Московский Физико-Технический Институт

Лабораторная работа по радиотехническим сигналам и цепям

Активные фильтры.

Автор:

Глеб Уваркин 615 группа

Задание №1. Звенья первого порядка.

Рис. 1: Пропорционально дифференцирующее звено.

Рис. 2: Пропорционально интегрирующее звено.

1. Измерим уровни подавления на частоте f_0 и в полосах задержания для пропорционально интегрирующей и дифференцирующей цепей с полюсом в точке $s=\frac{p}{\omega_0}=-1,\ f_0=\frac{\omega_0}{2\pi}=10k$ и нулями в точках $s=-2,\ s=-\frac{1}{2}$. Измерим уровни подавления на частоте f_0 и в полосах задержания.

$$\delta = \frac{\beta}{\alpha + \beta} = \frac{1}{2}$$
 — уровень подавления в полосе задержания

Подавление на частоте $f_0 = 10k$:

$$\frac{4}{5}$$
 — интегрирующее звено, $\frac{1}{5}$ — дифференцирующее звено

2. Изменим номиналы резисторов в схемах так, чтобы сохранив положения полюсов, переместить нули в точки $s=-4,\ s=-\frac{1}{4}$

 $\delta=\frac{1}{4}$ - уровень подавления в полосе задержания. Уровень подавления на частоте f_0 : $\frac{1}{2}$ - интегрирующая, $\frac{3}{20}$ - дифференцирующая.

3. Откроем модель **integrator.cir** реального интегратора с частотой единичного усиления $f_1=\frac{1}{2\pi RC}=10k$ и усилением $K=\frac{R_K}{R}$.

f_1 , Гц	10k	10k	10k	10k	10k	10k
K	2	4	8	16	32	64
$f_1, \; \Gamma$ ц K $f_0, \; \Gamma$ ц	5k	2.5k	1.25k	0.62k	0.31k	0.16k

Рис. 3: Реальный интегратор.

 $\Longrightarrow f_1 = f_0 K$ - соотношение выполняется.

Задание №2. Активные звенья с двойным Т-мостом.

Рис. 4: Полосовой фильтр с двойным Т - мостом.

1. Откроем модель полосового фильтра pass2T.cir c $f_0=10k,~K_0=20.$ Измерим усиление на частоте f_0 и полосу Δf по уровню -3dB. Получаем $K_0=20.92,~\Delta f=1.93~(R_2=20k).$

Таблица 1: Зависимость пикового усиления и ширины полосы от R_2 .

R_2 , Om	40k	60k	80k	100k
K_0	41.02	61.12	81.11	101.24
$R_2,\;OM \ K_0 \ \Delta f,\;\Gamma$ ц	979	643	495	397

2. Изучим поведение фильтра при разбалансировании моста варьированием R_5 . Снимем зависимость от R_5 пикового усиления.

Таблица 2: Зависимость пикового усиления от R_5 .

R_5 , Om									
K_0	32.45	43.76	79.67	956.78	90.57	42.88	28.11	20.97	16.88

3. Измерим уровни скачка в нуле и первого выброса: уровень скачка - 1В при $R_5=5k$ Ом.

Оценим значение R_5 , при котором фильтр теряет устойчивость.

Таблица 3: Оценка R_5 .

R_5 , Om	5k	4.5k	4k	3.5k	3k	2.5k
R_5 , Ом выброс	4.29	4.49	4.72	5.0	5.36	5.82

Потеря устойчивости происходит при $R_5 = 3k$ Ом.

4. Откроем модель режекторного фильтра **stop2T.cir** с $f_0 = 10k, \ \gamma = 0.1.$

Рис. 5: Режекторный фильтр с двойным Т - мостом.

Измерим ширину полосы режекции Δf по уровню 0.7=-3dB. Получим: $\Delta f=4.07$ к Γ ц.

5. Измерим уровни скачка в нуле и первого выброса. Получим: уровень скачка - 1В, первый выброс - 697.5 мB.

Задание №3. Исследование созвездий.

- **2.** $n=7,\ \varepsilon=1,\ \eta=2\to\eta_1=5042$ уровень затухания фильтра Чебышева, тот же уровень затухания достигается фильтром Баттерворта порядка n=7 при $\eta=3.38$
- **3.** $n=7,\ \varepsilon=1,\ \eta=1.5 \to \eta_1=321.5$, порядок фильтра Баттерворта с тем же затуханием при $\eta=1.5 \to \eta=15$
- **4.** Уровень затухания эллиптического фильтра при $n=7,\ \varepsilon 1,\ \eta=1.1\to\eta_1=608.46.$ При селективности $\eta=1.56$ достигается тот же уровень затухания фильтром Чебышева $n-7,\ \varepsilon=1$
- 7. Полосовой фильтр с частотой $f_0=465k$, двусторонней полосой $\Delta f=24k$ $\left(Q=\frac{f_0}{\Delta f}\simeq 20\right)$, неравномерностью $3\mathrm{dB}(\varepsilon=1)$ и затуханием $\eta_1=10^4=80\mathrm{dB}$. Селективность $\eta=1.36$ обеспечивает затухание η_1 эллиптическим фильтром порядка n=7. При n=2 фильтр Чебышева обеспечивает сопоставимое значение селективности при том же затухании. Преобразовав эти фильтры в полосовые с Q=20 получаем максимальные добротности полюсов: $Q_{max}=1049.39$ для эллиптического и $Q_{max}=2084.96$ для фильтра Чебышева.

Задание №4. Звенья Саллена-Ки.

Рис. 6: Звенья Саллена-Ки.

1. Откроем модель **skey.cir** звеньев Саллена-Ки с частотой $f_0=10k$ и добротностью Q=1. Измерим значения коэффициентов передачи при $f=f_0.$ Получим:

$$K_0 = 2$$
, $K_{lp} = 29.44$, $K_{hp} = 28.485$, $K_{bp} = 28.898$

3. Откроем модель sk3pole.cir с фильтрами Баттерворта верхних и нижних частот порядка n=3 на частоту среза $f_0=10k$. Измерим скорости спада в dB на октаву и затухания на частотах $f_0/2$, $2f_0$:

ВЧ: затухание на $f_0/2:-18~dB$, скорость спада $-15\frac{dB}{\rm дек}$ НЧ: затухание на $2f_0:-18~dB$, скорость спада $15\frac{dB}{\rm дек}$.

Измерим уровни затухания фильтров Чебышева на частотах $f_0/2$, $2f_0$:

ВЧ: затухание на $f_0/2:-30~dB$, скорость спада $-18\frac{dB}{\text{дек}}$ НЧ: затухание на $2f_0:-30~dB$, скорость спада $18\frac{dB}{\text{дек}}$.

4. Откроем прототип sk4pole.cir, реализуем 4-полюсной полосовой фильтр Чебышева с $f_0=1k,~\epsilon=1, Q=\frac{f_0}{\Delta f}=6$. Измерим затухания на частотах $f_0/2,~2f_0,~f_0/10,~10f_0.$

f	$f_0/2$	$2f_0$	$f_0/10$	10f_0
затухание	1.83	1.75	-27.9	-27.9

Задание №5. Звенья с двойной обратной связью.

1. Полосовое звено с $f_0=5k,\; K_0=5,\; Q=15$

 $f_{max}=4.980k, \Delta f=338$ — ширина полосы по уровню 0.7. $Q=rac{f_{max}}{\Delta f}=14.7, \ QK_0=73.5$ — пиковое усиление.

Построим график зависимости частоты пика от R_2

3. $C^* = \nu_1 = 11.63$ нФ, $R^* = R/\nu_2 = 8.61$ кОм. Затухания:

Задание №6. Полосовое звено на сдвоенном усилителе.

Рис. 7: Полосовой фильтр на сдвоенном операционном усилителе.

- **1**. Откроем модель **amp2bp.cir**. По частотной характеристике звена оценим его параметры: $f_0 =$ $10k,\ Q=9.7.$ Измерим значение добротности при $R_2=6400k.$
- **2**. Измерим частоту и уровень пика при $R_5=1.11k$ ($\gamma=\frac{R_5}{R_4+R_5}=0.1$): f=31.415k, уровень пика - 24.079.

Задание №7. Звенья эллиптических фильтров.

1. Реализуем трехполюсной эллиптический фильтр нижних частот с параметрами $\eta=1.5,\ f_0=1k,\ \epsilon=1,\ \eta_1=35.61,\ \nu_z=1.67512,\ \nu_0=0.34797,\ \nu_p=0.94016,$ затухание — 31.03 dB

Измерим границу η полосы задержания, положение нуля и уровень затухания η_1 :

 $\epsilon = 0.64$ - неравномерность, $\eta = 1.478k$ - граница полосы задержания

 $\eta_1 = 3.16$ - уровень затухания, положение нуля: 1.672k

Рис. 8: АЧХ и ФЧХ фильтра нижних частот.

2. Реализуем фильтр верхних частот с теми же параметрами. Измерим границу η полосы задержания, положение нуля и уровень затухания.

$$\varepsilon = 0.59, \ \eta = 663.68, \ \eta_1 = 10.04$$

Рис. 9: АЧХ и ФЧХ фильтра верхних частот.