线性代数冲刺笔记

【例题1】B=
$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & a \\ 0 & 0 & 5 \end{bmatrix}$$
, $A^2-2AB = E$, $r(AB-2BA+3A) = ()$

(A) 1 (B) 2 (C) 3 (D) 与a有关

【解】 : A(A-2B) = E

∴ A 可逆, 且 A⁻¹ = A-2B

$$\Rightarrow$$
 A(A-2B) = (A-2B) A (A A⁻¹= A⁻¹ A)

 \Rightarrow AB = BA

那么, AB-2BA+3A = 3A-AB = A(3E-B)

又, A 可逆, 知

$$r(AB-2BA+3A) = r(A(3E-B)) = r(3E-B)$$

 \forall a 有 $|3\mathbf{E}-\mathbf{B}|=0$,又 $3\mathbf{E}-\mathbf{B}$ 有二阶子式不得零,从而 $\mathbf{r}(3\mathbf{E}-\mathbf{B})=2$.

【评注】

本题考查矩阵逆的概念以及矩阵的乘法.

设矩阵A-n 阶,B-n 阶,若AB=BA=E,则称矩阵A 可逆,且B 为A 的逆矩阵. 由此有 $AA^{-1}=A^{-1}A$.

【例题 2】 $A_{m \times n}$, η_1 , η_2 , …, η_t 是 Ax = 0 的基础解系, α 是 Ax = b 的一个解.

- (I)证明 α , $\alpha + \eta_1$, $\alpha + \eta_2$, …, $\alpha + \eta_t$ 线性无关.
- (II)证明 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的任意一个解都可以由 \mathbf{a} , $\mathbf{a} + \mathbf{\eta}_1$, $\mathbf{a} + \mathbf{\eta}_2$, \cdots , $\mathbf{a} + \mathbf{\eta}_1$ 线性表出.

【分析】 η_1 , η_2 , …, η_1 是 Ax=0 的基础解系,那么 η_1 , η_2 , …, η_1 必定线性无关,从而证明 α , $\alpha+\eta_1$, $\alpha+\eta_2$, …, $\alpha+\eta_3$, …, $\alpha+\eta_4$, …, $\alpha+\eta_5$,

(1)

【证】(I)(用定义,重组,同乘)

设
$$k_0 \alpha + k_1 (\alpha + \eta_1) + k_2 (\alpha + \eta_2) + \cdots + k_T (\alpha + \eta_t) = \mathbf{0}$$

由 $\mathbf{A}\alpha = \mathbf{b}$, $\mathbf{A}\eta_i = \mathbf{0}$ ($i=1, \dots, t$), 用 \mathbf{A} 左乘 (2), 有

$$(k_0\!+\!k_1\!+\!k_2\!+\!\cdots\!+\!k_t)\textbf{A}\,\boldsymbol{\alpha}\,+\!k_1\!\textbf{A}\,\boldsymbol{\eta}_1\!+\!k_2\!\textbf{A}\,\boldsymbol{\eta}_2\!+\!\cdots\!+\!k_t\!\textbf{A}\,\boldsymbol{\eta}_t\!=\!\boldsymbol{0}$$

 \mathbb{B} $(k_0 + k_1 + k_2 + \cdots + k_t) \mathbf{b} = \mathbf{0}$

又**b**
$$\neq$$
0,有 k₀+k₁+k₂+···+k_T=0 (3)

带入(2)有 $k_1 \mathbf{\eta}_1 + k_2 \mathbf{\eta}_2 + \cdots + k_t \mathbf{\eta}_t = \mathbf{0}$,

而 η_1 , η_2 , …, η_1 是 Ax=0 的基础解系, 那么 η_1 , η_2 , …, η_1 必定线性无关,

从而 $k_1 = k_2 = \cdots = k_t = 0$,带入(3)有 $k_0 = 0$.

所以 $k_0=k_1=k_2=\cdots=k_t=0\Longrightarrow \alpha$, $\alpha+\eta_1$, $\alpha+\eta_2$, …, $\alpha+\eta_t$ 线性无关.

(或用秩)

- ∵η₁, η₂, …, η₁线性无关, α 是 Ax=b 的解⇒ α 不能由 η₁, η₂, …, η₁线性表出.
- $\Longrightarrow_{\mathbf{X}_{1}} \mathbf{\eta}_{1} + \mathbf{x}_{2} \mathbf{\eta}_{2} + \cdots + \mathbf{x}_{t} \mathbf{\eta}_{t} = \mathbf{\alpha} \text{ } \mathcal{E} \mathbf{M} \Longrightarrow_{\mathbf{\Gamma}} (\mathbf{\eta}_{1}, \mathbf{\eta}_{2}, \mathbf{w}, \mathbf{\eta}_{t}) \neq_{\mathbf{\Gamma}} (\mathbf{\eta}_{1}, \mathbf{\eta}_{2}, \mathbf{w}, \mathbf{\eta}_{t}, \mathbf{\alpha})$
- $r(\eta_1, \eta_2, \dots, \eta_t) = t \Longrightarrow r(\eta_1, \eta_2, \dots, \eta_t, \alpha) = t+1$
- \Rightarrow r(α , $\alpha + \eta_1$, $\alpha + \eta_2$, ..., $\alpha + \eta_1$)=t+1 \Rightarrow α , $\alpha + \eta_1$, $\alpha + \eta_2$, ..., $\alpha + \eta_1$, 3
- (II) 设 β 是 Ax=b 的任意一个解,则 $\beta \alpha$ 是 Ax=0 的解.

从而 $\beta - \alpha = 1_1 \eta_1 + 1_2 \eta_2 + \cdots + 1_t \eta_t$.

 $\Rightarrow \mathbf{\beta} = \mathbf{\alpha} + \mathbf{1}_1 \mathbf{\eta}_1 + \mathbf{1}_2 \mathbf{\eta}_2 + \cdots + \mathbf{1}_t \quad \mathbf{\eta}_t \Rightarrow \mathbf{\beta} = (1 - \mathbf{1}_1 - \mathbf{1}_2 - \cdots - \mathbf{1}_t) \mathbf{\alpha} + \mathbf{1}_1 \mathbf{\eta}_1 + \mathbf{1}_2 \mathbf{\eta}_2 + \cdots + \mathbf{1}_t \quad \mathbf{\eta}_t$

即 β 可由 α , $\alpha + \eta_1$, $\alpha + \eta_2$, ... , $\alpha + \eta_1$ 表出.

【评注】

本题考查向量小组的线性相关的证明和线性表出的证明. 考查了方程组基础解系的概念:

设有向量小组 η_1 , η_2 , …, η_t 满足:

- (1) $A\eta_i = 0$ ($i=1, \dots, t$), $p \eta_i \not\in Ax = 0$ 的解.
- (2) Ax = 0 的任意一个解都可以由 η_1 , η_2 , …, η_t 表出.
- (3) η_1 , η_2 , …, η_t 线性无关.

那么称 η_1 , η_2 , …, η_t 为 Ax = 0 的基础解系.

也就是说若 η_1 , η_2 , …, η_t 是Ax=0 的基础解系, 那么 η_1 , η_2 , …, η_t 必满足上述 3条。

【例题 3】 $A_{m\times n}$, r(A) = n, α_1 , α_2 , …, α_s 是 n 维列向量.

证明: α_1 , α_2 , ..., α_s 线性无关的充分必要条件是 $A\alpha_1$, $A\alpha_2$, ..., $A\alpha_s$ 线性无关.

【证】必要性(用定义)

 \mathcal{C}_{k_1} **A** $\alpha_1 + k_2$ **A** $\alpha_2 + \cdots + k_s$ **A** $\alpha_s = 0$, 即 **A** $(k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_s \alpha_s) = 0$.

由 $\mathbf{A}_{m \times n}$, $r(\mathbf{A}) = n \Longrightarrow \mathbf{A} \mathbf{x} = \mathbf{0}$ 只有零解.

故 $k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_s \alpha_s = 0$,又 α_1 , α_2 , \cdots , α_s 线性无关 $\Longrightarrow k_0 = k_1 = k_2 = \cdots = k_s = 0$.

从而 A a 1, A a 2, ···, A a s 线性无关.

充分性 (用秩)

因为 $A\alpha_1$, $A\alpha_2$, …, $A\alpha_s=A(\alpha_1, \alpha_2, \dots, \alpha_s)$, 所以

$$r(\mathbf{A} \alpha_1, \mathbf{A} \alpha_2, \cdots, \mathbf{A} \alpha_s) = r(\mathbf{A} (\alpha_1, \alpha_2, \cdots, \alpha_s)) \leq r(\alpha_1, \alpha_2, \cdots, \alpha_s)$$

由 $\mathbf{A}\alpha_1$, $\mathbf{A}\alpha_2$, …, $\mathbf{A}\alpha_s$ 线性无关知 $r(\mathbf{A}\alpha_1, \mathbf{A}\alpha_2, \ldots, \mathbf{A}\alpha_s) = s$.

而 $\mathbf{r}(\mathbf{\alpha}_1, \mathbf{\alpha}_2, \cdots, \mathbf{\alpha}_s) \leq \mathbf{s}$,从而 $\mathbf{r}(\mathbf{\alpha}_1, \mathbf{\alpha}_2, \cdots, \mathbf{\alpha}_s) = \mathbf{s} \Longrightarrow \mathbf{\alpha}_1, \mathbf{\alpha}_2, \cdots, \mathbf{\alpha}_s$ 线性无关.

【例题 4】设 $\mathbf{A} = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$, $\mathbf{A} \mathbf{x} = \boldsymbol{\beta}$ 的通解是 $[1, -2, 1, -1]^{\mathsf{T}} + \mathbf{k}[1, 3, 2, 0]^{\mathsf{T}}$, $\mathbf{B} = [\alpha_3, \alpha_2, \alpha_1, \boldsymbol{\beta} + \alpha_4]$, $\boldsymbol{\gamma} = \alpha_1 - 3\alpha_2 + 5\alpha_3$,

- (I) α₁能否由 α₂, α₃线性表出?
- (II) α₄能否由 α₁, α₂, α₃线性表出?
- (III) $Bx = \gamma$ 求的通解.

【分析】由非齐次方程组解的结构知道对应的齐次方程组的解的结构. 并且由于系数矩阵没有明确给出, 所以要从解的结构抽象地求解方程组. 用观察法得到基础解系, 注意基础解系是线性无关的.

【证】(I) $Ax = \beta$ 解的结构知 r(A) = 3.

由
$$A\begin{bmatrix} 1\\3\\2\\0\end{bmatrix}$$
 = 0 \Rightarrow $\alpha_1 + 3\alpha_2 + 2\alpha_3 = 0$ \Rightarrow α_1 能由 α_2 , α_3 线性表出.

(II) 设 $_{X_1}$ $\alpha_1 + _{X_2}$ $\alpha_2 + _{X_3}$ $\alpha_3 = \alpha_4$

由(I)知 $r(\alpha_1, \alpha_2, \alpha_3)$ <3,而 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ =4,知方程组无解,故 α_4 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出.

(III)
$$\pm \mathbf{A} \begin{bmatrix} 1 \\ -2 \\ 1 \\ -1 \end{bmatrix} = \mathbf{\beta} \implies \mathbf{\alpha}_1 - 2 \mathbf{\alpha}_2 + \mathbf{\alpha}_3 - \mathbf{\alpha}_4 = \mathbf{\beta}_4$$

那么 $\mathbf{B} = [\mathbf{\alpha}_3, \mathbf{\alpha}_2, \mathbf{\alpha}_1, \mathbf{\beta} + \mathbf{\alpha}_4] = [\mathbf{\alpha}_3, \mathbf{\alpha}_2, \mathbf{\alpha}_1, \mathbf{\alpha}_1 - 2\mathbf{\alpha}_2 + \mathbf{\alpha}_3 - \mathbf{\alpha}_4] \Longrightarrow r(\mathbf{B}) = 4.$

从而 $n-r(\mathbf{B})=2$.

因为[
$$\alpha_3$$
, α_2 , α_1 , $\alpha_1 - 2\alpha_2 + \alpha_3 - \alpha_4$] $\begin{bmatrix} 5 \\ -3 \\ 1 \\ 0 \end{bmatrix} = \alpha_1 - 3\alpha_2 + 5\alpha_3$

所以[5, -3, 1, 0] ^T是 Bx= γ 的一个解.

由(I)知
$$\alpha_1+3\alpha_2+2\alpha_3=0$$
,从而[α_3 , α_2 , α_1 , $\alpha_1-2\alpha_2+\alpha_3-\alpha_4$] $\begin{bmatrix} 2\\3\\1\\0 \end{bmatrix}$ =0,用观察法,取另一个向量使得它与[2, 3, 1, 0]^T

线性无关,即

$$[\alpha_3, \alpha_2, \alpha_1, \alpha_1-2\alpha_2+\alpha_3-\alpha_4]$$

$$\begin{bmatrix} -1 \\ -2 \\ 1 \\ -1 \end{bmatrix} = 0, \text{ 所以 Bx} = \gamma \text{ 的通解是}$$

[5, -3, 1, 0]^T + $k_1[2, 3, 1, 0]$ + $k_2[-1, -2, 1, -1]$, 其中 k_1 , k_2 为任意常数.

【评注】

本题考查了方程组解的结构以及在方程组矩阵未具体给出的时候如何求解方程组的 通解. 根据题目信息求出系数矩阵的秩后,会用方程组解的理论拼出解得基本形式,要会用观察法得到特解,和线性无关的解向量.

例如本题在选取齐次方程组基础解系时,先由已知条件得到一个解向量 $[2, 3, 1, 0]^T$,然后只要另一个解向量的形式为 $[\Box, \Box, 1, -1]^T$,那么这两个向量必定线性无关,从而可以作为基础解系.

【例题 5】
$$\mathbf{A} = [\alpha_1, \alpha_2, \alpha_3], \alpha_1 \neq \mathbf{0}$$
 满足 $\mathbf{AB} = \mathbf{0}$. 其中 $\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{bmatrix}, 求 \alpha_1, \alpha_2, \alpha_3$ 的一个极大线性无关组, 并用它表出其

他向量.

【分析】从 AB=0 要得想到两方面的信息: (I) r(A)+r(B) ≤ n (II) B 的列向量均是 Ax=0 的解.

【解】由 $AB=0 \Longrightarrow r(A) + r(B) \leq 3$.

因为 $A\neq 0$, $B\neq 0$ 知 $1\leq r(A)\leq 2$, $1\leq r(A)\leq 2$

当 k \neq 9 时, r(B) =2, 从而 r(A) =1, 此时极大无关组为 α_1 由 AB=0 得

$$\begin{cases} \alpha_{1} + 2\alpha_{2} + 3\alpha_{3} = 0 \\ 2\alpha_{1} + 4\alpha_{2} + 6\alpha_{3} = 0 \Longrightarrow (k-9) \alpha_{3} = 0 \\ 4\alpha_{1} + 6\alpha_{2} + k\alpha_{3} = 0 \end{cases}$$

又 k \neq 9,故 α_3 =0, α_3 =0 α_1 .

当 k=9 时, r(B)=1, 从而 r(A)=1 或 2.

若 r(A) = 1,则极大无关组为 α_1 ,

$$d \alpha_1 + 2 \alpha_2 + 3 \alpha_3 - \alpha_4 = 0 \Rightarrow \alpha_2 = t\alpha_1, \quad \alpha_3 = -\frac{1}{3}(1 + 2t)\alpha_1$$

若 r(A) = 2,则极大无关组为 α_1 , α_2 (α_1 , α_2 必定线性无关,否则 r(A) = 1)

$$\Rightarrow \alpha_3 = -\frac{1}{3}\alpha_1 - \frac{1}{3}\alpha_2$$

【例题 6】设
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ -1 & a & 4-a \end{bmatrix}$$
, $r(A) = 2$, 则 $A^* x = 0$ 的通解是_____.

【分析】若 A 为 n 阶方阵,则
$$r(A^*) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n-1, \text{ 从而由 } r(A) = 2 \text{ 知 } r(A^*) = 1, \text{ 又} |A| = 0, 得 A^* A = A A^* = |A| E = 0, r(A) < n-1 \end{cases}$$

 $0 \Longrightarrow \mathbf{A}$ 的列向量是 $\mathbf{A}^* \mathbf{x} = \mathbf{0}$ 解. 由解的结构知应填 $\mathbf{k}_1[\Box, \Box, \Box]^{\mathsf{T}} + \mathbf{k}_2[\Box, \Box, \Box]^{\mathsf{T}}$ 的形式.

【解】而由r(A) = 2知 $r(A^*) = 1$,所以通解由n - r(B) = 3 - 1 = 2个解向量构成.

 $\nabla |A| = 0$,得 $A^* A = A A^* = |A| E = 0 \Longrightarrow A$ 的列向量是 $A^* x = 0$ 解.

即 $[1, 0, -1]^{T}$, $[2, 1, a]^{T}$, $[3, 2, 4-a]^{T}$.

又[2, 1, a] 「+[3, 2, 4-a] 「=[5, 4, 3] 「,显然[1, 0, -1] 「与[5, 4, 3] 「线性无关,故 $k_1[1, 0, -1]$ 「+ $k_2[5, 4, 3]$ 「是 $\mathbf{A}^*\mathbf{x} = \mathbf{0}$ 的通解,其中 k_1 , k_2 为任意常数.

【例题 7】设 α_1 , α_2 , α_3 是 Ax=b 的解,r(A)=3, 若 $\alpha_1+\alpha_2=[1,2,3,4]^{\mathsf{T}}$, $\alpha_2+2\alpha_3=[2,3,4,5]^{\mathsf{T}}$, 则 Ax=b 的通解是_____. 【解】由 r(A)=3 知 Ax=0 的通解由 n-r(B)=4-3=1 个解向量构成. 从而

 $3(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2) - 2(\boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3)$ 是 **Ax**=**0**的解,即[-1, 0, 1, 2]^T

 $(\mathbf{\alpha}_2 + 2\mathbf{\alpha}_3) - (\mathbf{\alpha}_1 + \mathbf{\alpha}_2)$ 是 **Ax**=**b** 的解,即[1, 1, 1, 1]^T

从而, $[1, 1, 1, 1]^{\mathsf{T}} + k[-1, 0, 1, 2]^{\mathsf{T}}$ 是 $\mathbf{Ax} = \mathbf{b}$ 的通解, 其中 k 为任意常数.

【评注】

由非齐次方程组和齐次方程组解的性质知: 若 α_1 , α_2 是 Ax=b 的解,那么 $\alpha_1-\alpha_2$ 是 Ax=0 的解. 而若 α_1 , α_2 分别是几个解向量的线性组合时,相减时用最小公倍数的方式选择系数做减法. 即若 α_1 , α_2 分别是 2个和 3个解向量的线性组合(即 $\alpha_1=\eta_1+\eta_2$, $\alpha_2=\eta_3+\eta_4+\eta_5$, 这里 η_1 , η_2 , η_3 , η_4 , η_5 也是 Ax=b 的解)时,那么 $3\alpha_1-2\alpha_2$ 也是 Ax=0 的解. 另外,在这种情况下求 Ax=b 的特解,用除法: 若 η_1 , η_2 , η_3 是 Ax=b 的解,

又已知 $\beta = k_1 \eta_1 + k_2 \eta_2 + k_3 \eta_3$,那么 $\frac{1}{k_1 + k_2 + k_3} \beta$ 是Ax = b的解. 即用 β 中解向量的个数

去除. 因为 $A(k_1\eta_1+k_2\eta_2+k_3\eta_3)=k_1A\eta_1+k_2A\eta_2+k_2A\eta_3=(k_1+k_2+k_3)$ **b**,所以

$$A\frac{1}{k_1+k_2+k_3}(k_1\eta_1+k_2\eta_2+k_3\eta_3)=b$$

即
$$\frac{1}{k_1+k_2+k_3}$$
 $\boldsymbol{\beta}$ 是 $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ 的解.

也可以用减法,设 η_1 , η_2 , …, η_s 是 Ax=b 的解,又已知 $\beta_1=k_1\eta_1+k_2\eta_2+\dots+k_r\eta_r$, $\beta_2=k_1\eta_1+k_2\eta_2+\dots+k_s-r\eta_{s-r}$, 那么 $\beta_1-\beta_2$ 是 Ax=b 的解. 即由 s 和 s-r 个解向量构成的 s-(s-r) 个解向量是 Ax=b 的解. 这里得到 r 个新的解向量,用上面的除法就可以得到解. 特别的,若 r=1,例如得到 3-2=1 个解向量就可以直接使用.

【例题 8】设
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & a & -1 \\ -3 & 1 & 3 \end{bmatrix}$$
只有 2 个线性无关的特征向量. 求 A 的特征值与特征向量.

【解】3阶矩阵只有2个线性无关的特征向量,则特征值必有重根.

$$| \lambda \mathbf{E} - \mathbf{A} | = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ -1 & \lambda - a & 1 \\ 3 & -1 & \lambda - 3 \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 0 & \lambda - a & 1 \\ \lambda & -1 & \lambda - 3 \end{vmatrix} = \lambda (\lambda - a) (\lambda - 4) = 0.$$

(1) 若 a=0, 则 $\lambda_1 = \lambda_2 = 0$.

对[0E-A] x=0, 有

$$\begin{bmatrix} -1 & -1 & 1 \\ -1 & 0 & 1 \\ 3 & -1 & -3 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \text{ 从而 } \alpha_i = [1, 0, 1]^\intercal, k_i \alpha_i, 其中 k_i 为任意常数.$$

对 $[4\mathbf{E}-\mathbf{A}]$ x=0, 有

$$\begin{bmatrix} 3 & -1 & 1 \\ -1 & 4 & 1 \\ 3 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & -1 \\ 0 & 11 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \text{ 从而 } \alpha_2 = [-5, 4, -11]^{\mathsf{T}}, k_2 \alpha_2, \text{ 其中 } k_2 为任意常数.$$

(2) 若 a=4, 则 $\lambda_1 = \lambda_2 = 4$.

对[0E-A] x=0, 有

$$\begin{bmatrix} -1 & -1 & 1 \\ -1 & 0 & 1 \\ 3 & -1 & -3 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \text{ 从而 } \alpha_3 = [1, 0, 1]^{\mathsf{T}}, k_3 \alpha_3, \text{ 其中 } k_3 \text{ 为任意常数.}$$

对[4E-A] x=0, 有

$$\begin{bmatrix} 3 & -1 & 1 \\ -1 & 4 & 1 \\ 3 & -1 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & -4 & -1 \\ 0 & 11 & 4 \\ 0 & 0 & 0 \end{bmatrix}, 从而 $\alpha_4 = [1, 4, 1]^{\mathsf{T}}, k_4 \alpha_4,$ 其中 k_4 为任意常数.$$

【例题 9】设 A 是 3 阶矩阵,且 $\alpha^{\mathsf{T}}\beta = \frac{1}{2}$, $A = \alpha \beta^{\mathsf{T}} + \beta \alpha^{\mathsf{T}}$.

- (I)证明 0 是 A 的特征值.
- (II)证明 $\alpha + \beta$, $\alpha \beta$ 是 A 的特征向量.
- (III)求二次型 x Ax 的正负惯性指数.

$$\text{ [iii] } \text{ (I) } \text{ ``} \quad \alpha^{\, \text{\tiny T}} \beta = \beta^{\, \text{\tiny T}} \alpha = \frac{1}{2} \, .$$

∴ β α ^T, β α ^T是秩为 1 的矩阵.

从而 $r(\mathbf{A}) = r(\mathbf{\alpha} \ \mathbf{\beta}^{\mathsf{T}} + \mathbf{\beta} \ \mathbf{\alpha}^{\mathsf{T}}) \leq r(\mathbf{\alpha} \ \mathbf{\beta}^{\mathsf{T}}) + r(\mathbf{\beta} \ \mathbf{\alpha}^{\mathsf{T}}) = 2 < 3.$ 即 $|\mathbf{A}| = 0 \Longrightarrow 0$ 是 \mathbf{A} 的特征值.

(II)
$$\mathbf{A}(\alpha + \beta) = (\alpha \beta^{\mathsf{T}} + \beta \alpha^{\mathsf{T}})(\alpha + \beta) = \alpha \beta^{\mathsf{T}}\alpha + \beta \alpha^{\mathsf{T}}\alpha + \alpha \beta^{\mathsf{T}}\beta + \beta \alpha^{\mathsf{T}}\beta$$

$$=\frac{1}{2}\alpha+\beta+\alpha+\frac{1}{2}\beta=\frac{3}{2}(\alpha+\beta),$$

又
$$(\alpha + \beta) \neq 0$$
, 否则 $\alpha + \beta = 0$ $\Longrightarrow \alpha = -\beta \Longrightarrow \alpha^{\mathsf{T}}\beta = \beta^{\mathsf{T}}\alpha = -1 \neq \frac{1}{2}$ $(\alpha$, β 是 3 维单位列向量).

从而 $\alpha + \beta$ 是 A 的属于特征值 $\frac{3}{2}$ 的特征向量.

同样有 $\mathbf{A}(\alpha-\beta)=-\frac{1}{2}(\alpha-\beta)$,且 $(\alpha-\beta)\neq 0$,从而 $\alpha-\beta$ 是 \mathbf{A} 的属于特征值 $-\frac{1}{2}$ 的特征向量. (III) 由 (I) 、 (II) 知 \mathbf{A} 的特征值是: 0, $\frac{3}{2}$, $-\frac{1}{2}$,又 $\mathbf{A}^{\mathrm{T}}=\mathbf{A}$ (否则 \mathbf{A} 不是二次型的矩阵) \Longrightarrow $\mathbf{p}=1$, $\mathbf{q}=1$

【例题 10】设 A = 3 阶矩阵, α_1 , α_2 , $\alpha_3 = 3$ 维线性无关的列向量, $\alpha_1 = Ax = 0$ 的解, $A\alpha_2 = \alpha_1 + 2\alpha_2$, $A\alpha_3 = \alpha_1 - 3\alpha_2 + 2\alpha_3$ (I) 求 A 的特征值,特征向量.

(II)判断 A 是否和 Λ 相似?

【分析】由 $\mathbf{A}\mathbf{\alpha}_2 = \mathbf{\alpha}_1 + 2\mathbf{\alpha}_2$, $\mathbf{A}\mathbf{\alpha}_3 = \mathbf{\alpha}_1 - 3\mathbf{\alpha}_2 + 2\mathbf{\alpha}_3$, $\mathbf{\alpha}_1 \in \mathbf{A}\mathbf{x} = \mathbf{0}$ 的解,得到 $\mathbf{A}[\mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3]$ [0, $\mathbf{\alpha}_1 + 2\mathbf{\alpha}_2$, $\mathbf{\alpha}_1 - 3\mathbf{\alpha}_2 + 2\mathbf{\alpha}_3$]

 $[\alpha_3]^{-1}$,现在问题是 $[\alpha_1, \alpha_2, \alpha_3]$ 可不可逆呢?题目中又给出了 $[\alpha_1, \alpha_2, \alpha_3]$ 线性无关,故三阶矩阵 $[\alpha_1, \alpha_2, \alpha_3]$ 必可逆,所以 $[\alpha_1, \alpha_2, \alpha_3]$ 和 B 相似. 所以求 A 的特征值和特征向量就转为求 B 的特征值与特征向量. 记 A 的特征向量为 ζ ,则 B 的特征向量为 $P^{-1}\zeta$,所以知道 了 P⁻¹ ζ , 就可以求出 ζ .

而问 A 是否和 Λ 相似,由于已经求出了 A 的特征值,特征向量,则可以从相似对角化的充分必要条件给予推断.也可以根据相似 的传递性,由于上一步中已经得到了A和B相似,故若有B和 Λ 相似,则有A是否和 Λ 相似.

[M] (I) A[
$$\alpha_1$$
, α_2 , α_3] = [0, $\alpha_1 + 2\alpha_2$, $\alpha_1 - 3\alpha_2 + 2\alpha_3$] = [α_1 , α_2 , α_3] $\begin{bmatrix} 0 & 1 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & 2 \end{bmatrix}$.

因为 α_1 , α_2 , α_3 线性无关, 故[α_1 , α_2 , α_3]可逆, 从而

由 B 的特征值为 0, 2, 2 (B 为上三角矩阵,或者用定义,由 $|\lambda E - B| = \lambda (\lambda - 2)^2 = 0 \Longrightarrow \lambda = 0$, 2, 2.)知 A 的特征值为 0, 2, 2.

由己知, $k_1 \alpha_1 \neq A$ 的属于特征值 0 的特征向量,其中 k_1 为不等于零的任意常数.

对于 B 的属于特征值 2 的特征向量,有
$$\zeta_1 = [1, 2, 0]^T = [\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = [\alpha_1 + 2\alpha_2], \implies k_2 [\alpha_1 + 2\alpha_2]$$
 A 的属于特征 $\delta_1 = [\alpha_1 + \alpha_2]$ 从 的属于特征 $\delta_2 = [\alpha_1 + \alpha_2]$ 从 的属于特征 $\delta_3 = [\alpha_1 + \alpha_2]$ 的 $\delta_3 = [\alpha_1 + \alpha_2]$ 从 的属于特征 $\delta_3 = [\alpha_1 + \alpha_2]$ 的 $\delta_3 = [\alpha_1 + \alpha_2]$

征值2的特征向量,其中 k2为不等于零的任意常数.

(II) 由(I)知 \mathbf{A} 只有 2 个线性无关的特征向量,故 \mathbf{A} 不和 $\mathbf{\Lambda}$ 相似.

【评注】

这是特征值与特征向量的另一种考法,由 $A\alpha_2=\alpha_1+2\alpha_2$, $A\alpha_3=\alpha_1-3\alpha_2+2\alpha_3$ 要想到相似的信息.这里缺少 $A\alpha_1$,如果有 $A\alpha_1$ 的话,就可以构成分块矩阵的乘法,从而可以得到相似的信息,而这里题目中又给出了 α_1 是Ax=0的解,所以可以做分块矩阵的乘法,

有
$$A[a_1, a_2, a_3]$$
 [0, $a_1+2a_2, a_1-3a_2+2a_3$] = $[a_1, a_2, a_3]$ $\begin{bmatrix} 0 & 1 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & 2 \end{bmatrix}$.

记
$$\mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & 2 \end{bmatrix}$$
,若[$\mathbf{\alpha}_1$, $\mathbf{\alpha}_2$, $\mathbf{\alpha}_3$]可逆,则必有 $\mathbf{A} = [\mathbf{\alpha}_1$, $\mathbf{\alpha}_2$, $\mathbf{\alpha}_3$] $\mathbf{B}[\mathbf{\alpha}_1$, $\mathbf{\alpha}_2$,

 α_3] $^{-1}$,现在问题是[α_1 , α_2 , α_3] 可不可逆呢?题目中又给出了 α_1 , α_2 , α_3 线性无关,故 三阶矩阵[α_1 , α_2 , α_3] 必可逆,所以 A 和 B 相似. 所以 x A 的特征值和特征向量就转为 求 B 的特征值与特征向量. 记 A 的特征向量为 ζ ,则 B 的特征向量为 $P^{-1}\zeta$,所以知道了 $P^{-1}\zeta$,就可以求出 ζ .

【例题 11】设 $A^2 + 2A = 0$, r(A) = r.

(I)证明 A和 Λ 相似.

(II) 求 | A+3E |.

【分析】由 $\lambda^2 + 2\lambda = 0 \Longrightarrow \lambda = 0$, -2. 即 A 的特征值是,但是各有几个是不知道的,还需要具体分析.

【证】(I) (用秩) $r(A) = r \Longrightarrow A = [\alpha_1, \alpha_2, \cdots, \alpha_n]$ 中有 r 个向量线性无关.

由 $\mathbf{A}^2 = -2\mathbf{A} \Longrightarrow \mathbf{A}[\alpha_1, \alpha_2, \cdots, \alpha_n] = -2[\alpha_1, \alpha_2, \cdots, \alpha_n] \Longrightarrow \alpha_1, \alpha_2, \cdots, \alpha_n$ 是 \mathbf{A} 的属于特征值-2 的特征向量 $\Longrightarrow -2$ 有 \mathbf{r} 个线性无关的特征向量.

由 $\mathbf{r}(\mathbf{A}) = \mathbf{r}$ 知 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, …, $\boldsymbol{\beta}_{n-r}$ 是 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的基础解系 $\Longrightarrow \mathbf{A}\boldsymbol{\beta}_i = \mathbf{0}$ ($i=1, 2, \dots n-r$) \Longrightarrow 特征值 0 有 n-r 个线性无关的特征向量.

(II) 由 (I) 知 $|A+3E|=3^{n-r}$.

【评注】

若矩阵 A 满足 f(A) , f(A) 为 A 的多项式,那么 A 的特征值由 f(A) 给出,但是各有几个是不知道的. 还需要其他信息加以判断.

【例题 12】已知
$$\mathbf{A}$$
 是 $\mathbf{3}$ 阶矩阵,各行元素之和为 $\mathbf{2}$,且 $\mathbf{A}\mathbf{B}=\mathbf{0}$,其中 $\mathbf{B}=\begin{bmatrix}0&1&2\\1&-1&-3\\-1&2&5\end{bmatrix}$,若 $\mathbf{\beta}=\begin{bmatrix}2,\ 3,\ 4\end{bmatrix}^{\mathsf{T}}$,求 $\mathbf{A}^{\mathsf{T}}\mathbf{\beta}$.

【解】因为 A 各行元素之和为 2, 所以

$$\mathbf{A} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \Longrightarrow 2 \ \mathbf{A} \ \text{的特征值}, \ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \ \mathbf{E}$$
对应的特征向量,记 $\mathbf{\alpha}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

由 AB=0, 有 A
$$\begin{bmatrix} 0\\1\\-1 \end{bmatrix}$$
 = 0 $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, A $\begin{bmatrix} 1\\-1\\2 \end{bmatrix}$ = 0 $\begin{bmatrix} 1\\-1\\2 \end{bmatrix}$, 记 $\alpha_2 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}$.

即 A 的特征值是 2, 0, 0, 且 0 有 2 个线性无关的特征向量.

设 $x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3 = \beta$. $\begin{bmatrix} 1 & 0 & 1 & 2 \\ 1 & 1 & -1 & 3 \\ 1 & -1 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 \\ 1 & 1 & -2 & 1 \\ & & -1 & 3 \end{bmatrix} \rightarrow x_1 = 5, x_2 = -5, x_3 = -3,$

$$\Rightarrow$$
 $\beta = 5 \alpha_1 - 5 \alpha_2 - 3 \alpha_3 \Rightarrow A \beta = 5A \alpha_1 - 5A \alpha_2 - 3A \alpha_3 = 10 \alpha_1$

$$\Rightarrow \mathbf{A}^{n} \mathbf{\beta} = \mathbf{A}^{n-1} \mathbf{A} = 10 \ \mathbf{A}^{n-1} \mathbf{\alpha}_{1} = 10 \ \mathbf{\lambda}_{1}^{n-1} \mathbf{\alpha}_{1} = 5 \cdot 2^{n} \mathbf{\alpha}_{1} = \begin{bmatrix} 5 \cdot 2^{n} \\ 5 \cdot 2^{n} \\ 5 \cdot 2^{n} \end{bmatrix}.$$

【例题 13】已知
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -1 & a \\ 0 & 0 & 0 \end{bmatrix}$$
相似,

求可逆矩阵 P 使 $P^{-1}AP = B$.

【解】因为 \mathbf{A} 和 \mathbf{B} 相似,所以 $\mathbf{r}(\mathbf{A}) = \mathbf{r}(\mathbf{B}) \Longrightarrow \mathbf{a} = 2$.

$$\mathbb{Z} | \mathbf{\lambda} \mathbf{E} - \mathbf{A} | = \begin{vmatrix} \lambda - 1 & -2 & -3 \\ & \lambda & \\ & & \lambda \end{vmatrix} = \mathbf{\lambda}^{2} (\mathbf{\lambda} - 1) = 0 \Longrightarrow \mathbf{\lambda} = 0, 0, 1.$$

对 $\lambda = 0$, 有 $\lceil 0\mathbf{E} - \mathbf{A} \rceil \mathbf{x} = 0$,

$$\begin{bmatrix} -1 & -2 & -3 \\ & 0 & \\ & & 0 \end{bmatrix} \rightarrow \alpha_{1} = [-2, 1, 0]^{T}, \alpha_{2} = [-3, 0, 1]^{T}.$$

对 $\lambda = 1$ 有[E-A] $\mathbf{x} = 0$,

$$\begin{bmatrix} 0 & -2 & -3 \\ & 1 & \\ & & 1 \end{bmatrix} \rightarrow \alpha_{3} = \begin{bmatrix} 1, & 0, & 0 \end{bmatrix}^{T}.$$

$$\diamondsuit P_1 = [\alpha_1, \alpha_2, \alpha_3], 有 P_1^{-1}AP_1 = \begin{bmatrix} 0 & & & \\ & 0 & & \\ & & 1 \end{bmatrix}.$$

$$\pm |\lambda \mathbf{E} - \mathbf{B}| = \begin{vmatrix} \lambda - 2 & 2 & -4 \\ -1 & \lambda + 1 & -2 \\ 0 & 0 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda & 2 & -4 \\ \lambda & \lambda + 1 & -2 \\ 0 & 0 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda & 2 & -4 \\ 0 & \lambda - 1 & 2 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda^{2} (\lambda - 1) = 0$$

 $\Rightarrow \lambda = 0, 0, 1.$

对 $\lambda = 0$, 有[0E-A] $\mathbf{x} = 0$,

$$\begin{bmatrix} -2 & 2 & -4 \\ -1 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \mathfrak{p}_1 = \begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T, \quad \mathfrak{p}_2 = \begin{bmatrix} -2, & 0, & 1 \end{bmatrix}^T.$$

对 $\lambda = 1$, 有[E-A] $\mathbf{x} = 0$,

$$\begin{bmatrix} -1 & 2 & -4 \\ -1 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 2 & -4 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \mathfrak{p}_3 = \begin{bmatrix} 2, & 1, & 0 \end{bmatrix}^T.$$

$$\diamondsuit P_2 = [\beta_1, \beta_2, \beta_3], 有 P_2^{-1}BP_2 = \begin{bmatrix} 0 & & & \\ & 0 & & \\ & & 1 \end{bmatrix}.$$

则
$$P=P_1$$
 $P^{-1}_2=\begin{bmatrix} -2 & -3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & -2 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}^{-1}=\begin{bmatrix} 3 & -3 & 3 \\ -1 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix}$ 为所求.

【例题 **14**】已知 $\alpha = [1, k, -2]^{\mathsf{T}}$ 是二次型 $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} = a{x_1}^2 + a{x_2}^2 + k{x_3}^2 - 2\ x_1x_3 - 2\ x_2x_3$ 矩阵 **A** 的特征向量. 用坐标变换化二次行为标准型,并写出所用的坐标变换.

【解】二次型的矩阵为

$$\mathbf{A} = \begin{bmatrix} a & 0 & -1 \\ 0 & a & -1 \\ -1 & -1 & k \end{bmatrix}.$$

设 $A\alpha = \lambda \alpha$,有

$$\begin{bmatrix} a & 0 & -1 \\ 0 & a & -1 \\ -1 & -1 & k \end{bmatrix} \begin{bmatrix} 1 \\ k \\ -2 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ k \\ -2 \end{bmatrix} \rightarrow \begin{cases} a+2=\lambda_1 & (1) \\ ak+2=\lambda_1 k & (2) \\ -1-3k=-2\lambda_1 & (3) \end{cases}$$

 $k(1)-(2) \Longrightarrow 2k-2=0 \Longrightarrow k=1$, 带入(3)有 $\lambda_1=2$, 带入(1)有 a=0.

$$\pm |\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda & 0 & 1 \\ 0 & \lambda & 1 \\ 1 & 1 & \lambda - 1 \end{vmatrix} = \lambda (\lambda - 2) (\lambda + 1) = 0 \Longrightarrow \lambda = 0, 2, -1.$$

对 $\lambda = 0$, 有[0E-A] $\mathbf{x} = 0$,

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \alpha_2 = [1, -1, 0]^{\mathsf{T}}.$$

对 $\lambda = -1$ 有[-E-A] x=0,

$$\begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -2 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \alpha_3 = \begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^{\mathsf{T}}.$$

因为正定矩阵不同特征值的特征向量已正交,故只需单位化,得

$$\gamma_1 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \quad \gamma_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \gamma_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

【例题 15】已知 n 阶矩阵 A, B 均正定.

证明: AB 正定的充分必要条件是 AB 可交换,即 AB=BA.

【分析】设 n 阶矩阵 A 为正定矩阵, 隐含着潜台词: A 是对称的, 所以必要性由此推得。

正定矩阵是由二次型引出的,即若二次型 $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$,则二次型正定也就是 \mathbf{A} 正定,二次型负定也就是 \mathbf{A} 负定,二次型不定也就是 \mathbf{A} 不定.

矩阵正定的充要条件是:

- (I) A 的特征值全大于零.
- (II) A的顺序主子式全大于零.
- (III) $\forall \mathbf{x}^{\mathrm{T}} \neq \mathbf{0}$,有 $\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} > \mathbf{0}$.

从而证明矩阵正定就可以从这些方面入手.

【证】(必要性) A, B, AB 正定 \Longrightarrow A=A^T, B=B^T, AB=(AB)^T \Longrightarrow AB=(AB)^T=B^TA^T=BA. (充分性)

【方法一】A, B 正定 \Longrightarrow $A=A^T$, $B=B^T$ \Longrightarrow $AB=A^TB^T=(BA)^T$, 又 AB=BA \Longrightarrow $AB=(BA)^T=(AB)^T$, 即 AB 对称.

A, B 正定 \iff \exists 可逆矩阵 P, Q, 使得 $A = P^T P$, $B = Q^T Q$

$$\Longrightarrow$$
 QABQ⁻¹=QP^TPQ^TQQ⁻¹=QP^TPQ^T=(PQ^T)^TPQ^T.

易验证 \mathbf{PQ}^{T} 可逆,实对称,故 $(\mathbf{PQ}^{\mathsf{T}})^{\mathsf{T}}\mathbf{PQ}^{\mathsf{T}}$ 正定,即 \mathbf{AB} 与正定矩阵 $(\mathbf{PQ}^{\mathsf{T}})^{\mathsf{T}}\mathbf{PQ}^{\mathsf{T}}$ 相似,而 \mathbf{AB} 与 $(\mathbf{PQ}^{\mathsf{T}})^{\mathsf{T}}\mathbf{PQ}^{\mathsf{T}}$ 均是实对称矩阵,故 \mathbf{AB} 也与 $(\mathbf{PQ}^{\mathsf{T}})^{\mathsf{T}}\mathbf{PQ}^{\mathsf{T}}$ 合同,从而 \mathbf{AB} 正定.

【方法二】(用特征值)

验证对称性见方法一.

设 λ 是 AB 的任特征值, α 是对应的特征向量,则 $\Lambda\alpha = \lambda\alpha$, $\alpha \neq 0$.

由 A 正定,知 A 可逆且 \mathbf{A}^{-1} 正定,故 $\mathbf{B} \mathbf{\alpha} = \lambda \mathbf{A}^{-1} \mathbf{\alpha} \Longrightarrow \mathbf{\alpha}^{\mathsf{T}} \mathbf{B} \mathbf{\alpha} = \lambda \mathbf{\alpha}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{\alpha}$.

因 A^{-1} , B 正定 $\Rightarrow \alpha^T B \alpha > 0$, $\alpha^T A^{-1} \alpha > 0 \Rightarrow \lambda > 0 \Rightarrow AB$ 正定.

【评注】

设n阶矩阵A为正定矩阵,隐含着潜台词: A 是对称的,所以要证A 正定,必先验证A 的对称性.

正定矩阵是由二次型引出的,即若二次型 x^TAx ,则二次型正定也就是A正定,二次型负定也就是A负定,二次型不定也就是A不定.

矩阵正定的充要条件是:

- (I) A 的特征值全大于零.
- (II) A 的顺序主子式全大于零.
- (III) $\forall x^{T} \neq 0$,有 $x^{T}Ax > 0$.

所以要证,第二步就是要根据这些条件出发去证明. 而验证顺序主子式全大于零,计算较繁琐,所以可能在选择题或填空题中进行考察,这样就可以只计算低阶的几个主子式就可以了,例如 1, 2, 3, 4 阶的. 而证明题中考查的时候则一般是以(I)、(III)为主,比如该题方法二中就结合使用了(I)、(III)的证明方法.

题中使用了一个简单结论: A 正定 \Longrightarrow 知 A 可逆且 A^{-1} 正定. 显然 A 正定,则 $|A| \neq 0$,即 A 可逆,而 $(A^{-1})^T = (A^T)^{-1} = A^{-1}$ 即 A^{-1} 对称. 又 A 的特征值全大于零,故 $|A| \neq 0$,从而 A^{-1} 的特征值亦全大于零,即 A^{-1} 正定.

最后,简要再提一下合同,设有 n 阶矩阵 A,B,则若存在可逆矩阵 C,使得 $A=C^{\dagger}BC$,则称 A 和 B 合同. 矩阵 A 和 B 合同的充分必要条件是:A 和 B 的正负惯性指数相同,即惯性定理:矩阵 A 和 B 合同 \Longrightarrow $p_A=p_B$ 和 $q_A=q_B$,而 p_A , p_B , q_A , q_B 各等于几是不知道的, λ_A , λ_B 相不相等更是不知道的. 即合同只是给出了 A 和 B 的特征值正的有几个,负的有几个,等于零的有几个,而没有定量的给出具体相等的是哪几个.