

SYNOPSYS®

2023 Synopsys ARC AIoT Design Contest Project Presentation

應用於傳統工廠的智慧儀表讀數器

Smart Analog Gauge Reader Applied in Traditional Factory

指導教授: 張錫嘉 教授

隊員: 陳冠瑋、李家毓、鄭宇皓、蔡易昕

隊名: 綠洲泰坦 OASIS Titans

July 21, 2023

Agenda

- Motivation
- Challenge and Innovation
- Design and Implementation
- Demo Video
- Summary

Motivation

■ Many traditional factories are still using analog gauges

- Replace the new machine with a digital reader → large-scale update
- Record gauge data and monitor by human inspectors → time-consuming

Our Proposal

- Use ARC EM9D to digitize & monitor the analog gauge
- Reduce labor costs and enhance management automation

Challenge

■ Data collection is hard for analog gauges

- Different gauge styles and appearances
- Influence of light and noise

▲ Different Types and Appearance

▲ Influence of light and noise

■ Model deployment is limited by edge device

- Limited computational and memory resources
 - Detection model is too large for ARC EM9D (ex: YOLOv7-Tiny has 6M parameters)
- Compress the model size and sustain the performance (e.g. accuracy, precision)

Innovation - Data Synthesis & Annotation (1/2)

■ Automatic Image Generation w/ Augmented Process

class: 7, lower left class: 6, right

▲ For detection model

▲ For classification model

- Gauge Images & Videos: Pressure Gauge Dataset (Source: Kaggle)
- Background Images: Places Dataset engine_room (Source: MIT)

Innovation - Data Synthesis & Annotation (2/2)

■ Fisheye Transform

Simulate the effects of image distortion

iPhone11

▲ HM0360 AoSTM VGA Camera

ARC EM9D (Distorted)

▲ w/ Fisheye Transform

▲ w/o Fisheye Transform

■ Trade-off between accuracy, precision & model size

Resolution	#Classes	FC Size (input size = 1024)	Accuracy
1°	360	369 K	75.35%
2 °	180	185 K	89.75%
3°	120	123 K	94.65%
4 °	90	92 K	94.55%
5°	72	74 K	97.15%
6°	60	62 K	98.35%

Innovation – 2-phase Pipelined Models

■ Replace YOLO with 2-phase models for smaller size

- Model 1: Gauge Detector
 - Detect the relative position of an analog gauge
 - MobileNetV2-pico (#Param: 0.05M)
- Model 2: Gauge Reader
 - Classify the angle of the analog gauge
 - MobileNetV2-nano (#Param: 0.11M)

■ Redesign MobileNetV2 for Embedded AI

Reduce the number of filters and FC layer size

#Param (M)

64.40

36.90

6.10

6.20

2.35

0.80

MobileNetV2

YOLO

Model

v4

v7

v4-Tiny

v7-Tiny

base (orig.)

Small

0.05 M0.11 M

Reduce 97% Parameters

Deployable

No

No

No

No

No

No

Tiny 0.34 No Micro 0.19 Yes Nano 0.11 Yes Pico 0.05 Yes Detector + Reader

^{[4] &}quot;Mobilenetv2: Inverted residuals and linear bottlenecks,". in CVPR, 2018.

^{[5] &}quot;Real-time object detection method based on improved YOLOv4-tiny," in arXiv, 2020.

^{[6] &}quot;YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors," in CVPR, 2023.

System Architecture

Application-driven Operation Flow

Experimental Results

■ Gauge Detector

- Locate the gauge reader accurately
- MobileNetV2-pico (#Param: 0.05 M)

Model (MobileNetV2)	#Param (M)	Top-1 Acc.
Tiny	0.26	98.89%
Micro	0.11	97.10%
Nano	0.08	96.48%
Pico	0.05	96.15%

MobileNetV2 (fp32) @NVIDIA GeForce GTX 2080 Ti

■ Gauge Reader

- Classify the angles of the gauge pointer
- MobileNetV2-nano (#Param: 0.11 M)

A Position Correction

Model (MobileNetV2)	#Param (M)	Top-1 Acc.	Top-2Acc.	±1 classes Acc.
Tiny	0.34	78.95%	99.60%	100%
Micro	0.19	75.20%	98.35%	100%
Nano	0.11	82.65%	98.90%	100%
Pico	0.05	70.19%	98.27%	99.83%

▼ Post-Training Quantization

Model	Acc. (fp32)	Acc. (int8)	
Detector	96.15%	96.15%	
Reader	82.65%	82.10%	

MobileNetV2 (fp32) @NVIDIA GeForce GTX 2080 Ti MobileNetV2 (int8) @Intel Xeon CPU E5-2660 v4

right

Demo Video

Overall Summary

■ Data Synthesis & Annotation

- Fisheye transforms for realistic photos
- Calibration for optimal model size, accuracy & precision

▲ w/ Fisheye Transform

▲ w/o Fisheye Transform

■ 2-phase Pipelined Models

- Detector detects the relative position of analog gauge
- Reader classifies the angle of analog gauge
- Redesign MobileNetV2 for embedded AI
- 97% parameters reduction compared to YOLOv7-tiny

▲ Memory Usage on ARC EM9D (1 MB for 2 models)

■ Application-driven Operation Flow

- Adjust and Inference mode for different scenarios
- Background mode for default settings

Reference

- [1] Chavan, Shruti, X. Yu, and S. Jafar, "High Precision Analog Gauge Reader Using Optical Flow and Computer Vision," in *International Conference on Electro Information Technology (eIT)*. IEEE, 2022.
- [2] Trairattanapa, Visarut, et al., "Real-time Multiple Analog Gauges Reader for an Autonomous Robot Application," in 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP). IEEE, 2022.
- [3] B. Howells, J. Charles, and R. Cipolla. "Real-time analogue gauge transcription on mobile phone," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 2021.
- [4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks,". in *Proceedings of the IEEE Conference on computer vision and pattern recognition (CVPR)* (pp. 4510-4520). IEEE, 2018.
- [5] Z. Jiang, L. Zhao, S. Li, and Y. Jia, "Real-time object detection method based on improved YOLOv4-tiny," in *arXiv preprint* arXiv:2011.04244, 2020.
- [6] C. Y. Wang, A. Bochkovskiy, & H. Y. M. Liao, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. IEEE, 2023, pp. 7464-7475.

SYNOPSYS®