SZTUCZNA INTELIGENCJA I SYSTEMY DORADCZE

UCZENIE MASZYNOWE - SYSTEMY REGUŁOWE

Reguly

Warunek

Koniunkcja selektorów, każdy selektor reprezentuje test wartości pojedynczego atrybutu, warunek odpowiada obiektom spełniającym wszystkie selektory

Decyzja

Każda reguła związana jest z jedną decyzją, przypisywaną obiektom spełniającym warunek reguły

Przykład

 $Wind = Weak \land Temp > 20 \land Outlook \neq Rain \Rightarrow PlayTennis = Yes$

Reguly: selektory

Atrybuty symboliczne:

- \diamondsuit Selektor równościowy X=v
- \diamondsuit Selektor wykluczający $X \neq v$
- \diamondsuit Selektor ogólny $X \in \{v_1, \dots, v_k\}$

Atrybuty numeryczne:

 \diamondsuit Selektor przedziałowy $X \in (a,b)$

Przedział może być jednostronnie nieograniczony, może też być jedno- lub obustronnie domknięty

Reguly spojne

Reguła $\alpha \Rightarrow dec=d$ jest spójna ze zbiorem treningowym U_{trn} jeśli każdy przykład $x\in U_{trn}$ spełniający warunek α ma decyzję dec(x)=d

Reguly spojne: przyklad

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

 $Outlook = Overcast \Rightarrow PlayTennis = Yes??$

Reguly spojne: przyklad

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

 $Outlook = Overcast \Rightarrow PlayTennis = Yes??$ spójna

 $Humidity = Normal \Rightarrow PlayTennis = Yes??$

Reguly spojne: przyklad

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

 $Outlook = Overcast \Rightarrow PlayTennis = Yes??$ spójna

 $Humidity = Normal \implies PlayTennis = Yes??$ niespójna, bo D6 sprzeczne

Systemy regulowe

- ♦ CN2 (Clark, Niblett 91)
- ♦ AQ (Michalski 86)
- ♦ Zbiory przybliżone (Skowron, Rauszer 92)
- ♦ C4.5rules (Quinlan 93)

Systemy regulowe: uczenie i klasyfikacja

Uczenie

Generowanie zbioru reguł na podstawie zbioru przykładów treningowych

Klasyfikacja

Wyszukiwane są reguły pasujące do klasyfikowanego obiektu x, tzn. te, których warunek jest spełniany przez obiekt x, możliwe są dwie strategie podejmowania decyzji:

1. Najlepszy wygrywa:

regułom przypisana jest miara ważności Importance, decyzja podejmowana jest na podstawie pasującej do x reguły r o najwyższej wartości Importance(r)

2. Głosowanie:

reguły mają przypisane wagi Weight, obiekt x klasyfikowany jest decyzją o najwyższej sumie wag reguł pasujących $\max \arg_{d_j} \sum_{\alpha \ \Rightarrow \ d_j : \ x} \operatorname{spelnia} \ _{\alpha} Weight(\alpha \ \Rightarrow \ d_j)$

Generowanie regul

- ♦ Bezpośrednio ze zbioru przykładów
 - zupełne
 - sekwencyjne pokrywanie (CN2, AQ)
- Przy użyciu struktur pośrednich
 - z reduktu (teoria zbiorów przybliżonych)
 - z drzewa decyzyjnego (C4.5rules)

Generowanie regul zupelne

Fakt

Dla dowolnej reguły $s_1 \wedge \ldots \wedge s_m \Rightarrow d$ wszystkie obiekty rozpoznawane przez nią rozpoznawane są także przez każdą regułę zbudowaną z podzbioru jej selektorów $s_{i_1} \wedge \ldots \wedge s_{i_k} \Rightarrow d$

Generowanie regul zupelne

Wniosek: Obszar przestrzeni obiektów pokrywany przez wszystkie maksymalnie ogólne reguły spójne (G_1, \ldots, G_m) jest taki sam jak obszar pokrywany przez wszystkie reguły spójne

⇒ Wystarczy wyszukać wszystkie reguły spójne o minimalnym zbiorze selektorów, tzn. takim, że usunięcie dowolnego selektora daje regułę niespójną.

Generowanie regul zupelne

Jak to robić??

Można przeszukiwać przestrzeń wszystkich reguł zaczynając od reguł najbardziej ogólnych. Dopóki reguły nie są spójne ze zbiorem treningowym, są rozszerzane o selektory wykluczające przykłady powodujące ich niespójność.

Generowanie regul zupelne: algorytm

```
function EXHAUSTIVE-RULES(examples, decisions, selectors) returns a rule set
   rules \leftarrow \{ \}
   for each decision d \in decisions do
       candidates \leftarrow \{\} \Rightarrow d
       repeat
           newCandidates \leftarrow \{\}
           for each candidate rule \alpha \Rightarrow d \in candidates do
               e_{neg} \leftarrow a random example matching \alpha but with a decision \neq d
              for each selector s \in selectors excluding e_{neg} do
                   r_{new} \leftarrow \alpha \wedge s \Rightarrow d
                  if r_{new} covers one or more objects with decision d in examples
                      and is not subsumed by another rule from rules \cup newCandidates
                      if r_{new} is consistent with examples then rules \leftarrow rules \cup r_{new}
                      else newCandidates \leftarrow newCandidates \cup r_{new}
           candidates \leftarrow newCandidates
       until candidates is empty
   return rules
```

Generowanie regul zupelne: przyklad

Reguły z decyzją PlayTennis = Yes

 $candidates: Outlook = Overcast \Rightarrow PlayTennis = Yes$

Kontrprzykład: <Overcast, Cool, Normal, Weak, PlayTennis = No>

Generowanie regul: sekwencyjne pokrywanie

Generowanie reguł zupełne przegląda zazwyczaj wykładniczo dużą podprzestrzeń reguł, w praktyce niewykonalne

Pomysł (heurystyczny): Reguły można generować pojedynczo do momentu pokrycia przez nie wszystkich obiektów treningowych

```
function SEQUENTIAL-COVERING(examples) returns a rule set rules \leftarrow \{\} \\ uncovered \leftarrow examples \\ \mathbf{repeat} \\ r \leftarrow \text{LEARN-ONE-RULE}(examples, uncovered) \\ rules \leftarrow rules \cup r \\ remove all examples covered by r from uncovered \\ \mathbf{until} \ uncovered \ \text{is empty} \\ \mathbf{return} \ rules
```

Funkcja LEARN-ONE-RULE wyszukuje heurystycznie jak najlepszą regułę względem pewnej miary jakości reguł

CN2

Clark, Niblett, 1991

♦ Używa atrybutów symbolicznych

Traktuje wszystkie atrybuty jako symbolicze, atrybuty numeryczne zamieniane są na symboliczne w ten sposób, że zakres wartości każdego atrybytu dzielony jest na równe przedziały, wartości z jednego przedziału zamieniane są na taką samą wartość symboliczną

♦ Używa metody sekwencyjnego pokrywania

Szukanie kolejnej reguły (procedura LEARN-ONE-RULE) podobnie jak generowanie reguł zupełne rozpoczyna od najbardziej ogólnych reguł (warunków) i uszczegóławia je dodając kolejne selektory, ale:

- zbiór reguł-kandydatów ograniczony jest do rozmiaru k określanego przez użytkownika, do rozszerzania brane są najlepsze kandydujące reguły,
- jako wynik zwracana jest najlepsza reguła spośród wygenerowanych kandydatów

CN2: szukanie najlepszej reguly

```
function LEARN-ONE-RULE-CN2(uncov, k) returns a rule
   inputs: uncov, the examples not covered by the previous rules
              k, the width of searching
   best \leftarrow  the most general empty condition
   candidates \leftarrow \{best\}
   repeat
       newCandidates \leftarrow \{ \}
       for each candidate \alpha \in candidates do
              for each selector s of the form a=v or a\neq v consistent with \alpha do
                 if \alpha \land s \not\in candidates \cup newCandidates then
                     newCandidates \leftarrow newCandidates \cup \{\alpha \land s\}
                     if Performance(\alpha \land s, uncov)>Performance(best, uncov)
                        then best \leftarrow \alpha \wedge s
       retain only k best candidates in newCandidates according to PERFORMANCE
       candidates \leftarrow newCandidates
   until candidates is empty
   return best \Rightarrow d (the most frequent decision among objects matching best)
```

CN2: szukanie najlepszej reguly, przyklad

Rozmiar zbioru kandydatów = $1 \Rightarrow \text{przeszukiwanie zachłanne}$

CN2: miara jakosci reguly

Funkcja $PERFORMANCE(\alpha,uncov)$ szacuje jakość warunku α na podstawie dotychczas niepokrytych przykładów uncov

n — liczba przykładów z uncov pasujących do α — liczba przykładów z uncov pasujących do α z najczęstszą decyzją d

m-estymata prawdopodobieństwa

$$\frac{n_d + mp_d}{n + m}$$

 $< p_{d_1}, \dots, p_{d_D} >$ — pierwotny rozkład prawdopodobieństwa w danych m — parametr estymacji

CN2 używa szczególnego przypadku, estymaty Laplace'a: równomierny rozkład pierwotny $<\frac{1}{D},\ldots,\frac{1}{D}>$ i m=D (D — liczba decyzji)

$$\frac{n_d + D\frac{1}{D}}{n+D} = \frac{n_d + 1}{n+D}$$

Inne miary jakosci reguly

Funkcja $PERFORMANCE(\alpha,uncov)$ szacuje jakość warunku α na podstawie dotychczas niepokrytych przykładów uncov

n — liczba przykładów z uncov pasujących do α — liczba przykładów z uncov pasujących do α z najczęstszą decyzją d

Częstość względna

$$\frac{n_d}{n}$$

Negacja entropii

$$\sum_{d_i} \frac{n_{d_i}}{n} \log_2 \frac{n_{d_i}}{n}$$

 n_{d_i} — liczba przykładów z uncov pasujących do α z decyzją d_i

Miary jakosci reguly: przyklad

 $lpha_1$ pokrywa 1000 przykładów z decyzją d_1 i 1 przykład z decyzją d_2 $lpha_2$ pokrywa 5 przykładów z decyzją d_1 i 0 przykładów z decyzją d_2 $lpha_3$ pokrywa 1 przykład z decyzją d_1 i 0 przykładów z decyzją d_2

	$\alpha_1 \Rightarrow d_1$	$ \alpha_2 \Rightarrow d_1$	$\alpha_3 \Rightarrow d_1$
Częstość względna	99.9%	100%	100%
Negacja entropii	<0	0	0

Częstość względna i negacja entropii faworyzują reguły $\alpha_2 \Rightarrow d_1$ i $\alpha_3 \Rightarrow d_1$

Wartości estymaty Laplace'a (D=2):

99.8% dla
$$\alpha_1 \Rightarrow d_1$$

85.7% dla $\alpha_2 \Rightarrow d_1$
66.6% dla $\alpha_3 \Rightarrow d_1$

CN2: klasyfikacja pierwszy wygrywa

Lista decyzyjna to lista reguł utworzona przez algorytm sekwencyjnego pokrywania uporządkowana w kolejności takiej, w jakiej reguły były generowane, z dodatkową regułą domyślną na końcu

$$\rightarrow R_0 \rightarrow R_1 \rightarrow R_2 \rightarrow \ldots \rightarrow R_m \rightarrow Default$$

W CN2:

 R_0 — reguła wygenerowana ze wszystkich przykładów

 R_1 — reguła wygenerowana z przykładów niepokrywanych przez R_0

 R_2 — reguła wygenerowana z przykładów niepokrywanych przez R_0 , R_1 , itd.

Default — reguła bezwarunkowa zwracająca najczęstszą decyzję w zbiorze treningowym

Obiektowi przypisywana jest decyzja d z pierwszej reguły $\alpha \Rightarrow d$ na liście decyzyjnej, której warunek α pasuje do obiektu.

CN2: klasyfikacja przez glosowanie regul

rules — zbiór warunków wygenerowany przez algorytm sekwencyjnego pokrywania (bez ustalonych decyzji)

Rozkład decyzyjny warunku $\alpha \in rules$:

$$< n_1(\alpha), \ldots, n_{|D|}(\alpha) >$$

 n_i — liczba przykładów z decyzją d_i spełniających α w zbiorze uncov, tzn. tylko tych przykładów, które nie spelniają żadnego z wcześniej wygenerowanych warunków

Wybór decyzji dla obiektu x przez sumowanie rozkładów:

$$\max \arg_{d_i} \sum_{\alpha \in rules: x \text{ spelnia } \alpha} n_i(\alpha)$$

\mathbf{AQ}

AQ15, Michalski, 1986

♦ Używa atrybutów symbolicznych i numerycznych

Do atrybutów symbolicznych stosuje selektory równościowe i wykluczające, do atrybutów numerycznych stosuje selektory ograniczające $(<, \leq, >, \geq)$.

♦ Używa metody sekwencyjnego pokrywania, ale oddzielnie dla każdej decyzji

Szukanie kolejnej reguły (procedura LEARN-ONE-RULE) podobnie jak w CN2 przebiega od najbardziej ogólnych do bardziej specyficznych reguł, ale:

- przeszukiwanie sterowane jest wybranym przykładem
- reguły-kandydatki poprawiane są tak długo, dopóki nie osiągną warunku spójności ze zbiorem treningowym, reguła najlepsza wybierana jest spośród końcowych reguł spójnych

AQ: szukanie najlepszej reguly

```
function LEARN-ONE-RULE-AQ(examples, uncov, d, k) returns a rule
   inputs: examples, all training examples
               uncov, the examples not covered by the previous rules
               d_{\cdot} decision of a return rule
               k, the width of searching
    e_{pos} \leftarrow a random example from uncov with decision d
    candidates \leftarrow \{ \text{the most general empty condition} \}
   repeat
      e_{neg} \leftarrow \text{example} with decision\neq d covered by one or more conditions in candidates
               with the maximum number of values = the corresponding values of e_{pos}
       selectors \leftarrow all selectors consistent with e_{pos} excluding e_{neg}
       candidates \leftarrow \{x \land s: x \in candidates, y \in selectors\}
       candidates \leftarrow \{x \in candidates: \neg \exists \ y \in candidates \ \mathsf{more} \ \mathsf{general} \ \mathsf{than} \ x\}
       retain only k best candidates in candidates according to PERFORMANCE
   until candidates cover no examples with decision\neq d
    best \leftarrow \text{the best condition in } candidates \text{ according to PERFORMANCE}
   return best \Rightarrow d
```

AQ: miara jakosci reguly

PERFORMANCE($\alpha \Rightarrow d.examples$) = $pos_{included} + neg_{excluded}$

 $pos_{included}$ – liczba przykładów w examples z decyzją d pasujących do warunku α

tzw. wsparcie reguły

 $neg_{excluded}$ – liczba przykładów w examples z decyzją $\neq d$ wykluczanych przez warunek α

Uwaga

Jeśli reguła jest spójna ze zbiorem treningowym, tzn. warunek reguły wyklucza wszystkie przykłady z decyzją $\neq d$, to miary jakości reguły jest równa wsparciu reguły PERFORMANCE($\alpha \Rightarrow d,examples$) = $pos_{included}$

AQ: klasyfikacja

Klasyfikacja przez głosowanie reguł

Waga pojedynczej reguły:

$$Weight(\alpha \Rightarrow d) = \frac{|pos_{included}(\alpha \Rightarrow d)|}{|examples|}$$

Wybór decyzji dla obiektu x:

$$\max \arg_{d} \Sigma_{\alpha \Rightarrow d: x \text{ spelnia } \alpha} \frac{|pos_{included}(\alpha \Rightarrow d)|}{|examples|}$$

Generowanie regul: CN2 vs AQ

Cechy wspólne

- metoda sekwencyjnego pokrywania
- ♦ szukanie pojedynczej reguły:
 - metoda pierwszy najlepszy ustalonej szerokości
 - od najbardziej ogólnych w kierunku bardziej specyficznych

Różnice

	Przeszukiwanie sterowane	Wymaganie spójności	Miara jakości reguł
CN2	całym zbiorem	NIE	estymata Laplace'a
AQ	pojedynczym przykładem	TAK	wsparcie

Teoria zbiorow przyblizonych

- ♦ Zbiory przybliżone (Pawlak, 1981)
- Redukty i reguły generowane z reduktów (Skowron, Rauszer, 1992)

 $A = \{a_1, \ldots, a_n\}$ — zbiór cech (atrybutów) opisujących przykłady U_{trn} — zbiór przykładów opisanych wektorami wartości cech $< x_1, \ldots, x_n > 0$

Definicja

Zbiór atrybutów $R\subseteq A$ jest reduktem dla zbioru przykładów U_{trn} , jeśli

- dla każdej pary przykładów $x,y\in U_{trn}$ o różnych decyzjach $dec(x)\neq dec(y)$ istnieje $a_i\in R$ rozróżniający tą parę przykładów: $x_i\neq y_i$
- R jest minimalnym zbiorem mającym powyższą własność, tzn. dla dowolnego $R'\subset R$ istnieje para przykładów w U_{trn} o różnych decyzjach i takich samych wartościach na wszystkich atrybutach $a_i\in R'$

Definicja

Redukt R jest minimalny, jeśli zawiera najmniejszą możliwą liczbę atrybutów, tzn. dla każdego reduktu R': $|R| \leq |R'|$

Fakt: Problem znalezienia minimalnego reduktu jest NP-trudny

Definicja

Redukt R jest minimalny, jeśli zawiera najmniejszą możliwą liczbę atrybutów, tzn. dla każdego reduktu R': $|R| \leq |R'|$

Fakt: Problem znalezienia minimalnego reduktu jest NP-trudny

Przykład:

	а	b	С	d	dec
$\overline{x_1}$	0	2	1	0	0
x_2	1	2	2	1	0
x_3	2	0	2	1	1
$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}$	0	2	1	1	2

Redukty??

Definicja

Redukt R jest minimalny, jeśli zawiera najmniejszą możliwą liczbę atrybutów, tzn. dla każdego reduktu R': $|R| \leq |R'|$

Fakt: Problem znalezienia minimalnego reduktu jest NP-trudny

Przykład:

 $\frac{\mathsf{Redukty??}}{\{a,d\}, \{b,c,d\}}$

Redukty minimalne??

Definicja

Redukt R jest minimalny, jeśli zawiera najmniejszą możliwą liczbę atrybutów, tzn. dla każdego reduktu R': $|R| \leq |R'|$

Fakt: Problem znalezienia minimalnego reduktu jest NP-trudny

Przykład:

 $\frac{\mathsf{Redukty??}}{\{a,d\}, \{b,c,d\}}$

 $\frac{\text{Redukty minimalne}??}{\{a,d\}}$

Generowanie regul z reduktu

$$Rules(R) := \{ \bigwedge_{a_i \in R} a_i = x_i \implies dec = dec(x) : x \in U_{trn} \}$$

Generowanie regul z reduktu

$$Rules(R) := \{ \bigwedge_{a_i \in R} a_i = x_i \implies dec = dec(x) : x \in U_{trn} \}$$

Przykład:

$$R = \{b, c, d\}$$

Reguly??

Generowanie regul z reduktu

$$Rules(R) := \{ \bigwedge_{a_i \in R} a_i = x_i \implies dec = dec(x) : x \in U_{trn} \}$$

Przykład:

$$R = \{b, c, d\}$$

Reguly??

$$\overline{b} = 2 \land c = 1 \land d = 0 \implies dec = 0$$

$$b = 2 \land c = 2 \land d = 1 \implies dec = 0$$

$$b = 0 \land c = 2 \land d = 1 \implies dec = 1$$

$$b = 2 \land c = 1 \land d = 1 \implies dec = 2$$

Skracanie regul z reduktu

Skracanie reguły polega na odrzuceniu niektórych selektorów z warunku reguły

Metoda

Reguła $\alpha \wedge s \Rightarrow dec = d$ może zostać zastąpiona przez $\alpha \Rightarrow dec = d$, jeśli $\alpha \Rightarrow dec = d$ pozostaje spójna ze zbiorem treningowym

Fakt

Może się zdarzyć, że różne reguły z tą samą decyzją zostaną skrócóne do tej samej postaci

⇒ zbiór reguł po skróceniu może być mniejszy niż oryginalny

Skracanie regul z reduktu: przyklad

$$b = 2 \land c = 1 \land d = 0 \implies dec = 0$$

$$b = 2 \land c = 2 \land d = 1 \implies dec = 0$$

$$b = 0 \land c = 2 \land d = 1 \implies dec = 1$$

$$b = 2 \land c = 1 \land d = 1 \implies dec = 2$$

Skracanie regul z reduktu: przyklad

$$b = 2 \land c = 1 \land d = 0 \implies dec = 0$$

$$b = 2 \land c = 2 \land d = 1 \implies dec = 0$$

$$b = 0 \land c = 2 \land d = 1 \implies dec = 1$$

$$b = 2 \land c = 1 \land d = 1 \implies dec = 2$$

Po skróceniu:

$$b=2 \land d=0 \Rightarrow dec=0 \text{ lub } c=1 \land d=0 \Rightarrow dec=0$$

 $b=2 \land c=2 \Rightarrow dec=0$
 $b=0 \Rightarrow dec=1$
 $c=1 \land d=1 \Rightarrow dec=2$

Klasyfikacja oparta na wsparciu

rules — zbiór reguł z jednoznaczną decyzją U_{trn} — zbiór przykładów treningowych

x - obiekt do klasyfikacji

Klasyfikacja przez maksymalizację wsparcia:

 $rules(x) = \{\alpha \Rightarrow d \in rules : x \text{ spelnia } \alpha\}$

 $\max \arg_d |\{y \in U_{trn} : \exists \alpha \Rightarrow d \in rules(x) (y \text{ spelnia } \alpha \land dec(y) = d)\}|$

Redukty lokalne

Zbiór atrybutów $R\subseteq A$ jest reduktem lokalnym dla przykładu $x\in U_{trn}$ w zbiorze przykładów U_{trn} , jeśli

- dla każdego przykładu $y \in U_{trn}$ z inną decyzją $dec(y) \neq dec(x)$ istnieje $a_i \in R$ rozróżniający x od y: $x_i \neq y_i$
- R jest minimalnym zbiorem mającym powyższą własność, tzn. dla dowolnego $R'\subset R$ istnieje przykład w U_{trn} z inną decyzją i wartościami taki samymi jak x na wszystkich atrybutach $a_i\in R'$

Fakt 1:

Liczba reduktów lokalnych dla jednego przykładu może być wykładnicza względem liczby atrybutów i liczby przykładów treningowych

Fakt 2:

Problem znalezienia minimalnego reduktu lokalnego dla danego przykładu jest NP-trudny

Generowanie regul z reduktow lokalnych

Reguła generowana z reduktu lokalnego R dla przykładu x:

$$\bigwedge_{a_i \in R} a_i = x_i \implies dec = dec(x)$$

Fakt 1: Reguła generowana z reduktu lokalnego jest regułą spójną minimalną (tzn. usunięcie któregokolwiek selektora powoduje utratę spójności)

Fakt 2: Zbiór reguł wygenerowanych ze wszystkich reduktów lokalnych = zbiór wszystkich minimalnych reguł spójnych = zbiór wszystkich reguł generowanych przez algorytm zupełny (z selektorami równościowymi)

Przypomnienie: Liczba wszystkich minimalnych reguł spójnych może być wykładnicza względem liczby atrybutów i przykładów treningowych

Fakt 3 (Bazan, 1998): Niech $rules_{all}$ – zbiór wszystkich minimalnych reguł spójnych. Istnieje algorytm symulujący klasyfikację z maksymalizacją wsparcia w zbiorze reguł $rules_{all}$ (bez jawnego liczenia reguł) wykonujący klasyfikację pojedynczego obiektu w czasie $O(|U_{trn}|^2|A|)$.

C4.5rules: generowanie regul

Pomysł: mając dane drzewo decyzyjne można generować reguły na podstawie jego struktury

C4.5rules: generowanie regul

Pomysł: mając dane drzewo decyzyjne można generować reguły na podstawie jego struktury

 \Rightarrow Drzewo jest generowane algorytmem C4.5 opisanym na wykładzie o drzewach decyzyjnych

C4.5rules: przyklad

 $Outlook = Sunny \land Humidity = High \Rightarrow PlayTennis = No$

 $Outlook = Sunny \land Humidity = Normal \Rightarrow PlayTennis = Yes$

 $Outlook = Overcast \Rightarrow PlayTennis = Yes$

 $Outlook = Rain \land Wind = Strong \Rightarrow PlayTennis = No$

 $Outlook = Rain \land Wind = Weak \Rightarrow PlayTennis = Yes$

C4.5rules: skracanie regul

 $\alpha \wedge s \Rightarrow d$ — reguła przed skróceniem $\alpha \Rightarrow d$ — reguła po skróceniu

C4.5rules wylicza statystyczne górne oszacowanie błędów obu reguł na podstawie przykładów ze zbioru treningowego pokrywanych przez te reguły, i zastępuje regułę $\alpha \wedge s \Rightarrow d$ regułą skróconą $\alpha \Rightarrow d$, jeśli górne oszacowanie błędu dla reguły skróconej jest nie większe niż dla reguły oryginalnej

Reguła może być skrócona wielokrotnie, jeśli usuwanie kolejnych selektorów nie powoduje zwiększenia górnego oszacowania błędu reguły

C4.5rules: klasyfikacja

Fakt

Warunki reguł przed skróceniem wykluczały się wzajemnie, po skróceniu już nie muszą się wykluczać

Wniosek

Klasyfikacja wymaga zastosowania wyboru najlepszej reguły lub głosowania reguł

⇒ C4.5rules stosuje zaawansowane metody do usunięcia niektórych reguł skróconych i uporządkowania pozostałych według ważności Obiekty klasyfikowane są według najlepszej pasującej reguły