Multilevel Mediation

Within-subject mediation analysis for experimental data in cognitive psychology and neuroscience

Matti Vuorre

Columbia University

mv2521@columbia.edu, @vuorre

November 2, 2017

Mediation

What is mediation?

 Mediation is a hypothesized causal model, whereby effect of an IV to a DV is transmitted through an intermediary variable M

Assessing mediation

Experimental approach

- Experiment 1: manipulate X and measure M
- Experiment 2: manipulate M and measure Y
- Establishing a causal chain: Why experiments are often more effective than mediational analyses in examining psychological processes (Spencer, Zanna, and Fong 2005)

Assessing mediation

Experimental approach

- Experiment 1: manipulate X and measure M
- Experiment 2: manipulate M and measure Y
- Establishing a causal chain: Why experiments are often more effective than mediational analyses in examining psychological processes (Spencer, Zanna, and Fong 2005)

Statistical modeling approach

- Experiment: manipulate X, measure M and Y
- Regress M on X; Y on X and M
- Assume that
 - Y does not affect M
 - No 3rd variable on M to Y relationship
 - M is measured without error
 - Y and M residuals are not correlated

- Mediation models often address between-subject processes
 - Individuals measured once, causal process between individuals

- Mediation models often address between-subject processes
 - Individuals measured once, causal process between individuals
- We are interested in within-person causal processes
 - Individuals measured repeatedly, causal process within individuals

- Mediation models often address between-subject processes
 - Individuals measured once, causal process between individuals
- We are interested in within-person causal processes
 - Individuals measured repeatedly, causal process within individuals
- Confusing these levels of analysis risks Simpson's paradox
 - Recent call for focusing on "mediating role of neurophysiology" (Harty, Sella, and Kadosh 2017) ignored the distinction

- Mediation models often address between-subject processes
 - Individuals measured once, causal process between individuals
- We are interested in within-person causal processes
 - Individuals measured repeatedly, causal process within individuals
- Confusing these levels of analysis risks Simpson's paradox
 - Recent call for focusing on "mediating role of neurophysiology" (Harty, Sella, and Kadosh 2017) ignored the distinction
- Multilevel model for trial-level data
 - Average person's within-person causal process ("fixed" effects)
 - Causal effects' heterogeneity ("random" effects)
 - Hierarchical Bayes estimates for individuals in current sample

Multilevel Mediation

6 / 28

Multilevel mediation

- Subject-specific parameters (e.g. a_1)
- Parameters' prior distribution is estimated from data
- $\sigma_{a_jb_j}$ can indicate an omitted moderator (Tofighi, West, and MacKinnon 2013)

Matti Vuorre Multilevel Mediation November 2, 2017 7 / 28

Multilevel mediation: Practical implementation

We developed software for Bayesian estimation of multilevel mediation models (Vuorre and Bolger 2017; Vuorre 2017)

bmlm: Bayesian Multi-Level Mediation

- R package
- Bayesian inference
- Data preprocessing, model estimation, summarizing, and visualization
- Continuous and binary Y
- https://mvuorre.github.io/bmlm/

```
install.packages("bmlm")
```

Bayesian data analysis and inference

Example Multilevel Mediation Analysis

Tip-of-the-tongue, ERPs, learning (Bloom et al., in prep)

 Tip-of-the-tongue state (ToT) predicts increased curiosity and answer seeking (Metcalfe, Schwartz, and Bloom 2017), and possibly learning

Tip-of-the-tongue, ERPs, learning (Bloom et al., in prep)

- Tip-of-the-tongue state (ToT) predicts increased curiosity and answer seeking (Metcalfe, Schwartz, and Bloom 2017), and possibly learning
- Experiment (Bloom et al., in prep):
 - 30 participants presented with general info questions
 - "What's the capital of Australia?"
 - After 3 seconds, asked if they are in a ToT state
 - After 1 second, correct feedback presented
 - ERPs timelocked to feedback
 - After 150 items, a surprise recall test on all items

Tip-of-the-tongue, ERPs, learning (Bloom et al., in prep)

- Tip-of-the-tongue state (ToT) predicts increased curiosity and answer seeking (Metcalfe, Schwartz, and Bloom 2017), and possibly learning
- Experiment (Bloom et al., in prep):
 - 30 participants presented with general info questions
 - "What's the capital of Australia?"
 - After 3 seconds, asked if they are in a ToT state
 - After 1 second, correct feedback presented
 - ERPs timelocked to feedback
 - After 150 items, a surprise recall test on all items
- We examined to what extent
 - ToT state during learning predicts correct recall
 - Late positive (centro-parietal) ERP amplitude mediates ToT -> recall effect

Hypothesized causal model

ToT Data

ToT Data

id	trial	tot	amplitude	recall
1	1	0	5.53	1
1	2	1	-2.45	1
1	3	0	8.19	0

ToT Data

id	trial	tot	amplitude	recall	
1	1	0	5.53	1	
1	2	1	-2.45	1	
1	3	0	8.19	0	

Remove between-subject variability from mediator:

```
tot <- isolate(tot, by = "id", value = "amplitude")</pre>
```

id	trial	tot	amplitude	recall	amplitude_cw
1	1	0	5.53	1	-1.757
1	2	1	-2.45	1	-9.739
1	3	0	8.19	0	0.907

Model estimation

This function returns the model's posterior distribution. Users specify data and variables within. Additional options include prior distributions, binary outcomes and multiple CPUs.

Model estimation

This function returns the model's posterior distribution. Users specify data and variables within. Additional options include prior distributions, binary outcomes and multiple CPUs.

bmlm estimates the posterior distribution using MCMC sampling (HMC; Stan Development Team (2016)).

Model summary: Path diagram

?mlm_path_plot

Model summary: Numerical

?mlm_summary

Parameter	Mean	SE	Median	2.5%	97.5%	n_eff	Rhat
a	2.35	0.52	2.35	1.31	3.35	6294	1
b	0.05	0.01	0.05	0.03	0.06	5716	1
ср	1.02	0.14	1.02	0.73	1.29	5149	1
me	0.10	0.03	0.10	0.04	0.17	6292	1
С	1.12	0.14	1.12	0.83	1.40	5241	1
pme	0.09	0.03	0.09	0.03	0.16	5634	1

Model summary: Graphical

?mlm_pars_plot

18 / 28

Fitted values

?mlm_spaghetti_plot

Between-subject (co)variance

Parameter	Mean	SE	Median	2.5%	97.5%	n_eff	Rhat
tau_a	1.34	0.69	1.32	0.10	2.74	2463	1
tau_b	0.03	0.01	0.03	0.00	0.06	2006	1
corrab	-0.12	0.36	-0.14	-0.77	0.62	3868	1

Conclusion

- \bullet Late positivity mediated (~10% of) ToT's positive effect on recall
 - Late positivity may index enhanced processing of feedback

Matti Vuorre Multilevel Mediation November 2, 2017 21 / 28

Conclusion

- Late positivity mediated (~10% of) ToT's positive effect on recall
 - Late positivity may index enhanced processing of feedback
- Evidence of heterogeneity in causal paths
 - Estimate of $a_i b_i$ correlation negative but very uncertain

November 2, 2017 21 / 28

Conclusion

- ullet Late positivity mediated (~10% of) ToT's positive effect on recall
 - Late positivity may index enhanced processing of feedback
- Evidence of heterogeneity in causal paths
 - Estimate of $a_i b_i$ correlation negative but very uncertain
- Formal assessment of within-subject mediation with bmlm
 - Relatively easy, free, accessible
 - Probabilistic modeling
 - Intuitive probability statements about parameters
 - Flexible framework for investigating questions about within-person psychological and causal processes

Matti Vuorre Multilevel Mediation November 2, 2017 21 / 28

Acknowledgements

Thank you

- Niall Bolger
- Janet Metcalfe
- David Friedman
- Paul A. Bloom
- Judy Xu

Between-subject mediation

$$Y_i \sim N(d_Y + c'X_i + bM_i, \sigma_Y^2)$$

 $M_i \sim N(d_M + aX_i, \sigma_M^2)$

[Y model]

[M model]

$$me = a \times b$$
 $c = c' + me$

[mediated effect]

[total effect]

bmlm's within-subject mediation model, continuous outcome

$$Y_{ij} \sim N(d_{Yj} + c_j' X_{ij} + b_j M_{ij}, \sigma_Y^2)$$
 [Y model]
 $M_{ij} \sim N(d_{Mj} + a_j X_{ij}, \sigma_M^2)$ [M model]

$$\begin{pmatrix} d_{Mj} \\ d_{Yj} \\ a_j \\ b_j \\ c'_j \end{pmatrix} \sim N \begin{bmatrix} \begin{pmatrix} d_M \\ d_Y \\ a \\ b \\ c' \end{pmatrix}, \begin{pmatrix} \sigma^2_{d_{Mj}} \\ \sigma_{d_{Mj}d_{Yj}} & \sigma^2_{d_{Yj}} \\ \sigma_{d_{Mj}a_j} & \sigma_{d_{Yj}a_j} & \sigma^2_{a_j} \\ \sigma_{d_{Mj}b_j} & \sigma_{d_{Yj}b_j} & \sigma_{a_jb_j} & \sigma^2_{b_j} \\ \sigma_{d_{Mj}c'_j} & \sigma_{d_{Yj}c'_j} & \sigma_{a_jc'_j} & \sigma_{b_jc'_j} & \sigma^2_{c'_j} \end{pmatrix}$$

$$\emph{me} = \emph{a} \times \emph{b} + \sigma_{\emph{a}_j\emph{b}_j}$$
 [mediated effect] $\emph{c} = \emph{c}' + \emph{me}$ [total effect]

bmlm's within-subject mediation model, binary outcome

$$Y_{ij} \sim Bernoulli(logit(d_{yj} + c'_j X_{ij} + b_j M_{ij}))$$
 [Y model]
 $M_{ii} \sim N(d_{mi} + a_i X_{ii}, \sigma_M^2)$ [M model]

Matti Vuorre Multilevel Mediation November 2, 2017 26 / 28

References I

- Harty, S., F. Sella, and R. C. Kadosh. 2017. "Mind the Brain: The Mediating and Moderating Role of Neurophysiology." *Trends in Cognitive Sciences* 21 (1): 2–5. doi:10.1016/j.tics.2016.11.002.
- Metcalfe, J., B. L. Schwartz, and P. A. Bloom. 2017. "The Tip-of-the-Tongue State and Curiosity." *Cognitive Research: Principles and Implications* 2 (July): 31. doi:10.1186/s41235-017-0065-4.
- Spencer, S. J., M. P. Zanna, and G. T. Fong. 2005. "Establishing a Causal Chain: Why Experiments Are Often More Effective Than Mediational Analyses in Examining Psychological Processes." *Journal of Personality and Social Psychology* 89 (6): 845–51. doi:10.1037/0022-3514.89.6.845.
- Stan Development Team. 2016. Stan: A C++ Library for Probability and Sampling, Version 2.15.0. http://mc-stan.org/.
- Tofighi, D., S. G. West, and D. P. MacKinnon. 2013. "Multilevel Mediation Analysis: The Effects of Omitted Variables in the 1-1-1 Model." *British*

References II

Journal of Mathematical and Statistical Psychology 66 (2): 290–307. doi:10.1111/j.2044-8317.2012.02051.x.

Vuorre, M. 2017. *Bmlm: Bayesian Multilevel Mediation*. https://cran.r-project.org/package=bmlm.

Vuorre, M., and N. Bolger. 2017. "Within-Subject Mediation Analysis for Experimental Data in Cognitive Psychology and Neuroscience." *OSF Preprint*. doi:10.17605/OSF.IO/6JHPF.