

Data classification using Bayes classifier with Gaussian mixture model (GMM); regression using linear regression and polynomial curve fitting

| Student's Name: | Mobile No: |
|-----------------|------------|
| Roll Number:    | Branch:    |
| P.A             | ART - A    |

1 a.

|       | Prediction Outcome |     |
|-------|--------------------|-----|
| Label | 100                | 200 |
| True  | 300                | 600 |

Figure 1 Bayes GMM Confusion Matrix for Q = 2

|       | Prediction Outcome |     |
|-------|--------------------|-----|
| Label | 100                | 200 |
| True  | 300                | 600 |

Figure 2 Bayes GMM Confusion Matrix for Q = 4



Data classification using Bayes classifier with Gaussian mixture model (GMM); regression using linear regression and polynomial curve fitting

|       | Prediction Outcome |     |
|-------|--------------------|-----|
| Label | 100                | 200 |
| True  | 300                | 600 |

Figure 3 Bayes GMM Confusion Matrix for Q = 8

|       | Prediction Outcome |     |
|-------|--------------------|-----|
| Label | 100                | 200 |
| True  | 300                | 600 |

Figure 4 Bayes GMM Confusion Matrix for Q = 16

b.

Table 1 Bayes GMM Classification Accuracy for Q = 2, 4, 8 & 16

|    | Classification  |
|----|-----------------|
| Q  | Accuracy (in %) |
| 2  |                 |
| 4  |                 |
| 8  |                 |
| 16 |                 |

- 1. The highest classification accuracy is obtained with Q =.
- 2. Infer whether increasing the value of Q increases/decreases the prediction accuracy.
- 3. State a suitable reason why increasing the value of Q increases/decreases the prediction accuracy.



Data classification using Bayes classifier with Gaussian mixture model (GMM); regression using linear regression and polynomial curve fitting

- 4. As the classification accuracy increases/decreases with the increase in value of Q infer does the number of diagonal elements in the confusion matrix increase/decrease.
- 5. State the reason for the increase/decrease in diagonal elements.
- 6. As the classification accuracy increases/decreases with the increase in value of Q infer does the number of off-diagonal elements increase/decrease.
- 7. State the reason for increase/decrease in off-diagonal elements.
- 8. Inference 8 (You may add or delete the number of inferences).

Note: Dummy values have been filled in the confusion matrices. Replace it with values obtained by you.

2

Table 2 Comparison between Classifiers based upon Classification Accuracy

| S. No. | Classifier                               | Accuracy (in %) |
|--------|------------------------------------------|-----------------|
| 1.     | KNN                                      |                 |
| 2.     | KNN on normalized data                   |                 |
| 3.     | 3. Bayes using unimodal Gaussian density |                 |
| 4.     | Bayes using GMM                          |                 |

- 1. Mention the classifiers with the highest and lowest accuracy.
- 2. Arrange the classifiers in ascending order of classification accuracy. Classifier a < Classifier b < Classifier c < Classifier d.
- 3. State the reasons behind Inference 1 and 2.
- 4. Any other inference (You may add or delete the number of inferences).



2. State reason for Inference 1.

# IC 272: DATA SCIENCE - III LAB ASSIGNMENT – V

Data classification using Bayes classifier with Gaussian mixture model (GMM); regression using linear regression and polynomial curve fitting

PART – B

| 1   |      |                                                                                                                            |
|-----|------|----------------------------------------------------------------------------------------------------------------------------|
| a.  |      |                                                                                                                            |
|     |      |                                                                                                                            |
|     |      |                                                                                                                            |
|     |      |                                                                                                                            |
|     |      |                                                                                                                            |
|     |      |                                                                                                                            |
|     |      |                                                                                                                            |
|     |      |                                                                                                                            |
|     |      |                                                                                                                            |
|     |      |                                                                                                                            |
|     | Figu | ure 5 Univariate linear regression model: Rings vs. the chosen attribute name (replace) best fit line on the training data |
| Inf | erer | nces:                                                                                                                      |
|     | 1.   | The attribute with the highest correlation coefficient was used for predicting the target attribute Rings. Justify.        |
|     | 2.   | Does the best fit line fit the training data perfectly?                                                                    |
|     | 3.   | If not, why?                                                                                                               |
|     | 4.   | Infer upon bias and variance trade-off for the best fit line.                                                              |
| b.  |      |                                                                                                                            |
| Re  | port | the prediction accuracy on training data.                                                                                  |
| c.  |      |                                                                                                                            |
| Re  | port | the prediction accuracy on testing data.                                                                                   |
| Inf | erer | nces:                                                                                                                      |
|     | 1.   | Amongst training and testing accuracy, which is higher?                                                                    |



Data classification using Bayes classifier with Gaussian mixture model (GMM); regression using linear regression and polynomial curve fitting

d.



Figure 6 Univariate linear regression model: Scatter plot of predicted rings from linear regression model vs. actual rings on test data

### Inferences:

- 1. Based upon the spread of the points, infer how accurate the predicted temperature is?
- 2. State the reason for Inference 1.

Note: The above scatter plot is for illustration purposes only. Replace it with scatter plot obtained by you.

2

a.

Report the prediction accuracy on training data.

b.

Report the prediction accuracy on testing data.

- 3. Amongst training and testing accuracy, which is higher?
- 4. State reason for Inference 1.



Data classification using Bayes classifier with Gaussian mixture model (GMM); regression using linear regression and polynomial curve fitting

c.



Figure 7 Multivariate linear regression model: Scatter plot of predicted rings from linear regression model vs. actual rings on test

#### Inferences:

- 1. Based upon the spread of the points, infer how accurate the predicted temperature is?
- 2. State the reason for Inference 1.
- Compare and contrast the performance of univariate linear with multivariate linear regression.
  Note: The above scatter plot is for illustration purposes only. Replace it with scatter plot obtained by you.

3

a.



Figure 8 Univariate non-linear regression model: RMSE vs. different values of degree of polynomial (p = 2, 3, 4, 5) on the training data



Data classification using Bayes classifier with Gaussian mixture model (GMM); regression using linear regression and polynomial curve fitting

#### Inferences:

b.

- 1. Infer whether RMSE value decreases/ increases with respect to the increase in the degree of the polynomial (p = 2, 3, 4, 5).
- 2. Is the increase/decrease uniform or after a certain p-value the increase/decrease becomes gradual?
- 3. State the reason for Inference 1 and 2.
- 4. From the RMSE value, infer which degree curve will approximate the data best.
- 5. Infer based upon bias and variance trade-off with respect to the increase in the degree of the polynomial (p = 2, 3, 4, 5).

Figure 9 Univariate non-linear regression model: RMSE vs. different values of degree of polynomial (p = 2, 3, 4, 5) on the test data

- 1. Infer whether RMSE value decreases/ increases with respect to the increase in the degree of the polynomial (p = 2, 3, 4, 5).
- 2. Is the increase/decrease uniform or after a certain p-value the increase/decrease becomes gradual.
- 3. State the reason for Inference 1 and 2.
- 4. From the RMSE value, infer which degree curve will approximate the data best.
- 5. Infer based upon bias and variance trade-off with respect to the increase in the degree of the polynomial (p = 2, 3, 4, 5).



Data classification using Bayes classifier with Gaussian mixture model (GMM); regression using linear regression and polynomial curve fitting

c.



Figure 10 Univariate non-linear regression model: Rings vs. chosen attribute(replace) best fit curve using best fit model on the training data

### Inferences:

- 1. State the p-value corresponding to the best fit model.
- 2. State the reason behind inference 1.
- 3. Infer based upon bias and variance trade-off with respect to the increase in the degree of the polynomial (p = 2, 3, 4, 5).

d.



Figure 11 Univariate non-linear regression model: Scatter plot of predicted rings vs. actual rings on test data



Data classification using Bayes classifier with Gaussian mixture model (GMM); regression using linear regression and polynomial curve fitting

#### Inferences:

- 1. Based upon the spread of the points, infer how accurate the predicted temperature is?
- 2. State the reason for Inference 1.
- 3. Compare and contrast univariate linear, multivariate linear and non-linear regression model based upon the accuracy of predicted temperature value and spread of data points in Scatter Plot
- 4. State the reason for Inference 3.
- Inference based upon bias and variance trade-off between linear and non-linear regression models.
  Note: The above scatter plot is for illustration purposes only. Replace it with scatter plot obtained by you.

| 4  |  |
|----|--|
| a. |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |

Figure 12 Multivariate non-linear regression model: RMSE vs. different values of degree of polynomial (p = 2, 3, 4, 5) on the training data

- 1. Infer whether RMSE value decreases/ increases with respect to the increase in the degree of the polynomial (p = 2, 3, 4, 5).
- 2. Is the increase/decrease uniform or after a certain p-value the increase/decrease becomes gradual?
- 3. State the reason for Inference 1 and 2.
- 4. From the RMSE value, infer which degree curve will approximate the data best.
- 5. Infer based upon bias and variance trade-off with respect to the increase in the degree of the polynomial (p = 2, 3, 4, 5).



Data classification using Bayes classifier with Gaussian mixture model (GMM); regression using linear regression and polynomial curve fitting

Figure 13 Multivariate non-linear regression model: RMSE vs. different values of degree of polynomial (p = 2, 3, 4, 5) on the test data

#### Inferences:

- 1. Infer whether RMSE value decreases/ increases with respect to the increase in the degree of the polynomial (p = 2, 3, 4, 5).
- 2. Is the increase/decrease uniform or after a certain p-value the increase/decrease becomes gradual.
- 3. State the reason for Inference 1 and 2.
- 4. From the RMSE value, infer which degree curve will approximate the data best.
- 5. Infer based upon bias and variance trade-off with respect to the increase in the degree of the polynomial (p = 2, 3, 4, 5).

c.



Figure 14 Multivariate non-linear regression model: Scatter plot of predicted rings vs. actual rings on test data



Data classification using Bayes classifier with Gaussian mixture model (GMM); regression using linear regression and polynomial curve fitting

#### Inferences:

- 1. Based upon the spread of the points, infer how accurate the predicted temperature is?
- 2. State the reason for Inference 1.
- 3. Compare and contrast univariate linear, multivariate linear, univariate non-linear and multivariate non-linear regression model based upon the accuracy of predicted temperature value and spread of data points in Scatter Plot
- 4. State the reason for Inference 3.
- Inference based upon bias and variance trade-off between linear and non-linear regression models.
  Note: The above scatter plot is for illustration purposes only. Replace it with scatter plot obtained by you.

### Guidelines for Report (Delete this while you submit the report):

- The plot/graph/figure/table should be centre justified with sequence number and caption.
- Inferences should be written as a numbered list.
- Use specific and technical terms to write inferences.
- Values observed/calculated should be rounded off to three decimal places.
- The quantities which have units should be written with units.
- Please fit a confusion matrix/ table in one page only.