THE FALLACY OF MERITOCRACY

PyCon Balkan

@NikoletaGlyn

django girls

Software Sustainability Institute

MERITOCRACY

[mer-i-tok-ruh-see]

[noun]

1. government or the holding of power by people selected according to merit.

 ${\tt www.newyorker.com/tech/annals-of-technology/maryam-mirzakhanis-pioneering-mathematical-legacy}$

EQUALITY

[ih-kwol-i-tee]

[noun]

1. the state of being equal, especially in status, or opportunities.

EQUITY

[ek-wi-tee]

[noun]

1. the quality of being fair and impartial.

FINISH LINE START LINE

FINISH LINE

BIAS [bahy-uhs]

[noun]

1. a particular tendency, trend, inclination, feeling, or opinion, especially one that is preconceived or unreasoned.

AFFINITY BIAS

HALO EFFECT

HORNS EFFECT

ATTRIBUTION BIAS

CONFORMITY BIAS

EFFECT OF UNCONSCIOUS BIAS IN

HIERARCHICAL SYSTEM

HIERARCHICAL SYSTEM


```
>>> import hierarchical as hrcy
>>> import numpy as np
>>> import scipv.stats
>>> competence_distribution = scipy.stats.uniform(0, 1)
>>> retirement_rate = 0.2
>>> capacities = [3, 2, 1]
>>> np.random.seed(0)
>>> states = list(hrcy.states.get_competence_states(
            capacities, competence_distribution, retirement_rate)
>>> for level_index, level in enumerate(states[6]):
      print(f"Level {2 - level_index}")
      for individual in level:
               f"""-|type {individual.individual_type} with
Level 2
- type 0 with
    competence 0.438 retirement 0.445
-|type 1 with
    competence 0.964 retirement 0.097
-|type 1 with
    competence 0.792 retirement 0.151
Level 1
- type 0 with
    competence 0.360 retirement 0.115
- type 1 with
    competence 0.698 retirement 0.012
Level 0
-|type 0 with
    competence 0.209 retirement 0.035
```

RETIREMENT

PROMOTION

HIRING

RETIREMENT

HIRING

PROMOTION


```
>>> capacities = [9, 6, 2, 1]
>>> competence_distribution = scipy.stats.uniform(0, 1)
>>> retirement_rate = 0.2
>>> lmbda = [10, 10]
```


UNCONSCIOUS BIAS

AFFINITY BIAS

AFFINITY

MERITOCRACY $0 \quad 0.8 \quad C_M = 0.6$ $1 \quad 0.7 \quad 0.3$

MERITOCRACY

AFFINITY

np.random.seed(seed)

HOW MUCH WORSE IS THE SYSTEM BECAUSE OF AFFINITY BIAS?

BE AWARE OF YOUR UNCONSCIOUS BIAS

BE AN ALLY

DO NOT BE LAZY

- https://nikoleta-v3.github.io
- vknight.org/unpeudemath/math/2017/11/10/the-fallacy-of-meritocracy.html
- github.com/drvinceknight/HierarchicalPromotion