number								

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

Set - A

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2021-22 (Even)

Test: CLA-T2 Date: 30-05-2022

Course Code & Title: 18CSS202J - Computer Communications Duration: 100 Minutes (2 Periods)

Year & Sem: II Year / IV Sem Max. Marks: 50

	Part - B (2 x 5 = 10 Marks)					
	uctions: Answer ALL questions			1	1	_
Q. No	Question	Marks	BL	CO	PO	PI Code
21	Identify the network Id for the IP address 172.168.168.16 with subnet mask 255.255.192.0 and calculate the number of subnets and hosts that could be configured in each subnet.	5	3	3	2	2.6.3
	Answer: Network Id: 172.168.128.0/18 Number of Subnets: 4 Number of Hosts: 16382					
22	Define data rate and signal rate. What is the unit for data rate and signal rate? What is the impact of increasing the data rate and decreasing the signal rate?	5	2	4	1	1.7.1
	Answer: Definition ✓ The data rate defines the number of data elements (bits) sent in 1s. ✓ The signal rate is the number of signal elements sent in 1s. Unit ✓ The unit for data rate is bits per second (bps). ✓ The unit for signal rate is the baud. Impact: ✓ Increasing the data rate increases the speed of transmission; decreasing the signal rate decreases the bandwidth requirement					

Instru	ictions: 1	Answe	r ALL que:	•	10 = 20 M	larks)					
Q. No	COIOIIS: F	1113 ** C		Question			Marks	BL	CO	PO	PI Code
23. A	networ	k in or	der to crea	k of 204.15.5 te the netwo	rk in the fi	gure	10	3	3	2	2.6.3
			A: 14 hosts tB: 28 hosts	netC: 2 hosts	netD: 7 hosts						
	Networ		56.4.04F9.F1 TV 70.78E0	R Mask	of Hosts in	Broadcast Address					
	A B C				Subnet						
	E Answer	r:									
	Net work	Hos ts	Net ID in CIDR notatio n	Subnet Mask	Number of Hosts in Subnet						
	В	28	204.15. 5.0/27	255.255.2 55.224	32	204.1 5.5.31					
	Е	28	204.15. 5.32/27	255.255.2 55.224	32	204.1 5.5.63					
	A	14	204.15. 5.64/28	255.255.2 55.240	16	204.1 5.5.79					
	D	7	204.15. 5.80/28	255.255.2 55.240	16	204.1 5.5.95					
	С	2	204.15. 5.96/28	255.255.2 55.252	4	204.1 5.5.99					
					Or		<u> </u>				
23. B		k 192.1	168.10.0 ar	enario using ad list out the			10	3	3	2	2.6.3

Part - C

Answer:

64 Hosts:

Net id: 192.168.10.0/25 First address: 192.168.10.1

Broadcast Address: 192.168.10.127

21 Hosts:

Net id: 192.168.10.128/27 First address: 192.168.10.129 Broadcast Address: 192.168.10.159

20 Hosts:

Net id: 192.168.10.160/27 First address: 192.168.10.161 Broadcast Address: 192.168.10.191

4 Hosts:

Net id: 192.168.10.192/29 First address: 192.168.10.193 Broadcast Address: 192.168.10.199

2 Hosts:

Net id: 192.168.10.200/30 First address: 192.168.10.201 Broadcast Address: 192.168.10.203

2 Hosts:

Net id: 192.168.10.204/30 First address: 192.168.10.205 Broadcast Address: 192.168.10.207

2 Hosts:

Net id: 192.168.10.208/30 First address: 192.168.10.209 Broadcast Address: 192.168.10.211

2 Hosts:

Net id: 192.168.10.212/30 First address: 192.168.10.213 Broadcast Address: 192.168.10.215

. A	Explain Unipolar NRZ, Polar NRZ and RZ encoding schemes	10	2	4	1	1.7.
	with suitable diagram.					
	Answer:					
	Unipolar Scheme					
	*					
	✓ In a unipolar scheme, all the signal levels are on one side					
	of the time axis, either above or below.					
	<u>Unipolar NRZ (Non-Return-to-Zero)</u>					
	✓ A unipolar scheme was designed as a non-return-to-					
	zero (NRZ) scheme in which the positive voltage defines					
	bit 1 and the zero voltage defines bit 0.					
	<u> </u>					
	✓ It is called NRZ because the signal does not return to					
	zero at the middle of the bit.					
	✓ Below figure show a unipolar NRZ scheme.					
	Amplitude					
	A					
	. 1 0 1 1 0					
	$\frac{1}{2}V^2 + \frac{1}{2}(0)^2 = \frac{1}{2}V^2$					
	0 Time Normalized power					
	✓ the normalized power (power needed to send 1 bit per					
	✓ unit line resistance) is double that for polar NRZ.					
	✓ For this reason, this scheme is normally not used in data					
	communications today.					
	-					
	<u>Polar Scheme</u>					
	✓ In polar schemes, the voltages are on the both sides of					
	the time axis.					
	✓ For example, the voltage level for 0 can be positive and					
	the voltage level for I can be negative					
	Polar NRZ					
	✓ In polar NRZ encoding, we use two levels of voltage					
	amplitude.					
	✓ We can have two versions of polar NRZ: NRZ-L and NRZ-					
	I, as shown below					
	A					
	0 1 0 0 1 1 1 0 r=1					
	NRZ-L P					
	Time					
	NRZ-I 0.5 - Bandwidth					
	Time 0					
	O No inversion: Next bit is 0 • Inversion: Next bit is 1					
	✓ The figure also shows the value of r, the average baud					
	rate, and the bandwidth.					
	✓ In the first variation, NRZ-L (NRZ-Level), the level of the					
	voltage determines the value of the bit.					
	✓ In the second variation, NRZ-I (NRZ-Invert), the change					
	or lack of change in the level of the voltage determines					
	the value of the bit.					
	✓ If there is no change, the bit is 0; if there is a change, the					
	bit is 1.					
	✓ In NRZ-L the level of the voltage determines the value of					
	the bit. In NRZ-I the inversion or the lack of inversion					
	determines the value of the bit.					
	✓ Baseline wandering is a problem for both variations					
	✓ The synchronization problem (sender and receiver					
	clocks are not synchronized) also exists in both schemes					
	✓ Another problem with NRZ-L occurs when there is a					
	sudden change of polarity in the system					
	Polar Return to Zero (RZ)					
	✓ In RZ, the signal changes not between bits but during the					
- 1	bit.		ĺ	ĺ	1	

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

