Lecture 16

Def: A subset $E \subseteq \mathbb{R}^d$ is said to be Lebesgue measurable or simply measurable if given E > 0, there exists an open set $U \subseteq \mathbb{R}^d$ subset $E \subseteq U \in \mathbb{R}^d$ subset $E \subseteq U \in \mathbb{R}^d$

If E is a measurable set, then we define the Lebesgue measure or measure m(E) by $m(E) = m^*(E)$.

Theorem;

- DE very open set in Rd is measurable.
- D If m*(E) = 0, for a M+ E ⊆ Rd, Then E'y measurable.
- 3) A Countable union of measurable sets is measurable.

proof - 1 Directly follows from the def.

2 Assum m*(E) = 0

Let E>0.

Recall that $n^*(E) = \inf_{\substack{v \ge E}} \{m^*(v)\} = 0$.

Then exists an open set U such that UZE & $m^*(u) \leq \varepsilon$. (by inf. property)

But UNE GU, This gives that $m^*(U \setminus E) \leq m^*(U) \leq \varepsilon$

- .. There exists an open set U such that U3E & mx(UIE) < E.
 - : E'y mesurable.
- Let $\{E_j\}_{j=1, 2, \cdots}$ be a Collection of measurable sets in \mathbb{R}^d . Let E= ÛEj, To show! E is measurble. Let E70.

Since E; is mesurable, there exists on open Set U; in IRd such that 4 2 = 5; & $m^*(V_j \setminus E_j) \leq \frac{\varepsilon}{2^j}$

Let
$$U = \bigcup_{j=1}^{\infty} \bigcup_{j=1}^$$

Proposition: — Cloud sets in IR are measurable.

Proof: — Let $F \subseteq \mathbb{R}^d$ be a cloudset.

Recall: \mathbb{R}^d , $a,b \in \mathbb{R}^d$ $\|\underline{a}-b\| = \sqrt{\|a_Tb\|^2 + \dots + \|a_Tb\|^2}$ metric space Eurliden somm.

Open Ball centre at $\underline{a} \in \mathbb{R}^d$ & radius $\underline{r} > 0$ $\underline{B}(\underline{a}, \underline{r}) := \left\{ \underline{x} \in \mathbb{R}^d \mid \|\underline{a} - \underline{x}\| < r \right\}$ Cloud Ball $\underline{B}(\underline{a}, \underline{r}) = \left\{ \underline{a} \in \mathbb{R}^d \mid \|\underline{a} - \underline{x}\| < r \right\}$

 $= \rangle_{F} = F \cap \mathbb{R}^{d} = \bigcup_{k = 1}^{\infty} F \cap (B(e,k)).$

where B(o,k) = the closed Boll with centre at 0 & radius k.

Also note that FNB(0,k) closed is it is compact.

To show F is welconvolle, it is suffices to show the compat sets are welconvolle.

Assume F is Compact (i.e., closed & bounded).

i. nt(F) < 90.

het E70. We have $m^*(F) = \inf_{U \supseteq F} (m^*(U))$

Then exists on open set $U \subseteq \mathbb{R}^d$ such that $U \supseteq F \otimes m^*(U) \leq m^*(F) + \varepsilon$

Since Fis closed, winger VIF is open UNF. Let $U \setminus F = \bigcup_{j=1}^{\infty} Q_j$ almost disjoint union of Cuber Qj. For a fixed integer N, let $k = \bigcup_{j \ge 1}^{N} R_j$ K'y Comput & KUF GU, This union is a Lingolina union $m^*(U) > m^*(KUF) = m^*(K) + m^*$ $= m^*(F) + \sum_{i=1}^{r} m^*(Q_i).$ $\Rightarrow \int_{j=1}^{N} m^*(Q_j) \leq m^*(U) \cdot m^*(F)$ Tru forong N.EN. w*(U\f)=~*((j,k))=∑ ~*(0) ≤ E.

Then there extent an open set U2F but that m*(UF) \le \cappa. A: het $E = E_1 U E_2$ & dist E_1, E_2) > 0,

when $dist(E_1 U E_2) = \inf \left\{ ||\underline{M} - \underline{y}|| \middle| \underline{A} \in E_1, \underline{y} \in E_2 \right\}$.

Then $m^*(E_1 U E_2) = m^*(E_1) + m^*(E_2)$.

Apply (x) to $K \otimes F_1$ $F \cap K = \emptyset$.

Compar closed.

To then: $d(K_1 F) > 0$. $(E_1 K)$.