PROYECTO COMPILANDO CONOCIMIENTO

MATEMÁTICAS DISCRETAS

Relaciones Binarias

Una Pequeña Introducción

AUTOR:

Rosas Hernandez Oscar Andres

Índice general

1.	Relaciones			
	1.1.	Definición		
		1.1.1.	Dominio e Imagen	4
		1.1.2.	Reflexiva, Simétrica y Transitiva	5
	Funciones			6
	2.1.	Definición		
	2.2.	Dominio e Imagen		
	2.3.	Invecti	ivas. Supravectivas v Bivectivas	9

Capítulo 1

Relaciones

1.1. Definición

Una relación R entre dos conjuntos A y B es ante todo otro conjunto, una relación binaria es aquella que es en el fondo un conjunto de pares ordenados (x,y) donde x es un elemento de A, y así mismo y es un elemento de B.

Este nuevo conjunto R nos muestra como es que esta relacionados algunos (o todos) elementos de A con otros elementos de B.

Definiciones Formales

Una Relación $R: A \to B$ es un subconjunto de $A \times B$.

Solemos escribir la proposición $(x,y) \in R$ como xRy para que se vea más bonito.

Solemos escribir la proposición $(x,y) \notin R$ como $x \not R y$ para que se vea más bonito.

1.1.1. Dominio e Imagen

Dominio

El dominio D_R de una relación $R:A\to B$ es simplemente el subconjunto de A que contiene a todos los elementos que están relacionados hacia algun elemento de B.

$$D_R = \{ a \in A \mid \exists b, \ aRb \}$$
 (1.1)

Imagen

También le llaman Contradominio o Rango, la Imagen I_R de una relación $R:A\to B$ es simplemente el subconjunto de B que contiene a todos los elementos que están relacionados mediante R.

$$I_R = \{ b \in B \mid \exists a, \ aRb \}$$
 (1.2)

1.1.2. Reflexiva, Simétrica y Transitiva

Vamos a definir estas propiedades para una $R: A \to A$.

Reflexiva

Una relación reflexiva es aquella en la que cualquier a tiene que estar relacionada consigo misma.

$$\forall a \in A, \ aRa \tag{1.3}$$

Simétrica

Una relación simétrica es aquella en la que cualquier si existe aRb existe bRa.

$$\forall a, b \in A, \ (aRb) \to (bRa) \tag{1.4}$$

Transitiva

Una relación reflexiva es aquella en la que cualquier a tiene que estar relacionada consigo misma.

$$\forall a, b, c \in A, ((aRb) \land (bRa)) \Rightarrow (aRc)$$
 (1.5)

Relación de Equivalencia

Decimos que R es una relación de equivalencia si es que se cumplen las 3 propiedades antes vistas

Capítulo 2

Funciones

2.1. Definición

Las funciones son más que meras descripciones de relaciones numéricas. En un sentido más general, las funciones pueden comparar y relacionar diferentes tipos de estructuras matemáticas.

Es probable que vea una función como un tipo de fórmula que describe una relación entre dos (o más) cantidades.

Definición Formal

Digamos que tenemos una relación f entre dos conjuntos A y B. Decimos que esta relación es una función si y solo si:

Todo los elementos del dominio tienen un valor asignado:

$$\forall a \in A, \exists b \in B, \ afb \tag{2.1}$$

• Si aRb_1 y aRb_2 entonces $b_1 = b_2$

Pero no es la única forma de definirlo, otra forma que una función es una relación que cumple con la propiedad de que para cada $a \in A$, la relación f contiene exactamente un par ordenado de la forma $(a,b) \in f$.

Ya que solo existe un par ordenado para cada $a \in A$, entonces solemos escribir aRb como f(a) = b.

2.2. Dominio e Imagen

Dominio

El dominio D_f de una función $f:A\to B$ es simplemente el conjunto de A.

Digo, esto se deduce de la definición, ya que es el conjunto de todas las posibles entradas.

Rango

El Rango de una función $f:A\to B$ es el conjunto de todas las posibles salidas de la función.

$$Rango_f = \{ b \in B \mid (a, b) \in f \} == \{ f(a) \mid a \in A \}$$
 (2.2)

2.3. Inyectivas, Suprayectivas y Biyectivas