(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 November 2001 (08.11.2001)

PCT

English

English

(10) International Publication Number WO 01/83559 A2

(51) International Patent Classification7: C07K 16/00

(DK). VON DER OSTEN, Claus [DK/DK]; Christian Winthers Vej 15, DK-2800 Lyngby (DK).

(21) International Application Number: PCT/DK01/00293

(74) Common Representative: NOVOZYMES A/S; Krogshøjvej 36, DK-2880 Bagsværd (DK).

(22) International Filing Date: 30 April 2001 (30.04.2001)

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language:

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language:

(30) Priority Data: PA 2000 00707 60/203,345

60/277,817

PA 2001 00327

28 April 2000 (28.04.2000) DK 10 May 2000 (10.05.2000) US 28 February 2001 (28.02.2001) DK 21 March 2001 (21.03.2001) US

Bagsværd (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ROGGEN, Erwin, Ludo [BE/DK]; Asavænget 14, DK-2800 Lyngby (DK). ERNST, Steffen [DK/DK]; Edelsmindevej 18, DK-2700 Brønshøj (DK). SVENDSEN, Allan [DK/DK]; Overdamsvej 13, DK-2970 Hørsholm (DK). FRIIS, Esben, Peter [DK/DK]; Langagervej 15, 2. tv., DK-2500 Valby

(71) Applicant (for all designated States except US): NOVOZYMES A/S [DK/DK]; Krogshøjvej 36, DK-2880

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

 Ξ

(54) Title: PROTEIN VARIANTS HAVING MODIFIED IMMUNOGENICITY

(57) Abstract: The present invention relates to a method of selecting a protein variant having modified immunogenicity as compared to the parent protein comprising the steps obtaining antibody binding peptide sequences, using the sequences to localise epitope sequences on the 3-dimensional structure of parent protein, defining an epitope area including amino acids situated within 5 Å from the epitope amino acids constituting the epitope sequence, changing one or more of the amino acids defining the epitope area of the parent protein by genetical engineering mutations of a DNA sequence encoding the parent protein, introducing the mutated DNA sequence into a suitable host, culturing said host and expressing the protein variant, and evaluating the immunogenicity of the protein variant using the parent protein as reference. The invention further relates to the protein variant and use thereof, as well as to a method for producing said protein variant.

1

PROTEIN VARIANTS HAVING MODIFIED IMMUNOGENICITY

Field of invention

The present invention relates to a method of selecting a protein variant having modified immunogenicity as compared to the parent protein, to the protein variant and use thereof, as well as to a method for producing said protein variant.

10 Background of the invention

An increasing number of proteins, including enzymes, are being produced industrially, for use in various industries, housekeeping and medicine. Being proteins they are likely to stimulate an immunological response in man and animals, including an allergic response.

Depending on the application, individuals get sensitised to the respective allergens by inhalation, direct contact with skin and 20 eyes, or injection. The general mechanism behind an allergic response is divided in a sensitisation phase and a symptomatic The sensitisation phase involves a first exposure of an individual to an allergen. This event activates specific T- and B-lymphocytes, and leads to the production of allergen specific 25 IgE antibodies (in the present context the antibodies are denoted as usual, i.e. immunoglobulin E is IgE etc.). These IgE antibodies eventually facilitate allergen capturing and presentation to T-lymphocytes at the onset of the symptomatic phase. This phase is initiated by a second exposure to the same or a 30 resembling antigen. The specific IgE antibodies bind to the specific IgE receptors on mast cells and basophils, among others, and capture at the same time the allergen. The polyclonal nature of this process results in bridging and clustering of the IgE receptors, and subsequently in the activation of mast cells and

basophils. This activation triggers the release of various chemical mediators involved in the early as well as late phase reactions of the symptomatic phase of allergy. Prevention of allergy in susceptible individuals is therefore a research area of great importance.

For certain forms of IgE-mediated allergies, a therapy exists, which comprises repeated administration of allergen preparations called 'allergen vaccines' (Int. Arch. Allergy Immunol., 1999, vol. 119, pp1-5). This leads to reduction of the allergic symptoms, possibly due to a redirection of the immune response away from the allergic (Th2) pathway and towards the immunoprotective (Th1) pathway (Int. Arch. Allergy Immunol., 1999, vol. 119, pp1-5).

15

Various attempts to reduce the immunogenicity of polypeptides and proteins have been conducted. It has been found that small changes in an epitope may affect the binding to an antibody. This may result in a reduced importance of such an epitope, maybe converting it from a high affinity to a low affinity epitope, or maybe even result in epitope loss, i.e. that the epitope cannot sufficiently bind an antibody to elicit an immunogenic response.

- 25 There is a need for methods to identify epitopes on proteins and alter these epitopes in order to modify the immunogenicity of proteins in a targeted manner. Such methods and kits for their execution can have at least four useful purposes:
- 30 1) reduce the allergenicity of a commercial protein using protein engineering.
 - 2) reduce the potential of commercial proteins to cross-react with environmental allergens and hence cause allergic reactions

WO 01/83559 PCT/DK01/00293

3

in people sensitized to the environmental allergens (or vice versa).

- 3) improve the immunotherapeutic effect of allergen vaccines.
- 4) assist characterization of clinical allergies in order to se-
- 5 lect the appropriate treatment, including allergen vaccination.

In WO99/53038 (Genencor Int.) as well as in prior references (Kammerer et al, Clin. Exp. Allergy, 1997, vol. 27, pp 1016-1026; Sakakibara et al, J. Vet. Med. Sci., 1998; vol. 60, pp. 10 599-605), methods are described, which identify linear T-cell epitopes among a library of known peptide sequences, each representing part of the primary sequence of the protein of interest. Further, several similar techniques for localization of B-cell epitopes are disclosed by Walshet et al, J. Immunol. Methods, 15 vol. 121, 1275-280, (1989), and by Schoofs et al. J. Immunol. vol. 140, 611-616, (1987). All of these methods, however, only leads to identification of linear epitopes, not to identification of 'structural' or 'discontinuous' epitopes, which are found on the 3-dimensional surface of protein molecules and 20 which comprise amino acids from several discrete sites of the primary sequence of the protein. For several allergens, it has been realized that the dominant epitopes are of such discontinuous nature (Collins et al., Clin. Exp. All. 1996, vol. 26, pp.

25

36-42).

Slootstra et al; Molecular Diversity, 2, pp. 156-164, 1996 disclose the screening of a semi-random library of synthetic peptides for their binding properties to three monoclonal antibodies by immobilizing the peptides on polyethylene pins and binding a dilution series of each antibody to the pins. This reference does not disclose any indication of how the antibody binding peptide sequences relate to any full protein antigens or allergens.

In W092/10755 a method for modifying proteins to obtain less immunogenic variants is described. Randomly constructed protein variants, revealing a reduced binding of antibodies to the parsent enzyme as compared to the parent enzyme itself, are selected for the measurement in animal models in terms of allergenicity. Finally, it is assessed whether reduction in immunogenicity is due to true elimination of an epitope or a reduction in affinity for antibodies. This method targets the identification of amino aicds that may be part of structural epitopes by using a complete protein for assessing antigen binding. The major drawbacks of this approach are the 'trial and error' character, which makes it a lengthy and expensive process, and the lack of general information on the epitope patterns. Without this information, the results obtained for one protein can not be applied on another protein.

WO 99/47680 (ALK-ABELLÓ) discloses the identification and modification of B-cell epitopes by protein engineering. However, the
method is based on crystal structures of Fab-antigen complexes,
and B-cell epitopes are defined as "a section of the surface of
the antigen comprising 15-25 amino acid residues, which are
within a distance from the atoms of the antibody enabling direct
interaction" (p.3). This publication does not show how one selects which Fab fragment to use (e.g. to target the most dominant allergy epitopes) or how one selects the substitutions to
be made. Further, their method cannot be used in the absence of
such crystallographic data for antigen-antibody complexes, which
are very cumbersome, sometimes impossible, to obtain - especially since one would need a separate crystal structure for
each epitope to be changed.

Hence, it is of interest to establish a general and efficient method to identify structural epitopes on the 3-dimensional surface of commercial and environmental allergens.

5

Summary of the invention

The present invention relates to a method of selecting a protein variant having modified immunogenicity as compared to a parent protein,

comprising the steps of:

a) obtaining antibody binding peptide sequences,

15

- b) using the sequences to localise epitope sequences on the 3-dimensional structure of parent protein,
- c) defining an epitope area including amino acids situated
 within 5 Å from the epitope amino acids constituting the epitope sequence,
- d) changing one or more of the amino acids defining the epitope area of the parent protein by genetic engineering mutations of a
 DNA sequence encoding the parent protein,
 - e) introducing the mutated DNA sequence into a suitable host, culturing said host and expressing the protein variant, and
- 30 f) evaluating the immunogenicity of the protein variant using the parent protein as reference.

A second aspect of the present invention is a protein variant having modified immunogenicity as compared to its parent protein. The amino acid sequence of the protein variant differs from the amino acid sequence of the parent protein with respect to at least one epitope pattern of the parent protein, such that the immunogenicity of the protein variant is modified as compared with the immunogenicity of the parent protein.

A further aspect of the present invention is a composition com10 prising a protein variant as defined above, as well as the use
of the composition for industrial application, such as the production of a formulation for personal care products (for example
shampoo; soap; skin, hand and face lotions; skin, hand and face
crèmes; hair dyes; toothpaste), food (for example in the baking
15 industry), detergents and for the production of pharmaceuticals,
e.g. vaccines.

Yet another aspect is a DNA molecule encoding a protein variant as defined above.

20

Further aspects are a vector comprising a DNA molecule as described above as well a host cell comprising said DNA molecule.

Another aspect is a method of producing a protein variant having modified immunogenicity as compared to the parent protein as defined above.

Definitions

30

Prior to a discussion of the detailed embodiments of the invention, a definition of specific terms related to the main aspects of the invention is provided. In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Pritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (herein "Sambrook et al., 1989") DNA Cloning: A Practical Approach, Volumes I and II /D.N. Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed. 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds (1985)); Transcription And Translation (B.D. Hames & S.J. Higgins, eds. (1984)); Animal Cell Culture (R.I. Freshney, ed. (1986)); Immobilized Cells And Enzymes (IRL Press, (1986)); B. Perbal, A Practical Guide To Molecular Cloning (1984).

15

When applied to a protein, the term "isolated" indicates that the protein is found in a condition other than its native environment, such as apart from blood and animal tissue. In a preferred form, the isolated protein is substantially free of other 20 proteins, particularly other proteins of animal origin. It is preferred to provide the proteins in a highly purified form, i.e., greater than 95% pure, more preferably greater than 99% pure. When applied to a polynucleotide molecule, the term "isolated" indicates that the molecule is removed from its natural 25 genetic milieu, and is thus free of other extraneous or unwanted coding sequences, and is in a form suitable for use within genetically engineered protein production systems. Such isolated molecules are those that are separated from their natural environment and include cDNA and genomic clones. Isolated DNA mole-30 cules of the present invention are free of other genes with which they are ordinarily associated, and may include naturally occurring 5' and 3' untranslated regions such as promoters and terminators. The identification of associated regions will be

evident to one of ordinary skill in the art (see for example, Dynan and Tijan, Nature 316: 774-78, 1985).

- A "polynucleotide" is a single- or double-stranded polymer of 5 deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. Polynucleotides include RNA and DNA, and may be isolated from natural sources, synthesized in vitro, or prepared from a combination of natural and synthetic molecules.
- 10 A "nucleic acid molecule" refers to the phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine or cytidine; "RNA molecules") ordeoxyribonucleosides (deoxyadenosine, deoxyguanosine, deoxythymidine, or deoxycytidine; "DNA molecules") in either single stranded form, or a double-15 stranded helix. Double stranded DNA-DNA, DNA-RNA and RNA-RNA helices are possible. The term nucleic acid molecule, and in particular DNA or RNA molecule, refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary or quaternary forms. Thus, this term in-20 cludes double-stranded DNA found, inter alia, in linear or circular DNA molecules (e.g., restriction fragments), plasmids, and chromosomes. In discussing the structure of particular doublestranded DNA molecules, sequences may be described herein according to the normal convention of giving only the sequence in 25 the 5' to 3' direction along the nontranscribed strand of DNA (i.e., the strand having a sequence homologous to the mRNA). A "recombinant DNA molecule" is a DNA molecule that has undergone a molecular biological manipulation.
- 30 A DNA "coding sequence" is a double-stranded DNA sequence, which is transcribed and translated into a polypeptide in a cell in vitro or in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a

translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and even synthetic DNA sequences. If the coding sequence is intended for expression in a eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence.

- 10 An "Expression vector" is a DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of interest operably linked to additional segments that provide for its transcription. Such additional segments may include promoter and terminator sequences, and optionally one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, and the like. Expression vectors are generally derived from plasmid or viral DNA, or may contain elements of both.
- 20 Transcriptional and translational control sequences are DNA regulatory sequences, such as promoters, enhancers, terminators, and the like, that provide for the expression of a coding sequence in a host cell. In eukaryotic cells, polyadenylation signals are control sequences.

25

A "secretory signal sequence" is a DNA sequence that encodes a polypeptide (a "secretory peptide" that, as a component of a larger polypeptide, directs the larger polypeptide through a secretory pathway of a cell in which it is synthesized. The larger polypeptide is commonly cleaved to remove the secretory peptide during transit through the secretory pathway.

The term "promoter" is used herein for its art-recognized meaning to denote a portion of a gene containing DNA sequences that

provide for the binding of RNA polymerase and initiation of transcription. Promoter sequences are commonly, but not always, found in the 5' non-coding regions of genes.

s "Operably linked", when referring to DNA segments, indicates that the segments are arranged so that they function in concert for their intended purposes, e.g. transcription initiates in the promoter and proceeds through the coding segment to the terminator.

10

A coding sequence is "under the control" of transcriptional and translational control sequences in a cell when RNA polymerase transcribes the coding sequence into mRNA, which is then trans-RNA spliced and translated into the protein encoded by the coding sequence.

"Isolated polypeptide" is a polypeptide which is essentially free of other non-[enzyme] polypeptides, e.g., at least about 20% pure, preferably at least about 40% pure, more preferably about 60% pure, even more preferably about 80% pure, most preferably about 90% pure, and even most preferably about 95% pure, as determined by SDS-PAGE.

"Heterologous" DNA refers to DNA not naturally located in the 25 cell, or in a chromosomal site of the cell. Preferably, the heterologous DNA includes a gene foreign to the cell.

A cell has been "transfected" by exogenous or heterologous DNA when such DNA has been introduced inside the cell. A cell has been "transformed" by exogenous or heterologous DNA when the transfected DNA effects a phenotypic change. Preferably, the transforming DNA should be integrated (covalently linked) into chromosomal DNA making up the genome of the cell.

A "clone" is a population of cells derived from a single cell or common ancestor by mitosis.

"Homologous recombination" refers to the insertion of a forreign 5 DNA sequence of a vector in a chromosome. Preferably, the vector targets a specific chromosomal site for homologous recombination. For specific homologous recombination, the vector will contain sufficiently long regions of homology to sequences of the chromosome to allow complementary binding and incorporation of the vector into the chromosome. Longer regions of homology, and greater degrees of sequence similarity, may increase the efficiency of homologous recombination.

Nucleic Acid Sequence

15 The techniques used to isolate or clone a nucleic acid sequence encoding a polypeptide are known in the art and include isolation from genomic DNA, preparation from cDNA, or a combination The cloning of the nucleic acid sequences of the present invention from such genomic DNA can be effected, e.g., by 20 using the well known polymerase chain reaction (PCR) or antibody screening of expression libraries to detect cloned DNA fragments with shared structural features. See, e.g., Innis et al., 1990, A Guide to Methods and Application, Academic Press, New York. Other nucleic acid amplification procedures such as ligase chain 25 reaction (LCR), ligated activated transcription (LAT) and nuceic acid sequence-based amplification (NASBA) may be used. The nucleic acid sequence may be cloned from a strain producing the polypeptide, or from another related organism and thus, for example, may be an allelic or species variant of the polypeptide 30 encoding region of the nucleic acid sequence.

The term "isolated" nucleic acid sequence as used herein refers to a nucleic acid sequence which is essentially free of other nucleic acid sequences, e.g., at least about 20% pure, prefera-

bly at least about 40% pure, more preferably about 60% pure, even more preferably about 80% pure, most preferably about 90% pure, and even most preferably about 95% pure, as determined by agarose gel electorphoresis. For example, an isolated nucleic s acid sequence can be obtained by standard cloning procedures used in genetic engineering to relocate the nucleic acid sequence from its natural location to a different site where it will be reproduced. The cloning procedures may involve excision and isolation of a desired nucleic acid fragment comprising the 10 nucleic acid sequence encoding the polypeptide, insertion of the fragment into a vector molecule, and incorporation of the recombinant vector into a host cell where multiple copies or clones of the nucleic acid sequence will be replicated. The nucleic acid sequence may be of genomic, cDNA, RNA, semisynthetic, syn-15 thetic origin, or any combinations thereof.

Nucleic Acid Construct

As used herein the term "nucleic acid construct" is intended to indicate any nucleic acid molecule of cDNA, genomic DNA, synthetic DNA or RNA origin. The term "construct" is intended to indicate a nucleic acid segment which may be single- or double-stranded, and which may be based on a complete or partial naturally occurring nucleotide sequence encoding a polypeptide of interest. The construct may optionally contain other nucleic acid segments.

The DNA of interest may suitably be of genomic or cDNA origin, for instance obtained by preparing a genomic or cDNA library and screening for DNA sequences coding for all or part of the polypeptide by hybridization using synthetic oligonucleotide probes in accordance with standard techniques (cf. Sambrook et al., supra).

The nucleic acid construct may also be prepared synthetically by established standard methods, e.g. the phosphoamidite method described by Beaucage and Caruthers, Tetrahedron Letters 22 (1981), 1859 - 1869, or the method described by Matthes et al., EMBO Journal 3 (1984), 801 - 805. According to the phosphoamidite method, oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned in suitable vectors.

10 Furthermore, the nucleic acid construct may be of mixed synthetic and genomic, mixed synthetic and cDNA or mixed genomic and cDNA origin prepared by ligating fragments of synthetic, genomic or cDNA origin (as appropriate), the fragments corresponding to various parts of the entire nucleic acid construct, in accordance with standard techniques.

The nucleic acid construct may also be prepared by polymerase chain reaction using specific primers, for instance as described in US 4,683,202 or Saiki et al., Science 239 (1988), 487 - 491.

20

The term nucleic acid construct may be synonymous with the term expression cassette when the nucleic acid construct contains all the control sequences required for expression of a coding sequence of the present invention. The term "coding sequence" as defined herein is a sequence which is transcribed into mRNA and translated into a polypeptide of the present invention when placed under the control of the above mentioned control sequences. The boundaries of the coding sequence are generally determined by a translation start codon ATG at the 5'-terminus and a translation stop codon at the 3'-terminus. A coding sequence can include, but is not limited to, DNA, cDNA, and recombinant nucleic acid sequences.

The term "control sequences" is defined herein to include all components which are necessary or advantageous for expression of the coding sequence of the nucleic acid sequence. Each control sequence may be native or foreign to the nucleic acid sequence encoding the polypeptide. Such control sequences include, but are not limited to, a leader, a polyadenylation sequence, a propeptide sequence, a promoter, a signal sequence, and a transcription terminator. At a minimum, the control sequences include a promoter, and transcriptional and translational stop signals. The control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the nucleic acid sequence encoding a polypeptide.

- 15 The control sequence may be an appropriate promoter sequence, a nucleic acid sequence which is recognized by a host cell for expression of the nucleic acid sequence. The promoter sequence contains transcription and translation control sequences which mediate the expression of the polypeptide. The promoter may be any nucleic acid sequence which shows transcriptional activity in the host cell of choice and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.
- The control sequence may also be a suitable transcription termi15 nator sequence, a sequence recognized by a host cell to termi16 nate transcription. The terminator sequence is operably linked
 17 to the 3' terminus of the nucleic acid sequence encoding the
 18 polypeptide. Any terminator which is functional in the host
 18 cell of choice may be used
- 30 in the present invention.

The control sequence may also be a polyadenylation sequence, a sequence which is operably linked to the 3' terminus of the nucleic acid sequence and which, when transcribed, is recognized

by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence which is functional in the host cell of choice may be used in the present invention.

5

The control sequence may also be a signal peptide coding region, which codes for an amino acid sequence linked to the amino terminus of the polypeptide which can direct the expressed polypeptide into the cell's secretory pathway of the host cell. 10 end of the coding sequence of the nucleic acid sequence may inherently contain a signal peptide coding region naturally linked in translation reading frame with the segment of the coding region which encodes the secreted polypeptide. Alternatively, the 5' end of the coding sequence may contain a signal peptide 15 coding region which is foreign to that portion of the coding sequence which encodes the secreted polypeptide. A foreign signal peptide coding region may be required where the coding sequence does not normally contain a signal peptide coding region. ternatively, the foreign signal peptide coding region may simply 20 replace the natural signal peptide coding region in order to obtain enhanced secretion relative to the natural signal peptide coding region normally associated with the coding sequence. signal peptide coding region may be obtained from a glucoamylase or an amylase gene from an Aspergillus species, a lipase or pro-25 teinase gene from a Rhizomucor species, the gene for the alphafactor from Saccharomyces cerevisiae, an amylase or a protease gene from a Bacillus species, or the calf preprochymosin gene. However, any signal peptide coding region capable of directing the expressed polypeptide into the secretory pathway of a host 30 cell of choice may be used in the present invention.

The control sequence may also be a propertide coding region, which codes for an amino acid sequence positioned at the amino terminus of a polypeptide. The resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases).

WO 01/83559 PCT/DK01/00293

16

A propolypeptide is generally inactive and can be converted to mature active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide. The propeptide coding region may be obtained from the Bacillus subtilis alkaline protease gene (aprE), the Bacillus subtilis neutral protease gene (nprT), the Saccharomyces cerevisiae alpha-factor gene, or the Myceliophthora thermophilum laccase gene (WO 95/33836).

The nucleic acid constructs of the present invention may also comprise one or more nucleic acid sequences which encode one or more factors that are advantageous in the expression of the polypeptide, e.g., an activator (e.g., a trans-acting factor), a chaperone, and a processing protease. Any factor that is functional in the host cell of choice may be used in the present invention. The nucleic acids encoding one or more of these factors are not necessarily in tandem with the nucleic acid sequence encoding the polypeptide.

An activator is a protein which activates transcription of a nucleic acid sequence encoding a polypeptide (Kudla et al., 1990,
EMBO Journal 9:1355-1364; Jarai and Buxton, 1994, Current Genetics 26:2238-244; Verdier, 1990, Yeast 6:271-297). The nucleic acid sequence encoding an activator may be obtained from the genes encoding Bacillus stearothermophilus NprA (nprA), Saccharomyces cerevisiae heme activator protein 1 (hap1), Saccharomyces cerevisiae galactose metabolizing protein 4 (gal4), and Aspergillus nidulans ammonia regulation protein (areA). For further examples, see Verdier, 1990, supra and MacKenzie et al., 1993, Journal of General Microbiology 139:2295-2307.

30

A chaperone is a protein which assists another polypeptide in folding properly (Hartl et al., 1994, TIBS 19:20-25; Bergeron et al., 1994, TIBS 19:124-128; Demolder et al., 1994, Journal of Biotechnology 32:179-189; Craig, 1993, Science 260:1902-1903;

Gething and Sambrook, 1992, Nature 355:33-45; Puig and Gilbert, 1994, Journal of Biological Chemistry 269:7764-7771; Wang and Tsou, 1993, The FASEB Journal 7:1515-11157; Robinson et al., 1994, Bio/Technology 1:381-384). The nucleic acid sequence encoding a chaperone may be obtained from the genes encoding Bacillus subtilis GroE proteins, Aspergillus oryzae protein disulphide isomerase, Saccharomyces cerevisiae calnexin, Saccharomyces cerevisiae BiP/GRP78, and Saccharomyces cerevisiae Hsp70. For further examples, see Gething and Sambrook, 1992, supra, and Hartl et al., 1994, supra.

A processing protease is a protease that cleaves a propeptide to generate a mature biochemically active polypeptide (Enderlin and Ogrydziak, 1994, Yeast 10:67-79; Fuller et al., 1989, Proceedings of the National Academy of Sciences USA 86:1434-1438; Julius et al., 1984, Cell 37:1075-1089; Julius et al., 1983, Cell 32:839-852). The nucleic acid sequence encoding a processing protease may be obtained from the genes encoding Aspergillus niger Kex2, Saccharomyces cerevisiae dipeptidylaminopeptidase, Saccharomyces cerevisiae Kex2, and Yarrowia lipolytica dibasic processing endoprotease (xpr6).

It may also be desirable to add regulatory sequences which allow the regulation of the expression of the polypeptide relative to 25 the growth of the host cell. Examples of regulatory systems are those which cause the expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Regulatory systems in prokaryotic systems would include the lac, tac, and trp operator systems. In yeast, the ADH2 system or GAL1 system may be used. In filamentous fungi, the TAKA alpha-amylase promoter, Aspergillus niger glucoamylase promoter, and the Aspergillus oryzae glucoamylase promoter may be used as regulatory sequences. Other examples of regulatory sequences are those which allow for gene

amplification. In eukaryotic systems, these include the dihydrofolate reductase gene which is amplified in the presence of methotrexate, and the metallothionein genes which are amplified with heavy metals. In these cases, the nucleic acid sequence encoding the polypeptide would be placed in tandem with the regulatory sequence.

Promoters

Examples of suitable promoters for directing the transcription 10 of the nucleic acid constructs of the present invention, especially in a bacterial host cell, are the promoters obtained from the E. coli lac operon, the Streptomyces coelicolor agarase gene (dagA), the Bacillus subtilis levansucrase gene (sacB), the Bacillus subtilis alkaline protease gene, the Bacillus licheni-15 formis alpha-amylase gene (amyL), the Bacillus stearothermophilus maltogenic amylase gene (amyM), the Bacillus amyloliquefaciens alpha-amylase gene (amyQ), the Bacillus amyloliquefaciens BAN amylase gene, the Bacillus licheniformis penicillinase gene (penP), the Bacillus subtilis xylA and xylB genes, and the pro-20 karyotic beta-lactamase gene (Villa-Kamaroff et al., 1978, Proceedings of the National Academy of Sciences USA 75:3727-3731), as well as the tac promoter (DeBoer et al., 1983, Proceedings of the National Academy of Sciences USA 80:21-25) , or the Bacillus pumilus xylosidase gene, or by the phage Lambda PR or PL promot-25 ers or the E. coli lac, trp or tac promoters. Further promoters are described in "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94; and in Sambrook et al., 1989, supra.

30 Examples of suitable promoters for directing the transcription of the nucleic acid constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes encoding Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral al-

pha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Rhizomucor miehei lipase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Aspergillus nidus lans acetamidase, Fusarium oxysporum trypsin-like protease (as described in U.S. Patent No. 4,288,627, which is incorporated herein by reference), and hybrids thereof. Particularly preferred promoters for use in filamentous fungal host cells are the TAKA amylase, NA2-tpi (a hybrid of the promoters from the genes encoding Aspergillus niger neutral (-amylase and Aspergillus oryzae triose phosphate isomerase), and glaA promoters. Further suitable promoters for use in filamentous fungus host cells are the ADH3 promoter (McKnight et al., The EMBO J. 4 (1985), 2093 - 2099) or the tpiA promoter.

15

Examples of suitable promoters for use in yeast host cells include promoters from yeast glycolytic genes (Hitzeman et al., J. Biol. Chem. 255 (1980), 12073 - 12080; Alber and Kawasaki, J. Mol. Appl. Gen. 1 (1982), 419 - 434) or alcohol dehydrogenase genes (Young et al., in Genetic Engineering of Microorganisms for Chemicals (Hollaender et al, eds.), Plenum Press, New York, 1982), or the TPI1 (US 4,599,311) or ADH2-4c (Russell et al., Nature 304 (1983), 652 - 654) promoters.

Further useful promoters are obtained from the Saccharomyces cerevisiae enolase (ENO-1) gene, the Saccharomyces cerevisiae galactokinase gene (GAL1), the Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase genes (ADH2/GAP), and the Saccharomyces cerevisiae 3-phosphoglycerate kinase gene. Other useful promoters for yeast host cells are described by Romanos et al., 1992, Yeast 8:423-488. In a mammalian host cell, useful promoters include viral promoters such as those from Simian Virus 40 (SV40), Rous sarcoma virus (RSV), adenovirus, and bovine papilloma virus (BPV).

Examples of suitable promoters for directing the transcription of the DNA encoding the polypeptide of the invention in mammalian cells are the SV40 promoter (Subramani et al., Mol. Cell Biol. 1 (1981), 854 -864), the MT-1 (metallothionein gene) promoter (Palmiter et al., Science 222 (1983), 809 - 814) or the adenovirus 2 major late promoter.

An example of a suitable promoter for use in insect cells is the polyhedrin promoter (US 4,745,051; Vasuvedan et al., FEBS Lett.

10 311, (1992) 7 - 11), the P10 promoter (J.M. Vlak et al., J. Gen. Virology 69, 1988, pp. 765-776), the Autographa californica polyhedrosis virus basic protein promoter (EP 397 485), the baculovirus immediate early gene 1 promoter (US 5,155,037; US 5,162,222), or the baculovirus 39K delayed-early gene promoter 15 (US 5,155,037; US 5,162,222).

Terminators

Preferred terminators for filamentous fungal host cells are obtained from the genes encoding Aspergillus oryzae TAKA amylase,

20 Aspergillus niger glucoamylase, Aspergillus nidulans anthranilate synthase, Aspergillus niger alpha-glucosidase, and Fusarium oxysporum trypsin-like protease. for fungal hosts) the TPI1 (Alber and Kawasaki, op. cit.) or ADH3 (McKnight et al., op. cit.) terminators.

Preferred terminators for yeast host cells are obtained from the genes encoding Saccharomyces cerevisiae enclase, Saccharomyces cerevisiae cytochrome C (CYC1), or Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase. Other useful terminators for yeast host cells are described by Romanos et al., 1992, supra.

Polyadenylation Signals

Preferred polyadenylation sequences for filamentous fungal host cells are obtained from the genes encoding Aspergillus oryzae

WO 01/83559 PCT/DK01/00293

21

TAKA amylase, Aspergillus niger glucoamylase, Aspergillus nidulans anthranilate synthase, and Aspergillus niger alphaglucosidase.

Useful polyadenylation sequences for yeast host cells are described by Guo and Sherman, 1995, Molecular Cellular Biology 15:5983-5990.

Polyadenylation sequences are well known in the art for mammalian host cells such as SV40 or the adenovirus 5 Elb region.

10 Signal Sequences

An effective signal peptide coding region for bacterial host cells is the signal peptide coding region obtained from the maltogenic amylase gene from Bacillus NCIB 11837, the Bacillus stearothermophilus alpha-amylase gene, the Bacillus lichenists formis subtilisin gene, the Bacillus licheniformis betalactamase gene, the Bacillus stearothermophilus neutral proteases genes (nprT, nprS, nprM), and the Bacillus subtilis PrsA gene. Further signal peptides are described by Simonen and Palva, 1993, Microbiological Reviews 57:109-137.

20

An effective signal peptide coding region for filamentous fungal host cells is the signal peptide coding region obtained from Aspergillus oryzae TAKA amylase gene, Aspergillus niger neutral amylase gene, the Rhizomucor miehei aspartic proteinase gene, the Humicola lanuginosa cellulase or lipase gene, or the Rhizomucor miehei lipase or protease gene, Aspergillus sp. amylase or glucoamylase, a gene encoding a Rhizomucor miehei lipase or protease. The signal peptide is preferably derived from a gene encoding A. oryzae TAKA amylase, A. niger neutral (-amylase, A. niger acid-stable amylase, or A. niger glucoamylase.

Useful signal peptides for yeast host cells are obtained from the genes for Saccharomyces cerevisiae a-factor and Saccharomyces cerevisiae invertase. Other useful signal peptide coding regions are described by Romanos et al., 1992, supra.

For secretion from yeast cells, the secretory signal sequence may encode any signal peptide which ensures efficient direction of the expressed polypeptide into the secretory pathway of the cell. The signal peptide may be naturally occurring signal peptide, or a functional part thereof, or it may be a synthetic peptide. Suitable signal peptides have been found to be the afactor signal peptide (cf. US 4,870,008), the signal peptide of mouse salivary amylase (cf. O. Hagenbuchle et al., Nature 289, 1981, pp. 643-646), a modified carboxypeptidase signal peptide (cf. L.A. Valls et al., Cell 48, 1987, pp. 887-897), the yeast BAR1 signal peptide (cf. WO 87/02670), or the yeast aspartic protease 3 (YAP3) signal peptide (cf. M. Egel-Mitani et al., Yeast 6, 1990, pp. 127-137).

For efficient secretion in yeast, a sequence encoding a leader peptide may also be inserted downstream of the signal sequence and uptream of the DNA sequence encoding the polypeptide. The function of the leader peptide is to allow the expressed polypeptide to be directed from the endoplasmic reticulum to the Golgi apparatus and further to a secretory vesicle for secretion into the culture medium (i.e. exportation of the polypeptide across the cell wall or at least through the cellular membrane into the periplasmic space of the yeast cell). The leader peptide may be the yeast a-factor leader (the use of which is described in e.g. US 4,546,082, EP 16 201, EP 123 294, EP 123 544 and EP 163 529). Alternatively, the leader peptide may be a synthetic leader peptide, which is to say a leader peptide not found in nature. Synthetic leader peptides may, for instance, be constructed as described in WO 89/02463 or WO 92/11378.

For use in insect cells, the signal peptide may conveniently be derived from an insect gene (cf. WO 90/05783), such as the lepidopteran Manduca sexta adipokinetic hormone precursor signal peptide (cf. US 5,023,328).

Expression Vectors

The present invention also relates to recombinant expression 5 vectors comprising a nucleic acid sequence of the present invention, a promoter, and transcriptional and translational stop The various nucleic acid and control sequences described above may be joined together to produce a recombinant expression vector which may include one or more convenient re-10 striction sites to allow for insertion or substitution of the nucleic acid sequence encoding the polypeptide at such sites. Alternatively, the nucleic acid sequence of the present invention may be expressed by inserting the nucleic acid sequence or a nucleic acid construct comprising the sequence into an appro-15 priate vector for expression. In creating the expression vector, the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression, and possibly secretion.

20 The recombinant expression vector may be any vector (e.g., a plasmid or virus) which can be conveniently subjected to recombinant DNA procedures and can bring about the expression of the nucleic acid sequence. The choice of the vector will typically depend on the compatibility of the vector with the host cell 25 into which the vector is to be introduced. The vectors may be linear or closed circular plasmids. The vector may be an autonomously replicating vector, i.e., a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an ex-30 trachromosomal element, a minichromosome, or an artificial chro-The vector may contain any means for assuring selfreplication. Alternatively, the vector may be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has

WO 01/83559 PCT/DK01/00293

24

been integrated. The vector system may be a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be introduced into the genome of the host cell, or a transposon.

5

The vectors of the present invention preferably contain one or more selectable markers which permit easy selection of transformed cells. A selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to 10 heavy metals, prototrophy to auxotrophs, and the like. Examples of bacterial selectable markers are the dal genes from Bacillus subtilis or Bacillus licheniformis, or markers which confer antibiotic resistance such as ampicillin, kanamycin, chloramphenitetracycline, neomycin, hygromycin or methotrexate resis-15 tance. A frequently used mammalian marker is the dihydrofolate reductase gene (DHFR). Suitable markers for yeast host cells are ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3. A selectable marker for use in a filamentous fungal host cell may be selected from the group including, but not limited to, amdS (acetami-20 dase), argB (ornithine carbamoyltransferase), bar nothricin acetyltransferase), hygB (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC (sulfate adenyltransferase), trpC (anthranilate synthase), and glufosinate resistance markers, as well as 25 equivalents from other species. Preferred for use in an Aspergillus cell are the amdS and pyrG markers of Aspergillus nidulans or Aspergillus oryzae and the bar marker of Streptomyces Furthermore, selection may be accomplished by hygroscopicus. co-transformation, e.g., as described in WO 91/17243, where the 30 selectable marker is on a separate vector.

The vectors of the present invention preferably contain an element(s) that permits stable integration of the vector into the

WO 01/83559 PCT/DK01/00293

25

host cell genome or autonomous replication of the vector in the cell independent of the genome of the cell.

The vectors of the present invention may be integrated into the 5 host cell genome when introduced into a host cell. For integration, the vector may rely on the nucleic acid sequence encoding the polypeptide or any other element of the vector for stable integration of the vector into the genome by homologous or nonhomologous recombination. Alternatively, the vector may contain 10 additional nucleic acid sequences for directing integration by homologous recombination into the genome of the host cell. additional nucleic acid sequences enable the vector to be integrated into the host cell genome at a precise location(s) in the To increase the likelihood of integration at a 15 precise location, the integrational elements should preferably contain a sufficient number of nucleic acids, such as 100 to 1,500 base pairs, preferably 400 to 1,500 base pairs, and most preferably 800 to 1,500 base pairs, which are highly homologous with the corresponding target sequence to enhance the probabil-20 ity of homologous recombination. The integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding nucleic acid sequences. On the other hand, the vector may be integrated into the genome 25 of the host cell by non-homologous recombination. These nucleic acid sequences may be any sequence that is homologous with a target sequence in the genome of the host cell, and, furthermore, may be non-encoding or encoding sequences.

Por autonomous replication, the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question. Examples of bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, pACYC184, pUB110, pE194, pTA1060, and

pAMG1. Examples of origin of replications for use in a yeast host cell are the 2 micron origin of replication, the combination of CEN6 and ARS4, and the combination of CEN3 and ARS1. The origin of replication may be one having a mutation which makes its functioning temperature-sensitive in the host cell (see, e.g., Ehrlich, 1978, Proceedings of the National Academy of Sciences USA 75:1433).

More than one copy of a nucleic acid sequence encoding a polypeptide of the present invention may be inserted into the host
cell to amplify expression of the nucleic acid sequence. Stable
amplification of the nucleic acid sequence can be obtained by
integrating at least one additional copy of the sequence into
the host cell genome using methods well known in the art and selecting for transformants.

The procedures used to ligate the elements described above to construct the recombinant expression vectors of the present invention are well known to one skilled in the art (see, e.g., Sambrook et al., 1989, supra).

20

Host Cells

The present invention also relates to recombinant host cells, comprising a nucleic acid sequence of the invention, which are advantageously used in the recombinant production of the polypeptides. The term "host cell" encompasses any progeny of a parent cell which is not identical to the parent cell due to mutations that occur during replication.

The cell is preferably transformed with a vector comprising a nucleic acid sequence of the invention followed by integration of the vector into the host chromosome. "Transformation" means introducing a vector comprising a nucleic acid sequence of the present invention into a host cell so that the vector is maintained as a chromosomal integrant or as a self-replicating ex-

WO 01/83559 PCT/DK01/00293

27

tra-chromosomal vector. Integration is generally considered to be an advantage as the nucleic acid sequence is more likely to be stably maintained in the cell. Integration of the vector into the host chromosome may occur by homologous or non-s homologous recombination as described above.

The choice of a host cell will to a large extent depend upon the gene encoding the polypeptide and its source. The host cell may be a unicellular microorganism, e.g., a prokaryote, or a non-10 unicellular microorganism, e.g., a eukaryote. Useful unicellular cells are bacterial cells such as gram positive bacteria including, but not limited to, a Bacillus cell, e.g., Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus coaqulans, Bacillus lautus, Bacillus 15 lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus stearothermophilus, Bacillus subtilis, and Bacillus thuringiensis; or a Streptomyces cell, e.g., Streptomyces lividans or Streptomyces murinus, or gram negative bacteria such as E. coli and Pseudomonas sp. In a preferred embodiment, the bacterial 20 host cell is a Bacillus lentus, Bacillus licheniformis, Bacillus stearothermophilus or Bacillus subtilis cell. The transformation of a bacterial host cell may, for instance, be effected by protoplast transformation (see, e.g., Chang and Cohen, 1979, Molecular General Genetics 168:111-115), by using competent cells 25 (see, e.g., Young and Spizizin, 1961, Journal of Bacteriology 81:823-829, or Dubnar and Davidoff-Abelson, 1971, Journal of Molecular Biology 56:209-221), by electroporation (see, e.g., Shigekawa and Dower, 1988, Biotechniques 6:742-751), or by conjugation (see, e.g., Koehler and Thorne, 1987, Journal of Bacteriol-30 ogy 169:5771-5278).

The host cell may be a eukaryote, such as a mammalian cell, an insect cell, a plant cell or a fungal cell.

Useful mammalian cells include Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, COS cells, or any number of other immortalized cell lines available, e.g., from the American Type Culture Collection.

5

Examples of suitable mammalian cell lines are the COS (ATCC CRL 1650 and 1651), BHK (ATCC CRL 1632, 10314 and 1573, ATCC CCL 10), CHL (ATCC CCL39) or CHO (ATCC CCL 61) cell lines. Methods of transfecting mammalian cells and expressing DNA sequences introduced in the cells are described in e.g. Kaufman and Sharp, J. Mol. Biol. 159 (1982), 601 - 621; Southern and Berg, J. Mol. Appl. Genet. 1 (1982), 327 - 341; Loyter et al., Proc. Natl. Acad. Sci. USA 79 (1982), 422 - 426; Wigler et al., Cell 14 (1978), 725; Corsaro and Pearson, Somatic Cell Genetics 7 (1981), 603, Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Inc., N.Y., 1987, Hawley-Nelson et al., Focus 15 (1993), 73; Ciccarone et al., Focus 15 (1993), 80; Graham and van der Eb, Virology 52 (1973), 456; and Neumann et al., EMBO J. 1 (1982), 841 - 845.

20

In a preferred embodiment, the host cell is a fungal cell. "Fungi" as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota (as defined by Hawksworth et al., In, Ainsworth and Bisby's Dictionary of The Fungi, 8th 25 edition, 1995, CAB International, University Press, Cambridge, UK) as well as the Oomycota (as cited in Hawksworth et al., 1995, supra, page 171) and all mitosporic fungi (Hawksworth et al., 1995, supra). Representative groups of Ascomycota include, Neurospora, Eupenicillium (=Penicillium), 30 (=Aspergillus), Eurotium (=Aspergillus), and the true yeasts Examples of Basidiomycota include mushrooms, listed above. Representative groups of Chytridiomycota inrusts, and smuts. clude, e.g., Allomyces, Blastocladiella, Coelomomyces, aquatic fungi. Representative groups of Oomycota include, e.g.,

Saprolegniomycetous aquatic fungi (water molds) such as Achlya. Examples of mitosporic fungi include Aspergillus, Penicillium, Candida, and Alternaria. Representative groups of Zygomycota include, e.g., Rhizopus and Mucor.

- s In a preferred embodiment, the fungal host cell is a yeast cell. "Yeast" as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi Imperfecti (Blastomycetes). The ascosporogenous yeasts are divided into the families Spermophthoraceae and Saccharomy-10 cetaceae. The latter is comprised of four subfamilies, Schizosaccharomycoideae (e.g., genus Schizosaccharomyces), Nadsonioideae, Lipomycoideae, and Saccharomycoideae (e.g., genera Pichia, Kluyveromyces and Saccharomyces). The basidiosporogenous yeasts include the genera Leucosporidim, Rhodosporidium, 15 Sporidiobolus, Filobasidium, and Filobasidiella. Yeast belonging to the Fungi Imperfecti are divided into two families, Sporobolomycetaceae (e.g., genera Sorobolomyces and Bullera) and Cryptococcaceae (e.q., genus Candida). Since the classification of yeast may change in the future, for the purposes of this in-20 vention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner, F.A., Passmore, S.M., and Davenport, R.R., eds, Soc. App. Bacteriol. Symposium Series No. 9, 1980. The biology of yeast and manipulation of yeast genetics are well known in the art (see, e.g., Biochemistry and Genetics of Yeast, 25 Bacil, M., Horecker, B.J., and Stopani, A.O.M., editors, 2nd edition, 1987; The Yeasts, Rose, A.H., and Harrison, J.S., editors, 2nd edition, 1987; and The Molecular Biology of the Yeast Saccharomyces, Strathern et al., editors, 1981).
- The yeast host cell may be selected from a cell of a species of Candida, Kluyveromyces, Saccharomyces, Schizosaccharomyces, Candida, Pichia, Hansehula, , or Yarrowia. In a preferred embodiment, the yeast host cell is a Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomy-

ces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis or Saccharomyces oviformis cell. Other useful yeast host cells are a Kluyveromyces lactis Kluyveromyces fragilis Hansehula polymorpha, Pichia pastoris Yarrowia lipolytica, Schizosaccharomyces pombe, Ustilgo maylis, Candida maltose, Pichia guillermondii and Pichia methanolio cell (cf. Gleeson et al., J. Gen. Microbiol. 132, 1986, pp. 3459-3465; US 4,882,279 and US 4,879,231).

10 In a preferred embodiment, the fungal host cell is a filamentous fungal cell. "Filamentous fungi" include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., 1995, supra). The filamentous fungi are characterized by a vegetative mycelium composed of chitin, cellulose, 15 glucan, chitosan, mannan, and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic. In contrast, vegetative growth by yeasts such as Saccharomyces cerevisiae is by budding of a unicellular thallus and carbon catabolism may be fermentative. In a more 20 preferred embodiment, the filamentous fungal host cell is a cell of a species of, but not limited to, Acremonium, Aspergillus, Fusarium, Humicola, Mucor, Myceliophthora, Neurospora, Penicillium, Thielavia, Tolypocladium, and Trichoderma or a teleomorph or synonym thereof. In an even more preferred embodiment, the 25 filamentous fungal host cell is an Aspergillus cell. In another even more preferred embodiment, the filamentous fungal host cell is an Acremonium cell. In another even more preferred embodiment, the filamentous fungal host cell is a Fusarium cell. another even more preferred embodiment, the filamentous fungal 30 host cell is a Humicola cell. In another even more preferred embodiment, the filamentous fungal host cell is a Mucor cell. In another even more preferred embodiment, the filamentous fungal host cell is a Myceliophthora cell. In another even more preferred embodiment, the filamentous fungal host cell is a Neu-

rospora cell. In another even more preferred embodiment, the filamentous fungal host cell is a Penicillium cell. In another even more preferred embodiment, the filamentous fungal host cell is a Thielavia cell. In another even more preferred embodiment, 5 the filamentous fungal host cell is a Tolypocladium cell. another even more preferred embodiment, the filamentous fungal host cell is a Trichoderma cell. In a most preferred embodiment, the filamentous fungal host cell is an Aspergillus awamori, Aspergillus foetidus, Aspergillus japonicus, Aspergil-10 lus niger, Aspergillus nidulans or Aspergillus oryzae cell. another most preferred embodiment, the filamentous fungal host cell is a Fusarium cell of the section Discolor (also known as the section Fusarium). For example, the filamentous fungal parent cell may be a Fusarium bactridioides, Fusarium cerealis, 15 Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sulphureum, or Fusarium trichothecioides cell. In another prefered embodiment, the filamen-20 tous fungal parent cell is a Fusarium strain of the section Elegans, e.g., Fusarium oxysporum. In another most preferred embodiment, the filamentous fungal host cell is a Humicola insolens or Humicola lanuginosa cell. In another most preferred embodiment, the filamentous fungal host cell is a Mucor miehei In another most preferred embodiment, the filamentous fungal host cell is a Myceliophthora thermophilum cell. In another most preferred embodiment, the filamentous fungal host cell is a Neurospora crassa cell. In another most preferred embodiment, the filamentous fungal host cell is a Penicillium pur-30 purogenum cell. In another most preferred embodiment, the filamentous fungal host cell is a Thielavia terrestris cell or a Acremonium chrysogenum cell. In another most preferred embodiment, the Trichoderma cell is a Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei

or Trichoderma viride cell. The use of Aspergillus spp. for the expression of proteins is described in, e.g., EP 272 277, EP 230 023.

5 Transformation

Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known per se. procedures for transformation of Aspergillus host cells are de-10 scribed in EP 238 023 and Yelton et al., 1984, Proceedings of the National Academy of Sciences USA 81:1470-1474. method of transforming Fusarium species is described by Malardier et al., 1989, Gene 78:147-156 or in copending US Serial No. 08/269,449. Examples of other fungal cells are cells of fil-15 amentous fungi, e.g. Aspergillus spp., Neurospora spp., Fusarium spp. or Trichoderma spp., in particular strains of A. oryzae, A. nidulans or A. niger. The use of Aspergillus spp. for the expression of proteins is described in, e.g., EP 272 277, EP 230 023, EP 184 ... The transformation of F. oxysporum may, for in-20 stance, be carried out as described by Malardier et al., 1989, Gene 78: 147-156.

Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J.N. and Simon, M.I., editors, Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, Volume 194, pp 182-187, Academic Press, Inc., New York; Ito et al., 1983, Journal of Bacteriology 153:163; and Hinnen et al., 1978, Proceedings of the National Academy of Sciences USA 75:1920. Mammalian cells may be transformed by direct uptake using the calcium phosphate precipitation method of Graham and Van der Eb (1978, Virology 52:546).

Transformation of insect cells and production of heterologous polypeptides therein may be performed as described in US 4,745,051; US 4, 775, 624; US 4,879,236; US 5,155,037; US

5,162,222; EP 397,485) all of which are incorporated herein by reference. The insect cell line used as the host may suitably be a Lepidoptera cell line, such as Spodoptera frugiperda cells or Trichoplusia ni cells (cf. US 5,077,214). Culture conditions may suitably be as described in, for instance, WO 89/01029 or WO 89/01028, or any of the aforementioned references.

Methods of Production

WO 01/83559

- The transformed or transfected host cells described above are cultured in a suitable nutrient medium under conditions permitting the production of the desired molecules, after which these are recovered from the cells, or the culture broth.
- The medium used to culture the cells may be any conventional medium suitable for growing the host cells, such as minimal or complex media containing appropriate supplements. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. in catalogues of the American Type Culture Collection). The media are prepared using procedures known in the art (see, e.g., references for bacteria and yeast; Bennett, J.W. and LaSure, L., editors, More Gene Manipulations in Fungi, Academic Press, CA, 1991).
- 25 If the molecules are secreted into the nutrient medium, they can be recovered directly from the medium. If they are not secreted, they can be recovered from cell lysates. The molecules are recovered from the culture medium by conventional procedures including separating the host cells from the medium by centrifugation or filtration, precipitating the proteinaceous components of the supernatant or filtrate by means of a salt, e.g. ammonium sulphate, purification by a variety of chromatographic procedures, e.g. ion exchange chromatography, gelfiltration chroma-

tography, affinity chromatography, or the like, dependent on the type of molecule in question.

The molecules of interest may be detected using methods known in the art that are specific for the molecules. These detection methods may include use of specific antibodies, formation of a product, or disappearance of a substrate. For example, an enzyme assay may be used to determine the activity of the molecule. Procedures for determining various kinds of activity are known in the art.

The molecules of the present invention may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing (IEF), differential solubility (e.g., ammonium sulfate precipitation), or extraction (see, e.g., Protein Purification, J-C Janson and Lars Ryden, editors, VCH Publishers, New York, 1989).

20

The term "immunological response", used in connection with the present invention, is the response of an organism to a compound, which involves the immune system according to any of the four standard reactions (Type I, II, III and IV according to Coombs & Gell).

Correspondingly, the "immunogenicity" of a compound used in connection with the present invention refers to the ability of this compound to induce an 'immunological response' in animals including man.

The term "allergic response", used in connection with the present invention, is the response of an organism to a compound, which involves IgE mediated responses (Type I reaction according to Coombs & Gell). It is to be understood that sensibilization (i.e. development of compound-specific IgE antibodies) upon exposure to the compound is included in the definition of "allergic response".

5

Correspondingly, the "allergenicity" of a compound used in connection with the present invention refers to the ability of this compound to induce an 'allergic response' in animals including man.

10

The term "parent protein" refer to the polypeptide to be modified by creating a library of diversified mutants. The "parent protein" may be a naturally occurring (or wild-type) polypeptide or it may be a variant thereof prepared by any suitable means.

15 For instance, the "parent protein" may be a variant of a naturally occurring polypeptide which has been modified by substitution, deletion or truncation of one or more amino acid residues or by addition or insertion of one or more amino acid residues

to the amino acid sequence of a naturally-occurring polypeptide.

20

The term "enzyme variants" or "protein variants" refer to a polypeptide of the invention comprising one or more substitutions of the specified amino acid residues. The total number of such substitutions is typically not more than 10, e.g. one, two, three, four, five or six of said substitutions. In addition, the enzyme variant or protein variant of the invention may optionally include other modifications of the parent enzyme, typically not more than 10, e.g. not more than 5 such modifications. The variant generally has a homology with the parent enzyme of at least 80 %, e.g. at least 85 %, typically at least 90 % or at least 95 %.

The term " randomized library" of protein variants refers to a library with at least partially randomized composition of the members, e.g. protein variants.

5 An "epitope" is a set of amino acids on a protein that are involved in an immunological response, such as antibody binding or T-cell activation. One particularly useful method of identifying epitopes involved in antibody binding is to screen a library of peptide-phage membrane protein fusions and selecting those that bind to relevant antigen-specific antibodies, sequencing the randomized part of the fusion gene, aligning the sequences involved in binding, defining consensus sequences based on these alignments, and mapping these consensus sequences on the surface or the sequence and/or structure of the antigen, to identify epitopes involved in antibody binding.

By the term "epitope pattern" is meant such a consensus sequence of antibody binding peptides. An example is the epitope pattern A R R < R. The sign "<" in this notation indicates that the aligned antibody binding peptides included a non-consensus amino acid between the second and the third arginine.

An "epitope area" is defined as the amino acids situated close to the epitope sequence amino acids. Preferably, the amino acids of an epitope area are located <5Å from the epitope sequence. Hence, an epitope area also includes the corresponding epitope sequence itself. Modifications of amino acids of the 'epitope area' can possibly affect the immunogenic function of the corresponding epitope.

30

By the term "epitope sequence" is meant the amino acid residues of a parent protein, which have been identified to belong to an epitope by the methods of the present invention (an example of an epitope sequence is E271 Q12 I8 in Savinase).

The term 'antibody binding peptide' denotes a peptide that bind with sufficiently high affinity to antibodies. Identification of 'antibody binding peptides' and their sequences constitute the first step of the method of this invention.

"Anchor amino acids" are the individual amino acids of an epitope pattern.

"Hot spot amino acids" are amino acids of parent protein, which are particularly likely to result in modified immunogenecity if they are mutated. Amino acids, which appear in three or more epitope sequences or which correspond to anchor amino acids are hot spot amino acids.

15

"Environmental allergens" are protein allergens that are present naturally. They include pollen, dust mite allergens, pet allergens, food allergens, venoms, etc.

- ²⁰ "Commercial allergens" are protein allergens that are being brought to the market commercially. They include enzymes, pharmaceutical proteins, antimicrobial peptides, as well as allergens of transgenic plants.
- The "donor protein" is the protein that was used to raise antibodies used to identify antibody binding sequences, hence the donor protein provides the information that leads to the epitope patterns.
- The "acceptor protein" is the protein, whose structure is used to fit the identified epitope patterns and/or to fit the antibody binding sequences. Hence the acceptor protein is also the parent protein.

WO 01/83559

38

An "autoepitope" is one that has been identified using antibodies raised against the parent protein, i.e. the acceptor and the donor proteins are identical.

PCT/DK01/00293

5 A "heteroepitope" is one that has been identified with distinct donor and acceptor proteins.

The term "functionality" of protein variants refers to e.g. enzymatic activity; binding to a ligand or receptor; stimulation of a cellular response (e.g. ³H-thymidine incorporation as response to a mitogenic factor); or anti-microbial activity.

By the term "specific polyclonal antibodies" is meant polyclonal antibodies isolated according to their specificity for a certain antigen, e.g. the protein backbone.

By the term "monospecific antibodies" is meant polyclonal antibodies isolated according to their specificity for a certain epitope. Such monospecific antibodies will bind to the same epitope, but with different affinity, as they are produced by a number of antibody producing cells recognizing overlapping but not necessarily identical epitopes.

The term "randomized library" of protein variants refers to a 25 library with at least partially randomized composition of the members, e.g. protein variants.

'Spiked mutagenesis' is a form of site-directed mutagenesis, in which the primers used have been synthesized using mixtures of oligonucleotides at one or more positions.

By the term "a protein variant having modified immunogenicity as compared to the parent protein" is meant a protein variant which differs from the parent protein in one or more amino acids whereby the immunogenicity of the variant is modified. The modification of immunogenicity may be confirmed by testing the ability of the protein variant to elicit an IgE/IgG response.

5 In the present context the term "protein" is intended to cover oligopeptides, polypeptides as well as proteins as such.

10 Detailed description of the invention

The present invention relates to a method of selecting a protein variant having modified immunogenicity as compared to a parent protein,

15

comprising the steps of:

- a) obtaining antibody binding peptide sequences,
- 20 b) using the sequences to localise epitope sequences on the 3dimensional structure of parent protein,
- c) defining an epitope area including amino acids situated within 5 Å from the epitope amino acids constituting the epitope 25 sequence,
 - d) changing one or more of the amino acids defining the epitope area of the parent protein by genetic engineering mutations of a DNA sequence encoding the parent protein,

. 30

e) introducing the mutated DNA sequence into a suitable host, culturing said host and expressing the protein variant, and

40

f) evaluating the immunogenicity of the protein variant using the parent protein as reference.

5 A) How to find antibody binding peptide sequences and epitope patterns

A first step of the method is to identify peptide sequences, which bind specifically to antibodies.

10

Antibody binding peptide sequences can be found by testing a set of known peptide sequences for binding to antibodies raised against the donor protein. These sequences are typically selected, such that each represents a segment of the donor protein sequence (Mol. Immunol., 1992, vol. 29, pp.1383-1389; Am. J. Resp. Cell. Mol. Biol. 2000, vol. 22, pp. 344-351). Also, randomized synthetic peptide libraries can be used to find antibody binding sequences (Slootstra et al; Molecular Diversity, 1996, vol. 2, pp. 156-164).

20

In a preferred method, the identification of antibody binding sequences may be achieved by screening of a display package library, preferably a phage display library. The principle behind phage display is that a heterologous DNA sequence can be inserted in the gene coding for a coat protein of the phage (WO 92/15679). The phage will make and display the hybrid protein on its surface where it can interact with specific target agents. Such target agent may be antigen-specific antibodies. It is therefore possible to select specific phages that display antibody-binding peptide sequences. The displayed peptides can be of predetermined lengths, for example 9 amino acids long, with randomized sequences, resulting in a random peptide display package library. Thus, by screening for antibody binding, one can iso-

41

late the peptide sequences that have sufficiently high affinity for the particular antibody used. The peptides of the hybrid proteins of the specific phages which bind protein-specific antibodies characterize epitopes that are recognized by the immune system.

The antibodies used for reacting with the display package are preferably IgE antibodies to ensure that the epitopes identified are IgE epitopes, i.e. epitopes inducing and binding IgE. In a preferred embodiment the antibodies are polyclonal antibodies, optionally monospecific antibodies.

For the purpose of the present invention polyclonal antibodies are preferred in order to obtain a broader knowledge about the 15 epitopes of a protein.

It is of great importance that the amino acid sequence of the peptides presented by the display packages is long enough to represent a significant part of the epitope to be identified. In a preferred embodiment of the invention the peptides of the peptide display package library are oligopeptides having from 5 to 25 amino acids, preferably at least 8 amino acids, such as 9 amino acids. For a given length of peptide sequences (n), the theoretical number of different possible sequences can be calculated as 20°. The diversity of the package library used must be large enough to provide a suitable representation of the theoretical number of different sequences. In a phage-display library, each phage has one specific sequence of a determined length. Hence an average phage display library can express 10° - 10° different random sequences, and is therefore well-suited to represent the theoretical number of different sequences.

The antibody binding peptide sequences can be further analysed by consensus alignment e.g. by the methods described by Feng and

42

Doolittle, Meth. Enzymol., 1996, vol. 266, pp. 368-382; Feng and Doolittle, J. Mol. Evol., 1987, vol. 25, pp. 351-360; and Taylor, Meth. Enzymol., 1996, vol. 266, pp. 343-367.

This leads to identification of epitope patterns, which can assist the comparison of the linear information obtained from the antibody binding peptide sequences to the 3-dimensional struc-

ture of the acceptor protein in order to identify epitope se-

10 quences at the surface of the acceptor protein.

B) How to identify epitope sequences and epitope areas.

- 15 Given a number of antibody binding peptide sequences and possibly the corresponding epitope patterns, one need the 3-dimensional structure coordinates of an acceptor protein to find the epitope sequences on its surface.
- coordinates found in databases (NCBI: 20 These can be http://www.ncbi.nlm.nih.gov/), determined experimentally using conventional methods (Ducruix and Giegé: Crystallization of Nucleic Acids and Proteins, IRL PRess, Oxford, 1992, ISBN 0-19-963245-6), or they can be deduced from the coordinates of a ho-25 mologous protein. Typical actions required for the construction of a model structure are: alignment of homologous sequences for which 3-dimensional structures exist, definition of Structurally Conserved Regions (SCRs), assignment of coordinates to SCRs, search for structural fragments/loops in structure databases to 30 replace Variable Regions, assignment of coordinates to these regions, and structural refinement by energy minimization. gions containing large inserts (>3 residues) relative to the known 3-dimensional structures are known to be quite difficult

43

to model, and structural predictions must be considered with care.

Using the coordinates and the several methods of mapping the slinear information on the 3-dimensional surface are possible, as described in the examples below.

One can match each amino acid residue of the antibody binding peptide to an identical or homologous amino acid on the 3-D sur
10 face of the acceptor protein, such that amino acids that are adjacent in the primary sequence are close on the surface of the acceptor protein, with close being <5Å, preferably <3Å between any two atoms of the two amino acids.

soid, a sphere, or a box) of a size that matches a possible binding interface between antibody and antigen and look for a positioning of this body where it will contain most of or all the anchor amino acids.

20

Also, one can use the epitope patterns to facilitate identification of epitope sequences. This can be done, by first matching the anchor amino acids on the 3-D structure and subsequently looking for other elements of the antibody binding peptide sequences, which provide additional matches. If there are many residues to be matched, it is only necessary that a suitable number can be found on the 3-D structure. For example if an epitope pattern comprises 4, 5, 6, or 7 amino acids, it is only necessary that 3 matches surface elements of the acceptor protein.

In all cases, it is desirable that amino acids of the epitope sequence are surface exposed (as described below in Examples).

44

It is known, that amino acids that surround binding sequences can affect binding of a ligand without participating actively in the binding process. Based on this knowledge, areas covered by amino acids with potential steric effects on the epitopesantibody interaction, were defined around the identified epitope sequences. These areas are called 'epitope areas'. Practically, all amino acids situated within 5Å from the amino acids defining the epitope sequence were included. Preferably, the epitope area equals the epitope sequence. The accessibility criterium was not used as hidden amino acids of an epitope area also can have an effect on the adjacent amino acids of the epitope sequence.

C) How to use the epitope information.

15

There are at least four ways to utilize the information about epitope sequences, which has been derived by the methods of this invention:

- 20 1) reduce the allergenicity of a commercial protein using protein engineering.
- 2) reduce the potential of commercial proteins to cross-react with environmental allergens and hence cause allergic reactions in people sensitized to the environmental allergens (or vice versa).
 - improve the immunotherapeutic effect of allergen vaccines.
 - 4) assist characterization of clinical allergies in order to select the appropriate allergen vaccine.

30

Protein engineering to reduce the allergenicity, cross-reactivity and/or immunotherapeutic effect of proteins.

45

The methods described thus far have led to identification of epitope areas on an acceptor protein, each containing epitope sequences. These subsets of amino acids, are preferred for introducing mutations that are meant to modify the immunogeneoity of the acceptor protein. An even more preferred subset of amino acids to target by mutagenesis are 'hot spot amino acids', which appear in several different epitope sequences, or which corresponds to anchor amino acids of the epitope patterns.

Thus, genetic engineering mutations should be designed in the epitope areas, preferably in epitope sequences, and more preferably in the 'hot spot amino acids'.

Substitution, deletion, insertion

15

When the epitope area(s) have been identified, a protein variant exhibiting a modified immunogenicity may be produced by changing the identified epitope area of the parent protein by genetic engineering mutation of a DNA sequence encoding the parent protein.

The epitope identified may be changed by substituting at least one amino acid of the epitope area. In a preferred embodiment at least one anchor amino acid or hot spot amino acid is changed.

25 The change will often be substituting to an amino acid of different size, hydrophilicity, and/or polarity, such as a small amino acid versus a large amino acid, a hydrophilic amino acid versus a hydrophobic amino acid, a polar amino acid versus a non-polar amino acid and a basic versus an acidic amino acid.

30

Other changes may be the addition/insertion or deletion of at least one amino acid of the epitope sequence, preferably deleting an anchor amino acid or a hot spot amino acid. Furthermore, an epitope pattern may be changed by substituting some amino acids, and deleting/adding other.

In the claims a position to be changed by substitution, insertion, deletion will be indicated by: "Position xx to aaa, bbb,
ccc, insertion, deletion", meaning that position xx can be substituted by the amino acid aaa, bbb, ccc or that any amino acid
can be inserted after position xx or that position xx can be deleted, e.g. "Position 27 to A, D, E, insertion, deletion" means
that in position 27 the amino acid can be substituted by A, D or
E, or that any amino acid can be inserted after position 27, or
that the amino acid in position 27 can be deleted.

When one uses protein engineering to eliminate epitopes, it is indeed possible that new epitopes are created, or existing epitopes are duplicated. To reduce this risk, one can map the planned mutations at a given position on the 3-dimensional structure of the protein of interest, and control the emerging amino acid constellation against a database of known epitope patterns, to rule out those possible replacement amino acids, which are predicted to result in creation or duplication of epitopes. Thus, risk mutations can be identified and eliminated by this procedure, thereby reducing the risk of making mutations that lead to increased rather than decreased allergenicity.

25

Introduction of residues for chemical derivatization in epitope areas

In yet another embodiment, one can design the mutation, such that amino acids suitable for chemical modification are substituted for existing ones in the epitope areas. The protein variant can then be conjugated to activated polymers. Which amino acids to substitute and/or insert, depends in principle on the

coupling chemistry to be applied. The chemistry for preparation of covalent bioconjugates can be found in "Bioconjugate Techniques", Hermanson, G.T. (1996), Academic Press Inc., which is hereby incorporated as reference (see below). It is preferred to 5 make conservative substitutions in the polypeptide when the polypeptide has to be conjugated, as conservative substitutions secure that the impact of the substitution on the polypeptide structure is limited. In the case of providing additional amino groups this may be done by substitution of arginine to lysine, 10 both residues being positively charged, but only the lysine having a free amino group suitable as an attachment groups. In the case of providing additional carboxylic acid groups the conservative substitution may for instance be an asparagine to aspartic acid or glutamine to glutamic acid substitution. These resi-15 dues resemble each other in size and shape, except from the carboxylic groups being present on the acidic residues. In the case of providing SH-groups the conservative substitution may be done by changing threonine or serine to cysteine.

20

Chemical conjugation

For chemical conjugation, the protein variant needs to be incubate with an active or activated polymer and subsequently separated from the unreacted polymer. This can be done in solution followed by purification or it can conveniently be done using the immobilized protein variants, which can easily be exposed to different reaction environments and washes.

In the case were polymeric molecules are to be conjugated with the polypeptide in question and the polymeric molecules are not active they must be activated by the use of a suitable technique. It is also contemplated according to the invention to couple the polymeric molecules to the polypeptide through a

linker. Suitable linkers are well-known to the skilled person. Methods and chemistry for activation of polymeric molecules as well as for conjugation of polypeptides are intensively described in the literature. Commonly used methods for activation 5 of insoluble polymers include activation of functional groups with cyanogen bromide, periodate, glutaraldehyde, biepoxides, epichlorohydrin, divinylsulfone, carbodiimide, sulfonyl halides, trichlorotriazine etc. (see R.F. Taylor, (1991), "Protein immobilisation. Fundamental and applications", Marcel Dekker, N.Y.; 10 S.S. Wong, (1992), "Chemistry of Protein Conjugation and Crosslinking", CRC Press, Boca Raton; G.T. Hermanson et al., (1993), "Immobilized Affinity Ligand Techniques", Academic Press, N.Y.). Some of the methods concern activation of insoluble polymers but are also applicable to activation of soluble 15 polymers e.g. periodate, trichlorotriazine, sulfonylhalides, divinylsulfone, carbodiimide etc. The functional groups being amino, hydroxyl, thiol, carboxyl, aldehyde or sulfydryl on the polymer and the chosen attachment group on the protein must be considered in choosing the activation and conjugation chemistry 20 which normally consist of i) activation of polymer, ii) conjugation, and iii) blocking of residual active groups.

In the following a number of suitable polymer activation methods will be described shortly. However, it is to be understood that 25 also other methods may be used.

Coupling polymeric molecules to the free acid groups of polypeptides may be performed with the aid of diimide and for example amino-PEG or hydrazino-PEG (Pollak et al., (1976), J. Am. Chem. Soc., 98, 289-291) or diazoacetate/amide (Wong et al., (1992), "Chemistry of Protein Conjugation and Crosslinking", CRC Press).

Coupling polymeric molecules to hydroxy groups is generally very difficult as it must be performed in water. Usually hydrolysis predominates over reaction with hydroxyl groups.

5 Coupling polymeric molecules to free sulfhydryl groups can be achieved with special groups like maleimido or the ortho-pyridyl disulfide. Also vinylsulfone (US patent no. 5,414,135, (1995), Snow et al.) has a preference for sulfhydryl groups but is not as selective as the other mentioned.

10

Accessible arginine residues in the polypeptide chain may be targeted by groups comprising two vicinal carbonyl groups.

Techniques involving coupling of electrophilically activated
15 PEGs to the amino groups of Lysines may also be useful. Many of
the usual leaving groups for alcohols give rise to an amine
linkage. For instance, alkyl sulfonates, such as tresylates
(Nilsson et al., (1984), Methods in Enzymology vol. 104, Jacoby,
W. B., Ed., Academic Press: Orlando, p. 56-66; Nilsson et al.,
20 (1987), Methods in Enzymology vol. 135; Mosbach, K., Ed.; Academic Press: Orlando, pp. 65-79; Scouten et al., (1987), Methods
in Enzymology vol. 135, Mosbach, K., Ed., Academic Press: Orlando, 1987; pp 79-84; Crossland et al., (1971), J. Amr. Chem.
Soc. 1971, 93, pp. 4217-4219), mesylates (Harris, (1985), supra;
25 Harris et al., (1984), J. Polym. Sci. Polym. Chem. Ed. 22, pp
341-352), aryl sulfonates like tosylates, and para-nitrobenzene
sulfonates can be used.

Organic sulfonyl chlorides, e.g. Tresyl chloride, effectively
converts hydroxy groups in a number of polymers, e.g. PEG, into
good leaving groups (sulfonates) that, when reacted with nucleophiles like amino groups in polypeptides allow stable linkages
to be formed between polymer and polypeptide. In addition to
high conjugation yields, the reaction conditions are in general

50

mild (neutral or slightly alkaline pH, to avoid denaturation and little or no disruption of activity), and satisfy the non-destructive requirements to the polypeptide.

5 Tosylate is more reactive than the mesylate but also less stable decomposing into PEG, dioxane, and sulfonic acid (Zalipsky, (1995), Bioconjugate Chem., 6, 150-165). Epoxides may also been used for creating amine bonds but are much less reactive than the abovementioned groups.

10

Converting PEG into a chloroformate with phosgene gives rise to carbamate linkages to Lysines. Essentially the same reaction can be carried out in many variants substituting the chlorine with N-hydroxy succinimide (US patent no. 5,122,614, (1992); Zalipsky et al., (1992), Biotechnol. Appl. Biochem., 15, p. 100-114; Monfardini et al., (1995), Bioconjugate Chem., 6, 62-69, with imidazole (Allen et al., (1991), Carbohydr. Res., 213, pp 309-319), with para-nitrophenol, DMAP (EP 632 082 Al, (1993), Looze, Y.) etc. The derivatives are usually made by reacting the chloroformate with the desired leaving group. All these groups give rise to carbamate linkages to the peptide.

Furthermore, isocyanates and isothiocyanates may be employed, yielding ureas and thioureas, respectively.

25

Amides may be obtained from PEG acids using the same leaving groups as mentioned above and cyclic imid thrones (US patent no. 5,349,001, (1994), Greenwald et al.). The reactivity of these compounds are very high but may make the hydrolysis to fast.

30

PEG succinate made from reaction with succinic anhydride can also be used. The hereby comprised ester group make the conjugate much more susceptible to hydrolysis (US patent no.

5,122,614, (1992), Zalipsky). This group may be activated with N-hydroxy succinimide.

Furthermore, a special linker can be introduced. The most well studied being cyanuric chloride (Abuchowski et al., (1977), J. Biol. Chem., 252, 3578-3581; US patent no. 4,179,337, (1979), Davis et al.; Shafer et al., (1986), J. Polym. Sci. Polym. Chem. Ed., 24, 375-378.

Coupling of PEG to an aromatic amine followed by diazotation yields a very reactive diazonium salt, which can be reacted with a peptide in situ. An amide linkage may also be obtained by reacting an azlactone derivative of PEG (US patent no. 5,321,095, (1994), Greenwald, R. B.) thus introducing an additional amide linkage.

As some peptides do not comprise many Lysines it may be advantageous to attach more than one PEG to the same Lysine. This can be done e.g. by the use of 1,3-diamino-2-propanol.

PEGs may also be attached to the amino-groups of the enzyme with carbamate linkages (WO 95/11924, Greenwald et al.). Lysine residues may also be used as the backbone.

The coupling technique used in the examples is the N-succinimidyl carbonate conjugation technique descried in WO 25 90/13590 (Enzon).

In a preferred embodiment, the activated polymer is methyl-PEG which has been activated by N-succinimidyl carbonate as described WO 90/13590. The coupling can be carried out at alkaline conditions in high yields.

For coupling of polymers to the protein variants, it is preferred to use conditions similar to those described in WO96/17929 and WO99/00489 (Novo Nordisk A/S) e.g. mono or bis

activated PEG's of molecular weight ranging from 100 to 5000 Da. For instance, a methyl-PEG 350 could be activated with Nsuccinimidyl carbonate and incubated with protein variant at a molar ratio of more than 5 calculated as equivalents of acti-5 vated PEG divided by moles of lysines in the protein of intercoupling to immobilized protein variant, PEG:protein ratio should be optimized such that the PEG concentration is low enough for the buffer capacity to maintain alkaline pH throughout the reaction; while the PEG concentration is 10 still high enough to ensure sufficient degree of modification of the protein. Further, it is important that the activated PEG is kept at conditions that prevent hydrolysis (i.e. dissolved in acid or solvents) and diluted directly into the alkaline reaction buffer. It is essential that primary amines are not present 15 other than those occurring in the lysine residues of the protein. This can be secured by washing thoroughly in borate buffer. The reaction is stopped by separating the fluid phase containing unreacted PEG from the solid phase containing protein and derivatized protein. Optionally, the solid phase can then be 20 washed with tris buffer, to block any unreacted sites on PEG chains that might still be present.

Introduction of consensus sequences for post-translational modi-25 fications in the epitope areas

In another embodiment, the mutations are designed, such that recognition sites for post-translational modifications are introduced in the epitope areas, and the protein variant is expressed in a suitable host organism capable of the corresponding post-translational modification. These post-translational modifications may serve to shield the epitope and hence lower the immunogenicity of the protein variant relative to the protein backbone. Post-translational modifications include glycosyla-

tion, phosphorylation, N-terminal processing, acylation, ribosylation and sulfatation. A good example is N-qlycosylation. glycosylation is found at sites of the sequence Asn-Xaa-Ser, Asn-Xaa-Thr, or Asn-Xaa-Cys, in which neither the Xaa residue 5 nor the amino acid following the tri-peptide consensus sequence is a proline (T. E. Creighton, 'Proteins - Structures and Molecular Properties, 2nd edition, W.H. Freeman and Co., New York, 1993, pp. 91-93). It is thus desirable to introduce such recognition sites in the sequence of the backbone protein. The spe-10 cific nature of the glycosyl chain of the glycosylated protein variant may be linear or branched depending on the protein and the host cells. Another example is phosphorylation: The protein sequence can be modified so as to introduce serine phophorylation sites with the recognition sequence arg-arg-(xaa),-ser 15 (where n = 0, 1, or 2), which can be phosphorylated by the cAMPdependent kinase or tyrosine phosphorylation sites with the recognition sequence -lys/arg - (xaa)₃ - asp/glu- (xaa)₃ - tyr, which can usually be phophorylated by tyrosine-specific kinases (T.E. Creighton, "Proteins- Structures and molecular proper-20 ties", 2nd ed., Freeman, NY, 1993).

Randomized approaches to introduce modifications in epitope areas.

25

In order to generate protein variants, more than one amino acid residue may be substituted, added or deleted, these amino acids preferably being located in different epitope areas. In that case, it may be difficult to assess a priori how well the functionality of the protein is maintained while antigenicity is reduced, especially since the possible number of mutation-combinations becomes very large, even for a small number of mutations. In that case, it will be an advantage, to establish a library of diversified mutants each having one or more changed

amino acids introduced and selecting those variants, which show good retention of function and at the same time a significant reduction in antigenicity.

5 A diversified library can be established by a range of techniques known to the person skilled in the art (Reetz MT; Jaeger KE, in 'Biocatalysis - from Discovery to Application' edited by Fessner WD, Vol. 200, pp. 31-57 (1999); Stemmer, Nature, vol. 370, p.389-391, 1994; Zhao and Arnold, Proc. Natl. Acad. Sci., 10 USA, vol. 94, pp. 7997-8000, 1997; or Yano et al., Proc. Natl. Acad. Sci., USA, vol. 95, pp 5511-5515, 1998). These include, but are not limited to, 'spiked mutagenesis', in which certain positions of the protein sequence are randomized by carring out PCR mutagenesis using one or more oligonucleotide primers which 15 are synthesized using a mixture of nucleotides for certain posi-(Lanio T, Jeltsch A, Biotechniques, Vol. 958,962,964-965 (1998)). The mixtures of oligonucleotides used within each triplet can be designed such that the corresponding amino acid of the mutated gene product is randomized within some 20 predetermined distribution function. Algorithms have been disclosed, which facilitate this design (Jensen LJ et al., Nucleic Acids Research, Vol. 26(3), 697-702 (1998)).

In an embodiment substitutions are found by a method comprising the following steps: 1) a range of substitutions, additions, and/or deletions are listed encompassing several epitope areas (preferably in the corresponding epitope sequences, anchor amino aids, and/or hot spots), 2) a library is designed which introduces a randomized subset of these changes in the amino acid sequence into the target gene, e.g. by spiked mutagenesis, 3) the library is expressed, and preferred variants are selected. In another embodiment, this method is supplemented with additional rounds of screening and/or family shuffling of hits from the first round of screening (J.E. Ness, et al, Nature Biotechnol-

55

ogy, vol. 17, pp. 893-896, 1999) and/or combination with other methods of reducing immunogenicity by genetic means (such as that disclosed in WO92/10755).

5 The library may be designed, such that at least one amino acid of the epitope area is substituted. In a preferred embodiment at least one amino acid of the epitope sequence itself is changed, and in an even more preferred embodiment, one or more hot spot amino acids are changed. The library may be biased such that to10 wards introducing an amino acid of different size, hydrophilicity, and/or polarity relative to the original one of the 'protein backbone'. For example changing a small amino acid to a large amino acid, a hydrophilic amino acid to a hydrophobic amino acid, a polar amino acid to a non-polar amino acid or a basic to an acidic amino acid. Other changes may be the addition or deletion of at least one amino acid of the epitope area, preferably deleting an anchor amino acid. Furthermore, substituting some amino acids and deleting or adding others may change an epitope.

20

Diversity in the protein variant library can be generated at the DNA triplet level, such that individual codons are variegated e.g. by using primers of partially randomized sequence for a PCR reaction. Further, several techniques have been described, by which one can create a library with such diversity at several locations in the gene, which are too far apart to be covered by a single (spiked) oligonucleotide primer. These techniques include the use of in vivo recombination of the individually diversified gene segments as described in WO 97/07205 on page 3, line 8 to 29 or by using DNA shuffling techniques to create a library of full length genes that combine several gene segments each of which are diversified e.g. by spiked mutagenesis (Stemmer, Nature 370, pp. 389-391, 1994 and US 5,605,793 and 5,830,721). In the latter case, one can use the gene encoding

the "protein backbone" as a template double-stranded polynucleotide and combining this with one or more single or doublestranded oligonucleotides as described in claim 1 of US The single- stranded oligonucleotides could be pars tially randomized during synthesis. The double- stranded oliqonucleotides could be PCR products incorporating diversity in a specific region. In both cases, one can dilute the diversity with corresponding segments containing the sequence of the backbone protein in order to limit the number of changes that are on 10 average introduced. As mentioned above, methods have been established for designing the ratios of nucleotides (A; C; T; G) used at a particular codon during primer synthesis, so as to approximate a desired frequency distribution among a set of desired amino acids at that particular codon. This allows one to bias 15 the partially randomized mutagenesis towards e.g. introduction of post-translational modification sites, chemical modification sites, or simply amino acids that are different from those that define the epitope or the epitope area. One could also approximate a sequence in a given location or epitope area to the cor-20 responding location on a homologous, human protein.

Occasionally, one would be interested in testing a library that combines a number of known mutations in different locations in the primary sequence of the 'protein backbone'. These could be introduced post-translational or chemical modification sites, or they could be mutations, which by themselves had proven beneficial for one reason or another (e.g. decreasing antigenicity, or improving specific activity, performance, stability, or other characteristics). In such cases, it may be desirable to create a library of diverse combinations of known sequences. For example if 12 individual mutations are known, one could combine (at least) 12 segments of the 'protein backbone' gene in which each segment is present in two forms: one with and one without the desired mutation. By varying the relative amounts of those seg-

57

ments, one could design a library (of size 2¹²) for which the average number of mutations per gene can be predicted. This can be a useful way of combining elements that by themselves give some, but not sufficient effect, without resorting to very large libraries, as is often the case when using 'spiked mutagenesis'. Another way to combine these 'known mutations' could be by using family shuffling of oligomeric DNA encoding the known changes with fragments of the full length wild type sequence.

10

Assays for reduced allergenicity

When protein variants have been constructed based on the methods described in this invention, it is desirable to confirm their antibody binding capacity, functionality, immunogenicity and/or allergenicity using a purified preparation. For that use, the protein variant of interest can be expressed in larger scale, purified by conventional techniques, and the antibody binding and functionality should be examined in detail using dose-response curves and e.g. direct or competitive ELISA (C-ELISA).

The potentially reduced allergenicity (which is likely, but not necessarily true for a variant w. low antibody binding) should be tested in in vivo or in vitro model systems: e.g. an in vitro assays for immunogenicity such as assays based on cytokine expression profiles or other proliferation or differentiation responses of epithelial and other cells incl. B-cells and T-cells. Further, animal models for testing allergenicity should be set up to test a limited number of protein variants that show desired characteristics in vitro. Useful animal models include the guinea pig intratracheal model (GPIT) (Ritz, et al. Fund. Appl. Toxicol., 21, pp. 31-37, 1993), mouse subcutaneous (mouse-SC) (WO 98/30682, Novo Nordisk), the rat intratracheal (rat-IT) (WO 96/17929, Novo Nordisk), and the mouse intranasal (MINT)

(Robinson et al., Fund. Appl. Toxicol. <u>34</u>, pp. 15-24, 1996) models.

The immunogenicity of the protein variant is measured in animal stests, wherein the animals are immunised with the protein variant and the immune response is measured. Specifically, it is of interest to determine the allergenicity of the protein variants by repeatedly exposing the animals to the protein variant by the intratracheal route and following the specific IgG and IgE titers. Alternatively, the mouse intranasal (MINT) test can be used to assess the allergenicity of protein variants. By the present invention the allergenicity is reduced at least 3 times as compared to the allergenicity of the parent protein, preferably 10 times reduced, more preferably 50 times.

15

However, the present inventors have demonstrated that the performance in ELISA correlates closely to the immunogenic responses measured in animal tests. To obtain a useful reduction of the allergenicity of a protein, the IgE binding capacity of the protein variant must be reduced to at least below 75 %, preferably below 50 %, more preferably below 25 % of the IgE binding capacity of the parent protein as measured by the performance in IgE ELISA, given the value for the IgE binding capacity of the parent protein is set to 100 %.

25

Thus a first assessment of the immunogenicity and/or allergenicity of a protein can be made by measuring the antibody binding capacity or antigenicity of the protein variant using appropriate antibodies. This approach has also been used in the literature (WO 99/47680).

Assays for altered immunotherapeutic effect

The immunotherapeutic effect of allergen vaccines can be assessed a number of different ways. One is to measure the specific IgE binding, the reduction of which indicates a better allergen vaccine potential (WO 99/47680, ALK-ABELLÓ). Also, several cellular assays could be employed to show the modified immuneresponse indicative of good allergen vaccine potential as shown in several publications, all of which are hereby incorporated by reference (van Neerven et al, "T lymphocyte responses to allergens: Epitope-specificity and clinical relevance", Immunol Today, 1996, vol. 17, pp. 526-532; Hoffmann et al., Allergy, 1999, vol. 54, pp. 446-454, WO99/07880).

Eventually, clinical trials with allergic patients could be employed using cellular or clinical end-point measurements. (Ebner et al., Clin. Exp. All., 1997, vol. 27, pp. 107-1015; Int. Arch. Allergy Immunol., 1999, vol. 119, pp 1-5).

Determining functionality

20

A wide variety of protein functionality assays are available in the literature. Especially, those suitable for automated analysis are useful for this invention. Several have been published in the literature such as protease assays (WO99/34011, Genencor International; J.E. Ness, et al, Nature Biotechn., 17, pp. 893-896, 1999), oxidoreductase assays (Cherry et al., Nature Biotechn., 17, pp. 379-384, 1999, and assays for several other enzymes (WO99/45143, Novo Nordisk). Those assays that employ soluble substrates can be employed for direct analysis of functionality of immobilized protein variants.

Cross-reactivity

A related objective is to reduce cross-reactivity between 'commercial allergens' and 'environmental allergens'. reactivities between food allergens of different origin are well-known (Akkerdaas et al, Allergy 50, pp 215-220, 1995). 5 Similarly, cross-reactivities between other environmental allergens (like pollen, dust mites etc.) and commercial allergens (like enzyme proteins) have been established in the literature (J. All. Clin. Immunol., 1998, vol. 102, pp. 679-686 and by the present inventors. The molecular reason for this cross-10 reactivity can be explored using epitope mapping. By finding epitope patterns using antibodies raised against environmental allergen (donor protein) and mapping this information on a commercial allergen (the acceptor protein), one may find the epitopes that are common to both proteins, and hence responsible 15 for the cross-reactivity. Obviously, one can also use the commercial allergen as donor and the environmental allergen as acceptor. By modifying the commercial allergen using protein engineering in the epitope areas identified as described above, one can reduce the cross-reactivity of the commercial allergen 20 variant towards the environmental allergens (and vice versa). Hence, the use of the modified commercial allergens would be safer than using the unmodified commercial allergen.

Testing of this approach would be done using an antibody-binding assay with the protein variant (and its parent protein as control) and antibodies raised against the protein that cross-reacts with the parent protein. The method is otherwise identical to those described in the Methods section for characterization of allergencity and antigenicity.

30

Wash performance etc.

The modifications of the enzymes in the epitope areas as disclosed the present application may cause other effects to the

61

enzyme than modified immunogenicity. A modification may also change the performance of the enzyme, such as the wash performance, thermo stability, storage stability and increased catalytical activity of the enzyme.

5

The ability of an enzyme to catalyze the degradation of various naturally occurring substrates present on the objects to be cleaned during e.g. wash is often referred to as its washing ability, wash-ability, detergency, or wash performance.

10 Throughout this application the term wash performance will be used to encompass this property.

Commercial enzyme applications

15

Industrial applications

Another aspect of the invention is a composition comprising at least one protein (polypeptide) or enzyme of the invention. The composition may comprise other polypeptides, proteins or enzymes and/or ingredients normally used in personal care products, such as shampoo, soap bars, skin lotion, skin creme, hair dye, toothpaste, household articles, agro chemicals, personal care products, such as cleaning preparations e.g. for contact lenses, cosmetics, toiletries, oral and dermal pharmaceuticals, compositions used for treating textiles, compositions used for manufacturing food, e.g. baking, and feed etc.

Examples of said proteins(polypeptides)/enzymes include enzymes exhibiting protease, lipolytic enzyme, oxidoreductase, carbohydrase, transferase, such as transglutaminase, phytase and/or anti-microbial polypeptide activity. These enzymes may be present as conjugates with reduced activity.

The protein of the invention may furthermore typically be used in detergent composition. It may be included in the detergent composition in the form of a non-dusting granulate, a stabilized liquid, or a protected enzyme. Non-dusting granulates may be pro-5 duced, e.g., as disclosed in US 4,106,991 and 4,661,452 (both to Novo Industri A/S) and may optionally be coated by methods known in the art. Examples of waxy coating materials are poly(ethylene oxide) products (polyethylene glycol, PEG) with mean molecular weights of 1000 to 20000; ethoxylated nonylphenols having from 16 10 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids. Examples of film-forming coating materials suitable for application 15 by fluid bed techniques are given in patent GB 1483591. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods. Other enzyme stabilizers are well known in the art. Protected enzymes may be 20 prepared according to the method disclosed in EP 238,216.

The detergent composition may be in any convenient form, e.g. as powder, granules, paste or liquid. A liquid detergent may be aqueous, typically containing up to 70% water and 0-30% organic solvent, or non-aqueous.

The detergent composition comprises one or more surfactants, each of which may be anionic, nonionic, cationic, or zwitterionic. The detergent will usually contain 0-50% of anionic surfactant such as linear alkylbenzenesulfonate (LAS), alpha-olefinsulfonate (AOS), alkyl sulfate (fatty alcohol sulfate) (AS), alcohol ethoxysulfate (AEOS or AES), secondary alkanesulfonates (SAS), alphasulfo fatty acid methyl esters, alkyl- or alkenylsuccinic acid, or soap. It may also contain 0-40% of nonionic surfactant such as

alcohol ethoxylate (AEO or AE), carboxylated alcohol ethoxylates, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamine - oxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, or polyhydroxy alkyl fatty acid amide (e.g. as described in WO 92/06154).

The detergent composition may additionally comprise one or more other enzymes, such as e.g. proteases, amylases, lipolytic enzymes, cutinases, cellulases, peroxidases, oxidases, and further anti-microbial polypeptides.

The detergent may contain 1-65% of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, citrate, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTMPA), alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates (e.g. SKS-6 from Hoechst). The detergent may also be unbuilt, i.e. essentially free of detergent builder.

The detergent may comprise one or more polymers. Examples are carboxymethylcellulose (CMC), poly(vinylpyrrolidone) (PVP), polyethyleneglycol (PEG), poly(vinyl alcohol) (PVA), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.

25

The detergent may contain a bleaching system which may comprise a H_2O_2 source such as perborate or percarbonate which may be combined with a peracid-forming bleach activator such as tetraace-tylethylenediamine (TAED) or nonanoyloxybenzenesulfon-ate (NOBS). Alternatively, the bleaching system may comprise peroxyacids of, e.g., the amide, imide, or sulfone type.

The detergent composition of the invention comprising the polypeptide of the invention may be stabilized using conventional stabilizing agents, e.g. a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative such as, e.g., an aromatic borate ester, and the composition may be formulated as described in, e.g., WO 5 92/19709 and WO 92/19708.

The detergent may also contain other conventional detergent ingredients such as, e.g., fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil-suspending agents, anti-soil-redeposition agents, dyes, bactericides, optical brighteners, or perfume.

The pH (measured in aqueous solution at use concentration) will usually be neutral or alkaline, e.g. in the range of 7-11.

15

Dishwashing composition

Further, a modified enzyme according to the invention may also be used in dishwashing detergents.

20

Dishwashing detergent compositions comprise a surfactant which may be anionic, non-ionic, cationic, amphoteric or a mixture of these types. The detergent will contain 0-90% of non-ionic surfactant such as low- to non-foaming ethoxylated propoxylated straight-chain alcohols.

The detergent composition may contain detergent builder salts of inorganic and/or organic types. The detergent builders may be subdivided into phosphorus-containing and non-phosphorus-containing types. The detergent composition usually contains 1-90% of detergent builders.

Examples of phosphorus-containing inorganic alkaline detergent builders, when present, include the water-soluble salts especially alkali metal pyrophosphates, orthophosphates, and polyphosphates. An example of phosphorus-containing organic alkaline detergent builder, when present, includes the water-soluble salts of phosphonates. Examples of non-phosphorus-containing inorganic builders, when present, include water-soluble alkali metal carbonates, borates and silicates as well as the various types of water-insoluble crystalline or amorphous alumino silicates of which zeolites are the best-known representatives.

10 Examples of suitable organic builders include the alkali metal, ammonium and substituted ammonium, citrates, succinates, malonates, fatty acid sulphonates, carboxymetoxy succinates, ammonium polyacetates, carboxylates, polycarboxylates, aminopolycarboxylates, polyacetyl carboxylates and polyhydroxsulphonates.

Other suitable organic builders include the higher molecular weight polymers and co-polymers known to have builder properties, for example appropriate polyacrylic acid, polymaleic and polyacrylic/polymaleic acid copolymers and their salts.

The dishwashing detergent composition may contain bleaching agents of the chlorine/bromine-type or the oxygen-type. Examples of inorganic chlorine/bromine-type bleaches are lithium, sodium 25 or calcium hypochlorite and hypobromite as well as chlorinated trisodium phosphate. Examples of organic chlorine/bromine-type bleaches are heterocyclic N-bromo and N-chloro imides such as trichloroisocyanuric, tribromoisocyanuric, dibromoisocyanuric and dichloroisocyanuric acids, and salts thereof with water-solubilizing cations such as potassium and sodium. Hydantoin compounds are also suitable.

The oxygen bleaches are preferred, for example in the form of an inorganic persalt, preferably with a bleach precursor or as a

66

peroxy acid compound. Typical examples of suitable peroxy bleach compounds are alkali metal perborates, both tetrahydrates and monohydrates, alkali metal percarbonates, persilicates and perphosphates. Preferred activator materials are TAED and glycerol triacetate.

The dishwashing detergent composition of the invention may be stabilized using conventional stabilizing agents for the enzyme(s), e.g. a polyol such as e.g. propylene glycol, a sugar or a sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g. an aromatic borate ester.

The dishwashing detergent composition of the invention may also contain other conventional detergent ingredients, e.g. defloc15 culant material, filler material, foam depressors, anti-corrosion agents, soil-suspending agents, sequestering agents, anti-soil redeposition agents, dehydrating agents, dyes, bactericides, fluorescers, thickeners and perfumes.

20 Finally, the enzyme of the invention may be used in conventional dishwashing-detergents, e.g. in any of the detergents described in any of the following patent publications:

EP 518719, EP 518720, EP 518721, EP 516553, EP 516554,

25 EP 516555, GB 2200132, DE 3741617, DE 3727911, DE 4212166,
 DE 4137470, DE 3833047, WO 93/17089, DE 4205071, WO 52/09680, WO 93/18129, WO 93/04153, WO 92/06157, WO 92/08777, EP 429124, WO 93/21299, US 5141664, EP 561452, EP 561446, GB 2234980,
 WO 93/03129, EP 481547, EP 530870, EP 533239, EP 554943,

30 EP 346137, US 5112518, EP 318204, EP 318279, EP 271155,
 EP 271156, EP 346136, GB 2228945, CA 2006687, WO 93/25651,

EP 530635, EP 414197, US 5240632.

Personal care applications

A particularly useful application area for low allergenic proteins or of proteins with low cross-reactivity to environmental allergens would be in personal care products where the end-user is in close contact with the protein, and where certain problems with allergenicity has been encountered in experimental set-ups (Kelling et al., J. All. Clin. Imm., 1998, Vol. 101, pp. 179-187 and Johnston et al., Hum. Exp. Toxicol., 1999, Vol.18, p. 527).

10

First of all the conjugate or compositions of the invention can advantageously be used for personal care products, such as hair care and hair treatment products. This include products such as shampoo, balsam, hair conditioners, hair waving compositions, hair dyeing compositions, hair tonic, hair liquid, hair cream, shampoo, hair rinse, hair spray.

Further contemplated are oral care products such as dentifrice, 20 oral washes, chewing gum.

Also contemplated are skin care products and cosmetics, such as skin cream, skin milk, cleansing cream, cleansing lotion, cleansing milk, cold cream, cream soap, nourishing essence, skin lotion, milky lotion, calamine lotion, hand cream, powder soap, transparent soap, sun oil, sun screen, shaving foam, shaving cream, baby oil lipstick, lip cream, creamy foundation, face powder, powder eye-shadow, powder, foundation, make-up base, essence powder, whitening powder.

30

Also for contact lenses hygiene products the conjugate of the invention can be used advantageously. Such products include cleaning and disinfection products for contact lenses.

Proteases

Proteases are well-known active ingredients for cleaning of con-5 tact lenses. They hydrolyse the proteinaceous soil on the lens and thereby makes it soluble. Removal of the protein soil is essential for the wearing comfort.

Proteases are also effective ingredients in skin cleaning prod-10 ucts, where they remove the upper layer of dead keratinaseous skin cells and thereby make the skin look brighter and fresher.

Proteases are also used in oral care products, especially for cleaning of dentures, but also in dentifrices.

15

Further, proteases are used in toiletries, bath and shower products, including shampoos, conditioners, lotions, creams, soap bars, toilet soaps, and liquid soaps.

20 Lipolytic enzymes

Lipolytic enzymes can be applied for cosmetic use as active ingredients in skin cleaning products and anti-acne products for removal of excessive skin lipids, and in bath and shower products such as creams and lotions as active ingredients for skin care.

Lipolytic enzymes can also be used in hair cleaning products (e.g. shampoos) for effective removal of sebum and other fatty material from the surface of hair.

30

Lipolytic enzymes are also effective ingredients in products for cleaning of contact lenses, where they remove lipid deposits from the lens surface.

Oxidoreductases

5 The most common oxidoreductase for personal care purposes is an oxidase (usually glucose oxidase) with substrate (e.g. glucose) that ensures production of H_2O_2 , which then will initiate the oxidation of for instance SCN or I into antimicrobial reagents (SCNO or I₂) by a peroxidase (usually lactoperoxidase). This enzymatic complex is known in nature from e.g. milk and saliva.

It is being utilised commercially as anti-microbial system in oral care products (mouth rinse, dentifrice, chewing gum) where it also can be combined with an amyloglucosidase to produce the glucose. These systems are also known in cosmetic products for preservation.

Anti-microbial systems comprising the combination of an oxidase and a peroxidase are know in the cleaning of contact lenses.

20

Another application of oxidoreductases is oxidative hair dyeing using oxidases, peroxidases and laccases.

Free radicals formed on the surface of the skin (and hair) known to be associated with the ageing process of the skin (spoilage of the hair). The free radicals activate chain reactions that lead to destruction of fatty membranes, collagen, and cells. The application of free radical scavengers such as Superoxide dismutase into cosmetics is well known (R. L. Goldemberg, DCI, Nov. 93, p. 30 48-52).

Protein disulfide isomerase (PDI) is also an oxidoreductase. It can be utilised for waving of hair (reduction and reoxidation of

70

disulfide bonds in hair) and repair of spoiled hair (where the damage is mainly reduction of existing disulfide bonds).

Carbohydrases

5

Plaque formed on the surface of teeth is composed mainly of polysaccharides. They stick to the surface of the teeth and the microorganisms. The polysaccharides are mainly α -1,6 bound glucose (dextran) and α -1,3 bound glucose (mutan). The application of different types of glucanases such as mutanase and dextranase helps hydrolysing the sticky matrix of plaque, making it easier to remove by mechanical action.

Also other kinds of biofilm for instance the biofilm formed in 15 lens cases can be removed by the action of glucanases.

Food and Feed

20 Further conjugated enzymes or polypeptides with reduced immunogenicity according to the invention may advantageously be used in the manufacturing of food and feed.

Proteases

25

The gluten in wheat flour is the essential ingredient responsible for the ability of flour to be used in baked foodstuffs. Proteolytic enzymes are sometimes needed to modify the gluten phase of the dough, e.g. a hard wheat flour can be softened with a prote-30 ase.

Neutrase[®] is a commercially available neutral metallo protease that can be used to ensure a uniform dough quality and bread texture, and to improve flavour. The gluten proteins are degraded

71

either moderately or more extensively to peptides, whereby close control is necessary in order to avoid excessive softening of the dough.

5 Proteases are also used for modifying milk protein.

To coagulate casein in milk when producing cheese proteases such as rennet or chymosin may be used.

10 In the brewery industry proteases are used for brewing with unmalted cereals and for controlling the nitrogen content.

In animal feed products proteases are used so to speak to expand the animals digestion system.

15

Lipolytic enzymes

Addition of lipolytic enzyme results in improved dough properties and an improved breadmaking quality in terms of larger volume, improved crumb structure and whiter crumb colour. The observed effect can be explained by a mechanism where the lipolytic enzyme changes the interaction between gluten and some lipids fragment during dough mixing. This results in an improved gluten network.

25 The flavour development of blue roan cheese (e.g. Danablue), certain Italian type cheese, and other dairy products containing butter-fat, are dependent on the degradation of milk fat into free fatty acids. Lipolytic enzymes may be used for developing flavour in such products.

30

In the oil- and fat producing industry lipases are used e.g. to minimize the amount of undesirable side-products, to modify fats by interesterification, and to synthesis of esters.

Oxidoreductases

Further oxidoreductases with reduced immunogenicity according to the invention may advantageously be used in the manufacturing of 5 food and feed.

Several oxidoreductases are used for baking, glucose oxidase, lipoxygenase, peroxidase, catalase and combinations hereof. Traditionally, bakers strengthen gluten by adding ascorbic acid and potassium bromate. Some oxidoreductases can be used to replace bromate in dough systems by oxidation of free sulfydryl units in gluten proteins. Hereby disulphide linkages are formed resulting in stronger, more elastic doughs with greater resistance.

15 GluzymeTM (Novozymes A/S) is a glucose oxidase preparation with catalase activity that can be used to replace bromate. The dough strengthen is measured as greater resistance to mechanical shock, better oven spring and larger loaf volume.

20 Carbohydrases

Flour has varying content of amylases leading to differences in the baking quality. Addition of amylases can be necessary in order to standardize the flour. Amylases and pentosanases generally provide sugar for the yeast fermentation, improve the bread volume, retard retrogradation, and decrease the staling rate and stickiness that results from pentosan gums. Examples of carbohydrases are given below.

Certain maltogenic amylases can be used for prolonging the shelf life of bread for two or more days without causing gumminess in the product. Selectively modifies the gelatinized starch by cleaving from the non-reducing end of the starch molecules, low molecular wight sugars and dextrins. The starch is modified in such a way that retrogradation is less likely to occur. The produced low-molecular-weight sugars improve the baked goods water retention capacity without creating the intermediate-length dextrins that result in gumminess in the finished product. The enzyme is inactivated during bread baking, so it can be considered a processing aid that does not have to be declared on the label. Overdosing of Novamyl can almost be excluded.

The bread volume can be improved by fungal α -amylases which further provide good and uniform structure of the bread crumb. Said α -amylases are endoenzymes that produce maltose, dextrins and glucose. Cereal and some bacterial α -amylases are inactivated at temperatures above the gelatinization temperature of starch, therefore when added to wheat dough it results in a low bread volume and a sticky bread interior. Fungamyl has the advantage of being thermolabile and is inactivated just below the gelatinization temperature.

Enzyme preparations containing a number of pentosanase and hemicellulase activities can improve the handling and stability of
the dough, and improves the freshness, the crumb structure and
the volume of the bread.

By hydrolysing the pentosans fraction in flour, it will lose a great deal of its water-binding capacity, and the water will then be available for starch and gluten. The gluten becomes more pliable and extensible, and the starch gelatinizes more easily. Pentosanases can be used in combination with or as an alternative to emulsifiers.

30

Further carbohydrases are user for producing syrups from starch, which are widely used in soft drinks, sweets, meat products, dairy products, bread products, ice cream, baby food, jam etc.

The conversion of starch is normally carried out three steps. First the starch is liquefied, by the use of α -amylases. Maltodextrins, primary consisting of oligosaccharides and dextrins, are obtained.

The mixture is then treated with an amyloglucosidase for hydrolysing the oligosaccharides and dextrins into glucose. This way a sweeter product is obtained. If high maltose syrups are desired β -amylases alone or in combination with a pullulanase (de-branching enzyme) may be used.

The glucose mixture can be made even sweeter by isomerization to fructose. For this an immobilized glucose isomerase can be used.

15 In the sugar industry, it is common practice to speed up the break down of present starch in cane juices. Thereby the starch content in the raw sugar is reduced and filtration at the refinery facilitated.

Furthermore dextranases are used to break down dextran in raw 20 sugar juices and syrups.

In the alcohol industry α -amylases is advantageously being used for thinning of starch in distilling mashes.

25 In the brewing industry α -amylases is used for adjunct liquefaction.

In the dairy industry β -galactosidases (lactase) is used when producing low lactose milk for persons suffering from lactose malabsorption.

When flavoured milk drinks are produced from lactase-treated milk, the addition of sugar can be reduced without reducing the sweetness of the product.

5 In the production of condensed milk, lactose crystallization can be avoided by lactase treatment, and the risk of thickening caused by casein coagulation in lactose crystals is thus reduced.

When producing ice cream made from lactase-treated milk (or whey)
10 no lactose crystals will be formed and the defect, sandiness,
will not occur.

Further, xylanases are known to be used within a number of food/feed industrial applications as described in WO 94/21785 (Novo Nordisk A/S).

 α -amylases are used in the animal feed industry to be added to cereal-containing feed to improve the digestibility of starch.

20

Anti-microbial polypeptides

Certain bacteriolytic enzymes may be used e.g. to wash carcasses in the meat packing industry (see US patent no. 5,354,681 from 25 Novo Industri A/S)

Transferases

Transglutaminases with reduced immunogenicity according to the invention may advantageously be used in the manufacturing of food and feed.

Transglutaminases has the ability to crosslinking protein.

This property can be used for gelling of aqueous phases containing proteins. This may be used for when producing of spreads (DK patent application no. 1071/84 from Novo Nordisk A/S).

- 5 Transglutaminases are being used for improvement of baking quality of flour e.g. by modifying wheat flour to be used in the preparation of cakes with improved properties, such as improved taste, dent, mouth-feel and a higher volume (see JP 1-110147).
- 10 Further producing paste type food material e.g. used as fat substitution in foods as ice cream, toppings, frozen desserts, mayonnaises and low fat spreads (see WO 93/22930 from Novo Nordisk A/S).
- 15 Furthermore for preparation of gels for yoghurt, mousses, cheese, puddings, orange juice, from milk and milk-like products, and binding of chopped meat product, improvement of taste and texture of food proteins (see WO 94/21120 and WO 94/21129 from Novo Nordisk A/S).

20

Phytases

Phytases of the invention may advantageously be used in the manu-25 facturing of food, such as breakfast cereal, cake, sweets, drinks, bread or soup etc., and animal feed.

Phytases may be used either for exploiting the phosphorus bound in the phytate/phytic acid present in vegetable protein sources or for exploiting the nutritionally important minerals bound in phytic acid complexes. 77

Microbial phytase may be added to feedstuff of monogastric animals in order to avoid supplementing the feed with inorganic phosphorus (see US patent no. 3,297,548).

5 Further phytases may be used in soy processing. Soyabean meal may contain high levels of the anti-nutritional factor phytate which renders this protein source unsuitable for application in baby food and feed for fish, calves and other non-ruminants, since the phytate chelates essential minerals present therein (see EP 0 420 358).

Also for baking purposes phytases may be used. Bread with better quality can be prepared by baking divided pieces of a dough containing wheat flour etc. and phytase (see JP-0-3076529-A).

15

A high phytase activity as in koji mold are known to be used for producing refined sake (see JP-0-6070749-A).

Textile applications

20

Proteases

Proteases are used for degumming and sand washing of silk.

25 Lipolytic enzymes

Lipolytic enzymes are used for removing fatty matter containing hydrophobic esters (e.g. triglycerides) during the finishing of textiles (see e.g. WO 93/13256 from Novo Nordisk A/S).

30

Oxidoreductases

In bleach clean up of textiles catalases may serve to remove excess hydrogen peroxide.

Carbohydrases

Cellulolytic enzymes are widely used in the finishing of denim s garments in order to provide a localized variation in the colour density of the fabric (Enzyme facilitated "stone wash").

Also cellulolytic enzymes find use in the bio-polishing process. Bio-Polishing is a specific treatment of the yarn surface which improves fabric quality with respect to handle and appearance without loss of fabric wettability. Bio-polishing may be obtained by applying the method described e.g. in WO 93/20278.

During the weaving of textiles, the threads are exposed to considerable mechanical strain. In order to prevent breaking, the threads are usually reinforced by the coating (sizing) with a gelatinous substance (size). The most common sizing agent is starch in native or modified form. A uniform and durable finish can thus be obtained only after removal of the size from the fabric, the so-called desizing. Desizing of fabrics sized with a size containing starch or modified starch is preferably facilitated by use of amylolytic enzymes.

25 Oral and dermal pharmaceuticals

Proteases

Different combinations of highly purified proteases (e.g. Trypsin and Chymotrypsin) are used in pharmaceuticals to be taken orally, and dermal pharmaceuticals for combating e.g inflammations, edemata and injuries.

Leather production

Transferase

s Transglutaminase is known to be used to casein-finishing leather by acting as a hardening agent (see WO 94/13839 from Novo Nordisk).

Hard surface cleaning

10

Cleaning of hard surfaces e.g. in the food industry is often difficult, as equipment used for producing dairies, meat, sea food products, beverages etc. often have a complicated shape. The use of surfactant compositions in the form gels and foams comprising enzymes have shown to facilitate and improve hard surface cleaning. Enzymes, which advantageously may be added in such surfactant compositions, are in particular proteases, lipolytic enzymes, amylases and cellulases.

20 Such hard surface cleaning compositions comprising enzymes may also advantageously be used in the transport sector, for instance for washing cars and for general vessel wash.

25

Furthermore this invention relates to the method by which the protein variants are being synthesised and expressed in host cells. This is achieved by culturing host cells capable of expressing a polypeptide in a suitable culture medium to obtain expression and secretion of the polypeptide into the medium, followed by isolation of the polypeptide from the culture medium. The host cell may be any cell suitable for the large-scale production of proteins, capable of expressing a protein and being transformed by an expression vector.

The host cell comprises a DNA construct as defined above, optionally the cells may be transformed with an expression vector comprising a DNA construct as defined above. The host cell is selected from any suitable cell, such as a bacterial cell, a fungal cell, an animal cell, such as an insect cell or a mammalian cell, or a plant cell.

10

Immunotherapy

A number of vaccination approaches have been described to for infective diseases as well as for non-infective diseases (such as cancers). In a number of cases, the antigen provided is an isolated protein or protein-adjuvant mixture and more and more often, the protein is recombinant (e.g. the hepatitits B vaccine from Merck & Co). In these cases, it could be desirable to modify the immunogenicity of the antigen vaccine, such that it offers a stronger or more specific protection. This can be achieved by protein engineering of the amino acid sequence of the antigen, and would be greatly facilitated by the use of the methods of this invention for identification of epitopes on the antigen vaccine to be the favored sites for modification.

There are several examples of vaccine molecules that have been engineered to achieve a specific immune protection against virus, parasites or cancer (Ryu and Nam, Biotechnol. Prog., 2000, vol. 16 pp.2-16; and references cited therein). "The goal is often to vaccinate with a minimal strucutre consisting of a well-defined antigen, to stimulate an effective specific immune response, while avoiding potentially hazardous risks" (Ryu and Nam, Biotechnol. Prog., 2000, vol. 16 pp.2-16). Thus, the methods of this invention can be used to identify such minimal structures that define an antigen (or epitope thereof) whether

in the form of the parent protein scaffold with a number of mutations introduced in it, or whether it is in the form of the antibody binding peptides themselves.

5

Allergen vaccines

Today, a patient suffering allergic disease may be subjected to allergy vaccine therapy using allergens selected on the basis of testing the specificity of the patient's serum IgE against a bank of allergen extracts (or similar specificity tests of the patient's sensibilization such as skin prick test.

One could improve the quality of characterization by using antibody binding peptides corresponding to various epitope sequences
on the protein allergens of interest. This would require a kit
comprising reagents for such specificity characterization, e.g.
the antibody binding peptides of desired specificity. It would
be preferred to use antibody binding sequences in the kit, which
correspond to defined epitope sequences known to be specific for
the allergen under investigation (i.e. not identified on other
allergens and/or not cross-reacting with sera raised against
other allergens). This kit would be useful to specifying which
allergy the patient is suffering from. This kit will lead to a
more specific answer than those kits used today, and hence to a
better selection of allergen vaccine therapy for the individual
patient.

Further, the knowledge about cross-reacting epitopes may improve vaccine development.

In an extension of this approach, one could also characterize the patient's serum by identifying the corresponding antibody binding peptides among a random display library using the afore-

PCT/DK01/00293

82

mentioned methods. This again may lead to a better selection of allergen vaccine therapy.

Further, one could use the individual antibody binding sequences sas allergen vaccines leading to more specific allergen vaccine. These antibody binding sequences could be administered in an isolated form or fused to a membrane protein of the phage display system, or to another protein, which may have beneficial effect for the immunoprotective effect of the antibody binding peptide (Dalum et al., Nature Biotechnology, 1999, Vol. 17, pp. 666-669).

. 15 D) Variations possible.

Parent protein

20

The "parent protein" can in principle be any protein molecule of biological origin, non-limiting examples of which are peptides, polypeptides, proteins, enzymes, post-translationally modified polypeptides such as lipopeptides or glycosylated peptides, anti-microbial peptides or molecules, and proteins having pharmaceutical properties etc.

Accordingly the invention relates to a method, wherein the "parent protein" is chosen from the group consisting of polypeptides, small peptides, lipopeptides, antimicrobials, and pharmaceutical polypeptides.

The term "pharmaceutical polypeptides" is defined as polypeptides, including peptides, such as peptide hormones, proteins

and/or enzymes, being physiologically active when introduced into the circulatory system of the body of humans and/or animals.

Pharmaceutical polypeptides are potentially immunogenic as they sare introduced into the circulatory system.

Examples of "pharmaceutical polypeptides" contemplated according to the invention include insulin, ACTH, glucagon, somatostatin, somatotropin, thymosin, parathyroid hormone, pigmentary hormones, somatomedin, erythropoietin, luteinizing hormone, chorionic gonadotropin, hypothalmic releasing factors, antidiuretic hormones, thyroid stimulating hormone, relaxin, interferon, thrombopoietin (TPO) and prolactin.

However, the proteins are preferably to be used in industry, housekeeping and/or medicine, such as proteins used in personal care products (for example shampoo; soap; skin, hand and face lotions; skin, hand and face cremes; hair dyes; toothpaste), food (for example in the baking industry), detergents and pharmaceuticals.

Antimicrobial peptides.

The antimicrobial peptide (AMP) may be, e.g., a membrane-active antimicrobial peptide, or an antimicrobial peptide affecting/interacting with intracellular targets, e.g. binding to cell DNA. The AMP is generally a relatively short peptide, consisting of less than 100 amino acid residues, typically 20-80 residues. The antimicrobial peptide has bactericidal and/or fungicidal effect, and it may also have antiviral or antitumour effects. It generally has low cytotoxicity against normal mammalian cells. The antimicrobial peptide is generally highly cationic and hydrophobic. It typically contains several arginine and lysine residues, and it may not contain a single glutamate or aspa-

ratate. It usually contains a large proportion of hydrophobic residues. The peptide generally has an amphiphilic structure, with one surface being highly positive and the other hydrophobic.

5 The bioactive peptide and the encoding nucleotide sequence may be derived from plants, invertebrates, insects, amphibians and mammals, or from microorganisms such as bacteria and fungi.

The antimicrobial peptide may act on cell membranes of target microorganisms, e.g. through nonspecific binding to the mem10 brane, usually in a membrane-parallel orientation, interacting only with one face of the bilayer.

The antimicrobial peptide typically has a structure belonging to one of five major classes: a helical, cystine-rich (defensin-like), b-sheet, peptides with an unusual composition of regular amino acids, and peptides containing uncommon modified amino acids.

Examples of alpha-helical peptides are Magainin 1 and 2; Cecropin A, B and P1; CAP18; Andropin; Clavanin A or AK; Styelin D and C; and Buforin II. Examples of cystine-rich peptides are a
Defensin HNP-1 (human neutrophil peptide) HNP-2 and HNP-3; b-Defensin-12, Drosomycin, g1-purothionin, and Insect defensin A.

Examples of b-sheet peptides are Lactoferricin B, Tachyplesin I, and Protegrin PG1-5. Examples of peptides with an unusual composition are Indolicidin; PR-39; Bactenicin Bac5 and Bac7; and Histatin 5. Examples of peptides with unusual amino acids are Nisin, Gramicidin A, and Alamethicin.

Another example is the antifungal peptide (AFP) from Aspergillus giganteus. As explained in detail in WO 94/01459, which is hereby incorporated by reference, the antifungal polypeptide having the amino acid sequence shown in Fig. 1 has been found in several strains of the fungal species A. giganteus, an example of which is the A. giganteus strain deposited with the Centraallbureau voor Schimmelcultures (CBS) under the deposition number CBS 526.65.

However, the antifungal polypeptide, or variants thereof, suitable for the use according to the invention are expected to be derivable from other fungal species, especially other Aspergil5 lus species such as A. pallidus, A. clavatus, A. longivesica, A. rhizopodus and A. clavatonanicus, because of the close relationship which exists between these species and A. giganteus.

In one embodiment of the invention the protein is an enzyme, such as glycosyl hydrolases, carbohydrases, peroxidases, proteases, lipolytic enzymes, phytases, polysaccharide lyases, oxidoreductases, transglutaminases and glycoseisomerases, in particular the following.

15 Parent Proteases

30

Parent proteases (i.e. enzymes classified under the Enzyme Classification number E.C. 3.4 in accordance with the Recommendations (1992) of the International Union of Biochemistry and Molecular Biology (IUBMB)) include proteases within this group.

Examples include proteases selected from those classified under the Enzyme Classification (E.C.) numbers:

- 25 3.4.11 (i.e. so-called aminopeptidases), including 3.4.11.5 (Prolyl aminopeptidase), 3.4.11.9 (X-pro aminopeptidase), 3.4.11.10 (Bacterial leucyl aminopeptidase), 3.4.11.12 (Thermophilic aminopeptidase), 3.4.11.15 (Lysyl aminopeptidase), 3.4.11.17 (Tryptophanyl aminopeptidase), 3.4.11.18 (Methionyl aminopeptidase).
 - 3.4.21 (i.e. so-called serine endopeptidases), including 3.4.21.1 (Chymotrypsin), 3.4.21.4 (Trypsin), 3.4.21.25 (Cucumisin), 3.4.21.32 (Brachyurin), 3.4.21.48 (Cerevisin) and 3.4.21.62 (Subtilisin);

- 3.4.22 (i.e. so-called cysteine endopeptidases), including 3.4.22.2 (Papain), 3.4.22.3 (Ficain), 3.4.22.6 (Chymopapain), 3.4.22.7 (Asclepain), 3.4.22.14 (Actinidain), 3.4.22.30 (Cariscain) and 3.4.22.31 (Ananain);
 - 3.4.23 (i.e. so-called aspartic endopeptidases), including 3.4.23.1 (Pepsin A), 3.4.23.18 (Aspergillopepsin I), 3.4.23.20 (Penicillopepsin) and 3.4.23.25 (Saccharopepsin); and

10

3.4.24 (i.e. so-called metalloendopeptidases), including 3.4.24.28 (Bacillolysin).

Serine proteases

15 A serine protease is an enzyme which catalyzes the hydrolysis of peptide bonds, and in which there is an essential serine residue at the active site (White, Handler and Smith, 1973 "Principles of Biochemistry," Fifth Edition, McGraw-Hill Book Company, NY, pp. 271-272).

20

The bacterial serine proteases have molecular weights in the 20,000 to 45,000 Dalton range. They are inhibited by diisopropylfluorophosphate. They hydrolyze simple terminal esters and are similar in activity to eukaryotic chymotrypsin, also a serine protease. A more narrow term, alkaline protease, covering a sub-group, reflects the high pH optimum of some of the serine proteases, from pH 9.0 to 11.0 (for review, see Priest (1977) Bacteriological Rev. 41 711-753).

30 Subtilases

A sub-group of the serine proteases tentatively designated subtilases has been proposed by Siezen et al., Protein Engng. 4 (1991) 719-737 and Siezen et al. Protein Science 6 (1997) 501-523. They are defined by homology analysis of more than 170

87

amino acid sequences of serine proteases previously referred to as subtilisin-like proteases. A subtilisin was previously often defined as a serine protease produced by Gram-positive bacteria or fungi, and according to Siezen et al. now is a subgroup of the subtilases. A wide variety of subtilases have been identified, and the amino acid sequence of a number of subtilases has been determined. For a more detailed description of such subtilases and their amino acid sequences reference is made to Siezen et al.(1997).

10

Savinase-like subtilisin

One subgroup of the subtilases may be classified as savinaselike subtilisins, having at least 81% homology to Savinase, preferably at least 85% homology, more preferably at least 90% 15 homology, even more preferably at least 96% homology, most preferably at least 98% homology to Savinase.

Parent subtilase

The term "parent subtilase" describes a subtilase defined according to Siezen et al. (1991 and 1997). For further details see description of "SUBTILASES" immediately above. A parent subtilase may also be a subtilase isolated from a natural source, wherein subsequent modifications have been made while retaining the characteristic of a subtilase. Furthermore, a parent subtilase may also be a subtilase which has been prepared by the DNA shuffling technique, such as described by J.E. Ness et al., Nature Biotechnology, 17, 893-896 (1999).

Alternatively the term "parent subtilase" may be termed "wild type subtilase".

Modification(s) of a subtilase variant

The term "modification(s)" used herein is defined to include chemical modification of a subtilase as well as genetic

WO 01/83559 PCT/DK01/00293

88

manipulation of the DNA encoding a subtilase. The modification(s) can be replacement(s) of the amino acid side chain(s), substitution(s), deletion(s) and/or insertions in or at the amino acid(s) of interest.

5

Subtilase variant

In the context of this invention, the term subtilase variant or mutated subtilase means a subtilase that has been produced by an organism which is expressing a mutant gene derived from a parent microorganism which possessed an original or parent gene and which produced a corresponding parent enzyme, the parent gene having been mutated in order to produce the mutant gene from which said mutated subtilase protease is produced when expressed in a suitable host.

15

Examples of relevant subtilisins comprise subtilisin BPN', subtilisin amylosacchariticus, subtilisin 168, subtilisin mesentericopeptidase, subtilisin Carlsberg, subtilisin DY, subtilisin 309,
subtilisin 147, PD498 (WO 93/24623), thermitase, aqualysin, Bacillus PB92 protease, proteinase K, Protease TW7, and Protease
TW3.

Preferred commercially available protease enzymes include 25 Alcalase™. Savinase™, PrimaseTM, Duralase™, Neutrase®, Dyrazym[®], Esperase[™], Pyrase[®], Pancreatic Trypsin NOVO (PTN), Bio-Feed™ Pro, Clear-Lens Pro, and Relase® (Novozymes A/S), Maxatase™, Maxacal™, MaxapemTM, Properase™, PurafectTM. Purafect OxPTM, (Genencor International Inc.).

30

It is to be understood that also protease variants are contemplated as the parent protease. Examples of such protease variants

are disclosed in EP 130.756 (Genentech), EP 214.435 (Henkel), WO 87/04461 (Amgen), WO 87/05050 (Genex), EP 251.446 (Genencor), EP 260.105 (Genencor), Thomas et al., (1985), Nature. 318, p. 375-376, Thomas et al., (1987), J. Mol. Biol., 193, pp. 803-813, Russel et al., (1987), Nature, 328, p. 496-500, WO 88/08028 (Genex), WO 88/08033 (Amgen), WO 89/06279 (Novo Nordisk A/S), WO 91/00345 (Novo Nordisk A/S), EP 525 610 (Solvay) and WO 94/02618 (Gist-Brocades N.V.).

The activity of proteases can be determined as described in "Methods of Enzymatic Analysis", third edition, 1984, Verlag Chemie, Weinheim, vol. 5.

15 Parent Lipolytic enzymes

Lipolytic enzymes are classified in EC 3.1.1 Carboxylic Ester Hydrolases according to Enzyme Nomenclature (available at http://www.chem.qmw.ac.uk/iubmb/enzyme). The lipolytic enzyme may have a substrate specificity with an activity such as EC 3.1.1.3 triacylglycerol lipase, EC 3.1.1.4 phospholipase A2, EC 3.1.1.5 lysophospholipase, EC 3.1.1.26 galactolipase, EC 3.1.1.32 phospholipase A1, EC 3.1.1.73 feruloyl esterase or EC 3.1.1.74 cutinase.

The parent lipolytic enzyme may be prokaryotic, particularly a bacterial enzyme, e.g. from Pseudomonas. Examples are Pseudomonas lipases, e.g. from P. cepacia (US 5,290,694, pdb file 10IL), P. glumae (N Frenken et al. (1992), Appl. Envir. Microbiol. 58 3787-3791, pdb files 1TAH and 1QGE), P. pseudoalcaligenes (EP 30 334 462) and Pseudomonas sp. strain SD 705 (FERM BP-4772) (WO 95/06720, EP 721 981, WO 96/27002, EP 812 910). The P. glumae lipase sequence is identical to the amino acid sequence of Chromobacterium viscosum (DE 3908131 A1). Other examples are bacte-

rial cutinases, e.g. from Pseudomonas such as P. mendocina (US 5,389,536) or P. putida (WO 88/09367).

Alternatively, the parent lipolytic enzyme may be eukaryotic, 5 e.g. a fungal lipolytic enzyme such as lipolytic enzymes of the Humicola family and the Zygomycetes family and fungal cutinases.

Examples of fungal cutinases are the cutinases of Fusarium solani pisi (S. Longhi et al., Journal of Molecular Biology, 268 (4), 779-799 (1997)) and Humicola insolens (US 5,827,719).

The parent lipolytic enzyme may be fungal and may have an amino acid sequence that can be aligned with SEQ ID NO: 1 which is the amino acid sequence shown in positions 1-269 of SEQ ID NO: 2 of 15 US 5,869,438 for the lipase from Thermomyces lanuginosus (synonym Humicola lanuginosa), described in EP 258 068 and EP 305 216 (trade name Lipolase). The parent lipolytic enzyme may particularly have an amino acid sequence with at least 50 % homology with SEQ ID NO: 1. In addition to the lipase from T. lanugino-20 sus, other examples are a lipase from Penicillium camembertii (P25234), a lipase from Fusasrium, lipase/phospholipase from Fusarium oxysporum (EP 130064, WO 98/26057), lipase from F. heterosporum (R87979), lysophospholipase from Aspergillus foetidus (W33009), phospholipase Al from A. oryzae (JP-A 10-155493), li-25 pase from A. oryzae (D85895), lipase/ferulic acid esterase from A. niger (Y09330), lipase/ferulic acid esterase from A. tubingensis (Y09331), lipase from A. tubingensis (WO 98/45453), lysophospholipase from A. niger (WO 98/31790), lipase from F. solanii having an isoelectric point of 6.9 and an apparent molecu-30 lar weight of 30 kDa (WO 96/18729).

Other examples are the Zygomycetes family of lipases comprising lipases having at least 50 % homology with the lipase of Rhizomucor miehei (P19515. This family also includes the lipases

91

from Absidia reflexa, A. sporophora, A. corymbifera, A. blakesleeana, A. griseola (all described in WO 96/13578 and WO 97/27276) and Rhizopus oryzae (P21811). Numbers in parentheses indicate publication or accession to the EMBL, GenBank, GeneSeqp or Swiss-Prot databases.

Examples of lipases include lipases derived from the following microorganisms. The indicated patent publications are in10 corporated herein by reference:

Humicola, e.g. H. brevispora, H. brevis var. thermoidea. Pseudomonas, e.g. Ps. fragi, Ps. stutzeri, Ps. cepacia and Ps. fluorescens (WO 89/04361), or Ps. plantarii or Ps. gladioli (US patent no. 4,950,417 (Solvay enzymes)) or Ps. alcaligenes and Ps. pseudoalcaligenes (EP 218 272) or.

Candida, e.g. C. cylindracea (also called C. rugosa) or C. antarctica (WO 88/02775) or C. antarctica lipase A or B (WO 94/01541 and WO 89/02916).

Geotricum, e.g. G. candidum (Schimada et al., (1989), J. Biochem., 106, 383-388).

Rhizopus, e.g. R. delemar (Hass et al., (1991), Gene 109, 107-113) or R. niveus (Kugimiya et al., (1992) Biosci.

Biotech. Biochem 56, 716-719) or R. oryzae.

Bacillus, e.g. B. subtilis (Dartois et al., (1993)

Biochemica et Biophysica acta 1131, 253-260) or

B. stearothermophilus (JP 64/7744992) or B. pumilus (WO 91/16422).

30

15

20

Specific examples of readily available commercial lipases include Lipolase® (WO 98/35026) Lipolase™ Ultra, Lipozyme®, Palatase®, Novozym® 435, Lecitase® (all available from Novozymes A/S).

dehydrogenase

Examples of other lipases are LumafastTM, Ps. mendocian lipase from Genencor Int. Inc.; LipomaxTM, Ps. pseudoalcaligenes lipase from Gist Brocades/Genencor Int. Inc.; Fusarium solani lipase (cutinase) from Unilever; Bacillus sp. lipase from Solvay enzymes. Other lipases are available from other companies.

It is to be understood that also lipase variants are contemplated as the parent enzyme. Examples of such are described in e.g. WO 93/01285 and WO 95/22615.

10

The activity of the lipase can be determined as described in "Methods of Enzymatic Analysis", Third Edition, 1984, Verlag Chemie, Weinhein, vol. 4, or as described in AF 95/5 GB (available on request from Novozymes A/S).

15

Amino

acid

dehydrogenase

Parent Oxidoreductases

Parent oxidoreductases (i.e. enzymes classified under the Enzyme Classification number E.C. 1 (Oxidoreductases) in accordance with the Recommendations (1992) of the International Union of Biochemistry and Molecular Biology (IUBMB)) include oxidoreductases within this group.

25 Examples include oxidoreductases selected from those classified under the Enzyme Classification (E.C.) numbers: Glycerol-3-phosphate dehydrogenase NAD+ (1.1.1.8), Glycerol-3- $NAD(P)^+$ (1.1.1.94), Glycerol-3dehydrogenase phosphate phosphate 1-dehydrogenase NADP (1.1.1.94), Glucose oxidase 30 (1.1.3.4), Hexose oxidase (1.1.3.5), Catechol oxidase (1.1.3.14), Bilirubin oxidase (1.3.3.5), Alanine dehydrogenase (1.4.1.1), Glutamate dehydrogenase (1.4.1.2), Glutamate dehydrogenase $NAD(P)^+$ (1.4.1.3), Glutamate dehydrogenase $NADP^+$ (1.4.1.4), L-

(1.4.1.5),

Serine

(1.4.1.7), Valine dehydrogenase _NADP⁺_ (1.4.1.8), Leucine dehydrogenase (1.4.1.9), Glycine dehydrogenase (1.4.1.10), L-Amino-(1.4.3.2.), D-Amino-acid oxidase(1.4.3.3), acid oxidase Glutamate oxidase (1.4.3.11),Protein-lysine 5 (1.4.3.13), L-lysine oxidase (1.4.3.14), L-Aspartate oxidase (1.4.3.16), D-amino-acid dehydrogenase (1.4.99.1), Protein disulfide reductase (1.6.4.4), Thioredoxin reductase (1.6.4.5), Protein disulfide reductase (glutathione) (1.8.4.2), (1.10.3.2) , Catalase (1.11.1.6), Peroxidase (1.11.1.7), Lipoxy-10 genase (1.13.11.12), Superoxide dismutase (1.15.1.1)

Said Glucose oxidases may be derived from Aspergillus niger.

Said Laccases may be derived from Polyporus pinsitus, My-15 celiophtora thermophila, Coprinus cinereus, Rhizoctonia solani, Rhizoctonia praticola, Scytalidium thermophilum and Rhus vernicifera. Because of the homology found between the above mentioned laccases (see WO 98/38287), they are considered to belong to the same class of laccases, namely the class of "Coprinus-like 20 laccases". Accordingly, in the present context, the term "Coprinus-like laccase" is intended to indicate a laccse which, on the amino acid level, displays a homology of at least 50% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 3, or at least 55% and less than 100% to the Coprinus cinereus laccase SEQ 25 ID NO 3, or at least 60% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 3, or at least 65% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 3, or at least 70% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 3, or at least 75% and less than 100% to the Coprinus cinereus laccase 30 SEQ ID NO 3, or at least 80% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 3, or at least 85% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 3, or at least 90% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 3, at

least 95% and less than 100% or at least 98% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 3.

Bilirubin oxidases may be derived from Myrothechecium verrucaria.

The Peroxidase may be derived from e.g. Soy bean, Horseradish or Coprinus cinereus.

The Protein Disulfide reductase may be any of the mentioned in DK patent applications No. 768/93, 265/94 and 264/94 (Novo Nordisk A/S), which are hereby incorporated as references, including Protein Disulfide reductases of bovine origin, Protein Disulfide reductases derived from Aspergillus oryzae or Aspergillus niger, and DsbA or DsbC derived from Escherichia coli.

15

Specific examples of readily available commercial oxidoreductases include $Gluzyme^{TM}$ (enzyme available from Novozymes A/S). However, other oxidoreductases are available from others.

It is to be understood that also variants of oxidoreductases are contemplated as the parent enzyme.

The activity of oxidoreductases can be determined as described in "Methods of Enzymatic Analysis", third edition, 1984, Verlag Chemie, Weinheim, vol. 3.

25

Parent Carbohydrases

Parent carbohydrases may be defined as all enzymes capable of breaking down carbohydrate chains (e.g. starches) of especially five and six member ring structures (i.e. enzymes classified under the Enzyme Classification number E.C. 3.2 (glycosidases) in accordance with the Recommendations (1992) of the International Union of Biochemistry and Molecular Biology (IUBMB)). Also in-

cluded in the group of carbohydrases according to the invention are enzymes capable of isomerizing carbohydrates e.g. six member ring structures, such as D-glucose to e.g. five member ring structures like D-fructose.

5

Examples include carbohydrases selected from those classified under the Enzyme Classification (E.C.) numbers:

α-amylase (3.2.1.1)β-amylase (3.2.1.2), glucan 10 glucosidase (3.2.1.3), cellulase (3.2.1.4), endo-1,3(4)- β glucanase (3.2.1.6), endo-1,4- β -xylanase (3.2.1.8), dextranase (3.2.1.11), chitinase (3.2.1.14), polygalacturonase (3.2.1.15), lysozyme (3.2.1.17), β -glucosidase (3.2.1.21), α -galactosidase (3.2.1.22), β -galactosidase (3.2.1.23), amylo-1,6-glucosidase 15 (3.2.1.33), xylan 1,4- β -xylosidase (3.2.1.37), glucan endo-1,3- β -D-glucosidase (3.2.1.39), α-dextrin endo-1,6-glucosidase (3.2.1.41), sucrose α -glucosidase (3.2.1.48), glucan endo-1,3- α glucosidase (3.2.1.59), glucan 1,4- β -glucosidase (3.2.1.74), gluendo-1,6- β -glucosidase (3.2.1.75), arabinan endo-1,5- α -20 arabinosidase (3.2.1.99), lactase (3.2.1.108), chitonanase (3.2.1.132) and xylose isomerase (5.3.1.5).

Examples of relevant carbohydrases include α -1,3-glucanases derived from Trichoderma harzianum; α -1,6-glucanases derived from a strain of Paecilomyces; β -glucanases derived from Bacillus subtilis; β -glucanases derived from Humicola insolens; β -glucan-ases derived from Aspergillus niger; β -glucanases derived from a strain of Oerskovia xanthineolytica; exo-1,4- α -D-glucosidases (glucoamy-lases) derived from Aspergillus niger; α -amylases derived from Bacillus subtilis; α -amylases derived from Bacillus amyloliquefa-

ciens; α -amylases derived from Bacillus stearothermophilus; α -amylases derived from Aspergillus oryzae; α -amylases derived from non-pathogenic microorganisms; α -galactosidases derived from Aspergillus niger; Pentosanases, xylanases, cellubiases, celluses, hemi-cellulases deriver from Humicola insolens; cellulases derived from Trichoderma reesei; cellulases derived from non-pathogenic mold; pectinases, cellulases, arabinases, hemi-celluloses derived from Aspergillus niger; dextranases derived from Penicillium lilacinum; endo-glucanase derived from non-pathogenic mold; pullulanases derived from Bacillus acidopullyticus; β -galactosidases derived from Kluyveromyces fragilis; xylanases derived from Trichoderma reesei;

Specific examples of readily available commercial carbohydrases include Alpha-GalTM, Bio-FeedTM Alpha, Bio-FeedTM Beta, Bio-FeedTM Plus, Bio-FeedTM Plus, Novozyme[®] 188, Carezyme[®] (SEQ ID NO. 5), Celluclast[®], Cellusoft[®], Ceremyl[®], CitrozymTM, DenimaxTM, DezymeTM, DextrozymeTM, Finizym[®], FungamylTM, GamanaseTM, Glucanex[®], Lactozym[®], MaltogenaseTM, PentopanTM, PectinexTM, Promozyme[®], Pulp-zymeTM, NovamylTM, Termamyl[®], AMG (Amyloglucosidase Novo), Maltogenase[®], Sweetzyme[®], Aquazym[®], Natalase[®] (SEQ ID NO. 4), SP722, AA560 (all enzymes available from Novozymes A/S). Other carbohydrases are available from other companies.

The parent cellulase is preferably a microbial cellulase. As such, the cellulase may be selected from bacterial cellulases, e.g. Pseudomonas cellulases or Bacillus, such as the Bacillus strains described in US 4,822,516, US 5,045,464 or EP 468 464, or B. lautus (cf. WO 91/10732), cellulases. More preferably, the parent cellulases may be a fungal cellulase, in particular Humicola, Trichoderma, Irpex, Aspergillus, Penicillium, Myceliophthora or Fusarium cellulases. Examples of suitable parent

WO 01/83559 PCT/DK01/00293

97

cellulases are described in, e.g. WO 91/17244. Examples of suitable Trichoderma cellulases are those described in T.T. Teeri, Gene 51, 1987, pp. 43-52. Preferably, the parent cellulase is selected from the cellulases classified in family 45, e.g. the enzymes EG B (Pseudomonas fluorescens) and EG V (Humicola insolens), as described in Henrissat, B. et al.: Biochem. J. (1993), 293, p. 781-788.

10 The Termamyl-like α -amylase

It is well known that a number of α-amylases produced by Bacillus spp. are highly homologous on the amino acid level. For instance, the B. licheniformis α-amylase comprising the amino acid sequence shown in SEQ ID NO: 4 of WO 00/29560 (commercially available as TermamylTM) has been found to be about 89% homologous with the B. amyloliquefaciens α-amylase comprising the amino acid sequence shown in SEQ ID NO: 5 of WO 00/29560 and about 79% homologous with the B. stearothermophilus α-amylase comprising the amino acid sequence shown in SEQ ID NO: 3 of WO 00/29560. Further homologous α-amylases include an α-amylase derived from a strain of the Bacillus sp. NCIB 12289, NCIB 12512, NCIB 12513 or DSM 9375, all of which are described in detail in WO 95/26397, and the α-amylase described by Tsukamoto et al., Biochemical and Biophysical Research Communications, 151 (1988), pp. 25-31.

25

Still further homologous α -amylases include the α -amylase produced by the *B. licheniformis* strain described in EP 0252666 (ATCC 27811), and the α -amylases identified in WO 91/00353 and WO 94/18314. Other commercial Termamyl-like *B. licheniformis* α 30 amylases are OptithermTM and TakathermTM (available from Solvay), MaxamylTM (available from Gist-brocades/Genencor), Spezym AATM and Spezyme Delta AATM (available from Genencor), and KeistaseTM

(available from Daiwa).

Because of the substantial homology found between these α -amylases, they are considered to belong to the same class of α -amylases, namely the class of "Termamyl-like α -amylases".

Accordingly, in the present context, the term "Termamyl-like α amylase" is intended to indicate an α -amylase which, at the amino acid level, exhibits a substantial homology to TermamylTM, i.e., 10 the B. licheniformis α -amylase having the amino acid sequence shown in SEQ ID NO: 4 (WO 00/29560). In other words, a Termamyllike α -amylase is an α -amylase which has the amino acid sequence shown in SEQ ID NOS: 1, 2, 3, 4, 5, 6, 7 or 8 of WO 00/29560, and the amino acid sequence shown in SEQ ID NO: 1 of WO 95/26397 (the 15 same as the amino acid sequence shown as SEO ID NO: 7 of WO 00/29560) or in SEQ ID NO: 2 of WO 95/26397 (the same as the amino acid sequence shown as SEQ ID NO: 8 of 00/29560) or in Tsukamoto et al., 1988, (which amino acid sequence is shown in SEQ ID NO: 6 of WO 00/29560) or i) which displays at least 60% 20 homology (identity), preferred at least 70%, more preferred at least 75%, even more preferred at least 80%, especially at least 85%, especially preferred at least 90%, especially at least 95%, even especially more preferred at least 97%, especially at least 99% homology with at least one of said amino acid sequences shown 25 in SEQ ID NOS 1: or 2 or 3 or 4 or 5 or 6 or 7 or 8 of WO 00/29560 and/or ii) displays immunological cross-reactivity with an antibody raised against one or more of said α -amylases, and/or iii) is encoded by a DNA sequence which hybridizes, under the low to very high stringency conditions (said conditions described 30 below) to the DNA sequences encoding the above-specified α amylases which are apparent from SEQ ID NOS: 9, 10, 11, 12, and 32, respectively, of the present application (which encodes the amino acid sequences shown in SEQ ID NOS: 1, 2, 3, 4, and 5

herein, respectively), from SEQ ID NO: 4 of WO 95/26397 (which DNA sequence, together with the stop codon TAA, is shown in SEQ ID NO: 13 herein and encodes the amino acid sequence shown in SEQ ID NO: 8 herein) and from SEQ ID NO: 5 of WO 95/26397 (shown in SEQ ID NO: 14 herein), respectively.

In connection with property i), the "homology" (identity) may be determined by use of any conventional algorithm, preferably by use of the gap progamme from the GCG package version 8 (August 10 1994) using default values for gap penalties, i.e., a gap creation penalty of 3.0 and gap extension penalty of 0.1 (Genetic Computer Group (1991) Programme Manual for the GCG Package, version 8, 575 Science Drive, Madison, Wisconsin, USA 53711).

15 The parent Termamyl-like α-amylase backbone may in an embodiment have an amino acid sequence which has a degree of identity to SEQ ID NO: 4 (WO 00/29560) of at least 65%, preferably at least 70%, preferably at least 75%, more preferably at least 80%, more preferably at least 85%, even more preferably at least about 90%, even more preferably at least 95%, even more preferably at least 97%, and even more preferably at least 99% identity determined as described above

A structural alignment between Termamyl® (SEQ ID NO: 4) and a 25 Termamyl-like α -amylase may be used to identify equivalent/corresponding positions in other Termamyl-like αamylases. One method of obtaining said structural alignment is to use the Pile Up programme from the GCG package using default values of gap penelties, i.e., a gap creation penalty of 3.0 and 30 gap extension penalty of 0.1. Other structural alignment methods include the hydrophobic cluster analysis (Gaboriaud et al., (1987), FEBS LETTERS 224, pp. 149-155) and reverse threading (Huber, T; Torda, AE, PROTEIN SCIENCE Vol. 7, No. 1 pp. 142-149

100

(1998).

Parent Glucoamylases

Parent glucoamylase contemplated according to the present 5 invention include fungal glucoamylases, in particular fungal glucoamylases obtainable from an Aspergillus strain, such as an Aspergillus niger or Aspergillus awamori glucoamylases variants or mutants thereof, homologous glucoamylases, and further glucoamylases being structurally and/or functionally 10 similar to SEQ ID NO: 2 (WO 00/04136). Specifically contemplated are the Aspergillus niger glucoamylases G1 and G2 disclosed in Boel et al. (1984), "Glucoamylases G1 and G2 from Aspergillus niger are synthesized from two different but closely related mRNAs", EMBO J. 3 (5), p. 1097-1102,. The G2 glucoamylase is 15 disclosed in SEQ ID NO: 2 (WO 00/04136). The G1 glucoamylase is disclosed in SEQ ID NO: 13 (WO 00/04136). Another AMG backbone contemplated is Talaromyces emersonii , especially Talaromyces emersonii DSM disclosed in WO 99/28448 (Novo Nordisk).

20 The homology referred to above of the parent glucoamylase is determined as the degree of identity between two protein sequences indicating a derivation of the first sequence from the second. The homology may suitably be determined by means of computer programs known in the art such as GAP provided in the 25 GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. Wunsch, C.D., (1970), Journal of Molecular Biology, 48, p. 443-453). Using Gap with the following settings for polypeptide 30 sequence comparison: Gap creation penalty of 3.0 extension penalty of 0.1, the mature part of a polypeptide encoded by an analogous DNA sequence of the invention exhibits a degree of identity preferably of at least 60%, such as 70%, at least 80%, at least 90%, more preferably at least 95%, more 35 preferably at least 97%, and most preferably at least 99% with

WO 01/83559 PCT/DK01/00293

101

the mature part of the amino acid sequence shown in SEQ ID NO: 2 (WO 00/04136).

Preferably, the parent glucoamylase comprise the amino acid sequences of SEQ ID NO: 2 (WO 00/04136); or allelic variants thereof; or fragments thereof that has glucoamylase activity.

A fragment of SEQ ID NO: 2 is a polypeptide which have one or more amino acids deleted from the amino and/or carboxyl terminus of this amino acid sequence. For instance, the AMG G2 (SEQ ID NO: 2) is a fragment of the Aspergillus niger G1 glucoamylase (Boel et al. (1984), EMBO J. 3 (5), p. 1097-1102) having glucoamylase activity. An allelic variant denotes any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences. An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.

It is to be understood that also carbohydrase variants are contemplated as the parent enzyme.

25 The activity of carbohydrases can be determined as described in "Methods of Enzymatic Analysis", third edition, 1984, Verlag Chemie, Weinheim, vol. 4.

Parent Transferases

30

Parent transferases (i.e. enzymes classified under the Enzyme Classification number E.C. 2 in accordance with the Recommendations (1992) of the International Union of Biochemistry and Molecular Biology (IUBMB)) include transferases within this group.

The parent transferases may be any transferase in the subgroups of transferases: transferases transferring one-carbon groups (E.C. 2.1); transferases transferring aldehyde or residues (E.C. 2.2); acyltransferases (E.C. 2.3); glucosyltransferases (E.C. 2.4); transferases transferring alkyl or aryl groups, other that methyl groups (E.C. 2.5); transferases transferring nitrogeneous groups (2.6).

In a preferred embodiment the parent transferase is a transgluta-10 minase E.C 2.3.2.13 (Protein-glutamine μ -glutamyltransferase).

Transglutaminases are enzymes capable of catalyzing an acyl transfer reaction in which a gamma-carboxyamide group of a peptide-bound glutamine residue is the acyl donor. Primary amino groups in a variety of compounds may function as acyl acceptors with the subsequent formation of monosubstituted gamma-amides of peptide-bound glutamic acid. When the epsilon-amino group of a lysine residue in a peptide-chain serves as the acyl acceptor, the transferases form intramolecular or intermolecular gamma-glutamyl-epsilon-lysyl crosslinks.

Examples of transglutaminases are described in the pending DK patent application no. 990/94 (Novo Nordisk A/S).

25 The parent transglutaminase may be of human, animal (e.g. bovine) or microbial origin.

Examples of such parent transglutaminases are animal derived Transglutaminase, FXIIIa; microbial transglutaminases derived from Physarum polycephalum (Klein et al., Journal of Bacteriol-

30 ogy, Vol. 174, p. 2599-2605); transglutaminases derived from Streptomyces sp., including Streptomyces lavendulae, Streptomyces lydicus (former Streptomyces libani) and Streptoverticillium sp., including Streptoverticillium mobaraense, Streptoverticillium cinnamoneum, and Streptoverticillium griseocarneum (Motoki et

al., US 5,156,956; Andou et al., US 5,252,469; Kaempfer et al., Journal of General Microbiology, Vol. 137, p. 1831-1892; Ochi et al., International Journal of Sytematic Bacteriology, Vol. 44, p. 285-292; Andou et al., US 5,252,469; Williams et al., Journal of General Microbiology, Vol. 129, p. 1743-1813).

It is to be understood that also transferase variants are contemplated as the parent enzyme.

10 The activity of transglutaminases can be determined as described in "Methods of Enzymatic Analysis", third edition, 1984, Verlag Chemie, Weinheim, vol. 1-10.

Parent Phytases

15

Parent phytases are included in the group of enzymes classified under the Enzyme Classification number E.C. 3.1.3 (Phosphoric Monoester Hydrolases) in accordance with the Recommendations (1992) of the International Union of Biochemistry and Molecular Biology (IUBMB)).

Phytases are enzymes produced by microorganisms which catalyse the conversion of phytate to inositol and inorganic phosphorus

Phytase producing microorganisms comprise bacteria such as Bacillus subtilis, Bacillus natto and Pseudomonas; yeasts such as Saccharomyces cerevisiae; and fungi such as Aspergillus niger, Aspergillus ficuum, Aspergillus awamori, Aspergillus oryzae, Aspergillus terreus or Aspergillus nidulans, and various other Aspergillus species).

Examples of parent phytases include phytases selected from those classified under the Enzyme Classification (E.C.) numbers: 3-phytase (3.1.3.8) and 6-phytase (3.1.3.26).

The activity of phytases can be determined as described in "Methods of Enzymatic Analysis", third edition, 1984, Verlag Chemie, Weinheim, vol. 1-10, or may be measured according to the method described in EP-A1-0 420 358, Example 2 A.

Lyases

10 Suitable lyases include Polysaccharide lyases: Pectate lyases (4.2.2.2) and pectin lyases (4.2.2.10), such as those from Bacillus licheniformis disclosed in WO 99/27083.

Isomerases

15

Protein Disulfide Isomerase.

Without being limited thereto suitable protein disulfide isomerases include PDIs described in WO 95/01425 (Novo Nordisk A/S) and suitable glucose isomerases include those described in Biotechnology Letter, Vol. 20, No 6, June 1998, pp. 553-56.

Contemplated isomerases include xylose/glucose Isomerase (5.3.1.5) including Sweetzyme®.

Environmental allergens

25

The environmental allergens that are of interest for epitope mapping include allergens from pollen, dust mites, mammals, venoms, fungi, food items, and other plants.

Pollen, allergens include but are not limited to those of the order Fagales, Oleales, Pinales, Poales, Asterales, and Urticales; including those from Betula, Alnus, Corylus, Carpinus, Olea, Phleum pratense and Artemisia vulgaris, such as Aln g1,

Cor al, Car bl, Cry jl, Amb al and a2, Art vl, Par jl, Ole el, Ave vl, and Bet vl (WO 99/47680).

Mite allergens include but are not limited to those from Derm. sfarinae and Derm. pteronys., such as Der f1 and f2, and Der p1 and p2.

From mammals, relevant environmental allergens include but are not limited to those from cat, dog, and horse as well as from dandruff from the hair of those animals, such as Fel d1; Can f1; Equ c1; Equ c2; Equ c3.

Venum allergens include but are not limited to PLA2 from bee venom as well as Apis m1 and m2, Ves g1, g2 and g5, Ves v5 and 15 te Pol and Sol allergens.

Fungal allergens include those from Alternaria alt. and Cladospo. herb. such as Alt al and Cla hl.

- 20 Food allergens include but are not limited to those from milk (lactoglobulin), egg (ovalbumin), peanuts, hazelnuts, wheat (alfa-amylase inhibitor),

 Other plant allergens include latex (hevea brasiliensis).
- In addition, a number of proteins of interest for expression in transgenic plants could be useful objects for epitope engineering. If for instance a heterologous enzyme is introduced into a transgenic plant e.g. to increase the nutritional value of food or feed derived from that plant, that enzyme may lead to allergenicity problems in humans or animals ingesting the plant-derived material. Epitope mapping and engineering of such heterologous enzymes or other proteins of transgenic plants may

lead to reduction or elimination of this problem. Hence, the

106

methods of this patent are also useful for potentially modifying proteins for heterologous expression in plants and plant cells.

5

Materials and methods

Materials

10

ELISA reagents:

Horse Radish Peroxidase labelled pig anti-rabbit-Ig (Dako, DK, P217, dilution 1:1000).

Rat anti-mouse IgE (Serotec MCA419; dilution 1:100).

15 Mouse anti-rat IgE (Serotec MCA193; dilution 1:200).

Biotin-labelled mouse anti-rat IgG1 monoclonal antibody (Zymed 03-9140; dilution 1:1000)

Biotin-labelled rat anti-mouse IgG1 monoclonal antibody (Serotec MCA336B; dilution 1:2000)

20 Streptavidin-horse radish peroxidase (Kirkegård & Perry 14-30-00; dilution 1:1000).

Buffers and Solutions:

- PBS (pH 7.2 (1 liter))

25 NaCl 8.00 g KCl 0.20 g K_2HPO_4 1.04 g KH_2PO_4 0.32 g

- Washing buffer PBS, 0.05% (v/v) Tween 20
- 30 Blocking buffer PBS, 2% (wt/v) Skim Milk powder
 - Dilution buffer PBS, 0.05% (v/v) Tween 20, 0.5% (wt/v) Skim Milk powder
 - Citrate buffer 0.1M, pH 5.0-5.2
 - Stop-solution (DMG-buffer)

- Sodium Borate, borax (Sigma)
- 3,3-Dimethyl glutaric acid (Sigma)
- Tween 20: Poly oxyethylene sorbitan mono laurate (Merck cat no. 822184)
- 5 PMSF (phenyl methyl sulfonyl flouride) from Sigma
 - Succinyl-Alanine-Alanine-Proline-Phenylalanine-paranitroanilide (Suc-AAPF-pNP) Sigma no. S-7388, Mw 624.6 g/mol.
 - mPEG (Fluka)

10 Colouring substrate:

OPD: o-phenylene-diamine, (Kementec cat no. 4260)

Methods

15 Automatic epitope mapping

Implementation

The implementation consists of 3 pieces of code:

- 1. The core program (see above), written in C (see Appendix A).
 - 2. A "wrapping" cgi-script run by the web server, written in Python (see Appendix B).
- 3. A HTML page defining the input/submission form (see Appendix C).

The wrapper receives the input and calls the core program and several other utilities. Apart from the standard Unix utility programs (mv, rm, awk, etc..) the following must be installed:

30

- A web server capable of running cgi-scripts, eg. Apache
- Python 1.5 or later
- Gnuplot 3.7 or later

• DSSP, version July 1995

The core program

5

Inputs

- 1. A Brookhaven PDB file with the structure of the protein
- 2. The output of DSSP called with the above PDB file.
- 3. Maximum distance between adjacent residues
 - 4. Minimum solvent accessible surface area for each residue
 - 5. Maximum epitope size (max distance between any two residues in epitope)
- 6. Maximum number of non-redundant epitopes to include (0 = all)
 - 7. The shortest acceptable epitope (as a fraction of the length of the epitope consensus sequence).
 - 8. Epitope consensus sequence describing which residues are possible at the different positions. An example is shown below:

KR (Lys og Arg allowed)

AILV- (Ala, Ile, Leu, Val or missing residue allowed)

- * (All residues allowed, but there must be a residue)
- 25 ? (All or missing residue allowed)
 - DE (Asp or Glu allowed)
 - (*, ? or in first or last position is allowed but obsolete. (in first position is ignored.))

30

20

Examples of matching epitopes: KAAKD, KLASD, KLYSD, KLY-D, R-M-D.

The epitope searching algorithm

The "core" of the program is the algorithm that scans the pro-5 tein surface for the epitope patterns. The principle is that several "trees" are built, where each of their branches describes one epitope:

- 1. All residues in the protein are checked according to: a)

 Does the residue type match the first residue of the epitope consensus sequence. b) Is the surface accessibility greater than or equal to the given threshold. If both requirements are fulfilled, the protein residue is considered as one root in the epitope tree. Remark that there are usually many roots.
 - 2. For each of the residues defined as roots, all residues within the the given threshold distance between adjacent residues (e.g. 7 Angstroms) are checked for the same as above: a) Does the residue type match the second residue of the epitope consensus sequence. b) Is the surface accessibility greater than or equal to the given threshold. If yes, the protein residue is considered as a "child" of the root. The spatial position of a residue is defined as the coordinates of its C-alpha atom.
- 3. The procedure from step 2 is repeated for the next residue in the epitope consensus sequence, where each of the "childs" found in step 2 are now "roots" of new childs. If a gap is defined in the epitope consensus sequence, a "missing" residue is allowed, and the coordinates of the root (also called "parent") is used.
 - 4. This procedure is repeated for all residues in the epitope consensus sequence.

10

15

20

25

30

- 5. In this way a number of trees (corresponding to the number of roots found in step 1) are found. Notice that the same protein residue can be present many places in the trees.
- 6. If no epitopes that matches the length of the epitope consensus sequence are found, the longest shorter epitopes that matches the first n residues of the epitope consensus sequence are used, where n is an integer smaller than the length of the epitope consensus sequence. If n is smaller than the length of the epitope consensus sequence multiplied by the fraction value defining the shortest acceptable epitope length, no epitopes are written to the output, and steps 7, 8 and 9 are skipped.
- 7. The epitopes are extracted from the trees by traversing down from each of the "childs" in the last level. The algorithm also finds epitopes which have the same protein residue present more than once. This is, of course, an artifact and such epitopes are discarded. Every epitope is then checked for its size, that is, the maximum distance between any two residues which are members of the epitope. If this exceeds the threshold, the epitope is discarded.
- 8. Redundant epitopes are removed. Epitopes containing one or more gaps are redundant if they are subsets of other epitopes without or with fewer gaps. For example: A82-gap-F45-G44-K43 is a subset of A82-L46-F45-G44-K43, and is therefore discarded.
- 9. For every epitope, the total solvent accessible surface area is calculated (by adding the contributions from each residue as found by the DSSP program). The epitopes are sorted according to this area in descending order. If a maximum number of n non-redundant epitopes has been specified, the n epitopes with largest solvent accessible surface area are selected.
- 10. The output consists of a list of the found epitopes, along with information of the epitope consensus sequence used and

WO 01/83559

111

other internal parameters. A separate file containing the number of epitopes that each of the protein residues is a member of is also written.

PCT/DK01/00293

5

The wrapper

Inputs

10

15

20

- 1. One PDB file, describing one structure, or one ZIP file, containing a number of PDB files, each describing one structure. The ZIP file must not contain subfolders.
- 2. An epitope consensus sequence or which part of the current epitope library to use (full library or IgE part or IgG part).
- 3. Maximum distance between adjacent residues
- 4. Minimum solvent accessible surface area for each residue
- 5. Maximum epitope size (max distance between any two residues in epitope)
- 6. Maximum number of non-redundant epitopes to include (0 =
 all)
- 7. Whether to use sequential numbering (1,2,3,4,.... etc) or PDB-file numbering.

25

Description

The core program accepts only one structure and one epitope consensus sequence. It is usually desirable to use a library of
epitope consensus sequences and sometimes several protein structures. The wrapper reads the user input and calls the utility
programs and the core program the necessary number of times. The

output is collected and presented on the web page returned to the user.

Depending on the type of input, the wrapper works in different modes:

- Epitope consensus can be given directly or taken from a library
- Input type can be a single PDB file or a collection of PDB file given as a ZIP-file.
- 10 Any of the four possible combinations are allowed.

The epitope library consists of a number of text files, each containing one epitope consensus sequence as specified above.

- 15 The layout of the wrapper is like this:
 - 1. Check if the program is already in use from somewhere else (this is done by checking for a lock file when the wrapper starts. If it does not exist, it is created and removed again when the program is finished).
- 20 2. If the epitope consensus sequences are to be read from the library, make an internal list of the desired library entries.
 - 3. If the input type is a ZIP file, unzip the file and create one new directory for each of the conatined PDB files. Move each PDB file to its corresponding directory.
 - 4. Do a loop over the structures and/or epitope consensus sequences. For each structure/epitope consensus sequence pair, DSSP and the core program is called with the required parameters. If the input type is a ZIP file, the outputs are put in the appropriate directories.
 - 5. If the epitope library is used, a sum file containing the total number of epitopes each residue is a member of. (Such a file is generated by the core program for each epitope consensus sequence here a sum of these files is calcu-

25

WO 01/83559 PCT/DK01/00293

113

lated). If input type is a ZIP file, a sum file is generated for each structure and put in the appropriate directory.

- 6. If the epitope library is used, a file containing the total number of epitopes found from each entry in the epitope library. If the input type is a PDB file, the file contains only one line (with a number of data corresponding to the library size). If the input type is a ZIP file, there is one line for each structure.
- 7. Depending on the combination of input type (ZIP or single PDB) and epitope consensus sequence source (typed-in or epitope library), different information is returned to the user:
- Single PDB + typed in epitope: Graph of numbers of epitopes that each residue is a member of. List of found epitopes.
 - ZIP file + typed in epitope: Graphs (one for each structure) of numbers of epitopes that each residue is a member of. Lists (one for each structure) of found epitopes.
- Single PDB + epitope library: Graph of numbers of epitopes that each residue is a member of (total for the complete library).
 - ZIP file + epitope library: Graphs (one for each structure) of numbers of epitopes that each residue is a member of (total for the complete library).
 - Data flow sheets for the four different are shown in the figure
- 8. For all modes except Single PDB + typed in epitope, a ZIP file containing all output files is created and returned to the user.

Immunisation of Brown Norway rats:

Twenty intratracheal (IT) immunisations were performed weekly with 0,100 ml 0.9% (wt/vol) NaCl (control group), or 0,100 ml of a protein dilution (~0,1-1 mg/ml). Each group contained 10 rats. Blood samples (2 ml) were collected from the eye one week after every second immunisation. Serum was obtained by blood clothing and centrifugation and analysed as indicated below.

10 Immunisation of Balb/C mice:

Twenty subcutaneous (SC) immunisations were performed weekly with 0.05 ml 0.9% (wt/vol) NaCl (control group), or 0,050 ml of a protein dilution (~0,01-0,1 mg/ml). Each group contained 10 female Balb/C mice (about 20 grams) purchased from Bom-15 holdtgaard, Ry, Denmark. Blood samples (0,100 ml) were collected from the eye one week after every second immunisation. Serum was obtained by blood clothing and centrifugation and analysed as indicated below.

ELISA Procedure for detecting serum levels of IgE and IgG: Specific IgG1 and IgE levels were determined using the ELISA specific for mouse or rat IgG1 or IgE. Differences between data sets were analysed by using appropriate statistical methods.

25

Activation of CovaLink plates:

A fresh stock solution of cyanuric chloride in acetone (10 mg/ml) is diluted into PBS, while stirring, to a final concentration of 1 mg/ml and immediately aliquoted into CovaLink NH2 plates (100 microliter per well) and incubated for 5 minutes at room temperature. After three washes with PBS, the plates are

WO 01/83559 PCT/DK01/00293

115

dryed at 50°C for 30 minutes, sealed with sealing tape, and stored in plastic bags at room temperature for up to 3 weeks.

Mouse anti-Rat IgE was diluted 200x in PBS (5 microgram/ml). 100 microliter was added to each well. The plates were coated overnight at 4 °C.

Unspecific adsorption was blocked by incubating each well for 1 hour at room temperature with 200 microliter blocking buffer.

10 The plates were washed 3x with 300 microliter washing buffer.

Unknown rat sera and a known rat IgE solution were diluted in dilution buffer: Typically 10x, 20x and 40x for the unknown sera, and ½ dilutions for the standard IgE starting from 1 μg/ml. 100 microliter was added to each well. Incubation was for 1 hour at room temperature.

Unbound material was removed by washing 3x with washing buffer. The anti-rat IgE (biotin) was diluted 2000x in dilution buffer.

20 100 microliter was added to each well. Incubation was for 1 hour at room temperature. Unbound material was removed by washing 3x with washing buffer.

Streptavidin was diluted 1000x in dilution buffer. 100 microliter was added to each well. Incubation was for 1 hour at room temperature. Unbound material was removed by washing 3x with 300 microliter washing buffer. OPD (0.6 mg/ml) and H₂O₂ (0.4 microliter /ml) were dissolved in citrate buffer. 100 microliter was added to each well. Incubation was for 30 minutes at room temperature. The reaction was stopped by addition of 100 microliter H₂SO₄. The plates were read at 492 nm with 620 nm as reference.

Similar determination of IgG can be performed using anti Rat-IgG and standard rat IgG reagents.

5 Similar determinations of IgG and IgE in mouse serum can be performed using the corresponding species-specific reagents.

Direct IgE assay:

- 10 To determine the IgE binding capacity of protein variants one can use an assay, essentially as described above, but using sequential addition of the following reagents:
 - 1) Mouse anti-rat IgE antibodies coated in wells;
- 2) Known amounts of rat antiserum containing igE against the parent protein;
 - 3) Dilution series of the protein variant in question (or parent protein as positive control);
 - 4) Rabbit anti-parent antibodies
- 5) HRPO-labelled anti-rabbit Ig antibodies for detection using OPD as described.

The relative IgE binding capacity (end-point and/or affinity) of the protein variants relative to that of the parent protein are determined from the dilution-response curves. The IgE-positive serum can be of other animals (including humans that inadvertently have been senstitized to the parent protein) provided that the species-specific anti-IgE capture antibodies are changed accordingly.

30

Competitive ELISA (C-ELISA):

C-ELISA was performed according to established procedures. In short, a 96 well ELISA plate was coated with the parent protein.

After proper blocking and washing, the coated antigen was incubated with rabbit anti-enzyme polyclonal antiserum in the presence of various amounts of modified protein (the competitior). The residual amount of rabbit antiserum was detected by horseraddish peroxidase-labelled pig anti-rabbit immunoglobulin.

Protein sequences and alignments:

For purposes of the present invention, the degree of homology

10 may be suitably determined by means of computer programs known
in the art, such as GAP provided in the GCG program package
(Program Manual for the Wisconsin Package, Version 8, August
1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970),

15 Journal of Molecular Biology, 48, 443-45).

Subtilisin proteases:

In the present invention, corresponding (or homologous) positions in subtilisin protease sequences are defined by alignment with Subtilisin Novo (BPN') from B.amyloliquefaciens, as shown in Table 1A for Alcalase, Protease B, Esperase, Protease C, Protease D, Protease E, Protease A, PD498, Properase, Relase, Savinase.

Table 1A: Alignment of different proteases to the sequence of BPN

30 <u>Alcalase:</u>
69.5% identity in 275 residues overlap; Score: 953.0; Gap frequency: 0.4%

Alcalase, 60 GNGHGTHVAGTVAALDNTTGVLGVAPSVSLYAVKVLNSSGSGSYSGIVSGIEWATTNGMD

WO 01/83559 PCT/DK01/00293

118

	BPN',	61 DNSHGTHVAGTVAALNNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWAIANNMD * ******** * ******* ****** *** * * *
5	Alcalase, BPN',	120 VINMSLGGASGSTAMKQAVDNAYARGVVVVAAAGNSGSSGNTNTIGYPAKYDSVIAVGAV 121 VINMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNEGSTGSSSTVGYPGKYPSVIAVGAV ******** ** * * * * * * * * * * * * *
10	Alcalase, BPN',	180 DSNSNRASFSSVGAELEVMAPGAGVYSTYPTNTYATLNGTSMASPHVAGAAALILSKHPN 181 DSSNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPN ** ******* ** ***********************
	Alcalase, BPN',	240 LSASQVRNRLSSTATYLGSSFYYGKGLINVEAAAQ 241 WTNTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ *** * * * * **********************
15		
	Protease B: 59.6% identi	ty in 275 residues overlap; Score: 820.0; Gap frequency: 2.2%
20	PROTEASE B, BPN',	1 AQTIPWGISRVQAPAAHNRGLTGSGVKVAVLDTGI-STHPDLNIRGGASFVPGE-PSTQD 1 AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGGASMVPSETPNFQD ** * * * * *** * *** * *** * *** * *** *
25	PROTEASE B, BPN',	59 GNGHGTHVAGTIAALNNSIGVLGVAPSABLYAVKVLGASGSGSVSSIAQGLEWAGNNGMH 61 DNSHGTHVAGTVAALNNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWAIANNMD * ******* ************ ******** *** * *
30	PROTEASE B, BPN',	119 VANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSISYPARYANAMAVGAT 121 VINMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNEGSTGSSSTVGYPGKYPSVIAVGAV * * * * * * * * * * * * * * * * * * *
	PROTEASE B, BPN',	175 DQNNNRASFSQYGAGLDIMAPGVNIQSTYPGSTYASDNGTSMATPHVAGAAALVKQKNPS 181 DSSNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPN * * *****
35	PROTEASE B, BPN',	235 WSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAATR 241 WTNTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ * * * * * * * * * * * * * * * * * * *
40		
	Esperase: 54.7% identi	ty in 274 residues overlap; Score: 745.0; Gap frequency: 2.2%
45	Esperase, BPN',	1 QTVPWGISFINTQQAHNRGIFGNGARVAVLDTGI-ASHPDLRIAGGASFISSE-PSYHDN 2 QSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGGASMVPSETPNFQDD * ** * * * * * * * * * * * * * * * *
50	Esperase, BPN',	59 NCHGTHVAGTIAALNNSIGVLGVAPSADLYAVKVLDRNGSGSLASVAQGIEWAINNNMHI 62 NSHGTHVAGTVAALNNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWAIANNMDV * ******* ***************************
55	Esperase, BPN',	119 INMSLGSTSGSSTLELAVNRANNAGILLVGAAGNTGRQGVNYPARYSGVMAVAAVD 122 INMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNEGSTGSSSTVGYPGKYPSVIAVGAVD ****** *** * * * * * * * * * * * * * *
60	Esperase, BPN',	175 QNGQRASFSTYGPEIEISAPGVNVNSTYTGNRYVSLSGTSMATPHVAGVAALVKSRYPSY 182 SSNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPNW ****** *** *** ** *** *** *** *** ***
00	BPN',	235 TNNQIRQRINQTATYLGSPSLYGNGLVHAGRATQ 242 TNTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ ** * * * * * * * * * * * * * * * * * *
65	Protease C: 59.6% identi	ty in 275 residues overlap; Score: 825.0; Gap frequency: 2.2%
	ProteaseC,	1 AQSVPWGISRVQAPAAHNRGLTGSGVRVAVLDTGI-STHPDLNIRGGASFVPGE-PSTQD

	BPN',	1 AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGGASMVPSETPNFQD
5	ProteaseC, BPN',	59 GNGHGTHVAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSYSSIAQGLEWAGNNGMH 61 DNSHGTHVAGTVAALNNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWAIANNMD * ******* ************ ******* *** * * *
10	ProteaseC, BPN',	119 VASLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSISYPARYANAMAVGAT 121 VINMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNEGSTGSSSTVGYPGKYPSVIAVGAV * *** ** * * * * * * * * * * * * * * *
	ProteaseC, BPN',	175 DQNNNRASFSQYGAGLDIVAPGVNVQSTYPGSTYASLNGTSMATPHVAGAAALVKQKNPS 181 DSSNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILISKHPN * * **** * * * *** * * * * * * * * *
15	ProteaseC, BPN',	235 WSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAAAR 241 WTNTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ * * * * * * * * * * * * * * * * * * *
20		
	Protease D: 59.3% ident:	ity in 275 residues overlap; Score: 815.0; Gap frequency: 2.2%
25	ProteaseD, BPN',	1 AQSVPWGISRVQAPAAHNRGLTGSGVKVAVLDTGI-STHPDLNIRGGASFVPGE-PSTQD 1 AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGGASMVPSETPNFQD ***** * * *** * *** * *** * *** * *** *
30	ProteaseD, BPN',	59 GNGHGTHVAGTIAALDNSIGVLGVAPSAELYAVKVLGASGSGAISSIAQGLEWAGNNGMH 61 DNSHGTHVAGTVAALNNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWAIANNMD * ******* *** ******** *** *** * * * *
35	ProteaseD, BPN',	119 VANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSISYPARYANAMAVGAT 121 VINMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNEGSTGSSSTVGYPGKYPSVIAVGAV * * *** * * * * * * * * * * * * * * *
40	ProteaseD, BPN',	175 DQNNNRASFSQYGAGLDIVAPGVNVQSTYPGSTYASLNGTSMATPHVAGAAALVKQKNPS 181 DSSNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPN * * **** * * * **** * * * ***** * * ****
	ProteaseD, BPN',	235 WSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAATR 241 WTNTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ * * * * * * * * * * * * * * * * * * *
45	Protease E: 58.2% identi	ty in 275 residues overlap; Score: 800.0; Gap frequency: 2.2%
50	ProteaseE, BPN',	1 AQSVPWGISRVQAPAAHNRGLTGSGVKVAVLDTGI-STHPDLNIRGGASFVPGE-PSTQD 1 AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGGASMVPSETPNFQD ***** * * *** * *** * *** * *** * *** *
55	ProteaseE, BPN',	59 GNGHGTHVAGTIAALNNSIGVLGVAPSABLYAVKVLGASGGGAISSIAQGLEWAGNNGMH 61 DNSHGTHVAGTVAALNNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWAIANNMD + ******* ************ ******* * * * *
60	ProteaseE, BPN',	119 VANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGADSISYPARYANAMAVGAT 121 VINMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNEGSTGSSSTVGYPGKYPSVIAVGAV * * * * * * * * * * * * * * * * * * *
50	ProteaseE, BPN',	175 DQNNNRASFSQYGAGLDIVAPGVNVQSTYPGSTYASLNGTSMATPHVAGAAVLVKHKNPS 181 DSSNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPN * * ***** * * * **** * * * ****** * * *
65	ProteaseE, BPN',	235 WSNVRIRDHLKKTATSLGSTNLYGSGLVNARAATR 241 WTNTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ * * * * * * * * * * * * * * * * * * *

	Procease																
5	58.9% ide	ntity	in 27	5 re	sidue	s ove	rlap); S	core	: 81	2.0;	Gap	freq	uenc	y: 2	28	
	Protease	A,	1 AQS	VPWG	ISRVQ	АРААН	NRGL	TGS	3VKV2	AVLD'	TGI-S	THPD	LNIR	GAS	PVPGI	2~ PS1	rni
	BPN',		1 AQS	VPYG	VSOIK	APALH	SOGY	TGS	VKV	AVTO	SGTDS	CHPD	T.KVA	CAS	Magg	דוגם ידי. דוגם ידי	. W.T
			***	* *	* ;	* * *			***			***	* .	****	++ 4	TEM	- QI
10													-			· •	
	Protease .	A, 5	9 GNG	GTH	VAGTI	ALNN	SIGV	LGV	APSAT	ZT.YAY	vkvi.c	POPE	GGVGG	NATE	21.12W1	CNNC	3MT
	BPN',	6	1 DNS	स्याम	VACTV	AT.NN	STGV	T CSVII	DQQI	17.VN1	DEST C	שמעמו	COVO	JERRY	OT DUT	TARK	N'U WAT
	•	•	*	****	****		****	***	11 DU	min	* 17 A TIC	בטמעו	eoro:	AT TIM	STRMA	TAM	1LIT
													* *	*	* ***	*	*
15	Protease	A. 17	9 VAN	STC	SDSVG	מע.זייב	NUNIC	אייכו	CTUT.	M7336	contro	13	007	78 53	~~~ ×~~		
	BPN',	77	7 T/TA/	407 (C)		27 122	21121	12121	CGATI	VAM	SGNSC	M	-GS13	SAPA	SYANA	MAVE	iΑΊ
	DIM ,	12	1 VIN	יטונטוי	323631	ALLIKA	AVDK	AVAS	GVVV	VAA	AGNEG	STGS	SSTV	3Y PGI	KYPSV	IAVO	ΑV
			* *	***	**	*	**	*	** *	***	** ±			*	*	***	*
	Destance		5 DOID														
	Protease :	A, 1/	5 DON	MKA:	SFSQYO	PGLD	IVAP	GVN	/QSTY	(PGS)	FYASL	ngtsi	MATPI	IVAG/	VAALV	KQKN	PS
50	BPN',	18	1 DSS1	IQRA!	SFSSV(PELD	VMAP	GVS1	QSTI	PGN	CYGAY	ngtsi	Maspi	IVAG/	LIAAL	LSKH	IPN
			* 1	**	*** 1	* **	**	**	***	**	*	****	** **	****	***	*	*
	Protease 2	A, 23	5 WSN	/QIRI	THLKM	ATSL	gstn	LYGS	GLVN	IAEA	ATR						
	BPN',	24:	l win:	OVR	SSLQNT	TTKL	GDSF	YYGI	GLIN	IVOA?	AAO						
25			* *	* *	* **	* *	*	**	** *	**	+						

	PD498: 47.7% iden	tity in 266 residues overlap; Score: 487.0; Gap frequency: 4.9%
5	PD498, 5 BPN',	13 YGPQNTSTPAAWDVTRGSSTQTVAVLDSGVDYNHPDLARKVIKGYDFIDRDN-NPMDLNG 6 YGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGGASMVPSETPNFQDDNS ** ** *** *** *** *** *** *** ***
10	PD498, BPN',	72 HGTHVAGTVAADTNNGIGVAGMAPDTKILAVRVLDANGSGSLDSIASGIRYAADQGAKVL 64 HGTHVAGTVAA-LNNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWAIANNMDVI ********* ** ** ** ** ** ** ** ** ** **
	PD498, BPN',	132 NLSLGCECNSTTLKSAVDYAWNKGAVVVAAAGNDNVSRTFQPASYPNAIAVGAIDS 123 NMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNEGSTGSSSTVGYPGKYPSVIAVGAVDS * ***
15	PD498, BPN',	188 NDRKASFSNYGTWVDVTAPGVNIASTVPNNGYSYMSGTSMASPHVAGLAALLASQGKN 183 SNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPNWT **** * ** **** * * * * * * ******** * *
20	PD498, BPN',	246 NVQIRQAIEQTADKISGTGTNFKYGK 243 NTQVRSSLQNTTTKLGDSFYYGK * * * * * * * ***
25	Properase:	ity in 275 residues overlap; Score: 813.0; Gap frequency: 2.2%
30	Properase, BPN',	1 AQSVPWGISRVQAPAAHNRGLTGSGVKVAVLDTGI-STHPDLNIRGGASFVPGE-PSTQD 1 AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGGASMVPSRTPNFQD ***** * * *** * *** **** * * * * * * *
35	Properase, BPN',	59 GNGHGTHVAGTIAALNNSIGVLGVAPNAELYAVKVLGASGGGSNSSIAQGLEWAGNNGMH 61 DNSHGTHVAGTVAALNNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWAIANNMD * ******* *********** ******* * * * *
40	Properase, BPN',	119 VANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSISYPARYANAMAVGAT 121 VINMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNEGSTGSSSTVGYPGKYPSVIAVGAV * * *** ** * * * * * * * * * ****
20	Properase, BPN',	175 DQNNNRASFSQYGAGLDIVAPGVNVQSTYPGSTYASLNGTSMATPHVAGAAALVKQKNPS 181 DSSNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPN * * **** * * * **** * * * * ***** * * *
45	Properase, BPN',	235 WSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAATR 241 WTNTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ * * * * * * * * * * * * * * * * **
50	Relase: 60.7% ident	ity in 275 residues overlap; Score: 858.0; Gap frequency: 1.8%
55	Relase, BPN',	1 AQSVPWGISRVQAPAAHNRGLTGSGVKVAVLDTGIDSTHPDLNIRGGASFVPGE-PSTQD 1 AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGGASMVPSETPNFQD ***** * * *** * *** * *** * *** * ***
	Relase, BPN',	60 GNGHGTHVAGTIAALDNSIGVLGVAPSAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMD 61 DNSHGTHVAGTVAALNNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWAIANNMD * ******* *** ********* **** * * * * *
60	Relase, BPN',	120 VANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSISYPARYANAMAVGAT 121 VINMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNEGSTGSSSTVGYPGKYPSVIAVGAV * * * * * * * * * * * * * * * * * * *
65	Relase, BPN',	176 DONNNRASFSQYGAELDIVAPGVNVQSTYPGSTYASLNGTSMATPHVAGAAALVIQKNPS 181 DSSNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPN * * ***** * * * * * * * * * * * * * *

WO 01/83559 PCT/DK01/00293

122

Relase, 236 WSNVQIRNHLKNTATSLGSTNLYGSGLVNARAATR 241 WTNTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ BPN', * * * * * * * * * ** ** * ** Savinase: 59.6% identity in 275 residues overlap; Score: 821.0; Gap frequency: 2.2% 1 AQSVPWGISRVQAPAAHNRGLTGSGVKVAVLDTGI-STHPDLNIRGGASFVPGE-PSTQD Savinase, ${\tt 1} \verb| AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGGASMVPSETPNFQD|$ BPN', 59 GNGHGTHVAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMH 15 Savinase. BPN', 61 DNSHGTHVAGTVAALNNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWAIANNMD Savinase, 119 VANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGA----GSISYPARYANAMAVGAT 20 BPN', 121 VINMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNEGSTGSSSTVGYPGKYPSVIAVGAV * * *** ** ** * * * * * ** ** * Savinase, 175 DQNNNRASFSQYGAGLDIVAPGVNVQSTYPGSTYASLNGTSMATPHVAGAAALVKOKNPS $181\ DSSNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPN$ 25 * * **** * ** *** *** * * ***** **** Savinase. 235 WSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAATR BPN', 241 WTNTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ * * * * * * * * * ** ** * **

30

To find the homologous positions in subtilisin protease sequences not shown in the alignment of Table 1A, the sequence of interest is aligned to the sequence of BPN' as shown in Table 1B for YaB protease and Subtilisin sendai. The new sequence is aligned to the BPN' sequence by using the GAP alignment to the most homologous sequence found by the GAP program. GAP is provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-45).

The sequence of the YaB protease is disclosed by Kaneko, R.; Ko-yama, N.; Tsai, Y.-C.; Juang, R.-Y.; Yoda, K.; Yamasaki, M.; Molecular cloning of the structural gene for alkaline elastase YaB, a new subtilisin produced by an alkalophilic Bacillus strain. J.

Bacteriol. 171:5232 (1989), it has Swissprot number P20724, and is shown in SEQ ID NO 35.

The sequence of the Subtilisin sendai is disclosed by Yama-5 gata, Y.; Isshiki, K.; Ichishima, E.; Subtilisin Sendai from alkalophilic Bacillus sp.: molecular and enzymatic properties of the enzyme and molecular cloning and characterization of the gene, aprS. Enzyme Microb. Technol. 17:653 (1995), it has SPTREMBL accession number Q45522, and is shown in SEQ ID NO 34.

10

Identity to savinase: 81,7%

identity to savinase: 82,09%

15 Swissprot: P20724

Table 1B:

Alignment of YAB protease to BPN': 55,3% identity CLUSTAL W (1.7) multiple sequence alignment

-QTVPWGINRVQAPIAQSRGFTGTGVRVAVLDTGISN-HADLRIRGGASFVPGE-PNISD 25 BPN AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGGASMVPSETPNFQD :*:*:*:.*:.*:*:: *.**:: ***:: ***:: * *:**:*::::** YAB GNGHGTQVAGTIAALMNSIGVLGVAPNVDLYGVKVLGASGSGSISGIAQGLQWAANNGMH DNSHGTHVAGTVAALANNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWALANNMD BPN' 30 *.***:***:**************************** YAB LANMSLGSSAGSATMEQAVNQATASGVLVVAASGNSG----AGNVGFPARYANAMAVGAT VINMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNEGSTGSSSTVGYPGKYPSVIAVGAV BPN' : *****..:***::: **::*.***:****:**.* YAB DONNNRATFSQYGAGLDIVAPGVGVQSTVPGNGYASFNGTSMATPHVAGVAALVKQKNPS BPN' dssnqrasfssvgpkldvmapgvsiqstlpgnkygayngtsmasphvagaaalilskhpn 40 YAR **WSNVQIRNHLKNTATNLGNTTQFGSGLVNABAATR** BPN' WINTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ

45

Alignment of Subtilisin sendai to BPN': 55,6% identity. CLUSTAL W (1.7) multiple sequence alignment

:.*:*. *:**:*:: :*.**:*.:

	sendai BPN´	Vanlsigspygsqtlelavnqatnagvlvvaatgnngsgtvsyparyanalavgat Vinmsiggpsgsaalkaavdkavasgvvvvaaagnegstgssstvgypgkypsviavgav * *:*** * * :*: **::* :**:**:* * .**.:*:***.
5	sendai BPN´	DQNNNRASFSQYGTGLNIVAPGVGIQSTYPGNRYASLSGTSMATPHVAGVAALVKQKNPS DSSNQRASFSSVGPRLDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPN **:*****. *. *:::***** ***; *****:****.***.***.***.
10	sendai BPN´	WSNTQIRQHLTSTATSLGNSNQFGSGLVNARAATR WINTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ *:***:*. * .*:*.**:* :* .**:*.:

These alignements reveal that that homology between various sub-15 tilisin proteases ranges between 100% and 40%.

Unless specified, subtilisin sequences and positions mentioned in the present invention, are given in the BPN' numeration, and can be converted by alignement as described above (Tables 1A and 20 1B).

Sequence identities between different pairs of proteases are given below:

25 Sequence identity to BPN':

	Savinase	60.4%
	Alcalase	69.5%
	BLAPR	60.4%
	ProteaseC	60.4%
30	ProteaseD	60.0%
	ProteaseE	58.2%
	Protease A	60.0%
	Properase	59.6%
	Relase	61.5%
35	PD498	44.8%
	sendai	55.6%
	YAB	55.3%

Sequence identity to Savinase:

40 Alcalase 60.9%

PCT/DK01/00293

	BLAPR	98.1%
	ProteaseC	98.5%
	ProteaseD	98.9%
	ProteaseE	96.7%
5	Protease A	97.8%
	Properase	98.9%
	Relase	98.1%
	PD498	44.3%
	sendai	81.4%
10	YAB	81.8%

WO 01/83559

Structures

The protein structure of PD498 is disclosed in WO98/35026 (Novo Nordisk). The structure of Savinase can be found in BETZEL et al, J.MOL.BIOL., Vol. 223, p. 427, 1992 (1svn.pdb).

Homology modelling

Three dimensional structural models of the subtilisins properase, relase, ProteaseC, ProteaseD, ProteaseE, and PROTEASE B were constructed based on three dimensional structure of Savinase (Protein Data Bank entry 1SVN; Betzel, C., Klupsch, S., Papendorf, G., Hastrup, S., Branner, S., Wilson, K. S.: Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 Å resolution. J Mol Biol 223 pp. 427 (1992)) using the Modeller 50 (Šali, A.; T.L. Blundell, "Definition of general topological equivalence in protein structures: A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming, J. Mol. Biol., 212 403-428 (1990)) module of the Insight 2000 molecular modelling package (Biosym inc.). Default parameters were used with the alignments shown in Figure 1A as input, e.g. alignment between the columns labelled Savinase and PROTEASE B served as input

WO 01/83559 PCT/DK01/00293

126

alignment in construction of a PROTEASE B structural model. The Modeller module by default output ten structural models, of these the model with lowest 'modeller objective function' score was chosen as representing PROTEASE B structure.

5

Lipase:

The sequence of the T. lanuginosus lipase (trade name Lipolase)
10 is provided in SEQ ID NO 1 and the structure is disclosed in WO
98/35026 and as "1tib", available in Structural Classification
of Proteins (SCOP) on the Internet..

15 Amylase:

The amylase used in the examples is the alpha-amylase of Bacillus halmapalus (WO96/23873), which is called amylase SP722 (the wild-type). Its sequence is shown in SEQ ID NO 2 and the corresponding protein structure was built from the BA2 structure, as described in WO96/23874. The first four amino acids of the structural model are not defined, hence the sequence used for numeration of amino acid residues in the examples of this invention is four amino acids shorter than the one of the full length protein SP722.

25

Several variants of this amylase are available (WO96/23873). One particularly useful variant has deleted two amino acid residues at D-G at positions 183 and 184 of the SEQ ID NO 2 (corresponding to residues 179 and 180 of the modelled structure). This variant is called JE-1 or Natalase.

Another amylase that is particularly useful is the amylase AA560: This alkaline a-amylase may be derived from a strain of Bacillus sp. DSM 12649. The strain was deposited on 25th January 1999 by

the assignee under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure at Deutshe Sammmlung von Microorganismen und Zellkulturen GmbH (DSMZ), Mascheroder Weg 1b, D-38124 Braunschweig DE.

Laccase:

The laccase used in this invention is that from *Coprinus* cinereus (WO98/38287), the sequence of which is shown as SEQ ID NO 3. The structure of the *Myceliophthora* thermophila laccase can be built by homology modeling to the Coprinus cinereus laccase as shown in WO98/38287.

15

Cellulase:

The cellulase sequence and structure used in the present invention is that of the core fragment of endoglucanase V from Humicola insolens (aka Cel45 or Carezyme). The core fragment structure is available as 3eng.pdb (G.J.DAVIES et al. ACTA CRYSTALLOGR., SECT.D, Vol. 52, p.7 1996; G.J.DAVIES et al. BIOCHEMISTRY,
V. 34, p. 16210, 1995); SwissProt accession number P43316, and
the sequences shown in SEQ ID 4. The corresponding full-length
sequence is disclosed in WO91/17243 and shown here in SEQ ID NO
5. The numeration of all description and claims of this invention
pertain to the core fragment, however, it is contemplated that
all claims are also valid for the corresponding positions in the
full-length protein.

Page intentionally left blank

Table 1: Alignment and numeration scheme for subtilisins.

	PD498	; v	۵.	z	۵	o.	>	>	Ø	4	>	C	3 >	-	Ø	a.	G	Z	: +	- <i>U</i>) -	۰ د	ւ •	∢	∢	≥	Ω	>
	Savinase						∢	σ	Ø		>	۵	. %	} (_ල		Ø	œ	: >	· c	ا ⊲	. 0	L«	ζ,	∢	I	z	œ
	Kelase						∢	σ	တ		>	۵	. >	\$ (v	_	ဟ	œ	: >	· c	<	. Δ	. <	٠ ،	∢	I	z	œ
	i operase						∢	ø	ဟ		>	C	×	: (י פי	_	တ	œ	>	ø	⋖	۵	. «	(<	₹	I	z	œ
Protocotor C	Cocasac			٠		,	∢	ō	ဟ		>	۵.	>	: C	ე.	_	တ	œ	>	œ	∢	Δ.	٠ 4	(<	ζ:	I	Z	œ
Professoff I	700000					•	∢	a	တ	:	>	٥	>	: פ) -		တ	œ	>	ø	∢	Ω.	<	· <	(:	I	z	œ
ProteaseD 9						,	∢	σ	တ	;	>	o_	>	ď) -	 (ဟ	œ	>	œ	⋖	a.	<	٥		r:	Z	œ
roteaseC F						<	< □	o l	ഗ	2	> 1	Ω.	≥	Ø)	- (S)	œ	>	σ	4	<u>α</u> .	∢	4		Ε:	Z I	œ
sperase P							(O I	_	>	> 1	D.	≥	Ø	. –	- (ו מי	u.	_	z	F	σ	a	4	נ		zı	¥
ProteaseB Esperase ProteaseC ProteaseD ProteaseE Drotoco Document						4	((3 1		_	- (τ	≥	ග	_	- 0	ם מ	r;	>	o	⋖	0	∢	⋖	ı	: 2	2 0	Ľ
Alcalase P						4	: 0	3 F	-	>	۰ د	L :	>	ტ	_	۵ -	L -	. ر	_	×	∢ :	۵	×	>	C	; <	. (3
BPN' A						⋖	: c	ט כ	ס	>	ه ۱	L ;	>	တ	>	· U	,	: כ	- ;	¥ ·	∢ 1	ը,	∢	ر_	1	: <i>u</i>	, c	3
_	ထု	က် 🗸	፣ ግ	? ?	٠,			, ,	38	4	· ư	, c	α	7	8	σ	, <u>ç</u>	2 7	<u>-</u> :	77.	5.	4	15	16	17	. a	5 6	9

PCT/DK01/00293 WO 01/83559

130

	۲	Ω.	O	Ŋ	တ	-	Ø	· -	· >	<	>	_	Ω	တ	O	>	Ω	>	z	I	Ω.	Ω		<	Œ	¥	>	-	¥
മ	لـ	ı 	თ	တ	တ	>	×	>		∢	>	٦.	۵	-	တ	-		ဟ	⊢	I	۵.	Ω	1	z	-			œ	တ
ග	_	⊢	တ	တ	Ö	>	¥	>		∢	>	_	۵	-	თ		۵	တ	۰	I	C	۵	_	z	_			œ	တ
o	ب	-	ტ	တ	ტ	>	¥	>		∢	>	_1	۵	۰	ტ	_		တ	۳	I	O.	۵	_ i	z	_			œ	თ
თ	_1	- -	O	တ	O	>	×	>		∢	>	i	۵	-	ტ	_		ဟ	 -	Í	۵.	Δ	د_	z	_			œ	ტ
တ	ـــ	-	Ø	ဟ	ဖ	>	¥	>		∢	>	ب	۵	H	တ			ဟ	 -	I	О.	۵	_	z	_			œ	ტ
ტ	ب.	۳	ტ	ഗ	တ	>	¥	>		∢	>	ب	۵	H	თ	-		တ	} -	I	۵.	۵	_	z	-			œ	O
ဖ	ب	۳	Ø	တ	ဖ	>	œ	>		∢	>	_	۵	-	တ			ဟ	۳	I	<u>α</u>	۵	ب	z	-		1	œ	တ
Ø		ட	<u>ග</u>	z	ტ	∢	œ	>		∢	>	ب	۵	}	တ	_		∢	တ	x	O.	۵	ب	œ	_			∢ :	ഗ
Ø		۲	ග	တ	တ	>	¥	>		∢	>	_1	۵	۲	g	-		တ	-	I	٥	۵	_	z	_		1	x :	ග
თ	UL.	×	တ	∢	z	>	쏘	>		∢	>	_	۵	F	တ	-	σ	∢	ග	I	۵.	Ω	ب	z	>		;	> (တ
ტ	>	-	တ	တ	z	>	¥	>		∢	>	_	۵	က	တ	_	۵	တ	ທ	I	Q.	۵	ب	×	>		•	∢ (တ
20	21	22	23	24	22	26	27	28	28а	28	30	31	32	33	34	35	36	37	38	39	9	41	45	43	4 :	44a	44p	2 5	48

ロンロドーロスロNNPD ロースロエロトエンタのTンタタロト らくのドンでの用す のトロロのこのこのトニンベのトーイベー $\texttt{Q} \blacktriangleleft \texttt{Q} \texttt{T} \texttt{D} + \texttt{Q} \texttt{T} \texttt{Q} \texttt{T} \texttt{Q} + \texttt{T} \texttt{D} + \texttt{Q} \texttt{D} \texttt{Q} \texttt{D} \texttt{D} \texttt{D} \texttt{D} \texttt{D} \texttt{D} \texttt{D} + \texttt{D$ $\bigcirc \forall \ o \ \square \ > \square \ o \ \square \$

ZZQ-Q> QZQFZ-JQ> ZQQQQQJQ $Z Z Q - Q > \neg Q > \forall T Q < T Q < M \ \neg > \forall > X > \neg Q < Q Q Q Q Q > Q$ $Z Z Q - Q > \neg Q > \forall F Q A M \neg Y + A > X > \neg Q A Q Q Q Q Q > Q$ $Z Z \Omega - \Omega > \neg \Omega > \forall \Gamma \Omega \forall \Pi \neg > \forall > X > \neg \Omega \forall \Omega \Omega \Omega \Omega \Omega > \Omega$ ZZW-Q> UO> AUWADU> A> A> UUZO UUU UU ASSO-O>-O>-O>COOOC>O

WO 01/83559 PCT/DK01/00293

133

 $\circ - \land \circ \circ \circ \neg \sqcup \geqslant \land \circ \circ z z \circ \Sigma z > \land z \neg \circ \neg \circ \circ \sigma \circ \land \circ \land \circ \circ \vdash \neg$ 0 - 4001134022021>401000000000411 $0>400-m \geqslant 4-22221--220-00+00000+1$ $\geqslant -- zo - m \geqslant \mathsf{A} - \mathsf{A} z \, \mathsf{Z} \, \mathsf{D} > - z \, \mathsf{Z} \, \mathsf{w} \, \mathsf{h} \, \mathsf{w} \, \mathsf{o} \, \mathsf{w} \, \mathsf{d} \, \mathsf{w} \, \mathsf{d} \, \mathsf{w} \, \mathsf{d} \, \mathsf{d} \, \mathsf{d} \, \mathsf{d} \, \mathsf{w} \, \mathsf{d} \,$

WO 01/83559

 \times 0 4 > 0 \times 4 \otimes 2 \times 0 4 > > > 4 4 4 0 2 0 2 > 0 \times \mapsto \bot $\ \ \, \square \ \ \, Q \ \, \forall \ \ \, Z \ \, Q \ \, \forall \ \ \, P \ \, \forall \ \ \, Q \ \, Q \ \, Z \ \, Q \ \,$ $\ \ \, \square \ \, \square \ \, \triangleleft \ \, \neg \ \, \square \ \, \square \ \, \square \ \, \neg \ \, \square \ \, \neg \ \, \square \$ $\begin{picture}(100,0) \put(0,0){\mathbb{Z}} \put(0$ œ. imes ime

 \succ \Box d \Box d \Rightarrow d \succ D A M \succ A Z A \succeq A \gt O A \vdash D O Z Z Z M A O H O O \succ O A O $@ \succ @ \lessdot \forall \times \succ \Box \ \omega > - \lessdot > \emptyset \ \lessdot > \Box \ \omega \ \Xi \ \omega \ \Xi \ \Xi \ \blacktriangleleft \ \omega \ \square \ \omega > \emptyset \ \blacktriangleleft \square$

> 0 > F < 0 0 > Z - < 0 F > 0 Z Z O > 0 > 5 0 O F 0 Z < 0 0

 $\neg \Box - > \lor \Box \circlearrowleft > Z > \circlearrowleft \circlearrowleft \vdash \vdash \vdash \Box \circlearrowleft \lor \vdash \lor \lor \lor \neg Z \circlearrowleft \vdash \circlearrowleft \boxtimes \lor \vdash \lnot$

 $\neg \Box \neg > \forall \Box \cup > Z > \Box \cup \vdash \rightarrow \Box \cup \cup \vdash \rightarrow \forall \cup \cup \cup \supset Z \vdash \cup$

 $\neg \Box - > \lor \Box \circlearrowleft > Z > \circlearrowleft \circlearrowleft \land \vdash \succ \Box \circlearrowleft \circlearrowleft \vdash \succ \lor \circlearrowleft \circlearrowleft \neg Z \circlearrowleft \vdash \circlearrowleft \boxtimes \lor \vdash \lnot$

| 」 口意 > く L U > Z > O の ト > L O の ト > く の 」 Z O ト の ∑ く ト c

 $\neg \Box - > \lor \Box \odot > Z > O \circlearrowleft + \succ \Box \circlearrowleft \circlearrowleft + \succ \lor \circlearrowleft \neg Z \circlearrowleft + \circlearrowleft \boxtimes \lor + \Box$

 $\neg \Box - \Sigma \land \Box \odot > Z - O \circlearrowleft \vdash \succ \Delta \odot \circlearrowleft \vdash \succ \land \circlearrowleft \Box Z \circlearrowleft \vdash \circlearrowleft \Sigma \land \vdash \Box$

JW>>>dc@d@>>@F>cF>F>dFJ>@F@Sd@c

 $\neg \, \, \Box > \Sigma \, \, \forall \, \Box \, \, \Diamond > \, \Diamond - \, \Box \, \, \Diamond \, \vdash \, \neg \, \Box \, \, \Diamond \, \, Z \, \, X \, \succ \, \Box \, \, \forall \, \vdash \, Z \, \, \Box \, \vdash \, \Diamond \, \, \Sigma \, \, \forall \, \, \Diamond \, \, \Box$

エンAの1AA11ASGOXN Z>0-K04-M0F40 I> 40 4441> X0 X Z D 0 S 0 Z > 0 - E Z I 1 X Z F 4 F I>404441>10xzd030z>0-6zI1xz+4+ I> 40 4 4 4 1> X 0 X Z Q 0 3 0 Z > 0 - X Z I 1 X Z F 4 F I > 40441> YQYZU0 > 0Z>Q-KZI JXZH4Hエン 4 0 4 4 > コンドエドNPSWSL>K-ROT」KKFAT I> 40 4 4 4 -> x 0 x z r u > 0 z > 0 - x z I - x z + 4 + x>40>44I> 4 0 4 4 4 1> X 0 X Z D 0 \$ 0 Z > 0 - X Z I 1 X Z F 4 F I> 40 4 4 4 - - 10 X I L Z 10 4 0 0 > K Z K 10 0 0 + 4 + I>404441-10XICZ\$+Z+Q>K001QZ+++

X - OO + O + Z + X + O X - Z O Z X < > C > $\circ \neg \circ \circ \vdash z \rightarrow \succ \circ \quad \circ \circ \rightarrow \neg > z \lessdot \sqcup \lessdot \lessdot \vdash \bowtie$

 $X \rightarrow Q \cup Q \cup L \rightarrow Y \cup Q$

X0--Z>04440

 WO 01/83559 PCT/DK01/00293

139

Examples

Example 1

Identification of epitope sequences and epitope patterns.

High diversity libraries (10¹²) of phages expressing random hexa-, nona- or dodecapetides as part of their membrane proteins, were screened for their capacity to bind purified specific rabbit IgG, and purified rat and mouse IgG1 and IgE antibodies. The phage libraries were obtained according to prior art (se WO 9215679 hereby incorporated by reference).

- 15 The antibodies were raised in the respective animals by subcutaneous, intradermal, or intratracheal injection of relevant proteins (e.g. proteases, lipolytic enzymes, amylases, oxidoreductases) dissolved in phosphate buffered saline (PBS). The respective antibodies were purified from the serum of immunised animals by affinity chromatography using paramagnetic immunobeads (Dynal AS) loaded with pig anti-rabbit IgG, mouse anti-rat IgG1 or IgE, or rat anti-mouse IgG1 or IgE antibodies.
- 25 The respective phage libraries were incubated with the IgG, IgG1 and IgE antibody coated beads. Phages, which express oligopeptides with affinity for rabbit IgG, or rat or mouse IgG1 or IgE antibodies, were collected by exposing these paramagnetic beads to a magnetic field. The collected phages were eluted from the immobilised antibodies by mild acid treatment, or by elution with intact enzyme. The isolated phages were amplified as know to the specialist. Alternatively, immobilised phages were directly incubated with E.coli for infection. In short, F-factor positive E.coli (e.g. XL-1 Blue, JM101, TG1) were infected with

M13K07), and incubated, typically in 2xYT containing glucose or IPTG, and appropriate antibiotics for selection. Finally, cells were removed by centrifugation. This cycle of events was respected 2-5 times on the respective cell supernatants. After selection round 2, 3, 4, and 5, a fraction of the infected E.coli was incubated on selective 2xYT agar plates, and the specificity of the emerging phages was assessed immunologically. Thus, phages were transferred to a nitrocellulase (NC) membrane. For each plate, 2 NC-replicas were made. One replica was incubated with the selection antibodies, the other replica was incubated with the selection antibodies and the immunogen used to obtain the antibodies as competitor. Those plaques that were absent in the presence of immunogen, were considered specific, and were amplified according to the procedure described above.

The specific phage-clones were isolated from the cell supernatant by centrifugation in the presence of polyethylenglycol.

DNA was isolated, the DNA sequence coding for the oligopeptide
was amplified by PCR, and the DNA sequence was determined, all according to standard procedures. The amino acid sequence of the corresponding oligopeptide was deduced from the DNA sequence.

Thus, a number of peptide sequences with specificity for the protein specific antibodies, described above, were obtained. These sequences were collected in a database, and analysed by sequence alignment to identify epitope patterns. For this sequence alignment, conservative substitutions (e.g. aspartate for glutamate, lysine for arginine, serine for threonine) were considered as one. This showed that most sequences were specific for the protein the antibodies were raised against. However, several cross-reacting sequences were obtained from phages that went through 2 selection rounds only. In the first round 22 epitope patterns were identified.

In further rounds of phage display, more antibody binding sequences were obtained leading to more epitope patterns. Further, the literature was searched for peptide sequences that have been found to bind environmental allergen-specific antibodies (J All Clin Immunol 93 (1994) pp. 34-43; Int Arch Appl Immunol 103 (1994) pp. 357-364; Clin Exp Allergy 24 (1994) pp. 250-256; Mol Immunol 29 (1992) pp. 1383-1389; J Immunol 121 (1989) pp. 275-280; J. Immunol 147 (1991) pp. 205-211; Mol Immunol 29 (1992) pp. 739-749; Mol Immunol 30 (1993) pp. 1511-1518; Mol Immunol 28 (1991) pp. 1225-1232; J. Immunol 151 (1993) pp. 7206-7213). These antibody binding peptide sequences were included in the database.

15 A first generation database of antibody binding peptides identified and their corresponding epitope patterns are shown in Table 2-7 below.

Tables 2-7: Overview of the antibody binding peptide sequences, epitope patterns and epitope sequences. The type of antibody used for identifying the antibody binding sequences is indicated as IgG or IgE and the species from which the antibodies were derived are indicated as mo (mouse), ra (rat) and hu (human).

Page intentionally left blank

Table 2: Savinase antibody binding peptide sequences, epitope patterns and epitope sequences.

	The state of the s	distributed for the line	ST VALUE OF STATE OF	XACCEDIOF.	Epilope Sequence (BRN)	Epilope #	では、一次には、一次には、一次には、一次には、一次には、一次には、一次には、一次に
	Phage display	*U * A * O					200
	٦,		1	savinase	UZUB V81 Y214 G80 D41 T208	sav1.1	Ra
	DI GILLA		se inhibitor	savinase	L21 0238 V28 G25 S24	sav19.1	13
-	T		savinase	savinase	K251 R247 A174 N173	Save 1	
	:]	D/E Q I F F T	savinase	savinase	L42/L75 D41 O2 179		ייים שויים שום
:	Phage display		savinase	savinase	N185 D181 A187 E100 (700)	SGVD. I	X
4	Phage display	> RSA		Savinase	R144 8147 A172		, Z.
A		>RSA		Savinase	C188 D188 C100 A170	sav3.2-lac1.0-llp4.0-pd5.0	2
				Control	DAGE CACA STEE	sav3.1-fac1.0-llp4.0-pd5.0	2
		0> 7 > 0 >		avillase	K160 (J191 5156	sav2.2	82
:	:	R/K R F > N	***************************************	BSBANG	94/G195 D197 S265	sav1.2	2.
ACG		۔ اہ		Savinase		sav6.1	Ra-Mo Mo
ï		7601664		savinase	A172/A169 R170 A194 G193 N261	sav10.4	2
1	Ţ			savinase		sav5.2	
:	Ī	יייייייייייייייייייייייייייייייייייייי	-	savinase	L42/L75 D41 Q2 179	sav5.1	
	Ī	D/E OIFFT		savinase	E112 Q109 179	SAVE 4	Z;0
	Friage display	L>GRS	savinase	savinase	L198 G195 R170 S163	00.00	
	Protein fragments		a-amylase inhibitor	savinase	A254 V268 L267 R40 D484	34.0-1103.1-3.Z	2
-	-7		a-amylase Inhibitor	savinase		38V 10. 1-pg18.1-18.2	로
LKOCNERCY (Ph		RQ>>D/E	savinase	savinase	74 0036	3av19.2	2
KIDSKK	ınta			savinase		sav2.1	2,
-	Phage display	RQ>> D/E	savinase	savinase		savib.U-pd7.0	
		N>>EL	savinase	savinase	1 406	189VZ.3	₽.
FCTNNCELS	- -	V>>EL		gavinaga		sav7.2	g,
	Phage display	:		Savinasa		sav7.1	8
VAQYKALPVVLENA Pro	ands		i .	o o culve		sav8.0	2
	•	V V V V V V	a amylaga inhihilor	0000000	A316 (231 P. 123 L111 E112 N116	sav12.0-pd8.0	£
EQIFFTSGL Ph	•	DEOIFFT		Deciliose of		sav13.0-pd13.1-13.2	2
 	2			avillase		sav5.3	Ra
AVLRDC	Protein fragments			20111030		sav15.0-pd12.0	· ·
RAFRRANNW	τ	ARSA		savinase	-	sav18.2-pd18.1-18.2	: :
2	Ţ			aseumase		sav10.1	
;	Velden offer	Z	2	avinase	4273 N269	sav10.2	
•			savinase	savinase	1	opyes	
٠	Fuage dispiay		savinase	savinase	128 G127	88710.3	
THE STATE OF THE S		2			i	8av9.1-le4.0-lin5.1-5.0	
:		2			K27 R45 N43 D41 H39 T38/T213	89V6.2	
	ringge orspiay	NY LYNN	savinase (s	savinase		:	Ra-Mo Mo

a-amylase inhibitor savinase Y91 K27 V26 S24 G23 L21

SUBSTITUTE SHEET

Table 3: PD498 antibody binding peptide sequences, epitope patterns and epitope sequences.

/ "YE'C	199907	Acceptor			
	el d í	pd498	V198 A254 Q252 Y276 K239 A235 L233 P86	STATE OF THE PRINCIPAL PRI	340 TV
	ase inhibitor	pd498	*3aA Y1/Y2 P-4/P-1 D-2 V81	D443 2	립:
	Poa p IX	pd498	S182 Y6 G7 P8 T13 P14 A15 A16		2
•		pd498	Y171 K136 L135 A108 Y113		
	inhibitor	pd498	Y48/Y37 K46 *44aaV A43 L42	nd14 0	
		pd498	V196/V198 D197 A174/A176 A189 F163	pd12.0	2
	Poa p IX	pd488	A142 A147 V148 K120 Q27 S24/S25	pd2.3	
	pd498	pd498	R44 K89 Q27 S236 K120 G146	nd2 2	
		pd498	*28aV T88 *44a K R44 A43 L42	247 O	-: ::
:		pd498	N58/N55 K46 L91 A28/A119 T28)
	pd498	pd498	N240/N243 K239 L233/L234 A18 T21 R22		:
	×	pd498	Y37 K46 L91 A114 Y113	DAY B	
		pd498	N240/N243 K239 L233/L234 A16 T21 R22		:
Y > K		pd498	Y113 1111 A108/A138 K138 1 135	- Kar	<u>-</u>
		pd498	A115 K145 N243 N240 K239 C237 S23R		
	pd498	pd498	R94 R53 Y48 O117 R112 S109/S137	0.000	
		pd498	A169 0167 F163 T182 S160 G103	Pul.3-acc.0	:
		pd498	Y276 1246 K239 L234 S236	DO 10.0	2
	pd498	pd498	N240/N243 K239 I 233/I 234 R22 P88	Ka Ka	
	nhibitor	pd498	3aA Y2 P14 D18 V19	743 T	
:		pd498	A15 A16 V274 K239 Q237 S236	V CPU	- Z
. !	a-amylase inhibitor	pd498	G146 K145 Y141 V139 S137	nd17.9	:
	a-amylase Inhibitor	pd498	A273 V274 L233 R22 D87	2418 1	2:
			N10 S12 A15/A16 R275 A273/A249 R247 A174		2
	+ Paro 1	pd498	D197 S170	O Spor	
	pd498	pd498	R22 G23 L233 S236		2
•		pd498	R94 R53 Y48 P57 K46 L91		
		pd498	R94 R53 Y48 P57 K46 L91	104 4 1500 0	•••••
•	ase inhibitor	pd498	L98 R94 S33 V35 Y37		1
		pd498	S109/S137 R112 Y141 N144 K145		 라
		pd498	T162 R161 Y192 N191 K188	POT CALLED TO SERVICE THE SERV	
		pd498	T133/T134 R112 V141 N144 K14E	Ra Karana	
	ase inhibitor	pd498		Political Ra	0
	Inhibitor	pd498	74 5270	**************************************	_ ₽.
•	inhibitor	pd498		2011.1	로.:
•		pd498	S137 R112 S109 A108	0 10 10 10 10 10	 Z.
	-	pd498	S215 M217 1205 M222 G219	ndf 1	: : i .

Ę, Table 4: Antibody binding peptide sequences, epitope patterns and epitope sequences for the lanuginosus lipase (Lipolase).

								_			1	/.	۵										_	•				,			
	A STATE			:	!		•		:	:		. •	!	-				:		2.			i	i	 ! =!	 : :د		-	 o	·,-	_
200		: :_	:	•			ş					•	•	•			•	: :		₋	- <u>L</u>				<u>.</u>	Ĭ.	Ι.	٠ ـــ٠	<u>I</u>	. Į	_
37	18	:æ	- &	Ra	. 6 2	Ra	Ra	Ra	æ	.ez	Ra	æ	Ra Ra	3.2 Ra	ď	. c	. 62	į	Ē	2 3	2 3	ē, i	: i	2 :	Ē		:	₹		•	
		: :	į i	:	:	:	;	:		٠.				av3.1-				:					:								
liope #					•	•	;	:	:				:	p4.0-lac1.0-pd5.0-sav	:	av9.0	av9.0	:						•							
						1		:	1				:	ac1.0-	•	p5.1- je4.0-sav9.0	p5.2- je4.0-sav9.	1	; ;		: :		1	İ						:	
	llp1.0	lip2.1	lip2.2	IIp2.2	IIp2.3	11p3.0	0. 0. 0.	2 0.	153.0	Mp3.0	lip3.0	lip3.0	lip2.4	Ip4.0-	122.1	lp5.1-	lp5.2-	llp6.0	157.0	108.1	108.2	[p9.0	Ip10.0	15150		2 0	2.0	7 <u>6</u>	<u>;</u>	p12.0	
	1		:						:	•			;	:										-		31	3		-	;=	
	Ì	į		!	;		_	<u>.</u>	_	_:	_ ::	:: -:-		:			i	:			: :	:		; i	•	4 7CCS		•		•	
				.		75/017	25/917	26/91	10/82	216/52	216/52	SZ14/SZ16/SZ1		;		:		53	1		•	52 S54		/44		5 D234				!	
ig B	1	1	1	1	24470	200	214/3	0/4/2	214/3	214/S	214/5	214/5	-	:			4	150 T	:				i	0 0 15	98 726	37 123		5 D242	:		
900	İ	!		1	2000	2000	2000	10000	7027	2.0	7207	207				# #	79 S21	P174 A	123			/132 A	-	118/A2	200 H1	238 K2	K46	8 R17		တ္တ	
				!-	D208/	0208	2000	0000	000	7200	ָבְּילְנְילֵ מילים מילים	7500/				3/S85	09/R1	A173	3 Y 53 J	8 7 16	8 Y16	7184	172	A1B/A	253 N	S217 (49 A47	77 V17		K98 E	-
	277	200	27 6	0 \22	0 A243	0 4245	0 A242	0 4243	200	2 2	2 2 4 2		7 4 400	707	100	81 S8	212 K	101/2	20 68	L75 A6	, <u>67</u> A6	7 0165	46 A47	25/N26	D254 F	\$216/	1.69 A	109/G1		N N	-
	1 424 6400 7464	H244 E129 T 104	H215 E218 1220	C217 E210 V220	P253 P250 A243 P208/P207 E344/Sa42	P253 P250 A243 P208/B207 E241/B221	P253 P250 A243 P208/P207 S214/S216/S217	P253 P250 A243 P208/P207 524 (1954)	9251 9260 A343 9268/5277	233	P253 P250 A243 P208/P20/	5218 E240 V220	210 5214 4482	124 E120 V164	7 2 2	-67 G65 R81 S83/S85	-86/L9/ G212 R209/R179 S21	S170 11/1 G1/2 A1/3 P174 A	A18/A19/A20 G65 Y53 T123	7138 K74 L75 A68 Y16	753 K127 L67 A68 Y16	Y194 D167 D165 Y164 V132 A131	-43 V44 K46 A47 T72	Y53 S54 N25/N26 A18/A19/A20 Q15 V44	P256 1255 D254 P253 N200 H198 Y261	R179 A182 S216/S217 (238 K237 (235 D234 S224 K	140 Y138 L69 A49 A47 K46	E99 L97 G109/G177 V176 R175 D242		5105 C10/ K108 K98 E99	:
100 C	1	T	T	1		T	T	T	T		•	Ť	- - 	i	1	-	7	-	T	7	:	1	4	(75		 :	<u>></u>	8	. :	2	
Acce	a contract	linolasa	Pologe	Poplage	lipolase	lipolasa	lipolase	lipolase	Poplase	aselou	polase	dalon	Poplase	loolasa		polase	DO CO		polase	ביים	noorase	polase	Dolase	poiase	polase	polase	polase	polase	100	200	:
2000	واع	واد	9	0		9	9	0	0		· · ·) 	. _	\\\\ \\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	Ţ	1	Ţ	1	Ť			든.;	 		.	
Toolsan I	lipolasa	llpolase	lipolase	lipolase	lipolase	lipolase	Npolase	lipolase	lipolase	lipolase	lipolase	libolase	lloolase	lloolase	100	200	A) o eod		YI de buy	9	roa p ix	Noa p IX	2 2		Darp	Oer p	Ovalbu	a-amylase	maionor a-amylaga	Inhibito	
HIGH		-			P>S	APS	P > S	APS	P>S	S < d	D > 0:			1		-				I		i	Ţ			1	:		-		
RPPR					>P>>PA	> P > > P A	> P A	> PA	¥ 0 ^ •	4 P.A	. ∀			!	iv.		; ;	: ;]	:	!	:	!	1	:	:	:					
RPPR	>EY	<u></u>	> E	<u>> EY</u>	^	> p	> P	У Р:	à.	٨	Ω Λ	M V	>RS/	<u>></u> E <	L>GR	۸ . ا	<u> </u>	<u> </u>	!	ļ	į.	-	ļ	ļ.	;	 -	:		<u>.</u> j	,	
Phase display	9	ğ	lay	lay.	ģ	lay	ſay	lay	lay	ay	ay	ay	ay S	a	as/	: ?! &	ments	ments	187	ologe	9. 2	Street	nenta		9	TIBUE	neurs	nents	nents	1	
Phage display	Phage display	Phage display	Phage display	Phage display	Phage display	Phage display	Phage display	Phage display	ge disp	Phage display	Phage display	Phage display	gelb et	Phage display	Phage display	Phage display	Protein fragments	Protein fragments	Protein fragments	Protein fragments	Protein fragments	Protein fragments	Protein fragments	frag c		Protein fragments	riotein iragments	ภาษายาก เกลยกายการ	Protein fragments	, ' !	
Pha	문	표	Pha	Pha	<u>물</u>	<u>E</u>	Pha	P.	Pha	Pha	Pha	Pha	Pha	Phag	Phac	Pla	P g	Pot	<u>5</u>	ă	ğ	P O	Profe	Č				<u> </u>	Prote	:	
l abilded 5				:	ပ္ပ	ပ္ပါ	ဗျ	ဗ္ဗု	ပ္ပ	ဗ္ဗ	ဗ္ဗ	i	စ္ပ	• }		:	: ;	:	:			:	Ž	ZK.	77.0	٠ کام کام	É				
= :	PRO	RVAW	SFR.	SITP :	HAPLS	PAPLS	APLSC	APRS	SMPWS.	APRSC	APWS	IALS	GARL	ASO	3RS	3RS	TPAA_	PAAP	:		ATLS	GEL	agvi	ACHY	10	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	3		:	•	
ORPPRYELE	ELEYRPPRO	JEYDMRVAW	HEYPMOFH	SEYSMSITP	CVWPAHAPLSCG	CSWPSPAPLSCG	COFPLHAPLSCG	CLFPSPAPRSCG	CDGPAPAPWSCG	CSFPLPAPRSCG	CVYPSPAPWSCG	EYTMNALS	SRSAKGARL	EYPMSASO	RKLTLSGRS	RKLTLSGRS	SYGAPATPA	PAAGYTPAA	¥Α	Š	KYODYVATLS	EVKATPAGEL	CGYSNAQGVDYW	VPGIDPNACHYMKC	SDI/TYDAC! VIDEVIV	MSALAMOVI GAY	ממאט ש		GCRKEV	-	
य ()	m:	I:	T!	<u>လ</u> .	O¦(<u>ე [</u>	<u>v:</u>	<u>ن</u> ز	ن	<u>.</u>	ပ္မ	Ξį	ပ္	<u>ات</u>	ď	œ!	is.	à.	Σ	۶	Š	回	ŏ	į≱	V	: ≦	ū	•	့ပွဲ	:	

lip13.0

S170 G172 P174 W89 S83

L147 R81 S79 V77 Y16 Q15

Protein fragments Protein fragments

SGPWSW LRSVYQ

epitope patterns and epitope se-Table 5: Amylase (Natalase) antibody binding peptide sequences, quences.

į.	1000万円大大学		Charles March 18. 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
illod orlideni Acelion		Epilobe pattern.	Gener	Acceptor	Lo 2 Ebilode Sequence	A PARTY OF THE PAR		
Phage display		A > 1 D P R/K	amylase	amylase	18	lot 1	3,195	7.36 K
Phage display		A>IDPRK	amylase	amylase	A380 K381 I382 D383 P384 R389	184 4	2 6	İ
Phage display		A>IDPRK		Γ	A109 K138 D140 P142 R144	le1.2	L CO	
Phage display		A > I D P RIK		i	A380 K381 (382 D383 P384 R389	191.1		:
Phage display.		A>IDPRK			A109 K138 D140 P142 R144	(e1.2		:
Phage display		A > 10 P R/K		i	A360 K381 I382 D383 P384 R389	Jef. 1	g. c	; ;
Phage display	t	A > I D P RVK	amytase	атујаѕе	A109 K138 D140 P142 R144	le1.2	e a	
Phage display		Q>Y>D>	amylase	amylase	Q390 L386 Y358/Y367 D368	(A) 4	2 6	T-
Phage display	1	Q>Y>D>	amylase		Q170 1173 Y196 D195	le2 3	2 6	
Phage display		Q>Y>D>	amylase	amylase	Q357 1352 Y349 D368	la? 2	2 6	
Phage display	1	Q>Y>D>	атувзе		Q331 1370 Y368/Y367 D368	100 4	2 0	
Phage display		A>1DPRK	Π	Ī	A109 K138 D140 P142 R144	ilat 2	B .	
Phage display		A>>> YP>	amylase		N29 A27 D26/D25 Y8 P41/P42	ile3 1	2 0	
Phage display	- 1	A>1DPR/K	amylase	amylase	A109 K138 D140 P142 R144	le1.2	0	
Phage display	:	A>IDPRK	amylase	amylase	A380 K381 I382 D383 P384 R389	le1.1	0	-
Phage display	ł	A>>> YP>	amylase		A107/A109 D108 Y57 P41/42	183.3	. 0	:
Phage display	•	Q > Y > D >	amylase	amylase	Q331 1370 Y388/Y367 D366	162.1	: 6	:
Phage display		Q>Y>D>	amylase	атујаве	Q357 1352 Y349 D366	le2.2	. α	-
Phage display		Q>Y>D>	amylase	amylase	Q170 l173 Y196 D195	162.3	Ra	İ
Phage display	•	Q> Y > D >	amylase	amylase	Q390 L386 Y368/Y387 D386	Je2.4	. Ba	 j
Phage display	- 1	A > I D P RVK	amylase	amylase /	A380 K381 I382 D383 P384 R389	181.1	Ra	:
Phage display	:	A > 10 P RVK	amylase	amylase /	A109 K138 D140 P142 R144	le1.2	500	
Phage display	i	L>GRS	armylase	amylase	L88 G92 R31 S28	184,1-sav9.0-(lp5,1-5,2	- 6	Ĭ
Phage display	1	A>>>YP>	вшујазе	amylase	N29 A27 D26/D25 Y8 P41/P42	183.1		
Phage display	- 1	A>>> YP>	amylase	amylase	N102 A233 D232 Y54 P41/P42	le3.2	å	·
Phage display	:	γ. Υ	amylase	amylase	N102 A233 D232 Y64 P41/P42	le3.2	Ra	 :
Phage display	•	L G R S	amylase	amylase	L62 G63/G76 R78 S79	sav9.0-llp5.1-5.2	Ra	; ·
						•	•	•

Table 6: Cellulase (Carezyme; Cel45 from Humicola insolens) antibody binding peptide sequences, epitope patterns and epitope sequences.

۰								
Antipody binding be	p- Metrod of logn	Epitope dattern	* BoloF1					
CVHAGPRAGTCG	Phage display	> G > > A G	Carezvine	Carezvine	Pos Root Ass Ced	TEPHODE # 14G	146 106	113
CVHAGPRAGTCG	Phage display	VH>G>	Cafezvine	Carazuma	- 20 CO CO CO CO CO CO CO CO CO CO CO CO CO	Cari.1	Ra	
CLSGPLAGRVCG	Phage display	0	rarazyma	2010	200 000 7000 000	car2.0	Ra	-
CRISPWYSVPCG	Phage display		Caronimo	2000	1423 KKU1 AB3 G84	cart.1	8	
CLSGPAAGGSCG	Phace display	0 4 4 6 6	2002	Cal DC VIII IB		car3.0	Ra	
	Phane dianay		Caletying	Ī	F23 R201 A83 G84	cart.1	Ra	_
CITRGTRAGWCG	Phane dientar		-6		R146 1131 D133 P137	car11.2	Ra	·
	Charles display	T	carezyme		P23 R201 A83 G84	car1.1	Ra	
2020 A A G S 10	ARICATO ARIELLA	A	savinase		A191 R200 R201 A83 N81	car6.2	Ra	· • · · ·
	The de display	1	сагесуте	-	0 G101	cart.2	æ	
	Dhogo dieniay		9-1			Sart 1.1	 : 2	
	Charle display	Ţ	savinase, le-1	carezyme	O59 Y54 G134 D133 T136	car10.0	Ra Fa	• • • •
CONSTRUCTOR	Pringge display	() ()	poprime	сагегулпе	W62/W169 P61 P165 A162 P160	Car9.0	Ra	· • • •
	Phage display		сагеzуте	carezyme	T95/S98 G27 P98 A100 G101	car1.2	- Ra	-;··
	Priege display	,	savinase	carezyme		car7.0	e a	. .
STANGE AND STANGE	Frage display		carezyme	carezyme	A100 G101	cart 2	- 1.0	. .
	Phage display	ARYA	savinase	сагесулпе	A1 R4 R7 A177 N176	Care 4		
	Phage display	7	accase	carezyme	D178 P180 R4 D2 S183	- Care		- :-
	Phage display		pd498	carezyme	6484 1 483	27.00	2	- -
	Phage display	D/EQIFFT	savinase	Ţ	ŀ	200	Y.	;
CLTAGPSAGYCG	Phage display	, =	carezyme		195/S98 G27 D98 A100 G101	0.1		_
CYTIGRIAGICG	Phage display		carezyme			27.1.5	E .	·- :-
CYTTGRLAGLCG	Phage display	>G>>AG	сагехуте		A100 G101		2: c	·
CVHSGPRAGYCG	Phage display		carezyme	Γ		71 150	÷	- ,-
CVHSGPRAGYCG	Phage display		carezyme			2020		· ;·
CVHAGPRAGTCG	Phage display				195/S96 G27 P98 A100 G101	0.510	 2 6	· ·· -
CVHSGPRAGYCG	Phage display	A G	carezyme		!	1,0	٠.	٠.
CVHSGLSRHLLR	Phage display		саге хуте	загегуты		1000		
CVINGPNAGSCG	Phage display	1	carezyme	ļ	195/S96 G27 P98 A100 G101	200	ئانچ	- .
CLTAGPSAGYCG	Phage display	O > > A C > C			Ţ	2	Y: C	
CVTRGPNAGSCG	Phage display	> G > > A G			·	-	: : !	
					100 CO.	-		-

Table 7: Laccase (Mycelloptora thermopila laccase) antibody binding peptide sequences, epitope patterns and epitope sequences.

T95/S86 G27 P88 A100 G101 car1.2 Ra P23 R201 A83 G84 car1.1 Ra

сагеzутв

CITSGPRAGNCG Phage display > G > > A G carezyme

Addisoay bings	* Welling of				A college binds in the college of th		
TOHING MINE	The division in the strong of	dpiiope pariem	1.000007	Acceptor	TANKEY OF BRIDGE SEGUENCE TO SECUENCE	Six 3 Epitober#	196 198
PGSDPGESQ	Phage display	Phage display 'P > S/T D P G	laccase	laccase	P180 R175 T168 D166 P185 G265	lac3.2	Ra
WPKSDAGDS	Phage display	Phage display, P > > D A G	laccase	laccase	6390		2 6
POSDAGVVM	Phage display	Phage display P > D A G	laccase		P241 R409 S410/S416 D434 A389 G300	1	
DPVRDTGAG	Phage display	Phage display :> P > R D T G		BCCBSB	P241 R409 D434 T432 G43D/G390		2 .
GPSRDAGLL	Phage display P >> D A G	i			0300		2
PASDAGRGP	Phage display	Phage display, P > > D A G	Γ.	Г	Ī	18C4. 1	E (
PRDSTGLAL	Phage display		Τ-	T		lace.	EP d
POSDPGESO	Phage display	_	laccase	Τ,	-	1953. I	E C
				<u></u>		(dC)	Z.
RYPFLRATN	Phage display	Phage display '> R Y > K/R laccase		laccase	to the well-becomes to the colorect extraction con-	lac2.0- pd1.1-1.4	죠,
GAARDARSA	Phage display '> R S A		00000			lac1.0- lip4.0-pd5.0-	
PRSDTGFGS	Phage display	DIG	•	į	D244 B400 D424 T422 C2040000	sav3.1-3.2	Ra
LPRSDPGGR	Phase display		T	1		Iaco. I	Ka Ka
DPARDTGDV	Phane display		⊤:	7		lac3.2	Ra
APKSDNGIT	Phage display P >> D A G	_	accase .	accase	D241 R409 D434 1432 G430/G390	lac5.1	Ra
PKSDPGTNW	Phage display	O	T	7		1202.1	Ra G
PRTDPGWLA	Phage display	Phage display P S/T D P G	laccase 'laccase		· · · · · · · · · · · · · · · · · · ·	100	
LPRSDPGGR	Phage display		accase il		:		2 6
PSSDPGARS	Phage display	Phage display P > S/T D P G	laccase laccase	accase			2.0
HVFDKNVTR	Phage display		accase	<u> </u>	:		: : : :
PRSDPGTPT	Phage display	Phage display P > S/T D P G	laccase !	- ;	8 R379 T442 D443 P445 G446	:	
PRSDPGTPT	Phage display	Phage display P > S/T D P G	laccase laccase		P180 R175 T168 D166 P165 G265		Ra

	· ·	Ī	:	 :	··	- -		-		Ţ.	7 .	. . i	!	-		<u> </u>		 :		Ţ		
Ra	2	å	2 6		2 6	2 6	2 6	2 6	2 6	e a	å		1 6	8 8	2 6			B.	5 6	5	500	Ra Ba
lac3.2	lac3.2	lac3 4	1963.2	1 2 Poli	2.7.5	2 7 7 6	2 700	1004 2	1967.3	lack 3	1964.3	204.3	lacd 3	lac5.2	Jac5.2	lac5.2	lac5.3	lac5.3	lac5.3	lac5.4	lac5.4	lac5.4
P180 R175 T168 D166 P165 G265	P180 R175 T188 D168 P165 G265	P378 R379 T442 D443 P445 G448	!		*** * * * * * * * * * * * * * * * * * *	P350 S349 D80 A79 G78	P350 S349 D80 A79 G78		296			-			:	;	30	P60 R59 D51/D53 T10/T12 G30	· · · · · · · · · · · · · · · · · · ·	P157/P155 R23 D118 T114 G113		
P180 R17	P180 R17	P378 R37	P180 R17	P350 S34	P350 834	P350 S34	P350 S34	P350 S34	P300 R23	P300 R23	P300 R23	P300 R23	P300 R23			P378 R37	P60 R59 (P60 R59 [P60 R59 [P157/P15	P157/P15	P157/P15
laccase	'laccase	accase	Bccase	(accase	laccase	laccase	laccase	laccase	laccase	laccase	laccase	laccase	laccase	laccase	accase	laccase	laccase	accase	laccase	laccase	laccase	laccase
accase	accase	accase	laccase	laccase	laccase	laccase	laccase	laccase	laccase	laccase		accase	laccase	laccase	accase	laccase	laccase	faccase	laccase	laccase	laccase	laccase
Phage display P > S/T D P G laccase	Phage display P S/T D P G	Phage display P > S/T D P.G.	Phage display 'P > S/T D P G laccase	P>>DAG		P>>DAG	P>>DAG	P>>DAG	P>>DAG	P>>DAG	P>>DAG	P>>DAG		Phage display P P R D T G	Phage display > P > R D T G	Phage display > P > R D T G	Phage display > P > R D T G	Phage display > P > R D T G	Phage display > P > R D T G	Phage display 2 P > R D T G	Phage display '> P > R D T G	Phage display > P > R D T G
Phage display	Phage display	Phage display	Phage display	Phage display	Phage display	Phage display P > > D A G	Phage display P > D A G	Phage display P > D A G	Phage display P>> DAG	Phage display P > > D A G	Phage display P > > D A G	Phage display P > > D A G	Phage display P > > D A G	Phage display	Phage display	Phage display	Phage display	Phage display	Phage display	Phage display.	Phage display	Phage display
PRDSTGLAL	PRIDEGWIA	PSSDPGARS	PKSDPGTNW	WPKSDAGDS	POSDAGVVM	GPSRDAGLL	PASDAGRGP	APKSDNGIT	WPKSDAGDS	POSDAGVVM	GPSRDAGLL	PASDAGRGP	APKSDNGIT	DPVRDTGAG	PRSDTGFGS	DPARDTGDV	DPVRDTGAG	PRSDTGFGS	DPARDTGDV	DPVRDTGAG	PRSDTGFGS	DPARDTGDV

Page intentionally left blank

Example 2

Localisation of epitope sequences and epitope areas on the 3D-structure of acceptor proteins.

Epitope sequences were assessed manually on the screen on the 3D-structure of the protein of interest, using apropriate software (e.g. SwissProt Pdb Viewer, WebLite Viewer).

- 10 In a first step, the identified epitope patterns were fitted with the 3D-structure of the enzymes. A sequence of at least 3 amino acids, defining a specific epitope pattern, was localised on the 3D-structure of the acceptor protein. Conservative mutations (e.g. aspartate for glutamate, lysine for arginine, serine for threonine) were considered as one for those patterns for which phage display had evidenced such exchanges to occur. Among the possible sequences provided by the protein structure, only those were retained where the sequence matched a primary sequence, or where it matched a structural sequence of amino acidis, where each amino acid was situated within a distance of 5Å from the next one. Occasionally, the mobility of the amino acid side chains, as provided by the software programme, had to be taken in to consideration for this criterium to be fulfilled.
- 25 Secondly, the remaining anchor amino acids as well as the variable amino acids, i.e. amino acids that were not defining a pattern but were present in the individual sequences identified by phage library screening, were assessed in the area around the various amino acid sequences localised in step 1. Only amino acids situated within a distance of 5Å from the next one were included.

Finally, an accessibility criterium was introduced. The criterium was that at least half of the anchor amino acids had a sur-

face that was >30% accessible. Typically, 0-2 epitopes were retained for each epitope pattern. In some cases, two different amino acids could with equal probability be part of the epitope (e.g. two leucines located close to each other in the protein 3D-structure). For example, in Savinase two epitopes actually fit to the antibody binding peptide LDQIFFTRW: L75 D41 Q2 I79 and L42 D41 Q2 I79. A shorthand notation for such a situation is: L42/L75 D41 Q2 I79.

Thus, a number of epitope sequences were identified and localised on the surface of various proteins. As suggested by sequence alignment of the antibody binding peptides, structural analysis confirmed most of the epitopes to be enzyme specific, with only few exceptions. Overall, most of the identified epitopes were at least partially structural. However, some proteins (e.g. amylase) expressed predominantly primary sequence epitopes. Typically, the epitopes were localised in very discrete areas of the enzymes, and different epitope sequences often shared some amino acids (hot-spots).

20

The identified epitope sequences are shown in Tables 2-7.

Birch allergen:

- 25 Bet v1 (WO99/47680) was used as the parent protein for identification of epitope sequences that may cross react with enzyme epitopes. The structural coordinates from 1BV1.pdb (Gajhede et al., NAT.STRUCT.BIOL., Vol. 3, p. 1040, 1996) were used as well the corresponding sequence (Swissprot accession number P15494). The epitope pattern P>PAP>S (which had been identified from antibody binding peptides specific for anti-Lipolase antibodies) was found to match three (overlapping) epitope sequences on the surface of Bet v1:
 - Bet v1 1.1: P31 A34 P35 A37 P59 S39/S40;

WO 01/83559

PCT/DK01/00293

155

Bet v1 1.2: P63 L62 P59 A37 P35 S39/S40; and Bet v1 1.3: P59 S39/S40 P31 A34 P35 S39/S40.

5 Example 3

Epitope areas

It is common knowledge that amino acids that surround binding sequences can affect binding of a ligand without participating actively in the binding process. Based on this knowledge, areas covered by amino acids with potential steric effects on the epitope-antibody interaction, were defined around the identified epitopes. Practically, all amino acids situated within 5Å from the amino acids defining the epitope were included. The accessibility criterium was not included for defining epitope areas, as hidden amino acids can have an effect on the surrounding structures.

20 For Savinase, the following amino acid residues belong to the epitope area that correspond to each epitope sequence indicated in Table 2:

	sav1.1	•	A1	Q2	S3	P5	H39	P40	D41	L42	N43
25		G63	T66	H67	A 69	G70	T71	A73	A74	L75	N77
		S78	179	G80	V81	L82	G83	N204	V205	Q206	S207
	•	T208	Y209	P210	S212	T213	Y214	A215	S216	L217	
									٠		
	sav1.2	:	S153	G154	N155	S156	G157	A158	G160	S161	I162
30		S163	A169	R170	A174	M175	A176	V177	G178	R186	F189
		S190	Q191	Y192	G193	A194	G195	L196	D197	I198	V 199
	*	T220	R247	K251	A254	T255	S256	T260	N261	L262	Y263
	-	G264	S265	G266	L267	•		•			

	sav2.1	W6	G7	18	R10	V11	Q12	A13	P14	A15
•	A16	R19	L21	V84	T180	D181	Q1'82	N183	N184	I198
	V 199	A200	P201	H226	V227	A230	L233	V234	K237	N238
	H249	L250	T253	A254	T255	S256	L257	S265	G266	L267
5	V268	N269	A270	E271	A272	A273	T274	R275		
	sav2.2	S153	G154	N155	S156	G157	A158	S161	I162	S163
	G178	A179	T180	D181	N184	N185	R186	A187	S188	F189
	S190	Q191	· ¥192	G193	L196	T220	L262	Y263		
10				•						
	sav2.3	A142	T143	G146	V147	L148	Y171	A172	N173	A174
	M175	D197	A231	V234	K235	N238	P239	S240	W241	S242
	N243	V244	Q245	1246	R247	N248	H249	L250	K251	
15										
	sav3.1	S153	G154	N 155	S156	G157	A158	V177	G178	A179
	T180	D181	N184	N185	R186	A187	S188	F189	S190	Q191
	Y192	V199	A200	P201	G202	V203	N218	G219	T220	A223
20	L262	Y263								
	sav3.2	L111	E112	G115	N116	M119	A138	V139	N140	S141
	A142	S144	R145	G146	V147	V149	N173	N243		
25										
	sav4.0	Q2	H17	T22	G23	S24	G25	V26	K27	V28
	V30	I35	S37	T38	H39	P40	D41	L42	N43	144
	R45	G46	T 66	A69	G70	T71	I72	A73	A74	L75
	N76	N77	179	G80	V81	L82	G83	V84	A85	P86
30	S 87	A88		L90	Y91	A92	T208	Y209	P210	S212
	T213	Y214								
	sav5.1	A1	Q2	S3	V4	I35	S37	H39	P40	D41
	L42	N43	144	T66	A69	G70	A73	A74	L75	N76

	N77 Y214	S78	179	G80	V81	L82	G83	P86	L90	T208
5	sav5.2 R45 H64	V30 G46 G65	T33 E54 T66	G34 S57 H67	135 T58 A69	S37 Q59 L90	T38 D60 Y91	L42 G61 A92	N43 N62 K94	I44 G63 P210
10	sav5.3 A13 _. T274	V4 P14 R275	P5 A15	W6 A16	G7 R19	18 N269	S9 A270	R10 E271	V11 A272	Q12 A273
15	sav5.4 G80 E112	A1 V81 W113	Q2 V104 A114	P40 S105 G115		F50 I107 Q137	L75 A108 A138	N77 Q109 S141	S78 G110 A142	179 L111 Y214
20	sav6.1 A172 I246	V139 N173 R247	N140 A174 N248	T143 M175 H249	L148 A176 L250	V149 D197 K251	A151 I198 N252	P168 N243 T253	A169 V244 A254	Y171 Q245 S265
25		Q2 P40 A69 A88		L42 A73		•	A29 R45 N77 G118		S37 G47 G80 H120	
30	sav7.1 A114 A138	G115	L31 N116	1107 N117	A108 G118	Q109 M119	G110	L111	E112	W113
	sav7.2 Q137								L135 R145	

	V147	V149	Y167	P168	Y171	A172	N173	A174	M175	N243
	R247						•			
		•								
	sav9.1	L111	E112	A114	G115	N116	M119	H120	V121	A122
5	E136	Q137	A138	V139	N140	S141	A142	T143	S144	R145
	G146	V147	L148	V149	V 150	N173	M175	N243	1246	R247
	L250									
	sav9.2	L126	G127	S128	P129	A152	S153	G154	S161	I162
10	S163	Y167	P168	A169	R170	Y171	A172	A176	V177	G178
	Q191	Y192	G193	A194	G195	L196	D197	I198	V199	T260
	N261	L262	Y263	G264						
	•									
	sav10.1	Q12	A13	P14	A15	A16	H17	N18	R19	G20
15	L21	T22	N76	L82	G83	V84	A85	P86	L233	V234
	K237	N238	H249	L250	T253	N269	A270	E271	A272	A273
	T274	R275								
	sav10.2	V11	Q12	A13	P14	A15	A16	H17	N18	R19
20	G20	L21	T22	G23	L233	V234	Q236	K237	N238	H249
	L250	T253	A254	T255	L267	V268	N269	A270	E271	A272
	A273	T274	R275					•		
	sav10.3	L31	D32	H64	V68	V95	L96	I107	L111	A114
25	G115	N116	M119	V121	A122	N123	L124	S125	L126	G127
	S128	P129	V139	S141	A142	T143	S144	R145	G146	V147
•	. L148	V149	V150	A151	A152	S153	S163	Y167	P168	A169
	N173	A174	M175	A176	V177	T220	S221	M222	T224	P225
	V227	A228	A231	N243	I246	R247	L250			
. 30										
	sav10.4	P131	S132	A133	L135	B136	V139	A151	A152	· S153
	G160	S161	I162	S163	Y167	P168	A169	R170	Y171	A172
	N173	A174	A176	Q191	Y192	G193	A194	G195	L196	R247
					-					

					-						
		S259	T260	N261	L262	Y263	G264				
	savll	.0	W6	G154	N155	S156	G157	A179	T180	D181	Q182
		N183	N184	N185	R186	A187	S188	F189	S190	Q191	Y192
5		P201	G202	V203	N204	V2.05	L217	N218	G219	T220	L262
		Y263									
	sav12	.0	L31	I107	A108	Q109	G110	L111	E112	W113	A114
		G115	N116	N117	G118	A122	L124	S132	A133	T134	L135
10		Q137	A138	V139	N140	S141	T143	R145	V149	A151	S163
		Y167	P168	A169	R170	Y171	N173	A174			
	sav13	. 0	Q2	S3	P5	T38	H39	P40	D41	L42	N43
	•	H67	G70	A73	A74	L75	N77	179	G80	V81	Ŀ82
15		G83	V205	Q206	S207	T208	Y209	S212	T213	Y214	A215
		S216	L217								
	sav14	. 0	A16	H17	R19	G20	L21	T22	G23	S24	G25
		V26	K27	V28	A29	V30	I35	I44	R45	G46	G47
20		V84	A85	P86	S87	A88	E89	L90	Y91	A92	V93 ·
		W113	N117	G118	M119	H120	V121	A232	L233	K235	Q236
		K237	T274				•				
	•								:		
	sav15	.0	W6	R10	G154	N155	S156	G157	V177	G178	A179
25		T180	D181	Q182	N183	N184	N185	R186	A187	S188	F189
		S190	Q191	V199	A200	P201	G202	V203	N218	G219	T220
		A223	L257	Y263	L267						
,	•						÷				
	sav16.	. 0	A13	A16	H17	G20	L21	T22	G23	S24	G25
30		V26	V28	172	A73	V84	A85	P86	S87	A88	E89
	•	L90	H120	G229	A230	A231	A232	L233	V234	K235	Q236
		K237	N238	P239	S240	W241	I246	H249	L250	A270	A273
		T274						•			

		_									
	sav17		T22	G23	S24	G25	V26	K27	V28	A29	V 30
		L31	D32	I35	I44	R45	G46	G47	A48	F50	S87
	•	88A	E89	L90	Y91	A92	V93	K94	V95	G110	W113
		N117	G118	M119	H120	V121	A232	K235	Q236		
5											
	sav18	.1	W6	G7	18	S9	R10	V11	Q12	A179	T180
		D181	Q182	N183	N184	N185.	R186	A187	I198	V199	A200
		P201	V203	H226	V227	A230	H249	L250	K251	N252	T253
		A254	T255	S256	L257	S265	G266	L267 ·	V 268	N269	A270
10											
	sav18	. 2	A13	A16	H17	L21	T22	G23	V26 ´	V28	V84
		A85	A88	V121	L148	Y171	A172	N173	V174	M175	A176
		G195	L196	D197	I198	V199	V227	A228	G229	A230	A231
15		A232	L233	V234	K235	Q236	K237	N238	W241	N243	V244
		Q245	I246	R247	N248	H249	L250	K251	N252	T253	A254
		Y263	G264	S265	G266	V268	A270	A273	T274		
	sav19	.1	A16	H17	R19	G20	L21	T22	G23	S24	G25
20		V 26	K27	V28	S87	A88	E89	H120	V121	A232	L233
		V234	K235	Q236	K237	N238	P239	T274			
									٠		
	sav19	.2	A1	Q2	S 3	V4	P5	D41	H64	H67	G70
25		T71	A74	L75	N77	S78	I79	G80	V81	L82	G83
		G202	V203	N204	V 205	Q206	S207	T208	Y209	Y214	A215
	•	S216	L217	N218	G219	M222					
		٠.	•								

³⁰ For PD498, the following amino acid residues belong to the epitope area that correspond to each epitope sequence indicated in Table 3:

•	pd1.1	D105	A108	S109	G110	I111	R112	Y113	A114	A115	D116
		Q117	N131	S132	T133	T134	L135	K136	S137	A138	V139
		D140	Y141	A142	W143	N144	K145	G146	A147		
			•						•		
5											
	pd1.2	C128	E129	A153	G154	N155	D156	N157	V158	S160	R161
		T162	F163	Q167	S170	G178	A179	I180	D181	D184	R185
		K186	A187	S188	F189	S190	N191	Y192	G193	T194	W195
		V196	T220	T262	N263		•				
10											
	pd1.3	F50	L104	D105	S106	I107	A108	S109	G110	I111	R112
		Y113	A114	A115	D116	Q117	T133	T134	L135	K136	S137
		A138	V139	D140	Y141	A142	W143	N144	K145	G146	A147
15											
	pd1.4	T28	*28aV	A29	V30	D32	S33	G34	V35	¥37	
		*44aa	V	145	K46	G47	Y48	D49	F50	I51	R53
											T 0.1
		D54	N55	N56	P57	M58	D60	L61	K89	I90	L91
		D54 A92	N55 V93	N56 R94	P57 V95	M58 L96	D60 D97	L61 A98	X89 Y113	190 A114	Q117
20											
20		A92									
20		A92 A119	V93	R94	V95	L96	D97	A98	Y113	A114	Q117
20	pd1.5	A92 A119 D32	V93 S33	R94	V95 K46	L96 G47	D97	A98	Y113	A114	Q117 D52
	pd1.5	A92 A119 D32 R53	V93 S33 D54	R94 G34 N55	V95 K46 P57	L96 G47 M58	D97 Y48	A98 D49 L91	Y113 F50 A92	A114 I51 V93	Q117 D52 R94
20	pd1.5	A92 A119 D32 R53 V95	V93 S33 D54 L96	R94 G34 N55	V95 K46 P57 A98	L96 G47 M58 L104	D97 Y48 L61 D105	A98 D49 L91 S106	Y113 F50 A92 I107	A114 151 V93 A108	Q117 D52 R94 S109
	pd1.5	A92 A119 D32 R53 V95 G110	V93 S33 D54 L96 I111	R94 G34 N55 D97 R112	V95 K46 P57 A98 Y113	L96 G47 M58 L104 A114	D97 Y48 L61 D105 A115	D49 L91 S106 D116	Y113 F50 A92 I107 Q117	A114 151 V93 A108 G118	Q117 D52 R94 S109 A119
	pd1.5	A92 A119 D32 R53 V95	V93 S33 D54 L96	R94 G34 N55	V95 K46 P57 A98 Y113	L96 G47 M58 L104 A114	D97 Y48 L61 D105	D49 L91 S106 D116	Y113 F50 A92 I107 Q117	A114 151 V93 A108 G118	Q117 D52 R94 S109
	pd1.5	A92 A119 D32 R53 V95 G110	V93 S33 D54 L96 I111	R94 G34 N55 D97 R112	V95 K46 P57 A98 Y113	L96 G47 M58 L104 A114	D97 Y48 L61 D105 A115	D49 L91 S106 D116	Y113 F50 A92 I107 Q117	A114 151 V93 A108 G118	Q117 D52 R94 S109 A119
25		A92 A119 D32 R53 V95 G110 T133	S33 D54 L96 I111 T134	R94 G34 N55 D97 R112 L135	V95 K46 P57 A98 Y113 K136	L96 G47 M58 L104 A114 S137	D97 Y48 L61 D105 A115 A138	D49 L91 S106 D116 V139	Y113 F50 A92 I107 Q117 D140	151 V93 A108 G118 Y141	Q117 D52 R94 S109 A119 A142
25	pd1.5	A92 A119 D32 R53 V95 G110 T133	V93 S33 D54 L96 I111 T134	R94 G34 N55 D97 R112 L135	V95 K46 P57 A98 Y113 K136	G47 M58 L104 A114 S137	D97 Y48 L61 D105 A115 A138	D49 L91 S106 D116 V139	Y113 F50 A92 I107 Q117 D140	151 V93 A108 G118 Y141	Q117 D52 R94 S109 A119 A142
25	pd2.1	A92 A119 D32 R53 V95 G110 T133 V19 A119	V93 S33 D54 L96 I111 T134 T21 L122	R94 G34 N55 D97 R112 L135	V95 K46 P57 A98 Y113 K136 R112 Y141	L96 G47 M58 L104 A114 S137 Y113 A142	D97 Y48 L61 D105 A115 A138 A114 W143	A98 D49 L91 S106 D116 V139 A115 N144	Y113 F50 A92 I107 Q117 D140 D116 K145	151 V93 A108 G118 Y141 Q117 G146	Q117 D52 R94 S109 A119 A142
25	pd2.1	A92 A119 D32 R53 V95 G110 T133	V93 S33 D54 L96 I111 T134	R94 G34 N55 D97 R112 L135	V95 K46 P57 A98 Y113 K136 R112 Y141 A235	L96 G47 M58 L104 A114 S137 Y113 A142 S236	D97 Y48 L61 D105 A115 A138	A98 D49 L91 S106 D116 V139 A115 N144 G238	Y113 F50 A92 I107 Q117 D140 D116 K145	A114 I51 V93 A108 G118 Y141 Q117 G146 N240	Q117 D52 R94 S109 A119 A142

	pd2.2	S24	S25	T26	Q27	T28	*28aV	L42	A43	R44	*44aK
		*44aa	V	I45	D75	N77	D87	T88	K89	190	L91
5		G118	A119	K120	V121	L122	G146	A147	V148	A232	A235
		S236									
				٠							
	pd2.3	R22	G23	S24	S25	T26	Q27	T28	*28aV	D87	T88
10		K89	I111	A115	G118	A119	K120	V121	L122	S137	A138
		V 139	D140	Y141	A142	W143	N144	K145	G146	A147	V148
		V14 9	V150	I175	A231	A232	A235	S236	N243	1246	R247
15											
	pd2.4	W-6	S12	T13	P14	A15	A16	V19	T21	R22	G23
		S24	Q27	L230	A231	L233	L234	A235	S236	Q237	G238
	•	K239	N240	N243	Q245	I246	S270	N271	K272	A273	V274
		R275	Y276								
20											
	pd3.1	L31	K46	G47	Y48	F50	L91	V93	S103	L104	D105
		S106	I107	A108	S109	G110	I111	R112	Y113	A114	A115
		D116	Q117	G118	L122	L124	C130	S132	T133	T134	L135
		K136	S137	A138	V139	D140	Y141	A142	Q167	P168	Y171
25		P172									
					•						•
	pd3.2	V19	T21	R22	G23	S24	Q27	K120	V121	V148	L230
		A231	A232	L233	L234	A235	S236	Q237	G238	K239	N240
30		N243	Q245	1246	R247	Q248	A249	I250	Q252	T253	K272
	•	A273	V274	R275	Y276						
		-									
ē	pd4.1	₩-6 ·	S12	T13	P14	A15	A16	W17	D18	V19	T21
		R22	G23	S24	M84	A85	P86	D87	T88	A142	W143

G146 A147 V148 G229 L230 A231 A232 L233 L234 A235 S236 Q237 G238 K239 N240 N243 V244 Q245 I246 R247 Q248 A249 **I250** S270 N271 A273 V274 R275 Y276 5 T21 R22 G23 S24 *44aK pd4.2 W-6 T13 A16 W17 V19 *75aT G83 M84 A85 P86 D87 T88 A142 A73 A74 G146 G146 A147 V148 G229 L230 A231 A232 L233 L234 A235 S236 Q237 G232 K239 N240 N243 V244 Q245 I246 R247 Q248 A249 I250 S270 A273 V274 R275 Y276 10 pd4.3 T26 *28aV A29 V30 L31 Y37 *44aaV Q27 T28 K46 G47 Y48 D4·9 D52 R53 D54 N55 N56 **I45** A92 V93 P57 T88 K89 **I90** L91 Y113 M58 V72 15 A115 Q117 G118 A119 K120 V121 L122 N123 A147 A114 A228 A232 F50 L91 V93 S103 L104 D105 S106 20 pd4.4 K46 G47 A108 S109 I111 R112 Y113 A114 A115 D116 Q117 G110 G118 C130 S132 T133 T134 L135 K136 S137 A138 V139 S170 P172 N173 A174 D140 Y141 Q167 P168 A169 Y171 25 N38 H39 pd4.5 T28 *28aV A29 V30 L31 **V**35 D36 Y37 *44aaV F50 N55 L42 A43 **I45** K46 G47 Y48 A92 V93 A108 S109 N56 P57 M58 K89 190 L91 A114 A115 D116 Q117 G118 A119 G110 I111 R112 Y113 30 L122

	pd5.0	F50	S103	L104	D105	S106	I107	A108	S109	G110	I111
		R112	Y113	A114	A115	D116	Q117	T133	T134	L135	K136
		S137	A138	V139	D140	Y141	A142				
5	pd6.1	Y4	Y6	G7	G63	H64	H67	V68	T71	N155	A179
		F189	P201	G202	V203	N204	1205	A206	S207	V209	G213
		Y214	S215	Y216	M217	S218	G219	T220	S221	M222	A223
		S224	P225	H226							
10	pd6.2	W-6	T 13	A16	W17	V 19	T21	R22	G23	S24	S25
		Q27	M84	A85	P86	D87	T 88	G229	L230	A231	A232
		L233	L234	A235	S236	Q237	G238	S270	V274		•
15	pd7.0	R22	G23	S24	S25	Q27	T28	*28aV	A29	V30	V35
		D36	¥37	м38	H39	P40	D41	L42	A43	R44	*44aK
		*44aa\	V	T66	A69	G70	V72	A73	A74	D75	N77
		A85	P86	D87	T88	K89	<u>1</u> 90	L91	A119	V121	L122
		N123	T208	A228	A231						
20											
	pd8.0	W-6	T13	A16	W17	T21	R22	G23	Q27	*44aK	A73
		A74	*75aT	G83	M84	A85	P86	D87	T88	K120	V121
		I175	A176	V177	G178	V196	D197	V198	T199	A200	V227
25		G229	L230	A231	A232	L233	L23.4	A235	S236	Q237	G238
		K239	N240	N243	Q245	1246	Q248	A249	1250	Q252	T253
		A254	F264	Y265	G266	I268				-	
				-							
30	pd9.0	W-6	Y6	G7	P8	Q9	N10	T11	S12	T13	P14
		A15	A16	W17	D18	V19	T21	M84	V139	W143	V148
		V149	A151	P168	A169	Y171	P172	N173	A174	I1 7 5	A176
•		D181	S182	N183	D184	D197	P201	L230	L233	L234	K239
		N240	N243	V244	Q245	1246	R247	Q248	A249	1250	E251

	Q252	T253	A254	K267	1268	N269	S270	N271	K272	A273
	V274	R275	Y276			-				
		•								
	pd10.0	L124	L126	G127	C128	E129	C130	N131	L135	V139
5	A151	A152	A153	G154	N155	D156	N157	V158	S160	R161
	T162	F163	Q167	P168	A169	S170	Y171	A174	I175	A176
	N191	Y192	G193	T194	W195	V196	T262	N263	F264	,
	*264a	ιK								
10										
	pd11.0	W-6	S-5	¥2	Y4	Q5	Y6	G7	P8	Q9
	N10	T11	S12	T13	P14	W17	D18	V19	T21	A82
	M84	I180	D181	S182	N183	D184	P201	G202	V203	N204
	1205	H226	L233	S270	N271	V274	R275			
15										
	1									
	pd12.0	G127	C128	E129	V139	V148	V149	V150	A151	A152
	A153	G154	N155	D156	V158	R161	T162	F163	Q1 _. 67	P168
	A169	S170	Y171	P172	N173	A174	I175	A176	V177	G178
20	N191	Y192	G193	T194	W195	V196	D197	V198	T199	A200
	V227	R247	1250	E251	A254	N263	F264	*264a	K	Y265
	G266	1268								
	pd13.1	W-6	S-5	P-4	D-2	P-1	Y1	Y2	S 3	+2-7
25	Y4	Q5		Q9	S12			A15		*3aA W17
	D18	V19		R22		V81		N271		R275
						VOI	1102	112/1	V2 /1	10273
		٠					•			
	. •									
30	pd13.2	W-6	S-5	P-4	N-3	D-2	P-1	Y1	Y2	S3
•	*3aA	Y4		P8	Q9	P14	W17	D41	G70	A74
	D75	*75aT	N76	N77	G78	I79	G80	V81	A82	G83
	A206	S207	T208	Y214						

	pd14.0	`	T28	V35	D36	Y37	N38	Н39	P40	D41	L42
	par4.										
		A43	R44		*44aa\		I45	K46	G47	Y48	D49
5		F50	R53	D54	N55	N56	P57	M58	T66	A69	G70
		A73	A74	D75	K89	I90	L91	A92	V93	R94	Y113
		T208									
10	pd15.0) כ	V30	L31	D32	S33	G34	V35	D36	Y37	N38
•		H39	L42	A43	*44aa	V	K46	Y48	D49	F50	I51
		N56	P57	M58	D60	L61	N62	G63	H64	G65	T 66
		A 69	I90	A92	V 93	R94	V95	Ь96	D97	A98	G100
		S101	G102	S103	S106	I107	G110	S125	L126	V209	P210
15		N211	N212								
					•						
	pd16.	ס	W-6	S-5	P-4	N-3	¥2	G7	P8	Q9	N10
		T11	S12	T13	P14	A15 ·	A16	W17	D18	V19	T21
		R22	*75aT	N76	A82	G83	M84	A85	P86	L233	N269
20		S270	N271		-				•		
	pd17.	L	T11	S12	A1 5	A16	D18	V 19	T21	R22	G23
		S24	Q27	L230	A232	L233	L234	A235	S236	Q237	G238
25		K239	N240	N243	Q245	I246 ·	Q248	A249	Q252	T253	N269
		S270	N271	K272	A273	V274	R275	Y276			
	pd17.2	2	A108	I111	R112	A115	D116	K120	L124	T133	T134
30		L135	K136	S137	A138	V 139	D140	Y141	A142	W143	N144
		K145	G146	À147	V148	V149	P168	Y171	N173	A174	N243

	pd18.1	W-6	T1 3	A16	W17	V19	T21	R22	G23	S24
	S25	*44aK	M84	A85	P86	D87	T88	K89	G229	L230
	A231	A232	L233	L234	A235	\$236	Q237	K239	A249	1250
	T253	N269	S270	N271	K272	A273	V274	R275	Y276	
5										
	pd18.2	D-2	V30	V35	D36	Y37	N38	H39	P40	D41
	L42	A43	R44	*44aK	*44aa	V	145	K46	G47	Y48
	P57	T66	A69	G70	A73	A74	D75	*75aT	N76	N77
10	179	V81	A82	A85	P86	D87	T88	K89	190	L91
	A92	V 93	R94	T208						

For Lipolase, the following amino acid residues belong to the epitope area that correspond to each epitope sequence indicated in Table 4:

	lip2.1	Y53	F55	V63	L78	F80	W117	V120	A121	D122
	T123	L124	R125	Q126	K127	V128	E129	D130	A131	V132
2	o R133	V140	L159	R160	G161	N162	G163	Y164	D165	I166
	G190									

25	lip2.2	V2	L6	F10	A173	P174	R175	A182	L193	Y194
	R195	I196	T197	P204	R205	Y213	S214	H215	S216	S217
	P218	B219	Y220	W221	1222	I235	V236	K237	I238	E239
	I241	D242	A243	G246	N247	N248				

30

lip2.3 L193 Y194 R195 V2 L6 F10. A182 L185 T186 I196 T197 H215 S216 S217 Y220 W221 1222· P218 E219 I241 A243 G246 N247 I235 V236 K237 I238 E239 G240

N248

5	lip2.4	V2	L6	F10	ь193	Y194	R195	I196	T197	S216
	S217	P218	E219	Y220	W221	I222	1235	V236	K237	1238
	E239	G240	A243	G246	N247	N248				
10										
	lip3.0	L93	K94	F95	H110	A173	P174	R175	V176	G177
	N178	R179	A182	L185	T186	L193	R195	N200	D201	1202
	P204	R205	L206	P207	P208	R209	E210	F211	G212	Y213
	S214	H215	S216	S217	P218	E219	I238	E239	G240	1241
15	D242	A243	T244	G245	N248	?R259	?	P250	N251	1252
	P253	D254	1255							
					-					
	lip4.0	R175	V176	G177	N178	R179	A180	F181	A182	E183
20	F184	L185	T186	R205	P207	P208	R209	E210	F211	G212
	Y213	S214	H215	S216	S217	I241	D242	N248		
25	lip5.1	A20	Y21	N25	N26	T50	F51	L52	Y53	S54
	F55	E56	V63	T64	G65	F66	L67	A68	L69	176
	V77	L78	S79	F80	R81	G82	S83	R84	\$85	186
	E87	N88	W89	K127	V128	A131	H145	S146	Ь147	G148
	L151	G266								
-30										
	lip5.2	K94	F95	L96	Ь97	K98	E99	R108	G109	H110
	D111	G112	R175	V176	G177	N178	R179	A180	F181	A182
	E183	F184	R205	P207	P208	R209	E210	F211	G212	Y213

WO 01/83559 PCT/DK01/00293

169

S214 H215 S216 I241 D242 N248

5	lip6.0	Q9	F10	N11	F13	A14	S17	V63	F80	R81
	W89	L93	F113	S116	W117	F142	T 143	G144	H145	S146
	L147	G148	G149	A150	L151	A152	T153	V154	A155	G156
	A157	V168	F169	S170	Y171	G172	A173	P174	R175	V176
	F181	L185	L193	¥194	R195	I 1 96	T197	D201	V203	P204
10	L206	P207	H215	H258	Y261	F262	1265			
	lip7.0	F13	A14	Q15	Y16	S17	A180	A19	A20	Y21
	C22	G23	N25	N26	134	C36	A40	C41	F51	L52
15	Y53	S54	F55	E56	V63	T64	G65	F66	L67	S79
	F80	R81	V120	A121	D122	T123	L124	R125	Q126	K127
	V128	L264	1265							
20	lip8.1	L12	F13	A14	Q15	Y16	S17	A18	A19	A20
	134	V44	A49	T50	F51	L52	F66	L67	A68	L69
	D70	N71	T 72	N73	K74	L75	176	V77	S79	H135
	P136	D137	Y138	R139	V140	·V141	T143			
				-						
25			•				-			
			٠.							
	lip8.2	L12	F13	A14	Q15	Y16	S17	A18	A19	A20
	134	V44	A49	T50	F51	L52.	Y53	S54	F55	G65
	F66	L67	A68	L69	D70	N73	L75	176	V77	Ļ78
30	S79	T123	L124	R125	Q126	K127	V128	B129	D130	A131
	T143									

					17	70					
	lip9.0 F51		L6 .	F10	N25	N26	D27	A28	A30	G31	T 50
		F51	L52	Y53	S54	F55	E56	G65	F66	L67	A68
		L69	I76	T123	L124	R125	Q126	K127	V128	E129	D130
		A131	V132	R1333	E134	H135	P136	R139	V140	V141	F142
5		G156	L159	R160	G161	N162	G163	Y164	D165	I166	D167
		V 168	F169	S170	G190	G191	T192	L193	Y194	R195	I196
		Y220									
	lip10.	. 0	N11	L12	Q15	Y16	I34	T35	C36	C41	P42
10		E43	V44	E45	K46	A47	D48	A49	D70	N71	T72
		N73	K74								
											•
15											
	lip11		F95	L96	L97	K98	E99	I100	N101	D102	C107
		R108	G109	H110	D111	F113	T114	S115	A150	T153	V154
		A173	P174	R175	V176	G177	N178	R179	F181	V203	P204
		R205	L206	P207	P208	R209	F211	G212	Y213	S214	H215
20		G240	1241	D242	A243	T244	N248				
						•					
									2100	a	7105
	lip12		L96	L97	K98	E99	I100	N101	D102	C104	S105
		G106	C107	R108	G109	H110	T114	S115	V176	G177	N178
25		A180	F181	F184							
	14	0	NT 1	T.10	F13	A14	Q15	Y16	S17	A182	A19
	lip13	A20	N11	L12	I34	C36		C41	P42	E43	V44
30		A20 A49	Y21 F55	N26 B56	V63	T64	G65	F66	L67	A68	D70
		N73	F35 L75	176	V03	L78	S79	F80	R81	G82	S83
	•	R84	W89	W117	L124	V128	V141	F142	T143	G144	H145
		S146	W69 L147		G149	A150	L151.		A155		
		2740	77.74 /	CTIO	しェモノ	43±JV					

	lip14	. 0	Q9 ₁	F10	N11	F13	A14	S17	Y21 ·	R81	G82
		S83	R84	S85	186	E87	N88	W89	I90	G91	N92
		L93	F113	T143	G144	H145	S146	L147	G149	A150	T153
5		V168	F169	S170	Y171	A173	P174	R175	V176	L193	Y194
		R195	I196	T197	D201	V203	P204	L206	P207	H215	H258
		Y261	F262	1265	G266						
	lip15	. 0	N11	L12	F13	A14	Q15	Y16	S17	A18	A19
10		A20	Y21	C22	G23	K24	N25	N26	D27	A28	134
		T35	C36	A40	C41	P42	E43	V44	E45	K46	A47
		A49	F51	L52	Y53	S54	F55	E56	T64	G65	F66
		L67	S79	F80	R81	T123	L124	K127	L264	1265	
			•								
15	lip16	. 0	A14	E87	190	H145	G172	I196	T197	H198	T199
		N200	D201	1202	P204	R205	W221	1222	K223	S224	G225
		T226	G246	N247	N254	I252	P253	D254	I255	P256	A257
•		H258	L259	W260	Y261	F262	G263	1265			
20											
	lip17	. 0	E1	V2	F7	F10	G177	N178	R179	A180	F181
		A182	E183	F184	L185	T186	L193	R195	H198	T199	G212
	•	S214	H215	S216	S217	P218	E219	Y220	W221	1222	K223
		S224	G225	T226	V228	P229	V230	T231	R232	N233	D234
25		I235	V236	K237	1238	E239	G240	I241	D242	A243	T244
		G245	G246	1262							
	lip18	. 0	Q9	F13	Y16	T32	N33	I34	C41	P42	E43
		V44	E45	K46	A47	D48	A49	T 50	F51	L52	L67
		A68	L69	D70	N71	T72	N73	L75	176	V128	V132
30		H135	P136	D137	Y138-	R139	V140	V141	F142	Y164	D165
		I166	D167	F169	Y194		,				

For Amylase, the following amino acid residues belong to the epitope area that correspond to each epitope sequence indicated in Table 5:

5	je1.1	N2	G3	T 4	R33	P346	Y349	1352	L353	T354	R355
		P360	V362	D366	¥367	M378	K379	A380	K381	1382	D383
		P384	1385	L386	E387	88EA	R389	Q390	N391	F392	A393
		Y394	1450	T451							
10	je1.2	¥57	D58	Y60	D61	F65	N66	Q67	L104	G105	G106
		A107	D108	A109	T110	E111	A135	W136	T137	K138	F139
		D140	F141	P142	G143	R144	G145	N146	T147	Y148	S149
		F151	K152	W153	R154	F158					
15	je2.1	M6	Y8	E10	W11	H12	D26	F30	R33	V325	D326
		N327	H328	D329	S330	Q331	P332	G333	E334	E337	F339
		K345	Y349	V362	F363	Y364	G365	D366	¥367	Y368	G369
		1370	P371	T372	H373	S374	V375	P376	A377	M378	K379
		1382	D383	L386							
20											
	je2.2	L289	L293	V314	P318	T323	F324	V325	D326	F339	K345
		P346	L347	A348	Y349	A350	L351	1352	L353	T354	R355
		F356	Q357	G358	¥359	P360	S361	V 362	F363	Y364	G365
		D366	Y367	Y368	G369	P376	A377	M378	K379	I382	1385
25		R389	Q397								
٠											
	je2.3	N102	V116	E117	V118	P120	R123	D159	G160	V161	D162
		W163	Q168	F169	Q170	N171	R172	I173	Y174	K175	A182
		W183	D184	V187	D188	N193	Y194	D195	Y196	L197	M198
30		Y199	A200	D201	V202	H236					
			•								
	je2.4	T1	N2	T4	M6	Y8	D26	L30	R31	N32	R33
		G34	I35	V325	D326	F339	K345	Y349	L353	V362	F363
		¥364	G365	D366	Y367	Y368	G369	I370	P376	A377	M378

					·						
		K379	I382	D383	P384	1385	L386	E387	A388	R389	Q390
		N391	F392	Y394	H417						
	je3.1	M6	Q7	Y8	F9	E10	L13	H19	W20	N21	R22
5		L23	R24	D25	D26	A27	S28	N29	L30	R31	N32
		R33	I385	W39	140	P41	P42	A43	W44	V52	G53
		Y54	Y75	A87	L88	N91	V93	D98	V100	Y364	Y368
10	je3.2	Y8	F9	W11	H19	W20	W39	140	P41	P42	A43
		W44	D51	V52	G 53	Y54	G55	A56	Y75	D98	V99
		V100	M101	N102	H103	L104	D195	L197	M198	A200	D201
		V202	R230	I231	D232	A233	V234	K235	H236	1237	E262
		H328									
15											
	je3.3	Y8 .	F9	H19	W20	W39	140	P41	P42	A43	W44
		K45	G46	T47	V52	G53	Y54	G55	A56	Y57	D58
		L59	Q67	K68	¥75	D98	V100	L104	G105	G106	A107
		D108	A109	T110	E111	A135	W136	T137	K138	F139	D140
20		F141	P142								
	je4.1	L23	D25	D26	A27	S28	N29	L30	R31	N32	R33
•		G34	135	T36	138	A84	I85	H86	A87	L88	K89
		N90	N91	G92	V 93	Q94	V 95	Q390			
25											
	je4.2	A43	W44	K45	L59	Y60	D61	L62	G63	E64	F65
		V71	R72	T73	K74	Y75	G76	T77	R78	S79	Q80
		L81	E82	S83	Y148	W219	Y220	T223	L224		

Example 4

s Having identified 'antibody binding peptide' sequences (e.g. "SDFGHKV") and by consensus analysis also "epitope patterns" (e.g. >DF>>K>), one can identify potential epitope sequences on the 3-dimensional surface of a parent protein (=acceptor protein) in a semi-automated manner using the following method:

10

The anchor amino acid residues are transferred to a three dimensional structure of the protein of interest, by colouring D red, F white and K blue. Any surface area having all three residues within a distance of 18Å, preferably 15Å, more preferably 12Å, is then claimed to be an epitope. The relevant distance can easily be measured using e.g. molecular graphics programs like InsightII from Molecular Simulations Inc.

The residues in question should be surface exposed, meaning that
the residue should be more than 20% surface exposed, preferably
more than 50% surface exposed, more preferably 70% surface exposed. The percentage "surface accessible area" of an amino acid
residue of the parent protein is defined as the Connolly surface
(ACC value) measured using the DSSP program to the relevant protein part of the structure, divided by the residue total surface
area and multiplied by 100. The DSSP program is disclosed in W.
Kabsch and C. Sander, BIOPOLYMERS 22 (1983) pp. 2577-2637. The
residue total surface areas of the 20 natural amino acids are
tabulated in Thomas E. Creighton, PROTEINS; Structure and Molecular Principles, W.H. Freeman and Company, NY, ISBN: 0-71671566-X (1984).

Substitutions of one or more residue (s) within 18Å, prefereably 15Å, more prefereably 12Å, around the geometrical center of the

WO 01/83559

175

residues involved in the epitope, for a bigger or smaller residues, may destroy the epitope, and make the protein less antiquence.

s Residues involved in epitope is 2, preferably 3 and more preferably 4

Example 5

10

Production, selection, and evaluation of enzyme variants with reduced antigenicity or immunogenicity.

Epitope sequences and hot-spots amino acids were mutated using standard techniques know to the person skilled in the field (e.g. site-directed mutagenesis, error-prone PCR- see for example Sambrook et al. (1989), Molecular Cloning. A Laboratory Manual, Cold Spring Harbour, NY).

In the examples shown below, variants were made by site-directed mutagenesis. Amino acid exchanges giving new epitopes or duplicating existing epitopes, according to the information collected in the epitope-database (See Example 1), were avoided in the mutagenesis process.

25

Enzyme variants were screened for reduced binding of antibodies raised against the backbone enzyme. Antibody binding was assessed by competitive ELISA as described in the Methods section.

30 Variants with reduced antibody binding capacity were further evaluated in the mouse SC animal model (See methods section).

The following variants showed reduced IgE and/or reduced IgG levels in the mouse model:

176

Parent	Mutations	Target	epitope	se-	%IgG	%IgE
protein		quences			re-	re-
					sponse	sponse
Savinase	D181N	Sav11.0;	Sav15.0	and	50	19
		Sav18.1.				
		Hot spot	amino acid	l.		
Savinase	R170L;Q206E	Sav9,4;	Sav1	0,4;	5	34
		Sav1.1; a	and Sav19.2			
Savinase	R170L, S57P	Sav9,4; S	Sav10,4	45	12	
Savinase	R247E	Sav2.3,	Sav	6.1,	75	30
		Sav18.2				
		Hot spot	amino acid	ι,		
Savinase	R247Q	Sav2.3,	Sav	6.1,	17	20
		Sav18.2		i		
		Hot spot	amino acid	·		
Savinase	R247H	Sav2.3,	Sav	6.1,	40	27
		Sav18.2				
		Hot spot	amino acid	ι.		
Savinase	R247K	Sav2.3,	Sav	6.1,	74	34
		Sav18.2				
		Hot spot	amino acid	l.		
			•			

Production, selection, and evaluation of enzyme variants with reduced antigenicity or immunogenicity.

Hot-spots or epitopes were mutated using techniques known to the expert in the field (e.g. site-directed mutagenesis, error-prone PCR).

In the examples showed below, variants were made by sitedirected mutagenesis. Amino acid exchanges giving new epitopes or duplicating existing epitopes according to the information collected in the epitope-database, were avoided in the mutagenesis process.

Enzyme variants were screened for reduced binding of antibodies raised against the backbone enzyme. This antibody binding was assessed by established assays (e.g. competitive ELISA, agglutination assay).

Variants with reduced antibody binding capacity were further 20 evaluated in animal studies.

Mice were immunised subcutanuous weekly, for a period of 20 weeks, with 50 μl 0.9% (wt/vol) NaCl (control group), or 50 μl 0.9% (wt/vol) NaCl containing 10 μg of protein. Blood samples (100 μl) were collected from the eye one week after every second immunization. Serum was obtained by blood clothing, and centrifugation.

Specific IgG1 and IgE levels were determined using the ELISA specific for mouse or rat IgG1 or IgE. Differences between data sets were analysed by using appropriate statistical methods.

WO 01/83559

PCT/DK01/00293

178

A. <u>Site-directed mutagenesis of amino acids defining epitopes</u>, with an effect on IgG1 and/or IgE responses in mice.

5

Epitope: A172/A169 R170 A194 G193 N261

Pattern: A R > R > A > N

Antibody: IgG1 + IgE Backbone: Savinase

10

The variant carried mutation R170F.

In a competitive IgE ELISA, this variant was less effective in competing for anti-savinase antibodies, giving a 15% lower endpoint inhibition as compared to the savinase backbone.

15

Mouse studies revealed an 80% reduction of the specific IgE levels, as compared to savinase backbone (p<0.01). The IgG1 levels were not significantly affected.

20

Epitope: S216 E219 Y220

Pattern: E Y > M

Antibody: IgG1

25 Backbone: Lipoprime

The variant carried mutation S216W.

In a competitive IgG ELISA, the variant was less effective in competing for Lipolase antibodies, giving a 38% decrease in endpoint inhibition as compared to the enzyme backbone.

Mouse studies revealed a 69% decrease in specific IgG1 levels, compared to the lipolase backbone (p<0.05). The IgE levels were not significantly affected.

B. <u>Site-directed mutagenesis of epitopes</u>, <u>with examples of epitope</u> duplication, and new epitope formation, respectively, predicted by the epitope-database.

10

Epitope: T143 N173 N140 E136 L135

Pattern: S/T N N > E L

Antibody: IgG1

15 Backbone: Savinase

The variant carried mutation E136R.

In a competitive IgG ELISA, the variants was less effective in competing for savinase antibodies, giving a 38% decrease in 20 endpoint inhibition as compared to the savinase backbone.

Mouse studies revealed a dramatic increase in specific IgG1 levels, compared to savinase backbone (p<0.01). The IgE levels were not significantly affected.

25

Mutation E136R establishes an IgG1 epitope of the R Y P R/K pattern, previously identified on PD498. Apparently, this new epitope was more antigenic in mice than the existing epitope. The introduction of a savinase unrelated epitope on the savinase backbone could explain the observed discrepancy between competitive ELISA and animal studies.

In this example, it was found that using information derived exclusively from screening phage libraries with anti-PD498 anti-

WO 01/83559 PCT/DK01/00293

180

bodies (to identify the R Y P R/K epitope pattern of Table 2) one could predict the outcome of a genetic engineering experiment for Savinase in which the E136R mutation created the PD498-epitope on the Savinase surface, leading to increased immunosenicity of this Savinase variant. This demonstrates that the epitope patterns identified may be used to predict the effect on immunogenicity of substitutions in proteins that are different from the parent protein(s) used to identify the epitope pattern.

C. <u>Site-directed mutagenesis</u> of amino acids defining epitope areas, with a differential effect on IgG1 and IgE antibody levels in mice, and an inhibiting effect on IgG binding, respectively.

Epitope: A172/A169 R170 A194 G193 N261

Pattern: A R > R > A > N

Antibody: IgG1 + IgE

10 Backbone: Savinase

Epitope area: P131, S132, A133, L135, E136, V139, A151, A152, S153, G161, S162, I165, S166, Y167, P168, Y171, N173, A174, A176, Q191, Y192, G195, L196, R247, S259, T260, L262, Y263, G264.

15

The variant was different at position Y167 by the mutation Y1671.

In a competitive IgE ELISA, the variant was less effective in competing for anti-savinase antibodies, giving a 8% lower end20 point inhibition as compared to the its backbone.

Mouse studies revealed an 75% reduction of the specific IgE levels, as compared to the backbone (p<0.01). In contrast, the IgG1 levels were dramatically increased (p<0.01).

25

Epitope: T143 N173 N140 E136 L135

Pattern: S/T N N > E L

Antibody: IgG1

Backbone: Savinase

30 Epitope area: V10A, I107, A108, L111, E112, G115, S132, A133,
T134, Q137, A138, V139, S141, A142, S144, R145, G146, V147,
V149, Y167, P168, Y171, A172, A174, M175, N243, R247.

While variant no. 1 was mutated at the epitope position (N140D), variant no. 2 was mutated at N140 (N140D), but also at the epitope area position (A172D).

- 5 In a competitive IgG ELISA, variant no. 1 was less effective in competing for anti-savinase antibodies, as compared to savinase. This variant revealed a 21% lower endpoint inhibition as compared to the its backbone.
- 10 Variant no. 2 resulted in an endpoint inhibition that was 60% lower as compared to savinase, and 40% as compared to variant no. 1.

15 Example 7

Conjugation of Savinase variant E136K with activated bis-PEG1000

- 4,9 mg of the Savinase variant was incubated in 50 mM Sodium Bo20 rate pH 9.5 with 12 mg of N-succinimidyl carbonate activated bis-PEG 1000 in a reaction volume of approximately 2 ml. The reaction was carried out at ambient temperature using magnetic stirring while keeping the pH within the interval 9.0-9.5 by addition of 0.5 M NaOH. The reaction time was 2 hours.
- 25 The derivatives was purified and reagent excess removed by size exclusion chromatography on a Superdex-75 column (Pharmacia) equilibrated in 50 mM Sodium Borate, 5mM Succinic Acid, 150 mM NaCl, 1 mM CaCl₂ pH 6.0.

The conjugate was stored at -20°C, in the above described buffer.

Compared to the parent enzyme variant, the protease activity of the conjugate was retained (97% using Dimethyl-casein as substrate at pH 9). WO 01/83559 PCT/DK01/00293

183

Example 8

Competitive ELISA was performed according to established procesures. In short, a 96 well ELISA plate was coated with the parent protein. After proper blocking and washing, the coated antigen was incubated with rabbit anti-enzyme polyclonal antiserum in the presence of various amounts of modified protein (the competition).

10

The amounts of residual rabbit antiserum was detected by pig anti-rabbit immunoglobulin, horseraddish peroxidase labelled.

Epitope:

T143 N173 N140 E136 L135

15 Pattern:

S/T N N > E L

Antibody:

IqG1

Backbone:

Savinase

Mutation:

E136K

20 Modification:

bis-NHS-PEG1000

The data show that the derivative (60% endpoint inhibition) has reduced capacity to bind enzyme specific immunoglobulines, as compared to the parent protein (100% endpoint inhibition).

Example 9

For this example the epitope sequences were determined in four environmental allergens (Bet v1; Der f2; Der p2 and Phl p2), based on their structures (lbtv.pdb; lahm.pdb; al9v.pdb; and lwhp.pdb, respectively), sequences (SEQ ID NO: 6, 7, 8 and 9, respectively) and computer modelling of the epitope patterns

25

that had been assembled in our database (shown in Table 8). The allergens arise from common sources of allergy: Birch (Bet v1 from Betula pendula), House dust mites (Der f2 from Dermatophagoides farinae and Der p2 from Dermatophagoides pteronyssinus), and Timothy grass (Phl p2 from Phleum pratense).

The protein surface is scanned for epitope patterns matching the given "consensus" sequence of about 6-12 residues. First, residues on the protein surface that match the first residue of the consensus sequence are identified. Within a specified distance from each of these, residues on the protein surface that match the next residue of the consensus sequence are identified. This procedure is repeated for the remaining residues of the consensus sequence. The method is further described under the paragraph "Methods" above and the computer program can be found in the Appendixes.

The critical parameters used in this screening included:

- i) a maximal distance betweenthe alfa-carbon atoms of subsequent amino acids,
- ii) a minimal accessability of the amino acid of 20Å2,
- iii) the largest maximal distance between the most distinct amino acids should be less than 25Å
- iv) the 5 best epitopes were taken,
- v) the minimal homology with the epitope pattern of interest was 80%

In this way a number of potential epitopes are identified. The epitopes are sorted according to total surface accessible area, and certain entries removed:

 Epitopes that contain the same protein surface residue more than once. These are artefacts generated by the described algorithm.

2) Epitopes which are "too big", i.e. where a distance between any two residues in the epitope exceeds a given threshold.

The epitope sequences found by this second generation mapping procedure were:

The epitope sequences found were:

10 Bet **v1**:

Epi#02

A146, K32, Q36, F30, T142, R145, V12 A34, K32, Q36, F30, T142, R145, V12

15

Epi#03

L62, K65, ---, I56, Y66

L24, K20, H76, I23, Y81

L24, K20, H76, I104, Y81

20

Epi#04

K134, S136, Q132, K129, A130, A135 K134, S136, Q132, K129, V128, G1

25 Epi#05

G140, A146, R145, T10, G111, A106, T107, V12 G26, A146, R145, T10, G110, A106, T107, V12 G140, A146, R145, T10, G110, S11, S149, L152 G110, A106, S11, T9, G140, R145, T10, V12 30 G140, A146, R145, T10, G111, S11, S149, V12

Epi#06

G110, P108, D109, T107, A106, P14 G111, P108, D109, T107, A106, P14

A34, N28, D27, S40, K32, P35 G26, N28, D27, S39, K32, P35 A106, N78, D75, T77, A16, P14 G26, N28, D27, S39, Q36, P35

5

Epi#07

G46, T52, D69, S99, R70, V71, P50, D72 G49, T52, D69, S99, R70, V71, P50, D72 G48, T52, D69, S99, R70, V71, P50, D72

10

Epi#08

K123, E127, G1, V2, H121, F3 K65, E60, F64, V67, F58 K65, E60, F58, V67, F64 15 K129, E127, G1, V2, H121, F3

Epi#09

S149, L152, D156, N159, R17, L24, D75, K103, N78, A106, V12 L152, S149, D156, N159, R17, L24, D75, H76, N78, A106, V12 20 L152, D156, N159, R17, L24, D75, K80, N78, A106, V12

Epi#10

D109, A106, N78, T77, F79, R17, K20 E141, T10, R145, T142, F30, G26, K32 25 E8, T10, R145, T142, F30, G26, K32

Epi#11

F30, K32, I38, Q36, V33, E148 F22, F30, I38, Q36, V33, E148 30 F30, L143, I38, Q36, V33, E148

Epi#12

Y5, E6

Y83, E73

Y120, E127

Y5, E8

Y66, E87

Y81, E73

5

Epi#13

H76, A16, P14, T107, A106, P108, G110, G111

A16, R17, P14, T107, A106, P108, G110, G111

A157, R17, P14, T107, A106, P108, G111, G110

10

Epi#15

K65, P90, D93, I91, K97, G92

K32, P31, D27, I56, K65, G61

15 Epi#17

A153, S149, R145, S11

A106, S11, R145, S149

Epi#18

20 R145, S149, L152, A153, Y150, L151, H154, S155
R145, S149, L152, A153, S155, L151, A157, N159

Epi#22

D125, D93, P90, K65

25 D93, P90, P63, E60

Epi#23

K55, N43, E42, S57, L62, P63

K68, N43, B42, S40, F30, P35

30 K54, N43, E42, S57, F64, P63

K55, N43, E42, S40, F58, P35

Epi#24

E96, K97, R87, P90, F64, E60, K65

E127, K123, E96, P90, F64, P63, K65 E42, K68, E87, P90, F64, E60, K65 E42, K55, E87, P90, F64, E60, K65 D93, G92, E87, P90, F64, E60, K65 5 D125, K123, E96, P90, F64, P63, K65

Epi#25

R70, K55, I44, E45, E42 R70, K54, I44, E45, N47 10 R70, K68, I53, E45, N47

Epi#27

D93, E127, D125, K123

15 Epi#28

A146, Q36, F58, E60, L62, F64, P63, K65 I38, Q36, F58, E60, L62, F64, P63, K65 A34, Q36, F58, E60, L62, F64, P63, K65 L143, Q36, F58, E60, L62, F64, P63, K65 20 V33, Q36, F58, E60, L62, F64, G61, K65

Epi#29

G61, K65, L62, F58, E60 I56, K65, L62, F64, E60 25 G89, K65, L62, F64, E60 V67, K65, L62, F64, E60

Epi#30

G1, N4, S99, H121, K97, I91, P90

30 I113, I13, S149, H154, S155, L152, L151

I13, L152, A153, H154, S155, L151, V33

G110, I13, S149, H154, S155, L152, L151

G1, N4, S99, H121, K97, I98, V2

G1, N4, S99, H121, K97, I91, V85

Epi#33

K32, F30, P35, S39, S57, K65

Q36, F30, P35, S39, S40, K32

5 K32, F30, P35, S40, S57, K65

K65, F58, P35, S39, A34, R145

Epi#34

V105, P14, T107, V12, R145, Y150, S155

10 I113, P14, T107, V12, R145, Y150, S155

Epi#37

P50, V74, L24, R17, N159

P50, V74, L24, K20, N159

15 P14, R17, L24, K20, N159

Epi#38

L143, G140, E141, R145, V33, N28, P31, S39

L143, G140, E141, R145, V33, N28, P31, S40

20 L143, G140, E141, R145, V33, N28, P31, S57

Epi#39

A130, E127, H126, T94, P90, G89, L62

A130, B127, H121, T94, P90, G89, L62

25

Epi#40

A157, L152, A153, Y150, K32, S39

A153, L152, A157, Y150, K32, S40

R17, L151, A153, Y150, K32, S40

30 R145, L143, A34, Y150, A153, S155

R145, L143, G140, T9, K115, T10

Epi#41

P63, Y66, L62, S57

Epi#44

I23, R17, D156, Y150, S149, V12, T10
L24, R17, D156, Y150, S149, V12, P14
5 L24, R17, D156, Y158, A16, A106, P108
I13, R17, D156, Y150, S149, V12, T10
L151, R17, D156, Y150, S149, V12, T10
L24, R17, D156, Y150, S149, V12, T107

10 Epi#45

K32, P35, F30, Y150, R145, M139, G140 K32, P35, F30, Y150, R145, M139, L143 K32, P31, F30, Y150, R145, M139, G140

15 Epi#47

L152, S149, R145, L143, A34, F30, N28, P31, P35 A153, S149, R145, A146, A34, F30, N28, P31, P35

Epi#48

20 E60, K65, P90, P63, G61 E60, K65, P63, P90, G92

Epi#51

T94, H126, E127, D125, G124, K123, H121 25 D125, H126, E127, T94, K123, T122, H121

Der f2:

30 Epi#02

A98, K100, S101, P99, R128, R31 A98, K100, R128, P99, R31, V94 T91, N93, P95, P34, R31, R128 L61, N93, P95, P34, R31, R128 Epi#03

L40, K15, A39, I13, Y86

L40, K14, A39, I88, Y90

5

Epi#05

G32, A98, R31, P34, G20, T36, T91, Y90

G32, A98, R31, P34, G20, T36, T91, V94

G32, A98, R31, P34, G20, T36, T91, L37

10 G32, A98, R31, P34, G20, T36, T91, V18

Epi#06

A98, P99, D129, R31, K96, P95

G32, P99, D129, R128, R31, P95

15 A98, P99, D129, R31, K33, P95

A98, P99, D129, R31, K96, P34

A98, P99, D129, R128, K126, P26

Epi#07

20 T107, S57, D59, S101, R128, A98, P99, D129
T107, S57, D59, S101, R31, A98, P99, D129

Epi#08

K15, D87, V76, H74, F75

25 K14, D87, V76, H74, F75

K77, D87, V76, H74, F75

Epi#09

L61, D64, I68, H74, F75, T70, N71

30 N114, N46, D113, K48, N71, T70, T49 G83, N46, D113, K48, N71, T70, T49

Epi#10

L40, I13, D42, N44, V81, K48, N46, N114, G115

L40, I13, D42, N44, V81, K82, N46, N114, G115 L37, D19, G20, V18, V3, D4, K6, A120, T107, V105

Epi#11

5 F75, K51, I111, Q45, V116, D113 F75, K51, I111, Q45, V81, D113

Epi#12

Y90, E38

10

Epi#13

H30, R31, P95, A98, P99, S101, G60, L61

Epi#15

15 K96, P99, D129, I28, R128, A98
K96, P99, D129, I127, R128, A98
K96, P99, D129, I29, R128, A98
K55, P66, D64, I68, T70, G67

20 Epi#18

R31, R128, I28, G125, T123, H124, V105 R31, R128, I127, G125, T123, H124, V105

Epi#22

25 D1, M17, D4, V3, K6
D1, M17, D19, P34, K96
D1, M17, D4, V5, K6

Epi#23

30 K14, N11, E12, N44, Q85, P79 K14, N11, E12, N10, Q45, P79 K14, N11, E12, N44, Q84, P79 K14, N11, E12, L40, Q85, P79

Epi#24

D129, K100, E102, P99, R128, R31, K96 E62, G60, E102, P99, R128, R31, K96 D129, K126, E102, P99, R128, R31, K33 5 D129, K126, E102, P99, R31, P95, K96

Epi#25

R31, K96, I97, D59, E62 R128, R31, I97, D59, E102 10 R128, K126, I127, E102, N103

Epi#27

D64, E62, D59, K100 D59, E62, D64, K55 15 D87, E38, D19, K33 D19, E38, D87, K15 D19, E38, D87, K14

D19, E38, D87, K77

20 Epi#28

V16, D87, Q85, K14, E12, K15, Q2, D1
I13, D87, Q85, K14, E12, K15, Q2, D1
V3, D1, Q2, K15, E12, K14, Q85, D87
L40, D87, Q85, K14, E12, K15, Q2, D1
V5, D87, Q85, K14, E12, K15, Q2, D1
V76, D87, Q85, K14, E12, K15, Q2, D1
V18, D1, Q2, K15, E12, K14, Q85, D87

Epi#29

30 G32, N93, L61, E62 V94, N93, L61, E62

Bpi#30

G60, I97, A98, H30, K96, P34, P95

I68, N71, H74, K77, P79, V81 G32, I97, A98, H30, K96, P95, P34

Epi#34

5 V105, P26, S24, G125, R128, S101, P99 W92, P34, T91, V94, R31, S101, P99 I28, P26, T123, G125, R128, S101, P99

Epi#37

- 10 A120, V16, L40, K14, N11
 A39, V16, L40, K14, N11
 Y90, A39, L40, K14, N11
 Y86, A39, L40, K14, N11
- 15 Epi#39 A120, E38, T91, P34, G20, L37 A39, E38, T91, P34, G20, L37

Epi#40

20 G20, L37, A120, T123, K6, S24 A39, L37, A120, T123, K6, S24 G20, L37, A120, T107, K6, T123

Epi#41

25 P34, L37, V106, S57

Epi#42

P26, S24, G125, R128, R31 P99, S101, G125, R128, R31

30

Bpi#44

V16, Q2, D19, P34, W92, Y90, A39, V18, T91 V16, Q2, D19, P34, W92, Y90, A39, V5, T123 V3, Q2, D19, P34, W92, Y90, A39, V18, T91

Epi#45

K77, H74, F75, N71, D69, G67

K77, H74, F75, N71, D69, V76

5 K77, H74, F75, N71, D69, V65

Epi#46

A98, R128, R31, P95, N93, G32

A98, R128, R31, P34, G20, Q2

10

Epi#48

Q2, D19, P34, P95, G32

H30, K96, P95, P34, G20

15 Epi#49

D87, D42, L40, Q85, Q84, C78, T47, Q45, K48

D87, D42, L40, Q85, Q84, C78, T47, Q45, K82

Epi#50

20 Di9, W92, P34, T91

D19, W92, P34, P95

D19, W92, T91, T36

Epi#51

25 D129, H30, K33, R31, R128, K126, H124 R31, H30, D129, R128, K100, K126, H124 T123, H124, K126, R128, R31, K33, H30

30 Der p2:

Epi#03

L17, K89, A39, I13, Y86

L17, K89, A72, I88, Y90

L17, K89, A72, I52, Y90

Epi#04

K15, S1, Q2, K14, V16, L17

5 K15, S1, Q2, K14, A39, L17

K15, S1, Q2, K14, V40, I13

Epi#05

G60, A56, L61, P99, G32, R31, H30, I97

10 G60, A56, L61, P99, G32, R31, H30, I28

Epi#06

G60, A56, D64, S57, K55, P66

G83, N46, D114, T49, K48, P79

15 G60, N103, D59, S101, R31, P95

Epi#08

K55, D64, S57, V106, F35

K55, E62, S57, V106, F35

20

Epi#09

L61, G60, E102, R128, I28, K126, N103, T123, V105

L61, G60, E102, R128, I127, K100, N103, T123, V105

L61, G60, E102, R128, I127, H124, N103, T123, V105

25

Epi#10

SAS: 435, Size 24.47: D69, T91, N93, F35, G32, R31

SAS: 422, Size 20.74: E38, T91, N93, F35, G32, K96

30 Epi#11

K14, I13, Q85, V81, E42

K15, I13, Q85, V81, E42

K14, I13, Q85, V40, D87

Epi#12

Y86, E42

Y90, E53

Y90, E38

5

Epi#13

H30, A125, P26, T123, A122, P19, L37, P34, W92

H30, A125, P26, T123, A122, H124, S24, G23, G20

H30, A125, P26, T123, A122, P19, L17, G20, F35

10

Epi#15

K55, P66, D69, I68, K89, A72

K55, P66, D69, I68, K89, A39

K55, P66, D64, I54, K109, G115

15 K55, P66, D64, I54, K109, A9

Epi#18

R31, I29, A125, S101, E102, N103

R31, I29, A125, S101, E102, V104

20 R31, I29, A125, T123, A122, V105

Epi#22

D69, P66, D64, V65, K55

D64, P66, D69, T91, K89

25 D59, L61, D64, P66, W92

D59, L61, D64, V65, E62

D69, P66, D64, V65, E53

Epi#24.

30 D64, K55, E62, P99, R31, P34, K96

E53, K55, E62, P99, R31, P95, K96

D64, K55, E62, P99, R31, A98, K96

Epi#25

R31, H30, I28, E102, N103 R128, K126, I127, E102, N103 R128, K126, I28, E102, V105

5 Epi#27

D64, E53, D69, K89

D69, E53, D64, K55

D59, E62, D64, K55

10 Epi#28

V40, D87, Q85, E42, Q84, G83, K82

G20, H22, Q2, L17, E38, L37, Q36, P34, K33

G20, H22, Q2, L17, E38, L37, F35, P34, K33

15 Epi#29

I97, K100, L61, E62

G60, N103, L61, E62

I127, N103, L61, E62

20 Epi#30

G60, N103, S101, H30, K96, I97, P95

G60, N103, A125, H30, K96, I97, P95

128, 1127, A125, H30, K96, I97, P95

25 Epi#33

Q36, F35, V106, S57, A56, K55

K33, F35, V106, S57, A56, K55

Epi#34

30 I28, P26, S24, G23, G20, T123, S57

128, P26, S24, V3, G20, T123, T107

W92, P34, T91, V18, G20, T123, P26

Epi#37

P66, V63, L61, K100, N103

P95, A98, L61, K100, N103

P19, V18, L17, K89, D87

P19, V3, L17, K89, D87

5 T123, V104, L61, K100, N103

Epi#38

L61, G60, E102, A125, V105, N103, P99, S57

L61, G60, E62, A56, V105, N103, P99, S57

10

Epi#39

A125, E102, H124, T123, P26, G20, L17

Epi#40

15 G60, L61, A56, T107, K6, T123

A39, L17, G20, T123, P26, S24

G60, L61, A56, T107, K55, S57

G60, L61, A56, T123, K126, S101

20 Epi#41

P19, L17, V3, S1

P19, L17, V5, S24

Epi#44

25 V65, D64, P66, W92, Y90, A39, V18, P19

L61, D64, P66, W92, Y90, A39, V18, T91

Epi#45

R31, P34, F35, N93, V94

30 K96, P34, F35, N93, G32

Epi#47

I127, S101, R31, I97, A98, L61, N103, P99, P95

128, S101, R31, I97, A98, L61, N103, P99, S57

Epi#48

H30, K96, P95, P99, G60

H30, K96, P34, P19, G20

5 H30, K96, P34, P19, V18

H30, K96, P34, P95, V94

H30, K96, P34, P19, V3

E38, K89, P70, P66, V65

H30, K96, P95, P34, G32

10 Q36, K89, P70, P66, V65

Epi#50

D69, Y90, W92, P66, P70

D69, Y90, W92, P34, P95

15 D69, Y90, W92, T91, P34

D69, Y90, W92, V94, P95

D69, Y90, W92, L37, P19

Epi#51

20 K126, H124, E102, R128, I28, R31, H30
T123, H124, K126, R128, I28, R31, H30
D4, H124, K126, R128, I28, R31, H30

25 Phl p2:

Epi#02

T87, K85, Q61, S38, R34, R67

T87, K85, Q61, P63, R34, V42

30

Epi#03

K10, A90, I88, Y86

K10, A18, I88, Y86

Epi#04

R34, S38, Q61, K85, T87, I88

R34, S38, Q61, K85, T87, A90

s Epi#05

G47, A18, S12, T87, G89, T91, T5, V1

G73, A29, L69, T27, G50, T53, T45, V42

G11, A18, L20, T91, G89, A90, T87, I88

10 Epi#06

A93, P94, D79, R34, Q61, P59

A93, P94, D79, R34, Q61, P83

A93, P94, D80, R34, Q61, P59

A93, P94, D79, R34, Q61, P63

15

Epi#08

K10, E9, G11, A18, H16, F54

K46, E48, G47, A18, H16, F54

K10, E9, S12, A18, H16, F54

20

Epi#09

L69, T27, G73, N76, R67, V77, D79, R34, A43, T45, V42

L69, T27, A29, E30, R67, V77, D80, R34, A43, T45, V42

25 Epi#10

D55, A18, N13, S12, F54, G47, K46

T45, A18, N13, S56, F54, G47, K46

Epi#09

30 L60, S56, E57, D55, K15, N13, S12, G11

L60, S56, E57, D55, H16, F54, T45, T53

L60, S56, R57, D55, H16, F54, T45, G47

Epi#12

Y86, E84 Y23, E24

Epi#18

5 N76, R67, F78, V81, A93, Y92, T91, T5, P2, V1

Epi#19

D39, W41, S38, Q61, R34, G37 E40, W41, S38, Q61, R34, A43

10

Epi#22

D79, P94, D80, P83, K85 D79, P94, D80, P63, K85

15 Epi#23

K10, N13, E14, L60, Q61, P59 K10, N13, E14, L60, Q61, P83 K10, N13, E14, L60, Q61, P63

20 Epi#24

E58, K15, E57, P59, S56, E14, Q61 D55, K15, E57, P59, S56, E58, Q61

Epi#25

25 R34, R67, W41, D39, E40

Epi#26

S38, E40, W41, V42, E32, E30 S38, E40, W41, V42, A43, E32

30

Epi#27

B14, E57, E58, K15

D55, E14, E84, K85

Epi#28

G37, H36, Q61, K85, E84, L60, F54, A43, K46

G37, H36, Q61, K85, E84, L60, F54, S12, D55

G37, H36, Q61, K85, E84, L60, F54, S56, D55

5 G37, H36, Q61, K85, E84, L60, F54, A43, R67

G37, H36, Q61, K15, E57, L60, F54, A43, K46

G37, H36, Q61, K85, E84, L60, F54, S12, K15

G37, H36, Q61, K85, E84, L60, F54, S56, K15

G37, H36, Q61, K85, E84, L60, F54, A43, R34

10 G37, H36, Q61, K85, E84, L60, F54, A18, D55

Epi#29

G73, K72, L69, R67, E30

188, N13, L60, F54, E57

15 G25, K72, L69, R67, E32

V77, K75, L69, R67, E30

G37, H36, L60, F54, E57

G37, Q61, L60, F54, E57

20 Epi#30

188, N13, S12, H16, K15, P59, L60

188, N13, S56, H16, K15, L60, P59

188, N13, A18, H16, K15, P59, L60

25 Epi#33

K46, F54, V42, S56, K15

H16, F54, V42, S56, K15

Epi#34

30 V1, P2, T5, V4, P94, Y92, T87

V1, P2, T5, L20, G89, T91, T87

V81, P94, T5, V1, P2, Y92, T91

Epi#37

T27, A29, L69, K72, D26 A43, R67, L69, K75, N76

Epi#38

5 L20, G89, E9, A18, N13, P59, S56

Epi#40

G49, L20, G89, Y86, K85, T87

G49, L20, G89, T87, K10, S12

10 G49, L20, G89, T87, K10, T7

Epi#44

V77, R67, D79, P94, Y92, A93, V1, P2

L69, R67, D79, P94, Y92, A93, V1, T5

15

Epi#45

D79, P94, F78, N76, M74, L69

D80, P94, F78, R67, D79, V77

K3, P94, F78, N76, M74, G73

20

Epi#46

A43, R67, R34, P63, H36, Q61

V77, R67, R34, P63, H36, G37

L69, R67, R34, P63, G37, Q61

25

Epi#47

G37, E35, E40, A43, R34, L60, N13, P59, S56

V77, E32, E40, A43, R34, L60, N13, P59, S56

S38, G37, E40, A43, R34, L60, N13, P59, S56

30

Epi#48

E24, K3, P94, P2, V1

E84, D80, P94, P2, V1

Epi#50

D39, W41, A43, T45

D39, W41, V42, T45

5 Epi#51

D79, H36, E84, T87, K10, G11, H16

D39, H36, Q61, K85, P63, R34, W41

D79, H36, E40, D39, G37, R34, W41

Q61, H36, E84, T87, K10, G11, H16

10

Table 8: Each row indicates an epitope pattern. At each position (from 1 up to a maximum of 12) the cells indicate which amino acids (single letter coding) that are at that position. The last column indicates the patterns that were identified using IgE antibody binding.

		ľ				Γ								Γ	Γ		Ţ.	Ī	Γ		Γ			Γ	Γ			Γ
		L		_	1gE	ᆱ			18E	1BE	Ц	19E	19E	19E	L	38	36	L	ョ	L		10E	19E	믬	믬	IgE	IgE	196
5	12																					as						
+													LIS.									FRN.						
96	2												DGNT									~		۷				
6	,			-	,						او		AGI:				SAH			Rat		CSF.		>				
8				2000	UNIC	ALT		Ç	,	,		CAROCA	ENTOY.	DEC			LKWA	EH	,			, 		۷				
7		•		0	1220	ZV	97	2		Ü	5	۵	ž Į	¥ is		-		Z	,		16.0	2		-			32	3
ç				KR	At DOC	יייין אַנייי	\ \ \	RNAFIS	S A S	٥	XX.	All V.	NO	-	-		- ONE	NAID	ME			130		١	,	RK	¥	
co Co				X	G	-	1 6	PH.	PAN	.5	1	۵	AST.	E E		V	()	-	ORSW		ST.	NIN.	-	- 8		Z	EA	2
4				NHC	PRT	¥	:0	0	۵	2	FSG.	RKH	ن	-		Ha			SDN	A		OSC	KN		ASI PM.	Ш		RKH
ro .		•		Y8	>	AH.	KRY	ASTR-	STRC	₩.	Ϋ́Ą	ANF	L.	o		ALS.	2	_	PA	S	Ť	σ	٥	-	۵	SYLN-	TSFR	š
7				RQ	~	_	ANRTV-	STH	KROSA	Ь	÷	STAN	RG	>	>	90	σ	RKQT.	∀	~	AEHNPT.	œ	0	8	ACLPTVWY.	LaF	AELFPR-	DE
-				TS	8v	>	AGIL	GILVY	Ь	۵	1	NRGLTV-	X	DE	_	FWYGL	90	AG	DN		VLSFN	AGLKM	۵	D.	EDKW	AP	ΚQ	EN
Logicon	Epitope	Pattern	Number	-	~	က	4	5	8	7	8		10	11	12	.13	14	15	16	17	18	19	20	2.1	22	23	24	25

E

				, in	1	10	3	<u>u</u>				IgE			JaE	loE				lgE		•		lgE	Э	IgE						
		71							1			=			TP	2				51	-	-		B)	g,	B)						+
	,,														4														٥			
	40	2													٧			1											×	-		
	0					AGILV									>		د.					-	-	12.03			LIAGVS		3			
	æ					HO.								,	اف		g				-	1,5	2 6	2		2 27.00	AGSTLE	1	i	1		
	-			A		σ		150	ag			17.00	X.	,	-		3	4				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5	200	200	20	2			DVODT	עעמקו	- •
	9			2		FIKLW.		LIMN	z	u	KOH	dW	200	200	,		AK-	ш	AGR		ď	7 0		770	70 1/10	AN MANY		c	,	1	1	4
	10		1	ü		E	GILV	AS-	צם	×	YF	STM	-	16	200	¥ :	ž	Ŧ		å	NOG	£	8	1	8	AR	SHOE	c	UHA	DEKOHT	1010	פואוי
	4		19,	100	100	CPIKLW.	KROHNGP	Ξ	FW	¥	ďΑ	GLV	Ą-	ķ	VOV	75.	L.K.	RT.	AG	ų, X	÷	S	\ \	,	R	LFOA.	KHOD	WYC.	WY.	DSRTOGKH.		٤
	er .		AHO	-	10	<u>.</u>	7	IKLPOS-	MV-	DE	S	GPR.	S	PV.	-	1 2			ֻ		å	ME	SA	RN	۵	z	d	TMC	3	LIRKGP	3	
-	2		AGE	DE C	ADSG	-02-20	ż	a l	Ė	f-	SA-	STY	¥	¥	KR	a		9	APK.	;	œ	æ	AGV	-QW	HNOGC	RP	d.	Ġ	STAPLWV	TSKHRQG	DNT.	
Table 8 - continued.	-		DE	×	DKB			١	2	>	KR	STP	_	AW	ΩÀΩ	5.		,	ST.	St	RQ	7-	PT	. LVG	AGG	PS	ςΛ	KN	PST	HM	c	
Table 8 -	Position	Epitope	26	27	28				5	32	33	34	35	38	37	E .	1	2	\$	41	42	43	4	45	46	47	48	49	20	61	62	

ហ

WO 01/83559 PCT/DK01/00293

208

Example 10

For this example the third-generation epitope sequences were determined in further 11 environmental allergens (Bosd2, Equc1, 5 Gald4-mutant (with alanine substituted for glycine in position 102), Hevb8, Profillin1-AC, Profillin1-AT, Profillin2-AC, Profillin-birch pollen, Rag weed pollen5 and Vesv5), based on their structures sequences (SEQ ID NO: 12, 13, 15, 16, 17, 18, 19, 20, 21 and 22, respectively), their structures (1bj7.pdb, 1ew3.pdb, 1flu.pdb, 1g5u.pdb, 1prq.pdb, 1a0k.pdb, 1f2k.pdb, 1cqa.pdb, 1bbg.pdb, and 1qnx.pdb, respectively), and computer modelling of the epitope patterns that had been assembled in our database (shown in Table 8). Further, the epitope sequences of the four environmental allergens of example 9, Bet v1, Der f2, Der p2, and Phl p2, were redetermined.

The additional allergens arise from common sources of allergy: cows (Bos d2 which is a bovine member of the lipocalin family of allergens), horses (Equ C 1, a major horse allergen aslo of the lipocalin family), Hen egg white (Lysozyme Gal D 4), Latex (Hev b8, a profilin from Hevea Brasiliensis), Acanthamoeba castellani (Profilin1-AC, a profilin isoform IA and Profilin2-AC, a profilin isoform II), Arabidosis thaliana (Profillin1-AT a cytoskeleton profilin), Birch (Profilin-birch pollen (Birch pollen profilin), Rag weed pollen5 (Ragweed pollen allergen V from Ambrosia trifida) and whasp venom (Ves v5 allergen from Vespula vulgaris venom).

The protein surface is scanned for epitope patterns matching the given "consensus" sequence of about 6-12 residues. First, residues on the protein surface that match the first residue of the consensus sequence are identified. Within a specified distance from each of these, residues on the protein surface that match the next residue of the consensus sequence are identified. This

procedure is repeated for the remaining residues of the consensus sequence. The method is further described under the paragraph "Methods" above and the program can be found in Appendixes.

5

The critical parameters used in this screening included:

- i) a maximal distance between the alfa-carbon atoms of subsequent amino acids,
- ii) a minimal accessability of the amino acid of 20Å2,

iii) the largest maximal distance between the most distinct amino acids should be less than 25Å

- iv) the best epitope were taken,
- v) the homology with the epitope pattern of interest was 100%

15

10

In this way a number of potential epitopes are identified. The epitopes are sorted according to total surface accessible area, 20 and certain entries removed:

a. Epitopes that contain the same protein surface residue more than once. These are artefacts generated by the described algorithm.

25

- b. Epitopes which are "too big", i.e. where a distance between any two residues in the epitope exceeds a given threshold.
- 30 The epitope sequences found were:

Bosd2:

35

Epi#01

L65, P155, P156, R17, R40, N37, Y39, R41, T67 L65, P155, P156, R17, R40, N37, Y39, R41, S52 L64, P155, P156, R17, R40, N37, Y39, R41, T54

5 Epi#02

T121, K150, S122, R17, P156, Y39, R41, R40 T121, K150, S122, R17, P156, Y56, R36, V30

Epi#03

10 L128, K130, H92, I7, Y76
L134, K130, H92, I7, Y76
L128, K130, H92, I91, Y76

Epi#04

15 R72, Y76, S50, Q73, K71, V69, I45 K71, Y76, S50, Q73, R72, V69, L80 K71, Y76, S50, Q73, R72, V69, I42

Epi#06

20 G14, P13, D47, S10, K11, P9
G14, P13, D47, S10, S94, P9
G14, P13, D47, C44, S10, P9

Epi#08

25 K71, E49, S50, V69, F82 K71, E49, S50, V79, F82

Epi#09

I7, S10, D8, E95, K119, N96, S122, T121 30 S10, I7, D8, E95, K11, N96, S122, T124

Epi#10

E15, T54, R41, T67, F55, R17, K119 E43, T54, R41, T67, F55, R17, K119 35 E31, T151, N153, C63, F55, R40, R41

E31, T151, N153, C154, F55, R41, R17

Epi#11

K26, I145, Q132, E143

40 K26, I145, Q132, E137 K26, I145, Q132, E129

Epi#12

Y105, E108

45 Y83, E81

Epi#15

N153, P156, D152, I149, T121, G120 R17, P156, D152, I149, T121, G120 50 N153, P156, D152, I149, R17, G14

```
Epi#18
  R109, I110, G107, Y83, T85, E81, V69
  R109, I110, G107, Y105, T85, E81, V69
  Epi#19
  E43, N46, S50, Q73, R72, K71
  D47, N46, S50, Q73, R72, G75
  E49, N46, S50, Q73, R72, K71
10 I45, N46, S50, Q73, R72, K71
  Epi#20
  V30, K28, P34, L57, L65, K58, D59, G32, D27
  V30, K28, P34, L57, L64, K58, D59, G33, D27
  Epi#22
  D8, S10, D47, P13, E15
  D8, S10, D47, P13, E43
  D47, S10, D8, V93, E95
20 D8, S10, D47, C48, K71
  Epi#23
  K119, N96, E127, S122, L128, P125
  K150, N147, E146, Y20, F123, P125
25 K11, N96, E127, S122, L128, P125
  Epi#24
  E129, K130, E126, P125, S122, L128, Q133
  E126, K130, E129, P125, S122, R17, K119
30 E126, K130, E129, P125, T124, L128, Q133
  Epi#25
  R72, K71, I45, D47, N46
  R72, K71, I45, E43, N46
  Epi#27
  D47, E49, E74, K71
  D24, E143, E146, K150
  D47, E43, E15, K119
40
  Epi#28
  L134, Q133, L128, E126, K130, F123, S122, K150
  Q132, K130, E126, L128, F123, S122, K150
  L65, D59, Q60, K58, E31, L57, G32, D27
45 G61, D59, Q60, K58, E31, K28, G32, D27
  Epi#29
  V69, K71, L80, R72, E74
  I45, K71, L80, R72, E74
50 G61, Q60, L64, F55, E68
```

Epi#30 G120, N96, S94, H92, K130, L128, P125 I91, I7, S94, H92, K130, L128, P125

Epi#33 K130, F123, P125, S122, K150 K71, Y76, P9, S10, S94, K119

10 Epi#34 17, P9, S10, G14, R17, T121, S122 145, P13, S10, G14, R41, Y39, P156

Epi#37

15 T67, V69, L80, K71, Y76 P156, R40, L65, K58, D59 P155, R40, L65, K58, N153

Epi#38

20 L80, G84, E108, R109, N25, P141, S136

Epi#39 E137, R138, P141, G139, L134 E31, L57, R36, P34, G84, L80

Epi#40 R17, G120, T121, K150, S122 R17, G120, T121, K150, T151

30 Epi#41 P34, Y83, L80, V69, S52 P34, Y83, L80, V79, S50

Epi#42

35 L128, P125, S122, G120, R17, R41 L128, P125, S122, G120, R17, R40

Epi#44

S10, D47, P9, Y76, S50, V69, T67 40 I45, D47, P9, Y76, S50, V69, T67

Epi#45

D27, P34, F82, Y105, R109, D106, G107 D59, P34, F82, Y105, R109, D106, G107

45 K58, P34, F82, Y105, R109, D106, G107 D27, P34, F82, Y105, R109, D106, G84

Epi#46

Y39, R41, R40, P155, C63, Q60 50 Y20, R17, R40, P155, C63, Q60

Epi#47
L128, E126, E129, L134, R138, Q133, N142, P141, S136
V69, E81, E68, I42, R41, F55, N37, R40, P156
5 V69, E43, E15, I42, R41, F55, N37, R40, P156
S122, E127, E129, L134, R138, Q133, N142, P141, S136
Epi#48
E43, D47, P13, P9, V93
10 S10, D47, P9, P13, G14
E43, D47, P13, P9, V90
E49, D47, P13, P9, V93

Equc1:

Epi#02

L66, N68, A65, F90, S69, Y72, R64, V89
20 A65, R64, S31, F28, S112, Y123, R110, V108
L179, R180, Q178, F177, P143, Y38, R141, V145
L66, R64, S31, F28, S112, Y123, R110, V125
L66, N68, A65, F90, S69, Y72, R64, V62

25 Epi#03 K32, A65, I63, Y72

Epi#05

G35, A65, S69, T93, G97, R26, S112, Y123 30 G35, A65, S69, T93, G97, R26, S112, I25

Epi#07 G97, T93, S70, D91, S100, R110, V125, P132, D128

35 Epi#08

K129, D130, F127, V108, F90 K129, D130, F127, V108, F109 K129, D130, F127, V125, F136 K129, D130, F127, V125, F133

Epi#10

40

45

E48, N53, N80, T77, C83, F177, R175, K172 E82, N80, N53, T77, C83, F177, G181, R180 E52, N53, N80, T77, C83, F177, R175, K172

Epi#11

F133, K47, I167, Q158, V163, E165

Epi#12 50 Y38, E142

Y38, E36 Y139, E142

Epi#13

5 K129, P132, D45, I167, Q158, G161 R131, P132, D45, I167, K164, G161

Epi#16

P87, Y72, R64, S70, S69, D67, A65, N68

10

Epi#17

A65, S31, R64, S34

Epi#18

15 R64, S31, I30, A65, S34, L66, N68, S69

Epi#19

E82, N80, C83, Q178, R175, K172

20 Epi#22

D130, P132, D128, Y106, K129

Epi#23

D144, K150, E148, P147, S146, E151, K155

25

Epi#25

R160, K159, I156, E151, E148

Epi#27

30 E118, E142, D144, K172 E36, E142, D144, K172

Epi#28

I173, D174, Q178, L179, E85, C83, F177, G181, R180

35 I173, D174, Q178, L179, E85, C83, F177, P143, D144

Epi#29

G181, Q178, L179, R180, E36

G181, Q178, L179, R180, E85

40

Epi#30

I30, N27, S112, H119, I121, I25, V23

Epi#31

45 L122, R110, N27, R26, F28, I30, D96 L124, R110, N27, R26, F28, I30, D96

Epi#33

H119, Y38, V62, S34, S31, R64

50

Epi#34

V62, P87, M88, V89, R64, S31, S34

Epi#37

5 P87, V89, L66, R64, D67

Epi#40

R64, L66, A65, Y72, S34 R64, L66, A65, Y72, S69

10

Epi#41

P132, Y106, L101, V89, S100 P132, Y106, L101, V89, S70

15 Epi#44

V46, R131, D128, P132, Y106, S100, V89, P87

Epi#45

K129, P132, F127, Y106, N102, D91, V89

20 K129, P132, F127, Y106, N102, D104, G105

Epi#47

S146, E148, E152, V23, R26, A24, N27, R110, S112 V23, E115, E118, N116, R26, F28, N27, R110, S112

25

Gald4:

30

Epi#01

L75, N65, P70, R73, R61, N59, Y53, R45, T47 L75, N65, P70, R68, R61, N59, Y53, R45, T47

35 Epi#02

A90, N77, L75, R73, P70, R61, R68 A122, R125, Q121, T118, R114, R112

Epi#04

40 R21, Y20, S24, Q121, R125, R128, L129 R21, Y20, S24, Q121, R125, R128, G126

Epi#05

G16, A10, R128, G126, A122, T118, G117 45 G4, A10, R128, G126, A122, T118, G117

Epi#06

G67, P79, D66, R61, R73, P70

G67, N65, D66, S72, R73, P70

50 G49, N46, D48, R61, R73, P70

Epi#07 G71, T69, D66, S72, R73, P70, D48 G67, T69, D66, S72, R73, P70, D48

Epi#08 K1, D87, S86, V2, F38 K1, D87, S86, V2, F3

10 Epi#09

Epi#10 E7, A11, R14, A10, C6, F3, R5, R125 D87, A11, R14, A10, C6, F3, R5, R125 15 T47, N46, N44, S36, F34, R114, R112 D18, A10, R14, A11, C6, F3, R5, R125 T118, N113, R112, A110, F34, R114, K116

Epi#11 20 L129, I124, Q121, V120, D119

Epi#12 Y53, E35

35

25 Epi#15 R73, P70, D66, I78, A82 R73, P70, D66, I78, A90

Epi#17 30 A102, S100, R21, S24

Epi#18
R112, N113, R114, F34, V109, A107, A102, N103
N113, R112, R114, F34, V109, A107, N103, S100

Epi#19 D18, N19, S24, Q121, R125, L129 D18, N19, S24, Q121, R125, G126

40 Epi#22 D48, P70, D66, W63, W62 D66, P70, D48, T69, W62 D48, P70, D66, W63, K97

45 Epi#23 R45, N44, E35, N39, Q41, A42 R45, N44, E35, Y53, Q41, A42

Epi#25 50 R128, R125, W123, D119, N27

R128, R125, W123, D119, V120

Epi#26

W62, S72, W63, P79, A82, D87 5 W62, S72, W63, P79, G67, D66

Epi#28

G117, D119, Q121, I124, E7, C6, F3, A11, R14 A122, D119, Q121, I124, E7, C6, F3, A11, R14

10

Epi#29 G126, R125, L129, R128, E7

G16, R14, L129, R128, E7

is Epi#30

I124, L129, A10, H15, I88, L84 I124, L129, A11, H15, I88, L84

Epi#31

20 L75, R73, N65, R61, W62, I98, D101 L75, R73, N74, R61, W62, I98, D101

Epi#33

Q41, F38, V2, S86, S85, K1

25 Q41, F38, V2, S36, A110, R114

Epi#34

W63, W62, T69, G71, R73, S72, P70 W62, W63, S72, L75, R73, T69, P70

30

Epi#36

A110, A107, A102, S100, K96, A90, A82

Epi#37

35 A10, R128, L129, R14, D18 A10, R128, L129, K13, N19

Epi#40

R128, L129, A11, T89, A90, S85
40 R14, L129, A11, T89, A90, S85

Epi#41

Y53, L84, S81

Y53, L84; S86

45

Epi#42

P79, S81, N65, P70, R61, R73 P79, S81, N65, P70, R61, R68

50 Epi#44

L129, R14, D18, Y20, S24, V120, T118 L129, R14, D18, Y23, S24, V120, T118

Epi#46

5 L75, R61, R73, P70, N65, G67 L75, R73, R61, P70, N65, A82 L75, R61, R68, P70, N65, G67

Epi#47

10 S72, G71, R68, N65, R61, L75, N77, R73, P70 G67, S72, R68, N65, R61, L75, N77, R73, P70

Epi#49

D87, L84, Q41, Q57, Y53, T43, N44

15 D87, L84, Q57, Q41, Y53, T43, N46

D87, L84, Q41, Q57, Y53, T43, N39

Epi#50

R73, W62, W63, P79, S81 20 R73, W63, W62, S72, P70

Epi#51

D18, H15, K13, R14, L129, R125, W123

25 Epi#52

F34, A110, R112, R114, W111, N27, Q121 F3, A11, E7, R5, W123, D119, Q121 W123, A122, T118, R114, W111, N27, Q121

30

Hevb8:

Epi#01

L20, P109, P112, K86, R84, N116, Y125, Q129, T111 35 L110, P109, P112, K86, R84, N116, Y125, Q129, T111

Epi#02

A48, K43, Q41, F42, T70, Y72, R84, V74 T21, R19, P109, P112, R84, V74

40 A49, K43, Q41, F42, T70, Y72, R84, V74

Epi#03

L65, K86, I75, Y72

45 Epi#05

G30, A48, L60, P62, G58, T63, H66, G69 G58, A61, R84, P112, G113, T111, S89, G88 G80, A81, F54, P79, G58, T63, H66, G69 G77, A81, F54, P79, G58, T63, H66, G69

```
Epi#06
   G58, P79, D55, S59, K52, P57
   G80, P79, D55, S59, K52, P57
   G77, P79, D55, S59, K52, P57
   Epi#07
   G17, T5, S2, D16, R19, P109, D107
   Epi#08
10 K52, D45, S44, A49, H66, F42
   Epi#10
   E78, A81, R96, F54, G58, K52
   D55, A81, R96, F54, G80, K52
   Epi#11
   F54, L60, I83, Q76, V82, E78
   Epi#12
20 Y106, E108
   Epi#13
   H66, L65, P62, T63, A61, P57, A81, P79, G58
   H66, L65, P62, T63, A61, P57, A81, P79, G80
25 H66, L60, P62, T63, A61, P57, A81, P79, G77
   Epi#15
  R19, P109, D107, I105, K86, G88
30 Epi#18
  R19, G17, P109, S89
  Epi#22
  D29, S44, D45, A48, K52
35 D29, M51, D55, P79, E56
  D45, M51, D55, P79, E78
  D29, S44, D45, A49, K52
  D45, M51, D55, P79, E56
  D29, M51, D55, P57, E78
40 D29, M51, D55, P57, E56
  D45, M51, D55, P57, K52
  D45, M51, D55, P57, E78
  Epi#24
45 D55, K52, E56, P79, F54, E78, Q76
  D45, K52, E56, P57, F54, E78, Q76
  Epi#25
  R84, K86, I105, D107, E108
50 R96, H28, I26, D29, V3
```

Epi#26 W33, S2, W3, V32, G30, D29

5 Epi#27
 D53, E56, D55, K52

Epi#28

V32, Q41, K43, E46, K52, F54, P57, D55 10 G69, Q41, K43, E46, K52, F54, P57, D55

Epi#29 G130, Q99, L127, R96, E78 L127, Q99, L131, R96, E78

15 G98, Q99, L127, R96, E78

Epi#30 G69, L67, A49, H66, K71, L65, P62 G80, M51, A48, H28, Q99, L127, L131

Epi#33 Q41, F42, V32, S31, S44, K43 Q41, F42, V47, S44, A48, K52 Q41, F42, V47, S44, A49, K52

Epi#34 I105, P112, S89, L110, R19, T21, S37 I105, P112, T111, L20, R19, T21, S37

30 Epi#37 T63, A49, L60, K52, D55 P62, V74, L60, K52, D45 P62, A61, L60, K52, D55

35 Epi#38 G77, E78, R96, V82, R84, N116, P112, S89

Epi#39 A48, E46, H66, T63, P62, G58, L60 40 A49, E46, H66, T63, P62, G58, L60

Epi#40 R19, L110, G113, T111, P109, S89 R19, L110, G113, T111, P112, S89

Epi#41
P62, L65, V47, S44
P109, Y106, L110, S89
P112, Y106, L110, S8

Epi#44

L20, R19, D16, W3, Y6, S2, G17, P109 L110, R19, D16, W3, Y6, S2, G17, P109

5 Epi#45

K52, P57, F54, R96, D124, L127 D55, P79, F54, R96, D124, L131

Epi#47

10 175, G77, E78, V82, R84, N116, P112, S89 175, G77, E78, I83, R84, N116, P112, P109

Epi#48

E78, Q76, P79, P57, G58

15 E78, Q76, P79, P57, G80 E78, Q76, P79, P57, G77

Epi#50

D9, W3, W33, S2, T5

20 D16, W3, W33, S2, T5

Epi#51

R19, H18, E108, S89, K87, K71, H66 R19, H18, E108, D107, K87, K71, H66

25

Profillin1-AC:

Epi#01

30 L116, N111, P106, K80, K81, N101, S83, Q105, T108 L116, N111, P106, K80, K81, N101, Y100, Q105, S83

Epi#02

T44, N51, P54, R56, T69, Y78, R71, V68

35 L24, K93, S92, R75, S76, Y78, R71, R56

Epi#03

L24, K93, I121, Y119

L24, K90, I121, Y119

Epi#04

40

K80, Y100, S83, Q105, K103, N101, G82

K80, Y100, S83, Q105, K103, T17, G12

K80, Y100, S83, Q105, K103, T17, G14

Epi#05

G34, A33, A36, T38, G64, A63, H66, V68 G34, A33, S32, T17, G12, T4, S1, Y5

50 Epi#06

A46, N50, D53, R56, A57, P54 A52, N50, D53, R56, A57, P54 A72, N50, D53, R56, A57, P54 A57, P54, D53, S47, Q43, P39 Epi#07 G64, T38, D61, S58, R56, A57, P54, D53 G64, T38, D61, S58, R56, A52, P54, D53 10 Epi#08 K103, E102, G82, V68, H66, F60 K81, E102, G82, V68, H66, F60 Epi#09 15 L24, S47, D53, A57, V68, R71, L70, R56, N51, N50, R75 L24, S47, D53, A57, V68, R71, L70, R56, N51, T44, T38 Epi#10 D74, N50, N51, T44, F60, R56, R71 20 D53, N50, N51, T44, F60, R56, R71 Epi#11 F125, K93, I121, Q123, D118 F125, K90, I121, Q123, D118 25 F49, K90, I121, Q123, D118 Epi#12 Y119, E114 Y100, E102 30 Epi#13 A57, R56, P54, T44, A40, P39, A36, G64, Y67 S58, A57, P54, T44, A40, P39, A36, G64, Y67 35 Epi#15 N51, P54, D53, I55, R56, A57 R56, P54, D53, I55, T69, A57 R56, P54, D53, I55, T44, A40 40 Epi#16 Q105, P106, Y100, G14, Q18, S32, A36, A33, D7 Q105, P106, Y100, G14, Q18, S32, A36, A63, D61 Epi#17 45 A110, S76, R75, S92 A72, S76, R75, S92 Epi#18 N51, N50, R75, S92, L24, S47, T44, P39, N27 50 N51, N50, R75, S92, L24, T28, T38, P39, N27

Epi#22 D53, S47, D25, L24, K93 D53, S58, D61, V68, K81

) — • • •

Epi#23 K103, N101, E102, S83, Q105, P106 K103, N101, E102, S83, Q105, A84

10 Epi#24
E114, K115, A110, P106, S83, E102, K103
D53, G59, A57, P54, R56, L70, K80
E102, K103, A15, P106, S83, A84, Q105

15 Epi#25 R71, R56, I55, D53, N50 R71, R56, I55, D53, N51

Epi#28

20 I104, Q105, K103, E102, K81, S83, K80 G107, Q105, K103, E102, K81, G82, K80 A84, Q105, K103, E102, K81, S83, K80 A110, Q105, K103, E102, K81, S83, K80

25 Epi#29 I121, K115, L116, E114 V112, K115, L116, E114

Epi#30

30 G59, I55, S58, H66, K80, L70, V68 G59, I55, S58, H66, K80, P106, V99

Epi#33

K80, Y78, V68, S58, A57, R56 35 K81, Y67, V68, S58, A57, R56

Epi#34

I55, P54, S58, V68, R71, Y78, P106 W29, W2, T4, V11, G12, Y5, S1

40

Epi#36

A63, A36, A33, V11, G14, Y100, S83, Q105, K103, P106, A110, A15 A63, A36, A33, V11, G14, Y100, T108, Q105, K103, P106, A15, A110

45 Epi#37

A57, R56, L70, R71, Y78 A57, V68, L70, R56, D53 Y78, R71, L70, R56, N51 P54, R56, L70, R71, D73

50 T69, R71, L70, R56, D53

Epi#38 G82, E102, A84, V99, N101, P106, S83

5 Epi#40

R71, L70, A72, Y78, K80, S83 R71, L70, G59, T69, K81, S83 R56, L70, A72, T69, K81, S83

10 Epi#41 P106, Y78, L70, V68, S58

Epi#42

P54, S47, N51, R56, R71 15 P54, S58, G59, R56, R71

Epi#44

S83, Q105, P106, Y78, A110, G107, T108 V68, R71, D73, Y78, A110, G107, T108 20 L70, R71, D73, Y78, A110, V112, T108

L70, R71, D73, Y78, A110, G107, P106

Epi#45

K81, H66, F60, R56, D53, G59 25 K80, H66, F60, R56, D53, G59 D61, H66, F60, R56, D53, G59

Epi#46

L70, R71, R56, P54, N51, A52 30 L70, R71, R56, P54, N51, A72 V68, R71, R56, P54, N51, A46 Y78, R71, R56, P54, G59, A57

Epi#47

35 V68, A57, R56, L70, R71, A52, N51, P54, S58 S58, A57, R56, L70, R71, A72, N51, P54, S47

Epi#49

D25, L24, Q43, Q41, T44, N51 40 D25, L24, Q43, Q41, T38, N27

Epi#50

D7, W2, W29, S1, T4 D7, Y5, W2, W29, S1

45

Epi#51 K80, H66, D61, T44, P39, T28, W29 K80, H66, D61, T38, P39, T28, W29 WO 01/83559 PCT/DK01/00293

225

Profillin1-AT:

Epi#01 P109, P89, K86, R84, N116, Y106, Q114, T111 Epi#02

L42, K43, Q45, F66, T63, Y72, R84, V74 L42, K43, Q45, F66, T63, Y72, R84, V82

10 Epi#03
K96, I127, Y125
K86, I75, Y72

Epi#05

15 G77, A81, F54, P57, G58, A61, T63, V74 G58, A61, F59, P57, G77, A81, T97, G80 G80, A81, F54, P57, G58, A61, T63, Y72

Epi#06

20 G17, P109, D107, T21, K38, P40 G112, P109, D107, T21, K38, P40 G88, P89, D107, T21, K38, P40

Epi#08

25 K52, E55, G58, V74, F66 K51, E55, G58, A61, F59

Epi#09

D29, D48, K52, F59, A61, T63 30 D29, D48, K51, F59, A61, T63

Epi#10

E108, T111, N18, T21, F39, G68, K71 E108, T111, N18, T21, F105, G112, K86

35

Epi#11 F105, K86, I75, Q76, V82, E78 F66, K43, I47, Q28, V32, D29 F59, K52, I47, Q28, V32, D29

Epi#12 Y125, E130 Y125, E128

45 Epi#15

K43, P44, D29, I47, K52, G58 K43, P44, D48, I47, Q45, G49 K43, P44, D29, I47, K51, G80

50 Epi#20

K38, P40, F39, L42, K43, D48, G30, D29 K51, P57, F59, L60, K52, D48, G30, D29

Epi#22

5 D48, P44, D29, V32, W33 D48, P44, D29, V32, W3

Epi#24

D29, K51, E56, P57, F59, E55, Q79

10 D48, K52, E55, P57, F59, E56, Q79

Epi#25

R121, K95, I83, D53, E55

R121, K95, I83, E78, V82

15

Epi#26

W33, S2, W3, V32, G30, D29

Epi#27

20 El28, El30, Dl24, K96 El30, El28, Dl24, K95

Epi#28

175, Q76, E78, Q79, P57, K51

25 A61, Q76, E78, Q79, P57, K52

V32, D29, Q99, E130, I127, S129, D124

V32, D29, Q99, I127, E128, S129, D124

Epi#29

30 V32, Q41, L42, F66, E70

G69, Q41, L42, F66, E70

G68, Q41, L42, F66, E70

Epi#30

35 G17, N18, H19, Q114, L117, V15 G17, M110, H19, Q114, L117, V15 G113, M110, H19, Q114, L117, V15

Epi#33

40 Q41, F39, P40, S36, A37, K38

Epi#34

V74, P62, M73, G88, P89, Y106, T111

45 Epi#37

T111, V15, L117, R121, Y125 T111, V15, L117, R121, D124

Epi#39

50 A81, R55, P57, G58, L60

A81, E78, P57, G58, L60

Epi#40

R121, L117, G112, Y106, P109, T111 5 R121, L117, G112, Y106, P89, T111

Epi#41 Y125, L131, S129

10 Epi#44

175, R84, Y72, A61, G58, P62 175, R84, Y72, A61, V74, T63

Epi#45

15 K38, P40, F105, Y106, N18, D14, G17 K38, P40, F105, Y106, N18, D107, G88 K38, P40, F105, Y106, N18, D14, V15

Epi#48

20 E16, H19, P109, P89, G88 E16, H19, P109, P89, G112

Epi#49

D124, L131, Q99, Q28, T97, N98 25 D124, L131, Q99, Q28, T97, K96

Epi#50

D9, Y6, W3, W33, S2 D9, W3, W33, S2, S5

30 D9, W3, W33, V32, S31

Epi#51

D14, H19, E108, T111, L117, R121, H10 D107, H19, E16, Q114, L117, R121, H10 35 D14, H19, D107, T21, K38, Q35, W33

Profillin2-AC:

40 Epi#01

L116, N111, P106, K80, K81, N101, S83, Q105, T108 L116, N111, P106, K80, K81, N101, S83, Q105, T108

Epi#02

45 T53, N58, S57, R56, T69, Y67, R66, V68 T53, K50, A52, R56, T69, Y67, R66, V68 T53, K50, A72, R56, T69, Y67, R66, V68

Epi#03

50 L116, K115, I121, Y119

50 Epi#22

228

Epi#04 K81, Y100, S83, Q105, K103, T17, G12 K80, Y100, S83, Q105, K103, A84, G82 5 K81, Y100, S83, Q105, K103, T17, G14 K80, Y100, S83, Q105, K103, N101, I104 K81, Y100, S83, Q105, K103, A15, G107 Epi#06 10 A54, N47, D25, T28, A36, P39 A40, N27, D25, T28, A36, P39 A44, N47, D25, T28, A36, P39 G34, A33, D7, T31, A36, P39 A43, N47, D25, T28, A36, P39 15 Epi#08 K103, E102, G82, V68, F60 K103, E102, G82, V68, F60 K81, E102, G82, V68, F60 Epi#10 T53, N58, R56, S57, F60, R66, K81 E61, N58, R56, S57, F60, R66, K80 25 Epi#11 F125, K93, I121, Q105, E102 F125, K93, I121, Q123, D118 Epi#12 30 Y100, E102 Y119, E114 Epi#13 A52, A44, P39, A43, H24, S92, G124, Y119 35 A46, A44, P39, A43, H24, S92, G124, Y119 Epi#15 K103, P106, D118, I121, K93, G124 K103, P106, D118, I121, Q105, G107 40 K103, P106, D118, I121, Q123, G122 Epi#16 Q105, P106, Y78, R71, S57, N58, A54, A44, D51 Q105, P106, Y78, R71, R56, D51, D74, A52, N47 45 Epi#18 R66, N58, R56, S57, V68, G82, S83, E102, N101 R66, N58, R56, S57, V68, G82, S83, P106, N101

D74, A52, D51, T53, K50 D25, A44, D51, T53, K50 D74, A46, D51, T53, K50 D74, A72, D51, T53, K50

. Epi#23

K103, N101, E102, S83, Q105, P106 K103, N101, E102, S83, Q105, A84

10 Epi#24

D74, K81, A84, P106, S83, E102, K103 D74, K81, E102, P106, T108, A15, K103

Epi#25

15 R66, K81, E102, N101

Epi#28

I121, D118, Q105, K103, E102, K81, G82, D74 G107, D118, Q105, K103, E102, K81, G82, D74 20 G122, D118, Q105, K103, E102, K81, G82, D74

Epi#29

I121, K115, L116, E114 V112, K115, L116, E114

25

Epi#30 I55, N47, A44, H24, K93, I121, L116 I55, N47, A43, H24, K93, I121, L116

30 Epi#31

R56, N58, R66, F60, V68, I55, D51 R66, N58, R56, F60, V68, I55, D51

Epi#33

35 K115, Y119, P106, S83, A84, K103 Q123, Y119, P106, S83, A84, K103 K81, Y67, V68, S57, A54, R56 K80, Y78, V68, S57, A54, R56

40 Epi#34

W29, W2, T8, V11, G12, T4, S1 W29, W2, T4, G12, G14, T13, T8

Epi#37

45 T108, V112, L116, K115, Y119 T108, A110, L116, K115, N111 T13, V112, L116, K115, D118 P106, A110, L116, K115, N111

50 Epi#38

G64, E61, A40, V37, N27, P39, S38 G82, E102, A84, V99, N101, P106, S83

Epi#39

5 A110, E114, T108, P106, G122, L116

Epi#40

G14, G12, T17, K103, S83

R56, A52, T53, A54, S57

10 R66, A63, T65, K81, S83

R56, A72, T53, A54, S57

R56, G59, T53, A54, S57

R66, G64, Y67, K81, S83

15 Epi#42

P106, S83, G82, R75, R71

Epi#44

S1, Q3, D7, W2, Y5, S32, G12, T8

20 S1, Q3, D7, W2, Y5, A30, A36, P39

S1, Q3, D7, W2, Y5, S32, V11, T8

S1, Q3, D7, W2, Y5, S32, G12, T4

S1, Q3, D7, W2, Y5, A30, A33, T31

S1, Q3, D7, W2, Y5, A30, A36, T28

25 S1, Q3, D7, W2, Y5, S32, G12, T13 S1, Q3, D7, W2, Y5, S32, G34, T31

Epi#45

K93, H24, F49, R75, D74, G82

30 D25, H24, F49, R75, D74, G82

Epi#47

A36, G64, E61, A40, A44, A54, N58, R56, S57

35 Epi#50

D7, Y5, W2, T8, S1

D7, W2, W29, T28, P39

Epi#51

40 K90, H24, K93, D25, P39, T28, W29

T91, H24, K93, D25, P39, T28, W29

Profillin-brich pollen:

45

Epi#01

L124, N118, P114, K88, K73, H68, Y74, R86, T95

Epi#02

50 T113, N118, Q116, P114, R86, V76 T50, K54, L62, T65, Y74, R86, V84

```
Epi#03
  L133, K98, I129, Y127
 5 Epi#04
  S40, Q43, K45, T50, G32
  S40, Q43, K45, T50, G51
  S40, Q43, K45, T50, I49
10 Epi#05
  G82, A81, A83, P59, G60, A63, T65, V76
  G82, A83, A81, P59, G60, A63, H61, V76
  G79, A81, A83, P59, G60, A63, T65, V76
15 Epi#06
  G70, P46, D31, T50, K54, P59
  A81, P59, D55, T50, Q47, P46
  G32, P46, D31, T50, K45, P42
  G51, P46, D31, T50, K54, P59
20
  Epi#08
  A81, E57, G60, A63, H61, F56
  A81, E57, G60, V76, H68, F44
  K54, E57, G60, A63, H61, F56
25
  Epi#11
  F56, K98, I85, Q78, V84, E122
  F56, K98, I27, Q37, V34, D31
  F56, K97, I85, Q78, V84, E80
30
  Epi#12
  Y6, E9
  Y127, E122
35 Epi#13
  H68, L62, P64, T65, A63, P59, A81, G82, G79
  H61, L62, P64, T65, A63, P59, A81, G79, F56
  H68, L62, P64, T65, A63, P59, A83, G79, G60
40 Epi#15
  K45, P46, D31, I49, Q47, G32
  K45, P46, D31, I49, K54, G60
  K45, P46, D31, I49, K54, G82
  K45, P46, D31, I49, T50, G51
45
  Epi#16
  Q116, P114, Y108, M12, S39, S40, A23, A24, D8
  Q116, P114, Y108, M12, Q37, S40, A23, A24, D8
  R86, Pl14, Y108, M12, S39, S40, A23, A24, D8
```

```
Bpi#22
  D126, L133, D130, Y127, E122
  D130, L124, D126, Y127, E122
  D130, L128, D126, Y127, E122
  Epi#23
  R123, N118, E122, L124, L11, A23
  R123, N118, E122, L124, L11, A36
  R123, N118, E122, L124, L11, A24
  Epi#24
  E109, G90, E110, P114, R86, E80, Q78
  E57, K54, E58, P59, F56, A81, Q78
  E58, G60, E57, P59, F56, E80, Q78
15
  Epi#25
  R86, K88, I107, E109, E110
  R86, K88, I77, E80, V84
  R86, K88, I107, E109, V112
  Epi#27
  57, E58, D55, K54
  D55, E57, E58, K54
25 Epi#28
  V34, D31, Q101, K98, E122, L128, Q131, G132, D130
  I129, D126, Q131, L128, E122, K98, Q101, G100, D130
  172, H68, Q47, F44, E48, K45, Q43, G70, K73
  172, H68, Q47, I49, E48, K45, Q43, G71, K73
  Epi#29
  I129, Q101, L128, R123, E122
  G132, Q131, L128, R123, E122
35 Epi#30
  177, M75, A63, H61, P59, L62, P64
  G90, M75, A63, H61, K54, L62, P64
  Epi#33
40 Q116, Y108, P111, S91, K89
  K88, Y108, P111, S91, K8
  Epi#34
  V76, P64, M75, L62, G51, T50, P46
45 I27, W35, S33, V34, G32, T50, P46
  V76, P64, T65, L62, G51, T50, P46
  Epi#35
  A24, L22, A23, S39, M12, I107
50 A23, L11, A36, S39, M12, I10
```

Epi#37 Y127, R123, L124, K97, N118 Y108, A23, L11, R123, Y127 5 A23, A24, L11, R123, Y127

Epi#39

A81, E57, H61, T65, P64, G60, L62 A81, E58, H61, T65, P64, G60, L62

10

Epi#40

R123, L11, A23, Y108, P111, S91 R123, L11, A24, Y108, P111, T113

15 Epi#41

P111, Y108, L22, V112, S91 P114, Y108, L22, V112, S91

Epi#43

20 I27, W35, A36, L11, Q37, S39, M12, I107, T95

Epi#44

177, R86, P114, Y108, S91, V112, P111
V120, Q116, P114, Y108, S91, V112, P111
25 L22, Q116, P114, Y108, S91, V112, T113
L22, Q116, P114, Y108, A23, V112, P111

Epi#47

I129, Y127, E122, M119, R123, L124, N118, R86, P114 30 L133, Y127, E122, M119, R123, L124, N118, R86, P114

Epi#48

E122, Q116, P114, P111, V112 S91, K88, P114, P111, V112

35

Epi#50

H10, Y6, W3, S2, T5 H10, Y6, W3, T5, S39

40 Epi#51

K73, H68, K45, Q47, P46, S33, W35 Q101, H30, D31, T50, K45, Q47, H68

45 Rag weed pollen5:

Epi#03

L4, K37, A33, I34, Y17 L4, K37, A33, I34, Y29

Epi#05
A33. N36. T4

A33, N36, T40, G3, S20, L4

A33, N38, T40, G3, S20, Y25 A33, N36, G3, T40, S20, I22

5

Epi#06

A33, N36, D2, C19, K24, P21

A33, N38, D2, S20, K24, P21

10 Epi#09

I22, L4, D2, N38, D1, K37, A33, N36, T40

T9, G15, E7, V14, D30, K32, N36, T40, L4

T9, G15, E7, V14, D30, K32, N38, N36, L4

15 Epi#12

Y17, E7

Y6, E7

Epi#20

20 V27, K24, P21, L4, K37, D2, G3, D1

V27, K24, P21, L4, N36, D2, G3, D1

Epi#22

D1, D2, L4, K37

25 D1, D2, P21, K24

D2, L4, T40, D1

Epi#23

N10, E7, Y6, L4, P21

30

Epi#25

K32, I34, D30, V14

K37, I34, D30, V14

K16, I34, D30, V14

35

Epi#33

K32, Y17, V27, S20, K24

K16, Y6, P21, S20, K24

40 Epi#34

I22, P21, S20, V27, G12, Y17, T9

122, P21, S20, V27, G12, Y29, S31

Epi#40

45 G12, G15, Y29, K37, T40

G15, G12, Y17, K16, T9

G12, G15, Y29, K32, S31

Epi#41

50 P21, Y6, L4, S20

Epi#44 L4, D2, P21, Y25, S20, V27, T40 L4, D2, P21, Y25, S20, G3, T40

Vesv5:

Epi#01

10 L59, P67, P65, K143, K144, N64, Y140, R62, T61 L59, P67, P70, R57, K204, N73, Y201, Q202, T203 L59, P67, P69, R57, K72, N73, Y201, Q202, T203 L152, N149, P142, K145, K143, N64, Y140, R62, T61

15 Epi#02

L9, K7, Q108, P191, Y107, R102, V13 L9, K7, Q108, S192, Y107, R102, V13

Epi#03

20 L9, K7, A105, I6, Y3

Epi#04

K106, Y107, S192, Q108, K7, A105, I6 K106, Y107, S192, Q108, K7, V13, G12

25

Epi#05

G58, A56, R57, P69, G66, R62, T61, L59 G58, A56, R57, P69, G63, R62, T61, L59

30 Epi#06

G66, N64, D139, R62, K138, P67 G66, N64, D139, R62, K138, P65 G63, N64, D139, R62, K138, P67

35 Epi#08

K145, E199, S147, F151 K196, E198, S147, F151 K144, E199, S147, F151

40 Epi#09

L152, D150, S147, K144, N64, T61, L59 L152, D150, D139, K153, F151, S147, N197 D139, N64, R62, D135, K153, F151, S147, N197

45 Bpi#10

E199, N197, N194, S147, F151, G148, K143 E199, N197, N194, S147, F151, G148, K196 E199, N197, N194, S147, F151, G148, K145

50 Epi#11

```
K179, I176, Q177, V30, E178
K29, I176, Q177, V30, E178
```

Epi#12

5 Y201, E199

Epi#13

\$147, L200, P142, T203, A56, P70, L59, P67, G66 \$147, L200, P142, T203, A56, P69, L59, P67, G58 10 \$147, L200, P142, T203, A56, P70, L59, P67, G63 \$147, L200, P142, T203, A56, P69, L59, P67, Y140

Epi#15

K106, P191, D103, I6, K5, A105 15 K106, P191, D103, I6, K7, G12

Epi#16

R57, P70, Y201, M74, Q53, N76, D50, A56, N73 R57, P69, Y201, M74, Q53, N76, D50, A56, N73 20 Q108, P191, Y107, R102, Q111, S192, D103, A105, N2

Epi#18 R57, L59, T61, P67, N64 R57, L59, T61, P65, N64

25

Epi#19 E167, N164, S192, Q108, R102, K7 E198, N194, S192, Q108, R102, K7

D103, T100, C8, Q108, R102, K7

30

Epi#22 L9, D103, T100, K10 A105, D103, L9, K7 D50, L45, D43, T37, K38 35 S147, D150, L152, K153

Epi#23

K196, N197, E199, N164, Q202, P70 K145, N197, E199, N164, Q202, P69

40

Epi#24

E198, K196, E199, P142, T203, P69, K143 E198, K145, E199, P142, T203, P70, K204 E198, K196, E199, P142, T203, P70, K72 45 E198, K145, E199, P142, F146, F151, K196

Epi#25

R57, K54, D50, N76 R57, K54, D50, E47

Epi#27 D43, E40, D125, K122 D50, E47, D43, K38

5 Epi#28 Q202, E199, K196, F151, S147, K144 Q202, E199, K196, F195, S147, K145

Epi#29

10 G58, R57, L59, R62, E136 G148, K145, L200, F195, E199 G148, K145, L200, F195, E198

Epi#33

15 K23, Y19, P24, S21, A16, K18 K23, Y34, P24, S21, A16, R102

Epi#34

I176, W180, T116, L115, G117, T119, S118 20 V31, P24, S21, L22, G35, Y34, T37

Epi#37

P69, R57, L59, K54, D50 P70, R57, L59, R62, D135

25 A56, R57, L59, R62, N64 P69, R57, L59, R62, D139

Epi#39

E199, L200, T203, P70, G58, L59 30 E198, L200, T203, P69, G58, L59

Epi#40

R57, L59, G58, T203, P69, T61 R57, L59, A56, Y201, K204, T203

35 R57, L59, A56, Y201, K72, T203

Epi#41

P24, Y19, L22, S21 P24, Y34, L36, S33

40

Epi#42 P191, S192, Q111, H98, R102, Q108

Epi#44

45 L59, R57, P70, Y201, A56, G58, T61 L59, R57, P69, Y201, A56, G58, T203 L59, R57, P70, Y201, A56, G58, P67

Epi#45

50 K153, H156, F151, Y140, N149, D150, L152

D135, H156, F151, Y140, N141, D150, L152 K143, P142, F146, Y140, N149, D150, L152

Epi#47

- 5 G58, L59, R57, M74, A56, Q202, N73, P70, P69 G148, Y140, R62, L59, R57, A56, N73, P70, P67 G66, G63, R62, L59, R57, A56, N73, P70, P67 G155, E136, R62, L59, R57, A56, N73, P70, P67
- 10 Epi#48 Q202, K204, P69, P67, G58 Q202, K204, P70, P67, G63 Q202, K72, P70, P67, G66
- 15 Epi#49
 D125, D43, L45, V78, Q42, Q39, T37, K38
 D125, D43, L45, V78, Q42, Q39, T37, K41

Epi#50 20 H98, Y96, W90, L22, S21 H98, Y96, W90, P24, S33

Epi#52 F0, A16, R102, W90, N25, Q95 25 F0, A16, R102, W90, N25, Q93

Betv1:

30

Epi#03

SAS: 270, Size 11.07: L24, K20, H76, I23, Y81 SAS: 204, Size 11.96: L24, K20, A16, I23, Y81

35 Epi#05

SAS: 298, Size 14.01: G110, A106, A16, P14, G111, T10 SAS: 242, Size 14.01: G110, A106, A16, P14, G111, T107

Epi#08

40 SAS: 464, Size 11.12: K123, E127, G1, H121, F3 SAS: 455, Size 12.95: K129, E127, G1, H121, F3 SAS: 438, Size 13.31: K123, D125, G1, H121, F3 SAS: 428, Size 11.12: K123, E127, V2, H121, F3 SAS: 425, Size 11.65: K123, E127, G124, H121, F3

Epi#09

45

SAS: 466, Size 20.55: D109, A106, V105, K80, A16, T77 SAS: 444, Size 20.55: D109, G110, V105, K80, A16, T77 SAS: 427, Size 20.55: D109, G111, V105, K80, A16, T77 50 SAS: 398, Size 19.17: T10, G110, V105, K80, A16, T77 WO 01/83559 PCT/DK01/00293

```
SAS: 381, Size 19.17: T10, G111, V105, K80, A16, T77
   Epi#10
   SAS: 558, Size 15.18: D75, T77, N78, A106, F79, R17, K20
 5 SAS: 549, Size 21.96: E6, T7, N4, F3, G1, K123
   SAS: 517, Size 13.31: D75, T77, N78, A16, F79, R17, K20
   SAS: 497, Size 15.13: D75, T77, N78, A16, F22, R17, K20
   Epi#12
10 SAS: 335, Size 9.08: T7, Y5, E6, N4
   SAS: 331, Size 11.28: R145, Y150, E148, L152
   SAS: 326, Size 10.37: R70, Y83, E73, P50
   SAS: 311, Size 10.32: I116, Y5, E6, N4
   SAS: 308, Size 8.33: R145, Y150, E148, S149
15
   Epi#18
   SAS: 328, Size 24.67: S117, K103, F79, V105, A16, Y158, L24
  Epi#22
20 SAS: 533, Size 9.96: D125, D93, K123, E127
   SAS: 533, Size 9.96: D93, D125, K123, E127
  SAS: 476, Size 11.40: D125, D93, K123, E96
  SAS: 476, Size 11.40: D93, D125, K123, E96
   SAS: 400, Size 17.99: D125, D93, P90, E87
25
  Epi#23
  SAS: 451, Size 22.02: K68, N43, E42, S57, F64, P63
  SAS: 450, Size 22.02: K55, N43, E42, S57, F64, P63
  SAS: 428, Size 22.02: K68, N43, E42, S57, L62, P63
30 SAS: 427, Size 22.02: K55, N43, E42, S57, L62, P63
  SAS: 412, Size 18.85: K68, N43, E42, S40, F30, P35
  Epi#24
  SAS: 734, Size 18.92: E127, K123, E96, P90, S136, E131, K129
35 SAS: 729, Size 18.92: D93, K123, E96, P90, S136, E131, K129
  SAS: 716, Size 19.57: E127, K123, E96, P90, S136, E131, K134
  SAS: 711, Size 19.57: D93, K123, E96, P90, S136, E131, K134
  SAS: 708, Size 20.49: D125, K123, E96, P90, S136, E131, K129
40 Epi#25
  SAS: 467, Size 12.68: R70, K55, I44, E42, E45
  SAS: 425, Size 12.68: R70, K54, I44, E42, E45
  SAS: 420, Size 14.01: R70, K55, I44, D27, B42
45 Epi#27
  SAS: 613, Size 14.25: D93, E127, A130, E131, K129
  SAS: 595, Size 16.54: D93, E127, A130, E131, K134
  SAS: 592, Size 16.70: D125, B127, A130, B131, K129
  SAS: 574, Size 19.79: D125, E127, A130, E131, K134
50 SAS: 524, Size 18.78: D93, E127, A130, E131, K137
```

```
Epi#28
  SAS: 869, Size 21.93: V33, Q36, F58, E60, L62, F64, P63, K65
  SAS: 837, Size 21.83: V33, Q36, F58, E60, L62, F64, G61, K65
5 SAS: 808, Size 24.56: V33, Q36, F58, E60, L62, F64, P90, K65
  SAS: 783, Size 21.83: V33, Q36, F58, E60, K65, F64, S57, K68
  SAS: 782, Size 21.83: V33, Q36, F58, E60, L62, F64, S57, K65
  Epi#29
10 SAS: 516, Size
                   9.52: G61, K65, L62, E60
  SAS: 440, Size
                   8.70: G61, P63, L62, E60
  SAS: 371, Size 6.78: G61, P59, L62, E60
  Epi#32
15 SAS: 374, Size 17.88: F79, A16, A106, D109, V12
  SAS: 354, Size 20.42: F22, A16, A106, D109, V12
  Epi#33
  SAS: 541, Size 18.79: K65, F64, P90, S136, A135, K134
20 SAS: 498, Size 9.15: Q36, F30, P35, S39, K32
  SAS: 496, Size 11.27: Q36, F30, P35, S40, K32
  SAS: 494, Size 12.19: Q36, F58, P35, S39, K32
  SAS: 493, Size 18.79: K65, Y66, P90, S136, A135, K134
25 Epi#36
  SAS: 447, Size 19.17: T77, A16, A106, V12, G110, T10
  SAS: 430, Size 19.17: T77, A16, A106, V12, G111, T10
  SAS: 392, Size 19.17: T77, A16, A106, V105, G110, T10
  SAS: 391, Size 19.17: T77, A16, A106, V12, G110, T107
30 SAS: 375, Size 19.17: T77, A16, A106, V105, G111, T10
  Epi#40
  SAS: 246, Size 21.55: Al06, Al6, Y158, S155
  SAS: 223, Size 13.25: A135, A130, Y5, T7
35 SAS: 196, Size 14.88: A135, A130, Y5, S117
  SAS: 178, Size 10.62: Al35, G140, T142, S136
  Epi#44
  SAS: 530, Size 19.04: L24, R17, D156, Y150, S149, V12, T10
40 SAS: 492, Size 19.04: I23, R17, D156, Y150, S149, V12, T10
  SAS: 490, Size 17.39: L24, R17, D156, Y150, S149, V12, P14
  SAS: 483, Size 23.09: L24, R17, D156, Y158, A16, A106, P108
  SAS: 474, Size 20.83: L24, R17, D156, Y150, S149, V12, T107
45 Epi#45
  SAS: 606, Size 21.41: K32, P35, F30, Y150, R145, V12
  SAS: 546, Size 20.89: K32, P31, F30, Y150, R145, V12
  SAS: 533, Size 15.19: K32, P35, F30, Y150, R145, G140
  SAS: 533, Size 12.63: K32, P35, F30, Y150, R145, V33
50 SAS: 532, Size 19.60: K32, P35, F30, N28, D27, I44
```

```
Epi#47
  SAS: 333, Size 21.03: R17, L24, N28, P31, P35
  SAS: 300, Size 22.72: R17, L24, N28, P31, S39
5 SAS: 298, Size 21.80: R17, L24, N28, P31, S40
  SAS: 269, Size 24.87: R17, L24, N28, P31, S57
  Epi#48
  SAS: 436, Size 14.26: S57, K65, P90, P63, G61
10 SAS: 414, Size 17.96: S39, K32, P35, P59, G61
  SAS: 412, Size 17.96: S40, K32, P35, P59, G61
  SAS: 389, Size 18.32: S57, K65, P63, P90, G92
  SAS: 365, Size 21.15: S57, K65, P59, P35, V33
15 "SAS" is solvent accessible surface. "Size" is the total suface
  area of the epitope in A2.
  Derf2:
20
  Epi#02
  A98, K100, S101, P99, R128, R31
  A98, K100, R128, P99, R31, V94
  T91, N93, P95, P34, R31, R128
25 L61, N93, P95, P34, R31, R128
  Epi#03
  L40, K15, A39, I13, Y86
  L40, K14, A39, I88, Y90
30
  Epi#05
  G32, A98, R31, P34, G20, T36, T91, Y90
  G32, A98, R31, P34, G20, T36, T91, V94
  G32, A98, R31, P34, G20, T36, T91, L37
35 G32, A98, R31, P34, G20, T36, T91, V18
  Epi#06
  A98, P99, D129, R31, K96, P95
  G32, P99, D129, R128, R31, P95
40 A98, P99, D129, R31, K33, P95
  A98, P99, D129, R31, K96, P34
  A98, P99, D129, R128, K126, P26
  Epi#07
45 T107, S57, D59, S101, R128, A98, P99, D129
  T107, S57, D59, S101, R31, A98, P99, D129
  Epi#08
```

K15, D87, V76, H74, F75 50 K14, D87, V76, H74, F75

K77, D87, V76, H74, F75

Epi#09

L61, D64, I68, H74, F75, T70, N71 5 N114, N46, D113, K48, N71, T70, T49 G83, N46, D113, K48, N71, T70, T49

Epi#10

L40, I13, D42, N44, V81, K48, N46, N114, G115

10 L40, I13, D42, N44, V81, K82, N46, N114, G115

L37, D19, G20, V18, V3, D4, K6, A120, T107, V105

Epi#11

F75, K51, I111, Q45, V116, D113

15 F75, K51, I111, Q45, V81, D113

Epi#12

Y90, E38

20 Epi#13

H30, R31, P95, A98, P99, S101, G60, L61

Epi#15

K96, P99, D129, I28, R128, A98

25 K96, P99, D129, I127, R128, A98

K96, P99, D129, I29, R128, A98

K55, P66, D64, I68, T70, G67

Epi#18

30 R31, R128, I28, G125, T123, H124, V105 R31, R128, I127, G125, T123, H124, V105

Epi#22

D1, M17, D4, V3, K6

35 D1, M17, D19, P34, K96

D1, M17, D4, V5, K6

Epi#23

K14, N11, E12, N44, Q85, P79

40 K14, N11, E12, N10, Q45, P79

K14, N11, E12, N44, Q84, P79

K14, N11, E12, L40, Q85, P79

Epi#24

45 D129, K100, E102, P99, R128, R31, K96 E62, G60, E102, P99, R128, R31, K96 D129, K126, E102, P99, R128, R31, K33 D129, K126, E102, P99, R31, P95, K96

50 Epi#25

R31, K96, I97, D59, E62 R128, R31, I97, D59, E102 R128, K126, I127, E102, N103

5 Epi#27

D64, E62, D59, K100

D59, E62, D64, K55

D87, E38, D19, K33

D19, E38, D87, K15

10 D19, E38, D87, K14 D19, E38, D87, K77

Epi#28

V16, D87, Q85, K14, E12, K15, Q2, D1

15 I13, D87, Q85, K14, E12, K15, Q2, D1

V3, D1, Q2, K15, E12, K14, Q85, D87 L40, D87, Q85, K14, E12, K15, Q2, D1

188, D87, Q85, K14, E12, K15, Q2, D1

V76, D87, Q85, K14, E12, K15, Q2,D1

20 V18, D1, Q2, K15, E12, K14, Q85, D87

Epi#29

G32, N93, L61, E62

V94, N93, L61, E62

25

Epi#30

G60, I97, A98, H30, K96, P34, P95

I68, N71, H74, K77, P79, V81

G32, I97, A98, H30, K96, P95, P34

30

Epi#34

V105, P26, S24, G125, R128, S101, P99

W92, P34, T91, V94, R31, S101, P99

I28, P26, T123, G125, R128, S101, P99

5

Epi#37

A120, V16, L40, K14, N11

A39, V16, L40, K14, N11

Y90, A39, L40, K14, N11

40 Y86, A39, L40, K14, N11

Epi#39

A120, E38, T91, P34, G20, L37

A39, E38, T91, P34, G20, L37

Epi#40

G20, L37, A120, T123, K6, S24

A39, L37, A120, T123, K6, S24

G20, L37, A120, T107, K6, T123

Epi#41 P34, L37, V106, S57

Epi#42

5 P26, S24, G125, R128, R31 P99, S101, G125, R128, R31

Epi#44

V16, Q2, D19, P34, W92, Y90, A39, V18, T91
10 V16, Q2, D19, P34, W92, Y90, A39, V5, T123
V3, Q2, D19, P34, W92, Y90, A39, V18, T91

Epi#45

K77, H74, F75, N71, D69, G67 15 K77, H74, F75, N71, D69, V76 K77, H74, F75, N71, D69, V65

Epi#46

A98, R128, R31, P95, N93, G32 20 A98, R128, R31, P34, G20, Q2

Epi#48 Q2, D19, P34, P95, G32 H30, K96, P95, P34, G20

25

Epi#49
D87, D42, L40, Q85, Q84, C78, T47, Q45, K48
D87, D42, L40, Q85, Q84, C78, T47, Q45, K82

30 Epi#50 D19, W92, P34, T91 D19, W92, P34, P95 D19, W92, T91, T36

35 Epi#51
D129, H30, K33, R31, R128, K126, H124
R31, H30, D129, R128, K100, K126, H124
T123, H124, K126, R128, R31, K33, H30

40

Derp2:

Epi#03

L17, K89, A39, I13, Y86
45 L17, K89, A72, I88, Y90
L17, K89, A72, I52, Y90

Epi#04

K15, S1, Q2, K14, V16, L17 50 K15, S1, Q2, K14, A39, L17

```
K15, S1, Q2, K14, V40, I13
  Epi#05
  G60, A56, L61, P99, G32, R31, H30, I97
5 G60, A56, L61, P99, G32, R31, H30, I28
  Epi#06
  G60, A56, D64, S57, K55, P66
  G83, N46, D114, T49, K48, P79
10 G60, N103, D59, S101, R31, P95
  Epi#08
  K55, D64, S57, V106, F35
  K55, E62, S57, V106, F35
15
  Epi#09
  L61, G60, E102, R128, I28, K126, N103, T123, V105
  L61, G60, E102, R128, I127, K100, N103, T123, V105
  L61, G60, E102, R128, I127, H124, N103, T123, V105
  Epi#10
  SAS: 435, Size 24.47: D69, T91, N93, F35, G32, R31
  SAS: 422, Size 20.74: E38, T91, N93, F35, G32, K96
25 Epi#11
  K14, I13, Q85, V81, E42
  K15, I13, Q85, V81, E42
  K14, I13, Q85, V40, D87
30 Epi#12
  Y86, E42
  Y90, E53
  Y90, E38
35 Epi#13
  H30, A125, P26, T123, A122, P19, L37, P34, W92
  H30, A125, P26, T123, A122, H124, S24, G23, G20
  H30, A125, P26, T123, A122, P19, L17, G20, F35
40 Epi#15
  K55, P66, D69, I68, K89, A72
  K55, P66, D69, I68, K89, A39
  K55, P66, D64, I54, K109, G115
  K55, P66, D64, I54, K109, A9
  Epi#18
  R31, I29, A125, S101, B102, N103
  R31, I29, A125, S101, B102, V104
  R31, I29, A125, T123, A122, V105
```

Epi#22

D69, P66, D64, V65, K55

D64, P66, D69, T91, K89

D59, L61, D64, P66, W92

5 D59, L61, D64, V65, E62

D69, P66, D64, V65, E53

Epi#24

D64, K55, E62, P99, R31, P34, K96

10 E53, K55, E62, P99, R31, P95, K96

D64, K55, E62, P99, R31, A98, K96

Epi#25

R31, H30, I28, E102, N103

15 R128, K126, I127, E102, N103

R128, K126, I28, E102, V105

Epi#27

D64, E53, D69, K89

20 D69, E53, D64, K55

D59, E62, D64, K55

Epi#28

V40, D87, Q85, E42, Q84, G83, K82

25 G20, H22, Q2, L17, E38, L37, Q36, P34, K33

G20, H22, Q2, L17, E38, L37, F35, P34, K33

Epi#29

197, K100, L61, E62

30 G60, N103, L61, E62

I127, N103, L61, E62

Epi#30

G60, N103, S101, H30, K96, 197, P95

35 G60, N103, A125, H30, K96, I97, P95

I28, I127, A125, H30, K96, I97, P95

Epi#33

Q36, F35, V106, S57, A56, K55

40 K33, F35, V106, S57, A56, K55

Epi#34

I28, P26, S24, G23, G20, T123, S57

128, P26, S24, V3, G20, T123, T107

45 W92, P34, T91, V18, G20, T123, P26

Epi#37

P66, V63, L61, K100, N103

P95, A98, L61, K100, N103

50 P19, V18, L17, K89, D87

P19, V3, L17, K89, D87 T123, V104, L61, K100, N103

Epi#38

5 L61, G60, E102, A125, V105, N103, P99, S57 L61, G60, E62, A56, V105, N103, P99, S57

Epi#39

A125, E102, H124, T123, P26, G20, L17

10

Epi#40

G60, L61, A56, T107, K6, T123

A39, L17, G20, T123, P26, S24

G60, L61, A56, T107, K55, S57

15 G60, L61, A56, T123, K126, S101

Epi#41

P19, L17, V3, S1

P19, L17, V5, S24

20

Epi#44

V65, D64, P66, W92, Y90, A39, V18, P19 L61, D64, P66, W92, Y90, A39, V18, T91

25 Epi#45

R31, P34, F35, N93, V94

K96, P34, F35, N93, G32

Epi#47

30 I127, S101, R31, I97, A98, L61, N103, P99, P95 I28, S101, R31, I97, A98, L61, N103, P99, S57

Epi#48

H30, K96, P95, P99, G60

35 H30, K96, P34, P19, G20

H30, K96, P34, P19, V18

H30, K96, P34, P95, V94

H30, K96, P34, P19, V3

E38, K89, P70, P66, V65

40 H30, K96, P95, P34, G32

Q36, K89, P70, P66, V65

Epi#50

D69, Y90, W92, P66, P70

45 D69, Y90, W92, P34, P95

D69, Y90, W92, T91, P34

D69, Y90, W92, V94, P95

D69, Y90, W92, L37, P19

50 Epi#51

K126, H124, E102, R128, I28, R31, H30 T123, H124, K126, R128, I28, R31, H30 D4, H124, K126, R128, I28, R31, H30

5 Phlp2:

Epi#02

T87, K85, Q61, S38, R34, R67 T87, K85, Q61, P63, R34, V42

10

Epi#03

K10, A90, I88, Y86 K10, A18, I88, Y86

15 Epi#04

R34, S38, Q61, K85, T87, I88 R34, S38, Q61, K85, T87, A90

Epi#05

20 G47, A18, S12, T87, G89, T91, T5, V1 G73, A29, L69, T27, G50, T53, T45, V42 G11, A18, L20, T91, G89, A90, T87, I88

Epi#06

25 A93, P94, D79, R34, Q61, P59 A93, P94, D79, R34, Q61, P83 A93, P94, D80, R34, Q61, P59 A93, P94, D79, R34, Q61, P63

30 Epi#08

K10, E9, G11, A18, H16, F54 K46, E48, G47, A18, H16, F54 K10, E9, S12, A18, H16, F54

35 Epi#09

L69, T27, G73, N76, R67, V77, D79, R34, A43, T45, V42 L69, T27, A29, E30, R67, V77, D80, R34, A43, T45, V42

Epi#10

40 D55, A18, N13, S12, F54, G47, K46 T45, A18, N13, S56, F54, G47, K46

Epi#09

L60, S56, E57, D55, K15, N13, S12, G11 45 L60, S56, E57, D55, H16, F54, T45, T53 L60, S56, E57, D55, H16, F54, T45, G47

Epi#12

Y86, E84

50 Y23, E24

```
Epi#18
  N76, R67, F78, V81, A93, Y92, T91, T5, P2, V1
 5 Epi#19
  D39, W41, S38, Q61, R34, G37
  E40, W41, S38, Q61, R34, A43
  Epi#22
10 D79, P94, D80, P83, K85
  D79, P94, D80, P63, K85
  Epi#23
  K10, N13, E14, L60, Q61, P59
15 K10, N13, E14, L60, Q61, P83
  K10, N13, E14, L60, Q61, P63
  Epi#24
  E58, K15, E57, P59, S56, E14, Q61
20 D55, K15, E57, P59, S56, E58, Q61
  R34, R67, W41, D39, E40
25 Epi#26
  S38, E40, W41, V42, E32, E30
  S38, E40, W41, V42, A43, E32
  Epi#27
30 E14, E57, E58, K15
  D55, E14, E84, K85
  Epi#28
  G37, H36, Q61, K85, E84, L60, F54, A43, K46
35 G37, H36, Q61, K85, E84, L60, F54, S12, D55
  G37, H36, Q61, K85, E84, L60, F54, S56, D55
  G37, H36, Q61, K85, E84, L60, F54, A43, R67
  G37, H36, Q61, K15, E57, L60, F54, A43, K46
G37, H36, Q61, K85, E84, L60, F54, S12, K15
40 G37, H36, Q61, K85, E84, L60, F54, S56, K15
  G37, H36, Q61, K85, E84, L60, F54, A43, R34
  G37, H36, Q61, K85, E84, L60, F54, A18, D55
  Epi#29
45 G73, K72, L69, R67, E30
  I88, N13, L60, F54, E57
  G25, K72, L69, R67, E32
  V77, K75, L69, R67, E30
  G37, H36, L60, F54, E57
50 G37, Q61, L60, F54, E57
```

```
Epi#30
  I88, N13, S12, H16, K15, P59, L60
  188, N13, S56, H16, K15, L60, P59
5 I88, N13, A18, H16, K15, P59, L60
  Epi#33
  K46, F54, V42, S56, K15
  H16, F54, V42, S56, K15
  Epi#34
  V1, P2, T5, V4, P94, Y92, T87
  V1, P2, T5, L20, G89, T91, T87
  V81, P94, T5, V1, P2, Y92, T91
15
  Epi#37
  T27, A29, L69, K72, D26
  A43, R67, L69, K75, N76
20 Epi#38
  L20, G89, E9, A18, N13, P59, S56
  Epi#40
  G49, L20, G89, Y86, K85, T87
25 G49, L20, G89, T87, K10, S12
  G49, L20, G89, T87, K10, T7
  Epi#44
  V77, R67, D79, P94, Y92, A93, V1, P2
30 L69, R67, D79, P94, Y92, A93, V1, T5
  Epi#45
  D79, P94, F78, N76, M74, L69
  D80, P94, F78, R67, D79, V77
35 K3, P94, F78, N76, M74, G73
  Epi#46
  A43, R67, R34, P63, H36, Q61
  V77, R67, R34, P63, H36, G37
40 L69, R67, R34, P63, G37, Q61
  Epi#47
  G37, E35, E40, A43, R34, L60, N13, P59, S56
  .V77, E32, E40, A43, R34, L60, N13, P59, S56
45 S38, G37, E40, A43, R34, L60, N13, P59, S56
  Epi#48
  E24, K3, P94, P2, V1
  E84, D80, P94, P2, V1
```

WO 01/83559 PCT/DK01/00293

251

Epi#50 D39, W41, A43, T45 D39, W41, V42, T45

5 Epi#51 D79, H36, E84, T87, K10, G11, H16 D39, H36, Q61, K85, P63, R34, W41 D79, H36, E40, D39, G37, R34, W41 Q61, H36, E84, T87, K10, G11, H16

Example 11

termined for some additional enzymes and redetermined for all of the enzymes in example 1-3. New enzymes are AMG (AMG.pdb), BPN' (1sup.pdb), Esperase (structure see Appendix D), Natalase (structure modelling based on SP722), Amylase-AA560 (Structure modelling based on SP722), Protease A, Alcalase, Protease B, ProteaseC, ProteaseD, ProteaseE, Properase and Relase based on their sequences and structures. The structures of Protease B, Properase, Relase, Protease A, Alcalase, ProteaseC, ProteaseD and ProteaseE can be found by "Homology modelling" (see above) and computer modelling of the epiope patterns that had been assembled in our database (shown in Table 8). Furhermore, the epitope sequences were redetermined for Carezyme, Laccase, PD498, Savinase, Amylase SP722, and Cellulase, according to the method.

The protein surface is scanned for epitope patterns matching the given "consensus" sequence of about 6-12 residues. First, residues on the protein surface that match the first residue of the consensus sequence are identified. Within a specified distance from each of these, residues on the protein surface that match the next residue of the consensus sequence are identified. This procedure is repeated for the remaining residues of the consensus sequence. The method is further described under the para-

252

graph "Methods" above and the program can be found in Appendixes.

The critical parameters used in this screening included:

- i) a maximal distance between the alfa-carbon atoms of subsequent amino acids,
- ii) a minimal accessability of the amino acid of 20Å2,
- iii) the largest maximal distance between the most distinct amino acids should be less than 25Å
- iv) the best epitope were taken,
- v) the homology with the epitope pattern of interest was 100%

15

25

10

5

In this way a number of potential epitopes are identified. The epitopes are sorted according to total surface accessible area, and certain entries removed:

- 20 1) Epitopes that contain the same protein surface residue more than once. These are artefacts generated by the described algorithm.
 - 2) Epitopes which are "too big", i.e. where a distance between any two residues in the epitope exceeds a given threshold.

The subtilisin sequences and positions mentioned in the following are not given in the BPN' numeration but in the subtilisins own numeration (see the alignement as described above in Tables 30 1A and 1B).

The epitope sequences found were:

AMG:

```
Epi#01
  L104, P123, P107, R125, R122, N182, S184, Q172, T173
  L104, P107, P123, R125, R122, N182, S184, Q172, S453
 5 L104, P107, P123, R125, R122, N182, S184, Q172, T452
  Epi#02
  L234, R241, S240, F237, T173, Y175, R122, R125
  L234, R241, S240, F237, T173, Y169, R125, R122
10 L234, R241, S240, F237, T173, Y175, R125, R54
  Epi#03
  L291, K404, I288, Y289
  L66, K61, H254, I253, Y329
15
  Epi#04
  R122, Y175, S184, Q172, Y169, A454, I455
  R122, Y175, S184, Q172, Y169, N171, A451
  R125, Y175, S184, Q172, Y169, T452, A451
20
  Epi#06
  G31, A24, D25, S30, A27, P41
  G146, N145, D144, T148, S149, P467
  A471, N145, D144, T148, S149, P467
  Epi#07 .
  G294, T290, S405, D293, S287, R286, P307, D283
  G294, T290, S287, D293, S296, R286, P307, D283
  G207, T204, S200, D214, S209, R160, P157, D153
30 G294, T290, S405, D293, S287, R286, P307, D309
  Epi#08
  A27, D25, S30, V111, F49
  A24, D25, S30, V111, F49
35
  Epi#09
  S149, T148, G146, N145, A471, R68, N69, T72, V470
  S73, S76, T72, N69, R68, A471, N145, T148
40 Epi#10
  D238, N182, N236, S240, F237, R241, K244
  D238, T173, N182, S239, F237, R241, K244
  Epi#11
45 F49, F109, I91, Q85, E113
  Epi#12
  Y363, E342
  Y311, E308
50 Y175, E180
```

```
Epi#13
  S119, W120, P123, A102, P94, S92, G90, L98
  S119, W120, P123, A102, P94, S92, G96, G90
  Epi#15
  K244, P307, D283, I288, T290, G294
  R160, P157, D153, I154, T462, G90
  R286, P307, D283, I288, T290, G294
10
  Epi#16
  L410, P46, Y48, R413, S397, S394, A392, A393, N395
  R160, P157, Y458, G456, S211, S209, A205, A201, D214
15 Epi#17
  A201, S209, R160, S459
  A205, S209, R160, S459
  Epi#19
20 D44, N45, S411, Q409, R413, L410
  D47, N45, S411, Q409, R413, L410
  Epi#20
  K61, P434, L66, L423, N427, D65, G70, D71
25
  Epi#22
  D357, S356, D349, V346, D345
  D349, S356, D357, A359, D345
  D357, S356, D349, L348, D345
30
  Epi#23
  K404, N292, E299, S298, L295, A300
  K404, N292, E299, S296, L295, A300
35 Epi#24
  D336, K337, E259, P258, S431, L332, K378
  D336, K337, E259, P258, S431, R429, K378
  D336, K337, A261, P258, S436, E259, Q338
40 Epi#25
  R125, R122, W120, E180, N182
  R241, K244, E308, N313
  Epi#26
45 W212, S200, E198, W437, V197, G438, E259
 W212, S200, E198, W437, V197, A201, D214
  Epi#27
  D283, E280, D349, K352
50 D403, E408, D406, K404
```

```
D349, E280, D283, K244
  D349, E280, D283, K279
  Epi#28
5 L332, D336, Q338, K337, E259, C262, P272, D345
  V374, D336, Q338, K337, E259, C262, P272, D345
  G339, D336, Q338, K337, E259, C262, P272, D345
  Epi#29
10 L295, G294, L291, R286, E299
  I288, K404, L291, R286, E299
  L348, K352, L354, F380, E299
  Epi#33
15 K352, Y355, V374, S371, S365, K337
  K352, Y355, V374, S365, S340, K337
  Epi#34
  V463, W466, S468, V470, P467, T464, T462
20 I469, W466, S468, V470, P467, T464, T462
  1154, W466, S468, V470, P467, T464, T462
  V463, W466, S468, V470, P467, S465, T464
  Epi#37
25 T362, A359, L348, K352, D357
  T360, V346, L348, K352, D357
  T362, A359, L348, K352, D349
  Epi#38
30 G438, E259, A435, R68, L66, N69, P434, S431
  Epi#39
  A353, E299, R286, P307, G243, L234
  A300, E299, R286, P307, G243, L234
35
  Epi#40
  A205, L143, G146, Y147, P467, T464
  G146, L143, A205, T204, A201, S209
  A451, A450, T448, P446, S444
40
  P467, Y147, L143, V206, S149
  Epi#42
45 L66, P434, S431, N430, R429, R428
  L104, P123, S95, G101, P94, R122, R125
  L104, P107, S95, G96, P123, R125, Q172
  Epi#44
```

50 L143, Q140, D144, W141, Y147, S468, V470, T72

```
V206, Q140, D144, W141, Y147, S468, V470, P467
  S211, Q216, D214, P218, Y223, A451, A450, T448
  S211, Q216, D214, P218, Y223, A450, G447, T448
5 Epi#45
  R413, P46, F49, Y50, N110, D112, G31
  R413, P41, F49, Y50, N110, D33, G31
  D44, P46, F49, Y50, N110, D112, G31
10 Epi#46
  Y175, R125, R122, P123, G174, Q172
  Y169, R125, R122, P123, G174, Q172
  V432, R429, R428, P434, N69, G70
  Y175, R125, R122, P94, N93, G90
15 Y175, R122, R125, P123, N182, G121
  Y175, R125, R122, P94, G101, A102
  Y175, R125, R122, P94, G118, A115
  Y175, R125, R122, P94, G101, G96
  Y175, R122, R125, P123, N182, G183
  Epi#48
  S211, D214, P218, P446, G447
  E259, K337, P258, P434, V432
  S215, D214, P218, P446, G447
25 S209, D214, P218, P446, V445
  E259, K337, P258, P434, V433
  Epi#50
  R122, Y175, W120, T117, S119
30 R125, Y175, W120, S119, T117
  Epi#51
  T390, H391, E408, Q409, R413, S411, W317
  T390, H391, E408, S405, I288, K404, W317
35 D406, H391, E408, Q409, R413, S411, W317
  T390, H391, E408, D406, K404, Q409, W317
  Epi#52
  W437, A260, T266, R273, W228, D264, Q225
  BPN':
  Epi#02
```

45 T255, K256, S260, F261, P194, Y262, R186, V203 L257, K256, S260, F261, P194, Y262, R186, V203 T253, K256, S260, F261, P194, Y262, R186, V203

Epi#03

50 K141, A137, I108, Y104

K136, A137, I108, Y104 K136, A134, I108, Y104

Epi#04

5 K265, Y262, S188, Q185, R186, N184, L257 K265, Y262, S188, Q185, Y263, R186, L257 K265, Y262, S188, Q185, R186, N184, G258 K265, Y262, S188, Q185, Y263, R186, G258

10 Epi#05

G80, A1, N77, P40, G211, S38, S37, V44 G80, A1, N77, P40, G211, S38, S37, L42 G127, A152, N155, T164, G160, S158, S188, Y262

15 Epi#06

G211, N212, D36, S37, K43, P40 G80, N212, D36, S38, K43, P40 G211, N212, D36, S38, K43, P86

20 Epi#08

K256, D259, S260, F261 K43, D36, S38, V44, F58

Epi#09

25 S105, S132, A133, A137, D140, K141, A144, S145, N118 S248, T244, A144, S145, D120, K27, N118, A116, N117

Epi#10

E54, T55, N57, S37, F58, G46, K43 30 T55, A48, N57, S37, F58, G46, K43 E54, T55, N57, S49, F58, G46, K43

Epi#11

K136, I108, Q103, V51, D98

35

Epi#12 Y171, E195

Epi#13

40 S101, W106, P52, T55, A48, P56, S49, G47, F58 S105, W106, P52, T55, A48, P56, S49, G47, W113

Epi#15

N25, P239, D120, I115, K141, A144 45 N240, P239, D120, I115, K141, A144

Epi#16

Q271, P14, Y21, G20, Q19, S18, A15, A272, N252 Q59, P210, Y214, G211, S38, D36, D61, A99, D98

```
Epi#17
  A187, S188, R186, S183
  A187, S188, R186, S182
5 Epi#18
  N184, R186, S188, G157, S158, T159, S161
  N184, R186, S188, G157, S158, T159, S162
  N184, R186, S188, G157, S158, E156, N155
  N184, R186, S188, G157, S158, E156, F189
10
  Epi19
  E156, N155, S188, Q185, R186, L257
  E156, N155, S188, Q185, R186, G258
  E156, N155, S188, Q185, R186, A187
15
  Epi#22
  D197, S260, D259, L257, K256
  D197, S260, D259, Y263, K256
20 Epi#23
  N155, E156, S188, Q185, A187
  Epi#24
  E156, G166, E195, P194, S260, L257, K256
25 D259, G264, E195, P194, S260, L257, K256
  D197, K170, E195, P194, S260, L257, K256
  Epi#25
  K141, I115, D120, N25
30 K141, I115, D120, N118
  K141, I115, E112, N118
  Epi#26
  W113, S49, W106, P52, E54, D98
35 W113, S49, W106, P52, E54, D60
  W113, S49, W106, V51, E54, D98
  Epi#28
  A99, D61, Q59, F58, E54, L96, Q103, G102, D98
40 A99, D98, Q59, F58, E54, L96, Q103, G100, D61
  A99, D61, Q59, F58, E54, L96, Q103, S101, D98
  Epi#29
  G102, Q103, L96, E54
45 G100, Q103, L96, E54
  Epi#30
  179, N76, S87, H17, S18, P14, V4
  179, N76, S87, H17, Q19, P14, V4
50
```

259

Epi#31 L257, Q185, N184, R186, F189, V203, I205, D181 L267, Q10, N184, R186, F189, V203, I205, D181 5 Epi#33 K213, Y214, P210, S38, S37, K43 Q59, F58, V44, S38, S37, K43

Epi#34

10 W106, P52, M50, G47, P56, T55, S53
W106, P52, S49, G47, P56, T55, S53
I115, W113, M50, V51, P52, T55, S53
I108, W106, S105, V51, P52, T55, S53

15 Epi#35 A99, L96, S49, M50, I108 A99, L96, S49, M50, I107

Epi#36

20 A137, A134, A133, G131, Y104, S105, Q103, V51, A48, W113 A134, A137, A133, G131, Y104, S101, Q103, V51, A48, W113

Epi#37

Y262, R186, L257, K256, D259 25 Y263, R186, L257, K256, N252

Epi#39

E156, T164, P129, G127, L126 E156, T164, P129, G128, L126 30 E156, T164, P129, G154, L126 E156, T164, P129, G166, L126

Epi#40

R247, L250, A272, T255, K256, S260 35 R186, L257, G258, Y263, K256, S260 G264, L257, G258, T255, K256, S260

Epi#41

P194, Y262, L257, S260 40 P194, Y263, L257, S260

Bpi#42

P194, S260, G258, R186, Q185

45 Epi#44

50

S182, Q185, D181, Y6, S9, V4, P14 S183, Q185, D181, Y6, S3, V4, P5 S248, R247, D197, P194, Y262, S260, G258, T255 S53, P52, W106, Y104, S105, V51, T55

Epi#45 K170, P194, F261, Y262, R186, D181, V203 D197, P194, F261, Y262, R186, D181, V203

5 Epi#46 \$162, \$158, E156, N155, A187, Q185, N184, R186, \$188 \$188, \$158, E156, N155, A187, Q185, N184, R186, \$183 \$158, \$188, E156, N155, A187, Q185, N184, R186, \$182 \$161, \$158, E156, N155, A187, Q185, N184, R186, \$183

10 G160, S158, E156, N155, A187, Q185, N184, R186, S188

Epi#48

S38, K43, P40, P210, G211 S37, K43, P86, P14, V4

15 S38, K43, P40, P210, G215

Epi#50

H238, W241, T242, P239 H238, W241, T244, T242 20 H238, W241, T242, T244

Epi#51

T242, H238, Q275, Q271, P14, S18, H17 Q245, H238, Q275, K237, P239, T242, W241 25 Q275, H238, Q245, T242, R247, T244, W241 Q245, H238, Q275, Q271, P14, Q19, H17

Carezyme Core:

Epi#01

30

35

P61, P165, K164, R158, N154, Y168, R153, S151 P137, P49, K44, K13, N32, Y54, Q36, T39 P61, P165, K164, R158, N154, S152, R153, S151

Epi#02

L115, N118, S117, R4, T6, Y147, R146, V129 L115, N118, S5, R4, T6, Y147, R146, V129

40 Epi#03

K44, A43, I38, Y54 K13, A43, I38, Y54

Epi#04

45 R153, S151, Q145, Y147, R146, I131 R153, S151, Q145, Y147, R146, G144 R153, S151, Q145, Y147, R146, L142

Epi#05

50 G3, A1, S183, T95, G101, A100, S96, G97

G3, A1, F184, T93, G101, T95, S96, G97 G97, A100, S96, T95, G101, T93, S183, G3

Epi#06

5 G140, P160, D161, R158, K164, P165 G50, P137, D133, R146, Q145, P143 A162, P165, D161, R158, K164, P160

Epi#07

10 G148, T6, S181, D178, R170, P165, D58 G128, T6, S181, D178, R170, P165, D58

Epi#08

K44, D42, S45, A43, F41

15

Epi#09

A191, E192, R196, A195, R200, N25, N202, N206 D161, R158, D157, R153, N176, S151, N154

20 Epi#10
 D161, A57, N34, A162, F159, R158, K164
 D2, A1, R185, S183, F184, G3, R4

Epi#11

25 F41, F29, I38, Q36, D58

Epi#12 Y168, E155 Y90, E91

30

Epi#13

A63, W62, P165, T60, A162, P160, L142, G149, Y147 A63, W62, P165, T60, A162, P160, L142, G128, Y147 A63, W169, P165, T60, A162, P160, L142, G144, Y147

35

Epi#15

P137, D133, I131, R146, G144

P137, D133, I131, R146, G148

P137, D133, I131, R146, G130

40 P137, D133, I131, R146, G128 P137, D133, I131, R146, G149

Epi#16

Q138, P137, Y54, R37, Q36, N34, A162, A57, D161 45 R170, P165, Y168, R153, S151, N176, D172, A63, D67 R170, P165, Y168, R153, S151, N176, D172, A63, D66

Bpi#17

A1, S183, R4, S117

50 A100, S181, R4, S183

262

A1, S183, R4, S5

Epi#18

N118, R4, S181, ---, G3, ---, S117, L115, ---, A78, S80 5 N34, N32, R37, F35, ---, A33, Y54, S45, ---, A43, V52

Epi#19

D157, N154, S151, Q145, R146, L142 D178, N176, S151, Q145, R146, G144

10

Epi#22

D40, A43, D42, W18, K20 D40, A43, D42, A19, K20

15 Epi#23

R158, N154, E155, L142, Q145, P143 R153, N154, E155, S151, Q145, P143

Epi#24

20 D42, K44, E48, P137, F139, A33, Q36
D40, K44, E48, P137, F139, A33, Q36
D161, K164, A162, P160, R158, L142, Q145
D161, K164, E155, P143, R158, L142, Q145

25 Epi#25 R158, K164, W169, D172, N176

R4, H119, I77, E82, N81

Epi#26

30 W18, S15, E82, W85, P23, A19, D42 W18, S15, E82, W85, P23, G84, D203

Epi#28

1131, D133, Q138, L142, E155, K164, F159, P165, D161
35 I131, D133, Q138, L142, E155, K164, F159, P143, R158
I131, D133, Q138, L142, E155, K164, F159, P160, R158

Epi#29

I131, R146, L142, R158, E155

40 G144, Q145, L142, R158, E155

Epi#30

G79, N81, A78, H119, S117, I77, L115 G79, N81, A78, H119, S76, I77, L115

45

Epi#31

L142, R158, N154, R153, W169, F171, D172

Epi#33

50 Q36, F29, P27, S15, A19, K20

K44, F41, P27, S15, A19, K20

Epi#34

V129, P143, S151, G144, R146, Y147, T6 5 V129, P143, S151, G148, R146, Y147, T6 V129, P143, S151, G149, R146, Y147, T6

Epi#36

A83, A22, A19, S15, K13, V52, A43, W18

10

Epi#37

Y147, R146, L142, R158, D161 Y147, R146, L142, R158, N154 Y147, R146, L142, R158, D157

15

Epi#38

E155, R158, P160, G140, L142 E155, R158, P143, G144, L142

20 Epi#40

G79, L115, G113, T111, A74, T6 G79, L115, G113, T111, A74, S15 G79, L115, G113, T111, A74, S110 G116, L115, G113, T111, A74, T6 25 G79, L115, G113, T111, A74, S76

Epi#42

L142, P143, S151, G144, R146, Q145 L142, P143, S151, G148, R146, Q145 30 L142, P143, S151, G149, R146, Q145

Epi#44

L142, R158, D161, P165, W62, Y168, S152, G144, P143 I131, R146, D133, P137, Y54, A33, V52, P49 35 L142, R158, D161, P165, W62, Y168, S152, G149, P143

Epi#45

R185, P208, F207, N206, D203, V24 D67, P213, F68, N65, D66, V64

40 R185, P208, F207, N206, D204, G205

Bpi#46

A195, R200, R201, P23, N202, G205 A191, R200, R201, P23, N202, G205 45 V24, R201, R200, P190, Q211, A209

Epi#47

A191, A195, E192, V194, R200, N202, R201, P23 A195, A191, E192, V194, R200, N25, R201, P23 50 A191, A195, R196, V194, R200, N202, R201, P23

264

Epi#48 E48, K44, P49, P137, V52 E48, K44, P49, P137, G50

5 E48, K44, P49, P137, G140

Epi#50

D172, Y168, W62, V64, P213

D42, W18, A43, T39

10 D67, W173, W62, V64, P213 D66, W173, W62, V64, P213 D42, W18, S45, P49 D172, W169, W62, V64, P213

15 Epi#51

R4, H119, D2, T95, P98, K175, W169 R4, H119, D2, R185, P208, Q186, W85 R4, H119, D2, T95, G97, K175, W173

20 Epi#52
W18, A22, R200, R201, W85, Q186

Esperase:

25

Epi#01 N24, P239, R237, K235, N243, S240, Q245, T242 N24, P239, K235, R27, N117, Y91, R43, S87 N24, P239, R237, K235, N243, Y241, Q245, S240

30

Epi#02

T3, N76, L75, R43, S38, Y209, R213, V215
T3, N76, S87, R43, S38, Y209, R213, V215
T129, N166, Q161, R160, T156, Y192, R186, V203

35

Epi#03

R186, Y192, S261, Q161, R160, N155, G127 R186, Y192, S261, Q161, R160, N155, G157 R186, Y192, S261, Q161, R160, N155, L126

40 R186, Y192, S261, Q161, R160, T156, G162

R186, Y192, S261, Q161, R160, N155, A187

Epi#05

G102, A105, S133, T134, G131, R170, T129, Y167 45 G102, A105, S133, T134, G131, R170, T129, G127 G211, A37, R43, P40, G80, T3, S78, I79

Epi#06

G211, N61, D97, R98, S53, P55

50 G102, N99, D97, R98, S53, P55

```
265
  G100, N99, D97, R98, S53, P55
  Epi#07
   211, T210, D60, S38, R43, P86, D89
  Epi#08
  A108, E136, S133, A105, F50
  A108, E136, S132, A105, F50
  A187, D181, S188, V203, F189
10
   Epi#09
  N212, G211, S38, H59, N61, N99, R98
   S52, S53, R98, N99, N61, G211
15 Epi#10
   T129, T156, N155, S188, F189, G157, R160
  D181, N183, R186, S188, F189, G157, R160
  T129, N166, N155, S188, F189, G157, R160
   T129, T156, N155, S218, F189, G157, R160
20 D97, N99, N61, S57, F50, G102, R98
  Epi#12
  Y167, E136
   Y192, E195
25 Y171, E136
   Epi#13
   S38, R43, P40, A37, H59, S57, P55, Y58
   S38, R43, P40, A37, H59, S57, P55, F50
30 S38, R43, P40, A37, H59, S49, P55, Y58
   Epi#15
  N24, P86, D89, I44, R43, A45
  N24, P86, D89, I44, R43, G46
35 N76, P86, D89, I44, R43, A45
  N24, P86, D89, I44, R43, A37
  Epi#16
   Q161, P194, Y192, G157, R160, S188, D181, A187, N183
40 Q161, P194, Y192, R186, Q185, S188, D181, A187, N183
  Q161, P194, Y192, G162, R160, S188, D181, A187, N155
  Epi#17
  A37, S38, R43, S87
  Epi#18
  N144, N140, R141, L137, S133, T134, E136, S132
  N140, N144, R141, L137, S133, T134, A105, S103
  N143, N144, R141, L137, S133, T134, E136, N140
```

50

Epi#19

I21, N18, Q15, Q275, R19, G20 I21, N18, Q15, Q275, R237, G20 E197, N265, S261, Q161, R160, G162 5 E197, N265, S261, Q161, R160, G157 I21, N18, Q15, Q275, R237, G25

Epi#23

R98, N61, E54, S53, F50, P55 10 R98, N61, E54, Y58, F50, P55 R98, N61, E54, S57, F50, P55 R98, N61, E54, S52, F50, A105

Epi#24

15 E195, G264, E197, P260, S261, P194, Q161 D89, G46, A48, P55, S52, F50, Q109 E197, G264, E195, P194, S261, L262, Q161

Epi#25

20 R98, H59, E54, N61 R98, H59, D60, N61 R43, H39, I44, D89, N24 R27, H120, I115, E112, N116

25 Epi#28

L104, Q109, I115, E112, W113, F50, S53, R98 A105, Q109, I115, E112, W113, F50, G102, R98 A108, Q109, I115, E112, W113, F50, S53, R98 V107, Q109, I115, E112, W113, F50, S53, R98

30

Epi#29

I147, N140, L137, R141, E136 G146, N140, L137, R141; E112 I115, N143, L137, R141, E136

35 G102, N99, L96, R98, E54

Epi#30

G211, N212, S38, H59, S57, I51, P55 G211, N61, S57, H59, S38, P40, L75 40 G211, N212, S38, H59, S49, I51, P55 G211, N212, S38, H59, P55, I51, L96

Epi#31

L257, Q185, N183, R186, F189, V203, D181 45 L262, Q185, N183, R186, F189, V203, D181

Epi#33

H59, Y58, P55, S52, S53, R98 Q109, F50, P55, S57, S53, R98 50 Q109, F50, P55, S49, S53, R98

Epi#34

179, P40, S38, G211, R213, Y209, S216

179, P40, S38, G211, R213, Y214, T210

5 I51, P55, S49, L96, R98, S53, S52

Epi#37

T134, A108, L137, R141, N144

Y256, A254, L257, R186, N183

10 A105, A108, L137, R141, N144

Epi#38

L257, G264, E195, L262, N265, P260, S259

L257, G264, E195, L262, N265, P260, S261

15

Epi#39

E195, R170, P194, G264, L257

E195, R170, P194, G264, L262

20 Epi#40

R141, L137, A108, T134, A105, S133

R43, L42, A37, Y58, P55, S52

R186, L257, A254, Y256, P260, S259

R186, L262, G258, Y256, P260, S259

25 R186, L257, G184, Y256, P260, S259

R141, L137, A108, T134, A105, S103

R186, L262, G264, Y256, P260, S259

R186, L257, A254, Y256, P260, S261

R186, L262, G258, Y256, P260, S261

30 R186, L257, G264, Y256, P260, S261

Epi#41

P260, Y256, L257, S259

35 Epi#42

L75, P86, S87, N24, P239, R237, Q275

L75, P86, S87, N24, P239, R237, R19

Epi#44

40 S53, R98, D97, Y58, S57, A48, P55

S53, R98, D97, Y58, S38, G211, T210

Epi#45

R19, H17, F22, N24, D89, G25

45 R43, P86, F22, N24, D89, G25

R272, H269, F10, N183, D181, V203

R272, H269, F10, N183, D181, G184

R43, P86, F22, N24, D89, G46

50 Epi#46

R19, R237, P239, N24, G20 R19, R237, P239, N24, G25

Epi#47

- 5 G162, Y192, R160, N155, A187, Q185, N183, R186, S188 G157, Y192, R160, N155, A187, Q185, N183, R186, S188 S261, Y192, R160, N155, A187, Q182, N183, R186, S188 L262, Y192, R160, N155, A187, Q182, N183, R186, S188
- 10 Epi#48 S261, Q161, P194, P260, G258 S261, Q161, P194, P260, G264

Epi#50

- 15 D181, W6, V4, T3 D181, W6, V203, S188 D181, W6, V4, S9 D181, W6, T3, P5
- 20 Epi#51 R98, H64, T210, R213, P40, S38, H59 R98, H64, T210, R213, G211, S38, H59 R19, H17, Q15, Q275, R272, Q252, H269

Laccase:

Epi#02

A14, N15, S17, F21, P180, Y176, R266, V177
30 T22, N15, P18, F21, P180, Y176, R266, V177
A274, N275, A181, R175, P180, Y176, R266, V177
A24, N15, S17, F21, P180, Y176, R266, V177
T272, N275, A181, R175, P180, Y176, R266, V177

35 Epi#03 L184, K173, I186, Y256

Epi#04

R234, S211, Q261, K264, N267, G271 40 R234, S211, Q261, K264, R266, G268, R259, S211, Q302, R234, N299, A301 R259, S211, Q236, R234, N299, A301

Epi#05

45 G372, A371, L369, P350, G81, S349, S351, V352 G372, A371, L369, P350, G81, S351, S349, Y347

Epi#06

G286, N289, D291, T293, S295, P292 50 G214, P252, D254, T293, S295, P298

A288, N289, D291, T293, S295, P292

Epi#07

G214, T294, D291, R283, V253, P252, D254 5 G30, T12, D53, R59, A497, P89, D51 G30, T10, D51, R59, A497, P55, D53

Epi#08

A371, E348, S349, A346, F335 10 A14, D53, G90, A92, H91, F93 A181, E183, G20, V16, F21 A181, E183, G20, A182, F21

Epi#09

15 N41, A100, N43, V6, D42, R37, N4, T8, L94
N41, A100, N43, V6, D42, R37, N4, T8, N47
L369, N366, E376, R379, N472, A471, V474

Epi#10

20 E183, A181, N275, T272, F273, G268, R266 D129, N41, N43, A100, F69, G72, R71 E183, A181, N275, A274, F273, G271, K264

Epi#11

25 F93, L486, I489, Q485, V481, E482

Epi#12

Y490, E488

Y375, E376

30

Epi#13

N366, P370, D367, I358, Q363, A471 N366, P370, D367, I358, Q363, G361

R379, P378, D326, I319, T321, G323

35 R379, P378, D326, I319, T321, G318

R379, P378, D326, I319, T321, A324

Epi#15

N366, P370, D367, I358, Q363, A471

40 N366, P370, D367, I358, Q363, G361

R379, P378, D326, I319, T321, G323

R379, P378, D326, I319, T321, G318

R379, P378, D326, I319, T321, A324

45 Epi#16

R175, P180, Y176, R266, Q164, N267, D166, A163, D205 R283, P292, Y256, G214, Q251, D254, A285, A288, N289 R283, P292, Y256, G214, Q251, D254, D291, A290, N289

50 Epi#17

```
A306, S413, R409, S414
  A411, S413, R409, S414
  A306, S410, R409, S414
  A411, S414, R409, S410
  Epi#19
  E216, N250, Q251, Q191, R283, G286
  E190, N250, Q251, Q191, R283, A288
  E216, N250, Q251, Q191, R283, A290
10 E190, N250, Q251, Q191, R283, A285
  Epi#22
  D491, P494, D492, P495, E496
  D492, P494, D491, L493, E496
15
  Epi#23
  R339, N460, E348, S349, L369, A371
  R339, N460, E348, S351, L369, P370
  R339, N460, E348, S351, L369, A365
20 R339, N460, E348, S351, L369, P350
  R283, N188, E190, N250, Q191, P252
  Epi#24
  D475, G72, A476, P445, R379, A471, Q363
25 D53, G90, A497, P495, T498, P55, Q501
  D53, G90, A497, P495, S499, L58, Q501
  Epi#25
  R37, K40, D129, N130
30 R37, K40, D129, N41
  Bpi#27
  E142, E139, D138, K194,
  E142, E139, D138, K193
  Epi#28
  L58, Q501, I500, E496, L493, P495, D492
  G286, D254, Q191, K194, B190, K193, G192, D138
  A288, D254, Q191, K193, E190, K194, G192, D138
40 G192, D248, Q191, K194, E139, L136, A135, D138
  V253, D254, Q191, K193, B190, K194, G192, D138
  A285, D254, Q191, K193, E190, K194, G192, D138
  Epi#29
45 G390, Q332, L329, R330, E435
  V374, N366, L369, E348
  I500, P495, L493, E496
  G344, Q332, L333, R330, E435
50 Epi#30
```

G412, N304, A306, H309, I312, P314, V419 I312, L311, A315, H309, P229, L136, P132

Epi#31

5 L329, Q332, N343, R330, F331, V386, D434 L333, Q332, N343, R330, F331, V386, D434 L58, Q501, N54, R59, F112, M459, F456, D205 L58, Q501, N54, R59, F112, M459, I454, D205

10 Epi#33

Q485, Y490, P494, S499, A497, R59 Q251, Y256, P292, S295, A296, R234 H153, F21, V16, S17, A182, K173 H153, F21, P18, S17, A182, K173

15

Epi#34

V431, P395, T432, G433, G412, T415, S414 V431, P388, T432, G412, G433, S414, T415 V419, P320, T321, G323, P322, Y416, S414

20 V431, P395, T432, G390, G433, S414, T415

Epi#35

A371, L369, A362, S360, M359, I358 G372, L369, A362, S360, M359, I358 25 A365, L369, A362, S360, M359, I358

Epi#36

A362, A471, A476, V474, G361, S360, Q357, P350, A371, A365 A290, A288, A285, V253, Y256, S295, A296, W257 30 A288, A285, A287, V253, Y256, S295, A296, W257

Epi#37

P132, A135, L136, K194, N250 A135, A134, L136, K194, D138 35 P298, A301, L303, R234, N299

Epi#38

L356, G81, B348, A371, V374, L369, N366, P370, S351 L356, G81, B348, A371, V374, L369, N366, P370, S349

40

Epi#39

A411, E435, T432, P395, G393, L392 A1, E142, L35, R37, P34, G30, L27 A389, E435, T432, P395, G394, L392

45

Epi#40

R330, L333, G390, T432, A411, S414 G393, L392, G394, T432, A411, S414 R330, L333, G390, T432, A411, T415

Epi#41 P370, L369, V352, S351 P350, L369, V352, S351 5 Epi#42 L392, P395, S428, G430, P388, R330, Q332 \$360, Q363, D367, P370, Y347, A371, G372, T345 10 V253, Q191, D254, P292, W257, Y256, S295, A296, P298 S360, Q363, D367, P370, Y347, S349, V352, P350 V253, Q191, D254, P292, W257, Y256, S295, G214, P252 Epi#45 15 R409, P322, F418, Y416, N420, D313, V419 K423, P314, F418, Y416, N420, D313, V419 R175, P180, F21, Y176, R266, D166, G268 Epi#46 20 A296, R259, R234, P300, N299, A301 Y256, R259, R234, P300, N299, Q302 Epi#47 I212, S211, R234, L303, A301, N299, P300, P298 25 I212, S211, R234, V232, A301, N299, P300, P298 Epi#48 S158, Q160, P157, P155, V504 S499, Q501, P55, P155, V504 30 E488, Q485, P480, P479, V481 Epi#49 D367, L369, V352, P350, Q357, Q363, M359, N478 D367, L369, P370, P350, Q357, Q363, M359, N478 Epi#50 D291, Y256, W257, S295, P298 D254, Y256, W257, T293, S295 40 Epi#51 D307, H309, E228, T218, P229, T231, H230 R234, H215, E216, T231, P229, H230, H309

45 Epi#52

F69, A100, T98, R71, W75, T73, Q70 F97, A100, T98, R71, W75, T73, Q70

D248, H215, E216, T231, P229, H230, H309

50 Natalase:

273 Epi#01 ·P344, P382, R387, R33, N32, S28, R31, T36 P344, P382, R387, R33, N29, S28, R31, T36 Epi#02 A87, N21, Q18, R24, S28, R31, R33 A87, K89, S83, R24, S28, R31, R33 10 Epi#03 L307, K305, H402, I404, Y398 L307, K305, H401, I404, Y398 L307, K305, A304, I404, Y398 15 Epi#04 R167, S166, Q168, R172, N171, I173 R177, Y131, S128, Q125, R123, N124, I127

Epi#05

20 G178, A180, N124, P120, G190, S187, H234, L195 G178, A180, N124, P120, G190, R123, S187, Y192 G178, A180, N124, P120, G190, S187, H234, Y192

Epi#06

25 A87, N21, D25, R24, Q18, P14 G145, N146, D150, T147, R144, P142 G143, N146, D150, T147, R144, P142 G450, N451, D447, T455, K452, P453 A87, N21, D25, R22, Q18, P14 30 G454, N451, D447, T455, K452, P453

A378, P382, D447, T455, K452, P453

Epi#07 G145, T147, D150, S149, R213, V208, P205, D201

Epi#08

K305, D400, A304, H402, F399 K305, D400, A304, H401, F399

40 Epi#09

S79, S83, D25, R22, R24, H86, N90, S28, R31 N439, A460, N459, V444, K478, N417, T413, T414

Epi#10

45 E254, N249, R248, T245, F239, R212, R213 E254, N249, R248, T245, F239, R241, K275

Bpi#11

F169, I173, Q170, D162

50 L195, I173, Q170, D162

Epi#12 Y192, E188 Y357, E354 Epi#13 H12, L13, P369, A375, P374, S372, P330, W11 H12, L13, P369, A375, P374, S372, P330, L334 H12, L13, P369, A375, P374, S372, P330, G331 10 Epi#15 N451, P453, D447, I448, T449, A378 N451, P453, D447, I448, K452, G450 15 Epi#16 Q313, P316, Y357, R353, Q395, D397, D400, A304, N308 Q355, P316, Y357, G356, R353, D397, D400, A304, D302 Epi#17 20 A87, S83, R24, S28 A87, S28, R24, S83 Epi#18 R33, N32, R31, S28, G92, N90 Epi#19 D16, N50, S48, Q49, R72, G69 D25, N21, Q80, Q18, R24, A87 E82, T77, Q18, Q80, R72, G69 30 Epi#22 D461, A460, W463, W433 Epi#23 35 K478, N417, E410, N439, Q438, A460 K478, N417, E410, N439, Q438, A441 Epi#24 E332, G331, E335, P330, S372, A375, K379 40 D381, K379, A375, P369, S372, P374, K377 Epi#25 R154, K138, W136, D162, N171 R213, R212, W217, B216, N249 .45 R154, K138, W136, E134, N112 R241, K236, W183, D203, E206 Epi#26 W163, S166, E134, W136, V161, E117, E126

50 W163, S166, E134, W136, V161, E117, D130

```
275
  W163, S166, E134, W136, V161, E117, D162
  Epi#27
  D203, E206, D201, K236
5 E117, E126, D130, K175
  D201, E206, D203, K179
E126, E117, D162, K175
  Epi#28
10 L195, D162, Q168, W163, E134, W136, Q165, S166, R167
  I173, D162, Q170, W163, E134, W136, Q165, S166, R167
  V161, D162, Q170, W163, E134, W136, Q165, S166, R167
  Epi#29
15 G331, P330, L334, F337, E335
  G178, K175, L114, R177, E117
  Epi#30
  G450, N451, H446, K478, I448, P453
20 G454, N451, H446, K478, I448, P453
  Epi#31
  Q168, N171, R172, W163, M196, I173, D162
  Q170, N171, R172, W163, V161, I173, D162
  Epi#33
  K377, Y366, P369, S372, A375, K379
  K377, Y366, P374, S372, A375, K379
30 Epi#34
  W433, W463, T457, V444, G454, T455, P453
  W433, W463, T457, V456, G454, T455, P453
  Epi#37
35 Y156, R177, L114, K175, D130
  T132, R177, L114, K175, N124
  Epi#38
  G429, E431, N469, P428, S472
40 G430, E431, N469, P428, S472
  Epi#39
  E10, H12, T370, P330, G331, L334
  E10, L13, T370, P330, G331, L334
  Epi#40
  A378, A375, Y366, P369, S372
  R177, L114, G178, Y156, K138, T110
  A375, A378, Y366, P369, T370
```

Epi#41 P369, L13, V52, S48

Epi#42

5 P316, S281, G356, R353, Q355 P316, S281, G356, R353, Q395

Epi#44

V208, R213, W217, Y148, S149, G145, P142 10 S28, R33, D381, Y365, A378, A375, P369 L13, D16, P14, W11, Y362, A375, V373, T370 S333, D327, P330, W11, Y362, A375, V373, P369

Epi#45

15 D108, P142, F65, Y60, N146, D150, G145 D140, P142, F65, Y60, N146, D150, G145

Epi#46

Y392, R387, R33, P382, G450, G454 20 Y392, R387, R33, P382, Q388, G3

Epi#47

S83, S79, E82, I85, R24, A87, N90, R31, S28 A250, G252, E254, N249, R248, F256, N279, R241, S238

25

Epi#48 S372, H371, P374, P369, V373

Epi#49

30 D51, W11, L13, V52, P14, Q18, Q80, T77, N21 D51, W11, L13, V52, P14, Q18, Q80, T77, K74

Epi#50

D461, Y435, W433, W463, T457

35 D400, Y398, W433, W463, T457 D397, Y435, W433, W463, T457

Epi#51

T394, H396, D397, D400, K305, H402, H401 40 T455, H446, K478, T457, G442, Q438, W463

Epi#52

W136, A109, E134, R167, W163, N171, Q170 W136, A109, E134, R167, W163, N171, Q168

45

PD498:

Bpi#02

50 T262, K258, S260, F266, T198, Y196, R168, V166

T262, K258, S260, F266, T264, Y196, R168, V166 T141, N139, Q171, F170, S167, Y196, R168, V166

Epi#03

5 L99, K51, A49, I53, Y56 L99, K51, A49, I53, Y43

Epi#04

R28, S331, Q333, K97, R50, I53
10 R28, S331, Q333, K97, R50, A49

Epi#05

G108, A106, N107, G110, S109, S111, I59 G110, A106, N107, G108, S109, S111, L112 I5 G108, A106, N107, G110, S111, S117, Y121 G108, A106, N107, G110, S111, S109, G135

G110, A106, L68, P214, G217, S219, Y220 G108, A106, N107, G110, S111, S109, L134

20 Epi#06

G135, N163, D164, R168, S174, P176 G162, N165, D164, R168, S174, P176 A22, N274, D25, S2, S9, P6 G154, N152, D148, T142, K144, P176

25 A22, P21, D25, S2, S9, P6 G154, N152, D148, S145, K144, P176

Epi#07

29, T332, S331, D95, S240, R28, V26, P21, D25 30 G29, T332, S330, D95, S331, R28, V26, P21, D25

Epi#08

K258, D257, S260, F266 K190, D185, S192, V207, F193

Epi#09

35

N215, N44, R50, I53, K54, N64, N63, R61 N44, A49, R50, I53, K54, N63, N64, R61

40 Epi#10

D188, N187, R189, S260, F266, G263, K258 D185, N187, R189, S260, F266, G263, K258

Epi#12

45 Y268, E253

Epi#15

R50, P46, D82, I87, T83, G86 N215, P46, D82, I87, T83, G86

Epi#18

N216, N44, R50, I53, A49, P46, N215 N215, N44, R50, I53, A49, P46, N216

5 Epi#19

D95, T332, S240, Q241, R28, G29 D95, T332, S330, Q241, R28, G29

Epi#22

10 D185, S192, D164, Y196, K267
D105, S111, D113, T141, K144

Epi#24

D95, K51, A49, P46, R50, K97

15

Epi#25

R120, K153, W151, D148, N152

R189, K190, D188, N187

R189, K190, D185, N208

20

Epi#27

D201, E253, D257, K258 D257, E253, D201, K267

25 Epi#28

I259, D257, Q254, E253, K267, F266, S260, R189 I259, D257, Q254, E253, K267, F266, S260, K258

Epi#29

30 L68, G108, L134, F170, E137 G135, N163, L134, F170, E137

Epi#30

G110, N107, A106, H71, L68, L104, L112

35 G108, N107, A106, H71, L68, P214, V213

G110, N107, A106, H71, P214, L68, L104

G110, N107, A106, H71, L68, L104, L134

Epi#33

40 Q12, Y220, V207, S222, S192, R189 K190, F193, V207, S222, S192, R189 Q16, Y13, V207, S222, S192, R189

Bpi#34

45 V26, W1, T27, G29, R28, S331, T332 W1, P21, T27, V26, R278, Y279, T255

Epi#35

G135, L134, S225, M221, I209

50 G110, L134, S225, M221, I209

G108, L134, S225, M221, I209 G162, L134, S225, M221, I209

Epi#37

5 A49, V52, L99, K54, N63

SAS: 309, Size 17.16: Y121, A127, L99, K54, N63 SAS: 307, Size 13.09: Y43, V52, L99, K54, N63

Epi#40

10 R189, G261, Y268, K258, S260 R189, G261, Y268, K258, T262

Epi#42

P3, S2, Q16, P21, R28, Q241

15

Epi#43

W199, Y196, G162, Q171, S140, L112, I115, T142

Epi#44

20 S145, D148, P176, W199, Y196, S167, G162, T169 S174, D201, P176, W199, Y196, S167, G197, T198

Epi#47

S330, S331, R28, V26, A22, Q16, N17, P21, S2 25 G242, S240, R28, V26, A22, Q16, N17, P21, S2 G29, S331, R28, V26, A22, Q16, N17, P21, S2

Epi#48

S2, D25, P21, P3, G86

30 S9, Q16, P21, P3, G86

Epi#50

R168, Y196, W199, T264, T198 D164, Y196, W199, T264, S260

35

Savinase:

Epi#01

40 L21, N18, P14, R19, K231, N232, S236, Q239, S234 L21, N18, P14, R19, K231, N232, S234, Q230, S24 L21, N18, P14, R19, K231, N232, S234, Q230, T22

Epi#02

45 T254, N255, A188, R164, S158, Y186, R180, V197 T249, N263, Q12, R10, P14, R19, R269 T249, N263, S9, R10, P14, R19, R269

Epi#03

50 K27, A86, I43, Y89

280

Epi#04 K229, S234, Q230, K231, R269, A266 K27, S24, Q230, K231, R269, A15 5 K231, S234, Q239, R241, N246, A248 Epi#05 G187, A188, N255, T254, G252, S250, T249, L251 G189, A188, N255, T254, G252, S250, T249, L261 10 Epi#06 G252, N179, D175, S182, S154, P127 A188, N255, D191, R164, S158, P127 A188, N255, D191, R164, S128, P127 15 Epi#08 A131, E134, S139, A106, F49 A166, E134, S139, A106, F49 20 Epi#09 S103, T132, A131, E134, A166, R164, N167, S142, R143 Epi#10 D175, N177, N179, S182, F183, G155, R180 25 D175, N212, N153, S182, F183, G155, R180 Epi#11 F49, L94, I105, Q107, V102, E134 F49, K92, I105, Q107, V102, E134 Epi#12 Y161, E134 Y165, E134 35 Epi#13 S76, L73, P39, T207, A209, P204, S206, G205, Y208 S85, L73, P39, T207, A209, P204, S206, G205, Y203 Epi#16 40 R164, P127, Y161, G152, S158, N255, D191, A166, N167 R164, P129, Y161, G152, S158, N255, D191, A166, N138 Bpi#17 A156, S158, R164, S128 45 A188, S158, R164, S126 Epi#18 N177, N179, R180, S182, G155, S154, A156, S158 N177, N178, R180, S182, G155, S154, N153, F183

Epi#19

D175, N179, S182, Q185, R180, L256

D175, N179, S182, Q185, R180, L251

1240, W235, S234, Q239, R241, K245

5 D175, N179, S182, Q185, R180, G252

Epi#23

R143, N114, E110, S139, Q135, A131 R143, N115, E110, N138, Q135, A131

10

Epi#24

D58, G59, E53, P51, F49, P54, Q57 D58, G59, E53, P51, S48, P54, Q57

D58, G59, E53, P54, S55, F49, Q107

15

Epi#25

R19, R269, E265, N18 R269, R19, E265, N18

20 Epi#28

V102, Q107, F49, E53, K92, Q57, G46, R44 A47, Q107, F49, E53, K92, Q57, G46, R44 V50, Q107, F49, E53, K92, Q57, G46, R44

25 Epi#29

177, N74, L41, R44, E87 V4, N74, L41, R44, E87 G20, N18, L21, R19, E265

30 Epi#30

G59, N60, S97, H62, L94, P51, P54 G98, N60, S97, H62, L94, P51, P54

Epi#31

35 L256, R180, N178, R10, W6, V197, D175 L251, R180, N178, R10, W6, V197, D175

Epi#33

Q107, F49, P51, S48, S55, K92

40 Q107, F49, P54, S55, A47, K92

Epi#34

V102, P129, S128, G125, R164, Y161, P127 V102, P129, S126, G125, R164, S158, P127

45

Epi#37

T254, A188, L256, R180, N177 T254, A188, L256, R180, N179

50 Epi#38

L94, G59, E53, A96, N60, P204, S206 L94, G59, E53, A96, N60, P204, S36

Epi#39

5 A131, E134, L133, T132, P129, G125, L124 A166, E134, L133, T132, P129, G125, L124

Epi#40

R44, L41, G78, T207, P39, T37 10 R19, L21, G20, T22, K231, S234 R180, L256, G252, T254, A188, S158

Epi#41

P127, Y161, L133, V102, S99 15 P127, Y161, L133, V102, S103

P127, Y161, L133, V102, S101 P127, Y161, L133, V102, S126

Epi#42

20 L73, P84, S85, N74, H17, P14, R19, R269
L80, P5, S3, N74, H17, P14, R19, R269
L21, P84, S85, N74, H17, P14, R19, R269

Epi#43

25 105, W111, A47, G46, Q57, S36, L41, I43, T37

Epi#44

S126, R164, P127, Y161, S158, A188, T254 S128, R164, P129, Y161, S158, A188, T254

Epi#46

A15, R269, R19, P14, N18, G20 A266, R269, R19, P14, N18, A15

35 Epi#48

S55, Q57, P54, P51, G52 E53, Q57, P54, P51, G52

Epi#50

40 R10, W6, S3, S76 R241, W235, S234, P233 R10, W6, V4, S9

Epi#51

45 Q239, H243, T247, R269, R19, K231, W235 R19, H17, E265, R269, K231, S234, W235

Epi#52

A15, S9, R10, W6, N198, Q176

A15, S9, R10, W6, N198, Q200

```
Amylase SP722:
```

Epi#02

T419, N423, P422, F396, T5, Y398, R393, R37 T419, N418, P422, F396, T5, Y398, R393, R37

10 Epi#03

L313, K311, H408, I410, Y404 L313, K311, H407, I410, Y404

Epi#04

15 R171, S170, Q172, R176, N175, I177 R181, Y135, S132, Q129, R127, N128, I131

Epi#05

G184, A186, N128, P124, G196, S193, H240, L201 20 G184, A186, N128, P124, G196, R127, S193, Y198

Epi#06

G147, N150, D154, T151, R148, P146 G149, N150, D154, T151, R148, P146

25

Epi#07

G149, T151, D154, S153, R219, V214, P211, D207

Epi#08

30 K311, D406, A310, H407, F405 K311, D308, A310, H408, F405

Epi#09

T461, R485, K484, N423, T419, N418

35 R485, K484, N423, T420, T419

Epi#10

E260, N255, R254, T251, F245, R218, R219

T419, N423, N395, T5, F396, R393, R37

40 E260, T257, N255, T251, F245, R218, R219

Epi#11

F173, I177, Q174, D166 L201, I177, Q174, D166

45

Epi#12

Y363, B360

Y398, E360

Y198, E194

50

```
Epi#13
  H16, L17, P375, A381, P380, S378, P336, W15
  H16, L17, P375, A381, P380, S378, P336, G337
  H16, L17, P375, A381, P380, S378, P336, L340
  Epi#15
  N457, P459, D453, I454, K458, G456
  K458, P459, D453, I454, T455, A384
  N457, P459, D453, I454, K458, G460
10
  Epi#16
  Q319, P322, Y363, R359, Q401, D403, D406, A310, N314
  Q319, P322, Y363, G362, R359, D403, D406, A310, N314
  Q319, P322, Y363, R359, R415, D403, D406, A310, N314
  Epi#17
  A91, S32, R28, S87
  A91, S87, R82, S83
20 Epi#18
R485, V450, G448, T463, T461, H452, V462
  N126, N128, R127, G196, Y198, S193, N195, N125
  N25, R26, R28, S87, I89, A91, H90, N94
25 Epi#19
  D20, N54, S52, Q53, R76, G73
  D20, N19, Q22, Q84, R76, G73
  D29, N25, Q22, Q84, R28, A91
30 Epi#20
  K385, P350, L355, L313, K311, D308, G305, D432
  Epi#22
  D183, A186, D209, W189, K242
35 D183, A186, D209, W189, E190
  D183, A186, D209, P211, E212
  D209, A186, D183, Y160, W159
  D183, A186, D209, W187, W189
40 Epi#23
  R415, N418, E416, N445, Q444, A466
  K446, N445, E416, Y441, Q444, A466
  Epi#24
45 D387, K385, A381, P375, S378, P380, K383
  E341, G337, E338, P336, S378, A381, K385
  D333, G337, E341, P336, S378, A381, K385
  Epi#25
```

50 R485, H452, I454, B391, N36

R485, K484, I454, E391, N395

Epi#26

W167, S170, E138, W140, V117, G182, D183 5 W167, S170, E138, W140, V165, E121, D134

W167, S170, E138, W140, V165, E121, E130

Epi#27

E212, E216, D154, K156

10 E216, E212, D209, K242

Epi#28

L201, D166, Q172, W167, E138, W140, Q169, S170, R171

L201, D166, Q169, W140, E138, W167, F173, S170, R171

15 L201, D166, Q174, W167, E138, W140, Q169, S170, R171

Epi#29

V214, N215, L217, R219, E222

G96, H90, L228, R82, E86

20 V214, R219, L217, R218, E212

Epi#30

G456, N457, H452, K484, I454, P459

G362, M323, S287, H324, K320, P322, V318

25 G362, M323, S287, H321, K320, P322, V318

G460, N457, H452, K484, I454, P459

Epi#31

L217, R219, N215, R218, F245, V214, D248

30 L217, R219, N215, R218, F245, M208, D209

Epi#33

K383, Y372, P375, S378, A381, K385

K383, Y372, P380, S378, A381, K38

Epi#34

W439, W469, T463, V450, R485, T461, P459

W439, W469, T463, V462, R485, T461, P459

40 Epi#37

T251, R218, L217, R219, N215

P211, V214, L217, R219, N215

A256, R218, L217, R219, N215

45 Epi#38

G435, E437, N475, P434, S478

G436, E437, N475, P434, S478

Epi#39

50 E338, H16, T376, P336, G337, L340

E14, H16, T376, P336, G337, L340

Epi#40

A384, A381, Y372, P375, S378

5 A384, A381, Y372, P375, T376

Epi#41

P375, L17, V56, S52

10 Epi#42

S378, P380, Y372, A381, A384, P375

S378, P375, Y372, A381, A384, P388

S378, P375, Y372, A381, A384, T455

15 Epi#45

K72, P146, F69, Y64, R148, D154, G149

K311, H408, F405, N409, D432, G304

D406, H408, F405, N409, D432, G304

20 Epi#46

Y398, R393, R37, P388, Q394, G7

Y398, R359, R393, P388, G456, G460

Y398, R393, R37, P388, Q394, G38

25 Epi#47

A256, G258, E260, N255, R254, F262, N285, R247, S244

S193, Y198, E194, N125, R127, Q129, N123, R176, P124

Epi#48

30 S378, H377, P380, P375, V379

H16, H377, P375, P380, V379

Epi#49

D55, W15, L17, P18, Q22, Q84, T81, N25

35 D55, W15, L17, P18, Q22, Q84, T81, K78

Epi#50

D467, Y441, W439, W469, T463

D406, Y404, W439, W469, T463

40 D183, Y160, W159, W140, T114

D403, Y441, W439, W469, T463

Epi#51

D406, H408, D308, K311, L313, Q319, H321

45

Epi#52

W140, A113, E138, R171, W167, N175, Q174

W140, A113, E138, R171, W167, D166, Q172

287

```
Amylase AA560:
```

Epi#01 L390, P388, P350, K383, K385, N457, S478, R458, T461 s L390, P388, P350, K383, K385, N457, S478, R458, T452 L390, P388, P350, K383, K385, N457, S478, R458, T455 Epi#02 L390, K395, Q394, R393, T5, Y398, R359, R400 10 L173, K172, S170, T136, Y135, R118, R181 L173, R171, S170, T136, Y135, R118, R181 L390, K395, Q394, R393, T5, Y398, R400, R415 Epi#03 15 K438, H407, I410, Y404 Epi#04 K172, S170, Q169, R171, N174, L173 R171, S170, Q169, K172, N175, I177 20 Epi#05 G456, A459, R458, T461, G460, T452, T463, V450 G456, A459, R458, T452, G460, T461, T463, G448 25 Epi#06 A51, N54, D20, R76, Q71, P146 G73, A51, D55, S52, K72, P146 Epi#07 30 G456, T455, S384, D387, R393, P388, D453 Epi#08 K259, S255, V222, H252, F245 K259, G258, A256, H252, F245 35 Epi#09 N128, V131, R176, D166, K172, N175, N174, R171 Epi#10 40 467, N445, R444, F441, R415, R400 D467, A466, R444, F441, R415, R400 Epi#11 F69, K72, I75, Q53, V56, D55 45 Epi#12 Y16, E337 Y363, E360

50

Y198, E194

Epi#15 K385, P388, D453, I454, R458, A459 K385, P388, D387, I454, T452, A459 K385, P388, D387, I454, R458, G456 Epi#17 A87, S29, R28, S32 A91, S29, R28, S32 10 Epi#18 N445, R444, A466, T463, T461, N471, N437 N445, R444, A466, T463, T461, T452, V450 Epi#19 15 166, W167, S170, Q169, R171, K172 E138, W167, S170, Q169, R171, K172 E134, T136, S170, Q169, R171, K172 Epi#22 20 D209, P211, D207, Y160, D183 Epi#23 R400, N418, E416, N445, Q449, A466 R82, N83, E68, N70, F69, P146 25 Epi#24 E134, G133, E130, P124, R176, L173, K172 E134, K179, E130, P124, R176, L173, K172 30 Epi#25 R444, K446, W469, D467, N445 R171, K172, W167, D166, N175 R171, K172, W167, D166, N174 35 Epi#26 W167, S170, E138, W140, V165, E121, E130 W167, S170, E138, W140, V165, E121, E134 W167, S170, E138, W140, V165, E121, D166 40 Epi#27 E130, E121, D166, K172 D36, E391, D387, K385 E134, E121, D166, K172 45 Epi#28 L201, D166, Q169, W140, E138, K172, S170, R171 L173, D166, Q169, K172, E138, W167, S170, R171 Epi#29

50 V131, R176, L173, R171, E138

I177, N175, L173, R171, E138 I177, N174, L173, R171, E138

Epi#30

5 I39, N33, S29, H23, P18, L17, P375 G38, N33, S29, H23, L17, P375, P380 G362, M323, S287, H321, Q319, P322, V318 G417, N423, A420, H421, K395, L390, P388 G21, N25, S29, H23, P18, L17, P375 10 G399, N418, A420, H421, K395, L390, P388

Epi#31

L173, R171, N174, R176, W167, M202, I177, D166 L173, R171, N174, R176, W167, V165, I177, D166

Epi#33

K108, Y58, V56, S52, A51, K72

Epi#34

20 W439, W469, T463, V450, G460, T452, T461 W15, P18, T376, G378, P375, Y372, S384 W469, W439, S473, G460, R458, T461, T463

Epi#37

25 P124, R176, L173, K172, N175 P124, R176, L173, R171, N174

Epi#40

R400, G399, Y396, P422, T419 30 R400, G417, Y396, P422, T419

Epi#41

P375, Y16, L17, V56, S52 P18, Y16, L17, V56, S52

35

Epi#42

P350, S478, G433, H408, R310, Q311 P322, S287, N285, H324, R320, Q319 P322, S287, G362, H321, R320, Q319

40

Epi#44

L17, D20, P18, W15, Y368, A381, G378, T376 L340, D333, P336, W15, Y368, A381, G378, P375

45 Epi#45

K72, P146, F69, Y64, N150, D144, G147 D112, P146, F69, Y64, N150, D144, G149

Bpi#46

50 Y398, R359, R393, P388, G456, A459

Y363, R359, R393, P388, Q394, G7 Y363, R359, R393, P388, Q394, G38

Epi#47

5 I75, E68, R76, N83, R82, Q84, N90, R28, S29 G133, E134, E130, V131, R176, L173, N174, R171, S170

Epi#48

S384, K383, P380, P375, G378 10 E337, H377, P380, P375, V379

Epi#50

R444, W469, W439, S473, T461 D183, Y160, W159, W140, T114

15

Epi#51

R320, H321, Q319, P322, H324, H286

Epi#52

20 W140, A113, E138, R171, W167, D166, Q169 W140, A113, E115, R118, W159, T114, Q169

Protease A:

25

Epi#01

L21, N18, P14, R19, K237, N238, S242, Q245, S240 L21, N18, P14, R19, K237, N238, S240, Q236, S24

30 Epi#02

T255, N269, Q12, R10, P14, R19, R275 T255, N269, S9, R10, P14, R19, R275

Epi#03

35 K27, A88, I44, Y91

Epi#04

K235, S240, Q236, K237, R275, A15 K27, S24, Q236, K237, R275, A15

40 K237, S240, Q245, R247, N252, A254 R145, S141, Q137, Y171, N173, A172

Epi#06

G61, N62, D60, T38, Q59, P55 45 G211, P210, D60, T38, Q59, P55 A98, N62, D60, T38, Q59, P55 G100, N62, D60, T38, Q59, P55

Epi#08

50 A131, E136, S141, A108, F50

A172, E136, S141, A108, F50 A98, E54, G53, V51, F50

Epi#09

- s S162, S170, A172, N173, V244, H249, N252, S256, T260 S259, S256, T260, N261, L262, R186, N185, S188, N155 S162, S170, A172, N173, V244, H249, N248, N252, T255 S156, S162, N261, S259, L262, R186, N185, S188, N155
- 10 Epi#10
 D181, N183, N185, S188, F189, G157, R186
 D181, N218, N155, S156, F189, G157, R186

Epi#12 15 Y171, E136 Y91, E89

Epi#13

S78, L75, P40, T213, A215, P210, S212, G211, Y209 20 S87, L75, P40, T213, A215, P210, S212, G211, Y214

Epi#16

L262, P194, Y192, G195, S162, N261, D197, A172, N140 L262, P194, Y192, G157, S162, N261, D197, A172, N173 L262, P194, Y192, G161, S162, S170, D197, A172, N173

Epi#17

A138, S141, R145, S144 A108, S141, R145, S144

30

Epi#18

N185, N183, R186, L262, S259, T260, P194, N261 N185, N183, R186, L262, Y192, T260, P194, S162

35 Epi#19

I246, W241, S240, Q245, R247, K251 D181, N185, S188, Q191, R186, L262

Epi#23

40 R145, N116, E112, S141, Q137, A138 R145, N117, E112, S141, Q137, A108

Epi#24

50

E136, G133, A131, P129, S103, F50, Q109 45 E136, G132, A131, P129, S103, A108, Q137 D60, G61, E54, P52, F50, P55, Q59

Epi#25 R275, R19, E271, N18

Epi#28

G20, H17, Q12, E271, L21, Q236, S240, K237 A15, H17, Q12, E271, L21, Q236, S240, K237

5 Epi#29

V244, Q245, L148, R145, E112 V244, N173, L148, R145, E112

Epi#30

- 10 G61, N62, A98, H64, L96, P52, P55
 G20, N18, A15, H17, S87, L75, P40
 I79, N76, S87, H17, Q12, P14, V4
 G100, N62, A98, H64, L96, P52, P55
- 15 Epi#31 L262, R186, N184, R10, W6, V203, D181 L257, R186, N184, R10, W6, V203, D181

Epi#33

20 Q109, F50, P52, S49, S56, K94 Q109, F50, P55, S56, A48, K94

Epi#34

W241, P239, S242, G146, R145, S141, S144 25 I165, P194, T260, G258, R186, S188, S156 V104, P129, S130, G127, G102, S101, S99 V244, W241, S242, G146, R145, S141, S144 I165, P194, S170, G127, P129, S130, S103

30 Epi#37

P14, A15, L21, R19, N18 T143, R145, L148, R247, N252 T143, V244, L148, R145, N116

35 Epi#38

L96, G97, E54, A98, N62, P210, S212 L96, G97, E54, A98, N62, P210, S37

Epi#39

40 A15, E271, H17, R19, P14, G20, L21 A254, E271, H17, R19, P14, G20, L21 A272, E271, H17, R19, P14, G20, L21

Epi#40

45 R186, L257, G258, T260, P194, S162 R186, L262, G161, Y192, P194, T260

Epi#41

P194, Y192, L262, S259

50 P194, Y192, L196, S162

Epi#42

L82, P5, S3, N76, H17, P14, R19, R275 L82, P5, S9, Q12, H17, P14, R19, R275

Epi#43

W113, A48, G47, Q59, S37, L42, I44, T38

Epi#44

- 10 V244, R247, D197, P194, Y192, S162, G195, T260
 V244, R247, D197, P194, Y192, S170, G195, T260
 S56, Q59, D60, P210, Y214, S212, G211, T38
 S56, Q59, D60, P210, Y209, S212, G211, T38
- 15 Epi#46
 A15, R275, R19, P14, N18, G20
 A272, R275, R19, P14, N18, G20
 A272, R275, R19, P14, N18, A15
- 20 Epi#47 S130, A131, E136, N173, A172, N140, R145, S144 S105, A131, E136, N173, A172, N140, R145, S144

Epi#48

25 E54, Q59, P55, P52, G53 S56, Q59, P55, P52, G53 S49, Q59, P55, P52, G53

Epi#50

30 R10, W6, S3, S78 R10, W6, V4, S9 R10, W6, V203, S188

Epi#51

- 35 Q245, H249, T253, R275, K237, S240, W241 R19, H17, E271, R275, K237, S240, W241 R145, H120, K27, S24, K237, S240, W241 R145, H120, K235, K237, P239, S240, W241
- 40 Epi#52 A15, S9, R10, W6, N204, Q206 A15, S9, R10, W6, N204, Q182

45 Alcalase:

Epi#01

L10, P5, P9, K15, K12, N269, S251, R249, T253 L82, P5, P9, K15, K12, N269, S251, R249, T253

Epi#02

T115, N141, A144, R145, S242, R247, R249 A138, N141, A144, R145, S242, R247, R249

5 Epi#03

L196, K170, A129, I165, Y167 L196, K170, A194, I165, Y171

Epi#04

10 R145, Y143, S173, Q137, K136, T133, A134 K170, Y167, S132, Q137, K136, N141, A144

Epi#05

G53, A52, F50, G102, S105, S103, Y104 15 G53, A52, F50, G102, S101, S103, Y104

Epi#06

A24, N25, D120, R145, S242, P239 A144, N141, D140, R145, S242, P239

20

Epi#08 K265, E197, S260, A194, F261 A56, E54, G53, A52, F50

25 Epi#10

T162, N161, N163, A194, F261, G264, K265 E195, N161, N163, S158, F261, G258, K265

Epi#12

30 Y57, E54 Y262, E197

Epi#13

S38, A37, P40, T213, A215, H64, L217, G204, Y206 35 S38, A37, P40, T213, A215, H64, S98, G100, G61 S87, L75, P40, T213, A215, H64, L217, G204, Y6

Epi#16

L10, P9, Y6, G204, S182, N183, D181, A187, N185 40 Q2, P5, Y206, G204, S182, N183, D181, A203, N218 L10, P9, Y6, G204, S182, N183, D181, A187, N155

Epi#17

A144, S244, R247, S252

45 A272, S252, R249, S244 A144, S244, R249, S251 A254, S252, R249, S244

Bpi#18

50 N141, R145, A144, Y143, S244, N248, S252

Epi#19

N248, S244, Q245, R249, A272

N240, S242, Q245, R249, A254

5 N240, S242, Q245, R249, L241

Epi#22

D76, L82, D14, A18, K15

D181, L10, D14, A18, K15

Epi#23

K27, N117, E112, N141, Q137, A134

K27, N117, E112, N141, Q137, A138

K27, N117, E112, S109, F50, A52

Epi#24

D120, K27, A24, P86, F21, A18, K15

D14, K22, A24, P86, F21, A18, K15

D76, K22, A24, P86, S87, F21, K15

20

Epi#25

R249, R247, E197, E195

Epi#27

25 D172, E195, E197, K265

E197, E195, D172, K136

D172, E197, E195, K170

Epi#28

30 A18, D14, Q19, K15, E271, K12, Q17, S87, D76

V4, D14, Q17, K12, E271, K15, F21, A18, K22

Epi#29

L257, K265, L196, F261, E195

35 G53, N97, L96, F50, E54

Epi#30

G146, L241, S242, H238, K237, P239, L235

G146, L241, S236, H238, S242, P239, L235

40

Epi#33

K15, F21, P86, S87, A24, K27

K27, Y91, V45, S89, A24, K22

45 Epi#34

V4, P5, T3, G80, P40, S38, T211

V108, W113, T116, G118, R145, Y143, S244

V26, P239, S242, G146, R145, T115, T116

50 Epi#36

296

A52, A56, A48, V51, G102, Y104, S105, V108, A138, A134 A52, A56, A48, V51, G102, Y104, S103, V108, A134, A138

```
Epi#37
 5 Y262, A194, L196, K265, Y256
   Y263, R186, L257, K265, Y256
   Y256, A254, L257, K265, Y262
   Epi#40
10 R186, L257, A254, Y256, K265, S252
   R186, L257, G258, Y256, K265, S260
   Epi#41
   Y256, L257, S260
15 Y256, L257, S259
   Epi#42
   L235, P239, S242, N248, R249, Q275
   L241, P239, S242, Q245, R249, Q275
   Epi#44
   S132, Q137, D140, Y143, A144, A138, T133
   V108, Q137, D140, Y143, A144, A138, T133
   S173, Q137, D140, Y143, A144, A138, T133
   Epi#48
   Q19, K15, P9, P5, V4
   E271, K15, P9, P5, V4
30
   Protease B:
   Epi#05
   SAS: 454, Size 24.86: G189, A188, R164, P127, G125, S99
35 SAS: 452, Size 15.92: G189, A188, R164, P127, G125, S128
   SAS: 451, Size 24.86: G157, A188, R164, P127, G125, S99
   SAS: 449, Size 15.92: G157, A188, R164, P127, G125, S128
   SAS: 445, Size 23.31: G189, A166, R164, P127, G125, S99
40 Epi#09
   SAS: 446, Size 15.76: T254, G189, A166, R164, A188, S158
   SAS: 312, Size 15.90: T22, G20, L21, R19, A15, S9
   Epi#10
45 SAS: 460, Size 17.32: D175, N177, N179, S182, F183, G155, R180
   SAS: 437, Size 16.70: D211, N212, N153, S182, F183, G155, R180
   SAS: 424, Size 13.75: D175, N212, N153, S182, F183, G155, R180
   SAS: 417, Size 16.70: D211, N212, N153, S154, F183, G155, R180
   SAS: 404, Size 15.83: D175, N212, N153, S154, F183, G155, R180
50
```

```
Epi#12
  SAS: 309, Size 13.46: P127, Y161, E134, P129
  SAS: 292, Size 9.37: R164, Y161, E134, P129
  SAS: 287, Size 18.66: P127, Y161, E134, N138
5 SAS: 284, Size 16.85: P127, Y161, E134, N167
  SAS: 275, Size 11.53: S128, Y161, E134, P129
  Epi#17
  SAS: 275, Size 15.84: A188, S158, R164, S126
10 SAS: 225, Size 12.79: A156, S158, R164, S126
  Epi#18
  SAS: 444, Size 16.32: S250, K245, S259, L256, A188, T254, L251
  SAS: 397, Size 14.14: S250, K245, S259, L256, G252, T254, L251
15 SAS: 397, Size 14.14: S250, K245, S259, L251, G252, T254, L256
  SAS: 397, Size 14.14: S259, K245, S250, L251, G252, T254, L256
  SAS: 396, Size 21.52: S158, R164, S126, V102, G100, S99, L124
  Epi#19
20 SAS: 295, Size 15.06: D175, W6, S9, Q12, R10
  SAS: 278, Size 21.23: E110, T141, S236, Q239, R241
  Epi#23
  SAS: 486, Size 19.88: R143, N114, E110, S139, Q135, A131
25 SAS: 473, Size 18.68: R19, N18, E265, L21, Q230, P233
  SAS: 468, Size 15.74: R164, N167, E134, S139, Q135, A131
  SAS: 463, Size 13.77: R164, N167, E134, S130, Q135, A131
  SAS: 461, Size 21.98: R44, N42, E87, S24, Q230, P233
30 Epi#28
  SAS: 520, Size 19.27: V102, Q107, W111, E110, Q135, S139, R143
  SAS: 492, Size 24.70: V102, Q107, F49, E53, Q57, G46, R44
  SAS: 480, Size 22.76: V50, Q107, W111, E110, Q135, S139, R143
  SAS: 452, Size 19.08: V50, Q107, F49, E53, Q57, G46, R44
35 SAS: 441, Size 24.70: V102, Q107, E110, W111, F49, G46, R44
  Epi#29
  SAS: 239, Size 11.49: G20, N18, L21, E265
  SAS: 224, Size 11.49: G20, R19, L21, E265
40 SAS: 179, Size 16.62: I4, P14, L21, E265
  SAS: 175, Size 11.49: G20, K231, L21, E265
  SAS: 153, Size 18.96: G25, Q230, L21, E265
  Epi#30
45 SAS: 308, Size 24.27: G20, L21, A15, H17, S85, L73, P39
  Epi#31
  SAS: 363, Size 21.72: L256, R180, N178, R10, W6, V197, D211
  SAS: 352, Size 22.95: L251, R180, N178, R10, W6, V197, D211
so SAS: 350, Size 21.62: L256, R180, N178, R10, W6, V197, D175
```

```
SAS: 339, Size 17.75: L251, R180, N178, R10, W6, V197, D175
  Epi#34
   SAS: 430, Size 18.33: V238, W235, S236, G144, R143, S139, S142
 5 SAS: 430, Size 18.33: V238, W235, S236, G144, R143, S142, S139
  SAS: 420, Size 13.98: V238, W235, S236, G144, R143, S142, T141
  SAS: 420, Size 13.98: V238, W235, S236, G144, R143, T141, S142
  SAS: 352, Size 18.33: V238, W235, S236, G144, R143, S139, T141
10 Epi#37
  SAS: 415, Size 23.06: T254, A188, L256, R180, N177
  SAS: 374, Size 18.08: T254, A188, L256, R180, N179
  SAS: 335, Size 19.96: T254, A188, L256, R180, N178
15 Epi#39
  SAS: 425, Size 16.00: A166, E134, R164, P127, G125, L124
  SAS: 421, Size 16.36: A131, E134, R164, P127, G125, L124
  SAS: 400, Size 16.00: A166, E134, R164, P129, G125, L124
  SAS: 396, Size 16.36: A131, E134, R164, P129, G125, L124
20 SAS: 359, Size 16.00: A166, E134, T132, P129, G125, L124
  Epi#40
  SAS: 358, Size 15.76: A166, G189, Y186, A188, T254
  SAS: 352, Size 15.76: A166, G189, T254, A188, S158
25 SAS: 326, Size 11.62: A96, G59, T56, P54, S55
  SAS: 322, Size 15.30: G98, G59, T56, P54, S55
  SAS: 318, Size 17.81: A188, G189, Y186, A156, S182
  Epi#42
30 SAS: 528, Size 16.22: L21, P14, S9, Q12, H17, R19, R269
  Epi#44
  SAS: 401, Size 15.10: L256, R180, Y186, S158, A188, T254
  SAS: 393, Size 15.52: L256, R180, Y186, A188, G189, T254
35 SAS: 390, Size 18.46: L251, R180, Y186, S158, A188, T254
  SAS: 382, Size 16.23: L251, R180, Y186, A188, G189, T254
  SAS: 376, Size 22.23: V197, R180, Y186, S158, A188, T254
  Epi#46
40 SAS: 559, Size 12.63: A15, R269, R19, P14, N18, G20
  Epi#53
  SAS: 298, Size 9.48: W235, S234, Q230, K231
  SAS: 298, Size 18.05: W235, S234, Q239, K245
45 SAS: 289, Size 9.48: W235, P233, Q230, K231
  SAS: 283, Size 9.61: W235, S234, Q239, K229
  SAS: 255, Size 14.51: W235, S236, Q239, K245
```

50 ProteaseC:

```
Epi#05
  SAS: 445, Size 23.34: G189, A166, R164, P127, G125, S99
  SAS: 445, Size 24.90: G189, A188, R164, P127, G125, S99
  SAS: 433, Size 24.90: G157, A188, R164, P127, G125, S99
 5 SAS: 427, Size 15.89: G189, A188, R164, P127, G125, S128
  SAS: 427, Size 15.50: G189, A166, R164, P127, G125, S128
  Epi#09
  SAS: 463, Size 15.74: T254, G189, A166, R164, A188, S158
10 SAS: 425, Size 15.74: D191, G189, A166, R164, A188, T254
  SAS: 384, Size 13.57: D191, G189, A166, R164, A188, S158
  Epi#10
  SAS: 445, Size 17.28: D175, N177, N179, S182, F183, G155, R180
15 SAS: 431, Size 13.75: D175, N212, N153, S182, F183, G155, R180
  SAS: 403, Size 15.83: D175, N212, N153, S154, F183, G155, R180
  SAS: 387, Size 16.14: D175, N178, N179, S182, F183, G155, R180
  SAS: 373, Size 16.76: D175, N212, N153, A156, F183, G155, R180
20 Epi#12
  SAS: 292, Size 13.45: P127, Y161, E134, P129
  SAS: 287, Size 9.30: R44, Y89, E87, N42
  SAS: 284, Size 9.35: R164, Y161, E134, P129
  SAS: 282, Size 9.35: R164, Y165, E134, P129
25 SAS: 272, Size 16.85: P127, Y161, E134, N167
  Epi#16
  SAS: 547, Size 20.59: R164, P129, Y165, G189, S158, N255, D191,
  A166, N167
30 SAS: 543, Size 23.80: R164, P129, Y165, G189, S158, N255, D191,
  A166, N138
  Epi#17
  SAS: 267, Size 15.84: A188, S158, R164, S126
35 SAS: 231, Size 12.82: A156, S158, R164, S126
  Epi#18
  SAS: 449, Size 16.85: S182, R180, L256, A188, T254, L251
  SAS: 426, Size 21.97: S126, R164, S158, A188, T254, L256
40 SAS: 407, Size 15.92: S182, R180, L251, G252, T254, L256
  SAS: 407, Size 15.92: S182, R180, L256, G252, T254, L251
  SAS: 391, Size 18.26: S182, R180, L256, G252, S250, L251
  Epi#19
45 SAS: 293, Size 15.04: D175, W6, S9, Q12, R10
  SAS: 291, Size 17.13: D191, N242, S236, Q239, R241
  SAS: 273, Size 21.24: E110, T141, S236, Q239, R241
  Epi#23
50 SAS: 463, Size 19.84: R143, N114, E110, S139, Q135, A131
```

```
SAS: 451, Size 15.68: R164, N167, E134, S139, Q135, A131
   SAS: 443, Size 21.95: R44, N42, E87, S24, Q230, P233
   SAS: 440, Size 22.70: R143, N115, E110, S139, Q135, A131
   SAS: 431, Size 15.11: R44, N42, E87, S85, L73, P39
   Epi#28
   SAS: 402, Size 18.79: G59, Q57, E53, F49, G46, R44
   SAS: 384, Size 20.81: A96, Q57, E53, F49, G46, R44
   SAS: 376, Size 18.79: A47, Q57, E53, F49, G46, R44
10
   Epi#31
   SAS: 348, Size 21.63: L256, R180, N178, R10, W6, V197, D175
   SAS: 342, Size 17.75: L251, R180, N178, R10, W6, V197, D175
15 Epi#33
   SAS: 399, Size 18.88: Q107, Y102, P129, S126, R164
   SAS: 355, Size 15.95: Q135, Y165, P129, S126, R164
   Epi#34
20 SAS: 424, Size 18.37: V238, W235, S236, G144, R143, S139, S142
   SAS: 424, Size 18.37: V238, W235, S236, G144, R143, S142, S139
   SAS: 408, Size 14.02: V238, W235, S236, G144, R143, S142, T141
   SAS: 408, Size 14.02: V238, W235, S236, G144, R143, T141, S142
   SAS: 346, Size 18.37: V238, W235, S236, G144, R143, T141, S139
   Epi#37
   SAS: 405, Size 23.05: T254, A188, L256, R180, N177
   SAS: 364, Size 18.08: T254, A188, L256, R180, N179
   SAS: 347, Size 19.96: T254, A188, L256, R180, N178
   Epi#40
   SAS: 368, Size 15.74: A166, G189, T254, A188, S158
   SAS: 362, Size 15.74: A166, G189, Y186, A188, T254
   SAS: 326, Size 17.80: A188, G189, Y186, A156, S182
35 SAS: 326, Size 23.72: A166, G189, Y186, A156, S182
   SAS: 326, Size 17.80: G189, A188, Y186, A156, S182
   Epi#41
   SAS: 232, Size 19.49: P204, Y208, L211, V197, S210
40
   Epi#44
   SAS: 445, Size 22.71: V238, R241, D191, Y186, S158, A188, T254
   SAS: 429, Size 21.14: V238, R241, D191, Y186, A188, G189, T254
   SAS: 410, Size 22.71: V238, R241, D191, Y186, S158, G189, T254
45 SAS: 404, Size 23.33: V238, R241, D191, Y257, S250, G252, T254
   SAS: 382, Size 23.33: V238, R241, D191, Y257, S253, G252, T254
   Epi#46
   SAS: 567, Size 12.67: A15, R269, R19, P14, N18, G20
50
```

```
Epi#53
   SAS: 305, Size 9.43: W235, S234, Q230, K231
   SAS: 303, Size 9.53: W235, S234, Q239, K229
   SAS: 276, Size
                   9.43: W235, P233, Q230, K231
 5 SAS: 259, Size 9.43: W235, S234, Q230, K229
   SAS: 233, Size 9.53: W235, S236, Q239, K229
   ProteaseD:
10
   Epi#05
   SAS: 453, Size 24.94: G189, A188, R164, P127, G125, S99
  SAS: 449, Size 23.37: G189, A166, R164, P127, G125, S99
   SAS: 442, Size 24.94: G157, A188, R164, P127, G125, S99
15 SAS: 439, Size 15.91: G189, A188, R164, P127, G125, S128
   SAS: 435, Size 15.50: G189, A166, R164, P127, G125, S128
  Epi#09
  SAS: 448, Size 15.77: T254, G189, A166, R164, A188, S158
  Epi#10
  SAS: 460, Size 17.32: D175, N177, N179, S182, F183, G155, R180
  SAS: 428, Size 13.76: D175, N212, N153, S182, F183, G155, R180
  SAS: 403, Size 15.83: D175, N212, N153, S154, F183, G155, R180
25 SAS: 391, Size 16.15: D175, N178, N179, S182, F183, G155, R180
  SAS: 372, Size 16.77: D175, N212, N153, A156, F183, G155, R180
  Epi#12
  SAS: 302, Size 13.47: P127, Y161, E134, P129
30 SAS: 290, Size 9.39: R164, Y161, E134, P129
  SAS: 282, Size 18.68: P127, Y161, E134, N138
  SAS: 280, Size 16.87: P127, Y161, E134, N167
  SAS: 270, Size 13.10: R164, Y161, E134, N138
35 Epi#17
  SAS: 286, Size 15.87: A188, S158, R164, S126
  SAS: 250, Size 12.76: A156, S158, R164, S126
  Epi#18
40 SAS: 446, Size 16.31: S250, K245, S259, L256, A188, T254, L251
  SAS: 406, Size 14.13: S250, K245, S259, L256, G252, T254, L251
  SAS: 406, Size 14.13: S250, K245, S259, L251, G252, T254, L256
  SAS: 406, Size 14.13: S259, K245, S250, L251, G252, T254, L256
  SAS: 388, Size 14.13: S250, K245, S259, L256, G252, T249, L251
  Epi#19
  SAS: 319, Size 15.07: D175, W6, S9, Q12, R10
  SAS: 276, Size 21.28: E110, T141, S236, Q239, R241
50 Epi#23
```

```
SAS: 497, Size 19.86: R143, N114, E110, S139, Q135, A131
  SAS: 487, Size 15.77: R164, N167, E134, S139, Q135, A131
  SAS: 478, Size 13.78: R164, N167, E134, S130, Q135, A131
  SAS: 477, Size 18.16: R143, N138, E134, S139, Q135, A131
5 SAS: 472, Size 22.70: R143, N115, E110, S139, Q135, A131
  Epi#28
  SAS: 554, Size 22.17: A101, Q107, I102, E134, Q135, S139, R143
  SAS: 532, Size 19.36: I102, Q107, W111, E110, Q135, S139, R143
10 SAS: 527, Size 22.79: V50, Q107, I102, E134, Q135, S139, R143
  SAS: 509, Size 24.76: I102, Q107, F49, E53, Q57, G46, R44
  SAS: 508, Size 22.17: A101, Q107, W111, E110, Q135, S139, R143
  Epi#31
15 SAS: 355, Size 21.56: L256, R180, N178, R10, W6, V197, D175
  SAS: 352, Size 17.71: L251, R180, N178, R10, W6, V197, D175
  Epi#34
  SAS: 457, Size 18.37: V238, W235, S236, G144, R143, S139, S142
20 SAS: 457, Size 18.37: V238, W235, S236, G144, R143, S142, S139
  SAS: 447, Size 14.02: V238, W235, S236, G144, R143, S142, T141
  SAS: 447, Size 14.02: V238, W235, S236, G144, R143, T141, S142
  SAS: 374, Size 18.37: V238, W235, S236, G144, R143, T141, S139
25 Epi#37
  SAS: 397, Size 23.08: T254, A188, L256, R180, N177
  SAS: 361, Size 18.08: T254, A188, L256, R180, N179
  SAS: 328, Size 19.98: T254, A188, L256, R180, N178
30 Epi#39
  SAS: 425, Size 16.36: A131, E134, R164, P127, G125, L124
  SAS: 423, Size 16.02: A166, E134, R164, P127, G125, L124
  SAS: 399, Size 16.36: A131, E134, R164, P129, G125, L124
  SAS: 397, Size 16.02: A166, E134, R164, P129, G125, L124
35 SAS: 379, Size 16.36: A131, E134, T132, P129, G125, L124
  Epi#40
  SAS: 354, Size 15.77: A166, G189, T254, A188, S158
  SAS: 351, Size 15.77: A166, G189, Y186, A188, T254
40 SAS: 334, Size 17.81: G189, A188, Y186, A156, S182
  SAS: 334, Size 17.81: A188, G189, Y186, A156, S182
  SAS: 330, Size 14.42: A166, G189, Y186, A188, S158
  Epi#41
45 SAS: 217, Size 19.46: P204, Y208, L211, V197, S210
  Epi#44
  SAS: 407, Size 15.10: L256, R180, Y186, S158, A188, T254
  SAS: 404, Size 18.45: L251, R180, Y186, S158, A188, T254
50 SAS: 387, Size 15.52: L256, R180, Y186, A188, G189, T254
```

```
SAS: 384, Size 16.23: L251, R180, Y186, A188, G189, T254
   SAS: 373, Size 22.26: V197, R180, Y186, S158, A188, T254
  Epi#46
 5 SAS: 545, Size 12.69: A15, R269, R19, P14, N18, G20
  Epi#53
  SAS: 306, Size 18.06: W235, S234, Q239, K245
  SAS: 277, Size 9.52: W235, S234, Q239, K229
10 SAS: 276, Size 9.46: W235, S234, Q230, K231
  SAS: 268, Size 9.46: W235, P233, Q230, K231
  SAS: 258, Size 14.50: W235, S236, Q239, K245
15 ProteaseE:
  Epi#05
  SAS: 461, Size 15.49: G189, A166, R164, P127, G125, S128
  SAS: 459, Size 15.90: G189, A188, R164, P127, G125, S128
20 SAS: 435, Size 15.49: G189, A166, R164, P127, G125, S126
  SAS: 433, Size 15.49: G189, A166, R164, P129, G125, S128
  SAS: 433, Size 15.86: G189, A188, R164, P127, G125, S126
  Epi#06
25 SAS: 518, Size 14.10: G189, A188, D157, S158, R164, P127
  SAS: 490, Size 15.98: G189, A188, D157, S158, R164, P129
  SAS: 460, Size 14.60: G155, A156, D157, S158, R164, P127
  SAS: 432, Size 17.71: G155, A156, D157, S158, R164, P129
30 Epi#09
  SAS: 482, Size 15.78: T254, G189, A166, R164, A188, S158
  SAS: 311, Size 15.91: T22, G20, L21, R19, A15, S9
35 SAS: 455, Size 17.26: D175, N177, N179, S182, F183, G155, R180
  SAS: 406, Size 13.76: D175, N212, N153, S182, F183, G155, R180
  SAS: 383, Size 16.16: D175, N178, N179, S182, F183, G155, R180
  SAS: 381, Size 15.82: D175, N212, N153, S154, F183, G155, R180
  SAS: 347, Size 16.78: D175, N212, N153, A156, F183, G155, R180
40
  Epi#12
  SAS: 310, Size 13.48: P127, Y161, E134, P129
  SAS: 306, Size 9.40: R164, Y161, E134, P129
  SAS: 297, Size 9.40: R164, Y165, E134, P129
45 SAS: 285, Size 16.90: P127, Y161, E134, N167
  SAS: 281, Size 18.68: P127, Y161, E134, N138
  Epi#16
  SAS: 673, Size 19.67: R164, P127, Y161, G125, S126, S154, D157,
50 A188, N255
```

```
SAS: 664, Size 20.60: R164, P129, Y165, G189, S158, S154, D157,
  A188, N255
  SAS: 645, Size 20.60: R164, P129, Y161, G125, S126, S154, D157,
  A188, N255
5 SAS: 636, Size 14.89: R164, P127, Y161, G125, S126, S154, D157,
  A156, N153
  SAS: 627, Size 17.25: R164, P129, Y165, G189, S158, S154, D157,
  A156, N153
10 Epi#17
  SAS: 305, Size 15.86: A188, S158, R164, S126
  SAS: 270, Size 12.73: A156, S158, R164, S126
  Epi#18
15 SAS: 590, Size 17.32: S250, K246, S259, L256, A188, T254, L251
  SAS: 551, Size 16.26: S259, K246, S250, L251, G252, T254, L256
  SAS: 551, Size 16.26: S250, K246, S259, L251, G252, T254, L256
  SAS: 551, Size 16.26: S250, K246, S259, L256, G252, T254, L251
  SAS: 518, Size 16.26: S250, K246, S259, L251, G252, S253, L256
  Epi#23
  SAS: 471, Size 19.86: R143, N114, E110, S139, Q135, A131
  SAS: 467, Size 13.75: R164, N167, E134, S130, Q135, A131
  SAS: 467, Size 15.76: R164, N167, E134, S139, Q135, A131
25 SAS: 451, Size 22.69: R143, N115, E110, S139, Q135, A131
  SAS: 446, Size 19.99: R143, N138, E134, S130, Q135, A131
  Epi#28
  SAS: 505, Size 19.43: I102, Q107, W111, E110, Q135, S139, R143
30 SAS: 500, Size 22.22: A101, Q107, W111, E110, Q135, S139, R143
  SAS: 499, Size 24.79: I102, Q107, F49, E53, Q57, G46, R44
  SAS: 494, Size 24.56: A101, Q107, F49, E53, Q57, G46, R44
  SAS: 441, Size 24.79: I102, Q107, E110, W111, F49, G46, R44
35 Epi#29
  SAS: 216, Size 9.94: I43, R44, L41, E87
  SAS: 209, Size 10.85: L73, N42, L41, E87
  SAS: 200, Size 13.98: G46, R44, L41, E87
  SAS: 199, Size 11.98: G45, R44, L41, E87
40 SAS: 197, Size 19.08: I77, N74, L41, E87
  Epi#30
  SAS: 318, Size 24.25: G20, L21, A15, H17, S85, L73, P39
  SAS: 277, Size 24.25: G20, L21, A15, H17, S85, L41, P39
45 SAS: 258, Size 21.05: G20, L21, A15, H17, S85, L73, L41
  Epi#31
  SAS: 377, Size 21.62: L256, R180, N178, R10, W6, V197, D175
  SAS: 370, Size 17.72: L251, R180, N178, R10, W6, V197, D175
50
```

```
Epi#33
   SAS: 388, Size 15.92: Q135, Y165, P129, S126, R164
  Epi#34
 5 SAS: 420, Size 18.35: V238, W235, S236, G144, R143, S139, S142
   SAS: 411, Size 13.98: V238, W235, S236, G144, R143, S142, T141
   SAS: 341, Size 18.35: V238, W235, S236, G144, R143, S139, T141
   Epi#37
10 SAS: 412, Size 23.05: T254, A188, L256, R180, N177
   SAS: 378, Size 18.07: T254, A188, L256, R180, N179
   SAS: 340, Size 20.00: T254, A188, L256, R180, N178
   Epi#39
15 SAS: 445, Size 16.04: A166, E134, R164, P127, G125, L124
   SAS: 432, Size 16.40: A131, E134, R164, P127, G125, L124
   SAS: 417, Size 16.04: A166, E134, R164, P129, G125, L124
   SAS: 404, Size 16.40: A131, E134, R164, P129, G125, L124
   SAS: 376, Size 16.04: A166, E134, T132, P129, G125, L124
  Epi#40
   SAS: 374, Size 15.78: A166, G189, T254, A188, S158
  SAS: 334, Size 15.78: A166, G189, Y186, A188, T254
  SAS: 317, Size 11.62: A96, G59, T56, P54, S55
25 SAS: 312, Size 15.30: G98, G59, T56, P54, S55
  SAS: 307, Size 15.49: G189, A166, Y165, P129, S128
  Epi#41
  SAS: 234, Size 19.50: P204, Y208, L211, V197, S210
30 SAS: 189, Size 19.50: P204, Y208, L211, V197, S215
  Epi#42
  SAS: 549, Size 16.42: L21, P14, S9, Q12, H17, R19, R269
35 Epi#44
  SAS: 398, Size 15.10: L256, R180, Y186, S158, A188, T254
  SAS: 391, Size 18.47: L251, R180, Y186, S158, A188, T254
  SAS: 372, Size 15.51: L256, R180, Y186, A188, G189, T254
  SAS: 371, Size 12.26: L256, R180, Y257, S250, G252, T254
40 SAS: 367, Size 15.51: L256, R180, Y186, S158, G189, T254
  Epi#46
  SAS: 575, Size 12.75: A15, R269, R19, P14, N18, G20
45 Epi#47
  SAS: 491, Size 19.28: G45, E87, I43, R44, L41, N42, P39, S206
  Epi#53
  SAS: 202, Size 9.12: W235, P233, K231
50 SAS: 199, Size 9,12: W235, S234, K231
```

```
SAS: 182, Size 6.73: W235, P233, K229
   SAS: 179, Size
                   7.76: W235, S234, K229
   SAS: 131, Size 8.39: W235, S236, K229
   Properase:
   Epi#05
   SAS: 456, Size 15.94: G189, A188, R164, P127, G125, S128
10 SAS: 453, Size 15.52: G189, A166, R164, P127, G125, S128
   SAS: 451, Size 15.94: G157, A188, R164, P127, G125, S128
   SAS: 427, Size 15.94: G189, A188, R164, P129, G125, S128
   SAS: 424, Size 15.52: G189, A166, R164, P129, G125, S128
15 Epi#09
   SAS: 480, Size 15.73: T254, G189, A166, R164, A188, S158
   SAS: 302, Size 15.88: T22, G20, L21, R19, A15, S9
   Epi#10
20 SAS: 470, Size 17.27: D175, N177, N179, S182, F183, G155, R180
   SAS: 446, Size 13.75: D175, N212, N153, S182, F183, G155, R180
   SAS: 420, Size 15.84: D175, N212, N153, S154, F183, G155, R180
   SAS: 396, Size 16.09: D175, N178, N179, S182, F183, G155, R180
   SAS: 380, Size 16.78: D175, N212, N153, A156, F183, G155, R180
25
  Epi#12
  SAS: 296, Size 9.36: R164, Y161, E134, P129
  SAS: 295, Size 13.45: P127, Y161, E134, P129
  SAS: 291, Size 9.36: R164, Y165, E134, P129
30 SAS: 271, Size 14.70: R164, Y161, E134, N102
  SAS: 270, Size 13.45: P127, Y161, E134, N102
  Epi#17
  SAS: 283, Size 15.87: A188, S158, R164, S126
35 SAS: 241, Size 12.73: A156, S158, R164, S126
  Epi#18
  SAS: 474, Size 16.26: S250, K245, S259, L256, A188, T254, L251
  SAS: 435, Size 14.14: S250, K245, S259, L256, G252, T254, L251
40 SAS: 398, Size 14.14: S259, K245, S250, L251, G252, S253, L256
  Epi#19
  SAS: 260, Size 21.26; E110, T141, S236, Q239, R241
45 Epi#23
  SAS: 491, Size 19.86: R143, N114, E110, S139, Q135, A131
  SAS: 482, Size 15.76: R164, N167, E134, S139, Q135, A131
  SAS: 465, Size 22.69: R143, N115, E110, S139, Q135, A131
  SAS: 462, Size 18.17: R143, N138, E134, S139, Q135, A131
50 SAS: 439, Size 18.17: R143, N138, E110, S139, Q135, A131
```

50 Epi#53

```
Epi#28
  SAS: 445, Size 22.79: V50, Q107, W111, E110, Q135, S139, R143
  SAS: 426, Size 19.06: V50, Q107, F49, E53, Q57, G46, R44
5 SAS: 370, Size 19.06: V50, Q107, E110, W111, F49, G46, R44
  Epi#31
  SAS: 347, Size 21.62: L256, R180, N178, R10, W6, V197, D175
  SAS: 339, Size 17.74: L251, R180, N178, R10, W6, V197, D175
10
  Epi#33
  SAS: 368, Size 15.95: Q135, Y165, P129, S126, R164
  Epi#34
15 SAS: 445, Size 18.39: V238, W235, S236, G144, R143, S139, S142
  SAS: 436, Size 14.07: V238, W235, S236, G144, R143, S142, T141
  SAS: 358, Size 18.39: V238, W235, S236, G144, R143, T141, S139
  Epi#37
20 SAS: 415, Size 23.03: T254, A188, L256, R180, N177
  SAS: 374, Size 18.04: T254, A188, L256, R180, N179
  SAS: 341, Size 19.93: T254, A188, L256, R180, N178
  Epi#39
25 SAS: 323, Size 11.55: A15, E265, H17, R19, P14, G20, L21
  SAS: 238, Size 12.13: A15, E265, H17, T22, P14, G20, L21
  Epi#40
  SAS: 370, Size 15.73: A166, G189, T254, A188, S158
30 SAS: 360, Size 15.73: A166, G189, Y186, A188, T254
  SAS: 324, Size 17.80: A188, G189, Y186, A156, S182
  SAS: 321, Size 23.71: A166, G189, Y186, A156, S182
  Epi#41
35 SAS: 228, Size 19.53: P204, Y208, L211, V197, S210
  Epi#42
  SAS: 554, Size 16.31: L21, P14, S9, Q12, H17, R19, R269
40 Epi#44
  SAS: 406, Size 15.06: L256, R180, Y186, S158, A188, T254
  SAS: 398, Size 18.38: L251, R180, Y186, S158, A188, T254
  SAS: 395, Size 12.22: L256, R180, Y257, S250, G252, T254
  SAS: 392, Size 15.49: L256, R180, Y186, A188, G189, T254
45 SAS: 387, Size 12.22: L251, R180, Y257, S250, G252, T254
  Epi#46
  SAS: 581, Size 12.65: A15, R269, R19, P14, N18, G20
```

308

```
SAS: 297, Size 18.06: W235, S234, Q239, K245
SAS: 283, Size 9.54: W235, S234, Q239, K229
SAS: 250, Size 9.46: W235, S234, Q230, K231
SAS: 249, Size 14.49: W235, S236, Q239, K245
5 SAS: 247, Size 9.46: W235, P233, Q230, K231
```

Relase:

```
10 Epi#05
  SAS: 461, Size 17.25: G158, A189, R165, P128, G126, S129
  SAS: 439, Size 17.22: G158, A189, R165, P128, G126, S127
  SAS: 436, Size 17.25: G158, A189, S159, P128, G126, S129
  SAS: 420, Size 17.25: G158, A189, R165, P130, G126, S129
15 SAS: 414, Size 17.22: G158, A189, S159, P128, G126, S127
  Epi#09
  SAS: 510, Size 22.37: T22, G20, R19, A15, R270, A267, T250
  SAS: 501, Size 22.37: L21, G20, R19, A15, R270, A267, T250
  Epi#10
  SAS: 458, Size 17.50: D176, N178, N180, S183, F184, G156, R181
  SAS: 424, Size 13.68: D176, N213, N154, S183, F184, G156, R181
  SAS: 407, Size 15.87: D176, N213, N154, S155, F184, G156, R181
25 SAS: 392, Size 16.18: D176, N179, N180, S183, F184, G156, R181
  SAS: 362, Size 16.73: D176, N213, N154, A157, F184, G156, R181
  Epi#12
  SAS: 323, Size 9.38: R45, Y90, E88, N43
30 SAS: 312, Size 13.53: P128, Y162, E135, P130
  SAS: 302, Size 9.46: R165, Y162, E135, P130
  SAS: 296, Size 9.46: R165, Y166, E135, P130
  SAS: 295, Size 13.19: T255, Y187, E190, S159
35 Epi#18
  SAS: 431, Size 15.20: S251, K246, S260, L257, A189, T255, L252
  SAS: 398, Size 14.35: S251, K246, S260, L252, G253, T255, L257
  SAS: 378, Size 14.35: S251, K246, S260, L257, G253, T250, L252
40 Epi#19
  SAS: 285, Size 21.53: E111, T142, S237, Q240, R242
  SAS: 275, Size 12.58: D119, T142, S237, Q240, R242
  Epi#23
45 SAS: 512, Size 22.29: R45, N43, E88, S24, Q231, P234
  SAS: 476, Size 19.71: R144, N115, E111, S140, Q136, A132
  SAS: 460, Size 13.83: R165, N168, E135, S131, Q136, A132
  SAS: 455, Size 20.11: R144, N139, E135, S131, Q136, A132
  SAS: 452, Size 15.83: R165, N168, E135, S140, Q136, A132
```

```
Epi#25
  SAS: 293, Size 13.93: R45, K27, D119, E88
  Epi#28
5 SAS: 502, Size 19.99: V103, Q108, W112, E111, Q136, S140, R144
  SAS: 476, Size 21.74: V51, Q108, F50, E54, Q58, S37, R45
  SAS: 472, Size 24.93: V103, Q108, F50, E54, Q58, G47, R45
  SAS: 469, Size 23.18: V51, Q108, W112, E111, Q136, S140, R144
  SAS: 439, Size 19.16: V51, Q108, F50, E54, Q58, G47, R45
10
  Epi#31
  SAS: 354, Size 21.73: L257, R181, N179, R10, W6, V198, D176
  SAS: 348, Size 17.85: L252, R181, N179, R10, W6, V198, D176
15 Epi#33
  SAS: 396, Size 22.75: Q201, Y204, P205, S37, R45
  SAS: 379, Size 22.75: Q201, Y209, P205, S37, R45
  SAS: 357, Size 18.39: H63, Y204, P205, S37, R45
20 Epi#34
  SAS: 466, Size 13.97: V239, W236, S237, G145, R144, S143, T142
  SAS: 463, Size 18.37: V239, W236, S237, G145, R144, S140, S143
  SAS: 387, Size 18.37: V239, W236, S237, G145, R144, S140, T142
25 Epi#36
  SAS: 206, Size 22.37: T250, A267, A15, G20, T22
  Epi#37
  SAS: 400, Size 22.59: T255, A189, L257, R181, N178
30 SAS: 359, Size 17.59: T255, A189, L257, R181, N180
  SAS: 334, Size 19.35: T255, A189, L257, R181, N179
  Epi#39
  SAS: 464, Size 16.36: A167, E135, R165, P128, G126, L125
35 SAS: 444, Size 16.52: A132, E135, R165, P128, G126, L125
  SAS: 441, Size 16.36: A167, E190, R165, P128, G126, L125
  SAS: 441, Size 18.98: A189, E190, R165, P128, G126, L125
  SAS: 423, Size 16.36: A167, E135, R165, P130, G126, L125
40 Epi#40
  SAS: 324, Size 11.66: A97, G60, T57, P55, S56
  SAS: 316, Size 17.09: G158, A189, Y187, A157, S183
  SAS: 307, Size 14.92: G158, A157, Y187, A189, T255
  SAS: 307, Size 15.34: G99, G60, T57, P55, S56
45
  Epi#41
  SAS: 222, Size 19.74: P205, Y209, L212, V198, S211
  Epi#42
50 SAS: 544, Size 16.22: L21, P14, S9, Q12, H17, R19, R270
```

```
Epi#44
  SAS: 421, Size 14.87: L257, R181, Y187, S159, A189, T255
  SAS: 415, Size 18.81: L252, R181, Y187, S159, A189, T255
5 SAS: 389, Size 22.36: V198, R181, Y187, S159, A189, T255
  SAS: 389, Size 21.81: I44, R45, Y90, A48, V51, P52
  SAS: 386, Size 19.16: I44, R45, Y90, A48, V51, P55
  Epi#46
10 SAS: 557, Size 14.54: A267, R270, R19, P14, N18, G20
  SAS: 553, Size 12.63: A15, R270, R19, P14, N18, G20
  SAS: 540, Size 13.10: A267, R270, R19, P14, N18, A15
  SAS: 444, Size 14.54: A267, R270, R19, P14, G20, A15
15 Epi#47
  SAS: 627, Size 16.22: A267, R270, A15, R19, L21, N18, P14, S9
  SAS: 436, Size 15.11: A267, E266, A15, R19, L21, N18, P14, S9
  Epi#51
20 SAS: 545, Size 21.66: L21, R19, H17, D75, S77, I78, S3, W6
  SAS: 485, Size 21.66: L21, R19, H17, D75, Q2, I78, S3, W6
  Epi#53
  SAS: 328, Size 9.43: W236, S235, Q231, K232
25 SAS: 316, Size 9.43: W236, P234, Q231, K232
  SAS: 301, Size 18.21: W236, S235, Q240, K246
  SAS: 246, Size 14.68: W236, S237, Q240, K246
```

30 "SAS" is solvent accessible surface. "Size" is the total suface area of the epitope in Å2.

35 Example 12

40

The object of this example is to provide evidence showing that subtilisins with an homology to BPN' of as low as 44,8% reveal a similar epitope distribution as BPN'.

Alcalase, Protease B, Savinase, Esperase, and PD498 (which range from 44,8% to 69,5% in sequence identity to BPN') were epitope

311

mapped as described in the above example, and compared with epitope mapped BPN' (Figure 1).

The data in Figure 1 show a significant overlap between the arseas on the primary structure of the respective proteases. Overall, 6 regions were identified: 1-20, 35-65, 95-115, 130-145, 170-220, and 260-270.

Even better overlap between the epitope sequences can be found among proteins of higher sequence identity, such as within the Savinase-like subtilisins with more than 81% identity, preferably more than 85%, more preferably more than 90%, even more preferably more than 96% or most preferably more than 98% identity.

15

Example 13

Wash performance

20

The following example provides results from a number of washing tests that were conducted under the conditions indicated

Table 9: Experimental conditions for evaluation of Subtilisin variants I44V.

Detergent	OMO Acao
Detergent dose	2.5 g/l
PH	10.5
Wash time	14 min.

Temperature	25°C
Water hardness	9°dH
Enzymes	Subtilisin variant I44V
Enzyme conc.	10 nM
Test system	150 ml glass beakers with a stirring rod
Textile/volume	5 textile pieces (Ø 2.5 cm) in 50 ml de- tergent
Test material	EMPA117 from Center for Testmaterials, Holland

Table 10: Experimental conditions for evaluation of Subtilisin variants Q12D.

Detergent	Persil Powder
Detergent dose	4 g/l
PH	10.5
Wash time	20 min.
Temperature	30°C
Water hardness	18°dH
Enzymes	Subtilisin variant Q12D
Enzyme conc.	10 nM
Test system	150 ml glass beakers with a stirring rod

Textile/volume	5 textile pieces (Ø 2.5 cm) in 50 ml de- tergent
Test material	EMPA116 from Center for Testmaterials, Holland

Table 11: Experimental conditions for evaluation of Subtilisin variants Q12D.

Detergent	Tide
Detergent dose	1 g/l
РН	10.5
Wash time	10 min.
Temperature	25°C
Water hardness	6°dH
Enzymes	Subtilisin variant Q12D
Enzyme conc.	10 nM
Test system	150 ml glass beakers with a stirring rod
Textile/volume	5 textile pieces (Ø 2.5 cm) in 50 ml de- tergent
Test material	EMPA117 from Center for Testmaterials, Holland

pH is adjusted to 10.5 which is within the normal range for a powder detergent.

Water hardness was adjusted by adding CaCl₂ and MgCl₂ (Ca²⁺:Mg²⁺ 5 = 2:1) to deionized water (see also Surfactants in Consumer Products - Theory, Technology and Application, Springer Verlag 1986). pH of the detergent solution was adjusted to pH 10.5 by addition of HCl.

Measurement of reflectance (R) on the test material was done at 460 nm using a Macbeth ColorEye 7000 photometer. The measurements were done according to the manufacturers protocol. The wash performance of the variants were evaluated by calculating a performance factor:

15.

$$P = \frac{R_{Variant} - R_{Blank}}{R_{Savinase} - R_{Blank}}$$

P: Performance factor

RVariant: Reflectance of test material washed with variant

 $R_{Savinase}$: Reflectance of test material washed with Savinase R_{Blank} : Reflectance of test material washed with no enzyme

The variants all have improved wash performance compared to Savinase $^{\circ}$ - i.e. P > 1.

25 The variants can be divided into improvement classes designated with capital letters:

Class A: $1 < P \le 1.5$

Class B: $1.5 < P \le 2$

30 Class C: P > 2

315

Table 12: Subtilisin variants and improvement classes.

Improvement	Variants
class	
С	I44V, Q12D

As it can be seen from Table 12 SAVINASE® variants of the invention exhibits an improvement in wash performance.

Appendix A

Source code for the core C program (epitope.c)

```
/* This is epitope.c */
   /* EPF 25-10-2000 */
   1000
   #define MAXRESIDUES
   #define MAXCONSENSUS
                     15
15 #define MAXEPITOPERES 30000
  #define MAXEPITOPES 10000
                     "ACDEFGHIKLMNPQRSTVWY"
   #define AMINOACIDS
  #define AMINOACIDS3
                     "ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG
  SER THR VAL TRP TYR "
20 #define REVISIONDATE "12-02-2001"
   #define max(A, B)
                     ((A) > (B) ? (A) : (B))
   #define min(A, B)
                     ((A) < (B) ? (A) : (B))
   /* ----- */
   #include <stdio.h>
  #include <stdlib.h>
  #include <string.h>
   #include <math.h>
30 #include <limits.h>
   struct residue
35 {
    char 1tr3[3];
    char ltr;
    float x, y, z;
    int sasa, number;
    int member_of_epitopes; /* how many epitopes is this residue part of ? */
  struct epitoperesidue
                 /* -1 if top level */
     int parent;
                /* -1 if gap */
     int residue;
     char level;
  };
50 struct epitope
     int sasa, gaps, residues, res[MAXCONSENSUS];
     char epi[255];
                  /* is this epitope a subset of another */
     char subset;
     float size;
  };
   struct residue res[MAXRESIDUES];
  struct epitoperesidue epires[MAXEPITOPERES];
  char consensus [MAXCONSENSUS] [22];
  struct epitope epi[MAXEPITOPES];
65 int numofres = 0, numofepires = 0, consensuslength = 0;
  int minsasa = 0, numofepitopes = 0, numofsubsets = 0;
```

```
float mindist = 7, sqmindist, maxsize, sqmaxsize, minlength = 0;
   int maxepi = 0, minlength_residues, longestepitope;
5
      */
   int readconsensus (char *filename)
10 {
      /* return length of consensus sequence */
      int i = 0:
      FILE *infile;
15
      char buffer[255], end = 0;
      if (infile = fopen(filename, "r"))
20 /*
          This code adds linefeeds to the consensus file. This is because there must
          be a newline after the last line. Because of permission problems, this has
   been moved to
          the wrapping cgi-script instead
25
        fclose(infile);
        infile = fopen(filename, "a");
        fprintf(infile, "\n\n");
        fclose(infile);
        infile = fopen(filename, "r");
30 */
        while (!feof(infile) && !end)
          fgets (buffer, 255, infile);
35
          if (strlen(buffer) > 22)
            printf ("Too many residue types in consensus residue %d\n",i+1);
            printf ("using all 20 types instead.\n");
            strcpy (consensus[i], AMINOACIDS);
40
          else if (strchr(buffer, '*'))
                                       /* wildcard '*' means any residue, but no gap
   */
            strcpy (consensus[i], AMINOACIDS);
                                       /* wildcard '*' means any residue or gap */
          else if (strchr(buffer,'?'))
45
            strcpy (consensus[i], AMINOACIDS);
            strcat (consensus[i], "-");
          else if (!strpbrk(buffer, "ACDEFGHIKLMNPQRSTVWY*?")) /* empty line, end the
50 loop */
            end = 1;
            i--;
55
          else
            strncpy (consensus[i], buffer, strlen(buffer)-1);
          i++;
60
      fclose(infile);
      consensuslength = i;
      return i;
65
   int readpdbCA(char *filename)
```

```
{
      /* return number of residues */
      int i = 0;
      char *j;
      FILE *infile;
      char buffer[255];
      char aminoacids[20] = AMINOACIDS;
      char aminoacids3[80] = AMINOACIDS3;
10
      if (infile = fopen(filename, "r"))
        while (!feof(infile))
15
          fgets (buffer, 255, infile);
          if (!strncmp(buffer,"ATOM",4) && !strncmp(buffer+13,"CA",2)) /* get only the
   CA atoms */
            strncpy(res[i].ltr3,buffer+17,3);
20
            if (j = strstr(aminoacids3,res[i].ltr3))
              res[i].ltr = aminoacids[(j-aminoacids3)/4];
              printf("Unknown residue type: %s\n",res[i].ltr3);
25
              res[i].ltr = 'X';
            res[i].x = atof(buffer+30);
            res[i].y = atof(buffer+38);
            res[i].z = atof(buffer+46);
30
            res[i].member_of_epitopes = 0;
            res[i].number = atoi(buffer+22);
            i++;
35
      numofres = i;
      return i;
40
   int readdssp(char *filename)
      /* return number of residues */
45
      int i = 0;
      char *j;
FILE *infile;
      char buffer[255];
50
      strcpy (buffer, " ");
      if (infile = fopen(filename, "r"))
        while (!feof(infile) && strncmp(buffer," # RESIDUR AA",15)) /* find where
55 data begins */
          fgets (buffer, 255, infile);
        while (!feof(infile))
60
          fgets (buffer, 255, infile);
          if (!feof(infile))
            if ((buffer[13] == res[i].ltr && atoi(buffer+5) == res[i].number
   ) | (strchr("abcdefghijklmnopqrstuvwxyz", buffer[13]) && res[i].ltr == 'C' &&
65 atoi(buffer+5) == res[i].number ) )
              res[i].sasa = atoi(buffer+35);
```

```
i++:
            else
              printf("Inconsistency between pdb and dssp file at residue
 5 %c%d\n*,res[i].ltr, res[i].number);
        }
      if (i != numofres)
       printf("Inconsistency between pdb and dssp file: wrong # of residues (%d) in
10
   pdb, (%d) in dssp\n", numofres, i);
      return i;
15
   void writedatafile (char *filename)
20
      int i:
      FILE *outfile;
      if (outfile = fopen(filename, "w"))
25
        fprintf(outfile,"# seq pdb AA epitopes\n");
        fprintf(outfile,"#
                                seq
        for (i=0; i<numofres; i++)
          fprintf(outfile,"%4d %4d %c %4d\n",i+1 , res[i].number, res[i].ltr,
30 res[i].member_of_epitopes);
        fclose(outfile);
35 }
   /* ----- ANALYSIS FUNCTIONS ---- */
   int addchild(int parent, int residue, char level) .
40
      if (numofepires == MAXEPITOPERES)
        printf("Sorry, program constant MAXEPITOPERES exceeded, increase and recompile
   program(n");
45
       exit (0);
      epires[numofepires].parent = parent; /* should be -1 for the top level */
      epires[numofepires].residue = residue; /* should be -1 for a gap */
      epires [numofepires].level = level;
50
      numofepires++;
55
      if (numofepires % 10 == 0)
        printf ("Added %d epires\n", numofepires);
   */
      return numofepires;
60 }
   float sqdist(int i, int j)
      /* returns the square of the distance between the coordinates for residues i and j
```

```
return (res[i].x-res[j].x)*(res[i].x-res[j].x)+(res[i].y-res[j].y)*(res[i].y-
   res[j].y)+(res[i].z-res[j].z)*(res[i].z-res[j].z);
5
   void findepitopes(void)
                               /* This is the core algorithm */
      int i, j, k, nogapanchestor;
10
      /* --- Find parents --- */
      for(i=0; i<numofres; i++)</pre>
        if (res[i].sasa >= minsasa && strchr(consensus[0],res[i].ltr))
15
          addchild(-1,i,0);
      /* ---- do 'consensuslength-1' number of child cycles ----- */
20
      for (i=1; i<consensuslength; i++)
        for (j=numofepires-1; j>=0 && epires[j].level == i-1; j--)
          if (strchr(consensus[i],'-')) /* is a gap allowed at this position in the
25 consensus ? */
            addchild(j,-1,i);
          if (epires[j].residue == -1) /* this a gap, so use distance to parents (or
   older anchestor) instead */
30
             /* the following line is for handling multiple gaps after each other */
            for (nogapanchestor = epires[j].parent; epires[nogapanchestor].residue == -
   1; nogapanchestor = epires[nogapanchestor].parent);
35
            for(k=0; k<numofres; k++)</pre>
                if (res[k].sasa >= minsasa && strchr(consensus[i],res[k].ltr) && k !=
   epires[epires[j].parent].residue && sqdist(k,epires[epires[j].parent].residue) <=
   sqmindist) */
              if (res[k].sasa >= minsasa && strchr(consensus[i],res[k].ltr) && k !=
   epires [nogapanchestor].residue && sqdist(k,epires [nogapanchestor].residue) <= sqmin-
   dist)
                addchild(j,k,i);
          }
45
          else
            for(k=0; k<numofres; k++)
              if (res[k].sasa >= minsasa && strchr(consensus[i],res[k].ltr) && k !=
50 epires[j].residue && sqdist(k,epires[j].residue) <= sqmindist)</pre>
                addchild(j,k,i);
        }
     longestepitope = epires[numofepires-1].level+1;
   }
60 int cmp(const void *a, const void *b)
     struct epitope *aa = (struct epitope *)a;
     struct epitope *bb = (struct epitope *)b;
     if (aa->sasa < bb->sasa)
        return 1;
```

```
else if (aa->sasa == bb->sasa)
        return 0;
     else
        return -1;
 5 }
   void processepitopes(void) /* Go through the epitopes, remove copies, nonsense se-
   quences etc. */
10
     int i, j, k, l, n, thisepinumbers(MAXCONSENSUS), processed=0;
     char thisepi[255], tmp[50];
     char discarded, toobig, onepresent, allpresent;
     float maxsqdist;
15
        for (i=numofepires-1; i>=0 && epires[i].level == epires[numofepires-1].level; i-
   -)
          discarded = 0; toobig = 0;
20
          strcpy(thisepi, "");
          j = i;
          n = 0;
          maxsqdist = 0;
25
          do {
              thisepinumbers[n++] = epires[j].residue;
              if (epires[j].residue == -1) /* its a gap */
                sprintf(tmp, "---, ");
30
              else
                 sprintf(tmp,"%c%d, ", res[epires[j].residue].ltr,
   res[epires[j].residue].number);
              if (strstr(thisepi,tmp) && epires[j].residue != -1 ) /* only gaps can be
35 present twice! */
                discarded = 1;
              else
                strcat(thisepi,tmp);
40
              j=epires[j].parent;
          } while (j != -1);
          for (k=0; k <= epires[numofepires-1].level; k++)</pre>
            for (l=k+1; 1 <= epires[numofepires-1].level; l++)</pre>
              if (thisepinumbers[k] != -1 && thisepinumbers[l] != -1) /* if there are
   no gaps involved */
                maxsqdist = max(maxsqdist, sqdist(thisepinumbers[k],thisepinumbers[l])
   );
50
          if (maxsqdist > sqmaxsize)
            toobig = 1;
          if (toobig)
55
            discarded = 1;
          if (!discarded)
                             /* put the found epitopes into the epitope list */
60
            sprintf(epi[numofepitopes].epi,"%s\n",thisepi);
            epi[numofepitopes].sasa = 0;
            epi[numofepitopes].gaps = 0;
            epi[numofepitopes].residues = 0;
            epi[numofepitopes].size = sqrt(maxsqdist);
65
            for (j = 0; j < n; j++) /* loop over the residues in this epitope */
```

```
epi[numofepitopes].res[j] = thisepinumbers[j];
                                                                  /* copy the residue num-
   bers to the epitope list */
               if (thisepinumbers[j] != -1)
                                                                     /* if it is not a gap
 5 */
                 epi[numofepitopes].sasa += res[thisepinumbers[j]].sasa;
                 epi[numofepitopes].residues++;
10
               else
                 epi[numofepitopes].gaps++;
             numofepitopes++;
15
             if (numofepitopes == MAXEPITOPES)
                printf("MEXEPITOPES exceeded. Increase and recompile program.\n");
                exit(0);
           }
20
         }
         /* now indetify epitopes which are a subset of others */
25
         for (i=0; i<numofepitopes; i++) /* initialize array */
           epi[i].subset = 0;
         for (i=0; i<numofepitopes; i++)
30
           for (j=0; j<numofepitopes; j++)
             if (epi[i].residues > epi[j].residues)
35
               allpresent = 0;
               for (k=0; k<epi[i].residues; k++)
                 if (epi[i].res[k] != -1)
4Ω
                   onepresent = 0;
                   for (l=0; l<epi[j].residues; l++)</pre>
                     if (epi[i].res[k] == epi[j].res[l]) /* if the residues are the same
   and not gaps */
                       onepresent = 1;
45
                   allpresent |= onepresent;
               if (allpresent)
50
                 epi[j].subset = 1;
                   numofsubsets++; */
55
        }
       /* now sort the epitopes according to SASA */
60
       qsort(&(epi[0]),numofepitopes,sizeof(struct epitope), &cmp);
       /* counts the ones that are subsets of others */
       for (i=0; i<numofepitopes; i++)
65
         if (epi[i].subset == 1)
            numofsubsets++;
```

```
/* now count how many epitopes each ressidue is a member of,
          considering only non-redundant epitopes, and the number of epitopes wanted */
       for (i=0; i < numofepitopes && processed < maxepi; i++)
         if (epi[i].subset == 0) /* count only if the epitope is not a subset of an-
   other */
           processed++;
           for (j=0; j < epi[i].residues; j++)</pre>
10
              (res[epi[i].res[j]].member_of_epitopes)++; /* add the counter for epi-
   topes for the residues */
         }
15 }
   void printepitopes (void)
20
     int i, processed = 0;
     for (i=0; i < numofepitopes && processed < maxepi; i++)
       if (epi[i].subset == 0)
25
         printf("SAS: %3d, Size %5.2f: %s",epi[i].sasa, epi[i].size, epi[i].epi);
         processed++;
   }
30
   void usage (void)
      fprintf(stderr, "USAGE: epitope <epitope template> <filename_template> dist acc
   maxsize number minlength\n");
      fprintf(stderr, "\n");
      fprintf(stderr, "filenames <filename template>.pdb and <file-</pre>
   name_template>.dssp\n*);
      fprintf(stderr, "
                                 must be present.\n");
      fprintf(stderr, "dist is the maximum distance between adjacent residues in epi-
40 tope.\n");
      fprintf(stderr, "acc is minimum surface accessible area in square angstroms.\n");
      fprintf(stderr, "maxsize is the maximum distance between any two residues in the
   epitope.\n");
      fprintf(stderr, "number is the maximum number of non-redundant epitopes to consider
45 (0=all)\n");
      fprintf(stderr, minlength is the minimum length of the epitope seqs (in frac-
   tions\n");
      fprintf(stderr, " of the consensus sequence length).\n");
      fprintf(stderr, "A file <filename_template>.dat containing the number of epi-
50 topes\n*);
      fprintf(stderr, "each residue participates in is written.\n");
      fprintf(stderr, "\n");
      exit(0);
55 }
   int main (int argc, char **arg)
60 {
      char pdbfile[256], dsspfile[256], datfile[256];
      if (argc != 8)
65
        usage();
      readconsensus (arg[1]);
```

```
printf ("Epitope consensus sequence read from %s\n",arg[1]);
      printf ("----\n");
      for (i = 0; i < consensuslength; i++)
       printf("%s\n",consensus[i]);
5
      printf("\n");
      strcpy(pdbfile,arg[2]);
      strcat(pdbfile, ".pdb");
10
      strcpy(dsspfile,arg[2]);
      strcat(dsspfile, ".dssp");
      strcpy(datfile, arg[2]);
15
      strcat(datfile, ".dat");
      readpdbCA(pdbfile);
      printf ("Sequence read from %s\n",pdbfile);
20
      printf ("----\n");
      for (i = 0; i < numofres; i++)
       printf("%c", res[i].ltr);
        if (!((i+1)%70))
25
         printf("\n");
      printf("\n\n");
30
      readdssp(dsspfile);
      mindist = atof(arg[3]);
      minsasa = atoi(arg[4]);
      maxsize = atof(arg[5]);
35
      maxepi = atoi(arg[6]);
      if (maxepi == 0)
       maxepi = INT_MAX;
      minlength = atof(arg[7]); /* minimum length of epitope sequence (in fractions
   of the consensus length) */
40
      sqmindist = mindist*mindist;
      sqmaxsize = maxsize*maxsize;
      minlength_residues = (float) ceil(minlength*consensuslength);
45
      findepitopes();
      if (longestepitope >= minlength residues)
       processepitopes();
50
      printf ("Parameters and internal numbers\n");
      printf ("----\n");
      printf (*Program revision date
                                                          : %s\n", REVISIONDATE);
      printf ("Consensus sequence length
                                                          : %d\n", consensuslength);
      printf ("Minimum epitope seg length threshold
                                                          : %.2f (%d residues)\n",
   minlength, minlength_residues);
                                                          : %d\n*, longestepitope);
: %d\n*, numofres);
      printf ("Longest epitope sequence found
    printf ("Number of residues in PDB file
printf ("Distance threshold value (angstroms)
                                                          : %.lf\n", mindist);
      printf ("Minimum surface accessible area of each res : %d\n", minsasa);
      printf ("Maximum epitope size
                                                         : %.1f\n", maxsize);
      printf ("Number of nodes in epitope tree
                                                          : %d\n", numofepires);
     printf ("Total number of epitopes....
                                                          : %d\n", numofepitopes);
      printf ("....of which are subsets of others
                                                          : %d\n", numofsubsets);
65
      printf ("Max number of non-redundant epitopes
                                                          : %d\n", maxepi);
      printf (*\n*);
```

```
printf ("Epitopes found\n");
    printf ("-----\n");

if (longestepitope >= minlength_residues)

5    printepitopes();

    writedatafile(datfile);

/*

10    for (i = 0; i < numofepires; i++)
        printf("|%4d %4d %4d %4d ",i, epires[i].level, epires[i].residue, epires[i].parent);

*/

15    return 0;
}</pre>
```

Appendix B

The wrapper (Python) (epitope5.cgi)

```
#!/z/vaks/bin/python
   # Automatic epitope mapping
   #
10
   import cgi, os, time, commands, string, sys
   FormFile = "epitope.html"
   scriptdir = "/z/edhome/epf/public_html/epitope/"
15 epitopepath = "/z/edhome/epf/epitope/epitope3"
   dssppath = "/z/vaks/bin/dssp"
   gnuplotpath = "/z/edhome/epf/gnuplot-3.7/gnuplot"
   zippath = "/usr/freeware/bin/zip"
   unzippath = "/usr/freeware/bin/unzip"
20
   timestamp = str(int(time.time()))
   liball = range(1,53)
   libigg = \{3,4,7,11,14,16,17,30,31,32,34,35,38,39,41,42,43,47,48,49,50,51,52\}
25 libige =
   [1,2,5,6,8,9,10,12,13,15,18,19,20,21,22,23,24,25,26,27,28,29,33,36,37,40,44,45,46]
30 # ----- the page startes here ------
   print "Content-type: text/html\n\n" # HTML is following
   print '<html>\n'
35 print '<head>\n'
   print '<title>Automatic epitope mapping</title>\n'
   print '</head>\n'
   print '\n'
   # ----- check for lock file
   if os.path.isfile("epitope.lock"):
     print 'Sorry - lock file exists. This means that automatic epitope mapping is al-
45 ready in use,'
     print 'or that an error has occured.<BR>'
     print "If you are absolutely sure that no one are using automatic epitope mapping,
   you can"
     print "press the button below. <BR>"
     print "If you are not sure, just press 'back' in your browser now."
     print '<BR><BR>'
     print '<form METHOD=GET AC-
   TION="http://vaks.novo.dk/~epf/epitope/epitope_removelock.cgi"><input type="submit"
55 name="SUBMIT_BUTTON" value="Remove lock file"></form>'
     sys.exit(0)
60 # ----- create lock file ------
   os.system ("touch epitope.lock")
65 # ------ Clean up directory ------
   # --- (delete everything but md_analysis.cgi and md_analysis.html) ---
```

WO 01/83559

327

PCT/DK01/00293

```
#commands.getoutput("ls -l | awk '$9 !- /^epitope/ {print \"rm\",$9}' >cleanup.sh")
   #commands.getoutput(". "+scriptdir+"cleanup.sh")
   #if os.path.isfile("cleanup.sh"):
   # os.remove ("cleanup.sh")
   commands.getoutput ("rm *.png")
10 commands.getoutput ("rm *.dat.txt")
   commands.getoutput ("rm *.out.txt")
   # remove any subdirs
15 commands.getoutput ("find . -type d -name '???**' -exec rm -rf {} \;")
   # ----- the page continues here -----
   form = cgi.FieldStorage()
20
   infile = form["pdbfile"].value
   namebase = form["pdbfile"].filename
25 namebasenum = string.rfind(namebase,'\\')
   if namebasenum < -1:
     namebasenum = 0
   namelist = string.split(namebase[namebasenum+1:],'.')
   pdbname = namelist[0]+'.pdb'
   dsspname = namelist[0]+'.dssp'
   datname = namelist[0]+'.dat'
   dattxtname = namelist[0]+'.dat.txt'
35 zipname = namelist[0]+'.zip'
   inzipname = 'submitted.zip'
   consensusname = namelist[0]+'.cons'
   epiname = namelist[0]+'.out.txt'
   minsasa = form["minsasa"].value
   mindist = form["mindist"].value
   maxsize = form["maxsize"].value
   consensus = form["consensus"].value
45 threshold = form["threshold"].value
   number = form["number"].value
   minlength = form["minlength"].value
   plotmode = form["plot mode"].value
   operatemode = form["operate_mode"].value
50 if (operatemode[0:7] == "library"):
     operatemode = "library"
   if (form["operate_mode"].value == "library_all"):
      lib = liball
55 elif (form["operate_mode"].value == "library_igg"):
      lib = libigg
   elif (form["operate_mode"].value == "library_ige"):
      lib = libige
   if (operatemode == "library"):
    libsize = len(lib)
   if (string.upper(namelist(1)) == 'PDB'):
     inputtype = 'PDB'
   if (string.upper(namelist[1]) == 'ZIP'):
    inputtype = 'ZIP'
   # ----- write submitted file
```

for currentpdbname in pdbfiles:

```
if (inputtype == 'PDB'):
     f=open(pdbname, "w")
   if (inputtype == 'ZIP'):
    f=open(inzipname, "w")
   f.write(infile)
   f.close()
   # ----- If the submitted file is a zip-file, extract it and make a list of the en-
10 tries -----
   if (inputtype == 'ZIP'):
     pdbfiles = string.split(commands.getoutput(unzippath+" -1 "+inzipname+" | awk '{ if
   (NR > 3 && NF == 4) print $4}'"))
     numofpdbfiles = len(pdbfiles)
     commands.getoutput(unzippath+" -j "+inzipname)
     # ---- make directories and move the zipfiles there -----
20
     for i in pdbfiles:
       dirname = i[0:-4]
       commands.getoutput("rm -rf "+dirname)
       os.mkdir(dirname)
       os.rename(i,dirname+"/"+i)
25
     pdbfiles = [pdbname]
30 # -----
   if (operatemode == "single"):
     f=open(consensusname, "w")
     f.write(consensus)
     f.close()
   print '<CENTER>\n'
   if form.has_key("pagetitle"):
      print '<H1>'+form("pagetitle").value+'</H1>\n'
   print time.ctime(time.time())+'<BR><BR>\n'
   if (operatemode == "single"):
     print '<BR><H2>You should print or save this page!</H2>\n'
     print 'The results shown on this page are not stored anywhere else.\n\n'
   if (operatemode == "library"):
     if (inputtype == 'ZIP'):
50
       print '<H2><A HREF="collected.zip">Download</A> your results!</H2>\n'
     if (inputtype == 'PDB'):
      print '<H2><A HREF="'+zipname+'">Download</A> your results!</H2>\n'
     print 'Downloading is strongly recommended! The results are shown on this page and
   included\n'
   print 'in this archive. They are not stored anywhere else.<BR>\n'
   print 'Filename given by you:<BR>\n'
   print '<B>'+form["pdbfile"].filename+'</B>\n'
60
   # ----- run the program -----
   #if (inputtype == 'ZIP'):
65 if (1 == 1):
```

```
# ------ the naming stuff - identical to that at the top of the file ---
       namebase = currentpdbname
       namebasenum = string.rfind(namebase,'\\')
       if namebasenum < -1:
         namebasenum = 0
       namelist = string.split(namebase[namebasenum+1:],'.')
10
       if (inputtype == 'PDB'):
         nameroot = namelist[0]
       if (inputtype == 'ZIP'):
         nameroot = namelist[0]
15 #
          nameroot = currentpdbname[0:-4]+"/"+namelist[0]
       pdbname = nameroot+'.pdb'
       dsspname = nameroot+'.dssp'
       datname = nameroot+'.dat'
20
       dattxtname = nameroot+'.dat.txt'
       zipname = nameroot+'.zip'
       epiname = nameroot+'.out.txt'
25
       # ---- here comes the treatment of the individual structures ----
       if (inputtype == 'ZIP'):
         os.chdir(currentpdbname[0:-4])
30
       if (operatemode == "single"):
         # add extra newlines to the consensus file
         commands.getoutput("echo \\\\n\\\\n >> "+consensusname)
35
         commands.getoutput(dssppath+" "+pdbname+" "+dsspname)
         if (inputtype == 'ZIP'):
           commands.getoutput(epitopepath+" ../"+consensusname+" "+namelist[0]+"
   "+mindist+" "+minsasa+" "+maxsize+" "+number+" "+minlength+" > "+epiname)
         else:
           commands.getoutput(epitopepath+" "+consensusname+" "+namelist[0]+"
   "+mindist+" "+minsasa+" "+maxsize+" "+number+" "+minlength+" > "+epiname)
45
         commands.getoutput("mv "+datname+" "+dattxtname)
       if (operatemode == "library"):
         commands.getoutput(dssppath+" "+pdbname+" "+dsspname)
50
         for i in range(1,libsize+1):
         for i in lib:
           if (inputtype == 'ZIP'):
             commands.getoutput(epitopepath+" ../"+string.zfill(str(i),3)+".epi
55 "+namelist[0]+" "+mindist+" "+minsasa+" "+maxsize+" "+number+" "+minlength+" >
   "+string.zfill(str(i),3)+".out.txt")
           else:
             commands.getoutput(epitopepath+" "+string.zfill(str(i),3)+".epi
   "+namelist[0]+" "+mindist+" "+minsasa+" "+maxsize+" "+number+" "+minlength+" >
60 "+string.zfill(str(i),3)+".out.txt")
           commands.getoutput("mv "+datname+" "+string.zfill(str(i),3)+".dat.txt")
         residues = int(commands.getoutput("grep -v '#'
   "+string.zfill(str(lib[0]),3)+".dat.txt | wc | awk '{print $1}'"))
         commands.getoutput("rm sum.dat.txt")
65
         for i in range(1, residues+1):
           grepstr = "^"+string.rjust(str(i),4)
```

```
commands.getoutput("grep '"+grepstr+"' *.dat.txt | awk 'BEGIN(sum=0)(sum+=$5;
   res=$2; pdbres=$3; AA=$4} END{print res, pdbres, AA,sum}' >> sum.dat.txt")
         commands.getoutput("rm "+datname)
5
         # ------ collect generated files -----
         if (inputtype == 'PDB'):
           commands.getoutput("rm "+zipname)
           commands.getoutput(zippath+" "+zipname+" *.out.txt *.dat.txt")
10
       # ----- if in library mode, create and show the sum graph ------
15
       if (operatemode == "library"):
         timestamp = str(int(time.time()))
         f=open("epitope.gnp", "w")
         if (plotmode == "sequential"):
20
           f.write('set xlabel "Residue number (sequential)"\n')
         else:
           f.write('set xlabel "Residue number (PDB)"\n')
         f.write('set ylabel "Epitopes"\n')
25
         f.write('set title "'+currentpdbname[0:-4]+'"\n')
         f.write('set size ratio 0.3 1, 0.5\n')
         f.write('set term png small color\n')
         f.write('set out "epi'+timestamp+'.png"\n')
         if (plotmode == "sequential"):
           f.write('plot "sum.dat.txt" using 1:4 title "Number of epitopes" with steps
30
   1, '+threshold+' title "Threshold" with lines 3\n')
         else:
           f.write('plot "sum.dat.txt" using 2:4 title "Number of epitopes" with steps
   1, '+threshold+' title "Threshold" with lines 3\n')
35
         f.close()
         commands.getoutput(gnuplotpath+" epitope.gnp")
         print '<H1>Epitope frequency sums for each residue</H1><BR>\n'
40
         if (form["operate_mode"].value == "library_all"):
           print '<H2>Library of '+str(libsize)+' epitopes (IgG+IgE)</H2>'
         elif (form["operate_mode"].value == "library_igg"):
           print '<H2>Library of '+str(libsize)+' epitopes (IgG)</H2>'
         elif (form["operate mode"].value == "library ige"):
45
           print '<H2>Library of '+str(libsize)+' epitopes (IgE)</H2>'
         if (inputtype == 'PDB'):
           print '<BR><IMG SRC="epi'+timestamp+'.png"><BR><BR>\n'
50
           print '<A HREF="sum.dat.txt">View the frequency sums table data</A><BR>\n'
           print '<A HREF="'+zipname+'">Download</A> a zip file with all results from
   the individual epitopes.
<br/>
<br/>BR>\n'
          print '</CENTER>\n'
55
         if (inputtype == 'ZIP'):
           print '<BR><BR><IMG SRC="'+currentpdbname[0:-
   4]+'/epi'+timestamp+'.png"><BR><BR>\n'
           print '<A HREF="'+currentpdbname[0:-4]+'/sum.dat.txt">View the frequency sums
   table data</A><BR>\n'
60
       # ----- now make gnuplot graphs and data lists for individual epitopes -----
65
       # --- so far this goes only for the "single" operating mode -----
```

```
if (operatemode == "single"):
         timestamp = str(int(time.time()))
         # Create gnuplot control file
5
         f=open("epitope.gnp", "w")
         if (plotmode == "sequential"):
           f.write('set xlabel "Residue number (sequential)"\n')
         else:
10
           f.write('set xlabel "Residue number (PDB) "\n')
         f.write('set ylabel "Epitopes"\n')
         f.write('set size ratio 0.3 1, 0.5\n')
         f.write('set term png small color\n')
         f.write('set out "epi'+timestamp+'.png"\n')
         if (plotmode == "sequential"):
15
           f.write('plot "'+dattxtname+'" using 1:4 title "Number of epitopes" with
   steps 1, '+threshold+' title "Threshold" with lines 3\n')
         else:
           f.write('plot "'+dattxtname+'" using 2:4 title "Number of epitopes" with
20 steps 1, '+threshold+' title "Threshold" with lines 3\n')
         f.close()
         commands.getoutput(gnuplotpath+" epitope.gnp")
25
         if (inputtype == 'ZIP'):
           print '<BR><BR><IMG SRC="'+currentpdbname[0:-</pre>
   4]+'/epi'+timestamp+'.png"><BR><BR>\n'
           print '<A HREF="\+currentpdbname[0:-4]+\'/\+dattxtname+\">View the table da-
   ta</A><BR>\n'
30
         else:
           print '<BR><BR><IMG SRC="epi'+timestamp+'.png"><BR><BR>\n'
           print '<A HREF="'+dattxtname+'">View the table data</A><BR>\n'
         print '</CENTER>\n'
35
         # ----- print the table -----
         print '<PRE>'
         f=open(epiname, "r")
         line = f.readline()
40
         while line != "":
           line = string.replace(line,'\n','')
           print line
45
           line = f.readline()
         f.close()
         print '</PRE><BR><BR>'
50
       if (inputtype == 'ZIP'):
         os.chdir("..")
55
   # ----- for ZIP-mode (library only): count number of epitopes found from each
   lib consensus ----
60
   if (inputtype == 'ZIP' and operatemode == "library"):
     numofepitopes = []
65
     f=open("epitopecount.txt", "w")
     f.write(string.ljust("PDB file",20))
```

```
for i in lib:
       f.write(string.rjust(str(i),6))
     f.write('\n')
     for j in range(len(pdbfiles)):
       currentpdbname = pdbfiles[j]
       f.write(string.ljust(currentpdbname[0:20],20))
       for idx in range(len(lib)):
         i = lib[idx]
10
         filename = currentpdbname[0:-4]+"/"+string.zfill(str(i),3)+".out.txt"
         numofepitopes.append(0)
         tmp = commands.getoutput("grep 'Total number of epitopes' "+filename+" | awk
   '{print $6}'")
         if (tmp != ""):
           numofepitopes[j*len(pdbfiles)+idx] = int(tmp)
15
           numofepitopes[j*len(pdbfiles)+idx] = numofepitopes[j*len(pdbfiles)+idx]-
   int(commands.getoutput("grep 'of which are subsets' "+filename+" | awk '{print
   $8} '"))
           numofepitopes[j*len(pdbfiles)+idx] = 0
20
         f.write(string.rjust(str(numofepitopes[j*len(pdbfiles)+idx]),6))
       f.write('\n')
     f.close()
25
   # ----- for ZIP-mode: Collect all dirs and files -----
   if (inputtype == 'ZIP'):
     commands.getoutput("rm collected.zip")
     for currentpdbname in pdbfiles:
       commands.getoutput(zippath+" -r -u collected.zip "+currentpdbname[0:-4])
     if (operatemode == "library"):
       commands.getoutput(zippath+" -u collected.zip epitopecount.txt")
35 # ---- Last lines ----
   print '</body>\n'
   print '</html>\n'
   # ---- remove lock file -----
   os.remove ("epitope.lock")
45 # ----- remove temporary files -----
   #if (inputtype == 'ZIP'):
   # for currentpdbname in pdbfiles:
        commands.getoutput("rm -rf "+currentpdbname[0:-4])
50
   commands.getoutput (*rm "+pdbname)
   commands.getoutput ("rm "+dsspname)
   commands.getoutput ("rm "+consensusname)
   commands.getoutput ("rm "+epiname)
55
```

Appendix C

The HTML input form (epitope5.html)

```
5
   <!doctype html public "-//w3c//dtd html 4.0 transitional//en">
      <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
10
      <title>Automatic epitope mapping</title>
   </head>
   <BODY BGCOLOR="#FFF9E6" text="#000000" link="#000040" vlink="#404040">
15 <center>
   <TABLE>
   <TR>
   <TD><IMG SRC="epitope design.gif"></TD>
   <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<TD>= mapping tool </H1></TD>
20 </TR>
   </TABLE>
   </center>
25 <form ENCTYPE="multipart/form-data" action="./epitope5.cgi" method="POST">
   <H2>Title</H2>
   Page title:  <INPUT type=text name="pagetitle" size="40" maxlength="80"
   value="Automatic Epitope Mapping">
30
   <HR WIDTH=80%>
   <H2>Parameters</H2>
   <TABLE>
   <TR>
35 <TD>File name (on your local machine) </TD>
   <TD><INPUT type=file name="pdbfile" size="40" maxlength="256" value="*.pdb"></TD>
   </TR>
   <TR><TD COLSPAN=2>You may submit either a PDB file containing a single structure
   or a ZIP-archive containing a number of PDB files, each defining a single structure.
40 The ZIP-archive must not contain subdirectories.
   <TD></TR>
   </TABLE>
   <BR>
45 <INPUT TYPE=RADIO NAME="operate_mode" VALUE="library_all" CHECKED>
      Use epitope library (Full library).<BR>
<INPUT TYPE=RADIO NAME="operate_mode" VALUE="library_igg">
      Use epitope library (IgG library).<BR>
<INPUT TYPE=RADIO NAME="operate_mode" VALUE="library_ige">
50    Use epitope library (IgE library).<BR>
   <INPUT TYPE=RADIO NAME="operate mode" VALUE="single">
      Specify epitope consensus sequence here:<BR>
   <TABLE>
55 <TR><TD>
   Epitope consensus sequence<BR>
   <TEXTAREA NAME="consensus" ROWS="12" COLS="21" WRAP="OFF">
   </TBXTAREA></TD>
   </TD><TD>
60 <TD>
   Example of consensus sequence input:<BR>
   <BR>
   <TABLE BORDER="0" CELLSPACING=0>
               </TD><TD></TD><TD><TD><TD><TR>
   <TR><TD>KR
65 <TR><TD>AILV-</TD></TD></TD></TD> (Ala, Ile, Leu, Val or missing residue al-
   lowed) </TD><TR>
```

```
<TR><TD>*
                </TD></TD></TD></TD> (All residues allowed, but there must be a resi-
   due) </TD><TR>
   <TR><TD>?
                </TD><TD></TD><TD> (All or missing residue allowed) </TD><TR>
                </TD><TD></TD><TD> (Asp or Glu allowed)</TD><TR>
   <TR><TD>DR
5 </TABLE>
   <BR>
   *, ? or - in first or last position is allowed but obsolete.
   (- in first position is ignored.)
10 </TD></TR>
   </TABLE>
   <BR><HR WIDTH=80%><BR>
   <TABLE>
15 <TR>
   <TD>Maximum distance between adjacent residues </TD><ID><INPUT type=text na-
   me="mindist" size="5" maxlength="8" value = "10"></TD>
   </TR>
   <TR>
20 <TD>Minimum solvent accessible surface area for each residue</TD><TD><INPUT type=text
   name="minsasa" size="5" maxlength="8" value = "5"></TD>
   <TR>
   <TD>Maximum epitope size (max distance between any two residues in epi-
25 tope)</TD><TD><INPUT type=text name="maxsize" size="5" maxlength="8" value =
   "25"></TD>
   </TR>
   <TR>
   <TD>Maximum number of non-redundant epitopes to include (0 = all)</TD><TD><INPUT
30 type=text name="number" size="5" maxlength="8" value = "0"></TD>
   <TD>Minimum epitope sequence length (in fractions of consensus length)</TD><TD><INPUT
   type=text name="minlength" size="5" maxlength="8" value = "0.80"></TD>
   </TR>
35 </TABLE>
   <BR><HR WIDTH=80%><BR>
   <H2>Graph</H2>
   <INPUT TYPE=RADIO NAME="plot mode" VALUE="sequential" CHECKED>
40       Use sequential numbering of residues. <BR>
   <INPUT TYPE=RADIO NAME="plot_mode" VALUE="pdb">
   anbsp; anbsp; use PDB numbering of residues. (Will sometimes produce funny re-
   sults.)<BR>
   Threshold value    <INPUT type=text name="threshold" size="5" max-
45 length="8" value = "2"><BR>
   <BR><HR WIDTH=80%><BR>
   <input type="submit" name="SUBMIT BUTTON" width=100 value="Find epitopes"></form>
50 <form METHOD=GET ACTION="./epitope.html"><input type="submit" name="SUBMIT BUTTON"
   width=100 value="Reset form">
   </form>
   <HR WIDTH=80%><BR>
55 <BR>
   <CENTER>
   Comments and bug reports to <A HREF="mailto:epf@novo.dk">epf</A>.
   <BR><BR>
   <IMG SRC="./epitope nz.gif">
60 </CENTER>
   </body>
   </html>
```

Appendix D
3D Structure of Esperase

	MOTA	1	N	GLN	Α	2	24.343	43.495	26.356	1.00	26.00	7
5	MOTA	2	NE2	GLN	Α	2	25.686	39.582	30.163	1.00	20.88	7
	ATOM	3	OE1	GLN	Α	2	23.497	39.261	29.938	1.00	23.07	8
	ATOM	4	CD	GLN	Α	2	24.448	40.036	29.883	1.00	23.09	6
	MOTA	5	CG	GLN	A	2	24.420	41.507	29.607	1.00	23.93	6
	MOTA	6	CB	GLN	Α	2	24.309	41.801	28.125	1.00	23.06	6
10	ATOM	7	CA	GLN	A	2	23.999	43.235	27.778	1.00	25.53	6
	MOTA	8	С	GLN	Α	2	24.957	44.096	28.566	1.00 2	28.66	6
	MOTA	9	0	GLN	Α	2	26.126	44.049	28.148	1.00	31.97	8
	ATOM	10	N	THR	Α	3	24.538	44.857	29.557	1.00	25.20	7
	ATOM	11	CG2	THR	Α	3	24.948	47.593	29.045	1.00	32.60	6
15	MOTA	12	OG1	THR	Α	3	23.634	46.905	30.890	1.00	33.76	8
	MOTA	13	CB	THR	Α	3	24.979	47.085	30.464	1.00	26.52	6
	MOTA	14	CA	THR	Α	3	25.508	45.643	30.316	1.00	24.44	6
	ATOM	15	C	THR	A	3	25.551	45.035	31.717	1.00	23.97	6
	MOTA	16	0	THR	A	3	24.566	44.377	32.092	1.00	27.28	8
20	MOTA	17	N	VAL	Α	4	26.585	45.366	32.449	1.00	24.67	7
	ATOM	18	CG2	VAL	Α	4	28.377	43.274	33.058	1.00	22.99	6
	ATOM	19	CG1	VAL	Α	4	28.147	43.784	35.492	1.00	22.90	6
	ATOM	20	CB	VAL	A	4	28.128	44.351	34.069	1.00	24.23	6
	MOTA	21	CA	VAL	Α	4	26.694	44.897	33.837	1.00	24.05	6
25	MOTA	22	C	VAL	A	4	26.445	46.114	34.776	1.00	22.35	6
	MOTA	23	0	VAL	Α	4	27.323	47.015	34.816	1.00	24.67	8
	MOTA	24	N	PRO	Α	5	25.365	46.082	35.507	1.00	21.36	7
	MOTA	25	CD	PRO	A	5	24.284	45.039	35.492	1.00	16.33	6
	MOTA	26	CG	PRO	A	5	23.100	45.761	36.119	1.00	19.38	6
30	ATOM	27	CB	PRO	Α	5	23.741	46.724	37.115	1.00	17.69	6
	MOTA	28	CA	PRO	Α	5	25.049	47.159	36.454	1.00	17.81	6
	ATOM	29	С	PRO		5	26.231	47.367	37.382	1.00		6
	MOTA	30	0	PRO		5	26.903	46.375	37.763		19.11	8
	MOTA	31	N	TRP		6	26.505	48.602	37.832	1.00		7
35	ATOM	32	CD2			6	26.928	50.889	41.509	1.00		6
	MOTA	33	CE3	TRP		6	27.995	50.522	42.349	1.00		6
	MOTA	34	CZ3	TRP		6	27.789	50.639	43.721	1.00		6
	ATOM	35	CH2	TRP		6	26.582	51.111	44.306	1.00		6
	MOTA	36	CZ2	TRP		6	25.524	51.469	43.465	1.00		6
40	MOTA	37	CE2			6	25.705	51.348	42.088	1.00		6
	ATOM	38	NE1			6	24.852	51.593	41.020	1.00		7
	ATOM	39		TRP		6	25.420	51.300	39.828	1.00		6
	MOTA	40	CG	TRP		6	26.698	50.865	40.074	1.00		6
	ATOM	41	CB	TRP		6	27.702	50.382	39.095	1.00		6
45	MOTA	42	CA	TRP		6	27.668	48.899	38.677	1.00		6
	ATOM	43	C	TRP		6	27.699	48.015	39.926	1.00		6
	ATOM	44	0	TRP		6	28.865	47.719	40.230	1.00		8
	MOTA	45	N	GLY		7	26.553	47.779	40.554	1.00		7 6
	MOTA	46	CA	GLY		7	26.573	47.016	41.827			6
50	ATOM	47	C	GLY		7	27.075	45.596	41.634	1.00 2		8
	ATOM	48 49	O N	GLY ILE		7	27.733 26.862	45.067 44.983	42.534 40.482	1.00		7
	MOTA	50				8	24.548		39.852	1.00		6
	MOTA	51		ILE		8		42.180		1.00		6
E E	MOTA	52	CB	IFR		8	25.219	43.020	38.790	1.00		6
33	MOTA MOTA	53		ILE		8 8	26.746 27.338	43.093 41.799	38.871 38.350	1.00		6
	ATOM	53 54	CG2	ILB				41.799	40.192	1.00		6
	ATOM	55	CA	ILE		8 8	27.325 28.853	43.585	40.132	1.00		6
	ATOM	56	0	IFE		8	29.462	43.565	40.232	1.00		8
60	ATOM	57	N	SER		9	29.462	44.534	39.631	1.00		7
30	ALON	٠,	14	JUK	n	,	47,341	77.JJ4	JJ. UJI	1.00		•

WO 01/83559 PCT/DK01/00293

							550				
	MOTA	58	OG	SER	Δ	9	31.089	45.298	37.438	1.00 28.25	8
	MOTA	59	СВ	SER		9	31.514	45.590	38.718	1.00 24.45	6
	ATOM	60	CA	SER		9	30.986	44.532	39.663	1.00 18.00	6
	MOTA	61	C	SER		9	31.431	45.071	41.000	1.00 18.16	6
5	MOTA	62	0	SER		9	32.543	44.676	41.351	1.00 21.78	8
_	ATOM	63	N	PHE		10	30.702	45.961	41.617	1.00 17.83	7
	MOTA	64		PHE		10	31.780	49.344	44.181	1.00 23.83	6
	MOTA	65		PHE		10	32.100	50.259	45.170	1.00 27.32	6
	MOTA	66	CZ	PHE		10	31.514	50.266	46.431	1.00 21.18	6
10	ATOM	67		PHE		10	30.563	49.309	46.768	1.00 29.76	6
	ATOM	68		PHE		10	30.188	48.429	45.759	1.00 23.23	6
	ATOM	69	CG	PHE		10	30.778	48.438	44.521	1.00 18.74	6
	MOTA	70	CB	PHE		10	30.285	47.522	43.455	1.00 17.70	6
	ATOM	71	CA	PHE		10	31.270	46.528	42.864	1.00 20.00	6
15	MOTA	72	C	PHE		10	31.457	45.396	43.870	1.00 22.92	6
	MOTA	73	ō	PHE		10	32.357	45.569	44.723	1.00 24.39	8
	ATOM	74	N	ILE		11	30.614	44.376	43.829	1.00 19.21	7
	ATOM	75		ILE		11	27.476	41.276	44.648	1.00 14.26	6
	ATOM	76		ILE		11	28.743	41.954	44.149	1.00 18.25	6
20	ATOM	77	CB	ILE		11	29.500	42.669	45.229	1.00 23.27	6
	ATOM	78	CG2	ILE		11	28.762	43.839	45.866	1.00 21.09	6
	ATOM	79	CA	ILE		11	30.789	43.259	44.739	1.00 20.52	6
	ATOM	80	C	ILE		11	31.715	42.170	44.172	1.00 21.46	6
	ATOM	81	ō	ILE		11	31.783	41.155	44.840	1.00 20.99	8
25	ATOM	82	N	ASN		12	32.378	42.329	43.056	1.00 21.03	7
	ATOM	83		ASN		12	35.345	43.095	44.578	1.00 30.69	7
	MOTA	84		ASN		12	36.135	42.268	42.569	1.00 35.13	8
	MOTA	85	CG	ASN		12	35.390	42.276	43.541	1.00 25.00	6
	ATOM	86	CB	ASN		12	34.450	41.092	43.449	1.00 21.03	6
30	MOTA	87	CA	ASN		12	33.340	41.412	42.463	1.00 23.98	6
	MOTA	88	С	ASN	Α	12	32.735	40.088	41.978	1.00 24.79	6
	ATOM	89	0	ASN	Α	12	33.438	39.085	42.118	1.00 23.07	8
	MOTA	90	N	THR	Α	13	31.520	40.204	41.505	1.00 20.38	7
	MOTA	91	CG2	THR	Α	13	28.654	38.417	39.642	1.00 15.01	6
35	MOTA	92	OG1	THR	Α	13	28.704	40.013	41.326	1.00 22.51	8
	MOTA	93	CB	THR	A	13	29.488	39.474	40.308	1.00 19.67	6
	ATOM	94	CA	THR	Α	13	30.810	39.083	40.956	1.00 20.28	6
	ATOM	95	С	THR	A	13	31.671	38.384	39.892	1.00 21.19	6
	ATOM	96	0	THR	Α	13	31.605	37.158	39.791	1.00 23.59	8
40	MOTA	97	N	GLN	Α	14	32.334	39.049	39.028	1.00 20.22	7
	MOTA	98	NE2	GLN	Α	14	32.431	41.889	38.600	1.00 33.33	7
	MOTA	99	OE1	GLN	A	14	31.706	42.497	36.548	1.00 50.01	8
	ATOM	100	CD	GLM	Α	14	32.245	41.660	37.297	1.00 52.65	6
	MOTA	101	CG	GLN	A	14	32.764	40.430	36.555	1.00 52.84	6
45	MOTA	102	CB	GLN	A	14	33.857	39.542	37.128	1.00 28.62	6
	MOTA	103	CA	GLN	Α	14	33.138	38.429	37.955	1.00 32.46	6
	MOTA	104	С	GLN	A	14	34.201	37.476	38.497	1.00 31.89	6
	ATOM	105	0	GLN	A	14	34.509	36.571	37.705	1.00 27.29	8
	MOTA	106	N	GLN	A	15	34.744	37.757	39.679	1.00 23.92	7
50	MOTA	107	NE2	GLN	A	15	38.511	39.924	42.603	1.00 44.05	7
	ATOM	108	OE1	GLN	A	15	37.542	38.314	43.749	1.00 38.30	8
	MOTA	109	CD	GLN	A	15	37.762	38.831	42.664	1.00 40.79	6
	ATOM	110	CG	GLN	A	15	37.188	38.390	41.331	1.00 34.24	6
	MOTA	111	CB	GLN	Α	15	36.297	37.200	41.508	1.00 24.39	6
55	MOTA	112	CA	GLN	Α	15	35.728	36.783	40.170	1.00 22.62	6
	MOTA	113	C	GLN	Α	15	35.042	35.443	40.384	1.00 29.48	6
	ATOM	114	0	GLN	A	15	35.749	34.432	40.285	1.00 31.32	8
	ATOM	115	N	ALA	A	16	33.762	35.385	40.769	1.00 23.78	7
	MOTA	116	CB	ALA	A	16	31.804	34.146	41.761	1.00 18.00	6
60	MOTA	117	CA	ALA	A	16	33.069	34.097	40.925	1.00 21.90	6
	MOTA	118	C	ALA	A	16	32.825	33.561	39.502	1.00 26.74	6

WO 01/83559

	MOTA	119	0	ALA	A.	16	32.96	7 32.352	39.191	1.00 30.41	8
•	ATOM	120	N	HIS	Α	17	32.28	1 34.385	38.577	1.00 30.64	7
	ATOM	121	CD2	HIS	Α	17	29.25	7 34.877	38.233	1.00 22.07	6
	MOTA	122	NE2	HIS	Α	17	28.01	35.453	38.259	1.00 25.33	7
5	ATOM	123	CE1	HIS	Α	17	27.90	36.328	37.220	1.00 20.45	6
	ATOM	124	ND1	HIS	Α	17	29.020	36.372	36.515	1.00 24.91	7
	MOTA	125	CG	HIS	A	17	29.849	35.428	37.109	1.00 22.09	6
	MOTA	126	CB	HIS	Α	17	31.22	35.150	36.543	1.00 19.27	6
	MOTA	127	CA	HIS	A	17	31.86	33.972	37.219	1.00 19.98	6
10	MOTA	128	С	HIS	A	17	33.07	33.367	36.512	1.00 29.30	6
	MOTA	129	0	HIS	Α	17	32.95	32.347	35.823	1.00 27.69	8
	MOTA	130	N	ASN	Α	18	34.19	L 34.028	36.705	1.00 28.18	7
	ATOM	131	ND2	ASN	A	18	36.859	36.788	35.613	1.00 45.93	7
	MOTA	132	OD1	ASN	Α	18	35.329	35.559	34.498	1.00 40.29	8
15	MOTA	133	CG	ASN		18	36.220		35.347	1.00 40.01	6
	MOTA	134	CB	ASN	Α	18	36.643		36.270	1.00 30.63	6
	MOTA	135	CA	ASN		18	35.432		36.085	1.00 27.13	6
	ATOM	136	С	ASN		18	35.838		36.577	1.00 35.11	6
	MOTA	137	0	ASN	A	18	36.70		35.846	1.00 35.07	8
20	ATOM	138	N	ARG	A	19	35.399		37.675	1.00 32.73	7
	ATOM	139	NH2	ARG	Α	19	35.515		44.021	1.00 53.72	7
	MOTA	140	NH1	ARG	Α	19	37.640		43.686	1.00 51.43	7
	MOTA	141	CZ	ARG	Α	19	36.530	32.120	43.307	1.00 57.69	6
	ATOM	142	NE	ARG	Α	19	36.20	7 31.186	42.351	1.00 42.98	7
25	MOTA	143	CD	ARG	A	19	37.338	31.011	41.450	1.00 46.84	6
	ATOM	144	CG	ARG	Α	19	37.117		39.995	1.00 33.34	6
	MOTA	145	CB	ARG	Α	19	35.800		39.724	1.00 26.86	6
	ATOM	146	CA	ARG	Α	19	35.773	30.449	38.180	1.00 24.16	6
	MOTA	147	С	ARG	Α	19	34.635	29.545	37.735	1.00 32.80	6
30	MOTA	148	0	ARG	Α	19	34.693	28.447	38.295	1.00 38.37	8
	MOTA	149	N	GLY	Α	20	33.659	29.890	36.943	1.00 26.10	7
	MOTA	150	CA	GLY	Α	20	32.569	28.978	36.587	1.00 22.13	6
	ATOM	151	С	GLY	Α	20	31.546	28.912	37.702	1.00 34.41	6
	MOTA	152	0	GLY	Α	20	30.872	27.856	37.735	1.00 28.59	8
35	MOTA	153	N	ILE	A	21	31.493	29.934	38.591	1.00 29.96	7
	MOTA	154	CD1	ILE	A	21	33.459	29.632	41.814	1.00 41.54	6
	ATOM	155	CG1	ILE	A	21	32.100	29.052	41.506	1.00 25.19	6
	MOTA	156	CB	ILE	Α	21	30.975	29.986	41.122	1.00 26.29	6
	MOTA	157	CG2	ILE	Α	21	29.844	29.735	42.107	1.00 19.84	6
40	ATOM	158	CA	ILE	Α	21	30.460	29.794	39.684	1.00 32.15	6
	MOTA	159	С	ILE	A	21	29.284		39.329	1.00 27.88	6
	MOTA	160	0	ILE	Α	21	29.528	31.975	39.238	1.00 25.54	8
	ATOM	161	N	PHE	A	22	28.130	30.216	39.043	1.00 22.71	7
	MOTA	162	CD2	PHE	Α	22	28.593	30.211	35.689	1.00 27.44	6
45	MOTA	163	CE2	PHE	A	22	29.621	30.567	34.823	1.00 24.36	6
	MOTA	164	CZ	PHE	A	22	29.741	31.905	34.446	1.00 33.93	6
	MOTA	165	CB1	PHE	Α	22	28.872	32.884	34.911	1.00 27.82	6
	MOTA	166	CD1	PHE	A	22	27.870	32.510	35.793	1.00 28.92	6
	ATOM	167	CG	PHE	Α	22	27.724	31.192	36.172	1.00 28.03	· 6
50	MOTA	168	CB	PHR	Α	22	26.658	30.789	37.118	1.00 24.21	6
	MOTA	169	CA	PHE	A	22	26.950	30.969	38.613	1.00 26.09	6
	MOTA	170	С	PHE	A	22	25.683	30.711	39.409	1.00 25.39	6
	MOTA	171	0	PHE	A	22	24.665	31.302	38.981	1.00 24.97	8
	MOTA	172	N	GLY	A	23	25.607		40.467	1.00 18.81	7
55	MOTA	173	CA	GLY	A	23	24.363	29.724	41.148	1.00 18.46	6
	MOTA	174	С	GLY		23	23.503	28.543	40.757	1.00 19.87	6
	ATOM	175	0	GLY	A	23	22.414	28.258	41.288	1.00 21.97	8
	MOTA	176	N	ASN	Α	24	24.176	27.813	39.877	1.00 24.80	7
	MOTA	177	ND2	ASN	A	24	24.193		36.454	1.00 54.67	7
60	ATOM	178	OD1	ASN	A	24	23.354		38.041	1.00 52.66	8
	ATOM	179	CG	ASN		24	24.034	25.056	37.655	1.00 54.67	6

	MOTA	180	CB	ASN	A	24	24.770	26.009	38.589	1.00 32.23	6
	MOTA	181	CA	ASN	A	24	23.593	26.534	39.395	1.00 25.92	6
	MOTA	182	C	ASN	A	24	23.179	25.638	40.552	1.00 25.32	6
	MOTA	183	0	ASN	Α	24	23.976	25.322	41.465	1.00 30.34	8
5	ATOM	184	N	GLY		25	21.885	25.306	40.580	1.00 24.65	7
_	ATOM	185	CA	GLY		25	21.465	24.504	41.725	1.00 28.29	6
	MOTA	186	C	GLY		25	20.845	25.160	42.938	1.00 26.14	6
			0								
	MOTA	187		GLY		25	20.160	24.516	43.717	1.00 27.35	8
	ATOM	188	N	ALA		26	21.025	26.469	43.065	1.00 33.36	7
10	MOTA	189	CB	ALA		26	21.389	28.357	44.440	1.00 22.66	6
	ATOM	190	CA	ALA	A	26	20.451	27.216	44.226	1.00 21.52	6
	ATOM	191	С	ALA	A	26	19.024	27.532	43.905	1.00 18.32	6
	MOTA	192	0	ALA	Α	26	18.702	27.928	42.773	1.00 24.15	8
	MOTA	193	N	ARG	Α	27	18.210	27.375	44.899	1.00 19.06	7
15	MOTA	194	NH2	ARG	A	27	15.995	22.073	47.281	1.00 46.56	7
	MOTA	195	NH1	ARG	Α	27	16.803	22.004	45.047	1.00 39.77	7
	ATOM	196	CZ	ARG	Α	27 .	16.017	22.485	46.012	1.00 48.33	6
	ATOM	197	NE	ARG		27	15.098	23.456	45.820	1.00 41.99	7
	ATOM	198	CD	ARG		27	15.075	24.160	44.559	1.00 36.91	6
20	MOTA	199	CG	ARG		27	16.301	25.064	44.358	1.00 29.21	6
20	ATOM	200	CB	ARG		27				1.00 26.05	
							15.999	26.369	45.132		6
	MOTA	201	CA	ARG		27	16.785	27.590	44.764	1.00 19.90	6
	ATOM	202	C	ARG		27	16.462	28.820	45.623	1.00 24.82	6
•	MOTA	203	0	ARG		27	16.484	28.798	46.855	1.00 23.36	8
25	MOTA	204	N	VAL		28	16.090	29.902	44.963	1.00 21.58	7
	MOTA	205		VAL		28	18.212	31.847	44.971	1.00 20.76	6
	ATOM	206		VAL	A	28	16.584	33.595	45.659	1.00 24.41	6
	MOTA	207	CB	VAL	Α	28	16.756	32.246	44.948	1.00 18.33	6
	MOTA	208	CA	VAL	Α	28	15.821	31.208	45.600	1.00 20.58	6
30	MOTA	209	С	VAL	Α	28	14.369	31.568	45.504	1.00 16.41	6
	MOTA	210	0	VAL	Α	28	13.904	31.628	44.344	1.00 22.07	8
•	ATOM	211	N	ALA	A	29	13.724	31.792	46.617	1.00 15.89	7
	ATOM	212	CB	ALA		29	11.536	31.675	47.718	1.00 16.94	6
	ATOM	213	CA	ALA		29	12.322	32.248	46.580	1.00 21.50	6
35	ATOM	214	C	ALA		29	12.353	33.820	46.734	1.00 19.32	6
-	ATOM	215	o	ALA		29	13.042	34.312	47.649	1.00 19.70	8
	ATOM	216	N	VAL		30	11.770	34.530	45.806	1.00 18.83	7
		217		VAL							
	MOTA					30	13.356	36.406	44.142	1.00 17.28	6
	MOTA	218		VAL		30	11.680	38.150	44.538	1.00 19.61	6
40	ATOM	219	CB	VAL		30	11.885	36.649	44.450	1.00 19.02	6
	ATOM	220	CA	VAL		30	11.590	35.993	45.824	1.00 21.94	6
	MOTA	221	С	VAL		30	10.211	36.329	46.406	1.00 17.79	6
	ATOM	222	0	VAL	A	30	9.239	36.104	45.639	1.00 16.80	8
	ATOM	223	N	LEU		31	10.136	36.740	47.677	1.00 16.21	7
45	MOTA	224	CD2	TEU	Α	31	8.443	35.115	51.734	1.00 18.64	6
	MOTA	225	CD1	TEA	Α	31	9.392	34.230	49.510	1.00 18.41	6
	MOTA	226	CG	LEU	Α	31	8.513	35.233	50.228	1.00 27.95	6
	MOTA	227	CB	LEU	A	31	8.841	36.689	49.787	1.00 17.41	6
	ATOM	228	CA	LEU		31	8.837	37.091	48.332	1.00 17.17	6
50	ATOM	229	С	PEA		31	8.609	38.573	48.053	1.00 23.39	6
	ATOM	230	ō	FEA		31	9.245	39.436	48.649	1.00 19.56	8
	ATOM	231	N	ASP		32	7.756	38.918	47.142	1.00 20.33	7
		232									
	MOTA			ASP		32	8.509	42.872	45.463	1.00 17.46	8
	ATOM	233		ASP		32	10.355	42.272	46.272	1.00 18.58	8
55	ATOM	234	CG	ASP		32	9.249	41.959	45.903	1.00 17.91	6
	MOTA	235	CB	ASP		32	8.780	40.509	45.770	1.00 17.55	6
	MOTA	236	CA	ASP		32	7.544	40.265	46.640	1.00 18.05	6
	MOTA	237	С	ASP		32	6.259	40.407	45.874	1.00 16.34	6
	MOTA	238	0	ASP		32	5.265	39.719	46.233	1.00 18.95	8
60	ATOM	239	N	THR	A	33	6.345	41.337	44.922	1.00 18.08	7
	ATOM	240	CG2	THR	A	33	5.111	44.100	44.539	1.00 15.20	6

60 ATOM

MOTA

300

301 O

C

LEU A

LEU A 42

42

14.147

34.706

13.321 34.478

33.035

1.00 22.16

32.117 1.00 24.54

6

8

WO 01/83559 PCT/DK01/00293

339 MOTA 241 OG1 THR A 33 6.078 43.108 42.626 1.00 15.34 5.050 42.995 43.536 1.00 17.62 ATOM 242 CB THR A 33 MOTA 243 CA THR A 33 5.068 41.559 44.165 1.00 19.10 6 ATOM 244 C THR A 33 4.876 40.503 43.046 1.00 21.43 6 MOTA 245 0 THR A 3.956 40.703 42,210 1.00 19.77 33 Я MOTA 246 N GLY A 5.747 39.519 42.979 1.00 19.23 7 34 ATOM 247 CA GLY A 34 5.694 38.503 41.928 1.00 18.38 6 MOTA 248 С GLY A 34 6.872 38.646 41.034 1.00 17.22 6 MOTA 41.383 249 0 GLY A 34 7.711 39.459 1.00 18.99 8 10 ATOM 37.882 39.956 250 N ILE A 35 6.974 1.00 17.46 7 40.596 ATOM 251 CD1 ILE A 35 10.899 35.757 1.00 15.13 6 MOTA 252 CG1 ILE A 9.791 36.828 40.462 1.00 14.72 35 6 MOTA 253 CB ILE A 35 9.166 36.970 39.068 1.00 15.03 6 MOTA 10.243 38.068 254 CG2 ILE A 35 37.326 1.00 15.97 6 15 ATOM 255 CA ILE A 35 8.048 37.960 38.978 1.00 14.81 C MOTA 256 ILE A 35 7.360 37.965 37.617 1.00 17.66 6 257 35 MOTA 0 ILE A 6.554 37.071 37.431 1.00 21.48 8 MOTA 258 N ALA A 37 7.565 38.985 36.818 1.00 17.09 7 MOTA 259 CB ALA A 6.974 40.415 34.895 1.00 19.79 37 6 20 ATOM 260 CA ALA A 37 6.929 39.026 35.522 1.00 19.65 6 MOTA 261 С 7.799 38.217 34.551 1.00 17.88 ALA A 37 MOTA 262 0 ALA A 37 9.037 38.066 34.604 1.00 21.23 8 MOTA 33.589 1.00 16.80 263 N SER. A 38 7.062 37.689 7 ATOM 35.805 30.632 264 OG SER A 7.219 1.00 30.69 8 38 25 ATOM 36.129 31.852 1.00 24.32 265 CB SER A 38 6.656 6 MOTA 266 CA SER A 7.794 36.946 32.527 1.00 20.02 38 6 38.064 31.824 MOTA 267 С SER A 38 8.554 1.00 20.83 6 MOTA 268 0 SER A 38 8.026 39.138 31.556 1.00 21.16 MOTA 269 N HIS A 39 9.788 37.876 31.449 1.00 16.67 7 31.855 30 ATOM 270 CD2 HIS A 39 11.839 42.154 1.00 18.50 6 ATOM 271 NE2 HIS A 39 12.849 42.828 31.229 1.00 17.78 7 MOTA 272 CE1 HIS A 39 13.757 41.990 30.654 1.00 19.11 6 ATOM 273 ND1 HIS A 39 13.250 40.817 30.899 1.00 18.95 7 ATOM 274 CG HIS A 39 12.108 40.809 31.630 1.00 18.98 6 35 ATOM 275 CB HIS A 39 11.359 39.557 32.049 1.00 18.97 6 10.744 ATOM 38.721 30.858 276 CA HIS A 1.00 19.12 39 6 ATOM 30.062 277 C 11.775 37.948 1.00 17.80 HIS A 39 6 ATOM 278 0 HIS A 39 12.355 37.014 30.570 1.00 20.73 8 ATOM 279 N PRO A 40 12.200 38.418 28.889 1.00 21.00 7 40 ATOM 280 CG PRO A 12.293 39.449 26.786 1.00 21.21 40 6 MOTA 281 CD PRO A 40 11.597 39.542 28.113 1.00 18.96 6 CB ATOM 282 PRO A 40 13.560 38.729 26.913 1.00 19.67 6 MOTA CA 40 283 PRO A 13.254 37.823 28.100 1.00 22.54 6 ATOM 284 C PRO A 40 14.534 37.614 28.909 1.00 24.98 6 45 ATOM 285 0 PRO A 40 15.326 36.689 28.538 1.00 23.15 R ATOM 286 N ASP A 41 14.864 38.402 29.921 1.00 21.23 7 MOTA 287 OD2 ASP A 19.022 40.411 31.203 1.00 23.14 8 41 MOTA 288 OD1 ASP A 41 18.902 38.575 30.179 1.00 20.45 8 ATOM 289 CG ASP A 41 18.278 39.474 30.706 1.00 21.49 6 50 ATOM 16.801 39.675 30.849 1.00 17.52 290 CB ASP A 6 41 MOTA 16.149 38.300 30.623 1.00 18.20 291 CA ASP A 6 41 MOTA 292 С ASP A 41 16.007 37.531 31.930 1.00 16.57 6 ATOM 16.990 37.609 32.687 293 O ASP A 41 1.00 21.11 MOTA 294 N LEU A 42 14.877 36.908 32.100 1.00 16.23 7 55 ATOM 295 15.154 37.970 35.800 1.00 20.71 CD2 LEU A 42 6 MOTA 38.634 35.680 1.00 18.04 6 296 CD1 LEU A 42 12.728 34.940 1.00 22.07 ATOM 297 13.906 38.079 6 CG LEU A 42 MOTA 298 CB LEU A 42 13.573 36.743 34.250 1.00 19.04 6 MOTA 299 CA LEU A 42 14.688 36.119 33.316 1.00 18.11 6

•	MOTA	302	N	ARG	A	43	14.426	33.731	33.856	1.00 20.59	7
	ATOM	303	NH2	ARG	Α	43	16.861	27.990	36.107	1.00 53.82	7
	ATOM	304		ARG		43	14.504	27.483	36.114	1.00 58.81	7
	ATOM	305	CZ	ARG		43	15.623	27.968	35.534	1.00 59.96	б
5	ATOM .	306	NE	ARG		43	15.539	28.580	34.285	1.00 59.26	7
	ATOM	307	CD	ARG		43	14.187	29.098	33.890	1.00 53.79	6
	MOTA	308	CG	ARG		43	14.538	30.144	32.891	1.00 38.80	
											6
	MOTA	309	CB	ARG		43	14.893	31.393	33.636	1.00 20.63	6
	MOTA	310	CA	ARG		43	13.780	32.413	33.764	1.00 21.97	6
10	ATOM	311	С	ARG		43	13.120	32.158	35.092	1.00 20.02	6
	ATOM	312	0	ARG	Α	43	13.858	32.194	36.102	1.00 24.03	8
	MOTA	313	N	IFE	A	44	11.867	31.959	35.226	1.00 20.63	7
	ATOM	314	CD1	ILE	Α	44	8.902	34.679	35.796	1.00 25.57	6
	ATOM	315	CG1	ILE	Α	44	10.068	33.881	36.368	1.00 29.55	6
15	ATOM	316	CB	ILE	Α	44	9.746	32.360	36.490	1.00 24.21	6
	MOTA	317	CG2	ILE		44	8.902	31.922	37.662	1.00 21.80	6
	ATOM	318	CA	ILE	Α	44	11.103	31.67.0	36.445	1.00 20.36	6
	MOTA	319	С	ILE		44	10.838	30.166	36.550	1.00 28.98	6
	ATOM	320	Ō	ILE		44	10.177	29.571	35.695	1.00 23.55	8
20	MOTA	321	N	ALA		45	11.322	29.549	37.602	1.00 27.19	7
20	ATOM	322	CB	ALA		45	12.254	27.427	38.711	1.00 27.19	6
	ATOM	323	CA	ALA		45			37.907		
							11.176	28.111		1.00 25.70	6
	MOTA	324	C	ALA		45	9.799	27.798	38.418	1.00 25.04	6
	ATOM	325	0	ALA		45	9.394	26.706	38.033	1.00 28.94	8
25	ATOM	326	N	GLY		46	9.044	28.597	39.089	1.00 20.03	7
	ATOM	327	CA	GLY		46	7.719	28.282	39.555	1.00 16.95	6
	MOTA	328	С	GLY		46	7.400	29.295	40.624	1.00 22.67	6
	MOTA	329	0	GLY		46	8.103	30.327	40.564	1.00 21.98	8
	MOTA	330	N	GLY	A	47	6.408	29.068	41.382	1.00 22.31	7
30	MOTA	331	CA	GLY	Α	47	6.038	30.017	42.427	1.00 21.33	6
	ATOM	332	С	GLY	Α	47	4.601	29.839	42.841	1.00 25.87	6
	MOTA	333	0	GLY	Α	47	3.918	28.882	42:428	1.00 25.43	8
	ATOM	334	N	ALA	Α	48	4.055	30.737	43.620	1.00 20.53	7
	MOTA	335	CB	ALA	Α	48	2.815	29.944	45.442	1.00 20.90	6
35	MOTA	336	CA	ALA		48	2.713	30.745	44.144	1.00 20.50	6
	ATOM	337	C	ALA		48	2.326	32.203	44.460	1.00 29.20	6
	MOTA	338	ō	ALA		48	3.178	33.083	44.532	1.00 25.97	8
	ATOM	339	N	SER		49	1.068	32.454	44.688	1.00 22.19	7
	ATOM	340	OG	SER		49	-0.986	35.495	44.409	1.00 27.17	8
40	ATOM	341	CB	SER		49	-0.441	34.225	43.938	1.00 27.17	6
40			CA							1.00 20.70	
	MOTA	342		SER		49	0.478	33.712	45.013		6
	MOTA	343	C	SER		49	-0.307	33.577	46.315	1.00 31.92	6
	ATOM	344	0	SER		49	-1.067	32.591	46.360	1.00 26.97	8
	ATOM	345	N	PHE		50	-0.097				7
45	ATOM	346		PHE		50	-0.049	32.109	50.111	1.00 31.06	6
	MOTA	347		PHE		50	0.409	30.786	49.993	1.00 23.47	6
	ATOM	348	CZ	PHE	Α	50	1.692	30.585	49.509	1.00 26.37	6
	ATOM	349		PHE		50	2.459	31.650	49.044	1.00 27.36	6
	MOTA	350	CD1	PHE	A	50	1.909	32.920	49.123	1.00 25.18	6
50	ATOM	351	CG	PHE	Α	50	0.659	33.206	49.640	1.00 27.18	6
	ATOM	352	CB	PHB	Α	50	0.068	34.581	49.654	1.00 20.39	6
	ATOM	353	CA	PHE	A	50	-0.814	34.627	48.416	1.00 20.79	6
	ATOM	354	C	PHE		50	-1.699	35.845	48.217	1.00 26.50	6
	ATOM	355	0	PHE		50	-2.095	36.380	49.255	1.00 33.21	8
55	ATOM	356	N	ILE		51	-2.067	36.337	47.068	1.00 25.81	7
	ATOM	357		IFE		51	-0.964	39.394	48.263	1.00 25.01	6
	ATOM	358		ILE		51	-0.838	39.160	46.744	1.00 25.15	6
	MOTA	359	CB	ILE		51	-2.155	38.659	46.174	1.00 28.46	6
د م	ATOM	360		ILE		51	-2.994	39.906	45.884	1.00 26.35	6
60	ATOM	361	CA	ILE		51	-2.870	37.563	46.980	1.00 25.17	6
	ATOM	362	C	ILE	Α	51	-4.111	37.059	46.276	1.00 22.13	6

WO 01/83559 PCT/DK01/00293

	MOTA	363	0	ILE	Α	51	-4.019	36.809	45.075	1.00	26.47	8
	MOTA	364	N	SER	A	52	-5.211	36.990	46.985	1.00	31.96	7
	ATOM	365	OG	SER	Α	52	-7.326	37.187	48.213	1.00	55.96	8
	ATOM	366	CB	SER		52	-7.637	36.283	47.168		40.98	6
_												
5	ATOM	367	CA	SER		52	-6.416	36.494	46.288		36.15	6
	ATOM	368	С	SER	Α	52	-6.840	37.320	45.088	1.00	41.46	6
	MOTA	369	0	SER	A	52	-7.334	36.657	44.131	1.00	42.48	8
	MOTA	370	N	SER	A	53	-6.711	38.640	45.097	1.00	34.99	7
	ATOM	371	OG	SER		53	-6.064	41.220	44.420		45.24	8
10	MOTA	372	CB	SER		53	-7.345	40.753	44.027		36.41	6
	MOTA	373	CA	SER	A	53	-7.166	39.272	43.832	1.00	32.42	6
	MOTA	374	С	SER	Α	53	-6.198	39.008	42.704	1.00	28.79	6
	ATOM	375	0	SER	Α	53	-6.518	39.427	41.610	1.00	30.59	8
	ATOM	376	N	GLU		54	-5.089	38.335	42.931		26.60	7
15	ATOM	377	OE2			54	-2.266	42.297	42.536		28.17	8
	ATOM .	378	OE1	GLU	Α	54	-0.866	41.124	41.290	1.00	25.34	8
	MOTA	379	CD	GLU	A	54	-1.988	41.335	41.716	1.00	26.67	6
	ATOM	380	CG	GLU	Ά	54	-3.245	40.511	41.554	1 00	33.12	6
	ATOM		CB	GLU		54	-2.993				30.53	6
		381						39.046	41.906			
20	ATOM	382	CA	GLU		54	-4.147	38.053	41.836		27.17	6
	ATOM	383	C	GLU	Α	54	-3.550	36.669	41.985	1.00	29.10	6
	MOTA	384	0	GLU	Α	54	-2.499	36.360	42.543	1.00	31.16	8
	ATOM	385	N	PRO	Δ	55	-4.303	35.698	41.531	1.00	28.22	7
	ATOM	386	CG	PRO		55	-6.256	34.510	40.919		32.87	6
25	ATOM	387	CD	PRO		55	-5.638	35.901	40.877		27.93	6
	MOTA	388	CB	PRO	Α	55	-5.108	33.565	40.980	1.00	25.50	6
	MOTA	389	CA	PRO	A	55	-3.921	34.295	41.596	1.00	27.69	6
	ATOM	390	C	PRO	Α	55	-2.652	33.893	40.869	1.00	26.18	6
	ATOM	391	0	PRO		55	-2.111	32.861	41.284		29.26	8
30	ATOM	392	N	SER		57	-2.177	34.589	39.865		23.03	7
30												
	ATOM	393	OG	SER		57	0.204	34.676	37.165		24.28	8
	ATOM	394	CB	SER		57	-1.012	34.882	37.811	1.00	17.78	6
	ATOM	395	CA	SER	Α	57	-0.933	34.228	39.178	1.00	17.61	6
	MOTA	396	С	SER	Α	.57	0.231	34.769	40.022	1.00	23.28	6
35	ATOM	397	0	SER		57	0.077	35.788	40.730		23.01	8
-	MOTA	398	N	TYR		58	1.401	34.208	39.978		21.42	7
	MOTA	399	OH	TYR		58	5.286	30.151	36.865		33.08	8
	ATOM	400	CD2	TYR	Α	58	4.751	33.134	38.858	1.00	20.82	6
	ATOM	401	CE2	TYR	Α	58	5.242	32.389	37.792	1.00	27.67	6
40	MOTA	402	CZ	TYR	Α	58	4.847	31.036	37.806	1.00	30.71	6
	ATOM	403		TYR		58	4.098	30.504	38.847		24.64	6
	ATOM	404		TYR		58	3.650	31.337	39.884		30.01	6
	MOTA	405	CG	TYR	Α	58	3.956	32.697	39.898	1.00	24.45	6
	MOTA	406	CB	TYR	Α	58	3.496	33.547	41.049	1.00	19.56	6
45	MOTA	407	CA	TYR	Α	58	2.579	34.707	40.656	1.00	22.41	6
	ATOM	408	С	TYR		58	3.245	35.769	39.795		18.11	6
	ATOM	409	ō	TYR		58	4.272	36.323	40.134		19.48	8
	ATOM	410	N	HIS		59	2.819	36.120	38.608		19.19	7
	MOTA	411	CD2	HIS	Α	59	2.574	34.690	35.084	1.00	24.45	6
50	ATOM	412	NE2	HIS	Α	59	3.570	33.918	34.542	1.00	23.56	7
	MOTA	413	CE1	HIS	A	59	4.820	34.391	34.635	1.00	23.74	6
	ATOM	414		HIS		59	4.689	35.505	35.318		27.94	7
	MOTA	415	CG	HIS		59	3.333	35.753	35.529		23.77	6
	ATOM	416	CB	HIS		59	2.907	37.006	36.276		23.35	6
55	MOTA	417	CA	HIS	A	59	3.464	37.096	37.717	1.00	23.68	6
	ATOM	418	C	HIS	Α	59	3.223	38.478	38.330	1.00	16.77	6
	ATOM	419	ō	HIS		59	2.112	38.802	38.813		20.69	8
		420									17.78	7
	MOTA		И	ASP		60	4.262	39.225	38.217			
	ATOM	421		ASP		60	7.207	42.684	39.352		16.87	8
60	MOTA	422	OD1	ASP	Α	60	5.224	42.870	40.299		17.98	8
	ATOM	423	CG	ASP	A	60	6.005	42.319	39.583	1.00	15.82	6

41.108 ATOM 424 CB ASP A 60 5.713 38.718 1.00 20.17 MOTA 4.257 40.615 38.746 1.00 19.60 425 CA ASP A 60 MOTA 426 С ASP A 60 3.449 41.628 37.887 1.00 16.78 MOTA 3.755 41.641 36.688 427 0 ASP A 60 1.00 17.17 R 5 ATOM 428 ASN A 2.553 42.321 38.565 7 N 61 1.00 16.17 ND2 ASN A -0.712 41.216 38.409 1.00 21.25 MOTA 429 61 7 1.00 22.89 MOTA 430 OD1 ASN A 61 0.074 41.753 36.354 8 ATOM 431 CG ASN A 61 -0.126 42.022 37.543 1.00 19.95 6 MOTA CB ASN A 0.343 43.358 38.057 1.00 18.61 432 61 6 10 ATOM 433 CA ASN A 61 1.837 43.400 37.853 1.00 18.92 6 44.793 ATOM 434 С ASN A 61 2.346 38.274 1.00 22.66 6 37.801 1.00 23.21 ATOM 435 ASN A 1.893 45.845 8 0 61 44.887 MOTA 436 N ASN A 62 3.297 39.186 1.00 19.85 7 ATOM 437 ND2 ASN A 62 3.761 48.155 42.016 1.00 22.91 7 15 ATOM 438 OD1 ASN A 62 5.928 47.387 41.972 1.00 21.51 MOTA 439 CG ASN A 62 4.708 47.221 41.809 1.00 24.07 41.266 ATOM 440 CB ASN A 62 4.074 45.934 1.00 15.90 6 ASN A 39.781 1.00 17.18 MOTA CA 3.942 46.038 6 441 62 MOTA С ASN A 5.262 46.370 39.149 1.00 21.56 6 442 62 20 ATOM 443 0 ASN A 62 5,450 47.489 38.652 1.00 23.34 8 ATOM 444 N GLY A 63 6.219 45.499 39.274 1.00 16.07 7 45.696 38.775 MOTA 445 CA GLY A 63 7.560 1.00 15.56 6 MOTA GLY A 8.566 45.526 39.928 1.00 13.16 6 446 С 63 MOTA 447 0 GLY A 63 9.705 45.220 39.576 1.00 14.42 8 1.00 14.55 7 HIS A 8.181 45.732 41.170 25 ATOM 448 N 64 ATOM CD2 HIS A 9.944 47.365 45.114 1.00 19.41 449 64 6 ATOM 450 NE2 HIS A 64 10.615 47.068 46.239 1.00 17.69 7 45.792 46.555 MOTA 451 CE1 HIS A 64 10.371 1.00 17.59 6 9.605 MOTA ND1 HIS A 45.312 45.607 1.00 19.22 7 452 64 30 ATOM 453 CG HIS A 64 9.334 46.232 44.659 1.00 17.77 6 43.484 1.00 13.22 CB HIS A 64 8.428 45.991 6 MOTA 454 9.195 45.658 42.241 1.00 17.90 6 MOTA 455 CA HTS A 64 ATOM 456 C HIS A 64 9.902 44.259 42.331 1.00 17.60 6 MOTA 457 0 HIS A 64 11.161 44.161 42.393 1.00 15.99 8 35 ATOM 458 GLY A 9.081 43.180 42.309 1.00 16.44 7 N 65 MOTA 459 CA GLY A 65 9.616 41.816 42.380 1.00 14.82 6 41.481 41.172 MOTA 460 С GLY A 65 10.479 1.00 14.51 6 11.471 40.769 41.349 1.00 17.10 MOTA 461 0 GLY A 65 8 THR A 10.099 41.938 39.997 1.00 14.08 7 ATOM 462 N 66 40 ATOM 463 CG2 THR A 66 10.799 41.935 36.263 1.00 16.28 6 OG1 THR A 8.783 41.636 37,548 1.00 16.38 8 MOTA 464 66 37.567 MOTA 465 CB THR A 66 10.092 42.160 1.00 13.88 6 CA THR A 10.851 41.608 38.787 1.00 11.82 6 MOTA 466 66 THR A C 12.223 42.209 38.848 1.00 17.20 6 MOTA 467 66 THR A 13.251 41.729 38.360 1.00 15.82 8 45 ATOM 468 O 66 ATOM 469 N HIS A 67 12:283 43.430 39.440 1.00 16.72 7. MOTA 470 CD2 HIS A 67 14.672 47.526 38.936 1.00 14.06 6 ATOM NE2 HIS A 15.894 48.068 39.341 1.00 15.93 7 471 67 MOTA 472 CE1 HIS A 67 16.222 47.455 40.502 1.00 16.28 6 15.270 46.657 40.870 1.00 14.20 7 50 ATOM 473 ND1 HIS A 67 14.288 46.658 39.897 1.00 13.11 6 **ATOM** 474 CG HIS A 67 MOTA 475 13.142 45.733 40.058 1.00 13.83 6 CB HIS A 67 MOTA 476 CA HIS A 67 13.524 44.275 39.602 1.00 17.85 6 MOTA 477 С HIS A 67 14.489 43.467 40.555 1.00 12.74 6 55 ATOM 478 15.676 43.217 40.217 1.00 14.79 8 0 HIS A 67 7 1.00 15.52 MOTA 479 N VAL A 68 13.875 43.184 41.692 MOTA 480 13.554 43.532 44.544 1.00 16.01 6 CG2 VAL A 68 1.00 15.56 6 ATOM 481 14.397 44.868 CG1 VAL A 68 41.111 MOTA 482 CB VAL A 68 13.732 42.126 43.930 1.00 17.25 6 6 60 ATOM 483 CA VAL A 68 14.631 42.373 42.702 1.00 18.13 1.00 13.97 MOTA 484 C VAL A 68 15.115 41.029 42.063 6

WO 01/83559 PCT/DK01/00293

	ATOM	485	0	VAL	Α	68	16.303	40.718	42.241	1.00 15.56	8
	MOTA	486	N	ALA	A	69	14.226	40.381	41.343	1.00 16.97	7
	MOTA	487	CB	ALA	Α	69	13.385	38.483	40.044	1.00 15.14	6
	ATOM	488	CA	ALA	A	69	14.625	39.104	40.683	1.00 20.11	6
5	ATOM	489	C	ALA	Α	69	15.800	39.240	39.746	1.00 19.97	6
	ATOM	490	0	ALA		69	16.716	38.370	39.765	1.00 18.07	8
	MOTA	491	N	GLY		70	15.860	40.297	38.929	1.00 16.08	7
	ATOM	492	CA	GLY		70	16.915	40.521	37.962	1.00 13.42	6
	ATOM	493	C	GLY		70	18.248	40.803	38.624	1.00 17.11	6
10	ATOM	494	ō	GLY		70	19.301	40.458	38.069	1.00 18.05	8
	MOTA	495	N	THR		71	18.251	41.364	39.834	1.00 16.82	7
	ATOM	496		THR		71	20.803	42.713	42.461	1.00 11.71	6
	ATOM	497		THR		71	19.044	43.833	41.152	1.00 19.96	8
	ATOM	498	CB	THR		71	19.494	42.605	41.692	1.00 17.79	6
15		499	CA	THR		71	19.570	41.620	40.463	1.00 18.16	. 6
15	ATOM	500	C	THR		71	20.085	40.254	40.907	1.00 16.28	6
	ATOM	501	0	THR		71	21.302	40.022	40.823	1.00 20.35	8
	ATOM	502	N	ILE		72	19.224	39.377	41.381	1.00 20.33	7
	ATOM	503		ILE		72	16.919	37.403	44.477	1.00 15.03	6
20	ATOM	504	·CG1			72	18.141	37.904	43.767	1.00 16.72	6
20	ATOM	505	CB	ILE		72	18.628	37.243	42.500	1.00 22.03	6
	ATOM	506	CG2			72	19.096	35.809	42.923	1.00 18.50	6
		507	CA	ILE		72 72	19.708	38.025	41.767	1.00 18.30	6
	ATOM ATOM		CA	ILE		72	20.158	37.194	40.536	1.00 18.21	6
25	ATOM	508 509	0	ILE		72 72	21.223	36.584	40.501	1.00 13.23	8
23			N	ALA		73	19.308	37.143	39.514	1.00 17.54	7
	MOTA	510	CB	ALA		73 73	18.850	34.961	38.811	1.00 21.72	6
	ATOM	511 512		ALA		· 73	19.600	36.258	38.384	1.00 20.55	6
	MOTA		CA C				19.220	36.650	36.993	1.00 20.55	6
20	MOTA	513	0	ALA ALA		73 73	18.847	35.677	36.292	1.00 21.04	8
30	MOTA	514	N	ALA		73 74	19.351	37.891	36.551	1.00 21.02	7
	ATOM	515								1.00 15.37	6
	ATOM	516	CB	ALA		74 74	19.407		34.855 35.176	1.00 18.43	6
	ATOM	517 518	CA C	ALA ALA		74 74	19.129 20.182	38.268 37.387	34.423	1.00 17.31	6
25	MOTA MOTA	519	0	ALA		74 74	21.379	37.294	34.773	1.00 21.22	8
35		•	N	LEU		7 5 75	19.625	36.759	33.380	1.00 19.89	7
	ATOM	520				75 75	18.684	33.287	32.938	1.00 20.44	6
	ATOM	521 522		LEU		75 75	17.370	34.159	30.853	1.00 20.44	6
	MOTA							34.390	32.036	1.00 23.72	6
	ATOM	523	CG	LEU		75 75	18.279	35.129		1.00 23.72	6
40		524	CB	LEU		75 75	19.491 20.421		31.487 32.558	1.00 22.39	6
	ATOM	525	CA	LEU		75 75		35.799 36.353	31.885	1.00 22.38	6
	MOTA	526	C	TEA		75 75	21.644	37.506	31.413	1.00 22.38	8
	ATOM	527	0			75 76	21.691 22.678	35.519	31.836	1.00 23.39	7
45	MOTA	528	N	asn asn		76 76	27.453	34.761	31.699	1.00 23.39	7
45		529		ASN		76 76		36.466	30.730	1.00 31.31	8
	MOTA	530				76 76	26.466	35.407	31.355	1.00 28.37	6
	ATOM	531	CG	ASN		76	26.339		31.890	1.00 18.81	6
	MOTA	532	CB	ASN		76 36	24.992	34.941		1.00 22.81	6
	MOTA	533	CA	ASN		76 76	23.966	35.823	31.226	1.00 22.81	6
50	MOTA	534	C	ASN		76	23.762	35.565	29.728 29.350		8
	ATOM	535	0	ASN		76	23.757	34.402		1.00 27.52 1.00 29.68	7
	ATOM	536	N	ASN		77	23.499	36.553	28.890		7
	ATOM	537		ASN		77	19.501	36.639	28.267	1.00 20.91	
	MOTA	538		ASN		77	21.260	38.058	28.176	1.00 23.61	8
55	ATOM	539	CG	ASN		77	20.739	36.958	28.001	1.00 23.21	6
	ATOM	540	CB	ASN		77	21.698	36.006	27.290	1.00 24.11	6
	MOTA	541	CA	ASN		77	23.184	36.392	27.455	1.00 29.10	6
	MOTA	542	C	ASN		77	23.597	37.625	26.699	1.00 23.45	6
	ATOM	543	0	ASN		77	24.554	38.269	27.092	1.00 26.46	8
60	MOTA	544	N	SER		78	22.917	37.914	25.631	1.00 23.85	7
	MOTA	545	OG	SER	A	78	23.826	38.128	22.933	1.00 51.66	8

MOTA

606 N

ALA A 88

20.892 30.516 38.966 1.00 23.05

7

WO 01/83559 PCT/DK01/00293

344

MOTA 546 CB SER A 78 22.726 38.836 23.468 1.00 38.99 6 23.343 MOTA 547 CA SER A 78 39.124 24.902 1.00 28.32 6 MOTA 548 C SER A 78 22.590 40.392 25.196 1.00 26.17 6 MOTA 22.848 549 SER A 78 41.406 24.556 1.00 30.79 0 8 5 ATOM 550 N ILE A 79 21.553 40.260 25.994 1.00 26.87 7 MOTA 551 CD1 ILE A 79 17.234 39.484 26.505 1.00 22.48 6 MOTA 552 CG1 ILE A 79 18.723 39.666 26.593 1.00 23.59 CB ILE A MOTA 553 79 19.291 40.851 25.835 1.00 29.56 ATOM 554 CG2 ILE A 79 19.401 40.371 1.00 25.83 24.400 10 ATOM ILE A 20.675 1.00 22.47 555 CA 79 41.390 26.218 6 ATOM 556 C ILE A 79 20.590 41.758 27.679 1.00 22.23 6 ATOM 557 0 ILE A 79 21.096 41.041 28.498 1.00 21.05 8 MOTA 558 N GLY A 80 19.921 42.847 27.901 1.00 21.78 7 MOTA 559 CA GLY A 80 19.579 43.296 29.237 1.00 20.74 6 15 ATOM 560 С GLY A 80 20.731 43.409 30.215 1.00 22.30 6 GLY A 21.767 43.988 MOTA 561 O 80 29.848 1.00 24.00 8 MOTA 562 N VAL A 81 20.534 42.884 31.415 1.00 20.72 7 MOTA CG2 VAL A 19.687 43.194 563 81 34.148 1.00 16.10 б **ATOM** 564 CG1 VAL A 81 20.666 45.283 33.070 1.00 19.66 6 20 ATOM 565 CB VAL A 81 20.938 43.844 33.561 1.00 21.57 6 ATOM 566 CA VAL A 81 21.616 43.067 32.414 1.00 18.79 6 С ATOM 567 VAL A 81 22.121 41.681 32.721 1.00 24.48 ATOM 568 0 VAL A 21.953 40.670 32.065 81 1.00 22.82 LEU A 1.00 26.20 MOTA 569 N 82 22.797 41.495 33.827 7 25 ATOM 570 CD2 LEU A 82 27.235 39.378 34.412 1.00 20.59 6 MOTA 571 CD1 LEU A 82 25.342 37.924 33.896 1.00 22.30 6 ATOM 572 CG LEU A 82 25.740 39.235 34.558 1.00 22.25 6 MOTA 573 CB LEU A 82 24.947 40.464 34.054 1.00 20.75 6 ATOM 574 40.297 CA LEU A 82 23.431 34.339 1.00 21.39 6 30 ATOM 575 C LEU A 82 23.171 40.165 1.00 19.49 35.847 6 MOTA 576 LEU A 82 23.528 41.144 36.502 0 1.00 23.34 577 MOTA N GLY A 83 22.671 39.066 36.348 1.00 20.69 7 MOTA 578 CA GLY A 83 22.457 38.949 37.770 1.00 17.03 С MOTA 579 GLY A 83 23.782 38.468 38.350 1.00 17.15 35 ATOM 580 O GLY A 24.759 38.085 37.729 83 1.00 17.70 MOTA 581 N VAL A 84 23.723 38.456 39.683 1.00 21.38 7 39.699 ATOM 582 CG2 VAL A 84 24.533 42,307 1.00 17.59 6 ATOM 583 CG1 VAL A 84 25.675 37.585 42.933 1.00 18.61 6 MOTA 24.568 584 CB VAL A 84 38.197 42.032 1.00 19.33 6 40 ATOM 585 CA VAL A 24.791 37.919 40.537 1.00 18.94 84 6 MOTA 586 C VAL A 84 24.883 36.373 40.292 1.00 19.93 6 MOTA 587 0 VAL A 26.024 35.890 40.194 1.00 18.82 84 8 23.766 MOTA 588 N 35.668 40.255 1.00 19.98 ALA A 85 7 MOTA 589 CB ALA A 85 23.136 33.645 41.452 1.00 16.16 б 45 ATOM 590 CA ALA A 85 23.717 34.185 40.149 1.00 23.42 6 ATOM 591 С 22.819 38.945 ALA A 85 33.819 1.00 15.76 6 MOTA 592 0 ALA A 85 21.669 33.420 39.123 1.00 17.91 593 MOTA N PRO A 86 23.320 34.080 37.739 1.00 19.61 7 35.990 ATOM 594 PRO A 86 24.802 34.328 1.00 22.42 CG 595 24.691 34.594 50 ATOM CD PRO A 86 37.481 1.00 17.62 6 ATOM 596 CB PRO A 86 23.412 34.286 35.395 1.00 18.97 6 597 MOTA CA PRO A 86 22.527 33.884 36.525 1.00 22.90 6 MOTA 598 С PRO A 21.982 32.494 36.282 1.00 25.04 86 MOTA 599 0 PRO A 86 21.044 32.392 35.510 1.00 25.03 8 55 ATOM 7 600 N SKR A 87 22.550 31.531 36.954 1.00 21.61 MOTA 601 OG SER A 87 23.828 29.588 35.364 1.00 24.93 8 1.00 21.86 MOTA 602 CB SER A 23.195 29.132 36.539 87 6 MOTA 603 CA SER A 87 22.079 30.144 36.789 1.00 25.33 MOTA 604 С SER A 87 21.253 29.730 37.973 1.00 27.17 60 ATOM 605 SER A 20.806 28.602 37.975 1.00 26.19 8 0. 87

WO 01/83559

	MOTA	607	CB	ALA		88	20.108	31.154	41.189	1.00 18.32	6
	ATOM	608	CA	ALA		88	20.051	30.084	40.053	1.00 22.79	6
	MOTA	609	С	ALA		88	18.628	29.760	39.608	1.00 21.41	6
	MOTA	610	0	ALA		88	18.106	30.259	38.608	1.00 25.76	8
5	MOTA	611	N	ASP		89	17.896	28.967	40.323	1.00 19.89	7
	MOTA	612		ASP		89	16.801	26.516	38.434	1.00 31.22	8
	MOTA	613		ASP		89	17.282	25.428	40.116	1.00 44.17	8
	MOTA	614	CG	ASP		89	16.662	26.363	39.689	1.00 32.29	6
	MOTA	615	CB	ASP		89	16.007	27.380	40.585	1.00 26.99	6
10	MOTA	616	CA	ASP		89	16.475	28.764	40.089	1.00 22.99	6
	ATOM	617	С	ASP		89	15.649	29.788	40.846	1.00 26.13	6
	MOTA	618	0	ASP		89	15.605	29.765	42.092	1.00 23.54	8
	ATOM	619	N	LEU		90	14.876	30.620	40.201	1.00 23.36	7
	MOTA	620		LEU		90	14.764	35.038	38.890	1.00 23.98	6
15	ATOM	621		TEU		90	15.677	34.244	41.144	1.00 23.31	6
	ATOM	622	CG	LEU		90	14.540	34.313	40.203	1.00 32.59	6
	MOTA	623	CB	TEA		90	14.110	32.873	39.878	1.00 29.22	6
	ATOM	624	CA	LEU		90	14.041	31.659	40.828	1.00 22.24	6
	ATOM	625	C	LEU		90	12.643	31.203	41.002	1.00 19.26	6
20	MOTA	626	0	LEU		90	12.017	30.724	40.038	1.00 20.76	8
	ATOM	627	N	TYR		91	12.125	31.476	42.174	1.00 17.22	7
	MOTA	628	OH	TYR		91	12.321	25.105	41.504	1.00 31.21	8
	MOTA	629	CD2			91	10.097	27.804	42.484	1.00 24.84	6
	ATOM	630	CE2	TYR		91	10.565	26.613	41.969	1.00 22.93	6
25	MOTA	631	CZ	TYR		91	11.917	26.318	42.020	1.00 31.94	6
	ATOM	632		TYR		91	12.863	27.261	42.476	1.00 23.17	6
	ATOM	633	CD1	TYR		91	12.382	28.442	43.022	1.00 19.76	6
	MOTA	634	CG	TYR		91	11.026	28.729	43.006	1.00 22.41	6
20	MOTA	635	CB	TYR		91	10.551	30.077	43.551	1.00 22.69	6
30	MOTA	636	CA	TYR		91	10.755	31.167	42.437	1.00 17.72	6
	MOTA	637	C	TYR		91	10.023	32.465	42.832	1.00 21.10	6
	MOTA	638	O N	TYR		91	10.483	33.128	43.740	1.00 21.02 1.00 23.09	8 7
	MOTA MOTA	639 640	N CB	ALA ALA		92 92	8.955 7.352	32.776 34.205	42.133 40.926	1.00 23.09	6
35	ATOM	641	CA	ALA		92	8.067	33.911	42.258	1.00 14.20	6
33	MOTA	642	CA	ALA		92	7.090	33.619	43.378	1.00 21.27	6
	MOTA	643	0	ALA		92	6.104	32.928	43.378	1.00 13.10	8
	MOTA	644	N	VAL		93	7.184	34.197	44.567	1.00 21.07	7
	MOTA	645	CG2	VAL		93	7.656	32.310	46.567	1.00 21.27	6
40	MOTA	646	CG1	VAL		93	5.678	33.194	47.960	1.00 19.09	6
	MOTA	647	СВ	VAL		93	6.745	33.478	46.928	1.00 18.62	6
	MOTA	648	CA	VAL		93	6.141	34.036	45.629	1.00 17.35	6
	MOTA	649	C	VAL		93	5.534	35.446	45.836	1.00 18.48	6
	ATOM	650	ō	VAL		93	6.166	36.320	46.491	1.00 17.69	8
45	MOTA	651	N	LYS		94	4.359	35.587	45.326	1.00 15.95	7
	MOTA	652	NZ	LYS		94	0.341	38.732	40.786	1.00 16.98	7
	ATOM	653	CE	LYS		94	1.380	38.435	41.794	1.00 17.51	6
	MOTA	654	CD	LYS	Α	94	0.902	38.548	43.246	1.00 18.13	6
	MOTA	655	CG	LYS		94	1.857	38.317	44.368	1.00 19.09	6
50	ATOM	656	CB	LYS	A	94	2.668	37.038	44.233	1.00 16.57	6
	MOTA	657	CA	LYS		94	3.611	36.817	45.392	1.00 21.78	6
	ATOM	658	С	LYS	Α	94	3.007	36.982	46.792	1.00 25.09	6
	MOTA	659	0	LYS	Α	94	1.985	36.358	47.139	1.00 21.82	8
	MOTA	660	N	VAL		95	3.600	37.907	47.568	1.00 20.23	7
55	ATOM	661	CG2	VAL	Α	95	5.283	38.661	50.019	1.00 20.17	6
	MOTA	662	CG1	VAL		95	4.360	36.294	49.917	1.00 25.66	6
	MOTA	663	CB	VAL		95	4.009	37.779	49.976	1.00 30.09	6
	ATOM	664	CA	VAL	Α	95	3.030	38.216	48.885	1.00 21.11	6
	MOTA	665	C	VAL	A	95	2.623	39.696	48.987	1.00 24.66	6
60	MOTA	666	0	VAL	A	95	2.177	40.080	50.064	1.00 23.19	8
	ATOM	667	N	LEU	A	96	2.818	40,511	47.962	1.00 23.27	7

	MOTA	668	CD2	LEU	A	96	3.997	43.237	50.138	1.00 25.60	6
	MOTA	669	CD1	LEU	Α	96	5.970	43.494	48.659	1.00 20.15	6
	MOTA	670	CG	LEU	A	96	4.751	42.698	48.975	1.00 22.84	6
	MOTA	671	CB	LEU	A	96	3.706	42.779	47.891	1.00 20.75	6
5	MOTA	672	CA	LEU	A	96	2.451	41.918	47.920	1.00 23.08	6
	ATOM	673	С	LEU	A	96	1.703	42.036	46.589	1.00 23.01	6
	MOTA	674	0	LEU	Α	96	2.061	41.403	45.579	1.00 21.24	8
	ATOM	675	N	ASP	A	97	0.689	42.897	46.551	1.00 23.27	7
	MOTA	676	OD2	ASP	Α	97	-2.600	45.183	46.914	1.00 34.41	8
10	MOTA	677	OD1	ASP	Α	97	-0.584	45.765	46.103	1.00 29.86	8
	ATOM	678	CG	ASP	Α	97	-1.488	44.950	46.240	1.00 30.57	6
	MOTA	679	CB	ASP	Α	97	-1.555	43.475	45.731	1.00 26.33	6
	MOTA	680	CA	ASP	Α	97	-0.137	43.056	45.358	1.00 23.04	6
	ATOM	681	C	ASP		97	0.478	44.050	44.362	1.00 19.75	6
15	ATOM	682	0	ASP		97	1.581	44.509	44.552	1.00 20.60	8
	MOTA	683	N	ARG		98	-0.293	44.333	43.361	1.00 21.05	7
	MOTA	684		ARG		98	-6.414	46.513	41.337	1.00 61.54	7
	ATOM	685		ARG		98	-5.383	46.580	39.258	1.00 61.06	7
	MOTA	686	CZ	ARG		98	-5.345	46.297	40.563	1.00 59.40	6
20	MOTA	687	NE	ARG		98	-4.287	45.797	41.191	1.00 43.41	7
	ATOM	688	CD	ARG		98	-3.085	45.642	40.374	1.00 30.97	6
	MOTA	689	CG	ARG		98	-2.099	45.874	41.477	1.00 23.76	6
	ATOM	690	CB	ARG		98	-0.838	45.175	41.048	1.00 25.56	6
	ATOM	691	CA	ARG		98	0.109	45.190	42.254	1.00 25.82	6
25	MOTA	692	C	ARG		98	0.420	46.628	42.667	1.00 23.93	6
23	ATOM	693	o	ARG		98	1.088	47.281	41.838	1.00 23.91	8
	ATOM	694	N	ASN		99	-0.032	46.924	43.851	1.00 23.90	7
	MOTA	695		ASN		99	-1.713	49.748	42.838	1.00 28.85	7
	ATOM	696		ASN		99	-3.264	48.712	44.128	1.00 39.99	8
30	ATOM	697	CG	ASN		99	-2.098	49.125	43.955	1.00 32.07	6
50	ATOM	698	CB	ASN		99	-1.056	48.862	45.047	1.00 28.96	6
	MOTA	699	CA	ASN		99	0.209	48.265	44.383	1.00 30.38	6
	MOTA	700	C	ASN		99	1.392	48.195	45.301	1.00 30.88	6
	MOTA	701	0	ASN		99	1.809	49.252	45.800	1.00 30.12	8
35	MOTA	702	N			100	1.910	47.022	45.541	1.00 24.81	7
33	ATOM	703	CA	GLY			3.112	46.938	46.388	1.00 21.34	6
	ATOM	704	C	GLY			2.730	46.700	47.825	1.00 26.62	6
	MOTA	705	0	GLY			3.572	46.651	48.719	1.00 30.05	8
	ATOM	706	N			101		46.465	47.998	1.00 25.04	7
40	ATOM	707	OG	SER			-1.086	47.063	50.195	1.00 52.71	8
	ATOM	708	CB			101	-0.288	47.078	49.079	1.00 33.36	6
	ATOM	709	CA			101	1.004	46.287	49.369	1.00 28.75	6
	ATOM	710	C	SER			0.669	44.899	49.843	1.00 37.54	6
	MOTA	711	ō			101	0.182	44.154	49.006	1.00 29.65	8
45	ATOM	712	N	GLY			0.852	44.455	51.064	1.00 35.37	7
13	MOTA	713	CA	GLY			0.402	43.090	51.473	1.00 42.38	6
	ATOM	714	C	GLY			0.311	43.081	53.009	1.00 41.95	6
	ATOM	715	ō	GLY			0.662	44.081	53.674	1.00 51.09	8
	ATOM	716	И	SER			-0.061	42.076	53.725	1.00 30.23	7
50	ATOM	717	OG	SER			-1.367	40.088	54.944	1.00 40.84	8
30	MOTA	718	CB			103	-1.220	41.179	55.778	1.00 31.04	6
	ATOM	719	CA	SER			-0.076	41.926	55.156	1.00 29.72	6
	ATOM	720	C	SER			1.057	41.013	55.610	1.00 31.65	6
	ATOM	720 721	0			103	1.642	40.294	54.835	1.00 31.03	8
55	ATOM	721	Ŋ	LEU			1.319	41.101	56.870	1.00 28.22	7
35	ATOM	723		TEA			4.090	42.177	60.461	1.00 25.22	6
	MOTA	723 724		PEA			4.621	42.281	58.095	1.00 31.24	6
	ATOM	724 725					4.001	41.439	59.150	1.00 41.73	6
			CG	LEU			2.654	40.887	58.817	1.00 39.07	6
60	ATOM	726	CB	FEA						1.00 38.11	6
60	MOTA	727	CA	LEU			2.397	40.307	57.444	1.00 35.45	6
	MOTA	728	С	LEU	A	104	1.894	38.866	57.408	1.00 33.43	U

	MOTA	729	0	LEU	A	104	2.809	38.009	57.345	1.00 34.06	8
	ATOM	730	N	ALA	A	105	0.578	38.666	57.355	1.00 30.73	7
	MOTA	731	CB	ALA	A	105	-1.345	37.170	57.302	1.00 28.85	6
	MOTA	732	CA	ALA	Α	105	0.171	37.260	57.244	1.00 32.26	6
5	MOTA	733	C	ALA	A	105	0.492	36.695	55.838	1.00 30.41	6
	MOTA	734	0	ALA	A	105	0.790	35.495	55.764	1.00 26.17	8
	ATOM	735	N	SER	Α	106	0.370	37.484	54.767	1.00 26.36	7
	ATOM	736	OG	SER	Α	106	0.908	38.945	52.353	1.00 47.12	8
	MOTA	737	CB	SER	Α	106	0.078	37.776	52.335	1.00 28.12	6
10	MOTA	738	CA	SER	Α	106	0.695	36.929	53.429	1.00 27.72	6
	ATOM	739	С	SER	Α	106	2.174	36.648	53.385	1.00 24.51	6
	MOTA	740	0	SER	Α	106	2.586	35.664	52.760	1.00 25.93	8
	MOTA	741	N			107	3.021	37.452	54.025	1.00 22.96	7
	ATOM	742	CG2				5.113	39.633	53.921	1.00 23.30	6
15	ATOM	743		VAL			6.747	37.936	54.918	1.00 22.54	6
	ATOM	744	CB			107	5.292	38.352	54.742	1.00 23.47	6
	MOTA	745	CA			107	4.467	37.209	54.117	1.00 22.96	6
	ATOM	746	C			107	4.792	35.863	54.775	1.00 27.46	6
	ATOM	747	ō			107	5.638	35.148	54.247	1.00 22.03	8
20	ATOM	748	N			108	4.152	35.572	55.895	1.00 26.22	7
20	ATOM	749	CB			108	3.431	34.340	57.872	1.00 22.56	6
	ATOM	750	CA			108	4.291	34.320	56.623	1.00 22.04	6
	ATOM	751	C			108	3.862	33.098	55.769	1.00 22.04	6
	ATOM	752	o			108	4.541	32.073	55.760	1.00 25.45	8
25	ATOM	753	N			109	2.798	33.159	55.019	1.00 26.10	7
23	ATOM	754		GLN			-1.990	31.648	53.180	1.00 26.10	7
	MOTA	755		GLN			-1.807			1.00 52.89	8
	ATOM	756	CD			109	-1.363	33.819	52.964 53.524		6
	ATOM	757	CG			109	-0.163	32.789 32.492	54.418	1.00 52.62	6
30	ATOM	758	CB			109	1.020	32.469		1.00 23.57	
30	ATOM		CA						53.458	1.00 19.24	6
	ATOM	759 760	CA			109 109	2.302	32.153	54.141	1.00 21.53	6
	ATOM	761	0			109	3.302	31.924	53.060	1.00 23.82	6 8
	MOTA	762	И				3.633	30.801	52.709	1.00 24.29	
25	ATOM	763	CA			110	3.955	32.956	52.566	1.00 26.56	7
35	ATOM	764	CA			110	5.010	32.793	51.539	1.00 21.54	6
	ATOM	764 765	0			110	6.193	32.057	52.065	1.00 18.77	6
		766	И			110	6.890	31.359	51.328 53.333	1.00 20.70	8
	ATOM ATOM	767	CD1			111	6.506	32.348	56.483	1.00 19.34	7
40	ATOM	768	CG1	ILE			8.879	34.550	55.221	1.00 19.97 1.00 25.91	6
40	ATOM	769	CB	ILE			8.799 8.041	33.646			6 6
		770	CG2		-			32.300	55.338	1.00 21.06	6
	ATOM			ILE			9.069	31.422	56.004	1.00 19.42	
	MOTA	771	CA			111	7.639	31.695	54.014	1.00 20.08	6
45	ATOM	772	C	ILE			7.287	30.164	54.171	1.00 28.01	6
45	MOTA	773	0	ILE			8.174	29.356	53.925	1.00 19.72	8
	MOTA	774	N	GLU			6.057	29.853	54.534	1.00 26.23	7
	MOTA	·775		GLU			5.242	26.589	57.599	1.00 55.41	8
	MOTA	776		GLU			5.307	28.380	59.130	1.00 58.68	8
۲۵	MOTA	777	CD	GLU			5.032	27.876	57.981	1.00 57.74	6
50	MOTA	778	CG	GLU			4.340	28.653	56.863	1.00 54.59	6
	MOTA	779	CB	GLU			4.264	28.406	55.355	1.00 26.07	6
	MOTA	780	CA	GLU			5.632	28.463	54.721	1.00 26.47	6
	ATOM	781	C	GLU			5.651	27.787	53.384	1.00 24.57	6
	ATOM	782	0	GLU			6.181	26.678	53.335	1.00 27.03	8
55	ATOM	783	N	TRP			5.345	28.415	52.295	1.00 20.47	7
	MOTA	784		TRP			5.939	28.229	47.577	1.00 23.15	6
	MOTA	785		TRP			7.244	28.726	47.644	1.00 22.83	6
	MOTA	786		TRP			8.109	28.544	46.587	1.00 22.30	6
	MOTA	787		TRP			7.680	27.910	45.424	1.00 22.04	6
60	MOTA	788		TRP			6.378	27.441	45.332	1.00 20.63	6
	MOTA	789	CE2	TRP	A	113	5.543	27.598	46.399	1.00 19.44	6

	ATOM	790		TRP			4.261	27.215	46.619	1.00 22	.83	7
	MOTA	791	CDI	TRP	Α	113	3.821	27.559	47.869	1.00 19	.44	6
	ATOM	792	CG			113	4.847	28.192	48.511	1.00 20	.85	6
	MOTA	793	CB			113	4.744	28.731	49.896	1.00 20		6
5	ATOM	794	CA	TRP			5.385	27.849	50.973	1.00 18		6
	ATOM	795	C	TRP			6.817	27.518	50.681	1.00 22		6
	MOTA	796	0	TRP			7.102	26.484	50.055	1.00 23		8
	MOTA	797	И			114	7.790	28.387	50.988	1.00 23		7
••	MOTA	798	CB			114	10.199	29.314	50.947	1.00 21		6
10	MOTA	799	CA			114	9.208	28.145	50.684	1.00 20		6
	MOTA	800	C			114	9.720	26.925	51.508	1.00 24		6
	ATOM	801	0			114	10.656	26.271	51.084	1.00 22		8
	MOTA	802	N			115	9.263	26.665	52.696	1.00 21		7
	ATOM	803		ILE			8.887	27.137	57.080	1.00 21		6
15	ATOM	804	CB	ILE			9.735	26.862	55.832	1.00 22		6
	MOTA MOTA	805 806		ILE		115	9.187	25.725	54.945	1.00 36		6
	ATOM	807	CA			115	9.445 9.712	24.332 25.557	55.597 53.533	1.00 26		6
	ATOM	808	C			115	9.183	24.244	52.881	1.00 23 1.00 22		6 6
20	ATOM	809	0			115	9.979	23.385	52.509	1.00 22		8
20	ATOM	810	N	ASN			7.904	24.294	52.591	1.00 23		7
	ATOM	811		ASN			5.718	22.906	53.985	1.00 25		7
	ATOM	812		ASN			4.028	23.976	53.170	1.00 43		8
	ATOM	813	CG	ASN			5.117	23.420	52.940	1.00 31		6
25	ATOM	814	CB	ASN			5.859	23.287	51.643	1.00 20		6
	ATOM	815	CA	ASN			7.327	23.166	51.910	1.00 19		6
	ATOM	816	C	ASN			7.917	22.893	50.561	1.00 29		6
	MOTA	817	0	ASN			7.758	21.709	50.183	1.00 30		8
	ATOM	818	N	ASN			8.452	23.795	49.801	1.00 22		7
30	ATOM	819	ND2	ASN	Α	117	6.020	24.758	48.002	1.00 20		7
	ATOM	820	OD1	ASN	A	117	6.621	23.594	46.231	1.00 25	.41	8
	MOTA	821	CG	ASN	Α	117	6.944	24.266	47.222	1.00 21	.80	6
	ATOM	822	CB	ASN	A	117	8.400	24.593	47.462	1.00 19	.43	6
	MOTA	823	CA	ASN	Α	117	8.993	23.648	48.467	1.00 18	.42	6
35	MOTA	824	C	ASN	Α	117	10.488	23.572	48.529	1.00 16	.67	6
	ATOM	825	0	asn	A	117	11.080	23.586	47.448	1.00 23	.59	8
	ATOM	826	N	ASN	A	118	10.994	23.449	49.770	1.00 24	.36	7
	ATOM	827	ND2	asn	A	118	14.257	20.977	49.784	1.00 46	.79	7
	ATOM	828		asn	A	118	11.956	20.616	50.768	1.00 42	.51	8
40	ATOM	829	CG	ASN			12.926	20.992	50.037	1.00 53	.99	6
	MOTA	830	CB	ASN			12.676	22.017	48.931	1.00 40		6
	ATOM	831	CA	ASN			12.463	23.293	49.763	1.00 25		6
	MOTA	832	С	ASN			13.436	24.264	49.061	1.00 29		6
	ATOM	833	0	ASN			14.413		48.416			8
45	MOTA	834	N	MET			13.069	25.539	49.345	1.00 24		7
	ATOM	835	CE	MET			11.345	26.688	45.875	1.00 25		6
	MOTA	836	SD	MET			12.390	28.044	46.482	1.00 24		16
	ATOM	837	CG	MET			11.874	27.979	48.232	1.00 19		6
	MOTA	838	CB	MET			13.167	27.925	49.032	1.00 21		6
50	MOTA	839	CA	MET			13.931	26.603	48.812	1.00 20		6
	ATOM	840 841	C	MET			15.198	26.587	49.594	1.00 19		6
	ATOM	842	. O	MET			15.184	26.188	50.752	1.00 23		8
	ATOM ATOM	843	CD3 N	HIS			16.296	27.065	49.124	1.00 18		7
55	ATOM	844		HIS			18.647 18.706	24.610 23.671	49.083 48.118	1.00 30 1.00 24		6 7
"	ATOM	845		HIS			18.992	24.314	46.957	1.00 24		6
	ATOM	846		HIS			19.000	25.611	47.103	1.00 28		7
	ATOM	847	CG	HIS			18.816	25.840	48.415	1.00 25		6
	ATOM	848	СВ	HIS			18.805	27.181	49.043	1.00 20		6
60	ATOM	849	CA	HIS			17.517	27.249	49.902	1.00 19		6
	ATOM	850	C	HIS			17.618	28.675	50.536	1.00 24		6
		_			-						_	

WO 01/83559

	MOTA	851	0	HIS	Ά	120	18.213	28.839	51.568	1.00 18.22	8
	ATOM	852	N			121	17.096	29.668	49.807	1.00 20.09	7
	MOTA	853	CD1	ILE			20.650	31.060	48.208	1.00 18.27	6
	ATOM	854		ILE			19.750	31.034	49.431	1.00 19.89	6
5	ATOM	855	СВ			121	18.384	31.719	49.200	1.00 24.43	6
Ū	ATOM	856					18.411	33.247	49.285	1.00 19.92	6
	ATOM	857	CA			121	17.296	31.108	50.101	1.00 27.30	6
	MOTA	858	C			121	15.996		49.892		6
								31.862		1.00 18.34	
••	MOTA	859	0			121	15.345	31.498	48.913	1.00 21.09	8
10	ATOM	860	N			122	15.641	32.603	50.895	1.00 16.71	7
	MOTA	861		ILE			11.953	31.536	53.181	1.00 22.89	6
	MOTA	862		ILE			12.837	31.911	51.979	1.00 24.32	6
	MOTA	863	CB			122	13.522	33.267	52.001	1.00 22.36	6
	MOTA	864	, CG2	ILE			12.472	34.387	52.058	1.00 22.28	6
15	MOTA	865	CA	ILE	Α	122	14.414	33.410	50.792	1.00 17.89	6
	MOTA	866	С	ILE	Α	122	14.873	34.891	50.714	1.00 20.53	6
	MOTA	867	0	ILE	A	122	15.632	35.335	51.596	1.00 18.10	8
	ATOM	868	N	ASN	Α	123	14.457	35.638	49.735	1.00 24.14	7
	ATOM	869	ND2	ASN	Α	123	14.634	39.722	47.933	1.00 17.66	7
20	ATOM	870	OD1	ASN	Α	123	16.741	39.208	47.968	1.00 16.54	8
	ATOM	871	CG	ASN	Α	123	15.601	38.839	48.002	1.00 18.32	6
	ATOM	872	СВ			123	15.217	37.352	48.089	1.00 17.61	6
	ATOM	873	CA			123	14.771	37.063	49.516	1.00 16.49	6
	ATOM	874	C			123	13.519	37.846	49.924	1.00 16.16	6
25	ATOM	875	0	ASN			12.473	37.561	49.364	1.00 15.10	8
25											
	MOTA	876	N			124	13.682	38.631	51.003	1.00 17.91	7
	ATOM	877	CE			124	12.625	37.065	55.122	1.00 18.43	6
	ATOM	878	SD	MET			10.961	37.279	54.473	1.00 25.22	16
	ATOM	879	CG			124	11.393	37.747	52.785	1.00 22.98	6
30	MOTA	880	CB	MET			12.092	39.072	52.786	1.00 16.34	6
	MOTA	881	CA	MET			12.517	39.473	51.413	1.00 19.71	6
	MOTA	882	С	MET	Α	124	12.848	40.994	51.279	1.00 22.29	6
	MOTA	883	0	MET	A	124	13.425	41.612	52.209	1.00 17.93	8
	MOTA	884	N	SER	A	125	12.669	41.567	50.101	1.00 19.47	7
35	MOTA	885	OG	SER	Α	125	14.523	42.940	48.182	1.00 18.33	8
	MOTA	886	CB	SER	Α	125	13.198	43.275	48.457	1.00 15.97	6
	MOTA	887	CA	SER	A	125	12.942	43.032	49.909	1.00 18.46	6
	ATOM	888	С	SER	Α	125	11.655	43.750	50.350	1.00 20.28	6
	MOTA	889	0	SER	Α	125	10.902	44.316	49.570	1.00 19.39	8
40	MOTA	890	N			126	11.297	43.695	51.624	1.00 17.62	7
	ATOM	891		LEU			8.102	40.862	51.658	1.00 24.63	6
	ATOM	892		LEU			8.622	41.714	53.877	1.00 23.93	6
	ATOM	893	CG	LEU			8.997	41.757	52.422	1.00 25.53	6
	MOTA	894	CB	PEA			8.916				6
45	ATOM	895	CA	PEA			10.051	44.199	52.184	1.00 26.68	6
43	MOTA	896	C	LEU			10.270	44.487	53.671	1.00 20.00	6
	ATOM	897	0	LEU			11.254	44.020	54.240	1.00 20.64	8
	ATOM	898	N	GLY			9.505	45.329	54.335	1.00 22.92	7
	MOTA	899	CA	GLY			9.794	45.637	55.735	1.00 23.96	6
50	MOTA	900	С	GLY			8.602	46.346	56.347	1.00 29.15	6
	MOTA	901	0	GLY			7.718	46.926	55.745	1.00 30.52	8
	MOTA	902	N	SER	A	128	8.499	46.244	57.635	1.00 22.96	7
	MOTA	903 ·	OG	SER	A	128	5.648	45.725	59.563	1.00 44.80	8
	MOTA	904	CB	SER	A	128	6.579	45.564	58.544	1.00 31.06	6
55	MOTA	905	CA	SER	A	128	7.422	46.809	58.423	1.00 26.75	6
	MOTA	906	С	SER	A	128	8.089	47.306	59.704	1.00 29.54	6
	ATOM	907	0	SER	A	128	9.118	46.792	60.156	1.00 25.89	8
	ATOM	908	N	THR			7.438	48.299	60.299	1.00 33.31	7
	ATOM	909		THR			7.743	51.258	60.493	1.00 30.94	6
60	ATOM	910		THR			6.191	50.069	61.840	1.00 40.54	8
- •	MOTA	911	CB	THR			7.555	50.360	61.680	1.00 32.41	6
	******	711	- D	T+17/	**	107	7.333	50.500	31.000		•

	•											•		
	MOTA	912	CA	THR	A	129	8	.018	48.915	6	1.506	1.00	32.74	6
	MOTA	913	C	THR	A	129	7	.714	48.005	6	2.673	1.00	32.62	6
	MOTA	914	0	THR	A	129	8	.427	48.117	6	3.667	1.00	36.81	8
	MOTA	915	N	SER	A	130	6	.757	47.138	6	2.480	1.00	30.40	7
5	ATOM	916	OG	SER	A	130	4	.251	46.613	6	2.921	1.00	60.10	8
	MOTA	917	CB	SER	A	130	5	.130	46.585	6	1.070	1.00	57.43	6
	MOTA	918	CA	SER	A	130	6	.491	46.151		3.545	1.00	33.34	6
	ATOM	919	С	SER	A	130	6	.372	44.754	6:	2.914		41.55	6
	ATOM	920	0	SER	A	130	6	.086	44.558	6	1.706	1.00	40.64	8
10	ATOM	921	N	GLY	A	131	6	.541	43.773	6:	3.782	1.00	36.39	7
	ATOM	922	CA			131	6	.503	42.373		3.329	1.00	34.64	6
	MOTA	923	С			131		.234	41.724		3.822		35.04	6
	ATOM	924	0			131		.273	42.468		1.031		42.75	8
	ATOM	925	N			132		.179	40.422		3.893		37.30	7
15	ATOM	926	OG			132		.196	38.497		2.627		39.73	8
	MOTA	927	СВ			132	•	.876	39.643		3.376		35.53	6
	ATOM	928	CA			132		.986	39.723		1.382		30.05	6
	ATOM	929	C			132		.556	38.374		1.813		31.11	6
	ATOM	930	ō			132		.572	37.836		1.411		32.00	8
20	ATOM	931	N			133		.842	37.734		5.695		32.96	7
20	MOTA	932	OG			133		.307	36.218		7.376		54.62	8
	ATOM	933	CB			133		.700	36.342		7.576		47.70	6
	ATOM	934	CA			133		.331						
	ATOM	935	C			133			36.440		5.195		35.90	6
25	ATOM	936	0					.149	35.380		5.111		39.43	б
43						133		.847	34.366		5.010		33.00	8
	ATOM	937	N			134		.180	35.667		1.251		37.16	7
	ATOM ATOM	938	CG2					.470	34.464		.014		42.89	6
		939		THR				.694	35.406		3.113		55.08	8
20	MOTA	940	CB			134		.813	35.282		2.246		54.29	6
30	ATOM	941	CA			134		.940	34.724		3.144		39.11	6
	ATOM	942	C			134		.213	34.729		2.288		34.90	6
	MOTA	943	0			134		.693	33.638		.945		31.77	8
	MOTA	944	N			135		.600	35.994		2.058		30.88	7
	ATOM	945		LEU				.189	39.568		3.758		28.02	6
35	ATOM	946		LEU				.086	37.378		3.627		30.72	6
	ATOM	947	CG			135		.166	38.073		9.953		28.29	6
	ATOM	948	CB	LEU				.946	37.672		799		30.19	6
	ATOM	949	CA	LEU				.796	36.201		203		29.37	6
	ATOM	950	C	FEA				.077	35.635		777		27.29	6
40	ATOM	951	0	LEU				. 958	35.025		.154		28.89	8
	ATOM	952	N	GLU				.230	35.860		.081		28.97	7
	ATOM	953		GLU				.946	36.631		.630		43.17	8
	ATOM	954		GLU				. 229	36.190		.562		56.47	8
	MOTA	955	CD	GLU				.073			.125	1.00	51.60	6
45	MOTA	956	CG	GLU				.871	35.664		.729		37.60	6
	MOTA	957	CB	GLU				.518	35.957		.118		30.71	6
	MOTA	958	CA	GLU				. 494	35.399		.696		25.88	6
	MOTA	959	С	GLU	A	136		.483	33.887	63	.747	1.00	25.04	6
	MOTA	960	0	GLU			9.	. 527	33.244	63	.636	1.00	29.33	8
50	MOTA	961	N	LEU	A	137	7.	. 287	33.373	64	.028	1.00	26.02	7
	MOTA	962		TEA			4.	.017	29.845	64	.773	1.00	54.85	6
	MOTA	963	CD1	LEU	A	137	6.	.341	29.084	65	.226	1.00	54.59	6
	MOTA	964	CG	LEU	A	137	5.	.487	30.026	64	.399	1.00	53.18	6
	MOTA	965	CB	LEU	A	137	5.	.909	31.481	64	.461	1.00	42.31	6
55	ATOM	966	CA	LEU	A	137	7.	.330	31.886		.051		29.41	6
	ATOM	967	С	LEU				. 745	31.326		.696	1.00	31.98	6
	ATOM	968	0	LEU				491	30.301		.593	1.00	32.69	8
	ATOM	969	N	ALA				.170	31.984		.676		27.96	7
	MOTA	970	СВ	ALA				457	32.131		.296		25.09	6
60	MOTA	971	CA	ALA				450	31.547		.295		24.67	6
	ATOM	972	C	ALA				946	31.641		.041		26.68	6
	-						٠.							-

	ATOM	973	0	ALA	A	138	9.651	30.736	59.482	1.00 24.43	8
	MOTA	974	N	VAL	A	139	9.509	32.777	60.481	1.00 24.43	7
	MOTA	975	CG2	VAL	A	139	10.805	35.468	59.644	1.00 23.18	6
	MOTA	976	CG1	VAL	A	139	12.736	34.458	60.955	1.00 25.26	6
5	ATOM	977	CB	VAL	A	139	11.240	34.427	60.639	1.00 23.72	6
	MOTA	978	CA	VAL	A	139	10.946	32.963	60.179	1.00 24.64	6
	MOTA	979	С	VAL	A	139	11.785	31.875	60.847	1.00 22.27	6
	MOTA	980	0	VAL	A	139	12.734	31.316	60.296	1.00 24.72	8
	MOTA	981	N	ASN	A	140	11.486	31.593	62.118	1.00 27.66	7
10	MOTA	982		ASN			11.683	32.285	66.008	1.00 42.32	7
	ATOM	983		ASN			13.425	32.414	64.611	1.00 36.78	8
	ATOM	984	CG			140	12.388	31.851	64.974	1.00 40.71	6
	MOTA	985	CB			140	11.762	30.648	64.308	1.00 38.24	6
	ATOM	986	CA			140	12.215	30.570	62.870	1.00 28.09	6
15	MOTA	987	С			140	12.048	29.142	62.314	1.00 23.74	6
	MOTA	988	0			140	13.079	28.438	62.234	1.00 27.56	8
	MOTA	989	N			141	10.819	28.818	61.934	1.00 29.30	7
	MOTA	990		ARG			6.667	24.020	60.976	1.00 62.35	7
2.0	MOTA	991		ARG			7.366	25.245	59.341	1.00 62.64	7
20	MOTA	992	CZ			141	6.619	25.314	60.452	1.00 61.47	6
	MOTA	993	NE			141	6.129	26.266	61.285	1.00 59.61 1.00 48.63	7 6
	MOTA MOTA	994 995	CD			141 141	6.849	27.392	61.861	1.00 48.63	
		995 996	CG CB	ARG			8.296	26.951	62.044	1.00 33.19	6 6
25	MOTA MOTA	997	CA			141	9.203 10.629	27.214 27.489	60.872 61.338	1.00 24.61	6
23	ATOM	998	C	ARG			11.475	27.428	60.116	1.00 28.36	6
	ATOM	999	ō	ARG			12.111	26.409	59.919	1.00 20.50	8
	MOTA	1000	N			142	11.510	28.420	59.220	1.00 28.76	7
	ATOM	1001	CB	ALA			12.125	29.617	57.121	1.00 22.79	6
30	MOTA	1002	CA			142	12.326	28.336	57.992	1.00 22.45	6
	MOTA	1003	C			142	13.799	28.193	58.312	1.00 23.46	6
	MOTA	1004	0	ALA	Α	142	14.580	27.473	57.674	1.00 26.21	8
	MOTA	1005	N	ASN	A	143	14.220	28.995	59.297	1.00 27.87	7
	MOTA	1006	ND2	ASN	A	143	17.784	30.625	61.839	1.00 41.96	7
35	MOTA	1007	OD1	ASN	A	143	18.187	30.679	59.745	1.00 34.24	8
	MOTA	1008	CG	ASN	A	143	17.322	30.588	60.596	1.00 29.11	6
	MOTA	1009	CB	ASN			15.871	30.329	60.523	1.00 29.69	6
	MOTA	1010	CA	ASN			15.635	29.021	59.743	1.00 30.16	6
	MOTA	1011	C	ASN			15.953	27.666	60.335	1.00 30.12	6
40	MOTA	1012	0	ASN			17.010	27.136	59.946	1.00 31.87	8 ~
	ATOM	1013	N			144	15.008	27.125	61.112	1.00 29.34	7
	MOTA	1014		ASN			15.977	26.890	64.048	1.00 45.86	7
	ATOM	1015		ASN ASN			13.874	26.581	64.829	1.00 57.91	8
45	MOTA MOTA	1016 1017	CG CB	ASN			14.771 14.450	26.309 25.359		1.00 57.11 1.00 44.00	6 6
43	ATOM	1017	CA	ASN			15.299	25.781	61.618	1.00 44.00	6
	ATOM	1019	C	ASN			15.282	24.762	60.497	1.00 40.41	6
	MOTA	1020	Ō	ASN			15.968	23.716	60.573	1.00 42.44	8
	MOTA	1021	N	ALA			14.528	25.050	59.457	1.00 34.04	7
50	MOTA	1022	CB	ALA			13.330	24.281	57.390	1.00 26.85	6
	ATOM	1023	CA	ALA			14.483	24.121	58.327	1.00 20.42	6
	ATOM	1024	C	ALA		-	15.731	24.288	57.552	1.00 23.85	6
	ATOM	1025	ō	ALA			15.664	23.663	56.514	1.00 30.91	8
	ATOM	1026	N	GLY			16.740	25.040	57.840	1.00 26.51	7
55	MOTA	1027	CA	GLY			17.921	25.100	56.958	1.00 22.88	6
	ATOM	1028	С	GLY			17.767	26.214	55.904	1.00 27.41	6
	MOTA	1029	0	GLY			18.735	26.130	55.122	1.00 24.39	8
	MOTA	1030	N	ILE	A	147	16.707	27.049	55.889	1.00 21.34	7
	MOTA	1031	CD1	ILB	A	147	13.320	27.096	53.722	1.00 23.01	6
60	MOTA	1032	CG1	IFE			14.789	27.060	54.041	1.00 22.99	6
	MOTA	1033	CB	ILE	Α	147	15.321	28.439	54.332	1.00 26.62	6

	MOTA	1034	CG2	ILE	A	147	15.232	29.384	53.135	1.00 23.14	6
	MOTA	1035	CA	ILE	Α	147	16.730	28.111	54.845	1.00 26.00	6
	MOTA	1036	С	ILE	A	147	17.500	29.398	55.235	1.00 18.99	6
	ATOM	1037	0			147	17.385	29.727	56.411	1.00 20.20	8
5	MOTA	1038	N			148	18.230	30.007	54.320	1.00 20.50	7
Ŭ	ATOM	1039		LEU			21.996	32.963	53.094	1.00 21.59	6
	ATOM	1040		LEU			21.187	32.871	55.483	1.00 21.52	6
	ATOM	1041	CG			148	20.849	32.729	54.004	1.00 21.01	6
	MOTA										
10		1042	CB			148	20.076	31.416	53.699	1.00 21.28	6
10	MOTA	1043	CA			148	18.874	31.288	54.622	1.00 18.16	6
	MOTA	1044	C			148	17.890	32.403	54.204	1.00 21.69	6
	MOTA	1045	0			148	17.385	32.443	53.053	1.00 18.87	8
	MOTA	1046	N			149	17.504	33.244	55.115	1.00 19.79	7
	MOTA	1047		LEU			13.039	33.698	56.361	1.00 21.21	6
15	MOTA	1048	CD1	LEU	Α	149	14.937	32.303	57.044	1.00 29.79	6
	MOTA	1049	CG	LEU	Α	149	14.430	33.273	55.986	1.00 23.63	6
	MOTA	1050	CB	LEU	Α	149	15.412	34.443	55.914	1.00 19.13	6
	MOTA	1051	CA	LEU	Α	149	16.580	34.382	54.989	1.00 18.47	6
	MOTA	1052	С	LEU	A	149	17.403	35.669	54.993	1.00 22.25	6
20	ATOM	1053	0	LEU	Α	149	18.294	35.913	55.802	1.00 19.26	8
	ATOM	1054	N	VAL	Α	150	17.140	36.501	53.974	1.00 21.30	7
	ATOM	1055	CG2	VAL	Α	150	19.747	36.476	52.518	1.00 19.59	6
	ATOM	1056		VAL			19.570	38.785	52.177	1.00 22.93	6
	MOTA	1057	CB			150	18.710	37.578	52.402	1.00 20.01	6
25	ATOM	1058	CA			150	17.846	37.764	53.660	1.00 20.55	6
~3	ATOM	1059	C			150	16.751	38.844	53.547	1.00 18.11	6
	ATOM	1060	o			150	15.817	38.657	52.756	1.00 18.11	8
						151					7
	MOTA	1061	N				16.896	39.886	54.338	1.00 16.89	
	MOTA	1062	CA			151	15.849	40.980	54.289	1.00 20.73	6
30	ATOM	1063	C			151	16.402	42.404	54.347	1.00 16.63	6
	ATOM	1064	0			151	17.563	42.678	54.734	1.00 16.14	8
	MOTA	1065	N			152	15.614	43.322	53.807	1.00 17.20	7
	MOTA	1066	CB			152	14.900	45.297	52.755	1.00 14.94	6
	MOTA	1067	CA			152	15.998	44.737	53.682	1.00 14.71	6
35	ATOM	1068	С	ALA	A	152	15.895	45.381	55.071	1.00 13.99	6
	ATOM	1069	0	ALA	Α	152	14.892	45.173	55.788	1.00 17.68	8
	MOTA	1070	N	ΑЬΑ	A	153	16.952	46.133	55.387	1.00 16.31	7
	ATOM	1071	CB	ALA	Α	153	18.293	47.552	56.901	1.00 17.15	6
	MOTA	1072	CA	ALA	A	153	16.956	46.875	56.681	1.00 16.19	6
40	MOTA	1073	C	ALA	Α	153	15.860	47.945	56.800	1.00 22.55	6
	MOTA	1074	0	ALA	Α	153	15.313	48.113	57.913	1.00 22.09	8
	MOTA	1075	N	GLY	Α	154	15.484	48.543	55.690	1.00 16.09	7
	MOTA	1076	CA	GLY	A	154	14.427	49.555	55.683	1.00 18.21	6
	ATOM	1077	С	GLY	Α	154	15.049	50.809	55.066	1.00 14.46	6
45	ATOM	1078	0	GLY			16.263	50.930	54.899	1.00 16.40	8
	ATOM	1079	N	ASN			14.113	51.674	54.663	1.00 20.62	7
	MOTA	1080		ASN			13.511	51.960	50.428	1.00 16.52	7
	MOTA	1081		ASN			15.360	51.538	51.718	1.00 19.81	8
	MOTA	1082	CG	ASN			14.233	52.033	51.537	1.00 17.87	6
50	ATOM	1083	CB	ASN			13.765	52.902	52.677	1.00 18.24	6
50	ATOM	1084	CA	ASN					53.989	1.00 17.90	6
							14.551	52.936			6
	MOTA	1085	C	ASN			14.159	54.123	54.891	1.00 24.83	
	MOTA	1086	0	ASN			13.733	55.098	54.292	1.00 22.47	8
	MOTA	1087	N	THR			14.154	53.978	56.193	1.00 20.39	7
55	ATOM	1088		THR			12.287	53.113	58.276	1.00 23.08	6
	ATOM	1089		THR			14.307	54.076	59.118	1.00 23.01	8
	ATOM	1090	CB	THR			13.124	54.367	58.402	1.00 23.69	6
	ATOM	1091	CA	THR			13.714	54.997	57.116	1.00 24.79	6
	MOTA	1092	С	THR			14.848	56.011	57.320	1.00 29.93	6
60	MOTA	1093	0	THR			14.402	57.042	57.813	1.00 27.99	8
	MOTA	1094	N	GLY	A	157	16.086	55.856	57.005	1.00 20.16	7

	MOTA	1095	CA	GLY	Α	157	17.154	56.785	57.245	1.00	25.10	6
	MOTA	1096	С	GLY	A	157	17.486	57.000	58.723	1.00	29.14	6
	MOTA	1097	0	GLY	A	157	18.377	57.810	58.961	1.00	33.04	8
	MOTA	1098	N	ARG	A	160	16.904	56.334	59.657	1.00	25.62	7
5	ATOM	1099	NH2	ARG	A	160	10.330	58.682	62.645	1.00	60.34	7
	MOTA	1100	NH1	ARG	A	160	12.170	59.527	63.732	1.00	59.53	7
	ATOM	1101	CZ	ARG	A	160	11.711	58.643	62.754	1.00	59.28	6
	MOTA	1102	NE	ARG	A	160	12.583	57.864	61.970	1.00	57.95	7
	MOTA	1103	CD	ARG	Α	160	13.994	58.266	62.165	1.00	51.11	6
10	MOTA	1104	CG	ARG	Α	160	15.060	57.898	61.220	1.00	42.14	6
	ATOM	1105	CB	ARG	A	160	15.570	56.502	61.634	1.00	31.02	6
	MOTA	1106	CA	ARG	Α	160	17.041	56.392	61.112	1.00	28.11	6
	MOTA	1107	С			160	17.381	55.048	61.710	1.00	30.03	6
	ATOM	1108	Ō			160	17.398	54.049	60.983		27.84	8
15	ATOM	1109	N			161	17.535	55.017	63.000		26.77	7
	ATOM	1110		GLN			19.350	52.013	67.864		60.74	7
	ATOM	1111		GLN			20.262	53.735	66.798		59.57	8
	MOTA	1112	CD			161	19.355	52.904	66.883		58.69	6
	ATOM	1113	CG			161	18.232	52.759	65.891		34.77	6
20	MOTA	1114	CB			161	18.519	53.945	64.970		30.48	6
20	ATOM	1115	CA			161	17.801	53.757	63.664		23.33	6
	ATOM	1116	C			161	16.520	52.971	63.833		29.67	6
	ATOM	1117	0			161	15.474	53.589	63.955		29.09	8
	ATOM	1118	N			162	16.517	51.663	63.859		24.53	7
25	ATOM		CA			162	15.351	50.793	64.031		20.53	6
25		1119	CA			162	15.331	49.941	62.796		26.19	6
	MOTA	1120				162					22.33	8
	MOTA	1121	0				14.288	50.249	61.907		25.37	7
	MOTA	1122	N			165	15.844	48.832	62.774			
	MOTA	1123		VAL			18.242	47.376	61.823		20.11	6
30	ATOM	1124		VAL			16.767	45.785	60.528		21.35	6
	MOTA	1125	CB			165	16.841	46.808	61.703		22.43	6
	MOTA	1126	CA			165	15.776	47.891	61.618		20.88	6
	ATOM	1127	C			165	14.383	47.384	61.360		24.44	6
	MOTA	1128	0			165	13.793	46.948	62.359		22.51	8
35	MOTA	1129	N			166	13.847	47.458	60.151		20.59	7
	MOTA	1130		ASN			11.804	49.622	59.063		37.01	7
	MOTA	1131		ASN			11.291	48.862	57.045		40.47	8
	MOTA	1132	CG			166	11.691	48.612	58.213		36.75	6
	MOTA	1133	CB			166	12.084	47.201	58.564		18.42	6
40	MOTA	1134	CA			166	12.480	46.925	60.012		20.41	6
	MOTA	1135	С			166	12.430	45.397	60.220		27.19	6
	MOTA	1136	0			166	13.394	44.641	60.213		20.29	8
	MOTA	1137	N	TYR	Α	167	11.219	44.939	60.323		23.03	7
	MOTA	1138	OH	TYR			10.922	44.540	66.485		45.50	8
45	MOTA	1139		TYR			9.715	44.838	63.205		34.30	6
	MOTA	1140		TYR			10.084	45.141	64.501		27.99	6
	MOTA	1141	CZ	TYR	Α	167	10.625	44.092	65.233		48.07	6
	MOTA	1142		TYR			10.871	42.802	64.754	1.00	30.09	6
	MOTA	1143	CD1	TYR	Α	167	10.582	42.588	63.401	1.00	27.59	6
50	MOTA	1144	CG	TYR	A	167	9.959	43.576	62.657	1.00	30.84	6
	MOTA	1145	CB	TYR	A	167	9.537	43.461	61.197	1.00	25.40	6
	MOTA	1146	CA	TYR	A	167	10.830	43.562	60.383	1.00	22.25	6
	MOTA	1147	С	TYR	A	167	10.479	43.048	58.968	1.00	26.82	6
	MOTA	1148	0	TYR	A	167	9.785	43.740	58.230	1.00	28.17	8
55	ATOM	1149	N	PRO	A	168	10.803	41.830	58.559	1.00	24.12	7
	MOTA	1150	CG	PRO	A	168	11.069	39.952	57.192	1.00	21.03	6
	ATOM	1151	CD	PRO	A	168	10.376	41.337	57.220	1.00	18.66	6
	MOTA	1152	CB			168	11.014	39.509	58.639	1.00	20.70	6
	MOTA	1153	CA			168	11.468	40.788	59.357		21.08	6
60	ATOM	1154	C			168	12.960	40.862	59.456		22.02	6
	ATOM	1155	ō			168	13.492	39.981	60.180		21.94	8
	- *-		-						_			

WO 01/83559

	MOTA	1156	N	ALA :	A	169	13.657	41.831	58.841	1.00	15.90	7
	MOTA	1157	CB	ALA .	A	169	15.736	42.908	58.091	1.00	17.37	6
	MOTA	1158	CA	ALA .	A	169	15.106	41.851	58.949	1.00	15.97	6
	MOTA	1159	С	ALA .	A	169	15.607	41.947	60.374	1.00	21.06	6
5	ATOM	1160	0	ALA .	A	169	16.752	41.565	60.663	1.00	21.07	8
	ATOM	1161	N	ARG .	Α	170	14.833	42.498	61.289	1.00	21.46	7
	MOTA	1162	NH2	ARG :	A	170	13.387	47.123	67.747	1.00	60.78	7
	ATOM	1163	NH1	ARG .	A	170	13.043	47.610	65.444	1.00	49.63	7
	MOTA	1164	CZ	ARG 2	A	170	13.604	46.896	66.440	1.00	59.33	6
10	ATOM	1165	NE	ARG :	Α	170	14.377	45.776	66.226	1.00	56.52	7
	MOTA	1166	CD	ARG .	A	170	14.143	45.240	64.921	1.00	35.28	6
	MOTA	1167	CG	ARG .	A	170	15.134	44.173	64.633	1.00	26.86	6
	MOTA	1168	CB	ARG :	A	170	14.382	43.573	63.430	1.00	22.20	6
	MOTA	1169	CA	ARG .	A	170	15.339	42.683	62.653		22.58	6
15	MOTA	1170	C	ARG .	A	170	15.423	41.335	63.390	1.00	26.44	6
	MOTA	1171	0	ARG .			16.298	41.175	64.268		24.76	8
	ATOM	1172	N	TYR .	A	171	14.601	40.421	63.006		21.88	7
	MOTA	1173	OH	TYR .			8.238	39.587	63.993		30.27	8
	MOTA	1174		TYR .			11.260	38.551	62.366		23.79	6
20	MOTA	1175		TYR .			9.930	38.895	62.534		26.08	6
	ATOM	1176	CZ	TYR .			9.544	39.258	63.827		22.66	6
	ATOM	1177		TYR .			10.437	39.256	64.849		22.42	6
	ATOM	1178		TYR .			11.754	38.908	64.657		25.00	6
	MOTA	1179	CG	TYR :			12.190	38.520	63.397		20.82	6
25	MOTA	1180	CB	TYR .			13.614	38.157	63.120		20.76	6
	MOTA MOTA	1181 1182	CA C	TYR .			14.662 16.019	39.115 38.496	63.666 63.429		21.12 23.66	6 6
	MOTA	1183	0	TYR			16.595	38.612	62.377		19.53	8
	ATOM	1184	N	SER .			16.590	37.805	64.409		21.25	7
30	ATOM	1185	OG	SER .			18.439	36.736	66.290		40.47	8
54	ATOM	1186	СВ	SER .			17.643	36.002	65.430		30.04	6
	ATOM	1187	CA	SER			17.855	37.114	64.343		18.01	6
	ATOM	1188	С	SER			17.972	36.098	63.241		18.07	6
	ATOM	1189	0	SER .	A	172	19.076	35.857	62.794	1.00	24.44	8
35	MOTA	1190	N	GLY .	A	173	16.849	35.497	62.953	1.00	20.49	7
	MOTA	1191	CA	GLY .	Α	173	16.895	34.520	61.849	1.00	25.76	6
	ATOM	1192	С	GLY .	A	173	17.065	35.136	60.466	1.00	28.21	6
	MOTA	1193	0	GLY :	A	173	17.142	34.299	59.561	1.00	24.65	8
	MOTA	1194	N	VAL .	A	174	17.037	36.454	60.298		22.37	7
40	ATOM	1195		VAL .			14.544	37.187	59.094		21.22	6
	ATOM	1196		VAL			15.868	38.353	57.251		16.19	6
	MOTA	1197	CB	VAL			15.853	37.860	58.711		19.69	6
	ATOM	1198	CA	VAL			17.081	37.002	58.950		18.39	6
	MOTA		C	VAL .				37.804			20.62	6
45	ATOM	1200	0	VAL .			18.537	38.493	59.767		20.79	8
	ATOM	1201	N	MET .			19.071	37.843	57.763		19.50	7
	ATOM	1202 1203	CE	MET .			24.752	37.650	55.722 55.344		18.78 28.69	6
	ATOM ATOM	1203	SD CG	MET .			23.178 22.276	36.899 37.473	56.764		30.99	16 6
50	ATOM	1205	CB	MET .			21.073	38.209	56.458		18.24	6
	ATOM	1206	CA.	MET .			20.269	38.719	57.673		19.14	6
	ATOM	1207	C	MET			19.808	40.085	57.181		19.60	6
	MOTA	1208	ō	MET .			19.243	40.124	56.075		19.68	8
	ATOM	1209	N	ALA .			19.998	41.141	57.911		20.50	7
. 55	ATOM	1210	СВ	ALA .			19.374	43.342	58.912		17.16	6
	MOTA	1211	CA	ALA .			19.559	42.523	57.638	1.00	18.51	6
	ATOM	1212	С	ALA .	A	176	20.608	43.146	56.758	1.00	15.58	6
	MOTA	1213	0	ALA .	Ą	176	21.802	43.226	57.028	1.00	18.20	8
	ATOM	1214	N	VAL .			20.119	43.546	55.592		17.19	7
60	MOTA	1215		VAL .			20.837	41.990	53.335		16.29	6
	ATOM	1216	CG1	VAL .	A	177	21.783	44.025	52.249	1.00	12.13	6

	MOTA	1217	CB	VAL	Α	177	20.739	43.505	53.233	1.00		6
	MOTA	1218	CA	VAL	Α	177	21.011	44.188	54.618	1.00	18.22	6
	MOTA	1219	С	VAL	A	177	20.828	45.734	54.489	1.00	19.81	6
	MOTA	1220	0	VAL	A	177	19.728	46.259	54.253	1.00	16.83	8
5	MOTA	1221	N	ALA	A	178	21.957	46.444	54.565	1.00	17.27	7
	MOTA	1222	CB	ALA	Α	178	23.054	48.386	55.452	1.00	14.79	6
	MOTA	1223	CA	ALA	A	178	22.035	47.894	54.418	1.00	18.82	6
	ATOM	1224	С	ALA	Α	178	22.445	48.215	52.970	1.00	17.05	6
	MOTA	1225	0	ALA	Α	178	23.095	47.447	52.260	1.00	16.34	8
10	MOTA	1226	N	ALA	Α	179	22.014	49.381	52.483	1.00	18.05	7
	MOTA	1227	CB	ALA	Α	179	21.168	50.710	50.548	1.00	14.34	6
	MOTA	1228	CA	ALA	Α	179	22.317	49.940	51.148	1.00	17.14	6
	ATOM	1229	С	ALA	Α	179	23.496	50.901	51.162	1.00	16.16	6
	MOTA	1230	0	ALA	Α	179	23.525	51.777	52.044	1.00	18.65	8
15	MOTA	1231	N	VAL	Α	180	24.451	50.812	50.317	1.00	14.26	7
	ATOM	1232	CG2	VAL			27.438	49.981	49.469	1.00	17.76	6
	ATOM	1233		VAL			26.913	50.487	51.890	1.00	16.51	6
	ATOM	1234	CB	VAL			26.964	50.989	50.462	1.00	17.24	6
	ATOM	1235	CA	VAL			25.609	51.616	50.075	1.00	17.31	6
20		1236	С	VAL			25.586	52.187	48.644	1.00	22.88	6
	MOTA	1237	Ο.	VAL	Α	180	24.947	51.671	47.675	1.00	20.50	8
	MOTA	1238	N	ASP			26.291	53.321	48.446	1.00	25.29	7
	ATOM	1239	OD2	ASP			27.098	57.308	48.607	1.00	32.67	8
	ATOM	1240		ASP			28.547	55.806	48.232	1.00	27.26	8
25		1241	CG	ASP			27.399	56.184	48.028	1.00		6
	ATOM	1242	CB	ASP			26.254	55.570	47.285	1.00		6
	ATOM	1243	CA	ASP			26.408	54.054	47.131	1.00	22.55	6
	MOTA	1244	C	ASP			27.687	53.624	46.461	1.00		6
	ATOM		٠0	ASP			28.393	52.695	46.923	1.00		8
30		1246	N	GLN			28.038	54.220	45.348	1.00		7
	MOTA	1247		GLN			28.625	56.347	43.392	1.00	59.18	7
	MOTA	1248		GLN			26.424	55.625	43.700	1.00		8
	ATOM	1249	CD			182	27.579	55.498	43.211		57.87	6
	ATOM	1250	CG			182	28.188	54.342	42.400	1.00		6
35	MOTA	1251	CB	GLN			29.458	54.178	43.178	1.00	29.07	6
	MOTA	1252	CA			182	29.220	53.827	44.637	1.00	20.63	6
	ATOM	1253	C	GLN			30.498	54.185	45.347	1.00	22.86	6
	MOTA	1254	ō	GLN			31.519	53.726	44.882	1.00	27.70	8
	MOTA	1255	N	ASN			30.450	54.957	46.362	1.00	27.14	7
40	ATOM	1256		ASN			30.750	58.651	46.572	1.00	47.15	7
	ATOM	1257		ASN			32.423	57.377	45.640	1.00	47.21	8
	ATOM	1258	CG			183	31.593	57.633	46.532	1.00	47.14	6
	MOTA	1259	CB	ASN			31.436	56.677	47.691	1.00	32.89	6
	MOTA		CA	ASN			31.656	55.252	47.134	1.00	31.50	6
45	MOTA	1261	С	ASN			31.698	54.274	48.330	1.00		6
	ATOM	1262	0	ASN			32.459	54.594	49.245	1.00	32.01	8
	ATOM	1263	N	GLY			30.838	53.306	48.492	1.00	23.02	7
	MOTA	1264	CA	GLY			30.887	52.499	49.688	1.00	23.48	6
	ATOM	1265	С	GLY			30.322	53.209	50.879	1.00	26.52	6
50	ATOM	1266	0	GLY			30.461	52.723	52.013	1.00	30.46	8
	MOTA	1267	N	GLN			29.568	54.273	50.751	1.00	27.03	7
	ATOM	1268		GLN			30.258	58.823	51.467	1.00	60.06	7
	MOTA	1269		GLN			31.633	57.570	53.078	1.00	61.27	8
	MOTA	1270	CD	GLN			30.896	57.806	52.089	1.00		6
55	ATOM	1271	CG	GLN			30.465	56.526	51.381	1.00		6
	ATOM	1272	СВ			185	29.023	56.422	51.884	1.00		6
	ATOM	1273	CA			185	29.012	54.889	51.969	1.00		6
	MOTA	1274	C	GLN			27.518	54.587	52.026	1.00		6
	ATOM	1275	ō			185	26.870	54.488	51.012	1.00		8
60	ATOM	1276	N			186	27.110	54.610	53.277	1.00		7
	MOTA	1277		ARG			21.131.	56.372	57.060	1.00		7
					••							

	MOTA	1278	NH1	ARG	A	186	22.904	57.626	57.258	1.00	35.29	7
	MOTA	1279	CZ	ARG	Α	186	22.478	56.400	57.225	1.00	38.65	6
	MOTA	1280	NE	ARG	A	186	23.030	55.217	57.167	1.00	30.56	7
	MOTA	1281	CD	ARG	A	186	24.081	54.434	56.803	1.00	26.76	6
5	MOTA	1282	CG	ARG .	A	186	24.037	54.280	55.356	1.00	19.72	6
	MOTA	1283	CB	ARG	A	186	25.484	54.482	55.024	1.00	17.77	6
	ATOM .	1284	CA	ARG	Α	186	25.719	54.343	53.529	1.00	19.83	6
	MOTA	1285	С	ARG	Α	186	24.849	55.249	52.697	1.00	29.56	6
	MOTA	1286	0	ARG	Α	186	25.067	56.444	52.788	1.00	26.52	8
10	MOTA	1287	N	ALA	Α	187	23.822	54.843	52.015	1.00	19.87	7
	MOTA	1288	CB	ALA	A	187	22.098	54.655	50.429	1.00	22.61	6
	MOTA	1289	CA	ALA	Α	187	22.847	55.634	51.325	1.00	21.48	6
	ATOM	1290	С	ALA	Α	187	22.107	56.312	52.498	1.00	23.68	6
	MOTA	1291	0	ALA	Α	187	21.762	55.850	53.579	1.00	20.22	8
15	MOTA	1292	N	SER	A	188	21.706	57.586	52.332	1.00	22.67	7
	MOTA	1293	OG	SER			19.942	59.678	51.654	1.00	31.32	8
	ATOM	1294	CB	SER			20.789	59.773	52.799	1.00	27.54	6
	MOTA	1295	CA	SER			21.069	58.367	53.386	1.00	26.75	6
	ATOM	1296	C	SER			19.792	57.706	53.819	1.00	22.34	6
20	ATOM	1297	0	SER	Α	188	19.413	58.002	54.966	1.00	22.84	8
	ATOM	1298	N	PHE			19.037	56.941	53.001		22.24	7
	ATOM	1299	CD2	PHE			17.852	56.033	49.969	1.00	17.59	6
	MOTA	1300		PHE			18.514	55.372	48.951		24.96	6
	MOTA	1301	CZ	PHE			18.791	54.030	49.053		21.12	6
25	ATOM	1302		PHE			18.335	53.422	50.233		19.91	6
	ATOM	1303		PHE			17.679	54.049	51.248		19.31	6
	ATOM	1304	CG	PHE			17.414	55.447	51.104	1.00	24.18	6
	ATOM	1305	CB	PHE			16.754	56.211	52.243		17.91	6
	ATOM	1306	CA	PHE			17.738	56.340	53.411		19.41	6
30	MOTA	1307	C	PHE			17.900	54.995	54.158		13.56	6
	ATOM	1308	0	PHE			16.915	54.531	54.699		19.77	8
	ATOM	1309	N	SER			19.127	54.513	54.121		17.30	7
	MOTA	1310	OG	SER			20.958	51.491	54.627		18.49	8
	MOTA	1311	СВ	SER			20.614	52.728	54.152		19.55	6
35	ATOM	1312	CA	SER			19.310	53.198	54.732		19.59	6
	ATOM	1313	C	SER			19.165	53.145	56.233		19.58	6
	ATOM	1314	ō	SER			19.993	53.714	56.959		22.91	8
	ATOM	1315	N	THR			18.230	52.366	56.775		20.03	7
	MOTA	1316		THR			16.453	50.951	59.871		19.20	6
40	ATOM	1317		THR			15.685	51.953	57.813		23.24	8
	MOTA	1318	CB	THR			16.775	51.284	58.421		18.08	6
	MOTA	1319	CA	THR			17.970	52.140	58.186		19.69	6
	MOTA	1320	C	THR			19.214	51.465	58.784	1.00	26.64	6
	ATOM	1321	0	THR			19.971	50.764	58.083	1.00	20.74	8
45	ATOM	1322	N	TYR			19.509	51.785	60.037		24.10	7
	ATOM	1323	ОН	TYR			20.579	57.242	62.652		42.72	8
	ATOM	1324		TYR			21.008	54.515	60.307	1.00	27.03	6
	MOTA	1325		TYR			20.670	55.799	60.760		28.72	6
	MOTA	1326	CZ	TYR			20.864	56.031	62.103		37.26	6
50	MOTA	1327		TYR			21.348	55.083	63.015		36.10	6
	ATOM	1328		TYR			21.652	53.820	62.541	1.00	25.25	6
	MOTA	1329	CG	TYR			21.516	53.550	61.169		22.50	6
	MOTA	1330	CB	TYR			21.910	52.154	60.684	1.00	25.18	6
	ATOM	1331	CA	TYR			20.708	51.213	60.683		17.72	6
55	ATOM	1332	C	TYR			20.258	50.806	62.081		17.55	6
	MOTA	1333	ō	TYR			19.128	50.985	62.559		19.29	8
	MOTA	1334	N	GLY			21.198	50.136	62.735		19.36	7
	MOTA	1335	CA	GLY			20.866	49.639	64.090		21.59	6
	ATOM	1336	C.	GLY			21.817	48.449	64.262		23.46	6
60	ATOM	1337	ō	GLY			22.550	48.074	63.361		19.67	8
	ATOM	1338	N	PRO			21.782	47.949	65.484		25.90	7
			-1	- 110	-•	•						

	MOTA	1339	CG	PRO	A	194	20.970	47.337	67.684	1.00 27.38	6
	ATOM	1340	CD	PRO	A	194	20.887	48.403	66.615	1.00 27.18	6
	ATOM	1341	CB	PRO	A	194	22.239	46.658	67.360	1.00 22.45	6
	ATOM	1342	CA	PRO	A	194	22.600	46.837	65.880	1.00 28.03	6
5	MOTA	1343	С	PRO	A	194	22.412	45.568	65.036	1.00 21.43	6
	MOTA	1344	0	PRO	A	194	23.318	44.731	64.998	1.00 22.19	8
	MOTA	1345	N	GLU	A	195	21.274	45.405	64.424	1.00 20.23	7
	MOTA	1346	OE2	GLU	A	195	18.569	46.243	65.075	1.00 24.87	8
	MOTA	1347	OE1	GLU	A	195	17.965	44.957	66.720	1.00 35.26	8
10	ATOM	1348	CD	GLU	A	195	18.409	45.076	65.595	1.00 28.08	6
	MOTA	1349	CG	GLU	A	195	18.768	43.825	64.864	1.00 21.18	6
	MOTA	1350	CB	GLU	A	195	19.456	43.945	63.541	1.00 16.96	6
	MOTA	1351	CA	GLU	A	195	20.940	44.207	63.686	1.00 20.96	6
	ATOM	1352	C	GLU	A	195	21.528	44.212	62.285	1.00 30.31	6
15	MOTA	1353	0	GLU	Α	195	21.450	43.118	61.697	1.00 23.68	8
	ATOM	1354	N	ILE	A	196	22.053	45.362	61.843	1.00 19.60	7
	ATOM	1355	CD1	ILE	A	196	20.930	47.604	59.167	1.00 17.78	6
	MOTA	1356	CG1	ILE	Α	196	22.141	47.811	60.018	1.00 16.83	6
	MOTA	1357	CB	ILE	Α	196	23.248	46.768	60.069	1.00 20.89	6
20	MOTA	1358	CG2	ILE	Α	196	23.876	46.679	58.658	1.00 16.59	6
	ATOM	1359	CA	ILE	A	196	22.643	45.435	60.528	1.00 20.36	6
	ATOM	1360	С	ILE	A	196	23.722	44.323	60.503	1.00 23.09	6
	MOTA	1361	0	ILE	A	196	24.633	44.261	61.336	1.00 20.15	8
	MOTA	1362	N	GLU	A	197	23.649	43.519	59.454	1.00 18.90	7
25	ATOM	1363	OE2	GLU	A	197	22.575	38.762	60.250	1.00 21.64	8
	ATOM	1364	OE1	GLU	A	197	24.285	37.564	59.610	1.00 21.92	8
	MOTA	1365	CD	GLU	A	197	23.784	38.629	59.811	1.00 20.50	6
	MOTA	1366	CG	GLU	A	197	24.621	39.884	59.573	1.00 24.14	6
	ATOM	1367	CB	GLU	A	197	23.810	41.138	59.266	1.00 19.21	6
30	MOTA	1368	CA	GLU	A	197	24.642	42.460	59.266	1.00 22.15	6
	MOTA	1369	С	GLU	A	197	25.599	42.545	58.109	1.00 18.74	6
	MOTA	1370	0 .	GLU	A	197	26.761	42.130	58.148	1.00 17.44	8
	MOTA	1371	N	ILE	A	198	25.090	43.096	56.996	1.00 17.50	7
	MOTA	1372	CD1	ILE	A	198	28.230	41.260	54.456	1.00 17.58	6
35	ATOM	1373	CG1	ILE			26.759	41.350	54.022	1.00 15.01	6
	MOTA	1374	CB			198	25.746	41.660	55.141	1.00 17.39	6
	MOTA	1375	CG2	ILE			24.381	41.337	54.553	1.00 14.58	6
	MOTA	1376	CA			198	25.916	43.091	55.794	1.00 19.95	6
	MOTA	1377	С			198	25.455	44.307	54.934	1.00 16.93	6
40	ATOM	1378	0			198	24.294	44.655	55.167	1.00 18.25	8
	MOTA	1379	N			199	26.288	44.736	54.001	1.00 16.29	7
	MOTA	1380	OG			199	26.677	47.445	54.695	1.00 21.30	8
	MOTA	1381	CB			199	26.803	47.058	53.330	1.00 20.88	6
	MOTA	1382	CA			199	25.866	45.811	53.103	1.00 22.96	6
45	MOTA	1383	С			199	26.017	45.418	51.664	1.00 18.35	6
	MOTA	1384	0	SER			26.885	44.606	51.311	1.00 17.27	8
	ATOM	1385	N			200	25.292	46.082	50.773	1.00 17.99	7
	MOTA	1386	CB			200	24.507	44.703	48.899	1.00 15.76	6
	MOTA	1387	CA	ALA			25.488	45.800	49.315	1.00 14.75	6
50	MOTA	1388	C	ALA			25.057	47.101	48.587	1.00 18.96	6
	ATOM	1389	0	ALA			24.393	47.954	49.211	1.00 17.64	8
	ATOM	1390	N	PRO			25.286	47.223	47.306	1.00 20.51	7
	MOTA	1391	CG	PRO			26.661	47.136	45.380	1.00 18.80	6 6
	MOTA	1392	CD	PRO			26.109	46.242	46.503	1.00 16.13	
55		1393	CB	PRO			25.425	47.930	45.033	1.00 17.17	6
	ATOM	1394	CA	PRO			24.903	48.309	46.424	1.00 17.87	6 6
	MOTA	1395	C	PRO			23.380	48.465	46.492	1.00 19.20 1.00 18.47	8
	MOTA	1396	0	PRO			22.635	47.530	46.248	1.00 18.47	7
د م	ATOM	1397	N C3	GLY			22.926	49.697	46.814		6
60	ATOM	1398	CA	GLY			21.523	49.979	46.902	1.00 17.51 1.00 14.82	6
	MOTA	1399	С	GLY	A	202	21.097	51.274	46.221	1.00 14.02	3

	ATOM	1400	0	GLY	A	202	19.	959	51.700	46	.457	1.00	18.85	8
	MOTA	1401	N	VAL	A	203	21.	915	51.907	45	.439	1.00	16.17	7
	ATOM	1402	CG2	VAL	A	203	22.	372	54.486	47	.007	1.00	17.72	6
	MOTA	1403	CG1	VAL	A	203	22.	264	55.632	44	.833	1.00	25.37	6
5	MOTA	1404	CB	VAL	A	203	22.	496	54.306	45	.506	1.00	22.60	6
	MOTA	1405	CA	VAL	A	203	21.	601	53.222	44	.828	1.00	17.78	6
	MOTA	1406	С	VAL	A	203	21.	846	53.134	43	.307	1.00	16.42	6
	ATOM	1407	0	VAL	Α	203	22.	908	52.700	42	.814	1.00	17.23	8
	MOTA	1408	N	ASN	A	204	20.	759	53.554	42	.619	1.00	16.98	7
10	MOTA	1409	ND2	ASN	Α	204	22.	049	56.884	41	.402	1.00	24.32	7
	MOTA	1410	OD1	ASN	Α	204	19.	987	56.330	40	.912	1.00	24.35	8
	MOTA	1411	CG	ASN	A	204	21.	182	56.036	40	.900	1.00	23.87	6
	ATOM	1412	CB	ASN	A	204	21.	683	54.651	40	.519	1.00	18.76	6
	ATOM	1413	CA	ASN	A	204	20.	810	53.543	41	.142	1.00	20.24	6
15	ATOM	1414	C	ASN	A	204	21.	115	52.155	40	.598	1.00	19.44	6
	ATOM	1415	0	ASN	A	204	22.	059	52.014	39	.793	1.00	19.05	8
	ATOM	1416	N	VAL	Α	205	20.	304	51.197	41	.050	1.00	16.97	7
	ATOM	1417	CG2	VAL	A	205	21.	243	49.080	42	.914	1.00	19.48	6
	MOTA	1418	CG1	VAL	A	205	20.	212	47.386	41	.427	1.00	16.95	6
20	MOTA	1419	CB	VAL	A	205	20.	268	48.874	41	.764	1.00	19.38	6
	MOTA	1420	CA	VAL	A	205	20.	599	49.801	40	.597	1.00	16.59	6
	MOTA	1421	C	VAL	A	205	19.	701	49.489	39	.385	1.00	15.34	6
	MOTA	1422	0	VAL	A	205	18.	461	49.433	39	.519	1.00	16.76	8
	MOTA	1423	N	ASN	A	206	20.	246	49.285	38	.208	1.00	15.47	7
25	MOTA	1424	ND2	ASN	A	206	18.	309	49.679	34	.515	1.00	17.91	7
	MOTA	1425	OD1	ASN	A	206	20.	019	48.800	33	.506	1.00	25.78	8
	MOTA	1426	CG	ASN	A	206	19.	539	49.313	34	.549	1.00	20.79	6
	MOTA	1427	CB	ASN	A	206	20.	396	49.386	35	.803	1.00	18.19	6
	MOTA	1428	CA	ASN	A	206	19.	494	48.977	37	.009	1.00	15.81	6
30	MOTA	1429	С	ASN	A	206	19.	179	47.474	37	.041	1.00	18.98	6
	MOTA	1430	0	ASN	A	206	20.	072	46.681	37	.314	1.00	15.12	8
	MOTA	1431	N	SER	A	207	17.	979	47.102	36	.724	1.00	16.57	7
	MOTA	1432	OG	SER	A	207	17.	057	43.866	37	.998	1.00	15.36	8
	MOTA	1433	CB	SER	A	207	17.	276	45.255	38	.130	1.00	20.35	6
35	MOTA	1434	CA	SER	A	207	17.	570	45.714	36	.707	1.00	19.00	6
	MOTA	1435	C	SER	A	207	16.	343	45.545		.805	1.00	22.26	6
	MOTA	1436	0			207	15.	858	46.526		.217		19.33	8
	MOTA	1437	N	THR			15.		44.328		.624		16.17	7
	MOTA	1438	CG2	THR			15.		41.808		.875		16.30	6
40	MOTA	1439		THR			14.		41.939		.073		18.37	8
	MOTA	1440	CB			208	14.		42.429		.738		20.01	6
	MOTA	1441	CA	THR			14.		43.997		.777		18.19	6
•	ATOM	1442	С	THR			13.		44.637		.310		16.06	6
	MOTA	1443	0	THR			13.		44.830		.515		18.68	8
45	MOTA	1444	N	TYR			12.		44.866		.532		15.66	7
	MOTA	1445	OH	TYR				061	49.995		.353		24.32	8
	ATOM	1446		TYR				608	48.724		.372		21.41	6
	ATOM	1447		TYR				725	49.455		.172		18.95	6
	MOTA	1448	CZ	TYR				877	49.300		.523		21.61	6
50	MOTA	1449		TYR				825	48.409		.105		20.67	6
	ATOM	1450		TYR			10.		47.694		.280		16.67	6
	ATOM	1451	CG	TYR			10.		47.859		.859		20.84	6
	ATOM	1452	CB	TYR			11.		47.084		.944		14.85	6
	ATOM	1453	CA	TYR			11.:		45.514		.051		17.74	6
55	ATOM	1454	C	TYR			10.		45.095		.241		18.77	6
	ATOM	1455	0	TYR			10.		44.671		.159		17.94	8
	ATOM	1456	N	THR				808	45.263		.610		17.67	7
	MOTA	1457		THR				190	44.160		.943		18.91	6
۰.	ATOM	1458		THR				688	46.353		.498		22.54	8
60	ATOM	1459	CB	THR				354	45.166		.830		22.53	6
	MOTA	1460	CA	THR	A	210	7.	576	44.936	33	. 961	T.00	15.65	6

	ATOM	1461	С	THR	A	210	7.530	45.630	32.615	1.00 21.0	8 6
	MOTA	1462	0	THR	A	210	8.245	46.596	32.337	1.00 21.9	6 8
	MOTA	1463	N	GLY	A	211	6.772	45.091	31.686	1.00 21.8	8 7
	ATOM	1464	CA	GLY	A	211	6.639	45.433	30.294	1.00 16.4	16
5	ATOM	1465	С	GLY	A	211	7.894	45.195	29.496	1.00 20.6	56
	ATOM	1466	0	GLY	A	211	8.073	45.931	28.520	1.00 21.2	5 8
	ATOM	1467	N	ASN			8.774	44.261	29.787	1.00 18.1	4 7
	MOTA	1468	ND2	ASN	Α	212	10.850	42.997	25.498	1.00 19.7	1 7
	MOTA	1469	OD1	ASN	A	212	12.024	42.844	27.473	1.00 22.9	
10	MOTA	1470	CG	ASN	A	212	10.949	43.075	26.839	1.00 24.0	
	MOTA	1471	CB	ASN			9.727	43.459	27.633	1.00 20.8	
	MOTA	1472	CA	asn			9.992	44.039	29.021	1.00 18.3	
	MOTA	1473	С	ASN			10.824	45.313	29.009	1.00 21.7	
	MOTA	1474	0	ASN	A	212	11.338	45.759	27.979	1.00 19.3	
15	ATOM	1475	N	ARG	A	213	11.135	45.871	30.138	1.00 22.5	
	MOTA	1476		ARG			9.855	52.374	32.384	1.00 51.0	
	ATOM	1477		ARG			7.807	51.315	33.080	1.00 51.0	
	MOTA	1478	CZ	ARG			8.906	51.367	32.264	1.00 58.9	
	ATOM	1479	NE	ARG			9.162	50.491	31.270	1.00 46.6	
20	MOTA	1480	CD	ARG			8.664	49.317	30.665	1.00 34.3	
	MOTA	1481	CG	ARG			9.943	48.779	30.110	1.00 26.7	
	MOTA	1482	CB			213	11.019	48.187	30.997	1.00 18.3	
	ATOM	1483	CA	ARG			11.923	47.139	30.309	1.00 21.0	
	ATOM	1484	C			213	13.028	46.814	31.301	1.00 20.2	
25	ATOM	1485	0			213	13.179	45.698	31.856	1.00 22.5	
	ATOM	1486	N			214	13.880	47.783	31.513	1.00 19.3	
	ATOM	1487	OH			214	16.343	42.867	28.955 31.687	1.00 22.2 1.00 21.3	
	ATOM	1488		TYR			16.835	45.207 44.005	30.925	1.00 21.3	
20	ATOM	1489	CEZ	TYR		214	16.827 16.378	44.008	29.622	1.00 23.1	
30	ATOM ATOM	1490 1491		TYR			15.989	45.194	29.022	1.00 22.6	
	MOTA	1491		TYR			15.994	46.390	29.760	1.00 27.1	
	MOTA	1493	CG			214	16.429	46.385	31.106	1.00 20.6	
	ATOM	1494	CB			214	16.401	47.666	31.882	1.00 20.6	
35	ATOM	1495	CA			214	15.005	47.781	32.462	1.00 19.0	
	ATOM	1496	C			214	14.859	49.127	33.171	1.00 27.9	
	MOTA	1497	ŏ			214	14.650	50.072	32.408	1.00 24.7	
	MOTA	1498	N			215	14.933	49.316	34.454	1.00 20.1	
	MOTA	1499		VAL			13.057	52.183	35.930	1.00 35.0	2 6
40	ATOM	1500	CG1	VAL	Α	215	12.963	50.184	36.901	1.00 21.1	2 6
	MOTA	1501	CB			215	13.309	50.726	35.561	1.00 22.4	7 6
	ATOM	1502	CA	VAL	Α	215	14.790	50.566	35.197	1.00 19.2	8 6
	MOTA	1503	C	VAL	Α	215	15.780	50.613	36.352	1.00 26.2	5 6
	MOTA	1504	0	VAL	A	215	16.115	49.538	36.921	1.00 18.1	1 8
45	MOTA	1505	N	SER	Α	216	16.242	51.836	36.638	1.00 18.2	1 7
	ATOM	1506	OG	SER	Α	216	18.922	53.199	38.291	1.00 28.3	8 8
	MOTA	1507	CB	SER	A	216	18.437	52.619	37.132	1.00 19.5	
	MOTA	1508	CA	SER	A	216	17.173	52.022	37.788	1.00 14.7	
	MOTA	1509	С			216	16.379	52.452	38.994	1.00 15.9	
50	MOTA	1510	0			216	15.417	53.260	38.998	1.00 17.7	
	MOTA	1511	N			217	16.536	51.851	40.157	1.00 15.3	
	ATOM	1512		LEU			12.758	52.145	40.632	1.00 14.7	
	MOTA	1513		LEU			12.750	49.735	41.258	1.00 16.6	
	ATOM	1514	CG			217	13.614	50.916	40.808	1.00 16.1	
55	MOTA	1515	CB			217	14.725	51.092	41.795	1.00 14.3	
	ATOM	1516	CA			217	15.935	51.919	41.450	1.00 15.2	
	MOTA	1517	С			217	16.939	51.939	42.603	1.00 15.6	
	MOTA	1518	0			217	18.064	51.549	42.450	1.00 16.3	
	ATOM	1519	N			218	16.586	52.646	43.680	1.00 20.1	
60	MOTA	1520	OG			218	18.487	54.649	44.162	1.00 18.8	
	MOTA	1521	CB	SER	A	218	17.616	54.260	45.170	1.00 14.1	ο ο

360

17.407 52.767 44.891 1.00 15.36 - 6 1522 CA SER A 218 MOTA 16.603 52.333 46.074 1.00 11.18 SER A 218 6 MOTA 1523 C 1524 0 SER A 218 15.384 52.612 46.252 1.00 15.32 MOTA 46.946 1.00 13.73 1525 N GLY A 219 17.294 51.647 MOTA 16.541 48.130 1.00 14.10 6 5 ATOM 1526 CA GLY A 219 51.213 48.790 MOTA 1527 C GLY A 219 17.263 50.056 1.00 13.62 6 49.446 48.142 1.00 15.45 MOTA 1528 0 GLY A 219 18.107 8 49.763 50.039 1.00 17.44 7 THR A 220 16.951 MOTA 1529 N CG2 THR A 220 49.511 52.936 1.00 16.33 6 18.258 MOTA 1530 OG1 THR A 220 15.916 48.713 52.516 1.00 15.80 10 ATOM 1531 48.535 52.245 1.00 14.42 THR A 220 17.286 MOTA 1532 CB 17.461 48.580 50.735 1.00 17.50 MOTA 1533 CA THR A 220 ATOM 1534 С THR A 220 16.870 47.306 50.022 1.00 19.97 6 17.485 46.256 50.007 1.00 15.81 THR A 220 Я MOTA 1535 0 15.767 47.403 49.310 1.00 20.24 7 SER A 221 15 ATOM 1536 N 12.959 47.113 48.642 1.00 16.51 Я SER A 221 MOTA 1537 OG 13,930 1538 CB SER A 221 46.838 47.667 1.00 14.33 6 MOTA 48.506 1.00 12.90 MOTA 1539 CA SER A 221 15.123 46.390 6 MOTA 1540 C SER A 221 16.074 46.003 47.362 1.00 15.12 6 44.880 46.946 1.00 17.53 MOTA 02 1541 0 SER A 221 15.824 8 16.866 46.875 46.831 1.00 17.58 MOTA 1542 N MET A 222 7 14.201 47.976 44.365 1.00 20.40 6 MET A 222 MOTA 1543 CE 15.531 48.968 44.957 1.00 19.45 16 MET A 222 MOTA 1544 SD 1545 MET A 222 17.005 48.396 44.101 1.00 13.71 MOTA CG 18.168 47.953 44.968 1.00 15.78 6 1546 · CB MET A 222 25 ATOM ATOM 1547 CA MET A 222 17.828 46.631 45.753 1.00 16.66 6 19.114 46.047 46.344 1.00 18.62 6 MET A 222 MOTA 1548 C 19.914 45.476 45.641 1.00 18.19 8 MOTA 1549 O MET A 222 19.567 46.403 47.559 1.00 18.17 7 ALA A 223 MOTA 1550 N ALA A 223 21.100 46.725 49.390 1.00 15.52 6 30 ATOM 1551 CB 48.119 1.00 17.73 MOTA 1552 CA ALA A 223 20.798 45.907 6 MOTA 1553 С ALA A 223 20.550 44.390 48.476 1.00 18.17 6 43.582 48.237 1.00 15.32 A'TOM 1554 0 ALA A 223 21.442 8 19.505 43.993 49.096 1.00 15.05 7 MOTA 1555 N THR A 224 17.181 41.475 50.592 1.00 17.28 6 35 ATOM 1556 CG2 THR A 224 17.567 43.643 51.132 1.00 18.23 OG1 THR A 224 MOTA 1557 THR A 224 17.580 42.815 49.991 1.00 19.73 MOTA 1558 CB 19.045 42.695 49.562 1.00 16.32 MOTA 1559 CA THR A 224 1.00 18.10 MOTA 1560 С THR A 224 19.361 41.608 48.529 6 20.139 40.681 48.831 1.00 18.64 8 40 ATOM 1561 THR A 224 0 18.887 41.707 47.295 1.00 19.05 7 PRO A 225 MOTA 1562 N PRO A 225 18.136 42.513 45.242 1.00 14.92 MOTA 1563 CG 46.729 1.00 13.28 PRO A 225 17.891 42.669 6 ATOM 1564 CD MOTA 1565 CB PRO A 225 18.243 40.998 45.078 1.00 16.78 6 1.00 16.58 45 ATOM 1566 CA PRO A 225 19.095 40.659 46.305 6 46.005 1.00 18.27 MOTA 1567 C PRO A 225 20.555 40.511 6 20.931 39.450 45.449 1.00 18.34 MOTA 1568 PRO A 225 0 1.00 14.72 21.430 41.465 46.154 7 HIS A 226 MOTA 1569 N 24.294 43.788 43.752 1.00 18.07 CD2 HIS A 226 MOTA 1570 7 23.748 44.863 43.075 1.00 19.52 NE2 HIS A 226 50 ATOM 1571 1572 CE1 HIS A 226 22.668 45.150 43.774 1.00 14.51 MOTA 22.493 44.451 44.863 1.00 17.68 7 MOTA 1573 ND1 HIS A 226 23.536 43.522 44.843 1.00 17.79 - 6 MOTA 1574 CG HIS A 226 23.792 42.501 45.921 1.00 16.33 6 MOTA 1575 CB HIS A 226 22.850 41.289 45.803 1.00 15.23 6 55 ATOM 1576 CA HIS A 226 23.338 40.212 46.774 1.00 16.97 6 MOTA 1577 С HIS A 226 46.452 1.00 18.46 8 ATOM 1578 HIS A 226 24.229 39.428 0 MOTA 1579 N VAL A 227 22.891 40.288 48.000 1.00 16.78 7 1.00 14.40 6 **ATOM** 1580 CG2 VAL A 227 23.890 41.135 50.680 1.00 16.55 6 38.803 51.556 60 ATOM CG1 VAL A 227 23.403 1581 23.078 39.851 50.480 1.00 16.86 MOTA 1582 CB VAL A 227

	ATOM	1583	CA	VAL	Α	227	23.317	39.328	49.058	1.00	19.40	6
	ATOM	1584	C	VAL	Δ	227	22.622	37.966	48.813	1 00	18.81	6
	MOTA	1585	0	VAL			23.389	37.026	48.945	1.00	18.80	8
	ATOM	1586	N	ALA	A	228	21.341	37.929	48.499	1.00	16.53	7
5	MOTA	1587	CB	ALA	Α	228	19.234	36.911	47.825	1.00	14.14	6
-			CA									6
	ATOM	1588		ALA			20.698	36.697	48.134		15.92	
	MOTA	1589	С	ALA	A	228	21.468	36.063	46.986	1.00	18.89	6
	MOTA	1590	0	ALA	Α	228	21.717	34.844	46.986	1.00	18.57	8
	ATOM	1591	N	GLY			21.867	36.825	45.976		17.16	7 ·
10	MOTA	1592	CA	GLY			22.612	36.385	44.821	1.00	18.29	6
	ATOM	1593	C	GLY	Α	229	23.921	35.754	45.298	1.00	20.93	6
	MOTA	1594	0	GLY	Α	229	24.368	34.727	44.804	1.00	18.60	8
	ATOM	1595	N	VAL			24.721	36.337	46.178		19.63	7
	MOTA	1596	CG2	VAL	Α	230	27.344	37.967	46.499	1.00	16.69	6
15	MOTA	1597	CG1	VAL	Α	230	28.071	36.209	48.063	1.00	17.82	6
	ATOM	1598	СВ	VAL			26.831	36.870	47.428		18.91	6
	MOTA	1599	CA	VAL	A	230	25.995	35.834	46.650	1.00	21.31	6
	ATOM	1600	С	VAL	Α	230	25.729	34.506	47.398	1.00	20.36	6
	MOTA	1601	0	VAL	Α	230	26.608	33.630	47.327	1.00	18.14	8
20												7
20	MOTA	1602	N	ALA			24.704	34.423	48.186		16.19	
	MOTA	1603	CB	ALA	Α	231	23.099	33.453	49.852	1.00	15.64	6
	MOTA	1604	CA	ALA	Α	231	24.303	33.272	48.943	1.00	19.23	6
	MOTA	1605	C	ALA	Α	231	24.106	32.150	47.878	1.00	26.28	6
	ATOM	1606	ō	ALA			24.646	31.063	48.051		18.81	8
25	ATOM	1607	N	ALA			23.425	32.341	46.769		23.31	7
	MOTA	1608	CB	ALA	Α	232	22.170	31.917	44.677	1.00	17.17	6
	MOTA	1609	CA	ALA	Α	232	23.190	31.406	45.678	1.00	19.51	6
	MOTA	1610	C	ALA			24.513	30.938	45.055		22.03	6
	MOTA	1611	0	ALA			24.669	29.709	44.797		21.60	8
30	MOTA	1612	N	LEU	Α	233	25.450	31.831	44.890	1.00	18.00	7
	MOTA	1613	CD2	LEU	Α	233	27.058	32.978	41.722	1.00	19.56	6
	MOTA	1614	נחי	LEU	Δ	233	28.229	34.741	42.822	1.00	22.23	6
												6
	ATOM	1615	CG	LEU			27.261	33.626	43.063		25.68	
	MOTA	1616	CB	LEU	A	233	27.734	32.638	44.100	1.00	19.00	6
35	MOTA	1617	CA	LEU	Α	233	26.758	31.512	44.380	1.00	19.18	6
	ATOM	1618	C	LEU	Α	233	27.478	30.583	45.399	1.00	32.14	6
				LEU								8
	ATOM	1619	0				28.163	29.617	44.985		26.65	
	MOTA	1620	N	VAL	Α	234	27.417	30.811	46.694	1.00	23.95	7
	MOTA	1621	CG2	VAL	Α	234	28.911	31.915	49.153	1.00	20.13	6
40	ATOM	1622	CG1	VAL	Α	234	28.484	29.847	50.295	1.00	18.16	6
	ATOM	1623	СВ	VAL			28.054	30.627	49.104		20.46	6
	MOTA	1624	CA	VAL	Α	234	28.187	30.033	47.683		20.36	6
	MOTA	1625	С	VAL	Α	234	27.586	28.631	47.676	1.00	21.66	6
	ATOM	1626	0	VAL	A	234	28.344	27.700	47.665	1.00	22.83	8
4 5	ATOM	1627	N '	LYS			26.274	28.546	47.694		21.98	7
43												
	MOTA	1628	NZ	LYS			22.620	23.743	50.078		29.40	7
	MOTA	1629	CE	LYS	Α	235	22.462	24.483	48.842	1.00	25.24	6
	MOTA	1630	CD	LYS	Α	235	23.510	25.553	48.797	1.00	30.16	6
	ATOM	1631	CG	LYS			23.079	26.379	47.585		26.63	6
50	MOTA	1632	CB	LYS			23.988	27.625	47.594		22.69	6
	MOTA	1633	CA	LYS	Α	235	25.469	27.337	47.688	1.00	27.46	6
	MOTA	1634	С	LYS	Α	235	25.907	26.501	46.462	1.00	34.52	6
	MOTA	1635	0	LYS			26.029	25.292	46.590		26.32	8
	MOTA	1636	N	SER			26.101	27.082	45.314		23.34	7
55	MOTA	1637	OG	SER	Α	236	27.255	28.235	42.597	1.00	24.48	8
	MOTA	1638	CB	SER	Α	236	26.224	27.305	42.840	1.00	20.87	6
	MOTA	1639	CA	SER			26.457	26.441	44.069		27.78	6
												6
	MOTA	1640	C	SER			27.893	25.932	44.239		32.81	
	MOTA	1641	0	SER	A	236	28.289	24.881	43.697		33.79	8
60	MOTA	1642	N	ARG	Α	237	28.779	26.633	44.889	1.00	27.94	7
	MOTA	1643	NH2	ARG			36.693	26.015	46.199	1.00	43.63	7
	-										2 -	

	MOTA	1644	NH1	ARG	A	237	34.671	24.734	46.068	1.00 50.	62	7
	ATOM	1645	CZ	ARG	A	237	35.394	25.866	45.921	1.00 55.	63	6
	MOTA	1646	NE	ARG	A	237	34.768	26.943	45.423	1.00 45.	03	7
	MOTA	1647	CD	ARG	A	237	33.356	26.880	44.981	1.00 35.	54	6
5	ATOM	1648	CG	ARG	A	237	32.431	27.220	46.107	1.00 36.	78	6
	MOTA	1649	CB	ARG	A	237	31.048	27.417	45.451	1.00 36.	35	6
	MOTA	1650	CA	ARG	Α	237	30.183	26.229	45.057	1.00 30.	62	6
	MOTA	1651	С	ARG	A	237	30.294	25.177	46.187	1.00 37.	26	6
	MOTA	1652	0	ARG	Α	237	31.226	24.364	46.081	1.00 32.	10	8
10	MOTA	1653	N	TYR	A	238	29.478	25.193	47.202	1.00 25.	70	7
	MOTA	1654	OH	TYR	Α	238	35.377	26.896	48.995	1.00 38.	64	8
	MOTA	1655	CD2	TYR	A	238	31.736	26.903	49.223	1.00 26.	69	6
	ATOM	1656	CE2	TYR	A	238	33.029	27.369	49.095	1.00 30.	27	6
	MOTA	1657	CZ	TYR	A	238	34.086	26.481	49.141	1.00 38.	00	6
15	MOTA	1658	CE1	TYR	A	238	33.828	25.135	49.328	1.00 33.	49	6
	ATOM	1659	CD1	TYR	A	238	32.531	24.676	49.487	1.00 30.	85	6
	MOTA	1660	CG	TYR	A	238	31.457	25.546	49.441	1.00 33.	19	6
	MOTA	1661	CB	TYR	A	238	30.081	24.961	49.606	1.00 24.	64	6
	ATOM	1662	CA	TYR	A	238	29.529	24.325	48.331	1.00 23.	05	6
20	MOTA	1663	С	TYR	A	238	28.122	23.867	48.656	1.00 25.	25	6
	MOTA	1664	0	TYR	A	238	27.514	24.266	49.659	1.00 30.	61	8
	MOTA	1665	N	PRO	A	239	27.688	22.920	47.848	1.00 27.	20	7
	MOTA	1666	CG	PRO	Α	239	27.396	21.618	45.894	1.00 27.	10	6
	ATOM	1667	CD	PRO	Α	239	28.420	22.386	46.677	1.00 28.	97	6
25	MOTA	1668	CB	PRO	A	239	26.237	21.401	46.789	1.00 27.	07	6
	MOTA	1669	CA	PRO	A	239	26.374	22.336	47.936	1.00 24.	32	6
	MOTA	1670	C	PRO	A	239	26.018	21.775	49.271	1.00 27.	11	6
	MOTA	1671	0	PRO	A	239	24.832	21.805	49.646	1.00 34.	83	8
	MOTA	1672	N	SER	A	240	27.032	21.338	49.983	1.00 28.	71	7
30	MOTA	1673	OG	SER	A	240	28.905	20.696	51.933	1.00 44.	71	8
	MOTA	1674	CB			240	27.802	19.807	51.651	1.00 32.		6
	MOTA	1675	CA			240	26.658	20.772	51.295	1.00 31.		6
•	MOTA	1676	C			240	26.514	21.852	52.339	1.00 35.		6
	ATOM	1677	0			240	26.021	21.373	53.361	1.00 33.		8
35	ATOM	1678	N			241	26.917	23.099	52.126	1.00 33.		7
	ATOM	1679	OH			241	32.514	26.940	53.424	1.00 39.		8
	MOTA	1680	CD2				28.974	26.952	52.686	1.00 28.		6
-	MOTA	1681	CE2	TYR			30.301	27.321	52.920	1.00 31.		6
	MOTA	1682	CZ			241	31.258	26.429	53.256	1.00 27.		6
40	ATOM	1683		TYR			30.883	25.121	53.346	1.00 31.		6
	MOTA	1684		TYR			29.567	24.730	53.129	1.00 37.		6
	MOTA	1685	CG			241	28.574	25.641	52.769	1.00 33.		6
	MOTA	1686	CB			241	27.141	25.321	52.486	1.00 29.		6
4 -	MOTA	1687	CA			241	26.737	24.060	53.228	1.00 26.		6
45	ATOM	1688	C	TYR			25.346	24.320	53.736	1.00 25.		6
	MOTA	1689	0	TYR			24.430	24.339	52.874	1.00 29.		8
	MOTA	1690	N			242	25.146	24.489	55.044	1.00 24.		7
	MOTA	1691 1692		THR THR			23.731	22.950	57.120	1.00 42.		6 .
50	MOTA	1693					24.567	25.108	57.591	1.00 31.		8
50	MOTA		CB	THR			23.519	24.442	56.951	1.00 33.		6
	MOTA MOTA	1694 1695	CA	THR			23.802	24.846	55.488	1.00 26.		6
			С	THR			23.625	26.399	55.366	1.00 31.		6
	ATOM ATOM	1696 1697	N O	THR			24.567	27.112	55.026	1.00 24.		8 7
55	ATOM	1698	M	ASN			22.455	26.868	55.672	1.00 23. 1.00 25.		7
33	ATOM	1699		ASN			19.284	28.150	58.303			8
	ATOM	1700	CG	asn asn			21.147	26.869 27.718	58.079 57.665	1.00 29. 1.00 31.		6
	ATOM	1701	CB	ASN			20.365		56.289	1.00 31.		6
	ATOM	1701	CA	ASN			20.705 22.106	28.307 28.250	55.754	1.00 26.		6
60	ATOM	1702	CA	ASN			23.148	28.899	56.695	1.00 21.		6
	ATOM	1703	0	ASN				29.886	56.362	1.00 27.		8
	ALON	1104	U	MON	M	443	23.802	47.000	30.302	1.00 45.	0.5	J

	MOTA	1705	N	ASN A	244	23.468	28.330	57.867	1.00 26.0	3 7
	MOTA	1706	ND2	ASN A	244	22.587	29.649	60.811	1.00 34.7	9 7
	MOTA	1707	OD1	ASN A	244	22.802	27.357	61.068	1.00 44.8	4 8
	MOTA	1708	CG	ASN A	244	23.191	28.490	60.756	1.00 35.3	1 6
5	MOTA	1709	CB	ASN A		24.543	28.310	60.131	1.00 23.5	
	MOTA	1710	CA	ASN A		24.468	28.913	58.741	1.00 23.2	
	ATOM	1711	C	ASN A		25.852	29.042	58.177	1.00 20.6	
	ATOM	1712	ō	ASN A		26.588	29.986	58.528	1.00 25.1	
	ATOM	1713	N	GLN A		26.288	28.065	57.405	1.00 25.1	
10	MOTA	1714		GLN A		29.731	23.917	56.910	1.00 26.5	
10	ATOM									
		1715		GLN A		27.592	23.848	56.288	1.00 31.9	
	ATOM	1716	CD	GLN A		28.495	24.413	56.857	1.00 31.9	
	ATOM	1717	CG	GLN A		28.158	25.769	57.424	1.00 31.1	
	ATOM	1718	CB	GLN A		28.079	26.789	56.257	1.00 22.6	
15	ATOM	1719	CA	GLN A		27.641	28.159	56.822	1.00 25.0	
	MOTA	1720	C	GLN A		27.700	29.217	55.724	1.00 22.6	
	MOTA	1721	0	GLN A		28.812	29.747	55.628	1.00 22.3	
	MOTA	1722	N	ILE A		26.579	29.386	55.029	1.00 19.1	
	MOTA	1723	CD1	ILE A	246	24.121	28.540	51.765	1.00 24.2	8 6
20	MOTA	1724	CG1	ILE A	246	25.491	28.913	52.305	1.00 22.9	2 6
	ATOM	1725	CB	ILE A	246	25.388	30.250	53.066	1.00 24.0	8 6
	MOTA	1726	CG2	ILE A	246	25.359	31.365	52.019	1.00 15.4	26
	MOTA	1727	CA	ILE A	246	26.626	30.376	53.946	1.00 20.7	3 6
	MOTA	1728	С	ILE A	246	26.625	31.770	54.595	1.00 21.0	0 6
25	MOTA	1729	0	ILE A	246	27.450	32.600	54.231	1.00 21.9	8 8
	MOTA	1730	N	ARG A	247	25.815	31.946	55.595	1.00 17.9	5 7
	MOTA	1731	NH2	ARG A	247	21.172	36.496	61.002	1.00 23.2	4 7
	MOTA	1732	NH1	ARG A	247	20.813	34.285	60.509	1.00 25.6	4 7
	MOTA	1733	CZ	ARG A	247	21.541	35.380	60.384	1.00 22.4	
30	ATOM	1734	NE	ARG A		22.621	35.221	59.659	1.00 20.4	
	ATOM	1735	CD	ARG A		23.075	33.985	59.041	1.00 23.2	
	MOTA	1736	CG	ARG A		24.278	34.245	58.197	1.00 24.4	
	MOTA	1737	CB	ARG A		24.599	32.992	57.408	1.00 19.5	
	MOTA	1738	CA	ARG A		25.664	33.174	56.359	1.00 19.1	
35	ATOM	1739	C	ARG A		27.002	33.597	56.927	1.00 25.0	
	MOTA	1740	ō	ARG A		27.519	34.707	56.756	1.00 22.0	
	ATOM	1741	N	GLN A		27.650	32.632	57.527	1.00 20.5	
	ATOM	1742		GLN A		31.226	29.317	59.418	1.00 42.7	
	ATOM	1743		GLN A		30.871	30.465	61.389	1.00 46.9	_
40	ATOM	1744	CD	GLN A		30.990	30.383	60.165	1.00 51.6	
10	ATOM	1745	CG	GLN A		30.736	31.700	59.458	1.00 35.0	
	ATOM	1746	CB	GLN A		29.288	31.684	59.012	1.00 35.6	
	ATOM	1747	CA	GLN A		28.981	32.908	58.114	1.00 23.6	•
			_							
45	MOTA MOTA	1748 1749	C	GLN A		30.017	33.161	57.069	1.00 21.3	
40			0	GLN A		30.901	33.970	57.349	1.00 21.8	
	ATOM	1750	N	ARG A		29.967	32.465	55.934	1.00 19.0	
	ATOM	1751		ARG A		35.824	29.779	51.206	1.00 40.5	
	ATOM	1752		ARG A		34.826	29.545	53.357	1.00 37.1	
	ATOM	1753	CZ	ARG A		34.844	29.899	52.078	1.00 40.5	
50	MOTA	1754	NE	ARG A		33.791	30.659	51.779	1.00 39.3	
	MOTA	1755	CD	ARG A		33.221	31.268		1.00 30.9	
	ATOM	1756	CG	ARG A		31.842	31.741	52.706	1.00 25.2	
	MOTA	1757	CB	ARG A		30.911	31.639	53.899	1.00 22.5	
_	MOTA	1758	CA	ARG A		31.014	32.723	54.960	1.00 22.8	
55	MOTA	1759	С	ARG A		30.910	34.140	54.373	1.00 17.7	
	MOTA	1760	0	ARG A		31.962	34.746	54.144	1.00 19.5	
	ATOM	1761	N	ILE A	250	29.677	34.545	54.142	1.00 18.5	
	MOTA	1762		ILE A		26.140	35.220	51.913	1.00 18.4	
	ATOM	1763		ILE A	250	27.639	35.352	52.018	1.00 18.9	
60	MOTA	1764	CB	ILE A	250	27.933	36.102	53.316	1.00 23.8	
	MOTA	1765	CG2	ILE A	250	27.571	37.586	53.219	1.00 20.3	16

WO 01/83559

	ATOM	1766	CA	ILE	A	250 ·	29.420	35.892	53.596	1.00 22.42	6
	MOTA	1767	C	ILE	A	250	29.936	36.914	54.662	1.00 20.70	6
	MOTA	1768	0	ILE	A	250	30.697	37.770	54.268	1.00 20.41	8
	MOTA	1769	N	ASN			29.611	36.778	55.909	1.00 16.56	7
5	MOTA	1770		ASN			27.085	37.213	59.132	1.00 21.27	7
	ATOM	1771		ASN			27.518	38.556	57.396	1.00 20.03	8
	ATOM	1772	CG	ASN			27.884	37.722	58.234	1.00 20.12	6
	ATOM	1773	CB	ASN			29.340	37.365	58.291	1.00 14.58	6
	MOTA	1774	CA	ASN			30.053	37.650	56.988	1.00 19.60	6
10	MOTA	1775	C	ASN			31.548	37.703	57.148	1.00 22.53	6
	MOTA	1776	0	ASN			32.201	38.759	57.273	1.00 20.64	8 7
	MOTA	1777	N	GLN			32.182	36.536	57.064	1.00 22.96 1.00 26.44	7
	MOTA	1778	NE2				33.954	32.143 32.144	57.495 59.601	1.00 26.44	8
1.5	MOTA	1779	OE1	GLN GLN			34.257 33.983	32.794	58.626	1.00 34.65	6
15	MOTA MOTA	1780 1781	CD CG			252	33.666	34.300	58.676	1.00 33.32	6
	ATOM	1781	CB	GLN			34.161	35.012	57.438	1.00 19.97	6
	ATOM	1783	CA			252	33.609	36.444	57.294	1.00 22.53	6
	ATOM	1784	C	GLN			34.428	37.094	56.208	1.00 21.65	6
20	ATOM	1785	ō	GLN			35.605	37.391	56.464	1.00 22.97	8
	ATOM	1786	N			253	33.896	37.119	55.011	1.00 18.20	7
	ATOM	1787	CG2	THR			35.122	35.288	53.155	1.00 26.77	6
	ATOM	1788	OG1	THR	Α	253	33.244	36.457	52.335	1.00 20.36	8
	ATOM	1789	CB	THR	A	253	34.578	36.633	52.726	1.00 22.10	6
25	MOTA	1790	CA	THR	A	253	34.689	37.647	53.898	1.00 19.73	6
	ATOM	1791	С	THR	A	253	34.340	39.071	53.463	1.00 19.95	6
	ATOM	1792	0	THR	A	253	34.913	39.503	52.482	1.00 20.25	8
	MOTA	1793	N	ALA	A	254	33.429	39.726	54.117	1.00 19.64	7
	MOTA	1794	CB	ALA	A	254	31.740	41.369	54.617	1.00 18.36	6
30	MOTA	1795	CA	ALA	A	254	32.987	41.091	53.782	1.00 24.84	6
	ATOM	1796	С			254	34.120	42.087	53.921	1.00 21.63	6
	ATOM	1797	0			254	35.058	41.906	54.708	1.00 20.05	8
	ATOM	1798	N			255	34.176	43.140	53.147	1.00 21.26	7
	ATOM	1799	CG2			255	36.230	46.013	52.142	1.00 25.89	6
35	ATOM	1800	OG1			255	35.698	44.059	51.035	1.00 26.17	8 6
	ATOM	1801	CB			255	35.139	44.994	51.925 53.240	1.00 22.57 1.00 21.57	6
	MOTA	1802	CA			255 255	35.193	44.192 45.197	54.248	1.00 19.15	6
	MOTA MOTA	1803 1804	C O			255 255	34.718 33.550	45.592	54.161	1.00 19.13	8
40	ATOM	1804	И			256	35.458	45.555	55.262	1.00 21.54	7
40	ATOM	1805	OH			256	35.344	50.333	61.399	1.00 27.67	8
	MOTA	1807	CD2	TYR			35.133	47.291	59.487	1.00 18.22	6
	ATOM	1808		TYR			34.941	48.186	60.527	1.00 19.33	6
	MOTA	1809	CZ			256	35.581	49.413	60.435	1.00 23.39	6
45	MOTA	1810		TYR			36.360	49.758	59.359	1.00 21.50	6
	MOTA	1811	CD1	TYR	A	256	36.542	48.786	58.359	1.00 24.73	6
	ATOM	1812	CG	TYR	A	256	35.930	47.528	58.414	1.00 18.54	6
	MOTA	1813	CB	TYR	A	256	36.204	46.511	57.365	1.00 19.73	6
	ATOM	1814	CA	TYR	A	256	35.044	46.469	56.350	1.00 22.62	6
50	MOTA	1815	С	TYR	A	256	34.821	47.867	55.744	1.00 21.73	6
	ATOM	1816	0			256	35.663	48.297	54.920	1.00 21.87	8
	MOTA	1817	N			25 7	33.684	48.448	56.082	1.00 19.62	7
	ATOM	1818		LEU			32.720	49.475	52.464	1.00 18.99	6
	MOTA	1819		PEA			30.367	48.966	53.151	1.00 21.76	6
55	MOTA	1820	CG			257	31.817	48.960	53.516	1.00 20.48	6
	ATOM	1821	CB			257	31.922	49.666	54.836	1.00 19.04	6
	ATOM	1822	CA			257	33.313	49.753	55.519	1.00 27.37	6
	ATOM	1823	C			257	33.263	50.866	56.576	1.00 27.50	6 8
60	MOTA	1824	0			257	33.107	52.015	56.207	1.00 25.78 1.00 22.89	8 7
90	MOTA	1825	N			258	33.152	50.534	57.828	1.00 22.89	6
	MOTA	1826	CA	لابلى	A	258	33.057	51.513	58.894	1.00 21.33	U

	MOTA	1827	С	GLY	A	258 ⁻	32.163	50.880	59.937	1.00	24.86	6
	MOTA	1828	0	GLY	A	258	31.926	49.672	60.084	1.00	24.18	8
	MOTA	1829	N	SER	Α	259	31.569	51.743	60.724	1.00	20.88	7
	MOTA	1830	OG	SER	A	259	29.158	52.213	63.426	1.00	31.61	8
5	MOTA	1831	CB	SER	A	259	29.974	52.583	62.307	1.00	24.36	6
	ATOM	1832	CA	SER	Α	259	30.733	51.337	61.822	1.00	24.45	6
	ATOM	1833	C			259	29.770	50.171	61.540		27.60	6
	ATOM	1834	ō			259	28.843	50.318	60.730		22.13	8
	ATOM	1835	N			260	29.842	49.141	62.343		21.74	7
10	MOTA	1836	CG			260	31.036	47.393	63.408		24.82	6
10	MOTA	1837	CD			260	30.994	48.911	63.310		25.73	6
			CB				29.514				21.61	6
	MOTA	1838				260		47.117	63.404		19.23	
	ATOM	1839	CA			260	29.031	47.947	62.217			6
	MOTA	1840	C			260	27.609	48.328	62.386		21.40	6
15	ATOM	1841	0			260	26.757	47.607	61.855		21.68	8
	MOTA	1842	N			261	27.313	49.416	63.117		24.57	7
	ATOM	1843	OG			261	26.184	51.724	64.185		39.92	8
	MOTA	1844	CB	SER	Α	261	25.584	50.471	64.588		26.32	6
	MOTA	1845	CA	SER	A	261	25.846	49.736	63.266	1.00	21.73	6
20	ATOM	1846	С	SER	Α	261	25.265	50.281	61.945	1.00	22.12	6
	MOTA	1847	0	SER	A	261	24.035	50.276	61.642	1.00	24.01	8
	MOTA	1848	N	LEU	A	262	26.160	50.717	61.066	1.00	16.86	7
	ATOM	1849	CD2	LEU	Α	262	25.190	53.985	60.792	1.00	19.12	6
	MOTA	1850	CD1	LEU	A	262	27.301	54.691	59.591	1.00	24.54	6
25	MOTA	1851	CG	LEU	Α	262	26.558	53.641	60.336	1.00	21.01	6
	MOTA	1852	CB			262	26.462	52.472	59.338	1.00	17.76	6
	ATOM	1853	CA	LEU	Α	262	25.690	51.214	59.777	1.00	20.61	6
	ATOM	1854	С			262	25.743	50.137	58.665	1.00	22.18	6
	MOTA	1855	0			262	24.898	50.044	57.784		20.95	8
30	ATOM	1856	N			263	26.839	49.424	58.640		20.86	7
	ATOM	1857	ОН			263	29.102	54.204	55.461		26.47	8
	ATOM	1858		TYR			29.566	51.211	57.467		26.53	6
	MOTA	1859		TYR			29.687	52.535	57.088		20.10	6
	ATOM	1860	CZ			263	28.983	52.914	55.953		29.82	6
35		1861		TYR			28.242	51.962	55.229		23.04	6
33											21.97	6
	ATOM	1862		TYR			28.099	50.658	55.660			6
	ATOM	1863	CG			263	28.770	50.273	56.804		22.44 18.72	
	ATOM	1864	CB			263	28.675	48.901	57.334			6
	ATOM	1865	CA			263	27.257	48.431	57.689		19.34	6
40	ATOM	1866	C			263	27.356	46.941	58.112		20.55	6
	ATOM	1867	0			263	27.557	46.151	57.208		20.61	8
	MOTA	1868	N			264	27.252	46.559	59.371		23.63	7
	ATOM	1869	CA			264	27.399	45.182	59.846		23.19	6
		1870	C					44.821	59.611		20.89	6
45	ATOM	1871	0	GLY			29.792	45.612	59.912		22.16	8
	ATOM	1872	N	ASN			29.016	43.657	58.986		20.54	7
	MOTA	1873	ND2	asn	A	265	28.705	40.460	59.762	1.00	18.28	7
	ATOM	1874		asn			31.001	40.510	60.158		22.08	8
	MOTA	1875	CG	asn	A	265	29.953	40.799	59.474	1.00	23.12	6
50	MOTA	1876	CB	asn	Α	265	30.177	41.671	58.249	1.00	22.83	6
	MOTA	1877	CA	ASN	A	265	30.354	43.162	58.629	1.00	18.37	6
	MOTA	1878	C	ASN	A	265	30.933	43.918	57.463	1.00	17.82	6
	MOTA	1879	0	ASN	A	265	32.101	43.734	57.184	1.00	19.89	8
	MOTA	1880	N	GLY			30.149	44.653	56.673	1.00	18.61	7
55	ATOM	1881	CA	GLY			30.810	45.365	55.570	1.00	16.52	6
	MOTA	1882	С	GLY			30.147	44.955	54.258	1.00	14.39	6
	ATOM	1883	ō	GLY			29.012	44.489	54.261		17.41	8
	ATOM	1884	N	TEA			30.938	45.180	53.248		17.00	7
	ATOM	1885		LEU			31.818	46.464	48.528		20.10	6
60	ATOM	1886		LEU			29.447	46.337	49.267		17.92	6
-	MOTA	1887	CG	TEA			30.836	45.825	49.468		21.20	6
							20.330					

	MOTA	1888	CB	LEU	Α	267	31.195	45.897	50.957	1.00 17.31	6
	MOTA	1889	CA	LEU	Α	267	30.473	44.933	51.911	1.00 19.77	6
	MOTA	1890	C	LEU	A	267	30.613	43.483	51.457	1.00 19.17	6
	MOTA	1891	0	LEU	A	267	31.713	43.027	51.499	1.00 18.24	8
5	MOTA	1892	N	VAL	Α	268	29.515	42.890	51.007	1.00 18.79	7
	MOTA	1893	CG2	VAL	Α	268	28.108	39.597	49.871	1.00 21.18	6
	MOTA	1894	CG1	VAL	Α	268	27.562	41.922	48.977	1.00 17.72	6
	MOTA	1895	CB	VAL	A	268	28.154	41.080	50.102	1.00 18.91	6
	MOTA	1896	CA	VAL	Α	268	29.593	41.487	50.497	1.00 19.33	6
10	MOTA	1897	С	VAL	Α	268	30.656	41.429	49.439	1.00 21.97	6
	MOTA	1898	0	VAL	A	268	30.848	42.376	48.631	1.00 22.07	8
	MOTA	1899	N	HIS	Α	269	31.459	40.358	49.345	1.00 18.59	7
	MOTA	1900	CD2	HIS	A	269	36.030	41.419	48.127	1.00 21.57	6
	MOTA	1901	NE2	HIS	Α	269	36.783	41.004	47.080	1.00 22.77	7
15	MOTA	1902	CE1	HIS	Α	269	36.264	39.941	46.468	1.00 21.29	6
	MOTA	1903	ND1	HIS	Α	269	35.180	39.655	47.082	1.00 20.84	7
	MOTA	1904	CG	HIS	A	269	35.025	40.514	48.132	1.00 18.43	6
	MOTA	1905	CB	HIS	A	269	33.878	40.370	49.071	1.00 17.66	6
	ATOM	1906	CA	HIS	A	269	32.544	40.254	48.361	1.00 19.72	6
20	ATOM	1907	С	HIS	A	269	32.331	38.894	47.726	1.00 22.36	6
	MOTA	1908	0	HIS	A	269	32.629	37.899	48.397	1.00 20.96	8
	MOTA	1909	N	ALA	Α	270	31.766	38.818	46.559	1.00 22.28	7
	MOTA	1910	CB	ALA	A	270	30.573	37.918	44.601	1.00 17.20	6
	ATOM	1911	CA	ALA	A	270	31.431	37.593	45.842	1.00 21.32	6
25	ATOM	1912	С	ALA	A	270	32.677	36.745	45.532	1.00 26.89	6
	MOTA	1913	0	ALA	Α	270	32.564	35.516	45.514	1.00 23.48	8
	MOTA	1914	N	GLY	A	271	33.851	37.281	45.257	1.00 20.68	7
	MOTA	1915	CA	GLY	A	271	35.107	36.638	44.880	1.00 24.34	6
	ATOM	1916	С	GLY	Α	271	35.612	35.980	46.150	1.00 30.38	6
30	MOTA	1917	0	GTA	A	271	35.866	34.786	46.145	1.00 29.87	8
	MOTA	1918	N	ARG	A	272	35.718	36.672	47.271	1.00 25.63	7
	MOTA	1919	NH2	ARG	A	272	39.216	41.988	51.543	1.00 39.62	7
	MOTA	1920	NH1	ARG	A	272	37.245	41.084	52.031	1.00 33.73	7
	MOTA	1921	CZ	ARG	A	272	38.322	41.035	51.261	1.00 29.01	6
35	MOTA	1922	NE	ARG			38.462	40.006	50.408	1.00 27.85	7
	ATOM	1923	CD	ARG	A	272	37.427	38.979	50.545	1.00 24.30	6
	MOTA	1924	CG	ARG	A	272	37.529	37.929	49.449	1.00 24.96	6
	MOTA	1925	CB	ARG	A	272	36.387	36.959	49.653	1.00 24.60	6
	MOTA	1926	CA	ARG			36.154	35.998	48.480	1.00 24.91	6
40	MOTA	1927	С	ARG			35.202	34.911	48.922	1.00 26.40	6
	MOTA	1928	0	ARG			35.641	33.851	49.431	1.00 28.24	8
	ATOM	1929	N	ALA			33.914	35.188	48.929	1.00 19.69	7
	MOTA	1930	CB	ALA	• _		31.517	34.902	49.536	1.00 20.87	6
	ATOM	1931	CA	ALA			32.936	34.244	49.474	1.00 24.30	6
45	ATOM	1932	C	ALA			32.968	32.852	48.766	1.00 27.05	6
	ATOM	1933	0	ALA			32.536	31.854	49.362	1.00 24.22	8
	MOTA	1934	N	THR			33.319	32.767	47.501	1.00 24.53	7
	ATOM	1935		THR			31.085	32.479	45.548	1.00 21.97	б
	MOTA	1936		THR			33.334	32.912	44.673	1.00 21.52	8
50		1937	CB	THR			32.493	32.003	45.307	1.00 23.92	6
	ATOM	1938	CA	THR			33.266	31.637	46.614	1.00 27.06	6
	ATOM	1939	C	THR			34.616	30.968	46.450	1.00 23.60	6
	ATOM	1940	0	THR			34.742	30.024	45.712	1.00 26.35	8
	ATOM	1941	N	GLN			35.613	31.466	47.075	1.00 24.38 1.00 25.89	7 7
55	ATOM	1942		GLN			38.108	33.169	50.922		
	MOTA	1943		GLN			39.935	31.618	50.540	1.00 44.50 1.00 56.87	8
	MOTA	1944	CD	GLN			38.904	32.283	50.229		6
•	ATOM	1945	CG	GLN			38.801	31.879	48.740	1.00 54.09	6
۲0	MOTA	1946	CB	GLN			37.513	31.251	48.481	1.00 27.55 1.00 31.54	6 6
υo	ATOM	1947	CA	GLN			36.966	30.920	47.124	1.00 31.54	6
	MOTA	1948	C	GLN	A	2/5	36.688	29.412	47.422	T.00 20.30	O

367

ATOM 1949 O GLN A 275 37.587 28.549 47.205 1.00 37.01 8 ATOM 1950 OE GLN A 275 36.105 29.125 48.479 1.00 31.65 8

368

CLAIMS

A method of selecting a protein variant having modified immunogenicity as compared to a parent protein, comprising the steps of:

- a) obtaining antibody binding peptide sequences,
- b) using the sequences to localise epitope sequences on the 3dimensional structure of the parent protein,
 - c) defining an epitope area including amino acids situated within 5 Å from the epitope amino acids constituting the epitope sequence,

- d) changing one or more of the amino acids defining the epitope area of the parent protein by genetic engineering mutations of a DNA sequence encoding the parent protein,
- e) introducing the mutated DNA sequence into a suitable host, culturing said host and expressing the protein variant, and
- f) evaluating the immunogenicity of the protein variant using
 the parent protein as reference.
- The method according to claim 1, wherein the sequences of step a) are obtained by screening a random peptide display package library with antibodies raised against any protein of interset and sequencing the amino acid sequence of the antibody binding peptide, or the DNA sequence encoding the antibody binding peptide.

WO 01/83559

PCT/DK01/00293

- 3. The method according to claim 2, wherein antibodies for screening the random peptide display package library are raised against the parent protein.
- 5 4. The method according to claims 2-3, wherein the peptide display package library is a phage display library.
- 5. The method according to claims 2-4, wherein the peptides of the peptide display package library are oligopeptides having 10 from 5 to 25 amino acids.
- 6. The method according to claim 1, wherein the antibody binding peptide sequences of step a) are obtained by screening a library of known peptides related to the primary sequence of any protein of interest, with antibodies raised against the protein of interest.
- 7. The method according to any of the preceding claims, wherein epitope patterns are identified by sequence alignment of anti20 body binding peptide sequences and these epitope patterns are used to quide localisation of epitope sequences on the 3-dimensional structure of the parent protein.
- 8. The method according the any of the preceding claims, wherein 25 the epitopee area of step c) equals the epitope sequence.
 - 9. The method according to any of the preceding claims, wherein hot spot amino acids of the parent protein are identified.
- 30 10. The method according to any of the preceding claims, wherein the epitope area is changed by substituting, adding and/or deleting at least one amino acid of the epitope area.

11. The method according to claim 10, wherein the epitope area is changed by substituting, adding and/or deleting at least one hot spot amino acid.

PCT/DK01/00293

5 12. The method according to claims 10-11, wherein amino acids in the epitope area are changed by substituting and/or inserting at least one amino acid by an amino acid which render the substituted and/or inserted amino acid a target for covalent conjugation to an activated polymer.

10

WO 01/83559

- 13. the method according to claim 12, wherein the amino acid for substitution and/or insertion is selected from the group consisting of K, C, D, E.
- 15 14. The method according to claim 12, wherein the molecule for covalent conjugation is selected from the group of activated synthetic or natural polymers.
- 15. The method according to claim 14, wherein the activated syn20 thetic polymer is a polyethylene glycol.
 - 16. The method according to any of the preceding claims, wherein the immunogenicity is measured by competitive ELISA.
- 25 17. The method according to any of the preseding claims, wherein the protein variant has reduced allergenicity.
- 18. The method according to claim 17, wherein the allergenicity of the protein variant is below 75%, preferably below 50%, more preferably below 25% of the allergenicity of the parent protein.
 - 19. The method according to any of the preceding claims, wherein the parent protein is an enzyme or an environmental allergen or a pharmaceutical protein.

WO 01/83559

15

20

371

PCT/DK01/00293

20. The method according to claim 19, wherein the enzyme is selected from the group consisting of glycosyl hydrolases, carbohydrases, peroxidases, proteases, lipolytic enzymes, phytases, polysaccharide lyases, oxidoreductases, transglutaminases and glucoseisomerases.

- 21. The method according to claim 19, wherein the environmental allergen is selected from the group consisting of pollen, dust mites, mammals, venoms, fungi, food allergens or other plant allergens.
 - 22. A protein variant obtainable by a method according to claims 1-21.

23. A protein variant, wherein the amino acid sequence of the protein variant differs from the amino acid sequence of the parent protein with respect to at least one epitope area of the parent protein.

24. The protein variant according to claim 23 having modified immunogenicity as compared to its parent protein.

25. A protein variant according to claims 22-24, wherein the
25 epitope areas are defined on the parent protein structure by being localised less than 5 Å from any of the following epitope
patterns: P > S/T D P G; P > D A G; > P > R D T G; P > S/T D P
G; > R Y > K/R; > R S A; > G > > A G; V H > G >; A > I D P R/K;
A R > A; Q > Y > D >; > P > > A P > S; R/K R F > N; D/E Q I F F
30 T; A > > > Y P >; L > G R S; R P P R; > E Y; > P > > P A P >
S; > K L > >; K Q S; > K L > >; Y I > K L; R Q > > D/E; N > > E
L.

WO 01/83559

PCT/DK01/00293

26. The protein variant according to claims 22 or 23, wherein the epitope areas correspond to antibody binding peptide sequences reactive to antibodies raised against the parent protein.

372

5

- 27. The protein variant according to claims 22-26, wherein the epitope pattern is a IgE epitope pattern.
- 28. The protein variant according to claims 22-27, wherein at 10 least one hot spot amino acid is substituted or deleted.
- 29. The protein variant according to claims 22-28, wherein the allergenicity of the protein variant is below 75%, preferable below 50%, more preferably below 25% of the allergenicity of the parent protein.
- 30. The protein variant according to claims 22-29, wherein the protein variant is an environmental allergen, preferable an allergen selected from the group consisting of pollen, dust mites, 20 mammals, venoms, fungi, food allergens or other plant allergens.
 - 31. The protein variant according to claims 22-29, wherein the protein variant is an antifungal peptide or antimicrobial peptide.

25

32. The protein variant according to claim 30, wherein the allergen is pollen allergen comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 6:

30

Position T 10 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, V, W, Y;

Position V 12 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, W, Y;

	Position	P	14	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N, Q, R, S,	T, V,	W, Y;												
	Position	A	16	to	C,	D,	E,	F,	G,	Η,	I,	K,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
5	Position	R	17	to	A,	C,	D,	E,	F,	G,	н,	I,	K,	L,	Μ,
	N, P, Q, S,	T, V,	W, Y;												
	Position	K	20	to	A,	C,	D,	E,	F,	G,	Н,	I,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	L	24	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	М,	N,
10	P, Q, R, S,	T, V,	W, Y;												
	Position	F	30	to	A,	C,	D,	E,	G,	Η,	I,	K,	L,	M,	N,
	P, Q, R, S,	т, W,	Y;												
	Position	P	31	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, Q, R, S,	т, V,	W, Y;												
15	Position	K	32	to	A,	C,	D,	Ε,	F,	G,	Н,	I,	L,	M,	N,
	P, Q, R, S,	т, V,	W, Y;												
	Position	A	34	to	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	P	35	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
20	N, Q, R, S,	T, V,	W, Y;												
	Position	Q	36	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, R, S,	T, V,	W, Y;												
	Position	A	37	to	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,	N,
	P, Q, R, S,	T, V,	W, Y;												
25	Position	S	39	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q, R,	T, V,	W, Y;			-									
	Position	S	40	to	A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q, R,	T, V,	W, Y;												
	Position	E	42	to	A,	C,	D,	F,	G,	Н,	I,	K,	L,	M,	N,
30	P, Q, R, S,	T, V,	W, Y;												
	Position	s	57	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	P, Q, R, T,	v, w,	Y;												
	Position	F	58	to	A,	C,	D,	E,	G,	Н,	I,	K,	L,	M,	N,
	P, Q, R, S,	T, V,	W, Y;												

	Posit	ion		P		59		to	A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N, Q,	R,	s,	T,	V,	W,	Y;												
	Posit:	ion		E		60		to	A,	C,	D,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q,	R,	s,	T,	ν,	W,	Υ;												
5	Posit	ion		G		61		to	A,	C,	D,	E,	F,	Η,	I,	K,	L,	Μ,	N,
	P, Q,	R,	s,	T,	v,	W,	Υ;												
	Posit:	ion		L		62		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	Μ,	N,
	P, Q,	R,	s,	T,	V,	W,	Y;												
	Posit	ion		P		63		to	A,	C,	D,	E,	F,	G,	Η,	I,	K,	L,	Μ,
10	N, Q,	R,	s,	Т,	V,	W,	Υ;												
	Posit	ion		F		64		to	A,	C,	D,	E	,	G,	Η,	I,	K,	L,	M,
	N, P,	Q,	R,	s,	T,	V,	W,	Υ;											
	Posit	ion		K		65		to	A,	C,	D,	Ε,	F,	G,	Н,	I,	L,	M,	N,
	P, Q,	R,	s,	T,	v,	W,	Y;												
15	Posit	ion		T		77		to	A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P,	Q,	R,	s,	v,	W,	Y;												
	Posit	ion		F		79		to	A,	C,	D,	E,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q,	R,	s,	T,	V,	W,	Y;												
	Posit	ion		P		90		to	A,	C,	D,	E,	F,	G,	Η,	I,	K,	L,	Μ,
20	N, Q,	R,	s,	Т,	V,	W,	Y;												
	Posit	ion		D		93		to	A,	C,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q,	R,	s,	T,	v,	W,	Y;												
	Posit:	ion		V		105	,	to	A,	C,	D,	E,	F,	G,	H,	I,	K,	L,	Μ,
	N, P,	Q,	R,	s,	T,	W,	Y;												
25	Posit.	ion		A		106	;	to	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,	N,
	P, Q,	R,	s,	Т,	v,	W,	Y;												
	Posit	ion		T		107	,	to	A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P,	Q,	R,	s,	V,	W,	Y;												
	Posit	ion		D		109)	to	A,	C,	E,	F,	G,	Н,	I,	K,	L,	M,	N,
30	P, Q,	R,	s,	T,	v,	W,	Υ;												
	Posit	ion		G		110)	to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	M,	N,
	P, Q,	R,	s,	T,	v,	W,	Y;												
	Posit	ion		K		123		to	A,	C,	D,	E,	F,	G,	Н,	I,	L,	M,	N,
	P, Q,	R,	s,	T,	V,	W,	Y;												

Position 127 A, C, D, F, G, H, I, K, L, M, N, Ε to P, Q, R, S, T, V, W, Y; Position K A, C, D, E, F, G, H, I, L, M, N, 129 to P, Q, R, S, T, V, W, Y; 5 Position A, C, D, F, G, H, I, K, L, M, N, E 131 to P, Q, R, S, T, V, W, Y; Position S 136 A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y; A, C, D, E, F, H, I, K, L, M, N, Position G 140 10 P, Q, R, S, T, V, W, Y; Position L 143 to A, C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, Y; Position R A, C, D, E, F, G, H, I, K, L, M, 145 N, P, Q, S, T, V, W, Y; 15 Position S 149 A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position Y 150 N, P, Q, R, S, T, V, W; Position A, C, D, E, F, G, H, I, K, M, N, L 152 to 20 P, Q, R, S, T, V, W, Y; Position A 153 C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; Position D 156 A, C, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; 25 Position Y A, C, D, E, F, G, H, I, K, L, M, 158 to N, P, Q, R, S, T, V, W;

33. The protein variant according to claim 32, wherein the pollen allergen comprises one or more of the following substitutions:

position P31 to A, G, L, or S; position A34 to D, E, F, H, K, N, P, Q, R, W, or Y; position P35 to A, G, L, or S;

376

position A37 to D, E, F, H, K, N, P, Q, R, W, or Y; position S39 to D, E, F, H, K, N, P, Q, R, W, or Y; position S40 to D, E, F, H, K, N, P, Q, R, W, or Y; position P59 to A, G, L, or S; 5 position L62 to D, E, F, H, K, N, P, Q, R, W, or Y; position P63 to A, G, L, or S.

- 34. The allergen according to claims 32-33, wherein the allergen has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 6.
 - 35. The pollen allergen according to claim 34, wherein the allergen has the amino acid sequence of SEQ ID NO 6.

36. The protein variant according to claim 30, wherein the allergen is mite allergen comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 7:

20

15

Position A, C, E, F, G, H, I, K, L, M, N, D 1 to P, Q, R, S, T, V, W, Y; Position Q 2 A, C, D, E, F, G, H, I, K, L, M, N, P, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, 25 Position N 11 P, Q, R, S, T, V, W, Y; Position A, C, D, F, G, H, I, K, L, M, N, Ε 12 to P, Q, R, S, T, V, W, Y; Position K 14 A, C, D, E, F, G, H, I, L, M, N, to 30 P, Q, R, S, T, V, W, Y;

P, Q, R, S, T, V, W, Y;

Position K 15 to A, C, D, E, F, G, H, I, L, M, N,

P, Q, R, S, T, V, W, Y;

Position D 19 to A, C, E, F, G, H, I, K, L, M, N,

P, Q, R, S, T, V, W, Y;

								3/1											
	Position		G		20		to		A,	C,	D,	E,	F,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R,	S,	T,	٧,	W,	Y;													
	Position		H		30		to		A,	C,	D,	E,	F,	G,	I,	K,	L,	Μ,	N,
	P, Q, R,	s,	T,	٧,	W,	Y;													
5	Position		R		31		to		A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q,	s,	T,	V,	W,	Y;													
	Position		G		32		to		A,	C,	D,	E,	F,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R,	s,	T,	V,	W,	Y;													
	Position		P		34		to		A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
10	N, Q, R,	s,	T,	V,	W,	Υ;													
	Position		T		36		to		A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q,	R,	s,	٧,	W,	Y;													
	Position		L		37		to		Α,	C,	, D	, E	, F	, G	, н	, I	, F	ζ,	Μ,
	N, P, Q,	R,	s,	T,	V,	W,	Y;												
15	Position		E		38		to		A,	C,	D,	F,	G,	Η,	I,	К,	L,	Μ,	N,
	P, Q, R,	s,	Т,	V,	W,	Υ;													
	Position						to		C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R,									_	_	_	_	_		_			
	Position						to		Α,	С,	D,	E,	F,	G,	Η,	1,	К,	Μ,	N,
20	P, Q, R,			٧,						a		_		**	-	7.7	т.	1.e	N7
	Position						to		Α,	C,	Ε,	r,	G,	н,	1,	ĸ,	ъ,	Μ,	IV,
	P, Q, R,								70		Б	72	173	C	77	т	v	M	NT
	Position				61		to		Α,	C,	D,	r,	r,	G,	п,	Ι,	ν,	M,	14,
	P, Q, R, Position						t 0		70	C	D	t	C.	u	т	ĸ	т.	M	N
25							CO		н,	٠,	υ,	Γ,	G,	11,	Τ,	π,	ъ,	т,	11,
	P, Q, R, Position						to		Α,	C	R	F	G.	н.	Т.	к.	Ť.,	М.	N.
	P, Q, R,								11,	٠,	۵,	-,	٠,	,	-,	,	_,	,	,
	Position						to		Α.	c.	D,	Ε.	F.	G.	н.	I.	ĸ.	L,	M,
30	P, Q, R,								,	٠,	-,	~,	-,	-,	,		,	-,	
-	Position						to		Α,	c.	D.	Ε.	F.	G,	I,	K,	L,	M,	N,
	P, Q, R,									- .	•	•	•	•	•	٠	٠	٠	•
	Position						to		Α,	c,	D,	Ε,	G,	Н,	I,	ĸ,	L,	Μ,	N,
	P, Q, R,								•	•	•	-	•	•	-				
		•	- •	•	•	•													

378

Position P 79 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y; Position Q 85 to A, C, D, E, F, G, H, I, K, L, M, N, P, R, S, T, V, W, Y; 5 Position A, C, E, F, G, H, I, K, L, M, N, D 87 to P, Q, R, S, T, V, W, Y; Position Y 90 A, C, D, E, F, G, H, I, K, L, M, to N, P, Q, R, S, T, V, W; Position T 91 A, C, D, E, F, G, H, I, K, L, M, 10 N, P, Q, R, S, V, W, Y; Position W 92 A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, Y; Position 93 A, C, D, E, F, G, H, I, K, L, M, N to P, Q, R, S, T, V, W, Y; Ρ 15 Position 95 A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y; Position K A, C, D, E, F, G, H, I, L, M, N, 96 to P, Q, R, S, T, V, W, Y; Position I 97 to A, C, D, E, F, G, H, K, L, M, N, 20 P, Q, R, S, T, V, W, Y; Position 98 C, D, E, F, G, H, I, K, L, M, N, A to P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position P 99 N, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, 25 Position S 101 N, P, Q, R, T, V, W, Y; Position E 102 A, C, D, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position T 123 to 30 N, P, Q, R, S, V, W, Y; A, C, D, E, F, G, H, I, L, M, N, Position K 126 P, Q, R, S, T, V, W, Y; Position R A, C, D, E, F, G, H, I, K, L, M, 128 to N, P, Q, S, T, V, W, Y;

379

Position D 129 to A, C, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

- 37. The mite allergen according to claims 36, wherein the aller5 gen has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 7.
- 38. The mite allergen according to claim 37, wherein the aller-10 gen has the amino acid sequence of SEQ ID NO 7.
- 39. The protein variant according to claim 30, wherein the allergen is mite allergen comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 15 8:

Position L 17 to A, C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, Y;

Position P 19 to A, C, D, E, F, G, H, I, K, L, M,

20 N, Q, R, S, T, V, W, Y;

Position G 20 to A, C, D, E, F, H, I, K, L, M, N,

P, Q, R, S, T, V, W, Y;

Position P 26 to A, C, D, E, F, G, H, I, K, L, M,

N, Q, R, S, T, V, W, Y;

25 Position I 28 to A, C, D, E, F, G, H, K, L, M, N,

P, Q, R, S, T, V, W, Y;

Position H 30 to A, C, D, E, F, G, I, K, L, M, N,

P, Q, R, S, T, V, W, Y;

Position R 31 to A, C, D, E, F, G, H, I, K, L, M,

30 N, P, Q, S, T, V, W, Y;

Position P 34 to A, C, D, E, F, G, H, I, K, L, M,

N, Q, R, S, T, V, W, Y;

Position F 35 to A, C, D, E, G, H, I, K, L, M, N,

P, Q, R, S, T, V, W, Y;

Position A, C, D, E, F, G, H, I, K, L, M, Q 36 N, P, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, L, M, N, Position K 55 to P, Q, R, S, T, V, W, Y; C, D, E, F, G, H, I, K, L, M, N, 5 Position Α 56 to P, Q, R, S, T, V, W, Y; Position s · 57 A, C, D, E, F, G, H, I, K, L, M, to N, P, Q, R, T, V, W, Y; Position 59 A, C, E, F, G, H, I, K, L, M, N, D 10 P, Q, R, S, T, V, W, Y; Position A, C, D, E, F, H, I, K, L, M, N, G 60 to P, Q, R, S, T, V, W, Y; Position ${f L}$ 61 to A, C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, Y; 15 Position A, C, D, F, G, H, I, K, L, M, N, Ε 62 P, Q, R, S, T, V, W, Y; Position A, C, E, F, G, H, I, K, L, M, N, D 64 to P, Q, R, S, T, V, W, Y; Position P 66 A, C, D, E, F, G, H, I, K, L, M, to 20 N, Q, R, S, T, V, W, Y; A, C, E, F, G, H, I, K, L, M, N, Position D 69 to P, Q, R, S, T, V, W, Y; Position K A, C, D, E, F, G, H, I, L, M, N, 89 P, Q, R, S, T, V, W, Y; 25 Position Y 90 A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W; Position A, C, D, E, F, G, H, I, K, L, M, Т 91 N, P, Q, R, S, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position W 92 to 30 N, P, Q, R, S, T, V, Y; Position A, C, D, E, F, G, H, I, K, L, M, P 95 N, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, L, M, N, Position K 96 to P, Q, R, S, T, V, W, Y;

381

Position Ι 97 A, C, D, E, F, G, H, K, L, M, N, P, Q, R, S, T, V, W, Y; Position P 99 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, L, M, N, 5 Position K 100 P, Q, R, S, T, V, W, Y; A, C, D, F, G, H, I, K, L, M, N, Position E 102 P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position N 103 10 P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position T 123 to N, P, Q, R, S, V, W, Y; Position 125 C, D, E, F, G, H, I, K, L, M, N, Α to P, Q, R, S, T, V, W, Y; 15 Position R 128 A, C, D, E, F, G, H, I, K, L, M,

- 40. The mite allergen according to claims 39, wherein the allergen has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 8.
 - 41. The mite allergen according to claim 40, wherein the allergen has the amino acid sequence of SEQ ID NO 8.
 - 42. The protein variant according to claim 30, wherein the allergen comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 9:

Position V 1 to A, C, D, E, F, G, H, I, K, L, M,

30 N, P, Q, R, S, T, W, Y;

25

N, P, Q, S, T, V, W, Y;

Position E 9 to A, C, D, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position K 10 to A, C, D, E, F, G, H, I, L, M, N, P, Q, R, S, T, V, W, Y;

	Position		N		13		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	М,
	P, Q, R,	s,	T,	V,	W,	Y;												
	Position		E		14		to	A,	C,	D,	F,	G,	Н,	I,	ĸ,	L,	Μ,	N,
	P, Q, R,	s,	T,	V,	W,	Y;												
5	Position		K		15		to	A,	C,	D,	Ε,	F,	G,	Н,	I,	L,	Μ,	N,
	P, Q, R,	s,	Т,	V,	W,	Y;												
	Position		Н		16		to	A,	C,	D,	E,	F,	G,	I,	K,	L,	Μ,	N,
	P, Q, R,	s,	T,	V,	W,	Y;												
	Position		A		18		to	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,	N,
10	P, Q, R,	s,	T,	v,	W,	Y;												
	Position		R		34		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q,	s,	T,	V,	,W.	Y;												
	Position		H		36		to	A,	C,	D,	E,	F,	G,	I,	K,	L,	M,	N,
	P, Q, R,	s,	T,	V,	W,	Y;												
15	Position		G		37		to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	M,	N,
	P, Q, R,	s,	T,	V,	W,	Y;												
	Position		S		38		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q,	R,	Т,	ν,	W,	Y;												
	Position		M		41		to	Α,	C,	D,	E,	F,	G,	Η,	I,	K,	L,	Μ,
20	N, P, Q,	R,	s,	Т,	٧,	Υ;												
	Position		V		42		to	Α,	C,	D,	Ε,	F,	G,	Η,	I,	Κ,	L,	Μ,
	N, P, Q,	R,	s,	T,	W,	Υ;												
	Position		A		43		to	C,	D,	E,	F,	G,	Η,	I,	K,	L,	Μ,	N,
	P, Q, R,	s,	T,	V,	W,	Υ;					•	-						
25	Position		F		54		to	A,	C,	D,	Ε,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R,																	
	Position						to	A,	C,	Ε,	F,	G,	н,	I,	Κ,	L,	Μ,	N,
	P, Q, R,																	
	Position						to.	Α,	C,	D,	Ε,	F,	G,	Η,	I,	К,	L,	Μ,
30	N, P, Q,			V,								_		_		_		
	Position						to	Α,	С,	D,	F,	G,	н,	I,	К,	ь,	М,	N,
	P, Q, R,						. .		~	D	_	,		17	T	17	т	14
	Position		P		59			Α,	C,	ט,	Ŀ,	F,	Ġ,	н,	Ι,	Λ,	ъ,	Μ,
	N, Q, R,	5,	Т,	٧,	₩,	Υ;												

A, C, D, E, F, G, H, I, K, M, N, Position Ъ 60 to P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position Q 61 N, P, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, 5 Position P 63 to N, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position R 67 N, P, Q, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, M, N, Position \mathbf{L} 69 to 10 P, Q, R, S, T, V, W, Y; Position 79 A, C, E, F, G, H, I, K, L, M, N, D to P, Q, R, S, T, V, W, Y; A, C, D, F, G, H, I, K, L, M, N, Position E 84 to P, Q, R, S, T, V, W, Y; 15 Position A, C, D, E, F, G, H, I, L, M, N, K 85 P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position Т 87 N, P, Q, R, S, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position to 94 20 N, Q, R, S, T, V, W, Y;

- 43. The allergen according to claims 42, wherein the allergen has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at 25 least 98% homology to SEQ ID NO 9.
 - 44. The allergen according to claim 43, wherein the allergen has the amino acid sequence of SEQ ID NO 9.
- 45. The protein variant according to claim 30, wherein the al-30 lergen comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 12:

Position I 1 to A, C, D, E, F, G, H, K, L, M, N, P, Q, R, S, T, V, W, Y;

								001											
	Position		D .		18		to		A,	C,	Ε,	F,	G,	Н,	I,	K,	L,	M,	N,
	P, Q, R,	s,	T,	V,	W,	Υ;													
	Position		D		41		to		A,	C,	E,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R,	s,	T,	٧,	W,	Y;													
5	Position		E		43		to		A,	C,	D,	F,	G,	Н,	I,	K,	L,	M,	N,
	P, Q, R,	s,	T,	٧,	W,	Υ;													
	Position		K		65		to		A,	C,	D,	E,	F,	G,	Н,	I,	L,	M,	N,
	P, Q, R,	s,	T,	V,	W,	Υ;													
	Position		Y		70		to		A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
10	N, P, Q,	R,	s,	Т,	V,	W;													
	Position		ĸ		113	3	to		A,	C,	D,	E,	F,	G,	Н,	I,	L,	Μ,	N,
	P, Q, R,	s,	T,	V,	W,	Y;													
	Position		G		114	Į.	to		A,	C,	D,	E,	F,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R,	s,	Т,	V,	W,	Y;													
15	Position		S		116	5	to		A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q,	R,	T,	V,	W,	Υ;													
	Position		P		119	•	to		A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, Q, R,	s,	Т,	V,	W,	Υ;													
	Position		E		120)	to		A,	C,	D,	F,	G,	Н,	Ι,.	K,	L,	Μ,	N,
20	P, Q, R,	s,	Т,	V,	W,	Y;													
	Position		L		122	2	to		A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	Μ,	N,
	P, Q, R,	s,	T,	V,	W,	Y;													
	Position								A,	C,	D,	E,	F,	G,	Н,	I,	L,	M,	N,
	P, Q, R,	s,	T,	V,	W,	Υ;													
25	Position		Q		126	5	to		A,	C,	D,	E,	F,	G,	Η,	I,	K,	L,	Μ,
	N, P, R,	S,	T,	V,	W,	Υ;													
	Position						to		Α,	C,	D,	E,	F,	G,	Η,	I,	K,	L,	Μ,
	N, P, R,	s,	T,	V,	W,	Y;													
	Position		S		,130)	to		A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
30	N, P, Q,	R,	T,	V,	W,	Y;													
	Position						to		A,	C,	D,	Ε,	F,	G,	Η,	I,	K,	L,	Μ,
	N, P, Q,				W,	Υ;													
	Position						to		A,	C,	D,	E,	F,	G,	Η,	K,	Ь,	Μ,	N,
	P, Q, R,	s,	T,	V,	W,	Y;													

385

Position I 143 to A, C, D, E, F, G, H, K, L, M, N, P, Q, R, S, T, V, W, Y;

- 46. The allergen according to claims 45, wherein the allergen 5 has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 12.
- 47. The allergen according to claim 46, wherein the allergen has 10 the amino acid sequence of SEQ ID NO 12.
- 48. The protein variant according to claim 30, wherein the allergen is a mammal allergen comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 13:

Position S 9 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, T, V, W, Y;

Position S 12 to A, C, D, E, F, G, H, I, K, L, M,

20 N, P, Q, R, T, V, W, Y;

Position Y 16 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, V, W;

Position D 23 to A, C, E, F, G, H, I, K, L, M, N,

P, Q, R, S, T, V, W, Y;

25 Position V 40 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, W, Y;

Position R 42 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, S, T, V, W, Y;

Position A 43 to C, D, E, F, G, H, I, K, L, M, N,

30 P, Q, R, S, T, V, W, Y;

Position L 44 to A, C, D, E, F, G, H, I, K, M,

N, P, Q, R, S, T, V, W, Y;

Position Y 50 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, V, W;

	Pos	sit:	ion		D		69		to	A,	C,	Ε,	F,	G,	Н,	I,	K,	L,	M,	N,
	P,	Q,	R,	s,	T,	V,	W,	Y;												
	Pos	sit	ion		N		80		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	P,	Q,	R,	s,	T,	V,	W,	Y;												
5	Pos	sit	ion		Y		84		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N,	P,	Q,	R,	s,	T,	V,	W;												
	Pos	sit	ion		P		110)	to	A,	C,	,D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N,	Q,	R,	s,	Т,	V,	W,	Y;												
	Pos	sit	ion		Q		112	?	to	A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
10	N,	P,	R,	s,	Т,	V,	W,	Y;												
	Pos	sit:	ion		E		120)	to	A,	C,	D,	F,	G,	Н,	I,	K,	L,	M,	N,
	P,	Q,	R,	s,	Т,	V,	W,	Y;												
	Po	sit	ion		P		121	•	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N,	Q,	R,	s,	Т,	V,	W,	Υ;												
15	Po	sit:	ion		D		122	?	to	A,	C,	Ε,	F,	G,	Η,	I,	K,	L,	Μ,	N,
	Ρ,	Q,	R,	s,	Т,	V,	W,	Y;												
	Po	sit	ion		Е		129)	to	A,	C,	D,	F,	G,	Η,	I,	K,	L,	Μ,	N,
	Ρ,	Q,	R,	T	, v	, W	, Y	;												
	Po	sit	ion		K		133	3	to	A,	C,	D,	E,	F,	G,	Н,	I,	L,	Μ,	N,
20	P,	Q,	R,	S,	Т,	V,	W,	Υ;												
	Po	sit	ion		G		139	•	to	Α,	C,	D,	E,	F,	Н,	I,	K,	L,	Μ,	N,
	Ρ,	Q,	R,	s,	Т,	V,	W,	Υ;												
	Po	sit:	ion		K		142	2	to	Α,	C,	D,	E,	F,	G,	Н,	I,	L,	Μ,	N,
	Ρ,	Q,	R,	s,	Τ,	V,	W,	Υ,												
25	Po	sit	ion		Q		156	5	to	Α,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N,	P,	R,	s,	Т,	V,	W,	Y;	•											
	Po	sit	ion		L		157	7	to	A,	C,	D,	E,	F,	G,	Н,	I,	Κ,	Μ,	N,
	P,	Q,	R,	s,	T,	V,	W,	Υ;												
	Po	sit	ion		R		158	3	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
30	N,	P,	Q,	s,	T,	V,	W,	Y;												
	Ро	sit	ion		G		159	•	to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	M,	N,
	P,	Q,	R,	s,	Т,	V,	W,	Y;												

49. The allergen according to claims 48, wherein the allergen has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 13.

5

- 50. The allergen according to claim 49, wherein the allergen has the amino acid sequence of SEQ ID NO 13.
- 51. The protein variant according to claim 30, wherein the al-10 lergen comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 15:

Position K 1 to A, C, D, E, F, G, H, I, L, M, N, P, Q, R, S, T, V, W, Y;

15 Position S 24 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, T, V, W, Y;

Position E 35 to A, C, D, F, G, H, I, K, L, M, N,

P, Q, R, S, T, V, W, Y;

Position R 45 to A, C, D, E, F, G, H, I, K, L, M,

20 N, P, Q, S, T, V, W, Y;

Position T 47 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, V, W, Y;

Position D 52 to A, C, E, F, G, H, I, K, L, M, N,

P, Q, R, S, T, V, W, Y;

25 Position Y 53 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, V, W;

Position N 59 to A, C, D, E, F, G, H, I, K, L, M,

P, Q, R, S, T, V, W, Y;

Position R 61 to A, C, D, E, F, G, H, I, K, L, M,

30 N, P, Q, S, T, V, W, Y;

Position W 62 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, V, Y;

Position W 63 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, V, Y;

	Position	N	65	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	P, Q, R, S,	T, V,	W, Y;												
	Position	D	66	to	A,	C,	E,	F,	G,	Η,	I,	K,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
5	Position	G	67	to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	М,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	P	70	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, Q, R, S,	T, V,	W, Y;												
	Position	S	72	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
10	N, P, Q, R,	T, V,	W, Y;												
	Position	R	73	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q, S,	T, V,	W, Y;												
	Position	L	75	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	Μ,	N,
	P, Q, R, S,	т, V,	W, Y;												
15	Position	I	78	to	A,	C,	D,	E,	F,	G,	Н,	K,	L,	M,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	P	79	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, Q, R, S,	T, V,	W, Y;												
	Position	S	81	to	A,	C,	D,	Ε,	F,	G,	Η,	I,	K,	L,	Μ,
20	N, P, Q, R,	T, V,	W, Y;												
•	Position	A	82	to	C,	D,	Ε,	F,	G,	Η,	I,	K,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	L	84	to	Α,	C,	D,	E,	F,	G,	Η,	I,	K,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;					•							
25	Position	T	118	to	Α,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
•	N, P, Q, R,	s, v,												_	
	Position			to	A,	C,	D,	E,	F,	G,	H,	I,	K,	L,	Μ,
	N, P, Q, S,										_		_		
	Position			to	Α,	C,	D,	E,	F,	Η,	I,	К,	L,	М,	. N,
30	P, Q, R, S,											_		_	
	Position		128	to	A,	C,	D,	Ε,	·F,	G,	Н,	Ι,	К,	ь,	Μ,
	N, P, Q, S,			_	_		_	_	_	~	•••	-	7.7	16	17
	Position		129	to	Α,	C,	D,	В,	r,	G,	н,	i,	K,	M,	N,
	P, Q, R, S,	T, V,	W, Y;					•							

Position

Α

P, Q, R, S, T, V, W, Y;

48

to

- 52. The allergen according to claims 51, wherein the allergen has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 15.
 - 53. The allergen according to claim 52, wherein the allergen has the amino acid sequence of SEQ ID NO 15.
- 10 54. The protein variant according to claim 30, wherein the allergen comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 16:

Position Т A, C, D, E, F, G, H, I, K, L, M, 15 N, P, Q, R, S, V, W, Y; Position A, C, E, F, G, H, I, K, L, M, N, D 28 P, Q, R, S, T, V, W, Y; Position V 31 A, C, D, E, F, G, H, I, K, L, M, to N, P, Q, R, S, T, W, Y; 20 Position A, C, D, E, F, G, H, I, K, L, M, Q 40 to N, P, R, S, T, V, W, Y; Position F 41 to A, C, D, E, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; Position K 42 A, C, D, E, F, G, H, I, L, M, N, 25 P, Q, R, S, T, V, W, Y; Position D A, C, E, F, G, H, I, K, L, M, N, 44 to P, Q, R, S, T, V, W, Y; Position Ε 45 to A, C, D, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; 30 Position Α 47 C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

C, D, E, F, G, H, I, K, L, M, N,

	Position		ĸ		51	to	A,	C,	D,	E,	F,	G,	н,	I,	L,	M,	N,
	P, Q, R,	s,	T,	V,	W, Y;												
	Position		D		54	to	A,	C,	E,	F,	G,	Н,	I,	K,	L,	M,	N,
	P, Q, R,	s,	T,	V,	W, Y;												
5	Position		S		58	to	A,	C,	.D,	E,	F,	G,	Η,	I,	K,	L,	Μ,
	N, P, Q,	R,	T,	V,	W, Y;												
	Position		P		61	to	A,	C,	D,	Ε,	F,	G,	Η,	I,	K,	L,	Μ,
	N, Q, R,																
	Position					to	Α,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
10	N, P, Q,									_		_					
	Position					to	Α,	С,	D,	Ε,	F,	G,	Ι,	К,	Ь,	Μ,	N,
	P, Q, R,					. .	20	a	ъ	-	_	**	~	7.7	_	15	3.7
	Position						Α,	C,	υ,	Е,	г,	н,	1,	K,	ь,	M,	N,
16	P, Q, R, Position						Α,	C	D	┖	Tr	C	ប	т	т.	M	N
13	P, Q, R,						А,	٠,	υ,	Δ,	Ι,	σ,	11,	Δ,	ш,	11,	14,
	Position						Α,	C.	E.	F.	G.	н.	I.	к.	L.	М.	N.
	P, Q, R,						,	-,	-,	-,	-,	••	-,		-,		,
	Position					to	Α,	C,	D,	Ε,	F,	Н,	I,	K,	L,	Μ,	N,
20	P, Q, R,																
	Position					to	A,	C,	D,	E,	F,	G,	Н,	I,	ĸ,	L,	Μ,
	N, P, Q,	s,	T,	v,	W, Y;												
	Position		s		173	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N, P, Q,	R,	T,	V,	W, Y;												
25	Position		A		178	to	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,	N,
	P, Q, R,	s,	T,	V,	W, Y;												
	Position		K		181	to	Α,	C,	, D	, .E	, F	, G	, н	, I	,	L,	M,
	N, P, Q,	R,	s,	Т,	V, W,	Υ;											
	Position					to	A,	C,	E,	F,	G,	Н,	I,	K,	L,	M,	N,
30	P, Q, R,																
	Position				185	to	Α,	C,	D,	F,	G,	Η,	I,	к,	L,	Μ,	N,
	P, Q, R,							_	_	_	_			-	17	-	10
	Position					to	Α,	Ċ,	υ,	ь,	r,	Ġ,	н,	Ι,	ĸ,	L,	М,
	N, Q, R,	ο,	Τ,	٧,	w, Y;												

WO 01/83559

391

PCT/DK01/00293

A, C, D, E, F, H, I, K, L, M, N, Position 187 G P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position S 188 to N, P, Q, R, T, V, W, Y; C, D, E, F, G, H, I, K, L, M, N, 5 Position Α 190 to P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position Т 192 to N, P, Q, R, S, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position V 203 10 N, P, Q, R, S, T, W, Y; A, C, D, E, F, G, H, K, L, M, N, Position I 204 to P, Q, R, S, T, V, W, Y; Position Ε 207 to A, C, D, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; 15 Position Р 208 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y; Position A, C, D, E, F, H, I, K, L, M, N, G 209 P, Q, R, S, T, V, W, Y; Position A, C, D, E, F, G, H, I, K, L, M, R 213 to 20 N, P, Q, S, T, V, W, Y; Position K 215 A, C, D, E, F, G, H, I, L, M, N, to P, Q, R, S, T, V, W, Y; A, C, E, F, G, H, I, K, L, M, N, Position D 236 to P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, 25 Position P 238 to N, Q, R, S, T, V, W, Y; Position A, C, D, E, F, G, H, I, K, L, M, Т 240 to N, P, Q, R, S, V, W, Y; Position Р A, C, D, E, F, G, H, I, K, L, M, 241 to 30 N, Q, R, S, T, V, W, Y; A, C, D, E, F, H, I, K, L, M, N, Position G 242 P, Q, R, S, T, V, W, Y;

55. The allergen according to claims 54, wherein the allergen has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 16.

5

- 56. The allergen according to claim 55, wherein the allergen has the amino acid sequence of SEQ ID NO 16.
- 57. The protein variant according to claim 30, wherein the al10 lergen comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 17:

Position A 33 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

15 Position A 36 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position T 38 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, V, W, Y;

Position P 54 to A, C, D, E, F, G, H, I, K, L, M,

20 N, Q, R, S, T, V, W, Y;

Position R 56 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, S, T, V, W, Y;

Position A 57 to C, D, E, F, G, H, I, K, L, M, N,

P, Q, R, S, T, V, W, Y;

25 Position S 58 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, T, V, W, Y;

Position V 68 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, W, Y;

Position L 70 to A, C, D, E, F, G, H, I, K, M, N,

30 P, Q, R, S, T, V, W, Y;

Position R 71 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, S, T, V, W, Y;

Position Y 78 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, V, W;

393

Position 80 A, C, D, E, F, G, H, I, L, M, N, K to P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, L, M, N, Position K 81 to P, Q, R, S, T, V, W, Y; 5 Position A, C, D, E, F, G, H, I, K, L, M, S 83 to N, P, Q, R, T, V, W, Y; 84 Position Α C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; A, C, D, F, G, H, I, K, L, M, N, Position Ε 102 10 P, Q, R, S, T, V, W, Y; Position K 103 to A, C, D, E, F, G, H, I, L, M, N, P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position Ρ 106 N, Q, R, S, T, V, W, Y; A, C, D, F, G, H, I, K, L, M, N, 15 Position E P, Q, R, S, T, V, W, Y; A, C, E, F, G, H, I, K, L, M, N, Position D 118 to P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position Y 119 to 20 N, P, Q, R, S, T, V, W; Position Ι 121 to A, C, D, E, F, G, H, K, L, M, N, P, Q, R, S, T, V, W, Y;

- 58. The allergen according to claims 57, wherein the allergen 25 has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 17.
- 59. The allergen according to claim 58, wherein the allergen has the amino acid sequence of SEQ ID NO 17.
 - 60. The protein variant according to claim 30, wherein the allergen comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 18:

	Pos	siti	lon		W		2		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	М,
	N,	P,	Q,	R,	s,	T,	V,	Y;												
	Pos	siti	lon		D		13		to	A,	C,	E,	F,	G,	Η,	I,	K,	L,	Μ,	N,
5	P,	Q,	R,	S,	T,	V,	W,	Y;												
	Pos	siti	ion		E		15		to	A,	C,	D,	,	F,	G,	Н,	I,	K,	L,	Μ,
	N,	Ρ,	Q,	R,	s,	T,	V,	W,	Y;											
	Pos	siti	ion		G		16		to	A,	C,	D,	Ε,	F,	Н,	I,	K,	L,	Μ,	N,
	P,	Q,	R,	s,	T,	٧,	W,	Y;												
10	Pos	siti	lon		D		28		to	A,	C,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P,	Q,	R,	s,	T,	V,	W,	Y;												
	Pos	siti	ion		V		31		to	Α,	C,	D,	E,	F,	G,	Н,	I,	Κ,	L,	Μ,
	N,	P,	Q,	R,	s,	Т,	W,	Y;												
	Pos	siti	ion		Q		34		to	A,	C,	D,	E,	F,	G,	Η,	I,	Κ,	L,	Μ,
15	N,	Ρ,	R,	s,	Т,	V,	W,	Y;												
	Pos	siti	ion		Q		40		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N,	P,	R,	s,	T,	V,	W,	Υ;											•	
	Pos	sit	ion		L		41		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	Μ,	N,
	Ρ,	Q,	R,	s,	Т,	V,	W,	Υ;												
20	Pos	sit:	ion		P		43		to	A,	C,	D,	Ε,	F,	G,	Η,	I,	К,	L,	Μ,
	N,	Q,	R,	s,	T,	V,	W,	Υ;												
	Pos	siti	ion		Q		44		to	Α,	C,	D,	Ε,	F,	G,	Η,	I,	Κ,	L,	Μ,
	N,	P,	R,	s,	Т,	v,	W,	Υ;												
	Pos	sit:	ion		D		47		to	Α,	C,	Ε,	F,	G,	Η,	I,	K,	L,	Μ,	N,
25					Т,															
	Pos	sit:	ion		K		50		to	Α,	C,	D,	E,	F,	G,	Η,	I,	L,	Μ,	N,
	P,	Q,	R,	s,	T,	٧,	W,	Υ;												
	Pos	siti	ion		K		51		to	A,	C,	D,	B,	F,	G,	Н,	I,	L,	Μ,	N,
					T,															
30					E				to	Α,	C,	D,	F,	G,	Н,	I,	К,	L,	Μ,	N,
					Т,											_		_		
					G				to	A,	C,	D,	E,	F,	Н,	I,	K,	Ь,	Μ,	N,
	P,	Q,	R,	S,	T,	V,	W,	Y;												

	Position		A		60		to	C,	D,	E,	F,	G,	Н,	I,	К,	Ĺ,	M,	N,
	P, Q, R,	s,	Т,	V,	W,	Y;												
	Position		T		62		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q,	R,	s,	V,	W,	Y;												
5	Position		G		67		to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	M,	N,
	P, Q, R,	S,	T,	V,	W,	Υ;												
	Position		G		68		to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R,	s,	T,	V,	W,	Υ;												
	Position		E		69		to	Α,	C,	D,	F,	G,	Η,	I,	K,	L,	M,	N,
10	P, Q, R,	s,	Т,	V,	W,	Y;												
	Position						to	Α,	C,	D,	Ε,	F,	G,	Η,	I,	К,	L,	Μ,
	N, P, Q,																	
	Position							Α,	C,	D,	Ε,	F,	G,	Н,	К,	L,	Μ,	N,
	P, Q, R,							_	_	_	_		~		_	•-	Ţ.	
15	Position						to	Α,	C,	ъ,	E,	F',	G,	н,	Ι,	к,	ь,	М,
	N, P, R,							7.	a	Б	т.	ъ	a	***	т	7/	т	3.5
	Position					37 -		Α,	C,	D,	E,	г,	G,	н,	Ι,	ĸ,	ь,	141,
	N, P, R,							7\	C	D	E	.	G	ш	т	ĸ	т.	M
20	Position N, P, Q,							А,	С,	υ,	E,	Γ,	G,	Π,	Ι,	м,	ц,	и,
20	Position							Δ.	С.	D.	E.	₽.	G,	н.	Τ.	Ť1.	М.	N.
	P, Q, R,							,	٠,	۷,	۵,	- ,	٠,	,	-,	_,	,	,
	Position						to	Α,	C,	D,	Ε,	F,	Н,	I,	K,	L,	M,	N,
	P, Q, R,							•	•	•	•	•	·	•	·	·	·	•
25			P .			•	to	Α,	c,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N, Q, R,					Υ;												
	Position						to	Α,	C,	D,	Ē,	F,	G,	н,	I,	K,	L,	М,
	P, Q, R,	s,	T,	v,	W,	Υ;												
	Position		D		106	;	to	A,	C,	E,	F,	G,	н,	I,	ĸ,	L,	M,	N,
30	P, Q, R,	s,	T,	v,	W,	Y;												
	Position		P		108	3	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, Q, R,	s,	T,	v,	W,	Υ;												
	Position		T		110).	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N, P, Q,	R,	s,	v,	W,	Y;												

396

Position R 120 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, S, T, V, W, Y; Position A, C, E, F, G, H, I, K, L, M, N, D 123 to P, Q, R, S, T, V, W, Y; 5 Position Y 124 A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W; Position E 127 A, C, D, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; A, C, D, F, G, H, I, K, L, M, N, Position E 129 to 10 P, Q, R, S, T, V, W, Y;

- 61. The allergen according to claims 60, wherein the allergen has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 18.
 - 62. The allergen according to claim 61, wherein the allergen has the amino acid sequence of SEQ ID NO 18.
- 20 63. The protein variant according to claim 30, wherein the allergen comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 19:

A, C, D, E, F, G, H, I, K, L, M, Position \mathbf{T} 28 to 25 N, P, Q, R, S, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position Т 31 to N, P, Q, R, S, V, W, Y; Position Α C, D, E, F, G, H, I, K, L, M, N, 33 to P, Q, R, S, T, V, W, Y; 30 Position G 34 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; Position C, D, E, F, G, H, I, K, L, M, N, Α 36 to

P, Q, R, S, T, V, W, Y;

								001											
	Position		T		53		to		A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q,	R,	s,	V,	W,	Y;													
	Position		A		54		to		C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R,	s,	T,	V,	W,	Y;													
5	Position		R		56		to		A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q,	S,	T,	V,	W,	Y;													
	Position		G		64		to		A,	C,	D,	E,	F,	Н,	I,	K,	L,	М,	N,
	P, Q, R,	s,	T,	V,	W,	Y;													
	Position		T		65		to		A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
10	N, P, Q,	R,	s,	V,	W,	Y;													
	Position		R		66		to		A,	C,	D,	E,	F,	G,	Η,	I,	K,	L,	Μ,
	N, P, Q,	s,	T,	V,	W,	Υ;													
	Position		V		68		to		A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q,	R,	s,	Τ,	W,	Y;													
15	Position		R		71		to		A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q,	s,	Т,	V,	W,	Y;													
	Position		D		74		to		A,	C,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R,	s,	Т,	V,	W,	Υ;													
	Position		Y		78		to		A,	C,	D,	Ε,	F,	G,	H,	I,	Κ,	L,	Μ,
20	N, P, Q,	R,	s,	T,	V,	W;													
	Position		S		83		to		A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q,	R,	T,	V,	W,	Υ;													
	Position		Α		84		to		C,	D,	E,	F,	G,	Н,	I,	К,	L,	Μ,	N,
	P, Q, R,	s,	T,	V,	W,	Υ;													
25	Position		N		101	L	to		Α,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	P, Q, R,	s,	T,	V,	W,	Υ;													
	Position		E		102	2	to		Α,	C,	D,	F,	G,	Н,	I,	K,	L,	M,	N,
	P, Q, R,	s,	T,	v,	W,	Υ;													
	Position		K		103	3	to		A,	C,	D,	E,	F,	G,	Н,	I,	L,	M,	N,
30	P, Q, R,	s,	T,	ν,	W,	Y;													
	Position		Q		105	5	to		A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, R,	s,	T,	V,															
	Position		P		106	5	to		A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N, Q, R,	s,	T,	V,	W,	Y;													

Position Т 108 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, V, W, Y; Position K 115 to A, C, D, E, F, G, H, I, L, M, N, P, Q, R, S, T, V, W, Y; 5 Position A, C, D, E, F, G, H, I, K, L, M, Y 119 to N, P, Q, R, S, T, V, W; Position T 133 A, C, D, E, F, G, H, I, K, L, M, to N, P, Q, R, S, V, W, Y; Position A, C, D, E, F, G, H, I, K, L, M, V 136 10 N, P, Q, R, S, T, W, Y; Position G 137 A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; A, C, E, F, G, H, I, K, L, M, N, Position 150 to D P, Q, R, S, T, V, W, Y; to A, C, D, E, F, G, H, I, K, L, M, 15 Position Т 153 N, P, Q, R, S, V, W, Y; Position A 158 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; C, D, E, F, G, H, I, K, L, M, N, Position Α 161 to 20 P, Q, R, S, T, V, W, Y; C, D, E, F, G, H, I, K, L, M, N, Position Α 169 to P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, L, M, N, Position K 175 P, Q, R, S, T, V, W, Y; A, C, E, F, G, H, I, K, L, M, N, 25 Position D 176 P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position R 181 to N, P, Q, S, T, V, W, Y; Position 199 A, C, E, F, G, H, I, K, L, M, N, D to 30 P, Q, R, S, T, V, W, Y; Position A, C, D, E, F, G, H, I, K, L, M, R 200 N, P, Q, S, T, V, W, Y; Position K 206 A, C, D, E, F, G, H, I, L, M, N, P, Q, R, S, T, V, W, Y;

	Position	G	207	to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	M,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	S	208	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N, P, Q, R,	T, V,	W, Y;												
5	Position	A	209	to	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	K	215	to	A,	C,	D,	E,	F,	G,	Н,	I,	L,	M,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	E	227	to	A,	C,	D,	F,	G,	Н,	I,	K,	L,	Μ,	N,
10	P, Q, R, S,	T, V,	W, Y;	•											
	Position	K	228	to	A,	C,	D,	E,	F,	G,	Н,	I,	L,	M,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	I	229	to	A,	C,	D,	E,	F,	G,	Н,	ĸ,	L,	M,	N,
	P, Q, R, S,	T, V,	W, Y;												
15	Position	P	231	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, Q, R, S,	T, V,	W, Y;												
	Position	G	232	to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	M,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	T	233	to	A,	C,	D,	E,	F,	G,	Η,	I,	K,	L,	Μ,
20	N, P, Q, R,	s, v,	W, Y;												
	Position	N	236	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	P, Q, R, S,	T, V,	W, Y;												
	Position	E	239	to	Α,	C	D,	,	F,	G,	Н,	I,	К,	L,	Μ,
	N, P, Q, R,	s, T,	v, w,	Y;											
25	Position	D	243	to	A,	C,	E,	F,	G,	Н,	I,	K,	L,	M,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	Y	244	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N, P, Q, R,	s, T,	V, W;												
	Position	I	246	to	A,	C,	D,	E,	F,	G,	Н,	K,	L,	M,	N,
30	P, Q, R, S,	T, V,	W, Y;												
	Position	G	247	to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	M,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	Q	248	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N, P, R, S,	T, V,	W, Y;												

400

Position G 249 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

- 64. The allergen according to claims 63, wherein the allergen 5 has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 19.
- 65. The allergen according to claim 64, wherein the allergen has 10 the amino acid sequence of SEQ ID NO 19.
 - 66. The protein variant according to claim 30, wherein the allergen comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 20:

Position S 1 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;

15

Position Y 5 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W;

20 Position E 8 to A, C, D, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position H 9 to A, C, D, E, F, G, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position L 12 to A, C, D, E, F, G, H, I, K, M, N,

25 P, Q, R, S, T, V, W, Y;

Position E 47 to A, C, D, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position E 48 to A, C, D, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

30 Position E 70 to A, C, D, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position A 71 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

	Position	R	76	to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N, P, Q, S,	T, V,	W, Y;												
	Position	K	78	to	A,	C,	D,	E,	F,	G,	Н,	I,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
5	Position	G	80	to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	S	81	to	A,	C,	D,	E,	F,	G,	Η,	I,	K,	L,	Μ,
	N, P, Q, R,	T, V,	W, Y;												
	Position	K	88	to	A,	C,	D,	E,	F,	G,	Н,	I,	L,	Μ,	N,
10	P, Q, R, S,	T, V,	W, Y;												
	Position	G	90	to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	Q	91	to	A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, R, S,	T, V,	W, Y;												
15	Position			to	A,	C,	D,	F,	G,	Η,	I,	K,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	E	100	to	Α,	C,	D,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R, S,										,				
	Position		101	to	Α,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
20	N, Q, R, S,														
	Position				Α,	C,	D,	Ε,	F,	G,	Η,	I,	К,	L,	Μ,
	N, P, Q, R,							_	_			_		_	
	Position			to	Α,	C,	D,	Ε,	F,	G,	н,	I,	К,	ь,	М,
	N, P, Q, R,				_	_	_	_	_	_		_		_	
25	Position		104	to	Α,	C,	D,	В,	F,	G,	н,	Ι,	К,	ь,	М,
	N, Q, R, S,				_	_	_	_	_		_	•	_		
	Position		105	to	Α,	C,	D,	E,	F,	н,	Ι,	K,	'n,	Μ,	N,
	P, Q, R, S,				_	_	_	_	_	_		-			
		Q	106	to	Α,	Ċ,	D,	E,	F',	G,	н,	Ι,	K,	ш,	Μ,
30	N, P, R, S,			L -	•	~	_	_	a		_	7.5	т	M). T
	Position		112	το	Α,	C,	D,	r,	G,	н,	Ι,	Λ,	ית,	Μ,	IN,
	P, Q, R, S,			to	74	C	ro.	פז	C	IJ	т	v	Τ.	₩.	ΝT
	Position		116	to	А,	C,	E,	r,	G,	п,	Ι,	к,	η,	i"1 ,	TA '
	P, Q, R, S,	T, V,	W, Y;												

402

Position 117 A, C, D, E, F, G, H, I, K, L, M, Y to N, P, Q, R, S, T, V, W; Position Ι 119 to A, C, D, E, F, G, H, K, L, M, N, P, Q, R, S, T, V, W, Y; 5 Position D 120 A, C, E, F, G, H, I, K, L, M, N, to P, Q, R, S, T, V, W, Y; Position A, C, D, E, F, G, H, I, K, L, M, Q 121 N, P, R, S, T, V, W, Y; A, C, D, E, F, H, I, K, L, M, N, Position 122 G 10 P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, M, N, Position L 123 P, Q, R, S, T, V, W, Y;

- 67. The allergen according to claims 66, wherein the allergen 15 has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 20.
- 68. The allergen according to claim 67, wherein the allergen has 20 the amino acid sequence of SEQ ID NO 20.
 - 69. The protein variant according to claim 30, wherein the allergen comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 21:

Position L 4 to A, C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, Y;

Position Y 6 to A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, V, W;

25

30 Position Y 17 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W;

Position S 20 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;

403

Position 31 A, C, D, E, F, G, H, I, K, L, M, S to N, P, Q, R, T, V, W, Y; Position K 32 to A, C, D, E, F, G, H, I, L, M, N, P, Q, R, S, T, V, W, Y; 5 Position C, D, E, F, G, H, I, K, L, M, N, Α 33 to P, Q, R, S, T, V, W, Y; Position K 37 A, C, D, E, F, G, H, I, L, M, N, to P, Q, R, S, T, V, W, Y;

- 10 70. The allergen according to claims 69, wherein the allergen has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 21.
- 15 71. The allergen according to claim 70, wherein the allergen has the amino acid sequence of SEQ ID NO 21.
- 72. The protein variant according to claim 30, wherein the allergen comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 22:

Position N 6 to A, C, D, E, F, G, H, I, K, L, M, P, Q, R, S, T, V, W, Y; Position C A, D, E, F, G, H, I, K, L, M, N, 25 P, Q, R, S, T, V, W, Y; Position K A, C, D, E, F, G, H, I, L, M, N, 23 P, Q, R, S, T, V, W, Y; Position Y 24 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W; 30 Position G 25 A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; Position S 26 A, C, D, E, F, G, H, I, K, L, M, to

N, P, Q, R, T, V, W, Y;

	Position	L		27		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	Μ,	N,
	P, Q, R, S,	Т,	V,	W,	Y;												
	Position	K		28		to	A,	C,	D,	E,	F,	G,	Н,	I,	L,	M,	N,
	P, Q, R, S,	T,	v,	W,	Y;												
5	Position	P		29		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N, Q, R, S,	T,	V,	W,	Y;	•											
	Position	K		34		to	A,	C,	D,	E,	F,	G,	Н,	ı,	L,	Μ,	N,
	P, Q, R, S,	T,	V,	W,	Y;												
	Position	v		35		to	A,	C,	D,	E,	F,	G,	н,	I,	K,	L,	М,
10	N, P, Q, R,	s,	T,	W,	Y;												
	Position	Y		39		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N, P, Q, R,	s,	Т,	v,	W;												
	Position	G		40		to	A,	C,	D,	E,	F,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R, S,	T,	V,	W,	Y;												
15	Position	L		41		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	Μ,	N,
	P, Q, R, S,	T,	V,	W,	Y;												
	Position	ĸ		43		to	A,	C,	D,	E,	F,	G,	Н,	I,	L,	Μ,	N,
	P, Q, R, S,	Т,	V,	W,	Y;												
	Position	E		45		to	A,	C,	D,	F,	G,	Н,	I,	K,	L,	Μ,	N,
20	P, Q, R, S,	T,	V,	W,	Y;												
	Position	Q		47		to ·	A,	C,	D,	E,	F,	G,	Η,	I,	K,	L,	Μ,
	N, P, R, S,	T,	v,	W,	Y;			•									
	Position	D		48		to	A,	C,	E,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R, S,	T,	V,	W,	Υ;												
25	Position	L		50		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	Μ,	N,
	P, Q, R, S,	T,	V,	W,	Y;												
	Position	K		51		to	A,	C,	D,	E,	F,	G,	Н,	I,	L,	Μ,	N,
	P, Q, R, S,	T,	٧,	W,	Y;												
	Position	E		52		to	A,	C,	D,	F,	G,	Н,	I,	K,	L,	Μ,	N,
30	P, Q, R, S,	T,	V,	W,	Y;												
	Position	D		55		to	A,	C,	E,	F,	G,	Н,	I,	K,	L,	M,	N,
	P, Q, R, S,	T,	V,	W,	Y;												
	Position	Q		58		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,
	N, P, R, S,	T,	v,	W,	Y;												

Position K 59 to A, C, D, E, F, G, H, I, L, M, N, P, Q, R, S, T, V, W, Y; Position R 62 A, C, D, E, F, G, H, I, K, L, M, to N, P, Q, S, T, V, W, Y; 5 Position G 71 A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; Position P 72 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y; Position P 74 to A, C, D, E, F, G, H, I, K, L, M, 10 N, Q, R, S, T, V, W, Y; Position Р 75 A, C, D, E, F, G, H, I, K, L, M, to N, Q, R, S, T, V, W, Y; Position V 83 A, C, D, E, F, G, H, I, K, L, M, to N, P, Q, R, S, T, W, Y; 15 Position N 85 A, C, D, E, F, G, H, I, K, L, M, P, Q, R, S, T, V, W, Y; Position D 86 A, C, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; Position A, C, D, F, G, H, I, K, L, M, N, Ε 87 to 20 P, Q, R, S, T, V, W, Y; A, C, D, E, F, G, H, I, K, L, M, Position Y 90 to N, P, Q, R, S, T, V, W; Position Q 93 A, C, D, E, F, G, H, I, K, L, M, to N, P, R, S, T, V, W, Y; 25 Position L 120 A, C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, Y; Position T 121 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; Position G 122 to A, C, D, E, F, H, I, K, L, M, N, 30 P, Q, R, S, T, V, W, Y; Position S 123 A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y; Position \mathbf{T} 124 A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, V, W, Y;

	Position	A	125	to	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	A	126	to	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
!	Position	Y	128	to	A,	C,	D,	E,	F,	G,	н,	I,	K,	L,	M,
	N, P, Q, R,	s, T,	V, W;												
	Position	D	130	to	A,	C,	Ε,	F,	G,	Н,	I,	К,	L,	Μ,	N,
	P, Q, R, S,	T, V,	W, Y;												
	Position	D	140	to	A,	C,	E,	F,	G,	Η,	I,	K,	L,	Μ,	N,
1	P, Q, R, S,	T, V,	W, Y;												
	Position	P	147	to	Α,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,
	N, Q, R, S,	T, V,	W, Y;												
	Position	K	148	to	Α,	C,	D,	Ε,	F,	G,	Η,	I,	L,	Μ,	N,
	P, Q, R, S,														
1	Position				Α,	C,	D,	Ε,	F,	G,	Η,	I,	L,	Μ,	N,
	P, Q, R, S,				_		_		_	_		_		_	
	Position				Α,	C,	D,	Ε,	F,	G,	н,	I,	к,	Ь,	Μ,
	N, P, Q, R,				_	_	_	_			_		_		
	Position				Α,	С,	υ,	ĸ,	F,	Н,	Ι,	к,	ы,	М,	N,
2	P, Q, R, S,				_				a		_	•			3.7
	Position				Α,	C,	ע,	в,	G,	Н,	ı,	ĸ,	ь,	iνι ,	N,
	P, Q, R, S,				70	a	n	קו	77	C	7.7	т	т	M	λī
	Position				А,	С,	υ,	ь,	r,	G,	п,	Ι,	ц,	м,	14,
•	P, Q, R, S,				70	C	ח	127	┎	G	т	v	т.	м	N
2:	Position P, Q, R, S,			to	А,	C,	υ,	ь,	Γ,	G,	Δ,	ĸ,	ш,	11,	14,
	Position			to	Δ.	C	ת	F	묘	G	н	ĸ	т.	м	N
	P, Q, R, S,			20	11,	٠,	Σ,	_,	-,	٥,	11,	10,	-,	,	,
	Position			to	Α.	c.	D.	F.	G.	н.	I.	к.	L.	M.	N.
3	P, Q, R, S,				,	-,	_,	-,	-,	,	_,	•	•		•
	Position		184	to	Α,	c.	D,	E.	F.	G,	н,	I,	Ь,	M,	N,
	P, Q, R, S,					- •	•	•	- •	•	•	•	٠	•	•
	Position		185	to	Α,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,
	N, P, Q, R,				•	•	•	•	•	•	•	•	-		
		- •	•												

WO 01/83559

407

Position A, C, D, E, F, G, I, K, L, M, N, Η 186 to P, Q, R, S, T, V, W, Y; Position 199 A, C, D, E, F, G, H, I, K, L, M, N to P, Q, R, S, T, V, W, Y; 5 Position K 201 A, C, D, E, F, G, H, I, L, M, N, to P, Q, R, S, T, V, W, Y; Position N 202 A, C, D, E, F, G, H, I, K, L, M, to P, Q, R, S, T, V, W, Y; Position Е 203 A, C, D, F, G, H, I, K, L, M, N, 10 P, Q, R, S, T, V, W, Y; Position Ε 204 A, C, D, F, G, H, I, K, L, M, N, to P, Q, R, S, T, V, W, Y; Position T 208 A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, V, W, Y;

15

73. The allergen according to claims 72, wherein the allergen has at least 81%, preferably at least 85%, more preferably at least 90%, even more preferably at least 96%, most preferably at least 98% homology to SEQ ID NO 22.

20

- 74. The allergen according to claim 73, wherein the allergen has the amino acid sequence of SEQ ID NO 22.
- 75. The protein variant according to claims 22-29, wherein the 25 protein variant is an enzyme.
 - 76. The protein variant according to claim 75, wherein the enzyme is a protease, a lipolytic enzyme, a carbohydrase or a oxidoreductase.

30

77. The protein variant according to claim 76, wherein the protease is a subtilisin comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 10:

Position -6 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, insertion, deletion; -5 A, C, D, E, F, G, H, I, K, L, M, N, P, Position to 5 Q, R, S, T, V, W, Y, insertion, deletion; Position **-4** to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, insertion, deletion; A, C, D, E, F, G, H, I, K, L, M, N, P, Position -2 to Q, R, S, T, V, W, Y, insertion, deletion; 10 Position 3a to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, insertion, deletion; Position 28a to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, insertion, deletion; Position 44a to A, C, D, E, F, G, H, I, K, L, M, N, P, 15 Q, R, S, T, V, W, Y, insertion, deletion; Position 44b to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, insertion, deletion; 139 Position to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, insertion, deletion; 20 Position 148 A, C, D, E, F, G, H, I, K, L, M, N, P, to Q, R, S, T, V, W, Y, insertion, deletion; A, C, D, E, F, G, H, I, K, L, M, N, P, Position 149 to Q, R, S, T, V, W, Y, insertion, deletion; 264a to A, C, D, E, F, G, H, I, K, L, M, N, P,

78. The protein variant according to claim 76, wherein the protease is a subtilisin comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 30 10:

25 Q, R, S, T, V, W, Y, insertion, deletion;

Position -1 to G, V, L, I, W, P, C, M, F, N, Q, Y, S, T, D, E, R, H;
Position 1 to V, L, I, W, M, F, Y, S, T, R;

	Position	2	to	G,	V,	I,	M,	F,	N,	Q	, Y	, s	, T	, н	;		
	Position	3	to	W,	Μ,	F,	N,	Q,	Y,	S	, D	, E	, R	, н	;		
	Position	4	to	V,	L,	W,	M,	F,	Y,	R	;						
	Position	5	to	٧,	L,	I,	W,	Μ,	F,	N	, Q	, Y	, Т	, R	, н;		
5	Position	6	to	G,	V,	L,	I,	W,	, P	,	Μ,	N,	Q,	T,	D,	E,	R,
	Н;																
	Position	9	to	G,	V,	L,	I,	W,	, P	,	Μ,	F,	Q,	Y,	s,	T,	R,
	Н;																
	Position	10	to	G,	A,	V,	I,	W,	, P	,	Μ,	N,	Q,	Y,	s,	T,	D,
10	E, R;																
	Position	12	to	G,	Α,	V,	L,	I	, W	,	Μ,	F,	N,	Q,	Y,	s,	Т,
	D, E;																
	Position	14	to									, Q					
	Position	15	to	G,	Α,	V,	L,	I,	, W	,	Ρ,	Μ,	F,	N,	Q,	Y,	S,
15	T, E, H;																
	Position	17	to									', Y					_
	Position	18	to	G,	Α,	L,	I,	W,	, P	•	Μ,	F,	N,	Q,	Υ,	Т,	D,
	E, H;			_					_					_	_		
	Position	19	to									, s					
20	Position _	20	to	G,	٧,	ь,	Ι,	W,	, M	,	F',	N,	Q,	Υ,	S,	Т,	υ,
	E;			_		_			_		_	_	_	_	_		
	Position	21	to									, T			, R,	н;	
	Position	22	to	-								, s			_	_	-
	Position	24	to	G,	٧,	ь,	Ι,	w,	, M	,	F,	N,	Q,	Υ,	S,	υ,	E,
25	R;	25	•	~	-		-	~	Y.Y	,	2.5	_	NT.	_	37		m
	Position	25	to	G,	Α,	۷,	ъ,	Ι,	, w	,	Μ,	F,	N,	Q,	ı,	5,	Ι,
	D, E, R, H;	07	. .	~	T	T	T.J	D	м	17	v	· m	u				
	Position	27	to									', T					
20	Position	38	to), Y				T	n
30	Position E, R, H;	39	to	G,	A,	٧,	u,	Ι,	, **	,	rı,	F,	14,	ų,	-,	τ,	ים
	Position	40	to	7,7	т.	т	t aj	M	म	N		, Y	т	. P	. н.		
	Position	42	to									N,					D.
	E, R, H;	74	20	σ,	Α,	, ب	** ,	C,	, 14	• •	-,	11,	×1	-,	~,	-,	-,
	L, K, II,																

```
G, L, H;
  Position
              43
                    to
                          G, V, L, I, W, P, M, F, Y, S, T;
  Position
              44
                    to
                          G, V, L, I, W, P, M, F, N, Q, Y, S, T,
  Position
              45
                    to
  D, E, R, H;
5 Position
                          G, A, L, I, W, P, M, F, Y, H;
              46
                    to
  Position
                          G, A, V, L, I, W, P, M, F, N, Q, Y, S,
              47
                    to
  T, D, E, R, H;
  Position
              48
                          A, L, I, P, M, F, N, Y, D, H;
                    to
                          G, A, V, I, W, P, M, F, N, Q, Y, S, T,
  Position
              49
                    to
10 D, E, R, H;
                          G, A, W, M, N, Q, Y, S, T, D, E, H;
  Position
              50
                    to
                          V, L, I, W, M, F, N, Y, R;
              51
  Position
                    to
                          V, L, I, W, M, F, Y, S, T, R;
              52
  Position
                    to
                          A, V, L, I, W, M, F, N, Q, Y, S, D, E,
  Position
              53
                    to
15 H;
  Position
              54
                    to
                          V, L, I, W, M, F, S, R;
              55
                          G, A, V, L, I, W, C, M, F, N, Q, Y, T,
  Position
                    to
  D, E, R, K, H;
  Position
                          G, V, L, I, W, M, F, N, Q, Y, S, T, H;
              56
                    to
                          G, A, V, L, I, W, M, F, N, Q, Y, S, T,
20 Position
              57
                    to
  D, E, R, K, H;
                          L, W, M, F, N, Y, R;
  Position
              58
                    to
                          A, V, L, I, C, T, H;
  Position
              59
                    to
                          V, L, I, W, M, F, Y;
  Position
              61
                    to
                          G, A, L, W, M, F, N, Y, R;
25 Position
              62
                    to
                          G, V, L, I, W, P, C, M, F, N, Q, Y, S,
  Position
              64
                    to
  T, D, E, R, K, H;
  Position
              75
                    to
                          L;
  Position
              79
                          I;
                    to
30 Position
              80
                    to
                          G;
                          A, V, L, I, W, M, F, Q, Y, S, T, D, E,
  Position
              87
                    to
  Η;
                          G, V, L, I, W, P, F, N, Y, T, E;
  Position
              ·89
                    to
```

															•		
	Position	91	to	G,	A,	v,	L,	I,	W	, P	, M	1 ,]	N,	Υ,	s,	Т,	D,
	E, R, H;																
	Position	98	to	A;													
	Position	99	to	V,	L,	I,	W,	Μ,	F,	Q,	Y,	Н;					
5	Position	100	to	G,	v,	L,	I,	W,	M,	F,	Y,	R,	Н;	:			
	Position	101	to	v,	I,	W,	Μ,	F,	N,	Q,	Y,	Н;					
	Position	102	to	V,	L,	I,	W,	Μ,	F,	Y,	R,	Н,	G;	;			
	Position	108	to	I;													
	Position	109	to	N;									•				
10	Position	112	to	E;													
	Position	113	to	W;													
	Position	115	to	I;													
	Position	117	to	N;													
	Position	118	to	N;										-			
15	Position	126	to	L;													
	Position	127	to	G,	A,	V,	I,	W,	M,	F,	Υ,	R,	Н,	. L;	;		
	Position	128	to	I,	W;												
	Position	129	to	W;													
	Position	130	to	W,	F,	Y,	R;										
20	Position	131	to	W,	Y,	R;											
	Position	132	to	L,	W,	Μ,	F,	Y,	s,	H;							
	Position	133	to	A,	L,	I,	W,	Μ,	F,	Y,	R;						
	Position	134	to	L,	I,	W,	F,	N,	Q,	Y,	R,	Н;					
	Position	136	to	G,	A,	W,	P,	N,	Υ,	s,	Τ,	D,	Ε,	. Н;	;		
25	Position	137	to	G,	A,	v,	I,	W,	P,	M,	N,	Υ,	Н;	;			
	Position	140	to	G,	A,	v,	L,	I,	W	, P	, M	ſ, :	F,	N,	Q,	Y,	s,
	Т, Н;																
	Position	141	to	G,	v,	L,	I,	W,	P,	M,	F,	Q,	s,	. D,	Е,	Н;	
	Position	143	to	v,	L,	I,	P,	Μ,	F,	N,	Y,	R;					
30	Position	144	to	L,	W,	P,	M,	F,	N,	Q,	Y,	s,	D,	. Е,	, R,	Н;	
	Position	145	to	G,	v,	L,	I,	W,	M,	F,	Q,	Υ,	D,	E,	R,	Н;	
	Position	146	to	G,	A,	W,	L,	I,	W	, M	, F	r,]	N,	Q,	Y,	T,	D,
	E, R, H;																
	Position	155	to	v,	L,	I,	W,	Μ,	F,	Y,	R;						

```
Position
                          V, I, W, F, R;
              156
                    to
                          G, A, V, L, I, W, M, F, Y, T, R, H;
  Position
              157
                     to
                          V, L, I, W, M, F, Y;
  Position
              158
                     to
                          A, W, M, Y, T, R, H;
  Position
              159
                     to
5 Position
              160
                          W, M, F, Y, R, H;
                    to
  Position
              161
                          I, W, M, F, Y, H;
                    to
  Position
              167
                          R, K;
                    to
  Position
              171
                     to
                          D;
  Position
              172
                     to
                          G, A, V, L, I, S, T, H;
10 Position
              173
                     to
                          G, A, V, L, I, W, M, F, N, Q, Y, S, T,
  E, H;
                          G, A, V, L, I, W, C, M, F, Q, Y, T, D,
  Position
              181
                     to
  R, K, H;
                          A, V, L, I, W, C, M, F, N, Q, Y, S, T,
  Position
              182
                     to
15 D, E, H;
                          G, A, V, L, W, C, M, F, N, Q, Y, S, T,
  Position
              183
                     to
  E, R, H;
  Position
                          A, V, L, I, W, C, M, F, N, Q, Y, T, E,
              184
                     to
  H;
                          G, A, V, L, I, W, C, M, F, N, Q, Y, T,
20 Position
              185
                     to
  E, H;
  Position
                          G, A, V, L, W, M, F, N, Q, Y, S, T, D,
              186
                     to
  E, R, H;
  Position
              188
                     to
                           G, A, V, L, W, F, S, R, K;
25 Position
              189
                     to
                          W, F;
                          A, V, L, I, W, M, F, Y, T, R, H;
  Position
              191
                     to
  Position
                          G, L, I, W, M, N, Q, Y, S, T, D, R, H;
              192
                     to
                          W, N, Q, Y, D, H;
  Position
              194
                     to
  Position
              195
                          W, P, Y;
                     to
30 Position
              196
                          G, A, V, L, I, W, P, M, F, N, Q, Y, S,
                     to
  T, D, E, R, H;
  Position
                          V, F, Y, R, H;
              203
                     to
  Position
              204
                     to
                          I, W, M, Y, H;
  Position
              206
                     to
                          F;
```

```
Position
              209
                           Y, R;
                     to
                           W, F, Y;
  Position
              210
                     to
  Position
               211
                           L, W, M, F, Y, H;
                     to
  Position
               212
                           V, L, I, W, M, F, Y, T, R, H;
                     to
5 Position
              214
                           W, Y, R;
                     to
  Position
              215
                           A, L, I, W, M, F, Y;
                     to
  Position
              216
                     to
                           A, L, I, W, M, F, Y, R;
  Position
               217
                           W, R;
                     to
  Position
               218
                           G, A, L, W, P, M, F, Y, R, H;
                     to
10 Position
               221
                     to
                           S;
  Position
               236
                           S;
                     to
  Position
               240
                           N;
                     to
  Position
               241
                     to
                           W;
  Position
               243
                     to
                           N;
15 Position
              245
                     to
                           Q;
  Position
               247
                     to
                           G, V, I, W, P, F, Y, S, T, R;
                           W, P, F, Y, E, R, H;
  Position
               248
                     to
  Position
              249
                           L, W, P, F, S, D, E, H;
                     to
  Position
              251
                    to
                           G, L, I, W, P, M, F, Y, H;
20 Position
                           G, A, W, P, N, Q, Y, T, E, R, H;
              252
                     to
  Position
                           G, V, L, I, W, M, F, N, Q, Y, S, D, E,
               254
                     to
  R, H;
  Position
              255
                     to
                           G, L, W, M, F, N, Y, T, D, H;
                           G, A, V, L, I, W, M, F, Q, Y, S, T, D,
  Position
               256
                     to
25 H;
  Position
                          G, A, L, I, W, C, M, F, N, Q, Y, S, T,
               257
                     to
  D, E, K, H;
  Position
                          G, A, V, L, I, W, C, M, F, N, Q, Y, S,
               258
                    to
  T, E, K, H;
30 Position
              259
                          A, V, I, W, M, F, N, Q, Y, S, T, E, R;
                     to
  Position
              260
                     to
                          L, I, W, M, F, Y, T, H;
  Position
              261
                          L, N, S, H;
                     to
  Position
                          G, A, V, L, I, W, P, F, N, Q, Y, T, D,
              262
                    to
  E, R, H;
```

414

	Position	263	to	G,	A,	V,	L,	I,	P,	C,	Μ,	N,	Q,	Y,	s,	T,
	R, K;															
	Position	265	to	v,	L,	I,	W,	М,	F, Y	7;		•				
	Position	269	to	G,	A,	v,	L,	I,	W,	Μ,	F,	N,	Q,	Y,	s,	T,
5	E, R, H;															
	Position	271	to	A,	L,	I,	W,	P, 1	М, Е	F, N	I, Y	, s	, T	, R,	Н;	
	Position	272	to	G,	A,	v,	L,	I,	W,	P,	M,	F,	N,	Q;	Y,	Т,
	D, E, H;															
	Position	275	to	G,	Α,	V,	L,	Ι,	W, N	1, F	, N	, у	, T	, D;		
10																

79. The protein variant according to claim 76, wherein the protease is a subtilisin comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 15 10:

```
Position
               -1
                           Deletion;
                     to
                           Insertion, deletion;
  Position
               9
                     to
  Position
              10
                     to
                           Insertion, deletion;
                           Insertion, deletion;
20 Position
              12
                     to
                           Insertion, deletion;
  Position
               14
                     to
  Position
               15
                     to
                           Insertion, deletion;
  Position
              17
                     to
                           Insertion, deletion;
                           Insertion, deletion;
  Position
               18
                     to
                           Insertion, deletion;
25 Position
               19
                     to
                           Insertion, deletion;
  Position
               20
                     to
                           Insertion, deletion;
  Position
               21
                     to
  Position
               22
                     to
                           Insertion, deletion;
                           Insertion, deletion;
  Position
               24
                     to
                           Insertion, deletion;
30 Position
               25
                     to
  Position
                           Insertion, deletion;
               46
                     to
                           Insertion, deletion;
  Position
               47
                     to
                           Insertion, deletion;
  Position
               48
                     to
  Position
                           Insertion, deletion;
               49
                     to
```

	Position	50	to	Insertion,	deletion;
	Position	51	to	Insertion,	deletion;
	Position	52	to	Insertion,	deletion;
	Position	53	to	Insertion,	deletion;
5	Position	54	to	Insertion,	deletion;
	Position	55	to	Insertion,	deletion;
	Position	58	to	Insertion,	deletion;
	Position	59	to	Insertion,	deletion;
	Position	61	to	Insertion,	deletion;
10	Position	64	to	Insertion,	deletion;
	Position	78	to	Insertion:	
	Position	80	to	Insertion;	
	Position	91	to	Insertion,	deletion;
	Position	98	to	Deletion;	
15	Position	99	to	Deletion;	
	Position	102	to	Deletion;	
	Position	105	to	Insertion;	
	Position	108	to	Insertion;	
	Position	109	to	Insertion;	
20	Position	112	to	<pre>Insertion;</pre>	
	Position	113	to	Insertion;	
	Position	115	to	Insertion;	
	Position	116	to	Insertion;	
	Position	117	to	Insertion;	
25	Position	118	to	<pre>Insertion;</pre>	
	Position	131	to	Deletion;	
	Position	134	to	Insertion,	deletion;
	Position	136	to	Insertion,	deletion;
	Position	137	to	Insertion,	deletion;
30	Position	140	to	Insertion,	deletion;
	Position	141	to	Insertion,	deletion;
	Position	143	to	Insertion,	deletion;
	Position	144	to	Insertion,	deletion;
	Position	145	to	Insertion,	deletion;

	Position	146	to	Insertion,	deletion;
	Position	171	to	Deletion;	
	Position	172	to	Deletion;	
	Position	173	to	Deletion;	
5	Position	181	to	Deletion;	
	Position	182	to	Deletion;	
	Position	183	to	Deletion;	
	Position	184	to	Deletion;	
	Position	185	to	Deletion;	
10	Position	186	to	Deletion;	
	Position	188	to	Deletion;	
	Position	189	to	Deletion;	
	Position	191	to	Deletion;	
	Position	192	to	Deletion;	
15	Position	195	to	Deletion;	
	Position	196	to	Insertion,	deletion;
	Position	221	to	Insertion;	
	Position	236	to	Insertion;	
	Position	237	to	<pre>Insertion;</pre>	
20	Position	238	to	Insertion;	
	Position	239	to	Insertion;	
	Position	240	to	Insertion;	
	Position	241	to	Insertion;	
	Position	242	to	Insertion;	
25	Position	243	to	Insertion;	
	Position	244	to	Insertion;	
	Position	245	to	Insertion;	
	Position	247	to	Insertion,	deletion;
	Position	248	to	Insertion,	deletion;
30	Position	249	to	Insertion,	deletion;
	Position	251	to	Insertion,	deletion;
	Position	252	to	Insertion,	deletion;
	Position	254	to	Insertion,	deletion;
	Position	255	to	Insertion,	deletion;

417

	Position	256	to	Insertion,	deletion;
	Position	257	to	Insertion,	deletion;
	Position	258	to	Insertion,	deletion;
	Position	259	to	Insertion,	deletion;
5	Position	260	to	Insertion,	deletion;
	Position	261	to	Insertion,	deletion;
	Position	262	to	Insertion,	deletion;
	Position	263	to	Insertion,	deletion;
	Position	265	to	Insertion,	deletion;
10	Position	269	to	Insertion,	deletion;
	Position	271	to	Insertion,	deletion;
	Position	272	to	Insertion,	deletion;
	Position	275	to	Insertion,	deletion;

15 80. The protein variant according to claim 76, wherein the protease is a subtilisin comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 10:

20

Position

T, D, E, R, K, H;

28

to

```
G, A, V, L, I, W, P, M, F, N, Q, Y, S,
  Position
              7
                    to
  T, D, E, R, H;
                         G, A, L, W, P, C, M, F, N, Q, Y, S, T,
  Position
              8
                    to
  D, E, R, K, H;
                         G, L, I, W, P, M, F, N, Q, Y, S, D, E,
25 Position
              13
                    to
  H;
                         G, A, V, L, I, W, P, M, F, N, Q, Y, S,
  Position
              16
                    to
  D, E, R, H;
                         G, A, V, L, I, W, M, F, Y, E, R, H;
  Position
              23
                    to
30 Position
                         G, A, V, L, I, W, M, F, N, Q, Y, S, T,
              26
  D, E, R, H;
```

G, A, V, L, I, W, P, M, F, N, Q, Y, S,

```
Position
              29
                    to
                          G, A, V, L, I, W, P, M, F, N, Q, Y, S,
  T, D, E, R, K, H;
  Position
              33
                    to
                          V, L, I, W, C, M, F, N, Q, Y, R, H;
  Position
              35
                    to
                          G, A, V, L, I, W, M, F, N, Q, Y, S, T,
 5 D, E, R, K, H;
                          V, L, I, W, P, M, F, N, Y, S, T, R, H;
  Position
              36
                    to
  Position
              37
                          L, I, W, M, F, N, Q, Y, S, R, H;
                    to
  Position
                          G, V, L, I, W, M, F, N, Q, Y, S, T, R,
              41
                    to
  H;
10 Position
              60
                          G, A, V, L, I, W, C, M, F, Q, Y, T, D,
                    to
  R, K, H;
  Position
              63
                    to
                          G, A, V, L, I, W, M, F, Y, T, R, H;
  Position
              73
                    to
                          A;
  Position
              74
                    to
                          A;
15 Position
                          V;
              81
                    to
  Position
              82
                    to
                          L;
  Position
              86
                          G, A, V, L, I, W, M, F, N, Q, Y, T, D,
                    to
  E, R, H;
  Position
              88
                          A, V, L, I, W, M, F, N, Q, Y, S, T, D,
                    to
20 E, R, H;
                          G, A, V, L, I, W, P, M, F, N, Q, Y, S,
  Position
              92
                    to
  T, D, E, R, K, H;
  Position
              93
                    to
                          G, A, V, L, I, W, P, M, F, N, Q, Y, S,
  T, D, E, R, K, H;
25 Position
                          G, V, L, I, W, P, M, F, N, Y, T, D, E,
              94
                    to
  K, H;
  Position
              96
                    to
                          L, W, F, Y, R, K;
  Position
              97
                    to
                          V, L, W, C, M, F, Y, H;
Position
              111
                    to
                          I;
30 Position
              114
                    to
                          A;
  Position
              119
                    to
                          Μ:
  Position
              124
                    to
                          M;
  Position
              135
                          G, L, P, C, N, Q, T, R, H;
                    to
```

```
Position
              138
                    to
                          G, A, V, L, I, W, P, M, F, N, Q, Y, S,
  T, D, E, R, H;
  Position
                          G, A, L, I, W, P, C, M, F, N, Q, Y, S,
              142
                    to
  T, D, E, R, K, H;
5 Position
              147
                          G, A, V, L, W, M, F, N, Q, Y, S, T, D,
                    to
  E, R, K, H;
  Position
              151
                    to
                          G, V, L, I, W, P, C, M, F, N, Q, Y, S,
  T, D, E, R, K, H;
  Position
              162
                          I, W, F, Y, R;
10 Position
              163
                          V, W, M, F, H;
                    to
Position
                          G, V, L, I, W, C, M, F, N, Q, Y, S, T,
              168
                    to
  D, E, R, K, H;
                          C, E, F, G, H, I, K, L, M, N, Q, R, T,
  Position
              169
                    to
  V, W, Y;
15 Position
              174
                    to
                          G, A, L, I, W, P, C, M, F, N, Q, Y, S,
  T, D, E, R, K, H;
  Position
              176
                          G, A, V, L, I, W, P, C, M, F, N, Q, Y,
                    to
  S, T, D, E, R, K, H;
  Position
              179
                    to
                          G, A, V, L, I, W, P, M, F, N, Q, Y, S,
20 T, D, E, R, K, H;
  Position
              187
                    to
                          A, V, L, I, W, M, F, Y, R;
  Position
              190
                          G, A, V, L, I, W, C, M, F, N, Q, Y, S,
                    to
  T, R, K, H;
  Position
              193
                    to
                          G, V, L, I, W, M, F, N, Q, Y, S, T, D,
25 E, R, H;
  Position
                          G, V, L, I, W, P, M, F, Q, Y, S, T, H;
              197
                    to
  Position
              198
                          G, A, L, I, W, P, C, M, F, N, Q, Y, S,
                    to
  T, D, E, R, K, H;
  Position
                          W, F, Y, R, K;
              205
                    to
30 Position
              208
                          A, V, L, I, W, C, M, F, Y, T, R, K, H;
                    to
  Position
              219
                    to
                          G, A, V, L, I, W, F, Y, R, H;
  Position
              222
                    to
                          Μ;
  Position
              232
                    to
                          A;
  Position
              233
                    to
                          L;
```

420

Position 234 I; to Position 250 to G, A, V, L, I, W, P, M, F, N, Q, Y, S, T, D, E, R, H; Position 267 to G, A, V, L, I, W, M, F, N, Q, Y, S, T, 5 D, E, R, H; Position 268 to G, V, L, I, W, C, M, N, Q, Y, S, T, D, E, R, K, H; Position 270 G, L, I, W, P, M, F, N, Q, Y, S, T, D, to E, R, K, H; 10 Position G, A, V, L, I, W, P, M, F, N, Q, Y, S, 273 to T, D, E, R, K, H; Position 274 to W, P, M, F, N, Q, Y, T, D, E, R, H;

81. The protein variant according to claim 76, wherein the pro15 tease is a subtilisin comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 10:

Insertion, deletion; Position 13 to 20 Position 16 to Insertion, deletion; Position Insertion, deletion; 23 to Position 26 Insertion, deletion; to Position 28 Insertion, deletion; to Position Insertion, deletion; 29 to 25 Position 35 to Deletion; Position Insertion, deletion; 60 to Position 63 to Insertion; Position 81 to Insertion; Position 82 to Insertion; 30 Position 92 Insertion, deletion; to Position 93 to Insertion, deletion; Position 94 to Insertion, deletion; Position 96 Deletion, to Position 106 Insertion, to

	Position	111	to	Insertion,	
	Position	114	to	Insertion,	
	Position	119	to	Insertion,	
	Position	124	to	Insertion,	
5	Position	138	to	Insertion,	deletion;
	Position	142	to	Insertion,	deletion;
	Position	147	to	Insertion,	deletion;
	Position	151	to	Insertion,	deletion;
	Position	174	to	Insertion,	deletion;
10	Position	176	to	Insertion,	deletion;
	Position	179	to	Insertion,	deletion;
	Position	187	to	Deletion;	
	Position	190	to	Deletion;	
	Position	193	to	Deletion;	
15	Position	197	to	Insertion,	deletion;
	Position	198	to	Insertion,	deletion;
	Position	232	to	Insertion,	
	Position	233	to	Insertion,	
	Position	234	to	Insertion,	
20	Position	246	to	Insertion,	
	Position	250	to	Insertion,	deletion;
	Position	267	to	Insertion,	deletion;
	Position	268	to	Insertion,	deletion;
	Position	270	to	Insertion,	deletion;
25	Position	273	to	Insertion,	deletion;

82. The protein variant according to claims 76-81, wherein the protease is a savinase-like subtilisin comprising one or more 30 of the following substitutions corresponding to any of the following in SEQ ID NO: 10:

Position to G, V, I, M, F, N, Q, Y, S, T, H, 2 Position 3 to W, M, F, N, Q, Y, S, D, E, R, H,

422

Position 4 to V, L, W, M, F, Y, R,

Position 6 to G, V, L, I, W, P, M, N, Q, T, D, E, R, H,

Position 9 to G, V, L, I, W, P, M, F, Q, Y, S, T, R,

5 H, insertion, deletion,

Position 10 to G, A, V, I, W, P, M, N, Q, Y, S, T, D, E, R, insertion, deletion,

Position 12 to G, A, V, L, I, W, M, F, N, Q, Y, S, T, D, E, insertion, deletion,

10 Position 14 to V, L, I, W, P, M, F, N, Q, Y, T, R, H, insertion, deletion,

Position 15 to G, A, V, L, I, W, P, M, F, N, Q, Y, S, T, E, H, insertion, deletion,

Position 17 to G, A, V, I, W, P, M, F, Y, H, insertion,

15 deletion,

Position 18 to G, A, L, I, W, P, M, F, N, Q, Y, T, D, E, H, insertion, deletion,

Position 19 to A, V, I, W, M, F, N, Y, S, T, D, R, H, insertion, deletion,

20 Position 20 to G, V, L, I, W, M, F, N, Q, Y, S, T, D, E, insertion, deletion,

Position 21 to G, V, I, W, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

Position 22 to G, V, L, I, W, M, F, Y, S, T, insertion,

25 deletion,

Position 24 to G, V, L, I, W, M, F, N, Q, Y, S, D, E, R, insertion, deletion,

Position 25 to G, A, V, L, I, W, M, F, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

30 Position 27 to G, L, I, W, P, M, F, Y, T, H,

Position 37 to L, I, W, M, F, N, Q, Y, S, R, H,

Position 40 to V, L, I, W, M, F, N, Q, Y, T, R, H,

Position 42 to G, A, L, W, C, M, F, N, Q, Y, S, T, D,

E, R, H,

Position 43 to G, L, H,

Position 44 to G, V, L, I, W, P, M, F, Y, S, T,

Position 45 to G, V, L, I, W, P, M, F, N, Q, Y, S, T,

D, E, R, H,

WO 01/83559

5 Position 46 to G, A, L, I, W, P, M, F, Y, H, insertion, deletion,

Position 47 to G, A, V, L, I, W, P, M, F, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

Position 48 to A, L, I, P, M, F, N, Y, D, H, insertion,

10 deletion,

Position 50 to G, A, W, M, N, Q, Y, S, T, D, E, H, insertion, deletion,

Position 51 to V, L, I, W, M, F, N, Y, R, deletion, insertion,

15 Position 54 to V, L, I, W, M, F, S, R, deletion, insertion,

Position 55 to G, A, V, L, I, W, C, M, F, N, Q, Y, T, D, E, R, K, H, deletion, insertion,

Position 57 to G, A, V, L, I, W, M, F, N, Q, Y, S, T,

20 D, E, R, K, H,

Position 58 to L, W, M, F, N, Y, R, insertion, deletion,

Position 59 to A, V, L, I, C, T, H, insertion, deletion,

25 Position 61 to V, L, I, W, M, F, Y, insertion, deletion,

Position 64 to G, V, L, I, W, P, C, M, F, N, Q, Y, S, T, D, E, R, K, H, insertion, deletion,

Position 75 to L,

30 Position 78 to insertion,

Position 79 to I,

Position 87 to A, V, L, I, W, M, F, Q, Y, S, T, D, E, H,

Position 89 to G, V, L, I, W, P, F, N, Y, T, E,

insertion, deletion,

WO 01/83559

424

Position 91 G, A, V, L, I, W, P, M, N, Y, S, T, D, to E, R, H, insertion, deletion, Position 98 to A, deletion, Position 100 G, V, L, I, W, M, F, Y, R, H, to 5 Position 101 V, I, W, M, F, N, Q, Y, H, to Position 102 V, L, I, W, M, F, Y, R, H, G, deletion, to Position 109 to N, insertion, Position 112 to E, insertion, Position 113 to W, insertion, 10 Position insertion, 116 to Position N, insertion, 117 to Position 126 to L, Position 127 G, A, V, I, W, M, F, Y, R, H, L, to Position I, W, 128 to 15 Position 129 to W, Position 130 to W, F, Y, R, Position W, Y, R, deletion, 131 to Position L, W, M, F, Y, S, H, 132 to Position 133 to A, L, I, W, M, F, Y, R, 20 Position 134 L, I, W, F, N, Q, Y, R, H, insertion, to deletion, Position 136 to G, A, W, P, N, Y, S, T, D, E, H, insertion, deletion, Position 137 to G, A, V, I, W, P, M, N, Y, H, insertion, 25 deletion, Position 140 to G, A, V, L, I, W, P, M, F, N, Q, Y, S, T, H, insertion, deletion, Position 141 to G, V, L, I, W, P, M, F, Q, S, D, E, H, insertion, deletion, 30 Position 143 V, L, I, P, M, F, N, Y, R, insertion, to deletion, Position 144 L, W, P, M, F, N, Q, Y, S, D, E, R, H, to

425 Position 145 to G, V, L, I, W, M, F, Q, Y, D, E, R, H, insertion, deletion, Position 146 G, A, W, L, I, W, M, F, N, Q, Y, T, D, to E, R, H, insertion, deletion, 5 Position 155 to V, L, I, W, M, F, Y, R, Position 156 to V, I, W, F, R, Position 157 to G, A, V, L, I, W, M, F, Y, T, R, H, Position 158 to V, L, I, W, M, F, Y, Position 160 to W, M, F, Y, R, H, 10 Position 161 to I, W, M, F, Y, H, Position 167 to R, K, Position 170 A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; Position 171 to D, deletion, 15 Position 172 to G, A, V, L, I, S, T, H, deletion, Position 173 to G, A, V, L, I, W, M, F, N, Q, Y, S, T, E, H, deletion, Position 181 to G, A, V, L, I, W, C, M, F, Q, Y, T, D, R, K, H, deletion, 20 Position 183 to G, A, V, L, W, C, M, F, N, Q, Y, S, T, E, R, H, deletion, Position 184 to A, V, L, I, W, C, M, F, N, Q, Y, T, E, H, deletion, Position 185 G, A, V, L, I, W, C, M, F, N, Q, Y, T, to 25 E, H, deletion, Position 186 G, A, V, L, W, M, F, N, Q, Y, S, T, D, to E, R, H, deletion, Position 188 to G, A, V, L, W, F, S, R, K, deletion, Position 189 W, F, deletion, to 30 Position 191 to A, V, L, I, W, M, F, Y, T, R, H, deletion, Position 192 to G, L, I, W, M, N, Q, Y, S, T, D, R, H,

W, N, Q, Y, D, H,

deletion, Position

194

to

426

Position 195 to W, P, Y, deletion, Position 197 G, V, L, I, W, P, M, F, Q, Y, S, T, H, to insertion, deletion, Position V, F, Y, R, H, 203 to 5 Position 206 to F, Position 209 Y, R, to Position W, F, Y, 210 to Position 212 V, L, I, W, M, F, Y, T, R, H, to Position 214 to W, Y, R, 10 Position A, L, I, W, M, F, Y, R, 216 to Position W, R, 217 to Position 218 to G, A, L, W, P, M, F, Y, R, H, Position S, insertion, 221 to Position S, insertion, 236 to 15 Position 237 to insertion, Position 239 insertion, to Position N, insertion, 240 to Position 241 to W, insertion, Position 242 to insertion, 20 Position 244 to insertion, Position 245 Q, insertion, to Position G, V, I, W, P, F, Y, S, T, R, insertion, 247 to deletion, Position 248 to W, P, F, Y, E, R, H, insertion, dele-25 tion, Position G, L, I, W, P, M, F, Y, H, insertion, 251 to deletion, Position 252 G, A, W, P, N, Q, Y, T, E, R, H, inserto tion, deletion, 30 Position G, L, W, M, F, N, Y, T, D, H, insertion, 255 to deletion, Position 256 G, A, V, L, I, W, M, F, Q, Y, S, T, D, to H, insertion, deletion,

WO 01/83559

427

Position 257 to G, A, L, I, W, C, M, F, N, Q, Y, S, T, D, E, K, H, insertion, deletion,

Position 258 to G, A, V, L, I, W, C, M, F, N, Q, Y, S, T, E, K, H, insertion, deletion,

5 Position 259 to A, V, I, W, M, F, N, Q, Y, S, T, E, R, insertion, deletion,

Position 260 to L, I, W, M, F, Y, T, H, insertion, deletion,

Position 261 to L, N, S, H, insertion, deletion,

10 Position 262 to G, A, V, L, I, W, P, F, N, Q, Y, T, D, E, R, H, insertion, deletion,

Position 263 to G, A, V, L, I, P, C, M, N, Q, Y, S, T, R, K, insertion, deletion,

Position 265 to V, L, I, W, M, F, Y, insertion, dele-15 tion,

Position 271 to A, L, I, W, P, M, F, N, Y, S, T, R, H, insertion, deletion,

Position 272 to G, A, V, L, I, W, P, M, F, N, Q, Y, T, D, E, H, insertion, deletion,

- 20 Position 275 to G, A, V, L, I, W, M, F, N, Y, T, D, insertion, deletion,
- 83. The protein variant according to claim 82, wherein the savinase-like subtilisin comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO: 10:

Position 6 to G, V, L, I, W, P, M, N, Q, T, D, E, R, H,

30 Position 9 to G, V, L, I, W, P, M, F, Q, Y, S, T, R, H, insertion, deletion,

Position 10 to G, A, V, I, W, P, M, N, Q, Y, S, T, D, E, R, insertion, deletion,

Position 14 to V, L, I, W, P, M, F, N, Q, Y, T, R, H, insertion, deletion,

Position 15 to G, A, V, L, I, W, P, M, F, N, Q, Y, S, T, E, H, insertion, deletion,

5 Position 17 to G, A, V, I, W, P, M, F, Y, H, insertion, deletion,

Position 18 to G, A, L, I, W, P, M, F, N, Q, Y, T, D, E, H, insertion, deletion,

Position 19 to A, V, I, W, M, F, N, Y, S, T, D, R, H,

10 insertion, deletion,

Position 20 to G, V, L, I, W, M, F, N, Q, Y, S, T, D, E, insertion, deletion,

Position 21 to G, V, I, W, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

15 Position 37 to L, I, W, M, F, N, Q, Y, S, R, H,

Position 43 to G, L, H,

Position 45 to G, V, L, I, W, P, M, F, N, Q, Y, S, T, D, E, R, H,

Position 47 to G, A, V, L, I, W, P, M, F, N, Q, Y, S,

20 T, D, E, R, H, insertion, deletion,

Position 50 to G, A, W, M, N, Q, Y, S, T, D, E, H, insertion, deletion,

Position 51 to V, L, I, W, M, F, N, Y, R, deletion, insertion,

25 Position 54 to V, L, I, W, M, F, S, R, deletion, insertion,

Position 59 to A, V, L, I, C, T, H, insertion, deletion,

Position 89 to G, V, L, I, W, P, F, N, Y, T, E,

30 Position 91 to G, A, V, L, I, W, P, M, N, Y, S, T, D, E, R, H, insertion, deletion,

Position 101 to V, I, W, M, F, N, Q, Y, H,

Position 109 to N, insertion,

Position 112 to E, insertion,

```
Position
              113
                    to
                           W, insertion,
  Position
              127
                    to
                          G, A, V, I, W, M, F, Y, R, H, L,
  Position
              128
                     to
                           I, W,
  Position
              129
                    to
                           W,
5 Position
              130
                           W, F, Y, R,
                    to
  Position
              131
                    to
                          W, Y, R, deletion,
  Position
              133
                          A, L, I, W, M, F, Y, R,
                     to
  Position
              136
                          G, A, W, P, N, Y, S, T, D, E, H, inser-
                    to
  tion, deletion,
10 Position
              137
                          G, A, V, I, W, P, M, N, Y, H, insertion,
                    to
  deletion,
  Position
              140
                    to
                          G, A, V, L, I, W, P, M, F, N, Q, Y, S,
  T, H, insertion, deletion,
  Position
              141
                    to
                          G, V, L, I, W, P, M, F, Q, S, D, E, H,
15 insertion, deletion,
  Position
              143
                    to
                          V, L, I, P, M, F, N, Y, R, insertion,
  deletion,
  Position
              144
                    to
                          L, W, P, M, F, N, Q, Y, S, D, E, R, H,
  insertion, deletion,
20 Position
              145
                    to
                          G, V, L, I, W, M, F, Q, Y, D, E, R, H,
  insertion, deletion,
  Position
              146
                    to
                          G, A, W, L, I, W, M, F, N, Q, Y, T, D,
  E, R, H, insertion, deletion,
  Position
              155
                    to
                          V, L, I, W, M, F, Y, R,
25 Position
              157
                          G, A, V, L, I, W, M, F, Y, T, R, H,
                    to
  Position
              158
                          V, L, I, W, M, F, Y,
                    to
  Position
              160
                          W, M, F, Y, R, H,
                    to
  Position
              161
                          I, W, M, F, Y, H,
                    to
  Position
                          R, K,
              167
                    to
30 Position
              170
                          A, C, D, E, F, G, H, I, K, L, M, N, P,
  Q, R, S, T, V, W, Y;
  Position
              171
                          D, deletion,
                    to
  Position
              172
                          G, A, V, L, I, S, T, H, deletion,
                    to
```

```
Position
               173
                           G, A, V, L, I, W, M, F, N, Q, Y, S, T,
                     to
   E, H, deletion,
   Position
               181
                     to
                           G, A, V, L, I, W, C, M, F, Q, Y, T, D,
   R, K, H, deletion,
 5 Position
               184
                     to
                           A, V, L, I, W, C, M, F, N, Q, Y, T, E,
  H, deletion,
  Position
               185
                     to
                           G, A, V, L, I, W, C, M, F, N, Q, Y, T,
  E, H, deletion,
  Position
               186
                     to
                           G, A, V, L, W, M, F, N, Q, Y, S, T, D,
10 E, R, H, deletion,
  Position
              188
                    to
                           G, A, V, L, W, F, S, R, K, deletion,
  Position
              189
                          W, F, deletion,
                    to
  Position
              192
                          G, L, I, W, M, N, Q, Y, S, T, D, R, H,
                    to
  deletion,
15 Position
              194
                    to
                          W, N, Q, Y, D, H,
  Position
              195
                          W, P, Y, deletion,
                    to
  Position
              197
                    to
                          G, V, L, I, W, P, M, F, Q, Y, S, T, H,
  insertion, deletion,
  Position
              203
                    to
                          V, F, Y, R, H,
20 Position
              210
                          W, F, Y,
                    to
  Position
              218
                    to
                          G, A, L, W, P, M, F, Y, R, H,
  Position
              236
                    to
                          S, insertion,
  Position
              237
                          insertion,
                    to
  Position
              239
                          insertion,
                    to
25 Position
              240
                    to
                          N, insertion,
  Position
              241
                    to
                          W, insertion,
  Position
              242
                    to
                          insertion,
  Position
              244
                          insertion,
                    to
  Position
              245
                    to
                          Q, insertion,
30 Position
              247
                    to
                          G, V, I, W, P, F, Y, S, T, R, insertion,
  deletion,
  Position
              251
                    to
                          G, L, I, W, P, M, F, Y, H, insertion,
  deletion,
```

Position 255 to G, L, W, M, F, N, Y, T, D, H, insertion, deletion,

PCT/DK01/00293

Position 256 to G, A, V, L, I, W, M, F, Q, Y, S, T, D, H, insertion, deletion,

5 Position 257 to G, A, L, I, W, C, M, F, N, Q, Y, S, T, D, E, K, H, insertion, deletion,

Position 258 to G, A, V, L, I, W, C, M, F, N, Q, Y, S, T, E, K, H, insertion, deletion,

Position 260 to L, I, W, M, F, Y, T, H, insertion, dele-10 tion,

Position 262 to G, A, V, L, I, W, P, F, N, Q, Y, T, D, E, R, H, insertion, deletion,

Position 265 to V, L, I, W, M, F, Y, insertion, deletion,

15 Position 271 to A, L, I, W, P, M, F, N, Y, S, T, R, H, insertion, deletion,

Position 272 to G, A, V, L, I, W, P, M, F, N, Q, Y, T, D, E, H, insertion, deletion,

Position 275 to G, A, V, L, I, W, M, F, N, Y, T, D, in-20 sertion, deletion,

- 84. The savinase-like subtilisin according to claims 82-83, wherein the subtilisin has at least 81%, preferably at least 96%, more preferably at least 98%, most preferably at least 99% homology to SEQ ID NO 24.
 - 85. The savinase-like subtilisin according to claim 84, wherein the subtilisin has any of the amino acid sequence of SEQ ID NO 24, 26, 27, 28, 29, 30, 31, 32, 34, 35.
 - 86. The protein variant according to claims 76-81, wherein the protease is a savinase-like subtilisin comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO: 10:

WO 01/83559 PCT/DK01/00293

432

Position 8 to G, A, L, W, P, C, M, F, N, Q, Y, S, T,

D, E, R, K, H,

Position 16 to G, A, V, L, I, W, P, M, F, N, Q, Y, S,

5 D, E, R, H, insertion, deletion,

Position 23 to G, A, V, L, I, W, M, F, Y, E, R, H, insertion, deletion,

Position 26 to G, A, V, L, I, W, M, F, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

10 Position 35 to G, A, V, L, I, W, M, F, N, Q, Y, S, T,
D, E, R, K, H, deletion,

Position 38 to V, L, I, W, M, F, N, Q, Y, T, H,

Position 39 to G, A, V, L, I, W, M, F, N, Q, Y, T, D, E, R, H,

15 Position 41 to G, V, L, I, W, M, F, N, Q, Y, S, T, R, H,

Position 60 to G, A, V, L, I, W, C, M, F, Q, Y, T, D, R, K, H, insertion, deletion,

Position 73 to A,

20 Position 74 to A,

Position 80 to G, insertion,

Position 81 to V, insertion,

Position 86 to G, A, V, L, I, W, M, F, N, Q, Y, T, D, E, R, H,

25 Position 88 to A, V, L, I, W, M, F, N, Q, Y, S, T, D, E, R, H,

Position 90 to A, C, D, E, F, G, H, I, K, L, M, N, P,

Q, R, S, T, V, W, Y, insertion, deletion,

Position 93 to G, A, V, L, I, W, P, M, F, N, Q, Y, S,

30 T, D, E, R, K, H, insertion, deletion,

Position 108 to I, insertion,

Position 111 to I, insertion,

Position 124 to M, insertion,

Position 135 to G, L, P, C, N, Q, T, R, H,

Position 142 to G, A, L, I, W, P, C, M, F, N, Q, Y, S,

T, D, E, R, K, H, insertion, deletion,

Position 147 to G, A, V, L, W, M, F, N, Q, Y, S, T, D,

E, R, K, H, insertion, deletion,

s Position 148 to G, A, V, L, I, W, P, C, M, F, N, Q, Y,

S, T, D, E, R, K, H, insertion, deletion,

Position 149 to G, A, V, L, I, W, P, C, M, F, N, Q, Y,

S, T, D, E, R, K, H, insertion, deletion,

Position 151 to G, V, L, I, W, P, C, M, F, N, Q, Y, S,

10 T, D, E, R, K, H, insertion, deletion,

Position 163 to V, W, M, F, H,

Position 168 to G, V, L, I, W, C, M, F, N, Q, Y, S, T,

D, E, R, K, \cdot H,

Position 169 to C, E, F, G, H, I, K, L, M, N, Q, R, T,

15 V, W, Y,

Position 174 to G, A, L, I, W, P, C, M, F, N, Q, Y, S,

T, D, E, R, K, H, insertion, deletion,

Position 179 to G, A, V, L, I, W, P, M, F, N, Q, Y, S,

T, D, E, R, K, H, insertion, deletion,

20 Position 190 to G, A, V, L, I, W, C, M, F, N, Q, Y, S,

T, R, K, H, deletion,

Position 193 to G, V, L, I, W, M, F, N, Q, Y, S, T, D,

E, R, H, deletion,

Position 196 to G, A, V, L, I, W, P, M, F, N, Q, Y, S,

25 T, D, E, R, H, insertion, deletion,

Position 208 to A, V, L, I, W, C, M, F, Y, T, R, K, H,

Position 213 to N, oN, E,

Position 215 to A, L, I, W, M, F, Y,

Position 232 to A, insertion,

30 Position 233 to L, insertion,

Position 234 to I, insertion,

Position 246 to insertion,

Position 250 to G, A, V, L, I, W, P, M, F, N, Q, Y, S,

T, D, E, R, H, insertion, deletion,

Position 254 to G, V, L, I, W, M, F, N, Q, Y, S, D, E, R, H, insertion, deletion,

Position 267 to G, A, V, L, I, W, M, F, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

5 Position 268 to G, V, L, I, W, C, M, N, Q, Y, S, T, D,
E, R, K, H, insertion, deletion,

Position 269 to G, A, V, L, I, W, M, F, N, Q, Y, S, T, E, R, H, insertion, deletion,

Position 273 to G, A, V, L, I, W, P, M, F, N, Q, Y, S, 10 T, D, E, R, K, H, insertion, deletion,

- 87. The savinase-like subtilisin according to claim 86, wherein the subtilisin has at least 81%, preferably at least 96%, more preferably at least 98%, most preferably at least 99% homology to SEQ ID NO 24.
 - 88. The savinase-like subtilisin according to claim 87, wherein the subtilisin has any of the amino acid sequence of SEQ ID NO 24, 26, 27, 28, 29, 30, 31, 32, 34, 35.

89. The protein variant according to claims 76-81 having modified immunogenicity as compared to its parent protein having at least 81% homology to SEQ ID NO 25 comprising one or more of the following substitutions corresponding to any of the following in 25 SEQ ID NO 25:

Position 21 to G, V, I, W, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

Position 27 to G, L, I, W, P, M, F, Y, T, H,

30 Position 50 to G, A, W, M, N, Q, Y, S, T, D, E, H, insertion, deletion,

Position 52 to V, L, I, W, M, F, Y, S, T, R, deletion, insertion,

WO 01/83559 PCT/DK01/00293

435

Position 55 to G, A, V, L, I, W, C, M, F, N, Q, Y, T,

D, E, R, K, H, deletion, insertion,

Position 129 to W,

Position 133 to A, L, I, W, M, F, Y, R,

5 Position 172 to G, A, V, L, I, S, T, H, deletion,

Position 186 to G, A, V, L, W, M, F, N, Q, Y, S, T, D, E, R, H, deletion,

Position 194 to W, N, Q, Y, D, H,

Position 195 to W, P, Y, deletion,

10 Position 197 to G, V, L, I, W, P, M, F, Q, Y, S, T, H, insertion, deletion,

Position 242 to insertion,

Position 249 to L, W, P, F, S, D, E, H, insertion, deletion,

15 Position 252 to G, A, W, P, N, Q, Y, T, E, R, H, insertion, deletion,

Position 254 to G, V, L, I, W, M, F, N, Q, Y, S, D, E, R, H, insertion, deletion,

Position 257 to G, A, L, I, W, C, M, F, N, Q, Y, S, T,

20 D, E, K, H, insertion, deletion,

Position 260 to L, I, W, M, F, Y, T, H, insertion, deletion,

Position 265 to V, L, I, W, M, F, Y, insertion, deletion,

25

with the proviso that the amino acids of the parent enzyme are substituted to another amino acid.

90. The protein variant according to claims 76-81 having modi-30 fied immunogenicity as compared to its parent protein having at least 81% homology to SEQ ID NO 10 comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 10:

Position

Position

194

203

to

to

WO 01/83559 PCT/DK01/00293

436

Position V, L, W, M, F, Y, R, 4 to Position V, L, I, W, M, F, N, Q, Y, T, H, 38 to Position V, L, I, W, M, F, N, Q, Y, T, R, H, 40 to Position G, L, H, 43 to G, A, V, L, I, W, P, M, F, N, Q, Y, S, 5 Position 47 to T, D, E, R, H, insertion, deletion, Position G, A, V, I, W, P, M, F, N, Q, Y, S, T, 49 to D, E, R, H, insertion, deletion, V, L, I, W, M, F, S, R, deletion, inser-Position 54 to 10 tion, L, W, F, Y, R, K, deletion, Position 96 to Position V, L, I, W, M, F, Q, Y, H, deletion, 99 to Position 113 W, insertion, to W, Y, R, deletion, Position 131 to 15 Position 133 to A, L, I, W, M, F, Y, R, Position 137 G, A, V, I, W, P, M, N, Y, H, insertion, to deletion, Position 141 to G, V, L, I, W, P, M, F, Q, S, D, E, H, insertion, deletion, L, W, P, M, F, N, Q, Y, S, D, E, R, H, 20 Position 144 insertion, deletion, A, C, D, E, F, G, H, I, K, L, M, N, P, Position 170 Q, R, S, T, V, W, Y; G, A, V, L, I, W, M, F, N, Q, Y, S, T, Position 173 to 25 E, H, deletion, Position 181 G, A, V, L, I, W, C, M, F, Q, Y, T, D, to R, K, H, deletion, Position G, A, V, L, I, W, C, M, F, N, Q, Y, T, 185 to E, H, deletion, G, A, V, L, W, M, F, N, Q, Y, S, T, D, 30 Position 186 to E, R, H, deletion, Position 188 G, A, V, L, W, F, S, R, K, deletion, to

W, N, Q, Y, D, H,

V, F, Y, R, H,

Position 210 to W, F, Y,

Position 211 to L, W, M, F, Y, H,

Position 257 to G, A, L, I, W, C, M, F, N, Q, Y, S, T,

D, E, K, H, insertion, deletion,

5 Position 261 to L, N, S, H, insertion, deletion,

Position 262 to G, A, V, L, I, W, P, F, N, Q, Y, T, D,

E, R, H, insertion, deletion,

Position 265 to V, L, I, W, M, F, Y, insertion, deletion,

10

with the proviso that the amino acids of the parent enzyme are substituted to another amino acid.

- 91. The protein variant according to claims 76-81 having modi-15 fied immunogenicity as compared to its parent protein having at least 81% homology to SEQ ID NO 11 comprising one or more of the following substitutions corresponding to any of the following in SEO ID NO 11:
- 20 Position 38 to V, L, I, W, M, F, N, Q, Y, T, H,

Position 40 to V, L, I, W, M, F, N, Q, Y, T, R, H,

Position 45 to G, V, L, I, W, P, M, F, N, Q, Y, S, T,

D, E, R, H,

Position 47 to G, A, V, L, I, W, P, M, F, N, Q, Y, S,

25 T, D, E, R, H, insertion, deletion,

Position 49 to G, A, V, I, W, P, M, F, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

Position 50 to G, A, W, M, N, Q, Y, S, T, D, E, H, insertion, deletion,

30 Position 52 to V, L, I, W, M, F, Y, S, T, R, deletion, insertion,

Position 53 to A, V, L, I, W, M, F, N, Q, Y, S, D, E, H, deletion, insertion,

Position 56 to G, V, L, I, W, M, F, N, Q, Y, S, T, H,

WO 01/83559 PCT/DK01/00293

438

	Position	58	to	L, W, M, F, N, Y, R, insertion, dele-					
	tion,								
	Position	96	to	L, W, F, Y, R, K, deletion,					
	Position	97 .	to	V, L, W, C, M, F, Y, H,					
5	Position	98	to	A, deletion,					
	Position	105	to	insertion,					
	Position	109	to	N, insertion,					
	Position	113	to	W, insertion,					
	Position	115	to	I, insertion,					
10	Position	133	to	A, L, I, W, M, F, Y, R,					
	Position	136	to	G, A, W, P, N, Y, S, T, D, E, H, inser-					
	tion, delet	ion,							
	Position	137	to	G, A, V, I, W, P, M, N, Y, H, insertion,					
	deletion,								
15	Position	141	to	G, V, L, I, W, P, M, F, Q, S, D, E, H,					
	insertion,	deleti	on,						
	Position	158	to	V, L, I, W, M, F, Y,					
	Position	159	to	A, W, M, Y, T, R, H,					
	Position	172	to	G, A, V, L, I, S, T, H, deletion,					
20	Position	186	to	G, A, V, L, W, M, F, N, Q, Y, S, T, D,					
	E, R, H, de	letion	.,						
	Position	189	to	W, F, deletion,					
	Position	192	to	G, L, I, W, M, N, Q, Y, S, T, D, R, H,					
	deletion,								
25	Position	195	to	W, P, Y, deletion,					
	Position	197	to	G, V, L, I, W, P, M, F, Q, Y, S, T, H,					
	insertion, deletion,								
	Position	257	to	G, A, L, I, W, C, M, F, N, Q, Y, S, T,					
	D, E, K, H,	inser	tion,	deletion,					
30	Position	261	to	L, N, S, H, insertion, deletion,					
	Position	265	to	V, L, I, W, M, F, Y, insertion, dele-					
	tion,								

with the proviso that the amino acids of the parent enzyme are substituted to another amino acid.

5 92. The protein variant according to claims 76-81 having modified immunogenicity as compared to its parent protein having at least 81% homology to SEQ ID NO 33 comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 33:

10

Position -6 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, Y, insertion, deletion,

Position -5 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y, insertion, deletion,

15 Position -4 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y, insertion, deletion,

Position -2 to A, C, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, insertion, deletion,

Position -1 to G, V, L, I, W, C, M, F, N, Q, Y, S, T,

20 D, E, R, H, deletion,

Position 1 to V, L, I, W, M, F, Y, S, T, R,

Position 2 to G, V, I, M, F, N, Q, Y, S, T, H,

Position 3a to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, insertion, deletion,

25 Position 5 to V, L, I, W, M, F, N, Q, Y, T, R, H,

Position 6 to G, V, L, I, W, P, M, N, Q, T, D, E, R,
H,

Position 7 to G, A, V, L, I, W, P, M, F, N, Q, Y, S, T, D, E, R, H,

30 Position 8 to G, A, L, W, P, C, M, F, N, Q, Y, S, T, D, E, R, K, H,

Position 10 to G, A, V, I, W, P, M, N, Q, Y, S, T, D, E, R, insertion, deletion,

Position 12 to G, A, V, L, I, W, M, F, N, Q, Y, S, T, D, E, insertion, deletion,

Position 13 to G, L, I, W, P, M, F, N, Q, Y, S, D, E, H, insertion, deletion,

5 Position 14 to V, L, I, W, P, M, F, N, Q, Y, T, R, H, insertion, deletion,

Position 15 to G, A, V, L, I, W, P, M, F, N, Q, Y, S, T, E, H, insertion, deletion,

Position 16 to G, A, V, L, I, W, P, M, F, N, Q, Y, S,

10 D, E, R, H, insertion, deletion,

Position 17 to G, A, V, I, W, P, M, F, Y, H, insertion, deletion,

Position 18 to G, A, L, I, W, P, M, F, N, Q, Y, T, D, E, H, insertion, deletion,

15 Position 19 to A, V, I, W, M, F, N, Y, S, T, D, R, H, insertion, deletion,

Position 21 to G, V, I, W, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

Position 22 to G, V, L, I, W, M, F, Y, S, T, insertion,

20 deletion,

Position 23 to G, A, V, L, I, W, M, F, Y, E, R, H, insertion, deletion,

Position 24 to G, V, L, I, W, M, F, N, Q, Y, S, D, E, R, insertion, deletion,

25 Position 25 to G, A, V, L, I, W, M, F, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

Position 26 to G, A, V, L, I, W, M, F, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

Position 27 to G, L, I, W, P, M, F, Y, T, H,

30 Position 28 to G, A, V, L, I, W, P, M, F, N, Q, Y, S, T, D, E, R, K, H, insertion, deletion,

Position 28a to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, insertion, deletion,

Position 29 to G, A, V, L, I, W, P, M, F, N, Q, Y, S,

T, D, E, R, K, H, insertion, deletion,

Position 33 to V, L, I, W, C, M, F, N, Q, Y, R, H,

Position 35 to G, A, V, L, I, W, M, F, N, Q, Y, S, T,

5 D, E, R, K, H, deletion,

Position 37 to L, I, W, M, F, N, Q, Y, S, R, H,

Position 40 to V, L, I, W, M, F, N, Q, Y, T, R, H,

Position 42 to G, A, L, W, C, M, F, N, Q, Y, S, T, D, E, R, H,

10 Position 43 to G, L, H,

Position 44 to G, V, L, I, W, P, M, F, Y, S, T,

Position 44a to A, C, D, E, F, G, H, I, K, L, M, N, P,

Q, R, S, T, V, W, Y, insertion, deletion,

Position 44b to A, C, D, E, F, G, H, I, K, L, M, N, P,

15 Q, R, S, T, V, W, Y, insertion, deletion,

Position 46 to G, A, L, I, W, P, M, F, Y, H, insertion, deletion,

Position 48 to A, L, I, P, M, F, N, Y, D, H, insertion, deletion,

20 Position 51 to V, L, I, W, M, F, N, Y, R, deletion, insertion,

Position 52 to V, L, I, W, M, F, Y, S, T, R, deletion, insertion,

Position 53 to A, V, L, I, W, M, F, N, Q, Y, S, D, E,

25 H, deletion, insertion,

Position 55 to G, A, V, L, I, W, C, M, F, N, Q, Y, T, D, E, R, K, H, deletion, insertion,

Position 56 to G, V, L, I, W, M, F, N, Q, Y, S, T, H,

Position 57 to G, A, V, L, I, W, M, F, N, Q, Y, S, T,

30 D, E, R, K, H,

Position 58 to L, W, M, F, N, Y, R, insertion, deletion,

Position 61 to V, L, I, W, M, F, Y, insertion, deletion,

```
Position
               64
                     to
                           G, V, L, I, W, P, C, M, F, N, Q, Y, S,
   T, D, E, R, K, H, insertion, deletion,
   Position
               75
                     to
                           L,
   Position
               81
                     to
                           insertion,
 5 Position
               86
                     to
                           G, A, V, L, I, W, M, F, N, Q, Y, T, D,
   E, R, H,
   Position
               87
                     to
                           A, V, L, I, W, M, F, Q, Y, S, T, D, E,
   Η,
   Position
               88
                     to
                           A, V, L, I, W, M, F, N, Q, Y, S, T, D,
10 E, R, H,
   Position
               89
                           G, V, L, I, W, P, F, N, Y, T, E,
                     to
   Position
               91
                     to
                           G, A, V, L, I, W, P, M, N, Y, S, T, D,
   E, R, H, insertion, deletion,
   Position
               92
                           G, A, V, L, I, W, P, M, F, N, Q, Y, S,
                     to
15 T, D, E, R, K, H, insertion, deletion,
  Position
               94
                     to
                           G, V, L, I, W, P, M, F, N, Y, T, D, E,
  K, H, insertion, deletion,
   Position
               96
                    .to
                           L, W, F, Y, R, K, deletion,
  Position
               97
                     to
                           V, L, W, C, M, F, Y, H,
20 Position
               98
                     to
                           deletion,
  Position
               101
                     to
                           V, I, W, M, F, N, Q, Y, H,
  Position
              102
                           V, L, I, W, M, F, Y, R, H, G, deletion,
                     to
  Position
              108
                           I, insertion,
                     to
  Position
               109
                           N, insertion,
                     to
25 Position
              111
                     to
                           insertion,
  Position
              112
                     to
                           E, insertion,
  Position
              113
                     to
                           W, insertion,
  Position
              114
                     to
                           insertion,
  Position
                           I, insertion,
              115
                     to
30 Position
              117
                          N, insertion,
                     to
  Position
              118
                          N, insertion,
                     to
  Position
              119
                    to
                          M, insertion,
  Position
              127
                     to
                          G, A, V, I, W, M, F, Y, R, H, L,
  Position
              133
                    to
                          A, L, I, W, M, F, Y, R,
```

Position 134 to L, I, W, F, N, Q, Y, R, H, insertion, deletion,

Position 135 to G, L, P, C, N, Q, T, R, H,

Position 136 to G, A, W, P, N, Y, S, T, D, E, H, inser-

s tion, deletion,

Position 137 to G, A, V, I, W, P, M, N, Y, H, insertion, deletion,

Position 138 to G, A, V, L, I, W, P, M, F, N, Q, Y, S, T, D, E, R, H, insertion, deletion,

10 Position 139 to G, A, V, L, I, W, P, C, M, F, N, Q, Y,
S, T, D, E, R, K, H, insertion, deletion,

Position 141 to G, V, L, I, W, P, M, F, Q, S, D, E, H, insertion, deletion,

Position 142 to G, A, L, I, W, P, C, M, F, N, Q, Y, S,

15 T, D, E, R, K, H, insertion, deletion,

Position 144 to L, W, P, M, F, N, Q, Y, S, D, E, R, H, insertion, deletion,

Position 145 to G, V, L, I, W, M, F, Q, Y, D, E, R, H, insertion, deletion,

20 Position 146 to G, A, W, L, I, W, M, F, N, Q, Y, T, D, E, R, H, insertion, deletion,

Position 147 to G, A, V, L, W, M, F, N, Q, Y, S, T, D, E, R, K, H, insertion, deletion,

Position 148 to G, A, V, L, I, W, P, C, M, F, N, Q, Y,

25 S, T, D, E, R, K, H, insertion, deletion,

Position 156 to V, I, W, F, R,

Position 158 to V, L, I, W, M, F, Y,

Position 160 to W, M, F, Y, R, H,

Position 161 to I, W, M, F, Y, H,

30 Position 162 to I, W, F, Y, R,

Position 163 to V, W, M, F, H,

Position 167 to R, K,

Position 169 to C, E, F, G, H, I, K, L, M, N, Q, R, T, V, W, Y,

Position 170 to A, C, D, E, F, G, H, I, K, L, M, N, P,

Q, R, S, T, V, W, Y, insertion, deletion,

Position 171 to D, deletion,

Position 174 to G, A, L, I, W, P, C, M, F, N, Q, Y, S,

5 T, D, E, R, K, H, insertion, deletion,

Position 176 to G, A, V, L, I, W, P, C, M, F, N, Q, Y,

S, T, D, E, R, K, H, insertion, deletion,

Position 182 to A, V, L, I, W, C, M, F, N, Q, Y, S, T, D, E, H, deletion,

Position 188 to G, A, V, L, W, F, S, R, K, deletion,

Position 191 to A, V, L, I, W, M, F, Y, T, R, H, deletion,

15 Position 192 to G, L, I, W, M, N, Q, Y, S, T, D, R, H, deletion,

Position 193 to G, V, L, I, W, M, F, N, Q, Y, S, T, D, E, R, H, deletion,

Position 194 to W, N, Q, Y, D, H,

20 Position 195 to W, P, Y, deletion,

Position 196 to G, A, V, L, I, W, P, M, F, N, Q, Y, S,

T, D, E, R, H, insertion, deletion,

Position 197 to G, V, L, I, W, P, M, F, Q, Y, S, T, H, insertion, deletion,

25 Position 198 to G, A, L, I, W, P, C, M, F, N, Q, Y, S, T, D, E, R, K, H, insertion, deletion,

Position 203 to V, F, Y, R, H,

Position 205 to W, F, Y, R, K,

Position 215 to A, L, I, W, M, F, Y,

30 Position 216 to A, L, I, W, M, F, Y, R,

Position 217 to W, R,

Position 219 to G, A, V, L, I, W, F, Y, R, H,

Position 233 to insertion,

Position 234 to I, insertion,

.

WO 01/83559

445

PCT/DK01/00293

	Position	236	to	ins	sert	ior	1,									
	Position	237	to	ins	sert	ion	ı,									
	Position	238	to	ins	sert	ion	1,									
	Position	239	to	ins	sert	ion	1,									
5	Position	240	to	ins	sert	ior	1,									
	Position	243	to	insertion,												
	Position	246	to	ins	sert	ion	1,									
	Position	247	to	G,	v,	I,	W,	Ρ,	F,	Y,	s,	Т,	R,	inse	erti	on,
	deletion,															
10	Position	249	to	L,	W,	Ρ,	F,	s,	D,	Ε,	Н,	ins	ert	ion,	de	le-
	tion,															
	Position	252	to	G,	A,	W,	P,	N,	Q,	Υ,	Т,	E,	R,	Н,	ins	er-
	tion, deletion,															
	Position	254	to	G,	v,	L,	I,	W,	Μ,	F,	N,	Q,	Υ,	s,	D,	E,
15	R, H, inser	tion,	deleti	on,												
	Position	262	to	.G,	A,	v,	L,	I,	W,	Ρ,	F,	N,	Q,	Υ,	Т,	D,
	E, R, H, in:	sertio	n, del	eti	on,											
	Position	264a	to	Α,	C,	D,	Ε,	F,	G,	Н,	I,	K,	L,	Μ,	N,	P,
	Q, R, S, T,	v, w,	Y, in	ser	tio	n, d	dele	etic	on,							
20	Position	270	to	G,	L,	I,	W,	Р,	Μ,	F,	N,	Q,	Υ,	s,	T,	D,
	E, R, K, H,	inser	tion,	n, deletion,												
	Position	273	to	G,	A,	v,	L,	I,	W,	P,	Μ,	F,	N,	Q,	Y,	s,
	T, D, E, R,	к, н,	inser	tio	n, d	dele	etic	on,								
	Position	274	to	W,	P,	M,	F,	N,	Q,	Y,	т, 1	D, E	E, F	г, н	,	
25	Position	275	to	G,	A,	v,	L,	I,	W,	Μ,	F,	N,	Υ,	Т,	D,	in-
	sertion, de	letion	,	•								•				

30 with the proviso that the amino acids of the parent enzyme are substituted to another amino acid.

Q, R, S, T, V, W, Y, insertion, deletion,

Position 276 to A, C, D, E, F, G, H, I, K, L, M, N, P,

93. The protein variant according to claims 76-81 having modified immunogenicity as compared to its parent protein having at

least 81% homology to SEQ ID NO 33 comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 33:

- 5 Position 5 to V, L, I, W, M, F, N, Q, Y, T, R, H,
 - Position 22 to G, V, L, I, W, M, F, Y, S, T, insertion, deletion,
 - Position 26 to G, A, V, L, I, W, M, F, N, Q, Y, S, T,
 - D, E, R, H, insertion, deletion,
- 10 Position 28 to G, A, V, L, I, W, P, M, F, N, Q, Y, S,
 T, D, E, R, K, H, insertion, deletion,
 - Position 37 to L, I, W, M, F, N, Q, Y, S, R, H,
 - Position 40 to V, L, I, W, M, F, N, Q, Y, T, R, H,
 - Position 44 to G, V, L, I, W, P, M, F, Y, S, T,
- 15 Position 51 to V, L, I, W, M, F, N, Y, R, deletion, insertion,
 - Position 52 to V, L, I, W, M, F, Y, S, T, R, deletion, insertion,
 - Position 55 to G, A, V, L, I, W, C, M, F, N, Q, Y, T,
- 20 D, E, R, K, H, deletion, insertion,
 - Position 58 to L, W, M, F, N, Y, R, insertion, deletion,
 - Position 61 to V, L, I, W, M, F, Y, insertion, deletion,
- 25 Position 64 to G, V, L, I, W, P, C, M, F, N, Q, Y, S, T, D, E, R, K, H, insertion, deletion,
 - Position 87 to A, V, L, I, W, M, F, Q, Y, S, T, D, E, H,
 - Position 97 to V, L, W, C, M, F, Y, H,
- 30 Position 98 to deletion,
 - Position 101 to V, I, W, M, F, N, Q, Y, H,
 - Position 102 to V, L, I, W, M, F, Y, R, H, G, deletion,
 - Position 109 to N, insertion,
 - Position 112 to E, insertion,

Position 118 to N, insertion, Position G, A, V, I, W, M, F, Y, R, H, L, 127 to Position 137 to G, A, V, I, W, P, M, N, Y, H, insertion, deletion, 5 Position 146 G, A, W, L, I, W, M, F, N, Q, Y, T, D, to E, R, H, insertion, deletion, Position 156 to V, I, W, F, R, Position 158 to V, L, I, W, M, F, Y, Position 161 I, W, M, F, Y, H, to 10 Position 188 to G, A, V, L, W, F, S, R, K, deletion, Position 192 to G, L, I, W, M, N, Q, Y, S, T, D, R, H, deletion, Position 194 to W, N, Q, Y, D, H, Position 195 to W, P, Y, deletion, 15 Position 203 V, F, Y, R, H, to Position 216 to A, L, I, W, M, F, Y, R, Position 236 insertion, to Position 237 to insertion, Position 262 to G, A, V, L, I, W, P, F, N, Q, Y, T, D, 20 E, R, H, insertion, deletion, Position 264a to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, insertion, deletion,

with the provisio that the amino acids of the parent enzyme are substituted to another mino acid.

94. The protein variant according to claim 76, wherein the lipolytic enzyme comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO: 1:

Q15 to A, C, D, E, F, G, I, K, L, M, N, P, R, S, T, V, W, Y; Y16 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W; A18 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

```
A19 to C, D, E, F, G, H, I, K, L, M, N, Q, R, S, V, W, Y;
   A20 to C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;
   N25 to A, C, D, E, F, G, H, I, K, L, M, P, Q, R, S, T, V, W, Y;
   N26 to A, D, E, F, G, H, I, K, L, M, P, Q, R, S, T, V, W, Y;
 5 E43 to A, C, D, F, G, H, I, K, L, M, N, R, S, T, V, W, Y;
   V44 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, W, Y;
   K46 to A, C, D, E, F, G, H, I, L, M, N, Q, S, T, V, W, Y;
   A47 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, W, Y;
   A49 to C, D, E, F, G, H, I, K, L, M, N, Q, R, S, V, W, Y;
10 L52 to A, C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, Y;
   Y53 to A, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W;
   S54 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, T, V, W, Y;
   G65 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
   L67 to A, C, D, E, F, G, H, I, K, M, N, Q, R, S, T, V, W, Y;
15 A68 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
   L69 to A, C, D, E, F, G, H, I, K, M, N, P, Q, S, T, V, W, Y;
   T72 to A, C, D, E, F, G, H, I, L, M, N, P, Q, R, S, V, W, Y;
   K74 to A, C, D, E, F, G, H, I, L, M, N, P, Q, R, S, T, V, W, Y;
   L75 to A, C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, Y;
20 V77 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, W, Y;
  S79 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;
  R81 to A, D, E, F, G, H, I, K, L, M, N, P, Q, S, T, V, W, Y;
  S83 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, V, W, Y;
  S85 to A, D, E, G, H, I, L, M, N, Q, V, W, Y;
25 W89 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, Y;
  L97 to A, C, D, E, F, G, H, I, K, N, P, R, S, T, W, Y;
  K98 to A, C, G, H, L, M, N, P, Q, S, T, V, W, Y;
  E99 to C, F, G, I, M, P, W, Y;
  G106 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, T, V, W, Y;
30 C107 to A, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
  R108 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, S, T, V, Y;
  G109 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, W, Y;
  T123 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, V, W, Y;
```

L124 to A, C, D, E, F, G, H, I, K, M, N, P, Q, R, T, V, W, Y;

```
K127 to A, D, E, F, G, H, I, L, M, N, P, Q, R, S, T, V, W, Y;
   E129 to A, C, D, F, G, H, I, L, M, N, P, Q, R, S, T, V, W, Y;
   A131 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
   V132 to A, C, D, E, F, G, H, I, K, L, N, P, Q, R, S, T, W, Y;
 5 Y138 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W;
   V140 to A, C, D, E, F, G, H, I, K, L, M, N, P, R, S, T, W, Y;
   L147 to A, C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, Y;
   A150 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
   T153 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, V, W, Y;
10 Y164 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W;
   D165 to A, C, E, F, G, H, I, K, L, M, N, Q, S, T, V, W, Y;
   D167 to A, C, E, F, H, I, L, M, N, P, Q, S, T, V, W, Y;
   S170 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, T, V, W, Y;
   Y171 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W;
15 G172 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
   A173 to C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;
   P174 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;
   R175 to A, C, D, E, F, G, H, I, K, L, M, N, Q, S, T, V, W, Y;
   V176 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, W, Y;
20 G177 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
  R179 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, S, T, V, W, Y;
  A182 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
  Y194 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W;
  H198 to A, C, D, E, F, G, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
25 N200 to A, C, D, E, F, G, H, I, K, L, M, P, Q, S, T, V, W, Y;
  P207 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;
  P208 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;
  R209 to C, D, F, G, H, I, K, L, M, N, Q, T, V, W, Y;
  G212 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
30 S214 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;
  H215 to A, C, D, E, F, G, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
  S216 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, T, V, W, Y;
  S217 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;
  P218 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;
```

WO 01/83559 PCT/DK01/00293

450

E219 to C, D, F, H, I, M, P, W, Y;

Y220 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W;

K223 to A, C, D, E, F, G, H, I, L, M, N, Q, S, T, V, W, Y;

S224 to A, C, D, E, F, G, H, I, K, L, M, N, Q, T, V, W, Y;

5 D234 to C, E, F, H, I, M, W;

I235 to A, C, D, E, F, G, H, K, L, M, N, P, Q, R, S, T, V, W, Y;

K237 to A, C, D, E, F, G, H, I, L, N, P, Q, S, T, V, W, Y;

1238 to A, C, D, E, F, G, H, K, L, M, N, P, Q, R, S, T, V, W, Y;

D242 to C, E, F, G, H, I, M, P, W, Y;

10 A243 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, V, W, Y;

P250 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;

P253 to A, C, D, E, F, G, H, I, K, L, M, N, Q, S, T, V, W, Y;

D254 to C, E, F, H, I, M, P, Y;

1255 to C, D, E, F, H, L, M, N, Q, W, Y;

15 P256 to C, E, F, G, H, I, K, L, M, N, Q, R, V, W, Y;

Y261 to A, C, E, F, G, H, L, M, N, P, Q, R, S, T, V.

95. The protein variant according to claim 94, wherein the 20 lipolytic enzyme comprises one or more of the substitutions corresponding to any of the following in SEQ ID NO: 1:

G65 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

L67 to A, C, D, E, F, G, H, I, K, M, N, Q, R, S, T, V, W, Y;

25 R81 to A, D, E, F, G, H, I, K, L, M, N, P, Q, S, T, V, W, Y;

S83 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, V, W, Y;

S85 to A, D, E, G, H, I, L, M, N, Q, V, W, Y;

L97 to A, C, D, E, F, G, H, I, K, N, P, R, S, T, W, Y;

L124 to A, C, D, E, F, G, H, I, K, M, N, P, Q, R, T, V, W, Y;

30 E129 to A, C, D, F, G, H, I, L, M, N, P, Q, R, S, T, V, W, Y;

Y164 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W;

R179 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, S, T, V, W, Y;

A182 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

P207 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;

WO 01/83559 PCT/DK01/00293

451

P208 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;
R209 to C, D, F, G, H, I, K, L, M, N, Q, T, V, W, Y;
G212 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
S214 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;
S216 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;
S217 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, T, V, W, Y;
S218 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;
P218 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;
E219 to C, D, F, H, I, M, P, W, Y;

10 Y220 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W;
A243 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W;
P250 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;

15

96. The protein variant according to claim 95, wherein the lipolytic comprises one or more of the following substitutions:

P207 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;

P208 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;

S214 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;

S216 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;

S217 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;

A243 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, V, W, Y;

P253 to A, C, D, E, F, G, H, I, K, L, M, N, Q, S, T, V, W, Y;

- 97. The protein variant according to claim 94-96, wherein the 30 parent lipolytic enzyme has at least 80% homology with SEQ ID NO.1.
 - 98. The protein variant according to claim 76, wherein the carbohydrase is a glucoamylase comprising one or more of the fol-

452

lowing substitutions corresponding to any of the following in SEQ ID NO 36:

Position 68 to A, C, D, E, F, G, H, I, K, L, M, N, P,

5 Q, R, S, T, V, W, Y, deletion, insertion,

Position 94 to insertion,

Position 102 to insertion,

Position 122 to insertion,

Position 125 to insertion,

10 Position 272 to A, C, D, E, F, G, H, I, K, L, M, N, P,

Q, R, S, T, V, W, Y, deletion, insertion,

Position 345 to A, C, D, E, F, G, H, I, K, L, M, N, Q,

R, S, T, V, W, Y, deletion, insertion,

Position 348 to A, C, D, E, F, G, H, I, K, L, M, N, P,

15 Q, R, S, T, V, W, Y, deletion, insertion,

Position 353 to insertion,

Position 357 to insertion,

Position 359 to insertion,

Position 450 to insertion,

20 Position 451 to insertion,

Position 468 to insertion,

with the proviso that the amino acids of the parent enzyme are substituted to another amino acid.

25

99. The protein variant according to claims 98, wherein the enzyme is at least 81 % homologous, preferably 90% homologous, more preferably 95% homologous, most preferably 99% homologous to Carezyme core (SEQ ID NO 36).

30

100. The protein variant according to claim 76, wherein the carbohydrase is a Thermamyl-like α -amylase comprising one or more of the following substitutions corresponding to any of the following in SEQ ID NO 2:

453

A, C, D, G, K, M, P, R, W, Position TYR 8 to Y, insertion; Position ASP 25 A, C, D, E, F, G, H, I, to 5 K, L, M, N, P, Q, R, S, T, V, W, Y, insertion; Position ASP 26 to A, C, D, E, F, G, H, I, K, L, M, P, Q, R, S, T, V, W, Y; Position ALA 27 C, D, E, F, G, H, I, K, to L, M, N, P, Q, R, S, T, V, W, Y; SER 28 to A, C, D, F, G, H, I, K, L, M, P, Q, R, S, T, V, W, Y; Position ASN 29 A, C, D, G, K, M, P, R, to W, Y; Position ARG 31 to A, C, D, E, F, G, H, I, 15 K, L, M, N, P, Q, R, T, V, W, Y; PRO C, D, E, F, G, H, I, K, Position 41 to L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; PRO 42 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; 20 Position TYR 54 to A, C, D, E, G, K, M, P, R, Y, insertion; Position TYR 57 to A, C, D, G, K, M, P, R, W, Y, insertion; Position LEU 62 to A, C, D, E, F, G, H, I, 25 K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; GLY 63 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; Position GLY to A, C, D, E, F, G, H, I, 76 K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; 30 Position ARG 78 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; SER 79 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion;

454

Position LEU 88 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; Position GLY 92 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; 5 Position ASN 102 to A, C, E, F, G, H, I, L, M, P, Q, S, T, V, W, Y, insertion; Position ALA 107 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; Position ASP 108 to A, C, D, E, F, G, H, I, 10 K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; Position ALA109 to A, C, D, E, F, G, H, K, M, N, P, Q, R, S, W, Y; Position LYS 138 to A, C, E, F, G, I, L, M, N, P, Q, S, T, V, W, insertion; 15 Position ASP 140 to A, C, E, F, G, I, K, L, M, N, P, Q, S, T, V, W; Position PRO 142 to C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y; Position ARG 144 to A, C, D, E, F, G, H, I, 20 K, L, M, N, P, Q, R, S, T, V, Y; Position GLN170 to A, C, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; Position ILE 173 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; ASP 195 to A, C, D, E, F, G, H, I, K, L, M, P, Q, R, S, T, V, W, Y, deletion, insertion; Position TYR 196 to A, C, D, G, K, M, P, R, W, Y, insertion; Position ASP 232 to A, C, D, E, F, G, H, I, 30 K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; Position ALA 233 to A, C, D, E, I, K, L, M, N, P, Q, R, W, Y, deletion, insertion; Position GLN 331 to A, C, D, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion;

WO 01/83559 PCT/DK01/00293

455

Position TYR 349 to A, C, D, G, K, M, P, R, W, Y, insertion; Position ILE 352 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; 5 Position GLN 357 to C, D, E, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; Position ASP 366 to A, C, D, E, F, G, H, I, K, L, M, P, Q, R, S, T, V, W, Y, deletion, insertion; Position TYR 367 to C, E, F, H, K, M, N, P, 10 Q, R, V, W, insertion; Position TYR 368 A, C, D, G, K, M, P, R, to W, Y, insertion; Position ILE 370 A, C, D, E, F, G, H, I, to K, L, M, N, P, Q, R, S, T, V, W, Y; 15 Position ALA A, C, D, E, F, G, H, I, 380 to K, L, M, N, P, Q, R, T, V, W, Y; LYS 381 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, S, T, V, W, Y, deletion, insertion; ILE 382 to A, C, D, E, F, G, H, I, 20 K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; Position PRO 384 to C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, deletion, insertion; Position LEU 386 to A, C, D, E, F, G, H, I, 25 K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; Position ARG 389 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; Position GLN 390 to A, C, D, E, F, G, H, I, L, M, N, P, Q, S, T, V, W, Y; 30

with the proviso that the amino acids of the parent enzyme are substituted to another amino acid.

101. The protein variant according to claim 100, wherein the amylase comprises one or more of the following substitutions:

Position PRO 41 to C, D, E, F, G, H, I, 5 K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; Position PRO 42 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; Position ALA 109 to A, C, D, E, F, G, H, K, M, N, P, Q, R, S, W, Y; 10 Position LYS 138 to A, C, E, F, G, I, L, M, N, P, Q, S, T, V, W; Position ASP 140 to A, C, E, F, G, I, K, L, M, N, P, Q, S, T, V, W; Position C, D, E, F, G, H, I, PRO 142 to 15 K, L, M, N, Q, R, S, T, V, W, Y; Position ARG 144 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, Y; Position ASP 366 to A, C, D, E, F, G, H, I, K, L, M, P, Q, R, S, T, V, W, Y, deletion, insertion; 20 Position TYR 367 C, E, F, H, K, M, N, to P, Q, R, V, W, insertion; Position TYR 368 A, C, D, G, K, M, P, to R, W, Y, insertion; Position ALA 380 to A, C, D, E, F, G, H, 25 I, K, L, M, N, P, Q, R, T, V, W, Y; LYS 381 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, S, T, V, W, Y, deletion, insertion; Position ILE 382 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion; 30 Position **PRO** 384 to C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, deletion, insertion;

to

A, C, D, E, F, G, H,

389

I, K, L, M, N, P, Q, R, S, T, V, W, Y, deletion, insertion;

Position

ARG

with the proviso that the amino acids of the parent enzyme are substituted to another amino acid.

5

102. The protein variant according to claims 100-101, wherein the enzyme is at least 81 % homologous, preferably 90% homologous, more preferably 95% homologous, most preferably 99% homologous to SEQ ID NO 2.

10

- 103. The protein variant according to claims 100-102, wherein the enzyme has any of the amino acid sequence of SEQ ID NO 2, 4, 5, 37.
- 15 104. A cellulase variant of a microbial parent cellulase having a catalytically active domain classified in family 45, said variant comprises a substitution of one or more amino acid residues at a position corresponding to a position in SEQ ID NO:4 from the group consisting of:

20

- Position 1 to C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
 - Position 2 to A, C, E, F, G, H, I, K, L, M, P, Q, R, S, T, V, W, Y;
- 25 Position 7 to A, C, D, E, F, G, H, K, L, M, N, P, Q, S, T, V, Y;
 - Position 20 to C, D, F, H, I, L, M, N, P, Q, S, T, V, W, Y;
 - Position 23 to A, C, D, E, F, G, H, I, K, L, M, N, Q,
- 30 R, S, T, V, W, Y;
- Position 27 to A, C, D, E, F, G, H, I, K, L, M, N, Q,
 - R, S, T, V, W, Y;
 Position 29 to A, C, D, E, G, H, I, K, L, M, N, P, Q,

R, S, T, V, W, Y;

```
Position 36
                     to
                             A, C, D, E, F, G, H, I, K, L, M, N, P,
   R, S, T, V, W, Y;
   Position 37
                     to
                             C, D, E, F, G, H, I, K, L, M, P, Q, T,
   V, W, Y;
 5 Position 38
                     to
                             A, C, D, E, G, H, K, M, N, P, R, S, T,
   V, W, Y;
   Position 40
                             A, C, E, F, G, H, I, K, L, M, N, P, Q,
                     to
   R, S, T, V, W, Y;
   Position 41
                     to
                             A, C, D, E, G, H, I, K, L, M, N, P, Q,
10 R, S, T, V, W, Y;
   Position 44
                    to
                             A, C, D, E, F, H, I, L, M, N, S, T, W,
   Υ;
   Position 54
                             A, C, D, E, G, H, I, K, L, M, N, P, Q,
                    to
  R, S, T, V, W;
15 Position 59
                             A, C, D, E, F, G, H, I, K, L, M, N, P,
                    to
  R, S, T, V, W, Y;
  Position 61
                             A, C, D, E, F, G, H, I, K, L, M, N, Q,
                    to
  R, S, T, V, W, Y;
  Position 62
                    to
                             A, C, D, G, H, I, K, L, M, N, P, Q, R,
20 S, T, V, Y;
  Position 83
                    to
                             C, D, E, F, G, H, I, K, L, M, N, P, Q,
  R, S, T, V, W, Y;
  Position 84
                    to
                             A, C, D, E, F, H, I, K, L, M, N, P, Q,
  R, S, T, V, W, Y;
25 Position 95
                    to
                            A, C, D, F, G, H, I, K, L, M, N, P, Q,
  R, S, V, W, Y;
  Position 96
                    to
                            A, C, D, E, F, G, H, I, K, L, M, N, P,
  Q, V, W, Y;
  Position 97 to C, D, E, F, H, I, K, L, M, N, P, Q, R, S, V, W,
30 Y;
  Position 98
                    to
                            C, D, E, F, G, H, I, K, L, M, N, Q, R,
  S, T, V, W, Y;
  Position 100
                     to
                             C, D, E, F, G, H, I, K, L, M, N, P, Q,
  S, T, V, W, Y;
```

Position 101 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 131 to C, D, E, F, K, M, P, R, S, W, Y;

Position 133 to A, C, E, F, G, H, I, L, M, P, R, S, T,

5 V, W, Y;

Position 134 to C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 136 to A, C, E, F, G, H, I, K, L, M, N, P, Q, R, S, V, W, Y;

10 Position 142 to A, C, E, F, G, H, I, K, M, N, P, Q, R, V, W, Y;
Position 143 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T,
V, W, Y;

Position 145 to C, E, F, G, H, I, K, L, M, P, R, S, T, V, W, Y; Position 146 to A, C, D, F, G, H, I, K, L, M, N, P, T,

15 V, W, Y;

Position 151 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;

Position 153 to C, D, E, F, G, H, I, M, N, P, Q, S, T, V, W, Y;

20 Position 154 to A, C, D, E, F, G, H, I, K, L, M, P, Q, R, S, T,
V, W, Y;

Position 155 to A, C, D, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 157 to A, C, E, F, G, H, I, K, L, M, N, P, Q, R, S, T,

25 V, W, Y;

Position 158 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, S, T, V, W, Y;

Position 160 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;

30 Position 162 to C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;

Position 163 to A, C, D, E, F, G, H, I, K, M, P, Q, R, S, T, Y;

	Dogition	164		+ -0	70	_	ъ	-	-	~	**	-				_	_
	Position			to	Α,	C,	υ,	E,	F,	G,	н,	Ι,	ь,	Μ,	N,	P,	Q,
	R, S, T,	V, W,	Υ;														
	Position	165		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,	N,	Q,
	R, S, T,	V, W,	Y;														
5	Position	168		to	A,	C,	D,	E,	F,	G,	Н,	I,	ĸ,	L,	Μ,	N,	P,
	Q, R, S,	T, V,	W;														
	Position	169		to	A,	C,	D,	E,	G,	Н,	I,	ĸ,	L,	Μ,	N,	Р,	Q,
	R, S, T,	V, Y;															
	Position	170		to	Α,	C,	D,	E,	G,	н,	I.	ĸ.	L.	М.	N.	P,	ο.
10	s, T, V,				•	•	•	·	·	·	•	•	•	•	•	•	~,
	Position			to	Α.	c.	D.	E.	G.	н.	т.	к.	Τ.	N.	P.	Q,	R
	s, T, V,				,	-,	-,	_,	٠,	,	-,	10,	٠,	,	-,	×,	10,
	Position			to	7\	C	E.	ᅜ	C	п	т	v	т	M	D	0	D
				to	А,	С,	E,	Γ,	G,	п,	1,	κ,	ш,	141,	Ρ,	Q,	ĸ,
	S, T, V,			.	~	_	_	_			_		_		_	_	_
15	Position			to	Ċ,	υ,	Ŀ,	F',	G,	Н.,	Ι,	К,	ы,	М,	Ρ,	Q,	R,
	S, T, V,																
	Position			to	Α,	C,	E,	F,	G,	Η,	I,	K,	L,	Μ,	Q,	R,	s,
	T, V, W,	Υ;															
	Position	180		to	A,	C,	D,	Ε,	F,	G,	Н,	I,	K,	Μ,	N,	Q,	R,
20	S, T, V,	W, Y;															
	Position	183		to	A,	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,	N,	P,
	Q, R, T,	V, W,	Y;														
	Position	191		to	C,	D,	E,	F,	G,	Н,	I,	K,	L,	Μ,	N,	P,	Q,
	R, S, T,	v, w,	Y;														
25	Position	195		to	C,	D,	E,	F,	G,	Н,	I,	K,	L,	M,	N,	P,	Q,
	R, S, T,	V, W,	Υ;														
	Position	197		to	Α,	C,	D,	Ε,	F,	G,	Н,	I,	К,	L,	Μ,	N,	Ρ,
	Q, R, V,	W, Y;							-	-	-	•	-	•	-	-	•
	and	•															
30	Position	200		to	Α.	c.	D.	E.	F.	G.	Η.	I.	K.	L.	Μ.	N.	Ρ.

105. The protein variant according to claim 104, wherein the carbohydrase comprises one or more of the following substitutions:

5 Position 20 to C, D, F, H, I, L, M, N, P, Q, S, T, V, W, Y;

Position 23 to A, C, D, E, F, G, H, I, K, L, M, N, Q,

R, S, T, V, W, Y;

Position 27 to A, C, D, E, F, G, H, I, K, L, M, N, Q,

10 R, S, T, V, W, Y;

Position 83 to C, D, E, F, G, H, I, K, L, M, N, P, Q,

R, S, T, V, W, Y;

Position 84 to A, C, D, E, F, H, I, K, L, M, N, P, Q,

R, S, T, V, W, Y;

15 Position 95 to A, C, D, F, G, H, I, K, L, M, N, P, Q,

R, S, V, W, Y;

Position 96 to A, C, D, E, F, G, H, I, K, L, M, N, P,

Q, V, W, Y;

Position 97 to C, D, E, F, H, I, K, L, M, N, P, Q, R, S, V, W,

20 Y;

Position 98 to C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y;

Position ALA 100 to C, D, E, F, G, H, I, K, L, M, N, P, Q, S, T, V, W, Y;

25 and

Position 101 to A, C, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 131 to C, D, E, F, K, M, P, R, S, W, Y;

Position 142 to A, C, E, F, G, H, I, K, M, N, P, Q, R, V, W, Y;

30 Position 143 to A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T,
V, W, Y;

Position 145 to C, E, F, G, H, I, K, L, M, P, R, S, T, V, W, Y; Position 151 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y;

462

Position 154 to A, C, D, E, F, G, H, I, K, L, M, P, Q, R, S, T, V, W, Y;

PCT/DK01/00293

Position 155 to A, C, D, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

5 Position 157 to A, C, E, F, G, H, I, K, L, M, N, P, Q, R, S, T,
V, W, Y;

Position 158 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, S, T, V, W, Y;

10

106. The protein variant according to claims 104-105, wherein the enzyme is at least 81 % homologous, preferably 90% homologous, more preferably 95% homologous, most preferably 99% homologous to Carezyme core (SEQ ID NO 4).

15

- 107. The protein variant according to claim 76, wherein the laccase is a Coprinus-like laccase.
- 20 108. The protein variant according to claim 107, wherein Laccase comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 3:

Position 5 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, 25 V, W, Y;

Position 8 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 10 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

30 Position 12 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 22 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 23 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

Position 30 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

5 Position 39 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

Position 40 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

Position 41 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

10 T, V, W, Y;

Position 42 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

Position 43 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

15 Position 51 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

Position 53 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

Position 55 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

20 T, V, W, Y;

Position 58 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

Position 59 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

25 Position 60 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

Position 71 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

Position 72 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

30 T, V, W, Y;

Position 78 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

Position 79 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y;

Position 80 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 100 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

5 Position 101 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 102 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 112 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

10 T, V, W, Y;

Position 113 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 114 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

15 Position 118 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 139 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 142 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

20 T, V, W, Y;

Position 155 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 157 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

25 Position 165 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 166 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 168 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

30 T, V, W, Y;

Position 175 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 180 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 183 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 186 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

5 Position 190 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 191 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 192 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

10 T, V, W, Y;

Position 193 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 211 to A, C, D, E, F, G, H, I, K, L, M; N, P, Q, R, S, T, V, W, Y;

15 Position 213 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 231 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 234 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

20 T, V, W, Y;

Position 236 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 241 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

25 Position 251 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 257 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 259 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

30 T, V, W, Y;

Position 265 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 275 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 286 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 294 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

5 Position 295 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 296 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 299 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

10 T, V, W, Y;

Position 300 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 301 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

15 Position 302 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 306 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 313 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

20 T, V, W, Y;

Position 314 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 315 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

25 Position 320 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 321 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 322 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

30 T, V, W, Y;

Position 324 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 329 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 332 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 335 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

5 Position 336 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 339 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 344 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

10 T, V, W, Y;

Position 345 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 348 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

15 Position 349 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 350 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 366 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

20 T, V, W, Y;

Position 367 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 369 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

25 Position 370 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 371 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 372 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

30 T, V, W, Y;

Position 375 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 378 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 379 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 389 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

5 Position 390 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 409 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 410 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

10 T, V, W, Y;

Position 414 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 416 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

15 Position 418 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 419 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 420 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

20 T, V, W, Y;

Position 430 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 432 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

25 Position 433 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 434 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 442 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

30 T, V, W, Y;

Position 443 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 445 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 446 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 469 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

5 Position 473 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 485 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 488 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

10 T, V, W, Y;

Position 490 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 491 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

15 Position 492 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 493 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 494 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

20 T, V, W, Y;

Position 495 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 496 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

25 Position 499 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 500 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 501 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, 30 T, V, W, Y;

with the proviso that the amino acids of the parent protein is substituted to another amino acid.

470

109. The protein variant according to claim 108, wherein Laccase comprises one or more of the following substitutions corresponding to any of the following in SEQ ID NO 3:

5

Position 59 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 96 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

10 Position 100 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, Y;

Position 181 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 348 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

15 T, V, W, Y;

Position 369 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

Position 414 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

- 20 Position 432 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
 T, V, W, Y;
 - Position 493 to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;
- 25 with the proviso that the amino acids of the parent protein is substituted to another amino acid.
- 110. A subtilisin variant comprising one or more of the insertions, substitutions and/or deletions in any of the positions according to claims 77-93.
 - 111. The variant according to claim 110, wherein the subtilisin has at least 60%, preferably at least 70%, more preferably at least 80, even more preferably at least 90, still more prefera-

WO 01/83559

471

bly at least 95%, most preferably at least 99% homology to SEQ ID NO; 10.

PCT/DK01/00293

- 112. A lipolytic enzyme comprising one or more of the insers tions, substitutions and/or deletions in any of the positions according to claims 94-97.
- 113. A glycoamylase variant comprising one or more of the insertions, substitutions and/or deletions in any of the positions 10 according to claims 98-99.
- 114. The variant according to claim 113, wherein the variant has at least 60%, preferably at least 70%, more preferably at least 80, even more preferably at least 90, still more preferably at least 95%, most preferably at least 99% homology to SEQ ID NO: 36.
- 115. A Thermamyl-like α -amylase comprising one or more of the insertions, substitutions and/or deletions in any of the positions according to claims 100-103.
- 116. The variant according to claim 115, wherein the variant has at least 60%, preferably at least 70%, more preferably at least 80, even more preferably at least 90, still more preferably at least 95%, most preferably at least 99% homology to SEQ ID NO; 2.
- 117. A cellulase variant comprising one or more of the insertions, substitutions and/or deletions in any of the positions according to claims 104-106.
 - 118. The variant according to claim 117, wherein the variant has at least 60%, preferably at least 70%, more preferably at least 80, even more preferably at least 90, still more preferably at

472

least 95%, most preferably at least 99% homology to SEQ ID NO;

- 119. A coprinus-like laccase variant comprising one or more of the insertions, substitutions and/or deletions in any of the positions according to claims 107-109.
 - 120. A composition comprising a protein variant as defined in any of claims 22-119.

10

- 121. The composition according to claim 120, wherein the composition is in form of a pharmaceutical composition such as a vaccine.
- 15 122. The composition according to claim 120, wherein the compositions is in form of a industrial composition such as, a detergent composition, personal care composition.
- 123. The use of the composition as defined in claim 120 for the production of a pharmaceutical.
 - 124. The use of the composition as defined in claim 120 for industrial application.
- 25 125. A DNA construct comprising a DNA sequence encoding a protein variant as defined in any of claims 22-119.
 - 126. An expression vector comprising a DNA construct according to claim 125.

30

127. A host cell which is capable of expressing a polypeptide and comprising a DNA construct as defined in claim 125.

473

128. A host cell which is capable of expressing a polypeptide and which is transformed by an expression vector according to claim 126.

PCT/DK01/00293

- 5 129. A host according to claims 127-128, which is a fungal cell, an insect cell, a mammalian cell, or a plant cell.
 - 130. A method of producing a protein variant having reduced immunogenicity as compared to the parent protein, comprising:

10

WO 01/83559

- culturing a host according to any of claims 127-129 in a suitable culture medium to obtain expression and secretion of the protein into the medium, followed by
- 15 isolation of the protein from the culture medium.
- 131. A kit for characterizing specificity of the allergic re20 sponse of a patient, comprising a set of antibody binding peptide sequences corresponding to at least one epitope on at least
 one potential allergen.
- 132. The kit according to claim 131, for which the antibody 25 binding sequences each are specific for one out of a known range of allergens, such that the characterization of allergic specificity becomes less susceptibility to cross-reactivity interferences.
- 30 133. A kit according to claims 131-132, which further comprises other diagnostic reagents, which facilitate determination of the serum response to each of the antibody binding sequences.
 - 134. A kit according to claims 131-133, which further comprises

474

allergen vaccines, which can be administered to the patient according to the test results obtained using the antibody binding sequences.

5

1/1

FIG. 1

SEQUENCE LISTING

<110> NOVOZYMES A/S

<120> PROTEIN VARIANTS HAVING MODIFIED IMMUNOGENICITY

<130> 10021

<160> 37

<170> PatentIn version 3.0

<210> 1

<211> 269

<212> PRT

<213> T. lanuginosus

<400> 1

Glu Val Ser Gln Asp Leu Phe Asn Gln Phe Asn Leu Phe Ala Gln Tyr

1 5 10 15

Ser Ala Ala Tyr Cys Gly Lys Asn Asn Asp Ala Pro Ala Gly Thr $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Asn Ile Thr Cys Thr Gly Asn Ala Cys Pro Glu Val Glu Lys Ala Asp 35 40 45

Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser Gly Val Gly Asp Val Thr 50. 55 60

Gly Phe Leu Ala Leu Asp Asn Thr Asn Lys Leu Ile Val Leu Ser Phe 65 70 75 80

Arg Gly Ser Arg Ser Ile Glu Asn Trp Ile Gly Asn Leu Asn Phe Asp 85 90 95

Leu Lys Glu Ile Asn Asp Ile Cys Ser Gly Cys Arg Gly His Asp Gly

Phe Thr Ser Ser Trp Arg Ser Val Ala Asp Thr Leu Arg Gln Lys Val

Glu Asp Ala Val Arg Glu His Pro Asp Tyr Arg Val Val Phe Thr Gly

140

His Ser Leu Gly Gly Ala Leu Ala Thr Val Ala Gly Ala Asp Leu Arg 145 150 155 160

135

Gly Asn Gly Tyr Asp Ile Asp Val Phe Ser Tyr Gly Ala Pro Arg Val

Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr Val Gln Thr Gly Gly Thr
180 185 190

Leu Tyr Arg Ile Thr His Thr Asn Asp Ile Val Pro Arg Leu Pro Pro 195 200 205

Arg Glu Phe Gly Tyr Ser His Ser Ser Pro Glu Tyr Trp Ile Lys Ser 210 215 220

Gly Thr Leu Val Pro Val Thr Arg Asn Asp Ile Val Lys Ile Glu Gly 225 230 235 240

Ile Asp Ala Thr Gly Gly Asn Asn Gln Pro Asn Ile Pro Asp Ile Pro 245 250 255

Ala His Leu Trp Tyr Phe Gly Leu Ile Gly Thr Cys Leu 260 265

<210> 2

130

<211> 481

<212> PRT

<213> SP722

<400> 2

Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp His Leu Pro Asn Asp 1 5 10 15

Gly Asn His Trp Asn Arg Leu Arg Asp Asp Ala Ser Asn Leu Arg Asn 20 25 30

Arg Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Trp Lys Gly Thr Ser

Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu Gly Glu
50 55 60

Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Arg Ser Gln 65 70 75 80

Leu Glu Ser Ala Ile His Ala Leu Lys Asn Asn Gly Val Gln Val Tyr
85 90 95

Gly Asp Val Val Met Asn His Lys Gly Gly Ala Asp Ala Thr Glu Asn 100 105 110

Val Leu Ala Val Glu Val Asn Pro Asn Asn Arg Asn Gln Glu Ile Ser 115 120 125 Gly Asp Tyr Thr Ile Glu Ala Trp Thr Lys Phe Asp Phe Pro Gly Arg Gly Asn Thr Tyr Ser Asp Phe Lys Trp Arg Trp Tyr His Phe Asp Gly 150 155 Val Asp Trp Asp Gln Ser Arg Gln Phe Gln Asn Arg Ile Tyr Lys Phe Arg Gly Asp Gly Lys Ala Trp Asp Trp Glu Val Asp Ser Glu Asn Gly 185 Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp Met Asp His Pro Glu Val Val Asn Glu Leu Arg Arg Trp Gly Glu Trp Tyr Thr Asn Thr Leu Asn Leu Asp Gly Phe Arg Ile Asp Ala Val Lys His Ile Lys Tyr Ser Phe Thr Arg Asp Trp Leu Thr His Val Arg Asn Ala Thr Gly Lys Glu Met Phe Ala Val Ala Glu Phe Trp Lys Asn Asp Leu Gly Ala Leu Glu Asn Tyr Leu Asn Lys Thr Asn Trp Asn His Ser Val Phe Asp Val Pro Leu His Tyr Asn Leu Tyr Asn Ala Ser Asn Ser Gly Gly Asn Tyr Asp 295 Met Ala Lys Leu Leu Asn Gly Thr Val Val Gln Lys His Pro Met His Ala Val Thr Phe Val Asp Asn His Asp Ser Gln Pro Gly Glu Ser Leu Glu Ser Phe Val Gln Glu Trp Phe Lys Pro Leu Ala Tyr Ala Leu Ile Leu Thr Arg Glu Gln Gly Tyr Pro Ser Val Phe Tyr Gly Asp Tyr Tyr Gly Ile Pro Thr His Ser Val Pro Ala Met Lys Ala Lys Ile Asp Pro Ile Leu Glu Ala Arg Gln Asn Phe Ala Tyr Gly Thr Gln His Asp Tyr Phe Asp His His Asn Ile Ile Gly Trp Thr Arg Glu Gly Asn Thr Thr His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp Gly Pro Gly Gly

Glu Lys Trp Met Tyr Val Gly Gln Asn Lys Ala Gly Gln Val Trp His

440

435

Asp Ile Thr Gly Asn Lys Pro Gly Thr Val Thr Ile Asn Ala Asp Gly Trp Ala Asn Phe Ser Val Asn Gly Gly Ser Val Ser Ile Trp Val Lys Arg <210> 3 <211> 504 <212> PRT <213> Coprinus cenerius <400> 3 Gln Ile Val Asn Ser Val Asp Thr Met Thr Leu Thr Asn Ala Asn Val Ser Pro Asp Gly Phe Thr Arg Ala Gly Ile Leu Val Asn Gly Val His Gly Pro Leu Ile Arg Gly Gly Lys Asn Asp Asn Phe Glu Leu Asn Val 40 Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro Thr Ser Ile His 55 Trp His Gly Leu Phe Gln Arg Gly Thr Asn Trp Ala Asn Gly Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Phe Leu Tyr Lys 85 90 Phe Thr Pro Ala Gly His Ala Gly Thr Phe Trp Tyr His Ser His Phe 105 Gly Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Met Val Ile Tyr Asp 120 Asp Asn Asp Pro His Ala Ala Leu Tyr Asp Glu Asp Asp Glu Asn Thr 135 Ile Ile Thr Leu Ala Asp Trp Tyr His Ile Pro Ala Pro Ser Ile Gln Gly Ala Ala Gln Pro Asp Ala Thr Leu Ile Asn Gly Lys Gly Arg Tyr 170 Val Gly Gly Pro Ala Ala Glu Leu Ser Ile Val Asn Val Glu Gln Gly

185

205

Lys Lys Tyr Arg Met Arg Leu Ile Ser Leu Ser Cys Asp Pro Asn Trp

200

195

Gln Phe Ser Ile Asp Gly His Glu Leu Thr Ile Ile Glu Val Asp Gly 210 215 220

Asn Leu Thr Glu Pro His Thr Val Asp Arg Leu Gln Ile Phe Thr Gly 225 230 235 240

Gln Arg Tyr Ser Phe Val Leu Asp Ala Asn Gln Pro Val Asp Asn Tyr 245 250 255

Trp Ile Arg Ala Gln Pro Asn Lys Gly Arg Asn Gly Leu Ala Gly Thr 260 265 270

Phe Ala Asn Gly Val Asn Ser Ala Ile Leu Arg Tyr Ala Gly Ala Ala 275 280 285

Asn Ala Asp Pro Thr Thr Ser Ala Asn Pro Asn Pro Ala Gln Leu Asn 290 295 300

Glu Ala Asp Leu His Ala Leu Ile Asp Pro Ala Ala Pro Gly Ile Pro 305 310 315 320

Thr Pro Gly Ala Ala Asn Val Asn Leu Arg Phe Gln Leu Gly Phe Ser 325 330 335

Gly Gly Arg Phe Thr Ile Asn Gly Thr Ala Tyr Glu Ser Pro Ser Val 340 345 350

Pro Thr Leu Leu Gln Ile Met Ser Gly Ala Gln Ser Ala Asn Asp Leu 355 360 365

Leu Pro Ala Gly Ser Val Tyr Glu Leu Pro Arg Asn Gln Val Val Glu 370 375 380

Leu Val Val Pro Ala Gly Val Leu Gly Gly Pro His Pro Phe His Leu 385 390 395 400

His Gly His Ala Phe Ser Val Val Arg Ser Ala Gly Ser Ser Thr Tyr 405 410 415

Asn Phe Val Asn Prc Val Lys Arg Asp Val Val Ser Leu Gly Val Thr 420 425 430

Gly Asp Glu Val Thr Ile Arg Phe Val Thr Asp Asn Pro Gly Pro Trp 435 440 445

Phe Phe His Cys His Ile Glu Phe His Leu Met Asn Gly Leu Ala Ile 450 455 460

Val Phe Ala Glu Asp Met Ala Asn Thr Val Asp Ala Asn Asn Pro Pro 465 470 475 480

Val Glu Trp Ala Gln Leu Cys Glu Ile Tyr Asp Asp Leu Pro Pro Glu 485 490 495

Ala Thr Ser Ile Gln Thr Val Val

<210> 4

<211> 213

<212> PRT

<213> Carezyme Core

<400> 4.

Ala Asp Gly Arg Ser Thr Arg Tyr Trp Asp Cys Cys Lys Pro Ser Cys

1 10 15

Gly Trp Ala Lys Lys Ala Pro Val Asn Gln Pro Val Phe Ser Cys Asn 20 25 30

Ala Asn Phe Gln Arg Ile Thr Asp Phe Asp Ala Lys Ser Gly Cys Glu 35 40 45

Pro Gly Gly Val Ala Tyr Ser Cys Ala Asp Gln Thr Pro Trp Ala Val 50 55 60

Asn Asp Asp Phe Ala Leu Gly Phe Ala Ala Thr Ser Ile Ala Gly Ser 65 70 75 80

Asn Glu Ala Gly Trp Cys Cys Ala Cys Tyr Glu Leu Thr Phe Thr Ser 85 90 95

Gly Pro Val Ala Gly Lys Lys Met Val Val Gln Ser Thr Ser Thr Gly 100 105 110

Gly Asp Leu Gly Ser Asn His Phe Asp Leu Asn Ile Pro Gly Gly Gly 115 120 125

Val Gly Ile Phe Asp Gly Cys Thr Pro Gln Phe Gly Gly Leu Pro Gly 130 135 140

Gln Arg Tyr Gly Gly Ile Ser Ser Arg Asn Glu Cys Asp Arg Phe Pro 145 150 155 160

Asp Ala Leu Lys Pro Gly Cys Tyr Trp Arg Phe Asp Trp Phe Lys Asn 165 170 175

Ala Asp Asn Pro Ser Phe Ser Phe Arg Gln Val Gln Cys Pro Ala Glu 180 185 190

Leu Val Ala Arg Thr Gly Cys Arg Arg Asn Asp Asp Gly Asn Phe Pro-

Ala Val Gln Ile Pro 210

<210> 5

<211> 305

<212> PRT

<213> Carezyme full length (SwissProt accession number R15272)

<400> 5

Met Arg Ser Ser Pro Leu Leu Pro Ser Ala Val Val Ala Ala Leu Pro 1 5 10 15

PCT/DK01/00293

Val Leu Ala Leu Ala Ala Asp Gly Arg Ser Thr Arg Tyr Trp Asp Cys

Cys Lys Pro Ser Cys Gly Trp Ala Lys Lys Ala Pro Val Asn Gln Pro 35 40 45

Val Phe Ser Cys Asn Ala Asn Phe Gln Arg Ile Thr Asp Phe Asp Ala 50 55 60

Lys Ser Gly Cys Glu Pro Gly Gly Val Ala Tyr Ser Cys Ala Asp Gln 65 70 75 80

Thr Pro Trp Ala Val Asn Asp Asp Phe Ala Leu Gly Phe Ala Ala Thr 85 90 95

Ser Ile Ala Gly Ser Asn Glu Ala Gly Trp Cys Cys Ala Cys Tyr Glu 100 105 110

Leu Thr Phe Thr Ser Gly Pro Val Ala Gly Lys Lys Met Val Val Gln
115 120 125

Ser Thr Ser Thr Gly Gly Asp Leu Gly Ser Asn His Phe Asp Leu Asn 130 135 140

Ile Pro Gly Gly Gly Val Gly Ile Phe Asp Gly Cys Thr Pro Gln Phe 145 150 155 160

Gly Gly Leu Pro Gly Gln Arg Tyr Gly Gly Ile Ser Ser Arg Asn Glu 165 170 175

Cys Asp Arg Phe Pro Asp Ala Leu Lys Pro Gly Cys Tyr Trp Arg Phe 180 185 190

Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg Gln Val

Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg Arg Asn Asp

Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Ser Thr Ser Ser 225 230 235 240

Pro Val Asn Gln Pro Thr Ser Thr Ser Thr Thr Ser Thr Ser Thr Thr
245 250 255

Ser Ser Pro Pro Val Gln Pro Thr Thr Pro Ser Gly Cys Thr Ala Glu 260 265 270

Arg Trp Ala Gln Cys Gly Gly Asn Gly Trp Ser Gly Cys Thr Thr Cys 275 280 285

Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His Gln Cys 290 295 300 Leu 305

<210> 6

<211> 159

<212> PRT

<213> Bet v1 sequence SwissProt accession number P15494)

<400> 6

Gly Val Phe Asn Tyr Glu Thr Glu Thr Thr Ser Val Ile Pro Ala Ala 1 5 10 15

Arg Leu Phe Lys Ala Phe Ile Leu Asp Gly Asp Asn Leu Phe Pro Lys 20 25 30

Val Ala Pro Gln Ala Ile Ser Ser Val Glu Asn Ile Glu Gly Asn Gly 35 40 45

Gly Pro Gly Thr Ile Lys Lys Ile Ser Phe Pro Glu Gly Phe Pro Phe 50 55 60

Lys Tyr Val Lys Asp Arg Val Asp Glu Val Asp His Thr Asn Phe Lys 65 70 75 80

Tyr Asn Tyr Ser Val Ile Glu Gly Gly Pro Ile Gly Asp Thr Leu Glu 85 90 95

Lys Ile Ser Asn Glu Ile Lys Ile Val. Ala Thr Pro Asp Gly Ser 100 105 110

Ile Leu Lys Ile Ser Asn Lys Tyr His Thr Lys Gly Asp His Glu Val

Lys Ala Glu Gln Val Lys Ala Ser Lys Glu Met Gly Glu Thr Leu Leu 130 135 140

Arg Ala Val Glu Ser Tyr Leu Leu Ala His Ser Asp Ala Tyr Asn 145 150 155

<210> 7

<211> 129

<212> PRT

<213> Der f2 (Dermatophagoides farinae allergen, pdb accession
number lahk.pdb)

<400> 7

Asp Gln Val Asp Val Lys Asp Cys Ala Asn Asn Glu Ile Lys Lys Val 1 10 15

Met Val Asp Gly Cys His Gly Ser Asp Pro Cys Ile Ile His Arg Gly
20 25 30

Lys Pro Phe Thr Leu Glu Ala Leu Phe Asp Ala Asn Gln Asn Thr Lys 35 40 45

Thr Ala Lys Ile Glu Ile Lys Ala Ser Leu Asp Gly Leu Glu Ile Asp 50 55 60

Val Pro Gly Ile Asp Thr Asn Ala Cys His Phe Val Lys Cys Pro Leu 65 70 75 80

Val Lys Gly Gln Gln Tyr Asp Ile Lys Tyr Thr Trp Asn Val Pro Lys 85 90 95

Ile Ala Pro Lys Ser Glu Asn Val Val Val Thr Val Lys Leu Ile Gly
100 105 110

Asp Asn Gly Val Leu Ala Cys Ala Ile Ala Thr His Gly Lys Ile Arg 115 120 125

Asp

<210> 8

<211> 129

<212> PRT

<213> Der p2 (Dermatophagoides pteronyssinus allergen, pdb accession number la9v.pdb)

<400> 8

Ser Gln Val Asp Val Lys Asp Cys Ala Asn His Glu Ile Lys Lys Val 1 10 15

Leu Val Pro Gly Cys His Gly Ser Glu Pro Cys Ile Ile His Arg Gly
20 25 30

Lys Pro Phe Gln Leu Glu Ala Val Phe Glu Ala Asn Gln Asn Thr Lys 35 40 45

Thr Ala Lys Ile Glu Ile Lys Ala Ser Ile Asp Gly Leu Glu Val Asp
50 55 60

Val Pro Gly Ile Asp Pro Asn Ala Cys His Tyr Met Lys Cys Pro Leu 65 70 75 80

Val Lys Gly Gln Gln Tyr Asp Ile Lys Tyr Thr Trp Asn Val Pro Lys

Ile Ala Pro Lys Ser Glu Asn Val Val Val Thr Val Lys Val Met Gly

Asp.Asp Gly Val Leu Ala Cys Ala Ile Ala Thr His Ala Lys Ile Arg 115 120 125

Asp

<210> 9

<211> 94

<212> PRT

<213> Phl p2 (allergen from pdb accession number 1whp.pdb)

<400> 9

Val Pro Lys Val Thr Phe Thr Val Glu Lys Gly Ser Asn Glu Lys His 1 5 10 15

Leu Ala Val Leu Val Lys Tyr Glu Gly Asp Thr Met Ala Glu Val Glu
20 25 30

Leu Arg Glu His Gly Ser Asp Glu Trp Val Ala Met Thr Lys Gly Glu 35 40 45

Gly Gly Val Trp Thr Phe Asp Ser Glu Glu Pro Leu Gln Gly Pro Phe 50 55 60

Asn Phe Arg Phe Leu Thr Glu Lys Gly Met Lys Asn Val Phe Asp Asp 65 70 75 80

Val Val Pro Glu Lys Tyr Thr Ile Gly Ala Thr Tyr Ala Pro

<210> 10

<211> 338

<212> PRT

<213> BPN' (Bacillus subtilis subtilisin from pdb accession number 1sib.pdb)

<400> 10

Ala Gln Ser Val Pro Tyr Gly Val Ser Gln Ile Lys Ala Pro Ala Leu 1 5 10 15

His Ser Gln Gly Tyr Thr Gly Ser Asn Val Lys Val Ala Val Ile Asp 20 25 30

Ser Gly Ile Asp Ser Ser His Pro Asp Leu Lys Val Ala Gly Gly Ala

Ser Met Val Pro Ser Glu Thr Asn Pro Phe Gln Asp Asn Asn Ser His 50 55 60

Gly Thr His Val Ala Gly Thr Val Ala Ala Leu Asn Asn Ser Ile Gly 65 70 75 80

Val Leu Gly Val Ala Pro Ser Ala Ser Leu Tyr Ala Val Lys Val Leu 85 90 95

Gly Ala Asp Gly Ser Gly Gln Tyr Ser Trp Ile Ile Asn Gly Ile Glu
100 105 110

Trp Ala Ile Ala Asn Asn Met Asp Val Ile Asn Met Ser Leu Gly Gly
115 120 125

Pro Ser Gly Ser Ala Ala Leu Lys Ala Ala Val Asp Lys Ala Val Ala 130 135 140

Ser Gly Val Val Val Val Ala Ala Ala Gly Asn Glu Gly Thr Ser Gly 145 150 155 160

Ser Ser Ser Thr Val Gly Tyr Pro Gly Lys Tyr Pro Ser Val Ile Ala 165 170 175

Val Gly Ala Val Asp Ser Ser Asn Gln Arg Ala Ser Phe Ser Ser Val 180 185 190

Gly Pro Glu Leu Asp Val Met Ala Pro Gly Val Ser Ile Gln Ser Thr 195 200 205

Leu Pro Gly Asn Lys Tyr Gly Ala Tyr Asn Gly Thr Ser Met Ala Ser 210 215 220

Pro His Val Ala Gly Ala Ala Ala Leu Ile Leu Ser Lys His Pro Asn 225 230 235 240

Trp Thr Asn Thr Gln Val Arg Ser Ser Leu Glu Asn Thr Thr Lys 245 250 255

Leu Gly Asp Ser Phe Tyr Tyr Gly Lys Gly Leu Ile Asn Val Gln Ala 260 265 270

Ala Ala Gln Lys Ser Phe Pro Glu Val Val Gly Lys Thr Val Asp Gln 275 280 285

Ala Arg Glu Tyr Phe Thr Leu His Tyr Pro Gln Tyr Asp Val Tyr Phe 290 295 300

Leu Pro Glu Gly Ser Pro Val Thr Leu Asp Leu Arg Tyr Asn Arg Val 305 310 315 320

Lys Val Phe Tyr Asn Pro Gly Thr Asn Val Val Asn His Val Pro His 325 330 335

Val Gly

<210> 11

<211> 268

<212> PRT

<213> Esperase (Bacillus subtilisin 147 from Bacillus lentus)

<400> 11

Gln Thr Val Pro Trp Gly Ile Ser Phe Ile Asn Thr Gln Gln Ala His

1 10 15

Asn Arg Gly Ile Phe Gly Asn Gly Ala Arg Val Ala Val Leu Asp Thr 20 25 30

Gly Ile Ala Ser His Pro Asp Leu Arg Ile Ala Gly Gly Ala Ser Phe 35 40 45

Ile Ser Ser Glu Pro Ser Tyr His Asp Asn Asn Gly His Gly Thr His 50 55 60

Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu Gly 65 70 75 80

Val Ala Pro Ser Ala Asp Leu Tyr Ala Val Lys Val Leu Asp Arg Asn 85 90 95

Gly Ser Gly Ser Leu Ala Ser Val Ala Gln Gly Ile Glu Trp Ala Ile 100 105 110

Asn Asn Asn Met His Ile Ile Asn Met Ser Leu Gly Ser Thr Ser Gly
115 120 125

Ser Ser Thr Leu Glu Leu Ala Val Asn Arg Ala Asn Asn Ala Gly Ile 130 135 140

Leu Leu Val Gly Ala Ala Gly Asn Thr Gly Arg Gln Gly Val Asn Tyr 145 150 155 160

Pro Ala Arg Tyr Ser Gly Val Met Ala Val Ala Ala Val Asp Gln Asn 165 170 175

Gly Gln Arg Ala Ser Phe Ser Thr Tyr Gly Pro Glu Ile Glu Ile Ser 180 185 190

Ala Pro Gly Val Asn Val Asn Ser Thr Tyr Thr Gly Asn Arg Tyr Val
195 200 205

Ser Leu Ser Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Val Ala 210 215 220

Ala Leu Val Lys Ser Arg Tyr Pro Ser Tyr Thr Asn Asn Gln Ile Arg 225 230 235 240

Gln Arg Ile Asn Gln Thr Ala Thr Tyr Leu Gly Ser Pro Ser Leu Tyr 245 250 255

Gly Asn Gly Leu Val His Ala Gly Arg Ala Thr Gln 260 265

<210> 12

<211> 150

<212> PRT

<213> Bosd2

<400> 12

Ile Asp Pro Ser Lys Ile Pro Gly Glu Trp Arg Ile Ile Tyr Ala Ala 1 5 10 15

Ala Asp Asn Lys Asp Lys Ile Val Glu Gly Gly Pro Leu Arg Asn Tyr 20 25 30

Tyr Arg Arg Ile Glu Cys Ile Asn Asp Cys Glu Ser Leu Ser Ile Thr 35 40 45

Phe Tyr Leu Lys Asp Gln Gly Thr Cys Leu Leu Leu Thr Glu Val Ala 50 55 60

Lys Arg Gln Glu Gly Tyr Val Tyr Val Leu Glu Phe Tyr Gly Thr Asn 65 70 75 80

Thr Leu Glu Val Ile His Val Ser Glu Asn Met Leu Val Thr Tyr Val 85 90 95

Glu Asn Tyr Asp Gly Glu Arg Ile Thr Lys Met Thr Glu Gly Leu Ala 100 105 110

Lys Gly Thr Ser Phe Thr Pro Glu Glu Leu Glu Lys Tyr Gln Gln Leu 115 120 125

Asn Ser Glu Arg Gly Val Pro Asn Glu Asn Ile Glu Asn Leu Ile Lys 130 135 140

Thr Asp Asn Cys Pro Pro

<210> 13

<211> 159

<212> PRT

<213> Equc1

<400> 13

Val Ala Ile Arg Asn Phe Asp Ile Ser Lys Ile Ser Gly Glu Trp Tyr 1 5 10 15

Ser Ile Phe Leu Ala Ser Asp Val Lys Glu Lys Ile Glu Glu Asn Gly

Ser Met Arg Val Phe Val Asp Val Ile Arg Ala Leu Asp Asn Ser Ser 35 40 45

Leu Tyr Ala Glu Tyr Gln Thr Lys Val Asn Gly Glu Cys Thr Glu Phe 50 55 60

Pro Met Val Phe Asp Lys Thr Glu Glu Asp Gly Val Tyr Ser Leu Asn 65 70 75 80

Tyr Asp Gly Tyr Asn Val Phe Arg Ile Ser Glu Phe Glu Asn Asp Glu 85 90 95

His Ile Ile Leu Tyr Leu Val Asn Phe Asp Lys Asp Arg Pro Phe Gln
100 105 110

Leu Phe Glu Phe Tyr Ala Arg Glu Pro Asp Val Ser Pro Glu Ile Lys 115 120 125

Glu Glu Phe Val Lys Ile Val Gln Lys Arg Gly Ile Val Lys Glu Asn 130 135 140

Ile Ile Asp Leu Thr Lys Ile Asp Arg Cys Phe Gln Leu Arg Gly
145 150 155

<210> 14

<211> 269

<212> PRT

<213> Protease B

<400> 14

Ala Gln Thr Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Ser Gly Ser Gly Ser Val Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Gly Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175 Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Asp Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

<210> 15

<211> 129

<212> PRT

<213> Gald4

<400> 15

Lys Val Phe Gly Arg Cys Glu Leu Ala Ala Ala Met Lys Arg His Gly
1 5 10 15

Leu Asp Asn Tyr Arg Gly Tyr Ser Leu Gly Asn Trp Val Cys Ala Ala 20 25 30

Lys Phe Glu Ser Asn Phe Asn Thr Gln Ala Thr Asn Arg Asn Thr Asp 35 40 45

Gly Ser Thr Asp Tyr Gly Ile Leu Gln Ile Asn Ser Arg Trp Trp Cys
50 55 60

Asn Asp Gly Arg Thr Pro Gly Ser Arg Asn Leu Cys Asn Ile Pro Cys 65 70 75 80

Ser Ala Leu Leu Ser Ser Asp Ile Thr Ala Ser Val Asn Cys Ala Lys 85 90 95

Lys Ile Val Ser Asp Ala Asn Gly Met Asn Ala Trp Val Ala Trp Arg

Asn Arg Cys Lys Gly Thr Asp Val Gln Ala Trp Ile Arg Gly Cys Arg 115 120 125

Leu

<210> 16

<211> 260

<212> PRT

<213> Hevb8

<400> 16

Ser Trp Gln Thr Tyr Val Asp Asp His Leu Met Cys Asp Ile Asp Gly
1 5 10 15

His Arg Leu Thr Ala Ala Ala Ile Ile Gly His Asp Gly Ser Val Trp
20 25 30

Ala Gln Ser Ser Phe Pro Gln Phe Lys Ser Asp Glu Val Ala Ala 35 40 45

Val Met Lys Asp Phe Asp Glu Pro Gly Ser Leu Ala Pro Thr Gly Leu 50 55 60

His Leu Gly Gly Thr Lys Tyr Met Val Ile Gln Gly Glu Pro Gly Ala 65 70 75 80

Val Ile Arg Gly Lys Lys Gly Ser Gly Gly Ile Thr Val Lys Arg Thr 85 90 95

Gly Gln Ala Leu Ile Ile Gly Ile Tyr Asp Glu Pro Leu Thr Pro Gly
100 105 110

Gln Cys Asn Met Ile Val Glu Arg Leu Gly Asp Tyr Leu Leu Asp Gln 115 120 125

Gly Leu Ser Trp Gln Thr Tyr Val Asp Asp His Leu Met Cys Asp Ile 130 135 140

Asp Gly His Arg Leu Thr Ala Ala Ala Ile Ile Gly His Asp Gly Ser 145 150 155 160

Val Trp Ala Gln Ser Ser Ser Phe Pro Gln Phe Lys Ser Asp Glu Val 165 170 175

Ala Ala Val Met Lys Asp Phe Asp Glu Pro Gly Ser Leu Ala Pro Thr 180 185 190

Gly Leu His Leu Gly Gly Thr Lys Tyr Met Val Ile Gln Gly Glu Pro 195 200 205

Gly Ala Val Ile Arg Gly Lys Lys Gly Ser Gly Gly Ile Thr Val Lys 210 215 220

Arg Thr Gly Gln Ala Leu Ile Ile Gly Ile Tyr Asp Glu Pro Leu Thr 225 230 235 240

Pro Gly Gln Cys Asn Met Ile Val Glu Arg Leu Gly Asp Tyr Leu Leu 245 250 255

Asp Gln Gly Leu

<210> 17

<211> 125

<212> PRT

<213> Profilin1-AC

<400> 17

Ser Trp Gln Thr Tyr Val Asp Thr Asn Leu Val Gly Thr Gly Ala Val 1 5 10 15

Thr Gln Ala Ala Ile Leu Gly Leu Asp Gly Asn Thr Trp Ala Thr Ser 20 25 30

Ala Gly Phe Ala Val Thr Pro Ala Gln Gly Gln Thr Leu Ala Ser Ala 35 40 45

Phe Asn Asn Ala Asp Pro Ile Arg Ala Ser Gly Phe Asp Leu Ala Gly 50 55 60

Val His Tyr Val Thr Leu Arg Ala Asp Asp Arg Ser Ile Tyr Gly Lys 65 70 75 80

Lys Gly Ser Ala Gly Val Ile Thr Val Lys Thr Ser Lys Ser Ile Leu 85 90 95

Val Gly Val Tyr Asn Glu Lys Ile Gln Pro Gly Thr Ala Ala Asn Val
100 105 110

Val Glu Lys Leu Ala Asp Tyr Leu Ile Gly Gln Gly Phe 115 120 125

<210> 18

<211> 130

<212> PRT

<213> Profilin1-AT

<400> 18

Ser Trp Gln Ser Tyr Val Asp Asp His Leu Met Cys Asp Val Glu Gly
1 5 10 15

Asn His Leu Thr Ala Ala Ala Ile Leu Gly Gln Asp Gly Ser Val Trp
20 25 30

Ala Gln Ser Ala Lys Phe Pro Gln Leu Lys Pro Gln Glu Ile Asp Gly
35 40 45

Ile Lys Lys Asp Phe Glu Glu Pro Gly Phe Leu Ala Pro Thr Gly Leu
50 55 60

Phe Leu Gly Gly Glu Lys Tyr Met Val Ile Gln Gly Glu Gln Gly Ala 65 70 75 80 Val Ile Arg Gly Lys Lys Gly Pro Gly Gly Val Thr Ile Lys Lys Thr 85 90 95

Asn Gln Ala Leu Val Phe Gly Phe Tyr Asp Glu Pro Met Thr Gly Gly

Gln Cys Asn Leu Val Val Glu Arg Leu Gly Asp Tyr Leu Ile Glu Ser 115 120 125

Glu Leu 130

<210> 19

<211> 250

<212> PRT

<213> Profilin2-AC

<400> 19

Ser Trp Gln Thr Tyr Val Asp Thr Asn Leu Val Gly Thr Gly Ala Val
1 5 10 15

Thr Gln Ala Ala Ile Ile Gly His Asp Gly Asn Thr Trp Ala Thr Ser 20 25 30

Ala Gly Phe Ala Val Ser Pro Ala Asn Gly Ala Ala Leu Ala Asn Ala 35 40 45 $^{\circ}$

Phe Lys Asp Ala Thr Ala Ile Arg Ser Asn Gly Phe Glu Leu Ala Gly 50 55 60

Thr Arg Tyr Val Thr Ile Arg Ala Asp Asp Arg Ser Val Tyr Gly Lys 65 70 75 80

Lys Gly Ser Ala Gly Val Ile Thr Val Lys Thr Ser Lys Ala Ile Leu 85 90 95

Ile Gly Val Tyr Asn Glu Lys Ile Gln Pro Gly Thr Ala Ala Asn Val

Val Glu Lys Leu Ala Asp Tyr Leu Ile Gly Gln Gly Phe Ser Trp Gln
115 120 125

Thr Tyr Val Asp Thr Asn Leu Val Gly Thr Gly Ala Val Thr Gln Ala 130 135 140

Ala Ile Ile Gly His Asp Gly Asn Thr Trp Ala Thr Ser Ala Gly Phe 145 150 155 160

Ala Val Ser Pro Ala Asn Gly Ala Ala Leu Ala Asn Ala Phe Lys Asp 165 170 175

Ala Thr Ala Ile Arg Ser Asn Gly Phe Glu Leu Ala Gly Thr Arg Tyr 180 : 185 190

Val Thr Ile Arg Ala Asp Asp Arg Ser Val Tyr Gly Lys Lys Gly Ser

200 205

Ala Gly Val Ile Thr Val Lys Thr Ser Lys Ala Ile Leu Ile Gly Val 210 215 220

Tyr Asn Glu Lys Ile Gln Pro Gly Thr Ala Ala Asn Val Val Glu Lys 225 230 235 240

Leu Ala Asp Tyr Leu Ile Gly Gln Gly Phe 245 250

<210> 20

195

<211> 123

<212> PRT

<213> Profilin-Birchpollen

<400> 20

Ser Trp Gln Thr Tyr Val Asp Glu His Leu Met Leu Ala Ala Ser Ala 1 5 10 15

Ile Val Gly His Asp Gly Ser Val Trp Ala Gln Ser Ser Phe Pro ${\tt 20}$

Gln Phe Lys Pro Gln Glu Ile Thr Gly Ile Met Lys Asp Phe Glu Glu 35 40 45

Pro Gly His Leu Ala Pro Thr Gly Leu His Leu Gly Gly Ile Lys Tyr 50 55 60

Met Val Ile Gln Gly Glu Ala Gly Ala Val Ile Arg Gly Lys Lys Gly 65 70 75 80

Ser Gly Gly Ile Thr Ile Lys Lys Thr Gly Gln Ala Leu Val Phe Gly 85 90 95

Ile Tyr Glu Glu Pro Val Thr Pro Gly Gln Cys Asn Met Val Val Glu
100 105 110

Arg Leu Gly Asp Tyr Leu Ile Asp Gln Gly Leu
115 120

<210> 21

<211> 40

<212> PRT

<213> RagWeedpollen5

<400> 21

Asp Asp Gly Leu Cys Tyr Glu Gly Thr Asn Cys Gly Lys Val Gly Lys

1 10 15

Tyr Cys Cys Ser Pro Ile Gly Lys Tyr Cys Val Cys Tyr Asp Ser Lys 20 25 30

Ala Ile Cys Asn Lys Asn Cys Thr 35 40

<210> 22

<211> 209

<212> PRT

<213> Vesv5

<400> 22

Ala Glu Ala Glu Phe Asn Asn Tyr Cys Lys Ile Lys Cys Leu Lys Gly
1 5 10 15

Gly Val His Thr Ala Cys Lys Tyr Gly Ser Leu Lys Pro Asn Cys Gly 20 25 30

Asn Lys Val Val Val Ser Tyr Gly Leu Thr Lys Gln Glu Lys Gln Asp 35 40 45

Ile Leu Lys Glu His Asn Asp Phe Arg Gln Lys Ile Ala Arg Gly Leu 50 55 60

Glu Thr Arg Gly Asn Pro Gly Pro Gln Pro Pro Ala Lys Asn Met Lys 65 70 75 80

Asn Leu Val Trp Asn Asp Glu Leu Ala Tyr Val Ala Gln Val Trp Ala 85 90 95

Asn Gln Cys Gln Tyr Gly His Asp Thr Cys Arg Asp Val Ala Lys Tyr 100 105 110

Gln Val Gly Gln Asn Val Ala Leu Thr Gly Ser Thr Ala Ala Lys Tyr 115 120 125

Asp Asp Pro Val Lys Leu Val Lys Met Trp Glu Asp Glu Val Lys Asp 130 135 140

Tyr Asn Pro Lys Lys Phe Ser Gly Asn Asp Phe Leu'Lys Thr Gly
145 150 155 160

His Tyr Thr Gln Met Val Trp Ala Asn Thr Lys Glu Val Gly Cys Gly 165 170 175

Ser Ile Lys Tyr Ile Glu Lys Trp His Lys His Tyr Leu Val Cys 180 185 190

Asn Tyr Gly Pro Ser Gly Asn Phe Lys Asn Glu Glu Leu Tyr Gln Thr

Lys

<210> 23

<211> 269

<212> PRT

<213> Protease B

<400> 23

Ala Gln Thr Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Ser Gly Ser Gly Ser Val Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Gly Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Asp Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

> 260 265

<210> 24

<211> 269

<212> PRT

<213> Savinase

<400> 24

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala

Ser Gly Ser Gly Ser Val Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 105

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 120

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 135

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Gly Ser Ile Ser 150 155

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 185

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 215

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

<210> 25

<211> 274

<212> PRT

<213> Alcalase

<400> 25

Ala Gln Thr Val Pro Tyr Gly Ile Pro Leu Ile Lys Ala Asp Lys Val 1 5 10 15

Gln Ala Gln Gly Phe Lys Gly Ala Asn Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Gln Ala Ser His Pro Asp Leu Asn Val Val Gly Gly Ala 35 40 45

Ser Phe Val Ala Gly Glu Ala Tyr Asn Thr Asp Gly Asn Gly His Gly 50 55 60

Thr His Val Ala Gly Thr Val Ala Ala Leu Asp Asn Thr Thr Gly Val 65 70 75 80

Leu Gly Val Ala Pro Ser Val Ser Leu Tyr Ala Val Lys Val Leu Asn 85 90 95

Ser Ser Gly Ser Gly Ser Tyr Ser Gly Ile Val Ser Gly Ile Glu Trp
100 105 110

Ala Thr Thr Asn Gly Met Asp Val Ile Asn Met Ser Leu Gly Gly Ala 115 120 125

Ser Gly Ser Thr Ala Met Lys Gln Ala Val Asp Asn Ala Tyr Ala Arg 130 135 140

Gly Val Val Val Val Ala Ala Gly Asn Ser Gly Ser Ser Gly Asn 145 150 155 160

Thr Asn Thr Ile Gly Tyr Pro Ala Lys Tyr Asp Ser Val Ile Ala Val

Gly Ala Val Asp Ser Asn Ser Asn Arg Ala Ser Phe Ser Ser Val Gly
180 185 190

Ala Glu Leu Glu Val Met Ala Pro Gly Ala Gly Val Tyr Ser Thr Tyr
195 200 205

Pro Thr Asn Thr Tyr Ala Thr Leu Asn Gly Thr Ser Met Ala Ser Pro

His Val Ala Gly Ala Ala Ala Leu Ile Leu Ser Lys His Pro Asn Leu 225 230 235 240

Ser Ala Ser Gln Val Arg Asn Arg Leu Ser Ser Thr Ala Thr Tyr Leu 245 250 255

Gly Ser Ser Phe Tyr Tyr Gly Lys Gly Leu Ile Asn Val Glu Ala Ala 260 265 270

Ala Gln

<210> 26

<211> 269

<212> PRT

<213> Protease B

<400> 26

Ala Gln Thr Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85. 90 95

Ser Gly Ser Gly Ser Val Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Gly Ser Ile Ser

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Asp Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala

210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

<210> 27

<211> 269

<212> PRT

<213> Protease C

<400> 27

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Arg Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Ser Gly Ser Gly Ser Tyr Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Ser Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Gly Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205 Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Arg 260 265

<210> 28

<211> 269

<212> PRT

<213> Protease D

<400> 28

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asp Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Ser Gly Ser Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Gly Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190 Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

<210> 29

<211> 269

<212> PRT

<213> Protease E

<400> 29

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Ser Gly Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Asp Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile

28

185 190 180

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 200

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 215 '

Ala Val Leu Val Lys His Lys Asn Pro Ser Trp Ser Asn Val Arg Ile 230 235

Arg Asp His Leu Lys Lys Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 265

<210> 30

<211> 269

<212> PRT

<213> Protease A

<400> 30

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala

Ser Gly Ser Gly Ser Val Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 105

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser

Ala Gly Gly Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 135

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Gly Ser Ile Ser 150 . 155

Ala Pro Ala Ser Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 170 165

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg
260 265

<210> 31

<211> 269

<212> PRT

<213> Properase

<400> 31

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Asn Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala

Ser Gly Gly Ser Asn Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Gly Ser Ile Ser 145 150 155 160 Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 · 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

<210> 32

<211> 270

<212> PRT

<213> Relase

<400> 32

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Asp Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala 35 40 45

Ser Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly
50 55 60

Thr His Val Ala Gly Thr Ile Ala Ala Leu Asp Asn Ser Ile Gly Val 65 70 75 80

Leu Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly
85 90 95

Ala Ser Gly Ser Gly Ser Val Ser Ser Ile Ala Gln Gly Leu Glu Trp
100 105 110

Ala Gly Asn Asn Gly Met Asp Val Ala Asn Leu Ser Leu Gly Ser Pro

Ser Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg 130 135 140

Gly Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Gly Ser Ile

145 150 155 160 Ser Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp 170 Gln Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Glu Leu Asp Ile Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr 200 Tyr Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala Ala Ala Leu Val Leu Gln Lys Asn Pro Ser Trp Ser Asn Val Gln 230 235 Ile Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn 250 Leu Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 265 <210> 33 <211> 280 <212> PRT <213> PD498 <400> 33 Trp Ser Pro Asn Asp Pro Tyr Tyr Ser Ala Tyr Gln Tyr Gly Pro Gln Asn Thr Ser Thr Pro Ala Ala Trp Asp Val Thr Arg Gly Ser Ser Thr 25 Gln Thr Val Ala Val Leu Asp Ser Gly Val Asp Tyr Asn His Pro Asp Leu Ala Arg Lys Val Ile Lys Gly Tyr Asp Phe Ile Asp Arg Asp Asn Asn Pro Met Asp Leu Asn Gly His Gly Thr His Val Ala Gly Thr Val Ala Ala Asp Thr Asn Asn Gly Ile Gly Val Ala Gly Met Ala Pro Asp Thr Lys Ile Leu Ala Val Arg Val Leu Asp Ala Asn Gly Ser Gly Ser Leu Asp Ser Ile Ala Ser Gly Ile Arg Tyr Ala Ala Asp Gln Gly Ala 120

Lys Val Leu Asn Leu Ser Leu Gly Cys Glu Cys Asn Ser Thr Thr Leu

Lys Ser Ala Val Asp Tyr Ala Trp Asn Lys Gly Ala Val Val Val Ala
145 150 155 160

Ala Ala Gly Asn Asp Asn Val Ser Arg Thr Phe Gln Pro Ala Ser Tyr 165 170 175

Pro Asn Ala Ile Ala Val Gly Ala Ile Asp Ser Asn Asp Arg Lys Ala 180 185 190

Ser Phe Ser Asn Tyr Gly Thr Trp Val Asp Val Thr Ala Pro Gly Val

Asn Ile Ala Ser Thr Val Pro Asn Asn Gly Tyr Ser Tyr Met Ser Gly 210 215 220

Thr Ser Met Ala Ser Pro His Val Ala Gly Leu Ala Ala Leu Leu Ala 225 230 235 240

Ser Gln Gly Lys Asn Asn Val Gln Ile Arg Gln Ala Ile Glu Gln Thr 245 250 255

Ala Asp Lys Ile Ser Gly Thr Gly Thr Asn Phe Lys Tyr Gly Lys Ile
260 265 270

Asn Ser Asn Lys Ala Val Arg Tyr 275 280

<210> 34

<211> 269

<212> PRT

<213> Sendai

<400> 34

Asn Gln Val Thr Pro Trp Gly Ile Thr Arg Val Gln Ala Pro Thr Ala 1 5 10 15

Trp Thr Arg Gly Tyr Thr Gly Thr Gly Val Arg Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Val Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Tyr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Val 65 70 75 80

Gly Val Ala Pro Asn Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asn Gly Ser Gly Ser Val Ser Ser Ile Ala Gln Gly Leu Gln Trp Thr
100 105 110

Ala Gln Asn Asn Ile His Val Ala Asn Leu Ser Leu Gly Ser Pro Val 115 120 125

Gly Ser Gln Thr Leu Glu Leu Ala Val Asn Gln Ala Thr Asn Ala Gly 130 135 140

Val Leu Val Val Ala Ala Thr Gly Asn Asn Gly Ser Gly Thr Val Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Leu Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Thr Gly Leu Asn Ile 180 185 190

Val Ala Pro Gly Val Gly Ile Gln Ser Thr Tyr Pro Gly Asn Arg Tyr 195 200 205

Ala Ser Leu Ser Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Val 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Thr Gln Ile 225 230 235 240

Arg Gln His Leu Thr Ser Thr Ala Thr Ser Leu Gly Asn Ser Asn Gln 245 250 255

Phe Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

<210> 35

<211> 268

<212> PRT

<213> YAB protease

<400> 35

Gln Thr Val Pro Trp Gly Ile Asn Arg Val Gln Ala Pro Ile Ala Gln
1 5 10 15

Ser Arg Gly Phe Thr Gly Thr Gly Val Arg Val Ala Val Leu Asp Thr 20 25 30

Gly Ile Ser Asn His Ala Asp Leu Arg Ile Arg Gly Gly Ala Ser Phe 35 40 45

Val Pro Gly Glu Pro Asn Ile Ser Asp Gly Asn Gly His Gly Thr Gln
50 55 60

Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu Gly 65 70 75 80

Val Ala Pro Asn Val Asp Leu Tyr Gly Val Lys Val Leu Gly Ala Ser 85 90 95

Gly Ser Gly Ser Ile Ser Gly Ile Ala Gln Gly Leu Gln Trp Ala Ala

> 100 105 110

Asn Asn Gly Met His Ile Ala Asn Met Ser Leu Gly Ser Ser Ala Gly 120

Ser Ala Thr Met Glu Gln Ala Val Asn Gln Ala Thr Ala Ser Gly Val 135

Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Gly Asn Val Gly Phe 155

Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln Asn

Asn Asn Arg Ala Thr Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile Val

Ala Pro Gly Val Gly Val Gln Ser Thr Val Pro Gly Asn Gly Tyr Ala 200

Ser Phe Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Val Ala

Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile Arg 230 235

Asn His Leu Lys Asn Thr Ala Thr Asn Leu Gly Asn Thr Thr Gln Phe 250

Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 265

<210> 36

<211> 471

<212> PRT

<213> AMG

<400> 36

Ala Thr Leu Asp Ser Trp Leu Ser Asn Glu Ala Thr Val Ala Arg Thr

Ala Ile Leu Asn Asn Ile Gly Ala Asp Gly Ala Trp Val Ser Gly Ala

Asp Ser Gly Ile Val Val Ala Ser Pro Ser Thr Asp Asn Pro Asp Tyr

Phe Tyr Thr Trp Thr Arg Asp Ser Gly Leu Val Leu Lys Thr Leu Val

Asp Leu Phe Arg Asn Gly Asp Thr Ser Leu Leu Ser Thr Ile Glu Asn

Tyr Ile Ser Ala Gln Ala Ile Val Gln Gly Ile Ser Asn Pro Ser Gly

- Asp Leu Ser Ser Gly Ala Gly Leu Gly Glu Pro Lys Phe Asn Val Asp 100 105 110
- Glu Thr Ala Tyr Thr Gly Ser Trp Gly Arg Pro Gln Arg Asp Gly Pro 115 120 125
- Ala Leu Arg Ala Thr Ala Met Ile Gly Phe Gly Gln Trp Leu Leu Asp 130 135 140
- Asn Gly Tyr Thr Ser Thr Ala Thr Asp Ile Val Trp Pro Leu Val Arg 145 150 155 160
- Asn Asp Leu Ser Tyr Val Ala Gln Tyr Trp Asn Gln Thr Gly Tyr Asp 165 170 175
- Leu Trp Glu Glu Val Asn Gly Ser Ser Phe Phe Thr Ile Ala Val Gln
 180 185 190
- His Arg Ala Leu Val Glu Gly Ser Ala Phe Ala Thr Ala Val Gly Ser 195 200 205
- Ser Cys Ser Trp Cys Asp Ser Gln Ala Pro Glu Ile Leu Cys Tyr Leu 210. 215 220
- Gln Ser Phe Trp Thr Gly Ser Phe Ile Leu Ala Asn Phe Asp Ser Ser 225 230 235 240
- Arg Ser Gly Lys Asp Ala Asn Thr Leu Leu Gly Ser Ile His Thr Phe 245 250 255
- Asp Pro Glu Ala Ala Cys Asp Asp Ser Thr Phe Gln Pro Cys Ser Pro 260 265 270
- Arg Ala Leu Ala Asn His Lys Glu Val Val Asp Ser Phe Arg Ser Ile 275 280 285
- Tyr Thr Leu Asn Asp Gly Leu Ser Asp Ser Glu Ala Val Ala Val Gly 290 295 300
- Arg Tyr Pro Glu Asp Thr Tyr Tyr Asn Gly Asn Pro Trp Phe Leu Cys 305 310 315 320
- Thr Leu Ala Ala Ala Glu Gln Leu Tyr Asp Ala Leu Tyr Gln Trp Asp 325 330 335
- Lys Gln Gly Ser Leu Glu Val Thr Asp Val Ser Leu Asp Phe Phe Lys 340 345 350
- Ala Leu Tyr Ser Asp Ala Ala Thr Gly Thr Tyr Ser Ser Ser Ser Ser Ser 355 360 365
- Thr Tyr Ser Ser Ile Val Asp Ala Val Lys Thr Phe Ala Asp Gly Phe
- Val Ser Ile Val Glu Thr His Ala Ala Ser Asn Gly Ser Met Ser Glu 385 390 395 400
- Gln Tyr Asp Lys Ser Asp Gly Glu Gln Leu Ser Ala Arg Asp Leu Thr 405 410 · 415

Trp Ser Tyr Ala Ala Leu Leu Thr Ala Asn Asn Arg Arg Asn Ser Val 420 425 430

Val Pro Ala Ser Trp Gly Glu Thr Ser Ala Ser Ser Val Pro Gly Thr 435 440 445

Cys Ala Ala Thr Ser Ala Ile Gly Thr Tyr Ser Ser Val Thr Val Thr 450 455 460

Ser Trp Pro Ser Ile Val Ala 465 470

<210> 37

<211> 480

<212> PRT

<213> AA560

<400> 37

Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Tyr Leu Pro Asn Asp 1 5 10 15

Gly Asn His Trp Asn Arg Leu Arg Ser Asp Ala Ser Asn Leu Lys Asp 20 25 30

Lys Gly Ile Ser Ala Val Trp Ile Pro Pro Ala Trp Lys Gly Ala Ser 35 40 45

Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu Gly Glu 50 55 60

Phe Asn Gln Lys Gly Thr Ile Arg Thr Lys Tyr Gly Thr Arg Asn Gln 65 70 75 80

Leu Gln Ala Ala Val Asn Ala Leu Lys Ser Asn Gly Ile Gln Val Tyr 85 90 95

Gly Asp Val Val Met Asn His Lys Gly Gly Ala Asp Ala Thr Glu Met
100 105 110

Val Arg Ala Val Glu Val Asn Pro Asn Asn Arg Asn Gln Glu Val Ser 115 120 125

Gly Glu Tyr Thr Ile Glu Ala Trp Thr Lys Phe Asp Phe Pro Gly Arg 130 135 140

Gly Asn Thr His Ser Asn Phe Lys Trp Arg Trp Tyr His Phe Asp Gly 145 150 155 160

Val Asp Trp Asp Gln Ser Arg Lys Leu Asn Asn Arg Ile Tyr Lys Phe 165 170 175

Arg Gly Asp Gly Lys Gly Trp Asp Trp Glu Val Asp Thr Glu Asn Gly 180 185 190

Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Ile Asp Met Asp His Pro Glu

195 200 205

Val Val Asn Glu Leu Arg Asn Trp Gly Val Trp Tyr Thr Asn Thr Leu 210 215 220

Gly Leu Asp Gly Phe Arg Ile Asp Ala Val Lys His Ile Lys Tyr Ser 225 230 235 240

Phe Thr Arg Asp Trp Ile Asn His Val Arg Ser Ala Thr Gly Lys Asn 245 250 255

Met Phe Ala Val Ala Glu Phe Trp Lys Asn Asp Leu Gly Ala Ile Glu 260 265 270

Asn Tyr Leu Asn Lys Thr Asn Trp Asn His Ser Val Phe Asp Val Pro 275 280 285

Leu His Tyr Asn Leu Tyr Asn Ala Ser Lys Ser Gly Gly Asn Tyr Asp 290 295 300

Met Arg Gln Ile Phe Asn Gly Thr Val Val Gln Arg His Pro Met His 305 310 315 320

Ala Val Thr Phe Val Asp Asn His Asp Ser Gln Pro Glu Glu Ala Leu 325 330 335

Glu Ser Phe Val Glu Glu Trp Phe Lys Pro Leu Ala Tyr Ala Leu Thr 340 345 350

Leu Thr Arg Glu Gln Gly Tyr Pro Ser Val Phe Tyr Gly Asp Tyr Tyr 355 360 365

Gly Ile Pro Thr His Gly Val Pro Ala Met Lys Ser Lys Ile Asp Pro 370 375 380

Ile Leu Glu Ala Arg Gln Lys Tyr Ala Tyr Gly Arg Gln Asn Asp Tyr 385 390 395 400

Leu Asp His His Asn Ile Ile Gly Trp Thr Arg Glu Gly Asn Thr Ala 405 410 415

His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp Gly Ala Gly Gly 420 425 430

Asn Lys Trp Met Phe Val Gly Arg Asn Lys Ala Gly Gln Val Trp Thr 435 440 445

Asp Ile Thr Gly Asn Arg Ala Gly Thr Val Thr Ile Asn Ala Asp Gly 450 455 460

Trp Gly Asn Phe Ser Val Asn Gly Gly Ser Val Ser Ile Trp Val Asn 465 470 475 480

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

refects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.