Cardiac ACMG-ClinVar Penetrance Estimation

 ${\it James~Diao,~under~the~supervision~of~Arjun~Manrai} \\ {\it June~26,~2017}$

Contents

1	Dov	wnload, Transform, and Load Data	9	2
	1.1	Collect ACMG Gene Panel		2
	1.2	Download ClinVar VCF		3
	1.3	Download 1000 Genomes VCFs		3
	1.4	Import and Process 1000 Genomes VCFs		4
	1.5	Import and Process gnomAD/ExAC VCFs		4
	1.6	Collect 1000 Genomes Phase 3 Populations Map		5
2	Con	nmon Pathogenic Variants by Ancestry	(6
W	orkir	ng Directory: /Users/jamesdiao/Documents/Kohane Lab/2017-ACMG-penetrance/ACMG	Penet	rance

1 Download, Transform, and Load Data

1.1 Collect ACMG Gene Panel

http://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/

Table from ACMG SF v2.0 Paper 60 x 8 (selected rows):

	Phenotype	MIM_disorder	PMID_Gene_Reviews_entry
$\overline{\mathbf{N1}}$	Hereditary breast and ovarian cancer	604370 612555	20301425
N2	Hereditary breast and ovarian cancer	604370 612555	20301425
N3	Li-Fraumeni syndrome	151623	20301488
N4	Peutz-Jeghers syndrome	175200	20301443
N5	Lynch syndrome	120435	20301390

Table continues below

	$Typical_age_of_onset$	Gene	MIM_gene	Inheritance	Variants_to_report
$\overline{\mathrm{N1}}$	Adult	BRCA1	113705	AD	KP&EP
N2	Adult	BRCA2	600185	AD	KP&EP
N3	Child/Adult	TP53	191170	AD	KP&EP
N4	Child/Adult	STK11	602216	AD	KP&EP
N5	Adult	MLH1	120436	AD	KP&EP

ACMG-59 Genes:

##	[1]	BRCA1	BRCA2	TP53	STK11	MLH1	MSH2	MSH6	PMS2
##	[9]	APC	MUTYH	BMPR1A	SMAD4	VHL	MEN1	RET	PTEN
##	[17]	RB1	SDHD	SDHAF2	SDHC	SDHB	TSC1	TSC2	WT1
##	[25]	NF2	COL3A1	FBN1	TGFBR1	TGFBR2	SMAD3	ACTA2	MYH11
##	[33]	MYBPC3	MYH7	TNNT2	TNNI3	TPM1	MYL3	ACTC1	PRKAG2
##	[41]	GLA	MYL2	LMNA	RYR2	PKP2	DSP	DSC2	TMEM43
##	[49]	DSG2	KCNQ1	KCNH2	SCN5A	LDLR	APOB	PCSK9	ATP7B
##	[57]	OTC	RYR1	CACNA1S					

1.2 Download ClinVar VCF

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar.vcf.gz

ClinVar is the central repository for variant interpretations. Relevant information from the VCF includes:

- (a) CLNSIG = "Variant Clinical Significance, 0 Uncertain, 1 Not provided, 2 Benign, 3 Likely benign, 4 Likely pathogenic, 5 Pathogenic, 6 Drug response, 7 Histocompatibility, 255 Other"
- (b) CLNDBN = "Variant disease name"
- (c) CLNDSDBID = "Variant disease database ID"
- (d) CLNREVSTAT = "Review Status, no_assertion, no_criteria, single criterion provided single submitter, mult criteria provided multiple submitters no conflicts, conf criteria provided conflicting interpretations, exp Reviewed by expert panel, guideline Practice guideline"
- (e) INTERP = Pathogenicity (likely pathogenic or pathogenic; CLNSIG = 4 or 5)

Processed ClinVar data frame 224657 x 20 (selected rows/columns):

VAR_ID	CHROM	POS	ID	REF	ALT	CLNSIG	INTERP
1_955619_G_	_C 1	955619		G	С	Likely_benign	FALSE
$1_957568_A_$	_G 1	957568		A	G	Uncertain_significance	FALSE
$1_957605_G_$	_A 1	957605		G	A	Likely_benign	TRUE
$1_957640_C_$	_T 1	957640	•	\mathbf{C}	${ m T}$	${\bf Uncertain_significance}$	FALSE

Table continues below

GOLD_STARS	pathogenic	benign	conflicted	MSID	CLNREVSTAT	CLNDSDBID
1	FALSE	TRUE	FALSE	210112	1	1
1	FALSE	TRUE	FALSE	263166	1	1
0	TRUE	FALSE	FALSE	243036	1	1
1	FALSE	TRUE	FALSE	128296	1	1

1.3 Download 1000 Genomes VCFs

gene	name	chrom	start	end	downloaded
BRCA1	NM_007294	17	41196311	41277500	TRUE
BRCA2	NM_000059	13	32889616	32973809	TRUE
TP53	$NM_{-}000546$	17	7571719	7590868	TRUE
STK11	NM_000455	19	1205797	1228434	TRUE
MLH1	NM_000249	3	37034840	37092337	TRUE

1.4 Import and Process 1000 Genomes VCFs

- (a) Unnest the data frames to 1 row per variant_ID key (CHROM_POSITION_REF_ALT).
- (b) Remove all insertions, deletions, CNV, etc, and keep only missense variants (1 REF, 1 ALT)
- (c) For 1000 Genomes: convert genomes to allele counts. For example: (0|1) becomes 1, (1|1) becomes 2. Multiple alleles are unnested into multiple counts. For example: (0|2) becomes 0 for the first allele (no 1s) and 1 for the second allele (one 2).

Processed 1000 Genomes VCFs: 141467 x 2516 (selected rows/columns):

GENE	AF_1000G	VAR_ID	CHRO	OM	POS	ID	REF	ALT
BRCA1	0.004193290	17_41196363_	C_T	17	41196363	rs8176320	С	Τ
BRCA1	0.008386580	$17_41196368_$	C_T	17	41196368	rs184237074	\mathbf{C}	${ m T}$
BRCA1	0.000998403	$17_41196372_$	T_C	17	41196372	rs189382442	Τ	\mathbf{C}
BRCA1	0.342252000	$17_41196408_$	G_A	17	41196408	rs12516	G	A
BRCA1	0.000399361	17_41196409_	G_C	17	41196409	rs548275991	G	\mathbf{C}

Table continues below

HG00096	HG00097	HG00099	HG00100	HG00101	HG00102
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
1	0	1	1	0	2
0	0	0	0	0	0

1.5 Import and Process gnomAD/ExAC VCFs

- (a) Unnest the data frames to 1 row per variant_ID key (CHROM_POSITION_REF_ALT).
- (b) Remove all insertions, deletions, CNV, etc, and keep only missense variants (1 REF, 1 ALT)
- (c) Collect superpopulation-level allele frequencies: African = AFR, Latino = AMR, European (Finnish + Non-Finnish) = EUR, East.Asian = EAS, South.Asian = SAS.

Processed gnomAD VCFs: 96742 x 48 (selected rows/columns):

	GENE	AF_GNOMAD	VAR_ID
8337	MLH1	0.00007430	3_37092125_A_G
37134	FBN1	0.00001190	$15_48725034_C_T$
$\boldsymbol{66525}$	DSP	0.00003190	$6_7583743_G_A$
32042	TSC2	0.00000524	16_2136877_G_A
17246	MUTYH	0.00003310	1_45804261_G_A

Processed ExAC VCFs: 59883 x 45 (selected rows/columns):

	GENE	AF_EXAC	VAR_ID
9547	APC	0.003545000	5_112174456_A_T
21545	WT1	0.000008336	11_32450117_G_A
37094	RYR2	0.000009841	$1_237755051_A_G$
41240	DSP	0.000008281	$6_7581713_C_G$
44501	KCNQ1	0.000008297	$11_2608792_G_T$

1.6 Collect 1000 Genomes Phase 3 Populations Map

This will allow us to assign genotypes from the 1000 Genomes VCF to ancestral groups. From: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502. ALL.panel

Phase 3 Populations Map Table: 2504 x 4 (selected rows)

sample	pop	super_pop	gender
HG02757	GWD	AFR	female
HG03175	ESN	AFR	male
NA19780	MXL	AMR	male
HG02265	PEL	AMR	male
NA18619	CHB	EAS	female
HG00534	CHS	EAS	female

2 Common Pathogenic Variants by Ancestry

