Série 6

David Wiedemann

21 octobre 2020

1

Soit $g \in G$ un élément satisfaisant $g^2 = e_G$, où e_G dénote l'élément

On construit alors l'application de $\mathbb{Z}_{2\mathbb{Z}}$ vers G.

$$\phi_g: [0] \to e_G$$
 $[1] \to g$

Montrons que tous les homomorphismes de $\mathbb{Z}_{2\mathbb{Z}}$ vers G. En effet, supposons qu'il existe un homomorphisme ϕ tel que $\phi(1)^2 \neq e_G$,

$$e_G = \phi([0]) = \phi([1] + [1]) = \phi([1])^2 \neq e_G$$

Ce qui est une contradiction. Donc tous les homomorphismes sont de la

Dénotons par $G_2 = \{g \in G | g^2 = e_G\}$, alors on définit l'application

$$G_2 \mapsto \operatorname{Hom}\left(\mathbb{Z}/_{2\mathbb{Z}}, G\right)$$
 $g \mapsto \phi_g$

 $\mathbf{2}$

Posons, comme dans l'exercice 2, $G = H = \mathbb{Z}/2\mathbb{Z}$. On sait que le groupe $\left(\mathbb{Z}/8\mathbb{Z}\right)^{\times}$ contient 4 éléments :

Clairement, 1 sera l'élément neutre, les 3 éléments restants sont tous des 2-torsions. Donc par la section 1, les seuls morphismes de $\left(\mathbb{Z}/_{8\mathbb{Z}}\right)^{\times}$ sont de la forme ϕ_q .

Définissons donc $\alpha = \phi_3$ et $\beta = \phi_5$. Car $(\mathbb{Z}/8\mathbb{Z})^{\times}$ et $\mathbb{Z}/2\mathbb{Z}$ sont des groupes abéliens, les hypothèses de l'exercice 2 s'appliquent et il existe un unique homomorphisme ϕ de

$$\mathbb{Z}/_{2\mathbb{Z}}\times\mathbb{Z}/_{2\mathbb{Z}}\mapsto(\mathbb{Z}/_{8\mathbb{Z}})^{\times}$$

Il ne reste plus qu'à vérifier qu'il s'agit d'un morphisme bijectif. Si on traduit l'exercice 2 aux conditions de cet exercice, on obtient un diagramme tel que celui-ci:

Dans l'exercice 2, on a trouvé que $\phi(g,h) = \phi_3(g) \cdot \phi_5(h)$ où $g \in G, h \in H$. Pour montrer la bijectivité de ϕ , on montre la surjectivité et l'injectivité. Clairement, chaque élément de $(\mathbb{Z}/_{8\mathbb{Z}})^{\times}$ est atteint, en effet :

$$\phi(0,0) = \phi_3(0) \cdot \phi_5(0) = 1$$

$$\phi(1,0) = \phi_3(1) \cdot \phi_5(0) = 3$$

$$\phi(0,1) = \phi_3(0) \cdot \phi_5(1) = 5$$

$$\phi(1,1) = \phi_3(1) \cdot \phi_5(1) = 7$$

De la liste ci-dessus, il suit également que ϕ est injective.