Name: Maggie

1. In a corral there are cowboys and an odd number of horses. There are 20 legs in all: how many belong to horses?

Let there be
$$x$$
 combons and y horses, $x, y \in \mathbb{Z}^+$, y is odd.
 $2x + 4y = 20 \iff x + 2y = 10$
 $\Rightarrow x = 2k + 10$, $k \in \mathbb{Z}$.
 $\Rightarrow x = 10 \pmod{2} \implies y = \frac{10 - x}{2} = -k$.
Since $x, y \in \mathbb{Z}^+$, $-5 < k < 0$, and k is odd.
 $\Rightarrow y = 1 \text{ or } 3$, \Rightarrow there are $y = 12$ legs belonging to horses.

2. Prove that consecutive Fibonacci numbers are relatively prime.

Pefined as:
$$U_n = U_{n-1} + U_{n-2}$$
, $U_0 = U_1 = 1$.
Suppose $\exists U_n$. S.t. $gcd(U_n, U_{n-1}) = d \neq 1$.
Then $d \mid (U_{n-1} + U_{n-2}) \Rightarrow d \mid U_{n-2}$.
 $d \mid (U_{n-2} + U_{n-3}) \Rightarrow d \mid U_{n-3}$.
 $d \mid (U_{n-2} + U_{n-3}) \Rightarrow d \mid U_{n-3}$.
However, $U_1 = 1 \Rightarrow d = 1$, a contradiction.
Therefore . Consecutive Fibonacci #s are relatively prime. \square

3. Find three consecutive integers such that the first is divisible by a square, the second by a cube and the third by a fourth power.

(et the three integers be
$$\times$$
, \times +1, \times +2.
 \times =0 (mod a^2)
 \times =-1 (mod b^3)
 \times =-2 (mod c^4), $a,b,c \in \mathbb{Z}^+$.
Since if \exists such a,b,c , and factor of a,b,c will also sutisfy this system, respectively, we assume that a,b,c are all distinct primes. By Chinese remainder thrm, \exists 1 \times for any value of such a,b,c .
If we take $a=5$, $b=3$, $c=2$, $x=-25\cdot16\cdot16-2\cdot25\cdot27\cdot11=350 \Rightarrow 350,351,352$

- 4. Let a and b be elements of a group G. We say a is a *conjugate* of b if $a = xbx^{-1}$ for some $x \in G$. Define the relation \sim on G by $a \sim b$ if a is a conjugate of b. Prove that \sim is an equivalence relation on G. What are the equivalence classes when G is Abelian?
 - O reflexive: a=eae+ > a~a.
 - ② Symmetric: if $a = xbx^{-1} \Rightarrow x^{-1}a(x^{-1})^{-1} = b \Rightarrow b \sim a$.
 - 3) transitive:

if
$$a = xbx^{-1}$$
, $b = ycy^{-1}$,
 $\Rightarrow a = xycy^{-1}x^{-1} = (xy)c(xy)^{-1} \Rightarrow a \sim c$

Therefore, ~ is an equiv relation.

If G is abelian, the equiv classes are each element in G.

5. Use induction on n to show that the Fibonacci numbers satisfy $f_{m+n} = f_{m-1} \cdot f_n + f_m \cdot f_{n+1}, \quad m \ge 1, n \ge 0.$

Base case:
$$m=1$$

LHS= $f_{n+1} = f_n + f_{n-1}$ => RHS=LHS.
RHS= $f_0 \cdot f_n + f_1 \cdot f_{n+1} = f_{n+1}$.

Induction (ase:

Suppose statement holds for $m \le k$, we'd like to show $f_{k+1+n} = f_k f_n + f_{k+1} f_{n+1}$.

LHS= $f_{k+n} + f_{k+n-1} = f_{k-1} \cdot f_n + f_k f_{n+1} + f_{k-2} \cdot f_n + f_{k-1} \cdot f_{n+1}$ $= (f_{k-1} \cdot f_{k-2}) \cdot f_n + (f_{k+1} f_{k+1}) \cdot f_{n+1}$ $= f_k f_n + f_{k+1} f_{n+1} = RHS$ Since the truth of the statement for all $m \le k$ leads to the truth of the statement for m = k+1, by strong mathematical induction, the statement is true for all $m \ge k$.