1 Porblems set 1(Real Numbers)

- 1. Prove the following statements are true in every ordered field.
 - (a) If x > 0 then -x < 0, and vice versa.
 - (b) If x > 0 and y < z then xy < xz.
 - (c) If x < 0 and y < z then xy > xz.
 - (d) If $x \neq 0$ then $x^2 > 0$. In particular, 1 > 0.
 - (e) If 0 < x < y then 0 < 1/y < 1/x.
- 2. Let $S \subset \mathbb{R}$ and $a \in \mathbb{R}$. Prove that
 - (a) $\sup(a+S) = a + \sup S$
 - (b) If a > 0 then $\sup(aS) = a \sup S$
 - (c) If a > 0 then $\sup(aS) = a \inf S$
- 3. Prove that supremum property implies infimum property.
- 4. Use Archimedean Property to prove the following
 - (a) If $S := \{1/n : n \in \mathbb{N}\}$, then inf S = 0.
 - (b) If t > 0, there exists $n_t \in \mathbb{N}$ such that $0 < 1/n_t < t$.
 - (c) If y > 0, there exists $n_y \in \mathbb{N}$ such that $n_y 1 \le y \le n_y$.
 - (d) If $S := \left\{ \frac{1}{n} \frac{1}{m} : n, m \in \mathbb{N} \right\}$, find inf S and $\sup S$.
- 5. Prove that between any two real numbers there is an irrational number.
- 6. Let $I_n := [0, 1/n]$ for $n \in \mathbb{N}$. Prove that

$$\bigcap_{n=1}^{\infty} I_n = \{0\}.$$

7. Let $J_n := (0, 1/n)$ for $n \in \mathbb{N}$. Prove that

$$\bigcap_{n=1}^{\infty} J_n = \emptyset.$$

8. Let $K_n := (n, \infty)$ for $n \in \mathbb{N}$. Prove that

$$\bigcap_{n=1}^{\infty} K_n = \emptyset.$$

2 Problem set 2(Sequences)

- 1. Find $K(\epsilon)$ for the following sequences
 - (a) $\frac{1}{5n+1}$; $\epsilon = \frac{1}{6}$
 - (b) $\frac{2}{n^3} + 5$; $\epsilon = \frac{1}{8}$
 - (c) $\frac{3n}{2n+1}$; $\epsilon = \frac{1}{10}$
 - (d) $\frac{n^2+n}{2n^2-1}$; $\epsilon = \frac{1}{5}$
 - (e) $(-1)^n \frac{1}{n}$; $\epsilon = \frac{1}{61}$
- 2. Porve that limit of a sequence if it exist is unique.
- 3. Evaluate the following limits (also prove it using the definition of limit):
 - (a) $\lim_{n\to\infty} \frac{3n}{2n+1}$
 - (b) $\lim_{n\to\infty} \frac{n}{n^2+1}$
 - (c) $\lim_{n\to\infty} (\sqrt{n+1} \sqrt{n})$
- 4. Let x_n, y_n be two sequences such that $x_n \to x$ and $y_n \to y$. Prove that:
 - (a) $x_n + y_n \to x + y$
 - (b) $x_n y_n \to x y$
 - (c) $x_n y_n \to xy$
 - (d) $x_n/y_n \to x/y$ if $y \neq 0$
- 5. Prove that if $x_n \to x$ then $|x_n| \to |x|$ and $\sqrt{|x_n|} \to \sqrt{|x|}$.
- 6. Prove squeeze thereorm: If $x_n \leq y_n \leq z_n$ for all n and $x_n \to L$, $z_n \to L$, then $y_n \to L$.
- 7. Prove that for any real number x, there exists a sequence of rational numbers (x_n) such that $x_n \to x$.

Bridge Problems DMS KU - AVP

3 Problem set 3(Sequences)

- 1. Is the sequence log(n) log(n+1) convergent?
- 2. Let x_n converges to x. Prove that any subsequence of x_n is convergent to x.
- 3. True or False: Let (a_n) be a sequence such that a_{nk} converges for $k \in \mathbb{N} \{1\}$. Then a_{nk} converges.
- 4. Give an example of an unbounded sequence that has a convergent subsequence.
- 5. Suppose that $x_n \geq 0$ and $(-1)^n x_n$ converges. Does it imply that x_n converges.
- 6. Let (x_n) be a bounded sequence and let $s := \sup\{x_n : n \in \mathbb{N}\}$. Show that if $s \notin \{x_n : n \in \mathbb{N}\}$, then there is a subsequence of (x_n) that converges to s.
- 7. Show directly that bounded monotone sequence is a cauchy sequence.
- 8. Let $Y = (y_n)$ be defined inductively by $y_1 := 1$, $y_{n+1} := \frac{1}{4}(2y_n + 3)$ for $n \ge 1$. Show that $\lim Y = 3/2$.

Bridge Problems DMS KU - AVP

4 Problem set 4 (Limits and Continuity)

- 1. Let $f, g : \mathbb{R} \to \mathbb{R}$ be two functions continous at x_0 . Prove that:
 - (a) f + g is continuous at x_0 .
 - (b) f g is continuous at x_0 .
 - (c) fg is continuous at x_0 .
 - (d) f/g is continuous at x_0 if $g(x_0) \neq 0$.
- 2. Prove that all polynomials from $\mathbb{R} \to \mathbb{R}$ are continuous functions. Are they uniformly continuous?
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x) = 0 for all $x \in \mathbb{Q}$. Prove that f(x) = 0 for all $x \in \mathbb{R}$.
- 4. Prove that composition of two continuous functions is continuous.
- 5. Prove that x^2 is uniformly continuous on [0, 100]
- 6. Prove that x^2 is not uniformly continuous on \mathbb{R} .
- 7. Prove that $\frac{1}{x}$ is not uniformly continuous on (0,1).