Random Forest

- Random forest algorithm creates decision trees on data samples and then gets the prediction from each of them and finally selects the best solution by means of voting.
- It is an ensemble method which is better than a single decision tree because it reduces the over-fitting by averaging the result.

Steps Involved:

- Step 1 First, start with the selection of random samples from a given dataset.
- Step 2 Next, this algorithm will construct a decision tree for every sample. Then it will get the
 prediction result from every decision tree.
- Step 3 In this step, voting will be performed for every predicted result.
- Step 4 At last, select the most voted prediction result as the final prediction result.

Pros and Cons of Random Forest Algorithm:

Pros:

- It overcomes the problem of overfitting by averaging or combining the results of different decision trees.
- Random forests work well for a large range of data items than a single decision tree does.

- · Random forest has less variance then single decision tree.
- · Random forests are very flexible and possess very high accuracy.
- Random Forest algorithms maintains good accuracy even a large proportion of the data is missing.

Scaling of data does not require in random forest algorithm. It maintains good accuracy even after providing data without scaling.

Cons:

- · Complexity is the main disadvantage of Random forest algorithms.
- Construction of Random forests are much harder and time-consuming than decision trees.
- More computational resources are required to implement Random Forest algorithm.
- It is less intuitive in case when we have a large collection of decision trees.
- The prediction process using random forests is very time-consuming in comparison with other algorithms.

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: dataset = pd.read_csv('Position_Salaries.csv')

In [3]: X = dataset.iloc[:,1:2].values
y = dataset.iloc[:,2].values
```

Building a regressor model.

mylist.append((ii,r_forest(ii,6.5)[0]))

Visualization using plot:

 Here, we see for what value of 'n_estimators', the predicted value of the salary will be the closest to 160k.

The best predicted salary for level 6.5 is 160000.0. For this, we use n_estimators = 150.

Testing for level = 9.

Checking whether we can do any better prediction than this.

```
In [15]: def minimum_index(objective, truevalue):
    # Creating a list of tuples containing varyig values of n_estimators & corres
    mylist = []
    for ii in range(10,500+1,10):
        mylist.append((ii,r_forest(ii,objective)[0]))

# Separation for plot.
    x_grid,y_grid = np.array(mylist).T

# Getting the index for which the predicted value is the closest to 160k.
    epsilon = np.abs(y_grid-(np.ones(len(y_grid))*truevalue))
    min_index = np.where(epsilon == min(epsilon))[0]
    return (min_index, x_grid[min_index], y_grid[min_index])

In [31]: minimum_index(9,500000)

Out[31]: (array([3], dtype=int64), array([40.]), array([502500.]))
```

This means, for determining the best predicted value for level 9, we set $n_{estimators} = 40$ and doing so, we get the optimal predicted salary as 502500.

Determining the optimal number of estimators for all the levels.

```
true_values = dataset.iloc[:,2].values
          objectives = dataset.iloc[:,1].values
         optimal estimators = []
          for ii in range(len(objectives)):
              optimal_estimators.append(minimum_index(objectives[ii], true_values[ii])[1]
         optimal_estimators
Out[17]: [array([10.]),
          array([150.]),
          array([240.]),
          array([70.]),
          array([60.]),
          array([480.]),
          array([20.]),
          array([ 10., 200.]),
          array([40.]),
          array([10.])]
```

Adding optimal estimators into the original dataset.

```
In [68]: dataset['opt_estimators'] = [optimal_estimators[ii][0] for ii in range(len(optimataset['opt_estimators'].values
Out[68]: array([ 10., 150., 240., 70., 60., 480., 20., 10., 40., 10.])
```

Adding the best estimates into the original dataset.

Optimal number of estimators for each level visualized in a bar plot.

In [41]: dataset['Difference'] = -dataset['Salary'] + dataset['best_prediction']
 dataset

Out[41]:

	Position	Level	Salary	opt_estimators	best_prediction	Difference
0	Business Analyst	1	45000	10.0	46000.00	1000.00
1	Junior Consultant	2	50000	150.0	50066.67	66.67
2	Senior Consultant	3	60000	240.0	59875.00	-125.00
3	Manager	4	80000	70.0	80142.86	142.86
4	Country Manager	5	110000	60.0	109833.33	-166.67
5	Region Manager	6	150000	480.0	143895.83	-6104.17
6	Partner	7	200000	20.0	200000.00	0.00
7	Senior Partner	8	300000	10.0	305000.00	5000.00
8	C-level	9	500000	40.0	502500.00	2500.00
9	CEO	10	1000000	10.0	850000.00	-150000.00

The End.