The Wiener algebra and Wiener's lemma

Jordan Bell

January 17, 2015

1 Introduction

Let $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$. For $f \in L^1(\mathbb{T})$ we define

$$||f||_{L^1(\mathbb{T})} = \frac{1}{2\pi} \int_{\mathbb{T}} |f(t)| dt.$$

For $f, g \in L^1(\mathbb{T})$, we define

$$(f * g)(t) = \frac{1}{2\pi} \int_{\mathbb{T}} f(\tau)g(t-\tau)d\tau, \qquad t \in \mathbb{T}.$$

 $f * g \in L^1(\mathbb{T})$, and satisfies Young's inequality

$$||f * g||_{L^1(\mathbb{T})} \le ||f||_{L^1(\mathbb{T})} ||g||_{L^1(\mathbb{T})}.$$

With convolution as the operation, $L^1(\mathbb{T})$ is a commutative Banach algebra. For $f \in L^1(\mathbb{T})$, we define $\hat{f} : \mathbb{Z} \to \mathbb{C}$ by

$$\hat{f}(k) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t)e^{-ikt}dt, \qquad k \in \mathbb{Z}.$$

We define $c_0(\mathbb{Z})$ to be the collection of those $F: \mathbb{Z} \to \mathbb{C}$ such that $|F(k)| \to 0$ as $|k| \to \infty$. For $f \in L^1(\mathbb{T})$, the Riemann-Lebesgue lemma tells us that $\hat{f} \in c_0(\mathbb{Z})$. We define $\ell^1(\mathbb{Z})$ to be the set of functions $F: \mathbb{Z} \to \mathbb{C}$ such that

$$||F||_{\ell^1(\mathbb{Z})} = \sum_{k \in \mathbb{Z}} |F(k)|.$$

For $F, G \in \ell^1(\mathbb{Z})$, we define

$$(F * G)(k) = \sum_{j \in \mathbb{Z}} F(j)G(k - j).$$

 $F * G \in \ell^1(\mathbb{Z})$, and satisfies Young's inequality

$$||F * G||_{\ell^1(\mathbb{Z})} \le ||F||_{\ell^1(\mathbb{Z})} ||G||_{\ell^1(\mathbb{Z})}$$
.

 $\ell^1(\mathbb{Z})$ is a commutative Banach algebra, with unity

$$F(k) = \begin{cases} 1 & k = 0, \\ 0 & k \neq 0. \end{cases}$$

For $f \in L^1(\mathbb{T})$ and $n \geq 0$ we define $S_n(f) \in C(\mathbb{T})$ by

$$S_n(f)(t) = \sum_{|k| \le n} \hat{f}(k)e^{ikt}, \quad t \in \mathbb{T}.$$

For $0 < \alpha < 1$, we define $\operatorname{Lip}_{\alpha}(\mathbb{T})$ to be the collection of those functions $f: \mathbb{T} \to \mathbb{C}$ such that

$$\sup_{t\in\mathbb{T},h\neq 0}\frac{|f(t+h)-f(t)|}{|h|^\alpha}<\infty.$$

For $f \in \operatorname{Lip}_{\alpha}(\mathbb{T})$, we define

$$||f||_{\operatorname{Lip}_{\alpha}(\mathbb{T})} = ||f||_{C(\mathbb{T})} + \sup_{t \in \mathbb{T}, h \neq 0} \frac{|f(t+h) - f(t)|}{|h|^{\alpha}}.$$

2 Total variation

For $f: \mathbb{T} \to \mathbb{C}$, we define

$$var(f) = \sup \left\{ \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})| : n \ge 1, 0 = t_0 < \dots < t_n = 2\pi \right\}.$$

If $\operatorname{var}(f) < \infty$ then we say that f is of **bounded variation**, and we define $BV(\mathbb{T})$ to be the set of functions $\mathbb{T} \to \mathbb{C}$ of bounded variation. We define

$$||f||_{BV(\mathbb{T})} = \sup_{t \in \mathbb{T}} |f(t)| + \operatorname{var}(f).$$

This is a norm on $BV(\mathbb{T})$, with which $BV(\mathbb{T})$ is a Banach algebra.¹

Theorem 1. If $f \in BV(\mathbb{T})$, then

$$|\hat{f}(n)| \le \frac{\operatorname{var}(f)}{2\pi|n|}, \qquad n \in \mathbb{Z}, n \ne 0.$$

Proof. Integrating by parts,

$$\hat{f}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t)e^{-int}dt = -\frac{1}{2\pi} \int_{\mathbb{T}} \frac{e^{-int}}{-in} df(t) = \frac{1}{2\pi in} \int_{\mathbb{T}} e^{-int} df(t),$$

hence

$$|\hat{f}(n)| \le \frac{1}{2\pi |n|} \operatorname{var}(f).$$

¹N. L. Carothers, *Real Analysis*, p. 206, Theorem 13.4.

3 Absolutely convergent Fourier series

Suppose that $f \in L^1(\mathbb{T})$ and that $\hat{f} \in \ell^1(\mathbb{Z})$. For $n \geq m$,

$$||S_n(f) - S_m(f)||_{C(\mathbb{T})} = \sup_{t \in \mathbb{T}} \left| \sum_{m < |k| \le n} \hat{f}(k)e^{ikt} \right| \le \sum_{m < |k| \le n} |\hat{f}(k)|,$$

and because $\hat{f} \in \ell^1(\mathbb{Z})$ it follows that $S_n(f)$ converges to some $g \in C(\mathbb{T})$. We check that f(t) = g(t) for almost all $t \in \mathbb{T}$.

We define $A(\mathbb{T})$ to be the collection of those $f \in C(\mathbb{T})$ such that $\hat{f} \in \ell^1(\mathbb{Z})$, and we define

 $||f||_{A(\mathbb{T})} = \left| |\hat{f}||_{\ell^1(\mathbb{Z})} \right|.$

 $A(\mathbb{T})$ is a commutative Banach algebra, with unity $t\mapsto 1$, and the Fourier transform is an isomorphism of Banach algebras $\mathscr{F}:A(\mathbb{T})\to \ell^1(\mathbb{Z})$. We call $A(\mathbb{T})$ the **Wiener algebra**. The inclusion map $A(\mathbb{T})\subset C(\mathbb{T})$ has norm 1.

Theorem 2. If $f: \mathbb{T} \to \mathbb{C}$ is absolutely continuous, then

$$\hat{f}(k) = o(k^{-1}), \qquad |k| \to \infty.$$

Proof. Because f is absolutely continuous, the fundamental theorem of calculus tells us that $f' \in L^1(\mathbb{T})$. Doing integration by parts, for $k \in \mathbb{Z}$ we have

$$\begin{split} \mathscr{F}(f')(k) &= \frac{1}{2\pi} \int_{\mathbb{T}} f'(t)e^{-ikt}dt \\ &= \frac{1}{2\pi} f(t)e^{-ikt} \Big|_0^{2\pi} - \frac{1}{2\pi} \int_{\mathbb{T}} f(t)(-ike^{-ikt})dt \\ &= ik\mathscr{F}(f)(k). \end{split}$$

The Riemann-Lebesgue lemma tells us that $\mathcal{F}(f')(k) = o(1)$, so

$$\mathscr{F}(f)(k) = o\left(\frac{1}{k}\right), \qquad |k| \to \infty.$$

Theorem 3. If $f: \mathbb{T} \to \mathbb{C}$ is absolutely continuous and $f' \in L^2(\mathbb{T})$, then

$$||f||_{A(\mathbb{T})} \le ||f||_{L^1(\mathbb{T})} + \left(2\sum_{k=1}^{\infty} k^{-2}\right)^{1/2} ||f'||_{L^2(\mathbb{T})}.$$

Proof. First,

$$|\hat{f}(0)| = \left|\frac{1}{2\pi} \int_{\mathbb{T}} f(t) dt \right| \le \|f\|_{L^1(\mathbb{T})} \,.$$

Next, because f is absolutely continuous, by the fundamental theorem of calculus we have $f' \in L^1(\mathbb{T})$, and for $k \in \mathbb{Z}$,

$$\mathscr{F}(f')(k) = ik\mathscr{F}(f)(k).$$

Using the Cauchy-Schwarz inequality, and since $\mathscr{F}(f')(0) = 0$,

$$\begin{split} \|f\|_{A(\mathbb{T})} &= |\hat{f}(0)| + \sum_{k \neq 0} |\hat{f}(k)| \\ &= |\hat{f}(0)| + \sum_{k \neq 0} |k|^{-1} |\mathscr{F}(f')(k)| \\ &\leq \|f\|_{L^1(\mathbb{T})} + \left(\sum_{k \neq 0} |k|^{-2}\right)^{1/2} \left(\sum_{k \neq 0} |\mathscr{F}(f')(k)|^2\right)^{1/2} \\ &= \|f\|_{L^1(\mathbb{T})} + \left(2\sum_{k = 1}^{\infty} k^{-2}\right)^{1/2} \|\mathscr{F}(f')\|_{\ell^2(\mathbb{Z})} \,. \end{split}$$

By Parseval's theorem we have $\|\mathscr{F}(f')\|_{\ell^2(\mathbb{Z})} = \|f'\|_{L^2(\mathbb{T})}$, completing the proof.

We now prove that if $\alpha > \frac{1}{2}$, then $\operatorname{Lip}_{\alpha}(\mathbb{T}) \subset A(\mathbb{T})$, and the inclusion map is a bounded linear operator.²

Theorem 4. If $\alpha > \frac{1}{2}$, then $\operatorname{Lip}_{\alpha}(\mathbb{T}) \subset A(\mathbb{T})$, and for any $f \in \operatorname{Lip}_{\alpha}(\mathbb{T})$ we have

$$||f||_{A(\mathbb{T})} \le c_{\alpha} ||f||_{\operatorname{Lip}_{\alpha}(\mathbb{T})},$$

with

$$c_{\alpha} = 1 + 2^{1/2} \left(\frac{2\pi}{3}\right)^{\alpha} \frac{1}{1 - 2^{\frac{1}{2} - \alpha}}.$$

Proof. For $f: \mathbb{T} \to \mathbb{C}$ and $h \in \mathbb{R}$, we define

$$f_h(t) = f(t-h), \qquad t \in \mathbb{T},$$

which satisfies, for $n \in \mathbb{Z}$,

$$\mathscr{F}(f_h)(n) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t-h)e^{-int}dt$$
$$= \frac{1}{2\pi} \int_{\mathbb{T}} f(t)e^{-in(t+h)}dt$$
$$= e^{-inh}\mathscr{F}(f)(n).$$

Thus

$$\mathscr{F}(f_h - f)(n) = (e^{-inh} - 1)\hat{f}(n), \qquad n \in \mathbb{Z}. \tag{1}$$

²Yitzhak Katznelson, *An Introduction to Harmonic Analysis*, third ed., p. 34, Theorem 6.3.

For $m \geq 0$ and for $n \in \mathbb{Z}$ such that $2^m \leq |n| < 2^{m+1}$, let

$$h_m = \frac{2\pi}{3} \cdot 2^{-m}.$$

Then

$$\frac{2\pi}{3} = 2^m \cdot \frac{2\pi}{3} \cdot 2^{-m} \le |nh_m| < 2^{m+1} \cdot \frac{2\pi}{3} \cdot 2^{-m} = \frac{4\pi}{3}.$$

If n > 0 this implies that

$$\frac{\pi}{3} \le \frac{nh_m}{2} < \frac{2\pi}{3}$$

and so

$$|e^{-inh_m} - 1| = 2\sin\frac{nh_m}{2} \ge 2\sin\frac{\pi}{3} = \sqrt{3},$$

and if n < 0 this implies that

$$-\frac{2\pi}{3} < \frac{nh_m}{2} \le -\frac{\pi}{3}$$

and so

$$|e^{-inh_m} - 1| > \sqrt{3}$$

This gives us

$$\sum_{2^{m} \le |n| < 2^{m+1}} |\hat{f}(n)|^{2} \le \sum_{2^{m} \le |n| < 2^{m+1}} 3|\hat{f}(n)|^{2}$$

$$\le \sum_{2^{m} \le |n| < 2^{m+1}} |e^{-inh_{m}} - 1|^{2}|\hat{f}(n)|^{2}$$

$$\le \sum_{n \in \mathbb{Z}} |e^{-inh_{m}} - 1|^{2}|\hat{f}(n)|^{2}.$$

Using (1) and Parseval's theorem we have

$$\sum_{n \in \mathbb{Z}} |e^{-inh_m} - 1|^2 |\hat{f}(n)|^2 = \|\mathscr{F}(f_{h_m} - f)\|_{\ell^2(\mathbb{Z})}^2 = \|f_{h_m} - f\|_{L^2(\mathbb{T})}^2,$$

and thus

$$\sum_{2^m \le |n| < 2^{m+1}} |\hat{f}(n)|^2 \le ||f_{h_m} - f||_{L^2(\mathbb{T})}^2.$$

Furthermore, for $g\in L^\infty(\mathbb{T})$ we have $\|g\|_{L^2(\mathbb{T})}\leq \|g\|_{L^\infty(\mathbb{T})},$ so

$$\sum_{2^{m} \leq |n| < 2^{m+1}} |\hat{f}(n)|^{2} \leq \|f_{h_{m}} - f\|_{L^{\infty}(\mathbb{T})}^{2}$$

$$\leq \|f\|_{\operatorname{Lip}_{\alpha}(\mathbb{T})}^{2} \cdot h_{m}^{2\alpha}$$

$$= \left(\frac{2\pi}{3 \cdot 2^{m}}\right)^{2\alpha} \|f\|_{\operatorname{Lip}_{\alpha}(\mathbb{T})}^{2}.$$

By the Cauchy-Schwarz inequality, because there are $\leq 2^{m+1}$ nonzero terms in $\sum_{2^m \leq |n| < 2^{m+1}} |\hat{f}(n)|$,

$$\sum_{2^{m} \le |n| < 2^{m+1}} |\hat{f}(n)| \le (2^{m+1})^{1/2} \left(\sum_{2^{m} \le |n| < 2^{m+1}} |\hat{f}(n)|^{2} \right)^{1/2}$$

$$\le 2^{\frac{m+1}{2}} \left(\frac{2\pi}{3 \cdot 2^{m}} \right)^{\alpha} \|f\|_{\operatorname{Lip}_{\alpha}(\mathbb{T})}$$

$$= 2^{m(\frac{1}{2} - \alpha)} \cdot 2^{1/2} \left(\frac{2\pi}{3} \right)^{\alpha} \cdot \|f\|_{\operatorname{Lip}_{\alpha}(\mathbb{T})}.$$

Then, since $\alpha > \frac{1}{2}$,

$$\begin{split} \sum_{n \in \mathbb{Z}} |\hat{f}(n)| &= |\hat{f}(0)| + \sum_{m=0}^{\infty} \sum_{2^m \le |n| < 2^{m+1}} |\hat{f}(n)| \\ &\le |\hat{f}(0)| + \sum_{m=0}^{\infty} 2^{m\left(\frac{1}{2} - \alpha\right)} \cdot 2^{1/2} \left(\frac{2\pi}{3}\right)^{\alpha} \cdot \|f\|_{\operatorname{Lip}_{\alpha}(\mathbb{T})} \\ &= |\hat{f}(0)| + 2^{1/2} \left(\frac{2\pi}{3}\right)^{\alpha} \|f\|_{\operatorname{Lip}_{\alpha}(\mathbb{T})} \sum_{m=0}^{\infty} 2^{m\left(\frac{1}{2} - \alpha\right)} \\ &= |\hat{f}(0)| + 2^{1/2} \left(\frac{2\pi}{3}\right)^{\alpha} \|f\|_{\operatorname{Lip}_{\alpha}(\mathbb{T})} \frac{1}{1 - 2^{\frac{1}{2} - \alpha}} \end{split}$$

As

$$|\hat{f}(0)| \leq \|f\|_{L^1(\mathbb{T})} \leq \|f\|_{L^\infty(\mathbb{T})} \leq \|f\|_{\operatorname{Lip}_\alpha(\mathbb{T})}\,,$$

we have for all $f \in \operatorname{Lip}_{\alpha}(\mathbb{T})$ that

$$\sum_{n \in \mathbb{Z}} |\hat{f}(n)| \le c_{\alpha} \|f\|_{\operatorname{Lip}_{\alpha}(\mathbb{T})},$$

completing the proof.

We now prove that if $\alpha > 0$, then $BV(\mathbb{T}) \cap \operatorname{Lip}_{\alpha}(\mathbb{T}) \subset A(\mathbb{T})^{3}$

Theorem 5. If $\alpha > 0$ and $f \in BV(\mathbb{T}) \cap \operatorname{Lip}_{\alpha}(\mathbb{T})$, then

$$||f_h - f||_{L^2(\mathbb{T})}^2 \le \frac{1}{2\pi} h^{1+\alpha} ||f||_{\operatorname{Lip}_{\alpha}(\mathbb{T})} \operatorname{var}(f), \qquad h > 0.$$

and $f \in A(\mathbb{T})$.

 $^{^3{\}rm Yitzhak}$ Katznelson, An Introduction to Harmonic Analysis, third ed., p. 35, Theorem 6.4.

Proof. For $N \geq 1$ and $h = \frac{2\pi}{N}$,

$$||f_h - f||_{L^2(\mathbb{T})}^2 = \frac{1}{2\pi} \int_0^{2\pi} |f_h(t) - f(t)|^2 dt$$

$$= \frac{1}{2\pi} \sum_{j=1}^N \int_{(j-1)h}^{jh} |f_h(t) - f(t)|^2 dt$$

$$= \frac{1}{2\pi} \sum_{j=1}^N \int_0^h |f_{jh}(t) - f_{(j-1)h}(t)|^2 dt$$

$$= \frac{1}{2\pi} \int_0^h \sum_{j=1}^N |f_{jh}(t) - f_{(j-1)h}(t)|^2 dt$$

$$\leq \frac{1}{2\pi} ||f_h - f||_{L^\infty(\mathbb{T})} \int_0^h \sum_{j=1}^N |f_{jh}(t) - f_{(j-1)h}(t)| dt$$

$$\leq \frac{1}{2\pi} ||f_h - f||_{L^\infty(\mathbb{T})} \int_0^h \text{var}(f) dt.$$

As $f \in \text{Lip}_{\alpha}(\mathbb{T})$, $||f_h - f||_{L^{\infty}(\mathbb{T})} \leq h^{\alpha} ||f||_{\text{Lip}_{\alpha}(\mathbb{T})}$, hence

$$||f_h - f||_{L^2(\mathbb{T})}^2 \le \frac{1}{2\pi} h^{1+\alpha} ||f||_{\operatorname{Lip}_{\alpha}(\mathbb{T})} \operatorname{var}(f).$$

Wiener's lemma 4

For $k \geq 1$, using the product rule (fg)' = f'g + fg' we check that $C^k(\mathbb{T})$ is a Banach algebra with the norm

$$\|f\|_{C^k(\mathbb{T})} = \sum_{j=0}^k \left\| f^{(j)} \right\|_{C(\mathbb{T})}.$$

If $f \in C^k(\mathbb{T})$ and $f(t) \neq 0$ for all $t \in \mathbb{T}$, then the quotient rule tells us that

$$(f^{-1})'(t) = -\frac{f'(t)}{f(t)^2},$$

using which we get $\frac{1}{f} \in C^k(\mathbb{T})$. That is, if $f \in C^k(\mathbb{T})$ does not vanish then

 $f^{-1} = \frac{1}{f} \in C^k(\mathbb{T}).$ If B is a commutative unital Banach algebra, a **multiplicative linear functional** on B is a nonzero algebra homomorphism $B \to \mathbb{C}$, and the collection Δ_B of multiplicative linear functionals on B is called the **maximal ideal space** of B. The **Gelfand transform** of $f \in B$ is $\Gamma(f) : \Delta_B \to \mathbb{C}$ defined by

$$\Gamma(f)(h) = h(f), \qquad h \in \Delta_B.$$

It is a fact that $f \in B$ is invertible if and only if $h(f) \neq 0$ for all $h \in \Delta_B$, i.e., $f \in B$ is invertible if and only if $\Gamma(f)$ does not vanish.

We now prove that if $f \in A(\mathbb{T})$ and does not vanish, then f is invertible in $A(\mathbb{T})$. We call this statement **Wiener's lemma**.⁴

Theorem 6 (Wiener's lemma). If $f \in A(\mathbb{T})$ and $f(t) \neq 0$ for all $t \in \mathbb{T}$, then $1/f \in A(\mathbb{T})$.

Proof. Let $w: A(\mathbb{T}) \to \mathbb{C}$ be a multiplicative linear functional. The fact that w is a multiplicative linear functional implies that $\|w\| = 1$. Define $u(t) = e^{it}$, $t \in \mathbb{T}$, for which $\|u\|_{A(\mathbb{T})} = 1$. We define $\lambda = w(u)$, which satisfies

$$|\lambda| \le ||w|| \, ||u||_{A(\mathbb{T})} = 1$$

and because $\left\|u^{-1}\right\|_{A(\mathbb{T})}=1$ we have $\lambda^{-1}=w(u^{-1})$ and

$$|\lambda^{-1}| \le ||w|| ||u^{-1}||_{A(\mathbb{T})} = 1,$$

hence $|\lambda| = 1$. Then there is some $t_w \in \mathbb{T}$ such that $\lambda = e^{it_w}$. For $n \in \mathbb{Z}$,

$$w(u^n) = \lambda^n = e^{int_w}.$$

If $P(t) = \sum_{|n| \le N} a_n e^{int}$ is a trigonometric polynomial, then

$$w(P) = w\left(\sum_{|n| \le N} a_n u^n\right) = \sum_{|n| \le N} a_n w(u)^n = \sum_{|n| \le N} a_n e^{int_w} = P(t_w).$$
 (2)

For $g \in A(\mathbb{T})$, if $\epsilon > 0$, then there is some N such that $\|g - S_N(g)\|_{A(\mathbb{T})} < \epsilon$. Using (2) and the fact that $\|g\|_{C(\mathbb{T})} \leq \|g\|_{A(\mathbb{T})}$,

$$\begin{split} |w(g) - g(t_w)| &\leq |w(g) - w(S_N(g))| + |w(S_N(g)) - S_N(g)(t_w)| \\ &+ |S_N(g)(t_w) - g(t_w)| \\ &= |w(g - S_N(g))| + |S_N(g)(t_w) - f(t_w)| \\ &\leq ||w|| \, ||g - S_N(g)||_{A(\mathbb{T})} + ||S_N(g) - g||_{C(\mathbb{T})} \\ &\leq ||w|| \, ||g - S_N(g)||_{A(\mathbb{T})} + ||g - S_N(g)||_{A(\mathbb{T})} \\ &< 2\epsilon. \end{split}$$

Because this is true for all $\epsilon > 0$, it follows that $w(g) = g(t_w)$.

Let Δ be the maximal ideal space of $A(\mathbb{T})$. Then for $w \in \Delta$ there is some $t_w \in \mathbb{T}$ such that $w(f) = f(t_w)$, hence, because $f(t) \neq 0$ for all $t \in \mathbb{T}$,

$$\Gamma(f)(w) = w(f) = f(t_w) \neq 0.$$

That is, $\Gamma(f)$ does not vanish, and therefore f is invertible in $A(\mathbb{T})$. It is then immediate that $f^{-1}(t) = \frac{1}{f(t)}$ for all $t \in \mathbb{T}$, completing the proof.

⁴Yitzhak Katznelson, *An Introduction to Harmonic Analysis*, third ed., p. 239, Theorem 2.9.

The above proof of Wiener's lemma uses the theory of the commutative Banach algebras. The following is a proof of the theorem that does not use the Gelfand transform.⁵

Proof. Because $f \in A(\mathbb{T})$, f^* defined by $f^*(t) = \overline{f(t)}$, $t \in \mathbb{T}$, belongs to $A(\mathbb{T})$.

$$g = \frac{|f|^2}{\|f\|_{C(\mathbb{T})}^2} = \frac{ff^*}{\|f\|_{C(\mathbb{T})}^2} \in A(\mathbb{T}),$$

which satisfies $0 < g(t) \le 1$ for all $t \in \mathbb{T}$. As $\frac{1}{f} = \frac{f^*}{|f|^2} = \frac{f^*}{\|f\|_{C(\mathbb{T})}^2 g}$, to show that $1/f\in A(\mathbb{T})$ it suffices to show that $\frac{1}{g}\in A(\mathbb{T})$. Because g is continuous and $g(t)\neq 0$ for all $t\in \mathbb{T}$,

$$\delta = \inf_{t \in \mathbb{T}} g(t) > 0;$$

if $\delta=1$ then g=1, and indeed $\frac{1}{g}\in A(\mathbb{T})$. Otherwise, $\|g-1\|_{C(\mathbb{T})}=1-\delta<1$. This implies that g is invertible in the Banach algebra $C(\mathbb{T})$ and that $g^{-1}=\sum_{j=0}^{\infty}(1-g)^j$ in $C(\mathbb{T})$. Let $h=1-g\in A(\mathbb{T})$.

For $\epsilon > 0$, there is some N such that $\|h - S_N(h)\|_{A(\mathbb{T})} < \epsilon$. Now, if P is a trigonometric polynomial of degree M then using the Cauchy-Schwarz inequality and Parseval's theorem,

$$\begin{split} \|P\|_{A(\mathbb{T})} &= \left\| \hat{P} \right\|_{\ell^{1}(\mathbb{Z})} \\ &\leq (2M+1)^{1/2} \left\| \hat{P} \right\|_{\ell^{2}(\mathbb{Z})} \\ &= (2M+1)^{1/2} \left\| P \right\|_{L^{2}(\mathbb{T})} \\ &\leq (2M+1)^{1/2} \left\| P \right\|_{L^{\infty}(\mathbb{T})}. \end{split}$$

Furthermore, for $j \geq 1$, P^{j} is a trigonometric polynomial of degree jM. The binomial theorem tells us, with $P = S_N(h)$ and r = h - P,

$$h^{k} = (P+r)^{k} = \sum_{j=0}^{k} {k \choose j} P^{j} r^{k-j},$$

⁵Karlheinz Gröchenig, Wiener's Lemma: Theme and Variations. An Introduction to Spectral Invariance and Its Applications, p. 180, §5.2.4, in Brigitte Forster and Peter Massopust, eds., Four Short Courses on Harmonic Analysis, pp. 175-234.

and using this and $\left\|P^j\right\|_{A(\mathbb{T})} \leq (2jN+1)^{1/2} \left\|P^j\right\|_{L^\infty(\mathbb{T})},$

$$\begin{split} \left\|h^{k}\right\|_{A(\mathbb{T})} &\leq \sum_{j=0}^{k} \binom{k}{j} \left\|P^{j}\right\|_{A(\mathbb{T})} \left\|r^{k-j}\right\|_{A(\mathbb{T})} \\ &\leq \sum_{j=0}^{k} \binom{k}{j} \left\|P^{j}\right\|_{A(\mathbb{T})} \left\|h - S_{N}(h)\right\|_{A(\mathbb{T})}^{k-j} \\ &\leq \sum_{j=0}^{k} \binom{k}{j} (2jN+1)^{1/2} \left\|P^{j}\right\|_{L^{\infty}(\mathbb{T})} \epsilon^{k-j} \\ &\leq (2kN+1)^{1/2} \sum_{j=0}^{k} \binom{k}{j} \left\|P\right\|_{L^{\infty}(\mathbb{T})}^{j} \epsilon^{k-j} \\ &= (2kN+1)^{1/2} (\left\|P\right\|_{L^{\infty}(\mathbb{T})} + \epsilon)^{k}. \end{split}$$

Because

$$\begin{aligned} \|P\|_{L^{\infty}(\mathbb{T})} &\leq \|h - S_N(h)\|_{L^{\infty}(\mathbb{T})} + \|h\|_{L^{\infty}(\mathbb{T})} \\ &\leq \|h - S_N(h)\|_{A(\mathbb{T})} + \|h\|_{L^{\infty}(\mathbb{T})} \\ &< \epsilon + \|h\|_{L^{\infty}(\mathbb{T})} , \end{aligned}$$

we have

$$\left\|h^k\right\|_{A(\mathbb{T})} \leq (2kN+1)^{1/2} (\|h\|_{L^\infty(\mathbb{T})} + 2\epsilon)^k = (2kN+1)^{1/2} (1-\delta+2\epsilon)^k.$$

Take some $\epsilon < \frac{\delta}{2}$, so that $1 - \delta + 2\epsilon < 1$. Then with $N = N(\epsilon)$,

$$\sum_{k=0}^{\infty} \left\|h^k\right\|_{A(\mathbb{T})} \leq \sum_{k=0}^{\infty} (2kN+1)^{1/2} (1-\delta+2\epsilon)^k = \sqrt{2N}\Phi\left(1-\delta+2\epsilon,-\frac{1}{2},\frac{1}{2N}\right) < \infty,$$

where Φ is the Lerch transcendent. This implies that the the series $\sum_{k=0}^{\infty} h^k$ converges in $A(\mathbb{T})$. We check that $\sum_{k=0}^{\infty} h^k$ is the inverse of 1-h, namely, g=1-h is invertible in $A(\mathbb{T})$, proving the claim.

5 Spectral theory

Suppose that A is a commutative Banach algebra with unity 1. We define U(A) to be the collection of those $f \in A$ such that f is invertible in A. It is a fact that U(A) is an open subset of A. We define

$$\sigma_A(f) = \{ \lambda \in \mathbb{C} : f - \lambda \notin U(A) \},$$

called the **spectrum of** f. It is a fact that $\sigma_A(f)$ is a nonempty compact subset of \mathbb{C} .

If $A \subset B$ are Banach algebras with unity 1, we say that A is inverse-closed in B if $f \in A$ and $f^{-1} \in B$ together imply that $f^{-1} \in A$.

Lemma 7. Suppose that $A \subset B$ are Banach algebras with unity 1. The following are equivalent:

- 1. A is inverse-closed in B.
- 2. $\sigma_A(f) = \sigma_B(f)$ for all $f \in A$.

Proof. Assume that A is inverse-closed in B and let $f \in A$. If $\lambda \notin \sigma_A(f)$ then $f - \lambda \in U(A) \subset U(B)$, hence $\lambda \notin \sigma_B(f)$. Therefore $\sigma_B(f) \subset \sigma_A(f)$. If $\lambda \notin \sigma_B(f)$ then $f - \lambda \in U(B)$. That is, $(f - \lambda)^{-1} \in B$. Because A is inverse-closed in B and $f - \lambda \in A$, we get $(f - \lambda)^{-1} \in A$. Thus $\lambda \notin \sigma_A(f)$, and therefore $\sigma_A(f) \subset \sigma_B(f)$. We thus have obtained $\sigma_A(f) = \sigma_B(f)$.

Assume that for all $f \in A$, $\sigma_A(f) = \sigma_B(f)$. Suppose that $f \in A$ and $f^{-1} \in B$. That is, $f \in U(B)$, so $0 \notin \sigma_B(f)$. Then $0 \notin \sigma_A(f)$, meaning that $f \in U(A)$.

 $A(\mathbb{T}) \subset C(\mathbb{T})$ are Banach algebras with unity 1. Wiener's lemma states that $A(\mathbb{T})$ is inverse-closed in $C(\mathbb{T})$. It is apparent that for $f \in C(\mathbb{T})$, $\sigma_{C(\mathbb{T})}(f) = f(\mathbb{T}) \subset \mathbb{C}$. Therefore, Lemma 7 tells us for $f \in A(\mathbb{T})$ that $\sigma_{A(\mathbb{T})}(f) = f(\mathbb{T})$.

The Wiener-Lévy theorem states that if $f \in A(\mathbb{T})$, $\Omega \subset \mathbb{C}$ is an open set containing $f(\mathbb{T})$, and $F:\Omega \to \mathbb{C}$ is holomorphic, then $F \circ f \in A(\mathbb{T})$. In particular, if $f \in A(\mathbb{T})$ does not vanish, then $\Omega = \mathbb{C} \setminus \{0\}$ is an open set containing $f(\mathbb{T})$ and $F(z) = \frac{1}{z}$ is a holomorphic function on Ω , and hence $F \circ f(t) = \frac{1}{f(t)}$ belongs to $A(\mathbb{T})$, which is the statement of Wiener's lemma.

⁶Karlheinz Gröchenig, Wiener's Lemma: Theme and Variations. An Introduction to Spectral Invariance and Its Applications, p. 183, §5.2.5, in Brigitte Forster and Peter Massopust, eds., Four Short Courses on Harmonic Analysis, pp. 175–234.

⁷Karlheinz Gröchenig, Wiener's Lemma: Theme and Variations. An Introduction to Spectral Invariance and Its Applications, p. 187, Theorem 5.16, in Brigitte Forster and Peter Massopust, eds., Four Short Courses on Harmonic Analysis, pp. 175–234; Walter Rudin, Fourier Analysis on Groups, Chapter 6; N. K. Nikolski (ed.), Functional Analysis I, p. 235; V. P. Havin and N. K. Nikolski (eds.), Commutative Harmonic Analysis II, p. 240, §7.7.