EXPERIMENT -3

AIM

To perform EDA on the given data set.
Explanation
The primary aim with exploratory analysis is to examine the data for distribution, outliers and
anomalies to direct specific testing of your hypothesis.
ALGORITHM
STEP 1:
Import the required packages(pandas,numpy,seaborn).
STEP 2:
Read the given csv file.
STEP 3:
Convert the file into a dataframe and get information of the data.
STEP 4:
Remove the non numerical data columns using drop() method.
STEP 5:
Replace the null values using (.fillna).
STEP 6:
returns object containing counts of unique values using (value_counts()).
STEP 7:
Plot the counts in the form of Histogram or Bar Graph.
STEP 8:
find the pairwise correlation of all columns in the dataframe(.corr()).
STEP 9:
Save the final data set into the file.

import pandas as pd
import numpy as np
import seaborn as sns

df=pd.read_csv("titanic_dataset.csv")

df.info()

C < class 'pandas.core.frame.DataFrame'>
 RangeIndex: 891 entries, 0 to 890
 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	female	38.0	1	0	PC 17599	71.

df.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0

```
Age
                         177
      SibSp
                          0
      Parch
                          0
      Ticket
                           0
      Fare
      Cabin
                         687
      Embarked
                          2
      dtype: int64
df.drop("Cabin",axis=1,inplace=True)
df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 891 entries, 0 to 890
      Data columns (total 11 columns):
       # Column Non-Null Count Dtype
       ---
                             -----
        0 PassengerId 891 non-null
                                                   int64
       PassengerId 891 non-null int64

Survived 891 non-null int64

Pclass 891 non-null int64

Name 891 non-null object

Sex 891 non-null object

Age 714 non-null float64

SibSp 891 non-null int64

Parch 891 non-null int64

Ticket 891 non-null object

Fare 891 non-null float64

Embarked 889 non-null object

dtypes: float64(2), int64(5), object(4)
      dtypes: float64(2), int64(5), object(4)
      memory usage: 76.7+ KB
df.isnull().sum()
      PassengerId
      Survived
                             0
      Pclass
                           0
      Name
      Sex
                           0
                        177
      Age
                         0
      SibSp
      Parch
                          0
      Ticket
                          0
      Fare
                            0
      Embarked
                             2
      dtype: int64
df["Age"]=df["Age"].fillna(df["Age"].median())
df.boxplot()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f597af952d0>

df.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	0
SibSp	0
Parch	0
Ticket	0
Fare	0
Embarked	2
dtype: int64	

```
df["Embarked"]=df["Embarked"].fillna(df["Embarked"].mode()[0])
```

```
df["Embarked"].value_counts()
```

```
S 646
C 168
Q 77
```

Name: Embarked, dtype: int64

df["Pclass"].value_counts()

```
3 4911 2162 184
```

Name: Pclass, dtype: int64

```
df["Survived"].value_counts()
```

0 5491 342

Name: Survived, dtype: int64

sns.countplot(x="Survived",data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f597a97c650>

sns.countplot(x="Pclass",data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f597a940610>

sns.countplot(x="Sex",data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f597afd6710>

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	891 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Embarked	891 non-null	object

dtypes: float64(2), int64(5), object(4)

memory usage: 76.7+ KB

sns.displot(df["Fare"])

<seaborn.axisgrid.FacetGrid at 0x7f597ae074d0>

sns.countplot(x="Pclass",hue="Survived",data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5977e65c10>

sns.displot(df[df["Survived"]==0]["Age"])

<seaborn.axisgrid.FacetGrid at 0x7f5977e31e50>

pd.crosstab(df["Pclass"],df["Survived"])

Survived	0	1	
Pclass			
1	80	136	
2	97	87	
3	372	119	

pd.crosstab(df["Sex"],df["Survived"])

Survived	0	1		
Sex				
female	81	233		
male	468	109		

df.corr()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Far
Passengerld	1.000000	-0.005007	-0.035144	0.034212	-0.057527	-0.001652	0.01265
Survived	-0.005007	1.000000	-0.338481	-0.064910	-0.035322	0.081629	0.25730
Pclass	-0.035144	-0.338481	1.000000	-0.339898	0.083081	0.018443	-0.54950
Age	0.034212	-0.064910	-0.339898	1.000000	-0.233296	-0.172482	0.09668
SibSp	-0.057527	-0.035322	0.083081	-0.233296	1.000000	0.414838	0.15965
Parch	-0.001652	0.081629	0.018443	-0.172482	0.414838	1.000000	0.21622
Fare	0.012658	0.257307	-0.549500	0.096688	0.159651	0.216225	1.00000

sns.heatmap(df.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5977e61d10>

