Задачи по ТМ

Иво Стратев

22 март 2021 г.

Нека RelEq(R,A) е съкращение за "R е релация на еквивалетност в A". Разбира се това е изразимо в езика на теория на множествата.

Задача 1.

Нека R и S са релации на еквивалетност в A. Тогава

$$RelEq(R \cup S, A) \iff (\forall a \in A)([a]_R \subseteq [a]_S \lor [a]_S \subseteq [a]_R).$$

Решение:

Ако $A = \emptyset$, то $R = S = R \cup S = \emptyset$. В такъв случай твърдението е вярно.

Нека тогава $A \neq \emptyset$. От RelEq(R,A), RelEq(S,A) и $A \neq \emptyset$, следва че $Id_A \subseteq R$ и $Id_A \subseteq S$ и тогава $(\exists a \in A)$ & $(\forall a \in A)(a \in [a]_R \& a \in [a]_S)$. Тоест $(\forall a \in A)([a]_R \neq \emptyset \& [a]_S \neq \emptyset)$.

$$(\Longrightarrow)$$

Нека $RelEq(R \cup S, A)$. Допускаме, че не е вярно $(\forall a \in A)([a]_R \subseteq [a]_S \vee [a]_S \subseteq [a]_R)$. Тогава е вярно $(\exists a \in A)([a]_R \not\subseteq [a]_S \& [a]_S \not\subseteq [a]_R)$. Значи е вярно $(\exists a \in A)([a]_R \setminus [a]_S \neq \emptyset \& [a]_S \setminus [a]_R \neq \emptyset)$.

Нека тогава $a \in A$ и $[a]_R \setminus [a]_S \neq \emptyset$ & $[a]_S \setminus [a]_R \neq \emptyset$. Нека тогава $r \in [a]_R \setminus [a]_S$ и $s \in [a]_S \setminus [a]_R$.

Тогава $< a,r> \in R\setminus S$ и $< a,s> \in S\setminus R$. Тогава $< a,r> \in R\cup S$ и $< a,s> \in R\cup S$. Но понеже $RelEq(R\cup S,A)$, то $< r,a> \in R\cup S$ и $< r,s> \in R\cup S$. Възможни са два случая.

Случай 1: $< r, s > \in R$.

Тогава $< a, r > \in R$ и $< r, s > \in R$, но RelEq(R, A) и значи $< a, s > \in R$, но това е Абсурд, защото $< a, s > \notin R$.

Случай 2: $< r, s > \notin R$.

Тогава $< r, s > \in S$. Но тогава $< s, a > \in S$ и $< r, s > \in S$, защото RelEq(S, A). Но тогава $< r, a > \in S$ и $< a, r > \in S$, но това е Абсурд!

Така и в двата възможни случая достигнахме до Абсурд, който е следствие на допускането, че не е вярно $(\forall a \in A)([a]_R \subseteq [a]_S \lor [a]_S \subseteq [a]_R)$. Тогава е вярно $(\forall a \in A)([a]_R \subseteq [a]_S \lor [a]_S \subseteq [a]_R)$.

 (\Leftarrow)

Нека ($\forall a \in A$)($[a]_R \subseteq [a]_S \lor [a]_S \subseteq [a]_R$). Ще покажем, че е в сила $RelEq(R \cup S, A)$.

Рефлексивност:

Понеже RelEq(R,A), то $Id_A \subseteq R$ и значи $Id_A \subseteq R \cup S$. Значи $R \cup S$ е рефлексивна в A.

Симетричност:

Нека $< a, b > \in R \cup S$. Тогава ако $< a, b > \in R$, то понеже RelEq(R,A), следва че $< b, a > \in R$, а значи и $< b, a > \in R \cup S$. Ако пък $< a, b > \in S$, то понеже RelEq(S,A), следва че $< b, a > \in S$, а значи и $< b, a > \in R \cup S$. И е в сила $< a, b > \in R \lor < a, b > \in S$. Значи $< b, a > \in R \cup S$. Следователно $R \cup S$ е симетрична.

Транзитивност:

Нека $< a, b > \in R \cup S$ и $< b, c > \in R \cup S$. Тогава са възможни два случая.

Случай 1 (<
$$a, b > \in R \ \& < b, c > \in R$$
) \lor (< $a, b > \in S \ \& < b, c > \in S$):

Възможни са два случая (под слуачая).

Случай $1.1 < a, b > \in R \& < b, c > \in R$:

Тогава понеже RelEq(R, A), то $< a, c > \in R$, а значи и $< a, c > \in R \cup S$.

Случай $1.2 < a, b > \in S \& < b, c > \in S$:

Тогава понеже RelEq(S,A), то $< a,c> \in S$, а значи и $< a,c> \in R \cup S$.

Случай 2 (< a,b > $\in R \setminus S \& < b,c$ > $\in S \setminus R$) \vee (< a,b > $\in S \setminus R \& < b,c$ > $\in S \setminus R$):

Ще покажем, че това не е възможно. Нека $< u, v > \in R \setminus S$ и $< v, w > \in S \setminus R$. Понеже $[v]_R \subseteq [v]_S \vee [v]_S \subseteq [v]_R$, то са възможни два случая.

Ако $[v]_R \subseteq [v]_S$, тогава $u \in [v]_S$ и значи $< u, v > \in S$, но това е Абсурд! Ако $[v]_S \subseteq [v]_R$, тогава $w \in [v]_R$ и значи $< v, w > \in R$, но това е Абсурд!

Излезе, че този логически случай не е възможен, поради връзката между двете реалции. Тогава тривиално следва, че $< a, c > \in R \cup S$.

Така и в двата случая излезе, че $< a, c > \in R \cup S$ (във втория предпоставката, че има такива двойки просто не е вярна и тогава следствието е тривиално). Следователно $R \cup S$ е транзитивна.

Следователно $RelEq(R \cup S, A)$. \square

Задача 2.

Нека $A,\,B$ и C са такива, че $\overline{\overline{A\cup B}}=\overline{\overline{C\times C}}.$ Тогава

$$\exists g(g: A \longrightarrow C) \lor \exists h(h: C \rightarrowtail B)$$

Решение:

След като $\overline{\overline{A \cup B}} = \overline{\overline{C \times C}}$. Нека $f: A \cup B \rightarrowtail C \times C$.

Възможни са два случая.

Случай 1 $(\forall c \in C)(\exists a \in A)(\exists d \in C)(f(a) = \langle c, d \rangle)$:

Понеже $f: A \cup B \rightarrowtail C \times C$, то $f_{\upharpoonright}A: A \to C \times C$.

Hека $left: C \times C \to C$ и $(\forall x \in C)(\forall y \in C)(left(\langle x, y \rangle) = x)$.

Понеже $(\forall c \in C)(left(\langle c, c \rangle) = c)$, то $left: C \times C \rightarrow C$.

Ще покажем, че $f_{\upharpoonright A} \circ left : A \twoheadrightarrow C$. За сега имаме $f_{\upharpoonright A} \circ left : A \to C$,

понеже $Dom(left) = C \times C$, Range(left) = C, $Dom(f_{!A}) = A$

и $Range(f_{\upharpoonright A}) \subseteq C \times C$. Нека $c \in C$. Тогава

 $(\exists a \in A)(\exists d \in C)(f(a) = < c, d >)$. Нека тогава $a \in A$ и $d \in C$ и са такива,

че $f(a) = \langle c, d \rangle$. Тогава $(f_{\uparrow A} \circ left)(a) = left(f_{\uparrow A}(a)) = left(\langle c, d \rangle) = c$.

Следователно $(\forall y \in C)(\exists x \in A)((f_{\upharpoonright A} \circ left)(x) = y).$

Toect $f_{\upharpoonright A} \circ left : A \longrightarrow C$.

Следователно $\exists g(g:A \twoheadrightarrow C) \lor \exists h(h:C \rightarrowtail B).$

Случай 2 $(\exists c \in C)(\forall a \in A)(\forall d \in C)(f(a) \neq < c, d >)$:

Нека тогава $c \in C$ е такова, че $(\forall a \in A)(\forall d \in C)(f(a) \neq < c, d >)$.

 $f: A \cup B \rightarrowtail C \times C$ следователно $f^{-1}: C \times C \rightarrowtail A \cup B$.

Ще докажем, че $(\forall x \in C)(f^{-1}(< c, x >) \in B)$ е истина.

Тоест $Range(f_{\lceil \{c\} \times C}^{-1}) \subseteq B$. Нека $d \in C$. Нека $z = f^{-1}(\langle c, x \rangle)$.

Да допуснем, че $z \notin B$. Тогава $z \in A$ понеже $z \in A \cup B$.

Ho тогава $f(z) = \langle c, d \rangle$ и $d \in C$ и $z \in A$. Това е Абсурд!

Следователно $z \in B$. Следователно $(\forall x \in C)(f^{-1}(\langle c, x \rangle) \in B)$.

Това значи, че $Range(f_{\lceil \{c\} \times C}^{-1}) \subseteq B$.

Ho $f^{-1}: C \times C \longrightarrow A \cup B$, следователно $f^{-1}_{|\{c\} \times C}: \{c\} \times C \rightarrowtail B$.

Тогава нека $t: C \to B$ и $(\forall x \in C)(t(x) = f^{-1}(\langle c, x \rangle)$. Тогава е очевидно $t: C \rightarrowtail B$. Следователно $\exists g(g: A \twoheadrightarrow C) \lor \exists h(h: C \rightarrowtail B)$.

Задача 3.

Нека S е такова, че

$$\{A\} \subseteq S \subseteq \mathcal{P}(A)$$
 &
$$\forall X (\emptyset \neq X \subseteq S \implies \cap X \in S).$$

Нека $f:S \to S$ е монотонна функция. Тогава f има най-малка неподвижна точка.

Решение:

Нека $B = \{X \mid X \in S \& f(X) \subseteq X\}$. Очевидно $B \subseteq S$. Понеже $S \subseteq \mathcal{P}(A)$, то $(\forall T \in S)(T \subseteq A)$. Тогава $A \in S$ и $f(A) \subseteq A$, понеже $f(A) \in S$. Следователно $A \in B$ и значи $B \neq \emptyset$. Така $\emptyset \neq B \subseteq S$ и значи $\cap B \in S$. Нека тогава $X_0 = \cap B$. Нека $X \in B$. Тогава $X_0 = \cap B \subseteq X$, но понеже f е монотонна, то $f(X_0) \subseteq f(X)$. Но $X \in B$ следователно $f(X) \subseteq X$ и значи $f(X_0) \subseteq X$. Така $(\forall T \in B)(f(X_0) \subseteq T)$ и значи $f(X_0) \subseteq X_0$. Но $X_0 = \cap B \in S$ и така $X_0 \in B$. От $f(X_0) \subseteq X_0$ и f е монотнонна, следва че $f(f(X_0)) \subseteq f(X_0)$. Обаче $Range(f) \subseteq S$ и значи $f(X_0) \in S$. Така $f(X_0) \in B$. Следователно $X_0 \subseteq f(X_0)$. И значи получихме $f(X_0) \subseteq X_0$ и $X_0 \subseteq f(X_0)$. Следователно $X_0 \in S$ и $X_0 = f(X_0)$, тоест X_0 е неподвижна точка за f. Нека $Z \in S$ и f(Z) = Z. Тогава $f(Z) \subseteq Z$.

Следователно $Z \in B$. Тогава $X_0 = \cap B \subseteq Z$.

Следователно $(\forall Z \in S)(f(Z) = Z \implies X_0 \subseteq Z)$.

Следователно X_0 е най-малката неподвижна точка на f. \square

Лема за разделените инекции

Нека $f:A\rightarrowtail B$ и $g:C\rightarrowtail D$ и $A\cap C=\emptyset$ и $B\cap D=\emptyset$. Тогава $f\cup g:A\cup C\rightarrowtail B\cup D$.

Доказателство:

Понеже $Dom(f)\cap Dom(g)=\emptyset$, то f и g са съвместими и $f\cup g:A\cup C\to B\cup D$. Нека $x\in A\cup C$ и $y\in A\cup C$ и $x\neq y$. Възможни са три случая:

Случай 1. $x \in A \& y \in A$

Тогава $(f \cup g)(x) = f(x) \neq f(y) = (f \cup g)(y)$, понеже f е инекция.

\mathbf{C} лучай 2. $x \in C \& y \in C$

Тогава $(f \cup g)(x) = g(x) \neq g(y) = (f \cup g)(y)$, понеже g е инекция.

Случай 3. $x \in A \& y \in C$

Тогава $(f \cup g)(x) = f(x) \in B$ и $(f \cup g)(y) = g(y) \in D$ и $B \cap D = \emptyset$ следователно $(f \cup g)(x) \neq (f \cup g)(y)$.

Заключение:

Следователно понеже x и y бяха произволни, то $f \cup g: A \cup C \rightarrowtail B \cup D$. \square

Задача 4.

Нека $< A, \le_A >$ и $< B, \le_B >$ са линейно наредени множества и $< A, \le_A >$ е изоморфно с начален отрез на $< B, \le_B >$, а $< B, \le_B >$ е изоморфно с финален отрез на $< A, \le_A >$. Тогава $< A, \le_A > \cong < B, \le_B >$.

Съкращения:

Нека $< L, \le >$ е линейно наредено множество. Тогава

$$StartingCut(S, L, \leq) \leftrightharpoons S \subseteq L \& (\forall y \in S)(\forall x \in L)(x \leq y \implies x \in S)$$
$$FinalCut(F, L, \leq) \leftrightharpoons F \subseteq L \& (\forall x \in F)(\forall y \in L)(x \leq y \implies y \in F)$$

Лема 1:

Нека $< L, \le >$ е линейно наредено множество. Тогава $StartingCut(S, L, \le) \implies FinalCut(L \setminus S, L, \le)$.

Доказателство:

Нека S е такова, че $StartingCut(S,L,\leq)$. Тогава $S\subseteq L$ и значи $L\setminus S\subseteq L$. Нека $x\in L\setminus S$. Нека $y\in L$ и нека $x\leq y$. Тогава да допуснем, че $y\notin L\setminus S$, Но тогава $y\in S$ и тогава $x\in S$, защото $StartingCut(S,L,\leq)$. Това е Абсурд! Следователно $y\in L\setminus S$. Следователно $FinalCut(L\setminus S,L,\leq)$). \square

Лема 2:

Нека $< L, \le >$ е линейно наредено множество. Тогава $FinalCut(F, L, \le) \implies StartingCut(L \setminus F, L, \le)$.

Доказателство:

Нека F е такова, че $FinalCut(F,L,\leq)$. Тогава $F\subseteq L$ и значи $L\setminus F\subseteq L$. Нека $y\in L\setminus F$. Нека $x\in L$ и нека $x\leq y$. Тогава да допуснем, че $x\notin L\setminus F$, Но тогава $x\in F$ и тогава $y\in F$, защото $FinalCut(F,L,\leq)$. Това е Абсурд! Следователно $x\in L\setminus F$. Следователно $StartingCut(L\setminus F,L,\leq)$). \square

Решение:

 $< A, \leq_A>$ е изоморфно с начален отрез на $< B, \leq_B>$ нека тогава S е такова, че $StartingCut(S,B,\leq_B)$ и $< A,\leq_A>\cong < S,\leq_B^S>$. Нека тогава $f:A\rightarrowtail S$ е изоморфзъм на $< A,\leq_A>$ върху $< S,\leq_B^S>$. В частност $f:A\rightarrowtail B.$ $< B,\leq_B>$ е изоморфно с финален отрез на $< A,\leq_A>$ нека тогава F е такова, че $FinalCut(F,A,\leq_A)$ и $< B,\leq_B>\cong < F,\leq_A^F>$. Нека

тогава $g: B \rightarrowtail F$ е изоморфзъм на $< B, \leq_B >$ върху $< F, \leq_A^F >$. В частност $g: B \rightarrowtail A$.

Ще построим изоморфизъм на $< A, \leq_A >$ върху $< B, \leq_B >$. Идеята да е разделим множеството A на две части X_0 и $A \setminus X_0$. Като ще искаме $X_0 \subseteq Range(g)$, което да е финален отрез и елементите на X_0 ще изпращаме с g^{-1} , а на $A \setminus X_0$, което ще е начален отрез с f. За тези цел ще поискаме да разделим и елементите на B на две части. Ще искаме $g^{-1}[X_0] = B \setminus f[A \setminus X_0]$ или $X_0 = g[B \setminus f[A \setminus X_0]]$.

Нека $X \in \mathcal{P}(A)$, тогава $X \subseteq A$ и значи $A \setminus X \subseteq A$. Тогава $f[A \setminus X] \subseteq S \subseteq B$ и значи $B \setminus f[A \setminus X] \subseteq B$. Следователно $g[B \setminus f[A \setminus X]] \subseteq F \subseteq A$ и значи $g[B \setminus f[A \setminus X]] \in \mathcal{P}(A)$. Тоест $(\forall T \in \mathcal{P}(A))(g[B \setminus f[A \setminus T]] \in \mathcal{P}(A))$. Тогава разглеждаме фукцията $h : \mathcal{P}(A) \to \mathcal{P}(A)$, за която $(\forall T \in \mathcal{P}(A))(h(T) = g[B \setminus f[A \setminus T]] \in \mathcal{P}(A))$.

Ще покажем, че h е монотонна. Нека $X_1 \subseteq X_2 \subseteq A$ тогава $A \setminus X_2 \subseteq A \setminus X_1$ и значи $f[A \setminus X_2] \subseteq f[A \setminus X_1]$, но тогава $B \setminus f[A \setminus X_1] \subseteq B \setminus f[A \setminus X_2]$ и значи $g[B \setminus f[A \setminus X_1]] \subseteq g[B \setminus f[A \setminus X_2]]$. Тоест $h(X_1) \subseteq h(X_2)$. Следователно $h: \mathcal{P}(A) \to \mathcal{P}(A)$ е монотонна.

Ще построим неподвижна точка на h, която да е финален отрез на $\langle A, \leq_A \rangle$. За целта ще докажем две леми.

Лема 3: $\forall M(StartingCut(M, A, \leq_A) \implies StartingCut(f[M], B, \leq_B))$

Нека M е такова, че $StartingCut(M, A, \leq_A)$. Нека $y \in f[M]$. Нека $x \in B$ и $x \leq_B y$. От $y \in f[M]$ следва, че $y \in f[A] = S$, защото $M \subseteq A$. Но от $StartingCut(S, B, \leq_B)$, следва че $x \in S = Range(f)$. Понеже $f: A \rightarrowtail S$ и f е изоморфизъм, то $f^{-1}(x) \leq_A f^{-1}(y)$. Но $y \in f[M]$ следователно $f^{-1}(y) \in M$. Но $StartingCut(M, A, \leq_A)$ и $f^{-1}(x) \leq_A f^{-1}(y)$ следователно $f^{-1}(x) \in M$ и значи $x = f(f^{-1}(x)) \in f[M]$. Заключение: $StartingCut(f[M], B, \leq_B)$.

Лема 4: $\forall M(FinalCut(M, B, \leq_B) \implies FinalCut(g[M], A, \leq_A))$

Нека M е такова, че $FinalCut(M,B,\leq_B)$. Нека $x\in g[M]$. Нека $y\in A$ и $x\leq_A y$. От $x\in g[M]$ следва, че $x\in g[B]=F$, защото $M\subseteq B$. Но от $FinalCut(F,A,\leq_A)$, следва че $y\in F=Range(g)$. Понеже $g:B\rightarrowtail F$ и g е изоморфизъм, то $g^{-1}(x)\leq_B g^{-1}(y)$. Но $x\in g[M]$ следователно $g^{-1}(x)\in M$. Но $FinalCut(M,B,\leq_B)$ и $g^{-1}(x)\leq_B g^{-1}(y)$ следователно $g^{-1}(y)\in M$ и значи $y=g(g^{-1}(y))\in g[M]$. Заключение: $FinalCut(g[M],A,\leq_A)$. \square

Нека $P = \{X \mid FinalCut(X, A, \leq_A) \& X \subseteq h(X)\}$. P е множество, защото отделяме от $\mathcal{P}(A)$ със свойството

$$(\forall z \in X)(\forall y \in A)(z \leq_A y \implies y \in X) \& X \subseteq h(X).$$

Ще се нуждаем от следната Лема:

Лема 5: $(\forall X \in P)(h(X) \in P)$

Нека $X \in P$. Тогава $X \subseteq h(X)$ следователно $h(X) \subseteq h(h(X))$, защото h е монотонна. Но от $X \in P$ следва и $FinalCut(X,A,\leq_A)$. Тогава по Лема 1 $StartingCut(A \setminus X,A,\leq_A)$. Тогава от Лема 3 $StartingCut(f[A \setminus X],B,\leq_B)$. Тогава от Лема 2 $FinalCut(B \setminus f[A \setminus X],B,\leq_B)$. Тогава от Лема 4 $FinalCut(g[B \setminus f[A \setminus X]],A\leq_A)$. Следователно $FinalCut(h(X),A,\leq_A)$. Така $FinalCut(h(X),A,\leq_A)$ и $h(X) \subseteq h(h(X))$ следователно $h(X) \in P$. Заключение: $(\forall u \in P)(h(u) \in P)$.

Ще покажем, че $\cup P \in P$.

Първо ще покажем, че $FinalCut(\cup P, A, \leq_A)$. В сила е $(\forall u \in P)(u \subseteq A)$ следователно $\cup P \subseteq A$. Нека $x \in \cup P$. Нека $y \in A$ и нека $x \leq_A y$. От $x \in \cup P$, следова $(\exists u \in P)(x \in u)$. Нека тогава $u \in P$ е такова, че $x \in u$. $u \in P$ следователно $FinalCut(u, A, \leq_A)$ но $x \in u$ и $x \leq_A y$. Следователно $y \in u$. Следователно $FinalCut(\cup P, A, \leq_A)$.

Остава да покажем, че $\cup P \subseteq h(\cup P)$. Нека $a \in \cup P$. Тогавва $(\exists M \in P)(a \in M)$. Нека тогава $M \in P$ е такова, че $a \in M$. От $M \in P$

следва $M \subseteq \cup P$. Но h е монотонна, следователно $h(M) \subseteq h(\cup P)$. Но $M \in P$ значи $M \subseteq h(M)$. Така $M \subseteq h(\cup P)$ и значи $a \in h(\cup P)$. Следователно $\cup P \subseteq h(\cup P)$. Така $\cup P \in P$.

Тогава от $\cup P \in P$ и Лема 5 следва $h(\cup P) \in P$ и значи $h(\cup P) \subseteq \cup P$. Следователно $\cup P = h(\cup P)$ и $FinalCut(\cup P, A, leq A_A)$.

Нека тогава $X_0 = \cup P$. В сила са:

$$X_0 = g[B \setminus f[A \setminus X_0]]$$

$$FinalCut(X_0, A, \leq_A)$$

$$StartingCut(A \setminus X_0, A, \leq_A) \; (\text{по Лема 2})$$

$$StartingCut(f[A \setminus X_0], B, \leq_B) \; (\text{по Лема 3})$$

$$FinalCut(B \setminus f[A \setminus X_0], B, \leq_B) \; (\text{по Лема 1})$$

Така $X_0 \subseteq Range(g)$ и значи $X_0 \subseteq Dom(g^{-1})$. Нека $u = (g^{-1})_{\restriction X_0}$ и $v = f_{\restriction A \backslash X_0}$. Тогава $Dom(u) = X_0$ и $Dom(v) = A \backslash X_0$ са непресичащи и значи u и v са съвместими. Нека тогава $t = u \cup v$. Тогава $Dom(t) = Dom(u) \cup Dom(v) = X_0 \cup (A \backslash X_0) = A$ и $Range(t) = Range(u) \cup Range(v) = Range(f_{\restriction A \backslash X_0}) \cup Range(g_{\restriction X_0}^{-1}) = f[A \backslash X_0] \cup g^{-1}[X_0]$ $= f[A \backslash X_0] \cup g^{-1}[g[B \backslash f[A \backslash X_0]]] = f[A \backslash X_0] \cup B \backslash f[A \backslash X_0] = B$. Следователно $t:A \rightarrow B$. Понеже f и g^{-1} са инекции, то и u и v са инекции, но и $Dom(u) \cap Dom(v) = \emptyset$ и $Range(u) \cap Range(v) = \emptyset$ и от Лемата за разделените инекции, следва че $t:A \rightarrow B$. Така $t:A \rightarrow B$. Ще покажем, че t е силен хомоморфизъм на линейни наредби. Нека $a_1 \in A$ и $a_2 \in A$ и нека $a_1 <_A a_2$. Възможни са три случая.

Случай 1 $a_1 \in A \setminus X_0 \& a_2 \in A \setminus X_0$:

Тогава
$$t(a_1) = v(a_1) = f(a_1) <_B f(a_2) = v(a_2) = t(a_1)$$
.

Случай 2 $a_1 \in X_0 \& a_2 \in X_0$:

Тогава
$$t(a_1) = u(a_1) = g^{-1}(a_1) <_B g^{-1}(a_2) = u(a_2) = t(a_1).$$

Случай 3 $a_1 \in A \setminus X_0 \& a_2 \in X_0$:

Понеже t е инекция да допуснем, че $t(a_2) <_B t(a_1)$. Тогава $u(a_2) <_B v(a_1)$, обаче $Range(v) = f[A \setminus X_0]$ и $StartingCut(f[A \setminus X_0], A, \leq_A)$. Тогава $u(a_2) \in f[A \setminus X_0]$. Но това е Абсурд, защото $Range(u) = B \setminus f[A \setminus X_0]$. Следователно $t(a_1) <_B t(a_2)$, защото t е инекция, а $a_1 \in A \setminus X_0$ & $a_2 \in X_0$.

Не е възможно $a_1 \in X_0 \& a_2 \in A \setminus X_0 \& a_1 <_A a_2$, защото $FinalCut(X_0, A, \leq_A)$ и значи $a_2 \in X_0$.

Така получаваме $(\forall a_1 \in A)(\forall a_2 \in A)(a_1 \leq_A a_2 \implies t(a_1) \leq_B t(a_2)).$

Нека сега $b_1 \in B$, $b_2 \in B$ и $b_1 \leq_B b_2$. $< A, \leq_A >$ е л.н.м. В частност всеки два елемента на A са \leq_A сравними. Да допуснем, че $t^{-1}(b_2) <_A t^{-1}(b_1)$. Тогава $t(t^{-1}(b_2)) <_B t(t^{-1}(b_1))$ и значи $b_2 <_B b_1$. Но това е Абсурд! Следователно $t^{-1}(b_1) <_A t^{-1}(b_2)$. Следователно $(\forall b_1 \in B)(\forall b_2 \in B)(b_1 \leq_B b_2 \implies t^{-1}(b_1) \leq_A t^{-1}(b_2))$. Следователно $(\forall a_1 \in A)(\forall a_2 \in A)(t(a_1) \leq_B t(a_2) \implies a_1 \leq_A a_2)$. Така t е силен хомоморфизъм на $< A, \leq_A >$ върху $< B, \leq_B >$ и значи t е изоморфизъм. Следователно $< A \leq_A > \cong < B \leq_B >$. \square

Задача 5.

Нека $W_1 = \langle W_2, \leq_1 \rangle$ и $W_2 = \langle W_2, \leq_2 \rangle$ са добре наредени множества. Тогава е в сила точно едно от трите:

- W_1 и W_2 са изоморфии;
- W_1 е изоморфно на начален сегмент на W_2 ;
- \mathcal{W}_2 е изоморфно на начален сегмент на \mathcal{W}_1 .

Преди да преминем към решението ще формулираме и докажем две леми.

Лема 1:

Нека $\mathcal{A} = \langle A, \leq_A \rangle$ и $\mathcal{B} = \langle B, \leq_B \rangle$ са добре наредени множества. Нека $a \in A, b \in B, d \in B$ и $\langle seg_A(a), \leq_A^a \rangle \cong \langle seg_B(b), \leq_B^b \rangle$ и $\langle seg_A(a), \leq_A^a \rangle$

 $\cong \langle seg_B(d), \leq_B^d \rangle$. Toraba b = d.

Доказателство:

Да допуснем, че $b \neq d$. Тогава нека Б.О.О. $b \leq_B d$. Тогава $b \in seg_B(d) \setminus seg_B(b)$ и $seg_B(b) \subseteq seg_B(d)$. Но очевидно тогава $seg_B(b) = seg_{seg_B(d)}(b) \subseteq seg_B(d)$. Понеже $< seg_A(a), \leq_A^a > \cong < seg_B(b), \leq_B^b >$, то нека $f : seg_A(a) \rightarrowtail seg_B(b)$ е изоморфизъм. Понеже $< seg_A(a), \leq_A^a > \cong < seg_B(d), \leq_B^d >$, то нека $g : seg_A(a) \rightarrowtail seg_B(d)$ е изоморфизъм. Тогава очевидно $f^{-1} \circ g : seg_B(b) \rightarrowtail seg_B(d)$ е изоморфизъм. Но тогава $seg_B(b) = seg_{seg_B(d)}(b) \subseteq seg_B(d)$ и $< seg_B(b), \leq_B^b > \cong < seg_B(d), \leq_B^d >$. Но това знаем, че е невъзможно, защото никое добре наредено множество не е изоморфно на свой собствен начален сегмет. Следователно b = d. \square

Лема 2:

Нека $\mathcal{A} = \langle A, \leq_A \rangle$ и $\mathcal{B} = \langle B, \leq_B \rangle$ са добре наредени множества. Нека $a \in A, b \in B, c \in B$ и нека $a <_A c$. Нека $f : seg_A(c) \rightarrowtail seg_B(b)$ е изоморфизъм на $\langle seg_A(c), \leq_A^c \rangle$ върху $\langle seg_B(b), \leq_B^b \rangle$. Тогава $f_{|seg_A(a)|}$ е изоморфизъм на $\langle seg_A(a), \leq_A^c \rangle$ върху $\langle seg_B(f(a)), \leq_B^{f(a)} \rangle$.

Доказателство:

```
Понеже a <_A c, то seg_A(a) \subseteq seg_A(c). Тогава нека g = f_{\upharpoonright seg_A(a)}. Понеже f : seg_A(c) \rightarrowtail seg_B(b), то g : seg_A(a) \rightarrowtail seg_B(b). Range(g) = Range(f_{\upharpoonright seg_A(a)}) = f[seg_A(a)] = f[\{x \in A \mid x <_A a\}] = \{f(x) \mid x \in A \& x <_A a\} = \{f(x) \mid x \in seg_A(a) \& f(x) <_B f(a)\} = \{f(f^{-1}(y)) \mid y \in seg_B(c) \& f(f^{-1}(y)) <_B f(a)\} = \{y \mid y \in seg_B(c) \& y <_B f(a)\} = \{y \mid y \in B \& y <_B f(a)\} = seg_B(f(a)). Следователно g : seg_A(a) \rightarrowtail seg_B(f(a)). Понеже (\forall x \in seg_A(a))(\forall y \in seg_A(a))(x \leq_A^a y \iff x \leq_A y \iff f(x) \leq_B f(y) \iff g(x) \leq_B g(y) \iff g(x) \leq_B^{f(a)} g(y), то следва че g : seg_A(a) \rightarrowtail seg_B(f(a)) е изоморфизъм на < seg_A(a), \leq_A^a > върху < seg_B(f(a)), \leq_B^{f(a)} >. \square
```

Решение:

Нека $f \subseteq W_1 \times W_2$ е следната релация:

$$f = \{ \langle x, y \rangle \in W_1 \times W_2 \mid \langle seg_{W_1}(x), \leq_1^x \rangle \cong \langle seg_{W_2}(y), \leq_2^y \rangle \}.$$

f е функция:

Нека $x \in W_1$, $y \in W_2$ и $z \in W_2$ са такива, че $< x, y > \in f$ и $< x, z > \in f$. Тогава $< seg_{W_1}(x), \le_1^x > \cong < seg_{W_2}(y), \le_2^y >$ и $< seg_{W_1}(x), \le_1^x > \cong < seg_{W_2}(z), \le_2^z >$. Но тогава по Лема 1 y = z. Следователно Funct(f).

f е инекция:

Нека $x \in W_1$, $y \in W_2$ и $s \in W_1$ са такива, че $< x, y > \in f$ и $< s, y > \in f$. Тогава $< seg_{W_1}(x), \le_1^x > \cong < seg_{W_2}(y), \le_2^y >$ и $< seg_{W_1}(s), \le_1^s > \cong < seg_{W_2}(y), \le_2^y >$. Следователно $< seg_{W_2}(y), \le_2^y > \cong < seg_{W_1}(x), \le_1^s >$ и $< seg_{W_2}(y), \le_2^y > \cong < seg_{W_1}(s), \le_1^s >$. Но тогава по Лема $1 \times s$. Следователно f е инекция.

f запазва наредбата:

Нека $x \in Dom(f)$, $s \in Dom(f)$ и $x <_1$ s. След като $s \in Dom(f)$, то $(\exists y \in W_2)(< seg_{W_1}(s), \leq_1^s > \cong < seg_{W_2}(y), \leq_2^y >)$. Нека тогава $y \in W_2$ и $< seg_{W_1}(s), \leq_1^s > \cong < seg_{W_2}(y), \leq_2^y >$. Тогава нека $h : seg_{W_1}(s) \rightarrowtail seg_{W_2}(y)$ е изоморфизъм на $< seg_{W_1}(s), \leq_1^s >$ върху $< seg_{W_2}(y), \leq_2^y >$. Тогава според Лема $2 < seg_{W_1}(x), \leq_1^x > \cong < seg_{W_2}(g(x)), \leq_2^{g(x)} >$. Но $g(x) \in seg_{W_2}(y)$ и значи $g(x) <_2 y$. Но тогава $f(x) = g(x) <_2 y = f(s)$. Следователно $(\forall a \in Dom(f))(\forall b \in Dom(f))(a <_1 b \Longrightarrow f(a) <_2 f(b))$.

Dom(f) е начален сегмент:

 $Dom(f) \subseteq W_1$. Нека $v \in Dom(f)$. Нека $u \in W_1$ и $u <_1 v$. Нека t = f(v). От $v \in Dom(f)$, следва че $< seg_{W_1}(v), \le_1^v > \cong < seg_{W_2}(t), \le_2^t >$. Тогава нека $h : seg_{W_1}(v) \rightarrowtail seg_{W_2}(t)$ е изоморфизъм. Тогава според Лема $2 < seg_{W_1}(u), \le_1^u > \cong < seg_{W_2}(h(u)), \le_2^{h(u)} >$. Следователно $< u, h(u) > \in f$. Тогава $u \in Dom(f)$. Следователно Dom(f) е начален сегмент на W_1 .

Range(f) е начален сегмент:

 $Range(f) \subseteq W_2$. Нека $v \in Range(f)$. Нека $u \in W_2$ и $u <_2 v$. Нека $z \in W_1$ и v = f(z). От $z \in Dom(f)$, следва че $\langle seg_{W_1}(z), \leq_1^z \rangle \cong \langle seg_{W_2}(v), \leq_2^v \rangle$. Тогава нека $h: seg_{W_2}(v) \rightarrowtail seg_{W_1}(z)$ е изоморфизъм. Тогава според Лема $2 < seg_{W_2}(u), \leq_2^u > \cong < seg_{W_1}(h(u)), \leq_1^{h(u)} >$. Следователно $\langle h(u), u \rangle \in f$. Тогава $u \in Range(f)$. Следователно Range(f) е начален сегмент на W_2 .

Така понеже f запазва наредбата и е инекция, то f е изоморфизъм на $< Dom(f), \leq_1 \cap (Dom(f) \times Dom(f)) >$ върху $< Range(f), \leq_2 \cap (Range(f) \times Range(f)) >.$

 $Dom(f) = W_1 \vee Range(f) = W_2$:

Допускаме, че $Dom(f) \neq W_1 \& Range(f) \neq W_2$. Но понеже $Dom(f) \subseteq W_1$ и $Range(f) \subseteq W_2$, следва че $W_1 \setminus Dom(f) \neq \emptyset$ и $W_2 \setminus Range(f) \neq \emptyset$.

Нека тогава $x = \min_{s \in \mathbb{N}} (W_1 \setminus Dom(f))$ и $y = \min_{s \in \mathbb{N}} (W_2 \setminus Range(f))$. Понеже $(\forall s \in W_1)(s \in W_1 \setminus Dom(f)) \implies x \leq_1 s)$, то

 $(\forall s \in W_1)(s <_1 x \implies s \in Dom(f))$. Следователно $seg_{W_1}(x) \subseteq Dom(f)$. Нека $s \in Dom(f)$. Допускаме, че $s \notin seg_{W_1}(x)$. Тогава $x \leq_1 s$. Но понеже

 $x \notin Dom(f)$, то $x <_1 s$. Понеже $s \in Dom(f)$, то

 $< seg_{W_1}(s), \le_1^s>\cong < seg_{W_2}(f(s)), \le_2^{f(s)}>$. Нека тогава $h: seg_{W_1}(s)
ightharpoonup seg_{W_2}(f(s))$ е изоморфизъм на $< seg_{W_1}(s), \le_1^s>$ върху

 $< seg_{W_2}(f(s)), \le_2^{f(s)} >$. Тогава според Лема 2

 $< seg_{W_1}(x), \le_1^x> \cong < seg_{W_2}(h(x)), \le_2^{h(x)}>$. Но тогава $x \in Dom(f)$. Това е Абсурд! Следователно $s \in seg_{W_1}(x)$. Следователно $Dom(f) \subseteq seg_{W_1}(x)$. Така $Dom(f) = seg_{W_1}(x)$.

С аналогични разсъждения получаваме $Range(f) = seg_{W_2}(y)$.

Понеже f е инекция, то $f: seg_{W_1}(x) \rightarrowtail seg_{W_2}(y)$. Но f запазва и наредбата, следователно f е изоморфизъм на $\langle seg_{W_1}(x), \leq_1^x \rangle$ върху

 $< seg_{W_2}(y), \le_2^y >$. Така $< x, y > \in f$. Следователно

 $x \in Dom(f)$ и $y \in Range(f)$. Това е Абсурд!

Следователно $Dom(f) = W_1 \vee Range(f) = W_2$.

Възможни са три случая.

Случай 1 $Dom(f) = W_1 \& Range(f) = W_2$:

Тогава понеже f е изоморфизъм, то $\mathcal{W}_1 \cong \mathcal{W}_2$.

Случай 2 $Dom(f) = W_1 \& Range(f) \neq W_2$:

Тогава понеже Rage(f) е начален сегмент на W_2 относно \leq_2 и f е изоморфизъм, то W_1 е изоморфно на Range(f), което е собствен начален сегмент на W_2 .

Случай 3 $Dom(f) \neq W_1 \& Range(f) = W_2$:

Тогава понеже Dom(f) е начален сегмент на W_1 относно \leq_1 и f е изоморфизъм, то W_2 е изоморфно на Dom(f), което е собствен начален сегмент на W_1 .

Лема за най-големия елемент.

Нека $< L, \le_L >$ е линейно наредено множество. Нека $\emptyset \ne M \subseteq L$ и M е крайно. Тогава в M има най-голям елемент относно \le_L .

Доказателство:

Нека $< L, \le_L >$ е линейно наредено множество. С индукция в множеството на естествените числа ще докажем следното твърдение:

$$\forall n \forall M (\overline{\overline{M}} = \overline{\overline{s(n)}} \& M \subseteq L \implies (\exists m \in M) (\forall x \in M) (x \leq_L m)).$$

База: n = 0

Нека $M \subseteq L$ и $\overline{\overline{M}} = \overline{\overline{1}}$. Тогава $M = \{m\}$ и понеже \leq_L е рефлексивна в L, то $m \leq m$ и значи $(\forall x \in M)(x \leq_L m)$.

Индукционно предположение:

Нека $n \in \omega$ и $\forall M(\overline{\overline{M}} = \overline{\overline{s(n)}} \& M \subseteq L \implies (\exists m \in M)(\forall x \in M)(x \leq_L m)).$

Индукционна стъпка:

Нека $M\subseteq L$ и $\overline{\overline{M}}=\overline{\overline{s(s(n))}}$. Тогава $M\neq\emptyset$. Нека тогава $a\in M$. Тогава очевидно $\overline{M\setminus\{a\}}=\overline{\overline{s(n)}}$ и $M\setminus\{a\}\subseteq L$. Тогава по И.П. за $M\setminus\{a\}$, следва че $(\exists b\in M\setminus\{a\})(\forall x\in M\setminus\{a\})(x\leq_L b)$. Нека тогава $b\in M$ и $(\forall x\in M\setminus\{a\})(x\leq_L b)$. Понеже $< L, \leq_L >$ е линейно наредено множество, то са възможни два случая.

Случай 1 $a \leq_L b$:

Нека $x \in M$. Тогава, ако $x \in M \setminus \{a\}$, то $x \leq_L b$ понеже b е най-голямия относно \leq_L в $M \setminus \{a\}$, ако пък x = a, то директно $x \leq_L b$. Следователно $b \in M$ и $(\forall x \in M)(x \leq_L b)$.

Случай 2 $b \leq_L a$:

Нека $x \in M$. Тогава, ако $x \in M \setminus \{a\}$, то $x \leq_L b$ понеже b е най-голямия относно \leq_L в $M \setminus \{a\}$ и от $b \leq_L a$ и транзитивността на \leq_L , следва че $x \leq_L a$, ако пък x = a, то от рефлексивността на \leq_L следва $x \leq_L a$. Следователно $a \in M$ и $(\forall x \in M)(x \leq_L a)$.

Така и в двата случая е в сила $(\exists m \in M)(\forall x \in M)(x \leq_L m))$. Но M е произволно, следователно след обобщение получаваме $\forall M(\overline{\overline{M}} = \overline{\overline{s(s(n))}} \& M \subseteq L \implies (\exists m \in M)(\forall x \in M)(x \leq_L m))$.

Заключение:

$$\forall n \forall M (\overline{\overline{M}} = \overline{\overline{s(n)}} \& M \subseteq L \implies (\exists m \in M) (\forall x \in M) (x \leq_L m)).$$

Лема за добрата наредба и ординала.

Нека $< W, \le_W >$ е добре наредено множество. Тогава има при това единствен ординал α , такъв че $< W, \le_W > \cong < \alpha, \le_\alpha >$.

Доказателство:

Да допуснем, че за всяко α , $< \alpha$, $\leq_{\alpha} >$ е изоморфно със собствен начален сегмент на $< W, \leq_{W} >$. Тогава по аксиомната схема за замяната има множество A, такова че

 $(\forall w \in W)(\exists a \in A)(ord(a) \& < seg(w), \leq_W^w > \cong < a, \leq_a >)$. Нега тогава A е такова множество и нека $B = \{a \mid a \in A \& ord(a)\}$. Тогава по аксиомната схема за отделянето B е множество. Нека тогава α е произволен ординал, тогава според допускането $(\exists w \in W)(< seg(w), \leq_W^w > \cong < a, \leq_a >)$. Тогава $a \in A$, но в сила е и ord(a). Следователно $a \in B$. Следователно $\forall \alpha (\alpha \in B)$. Но това е Абсурд, защото няма множество, което да съдържа всички ординали! Но от Задача 5. следва, че наредбата на всеки ординал е сравнима с \leq_W . Тогава нека

 $\alpha = \mu\beta[(\exists\gamma \leq \beta)(< W, \leq_W> \cong <\gamma, \leq_\gamma>)]$. Да допуснем, че $< W, \leq_W>$ не е изоморфно с $<\alpha, \leq_\alpha>$. Тогава от свойството, което α минимизира има ординал $\gamma \leq \alpha$, такъв че $< W, \leq_W> \cong <\gamma, \leq_\gamma>$. Нека тогава $\gamma \leq \alpha$ и $< W, \leq_W> \cong <\gamma, \leq_\gamma>$. Понеже $< W, \leq_W>$ не е изоморфно с $<\alpha, \leq_\alpha>$, то $\gamma < \alpha$ и $< W, \leq_W> \cong <\gamma, \leq_\gamma>$. Но това противоречи на факта, че α е най-малкият ординал със свойството $(\exists \delta \leq \alpha)(< W, \leq_W> \cong <\delta, \leq_\delta>)$. Следователно $< W, \leq_W> \cong <\alpha, \leq_\alpha>$. От фактите, че има единствен изоморфизъм между две добри наредби и изоморфизма на добри наредби е рефлексивно, симетрично и транзитивно свойство е ясно, че α е единствения ординал, за който стандартната ординална наредба е изоморфна с \leq_W . \square

Лема за образа на функция с краен домейн.

Нека $f:A\to B$ и нека A е крайно. Тогава Range(f) е крайно и $\overline{Range(f)}\le \overline{\overline{A}}$.

Доказателство:

Нека $g = \{ < b, f^{-1}[\{b\}] > | b \in Range(f) \}$. От аксиомните схеми за замяна и отделяне е ясно, че g е множество. Очевидно Rel(g). Очевидно и Funct(g). Нека $b_1 \in Range(f)$ и $b_2 \in Range(f)$ и $g(b_1) = g(b_2)$. Тогава $f^{-1}[\{b_1\}] = f^{-1}[\{b_2\}]$. Но тогава $\{b_1\} = \{b_2\}$ и значи $b_1 = b_2$. Следователно g е инекция. Следователно $g : Range(f) \rightarrowtail Range(g)$. Нека

 $b \in Range(f)$. Тогава $(\exists a \in A)(f(a) = b)$. Нека тогава $a \in A$ и f(a) = b. Тогава $a \in f^{-1}[\{b\}]$ и значи $g(b) \neq \emptyset$. Тогава Range(g) е множество от непразни множества. Но очевидно $Range(g) \subseteq \mathcal{P}(A)$. Понеже A е крайно, то знаем и че $\mathcal{P}(A)$ е крайно. Следователно Range(g) е крайно множество от непразни множества. Тогава Range(g) има функция на избора. Нека тогава h е функция на избора за Range(g) (Правим креан избор). Тогава $(\forall b \in Range(f))(h(g(b)) \in g(b) \subseteq A)$. Следователно $Range(g \circ h) \subseteq A$. Но A е крайно и значи $Range(g \circ h)$ също е крайно. Но тогава $g \circ h : Range(f) \rightarrowtail Range(g \circ h)$.

Следователно $\overline{\overline{Range(f)}} = \overline{\overline{Range(g \circ h)}} \leq \overline{\overline{A}}$. \square

Задача 6.

Нека A е множество. Тогава A е крайно тогава и само тогава когато има бинарна релация R, такава че A, R и A, R са добре наредени.

Решение:

 (\Longrightarrow) Нека A е крайно.

Тогава нека n е такова, че $\overline{\overline{A}}=\overline{\overline{n}}.$ Нека тогава $f:A\rightarrowtail n.$ Дефинираме релация \leq_f в A така

$$\leq_f = \{ u \mid u \in A \times A \& \exists a \exists b (u = < a, b > \& f(a) \leq_n f(b)) \}.$$

По аксиомната схема за отделянето следва, че \leq_f е множество. От факта, че отделяме от $A \times A$ следва $Rel(\leq_f)$.

Нека $a \in A$. Тогава $< a, a > \in A \times A$, но също така $f(a) \leq_n f(a)$. Следователно $a \leq_f a$. Следователно \leq_f е рефлексивна.

Нека $b \in A$ и $c \in A$ и $b \leq_f c$ и $c \leq_f b$. Тогава $f(b) \leq_n f(c)$ и $f(c) \leq_n f(b)$. Но \leq_n е антисиметрична, следователно f(b) = f(c). Но f е бикеция следователно b = c. Следователно \leq_f е антисиметрична.

Нека $x \in A$, $y \in A$, $z \in A$ и $x \leq_f y$ и $y \leq_f z$. Тогава $f(x) \leq_n f(y)$ и $f(y) \leq_n f(z)$. Но \leq_n е транзитивна, следователно $f(x) \leq_n f(z)$. Следователно $x \leq_f z$. Следователно \leq_f е транзитивна.

Следователно \leq_f задава частична наредба в A.

Ще докажем, че всяко непразно подмножество на A има най-голям и най-малък елемент.

Нека $B\subseteq A$ и $B\neq\emptyset$. Нека C=f[B]. Тогава $C\subseteq n$ и $C\neq\emptyset$. Тогава C има най-малък елемент спрямо \leq_n . Нека това е m. Също така понеже n е крайно и добре наредено, то C е крайно и n е линейно наредено. Тогава според Лемата за най-големия елемент C има най-голям елемент спрямо \leq_n . Нека това е k. Тогава в сила е $(\forall l\in C)(m\leq_n l \& l\leq_n k)$. Нека $u\in B$. Тогава $m\leq_n f(u)$ и $f(u)\leq_n k$. Следователно $f^{-1}(m)\leq_f u$ и $u\leq_f f^{-1}(k)$. Понеже $m\in C,\ k\in C,\ C=f[B]$ и f е биекция, то $f^{-1}(m)\in B$ и $f^{-1}(k)\in B$. Така $f^{-1}(m)$ е най-малкия за B спрямо \leq_f и $f^{-1}(k)$ е най-големия за B спрямо \leq_f . Но тогава $f^{-1}(m)$ е най-малкия за B спрямо \leq_f . Понеже B беше произволно, то следва че e<(a, e)0 и e<(a, e)1 са добре наредени множества.

(\longleftarrow) Нека има бинарна релация R, таква че $< A, R > \mathbf{u} < A, R^{-1} > \mathbf{c}$ а добре наредени.

Нека тогава R е такава бинарна релация, че < A, R > и $< A, R^{-1} >$ са добре наредени. < A, R > е добре наредено тогава по Лемата за добрата наредба и ординала има ординал α , такъв че $< A, R > \cong < \alpha, \leq_{\alpha} >$. Нека тогава α е такъв че $< A, R > \cong < \alpha, \leq_{\alpha} >$. Нека тогава g е единствения изоморфизъм на < A, R > върху $< \alpha, \leq_{\alpha} >$. Допускаме, че $\omega \leq \alpha$. Тогава $\omega \subseteq \alpha$ по свойствата на ординалите. Понеже $0 \in \omega$, то $\emptyset \neq \omega \subseteq \alpha$. Нека $D = g^{-1}[\omega]$. Тогава $\emptyset \neq D \subseteq A$ и значи D има най-малък елемент относно R^{-1} . Тогава нека $g \in D$ е такъв, че $(\forall d \in D)(< g, d > \in R^{-1})$. Следователно $(\forall d \in D)(< d, g > \in R)$. Следователно $(\forall d \in D)(g(d) \leq_{\alpha} g(g))$. Но $g(g) \in \omega$ и $g(g) \in \omega$ и g(g) < g(g) и $g(g) \in \omega$ и $g(g) \in$

Задача 7.

Нека A е множество. Тогава A е крайно тогава и само тогава когато За всяко непразно подмножество B на $A < B, \subseteq >$ има максимален елемент.

Решение:

(\Longrightarrow) Нека A е крайно множество.

Нека n е такова, че $\overline{A} = \overline{\overline{n}}$. Тогава както знаем $\mathcal{P}(A)$ е крайно множество от крайни множества. Нека тогава $B \in \mathcal{P}(A) \setminus \{\emptyset\}$. Тогава B е крайно множество от крайни множества. Нека тогава $C = \{k \mid k \in \omega \& (\exists M \in B)(\overline{k} = \overline{M})\}$. От аксиомната схема за отделянето C е множество. Ако разгледаме id_C , то очевидно $id_C: C \rightarrowtail s(n)$, понеже $(\forall S \in \mathcal{P}(A))(Fin(S) \& \overline{\overline{S}} \leq \overline{\overline{A}})$ и $\emptyset \subset B \subseteq \mathcal{P}(A)$ и следователно Fin(C) & $\emptyset \neq C \subseteq s(n)$. Но $< s(n), \leq_{s(n)} >$ е добре наредено и крайно и значи линейно наредено и крайно и тогава по Лемата за най-големия елемент C има най-голям елемент. Нека това е m. Но $m \in C$ следователно $(\exists S \in B)(\overline{\overline{S}} = \overline{\overline{m}})$. Нека тогава $S \in B$ и $\overline{\overline{S}} = \overline{\overline{m}}$. Да допуснем, че S не е максимален за B спрямо \subseteq . Тогава $(\exists Y \in B)(S \subset Y)$. Нека тогава $Y \in B$ и $S \subset Y$. Тогава понеже $Y \in B$, то Fin(Y) и тогава $\overline{S} < \overline{Y}$. Нека l е такова, че $\overline{\overline{l}} = \overline{\overline{Y}}$. Тогава е ясно, че m < l. От $Y \in B$ следва, че $l \in C$. Но тогава l < m, което е Абсурд! Следователно S е максимален за B спрямо \subseteq . Но понеже B е произволно, то след обобщение получаваме, че всяко непразно подмножество на A има максимален елемент спрямо \subseteq .

(\longleftarrow) Нека всяко непразно подмножество на A има максимален елемент спрямо \subseteq .

Нека тогава разгледаме $P = \{T \mid T \in \mathcal{P}(A) \& Fin(T)\}$. По аксиомната схема за отделянето P е множество. При това очевидно $P \subseteq \mathcal{P}(A)$. Също така понеже $\emptyset \in \mathcal{P}(A)$ и $Fin(\emptyset)$, то $\emptyset \in P$ и значи $P \neq \emptyset$. Но тогава P има максимален елемент относно \subseteq . Нека тогава $D \in P$ и $\neg(\exists M \in P)(D \subset M)$. Понеже $D \in P$, то $D \subseteq A$ и Fin(D). Да допуснем, че $D \neq A$. Тогава $A \setminus D \neq \emptyset$. Нека тогава $x \in A \setminus D$. Тогава $D \cup \{x\} \subseteq A$ и както знаем $Fin(D \cup \{x\})$. Следователно $D \cup \{x\} \in P$ и $D \subset D \cup \{x\}$. Но това е Абсурд, защото D е максимален относно \subseteq . Следователно A = D и така Fin(A). \square

Задача 8.

Yact 1 (ZF).
$$\forall A(\exists B(B \subset A \& \overline{\overline{A}} = \overline{\overline{B}}) \implies \neg Fin(A)).$$

Твърдението е логически еквивалентно с: $\forall A(Fin(A) \implies (\forall B \in \mathcal{P}(A) \setminus \{A\})(\overline{\overline{A}} \neq \overline{\overline{B}})), \text{ което и ще докажем.}$

Нека A е крайно множество. Нека $B\in\mathcal{P}(A)\setminus\{A\}$. Тогава понеже A е крайно, то както знаем и B е крайно. Обаче понеже $B\subset A$, то $\overline{\overline{B}}<\overline{\overline{A}}$ и следователно $\overline{\overline{A}}\neq\overline{\overline{B}}$. \square

Част 2 (ZF + ACC).

$$\forall A(\neg Fin(A) \implies (\exists B \in \mathcal{P}(A) \setminus A)(\overline{\overline{B}} = \overline{\overline{A}}))$$

Нека A е безкрайно множество, тоест не е крайно. Първо с индукция ще покажем, че $\forall n(\exists S \in \mathcal{P}(A))(\overline{\overline{S}} = \overline{\overline{n}}).$

База: $\emptyset \in \mathcal{P}(A)$ и $\emptyset = 0$.

Индукционна хипотеза: Нека n е такова, че $(\exists S \in \mathcal{P}(A))(\overline{\overline{S}} = \overline{\overline{n}}).$

Индукционна стъпка: От И.Х. знаем, че $(\exists S \in \mathcal{P}(A))(\overline{\overline{A}} = \overline{\overline{n}})$. Нека тогава $X \in \mathcal{P}(A)$ и $\overline{\overline{X}} = \overline{\overline{n}}$. Ако допуснем, че $A \setminus X = \emptyset$, то X = A и значи Fin(A), което е Абсурд! Тогава $A \setminus X \neq \emptyset$. Нека тогава $a \in A \setminus X$. Тогава както знаем $\overline{\overline{X \cup \{a\}}} = \overline{\overline{s(n)}}$ и $X \cup \{a\} \in \mathcal{P}(A)$.

Заключение: $\forall n(\exists S \in \mathcal{P}(A))(\overline{\overline{S}} = \overline{\overline{n}}).$

Както знаем $\forall n \ Fin(\mathcal{P}(n))$. Нека тогава

 $U=\{P\mid P\in \mathcal{P}(\mathcal{P}(A))\ \&\ \exists n(\forall S\in P)(\overline{\overline{S}}=\overline{\overline{\mathcal{P}(n)}})\}.$ Тогава по аксиомната схема за отделянето U е множество. От $\forall n(\exists S\in \mathcal{P}(A))(\overline{\overline{S}}=\overline{\overline{n}})$ и $\forall n\ Fin(\mathcal{P}(n))$ следва $(\forall P\in U)(P\neq\emptyset).$ Нека

 $f=\{< n,P>\mid n\in\omega\ \&\ P\in U\ \&\ (\forall S\in P)(\overline{\overline{S}}=\overline{\overline{\mathcal{P}(n)}})\}.$ По аксиомните схеми за замяна и отделяне следва, че f е множество. От $f\subseteq\omega\times U$ следва

Rel(f). От факта $\forall n \forall m (n \neq m \iff \overline{P(n)} \neq \overline{P(m)})$ следва, че $f: \omega \rightarrowtail U$. Очевидно Range(f) = U и значи $f: \omega \rightarrowtail U$. Следователно U е изброимо. Но също така U е множество от непразни множества. Тогава от (ACC) U има функция на избора. Нека тогава g е функция на избора за U. Тогава очевидно $\forall n ((f \circ g)(n) \in f(n) \& \overline{(f \circ g)(n)} = \overline{\overline{\mathcal{P}(n)}} \& (f \circ g)(n) \subseteq A)$. Нека

$$G(x,y) \leftrightharpoons (Funct(x) \& (\exists n \in \omega)(Dom(x) = n \& y = (f \circ g)(n) \setminus (\cup Range(x))) \lor$$

$$(\neg(Funct(x) \& (\exists n \in \omega)(Dom(x) = n)) \& y = \emptyset)$$

Очевидно G задава формулна операция. Тогава според Теоремата за трансфинитна рекурсия има при това единствена формулна операция F такава, че $\forall \alpha(F(\alpha) = G(F_{\upharpoonright \alpha}))$. Тогава нека $h = F_{\upharpoonright \omega}$. Тогава очевидно $\forall n(h(n) = (f \circ g)(n) \setminus (\cup Range(h_{\upharpoonright n})))$.

По индукция ще докажем $\forall n(\overline{\overline{\cup Range(h_{\upharpoonright n})}} \leq \overline{\overline{\mathcal{P}(n) \setminus \{\emptyset\}}} \ \& \ h(n) \neq \emptyset).$

База: $0=\emptyset$ и значи $Range(h_{|0})=Range(\emptyset)=\emptyset$. Както видяхме $\mathcal{P}(0)\setminus\{\emptyset\}=\emptyset$. Следователно $\overline{\overline{\cup}Range(h_{|0})}\leq\overline{\mathcal{P}(0)\setminus\{\emptyset\}}$. Имаме и $h(0)=\underline{(f\circ g)(0)}\setminus(\cup Range(h_{|0}))=(f\circ g)(0)\setminus\emptyset=(f\circ g)(0)$. Но $\overline{\overline{(f\circ g)(0)}}=\overline{\overline{\mathcal{P}(0)}}=\overline{\overline{\{\emptyset\}}}=\overline{\overline{\{0\}}}=\overline{\overline{1}}$ и така $\exists e(h(0)=\{e\})$. Следователно $h(0)\neq\emptyset$.

<u>Индукционна хипотеза:</u> Нека $n \in \omega$ е такова, че $\overline{\overline{URange(h_{\mid n})}} \leq \overline{\overline{\mathcal{P}(n) \setminus \{\emptyset\}}} \ \& \ h(n) \neq \emptyset$.

Индукционна стъпка: $Range(h_{\lceil s(n)}) = Range(h_{\lceil n}) \cup \{h(n)\}.$ $h(n) = (f \circ g)(n) \setminus (\cup Range(h_{\lceil n})).$ Също така $\mathcal{P}(s(n)) = \mathcal{P}(n \cup \{n\}) = \mathcal{P}(n) \cup \{n \cup p \mid p \in \mathcal{P}(n)\}.$ И тогава $\mathcal{P}(s(n)) \setminus \{\emptyset\} = (\mathcal{P}(n) \setminus \emptyset) \cup \{n \cup p \mid p \in \mathcal{P}(n)\}.$ От И.Х. $\overline{\cup Range(h_{\lceil n})} \leq \overline{\mathcal{P}(n) \setminus \{\emptyset\}}.$ Нека тогава $u : \cup Range(h_{\lceil n}) \rightarrowtail \mathcal{P}(n) \setminus \{\emptyset\}.$ Имаме още $\overline{(f \circ g)(n)} = \overline{\overline{\mathcal{P}(n)}}.$ Нека тогава $v : (f \circ g)(n) \rightarrowtail \mathcal{P}(n).$ Но $h(n) \subseteq (f \circ g)(n)$ и значи $v_{\lceil h(n)} : h(n) \rightarrowtail \mathcal{P}(n).$ Очевидно $r : \mathcal{P}(n) \to \{n \cup p \mid p \in \mathcal{P}(n)\},$ за която $r(p) = n \cup p$ е биекция. Следователно $v_{\lceil h(n)} \circ r : h(n) \rightarrowtail \{n \cup p \mid p \in \mathcal{P}(n)\}.$

В сила е $\cup Range(h_{\upharpoonright s(n)}) = (\cup Range(h_{\upharpoonright n})) \cup h(n)$. Но $h(n) = (f \circ g)(n) \setminus (\cup Range(h_{\upharpoonright n}))$. Следователно $(\cup Range(h_{\upharpoonright n})) \cap h(n) = \emptyset$. Очевидно и $P(n) \cap \{n \cup p \mid p \in \mathcal{P}(n)\} = \emptyset$. Тогава е приложима Лемата за разделените инекции. От нея следва $u \cup (v_{\upharpoonright h(n)} \circ r) : \underline{\cup Range(h_{\upharpoonright s(n)})} \longrightarrow \underline{\mathcal{P}(s(n)) \setminus \{\emptyset\}}$. Следователно $\overline{\overline{\cup Range(h_{\upharpoonright s(n)})}} \le \overline{\overline{\mathcal{P}(s(n)) \setminus \{\emptyset\}}}$. В сила са:

$$\frac{h(s(n)) = (f \circ g)(s(n)) \setminus (\cup Range(h_{\upharpoonright s(n)})}{\overline{(f \circ g)(s(n))}} = \overline{\overline{\mathcal{P}(s(n))}} \& Fin((f \circ g)(s(n)))} \\ \overline{\overline{\cup Range(h_{\upharpoonright s(n)})}} \leq \overline{\mathcal{P}(s(n)) \setminus \{\emptyset\}}$$

Да допуснем, че $h(s(n)) = \emptyset$. Тогава получаваме $\overline{\overline{\square Range(h_{\upharpoonright s(n)})}} = \overline{\overline{\mathcal{P}(s(n))}}$, което е Абсурд! Следователно $h(s(n)) \neq \emptyset$.

Заключение: $\forall n(\overline{\overline{\cup Range(h_{\upharpoonright n})}} \leq \overline{\overline{\mathcal{P}(n) \setminus \{\emptyset\}}} \& h(n) \neq \emptyset).$

Да допуснем, че $\exists n \exists m (n \neq m \& h(n) \cap h(m) \neq \emptyset)$. Нека тогава n и m са такива, че $n \neq m \& h(n) \cap h(m) \neq \emptyset$. Тогава Б.О.О. m < n. Но $h(n) = (f \circ g)(n) \setminus (\bigcup Range(h_{\upharpoonright n}))$ и $h(m) \subseteq \bigcup Range(h_{\upharpoonright n})$, следователно $h(n) \cap h(m) = \emptyset$. Така $h(n) \cap h(m) \neq \emptyset$ и $h(n) \cap h(m) = \emptyset$, което е Абсурд! Следователно $\forall n \forall m (n \neq m \iff h(n) \cap h(m) \neq \emptyset)$. Така директно следва $h: \omega \rightarrowtail Range(h)$. Понеже $\forall n((f \circ g)(n) \subseteq A)$ и от до тук доказаното получаваме $\forall n(h(n) \subseteq A \& h(n) \neq \emptyset)$. Следователно Range(h) е изброимо множество от непразни множества. Следователно от ACC Range(h)има функция на избора. Нека тогава t е функция на избора за Range(h). Така $\forall n((h \circ t)(n) \in h(n) \& (h \circ t)(n) \in A)$. Обаче Range(h) е множество от непресичащи се множества, от където $(h \circ t) : \omega \rightarrowtail Range(h \circ t)$ и $Range(h \circ t) \subset A$. Нека $M = Range(h \circ t)$. Нека $y = h \circ t$. Нека $z=(y^{-1}\circ s_{\upharpoonright \omega})\circ y$. Очевидно $z:M\rightarrowtail M\setminus\{y(0)\}$. Тогава прилагаме Лемата за разделените инекции и получаваме $z \cup id_{\restriction A \setminus M} : A \rightarrowtail A \setminus \{y(0)\}$. Така от $A\setminus\{y(0)\}\subseteq A$ и $y(0)\in M\subseteq A$ следва $A\setminus\{y(0)\}\subset A$ и $\overline{\overline{A}}=\overline{\overline{A\setminus\{y(0)\}}}.$

Задача 9. Да се докаже

$$\forall A \forall a \forall b (a \notin A \& b \notin \mathcal{P}(A) \& \overline{\overline{A}} = \overline{\overline{A \cup \{a\}}} \implies \overline{\overline{\mathcal{P}(A)}} = \overline{\overline{\mathcal{P}(A) \cup \{b\}}})$$

Решение:

Нека A, a и b са такива, че $a \notin A \& b \notin \mathcal{P}(A) \& \overline{\overline{A}} = \overline{\overline{A \cup \{a\}}}$. Понеже $id_{\mathcal{P}(A)}\,:\,\mathcal{P}(A)
ightsquigarrow\mathcal{P}(A),$ то $id_{\mathcal{P}(A)}\,:\,\mathcal{P}(A)
ightsquigarrow\mathcal{P}(A)\cup\{b\}.$ Следователно $\overline{\overline{\mathcal{P}(A)}} \leq \overline{\overline{\mathcal{P}(A) \cup \{b\}}}$. Имаме $\overline{\overline{A}} = \overline{\overline{A \cup \{a\}}}$ тогава нека $f: A \cup \{a\} \rightarrowtail A$. Нека $g = f_{\upharpoonright A}$ тогава $g : A \rightarrowtail A \setminus \{f(a)\}$. Нека тогава $h : \mathcal{P}(A) \to \mathcal{P}(A)$ и $(\forall S \in \mathcal{P}(A))(h(S) = g[S])$. Ще покажем, че h е инекция. Нека $X \in \mathcal{P}(A)$ и $Y \in \mathcal{P}(A)$ и нека са такива, че h(X) = h(Y). Тогава g[X] = g[Y] и тогава понеже $g: A \rightarrowtail A \setminus \{f(a)\}$, то $X = g^{-1}[g[X]] =$ $g^{-1}[g[Y]] = Y$. Следователно $(\forall X \in \mathcal{P}(A))(\forall Y \in \mathcal{P}(A))(h(X) = h(Y) \implies$ X=Y). Следователно $h:\mathcal{P}(A) \longrightarrow \mathcal{P}(A)$. Понеже $f:A\cup\{a\} \longrightarrow A$, то $f(a) \in A$ и значи $\{f(a)\} \in \mathcal{P}(A)$. От $g: A \rightarrowtail A \setminus \{f(a)\}$, следва че $(\forall S \in A)$ $\mathcal{P}(A)(h(S) = g[S] \subseteq A \setminus \{f(a)\})$. Следователно $(\forall S \in \mathcal{P}(A))(f(a) \notin h(S))$. Следователно $\{f(a)\} \notin Range(h)$. Тогава $Funct(\{\langle b, \{f(a)\} \rangle\})$ и $b \notin Range(h)$ Dom(h) и $\{f(a)\} \notin Range(h)$ и така по Лемата за разделените инекции $h \cup \{ \langle b, \{f(a)\} \rangle \} : \mathcal{P}(A) \cup \{b\} \longrightarrow Range(h) \cup \{\{f(a)\}\}$. Също така имаме $(\forall S \in \mathcal{P}(A))(h(S) = g[S] \subseteq A \setminus \{f(a)\})$ и значи $Range(h) \subseteq \mathcal{P}(A)$. Но $f(a) \in A$ и така $Range(h) \cup \{\{f(a)\}\} \subseteq \mathcal{P}(A) \cup \mathcal{P}(A) = \mathcal{P}(A)$. Следователно $h \cup \{\langle b, \{f(a)\} \rangle\} : \mathcal{P}(A) \cup \{b\} \longrightarrow \mathcal{P}(A)$. Така $\overline{\mathcal{P}(A) \cup \{b\}} \leq \overline{\mathcal{P}(A)}$ и от Теоремата на Кантор-Шрьодер-Бернщайн следва, че $\overline{\overline{\mathcal{P}(A)}} = \overline{\overline{\mathcal{P}(A)} \cup \{b\}}$.

Задача 12. В (ZFC) всяко множество от непразни крайни множества има минимална трансверзала

 $\forall A((\forall x \in A)(\exists n \in \omega)(\overline{\overline{x}} = \overline{\overline{s(n)}}) \implies \exists Y((\forall x \in A)(Y \cap x \neq \emptyset) \& \forall Z((Z \subseteq Y \& (\forall x \in A)(Z \cap x \neq \emptyset)))$

Решение:

Нека A е такова, че $(\forall x \in A)(\exists n \in \omega)(\overline{\overline{x}} = \overline{s(n)})$. Нека $T = \{Y \mid Y \in \mathcal{P}(\cup A) \& (\forall x \in A)(Y \cap x \neq \emptyset)\}.$ T е множество, защото отделяме от $\mathcal{P}(\cup A)$ със свойството "е трансверзала за A". Също така $\langle T, \supseteq_T \rangle$ е частично наредено множество. В (ZFC) е сила Лемата на Цорн, така че ще я приложим. Първо в сила е следното $(\forall x \in A)(x \cap (\cup A) = x \neq \emptyset)$. Следователно $\cup A \in T$ и значи $T \neq \emptyset$. Нека Cе произволна непразна верига в $< T, \supseteq_T >$. Тогава $< C, \supseteq_T \cap (C \times C) >$ е линейно наредено множество. Нека $Y = \cap C$. Тогава $(\forall X \in C)(C \supseteq Y)$. Понеже $C \subseteq T \subseteq \mathcal{P}(\cup A)$, то $Y \in \mathcal{P}(\cup A)$. Да допуснем, че $Y \notin T$. Тогава $(\exists x \in A)(Y \cap x = \emptyset)$. Нека тогава $x \in A$ и $Y \cap x = \emptyset$. Тогава $(\forall s \in x)(x \notin Y)$. Тогава $(\forall s \in x)(\exists t \in C)(x \notin t)$. Нека $\varphi(s, U, x, C) \leftrightharpoons (s \in x \& U = \{t \mid t \in C \& s \notin t\}) \lor (s \notin x \& U = \emptyset).$ Oчевидно φ е функционално свойство относно s при фиксирани параметри xи C. Тогава по аксиомната схема за замяната относно φ и x с параметри x и C има множество B, такова че $(\forall s \in x)(\exists U \in B)(\varphi(s, U, x, C))$. Нека тогава $D = \{U \mid U \in B \& (\exists s \in x) (\varphi(s, U, x, C))\}.$ D е множество според аксиомната схема за отделянето. Също така очевидно $D = \{U \mid (\exists s \in \{u\}) \}$ $x)(U = \{t \mid t \in C \& s \notin t\})\}$ и $\overline{\overline{D}} \leq \overline{\overline{x}}$. Но x е крайно и непразно и значи D също. От $(\forall s \in x)(\exists t \in C)(x \notin t)$ следва, че $(\forall U \in D)(U \neq \emptyset)$. Тогава нека f е функция на избора за D (правим краен избор). Тогава очевидно $(\forall U \in D)(f(U) \in U \& (\exists s \in x)(f(U) \in C \& s \notin f(U))).$ Така $\emptyset \neq Range(f) \subseteq C$ и от Лемата за образа на фунцкия с креан домейн имаме $\overline{\overline{Range(f)}} \leq \overline{\overline{D}}$ значи Range(f) е крайно и е подмножество на линейно наредено множество. Тогава по Лемата за най-големия елемент Range(f) има най-голям елемент относно $\supseteq_T \cap (C \times C)$. Нека тогава $t \in Range(f)$ и $(\forall v \in Range(f))(t \subseteq v)$. Очевидно $\cap Range(f) \subseteq t$. Нека $w \in t$. Нека $r \in Range(f)$. Тогава понеже $t \subseteq r$, то $w \in r$. Така $(\forall v \in Range(f))(w \in v)$. Следователно $w \in \cap Range(f)$. Следователно $t \subseteq \cap Range(f)$. Понеже $t \in Range(f) \subseteq C$, то $t \in C$. Нека $s \in x$, ако допуснем, че $s \in t$, то $(\forall v \in Range(f))(s \in v)$. Но тогава $(\forall U \in D)(s \in f(U))$. Нека $U \in D$ и $\varphi(s, U, x, C)$. Тогава $(\forall v \in U)(s \notin v)$. В частност $s \notin f(U)$. Но това е Абсурд! Следователно $(\forall s \in x)(s \notin t)$. Следователно $t \cap x = \emptyset$. Но тогава $t \notin C$, което е Абсурд! Следователно $(\forall c \in C)(Y \supseteq_T c) \& Y \in T$. Така всяка непразна верига в $\langle T, \supseteq_T \rangle$ има горна граница в T. Следователно по Лемата на Цорн в T има максимален елемент относно $\supseteq_T >$. Нека тогава $V \in T$ и V е максимален относно $\supseteq_T >$. Тогава V е минимален относно \subseteq_T . Нека $Z \subseteq V$ и $(\forall a \in A)(Z \cap a \neq \emptyset)$. Тогава понеже $V \in \mathcal{P}(\cup A)$, то $Z \in \mathcal{P}(\cup A)$. Но тогава $Z \in T$. Понеже V е минимален относно \subseteq_T , то $Z \not\subset V$ и значи Z = V. \square

Задача 13.

Нека $\varphi(A,B,C) \leftrightharpoons A \subseteq B \& \forall f((f:C \to B)) \Longrightarrow (\cap Range(f) \in B \& \cup Range(f) \in B)).$ Тогава $\forall C \forall A((A \neq \emptyset \& C \neq \emptyset)) \Longrightarrow \exists !B(\varphi(A,B,C) \& \forall D(\varphi(A,D,C)) \Longrightarrow B \subseteq D))).$

Решение:

Нека A и C са непразни множества.

Наблюдение 1:

 $(\forall a \in A)(a \subseteq \cup A) \implies (\forall a \in A)(a \in \mathcal{P}(\cup A)) \implies A \subseteq \mathcal{P}(\cup A)$ следователно $A \in \mathcal{P}(\mathcal{P}(\cup A))$.

Наблюдение 2:

Нека $X \in \mathcal{P}(\mathcal{P}(\cup A))$. Нека $f: C \to X$. Тогава $Range(f) \subseteq X \subseteq \mathcal{P}(\cup A)$. Следователно $Range(f) \in \mathcal{P}(\mathcal{P}(\cup A))$. Но тогава очевидно $\cap Range(f) \in \mathcal{P}(\cup A)$ и $\cup Range(f) \in \mathcal{P}(\cup A)$. Тогава по аксиомната схема за отделянето следните две са множества:

$$\{U \mid U \in \mathcal{P}(\cup A) \& \exists g((g : C \to X) \& U = \cap Range(g))\}\$$
$$\{U \mid U \in \mathcal{P}(\cup A) \& \exists g((g : C \to X) \& U = \cup Range(g))\}\$$

Нека тогава $N = \{U \mid U \in \mathcal{P}(\cup A) \& \exists g((g:C \to X) \& U = \cup Range(g))\}$ и $S = \{U \mid U \in \mathcal{P}(\cup A) \& \exists g((g:C \to X) \& U = \cap Range(g))\}$. Тогава очевидно $N \subseteq \mathcal{P}(\cup A)$ и $S \subseteq \mathcal{P}(\cup A)$. Следователно $N \in \mathcal{P}(\mathcal{P}(\cup A))$ и $S \in \mathcal{P}(\mathcal{P}(\cup A))$.

Наблюдение 3:

По аксиомната схема за отделянето $\{T \mid T \in \mathcal{P}(\mathcal{P}(\cup A)) \& A \subseteq T\}$ е множество.

Нека $S = \{T \mid T \in \mathcal{P}(\mathcal{P}(\cup A)) \& A \subseteq T\}$. Очевидно $S \subseteq \mathcal{P}(\mathcal{P}(\cup A))$. От Наблюдение $1 \ A \in \mathcal{P}(\mathcal{P}(\cup A))$, следователно $A \subseteq \mathcal{P}(\cup A)$ и $\mathcal{P}(\cup A) \in \mathcal{P}(\mathcal{P}(\cup A))$. Следователно $\mathcal{P}(\cup A) \in S$. Нека $Y \subseteq S$ е произволно и $Y \neq \emptyset$. Понеже $(\forall Z \in Y)(Z \in S)$, то $(\forall Z \in Y)(A \subseteq Z \& Z \in \mathcal{P}(\mathcal{P}(\cup A)))$. Следователно $A \subseteq \cap Y \& \cap Y \in \mathcal{P}(\mathcal{P}(\cup A))$. Следователно $\cap Y \in S$. Следователно $(\forall Y \in \mathcal{P}(S) \setminus \{\emptyset\})(\cap Y \in S)$.

Същинско решение:

Нека $P = \mathcal{P}(\mathcal{P}(\cup A)))$ и нека $S = \{T \mid T \in P \& A \subseteq T\}$. Дефинираме три оператора. Нека $h_{\cap} : P \to P, h_{\cup} : P \to P$ и $h : S \to S$ и $(\forall X \in P)(h_{\cap}(X) = \{U \mid U \in \mathcal{P}(\cup A) \& \exists g((g : C \to X) \& U = \cap Range(g))\})$ & $(\forall X \in P)(h_{\cup}(X) = \{U \mid U \in \mathcal{P}(\cup A) \& \exists g((g : C \to X) \& U = \cup Range(g))\})$ & $(\forall X \in S)(h(X) = \cup \{X, h_{\cap}(X), h_{\cup}(X)\}).$

От Наблюдение 2 е ясно, че h_{\cap} и h_{\cup} са коректно дефинирани. Нека $X \in S$. Тогава $X \subseteq \bigcup \{X, h_{\cap}(X), h_{\cup}(X)\}$. Понеже $X \in S$, то $X \in P$ и $A \subseteq X$. Следователно $\cup \{X, h_{\cap}(X), h_{\cup}(X)\} \in P$ и $A \subseteq \cup \{X, h_{\cap}(X), h_{\cup}(X)\}$. Следователно $\cup \{X, h_{\cap}(X), h_{\cup}(X)\} \in S$. Тогава очевидно $h: S \to S$. Нека $Y \in S$ и $Z \in S$ и $Y \subseteq Z$. От $Y \subseteq Z$ следва ${}^CY \subseteq {}^CZ$. Тогава очевидно $h_{\cap}(Y)\subseteq h_{\cap}(Z)$ и $h_{\cup}(Y)\subseteq h_{\cup}(Z)$. Следователно очевидно $h(Y) \subseteq h(Z)$. Следователно h е монотонен в S. Но тогава от Наблюдение 3 следва, че е приложима 3адача 3. Нека тогава B е най-малката неподвижна точка за h. Ще покажем, че $\varphi(A, B, C)$ е в сила. Понеже Bе неподвижна точка за h, то $B \in S$ и значи $A \subseteq B$. Нека f е произволно, такова че $f: C \to B$. Нека $I = \bigcap Range(f)$ и $U = \bigcup Range(f)$. От Наблюдение 2 следва, че $I \in \mathcal{P}(\cup A)$ и $U \in \mathcal{P}(\cup A)$. Така $I \in h_{\cap}(B)$ и $U \in h_{\cup}(B)$. Но $B = h(B) = \bigcup \{B, h_{\cap}(B), h_{\cup}(B)\}$, следователно $h_{\cap}(B) \subseteq B$ и $h_{\cup}(B) \subseteq B$. Значи $I \in B$ и $U \in B$. Но f беше произволно, следователно $\varphi(A, B, C)$. Нека D е произволно и такова, че $\varphi(A, D, C)$. Тогава $A \subseteq D$. Ho $A \subseteq \mathcal{P}(\cup A)$ и значи $\emptyset \neq A \subseteq (D \cap \mathcal{P}(\cup A))$. Нека $T = D \cap \mathcal{P}(\cup A)$. Тогава $A \subseteq T$ и $T \subseteq D$ и $T \subseteq \mathcal{P}(\cup A)$. Следователно $T \in P$ и $A \subseteq T$. Следователно $T \in S$. Понеже $T \subseteq T$, то $T \subseteq h(T)$. Нека $R \in h_{\cap}(T)$ и

R е произволно. Тогава $\exists g((g:C\to T)\ \&\ R=\cap Range(g))$. Нека тогава g е такова, че $g:C\to T$ и $R=\cap Range(g)$. Понеже $g:C\to T$ и $T\subseteq D$, то $g:C\to D$. Но тогава от $\varphi(A,D,C)$, следва че $R\in D$. Но $R\in h_{\cap}(T)$ и значи $R\in \mathcal{P}(\cup A)$. Така $R\in D$ и $R\in \mathcal{P}(\cup A)$, следователно $R\in T$. Но понеже R беше произволно, то $h_{\cap}(T)\subseteq T$. По аналогични разсъждения $h_{\cup}(T)\subseteq T$. Но също така $T\subseteq T$ и така $h(T)\subseteq T$. Следователно h(T)=T и $T\in S$. Но B е най-малката неподвижна точка за h, следователно $B\subseteq T$. Но $T\subseteq D$, следователно $B\subseteq D$. Понеже D е произволно, то следва че $\forall D(\varphi(A,D,C)\Longrightarrow B\subseteq D)$. Нека V е такова, че $\varphi(A,V,C)$ и $\forall D(\varphi(A,D,C)\Longrightarrow V\subseteq D)$. Тогава понеже $\varphi(A,B,C)$, то $V\subseteq B$. Но от $\varphi(A,V,C)$ и доказаното следва, че $B\subseteq V$. Следователно V=B. Следователно D0 е единствено със свойството $\varphi(A,B,C)$ и $\forall D(\varphi(A,D,C)\Longrightarrow B\subseteq D)$. \square

Задача 14.

Нека $< A, \le_1 >$ е добре наредено множество и $\forall n (\overline{\overline{A}} \neq \overline{\overline{n}})$. Тогава има добра наредба \le_2 в A, такава че $< A, \le_1 >$ и $< A, \le_2 >$ не са изоморфни.

Решение:

От Лемата за добрата наредба и ординала има единствен ординал α , такъв че

 $< A, \le_1> \cong <\alpha, \le_\alpha>$. Нека тогава α е този ординал. Нека тогава $g: A \rightarrowtail \alpha$ е единствения изоморфизъм между $< A, \le_1>$ и $<\alpha, \le_\alpha>$. Ако допуснем, че $\alpha<\omega$, то $\alpha\in\omega$ и $\overline{\overline{A}}\neq\overline{\overline{\alpha}}$, което е Абсурд. Следо-

яко допуснем, че
$$\alpha < \omega$$
, то $\alpha \in \omega$ и $A \neq \alpha$, което е досурд. Следователно $\omega \leq \alpha$. Тогава $f(\beta) = \begin{cases} 0 & , \ \beta = \alpha \\ \beta & , \ \omega \leq \beta < \alpha \end{cases}$ е биекция от α $s(\beta)$, $\beta < \omega$

към $s(\alpha)$. Но α е собствен начален сегмент на $s(\alpha)$ относно наредбата на $s(\alpha)$ по свойствата на ординалите. Следователно f не запазва наредбата, защото ако я запазваше f щеше да е изоморфизъм между $<\alpha, \leq_{\alpha}>$ и $< s(\alpha), \leq_{s(\alpha)}>$, което е невъзможно. Очевидно $g \circ f: A \rightarrowtail s(\alpha)$. В A въвеждаме релацията \leq_2 по следния начин $a_1 \leq_2 a_2 \iff < a_1, a_2 > \in A \times A \& (g \circ f)(a_1) \leq (g \circ f)(a_2)$. Очевидно \leq_2 е добра наредба в A пренесена от $< s(\alpha), \leq_{s(\alpha)}>$. Тоест $< A, \leq_2> \cong < s(\alpha), \leq_{s(\alpha)}>$. Ако допуснем,

че $< A, \le_1> \cong < A, \le_2>$, то ще получим, че $< \alpha, \le_\alpha> \cong < s(\alpha), \le_{s(\alpha)}>$, защото свойството изоморфизъм на добри наредби е симетрично и транзитивно, което ще доведе до противоречие. Следователно $< A, \le_1>$ и $< A, \le_2>$ не са изоморфни. \square

Задача 15.
$$\forall A(\overline{\overline{A}} < \overline{\overline{\overline{A}}} + \overline{\overline{\overline{\mathcal{H}(A)}}})$$

Решение:

Нека $B=(\{0\}\times A)\cup(\{1\}\times\mathcal{H}(A))$. Тогава $\overline{\overline{B}}=\overline{\overline{A}}+\overline{\overline{\mathcal{H}(A)}}$. Нека $zero:A\to\{0\}\times A$ е такава, че $(\forall a\in A)(zero(a)=<0,a>)$. Тогава очевидно $zero:A\rightarrowtail B$ и значи $\overline{\overline{A}}\le\overline{\overline{B}}$. Да допуснем, че $\overline{\overline{A}}=\overline{\overline{B}}$. Нека тогава $f:B\rightarrowtail A$. Тогава $f_{\lceil\{1\}\times\mathcal{H}(A)}:\{1\}\times\mathcal{H}(A)\rightarrowtail A$. Нека $one:\mathcal{H}(A)\to\{1\}\times\mathcal{H}(A)$ е такава, че $(\forall x\in\mathcal{H}(A))(one(x)=<1,x>)$. Очевидно $one:\mathcal{H}(A)\rightarrowtail\{1\}\times\mathcal{H}(A)$. Следователно $one\circ f:\mathcal{H}(A)\rightarrowtail A$. Така $\overline{\overline{\mathcal{H}(A)}}\le\overline{\overline{A}}$, което е Абсурд! Следователно $\forall A(\overline{\overline{A}}<\overline{\overline{A}}+\overline{\overline{\mathcal{H}(A)}})$. \square