

Mathématiques et calculs : Contrôle continu n°1 17 Octobre 2011

L1 : Licence sciences et technologies, mention mathématiques, informatique et applications

Nombre de page de l'énoncé : 1. Durée 1h30. Correction

Exercice 1

1) Calculer le module et l'argument de chacun des nombres complexes

$$z_1 = \frac{\sqrt{6} - i\sqrt{2}}{2}$$
 et $z_2 = 1 - i$.

- 2) En déduire le module et l'argument de $z = \frac{z_1}{z_2}$.
- 3) Utiliser les résultats précédents pour calculer $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$.

Correction de l'exercice 1 :

1)

$$|z_1| = \sqrt{2}$$
 et $\arg(z_1) = -\frac{\pi}{6}$.

$$|z_2| = \sqrt{2}$$
 et $\arg(z_2) = -\frac{\pi}{4}$.

2)

$$|z| = \frac{|z_1|}{|z_2|} = 1$$
 et $\arg(z) = \arg(z_1) - \arg(z_2) = \frac{\pi}{12}$.

3) On détermine la forme algébrique de $z = \cos(\frac{\pi}{12}) + i\sin(\frac{\pi}{12})$. On trouve

$$z = (\frac{\sqrt{6} + \sqrt{2}}{4}) + i(\frac{\sqrt{6} - \sqrt{2}}{4})$$

D'où

$$\cos(\frac{\pi}{12}) = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 et $\sin(\frac{\pi}{12}) = \frac{\sqrt{6} - \sqrt{2}}{4}$.

Exercice 2

Déterminer les racines carrées complexes de z = -8 - 6i.

Correction de l'exercice 2 :

On cherche $\omega = x + iy$ tel que $\omega^2 = z$. Ici 2xy = -6 donc \underline{x} et y sont de signes contraires. Les deux racines sont $\omega_1 = 1 - i9$ et $\omega_2 = -9 + i9$.

1

Exercice 3

Soit
$$z = \sqrt{2 - \sqrt{2}} + i\sqrt{2 + \sqrt{2}}$$
.

- 1) Calculer z^2 sous la forme algébrique puis sous forme exponentielle.
- 2) En déduire la forme exponentielle de z.
- 3) En déduire $\cos(\frac{3\pi}{8})$.

Correction de l'exercice 3:

1) Les réponses sont :

$$z^2 = -2\sqrt{2} + i2\sqrt{2}$$

$$z^2 = 4e^{i\frac{3\pi}{4}}$$

$$|z^2| = 4$$
 et $\arg(z^2) = \frac{3\pi}{4}$.

2) z est une racine carrée de z^2 donc

$$z = 2e^{i\frac{3\pi}{8}}$$
 ou $z = -2e^{i\frac{3\pi}{8}}$.

Comme $\cos(\frac{3\pi}{8}) > 0$ et Re(z) > 0, on en déduit que

$$z = 2e^{i\frac{3\pi}{8}}.$$

3)

$$\cos(\frac{3\pi}{8}) = \frac{\text{Re}(z)}{|z|} = \frac{\sqrt{2-\sqrt{2}}}{2}.$$

Exercice 4

Soit (u_n) la suite définie par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{\frac{u_n^2 + 4}{3}}, \forall n \ge 0 \end{cases}$$

- 1) Montrer que pour tout $n \ge 0$, $u_n \ge 0$.
- 2) Montrer que la suite (v_n) définie par $v_n = u_n^2 2$ est géométrique et préciser sa raison.
- 3) Calculer v_n en fonction de v_0 . En déduire la limite de (v_n) puis celle de (u_n) .

Correction de l'exercice 4:

- 1) On démontre par récurrence la propriété (P_n) : $u_n \ge 0$.
- <u>Initialisation</u>: $u_0 = 0 \ge 0$ donc (P_0) est vraie.
- <u>Hérédité</u>: On suppose que (P_n) est vraie pour un certain $n \ge 0$. Alors,

$$u_{n+1} = \sqrt{\frac{u_n^2 + 4}{3}}$$

est bien défini puisque $\frac{u_n^2+4}{3}\geqslant 0$ d'après l'hypothèse de récurrence. De plus $u_{n+1}\geqslant 0$ car la fonction racine carrée est positive.

Donc, par récurrence, pour tout $n \ge 0$, $u_n \ge 0$.

2) On a

$$v_{n+1} = u_{n+1}^2 - 2 = \frac{u_n^2 + 4}{3} - 2 = \frac{u_n^2 - 2}{3} = \frac{1}{3}v_n.$$

Donc (v_n) est une suite géométrique de raison $\frac{1}{3}$. 3) (v_n) est une suite géométrique de raison $\frac{1}{3}$ et $v_0=u_0-2=-2$ d'où

$$v_n = -\frac{2}{3^n}.$$

On en déduit que (v_n) tend vers 0, et donc que $u_n^2 = v_n + 2$ tend vers 2. Comme $u_n \geqslant 0$, on a $u_n = \sqrt{u_n^2}$ d'où (u_n) tend vers $\sqrt{2}$ (par continuité de la fonction racine carrée...).

Exercice 5

Soit (u_n) la suite définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{2u_n} , \forall n \geqslant 0 \end{cases}$$

- 1) Montrer que pour tout $n \ge 0$, $u_n > 0$.
- 2) Montrer que pour tout $n \ge 0$, $u_n \le 2$.
- 3) Montrer que (u_n) est croissante (on pourra considérer le quotient $\frac{u_{n+1}}{u_n}$).

4) En déduire que (u_n) est convergente et déterminer sa limite.

Correction de l'exercice 5 :

- 1) On démontre par récurrence la propriété (P_n) : $u_n > 0$.
- <u>Initialisation</u>: $u_0 = 1 > 0$ donc (P_0) est vraie.
- <u>Hérédité</u>: On suppose que (P_n) est vraie pour un certain $n \ge 0$. Alors $u_{n+1} = \sqrt{2u_n} > 0$ donc (P_{n+1}) est vraie.

Donc, par récurrence, pour tout $n \ge 0$, $u_n > 0$.

- 2) On démontre par récurrence la propriété (P_n) : $u_n \leq 2$.
- <u>Initialisation</u>: $u_0 = 1 \leq 2$ donc (P_0) est vraie.
- <u>Hérédité</u>: On suppose que (P_n) est vraie pour un certain $n \ge 0$. Alors, $2u_n \le 4$, et, comme la fonction racine carrée est croissante,

$$u_{n+1} = \sqrt{2u_n} \leqslant \sqrt{4} = 2,$$

et donc (P_{n+1}) est vraie.

Par récurrence, pour tout $n \ge 0$, $u_n \le 2$. 3) On peut considérer le quotient $\frac{u_{n+1}}{u_n}$ car pour tout $n \ge 0$, $u_n > 0$ et en particulier $u_n \ne 0$. On a

$$\frac{u_{n+1}}{u_n} = \frac{\sqrt{2u_n}}{u_n} = \sqrt{\frac{2}{u_n}}.$$

Or, d'après la question 2), $u_n \leqslant 2$, donc $\sqrt{\frac{2}{u_n}} \geqslant 1$. Ainsi, $\frac{u_{n+1}}{u_n} \geqslant 1$ pour tout $n \geqslant 0$, ce qui montre que (u_n) est croissante.

4) (u_n) est croissante et majorée par 2, donc elle converge. Sa limite l vérifie

$$l = \sqrt{2l} \Leftrightarrow l^2 = 2l \text{ et } l \geqslant 0 \Leftrightarrow l(l-2l) = 0 \text{ et } l \geqslant 0 \Leftrightarrow l = 0 \text{ ou } l = 2.$$

Ainsi (u_n) ne peut converger que vers 0 ou 2. Mais comme (u_n) est croissante et $u_0 = 1 > 0$, (u_n) ne peut pas converger vers 0. En conclusion, (u_n) converge vers l=2.