Les fractales

Objectifs

- Comprendre le principe de la géométrie fractale
- Connaître quelques notions associées aux fractales
- Savoir comment manipuler les fractales en synthèse d'images à l'aide du modèle IFS (Iterated Function systems)

Les fractales

- Notions associées aux fractales
 - système dynamique
 - Attracteur :
 - Chaos
 - Bassin d'attraction
 - Dimension fractale

système dynamique

- = système d'équations différentielles
 - qui décrit l'évolution du système à l'instant t en fonction de son état
- Exemple :
 - Cas continu : dx(t)/dt = F(x(t))
 - Cas discret : $X_{n+1} = F(X_n)$
- L'évolution du système est caractérisée par
 - Cas continu : la solution x(t) (pour $x(0)=x_0$ donné)
 - Cas discret : la suite X_n (avec X₀ donné)

Comportement

- Divergence
- Convergence vers un Attracteur
 - vers un point
 - $X_{n+1} = \frac{1}{2} X_n A = \{0\}$
 - Vers un cycle limite = attracteur cyclique limite ou attracteur périodique
 - $X_{n+1} = (-1)^n A = \{-1,1\}$
 - Vers un attracteur étrange (exemple attracteur de Lorentz
 - $X_{n+1} = 4 \mu X_n (1 X_n) \text{ (avec } \mu \in [0,1]) A = ?$

Définition

- Bassin d'attraction
 - = ensemble des points X_0 dont la suite X_n tend vers l'attracteur

Ensemble de Julia :Jc

- Itération de $F_c(Z)=Z^2+c$
- c = point du plan complexe définissant l'ensemble de Julia Jc
- Pour chaque point Z du plan complexe
 - On calcule la suite $Z_n = F_c^n(Z)$
 - Si la suite |Z_n| reste bornée => Z ∈ J_c
 - J_c = complémentaire du bassin d'attraction du point ∞.

Ensemble de Julia :J_cⁿ

- => l'appartenance de Z à Jc est indécidable
- Mais on sait que s'il existe n tq |Z_n|>2
 => divergence (Z ∉ J_c)
- On visualise J_cⁿ, étant donné n fixé
 - $J_c^n = \{ Z \text{ tq } |Z_p| < 2, \forall p \le n \}$
 - J_c^n -> J_c quand n ->∞

Les couleurs

- Les couleurs représentent la «vitesse de divergence»
 - L'indice de couleur de Z est p si p est le 1er indice tq |Z_p| ≥ 2 (=> divergence)
 - \forall p≤n $|Z_p|$ < 2 => l'indice de couleur = 0
 - Un dégradé de couleurs est associé aux indices

Ensemble de Mandelbrot : M

- Itération de F(Z)=Z² + c
- Pour chaque point c du plan complexe :
 - On calcule la suite $Z_n = F_c^n(0)$
 - Si |Z_n| reste borné => c ∈M
- La visualisation se fait comme pour les ensembles de Julia

Remarque

Julia

•
$$Z_n = F_c(Z) = Z^2 + c$$

- **-** C
- C^2+C
- $(C^2+C)^2+C$

Mandelbrot

Au point c

•
$$Z_n = F_c^n(0)$$

- C
- C^2+C
- $(c^2+c)^2+c$

On obtient la même suite et par « stabilité structurelle» localement (autour de du point c) J_c à le même aspect que l'ensemble de Mandelbrot.

Itération d'autres fonctions

- Itération d'autres fonctions complexes
 - HOOOO! la belle rouge !
 - HOOOO! la belle verte!

Jay Jacobson

Jay Jacobson

Jay Jacobson

Jay Jacobson

Curiosités mathématiques

- Ensemble de Cantor
- Courbe de Von Koch

Ensemble de Cantor

<u> </u>	

Dimension topologique = 0 mais en bijection avec [0;1]

Courbe de Von Koch

Courbe bornée mais de longueur infinie

- Tous ces objets ont un point commun
 - Si on regarde un détail de l'objet on retrouve la structure globale de l'objet
 - C'est ce que nous formaliserons sous la notion d'invariance par changement d'échelle (ICE)

Oui mais a quoi ça sert?

- C'est joli
- C'est rigolo
- Structures qui se retrouvent dans la nature
 - Front de diffusion
 - Arbre
 - Montage
 - Alvéoles pulmonaires/ Vaisseaux sanguins
 - Cote de bord de mer
 - Surfaces rugueuses
- Cette approche apporte un nouvel éclairage sur ce type d'objet

