Measure & Conquer

Serge Gaspers

Contents

1	Intr	roduction	1				
2	Maximum Independent Set						
		Simple Analysis					
	2.2	Search Trees and Branching Numbers	5				
		Measure & Conquer Analysis					
		Optimizing the measure					
	2.5	Exponential Time Subroutines	9				
	2.6	Structures that arise rarely	10				
3	Fur	ther Reading	11				

1 Introduction

Recall: Maximal Independent Sets

- A vertex set $S \subseteq V$ of a graph G = (V, E) is an independent set in G if there is no edge $uv \in E$ with $u, v \in S$.
- An independent set is maximal if it is not a subset of any other independent set.
- \bullet Examples:

Enumeration problem: Enumerate all maximal independent sets

ENUM-MIS

Input: graph G

Output: all maximal independent sets of G

Maximal independent sets: $\{a, d\}, \{b\}, \{c\}$

Note: Let v be a vertex of a graph G. Every maximal independent set contains a vertex from $N_G[v]$.

Branching Algorithm for Enum-MIS

Algorithm enum-mis(G, I)

Input: A graph G = (V, E), an independent set I of G.

Output: All maximal independent sets of G that are supersets of I.

1
$$G' \leftarrow G - N_G[I]$$

2 if
$$V(G') = \emptyset$$
 then

// G' has no vertex

4 else

5 | Select
$$v \in V(G')$$
 such that $d_{G'}(v) = \delta(G')$

// v has min degree in G'

Run enum-mis
$$(G, I \cup \{u\})$$
 for each $u \in N_{G'}[v]$

Running Time Analysis

Let $L(n) = 2^{\alpha n}$ be an upper bound on the number of leaves in any search tree of **enum-mis** for an instance with $|V(G')| \le n$.

We minimize α subject to constraints obtained from the branching:

$$L(n) \ge (d+1) \cdot L(n - (d+1))$$

for each integer $d \geq 0$.

$$\Leftrightarrow \qquad 2^{\alpha n} > d' \cdot 2^{\alpha \cdot (n - d')}$$

for each integer $d' \geq 1$.

$$\Leftrightarrow 1 > d' \cdot 2^{\alpha \cdot (-d')}$$

for each integer $d' \geq 1$.

For fixed d', the smallest value for 2^{α} satisfying the constraint is $d'^{1/d'}$. The function $f(x) = x^{1/x}$ has its maximum value for x = e and for integer x the maximum value of f(x) is when x = 3.

Therefore, the minimum value for 2^{α} for which all constraints hold is $3^{1/3}$. We can thus set $L(n) = 3^{n/3}$.

Since the height of the search trees is $\leq |V(G')|$, we obtain:

Theorem 1. Algorithm enum-mis has running time $O^*(3^{n/3}) \subseteq O(1.4423^n)$, where n = |V|.

Corollary 2. A graph on n vertices has $O(3^{n/3})$ maximal independent sets.

Running Time Lower Bound

Theorem 3. There is an infinite family of graphs with $\Omega(3^{n/3})$ maximal independent sets.

2 Maximum Independent Set

MAXIMUM INDEPENDENT SET

Input: graph G

Output: A largest independent set of G.

Branching Algorithm for Maximum Independent Set

```
Algorithm mis(G)
  Input: A graph G = (V, E).
  Output: The size of a maximum i.s. of G.
                                                                                 // G has max degree \leq 2
1 if \Delta(G) \leq 2 then
  return the size of a maximum i.s. of G in polynomial time
3 else if \exists v \in V : d(v) = 1 then
                                                                                         // v has degree 1
  return 1 + \mathbf{mis}(G - N[v])
5 else if G is not connected then
     Let G_1 be a connected component of G
     return mis(G_1) + mis(G - V(G_1))
8
  else
     Select v \in V s.t. d(v) = \Delta(G)
                                                             // v has max degree
9
     return \max(1 + \min(G - N[v]), \min(G - v))
```

Correctness

Line 4:

Lemma 4. If $v \in V$ has degree 1, then G has a maximum independent set I with $v \in I$.

Proof. Let J be a maximum independent set of G. If $v \in J$ we are done because we can take I = J. If $v \notin J$, then $u \in J$, where u is the neighbor of v, otherwise J would not be maximum. Set $I = (J \setminus \{u\}) \cup \{v\}$. We have that I is an independent set, and, since |I| = |J|, I is a maximum independent set containing v.

2.1 Simple Analysis

Lemma 5 (Simple Analysis Lemma). Let

- A be a branching algorithm
- $\alpha > 0$, c > 0 be constants

such that on input I, A calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(|I|^c)$, such that

$$(\forall i: 1 \le i \le k) \quad |I_i| \le |I| - 1, \text{ and} \tag{1}$$

$$2^{\alpha \cdot |I_1|} + \dots + 2^{\alpha \cdot |I_k|} < 2^{\alpha \cdot |I|}. \tag{2}$$

Then A solves any instance I in time $O(|I|^{c+1}) \cdot 2^{\alpha \cdot |I|}$.

Proof. By induction on |I|. W.l.o.g., suppose the hypotheses' O statements hide a constant factor $d \ge 0$, and for the base case assume that the algorithm returns the solution to an empty instance in time $d \le d \cdot |I|^{c+1} 2^{\alpha \cdot |I|}$.

Suppose the lemma holds for all instances of size at most $|I| - 1 \ge 0$, then the running time of algorithm A on instance I is

$$T_{A}(I) \leq d \cdot |I|^{c} + \sum_{i=1}^{k} T_{A}(I_{i})$$
 (by definition)

$$\leq d \cdot |I|^{c} + \sum_{i=1}^{k} d \cdot |I_{i}|^{c+1} 2^{\alpha \cdot |I_{i}|}$$
 (by the inductive hypothesis)

$$\leq d \cdot |I|^{c} + d \cdot (|I| - 1)^{c+1} \sum_{i=1}^{k} 2^{\alpha \cdot |I_{i}|}$$
 (by (1))

$$\leq d \cdot |I|^{c} + d \cdot (|I| - 1)^{c+1} 2^{\alpha \cdot |I|}$$
 (by (2))

$$\leq d \cdot |I|^{c+1} 2^{\alpha \cdot |I|}.$$

The final inequality uses that $\alpha \cdot |I| > 0$ and holds for any $c \geq 0$.

Simple Analysis for mis

- At each node of the search tree: $O(n^2)$ time
- G disconnected: let $s := |V(G_1)|$ (1) If $\alpha \cdot s < 1$, then $s < 1/\alpha$, and the algorithm solves G_1 in constant time (provided that $\alpha > 0$). We can view this rule as a simplification rule, removing G_1 and making one recursive call on $G V(G_1)$. (2) If $\alpha \cdot (n s) < 1$: similar as (1). (3) Otherwise,

$$(\forall s: 1/\alpha \le s \le n - 1/\alpha) \quad 2^{\alpha \cdot s} + 2^{\alpha \cdot (n-s)} \le 2^{\alpha \cdot n}. \tag{3}$$

always satisfied since $2^x + 2^y \le 2^{x+y}$ if $x, y \ge 1$.

• Branch on vertex of degree $d \ge 3$

$$(\forall d: 3 \le d \le n-1) \quad 2^{\alpha \cdot (n-1)} + 2^{\alpha \cdot (n-1-d)} \le 2^{\alpha n}. \tag{4}$$

Dividing all these terms by $2^{\alpha n}$, the constraints become

$$2^{-\alpha} + 2^{\alpha \cdot (-1-d)} \le 1. \tag{5}$$

Compute optimum α

The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α subject to the constraints (the constraint for d=3 is sufficient as all other constraints are weaker).

Alternatively, set $x := 2^{\alpha}$, compute the unique positive real root of each of the *characteristic polynomials*

$$c_d(x) := x^{-1} + x^{-1-d} - 1,$$

and take the maximum of these roots (Kullmann, 1999).

$\mid d \mid$	x	α
3	1.3803	0.4650
4	1.3248	0.4057
5	1.2852	0.3620
6	1.2555	0.3282
7	1.2321	0.3011

Simple Analysis: Result

- use the Simple Analysis Lemma with c=2 and $\alpha=0.464959$
- running time of Algorithm **mis** upper bounded by $O(n^3) \cdot 2^{0.464959 \cdot n} = O(2^{0.4650 \cdot n})$ or $O(1.3803^n)$

Lower bound

$$T(n) = T(n-5) + T(n-3)$$

- for this graph, P_n^2 , the worst case running time is $1.1938...^n \cdot \mathsf{poly}(n)$
- Run time of algo **mis** is $\Omega(1.1938^n)$

Worst-case running time — a mystery

What is the worst-case running time of Algorithm mis?

- lower bound $\Omega(1.1938^n)$
- upper bound $O(1.3803^n)$

2.2 Search Trees and Branching Numbers

Search Trees

Denote $\mu(I) := \alpha \cdot |I|$.

Example: execution of **mis** on a P_n^2

Branching number: Definition

Consider a constraint

$$2^{\mu(I)-a_1} + \dots + 2^{\mu(I)-a_k} < 2^{\mu(I)}$$
.

Its branching number is

$$2^{-a_1} + \cdots + 2^{-a_k}$$

and is denoted by

$$(a_1,\ldots,a_k)$$
.

Clearly, any constraint with branching number at most 1 is satisfied.

Branching numbers: Properties

Dominance For any a_i, b_i such that $a_i \ge b_i$ for all $i, 1 \le i \le k$,

$$(a_1,\ldots,a_k)<(b_1,\ldots,b_k)\,,$$

as
$$2^{-a_1} + \dots + 2^{-a_k} \le 2^{-b_1} + \dots + 2^{-b_k}$$
.
In particular, for any $a, b > 0$,

either
$$(a, a) \le (a, b)$$
 or $(b, b) \le (a, b)$.

Balance If $0 < a \le b$, then for any ε such that $0 \le \varepsilon \le a$,

$$(a,b) < (a-\varepsilon,b+\varepsilon)$$

by convexity of 2^x .

2.3 Measure & Conquer Analysis

- Goal
 - capture more structural changes when branching into subinstances
- How?
 - via a potential-function method called *Measure & Conquer* (Fomin, Grandoni, and Kratsch, 2009)
- Example: Algorithm mis
 - advantage when degrees of vertices decrease

Measure

Instead of using the number of vertices, n, to track the progress of **mis**, let us use a measure μ of G.

Definition 6. A measure μ for a problem P is a function from the set of all instances for P to the set of non negative reals.

Let us use the following measure for the analysis of **mis** on graphs of maximum degree at most 5:

$$\mu(G) = \sum_{i=0}^{5} \omega_i n_i,$$

where $n_i := |\{v \in V : d(v) = i\}|.$

Measure & Conquer Analysis

Lemma 7 (Measure & Conquer Lemma). Let

- A be a branching algorithm
- $c \ge 0$ be a constant, and
- $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(\eta(I)^c)$, such that

$$(\forall i) \quad \eta(I_i) \le \eta(I) - 1, \text{ and} \tag{6}$$

$$2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \le 2^{\mu(I)}. (7)$$

Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$.

Analysis of mis for degree at most 5

For $\mu(G) = \sum_{i=0}^{5} \omega_i n_i$ to be a valid measure, we constrain that

$$w_d \ge 0$$
 for each $d \in \{0, \dots, 5\}$

We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the degree-1 simplification rule and the branching rule):

$$-\omega_d + \omega_{d-1} \le 0 \qquad \text{for each } d \in \{1, \dots, 5\}$$

Lines 1–2 is a halting rule and we merely need that it takes polynomial time so that we can apply Lemma 7. Lines 3–4 of **mis** need to satisfy (7).

The simplification rule removes v and its neighbor u. We get a constraint for each possible degree of u:

$$2^{\mu(G)-\omega_1-\omega_d} \leq 2^{\mu(G)} \qquad \qquad \text{for each } d \in \{1,\dots,5\}$$

$$\Leftrightarrow \qquad \qquad 2^{-\omega_1-\omega_d} \leq 2^0 \qquad \qquad \text{for each } d \in \{1,\dots,5\}$$

$$\Leftrightarrow \qquad \qquad -\omega_1-\omega_d \leq 0 \qquad \qquad \text{for each } d \in \{1,\dots,5\}$$

These constraints are always satisfied since $\omega_d \geq 0$ for each $d \in \{0, \dots, 5\}$. Note: the degrees of u's other neighbors (if any) decrease, but this degree change does not increase the measure.

For lines 5–7 of **mis** we consider two cases.

If $\mu(G_1) < 1$ (or $\mu(G - V(G_1)) < 1$, which is handled similarly), then we view this rule as a simplification rule, which takes polynomial time to compute $\mathbf{mis}(G_1)$, and then makes a recursive call $\mathbf{mis}(G - V(G_1))$. To ensure that instances with measure < 1 can be solved in polynomial time, we constrain that

$$w_d > 0$$
 for each $d \in \{3, 4, 5\}$

and this will be implied by other constraints.

Otherwise, $\mu(G_1) \ge 1$ and $\mu(G - V(G_1)) \ge 1$, and we need to satisfy (7). Since $\mu(G) = \mu(G_1) + \mu(G - V(G_1))$, the constraints

$$2^{\mu(G_1)} + 2^{\mu(G-V(G_1))} < 2^{\mu(G)}$$

are always satisfied since the slope of the function 2^x is at least 1 when $x \ge 1$. (I.e., we get no new constraints on $\omega_1, \ldots, \omega_5$.)

Lines 8–10 of **mis** need to satisfy (7). We know that in G - N[v], some vertex of $N^2[v]$ has its degree decreased (unless G has at most 6 vertices, which can be solved in constant time). Define

$$(\forall d: 2 \le d \le 5)$$
 $h_d := \min_{2 \le i \le d} \{w_i - w_{i-1}\}$

We obtain the following constraints:

$$2^{\mu(G)-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{\mu(G)-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} \le 2^{\mu(G)}$$

$$\Leftrightarrow \qquad \qquad 2^{-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} \le 1$$

for all $d, 3 \le d \le 5$ (degree of v), and all $p_i, 2 \le i \le d$, such that $\sum_{i=2}^{d} p_i = d$ (number of neighbors of degree i).

Applying the lemma

Our constraints

$$\begin{aligned} w_d &\geq 0 \\ -\omega_d + \omega_{d-1} &\leq 0 \\ 2^{-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} &\leq 1 \end{aligned}$$

are satisfied by the following values:

i	w_i	h_i
1	0	0
2	0.25	0.25
3	0.35	0.10
4	0.38	0.03
5	0.40	0.02

These values for w_i satisfy all the constraints and $\mu(G) \leq 2n/5$ for any graph of max degree ≤ 5 . Taking c=2 and $\eta(G)=n$, the Measure & Conquer Lemma shows that **mis** has run time $O(n^3)2^{2n/5}=O(1.3196^n)$ on graphs of max degree ≤ 5 .

2.4 Optimizing the measure

Compute optimal weights

• By convex programming (Gaspers and Sorkin, 2012)

All constraints are already convex, except conditions for h_d

$$(\forall d: 2 \le d \le 5) \quad h_d := \min_{2 \le i \le d} \{w_i - w_{i-1}\}$$

$$\downarrow \downarrow$$

$$(\forall i, d: 2 \le i \le d \le 5) \quad h_d \le w_i - w_{i-1}.$$

Use existing convex programming solvers to find optimum weights.

Convex program in AMPL

```
param maxd integer = 5;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg <= i
                               # maximum weight of W[d]
minimize Obj: Wmax;
                               # minimize the maximum weight
subject to MaxWeight {d in DEGREES}:
   Wmax >= W[d];
subject to gNotation {d in DEGREES : 2 <= d}:</pre>
  g[d] <= W[d]-W[d-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:</pre>
  h[d] \leftarrow W[i] - W[i-1];
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
  2^{-(-W[3] - p2*g[2] - p3*g[3])} + 2^{-(-W[3] - p2*W[2] - p3*W[3] - h[3])} <=1;
2 (-W[3] -p2*W[2] -p3*W[3] + 2 (-W[3] -p2*W[2] -p3*W[3] -H[3]) 

subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:

2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;

subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :
p2+p3+p4+p5=5}:

2^(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])

+ 2^(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;
```

Convex program in Python

```
import pyomo.environ as pyo # install with > pip install pyomo
                                                                                     # maximum vertex degree
 degrees = range(0,maxd+1) # set of all possible degrees
m = pyo.ConcreteModel() # model to be solved
# declare variables
                   = pyo.Var(degrees, domain=pyo.NonNegativeReals)
m.Wmax = pyo.Var(domain=pyo.NonNegativeReals)
                   = pyo.Var(degrees, domain=pyo.NonNegativeReals)
= pyo.Var(degrees, domain=pyo.NonNegativeReals)
# set objective function
m.OBJ = pyo.Objective(expr = m.Wmax, sense=pyo.minimize)
# add constraints
def maxweight_rule(m, d):
     return m.Wmax >= m.W[d]
m.maxweight = pyo.Constraint(degrees, rule=maxweight_rule)
 def gnotation rule(m. d):
      \texttt{return m.g[d]} \iff \texttt{m.W[d]-m.W[d-1]}
m.gnotation = pyo.Constraint(range(2,maxd+1), rule=gnotation_rule)
 def hnotation_rule(m, i, d):
      return m.h[d] <= m.W[i]-m.W[i-1]
{\tt m.hnotation = pyo.Constraint(((i,d) for i in range(2,maxd+1) \setminus {\tt m.hnotation = pyo.Constraint(((i,d) for i in range(2,maxd+1) \setminus {\tt m.hnotation = pyo.Constraint(((i,d) for i in range(2,maxd+1) \setminus {\tt m.hnotation = pyo.Constraint(((i,d) for i in range(2,maxd+1) \setminus {\tt m.hnotation = pyo.Constraint(((i,d) for i in range(2,maxd+1) \setminus {\tt m.hnotation = pyo.Constraint(((i,d) for i in range(2,maxd+1) \setminus {\tt m.hnotation = pyo.Constraint(((i,d) for i in range(2,maxd+1) ((i,d) for i in 
                                                                                                                    for d in range(2,maxd+1) \
                                                                                                  if i<=d), rule=hnotation_rule)</pre>
```

```
<= 1
for p3 in range(0,4) \
                       if p2+p3==3), rule=deg3_rule)
def deg4_rule(m, p2, p3, p4):
 return 2**(-m.W[4] -p2*m.g[2] -p3*m.g[3] -p4*m.g[4]) \
+ 2**(-m.W[4] -p2*m.W[2] -p3*m.W[3] -p4*m.W[4] -m.h[4]) \
      <= 1
m.deg4 = pyo.Constraint(((p2,p3,p4) for p2 in range(0,5) 
                                 for p3 in range(0,5) \
                                 for p4 in range(0,5) \
                       if p2+p3+p4==4), rule=deg4_rule)
<= 1
m.deg5 = pyo.Constraint(((p2,p3,p4,p5) for p2 in range(0,6) 
                                    for p3 in range(0,6)
                                    for p4 in range(0,6) \
                                   for p5 in range(0,6) \
                       if p2+p3+p4+p5==5), rule=deg5_rule)
# set up the solver
solver_manager = pyo.SolverManagerFactory('neos') # we are using a remote server here
                                              # with the solver ipopt
solver = pyo.SolverFactory('ipopt')
results = solver_manager.solve(m, opt=solver)
results.write()
                                              # display results
print("Running time: ", 2**m.Wmax.value, "^n")
                                              # display final running time
m.display()
                                              # display details
```

Optimal weights

i	w_i	h_i
1	0	0
2	0.206018	0.206018
3	0.324109	0.118091
4	0.356007	0.031898
5	0.358044	0.002037

- use the Measure & Conquer Lemma with $\mu(G) = \sum_{i=1}^{5} w_i n_i \leq 0.358044 \cdot n$, c=2, and $\eta(G)=n$
- **mis** has running time $O(n^3)2^{0.358044 \cdot n} = O(1.2817^n)$

2.5 Exponential Time Subroutines

Lemma 8 (Combine Analysis Lemma). Let

- A be a branching algorithm and B be an algorithm,
- $c \ge 0$ be a constant, and
- $\mu(\cdot), \mu'(\cdot), \eta(\cdot)$ be three measures for the instances of A and B,

such that $\mu'(I) \leq \mu(I)$ for all instances I, and on input I, A either solves I by invoking B with running time $O(\eta(I)^{c+1}) \cdot 2^{\mu'(I)}$, or calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(\eta(I)^c)$, such that

$$(\forall i) \quad \eta(I_i) \le \eta(I) - 1, \text{ and}$$
(8)

$$2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \le 2^{\mu(I)}. \tag{9}$$

Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$.

Algorithm mis on general graphs

• use the Combine Analysis Lemma with $A = B = \mathbf{mis}$, c = 2, $\mu(G) = 0.35805n$, $\mu'(G) = \sum_{i=1}^{5} w_i n_i$, and $\eta(G) = n$

- for every instance G, $\mu'(G) \leq \mu(G)$ because $\forall i, w_i \leq 0.35805$
- for each $d \ge 6$,

$$(0.35805, (d+1) \cdot 0.35805) \le 1$$

• Thus, Algorithm **mis** has running time $O(1.2817^n)$ for graphs of arbitrary degrees

2.6 Structures that arise rarely

Rare Configurations

- \bullet Branching on a local configuration C does not influence overall running time if C is selected only a constant number of times on the path from the root to a leaf of any search tree corresponding to the execution of the algorithm
- Can be proved formally by using measure

$$\mu'(I) := \begin{cases} \mu(I) + c & \text{if } C \text{ may be selected in the current subtree} \\ \mu(I) & \text{otherwise.} \end{cases}$$

Avoid branching on regular instances in mis

else

Select $v \in V$ such that

- (1) v has maximum degree, and
- (2) among all vertices satisfying (1), v has a neighbor of minimum degree

return
$$\max (1 + \mathbf{mis}(G - N[v]), \mathbf{mis}(G - v))$$

New measure:

$$\mu'(G) = \mu(G) + \sum_{d=3}^{5} [G \text{ has a } d\text{-regular subgraph}] \cdot C_d$$

where $C_d, 3 \le d \le 5$, are constants. The Iverson bracket $[F] = \begin{cases} 1 \text{ if } F \text{ true} \\ 0 \text{ otherwise} \end{cases}$

Resulting Branching numbers

For each $d, 3 \le d \le 5$ and all $p_i, 2 \le i \le d$ such that $\sum_{i=2}^d p_i = d$ and $p_d \ne d$,

$$\left(w_d + \sum_{i=2}^{d} p_i \cdot (w_i - w_{i-1}), w_d + \sum_{i=2}^{d} p_i \cdot w_i + h_d\right).$$

All these branching numbers are at most 1 with the optimal set of weights

Result

i	w_i	h_i		
1	0	0		
2	0.207137	0.207137		
3	0.322203	0.115066		
4	0.343587	0.021384		
5	0.347974	0.004387		

Thus, the modified Algorithm **mis** has running time $O(2^{0.3480 \cdot n}) = O(1.2728^n)$.

Current fastest algorithm for MIS: $O(1.1996^n)$ (Xiao and Nagamochi, 2017)

3 Further Reading

- Chapter 2, Branching in (Fomin and Kratsch, 2010)
- Chapter 6, Measure & Conquer in (Fomin and Kratsch, 2010)
- Chapter 2, Branching Algorithms in (Gaspers, 2010)

References

- Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch (2009). "A measure & conquer approach for the analysis of exact algorithms". In: *Journal of the ACM* 56.5, 25:1–25:32.
- Fedor V. Fomin and Dieter Kratsch (2010). Exact Exponential Algorithms. Springer. DOI: 10.1007/978-3-642-16533-7.
- Serge Gaspers (2010). Exponential Time Algorithms: Structures, Measures, and Bounds. VDM Verlag Dr. Mueller. Serge Gaspers and Gregory B. Sorkin (2012). "A universally fastest algorithm for Max 2-Sat, Max 2-CSP, and everything in between". In: Journal of Computer and System Sciences 78.1, pp. 305–335.
- Oliver Kullmann (1999). "New Methods for 3-SAT Decision and Worst-case Analysis". In: *Theoretical Computer Science* 223.1-2, pp. 1–72.
- Mingyu Xiao and Hiroshi Nagamochi (2017). "Exact algorithms for maximum independent set". In: *Information and Computation* 255, pp. 126–146. DOI: 10.1016/j.ic.2017.06.001.