CS310 Automata Theory – 2016-2017

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Lecture 25: Turing machines, computability

March 20, 2017

Introduction to Turing machines

What are Turing machines? Informal and formal definitions and examples.

Introduction to Turing machines

What are Turing machines? Informal and formal definitions and examples.

Configurations of a Turing machine.

Introduction to Turing machines

What are Turing machines? Informal and formal definitions and examples.

Configurations of a Turing machine.

Turing recognizable and Turing decidable languages.

Introduction to Turing machines

What are Turing machines? Informal and formal definitions and examples.

Configurations of a Turing machine.

Turing recognizable and Turing decidable languages.

k-tape TMs equivalent to 1-tape TMs.

Existence of unrecognizable languages.

 A_{TM} is recognizable but not decidable.

$$A_{TM} = \{(M, w) \mid M \text{ accepts } w\}$$

$$A_{TM} = \{(M, w) \mid M \text{ accepts } w\}$$

Lemma

A_{TM} is Turing recognizable.

Proof sketch

Design a TM, say N such that,

N behaves like M on w at each step,

if M reaches q_{acc} then N also accepts.

Is A_{TM} decidable?

Lemma

A_{TM} is not Turing decidable.

Assume that there exists M such that M decides A_{TM} .

Lemma

A_{TM} is not Turing decidable.

Assume that there exists M such that M decides A_{TM} .

What happens if we give D as input to itself?

Lemma

A_{TM} is not Turing decidable.

If D accepts $\langle D \rangle$ then D rejects $\langle D \rangle$.

If D rejects $\langle D \rangle$ then D accepts $\langle D \rangle$.

Behaviour of the machines.

Behaviour of the machines.

Behaviour of the machines.

Behaviour of H.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$		
M_1	✓	×	✓	✓	
M_2	~	×	×	×	 ✓×✓
<i>M</i> ₃ : : :	×	×	✓	×	√

Behaviour of H.

Behaviour of D.

Behaviour of D on itself.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\ldots \langle D \rangle \ldots$	
M_1	<i>\\\\</i> //×	×	✓	✓	
M_2	✓	* ~	×	×	✓×✓
<i>M</i> ₃ : : :	×	×	#//×	×	······································
D				?	

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable.

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\cal H}$ be the TM deciding Halt.

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\mathcal H}$ be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w).

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\cal H}$ be the TM deciding Halt.

A: Run \mathcal{H} on (M, w). If it rejects then reject,

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\cal H}$ be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject, else do as per M on w.

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let \mathcal{H} be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject, else do as per M on w.

 \mathcal{A} accepts (M, w) if M accepts w

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\cal H}$ be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject, else do as per M on w.

 ${\mathcal A}$ accepts (M,w) if M accepts w and rejects it if either M rejects w

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\cal H}$ be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject, else do as per M on w.

 \mathcal{A} accepts (M, w) if M accepts w and rejects it if either M rejects w or M loops forever on w.

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\cal H}$ be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject, else do as per M on w.

 \mathcal{A} accepts (M, w) if M accepts w and rejects it if either M rejects w or M loops forever on w.

 ${\mathcal H}$ decides Halt if and only if ${\mathcal A}$ decides A_{TM} .

12 / 16

Lemma

The halting problem, $Halt = \{(M, w) \mid M \text{ halts on } w\}$, is undecidable.

Lemma

The halting problem, $Halt = \{(M, w) \mid M \text{ halts on } w\}$, is undecidable.

Lemma

The halting problem, $Halt = \{(M, w) \mid M \text{ halts on } w\}$, is undecidable.

Lemma

The halting problem, $Halt = \{(M, w) \mid M \text{ halts on } w\}$, is undecidable.

Lemma

The halting problem, $Halt = \{(M, w) \mid M \text{ halts on } w\}$, is undecidable.

If Halt is decidable then A decides A_{TM}

Lemma

The halting problem, $Halt = \{(M, w) \mid M \text{ halts on } w\}$, is undecidable.

Another way to describe the same proof.

If Halt is decidable then A decides A_{TM} , which is a contradiction.

Emptiness problem for TM

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset\}$, is undecidable.

Assume for the sake of contradiction that it is decidable.

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset\}$, is undecidable.

Assume for the sake of contradiction that it is decidable. Let T be a machine that decides E_{TM} .

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset \}$, is undecidable.

Assume for the sake of contradiction that it is decidable. Let T be a machine that decides E_{TM} .

Let $T'_{M,w}$ be as follows:

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset \}$, is undecidable.

Assume for the sake of contradiction that it is decidable. Let T be a machine that decides E_{TM} .

```
Let T'_{M,w} be as follows:
```

```
On input x
{

if w \neq x then reject else do as per M
}
```

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset \}$, is undecidable.

Assume for the sake of contradiction that it is decidable. Let \mathcal{T} be a machine that decides $E_{\mathcal{T}M}$.

```
Let T'_{M,w} be as follows: Let A be as follows:
```

```
On input x
{

if w \neq x then reject else do as per M
}
```

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset \}$, is undecidable.

Assume for the sake of contradiction that it is decidable. Let \mathcal{T} be a machine that decides $E_{\mathcal{T}M}$.

```
On input M, w
\{
Create machine T'_{M,w}.
If T on \langle T'_{M,w} \rangle rejects then accept else reject
```

Let A be as follows:

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Let M_1 be a machine that rejects all strings. That is, $L(M_1) = \emptyset$.

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Let M_1 be a machine that rejects all strings. That is, $L(M_1) = \emptyset$.

Given a machine M_2 as an input, use M to check whether $L(M_2) = L(M_1)$

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Let M_1 be a machine that rejects all strings. That is, $L(M_1) = \emptyset$.

Given a machine M_2 as an input, use M to check whether $L(M_2) = L(M_1)$, i.e. to check whether $L(M_2) = \emptyset$ or not.

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Let M_1 be a machine that rejects all strings. That is, $L(M_1) = \emptyset$.

Given a machine M_2 as an input, use M to check whether $L(M_2) = L(M_1)$, i.e. to check whether $L(M_2) = \emptyset$ or not.

This implies that if EQ_{TM} is decidable then E_{TM} is decidable.

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Let M_1 be a machine that rejects all strings. That is, $L(M_1) = \emptyset$.

Given a machine M_2 as an input, use M to check whether $L(M_2) = L(M_1)$, i.e. to check whether $L(M_2) = \emptyset$ or not.

This implies that if EQ_{TM} is decidable then E_{TM} is decidable.

But from the previous result we know that E_{TM} is undecidable.

Regularity checking

Lemma

 $REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \} \text{ is undecidable.}$

Regularity checking

Lemma

 $REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \} \text{ is undecidable.}$