

Pattern Recognition

Dimensionality Reduction

林彦宇 教授 Yen-Yu Lin, Professor

國立陽明交通大學 資訊工程學系 Computer Science, National Yang Ming Chiao Tung University

Dimensionality reduction

- Many data sets have the property that the data points all lie close to a manifold of much lower dimensionality than that of the original data space
- A synthetic data set obtained by taking one of the off-line digit images and creating multiple copies via random displacements and rotations

- \triangleright Dimension of the data space: 100 x 100 = 10,000
- > Degrees of freedom: vertical translation, horizontal translation, rotation
- Intrinsic dimension: 3

Data dimension vs. intrinsic dimension

Principal component analysis (PCA)

- Principal component analysis (PCA) is one of the most widely used dimensionality reduction techniques
- PCA is used for various applications, such as data compression, feature extraction, and data visualization
- PCA linearly projects data from a high-dimensional input space to a low-dimensional feature space
 - Principal subspace: the lower dimensional space obtained by PCA
 - Principal component: a projection direction/vector found by PCA
 - > A projection is composed of one or a few principal components

Definitions of PCA

- Two commonly used definitions:
 - Maximum variance of the projected data (Hotelling 1933): The orthogonal projection of the data onto a lower dimensional linear space such that the variance of the projected data is maximized
 - Minimum projection error (Pearson 1901): The linear projection that minimizes the average projection cost, defined as the mean squared distance between the data points and their projections
- The two different definitions lead to the same algorithm, PCA

Definitions of PCA

Maximum variance vs. minimum projection error

Points: data

Points: projected data

Line: 1D principal space

Definition 1: Maximize the variance of green points

Definition 2: Minimize the sum of squared projection errors, indicated by blue lines

Maximum variance formulation

- Consider a data set of observations $\{\mathbf{x}_n\}$ where n=1,2,...,N and \mathbf{x}_n in an Euclidean space of dimensionality D
- The goal of PCA is to project the data onto a space having dimensionality M < D while maximizing the variance of the projected data
- Consider the projection onto a one-dimensional space (M = 1)
- We can define the direction of this space using a D-dimensional unit vector \mathbf{u}_1 and $\mathbf{u}_1^T\mathbf{u}_1=1$
 - \triangleright Data point: \mathbf{x}_n
 - \triangleright Projected data point: $\mathbf{u}_1^{\mathrm{T}}\mathbf{x}_n$

Maximum variance formulation

Data mean and projected data mean

$$\overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \text{ and } \mathbf{u}_1^{\mathsf{T}} \overline{\mathbf{x}}$$

The variance of the projected data is

$$\frac{1}{N} \sum_{n=1}^{N} \left\{ \mathbf{u}_{1}^{\mathrm{T}} \mathbf{x}_{n} - \mathbf{u}_{1}^{\mathrm{T}} \overline{\mathbf{x}} \right\}^{2} = \mathbf{u}_{1}^{\mathrm{T}} \mathbf{S} \mathbf{u}_{1}$$

where S is the covariance matrix

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^{\mathrm{T}}.$$

Maximum variance formulation: Optimization

Constrained optimization problem

maximize
$$\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$$
 subject to $\mathbf{u}_1^T \mathbf{u}_1 = 1$

 Introduce a Lagrange multiplier to convert the constrained optimization problem to an unconstrained one, where the Lagrangian function is

$$\mathbf{u}_{1}^{\mathrm{T}}\mathbf{S}\mathbf{u}_{1} + \lambda_{1}\left(1 - \mathbf{u}_{1}^{\mathrm{T}}\mathbf{u}_{1}\right).$$

• By setting the derivative w.r.t. \mathbf{u}_1 to zero, we have

$$\mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

u₁ is an eigenvector of S

Maximum variance formulation: Optimization

The objective in the constrained optimization problem of PCA is

$$\mathbf{u}_1^{\mathrm{T}}\mathbf{S}\mathbf{u}_1 = \lambda_1$$

- The maximum variance of the projected data is equal to the largest eigenvalue λ_1 of the covariance matrix S
- The projection vector \mathbf{u}_1 is the eigenvector of S corresponding to the largest eigenvalue λ_1
- The eigenvector \mathbf{u}_1 is known as the first principal component, which is used to project a data point \mathbf{x}_n via $\mathbf{u}_1^T \mathbf{x}_n$

Maximum variance formulation: Multi-dimensional extension

- Consider the general case of an M-dimensional projection space
- The optimal linear projection is defined by the M eigenvectors \mathbf{u}_1 , \mathbf{u}_2 , ..., and \mathbf{u}_M of the data covariance matrix S corresponding to the M largest eigenvalues λ_1 , λ_2 , ..., and λ_M .
- Computational cost of PCA
 - \triangleright Full eigenvector decomposition: $O(D^3)$
 - Find the first M eigenvectors and eigenvalues via the power method: $O(MD^2)$

Minimum error formulation

- We introduce a complete orthonormal set of D-dimensional basis vectors $\{\mathbf{u}_i\}$ where i=1,2,...,D
- Each data point can be represented exactly by a linear combination of the basis vectors

$$\mathbf{x}_n = \sum_{i=1}^D \alpha_{ni} \mathbf{u}_i$$

- \triangleright where $\alpha_{ni} = \mathbf{x}_n^{\mathrm{T}} \mathbf{u}_i$
- We have

$$\mathbf{x}_n = \sum_{i=1}^D \left(\mathbf{x}_n^{\mathrm{T}} \mathbf{u}_i \right) \mathbf{u}_i.$$

Minimum error formulation

- We aim to approximate this data point using a representation involving a restricted number M < D of variables, which corresponds to a projection onto a lower-dimensional subspace
- Without loss of generality, we approximate each data point \mathbf{x}_n by

$$\widetilde{\mathbf{x}}_n = \sum_{i=1}^M z_{ni} \mathbf{u}_i + \sum_{i=M+1}^D b_i \mathbf{u}_i$$

- \triangleright Each point \mathbf{x}_n has its own coefficients $\{z_{ni}\}$ for the first M basis vectors
- \triangleright { b_i } are constants that are the same for all data points
- In minimum error formulation, we optimize $\{\mathbf{u}_i\}$, $\{z_{ni}\}$, and $\{b_i\}$

 In this formulation, we minimize the squared projection error, the squared distance, i.e.,

$$J = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \widetilde{\mathbf{x}}_n\|^2.$$

• Setting the derivative of J with respect to $\{z_{nj}\}$ to zero, we get

$$z_{nj} = \mathbf{x}_n^{\mathrm{T}}\mathbf{u}_j$$
 where $j=1,2,...,M$

• Setting the derivative of J with respect to $\{b_j\}$ to zero, we get

$$b_j = \overline{\mathbf{x}}^{\mathrm{T}}\mathbf{u}_j$$
 where $j = M+1, M+2, ..., D$

• If we substitute for $\{z_{ni}\}$ and $\{b_i\}$, the displacement vector between \mathbf{x}_n and its approximated point $\tilde{\mathbf{x}}_n$

$$\mathbf{x}_n - \widetilde{\mathbf{x}}_n = \sum_{i=M+1}^D \left\{ (\mathbf{x}_n - \overline{\mathbf{x}})^{\mathrm{T}} \mathbf{u}_i \right\} \mathbf{u}_i$$

- ➤ The displacement vector lies in the space orthogonal to the principal space
- The squared projection error

$$J = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D} \left(\mathbf{x}_{n}^{\mathrm{T}} \mathbf{u}_{i} - \overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_{i} \right)^{2} = \sum_{i=M+1}^{D} \mathbf{u}_{i}^{\mathrm{T}} \mathbf{S} \mathbf{u}_{i}.$$

$$J = \sum_{i=M+1}^{D} \mathbf{u}_i^{\mathrm{T}} \mathbf{S} \mathbf{u}_i$$

- Consider the example of a two-dimensional data space with one-dimensional projection space, i.e., D=2 and M=1
- We want to optimize \mathbf{u}_2 so as to minimize $J = \mathbf{u}_2^T S \mathbf{u}_2$, subject to $\mathbf{u}_2^T \mathbf{u}_2 = 1$, i.e.,

minimize
$$\mathbf{u}_2^{\mathrm{T}} \mathbf{S} \mathbf{u}_2$$

subject to
$$\mathbf{u}_2^{\mathrm{T}}\mathbf{u}_2 = 1$$

The Lagrangian function is

$$\widetilde{J} = \mathbf{u}_2^{\mathrm{T}} \mathbf{S} \mathbf{u}_2 + \lambda_2 \left(1 - \mathbf{u}_2^{\mathrm{T}} \mathbf{u}_2 \right).$$

Setting the derivative with respect to u₂ to zero leads to

$$S\mathbf{u}_2 = \lambda_2 \mathbf{u}_2$$

The objective in this formulation is to minimize

$$\mathbf{u}_2^{\mathrm{T}}\mathbf{S}\mathbf{u}_2 = \mathbf{u}_2^{\mathrm{T}}\lambda_2\mathbf{u}_2 = \lambda_2$$

- The basis \mathbf{u}_2 is the eigenvector of covariance matrix S with the smallest eigenvalue
- Recall that

$$\widetilde{\mathbf{x}}_n = \sum_{i=1}^M z_{ni} \mathbf{u}_i + \sum_{i=M+1}^D b_i \mathbf{u}_i$$

• The projection vector \mathbf{u}_1 is the eigenvector of S corresponding to the largest eigenvalue λ_1

Minimum error formulation: Multi-dimensional extension

- For arbitrary D and arbitrary M < D, the optimal linear projection is defined by the M eigenvectors \mathbf{u}_1 , \mathbf{u}_2 , ..., and \mathbf{u}_M of the data covariance matrix S corresponding to the M largest eigenvalues λ_1 , λ_2 , ..., and λ_M
- The approximated point

$$\widetilde{\mathbf{x}}_{n} = \sum_{i=1}^{M} (\mathbf{x}_{n}^{\mathrm{T}} \mathbf{u}_{i}) \mathbf{u}_{i} + \sum_{i=M+1}^{D} (\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_{i}) \mathbf{u}_{i}$$

$$= \overline{\mathbf{x}} + \sum_{i=1}^{M} (\mathbf{x}_{n}^{\mathrm{T}} \mathbf{u}_{i} - \overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_{i}) \mathbf{u}_{i}$$

Algorithm summary

- 1. We are given a set of N unlabeled data $\{x_n\}$. Data lie in D-dimensional space. The desired dimension of the projection space is M
- 2. Compute the covariance matrix

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^{\mathrm{T}}.$$

- 3. Perform eigen-decomposition
 - \triangleright Get M eigenvectors \mathbf{u}_1 , \mathbf{u}_2 , ..., and \mathbf{u}_M of S corresponding the largest M eigenvalues
- 4. Approximate the data $\{\mathbf{x}_n\}$ via

$$\widetilde{\mathbf{x}}_n = \overline{\mathbf{x}} + \sum_{i=1}^M (\mathbf{x}_n^{\mathrm{T}} \mathbf{u}_i - \overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_i) \mathbf{u}_i$$

- Off-line digit data set: handwritten digit images, each of which is of resolution 28 x 28 (784)
- Because each eigenvector of the covariance matrix is a vector in the original D-dimensional space, it can be displayed as an image
- The mean vector (image) and the first four PCA eigenvectors \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , and \mathbf{u}_4 , together with the corresponding eigenvalues

The spectrum of eigenvalues, sorted into decreasing order

• The distortion measure (squared projection error) J associated with a particular value of M

a particular value of M

$$J = \sum_{i=M+1}^{D} \lambda_i$$

PCA is used to approximate each input data point \mathbf{x}_n via

$$\widetilde{\mathbf{x}}_n = \overline{\mathbf{x}} + \sum_{i=1}^M (\mathbf{x}_n^{\mathrm{T}} \mathbf{u}_i - \overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_i) \mathbf{u}_i$$

- The coordinate of \mathbf{x}_n in the low-dimensional space is $[a_i] = (\mathbf{x}_n^T \mathbf{u}_i \bar{\mathbf{x}}^T \mathbf{u}_i)$, for $1 \le i \le M$
- \triangleright The reconstructed data point in the original space is $\tilde{\mathbf{x}}_n$
- \triangleright Storage space before PCA: $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$
- > Storage space using PCA: $\bar{\mathbf{x}}$, \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_M , the coordinate of each data point

• An original example and its PCA reconstructions with different values of M

An original example from the off-line digits data set together with its PCA reconstructions obtained by retaining M principal components for various values of M. As M increases the reconstruction becomes more accurate and would become perfect when $M=D=28\times28=784$.

$$\widetilde{\mathbf{x}}_n = \overline{\mathbf{x}} + \sum_{i=1}^M (\mathbf{x}_n^{\mathrm{T}} \mathbf{u}_i - \overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_i) \mathbf{u}_i$$

Applications of PCA: Data normalization

- PCA can make a more substantial normalization of data to give it zero mean and unit covariance
 - Different input variables become decorrelated
- This processing is called whitening or sphering
- 1. Solve the eigenvalues and eigenvectors of the covariance matrix S

$$SU = UL$$

- \triangleright where L is a $D \times D$ diagonal matrix with elements $\{\lambda_i\}$
- \triangleright U is a $D \times D$ orthogonal matrix with columns given by $\{\mathbf{u}_i\}$

Applications of PCA: Data normalization

• 2. Transform each data point \mathbf{x}_n to

$$\mathbf{y}_n = \mathbf{L}^{-1/2} \mathbf{U}^{\mathrm{T}} (\mathbf{x}_n - \overline{\mathbf{x}})$$

- The set $\{y_n\}$ has zero mean
- The set $\{y_n\}$ has an identity covariance matrix

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_n \mathbf{y}_n^{\mathrm{T}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{L}^{-1/2} \mathbf{U}^{\mathrm{T}} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^{\mathrm{T}} \mathbf{U} \mathbf{L}^{-1/2}
= \mathbf{L}^{-1/2} \mathbf{U}^{\mathrm{T}} \mathbf{S} \mathbf{U} \mathbf{L}^{-1/2} = \mathbf{L}^{-1/2} \mathbf{L} \mathbf{L}^{-1/2} = \mathbf{I}.$$

Applications of PCA: Data normalization

- Left: Original data in a two-dimensional space
- Center: Two principle components and the corresponding eigenvalues
- Right: The whitening results
 - > Zero mean and unit covariance

PCA vs. FLD

- Comparisons between PCA and the Fisher linear discriminant
 - Both methods can be viewed as techniques for linear dimensionality reduction
 - \triangleright PCA is unsupervised and depends only on the input data $\{\mathbf{x}_n\}$
 - ightharpoonup FLD depends on both data $\{\mathbf{x}_n\}$ and class-label information $\{t_n\}$
- Line: 1D subspace by PCA
 - Maximum variance
 - Minimum error
- Line: 1D subspace by FLD
 - Maximum data separation

Multidimensional scaling (MDS)

• Given the pairwise distances between a set of N data, namely, $\{\Delta_{ij}\}_{i,j=1}^N$, we would like to seek N vectors $\{\boldsymbol{y}_i\}_{i=1}^N$ so that $||\boldsymbol{y}_i-\boldsymbol{y}_j|| \approx \Delta_{ij}$

Input

$$\begin{bmatrix} 0 & \Delta_{12} & \Delta_{13} & \Delta_{14} \\ \Delta_{12} & 0 & \Delta_{23} & \Delta_{24} \\ \Delta_{13} & \Delta_{23} & 0 & \Delta_{34} \\ \Delta_{14} & \Delta_{24} & \Delta_{34} & 0 \end{bmatrix}$$

Output

$$\|\mathbf{y}_i - \mathbf{y}_j\| pprox \Delta_{ij}$$

An example of MDS

- The pairwise distances between 10 airports in US
- Airports' locations in the map

	Α	В	С	D	E	F	G	Н	1	J	K
1		ATL	ORD	DEN	HOU	LAX	MIA	JFK	SFO	SEA	IAD
2	ATL	0	587	1212	701	1936	604	748	2139	2182	543
3	ORD	587	0	920	940	1745	1188	713	1858	1737	597
4	DEN	1212	920	0	879	831	1726	1631	949	1021	1494
5	HOU	701	940	879	0	1374	968	1420	1645	1891	1220
6	LAX	1936	1745	831	1374	0	2339	2451	347	959	2300
7	MIA	604	1188	1726	968	2339	0	1092	2594	2734	923
8	JFK	748	713	1631	1420	2451	1092	0	2571	2408	205
9	SFO	2139	1858	949	1645	347	2594	2571	0	678	2442
10	SEA	2182	1737	1021	1891	959	2734	2408	678	0	2329
11	IAD	543	597	1494	1220	2300	923	205	2442	2329	0

An example of MDS

- The recovered 2D coordinates of those airports by MDS
- Horizontally mirror the map

An example of MDS

MDS can find the locations of these airports

MDS: Two observations

- Observation 1: We can convert pairwise distances to pairwise inner products under some constraints
- Observation 2: The coordinate matrix can be derived from a Gram matrix, $G_{ij} = \mathbf{x}_i \cdot \mathbf{x}_j$
- If $\{\Delta_{ij}\}_{i,j=1}^N$ denote the pairwise Euclidean distances between zero mean vectors, then their inner products are

$$G_{ij} = \frac{1}{2} \left[\frac{1}{N} \sum_{k=1}^{N} \left(\Delta_{ik}^{2} + \Delta_{kj}^{2} \right) - \Delta_{ij}^{2} - \frac{1}{N^{2}} \sum_{k,l=1}^{N} \Delta_{kl}^{2} \right]$$

Distance matrix to Gram matrix

$$G_{ij} = \frac{1}{2} \left[\frac{1}{N} \sum_{k=1}^{N} \left(\Delta_{ik}^2 + \Delta_{kj}^2 \right) - \Delta_{ij}^2 - \frac{1}{N^2} \sum_{k,l=1}^{N} \Delta_{kl}^2 \right]$$

Distance matrix:

$$\begin{bmatrix} \Delta_{ij} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 5 \\ 1 & 0 & 4 \\ 5 & 4 & 0 \end{bmatrix} \implies \begin{bmatrix} \Delta_{ij}^2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 25 \\ 1 & 0 & 16 \\ 25 & 16 & 0 \end{bmatrix}$$

Inner product:

$$G_{12} = \frac{1}{2} \left[\frac{1}{3} \sum_{k} \left(\Delta_{1k}^{2} + \Delta_{k2}^{2} \right) - \Delta_{12}^{2} - \frac{1}{9} \sum_{k,l} \Delta_{kl}^{2} \right]$$

$$= \frac{1}{2} \left[\frac{1}{3} \left(0 + 1 + 25 + 1 + 0 + 16 \right) - 1 - \frac{1}{9} \left(0 + 1 + 25 + 1 + 0 + 16 + 25 + 16 + 0 \right) \right]$$

$$= 2$$

MDS: Objective and optimization

Objective of MDS

$$\operatorname{err}(\mathbf{y}) = \sum_{i,j} (G_{ij} - \mathbf{y}_i \cdot \mathbf{y}_j)^2$$

Perform eigen-decomposition for Gram matrix G

$$G = \sum_{\alpha=1}^{N} \lambda_{\alpha} \mathbf{v}_{\alpha} \mathbf{v}_{\alpha}^{\mathrm{T}} \text{ where } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N} \geq 0$$

Optimal (low-rank) approximation

$$\mathbf{y}_{i\alpha} = \sqrt{\lambda_{\alpha}} v_{\alpha i}$$
 for $\alpha = 1, 2, ..., M$

Each data vector is constructed by scaled, truncated eigenvectors

MDS: Embedding

Eigen-decomposition

$$G = \sum_{\alpha=1}^{N} \lambda_{\alpha} \mathbf{v}_{\alpha} \mathbf{v}_{\alpha}^{\mathrm{T}} \text{ where } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N} \geq 0$$

Embedding of the N data points

MDS: Interpretation

Embedding

$$\mathbf{y}_{i\alpha} = \sqrt{\lambda_{\alpha}} v_{\alpha i}$$
 for $\alpha = 1, 2, ..., M$

- Eigenvectors
 - Ordered, scaled, and truncated to yield low-dimensional embedding
- Eigenvalues
 - Measure how each dimension contributes to dot products
- Estimated dimensionality
 - Number of significant (nonnegative) eigenvalues

PCA vs. MDS

- Perform eigen-decomposition
 - \triangleright PCA: covariance matrix of size $D \times D$
 - \triangleright MDS: Gram matrix of size $N \times N$
- Both PCA and MDS consider the M largest eigenvalues
- Eigenvectors in PCA serve as the projection matrix
- Scaled eigenvectors in MDS are used for embedding, the projected data vectors

Summary of MDS

Convert the distance matrix to Gram matrix

$$G_{ij} = \frac{1}{2} \left[\frac{1}{N} \sum_{k=1}^{N} \left(\Delta_{ik}^2 + \Delta_{kj}^2 \right) - \Delta_{ij}^2 - \frac{1}{N^2} \sum_{k,l=1}^{N} \Delta_{kl}^2 \right]$$

Perform eigen-decomposition of the Gram matrix

$$G = \sum_{\alpha=1}^{N} \lambda_{\alpha} \mathbf{v}_{\alpha} \mathbf{v}_{\alpha}^{\mathrm{T}} \text{ where } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N} \geq 0$$

Embedding via low rank approximation

$$\mathbf{y}_{i\alpha} = \sqrt{\lambda_{\alpha}} v_{\alpha i}$$
 for $\alpha = 1, 2, ..., M$

Manifold (流形)

- In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point
 - ➤ In the neighborhood of any point on a manifold, the space behaves just like it would in the neighborhood of any point in some *n*-dimensional Euclidean space
- A sphere in 3-dimensional Euclidean space
 - ➤ A very small patch from the sphere looks just like a piece of 2-dimensional Euclidean space
 - 2-manifold

Image manifolds

Seung & Lee, 2000 Tenebaum et al., 2000

Manifold learning

 Given high-dimensional data sampled from a low-dimensional manifold, how to compute a faithful embedding?

Isometric mapping (Isomap)

[Tenenbaum et al. Science 2000]

- Input: a data set of observations $\{\mathbf{x}_n\}$ where n=1,2,...,N and \mathbf{x}_n in a D-dimensional space
- Output: a low-dimensional (M-dimensional) data representation \mathbf{y}_n for each input data point \mathbf{x}_n , where $M \ll D$
- Goal: The geodesic distance in the original space can be preserved in the low-dimensional space
 - Nonlinear dimensionality reduction

Geodesic distance

- The geodesic distance between two points on a manifold is the length of the shortest connecting path along the manifold
- Figure A: the geodesic distance between two points (circles)
- Figure B: An approximation of the geodesic distance based on sampled points
- Figure C: The outputs of Isomap, where geodesic distances can be approximately measured by Euclidean distances

National Chiao Tung University

Step 1: Build an adjacency graph

- Adjacency graph
 - Vertices represent inputs
 - Undirected edges connect neighbors

- Neighborhood selection
 - Many options:
 - ♦ k nearest neighbors
 - $\bullet \varepsilon$ -ball
 - Prior knowledge
 - Weight edges by local Euclidean distances

Step 2: Estimate geodesics

- Dynamic programming
 - Weight edges by local Euclidean distances
 - Compute shortest paths through graph
- Dijkstra's algorithm for computing the shortest path between a pair of vertices
- Floyd's algorithm for computing the pairwise shortest paths

Step 3: Apply MDS

- Embedding
 - ➤ Given the pair-wise distances between data points, we can apply MDS to recover the data vectors of these points in a low-dimensional space where the distances are preserved

Algorithm of Isomap

- Algorithm
 - (1) k nearest neighbors
 - (2) Shortest paths through graph (estimating geodesic distances)
 - (3) MDS on geodesic distances

$$\left[\begin{array}{ccccc} 0 & \Delta_{12} & \Delta_{13} & \Delta_{14} \\ \Delta_{12} & 0 & \Delta_{23} & \Delta_{24} \\ \Delta_{13} & \Delta_{23} & 0 & \Delta_{34} \\ \Delta_{14} & \Delta_{24} & \Delta_{34} & 0 \end{array} \right]$$

- Impact
 - Much simpler than earlier algorithms for manifold learning
 - Does it work?

Visualization

- Swiss roll dataset
 - > 1024 data points in a 3D space
 - > k=12 in the adjacency graph construction
 - ➤ 2-dimensional space where the Euclidean distance between a pair of data points approximates their geodesic distance on the manifold

Visualization

- Face images
 - \triangleright 64 x 64 (4096)-dim, 698 data points, k = 6

Locally linear embedding (LLE) [Roweis and Saul, Science 2000]

- MDS and Isomap
 - Preserve global pairwise distances
 - Construct large and dense matrices
 - Compute top eigenvectors
- Locally linear embedding (LLE)
 - Preserve local geometric relationships
 - Construct large and sparse matrices
 - Compute bottom eigenvectors

How to exploit local linearity?

- Manifolds are globally nonlinear, but locally linear
- Map the inputs into a single continuous global coordinate system of lower dimensionality
 - > Think globally, fit locally

Locally linear embedding

- Input: a data set of observations $\{\mathbf{x}_i\}$ where i=1,2,...,N and \mathbf{x}_i in a D-dimensional space
- Output: a low-dimensional (M-dimensional) data representation \mathbf{y}_i for each input data point \mathbf{x}_i , where $M \ll D$
- Goal: The neighborhood of each point, i.e., local geometric structure, in the original space is preserved in the lowdimensional space
 - Nonlinear dimensionality reduction

LLE algorithm

- Steps
 - (1) Nearest neighbor search for each input data point
 - (2) Least squares fitting for neighborhood representation
 - (3) Eigen-decomposition for embedding

Step 1: Identify neighbors

- Identify the neighbors of each data point \mathbf{x}_i
 - k nearest neighbors
 - $\triangleright \varepsilon$ -ball
 - Prior knowledge
- Assumptions
 - Data are densely sampled from a manifold
 - > Sufficient neighboring data can be retrieved for each data point

Neighborhood graph

- Assumption
 - Neighborhoods on the graph correspond to neighborhoods on the manifold

Step 2: Compute reconstruction weights

• Characterize local geometry of each neighborhood by weights $\{W_{ij}\}$ for each data \mathbf{x}_i

• Compute the weights by linearly reconstructing each point \mathbf{x}_i from its neighbors

Linear reconstructions

- Local linearity
 - Neighbors lie on a locally linear patch of a manifold

- Reconstruction errors
 - Least squared errors should be small

$$\Phi(W) = \sum_{i} \left| \mathbf{x}_{i} - \sum_{j} W_{ij} \mathbf{x}_{j} \right|^{2}$$

Least squares fitting

Objective

$$\Phi(W) = \sum_{i} \left| \mathbf{x}_{i} - \sum_{j} W_{ij} \mathbf{x}_{j} \right|^{2}$$

- Constraints
 - \triangleright Nonzero W_{ij} only if x_i is a neighbor of x_i
 - ightharpoonup Weights must sum to one for each \mathbf{x}_i : $\sum_j W_{ij} = 1$
- Solver: least squares fitting
- Local invariance:
 - \triangleright Optimal weights $\{W_{ij}\}$ are invariant to rotation, translation, and scaling

Step 3: Complete embedding

- Low dimensional representation
 - $\triangleright \mathbf{x}_i$ in a *D*-dimensional space -> \mathbf{y}_i in an *M*-dimensional space
- Objective: Minimize the reconstruction errors

$$\Psi(\mathbf{y}) = \sum_{i} \left| \mathbf{y}_{i} - \sum_{j} W_{ij} \mathbf{y}_{j} \right|^{2}$$

- Constraints
 - \succ The mean of the projected data is on the origin: $\sum_i \mathbf{y}_i = \mathbf{0}$
 - > Impose unit covariance matrix: $\frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i} \ \mathbf{y}_{i}^{\mathrm{T}} = I$

Solving an eigenvalue problem

Quadratic form

$$\Psi(\mathbf{y}) = \sum_{i,j} (\mathbf{y}_i \cdot \mathbf{y}_j) \Psi_{ij}$$
 with $\Psi = (I - W)^T (I - W)$

- The optimal embedding is given by the bottom M+1 eigenvectors
- Solution
 - \triangleright Discard the bottom eigenvector $[1 \ 1 \ \cdots \ 1]^T$
 - \triangleright The other eigenvectors are used to yield the low-dimensional data $\{y_i\}$

Embedding

• After discarding the eigenvector $[1 \ 1 \ \cdots \ 1]^T$, the low-dimensional data $\{y_i\}$ are given below

Summary of LLE

- Three steps
 - ➤ 1. Get k-nearest neighbors
 - > 2. Compute weights
 - > 3. Complete embedding
- Optimizations

$$\Phi(W) = \sum_{i} \left| \mathbf{x}_{i} - \sum_{j} W_{ij} \mathbf{x}_{j} \right|^{2}$$

$$\Psi(\mathbf{y}) = \sum_{i} \left| \mathbf{y}_{i} - \sum_{j} W_{ij} \mathbf{y}_{j} \right|^{2}$$

Surfaces

$$m = 1000$$
 inputs

$$k = 8$$
nearest
neighbors

$$D = 3$$
 $d = 2$
dimensions

Translated faces

m = 961 images

k = 4nearest
neighbors

D = 3009 pixels

d = 2 manifold

Pose and expression

m = 1965 images

k = 12nearest neighbors

D = 560 pixels

d = 2 (shown)

Isomap vs. LLE

Similarities

- Nonlinear dimensionality reduction for manifold learning
- Graph-based, spectral method
- No local minima
- Does not estimate dimensionality

Differences

- Constructs dense vs. sparse matrices
- Preserves distances vs. local geometric structure

References

- PCA
 - Chapter 12.1 in the PRML textbook
- MDS
 - https://en.wikipedia.org/wiki/Multidimensional_scaling
- Isomap
 - ➤ J. B. Tenenbaum, V. de Silva and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500): 2319-2323, 2000.
- LLE
 - ➤ S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (5500): 2323-2326 2000.

Thank You for Your Attention!

Yen-Yu Lin (林彥宇)

Email: lin@cs.nctu.edu.tw

URL: https://www.cs.nctu.edu.tw/members/detail/lin

