Instituto Superior Técnico

LICENCIATURA EM ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

Probabilidades e Estatística Resumo Teórico

João Barreiros C. Rodrigues,
nº 99968 , aka Ex-Machina,

 2^{nd} semester 2022

CONTENTS CONTENTS

Contents

1	Definição Axiomática de Probabilidade, segundo Kolmagorov	
	1.1	Consequências da definição axiomática
	1.2	Definição de Probabilidade Condicionada
	1.3	Lei das Probabilidades Compostas
	1.4	Lei da Probabilidade Total
		1.4.1 Teorema de Bayes

1 Definição Axiomática de Probabilidade, segundo Kolmagorov

1.1 Consequências da definição axiomática

Propriedade 0

$$0 \ge P(A) \le 1, \forall A \in \mathfrak{A} \tag{1}$$

Propriedade 1

$$P(\overline{A}) = 1 - P(A) \iff P(\overline{A}) + P(A) = 1 = P(\Omega)$$
 (2)

Propriedade 2

$$P(A) = P(A) \iff P(A) - P(A) = 0 \iff P(\emptyset) = 0 = P(\overline{\Omega})$$
 (3)

Propriedade 3

$$P(A \backslash B) = P(A) - P(A \cap B) \tag{4}$$

Propriedade 4

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \tag{5}$$

1.2 Definição de Probabilidade Condicionada

Pode definir-se uma probabilidade condicionada com uma simples proposição mental:

"Tendo em conta que ocorreu um evento B, qual a probabilidade do evento A suceder."

Assim têm-se, para um evento B com P(B) > 0:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{6}$$

1.3 Lei das Probabilidades Compostas

$$P(A|B) \times P(B) = P(A \cap B) = P(B|A) \times P(B) \tag{7}$$

Ou para n eventos A_i , tal que $0 < P(A_i) \le 1, \forall i, i \in [0, n:]$

$$ahhhhhhhhh$$
 (8)

1.4 Lei da Probabilidade Total

Se A_i , \forall i , i \in [1, n] tal que \forall i, $A_i \in \Omega \land P(A_i) > 0$ então:

$$P(B) = \sum ni = 1P(B|A_i) \times P(A_i), \forall B \in \Omega$$
(9)

1.4.1 Teorema de Bayes