

Práctica de Laboratorio 01

Enunciado 1 (NumPy): ¿Dónde compro mi café?

Contexto real:

Jorge es un estudiante universitario que cuenta con **S/ 10** de presupuesto para comprar café antes de sus clases. Ha visto los precios en cuatro cafeterías cercanas:

Tabla 1

CAFETERÍA PRECIO POR CAFÉ (S/)

Α	2.50
В	3.00
С	1.75
D	2.20

Objetivo del ejercicio:

Usando **NumPy**, determina:

- 1. Cuántos cafés puede comprar en cada una de las cuatro cafeterías con sus S/10.
- 2. En cuál cafetería obtiene la mayor cantidad de cafés sin pasarse del presupuesto.
- 3. El **precio mínimo** entre las cuatro cafeterías y el índice (o nombre) de esa cafetería.

Tareas detalladas:

- 1. Importar NumPy y crear un array precios = np.array([2.50, 3.00, 1.75, 2.20]).
- 2. Calcular con operaciones vectorizadas el número de cafés posibles:

max_cafes = np.floor(10 / precios)

- 3. Usar max_cafes.max() y max_cafes.argmax() para encontrar la mayor cantidad de cafés y su posición en el array.
- 4. Obtener el precio mínimo con precios.min() y su posición con precios.argmin().
- 5. Documentar cada línea con un comentario claro y, al final, imprimir resultados como:

Con S/10 puedo comprar como máximo X cafés en la cafetería C (precio mínimo S/Y).

Enunciado 2 (Pandas): Control de horas de laboratorio

Contexto real:

En el laboratorio de computación, cada estudiante paga **S/ 2.00** por hora de uso de las computadoras. Se ha registrado el uso semanal de cinco compañeros:

Tabla 2

ESTUDIANTE HORAS_USADAS

ANA	3
LUIS	5
MARÍA	2
JUAN	4
CARLA	1

Objetivo del ejercicio:

Con **Pandas**, crea un DataFrame para gestionar estos datos y responde:

- 1. ¿Cuál es el costo total que paga cada estudiante?
- 2. ¿Cuál es el gasto promedio por estudiante?
- 3. ¿Qué estudiantes han gastado **más de S/ 6.00** en la semana?

Tareas detalladas:

1. Importar Pandas y construir un diccionario:

```
datos = {
    'Estudiante': ['Ana','Luis','María','Juan','Carla'],
    'Horas_usadas': [3,5,2,4,1]
}
df = pd.DataFrame(datos)
```

- 2. Añadir una columna Costo_total multiplicando Horas_usadas * 2.0.
- 3. Mostrar con df.head() el DataFrame completo.
- 4. Calcular estadísticas descriptivas de Costo_total con df['Costo_total'].describe().
- 5. Filtrar filas donde Costo_total > 6.0 usando df[df['Costo_total'] > 6.0].
- 6. Comentar cada método de Pandas utilizado y al final imprimir un resumen como:

El gasto promedio fue de S/ X.XX; los estudiantes que gastaron más de S/6.00 son: [lista].

Código Ejercicio 01 (Python):

Ejercicio 1: ¿Dónde compro mi café?

import numpy as np

1. Definimos el presupuesto disponible (S/ 10) presupuesto = 10.0

2. Creamos un array con los precios de café en cada cafetería # A: 2.50, B: 3.00, C: 1.75, D: 2.20 precios = np.array([2.50, 3.00, 1.75, 2.20])

- # 3. Calculamos cuántos cafés puede comprar en cada cafetería
 # np.floor realiza la división y redondea hacia abajo al entero más próximo max_cafes = np.floor(presupuesto / precios)
- # 4. Encontramos la mayor cantidad de cafés posibles
- # max_cafes.max() devuelve el valor máximo de cafés
- # max_cafes.argmax() devuelve el índice (0-3) donde se alcanza ese máximo
 cantidad_max = int(max_cafes.max())
 indice_max = int(max_cafes.argmax())
- # 5. Determinamos el precio mínimo y su índice precio_min = precios.min() indice_precio_min = int(precios.argmin())
- # 6. Mapeo de índices a nombres de cafetería nombres = ['A', 'B', 'C', 'D']
- # 7. Imprimimos los resultados
 print("=== Resultados Ejercicio Café ===")
 for i, nombre in enumerate(nombres):
 print(f"Cafetería {nombre}: precio S/ {precios[i]:.2f} → puede comprar {int(max_cafes[i])}
 cafés")

print(f"\nCon S/ {presupuesto:.2f} obtienes la mayor cantidad de cafés ({cantidad_max}) en la cafetería {nombres[indice_max]}.") print(f"El precio más bajo es S/ {precio_min:.2f} en la cafetería {nombres[indice_precio_min]}.")

Código Ejercicio 2 (Python):

```
# Ejercicio 2: Control de horas de laboratorio
import pandas as pd
#1. Construimos el diccionario de datos
datos = {
  'Estudiante': ['Ana', 'Luis', 'María', 'Juan', 'Carla'],
  'Horas_usadas': [3, 5, 2, 4, 1]
}
# 2. Convertimos el diccionario en un DataFrame de Pandas
df = pd.DataFrame(datos)
#3. Calculamos el costo total por estudiante (S/2.00 por hora)
# Creamos una nueva columna 'Costo_total'
df['Costo_total'] = df['Horas_usadas'] * 2.0
# 4. Mostramos el DataFrame completo
print("=== DataFrame de uso de laboratorio ===")
print(df)
#5. Estadísticas descriptivas de la columna 'Costo_total'
# describe() devuelve conteo, media, std, min, percentiles y max
stats = df['Costo_total'].describe()
print("\n=== Estadísticas de Costo_total ===")
print(stats)
#6. Filtramos los estudiantes con gasto mayor a S/6.00
# Creamos un DataFrame con la condición df['Costo_total'] > 6.0
df_mayor_6 = df[df['Costo_total'] > 6.0]
#7. Imprimimos el gasto promedio y la lista de estudiantes con gasto > S/6.00
gasto_promedio = stats['mean']
lista_altos = df_mayor_6['Estudiante'].tolist()
print(f"\nEl gasto promedio por estudiante fue de S/ {gasto_promedio:.2f}.")
print("Estudiantes que gastaron más de S/ 6.00:")
for alumno in lista_altos:
  print(f" - {alumno}")
```