Digital IC Design

EE5311

Mourya Sai Sandeep EE22B045

Tutorial - 4
Report

Experiment - 1 Schematic for (A):

X	Experiment_A.spice" -a sh	^	_		×
Doing analysis at	TEMP = 27,000000 and TNOM = 27,000000				
Using SPARSE 1.3	as Direct Linear Solver				
Initial Transient	Solution				
Node	Voltage				
net1	1,8				
vout	0				
vdd	1.8				
net2	6.71229e-07				
net3	1.8				
net4	6.71229e-07				
net5	1.8				
net6	6.71229e-07				
vdd#branch	-0.000143287				
Reference value					
No. of Data Rows	: 5008				
period	= 4.090127e-10 targ= 4.240400e-10 trig=	1,5027	26e-	-11	
Frequency of osci	llation: 2.44491E+09				

The below graph Shows the Vout @7th inverter

<u>Schematic and code for 7-Inverters(B):</u>

VDD vs Frequency:

```
1. VDD = 1.0V
                ; Frequency = 0.484GHz ; Period = 2.064ns
2. VDD = 1.1V
                ; Frequency = 0.734GHz ; Period = 1.362ns
3. VDD = 1.2V
                ; Frequency = 0.996GHz; Period = 1.003ns
4. VDD = 1.3V
                ; Frequency = 1.259GHz; Period = 0.793ns
                ;Frequency = 1.518GHz ;Period = 0.658ns
5. VDD = 1.4V
6. VDD = 1.5V
                ; Frequency = 1.768GHz; Period = 0.565ns
7. VDD = 1.6V
                ; Frequency = 2.008GHz ; Period = 0.498ns
8. VDD = 1.7V
                ; Frequency = 2.235GHz; Period = 0.474ns
9. VDD = 1.8V
                ;Frequency = 2.448GHz ;Period = 0.408ns
```

Period vs VDD (from 1.0V to 1.8V)

Frequency vs VDD (from 1.0V to 1.8V)

<u>Schematic and code for 9-Inverters(C):</u>

Frequency @VDD = 1.8V is 1.903GHz

<u>VDD vs Frequency:</u>

```
1. VDD = 1.0V
                ; Frequency = 0.376GHz; Period = 2.654ns
2. VDD = 1.1V
                ; Frequency = 0.570GHz; Period = 1.751ns
3. VDD = 1.2V
                ; Frequency = 0.774GHz; Period = 1.290ns
4. VDD = 1.3V
                ; Frequency = 0.979GHz; Period = 1.020ns
5. VDD = 1.4V
                ; Frequency = 1.180GHz; Period = 0.469ns
6. VDD = 1.5V
                ; Frequency = 1.375GHz; Period = 0.727ns
7. VDD = 1.6V
                ;Frequency = 1.561GHz ;Period = 0.640ns
8. VDD = 1.7V
                ; Frequency = 1.737GHz ; Period = 0.575ns
                ; Frequency = 1.903GHz; Period = 0.525ns
9. VDD = 1.8V
```

Period vs VDD (from 1.0V to 1.8V)

Frequency vs VDD (from 1.0V to 1.8V)

- The End -