KN GG 4

Sef 3

4.c.) With GO-BACK-1

If success of first there (1-P)

There he transmit frame to

It failure at first time (p)

(knowing that we need (\frac{7}{1-p})

transmisstom & attempts on

average & time to deliver frame)

un ber of frames trons withed

offer the last one and until

threach -> M= T > Hrue out

=> Total Home for frame: $(1-p) + p + P(+p + T(\frac{1}{1-p})) = + p + P + \frac{T}{1-p}$

=> Utilization = $\frac{ff}{f + P + \frac{T}{1 - P}} = 0,7074$,

plf delivery rate = 64.0,7 = 42,5 plfs
see

Set 4.)

1.1

Poisson arrivels
$$P_G[K] = \frac{6 \cdot e}{K!}$$

-> probability of K

frame arrivals in a

Rouse Hune

Throughput: S=G. Psac

Pure ALOHA

Valuerable Period: [to-T, to +T]

there interval
$$T \rightleftharpoons G$$
 $2T \rightleftharpoons 2G$
 $P_{Sul} = MRE[O] = \frac{(2G)^6}{O!} \cdot e^{-2G} = e^{-2G}$
 $= S = G e^{-2G}$

Slotted ALOUA

Vulnerable Rented = [to-V, to]

Psuc = PG[0] = e

=> S = G.e-G

1.c.) fure ALOHA

$$S_{max} \rightarrow (Ge^{-2G})' \stackrel{!}{=} 0$$

$$= 3G(-7)e^{-2G} + e^{-2G} \stackrel{!}{=} 0 \Rightarrow G = \frac{7}{2}$$

$$S_{max} = \frac{1}{2e} = 0.78$$

slotted ALOHA

$$S_{max} \rightarrow (6e^{-6})^{\frac{1}{2}}0 \Rightarrow 6e^{-6}+e^{-6}=0$$

 $\Rightarrow 6=1$, $S_{max}=0.36$

4.1 CSMA/CD (BES)

I want: prob. of having (k-1) collisions, and then success on round k?

Round	effer collision, selet times let among	No. of choices
1	0	1=20
2	0,1	27
3	0,1,2,3	7 7
4	0,1,2,,7	53
,		21-7

Collision at round:

Pround_i_coll =
$$\left(\frac{1}{2^{i-1}}\right)\left(\frac{1}{2^{i-1}}\right) + \left(\frac{1}{2^{i-1}}\right)\left(\frac{1}{2^{i-1}}\right) + \dots$$

+ $\left(\frac{1}{2^{i-1}}\right)\left(\frac{1}{2^{i-1}}\right)$

+ we stations per slot colliding

number of summands; 21-1

$$... = \frac{2^{i-1}}{2^{2(i-1)}} = 2^{-(i-1)}$$

=> colliston et first
$$(K-1)$$
 rounds
= $\frac{K-1}{1}$ 2- $(i-4)$

Final result:
$$\mathbb{R} = \frac{k-1}{2} 2^{-(i-1)} \cdot (1-2^{-(k-1)})$$

6.)

y collision

Hidden Terminal (Rooblem)