Dynamic Games

January 26, 2022

 Dynamic (extensive form) games can be represented using game trees

- Dynamic (extensive form) games can be represented using game trees
- How do we look for a Nash Equilibrium of this game?

- Dynamic (extensive form) games can be represented using game trees
- How do we look for a Nash Equilibrium of this game?
- First, turn it into a normal form game:

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

IMPORTANT: A pure strategy is a complete contingent plan

► Two pure-strategy Nash equilibria (blue)

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- Two pure-strategy Nash equilibria (blue)
- What's the problem with the (Not Enter, Fight) equilibrium?

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- Two pure-strategy Nash equilibria (blue)
- What's the problem with the (Not Enter, Fight) equilibrium?
- It involves a threat that is **not credible**
- ▶ If entrant opts out, incumbent does not need to make a decision. But if he *did* have to make one, he would never choose Fight

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

As game theorists, we want to rule out the equilibrium that uses a non-credible threat

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- As game theorists, we want to rule out the equilibrium that uses a non-credible threat
- This motivates the idea of subgame perfection

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- As game theorists, we want to rule out the equilibrium that uses a non-credible threat
- This motivates the idea of subgame perfection
- A Nash Equilibrium is subgame perfect if it induces a Nash equilibrium for any subgame
- In a complete information game, a subgame is a game beginning at any non-terminal node

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

In our example, the game has two subgames:

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- In our example, the game has two subgames:
- ► The game beginning at the initial node (EFG is always a subgame of itself)

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- In our example, the game has two subgames:
- ► The game beginning at the initial node (EFG is always a subgame of itself)
- The game beginning at the incumbent's decision node

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- (In, Accomodate) induces a Nash Equilibrium for both subgames
- ► (Out, Fight) does not
- ► Therefore, (Out, Fight) is not **subgame perfect**
- We succeeded in introducing an equilibrium concept that rules out non-credible threats being played

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

Backward induction

The **backward induction** procedure can be used to find the subgame perfect Nash equilibrium:

- 1. Look at immediate predecessors of the final nodes.
- 2. Each such node has a player controlling it. Choose the action that gives him the largest payoff (break ties arbitrarily).
- Replace the node with a final node having utility for each player equal to the utility induced by the action chosen in Step 2.
- 4. Repeated the procedure in steps 1-3 in the new game until only one node is left.

Race game

Gneezy, Rustichini, and Vostroknutov (2010):

Fig. 1. Average error per round, G(15, 3).

Ultimatum game

- Game played between a proposer and a responder
- Proposer endowed with some amount, e.g. \$10
- Decides amount $x \in \{0.01, 0.02, ..., 9.98, 9.99, 10\}$ to offer to the responder
- ▶ If responder accepts, proposer gets 10 − x and responder gets x
- If responder rejects, no one gets anything

