Fertility and Family Labor Supply

Katrine Jakobsen^{1,2} Thomas H. Jørgensen¹ Hamish Low²

¹CEBI, University of Copenhagen

²Oxford University

April 18, 2023

• Understanding labor supply is key for policy design.

Labor Supply

• Understanding labor supply is key for policy design.

Understanding labor supply is key for policy design.

• Understanding labor supply is key for policy design.

Understanding labor supply is key for policy design.

• We provide two main contributions

- We provide two main contributions
- Show that fertility responds to wage/tax changes empirically (variation from Danish tax-reforms from 2009)

- We provide two main contributions
- Show that fertility responds to wage/tax changes empirically (variation from Danish tax-reforms from 2009)

- Quantify the importance of fertility for labor market reforms through an estimated life-cycle model:
 - labor supply and human capital accumulation of both household members
 - Fertility (endogenous number and timing)
 - Wealth accumulation

- We provide two main contributions
- Show that fertility responds to wage/tax changes empirically (variation from Danish tax-reforms from 2009)
 - ▶ marginal net-of-tax wage of men ↑ ⇒ fertility ↑
 - lacktriangle marginal net-of-tax wage of women $\uparrow \Longrightarrow$ fertility \downarrow
- Quantify the importance of fertility for labor market reforms through an estimated life-cycle model:
 - labor supply and human capital accumulation of both household members
 - Fertility (endogenous number and timing)
 - Wealth accumulation

- We provide two main contributions
- Show that fertility responds to wage/tax changes empirically (variation from Danish tax-reforms from 2009)
 - ▶ marginal net-of-tax wage of men ↑ ⇒ fertility ↑
 - lacktriangle marginal net-of-tax wage of women $\uparrow \Longrightarrow$ fertility \downarrow
- Quantify the importance of fertility for labor market reforms through an estimated life-cycle model:
 - labor supply and human capital accumulation of both household members
 - Fertility (endogenous number and timing)
 - Wealth accumulation
 - Replicates empirical findings above
 - ▶ 28% higher Marshallian labor supply elasticity of women when fertility can respond

Related Literature

- Fertility responses to financial incentives:
 - Child subsidies and tax reliefs (see e.g. Rosenzweig, 1999; Milligan, 2005; Brewer, Ratcliffe and Smith, 2012; Cohen, Dehejia and Romanov, 2013; Laroque and Salanié, 2014)
 - ► Child care costs (Blau and Robins, 1989; Del Boca, 2002; Mörk, Sjögren and Svaleryd, 2013)
 - ▶ Wealth (housing) (Lovenheim and Mumford, 2013; Dettling and Kearney, 2014; Mizutani, 2015; Atalay, Li and Whelan, 2017; Clark and Ferrer, 2019; Daysal, Lovenheim, Siersbæk and Wasser, forthcoming).
- Female labor supply and fertility: Hotz and Miller (1988);
 Francesconi (2002); Adda, Dustmann and Stevens (2017); Eckstein,
 Keane and Lifshitz (2019)
- Long-run labor supply elasticities: see e.g. Attanasio, Levell, Low and Sánchez-Marcos (2018) and reviews by Keane (2011, forthcoming)

Outline

- Empirical Motivation
 - Data
 - Identification Strategy
 - Results

- 2 Life-Cycle Model
 - Model framework
 - Estimation
 - Simulations
 - Quantifying the Importance of Fertility

Data and Sample Selection

Use several Danish registers for 2004–2018

- ▶ Information on income, fertility, wealth etc.
- Monthly pay-slip information (BFL, from 2010)
 - Aggregate to annual freq.
 - ★ Center around calendar year or childbirth

Common sample selection:

- Aged 25–60
- Has a partner (of opposite sex)
- Discard people who are mainly self-employed, student, retired or on disability insurance

• Two samples:

- 1 tax sample (women aged 25-40)
- 2 estimation sample (2010–2018, max. 5 years age difference)

Identification Strategy: Regressions

Estimate equations of the form (ETI, Gruber and Saez, 2002)

$$\begin{split} \Delta_4 \textit{N}_{i,t} = & \eta_{\textit{w}} \Delta_4 \log(1 - \tau_{i,t}) + \eta_{\textit{m}} \Delta_4 \log(1 - \tau_{\textit{partner}(i,t)}) \\ & + \gamma_{\textit{w}} \Delta_4 \log(y_{i,t}) + \gamma_{\textit{m}} \Delta_4 \log(y_{\textit{partner}(i,t)}) \\ & + \beta \textit{X}_{i,t} + g(\textit{z}_{i,t}) + \varepsilon_{i,t} \end{split}$$

where

- \triangleright $N_{i,t}$: number of children of woman i at time t
- $ightharpoonup \Delta_4 x_{i,t}$: four-year forward differences
- $ightharpoonup au_{i,t}$: marginal tax rate
- ▶ *y_{i.t}*: Virtual income
- ▶ X_{i,t}: year- and age dummies and human capital
- $g(z_{i,t})$ detailed income controls for both partners
- η_w : Compensated elasticity w.r.t women's marginal net-of-tax wage
- η_m : Compensated elasticity w.r.t **men's** marginal net-of-tax wage
- ullet γ_w : Income effect w.r.t women's marginal net-of-tax wage
- γ_m : Income effect w.r.t **men's** marginal net-of-tax wage

Identification Strategy: 2SLS

- Endogenous marginal tax rates
- Instrument $\Delta_4 \log(1-\tau_{i,t})$ and $\Delta_4 \log(1-\tau_{partner(i,t)})$ with 4-year mechanical net-of-tax wage changes of each partner

$$\begin{split} \log(1 - \tau_{i,t}^{t+4}) - \log(1 - \tau_{i,t}) \\ \log(1 - \tau_{\textit{partner}(i,t)}^{t+4}) - \log(1 - \tau_{\textit{partner}(i,t)}) \end{split}$$

• Instrument $\Delta_4 \log(y_{i,t})$ and $\Delta_4 \log(y_{partner(i,t)})$ likewise

2SLS Estimation Results

	(1)	(2)	(3)
$\Delta_4 \log(1-\tau_{i,t})$, women	-0.035***	-0.023**	-0.023**
	(0.010)	(0.010)	(0.010)
$\Delta_4 \log(y_{i,t})$, women	0.003	0.004*	0.005*
	(0.003)	(0.003)	(0.003)
$\Delta_4 \log(1- au_{i,t})$, men	0.008	0.005	0.005
	(0.009)	(0.009)	(0.009)
$\Delta_4 \log(y_{i,t})$, men	0.020**	0.026***	0.028***
	(800.0)	(800.0)	(800.0)
Income dummies	Yes	Yes	Yes
Children dummies	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes
Hum. cap. controls	No	Yes	Yes
Male partner controls	No	No	Yes
Avg. dep. var. (y, level)	1.522	1.522	1.522
Obs.	2531181	2531181	2531181
First stage F-stat.	27585.8	27869.9	27903.8

2SLS Estimation Results

	(1)	(2)	(3)
$\Delta_4 \log(1-\tau_{i,t})$, women	-0.035***	-0.023**	-0.023**
	(0.010)	(0.010)	(0.010)
$\Delta_4 \log(y_{i,t})$, women	0.003	0.004*	0.005*
	(0.003)	(0.003)	(0.003)
$\Delta_4 \log(1- au_{i,t})$, men	0.008	0.005	0.005
	(0.009)	(0.009)	(0.009)
$\Delta_4 \log(y_{i,t})$, men	0.020**	0.026***	0.028***
	(800.0)	(800.0)	(800.0)
Income dummies	Yes	Yes	Yes
Children dummies	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes
Hum. cap. controls	No	Yes	Yes
Male partner controls	No	No	Yes
Avg. dep. var. (y, level)	1.522	1.522	1.522
Obs.	2531181	2531181	2531181

2SLS Estimation Results: Discussion

- Fertility responds to tax changes
 - Income effect dominates for men (marginal net-of-tax wage of men ↑ ⇒ fertility ↑)
 - Substitution effect dominates for women (marginal net-of-tax wage of women ↑ ⇒ fertility ↓)
- Low-income couples have strongest response (table

labor supply responses

2SLS Estimation Results: Discussion

- Fertility responds to tax changes
 - Income effect dominates for men (marginal net-of-tax wage of men ↑ ⇒ fertility ↑)
 - Substitution effect dominates for women (marginal net-of-tax wage of women ↑ ⇒ fertility ↓)
- Low-income couples have strongest response table

```
labor supply responses
```

- Next:
 - Model joint decision
 - Quantify importance of fertility adjustments for long-run labor supply of men and women

Outline

- Empirical Motivation
 - Data
 - Identification Strategy
 - Results

- 2 Life-Cycle Model
 - Model framework
 - Estimation
 - Simulations
 - Quantifying the Importance of Fertility

Model Overview

Households maximize the expected discounted sum of future utility

Choose

- $ightharpoonup C_t$: Consumption
- ▶ I_{w.t}: Labor supply, women
- ▶ *l_{m,t}*: Labor supply, men
- $ightharpoonup e_t$: Fertility effort

Given states

- ▶ K_{w,t}: Human capital, women
- $ightharpoonup K_{m,t}$: Human capital, men
- $ightharpoonup A_{t-1}$: Wealth (no net-borrowing)
- ▶ n_t: Number of children
- o_t: Age of youngest child

Labor Supply

- Endogenous labor supply of men and women, $j \in \{m, w\}$:
 - ▶ Not working, $l_{i,t} = 0$
 - ▶ Part time, $l_{j,t} = 0.75$
 - Full time, $l_{j,t} = 1$

Labor Supply

- Endogenous labor supply of men and women, $j \in \{m, w\}$:
 - ▶ Not working, $I_{i,t} = 0$
 - ▶ Part time, $l_{i,t} = 0.75$
 - Full time, $l_{i,t} = 1$
- Human capital accumulation

$$K_{j,t+1} = [(1-\delta)K_{j,t} + I_{j,t}]\epsilon_{j,t+1}$$

where $\epsilon_{j,t+1}$ is an iid log-normal mean-one shock.

Labor Supply

- Endogenous labor supply of men and women, $j \in \{m, w\}$:
 - Not working, $l_{i,t} = 0$
 - ▶ Part time, $l_{j,t} = 0.75$
 - Full time, $l_{i,t} = 1$
- Human capital accumulation

$$K_{j,t+1} = [(1-\delta)K_{j,t} + I_{j,t}]\epsilon_{j,t+1}$$

where $\epsilon_{j,t+1}$ is an iid log-normal mean-one shock.

Labor income is

$$Y_{j,t} = w_{j,t}I_{j,t}$$

where wages are

$$\log w_{j,t} = \gamma_{j,0} + \gamma_{j,1} K_{j,t}$$

Fertility

- Couples chose **fertility effort**, $e_t \in \{0, 1\}$ each period
- Imperfect fertility control

Fertility

- ullet Couples chose **fertility effort**, $e_t \in \{0,1\}$ each period
- Imperfect fertility control
- Childbirth next period with probability

$$\wp_t(e_t) = \left\{ egin{array}{ll} \overline{\wp}_t & ext{if } e_t = 1 \\ \overline{\wp}_t \underline{\wp} & ext{if } e_t = 0 \end{array}
ight.$$

- $\overline{\wp}_t < 1$: biological fecundity (declining in age) details $\wp > 0$: unintended pregnancies
- The age of the youngest, o_t , evolves deterministically details
- Children move out stochastically details

Preferences

Household preferences are

$$U(C_t, n_t, o_t, I_{w,t}, I_{m,t}) = \lambda u_w(\cdot) + (1 - \lambda)u_m(\cdot)$$

• Individual preferences are

$$\begin{split} u_{j}(C_{t}, n_{t}, o_{t}, l_{j,t}) &= \frac{(C_{t}/\nu(n_{t}))^{1-\rho}}{1-\rho} \\ &+ \sum_{i=1}^{3} \omega_{i} \mathbf{1}(n_{t} \geq i) \\ &+ \eta_{0} e_{t} \mathbf{1}(o_{t} = 0) + \eta_{1} e_{t} \mathbf{1}(o_{t} = 1) \\ &+ f_{j}(l_{j,t}, age_{j,t}) \\ &+ q_{j}(l_{j,t}, n_{t}, o_{t}) \mathbf{1}(n_{t} > 0) \end{split}$$

 \bullet Flexible interaction between labor supply and children in $q_j(\).$

Institutional environment

- Partnership dissolution is random and absorbing details
- Retirement is exogenous and absorbing
- Involuntary unemployment risk of 3 percent each year

Institutional environment

- Partnership dissolution is random and absorbing details
- Retirement is exogenous and absorbing
- Involuntary unemployment risk of 3 percent each year
- Parsimonious versions of the Danish institutions (2010 rules)
 - Labor income tax system
 - Unemployment transfers [fixed amount in model]
 - ► Child care costs
 - ► Child benefits details

Estimation: Two steps

- **1 Calibrate** a set of parameters, ϕ . E.g. $\beta = 0.97$, $\rho = 1.5$, and $\lambda = 0.5$.
 - ► Investigate the **sensitivity** to calibrated parameters (Jørgensen, 2023) details

Estimation: Two steps

- Calibrate a set of parameters, ϕ . E.g. $\beta = 0.97$, $\rho = 1.5$, and $\lambda = 0.5$.
 - ► Investigate the **sensitivity** to calibrated parameters (Jørgensen, 2023) details

- ② Estimate the remaining 30 parameters, θ . E.g. value of children, $\omega_1, \omega_2, \omega_3$ and dis-utility of work, $q(\cdot)$
 - Simulated Method of Moments

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} g(\boldsymbol{\theta}|\boldsymbol{\phi})' \mathit{Wg}(\boldsymbol{\theta}|\boldsymbol{\phi})$$

- Using estimation sample from 2010 (post-reform)
- ► Investigate the "informativeness" of estimation moments (Honoré, Jørgensen and de Paula, 2020) details

Moments and Model Fit: Fertility

(a) Share with at least one child. (b) Share with at least two children.

- (c) Share with at least three children.
- (d) Years between first and second birth.

Moments and Model Fit: Selected age profiles

- (a) Share Working, Women.
- (b) Share Working, Men.

- (c) Full time when working, Women.
- (d) Full time when working, Men.

Moments and Model Fit: 1. Child Arrival

(a) Share Working, Women.

(c) Full time, Women.

(d) Full time, Men.

Simulations: Wage Elasticities

Unanticipated Permanent wage increases (Long-run Marshallian) details

Simulations: Wage Elasticities

Unanticipated Permanent wage increases (Long-run Marshallian) details

	Partici	pation	Но	urs	Wage at 55		Child	Comp.
Age	Women	Men	Women	Men	Women	Men	birth	fertility
			A. Elastic	cities w.	r.t. wages	of wome	en	
26	1.34	-0.10	1.54	-0.40	1.64	-0.15	-1.17	-0.72
30	0.95	-0.08	1.04	-0.25	1.48	-0.10	-0.58	-0.28
35	0.82	-0.02	0.84	-0.12	1.39	-0.05	-0.40	-0.07
40	0.57	-0.00	0.59	-0.04	1.27	-0.02	-0.17	-0.01
45	0.31	-0.00	0.35	-0.02	1.13	-0.01	_	_
50	0.21	-0.00	0.24	-0.02	1.05	-0.00	_	_
avg.	0.54	-0.02	0.60	-0.10	1.24	-0.04	-0.37	-0.11
			B. Elast	ticities v	v.r.t. wage	es of mer	1	
26	-0.81	0.31	-1.26	0.44	-0.56	1.14	3.12	1.89
30	-0.42	0.16	-0.80	0.23	-0.40	1.08	3.28	1.56
35	-0.37	0.03	-0.64	0.06	-0.32	1.03	2.32	0.42
40	-0.28	0.00	-0.52	0.02	-0.25	1.01	3.94	0.23
45	-0.11	0.00	-0.29	0.01	-0.12	1.00	_	_
50	-0.03	0.00	-0.16	0.00	-0.04	1.00	_	_
avg.	-0.25	0.06	-0.48	0.09	-0.21	1.03	3.46	0.46

Simulations: Wage Elasticities

Unanticipated Permanent wage increases (Long-run Marshallian) details

	Partici	Participation Hours Wage at 55		Child	Comp.			
Age	Women	Men	Women	Men	Women	Men	birth	fertility
			A. Elastic	cities w.	r.t. wages	of wome	en	
26	1.34	-0.10	1.54	-0.40	1.64	-0.15	-1.17	-0.72
30	0.95	-0.08	1.04	-0.25	1.48	-0.10	-0.58	-0.28
35	0.82	-0.02	0.84	-0.12	1.39	-0.05	-0.40	-0.07
40	0.57	-0.00	0.59	-0.04	1.27	-0.02	-0.17	-0.01
45	0.31	-0.00	0.35	-0.02	1.13	-0.01	_	_
50	0.21	-0.00	0.24	-0.02	1.05	-0.00	_	_
avg.	0.54	-0.02	0.60	-0.10	1.24	-0.04	-0.37	-0.11
			B. Elast	ticities v	v.r.t. wage	es of mer	1	
26	-0.81	0.31	-1.26	0.44	-0.56	1.14	3.12	1.89
30	-0.42	0.16	-0.80	0.23	-0.40	1.08	3.28	1.56
35	-0.37	0.03	-0.64	0.06	-0.32	1.03	2.32	0.42
40	-0.28	0.00	-0.52	0.02	-0.25	1.01	3.94	0.23
45	-0.11	0.00	-0.29	0.01	-0.12	1.00	_	_
50	-0.03	0.00	-0.16	0.00	-0.04	1.00	_	_
avg.	-0.25	0.06	-0.48	0.09	-0.21	1.03	3.46	0.46

Simulations: Wage Elasticities

Unanticipated Permanent wage increases (Long-run Marshallian) details

	Partici	pation	Но	urs	Wage	Wage at 55		Comp.
Age	Women	Men	Women	Men	Women	Men	birth	fertility
			A. Elastic	cities w.	r.t. wages	of wome	en	
26	1.34	-0.10	1.54	-0.40	1.64	-0.15	-1.17	-0.72
30	0.95	-0.08	1.04	-0.25	1.48	-0.10	-0.58	-0.28
35	0.82	-0.02	0.84	-0.12	1.39	-0.05	-0.40	-0.07
40	0.57	-0.00	0.59	-0.04	1.27	-0.02	-0.17	-0.01
45	0.31	-0.00	0.35	-0.02	1.13	-0.01	-	-
50	0.21	-0.00	0.24	-0.02	1.05	-0.00	-	-
avg.	0.54	-0.02	0.60	-0.10	1.24	-0.04	-0.37	-0.11
			B. Elast	icities v	v.r.t. wage	s of men)	
26	-0.81	0.31	-1.26	0.44	-0.56	1.14	3.12	1.89
30	-0.42	0.16	-0.80	0.23	-0.40	1.08	3.28	1.56
35	-0.37	0.03	-0.64	0.06	-0.32	1.03	2.32	0.42
40	-0.28	0.00	-0.52	0.02	-0.25	1.01	3.94	0.23
45	-0.11	0.00	-0.29	0.01	-0.12	1.00	_	_
50	-0.03	0.00	-0.16	0.00	-0.04	1.00	_	-
avg.	-0.25	0.06	-0.48	0.09	-0.21	1.03	3.46	0.46

• How important are fertility adjustments for labor supply responses?

• How important are fertility adjustments for labor supply responses?

- We quantify this through counterfactual simulations
 - ▶ How different are labor supply elasticities if fertility cannot adjust?

We simulate effect of wage increase from 2 models:

- **1** baseline model, with endogenous fertility
- exogenous fertility, where couples cannot choose fertility
 - ► Expect children to arrive *probabilistically* based on realized fertility from the baseline model details
 - 5% permanent (unanticipated) increase in wage rate
 - ► life-cycle Marshallian elasticity

• Permanent unanticipated increased wages of women

- Wages $\uparrow \Longrightarrow$ Fertility $\downarrow \Longrightarrow$ labor supply responsiveness \uparrow
- 28% larger long-run Marshall elasticity when fertility can adjust
 - both from the extensive and intensive fertility margin

• Permanent unanticipated increased wages of men

- Not a huge difference in the behavior of men
- Fertility is important for cross-effects:
 ~20 percent larger reduction in long run offer wage of women when fertility can adjust.

Child Subsidy

- Introduce unconditional cash transfer at childbirth
- Baseline model and alternative exogenous fertility model
- Percentage change

	Participation		Hours		Wage at 55		Child	Comp.
	Women	Men	Women	Men	Women	Men	birth	fertility
			,	A. Baseli	ine model			
3000 9000	-2.23 -3.08	0.03 0.11	-2.23 -3.21	0.13 0.34	-0.53 -0.87	0.02 0.05	4.97 12.29	3.66 9.11
			B. Alternat	ive exog	enous fertil	ity mode	I	
3000 9000	-0.14 -0.26	-0.02 -0.04	-0.15 -0.24	-0.03 -0.12	-0.03 -0.07	-0.01 -0.02	0.00 0.00	0.00 0.00

Ignoring endogenous fertility responses:

- underestimate labor supple responses of women
- underestimate the government budget effects

Conclusions

- Fertility reacts to financial incentives
 - Marginal wage rises for women decrease fertility
 - Marginal wage rises for men increase fertility

Conclusions

- Fertility reacts to financial incentives
 - Marginal wage rises for women decrease fertility
 - Marginal wage rises for men increase fertility

Labor Supply Responses

- Family labor supply important
- ► Labor supply for women responds more to wage changes when fertility can also adjust: 28% higher
- Welfare reforms have permanent effects through fertility even if wage shocks are transitory
 - "Fertility Multiplier"

Conclusions

- Fertility reacts to financial incentives
 - Marginal wage rises for women decrease fertility
 - Marginal wage rises for men increase fertility

Labor Supply Responses

- Family labor supply important
- ► Labor supply for women responds more to wage changes when fertility can also adjust: 28% higher
- Welfare reforms have permanent effects through fertility even if wage shocks are transitory
 - "Fertility Multiplier"
- Our future research: Take the household even more seriously
 - Limited commitment (Mazzocco, 2007)
 - Likely important for asymmetric fertility effects between women and men

Extra Slides

Definition of partnership

Official definition of Statistics Denmark.

```
https://www.dst.dk/da/Statistik/dokumentation/Times/cpr-oplysninger/familier-og-husstande/familie-type
```

- Either
 - Legally married
 - Living with a person with shared custody over a child (share legal address)
 - 3 Living with one other person of opposite sex with an age difference less than 15.

(share legal address and both at least 16 years old)

Details on Instrument

Figure: Verification: 4-year differences across the income distribution.

(a) Mechanical tax change.

(b) Log income.

Notes: This figure illustrates the tax variation and the plausibility of the variation in generating exogeneous variation.

First-stage Results, $\Delta_4 \log(1 - \tau_{i,t})$, Women

	(1)	(2)	(3)
$\Delta_4 \tau_{i,t}^m$, women	0.428***	0.426***	0.426***
.,2	(0.002)	(0.002)	(0.002)
$\Delta_4 \log(y_{i,t}^m)$, women	0.010***	0.010***	0.010***
-,-	(0.000)	(0.000)	(0.000)
$\Delta_4 \tau^m_{i,t}$, men	0.019***	0.019***	0.019***
.,-	(0.001)	(0.001)	(0.001)
$\Delta_4 \log(y_{i,t}^m)$, men	0.028***	0.027***	0.027***
,	(0.001)	(0.001)	(0.001)
Income dummies	Yes	Yes	Yes
Children dummies	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes
Hum. cap. controls	No	Yes	Yes
Male partner controls	No	No	Yes
Avg. dep. var. (y, level)			
Obs.	2531181	2531181	2531181
First stage F-stat.			

First-stage Results, $\Delta_4 \log(y_{i,t})$, Women

	(1)	(2)	(3)
$\Delta_4 \tau_{i,t}^m$, women	0.037***	0.037***	0.037***
,	(0.004)	(0.004)	(0.004)
$\Delta_4 \log(y_{i,t}^m)$, women	-0.024***	-0.024***	-0.023***
.,,-	(0.001)	(0.001)	(0.001)
$\Delta_4 \tau^m_{i,t}$, men	0.068***	0.068***	0.071***
.,-	(0.003)	(0.003)	(0.003)
$\Delta_4 \log(y_{i,t}^m)$, men	0.306***	0.306***	0.304***
	(800.0)	(800.0)	(800.0)
Income dummies	Yes	Yes	Yes
Children dummies	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes
Hum. cap. controls	No	Yes	Yes
Male partner controls	No	No	Yes
Obs.	2531181	2531181	2531181

First-stage Results, $\Delta_4 \log(1-\tau_{i,t})$, Men

	(1)	(2)	(3)
$\Delta_4 \tau_{i,t}^m$, women	0.015***	0.013***	0.014***
<i>r</i> -	(0.001)	(0.001)	(0.001)
$\Delta_4 \log(y_{i,t}^m)$, women	0.008***	0.009***	0.008***
.,-	(0.000)	(0.000)	(0.000)
$\Delta_4 \tau_{i,t}^m$, men	0.407***	0.407***	0.406***
-,-	(0.001)	(0.001)	(0.001)
$\Delta_4 \log(y_{i,t}^m)$, men	0.006***	0.005***	0.006***
	(0.001)	(0.001)	(0.001)
Income dummies	Yes	Yes	Yes
Children dummies	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes
Hum. cap. controls	No	Yes	Yes
Male partner controls	No	No	Yes
Obs.	2531181	2531181	2531181

First-stage Results, $\Delta_4 \log(y_{i,t})$, Men

	(1)	(2)	(3)
$\Delta_4 \tau_{i,t}^m$, women	0.037***	0.037***	0.037***
.,-	(0.004)	(0.004)	(0.004)
$\Delta_4 \log(y_{i,t}^m)$, women	-0.024***	-0.024***	-0.023***
,	(0.001)	(0.001)	(0.001)
$\Delta_4 \tau_{i,t}^m$, men	0.068***	0.068***	0.071***
.,-	(0.003)	(0.003)	(0.003)
$\Delta_4 \log(y_{i,t}^m)$, men	0.306***	0.306***	0.304***
	(800.0)	(800.0)	(800.0)
Income dummies	Yes	Yes	Yes
Children dummies	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes
Hum. cap. controls	No	Yes	Yes
Male partner controls	No	No	Yes
Obs.	2531181	2531181	2531181

B				
Results by Incom	1 ⊕ncome ∈	$income \in$	less	high
	[50, 350]	(350,600]	skilled	skilled
	(1)	(2)	(3)	(4)
$\Delta_4 \log(1- au_{i,t})$, women	-0.030***	-0.048	-0.048***	-0.019
	(0.010)	(0.038)	(0.015)	(0.013
$\Delta_4 \log(y_{i,t})$, women	0.005*	0.009	0.002	0.003
•	(0.003)	(0.016)	(0.003)	(0.004
$\Delta_4 \log(1- au_{i,t})$, men	0.007	0.004	0.038***	-0.026
	(0.010)	(0.027)	(0.012)	(0.014
$\Delta_4 \log(y_{i,t})$, men	0.048***	0.040***	0.000	0.025*
	(0.016)	(0.010)	(0.013)	(0.011
Income dummies	Yes	Yes	Yes	Yes
Children dummies	Yes	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes	Yes
Hum. cap. controls	Yes	Yes	Yes	Yes
Male partner controls	Yes	Yes	Yes	Yes
Avg. dep. var. (y, level)	1.526	1.496	1.664	1.372
Obs.	2205258	325923	1299908	123127

19869.3

First stage F-stat.

11197.1

1996.9

15910.2

2SLS Results: Labor Supply back

	Women (1)	Men (2)
$\Delta_4 \log(1-\tau_{i,t})$, women	0.213***	0.111***
	(0.015)	(0.013)
$\Delta_4 \log(y_{i,t})$, women	-0.016***	0.003
	(0.005)	(0.003)
$\Delta_4 \log(1- au_{i,t})$, men	-0.004	0.200***
	(0.015)	(0.014)
$\Delta_4 \log(y_{i,t})$, men	0.006	-0.019
	(0.011)	(0.016)
Income dummies	Yes	Yes
Children dummies	Yes	Yes
Year dummies	Yes	Yes
Age dummies	Yes	Yes
Hum. cap. controls	Yes	Yes
Male partner controls	Yes	Yes
Avg. dep. var. (y, level)	5.454	5.728
Obs.	2316021	2396584

Details on Part Time back

- The part time value of $I_{PT} = 0.75$ is motivated by
 - Statistics Denmark's definition of part time in work experience statistics
 - Close to typical hours in Denmark
 - ★ A normal full-time week is 37 hours in Denmark
 - * part time is typically 30 or 32 hours per week (81% 87% of the full-time hours)
- The value affects the human capital accumulation process and the wage/income process
- Utility function is independent of the exact value
- Results are not overly sensitive to this choice.

Details on the Age of Youngest

• The age of the youngest child aged 0–6, o_t , evolves as

$$o_{t+1} = \begin{cases} 0 & \text{if } b_{t+1} = 1\\ o_t + 1 & \text{if } b_{t+1} = 0 \text{ and } o_{t+1} \in \{0, 1, 2, 3, 4, 5\}\\ o_t & \text{if } b_{t+1} = 0 \text{ and } o_t \in \{6+\}\\ NC & \text{if } b_{t+1} = 0 \text{ and } o_t \in \{NC\}. \end{cases}$$
 (1)

Details on the Fertility Process (back)

The number of children evolves as

$$n_{t+1} = n_t + b_{t+1}(e_t) - x_{t+1}$$
 (2)

where x_{t+1} refers to a child moving out, as is given by

$$x_{t+1} = \begin{cases} 1 & \text{with probability } q_t(n_t, o_t) \\ 0 & \text{with probability } 1 - q_t(n_t, o_t) \end{cases}$$
 (3)

- ullet Children can move out once the fertile period ends at T_f
- x_{t+1} is a realization of a Binomial distribution with

$$q_t(n_t, o_t) = \begin{cases} P_{bin}(1, p_x | n_t - o_t) & \text{if } n_t > 0, \ t > T_f \text{ and } o_t \in \{6+\} \\ 0 & \text{else} \end{cases}$$

where

$$P_{bin}(1, p_x|n) = \frac{n!}{(n-1)!} p_x (1-p_x)^{n-1}$$

Details on Fertility and Partnership Dissolution

Figure: Biological Fecundity and Dissolution Probabilities.

Notes: Figure 2 shows in panel (a) the biological fecundity, $\overline{\wp}_t$, based on Leridon (2004). Panel (b) shows the probability of partnership dissolution as a function of the age of the woman and the existing number of children, based on Danish register data.

Details on Child Costs and Transfers (back)

Figure: Costs net of Benefits, $C(n_t, o_t, Y_t, s_t)$.

Details on Preferences (back)

 We let the dis-utility from the amount of labor market work depend on the number of children and the age of the youngest child through

$$\begin{aligned} q_{j}(\bullet) = & \mu_{PT,j} \mathbf{1}(I_{j,t} = I_{PT}) \left[\alpha_{PT,child,j} + \alpha_{PT,more,j}(n_{t} - 1) + \alpha_{PT,young,j} \mathbf{1}(o_{t} \leq 3) \right] \\ + & \mu_{FT,j} \mathbf{1}(I_{j,t} = 1) \left[\alpha_{FT,child,j} + \alpha_{FT,more,j}(n_{t} - 1) + \alpha_{FT,young,j} \mathbf{1}(o_{t} o_{t} \leq 3) \right] \end{aligned}$$

where $l_{j,t} = 0$ is the reference alternative.

• All parameters are relative to the baseline dis-utility of work from

$$f_{j}(I_{j,t}, age_{j,t}) = \mu_{PT,j} \mathbf{1}(I_{j,t} = I_{PT}) \left[1 + \mu_{PT,age,j}(age_{j,t} - 25) \right]$$
$$+ \mu_{FT,j} \mathbf{1}(I_{j,t} = 1) \left[1 + \mu_{FT,age,j}(age_{j,t} - 25) \right]$$

Parameter Estimates (back)

Parameter		estimate	se
Utility from	children.		
ω_1	Value of having at least one child	11.698	(0.012)
ω_2	Value of having at least two children	13.002	(0.006)
ω_3	Value of having at least three children	9.591	(0.015)
η_0	Value of fertility effort when child aged 0 present	-0.064	(0.000)
η_1	Value of fertility effort when child aged 1 present	-0.015	(0.000)
Utility from	market work, $f_w(\bullet)$ and $f_m(\bullet)$. Relative to not working.		
$\mu_{FT,w}$	Value of full time work, women	-0.511	(0.001)
$\mu_{FT,age,w}$	Value of full time work wrt. age, women (pct)	-2.060	(0.005)
$\mu_{PT,w}$	Value of part time work, women	-0.269	(0.000)
$\mu_{PT,age,w}$	Value of part time work wrt. age, women (pct)	-2.701	(0.006
$\mu_{FT,m}$	Value of full time work, men	-0.670	(0.001
µFT,age,m	Value of full time work wrt. age, men (pct)	-1.966	(0.006
$\mu_{PT,m}$	Value of part time work, men	-0.372	(0.001
μ _{PT,age,m}	Value of part time work wrt. age, men (pct)	-2.170	(0.008
Utility from	market work w. children, $q_w(ullet)$ and $q_m(ullet)$. Relative to not	working.	
$\alpha_{FT,child,w}$	Value of full time work with children, women (pct)	11.394	(0.037)
$\alpha_{FT,more,w}$	Value of full time work with children, women (pct)	5.603	(0.031)
$\alpha_{FT,young,w}$	Value of full time work with young children, women (pct)	2.486	(0.029
$\alpha_{PT,child,w}$	Value of part time work with more children, women (pct)	14.222	(0.064
$\alpha_{PT,more,w}$	Value of part time work with more children, women (pct)	6.705	(0.060
$\alpha_{PT,young,w}$	Value of part time work with young children, women (pct)	3.909	(0.073
α _{FT,child,m}	Value of full time work with children, men (pct)	5.363	(0.017
$\alpha_{FT,more,m}$	Value of full time work with children, men (pct)	-0.005	(0.011
$\alpha_{FT,young,m}$	Value of full time work with young children, men (pct)	0.033	(0.022
αPT.child.m	Value of part time work with more children, men (pct)	3.451	(0.047
α _{PT,more,m}	Value of part time work with more children, men (pct)	0.157	(0.041
$\alpha_{PT,young,m}$	Value of part time work with young children, men (pct)	0.026	(0.054
Wage equati	ions.		
γ _{0,w}	Wage: constant, women	0.773	(0.001)
$\gamma_{1,w}$	Wage: human capital, women	0.085	(0.000)
$\gamma_{0,m}$	Wage: constant, men	0.771	(0.001
$\gamma_{1,m}$	Wage: human capital, men	0.103	(0.000
Miscellaneou	is.		
κ _V	Retirement: value function adjustement	0.519	(0.004

Change in the Marginal Dis-Utility of Work

• We denote the marginal dis-utility of work as

$$\Delta_{PT}U_{j}(n, o) = -q_{j}(PT, n, o) + q_{j}(NT, n, o)$$

 $\Delta_{FT}U_{j}(n, o) = -q_{j}(FT, n, o) + q_{j}(PT, n, o)$

The change in the marginal dis-utility from having another child is

$$\Delta_{I}(n) = \frac{\Delta_{I}U_{j}(n+1,0) - \Delta_{I}U_{j}(n,6+)}{\Delta_{I}U_{j}(n,6+)} \cdot 100$$

for $l \in \{PT, FT\}$, measured in percentage changes.

Assumes that previous children were 6+ years old

Informativeness of Estimation Moments (back)

- Based on M₄ in Honoré, Jørgensen and de Paula (2020)
- $oldsymbol{eta}$ The percentage change in the asymptotic variance of elements of $\hat{oldsymbol{ heta}}$ from removing groups of moments in $g(oldsymbol{ heta})$

$$I_k = \operatorname{diag}(\tilde{\Sigma}_k - \Sigma) / \operatorname{diag}(\Sigma) \cdot 100 \tag{4}$$

where

$$\tilde{\Sigma}_{k} = (G'\tilde{W}_{k}G)^{-1}G'\tilde{W}_{k}S\tilde{W}_{k}G(G'\tilde{W}_{k}G)^{-1}$$

$$\tilde{W}_{k} = W \odot (\iota_{k}\iota'_{k})$$

and \odot is element-wise multiplication and ι_k is a $J \times 1$ vector with ones in all elements except the kth group of moments being zeros.

- Share working and the share working full time conditional on working, split by age and gender.
- Average labor income when working, split by age and gender.
- 3 Share with at least 1, 2 or 3 children, split by age.
- Distribution of years between first and second childbirths.
- Share working and share working full time after first and second childbirth, split by gender.
- Average wealth split by age.

Sensitivity: Change in the Marginal Dis-Utility of Work

Sensitivity: Change in the Marginal Dis-Utility of Work

Based on the approximation (Jørgensen, 2023)

$$\frac{\partial \hat{\boldsymbol{\theta}}}{\partial \boldsymbol{\phi}'} \approx -(G'WG)^{-1}G'D$$

in which
$$G = \frac{\partial g(\hat{\theta}|\phi)}{\partial \hat{\theta}'}$$
 $D = \frac{\partial g(\hat{\theta}|\phi)}{\partial \phi'}$

We calculate

$$\frac{d\Delta_{j}(I,n)}{d\boldsymbol{\phi}'} = \frac{\partial\Delta_{j}(I,n)}{\partial\boldsymbol{\theta}'} \frac{\partial\boldsymbol{\theta}}{\partial\boldsymbol{\phi}'}$$
$$\approx -\frac{\partial\Delta_{j}(I,n)}{\partial\boldsymbol{\theta}'} (G'WG)^{-1}G'D$$

and report elasticities

Simulation Details back

- Simulate 500,000 synthetic households from age 25 through 60
- Initialize all households as couples with zero net wealth and the empirical joint distribution of number of children, age of youngest and human capital.
- The effect at age t of a wage increase is

$$\Delta y_t = y_t - \tilde{y}_t$$

where $y_t = n_t^{-1} \sum_i y_{i,t}$ is the average simulated optimal outcome under the baseline estimated model and $\tilde{y}_t^{(s_1:s_2)} = n_t^{-1} \sum_i \tilde{y}_{i,t}^{(s_1:s_2)}$ is the average simulated optimal outcome under the counterfactual setting in which wages are scaled by μ percent in periods s_1 through s_2 .

Formally, wages in the alternative model are given as

$$\tilde{w}_{i,t}^{(s_1:s_2)} = \begin{cases} (1+\mu)w_{i,t} & \text{if } s_1 \leq t \leq s_2 \\ w_{i,t} & \text{else.} \end{cases}$$

Unless otherwise explicitly stated, we use a five percent increase, $\mu=0.05$.

Simulated Birth Probabilities (back)

Figure: Realized Simulated Pregnancy Probabilities.

Baseline and Alternative Model Simulations (back)

(a) Share without children.

(b) Share with one child.

- (c) Share with two children.
- (d) Share with three children.

Baseline and Alternative Model Simulations (back)

(e) Share Working, Women.

(f) Share Working, Men.

(g) Hours, Women.

(h) Hours, Men.

References I

- ADDA, J., C. DUSTMANN AND K. STEVENS (2017): "The Career Costs of Children," *Journal of Political Economy*, 125(2), 293–337.
- ATALAY, K., A. LI AND S. WHELAN (2017): "Housing Wealth and Fertility: Australian Evidence," Working Paper 2017 08, University of sydney.
- ATTANASIO, O., P. LEVELL, H. LOW AND V. SÁNCHEZ-MARCOS (2018): "Aggregating Elasticities: Intensive and Extensive Margins of Women's Labor Supply," *Econometrica*, 86(6), 2049–2082.
- BLAU, D. M. AND P. K. ROBINS (1989): "Fertility, Employment, and Child-Care Costs," *Demography*, 26(2), 287–299.
- Brewer, M., A. Ratcliffe and S. Smith (2012): "Does welfare reform affect fertility? Evidence from the UK," *Journal of Population Economics*, 25(1), 245–266.

References II

- CLARK, J. AND A. FERRER (2019): "The effect of house prices on fertility: evidence from Canada," *Economics: The Open-Access, Open-Assessment E-Journal.*, 13(38), 1–32.
- COHEN, A., R. DEHEJIA AND D. ROMANOV (2013): "Financial Incentives and Fertility," *Review of Economics and Statistics*, 95(1), 1–20.
- DAYSAL, M., M. LOVENHEIM, N. SIERSBÆK AND D. WASSER (forthcoming): "Home Prices, Fertility, and Early-Life Health Outcomes," *Journal of public Economics*.
- DEL BOCA, D. (2002): "The effect of child care and part time opportunities on participation and fertility decisions in Italy," *Journal of Population Economics*, 15, 549–573.
- DETTLING, L. J. AND M. S. KEARNEY (2014): "House prices and birth rates: The impact of the real estatemarket on the decision to have a baby," *Journal of Public Economics*, 110, 82–100.

References III

- ECKSTEIN, Z., M. KEANE AND O. LIFSHITZ (2019): "Career and Family Decisions: Cohorts Born 1935-1975," *Econometrica*, 87, 217–253.
- Francesconi, M. (2002): "A Joint Dynamic Model of Fertility and Work of Married Women," *Journal of Labor Economics*, 20(2).
- GRUBER, J. AND E. SAEZ (2002): "The elasticity of taxable income: evidence and implications," *Journal of Public Economics*, 84, 1-32.
- HONORÉ, B. E., T. H. JØRGENSEN AND A. DE PAULA (2020): "The Informativeness of Estimation Moments," *Journal of Applied Econometrics*, 35(7), 797–813.
- HOTZ, V. J. AND R. A. MILLER (1988): "An Empirical Analysis of Life Cycle Fertility and Female Labor Supply," *Econometrica*, 56(1), 91–118.
- JØRGENSEN, T. H. (2023): "Sensitivity to Calibrated Parameters," *Review of Economics and Statistics*, 105(2), 474–481.
- KEANE, M. P. (2011): "Labor Supply and Taxes: A Survey," *Journal of Economic Literature*, 49(4), 961–1075.

References IV

- ——— (forthcoming): "Recent research on labor supply: Implications for tax and transfer policy," *Labour Economics*.
- LAROQUE, G. AND B. SALANIÉ (2014): "Identifying the Response of Fertility to Financial Incentives," *Journal of Applied Econometrics*, 29(2), 314–332.
- LERIDON, H. (2004): "Can assisted reproduction technology compensate for the natural decline in fertility with age? A model assessment," *Human Reproduction*, 19(7), 548–1553.
- LOVENHEIM, M. F. AND K. J. MUMFORD (2013): "Do Family Wealth Shocks Affect Fertility Choices? Evidence from the Housing Market," *Review of Economics and Statistics*, 95(2), 464–475.
- MAZZOCCO, M. (2007): "Household intertemporal behaviour: A collective characterization and a test of commitment," *The Review of Economic Studies*, 74(3), 857–895.

References V

- MILLIGAN, K. (2005): "Subsidizing the Stork: New Evidence on Tax Incentives and Fertility," *The Review of Economics and Statistics*, 87(3), 539–555.
- MIZUTANI, N. (2015): "The Effects of Housing Wealth on Fertility Decisions: Evidence from Japan," *Economics Bulletin*, 35(4).
- MÖRK, E., A. SJÖGREN AND H. SVALERYD (2013): "Childcare costs and the demand for children evidence from a nationwide reform," *Journal of Population Economics*, 26, 33–65.
- ${\rm ROSENZWEIG,\ M.\ R.\ (1999):\ "Welfare,\ Marital\ Prospects,\ and} \\ {\rm Nonmarital\ Childbearing,"\ \it Journal\ of\ Political\ Economy,\ 107(56).}$