Solving Parity Games on Integer Vectors

P.A. Abdulla¹ R. Mayr² A. Sangnier³ J. Sproston ⁴

¹ Uppsala University - Sweden

²University of Edinburgh - UK

³LIAFA - Univ Paris Diderot - France

⁴University of Turin - Italy

Highlights - 21st september 2013

- Finite number of control states
- Every state belongs to Player 0 or Player 1
- Colors (in $\{1, ..., k\}$) associated to each state
- Parity winning condition: Player 0 wins iff the highest color seen infinitely often is even

- Finite number of control states
- Every state belongs to Player 0 or Player 1
- Colors (in $\{1, ..., k\}$) associated to each state
- Parity winning condition: Player 0 wins iff the highest color seen infinitely often is even

- Finite number of control states
- Every state belongs to Player 0 or Player 1
- Colors (in {1,...,k}) associated to each state
- Parity winning condition: Player 0 wins iff the highest color seen infinitely often is even

- Finite number of control states
- Every state belongs to Player 0 or Player 1
- Colors (in $\{1, ..., k\}$) associated to each state
- Parity winning condition: Player 0 wins iff the highest color seen infinitely often is even

- Finite number of control states
- Every state belongs to Player 0 or Player 1
- Colors (in {1,...,k}) associated to each state
- Parity winning condition: Player 0 wins iff the highest color seen infinitely often is even

Integer vector games

- Adding counters C_1, \ldots, C_n to the game
- Transitions can decrement and increment the counter values
- Configurations are pairs (q, \mathbf{v}) with:
 - q : control state
 - $\mathbf{v} \in \mathbb{Z}^n$: values for the counters

Which role play the counters in the winning condition and in the enabledness of transitions?

- Transitions are always enabled regardless of the counter values
- If the value of one counter drops below 0, Player 1 wins
- Player 0 wins if no counter drops below 0 and if the parity condition is respected
- Higher value of the counters are always better for Player 0

- Transitions are always enabled regardless of the counter values
- If the value of one counter drops below 0, Player 1 wins
- Player 0 wins if no counter drops below 0 and if the parity condition is respected
- Higher value of the counters are always better for Player 0

- Transitions are always enabled regardless of the counter values
- If the value of one counter drops below 0, Player 1 wins
- Player 0 wins if no counter drops below 0 and if the parity condition is respected
- Higher value of the counters are always better for Player 0

- Transitions are always enabled regardless of the counter values
- If the value of one counter drops below 0, Player 1 wins
- Player 0 wins if no counter drops below 0 and if the parity condition is respected
- Higher value of the counters are always better for Player 0

- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0

- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0

- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0

- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0

- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0

- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0

- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0

- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0

Problems

For $I \in \{Energy, VASS\}$ and a game G:

• $Win(G, I) = \{(q, \mathbf{v}) \in Q \times \mathbb{N}^n \mid$ Player 0 has a winning strategy from $(q, \mathbf{v})\}$

Unknown initial credit problem

- Input: A game G and a semantic $I \in \{Energy, VASS\}$
- Output: Is Win(G, I) not empty?

Fixed initial credit problem

- Input: A game G,a semantic I ∈ {Energy, VASS} and a configuration (q, v)
- Output: Do we have $(q, \mathbf{v}) \in Win(\mathcal{G}, I)$?

Computing the winning set

- Input: A game G and a semantic $I \in \{Energy, VASS\}$
- Output: Can we compute (and represent finitely) Win(G, I)?

Previous results

Theorem

[Chaterjee et al., Concur'12]

The unknown initial credit problem is CONP-complete for energy games.

Theorem

[Abdulla et al., CSL'03]

The fixed initial credit problem is undecidable for VASS games (even with reachability objectives).

Single sided games

Player 1 cannot change the counter values only the control states

Player 1

Theorem

[Raskin et al., AVoCS'04]

The fixed initial credit problem is decidable for single-sided VASS games with reachability objectives.

Upward-closed winning sets

Upward-closed set

A set $S \in Q \times \mathbb{N}^n$ is upward-closed iff for $(q, \mathbf{v}) \in S$ and all $\mathbf{v}' \in \mathbb{N}^n$, $\mathbf{v} \leq \mathbf{v}'$ implies $(q, \mathbf{v}') \in S$.

Dickson's Lemma

Upward-closed set of $Q \times \mathbb{N}^n$ have a finite number of minimal elements.

 To represent an upward-closed set it is hence enough to store its minimal elements

Proposition

For energy games and single-sided VASS games, the winning sets are upward closed.

From energy games to single-sided games

Proposition

Energy games and single-sided VASS games are PTIME interreducible.

Results

Theorem

For single-sided VASS games, the minimal elements of the winning sets are computable.

Corollary

For energy games, the minimal elements of the winning sets are computable.

Hence, for single-sided VASS games and energy games we can solve:

- The unknown initial credit problem
- The fixed initial credit problem

• μ -calculus model checking translates into solving a parity game on the system (plus a new control graph).

- μ -calculus model checking translates into solving a parity game on the system (plus a new control graph).
- In general, this is undecidable for VASS.

- μ -calculus model checking translates into solving a parity game on the system (plus a new control graph).
- In general, this is undecidable for VASS.
- Simple modal logics CTL, EF, EG are fragments of modal μ -calculus.
 - Model checking VASS with them is still undecidable.

- μ -calculus model checking translates into solving a parity game on the system (plus a new control graph).
- In general, this is undecidable for VASS.
- Simple modal logics CTL, EF, EG are fragments of modal μ -calculus.
 - Model checking VASS with them is still undecidable.
- But single-sided parity games on VASS are decidable

- μ -calculus model checking translates into solving a parity game on the system (plus a new control graph).
- In general, this is undecidable for VASS.
- Simple modal logics CTL, EF, EG are fragments of modal μ -calculus.
 - Model checking VASS with them is still undecidable.
- But single-sided parity games on VASS are decidable
- Is there a fragment of μ -calculus where model checking VASS translates into a **single-sided** VASS parity game?

- μ -calculus model checking translates into solving a parity game on the system (plus a new control graph).
- In general, this is undecidable for VASS.
- Simple modal logics CTL, EF, EG are fragments of modal μ -calculus.
 - Model checking VASS with them is still undecidable.
- But single-sided parity games on VASS are decidable
- Is there a fragment of μ-calculus where model checking VASS translates into a single-sided VASS parity game?
- Yes! Intuitively, universal one-step next modalities are guarded s.t. they are applied only at control-states that do not modify counters.
 - Existential one-step next has no restrictions

- μ -calculus model checking translates into solving a parity game on the system (plus a new control graph).
- In general, this is undecidable for VASS.
- Simple modal logics CTL, EF, EG are fragments of modal μ -calculus.
 - Model checking VASS with them is still undecidable.
- But single-sided parity games on VASS are decidable
- Is there a fragment of μ-calculus where model checking VASS translates into a single-sided VASS parity game?
- Yes! Intuitively, universal one-step next modalities are guarded s.t. they are applied only at control-states that do not modify counters.
 - Existential one-step next has no restrictions
- This fragment of μ -calculus is incomparable with EF,EG,CTL, and can express non-trivial properties.

Conclusion

What have we done?

- The winning set of single-sided VASS games can be computed
- Energy games and single-sided VASS games are interreducible
- Our decidability result can be used for model-checking VASS

What's next?

- Use single-sided VASS to verify more complex systems
- Extend our result with other games (imperfect information for instance)
- Extend our result to stochastic games