Judged by a machine

Judged by a machine

Judged by a machine

Here we have for the last time...

Judged by a machine

Here we have for the last time...

... a Kevin Björk Production

Facial Recognition in modern society

- Facial Recognition in modern society
- The Data and image preprocessing

- Facial Recognition in modern society
- The Data and image preprocessing
- How does image classification work?
- What is an image?
- Neural Network Classifier
- The mind of the machine

- Facial Recognition in modern society
- The Data and image preprocessing
- How does image classification work?
- What is an image?
- Neural Network Classifier
- The mind of the machine
- Machine Learning:
- Catching Nod
- Mapping face to name

- Facial Recognition in modern society
- The Data and image preprocessing
- How does image classification work?
- What is an image?
- Neural Network Classifier
- The mind of the machine
- Machine Learning:
- Catching Nod
- Mapping face to name
- Summary

Facial Recognition in modern society

From this: To this:

Snapchat filters

- Snapchat filters
- ID verification

- Snapchat filters
- ID verification
- Police investigations

Surveillance [edit]

The American Civil Liberties Union criticized a test of a system used at the event to monitor the people in attendance. A group of four companies installed a face recognition system to scan the faces of fans entering the stadium and compare them with a database of criminals. Attendees were not told that they were subject to this surveillance. [20] Tampa police reported that the system identified nineteen criminals, but due to complaints and trouble with false positive results, it was not re-used the next year. [21] Super Bowl XXXVI and all subsequent Super Bowls have been designated as a National Special Security Event, qualifying for extra security detail from the Secret Service.

- Snapchat filters
- ID verification
- Police investigations
- Facebook tagging

- Snapchat filters
- ID verification
- Police investigations
- Facebook tagging
- Confirming purchases

- Snapchat filters
- ID verification
- Police investigations
- Facebook tagging
- Confirming purchases
- Many, many more...

The Data

The Data

Nod

- A database with pictures of primarily celebrities faces
- Over 13000 pictures in total

- A database with pictures of primarily celebrities faces
- Over 13000 pictures in total
- Run by The University of Massachusetts Amherst

- A database with pictures of primarily celebrities faces
- Over 13000 pictures in total
- Run by The University of Massachusetts Amherst
- Can easily be accessed through SKlearn

Data Cleaning

We are ready to do FR...

We are ready to do FR...

... but how does it work?

Images are made up of pixels, small coloured boxes

- Images are made up of pixels, small coloured boxes
- The bigger the picture, the more pixels are required to construct it (could be in the millions)

- Images are made up of pixels, small coloured boxes
- The bigger the picture, the more pixels are required to construct it (could be in the millions)
- Each pixel have 3 values associated with it that decide it's color
- These are the R(ed) G(reen) B(lue) values

- Images are made up of pixels, small coloured boxes
- The bigger the picture, the more pixels are required to construct it (could be in the millions)
- Each pixel have 3 values associated with it that decide it's color
- These are the R(ed) G(reen) B(lue) values

How a computer classifies an image

How a computer classifies an image

- Use a neural network classifier, specifically a 'convolutional Neural Network classifier' (CNN)
- SKlearn: MLPClassifier

How a computer classifies an image

- Use a neural network classifier, specifically a 'convolutional Neural Network classifier' (CNN)
- SKlearn: MLPClassifier
- Other classifiers would work too (often not as well...)

CNN

CNN

CNN

How does the machine weigh pixels?

Clustering

Clustering

Cluster 0:

Cluster 1:

Clustering (Nod only)

Cluster 0:

Cluster 1:

ML: Catching Nod

- Estimator: MLPClassifier()
- Scoring: Accuracy
- CV: 10

ML: Catching Nod

Estimator: MLPClassifier()

Scoring: Accuracy

• CV: 10

ML: Mapping face to name

- Estimator: MLPClassifier()
- Scoring: Accuracy
- CV: 10

Train: 55 % Test: 9 %

ML: Mapping face to name

Estimator: MLPClassifier()

Scoring: Accuracy

• CV: 10

Train: 55 % Test: 9 %

With PCA:

Train: 100 % Test: 24 %

Alvaro Uribe

Gustav Svensson

ML: Mapping face to name (Nod Only)

Estimator: MLPClassifier()

Scoring: Accuracy

• CV: 5

Train: 100 % Test: 41 %

With PCA:

Train: 100 % Test: 59 %

A face database needs to be consistent when taking photos

- A face database needs to be consistent when taking photos
- Not using grey-scale could be an advantage

Red

Green

Blue

- A face database needs to be consistent when taking photos
- Not using grey-scale could be an advantage
- Hard to do EDA

	status	height	width	pix0	pix1	pix2	pix3	pix4	pix5	pix6	
0	0	100	111	9	33	57	66	79	86	94	
1	0	100	138	106	105	129	134	93	66	68	
2	0	100	106	100	93	86	83	82	81	77	
3	0	100	134	242	210	83	9	0	1	0	
4	0	100	131	0	0	0	0	0	0	0	
	100				1		1.11		2.0		
1336	0	100	148	58	51	46	46	45	41	39	
1337	0	100	109	100	105	104	117	133	100	55	
1338	0	100	129	17	31	37	51	48	70	91	
1339	0	107	100	131	120	106	97	100	112	123	
1340	0	100	120	36	37	37	35	34	33	29	
1341 rows × 18103 columns											

- A face database needs to be consistent when taking photos
- Not using grey-scale could be an advantage
- Hard to do EDA
- Tricky to reshape data

- A face database needs to be consistent when taking photos
- Not using grey-scale could be an advantage
- Hard to do EDA
- Tricky to reshape data
- Bootcamp is over :'(

The End