

On the use of Deep Generative Models for "Perfect" **Prognosis Climate Downscaling**

Jose González-Abad gonzabad@ifca.unican.es

Jorge Baño-Medina bmedina@ifca.unican.es

Ignacio Heredia Cachá iheredia@ifca.unican.es

NeurlPS 2021 Workshop: Tackling Climate Change with Machine Learning

Global Climate Models

Global Climate Models (GCM) are the main tools available for simulating the response of the global climate system to different greenhouse gas concentrations scenarios.

Climate equations

$$\begin{array}{ll} \frac{d\boldsymbol{v}}{dt} &=& -\alpha\boldsymbol{\nabla}p-\boldsymbol{\nabla}\phi+\boldsymbol{F}-2\boldsymbol{\Omega}\times\boldsymbol{v}\\ \frac{\partial\rho}{\partial t} &=& -\boldsymbol{\nabla}\cdot(\rho\,\boldsymbol{v})\\ p\,\alpha &=& R\,T\\ Q &=& C_p\frac{dT}{dt}-\alpha\frac{dp}{dt}\\ \frac{\partial\rho\,q}{\partial t} &=& -\boldsymbol{\nabla}\cdot(\rho\,\boldsymbol{v}\,q)+\rho\,(E-C) \end{array}$$

discretize over space and time

Source: Edwards, P. N. (2011). History of climate modeling. *Wiley Interdisciplinary Reviews: Climate Change*, 2(1), 128-139.

Global Climate Models

Due to computational limitations, GCMs suffer from a coarse spatial resolution.

This makes it difficult to use GCMs in different socio-economical activities to tackle climate change.

Source

An increase in spatial resolution is needed

Statistical Downscaling

Statistical Downscaling learns the **empirical relationship** between a set of low resolution variables (input/predictors) and the local variable of interest (output/predictands).

Low-resolution data (predictor)

High-resolution data (predictand)

In this study we focus on the **Perfect Prognosis (PP)** Downscaling where both predictors and predictand are **observational datasets**.

WARNING: PP-based downscaling is NOT a super-resolution problem (more details on PP assumptions in [1]).

Deep Learning (DL) has recently emerged as a promising PP technique:

- Allows to reproduce the observed local climate.
- Shows plausible climate change projections of precipitation and temperature over Europe.

Probabilistic regression-based models

Unfortunately, deterministic DL techniques applied to PP Downscaling may fail to **account for extremes**.

Conditional mean does not express the variability of data.

Probabilistic regression-based models

To account for the uncertainty describing these extremes **probabilistic regression-based modeling** started to be adopted.

Modelling the distribution allows to account for the **uncertainty**, thus describing the possible **extremes**.

Probabilistic regression-based models

Taking into account these **extremes** helps in the decision-making **to tackle climate change**.

Deep Generative Models for PP Downscaling

The state-of-the-art probabilistic DL approach [2] **independently** modeled the distribution at each predictand site.

Due to the independence between distributions, the downscaled variables are **not spatially consistent**.

We propose the use of **Deep Generative Models** as tractable alternatives to model multivariate conditional distributions over the high-dimensional space of the predictand (in a PP setting). This could bring us certain advantages:

- Improved spatial consistency in comparison with previous approaches
- Stochasticity, which allows us to account for uncertainty (extremes)
- Taking advantage of recent developments in generative modelling

#iF(A

Downscaling case study over Europe with CVAE

To illustrate these points we develop a simple **use-case** of PP Downscaling over Europe using a Generative Model, more specifically a **Conditional Variational Autoencoder (CVAE)**.

We compare our CVAE model with the CNN1 state-of-the-art model in [2] under the same conditions:

ERA-Interim (2° resolution)

5 thermodynamical variables × 4 different vertical levels

EOBS (0.5° resolution)

Precipitation

Train period 1979-2002

Test period 2003-2008

CVAE model

Comparison: CVAE vs CNN1

CNN1 fields, being sampled from independent Bernoulli-Gamma distributions, present a **noisy spatial structure**. In contrast, CVAE, while still allowing for sampling, gives much **smoother predictions**.

25

Future Work

We propose the use of **Deep Generative Models** to produce **spatially consistent** stochastic fields in PP Statistical Downscaling. Future work will explore:

- Robust **quantitative comparison** of the **spatial consistency** of generative models with respect to non-generative ones.
- Evaluating the models with respect to **temporal consistency** and **reproducibility of extremes**.
- A proper study of the model's extrapolation capabilities in order to apply it to climate change projections.
- Further tuning of the CVAE architecture may translate into improvements. Additional mechanisms such as Normalizing Flows could help modelling a more flexible latent distribution which would capture better the complex distribution of precipitation fields.
- Explore **GAN-based** models to further improve the results obtained with CVAEs (e.g Conditional GANs).

Thank you!

Jose González-Abad gonzabad@ifca.unican.es

Jorge Baño-Medina bmedina@ifca.unican.es

Ignacio Heredia Cachá iheredia@ifca.unican.es