

Ministerul Educatiei si Cercetării - Serviciul National de Evaluare si Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toti itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 53

A. MECANICĂ

Se consideră accelerația gravitațională g =10 m/s².

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Mărimea fizică ce se măsoară în S I în *N* ⋅ s este:

a. viteza unghiulară

b. accelerația

c. energia cinetică

d. impulsul mecanic

2. Un camion de masă m = 5t care se deplasează pe orizontală cu viteza v = 72Km/h frânează cu roțile blocate până la oprire. Lucrul mecanic efectuat de forța de frecare este:

a. -1*MJ*

b. -2MJ

c. –12,96*MJ*

d. −12,96*KJ*

3. Raportul dintre forța centrifugă care acționează asupra unui motociclist ce se deplasează cu viteza v = 144 Km / h într-o curbă de rază R = 160 m și propria lui greutate este:

a. 0,5

b. 1

c. 1,5

d. 2

4. Un corp este aruncat vertical în sus în câmp gravitațional uniform cu viteza v_0 . Energia cinetică este egală cu energia potențială, în raport cu nivelul orizontal de lansare, la înălțimea:

a. $h = \frac{v_0^2}{2a}$

b. $h = \frac{v_0^2}{4q}$

c. $h = \frac{v_0^2}{8a}$

5. În mişcarea circulară uniformă, viteza unghiulară se definește prin relația: $\mathbf{c} \cdot \boldsymbol{\omega} = \frac{T}{\Delta t}$ $\mathbf{c} \cdot \boldsymbol{\omega} = \frac{\Delta \theta}{\Delta t}$

II. Rezolvați următoarele probleme:

- 1. De un fir cu lungimea I = 80cm se suspendă o bilă de masă $m_1 = 100q$ și de diametru neglijabil. Bila a fost deviată până când firul întins a ajuns în poziție orizontală și apoi lăsată liberă. În punctul inferior al traiectoriei ea ciocnește perfect elastic un corp de masă $m_2 = 300g$ aflat în repaus, care după lovire parcurge până la oprire o distanță d = 2m pe un plan orizontal.
- a. viteza bilei imediat înainte de ciocnire;
- b. vitezele corpurilor imediat după ciocnirea perfect elastică;
- c. coeficientul de frecare dintre corp și plan.

15 puncte

2. Un corp de masă m = 100 Kg, aflat inițial în repaus, este tras în sus pe un plan înclinat pe o distanță d = 30 m, cu ajutorul unui cablu paralel cu planul, forța de tracțiune fiind F = 850N (vezi figura

alăturată). Coeficientul de frecare la alunecare între corp și plan este

Determinati:

- a. accelerația corpului în timpul acțiunii forței de tracțiune;
- **b.** intervalul de timp în care corpul a parcurs distanța d;
- c. valoarea maximă a impulsului corpului în timpul deplasării.

15 puncte

Proba scrisă la Fizică Varianta 53

Proba E: Specializarea : matematică -informatică, științe ale naturii Proba F: Profil: tehnic - toate specializările

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

- ♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 53

B. ELECTRICITATE ŞI MAGNETISM

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect

15 puncte

1. Expresia forței Lorentz care acționează asupra unei particule având sarcina electrică q, care se deplasează cu viteza \vec{v} în câmp magnetic uniform de inductie \vec{B} este:

a. $B(\vec{v} \times \vec{q})$

b. $a(\vec{v} \times \vec{B})$

c. $q(\vec{B} \times \vec{v})$

d. $q(\vec{v} \times \vec{B}) \sin \alpha$

2. Unitatea de măsură a fluxului magnetic în S.I. este:

a. Wb

h T

c. F

d ⊦

3. Inductanța unei bobine cu lungimea l alcătuită din N spire de arie S și având un miez cu permeabilitatea magnetică μ are expresia:

a. $\frac{\mu NS}{I}$

b. $\frac{\mu N^2 S}{I^2}$

c. $\frac{\mu N l^2}{S}$

d. $\frac{\mu N^2 S}{I}$

4. Doi rezistori cu rezistențe electrice de 1Ω , respectiv 4Ω consumă aceeași putere atunci când sunt conectați pe rând la bornele aceleași surse de tensiune. Rezistența internă a sursei este:

a. 1Ω

b. 2Ω

c. 4Ω

 $d.5\Omega$.

5. Rezistența echivalentă a unei grupări paralel formate din rezistori cu rezistențele electrice $R_1=1\Omega$, $R_2=2\Omega$ și $R_3=3\Omega$ are valoarea de:

a. $\frac{11}{6}\Omega$

b. 6Ω

c. 2Ω

d. $\frac{6}{11}\Omega$

II. Rezolvați următoarele probleme:

- 1. O baterie cu tensiunea electromotoare E=24V este formată din n elemente identice înseriate, fiecare având rezistența internă $r=0,4\Omega$. La bornele sale se conectează un rezistor. Intensitatea curentului prin rezistor este $I_1=2A$. Dacă se înlătură jumătate din elementele bateriei, intensitatea curentului scade la $I_2=1,5A$. Determinați:
- a. rezistența electrică a rezistorului;
- **b.** numărul *n* de elemente care formează bateria;
- **c.** energia disipată de către rezistor în timpul t = 1 min, atunci când acesta este conectat la bornele bateriei formate din n elemente.
- 2. Un conductor rectiliniu MN, cu rezistența electrică $R=0.08\,\Omega$ și lungimea $L=40\,cm$ este deplasat pe două șine conductoare paralele, orizontale, de rezistență electrică neglijabilă, conectate la bornele unei surse cu t.e.m $E=2\,V$ și rezistența internă $r=0.12\,\Omega$. Deplasarea conductorului are loc cu viteza constantă $v=1\,m/s$, perpendicular pe liniile unui câmp magnetic uniform, de inducție $B=2\,T$, așa cum este ilustrat în figura alăturată. Determinați:

- a. sensul curentului electric indus în conductorul MN;
- **b.** t.e.m. indusă în conductorul MN;
- c. valoarea intensității curentului electric stabilit în circuit.

15 puncte

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, știinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 53

C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Se cunosc: $R \cong 8,31 \cdot J/(mol \cdot K)$, căldura molară la volum constant a gazului ideal monoatomic $C_V = 3R/2$; $C_P = C_V + R$, $1 atm \cong 10^5 \ Pa$

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Procesul izocor al unui gaz ideal este reprezentat în diagrama din:

2. În condiții normale de presiune și temperatură $(t = 0^{\circ}C, p = 1atm)$ densitatea aerului $\left(\mu_{aer} \cong 29 \frac{Kg}{Kmol}\right)$ este de aproximativ:

a. $1,28Kg/m^3$

b. $29Kq/m^3$

c. $2,8g/m^3$

d. $1,28g/m^3$

3. Notațiile fiind cele folosite în manualele de fizică, căldura molară izocoră a unui gaz ideal poate fi scrisă:

a. $C_v = (\gamma - 1)R$

b. $C_{v} = \frac{R}{v-1}$

c. $C_v = \frac{\gamma R}{\gamma - 1}$

d. $C_v = \frac{R}{\gamma}$

4. Considerînd că notațiile sunt cele utilizate în manualele de fizică, formula fundamentală a teoriei cinetico-moleculare este:

a. $p = \frac{1}{2} n \cdot m \cdot v$

b. $\frac{p}{T} = const$

c. $p = \frac{1}{2} \frac{m \cdot v^2}{n}$

d. $p = \frac{1}{3} n \cdot m \cdot \overline{v^2}$

5. Pentru procesele termodinamice reprezentate în figură este valabilă afirmația:

a. $Q_{1a2} < Q_{1b2}$

b. $Q_{1a2} > Q_{1b2}$

c. $Q_{1a2} = Q_{1b2}$

d. nu se poate preciza o relație între căldurile \mathcal{Q}_{1a2} și \mathcal{Q}_{1b2}

II. Rezolvați următoarele probleme:

1. Într-o butelie cu volumul $V=60\,\ell$ se află heliu ($\mu_{He}=4Kg/KmoI$), considerat gaz ideal, la presiunea $p_1=15MPa$ și temperatura $t_1=27^{\circ}C$. Se consumă gaz din butelie până când presiunea devine $p_2=1MPa$ la temperatura $t_2=7^{\circ}C$. Determinati:

a. masa de heliu consumată;

b. viteza termică a moleculelor gazului aflat inițial în butelie;

c. energia internă a gazului rămas în butelie.

15 puncte

2. O cantitate $v=\frac{1}{3}$ moli gaz ideal este supusă unui proces termodinamic ciclic format din: încălzire izocoră la volumul $V_1=8,31l$ de la presiunea $p_1=10^5\,N/m^2$ până la $p_2=2p_1$; destindere izobară până la $V_3=4V_1$; răcire izocoră până la $p_4=p_1$; comprimare izobară până în starea inițială, ca în diagrama p-V alăturată. Determinati:

b. temperaturile din stările 1,2,3 și 4;

Proba F: Profil: tehnic - toate specializările

c. randamentul unui ciclu Carnot care ar funcționa între temperaturile extreme atinse în această succesiune de procese termodinamice.

15 puncte

Proba scrisă la Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 53

Ministerul Educatiei și Cercetării – Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 53

D.OPTICĂ

Viteza luminii în vid $c = 3.10^8 \, m/s$

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. În cazul dioptrului sferic din figură, între indicii de refracție n_1 și n_2 există relatia:

b. $n_1 > n_2$

 $\mathbf{c.} \, n_1 = n_2$

d. $n_1 = -n_2$

2. Distanța minimă dintre un obiect și ecran pentru care o lentilă convergentă cu distanța focală f poate forma imagini clare ale obiectului pe ecran este:

a.
$$d = \frac{f}{2}$$

b.
$$d = f$$

c.
$$d = 2f$$

d.
$$d = 4f$$

3. Unitatea de măsură a lungimii de undă în S.I. este:

d. m^{-1}

4. Imaginea unui obiect real așezat în fața unei oglinzi convexe este întotdeauna:

- a. reală și mai mică decât obiectul
- b. reală și mai mare decât obiectul
- c. virtuală și mai mică decât obiectul
- d. virtuală şi mai mare decât obiectul

5. Un dispozitiv Young are distanța dintre fante a = 0.6mm și distanța de la planul fantelor la ecran D = 1m. Distanța care separă maximele de ordinul cinci este 9mm. Lungimea de undă a radiației folosite este:

a. 540 nm

b. 580 nm

c. 600 nm

d. 700 nm

II. Rezolvați următoarele probleme:

- 1. O rețea de difracție este iluminată la incidență normală cu o radiație monocromatică cu lungimea de undă $\lambda = 600 nm$. Maximul de difracție de ordinul doi se obține sub unghiul $\alpha = arcsin \ 0,3$. Determinați:
- a. constanta retelei de difractie;
- b. numărul de maxime de difracție care se obțin de fiecare parte a maximului central;
- c. frecvența radiației utilizate.

15 puncte

- 2. Două lentile subțiri, identice, plan-convexe, construite din sticlă cu indicele de refracție $n=1,5\,$ sunt așezate în aer, coaxial la distanța d = 50cm una de alta. Fiecare lentilă are convergența $C = 8m^{-1}$. La 25cm în fața primei lentile se află un mic obiect luminos. Considerînd $n_{aer} \cong 1$, determinați:
- a. raza de curbură a suprafeței sferice a lentilei;
- b. poziția imaginii finale dată de sistem, față de a doua lentilă;
- c. măririle liniare transversale date de fiecare lentilă și mărirea liniară transversală a întregului sistem.

15 puncte

Proba scrisă la Fizică Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările