МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра АСОИУ

КУРСОВАЯ РАБОТА по дисциплине «Теория принятия решений» Вариант 14

Студент гр. 0362	Овсянникова С.О
Преподаватель	Степулёнок Д.О.

Санкт-Петербург 2023

СОДЕРЖАНИЕ

1.	Задача №1	3
1.1.	Постановка задачи	3
1.2.	Формальная постановка	3
1.3.	Решение задачи	4
	Приложение 1. Программа для решения залачи 1	10

1. ЗАДАЧА №1

1.1. Постановка задачи

В цехах N1 и N2 предприятия производится продукт Y, который в дальнейшем используется в качестве исходного материала для производства изделий в цехе N3. Суммарная производительность цехов N1 и N2 зависит от вложения дополнительных средств X. При работе цехов N1 и N2 в течение одного месяца эта зависимость может быть приближенно представлена в виде функций:

N1: $y=5+(x+40)^{(2/3)}$;

N2: $y=7+(x+30)^{(1/2)}$;

Функции остатка средств в течение месяца:

N1: 0.87x;

N2: 0.92x.

Средства, выделяемые на оба цеха в течение квартала (3 месяца), составляют 137 единиц; перераспределение производится помесячно. Требуется распределить средства на планируемый квартал с целью получения максимального количества продукта Y.

1.2. Формальная постановка

Bыигрыш в данной задаче соответствует доходу, который зависит от производительности цеха (W_i).

 $y_{npaвление}$ — решение о том, сколько средств необходимо вложить в цех за месяц (x_i) .

Состояние. В каждой точке принятия решения управляемая система описывается одним параметром k-количество оставшихся средств (k_i) .

Используя введенные переменные, запишем основное функциональное уравнение динамического программирования (ДП):

$$W_i(k_i) = \max_{x_i} \left\{ \left(5 + (x+40)^{\frac{2}{3}} \right) + \left(7 + (x+30)^{\frac{1}{2}} \right) + W_{i+1} \left(0.87 \times x_i + 0.92 \times (k_i - x_i) \right) \right\}$$
, где

 $\left(5+(x+40)^{\frac{2}{3}}\right)+\left(7+(x+30)^{\frac{1}{2}}\right)-\phi$ ункция выигрыша на і-ом шаге $\varphi(k_i)=0.87\times x_i+0.92\times (k_i-x_i)-\phi$ ункция изменения состояния для і-ого шага под влиянием управления.

1.3. Решение задачи

Последним этапом принятия решения является четвертый. Традиционно, для последнего этапа функциональное уравнение ДП модифицируется исключением слагаемого Wi+1, снимающего рекуррентный характер этого уравнения. Раз уравнение модифицируется, то для последнего этапа придется определить отдельную функцию вычисления условного оптимального выигрыша.

$$W_3(k_3) = \max_{x_3} \left\{ \left(5 + (x_3 + 40)^{\frac{2}{3}} \right) + \left(7 + ((k_3 - x_3) + 30)^{\frac{1}{2}} \right) \right\},$$
 при $k_3 \in [0.87^2 \cdot 137; 0.92^2 \cdot 137] = [103,6953; 115,9568]$

Построим график зависимости оптимального условного выигрыша от управления на третьем этапе при различных остатках к третьему этапу (рис. 1).

Найдем максимумы функции W_3 (k_3, x_3) , для каждого k_3 (табл.1)

k_3	$W_3 max$
103.6953	45.18533357093222
104.92145	45.328462715574894
106.1476	45.467035158092735
107.37375	45.60146023553121
108.5999	45.73208943891712
109.82605	45.85922724924944
111.0522	45.983139495471576
112.27835	46.10405989373425
113.5045	46.222195229460226
114.73065	46.33772951138883

Табл.1

$$\begin{split} W_2(k_2) &= \max_{x_2} \Bigl\{ \Bigl(5 + (x_2 + 40)^{\frac{2}{3}} \Bigr) + \Bigl(7 + ((k_2 - x_2) + 30)^{\frac{1}{2}} \Bigr) + W_3(k_3) \Bigr\}, \text{при} \\ k_3 &\in [0.87^1 \cdot 137; 0.92^1 \cdot 137] = [119.19, 126.04] \end{split}$$

Построим график зависимости оптимального условного выигрыша от управления на втором этапе при различных остатках к второму этапу (рис. 2).

Найдем максимумы функции W_2 (k_2, x_2) , для каждого k_2 (табл.2)

k_2	$W_2 max$
119.19	93.47163495024594
119.875	93.54229895613851
120.56	93.61195467726407
121.245	93.68064408092968
121.93	93.74840630148178
122.615	93.81527790102018
123.3	93.88129310005158
123.985	93.94648398221327
124.67	94.01088067654321
125.355	94.07451152023503

Табл.2

$$W_1(k_1) = \max_{x_1} \Big\{ \Big(5 + (x_1 + 40)^{\frac{2}{3}} \Big) + \Big(7 + ((k_1 - x_1) + 30)^{\frac{1}{2}} \Big) + W_2(k_2) \Big\}, \text{при}$$
 $k_3 = 137$

Построим график зависимости оптимального условного выигрыша от управления на первом этапе при остатке к первому этапу (рис. 3).

Найдем максимум функции W_1 (k_1, x_1) , для каждого k_1 (табл.3)

k_1	W_1max	
137	143.13914757829707	
Табл 3		

Осуществим прямую прогонку решения задачи, для этого определим на единственной кривой графика W_1 (k_1 , x_1), максимум. Находим оптимальное управление на первом шаге x_1 = 137, показывающее, сколько средств надо вкладывать в первый цех, и соответствующую максимальную

производительность за месяц $W_1 = 143.13914757829707$, а также количество средств вкладываемые во второй цех:

$$x_{1(2)} = k_1 - x_1 = 137 - 137 = 0;$$

Находим соответствующий запас средств к концу первого шага:

$$k_2 = x_1 \times 0.95 + x_{1(2)} \times 0.8 = 119.19.$$

Найдем оптимальное управление на втором шаге, показывающее сколько средств нужно вкладывать в первый цех:

$$x_2 = 126.041$$
;

А также количество средств вкладываемых во второй цех:

$$x_{2(2)} = k_2 - x_2 = 10.959;$$

Остаток средств к концу второго шага будет равен:

$$k_3 = x_2 \times 0.95 + x_{2(2)} \times 0.8 = 119.73795.$$

Найдем оптимальное управление на третьем шаге, показывающее сколько средств нужно вкладывать в первый цех:

$$x_4 = 115.957$$
;

А также количество средств вкладываемых во второй цех:

$$x_{4(2)} = k_4 - x_4 = 21.043.$$

Таким образом, можно сформулировать следующие рекомендации по оптимальному распределению средств. Из имеющегося в начале месяца запаса средств k = 137 усл. ед. и остающихся средств в конце каждого месяца нужно вкладывать по месяцам в цеха I и II следующие суммы (табл. 4):

Недели	1-ый	2-ой	3-ий
I цех	137	126.041	115.957
II цех	0	10.959	21.043

Табл.4

При таком планировании будет получена максимальная производительность за месяц, равная $W_{1max} \approx 143$ усл. ед.

Определим остаток средств на конец месяца: $115.957 \cdot 0.87 + 21.043 \cdot 0.92 \approx 120 \ \text{усл. ед.}$

ПРИЛОЖЕНИЕ 1. ПРОГРАММА ДЛЯ РЕШЕНИЯ ЗАДАЧИ 1

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
rem 1 = 0.87
rem 2 = 0.92
rem max = rem 2
rem min = rem 1
funds num = 137
month num = 3
def w(x, k, w next):
k min = rem min ** 2 * funds num
k_max = rem_max ** 2 * funds_num
x3 = np.arange(0, k max + 0.001, 0.001)
w \min = w(x3, k \min, 0)
w \max = w(x3, k \max, 0)
w3 = max(max(w min), max(w max))
plt.plot(x3, w min)
plt.plot(x3, w max)
plt.plot(x3, [w3] * len(x3))
plt.legend((f'w3 npu k min = {k min}', f'w3 npu k max = {k max}',
plt.grid()
plt.show()
print(f'''
w3 = \{w3\};
k range = np.arange(k min, k max, (k max - k min) / 10)
for k in k range:
 print(k, max(w(x3, k, 0)))
k \max = rem \max ** 1 * funds num
x2 = np.arange(0, k max + 0.001, 0.001)
```

```
w \min = w(x2, k \min, w3)
w_{max} = w(x2, k_{max}, w3)
w2 = max(max(w min), max(w max))
plt.plot(x2, w_min)
plt.plot(x2, w max)
plt.plot(x2, [w2] * len(x2))
plt.legend((f'w2 \text{ mpu } k \text{ min} = \{k \text{ min}\}', f'w2 \text{ mpu } k \text{ max} = \{k \text{ max}\}',
'w2 max'))
plt.grid()
plt.show()
print(f'''
w2 = \{w2\};
k_range = np.arange(k_min, k_max, (k_max - k_min) / 10)
for k in k range:
 print(k, max(w(x2, k, w3)))
k = funds num
x1 = np.arange(0, k + 0.001, 0.001)
w1 = max(w(x1, k, w2))
plt.plot(x1, w(x1, k, w2))
plt.plot(x1, [w1] * len(x1))
plt.legend((f'w1 \text{ при } k = \{k\}', 'w1 \text{ max'}))
plt.grid()
plt.show()
print(f'''
w1 = \{w1\};
print(k, max(w(x1, k, w2)))
# Прямая перегонка решения
x1 1 = x1[np.argmax(w(x1, k, w2))]
x1 2 = funds num - x1 1
k 1 = x1 1 * rem 1 + x1 2 * rem 2
print(k 1)
x2 1 = x2[np.argmax(w(x2, k 1, w3))]
x2_2 = funds_num - x2_1
k 2 = x2 1 * rem 1 + x2 2 * rem 2
print(k 2)
```

```
x3_1 = x3[np.argmax(w(x3, k_2, 0))]
x3_2 = funds_num - x3_1
k_3 = x3_1 * rem_1 + x3_2 * rem_2
d = {'1-ый': [x1_1, x1_2], '2-ой': [x2_1, x2_2], '3-ий': [x3_1, x3_2]}
df = pd.DataFrame(data=d)
df.index = ['I цех', 'II цех']
print(df)
print(f'''
Максимальная производительность за месяц: {w1}
Остаток средств на конец месяца: {k_3}
'''')
```