Exercise 1.4.3.

Verify that the metrics on Σ_m and Σ_m^+ generate the product topology	(1)
Proof + reasoning:	
Firstly, what product topology is being referred to? $\Sigma_m = A_m^{\mathbb{Z}}$, which is the space of sequences of elements in $\{1,\ldots,m\}$ indexed by \mathbb{Z} , which can be seen as a product $\prod_{z\in\mathbb{Z}}A_m$. The product topology is generated by products of open sets. Is there a general result that countable product topologies are generated by cylinders, instead of just by countable products of open sets?	(2)
Yes, the result is that the <i>n</i> -dimensional cylinders form a basis for the product topology. This is exactly the topology on Σ_m and Σ_m^+ .	(4)
How does (4) help us? From a metric we can generate the collection of open balls around all points. A metric generates a topology when, given a basis set B and any point $x \in B$, there is an open ball containing x that is contained in B .	(5)
Let $C := C_{j_1,,j_k}^{n_1,,n_k} = \{x = (x_\ell) : x_{n_i} = j_i, i = 1,,k\}$ where $n_1 < n_2 < < n_k$ are indices in \mathbb{Z} or \mathbb{N} , and $j_i \in A_m$.	(6)
Let $x := (x_i) \in C$.	(7)
We want to show that C contains an open ball B such that $x \in B$.	(8)
Recall that the metrics on Σ_m and Σ_m^+ are given by $d(x,x')=2^{-l}$, where $l=\min\{ i : x_i\neq x_i'\}$. If we pick ε small enough, we can construct $B(x,\varepsilon)$ such that all points in $B(x,\varepsilon)$ agree with x up to the 'largest' index in the definition of C .	(9)
Let $m = \max\{ n_i : i \le k\}, y \in B(x, 2^{-m}), \text{ and } l = \min\{ i : y_i \ne x_i\}.$	(10)
We have $2^{-l} = d(x, y) < 2^{-m}$.	(11)
From (11), $l > m$, so $x_{n_i} = y_{n_i} \ \forall i \leq k$, hence $y \in C$.	(12)
Therefore $B(x, 2^{-m}) \subseteq C$.	(13)

By (13), and the fact that the collection of sets such as $C_{j_1,\ldots,j_k}^{n_1,\ldots,n_k}$ form a basis for the product topology, the metrics generate the product topology.

(14)