# บทที่ 7 การทดสอบสมมติฐานค่าเฉลี่ยประชากรหนึ่งกลุ่มและประชากรสองกลุ่ม

#### การทดสอบสมมติฐานของค่าเฉลี่ยประชากรหนึ่งกลุ่ม 7.1

เป็นการทดสอบว่าค่าเฉลี่ยของประชากรมีค่าเท่ากับค่าคงที่ที่กำหนดหรือไม่ สมมติฐานที่จะ ทดสอบได้แก่

 $H_{_{\!0}}: \mu = \mu_{_{\!0}}$  หรือ  $H_{_{\!0}}: \mu \leq \mu_{_{\!0}}$  หรือ  $H_{_{\!0}}: \mu \geq \mu_{_{\!0}}$ 

 $H_1: \mu \neq \mu_0$ 

 $H_1: \mu > \mu_0$ 

 $H_1: \mu < \mu_0$ 

เมื่อ  $\mu_{\scriptscriptstyle 0}$  เป็นค่าคงที่ใดๆ

ในการทดสอบสมมติฐานของค่าเฉลี่ยประชากรหนึ่งกลุ่ม มีรายละเอียดดังนี้

| สถิติทดสอบ                                           |    | เงื่อนไข                                                                                        |
|------------------------------------------------------|----|-------------------------------------------------------------------------------------------------|
| $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$ | 1. | ประชากรมีการแจกแจงปกติ หรือ ถ้าไม่ทราบการแจกแจงของ<br>ประชากร แต่กลุ่มตัวอย่างมีขนาดใหญ่ (n≥30) |
| 0/ 1/1                                               | 2. | ทราบค่าเบี่ยงเบนมาตรฐานของประชากร $(\sigma)$                                                    |
| $\overline{X} - \mu_0$                               | 1. | กลุ่มตัวอย่างมีขนาดใหญ่ (n≥30)                                                                  |
| $\angle = \frac{1}{S/\sqrt{n}}$                      | 2. | ไม่ทราบค่าเบี่ยงเบนมาตรฐานของประชากร $(\sigma)$                                                 |
| <del>-</del> - 11                                    |    | ประชากรมีการแจกแจงปกติ                                                                          |
| $t = \frac{\overline{X} - \mu_0}{5/\sqrt{n}}$        | 2. | ไม่ทราบค่าเบี่ยงเบนมาตรฐานของประชากร $(\sigma)$                                                 |
| 3/ 🗸 🛚                                               | 3. | กลุ่มตัวอย่างมีขนาดเล็ก (n < 30)                                                                |

# 7.1.1 การทดสอบสมมติฐานของค่าเฉลี่ยประชากรหนึ่งกลุ่มด้วยโปรแกรม SPSS

จากไฟล์ข้อมูล dietstudy.sav ต้องการทดสอบค่าเฉลี่ยของตัวแปร wgt0 เปรียบเทียบกับ 180 มีขั้นตอนในการวิเคราะห์ ดังนี้

1. ใช้เมนู Analyze ➡ Compare Means and Proportions ➡ One-Sample T Test... จะได้



- 2. เลือกตัวแปรที่ต้องการทดสอบใส่ใน Test Variable(s): และค่าคงที่ ( $\mu_{_0}$ ) ใน Test Value:
- 3. เลือก Estimate effect sizes เพื่อหาขนาดของผล (Effect Size : ES) โดยโปรแกรม SPSS จะหาค่า ES ด้วย 2 สูตร คือ
  - Cohen's d สูตร คือ

$$d = \frac{\overline{X}_1 - \overline{X}_2}{\sigma_{pooled}}$$

เมื่อ  $\overline{X}_1$  = ค่าเฉลี่ยของกลุ่มที่ 1

 $\overline{X}_2 = \text{Pinane}$ 

$$\sigma_{\text{pooled}} = \sqrt{\frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n_1 + n_2}}$$

■ Hedges's g สูตร คือ

$$g = \frac{\overline{X}_1 - \overline{X}_2}{S_{pooled}}$$

เมื่อ  $\overline{X}_1$  = ค่าเฉลี่ยของกลุ่มที่ 1

 $\overline{X}_2$  = ค่าเฉลี่ยของกลุที่ 2

$$S_{pooled} = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

ขนาดของผล (Effect Size) หมายถึง ขนาดของผลที่เกิดขึ้นจากตัวแปรต้น (Independent Variable) ต่อตัวแปรตาม (Dependent Variable) โดย Cohen ได้กำหนดความหมายของขนาดของ ผลไว้ ดังนี้

d = 0.10 หมายถึง มีผลขนาดน้อยมาก

d = 0.20 หมายถึง มีผลขนาดเล็กน้อย

d = 0.50 หมายถึง มีผลขนาดปานกลาง

d = 0.80 หมายถึง มีผลขนาดมาก

d = 0.90 หมายถึง มีผลขนาดใหญ่มาก

4. เลือก Options เพื่อกำหนดระดับความเชื่อมั่น



- Exclude cases analysis by analysis หมายถึง ไม่รวม cases ที่มี missing value ในการวิเคราะห์แต่ละครั้ง
- Exclude cases listwise หมายถึง กรณีที่มีการเลือกตัวแปรทดสอบค่าเฉลี่ย ค่าเฉลี่ยหลายๆ ตัวแปรที่กำหนดไว้ใน Test Variable(s) จะไม่รวม cases ที่มี missing value จะมีผลให้การทดสอบทั้งหมดใช้จำนวนชุดข้อมูลเท่ากันหมดผลลัพธ์ที่ได้คือ

| One-Sample Statistics |    |        |                |                 |  |  |
|-----------------------|----|--------|----------------|-----------------|--|--|
|                       | N  | Mean   | Std. Deviation | Std. Error Mean |  |  |
| Weight                | 16 | 198.38 | 33.472         | 8,368           |  |  |

N หมายถึง จำนวนข้อมูลทั้งหมด

Mean หมายถึง ค่าเฉลี่ยของข้อมูล

Std. Deviation หมายถึง ค่าเบี่ยงเบนมาตรฐานของข้อมูล

Std. Error Mean หมายถึง ค่าคลาดเคลื่อนมาตรฐานของค่าเฉลี่ยตัวอย่าง =  $\frac{\mathsf{SD}}{\sqrt{\mathsf{n}}}$ 

|                  | One-Sample Test            | t           |        |
|------------------|----------------------------|-------------|--------|
|                  |                            |             | Weight |
| Test Value = 180 | t                          |             | 2.196  |
|                  | df                         | 15          |        |
|                  | Significance               | One-Sided p | .022   |
|                  |                            | Two-Sided p | .044   |
|                  | Mean Difference            |             | 18.375 |
|                  | 95% Confidence Interval of | Lower       | .54    |
|                  | the Difference             | Upper       | 36.21  |

กรณีทดสอบ  $H_0: \mu = 180$ 

 $H_1: \mu \neq 180$ 

t หมายถึง สถิติที่ใช้ในการทดสอบ t = 2.196

df หมายถึง องศาอิสระของการทดสอบ df = n - 1 = 16 - 1 = 15

Significance Two-Sided p หมายถึง ค่า Sig. ของการทดสอบแบบ 2 ทาง

Significance One-Sided p หมายถึง ค่า Sig. ของการทดสอบแบบ 1 ทาง

ถ้ามีค่า  $\leq lpha$  จะสรุปว่าปฏิเสธ  $H_{_0}$  แต่ถ้ามีค่า > lpha จะสรุปว่ายอมรับ  $H_{_0}$ 

ดังนั้น 0.044 < 0.05 จึงปฏิเสธ  $\,^{ extsf{H}_{_{0}}}$  แสดงว่า  $\,^{ extsf{\mu}}$   $extsf{\neq}$  180

Mean Difference หมายถึง  $\overline{X}$  — TestValue = 198.375 – 180 = 18.375

95% Confidence Interval of the Difference หมายถึง 100(1–  $\alpha$ )% Confidence Interval ของผลต่างของ  $\mu$ – TestValue

ดังนั้น .54 <  $\mu$ -180 < 36.21 นำค่า 180 บวกเข้า จะได้ 180.54 <  $\mu$  < 216.21 นั่นคือ น้ำหนักเฉลี่ยจะอยู่ในช่วง 180.54 ถึง 216.21 ที่ระดับความเชื่อมั่น 95%

กรณีทดสอบ  $H_n: \mu \leq 180$ 

 $H_1: \mu > 180$ 

จะต้องพิจารณาสถิติทดสอบ

ถ้า t-value เป็นค่าบวก จะใช้ค่า Significance One-Sided p ไปเปรียบเทียบกับ lpha ถ้า t-value เป็นค่าลบ จะใช้ค่า 1 – Significance One-Sided p ไปเปรียบเทียบกับ lpha เนื่องจาก t = 2.196 มีค่าเป็นบวก ดังนั้น Sig. = 0.022 < 0.05 ดังนั้นจึงปฏิเสธ  $H_{
m o}$ 

กรณีทดสอบ  $H_{_{\scriptscriptstyle{0}}}\!:\!\mu\!\geq\!180$ 

 $H_1: \mu < 180$ 

จะต้องพิจารณาสถิติทดสอบ

ถ้า t-value เป็นค่าลบ จะใช้ค่า Significance One-Sided p ไปเปรียบเทียบกับ  $\alpha$  ถ้า t-value เป็นค่าบวก จะใช้ค่า 1 – Significance One-Sided p ไปเปรียบเทียบกับ  $\alpha$  เนื่องจาก t = 2.196 มีค่าเป็นบวก ดังนั้น 1 – 0.022 = 0.978 > 0.05 ดังนั้นจึงยอมรับ  $H_0$ 

|        |                    | One-Sample I                             | Effect Sizes |                      |                       |
|--------|--------------------|------------------------------------------|--------------|----------------------|-----------------------|
|        |                    | Standardizer <sup>a</sup> Point Estimate |              | 95% Confide<br>Lower | nce Interval<br>Upper |
| Weight | Cohen's d          | 33.472                                   | .549         | .014                 | 1.068                 |
|        | Hedges' correction | 35.271                                   | .521         | .013                 | 1.014                 |

The denominator used in estimating the effect sizes.
 Cohen's d uses the sample standard deviation.
 Hedges' correction uses the sample standard deviation, plus a correction factor.

ขนาดของผล (Effect Size : ES) จะหาค่า ES ด้วย 2 สูตร คือ 
$$d = \frac{\overline{X}_1 - \overline{X}_2}{\boldsymbol{\sigma}_{\text{pooled}}} = \frac{198.38 - 180}{33.472} = 0.549$$
 
$$g = \frac{\overline{X}_1 - \overline{X}_2}{S_{\text{pooled}}} = \frac{198.38 - 180}{35.271} = 0.521$$

จากไฟล์ข้อมูล catalog.sav ต้องการทดสอบค่าเฉลี่ยของตัวแปร service เปรียบเทียบกับ 39

| One-Sample Statistics                         |     |       |                |                 |  |
|-----------------------------------------------|-----|-------|----------------|-----------------|--|
|                                               | N   | Mean  | Std. Deviation | Std. Error Mean |  |
| Number of Customer<br>Service Representatives | 120 | 35.97 | 10.942         | .999            |  |

|                 | One-Sample T               | est         |                                                         |
|-----------------|----------------------------|-------------|---------------------------------------------------------|
|                 |                            |             | Number of<br>Customer<br>Service<br>Representative<br>s |
| Test Value = 39 | t                          |             | -3.037                                                  |
|                 | df                         |             | 119                                                     |
|                 | Significance               | One-Sided p | .001                                                    |
|                 | Two-Sid                    |             | .003                                                    |
|                 | Mean Difference            |             | -3.033                                                  |
|                 | 95% Confidence Interval of | Lower       | -5.01                                                   |
|                 | the Difference             | Upper       | -1.06                                                   |

|                                               |                    |                           |                | 95% Confide | nce Interval |
|-----------------------------------------------|--------------------|---------------------------|----------------|-------------|--------------|
|                                               |                    | Standardizer <sup>a</sup> | Point Estimate | Lower       | Upper        |
| Number of Customer<br>Service Representatives | Cohen's d          | 10.942                    | 277            | 459         | 094          |
|                                               | Hedges' correction | 11.012                    | 275            | 456         | 094          |

กรณีทดสอบ  $H_0: \mu = 39$   $H_1: \mu \neq 39$  สถิติทดสอบ คือ Z = -3.037 ค่า Sig. = 0.003 < 0.05 ดังนั้นจึงปฏิเสธ  $H_0$  ช่วงความเชื่อมั่น 95% ของ  $\mu$  คือ  $-5.01+39 < \mu < -1.06+39$  จะได้  $33.99 < \mu < 37.94$  กรณีทดสอบ  $H_0: \mu \leq 39$   $H_1: \mu > 39$  สถิติทดสอบ คือ Z = -3.037 ค่า Sig. = 1-0.001 = 0.999 > 0.05 ดังนั้นจึงยอมรับ  $H_0$  กรณีทดสอบ  $H_0: \mu \geq 39$   $H_1: \mu < 39$  สถิติทดสอบ คือ Z = -3.037 ค่า Sig. = 0.001 < 0.05 ดังนั้นจึงปฏิเสธ  $H_0$ 

#### 7.1.2 การทดสอบสมมติฐานของค่าเฉลี่ยประชากรหนึ่งกลุ่มด้วยโปรแกรม Minitab

จากไฟล์ข้อมูล dietstudy.sav คัดลอกตัวแปร wgt0 ไว้ในตัวแปร C1 แล้วเปรียบเทียบกับ 180 มีขั้นตอนในการวิเคราะห์ ดังนี้

1. ใช้เมนู Stat ➡ Basic Statistics ➡ 1-Sample t... จะได้



2. กรณีที่เป็นข้อมูลดิบจะเลือก One or more samples, each in a column แล้วเลือก ตัวแปรใส่ใน box แต่ในกรณีที่ไม่มีข้อมูลดิบจะเลือก Summarized แล้วใส่ค่าขนาดตัวอย่าง ค่าเฉลี่ย และค่าเบี่ยงเบนมาตรฐานของตัวอย่าง



- เลือก
   Perform hypothesis test
   ใส่ค่าคงที่ (µ<sub>n</sub>) ใน hypothesized mean:
- 4. เลือก Options... เพื่อกำหนดระดับความเชื่อมั่น และเครื่องหมายของสมมติฐานทางเลือก



5. เลือก Graphs... เพื่อสร้าง Histogram หรือ Boxplot จะเลือกได้เฉพาะที่เป็นข้อมูลดิบ



ผลลัพธ์ที่ได้คือ

# **Descriptive Statistics**

#### N Mean StDev SE Mean 95% CI for μ

16 198.38 33.47 8

8.37 (180.54, 216.21)

μ: population mean of C1

#### Test

Null hypothesis  $H_0$ :  $\mu = 180$ Alternative hypothesis  $H_1$ :  $\mu \neq 180$ 

# T-Value P-Value

2.20 0.044

กรณีทดสอบ H<sub>o</sub>:  $\mu$ =180

 $H_1: \mu \neq 180$ 

สถิติทดสอบ คือ t = 2.20 ค่า P-value = 0.044 < 0.05 ดังนั้นจึงปฏิเสธ  $H_0$  และ 180.54 <  $\mu$  < 216.21 นั่นคือ น้ำหนักเฉลี่ยจะอยู่ในช่วง 180.54 ถึง 216.21 ที่ระดับความเชื่อมั่น 95%

## **Descriptive Statistics**

95% Lower Bound

 N Mean StDev SE Mean
 for μ

 16 198.38 33.47 8.37
 183.71

μ: population mean of C1

#### **Test**

Null hypothesis  $H_0$ :  $\mu = 180$ Alternative hypothesis  $H_1$ :  $\mu > 180$ 

# T-Value P-Value

2.20 0.022

กรณีทดสอบ  $H_0: \mu \leq 180$ 

 $H_1: \mu > 180$ 

สถิติทดสอบ คือ t = 2.20 ค่า P-value = 0.022 < 0.05 ดังนั้นจึงปฏิเสธ  $H_0$ 

# **Descriptive Statistics**

95% Upper Bound

| N Mean    | StDev | SE Mean | for μ  |
|-----------|-------|---------|--------|
| 16 198.38 | 33.47 | 8.37    | 213.04 |

μ: population mean of C1

#### Test

Null hypothesis  $H_0$ :  $\mu = 180$ Alternative hypothesis  $H_1$ :  $\mu < 180$ 

# T-Value P-Value

2.20 0.978

กรณีทดสอบ  $H_0: \mu \geq 180$ 

 $H_1: \mu < 180$ 

สถิติทดสอบ คือ t = 2.20 ค่า P-value = 0.978 > 0.05 ดังนั้นจึงยอมรับ  $H_0$ 

จากไฟล์ข้อมูล catalog.sav คัดลอกตัวแปร service ไว้ในตัวแปร C2 เนื่องจาก กลุ่ม ตัวอย่างมีขนาดใหญ่  $(n \ge 30)$ และไม่ทราบค่าเบี่ยงเบนมาตรฐานของประชากร  $(\sigma)$  มีขั้นตอนใน การวิเคราะห์ ดังนี้

1. ใช้เมนู Stat → Basic Statistics → 1-Sample Z... จะได้



2. กรณีที่เป็นข้อมูลดิบจะเลือก One or more samples, each in a column แล้วเลือก ตัวแปรใส่ใน box แต่ในกรณีที่ไม่มีข้อมูลดิบจะเลือก Summarized แล้วใส่ค่าขนาดตัวอย่าง ค่าเฉลี่ย และค่าเบี่ยงเบนมาตรฐาน



- 3. ใส่ค่าเบี่ยงเบนมาตรฐาน ใน Known standard deviation:
- เลือก
   Perform hypothesis test
   ใส่ค่าคงที่ (µ₀) ใน hypothesized mean:
- 5. เลือก Options... เพื่อกำหนดระดับความเชื่อมั่น และเครื่องหมายของสมมติฐานทางเลือก

| One-Sample Z: Options   |                                                                              |          |  |  |
|-------------------------|------------------------------------------------------------------------------|----------|--|--|
| Confidence level:       | 95.0                                                                         |          |  |  |
| Alternative hypothesis: | Mean ≠ hypothesized mean  Mean < hypothesized mean  Mean ≠ hypothesized mean | <b>-</b> |  |  |
| Help                    | Mean > hypothesized mean                                                     |          |  |  |

6. เลือก Graphs... เพื่อสร้าง Histogram หรือ Boxplot จะเลือกได้เฉพาะที่เป็นข้อมูลดิบ



ผลลัพธ์ที่ได้คือ



#### Test

Null hypothesis  $H_0$ :  $\mu = 39$ Alternative hypothesis  $H_1$ :  $\mu \neq 39$ 

# Z-Value P-Value

-3.04 0.002

กรณีทดสอบ  $H_n : \mu = 39$ 

 $H_1: \mu \neq 39$ 

สถิติทดสอบ คือ Z=-3.04 ค่า P-value = 0.002 < 0.05 ดังนั้นจึงปฏิเสธ  $H_0$ 

# **Descriptive Statistics**

95% Lower Bound

N Mean StDev SE Mean for μ
120 35.967 10.942 0.999 34.324

μ: population mean of C2 Known standard deviation = 10.942

#### Test

Null hypothesis  $H_0$ :  $\mu = 39$ Alternative hypothesis  $H_1$ :  $\mu > 39$ 

# Z-Value P-Value

-3.04 0.999

กรณีทดสอบ  $H_0: \mu \leq 39$ 

 $H_1: \mu > 39$ 

สถิติทดสอบ คือ Z=-3.04 ค่า P-value = 0.999 > 0.05 ดังนั้นจึงยอมรับ  $H_0$ 

# **Descriptive Statistics**

95% Upper Bound

N Mean StDev SE Mean  $\qquad \qquad \text{for } \mu$ 

120 35.967 10.942 0.999

37.610

μ: population mean of C2 Known standard deviation = 10.942

# **Test**

Null hypothesis  $H_0$ :  $\mu = 39$  Alternative hypothesis  $H_1$ :  $\mu < 39$ 

## Z-Value P-Value

-3.04 0.001

กรณีทดสอบ  $H_0: \mu \geq 39$ 

 $H_1: \mu < 39$ 

สถิติทดสอบ คือ Z = -3.04 ค่า P-value = 0.001 < 0.05 ดังนั้นจึงปฏิเสธ  $H_0$ 

#### การทดสอบสมมติฐานของค่าเฉลี่ยประชากรสองกลุ่มที่เป็นอิสระต่อกัน 7.2

เป็นการเปรียบเทียบค่าเฉลี่ยของสองประชากร สมมติฐานที่จะทดสอบได้แก่

$$H_0: \mu_1 - \mu_2 = d_0$$

$$H_0: \mu_1 - \mu_2 \le d_0$$

$$\mathbf{H}_{_{\!0}}:\boldsymbol{\mu}_{_{\!1}}-\boldsymbol{\mu}_{_{\!2}}=\mathbf{d}_{_{\!0}}$$
 หรือ  $\mathbf{H}_{_{\!0}}:\boldsymbol{\mu}_{_{\!1}}-\boldsymbol{\mu}_{_{\!2}}\leq\mathbf{d}_{_{\!0}}$  หรือ  $\mathbf{H}_{_{\!0}}:\boldsymbol{\mu}_{_{\!1}}-\boldsymbol{\mu}_{_{\!2}}\geq\mathbf{d}_{_{\!0}}$ 

$$H_1: \mu_1 - \mu_2 \neq d$$

$$H_1: \mu_1 - \mu_2 > d_1$$

$$\mathbf{H_{1}}:\boldsymbol{\mu_{1}}-\boldsymbol{\mu_{2}}\neq\mathbf{d_{0}} \\ \mathbf{H_{1}}:\boldsymbol{\mu_{1}}-\boldsymbol{\mu_{2}}>\mathbf{d_{0}} \\ \mathbf{H_{1}}:\boldsymbol{\mu_{1}}-\boldsymbol{\mu_{2}}<\mathbf{d_{0}} \\ \\ \mathbf{H_{2}}:\boldsymbol{\mu_{1}}-\boldsymbol{\mu_{2}}<\mathbf{d_{0}} \\ \\ \mathbf{H_{3}}:\boldsymbol{\mu_{1}}-\boldsymbol{\mu_{2}}<\mathbf{d_{0}} \\ \\ \mathbf{H_{3}}:\boldsymbol{\mu_{1}}-\boldsymbol{\mu_{2}}<\mathbf{d_{0}} \\ \\ \mathbf{H_{3}}:\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}<\mathbf{d_{0}} \\ \\ \mathbf{H_{3}}:\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}<\mathbf{d_{0}} \\ \\ \mathbf{H_{3}}:\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{\mu_{3}}-\boldsymbol{$$

เมื่อ d<sub>o</sub> เป็นค่าคงที่ใดๆ

ในการทดสอบสมมติฐานของผลต่างของค่าเฉลี่ยประชากรสองกลุ่ม มีรายละเอียดดังนี้

| สถิติทดสอบ                                                                                                                                                                     | หูเอการ กาเนยผมเย่ <del>ม มา เฉยาะควมผมห</del>                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Z = \frac{(X_1 - X_2) - d_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$                                                                                         | <ol> <li>ประชากรทั้งสองกลุ่มเป็นอิสระต่อกัน</li> <li>ประชากรที่มีการแจกแจงปกติทั้งสองชุด หรือ<br/>ถ้ามีการแจกแจงแบบอื่นๆ แต่กลุ่มตัวอย่างมี<br/>ขนาดใหญ่ (n₁,n₂ ≥ 30)</li> <li>ทราบค่าความแปรปรวนของประชากร<br/>(σ₁²,σ₂²)</li> </ol> |
| $Z = \frac{(\overline{X}_1 - \overline{X}_2) - d_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$                                                                             | 1. ประชากรทั้งสองกลุ่มเป็นอิสระต่อกัน 2. กลุ่มตัวอย่างมีขนาดใหญ่ ( $n_1, n_2 \ge 30$ ) 3. ไม่ทราบค่าความแปรปรวนของประชากร ( $\sigma_1^2, \sigma_2^2$ )                                                                               |
| $t = \frac{(\overline{X}_1 - \overline{X}_2) - d_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}  \text{id}$ $S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$ | 1. ประชากรทั้งสองกลุ่มเป็นอิสระต่อกัน 2. ประชากรที่มีการแจกแจงปกติทั้งสองชุด 3. กลุ่มตัวอย่างมีขนาดเล็ก ( $n_1, n_2 < 30$ ) 4. ไม่ทราบค่าความแปรปรวนของประชากร ( $\sigma_1^2, \sigma_2^2$ ) แต่ $\sigma_1^2 = \sigma_2^2$            |
| $t = \frac{(X_1 - X_2) - d_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}  \text{ide}$                                                                                       | <ol> <li>ประชากรทั้งสองกลุ่มเป็นอิสระต่อกัน</li> <li>ประชากรที่มีการแจกแจงปกติทั้งสองชุด</li> <li>กลุ่มตัวอย่างมีขนาดเล็ก (n<sub>1</sub>,n<sub>2</sub> &lt; 30)</li> <li>ไม่ทราบค่าความแปรปรวนของประชากร</li> </ol>                  |
| $\mathbf{V} = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$                | $(\sigma_1^2,\sigma_2^2)$ แต่ $\sigma_1^2  eq \sigma_2^2$                                                                                                                                                                            |

## 7.2.1 การทดสอบสมมติฐานของค่าเฉลี่ยประชากรสองกลุ่มที่เป็นอิสระต่อกันด้วยโปรแกรม SPSS

ในการวิเคราะห์ด้วยโปรแกรม SPSS จะทดสอบสมมติฐานในกรณีที่  $d_0=0$  หากต้องการ ทดสอบด้วยค่าอื่นจะต้องปรับที่ข้อมูลก่อนการวิเคราะห์ จากไฟล์ข้อมูล dietstudy.sav ต้องการ ทดสอบค่าเฉลี่ยของตัวแปร tg0 ในแต่ละ gender มีขั้นตอนในการวิเคราะห์ ดังนี้

1. ใช้เมนู Analyze ➡ Compare Means and Proportions ➡ Independent-Samples T Test... จะได้



- 2. เลือกตัวแปรที่ต้องการทดสอบ (เชิงปริมาณ) ใส่ใน Test Variable(s): และตัวแปรที่ใช้ ในการแบ่งกลุ่มย่อย (เชิงคุณภาพ) ใส่ใน Grouping Variable:
  - 3. เลือก Define Groups... เพื่อกำหนดค่าในการแบ่งกลุ่ม โดยแยกเป็น
- กรณีที่ตัวแปรที่ต้องการแบ่งกลุ่ม มีข้อมูลเพียงแค่ 2 ค่า จะคลิกเลือก Use specified values แล้วกำหนดค่าแต่ละค่าลงในช่อง Group 1: และ Group 2: ตามลำดับ



กรณีที่ตัวแปรที่ต้องการแบ่งกลุ่มเป็นเชิงคุณภาพที่มีมากกว่า 2 กลุ่ม จะคลิกเลือก
 Cut point: เช่นถ้าเลือก Cut point: เป็น 4 ข้อมูลจะถูกแบ่งเป็น 2 กลุ่ม คือ กลุ่มที่มีค่าน้อยกว่า
 เลข 4 และกลุ่มที่มีค่าตั้งแต่เลข 4

- กรณีที่ตัวแปรที่ต้องการแบ่งกลุ่มเป็นข้อมูลเชิงปริมาณที่มีค่าต่อเนื่อง เช่นอายุ ถ้า
   เลือก Cut point: เป็น 20 จะได้ข้อมูลกลุ่มที่ 1 คือข้อมูลที่มีอายุมากกว่าหรือเท่ากับ 20 และ ข้อมูลกลุ่มที่ 2 คือข้อมูลที่มีอายุน้อยกว่า 20
  - 4. เลือก Options เพื่อกำหนดระดับความเชื่อมั่น



- Exclude cases analysis by analysis หมายถึง ไม่รวม cases ที่มี missing value ในการวิเคราะห์แต่ละครั้ง
- Exclude cases listwise หมายถึง กรณีที่มีการเลือกตัวแปรทดสอบค่าเฉลี่ย หลายๆตัวแปรที่กำหนดไว้ใน Test Variable(s) จะไม่รวม cases ที่มี missing value จะมีผลให้ การทดสอบทั้งหมดใช้จำนวนชุดข้อมูลเท่ากันหมด ผลลัพธ์ที่ได้คือ

| Group Statistics |        |   |        |                |                 |  |  |
|------------------|--------|---|--------|----------------|-----------------|--|--|
|                  | Gender | N | Mean   | Std. Deviation | Std. Error Mean |  |  |
| Triglyceride     | Male   | 9 | 147.33 | 26.847         | 8.949           |  |  |
|                  | Female | 7 | 127.00 | 29.597         | 11.187          |  |  |

|                                         | Independent Sai            | mples Test   |                               |                             |
|-----------------------------------------|----------------------------|--------------|-------------------------------|-----------------------------|
|                                         |                            | Triglyceride |                               |                             |
|                                         |                            |              | Equal<br>variances<br>assumed | Equal variances not assumed |
| Levene's Test for Equality of Variances | F                          |              | .630                          |                             |
|                                         | Sig.                       | .440         |                               |                             |
| t-test for Equality of Means            | 4                          | 1.438        | 1.419                         |                             |
|                                         | df                         |              | 14                            | 12.345                      |
|                                         | Significance               | One-Sided p  | .086                          | .090                        |
|                                         |                            | Two-Sided p  | .172                          | .181                        |
|                                         | Mean Difference            |              | 20.333                        | 20.333                      |
|                                         | Std. Error Difference      |              | 14.140                        | 14.326                      |
|                                         | 95% Confidence Interval of | Lower        | -9.994                        | -10.783                     |
|                                         | the Difference             | Upper        | 50.661                        | 51.450                      |

N หมายถึง จำนวนข้อมูลในแต่ละกลุ่ม

Mean หมายถึง ค่าเฉลี่ยของข้อมูลในแต่ละกลุ่ม

Std. Deviation หมายถึง ค่าเบี่ยงเบนมาตรฐานข้อมูลในแต่ละกลุ่ม

Std. Error Mean หมายถึง ค่าคลาดเคลื่อนมาตรฐานของค่าเฉลี่ยตัวอย่างในแต่ละกลุ่ม

เนื่องจากกลุ่มตัวอย่างมีขนาดเล็ก ( $n_1$ , $n_2$  < 30) และไม่ทราบค่าความแปรปรวนของ ประชากร ( $\sigma_1^2$ , $\sigma_2^2$ ) จึงต้องพิจารณาต่อว่า  $\sigma_1^2 = \sigma_2^2$  หรือ  $\sigma_1^2 \neq \sigma_2^2$  จึงต้องทดสอบโดยใช้สถิติ Levene's Test for Equality of Variances เป็นการทดสอบว่าค่าความแปรปรวนประชากรจากแต่ ละกลุ่มเท่ากันหรือไม่

$$H_0: \mathbf{\sigma}_1^2 = \mathbf{\sigma}_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

สถิติทดสอบ คือ F

ถ้าค่า Sig. ของ F  $\leq lpha$  จะปฏิเสธ  $H_0$  แสดงว่า  $\sigma_{_1}^2 
eq \sigma_{_2}^2$ 

ดังนั้นสถิติทดสอบได้แก่  $t = \frac{(\overline{X}_1 - \overline{X}_2) - d_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ 

ถ้าค่า Sig. ของ F > lpha จะยอมรับ H $_0$  แสดงว่า  $\sigma_{_1}^{^2}$ =  $\sigma_{_2}^{^2}$ 

ดังนั้นสถิติทดสอบได้แก่  $t = \frac{\overline{(X_1 - X_2)} - d_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ 

t หมายถึง สถิติที่ใช้ในการทดสอบค่าเฉลี่ย

df หมายถึง องศาอิสระของการทดสอบ

Significance Two-Sided p หมายถึง ค่า Sig. ของการทดสอบแบบ 2 ทาง

Significance One-Sided p หมายถึง ค่า Sig. ของการทดสอบแบบ 1 ทาง

ถ้ามีค่า  $\leq lpha$  จะสรุปว่าปฏิเสธ  $H_{_0}$  แต่ถ้ามีค่า > lpha จะสรุปว่ายอมรับ  $H_{_0}$ 

Mean Difference หมายถึง  $\overline{\mathbf{X}}_{_{1}}-\overline{\mathbf{X}}_{_{2}}$ 

STd. Error Difference หมายถึง  $SE(\overline{X}_1 - \overline{X}_2)$ 

95% Confidence Interval of the Difference หมายถึง 100(1–  $\alpha$ )% Confidence Interval ของ  $\mu_{_1}-\mu_{_2}$ 

**หมายเหตุ** หากเป็นการทดสอบแบบทางเดียว (1-tailed) วิธีการแปลผลจะเหมือนกับการทดสอบแบบ One–Sample T Test

จากค่า Sig. = .440 > lpha จะยอมรับ  $H_0$  แสดงว่า  $\sigma_1^2 = \sigma_2^2$  จึงเลือก Equal variance assumed ในการทดสอบ  $H_0: \mu_1 - \mu_2 = 0$ 

$$H_1: \mu_1 - \mu_2 \neq 0$$

สถิติทดสอบ คือ t = 1.438 ค่า Significance Two-Sided p = .172 > 0.05 ดังนั้นจึงยอมรับ  $H_{\rm n}$ 

ช่วงความเชื่อมั่น 95% ของ  $\mu_1 - \mu_2$  คือ –9.994  $< \mu_1 - \mu_2 <$  50.661 จากไฟล์ข้อมูล adl.sav ต้องการทดสอบค่าเฉลี่ยของตัวแปร los ในแต่ละ group



#### ผลลัพธ์ที่ได้คือ

|              |                 | Group St | atistics |                |                 |
|--------------|-----------------|----------|----------|----------------|-----------------|
|              | Treatment group | N        | Mean     | Std. Deviation | Std. Error Mean |
| Hospital LOS | Control         | 46       | 17.83    | 2.224          | .328            |
|              | Treatment       | 54       | 16.76    | 2.801          | .381            |

เนื่องจากกลุ่มตัวอย่างมีขนาดใหญ่  $(n_1,n_2\geq 30)$  และไม่ทราบค่าความแปรปรวนของประชากร

$$(\sigma_1^2, \sigma_2^2)$$
 จะใช้สถิติทดสอบ  $Z = \frac{(\overline{X}_1 - \overline{X}_2) - d_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$  การทดสอบว่าความแปรปรวนเท่ากันหรือไม่

อาจไม่จำเป็น เนื่องจากค่าสถิติทดสอบจะมีค่าใกล้เคียงกันระหว่างสถิติทดสอบที่ความแปรปรวนเท่ากัน กับสถิติทดสอบที่ความแปรปรวนไม่เท่ากัน ซึ่งสถิติทดสอบ Z ดังกล่าวจะเป็นสูตรเดียวกับ t ที่ความ แปรปรวนไม่เท่ากัน

|                              | Independent Sai                           | nples Test  |                               |                             |
|------------------------------|-------------------------------------------|-------------|-------------------------------|-----------------------------|
|                              |                                           |             | Hospital LOS                  |                             |
|                              |                                           |             | Equal<br>variances<br>assumed | Equal variances not assumed |
| Levene's Test for Equality   | F                                         |             | 1.749                         |                             |
| of Variances                 | Sig.                                      | .189        |                               |                             |
| t-test for Equality of Means | 4                                         | 2.083       | 2.122                         |                             |
|                              | df                                        | 98          | 97.549                        |                             |
|                              | Significance                              | One-Sided p | .020                          | .018                        |
|                              |                                           | Two-Sided p | .040                          | .036                        |
|                              | Mean Difference                           |             | 1.067                         | 1.067                       |
|                              | Std. Error Difference                     |             | .512                          | .503                        |
|                              | 95% Confidence Interval of the Difference | Lower       | .051                          | .069                        |
|                              |                                           | Upper       | 2.083                         | 2.065                       |

ในการทดสอบ  $H_{_{\! 0}}: \mu_{_{\! 1}}-\mu_{_{\! 2}}=0$ 

 $H_1: \mu_1 - \mu_2 \neq 0$ 

สถิติทดสอบ คือ Z = 2.122 ค่า Significance Two-Sided p = .036 < 0.05 ดังนั้นจึงปฏิเสธ  $H_{0}$ 

**หมายเหตุ** ในโปรแกรม SPSS จะใช้สถิติทดสอบ t แทนสถิติทดสอบ Z

โปรแกรม SPSS สามารถทดสอบสมมติฐานของค่าเฉลี่ยประชากรสองกลุ่มที่เป็นอิสระต่อกัน โดยไม่ต้องใช้ข้อมูลดิบได้ จากไฟล์ข้อมูล dietstudy.sav โดยมีขั้นตอนดังนี้

1. ใช้เมนู Analyze ➡ Compare Means and Proportions ➡ Summary Independent-Samples T Test... จะได้



ใส่ค่าขนาดตัวอย่าง ค่าเฉลี่ย และค่าเบี่ยงเบนมาตรฐานของตัวอย่าง ในแต่ละกลุ่ม ผลลัพธ์ที่ได้คือ

| Summary Data |       |         |                |                 |  |
|--------------|-------|---------|----------------|-----------------|--|
|              | N     | Mean    | Std. Deviation | Std. Error Mean |  |
| Sample 1     | 9.000 | 147.330 | 26.847         | 8.949           |  |
| Sample 2     | 7.000 | 127.000 | 29.597         | 11.187          |  |

|                       | Equal variances assumed | Equal variances not assumed |
|-----------------------|-------------------------|-----------------------------|
| Mean Difference       | 20,330                  | 20.330                      |
| Std. Error Difference | 14.140                  | 14.326                      |
| t                     | 1.438                   | 1.419                       |
| df                    | 14.000                  | 12.345                      |
| Sig. (2-tailed)       | .172                    | .181                        |

|                               | Lower Limit | Upper Limit |
|-------------------------------|-------------|-------------|
| Asymptotic (equal variance)   | -7.384      | 48.044      |
| Asymptotic (unequal variance) | -7.748      | 48.408      |
| Exact (equal variance)        | -9.998      | 50.658      |
| Exact (unequal variance)      | -10.787     | 51.447      |

กรณีที่วิเคราะห์โดยไม่ต้องใช้ข้อมูลดิบ การทดสอบว่าค่าความแปรปรวนประชากรจากแต่ละกลุ่มเท่ากัน หรือไม่ใช้การทดสอบของฮาร์ทเลย์ (Hartley' test) แทนการทดสอบของเลอวีน (Levene's test)

#### 7.2.2 การทดสอบสมมติฐานของค่าเฉลี่ยประชากรสองกลุ่มที่เป็นอิสระต่อกันด้วยโปรแกรม Minitab

จากไฟล์ข้อมูล dietstudy.sav คัดลอกตัวแปร tg0 ไว้ในตัวแปร C2 และคัดลอกตัวแปร gender ไว้ในตัวแปร C1 เนื่องจากกลุ่มตัวอย่างมีขนาดเล็ก  $(n_1,n_2<30)$  และไม่ทราบค่าความ แปรปรวนของประชากร  $(\boldsymbol{\sigma}_1^2,\boldsymbol{\sigma}_2^2)$  จึงต้องพิจารณาว่า  $\boldsymbol{\sigma}_1^2=\boldsymbol{\sigma}_2^2$  หรือ  $\boldsymbol{\sigma}_1^2\neq\boldsymbol{\sigma}_2^2$  มีขั้นตอนดังนี้

1. ทดสอบว่าค่าความแปรปรวนประชากรสองกลุ่มเท่ากันหรือไม่

$$H_0: \mathbf{\sigma}_1^2 = \mathbf{\sigma}_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

ใช้เมนู Stat 🖈 Basic Statistics 🗢 2 Variances... ประกอบด้วย

Both samples are in one column โดยเลือกตัวแปรที่ต้องการทดสอบ (เชิงปริมาณ) ใส่ ใน Samples: และตัวแปรที่ใช้ในการแบ่งกลุ่มย่อย (เชิงคุณภาพ) ใส่ใน Sample IDs:



Each samples is in its own column โดยเลือกตัวแปรที่ต้องการทดสอบ (เชิงปริมาณ) ใส่ใน Sample 1: และ Sample 2: ตามลำดับ



Sample standard deviations โดยใส่ค่าขนาดตัวอย่าง ใน Sample size: และค่า เบี่ยงเบนมาตรฐานของตัวอย่าง ใน Standard deviation : ของแต่ละกลุ่ม



Sample variances โดยใส่ค่าขนาดตัวอย่าง ใน Sample size: และค่าความแปรปรวน ของตัวอย่าง ใน Variance: ของแต่ละกลุ่ม



เลือก Options... จะได้

| Two-Sample Variance: Options                                         |                    |                   |         |  |  |
|----------------------------------------------------------------------|--------------------|-------------------|---------|--|--|
| Ratio: (sample 1 standard deviation) / (sample 2 standard deviation) |                    |                   |         |  |  |
| Confidence level:                                                    | 95.0               |                   |         |  |  |
| Hypothesized ratio:                                                  | 1                  |                   |         |  |  |
| Alternative hypothesis:                                              | Ratio≠ hypothes    | sized ratio       |         |  |  |
| Use test and confide                                                 | nce intervals base | d on normal distr | ibution |  |  |
| Help                                                                 |                    | <u>O</u> K        | Cancel  |  |  |



Ratio สามารถเลือกการตั้งสมมติฐานเป็นค่าเบี่ยงเบนมาตรฐาน หรือค่าความแปรปรวน Confidence level เป็นการกำหนดระดับความเชื่อมั่น Hypothesized ratio เป็นการกำหนดค่าคงที่ในการตั้งสมมติฐาน

Alternative hypothesis เป็นการกำหนดเครื่องหมายสมมติฐานทางเลือก ระหว่าง ≠ หรือ > หรือ <

#### Use test and confidence intervals based on normal distribution

กรณีที่เป็นข้อมูลดิบ แล้วเลือกหัวข้อนี้จะได้เป็นการทดสอบของ Hartley (F-test) แต่ถ้าไม่ เลือกหัวข้อนี้จะได้เป็นการทดสอบของ Bonett's และ Levene's

แต่ถ้าไม่เป็นข้อมูลดิบจะไม่สามารถเลือกหัวข้อนี้ จะได้เป็นการทดสอบของ Hartley (F-test) ผลลัพธ์ที่ได้คือ

#### Method

 $\sigma_1$ : standard deviation of tg0 when gender = 0

 $\sigma_2$ : standard deviation of tg0 when gender = 1

Ratio:  $\sigma_1/\sigma_2$ 

F method was used. This method is accurate for normal data only.

# **Descriptive Statistics**

| gender | N St[ | Dev Va | riance | 95% C     | I for σ <sup>2</sup> |
|--------|-------|--------|--------|-----------|----------------------|
| 0      | 9 26. | 847 7  | 20.750 | (328.837, | 2645.281)            |
| 1      | 7 29. | 597 8  | 76.000 | (363.753, | 4247.807)            |

# Ratio of Variances

Estimated 95% CI for Ratio
Ratio using F

0.822774 (0.147, 3.827)

# **Test**

Null hypothesis  $H_0$ :  $\sigma_1^2 / \sigma_2^2 = 1$ Alternative hypothesis  $H_1$ :  $\sigma_1^2 / \sigma_2^2 \neq 1$ Significance level  $\alpha = 0.05$ 

# Test Method Statistic DF1 DF2 P-Value

F 0.82 8 6 0.776



# **Ratio of Variances**

Estimated 95% CI for Ratio 95% CI for Ratio Ratio using Bonett using Levene

0.822774 (0.152, 3.633) (0.061, 7.088)

# **Test**

Null hypothesis  $H_0$ :  $\sigma_1^2 / \sigma_2^2 = 1$ Alternative hypothesis  $H_1$ :  $\sigma_1^2 / \sigma_2^2 \neq 1$ Significance level  $\alpha = 0.05$ 

# Test Method Statistic DF1 DF2 P-Value

Bonett \* 0.748 Levene 0.14 1 14 0.712



จากสถิติทดสอบ Levene = 0.14 ค่า P-value = 0.712  $> \alpha$  จะยอมรับ  $H_0$  แสดงว่า  $\sigma_1^2 = \sigma_2^2$  หรือจากสถิติทดสอบ F = 0.82 ค่า P-value = 0.776  $> \alpha$  จะยอมรับ  $H_0$  แสดงว่า  $\sigma_1^2 = \sigma_2^2$ 

2. ทดสอบความแตกต่างของค่าเฉลี่ยสองกลุ่ม จากไฟล์ข้อมูล dietstudy.sav คัดลอกตัว แปร tg0 ไว้ในตัวแปร C2 และคัดลอกตัวแปร gender ไว้ในตัวแปร C1 ใช้เมนู Stat ➡ Basic Statistics ➡ 2 Sample t... ประกอบด้วย Both samples are in one column โดยเลือกตัวแปรที่ต้องการทดสอบ (เชิงปริมาณ) ใส่ ใน Samples: และตัวแปรที่ใช้ในการแบ่งกลุ่มย่อย (เชิงคุณภาพ) ใส่ใน Sample IDs:



Each samples is in its own column โดยเลือกตัวแปรที่ต้องการทดสอบ (เชิงปริมาณ) ใส่ใน Sample 1: และ Sample 2: ตามลำดับ



Summarized data โดยใส่ค่าขนาดตัวอย่าง ค่าเฉลี่ย และค่าเบี่ยงเบนมาตรฐานของตัวอย่าง ในแต่ละกลุ่ม



เลือก Options... จะได้

| Two-Sample t: Options                          |                                      |          |  |  |  |
|------------------------------------------------|--------------------------------------|----------|--|--|--|
| Difference = (sample 1 mean) - (sample 2 mean) |                                      |          |  |  |  |
| Confidence level:                              | 95.0                                 |          |  |  |  |
| <u>H</u> ypothesized difference:               | 0.0                                  |          |  |  |  |
| Alternative hypothesis:                        | Difference ≠ hypothesized difference | <b>T</b> |  |  |  |
| Assume equal variance                          | es                                   |          |  |  |  |
| Uala                                           | OK   CI                              | 1        |  |  |  |
| Help                                           | <u>O</u> K Cancel                    |          |  |  |  |

Confidence level เป็นการกำหนดระดับความเชื่อมั่น Hypothesized difference เป็นการกำหนดค่าคงที่ (  $d_0$  ) ในการตั้งสมมติฐาน

Alternative hypothesis เป็นการกำหนดเครื่องหมายสมมติฐานทางเลือก ระหว่าง ≠ หรือ > หรือ <

Assume equal variances นำผลการทดสอบความแปรปรวนมาใส่ จะเลือกเมื่อทดสอบ แล้วว่า  $\sigma_1^2 = \sigma_2^2$ 

# Method

 $\mu_1$ : population mean of tg0 when gender = 0  $\mu_2$ : population mean of tg0 when gender = 1 Difference:  $\mu_1$  -  $\mu_2$ 

Equal variances are assumed for this analysis.

# Descriptive Statistics: tg0

# gender N Mean StDev SE Mean

0 9 147.3 26.8 8.9 1 7 127.0 29.6 11

# **Estimation for Difference**

95% CI for Difference Pooled StDev Difference 20.3 28.1 (-10.0, 50.7)

# **Test**

Null hypothesis  $H_0$ :  $\mu_1 - \mu_2 = 0$ Alternative hypothesis  $H_1$ :  $\mu_1 - \mu_2 \neq 0$ 

# T-Value DF P-Value

1.44 14 0.172

สถิติทดสอบ คือ t = 1.44 ค่า P-value = .170 > 0.05 ดังนั้นจึงยอมรับ  $H_{_{\Omega}}$ 

จากไฟล์ข้อมูล adl.sav คัดลอกตัวแปร los ไว้ในตัวแปร C1 และคัดลอกตัวแปร group ไว้ในตัวแปร C2 เนื่องจากกลุ่มตัวอย่างมีขนาดใหญ่  $(n_1,n_2\geq 30)$  และไม่ทราบค่าความแปรปรวน

ของประชากร (
$$\sigma_1^2$$
,  $\sigma_2^2$ ) จะใช้สถิติทดสอบ  $Z = \frac{(\overline{X}_1 - \overline{X}_2) - d_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$  การทดสอบว่าความ

แปรปรวนเท่ากันหรือไม่ อาจไม่จำเป็น เนื่องจากค่าสถิติทดสอบจะมีค่าใกล้เคียงกันระหว่างสถิติทดสอบ ที่ความแปรปรวนเท่ากันกับสถิติทดสอบที่ความแปรปรวนไม่เท่ากัน ซึ่งสถิติทดสอบ Z ดังกล่าวจะเป็น สูตรเดียวกับ t ที่ความแปรปรวนไม่เท่ากัน จึงไม่เลือก Assume equal variances ใน Options...

| +  | C1  | C2    | Two-Sample t for the Mean              |
|----|-----|-------|----------------------------------------|
|    | los | group | C1 los Both samples are in one column  |
| 1  | 18  | 1     | C2 group                               |
| 2  | 17  | 1     | Samples: los                           |
| 3  | 17  | 1     | Sample IDs: group                      |
| 4  | 15  | 1     |                                        |
| 5  | 21  | 0     |                                        |
| 6  | 17  | 1     |                                        |
| 7  | 18  | 1     | Select Optio <u>n</u> s <u>G</u> raphs |
| 8  | 18  | 0     | ориодэ учунэ                           |
| 9  | 18  | 1     | Help <u>Q</u> K Cancel                 |
| 10 | 16  | 1     |                                        |
| 11 | 16  | 0     |                                        |

| Two-Sample t: Options                          |                                      |   |  |  |  |  |
|------------------------------------------------|--------------------------------------|---|--|--|--|--|
| Difference = (sample 1 mean) - (sample 2 mean) |                                      |   |  |  |  |  |
| Confidence level:                              | 95.0                                 |   |  |  |  |  |
| <u>Hypothesized difference:</u>                | 0.0                                  |   |  |  |  |  |
| <u>A</u> lternative hypothesis:                | Difference ≠ hypothesized difference | • |  |  |  |  |
| Assume equal variances                         |                                      |   |  |  |  |  |
| Help                                           | <u>O</u> K Cancel                    |   |  |  |  |  |

ผลลัพธ์ที่ได้คือ

#### Method

 $\mu_1$ : population mean of los when group = 0  $\mu_2$ : population mean of los when group = 1 Difference:  $\mu_1 - \mu_2$ 

Equal variances are not assumed for this analysis.

# **Descriptive Statistics: los**

# group N Mean StDev SE Mean

0 46 17.83 2.22 0.33 1 54 16.76 2.80 0.38

# **Estimation for Difference**

95% CI for Difference Difference 1.067 (0.069, 2.065)

#### **Test**

Null hypothesis  $H_0$ :  $\mu_1 - \mu_2 = 0$ Alternative hypothesis  $H_1$ :  $\mu_1 - \mu_2 \neq 0$ 

# T-Value DF P-Value

2.12 97 0.036

สถิติทดสอบ คือ Z = 2.12 ค่า P-value = .036 < 0.05 ดังนั้นจึงปฏิเสธ  $H_0$ 

จากไฟล์ข้อมูล SalesTrends.MTW (Graphs data sets ⇒ Sales trends data) ต้องการ ทดสอบค่าเฉลี่ย Sales ของ Year 2 มากกว่า Year 1 มากกว่า 100 สมมติฐานทางสถิติ คือ

$$H_0: \mu_2 - \mu_1 \leq 100$$

$$H_1: \mu_2 - \mu_1 > 100$$

เนื่องจากเป็นตัวอย่างขนาดเล็กจึงต้องทดสอบก่อนว่าความแปรปรวน 2 กลุ่มเท่ากันหรือไม่

# **Descriptive Statistics**

| Yea | r N S | StDev  | Variance | 95% CI for $\sigma^2$ |
|-----|-------|--------|----------|-----------------------|
| 1   | 12 6  | 54.698 | 4185.818 | (2771.360, 9031.496)  |
| 2   | 12 3  | 32.123 | 1031.902 | (543.989, 2796.265)   |

#### Test

Null hypothesis  $H_0$ :  $\sigma_1^2 / \sigma_2^2 = 1$ Alternative hypothesis  $H_1$ :  $\sigma_1^2 / \sigma_2^2 \neq 1$ Significance level  $\alpha = 0.05$ 

# Test Method Statistic DF1 DF2 P-Value Bonett 8.43 1 0.004 Levene 8.58 1 22 0.008

จากสถิติทดสอบ Levene = 8.58 ค่า P-value = 0.008  $< \alpha$  จะปฏิเสธ  $H_0$  แสดงว่า  $\sigma_1^2 \neq \sigma_2^2$  จากนั้นจึงทดสอบค่าเฉลี่ย ใช้เมนู Stat  $\Rightarrow$  Basic Statistics  $\Rightarrow$  2 Sample t... จะได้



กรณีที่เลือกนำข้อมูลเข้าด้วย Both samples are in one column โปรแกรมจะคำนวณสถิติทดสอบ t โดยนำค่าเฉลี่ย Sales ของ Year 1 เป็นตัวตั้งแล้วลบด้วย ค่าเฉลี่ย Sales ของ Year 2 (กลุ่มที่ 1 ต้องเป็นตัวเลขที่น้อยกว่ากลุ่มที่ 2) ซึ่งทำให้การวิเคราะห์ไม่ถูกต้อง จึงต้องเลือกนำข้อมูลเข้าด้วย Each ample is in its own column แล้วเลือกข้อมูล Sales ของ Year 2 ใส่ใน Sample 1: และเลือกข้อมูล Sales ของ Year 1 ใส่ใน Sample 2:



เลือก Option...



#### ผลลัพธ์ที่ได้คือ

## Method

μ<sub>1</sub>: population mean of Sales\_Y2

 $\mu_2$ : population mean of Sales\_Y1

Difference:  $\mu_1$  -  $\mu_2$ 

Equal variances are not assumed for this analysis.

# **Descriptive Statistics**

# Sample N Mean StDev SE Mean

Sales\_Y2 12 399.6 32.1 9.3 Sales\_Y1 12 287.0 64.7 19

#### **Estimation for Difference**

95% Lower Bound Difference for Difference

112.6

76.2

# **Test**

Null hypothesis  $H_0$ :  $\mu_1 - \mu_2 = 100$ 

Alternative hypothesis  $H_1$ :  $\mu_1 - \mu_2 > 100$ 

# T-Value DF P-Value

0.60 16 0.277

จากสถิติทดสอบ t = 0.60 ค่า P-value = 0.277  $> \alpha$  จะยอมรับ  $H_0$  แสดงว่าค่าเฉลี่ย Sales ของ Year 2 มากกว่า Year 1 ไม่มากกว่า 100

#### การทดสอบสมมติฐานของค่าเฉลี่ยประชากรสองกลุ่มที่ไม่เป็นอิสระต่อกัน 7.3 เป็นการเปรียบเทียบค่าเฉลี่ยของสองประชากร สมมติฐานที่จะทดสอบได้แก่

$$\mathsf{H}_{\scriptscriptstyle 0}: \mu_{\scriptscriptstyle D} = \mathsf{d}_{\scriptscriptstyle 0}$$
 หรือ  $\mathsf{H}_{\scriptscriptstyle 0}: \mu_{\scriptscriptstyle D} \leq \mathsf{d}_{\scriptscriptstyle 0}$  หรือ

$$H_0: \mu_D \leq d_0$$

$$H_0: \mu_D \geq d_0$$

$$\mathsf{H}_{\scriptscriptstyle 1}:\mu_{\scriptscriptstyle D}\neq\mathsf{d}_{\scriptscriptstyle 0}$$

$$H_{\scriptscriptstyle 1}:\mu_{\scriptscriptstyle D}>d_{\scriptscriptstyle 0}$$

$$\mathsf{H}_{_{1}}:\mu_{_{D}}<\mathsf{d}_{_{0}}$$

เมื่อ d<sub>o</sub> เป็นค่าคงที่ใดๆ

ในการทดสอบสมมติฐานของผลต่างของค่าเฉลี่ยประชากรสองกลุ่ม มีรายละเอียดดังนี้

| สถิติทดสอบ                                                                                                                                                                          | เงื่อนไข                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $t = \frac{\overline{D} - d_0}{S_D / \sqrt{n}}  \vec{\text{Did}}$ $\overline{D} = \frac{\sum_{i=1}^{n} D_i}{n} ,  S_D = \sqrt{\frac{\sum_{i=1}^{n} D_i^2 - n \overline{D}^2}{n-1}}$ | <ol> <li>µ<sub>D</sub> = µ<sub>1</sub> — µ<sub>2</sub> <ul> <li>เมื่อประชากรทั้งสองกลุ่มไม่เป็นอิสระต่อกัน                 โดยการสุ่มตัวอย่างเป็นคู่จากประชากรชุด                 เดียวกัน</li> <li>ประชากรมีการแจกแจงปกติ</li> <li>D<sub>i</sub> เป็นผลต่างของค่าสังเกตเป็นคู่                  (X<sub>1i</sub> และ X<sub>2i</sub>)                       โดยที่ D<sub>i</sub> มีการแจกแจงปกติ</li> </ul> </li> </ol> |

#### 7.3.1 การทดสอบสมมติฐานของค่าเฉลี่ยประชากรสองกลุ่มที่ไม่เป็นอิสระต่อกันด้วยโปรแกรม SPSS

ในการวิเคราะห์ด้วยโปรแกรม SPSS จะทดสอบสมมติฐานในกรณีที่  $d_0 = 0$  จากไฟล์ข้อมูล test\_scores.sav ต้องการทดสอบค่าเฉลี่ยของตัวแปร pretest และตัวแปร posttest มีขั้นตอนใน การวิเคราะห์ ดังนี้

1. ใช้เมนู Analyze → Compare Means and Proportions → Paired-Samples T Test... จะได้



- 2. เลือกตัวแปรที่จะทดสอบ 2 ตัว โดยจะต้องเลือกครั้งละ 1 ตัว โดยตัวแปรตัวแรกที่ ถูกเลือกจะอยู่ใน box ของ Variable 1 และตัวแปรตัวที่ 2 ที่เลือกจะไปอยู่ที่ Variable 2 ใน box ของ Paired Variables:
  - 3. เลือก Options เพื่อกำหนดช่วงความเชื่อมั่น จะได้



**Exclude cases analysis by analysis** หมายถึง ไม่รวม cases ที่มี missing value ในการวิเคราะห์แต่ละครั้ง

Exclude cases listwise หมายถึง กรณีที่มีการเลือกตัวแปรทดสอค่าเฉลี่ยหลายๆ ตัวแปรที่กำหนดไว้ใน box ของ Test Variable(s) จะไม่รวม cases ที่มี missing value จะมีผล ให้การทดสอบทั้งหมดใช้จำนวนชุดข้อมูลเท่ากันหมด ผลลัพธ์ที่ได้คือ

|        | Paired Samples Statistics |       |      |                |                 |  |  |  |
|--------|---------------------------|-------|------|----------------|-----------------|--|--|--|
|        |                           | Mean  | N    | Std. Deviation | Std. Error Mean |  |  |  |
| Pair 1 | Pre-test                  | 54.96 | 2133 | 13,563         | .294            |  |  |  |
|        | Post-test                 | 67.10 | 2133 | 13.987         | .303            |  |  |  |

 Mean
 หมายถึง
 ค่าเฉลี่ยของข้อมูลในแต่ละตัวแปร

 N
 หมายถึง
 จำนวนของข้อมูลในแต่ละตัวแปร

Std. Deviation หมายถึง ค่าเบี่ยงเบนมาตรฐานของข้อมูลในแต่ละตัวแปร

Std. Error Mean หมายถึง ค่าความคลาดเคลื่อนมาตรฐานของข้อมูลในแต่ละตัวแปร

| Paired Samples Correlations |                      |      |             |              |             |  |  |
|-----------------------------|----------------------|------|-------------|--------------|-------------|--|--|
|                             |                      |      |             | Significance |             |  |  |
|                             |                      | N    | Correlation | One-Sided p  | Two-Sided p |  |  |
| Pair 1                      | Pre-test & Post-test | 2133 | .951        | <.001        | <.001       |  |  |

N หมายถึง จำนวนของข้อมูล

Correlation หมายถึง ค่าสัมประสิทธิ์สหสัมพันธ์ ระหว่างตัวแปร 2 ตัว โดยที่  $-1 \le r \le 1$ 

Significance Two-Sided p หมายถึง ค่า Sig. ของการทดสอบแบบ 2 ทาง

Significance One-Sided p หมายถึง ค่า Sig. ของการทดสอบแบบ 1 ทาง

 $H_{_0}: \rho = 0$  (ตัวแปรทั้งสองไม่มีความสัมพันธ์กัน)

 $H_1: \rho \neq 0$  (ตัวแปรทั้งสองมีความสัมพันธ์กัน)

ถ้าค่า Significance Two-Sided p  $\leq$  ระดับนัยสำคัญที่กำหนด จะปฏิเสธ  $H_{0}$ 

|                    | Paired Samples Te                            | est     |                                |
|--------------------|----------------------------------------------|---------|--------------------------------|
|                    |                                              |         | Pair 1<br>Pre-test - Post-test |
| Paired Differences | Mean                                         | -12.146 |                                |
|                    | Std. Deviation                               | 4.338   |                                |
|                    | Std. Error Mean                              | .094    |                                |
|                    | 95% Confidence Interval of<br>the Difference | Lower   | -12.330                        |
|                    |                                              | Upper   | -11.962                        |
| t                  |                                              |         | -129.328                       |
| df                 |                                              |         | 2132                           |
| Significance       | One-Sided p                                  | <.001   |                                |
|                    | Two-Sided p                                  | .000    |                                |

Pair1 หมายถึง การหาค่าแตกต่างระหว่างคะแนนก่อน – คะแนนหลัง

D = pretest – posttest

Mean หมายถึง ค่าเฉลี่ยของค่าแตกต่าง  $(\overline{D})$ 

Std. Deviation หมายถึง ค่าเบี่ยงเบนมาตรฐานของค่าแตกต่าง (S<sub>D</sub>)

 t
 หมายถึง
 ค่าสถิติทดสอบ

 df
 หมายถึง
 องศาอิสระ

Significance Two-Sided pหมายถึง ค่า Sig. ของการทดสอบแบบ 2 ทางSignificance One-Sided pหมายถึง ค่า Sig. ของการทดสอบแบบ 1 ทาง

กรณีทดสอบ  $H_{_0}: \mu_{_D}=0$   $H_{_1}: \mu_{_D} 
eq 0$ 

สถิติทดสอบ คือ t = -129.328

ค่า Significance Two-Sided p = 0 < 0.05 ดังนั้นจึงปฏิเสธ  $H_0$ 

กรณีทดสอบ  $H_0: \mu_D \leq 0$ 

 $H_{_{1}}: \mu_{_{D}} > 0$ 

สถิติทดสอบ คือ t = -129.328

เนื่องจาก t-value เป็นค่าลบ จะใช้ค่า Sig. = 1– Significance One-Sided p = 1 – 0 = 1 > 0.05 ดังนั้นจึงยอมรับ  $\,{\rm H}_{_{0}}$ 

กรณีทดสอบ  $H_{_0}: \mu_{_D} \geq 0$ 

 $H_{_{1}}: \mu_{_{D}} < 0$ 

สถิติทดสอบ คือ t = -129.328

เนื่องจาก t-value เป็นค่าลบ จะใช้ค่า Sig. = Significance One-Sided p = 0 < 0.05 ดังนั้นจึง ปฏิเสธ  $\,{\sf H}_0$ 

#### 7.3.2 การทดสอบสมมติฐานของค่าเฉลี่ยประชากรสองกลุ่มที่ไม่เป็นอิสระต่อกันด้วยโปรแกรม Minitab

จากไฟล์ข้อมูล test\_scores.sav คัดลอกตัวแปร pretest ไว้ในตัวแปร C1 และคัดลอกตัว แปร posttest ไว้ในตัวแปร C2 มีขั้นตอนดังนี้

1. เลือก ใช้เมนู Stat ➡ Basic Statistics ➡ Paired t... จะได้



ประกอบด้วย

Each samples is in a column โดยเลือกตัวแปรที่ต้องการทดสอบ ใส่ใน box ของ Sample 1: และ ใส่ใน box ของ Sample 2:

Summarized data (differences) โดยใส่ค่าขนาดตัวอย่าง ใน Sample size: ค่าเฉลี่ย ของผลต่าง  $(\overline{D})$  ใน Sample mean: และค่าเบี่ยงเบนมาตรฐานของของผลต่าง  $(\overline{D})$  ใน Standard deviation:



2. เลือก Options... จะได้



Confidence level
Hypothesized ratio
Alternative hypothesis

เป็นการกำหนดระดับความเชื่อมั่น เป็นการกำหนดค่าคงที่ในการตั้งสมมติฐาน เป็นการกำหนดเครื่องหมายสมมติฐานทางเลือก

ผลลัพธ์ที่ได้คือ

# **Descriptive Statistics**

 Sample
 N
 Mean
 StDev
 SE
 Mean

 pretest
 2133
 54.956
 13.563
 0.294

 posttest
 2133
 67.102
 13.987
 0.303

#### **Estimation for Paired Difference**

95% CI for

Mean StDev SE Mean µ difference

-12.1463 4.3376 0.0939 (-12.3305, -11.9621)

 $\mu$ \_difference: population mean of (pretest - posttest)

#### Test

Null hypothesis  $H_0$ :  $\mu_d$ ifference = 0 Alternative hypothesis  $H_1$ :  $\mu_d$ ifference  $\neq 0$ 

# T-Value P-Value

-129.33 0.000

## **Test**

Null hypothesis  $H_0$ :  $\mu_d$ ifference = 0 Alternative hypothesis  $H_1$ :  $\mu_d$ ifference > 0

#### T-Value P-Value

-129.33 1.000

# **Estimation for Paired Difference**

95% Lower Bound

Mean StDev SE Mean for μ\_difference

-12.1463 4.3376 0.0939

-12.3008

 $\mu\_difference$ : population mean of (pretest - posttest)

## **Estimation for Paired Difference**

95% Upper Bound

Mean StDev SE Mean for  $\mu$ \_difference

-12.1463 4.3376 0.0939

-11.9917

 $\mu$ \_difference: population mean of (pretest - posttest)

## **Test**

Null hypothesis  $H_0$ :  $\mu_d$ ifference = 0 Alternative hypothesis  $H_1$ :  $\mu_d$ ifference < 0

# T-Value P-Value

-129.33 0.000