

Sistemas Digitais 2 - 1/2016

Prova P1 - 12/04/2016

Nome:	Matrícula:	/

- **1. (2 pontos)** Julgue os itens a seguir, justificando os falsos.
 - a. () Contadores assíncronos também são conhecidos como contadores *ripple*.
 - b. () A diferença entre um contador síncrono e um assíncrono é o número de estados na sequência.
 - c. () O módulo de um contador é o número de flip-flops.
 - d. () 0 módulo total de três contadores módulo-10 ligados em cascata é 100.
 - e. () A menor frequência de saída que pode ser obtida quando se liga um contador módulo 5, um contador módulo 8 e dois contadores módulo 10 em cascata, sendo que o clock de entrada é de 10 MHz, é 10 kHz.
 - f. () É possível deslocar um byte de dados serialmente em um registrador de deslocamento com um pulso de clock.
 - g. () Considere que a palavra 10110101 foi carregada serialmente (sendo o bit mais à direita carregado primeiro) em um registrador de saída paralela com estado inicial igual a 11100100. Após dois ciclos de clock, o registrador irá conter a palavra 01011110.
 - h. () Um contador Johnson de módulo 10 necessita de 10 flip-flops.
 - i. () Considerando-se uma frequência de clock igual a 100 kHz, pode-se carregar serialmente uma palavra de 8 bits em um registrador em 80 us.
 - j. () Quando um registrador SISO de 8 bits é usado para causar um atraso de 24 us, a frequência do clock deve ser 41,67 kHz.
- **2.** (**3 pontos**) Projete, usando **Moore** e **Mealy**, uma FSM que detecta (saída **Z = 1**) **ambas** as sequências **110** e **101** na entrada **A**. Faça o diagrama de estados, a tabela de transição e de saída e encontre as equações de excitação e de saída. Use Q_n, Q_{n-1}, ... Q₁, Q₀ como variáveis de estado, sendo Q₀ o bit menos significativo, e a sequência de Gray na codificação de estados. Se possível, minimize os estados e use a abordagem de custo mínimo, se necessário.
- **3. (3 pontos)** Suponha que você vai implementar em um FPGA uma FSM que controla uma fechadura digital **(Fig. 1)** que possui 3 botões de entrada: **A, B** e **C**.

Fig. 1 - Esquemático da fechadura digital

Assuma que os botões não podem ser pressionados simultaneamente, e que a fechadura possui as seguintes características:

 Quando é pressionada uma determinada combinação nas entradas, o sinal UNLOCK é acionado e a fechadura é aberta. Para encontrar a combinação da sua fechadura, use os 3

últimos dígitos do seu número de matrícula e considere a Tabela 1. Por exemplo, para um aluno com matrícula **09/0023432**, a combinação será **B-A-C**.

Tabela 1

0	1	2	3	4	5	6	7	8	9
Α	В	С	Α	В	С	Α	В	С	Α

- Após aberta, a fechadura pode ser travada novamente pressionando qualquer botão.
- Considere que a combinação A-A funciona como reset a partir de qualquer estado, exceto quando o alarme tiver sido acionado. Obs: Se A-A fizer parte da sua sequência, utilize a combinação seguinte para reset (B-B).
- Para dificultar a descoberta da sequência correta, o alarme somente será acionado após a inserção de uma sequência incorreta completa (4 botões pressionados).
- A única maneira de desligar o alarme é pressionando a combinação C-A.

Usando Moore, esboce o diagrama de estados e a tabela de transição, indicando o que cada estado representa, que condições são necessárias para a transição dos estados e quais são as saídas correspondentes. Enumere os estados como **SO**, **S1**, etc. Sinta-se à vontade para fazer suposições razoáveis que não foram abordadas na especificação, desde que as descreva na sua solução.

4. (2 pontos) Analise o circuito da **Fig. 2**: encontre as equações de excitação, codifique os estados usando a sequência binária (considerando **A**, **B**, ... como y_2 y_1 = **00**, **01**,...), e complete a Tabela 2. Há alguma corrida crítica ou não crítica? Justifique.

Tabela 2

X	0	1	0	0	1	1	1	0	0
Z	0								
Estado	Α								