Problema 24. Sigui A[[X]] l'anell de sèries de potències de coeficients en A. Prenem $f = \sum_{i>0} a_i X^i \in A[[X]], a_i \in A$. Demostreu que

- (a) f ès una unitat en A[X] si, i només si, a_0 és una unitat de A.
- (b) Si f és nilpotent, aleshores a_i és nilpotent, per a tot $i \in \mathbb{N}$. És cert el recíproc?
- (c) Sigui k un cos. Proveu que els ideals no nuls de k[X] són de la forma X^i .

Solució.

- (a) Veiem les dues implicacions:
 - f és una unitat en $A[[X]] \Longrightarrow a_0$ és una unitat de A.

Per definició, sabem que si f és una unitat en A[[X]], aleshores $\exists g = \sum_{i \geq 0} b_i X^i \in A[[X]], b_i \in A$, tal que $f \cdot g = 1$.

Tenim que $f = a_0 + a_1X + a_2X^2 + \dots$, i $g = b_0 + b_1X + b_2X^2 + \dots$; per tant,

$$f \cdot g = \left(\sum_{i \ge 0} a_i X^i\right) \left(\sum_{i \ge 0} b_i X^i\right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + (a_0 b_2 + a_1 b_1 + a_2 b_0) X^2 + \dots = 1.$$

Aquesta igualtat es compleix si, i només si, el terme independent és 1 i la resta de sumands s'anul·la. El terme independent és $a_0 \cdot b_0 = 1$; així doncs, podem afirmar que $\exists b_0 \in A$ tal que $a_0 \cdot b_0 = 1$ i, per tant, a_0 és una unitat de A.

• a₀ és una unitat de A ⇒ f és una unitat en A[[X]].
D'una banda, com que a₀ és una unitat de A ⇒ ∃b₀ ∈ A tal que a₀ · b₀ = 1.
D'altra banda, per veure que f és una unitat en A[[X]], haurem de demostrar

que $\exists g = \sum_{i \geq 0} b_i X^i \in A[[X]]$ tal que $f \cdot g = 1$. Calculem aquest producte:

$$f \cdot g = \left(\sum_{i \ge 0} a_i X^i\right) \left(\sum_{i \ge 0} b_i X^i\right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + (a_0 b_2 + a_1 b_1 + a_2 b_0) X^2 + \dots$$

$$\dots + \left(\sum_{i \ge 0}^n a_i b_{n-i}\right) X^n + \dots = \sum_{i \ge 0} \left(\sum_{k \le i} a_k b_{i-k}\right) X^i$$

En imposar que $f \cdot g = 1$, tenim un sistema d'equacions d'infinites incògnites en què el terme independent és 1 i els altres sumands s'anul·len:

$$a_0b_0 = 1$$

$$a_0b_1 + a_1b_0 = 0$$

$$a_0b_2 + a_1b_1 + a_2b_0 = 0$$

...

$$\sum_{i\geq 0}^{n} a_i b_{n-i} = 0$$

Per veure que g existeix, hem de trobar el valor dels coeficients b_i , amb $i \geq 0$, de g.

De la primera equació, tenim que $b_0 = a_0^{-1}$, que sabem que existeix perquè a_0 és invertible.

A la segona equació passa el següent:

$$a_0b_1 + a_1b_0 = 0 \Longrightarrow b_1 = -(a_1b_0)a_0^{-1} = -(a_1b_0)b_0.$$

I així successivament, de manera que en cada equació obtenim el valor d'una nova b_n , amb $n \ge 0$:

$$b_n = -\left(\sum_{i>1}^n a_i b_{n-i}\right) b_0,$$

on els valors de les b_i amb $0 \le i \le n-1$ ja són coneguts de les equacions anteriors.

Acabem de veure que existeixen b_n , amb $n \ge 0$, tals que formen g de manera única i tals que $f \cdot g = 1$; per tant, f és una unitat en A[[X]].

(b) $f \in \eta(A[[X]]) \Longrightarrow f^m = 0$ per a algun $m \in \mathbb{N}$.

 $f^m = a_0^m + (\text{termes de grau} \ge 1) \Longrightarrow a_0^m = 0 \Longrightarrow a_0 \in \eta(A[[X]]).$

El conjunt d'elements nilpotents d'un anell forma un ideal (veiem-ho:)

$$\eta(A) = \{x \in A | x^n = 0, \forall n \in \mathbb{N}\} = rad(0),$$

que és un ideal (per l'exercici 7).

Per tant, com que f i $a_0 \in \eta(A[[X]]) \Longrightarrow f - a_0 \in \eta(A[[X]])$.

$$f - a_0 = \left(\sum_{i \ge 1} a_i X^i\right) = X\left(\sum_{i \ge 1} a_i X^{i-1}\right) = X(a_1 + a_2 X + a_3 X^2 + \dots).$$

$$\left(\sum_{i\geq 1} a_i X^i\right) \in \eta(A[[X]]) \Longrightarrow a_1 \in \eta(A[[X]]).$$

Així doncs, a_0 , $a_1 \in \eta(A[[X]])$ i, fent inducció, veiem que $a_n \in \eta(A[[X]]) \ \forall n \in \mathbb{N}$.

(c) Sigui $I \subseteq k[[X]]$ un ideal, $I \neq 0$. Sigui $g \in I$ tal que $g = a_i X^i + a_{i+1} X^{i+1} + \cdots = (\sum_{n \geq i} a_i X^i)$, on a_i és el coeficient no nul amb l'índex més petit entre tots els elements no nuls de I.

Podem escriure $g = X^i(a_i + a_{i+1}X^i + \dots)$ i posem $h = a_i + a_{i+1}X^i + \dots = \left(\sum_{j\geq 0} a_{i+j}X^j\right)$; llavors, $g = X^ih$. Notem que $h \in (k[[X]])^* = \{f = \left(\sum_{n\geq 0} a_nX^n\right)$ amb $a_0 \neq 0\}$ perquè $a_i \neq 0$ i k és un cos. Podem escriure $X^i = gh^{-1} \in I$, perquè $g \in I$ i $h^{-1} \in (k[[X]])^*$. Per tant, $(X^i) \subseteq I$.

Ara, donada $f \in I$, $f \neq 0$, f és de la forma $f = X^j \left(\sum_{j \geq i} a_i X^{j-i} \right) = X^j (a_j + a_{j+1}X + ...)$, amb $j \geq i$ ja que i és el mínim índex de coeficient no nul a_i . Per tant, com que $j \geq i$, és clar que f és múltiple de X^i , és a dir, $f \in (X^i)$ i $I \subseteq (X^i)$.

Per tant, $I = (X^i)$.