МП-31 Захаров Дмитро

Викладач: Півень О.Л.

§ Нормальний розподіл §

Задача 1: Завдання 1

Умова. Випадкова величина ξ має функцію розподілу

$$F_{\xi}(x) = \begin{cases} 0, & x \le 0\\ 4x, & x \in [0, 0.25]\\ 1, & x > 0.25 \end{cases}$$
 (1.1)

Знайти математичне сподівання та дисперсію випадкової величини ξ .

Розв'язання. Густина розподілу має вигляд:

$$f_{\xi}(x) = 4 \cdot \mathbb{1}_{[0,0.25]}(x) \iff \xi \sim \mathcal{U}[0,0.25],$$
 (1.2)

де $\mathcal{U}[0,0.25]$ є рівномірним розподілом на відрізку [0,0.25]. Математичне сподівання це, очевидно, середина відрізка, тобто $\mathbb{E}[\xi]=0.125$. Дисперсію знайти меньш очевидно:

$$\mathbb{E}[\xi^2] = \int_{\mathbb{R}} x^2 f_{\xi}(x) dx = \int_0^{0.25} 4x^2 dx = \frac{4x^3}{3} \Big|_{x=0}^{x=0.25} = \frac{4}{3 \cdot 4^3} = \frac{1}{48}$$
 (1.3)

Отже, дисперсія:

$$Var[\xi] = \mathbb{E}[\xi^2] - \mathbb{E}[\xi]^2 = \frac{1}{48} - \frac{1}{64} = \frac{1}{192}$$
 (1.4)

Відповідь. $\mathbb{E}[\xi] = \frac{1}{8}$, $Var[\xi] = \frac{1}{192}$.

Задача 2: Завдання 2

Умова. Річний дохід в у.о. підприємця має наступну щільність розподілу

$$f(x) = \frac{c}{x^4} \cdot \mathbb{1}_{(1,+\infty)}$$
 (2.1)

Знайти значення сталої c, середній річний дохід підприємця, середнє квадратичне відхилення цього доходу та ймовірність того, що річний дохід підприємця на перевищує 16 у.о.

Розв'язання. Для знаходження сталої скористуємося умовою нормування:

$$\int_{\mathbb{R}} f(x)dx = 1 \tag{2.2}$$

Підставляючи нашу функцію, маємо

$$\int_{1}^{+\infty} \frac{cdx}{x^4} = -\frac{c}{3x^3} \Big|_{x\to 1}^{x\to +\infty} = \frac{c}{3} = 1 \implies c = 3$$
 (2.3)

Знайдемо середній річних дохід:

$$\mathbb{E}[\xi] = \int_{1}^{+\infty} \frac{3dx}{x^3} = -\frac{3}{2x^2} \Big|_{x \to 1}^{x \to +\infty} = \frac{3}{2}$$
 (2.4)

Знайдемо середнє квадратичне відхилення $\sigma[\xi] = \sqrt{\mathrm{Var}[\xi]}$. Для дисперсії, у свою чергу, знаходимо математичне сподівання квадрату ξ :

$$\mathbb{E}[\xi^2] = \int_1^{+\infty} \frac{3dx}{x^2} = -\frac{3}{x} \Big|_{x \to 1}^{x \to +\infty} = 3 \tag{2.5}$$

В такому разі

$$Var[\xi] = \mathbb{E}[\xi^2] - \mathbb{E}[\xi]^2 = 3 - \frac{9}{4} = \frac{3}{4}$$
 (2.6)

Тому середнє квадратичне відхилення $\sigma[\xi] = \frac{\sqrt{3}}{2}$. Нарешті, ймовірність того, що річний дохід підприємця не веревищує 16 у.о.:

$$\Pr[\xi \le 16] = \int_{1}^{16} \frac{3dx}{x^4} = -\frac{1}{x^3} \Big|_{x \to 1}^{x \to 16} = 1 - \frac{1}{16^3} = 1 - 2^{-12}$$
 (2.7)

Задача 3: Завдання 3

Умова. Знайти дисперсію випадкової величини ξ , що має показниковий розподіл із параметром $\lambda > 0$.

Розв'язання. На лекції було показано, що дисперсія дорівнює $\frac{1}{\lambda^2}$.

Задача 4: Завдання 4

Умова. При розслідуванні причин аварії було встановлено, що вона могла статися через установку на автомобіль деталі, розміри якої виходять за межі допустимого інтервалу (15 мм; 25 мм). Відомо, що розмір деталей, які поступають на конвеєр автозаводу, є випадковою величиною, яку розподілено за нормальним законом з математичним сподіванням 20 мм, і середнім квадратичним відхиленням 5 мм. Знайти ймовірність того, що причиною аварії стало встановлення на автомобіль деталі нестандартного розміру.

Розв'язання. Нехай ℓ — випадкова величина, що позначає розмір деталі. Згідно умові, $\ell \sim \mathcal{N}(20,5^2)$, тобто $\mu=20,\sigma=5$. Ймовірність аварії p відповідає події, де $\ell \notin [15,25]$, тобто

$$p = \Pr[\ell \notin [15, 25]] = 1 - \Pr[15 \le \ell \le 25] \tag{4.1}$$

Ймовірність знаходження в межах $15 \le \ell \le 25$ є приблизно 68% за правилом сігми, оскільки це відповідає події $\mu - \sigma \le \ell \le \mu + \sigma$. Тому $p \approx 1 - 0.68 = 0.32$ – відповідь.

Задача 5: Завдання 5

Умова. Ціна акції має нормальний розподіл з математичним сподіванням 15.28 у.о. та середнім квадратичним відхиленням 0.12 у.о. Знайти ймовірності того, що ціна акції буде: а) не нижче 15.50 у.о.; б) не вище 15.00 у.о.; в) між 15.10 у.о. та 15.40 у.о.

Розв'язання. Нехай випадкова величина ціни акції ξ . Згідно умові маємо $\xi \sim \mathcal{N}(15.28, 0.12^2)$, тобто $\mu = 15.28, \sigma = 0.12$. Будемо зводити обрахунки до нормалізованої випадкової величини $\eta = \frac{\xi - \mu}{\sigma} = \frac{\xi - 15.28}{0.12}$. Далі йдемо по пунктам.

 $\Pi y \mu \kappa m \ a. \ \Pi$ отрібно знайти

$$\Pr[\xi \ge 15.5] = \Pr\left[\frac{\xi - 15.28}{0.12} \ge \frac{15.5 - 15.28}{0.12}\right] = \Pr\left[\eta \ge \frac{11}{6}\right]$$
$$= \Phi_0(+\infty) - \Phi_0\left(\frac{11}{6}\right) \approx 0.0334 \tag{5.1}$$

Пункт б.

$$\Pr[\xi \le 15.0] = \Pr\left[\frac{\xi - 15.28}{0.12} \le \frac{15.0 - 15.28}{0.12}\right] = \Pr\left[\eta \le \frac{7}{3}\right]$$
$$= \Phi_0(+\infty) + \Phi_0\left(\frac{7}{3}\right) \approx 0.9902 \tag{5.2}$$

 Π ункт c.

$$\Pr[15.10 \le \xi \le 15.40] = \Pr\left[\frac{15.10 - 15.28}{0.12} \le \frac{\xi - 15.28}{0.12} \le \frac{15.40 - 15.28}{0.12}\right]$$
$$= \Pr\left[-\frac{3}{2} \le \eta \le 1\right] = \Phi_0(1.5) + \Phi_0(1) \approx 0.7745 \tag{5.3}$$

Задача 6: Завдання 6

Умова. Нехай $\xi \sim \mathcal{N}(\mu, \sigma^2)$. Знайти $\Pr[\mu - 3\sigma < \xi < \mu + 3\sigma]$ (правило трьох сігм).

Розв'язання. Нормалізуємо випадкову величину, тобто розглянемо величину $\eta = \frac{\xi - \mu}{\sigma}$. Як було доведено, $\eta \sim \mathcal{N}(0,1)$. З іншого боку:

$$\Pr[\mu - 3\sigma < \xi < \mu + 3\sigma] = \Pr\left[-3 < \frac{\xi - \mu}{\sigma} < 3\right] = \Pr[-3 < \eta < 3]$$
 (6.1)

А цю ймовірність можна знайти просто по таблиці функції Лапласа. Чисельно маємо:

$$\Pr[-3 < \eta < 3] = \int_{-3}^{3} \mathcal{N}(x \mid 0, 1) dx \approx 0.9973$$
 (6.2)

Отже, маємо дуже просту інтерпретацію — якщо взяти ймовірність потрапляння випадкової величини на відстань не більше 3σ від математичного сподівання μ , то вона буде дорівнювати близько 99.73%.

Відповідь. $\approx 99.73\%$.

Задача 7: Завдання 7

Умова. Нехай $\xi \sim \mathcal{N}(\mu, \sigma^2)$, а також $\alpha, \beta \in \mathbb{R}, \alpha \neq 0$. Довести, що випадкова величини $\eta := \alpha \xi + \beta$ також має нормальний розподіл.

Розв'язання. Запишемо функцію розподілу величини η :

$$F_{\eta}(x) = \Pr[\eta < x] = \Pr[\alpha \xi + \beta < x] = \Pr\left[\xi < \frac{x - \beta}{\alpha}\right] = F_{\xi}\left(\frac{x - \beta}{\alpha}\right) \quad (7.1)$$

Продиференціюємо обидві частини:

$$f_{\eta}(x) = \frac{1}{\alpha} f_{\xi} \left(\frac{x - \beta}{\alpha} \right) = \frac{1}{\sqrt{2\pi} \alpha \sigma} \exp \left(-\frac{1}{2\sigma^2} \left(\frac{x - \beta}{\alpha} - \mu \right)^2 \right)$$
$$= \frac{1}{\sqrt{2\pi} \alpha \sigma} \exp \left(-\frac{(x - (\beta + \alpha \mu))^2}{2\alpha^2 \sigma^2} \right) = \mathcal{N}(x \mid \alpha \mu + \beta, \alpha^2 \sigma^2) \tag{7.2}$$

Отже, η є нормально розподіленою величеною з математичним сподіванням $\alpha\mu + \beta$ і дисперсією $\alpha^2\sigma^2$.

Відповідь. $\eta \sim \mathcal{N}(\alpha \mu + \beta, \alpha^2 \sigma^2)$.

Задача 8: Завдання 8

Умова. Знайти моменти непарного порядку нормальної випадкової величини $\xi \sim \mathcal{N}(0, \sigma^2)$.

Розв'язання. Згадаємо, що густина розподілу величини ξ :

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) \tag{8.1}$$

В такому разі, момент непарного порядку 2n+1 за означенням:

$$m_{2n+1} := \mathbb{E}[\xi^{2n+1}] = \int_{\mathbb{R}} f_{\xi}(x) x^{2n+1} dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} x^{2n+1} e^{-x^2/2\sigma^2} dx \qquad (8.2)$$

Такий інтеграл знаходити напряму важкувато, тому проінтегруємо частинами, взявши $v=e^{-x^2/2\sigma^2}$, в такому разі $dv=-\frac{1}{\sigma^2}xe^{-x^2/2\sigma^2}$. Відповідно, $du=x^{2n+1}dx$ і тому $u=\frac{x^{2n+2}}{2n+2}$. Тому,

$$m_{2n+1} = \frac{1}{\sqrt{2\pi}\sigma} \left(\frac{x^{2n+2}}{2n+2} e^{-\frac{x^2}{2\sigma^2}} \Big|_{x \to -\infty}^{x \to +\infty} + \frac{1}{2(n+1)\sigma^2} \int_{\mathbb{R}} x e^{-\frac{x^2}{2\sigma^2}} \cdot x^{2n+2} dx \right)$$
(8.3)

Вираз $\frac{x^{2n+2}}{2n+2}e^{-\frac{x^2}{2\sigma^2}}\Big|_{x\to-\infty}^{x\to+\infty}=0$, тому вираз можна сильно спростити:

$$m_{2n+1} = \frac{1}{\sqrt{2\pi}\sigma} \cdot \frac{1}{2\sigma^2(n+1)} \int_{\mathbb{R}} x^{2n+3} e^{-\frac{x^2}{2\sigma^2}} dx$$
$$= \frac{1}{2\sqrt{2\pi}\sigma^3(n+1)} \int_{\mathbb{R}} x^{2n+3} e^{-\frac{x^2}{2\sigma^2}} dx = \frac{1}{2\sqrt{2\pi}\sigma^3} \cdot \frac{m_{2n+3}}{n+1}$$
(8.4)

Таким чином, якщо позначити $x_n := m_{2n+1}$, то маємо рекурентне рівняння:

$$x_{n+1} = 2\sqrt{2\pi}\sigma^3(n+1)x_n, \ x_1 = \mathbb{E}[\xi] = 0$$
 (8.5)

Для непарних коефіцієнтів це дає послідовність, що тотожньо є нульовою, тобто моменти непарного порядку усі нулоьові.

Відповідь. Усі дорівнюють нулю.

Задача 9: Завдання 9

Умова. Побудувати приклади дискретної випадкової величин, яка має математичне сподівання, але не має дисперсії. Побудувати аналогічний приклад неперервної випадкової величини.

Розв'язання. Нехай множина значень випадкової величини $x_n := (3/2)^n, n \in \mathbb{N}$, причому розподіл:

$$\Pr[\xi = x_n] = 2^{-n}, \ n \in \mathbb{N}$$

$$(9.1)$$

По-перше, випадкова величина дійсно визначена коректно, оскільки сумарна ймовірність $\sum_{n\in\mathbb{N}}\Pr[\xi=x_n]=\sum_{n\in\mathbb{N}}2^{-n}=1$. Математичне сподівання:

$$\mathbb{E}[\xi] = \sum_{n \in \mathbb{N}} \Pr[\xi = x_n] x_n = \sum_{n \in \mathbb{N}} (3/2)^n \cdot 2^{-n} = \sum_{n \in \mathbb{N}} (3/4)^n$$
 (9.2)

Це геометрична прогресія зі знаменником меньшим за 1, а отже ряд збігається. Якщо ж знайти момент другого порядку:

$$\mathbb{E}[\xi^2] = \sum_{n \in \mathbb{N}} \Pr[\xi = x_n] x_n^2 = \sum_{n \in \mathbb{N}} (9/4)^n \cdot 2^{-n} = \sum_{n \in \mathbb{N}} (9/8)^n$$
 (9.3)

Цей ряд розбігається, оскільки знаменник прогресії більший за 1. Для неперервної величини аналогічним прикладом візьмемо:

$$f_{\xi}(x) = \frac{2}{x^3} \cdot \mathbb{1}_{[1,+\infty)}(x) \tag{9.4}$$

Помітимо, що функція невід'ємна і задовольняє умові нормування:

$$\int_{\mathbb{R}} f_{\xi}(x)dx = \int_{1}^{+\infty} \frac{2}{x^{3}} = -\frac{1}{x^{2}} \Big|_{x \to 1}^{x \to +\infty} = 1$$
 (9.5)

Математичне сподівання в свою чергу:

$$\mathbb{E}[\xi] = \int_{\mathbb{R}} x f_{\xi}(x) dx = \int_{1}^{+\infty} \frac{2}{x^{2}} dx = -\frac{2}{x} \Big|_{x \to 1}^{x \to +\infty} = 2$$
 (9.6)

В свою чергу момент другого порядку:

$$\mathbb{E}[\xi^{2}] = \int_{\mathbb{D}} x^{2} f_{\xi}(x) dx = 2 \int_{1}^{+\infty} \frac{dx}{x}$$
 (9.7)

Цей інтеграл розбігається, а отже і дисперсія не визначена.

Задача 10: Завдання 10

Умова. Випадкова величина ξ має логнормальний розподіл з параметрами μ, σ^2 якщо $\eta = \log \xi \sim \mathcal{N}(\mu, \sigma^2)$. Знайти математичне сподівання та дисперсію η .

Розв'язання. Маємо $\xi=e^{\eta}$. Математичне сподівання:

$$\mathbb{E}[\xi] = \mathbb{E}[e^{\eta}] = \int_{\mathbb{R}} \frac{e^{x}}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right) dx$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} \exp\left(x - \frac{(x-\mu)^{2}}{2\sigma^{2}}\right) dx$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} \exp\left(-\frac{x^{2}}{2\sigma^{2}} + \frac{\mu + \sigma^{2}}{\sigma^{2}}x - \frac{\mu^{2}}{2\sigma^{2}}\right) dx \tag{10.1}$$

Далі треба виділити повний квадрат:

$$\mathbb{E}[\xi] = \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} \exp\left(-\left(\frac{x}{\sqrt{2}\sigma} - \frac{(\mu + \sigma^2)}{\sqrt{2}\sigma}\right)^2 - \frac{\mu^2}{2\sigma^2} + \frac{(\mu + \sigma^2)^2}{2\sigma^2}\right) dx \quad (10.2)$$

Далі помічаємо, що цей інтеграл можна дещо спростити:

$$\mathbb{E}[\xi] = \frac{e^{-\mu^2/2\sigma^2 + (\mu + \sigma^2)^2/2\sigma^2}}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} \exp\left(-\frac{(x - (\mu + \sigma^2))^2}{2\sigma^2}\right) dx$$
 (10.3)

Інтеграл праворуч дорівнює $\sqrt{2\pi}\sigma$ (по суті, це лише константа нормування нормального розподілу. Здвиг на $\mu + \sigma^2$ не змінює значення інтегралу). Також експоненту можна спростити, розписавши різницю квадратів:

$$\frac{(\mu + \sigma^2)^2}{2\sigma^2} - \frac{\mu^2}{2\sigma^2} = \frac{\sigma^2 \cdot (2\mu + \sigma^2)}{2\sigma^2} = \mu + \frac{\sigma^2}{2}$$
 (10.4)

Тому, остаточно:

$$\mathbb{E}[\xi] = e^{\mu + \frac{\sigma^2}{2}} \tag{10.5}$$

Знайдемо дисперсію. Для цього знаходимо порядок другого порядку:

$$\mathbb{E}[\xi^2] = \mathbb{E}[e^{2\eta}] = \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} \exp\left(-\frac{x^2}{2\sigma^2} + \frac{\mu + 2\sigma^2}{\sigma^2}x - \frac{\mu^2}{2\sigma^2}\right) dx \tag{10.6}$$

За аналогією, розкладання у повний квадрат буде наступним:

$$\mathbb{E}[\xi^2] = \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} \exp\left(-\left(\frac{x}{\sqrt{2}\sigma} - \frac{\mu + 2\sigma^2}{\sqrt{2}\sigma}\right)^2 + \frac{(\mu + 2\sigma^2)^2}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right) dx \quad (10.7)$$

Вираз праворуч знову спрощуємо:

$$\frac{(\mu + 2\sigma^2)^2}{2\sigma^2} - \frac{\mu^2}{2\sigma^2} = \frac{2\sigma^2(2\mu + 2\sigma^2)}{2\sigma^2} = 2(\mu + \sigma^2)$$
 (10.8)

Причому, значення інтегралу, що залишиться після винесення $e^{2(\mu+\sigma^2)},$ дасть 1 при множенні на $\frac{1}{\sqrt{2\pi}\sigma},$ тому

$$\mathbb{E}[\xi^2] = e^{2(\mu + \sigma^2)} \tag{10.9}$$

Таким чином, дисперсія:

$$Var[\xi] = \mathbb{E}[\xi^2] - \mathbb{E}[\xi]^2 = e^{2(\mu + \sigma^2)} - e^{2\mu + \sigma^2} = e^{2(\mu + \sigma^2)} = e^{2(\mu + \sigma^2)}$$
(10.10)