סמינר בנושא אנלוג להשערת קולץ בפולינומים

2024 באוגוסט 25

רקע מתמטי

סוג של נספח שאפשר לקרוא או לא או חלקית, לחשוב איפה לשים

- (בלי לקרוא לו חוג) $\mathbb{F}_2\left[x\right]$ השדה $\mathbb{F}_2\left[x\right]$ השדה סבלת כפל וחיבור, הגדרה של החוג \mathbb{F}_2
 - יחסים אסימפטוטיים •

מבוא 1

1.1 הצגת השערת קולץ

השערת קולץ, הידועה גם כבעיית "3n+1" היא בעיה פתוחה מפורסמת במתמטיקה המיוחסת באופן מסורתי ללותר קולץ, אשר נהגתה בשנות ה-30 של המאה ה-20. (ראו [1]) מגדירים מיפוי $\mathcal{C}:\mathbb{N}\to\mathbb{N}$ באופן הבא:

$$\mathcal{C}\left(n\right) \quad = \quad \begin{cases} \frac{n}{2} & n \equiv 0 \, (\mod 2) \\ 3n+1 & n \equiv 1 \, (\mod 2) \end{cases}$$

ההשערה היא שתהליך של הפעלה חוזרת של המיפוי $\mathcal C$, על כל מספר טבעי שנבחר, תביא $\mathcal C^k$ (n) של צעדים למספר $n \geq 1$ לכל לכל $n \geq 1$ קיים למספר של צעדים למספר 1.

n=11 נפעיל לדוגמה את התהליך על המספר

$$11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

$$\mathcal{C}^{14}\left(11\right)=1$$
 מצאנו כי

ההשערה הפכה למפורסמת בעיקר בשל פשטות הניסוח שלה, שהופכת אותה לנגישה גם למי שאינו מתמטיקאי.

למרות שההשערה עצמה טרם הוכחה או הופרכה, נעשו נסיונות רבים לפתור אותה ואף התקבלו תוצאות חלקיות מעניינות. (הבולטת בהן היא עבודתו של טרנס טאו, ראו [4])

$\mathbb{F}_2\left[x\right]$ בעיה אנלוגית ב 1.2

עבור בעיות אריתמטיות רבות, טבעי לבחון בעיה אנלוגית בחוגי פולינומים. בעיה אנלוגית כזו נחקרה בשנת 2008 על ידי Zavislakı Hicks, Mullen, Yucas (ראו [2]).

: באופן הבא $T:\mathbb{F}_2\left[x
ight] o\mathbb{F}_2\left[x
ight]$ באופן הבא

$$T\left(f\right) \quad = \quad \begin{cases} \frac{f}{x} & f \equiv 0 \, (\mod x) \\ \left(x+1\right)f+1 & f \equiv 1 \, (\mod x) \end{cases}$$

בהמשך ? $T^{k}\left(f
ight)=1$ כך קיים $k\geq0$ קיים $0
eq f\in\mathbb{F}_{2}\left[x
ight]$ לבעיה זו נקרא בהמשך "בעיית קולץ הפולינומיאלית."

 \mathbf{x}^2+1 נבצע לדוגמה הפעלה חוזרת של T על חוזרת הפעלה

$$x^{2} + 1 \rightarrow x^{3} + x^{2} + x \rightarrow x^{2} + x + 1 \rightarrow x^{3} \rightarrow x^{2} \rightarrow x \rightarrow 1$$

 $.T^{6}\left(x^{2}+1\right) =1$ כלומר

ממלא את תפקידו $\mathbb{F}_2\left[x\right]$ ממלא את תפקידו לבין \mathcal{C} ניתן לראות כי האיבר הראשוני של המספר הראשוני 2: ההתחלקות בו מורה לאיזה ענף של T לפנות כשם שההתחלקות ב2 מורה לאיזה ענף של $\mathcal C$ לפנות.

 $f\equiv 0\,(\mod x)$ בהמשך להשוואה זו, לפולינום $f\in\mathbb{F}_2\left[x
ight]$ המתחלק בx, כלומר מקיים אנו קוראים פולינום "אי-זוגי" ולפולינום שאינו מתחלק בx אנו קוראים פולינום "אי-זוגי". נעיר כי היא לפולינום הקבוע שהמקדם החופשי שלו תוצאת f(0) היא לפולינום הקבוע המקדם החופשי שלו הוצאת f(0)f(0) = 0 ההצבה של 0 בf ולכן f הוא זוגי אם ורק אם

מבט על" של הסמינר "1.3

בסמינר זה נציג תשובה חיובית לבעיית קולץ הפולינומיאלית. לאחר קבלת תשובה חיובית זו טבעי לשאול - "כמה מהר" לוקח להגיע ל-1?

לכל מיפוי
$$f \in \mathbb{F}_2\left[x
ight]$$
 ולכל $M: \mathbb{F}_2\left[x
ight] o \mathbb{F}_2\left[x
ight]$ נגדיר:

$$t_{\min}\left(f,M\right) \quad = \quad \min\left\{k \geq 0: M^{k}\left(f\right) = 1\right\}$$

 $t_{\mathsf{min}}\left(f,M
ight) = \infty$ אם קיים k כזה, ואחרת נגדיר

'מתקיים: $0
eq f \in \mathbb{F}_2\left[x\right]$ למעשה, נוכיח שזמן העצירה סופי על ידי הוכחה כי לכל

$$t_{\min}\left(f,T\right) \leq \deg\left(f\right)^{2} + 2\deg\left(f\right)$$

 $t_{\min}\left(f,T
ight)=O\left(\deg\left(f
ight)^{2}
ight)$ ובסימונים אסימפטוטיים, בשלב הבא, שמהווה את חלק הארי של הסמינר, נשפר את החסם הזה ונוכיח כי לכל :מתקיים $0 \neq f \in \mathbb{F}_2[x]$

$$t_{\min}\left(f,T\right) \leq \left(2\deg\left(f\right)\right)^{1.5} + \deg\left(f\right)$$

$$.t_{\mathsf{min}}\left(f,T
ight) = O\left(\mathsf{deg}\left(f
ight)^{1.5}
ight)$$
 משמע

2 תוצאות

2.1 הוכחה שזמן העצירה סופי

כדי להוכיח שזמן העצירה סופי, נתחיל בלהוכיח שלאחר מספר צעדים שחסום על ידי ביטוי התלוי במעלה של f, המעלה של f חייבת לקטון. עבור פולינום זוגי, נדרש צעד אחד להורדת המעלה. עבור פולינום אי זוגי, המצב מעט יותר מסובך. נתבונן למשל בפולינום x^7+x^5+1 על מנת להמחיש ויזואלית את הסדרה המתקבלת מהפעלות חוזרות של T, נאמץ את הסימון הבא של פולינום כוקטור בינארי:

$$x^7 + x^5 + 1$$

ריבוע שחור מייצג את המקדמים שערכם 1 וריבוע לבן מייצג את המקדמים שערכם 0, וככל שמתקדמים שמאלה, החזקה של x עולה.

נתבונן בשורות 0,2,4,6,8. ניתן לראות שבשורה 0 קיים מרווח של 4 מקומות בין החזקה הנמוכה ביותר לחזקה הבאה, לאחר מכן בשורה 2 המרווח הוא של 3 מקומות. זה ממשיך עד שהמרווח נעלם בשורה 3. לאחר מכן נדרשים עוד 3 צעדים כדי להגיע לפולינום ממעלה 3.

למה 2.1. יהי $f\in\mathbb{F}_{2}\left[x
ight]$ כך שמתקיים: $\deg\left(f
ight) \geq1$ כך שמתקיים: $f\in\mathbb{F}_{2}\left[x
ight]$

$$\deg\left(T^{m}\left(f\right)\right) \ = \ \deg\left(f\right)-1$$

, ולכן,
$$T\left(f
ight)=rac{f}{x}$$
 אם f זוגי אז $d=\deg\left(f
ight)$ ולכן.
$$\deg\left(T\left(f
ight)\right)=d-1$$

במקרה זה m=1 מקיים את הטענה. אם f אי זוגי, נרשום:

$$f = x^r g + 1$$

כמו כן . $x \nmid g$ כלומר f-1, כלומר $x \nmid g$ כמו כן . $x \nmid g$ החזקה המקסימלית של המחלקת את ב $x \nmid g$ באטר 1. נעיר כי $x \nmid g$ הוא למעשה החזקה הנמוכה ביותר של x המופיעה ב $x \nmid g$ פרט לו.

נוכיח באינדוקציה כי לכל $j \leq r$ מתקיים:

$$T^{2j}(f) = (x+1)^j x^{r-j} g + 1$$

j=1 עבור

$$T(f) = (x+1)(x^rg+1) + 1 = (x+1)x^rg + x$$

 $T^2(f) = (x+1)x^{r-1}g + 1$

נניח כעת כי התוצאה נכונה עבור j < r ונוכיח שהיא נכונה עבור j < r מהנחת האינדוקציה:

$$T^{2j}(f) = (x+1)^j x^{r-j} g + 1$$

. אי זוגי $T^{2j}\left(f
ight)$ אי זוגי ולכן $\left(x+1
ight)^{j}x^{r-j}g$ מכיוון ש

$$\begin{split} T^{2j+1}\left(f\right) &= \left(x+1\right)^{j+1}\left(x^{r-j}g+1\right)+1 = (x+1)^{j+1}\,x^{r-j}g+x \\ T^{2j+2}\left(f\right) &= \left(x+1\right)^{j+1}x^{r-(j+1)}g+1 \end{split}$$

ובכך הוכחנו את צעד האינדוקציה.

:j=r נקבל עבור

$$T^{2r}(f) = (x+1)^r g + 1$$

נזכיר כי g אי זוגי ולכן $\left(x+1\right)^{r}g$ זוגי ולכן אי זוגי ולכן אי זוגי ולכן אי זוגי ולכן אי זוגי ולכן

$$T^{2r+1}(f) = \frac{(x+1)^r g + 1}{x}$$

ומתקיים:

$$\deg\left(T^{2r+1}\left(f\right)\right) \ = \ \deg\left(T^{2r}\left(f\right)\right) - 1 = d - 1$$

במקרה זה $m = 2r + 1 \le 2d + 1$ מקיים את במקרה

כעת נקל להוכיח באינדוקציה על מעלת הפולינום את החסם שתיארנו בהקדמה.

$$.t_{\mathsf{min}}\left(f,T
ight) \leq \mathsf{deg}\left(f
ight)^{2} + 2\,\mathsf{deg}\left(f
ight)$$
 משפט 2.2. יהי $0
eq f \in \mathbb{F}_{2}\left[x
ight]$ יהי

f נוכיח את הטענה באינדוקציה על מעלת הוכחה. נוכיח את הטענה

 $t_{\mathsf{min}}\left(f,T
ight)=$ בסיס האינדוקציה: $\deg f=0$. הפולינום היחיד ב $\mathbb{F}_{2}\left[x
ight]$ שמעלתו 0 הוא 1 ולכן $\deg f=0$. החסם מתקיים.

על פי 2.1, קיים .deg f=d>1 כך ש $f\in\mathbb{F}_{2}\left[x
ight]$ על פי 2.1 צעד האינדוקציה: יהי

$$1 \le m \le 2d + 1$$

כך שd-1 מהנחת האינדוקציה, $\deg\left(T^{m}\left(f
ight)
ight)=d-1$ כך

$$t_{\min}(T^m(f), T) \le (d-1)^2 + 2(d-1)$$

ומכאן

$$t_{\min}(f,T) \le (d-1)^2 + 2(d-1) + m$$

 $\le (d-1)^2 + 2(d-1) + 2d + 1 = d^2 + 2d$

□ сштсы.

2.2 חסם משופר לזמן העצירה

כפי בחלק מתלות ל $t_{\mathsf{min}}\left(f,T\right)$ בחלק זה .deg בחלה במבוא, קיבלנו חסם אסימפטוטי ריבועי $t_{\mathsf{min}}\left(f,T
ight) = O\left(\left(\deg f
ight)^{1.5}
ight)$ נשפר את החסם ונוכיח נוכיח פולינומים ממעלה עד 3 עד שהם מגיעים לנ:

סימנו בירוק צעדים מסוג $f\mapsto (x+1)\,f+1$ ובסגול צעדים מסוג $f\mapsto rac{f}{x}$ נשים לב שכל פולינום זוגי מגיע לפולינום אי זוגי לאחר רצף של חלוקות בx, ואם כך נוכל להוכיח חסם לפולינומים אי זוגיים בלבד ולאחר מכן להסיק ממנו חסם לכל פולינום שונה מ0 בעזרת הקשר

$$t_{\mathsf{min}}\left(f,T\right) = r + t_{\mathsf{min}}\left(\overbrace{\frac{f}{x^r}}^{\mathsf{odd}},T\right)$$

f את המחלקת של x המחלקת את כאשר r החזקה הגבוהה ביותר של

2.2.1 צמצום למקרה של פולינום אי זוגי

כפי שציינו במבוא ל2.2, ניתן לצמצם את הבעיה לפולינומים אי זוגיים בלבד. נתחיל בלהציג מספר מיפויי עזר.

הגדרה 2.3. לכל $f \in \mathbb{F}_2[x]$ נגדיר את המיפויים הבאים:

- $T_1(f) = (x+1) f + 1$ •
- ונגדיר $f \neq 0$ נאשר f עבור f המחלקת של המקסימלית החזקה החזקה החזקה ר נאשר $T_2\left(f\right) = \frac{f}{x^r}$ נגדיר גם $T_2\left(0\right) = 0$
 - $T_3(f) = (T_2 \circ T_1)(f) \bullet$

לכל $(T^n\left(f
ight))_{n\geq 0}$ אי זוגי, הסדרה $(T^n_3\left(f
ight))_{n\geq 0}$ מהווה תת סדרה של $f\in\mathbb{F}_2\left[x
ight]$ שכן עבור לכל אי זוגי הפעלה יחידה של T_3 שקולה להפעלה חוזרת של ff עצמו).

 $t_{\mathsf{min}}\left(f,T_{3}
ight)$ בפרט ($t_{\mathsf{min}}\left(f,T\right)=2t_{\mathsf{min}}\left(f,T_{3}
ight)+\mathsf{deg}\left(f
ight)$ אי זוגי. $f\in\mathbb{F}_{2}\left[x
ight]$

אז $\deg f = 0$ אם f אם מעלת הפולינום את הטענה באינדוקציה שלמה על מעלת הפולינום את הטענה באינדוקציה שלמה או ולכן השוויון נכון. $t_{\mathsf{min}}\left(f,T_{3}\right)=0$ וכן $t_{\mathsf{min}}\left(f,T\right)=0$ ולכן השוויון נכון.

נניח שהטענה נכונה לפולינומים אי זוגיים ממעלה קטנה מn ונוכיח אותה לפולינומים אי יוגיים ממעלה n. ב2.1 הוכחנו כי עבור f אי זוגי, הנתון בצורה:

$$f = x^r g + 1$$

 $1 \le j \le r$ כאשר $j \le r$ מתקיים כי לכל $j \le r$ המקסימלית של $j \le r$ מתקיים כי לכל

$$T^{2j}(f) = (x+1)^j x^{r-j} g + 1$$

:j=r-1 בפרט עבור

$$T^{2(r-1)}(f) = (x+1)^{r-1}xq+1$$

 $f\mapsto 1$ נשים לב כי מההוכחה בT נובע כי $2\,(r-1)$ ההפעלות של ומסוג $f\mapsto rac{f}{x}$ כלומר מתחלקות לזוגות של הפעלות שכל אחת מהן שקולה $(x+1)\,f+1$ להפעלה אחת של T_3 ולכן:

$$T_3^{r-1}\left(f
ight) = (x+1)^{r-1}\,xg+1$$
 . $h\left(x
ight) = (x+1)^{r-1}\,xg+1$ נסמן

$$T(h) = (x+1)^r xq + x$$

תהי כעת s החזקה המקסימלית של x המחלקת את $T\left(h\right)$, אז

$$T^{s}\left(T\left(h\right)\right) = T_{2}\left(T\left(h\right)\right)$$

 T_3 מצד שני מהגדרת

$$T_3(h) = T_2(T_1(h)) = T_2(T(h))$$

קיבלנו:

$$f \xrightarrow{T^{2(r-1)}} h \xrightarrow{T^{1+s}} T_2(T(h)) \qquad T^{2(r-1)+1+s}(f) = T_2(T(h))$$

$$f \xrightarrow{T_3^{r-1}} h \xrightarrow{T_3} T_2(T(h)) \qquad T_3^r(f) = T_2(T(h))$$

$$(2)$$

$$f \xrightarrow{T_3} h \xrightarrow{T_3} T_2(T(h)) \qquad T_3^r(f) = T_2(T(h))$$
 (2)

n+1-s ממעלה $T_{2}\left(T\left(h
ight)
ight)$ ולכן n+1 ממעלה $T_{3}\left(T\left(h
ight)
ight)$ הפולינום $T_{2}\left(T\left(h
ight)
ight)$ הא אי זוגי. נזכיר כי מו $s \geq 2$ ואם כר n+1-s < n ואם כר זוגי כלומר דוגי מובע כי $T^{2}\left(h\right) = T^{2r}\left(f\right)$ ואם כך מהנחת האינדוקציה:

$$t_{\min}(T_2(T(h)), T) = 2t_{\min}(T_2(T(h)), T_3) + (n+1-s)$$

ובשילוב עם 1 ו2 נקבל:

$$\begin{array}{rcl} t_{\min}\left(f,T\right) - \left(2\left(r-1\right) + 1 + s\right) & = & 2\left(t_{\min}\left(f,T_{3}\right) - r\right) + \left(n+1-s\right) \\ t_{\min}\left(f,T\right) - \left(2r-1+s\right) & = & 2t_{\min}\left(f,T_{3}\right) - 2r + \left(n+1-s\right) \\ t_{\min}\left(f,T\right) & = & 2t_{\min}\left(f,T_{3}\right) + n \end{array}$$

n והוכחנו את השוויון עבור פולינומים אי זוגיים ממעלה

2.2.2 הפולינום ההדדי ומיפויים מקבילים

עבור f אי זוגי. מתברר כי אם נבצע היפוך $(T_3^n\left(f
ight))_{n\geq 0}$ ברצוננו להמשיך ולחקור את הסדרה של סדר המקדמים עבור כל הפולינומים שבסדרה נקבל שוב סדרה של פולינומים אי זוגיים. בסדרה זו נוכל לתאר את המעבר מפולינום נתון לפולינום הבא אחריו בעזרת מיפוי פשוט יותר S_3 מאשר T_3 שנגדיר ונסמן ב

הפולינום המתקבל מפולינום נתון בעזרת היפוך סדר המקדמים נקרא הפולינום ההדדי. בחלק זה נציג תכונות בסיסיות של הפולינום ההדדי, נגדיר את המיפוי S_3 ונוכיח שעבור $t_{\mathsf{min}}\left(f,S_{3}
ight) = O\left(\left(\mathsf{deg}\,f
ight)^{1.5}
ight)$ פולינומים אי זוגיים מתקיים : הפועל כך: $\mathbb{F}_2\left[x
ight] o \mathbb{F}_2\left[x
ight]$ יהי מיפוי היפוך סדר המקדמים (ב. יהי מיפוי היפוף סדר המקדמים).

$$f \mapsto \widehat{f} = x^{\deg(f)} f\left(\frac{1}{x}\right)$$

נדבוק בקונבנציה ש \hat{f} נקרא ולכן מתקיים ולכן ולכן אפולינום לפולינום ההדדי לפולינום לפונבנציה ש \hat{f} נקרא ולכן מתקיים של ולכן מתקיים של לפולינום ההדדי של לפונבנציה ש

 $f \mapsto \widehat{f}$ למה 2.6. תכונות של המיפוי

$$\widehat{f}(x)=\sum_{i=0}^m a_i x^{m-i}$$
 אם $f(x)=\sum_{i=0}^m a_i x^i\in\mathbb{F}_2\left[x
ight]$.1 .1

$$\widehat{fg}=\widehat{f}\widehat{g}$$
 מתקיים $f,g\in\mathbb{F}_{2}\left[x
ight]$.2

$$\widehat{x^kf}=\widehat{f}$$
 מתקיים $k\geq 0$ ו $f\in\mathbb{F}_2\left[x
ight]$.3

עה המחלקת של $\hat{f}=rac{f}{x^r}$ כאשר החזקה המקסימלית של המחלקת . $\hat{\hat{f}}=f$ מתקיים $\hat{f}=f$ את f בפרט אם f אי זוגי אז

הוכחה. נוכיח את התכונות:

:ולכן $\deg f = m$.1

$$\widehat{f}(x) = x^m \sum_{i=0}^m a_i \left(\frac{1}{x}\right)^i = \sum_{i=0}^m a_i x^{m-i}$$

2. נוכיח על פי ההגדרה:

$$\begin{split} \left(\widehat{fg}\right)(x) &=& x^{\deg(fg)}\left(fg\right)\left(\frac{1}{x}\right) = x^{\deg(f) + \deg(g)} f\left(\frac{1}{x}\right) g\left(\frac{1}{x}\right) \\ &=& x^{\deg(f)} f\left(\frac{1}{x}\right) x^{\deg(g)} g\left(\frac{1}{x}\right) = \widehat{f}\left(x\right) \widehat{g}\left(x\right) = \left(\widehat{f}\widehat{g}\right)(x) \end{split}$$

:2 על פי חלק 2

$$\widehat{x^k f} = \widehat{x^k} \widehat{f}$$

. אבל $\frac{1}{x^k} = x^k \cdot \left(\frac{1}{x}\right)^k = 1$ אבל

:1 אז מחלק מחלק מחלק ק $g\left(x
ight)=\sum_{i=0}^{m}a_{i}x^{i}$ נרשום $f=x^{r}g$ נרשום .4

$$\widehat{g}\left(x\right) = \sum_{i=0}^{m} a_i x^{m-i}$$

על ידי החלפת אינדקס נקבל:

$$\widehat{g}\left(x\right) = \sum_{i=0}^{m} \overbrace{a_{m-i}}^{b_{i}} x^{i}$$

:כונים אי זוגי ולכן $a_0 \neq 0$ כלומר $b_m \neq 0$ כלומר מחלק 1 כי

$$\hat{\hat{g}}\left(x\right) = \sum_{i=0}^{m} b_i x^{m-i}$$

ועל ידי החלפת אינדקס נוספת נקבל:

$$\hat{g}(x) = \sum_{i=0}^{m} b_{m-i} x^{i} = \sum_{i=0}^{m} a_{m} x^{i} = g(x)$$

כעת ניעזר בחלק 3 ונקבל:

$$\hat{\hat{f}} = \widehat{\widehat{x^r g}} = \hat{\hat{g}} = g = \frac{f}{r^r}$$

:יהיו $f \in \mathbb{F}_2\left[x\right]$ יבור **2.7.**

$$S_1(f) = (x+1) f \bullet$$

- מאפסת את המקדם S_2 מאפסת את השדה \mathbb{F}_2 הפעלה של $S_2\left(f\right)=f+x^{\deg(f)}$ העליון)
 - $S_3(f) = (S_2 \circ S_1)(f) \bullet$

למה 2.8. יהי f פולינום אי זוגי, אז מתקיים:

$$\widehat{T_3\left(f\right)}=S_3\left(\widehat{f}\right)$$
 .1

$$t_{\min}(f, T_3) = t_{\min}(f, S_3)$$
 .2

הוכחה. נוכיח:

g עבור $T_2(\widehat{T_1(f)})=\widehat{T_1(f)}$ מתקיים 2.6 מתקיים לפי סעיף $\widehat{T_3(f)}=T_2(\widehat{T_1(f)})$.1 אי זוגי, הפעולה $g\mapsto\widehat{g+1}$ מאפסת את המקדם התחתון והופכת את סדר המקדמים ולכן שקולה לפעולה $g\mapsto S_2(\hat{g})$ שהופכת את סדר המקדמים ואז מאפסת את המקדם העליון. נשתמש בתכונה זו עבור g=(x+1)

$$\widehat{T_1(f)} = \underbrace{(x+1)f}_q + 1 = S_2\left(\widehat{(x+1)}f\right)$$

לפי סעיף 2 של 2.6 מתקיים:

$$S_2\left(\widehat{(x+1)}\,\widehat{f}\right) = S_2\left(\widehat{(x+1)}\,\widehat{f}\right) = S_2\left((x+1)\,\widehat{f}\right)$$

 $\widehat{T_3\left(f
ight)}=$ נשים לב כי הביטוי האחרון שווה ל $S_2\left(S_1\left(\hat{f}
ight)
ight)$ כלומר ל $S_3\left(\hat{f}
ight)$ ולכן הוכחנו $S_3\left(\hat{f}
ight)$

 $n \ge 1$ מסעיף 1 מקבלים באינדוקציה מיידית כי לכל 2.

$$\widehat{T_3^n(f)} = S_3^n(\widehat{f})$$

נסמן בסדרה: $n=t_{\mathsf{min}}\left(f,T_{3}\right)$ נסמן

$$f, T_3(f), T_3^2(f), ..., T_3^n(f) = 1$$

אם נפעיל את המיפוי $\hat{f}\mapsto\hat{f}$ על כל איברי הסדרה נקבל:

$$\widehat{f},\widehat{T_3\left(f\right)},\widehat{T_3^2\left(f\right)}...,\widehat{1} = \widehat{f},S_3\left(\widehat{f}\right),S_3^2\left(\widehat{f}\right),...,1$$

 $T_3^m\left(f
ight)
eq 1$,m< n ובסדרה זו האיבר $T_3^m\left(f
ight)
eq 1$ מופיע רק במקום האחרון שכן עבור $T_3^m\left(f
ight)$ כי אילו היה מתקיים השוויון $\widehat{T_3^m\left(f
ight)}=\widehat{1}$ היינו יכולים להפעיל את מיפוי היפוך המקדמים שוב ולקבל $\widehat{T_3^m\left(f
ight)}=\widehat{1}$ היינו יכולים להפעיל את מיפוי היפוך המקדמים את $\widehat{T_3^m\left(f
ight)}=1$ כלומר $\widehat{T_3^m\left(f
ight)}=1$ וזו סתירה. מצאנו אם כך שיש להפעיל $T_3^m\left(f
ight)=1$ פלומר $T_3^m\left(f
ight)=1$ בפעם הראשונה ולכן $T_3^m\left(f
ight)=1$ כנדרש.

הלמה האחרונה מאפשרת לנו להתמקד בחסימה של זמן העצירה של S_3 בלבד, שהוא כאמור מיפוי פשוט יותר. נסכם זאת במסקנה.

מסקנה 2.9. יהי f אי זוגי. אז מתקיים:

$$t_{\min}\left(f,T
ight) = 2t_{\min}\left(\hat{f},S_{3}
ight) + \deg\left(f
ight)$$

הוכחה. נובע משילוב של סעיף 2 של 2.8 ומ2.4.

עבור פולינום $\sum_{i \leq n} a_i x^i$ נשתמש בסימון בסימון לועבור הפולינום $f(x) = \sum a_i x^i$ כלומר משמיטים חזקות גבוהות מn

$$f|_{\leq n}=g|_{\leq n}$$
 אז $f\equiv g\mod x^n$ למה 2.10. נניח כי

היתרון של המיפוי S_3 הוא שאנחנו יכולים לתאר בצורה יחסית פשוטה מה יהיה הפולינום שנקבל על ידי מספר הפעלות חוזרות שלו וזהו התוכן של שלוש הלמות הבאות.

 $0 \leq i \leq n - \deg(g)$ אז לכל .deg (g) < n אי זוגי, כאשר $f(x) = x^n + g$ יהי ים .2.11 מתקיים . $S_3^i(f) = x^n + (x+1)^i g = ((x+1)f)|_{\leq n}$

הוכחה. יהי $0 \leq i \leq r$ מתקיים מאינדוקציה על i כי לכל $r=n-\deg(f)$ מתקיים השוויון . $r=n-\deg(f)$ נוטים i < r ונניח i < r נשים לב כי הראשון. עבור i=0 השוויון ברור. יהי i < r ולכן i < r לפן $i \in S_3(f)$ מולכן $i \in S_3(f)$ מושב את $i \in S_3(f)$ ולכן $i \in S_3(f)$

$$S_1(S_3^i(f)) = (x+1)(x^n + (x+1)^i g)$$

= $x^{n+1} + x^n + (x+1)^{i+1} g$

כעת נחשב את $S_3\left(S_3^{i+1}\left(f\right)\right)$ כלומר נמצא את הפולינום המתקבל מהפעלה של כעת נחשב את $S_3\left(S_3^{i+1}\left(f\right)\right)$ כלומר נמצא את הפולינום המתקבל מהפעלה של יום את כלומר ביינות את כלומר ביינות את הפולינום המתקבל מהפעלה של יום את כלומר ביינות הפולינום המתקבל מהפעלה של יום ביינות הפולינום המתקבל מהפעלה של יום ביינות הפולינות הפולינ

$$S_3^{i+1}(f) = S_3(S_3^i(f)) = S_2(S_1(S_3^i(f)))$$

$$= S_2(x^{n+1} + x^n + (x+1)^{i+1}g)$$

$$= x^n + (x+1)^{i+1}g$$

 $\deg\left(x^{n+1}+x^n+(x+1)^{i+1}\,g\right)=$ ולכן $\deg\left((x+1)^{i+1}\,g\right)\leq n$ ולכן פסביר את המעבר האחרון פסביר את בעד האינדוקציה. n+1

. ולכן: $\deg\left(\left(x+1\right)^ig
ight)\leq n$ מתקיים מהשני. לכל לכל לכל לכל מתקיים וויון השני. לכל

$$S_3^i(f) = x^n + (x+1)^i g = (x^n + (x+1)^i g)|_{\leq n}$$

:ולכן $x^n \equiv (x+1)^i \, x^n \mod x^n$ ולכן

$$x^n + (x+1)^i g \equiv_{x^n} (x+1)^i x^n + (x+1)^i g = (x+1)^i (x^n+g) = (x+1)^i f$$
 אם כך לפי 2.10:

$$S_3^i(f) = \left(x^n + (x+1)^i g\right)|_{\leq n} = \left((x+1)^i f\right)|_{\leq n}$$

וקיבלנו את השוויון השני.

2.3 סדרות משהו משהו

אין לי שמץ עוד לא קראתי •

3 שאלות פתוחות

ביבליוגרפיה 4

- 1. מאמר של לגריאן
 - 2. מאמר ראשון
 - 3. מאמר שני
- 4. עבודה של טרי טאו