Seminario 3: Cálculo de la cohomología de \mathbb{PR}^n

Arnau Mas

10 de enero de 2019

Recordamos que el espacio proyectivo \mathbb{PR}^n n-dimensional es el espacio que se obtiene al identificar los puntos antipodales de la n-esfera S^n . Podemos entender esto como el cociente de S^n por la acción de un grupo. En efecto, consideremos la aplicación antipodal $a\colon S^n\to S^n$, que es un difeomorfismo de la esfera. Esta aplicación es una involución: $a^2=\mathrm{id}$, por lo que podemos definir una acción de $\mathbb{Z}/2\mathbb{Z}$ sobre S^n mediante $0\mapsto\mathrm{id}$ y $1\mapsto a$. La ación es libre puesto que a no tiene puntos fijos y también es propia porque el grupo con el que actúamos es finito. El cociente de S^n por esta acción es justamente \mathbb{PR}^n puesto que la órbita de cada punto está formada por él mismo y su antipodal. En particular esto justifica que \mathbb{PR}^n es una variedad.

Tenemos, pues, una proyección lisa $p \colon S^n \to \mathbb{PR}^n$ que de hecho es una submersión—puesto que la acción es libre y propia—. Consideramos la sucesión

$$0 \longrightarrow \Omega^k(\mathbb{PR}^n) \xrightarrow{p^*} \Omega^k(S^n) \xrightarrow{\mathrm{id}-a^*} E^k \longrightarrow 0$$
 (1)

donde $E^k = \operatorname{im}(\operatorname{id} - a^*) \subseteq \Omega^k(S^n)$. Comprovar la exactitud de esta sucesión equivale a demostrar que p^* es inyectiva, que $\operatorname{id} - a^*$ es exhaustiva sobre E^k y que im $p^* = \ker(\operatorname{id} - a^*)$. Que $\operatorname{id} - a^*$ es exhaustiva sobre E^k es evidente por la definición de E^k . Las otras dos condiciones tienen más contenido.

Demostramos primero que im $p*=\ker(\mathrm{id}-a^*)$. Observemos que $\omega\in\ker(\mathrm{id}-a^*)$ si y solo si $\omega=a^*\omega$. Sea ω im p^* . Entonces existe $\theta\in\Omega^k(\mathbb{PR}^n)$ tal que $\omega=p^*\theta$. Luego

$$a^*\omega = a^*(p^*\theta) = (p \circ a)^*\theta = p^*\theta = \omega.$$

En la penúltima igualdad se utiliza que $p \circ a = p$. Esto es porque la proyección sobre el espacio proyectivo de dos puntos antipodales de la esfera es, por definición, la misma. Tenemos, pues, im $p^* \subset \ker(\mathrm{id} - a^*)$.

En el otro sentido, sea $\omega \in \Omega^k(S^n)$ una forma invariante por (el pullback) de la aplicación antipodal. Tenemos que demostrar que existe $\theta \in \Omega^k(S^n)$ tal que $p^*\theta = \omega$. Para poder construir esta θ primero observamos que la preimagen de cualquier punto de \mathbb{PR}^n por p está formada por dos puntos de S^n que son antipodales. Este hecho se transfiere a la aplicación tangente de p, $Tp \colon TS^n \to T\mathbb{PR}^n$: como p es una submersión, $T_x p$ es exhaustiva en cada punto $x \in S^n$, pero como S^n y \mathbb{PR}^n tienen la misma dimensión se tiene que $T_x p \colon T_x S^n \to T_{p(x)} \mathbb{PR}^n$ es un isomorfismo para todo x de S^n . Por ello existen, para todo $y = p(x) \in \mathbb{PR}^n$, isomorfismos $T_x p \colon T_x S^n \to T_{p(x)} \mathbb{PR}^n$ y $T_{a(x)} p \colon T_{a(x)} S^n \to T_{p(x)} \mathbb{PR}^n$, donde usamos que p(a(x)) = p(x).

La invariancia de ω por a^* se lee localmente como

$$\omega_x(v_1, \dots, v_k) = a^* \omega_x(v_1, \dots, v_k) = \omega_{a(x)}(T_x a(v_1), \dots, T_x a(v_k))$$

para todo $x \in S^n$ y $v_1, \ldots, v_k \in T_x S^n$. Esto, junto con el isomorfismo $T_x p$, nos permite definir una forma $\theta \in \Omega^k(\mathbb{PR}^n)$ mediante

$$\theta_{[x]}(v_1,\ldots,v_k) = \omega_x(T_x p^{-1}(v_1),\ldots,T_x p^{-1}(v_k)).$$

Es justamente el hecho que $a^*\omega = \omega$ lo que garantiza que esta es una buena definición. En efecto, el otro representante de la clase [x] es a(x), entonces

$$\theta_{[a(x)]}(v_1, \dots, v_k) = \omega_{a(x)}(T_{a(x)}p^{-1}(v_1), \dots, T_{a(x)}p^{-1}(v_k))$$

$$= a^*\omega_{a(x)}(T_{a(x)}p^{-1}(v_1), \dots, T_{a(x)}p^{-1}(v_k))$$

$$= \omega_x \left((T_{a(x)}a \circ T_{a(x)}p^{-1})(v_1), \dots, (T_{a(x)}a \circ T_{a(x)}p^{-1})(v_k) \right).$$

Ahora, de la identidad $p \circ a = p$ se desprende $Tp \circ Ta = Tp$. Por lo tanto

$$T_x p \circ T_{a(x)} a = T_{a(x)} p$$

y puesto que tanto $T_x p$ como $T_{a(x)} p$ son isomorfismos

$$T_{a(x)}a \circ T_{a(x)}p^{-1} = T_x p^{-1}.$$

Luego

$$\theta_{[a(x)]}(v_1,\ldots,v_k) = \omega_x(T_xp^{-1}(v_1),\ldots,T_xp^{-1}(v_k)) = \theta_{[x]}(v_1,\ldots,v_k).$$

Es decir, la definición de θ no depende del representante, por lo que está bien definida como k-forma de \mathbb{PR}^n . Además, por construcción, el pullback de θ por p es ω . Efectivamente:

$$p^*\theta_x(v_1, ..., v_k) = \theta_{p(x)}(T_x p(v_1), ..., T_x p(v_k))$$

$$= \theta_{[x]}(T_x p(v_1), ..., T_x p(v_k))$$

$$= \omega_x \left((T_x p^{-1} \circ T_x p)(v_1), ..., (T_x p^{-1} \circ T_x p)(v_k) \right)$$

$$= \omega_x(v_1, ..., v_k).$$

Esto nos da la inclusión en el otro sentido, $\ker(\mathrm{id}-a^*)\subseteq \mathrm{im}\,p^*$, y por lo tanto $\ker(\mathrm{id}-a^*)=\mathrm{im}\,p^*$.

Por último se tiene que comprovar que p^* es inyectiva, es decir, que $\ker p^* = 0$. Sea, pues, $\theta \in \ker p^*$. Entonces, para todo $x \in S^n$ y $v_1, \ldots, v_k \in T_x S^n$ se tiene

$$0 = p^* \theta_x(v_1, \dots, v_k) = \theta_{p(x)}(T_x p(v_1), \dots, T_x p(v_k)).$$

Como p es exhaustiva y para todo $x \in S^1$ $T_x p$ es un isomorfismo, podemos concluir que θ también es la forma nula. Por lo tanto $\ker(p^*) = 0$ como queríamos.

Queremos ver como actúa la diferencial d sobre los espacios E^k . Puesto que $E^k \subseteq \Omega^k(S^n)$ está claro que para todo $\omega \in E^k$ se tiene $d\omega \in \Omega^{k+1}(S^n)$. En realidad se tiene algo más fino: $d\omega$ está en E^{k+1} , no solamente en $\Omega^{k+1}(S^n)$. Efectivamente, si $\omega \in E^k$ existe $\sigma \in \Omega^k(S^n)$ tal que $\omega = \sigma - a^*\sigma$. Entonces

$$d\omega = d\sigma - d(a^*\sigma) = d\sigma - a^*d\sigma$$

porque la diferencial commuta con cualquier pullback. Entonces $d\omega$ es la imagen de $d\sigma$ por id $-a^*$ por lo que $d\omega \in E^{k+1}$. Entonces el complejo $\Omega^{\bullet}(S^n)$ se restringe al complejo E^{\bullet} . Puesto que la diferencial $d: E^k \to E^{k+1}$ es una restricción de $d: \Omega^k(S^n) \to \Omega^{k+1}(S^n)$, se sigue cumpliendo la condición $d^2 = 0$, es decir, E^{\bullet} es efectivamente un complejo de cocadenas.

La sucesión exacta corta en (1) se transporta a una sucesión exacta corta entre complejos,

$$0 \longrightarrow \Omega^{\bullet}(\mathbb{PR}^n) \stackrel{p^*}{\longrightarrow} \Omega^{\bullet}(S^n) \stackrel{\mathrm{id}-a^*}{\longrightarrow} E^{\bullet} \longrightarrow 0.$$

Entonces, usando el lema del zig-zag, podemos escribir una sucesión exacta larga entre las correspondientes cohomologías:

$$0 \longrightarrow H^{0}(\mathbb{PR}^{n}) \xrightarrow{p^{**}} H^{0}(S^{n}) \xrightarrow{\mathrm{id}-a^{**}} H^{0}(E)$$

$$\cdots$$

$$\longrightarrow H^{k}(\mathbb{PR}^{n}) \xrightarrow{p^{**}} H^{k}(S^{n}) \xrightarrow{\mathrm{id}-a^{**}} H^{k}(E)$$

$$\longrightarrow H^{k+1}(\mathbb{PR}^{n}) \xrightarrow{p^{**}} H^{k+1}(S^{n}) \xrightarrow{\mathrm{id}-a^{**}} H^{k+1}(E)$$

$$\cdots$$

$$\longrightarrow H^{n}(\mathbb{PR}^{n}) \xrightarrow{p^{**}} H^{n}(S^{n}) \xrightarrow{\mathrm{id}-a^{**}} H^{n}(E) \longrightarrow 0$$

$$(2)$$

Los morfismos de conexión δ vienen inducidos por la sucesión exacta.

La aplicación antipodal da lugar de forma natural a dos clases de formas diferenciales sobre S^n . Por un lado, las formas invariantes, que cumplen $a^*\omega = \omega$. El conjunto de estas formas es ker(id $-a^*$), que, por lo que hemos visto previamente, es igual al conjunto de formas que vienen inducidas por una forma de \mathbb{PR}^n , im p^* . Por otro lado existen las formas antiinvariantes, que cumplen $a^*\omega = -\omega$. Se tiene que el conjunto de k-formas antiinvariantes es justamente E^k . Recordemos que $E^k = \operatorname{im}(\operatorname{id} - a^*)$, por lo que si $\omega \in E^k$ entonces existe $\sigma \in \Omega^k(S^n)$ tal que $\omega = \sigma - a^*\sigma$ y

$$a^*\omega = a^*\sigma - a^*a^*\sigma = a^*\sigma - \sigma = -\omega.$$

Y en el otro sentido, si ω es antiinvariante tenemos

$$(\mathrm{id} - a^*)\frac{\omega}{2} = \frac{\omega}{2} - a^*\frac{\omega}{2} = \frac{\omega}{2} + \frac{\omega}{2} = \omega$$

luego $\omega \in E_k$.

Podemos descomponer toda forma de $\Omega^k(S^n)$ en la suma de una forma invariante y otra antiinvariante definiendo $\omega_i = \frac{\omega + a^*\omega}{2}$ y $\omega_a = \frac{\omega - a^*\omega}{2}$. Entonces $\omega = \omega_i + \omega_a$ y se comprueba fácilmente que ω_i es invariante mientras que ω_a es antiinvariante. Esta descomposición es única, pues si una forma descompusiese de dos formas distintas, $\omega = \omega_i + \omega_a = \tilde{\omega}_i + \tilde{\omega}_a$ entonces tendríamos $\tau = \omega_i - \tilde{\omega}_i = \tilde{\omega}_a - \omega_a$. La forma τ sería invariante y antiinvariante, lo que significa que tiene que ser la forma nula, puesto que $\tau = -\tau$. Así $\omega_i = \tilde{\omega}_i$ y $\omega_a = \tilde{\omega}_a$. Esta descomposición tambien se puede expresar, por las observaciones que hemos hecho previamente como

$$\Omega^k(S^n) = \ker(\mathrm{id} - a^*) \oplus \mathrm{im}(\mathrm{id} - a^*).$$

Consideremos la cohomología de las formas antiinvariantes de S^n , es decir, la cohomología del complejo E^{\bullet} . Sabemos que los únicos grupos de cohomología no triviales de la n-esfera son $H^0(S^n)$ y $H^n(S^n)$, ambos isomorfos a \mathbb{R} . Podemos utilizar esto para calcular $H^k(E)$. Sea $\omega \in Z^k(E)$, es decir, una forma cerrada antiinvariante. Puesto que ω es en particular una forma cerrada de S^n y $H^k(S^n)$ es trivial, existe $\eta \in \Omega^{k-1}(S^n)$ tal que $d\eta = \omega$. Si podemos demostrar que η es antiinvariante —esto es $\eta \in E^{k-1}$ — entonces tendremos que todo forma cerrada antiinvariante es una forma exacta antiinvariante. Es decir, tendremos $Z^k(E) = B^k(E)$ y por lo tanto $H^k(E) = 0$.

La descomposición de η en sus partes invariante e antiinvariante es

$$\eta = \frac{\eta + a^*\eta}{2} + \frac{\eta - a^*\eta}{2},$$

donde el primer término es la parte invariante, η_i , y el segundo la antiinvariante, η_a . Si aplicamos d obtenemos

$$d\eta = d\left(\frac{\eta + a^*\eta}{2}\right) + d\left(\frac{\eta - a^*\eta}{2}\right)$$
$$= \frac{d\eta + d(a^*\eta)}{2} + \frac{d\eta - d(a^*\eta)}{2}$$
$$= \frac{d\eta + a^*d\eta}{2} + \frac{d\eta - a^*d\eta}{2}$$

es decir, $(d\eta)_i = d(\eta_i)$ y $(d\eta)_a = d(\eta_a)$. Pero como $d\eta = \omega$ deducimos $d(\eta_i) = \omega_i$ y $d(\eta_a) = \omega_a$. Al ser ω antiinvariante, $\omega_i = 0$ y $\omega_a = \omega$. Entonces $\omega = d(\eta_a)$: hemos escrito ω como la imagen por d de una forma antiinvariante, η_a . Es decir, ω es cerrada. Por lo tanto $Z^k(E) = B^k(E)$ y $H^k(E) = 0$.

A continuación calculamos la cohomología de de Rham de \mathbb{PR}^n usando los resultados anteriores. \mathbb{PR}^n es conexo puesto que \mathbb{PR}^n es un cociente de S^n , que es también conexo. Entonces su primer grupo de cohomología es

$$H^0(\mathbb{P}\mathbb{R}^n) \cong \mathbb{R}.$$

Para los órdenes intermedios 0 < k < n "recortamos" la sucesión exacta larga de (2) y obtenemos las sucesions exactas

$$H^{k-1}(E) \xrightarrow{\delta} H^k(\mathbb{PR}^n) \xrightarrow{p^{**}} H^k(S^n)$$

Para 1 < k < n hemos calculado $H^{k-1}(E) = H^k(S^n) = 0$, por lo que deducimos que $H^k(\mathbb{PR}^n) = 0$ para 1 < k < n. En el caso k = 1 se obtiene el mismo resultado, pero no de forma immediata. Recordemos que las formas cerradas de $\Omega^0(S^n)$ son las formas constantes, mientras que la única forma exacta es la forma nula, que es invariante y antiinvariante a la vez. Consideremos una forma cerrada antiinvariante, f. Por ser cerrada debe ser constante, pongamos f(x) = C para todo $x \in S^n$. Pero por ser antiinvariante se tiene

$$C = f(x) = -f(a(x)) = -C$$

por lo que C=0. Es decir, la única 0-forma cerrada antiinvariante es la aplicación nula. En consecuencia $H^0(E)=0$, por lo que también podemos concluir $H^1(\mathbb{PR}^n)=0$.

Queda por calcular el grupo $H^n(\mathbb{PR}^n)$. Para ello tomamos el final de (2) y obtenemos la sucesión exacta corta

$$0 \longrightarrow H^n(\mathbb{PR}^n) \xrightarrow{p^{**}} H^n(S^n) \cong \mathbb{R} \xrightarrow{\mathrm{id}-a^{**}} H^n(E) \longrightarrow 0.$$

Por exactitud deducimos

$$H^n(\mathbb{PR}^n) \cong \operatorname{im} p^{**} = \ker(\operatorname{id} - a^{**}),$$

es decir, la cohomología en dimensión n de \mathbb{PR}^n es la cohomología de las n-formas invariantes de S^n .

La aplicación antipodal preserva la orientación para n impar y la invierte para n par. Efectivamente, el determinante de la lectura de $T_x a$ en las cartas inducidas por la inclusión $S^n \to \mathbb{P}\mathbb{R}^n$ es $(-1)^{n+1}$ en todo $x \in S^n$. De esto deducimos, cuando n es impar, que para una forma antiinvariante ω

$$\int_{S^1} \omega = \int_{a(S^1)} a^* \omega = \int_{S^1} -\omega = -\int_{S^1} \omega$$

por lo que las formas antiinvariantes tienen integral 0 en dimensión impar. En cambio, en dimensión par son las formas invariantes las que tienen integral nula. En efecto, puesto que en este caso a invierte la orientación,

$$\int_{S^1} \omega = -\int_{a(S^1)} a^* \omega = -\int_{S^1} \omega.$$

Por otro lado, puesto que S^n es orientable existe una forma volumen $\omega_0 \in \Omega^n(S^n)$ cuya integral sobre S^n no puede ser 0, por lo que, por el teoerema de Stokes, usando que S^n no tiene frontera, ω_0 no puede ser exacta. Al estar en la dimensión máxima, toda forma de S^n es cerrada. Y como $H^n(S^n) \cong \mathbb{R}$ se deduce que $H^n(S^n) = \langle [\omega_0] \rangle$. Descompongamos ω_0 en sus partes invariante y antiinvariante:

$$\omega_0 = \omega_0^i + \omega_0^a,$$

por lo que

$$\int_{S^1} = \int_{S^1} \omega_0^i + \int_{S^1} \omega_0^a.$$

En dimensión impar tenemos que $\int_{S^1} \omega_0^a = 0$ luego $\int_{S^1} \omega_0^i = \int_{S^1} \omega_0 \neq 0$, por lo que ω_0^i es una forma invariante cerrada pero no exacta, luego $H^n(\mathbb{PR}^n) \cong \ker(\mathrm{id} - a^*) = \langle [\omega_o^i] \rangle \cong \mathbb{R}$.

En dimensión par, en cambio no hay formas invariantes no exactas. Efectivamente, como $H^n(S^n) = \langle \omega_0 \rangle$, podemos escribir, para cualquier forma $\omega \in \Omega^n(\mathbb{PR}^n)$, $\omega = \lambda \omega_0 + d\alpha$ para $\lambda \in \mathbb{R}$ y $\alpha \in \Omega^{n-1}(S^n)$. Entones, si ω es invariante

$$0 = \int_{S^1} \omega = \lambda \int_{S^1} \omega_0 + \int_{S^1} d\alpha = \lambda \int_{S^1} \omega_0,$$

usando el teorema de Stokes para concluir $\int_{S^1} d\alpha = 0$. Entonces, como $\int_{S^1} \omega_0 \neq 0$ se sigue $\lambda = 0$. Es decir, toda n-forma invariante es exacta si n es par. α no necesariamente es una forma invariante, pero vimos anteriormente que $(d\alpha)_i = d(\alpha_i)$ por lo que $\omega = d(\alpha_i)$ y ω es una forma exacta de ker(id $-a^{**}$). Por lo tanto $H^n(\mathbb{PR}^n) \cong \ker(\mathrm{id} - a^{**}) = 0$.

Todo esto queda resumido como

$$H^{k}(\mathbb{PR}^{n}) \cong \begin{cases} \mathbb{R}, & \text{cuando } k = 0\\ 0, & \text{cuando } 0 < k < n\\ \mathbb{R}, & \text{cuando } k = n \text{ y } n \text{ impar}\\ 0, & \text{cuando } k = n \text{ y } n \text{ par} \end{cases}$$