Ausgewählte Kapitel der Logik

Martin Lundfall

15. Juli 2016

Aufgabe 1

Nach Satz 3.21 (zusammen mit Bemerkung 3.22) ist eine Relation TM-rekursiv abzählbar genau dann wenn sie Σ_1 -definierbar ist.

Deswegen ist unser Ziel eine TM-rekursiv abzählbar Relation zu bauen, welche Σ_1 -definition unter Negation entspricht keine TM-rekursiv abzählbare Relation. In Aufgabe 3 von Übungsblatt 7 haben wir gezeigt dass die Relation H definiert durch

 $H := \{n_M : M \text{ ist eine Turing-Maschine, deren Zustandsmenge eine}$ endliche Teilmenge von N ist, die bei leerer Eingabe nach endlich vielen Schritten anhält}

 Σ_1 -definierbar ist.

Sei φ die Σ_1 -Formel die definiert H. Wenn $\neg \varphi$ Σ_1 -definierbar wäre, würden die Mengen $\mathbb{N} \setminus H$ und H beide rekursiv abzählbar sein, aber dass würde bedeuten dass die Halte-probleme entsheidbar wäre.

Aufgabe 2

Angenommen dass $\operatorname{Th}(\mathcal{Z})$ ist rekursiv aufzählbar. Wir zeigen dass, es gibt eine berechenbare Funktion Bau T wie folgt. Anfangen mit $T_0 = Th(Q)$. Für alle $\varphi \in \operatorname{Th}(\mathcal{Z})$, falls $\varphi \cup Th(Q)$ widerspruchsfrei ist, sei $T_{n+1} = T_n \cup \varphi$, sonst $T_{n+1} = T_n \cup \neg \varphi$. $T = Th(\mathcal{N})$ und rekursiv abzählbar. Widerspruch.

Aufgabe 3

Das Ziel ist zu Übersetzen σ_{Ar} zu eine endliche binäres Signatur $\hat{\sigma}.$ Sei $\hat{\sigma}=E,\dots$ wobei

$$R_{0} = \{n, m \in \mathbb{N} : m = 0\}$$

$$R_{1} = \{n, m \in \mathbb{N} : m = 1\}$$

$$R_{+} = \{n, m \in \mathbb{N} : R_{T}(n, m)\}$$
(2)

sei $E_g=$ Für alle $n,m,s\in\mathbb{N}$ sei