

دانشگاه اصفهان دانشکده مهندسی کامپیوتر

# مستند پروژه اول یادگیری ماشین

درس مبانی یادگیری ماشین استاد درس: دکتر کیانی

امیرعلی لطفی (۳۵۰۳۶۱۳۰۵۳)

بهار ۱۴۰۳

#### مقدمه

در این مستند به گزارش تجزیه و تحلیلهای انجام شده بر روی پروژه اول یادگیری ماشین پرداخته میشود و راههای مختلفی که آزمایش شدند با یکدیگر مقایسه میشوند.

## بخش اول: آمادهسازی داده

در این بخش به ۴ عمل مهم میتوان اشاره کرد:

### ۱) تشخیص ستونهای فاقد ارزش

ستون "CLIENTNUM" برای هر مشتری یکتا میباشد و در واقع شناسه آن مشتری در بانک است. این ستون هیچ ارزشی را به دادههای مسئله اضافه نمیکند.

ستون "Unnamed 19" نيز براي همه دادهها بدون مقدار است.

این ۲ ستون را از دیتاست حذف میکنیم:

df = df.drop(columns=["CLIENTNUM", "Unnamed: 19"])

### ۲) حذف دادههای پرت

با استفاده از فرمول زیر میتوان دادههای پرت را از هر ستون تشخیص داد و آنها را حذف نمود:

IQR = Q3 - Q1

Lower Bound = Q1-1.5 \* IQR

Upper Bound = Q3 + 1.5 \* IQR

حال هر دادهای که از Lower Bound کوچکتر و یا از Upper Bound بزرگتر باشد را حذف میکنیم.

### ۲) مدیریت مقادیر N/A

یکپارچه سازی مقادیر NULL

با جستجو در دیتاست، مشاهده میشود که در بعضی ستونها مقادیر N/A به صورت رشتهای آمدهاند. این مقادیر را به منظور مدیریت بهتر و یکیارچه سازی دادهها به مقدار np.nan تبدیل میکنیم:

```
df = df.replace('Unknown', np.nan)
```

برخورد با مقادیر N/A

با مقادیر N/A میتوان به ۲ صورت برخورد کرد:

#### ۱- حذف کل آن سطر که شامل حداقل یک داده N/A میباشد:

در این روش حدود ۴۴ درصد دادهها حذف خواهند شد که عدد بسیار بزرگی است. پس این روش باعث از دست رفتن اطلاعات زیادی میشود. در نتیجه در این پروژه استفاده نشده است.

#### ۲- پر کردن آن داده بر اساس دادههای موجود:

#### ۲.۱- استفاده از نتایج آماری:

برای مثال میتوان مقادیر N/A هر ستون را با مد آن ستون جایگزین کرد.

عملکرد مدل در حالتی که مقادیر به صورت زیر پر شوند، به شرح زیر خواهد بود:

```
df = df.fillna({
    "Gender": df["Gender"].mode()[0],
    "Education_Level": df["Education_Level"].mode()[0],
    "Marital_Status": df["Marital_Status"].mode()[0],
    "Income_Category": df["Income_Category"].mode()[0],
    "Card_Category": df["Card_Category"].mode()[0],
    "Months_on_book": df["Months_on_book"].mean(),
    "Total_Relationship_Count": df["Total_Relationship_Count"].mean(),
})
```

Mean Squared Error: 11257063.139577858

R-squared: 0.8612194648911345

#### ۲.۲- مدلهای یادگیری ماشین:

در این روش میتوان با استفاده از مدلهای KNN یا KMeans مقادیر ناموجود را بر اساس دیگر دادهها حدس زد.

در روش KNN، عملکرد مدل به شرح زیر میباشد:

Mean Squared Error: 10274570.39934987

R-squared: 0.870661325954436

### ۳) حذف دادههای تکراری

با حذف دادههای تکراری از overfit شدن مدل جلوگیری میشود، اما ممکن است که اطلاعاتی را از دست بدهیم و به اصطلاح data loss داشته باشیم.

df.duplicated().sum() Output:35

مشاهده میشود که ۳۵ داده تکراری وجود دارد. آنها از دیتاست حذف میکنیم:

df = df.drop\_duplicates()

## توزیع و نسبت دادهها

برای پیدا کردن دید نسبت به دادهها چند نمودار قرار داده شده است:

## نسبت سطوح درآمدی

تقریبا با رشد سطح درآمد، نسبت کاهش پیدا میکند.



## نسبت نوع کارتها

تقریبا حدود ۵ درصد از کارتهایی به غیر از Blue استفاده میکنند به طوری حدود ۷۵ درصد مشتریان دارای کارت Blue هستند و از ۱۸.۸ درصد دادهای در دسترس نیست.





### نسبت سطوح تحصيلات

در نمودارهای زیر مشخص است که بیشترین درصد متعلق به افراد Graduate میباشد. همچنین دادههای nan نیز حدود ۱۵ درصد دادههای را تشکیل میدهند که به نسبت، درصد زیادی است.





#### نسبت جنسیت

نسبت جنسیت زن و مرد بسیار نزدیک به هم میباشد.



**توزیع سن** طبق این نمودارها میتوان دریافت کرد که سن افراد از یک توزیع نرمال پیروی میکند.



بیشترین درصد متعلق به افراد متاهل، و سپس با اختلاف کمی افراد مجرد قرار دارند. داده وضعیت تاهل ۲۵ درصد مشتریان در دسترس نیست. حدود ۶ درصد مشتریان نیز طلاق گرفتهاند.

از آنجایی که نسبت افرادی که وضعیت تاهلشان مشخص نیست، بزرگ است، این را یک دسته جداگانه در نظر میگیریم.



## مقايسه مدلها

با کمک کتابخانه pycaret به مقایسه عملکرد مدلهای مختلف پرداخته شد. نتایج به صورت زیر است:

| Model                              | MAE       | MSE           | RMSE      | R2     | RMSLE  | MAPE   | TT (Sec) |
|------------------------------------|-----------|---------------|-----------|--------|--------|--------|----------|
| Random Forest Regressor            | 1334.9235 | 11778751.9325 | 3422.8344 | 0.8586 | 0.4235 | 0.2907 | 5.2470   |
| Light Gradient Boosting<br>Machine | 1435.3349 | 11835470.0128 | 3426.0900 | 0.8582 | 0.4273 | 0.3030 | 1.9280   |
| Gradient Boosting<br>Regressor     | 1758.9642 | 12166495.3747 | 3482.6628 | 0.8539 | 0.4428 | 0.3503 | 1.5080   |

| Extra Trees Regressor           | 1359.8433 | 12187763.5359 | 3480.2951 | 0.8536  | 0.4274 | 0.2966 | 3.1170 |
|---------------------------------|-----------|---------------|-----------|---------|--------|--------|--------|
| Extreme Gradient Boosting       | 1581.1646 | 13202859.6000 | 3623.8348 | 0.8417  | 0.4770 | 0.3312 | 0.3610 |
| Decision Tree Regressor         | 1736.9758 | 22207422.4650 | 4687.6932 | 0.7339  | 0.5423 | 0.3412 | 0.0950 |
| AdaBoost Regressor              | 3143.6964 | 22496025.7708 | 4735.6103 | 0.7296  | 0.6523 | 0.7792 | 0.1560 |
| Lasso Least Angle<br>Regression | 4185.7802 | 33224433.1190 | 5762.6871 | 0.6007  | 0.8646 | 0.8834 | 0.0530 |
| Ridge Regression                | 4184.2513 | 33228498.5363 | 5763.0387 | 0.6007  | 0.8695 | 0.8824 | 0.0330 |
| Lasso Regression                | 4185.7801 | 33224432.0498 | 5762.6871 | 0.6007  | 0.8646 | 0.8834 | 0.0370 |
| Linear Regression               | 4186.9032 | 33228883.2399 | 5763.0788 | 0.6007  | 0.8618 | 0.8839 | 0.6660 |
| Least Angle Regression          | 4207.4679 | 33243953.2488 | 5764.4788 | 0.6004  | 0.8667 | 0.8968 | 0.0580 |
| Elastic Net                     | 5269.4364 | 52997302.8355 | 7275.7807 | 0.3639  | 0.8176 | 1.0704 | 0.0600 |
| Huber Regressor                 | 5103.8892 | 59806184.7916 | 7727.4020 | 0.2826  | 0.8057 | 0.8137 | 0.1700 |
| Bayesian Ridge                  | 6753.1257 | 80541007.4343 | 8970.4188 | 0.0333  | 1.0197 | 1.4920 | 0.0610 |
| Orthogonal Matching<br>Pursuit  | 6752.7758 | 80611662.1821 | 8974.3644 | 0.0325  | 1.0221 | 1.5012 | 0.0550 |
| Dummy Regressor                 | 6891.0459 | 83374674.4000 | 9127.8686 | -0.0010 | 1.0421 | 1.5606 | 0.0280 |
| K Neighbors Regressor           | 6764.3771 | 88212301.6000 | 9387.0979 | -0.0591 | 1.0215 | 1.3874 | 0.1180 |

| Passive Aggressive | 11657.5442 | 201668887.2806 | 13978.5666 | -1.4381 | 1.4516 | 3.0140 |  |
|--------------------|------------|----------------|------------|---------|--------|--------|--|
| Regressor          |            |                |            |         |        |        |  |
|                    |            |                |            |         |        |        |  |

با توجه به جدول بالا، مدل Random Forset Regressor نتایج بهتری نسبت به دیگر مدلها داشته است.

### تلاش برای بهبود مدل

برای بهبود دادن مدل، سعی بر استفاده از خوشهبندی به عنوان preprocess شد. ابتدا با استفاده از الگوریتم K-Means، به ۳ خوشه تقسیم میشوند. (تعداد خوشهها با آزمون و خطا بهینه شده است). سپس خوشهبندی روی دادههای train انجام میشود و برای هر خوشه یک مدل RandomForestRegressor آموزش داده میشود.

مراکز به دست آمده از خوشهها:

```
array([[-2.60581868e-02,
                          1.27002378e-03, 4.29382528e-02,
       -5.30971112e-02,
                          1.48325073e-02, -3.44072954e-02,
        2.95260176e-03,
                          1.42960234e-02,
                                          7.01058972e-03,
        6.61656958e-02,
                          4.26513247e-02,
                                          3.76544453e-03,
        -2.89291340e-02,
                          1.68923284e-02,
                                          1.33758207e-02,
        -7.66243393e-01, -6.75376233e-01,
                                          1.70734775e+00,
       -8.56826541e-03],
       [-3.38231701e-02, -3.41138034e-02, -4.93338133e-02,
       -2.02813439e-02, -4.38450223e-02, 2.53843167e-02,
        4.53628634e-03, -7.04375350e-02, -1.65136565e-02,
        1.52231262e-01, 2.05088403e-01, 2.49085585e-02,
        -3.71064337e-02, -2.71540730e-02,
                                          5.86371897e-02,
        -7.66243393e-01,
                          1.25144052e+00, -5.85703763e-01,
        -1.43865710e-02],
       [ 4.69760793e-02,
                          2.95207662e-02, 1.60499918e-02,
        5.24570403e-02,
                          2.93855704e-02, -2.76755846e-04,
                          5.33871603e-02, 1.01445948e-02,
        -5.94883606e-03.
       -1.78296442e-01, -2.10070742e-01, -2.45966998e-02,
        5.17574331e-02, 1.32039397e-02, -6.08274072e-02,
        1.17823803e+00, -6.75376233e-01, -5.85703763e-01,
```

سپس در فاز predict، برای هر داده ابتدا نزدیکترین خوشه به دست میآید، سپس با استفاده از مدل آن خوشه، مقدار Credit Limit حدس زده میشود.

عملکرد این مدل به شرح زیر است:

Mean Squared Error (MSE): 11972238.599267434 R-squared (R2) Score: 0.8492906850991695

اما متاسفانه این روش از حالتی که تنها یک مدل RandomForestRegressor آموزش داده شود، به طور ناچیز عملکرد بدتری داشت.

## مقایسه مدلهای نهایی

| Model                  | MSE            | R2        |
|------------------------|----------------|-----------|
| Linear Regression      | حدود ۳۳ میلیون | حدود ۶۶.۰ |
| Random Forest          | حدود ۱۰ میلیون | حدود ۸۷.۰ |
| KMeans + Random Forest | حدود ۱۱ میلیون | حدود ۸۴.۰ |