SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

School of Mechanical Engineering B. Tech. Major Examination (Odd) 2019-20

Entry No: Total Number of Pages: [1] Date: 12/12/2019 Total Number of Questions:	151
Course Title: Fluid Mechanics Course Code: MEL-2231	
Time Allowed: 3.0 Hours Max Marks: [50	1
Instructions / NOTE i. Attempt All Questions. ii. Assume an appropriate data / information, wherever necessary / missing.	
Q1. a) What is surface tension? What is its cause? Why the surface tension is also called as surface energy. A spherical water drop of 1 mm in diameter splits up in air in to 64 smaller drops of equal size. Find the work required in splitting up the drop. The surface tension coefficient of water in air =0.073 N/m	05]
below is hinged at A and weighs 1500 N. What horizontal force P is required at point B for equilibrium?	05]
What is the Lagrangian description of fluid motion? Is the Lagrangian method of fluid flow analysis more similar to study of a system or a control volume? Discuss	95]
What if velocity potential? Give its significance. If, for a 2 D potential flow, the velocity potential is given by $\phi = 4x(3y-4)$, determine the velocity at point (2, 3). Determine also the value of stream function Ψ at point (2, 3).	05]
State and prove Bernoulli's equation. A venturimeter is fitted to a horizontal pipe of 0.15 m diameter with flow rate of 240 m ³ /hr. The pressure head at the inlet for this flow is 18 m above atmospheric and the pressure head at the throat is 7 m below atmospheric. Between the inlet and the throat there is an estimated frictional loss of 10 % of the difference in pressure head between these points. Calculate the minimum allowable diameter for the throat	10]
eylindrical mouth piece is more than that of an orifice.	05]
What is Reynold's number? How it is deed to differentiate turbulent flows. What is the significance of hydraulic diameter? How is the friction coefficient dependent on Reynolds number?	05]
Discuss the effect of flow losses in pipes. Between the company of the pipes.	05]
What is the mechanism of flow separation? Discuss the head losses due to [sudden contraction and sudden expansion for a pipe flow.	05]