3 du

3.1 sachovnice

z sachovnice si udelejme jednu dlouhou cestu ktera prochazi kazdym polickem:

				J	J
#		#		#	
	#		#		#
R		#		#	
	#		#		# R
#		#		#	\mathbf{R}
	#		#		#
#	'	#	'	#	

kde # je cerne policko, cesta je ohranicena a R jsou vymazana policka

pak mame ruzne barvy policek na obou koncich cesty a tudiz lze poskladat domino.

3.2 tok cesta a rez

tvrzeni plati

reseni vychazi z definice minimalniho rezu, nebot velikost minimalniho rezu odpovida velikosti toku a zaroven rez obsahuje pouze hrany ze zdroje do stoku. Tudiz nemuze existovat cesta takova, ze prekroci onen min. rez dvakrat, nebot bychom dostali spor u rovnosti min. rezu a max. toku.

3.3 kruznice

pokud mame kazdy vrchol stupne 2 a pridame dalsi 2 hrany (na kazdou stranu jednu), tak graf bude 4-souvisly jak hranove tak i vrcholove.

3.4 souvisly graf

Ja bych radeji dokazal opak a to sice ze existuje graf, ktery ma mene nez 30 hran, je souvisly, rovinny a presto muze jeho vrchol mit stupen vetsi nez 4.

Vytvorme kruznici o vice nez 4 vrcholech a pak jeden bod uprostred, pote napojime kazdy vrchol z kruznice na bod uprostred a dostaneme rovinny, souvisly graf s mene nez 30 hranami jez ma vrchol stupne vice nez 4.

3.5 magicka krychle

ano, plati

Definujme si jednotkovou krychly jakozto krychly, ktera ma na pricne diagonale jednicky. pak muzeme provadet upravy podobne na maticich, neboli prohozeni poradi dvou ctvercu(jedne vrstvy) a dostaneme stale krychli sily 1

Pak dve krychle sily 1 ktere vzniknou rozlozenim krychle sily dva bodou pouze nejakou permutaci jednotkove krychle.