

## planetmath.org

Math for the people, by the people.

## morphisms of path algebras induced from morphisms of quivers

 ${\bf Canonical\ name} \quad {\bf MorphismsOfPathAlgebrasInducedFromMorphismsOfQuivers}$ 

Date of creation 2013-03-22 19:17:03 Last modified on 2013-03-22 19:17:03

Owner joking (16130) Last modified by joking (16130)

Numerical id 6

Author joking (16130) Entry type Definition Classification msc 14L24 Let  $Q = (Q_0, Q_1, s, t), Q' = (Q'_0, Q'_1, s', t')$  be quivers and let  $F : Q \to Q'$  be a morphism of quivers.

**Proposition 1.** If  $w = (\alpha_1, \dots, \alpha_n)$  is a path in Q, then

$$F(w) = (F_1(\alpha_1), \dots, F_1(\alpha_n))$$

is a path in Q'.

*Proof.* Indeed, for any i = 1, ..., n - 1 we calculate

$$t'(F_1(\alpha_i)) = F_0(t(\alpha_i)) = F_0(s(\alpha_{i+1})) = t'(F_1(\alpha_{i+1})),$$

which completes the proof.  $\square$ 

**Proposition 2.** Let w, u be paths in Q. If w is http://planetmath.org/PathAlgebraOfAQuiv with u then F(w) is http://planetmath.org/PathAlgebraOfAQuivercompatible with F(u). The inverse implication holds if and only if  $F_0$  is an injective function.

*Proof.* Assume that we have the following presentations:

$$w = (w_1, \ldots, w_n);$$

$$u = (u_1, \ldots, u_n).$$

If  $t(w_n) = s(u_1)$ , then

$$t'(F_1(w_n)) = F_0(t(w_n)) = F_0(s(u_1)) = s'(F_1(u_1))$$

which shows the first part of the thesis.

For the second part note, that if  $F_0$  is injective, then the above equalities can be reversed to obtain that  $t(w_n) = s(u_1)$ .

On the other hand assume that  $F_0$  is not injective, i.e.  $F_0(a) = F_0(b)$  for some distinct vertices  $a, b \in Q_0$ . Then for stationary paths  $e_a$  and  $e_b$  we have that

$$t'(F_1(e_a)) = F_0(t(e_a)) = F_0(a) = F_0(b) = F_0(s(e_b)) = s'(F_1(e_b))$$

so paths  $(F_1(e_a))$  and  $(F_1(e_b))$  are http://planetmath.org/PathAlgebraOfAQuivercompatible, although  $(e_a)$ ,  $(e_b)$  are not.  $\square$ 

**Definition.** Let k be a field. The linear map

$$\overline{F}: kQ \to kQ'$$

defined on a basis of kQ by

$$\overline{F}(w) = F(w)$$

is said to be **induced from** F.

**Proposition 3.** The linear map  $\overline{F}: kQ \to kQ'$  induced from  $F: Q \to Q'$  is a homomorphism of algebras if and only if  $F_0$  is injective.

*Proof.* Indeed, we will show that  $\overline{F}$  preservers multiplication of http://planetmath.org/PathA paths. If

$$w=(w_1,\ldots,w_n);$$

$$u = (u_1, \ldots, u_m)$$

are  $\label{lem:http://planetmath.org/PathAlgebraOfAQuiver} a then $$\operatorname{AQuiver}(Q)$ and $\operatorname{AQUIV}(Q)$ are substituting the substitution of the su$ 

$$\overline{F}(w \cdot u) = \overline{F}((w_1, \dots, w_n, u_1, \dots, u_m)) = (F_1(w_1), \dots, F_1(w_n), F_1(u_1), \dots, F_1(u_m)) = \overline{F}(w) \cdot \overline{F}(u),$$

which completes this part.

Now assume that w, u are paths, which are not http://planetmath.org/PathAlgebraOfAQuive If  $F_0$  is injective, then by proposition 2 F(w) and F(u) are also not http://planetmath.org/PathAlgebraOfAQuive and thus

$$\overline{F}(w \cdot u) = \overline{F}(0) = 0 = \overline{F}(w) \cdot \overline{F}(u).$$

On the other hand, if  $F_0$  is not injective, then there are paths w, u which are not http://planetmath.org/PathAlgebraOfAQuivercompatible, but F(w), F(u) are. Assume, that  $\overline{F}$  is a homomorphism of algebras. Then

$$0 = \overline{F}(0) = \overline{F}(w \cdot u) = \overline{F}(w) \cdot \overline{F}(u) \neq 0$$

because of the http://planetmath.org/PathAlgebraOfAQuivercompatibility. The contradiction shows that  $\overline{F}$  is not a homomorphism of algebras. This completes the proof.  $\square$