Decision trees - Victor Kitov

Decision trees

Victor Kitov

Table of Contents

- Definition of decision tree
- 2 Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- 5 Termination criterion

Example of decision tree

Definition of decision tree

- Prediction is performed by tree T:
 - directed graph
 - without loops
 - with single root node

Definition of decision tree

- ullet for each internal node t a check-function $Q_t(x)$ is associated
- for each edge $r_t(1), ... r_t(K_t)$ a set of values of check-function $Q_t(x)$ is associated: $S_t(1), ... S_t(K_t)$ such that:
 - $\bigcup_k S_t(k) = range[Q_t]$
 - $S_t(i) \cap S_t(j) = \emptyset \ \forall i \neq j$

Prediction process

- a set of nodes is divided into:
 - internal nodes int(T), each having ≥ 2 child nodes
 - terminal nodes terminal(T), which do not have child nodes but have associated prediction values.

Prediction process

- a set of nodes is divided into:
 - internal nodes int(T), each having ≥ 2 child nodes
 - terminal nodes terminal(T), which do not have child nodes but have associated prediction values.
- Prediction process for tree T:
 - t = root(T)
 - while t is not a leaf node:
 - calculate $Q_t(x)$
 - determine j such that $Q_t(x) \in S_t(j)$
 - ullet follow edge $r_t(j)$ to j-th child node: $t= ilde t_j$
 - return prediction, associated with leaf t.

Specification of decision tree

- To define a decision tree one needs to specify:
 - the check-function: $Q_t(x)$
 - the splitting criterion: K_t and $S_t(1), ... S_t(K_t)$
 - the termination criteria (when node is defined as a terminal node)
 - the predicted value for each leaf node.

Table of Contents

- Definition of decision tree
- Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- Termination criterion

- $Q_t(x) = x^{i(t)}$, where $S_t(j) = v_j$, where $v_1, ... v_K$ are unique values of feature $x^{i(t)}$.
- $S_t(1) = \{x^{i(t)} \le h_t\}, S_t(2) = \{x^{i(t)} > h_t\}$
- $S_t(j) = \{h_j < x^{i(t)} \le h_{j+1}\}$ for set of partitioning thresholds $h_1, h_2, ..., h_{K_t+1}$.
- $S_t(1) = \{x : \langle x, v \rangle \leq 0\}, \quad S_t(2) = \{x : \langle x, v \rangle > 0\}$
- $S_t(1) = \{x : ||x|| \le h\}, \quad S_t(2) = \{x : ||x|| > h\}$
- etc.

Most famous decision tree algorithms

- CART (classification and regression trees)
 - implemented in scikit-learn
- C4.5

CART version of splitting rule

• single feature value is considered:

$$Q_t(x) = x^{i(t)}$$

binary splits:

$$K_t = 2$$

• split based on threshold h_t :

$$S_1 = \{x^{i(t)} \le h_t\}, S_2 = \{x^{i(t)} > h_t\}$$

- $h(t) \in \{x_1^{i(t)}, x_2^{i(t)}, ...x_N^{i(t)}\}$
 - applicable only for real, ordinal and binary features
 - discrete unordered features:

CART version of splitting rule

• single feature value is considered:

$$Q_t(x) = x^{i(t)}$$

binary splits:

$$K_t = 2$$

split based on threshold h_t:

$$S_1 = \{x^{i(t)} \le h_t\}, S_2 = \{x^{i(t)} > h_t\}$$

- $h(t) \in \{x_1^{i(t)}, x_2^{i(t)}, ...x_N^{i(t)}\}$
 - applicable only for real, ordinal and binary features
 - discrete unordered features:may use one-hot encoding.

Analysis of CART splitting rule

- Advantages:
 - simplicity
 - estimation efficiency
 - interpretability
- Drawbacks:
 - many nodes may be needed to describe boundaries not parallel to axes:

Piecewise constant predictions of decision trees

Sample dataset

Example: Regression tree

Example: Regression tree

Table of Contents

- Definition of decision tree
- 2 Splitting rules
- Splitting rule selection
- 4 Prediction assignment to leaves
- 5 Termination criterion

Impurity function

- Impurity function $\phi(t) = \phi(p(\omega_1|t), ...p(\omega_C|t))$ measures the mixture of classes using class probabilities inside node t.
- It can be any function $\phi(q_1, q_2, ... q_C)$ with the following properties:
 - ϕ is defined for $q_i \geq 0$ and $\sum_i q_i = 1$.
 - ϕ attains maximum for $q_j = 1/C$, k = 1, 2, ... C
 - ϕ attains minimum when $\exists j: q_i = 1, q_i = 0 \ \forall i \neq j$.
 - ϕ is symmetric function of $q_1, q_2, ... q_C$.
- Note: in regression $\phi(t)$ measures the spread of y inside node t.
 - may be MSE, MAE.

Typical impurity functions

Gini criterion

• interpretation: probability to make mistake when predicting class randomly with class probabilities $[p(\omega_1|t),...p(\omega_C|t)]$:

$$I(t) = \sum_i
ho(\omega_i|t)(1-
ho(\omega_i|t)) = 1-\sum_i [
ho(\omega_i|t)]^2$$

Entropy

• interpretation: measure of uncertainty of random variable

$$I(t) = -\sum_i p(\omega_i|t) \ln p(\omega_i|t)$$

Classification error

 interpretation: frequency of errors when classifying with the most common class

$$I(t) = 1 - \max_{i} p(\omega_i|t)$$

Typical impurity functions

Impurity functions for binary classification with class probabilities $p = p(\omega_1|t)$ and $1 - p = p(\omega_2|t)$.

Splitting criterion selection

$$\Delta I(t) = I(t) - \sum_{i=1}^{R} I(t_i) \frac{N(t_i)}{N(t)}$$

• $\Delta I(t)$ is the quality of the split¹ of node t into child nodes $t_1, ... t_R$.

¹If I(t) is entropy, then $\Delta I(t)$ is called information gain.

Splitting criterion selection

$$\Delta I(t) = I(t) - \sum_{i=1}^{R} I(t_i) \frac{N(t_i)}{N(t)}$$

- $\Delta I(t)$ is the quality of the split¹ of node t into child nodes $t_1, ... t_R$.
- CART selection: select feature i_t and threshold h_t , which maximize $\Delta I(t)$:

$$i_t, h_t = \arg\max_{k,h} \Delta I(t)$$

• CART decision making: from node t follow: $\begin{cases} \text{left child } t_1, & \text{if } x^{i_t} \leq h_t \\ \text{right child } t_2, & \text{if } x^{i_t} > h_t \end{cases}$

¹If I(t) is entropy, then $\Delta I(t)$ is called information gain.

Table of Contents

- Definition of decision tree
- 2 Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- 5 Termination criterion

Regression: prediction assignment for leaf nodes²

- Define $I_t = \{i : x_i \in \text{node } t\}$
- For mean squared error loss (MSE):

$$\widehat{y} = \arg\min_{\mu} \sum_{i \in I_t} (y_i - \mu)^2 = \frac{1}{|I_t|} \sum_{i \in I_t} y_i,$$

• For mean absolute error loss (MAE):

$$\widehat{y} = \arg\min_{\mu} \sum_{i \in I_t} |y - \mu| = median\{y_i : i \in I_t\}.$$

²Prove optimality of estimators for MSE and MAE loss.

Classification: prediction assignment for leaf nodes

- Define $\lambda(\omega_i, \omega_j)$ the cost of predicting object of class ω_i as belonging to class ω_i .
 - Minimum loss class assignment:

Classification: prediction assignment for leaf nodes

- Define $\lambda(\omega_i, \omega_j)$ the cost of predicting object of class ω_i as belonging to class ω_i .
 - Minimum loss class assignment:

$$c = \arg\min_{\omega} \sum_{i \in I_t} \lambda(c_i, \omega)$$

• For $\lambda(\omega_i, \omega_j) = \mathbb{I}[\omega_i \neq \omega_j]$:

Classification: prediction assignment for leaf nodes

- Define $\lambda(\omega_i, \omega_j)$ the cost of predicting object of class ω_i as belonging to class ω_i .
 - Minimum loss class assignment:

$$c = \arg\min_{\omega} \sum_{i \in I_t} \lambda(c_i, \omega)$$

• For $\lambda(\omega_i, \omega_j) = \mathbb{I}[\omega_i \neq \omega_j]$:most common class will be associated with the leaf node:

$$c = \arg\max_{\omega} |\{i: i \in I_t, y_i = \omega\}|$$

Table of Contents

- Definition of decision tree
- 2 Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- Termination criterion
 - Rule based termination

Termination criterion

- Bias-variance tradeoff:
 - very large complex trees -> overfitting
 - very short simple trees -> underfitting
- Approaches to stopping:
 - rule-based
 - based on pruning

Decision trees - Victor Kitov
Termination criterion

Rule based termination

- Termination criterion
 - Rule based termination

Rule-base termination criteria

- Rule-based: a criterion is compared with a threshold.
- Variants of criterion:
 - depth of tree
 - number of objects in a node
 - minimal number of objects in one of the child nodes
 - impurity of classes
 - change of impurity of classes after the split

Analysis of rule-based termination

Advantages:

- simplicity
- interpretability

Disadvantages:

- specification of threshold is needed
- impurity change is suboptimal: further splits may become better than current one, like here:

• that's why pruning gives better results-build the tree up to the end and then remove redundant nodes.

Handling missing values

If checked feature is missing:

- we may always fill missing values:
 - with feature mean
 - with new categorical value "missing" (for categorical values)
 - predict them using other known features
- CART uses prediction of unknown feature using another feature that best predicts the missing one: "surrogate split" technique
- ID3 and C4.5 decision trees use averaging of predictions made by each child node with weights $N(t_1)/N(t)$, $N(t_2)/N(t)$, ... $N(t_S)/N(t)$.

Analysis of decision trees

Advantages:

- simplicity
- interpretability
- implicit feature selection
- naturally handles both discrete and real features
- prediction is invariant to monotone transformations of features for $Q_t(x) = x^{i(t)}$
 - work well for features of different nature

Disadvantages:

- non-parallel to axes class separating boundary may lead to many nodes in the tree for $Q_t(x) = x^{i(t)}$
- one step ahead lookup strategy for split selection may be insufficient (XOR example)
- not online slight modification of the training set will require full tree reconstruction.