## Part 4: Regression

Sam Tyner

**TBD** 

 Sam Tyner
 Part 4: Regression
 TBD 1 / 29

### **Textbook**

These slides are based on the book *OpenIntro Statistics* by David Diez, Christopher Barr, and Mine Çetinkaya-Rundel

The book can be downloaded from https://www.openintro.org/stat/textbook.php

Part 4 Corresponds to Chapters 7, 8 of the text. Sections 4.1-4.3 correspond to chapters 7, 8.1, 8.4 of the text.

 Sam Tyner
 Part 4: Regression
 TBD
 2 / 29

### Outline

- Simple Linear Regression (4.1)
- Multiple Regression (4.2)
- Logistic Regression (4.3)

Sam Tyner **TBD** 3 / 29

# Section 4.1: Simple Linear Regression

Sam Tyner Part 4: Regression TBD 4 / 29

## What is regression?





I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

### Formula for a line

$$Y = a \cdot X + b$$

- Y: dependent variable (response)
- X: independent variable (predictor)
- a: slope (for every 1 unit increase in X, Y increases by a)
- b: intercept (when X = 0, Y = b)
- Deterministic: knowledge of a, X, b means you know Y

Sam Tyner

## Linear Regression

#### Why?

- Have two variables, Y, X and we think that the value of Y depends on the value of X
- Why would we think that? Maybe we have previous knowledge or we looked at a scatterplot of the data



## Linear Regression



Guesstimate the slope and intercept of a line through this data

- *a*: slope = ?
- b: intercept = ?

## Linear Regression



Guesstimate the slope and intercept of a line through this data

- a: slope  $\approx 0.08$
- b: intercept  $\approx 11.48$

The *best fit line* is the equation  $Y = a \cdot X + b$  with values a, b that minimize the **sum of squared residuals**. What does that mean?

• Write the best fit line as  $\hat{Y} = \beta_0 + \beta_1 \cdot X$ .

Sam Tyner Part 4: Regression TBD 10 / 29

The best fit line is the equation  $Y = a \cdot X + b$  with values a, b that minimize the sum of squared residuals. What does that mean?

- Write the best fit line as  $\hat{Y} = \beta_0 + \beta_1 \cdot X$ .
- $\hat{Y}$  is the predicted value of Y by the best fit line

TBD 10 / 29

The best fit line is the equation  $Y = a \cdot X + b$  with values a, b that minimize the sum of squared residuals. What does that mean?

- Write the best fit line as  $\hat{Y} = \beta_0 + \beta_1 \cdot X$ .
- $\hat{Y}$  is the predicted value of Y by the best fit line
- **Residual** what is "left over" after the prediction.

Sam Tyner TBD 10 / 29

The best fit line is the equation  $Y = a \cdot X + b$  with values a, b that minimize the sum of squared residuals. What does that mean?

- Write the best fit line as  $\hat{Y} = \beta_0 + \beta_1 \cdot X$ .
- $\hat{Y}$  is the predicted value of Y by the best fit line
- **Residual** what is "left over" after the prediction.
- Denote residual for observation i by  $e_i = Y_i \hat{Y}_i$

Sam Tyner Part 4: Regression TBD 10 / 29

The best fit line is the equation  $Y = a \cdot X + b$  with values a, b that minimize the sum of squared residuals. What does that mean?

- Write the best fit line as  $\hat{Y} = \beta_0 + \beta_1 \cdot X$ .
- $\hat{Y}$  is the predicted value of Y by the best fit line
- **Residual** what is "left over" after the prediction.
- Denote residual for observation i by  $e_i = Y_i \hat{Y}_i$
- We are minimizing  $\sum_{i=1}^{N} e_i^2$

Sam Tyner Part 4: Regression TBD 10 / 29

# Calculating the best fit line

- $\beta_1 = \frac{s_y}{s_x} \cdot r$
- $s_v$ : standard deviation of the data observations Y
- $s_x$ : standard deviation of the data observations X
- r: correlation between the observations X, Y (measure of association between X, Y)
- $\bullet \ \beta_0 = \bar{y} \beta_1 \cdot \bar{x}$

### Do it in R

```
bf1 <- lm(data = glass, log(Na23) ~ log(Li7))
coef(bf1)</pre>
```

```
## (Intercept) log(Li7)
## 11.48732735 0.07632503
```



### Residual Plot

Look at the residuals *e* by the values of *X*:



Want to see a random scatter of points above and below 0

# $R^2$ : how well does X explain Y?

 $R^2$ , the **coefficient of determination** defines how much of the variability in Y is explainable by the values of X.

$$R^2 = 1 - \frac{Var(e)}{Var(y)}$$

#### Example:

- $Y = \log(Na23)$ . Var(Y) = 0.00089
- $e_i = Y_i \hat{Y}_i = Y_i (11.487 + 0.0763 \cdot X_i)$ . Var(e) = 0.00019
- $\frac{Var(e)}{Var(y)} = \frac{0.00019}{0.00089} = 0.2138$
- $R^2 = 1 \frac{Var(e)}{Var(y)} = 1 0.2138 = 0.7862$

78.62% of the variability in Y is explained by the value of X.

Sam Tyner Part 4: Regression TBD 14 / 29

Section 4.2: Multiple Regression

# Multiple Regression = Multiple Predictors

Multiple regression is the same general idea as simple linear regression, but instead of one predictor variable, X, we have two or more:  $X_1, X_2, \ldots, X_p$  where p is the number of predictor variables.

$$\hat{Y} = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_p \cdot X_p$$

 $\beta_0$  (intercept) and  $\beta_1, \dots, \beta_p$  are called *coefficients* 

- $\beta_0$  is the value of  $\hat{Y}$  when ALL Xs are 0
- $\beta_k, k \in \{1, 2, ..., p\}$  is the amount that Y increases when  $X_k$  increases by 1 unit, and all other X values are held constant

Why?

# Why Multiple Regression?

- May know that more than 1 variable affects the value of Y (background knowledge)
- More predictors generally means better fit, better predictions

Example: Add log value of Neodymium (common glass additive) to the model

```
blfm2 <- lm(log(Na23) \sim log(Li7) + log(Nd146), data = glass)blfm2
```

```
##
## Call:
## lm(formula = log(Na23) ~ log(Li7) + log(Nd146), data = glas
##
## Coefficients:
## (Intercept) log(Li7) log(Nd146)
## 11.53947 0.05774 -0.03699
```

# Multiple Regression Example

Example:  $log(Na23) = \beta_0 + \beta_1 \cdot log(Li7) + \beta_2 \cdot log(Nd146)$ 

Residuals:



$$R^2 = 1 - \frac{Var(e)}{Var(y)} = 1 - \frac{0.000155}{0.00089} = 0.8258$$

What do you think of this model?

 Sam Tyner
 Part 4: Regression
 TBD
 18 / 29

# Multiple Regression Example

Example:  $log(Na23) = \beta_0 + \beta_1 \cdot log(Li7) + \beta_2 \cdot log(Nd146)$ 

Residuals:



$$R^2 = 1 - \frac{Var(e)}{Var(y)} = 1 - \frac{0.000155}{0.00089} = 0.8258$$

Better fit than the simple linear regression, but we uncovered a new pattern: two distinct groups of residuals

 Sam Tyner
 Part 4: Regression
 TBD
 19 / 29

11.523955 0.057276 -0.024866

## Another multiple regression

##

There are 2 manufacturers in the glass data, so we'll add the manufacturer as a variable in the model:

$$\hat{Y} = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3$$

•  $Y = \log(Na23)$ ,  $X_1 = \log(Li7)$ ,  $X_2 = \log(Nd146)$ ,  $X_3 = \text{manufacturer}$ .

```
blfm3 <- lm(log(Na23) ~ log(Li7) + log(Nd146) + mfr , data = glass) blfm3
```

```
##
## Call:
## lm(formula = log(Na23) ~ log(Li7) + log(Nd146) + mfr, data = gla.
##
## Coefficients:
## (Intercept) log(Li7) log(Nd146) mfrM2
```

 Sam Tyner
 Part 4: Regression
 TBD
 20 / 29

0.006241

Section 4.3: Logistic Regression

Sam Tyner Part 4: Regression TBD 21 / 29

## Different types of responses

In linear & multiple regression, we have a *continuous* numerical response variable. However, this is not always the case.

Often, we want to determine whether the response belongs in one of two categories.

#### Examples:

- Is an email spam or not?
- Is a glass fragment from manufacturer 1 or 2?
- Will a juror say the defendant in a case is guilty or not guilty?

## Logistic regression

#### Idea:

When the outcome is one of 2 options, you select the "success" outcome and model the response as binary.

- If  $Y_i = 1$  the response is a "success", if  $Y_i = 0$  it is a "failure"
- $p_i = Pr(Y_i = 1)$
- If there are more 1s than 0s, then  $p_i$  should be higher than 0.50
- Can use other information  $x_i$  to influence the value of  $p_i$  in the model

 Sam Tyner
 Part 4: Regression
 TBD
 23 / 29

# Motivating Example

Suppose we want to model what effects a juror's verdict:

- $Y_i = 1$  means "guilty" and  $Y_i = 0$  means "not guilty"
- Let  $x_i$  be a variable indicating whether or not the defendant's DNA was found at the crime scene.  $x_i$  is also binary:  $x_i = 1$  when the defendant's DNA was found at the crime scene, and  $x_i = 0$  otherwise
- We want to tie the probability a juror's verdict is guilty  $(p_i)$  to the presence of DNA evidence
- The probability should go up when there is DNA evidence, and should go down when there isn't DNA evidence.

Sam Tyner Part 4: Regression TBD 24 / 29

#### Formulae

$$Y_i \sim \mathsf{Bernoulli}(p_i)$$
  
 $\mathsf{logit}(p_i) = \alpha + \beta \cdot x_i$ 

 $Y_i$  is a random variable with  $P(Y_i = 1) = p_i$ , and the value of  $p_i$  changes with the with the value of other information  $x_i$ .  $\alpha$  is the intercept,  $\beta$  is the slope of the model (similar to simple linear regression).

Sam Tyner TBD 25 / 29

### Logit???

The logit function takes a number from (0,1) (here,  $p_i$ ) and turns it into a real number  $(-\infty, \infty)$  (here  $\alpha + \beta \cdot x_i$ ).

The inverse of this function (take a number from  $(-\infty, \infty)$  and turn it into a number from (0,1)) is:

$$p_i = \frac{\exp\{\alpha + \beta \cdot x_i\}}{1 + \exp\{\alpha + \beta \cdot x_i\}}$$

This is why we use it for logistic regression: we can turn any value and combination of predictor variables into a probability in this way.

## Logit example

#### Email data:

| spam | to_multiple | winner |
|------|-------------|--------|
| 0    | 0           | 0      |
| 0    | 0           | 0      |
| 0    | 0           | 0      |
| 0    | 1           | 0      |
| 0    | 1           | 0      |
| 1    | 0           | 1      |

Is it spam? We think that this can be predicted by: whether or not it is sent to multiple people and/or it contains the word "winner"

## Logit example

```
glm(spam ~ to_multiple + winner, family = binomial, data = email)
##
## Call: glm(formula = spam ~ to_multiple + winner, family = binomial,
##
      data = email)
##
## Coefficients:
## (Intercept) to_multiple winner
       -2.160 -1.802
##
                              1.502
##
## Degrees of Freedom: 3920 Total (i.e. Null); 3918 Residual
## Null Deviance:
                 2437
## Residual Deviance: 2349 AIC: 2355
```

## Logit example

Table 2: Predicted probabilities of spam given the to\_multiple and winner variables

| spam | to_multiple | winner | n    | pred_prob |
|------|-------------|--------|------|-----------|
| 0    | 0           | 0      | 2909 | 0.103     |
| 0    | 0           | 1      | 37   | 0.341     |
| 0    | 1           | 0      | 601  | 0.019     |
| 0    | 1           | 1      | 7    | 0.079     |
| 1    | 0           | 0      | 335  | 0.103     |
| 1    | 0           | 1      | 20   | 0.341     |
| 1    | 1           | 0      | 12   | 0.019     |
|      |             |        |      |           |