

CYSJ302C GaAs HALL-EFFECT ELEMENTS

CYSJ302C series Hall-effect element is a ion-implanted magnetic field sensor made of monocrystal gallium arsenide (GaAs) semiconductor material group III-V using ion-implanted technology. It can convert a magnetic flux density signal linearly into voltage output.

FEATURES

High Linearity

- Superior Temperature Stability
- Miniature Package
- Replacements of THS119, KSY14 and KSY44 etc.

TYPICAL APPLICATION

- Magnetic Field Measurement
- DC Brushless Motor
- Current Sensor
- Non-contact Switch
- Position Control
- Detection of Revolution

V_c, I_c 1(±) 2(±) V_H

4(∓)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Max. Input Voltage	V _C	10V	V
Max. Input Power	P _D	150	mW
Operating temperature range	T _A	-40~125	°C
Storage temperature range	Ts	-40~150	°C
MTBF (Mean Time Between Failure)		>100k	hour

ELECTRICAL CHARACTERISTICS (T_A=25°C)

Parameter	Symbol	Test conditions	Value	Unit
Hall output voltage	V _H	B=50mT, V _C =6V	55~75	mV
Offset voltage	Vos(Vu)	V _C =6V, B=0	±11	mV
Input resistance	R _{in}	B=0mT, I_C =0.1mA	650~850	Ω
Output resistance	R _{out}	B=0mT, I _C =0.1mA	650~850	Ω
Temperature coefficient of Hall output voltage	αV _H	I _C =5mA , B=50mT (Ta=25°C ~ 125°C)	Max: -0.06	%/°C
Temperature coefficient of input resistance	αR _{in}	I _C =0.1mA , B=0mT (Ta=25°C ~ 125°C)	0.3	%/°C
Linearity	ΔK_H	I _C =5mA B=0.1/0.5T	2	%

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

Notes: $V_H = V_{HM} - V_{OS}(V_u)$ (V_{HM} : measured voltage)

$$\alpha V_{H} = \frac{1}{V_{H}(T_{1})} \times \frac{V_{H}(T_{2}) - V_{H}(T_{1})}{T_{2} - T_{1}} \times 100, \qquad \alpha R_{in} = \frac{1}{R_{in}(T_{1})} \times \frac{R_{in}(T_{2}) - R_{in}(T_{1})}{T_{2} - T_{1}} \times 100$$

$$\Delta K_{H} = \frac{K(B_{1}) - K(B_{2})}{[K(B_{1}) + K(B_{2})]} \times 200 \qquad K_{H} = \frac{V_{H}}{I_{C}B}$$

$$T_{1} = 25^{\circ}\text{C}, \ T_{2} = 125^{\circ}\text{C}, \quad B_{1} = 0.5\text{T}, \ B_{2} = 0.1\text{T}$$

Package Outline Drawing (Unit: mm)

Characteristic Curves

Allowable Package Power Dissipation

Connection

Application Notes

The Hall voltage V_H can be positive and negative. But if one connects the sensor as follows (circuit 1):

Pin 1: positive input voltage V+, for instance +5VDC.

Pin 3: GND
Pin 2: OUTPUT
Pin 4: GND

One can only measure the positive voltage at the pin 2. This means that the output voltage at zero magnetic field is not zero. This voltage is called as offset voltage. The output voltage in this case is not equal to the Hall voltage. The output voltage is equal to the sum of offset voltage and Hall voltage.

The offset voltage will be zero if you connect double power supplies V+ and V- to the sensor (circuit 2):

Pin 1: positive input voltage V+, for instance +5VDC. Pin 3: negative input voltage V-, for instance -5VDC

Pin 2: OUTPUT
Pin 4: GND

In this case the output voltage is equal to the Hall Voltage.