Test : logique, ensembles, récurrence

Beaucoup de réponses sont évidentes, on n'attend pas vraiment de justifications.

1. Écrire la table de vérité de $A \Rightarrow B$.

$[A]_{\sigma}$	$[B]_{\sigma}$	$[A \Rightarrow B]_{\sigma}$

- 2. Écrire explicitement $\{0,1\} \cup \{1,3\}$
- 3. Écrire explicitement $\{0,1\} \cap \{1,3\}$
- 4. Écrire explicitement $\{0,1\} \setminus \{1,3\}$
- 5. Donner le cardinal de $\{0, 1, 3\}$.
- 6. Écrire explicitement $\mathcal{P}(\{0,1,3\})$.
- 7. Donner le cardinal de $\mathcal{P}(\{0,1,3\})$.
- 8. Donner à chaque fois un exemple (celui que vous préférez) d'élément de
 - (a) $\mathbb{Z} \times \mathbb{R}$
 - (b) $(\mathbb{R} \setminus \mathbb{N})^2$ (Rappel : pour tout ensemble A, la notation A^2 signifie $A \times A$.)
 - (c) $\{2017\}^2$
- 9. On se donne A et B des ensembles que lconques. Les propriétés suivantes sontelles vraies ?
 - (a) $A \cup B = B \cup A$
 - (b) $A \setminus B = B \setminus A$
 - (c) $\emptyset \in \{1, \{3\}\}$
 - (d) $\varnothing \subseteq \{1, \{3\}\}$
- 10. Montrer par récurrence que :

$$\forall n \in \mathbb{N}^*, \ \sum_{i=1}^n (2i-1) = n^2$$

Rappel: la notation $\sum_{i=1}^{n} (2i-1) \text{ signifie } (2 \times 1 - 1) + (2 \times 2 - 1) + \dots + (2 \times n - 1).$