INORGANIC

<u>Aim</u>: - To identify the given inorganic compound for its acidic and basic radical.

<u>Apparatus</u>: - Chemical Reagent, Test Tube, Test Tube holder, Spatula, Burner

Procedure: (Click On The Required Radical to see the procedure)

Acidic Radical:-

Group A:- CO_3^2 -, S^2 -, SO_3^2 -, NO_2 -, CrO_4^2 -

<u>Group B</u>:- <u>Cl</u>-, <u>Br</u>-, <u>I</u>-, <u>NO₃</u>-, <u>CH₃COO</u>-, <u>C₂O₄</u>²-

Group C:- <u>SO₄²⁻</u>, <u>PO₄³⁻</u>

Basic Radical:-

Group 0:- NH₄±

Group 1:- Pb²⁺, Ag⁺

Group 2:- Pb²⁺, Cu²⁺, As⁺

Group 3:- Fe³⁺, Al³⁺

Group 4:- Mn²⁺, Zn²⁺, Ni²⁺, Co²⁺

Group 5:- Ca²⁺, Ba²⁺, Sr²⁺

Group 6:- Mg²⁺

Result:- The given salt contains _____ as acidic radical and ____ as basic radical.

CARBONATE

Preliminary Test:-

Experiment	Observation	Inference
Added dilute sulphuric	Gas with brisk	Carbonate may be present.
acid to given salt.	effervescence evolved.	

Confirmatory Test:-

Experiment	Observation	Inference
Pass the above evolved gas	Lime water turns milky.	Carbonate confirmed.
through lime water.		

Chemical Equations:-

$$CO_3^{2-}(s) + 2H^+(aq) \rightarrow H_2O(1) + CO_2(g)$$

$$CO_{2(g)} + Ca(OH)_{2(aq)} \rightarrow CaCO_{3(s)(milky)} + H_2O_{(l)}$$

SULPHIDE

Preliminary Test:-

Experiment	Observation	Inference
Added dilute sulphuric	Gas with smell of rotten	Sulphide may be present.
acid to given salt.	eggs evolved.	

Confirmatory Test:-

Experiment	Observation	Inference
Added a few drops lead(II) of ethanoate solution.	Black precipitate of lead sulphide formed.	Sulphide confirmed.

Chemical Equations:

$$MS_{(s)} + 2H^+{}_{(aq)} \stackrel{\text{\tiny 1}}{\to} \stackrel{\text{\tiny 2}}{\to} M^{2+}{}_{(aq)} + H_2S_{(g)}$$

$$Pb^{2+}(aq) + S^{2-}(aq) --> PbS_{(s)}$$

SULPHITE

Preliminary Test:-

Experiment	Observation	Inference
Added dilute sulphuric	Gas with smell of burning	Sulphite may be present.
acid to given salt.	sulphur evolved.	

Confirmatory Test:-

Experiment	Observation	Inference
Add barium chloride to	A white ppt. of barium	Sulphite confirmed.
the salt.	sulphite formed which	
	dissolved in excess	
	hydrochloric acid to give	
	a clear colourless	
	solution.	

Chemical Equations:

$$Ba^{2+}(aq) + SO_3^{2-}(aq) --> BaSO_3(s)$$

NITRITE

Preliminary Test:-

Experiment	Observation	Inference
Added dilute sulphuric	Reddish brown gas with	Nitrite may be present.
acid to given salt.	pungent smell evolved.	

Confirmatory Test:-

Experiment	Observation	Inference
Added potassium	Pink colour of potassium	Nitrite confirmed.
permanganate solution.	permanganate discharged.	

Chemical Equations:-

$$NO_{2^{^{-}}} + H_{2}SO_{4(aq)} \text{ for } NO_{(g)} + SO_{4}{}^{2^{-}} + H_{2}O_{(l)}$$

$$2KMnO_{4(Pink)} + 3H_2SO_4 \ + 5KNO_2 --> K_2SO_{4(Colourless)} + 2MnSO_4 + 5KNO_3 + 3H_2O_4 + 3H_2$$

CHROMATE

Preliminary Test:-

Experiment	Observation	Inference
Added dilute sulphuric	Solution turned yellow.	Chromate may be present.
acid to given salt.		

Confirmatory Test:-

Experiment	Observation	Inference
Added barium chloride	Yellow precipitate formed.	Chromate confirmed.
solution.		

Chemical Equations:

$$\text{CrO}_4{}^{2\text{-}}\text{(aq)} + 2\text{H}^+\text{(aq)} \rightarrow \text{Cr}_2\text{O}_7{}^{2\text{-}}\text{(aq)(yellow)}$$

$$Ba^{2+}(aq) + CrO_4^{2-}(aq) \rightarrow BaCrO_4(s)(yellow)$$

CHLORIDE

Preliminary Test:-

Experiment	Observation	Inference
Added dilute sulphuric acid to given salt.	No effect.	Carbonate, sulphide, sulphite, nitrate absent.
Added concentrated sulphuric acid to given salt.	Colourless gas with pungent smell evolved.	Chloride may be present.

Confirmatory Test:-

Experiment	Observation	Inference
Added few potassium dichromate crystals and concentrated sulphuric acid and heated. Passed the vapors through the test tube which contains sodium hydroxide solution. To this yellow solution, added dilute CH ₃ COOH and lead acetate solution.	Yellow coloured precipitate is formed.	Chloride confirmed.

Chemical Equations:

chromyl chloride

(orange-red vapours)

BROMIDE

Preliminary Test:-

Experiment	Observation	Inference
Added dilute sulphuric	No effect.	Carbonate, sulphide,
acid to given salt.		sulphite, nitrate absent.
Added concentrated sulphuric acid to given salt.	Brown colour gas evolved.	Nitrate or Bromide may be present.
Added copper turnings.	No effect.	Bromide may be present.

Confirmatory Test:-

Experiment	Observation	Inference
Added dilute nitric acid	A pale yellow precipitate	Bromide confirmed.
and silver nitrate	formed.	
solution		

Chemical Equations:

Ionic equation:-

 $Ag^+_{(aq)} + Br^-_{(aq)} \rightarrow AgBr_{(s)(yellow)}$

IODIDE

Preliminary Test:-

Experiment	Observation	Inference
Added dilute sulphuric	No effect.	Carbonate, sulphide,
acid to given salt.		sulphite, nitrate absent.
Added concentrated sulphuric acid to given salt.	Violet colour gas evolved.	Iodide may be present.

Confirmatory Test:-

Experiment	Observation	Inference
Added dilute nitric acid	A pale yellow precipitate	Iodide confirmed.
and silver nitrate solution	formed.	

Chemical Equations:

lonic equation:-

 $Ag^+_{(aq)} + I^-_{(aq)} \rightarrow AgI_{(s)(yellow)}$

NITRATE

Preliminary Test:

Experiment	Observation	Inference
Added dilute sulphuric	No effect.	Carbonate, sulphide,
acid to given salt.		sulphite, nitrate absent.
Added concentrated sulphuric acid to given salt.	Brown colour gas evolved.	Nitrate or Bromide may be present.
Added copper turnings.	Brown colour intensifies.	Nitrate may be present.

Confirmatory Test:-

Experiment	Observation	Inference
Added fresh ferrous	Brown coloured ring is	Nitrate confirmed.
sulphate, nitric acid to salt.	formed.	
Added concentrated		
sulphuric acid alsong the		
walls of test tube.		

Chemical Equations:-

$$NO_{3}^{-} + 3Fe^{2+} + 4H^{+} \rightarrow 3Fe^{3+} + NO + 2H_{2}O$$

$$[Fe(H_2O)_6]^{2+} + NO \rightarrow [Fe(H_2O)_5(NO)]^{2+}$$

ACETATE

Preliminary Test:

Experiment	Observation	Inference
Added dilute sulphuric	No effect.	Carbonate, sulphide,
acid to given salt.		sulphite, nitrate absent.
Added concentrated sulphuric acid to given salt.	Vinegar like smell.	Acetate may be present.

Confirmatory Test:-

Experiment	Observation	Inference
Added ethanol to the salt,	Evolution of fruity smell.	Acetate confirmed.
then added drops of		
concentrated sulphuric		
acid.		

Chemical Equations:

lonic equation:-

CH3COOH- + H2SO4 --> HSO4- + CH3COOH

OXALATE

Preliminary Test:-

Experiment	Observation	Inference
Added dilute sulphuric	No effect.	Carbonate, sulphide,
acid to given salt.		sulphite, nitrate absent.
Added concentrated sulphuric acid to given salt.	Colourless gas with brisk effervescence evolved.	Oxalate may be present.

Confirmatory Test:-

Experiment	Observation	Inference
Passed the above evolved	Lime water turned milky.	Oxalate confirmed.
gas through lime water.		

Chemical Equations:

$$C_2O_4^{2-} + H_2SO_{4(aq)} \rightarrow CO(g) + CO_{2(g)} + H_2O_{(l)} + SO_4^{2-}$$

$$CO_{2(g)} + Ca(OH)_{2(aq)} \rightarrow CaCO_{3(s)(milky)} + H_2O_{(l)}$$

SULPHATE

Preliminary Test:-

Experiment	Observation	Inference
Added dilute sulphuric	No effect.	Carbonate, sulphide,
acid to given salt.		sulphite, nitrate absent.
Added concentrated sulphuric acid to given salt.	No effect.	Nitrate,Bromide, Chloride,Acetate, absent. Sulphate or phosphate may be present.

Confirmatory Test:-

Experiment	Observation	Inference
Added barium chloride	White coloured precipitate	Sulphate confirmed.
solution.	is formed.	

Chemical Equations:

$$Ba^{2+}(aq) + SO_4^{2-}(aq) ==> BaSO_4(s)(white)$$

PHOSPHATE

Preliminary Test:-

Experiment	Observation	Inference
Added dilute sulphuric	No effect.	Carbonate, sulphide,
acid to given salt.		sulphite, nitrate absent.
Added concentrated sulphuric acid to given	No effect.	Nitrate,Bromide,
salt.		Chloride, Acetate, absent.
		Sulphate or phosphate may
		be present.

Confirmatory Test:-

Experiment	Observation	Inference
Added soda extract1 and	A canary yellow	Phosphate confirmed.
	precipitateformed.	
dilute nitric acid and then		
added Ammonium		
Molybdate solution.		

Chemical Equations:

 $(NH_4)_2(NO_3)+2Na_2(PO_4) --> 2(NH_4)(PO_4)+2Na_2(NO_3)$

AMMONIUM

Preliminary Test:-

Experiment	Observation	Inference
Smelled the salt.	Ammonical smell.	Ammonium may be
		present.

Confirmatory Test:-

Experiment	Observation	Inference
Added sodium hydroxide	Ammonical smelling gas	Ammonium confirmed.
solution to the salt.	evolved.	

Chemical Equations:

lonic equation:-

 $N{H_4}^+{}_{(aq)} + O{H^-}_{(aq)} \ \text{Total} \ V{H_3}_{(g)} + \ {H_2}O_{(l)}$

LEAD1

Preliminary Test:-

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	White coloured precipitate	Lead(II) may be present.
acid to original solution.	is formed.	

Confirmatory Test:-

Experiment	Observation	Inference
Added potassium iodide.	Yellow coloured	Lead(II) confirmed.
	precipitate formed.	

Chemical Equations:

lonic equation:-

 $Pb^{2+}_{(aq)} + HCl_{(aq)}$ PbCl_{2(White)}

 $Pb^{2+}_{(aq)} + 2l_{(aq)}$

SILVER

Preliminary Test:-

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	White coloured precipitate	Lead(II), Ag(I) may be
acid to original solution.	is formed.	present.
Added precipitate in hot	No effect.	Ag(I) may be present.
water.		

Confirmatory Test:-

Experiment	Observation	Inference
Added potassium chromate	Brick red coloured	Ag(I) confirmed.
to original solution.	precipitate formed.	

Chemical Equations:

$$Ag^{\scriptscriptstyle +} + HCl_{(aq)} \; --> AgCl_{(s)(white)} + H^{\scriptscriptstyle +}$$

$$2AgCl_{(s)(white)} + K_2CrO_4 \, \text{Total} \, \text{-} \, Ag_2CrO_{4(s)(yellow)} + 2KCl_{(aq)}$$

LEAD2

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	No Effect.	Lead(II)may be present.
acid to original solution.		
Added hydrogen disulphide, hydrochloric acid to original solution.	Black coloured precipitate formed.	Lead(II)may be present.

Confirmatory Test:-

Experiment	Observation	Inference
Added potassium iodide to	Yellow coloured	Lead(II) confirmed.
original solution.	precipitate formed.	

Chemical Equations:-

$$Pb^{2+} + HCl_{(aq)} \ --> PbCl_{2(l)} + 2H^+$$

$$Pb^{2+} + \, KI_{(aq)} \, \, \text{Total} \, {\color{red} \bullet} \, PbI_{2(s)(yellow)} + 2K^+$$

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	No Effect.	Lead(II)may be present.
acid to original solution.		
Added hydrogen	Black coloured precipitate	Cu(II) ,Pb(II),As(III) may
disulphide, hydrochloric	formed.	be present.
acid to original solution.		
Added sodium hydroxide	Blue coloured precipitate	Cu(II) may be present.
to original solution.	formed.	

Confirmatory Test:-

Experiment	Observation	Inference
Added ammonium hydroxide to original solution.	Blue coloured precipitate formed.	Cu(II) confirmed.

Chemical Equations:

$$Cu^{2+}_{(aq)} + 2OH^{-}_{(aq)} \longrightarrow Cu(OH)_{2(s)(blue)}$$

$$Cu(OH)_{2(s)} + 4NH_{3(aq)} --> [Cu(NH_3)_4]^{2+}_{(aq)(blue)} + 2OH^{-}_{(aq)}$$

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	No Effect.	Lead(II)may be present.
acid to original solution.		
Added hydrogen	Yellow coloured	As(III) may be present.
disulphide, hydrochloric acid to original solution.	precipitate formed.	
acid to original solution.		

Confirmatory Test:-

Experiment	Observation	Inference
Added dilute hydrochloric	Yellow coloured	As(III) confirmed.
acid to above solution.	precipitate formed.	

Chemical Equations:-

$$2As^{3+} + 3H_2S_{(g)} \text{ In } As_2S_{3(s)(yellow)} + 6H^+$$

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	No Effect.	Lead(II)may be present.
acid to original solution.		
Added hydrogen	No Effect.	Pb(II), Cu(II), As(III)
disulphide, hydrochloric		absent.
acid to original solution.		
Added dilute hydrochloric	Reddish Brown precipitate	Fe(III) may be present.
acid, concentrated nitric	formed.	
acid and boiled solution.		
Then cooled it and added		
solid ammonium		
hydroxide.		

Confirmatory Test:-

Experiment	Observation	Inference
Dissolved the precipitate	Blood red colouration.	Fe (III) confirmed.
formed with hydrochloric.		
Added potassium		
sulphocyanide.		

Chemical Equations:

lonic equation:-

$$Fe^{3+}(\mathsf{aq}) + 3OH^{\text{-}}(\mathsf{aq}) \stackrel{\text{\tiny d}}{\longrightarrow} \stackrel{\text{\tiny d}}{\longrightarrow} \cdot Fe(OH)_{3(s)(\text{ Reddish Brown})}$$

$$Fe^{3+}{}_{(aq)} + 3HCI_{(l)} \stackrel{\bullet}{\circlearrowleft} \stackrel{\bullet}{\bullet} \cdot FeCI_{3(aq)} + 3H_2O_{(aq)}$$

$$FeCl_{3(aq)} + 6KCNS_{(aq)} \textcircled{1} \textcircled{1} \textcircled{1} \textcircled{1} (Blood\ Red) + 3KCl_{(aq)}$$

ALUMINIUM

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	No Effect.	Lead(II)may be present.
acid to original solution.		
Added hydrogen	No Effect.	Pb(II), Cu(II), As(III)
disulphide, hydrochloric		absent.
acid to original solution.		
Added dilute hydrochloric	Gelatinous white	Al(III) may be present.
acid, concentrated nitric	precipitate formed.	
acid and boiled solution.		
Then cooled it and added		
solid ammonium		
hydroxide.		

Confirmatory Test:-

Experiment	Observation	Inference
Dissolved the precipitate	Blue coloured precipitate	Al(III) confirmed.
formed with hydrochloric	floated on surface.	
acid and added drops of		
blue litmus. Then added		
ammonium hydroxide till		
alkaline.		

Chemical Equations:

lonic equation:-

$$Al^{3+}(aq) \, + \, 3OH^{\text{-}}(aq) \, \text{ and } Al(OH)_{3(s)}(\text{white}) \text{ (adsorb blue colour)}$$

$$Al^{3+}{}_{(aq)} + 3HCl_{(l)} \, \textcircled{\tiny{1}} \, \textcircled{\tiny{1}} \, \textcircled{\tiny{2}} \, AlCl_{3(aq)} + \, 3H_2O_{(aq)}$$

MANGANESE

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	No Effect.	Lead(II)may be present.
acid to original solution.		
Added hydrogen	No Effect.	Pb(II), Cu(II), As(III)
disulphide, hydrochloric		absent.
acid to original solution.		
Added dilute hydrochloric	No Effect.	Al(III) ,Fe(III) absent.
acid, concentrated nitric		
acid and boiled solution.		
Then cooled it and added		
solid ammonium		
hydroxide.		
Passed Hydrogen	Flesh(buff) coloured	Mn (II) may be present.
disulphide gas through	precipitate formed.	
above formed solution.		

Confirmatory Test:-

Experiment	Observation	Inference
Added lead dioxide to	Pink Colouration formed.	Mn (II) Confirmed.
above solution, then added		
concentrated nitric acid.		
Boiled it.		

Chemical Equations:

$$Mn^{2+} + H_2S_{(aq)} \text{ Ind } \text{ Ind } MnS_{(s)(Flesh)} + 2H^+$$

$$MnS_{(aq)} + 2HCl_{(aq)} \text{ In } \text{M}nCl_2 + 2H^{\scriptscriptstyle +} + S^{2-}$$

$$2Mn^{2+} + 4H^+ + 5PbO_{2(s)} \ \textcircled{1.00} \ 2MnO_{4^-(aq)} + 5Pb^{2+}_{(aq)} + 2H_2O_{(aq)}$$

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	No Effect.	Lead(II)may be present.
acid to original solution.		
Added hydrogen	No Effect.	Pb(II), Cu(II), As(III)
disulphide, hydrochloric		absent.
acid to original solution.		
Added dilute hydrochloric	No Effect.	Al(III) ,Fe(III) absent.
acid, concentrated nitric		
acid and boiled solution.		
Then cooled it and added		
solid ammonium		
hydroxide.		
Passed Hydrogen	White coloured precipitate	Zn (II) may be present.
disulphide gas through	formed.	
above formed solution.		

Confirmatory Test:-

Experiment	Observation	Inference
Dissolved the precipitate in	Bluish white coloured	Zn (II) Confirmed.
concentrated hydrochloric	precipitate formed.	
acid and boiled it.Added		
potassium ferrocyanide to		
it		

Chemical Equations:

lonic equation:-

$$Zn^{2+} + H_2S_{(aq)} \text{ and } S_{(s)(White)} + 2H^+$$

$$ZnS_{(aq)} + 2HCl_{(aq)} \text{ In } \text{Cl}_2 + 2H^+ + S^{2\text{-}}$$

$$2Zn^{\,2+} + \, K_4[Fe(CN)_6] \, \, \text{ and } \, 2T_2[Fe(CN)_6]_{(Bluish \, White)} + 4K^+$$

NICKEL

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	No Effect.	Lead(II)may be present.
acid to original solution.		
Added hydrogen	No Effect.	Pb(II), Cu(II), As(III)
disulphide, hydrochloric		absent.
acid to original solution.		
Added dilute hydrochloric	No Effect.	Al(III) ,Fe(III) absent.
acid, concentrated nitric		
acid and boiled solution.		
Then cooled it and added		
solid ammonium		
hydroxide.		
Passed Hydrogen	Black coloured precipitate	Co(II) or Ni(II) may be
disulphide gas through	formed.	present.
above formed solution.		
Dissolved the precipitate in	Yellow coloured residue	Ni(II) may be present.
aqua regia.Evaporated	remained.	
residue.		

Confirmatory Test:-

Experiment	Observation	Inference
Dissolved the yellow	Bright red precipitate	Ni(II) confirmed.
residue in water. Added	formed.	
ammonium hydroxide till		
alkaline then added		
dimethylglyxoglime		
solution.		

Chemical Equations:

lonic equation:-

$$Ni^{\;2+} + H_2S_{(aq)} \; \text{Total} \; NiS_{(s)(black)} + 2H^+$$

$$NiS_{(s)(black)} + 2HCl(aq) + \texttt{[O]} \quad \textcircled{\text{1}} \quad \textbf{NiCl}_{2(aq)} + H_2O_{(l)} + S$$

COBALT

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric acid to original solution.	No Effect.	Lead(II)may be present.
Added hydrogen disulphide, hydrochloric acid to original solution.	No Effect.	Pb(II), Cu(II), As(III) absent.
Added dilute hydrochloric acid, concentrated nitric acid and boiled solution. Then cooled it and added solid ammonium hydroxide.	No Effect.	Al(III) ,Fe(III) absent.
Passed Hydrogen disulphide gas through above formed solution.	Black coloured precipitate formed.	Co(II) or Ni(II) may be present.
Dissolved the precipitate in aqua regia. Evaporated residue.	Blue coloured residue remained.	Co(II) may be present.

Confirmatory Test:-

Experiment	Observation	Inference
Dissolved the blue residue	Blue coloured layer floated	Co(II)confirmed.
in water. Added ammonium	on surface.	
sulphocyanide to it.		

Chemical Equations:-

lonic equation:-

$$Co^{2+} + H_2S_{(aq)} \text{ and } CoS_{(s)(black)} + 2H^+$$

$$CoS_{(s)(black)} + 2HCl(aq) + [O] \quad \textcircled{1} \\ \textcircled{2} \cdot CoCl_{2(aq)} + H_2O_{(l)} + S$$

$$Co^{2+} + 4KCNS \, \textcircled{1} \, \textcircled{2} \, \textcircled{\bullet} \, K_2[Co(CNS)_4]_{(blue \; colouration)} + 2K^+$$

CALCIUM

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	No Effect.	Lead(II)may be present.
acid to original solution.		
Added hydrogen	No Effect.	Pb(II), Cu(II), As(III)
disulphide, hydrochloric		absent.
acid to original solution.		
Added dilute hydrochloric	No Effect.	Al(III) ,Fe(III) absent.
acid, concentrated nitric		
acid and boiled solution.		
Then cooled it and added		
solid ammonium		
hydroxide.		
Passed Hydrogen	No Effect.	Zn (II) ,Mn(II), Ni(II),
disulphide gas through		Co(II) absent.
above formed solution.		
Added ammonium	White precipitate is	Ba(II), Sr(II), Ca(II) may
carbonate to above	formed.	be present.
solution.		

Confirmatory Test:-

Experiment	Observation	Inference
Dissolved precipitate in	White precipitate is	Ca(II) Confirmed.
acetic acid and boiled it.	formed.	
Added few drops of		
ammonium oxalate to		
above solution and then		
added ammonium		
hydroxide.		

Chemical Equations:

lonic equation:-

 $Ca^{2+} + (NH_4)_2CO_3$ (aq) $CaCO_{3(s)(white)} + 2NH_4^+(aq)$

 $CaCO_3(s) + 2CH_3COOH \hspace{0.2cm} (aq) \hspace{0.2cm} \textcircled{1} \hspace{0.2cm} \textcircled{2} \cdot (CH_3COO)_2Ca \hspace{0.2cm} + CO_2(g) + H_2O(l)$

 $Ca^{2+}_{(aq)} + (NH_4)_2 C_2 O_{4(aq)} \, \text{Total} \, \cdot CaC_2 O_{4(s)(white)} \, + \, \, 2NH_4{}^+_{(aq)}$

BARIUM

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric acid to original solution.	No Effect.	Lead(II)may be present.
Added hydrogen disulphide, hydrochloric acid to original solution.	No Effect.	Pb(II), Cu(II), As(III) absent.
Added dilute hydrochloric acid, concentrated nitric acid and boiled solution. Then cooled it and added solid ammonium hydroxide.	No Effect.	Al(III) ,Fe(III) absent.
Passed Hydrogen disulphide gas through above formed solution.	No Effect.	Zn (II) ,Mn(II), Ni(II), Co(II) absent.
Added ammonium carbonate to above solution.	White precipitate is formed.	Ba(II), Sr(II), Ca(II) may be present.

Confirmatory Test:-

Experiment	Observation	Inference
Dissolved precipitate in acetic acid and boiled it. Added few drops of potassium chromate	Yellow precipitate is formed.	Ba (II) Confirmed.
to above solution.		

Chemical Equations:

Ionic equation:-

$$Ba^{2+} + (NH_4)_2 CO_3 \ (aq) \ \textcircled{1-10} \ \textcircled{3-8} BaCO_{3(s)(white)} + 2NH_4 + (aq)$$

$$BaCO_3(s) + 2CH_3COOH\left(aq\right) \quad \textcircled{1} \\ \textcircled{2} \\ \textcircled{3} \\ \textbf{(}CH_3COO)_2Ba + CO_2(g) + H_2O(l) \\ \\ \textbf{(}DOOH\left(aq\right) \\ \textbf{(}DOOH\left(aq\right)$$

$$Ba^{2+}{}_{(aq)} + K_2 CrO_{4(aq)} \, \textcircled{\tiny{1}} \, \textcircled{\tiny{2}} \, \textcircled{\tiny{3}} \, \textbf{Ba} CrO_{4(s)(yellow)} \,\, + 2K^+$$

STRONTIUM

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric	No Effect.	Lead(II)may be present.
acid to original solution.		
Added hydrogen	No Effect.	Pb(II), Cu(II), As(III)
disulphide, hydrochloric		absent.
acid to original solution.		
Added dilute hydrochloric	No Effect.	Al(III) ,Fe(III) absent.
acid, concentrated nitric		
acid and boiled solution.		
Then cooled it and added		
solid ammonium		
hydroxide.		
Passed Hydrogen	No Effect.	Zn (II), Mn(II), Ni(II),
disulphide gas through		Co(II) absent.
above formed solution.		
Added ammonium	White precipitate is	Ba(II), Sr(II), Ca(II) may
carbonate to above	formed.	be present.
solution.		

Confirmatory Test:-

Experiment	Observation	Inference
Dissolved precipitate in	White precipitate is	Sr(II) Confirmed.
acetic acid and boiled it.	formed.	
Added few drops of		
ammonium sulphate to		
above solution and then		
added ammonium		
hydroxide.		

Chemical Equations:-

lonic equation:-

$$Sr^{2+} + (NH_4)_2CO_3 \ (aq) \ \text{Total} \cdot SrCO_{3(s)(white)} + 2NH_4{}^+{}_{(aq)}$$

$$Sr^{2+}(aq) + (NH_4)_2SO_{4(aq)} = SrSO_{4(s)(white)} + 2NH_4^+(aq)$$

MAGNESIUM

Experiment	Observation	Inference
Smelled the salt.	No Ammonical smell.	Ammonium absent.
Added dilute hydrochloric acid to original solution.	No Effect.	Lead(II)may be present.
Added hydrogen disulphide, hydrochloric acid to original solution.	No Effect.	Pb(II), Cu(II), As(III) absent.
Added dilute hydrochloric acid, concentrated nitric acid and boiled solution. Then cooled it and added solid ammonium hydroxide.	No Effect.	Al(III) ,Fe(III) absent.
Passed Hydrogen disulphide gas through above formed solution.	No Effect.	Zn (II) ,Mn(II), Ni(II), Co(II) absent.
Added ammonium carbonate to above solution.	No Effect.	Mg (II) may be present.

Confirmatory Test:-

Experiment	Observation	Inference
Added ammonium chloride, ammonium hydroxide and	White precipitate is formed.	Mg(II) Confirmed.
disodium hydrogen phosphate to original solution.		

Chemical Equations:

$$Mg^{2+} \ + \ HPO_4{}^{2-}{}_{(aq)} + NH_4{}^+(aq) \ \textcircled{1.04} \ \textcircled{N} \ (NH_4)PO_4{}_{(white)} \ + \ H^+$$

ALCOHOL

Preliminary Test:-

Experiment	Observation	Inference
Added bromine water to solution	No Effect	Compound is saturated.
	Or	Or
	Pink colour of Bromine water changed to colourless.	Compound is unsaturated.

Confirmatory Test:-

Experiment	Observation	Inference
Warmed with acetic acid and a few drops of concentrated sulphuric acid.	Fruity smell is formed.	Alcohol confirmed.

Chemical Equations:

R₃C-CR₃ + Br₂ •• No Effect

OR

CH₃COOH + ROH ⊕ ⊕ • CH₃COOR + H₂O

ALDEHYDE

Preliminary Test:-

Experiment	Observation	Inference
Added bromine water to	No Effect	Compound is saturated.
solution		
	Or	Or
	Pink colour of Bromine	Compound is unsaturated.
	water changed to	
	colourless.	
Added drop of blue Litmus	No Effect.	Carboxylic Acid and
to solution.		Phenol absent.
Added a few drops 2,4-	Yellowish -orange	Aldehyde or ketone may
dinitrophenylhydrazine	precipitate formed.	be present.
to the solution.		

Confirmatory Test:-

Experiment	Observation	Inference
Added a few drops	Formation Of red colour.	Aldehyde confirmed.
ofFehling's solution A &		
B.		

Chemical Equations:

R₃C-CR₃ + Br₂ 🗗 🗗 🕙 • No Effect

OR

 $R_2C = CR_2 + Br_2 \textcircled{1} \textcircled{1} \textcircled{2} \cdot BrR_2C - CR_2Br$

 $R-CHO + (NO_2)_2C_6H_3NHNH_2 \stackrel{\bullet}{\text{--}} \stackrel{\bullet}{\text{--}} \stackrel{\bullet}{\text{--}} (NO_2)_2C_6H_3NHN = CRH_{(Yellowish\,Orange)} + H_2O$

AMINE

<u>AIM:</u> To test the presence of amino group in the given organic compound.

PROCEDURE:

S.No	EXPERIMENT	OBSERVATION	INFERENCE
1	LITMUS TEST	OBSER (TITTOT)	n (i ZitZi (öZ
	<u>=::::::00 : =0:</u>		
	Organic compound + few	Red litmus turns	Amino group
	drops of red litmus solution.	blue	present.
2	SOLUBILITY TEST		
	Organic compound + 1-2 ml of	Organic compound	Amino group
	dil.HCl. Shake well.	dissolves.	present
3	CARBYLAMINE TEST		
	Organic compound + CHCl ₃ +	An obnoxious	Primary amine
	Alc.KOH. Heat	smell is obtained.	present.
4	AZO DYE TEST		
	Dissolve organic compound in	A red or orange	Primary aromatic
	dil.HCl and cool in ice. Add ice	dye is obtained.	amino group
	cold NaNO ₂ solution to it. Mix		present.
	well. Add ice cold solution of β -		
	naphthol + NaOH.		

EQUATIONS: (ON BLANK SIDE USING A PENCIL)

1. $R-NH_2 + HCl \rightarrow R-NH_3+Cl$

amine amine salt

1. $R-NH_2 + CHCl_3 + 3KOH \rightarrow R-N \equiv C + 3KCl + 3H_2O$

Isocyanide

carbylamine

 $1. \ \ NaNO_2 + HCl \rightarrow HNO_2 + NaCl$

$$ArNH_2 + HNO_2 + HC1 \rightarrow Ar - N^+ \equiv N - C1 + 2H_2O$$

Aromatic Aryldiazonium chloride

1ºamine (stable between 0-5°C)

β- naphthol (draw structure) + Ar- N+ \equiv N-Cl \rightarrow (draw structure of the azo dye obtained) + N-RESULT: : (ON RULED SIDE) Amino present in the given organic compound.

CARBOXYLIC ACID

Preliminary Test:-

Experiment	Observation	Inference
Added bromine water to	No Effect	Compound is saturated.
solution		
	Or	Or
	Pink colour of Bromine water changed to colourless.	Compound is unsaturated.
Added drop of blue Litmus	Solution turned Red.	Carboxylic Acid may be
to solution.		present.

Confirmatory Test:-

Experiment	Observation	Inference
Added sodium bicarbonate	Gas with brisk	Carboxylic acid confirmed.
to solution.	effervescence evolved.	

Chemical Equations:-

R₃C-CR₃ + Br₂ •• No Effect

OR

 $R_2C=CR_2 + Br_2 \textcircled{1} \textcircled{1} \textcircled{2} \cdot BrR_2C-CR_2Br$

RCOOH + NaHCO₃ PCOONa + H₂O + CO₂

MISCELLANEOUS

- 1) TITRATION MOHR's SALT
- 2) TITRATION OXALIC ACID
- 3) CARBOHYDRATE TEST
- 4) **CHROMATOGRAPHY**
- 5) PREPARE COLLOIDAL FERRIC HYDROCHLORIDE
- 6) PREPARE COLLOIDAL STARCH
- 7) OIL FAT TEST
- 8) PREPARE MOHR's SALT CRYSTALS
- 9) PREPARE POTASH ALUM CRYSTAL
- 10) PROTEIN TEST

MOHR's SALT

- AIM (a) To prepare 250ml of M/20 solution of Mohr's salt.
 - (b) Using this calculate the molarity and strength of the given KMnO₄ solution.

<u>APPARATUS AND CHEMICALS REQUIRED</u>- Mohr's salt, weighing bottle, weight box, volumetric flask, funnel, distilled water, chemical balance, dilute H₂SO₄, beakers, conical flask, funnel, burette, pipette, clamp stand, tile, KMnO₄ solution.

THEORY- (a) Mohr's salt having the formula FeSO₄.(NH₄)₂SO₄.6H₂O has molar mass 392gmol⁻¹. It is a primary standard.

Its equivalent mass is 392/1 = 392 as its *n* factor is 1 as per the following reaction:

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$

PROCEDURE:

- 1. Weigh a clean dry bottle using a chemical balance.
- 2. Add 4.9g more weights to the pan containing the weights for the weighing bottle.
- 3. Add Mohr's salt in small amounts to the weighing bottle, so that the pans are balanced.
- 4. Remove the weighing bottle from the pan.
- 5. Using a funnel, transfer the Mohr's salt to the volumetric flask.
- 6. Add about 5ml. of dilute H_2SO_4 to the flask followed by distilled water and dissolve the Mohr's salt.
- 7. Make up the volume to the required level using distilled water.
- 8. The standard solution is prepared.

(b) THEORY-

- 1. The reaction between KMnO₄ and Mohr's salt is a redox reaction and the titration is therefore called a redox titration.
- 2. Mohr's salt is the reducing agent and KMnO₄ is the oxidizing agent.
- 3. KMnO₄ acts as an oxidizing agent in all the mediums; i.e. acidic, basic and neutral medium.
- 4. KMnO₄ acts as the strongest oxidizing agent in the acidic medium and therefore dil. H₂SO₄ is added to the conical flask before starting the titration.

IONIC EQUATIONS INVOLVED:

Reduction Half: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

Oxidation Half: $5Fe^{2+} \rightarrow 5Fe^{3+} + 5e^{-}$

Overall Equation: $MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$

INDICATOR- KMnO₄ acts as a self indicator.

END POINT- Colourless to light pink (KMnO₄ in the burette)

PROCEDURE-

- 1. Fill the burette with KMnO₄ solution.
- 2. Pipette out 10ml. of Mohr's salt solution into the conical flask.
- 3. Add half a test tube of dil. H₂SO₄.
- 4. Keep a glazed tile under the burette and place the conical flask on it.
- 5. Note down the initial reading of the burette.
- 6. Run down the KMnO₄ solution into the conical flask drop wise with shaking.
- 7. Stop the titration when a permanent pink colour is obtained in the solution.
- 8. This is the end point. Note down the final burette reading.
- 9. Repeat the experiment until three concordant values are obtained.

10.

OBSERVATION TABLE: (TO BE PUT UP ON THE BLANK SIDE USING A PENCIL)

Volume of Mohr's salt solution taken =

S.No	BURETTE	READINGS	VOLUME
			OF
			KMnO ₄
	INITIAL	FINAL	USED
			(ml)
1	10	18.8	8.8
2	18.8	27.7	8.9
3	27.7	36.5	8.8

Concordant Value = 8.8 mL

CALCULATIONS: (TO BE PUT UP ON THE BLANK SIDE USING A PENCIL)

Calculation of amount of Mohr's Salt to be weighed to prepare 100ml M/20 solution:

Molecular Mass of Mohr's Salt = 392g/mole

1000 cm³ of 1M KMnO₄ require 392g Mohr's Salt.

 $250 \text{ cm}^3 \text{ of M}/40 \text{ KMnO}_4 \text{ require } = 392/40g = 4.9g$

Using formula:

$$N_1M_1V_1=N_2M_2V_2$$

Where $N_1=5$ (for KMnO₄), $V_1=8.8mL$, $M_1=?$

 $N_2 = 1$ (for Mohr's salt), $V_2 = 10$ ml, $M_2 = 1/20$ M

 $M_1 = [1*(1/20)*10]/[5*8.8] = 1/88M = 0.01M$

Strength = M X Molar Mass = 158 * (1/88) = 1.79g/L

RESULT- (*ON RULED SIDE*)- The Molarity of $KMnO_4 = 0.01M$

And the strength of $KMnO_4 = 1.79g/L$

OXALIC ACID

AIM: – (a) To prepare 100ml of M/40 solution of oxalic acid.

(b)Using this calculate the molarity and strength of the given KMnO₄ solution.

<u>APPARATUS AND CHEMICALS REQUIRED</u>- Oxalic acid, weighing bottle, weight box, volumetric flask, funnel, distilled water, chemical balance, beakers, conical flask, funnel, burette, pipette, clamp stand, tile, dilute H₂SO₄, KMnO₄ solution.

<u>THEORY</u>- (a) Oxalic acid is a dicarboxylic acid having molar mass 126gmol⁻¹. It is a primary standard and has the molecular formula COOH-COOH.2H₂O. Its equivalent mass is 126/2 = 63 as its *n* factor is 2 as per the following reaction:

COOH-COOH
$$\rightarrow$$
 2CO₂ + 2H⁺ + 2e⁻.

PROCEDURE:

- 1. Weigh a clean dry bottle using a chemical balance.
- 2. Add 3.15g more weights to the pan containing the weights for the weighing bottle.
- 3. Add oxalic acid in small amounts to the weighing bottle, so that the pans are balanced.
- 4. Remove the weighing bottle from the pan.
- 5. Using a funnel, transfer the oxalic acid to the volumetric flask.
- 6. Add a few drops of distilled water to dissolve the oxalic acid.
- 7. Make up the volume to the required level using distilled water.
- 8. The standard solution is prepared.

(b) THEORY-

- 1. The reaction between KMnO₄ and oxalic acid is a redox reaction_and the titration is therefore called a redox titration.
- 2. Oxalic acid is the reducing agent and KMnO₄ is the oxidizing agent.
- 3. KMnO₄ acts as an oxidizing agent in all the mediums; i.e. acidic, basic and neutral medium.
- 4. KMnO $_4$ acts as the strongest oxidizing agent in the acidic medium and therefore dil. H $_2$ SO $_4$ is added to the conical flask before starting the titration.
- 5. The titration between oxalic acid and KMnO₄ is a slow reaction, therefore heat the oxalic acid solution to about 60^oC to increase the rate of the reaction.

IONIC EQUATIONS INVOLVED:

Reduction Half: $MnO_{4^{-}} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O \ X \ 2$

Oxidation Half: $C_2O_4^{2-} \rightarrow 2CO_2 + 2e^-] X 5$

Overall Equation: $2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_3^{2-}$

INDICATOR- KMnO₄ acts as a self indicator.

END POINT- Colourless to light pink (KMnO₄ in the burette)

PROCEDURE-

- 1. Fill the burette with KMnO₄ solution.
- 2. Pipette out 10ml. of oxalic acid solution into the conical flask.
- 3. Add half a test tube of dil. H₂SO₄ and heat the solution to about 60^oC to increase the rate of the reaction.
- 4. Keep a glazed tile under the burette and place the conical flask on it.
- 5. Note down the initial reading of the burette.
- 6. Run down the KMnO₄ solution into the conical flask drop wise with shaking.
- 7. Stop the titration when a permanent pink colour is obtained in the solution.
- 8. This is the end point. Note down the final burette reading.
- 9. Repeat the experiment until three concordant values are obtained.

OBSERVATION TABLE: (TO BE PUT UP ON THE BLANK SIDE USING A PENCIL)

Volume of Oxalic Acid solution taken = 10mL

S.No	BURETTE	READINGS	VOLUME
			OF
			KMnO ₄
	INITIAL	FINAL	USED
			(ml)
1	16	26.5	10.5
2	26.5	36.9	10.4

3 36.9 47.4 10.5

Concordant Value = 10.5mL

CALCULATIONS: (TO BE PUT UP ON THE BLANK SIDE USING A PENCIL)

Calculation of amount of oxalic acid to be weighed to prepare 100ml M/20 solution:

Molecular Mass of Oxalic Acid = 126g/mole

1000 cm³ of 1M oxalic acid require 126g oxalic acid.

 $1000 \text{ cm}^3 \text{ of M}/40 \text{ oxalic acid require} = 126/40g = 3.15g$

Using formula:

 $N_1M_1V_1 = N_2M_2V_2$

Where $N_1=5$ (for KMnO₄), $V_1=10.5$, $M_1=?$

 $N_2=2$ (for oxalic acid), $V_2=10ml$, $M_2=1/40$

 $M_1 = [2*(1/40)*10]/[5*10.5] = 1/105M = 0.0095M$

Strength = M~X~Molar~Mass = 158~*(~1/105) = 1.504g/L

RESULT- (*ON RULED SIDE*)- The Molarity of $KMnO_4 = 0.0095M$

And the strength of $KMnO_4 = 1.504g/L$

CARBOHYDRATE TEST

<u>AIM:</u> To test the presence of carbohydrate in the given food sample.

PROCEDURE:

S.No	EXPERIMENT	OBSERVATION	INFERENCE
1	CONC H ₂ SO ₄ TEST	Charring occurs	
		with smell of burnt	
	Food sample + conc. H ₂ SO ₄ .	sugar	Carbohydrate
	Heat		present.
2	MOLISCH'S TEST		
	Food sample +	A purple ring is	Carbohydrate
	Molisch'sreagent (1% alcoholic	obtained at the	•
			present.
	solution of α naphthol) + conc.	junction of the two	
	H ₂ SO ₄ along the sides of the test	layers.	
	tube.		
3	BENEDICT'S / FEHLING'S		
	<u>TEST</u>		0 1 1 1
	Food comple : D 1: ()	A red ppt. is	Carbohydrate
	Food sample + Benedict's	obtained.	
	reagent/ Fehling's reagent (A		present.
	mixture of equal amounts of		
	Fehling's A and Fehling's B).		
	Heat.		
4	TOLLEN'S TEST		
	Food sample + Tollen's	A silver mirror is	Carbohydrate
	reagent (amm. silver nitrate	obtained the walls	
	solution). Heat on water bath.	of the test tube.	present.

EQUATIONS: (ON BLANK SIDE USING A PENCIL)

 $1. \ CHO(CHOH)_4CH_2OH \ + 2Cu^{2+} + 5OH^- \ \rightarrow COOH(CHOH)_4CH_2OH \ \ + Cu_2O \ + 3H_2O$

Glucose Gluconic acid

2. $CHO(CHOH)_4CH_2OH + 2[Ag(NH_3)_2]^+ + 3OH^- \rightarrow COOH(CHOH)_4CH_2OH + 4NH_3$

Glucose

(Gluconic acid) $+ 2Ag \downarrow + 2H_2O$

RESULT: : (ON RULED SIDE) The food sample has been tested for carbohydrate.

CHROMATOGRAPHY

 $\underline{\mathbf{AIM}}$: To separate the coloured components present in a mixture of red and blue ink by ascending paper chromatography and find their R_f values.

THEORY: In this type of chromatography a special adsorbent paper (Whatman filter paper) is used. Moisture adsorbed on this Whatman filter paper acts as stationary phase and the solvent acts as the mobile phase. The mixture to be separated is spotted at one end of the paper. This paper is then developed in a particular solvent by placing the paper in a gas jar, taking care that the spot is above the solvent. The solvent rises due to capillary action and the components get separated out as they rise up with the solvent at different rates. The developed paper is called a chromatogram.

R_f (retention factor) values are then calculated, which is the ratio of the distance moved by the component to the distance moved by the solvent front.

 $R_f = \underline{Distance traveled by the component}$

Distance traveled by the solvent front

OBSERVATIONS AND CALCULATIONS: (ON THE BLANK PAGE, USING A PENCIL)

S.No	SUBSTANCE		DISTANCE	R _f VALUE
		TRAVELLED BY	TRAVELLED BY	
		DIFFERENT	SOLVENT	
		COMPONENTS		
1	RED + BLUE			
	INK			
2	RED + BLUE			
	INK			

RESULT: (ON RULED SIDE) - R_f of blue ink =

 R_f of red ink =

COLLOIDAL FERRIC HYDROCHLORIDE

<u>AIM</u>: To prepare a colloidal sol of ferric hydroxide.

THEORY: Ferric hydroxide forms a lyophobic sol with water which is the dispersion medium. It is prepared by the hydrolysis of ferric chloride with boiling distilled water as per the reaction:

$$FeCl_3(aq) + 3H_2O \rightarrow Fe(OH)_3 + 3HCl(aq).$$

The HCl formed during the reaction tries to destabilize the sol and therefore should be removed from the sol by dialysis. A wine red sol of ferric hydroxide is obtained.

PROCEDURE:

EXPERIMENT	OBSERVATION	INFERENCE
Take 50 ml of distilled water in a beaker and heat it to about 100°C. Add the solution of FeCl₃to water with stirring.	A wine red sol is obtained	Sol of ferric hydroxide has been prepared

RESULT- Colloidal sol of ferric hydroxide has been prepared.

COLLOIDAL STARCH

<u>AIM</u>: To prepare a colloidal sol of starch.

THEORY: Starch forms a lyophilic sol with water which is the dispersion medium. The sol of starch can be prepared by water to about 100°C. The sol is quite stable and is not affected by the presence of an electrolytic impurity.

PROCEDURE:

EXPERIMENT	OBSERVATION	INFERENCE
Take 50 ml of distilled water in a beaker and heat it to about 100°C. Add a thin paste of starch to water with stirring.	A colourless, transluscent sol is obtained	Sol of starch has been prepared

<u>RESULT</u>- Colloidal sol of starch has been prepared.

OIL FAT TEST

<u>AIM:</u> To test the presence of oil or fat in the given food sample.

PROCEDURE:

S.No	EXPERIMENT	OBSERVATION	INFERENCE
1	SOLUBILITY TEST		
	Food sample + water	Does not dissolve	Oil / fat present.
	Food sample + chloroform(CHCl ₃)	Miscible	
2	<u>SPOT TEST</u>		
	Smear the food sample on paper.	A translucent spot is observed.	Oil / fat present.
3	ACROLEIN TEST		
	Food sample + KHSO ₄ . Heat	An irritating odour is obtained.	Oil / fat present.

EQUATIONS: (ON BLANK SIDE USING A PENCIL)

Oil/ fat --> glycerol + fatty acid

 CH_2 (OH) CH_2 (OH) + $KHSO_4$, --> CH_2 =CHCHO (acrolein) + $2H_2O$

RESULT: (ON RULED SIDE) The food sample has been tested for oil/fat

MOHR's SALT CRYSTALS

AIM: To prepare crystals of Mohr's salt.

<u>THEORY</u>: Mohr's salt i.e. ferrous ammonium sulphate [FeSO₄.(NH₄)₂SO₄.6H₂O] is a double salt. It can be prepared by making equimolar solution of hydrated ferrous sulphate and ammonium sulphate in minimum amount of water. A few ml of dil. H₂SO₄ is added to prevent the hydrolysis of FeSO₄.7H₂O. Cooling of the hot saturated solution yields light green crystals of Mohr's salt.

$$FeSO_{4.7}H_{2}O + (NH_{4})_{2}SO_{4} \rightarrow FeSO_{4.}(NH_{4})_{2}SO_{4.6}H_{2}O + H_{2}O$$

RESULT- Colour of the crystals: Light green

Shape of the crystals: Monoclinic.

POTASH ALUM CRYSTAL

AIM: To prepare crystals of Potash alum.

<u>THEORY</u>: Potash alum, a double salt, commonly known as fitkari has the formula K₂SO₄.Al₂(SO₄)₃.24H₂O. It can be prepared by making equimolar solution of potassium sulphate and aluminium sulphate in minimum amount of water. A few ml of dil. H₂SO₄ is added to prevent the hydrolysis of Al₂(SO₄)₃.18H₂O. Cooling of the hot saturated solution yields colourless crystals of Potash alum.

$$K_2SO_4 \ + \quad Al_2(SO_4)_3.18H_2O \ + 6H_2O \ \rightarrow \ K_2SO_4.Al_2(SO_4)_3.24H_2O$$

RESULT- Colour of the crystals: Colourless

Shape of the crystals: Octahedral.

PROTEIN TEST

<u>AIM</u>: To test the presence of protein in the given food sample.

PROCEDURE:

S.No	EXPERIMENT	OBSERVATION	INFERENCE
1	BIURET TEST		
	Food sample + few drops of NaOH + CuSO ₄ solution.	A violet colouration is obtained.	Protein present.
2	XANTHOPROTEIC TEST		
	Food sample + few drops of conc. HNO ₃ . Heat.	A yellow ppt. is obtained.	Protein present.
3	NINHYDRIN TEST		
	Food sample + few drops of 0.15 ninhydrin solution. Boil the contents.	A blue colour is obtained.	Protein present.

RESULT: (ON RULED SIDE) The food sample has been tested for proteins.