Background
Model
Experiment
Conclusion

Identification of cell-type-specific genetic regulation of gene expression for transcriptome-wide association studies

Qiurui Ma; Duo Zhang; Brandon Jew; Sriram Sankararaman

The Central Dogma

UCLA Sriram Lab
Machine Learning & Genomics

TCA-TWAS

Background

Model

Experiment

Conclusion

The Central Dogma

UCLA Sriram Lab
Machine Learning & Genomics

TCA-TWAS

Background
Model
Experiment
Conclusion

SNPs

The Central Dogma

UCLA Sriram Lab
Machine Learning & Genomics

TCA-TWAS

Background
Model
Experiment
Conclusion

SNPs

Phenotype

Gene
Expression
(GE):
cell 1, cell 2, cell 3, cell 4

Phenotype: Height, Skin Color

Current Research: GWAS

Linear

UCLA Sriram Lab Machine Learning & Genomics

TCA-TWAS

Background

Model

Experiment

Conclusion

replication (DNA -> DNA) **DNA Polymerase** transcription (DNA -> RNA) RNA Polymerase Regression of SNPs and translation (RNA -> Protein) phenotype Ribosome Protein Influence **Phenotype**

Current Research: TWAS

Linear

Regression

phenotype

UCLA

Sriram Lab

Machine Learning & Genomics

TCA-TWAS

Background

Model

Experiment

Conclusion

replication (DNA -> DNA) **DNA Polymerase** DNA transcription (DNA -> RNA) RNA Polymerase of SNPs and translation (RNA -> Protein) Ribosome - Protein Influence **Phenotype**

Linear Regression of SNPs and GE

Linear Regression of GE and Phenotype

Current Research: Results

UCLA Sriram Lab
Machine Learning & Genomics

TCA-TWAS

Background
Model
Experiment
Conclusion

Manhattan Plot of UADT(Upper Aero-Digestive Tract)
Cancer GWAS Discovery Phase

Bulk & Cell-Specific GE

UCLA Sriram Lab Machine Learning & Genomics

TCA-TWAS

Background Model Experiment Conclusion

Weighted Cell-Type-**Specific Gene Expression**

Challenges in Current Work

UCLA Sriram Lab

Machine Learning & Genomics

TCA-TWAS

Background
Model
Experiment
Conclusion

Healthy Blood Cells

Methodological:

Unclear how SNPs affect phenotypes

- Missing cell type information
- Fail to tell causality from correlation

Practical:

Cell-Specific Biological Data being resource intensive, expensive to acquire

Challenges in Current Work

UCLA

Sriram Lab

Machine Learning & Genomics

TCA-TWAS

Background
Model
Experiment
Conclusion

Healthy Blood Cells

Methodological:

Unclear how SNPs affect phenotypes

- Missing cell type information
- Fail to tell causality from correlation

Practical:

Cell-Specific Biological Data being resource intensive, expensive to acquire

Goal:

Impute cell-type specific gene expressions from SNPs and bulk level gene expressions to perform downstream TWAS

Train & Target Dataset

UCLA Sriram Lab Machine Learning & Genomics

TCA-TWAS

Background

Model

Experiment

Conclusion

UCLA Sriram Lab
Machine Learning & Genomics

TCA-TWAS

Background

Model

Experiment

Conclusion

Train Dataset
TCA
Deconvolution

Cell-Type-Specific Gene Expression Bulk Level Gene Expression

UCLA Sriram Lab
Machine Learning & Genomics

TCA-TWAS

Background Model

Experiment

Conclusion

B Estimated effect size of SNPs on GE

UCLA Sriram Lab
Machine Learning & Genomics

TCA-TWAS

Background Model Experiment

Conclusion

UCLA Sriram Lab Machine Learning & Genomics

TCA-TWAS

Background
Model
Experiment
Conclusion

Background
Model
Experiment

Conclusion

Background

Model

Experiment

Conclusion

$$G_i = c_i^2 \delta + \sum_{h=1}^k w_{hi} z_{hi} + \epsilon_g$$

Cell Type Weight Extra Information

Background Model

Experiment

Conclusion

$$G_i = c_i^2 \delta + \sum_{h=1}^k w_{hi} z_{hi} + \epsilon_g$$

Cell Type Weight Extra Information

$$Pr(Z_h^i|G_i, w_i, \mu_h, \sigma_z, \sigma_g, \sigma_\delta)$$

EM to infer parameters

Background Model

Experiment

Conclusion

Is the prediction result of proposed model significant?

Estimated GE

Power of cell-specific expression imputation

Training sample size

Power calculated as percentage of p value less than threshold Heritability 0.3, 1000 genes, 100000 sample size

Background Model Experiment

Conclusion

Is the model underfitting or overfitting?

Heritability being theoretical upper bound for r^2

Background Model Experiment

Conclusion

Could TCA recover the ground truth data distribution? Step 1

TCA recover abundant cell type distribution, but not the lesser ones

Simulated Data

UCLA Sriram Lab
Machine Learning & Genomics

TCA-TWAS

Background
Model
Experiment
Conclusion

Compare our modified TCA and the original TCA, which is better? Correlation of estimated SNPs effect size and the ground truth Cell_type1 mean weight 0.53 Cell type2 mean weight 0.349 0.8 0.8 9.0 9.0 cor cor replication (DNA -> DNA) 0.4 0.4 DNA Polymerase 0.2 0.2 DNA 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 transcription heritibility of gene heritibility of gene (DNA -> RNA (DNA -> RNA) A Polymerase Cell_type3 mean weight 0.0883 Cell_type4 mean weight 0.0321 1.0 0.8 0.8 (DNA -> RNA) 9.0 9.0 co cor 0.4 0.4 0.2 0.2 LASSO B 0.0 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 heritibility of gene heritibility of gene TCA's beta_hat mdl1:SNPs+C1 Lasso's beta hat mdl1:SNPs+C1 Lasso's beta hat mdl2:C1

Background Model Experiment

Conclusion

Compare our modified TCA and the original TCA, which is better?

Background Model Experiment

Conclusion

Can the model leverage other structural information inside data?

Dutch Dataset

UCLA Sriram Lab
Machine Learning & Genomics

TCA-TWAS

Background Model

Experiment

Conclusion

Is the model's correctly identifying causal effects?

Background
Model
Experiment
Conclusion

Train Dataset: Dutch Dataset with GE

- 5000 individuals, blood, 4 cell types
- 10201 Genes, 801501 SNPs, 10201 GE

Ancestry Pruning

LD Pruning

Missing Value Imputation

CIS-SNPs locating

Pipeline

Target Dataset: UKBiobank Dataset without GE

- 500,000 individuals
- SNPs, Phenotypes

Dutch Dataset

UCLA

Sriram Lab

Machine Learning & Genomics

TCA-TWAS

Background
Model
Experiment

Conclusion

Is the model's performance consistent between cell types?

TCA's estimation result fall short of normal distribution, which is the original assumption

Dutch Dataset

UCLA Sriram Lab

Machine Learning & Genomics

TCA-TWAS

Background
Model
Experiment

Conclusion

Is the model's performance consistent between cell types?

Heritability calculated from LASSO's prediction for gene expression. Overfitting occurs for low cell types

Background Model Experiment

Conclusion

Summary

 Cell-type-specific GE can be imputed from SNPs in a relative low cost to conduct the downstream phenotype association study

Key Contribution

- Incorporated genetic effects into TCA to deconvolute bulk level GE into cell-type specific ones
- Produced effect size estimators on Dutch Dataset to impute cell-type specific gene expressions on UKBiobank Dataset
- Functional R package on Cran for standard usage

Future Work

- Add sparsity constraints to TCA parameter estimates
- Utilize extra correlation structure to enhance TCA performance
- Consider batch effects when transferring effect size from train dataset to target dataset

UCLA Sriram Lab Machine Learning & Genomics

TCA-TWAS

Background

Model

Experiment

Conclusion

Q&A