0.1 求和符号

定义 0.1 (空和 (Empty sum))

$$\sum_{i=b+1}^{b} f(i) \stackrel{\triangle}{=} 0, b \in \mathbb{Z}. \tag{1}$$

定理 0.1 (关于求和号下限大于上限的计算)

$$\sum_{i=a}^{c} f(i) \equiv -\sum_{i=c+1}^{a-1} f(i), a, c \in \mathbb{Z} \mathbb{H} a > c.$$
 (2)

笔记 上述空和的定义与关于求和号下限大于上限的计算定理都来自论文:Interpreting the summation notation when the lower limit is greater than the upper limit(Kunle Adegoke).

定理 0.2 (求和号基本性质)

1. (**倒序求和**) 当 n 为非负整数时, 有

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} a_{n-k+1}.$$

 \heartsuit

Ŷ 笔记

1. 看到求和号内部有两个变量,都可以尝试一下将其转化为倒序求和的形式.

0.1.1 求和号交换顺序

定理 0.3 (基本结论)

1. 当 n, m 均为非负整数时, 有

$$\sum_{\substack{1 \le i \le n \\ 1 < j < m}} a_{ij} = \sum_{i=1}^n \sum_{j=1}^m a_{ij} = \sum_{j=1}^m \sum_{i=1}^n a_{ij}.$$

2. 当 n, m 均为非负整数, $p \le n, q \le m \perp p, q \in \mathbb{N}_+$ 时,有

$$\sum_{\substack{p \le i \le n \\ a < j < m}} a_{ij} = \sum_{i=p}^{n} \sum_{j=q}^{m} a_{ij} = \sum_{j=q}^{m} \sum_{i=p}^{n} a_{ij}.$$

3. 当 n 为非负整数时, 有

$$\sum_{1 \le i \le j \le n} a_{ij} = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{j} a_{ij}.$$

4. 当 n 为非负整数时, 有

$$\sum_{1 \le i < j \le n} a_{ij} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{ij} = \sum_{j=2}^{n} \sum_{i=1}^{j-1} a_{ij}.$$

5. 当 n 为非负整数时, 有

$$\sum_{i=1}^{n} a_i \cdot \sum_{j=1}^{n} b_j = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j.$$

6. 当 n 为非负整数时, 有

$$\left(\sum_{i=1}^{n} a_i\right)^2 = \sum_{i=1}^{n} a_i \cdot \sum_{j=1}^{n} a_j \geqslant 0, \forall a_1, a_2, \cdots, a_n \in \mathbb{R} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j.$$

笔记 如果上述命题第1条中的 n 或 m 取到无穷, 第2条中的 n 取到无穷, 则求和号不能直接交换顺序. 此时, 往往要添加一个条件, 相应的交换和号的结论才能成立. 比如, 著名的 Fubini 定理 (见关于无限和的 Fubinin 定理). 证明 1. 利用矩阵证明该结论.

设一个m行n列的矩阵A为

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}.$$

则矩阵 A 的第i 行的和记为

$$r_i = \sum_{i=1}^m a_{ij} (i = 1, 2, \dots, n).$$

矩阵 A 的第 j 列的和记为

$$c_j = \sum_{i=1}^n a_{ij} (j = 1, 2, \dots, m).$$

易知,矩阵所有元素的和等于所有行和 r_i , $i=1,2,\cdots,n$ 求和也等于所有列和 c_j , $j=1,2,\cdots,m$ 求和,即

$$\sum_{\substack{1\leq i\leq n\\1\leq j\leq n}}a_{ij}=\sum_{i=1}^nr_i=\sum_{i=1}^n\sum_{j=1}^ma_{ij},$$

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} a_{ij} = \sum_{j=1}^m c_j = \sum_{j=1}^m \sum_{i=1}^n a_{ij}.$$

故

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} = \sum_{\substack{1 \le i \le n \\ 1 \le i \le n}} a_{ij}.$$

2. 同理利用矩阵证明该结论.

设一个m行n列的矩阵A为

$$A = \begin{bmatrix} a_{pq} & a_{p,q+1} & \cdots & a_{pm} \\ a_{p+1,q} & a_{p+1,q+1} & \cdots & a_{p+1,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nq} & a_{n,q+1} & \cdots & a_{nm} \end{bmatrix}.$$

则矩阵 A 的第i 行的和记为

$$r_i = \sum_{j=q}^{m} a_{ij} (i = p, p + 1, \dots, n).$$

矩阵 A 的第 i 列的和记为

$$c_j = \sum_{i=p}^n a_{ij} (j = q, q+1, \dots, m).$$

易知,矩阵所有元素的和等于所有行和 $r_i, i=p, p+1, \cdots, n$ 求和也等于所有列和 $c_j, j=q, q+1, \cdots, m$ 求和,即

$$\sum_{\substack{p \le i \le n \\ q \le j \le n}} a_{ij} = \sum_{i=p}^{n} r_i = \sum_{i=p}^{n} \sum_{j=q}^{m} a_{ij},$$

$$\sum_{\substack{p \le i \le n \\ a < i < p}} a_{ij} = \sum_{j=q}^{m} c_j = \sum_{j=q}^{m} \sum_{i=p}^{n} a_{ij}.$$

故

$$\sum_{i=p}^{n} \sum_{j=q}^{m} a_{ij} = \sum_{j=q}^{m} \sum_{i=p}^{n} a_{ij} = \sum_{\substack{p \le i \le n \\ a < i < n}} a_{ij}.$$

3. 根据 (1) 的结论可得

$$\sum_{j=1}^{n} \sum_{i=1}^{j} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} \chi_{i \le j}(i) \xrightarrow{\text{1.bisic}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \chi_{i \le j}(i) = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij}.$$

4. 根据 (1) 的结论可得

$$\sum_{j=2}^{n}\sum_{i=1}^{j-1}a_{ij}=\sum_{j=2}^{n}\sum_{i=1}^{n-1}a_{ij}\chi_{i< j}\left(i\right)\xrightarrow{\underline{1.648}}\sum_{i=1}^{n-1}\sum_{j=2}^{n}a_{ij}\chi_{i< j}\left(i\right)=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}a_{ij}.$$

- 5. 结论是显然的.
- 6. 结论是显然的.

注 设 X 是全集, 对任意集合 $A \subset X$, 把函数

$$\chi_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}.$$

称为集合 A 的示性函数.

例题 0.1 计算

$$\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} (i+j)}.$$

解 令
$$I = \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} (i+j)}$$
, 则

$$\begin{split} I &= \sum_{j=1}^n \sum_{i=1}^n \frac{i}{2^{i+j} \, (i+j)} \, \frac{\#_i \& \& j, \& \& i}{(\& \& \& \& i)} \, \sum_{i=1}^n \sum_{j=1}^n \frac{j}{2^{i+j} \, (i+j)} \\ &= \frac{1}{2} \left(\sum_{j=1}^n \sum_{i=1}^n \frac{i}{2^{i+j} \, (i+j)} + \sum_{i=1}^n \sum_{j=1}^n \frac{j}{2^{i+j} \, (i+j)} \right) = \frac{1}{2} \left(\sum_{i=1}^n \sum_{j=1}^n \frac{i}{2^{i+j} \, (i+j)} + \sum_{i=1}^n \sum_{j=1}^n \frac{j}{2^{i+j} \, (i+j)} \right) \\ &= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{i+j}{2^{i+j} \, (i+j)} = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{1}{2^{i+j}} = \frac{1}{2} \sum_{i=1}^n \frac{1}{2^i} \cdot \sum_{j=1}^n \frac{1}{2^j} = \frac{1}{2} \left(\sum_{i=1}^n \frac{1}{2^i} \right)^2 \\ &= \frac{1}{2} \left(\frac{\frac{1}{2} - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} \right)^2 = \frac{1}{2} \left[1 - \frac{1}{2^n} \right]^2 \, . \end{split}$$

例题 0.2 记

 $T = \{(a, b, c) \in \mathbb{N}^3 : a, b, c$ 可以构成某个三角形的三边长 $\}$.

证明:

$$\sum_{(a,b,c)\in T}A_{a,b,c}=\sum_{(x,y,z)\in\mathbb{N}^3且有相同的奇偶性}A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}.$$

筆记 核心想法: 两个集合间可以建立一一映射.

结论 若 $x, y, z \in \mathbb{N}_+, x, y, z$ 具有相同奇偶性的充要条件为

$$x + y = 2a, y + z = 2b, x + z = 2c, \not = a, b, \in \mathbb{N}_{+}.$$

证明 必要性显然. 下面证明充分性. 假设 x,y,z 具有不同的奇偶性, 则不妨设 x,z 为奇数,y 为偶数. 从而 x+y 一 定为奇数, 这与x+v=2a矛盾. 故x,v,z具有相同奇偶性.

证明 设 $T = \{(a, b, c) \in \mathbb{N}^3 : a, b, c \text{ 可以构成某个三角形的三边长}\}.$

$$\sum_{(a,b,c)\in T} A_{a,b,c} = \sum_{(x,y,z)\in \mathbb{N}^3 \text{ } \texttt{L} \texttt{f} \texttt{H} \texttt{l} \texttt{l} \texttt{l} \texttt{h} \texttt{f} \texttt{f} \texttt{f} \texttt{l} \texttt{l}} A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}.$$

记 $S = \{(x, y, z) \in \mathbb{N}^3 : x, y, z \text{ 有相同的奇偶性}\}$,则对 $\forall (x, y, z) \in S$, 取 $a = \frac{x + y}{2}$, $b = \frac{y + z}{2}$, $c = \frac{z + x}{2}$.此时我们有

$$a+b = \frac{x+2y+z}{2} > \frac{z+x}{2} = c,$$

$$b+c = \frac{x+y+2z}{2} > \frac{x+y}{2} = a,$$

$$a+c = \frac{2x+y+z}{2} > \frac{y+z}{2} = b.$$

从而 a,b,c 可以构成某个三角形的三边长, 即此时 $(a,b,c)=(\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2})\in T$.

于是我们可以构造映射

$$\tau:S\to T, (x,y,z)\mapsto (a,b,c)=(\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}).$$

反之, 对 $\forall (a,b,c) \in T$, 取 x = a+c-b, y = a+b-c, z = b+c-a. 此时我们有

$$x + y = 2a, y + z = 2b, x + z = 2c.$$

从而 x, y, z 具有相同的奇偶性, 即此时 $(x, y, z) = (a + c - b, a + b - c, b + c - a) \in S$.

于是我们可以构造映射

$$\tau': T \to S, (a, b, c) \mapsto (x, y, z) = (a + c - b, a + b - c, b + c - a).$$

因此对 $\forall (x,y,z) \in S$, 都有 $\tau \tau'(x,y,z) = \tau' \tau(x,y,z) = (x,y,z)$. 即 $\tau \tau' = I$. 故映射 τ 存在逆映射 τ' . 从而映射 τ 是双 射.

因此集合 S 中的每一个元素都能在集合 T 中找到与之一一对应的元素. 于是两和式 $\sum_{(x,y,z)\in S} A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}$ 和

 $\sum_{(a,b,c)\in T} A_{a,b,c} \text{ 的项数一定相同. 并且任取} \sum_{(x,y,z)\in S} A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}} \ \text{中} \ (x,y,z) \ \text{所对应的一项} \ A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}, \sum_{(a.b.c)\in T} A_{a,b,c}$ 中一定存在与之一一对应的 $\tau(x,y,z)$ 所对应的一项 $A_{\tau(x,y,z)}$. 而 $\tau(x,y,z) = (\frac{x+y}{2}, \frac{y+z}{2}, \frac{z+x}{2})$, 因此 $A_{\tau(x,y,z)} =$

$$A_{\frac{x+y}{2}, \frac{y+z}{2}, \frac{z+x}{2}} \cdot \not \text{th} \sum_{(x,y,z) \in S} A_{\frac{x+y}{2}, \frac{y+z}{2}, \frac{z+x}{2}} = \sum_{(a,b,c) \in T} A_{a,b,c}.$$

注上述证明中逆映射的构造可以通过联立方程 $a=\frac{x+y}{2}, b=\frac{y+z}{2}, c=\frac{z+x}{2}$ 解出 x=a+c-b, y=a+b-c, z=b+c-a 得到.

定理 0.4 (关于无限和的 Fubinin 定理)

设 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ 是一个使得 $\sum_{(n,m) \in \mathbb{N} \times \mathbb{N}} f(n,m)$ 绝对收敛的函数. 那么

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} f(n,m) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f(n,m).$$

2.

1.

$$\sum_{n=1}^{\infty} \sum_{m=1}^{n} f(n,m) = \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} f(n,m).$$

🕏 笔记 这个命题是关于求和号换序的基本结论的推广.

证明

例题 0.3 (PutnamA3) 已知 a_0, a_1, \ldots, a_n, x 是实数, 且 0 < x < 1, 并且满足

$$\frac{a_0}{1-x} + \frac{a_1}{1-x^2} + \dots + \frac{a_n}{1-x^{n+1}} = 0.$$

证明: 存在一个 0 < v < 1, 使得

$$a_0 + a_1 y + \dots + a_n y^n = 0.$$

证明 由题意可知,将 $\frac{1}{1-r^{k+1}}$ $(k=0,1,\cdots,n)$ 根据幂级数展开可得

$$\sum_{k=0}^n \frac{a_k}{1-x^{k+1}} = \sum_{k=0}^n a_k \sum_{i=0}^{+\infty} x^{(k+1)i} = \sum_{k=0}^n \sum_{i=0}^{+\infty} a_k x^{(k+1)i}.$$

又因为0 < x < 1,所以几何级数 $\sum_{i=0}^{+\infty} x^{(k+1)i}$ 是绝对收敛的. 从而有限个绝对收敛的级数的线性组合 $\sum_{k=0}^{n} a_k \sum_{i=0}^{+\infty} x^{(k+1)i}$ 也是绝对收敛的. 于是根据关于无限和的 Fubinin 定理可得

$$\sum_{k=0}^{n} \frac{a_k}{1 - x^{k+1}} = \sum_{k=0}^{n} \sum_{i=0}^{+\infty} a_k x^{(k+1)i} = \sum_{i=0}^{+\infty} \sum_{k=0}^{n} a_k x^{(k+1)i} = \sum_{i=0}^{+\infty} x^i \sum_{k=0}^{n} a_k x^{ki}.$$

设 $f(y) = a_0 + a_1 y + \dots + a_n y^n = 0, y \in (0,1), 则 <math>f \in \mathbb{C}(0,1)$. 假设对任意的 $y \in (0,1)$, 有 $f(y) \neq 0$. 则 f 要么恒为正数, 要么恒为负数. 否则, 存在 $y_1, y_2 \in (0,1)$, 使得 $f(y_1) > 0$, $f(y_2) < 0$. 那么由连续函数介值定理可知, 一定存在 $y_0 \in (0,1)$, 使得 $f(y_0) = 0$. 这与假设矛盾. 因此不失一般性, 我们假设 f(y) > 0, $\forall y \in (0,1)$. 又由 0 < x < 1 可知 $x^i \in (0,1)$. 从而

$$\sum_{k=0}^{n} \frac{a_k}{1 - x^{k+1}} = \sum_{i=0}^{+\infty} x^i \sum_{k=0}^{n} a_k x^{ki} = \sum_{i=0}^{+\infty} x^i f\left(x^i\right) > 0.$$

这与题设矛盾. 故原结论成立.

0.1.2 裂项求和

定理 0.5 (基本结论)

(1) 当 $a,b \in \mathbb{Z}$ 且 $a \leq b$ 时,有

$$\sum_{n=a}^{b} [f(n) - f(n+1)] = f(a) - f(b+1);$$

$$\sum_{n=a}^{b} [f(n+1) - f(n)] = f(b+1) - f(a);$$

$$\sum_{n=a}^{b} [f(n) - f(n-1)] = f(b) - f(a-1);$$

$$\sum_{n=a}^{b} [f(n-1) - f(n)] = f(a-1) - f(b).$$

(2) 当 $a,b,m \in \mathbb{Z}$ 且 $a \leq b$ 时,有

$$\sum_{n=a}^{b} \left[f(n+m) - f(n) \right] = \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n); \tag{3}$$

$$\sum_{n=a}^{b} \left[f(n) - f(n+m) \right] = \sum_{n=a}^{a+m-1} f(n) - \sum_{n=b+1}^{b+m} f(n). \tag{4}$$

C

证明 (1) 将求和展开后很容易得到证明.

(2) 因为(2) 中上下两个式子(3)(4) 互为相反数, 所以我们只证明(3)即可.

当 $m \ge 0$ 时, 若 $m \le b - a$, 则

$$\sum_{n=a}^{b} [f(n+m) - f(n)]$$

$$= f(a+m) + \dots + f(b) + f(b+1) + \dots + f(b+m) - f(a) - \dots - f(a+m-1) - f(a+m) - \dots - f(b)$$

$$= f(b+1) + \dots + f(b+m) - f(a) - \dots - f(a+m-1)$$

$$= \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$$

若m > b - a, 见

$$\sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$$

$$= f(b+1) + \dots + f(a+m-1) + f(a+m) + \dots + f(b+m) - f(a) - \dots - f(b) - f(b+1) - \dots - f(a+m-1)$$

$$= f(a+m) + \dots + f(b+m) - f(a) - \dots - f(b)$$

$$= \sum_{n=a}^{b} [f(n+m) - f(n)]$$

综上, 当
$$m \ge 0$$
 时, 有 $\sum_{n=a}^{b} [f(n+m) - f(n)] = \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$.

当 m < 0 时, 我们有 -m > 0, 从而

$$\begin{split} &\sum_{n=a}^{b} [f(n+m) - f(n)] = \sum_{n=a+m}^{b+m} [f(n) - f(n-m)] = -\sum_{n=a+m}^{b+m} [f(n-m) - f(n)] \\ &= -\left(\sum_{n=b+m+1}^{b+m-m} f(n) - \sum_{n=a+m}^{a+m-m-1} f(n)\right) = \sum_{n=a+m}^{a-1} f(n) - \sum_{n=b+m+1}^{b} f(n) \\ &\xrightarrow{\text{\mathbb{R}} \neq \mathbb{N} \text{\mathbb{R}} \neq \mathbb{N} \text{\mathbb{R}} \neq \mathbb{N}} \int_{\mathbb{R}^{d}} f(n) - \int_{\mathbb{R}^{d}} f(n) - \int_{\mathbb{R}^{d}} f(n) \\ &\xrightarrow{\text{\mathbb{R}} \neq \mathbb{N} \text{\mathbb{R}} \neq \mathbb{N}} \int_{\mathbb{R}^{d}} f(n) - \int_{\mathbb{R}^{d}} f(n) - \int_{\mathbb{R}^{d}} f(n) \\ &\xrightarrow{\text{\mathbb{R}} \neq \mathbb{N} \text{\mathbb{R}} \neq \mathbb{N}} \int_{\mathbb{R}^{d}} f(n) - \int_{\mathbb{R}^{d}} f(n) - \int_{\mathbb{R}^{d}} f(n) \\ &\xrightarrow{\text{\mathbb{R}} \neq \mathbb{N} \text{\mathbb{R}} \neq \mathbb{N}} \int_{\mathbb{R}^{d}} f(n) - \int_{\mathbb{$$

综上所述,结论得证.

例题 **0.4** 1. 对 $m \in \mathbb{N}$, 计算 $\sum_{i=1}^{m} (\sin n^2 \cdot \sin n)$. 2. 对 $n, m \in \mathbb{N}$, 计算 $\sum_{i=1}^{n} \frac{1}{k(k+m)}$.

解 1.

$$\begin{split} &\sum_{n=1}^{m} \left(\sin n^{2} \cdot \sin n \right) = \frac{\Re \ln \frac{2}{2} \ln n}{2} - \frac{1}{2} \sum_{n=1}^{m} \left[\cos \left(n^{2} + n \right) - \cos \left(n^{2} - n \right) \right] \\ &= -\frac{1}{2} \sum_{n=1}^{m} \left[\cos \left(n \left(n + 1 \right) \right) - \cos \left(n \left(n - 1 \right) \right) \right] \\ &= -\frac{1}{2} \left[\cos \left(m \left(m + 1 \right) \right) - 1 \right] \end{split}$$

2.

$$\sum_{k=1}^{n} \frac{1}{k(k+m)} = \frac{1}{m} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+m} \right)$$
$$= \frac{1}{m} \left(1 + \frac{1}{2} \dots + \frac{1}{m} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n+m} \right)$$