

XVII MultiDark Consolider Workshop

27/01/2021

Dark Matter Production During Reheating (by example)

Marcos A. G. García IFT-UAM

2011.13458

with G. Ballesteros and M. Pierre

2012.10756 2006.03325 2004.08404 1806.01865 with K. Kaneta, Y. Mambrini and K. Olive with Y. Mambrini, K. Olive and S. Verner with K. Kaneta, Y. Mambrini and K. Olive with M. Amin

de Madrid

2. Reheating

4. Constraints

Is a spin- $\frac{3}{2}$ dark matter particle the missing piece in the puzzle?

Described by Rarita-Schwinger Lagrangian

$$\mathcal{L}_{3/2}^0 = -\frac{1}{2} \bar{\Psi}_{\mu} \left(i \gamma^{\mu \rho \nu} \partial_{\rho} + m_{3/2} \gamma^{\mu \nu} \right) \Psi_{\nu}$$

with
$$\gamma^{\mu\nu}=\gamma^{[\mu}\gamma^{\nu]}$$
 and $\gamma^{\mu\nu\rho}=\gamma^{[\mu}\gamma^{\nu}\gamma^{\rho]}$

Not a new idea: the gravitino in supergravity is a well-known non-thermal relic. For WIMP-like models see

- Z. H. Yu et al., Nucl. Phys. B **860** (2012), 115
- R. Ding et al., JCAP 05 (2013), 028
- N. D. Christensen et al., Eur. Phys. J. C 73 (2013) no.10, 2580
- K. G. Savvidy and J. D. Vergados, Phys. Rev. D 87 (2013) 075013

For these there's a \mathbb{Z}_2 symmetry to make it stable.

2. Reheating

4. Constraints

Is a spin- $\frac{3}{2}$ dark matter particle the missing piece in the puzzle?

Described by Rarita-Schwinger Lagrangian

$$\mathcal{L}_{3/2}^{0} = -\frac{1}{2}\bar{\Psi}_{\mu} \left(i\gamma^{\mu\rho\nu}\partial_{\rho} + m_{3/2}\gamma^{\mu\nu} \right) \Psi_{\nu}$$

with
$$\gamma^{\mu\nu}=\gamma^{[\mu}\gamma^{\nu]}$$
 and $\gamma^{\mu\nu\rho}=\gamma^{[\mu}\gamma^{\nu}\gamma^{\rho]}$

Consider instead a minimal set-up,

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{3/2}^{0} + \mathcal{L}_{\nu_{R}}^{0} + yH\bar{\nu}_{L}\nu_{R} + \frac{M_{R}}{2}\bar{\nu}_{R}^{c}\nu_{R}$$

$$+ i\frac{\alpha_{1}}{2M_{P}}\bar{\nu}_{R}\gamma^{\mu}[\gamma^{\rho},\gamma^{\sigma}]\Psi_{\mu}F_{\rho\sigma} + i\frac{\alpha_{2}}{2M_{P}}i\sigma_{2}(D^{\mu}H)^{*}\bar{L}\Psi_{\mu} + \text{h.c.}$$

with usual mixing relations

$$m_1 \simeq \frac{y^2 v^2}{2M_R}, \quad m_2 \simeq M_R, \quad \tan \theta \simeq \frac{y v}{\sqrt{2} M_R}$$

2. Reheating

4. Constraints

Decays

α_1 dominates

$$\tau_{3/2}^{2b} \simeq 1.6 \times 10^{29} \left(\frac{10^{-2}}{y\,\alpha_1}\right)^2 \left(\frac{M_R}{10^{14}\,\mathrm{GeV}}\right)^2 \left(\frac{10^4\,\mathrm{GeV}}{m_{3/2}}\right)^3 \,\mathrm{s}$$

$$\tau_{3/2}^{3b} \simeq 5.6 \times 10^{28} \left(\frac{10^{-2}}{y \, \alpha_1}\right)^2 \left(\frac{M_R}{10^{14} \, {\rm GeV}}\right)^2 \left(\frac{10^4 \, {\rm GeV}}{m_{3/2}}\right)^5 \, {\rm s}$$

α_2 dominates

$$\begin{split} \frac{\tau_{3/2}}{10^{28} \mathrm{s}} &\simeq \begin{cases} 14.8 \left(\frac{10^{-7}}{\alpha_2}\right)^2 \left(\frac{1\,\mathrm{GeV}}{m_{3/2}}\right)^3, & m_{3/2} > m_H \\ 0.6 \left(\frac{10^{-3}}{\alpha_2}\right)^2 \left(\frac{1\,\mathrm{GeV}}{m_{3/2}}\right)^{5.28}, & m_e < m_{3/2} < m_W \\ 4.8 \left(\frac{10^{-3}}{\alpha_2}\right)^2 \left(\frac{1\,\mathrm{GeV}}{m_{3/2}}\right)^5, & m_{3/2} < m_e \end{cases} \end{split}$$

2. Reheating

4. Constraints

Decays

α_1 dominates

$$\tau_{3/2}^{2b} \simeq 1.6 \times 10^{29} \left(\frac{10^{-2}}{y \, \alpha_1}\right)^2 \left(\frac{M_R}{10^{14} \, \mathrm{GeV}}\right)^2 \left(\frac{10^4 \, \mathrm{GeV}}{m_{3/2}}\right)^3 \, \mathrm{s}$$

$$\tau_{3/2}^{3b} \simeq 5.6 \times 10^{28} \left(\frac{10^{-2}}{y \, \alpha_1}\right)^2 \left(\frac{M_R}{10^{14} \, {\rm GeV}}\right)^2 \left(\frac{10^4 \, {\rm GeV}}{m_{3/2}}\right)^5 \, {\rm s}$$

$lpha_2$ dominates

$$\begin{split} \frac{\tau_{3/2}}{10^{28} \mathrm{s}} &\simeq \begin{cases} 14.8 \left(\frac{10^{-7}}{\alpha_2}\right)^2 \left(\frac{1\,\mathrm{GeV}}{m_{3/2}}\right)^3, & m_{3/2} > m_H \\ \\ 0.6 \left(\frac{10^{-3}}{\alpha_2}\right)^2 \left(\frac{1\,\mathrm{GeV}}{m_{3/2}}\right)^{5.28}, & m_e < m_{3/2} < m_W \\ \\ 4.8 \left(\frac{10^{-3}}{\alpha_2}\right)^2 \left(\frac{1\,\mathrm{GeV}}{m_{3/2}}\right)^5, & m_{3/2} < m_e \end{cases} \end{split}$$

2. Reheating

4. Constraints

Production (via scatterings)

α_1 dominates

$$\sigma(s) = \frac{11\alpha_1^2 y^2 s^2}{72\pi m_{3/2}^2 M_R^2 M_P^2}$$

$lpha_2$ dominates

$$\sigma(s) = \frac{\alpha_2^2 s}{9216\pi m_{3/2}^2 M_P^2} \times (639g^2 + 87g'^2 + 144h_t^2 + 32h_\tau^2)$$

2. Reheating

3. Freeze-in

4. Constraints

Production (via inflaton decay)

Assume $\mathcal{L}_{\Phi} \supset y_{\nu} \Phi \bar{\nu}_{R} \nu_{R}$. Via α_{1} ,

 $M_R \ll m_{\Phi}$:

 $M_R \gg m_{\Phi}$:

(via α_2 are 2-loop suppressed)

3. Freeze-in

4. Constraints

Reheating

After inflation, the Universe is reheated through the decay of the inflaton $\boldsymbol{\Phi}$

$$V\!(\Phi) = \lambda M_P^4 \left[\sqrt{6} \tanh \left(\frac{\Phi}{\sqrt{6} M_P} \right) \right]^k \stackrel{\Phi \ll M_P}{\longrightarrow} \lambda \frac{\Phi^k}{M_P^{k-4}}$$

(R. Kallosh and A. Linde, JCAP 07 (2013), 002)

$$\dot{\rho}_{\Phi} + 3H(\rho_{\Phi} + P_{\Phi}) = 0$$
$$3H^2M_P^2 = \rho_{\Phi}$$

where

$$\rho_{\Phi} = \frac{1}{2}\dot{\Phi}^2 + V(\Phi)$$

$$P_{\Phi} = \frac{1}{2}\dot{\Phi}^2 - V(\Phi)$$

1. Model **Building** 2. Reheating 3. Freeze-in

4. Constraints

Inflaton oscillation

Over one oscillation

$$\langle \dot{\Phi}^2 \rangle \simeq \langle \Phi V'(\Phi) \rangle$$

$$\langle P_{\Phi} \rangle \; = \; \frac{k-2}{k+2} \langle \rho_{\Phi} \rangle$$

1. Model Building 2. Reheating 3. Freeze-in

4. Constraints

Inflaton oscillation

 \sim matter

$$ho_{\Phi} =
ho_{
m end} \left(rac{a}{a_{
m end}}
ight)^{-rac{6k}{k+2}} \ a \propto t^{rac{k+2}{3k}}$$

$$t \propto t^{\frac{k+1}{3k}}$$

 \sim radiation

\rightarrow\

2. Reheating

3. Freeze-in

4. Constraints

$$\dot{\rho}_{\Phi} + 3\left(\frac{2k}{k+2}\right)H\rho_{\Phi} = -\Gamma_{\Phi}(t)\rho_{\Phi}$$

$$\dot{\rho}_{R} + 4H\rho_{R} = \Gamma_{\Phi}(t)\rho_{\Phi}$$

$$3M_{P}^{2}H^{2} = \rho_{\Phi} + \rho_{R}$$

$$\Gamma_{\Phi} = \frac{y^2}{8\pi} m_{\Phi}(t) ,$$

$$m_{\Phi}^2 \equiv \partial_{\Phi}^2 V(\Phi) \propto \rho_{\Phi}^{\frac{k-2}{k}}$$

>~~~<

2. Reheating

3. Freeze-in

4. Constraints

$$\dot{\rho}_{\Phi} + 3\left(\frac{2k}{k+2}\right)H\rho_{\Phi} = -\Gamma_{\Phi}(t)\rho_{\Phi}$$

$$\dot{\rho}_{R} + 4H\rho_{R} = \Gamma_{\Phi}(t)\rho_{\Phi}$$

$$3M_{P}^{2}H^{2} = \rho_{\Phi} + \rho_{R}$$

$$\begin{split} \Gamma_{\Phi} \; &=\; \frac{\mu^2}{8\pi m_{\Phi}(t)} \,, \\ m_{\Phi}^2 \; &\equiv\; \partial_{\Phi}^2 \, V(\Phi) \; \propto \; \rho_{\Phi}^{\frac{k-2}{k}} \end{split}$$

>~~~<

2. Reheating

3. Freeze-in

$$\dot{\rho}_{\Phi} + 3\left(\frac{2k}{k+2}\right)H\rho_{\Phi} = -\Gamma_{\Phi}(t)\rho_{\Phi}$$

$$\dot{\rho}_{R} + 4H\rho_{R} = \Gamma_{\Phi}(t)\rho_{\Phi}$$

$$3M_{P}^{2}H^{2} = \rho_{\Phi} + \rho_{R}$$

$$\Gamma_{\Phi} = \frac{y^2}{8\pi} m_{\Phi}(t) ,$$

$$m_{\Phi}^2 \equiv \partial_{\Phi}^2 V(\Phi) \propto \rho_{\Phi}^{\frac{k-2}{k}}$$

2. Reheating

3. Freeze-in

4. Constraints

$$\dot{\rho}_{\Phi} + 3\left(\frac{2k}{k+2}\right)H\rho_{\Phi} = -\Gamma_{\Phi}(t)\rho_{\Phi}$$

$$\dot{\rho}_{R} + 4H\rho_{R} = \Gamma_{\Phi}(t)\rho_{\Phi}$$

$$3M_{P}^{2}H^{2} = \rho_{\Phi} + \rho_{R}$$

$$\Gamma_{\Phi} = \frac{y^2}{8\pi} m_{\Phi}(t) ,$$

$$m_{\Phi}^2 \equiv \partial_{\Phi}^2 V(\Phi) \propto \rho_{\Phi}^{\frac{k-2}{k}}$$

$$\Gamma_{\Phi} t_{
m th} \simeq lpha_{
m SM}^{-16/5} \left(rac{\Gamma_{\Phi} m_{\Phi}^2}{M_P^3}
ight)^{2/5}$$

4. Constraints

Freeze-in during reheating

For the out-of-equilibrium process $i+j+\cdots \to \Psi+a+b+\cdots$,

$$\frac{\partial f_{3/2}}{\partial t} - H|\mathbf{p}| \frac{\partial f_{3/2}}{\partial |\mathbf{p}|} \simeq \frac{1}{2p_0} \int \frac{g_a d^3 \mathbf{p}_a}{(2\pi)^3 2p_{a0}} \frac{g_b d^3 \mathbf{p}_b}{(2\pi)^3 2p_{b0}} \cdots \frac{g_i d^3 \mathbf{p}_i}{(2\pi)^3 2p_{i0}} \frac{g_j d^3 \mathbf{p}_j}{(2\pi)^3 2p_{j0}} \cdots \times (2\pi)^4 \delta^{(4)}(p + p_a + p_b + \cdots - p_i - p_j - \cdots) \times |\mathcal{M}|_{i+i+\cdots \to \Psi + a+b+\cdots}^2 f_i f_i \cdots$$

2. Reheating

3. Freeze-in

4. Constraints

Inflaton decay $\,\Phi ightarrow \Psi + \Psi \,$

$$\frac{\partial f_{3/2}}{\partial t} - H|\mathbf{p}| \frac{\partial f_{3/2}}{\partial |\mathbf{p}|} \simeq \frac{1}{2p_0} \int \frac{g_{3/2} d^3 \mathbf{k}}{(2\pi)^3 2k_0} \frac{d^3 \mathbf{P}}{(2\pi)^3 2P_0} (2\pi)^4 \delta^{(4)} (P - p - k)
\times \frac{2\alpha_1^4 y_\nu^2 m_\Phi^2}{9\pi^4 M_p^4 m_{3/2}^4} \left[5 - 6 \ln \left(\frac{M_R^2}{m_\Phi^2} \right) \right]^2 (2\pi)^3 n_\Phi(t) \delta^{(3)}(\mathbf{P})$$

2. Reheating

4. Constraints

Inflaton decay $\,\Phi o \Psi + \Psi\,$

$$\frac{\partial f_{3/2}}{\partial t} - H|\mathbf{p}| \frac{\partial f_{3/2}}{\partial |\mathbf{p}|} \simeq \frac{1}{2p_0} \int \frac{g_{3/2} d^3 \mathbf{k}}{(2\pi)^3 2k_0} \frac{d^3 \mathbf{P}}{(2\pi)^3 2P_0} (2\pi)^4 \delta^{(4)} (P - p - k)
\times \frac{2\alpha_1^4 y_\nu^2 m_\Phi^2}{9\pi^4 M_p^4 m_{3/2}^4} \left[5 - 6 \ln \left(\frac{M_R^2}{m_\Phi^2} \right) \right]^2 (2\pi)^3 n_\Phi(t) \delta^{(3)}(\mathbf{P})$$

$$\Omega_{3/2}h^2 \simeq 0.1 \left(\frac{\alpha_1}{1.1 \times 10^{-8}}\right)^4 \left(\frac{m_{\Phi}}{3 \times 10^{13} \,\text{GeV}}\right)^5 \left(\frac{0.15 \,\text{eV}}{m_1}\right)^2 \\
\times \left(\frac{10^4 \,\text{GeV}}{m_{3/2}}\right)^3 \left(\frac{T_{\text{reh}}}{10^{10} \,\text{GeV}}\right) \times \frac{(\ln(M_R^2/m_{\phi}^2) - 5/6)^2}{\ln^2(M_R^2/m_{\phi}^2)} \,.$$

DM production from non-quadratic inflaton decay \rightarrow work in progress!

3. Freeze-in

Scatterings $H + \nu \rightarrow \Psi + B$

$$\frac{\partial f_{3/2}}{\partial t} - H|\mathbf{p}| \frac{\partial f_{3/2}}{\partial |\mathbf{p}|} \simeq \frac{1}{2p_0} \int \frac{2d^3\mathbf{p}'}{(2\pi)^3 2p_0'} \frac{d^3\mathbf{k}_1}{(2\pi)^3 2k_1^0} \frac{2d^3\mathbf{k}_2}{(2\pi)^3 2k_2^0} (2\pi)^4 \delta^{(4)}(p+p'-k_1-k_2) \\
\times \left(-\frac{8}{3} \frac{\alpha_1^2 y^2}{m_{3/2}^2 M_R^2 M_P^2} s^2 t \right) \frac{1}{e^{k_1/T} + 1} \frac{1}{e^{k_2/T} - 1}$$

2. Reheating

4. Constraints

Scatterings $H + \nu \rightarrow \Psi + B$

$$\frac{\partial f_{3/2}}{\partial t} - H|\mathbf{p}| \frac{\partial f_{3/2}}{\partial |\mathbf{p}|} \simeq \frac{1}{2p_0} \int \frac{2d^3\mathbf{p}'}{(2\pi)^3 2p_0'} \frac{d^3\mathbf{k}_1}{(2\pi)^3 2k_1^0} \frac{2d^3\mathbf{k}_2}{(2\pi)^3 2k_2^0} (2\pi)^4 \delta^{(4)}(p+p'-k_1-k_2) \\
\times \left(-\frac{8}{3} \frac{\mathbf{\alpha_1}^2 y^2}{m_{3/2}^2 M_R^2 M_P^2} s^2 t \right) \frac{1}{e^{k_1/T} + 1} \frac{1}{e^{k_2/T} - 1}$$

$$\Omega_{3/2}h^2 \simeq 0.1 \left(\frac{\alpha_1}{1.1 \times 10^{-3}}\right)^2 \left(\frac{427/4}{g_{\rm reh}}\right)^{3/2} \left(\frac{T_{\rm reh}}{10^{10} \,{\rm GeV}}\right)^5$$

$$\times \left(\frac{m_1}{0.15 \,{\rm eV}}\right) \left(\frac{10^{14} \,{\rm GeV}}{M_R}\right) \left(\frac{10^4 \,{\rm GeV}}{m_{3/2}}\right)$$

(quadratic inflaton potential)

2. Reheating

4. Constraints

Scatterings $H + \nu \rightarrow \Psi + B$

$$\frac{\partial f_{3/2}}{\partial t} - H|\mathbf{p}| \frac{\partial f_{3/2}}{\partial |\mathbf{p}|} \simeq \frac{1}{2p_0} \int \frac{2d^3\mathbf{p}'}{(2\pi)^3 2p_0'} \frac{d^3\mathbf{k}_1}{(2\pi)^3 2k_1^0} \frac{2d^3\mathbf{k}_2}{(2\pi)^3 2k_2^0} (2\pi)^4 \delta^{(4)}(p+p'-k_1-k_2) \\
\times \left(-\frac{8}{3} \frac{\alpha_1^2 y^2}{m_{3/2}^2 M_R^2 M_P^2} s^2 t \right) \frac{1}{e^{k_1/T} + 1} \frac{1}{e^{k_2/T} - 1}$$

$$\Omega_{3/2}h^2 \simeq 0.1 \left(\frac{\alpha_1}{2 \times 10^{-3}}\right)^2 \left(\frac{427/4}{g_{\rm reh}}\right)^{3/2} \left(\frac{T_{\rm reh}}{10^{10} \,{\rm GeV}}\right)^5 \\
\times \left(\frac{m_1}{0.15 \,{\rm eV}}\right) \left(\frac{10^{14} \,{\rm GeV}}{M_R}\right) \left(\frac{10^4 \,{\rm GeV}}{m_{3/2}}\right) \left(\frac{T_{\rm max}}{T_{\rm reh}}\right)^{10/3}$$

(quartic inflaton potential, $\phi
ightarrow ar{f} f$)

2. Reheating

3. Freeze-in

4. Constraints

Scatterings $H + \nu \rightarrow \Psi + B$

$$\frac{\partial f_{3/2}}{\partial t} - H|\mathbf{p}| \frac{\partial f_{3/2}}{\partial |\mathbf{p}|} \simeq \frac{1}{2p_0} \int \frac{2d^3\mathbf{p}'}{(2\pi)^3 2p_0'} \frac{d^3\mathbf{k}_1}{(2\pi)^3 2k_1^0} \frac{2d^3\mathbf{k}_2}{(2\pi)^3 2k_2^0} (2\pi)^4 \delta^{(4)}(p+p'-k_1-k_2) \\
\times \left(-\frac{8}{3} \frac{\alpha_1^2 y^2}{m_{3/2}^2 M_R^2 M_P^2} s^2 t \right) \operatorname{Br}_{\nu} \left(\frac{24\pi^2 \Gamma_{\Phi} t n_{\Phi}}{m_{\Phi}^3} \right)^2 \left(\frac{m_{\Phi}^2}{4k_1 k_2} \right)^{3/2} \theta(\frac{m_{\Phi}}{2} - k_1) \theta(\frac{m_{\Phi}}{2} - k_2)$$

2. Reheating

4. Constraints

Scatterings $H + \nu \rightarrow \Psi + B$

$$\frac{\partial f_{3/2}}{\partial t} - H|\mathbf{p}| \frac{\partial f_{3/2}}{\partial |\mathbf{p}|} \simeq \frac{1}{2p_0} \int \frac{2d^3\mathbf{p}'}{(2\pi)^3 2p_0'} \frac{d^3\mathbf{k}_1}{(2\pi)^3 2k_1^0} \frac{2d^3\mathbf{k}_2}{(2\pi)^3 2k_2^0} (2\pi)^4 \delta^{(4)}(p+p'-k_1-k_2)
\times \left(-\frac{8}{3} \frac{\alpha_1^2 y^2}{m_{3/2}^2 M_R^2 M_P^2} s^2 t \right) \operatorname{Br}_{\nu} \left(\frac{24\pi^2 \Gamma_{\Phi} t n_{\Phi}}{m_{\Phi}^3} \right)^2 \left(\frac{m_{\Phi}^2}{4k_1 k_2} \right)^{3/2} \theta(\frac{m_{\Phi}}{2} - k_1) \theta(\frac{m_{\Phi}}{2} - k_2)$$

$$\begin{split} \Omega_{3/2}h^2 \; &\simeq 0.1 \left(\frac{\alpha_1}{1.1 \times 10^{-3}}\right)^2 \left(\frac{0.030}{\alpha_{\rm SM}}\right)^{16/5} \left(\frac{m_1}{0.15\,{\rm eV}}\right) \left(\frac{g_{\rm reh}}{427/4}\right)^{7/10} \left(\frac{10^4\,{\rm GeV}}{m_{3/2}}\right) \\ &\times \left(\frac{10^{14}\,{\rm GeV}}{M_R}\right) \left(\frac{m_\Phi}{3 \times 10^{13}\,{\rm GeV}}\right)^{14/5} \left(\frac{T_{\rm reh}}{10^{10}\,{\rm GeV}}\right)^{19/5} \left(\frac{\mathcal{B}_1}{7 \times 10^{-4}}\right) \end{split}$$

Thermalization in non-quadratic reheating not known yet

2. Reheating

3. Freeze-in

4. Constraints

Constraints: $\Omega_{\rm DM} + \gamma + \nu$

CONTRACT OF THE PARTY OF

Inflaton decay

3. Freeze-in

4. Constraints

Constraints: $\Omega_{\mathrm{DM}} + \gamma + \nu + \mathsf{Lyman} - \alpha$

For further details, see Mathias' talk!

CONTRACT OF THE PARTY OF