$f_0(1500)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See also the mini-reviews on scalar mesons under $f_0(500)$ (see the index for the page number) and on non- $q\bar{q}$ candidates in PDG 06, Journal of Physics **G33** 1 (2006).

$f_0(1500)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1504 ± 6 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.					
$1468 + 14 + 23 \\ -15 - 74$	5.5k	$^{ m 1}$ ABLIKIM	13N	BES3	$e^+e^- o J/\psi o \gamma\eta\eta$
$1466 \pm 6 \pm 20$		ABLIKIM	06V	BES2	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$
1515 ± 12		² BARBERIS	00A		450 $pp \rightarrow p_f \eta \eta p_S$
1511 ± 9		^{2,3} BARBERIS	00 C		$450 pp \rightarrow p_f 4\pi p_s$
$1510\pm~8$		² BARBERIS	00E		450 $pp \rightarrow p_f \eta \eta p_S$
1522 ± 25		BERTIN	98		$0.05-0.405 \ \overline{n}p \rightarrow \pi^{+}\pi^{+}\pi^{-}$
1449 ± 20		² BERTIN	97 C		$0.0 \overline{p}p \rightarrow \pi^{+}\pi^{-}\pi^{0}$
1515 ± 20		ABELE			$0.0 \overline{p} p \rightarrow \pi^0 K_L^0 K_L^0$
1500 ± 15		⁴ AMSLER			$0.0 \; \overline{p} p \rightarrow 3\pi^0$
1505 ± 15		⁵ AMSLER			$0.0 \ \overline{p}p \rightarrow \eta \eta \pi^0$
• • • We do not	use the fo	ollowing data for a	verage	es, fits, li	mits, etc. • • •
$1447 \pm 16 \pm 13$	163	6,7 DOBBS	15		$J/\psi \rightarrow \gamma \pi^+ \pi^-$
$1442\pm~9\pm~4$	261	6,7 DOBBS			$\psi(2S) \rightarrow \gamma \pi^+ \pi^-$
1486 ± 10		² ANISOVICH	09		0.0 p p, πN
1470 ± 60	568	⁸ KLEMPT	80	E791	$D_s^+ \rightarrow \pi^- \pi^+ \pi^+$
$1470 + 6 + 72 \\ -7 - 255$		⁹ UEHARA	08A	BELL	
$1495\pm~4$		AMSLER	06	CBAR	
1539 ± 20	9.9k	AUBERT	060	BABR	$B^+ \rightarrow K^+ K^+ K^-$
1473 ± 5	80k ¹⁰	^{),11} UMAN	06	E835	• • • • • • • • • • • • • • • • • • • •
1478 ± 6		VLADIMIRSK.	06	SPEC	$40 \pi^- p \rightarrow K_S^0 K_S^0 n$
1493 ± 7		¹⁰ BINON	05	GAMS	33 $\pi^- p \rightarrow \eta \eta n$
1524 ± 14	1400	¹² GARMASH	05	BELL	$B^+ \rightarrow K^+ K^+ K^-$
1489^{+}_{-} $^{8}_{4}$		¹³ ANISOVICH	03	RVUE	
1490 ± 30		¹⁰ ABELE	01	CBAR	$0.0 \; \overline{p} d \rightarrow \pi^- 4\pi^0 p$
1497 ± 10		¹⁰ BARBERIS	99	OMEG	450 $pp \rightarrow p_s p_f K^+ K^-$
$1502 \!\pm\! 10$		¹⁰ BARBERIS	99 B	OMEG	450 $pp \rightarrow p_s p_f \pi^+ \pi^-$
$1502 \pm 12 \pm 10$		¹⁴ BARBERIS	99 D		450 $pp \to K^+K^-, \pi^+\pi^-$
1530 ± 45		¹⁰ BELLAZZINI	99	GAM4	$450 pp \rightarrow pp\pi^0\pi^0$
1505 ± 18		¹⁰ FRENCH	99		$300 pp \rightarrow p_f(K^+K^-)p_s$
1447 ± 27		¹⁵ KAMINSKI	99		$\pi\pi \to \pi\pi$, $K\overline{K}$, $\sigma\sigma$
1580 ± 80		¹⁰ ALDE	98		$100 \; \pi^- \rho \rightarrow \; \pi^0 \pi^0 n$
$1499\pm~8$		² ANISOVICH			Compilation
~ 1520		REYES	98	SPEC	800 $pp \rightarrow p_S p_f K_S^0 K_S^0$
1510 ± 20		² BARBERIS	97 B	OMEG	$450 pp \rightarrow pp2(\pi^{+}\pi^{-})$
~ 1475		FRABETTI	97 D	E687	$D_s^{\pm} \rightarrow \pi^{\mp} \pi^{\pm} \pi^{\pm}$

~ 1505		ABELE	96	CBAR	$0.0 \ \overline{p}p \rightarrow 5\pi^0$
$1500\pm$ 8		² ABELE	96 C	RVUE	Compilation
1460 ± 20	120	¹⁰ AMELIN	96 B	VES	$37 \pi^- A \rightarrow \eta \eta \pi^- A$
$1500\pm$ 8		BUGG	96	RVUE	
1500 ± 10		¹⁶ AMSLER	95 D	CBAR	$0.0 \; \overline{p}p \rightarrow \; \pi^0 \pi^0 \pi^0, \; \pi^0 \eta \eta,$
					$_{\pi}$ 0 $_{\pi}$ 0 $_{\eta}$
1445 ± 5		¹⁷ ANTINORI	95	OMEG	300,450 $pp \to pp2(\pi^+\pi^-)$
1497 ± 30		¹⁰ ANTINORI	95	OMEG	300,450 $pp \to pp\pi^+\pi^-$
~ 1505		BUGG	95	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$
$1446\pm$ 5		¹⁰ ABATZIS	94	OMEG	450 $pp \to pp2(\pi^{+}\pi^{-})$
1545 ± 25		¹⁰ AMSLER	94E	CBAR	$0.0 \; \overline{p}p \rightarrow \; \pi^0 \eta \eta'$
1520 ± 25		^{2,18} ANISOVICH	94	CBAR	$0.0~\overline{p}p ightarrow ~3\pi^0,\pi^0\eta\eta$
1505 ± 20		^{2,19} BUGG	94	RVUE	$\overline{p}p \rightarrow 3\pi^0$, $\eta\eta\pi^0$, $\eta\pi^0\pi^0$
1560 ± 25		¹⁰ AMSLER	92	CBAR	$0.0 \overline{p} p \rightarrow \pi^0 \eta \eta$
$1550 \pm 45 \pm 30$		¹⁰ BELADIDZE	92 C	VES	36 π^- Be $\rightarrow \pi^- \eta' \eta$ Be
1449± 4		¹⁰ ARMSTRONG	89E	OMEG	300 $pp \to pp2(\pi^{+}\pi^{-})$
1610 ± 20		¹⁰ ALDE	88		$300 \pi^- N \rightarrow \pi^- N 2 \eta$
~ 1525		ASTON	88D	LASS	11 $K^- p \rightarrow K_S^0 K_S^0 \Lambda$
1570 ± 20	600	¹⁰ ALDE	87		$100 \pi^- p \rightarrow 4\pi^0 n$
1575 ± 45		²⁰ ALDE	86 D	GAM4	$100 \pi^- p \rightarrow 2\eta n$
1568 ± 33		¹⁰ BINON	84C	GAM2	38 $\pi^- p \rightarrow \eta \eta' n$
1592 ± 25		¹⁰ BINON	83	GAM2	$38 \pi^- p \rightarrow 2\eta n$
1525 ± 5		¹⁰ GRAY	83	DBC	$0.0 \; \overline{p} N \rightarrow \; 3\pi$

 $^{^{\}rm 1}$ From partial wave analysis including all possible combinations of 0 $^{++}$, 2 $^{++}$, and 4 $^{++}$ resonances.

- ²T-matrix pole.
- ³ Average between $\pi^+\pi^-2\pi^0$ and $2(\pi^+\pi^-)$.
- ⁴ T-matrix pole, supersedes ANISOVICH 94.
- ⁵ T-matrix pole, supersedes ANISOVICH 94 and AMSLER 92.
- ⁶ Using CLEO-c data but not authored by the CLEO Collaboration.
- ⁷ From a fit to a Breit-Wigner line shape with fixed $\Gamma=109$ MeV.
- ⁸ Reanalysis of AITALA 01A data. This state could also be $f_0(1370)$.
- ⁹ Breit-Wigner mass. May also be the $f_0(1370)$.
- ¹⁰ Breit-Wigner mass.
- ¹¹ Statistical error only.
- ¹² Breit-Wigner, solution 1, PWA ambiguous.
- 13 K-matrix pole from combined analysis of $\pi^-p \to \pi^0\pi^0$ n, $\pi^-p \to K\overline{K}n$, $\pi^+\pi^- \to \pi^+\pi^-$, $\overline{p}p \to \pi^0\pi^0$ π^0 , $\pi^0\eta\eta$, $\pi^0\pi^0\eta$, $\pi^+\pi^-\pi^0$, $K^+K^-\pi^0$, $K^0_SK^0_S\pi^0$, $K^+K^0_S\pi^-$ at rest, $\overline{p}n\to\pi^-\pi^-\pi^+$, $K^0_SK^-\pi^0$, $K^0_SK^0_S\pi^-$ at rest. ¹⁴ Supersedes BARBERIS 99 and BARBERIS 99B.
- $^{15}\,\mathrm{T\text{-}matrix}$ pole on sheet --+.
- 16 T-matrix pole. Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AM-
- ¹⁷ Supersedes ABATZIS 94, ARMSTRONG 89E. Breit-Wigner mass.
- ¹⁸ From a simultaneous analysis of the annihilations $\overline{p}p \rightarrow 3\pi^0$, $\pi^0\eta\eta$.
- ¹⁹ Reanalysis of ANISOVICH 94 data.
- ²⁰ From central value and spread of two solutions. Breit-Wigner mass.

$f_0(1500)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
109± 7 OUR A	VERAGE				
$136^{+}_{-}\ \begin{array}{l} 41 + 28 \\ -26 - 100 \end{array}$	5.5k 21	ABLIKIM	13N	BES3	$e^+e^- o J/\psi o \gamma\eta\eta$
$108^{+}_{-}\ \overset{14}{11} \pm \ 25$		ABLIKIM	06V	BES2	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$
$110\pm~24$	22	BARBERIS	00A		450 $pp \rightarrow p_f \eta \eta p_S$
102 ± 18		BARBERIS	00 C		$450 pp \rightarrow p_f 4\pi p_s$
110 ± 16	22	BARBERIS	00E		450 $pp \rightarrow p_f \eta \eta p_S$
108± 33		BERTIN	98	OBLX	$0.05-0.405 \ \overline{n}p \rightarrow \pi^{+}\pi^{+}\pi^{-}$
114 ± 30	22	BERTIN	97 C	OBLX	$0.0 \ \overline{p}p \rightarrow \pi^{+}\pi^{-}\pi^{0}$
105 ± 15		ABELE	96 B	CBAR	$0.0 \overline{p}_P \rightarrow \pi^0 K_I^0 K_I^0$
120± 25	24	AMSLER			$0.0 \overline{p}p \rightarrow 3\pi^0$
120± 30	25	AMSLER	95 C	CBAR	$0.0 \ \overline{p}p \rightarrow \eta \eta \pi^0$
ullet $ullet$ We do not	use the follow	wing data for av	erage	s, fits, li	mits, etc. • • •
114 ± 10	22	ANISOVICH	09	RVUE	$0.0 \overline{p}p, \pi N$
$90 \frac{+}{-}$ $\begin{array}{ccc} 2 + & 50 \\ 1 - & 22 \end{array}$	26	UEHARA	08A	BELL	10.6 $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$
121± 8		AMSLER	06		$0.9 \; \overline{p}p \rightarrow K^+ K^- \pi^0$
257± 33	9.9k	AUBERT	060	BABR	$B^+ \rightarrow K^+ K^+ K^-$
108± 9	80k ^{27,28}	UMAN	06	E835	$5.2 \overline{p}p \rightarrow \eta \eta \pi^0$
$119\pm~10$		VLADIMIRSK.	06	SPEC	40 $\pi^- p \to K_S^0 K_S^0 n$
90± 15	27	BINON	05		33 $\pi^- p \rightarrow \eta \eta n$
$136\pm\ 23$	1400 29	GARMASH	05	BELL	$B^+ \rightarrow K^+ K^+ K^-$
102 ± 10	30	ANISOVICH	03	RVUE	
140± 40		ABELE	01	CBAR	$0.0 \; \overline{p} d \rightarrow \; \pi^- 4\pi^0 p$
HTTP://PDG.LBL.GOV Page 3 Created: 5/30/2017 17:21					

```
<sup>27</sup> BARBERIS
                                                                          OMEG 450 pp \rightarrow p_S p_f K^+ K^-
104\pm\ 25
                                        <sup>27</sup> BARBERIS
                                                                         OMEG 450 pp \rightarrow p_s p_f \pi^+ \pi^-
131 \pm 15
                                                                         OMEG 450 pp \rightarrow K^+K^-, \pi^+\pi^-
                                        <sup>31</sup> BARBERIS
 98 \pm \ 18 \pm \ 16
                                        <sup>27</sup> BELLAZZINI
                                                                  99
                                                                          GAM4 450 pp \rightarrow pp\pi^0\pi^0
160\pm~50
                                                                                     300 pp \to p_f(K^+K^-)p_s
                                        <sup>27</sup> FRENCH
                                                                  99
100\pm 33
                                                                          RVUE \pi\pi \to \pi\pi, K\overline{K}, \sigma\sigma
                                        <sup>32</sup> KAMINSKI
108 \pm 46
                                        <sup>27</sup> ALDE
                                                                          GAM4 100 \pi^- p \rightarrow \pi^0 \pi^0 n
280\pm100
                                        <sup>22</sup> ANISOVICH
                                                                  98B
                                                                         RVUE Compilation
130 \pm 20
                                        <sup>22</sup> BARBERIS
                                                                         OMEG 450 pp \rightarrow pp2(\pi^+\pi^-)
120\pm 35
                                                                  97B
                                                                                     D_s^{\pm} \rightarrow \pi^{\mp}\pi^{\pm}\pi^{\pm}
\sim 100\,
                                            FRABETTI
                                                                          CBAR 0.0 \ \overline{p}p \rightarrow 5\pi^{0}
\sim 169
                                            ABELE
                                                                  96
                                        <sup>27</sup> AMELIN
                                                                  96B VES
                                                                                     37 \pi^- A \rightarrow \eta \eta \pi^- A
100\pm 30
                            120
                                            BUGG
132 \pm 15
                                                                  96
                                                                          RVUE
                                                                        CBAR 0.0 \overline{p}p \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \eta \eta
                                        33 AMSLER
                                                                  95D
154\pm 30
                                        <sup>34</sup> ANTINORI
                                                                          OMEG 300,450 pp \to pp2(\pi^+\pi^-)
 65\pm10
                                                                  95
                                        <sup>27</sup> ANTINORI
                                                                          OMEG 300,450 pp \to pp\pi^{+}\pi^{-}
199\pm 30
                                                                  95
                                        <sup>27</sup> ABATZIS
                                                                          OMEG 450 pp \rightarrow pp2(\pi^+\pi^-)
 56\pm~12
                                                                  94
                                                                         CBAR 0.0 \, \overline{p} p \rightarrow \pi^0 \eta \eta'
                                        <sup>27</sup> AMSLER
                                                                  94E
100 \pm 40
148^{+}_{-} \begin{array}{c} 20 \\ 25 \end{array}
                                                                          CBAR 0.0 \, \overline{p}p \rightarrow 3\pi^0 \, \pi^0 \, \eta \eta
                                   <sup>22,35</sup> ANISOVICH
                                                                  94
                                   22,36 BUGG
                                                                          RVUE \overline{p}p \rightarrow 3\pi^0, \eta\eta\pi^0, \eta\pi^0\pi^0
150\pm~20
                                                                          CBAR 0.0 \overline{p}p \rightarrow \pi^0 \eta \eta
                                        <sup>27</sup> AMSLER
245\pm 50
                                                                  92
                                        <sup>27</sup> BELADIDZE
                                                                                     36 \pi^- Be \rightarrow \pi^- \eta' \eta Be
                                                                  92C
                                                                         VES
153 \pm 67 \pm 50
                                        <sup>27</sup> ARMSTRONG 89E
                                                                          OMEG 300 pp \rightarrow pp2(\pi^+\pi^-)
 78 \pm 18
                                        <sup>27</sup> ALDE
                                                                          GAM4 300 \pi^- N \rightarrow \pi^- N 2\eta
170 \pm 40
                                       <sup>27</sup> ALDE
150\pm~20
                            600
                                                                          GAM4 100 \pi^- p \rightarrow 4\pi^0 n
                                        <sup>37</sup> ALDE
                                                                  86D GAM4 100 \pi^- p \rightarrow 2\eta n
265 \pm 65
                                        <sup>27</sup> BINON
260 \pm 60
                                                                          GAM2 38 \pi^- p \rightarrow \eta \eta' n
                                        <sup>27</sup> BINON
                                                                  83
                                                                          GAM2 38 \pi^- p \rightarrow 2\eta n
210 \pm 40
                                        <sup>27</sup> GRAY
                                                                  83
                                                                          DBC
                                                                                     0.0 \ \overline{p} N \rightarrow 3\pi
101 \pm 13
```

 $^{^{21}}$ From partial wave analysis including all possible combinations of 0^{++} , 2^{++} , and 4^{++} resonances. 22 T-matrix pole.

²³ Average between $\pi^+\pi^-2\pi^0$ and $2(\pi^+\pi^-)$.

²⁴ T-matrix pole, supersedes ANISOVICH 94.

 $^{^{25}\,\}text{T-matrix}$ pole, supersedes ANISOVICH 94 and AMSLER 92.

²⁶ Breit-Wigner width. May also be the $f_0(1370)$.

²⁷ Breit-Wigner width.

²⁸ Statistical error only.

²⁹ Breit-Wigner, solution 1, PWA ambiguous.

³⁰ K-matrix pole from combined analysis of $\pi^-p \to \pi^0\pi^0$ n, $\pi^-p \to K\overline{K}n$, $\pi^+\pi^- \to \pi^+\pi^-$, $\overline{p}p \to \pi^0\pi^0\pi^0$, $\pi^0\eta\eta$, $\pi^0\pi^0\eta\eta$, $\pi^+\pi^-\pi^0$, $K^+K^-\pi^0$, $K^0_SK^0_S\pi^0$, ${\it K}^+ \, {\it K}^0_S \, \pi^- \text{ at rest, } \overline{\it p} \, n \rightarrow \ \pi^- \, \pi^- \, \pi^+ \text{, } {\it K}^0_S \, {\it K}^- \, \pi^0 \text{, } {\it K}^0_S \, {\it K}^0_S \, \pi^- \text{ at rest.}$

³¹ Supersedes BARBERIS 99 and BARBERIS 99B.

 $^{^{32}}$ T-matrix pole on sheet --+.

 $^{^{33}}$ T-matrix pole. Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AM-

³⁴ Supersedes ABATZIS 94, ARMSTRONG 89E. Breit-Wigner mass.

³⁵ From a simultaneous analysis of the annihilations $\overline{p}p \to 3\pi^0, \pi^0\eta\eta$.

$f_0(1500)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor
$\overline{\Gamma_1}$	$\pi\pi$	(34.9±2.3) %	1.2
Γ_2	$\pi^+\pi^-$	seen	
Γ3	$2\pi^0$	seen	
Γ_4	4π	(49.5±3.3) %	1.2
Γ_5	$4\pi^0$	seen	
Γ_6	$2\pi^{+}2\pi^{-}$	seen	
Γ_7	$2(\pi\pi)_{S ext{-wave}}$	seen	
Γ ₈	ho ho	seen	
Γ ₉	π (1300) π	seen	
Γ_{10}	$a_1(1260)\pi$	seen	
Γ_{11}	$\eta\eta$	(5.1±0.9) %	1.4
Γ_{12}	$\eta \eta'$ (958)	$(1.9\pm0.8)\%$	1.7
Γ_{13}	KΚ	(8.6±1.0) %	1.1
Γ ₁₄	$\gamma \gamma$	not seen	

CONSTRAINED FIT INFORMATION

An overall fit to 6 branching ratios uses 10 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^2=11.4$ for 6 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one

$f_0(1500) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

 $\Gamma(\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_1\Gamma_{14}/\Gamma$ Γ_{14}/Γ_{14}

• • • We do not use the following data for averages, fits, limits, etc. • •

$$33^{+12}_{-6}{}^{+1809}_{-21}$$
 38 UEHARA 08A BELL $10.6~{\rm e^+\,e^-}
ightarrow~{\rm e^+\,e^-} \pi^0\,\pi^0$

³⁶ Reanalysis of ANISOVICH 94 data.

³⁷ From central value and spread of two solutions. Breit-Wigner mass.

01H L3 $\gamma\gamma \rightarrow K_S^0K_S^0$, $E_{\rm cm}^{ee}=$ 91, 183–209 GeV 00E ALEP $\gamma\gamma \rightarrow \pi^+\pi^-$ **ACCIARRI** not seen BARATE <460 ³⁸ May also be the $f_{\Omega}(1370)$. Multiplied by us by 3 to obtain the $\pi\pi$ value.

ჩი(1500) BRANCHING RATIOS

```
\Gamma(\pi\pi)/\Gamma_{\text{total}}
                                                                                                   \Gamma_1/\Gamma
VALUE
                                           DOCUMENT ID TECN
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.454 \pm 0.104
                                           BUGG
                                                                   RVUE
\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                   \Gamma_2/\Gamma
                                DOCUMENT ID
                                                      TECN COMMENT
                                                       OBLX 0.05-0.405 \bar{n}p \to \pi^{+}\pi^{+}\pi^{-}
                                BERTIN
seen
                                                   98
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                  97D E687 D_{\epsilon}^{\pm} \rightarrow \pi^{\mp}\pi^{\pm}\pi^{\pm}
possibly seen
                                FRABETTI
\Gamma(4\pi)/\Gamma(\pi\pi)
                                                                                                 \Gamma_4/\Gamma_1
                                           DOCUMENT ID
                                                                   TECN COMMENT
1.42±0.18 OUR FIT Error includes scale factor of 1.2.
1.42±0.18 OUR AVERAGE Error includes scale factor of 1.2.
1.37 \pm 0.16
                                           BARBERIS
                                        <sup>39</sup> AMSLER
2.1 \pm 0.6
                                                              98 RVUE
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                        <sup>40</sup> ANISOVICH
                                                             02D SPEC Combined fit
2.1 \pm 0.2
                                        <sup>39</sup> ABFLE
                                                              96 CBAR 0.0 \overline{p}p \rightarrow 5\pi^0
3.4 \pm 0.8
\Gamma(2(\pi\pi)_{S-\text{wave}})/\Gamma(\pi\pi)
                                                                                                 \Gamma_7/\Gamma_1
                                           DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                        <sup>41</sup> ABELE
                                                             01 CBAR 0.0 \, \overline{p} d \rightarrow \pi^- 4\pi^0 p
0.42 \pm 0.26
\Gamma(2(\pi\pi)_{S\text{-wave}})/\Gamma(4\pi)
                                           DOCUMENT ID _____ TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.26 \pm 0.07
                                           ABELE
                                                             01B CBAR 0.0 \, \overline{p} d \rightarrow 5\pi p
\Gamma(\rho\rho)/\Gamma(4\pi)
                                                                                                 \Gamma_8/\Gamma_4
                                           DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                             01B CBAR 0.0 \, \overline{p} d \rightarrow 5\pi p
0.13 \pm 0.08
                                           ABELE
\Gamma(\rho\rho)/\Gamma(2(\pi\pi)_{S\text{-wave}})
                                                                                                 \Gamma_8/\Gamma_7
                                           DOCUMENT ID COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                             00C 450 pp \rightarrow p_f \pi^+ \pi^- 2\pi^0 p_s
3.3 \pm 0.5
                                           BARBERIS
                                                              00C 450 pp \rightarrow p_f 2(\pi^+\pi^-)p_s
2.6 \pm 0.4
                                           BARBERIS
HTTP://PDG.LBL.GOV
                                                                     Created: 5/30/2017 17:21
                                               Page 6
```

 $\Gamma(\pi(1300)\pi)/\Gamma(4\pi)$ Γ_9/Γ_4 TECN COMMENT DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • 0.50 ± 0.25 **ABELE** 01B CBAR $0.0 \, \overline{p} d \rightarrow 5\pi p$ $\Gamma(a_1(1260)\pi)/\Gamma(4\pi)$ Γ_{10}/Γ_{4} DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 0.12 ± 0.05 **ABELE** 01B CBAR $0.0 \, \overline{p} d \rightarrow 5\pi p$ $\Gamma(\eta\eta)/\Gamma_{\text{total}}$ Γ_{11}/Γ DOCUMENT ID We do not use the following data for averages, fits, limits, etc. **ALDE** GAM4 300 $\pi^- N \rightarrow \eta \eta \pi^- N$ large BINON GAM2 38 $\pi^- p \rightarrow 2\eta n$ large $\Gamma(\eta\eta)/\Gamma(\pi\pi)$ Γ_{11}/Γ_{1} TECN COMMENT DOCUMENT ID **0.145±0.027 OUR FIT** Error includes scale factor of 1.5. **0.14** ±0.04 OUR AVERAGE Error includes scale factor of 1.7. See the ideogram below. CBAR $0.9 \overline{p}_p \rightarrow \pi^0 \eta \eta, \pi^0 \pi^0 \pi^0$ 0.080 ± 0.033 **AMSLER** 450 $pp \rightarrow p_f \eta \eta p_s$ **BARBERIS** 00E 0.18 ± 0.03 ⁴² AMSLER 95C CBAR $0.0 \, \overline{p}p \rightarrow \eta \eta \pi^0$ 0.230 ± 0.097 • • • We do not use the following data for averages, fits, limits, etc. • • • ⁴⁰ ANISOVICH 0.11 ± 0.03 02D SPEC Combined fit ⁴³ ABELE 0.078 ± 0.013 96C RVUE Compilation 95D CBAR 0.0 $\bar{p}p \rightarrow \pi^0\pi^0\pi^0$, $\pi^0\eta\eta$, $\pi^0\pi^0\eta$ ⁴⁴ AMSLER 0.157 ± 0.060 WEIGHTED AVERAGE 0.14±0.04 (Error scaled by 1.7) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. **AMSLER** 02 **BARBERIS** 00E **AMSLER** 95C **CBAR** 5.9 (Confidence Level = 0.051) 0.1 0.3 0.5 0.6 $\Gamma(\eta\eta)/\Gamma(\pi\pi)$ Γ_{11}/Γ_{1} Created: 5/30/2017 17:21

HTTP://PDG.LBL.GOV Page 7

```
\Gamma(4\pi^0)/\Gamma(\eta\eta)
                                                                                                        \Gamma_5/\Gamma_{11}
                                               DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                          GAM4 100 \pi^- p \rightarrow 4\pi^0 n
0.8 \pm 0.3
                                               ALDE
\Gamma(\eta\eta'(958))/\Gamma(\pi\pi)
                                                                                                        \Gamma_{12}/\Gamma_{1}
                                               DOCUMENT ID
                                                                          TECN
0.055 ± 0.024 OUR FIT
                                Error includes scale factor of 1.8.
0.095 \pm 0.026
                                               BARBERIS
                                                                                    450 pp \rightarrow p_f \eta \eta p_s
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                           <sup>40</sup> ANISOVICH
0.005 \pm 0.003
                                                                  02D SPEC Combined fit
\Gamma(\eta\eta'(958))/\Gamma(\eta\eta)
                                                                                                      \Gamma_{12}/\Gamma_{11}
                                               DOCUMENT ID
                                                                         TECN COMMENT
0.38\pm0.16 OUR FIT
                             Error includes scale factor of 1.9.
                                           <sup>45</sup> AMSLER
                                                                   95C CBAR 0.0 \, \overline{p} p \rightarrow \eta \eta \pi^0
0.29 \pm 0.10
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                           <sup>40</sup> ANISOVICH
                                                                  02D SPEC Combined fit
0.84 \pm 0.23
                                               ABELE
                                                                   96C RVUE Compilation
                                                                   84C GAM2 38 \pi^- p \rightarrow \eta \eta' n
2.7\ \pm0.8
                                               BINON
\Gamma(K\overline{K})/\Gamma_{\text{total}}
                                                                                                         \Gamma_{13}/\Gamma
                                               DOCUMENT ID
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.044 \pm 0.021
                                               BUGG
                                                                         RVUE
\Gamma(K\overline{K})/\Gamma(\pi\pi)
                                                                                                        \Gamma_{13}/\Gamma_{1}
                                                                   TECN COMMENT
0.246 ± 0.026 OUR FIT
0.241 ± 0.028 OUR AVERAGE
                                     <sup>46</sup> BARGIOTTI
0.25 \pm 0.03
                                                                   OBLX \overline{p}p
                                                                   CBAR 0.0 \, \overline{p} p \rightarrow \, K_{I}^{0} \, K^{\pm} \, \pi^{\mp}
                                     <sup>47</sup> ABELE
0.19 \pm 0.07
• • • We do not use the following data for averages, fits, limits, etc. • •
                                     <sup>40</sup> ANISOVICH
                                                            02D SPEC Combined fit
                                                            99D OMEG 450 pp \to K^+K^-, \pi^+\pi^- 96B CBAR 0.0 \overline{p}p \to \pi^0 K^0_I K^0_I
                                        BARBERIS
0.33 \pm 0.03 \pm 0.07
                                     <sup>48</sup> ABELE
0.20 \pm 0.08
\Gamma(K\overline{K})/\Gamma(\eta\eta)
                                                                                                      \Gamma_{13}/\Gamma_{11}
                                                                                   COMMENT
                                CL%
                                               DOCUMENT ID
                                                                         TECN
                                Error includes scale factor of 1.4.
                                               BARBERIS
   1.85 \pm 0.41
                                                                   00E
                                                                                    450 pp \rightarrow p_f \eta \eta p_s
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                           <sup>40</sup> ANISOVICH
   1.5 \pm 0.6
                                                                   02D SPEC Combined fit
                                           <sup>49</sup> PROKOSHKIN 91
                                                                          GAM4 300 \pi^- p \rightarrow \pi^- p \eta \eta
< 0.4
                                90
 < 0.6
                                                                   83
                                                                          GAM2 38 \pi^- p \rightarrow 2\eta n
 <sup>39</sup> Excluding \rho \rho contribution to 4\pi.
 <sup>40</sup> From a combined K-matrix analysis of Crystal Barrel (0. p\overline{p} \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \eta \eta,
     \pi^0 \pi^0 \eta), GAMS (\pi p \to \pi^0 \pi^0 n, \eta \eta n, \eta \eta' n), and BNL (\pi p \to K \overline{K} n) data.
                                                                           Created: 5/30/2017 17:21
```

- 41 From the combined data of ABELE 96 and ABELE 96C. 42 Using AMSLER 95B $(3\pi^0)$. 43 2π width determined to be 60 \pm 12 MeV. 44 Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D. 45 Using AMSLER 94E $(\eta\eta'\pi^0)$. 46 Coupled channel analysis of $\pi^+\pi^-\pi^0$, $\kappa^+\kappa^-\pi^0$, and $\kappa^\pm\kappa^0_S\pi^\mp$.

- 47 Using π^0 from AMSLER 95B. 48 Using AMSLER 95B $(3\pi^0)$, AMSLER 94C $(2\pi^0\,\eta)$ and SU(3). 49 Combining results of GAM4 with those of WA76 on $K\,\overline{K}$ central production. 50 Using ETKIN 82B and COHEN 80.

f₀(1500) REFERENCES

DOBBS ABLIKIM ANISOVICH	15 13N 09	PR D91 052006 PR D87 092009 IJMP A24 2481	S. Dobbs <i>et al.</i> Ablikim M. <i>et al.</i> V.V. Anisovich, A.V. Sar.	(NWES) (BES III Collab.)
KLEMPT UEHARA ABLIKIM	08 08A 06V	EPJ C55 39 PR D78 052004 PL B642 441	E. Klempt, M. Matveev,S. Uehara <i>et al</i>.M. Ablikim <i>et al</i>.	A.V. Sarantsev (BONN+) (BELLE Collab.) (BES Collab.)
AMSLER AUBERT	06 06O	PL B639 165 PR D74 032003	C. Amsler <i>et al.</i> B. Aubert <i>et al.</i>	(CBAR Collab.) (BABAR Collab.)
PDG	06	JP G33 1	WM. Yao et al.	(PDG Collab.)
UMAN	06	PR D73 052009	I. Uman <i>et al.</i>	(FNAL E835)
VLADIMIRSK		PAN 69 493	V.V. Vladimirsky <i>et al.</i>	(ITEP, Moscow)
		Translated from YAF	69 515.	,
BINON	05	PAN 68 960	F. Binon et al.	
CADMACH	٥٢	Translated from YAF		(DELLE C-II-L)
GARMASH ANISOVICH	05 03	PR D71 092003 EPJ A16 229	A. Garmash <i>et al.</i> V.V. Anisovich <i>et al.</i>	(BELLE Collab.)
BARGIOTTI	03	EPJ C26 371	M. Bargiotti <i>et al.</i>	(OBELIX Collab.)
AMSLER	02	EPJ C23 29	C. Amsler <i>et al.</i>	(OBELIA CONAD.)
ANISOVICH	02D	PAN 65 1545	V.V. Anisovich <i>et al.</i>	
7	025	Translated from YAF		
ABELE	01	EPJ C19 667	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ABELE	01B	EPJ C21 261	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ACCIARRI	01H	PL B501 173	M. Acciarri et al.	(L3 Collab.)
AITALA	01A	PRL 86 765	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
BARATE	00E	PL B472 189	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARBERIS	00A	PL B471 429	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BARBERIS	00C	PL B471 440	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BARBERIS	00D	PL B474 423	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BARBERIS	00E	PL B479 59	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BARBERIS	99	PL B453 305	D. Barberis <i>et al.</i>	(Omega Expt.)
BARBERIS	99B 99D	PL B453 316	D. Barberis <i>et al.</i> D. Barberis <i>et al.</i>	(Omega Expt.)
BARBERIS BELLAZZINI	99D 99	PL B462 462 PL B467 296	R. Bellazzini <i>et al.</i>	(Omega Expt.)
FRENCH	99	PL B460 213	B. French <i>et al.</i>	(WA76 Collab.)
KAMINSKI	99	EPJ C9 141	R. Kaminski, L. Lesniak,	
ABELE	98	PR D57 3860	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ALDE	98	EPJ A3 361	D. Alde <i>et al.</i>	(GAM4 Collab.)
Also		PAN 62 405	D. Alde <i>et al.</i>	(GAMS Collab.)
		Translated from YAF		(=====,
AMSLER	98	RMP 70 1293	C. Amsler	
ANISOVICH	98B	SPU 41 419	V.V. Anisovich <i>et al.</i>	
DEDTIN	00	Translated from UFN		(OBELIX Callata)
BERTIN REYES	98 98	PR D57 55 PRL 81 4079	A. Bertin <i>et al.</i> M.A. Reyes <i>et al.</i>	(OBELIX Collab.)
BARBERIS	90 97B	PL B413 217	D. Barberis <i>et al.</i>	(M/A 102 Collab.)
BERTIN	97C	PL B413 217 PL B408 476	A. Bertin <i>et al.</i>	(WA 102 Collab.) (OBELIX Collab.)
FRABETTI	97D	PL B407 79	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
ABELE	96	PL B380 453	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ABELE	96B	PL B385 425	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ABELE	96C	NP A609 562	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
AMELIN	96B	PAN 59 976	D.V. Amelin et al.	(SERP, TBIL)
		Translated from YAF	59 1021.	

BUGG AMSLER AMSLER AMSLER	96 95B 95C 95D	NP B471 59 PL B342 433 PL B353 571 PL B355 425	D.V. Bugg, A.V. Sarant: C. Amsler <i>et al.</i> C. Amsler <i>et al.</i> C. Amsler <i>et al.</i>	(Crystal Barrel Collab.) (Crystal Barrel Collab.) (Crystal Barrel Collab.)
ANTINORI	95	PL B353 589	F. Antinori <i>et al.</i>	(ATHU, BARI, BIRM+)
BUGG	95	PL B353 378	D.V. Bugg et al.	(LOQM, PNPI, WASH)
ABATZIS	94	PL B324 509	S. Abatzis <i>et al.</i>	(ATHU, BARI, BIRM+)
AMSLER	94C	PL B327 425	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	94D	PL B333 277	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	94E	PL B340 259	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
ANISOVICH	94	PL B323 233	V.V. Anisovich <i>et al.</i>	(Crystal Barrel Collab.)
BUGG	94	PR D50 4412	D.V. Bugg <i>et al.</i>	(LOQM)
AMSLER	92	PL B291 347	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
BELADIDZE	92C	SJNP 55 1535	G.M. Beladidze, S.I. Bit	yukov, G.V. Borisov (SERP+)
		Translated from		(0.1.1.
PROKOSHKIN	91	SPD 36 155	Y.D. Prokoshkin	(GAM2, GAM4 Collab.)
ADMCTDONC	005		DANS 316 900.	(ATIII DADI DIDMI)
ARMSTRONG	89E	PL B228 536		nayoun (ATHU, BARI, BIRM+)
ALDE	88	PL B201 160	D.M. Alde <i>et al.</i>	(SERP, BELG, LANL, LAPP+)
ASTON	88D	NP B301 525	D. Aston <i>et al.</i>	(SLAC, NAGO, CINC, INUS)
ALDE	87	PL B198 286	D.M. Alde <i>et al.</i>	(LANL, BRUX, SERP, LAPP)
ALDE	86D	NP B269 485	D.M. Alde <i>et al.</i>	(BELG, LAPP, SERP, CERN+)
BINON	84C	NC 80A 363	F.G. Binon <i>et al.</i>	(BELG, LAPP, SERP+)
BINON	83	NC 78A 313	F.G. Binon <i>et al.</i>	(BELG, LAPP, SERP+)
Also		SJNP 38 561	F.G. Binon et al.	(BELG, LAPP, SERP+)
GRAY	02	Translated from		(CVDA)
ETKIN	83	PR D27 307	L. Gray et al.	(SYRA)
	82B	PR D25 1786	A. Etkin <i>et al.</i>	(BNL, CUNY, TUFTS, VAND)
COHEN	80	PR D22 2595	D. Cohen <i>et al.</i>	(ANL)