

Classifying Lifting Movements Based on Height and Weight

Practical Work in AI, 340912, 2024W: 2025-01-13 Vladyslav Protsko, k12147981, vprotsko02@gmail.com

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria iku.at

Data Preprocessing & Analysis

- Removed metadata
- Removed columns not crucially important for my classification task
- Labeled each file with which weight and height was used
- Created artificial data for training and tests based on acquired data (using noise)

	Name	Skeleton_25_marker:Head	Skeleton_25_marker:Head	Skeleton_25_marker:Head	Skeleton_25_marker:Head	Skeleton_25_marker:
		Rotation	Rotation	Rotation	Rotation	Position
Frame	Time (Seconds)	x	Υ	z	w	x
0	0.000000	0.338051	0.701408	-0.261631	0.570349	-96.959770
1	0.008333	0.337889	0.701179	-0.261275	0.570889	-97.037704
2	0.016667	0.337505	0.701169	-0.261027	0.571241	-97.029961
3	0.025000	0.337291	0.700959	-0.260681	0.571784	-97.085304
4	0.033333	0.337045	0.700645	-0.260521	0.572386	-97.044609
5	0.041667	0.336882	0.700365	-0.260233	0.572956	-97.024895
6	0.050000	0.336717	0.700004	-0.260033	0.573584	-96.977043
7	0.058333	0.336602	0.699702	-0.259827	0.574114	-96.878571

Image 1: Example of how the preprocessed data looks li

I made some visualisations of the data gathered to make it clear what I am working with, recognise some patterns and to compare. The next two slides will show two of my visualisations and some comments to them.

- When an uncomfortable way of picking up or incorrect posture/grip then the lines appear to be more chaotic. (ex.: 1,1; 1,4;2,3; 3,1)
- The more comfortable object grip and weight, the less movement detected on different body parts (ex.: 2,2 compare with 3,4 or 1,4 compare with 2,4)
- Heavier objects appear to be more difficult to get a good grip before picking up

Image 2: Visualisation of marker movements through time

- Heavier objects / objects picked up uncomfortably have longer time under smaller angle
- Start/Stop position 160-170 degrees, pick-up point 90-110 degrees (depending on item size, height where object was placed)
- Angle change not completely smooth. It is jittery because, in my opinion, of micro adjustments throughout the pick-up motion (Heavier objects require more micro adjustments), could be just noise

Image 3: Hip-Knee-Ankle angle changes through time

Model Creation & Results

- Created additional data files for training and test sets based on gathered data (48 in total, 12 original, 36 artificial created with noise, used: 10 train and 10 test)
- Random Forest Classifier used: several reasons to this, namely well-suited for high-dimensional data; it is capable of capturing complex, non-linear relationships in the data (ex.: motion data positions can be non-linear); robustness to overfitting
- Changes in angle between Hip, Knee, Ankle was used and the overall changes in the X, Y, Z of each Optitrack marker.
- Force calculation of a body part (in my case knee). Formula for force: F = m * a, where

$$a(t) = \frac{\Delta v}{\Delta t} = \frac{v(t) - v(t-1)}{t - (t-1)}$$

- The model performs a classification task, predicting the weight of the object picked up and height of pick-up from the passed on data
- For the test set I got the following results:

Weight Classification Report:									
	precision	recall	f1-score	support					
0	1.00	0.75	0.86	4					
1	1.00	1.00	1.00	3					
2	0.75	1.00	0.86	3					
accuracy			0.90	10					
macro avg	0.92	0.92	0.90	10					
weighted avg	0.93	0.90	0.90	10					
Height Classification Report:									
	precision	recall	f1-score	support					
0	1.00			7					
1	1.00	1.00	1.00	3					
accuracy			1.00						
macro avg									
weighted avg	1.00	1.00	1.00	10					
Weight Classification Accuracy: 0.9									
Height Classification Accuracy: 1.0									
Pair Accuracy	of Correct	Weight an	d Height Pı	redictions:	0.90				

File	Predicted Weight	Actual Weight	Weight Correct	Predicted Height	Actual Height	Height Correct
medium_floor_uncomf_data_artificial_3.csv	medium	medium	TRUE	floor	floor	TRUE
heavy_floor_handles_data_artificial_1.csv	heavy	heavy	TRUE	floor	floor	TRUE
heavy_floor_flat_data.csv	medium	heavy	FALSE	floor	floor	TRUE
Light_floor2_data.csv	light	light	TRUE	floor	floor	TRUE
medium_kneeheight_data_artificial_2.csv	medium	medium	TRUE	not_floor	not_floor	TRUE
medium_floor_data_artificial_1.csv	medium	medium	TRUE	floor	floor	TRUE
Light_floor2_data_artificial_1.csv	light	light	TRUE	floor	floor	TRUE
heavy_floor_overhead_data_artificial_1.csv	heavy	heavy	TRUE	floor	floor	TRUE
heavy_kneeheight_data_artificial_2.csv	heavy	heavy	TRUE	not_floor	not_floor	TRUE
light_kneeheight_data_artificial_2.csv	light	light	TRUE	not_floor	not_floor	TRUE

Vladyslav Protsko k12147981 - Classifying Lifting Movements Based on Height and Weight

Using the Model

- Model saved to pickle file (.pkl)
- Add raw Optitrack data to specified folder
- Run the code, it will preprocess the file and then make predictions based on the loaded model and output the results
- The result can then be used to provide recommendations based on the size of object and lifting height

