Partial Translation of Japanese Unexamined Patent Publication No. 61-73849

The present inventors made energetic considerations to provide an alloy, in which the current is liable to leak even under the destroyed condition of super conductivity, that is, an alloy having high electric conductivity. The present inventors then discovered that the object mentioned above can be solved by means of solidifying a Cu-based alloy having a particular composition. The alloy thus provided has such a structure that fine minority-phase metal-particles are uniformly dispersed. The present invention was thus completed.

The Cu-based alloy according to the present invention consists of from 1 to 10 atomic % of at least one selected from the group consisting of Pb, Bi, Tl, Li and Fe, and Cu essentially in balance, and has a structure that fine minority-phase metal-particles are uniformly dispersed in the matrix.

⑩ 公 開 特 許 公 報 (A) 昭61-73849

@Int_Cl_4

識別記号

庁内整理番号

母公開 昭和61年(1986)4月16日

C 22 C 9/00

6411-4K

審査請求 未請求 発明の数 1 (全4頁)

9発明の名称 C u 基超伝導合金

②特 願 昭59-196352

❷出 願 昭59(1984)9月19日

の発明者増本健価台市上杉3の8の22の発明者井上明久価台市川内亀岡町68

位発明者 矢野 锡芳 字治市字治里民32

⑫発 明 者 松 崎 邦 男 白石市大鷹沢字稲荷山 1 - 3

⑩出 願 人 増 本 健 仙台市上杉3の8の22 ⑪出 願 人 ユニチカ株式会社 尼崎市東本町1丁目50番地

砂代 理 人 弁理士 児玉 雄三

明細雪

1. 発明の名称

Cu基超伝導合金

2.特許請求の範囲

(1) Pb. Bi, T1, Li, Feからなる群より選ばれた 少なくとも1種が1~10原子%で、残部が実 質的にCuよりなり、かつ母相中に微細な第2 相金属粒子が均一に分散してなる組織を有す るCu基超伝導合金。

3. 発明の詳細な説明

本発明は、母相中に微細な第2相金属粒子が均一に分散してなる組織を有する超伝導特性に優れたCu基合金に関するものである。

従来、超伝導材料としては、Nb₂Sn、V₃Ga、NbTi 合金等がよく知られている。しかし、これらの超 伝導化合物は脆く、実用上あるいは製造上種々の 問題点が残されている。その問題点としては、例 えば線材化の困難性等があげられる。

すなわち、超伝導特性を利用した種々の用途。

例えば超伝導コイルや機器部品の用途において線 材条の超伝導材料が望まれている現在、製造及び 加工等成型が容易で、かつ超伝導特性の優れた材 料が好ましい。

従来、上記の目的を達しようとした試みで、母 材の加工性を利用し、近接効果により超伝導特性 を向上させようとした材料の報告にシーエッチ。 ジェイ、ロー アンド イー、ロー;ゼット、フ ィジック (ch. J. Raub and E. Raub ; Z. Phisik) 186 (1965), 310 がある。この報告では、鋳造材 のIc (超伝導遷移温度) が低いため、さらに焼入 れ時効させ、焼入れ時効により向上したTcとPb粒 子との関係を示している。また、Cu-Nb 合金等に おいても同様の研究がなされている。しかしなが ら、これらは最適の熱処理条件を施してはじめて 良好なTcを示しており、しかもPb及びNb粒子が熱 処理によって拉界に折出しており、機械的性質を 著しく劣化させる。すなわち、これらの報告にお いては、母材の良好な加工性とPb粒子の近接効果 から、加工性に優れ、さらには超伝導特性にも優

れた材料を得ようとしたわけであるが、鋳造材では加工性は優れているが、超伝導特性は低く、さらに焼入れ時効を行うと、超伝導特性は向上するが、加工性が非常に低下してしまうということで所期の目的は全く達せられておらず、またfcが1~2 K程度では用途は全くなかった。

さらに、一般の超伝導材料は超伝導状態が壊れた時に大電流が流れるために異常に発熱し、周囲の液体Heガスを沸騰させ、気化したHeガスにより爆発を起こす等の危険がある。このような理由により、できるだけ超伝導材料の導電率は高いことが望ましい。

一方、第2相金属粒子分散型 Al-Pb系合金を被体急冷法により急冷凝固して得、得られた合金材料の超伝導特性を検討した発表がある(日本金属学会:春期大会 一般概要(1984年4月)P169)。この報告によると、約40m粒径の微細なPb粒子を母相中に均一に分散させることが可能で、超伝導特性も向上していた。しかし、Al基合金であるために導電率は十分満足すべきものではなかった。

母相中の第2相金属粒子が均一に分散しなくなるため、fcが非常にばらつくようになり、しかも機 賊的強度も低下する。

本発明の合金を製造するには、前記合金組成を用い、雰囲気中もしくは真空中で加熱溶融し、これを急冷凝固させればよい。その急冷方法としては種々あるが、例えば液体急冷法として知られる 片ロール法、双ロール法及び回転液中紡糸法等が 本発明者らは、超伝導状態が壊れた場合にも登 流をリークしやすい、すなわち導電率が高い合金 を提供することを目的として鋭意検討した結果、 特定の組成からなるCu基合金を急冷凝固させると、 上記の目的が達成され、微細な第2相金属粒子が 均一に分散してなる組織を有する合金が得られ、 得られた合金が超伝導特性に優れたCu基合金であ ることを見い出し、本発明を完成した。

すなわち、本発明はPb、Bi、T1、Li、Feからなる群より選ばれた少なくとも1種が1~10原子%で、残部が実質的にCuよりなり、かつ母相中に微細な第2相金属粒子が均一に分散してなる組織を有するCu基超伝導合金である。

本発明の合金について説明すると、Pb、Bi、T1、Li、Feからなる群より選ばれた少なくとも1種が1~10原子%であることが必要であり、特に2~5原子%であることが好ましい。Pb、Bi、T1、Li、Feからなる群より選ばれた少なくとも1種が1原子%未満の場合には、Tcが1.5K以下と非常に低く、また10原子%を超える場合には、得られる合金の

特に有効である。これら片ロール法、双ロール法では演形材料が、回転液中紡糸法では細線材料が容易に連続的に、しかも低コストで製造することが可能である。

本発明の合金は、溶湯状態では偏折が全くなく、 完全に合金化しているが、これを適当な速度で急 冷凝固化することにより、例えば母相中に粒径が 1~100nm 程度の非常に微細で、かつ1~100nm 程度の間隔に均一に分散した第2相金属粒子を含 む組織となる。

具体例をあげると、94Cu-6Pbの合金組成を有する本発明の第2相金属粒子分散型合金は、Cuの母相中に粒径約20~40nmでほぼ完全な球形を有するPb粒子が約50~80nmの間隔で分散しており、これは従来の粒子分散型合金と比較して粒子の微細さ、分散の均一性において非常に優れたものである。

本発明のCu基合金は、上記の組織を有しているため、超伝導特性が改善され、特にPb、Bi、TI、Li、Fe量を変化させることによってTcを自由にコントロールでき、しかも加工性が良く、冷間圧延

及び冷間線引きできることから、液体へリウム下で使用する機器の配線材液面レベル計等各種工業用材料として非常に有用である。特に、液体へリウムの液面レベル計は、そのレベルセンサーとしてTcが4.2K付近の材料が使用され、超伝導から常伝導への遷移がシャープでなければならず、本発明の合金はそれらの点において特に優れている。

以下、本発明を実施例により具体的に説明する。 実施例1~16、比較例1~18

表-1に示す各種組成のCu基合金をアルゴンガス雰囲気中で溶融させ、アルゴン噴出圧4.0 kg/cm²、孔径0.12mm中のルピー製紡糸ノズルより320rpm で回転している内径 500mm中の円筒ドラム内に形成された温度 4 で、深さ 2 cmの回転冷却液体中に噴出して急冷凝固させて平均径 0.1mm中の円形断面を有する細線状材料を得た。

これら細線状材料の組織観察を透過電子顕微鏡により測定した。また、機械的性質は常温においてインストロン型引張試験機を用いて測定した。

なお、超伝導遷移温度(Tc)については、試料を

クライオスタット内部に取り付け、それに希薄な ヘリウムガスを充塡し、液体へリウム中に浸漬し た後、通常の四端子法により試料の電気抵抗を測 定した。

また、加工製を示す線引可能の限界圧下率は、 急冷凝固線材を各グイスでの圧下率 5 %で、速統 的に通常のダイヤモンドダイスを用いて冷間線引 きし、切断の生じた線径から線引可能限界圧下率 を求め、圧下率70%以上冷間線引きができたもの を加工性に優れたものとした。

ここで、圧下率とはR.A.(X) = $\{1 - \frac{S}{S_0}\} \times 100$

R.A.; 圧下率

S。 ; 線引前の急冷凝固線材の断面積(mm²)

S ; 線引後の伸線材の断面積 (mm²)

で表される線材の断面減少率をいう。

また、比較のため、従来技術で述べたch, J, Raub and E, Raub らの行った実験と同様にして、Cu-2 Pb合金を通常の鋳造法により得、さらに 800 でから水中に固相焼入れした材料(比較例-1)、さ

らに 500℃で10時間熱処理した材料 (比較例 - 2) についても検討を行った。

その結果を表ー1に示す。

表-1-1

	合金組成	組織		急冷凝固材	破断挫败	-: :
· 	0原子%)		第2相金属 粒子の間隔 (na)	1	80%冷間 線引後 (kg/ma²)	Tc (K)
比较例一1	98Cu-2Pb	1000~3000	2000~5000	良好	20	< 1.5
比较到- 2	000 20h	(粒界に)		 m T T = 1 Hr	į	
	9841-278	1500~6500	4000~10000	加工不可能	_	1.8
比较何一3	99.3Cu-0.7Pb	測定できず		良好	37	< 1.5
実施例-1	96.5Cu-3.5Pb	10 ~ 35	25 ~ 50	良好	58	3.6
実施例-2	95Cu-5Pb	15 ~ 45	30 ~ 50	良好	67	5.1
比较例一 4	87Cu-13Pb	250~500	800~2000	良好	24	< 1.5
実施例— 3	93Cu-2Pb-5A1	30 ~ 40	35 ~ 60	良好	76	3.3
比较例一5	73Cu-2Pb-25AI	測定できず		不可能	_	< 1.5
実施列- 4	91Cu-3Pb-6Si	25 ~ 40	25 ~ 70	良好	81	3.8
比较纳一 6	72Cu-3Pb-25Si	測定できず		不可能	_	< 1.5
実施例-5	92Cu-4Pb-4Sn	20 ~ 30	25 ~ 45	良好	90	4.6

	含 食 組 成 原子:0	EE 10.				破叛独攻	
			第2初金属 粒子の間名 (m)			80%冷局	Tc (K)
1L1281- 7	78Cu-4Pb-18Sn	被定できず		加工不可能			< 1.5
11.9289··· 8	99.5Ce-0.5Ni	選定できず		Д	17	35	< 1.5
10 1101 – 6	93Cu-1Bi	20 ~ 50	25 ~ 45	Д	17	535	3.2
郑州-7	94Cu-681	15 ~ 60	35 ~ 65	A	17	69	3.9
LL1291 9	83Co-1281	200~450	400~1000	Д	H	20	< 1.5
114281 - 10	99.4Cu-0.6T1	別定できず		良	++	33	< 1.5
WAM- B	98.5Cu-1.511	25 ~ 40	30 ~ 70	Д	17	53	3.1
EHH-9	95Cu-5T1	15 ~ 35	20 ~ 50	Α	17	59	3.6
111284-11	85Ca- 1511	. 350~600	500~1500	A	17	22	< 1.5
此约91-12	23.5Cu-0.5Fe	剤をて8ず		A	H	39	< 1.5
703 251 -10	93Cu-1Fe	35 ~ 00	45 ~ 85	A	H	57	3.0
发统图11	95Cu-5Fe	45 ~ 65	40 ~ 80	А	17	67	3.2
1£9294-13	BKu-12Fe	300~700	500~3000	A	17	28	< 1.5
11:57:54 - 14	90.45-0.5Pb-0.1Bi	西正できず		Ω	17	30	< 1.5
XXH-12	39Cu-106-18i	40 ~ 70	50 ~ 75	良	17	46	3.8

TI、Fe、Li 量が多すぎて第2相金属粒子が均一に分散しにくくなり、実用に供さない材料であった。また、実施例3~5はSi、AI、Snの添加によって、超伝導性質の低下させることなく、機械的性質を向上させることができている。しかしながら比較例5~7、16はSi、AI、Snが適正量を超えたために、母相がCu 固溶体とならず、化合物相が現れ、加工性を低下させてしまった。

また、比較例1.2は本発明と同様の組成ではあるが、第2相金属粒子の分数が悪く、特に粒界に折出しており、加工性、Tcも低く、超伝導材料としての有用性は全くなかった。

特許出願人 增 本 健 ユニチカ株式会社 代 理 人 児 玉 雄 三

表-1-3

	合金组成 原子90	धा १७			级链连续	
		第2相金属 粒子の粒達 (m)	到2個金ほ 粒子の間高 (na)		80966668 10316k 100/m²)	Tc (X)
70 20 1-13	92Co-5Pb-38i	45 ~. 65	50 ~ 65	良好	ន	5.2
H-1204-15	87Cu-7Pb-68i	500~950	1000~2500	鱼籽	21	1 < 1.5
70년61-14	95Cu-381-2A1	න~40	45 ~ 80	良好	72	4.1
比1291-16	72Cu-38i-25A1	300~500	450~2000	不可能	-	< 1.5
114284-17	99.5C+-0.5Li	例をできず		良好	28	< 1.5
ブジ起り-15	98Cu-2Li	20 ~ 40	50 ~ 80	Q IF	51	3.4
₹₩ 1-16	96Cu-4Li	35 ~ 45	40 ~ 60	B 17	63	3.9
1£1281-18	87Cu-13Li	500~800	700~3200	Q 17	24	< 1.5

表1より明らかなごとく、実施例1.2.6.7.8.9.10.11.12.13.14.15.16はCo中に32相会医粒子が均一に分散し、加工性の良好な退伝導材料であるが、比較例2.8.10.12.14.17はPb.Bi.T1.Fe.Li量が少なく、1.5kでもTcが現れず(測定機器上1.5k以下の測定はできない)、比較例4.9.11.13.15.18はPb.Bi.