Содержание

1.	Эсп	ерименты	2
	1.1.	Методы оценки качества	2
		1.1.1. Метрика качества MRR	2
		1.1.2. Метрика качества TOP_I	2
	1.2.	Оптимизация качества WTMF, путём варьирования параметров	3
	1.3.	Оптимизация качества WTMF-G, путём варьирования параметров	6
	1.4.	Сравнительные результаты	9
2.	Зак	лючение	11

1. Эсперименты

Главное целью проведения экспериментов является сравнение двух реализованных методов автоматического установления связей между твитами и новостными статьями: метод основанный на частотности употребления слов и WTMF-G. Для исследования влияния на качество добавления информации о взаимосвязях вида тексттекст также производится сравнительное тестирование методов WTMF и WTMF-G.

Ввиду малого числа твитов в наборах данных тестирование производится на тех же выборках, на которых производится обучение. Также, ввиду того, что алгоритмы WTMF и WTMF-G используют случайным образом инициализированные матрицы, каждый запуск этих алгоритмов производился трёхкратно, в результатах приведено усреднённое значение.

1.1. Методы оценки качества

Для оценки качества рассматриваются метрики применимые для решения задач информационного поиска. Твит рассматривается как запрос, а список новостей как ответ. Для каждого твита, получаемый список новостей ранжирован по мере убывания их схожести. В работе использованы две метрики: MRR и TOP_I , их описание дано ниже.

1.1.1. Метрика качества MRR

MRR (от англ. Mean reciprocal rank) — статистическая метрика, используемая для измерения качества алгоритмов информационного поиска. Пусть $rank_i$ — позиция первого правильного ответа в i-м запросе, n — общее количество запросов. Тогда значение MRR можно получить по формуле:

$$MRR = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{rank_i}.$$

1.1.2. Метрика качества TOP_I

 TOP_I — группа метрик, используемых для оценки качества алгоритмов информационного поиска. Значение метрики TOP_I численно равно проценту запросов с правильным ответом, входящим в первые I ответов. Пусть n — общее количество запросов, $Q_I(i)$ — равно 1, если правильный ответ на i-й запрос входит в первые I предложенных ответов, 0 — в противном случае. Тогда значение TOP_I можно полу-

чить по формуле:

$$TOP_I = \frac{1}{n} \sum_{i=1}^{n} Q_I(i).$$

В дальшейшем будут рассматриваться следующие три метрики из группы метрик TOP_1 : TOP_1 , TOP_3 .

1.2. Оптимизация качества WTMF, путём варьирования параметров

Оптимизация параметров модели для метода WTMF будет производится на наборе данных cutted, используя метрику MRR. Модель WTMF зависит от четырёх параметров: K, I, λ, w_m . Параметры K и I влияют на время построения модели, а параметры λ и w_m не влияют на время построения модели.

В качестве начального приближения берутся значения параметров, которое использовали авторы работы [?], а именно: $K = 30, I = 3, \lambda = 20, w_m = 0.1$.

Оптимизируются параметры, не влияющие на время работы алгоритма: λ и w_m . Для этого фиксируются остальные параметры: $I=1,\ K=30$. Для начала находится оптимальный порядок значений начального приближения. Результаты занесены в таблицу 1.

Таблица 1: Качество работы алгоритма WMTF для различных значений λ и w_m при фиксированных значениях $I=1,\,K=30.$

$\lambda \backslash w_m$	0.001	0.01	0.1	1	10	100
0.2	0.6855	0.6877	0.7482	0.3651	0.1526	0.1485
2	0.7000	0.7015	0.7173	0.7525	0.3707	0.1605
20	0.6964	0.7081	0.7149	0.7308	0.7507	0.3784
200	0.7075	0.6991	0.7010	0.7016	0.7146	0.7448
2000	0.6970	0.7070	0.6991	0.7114	0.6994	0.7044

Как видно из таблицы 1 в целом получена достаточно однородная картина для всех порядков λ и w_m . Заметное снижение качества происходит при большом порядке w_m и малом порядке λ . Максимальное значение метрики достигнуто при $\lambda=2$ и $w_m=1$. Для уточнения значения коэффициентов, производится исследование качества работы алгоритма в окрестностях максимального значения метрики. Результаты приведены в таблице 2.

Из таблицы 2 получаем оптимальные значения коэффициентов $\lambda=0.95$ и $w_m=1.95.$

Таблица 2: Качество работы алгоритма WMTF для различных значений λ и w_m при фиксированных значениях $I=1,\,K=30.$

$\lambda \backslash w_m$	0.9	0.95	1	1.1	1.2
1.9	0.7442	0.7451	0.7536	0.7542	0.7544
1.95	0.7447	0.7554	0.7452	0.7439	0.7504
2	0.7507	0.7528	0.7504	0.7515	0.7566
2.05	0.7413	0.7505	0.7424	0.7525	0.7479
2.1	0.7405	0.7484	0.7485	0.7502	0.7501

Оптимизируются параметры, влияющие на время работы алгоритма: K и I. Для этого фиксируются остальные параметры: $\lambda=0.95,\,w_m=1.95.$ Для начала находится примерное значение коэффициента K и оптимальное значение I. Результаты занесены в таблицу 3.

Таблица 3: Качество работы алгоритма WMTF для различных значений K и I при фиксированных значениях $\lambda = 0.95, w_m = 1.95.$

$K \setminus I$	1	2	3
5	0.1232	0.1593	0.1838
10	0.3521	0.4102	0.4437
30	0.7426	0.7422	0.7158
60	0.8326	0.8117	0.7620

Как видно из таблицы 3 увеличение K приводит к значительному улучшению качества работы алгоритма, увеличении I приводит к улучшению качества алгоритма только при малых значениях параметра K, при больших значениях K увеличение параметра I приводит к ухудшению качества. Максимальное значение метрики достигнуто при K=60 и I=1. Для уточнения значения коэффициента K, производится исследование качества работы алгоритма при фиксированном значении коэффициента I. Результаты приведены в таблице 4.

Из таблицы 4 получаем оптимальные значения коэффициента K=90. протестировать для большей размерности 150-200

В итоге оптимизации качества рекомендаций на основе алгоритма WMTF были получены оптимальные параметры: $K=90,\,I=1,\,\lambda=0.95,\,w_m=1.95.$

Таблица 4: Качество работы алгоритма WMTF для различных значений K при фиксированных значениях $I=1,\,\lambda=0.95,\,w_m=1.95.$

K	Значение метрики RR
10	0.3595
20	0.6460
30	0.7496
40	0.8003
50	0.8220
60	0.8424
70	0.8472
80	0.8535
82	0.8549
84	0.8597
86	0.8592
88	0.8572
90	0.8675
92	0.8580
94	0.8604
96	0.8612
98	0.8644
100	0.8655
110	0.8627

1.3. Оптимизация качества WTMF-G, путём варьирования параметров

Оптимизация параметров модели для метода WTMF-G будет производится на наборе данных cutted, используя метрику MRR. Модель WTMF-G зависит от пяти параметров: $K, I, \lambda, \delta, w_m$. Параметры K и I влияют на время построения модели, а параметры λ и w_m не влияют на время построения модели.

В качестве начального приближения параметров взяты оптимальные параметры для метода WTMF, а именно $K=90,~I=1,~w_m=1.95, \lambda=0.95.$ В качестве начального приближения параметра δ берем значение 0.1.

Сначала оптимизируем параметры, влияющие на регуляризующий член: λ и δ , Для этого фиксируем остальные параметры: $I=1,\,K=90,\,w_m=1.95.$ Сначала найдём оптимальный порядок значений начального приближения. Результаты занесены в таблицу 5.

Таблица 5: Качество работы алгоритма WMTF-G для различных значений λ и δ при фиксированных значениях $I=1,\,K=90,\,w_m=1.95.$

$\lambda \backslash \delta$	0.001	0.01	0.1	1	10
0.01	0.3889	0.3842	0.3924	0.3900	0.3895
0.1	0.4895	0.4875	0.4886	0.4850	0.4847
1	0.8227	0.8256	0.8242	0.8225	0.8212
10	0.8477	0.8440	0.8496	0.8454	0.8495
100	0.8294	0.8318	0.8283	0.8240	0.8243

Как видно из таблицы 5 порядок параметра δ оказывает влияние на качество, но достаточно слабое, порядок параметра λ , напротив очень сильно влияет на получаемое качество. Максимальное значение метрики достигнуто при $\lambda=10$ и $\delta=0.1$. Для уточнения значения коэффициентов, производится исследование качества работы алгоритма в окрестностях максимального значения метрики. Результаты приведены в таблице δ .

В таблице 6 получена достаточно однородная картина. Возьмём в качестве оптимального значения коэффициент полученную точку максимум: $\lambda = 6, \, \delta = 0.06.$

Рассмотрим влияние параметра w_m и найдём его оптимальное значение. Сначала рассмотрим качество алгоритма для различных порядков w_m . Результаты занесены в таблицу 7

Как видно из таблицы 7 порядок параметра w_m оказывает заметное влияние на качество. При значительном увеличении до 10^2 качество начинает резко падать. Максимальное значение метрики достигнуто при $w_m = 5$, уточним полученное зна-

Таблица 6: Качество работы алгоритма WMTF-G для различных значений λ и δ при фиксированных значениях $I=1, K=90, w_m=1.95$.

$\lambda \delta$	0.06	0.08	0.1	0.12	0.14
4	0.8501	0.8512	0.8489	0.8530	0.8476
6	0.8589	0.8524	0.8511	0.8580	0.8493
8	0.8483	0.8528	0.8539	0.8439	0.8498
10	0.8504	0.8455	0.8416	0.8453	0.8408
12	0.8453	0.8398	0.8472	0.8376	0.8415
14	0.8462	0.8456	0.8387	0.8398	0.8377

Таблица 7: Качество работы алгоритма WMTF-G для различных значений w_m при фиксированных значениях $I=1, K=90, \lambda=6, \delta=0.6$.

	w_m	0.01	0.05	0.1	0.5	1	5	10	50	100
ſ	MRR	0.8283	0.8296	0.8285	0.8359	0.8442	0.8639	0.8391	0.6094	0.5035

чение. Для уточнения значения коэффициента w_m , производится исследование качества работы алгоритма в окрестностях максимального значения метрики. Результаты приведены в таблице 8.

Таблица 8: Качество работы алгоритма WMTF-G для различных значений w_m при фиксированных значениях $I=1,\,K=90,\,\lambda=6,\,\delta=0.6.$

w_m	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.5
MRR	0.8592	0.8585	0.8594	0.8603	0.8641	0.8591	0.8586	0.8574	0.8536

Из таблицы 8 получаем оптимальное значение параметра $w_m=5$. Теперь рассмотрим оставшиеся два параметра K и I. Качество работы алгоритма WTMF-G для различных значений K и I приведено в таблице 9.

Как показано в таблице 9, WTMF-G показывает аналогично методу WTMF поведение при изменении параметров K и I, а именно, в среднем с увеличением количества итераций, качество работы алгоритма уменьшается. Максимум был достигнут при $K=220,\ I=1.$

В итоге оптимизации качества рекомендаций на основе алгоритма WMTF-G были получены оптимальные параметры: $K=220,\ I=1,\ \delta=0.6,\ \lambda=6,\ w_m=5.$

Таблица 9: Качество работы алгоритма WMTF-G для различных значений K и I при фиксированных значениях $w_m=5,\,\lambda=6,\,\delta=0.06.$

$K \setminus I$	1	2	3	4	5
30	0.7529	0.7927	0.7577	0.6736	0.5794
40	0.7992	0.8194	0.7695	0.6813	0.5828
50	0.8269	0.8349	0.7834	0.6830	0.5801
60	0.8419	0.8450	0.7984	0.7056	0.6006
70	0.8557	0.8466	0.7977	0.7036	0.6002
80	0.8614	0.8511	0.7990	0.7032	0.5957
90	0.8606	0.8522	0.8039	0.7088	0.6038
100	0.8606	0.8527	0.8022	0.7089	0.6021
110	0.8686	0.8553	0.8074	0.7123	0.6065
120	0.8693	0.8579	0.8097	0.7174	0.6085
130	0.8725	0.8588	0.8160	0.7264	0.6206
140	0.8740	0.8597	0.8157	0.7248	0.6241
150	0.8763	0.8620	0.8171	0.7263	0.6200
160	0.8740	0.8596	-	-	-
170	0.8768	0.8606	-	-	-
180	0.8785	0.8613	_	_	-
190	0.8767	0.8616			-
200	0.8769	0.8613	-	-	-
210	0.8786	0.8613		_	-
220	0.8816	0.8632			
230	0.8814	0.8646		_	-
240	0.8758	0.8632	_	-	-

1.4. Сравнительные результаты

Для выявления влияния добавления связей текст-текст на результаты работы метода WMTF-G производится сравнительное тестирование алгоритма WTMF и WTMF-G. Тестирование производится для различных наборов данных. Результаты тестирования приведены в таблице 10.

Таблина 10:	Сравнительное	тестирование	алгоритмов	WTMF:	и WTMF-G.
1	- 1	1 1	- I		

Набор данных	Метри	ıка MRR	Метри	ика TOP_1	\mathbf{M} етрика TOP_3	
паоор данных	WTMF	WTMF-G	WTMF	WTMF-G	WTMF	WTMF-G
manual	0.7293	0.	0.	0.	0.	0.
auto	0.8640	0.	0.	0.	0.	0.
total	0.8196	0.	0.	0.	0.	0.
cutted	0.8630	0.8816	0.	0.	0.	0.
manual_nt	0.6194	0.	0.	0.	0.	0.
auto_nt	0.5297	0.5695	0.	0.	0.	0.
total_nt	0.5729	0.	0.	0.	0.	0.
cutted_nt	0.6495	0.	0.	0.	0.	0.

Как видно из таблицы 10 алгоритм WMTF-G показывает стабильно более высокий результат чем алгоритм WMTF, из этого можно сделать вывод, что добавление связей текст-текст позволяет построить более точные рекомендации.

Сравним два метода рекомендаций: TF-IDF и WTMF-G. Сначала посмотрим на результаты полученные на базовых эталонных наборах данных, то есть тех, которые наряду с нетривиальными содержат большое количество тривиальных связей. Результаты тестирования приведены в таблице 11.

Таблица 11: Сравнительное тестирование алгоритмов TF-IDF и WTMF-G на базовых эталонных наборах данных.

Набор данных	Метрика MRR		Метрика <i>ТОР</i> ₁		Метрика ТОР3	
	TF-IDF	WTMF-G	TF-IDF	WTMF-G	TF-IDF	WTMF-G
manual	0.8336	0.	0.	0.	0.	0.
auto	0.8817	0.	0.	0.	0.	0.
total	0.8610	0.	0.	0.	0.	0.
cutted	0.9075	0.8816	0.	0.	0.	0.

Как видно из таблицы 11 метод TF-IDF показывает заметно более лучший результат на всех наборах данных. В cutted результаты намного ближе, так как метод WTMF-G намного лучше работает при равном числе новостей и твитов.

В целом для метода TF-IDF получены неожиданно высокие результаты, качество полученное для метода TF-IDF авторами метода WTMF-G при связывании

твитов и новостей почти в два раза меньше (качество полученное авторами метода WTMF-G приведено в разделе ??). Настолько высокие результаты метода TF-IDF получены по следующим причинам: во-первых, в русском твиттере очень много тривиальных связей твит-новость, во-вторых, ввиду специфики языка, в заголовках новостей и твитов их описывающий оказалось большое количество общих слов.

С целью нивелирования влияния тривиальных связей было проведено тестирование на наборах данных, которые содержат исключительно нетривиальные связи. Результаты экспериментов приведены в таблице 12.

Таблица 12: Сравнительное тестирование алгоритмов TF-IDF и WTMF-G на наборах данных с нетривиальными твитами.

Набор данных	Метрика MRR		Метрика <i>ТОР</i> ₁		Метрика ТОР3	
	TF-IDF	WTMF-G	TF-IDF	WTMF-G	TF-IDF	WTMF-G
manual_nt	0.7565	0.	0.	0.	0.	0.
auto_nt	0.6048	0.5695	0.	0.	0.	0.
total_nt	0.6914	0.	0.	0.	0.	0.
cutted_nt	0.7485	0.	0.	0.	0.	0.

Как видно из таблицы 12 ...

объяснение влияния различных датасетов, и сравнение с результатами статьи.

2. Заключение

В рамках данной дипломной работы было проведено исследование методов установления связей между твитами и новостными статьями. Было собрано несколько наборов данных и проанализированы различные подходы к их разметке. Реализован программный комплекс, позволяющий устанавлить связи между твитами и новостными статьями в формате рекомендаций на основе различных подходов: методов WTMF, WTMF-G и метода, основанного на частотности слов (TF-IDF). На основе написанного программного комплекса произведено сравнение различных подходов. Как результат сравнения получено, что в для русского сегмента твиттера наиболее оптимальным подходом является метод, основанный на частотности слов (TF-IDF).

Что получилось. Должно отображать задачи описанные во введении