第5章 时序逻辑电路

5.1 概述

- 一、组合电路
- 1. 结构特点
 - (1) 电路由逻辑门构成,不含记忆元件;
 - (2) 输入信号是单向传输的,电路中不含反馈 回路;
- 2. 功能特点: 无记忆功能。

二、时序电路

- 1. 结构特点
- (1) 电路由组合电路和存储电路构成,含记忆元件;
- (2) 电路中含有从输出到输入的反馈回路;

图5.1.1时序电路的结构框图

2. 功能特点: 有记忆功能。

例:对JKFF,当J=K=1时:

$$Q^{n}=0$$
 , $Q^{n+1}=1$; $Q^{n}=1$, $Q^{n+1}=0$

- 3. 分类
- (1)按Z(tn)与X(tn)是否有关

米勒(Mealy)型 摩尔(Moore)型

5.6 时序电路的分析

时序电路的分析步骤

- (1) 电路分析:根据<u>电路结构</u>,确定类型是同步还是异步电路,确定输入信号和输出信号,哪些部分是组合逻辑电路,哪些部分是存储电路。
- (2) 列方程:

列各触发器激励方程 列各触发器状态方程(包括CP) 列电路输出方程

- (3) 作状态转移表(图),波形图。
- (4)分析逻辑功能。

例1 分析下图所示时序电路的逻辑功能。

解: (1)分析电路结构

CP 不作为外部输入变量X, 而作为时钟信号。

(2)写出四组方程

(1)分析电路结构 (2)写出四组方程

①时钟方程: $CP_1 = CP_2 = CP_3 = CP$

②各触发器的激励方程:

$$\mathbf{D}_1 = \overline{\mathbf{Q}}_1^{\,\mathrm{n}} \cdot \overline{\mathbf{Q}}_3^{\,\mathrm{n}}$$

$$D_1 = \overline{\mathbf{Q}}_1^{\mathrm{n}} \cdot \overline{\mathbf{Q}}_3^{\mathrm{n}} \qquad D_2 = \mathbf{Q}_1^{\mathrm{n}} \oplus \mathbf{Q}_2^{\mathrm{n}} \qquad D_3 = \mathbf{Q}_1^{\mathrm{n}} \cdot \mathbf{Q}_2^{\mathrm{n}}$$

$$D_3 = Q_1^n \cdot Q_2^n$$

解: (1)分析电路结构

①时钟方程: $CP_1 = CP_2 = CP_3 = CP$

②各触发器的激励方程:

$$\begin{array}{lll} \mathbf{Q}_1^{n+1} &=& \left[\ \overline{\mathbf{Q}}_1^n \cdot \overline{\mathbf{Q}}_3^n \ \right] \cdot \ \mathrm{CP}^{\uparrow} & & \mathbf{Q}_2^{n+1} &=& \left[\ \mathbf{Q}_1^n \oplus \mathbf{Q}_2^n \ \right] \cdot \ \mathrm{CP}^{\uparrow} \\ & & \mathbf{Q}_3^{n+1} &=& \left[\ \mathbf{Q}_1^n \cdot \mathbf{Q}_2^n \ \right] \cdot \ \mathrm{CP}^{\uparrow} \end{array}$$

解: (1)分析电路结构

- ①时钟方程: $CP_1 = CP_2 = CP_3 = CP$
- ②各触发器的激励方程:
- ③各触发器的状态方程
- ④电路的输出方程

$$Z = Q_3^n$$

(3)作状态转移表、状态转移图或波形图 作状态转移表时从初态(预置状态或全零状态) 开始,按状态转移的顺序列出,并整理。

$$\mathbf{Q}_{1}^{n+1} = [\overline{\mathbf{Q}}_{1}^{n} \cdot \overline{\mathbf{Q}}_{3}^{n}]$$

$$\mathbf{Q}_{2}^{n+1} = [\mathbf{Q}_{1}^{n} \oplus \mathbf{Q}_{2}^{n}]$$

$$\mathbf{Q}_{3}^{n+1} = [\mathbf{Q}_{1}^{n} \cdot \mathbf{Q}_{2}^{n}]$$

$$Z = \mathbf{Q}_{3}^{n}$$

$\mathbf{Q}_3^{\mathrm{n}}$	$\mathbf{Q}_{2}^{\mathrm{n}}$	$\mathbf{Q}_1^{\mathrm{n}}$	$\mathbf{Q}_3^{\mathrm{n+1}}$	$\mathbf{Q}_2^{\mathrm{n+1}}$	$\mathbf{Q}_1^{\mathrm{n+1}}$	Z ⁿ
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1
1	0	1	0	1	0	1
1	1	0	0	1	0	1
1	1	1	1	0	0	1

状态转移表的另一种形式

CP↑的个数	\mathbf{Q}_3 \mathbf{Q}_2 \mathbf{Q}_1		Z	
0	0	0	0	← 0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	_ 1
0	1	0	1	1
1	0	1	0	√ 0
0	1	1	0	1
1	0	1	0	√ 0
0	1	1	1	1
1	1	0	0	√ 1

状态转移图

$$\begin{array}{c} 4 \\ + 1 \\ \hline 1 \\ 0 \end{array}$$

计数对象是CP的上升沿,Z作为进位信号,进位信息包含在Z的下降沿。

例2:分析下图所示电路。

解:

- 1) 电路分析:米勒型电路,同步时序电路,输入:X,输出Z。
- 2) 列方程:

a、激励方程:
$$J_1=X$$
, $K_1=X\cdot Q_2^n$ 。 $J_2=XQ_1^n$, $K_2=\overline{X}$ 。

b、状态方程:

$$Q_1^{n+1}=[X \ \overline{Q}_1^{n}+X\cdot Q_2^{n}Q_1^{n}].CP\downarrow Q_2^{n+1}=[XQ_1^{n} \ \overline{Q}_2^{n}+X\cdot Q_2^{n}].CP\downarrow c、输出方程: Z=XQ_1^{n}Q_2^{n}$$

当前输入	当能	前状态	下一	状态	当前输出
X	Q_2^n	\mathbf{Q}_{1}^{n}	Q_2^{n+1}	\mathbf{Q}_{1}^{n+1}	Z
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	1	0
1	1	1	1	1	1

$\mathbf{Q}_{2}^{n} \ \mathbf{Q}_{1}^{n}$		$\mathbf{Q}_{2}^{\mathbf{n}+1}$	\mathbf{Q}_{1}^{n+1}	Z		
		X = 0	X = 1	X = 0	X = 1	
0	0	0 0	0 1	0	0	
0	1	0 0	1 0	0	0	
1	0	0 0	1 1	0	0	
1	1	0 0	1 1	0	1	

G(I)	N	(t)	Z(t)		
S(t)	X =0	X =0 X =1		X = 1	
A	A	В	0	0	
В	A	C	0	0	
C	A	D	0	0	
D	A	D	0	1	

状态转移图

4)分析逻辑功能:米勒型电路。在任何状态下,一旦X出现0,则电路回到初始状态A,且输出Z为0。当X连续出现四个及四个以上的"1",输出Z则为1,可以看出,该电路是一个连续四个以上1的检测电路。

例3:分析下图所示电路。

解: 1)分析电路结构:该电路是由七个与非门及一个 JKFF组成,且CP下降沿触发,属于米勒电路,输入 信号X₁,X₂,输出信号Z。

2) 求触发器激励函数:

$$J=X_1X_2$$
, $K=\overline{X}_1\overline{X}_2$

触发器状态方程:

$$\mathbf{Q}^{n+1}=\mathbf{X}_1\mathbf{X}_2$$
 $\mathbf{Q}^n+\mathbf{X}_1$ $\mathbf{X}_2\mathbf{Q}^n=\mathbf{X}_1\mathbf{X}_2$ $\mathbf{Q}^n+(\mathbf{X}_1+\mathbf{X}_2)\mathbf{Q}^n$ 电路输出方程:

$$\mathbf{Z} = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_2 \mathbf{Q}^n + \mathbf{X}_1 \overline{\mathbf{X}}_2 \overline{\mathbf{Q}}^n + \overline{\mathbf{X}}_1 \mathbf{X}_2 \overline{\mathbf{Q}}^n + \mathbf{X}_1 \mathbf{X}_2 \mathbf{Q}^n$$

3)状态转移表:

输入	S(t)	N(t)	输出
$X_1 X_2$	Qn	Q^{n+1}	Z
0 0	0	0	0
0 0	1	0	1
0 1	0	0	1
0 1	1	1	0
1 0	0	0	1
1 0	1	1	0
1 1	0	1	0
1 1	1	1	1

4)逻辑功能:实现串行二进制加法运算。 X_1X_2 为被加数和加数, Q^n 为低位来的进位, Q^{n+1} 表示向高位的进位,Z为计算结果。

例如: $X_1=110110$, $X_2=110100$,则运算如下表所示:

节拍脉冲CP	CP7	CP6	CP5	CP4	CP3	CP2	CP1
被加数 X1	0	1	1	0	1	1	0
加 数 X2	0	1	1	0	1	0	0
低位进位 Q ⁿ	1	1	0	1	0	0	0
高位进位Q ⁿ⁺¹	0	1	1	0	1	0	0
本位和 Z	1	1	0	1	0	1	0

小结:

主要介绍了同步时序电路的分析方法。

值得一提的是,异步时序电路中每次电 路状态发生转换时,并不是所有触发器都 有时钟信号。只有那些有时钟信号的触发 器才需要用次态方程去计算次态,而没有 时钟信号的触发器将保持原来状态不变。 因此,异步时序电路的分析方法和同步时 序电路的分析方法有所不同。

例 异步时序电路的分析

图5.1.1时序电路的结构框图

工作描述

(1)激励方程

$$W_{i}(t_{n}) = F_{i}[X_{1}(t_{n}) \cdot \cdot \cdot , X_{j}(t_{n}), Q_{1}(t_{n}), \cdot \cdot \cdot , Q_{m}(t_{n})]$$

$$(i = 1, 2, \cdot \cdot \cdot , l)$$

(2) 状态方程

$$Q_{i}(t_{n+1}) = G_{i}[W_{1}(t_{n}) \cdots W_{l}(t_{n}), Q_{1}(t_{n}), \cdots, Q_{m}(t_{n})]$$

$$(i = 1, 2, \cdots, m)$$

(3)输出方程

$$Z_{i}(t_{n}) = H_{i}[X_{1}(t_{n}) \cdot \cdot \cdot , X_{j}(t_{n}), Q_{1}(t_{n}), \cdot \cdot \cdot , Q_{m}(t_{n})]$$

$$(i = 1, 2, \cdot \cdot \cdot , k)$$

(4)时钟方程

按存储器的状态变化是否同时进行

同步时序电路: 只有一个时钟信号

异步时序电路

电位异步时序电路:

无时钟信号,存储器采用异步(基本)触发器或延时元件(Δt)。

脉冲异步时序电路:

多个时钟信号,存储器采用 同步(时钟)触发器。