Classification and clustering of ultrasound tongue images in vowel production

語言所碩二 盧妍蓁語言所博三 翁益寧

• Ultrasound is a popular tool in many areas of research

- Ultrasound is a popular tool in many areas of research
 - Tongue, larynx (vocal cords)
 - Articulatory phonetics and laboratory phonology
 - Speech pathology and therapy
 - Second language acquisition

- Ultrasound is a popular tool in many areas of research
 - Tongue, larynx (vocal cords)
 - Articulatory phonetics and laboratory phonology
 - Speech pathology and therapy
 - Second language acquisition
- Pros of ultrasound
 - Non-invasive, safe, easy to set-up, accessible
 - Visible in real-time

- Traditional method of analyzing ultrasound data is slow and laborious
- Quantifying image data into coordinates (contour tracing)
 - Tongue contour → line (a series of points)
 - Each point described by coordinates (X, Y)

- Traditional method of analyzing ultrasound data is slow and laborious
- Quantifying image data into coordinates (contour tracing)
 - Tongue contour → line (a series of points)
 - Each point described by coordinates (X, Y)

- Traditional method of analyzing ultrasound data is slow and laborious
- Quantifying image data into coordinates (contour tracing)
 - Tongue contour → line (a series of points)
 - Each point described by coordinates (X, Y)

- Statistical analysis
 - Smoothing Spline ANOVA
 - Generalized Additive Mixed Models

- Traditional method of analyzing ultrasound data is slow and laborious
- Quantifying image data into coordinates (contour tracing)
 - Tongue contour → line (a series of points)
 - Each point described by coordinates (X, Y)

- Statistical analysis
 - Smoothing Spline ANOVA
 - Generalized Additive Mixed Models

Recent studies started to use raw-image-based analysis methods

Principal Component Analysis

Linear Discriminant Analysis

Kochetov et al. (2019) Manner differences in the Punjabi dentalretroflex contrast: An ultrasound study of time-series data

Faytak et al. (2020) Nasal coda neutralization in Shanghai Mandarin: Articulatory and perceptual evidence

Our goal:

Try out raw-image-based methods for

- Classification of vowels
 - Convolutional Autoencoder
- Visualization of vowel clusters
 - PCA (Principal Component Analysis)
 - t-SNE (t-distributed Stochastic Neighbor embedding) (library install failed)
 - UMAP (Uniform Manifold Approximation and Projection)

- Subjects
 - 2 native Mandarin speakers (1M, 1F)

- Subjects
 - 2 native Mandarin speakers (1M, 1F)

- Materials
 - 6 vowels in Mandarin /a i u e o ə/
 - Each vowel pronounced 100 times in isolation
 - 6 vowels * 100 repetitions * 2 subjects = 1200 trials in total

- Subjects
 - 2 native Mandarin speakers (1M, 1F)

- Materials
 - 6 vowels in Mandarin /a i u e o ə/
 - Each vowel pronounced 100 times in isolation
 - 6 vowels * 100 repetitions * 2 subjects = 1200 trials in total

Images from the midpoint of each trial were extracted for analysis

• Speaker 1 /a/ /u/ /i/ /e/ **/o/ /**ə/

Convert to greyscale

- Convert to greyscale
- Cropping to meaningful area

- Convert to greyscale
- Cropping to meaningful area
- Downscaling to 96 (h) * 140 (w)

- Convert to greyscale
- Cropping to meaningful area
- Downscaling to 96 (h) * 140 (w)
- Flattening to (1 * 13440) vector
 - Only necessary for some analysis

		Pixel										
Image	P1	P2		P3	P4	P5	•••	P13438	P13439	P13440		
a001		0	0	34	157	255	•••	27	0	0		
a002		0	0	0	58	169	•••	84	2	0		

- Convert to greyscale
- Cropping to meaningful area
- Downscaling to 96 (h) * 140 (w)
- Flattening to (1 * 13440) vector
 - Only necessary for some analysis
- Normalizing to [0, 1]

	Pixel										
Image	P1	P2	P3	P4	P5	•••	P13438	P13439	P13440		
a001	0.000	0.000	0.133	0.616	1.000	•••	0.106	0.000	0.000		
a002	0.000	0.000	0.000	0.227	0.663	•••	0.329	0.008	0.000		

• Total 1200 images

- Training set: 960 images
 - 80% train
 - 20% validation
 - 200 total epochs

• Test set: 240 images

Test loss: 0.095

Test accuracy: 0.992

No overfitting Robust performance

238 correct labels

2 incorrect labels

Explained variance (cumulative)

Explained variance (cumulative)

Speaker M

1500

Speaker F

Results: clustering-PCA

Combined

2000

1500

Results: clustering-PCA

Speaker M

2D embedding

Speaker F 2D embedding

Combined

2D embedding

Combined local dimensions

Combined, n_neighbors=300 2D embedding

Combined, n_neighbors=1199

2D embedding

Results: clustering-PCA

Both classification and clustering are very effective for stable vowel images

- Both classification and clustering are very effective for stable vowel images
- Convolutional Autoencoder
 - Accuracy is surprisingly very high
 - Maybe input data is not variable enough / too simple

- Both classification and clustering are very effective for stable vowel images
- Convolutional Autoencoder
 - Accuracy is surprisingly very high
 - Maybe input data is not variable enough / too simple
- PCA
 - Needs a lot of PCs to capture >80% total variance
 - Overlapping in combined data set

- Both classification and clustering are very effective for stable vowel images
- Convolutional Autoencoder
 - Accuracy is surprisingly very high
 - Maybe input data is not variable enough / too simple
- PCA
 - Needs a lot of PCs to capture >80% total variance
 - Overlapping in combined data set
- UMAP
 - Vowels fall into distinct clusters while preserving local density
 - Distance between clusters is hard to interpret when graph is disconnected
 - Suggesting low variability of input data

- Both classification and clustering are very effective for stable vowel images
- Convolutional Autoencoder
 - Accuracy is surprisingly very high
 - Maybe input data is not variable enough / too simple
- PCA
 - Needs a lot of PCs to capture >80% total variance
 - Overlapping in combined data set
- UMAP
 - Vowels fall into distinct clusters while preserving local density
 - Distance between clusters is hard to interpret when graph is disconnected
 - Suggesting low variability of input data
- The same vowels from different speakers don't seem to cluster together
 - Image normalization

Thank you!