

SRM Institute of Science and Technology

Ramapuram campus

Department of Mathematics

18MAB101T - Calculus and linear algebra

Year/Sem: I/I Part-A Branch: Common to All

Unit - IV

Differential Calculus

	The locus of centre of curvature is called		1 Mark	
1.	(a) Involute (c) Radius of curvature	(b) Evolute e (d) Envelope	Ans (b)	(CLO-4 Remember)
2.	The envelope of the family (α is parameter) is		1 Mark	
	(a) $B^2 + 4AC = 0$ (c) $B^2 + AC = 0$	(b) $B^2 - 4AC = 0$ (d) $B^2 - AC = 0$	Ans (b)	(CLO-4 Remember)
3.	The curvature of the straigh	nt line is	1 Mark	
	(a) 1 (c) -1	(b) 2 (d) 0	Ans (d)	(CLO-4 Remember)
4.	Evolute of a curve is	of the normals of that curve	1 Mark	
	(a) Involute (c) Envelope	(b) Length (d) End points	Ans (c)	(CLO-4 Remember)
5	The radius of curvature at (3,4) on the curve $x^2 + y^2 = 25$ is		1 Mark	
	(a) 5 (c) 0	(b) 4 (d) 2	Ans (a)	(CLO-4 Remember)

6.	What is the curvature of a circle of radius 3?	1 Mark		
	(a) 3 (b) -3 (c) $\frac{1}{3}$ (d) $\frac{-1}{3}$	Ans (c)	(CLO-4 Remember)	
7.	In an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ the radius of curvature at the end of which axis is equal to the semi-latus rectum?	1 M	ark	
	(a) minor (b) major (c) vertical (d) horizontal	Ans (b)	(CLO-4 Remember)	
8.	Evolute of a curve is the envelope of of that curve.		1 Mark	
	(a) tangent (b) normal (c) parallel (d) locus	Ans (b)	(CLO-4 Remember)	
9.	The evolute of the cycloid $x = a (\theta - \sin \theta)$, $y = a (1 - \cos \theta)$ is	1 M	ark	
	(a) astroid (b) parabola (c) cycloid (d) circle	Ans (c)	(CLO-4 Remember)	
10.	A curve which touches each member of a family of the curves is called ——— of that family	1 M	ark	
	(a) Evolute (b) Envelope (c) Circle of curvature (d) Radius of curvature	Ans (b)	(CLO-4 Remember)	
11.	Envelope of the curve $y = mx + \frac{a}{m}$ (where m is the parameter) is	1 Mark		
	(a) $x^2 + ay = 0$ (b) $x + 4ay = 0$ (c) $y^2 - 4ax = 0$ (d) $y^2 + 4ax = 0$	Ans (c)	(CLO-4 Remember)	

12.	If the radius of curvature and curvature of a curve at any point are ρ and k respectively, then	1 Mark	
	(a) $\rho = \frac{-1}{k}$ (b) $\rho = k$	Ans (d)	(CLO-4 Remember)
	(c) $\rho = -k$ (d) $\rho = \frac{1}{k}$		Kemember)
	The radius of curvature at the point $(0, c)$ of the		
	curve $y = c \cosh\left(\frac{x}{c}\right)$ is	1 M	ark
13	(a) $\rho = c$ (b) $\rho = c^2$ (c) $\rho = kc$ (d) $\rho = kc^2$		(CLO-4
	(c) $\rho = kc$ (d) $\rho = kc^2$	Ans (a)	Remember)
14	The radius of curvature of the curve $y = e^x$ at $x=0$ is	1 Mark	
	(a) $2\sqrt{2}$ (b) $\sqrt{2}$ (c) 2 (d) 4	A ()	(CLO-4
	(c) 2 (d) 4	Ans (a)	Remember)
	The radius of curvature at the point (x, y) of the	1 M	ark
	curve $y = c \log \sec \left(\frac{x}{c}\right)$ is		
15	(a) $\rho = c \sec\left(\frac{x}{c}\right)$ (b) $\rho = c \cos\left(\frac{x}{c}\right)$	Ans (a)	(CLO-4
	(c) $\rho = c \sin\left(\frac{x}{c}\right)$ (d) $\rho = c \tan\left(\frac{x}{c}\right)$	2 213 (4)	Remember)
	The parametric form of the curve $y^2 = 4ax$ is	1 M	ark
16	(a) $x = at^2$; $y = 2at$ (b) $x = at$; $y = 2at$ (c) $x = at^2$; $y = 2at^2$ (d) $x = 2at^2$; $y = 2at$		
16	$(c) x - ui, y - 2ui \qquad (u) x - 2ui, y - 2ui$	Ang (a)	(CLO-4
		Ans (a)	Remember)

17	The envelope of the curve $y = mx$ parameter is	$+\frac{a}{m}$ where m is the	1 Mark	
		(b) $y^2 + 4ax = 0$ (d) $xy = c^2$	Ans (a)	(CLO-4 Remember)
10	The radius of curvature of the curv point on it is	$y = \log \sec x$ at any	1 M	ark
18	(a) sec <i>x</i> (c) cot <i>x</i>	(b) tan x (d) cosec x	Ans (a)	(CLO-4 Remember)
	The radius of curvature of the curv	$x = t^{2}$, $y = t$ at $t = 1$ is	1 M	ark
19	(a) $5 \frac{\sqrt{5}}{2}$ (c) $\frac{5}{2}$	(b) $\frac{\sqrt{5}}{2}$ (d) $\sqrt{5}$	Ans (a)	(CLO-4 Remember)
20	The radius of curvature of the parabola $y^2 = 12x$ at (3, 6) is		1 Mark	
	(a) $12\sqrt{2}$ (c) $10\sqrt{2}$	(b) $2\sqrt{2}$ (d) $\sqrt{2}$	Ans (a)	(CLO-4 Remember)
21	The radius of curvature of the curv	$y = 4 \sin x \text{ at } x = \frac{\pi}{2} \text{ is}$	1 M	ark
21	(a) $\frac{1}{2}$ (c) $\frac{1}{4}$	(b) $\frac{-1}{2}$ (d) $\frac{-1}{3}$	Ans (c)	(CLO-4 Remember)
	The envelope of family of lines <i>y</i> = the parameter) is	$= m x + a m^2$ (where m is	1 Mark	
22	(a) $x^2 + 2ay = 0$ (c) $y^2 + 2ax = 0$	(b) $x^2 + 4ay = 0$ (d) $x^2 + 4ax = 0$	Ans (b)	(CLO-4 Remember)

23	The envelope of the family of lines $\frac{x}{t} + yt = 2c$, t being the parameter is	1 Mark	
	(a) $x^2 + y^2 = c^2$ (b) $xy = c^2$ (c) $x^2 y^2 = c^2$ (d) $x^2 - y^2 = c^2$	Ans (b)	(CLO-4 Remember)
	The radius of curvature at any point on the curve $r = e^{\theta}$ is	1 M	lark
24	(a) $\frac{\sqrt{2}}{r}$ (b) $\frac{r}{\sqrt{2}}$ (c) r (d) $\sqrt{2}r$	Ans (d)	(CLO-4 Remember)
	The radius of curvature in Cartesian coordinates is	1 M	lark
25	(a) $\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_2}$ (b) $\rho = \frac{(1-y_1^2)^{\frac{3}{2}}}{y_2}$ (c) $\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_2}$ (d) $\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_1}$	Ans (a)	(CLO-4 Remember)
26	The envelope of $ty - x = at^2$, t is the parameter is	1 M	[ark
	(a) $x^2 = 4ay$ (b) $y^2 = 4ax$ (c) $x^2 + y^2 = 1$ (d) $x^2 - y^2 = 1$	Ans (b)	(CLO-4 Remember)
	The radius of curvature in polar coordinates is	1 Mark	
27	(a) $\rho = \frac{\left(r^2 + r'^2\right)^{\frac{3}{2}}}{r^2 - rr' + 2r'^2}$ (b) $\rho = \frac{\left(r^2 - r'^2\right)^{\frac{3}{2}}}{r^2 - rr' + 2r'^2}$ (c) $\rho = \frac{\left(r^2 - r''^2\right)^{\frac{3}{2}}}{r^2 - rr' + 2r'^2}$ (d) $\rho = \frac{\left(r^2 + r'^2\right)^{\frac{3}{2}}}{r^2 - rr'' + 2r'^2}$	Ans (d)	(CLO-4 Remember)

	The radius of curvature in parametric coordinates is		1 Mark	
28	(a) $\rho = \frac{\left(x^{2} + y^{2}\right)^{\frac{3}{2}}}{x^{2}y^{2} - y^{2}x^{2}}$ (b) $\rho = \frac{\left(x^{2} + y^{2}\right)^{\frac{3}{2}}}{x^{2}y^{2} + y^{2}x^{2}}$ (c) $\rho = \frac{\left(x^{2} - y^{2}\right)^{\frac{3}{2}}}{x^{2}y^{2} - y^{2}x^{2}}$ (d) $\rho = \frac{\left(x^{2} - y^{2}\right)^{\frac{3}{2}}}{x^{2}y^{2} + y^{2}x^{2}}$	Ans (a)	(CLO-4 Remember)	
29	The equation of circle of curvature at any point (x, y) with center of curvature (\bar{x}, \bar{y}) and radius of curvature ρ is	1 Mark		
	(a) $(x + \overline{x})^2 + (y + \overline{y})^2 = \rho^2$ (b) $(x - \overline{x})^2 + (y - \overline{y})^2 = \rho^2$ (c) $(x - \overline{x})^2 - (y + \overline{y})^2 = \rho^2$ (d) $(x + \overline{x})^2 + (y + \overline{y})^2 = \rho^2$	Ans (b)	(CLO-4 Remember)	
30	The curvature at any point of the circle is equal to of its radius	1 Mark		
	(a) same (b) ellipse (c) reciprocal (d) constant	Ans (c)	(CLO-4 Remember)	
31	The parametric equations of rectangular hyperbola $xy = c^2$ is	1 Mark		
	(a) $x = ct, y = \frac{c}{t}$ (b) $x = ct, y = t$ (c) $x = \frac{c}{t}, y = t$ (d) $x = ct, y = \frac{1}{t}$	Ans (a)	(CLO-4 Remember)	
32	The value of $\Gamma\left(\frac{1}{2}\right)$ is	1 Mark		
	(a) π (b) $\frac{\pi}{2}$ (c) $\sqrt{\pi}$ (d) $\frac{\sqrt{\pi}}{2}$	Ans (c)	(CLO-4 Remember)	

33	The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if	1 Mark	
	(a) $p = 0$ (b) $p = 1$ (c) $p > 1$ (d) $p < 1$	Ans (c)	(CLO-4 Remember)
34	As per D' Alembert's ratio test, if $\sum u_n$ is a series of positive terms and $\sum_{n\to\infty} \frac{u_{n+1}}{u_n} = l$, then the series is convergent, if	1 Mark	
	(a) $l = 0$ (b) $l = 1$ (c) $l > 1$ (d) $l < 1$	Ans (d)	(CLO-4 Remember)
35	If n is a positive integer, then $\Gamma(n+1)=$	1 Mark	
	(a) $(n + 1)!$ (b) $n!$ (c) $2n!$ (d) $(n - 1)!$	Ans (b)	(CLO-4 Remember)
36	The series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is	1 Mark	
	(a) convergent (b) divergent (c) oscillating (d) monotonic	Ans (b)	(CLO-4 Remember