Inhaltsverzeichnis

1	Diff	Differente und Diskriminante			
		1.0.1	Definition: Ausartung		
		1.0.2	Bemerkung		
	1.1	Komp	lementärmoduln		
		1.1.1	Bemerkung		
		1.1.2	Definition: Komplementärmodul		
		1.1.3	Satz		
		1.1.4	Definition		
		1.1.5	Satz		
		1.1.6	Korollar		
		1.1.7	Satz		
		1.1.8	Korollar		
	1.2	Differe	ente und Verzweigungen		
		1.2.1	Lemma		
		1.2.2	Korollar		
		1.2.3	Satz		
		1.2.4	Satz		
		1.2.5	Satz		
		1.2.6	Definition: Diskriminante		
		1.2.7	Satz		
		1.2.8	Satz		
		120	Satz		

Kapitel 1

Differente und Diskriminante

1.0.1 Definition: Ausartung

Sei R ein kommutativer Ring, M, N seien R-Moduln.

Eine Bilinearform $\langle \rangle : M \times N \to R$ heißt perfekt oder nicht ausgeartet, falls die Ausartungsräume

$$M^{\perp} := \{ n \in N \mid \forall m \in M : \langle m, n \rangle = 0 \}$$
$$N^{\perp} : 0 \{ m \in M \mid \forall n \in N : \langle m, n \rangle = 0 \}$$

verschwinden.

1.0.2 Bemerkung

Verschwinden die Ausartungsräume, so sind die natürlichen Abbildungen

$$M \longrightarrow \operatorname{\mathsf{Hom}}_R(N,R) \text{ und } N \longrightarrow \operatorname{\mathsf{Hom}}_R(M,R)$$

injektiv. Ist ferner R ein Körper, so sind jene Abbildungen sogar isomorph.

Sind die Ausartungsräume trivial, so existiert zu jeder Basis b_1, \ldots, b_n von M genau eine Basis $b_1^\vee, \ldots, b_n^\vee$ von N, sodass gilt

$$\langle b_i, b_i^{\vee} \rangle = \delta_{i,j}$$

1.1 Komplementärmoduln

1.1.1 Bemerkung

Sei A ein Dedekindring, K = Quot(A), L|K eine endliche, separable Körpererweiterung. B bezeichne den ganzen Abschluss von A in L.

Die Spurpaarung

$$Tr: L \times L \longrightarrow K$$

 $(x,y) \longmapsto Tr_{L|K}(xy)$

ist K-linear und nicht ausgeartet. Es folgt

$$\operatorname{\mathsf{Hom}}_K(L,K)\cong L$$

Aber im Allgemeinem ist es falsch, anzunehmen

$$\operatorname{Hom}_A(B,A) \cong B$$

1.1.2 Definition: Komplementärmodul

Sei $M \subset L$ ein A-Untermodul. Dann heißt

$$D_A(M) := \left\{ x \in L \mid Tr_{L|K}(xM) \subset A \right\}$$

der Komplementärmodul von M.

1.1.3 Satz

Seien $M \subseteq N \subseteq L$ A-Untermoduln, \mathfrak{b} ein gebrochenes Ideal von L.

- $D_A(M)$ ist ein A-Untermodul von L. Ist M ein B-Modul, so auch $D_A(M)$.
- $D_A(N) \subset D_A(M)$
- $B \subset D_B(B)$
- Ist w_1, \ldots, w_n eine K-Basis von L, so gilt

$$D_A(Aw_1 + \ldots + Aw_n) = Aw_1^{\vee} + \ldots + Aw_n^{\vee}$$

- $D_A(\mathfrak{b})$ ist ein gebrochenes Ideal von L.
- $D_A(\mathfrak{b}) = D_A(B) \cdot \mathfrak{b}^{-1}$
- $D_A(D_A(\mathfrak{b})) = \mathfrak{b}$

1.1.4 Definition

Definiere die **Differente** von B|A als das ganze Ideal

$$D_{B/A} := D_A(B)^{-1} \subset B$$

1.1.5 Satz

Sei $L = K(\alpha), n = [L:K].$ $f \in K[X]$ sei das Mimimalpolynom von α , es bezeichne

$$\frac{f}{X - \alpha} = X^{n-1} + b_{n-2}X^{n-2} + \ldots + b_1X + b_0$$

Dann ist

$$\frac{1}{f'(\alpha)}, \frac{b_{n-2}}{f'(\alpha)}, \dots, \frac{b_0}{f'(\alpha)}$$

die duale Basis zu

$$1, \alpha, \ldots, \alpha^{n-1}$$

1.1.6 Korollar

Sei $\alpha \in L$, $C = A[\alpha]$. Dann gilt

$$D_A(C) = (f'(\alpha))^{-1}C$$

Gilt $B = A[\alpha]$, so folgt insbesondere

$$D_{B/A} = f'(\alpha)B$$

1.1.7 Satz

• Seien $K \subset L \subset E$ endliche, separable Erweiterungen. C bezeichne den ganzen Abschluss von A in E. Dann gilt

$$D_{C/A} = D_{B/A} \cdot D_{C/B}$$

• Ist $S \subset K^{\times}$ ein Untermonoid, so gilt

$$S^{-1}D_{B/A} = D_{S^{-1}B/S^{-1}A}$$

• Sind $\mathfrak{P}|\mathfrak{p}$ Primideale in B bzw. A und $\widehat{B}_{\mathfrak{P}}$ bzw. $\widehat{A}_{\mathfrak{p}}$ diesbezügliche Komplettierungen, so gilt

$$D_{B/A}\widehat{A}_{\mathfrak{P}} = D_{\widehat{B}_{\mathfrak{P}}/\widehat{A}_{\mathfrak{p}}}$$

1.1.8 Korollar

Die Differente ist das formale Produkt

$$D_{B/A} = \prod_{\mathfrak{P} \subset B \text{ prim}} D_{\mathfrak{P}}$$

wobei
$$D_{\mathfrak{P}} = D_{\widehat{B}_{\mathfrak{P}}/\widehat{A}_{\mathfrak{p}}} \cap = D_{B_{\mathfrak{P}}/A_{\mathfrak{p}}} \cap B$$

1.2 Differente und Verzweigungen

1.2.1 Lemma

Sei L|K eine endliche separable Körpererweiterung mit Ganzheitsringen B|A. Zusätzlich sei $L=K[\alpha]$ für $\alpha\in B$ und

$$F = \{ x \in A[\alpha] \mid xB \subset A[\alpha] \}$$

Dann gilt

$$F = f'(\alpha)D_{B/A}^{-1}$$

wobei $f \in K[X]$ das Minimalpolynom von α ist.

1.2.2 Korollar

Die Differente $D_{B/A}$ teilt $f'(\alpha)B$. Ferner gilt

$$D_{B/A} = f'(\alpha)B \iff B = A[\alpha]$$

1.2.3 Satz

Seien A, B diskrete Bewertungsringe, deren Restklassenkörpererweiterung separabel ist. Dann existiert ein $\alpha \in B$, sodass $B = A[\alpha]$.

1.2.4 Satz

Sei $\mathfrak{P} \subset B$ ein Primideal über $\mathfrak{p} \subset A$ und sei $B/\mathfrak{P}|A/\mathfrak{p}$ separabel. Es gilt:

- \mathfrak{p} verzweigt in L genau dann, wenn \mathfrak{p} die Differente $D_{B/A}$ teilt.
- Sei $s = v_{\mathfrak{P}}(D_{B/A})$ und $e = e_{\mathfrak{p}}$.
 - Ist p zahm verzweigt, so gilt

$$s = e - 1$$

- Ist ₱ wild verzweigt, so gilt

$$e \le s \le e - 1 + v_{\mathfrak{p}}(e)$$

1.2.5 Satz

Seien alle Restklassenkörpererweiterungen separabel. Dann ist $D_{B/A}$ das Ideal, das von allen $f'_{\alpha}(\alpha)$ erzeugt wird, wobei α alle Elemente mit $L = K(\alpha)$ durchläuft und f_{α} sein Minimalpolynom bezeichnet.

1.2.6 Definition: Diskriminante

Das Ideal $\delta_{B|A} := N_{L|K}(D_{B/A})$ heißt **Diskriminante** von B|A.

1.2.7 Satz

Sei $K = \mathbb{Q}$, dann ist

$$\delta_{\mathcal{O}_L/\mathbb{Z}} = d(L) \cdot \mathbb{Z}$$

wobei d(L) definiert ist durch

$$d(L) := \det(\left(Tr_{L|\mathbb{Q}}(w_i w_j)\right)_{i,j})$$

für eine \mathbb{Z} -Basis w_1, \ldots, w_n von \mathcal{O}_L .

1.2.8 Satz

• Seien $K \subset L \subset E$ endliche, separable Erweiterungen. C bezeichne den ganzen Abschluss von A in E. Dann gilt

$$\delta_{C/A} = N_{L|K}(\delta_{C/B}) \cdot \delta_{B/A}$$

• Ist $S \subset K^{\times}$ ein Untermonoid, so gilt

$$S^{-1}\delta_{B/A} = \delta_{S^{-1}B/S^{-1}A}$$

• Sind $\mathfrak{P}|\mathfrak{p}$ Primideale in B bzw. A und $\widehat{B}_{\mathfrak{P}}$ bzw. $\widehat{A}_{\mathfrak{p}}$ diesbezügliche Komplettierungen, so gilt

$$\delta_{B/A} \widehat{A}_{\mathfrak{P}} = \delta_{\widehat{B}_{\mathfrak{P}}/\widehat{A}_{\mathfrak{p}}}$$

1.2.9 Satz

Sei $\mathfrak{p} \subset A$ prim, $\mathfrak{p} = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$ die Zerlegung in $B. p = \operatorname{char}(A/\mathfrak{p})$. Dann gilt

$$v_{\mathfrak{p}}(\delta_{B/A}) \begin{cases} = (e_1 - 1)f_1 + \dots + (e_r - 1)f_r & \text{falls } p \nmid e_i \forall i \\ < (e_1 - 1)f_1 + \dots + (e_r - 1)f_r & \text{sonst} \end{cases}$$

Insbesondere gilt

$$\mathfrak{p}$$
 verzweigt in $L \Longleftrightarrow \mathfrak{p} \mid \delta_{B/A}$

1.2.10 Satz

Sei S eine endliche Menge von maximalen Idealen eines Zahlkörpers K, $n \in \mathbb{N}$. Dann gibt es nur endlich viele Erweiterungen von K, die außerhalb von S unverzweigt sind.

1.2.11 Satz

Es gibt keine unverzweigten Erweiterungen von $\mathbb{Q}.$