#### Mouvement TR ★

**Question 1** Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.





**Question 2** Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à  $\Re_0$ .

Ce mécanisme présente deux degrés de liberté indépendants :  $\lambda(t)$  et  $\theta(t)$ . Il est donc nécessaire d'écrire, dans le meilleur des cas, deux équations :

- ▶ une équation traduisant la mobilité de 2 par rapport à 1, soit TMD appliqué à 2 en B en projection sur  $\overrightarrow{k_0}$ ;
- ▶ une équation traduisant la mobilité de 2+1 par rapport à 0, soit TRD appliqué à 1+2 en projection sur  $\overrightarrow{i_0}$ .

Stratégie:

#### ▶ On isole 2.

#### • **BAME**:

- \* actions de la liaison pivot  $\{\mathcal{T}(1 \to 2)\}$ ;
- \* action du moteur  $\{\mathcal{T} (mot \rightarrow 2)\}$ ;
- \* action de la pesanteur  $\{\mathcal{T} (pes \to 2)\}$ .
- Théorème: on applique le théorème du moment dynamique en B au solide
   2 en projection sur k

   <sub>0</sub>: C<sub>mot</sub> + M (B, pes → 2) · k

   <sub>0</sub> = δ(B, 2/0) · k

   <sub>0</sub>.
   Calcul de la composante dynamique: considérons le cas où la matrice
- Calcul de la composante dynamique : considérons le cas où la matrice d'inertie est donnée en C. On a donc  $\overline{\delta(C,2/0)} = \frac{d}{dt} \left[ \overline{\sigma(C,2/0)} \right]_{\Re_0} = \frac{d}{dt} \left[ \overline{I_C(2)} \overline{\Omega(2/0)} \right]_{\Re_0}$ . Par suite,  $\overline{\delta(B,2/0)} = \overline{\delta(C,2/0)} + \overline{BC} \wedge \overline{R_d(2/0)}$  avec  $\overline{R_d(2/0)} = m_2 \overline{\Gamma(C,2/0)}$ .



# ▶ On isole 1+2.

#### • BAME:

- \* actions de la liaison glissière  $\{\mathcal{T}(0 \to 1)\}$ ;
- \* action de la pesanteur  $\{\mathcal{T} (pes \to 1)\}$ ;
- \* action de la pesanteur  $\{\mathcal{T} (pes \to 2)\}$ ;
- \* action du vérin  $\{\mathcal{T} (\text{ver} \to 1)\}$ .
- **Théorème**: on applique le théorème de la résultante dynamique à l'ensemble **1+2** en projection sur  $\overrightarrow{i_0}$ :  $\overrightarrow{R}$  (ver  $\rightarrow$  1)  $\cdot \overrightarrow{i_0} = \overrightarrow{R_d}$  (1+2/0)  $\cdot \overrightarrow{i_0}$ .



Xavier Pessoles

• Calcul de la composante dynamique :  $\overrightarrow{R_d(1+2/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(2/0)}$  $= m_1 \overrightarrow{\Gamma(G_1, 1/0)} + m_2 \overrightarrow{\Gamma(G_2, 2/0)}.$ 

Question 3 Mettre en œuvre cette démarche.

On montre que <sup>1</sup> { $\mathfrak{D}$  (2/0)} =  $\left\{ \begin{array}{l} m_2 \left( \ddot{\lambda}(t) \overrightarrow{i_0} + R \left( \ddot{\theta} \overrightarrow{j_2} - \dot{\theta}^2 \overrightarrow{i_2} \right) \right) \\ C_2 \ddot{\theta} \overrightarrow{k_1} + R m_2 \left( -\sin \theta \ddot{\lambda}(t) \overrightarrow{k_0} + R \ddot{\theta} \overrightarrow{k_2} \right) \end{array} \right\}_{R} \text{et } \overrightarrow{R_d (1 + 2/0)}.$  $\overrightarrow{i_0} = m_1 \ddot{\lambda}(t) + m_2 \left( \ddot{\lambda}(t) - R \left( \ddot{\theta} \sin \theta(t) + \dot{\theta}^2 \cos \theta \right) \right)$ 

1: http://xpessoles-cpge.fr/pdf/ DYN-04\_06\_TR\_Corrige.pdf

# 3 DYN



Mouvement TR ★

## C2-09

**Question 1** Exprimer le torseur dynamique  $\{\mathfrak{D}(2/0)\}$  en *B*.

Expression de la résultante dynamique  $\overrightarrow{R_d(2/0)} = m_2 \overrightarrow{\Gamma(G_2, 2/0)} = m_2 \frac{d^2}{dt^2} \left[ \overrightarrow{AC} \right]_{G_2}$  $\frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[ \overrightarrow{AC} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[ \overrightarrow{AB} \right]_{\mathcal{R}_0} + \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[ \overrightarrow{BC} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[ \overrightarrow{i_2} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \frac{\mathrm{d}}{\mathrm{d}t} \left[ \dot{\theta} \overrightarrow{j_2} \right]_{\mathcal{R}_0}$  $= \ddot{\lambda}(t)\overrightarrow{i_0} + R\left(\ddot{\theta}\overrightarrow{j_2} - \dot{\theta}^2\overrightarrow{i_2}\right).$ 

Méthode 1 : Calcul en  $G_2 = C$  puis déplacement du torseur dynamique

- ▶ Calcul du moment cinétique en  $G_2$ :  $G_2$  = C est le centre de gravité donc
- $\overrightarrow{\sigma(C,2/0)} = I_C(2) \, \overrightarrow{\theta} \overrightarrow{k_0} = C_1 \, \overrightarrow{\theta} \overrightarrow{k_1}.$   $\blacktriangleright \text{ Calcul du moment dynamique en } G_2 : G_2 = C \text{ est le centre de gravité donc}$   $\overrightarrow{\delta(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[ \overrightarrow{\sigma(C,2/0)} \right]_{\mathcal{R}_0} = C_1 \, \overrightarrow{\theta} \overrightarrow{k_1}.$
- ► Calcul du moment dynamique en  $B: \overrightarrow{\delta(B,2/0)} = \overrightarrow{\delta(C,2/0)} + \overrightarrow{BC} \wedge \overrightarrow{R_d(2/0)} = C_2 \overrightarrow{\theta} \overrightarrow{k_1} + R \overrightarrow{i_2} m_2 \wedge (\ddot{\lambda}(t) \overrightarrow{i_0} + R (\ddot{\theta} \overrightarrow{j_2} \dot{\theta}^2 \overrightarrow{i_2})) = C_2 \ddot{\theta} \overrightarrow{k_1} + R m_2 \left( -\sin \theta \ddot{\lambda}(t) \overrightarrow{k_0} + R \ddot{\theta} \overrightarrow{k_2} \right)$

Au final, on a donc  $\{\mathfrak{D}(2/0)\}=\left\{\begin{array}{l} m_2\left(\ddot{\lambda}(t)\overrightarrow{i_0}+R\left(\ddot{\theta}\overrightarrow{j_2}-\dot{\theta}^2\overrightarrow{i_2}\right)\right)\\ C_2\ddot{\theta}\overrightarrow{k_1}+Rm_2\left(-\sin\theta\ddot{\lambda}(t)\overrightarrow{k_0}+R\ddot{\theta}\overrightarrow{k_2}\right) \end{array}\right\}_{p}.$ 

**Question 2** Déterminer  $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$ 

On a  $\overrightarrow{R_d(1+2/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(2/0)} = m_1 \ddot{\lambda}(t) \overrightarrow{i_0} + m_2 \left( \ddot{\lambda}(t) \overrightarrow{i_0} + R \left( \ddot{\theta} \overrightarrow{j_2} - \dot{\theta}^2 \overrightarrow{i_2} \right) \right).$ On projette alors sur  $\overrightarrow{i_0}$ ,  $\overrightarrow{R_d(1+2/0)}$   $\overrightarrow{i_0} = m_1 \ddot{\lambda}(t) + m_2 (\ddot{\lambda}(t) - R(\ddot{\theta}\sin\theta(t) + \dot{\theta}^2\cos\theta))$ .

Question 3 Déterminer les lois de mouvements.

# Mouvement RR 3D ★★

**Question 1** Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

**Question 2** Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à  $\Re_0$ .

On isole 2 et on réalise un théorème du moment dynamique en B (ou A) en projection sur  $\overrightarrow{i_1}$ .

On isole 1+2 et on réalise un théorème du moment dynamique en A en projection sur  $\overrightarrow{k_0}$ .









# Mouvement RT - RSG ★★

# C1-05

**Question 1** Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

**Question 2** Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à  $\Re_0$ .

Le système posède deux mobilités :

- ▶ translation de 1 par rapport à 2 ( $\lambda$ );
- rotation de l'ensemble  $\{1+2\}$  autour du point I (le roulement sans glissement permet d'écrire une relation entre la rotation de paramètre  $\theta$  et le déplacement suivant  $\overrightarrow{i_0}$ .

On en déduit la stratégie suivante :

- ▶ Première loi de mouvement :
  - on isole 2,
  - BAME :
    - \*  $\{\mathcal{T}(1 \to 2)\},\$ \*  $\{\mathcal{T}(1_{\text{ressort}} \to 2)\}\ (\overrightarrow{R(1 \to 2)} \cdot \overrightarrow{i_1} = 0 \text{ et } \overrightarrow{R(1_{\text{ressort}} \to 2)} \cdot \overrightarrow{i_1} = 0)$ \*  $\{\mathcal{T}(\text{Pesanteur} \to 2)\};$
  - on réalise un théorème de la résultante dynamique en projection suivant  $\overrightarrow{i_1}$ .
- ► Seconde loi de mouvement :
  - on isole {1+2};
  - BAME :

\* 
$$\{\mathcal{T}(0 \to 1)\}\ (\overrightarrow{\mathcal{M}(I, 0 \to 1)} \cdot \overrightarrow{k_0} = 0),$$
  
\*  $\{\mathcal{T}(\text{Pesanteur} \to 1)\},$ 

- \*  $\{\mathcal{T} (Pesanteur \rightarrow 2)\}.$
- on réalise un théorème du moment dynamique en I en projection suivant  $\overrightarrow{k_0}$ .

Question 3 Déterminer les lois de mouvement.









# Mouvement RR - RSG ★★

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à  $\Re_0$ .

- ► Première équation :
  - On isole 2.
  - Bilan des actions mécaniques extérieures :
    - \* liaison pivot en A telle que  $\overrightarrow{\mathcal{M}(A,1 \to 2)} \cdot \overrightarrow{k_0} = \overrightarrow{0}$ ; \* pesanteur en  $B: \{\mathcal{T} \text{ (pes } \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_B;$ \* couple moteur :  $\{\mathcal{T}(1_m \to 2)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{k_0} \end{array}\right\}_{\forall P}$ .
  - On applique le théorème du moment dynamique en A en projection sur  $\overrightarrow{k_0}: \overrightarrow{\delta(A,2/0)} \cdot \overrightarrow{k_0} = 0 + \left(\overrightarrow{AG_2} \wedge -m_2 g \overrightarrow{j_0}\right) \cdot \overrightarrow{k_0} + C_m$ .
- ► Deuxième équation :
  - On isole 1+2.
  - Bilan des actions mécaniques extérieures :

    - \* liaison ponctuelle avec RSG en I telle que  $\overline{\mathcal{M}(I,0 \to 1)} \cdot \overrightarrow{k_0} = \overrightarrow{0}$ ;

      \* pesanteur en  $G_1: \{\mathcal{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -m_1 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{G_1};$ \* pesanteur en  $G_2: \{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{G_2}.$
  - On applique le théorème du moment dynamique en I en projection sur  $\overrightarrow{k_0}$ :  $\overrightarrow{\delta\left(I,1+2/0\right)}\cdot\overrightarrow{k_0}=0+\left(\overrightarrow{IG_2}\wedge-m_2g\overrightarrow{j_0}\right)\cdot\overrightarrow{k_0}+\left(\overrightarrow{IG_1}\wedge-m_1g\overrightarrow{j_0}\right)\cdot\overrightarrow{k_0}.$

Question 3 Déterminer les lois de mouvement.





Remarque: on ne modélise pas la résistance au roulement.

