

Update on Ara

23/11/2022

Matteo Perotti
Matheus Cavalcante

Professor Luca Benini Integrated Systems Laboratory ETH Zürich

Summary

Software

- New benchmarks upstream
- Stall analysis
- Hardware (RTL + Backend)
 - 8-lanes trials
 - Mask instructions support
 - Multi-Core

Fill benchmark pool

Benchmark report

Scale-up to 16 lanes

Bottleneck analysis

Improved verification

Vector size (#elements)

ETH Zürich

Longer vectors perform better

8 16 32 Vector size (#elements)

Vector size (#elements)

Benchmarks

- Vector intrinsics
- How architectural choices reflect on programming model
- Pitfalls and coding guidelines

Naive intrinsics

Optimized intrinsics

Optimized ASM

Benchmarks

- Vector intrinsics
- How architectural choices reflect on programming model
- Pitfalls and coding guidelines

Benchmarks

- Vector intrinsics
- How architectural choices reflect on programming model
- Pitfalls and coding guidelines

Scalar core problem?

- Ideal dispatcher analysis + Tune miss rate/penalty
- CVA6 + Scalar Mem Sys bottlenecks the gains
 - Many in-Ara improvements are hidden by CVA6

Performance [DP-FLOP/cycle]

Issue rate limitation only for real system!

32

Matrix size *n* [elements]

128

- Better scalar core does not fully solve the problems
- Should repeat analysis after internal optimization with ideal dispatcher (barber's pole, new hazard handling engine).

Stall back-pressure

Lower LMUL?

- 1. Downstream full queues?
- 2. Slide stall?
- 3. WAR, WAW no source?
- 4. Exception check?
- 5. Feedback answer?
- 6. Back pressure from next stage?

Crucial stalls for short vectors!

F

Stall without back-pressure for != units

- 1. Data hazards?
- 2. Arbitration?
- 3. Bank conflict?

ETH Zürich | 12 |

Stall without back-pressure for != units

From here on, the vector length help hide stalls from behind!

Stall without back-pressure for != units

1. Bank conflict?

Issue rate limitation only for real system!

- Ideal Dispatcher + Ara
- CVA6 + Ara

- CVA6 bottlenecks the gains
 - Many in-Ara improvements are hidden by CVA6
- Do we need renaming? WAW-WAR analysis
- Why short-vectors are a problem? Stall analysis
- Diminishing returns to improve short vector perf (larger buffers)
- Should **repeat analysis after internal optimization** with ideal dispatcher (barber's pole, new hazard handling engine) 15

Scale-up problem

HW:

8 lanes WIP for full closure 16 lanes is almost infeasable:

- With SLDU Infeasable
- Without SLDU WNS: -400 ps

• SW:

Efficient use of the resources:

- Longer vectors
- Hard to partition a problem!

Vector Multi-Core

- ✓ Partition the problem
- ✓ Utilization is higher since vectors are "longer"
- ✓ Scale-up in terms of FPUs
- Should repeat the analysis after optimization
- **X** Increased CVA6 traffic to upper level of memory

Vector Multi-Core (8x8 fmatmul)

Repeat measurements after optimization

Power and efficiency measurements - Many Ara systems in an SoC wrapper

- Memory left outside
- Interconnect left outside

PRs - Compliance

PRs - Benchmarks

Further

- Software
 - Stall analysis
 - WAW / WAR profiling
- Hardware (RTL + Backend)
 - Compliance + Verification
 - Scale up to 16 lanes

Fill benchmark pool

Benchmark report

Scale-up to 16 lanes

Bottleneck analysis

Improved verification