Estructuras de Datos

		Datos	Ventajas	Desventajas	Aplicación	
		Estructura de datos lineal	Acceso aleatorio	El tamaño es fijo	Para almacenar información de forma lineal	
		Los elementos se almacenan en ubicaciones de			Adecuado para aplicaciones que	
	Arrays	memoria contiguas Puede acceder a elementos aleatoriamente usando	Fácil clasificación e iteración	Difícil de insertar y eliminar Si la capacidad es mayor y la ocupación menor, la	requieren búsquedas frecuentes	
		index Almacena elementos homogéneos, es decir,	Reemplazo de múltiples variables	mayor parte de la matriz se desperdicia		
		elementos similares		Necesita memoria contigua para ser asignada		
		Estructura de datos lineal	Dinámico en tamaño	Si se pierde el nodo principal, se pierde la lista vinculada	Adecuado donde la memoria es limitada	
					Adecuado para aplicaciones que	
	Linked List	Los elementos se pueden almacenar según la disponibilidad de memoria	Sin desperdicio, ya que la capacidad y el tamaño son siempre iguales	No es posible el acceso aleatorio	requieren inserción y eliminación frecuentes	
		Puede acceder a elementos solo de forma lineal	Fácil inserción y eliminación ya que se requiere la manipulación de 1 enlace			
		Almacena elementos homogéneos, es decir,				
		elementos similares Dinámico en tamaño	Asignación de memoria eficiente			
		Fácil inserción y eliminación El elemento inicial o nodo es la clave que				
		generalmente se denomina cabeza.				
		Estructuras de datos lineales usando Java	Mantiene los datos de forma LIFO	La manipulación está restringida a la parte superior de la pila.	Recursividad	
	Stack		El último elemento está disponible para			
		Sigue LIFO: último en entrar, primero en salir	su uso Todas las operaciones son de	No muy flexible	Analizando	
		Solo se puede acceder a los elementos superiores La inserción y eliminación se realiza desde arriba	complejidad O (1)		Navegador Editores	
		Toda la operación funciona en tiempo constante, es			Luttores	
		decir, O (1) Estructura de datos lineal	Mantiene los datos en forma FIFO	Depende la implementación	Planificación	
			La inserción desde el principio y la			
	Oueue/Colo	Sigue a FIFO: primero en entrar, primero en salir	eliminación desde el final toma O (1) tiempo		Manteniendo la lista de reproducción	
	Queue/Cola	La inserción puede realizarse desde la parte trasera. La eliminación puede tener lugar desde la interfaz.			Interrumpir el manejo	
		Toda la operación funciona en tiempo constante, es				
-		decir, O(1)	Puede representar datos con alguna			
		Estructura de datos jerárquica	relación	Clasificar es dificil	Jerarquía del sistema de archivos	
	<i>.</i>	El elemento superior se conoce como la raíz del	La inserción y la búsqueda son mucho		Varias variaciones del árbol binario tienen una amplia variedad de	
	Arbol binario	árbol. Cada nodo puede tener como máximo 2 hijos en el	más eficientes	No muy flexible	aplicaciones	
		árbol binario Puede acceder a elementos aleatoriamente usando				
		index				
		El montón binario se puede visualizar como una matriz como un árbol binario completo	Puede ser de 2 tipos: min heap y max heap	No es posible el acceso aleatorio	Adecuado para aplicaciones que se ocupan de la prioridad	
		•	El montón mínimo mantiene el más			
	Неар		pequeño y el elemento y la parte superior y el máximo mantiene el más	Solo el elemento mínimo o máximo está		
		El elemento Arr [0] se tratará como raíz	grande O (1) para tratar con elementos mínimos	disponible para accesibilidad	Algoritmo de programación	
		longitud (A) - tamaño de la matriz	o máximos		almacenamiento en caché	
		heapSize (A) - tamaño del montón Usado generalmente cuando se trata de elementos				
		mínimos y máximos			Adecuado para la aplicación que	
			La función hash ayuda a buscar		necesita un tiempo constante de	
		Para el i-ésimo nodo	elementos en tiempo constante. Una forma eficiente de almacenar	La resolución de colisiones aumenta la complejida	búsqueda.	
		Utiliza la función hash especial Una función hash mapea un elemento a una	elementos.			
	Hashing	dirección para su almacenamiento				
		Esto proporciona acceso en tiempo constante La colisión se maneja mediante técnicas de				
		resolución de colisiones.				
		Técnica de resolución de colisiones Encadenamiento				
		Direccionamiento abierto		El almacenamiento del gráfico (lista de		
	Graph			adyacencia y matriz de adyacencia) puede		
		Básicamente es un grupo de aristas y vértices.	encontrar conectividad	generar complejidades	Adecuado para una red de circuitos Adecuado para aplicaciones como	
		Representación gráfica G (V, E); donde V (G) representa un conjunto de	Camino más corto		Facebook, LinkedIn, etc.	
		vértices y E (G) representa un conjunto de aristas	coste mínimo para pasar de 1 pt a otro		Ciencia médica	
		El gráfico puede ser dirigido o no dirigido El gráfico puede estar conectado o disjunto.	Árbol de expansión mínimo			

Data Structure Classification in Java

Common Data Structure Operations

Data Structure	Time Complexity							Space Complexity	
	Average			Worst				Worst	
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	0(1)	0(n)	0(n)	0(n)	0(1)	0(n)	0(n)	0(n)	0(n)
<u>Stack</u>	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Queue	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	O(n log(n))
Hash Table	N/A	0(1)	0(1)	0(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	O(n)
Cartesian Tree	N/A	O(log(n))	0(log(n))	0(log(n))	N/A	0(n)	0(n)	0(n)	O(n)
B-Tree	0(log(n))	0(log(n))	O(log(n))	0(log(n))	0(log(n))	0(log(n))	O(log(n))	0(log(n))	O(n)
Red-Black Tree	0(log(n))	O(log(n))	O(log(n))	0(log(n))	0(log(n))	0(log(n))	O(log(n))	O(log(n))	O(n)
Splay Tree	N/A	O(log(n))	O(log(n))	O(log(n))	N/A	0(log(n))	O(log(n))	O(log(n))	O(n)
AVL Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	O(n)
KD Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	O(n)