```
In [1]: import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import numpy as np

from sklearn.preprocessing import LabelEncoder, MinMaxScaler, OneHotEncoder
    from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score, classification_report, confusion_n

import warnings
    warnings.filterwarnings('ignore')
```

## LOADING THE DATA INTO NOTEBOOK

```
In [2]: df = pd.read_csv("C://Users//quays//Desktop//weather_classification_data.csv")
In [3]: df.head()
Out[3]:
             temperature humidity wind_speed precipitation(%) cloud_cover atmospheric_pressure uv_i
          0
                     14
                              73
                                          9.5
                                                          82
                                                              partly cloudy
                                                                                       1010.82
          1
                     39
                              96
                                          8.5
                                                              partly cloudy
                                                                                       1011.43
          2
                     30
                              64
                                          7.0
                                                                                       1018.72
                                                          16
                                                                    clear
                     38
                              83
                                                                                       1026.25
          3
                                          1.5
                                                          82
                                                                    clear
                     27
                              74
                                                                                        990.67
                                         17.0
                                                          66
                                                                  overcast
In [4]:
         df.nunique()
Out[4]: temperature
                                      121
         humidity
                                       90
         wind speed
                                       95
         precipitation(%)
                                      102
         cloud cover
                                        4
         atmospheric_pressure
                                     5421
         uv_index
                                       15
                                        4
         season
         visibility(km)
                                       41
         location
                                        3
         weather_type
         dtype: int64
```

## DATA CLEANING AND PREPROCESSING

Dtype

int64

## In [5]: # checking for null values df.info()

```
RangeIndex: 12846 entries, 0 to 12845

Data columns (total 11 columns):

# Column Non-Null Count
--- 0 temperature 12846 non-null
1 humidity 12846 non-null
```

<class 'pandas.core.frame.DataFrame'>

int64 2 wind speed 12846 non-null float64 precipitation(%) 12846 non-null int64 3 object 4 cloud\_cover 12846 non-null 5 atmospheric\_pressure 12846 non-null float64 6 uv\_index 12846 non-null int64 7 season 12846 non-null object 8 visibility(km) 12846 non-null float64

9 location 12846 non-null object 10 weather\_type 12846 non-null object

dtypes: float64(3), int64(4), object(4)

memory usage: 1.1+ MB

### In [6]: # data distribution

```
num_cols = df.select_dtypes(include=["int64", "float64"]).columns # Select onl
# Plot distribution for each numerical column
plt.figure(figsize=(15, 10))
for i, col in enumerate(num_cols, 1):
    plt.subplot(3, 3, i) # adjust grid size if more/fewer columns
```

sns.histplot(df[col], kde=True, bins=10)
plt.title(f"Distribution of {col}")

plt.tight\_layout()

plt.show()



# CHECKING FOR OUTLIERS AND REMOVING THEM

```
In [7]: # Plot boxplots for each numerical column
plt.figure(figsize=(15, 10))
for i, col in enumerate(num_cols, 1):
    plt.subplot(3, 3, i) # adjust grid size depending on number of columns
    sns.boxplot(y=df[col])
    plt.title(f"Boxplot of {col}")

plt.tight_layout()
plt.show()
```



Out[9]: (12846, 11)

```
In [8]: def remove_outliers(df):
    num_cols = df.select_dtypes(include=["int64", "float64"]).columns
    capped_df = df.copy()

    for col in num_cols:
        Q1 = capped_df[col].quantile(0.25)
        Q3 = capped_df[col].quantile(0.75)
        IQR = Q3 - Q1
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR

        capped_df[col] = capped_df[col].clip(lower=lower_bound, upper=upper_bound)
    return capped_df

# Run it
    cleaned_df = remove_outliers(df)
In [9]: cleaned_df.shape
```

## DISPLAYING THE CLEANED DATA

In [10]: cleaned\_df.head()

Out[10]: 

temperature humidity wind\_speed precipitation(%) cloud\_cover atmospheric\_pressure uv\_i

0 14 73 9.5 82 partly cloudy 1010.82

| • |    | -  |      | ` , | _             |         | _ |
|---|----|----|------|-----|---------------|---------|---|
| 0 | 14 | 73 | 9.5  | 82  | partly cloudy | 1010.82 |   |
| 1 | 39 | 96 | 8.5  | 71  | partly cloudy | 1011.43 |   |
| 2 | 30 | 64 | 7.0  | 16  | clear         | 1018.72 |   |
| 3 | 38 | 83 | 1.5  | 82  | clear         | 1026.25 |   |
| 4 | 27 | 74 | 17.0 | 66  | overcast      | 990.67  |   |
| - |    |    |      |     |               |         |   |

# REVIEWING THE DATA POINTS DISTRIBUTION

```
In [ ]:
```

```
In [11]: num_cols = cleaned_df.select_dtypes(include=["int64", "float64"]).columns

plt.figure(figsize=(15, 14))
    for i, col in enumerate(num_cols, 1):
        plt.subplot(3, 3, i) # adjust grid size depending on number of columns
        sns.boxplot(y=cleaned_df[col])
        plt.title(f"Boxplot of {col}")

plt.tight_layout()
    plt.show()
```



# SPLITTING THE CLEANED DATA INTO TRAIN, VALIDATION AND TEST

```
In [13]: print('test data size:', test_data.shape)
    print('train data size: ', train_data.shape)
    print('validation data size:', validation_data.shape)
```

test data size: (2570, 11) train data size: (7707, 11) validation data size: (2569, 11)

#### 1. TRAIN DATASET

In [72]: train\_data.head(20)

#### Out[72]:

|       | temperature | humidity | wind_speed | precipitation(%) | cloud_cover   | atmospheric_pressure |
|-------|-------------|----------|------------|------------------|---------------|----------------------|
| 6356  | 24          | 88       | 17.5       | 58               | overcast      | 1007.43              |
| 11321 | 60          | 108      | 20.5       | 76               | partly cloudy | 1010.49              |
| 8416  | 33          | 67       | 1.5        | 41               | overcast      | 1015.13              |
| 7974  | 12          | 84       | 19.0       | 77               | overcast      | 995.09               |
| 4376  | 20          | 99       | 16.5       | 72               | overcast      | 1014.90              |
| 10386 | -4          | 73       | 16.0       | 91               | overcast      | 995.19               |
| 1140  | 41          | 20       | 6.5        | 3                | partly cloudy | 1024.98              |
| 11620 | 3           | 60       | 5.5        | 84               | overcast      | 998.39               |
| 5288  | 1           | 83       | 1.5        | 67               | overcast      | 984.98               |
| 7195  | 47          | 20       | 14.5       | 67               | cloudy        | 961.57               |
| 9106  | -14         | 44       | 8.5        | 55               | partly cloudy | 1049.97              |
| 3050  | 10          | 73       | 10.0       | 24               | overcast      | 1011.49              |
| 12770 | 19          | 93       | 12.0       | 74               | clear         | 1020.70              |
| 1094  | 11          | 60       | 9.0        | 47               | overcast      | 1017.79              |
| 5443  | 38          | 63       | 5.5        | 11               | clear         | 1013.87              |
| 6158  | 18          | 69       | 9.0        | 39               | partly cloudy | 1013.45              |
| 6104  | 32          | 58       | 2.0        | 20               | partly cloudy | 1000.98              |
| 12820 | 15          | 66       | 8.0        | 59               | overcast      | 1006.99              |
| 4499  | 10          | 99       | 5.5        | 92               | partly cloudy | 1000.65              |
| 11005 | 31          | 94       | 15.0       | 67               | partly cloudy | 1004.99              |
| 4     |             | _        |            |                  |               | •                    |

In [15]: train\_data.describe()

#### Out[15]:

|       | temperature | humidity    | wind_speed  | precipitation(%) | atmospheric_pressure | uv_ind    |
|-------|-------------|-------------|-------------|------------------|----------------------|-----------|
| count | 7707.000000 | 7707.000000 | 7707.000000 | 7707.000000      | 7707.000000          | 7707.0000 |
| mean  | 18.997924   | 68.065655   | 9.472038    | 51.796678        | 1006.160529          | 3.9003    |
| std   | 16.680662   | 19.912209   | 6.078570    | 31.156630        | 17.152382            | 3.7718    |
| min   | -24.000000  | 20.000000   | 0.000000    | 0.000000         | 961.570000           | 0.0000    |
| 25%   | 4.000000    | 56.000000   | 5.000000    | 19.000000        | 995.085000           | 1.0000    |
| 50%   | 21.000000   | 69.000000   | 8.500000    | 56.000000        | 1007.840000          | 3.0000    |
| 75%   | 30.000000   | 82.000000   | 13.500000   | 80.000000        | 1016.870000          | 7.0000    |
| max   | 69.000000   | 109.000000  | 26.250000   | 102.000000       | 1049.970000          | 14.0000   |
|       |             |             |             |                  |                      |           |

#### 2. VALIDATION DATASET

In [17]: validation\_data.head()

#### Out[17]:

|       | temperature | humidity | wind_speed | precipitation(%) | cloud_cover   | atmospheric_pressure |
|-------|-------------|----------|------------|------------------|---------------|----------------------|
| 6160  | 18          | 60       | 16.0       | 62               | partly cloudy | 990.89               |
| 10700 | 34          | 47       | 1.0        | 4                | clear         | 1018.05              |
| 1739  | 1           | 88       | 2.5        | 70               | overcast      | 998.54               |
| 11774 | 2           | 99       | 4.5        | 62               | overcast      | 992.81               |
| 1503  | 32          | 60       | 11.0       | 49               | partly cloudy | 1007.94              |
|       |             |          |            |                  |               |                      |

In [18]: validation\_data.describe()

#### Out[18]:

|       | temperature | humidity    | wind_speed  | precipitation(%) | atmospheric_pressure | uv_ind    |
|-------|-------------|-------------|-------------|------------------|----------------------|-----------|
| count | 2569.000000 | 2569.000000 | 2569.000000 | 2569.000000      | 2569.000000          | 2569.0000 |
| mean  | 18.586220   | 67.643441   | 9.309459    | 52.367458        | 1005.594204          | 3.9739    |
| std   | 17.161152   | 20.430486   | 5.979183    | 31.504890        | 17.807310            | 3.8645    |
| min   | -24.000000  | 20.000000   | 0.000000    | 0.000000         | 961.570000           | 0.0000    |
| 25%   | 3.000000    | 56.000000   | 5.000000    | 19.000000        | 993.830000           | 1.0000    |
| 50%   | 21.000000   | 69.000000   | 8.500000    | 57.000000        | 1007.390000          | 3.0000    |
| 75%   | 31.000000   | 82.000000   | 13.000000   | 81.000000        | 1016.660000          | 7.0000    |
| max   | 69.000000   | 109.000000  | 26.250000   | 102.000000       | 1049.970000          | 14.0000   |
| 4     |             |             |             |                  |                      |           |

#### 3. TEST DATASET

In [21]: |test\_data.head()

#### Out[21]:

|       | temperature | humidity | wind_speed | precipitation(%) | cloud_cover   | atmospheric_pressure |
|-------|-------------|----------|------------|------------------|---------------|----------------------|
| 5419  | -1          | 93       | 5.0        | 85               | partly cloudy | 993.52               |
| 3830  | -4          | 84       | 19.0       | 84               | overcast      | 996.43               |
| 10998 | -13         | 20       | 9.0        | 19               | overcast      | 987.05               |
| 8119  | 47          | 48       | 1.5        | 68               | partly cloudy | 1049.97              |
| 9682  | -7          | 96       | 4.0        | 76               | overcast      | 983.19               |
| 4     |             |          |            |                  |               |                      |

In [22]: test\_data.describe()

#### Out[22]:

|       | temperature | humidity    | wind_speed  | precipitation(%) | atmospheric_pressure | uv_ind    |
|-------|-------------|-------------|-------------|------------------|----------------------|-----------|
| count | 2570.000000 | 2570.000000 | 2570.000000 | 2570.000000      | 2570.000000          | 2570.0000 |
| mean  | 18.509339   | 68.825681   | 9.535895    | 53.345136        | 1006.227424          | 3.9058    |
| std   | 16.611704   | 20.174423   | 6.083410    | 30.964179        | 17.338642            | 3.8073    |
| min   | -24.000000  | 20.000000   | 0.000000    | 0.000000         | 961.570000           | 0.0000    |
| 25%   | 4.000000    | 58.000000   | 5.000000    | 21.000000        | 994.737500           | 1.0000    |
| 50%   | 21.000000   | 70.000000   | 8.500000    | 58.000000        | 1007.695000          | 3.0000    |
| 75%   | 30.000000   | 84.000000   | 13.500000   | 81.000000        | 1016.752500          | 6.0000    |
| max   | 69.000000   | 109.000000  | 26.250000   | 102.000000       | 1049.970000          | 14.0000   |
| . —   |             |             |             |                  |                      |           |

#### ONE HOT ENCODING THE COLUMNS

```
In [24]: # categorical columns
  categorical_cols = ["cloud_cover", "season", "location"]
```

#### creating the one hot - And the MinMax Scalar Objects

```
In [25]: # Create OneHotEncoder object
encoder = OneHotEncoder(sparse=False, drop=None)

In [26]: # Create MinMaxScaler object
scaler = MinMaxScaler()
```

### ----- TRAINING DATA -----

# \*\* ONE HOT ENCODING TRAINING CATEGORICAL DATA AND STANDARDIZING THE VALUES (0 - 1) \*\*

#### **ENCODING**

```
In [27]: # Separate categorical and numerical data
         X_categorical = train_data_X[categorical_cols]
         X_numeric = train_data_X.drop(columns=categorical_cols)
In [28]: # Fit and transform categorical data
         encoded array = encoder.fit transform(X categorical)
In [29]: encoded array[:5]
Out[29]: array([[0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0.],
                [0., 0., 0., 1., 1., 0., 0., 0., 0., 1., 0.],
                [0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0.]
                [0., 0., 1., 0., 0., 0., 1., 0., 0., 0., 1.],
                [0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0.]]
In [30]: # Get feature names (must match categorical cols)
         encoded df = pd.DataFrame(
             encoded array,
             columns=encoder.get_feature_names_out(categorical_cols),
             index=train_data_X.index
         )
```

#### **STANDARDIZING**

```
In [33]: # Combine encoded categorical and scaled numerical
    training_data_X = pd.concat([scaled_df, encoded_df], axis=1)
    training_data_X.head()
```

#### Out[33]:

|       | temperature | humidity | wind_speed | precipitation(%) | atmospheric_pressure | uv_index | vis |
|-------|-------------|----------|------------|------------------|----------------------|----------|-----|
| 6356  | 0.516129    | 0.764045 | 0.666667   | 0.568627         | 0.518778             | 0.071429 |     |
| 11321 | 0.903226    | 0.988764 | 0.780952   | 0.745098         | 0.553394             | 0.000000 |     |
| 8416  | 0.612903    | 0.528090 | 0.057143   | 0.401961         | 0.605882             | 0.142857 |     |
| 7974  | 0.387097    | 0.719101 | 0.723810   | 0.754902         | 0.379186             | 0.142857 |     |
| 4376  | 0.473118    | 0.887640 | 0.628571   | 0.705882         | 0.603281             | 0.142857 |     |
| 4     |             |          |            |                  |                      |          |     |

In [71]: training\_data\_X[training\_data\_X['temperature'] < 0]</pre>

#### Out[71]:

temperature humidity wind\_speed precipitation(%) atmospheric\_pressure uv\_index visibility

```
In [34]: training_data_y = train_data_y
training_data_y.head()
```

```
Out[34]: 6356 Rainy
11321 Sunny
8416 Cloudy
7974 Rainy
4376 Rainy
```

Name: weather\_type, dtype: object

## ----- VALIDATION DATA -----

# \*\* ONE HOT ENCODING VALIDATION CATEGORICAL DATA AND STANDARDIZING THE VALUES (0 - 1) \*\*

```
In [38]: # Get feature names (must match categorical_cols)
val_encoded_df = pd.DataFrame(
    val_encoded_array,
    columns=encoder.get_feature_names_out(categorical_cols),
    index=validation_data_X.index
)
```

#### **STANDARDIZATION**

validation\_data\_X.head()

```
In [39]: val_scaled_array = scaler.fit_transform(val_X_numeric)

In [40]: # Convert back to DataFrame with original column names
    val_scaled_df = pd.DataFrame(
        val_scaled_array,
        columns=val_X_numeric.columns,
        index=validation_data_X.index)
In [41]: # Combine encoded categorical and scaled numerical
```

validation\_data\_X = pd.concat([val\_scaled\_df, val\_encoded\_df], axis=1)

Out[41]:

|       | temperature | humidity | wind_speed | precipitation(%) | atmospheric_pressure | uv_index | vis |
|-------|-------------|----------|------------|------------------|----------------------|----------|-----|
| 6160  | 0.451613    | 0.449438 | 0.609524   | 0.607843         | 0.331674             | 0.071429 |     |
| 10700 | 0.623656    | 0.303371 | 0.038095   | 0.039216         | 0.638914             | 0.642857 |     |
| 1739  | 0.268817    | 0.764045 | 0.095238   | 0.686275         | 0.418213             | 0.071429 |     |
| 11774 | 0.279570    | 0.887640 | 0.171429   | 0.607843         | 0.353394             | 0.000000 |     |
| 1503  | 0.602151    | 0.449438 | 0.419048   | 0.480392         | 0.524548             | 0.071429 |     |
| 4     |             |          |            |                  |                      |          |     |

```
In [42]: validation_data_y.head()
```

```
Out[42]: 6160 Rainy
10700 Sunny
1739 Snowy
11774 Snowy
1503 Cloudy
```

Name: weather\_type, dtype: object

## ----- TESTING DATA -----

# \*\* ONE HOT ENCODING VALIDATION CATEGORICAL DATA AND STANDARDIZING THE VALUES (0 - 1) \*\*

```
In [43]: # Separate categorical and numerical data
         test_X_categorical = test_data_X[categorical_cols]
         test_X_numeric = test_data_X.drop(columns=categorical_cols)
In [44]: # Fit and transform categorical data
         test encoded array = encoder.fit transform(test X categorical)
In [45]: test encoded array[:5]
Out[45]: array([[0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1.],
                [0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1.],
                [0., 0., 1., 0., 0., 0., 1., 0., 0., 0., 1.],
                [0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0.],
                [0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1.]]
In [46]: # Get feature names (must match categorical_cols)
         test encoded df = pd.DataFrame(
             test encoded array,
             columns=encoder.get_feature_names_out(categorical_cols),
             index=test_data_X.index
         )
```

#### **STANDARDIZATION**

```
In [47]: test_scaled_array = scaler.fit_transform(test_X_numeric)

In [48]: # Convert back to DataFrame with original column names
test_scaled_df = pd.DataFrame(
    test_scaled_array,
    columns=test_X_numeric.columns,
    index=test_data_X.index)
```

```
In [49]: # Combine encoded categorical and scaled numerical
  test_data_X = pd.concat([test_scaled_df, test_encoded_df], axis=1)
  test_data_X.head()
```

#### Out[49]:

|       | temperature | humidity | wind_speed | precipitation(%) | atmospheric_pressure | uv_index | vis |
|-------|-------------|----------|------------|------------------|----------------------|----------|-----|
| 5419  | 0.247312    | 0.820225 | 0.190476   | 0.833333         | 0.361425             | 0.071429 |     |
| 3830  | 0.215054    | 0.719101 | 0.723810   | 0.823529         | 0.394344             | 0.071429 |     |
| 10998 | 0.118280    | 0.000000 | 0.342857   | 0.186275         | 0.288235             | 0.500000 |     |
| 8119  | 0.763441    | 0.314607 | 0.057143   | 0.666667         | 1.000000             | 0.928571 |     |
| 9682  | 0.182796    | 0.853933 | 0.152381   | 0.745098         | 0.244570             | 0.071429 |     |
| 4     |             |          |            |                  |                      |          |     |

In [50]: test\_data\_y.head()

Out[50]: 5419 Snowy 3830 Snowy 10998 Snowy 8119 Cloudy 9682 Snowy

Name: weather\_type, dtype: object

## **DECISION TREE CLASSIFIER MODEL**

#### **CREATING THE MODEL**

```
In [51]: model = DecisionTreeClassifier(max_depth= 7)
```

#### **TRAINING**

```
In [52]: model.fit(training_data_X, training_data_y)
```

Out[52]: DecisionTreeClassifier
DecisionTreeClassifier(max\_depth=7)

#### **MAKING PREDICTIONS**

```
In [54]: # accuracy
acc = accuracy_score(training_data_y, model_pred)
acc
```

Out[54]: 0.9375892046191774

#### MODEL VALIDATION

```
In [55]: # VALIDATION
In [56]: y_val = model.predict(validation_data_X)
         y_val
Out[56]: array(['Rainy', 'Sunny', 'Snowy', ..., 'Sunny', 'Snowy'],
               dtype=object)
In [57]: # Accuracy
         acc_val = accuracy_score(y_val, validation_data_y)
         acc val
Out[57]: 0.9077462047489295
In [58]: |conf_mat_val = confusion_matrix(y_val, validation_data_y)
         conf_mat_val
Out[58]: array([[555, 28,
                           26,
                                29],
                [ 26, 557, 10,
                                20],
                      2, 615,
                [ 3,
                                 5],
                [ 27, 34, 27, 605]], dtype=int64)
In [59]: # TESTING
         y_test_pred = model.predict(test_data_X)
         y test pred
Out[59]: array(['Snowy', 'Snowy', 'Sunny', ..., 'Snowy', 'Snowy'],
               dtype=object)
In [60]:
        acc_test = accuracy_score(test_data_y, y_test_pred)
         acc_test
Out[60]: 0.9046692607003891
```

#### SAVING THE MODEL TO BE DEPLOYED

```
In [61]: import pickle
In [62]: filename = 'dt_model.sav'
  pickle.dump(model, open(filename, 'wb'))
In [63]: load_model = pickle.load(open(filename, 'rb'))
```

```
In [64]:
         # scaled part
         inputs_to_transform = scaler.transform([[18,60,16,62,990.89,1,5]])
         # flatten from [[...]] \rightarrow [...]
         inputs_to_transform = inputs_to_transform.flatten()
         # categorical part (not scaled)
         inputs_not_to_transform = [0,0,0,1,0,0,1,0,0,0,1]
         # join them into one list inside another list [[...]]
         inputs = [list(inputs_to_transform) + inputs_not_to_transform]
         print(inputs)
         [[0.4516129032258065, 0.449438202247191, 0.6095238095238096, 0.6078431372549
         019, 0.331674208144797, 0.07142857142857142, 0.3508771929824561, 0, 0, 0, 1,
         0, 0, 1, 0, 0, 0, 1]]
In [65]: load_model.predict(inputs)[0]
```

Out[65]: 'Rainy'

#### FEATURE IMPORTANCE

```
In [66]:
                                    # Feature names
                                    feature_names = training_data_X.columns # 1D array of column names
                                    # Get importances
                                     importances = model.feature_importances_
                                    indices = np.argsort(importances)[::-1] # descending order
                                    # Create DataFrame
                                    feat importances = pd.DataFrame({
                                                    "Feature": feature_names[indices],
                                                     "Importance": importances[indices]
                                    })
                                    # Colors: red for highest, blue for the rest
                                    colors = ['red'] + ['skyblue']*(len(feat_importances)-1)
                                    # PLot
                                    plt.figure(figsize=(10,6))
                                    plt.barh(feat_importances["Feature"], feat_importances["Importance"], color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=color=col
                                    plt.gca().invert_yaxis() # highest on top
                                    plt.xlabel("Feature Importance")
                                    plt.title("Decision Tree Feature Importance")
                                    plt.show()
```



```
In [ ]:
```