

${\it ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ} \ {\it И} \ {\it ПРОЦЕССЫ УПРАВЛЕНИЯ} \ {\it N~2,~2000}$

Электронный журнал, рег. N П23275 от 07.03.97

 $\label{linear_$

Моделирование динамических систем

ОБ ОДНОМ КЛАССЕ МОДЕЛЕЙ КОНКУРЕНТНОГО ЦЕНООБРАЗОВАНИЯ В РЫНОЧНОЙ ЭКОНОМИКЕ

А. В. Островский

Нижегородский государственный университет им. Н. И. Лобачевского 603600, Нижний Новгород, ГСП-20, просп. Гагарина, д. 23 Факультет вычислительной математики и кибернетики (ВМК) e-mail: ost@tudm.unn.ac.ru

1. Введение. При исследовании процессов функционирования рыночной экономики одним из основных вопросов является механизм формирования цен на товары, услуги и труд. Существует несколько моделей, рассматривающих динамику ценообразования с различных позиций. Один из подходов к моделированию ценообразования базируется на предположении о том, что в процессе ценообразования превалирует стремление продавцов к максимизации своей прибыли, а покупатели стремятся минимизировать свои расходы. В работах [1,2] построены модели такого типа, описывающие чистую конкуренцию [3], когда на рынке действует достаточно большое количество торговцев, предлагающих абсолютно однородный товар одинакового качества по различным ценам, что дает возможность описать состояние рынка с помощью непрерывного распределения продавцов по ценам, а также непрерывного распределения покупателей по максимально допустимым для них ценам; модели в этом случае имеют вид систем уравнений в частных производных.

В настоящей работе предлагается модель, описывающая динамику цен на рынке, когда N продавцов (обычно N не очень большое) торгуют "по-

чти однородным товаром, который у разных продавцов может быть разного качества, либо покупатели могут отдавать предпочтение тому или иному продавцу из-за местоположения торговой точки, и т.д.; такая ситуация называется монополистической конкуренцией [3]. Чистая конкуренция может рассматриваться как частный случай монополистической. Будем считать, что основным мотивом для ценообразования является стремление торговцев максимизировать свою прибыль, определяемую рыночной ценой, издержками и величиной спроса. Модель представляет собой систему N или 2N обыкновенных дифференциальных уравнений; ее исследование будет проводиться для различных функций спроса.

2. Модель. Пусть N торговцев предлагают на рынке "почти однородный товар", спрос на который зависит как от цен, так и от неценовых факторов (качество, местоположение торговой точки, способ хранения товара на складах и т.д.). Через p_i обозначим цену, по которой i-й продавец предлагает свой товар; тогда мы имеем вектор цен $p = (p_1, \dots, p_N)$. Будем считать, что спрос на товар характеризуется набором функций конкурентного спроса $C_i(p)$. Тогда прибыль *i*-го торговца от продажи товара равна $\Pi_{i}(p) = (p_{i} - c_{i}) \cdot C_{i}(p)$, где $c_{i} > 0$ – издержки на 1 единицу товара (величина предложения предполагается неограниченной и поэтому в явном виде не присутствует в модели). Будем считать, что каждый продавец стремится максимизировать свою прибыль и, исходя из этого, изменяет цену во времени. Вообще говоря, на принятие решения об изменении цены каждому торговцу требуется некоторое время; поэтому наряду с вектором цен p введем вектор цен $u=(u_1,\ldots,u_N)$, где каждая цена u_i следит за соответствующей ценой p_i с некоторой постоянной времени T_i (проще говоря, u_i – это "сегодняшняя" цена, а p_i – это "завтрашняя" цена), и в дальнейшем в функциях спроса и прибыли вместо p_i будем писать u_i (в случае ненулевых T_i). Величины p_i , u_i , c_i , C_i (p) (или C_i (u)) и T_i неотрицательны по экономическому смыслу $(\forall i = \overline{1, N})$.

Относительно функций спроса $C_{i}\left(u\right)$ будем предполагать, что они удовлетворяют следующим условиям:

- 1°. $0 < C_i(u) \le A_i = \text{const}$ (положительность и ограниченность спроса).
- 2° . Сами функции $C_i(u)$ и их первые производные непрерывны по своим переменным, а вторые производные определены в каждой точке первого (положительного) гипероктанта пространства \mathbf{R}^{2N} и кусочно-непрерывны по своим переменным.

- 3° . $\partial C_i/\partial u_i < 0 \ (\forall i = \overline{1,N}) \ (закон\ cnpoca\ [4]:$ спрос на товар i-го торговца падает с ростом цены у этого i-го торговца), $\partial C_i/\partial u_k \geq 0 \ (\forall i,k=\overline{1,N},\,k\neq i)$ (естественно считать, что при повышении цены конкурентами спрос на товар i-го торговца не убывает, т.е. может произойти "перетекание" покупателей к i-му продавцу от других продавцов).
 - 4° . $C_i(u) \to 0$ при $u_i \to \infty$.
- 5° . $\left|\frac{C_i}{\partial C_i/\partial u_i}\right| \leq M_i = \text{const}$ (ограничение на характер убывания функций спроса: производная $\partial C_i/\partial u_i$ может стремиться к нулю, но не быстрее, чем сама функция $C_i(u)$).

Будем считать, что стратегия каждого i-го продавца состоит в изменении цены p_i пропорционально изменению прибыли (т.е. производной $\partial \Pi_i/\partial u_i$) с некоторым постоянным коэффициентом $k_i>0$ с целью максимизации прибыли. Тогда с учетом времени, необходимого каждому торговцу для принятия очередного решения об изменении цены, а также неотрицательности цен получаем модель в виде системы 2N обыкновенных дифференциальных уравнений:

$$\dot{p}_{i} = \begin{cases}
F_{i} = k_{i} \frac{\partial \Pi_{i}}{\partial u_{i}}, & \text{если } p_{i} > 0 \text{ или } F_{i} > 0, \\
0, & \text{если } p_{i} = 0 \text{ и } F_{i} \leq 0;
\end{cases}$$

$$T_{i}\dot{u}_{i} + u_{i} = p_{i}$$

$$(i = \overline{1, N}).$$
(1)

После раскрытия $\partial \Pi_i/\partial u_i$ система (1) принимает вид:

$$\dot{p}_{i} = \begin{cases} F_{i} = k_{i} \left[C_{i} \left(u \right) + \right. \\ \left. + \left(u_{i} - c_{i} \right) \frac{\partial C_{i}}{\partial u_{i}} \right], & \text{если } p_{i} > 0 \text{ или } F_{i} > 0, \\ 0, & \text{если } p_{i} = 0 \text{ и } F_{i} \leq 0; \end{cases}$$

$$\left. T_{i} \dot{u}_{i} + u_{i} = p_{i} \right.$$

$$\left. (i = \overline{1, N}).$$

Фазовым пространством системы (2) является первый (положительный) гипероктант пространства \mathbf{R}^{2N} .

3. О состояниях равновесия системы. Из условий $1^{\circ} - 3^{\circ}$ следует, что при $p_i = 0$ $C_i(p)$ – конечное положительное число и $\dot{p}_i > 0$. Следовательно, у системы (2) нет состояний равновесия, в которых хотя бы одна из цен p_i была равна нулю, и все состояния равновесия системы (2) находятся

из системы уравнений:

$$p_{i} = c_{i} - \frac{C_{i}(p)}{\partial C_{i}/\partial p_{i}} \quad (i = \overline{1, N}).$$

$$(3)$$

Из уравнений (3) и условия 5° следует, что если в системе (2) существуют состояния равновесия, то все они лежат в замкнутом N-мерном параллелепипеде (гиперпараллелепипеде)

$$S_N = \left\{ p : c_i \le p_i \le c_i + M_i, \ i = \overline{1, N} \right\}.$$

Система (3) – это система уравнений для отыскания неподвижной точки отображения, определяемого формулами:

$$\overline{p}_i = c_i - \frac{C_i(p)}{\partial C_i/\partial p_i} \quad (i = \overline{1, N}).$$
 (3a)

Формулы (3a) в силу условия 5° задают точечное отображение замкнутого параллелепипеда S_N в себя. По теореме Брауэра у отображения (3a) существует по крайней мере одна неподвижная точка. Следовательно, система (2) всегда имеет хотя бы одно состояние равновесия.

Для системы (2) устанавливается следующее достаточное условие единственности состояния равновесия:

Утверждение 1. Пусть для любых точек $p', p'' \in S_N$ существуют такие точки $\theta_1, \theta_2, \dots \theta_N$, принадлежащие отрезку (p', p''), что

$$\left| \left[\left(\frac{\partial C_{i}}{\partial p_{i}} \right)^{2} - C_{i} \frac{\partial^{2} C_{i}}{\partial (p_{i})^{2}} \right] \cdot \left(\frac{\partial C_{i}}{\partial p_{i}} \right)^{-2} \right|_{p=\theta_{i}} +
+ \sum_{k \neq i} \left| \left[\frac{\partial C_{k}}{\partial p_{i}} \frac{\partial C_{k}}{\partial p_{k}} - C_{k} \frac{\partial^{2} C_{k}}{\partial p_{i} \partial p_{k}} \right] \cdot \left(\frac{\partial C_{k}}{\partial p_{k}} \right)^{-2} \right|_{p=\theta_{k}} < 1
(i = \overline{1, N})$$
(4)

 $u \iota u$

$$\left| \left(c_{i} - \frac{C_{i}}{\partial C_{i}/\partial p_{i}} \right)^{-1} \right|_{p=p'} \cdot \left| \left(c_{i} - \frac{C_{i}}{\partial C_{i}/\partial p_{i}} \right)^{-1} \right|_{p=p''} \times \left| \left[\left(\frac{\partial C_{i}}{\partial p_{i}} \right)^{2} - C_{i} \frac{\partial^{2} C_{i}}{\partial (p_{i})^{2}} \right] \cdot \left(\frac{\partial C_{i}}{\partial p_{i}} \right)^{-2} \right|_{p=\theta_{i}} + \left| \sum_{k \neq i} \left| \left(c_{k} - \frac{C_{k}}{\partial C_{k}/\partial p_{k}} \right)^{-1} \right|_{p=p'} \cdot \left| \left(c_{k} - \frac{C_{k}}{\partial C_{k}/\partial p_{k}} \right)^{-1} \right|_{p=p''} \times \left| \left[\frac{\partial C_{k}}{\partial p_{i}} \frac{\partial C_{k}}{\partial p_{k}} - C_{k} \frac{\partial^{2} C_{k}}{\partial p_{i}\partial p_{k}} \right] \cdot \left(\frac{\partial C_{k}}{\partial p_{k}} \right)^{-2} \right|_{p=\theta_{k}} < 1$$

$$(i = \overline{1, N}).$$
(5)

Тогда в системе (2) существует единственное состояние равновесия.

Доказательство. Условие (4) является условием сжимаемости отображения (3a) в метрике

$$\rho_1(x,y) = \sum_{k=1}^{n} |x_k - y_k|$$

и следует из формулы конечных приращений Лагранжа.

Возводя в каждом уравнении системы (3a) обе части в степень -1, получаем систему:

$$(\overline{p}_i)^{-1} = \left(c_i - \frac{C_i}{\partial C_i/\partial p_i}\right)^{-1} \quad (i = \overline{1, N}), \tag{6}$$

задающую отображение замкнутого N-мерного параллелепипеда

$$\tilde{S}_N = \{ p^{-1} : (c_i + M_i)^{-1} \le (p_i)^{-1} \le (c_i)^{-1}, i = \overline{1, N} \}$$

(через p^{-1} здесь обозначен вектор $((p_1)^{-1}, \dots (p_N)^{-1})$) в себя. Условие (5) является условием сжимаемости отображения (6) в той же метрике $\rho_1(x,y)$ и также следует из формулы конечных приращений Лагранжа (заметим, что если отображение (3а) – несжимающее, то отображение (6) может оказаться сжимающим, и наоборот). Утверждение доказано.

В случае $T_1 = \ldots = T_N = 0$ из системы (2) в силу условий 1°, 3° и 5°, которым удовлетворяют функции $C_i(p)$, получаем:

$$\begin{aligned}
\dot{p}_{i}|_{p_{i} < c_{i}} > k_{i}C_{i}(c_{i}) > 0, \\
\dot{p}_{i}|_{p_{i} > c_{i} + M_{i}} &= \left\{ -k_{i} \frac{\partial C_{i}}{\partial p_{i}} \cdot \left[-\frac{C_{i}(p)}{\partial C_{i}/\partial p_{i}} - (p_{i} - c_{i}) \right] \right\} \Big|_{p_{i} > c_{i} + M_{i}} \leq \\
&\leq \left\{ -k_{i} \frac{\partial C_{i}}{\partial p_{i}} \cdot \left[M_{i} - (p_{i} - c_{i}) \right] \right\} \Big|_{p_{i} > c_{i} + M_{i}} < 0 \\
&\qquad (i = \overline{1, N}),
\end{aligned} (7)$$

откуда следует, что с течением времени траектории системы входят в замкнутый параллелепипед S_N и остаются в нём (внутри либо на границе). Поэтому вопрос о глобальной асимптотической устойчивости состояния равновесия сводится к вопросу о сходимости траекторий системы (2) из любой точки параллелепипеда S_N к состоянию равновесия. В этом случае устанавливаются следующие достаточные условия глобальной асимптотической устойчивости состояния равновесия системы (2):

Утверждение 2. *Пусть:*

1. Все T_i $(i = \overline{1, N})$ равны 0.

2. Вторые производные функций $C_i(p)$ $(i=\overline{1,N})$ непрерывны в некоторой замкнутой окрестности параллелепипеда S_N , т.е. в некотором замкнутом параллелепипеде

$$\hat{S}_N = \left\{ p : c_i - \delta_i \le p_i \le c_i + M_i + \delta_i, \ i = \overline{1, N} \right\},$$

где $\delta_i > 0$ $(i = \overline{1,N})$ – достаточно малые числа.

3. В параллелепипеде S_N выполняются условия:

$$2\frac{\partial C_{i}}{\partial p_{i}} + (p_{i} - c_{i})\frac{\partial^{2} C_{i}}{\partial (p_{i})^{2}} < 0 \ (i = \overline{1, N});$$

$$\sum_{k \neq i} \left| \frac{\partial C_{k}}{\partial p_{i}} + (p_{k} - c_{k})\frac{\partial^{2} C_{k}}{\partial p_{i}\partial p_{k}} \right| + \sum_{k \neq i} \left| \frac{\partial C_{i}}{\partial p_{k}} + (p_{i} - c_{i})\frac{\partial^{2} C_{i}}{\partial p_{i}\partial p_{k}} \right| -$$

$$-2 \cdot \left| 2\frac{\partial C_{i}}{\partial p_{i}} + (p_{i} - c_{i})\frac{\partial^{2} C_{i}}{\partial (p_{i})^{2}} \right| < 0 \quad (i, k = \overline{1, N}).$$

$$(8)$$

Тогда состояние равновесия системы (2) единственно и глобально асимптотически устойчиво.

Д о к а з а т е л ь с т в о. Обозначим вектор правых частей системы (2) при $T_i = 0$ ($i = \overline{1, N}$) через $P = (P_1, \dots, P_N)$. Рассмотрим функцию $v(p) = P^T P$. Эта функция является неотрицательно определенной в \hat{S}_N , а в случае изолированности всех состояний равновесия системы (2) — положительно определенной в окрестности каждого состояния равновесия. Ее полная производная по времени в силу системы (2) равна [5]

$$\dot{v} = \dot{P}^T P + P^T \dot{P} = (HP)^T P + P^T H P = P^T (H + H^T) P, \tag{9}$$

где H — матрица Якоби системы (2).

Матрица Якоби системы (2) имеет вид $H = ||h_{ik}||$, где

$$h_{ii} = 2\frac{\partial C_i}{\partial p_i} + (p_i - c_i)\frac{\partial^2 C_i}{\partial (p_i)^2}, \ h_{ik} = \frac{\partial C_i}{\partial p_k} + (p_i - c_i)\frac{\partial^2 C_i}{\partial p_i \partial p_k}$$
$$(i, k = \overline{1, N}, k \neq i).$$

Так как по условию вторые производные функций $C_i(p)$ $(i=\overline{1,N})$ непрерывны в параллелепипеде \hat{S}_N , элементы матрицы H непрерывны в \hat{S}_N . Поэтому левые части неравенств (8) также непрерывны в \hat{S}_N , а следовательно, неравенства (8) выполняются в \hat{S}_N в силу теоремы о сохранении знака непрерывными функциями. Как уже отмечалось, все состояния равновесия системы (2) лежат в S_N (в том числе на границе S_N), поэтому все состояния равновесия лежат строго внутри параллелепипеда \hat{S}_N .

Условие (8) является условием того, что в симметризованной матрице $H + H^T$ диагональные элементы отрицательны и главная диагональ доминирует во всём параллелепипеде \hat{S}_N . Тогда по теореме Гершгорина [6]

все собственные числа матрицы $H + H^T$ будут отрицательными во всём параллелепипеде \hat{S}_N , а поскольку собственные числа матрицы являются непрерывными функциями элементов этой матрицы [6], то в силу непрерывности элементов матрицы H по переменным p_i $(i=\overline{1,N})$ в \widehat{S}_N собственные числа матрицы $H + H^T$ непрерывны по переменным p_i $(i = \overline{1, N})$. Следовательно, матрица $H + H^T$ будет отрицательно определенной в \hat{S}_N , и ее собственные значения по теореме Вейерштрасса ограничены сверху в \hat{S}_N некоторой отрицательной константой. Тогда по теореме Ляпунова в матричной формулировке [6,7] собственные числа матрицы H имеют отрицательные действительные части во всём параллелепипеде \hat{S}_N . Отсюда следует, что: 1) все состояния равновесия системы (2) локально асимптотически устойчивы; 2) у системы (2) может быть только конечное число состояний равновесия (так как в силу системы уравнений (3) и условия 5° все состояния равновесия лежат в замкнутом ограниченном множестве – параллелепипеде S_N (а следовательно, внутри \hat{S}_N)). Следовательно, каждое состояние равновесия является изолированным и обладает некоторой областью притяжения.

Из изолированности состояний равновесия следует, что функция v положительно определена в окрестности каждого состояния равновесия, а в силу (9) производная \dot{v} отрицательно определена в окрестности каждого состояния равновесия системы (2). Следовательно, v является функцией Ляпунова.

Докажем, что одно из состояний равновесия асимптотически устойчиво при любых начальных условиях из \hat{S}_N (и тогда мы получим глобальную (т.е. при любых начальных условиях из \mathbf{R}_+^N) асимптотическую устойчивость, так как с течением времени траектории системы (2) при $T_i=0$ ($i=\overline{1,N}$) входят во внутренность параллелепипеда \hat{S}_N и остаются там в силу (7)).

Предположим противное: пусть ни у одного состояния равновесия область притяжения не включает в себя всего параллелепипеда \hat{S}_N . Тогда часть границы области притяжения каждого состояния равновесия лежит внутри \hat{S}_N .

Далее можно провести рассуждения, аналогичные рассуждениям работы [8] для случая асимптотической устойчивости во всём пространстве ${\bf R}^N$.

Из [9] известно, что область притяжения асимптотически устойчивого состояния равновесия является открытым множеством, а траектория

 $f(\hat{p},t)$, начавшаяся в момент t=0 на границе области притяжения (\hat{p} – произвольная точка границы области притяжения), остается на этой границе при всех t>0. Так как выше отмечалось, что с течением времени траектории системы (2) входят в параллелепипед \hat{S}_N и остаются внутри него, можно считать, не уменьшая общности, что при t=0 траектория $f(\hat{p},t)$ начинается в точке \hat{p} , лежащей на той части границы области притяжения, которая лежит внутри \hat{S}_N . Следовательно, при t>0 траектория $f(\hat{p},t)$ проходит внутри \hat{S}_N в области, где выполняется условие

$$(P_1)^2 + \ldots + (P_N)^2 > l_1,$$

где $l_1 > 0$ — некоторая константа. Тогда вдоль траектории $f(\hat{p}, t)$ в силу (9) будем иметь:

$$\left. \frac{dv}{dt} \right|_{f(\widehat{p},t)} < -l_2,$$

где $l_2 > 0$ — некоторая другая константа.

Интегрируя последнее неравенство по t от 0 до t > 0, получаем:

$$v(t) - v(0) < -l_2 t,$$

что противоречит положительной определенности функции v(p) при достаточно больших значениях t. Следовательно, наше предположение неверно и одно из состояний равновесия устойчиво при любых начальных условиях из параллелепипеда \hat{S}_N . Как уже отмечалось выше, это влечет за собой глобальную асимптотическую устойчивость данного состояния равновесия, а отсюда следует единственность состояния равновесия системы (2). Утверждение доказано.

4. Оптимальность состояний равновесия системы (2) с точки зрения игрового подхода. Систему (2) можно рассматривать как игру N торговцев, в которой функциями выигрыша являются их прибыли. В теории игр важную роль играет понятие устойчивости вектора стратегий (в данном случае — цен) по Нэшу. Поскольку в данной модели каждая цена p_i ($i = \overline{1, N}$) может принимать любое значение на неотрицательной полупрямой, то имеет смысл ввести понятия локальной и глобальной устойчивости по Нэшу, а также устойчивости по Нэшу на некотором множестве.

О п р е д е л е н и е . Будем говорить, что вектор цен $\overline{u} = (\overline{u}_1, \dots, \overline{u}_N)$ локально устойчив по Нэшу, если для каждого i от 1 до N функция $\Pi_i(u)$ достигает локального максимума при $u_i = \overline{u}_i$ при условии $u_k = \overline{u}_k$ ($k = \overline{1, N}$, $k \neq i$). Если для каждого i от 1 до N этот максимум является глобальным (т.е. максимумом по всем u_i от 0 до $+\infty$), то будем называть вектор \overline{u} глобально устойчивым по Hэшу. Если же точка \overline{u} принадлежит некоторому множеству S и для каждого i от 1 до N при $u_i = \overline{u}_i$ достигается максимум функции $\Pi_i(u)$ на множестве S при условии $u_k = \overline{u}_k$ ($k = \overline{1, N}, k \neq i$), то будем называть вектор \overline{u} устойчивым по Hэшу на множестве S.

Состояния равновесия системы (2) являются стационарными точками функций $\Pi_i(u)$ ($i=\overline{1,N}$) (если говорить об этих функциях как о функциях одной переменной – любой координаты u_k , когда значения остальных координат вектора u фиксированы) и могут быть как устойчивыми, так и неустойчивыми по Нэшу. Например, если при N=2 функции конкурентного спроса взять в виде

$$C_i(u) = A_i \exp \left[-\alpha_i u_i - \beta_{i,3-i} (u_i - u_{3-i})^3 \right] \quad (i = 1, 2),$$
 (10)

то при $c_1 + (\alpha_1)^{-1} = c_2 + (\alpha_2)^{-1}$ в системе (2) существует состояние равновесия

$$p_1^* = p_2^* = u_1^* = u_2^* = c_1 + (\alpha_1)^{-1} = c_2 + (\alpha_2)^{-1}, \tag{11}$$

являющееся локально устойчивым по Нэшу, поскольку в этой точке $\frac{\partial^2 \Pi_i}{\partial (u_i)^2} < 0 \ (\forall i=\overline{1,N})$. При малых α_i и еще более малых $\beta_{i,3-i} \ (i=1,2)$ вторые производные

$$\frac{\partial^{2}\Pi_{i}}{\partial(u_{i})^{2}} = A_{i} \exp\left(-\alpha_{i}u_{i}\right) \exp\left[\beta_{i,3-i} \cdot (u_{i} - u_{3-i})^{3}\right] \times \\
\times \left\{ \left[1 - \alpha_{i} \cdot (u_{i} - c_{i}) - 3\beta_{i,3-i} \cdot (u_{i} - c_{i}) \cdot (u_{i} - u_{3-i})^{2}\right] \times \\
\times \left[-\alpha_{i} - 3\beta_{i,3-i} \cdot (u_{i} - u_{3-i})^{2}\right] - \\
-\alpha_{i} - 6\beta_{i,3-i} \cdot (u_{i} - u_{3-i}) \cdot (u_{i} - c_{i}) - 3\beta_{i,3-i} \cdot (u_{i} - u_{3-i})^{2}\right\} \\
(i = 1, 2)$$
(12)

отрицательны на множестве $\{u: u_1 \leq L_1, u_2 \leq L_2\}$ $(L_1$ и L_2 – некоторые константы), поэтому имеет место устойчивость точки (11) по Нэшу на этом множестве. Однако при данных функциях конкурентного спроса может существовать еще одно локально асимптотически устойчивое при $T_1 = T_2 = 0$ состояние равновесия, которое, как показывают численные расчеты, может быть как устойчивым, так и неустойчивым по Нэшу, поскольку от значений параметров β_{ik} зависят не только координаты этого состояния равновесия, но и знаки вторых производных $\frac{\partial^2 \Pi_1}{\partial (u_1)^2}$ и $\frac{\partial^2 \Pi_2}{\partial (u_2)^2}$ в нём. Например, если $\alpha_1 = \alpha_2 = 0.1, c_1 = c_2 = 1$ и $\beta_{21} = 0.1$, то при $\beta_{12} = 0.5$ такое состояние равновесия локально устойчиво по Нэшу (обе вторые производные (12) отрицательны в этой точке), а при $\beta_{12} = 0.12$ оно не является устойчивым

по Нэшу даже в локальном смысле (так как в этой точке $\frac{\partial^2 \Pi_1}{\partial (u_1)^2} > 0$, т.е. прибыль 1-го продавца достигает не локального максимума, а локального минимума).

Вообще говоря, состояния равновесия системы (2) не являются и оптимальными по Парето. Например, если при N=2 функции спроса взять в виде (10), то при $c_1+(\alpha_1)^{-1}=c_2+(\alpha_2)^{-1}$ состояние равновесия (11) паретооптимально (это следует из утверждения 3, см. ниже), а другие состояния равновесия (в случае их существования) не являются оптимальными по Парето, так как у каждого из продавцов величина прибыли в этих точках меньше, чем в точке (11) (это показывают численные расчеты при многих значениях параметров). Таким образом, у торговцев имеются основания для вступления в определенные отношения сговора, чтобы достичь парето-оптимального вектора цен или максимизировать суммарную прибыль в целях получения каждым продавцом бо́льшей прибыли.

5. Примеры эволюции динамики системы (2) с различными функциями конкурентного спроса и учетом инерционностей. Здесь мы приведем результаты исследования системы (2) с учетом инерционностей, когда функции $C_i(u)$ выбираются в виде:

$$C_{i}(u) = A_{i} \exp \left[-\alpha_{i} u_{i} - \sum_{k \neq i} f_{ik}(u_{i}, u_{k})\right] (A_{i} > 0, \alpha_{i} > 0)$$

$$(i, k = \overline{1, N}),$$

$$(13)$$

где функции $f_{ik}(u_i, u_k)$ (функции, моделирующие попарную конкуренцию продавцов и "перетекание" спроса от i-го продавца к k-му и обратно) ограничены, имеют кусочно-непрерывные вторые производные и удовлетворяют условиям, вытекающим из условия 3° для функций $C_i(u)$:

$$\frac{\partial f_{ik}}{\partial u_i} \ge 0, \, \frac{\partial f_{ik}}{\partial u_k} \le 0 \quad (\forall i, k = \overline{1, N}, \, k \ne i). \tag{14}$$

В случае $f_{ik}(u_i, u_k) = \beta_{ik}(u_i/u_k)^r$ (r > 0) значение каждой функции $C_i(p)$ всегда меньше значения соответствующей величины A_i (параметр A_i имеет здесь смысл максимального спроса (точнее – верхней грани спроса) на товар, предлагаемый i-м торговцем, α_i – коэффициент убывания спроса на товар i-го торговца при росте цены u_i и (гипотетическом) отсутствии конкуренции, а $\beta_{ik} \ge 0$ – параметр конкурентного влияния ("давления") k-го торговца на i-го). При таких функциях спроса, как показывают численные расчеты при многих значениях параметров, при N=2 в системе (2) существует единственное состояние равновесия, которое является глобально

асимптотически устойчивым при любых постоянных времени T_1 и T_2 и в зависимости от их значений может быть узлом или фокусом.

Бо́льший интерес вызывает динамика системы с функциями попарной конкуренции вида

$$f_{ik}(u_i, u_k) = f_{ik}(u_i - u_k),$$
 (15)

при которых функции $C_i(u)$ могут принимать значения, превосходящие A_i . Мы будем рассматривать случай, когда функции спроса (13)-(15) обладают дополнительными свойствами "симметрии": каждая функция $f_{ik}(u_i-u_k)$ при замене индексов i и k другими индексами r и s ($\forall i, k, r, s = \overline{1, N}, k \neq i, s \neq r$) переходит в соответствующую функцию $f_{rs}(u_r-u_s)$, например:

$$f_{ik}(u_i - u_k) = \beta_{ik} \cdot (u_i - u_k) \quad (\beta_{ik} > 0) \quad (\forall i, k = \overline{1, N}, k \neq i).$$

Рассмотрим случай N=2 (на рынке действуют 2 продавца-конкурента) с функциями конкурентного спроса (13)-(15), обладающими свойствами "симметрии". Через D_{ik} обозначим величины $\partial f_{ik}/\partial u_i$ при $u_i=u_k$ ($i,k=\overline{1,2},\,k\neq i$). Тогда можно установить следующее свойство системы (2):

Утверждение 3. Пусть при N=2 параметры c_i и α_i удовлетворяют соотношению:

$$c_1 + (\alpha_1 + D_{12})^{-1} = c_2 + (\alpha_2 + D_{21})^{-1} = K$$

(в частности, $c_1 = c_2$ и $\alpha_1 = \alpha_2$). Пусть функции f_{ik} вида (13)-(15), обладающие свойствами "симметрии", являются нечетными, а их вторые производные непрерывны в точке

$$p_1 = p_2 = u_1 = u_2 = K. (16)$$

Тогда в системе (2) с функциями конкурентного спроса (13)-(15) существует "симметричное" состояние равновесия (p^*, u^*) , координаты которого определяются равенствами (16), причем это состояние равновесия является:

- а) локально асимптотически устойчивым при любых положительных значениях параметров T_i (i=1,2) и параметров, входящих в функции f_{ik} $(i,k=\overline{1,N},\,k\neq i);$
- b) $npu\ D_{ik}=0\ (i,k=1,2;\ k\neq i)$ napemo-оптимальным u локально устойчивым по Hэшу вектором цен.

Доказательство. То, что точка (16) является состоянием равновесия системы (2), проверяется непосредственной подстановкой точки (16) в правые части системы (2).

Докажем свойство а). Для этого вычислим миноры Гурвица с учетом того обстоятельства, что для функций f_{ik} вида (15)

$$\frac{\partial f_{ik}}{\partial u_i} = \frac{df_{ik}}{d(u_i - u_k)} \quad \text{if} \quad \frac{\partial f_{ik}}{\partial u_k} = -\frac{df_{ik}}{d(u_i - u_k)},$$

а у нечетной функции одной переменной первая производная является четной, а вторая – нечетной функцией (и, следовательно, при $u_i = u_k$ функция f_{ik} и ее вторые производные равны нулю).

Если ввести обозначения

$$B_{i,3-i} = \exp\left[-\alpha_i \cdot \left(\frac{1}{\alpha_i + D_{i,3-i}} + c_i\right)\right] \cdot (\alpha_i + D_{i,3-i}) \quad (i = 1, 2),$$

то характеристический полином системы в окрестности состояния равновесия (16) равен

$$\lambda^{4} + \left(\frac{1}{T_{1}} + \frac{1}{T_{2}}\right)\lambda^{3} + \left(\frac{A_{1}B_{12}}{T_{1}} + \frac{A_{2}B_{21}}{T_{2}} + \frac{1}{T_{1}T_{2}}\right)\lambda^{2} + \left(\frac{A_{1}B_{12}}{T_{1}T_{2}} + \frac{A_{2}B_{21}}{T_{1}T_{2}}\right)\lambda + \frac{A_{1}A_{2}B_{12}B_{21}}{T_{1}T_{2}}.$$
(17)

В силу условий (14) имеем $D_{i,3-i} \ge 0$ (i=1,2), поэтому $B_{i,3-i} > 0$ (i=1,2), и все коэффициенты полинома (17) положительны. Вычисление миноров Гурвица Δ_l $(l=\overline{1,3})$ дает:

$$\Delta_{1} = \frac{1}{T_{1}} + \frac{1}{T_{2}} > 0;$$

$$\Delta_{2} = \frac{A_{1}B_{12}}{(T_{1})^{2}} + \frac{A_{2}B_{21}}{(T_{2})^{2}} + \frac{1}{T_{1}T_{2}} \cdot \left(\frac{1}{T_{1}} + \frac{1}{T_{2}}\right) > 0;$$

$$\Delta_{3} = \frac{1}{T_{1}T_{2}} \cdot \left(\frac{A_{1}B_{12}}{T_{1}} - \frac{A_{2}B_{21}}{T_{2}}\right)^{2} + \frac{1}{(T_{1})^{2}(T_{2})^{2}} \cdot \left(\frac{1}{T_{1}} + \frac{1}{T_{2}}\right) \cdot (A_{1}B_{12} + A_{2}B_{21}) > 0.$$

Следовательно, состояние равновесия (16) локально асимптотически устойчиво по критерию Рауса – Гурвица при любых значениях T_1 , T_2 и параметров, входящих в функции f_{12} и f_{21} .

Докажем свойство b) при $D_{ik} = 0$ $(i, k = 1, 2, k \neq i)$. В этом случае координаты состояния равновесия (16) определяются равенствами (11).

Сравним прибыли торговцев в точке (11) с прибылями в произвольной фиксированной точке (\tilde{p}, \tilde{u}) (полагая, конечно, что во всех этих точках $p_1 = u_1$ и $p_2 = u_2$). Здесь могут быть 2 варианта: $\tilde{u}_1 = \tilde{u}_2$ и $\tilde{u}_1 \neq \tilde{u}_2$.

В точке u^* достигается единственный условный максимум обеих функций прибыли $\Pi_1(u)$ и $\Pi_2(u)$ при условии $u_1=u_2$. Поэтому в случае $\tilde{u}_1=\tilde{u}_2$ сразу получаем $\Pi_i(u^*)>\Pi_i(\tilde{u})$ при $\tilde{u}\neq u^*$ (i=1,2).

В случае же $\tilde{u}_1 \neq \tilde{u}_2$ для того продавца, который предлагает товар по более высокой цене (обозначим этого продавца номером k), имеет место неравенство

$$\exp\left[-f_{k,3-k}(\tilde{u}_k - \tilde{u}_{3-k})\right] < 1$$

(в силу свойств функций f_{ik} , в том числе их нечетности по условию), поэтому с учетом результата доказательства случая $\tilde{u}_1 = \tilde{u}_2$ имеем

$$\Pi_k\left(\widetilde{u}\right) < \Pi_k\left(u\right)|_{u_1 = u_2} \le \Pi_k\left(u^*\right)$$

(так как при $u_1 = u_2$ значения функций f_{12} и f_{21} равны нулю в силу нечетности этих функций). Отсюда получаем, что (p^*, u^*) – парето-оптимальный вектор цен.

Подставляя при $D_{12}=0$ и $D_{21}=0$ координаты точки (11) в выражения для вторых производных

$$\frac{\partial^{2}\Pi_{i}}{\partial(u_{i})^{2}} = A_{i} \exp \left[-\alpha_{i}u_{i} - f_{i,3-i}\left(u_{i} - u_{3-i}\right)\right] \times \left\{-\alpha_{i} - \frac{\partial f_{i,3-i}}{\partial u_{i}} - \left(u_{i} - c_{i}\right) \cdot \frac{\partial^{2} f_{i,3-i}}{\partial(u_{i})^{2}} + \left[1 - \alpha_{i} \cdot \left(u_{i} - c_{i}\right) - \left(u_{i} - c_{i}\right) \cdot \frac{\partial f_{i,3-i}}{\partial u_{i}}\right] \cdot \left(-\alpha_{i} - \frac{\partial f_{i,3-i}}{\partial u_{i}}\right)\right\}$$

$$(i = 1, 2)$$

и учитывая, что функции f_{12} и f_{21} – нечетные, получаем:

$$\left. \frac{\partial^2 \Pi_i}{\partial (u_i)^2} \right|_{u=u*} = A_i \exp(-\alpha_i K) \cdot (-\alpha_i) < 0 \quad (i = 1, 2).$$

Следовательно, вектор цен (11) является локально устойчивым по Нэшу. Утверждение доказано полностью.

З а м е ч а н и е. При условии $c_1 + (\alpha_1)^{-1} = c_2 + (\alpha_2)^{-1}$ точка (11) всегда парето-оптимальна и локально устойчива по Нэшу в силу утверждения 3, но состоянием равновесия системы (2) эта точка является только при $D_{12} = 0$ и $D_{21} = 0$.

Теперь изложим результаты качественно-численного исследования динамики системы (2) с некоторыми функциями спроса вида (13)-(15), обладающими свойствами "симметрии". При этом будем говорить, что имеет место линейное "перетекание" спроса, если $f_{ik}(u_i, u_k) = u_i - u_k$ (т.е. в случае линейности функций f_{ik} по своим переменным), и нелинейное "перетекание" спроса в противном случае. Интегрирование системы (2) проводилось при N=2 методом Мерсона с автоматическим выбором шага и погрешностью $\varepsilon=10^{-11}$ на каждом шаге.

1. Пусть $f_{ik}(u_i, u_k) = \beta_{ik} \cdot (u_i - u_k) \ (i, k = \overline{1, N}, \, k \neq i)$ (линейное "перетекание" спроса); точнее:

$$f_{ik}(u_i, u_k) = \begin{cases} \beta_{ik} \cdot (u_i - u_k) & \text{при } |u_i - u_k| \le \xi = \text{const}; \\ \beta_{ik} \cdot \left[2\xi \operatorname{sgn}(u_i - u_k) - \\ -\xi^2 (u_i - u_k)^{-1} \right] & \text{при } |u_i - u_k| > \xi \end{cases}$$

$$(i, k = \overline{1, N}, k \ne i)$$

(каждая функция f_{ik} доопределена по непрерывности вместе с первыми производными из условия 1° ограниченности спроса; ξ – одна и та же константа для всех i и k от 1 до N, $k \neq i$). В этом случае, как показывают численные расчеты при многих значениях параметров, система (2) имеет единственное состояние равновесия (p^*, u^*) , координаты которого в случае $|u_i^* - u_k^*| \leq \xi$ $(i, k = \overline{1, N}, k \neq i)$ вычисляются аналитически по формуле:

$$p_i^* = u_i^* = c_i + \left(\alpha_i + \sum_{k \neq i} \beta_{ik}\right)^{-1} \quad (i, k = \overline{1, N}).$$
 (18)

Это состояние равновесия, как показывает численное исследование, при N=2 глобально асимптотически устойчиво при любых значениях постоянных времени T_1 и T_2 (при $c_1+(\alpha_1+\beta_{12})^{-1}=c_2+(\alpha_2+\beta_{21})^{-1}$ локальная асимптотическая устойчивость состояния равновесия (18) следует из утверждения 3) и в зависимости от их значений может быть узлом или фокусом. При произвольном N и $T_1=\ldots=T_N=0$ локальная асимптотическая устойчивость состояния равновесия (18) в случае $|p_i^*-p_k^*|<\xi$ ($i,k=\overline{1,N},\,k\neq i$) устанавливается аналитически непосредственно из вида системы (2), которая в окрестности состояния равновесия (18) принимает вид:

$$\dot{p}_i = k_i A_i \exp\left(\cdot\right) \cdot \left[1 + (p_i - c_i) \cdot \left(-\alpha_i - \sum_{k \neq i} \beta_{ik}\right)\right]$$
$$(i, k = \overline{1, N});$$

в этой системе в каждом i-м уравнении квадратная скобка является монотонно убывающей линейной функцией только от p_i , а знак \dot{p}_i совпадает со знаком этой квадратной скобки.

2. Пусть $f_{ik}(u_i, u_k) = \beta_{ik} \cdot \text{th}(u_i - u_k)$ $(i, k = \overline{1, N}, k \neq i)$ (слабое нелинейное "перетекание" спроса). В этом случае при N = 2 и $c_1 + (\alpha_1 + \beta_{12})^{-1} = c_2 + (\alpha_2 + \beta_{21})^{-1}$ в системе (2) существует состояние равновесия (16). При увеличении разности постоянных времени в системе может возникнуть полуустойчивое периодическое движение конечной амплитуды, расщепляю-

щееся после бифуркации на устойчивый предельный цикл (жесткое возникновение автоколебаний) и седловой цикл, который при дальнейшем увеличении $|T_1 - T_2|$ неограниченно сближается с состоянием равновесия (16), но никогда с ним не сольется, так как состояние равновесия (16) всегда локально асимптотически устойчиво в силу утверждения 3. Такая ситуация может возникнуть не только в четырехмерной, но и в трехмерной системе, когда одна из двух постоянных времени T_1 или T_2 равна 0 (т.е. когда один из продавцов принимает решение об изменении цены мгновенно), если постепенно увеличивать значение другой постоянной времени.

Таким образом, даже в случае чистой конкуренции при некотором достаточно слабом "перетекании" спроса в данной модели возможно резкое возникновение колебаний цены с большой амплитудой, но есть малая вероятность все-таки стабилизировать цену путем выбора подходящих начальных условий (это говорит о том, что во избежание нежелательных колебаний цены продавцам, если они принимают решения достаточно долго, необходимо договариваться между собой о ценах).

3. Пусть $f_{ik}(u_i, u_k) = \beta_{ik} \cdot (u_i - u_k)^3$ $(i, k = \overline{1, N}, k \neq i)$ (сильное нелинейное "перетекание" спроса); точнее:

$$f_{ik}(u_i, u_k) = \begin{cases} \beta_{ik} \cdot (u_i - u_k)^3 & \text{при } |u_i - u_k| \le \xi = \text{const}; \\ \beta_{ik} \cdot \left[2\xi^3 \operatorname{sgn}(u_i - u_k) - \\ -3\xi^4 (u_i - u_k)^{-1} \right] & \text{при } |u_i - u_k| > \xi \end{cases}$$

$$(19)$$

$$(i, k = \overline{1, N}, k \ne i)$$

(как и при линейном "перетекании", каждая функция f_{ik} доопределена по непрерывности вместе с первыми производными из условия 1° ограниченности спроса, а ξ — одна и та же константа для всех i и k от 1 до N, $k \neq i$). В этом случае при N=2 и $c_1+(\alpha_1)^{-1}=c_2+(\alpha_2)^{-1}$ в системе (2) существует "симметричное" состояние равновесия (11) (обозначим его через O_1), являющееся по утверждению 3 локально асимптотически устойчивым, а также парето-оптимальным и локально устойчивым по Нэшу вектором цен. Однако при $\beta_{12} \neq \beta_{21}$ (монополистическая конкуренция) в системе возможно возникновение еще двух состояний равновесия (из полуустойчивого равновесия); одно из них (обозначим его O_2) при постепенном увеличении β_{12} бифурцирует из устойчивого $O^{4,0}$ в седловое $O^{2,2}$ и затем вновь в устойчивое $O^{4,0}$, другое равновесие (обозначим его O_3) всегда остается седлом $O^{3,1}$. Вообще же координата $p_1=u_1$ состояния равновесия системы (2) с

данными функциями спроса при не очень малом ξ ищется из уравнения

$$G(p_1) = 1 - \alpha_2 \left[p_1 \pm \sqrt{\frac{1}{3\beta_{12}(p_1 - c_1)} - \frac{\alpha_1}{3\beta_{12}}} - c_2 \right] - 3\beta_{21} \left[p_1 \pm \sqrt{\frac{1}{3\beta_{12}(p_1 - c_1)} - \frac{\alpha_1}{3\beta_{12}}} - c_2 \right] \left[\frac{1}{3\beta_{12}(p_1 - c_1)} - \frac{\alpha_1}{3\beta_{12}} \right] = 0;$$
(20)

это уравнение может иметь (в зависимости от β_{12} и β_{21}) либо один корень, либо два корня, один из которых — двукратный (точка касания графика функции $G(p_1)$ с осью p_1), либо три различных корня. Тогда координата $p_2 = u_2$ состояния равновесия связана с координатой $p_1 = u_1$ явным однозначным соотношением

$$p_2 = p_1 \pm \sqrt{\frac{1}{3\beta_{12}(p_1 - c_1)} - \frac{\alpha_1}{3\beta_{12}}}$$

(знак в операции "±"выбирается таким же, каким он брался при нахождении конкретного корня уравнения (20)). Таким образом, при данных функциях конкурентного спроса в системе может быть как моностационарность, так и мультистационарность (мультистабильность).

Исследование фазового портрета системы проводилось при следующих значениях параметров: $k_1A_1=k_2A_2=10,\ \alpha_1=\alpha_2=0.1,\ c_1=c_2=1;$ $T_1=10,\ T_2=5$ (значения постоянных времени, сильно удаленные от нуля и поэтому качественно отражающие ситуацию, когда продавцы обдумывают свои стратегии достаточно долго, причем на принятие решения разным продавцам требуется разное время); $\beta_{21}=0.1$. Значение параметра β_{12} варьировалось.

При постепенном увеличении параметра β_{12} (этот параметр имеет смысл конкурентного "давления"2-го торговца на 1-го, выражающегося в резкости изменения спроса на товар 1-го торговца при разнице цен у 1-го и 2-го торговцев) в системе происходит каскад бифуркаций удвоения периода, и при $\beta_{12} = (\beta_{12})_{\infty} \approx 0.4327$ возникает хаотический аттрактор. Вид этого аттрактора при $\beta_{12} = 0.5$ (значение из области хаоса, достаточно удаленное от $(\beta_{12})_{\infty}$) в проекции на плоскость (p_2, p_1) и во временной развертке $p_1(t)$ представлен на рис. 1 (траектории частично проходят по гиперплоскостям $p_1 = 0$ и $p_2 = 0$). Максимальный ляпуновский показатель, вычисленный на ЭВМ при $\beta_{12} = 0.5$, приближенно равен 0.04.

Дальнейшее увеличение значения β_{12} приводит вначале к переходу устойчивости от хаоса к периодическим движениям различной кратности, потом вновь возникает хаос, а затем происходит стабилизация цены – траектории движутся к устойчивому состоянию равновесия O_2 (один конкурент

Рис. 1:

"победил"
другого), которое соответствует более низкому уровню цен (по сравнению
с ${\cal O}_1)$ и не является парето-оптимальным для продавцов.

Как показывает численное интегрирование системы в обратном времени, часть области притяжения устойчивого состояния равновесия (фокуса) O_1 , ограниченная сепаратрисным многообразием S_3^+ седла O_3 и образованная траекториями системы при не очень больших значениях обратного времени, имеет вид узкой трубки с "вершиной"в седле O_3 . Эта трубка при $\beta_{12} \to +\infty$ неограниченно сжимается в каждом сечении. Кроме того, при увеличении β_{12} седло O_3 приближается к состоянию равновесия O_1 , но не сольется с ним ни при каком конечном β_{12} , так как состояние равновесия O_1 всегда локально асимптотически устойчиво в силу утверждения 3. Таким образом, увеличение конкурентного параметра β_{12} ведет к неограниченному сжатию области притяжения устойчивого состояния равновесия O_1 и делает практически достоверным приход траекторий из любой начальной точки к предельному циклу, хаосу или устойчивому состоянию равновесия O_2 (в зависимости от значения β_{12}).

На основании сказанного можно сделать следующие выводы для данной модели:

1). Постепенное усиление конкурентного "давления" одного продавца на другого при функциях спроса (13), (19) может привести к стабилизации цен (правда, на неоптимальном для продавцов низком уровне цен), но при этом придется пройти через хаотические колебания цен.

- 2). При функциях конкурентного спроса (13), (19) продавцам приходится решать проблему вступления в некоторый сговор с целью максимизации прибыли.
- 6. О влиянии потолков цен на динамику ценообразования в модели. В рамках данной модели государство может управлять колебаниями и хаосом в ценообразовании, вводя, например, нижний p_{\min} и верхний p_{\max} потолки цен (обычно нижний потолок цен вводится для поддержки отечественного товаропроизводителя, а верхний в целях обеспечения возможности покупки товара малоимущими слоями населения [4]). В этом случае модель (1) немного изменяется и приобретает вид:

ів (1) немного изменяется и приооретает вид:
$$\dot{p}_i = \begin{cases} F_i = k_i \frac{\partial \Pi_i}{\partial u_i}, & \text{если } p_{\min} < p_i < p_{\max} \\ & \text{или } (p_i = p_{\min} \text{ и } F_i \geq 0) \\ & \text{или } (p_i = p_{\max} \text{ и } F_i \leq 0), \\ 0, & \text{если } (p_i = p_{\min} \text{ и } F_i < 0) \\ & \text{или } (p_i = p_{\max} \text{ и } F_i > 0); \end{cases}$$

$$T_i \dot{u}_i + u_i = p_i$$

$$(i = \overline{1, N}). \tag{21}$$

Как показывают численные расчеты при многих значениях параметров, при N=2 в системе (21) с функциями конкурентного спроса (13), (19) при увеличении p_{\min} или уменьшении p_{\max} происходит переход от хаоса через серию обратных бифуркаций удвоения периода к стабилизации цены. Здесь в зависимости от начальных условий возможны 2 случая:

- 1). У обоих продавцов цена устанавливается на уровне верхнего потолка цен.
- 2). У одного из продавцов (а именно у того i-го продавца, у которого спрос изменяется более резко при изменении разницы цен, т.е. у кого больше коэффициент $\beta_{i,3-i}$ в функции спроса) цена устанавливается на уровне нижнего потолка цен (в результате чего этот продавец в случае $A_1 = A_2$ получает бо́льшую прибыль, чем конкурент, причем в зависимости от величин потолков цен эта прибыль может оказаться как больше, так и меньше, чем в 1-м случае), а у другого на уровне, несколько превышающем нижний потолок цен (и прибыль этого продавца оказывается меньшей, чем в 1-м случае).
- **7.** Заключение. Итак, рассмотрены несколько примеров систем, принадлежащих классу систем вида (1) или (2) и моделирующих динамику

формирования рыночных цен в условиях монополистической конкуренции, когда потребительский спрос может "перетекать" от одного продавца к другому. В зависимости от вида (в том числе от резкости) этого "перетекания" в модели наблюдается разнообразное поведение траекторий системы: стабилизация, автоколебания, хаос. При возникновении хаоса можно ввести в модель государственное управление в виде установления ценовых потолков, постепенно приводящее к стабилизации цен через каскад обратных бифуркаций удвоения периода автоколебаний.

Автор выражает искреннюю признательность профессору Ю.И.Ней-марку за постановку задачи и научное руководство.

Список литературы

- 1. Короновский А. А. О механизмах установления рыночной цены // Известия вузов. Прикладная нелинейная динамика. 1996. N 4-5. C. 92-98.
- 2. *Ремпен И. С., Короновский А. А.* Нелинейная модель взаимодействия продавцов и потребителей // Известия вузов. Прикладная нелинейная динамика. 1997. N 5. C. 80 87.
- 3. *Казаков А. П., Минаева Н. В.* Экономика. М.: Изд-во ЦИПКК АП, 1996.
- 4. *Макконнелл К. Р.*, *Брю С. Л.* Экономикс: принципы, проблемы и политика. В 2-х тт. Пер. с англ. М.: Республика, 1992.
- 5. Барбашин Е. А. Функции Ляпунова. М.: Наука, Глав. ред. физ.-мат. лит-ры, 1970.
- 6. Ланкастер П. Теория матриц. Пер. с англ. М.: Наука, Глав. ред. физ.мат. лит-ры, 1978.
- 7. Ляпунов А. М. Общая задача об устойчивости движения. М.-Л., Гостехиздат, 1950.
- 8. *Красовский Н. Н.* Об устойчивости в целом решения нелинейной системы дифференциальных уравнений // Прикладная математика и механика. 1954. Т. 18. Вып. 6. С. 735 737.

9. *Еругин Н. П.* Некоторые общие вопросы теории устойчивости движения // Прикладная математика и механика. 1951. Т. 15. Вып. 2. С. 227 – 236.