Análise Estatística de Simuladores Introdução à Emulação

Leo Bastos¹ Richard Wilkinson²

¹Departamento de Estatística

²Department of Statistics

190 SINAPE

Outline

- Introdução
 - Simulador
 - O problema
 - Meta-modelagem
 - Exemplo
- Processos Gaussianos
 - Definição
 - Normal multivariada
 - Função de média e covariância
 - Quando? Por que? Onde?
- 3 Emulador gaussiano
 - Emulador t
 - Exemplos

Outline

- Introdução
 - Simulador
 - O problema
 - Meta-modelagem
 - Exemplo
- Processos Gaussianos
 - Definição
 - Normal multivariada
 - Função de média e covariância
 - Quando? Por que? Onde?
- 3 Emulador gaussiano
 - Emulador t
 - Exemplos

- **x** vetor de inputs $\longrightarrow y = \eta(\mathbf{x})$ é uma escalar
- ullet Queremos aprender sobre o processo representado por $\eta(\cdot)$
- Experimento computacional consiste em um conjunto de rodadas do simulador para diferentes inputs.

- **x** vetor de inputs $\longrightarrow y = \eta(\mathbf{x})$ é uma escalar
- ullet Queremos aprender sobre o processo representado por $\eta(\cdot)$
- Experimento computacional consiste em um conjunto de rodadas do simulador para diferentes inputs.

- **x** vetor de inputs $\longrightarrow y = \eta(\mathbf{x})$ é uma escalar
- Queremos aprender sobre o processo representado por $\eta(\cdot)$
- Experimento computacional consiste em um conjunto de rodadas do simulador para diferentes inputs.

- **x** vetor de inputs $\longrightarrow y = \eta(\mathbf{x})$ é uma escalar
- Queremos aprender sobre o processo representado por $\eta(\cdot)$
- Experimento computacional consiste em um conjunto de rodadas do simulador para diferentes inputs.

- Deseja-se observar $\eta(\cdot)$ nos inputs $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ para N grande
- Análises de incerteza ou sensibilidade via Monte Carlo.
- Para $\eta(\cdot)$ computacionalmente caro, não é prático rodar o código um número N grande de vezes.
- Será que podemos fazer análises de interesse usando um conjunto de rodadas {η(x₁),...,η(x_n)} com n << N?

- Deseja-se observar $\eta(\cdot)$ nos inputs $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ para N grande
- Análises de incerteza ou sensibilidade via Monte Carlo.
- Para η(·) computacionalmente caro, não é prático rodar o código um número N grande de vezes.
- Será que podemos fazer análises de interesse usando um conjunto de rodadas {η(x₁),...,η(x_n)} com n << N?

- Deseja-se observar $\eta(\cdot)$ nos inputs $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ para N grande
- Análises de incerteza ou sensibilidade via Monte Carlo.
- Para $\eta(\cdot)$ computacionalmente caro, não é prático rodar o código um número N grande de vezes.
- Será que podemos fazer análises de interesse usando um conjunto de rodadas {η(x₁),...,η(x_n)} com n << N?

- Deseja-se observar $\eta(\cdot)$ nos inputs $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ para N grande
- Análises de incerteza ou sensibilidade via Monte Carlo.
- Para $\eta(\cdot)$ computacionalmente caro, não é prático rodar o código um número N grande de vezes.
- Será que podemos fazer análises de interesse usando um conjunto de rodadas $\{\eta(\mathbf{x}_1), \dots, \eta(\mathbf{x}_n)\}\$ com n << N?

- Embora determinístico, o output de $\eta(\mathbf{x})$ é incerto.
- Após rodar o simulador em x, o output é conhecido sem incerteza
- Meta-modelo é um modelo que imita o modelo $\eta(\cdot)$ Regressão, Redes neurais, splines, processos gaussianos.
- **Emulador** é uma representação estocástica de nossos julgamentos a respeito de $\eta(\cdot)$. (Sacks et al. 1989, Technometrics)
- Nós consideramos emuladores baseados em processos Gaussianos

- Embora determinístico, o output de $\eta(\mathbf{x})$ é incerto.
- ullet Após rodar o simulador em ${f x}$, o output é conhecido sem incerteza.
- Meta-modelo é um modelo que imita o modelo $\eta(\cdot)$ Regressão, Redes neurais, splines, processos gaussianos.
- Emulador é uma representação estocástica de nossos julgamentos a respeito de $\eta(\cdot)$. (Sacks et al. 1989, Technometrics)
- Nós consideramos emuladores baseados em processos Gaussianos

- Embora determinístico, o output de $\eta(\mathbf{x})$ é incerto.
- ullet Após rodar o simulador em ${f x}$, o output é conhecido sem incerteza.
- Meta-modelo é um modelo que imita o modelo $\eta(\cdot)$ Regressão, Redes neurais, splines, processos gaussianos.
- **Emulador** é uma representação estocástica de nossos julgamentos a respeito de $\eta(\cdot)$. (Sacks et al. 1989, Technometrics)
- Nós consideramos emuladores baseados em processos Gaussianos

- Embora determinístico, o output de $\eta(\mathbf{x})$ é incerto.
- Após rodar o simulador em x, o output é conhecido sem incerteza.
- Meta-modelo é um modelo que imita o modelo $\eta(\cdot)$ Regressão, Redes neurais, splines, processos gaussianos.
- **Emulador** é uma representação estocástica de nossos julgamentos a respeito de $\eta(\cdot)$. (Sacks et al. 1989, Technometrics)
- Nós consideramos emuladores baseados em processos Gaussianos

- Embora determinístico, o output de $\eta(\mathbf{x})$ é incerto.
- Após rodar o simulador em x, o output é conhecido sem incerteza.
- Meta-modelo é um modelo que imita o modelo $\eta(\cdot)$ Regressão, Redes neurais, splines, processos gaussianos.
- **Emulador** é uma representação estocástica de nossos julgamentos a respeito de $\eta(\cdot)$. (Sacks et al. 1989, Technometrics)
- Nós consideramos emuladores baseados em processos Gaussianos

Incerteza sobre funções determinísticas

- $\eta(\cdot)$ é tratado como uma função "incerta", cuja incerteza é descrita por uma função de distribuição de probabilidade (priori)
- Essa distribuição de probabilidade representa crenças subjetivas; $\eta(\cdot)$ não possui uma distribuição de probabilidade verdadeira.
- Suponha que para um particular simulador com 1 input estamos interessados em $\eta(1)$

Incerteza sobre funções determinísticas

- $\eta(\cdot)$ é tratado como uma função "incerta", cuja incerteza é descrita por uma função de distribuição de probabilidade (priori)
- Essa distribuição de probabilidade representa crenças subjetivas; $\eta(\cdot)$ **não** possui uma distribuição de probabilidade verdadeira.
- Suponha que para um particular simulador com 1 input estamos interessados em $\eta(1)$

Incerteza sobre funções determinísticas

- $\eta(\cdot)$ é tratado como uma função "incerta", cuja incerteza é descrita por uma função de distribuição de probabilidade (priori)
- Essa distribuição de probabilidade representa crenças subjetivas; $\eta(\cdot)$ **não** possui uma distribuição de probabilidade verdadeira.
- Suponha que para um particular simulador com 1 input estamos interessados em $\eta(1)$

Seja $\eta(\cdot)$ um simulador

Suponha que temos interesse em conhecer $\eta(1)$.

• Quanto vale $\eta(1)$?

Note que sabemos que:

-1.8001	
1.0000	

- Interpolação linear: $\eta(1) \approx 6.2920$
- Regressão linear: $\eta(1) \approx 5.7568$ (4.9339, 6.5797)
- Processos gaussianos: $\eta(1) \approx 6.5375$ (6.5342, 6.5408)

- Quanto vale $\eta(1)$?
- Note que sabemos que:

Χ	$\eta(x)$
-4.3001	0.2992
-1.8001	2.9726
0.0003	6.0003
1.0000	$\eta(1) = 6.5403$
2.0002	6.5839
3.0001	7.0101
4.4004	9.0934

- Interpolação linear: $\eta(1) \approx 6.2920$
- Regressão linear: $\eta(1) \approx 5.7568$ (4.9339, 6.5797)
- Processos gaussianos: $\eta(1) \approx 6.5375$ (6.5342, 6.5408)

- Quanto vale $\eta(1)$?
- Note que sabemos que:

Χ	$\eta(x)$
-4.3001	0.2992
-1.8001	2.9726
0.0003	6.0003
1.0000	$\eta(1) = 6.5403$
2.0002	6.5839
3.0001	7.0101
4.4004	9.0934

- Interpolação linear: $\eta(1) \approx 6.2920$
- Regressão linear: $\eta(1) \approx 5.7568$ (4.9339, 6.5797)
- Processos gaussianos: $\eta(1) \approx 6.5375 \ (6.5342, 6.5408)$

- Quanto vale $\eta(1)$?
- Note que sabemos que:

Χ	$\eta(x)$
-4.3001	0.2992
-1.8001	2.9726
0.0003	6.0003
1.0000	$\eta(1) = 6.5403$
2.0002	6.5839
3.0001	7.0101
4.4004	9.0934

- Interpolação linear: $\eta(1) \approx 6.2920$
- Regressão linear: $\eta(1) \approx 5.7568 (4.9339, 6.5797)$
- Processos gaussianos: $\eta(1) \approx 6.5375$ (6.5342, 6.5408)

- Quanto vale $\eta(1)$?
- Note que sabemos que:

Χ	$\eta(x)$
-4.3001	0.2992
-1.8001	2.9726
0.0003	6.0003
1.0000	$\eta(1) = 6.5403$
2.0002	6.5839
3.0001	7.0101
4.4004	9.0934

- Interpolação linear: $\eta(1) \approx 6.2920$
- Regressão linear: $\eta(1) \approx 5.7568$ (4.9339, 6.5797)
- Processos gaussianos: $\eta(1) \approx 6.5375 \ (6.5342, 6.5408)$

- Quanto vale $\eta(1)$?
- Note que sabemos que:

Χ	$\eta(x)$
-4.3001	0.2992
-1.8001	2.9726
0.0003	6.0003
1.0000	$\eta(1) = 6.5403$
2.0002	6.5839
3.0001	7.0101
4.4004	9.0934

- Interpolação linear: $\eta(1) \approx 6.2920$
- Regressão linear: $\eta(1) \approx 5.7568 (4.9339, 6.5797)$
- Processos gaussianos: $\eta(1) \approx 6.5375 \ (6.5342, 6.5408)$

Outline

- Introdução
 - Simulador
 - O problema
 - Meta-modelagem
 - Exemplo
- Processos Gaussianos
 - Definição
 - Normal multivariada
 - Função de média e covariância
 - Quando? Por que? Onde?
- 3 Emulador gaussiano
 - Emulador t
 - Exemplos

Processo Gaussiano

- Processos gaussianos são usados para reprensentar a nossa incerteza sobre uma função desconhecida.
- Dizemos que $\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$ quando

$$\mathbf{Y} = (\eta(\mathbf{x}_1), \dots, \eta(\mathbf{x}_n)) \sim MVN_n(m(\mathbf{X}), V(\mathbf{X}, \mathbf{X}))$$

Um processo gaussiano é caracterizado pela função de média

$$m(\mathbf{x}) = \mathbb{E}(\eta(\mathbf{x}))$$

e pela função de covariância

$$V(\mathbf{x}, \mathbf{x}') = \mathbb{C}ov(\eta(\mathbf{x}), \eta(\mathbf{x}'))$$

Processo Gaussiano

- Processos gaussianos são usados para reprensentar a nossa incerteza sobre uma função desconhecida.
- Dizemos que $\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$ quando

$$\mathbf{Y} = (\eta(\mathbf{x}_1), \dots, \eta(\mathbf{x}_n)) \sim MVN_n(m(\mathbf{X}), V(\mathbf{X}, \mathbf{X}))$$

Um processo gaussiano é caracterizado pela função de média

$$m(\mathbf{x}) = \mathbb{E}(\eta(\mathbf{x}))$$

e pela função de covariância

$$V(\mathbf{x}, \mathbf{x}') = \mathbb{C}ov(\eta(\mathbf{x}), \eta(\mathbf{x}'))$$

Processo Gaussiano

- Processos gaussianos são usados para reprensentar a nossa incerteza sobre uma função desconhecida.
- Dizemos que $\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$ quando

$$\mathbf{Y} = (\eta(\mathbf{x}_1), \dots, \eta(\mathbf{x}_n)) \sim MVN_n(m(\mathbf{X}), V(\mathbf{X}, \mathbf{X}))$$

Um processo gaussiano é caracterizado pela função de média

$$m(\mathbf{x}) = \mathbb{E}(\eta(\mathbf{x}))$$

e pela função de covariância

$$V(\mathbf{x}, \mathbf{x}') = \mathbb{C}ov(\eta(\mathbf{x}), \eta(\mathbf{x}'))$$

Normal Multivariada

• Seja $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ um vetor de tamanho n. Dizemos que esse vetor segue uma distribuição normal multivariada com vetor de médias μ e matriz de covariância Σ se

$$f(\mathbf{y}|\mu, \Sigma) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{y} - \mu)^T \Sigma^{-1}(\mathbf{y} - \mu)\right\}$$

onde

$$\mathbb{E}[\mathbf{Y}] = \mu$$

$$\mathbb{C}ov[Y_i, Y_j] = \Sigma_{i,j}$$

Voltando aos processos gaussianos: suponha que

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

Normal Multivariada

• Seja $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ um vetor de tamanho n. Dizemos que esse vetor segue uma distribuição normal multivariada com vetor de médias μ e matriz de covariância Σ se

$$f(\mathbf{y}|\mu, \Sigma) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{y} - \mu)^T \Sigma^{-1}(\mathbf{y} - \mu)\right\}$$

onde

$$\mathbb{E}[\mathbf{Y}] = \mu$$

$$\mathbb{C}ov[Y_i, Y_j] = \Sigma_{i,j}$$

Voltando aos processos gaussianos: suponha que

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

A função de média – $m(\cdot)$

• A função de média: deve incorporar qualquer conhecimento prévio a respeito de $\eta(\cdot)$.

$$\mathbb{E}(\eta(\mathbf{x})) = m(\mathbf{x})$$

- usa-se como média uma aproximação para $\eta(\cdot)$, que deve incorporar qualquer conhecimento a priori a respeito da estrutura de η .
- Uma aproximação paramétrica simples, e bastante usada, para $\eta(\cdot)$ é dada por

$$m(\mathbf{x}) = h(\mathbf{x})^T \beta$$

- onde devemos aprender a respeito de β usando dados de treinamento.
- Podemos usar quaisquer funções a priori para a média, embora funções lineares tenham propriedades analíticas desejáveis.

A função de média – $m(\cdot)$

• A função de média: deve incorporar qualquer conhecimento prévio a respeito de $\eta(\cdot)$.

$$\mathbb{E}(\eta(\mathbf{x})) = m(\mathbf{x})$$

- usa-se como média uma aproximação para $\eta(\cdot)$, que deve incorporar qualquer conhecimento a priori a respeito da estrutura de η .
- Uma aproximação paramétrica simples, e bastante usada, para $\eta(\cdot)$ é dada por

$$m(\mathbf{x}) = h(\mathbf{x})^T \beta$$

- onde devemos aprender a respeito de β usando dados de treinamento.
- Podemos usar quaisquer funções a priori para a média, embora funções lineares tenham propriedades analíticas desejáveis.

A função de média – $m(\cdot)$

• A função de média: deve incorporar qualquer conhecimento prévio a respeito de $\eta(\cdot)$.

$$\mathbb{E}(\eta(\mathbf{x})) = m(\mathbf{x})$$

- usa-se como média uma aproximação para $\eta(\cdot)$, que deve incorporar qualquer conhecimento a priori a respeito da estrutura de η .
- Uma aproximação paramétrica simples, e bastante usada, para $\eta(\cdot)$ é dada por

$$m(\mathbf{x}) = h(\mathbf{x})^T \beta$$

onde devemos aprender a respeito de β usando dados de treinamento.

 Podemos usar quaisquer funções a priori para a média, embora funções lineares tenham propriedades analíticas desejáveis.

A função de média – $m(\cdot)$

• A função de média: deve incorporar qualquer conhecimento prévio a respeito de $\eta(\cdot)$.

$$\mathbb{E}(\eta(\mathbf{x})) = m(\mathbf{x})$$

- usa-se como média uma aproximação para $\eta(\cdot)$, que deve incorporar qualquer conhecimento a priori a respeito da estrutura de η .
- Uma aproximação paramétrica simples, e bastante usada, para $\eta(\cdot)$ é dada por

$$m(\mathbf{x}) = h(\mathbf{x})^T \beta$$

onde devemos aprender a respeito de β usando dados de treinamento

 Podemos usar quaisquer funções a priori para a média, embora funções lineares tenham propriedades analíticas desejáveis.

• A função de covariância: descreve a covariância entre $\eta(\mathbf{x})$ e $\eta(\mathbf{x}')$

$$V(\mathbf{x}, \mathbf{x}') = \mathbb{C}ov(\eta(\mathbf{x}), \eta(\mathbf{x}'))$$

$$V(\mathbf{x}, \mathbf{x}') = \sigma^2 C(\cdot, \cdot)$$

- A função de correlação deve ser positiva definida*.
- Exemplo: função de correlação gaussiana (ou exponencial quadrática)

$$C(\mathbf{x}, \mathbf{x}') = \exp\left\{-\sum_{k=1}^{p} \left(\frac{x_k - x_k'}{\delta_k}\right)^2\right\}$$

• A função de covariância: descreve a covariância entre $\eta(\mathbf{x})$ e $\eta(\mathbf{x}')$

$$V(\mathbf{x}, \mathbf{x}') = \mathbb{C}ov(\eta(\mathbf{x}), \eta(\mathbf{x}'))$$

$$V(\mathbf{x}, \mathbf{x}') = \sigma^2 C(\cdot, \cdot)$$

- A função de correlação deve ser positiva definida*.
- Exemplo: função de correlação gaussiana (ou exponencial quadrática)

$$C(\mathbf{x}, \mathbf{x}') = \exp\left\{-\sum_{k=1}^{p} \left(\frac{x_k - x_k'}{\delta_k}\right)^2\right\}$$

• A função de covariância: descreve a covariância entre $\eta(\mathbf{x})$ e $\eta(\mathbf{x}')$

$$V(\mathbf{x}, \mathbf{x}') = \mathbb{C}ov(\eta(\mathbf{x}), \eta(\mathbf{x}'))$$

$$V(\mathbf{x}, \mathbf{x}') = \sigma^2 C(\cdot, \cdot)$$

- A função de correlação deve ser positiva definida*.
- Exemplo: função de correlação gaussiana (ou exponencial quadrática)

$$C(\mathbf{x}, \mathbf{x}') = \exp\left\{-\sum_{k=1}^{p} \left(\frac{x_k - x_k'}{\delta_k}\right)^2\right\}$$

• A função de covariância: descreve a covariância entre $\eta(\mathbf{x})$ e $\eta(\mathbf{x}')$

$$V(\mathbf{x}, \mathbf{x}') = \mathbb{C}ov(\eta(\mathbf{x}), \eta(\mathbf{x}'))$$

$$V(\mathbf{x}, \mathbf{x}') = \sigma^2 C(\cdot, \cdot)$$

- A função de correlação deve ser positiva definida*.
- Exemplo: função de correlação gaussiana (ou exponencial quadrática)

$$C(\mathbf{x}, \mathbf{x}') = \exp \left\{ -\sum_{k=1}^{p} \left(\frac{x_k - x_k'}{\delta_k} \right)^2 \right\}$$

Diferente valores para δ

Diferente valores para δ

Diferente valores para δ

- Suponha que a função $\eta(\cdot)$ pode ser representada por um processo gaussiano $\eta(\cdot) \sim GP(m(\cdot), V(\cdot, \cdot))$
- O valor esperado a priori para η para os inputs \mathbf{x} é dado por $m(\mathbf{x})$
- ... no entanto, $\eta(\mathbf{x})$ pode ser diferente de $m(\mathbf{x})$
- A incerteza a respeito do resíduo $\eta(\mathbf{x}) m(\mathbf{x})$ é representada por uma distribuição normal
- Quaisquer dois resísuos $(\eta(\mathbf{x}) m(\mathbf{x}))$ e $(\eta(\mathbf{x}') m(\mathbf{x}'))$ são correlacionados, com correlação dependendo de \mathbf{x} e \mathbf{x}' , i.e. $C(\mathbf{x}, \mathbf{x}')$.

- Suponha que a função $\eta(\cdot)$ pode ser representada por um processo gaussiano $\eta(\cdot) \sim GP(m(\cdot), V(\cdot, \cdot))$
- O valor esperado a priori para η para os inputs \mathbf{x} é dado por $m(\mathbf{x})$
- ... no entanto, $\eta(\mathbf{x})$ pode ser diferente de $m(\mathbf{x})$
- A incerteza a respeito do resíduo η(x) m(x) é representada por uma distribuição normal
- Quaisquer dois resísuos $(\eta(\mathbf{x}) m(\mathbf{x}))$ e $(\eta(\mathbf{x}') m(\mathbf{x}'))$ são correlacionados, com correlação dependendo de \mathbf{x} e \mathbf{x}' , i.e. $C(\mathbf{x}, \mathbf{x}')$.

- Suponha que a função $\eta(\cdot)$ pode ser representada por um processo gaussiano $\eta(\cdot) \sim GP(m(\cdot), V(\cdot, \cdot))$
- O valor esperado a priori para η para os inputs \mathbf{x} é dado por $m(\mathbf{x})$
- ... no entanto, $\eta(\mathbf{x})$ pode ser diferente de $m(\mathbf{x})$
- A incerteza a respeito do resíduo η(x) m(x) é representada por uma distribuição normal
- Quaisquer dois resísuos $(\eta(\mathbf{x}) m(\mathbf{x}))$ e $(\eta(\mathbf{x}') m(\mathbf{x}'))$ são correlacionados, com correlação dependendo de \mathbf{x} e \mathbf{x}' , i.e. $C(\mathbf{x}, \mathbf{x}')$.

- Suponha que a função $\eta(\cdot)$ pode ser representada por um processo gaussiano $\eta(\cdot) \sim GP(m(\cdot), V(\cdot, \cdot))$
- O valor esperado a priori para η para os inputs \mathbf{x} é dado por $m(\mathbf{x})$
- ... no entanto, $\eta(\mathbf{x})$ pode ser diferente de $m(\mathbf{x})$
- A incerteza a respeito do resíduo $\eta(\mathbf{x}) m(\mathbf{x})$ é representada por uma distribuição normal
- Quaisquer dois resísuos $(\eta(\mathbf{x}) m(\mathbf{x}))$ e $(\eta(\mathbf{x}') m(\mathbf{x}'))$ são correlacionados, com correlação dependendo de \mathbf{x} e \mathbf{x}' , i.e. $C(\mathbf{x}, \mathbf{x}')$.

- Suponha que a função $\eta(\cdot)$ pode ser representada por um processo gaussiano $\eta(\cdot) \sim GP(m(\cdot), V(\cdot, \cdot))$
- O valor esperado a priori para η para os inputs \mathbf{x} é dado por $m(\mathbf{x})$
- ... no entanto, $\eta(\mathbf{x})$ pode ser diferente de $m(\mathbf{x})$
- A incerteza a respeito do resíduo $\eta(\mathbf{x}) m(\mathbf{x})$ é representada por uma distribuição normal
- Quaisquer dois resísuos $(\eta(\mathbf{x}) m(\mathbf{x}))$ e $(\eta(\mathbf{x}') m(\mathbf{x}'))$ são correlacionados, com correlação dependendo de \mathbf{x} e \mathbf{x}' , i.e. $C(\mathbf{x}, \mathbf{x}')$.

Quando?

- $\eta(\cdot)$ deve ser uma função suave; $f(x_i)$ deve nos dizer algo a respeito de $f(x_i)$ se x_i está perto de x_i
- Se podemos ter um número pequenos de rodadas do simulador (100s não 1000s)
- Número moderado de inputs (no máximo 50)

Por que?

- PG representam bem a nossa incerteza sobre simuladores "suaves"e determinísticos.
- **2** Excelentes propriedades analíticas, p.e. atualização: Se $\eta(\cdot) \sim GP(m(\cdot), V(\cdot, \cdot))$ e $\mathbf{y} = \eta(\mathbf{X})$, então $\eta(\cdot)|\mathbf{y}, \mathbf{X} \sim GP(m^*(\cdot), V^*(\cdot, \cdot))$

Propriedade da normal multivariada

• Seja $\mathbf{Y} = [\mathbf{Y}_1, \mathbf{Y}_2]^T$ uma partição do vetor aleatório \mathbf{Y} , cuja distribuição de probabilidade é dada por

$$\left(\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right) \sim \mathit{MVN}_{(n_1+n_2)} \left(\left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{cc} \Sigma_1 & \Sigma_{12} \\ \Sigma_{21} & \Sigma_2 \end{array}\right) \right)$$

• A distribuição condicional de Y_1 dado $Y_2 = y_2$ é

$$\mathbf{Y}_1|\mathbf{Y}_2=\mathbf{y}_2\sim MVN_{n_1}\left(\mu_{1|2},\Sigma_{1|2}\right)$$

onde

$$\mu_{1|2} = \mu_1 + \Sigma_{12}\Sigma_2^{-1}(\mathbf{y}_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_1 - \Sigma_{12}\Sigma_2^{-1}\Sigma_{21}$$

ullet O que aconteceria se $\eta(\cdot)$ for um processo Gaussiano?

Propriedade da normal multivariada

• Seja $\mathbf{Y} = [\mathbf{Y}_1, \mathbf{Y}_2]^T$ uma partição do vetor aleatório \mathbf{Y} , cuja distribuição de probabilidade é dada por

$$\left(\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right) \sim \textit{MVN}_{(n_1+n_2)} \left(\left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{cc} \Sigma_1 & \Sigma_{12} \\ \Sigma_{21} & \Sigma_2 \end{array}\right) \right)$$

 \bullet A distribuição condicional de \boldsymbol{Y}_1 dado $\boldsymbol{Y}_2=\boldsymbol{y}_2$ é

$$\mathbf{Y}_1|\mathbf{Y}_2=\mathbf{y}_2\sim extit{MVN}_{n_1}\left(\mu_{1|2},\Sigma_{1|2}
ight)$$

onde

$$\mu_{1|2} = \mu_1 + \Sigma_{12}\Sigma_2^{-1}(\mathbf{y}_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_1 - \Sigma_{12}\Sigma_2^{-1}\Sigma_{21}$$

• O que aconteceria se $\eta(\cdot)$ for um processo Gaussiano?

Propriedade da normal multivariada

• Seja $\mathbf{Y} = [\mathbf{Y}_1, \mathbf{Y}_2]^T$ uma partição do vetor aleatório \mathbf{Y} , cuja distribuição de probabilidade é dada por

$$\left(\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right) \sim \textit{MVN}_{(n_1+n_2)} \left(\left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{cc} \Sigma_1 & \Sigma_{12} \\ \Sigma_{21} & \Sigma_2 \end{array}\right) \right)$$

• A distribuição condicional de \mathbf{Y}_1 dado $\mathbf{Y}_2 = \mathbf{y}_2$ é

$$\mathbf{Y}_1|\mathbf{Y}_2=\mathbf{y}_2\sim extit{MVN}_{n_1}\left(\mu_{1|2},\Sigma_{1|2}
ight)$$

onde

$$\mu_{1|2} = \mu_1 + \Sigma_{12}\Sigma_2^{-1}(\mathbf{y}_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_1 - \Sigma_{12}\Sigma_2^{-1}\Sigma_{21}$$

• O que aconteceria se $\eta(\cdot)$ for um processo Gaussiano?

- Com o objetivo de atualizar as nossas "crenças" as respeito de η , um experimento computacional é executado.
- O conjunto de inputs x₁, x₂,..., x_n e seus respectivos outputs y₁ = η(x₁), y₂ = η(x₂),...,y_n = η(x_n) é o que chamamos de dados de treinamento.
- A escolha dos valores dos inputs nas quais o simulador vai ser rodado é um problema de planejamento e será tratado mais adiante no curso.
- Vamos assumir que esses valores foram bem escolhidos.
- Nossas crenças sobre η são atualizadas usando propriedades dos processos gaussianos.

- Com o objetivo de atualizar as nossas "crenças" as respeito de η , um experimento computacional é executado.
- O conjunto de inputs x₁, x₂,..., x_n e seus respectivos outputs y₁ = η(x₁), y₂ = η(x₂),...,y_n = η(x_n) é o que chamamos de dados de treinamento.
- A escolha dos valores dos inputs nas quais o simulador vai ser rodado é um problema de planejamento e será tratado mais adiante no curso.
- Vamos assumir que esses valores foram bem escolhidos.
- Nossas crenças sobre η são atualizadas usando propriedades dos processos gaussianos.

- Com o objetivo de atualizar as nossas "crenças" as respeito de η , um experimento computacional é executado.
- O conjunto de inputs x₁, x₂,..., x_n e seus respectivos outputs y₁ = η(x₁), y₂ = η(x₂),...,y_n = η(x_n) é o que chamamos de dados de treinamento.
- A escolha dos valores dos inputs nas quais o simulador vai ser rodado é um problema de planejamento e será tratado mais adiante no curso.
- Vamos assumir que esses valores foram bem escolhidos.
- Nossas crenças sobre η são atualizadas usando propriedades dos processos gaussianos.

- Com o objetivo de atualizar as nossas "crenças" as respeito de η , um experimento computacional é executado.
- O conjunto de inputs x₁, x₂,..., x_n e seus respectivos outputs y₁ = η(x₁), y₂ = η(x₂),...,y_n = η(x_n) é o que chamamos de dados de treinamento.
- A escolha dos valores dos inputs nas quais o simulador vai ser rodado é um problema de planejamento e será tratado mais adiante no curso.
- Vamos assumir que esses valores foram bem escolhidos.
- Nossas crenças sobre η são atualizadas usando propriedades dos processos gaussianos.

- Com o objetivo de atualizar as nossas "crenças" as respeito de η , um experimento computacional é executado.
- O conjunto de inputs x₁, x₂,..., x_n e seus respectivos outputs y₁ = η(x₁), y₂ = η(x₂),...,y_n = η(x_n) é o que chamamos de dados de treinamento.
- A escolha dos valores dos inputs nas quais o simulador vai ser rodado é um problema de planejamento e será tratado mais adiante no curso.
- Vamos assumir que esses valores foram bem escolhidos.
- Nossas crenças sobre η são atualizadas usando propriedades dos processos gaussianos.

- Seja $\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$
- $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ e $\mathbf{y} = (y_1, y_2, \dots, y_n)$ inputs e outputs de um experimento computacional.
- Usando propriedades da Normal multivariada é fácil mostrar que

$$\eta(\cdot)|\mathbf{y},\mathbf{X}\sim PG(m^*(\cdot),V^*(\cdot,\cdot))|$$

$$m^*(\mathbf{x}) = m(\mathbf{x}) + V(\mathbf{x}, \mathbf{X}) V(\mathbf{X}, \mathbf{X})^{-1} (\mathbf{y} - m(\mathbf{X}))$$
$$V^*(\mathbf{x}, \mathbf{x}') = V(\mathbf{x}, \mathbf{x}') - V(\mathbf{x}, \mathbf{X}) V(\mathbf{X}, \mathbf{X})^{-1} V(\mathbf{X}, \mathbf{x}')$$

- Seja $\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$
- $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ e $\mathbf{y} = (y_1, y_2, \dots, y_n)$ inputs e outputs de um experimento computacional.
- Usando propriedades da Normal multivariada é fácil mostrar que

$$\eta(\cdot)|\mathbf{y},\mathbf{X}\sim PG(m^*(\cdot),V^*(\cdot,\cdot))$$

$$m^*(\mathbf{x}) = m(\mathbf{x}) + V(\mathbf{x}, \mathbf{X}) V(\mathbf{X}, \mathbf{X})^{-1} (\mathbf{y} - m(\mathbf{X}))$$
$$V^*(\mathbf{x}, \mathbf{x}') = V(\mathbf{x}, \mathbf{x}') - V(\mathbf{x}, \mathbf{X}) V(\mathbf{X}, \mathbf{X})^{-1} V(\mathbf{X}, \mathbf{x}')$$

- Seja $\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$
- $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ e $\mathbf{y} = (y_1, y_2, \dots, y_n)$ inputs e outputs de um experimento computacional.
- Usando propriedades da Normal multivariada é fácil mostrar que

$$\eta(\cdot)|\mathbf{y},\mathbf{X}\sim PG(m^*(\cdot),V^*(\cdot,\cdot))$$

$$m^*(\mathbf{x}) = m(\mathbf{x}) + V(\mathbf{x}, \mathbf{X})V(\mathbf{X}, \mathbf{X})^{-1}(\mathbf{y} - m(\mathbf{X}))$$

 $V^*(\mathbf{x}, \mathbf{x}') = V(\mathbf{x}, \mathbf{x}') - V(\mathbf{x}, \mathbf{X})V(\mathbf{X}, \mathbf{X})^{-1}V(\mathbf{X}, \mathbf{x}')$

 Note que se queremos prever um input usado como dado de treinamento, a previsão será perfeita, ou seja, para qualquer i = 1,2,...,n

$$m^*(\mathbf{x}_i) = y_i$$

 $V^*(\mathbf{x}_i, \mathbf{x}_i) = 0$

Representando muito bem um modelo determinístico.

 Note que se queremos prever um input usado como dado de treinamento, a previsão será perfeita, ou seja, para qualquer i = 1,2,...,n

$$m^*(\mathbf{x}_i) = y_i$$

 $V^*(\mathbf{x}_i, \mathbf{x}_i) = 0$

Representando muito bem um modelo determinístico.

Outline

- 🕕 Introdução
 - Simulador
 - O problema
 - Meta-modelagem
 - Exemplo
- Processos Gaussianos
 - Definição
 - Normal multivariada
 - Função de média e covariância
 - Quando? Por que? Onde?
- Emulador gaussiano
 - Emulador t
 - Exemplos

Emulador gaussiano:

$$\eta(\cdot)|\beta,\sigma^2,\delta\sim GP\left(m_0(\cdot),V_0(\cdot,\cdot)\right),$$

$$m_0(\mathbf{x}) = h(\mathbf{x})^T \beta$$

 $V_0(\mathbf{x}, \mathbf{x}') = \sigma^2 C_{\delta}(\mathbf{x}, \mathbf{x}')$

- $h(\cdot)$ e $C_{\delta}(\cdot,\cdot)$ são conhecidos
- $p(\beta, \sigma^2, \delta)$: priori
- Dados de treinamento: (y, X) onde $y_i = \eta(x_i), i = 1, ..., n$

Emulador gaussiano:

$$\eta(\cdot)|\beta,\sigma^2,\delta\sim GP\left(m_0(\cdot),V_0(\cdot,\cdot)\right),$$

$$m_0(\mathbf{x}) = h(\mathbf{x})^T \beta$$

 $V_0(\mathbf{x}, \mathbf{x}') = \sigma^2 C_{\delta}(\mathbf{x}, \mathbf{x}')$

- $h(\cdot)$ e $C_{\delta}(\cdot,\cdot)$ são conhecidos
- $p(\beta, \sigma^2, \delta)$: priori
- Dados de treinamento: (y, X) onde $y_i = \eta(x_i), i = 1, ..., n$

Emulador gaussiano:

$$\eta(\cdot)|\beta,\sigma^2,\delta\sim GP\left(m_0(\cdot),V_0(\cdot,\cdot)\right),$$

$$m_0(\mathbf{x}) = h(\mathbf{x})^T \beta$$

 $V_0(\mathbf{x}, \mathbf{x}') = \sigma^2 C_{\delta}(\mathbf{x}, \mathbf{x}')$

- $h(\cdot)$ e $C_{\delta}(\cdot,\cdot)$ são conhecidos
- $p(\beta, \sigma^2, \delta)$: priori
- Dados de treinamento: (y, X) onde $y_i = \eta(x_i), i = 1, ..., n$.

Emulador gaussiano:

$$\eta(\cdot)|\beta,\sigma^2,\delta\sim GP\left(m_0(\cdot),V_0(\cdot,\cdot)\right),$$

$$m_0(\mathbf{x}) = h(\mathbf{x})^T \beta$$

 $V_0(\mathbf{x}, \mathbf{x}') = \sigma^2 C_{\delta}(\mathbf{x}, \mathbf{x}')$

- $h(\cdot)$ e $C_{\delta}(\cdot,\cdot)$ são conhecidos
- $p(\beta, \sigma^2, \delta)$: priori
- Dados de treinamento: (y, X) onde $y_i = \eta(x_i), i = 1, ..., n$.

Posteriori

$$\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta\sim GP\left(m_0^*(\cdot),V_0^*(\cdot,\cdot)\right),$$

onde

$$m_0^*(x) = h(x)^T \beta + t(x)^T \mathbf{A}^{-1} (\mathbf{y} - H\beta),$$

 $V_0^*(x, x') = \sigma^2 \left[C_\delta(x, x') - t_\delta(x)^T \mathbf{A}^{-1} t_\delta(x') \right].$

• O que fazer com $(\beta, \sigma^2, \delta)$?

Emulador gaussiano

Posteriori

$$\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta\sim GP\left(m_0^*(\cdot),V_0^*(\cdot,\cdot)\right),$$

onde

$$m_0^*(x) = h(x)^T \beta + t(x)^T \mathbf{A}^{-1} (\mathbf{y} - H\beta),$$

 $V_0^*(x, x') = \sigma^2 \left[C_\delta(x, x') - t_\delta(x)^T \mathbf{A}^{-1} t_\delta(x') \right].$

• O que fazer com $(\beta, \sigma^2, \delta)$?

Podemos integra-los fora

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X}) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta) dP(\beta,\sigma^2,\delta)$$

- Problema 1: δ não é analiticamente tratáve
- Problema 2: Integração numérica pode levar muito tempo
- Plug-in $(\beta = \hat{\beta}, \sigma^2 = \hat{\sigma}^2, \delta = \hat{\delta})$
- Prospota mais aceita: Integrar (β, σ^2) analiticamente e plug-in para δ

$$p(\eta(\cdot)|\mathbf{y}, \mathbf{X}, \delta) = \int p(\eta(\cdot)|\mathbf{y}, \mathbf{X}, \beta, \sigma^2, \delta) dP(\beta, \sigma^2)$$

• Posteriori para δ

$$p(\delta|\mathbf{y}, \mathbf{X}) \propto p(\delta)|A|^{\frac{1}{2}}|H^TA^{-1}H|^{-\frac{1}{2}}(\hat{\sigma}^2)^{\frac{n-q}{2}}$$

Podemos integra-los fora

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X}) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta) dP(\beta,\sigma^2,\delta)$$

- Problema 1: δ não é analiticamente tratável
- Problema 2: Integração numérica pode levar muito tempo
- Plug-in $(\beta = \hat{\beta}, \sigma^2 = \hat{\sigma}^2, \delta = \hat{\delta})$
- Prospota mais aceita: Integrar (β, σ^2) analiticamente e plug-in para δ

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X},\delta) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta)dP(\beta,\sigma^2)$$

• Posteriori para δ

$$p(\delta|\mathbf{y}, \mathbf{X}) \propto p(\delta)|A|^{\frac{1}{2}}|H^TA^{-1}H|^{-\frac{1}{2}}(\hat{\sigma}^2)^{\frac{n-q}{2}}$$

Podemos integra-los fora

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X}) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta) dP(\beta,\sigma^2,\delta)$$

- Problema 1: δ não é analiticamente tratável
- Problema 2: Integração numérica pode levar muito tempo
- Plug-in $(\beta = \hat{\beta}, \sigma^2 = \hat{\sigma}^2, \delta = \hat{\delta})$
- Prospota mais aceita: Integrar (β, σ^2) analiticamente e plug-in para δ

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X},\delta) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta)dP(\beta,\sigma^2)$$

• Posteriori para δ

 $p(\delta|\mathbf{y}, \mathbf{X}) \propto p(\delta)|A|^{\frac{1}{2}}|H^{T}A^{-1}H|^{-\frac{1}{2}}(\hat{\sigma}^{2})^{\frac{n-q}{2}}$

Podemos integra-los fora

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X}) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta) dP(\beta,\sigma^2,\delta)$$

- Problema 1: δ não é analiticamente tratável
- Problema 2: Integração numérica pode levar muito tempo
- Plug-in $(\beta = \hat{\beta}, \sigma^2 = \hat{\sigma}^2, \delta = \hat{\delta})$
 - Problema: Ignora incerteza associada a esses parâmetros
- Prospota mais aceita: Integrar (β, σ^2) analiticamente e plug-in para δ

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X},\delta) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta)dP(\beta,\sigma^2)$$

• Posteriori para δ

$$p(\delta|\mathbf{y}, \mathbf{X}) \propto p(\delta)|A|^{\frac{1}{2}}|H^TA^{-1}H|^{-\frac{1}{2}}(\hat{\sigma}^2)^{\frac{n-q}{2}}$$

Podemos integra-los fora

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X}) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta) dP(\beta,\sigma^2,\delta)$$

- Problema 1: δ não é analiticamente tratável
- Problema 2: Integração numérica pode levar muito tempo
- Plug-in $(\beta = \hat{\beta}, \sigma^2 = \hat{\sigma}^2, \delta = \hat{\delta})$
 - Problema: Ignora incerteza associada a esses parâmetros.
- Prospota mais aceita: Integrar (β, σ^2) analiticamente e plug-in para δ

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X},\delta) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta)dP(\beta,\sigma^2)$$

Posteriori para δ

$$p(\delta|\mathbf{y}, \mathbf{X}) \propto p(\delta)|A|^{\frac{1}{2}}|H^TA^{-1}H|^{-\frac{1}{2}}(\hat{\sigma}^2)^{\frac{n-q}{2}}$$

Podemos integra-los fora

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X}) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta)dP(\beta,\sigma^2,\delta)$$

- Problema 1: δ não é analiticamente tratável
- Problema 2: Integração numérica pode levar muito tempo
- Plug-in $(\beta = \hat{\beta}, \sigma^2 = \hat{\sigma}^2, \delta = \hat{\delta})$
 - Problema: Ignora incerteza associada a esses parâmetros.
- Prospota mais aceita: Integrar (β, σ^2) analiticamente e plug-in para δ

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X},\delta) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta)dP(\beta,\sigma^2)$$

Posteriori para 8

 $p(\delta|\mathbf{y},\mathbf{X}) \propto p(\delta)|A|^{\frac{1}{2}}|H^TA^{-1}H|^{-\frac{1}{2}}(\hat{\sigma}^2)^{\frac{n-q}{2}}$

Podemos integra-los fora

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X}) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta) dP(\beta,\sigma^2,\delta)$$

- Problema 1: δ não é analiticamente tratável
- Problema 2: Integração numérica pode levar muito tempo
- Plug-in $(\beta = \hat{\beta}, \sigma^2 = \hat{\sigma}^2, \delta = \hat{\delta})$
 - Problema: Ignora incerteza associada a esses parâmetros.
- Prospota mais aceita: Integrar (β, σ^2) analiticamente e plug-in para δ

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X},\delta) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta)dP(\beta,\sigma^2)$$

ullet Posteriori para δ

$$p(\delta|\mathbf{y}, \mathbf{X}) \propto p(\delta)|A|^{\frac{1}{2}}|H^{T}A^{-1}H|^{-\frac{1}{2}}(\hat{\sigma}^{2})^{\frac{n-q}{2}}$$

Integrando (β, σ^2)

• Usando uma priori não informativa para (β, σ^2) , i.e.

$$p(\beta, \sigma^2) \propto \sigma^{-2}$$

Resolvendo a integral

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X},\delta) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},eta,\sigma^2,\delta) dP(eta,\sigma^2)$$

Temos que

$$\eta(\cdot)|\mathbf{y},\mathbf{X},\delta\sim ext{Student-Process}\,(n-q,m_1(\cdot),V_1(\cdot,\cdot))$$
(Idéia análoga ao processo gaussiano.)

Integrando (β, σ^2)

• Usando uma priori não informativa para (β, σ^2) , i.e.

$$p(\beta, \sigma^2) \propto \sigma^{-2}$$

Resolvendo a integral

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X},\delta) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta)dP(\beta,\sigma^2)$$

Temos que

$$\eta(\cdot)|\mathbf{y},\mathbf{X},\delta\sim ext{Student-Process}\left(n-q,m_1(\cdot),V_1(\cdot,\cdot)
ight)$$

Integrando (β, σ^2)

• Usando uma priori não informativa para (β, σ^2) , i.e.

$$p(\beta, \sigma^2) \propto \sigma^{-2}$$

Resolvendo a integral

$$p(\eta(\cdot)|\mathbf{y},\mathbf{X},\delta) = \int p(\eta(\cdot)|\mathbf{y},\mathbf{X},\beta,\sigma^2,\delta)dP(\beta,\sigma^2)$$

Temos que

$$\eta(\cdot)|\mathbf{y},\mathbf{X},\delta\sim ext{Student-Process}\left(n-q,m_1(\cdot),V_1(\cdot,\cdot)
ight)$$

(Idéia análoga ao processo gaussiano.)

Emulador t

Emulador t

$$\eta(\cdot)|\mathbf{y}, \mathbf{X}, \delta \sim \text{Student-Process}\left(n - q, m_1(\cdot), V_1(\cdot, \cdot)\right)$$

onde

$$m_{1}(x) = h(x)^{T} \widehat{\beta} + t_{\delta}(x)^{T} \mathbf{A}^{-1} (\mathbf{y} - H \widehat{\beta}),$$

$$V_{1}(x, x') = \widehat{\sigma}^{2} \left[C_{\delta}(x, x') - t_{\delta}(x)^{T} \mathbf{A}^{-1} t_{\delta}(x') + (h(x) - t_{\delta}(x)^{T} \mathbf{A}^{-1} H) + (h(x') - t_{\delta}(x')^{T} \mathbf{A}^{-1} H)^{T} \right].$$

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}\$$

- Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- ① Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento.

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}\$$

- ① Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- ① Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento.

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}\$$

- Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- ① Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento.

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}\$$

- Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- **9** Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$
 - Podemos usar $\mathbb{E}[\eta(\cdot)|D,\delta]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\tilde{\delta}$ quantifica a incerteza dessa aproximação.

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento.

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}\$$

- Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- **9** Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$
 - Podemos usar $\mathbb{E}[\eta(\cdot)|D,\tilde{\delta}]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\delta$ quantifica a incerteza dessa aproximação.

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento.

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}\$$

- 3 Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- **9** Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$
 - Podemos usar $\mathbb{E}[\eta(\cdot)|D,\tilde{\delta}]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\tilde{\delta}$ quantifica a incerteza dessa aproximação.

- $\eta(\cdot)$ is a two-dimensional known function
- GP emulator:

$$\eta(\cdot)|\beta,\sigma^2,\psi\sim GP\left(h(\cdot)^T\beta,\sigma^2C(\mathbf{x},\mathbf{x}';\psi)\right),$$

$$o h(\mathbf{x}) = (1, \mathbf{x})^T$$

$$o G(\mathbf{x}, \mathbf{x}') = \exp\left[\sum_{n} \left(\frac{\mathbf{x}_n - \mathbf{x}'_n}{\sigma_n}\right)^2\right]$$

• $p(\beta, \sigma^2, \psi) \propto \sigma^{-2}$

- $\eta(\cdot)$ is a two-dimensional known function
- GP emulator:

$$\eta(\cdot)|\beta,\sigma^2,\psi\sim \textit{GP}\left(\textit{h}(\cdot)^{\mathsf{T}}\beta,\sigma^2\textit{C}(\mathbf{x},\mathbf{x}';\psi)\right),$$

•
$$h(\mathbf{x}) = (1, \mathbf{x})^T$$

• $C(\mathbf{x}, \mathbf{x}') = \exp\left[\sum_k \left(\frac{\mathbf{x}_k - \mathbf{x}'_k}{\delta_k}\right)^2\right]$

- $\eta(\cdot)$ is a two-dimensional known function
- GP emulator:

$$\eta(\cdot)|\beta,\sigma^2,\psi\sim \textit{GP}\left(\textit{h}(\cdot)^{\mathsf{T}}\beta,\sigma^2\textit{C}(\mathbf{x},\mathbf{x}';\psi)\right),$$

•
$$h(\mathbf{x}) = (1, \mathbf{x})^T$$

• $C(\mathbf{x}, \mathbf{x}') = \exp\left[\sum_{k} \left(\frac{\mathbf{x}_k - \mathbf{x}'_k}{\delta_k}\right)^2\right]$

- $\eta(\cdot)$ is a two-dimensional known function
- GP emulator:

$$\eta(\cdot)|\beta,\sigma^2,\psi\sim \textit{GP}\left(\textit{h}(\cdot)^{\mathsf{T}}\beta,\sigma^2\textit{C}(\mathbf{x},\mathbf{x}';\psi)\right),$$

•
$$h(\mathbf{x}) = (1, \mathbf{x})^T$$

• $C(\mathbf{x}, \mathbf{x}') = \exp\left[\sum_k \left(\frac{\mathbf{x}_k - \mathbf{x}'_k}{\delta_k}\right)^2\right]$

• $p(\beta, \sigma^2, \psi) \propto \sigma^{-2}$

- $\eta(\cdot)$ is a two-dimensional known function
- GP emulator:

$$\eta(\cdot)|\beta,\sigma^2,\psi\sim GP\left(h(\cdot)^T\beta,\sigma^2C(\mathbf{x},\mathbf{x}';\psi)\right),$$

•
$$h(\mathbf{x}) = (1, \mathbf{x})^T$$

• $C(\mathbf{x}, \mathbf{x}') = \exp\left[\sum_k \left(\frac{\mathbf{x}_k - \mathbf{x}'_k}{\delta_k}\right)^2\right]$

•
$$p(\beta, \sigma^2, \psi) \propto \sigma^{-2}$$

Design of Experiments

- Como escolher os inputs?
- Hipercubos latinos, planejamentos não aleatórios, etc
- Emuladores com múltiplos outputs

- Design of Experiments
 - · Como escolher os inputs?
 - Hipercubos latinos, planejamentos não aleatórios, etc
- Emuladores com múltiplos outputs.

- Design of Experiments
 - · Como escolher os inputs?
 - Hipercubos latinos, planejamentos não aleatórios, etc.
- Emuladores com múltiplos outputs.

- Design of Experiments
 - · Como escolher os inputs?
 - Hipercubos latinos, planejamentos não aleatórios, etc.
- Emuladores com múltiplos outputs.
 - Como lidar com simuladores com vários outputs simultâneos?
 - Emuladores independentes, separáveis, não-separáveis.

- Design of Experiments
 - Como escolher os inputs?
 - Hipercubos latinos, planejamentos não aleatórios, etc.
- Emuladores com múltiplos outputs.
 - Como lidar com simuladores com vários outputs simultâneos?
 - Emuladores independentes, separáveis, não-separáveis.

- Design of Experiments
 - Como escolher os inputs?
 - Hipercubos latinos, planejamentos não aleatórios, etc.
- Emuladores com múltiplos outputs.
 - Como lidar com simuladores com vários outputs simultâneos?
 - Emuladores independentes, separáveis, não-separáveis.