Практика 9. Вероятностные алгоритмы: попарно-независимые случайные величины, неравенство Чебышёва

- 1. Пусть n простое, a и b выбраны равномерно и независимо из \mathbb{Z}_n . Пусть $Y_i \equiv ai + b \mod n$. Покажите, что при $i \not\equiv j \mod n$ случайные величины Y_i и Y_j попарно-независимы и распределены равномерно на \mathbb{Z}_n .
- 2. Пусть $X_1, X_1, ... X_n$ попарно независимые случайные величины. Пусть $X = \sum_{i=1}^n X_i$. Покажите, что $\sigma_X^2 = \sum_{i=1}^n \sigma_{X_i}^2$.
- 3. Используя неравенство Чебышёва, оцените сверху вероятность того, что $X>\beta n\ln(n)$, где X случайная величина из задачи о коллекционировании марок (соответствующая количеству попыток необходимых, чтобы вытащить марки n разных типов), а константа $\beta>1$.
- 4. Рассмотрим задачу, где n шаров равномерно и независимо распределяются по n корзинам. Покажите, что для достаточно больших n матожидание числа пустых корзин приближается к $\frac{n}{e}$. Какое матожидание числа пустых корзин, когда мы бросаем m шаров, а не n?
- 5. Как обобщить попарно-независимые случайные величины на случай k-независимых случайных величин?