Interactive Computer Graphics: Lecture 10

Ray tracing

Direct and Global Illumination

- <u>Direct illumination</u>: A surface point receives light directly from all light sources in the scene.
 - Computed by the direct illumination model.
- <u>Global illumination</u>: A surface point receives light after the light rays interact with other objects in the scene.
 - Points may be in shadow.
 - Rays may refract through transparent material.
 - Computed by reflection and transmission rays.

Albrecht Dürer's Ray Casting Machine

• Albrecht Dürer, 16th century

Arthur Appel, 1968

- On calculating the illusion of reality, 1968
- Cast one ray per pixel (ray casting).
 - For each intersection, trace one ray to the light to check for shadows
 - Only a local illumination model
- Developed for pen-plotters

Ray casting

```
cast ray
Intersect all objects
color = ambient term
For every light cast shadow ray
col += local shading term
```


Ray casting

Turner Whitted, 1980

- An Improved Illumination Model for Shaded Display, 1980
- First global illumination model:
 - An object's color is influenced by lights and other objects in the scene
 - Simulates specular reflection and refractive transmission

Turner Whitted, 1980

Recursive ray casting

```
trace ray
  Intersect all objects
  color = ambient term
  For every light
        cast shadow ray
        col += local shading term
  If mirror
        col += k refl * trace reflected ray
  If transparent
        col += k trans * trace transmitted ray
```

Does it ever end?

- Stopping criteria:
 - Recursion depth: Stop after a number of bounces
 - Ray contribution: Stop if reflected / transmitted contribution becomes too small

Ray tracing: Primary rays

- For each ray we need to test which objects are intersecting the ray:
 - If the object has an intersection with the ray we calculate the distance between viewpoint and intersection
 - If the ray has more than one intersection, the smallest distance identifies the visible surface.
- Primary rays are rays from the view point to the nearest intersection point
- Local illumination is computed as before:

$$L = k_a + (k_d(\mathbf{n} \times \mathbf{l}) + k_s(\mathbf{v} \times \mathbf{r})^q)I_s$$

Ray tracing: Secondary rays

- Secondary rays are rays originating at the intersection points
- Secondary rays are caused by
 - rays reflected off the intersection point in the direction of reflection
 - rays transmitted through transparent materials in the direction of refraction
 - shadow rays

Recursive ray tracing: Putting it all together

Illumination can be expressed as

$$L = k_a + (k_d(\mathbf{n} \times \mathbf{l}) + k_s(\mathbf{v} \times \mathbf{r})^q)I_s + k_{reflected}L_{reflected} + k_{refracted}L_{refracted}$$

Recursive Ray Tracing: Ray Tree

Precision Problems

Precision Problems

- In ray tracing, the origin of (secondary) rays is often below the surface of objects
 - Theoretically, the intersection point should be on the surface
 - Practically, calculation imprecision creeps in, and the origin of the new ray is slightly beneath the surface
- Result: the surface area is shadowing itself or the ray continues on the wrong side

Graphics Lecture 10: Slide 18

ε to the rescue ...

- Check if t is within some epsilon tolerance:
 - if $abs(\mu) < \epsilon$
 - point is on the surface
 - else
 - point is inside/outside
 - Choose the ε tolerance empirically
- Move the intersection point by epsilon along the surface normal so it is outside of the object
- Check if point is inside/outside surface by checking the sign of the implicit (sphere etc.) equation

- Compute mirror contribution
- Cast ray in direction symmetric wrt. normal
- Multiply by reflection coefficient (color)

Don't forget to add epsilon to the ray

Without epsilon

Graphics Lecture 10: Slide 21

With epsilon

- To calculate illumination as a result of reflections
 - calculate the direction of the secondary ray at the intersection of the primary ray with the object.

given that

- n is the unit surface normal
- $-\mathbf{v}$ is the direction of the primary ray
- $-\mathbf{v}$ ' is the direction of the secondary ray as a result of reflections

$$\mathbf{v'} = \mathbf{v} - (2\mathbf{v} \cdot \mathbf{n})\mathbf{n}$$

$$\mathbf{v'} = \mathbf{v} - (2\mathbf{v} \cdot \mathbf{n})\mathbf{n}$$

The v, v' and n are unit vectors and coplanar so:

$$\mathbf{v'} = \alpha \mathbf{v} + \beta \mathbf{n}$$

Taking the dot product with n yields the eq.:

$$\mathbf{n} \cdot \mathbf{v'} = \alpha \mathbf{v} \cdot \mathbf{n} + \beta = \mathbf{v} \cdot \mathbf{n}$$

Requiring v' to be a unit vector yields the second eq.:

$$1 = \mathbf{v}^{2} \cdot \mathbf{v}^{2} = \alpha^{2} + 2 \alpha \beta \mathbf{v} \cdot \mathbf{n} + \beta^{2}$$

Solving both equations yields:

$$\mathbf{v'} = \mathbf{v} - (2\mathbf{v} \cdot \mathbf{n})\mathbf{n}$$

Transparency

- Compute transmitted contribution
- Cast ray in refracted direction
- Multiply by transparency coefficient

 The angle of the refracted ray can be determined by Snell's law:

$$h_1 \sin(f_1) = h_2 \sin(f_2)$$

- η₁ is a constant for medium 1
- η₂ is a constant for medium 2
- φ₁ is the angle between the incident ray and the surface normal
- φ₂ is the angle between the refracted ray and the surface normal

In vector notation Snell's law can be written:

$$k_1(\mathbf{v} \times \mathbf{n}) = k_2(\mathbf{v}' \times \mathbf{n})$$

The direction of the refracted ray is

$$\mathbf{v}^{(t)} = \frac{h_1}{h_2} \frac{\mathring{\mathbf{c}} \mathring{\mathbf{e}}}{\mathring{\mathbf{e}} \mathring{\mathbf{e}}} \sqrt{(\mathbf{n} \times \mathbf{v})^2 + \mathring{\mathbf{c}} \frac{h_2}{\mathring{\mathbf{e}}} \frac{\mathring{\mathbf{o}}^2}{h_1 \mathring{\mathbf{o}}} - 1 - \mathbf{n} \times \mathbf{v} \mathring{\mathbf{u}} \times \mathbf{n} + \mathbf{v} \overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot{\mathbf{v}}}}}{\overset{\dot{\mathbf{v}}}}{\overset{\dot$$

This equation only has a solution if

$$(\mathbf{n} \times \mathbf{v})^2 > 1 - \xi \frac{h_2 \ddot{0}^2}{h_1 \ddot{0}}$$

- This illustrates the physical phenomenon of the limiting angle:
 - if light passes from one medium to another medium whose index of refraction is low, the angle of the refracted ray is greater than the angle of the incident ray
 - if the angle of the incident ray is large, the angle of the refracted ray is larger than 90°
 - the ray is reflected rather than refracted

 Make sure you know whether you are entering or leaving the transmissive material

Graphics Lecture 10: Slide 30

Amount of reflection and refraction

- Traditional (hacky) ray tracing
 - Constant coefficient reflection
 - Component per component multiplication
- Better: Mix reflected and refracted light according to the Fresnel factor.

$$L = k_{fresnel} L_{reflected} + (1 - k_{fresnel}) L_{refracted}$$

Graphics Lecture 10: Slide 31

Fresnel factor

More reflection at grazing angle

Fresnel factor

Schlick's Approximation

Schlick's approximation

$$k_{fresnel}(Q) = k_{fresnel}(0) + (1 - k_{fresnel}(0))(1 - (\mathbf{n} \times \mathbf{l}))^5$$

- $k_{fresnel}(0)$ = Fresnel factor at zero degrees
- Choose $k_{fresnel}(0) = 0.8$, this will look like stainless steel

Example

Graphics Lecture 10: Slide 35

How do we add shadows?

How do we add shadows?

$$L = k_a + s(k_d(\mathbf{n} \times \mathbf{l}) + k_s(\mathbf{v} \times \mathbf{r})^q)I_s + k_{reflected}L_{reflected} + k_{refracted}L_{refracted}$$

 $s = \hat{1}$ if light source is obscured $\hat{1}$ if light source is not obscured

Shadows: Problems?

Make sure to avoid self-shadowing

Example

Shadows

 One shadow ray per intersection per point light source

Soft shadows

 Multiple shadow rays to sample area light source

Reflection: Conventional ray tracing

One reflection per intersection

Reflection: Conventional ray tracing

How can we create effects like this?

Reflection: Monte Carlo ray tracing

Random reflection rays around mirror direction

Glossy surfaces

Ray tracing

- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
 - Accumulate radiance contribution

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse

Send rays to light

Monte-Carlo Path Tracing

- Trace only one secondary ray per recursion
- But send many primary rays per pixel

Example

1 sample per ray

Example

256 samples per ray

