Vorsteuerung

Ansatz

Idee: Entkopplung der Dynamiken von Führungsverhalten und Störunterdrückung

Zweistufiger Ansatz:

- 1. Entwurf der Regelung
- 2. Entwurf der kompensierenden Vorsteuerung

Ersatzübertragungsfunktionen

Führungs-ÜF	Führungs-ÜF	Störung-ÜF
$rac{Y(s)}{R(s)} = rac{G_F(s) \; G_R(s) \; G_S(s)}{1 + G_R(s) \; G_S(s)}$	$rac{Y(s)}{W(s)} = rac{G_R(s) \; G_S(s)}{1 + G_R(s) \; G_S(s)}$	$rac{Y(s)}{D(s)}=rac{1}{1+G_R(s)\;G_S(s)}$

 $G_F(s)$ wird genutzt um:

- \rightarrow eine Wunschdynamik aufzuprägen oder anders ausgedrückt:
- ightarrow die Regelkreisdynamik zu kompensieren

Berechnung der Vorsteurung

$$rac{Y(s)}{R(s)} = rac{G_F(s) \; G_R(s) \; G_S(s)}{1 + G_R(s) \; G_S(s)} \stackrel{!}{=} G_{Des}(s)$$

$$G_F(s) = G_{Des}(s) \cdot rac{1 + G_R(s) \; G_S(s)}{G_R(s) \; G_S(s)}$$

- Parametrierung von Regler und Vorfilter hängt von Regelaufgabe ab.
- Eine Möglichkeit ist, über den I-Anteil eine bleibende Regelabweichung z.B. durch Modellunsicherheit **langsam** auszuregeln

Ergebnis

 \rightarrow Nachteil der Struktur: bei Sollwertänderungen wird der ganze Regelkreis angeregt. - Besser wäre wenn er nur von Störungen angeregt wird.