Triangulation

- Définition
 - Soit E un ensemble de n points de R², on appelle triangulation de E un ensemble de triangles dont les sommets sont les points de E, vérifiant:
 - L'intersection de 2 triangles est soit vide, soit 1 arête commune aux 2 triangles, soit 1 sommet commun aux 2 triangles

- Triangulation maximale
 - Soit T = (S, F, A), une triangulation constituée d'un ensemble de sommets (S), de faces (F) et d'arêtes (A).
 - T est une triangulation maximale si tout segment n'appartenant pas à A joignant deux points quelconques de S coupe au moins une arête de A ailleurs qu'en ses extrémités
 - 1 triangulation maximale pave l'enveloppe convexe

Triangulation non maximale

Triangulation maximale

- Dénombrement d'une triangulation
 - Chaque arête est commune à 2 faces
 - Si on relie par une flèche chaque arête à ses deux triangles adjacents, chaque triangle reçoit 3 flèches et la face externe reçoit autant de flèches qu'elle compte d'arêtes.

- Soit,
 - n_s = le nombre de sommets
 - n_a = le nombre d'arêtes
 - n_{a ext} = le nombre d'arêtes de la face externe
 - n_t = le nombre de triangles
 - n_f = le nombre total de faces (triangles (n_t) + face externe)
 d'où n_f = n_t + 1 donc n_t = n_f 1
 - On a : $2n_a = n_{a \text{ ext}} + 3n_t = n_{a \text{ ext}} + 3(n_{f}-1)$
 - La relation d'Euler étant : $n_s + n_f n_a = 2$ on a $n_f = 2 n_s + n_a$ d'où $2n_a = n_{a_ext} + 3(n_f 1) = n_{a_ext} + 3*(2 n_s + n_a 1)$ d'où

$$n_a = 3(n_s - 1) - n_{a_{ext}}$$

et
 $n_t = 2(n_s - 1) - n_{a_{ext}}$

- Nb : Si tous les sommets sont sur la face externe (polygone convexe sans trous => $n_{a \text{ ext}} = n_{s}$) on a :
 - $n_t = n_s 2$ et $n_a = 2 n_s 3$
- Le nombre d'arêtes et de triangles est donc toujours en O(n)

- Triangulation de Delaunay
 - Soit E un ensemble de n points p₁, ..., p_n de R², on appelle triangulation de Delaunay de E, notée Del(E):
 - Une triangulation de E dont tous les triangles sont circonscrits par un cercle n'englobant aucun des p_i

Triangulation maximale

Triangulation de Delaunay

Triangulation de Delaunay

- Elle peut être construite en reliant par un segment toutes les paires de sites dont les régions de Voronoï correspondantes sont voisines
- On démontre que la triangulation de Delaunay est le dual du Diagramme de Voronoï.

Triangulation de Delaunay

- Propriétés
 - La triangulation de Delaunay est unique car c'est le dual de Voronoï qui lui-même est unique.
 - Toute arête de la frontière de l'enveloppe convexe de E est une arête de Del(E)
 - Critère du cercle : Le cercle circonscrit à un triangle de Del(E) ne contient aucun site en son intérieur.
 - Cette propriété est équivalente à celle de l'angle min-max :
 - D'après sa définition la triangulation de Delaunay est parmi toutes les triangulations maximales de E celle qui maximise l'angle minimum de tous les triangles...
 - $\alpha 1 \gg \alpha 2$

- Triangulation de Delaunay
 - Critère de l'angle Min-Max
 - Il est équivalent de choisir la triangulation qui maximise l'angle minimal ou de choisir celle qui est donnée par le "critère du cercle"
 - Soit T une triangulation maximale de E. Si pour chaque triangle on retient l'angle minimum, on peut alors classer plusieurs triangulations maximales de E :
 - $T_1 < T_2 < T_3$
 - Dans ce cas la triangulation de Delaunay est celle qui maximise l'angle minimum (ici T3)

• Procédure LOP (Locally Optimal Procedure) :

- Soit e une arête interne de DEL(E) et Q le quadrilatère formé par les deux triangles partageant e.
- e est localement optimal si son remplacement par e' brise le critère du cercle.
- Si T est une triangulation maximale de E, et T' une triangulation maximale de E obtenue après succès de la procédure LOP, alors T < T'

- Triangulation de Delaunay
 - Algorithmes de construction
 - Algorithme par balayage [Fortune 87]
 - Algorithme par Divide and Conquer [Lee 80]
 - Complexité
 - On montre, de la même manière que pour l'enveloppe convexe, que la triangulation de Delaunay se réduit au problème du tri.

- Algorithme par divide and conquer (Division-Fusion)
 - Les étapes classiques
 - On trie les points pour diviser l'ensemble
 - On fusionne chaque triangulation gauche et droite
 - On doit supprimer des arêtes rouges et des arêtes bleues
 - On doit rajouter des arêtes (bleues-rouges)
 - On démontre que la fusion est linéaire, donc l'algorithme est en O(n log n)

- Algorithme par divide and conquer (Division-Fusion)
 - Division

Algorithme par divide and conquer

- Fusion
 - On a un triangle courant (p, b, r)
 b et r sont les points de la tangente haute.
 - Tant que b et r ne sont pas les points de la tangente basse
 - r1 est le point extrémité de l'arête issue de r de l'env convexe,
 - r2 est le point extrémité de l'arête suivante issue de r
 - idem pour b1 et b2
 - Tant que r2 appartient à C(r, b, r1) et r2≠r et r2≠p
 - Rajouter l'arête r, r1 dans la liste des arêtes rouges à supprimer
 - r1 prend la place de r2
 - Tant que b2 appartient à C(r, b, b1) et b2≠b et b2≠p
 - Rajouter l'arête b, b1 dans la liste des arêtes bleues à supprimer
 - b1 prend la place de b2
 - Choisir l'arête b, r1 ou r, b1 à rajouter en fonction du critère du cercle

Algorithme par divide and conquer

- Fusion
 - Choisir l'arête b, r1 ou r, b1 à rajouter en fonction du critère du cercle
 - Si b1 n'est pas à l'intérieur du cercle C(r,b,r1) et si r2 n'est pas à l'intérieur du cercle C(r,b,r1)
 - ⇒ choix de l'arête b,r1
 - √ p prend la place de r
 - ✓ r prend la place de r1
 - ✓ On supprime la liste des arêtes rouges marquées comme à supprimer
 - ✓ On réinitialise la liste des arêtes bleues marquées comme à supprimer
 - Si r1 n'est pas à l'intérieur du cercle C(r,b,b1) et si b2 n'est pas à l'intérieur du cercle C(r,b,b1)
 - ⇒ choix de l'arête r,b1
 - ✓ p prend la place de b
 - ✓ b prend la place de b1
 - ✓ On supprime la liste des arêtes bleues marquées comme à supprimer
 - ✓ On réinitialise la liste des arêtes rouges marquées comme à supprimer

- Algorithme par divide and conquer
 - Fusion illustration par l'exemple
 - r2 ∉ C(r, b, r1)
 - b2 ∉ C(r, b, b1)
 - Choix de l'arête b, r1 ou r, b1 (critère du cercle)?
 b1 n'est pas à l'intérieur du cercle C(r,b,r1)
 r2 n'est pas à l'intérieur du cercle C(r,b,r1)
 - → On choisit arête b r1

Algorithme par divide and conquer

- Fusion illustration par l'exemple (suite)
 - Arête b r1 choisie
 - ⇒ p prend la place de r
 - ⇒ r prend la place de r1
 - Suppression liste des arêtes rouges à supp (ens vide)
 - Réinitialisation liste des arêtes bleues à supp (ens vide)

Algorithme par divide and conquer

Fusion illustration par l'exemple (suite)

 $r2 \in C(r, b, r1)$

⇒Rajout arête r,r1 dans la liste des arêtes rouges à supprimer ⇒r1 prend la place de r2

Algorithme par divide and conquer

• Fusion illustration par l'exemple (suite)

```
r2 ∉ C(r, b, r1)
```

Choix b r1 ou r b1?

b1 est à l'intérieur de C(r, b, r1)

Et r2 n'est pas à l'intérieur de C(r, b, b1)

r1 n'est pas à l'intérieur de C(r, b, b1)

Et b2 n'est pas à l'intérieur de C(r, b, r1)

```
⇒Arête r b1 est choisie
```

- ⇒p prend la place de b
- ⇒b prend la place de b1
- ⇒Suppression liste des arêtes bleues à supp (ens vide)
- ⇒Réinitialisation liste des arêtes rouges à supp

Et ainsi de suite jusqu'à ...

