Detect your favorite animal

Objective:

Place a square around your favorite animal in selected images.

Mission statement:

- Create your own dataset from pre-existing datasets.
- Describe your final dataset.
- Define and implement your modelisation strategy.

Note: if you decide to build your own dataset from scratch, you can. But don't forget that you will need a tool to draw boxes and catch the coordinates for your animal of interest on each picture.

Example of such tool: <u>jupyter-bbox</u>

Suggested Dataset:

- Open Images
- Kaggle animal detection dataset
- Google dataset search

Ressources:

- Potentially useful libraries:
 - o YoloV8
 - Google images download
 - MediaPipe
 - Dark Flow
 - o Image AI

- o <u>jupyter-bbox</u>
- Blogs:
 - o GeekforGeeks: Detect an object with OpenCV-Python
 - FreeCodeCamp: How to Detect Objects in Images Using the YOLOv8
 Neural Network
- Notebooks:
 - o Object Detection using Opency
 - o <u>learn yolov5 on animal datasets</u>
 - Yolo v3 Object Detection in Tensorflow
- Youtube videos:
 - Murtaza's Workshop Robotics and AI: Object Detection OpenCV
 Python
 - o Murtaza's Workshop Robotics and Al: Yolo v3 | OpenCV Python

Livrables:

- A notebook (html or ipynb)
- BONUS:
 - Script: build a program that can take an image as an input and return an image with a square around your favorite pet.

Evaluation criterias (110 / 100 pts):

Skill	Description	Points
Documentatio n (markdown)	 Your code is commented when needed. The model and hyperparameters selection is explained. The performances are commented on. Bibliographical references are present. 	30
Code (python)	 All blocks necessary to implement your strategy are present. Specialized libraries have been used. All notebook cells have been executed successfully sequentially. 	30
Performances	 A baseline is defined. All necessary comparisons are done. Figures are readable and legends are present. A proper evaluation metric was selected. Points for this part are weighted by the performance of your model 	40
Application (bonus)	The script is functional.	10