

Outlines

- > Framework
- Problem Statement
- Related Areas
- History
- Datasets and Learning Models
- Optimization Methods
- Algorithms
- Examples

Object Detection-YOLOv3

Instance Segmentation

Lane & Sign Detection

2D-3D Fusion

2D-3D Fusion for Tracking

Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for Autonomous Driving

Kemiao Huang, Qi Hao*

Department of Computer Science and Engineering
Southern University of Science and Technology

Music Info: Digital Technology - AShamaluevMusic

Reinforcement Learning for Formation

2.5X

SUSTECH

Reinforcement Learning for Navigation

Adaptive Environment Modeling Based Reinforcement Learning (AEMCARL) for Collision Avoidance in Crowded Scenes

Shuaijun Wang, Rui Gao, Chenyang Li, Shengduo Chen, Ruihua Han, and Qi Hao*

Department of Computer Science and Engineering, Southern University of Science and Technology

SUSTech Autonomous Driving Challenge

Autonomous Driving Challenge

demo video @南科大无人驾驶俱乐部

Federated Learning for Map Fusion

Datasets and Benchmark Metrics

Datasets

- > KITTI
- Udacity
- Waymo
- NuScences
- CityScapes
- Apolloscape
- > SUSTech Scape

Metrics

- Correctness
- Robustness

Our Dataset: SUSTech Scape

SUSTechscape An open datasets for autonomous driving Datasets Download Benchmarks Simulator Submit results Collaborators Contact SUSTech Scape Open Datasets for Autonomous Public Transportation with Smart Samples and Cyber-Physical Benchmarks

Datasets Comparison

Cameras (6)

Lidars (2)

Cars (4)

Camera

Lidars (3)

M-spectral

Cameras (2) Buses (4) Taxis (4)

ApolloScape

SUSTech Scape

cm

cm

(6)

	Sensors	Location Accuracy	Scene Diversity	Annotation				Driver	
Dataset				2D	3D	Video	Lane	Behav	Physi
кітті	Cameras (6), Lidar (1)	cm	Regions Day time	box-15k, pixel-400	Box	no	no	no	no
Oxford RobotCar	Camera, Lidar	unknow	1 City, weather	no	no	no	no	no	no
TSD-max	Camera	m	Regions	box-10k	no	no	2D	no	no
CityScape	Camera	unknow	50 Cities, Season, weather, D&N	pixel-25k	no	no	no	no	no
Udacity	Camera, Lidar	unknow	1 City, sunny and overcast	box-25k	no	no	2D	no	no
Mapillary	Camera	m	Cities, season, weather, D&N	pixel-25k	no	no	2D, 2 classes	no	no
TorontoCity ¹	Camera, Lidar	cm	1 City	pixel	point	no	no	no	no
BDD100K	Camera, Lidar	m	4 Regions, weather, D&N	box-100k, pixel-10k	no	no	2D, 8 classes	no	no

pixel-140k

resolution

pixel-200k

resolution

2K

<4K

point

point

yes

yes

2D, 3D,

classes

2D, 3D

classes

>28

28

no

yes

no

yes

4 Regions,

1~5 Cities,

and night

weather, day

weather, D&N

Benchmark Metrics

Evaluation Metrics

Scene flow

Scenarios Overlap Rate[%]

Defect resolution rate[%]

Pressure running time[%]

One Pass Rate[%]

Scene

System

Reliability &

Robustness

Processing

	Depth	Scale invariant error [%] Relative squared error [%] Absolute squared error [%] Root mean squared error [%]	Experiments	compared with ground truth	2D-3D reconstruction algorithms	
Mapping & Localization Accuracy	Mapping	iRMSE [1/km] iMAE [1/km] RMSE [mm] MAE [mm]	Odometry (IMU, Camera) Readings and 3D Points Cloud Based Experiments	Environment mapping and vehicle localization under various scenarios and conditions	SLAM, key frame selection, sensor fusion, optimization algorithms	
	Odometry	Translation errors [%] Rotation errors [deg/m]				
Energy Efficiency	Urban Area		Testing Experiments	Current and power consumption of devices	Power modes, battery management and	
	Suburb Area	Battery capacity [kW/h] Range [kM]				
	Hybrid Area	Complete weight [t]			Scheduling algorithms	
System Scalability	Task completion time [h] Task completion distance [km] MTCA [km] MTDA [h]		Simulation Experiments in Different Scales	Predicted system performances in different scales of the vehicle fleet	Communication protocols, group formation control, collaborative planning Algorithms	

stereo disparity outliers [%]

optical flow outliers [%]

scene flow outlier [%]

Methods

Experiments

Simulation

Scenarios

Experiments

under Complex

Image, 3D Points Cloud Based Measures

Optical and scene flow

estimation errors, 3D

reconstruction errors

Sharp turns, degraded

marks, faulty signals, reckless driving, sensor

failures

Subjects

Optical flow

estimation, scene flow estimation,

Sensor perception, motion planning, decision & control

algorithms

2D-3D Data

Dataset Annotation

Dataset Annotation Tools

Out Platform: SUSTech POINTS

Out Simulator: SUSTech PAVALION

Simulator: CARLA+Autoware

Simulator: CARLA+Autoware

Simulator: CARLA+Autoware

More Reading and Multimedia Materials

Books: 《人类简史》《奇点将近》 《终极算法》 《人工智能时代》《2050》 《情感机器》 《数学之美》

Movies: "Blade Runner" "AI" "Prometheus"
"Covenant" "Ex Machina" "She"
"2001: Space Odyssey" "The Matrix"
"I, Robot" "Bicentennial Man"
"Terminator"

TV Series: "West World" "Humans" "Black Mirrors"

More Course Links

Stanford Machine Learning:

https://see.stanford.edu/Course/CS229/47

MIT Machine Learning: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/index.htm

Stanford CNN for Vision: http://cs231n.stanford.edu

Stanford Deep Learning: http://cs230.stanford.edu/syllabus.html

MIT Deep Learning: http://introtodeeplearning.com/