Universitat de Barcelona

APUNTS

PRIMER SEMESTRE

Llenguatge i Raonament Matemàtic (LiRM)

Autor:
Mario VILAR

Professor:
Adriana Moya

11 de gener de 2021

Índex

1	Cor	njunts,	relacions i funcions
	1.1	Conju	nts
		1.1.1	Conjunts i elements
		1.1.2	Conjunt per extensió o per comprensió
		1.1.3	Notació
		1.1.4	Inclusió de conjunts
		1.1.5	El conjunt de parts d'un conjunt
	1.2	Opera	cions entre conjunts
		1.2.1	Unió de conjunts
		1.2.2	Intersecció de conjunts
		1.2.3	Diferència de conjunts
		1.2.4	Propietats bàsiques de les operacions
	1.3	Conju	nts finits i infinits
		1.3.1	Resultats bàsics sobre conjunts finits
		1.3.2	Operacions d'unions i interseccions infinites de conjunts
		1.3.3	Productes cartesians
	1.4	Relaci	ons
		1.4.1	Domini i recorregut d'una relació
		1.4.2	La relació d'identitat
		1.4.3	Relacions sobre un conjunt
		1.4.4	Relacions d'ordre
		1.4.5	Suprem i ı́nfim d'un conjunt
	1.5	Funcio	ons
		1.5.1	Restricció d'una funció
		1.5.2	Composició de funcions
		1.5.3	Propietats bàsiques de la composició de funcions
		1.5.4	Funcions injectives
		1.5.5	Funcions exhaustives
		1.5.6	Funcions bijectives
		1.5.7	Aplicacions inverses

INDEX

Capítol 1

Conjunts, relacions i funcions

1.1 Conjunts

Definició 1.1.1 (Conjunt). És una col·lecció d'objectes en la qual l'ordre és irrellevant.

Exemple 1.1.1. Les solucions de l'equació $x^2 - 6x + 2$. El conjunt dels primers 10 nombres primers.

1.1.1 Conjunts i elements

Definició 1.1.2 (Element d'un conjunt). Als objectes d'un conjunt A se'ls anomena elements d'A. Si x és un element d'A, escriurem $x \in A$ i direm que x pertany a A. Anàlogament, si x no és un element del conjunt A direm que x no pertany a A i escriurem $x \notin A$.

Observació 1.1.1. Suposarem que els conjunts estan ben definits, és a dir, que s'utilitz un criteri estructurat que permet decidit si un element donat pertany al conjunt o no. Així, l'expressió "b és un element del conjunt C "és una proposició i, per tant, se li pot atribuir el valor de vertader o fals.

1.1.2 Conjunt per extensió o per comprensió

Un conjunt es pot definir de dues maneres: per extensió i per comprensió.

Per extensió

Definició 1.1.3. Es dona una llista completa de tots els elements del conjunt, escrivint els elements separats per comes i entre claus.

Exemple 1.1.2. $D = \{0, 1\}$

Per comprensió

Definició 1.1.4. Es dona una propietat que compleixen els elements del conjunt i solament ells. Escriurem llavors $\{x : P(x)\}$ o $\{x \mid P(x)\}$. I si sabem que els elements pertanyen a un conjunt conegut A, escriurem $\{x \in A : P(x) \text{ o } \{x \in A \mid P(x)\}$.

Exemple 1.1.3.
$$C = \{x \in \mathbb{R} \mid 0 < x \le 1\}$$

1.1.3 Notació

Si $a, b \in \mathbb{R}$ tals que a < b, escriurem:

- 1. $(a,b) = \{x \in \mathbb{R} \mid a < x < b\},\$
- 2. $[a,b) = \{x \in \mathbb{R} \mid a \le x < b\},\$
- 3. $(a,b] = \{x \in \mathbb{R} \mid a < x \le b\},\$
- 4. $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}.$

Així, el conjunt C de l'exemple 1.1.3 es pot escriure com C = (0, 1]. Per tot $a \in \mathbb{R}$ escriurem:

- 1. $(a, \infty) = \{x \in \mathbb{R} \mid a < x\},\$
- $2. \ [a, \infty) = \{x \in \mathbb{R} \mid a \le x\},\$
- 3. $(-\infty, a) = \{x \in \mathbb{R} \mid x < a\},\$
- 4. $(-\infty, a] = \{x \in \mathbb{R} \mid x \le a\}.$

Definició 1.1.5 (Conjunt unitari). Donat qualsevol objecte a, es considera el conjunt l'únic element del qual és a i s'escriu $\{a\}$. Al conjunt $\{a\}$ se l'anomena **conjunt unitari d'**a.

Observació 1.1.2. Observem que hi ha una distinció entre a i $\{a\}$: a és l'objecte i $\{a\}$ és el conjunt unitari l'únic element del qual és a. Per tant, $a \neq \{a\}$.

Definició 1.1.6 (Conjunt buit). És aquell conjunt que no té cap element. Al conjunt buit el denotem com \emptyset . Podem representar el conjunt buit com:

$$\emptyset = \{x \mid x \neq x\}. \tag{1.1.1}$$

Definició 1.1.7 (Conjunts iguals). Diem que dos conjunts A i B són iguals si A i B tenen els mateixos elements.

Exemple 1.1.4. $\{0,1\} = \{x \in \mathbb{N} \mid x < 2\}.$

Proposició 1.1.1. El conjunt buit és l'únic conjunt que no té elements.

Demostraci'o. Gem de demostrar que si A és un conjunt que no té elements, llavors $A=\emptyset$. Sigui llavors A un conjunt sense elements. Hem de demostrar que

$$\forall x, \ x \in A \iff x \in \emptyset. \tag{1.1.2}$$

Notem que la implicació $x \in A \Rightarrow x \in \emptyset$ és certa, ja que com A no té elements, l'antecedent de la implicació és fals.

Anàlogament, la implicació $x \in \emptyset \implies x \in A$ és certa, ja que com \emptyset no té elements, l'antecedent de la implicació és fals. Per tant,

$$A = \emptyset. \tag{1.1.3}$$

Observació 1.1.3. Notem que \emptyset i $\{\emptyset\}$ són objectes diferents, ja que \emptyset no té elements, però $\{\emptyset\}$ té un element, que és el conjunt buit. Per tant, $\emptyset \neq \{\emptyset\}$.

1.1. CONJUNTS 7

Observació 1.1.4.

- 1. L'ordre dels elements del conjunt no és rellevant.
- 2. Els elements d'un conjunt poden estar repetits.
- 3. Un conjunt pot ser element d'un altre conjunt.

Exemple 1.1.5. $A = \{0, 1, \{0, 1\}, \{2\}\}.$

4. Un objecte no pot ser a la vegada un conjunt i un element d'aquell conjunt. És a dir, la proposició $a \in a$ és falsa.

1.1.4 Inclusió de conjunts

Definició 1.1.8 (Subconjunt). Si A i B són conjunts, direm que A és un subconjunt de B si qualsevol element del conjunt A és un element del conjunt B. Llavors escriurem $A \subseteq B$. També es diu A està contingut en B o que A està inclòs en B.

Observació 1.1.5. L'escriptura equivalent $B \supseteq A$ es llegeix com B conté A.

Observació 1.1.6. Notem que $A \subseteq B$ és un enunciat universal, ja que es pot expressar com $\forall x \in A(x \in B)$.

Definició 1.1.9 (Subconjunt propi). Siguin A i B dos conjunts, escriurem $A \subsetneq B$, si $A \subseteq B$ i $A \neq B$. Es pot dir que A és un subconjunt propi de B o que A està estrictament contingut en B.

Exemple 1.1.6. $\{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\} \subseteq (0, 1]$, ja que $\{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\} \subseteq (0, 1]$.

Definició 1.1.10. Siguin A i B dos conjunts tals que A no està contingut en B, escriurem $A \nsubseteq B$.

Exemple 1.1.7. $\{0,1\} \nsubseteq (0,1]$, ja que $0 \in \{0,1\}$ i $0 \notin (0,1]$.

Proposició 1.1.2. Siguin A, B i C tres conjunts:

- 1. $A \subseteq A$,
- $2. \emptyset \subseteq A$
- 3. Si $A \subseteq B$ i $B \subseteq C$, llavors $A \subseteq C$.
- $4. \ A = B \iff A \subseteq B \ i \ B \subseteq A.$

Demostració. La preposició 1.1.2.1 és evident, ja que tot element d'A pertany a A.

Per demostrar 1.1.2.2, considerem un element x arbitrari. Tenim llavors que la implicació $x \in \emptyset \implies x \in A$ és certa, ja que l'antecedent de la implicació és fals. Per tant, $\emptyset \subseteq A$.

Per demostrar 1.1.2.3, suposarem $A \subseteq B$ i $B \subseteq C$. Hem de demostrar que $A \subseteq C$. Considerem un element arbitrari $x \in A$. Hem de demostrar que $x \in C$. Com que $x \in A$ i $A \subseteq B$, deduïm que $x \in B$. Ara, com que $x \in B$ i $B \subseteq C$, inferim que $x \in C$.

Observem que la condició 1.1.2.4 és una equivalència. Per tant, hem de demostrar ambdues implicacions. Per demostrar \Longrightarrow , suposem A=B. Llavors, com A=B i $A\subseteq A$, deduïm que $A\subseteq B$. I com A=B i $B\subseteq B$, deduïm que $B\subseteq A$.

Per provar \iff , considerem un element x arbitrari. Demostrem llavors que $x \in A \iff x \in B$. Si $x \in A$, com tenim que $A \subseteq B$, deduïm que $x \in B$. I si $x \in B$, com tenim que $B \subseteq A$, deduïm que $x \in A$. Doncs, hem demostrat que $x \in A \iff x \in B$. Per tant, A i B tenen els mateixos elements $\implies A = B$.

1.1.5 El conjunt de parts d'un conjunt

Si X és un conjunt, definim el conjunt de parts de X (o conjunt potència de X) per

$$\mathcal{P}(X) = \{ A \mid A \subseteq X \}. \tag{1.1.4}$$

Per la definició de $\mathcal{P}(X)$, tenim que si A i X són dos conjunts, llavors:

$$A \in \mathcal{P}(X) \iff A \subseteq X. \tag{1.1.5}$$

$$\mathcal{P}(X)$$
 és el conjunt dels subconjunts de X .

Quan treballem amb $\mathcal{P}(X)$, és habitual referir-se a X com a conjunt universal.

Observació 1.1.7. Notem que, per 1.1.2.1 i 1.1.2.2, tenim que per tot conjunt X:

- $X \in \mathcal{P}(X)$.
- $\emptyset \in \mathcal{P}(X)$.

Exemple 1.1.8. Si $X = \{0\}, \ \mathcal{P}(X) = \{\emptyset, \{0\}\}\$. Si $X = \{0, 1\}, \ \mathcal{P}(X) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}\$.

1.2 Operacions entre conjunts

1.2.1 Unió de conjunts

Donats dos conjunts A i B, el **conjunt unió d'**A i B ($A \cup B$) és el conjunt d'elements que pertany, com a mínim, a un dels dos conjunts:

$$A \cup B = \{x \mid x \in A \text{ o } x \in B\}.$$
 (1.2.1)

Per tant,

$$x \in A \cup B \iff x \in A \text{ o } x \in B,$$
 (1.2.2)

$$x \notin A \cup B \iff x \notin A \text{ i } x \notin B.$$
 (1.2.3)

En particular, si A i B són dos subconjunts d'un conjunt U, i A i B estan definits per comprensió, llavors:

$$A \cup B = \{x \in U \mid P(x) \lor Q(x)\}, \text{ si } A = \{x \in U \mid P(x)\} \text{ i } B = \{x \in U \mid Q(x)\}.$$
 (1.2.4)

Exemple 1.2.1. Si A és el conjunt dels múltiples de 2 i B és el conjunt dels múltiples de 3, llavors $A \cup B$ és el conjunt dels múltiples de 2 o de 3.

1.2.2 Intersecció de conjunts

Donats dos conjunts A i B, el **conjunt intersecció de** A **i** B $(A \cap B)$, és el conjunt dels elements que pertanyen a A i a B, és a dir:

$$A \cap B = \{x \mid x \in A \text{ i } x \in B\}.$$
 (1.2.5)

Per tant,

$$x \in A \cap B \iff x \in A \text{ i } x \in B,$$
 (1.2.6)

$$x \notin A \cap B \iff x \notin A \circ x \notin B.$$
 (1.2.7)

En particular, si A i B són subconjunts d'un conjunt U, i A i B estan definits per comprensió, llavors:

$$A \cap B = \{x \in U \mid P(x) \land Q(x)\}, \text{ si } A = \{x \in U \mid P(x)\} \text{ i } B = \{x \in U \mid Q(x)\}.$$
 (1.2.8)

Exemple 1.2.2. Si A és el conjunt dels múltiples de 2 i B és el conjunt dels múltiples de 3, llavors $A \cap B$ és el conjunt dels múltiples de 6.

Direm que dos conjunts A i B són disjunts si $A \cap B = \emptyset$.

Exemple 1.2.3. $A = \{x \in \mathbb{N} \mid x \text{ és parell}\}\ i \ B = \{x \in \mathbb{N} \mid x \text{ és senar}\}\$, tindrem que A i B són disjunts.

1.2.3 Diferència de conjunts

Donats dos conjunts A i B, el **conjunt diferència de** A **i** B ($A \setminus B$), és el conjunt dels elements que pertanyen a A i no pertanyen a B, és a dir:

$$A \setminus B = \{x \mid x \in A \text{ i } x \notin B\} = \{x \in A \mid x \notin B\}. \tag{1.2.9}$$

Per tant,

$$x \in A \setminus B \iff x \in A \text{ i } x \notin B,$$
 (1.2.10)

$$x \notin A \setminus B \iff x \notin A \circ x \in B.$$
 (1.2.11)

Exemple 1.2.4. Siguin $A = \{4, 5, 7, \pi\}$ i $B = \{2, 7, \pi, e\}$. Tenim: $A \cup B = \{2, 4, 5, 7, \pi, e\}, A \cap B = \{7, \pi\}, A \setminus B = \{4, 5\}, B \setminus A = \{2, e\}$

1.2.4 Propietats bàsiques de les operacions

Proposició 1.2.1. Siguin A, B i C conjunts:

- 1. $A \cap B \subseteq A \ i \ A \cap B \subseteq B$,
- 2. $A \subseteq A \cup B$ $i B \subseteq A \cup B$,
- 3. $A \cap B \subseteq A \cup B$,
- $4. A \setminus B \subseteq A$
- 5. $A \cap B = B \cap A$,
- 6. $A \cup B = B \cup A$,
- 7. $A \cap (B \cap C) = (A \cap B) \cap C$,
- 8. $A \cup (B \cup C) = (A \cup B) \cup C$,
- $9. A \cap A = A$
- 10. $A \cup A = A$,
- 11. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$,
- 12. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$,
- 13. $(A \setminus B) \cap (B \setminus A) = \emptyset$.

Demostració.

- Els apartats 1.2.1.1 a 1.2.1.10 són fàcils de demostrar.
 - Per demostrar 1.2.1.1, considerem un element arbitrari $a \in A$. Com $a \in A$, deduïm que $a \in A$ o $a \in B$, i per tant $a \in A \cup B$. Així doncs, tenim que $A \subseteq A \cup B$. Anàlogament es demostra $B \subseteq A \cup B$.
 - Per demostrar l'apartat 1.2.1.2, considerem un element arbitrari $a \in A \cup B$. Llavors, $a \in A$ i $a \in B$. En particular, $a \in A$. Per l'arbitrarietat d'a, tenim que $A \cap B \subseteq A$. Anàlogament, es demostra que $A \cap B \subseteq B$.
 - Per demostrar l'apartat 1.2.1.3, considerem un element arbitrari $x \in A \cap B$. Per l'apartat 1.2.1.1, deduïm que $x \in A$, i per l'apartat 1.2.1.2, inferim que $x \in A \cup B$. Per l'arbitrarietat d'x, tenim que $A \cap B \subseteq A \cup B$.
- Els apartats 1.2.1.4 1.2.1.10 es demostren anàlogament.
- Per demostrar que $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, provarem les dues inclusions: $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ i $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. En primer lloc, demostrem que $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Considerem un element arbitrari $x \in a \cap (B \cup C)$. Llavors, $x \in A$ i $(x \in B \text{ o } x \in C)$. Hem de demostrar que $x \in (A \cap B) \cup (A \cap C)$. Procedim per distinció de casos: si $x \in B$, com $x \in A$, inferim que $x \in A \cap B$ i, per tant, $x \in (A \cap B) \cup (A \cap C)$ per l'apartat 1.2.1.2. Si $x \in C$, com tenim que $x \in A$, deduïm que $x \in A \cap C$ i, per tant, $x \in (A \cap B) \cup (A \cap C)$ per l'apartat 1.2.1.2.
- Com tenim que $(x \in B \text{ o } x \in C)$, i ens els dos casos hem demostrat que $x \in (A \cap B) \cup (A \cap C)$, deduïm que $x \in (A \cap B) \cup (A \cap C)$. Per tant, com x és un element genèric de $A \cup (A \cap C)$, deduïm que $A \cup (A \cap C) \subseteq (A \cap B) \cup (A \cap C)$.
- Demostrem ara l'altre contingut, és a dir, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Considerem un element arbitrari $x \in (A \cap B) \cup (A \cap C)$. Llavors, $x \in A \cap B$ o $x \in A \cap C$. Hem de demostrar que $x \in A \cap (B \cup C)$. Procedim per distinció de casos: si $x \in A \cap B$, llavors $x \in A$ i $x \in B$. Com $x \in B$. per l'apartat 1.2.1.2, deduïm que $x \in B \cup C$. Ara, com tenim que $x \in A$ i $x \in B \cup C$, deduïm que $x \in A \cap (B \cup C)$. I si $x \in A \cap C$, tenim que $x \in A$ i $x \in C$. Com $x \in C$, per l'apartat 1.2.1.2, tenim que $x \in B \cup C$. Ara, com tenim que $x \in A$ i $x \in B \cup C$, deduïm que $x \in A \cap (B \cup C)$.
- Així, com tenim que $x \in A \cap B$ o $x \in A \cap C$ i en els dos casos hem demostrat que $x \in A \cap (B \cup C)$, deduïm que $x \in A \cap (B \cup C)$. Per tant, com x és un element genèric de $(A \cap B) \cup (A \cap C)$, deduïm que $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.
- L'apartat 1.2.1.12 es demostra de manera anàloga al 1.2.1.11.
- Demostrem l'apartat 1.2.1.13. Procedim per reducció a l'absurd. Suposem que $(A \setminus B) \cap (B \setminus A) \neq \emptyset$. Per tant, existeix $x \in (A \setminus B) \cap (B \setminus A)$. Llavors, $x \in A \setminus B$ i $x \in B \setminus A$, tenim $x \in A$ i $x \notin B$. I com que $x \in B \setminus A$, tenim que $x \in B$ i $x \notin A$. Doncs, deduïm que $x \in A$ i $x \notin A$, la qual cosa és una contradicció.

Proposició 1.2.2. Siguin A, B, C conjunts. Les tres condicions són equivalents:

- (i) $A \subseteq B$,
- (ii) $A \cup B = B$,
- (iii) $A \cap B = A$.

Demostració. Demostrarem que $(i) \implies (ii)$, $(ii) \implies (iii)$ i $(iii) \implies (i)$.

- En primer lloc, demostrarem que $(i) \Longrightarrow (ii)$. Suposem que $A \subseteq B$. Hem de demostrar que $A \cup B = B$. Per l'apartat 1.2.1.2, tenim que $B \subseteq A \cup B$. Hem de demostrar el contingut recíproc, és a dir, $A \cup B \subseteq B$. Considerem un element arbitrari $x \in A \cup B$. Llavors, $x \in A$ o $x \in B$. Però com $A \subseteq B$, deduïm que $x \in B$. Per tant, es compleix (ii).
- Demostrem ara que $(ii) \implies (iii)$. Suposem que $A \cup B = B$. Hem de demostrar que $A \cap B = A$. Per l'apartat 1.2.1.1, tenim que $A \cap B \subseteq A$. Demostrem l'altre contingut, és a dir, $A \subseteq A \cap B$. Considerem un element aribtrari $x \in A$. Per l'apartat 1.2.1.2, tenim que $x \in A \cup B$. Doncs, com tenim que $A \cup B = B$, deduïm que $x \in B$. Per tant, es compleix (iii).
- Per últim, demostrarem que $(iii) \implies (i)$. Suposem que $A \cup B = A$. Hem de demostrar que $A \subseteq B$. Considerem un element arbitrari $x \in A$. Com tenim que $x \in A \cap B = A$, deduïm que $x \in A \cap B$, i per tant, $x \in B$. Així, es compleix (i).

Complementari d'un conjunt

Sigui U un conjunt que anomenem univers, i suposem que els conjunt que tractem són subconjunts d'U. Llavors, si $A \subseteq U$, definim el conjunt complementari d'A com $A^C = U \setminus A = \{x \in U \mid x \notin A\}, \ A^C = \overline{A}$.

Proposició 1.2.3. Siguin A, B, U conjunts tals que $A, B \subseteq U$.

- 1. $A \cup A^{C} = U$,
- 2. $A \cap A^C = \emptyset$.
- 3. $\emptyset^C = U$,
- 4. $U^C = \emptyset$,
- $5. \ (A \cup B)^C = A^C \cap B^C,$
- 6. $(A \cap B)^C = A^C \cup B^C$

Les últimes dues anomenant-se lleis de Morgan.

1.3 Conjunts finits i infinits

Definició 1.3.1 (Conjunt finit). Un conjunt és **finit** si A conté exactament n elements per a algun $n \in \mathbb{N}$.

Definició 1.3.2 (Conjunt finit). Un conjunt és **infinit** si A no conté exactament n elements per a algun $n \in \mathbb{N}$.

Exemple 1.3.1. Clarament, els conjunts $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ són infinits. Els conjunts $\{n \in \mathbb{N} \mid n \text{ és parell}\}$ i $\{n \in \mathbb{N} \mid n \text{ és imparell}\}$ també ho són.

Teorema 1.3.1 (Teorema d'Euclides). El conjunt dels nombres primers és infinit.

Lema 1.3.2. Per tot nombre primer P existeix un altre nombre primer P tal que P < R.

Demostració del lema 1.3.2. Considerem un nombre primer P. Sigui R = P! + 1. Com $P \le P!$, tenim que P < R. Demostrem per reducció a l'absurd que R és primer. Suposem llavors que R és compost. Sigui Q un factor primer de R. Un factor primer és un nombre primer que apareix en la descomposició en factors primers de R. Com Q és un factor primer de R, tenim que $Q \le R$, però, com que Q és primer i R és compost, deduïm que Q < R. Per tant, $Q \le P!$. Doncs, Q és un factor primer de P!.

Però com Q és un factor primer de R, tenim que Q és un divisor de R = P! + 1.

Així doncs, com Q és un divisor de P! i és també un divisor de P!+1, deduïm que Q és divisor de 1 i, per tant, que Q=1, la qual cosa és impossible donat que Q és primer (i per tant, $Q \ge 2$).

Demostració del teorema d'Euclides. Demostrem el teorema d'Euclides per reducció a l'absurd. Suposem que el conjunt A dels nombres primers és finit. Sigui, doncs, P l'últim nombre primer, el qual existeix perquè estem suposant que A és finit. Aplicant llavors el lema 1.3.2, obtenim que existeix un nombre primer R tal que P < R. Però llavors, P no és l'últim nombre primer, amb la qual cosa arribem a una contradicció.

1.3.1 Resultats bàsics sobre conjunts finits

Definició 1.3.3 (Cardinal d'|A|). Si A és un conjut finit, denotem pel cardinal |A| el nombre d'elements d'A.

Observació 1.3.1. Recordem que dos conjunts A i B són disjunts si $A \cap B = \emptyset$.

Proposició 1.3.3. Si A i B són dos conjunts finits disjunts, llavors $|A \cup B| = |A| + |B|$.

Demostració. Siguin a_1,\ldots,a_n els elements d'A, i siguin b_1,\ldots,b_n els elements de B. Com A i B són disjunts, tenim que $a_1,\ldots,a_n,\ldots,b_1,\ldots,b_n$ són els elements de $A\cup B$. Per tant, $|A\cup B|=n+k=|A|+|B|$.

Definició 1.3.4 (Conjunts disjunts 2 a 2). Siguin A_1, \ldots, A_n conjunts. Diem que A_1, \ldots, A_n són conjunts disjunts 2 a 2 si $A_i \cap A_j = \emptyset$, $\forall i, j \in \{1, 2, \ldots, n\}$ amb $i \neq j$.

Teorema 1.3.4. Si A_1, \ldots, A_n són conjunts finits disjunts 2 a 2, llavors, $|A_1 \cup \ldots \cup A_n| = |A_1| + \ldots + |A_n|$.

Demostració. Per demostrar aquest teorema, procedim per inducció generalitzada sobre n.

- Cas inicial: n=2. Es verifica per la proposició 1.3.3.
- Sigui $n \geq 2$. Considerem conjunts finits $A_1, \ldots, A_n, A_{n+1}$ disjunts 2 a 2. Hem de demostrar que

$$|A_1 \cup \ldots \cup A_n \cup A_{n+1}| = |A_1| + \ldots + |A_n| + |A_{n+1}|. \tag{1.3.1}$$

Per la proposició 1.3.3 tenim que

$$|A_1 \cup \ldots \cup A_n \cup A_{n+1}| = |A_1 \cup \ldots \cup A_n| + |A_{n+1}|,$$

i per la hipòtesi d'inducció tenim que:

$$|A_1 \cup \ldots \cup A_n| = |A_1| + \ldots + |A_n|.$$

Per tant:

$$|A_1 \cup \ldots \cup A_n \cup A_{n+1}| = |A_1| + \ldots + |A_n| + |A_{n+1}|.$$

Observació 1.3.2. Per a tot conjunt $A, \mathcal{P}(A)$ és el conjunt dels subconjunts d'A.

Teorema 1.3.5. Sigui A un conjunt finit. Sigui n = |A|. Llavors, $|\mathcal{P}(A)| = 2^n$.

Demostració. Procedim per inducció sobre el nombre d'elements n d'a.

1. Cas inicial: n=0. Sigui A un conjunt que té 0 elements. Llavors, $A=\emptyset$. Per tant,

$$|\mathcal{P}(A)| = |\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1 = 2^0 = 2^{|\emptyset|} = 2^{|A|}. \tag{1.3.2}$$

2. Pas d'inducció. Sigui $n \geq 0$. Suposem que la propietat es compleix per n, és a dir, que per tot conjunt finit C tal que |C| = n es té que $|\mathcal{P}(C)| = 2^n$. Hem de demostrar que la propietat es compleix per a tot n+1. Considerem llavors un conjunt finit A tal que |A| = n+1. Com |A| = n+1 i $n \geq 0$, tenim que $A \neq \emptyset$. Considerem un element $a \in A$. Definim aleshores:

$$X = \{ C \in \mathcal{P}(A) \mid C \subseteq A \setminus \{a\} \}$$

$$Y = \{C \cup \{a\} \mid C \subseteq A \setminus \{a\}\}\$$

Clarament, tenim que $|X| = |Y| = |\mathcal{P}(A \setminus \{a\})|$. Com $|A \setminus \{a\}| = n$, aplicant la hipòtesi d'inducció, inferim que:

$$|X| = |Y| = |\mathcal{P}(A \setminus \{a\})| = 2^n.$$
 (1.3.3)

- 3. Demostrem ara que X i Y són disjunts, procedint per reducció a l'absurd. Suposem que $X \cap Y \neq \emptyset$. Sigui $D \in X \cap Y$. Com $D \in X$, deduïm que $D \subseteq A \setminus \{a\}$ i, per tant, $a \notin D$. Però com $D \in Y$, inferim que existeix un conjunt $C \subseteq A \setminus \{a\}$ tal que $D = C \cup \{a\}$ i, per tant, $a \in D$.
- 4. Com hem demostrat que $a \notin D$ i que $a \in D$, hem arribat a una contradicció. Així doncs, X i Y són conjunts disjunts.
- 5. A continuació, demostrarem que $\mathcal{P}(A) = X \cup Y$. Per tal de fer-ho, demostrarem que $X \cup Y \subseteq \mathcal{P}(A)$ i $\mathcal{P}(A) \subseteq X \cup Y$. Observem que si $D \in X$, tenim que $D \subseteq A$ i, per tant, $D \in \mathcal{P}(A)$. Anàlogament, si $D \in Y$, tenim que $D \subseteq A$ i, en conseqüència, $D \in \mathcal{P}(A) \Longrightarrow X \cup Y \subseteq \mathcal{P}(A)$.
- 6. Demostrem ara que $\mathcal{P}(A) \subseteq X \cup Y$. Sigui $D \in \mathcal{P}(A)$. Per tant, $D \subseteq A$. Considerem dos casos:
 - (a) Cas 1: $a \in D$. Sigui $C = D \setminus \{a\}$. Llavors, $D = C \cup \{a\} \in Y$ i, per tant, $D \in X \cup Y$.
 - (b) Cas 2: $a \notin D$. Notem que encara $D \in X$, i per tant $D \in X \cup Y$. Llavors, com tenim que $\mathcal{P}(A) = X \cup Y$ i X i Y són disjunts, per la proposició 1.3.3, deduïm que $|\mathcal{P}(A)| = |X \cup Y| = |X| + |Y|$. Tenim, llavors:

$$|\mathcal{P}(A)| = |X \cup Y| = |X| + |Y| = 2^n + 2^n = 2^{n+1}.$$
 (1.3.4)

1.3.2 Operacions d'unions i interseccions infinites de conjunts

Definició 1.3.5 (Família de conjunts indexada per un conjunt I). És una col·lecció etiquetada de conjunts $\{A_i \mid i \in I\}$, on, per a cada $i \in I$, A_i és un conjunt.

Definició 1.3.6 (Conjunt unió). El conjunt unió d'una família indexada de conjunts $\{A_i \mid i \in I\}$, es denota com $\bigcup \{A_i \mid i \in I\}$ o $\bigcup_{i \in I} A_i$, i es defineix com:

$$\bigcup_{i \in I} A_i = \bigcup \{ A_i \mid i \in I \} = \{ x \mid \exists i \in I (x \in A_i) \}.$$
 (1.3.5)

Per tant, $x \in \bigcup \{A_i \mid i \in I\} \iff i \in I \text{ tal que } x \in A_i.$

Definició 1.3.7 (Conjunt intersecció). El conjunt intersecció d'una família indexada de conjunts $\{A_i \mid i \in I\}$, es denota com $\bigcap \{A_i \mid i \in I\}$ o $\bigcap_{i \in I} A_i$, i es defineix com:

$$\bigcap_{i \in I} A_i = \bigcap \{ A_i \mid i \in I \} = \{ x \mid \forall i \in I (x \in A_i) \}. \tag{1.3.6}$$

Per tant, $x \in \bigcap \{A_i \mid i \in I\} \iff x \in A_i \ \forall i \in I.$

Observació 1.3.3. Si $I\{1,2\}$, tenim que:

$$\bigcup \{A_i \mid i \in \{1, 2\}\} = A_1 \cup A_2, \quad \bigcap \{A_i \mid i \in \{1, 2\}\} = A_1 \cap A_2.$$

Si $I = \{1, 2, \dots, n\}$, tenim que:

$$\bigcup \{A_i \mid i \in \{1, 2, \dots, n\}\} = A_1 \cup A_2 \cup \dots \cup A_n, \quad \bigcap \{A_i \mid i \in \{1, 2, \dots, n\}\} = A_1 \cap A_2 \cap \dots \cap A_n.$$

Les unions i interseccions generalitzades també tenen interès quan el conjunt I és infinit.

Exemple 1.3.2. Per a tot nombre natural n, considerem el conjunt $A_n = [-n, n] = \{x \in \mathbb{R} \mid -n \leq x \leq n\}$. Considerem la família indexada $\{A_n \mid n \in \mathbb{N}\}$. Volem demostrar que $\bigcup \{A_n \mid n \in \mathbb{N}\} = \mathbb{R}$.

Hem de provar que $\bigcup \{A_n \mid n \in \mathbb{N}\} \subseteq \mathbb{R}$ i que $\mathbb{R} \subseteq \bigcup \{A_n \mid n \in \mathbb{N}\}$. Com per a tot $n \in \mathbb{N}$ tenim que $A_n \subseteq \mathbb{R}$, inferim que $\bigcup \{A_n \mid n \in \mathbb{N}\} \subseteq \mathbb{R}$.

Demostrem ara que $\mathbb{R} \subseteq \bigcup \{A_n \mid n \in \mathbb{N}\}$. Considerem un element arbitrari $a \in \mathbb{R}$. Sigui b la part entera d'a, és a dir, el màxim $n \in \mathbb{Z}$ tal que $n \leq a$. Considerem dos casos:

1. Cas 1: $a \ge 0$. Com b és la part entera d'a, tenim que $a \in [-(b+1), b+1]$. Com $a \ge 0$, tenim que b+1 és un nombre natural, i per tant, existeix $k \in \mathbb{N}$ tal que [-(b+1), b+1] = [-k, k]. Així doncs, tenim:

$$a \in [-k, k] \subseteq \bigcup \{A_n \mid n \in \mathbb{N}\}.$$
 (1.3.7)

2. Cas 2: a < 0. Com b és la part entera d'a, tenim que $a \in [b, -b]$. Com a < 0, tenim que -b és un número natural, i per tant existeix $k \in \mathbb{N}$ tal que [b, -b] = [-k, k]. Així doncs, tenim que:

$$a \in [-k, k] \subseteq \bigcup \{A_n \mid n \in \mathbb{N}\}. \tag{1.3.8}$$

Per tant, com a és un element arbitrari de \mathbb{R} , hem demostrat per casos que $\mathbb{R} \subseteq \bigcup \{A_n \mid n \in \mathbb{N}\}$.

Demostrem ara que $\bigcap \{A_n \mid n \in \mathbb{N}\} = \{0\}$. Clarament,

$$A_0 \subsetneq A_1 \subsetneq A_2 \subsetneq \cdots \tag{1.3.9}$$

Per tant, $\bigcap \{A_n \mid n \in \mathbb{N}\} = A_0 = [-0, 0] = \{0\}.$

1.3.3 Productes cartesians

Definició 1.3.8 (Parell ordenat). Si A i B són dos conjunts, es construeix per a cada element x d'A i cada element y de B el **parell ordenat** (x,y) de manera que si $x,x' \in A$ i $y,y' \in B$, llavors

$$(x,y) = (x',y') \iff x = x' \land y = y'.$$
 (1.3.10)

Per tant, si $x \neq y$, el parell ordenat (x, y) és diferent del parell ordenat (y, x). Intuitivament, un parell ordenat d'elements consisteix en donar dos elements x i y tal que un d'ells, x, és el primer element del parell i y n'és el segon.

Observació 1.3.4. No hem de confondre el conjunt dels elements $\{x,y\}$ amb el parell ordenat (x,y).

Exemple 1.3.3. Els parells (1,2) i (2,1) són diferents, mentre que $\{1,2\}$ i $\{2,1\}$ representen el mateix conjunt.

Definició 1.3.9 (Producte cartesià). Donats dos conjunts A i B, s'anomena producte d'A per B, o producte cartesià, al conjunt

$$A \times B = \{(x, y) \mid x \in A, y \in B\}. \tag{1.3.11}$$

Per tant,

- 1. $(x,y) \in A \times B \iff x \in A \land y \in B$,
- 2. $(x,y) \notin A \times B \iff x \notin A \vee y \notin B$.

Definició 1.3.10. Si A = B s'utilitza la notació $A^2 = A \times A$.

Exemple 1.3.4. El conjunt \mathbb{R}^2 representa el pla euclidià. Un punt del pla euclidià es representa, doncs, com un parell ordenat (x, y) de nombres reals, als quals se'ls anomena cooredenades del punt. A x se l'anomena l'abscissa del punt i a y, l'ordenada del punt.

Exemple 1.3.5. Considerem els següents subconjunts de \mathbb{R}^2 :

$$A = \{ (t^2, t^3) \mid t \in \mathbb{R} \},$$

$$B = \{(x, y) \in \mathbb{R}^{\neq} \mid x^3 = y^2\}.$$

Hem de demostrar que A = B.

Hem de demostrar les dues inclusions.

• Per demostrar que $A \subseteq B$, considerem un element arbitrari $(x, y) \in A$. Llavors, existeix $t \in \mathbb{R}$ tal que $x = t^2$ i $y = t^3$. Tenim llavors:

$$x^3 = (t^2)^3 = t^6 = (t^3)^2 = y^2.$$

Per tant, $(x, y) \in B$. Així doncs, ha quedat demostrat que $A \subseteq B$.

• Demostrem ara que $B \subseteq A$. Considerem un element arbitrari $(x,y) \in B$. Llavors, $x^3 = y^2$. Com $y^2 \ge 0$ i $x^3 = y^2$, deduïm que $x^3 \ge 0$ i, per tant, $x \ge 0$, amb la qual cosa x té arrel quadrada. Escollim doncs l'arrel quadrada t de x que té el mateix signe de y. Per tant, $x = t^2$.

$$y^2 = x^3 = (t^2)^3 = t^6 = (t^3)^2.$$

Ara, com que $y^2 = (t^3)^2$ i y té el mateix signe que t, deduïm que $y = t^3$. Per tant, $(x,y) = (t^2,t^3) \in A$ Així doncs, hem demostrat que $B \subseteq A$.

Propietats bàsiques dels productes cartesians

Proposició 1.3.6. Siguin A, B, C, D conjunts:

- 1. $Si \ A \subseteq C \ i \ B \subseteq D \implies A \times B \subseteq C \times D$,
- 2. $A \times (B \cup C) = (A \times B) \cup (A \times C)$,
- 3. $A \times \emptyset = \emptyset \times A = \emptyset$,
- 4. $(A \setminus B) \times (C \setminus D) = (A \times C) \setminus ((A \times D) \cup (B \times C))$.
- Demostració. Per tal de demostrar 1.3.6.1, considerem un element arbitrari $x \in A \times B$. Com $x \in A \times B$, existeixen $a \in A$ i $b \in B$ tals que x = (a, b). Com $a \in A$ i $A \subseteq C$, deduïm que $a \in C$. Anàlogament, com $b \in B$ i $B \subseteq D$, inferim que $b \in D$. Llavors, com $a \in C$ i $b \in D$, tenim que $x = (a, b) \in C \times D$.
 - Demostrem ara 1.3.6.2. Hem de provar les dues inclusions. En primer lloc, demostrem que $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$. Considerem un element arbitrari $(x,y) \in A \times (B \cup C)$. Llavors, $x \in A$ i $b \in B \cup C$. Per tant, $x \in A$ i $(y \in B)$ o $y \in C$. Si $y \in B$, llavors $(x,y) \in A \times B \subseteq (A \times B) \cup (A \times C)$. Si $y \in C$, llavors $(x,y) \in A \times C \subseteq (A \times B) \cup (A \times C)$. Per tant, $(x,y) \in (A \times B) \cup (A \times C)$.
 - Demostrem ara que $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$. Considerem un element arbitrari $(x,y) \in (A \times B) \cup (A \times C)$. Llavors, $(x,y) \in A \times B$ o $(x,y) \in A \times C$. Si $(x,y) \in A \times B$, tenim que $x \in A$ i $y \in B$. Com $y \in B$ i $B \subseteq B \cup C$, deduïm que $y \in B \cup C$. Per tant, $(x,y) \in A \times (B \cup C)$. I si $(x,y) \in A \times C$, tenim que $x \in A$ i $y \in C$. Com $y \in C$ i $C \subseteq B \cup C$, deduïm que $y \in B \cup C$. Per tant, $(x,y) \in A \times (B \cup C)$. Així doncs, $(x,y) \in A \times (B \cup C)$.
 - A continuació, demostrem 1.3.6.3 per reducció a l'absurd. Suposem que $A \times \emptyset \neq \emptyset$. Sigui $x \in A \times \emptyset$. Llavors, existeixen elements $a \in A$ i $b \in \emptyset$ tals que x = (a, b). Però és impossible que $b \in \emptyset$, perquè \emptyset no té elements. Per tant, $A \times \emptyset = \emptyset$. Anàlogament podríem demostrar que $\emptyset \times A = \emptyset$.
 - Per últim, demostrarem la propietat 1.3.6.4, provant les dues inclusions. En primer lloc, demostrarem que $(A \setminus B) \times (C \setminus D) \subseteq (A \times C) \setminus ((A \times D) \cup (B \times C))$. Considerem un element arbitrari $(x,y) \in (A \setminus B) \times (C \setminus D)$. Llavors, $x \in A \setminus B$ i $y \in C \setminus D$. Per tant, tenim que $x \in A$, $x \notin B$, $y \in C$, $y \notin D$. Com $x \in A$ i $y \in C$, deduïm que

$$(x,y) \in A \times C. \tag{1.3.12}$$

Com $x \notin B$, inferim que $(x,y) \notin B \times C$. I com $y \notin D$, deduïm que $(x,y) \notin A \times D$. Així doncs:

$$(x,y) \notin (A \times D) \cup (B \times C). \tag{1.3.13}$$

Llavors, com $(x,y) \in A \times C$, deduïm que

$$(x,y) \in (A \times C) \setminus ((A \times D) \cup (B \times C)). \tag{1.3.14}$$

Demostrem ara l'altre contingut, és a dir, $(A \times C) \setminus ((A \times D) \cup (B \times C)) \subseteq (A \times B) \times (C \setminus D)$. Considerem un element arbitrari $(x,y) \in (A \times C) \setminus ((A \times D) \cup (B \times C))$. Llavors, $(x,y) \in A \times C$ i $(x,y) \notin (A \times D) \cup (B \times C)$. Com $(x,y) \in A \times C$, tenim que $x \in A$ i $y \in C$. I com que $(x,y) \notin (A \times D) \cup (B \times C)$, deduïm que $(x,y) \notin A \times D$ i $(x,y) \notin B \times C$.

1.4. RELACIONS

Llavors, com tenim que $x \in A$ i $(x,y) \notin A \times D$, deduïm que $y \notin D$. I com tenim que $y \in C$ i $(x,y) \notin B \times C$, inferim que $x \notin B$.

Ara, com tenim $x \in A$ i $x \notin B$, deduïm que $x \in A \setminus B$. I com tenim que $y \in C$ i $y \notin D$, deduïm que $y \in C \setminus D$. Per tant, $(x, y) \in (A \setminus B) \times (C \setminus D)$.

Productes de tres conjunts

Definició 1.3.11 (Terna ordenada). Si A, B, C són conjunts, es construeix per a cada element x de A, cada element y de B i cada element z de C, la **terna ordenada** (x, y, z), de manera que si $x, x' \in A, y, y' \in B, z, z' \in C$, llavors:

$$(x, y, z) = (x', y', z') \iff x = x' \land y = y' \land z = z'.$$
 (1.3.15)

Definició 1.3.12 (Producte). S'anomena el producte d'A per B per C al conjunt

$$A \times B \times C = \{(x, y, z) \mid x \in A, y \in B, z \in C\}. \tag{1.3.16}$$

Si A = B = C, escrivim A^3 en lloc de $A \times B \times C$.

Exemple 1.3.6. El conjunt \mathbb{R}^3 representa l'espai real. Un punt d'aquell espai és una terna ordenada de nombres reals. *El punt* (3, 1, -2).

Definició 1.3.13 (Producte d'n conjunts). Donats n conjunts A_1, A_2, \dots, A_n , es denomina producte de A_1 per A_2 per ... per A_n al conjunt.

$$A_1 \times A_2 \times \ldots \times A_n = \{(x_1, x_2, \cdots, x_n) \mid x_1 \in A_1, x_2 \in A_2, \cdots, x_n \in A_n\}.$$
 (1.3.17)

Definició 1.3.14 (*n*-uples ordenades). Els elements $d'A_1 \times A_2 \times ... \times A_n$ s'anomenen *n*-uples ordenades.

Si (x_1, x_2, \dots, x_n) i (y_1, y_2, \dots, y_n) són n-uples ordenades, tenim que

$$(x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_n) \iff x_i = y_i, \ \forall i = 1, \dots, n$$
 (1.3.18)

Observació 1.3.5. Si $A_1 = A_2 = \ldots = A_n = A$ escriurem A^n en lloc de $A \times \ldots^n \times A$.

1.4 Relacions

Definició 1.4.1 (Relació de A en B). Si A i B són dos conjunts, una relació de A en B és un subconjunt de $A \times B$.

Definició 1.4.2. Si $R \subseteq A \times B$ és una relació i $(a,b) \in R$, direm que a està relacionat amb b per R. En moltes ocasions escriurem aRb en lloc de $(a,b) \in \mathbb{R}$.

Exemple 1.4.1. Considerem els conjunts $A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}$ i $C = \{0, 1, 2\}$. Tenim, llavors:

- 1. $R = \{(1,4), (2,5), (3,3)\}$ és una relació d'A en B.
- 2. $S = \{(0,3), (0,4), (1,3), (1,5)\}$ és una relació de C en B.
- 3. $F = \{(x, y) \in \mathbb{R}^2 \mid (\sqrt{x} + 1)y = 1\}$ és una relació de \mathbb{R} en \mathbb{R} .

- 4. $G = \{(x, y) \in \mathbb{R}^2 \mid x < y\}$ és una relació de \mathbb{R} en \mathbb{R} .
- 5. $H = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$ és una relació de \mathbb{R} en \mathbb{R} .
- 6. $I = \{(X, Y) \mid X, Y \in \mathcal{P}(A) \land X \subseteq Y\}$ és una relació de $\mathcal{P}(A)$ en $\mathcal{P}(A)$.

A la relació G se l'anomena relació d'ordre estricte en \mathbb{R} . Escriurem x < y en lloc de $(x,y) \in G$.

A la relació H se l'anomena **relació d'ordre en** \mathbb{R} . Escriurem $x \leq y$ en lloc de $(x,y) \in H$. Observem que per a tot $X, Y \in \mathcal{P}(A), (X,Y) \in I \iff X \subseteq Y$.

1.4.1 Domini i recorregut d'una relació

Siguin A, B conjunts i sigui R una relació de A en B.

Definició 1.4.3 (Domini de R). Definim el **domini de** R, que denotem per dom(R), com

$$dom(R) = \{x \in A \mid \exists y \in B((x, y) \in R)\}.$$
 (1.4.1)

Definició 1.4.4 (Recorregut de R). Definim el recorregut de R, o la imatge de R, que denotem per rec(R), com

$$rec(R) = \{ y \in B \mid \exists x \in A((x,y) \in R) \}. \tag{1.4.2}$$

Exemple 1.4.2. 1. $dom(R) = \{1, 2, 3\}, rec(R) = \{3, 4, 5\}.$

- 2. $dom(S) = \{0, 1\}, rec(S) = \{3, 4, 5\}.$
- 3. $dom(F) = [0, \infty) = R^+ \cup \{0\}, rec(F) = (0, 1].$
- 4. $dom(E) = \{0, 1, 2\}, rec(E) = P(\{0, 1, 2\}) \setminus \emptyset.$

1.4.2 La relació d'identitat

Definició 1.4.5 (Relació d'intentitat). Si X és un conjunt, definim la **relació d'identitat en** X per:

$$Id_X = \{(x, x) \mid x \in X\}. \tag{1.4.3}$$

Per tant, per a tot $x \in X$:

$$x Id_X x \iff x = x. \tag{1.4.4}$$

Clarament, tenim que $dom(Id_X) = rec(Id_X) = X$.

Observació 1.4.1. Tot conjunt R de parells ordenats és una relació del conjunt $\{x \mid \exists y \ (x,y) \in \mathbb{R}\}$ en el conjunt $\{y \mid \exists x \ (x,y) \in \mathbb{R}\}$. Per tant, si R és una relació, R és sempre una relació de dom(R) en rec(R).

A continuació, definim el concepte de funció que és un cas important del concepte de relació.

1.4. RELACIONS

1.4.3 Relacions sobre un conjunt

Definició 1.4.6 (Relació d'A en A). Sigui A un conjunt. Una **relació sobre** A és una relació d'A en A, és a dir, un subconjunt A d' $A \times A$. A les relacions sobre un conjunt A se les anomena **relacions binàries en** A.

Exemple 1.4.3.

- $F = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a b \text{ és parell}\}$. F és una relació sobre \mathbb{Z} .
- $V = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid |x| = |y|\}$. V és una relació sobre \mathbb{R} .
- $G = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x < y\}$. G és una relació d'ordre estricte en \mathbb{R} .
- $J = \{(n, m) \in \mathbb{N} \times \mathbb{N} \mid n \leq m\}$. J és una relació sobre \mathbb{N} .
- Si A és un conjunt $I = \{(X,Y) \mid X,Y \in \mathcal{P}(A) \text{ i } X \subseteq Y\}$. I és la relació d'inclusió sobre $\mathcal{P}(A)$.
- Si A és un conjunt, $Id_A = \{(a, a) \mid a \in A\}$. Id_A és la relació d'identitat sobre A. Sigui R una relació sobre un conjunt A:

Definició 1.4.7 (Relació reflexiva). Diem que R és **reflexiva** si per a tot $a \in A$, aRa.

Definició 1.4.8 (Relació irreflexiva). Diem que R és **irreflexiva** si per a tot $a \in A$, és fals que aRa.

Definició 1.4.9 (Relació simètrica). Diem que R és simètrica si per a tot $a, b \in A$,

$$aRb \implies bRa.$$
 (1.4.5)

Definició 1.4.10 (Relació antisimètrica). Diem que R és antisimètrica si per a tot $a, b \in A$,

$$aRb \wedge bRa \implies a = b.$$
 (1.4.6)

Definició 1.4.11 (Relació transitiva). Diem que R és **transitiva** si per a tot $a, b, c \in A$,

$$aRb \wedge bRc \implies aRc.$$
 (1.4.7)

Recordem que hem definit F com a

$$\{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a-b \text{ és parell}\}$$
 (1.4.8)

Anem a provar alguns tipus de relacions sobre el conjunt F. Es té que F és reflexiva, simètrica i transitiva. F és reflexiva, ja que per a tot $a \in \mathbb{N}$, a - a = 0 és parell. F és simètrica, ja que per a tot $a, b \in \mathbb{N}$, si a - b és parell, llavors b - a és parell, i F és també transitiva. Per tal de demostrar-ho, suposem que aRb i bRc: hem de demostrar que aRc. Tenim llavors:

 $aRb \implies a-b$ és parell $\implies \exists k \in \mathbb{Z}$ tal que a-b=2k,

$$bRc \implies b-c$$
 és parell $\implies \exists l \in \mathbb{Z}$ tal que $b-c=2l$.

Per tant,

$$a - c = (a - b) + (b - c) = 2k + 2l = 2(k + l).$$
(1.4.9)

a-c és parell, amb la qual cosa aRc. Així doncs, F és transitiva.

F no és irreflexiva (ja que per a tot $a\in\mathbb{N}, a-a=0$ és parell), i F tampoc és antisimètrica, ja que per exemple, tenim que 4R2 i 2R4, i $2\neq 4$.

Pel que fa a V, G:

- 1. V és reflexiva, simètrica i transitiva. V no és irreflexiva, ja que per a tot $x \in \mathbb{R}$, |x| = |x|, i V tampoc és antisimètrica, ja que 2R 2, -2R2, però $2 \neq -2$.
- 2. G és irreflexiva, ja que per a tot $a \in \mathbb{R}, a \not< a$. G és antisimètrica, ja que per a tot $a, b \in \mathbb{R}$ és impossible que tinguem a < b i b < a. I G és transitiva, ja que per a tot $a, b, c \in \mathbb{R}$

$$a < b \land b < c \implies a < c$$
.

Així, clarament G no és reflexiva i tampoc és simètrica.

3. Es comprova fàcilment que J és reflexiva i transitiva. J és també antisimètrica, ja que per a tot $a, b \in \mathbb{N}$:

$$a \le b \land b \le a \implies a = b.$$

J no és simètrica, ja que, per exemple, 2R5 però no és cert que 5R2. Clarament, J no és reflexiva.

4. Es té que I és reflexiva, antisimètrica i transitiva. I és reflexiva perquè per a tot subconjunt X d'A, tenim que $X \subseteq X$. I és transitiva, perquè si $X, Y, Z \subseteq A$, llavors:

$$(X \subseteq Y) \land (Y \subseteq Z) \implies X \subseteq Z,$$

és a dir,

$$XIY \wedge YIZ \implies XIZ.$$

I és també antisimètrica, ja que per a tot $X, Y \in \mathcal{P}(A)$:

$$X \subseteq Y \land Y \subseteq X \implies X = Y.$$

I no és simètrica, ja que per exemple $\{2\}\subseteq\{2,5\}$, però $\{2,5\}\nsubseteq\{2\}$. I clarament, I no és irreflexiva.

5. Finalment, és fàcil comprovar que Id_A és reflexiva, simètrica, antisimètrica i transitiva, però no és irreflexiva.

1.4.4 Relacions d'ordre

Sigui R una relació sobre un conjunt A. Llavors:

Definició 1.4.12 (Relació d'ordre en A). Diem que R és una **relació d'ordre en** A si R és reflexiva, antisimètrica i transitiva.

Definició 1.4.13. Diem que R és una relació d'ordre total en A si R és una relació d'ordre en A tal que per a tot $x, y \in A$ es té que xRy o yRx.

Exemple 1.4.4. Considerem la relació d'inclusió $I = \{(A, B) \mid A, B \in \mathcal{P}(\mathbb{Z}) \land A \subseteq B\}$. Per tant, per a tot $A, B \in \mathcal{P}(\mathbb{Z})$:

$$AIB \iff A \subseteq B.$$

Es té que I és una relació d'ordre.

1.4. RELACIONS 21

1. Es té que I és reflexiva, ja que per a tot subconjunt A de \mathbb{Z} , tenim que $A\subseteq A$. I és transitiva, perquè si $A,B,C\subseteq\mathbb{Z}$, llavors:

$$(A \subseteq B) \land (B \subseteq C) \implies A \subseteq C.$$

En altres paraules,

$$AIB \wedge AIC \implies AIC.$$

I és antisimètrica, ja que per a tot $A, B \in \mathcal{P}(\mathbb{Z})$:

$$A \subseteq B \land B \subseteq A \implies A = B$$
.

Si més no, I no és un ordre total, ja que per exemple $\{1\} \not\subseteq \{2\} \land \{2\} \not\subseteq \{1\}$.

2. Per altra part, tenim que la relació $J = \{(n, m) \in \mathbb{N} \times \mathbb{N} \mid n \leq m\}$ és un ordre total. Es comprova fàcilment que J és reflexiva i transitiva. J és un ordre total, ja que per a tot $a, b \in \mathbb{N}$, tenim que $a \leq b$ o bé $b \leq a$, és a dir, a i b són comparables.

Sigui R una relació d'ordre sobre un conjunt A. Sigui $a \in A$. Llavors:

Definició 1.4.14 (Mínim d'A). a és el mínim d'A respecte d'R si aRb per a tot $b \in A$.

Definició 1.4.15 (Màxim d'A). Diem que a és el **màxim d'**A **respecte d'**R si bRa per a tot $b \in A$.

Exemple 1.4.5. Considerem la relació d'inclusió $I = \{(X,Y) \mid X,Y \in \mathcal{P}(\mathbb{Z}) \land X \subseteq Y\}$. Llavors, \emptyset és el mínim de $\mathcal{P}(\mathbb{Z})$ respecte d'I.

Tenim que 0 és el mínim de \mathbb{N} respecte de l'ordre habitual " \leq ", però \mathbb{N} no té un màxim element. D'altra banda, el conjunt \mathbb{R} no té ni màxim ni mínim respecte a l'ordre habitual.

Proposició 1.4.1. Sigui R un ordre sobre un conjunt A. Sigui M un subconjunt no buit d'A. Llavors:

- 1. El mínim d'M, si existeix, és únic.
- 2. El màxim d'M, si existeix, és únic.

Demostració. Demostrem 1.4.1.1. Suposem que l i m són mínims de M. Llavors:

$$l \text{ és mínim de } M \text{ i } m \in M \implies lRm,$$
 (1.4.10)

$$m \text{ és mínim de } M \text{ i } l \in M \implies mRl.$$
 (1.4.11)

Així doncs, lRm i mRl. Aplicant la propietat antisimètrica, deduïm que l=m. La demostració de 1.4.1.2 és anàloga.

Definició 1.4.16 (R ordre estricte). Sigui R una relació sobre un conjunt A. Diem que R és un **ordre estricte** si R és irreflexina i transitiva.

Exemple 1.4.6. La relació $G = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$ és un ordre estricte. Tenim que G és irreflexiva, ja que per a tot $x \in \mathbb{R}, x \not< x$ i per tant $\neg(xGx)$. I G és transitiva, ja que per a tot $x, y, z \in \mathbb{R}$ tenim que

$$(x < y) \land (y < z) \implies x < z,$$

i per tant

$$xGy \wedge yGz \implies xGz.$$

Proposició 1.4.2. Sigui R un ordre estricte en un conjunt A. Llavors:

- 1. No existeixen elements $a, b \in A$ tals que $aRb \wedge bRa$.
- 2. R és antisimètrica.

Demostració.

- 1. Per demostrar 1.4.2.1, procedim per reducció a l'absurd. Suposem que existeixen elements $a,b\in A$ tals que $aRb\wedge bRa$. Com R és transitiva, deduïm que aRa, la qual cosa resulta impossible donat que R és irreflexiva.
- 2. Per demostrar l'apartat 1.4.2.2, hem de provar que per a tot $a, b \in A$:

$$aRb \wedge bRa \implies a = b.$$
 (1.4.12)

Per l'apartat 1.4.2.1, l'antecedent d'aquesta implicació és sempre fals, així la implicació és certa, amb la qual cosa R és antisimètrica.

Observació 1.4.2. En general, un ordre estricte R en un conjunt A no és un ordre en A, ja que R no compleix la propietat reflexiva. Si més no, hi ha una estreta relació entre els ordres i els ordres estrictes, que farem paleses en els següents teoremes.

Teorema 1.4.3. Sigui R una relació d'ordre en un conjunt A. Definim la relació R' en A per

$$xR'y \iff xRy \land x \neq y$$
 (1.4.13)

per a tot $x, y \in A$. Llavors, R' és una relació d'ordre estricte.

Demostració. Hem de provar que R' és irreflexiva i transitiva. Tenim que R' és irreflexiva, ja que per a tot $x \in A$, com x = x, no es compleix xR'x ja que

$$xR'x \implies x \neq x.$$
 (1.4.14)

Per tal de demostrar que R' és transitiva, considerem elements $x, y, z \in A$ tals que xR'y i yR'z. Hem de demostrar que xR'z. Tenim que

$$xR'y \wedge yR'z \implies xRy \wedge x \neq y \wedge yRz \wedge y \neq z.$$
 (1.4.15)

Per tant, com R és transitiva, deduïm que xRz.

Demostrem ara que $x \neq z$. Suposem, pel contrari, que x = z. Tenim llavors que zRy i yRz. Ara, com R és antisimètrica, deduïm que y = z, la qual cosa és impossible, ja que tenim que $y \neq z$. Així doncs, $x \neq z$.

Hem demostrat que xRz i $x \neq z$, amb la qual cosa tenim que xR'z i R' és transitiva.

Definició 1.4.17. Si $R = \leq$ és una relació d'ordre en un conjunt A, denotarem a la relació d'ordre estricta associada a R en el teorema 1.4.3 per <.

Teorema 1.4.4. Sigui R una relació d'ordre estricte en un conjunt A. Definim la relació R^* en A per

$$aR^*b \iff aRb \lor a = b \tag{1.4.16}$$

per a tot $a, b \in A$. Llavors, R^* és una relació d'ordre.

1.4. RELACIONS 23

Demostracio. Hem de demostrat que R^* és reflexiva, antisimètrica i transitiva.

En primer lloc, demostrem que R^* és reflexiva. Com per a tot $a \in A$, a = a, es compleix que $aRa \lor a = a$, és a dir, aR^*a . Per tant, R^* és reflexiva.

Demostrem ara que R^* és antisimètrica. Siguin $a, b \in A$ tals que aR^*b i bR^*a . Hem de demostrar que a = b. Llavors,

$$aR^*b \implies aRb \lor a = b,$$

 $bR^*a \implies bRa \lor b = a.$

Per tant, tenim que $(aRb \wedge bRa) \vee (aRb \wedge b = a) \vee (a = b \wedge bRa) \vee (a = b \wedge b = a)$. El cas $aRb \wedge bRa$ és impossible per l'apartat (a) de la proposició 1.4.2. I en els altres tres casos, tenim que a = b. Per tant, R^* és antisimètrica.

Per últim, demostrem que R^* és transitiva. Hem de provar que per a tot $a, b, c \in A$:

$$aR^*b \wedge bR^*c \implies aR^*c.$$

Suposem llavors que aR^*b i bR^*c . Llavors,

$$aR^*b \implies aRb \lor a = b$$
,

$$bR^*c \implies bRc \lor b = c.$$

Per tant, tenim que $(aRb \wedge bRc) \vee (aRb \wedge b = c) \vee (a = b \wedge bRc) \vee (a = b \wedge b = c)$. Si $aRb \wedge bRc$, com R és transitiva, deduïm que aRc, i per tant, aR^*c . Si $aRb \wedge b = c$, tenim que aRc i, per tant, aR^*c .

- 1. Si $a = b \wedge bRc$, tenim que aRc i, per tant, aR^*c .
- 2. Si $a = b \wedge b = c$, tenim que a = c i, per tant, aR^*c .

Així doncs, R^* és transitiva. Com hem demostrat que R^* és reflexiva, antisimètrica i transitiva, tenim que R^* és una relació d'ordre.

Si R=<, és una relació d'ordre estricte en un conjunt A, denotarem a la relació d'ordre associada a R en el teorema 1.4.4 per \leq .

Definició 1.4.18 (Ordre estricte total). Sigui R un ordre estricte en un conjunt A. Direm que R és un ordre estricte total si per a tot $a, b \in A$ tindrem que $aRb \lor bRa \lor a = b$.

Proposició 1.4.5. Sigui R un ordre estricte en un conjunt A. Sigui R^* l'ordre associat a R en el teorema 1.4.4. Llavors, R és un ordre estricte total $\iff R^*$ és un ordre total.

Definició 1.4.19 (Bon ordre). Sigui R una relació d'ordre en un conjunt A. Diem que R és un bon ordre si tot subconjunt no buit X d'A té un element mínim.

Exemple 1.4.7. L'ordre habitual \leq en \mathbb{N} és un bon ordre.

Exemple 1.4.8. Si més no, l'ordre habitual en \mathbb{Z} no és un bon ordre.

Exemple 1.4.9. Per altra part, si considerem $S = \{(x,y) \in [0,1] \times [0,1] \mid x \leq y\}$ és fàcil comprovar que S és una relació d'ordre. S, a més, és un ordre total, ja que per a tot $x,y \in [0,1]$, tenim que $x \leq y$ o $y \leq x$. Però S no és un bon ordre, ja que per exemple el conjunt $\{\frac{1}{n} \mid n \in \mathbb{N} \setminus \{0\}\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ no té element mínim.

Proposició 1.4.6. Si R és un bon ordre en un conjunt A, llavors R és un ordre total en A.

Demostració. Considerem elements arbitraris $x,y \in A$. Hem de demostrar que xRy o yRx. Considerem el conjunt $C = \{x,y\}$. Com R és un bon ordre, C té un element mínim m. Com $C = \{x,y\}$, tenim que m = x o m = y. Si m = x, tenim que xRy. I si m = y, tenim que yRx. Així doncs, xRy o yRx. Per tant, com x i y són elements arbitraris d'A, R és total.

Definició 1.4.20. Sigui R una relació d'ordre total estricte en un conjunt A. Siguin $a, b \in A$ tals que aRb. Diem llavors que b és el **successor immediat d'**a **respecte d'**R si per a tot $c \in A$:

$$aRc \land c \neq b \implies bRc.$$
 (1.4.17)

Observació 1.4.3. En ocasions, als successors immediats d'un elements se'ls anomena simplement successors de tal element. Anàlogament, es defineix el concepte de **predecessor immediat** d'un element en un ordre estricte.

Exemple 1.4.10. És evident que en l'ordre estricte usual de \mathbb{Z} , tot nombre enter té un successor immediat.

Observació 1.4.4. Si més no, en l'ordre estricte usual d'R no existeixen successors immediats.

Demostració de l'observació. Per tal de demostrar-ho, suposem pel contrari que existeix un nombre real a que té un successor immediat b. Considerem, doncs, el nombre real

$$c = \frac{a+b}{2}. (1.4.18)$$

Clarament, tenim que a < c < b. Per tant, b no pot ser el successor immediat d'a.

Proposició 1.4.7. $Si \leq és$ un bon ordre en un conjunt X i $a \in X$ no és el màxim de X, llavors a té un successor immediat.

Demostració. Suposem que $a \in X$ no és el màxim d'X. Llavors, existeix almenys un element b de X tal que a < b. Per tant, el conjunt

$$M = \{x \in X \mid a < x\} \neq \emptyset. \tag{1.4.19}$$

Com \leq és un bon ordre en X i $M \neq \emptyset$, M té un element mínim m. Demostrem llavors per reducció a l'absurd que m és el successor immediat d'a. Suposem llavors que m no és el successor immediat d'a. Per tant, existeix $c \in X$ tal que

$$(a < c) \land (c < m). \tag{1.4.20}$$

Com a < c, deduïm que $c \in M$. Llavors, com m és l'element mínim d'M, tenim que $m \le c$, la qual cosa contradiu que c < m. Per tant, m és el successor immediat d'a.

Definició 1.4.21 (Conjunt ordenat). Si R és una relació d'ordre en A, direm que el parell (A, R) és un **conjunt ordenat**.

Definició 1.4.22 (Conjunt totalment ordenat). Si R és una relació d'ordre en A i R és una relació d'ordre total en A, direm que el parell (A, R) és un conjunt **totalment ordenat**.

1.4.5 Suprem i infim d'un conjunt

Definició 1.4.23. Sigui (X, \preceq) un conjunt totalment ordenat, i sigui M un subconjunt no buit de X. Diem que M està **acotat superiorment** en (X, \preceq) si existeix $x \in X$ tal que

$$\forall m \in M (m \le x). \tag{1.4.21}$$

1.4. RELACIONS 25

En aquest cas, direm que x és una cota superior de M en (X, \preceq) .

Si (X, \preceq) és un conjunt totalment ordenat, M és un subconjunt no buit de X tal que M està acotat superiorment en (X, \preceq) i el conjunt de totes les cotes superiors de M té un mínim a, direm llavors que a és el **suprem de** M **en** (X, \preceq) .

Proposició 1.4.8. Si (X, \preceq) és un conjunt totalment ordenat, M és un subconjunt no buit de X i m és el màxim de M en (X, \preceq) , llavors m és el suprem de M en (X, \preceq) .

Demostració. Com m és el màxim de M, tenim que

$$x \le m, \ \forall x \in M.$$

Per tant, m és una cota superior de M en (X, \preceq) . Per altra part, si k és una cota superior de M en (X, \preceq) , com $m \in M$, tenim que $m \leq k$. Llavors, m és la mínima de les cotes superiors de M. És a dir, m és el suprem de M.

Exemple 1.4.11. Considerem en \mathbb{R} amb l'ordre usual, el subconjunt

$$M = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \setminus \{0\} \right\}.$$

Llavors, M està acotat superiorment en \mathbb{R} , ja que

$$\frac{1}{n} \le 1, \ \forall n \in \mathbb{N} \setminus \{0\}.$$

A més, com $1 \in M$, tenim que 1 és el màxim de M en (\mathbb{R}, \leq) . Per tant, 1 és el suprem de M en (\mathbb{R}, \leq) .

Exemple 1.4.12. Considerem l'interval obert (0,1) de \mathbb{R} amb l'ordre usual. Sigui

$$M = \left\{ \frac{1}{2} - \frac{1}{n} \mid n \in \mathbb{N}, \ n \ge 3 \right\}.$$

Llavors, $\frac{1}{2}$ és el suprem de M en (0,1). Si més no, $\frac{1}{2}$ no és el màxim de M, ja que $\frac{1}{2} \notin M$.

Observació 1.4.5. En general, el fet que un conjunt acotat superiorment tingui un suprem no implica que aquest conjunt tingui un màxim. És a dir, hi ha molts conjunts acotats superiorment que tenen suprem però no tenen pas màxim.

Proposició 1.4.9. Si (X, \preceq) és un conjunt totalment ordenat i M és un subconjunt no buit de X que té suprem, llavors tal suprem és únic.

Demostració. Sigui K el conjunt de les cotes superiors de M en (X, \preceq) . Si m és suprem de M, tenim que m és l'element mínim de K. Per la proposició 1.4.1 tenim que aquest element mínim de K és únic. Per tant, el suprem de M és únic.

Definició 1.4.24 (Acotat inferiorment). Sigui (X, \preceq) un conjunt totalment ordenat, i sigui M un subconjunt no buit de X. Diem que M està **acotat inferiorment** en (X, \preceq) , si existeix $x \in X$ tal que

$$\forall m \in M(x \le m). \tag{1.4.22}$$

En aquest cas, diem que x és una **cota inferior de** M **en** (X, \preceq) .

Definició 1.4.25 (Acotació). Si (X, \preceq) és un conjunt totalment ordenat i M és un subconjunt no buit d'X, diem que M està acotat en (X, \preceq) , si M està acotat superior i inferiorment en (X, \preceq) .

Definició 1.4.26 (Ínfim). Si (X, \preceq) és un conjunt totalment ordenat, M és un subconjunt no buit d'X tal que M està acotat inferiorment en (X, \preceq) i el conjunt de totes les cotes inferiors de M té un màxim b, direm llavors que b és l'**ínfim de** M **en** (X, \preceq) .

Proposició 1.4.10. Si (X, \preceq) és un conjunt totalment ordenat, M és un subconjunt no buit dX i m és el mínim dM en (X, \preceq) , llavors m és l'ínfim de M en (X, \preceq) .

Demostració. La demostració és anàloga a la de la proposició 1.4.8.

Proposició 1.4.11. Si (X, \preceq) és un conjunt totalment ordenat i M és un subconjunt no buit de X que té infim, llavors aquest infim és únic.

Demostració. La demostració és anàloga a la de la proposició 1.4.9.

Exemple 1.4.13. Considerem en \mathbb{R} amb l'ordre habitual, el subconjunt

$$M = \left\{ M = \frac{1}{n} \mid n \in \mathbb{N} \setminus \{0\} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \right\}.$$

Clarament, M està acotada inferiorment, ja que el zero és una cota inferior de M, i qualsevol nombre negatiu és també una cota inferior de M. A més, l'ínfim de M existeix i és el 0. Per una part, és evident que el 0 és una cota inferior de M, donat que tots els elements de M són positius.

Per altra banda, si r és un nombre real positiu arbitrari, com la successió de nombres reals $\frac{1}{n}$ (amb $n \in \mathbb{N} \setminus \{0\}$) convergeix a 0, existeix un nombre natural $n_0 \neq 0$ tal que

$$\frac{1}{n_0} < r.$$

Així doncs, com $\frac{1}{n_0} \in M$, r no és una cota inferior de M. Per tant, les úniques cotes inferiors de M són el 0 i els nombres reals negatius: el 0 és l'ínfim d'M. Notem que $0 \notin M$ i, per tant, 0 no és mínim de M, tot i ser el seu ínfim.

Exemple 1.4.14. Considerem el conjunt dels nombres racionals \mathbb{Q} amb l'ordre usual. Considerem el conjunt

$$X = \left\{ \frac{n}{2} \mid n \in \mathbb{N} \setminus \{0\} \right\} = \left\{ \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{4}{2}, \dots \right\}.$$

El conjunt X no té cap cota superior en $\mathbb Q$ i per tant X no té suprem. Si més no, X té moltes cotes inferiors, com ara $\frac{-15}{3}$, 0 i té un ínfim, que és $\frac{1}{2}$, el mínim d'X.

Exemple 1.4.15. Considerem el conjunt

$$Y = \{ x \in \mathbb{Q} \mid 1 < x < 3 \}.$$

És evident que Y té infinites cotes superiors i inferiors. A més, Y té un suprem (3) i un ínfim (1), cap dels quals pertanyen a Y.

Definició 1.4.27 (Propietats del suprem i de l'ínfim). El que distingeix \mathbb{R} de \mathbb{Q} és precisament el fet que tot subconjunt de \mathbb{R} acotat superiorment té un suprem. Aquesta propietat rep el nom de **propietat del suprem**. Al seu torn, es té que tot subconjunt de \mathbb{R} acotat inferiorment té un ínfim, propietat que s'anomena **propietat de l'ínfim**.

Definició 1.4.28. Donats dos conjunts totalment ordenats (A, \preccurlyeq_A) i (X, \preccurlyeq_X) tenen el **mateix tipus d'ordre**, si existeix una aplicació bijectiva $f: A \longrightarrow X$ que preserva l'ordre, és a dir, tal que per a tot $a, b \in A$:

$$a \preccurlyeq_A b \implies f(a) \preccurlyeq_X f(b).$$
 (1.4.23)

Propietats:

1.4. RELACIONS 27

1. És reflexiva: ho és ja que si (A, \preceq_A) és un conjunt totalment ordenat, la funció identitat Id_A preserva l'ordre.

2. És simètrica: suposem que (A, \preccurlyeq_A) i (X, \preccurlyeq_X) són conjunts totalment ordenats tals que (A, \preccurlyeq_A) i (X, \preccurlyeq_X) tenen el mateix tipus d'ordre. Llavors, existeix una aplicació bijectiva $f: A \longrightarrow X$ que preserva l'ordre. Demostrem llavors que $f^{-1}: X \longrightarrow A$ preserva l'ordre. Siguin $x, y \in X$ tal que

$$x \preccurlyeq_X y. \tag{1.4.24}$$

Hem de provar que $f^{-1}(x) \preceq_A f^{-1}(y)$. Procedim per reducció a l'absurd. Suposem que $f^{-1}(x) \preceq_A f^{-1}(y)$ no es compleix. Com (A, \preceq_A) és un ordre total tenim que

$$f^{-1}(y) <_A f^{-1}(x) \tag{1.4.25}$$

Com que f preserva l'ordre, deduïm que

$$f(f^{-1}(y)) \preceq_X f(f^{-1}(x)),$$
 (1.4.26)

I com f és injectiva,

$$f(f^{-1}(y)) <_X f(f^{-1}(x)).$$
 (1.4.27)

En altres paraules,

$$f \circ f^{-1}(y) <_X f \circ f^{-1}(x).$$
 (1.4.28)

Però, com sabem que $f \circ f^{-1} = \mathrm{Id}_X$, obtenim que

$$y <_X x, \tag{1.4.29}$$

la qual cosa contradiu que $x \preceq_X y$. Per tant, $f^{-1}(x) \preceq_A f^{-1}(y)$.

3. És transitiva: suposem que (A, \preccurlyeq_A) , (X, \preccurlyeq_X) , (Y, \preccurlyeq_Y) són conjunts totalment ordenats tals que (A, \preccurlyeq_A) i (X, \preccurlyeq_X) tenen el mateix tipus d'ordre i (X, \preccurlyeq_X) i (Y, \preccurlyeq_Y) tenen el mateix tipus d'ordre.

Siguin $f:A\longrightarrow X$ i $g:X\longrightarrow Y$ aplicacions bijectives que preserven l'ordre. Llavors, $g\circ f:A\longrightarrow Y$ és una aplicació bijectiva que preserva l'ordre. És fàcil comprovar que, com f i g són bijectives, $g\circ f$ també és bijectiva. I $g\circ f$ preserva l'ordre, ja que per a tot $a,b\in A$:

$$a \preccurlyeq_A b \implies f(a) \preccurlyeq_X f(b) \implies g(f(a)) \preccurlyeq_Y g(f(b)) \implies (g \circ f)(a) \preccurlyeq_Y (g \circ f)(b).$$

$$(1.4.30)$$

Exemple 1.4.16. Considerem el conjunt \mathbb{R} amb l'ordre habitual, i considerem els subconjunts A i B de \mathbb{R} definits per

$$A = \{0\} \cup (1, 2), \quad B = [1, 2).$$

Considerem els ordres \preccurlyeq_A i \preccurlyeq_B induïts per l'ordre usual de \mathbb{R} . Llavors, els conjunts totalment ordenats (A, \preccurlyeq_A) i (B, \preccurlyeq_B) tenen el mateix tipus d'ordre. Considerem l'aplicació $f: A \longrightarrow B$ definida per:

$$\begin{cases} f(0) = 1, \\ f(x) = x, \text{ per a tot } x \in (1, 2). \end{cases}$$

És fàcil comprovar que f és bijectiva i preserva l'ordre.

Exemple 1.4.17. Considerem el conjunt \mathbb{N} amb l'ordre usual \leq . I considerem el conjunt \mathbb{Z}^- dels nombres enters negatius amb l'ordre usual \leq . Llavors, (\mathbb{N}, \leq) i (\mathbb{Z}^-, \leq) no tenen el mateix tipus d'ordre.

Demostració. Procedim per reducció a l'absurd. Suposem que (\mathbb{N}, \leq) i $(\mathbb{Z}^-, \preccurlyeq)$ tenen el mateix tipus d'ordre. Per tant, existeix una aplicació bijectiva $f: \mathbb{N} \longrightarrow \mathbb{Z}^-$ que preserva l'ordre. Sigui s = f(0). Sigui t = s - 1. Com f és bijectiva, existeix $n \in \mathbb{N}$ tal que f(n) = t. Com 0 és menor nombre natural, tenim que $0 \leq n$. Ara, com que f preserva l'ordre, deduïm que

$$f(0) = s \preccurlyeq f(n) = t,$$

la qual cosa contradiu que t=s-1. Per tant, (\mathbb{N},\leq) i $(\mathbb{Z}^-,\preccurlyeq)$ no tenen el mateix tipus d'ordre.

1.5 Funcions

Definició 1.5.1 (Funció). Siguin A, B conjunts. Una funció de A en B és una relació $f \subseteq A \times B$ tal que per a tot $a \in A$, per a tot $b, c \in B$:

$$(afb \wedge afc) \implies b = c. \tag{1.5.1}$$

Equivalentment, si per a tot $a \in \text{dom}(f)\exists !\ b \in \text{rec}(f) \mid afb$. Escriurem, doncs, b = f(a) i direm que b és la **imatge de** a **per** f.

Exemple 1.5.1.

- 1. R és funció, ja que l'1 solament està relacionat amb el 4, el 2 solament està relacionat amb el 5 i el 3 sol està relacionat amb el 3. En notació funcional, tenim R(1) = 4, R(2) = 5 i R(3) = 3.
- 2. S no és funció, ja que $(0,3), (0,4) \in S$.
- 3. F és funció, ja que si $(a,b) \in F$ i $(a,c) \in F$, tenim que $(\sqrt{a}+1)b = (\sqrt{a}+1)c = 1$. Llavors, com $(\sqrt{a}+1)b = (\sqrt{a}+1)c = 1$ i $\sqrt{a}+1 \neq 0$, deduïm que b=c. En notació funcional, tenim que $\forall a \in \text{dom}(F)$:

$$F(a) = \frac{1}{\sqrt{a} + 1}.$$

- 4. G no és funció, ja que, per exemple, tenim que 1 < 3 i 1 < 5. No es respecta doncs la unicitat dels elements del domini i G no seria una funció.
- 5. H no és funció. Ídem de G.
- 6. E no és funció, ja que, per exemple, $0 \in \{0\}$ i $0 \in \{0, 1\}$.
- 7. I no és funció, ja que, per exemple, $\{2\} \subseteq \{2\}$ i $\{2\} \subseteq \{2,3\}$.

Per una altra part, per a tot conjunt X tenim que la relació Id_X és una funció, i per a tot $a \in X, Id_X(a) = a$.

Definició 1.5.2 (Aplicació). Siguin A i B dos conjunts. Una **aplicació** o **funció total** de A en B és una funció d'A en B tal que dom(f) = A. Si A i B són conjunts i f és una aplicació d'A en B, escriurem $f: A \longrightarrow B$.

1.5. FUNCIONS

Definició 1.5.3 (Conjunt inicial i conjunt final). Si $f:A \longrightarrow B$ direm que A és el conjunt inicial de f i B és el conjunt final de f.

Definició 1.5.4 (Funció parcial). Si una funció f no és una aplicació, direm que f és una funció parcial.

Exemple 1.5.2. Considerem els conjunts $A = \{1, 2, 3, 4\}$ i $B = \{3, 4, 5\}$. Considerem les següents relacions de A en B:

- 1. $R = \{(1,4), (2,5), (3,3)\}$. Es té que R és una funció, ja que es compleix la definició: a tot element del domini de R se li assigna exactament un del recorregut de R. Si més no, R no és aplicació, ja que dom $(R) = \{1,2,3\} \subsetneq A$.
- 2. $S = \{(1,3), (1,5), (2,5), (3,5)\}$ no és funció, ja que a l'1 se li assignen dos valors, que són el 3 i el 5.
- 3. $T = \{(1,3), (2,3), (3,5), (4,5)\}$. Es té que T és aplicació perquè T és funció i $dom(T) = \{1,2,3,4\} = A$.

Exemple 1.5.3. Considerem

$$f = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = \frac{1}{x - 1}\}.$$

Es té que f és una funció, ja que si $(a,b) \in f$ i $(a,c) \in f$, tenim que

$$b = \frac{1}{a-1}, \quad c = \frac{1}{a-1},$$

i per tant, b = c.

Si més no, f no és aplicació, ja que si x=1, no existeix un nombre real y tal que $y=\frac{1}{(x-1)}$, donat que $\frac{1}{x-1}$ no té sentit per a x=1, ja que 1/0 no és un nombre real. En canvi, si definim

$$f = \{(x, y) \in \mathbb{R} \setminus \{1\} \times \mathbb{R} \mid y = \frac{1}{x - 1}\},\$$

f és una aplicació, perquè si $x \neq 1, \frac{1}{x-1}$ està ben definit. Així doncs, dom $(f) = \mathbb{R} \setminus \{1\}$. Per altra pert tenim que

$$y = \frac{1}{x-1} \iff y(x-1) = 1 \iff yx - y = 1 \iff yx = 1 + y \iff x = \frac{1+y}{y}.$$

Per tant, $rec(f) = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{R} (x = \frac{1+y}{y}) \} = \mathbb{R} \setminus 0.$

Exemple 1.5.4. Considernem

$$g = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = \frac{x^2}{1 - x^2}.$$

Tenim que g és una funció, ja que si $(a,b) \in g$ i $(a,c) \in g$, tenim que

$$b = \frac{a^2}{1 - a^2}, \quad c = \frac{a^2}{1 - a^2},$$

i per tant, b=c. Si més no, g no és una aplicació, ja que si x=1 o x=-1 no existeix cap nombre real y tal que $y=\frac{x^2}{1-x^2}$, donat que $\frac{x^2}{1-x^2}$ no té sentit per x=1 o x=-1. Tenim que $\mathrm{dom}(g)=\mathbb{R}\setminus\{-1,1\}$. Demostrem a continuació que $\mathrm{rec}(g)=(-\infty,-1)\cup[0,+\infty)$.

$$y = \frac{x^2}{1 - x^2} \iff y(1 - x^2) = x^2 \iff y - yx^2 = x^2 \iff y = x^2 + yx^2 \iff y = (y + 1)x^2 \iff x^2 = \frac{y}{y + 1}.$$

Per tant, tenim que $\operatorname{rec}(g) = \{y \in \mathbb{R} \mid \exists x \in \mathbb{R}(x^2 = \frac{y}{y+1})\}$. I tenim que $x^2 = \frac{y}{y+1}$ té solució si, i només si $[(y \ge 0) \land (y+1) > 0] \lor [(y \le 0) \land (y+1) < 0]$. Llavors:

1.
$$(y \ge 0) \land (y+1) > 0 \iff (y \ge 0) \land (y > -1) \iff y \ge 0$$
.

2.
$$(y \le 0) \land (y+1) < 0 \iff (y \le 0) \land (y < -1) \iff y < -1$$
.

 $\text{Per tant, } \tfrac{y}{y+1} \geq 0 \iff y \geq 0 \ \forall \ y < -1. \text{ \'Es aix\'i que } \operatorname{rec}(f) = (-\infty, -1) \ \cup \ (0, +\infty) = \mathbb{R} \ \setminus \ [-1, 0).$

1.5. FUNCIONS 31

1.5.1 Restricció d'una funció

Definició 1.5.5 (Restricció de f sobre C). Siguin A, B, C conjunts tals que $C \subseteq A$. Sigui f una funció d'A en B. Definim la restricció d'una funció de f sobre G, que denotem per $f \upharpoonright G$ com la funció de G en G definida com G en G definida per G en G

Exemple 1.5.5. Considerem

$$f = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = \frac{x}{x - 1}\}.$$

Es té que f és una funció, ja que si $(a,b) \in f$ i $(a,c) \in f$,

$$b = \frac{a}{a-1}, \quad c = \frac{a}{a-1},$$

i per tant, b=c. Llavors, la restricció de la funció f al conjunt $\mathbb{R}\setminus\{1\}$ és la aplicació $g:\mathbb{R}\setminus\{1\}\longrightarrow\mathbb{R}$ definida per

$$g(x) = f(x) = \frac{x}{x-1}, \ \forall x \in \mathbb{R} \setminus \{1\}$$

Proposició 1.5.1. Si f és una funció d'A en B, llavors $f \upharpoonright dom(f)$ és una aplicació de dom(f) en B.

Demostració. La demostració és immediata, ja que $dom(f \upharpoonright dom(f)) = dom(f)$ i dom(f) és el conjunt inicial de $f \upharpoonright dom(f)$.

Siguin A, B, C conjunts i f una funció d'A en B. Llavors,

Definició 1.5.6 (Conjunt imatge). Si $M\subseteq A$, definim el conjunt imatge de M mitjançant f com

$$f(M) = \{ b \in B \mid \exists a \in M(f(a) = b) \} = \{ f(a) \mid a \in M \}.$$
 (1.5.2)

Notem que f(M) = f[M].

Definició 1.5.7 (Conjunt antiimatge). Si $S \subseteq B$, definim el conjunt antiimatge de S mitjançant f com

$$f^{-1}(S) = \{ a \in A \mid \exists b \in S(f(a) = b) \} = \{ a \in A \mid f(a) \in S \}.$$
 (1.5.3)

Observació 1.5.1. El conjunt imatge de $M \subseteq A$ mitjançant f i el conjunt antiimatge de $S \subseteq B$ mitjançant f poden ser \emptyset .

Demostraci'o. Observem que si $M\cap \mathrm{dom}(f)=\emptyset \implies f(M)=\emptyset.$ I si $S\cap \mathrm{rec}(f)=\emptyset \implies f^{-1}(S)=\emptyset,$ ja que

$$a \in f^{-1}(S) \implies f(a) \in S \implies f(a) \in S \cap rec(f).$$
 (1.5.4)

Exemple 1.5.6. Considerem $A = \{1, 2, 3, 4\}, B = \{a, b, c\}$ i la funció g d'A definida per $\{(1, a), (2, a), (4, c)\}$. Tenim llavors:

- $g({1,2,3}) = {a},$
- $q(\{2,4\}) = \{a,c\},\$

- $g(\emptyset) = \emptyset$,
- $g^{-1}(\{a\}) = \{1, 2\},\$
- $g^{-1}(\{a,b\}) = \{1,2\},$
- $\bullet \ g^{-1}(\{b\}) = \emptyset,$
- $g^{-1}(\{c\}) = \{4\}.$

Exemple 1.5.7. Sigui $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida per $f(x) = x^2$ per a tot $x \in \mathbb{R}$. Tenim llavors: $f(\{x, -x\}) = \{x^2\}, \ \forall x \in \mathbb{R} \iff f(\{-3, -5, -12\}) = \{f(-3), f(-5), f(12)\} = \{9, 25, 144\}.$ $f(\mathbb{R}) = \operatorname{rec}(R) = \{x^2 \mid x \in \mathbb{R}\} = [0, +\infty) = \{y \in \mathbb{R} \mid y \geq 0\}$, ja que tot nombre real no negatiu y és el quadrat d'algun nombre real: és el quadrat de 0 si y = 0 i si y > 0 llavors y és el quadrat dels nombres reals $y^{1/2}$ i $-y^{1/2}$.

També tenim que $f^{-1}(\{-4, 2, 7, 9, 25, 63, 81\}) = \{\sqrt{2}, -\sqrt{2}, \sqrt{7}, -\sqrt{7}, -3, 3, -5, 5, \sqrt{63}, -\sqrt{63}, -9, 9\}$. $f^{-1}((-\infty, 0)) = \emptyset$, donat que no existeix cap nombre real el quadrat del qual sigui un nombre real negatiu, $f^{-1}([4, 9]) = [-3, -2] \cup [2, 3] = \{x \in \mathbb{R} \mid (-3 \le x \le -2) \lor (2 \le x \le 3)\}$, ja que els quadrats de tots els nombres reals que formen part dels intervals [-3, -2] i [2, 3] pertanyen a l'interval [4, 9].

1.5.2 Composició de funcions

Siguin A, B, C conjunts, f una funció d'A en B i g una funció de B en C.

Definició 1.5.8 (Composició de funcions). Definim la composició de f amb g, o la funció f composta amb g, que denotem per $g \circ f$, com:

$$g \circ f = \{(a, c) \in A \times C \mid \exists b \in B \mid (a, b) \in f \land (b, c) \in g\} = \{(a, c) \in A \times C \mid \exists b \in B \mid (f(a) = b \land g(b) = c)\}.$$
 (1.5.5)

Exemple 1.5.8. Considerem els conjunts $A = \{1, 2, 3, 4\}, B = \{a, b, c\}$ i $C = \{\alpha, \beta, \gamma\}$. Considerem la funció q d'A en B definida per

$$g = \{(1, a), (2, a), (4, c)\},\$$

i considerem la funció h de B en C definida per

$$h = \{(a, \alpha), (b, \beta), (c, \gamma)\}.$$

Tenim, llavors:

$$h \circ g = \{(1, \alpha), (2, \alpha), (4, \gamma)\}.$$

Exemple 1.5.9. Considerem l'aplicació $f: \mathbb{R} \setminus \{1\} \longrightarrow \mathbb{R} \setminus \{0\}$ definida per

$$f(x) = \frac{1}{x - 1},$$

per a tot $x\in\mathbb{R}\setminus\{1\},$ i considerem l'aplicació $g:\mathbb{R}\setminus\{0\}\longrightarrow\mathbb{R}\setminus\{0\}$ definida per

$$g(y) = \frac{1}{y},$$

per a tot $y \in \mathbb{R} \setminus \{0\}$. Llavors, $g \circ f : \mathbb{R} \setminus \{1\} \longrightarrow \mathbb{R} \setminus \{0\}$ està definida per

$$(g \circ f)(x) = g(f(x)) = \frac{1}{f(x)} = \frac{1}{\frac{1}{x-1}} = x - 1,$$

per a tot $x \in \mathbb{R} \setminus \{1\}$.

1.5. FUNCIONS 33

Exemple 1.5.10. Considerem les funcions

$$f = \{(x,y) \in \mathbb{R}^2 \mid y = \frac{x^2}{x^2 - 1}\}, \quad g = \{(x,y) \in \mathbb{R}^2 \mid y = 3x + 1\}.$$

Tenim, llavors:

$$g \circ f = \{(x,y) \in \mathbb{R}^2 \mid y = 3\left(\frac{x^2}{x^2 - 1}\right) + 1\}, \quad f \circ g = \{(x,y) \in \mathbb{R}^2 \mid y = \frac{(3x + 1)^2}{(3x + 1)^2 - 1}\}.$$

1.5.3 Propietats bàsiques de la composició de funcions

Teorema 1.5.2. Siguin A, B, C conjunts. Sigui f una funció d'A en B i g una funció de B en C. Llavors:

- 1. $q \circ f$ és una funció d'A en C.
- 2. Per a tot $a \in dom(g \circ f), (g \circ f)(a) = g(f(a)).$
- 3. Si f i q són aplicacions, llavors $q \circ f$ és una aplicació.

Demostració.

- 1. Per tal de demostrar l'apartat 1.5.2.1, hem de provar que si $(a, c), (a, d) \in g \circ f \implies c = d$. Suposem que $(a, c), (a, d) \in g \circ f$, Per tant, $a \in A$ i $c, d \in C$.
 - (a) $(a,c) \in g \circ f \implies \exists b \in B \mid (a,b) \in f \text{ i } (b,c) \in g$,
 - (b) $(a,d) \in g \circ f \implies \exists b' \in B \mid (a,b') \in f \text{ i } (b',d) \in g.$

Com $(a,b) \in f, (a,b') \in f$ i f és una funció, deduïm que b=b'. Per tant, com $(b',d) \in g$ i b=b', inferim que $(b,d) \in g$. Com que $(b,c) \in g, (b,d) \in g$ i g és una funció, deduïm que c=d. Llavors, $g \circ f$ és una funció.

2. Demostrem ara l'apartat 1.5.2.2. Considerem un element arbitrari $a \in \text{dom}(g \circ f)$. Llavors, existeix $c \in C$ tal que $(g \circ f)(a) = c$. Llavors, $(a, c) \in g \circ f$. Per tant, existeix $b \in B$ tal que $(a, b) \in f$ i $(b, c) \in g$. Com f és una funció i $(a, b) \in f$, tenim que f(a) = b. I com g és una funció i $(b, c) \in g$, tenim que g(b) = c. Per tant

$$g(f(a)) = g(b) = c = (g \circ f)(a).$$
 (1.5.6)

3. Per últim, demostrarem 1.5.2.3. Suposem que f i g són aplicacions. Hem de demostrar que $g \circ f$ és aplicació. Per tal d'arribar-hi, hem de provar que $\mathrm{dom}(g \circ f) = A$. Com $g \circ f$ és una funció d'A en C, tenim que $\mathrm{dom}(g \circ f) \subseteq A$. Demostrem ara que $A \subseteq \mathrm{dom}(g \circ f)$. Considerem un element aribtrari $a \in A$. Com $a \in A$ i f és una aplicació d'A en B, tenim que $f(a) \in B$. I com g és una aplicació de B en C i $f(a) \in B$, tenim que $g(f(a)) \in C$. Per tant, $a \in \mathrm{dom}(g \circ f)$. Així doncs, com a és un element arbitrari d'A, tenim que $A \subseteq \mathrm{dom}(g \circ f)$.

Teorema 1.5.3. Siguin $f:A\longrightarrow B,\ g:B\longrightarrow C\ i\ h:C\longrightarrow D.$ Llavors, $(h\circ g)\circ f=h\circ (g\circ f).$ Demostració. Considerem un element arbitrari $a\in A.$ Aplicant 1.5.2.2, tenim:

$$((h \circ g) \circ f)(a) = (h \circ g)(f(a)) = h(g(f(a))) = h((g \circ f)(a)) = (h \circ (g \circ f))(a). \tag{1.5.7}$$

1.5.4 Funcions injectives

Definició 1.5.9 (Funció injectiva). Siguin A i B conjunts. Sigui f una funció d'A en B. Diem que f és injectiva si per a tot $a, a' \in \text{dom}(f)$:

$$a \neq a' \implies f(a) \neq f(a').$$
 (1.5.8)

Observació 1.5.2. Pel contrarrecíproc, tenim que f és injectiva si per a tot $a, a' \in \text{dom}(f)$:

$$f(a) = f(a') \implies a = a'. \tag{1.5.9}$$

Exemple 1.5.11. Considerem l'aplicació $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida per $f(x) = x^2$ per a tot $x \in \mathbb{R}$. Es té que f no és injectiva ja que si x és un nombre real diferent de 0, llavors,

$$f(x) = x^2$$
, $f(-x) = (-x)^2 = x^2$.

És a dir, els elements x i -x són diferents i tenen la mateixa imatge mitjançant f. Per tant, f no és injectiva.

Exemple 1.5.12. Considerem l'aplicació $h : \mathbb{R} \longrightarrow \mathbb{R}$ definida per $h(x) = \sin x$. Llavors, h no és injectiva, ja que per a tot $x \in \mathbb{R}$, $\sin x = \sin(x + 2\pi)$.

Exemple 1.5.13. Considerem l'aplicació $g: \mathbb{N} \setminus \{0\} \longrightarrow \mathbb{N}$ definida per $g(n) = n^4$, per a tot $n \in \mathbb{N} \setminus 0$. Es té que g és injectiva. Hem de demostrar, doncs, que per a tot $n, m \in \mathbb{N}$

$$g(n) = g(m) \implies n = m.$$

Suposem llavors que g(n) = g(m). Per tant, $n^4 = m^4$. Així, $n^4 - m^4$. Tenim:

$$0 = n^4 - m^4 = (n - m)(n^3 + mn^2 + m^2n + m^3),$$

Com estem suposant que n, m són nombres enters positius, tenim que

$$n^3 + mn^2 + m^2n + m^3 > 4$$
.

Per tant, com tenim que $0 = (n-m)(n^3+mn^2+m^2n+m^3)$, deduïm que n=m. Així, g és injectiva.

1.5.5 Funcions exhaustives

Definició 1.5.10 (Funció exhaustiva). Siguin A, B conjunts. Sigui f una funció d'A en B. Diem que f és **exhaustiva** si rec(f) = B.

Observació 1.5.3. f és exhaustiva si per a tot $b \in B$ existeix $a \in \text{dom}(f)$ tal que f(a) = b.

Exemple 1.5.14.

- 1. Considerem l'aplicació $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida per $f(x) = x^2$ per a tot $x \in \mathbb{R}$. Es té que f no és exhaustiva, ja que $rec(f) = \{x \in \mathbb{R} \mid x \geq 0\}$.
- 2. Considerem l'aplicació $g = \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ definida per g((x,y)) = 2x + 3y. Llavors, g és exhaustiva: considerem un element arbitrari $z \in \mathbb{R}$. Considerem a = (-z, z). Tenim:

$$g(a) = g((-z, z)) = 2(-z) + 3z = z.$$

Per tant, g és exhaustiva.

1.5. FUNCIONS 35

1.5.6 Funcions bijectives

Definició 1.5.11 (Funció injectiva). Una funció f és bijectiva si és injectiva i exhaustiva.

Definició 1.5.12 (Bijecció). Diem que f és una bijecció si f és una aplicació bijectiva.

Exemple 1.5.15. La funció f de \mathbb{R} en \mathbb{R} , definida per $f(x) = \ln(x)$ és una funció bijectiva, però no és una bijecció. Tenim que f és injectiva, ja que per a tot $A, B \in \text{dom}(f) = [0, +\infty)$:

$$\ln a = \ln b \implies a = e^{\ln a} = e^{\ln b} = b.$$

I tenim que f és exhaustiva, ja que per a tot $b \in \mathbb{R}$ podem prendre $e^b \in [0, +\infty)$, i tenim que $\ln(e^b) = b$.

Si més no, com $dom(f) = [0, +\infty) \neq \mathbb{R}$, f no és aplicació, i per tant, f no és bijecció.

Exemple 1.5.16. Siguin a, b nombres reals fixes amb $a \neq 0$. Considerem una aplicació $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida per f(x) = ax + b per a tot $x \in \mathbb{R}$. Es té que llavors que f és una bijecció. En primer lloc, f és injectiva, perquè donats nombres reals arbitraris x, t si f(x) = f(t) tenim que

$$ax + b = at + b \implies ax = at \implies 0 = ax - at = a(x - t),$$

i com $a \neq 0$, l'única opció restant és que x-t=0. Per tant, x=t. Així doncs, f és injectiva. Per altra part, tenim que f és exhaustiva. Per demostrar-ho, considerem un nombre real $y \in \mathbb{R}$. Prenem $x = \frac{y-b}{a}$. Llavors:

$$f(x) = f\left(\frac{y-b}{a}\right) = a\left(\frac{y-b}{a}\right) + b = y-b+b = y.$$

Per tant, f és bijectiva. I com, a més, f és una aplicació, tenim que f és una bijecció.

Teorema 1.5.4. Sigui $f: A \longrightarrow B$ una aplicació bijectiva. Sigui

$$g = \{(y, x) \in B \times A \mid (x, y) \in f\}. \tag{1.5.10}$$

Llavors, $g: B \longrightarrow A$ és una aplicació bijectiva.

Demostraci'o. Per tal de demostrar el teorema 1.5.4, demostrem en primer lloc que g és una aplicaci\'o. Per tant, hem de demostrar que:

- 1. Per a tot $y \in B$ existeix $x \in A$ tal que $(y, x) \in g$.
- 2. Si $(y, x), (y, t) \in q$, llavors x = t.

En primer lloc, demostrarem (1.). Sigui $y \in B$. Com f és exhaustiva, existeix $x \in A$ tal que $(x,y) \in f$. Per tant, $(y,x) \in g$.

Demostrarem ara (2.). Suposem que $(y, x), (y, t) \in g$. Per tant, $(x, y), (t, y) \in f$. Com f és injectiva, deduïm que x = t. Per tant, g és funció.

Per consegüent, g és aplicació. Escriurem llavors g(y) = x, si $(y, x) \in g$. Demostrem ara que g és injectiva i exhaustiva. En altres paraules, demostrem que:

- 1. Per a tot $y, y' \in B, q(y) = q(y') \implies y = y'$.
- 2. Per a tot $x \in A$ existeix $y \in B$ tal que g(y) = x.

Demostrem (3.). Suposem que g(y) = g(y'). Siguin x = g(y), x' = g(y'). Llavors,

$$x = g(y) \iff (y, x) \in g \iff (x, y) \in f \iff f(x) = y,$$

 $x = g(y') \iff (y', x') \in g \iff (x', y') \in f \iff f(x') = y'. \quad (1.5.11)$

Per tant, com f és funció, tenim que

$$x = x' \implies f(x) = f(x'), \tag{1.5.12}$$

la qual cosa és equivalent a dir que

$$g(y) = g(y') \implies y = y'. \tag{1.5.13}$$

Per tant, es compleix (3.). Per a demostrar (4.), suposem que $x \in A$. Com f és aplicació, existeix $y \in B$ tal que f(x) = y, és a dir, $(x,y) \in f$. Per tant, $(y,x) \in g$, amb la qual cosa g(y) = x.

1.5.7 Aplicacions inverses

Definició 1.5.13 (Aplicació inversa). A l'aplicació g definida en l'enunciat del teorema 1.5.4, se l'anomena aplicació inversa de f i es denota $g = f^{-1}$.

És clar que es compleixen les dues següents propietats.

- 1. Per a tot $x \in A$, $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$.
- 2. Per a tot $y \in B$, $(f \circ f^{-1})(x) = f(f^{-1}(x)) = x$.

Enunciant l'aplicació identitat $Id_A:A\longrightarrow A$ i $Id_B:B\longrightarrow B$, aquestes propietats es poden reformular com

- 1. $f^{-1} \circ f = Id_A$,
- 2. $f \circ f^{-1} = Id_B$.

Teorema 1.5.5. Siguin $f: A \longrightarrow B$ i $g: B \longrightarrow C$.

- 1. Si f i g són injectives, llavors $g \circ f$ és injectiva.
- 2. Si f i q són exhaustives, llavors $q \circ f$ és exhaustiva.
- 3. Si f i g són bijectives, llavors $g \circ f$ és bijectiva.