Arquitetura Form 7

Nível de lógica digital: Lógica. Portas lógicas.

* Indica uma pergunta obrigatória NOME/MATRÍCULA * 1. 2. 1. Selecione a alternativa que define melhor o que se entende por proposição lógica Marcar apenas uma oval. Frase exclamativa Pergunta sobre sistemas digitais Afirmativa de qualquer natureza Argumento lógico correto) Silogismo lógico 3. 2. Seja uma proposição simples qualquer. Quais são os valores lógicos que ela pode assumir? Como esses valores se relacionam com sistemas digitais?

4.	3. Sejam as proposições p : 12 + 4 = 7, q : 3>7. Pode-se afirmar que					
	Marque todas que se aplicam.					
	p é uma proposição simples q é uma proposição simples fp ou q' não é uma proposição simples fp ou q' é uma proposição composta V('p ou q') = Verdadeiro					
5.	4. A respeito do resultado da operação de disjunção de proposições pode-se afirmar que					
	Marcar apenas uma oval.					
	É suficiente que um dos operandos seja verdadeiro para a proposição composta ser verdadeira					
	É suficiente que um dos operandos seja verdadeiro para a proposição composta ser falsa					
	É suficiente que um dos operandos seja falso para a proposição composta ser verdadeira					
	É suficiente que um dos operandos seja falso para a proposição composta ser falsa					
	O resultado sempre será falso					
	O resultado sempre será verdadeiro					
6.	5. Seja a expressão lógica definida por: $X = p.q+r.[\sim r.(r+\sim p)]$. Qual é o valor de X_1 se $p=q=1; r=0$?					

7.	6. Portas lógicas ou <i>gates</i> são dispositivos eletrônicos que implementam operações lógicas. A operação de conjunção é implementado pela porta:				
	Marcar apenas uma oval.				
	AND				
	OR				
	Inversor				
	NOT				
	NAND				
8.	7. Seja a função lógica $X(p,q,r,s)$. Quantas combinações possíveis das variáveis lógicas independentes podem ser construídas?				
	Marcar apenas uma oval.				
	4				
	8				
	<u> </u>				
	32				
	<u>64</u>				
9.	8. Quais são as combinações de p, q e r da questão 6 que produzem um valor				
	lógico igual a 1?				
	Marque todas que se aplicam.				
	<u> </u>				
	001				
	□ 010				
	☐ 011 ☐ 100				
	☐ 100 ☐ 101				
	□ 110				

10.	9. As portas lógicas permitem construir circuitos. Supondo que eu construa um circuito em que a saída de uma porta AND, com dois sinais a e b de entrada, seja conectada a um inversor. A saída do inversor seja conectada a uma entrada de uma porta OR de duas entradas, enquanto a outra entrada está conectada a um sinal c. Se o nível lógico dos sinais for a =H; b = c =L.					
11.	10. Apresentar a expressão lógica que define o circuito.					
12.	11. Apresentar a tabela verdade que representa a saída para todas as combinações das entradas.					
13.	12. Propor um circuito que possua três entradas <i>A</i> , <i>B</i> e <i>C</i> . A saída S sempre será ativada quando pelo menos uma das entradas <i>A</i> ou <i>B</i> estiverem ativadas. Também será ativada quando duas entradas estiverem conjuntamente ativadas. Utilizar portas AND, OR e inversores de duas entradas.					

Este conteúdo não foi criado nem aprovado pelo Google.

Google Formulários