南京航空航天大学

第1页 (其7页)

二〇二〇~ 二〇二一学年 第二学明《大学物理》1(1)

期末考试试题

考试目101, 2021 年 7月 9日 试卷类型, B

10代的代码10名006

	181.43		学号	1	144
題号	-	==	E	PN PN	All 57
得分					

1	本题	分数	30
1	得	分	

选择题 (每小题 3 分, 请将选项填入下表中)

一、 12	押则(111/11/11/20	12 delin	-	And the same of	-	4	0	10
1	2	3_	4	5	6	7	15	,	10

- 1. 一质量为60kg的人站在一质量为60kg。半径为1m的均匀侧盘的边缘。网盘可续与盘面相单 置的中心整直轴无摩擦地转动,系统原来是静止的。后来人沿侧盘边缘走动,当使相对凹血的 走动速度为4m/s时, 圆盘角速度为
 - (A) trad/s :

(B) 2 md/s;

(D) 4/3 rad/s -

- (C) 8/3rad/s:
- 2. 如图所示, A. #为两个相同的定槽轮, A滑轮柱 一质量为m的物体、B滑轮受拉力F、而且F-mg、 设力、再调滑轮的角加速度分别为α。和α。,不计滑 轮轴的摩擦。这两个潜舵的角加速度的大小比较是
 - (A) $\alpha_A = \alpha_{B1}$
 - (B) a, > a, 1
 - (C) a, e, a, 1
 - (D) 无法比较。

3. 一理想气体,经如图所示的各过程,则

- (A) I→II与II′→II内能改变不同:
- (B) I→Ⅱ与Ⅱ′→Ⅱ吸收热量相同:
- (C) 1 → II 与 II / → II 作功相同:
- (D) I→II 为吸热过程:
- (E)Ⅱ′→Ⅱ为吸热过程。

4. 下面叙述哪个是正确的?

- (A) 热量不能从低温物体向高温物体传递:
- (B) 绝热过程系统对外作正功, 则系统的内能必增大:
- (C) 热传递的不可逆性与热功转变的不可逆性是等价的:
- (D) 功可以全部变为热,而热不能全部变为功。
- 5. 有两个点电荷电量都是+q, 相距为2a, 今以左边的点电 荷所在处为球心,以a为半径作一球形高斯面。在球面上取 两块相等的小面积 S, 和 S, , 其位置如图所示。设通过 S, 和 S, 的电场强度通量分别为点和点,通过整个球面的电场强度通 量为4,则

(A)
$$\phi_1 > \phi_2, \phi = q/\varepsilon_0$$
:

(B)
$$\phi_1 < \phi_2, \phi = 2q/\varepsilon_0$$

(C)
$$\phi_1 = \phi_2, \phi = q/\varepsilon_0$$
:

6. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性 均匀电介质,另一半为空气,如图。当两极板带上恒定的等量异号电荷 时,有一个质量为 m、带电荷为+q 的质点,在极板间的空气区域中处于 平衡。此后、若把电介质抽去,则该原点

- (A) 保持不动.
- (B) 向上运动。
- (C) 向下运动. (D) 是否运动不能确定.

7. 边长为1的正方形线圈,分别用图示两种方式通以电流1 (其中 ab、cd 与对角线 bc 共创)。在这两种情况下,线圈在 其中心产生的曼感强度的大小分别为

本題分数 42 得 分

二 填空题 (每空3分)

12. 长为1质量为m的均匀细棒,一端悬挂在过 O 点的无摩擦的水平转轴上, 在此转轴上另有一长为r 的轻绳悬挂一小球,质量为m/2,当小球悬线偏离铅 直方向某一角度θ时由静止释放(如图示),小球在悬挂点正下方与静止的细棒

发生弹性碰撞,且碰后小球刚好静止,则r=___

13. 如图所示的装置可测轮子的转动惯量J, 若m由静止开始下降, t 秒后下降的距离为h, 则J=_______。

本资源免费共享 收集网站 nuaa.store

14. 一定量理想气体,从同一状态开始把其体积由 V_0 压缩到 $\frac{1}{2}V_0$,

过程. 其中: ______过程外界对系统做功最多。

16. 如果理想气体的状态依照 $V = \frac{a}{\sqrt{p}}$ 的规律变化,则气体从V,

膨胀到 1/2 所做的功_____

17. 图中所示为一沿 x 轴放置的长度为 l 的不均匀带电细棒, 其电荷线密度为 $\lambda = \lambda_0 (x-a)$, λ_0 为一常量. 取无穷远处为电势零点,则坐标原点 O 处的电势_______.

第5	seight.	V 11		Thi	ā
25 6	177		7	133	Ю
747 7	15.6	1	- 6	17	œ

18. 两点电荷 $q_1 = 1.5 \times 10^{-8}$ C, $q_2 = 3 \times 10^{-8}$ C, 相距 $r_1 = 42$ cm, 要把它们之间的距离变为

$$r_2 = 25 \,\mathrm{cm}$$
,外力需作多少功_______[$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \,\mathrm{N \cdot m^2/C^2}$]

19. 形状如图所示的导线 abcd, 通有电流 I, 放在与匀强磁场 垂直的平面内, 其中 a、c、d 在同一条直线上, 且 a、c 的间 距为1,cd是半径为R的半圆导线的直径。若磁感应强度大小 为 B,则导线 abcd 所受的安培力 F=

20. 一空气平行板电容器,两板相距为d,与一电池连接时两板之间静电作用力的大小为F,断开 电池后,将两板距离拉开到 2d,忽略边缘效应,则两板之间的静电作用力的大小是

21. 如图,长直螺线管产生的磁场 \bar{B} 随时间均匀增强, \bar{B} 的方向垂直 于纸面向里。在管外共轴地套上一个导体圆环(环面垂直于 \overline{B}),但 它由两段不同金属材料的半圆环组成,电阻分别为 R_1 、 R_2 ,且 $R_1 > R_2$,接点处为 $a \ b$ 两点,比较这两点电势大小___ $(U_a > U_b$ 、或 $U_a < U_b$ 、或 $U_a = U_b$)

22. 磁感应强度为 B 的均匀磁场中放一均匀带正电荷的圆环, 半径为

R. 电荷线密度为 λ , 圆环可绕与环面垂直的转轴旋转, 转轴与磁场垂直, 当圆环

以角速度 @ 转动时,圆环受到的磁力矩大小为

23. 如图所示. 电荷 q (>0)均匀地分布在一个半径为 R 的薄球壳外表面上, 若球壳

以恒角速度 ω 。绕z轴逆时针方向转动,则沿着z轴从一 ∞ 到十 ∞ 磁感应强度的线积

分等于

24. 真空中一根无限长直细导线上通有电流强度为1的电流,则距导线垂直距离为

a的空间某点处的磁能密度为

28	
小数	女
本题3	參

计算题 111

25. (本题 12 分) 半径为 R 的带电球体, 其电荷体密度分布为 p=Kr², r 为球心到球内一点的矢 径的大小, 水为常量, 求: (1) 带电球体内、外的场强分布; (2) 带电球体内的电场能量。 26. (本题 6 分)如图所示,均匀带电刚性细杆 AB 长为 b,线电荷密度为 3 (> 0),绕垂直于直 线的轴の以の角速度匀速转动。(0点在细杆 AB 延长线上, 离 A 点距离为 a) 来: O点的磁感应强度 B。.

度0平行导线平移,求; 半圆环内感应电动势的大小、方向以及 环 MeN, 与长直导线共面, 且端点 M、N的连线与长直导线垂直。 27. (本题 10 分) 载有电流为1的长直导线附近,放一导体半圆 半圓环的半径为 b, 环心 O 与长直导线相距为 a, 设半圆环以速

AN两端的电势差。

11. g coso $\frac{13. \quad mgR^2t^2}{2h} - mR^2$ (个、人们) 本资源免费共享收集网站 nuaa.store (5 (00)7. 20 (1-alm atl) 18 . - 6.56×10-6 J

19. BI((+2R)

20. F

21. Mas Us

 $22. \frac{1}{2} m \pi R^2 B \lambda W$

23. 169Wo 27

 $\frac{1}{2\mu_0}\left(\frac{\mu_0I}{2\pi g}\right)^2$

$$VS.(1) \oint_{S} \overrightarrow{E} \cdot d\overrightarrow{S} = \frac{29}{6}$$

$$O r < R. \quad \Sigma 9 = \int_{S}^{r} kr^{2} 4\pi r^{2} dr$$

$$= \frac{4\pi}{5} kr^{5}$$

$$\overrightarrow{E} \cdot 4\pi r^{2} = \frac{4\pi kr^{5}}{56} \Rightarrow \frac{1}{56}$$

$$\overrightarrow{E} = \frac{kr^{3}}{56} \overrightarrow{e} r$$

$$(2) \quad We = \frac{1}{2} & \cancel{E}^{2} = \frac{k^{2}r^{6}}{106}$$

$$W = \int_{S}^{R} \frac{k^{2}r^{6}}{106} 4\pi r^{2} \cdot dr$$

$$= \frac{2\pi k^{2}}{56} \int_{S}^{R} r^{8} dr$$

$$= \frac{2\pi k^{2}}{56} \int_{S}^{R} r^{8} dr$$

$$= \frac{2\pi k^{2}}{56} \int_{S}^{R} r^{8} dr$$

(1) 对 $r \rightarrow r + dr$ 段, 电荷 $dq = \lambda dr$ 旋转形成圆电流, 且

$$dI = dq \frac{\omega}{2\pi} = \frac{\lambda \omega}{2\pi} dr$$

它在O点的磁感强度

$$dB_0 = \frac{\mu_0 dI}{2r} = \frac{\lambda \omega \mu_0}{4\pi} \frac{dr}{r}$$

$$B_0 = \int dB_0 = \frac{\lambda \omega \mu_0}{4\pi} \int_{-\infty}^{a+b} \frac{dr}{r} = \frac{\lambda \omega \mu_0}{4\pi} \ln \frac{a+b}{a}$$

方向垂直纸面向内.

本资源免费共享 收集网站 nuaa.store

作辅助线 $M\!N$,则在 $M\!e\!N\!M$ 回路中,沿 \bar{v} 方向运动时 d $oldsymbol{arPhi}_m=0$

$$\varepsilon_{MeNM} = 0$$

即 $arepsilon_{\mathit{MeN}} = arepsilon_{\mathit{MN}}$

$$\Sigma_{MN} = \int_{a-b}^{a+b} vB \cos \pi d \qquad I = \frac{\mu_0 I v}{2\pi} \ln \frac{a-b}{a+b} < 0$$

所以 ε_{MeN} 沿NeM方向,

大小为
$$\frac{\mu_0 I v}{2\pi} \ln \frac{a+b}{a-b}$$
 计算27

M 点电势高于N 点电势,即

$$U_M - U_N = \frac{\mu_0 I v}{2\pi} \ln \frac{a+b}{a-b}$$