쌍대이론

955	並	6.14	내응하는	원-쌍내	영태들

라벨	원문제(혹은 쌍대문제)	쌍대문제(혹은 원문제)		
	Maximize Z (or W)	Minimize W (or Z)		
상식 이상 기괴	Constraint <i>i</i> :	Variable y_i (or x_i): $y_i \ge 0$ Unconstrained $y_i' \le 0$		
상식 이상 기괴	Variable x_j (or y_j): $x_j \ge 0 \leftarrow$ Unconstrained \leftarrow $x_i' \le 0 \leftarrow$	$\begin{array}{c} \text{Constraint } j: \\ \longrightarrow \geq \text{form} \\ \longrightarrow = \text{form} \\ \longrightarrow \leq \text{form} \end{array}$		

민감도 분석

primal simplex

$$\begin{aligned} & \text{Minimize} & W=40y_1+20y_2+90y_3\\ & \text{Subject to} & 3y_1+y_2+5y_3\geq 5\\ & y_1+y_2+3y_3\geq 10\\ & y_1,y_2,y_3\geq 0 \end{aligned}$$

iteration 1

	Z	x_1	x_2	x_3	x_4	x_5	RHS
	1	-5	-10	0	0	0	0
x_3	0	3	1	1	0	0	40
x_4	0	1	1	0	1	0	20
x_5	0	5	3	0	0	1	90

- bfs: (0, 0, 40, 20, 90)
- 상보기저해: (0, 0, 0, -5, -10)

iteration 2

	Z	x_1	x_2	x_3	x_4	x_5	RHS
	1	5	0	0	10	0	200
x_3	0	2	0	1	-1	0	20
x_2	0	1	1	0	1	0	20
x_5	0	2	0	0	-3	1	30

- bfs: (0, 20, 20, 0, 30)
- 상보기저해: (0, 10, 0, 5, 0)

dualsimplex

$$\begin{array}{ll} \text{Minimize} & W=40y_1+20y_2+90y_3\\ \text{Subject to} & 3y_1+y_2+5y_3\geq 5\\ & y_1+y_2+3y_3\geq 10\\ & y_1,y_2,y_3\geq 0 \end{array}$$

$$\begin{array}{ll} \text{Minimize} & W = 40y_1 + 20y_2 + 90y_3 \\ \text{Subject to} & -3y_1 - y_2 - 5y_3 \leq -5 \\ & -y_1 - y_2 - 3y_3 \leq -10 \\ & y_1, y_2, y_3 \geq 0 \end{array}$$

$$\begin{array}{ll} \text{Maximize} & -W = -40y_1 - 20y_2 - 90y_3 \\ \text{Subject to} & -3y_1 - y_2 - 5y_3 + y_4 = -5 \\ & -y_1 - y_2 - 3y_3 + y_5 = -10 \\ & y_1, y_2, y_3, y_4, y_5 \geq 0 \end{array}$$

iteration 1

	-W	y_1	y_2	y_3	y_4	y_5	RHS
	1	40	20	90	0	0	0
y_4	0	-3	-1	-5	1	0	-5
y_5	0	-1	-1	-3	0	1	-10

• bfs: (0, 0, 0, -5, -10)

iteration 2

	-W	y_1	y_2	y_3	y_4	y_5	RHS
	1	20	0	30	0	20	-200
y_4	0	-2	0	-2	1	-1	5
y_2	0	1	1	3	0	-1	10

• bfs: (0, 10, 0, 5, 0)

upper bound

$$\begin{array}{ll} \text{Maximize} & Z-2x_1-3x_2=0\\ \text{Subject to} & x_3=20-3x_1+9x_2\\ & 0\leq x_1\leq\frac{40}{3}, 0\leq x_2\leq\frac{40}{9}, x_3\geq0 \end{array}$$

ullet x_2 enter

$$Z - 2x_1 - 3x_2 = 0$$

$$x_3 = 20 + 9x_2 \quad \dots \quad x_2 \le \frac{40}{9}$$

$$x_2 = \frac{40}{9} - y_2$$

$$x_3 = 60 - 3x_1 - 9y_2 \quad \dots \quad x_1 \le \frac{40}{3}$$

$$Z - 2x_1 + 3y_2 = \frac{40}{3}$$

• x_1 enter

$$x_1 = \frac{40}{3} - y_1$$

$$x_3 = 20 + 3y_1 - 9y_2$$

$$Z + 2y_1 + 3y_2 = 40$$

- bfs $(x_1, x_2, x_3, y_1, y_2)$: $(\frac{40}{3}, \frac{40}{9}, 20, 0, 0)$
- obj: = 40

수송 문제

- 1. 공급량과 수요량이 일치하지 않는 경우: dummy 수요를 만들고, cost를 0으로 설정.
- 2. 최소, 최대 수요량이 있는 경우: 가상 근원지

		Acre Foot당 비용(단위 10달러)					
	Berdoo	Los Devils	공급				
Colombo River Sacron River Calorie River	16 14 19	13 13 20	22 19 23	17 15 —	50 60 50		
최소요구량	30 50	70 70	0 30	10 - 60	(백만 acre feet의 단위)		
		150	Augustinia de la companya del la companya de la com				

■ 표 8.12 Metro Water District를 위한 매개변수표

				분배되는 단위	당 비용(천만 달러))		
				도	목 적지			
			Berdoo (min.)	Berdoo (extra) 2	Los Devils 3	San Go 4	Hollyglass 5	공급
	Colombo River	1	16	16	13	22	17	50
근원지	Sacron River	2	14	14	13	19	15	60
	Calorie River	3	19	19	20	23	М	50
	Dummy	4(D)	М	0	М	0	0	50
수요			30	20	70	30	60	

초기 bfs를 만들기 위한 절차

				분배되는 단위	당 비용(천만 달러))		
				5	극적지			
			Berdoo (min.)	Berdoo (extra) 2	Los Devils 3	San Go 4	Hollyglass 5	공
근원지	Colombo River Sacron River	1 2	16 14	16 14	13 13	22 19 23	17 15 M	5 6 5
	Calorie River Dummy	3 4(<i>D</i>)	19 <i>M</i>	19 0	20 <i>M</i>	0	0	5
수요			30	20	70	30	60	

Figure 1: 문제 예시

1. 북모서리법으로 기저변수를 선택

■ 표 8.16 Metro Water District를 위한 최소 필요가 없는 매개변수표

	econocines bonoves sono bono							
		1	2	3	4	5	공급	ui
	1	30	16 →20	13	22	17	50	
	2	14	14 0 —	13 60	19	15	60	
근원지	3	19	19	20 10	23 30	M 10	50	
	4(D)	М	0	М	0	0 50	50	
수요		30	20	70	30	60	Z = 2,470 -	+ 10 <i>M</i>
	v_j							

최적화 검사 절차

- 1. 가장 많은 할당이 일어난 행의 변수 하나를 0으로 설정
- 2. 기저인 x_{ij} 의 i,j에 대해 $c_{ij}=u_i+v_j$ 를 만족한다는 성질로 u_i 와 v_j 를 계산한다. 3. 비기저 변수들의 $c_{ij}-u_i-v_j$ 를 계산한다.
- 4. 모두 양수이면 최적.

반복

- 1. 진입기저변수를 결정하라: 가장 큰(절댓값으로) 음의 값 $C_{jj} u_i v_j$ 를 가지는 비기저변수 x_{ij} 를 선택하라.
- 2. 탈학기저변수를 결정하라: 진입기저변수가 증가할 때 가능을 유지하기 위해 요구되는 연쇄반응을 식별하라. 기증셀들 중에서, 가장 작은 값을 가지는 기저변수를 선택하라.
- 3. 새 기저가능해를 결정하라: 탈락변수의 값을 각 수신셀의 할당에 더하라. 그 값을 각 기증 셀의 할당에서 빼어라.

다익스트라 최소비용 문제로 전환

시작점 용량은 len(node) - 1, 나머지는 -1로 설정하고 용량은 무한

최대흐름문제 최소비용 문제로 전환

도착점에서 출발점 arc를 생성한 후, $maxx_{fa}$, cost, outflow - inflow는 모두 0으로 설정.

7. 네트워크 심플렉스 해법

Figure 2: x_{AB} 가 상한값에 도달했다고 가정

Figure 3: x_{CE} 가 상한값에 도달해서 역방향됨

Figure 4: x_{BA} 가 진입하고, x_{AB} 가 퇴출

