Predicción de heladas mediante aprendizaje automático e loT

Ing. Ana Laura Diedrichs

ana.diedrichs@frm.utn.edu.ar

Web https://anadiedrichs.github.io/
Twitter @anadiedrichs

Prediction of frost events using machine learning & IoT

Diedrichs, Ana Laura, Facundo Bromberg, Diego Dujovne, Keoma Brun-Laguna, and Thomas Watteyne. "Prediction of frost events using machine learning and IoT sensing devices." IEEE Internet of Things Journal 5, no. 6 (2018): 4589-4597. DOI: 10.1109/JIOT.2018.2867333

¿De dónde vienen los frutos?

A los cultivos no les agradan las heladas

Viñedos

Viñedo afectado por helada presentando la mayoría de los daños en la extremidad de los brotes.

Foto: Arturo Hernández. EEA Mendoza INTA

Planta afectada gravemente por helada con daños totales en brotes e inflorescencias. Foto: Arturo Hernández. EEA Mendoza INTA

Receso	Yemas Cerradas	Plena	Pequeños
Invernal	Mostrando Color	Floración	Frutos Verdes
-17 ºC	-1,1 ºC	-0,6 ºC	-0,6 ºC

Temperaturas que podrían causar daño a la vid según su estado fenológico. Fuente: Dirección de Agricultura y Contingencias Climáticas.

• https://inta.gob.ar/sites/default/files/script-tmp-hoja divulgacin helada.pdf

Impacto económico-social

2013 - 85% producción durazno perdida · 10,000 puestos de trabajos

Campaña 2016-2017

Denunciaron daños unos 6.041 productores

• 53.647 hectáreas afectadas por heladas

• La mitad son de viñedos

http://www.contingencias.mendoza.gov.ar/web1/pdf/camp1617hel.pdf

Combatir un evento de helada

molinos

calentadores

rociadores

Sábado, 1 de octubre de 2016 Edición impresa

Casi 30 mil hectáreas afectadas por heladas

Se trata de un relevamiento estimativo hecho por la Provincia por las heladas que se registraron el mes pasado. La fruta de carozo es la más afectada.

Hay muchas formas de combatir la helada, lo que es complicado es predecirla.

La helada como fenómeno microclimático

- Predicciones con simulaciones numéricas no suelen ser precisas (pocas estaciones, condiciones de contorno) → helada como fenómeno microclimático
- Se ha aplicado modelos de aprendizaje automático a datos de una sola estación
- Fenómeno de inversión térmica

Figure 2.4.: Perfil característico de la temperatura cerca a la superficie durante la ocurrencia de una helada radiativa [2].

Empirical formula used in Mendoza

The empirical formula for estimating the minimum temperature is $T_{min} = \frac{T_{max} + T_{dew}}{2} - K$. For calculating K, we call buildMdz function. Then for prediction we use predMdz.

```
# just an example
dw \leftarrow c(-2, -5, 2, 6, 8)
tempMax <- c(10, 20, 30, 25, 29)
tmin < -c(-1, -2, 3, 5, 10)
out <- buildMdz (dw, tempMax, tmin)
print (out)
#> $model
#>
#> Call:
#> lm(formula = tmin ~ ., data = as.data.frame(dd))
#>
#> Coefficients:
#> (Intercept) dw tempMax
#> -0.2365 0.7847 0.0800
#>
#>
#> $k
#> [1] -9.3
#> $kmean
#> [1] -9.3
predMdz(dw = -3, tempMax = 15, K=out$k)
#> [1] 15.3
```

Fórmulas empíricas

frost https://github.com/anadiedrichs/frost

```
CRAN 0.0.4 downloads 1831 build passing coverage 100% DOI 10.5281/zenodo.3462366
```


Prediction of minimum temperature for frost forecasting in agriculture

This package contains a compilation of empirical methods used by farmers and agronomic engineers to predict the minimum temperature to detect a frost event.

These functions use variables such as environmental temperature, relative humidity, and dew point.

Installation

If you don't have package devtools installed, run the following commands.

```
install.packages("devtools")
library(devtools)
To Install the package from the GitHub repo, run
install_github("anadiedrichs/frost")
```

More info

You can have more information about how to use this package in the Introduction vignette

IoT-enabled frost prediction system

Problema

Predecir si helará o no (clasificación)

 Predicción de temperatura mínima diaria (regresión)

 Usar información de temperatura y humedad ambiental (sensores baratos)

Enfoque selección vecinos

¿Es posible mejorar la predicción de la temperatura mínima al utilizar información de sensores vecinos? Caso de estudio: predicción de temperatura mínima diaria

Metodología

- Valores diarios
- Temperatura
- Media, mínima,
- max
- Humedad
- Media, mínima,
- max
- Cinco ubicaciones

Dataset: configuraciones

- Dataset desbalanceado:
 - No todos los días hay heladas
 - Más días "normales" y menos de heladas

SMOTE

- Synthetic Minority
 Over-sampling
 Technique (SMOTE)
- Crear ejemplos sintéticos de la clase minoritaria

Dataset: configuraciones

- Con y sin información vecina
- Cuanta información de días anteriores tomar
- (Sliding-windows)

Metodología

The caret package (short for Classification And REgression Training)

Model	R package	Regression	Classification
Logistic regression			X
Decision trees	C50 rpart		X
Random forest	randomforest	• x	X
Bayesian Networks	bnlearn	• x	

Building models Time series cross-validation

Resample number

Index row or time index

Metodología

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$
 $RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$

Predicted Event No Event

Reference			
Event	No Event		
A	В		
C	D		

Métricas

The formulas used here are:

$$Sensitivity = \frac{A}{A+C}$$

$$Specificity = \frac{D}{B+D}$$

$$egin{aligned} Precision &= rac{A}{A+B} \end{aligned}$$

$$egin{aligned} Recall &= rac{A}{A+C} \\ F1 &= rac{(1+eta^2) imes precision imes recall}{(eta^2 imes precision) + recall} \end{aligned}$$

RESULTADOS

Random Forest

Logistic Regression

Regression models

¡ Muchas gracias LatinR 2019!

Ing. Ana Laura Diedrichs
Twitter @anadiedrichs

ana.diedrichs@frm.utn.edu.ar Web

https://anadiedrichs.github.io/

Enlaces

- * Paquete frost https://github.com/anadiedrichs/frost
- * Experimentos

https://github.com/anadiedrichs/diedrichs2017prediction-frost-experiments

- * Mi sitio web https://anadiedrichs.github.io/
- * Enlace al paper https://anadiedrichs.github.io/files/publications/2018-loT-Diedrichs.pdf

Extras – spare slides

PrEcision Agriculture through Climate researcH

- Packet counters
- · Charge consumed
- · Battery state
- · Neighbors heard
- · Neighbors communicating with
- · Link quality

The deployment architecture

The nodes and wireless links of the PEACH deployment

dense 1: Dense

LSTM and GRU have a good performance to predict sequences.

(None, 1)

output:

http://colah.github.jo/posts/2015-08-Understanding-

400