Chapitre 4

Déformation collaborative de molécule

4.1	\mathbf{Intr}	oduction \dots 106		
4.2	Défe	Déformation collaborative en environnement vir-		
	tuel			
	4.2.1	Travaux existants		
	4.2.2	Objectifs		
4.3	Prés	sentation de l'expérimentation 108		
	4.3.1	Description de la tâche		
	4.3.2	Spécificités du protocole expérimental 113		
4.4	Résultats			
	4.4.1	Amélioration des performances en binôme 118		
	4.4.2	Évolution des performances en fonction de la complexité de la tâche		
	4.4.3			
	4.4.4	Résultats qualitatifs		
4.5	Synthèse			
	4.5.1	Résumé des résultats		
	4.5.2	Conclusion		
Bih	liogra	phie		

4.1 Introduction

La précédente expérimentation nous a permis d'étudier les premières PCVs que sont la recherche et la sélection. Afin de compléter notre étude, nous souhaitons à présent nous intéresser à la déformation. En effet, on trouve déjà des environnements virtuels permettant de manipuler des molécules rigides pour effectuer un docking moléculaire comme les travaux de LEVINE et al. [1997] ou encore de FEREY et al. [2008]. Cependant, un docking moléculaire nécessite de pouvoir déformer les molécules. Ceci est rendu possible par l'avénement des simulations moléculaires interactives en temps-réel, notamment avec IMD développé par STADLER et al. [1997]. Plus récemment, DELALANDE et al. [2009] ont également amené une pierre à l'édifice avec MDDriver pour permettre une simulation moléculaire en temps-réel basée sur différents moteurs de simulation (NAMD ou Gromacs). Puis, DELALANDE et al. [2010] améliorent la manipulation et la déformation interactive par l'utisisation d'une interface haptique.

Dans ce chapitre, nous souhaitons étudier la pertinence d'une configuration collaborative pour appréhender la déformation d'une molécule. De plus, nous aborderons la question de l'apprentissage au sein d'un groupe. En effet, certains éléments de la première expérimentation semble indiquer qu'une configuration collaborative stimule l'apprentissage concernant l'utilisation des outils, de la plate-forme ou encore de la tâche à réaliser.

4.2 Déformation collaborative en environnement virtuel

4.2.1 Travaux existants

- L'utilisation de retours haptiques pour la déformation d'objets flexibles n'est pas une idée nouvelle. Shen et al. [2006] proposent déjà une solution pour déformer des objets non-rigides à l'aide de retour haptique. Les objets concernés sont de faible complexité, comme des sphères par exemple. Puis, Peterlík [2009] effectue une thèse sur les déformations de tissus cellulaires. Là
- encore, les éléments déformables sont de faible complexité et n'ont quasiment pas d'application utile et concrète dans le monde réel.

Cependant, afin d'effectuer des déformations plus complexes, certains se sont intéressés aux processus de déformation collaboratifs dans les EVCs. SÜMENGEN et al. [2007] proposent une plate-forme permettant la déformation de

maillages destinés à des simulations d'objets déformables (tissus, organes, etc.) dans un EVC. Pour cela, il propose une architecture de type pair-à-pair basée sur le protocole UDP (User Datagram Protocol pour protocole de datagramme utilisateur). De son côté, TANG et al. [2010] proposent une plateforme client/serveur de déformation collaborative de maillages. Ces deux plate-formes proposent chacun une plate-forme de déformation collaborative mais se focalisent principalement sur les contraintes techniques d'une telle plate-forme. MÜLLER et al. [2006] développent le logiciel Clayworks, complété plus tard par GORLATCH et al. [2009], permettant la sculpture virtuelle sur glaise. Dans cette étude, les problèmatiques d'accès exclusif à certains objets ou à certaines parties d'un objet sont brièvement évoquées afin de faciliter la coordination des différents acteurs.

Tous les travaux présentés ci-dessus proposent une déformation collaborative distante où chaque utilisateur effectue une déformation localement. Les contraintes liées à la collaboration entre les acteurs n'est pas présentée. En effet, tous les EVCs proposés sont consacrés aux problématiques techniques de la collaboration distante.

4.2.2 Objectifs

Ce chapitre sera l'occasion d'aborder les problématiques de la déformation lors d'une configuration collaborative. La déformation est une tâche nécessitant plus de précision que la recherche car les cibles doivent être déplacées à un endroit défini. Nous souhaitons ainsi comparer les performances sur une tâche complexe nécessitant de la coordination.

L'étude met en jeu un nombre de ressources fixe pour la déformation et compare une distribution des ressources (configuration collaborative) à une mutualisation des ressources (configuration individuelle). En effet, la première étude nous a montré les contraintes d'une configuration collaborative en terme de temps de communication. Paradoxalement, les utilisateurs qui manipulent seuls sont confrontés à une charge cognitive de travail importante. En fournissant les mêmes ressources (deux outils de déformation), nous souhaitons comparer la capacité de coordination d'un binôme aux capacités cognitives de traitement d'un monôme face à une importante charge de travail. Nous supposons que les binômes en configuration monomanuelle sont plus performants que les monômes en configuration bimanuelle.

Dans un second temps, nous souhaitons définir un lien entre la complexité de la tâche et le nombre de sujets impliqués. En effet, les tâches complexes fournissent une charge cognitive de travail très importante; plus cette charge

de travail est importante et plus les monômes devraient éprouver des difficultés à traiter l'ensemble des informations. Nous émettons l'hypothèse que les tâches les plus complexes seront plus difficiles à réaliser par les monômes que par les binômes.

Enfin, cette seconde étude est l'occasion d'observer l'effet du travail collaboratif sur l'apprentissage. Nous comparons les performances des monômes et des binômes concernant la réalisation d'une même tâche répétée plusieurs fois. Nous supposons que la facilitation et l'échange qui a lieu lors d'un travail collaboratif va permettre aux binômes d'appréhender plus rapidement la plate-forme, les outils ou encore la tâche.

4.3 Présentation de l'expérimentation

4.3.1 Description de la tâche

La tâche proposée est la déformation dans un EVC sur des molécules complexes. L'objectif est de modifier la conformation initiale d'une molécule pour atteindre une conformation finale. En effet, la recherche d'un état stable est exactement ce qu'une tâche de docking moléculaire cherche à réaliser. De plus, la déformation est une tâche permettant de stimuler les actions coordonnées pour une collaboration étroitement couplée.

Trois molécules sont utilisées dans le cadre de cette expérimentation. Prion est une molécule très complexe et sera simplement utilisé dans la phase d'entraînement. TRP-ZIPPER et TRP-CAGE seront chacune utilisée dans deux scénarios distincts. Ces molécules sont détaillées dans la section A.2.1 page 193.

Afin de pouvoir évaluer la déformation effectuée, un score est affiché en tempsréel (voir figure 4.1 page suivante). Le score affiché est le RMSD qui permet de mesurer la différence de forme entre deux déformations d'une même molécule en calculant la différence entre chaque paire d'atomes. L'équation 4.1 est utilisée pour le calcul de cette différence.

$$RMSD(\mathbf{c}, \mathbf{m}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \|c_i - m_i\|^2}$$
(4.1)

où N est le nombre total d'atomes et c_i , m_i sont respectivement les atomes i de la molécule à comparer \mathbf{c} et de la molécule modèle \mathbf{m} .

Figure 4.1 – Affichage de la molécule à déformer et de la molécule cible

Description des scénarios

Quatre scénarios sont proposés sur deux molécules avec deux niveaux de manipulation différents. Les deux niveaux différents de manipulation sont :

- inter-moléculaire (à l'échelle d'un résidu) pour un niveau de déformation avec une granularité élevée;
- intra-moléculaire (à l'échelle d'un atome) pour un niveau de déformation avec une granularité fine.

Les paragraphes qui vont suivre décrivent les quatre scénarios basés sur les critères de complexité suivants :

- Nombre d'atomes C'est le nombre total d'atomes que contient la molécule à manipuler;
 - **Résidu libre** C'est le nombre de résidus de la molécules non fixés dans la simulation ;
- Cassure Ce sont des angles dans la chaîne principale de la molécule; elles représentent les jonctions entre hélices- α et/ou les feuillets- β et nécessitent deux points d'accroche pour être reformées;
 - Champ de force C'est l'intensité des forces dans les zones de déformation; il exprime l'énergie minimum nécessaire à déployer pour atteindre l'objectif et se traduit par trois niveaux (faible, moyen et fort).
- Scénario 1A Cette tâche concerne la manipulation de la molécule TRP-ZIPPER à l'échelle inter-moléculaire. Un résidu à l'extrémité ¹ est fixé afin d'ancrer la molécule dans la scène virtuelle et éviter d'éventuelles dérives hors du champ visuel. L'intégralité des onze autres résidus est libre de mouvement ce qui en fait une molécule assez malléable avec un champ de force moyennement contraint. La forme général de la molécule peut être comparée à un V : la chaîne de résidus de la molécule contient une cassure. La difficulté de ce scénario réside dans la nécessité de maintenir les résidus déjà placés pendant que le reste de la molécule est déformée.
- Scénario 1B Cette tâche concerne la manipulation de la molécule TRP-CAGE à l'échelle inter-moléculaire. Comme le scénario 1A, elle contient un résidu fixe à une extrémité. L'intégralité des dix neuf autres résidus est libre de mouvement ce qui en fait une molécule assez malléable avec un champ de force moyennement contraint. La forme général de la molécule peut être

^{1.} La molécule forme une chaîne carbonée; il s'agit ici d'une des extrémités de cette chaîne.

comparée à un \mathbf{W} : la chaîne de résidus de la molécule contient deux cassures. Ce scénario est plus difficile que le scénario 1A car le nombre d'atomes à placer est plus élevé et qu'il est nécessaire de maintenir en place deux cassures.

Scénario 2A Cette tâche concerne la manipulation de la molécule TRP-ZIPPER à l'échelle intra-moléculaire. Seulement trois résidus sont laissés libres et tous les autres résidus sont fixés. Le champ de force au sein de la zone de déformation pour cette molécule est très faible et aucune cassure n'est à reformer. Cependant, la difficulté de ce scénario réside dans la précision de la déformation nécessaire. En effet, plutôt que de modifier la position des résidus, ce scénario nécessite la modification de l'orientation d'un résidus donc une précision accrue dans la sélection et la déformation des atomes.

Scénario 2B Cette tâche concerne la manipulation de la molécule TRP-CAGE à l'échelle intra-moléculaire. Seulement six résidus sont laissés libres et tous les autres résidus sont fixés. Le champ de force au sein de la zone de déformation est très important et l'énergie qu'il est nécessaire de déployer pour réussir cette déformation est importante. Cette déformation ne peut être réalisée qu'avec la manipulation simultanée et coordonnée de deux résidus : ceci permet de recréer la cassure.

Un résumé de la complexité des quatre tâches est exposé dans la table 4.1 selon les critères suivants :

Scénario	1A	1в	2 A	2B
Nombre d'atomes	218	304	218	304
Résidus libres	11	19	3	7
Cassure	1	2	0	1
Champ de force	Moyen	Moyen	Faible	Fort

Table 4.1 – Paramètres de complexité des tâches

4.3.2 Spécificités du protocole expérimental

L'expérimentation, basée sur le dispositif expérimental présenté dans le chapitre A page 191, a subi quelques modifications qui seront détaillées dans les sections suivantes. Un résumé de la methode expérimentale se trouve

dans la table 4.2 page 117 qu'on pourra retrouver de manière détaillée dans la section B.2 page 204.

Matériel

Pour cette seconde expérimentation, une unique modification a été effectuée par rapport à la plate-forme de base (voir section A.1 page 192). En effet, suite à la première expérimentation, nous avons beaucoup remis en cause la présence de l'outil d'orientation de la molécule. Cet outil permettant de modifier l'orientation de la molécule est nécessaire. Cependant, la forme sous laquelle il est présenté n'est pas idéale. L'outil d'orientation grab a posé des problèmes manifestes d'interaction à certains sujets qui ne réussissaient pas à s'approprier l'outil.

Après une discussion avec un bio-informaticien, il est apparu qu'une souris 3D est un outil plus approprié qu'une interface haptique pour l'orientation de la scène. En effet, le périphérique haptique possède des contraintes mécaniques qui ne permettent pas des rotations complètes de l'objet. Cette contrainte amène des problématiques connues d'interaction avec les objets virtuels : le débrayage [Dominjon 2006]. La souris 3D ne souffre pas d'une telle contrainte et peut ainsi être proposée comme outil d'orientation en alternative à l'interface haptique associée à l'outil grab. Une souris 3D SpaceNavigator® est placée sur la table entre les deux sujets. Aucune consigne particulière n'est donnée sur l'utilisation de cet outil et chaque sujet peut l'utiliser au moment où il le souhaite : nous créons ainsi artificiellement un point de conflit pour l'accès à cet outil. L'objectif est de stimuler les interactions.

En ce qui concerne l'utilisation des outils de déformation en binôme, chaque sujet possède à sa disposition un outil de déformation. La répartition de l'outil d'orientation est laissé à la responsabilités des deux membres du binôme. Pour les monômes, le sujet peut utiliser les deux outils de déformation en configuration bimanuelle. Il peut également utiliser l'outil d'orientation mais dans ce cas, il est forcé de lâcher un des deux outils de déformation. Pour des raisons d'équité entre les monômes et les binômes, l'utilisation de la souris 3D désactive toutes les sélections effectuées avec un outil de déformation. De cette façon, les membres du binôme ne peuvent pas utiliser l'outil d'orientation en même temps que les outils de déformations (contrainte physique inhérente au monômes).

Les figure 4.2 page ci-contre et figure 4.3 page suivante illustrent par un schéma et une photographie le dispositif expérimental.

Figure 4.2 – Schéma du dispositif expérimental

Figure 4.3 – Photographie du dispositif expérimental

Visualisation

Pour cette seconde expérimentation, quatre scénarios sont proposés et présentés dans la section 4.3.1 page 110. Ces molécules sont représentées avec les rendus graphiques de base (CPK et NewRibbon). Cependant, la tâche nécessite d'afficher la molécule dans son état stable qui est l'objectif que doivent atteindre les sujets. Cette molécule ne peut pas être représentée avec tous les atomes pour deux raisons. Tout d'abord, l'intégralité des atomes serait une surcharge du rendu visuel. De plus, la précision nécessaire pour les déformations demandées ne nécessite pas un affinement au niveau atomique. C'est pourquoi, la molécule dans son état stable sera discrètement affichée avec un rendu NewRibbon en transparence.

Des images représentants les différents scénarios dans leurs états initiaux sont présentées. Les scénarios inter-moléculaires 1A et 1B sont respectivement représentés sur la figure 4.4 et la figure 4.5 page ci-contre. Les scénarios intra-moléculaires 2A et 2B sont respectivement représentés sur la figure 4.6 page suivante et la figure 4.7 page 116.

Figure 4.4 – Représentation de la molécule TRP-ZIPPER pour le scénario 1A

Figure 4.5 — Représentation de la molécule $\ensuremath{\mathtt{TRP\text{-}CAGE}}$ pour le scénario 1B

Figure 4.6 — Représentation de la molécule $\ensuremath{\mathtt{TRP-ZIPPER}}$ pour le scénario 2A

Figure 4.7 – Représentation de la molécule TRP-CAGE pour le scénario 2B

Outils de manipulation

Concernant l'outil d'orientation de la molécule, maintenant assuré par une souris 3D, une légére modification a été effectuée. Grâce au choix du matériel qui permet de différencier aisément les translations et les rotations, nous avons choisi de ne conserver que les DDLs en rotation. En effet, la molécule n'a pas besoin d'être déplacée à l'écran et c'est surtout l'orientation la molécule qui est nécessaire aux sujets. Ceci permet également d'éviter que les molécules ne sortent de l'espace visuel des sujets (scène vidéoprojetée) à cause d'une mauvaise manipulation. De plus, ce choix permet d'enlever une part de la charge cognitive aux manipulateurs.

En ce qui concerne les outils de déformation, quelques modifications concernant le rendu visuel ont été effectuées. La tâche consiste à reconstituer une molécule dans son état d'équilibre. Pour aider les sujets dans cette tâche, nous avons affiché un rendu visuel en transparence de la molécule dans son état stable. Pour augmenter l'aide visuelle apportée, nous allons également indiquer l'emplacement final d'un résidu sélectionné. En effet, dès qu'un sujet sélectionne un résidu, ce résidu est mis en surbrillance. Le résidu correspondant sur la molécule stable est également mis en surbrillance comme expliqué sur la figure 4.8 page 118. Le résidu de la molécule stable est représenté par un rendu CPK coloré de la couleur du curseur du sujet concerné.

4.4 Résultats

Cette section présente et analyse l'ensemble des mesures expérimentales de cette seconde étude concernant la déformation de molécules complexes en

Table 4.2 – Synthèse de la procédure expérimentale

21 A 21:				
\mathcal{H}_1 Amélioration des performances en binôme \mathcal{H}_2 binômes plus performants sur les tâches complexes \mathcal{H}_3 Apprentissage plus performant en binôme \mathcal{H}_4 Les sujets préfèrent le travail en collaboration				
\mathcal{V}_{i1} Nombre de sujets \mathcal{V}_{i2} Complexité de la tâche \mathcal{V}_{i3} Niveau d'apprentissage				
V_{d1} Temps de réalisation V_{d2} Nombre de sélections V_{d3} Distance passive entre les espaces de travail V_{d4} Distance active entre les espaces de travail V_{d5} Vitesse moyenne V_{d6} Réponses qualitatives				
Condition \mathcal{C}_2	Condition \mathcal{C}_3	${\bf Condition} \mathcal{C}_4$		
1 sujet Bimanuel	2 sujets Collaboratif	2 sujets Collaboratif		
Scénario 1B Scénario 1A Scénario 2B	Scénario 1A Scénario 1B Scénario 2A	Scénario 1B Scénario 1A Scénario 2B Scénario 2A		
	\mathcal{H}_2 binômes plus p \mathcal{H}_3 Apprentissage \mathcal{H}_4 Les sujets préfe \mathcal{V}_{i1} Nombre de suje \mathcal{V}_{i2} Complexité de \mathcal{V}_{i3} Niveau d'appre \mathcal{V}_{d1} Temps de réali \mathcal{V}_{d2} Nombre de séle \mathcal{V}_{d3} Distance passi \mathcal{V}_{d4} Distance active \mathcal{V}_{d5} Vitesse moyen \mathcal{V}_{d6} Réponses qual Condition \mathcal{C}_2 1 sujet Bimanuel Scénario 1B Scénario 1A	\mathcal{H}_2 binômes plus performants sur les \mathcal{H}_3 Apprentissage plus performant en \mathcal{H}_4 Les sujets préfèrent le travail en \mathcal{U}_{11} Nombre de sujets \mathcal{V}_{12} Complexité de la tâche \mathcal{V}_{13} Niveau d'apprentissage \mathcal{V}_{d1} Temps de réalisation \mathcal{V}_{d2} Nombre de sélections \mathcal{V}_{d3} Distance passive entre les espaces \mathcal{V}_{d4} Distance active entre les espaces \mathcal{V}_{d5} Vitesse moyenne \mathcal{V}_{d6} Réponses qualitatives $\mathbf{Condition} \ \mathcal{C}_2$ $\mathbf{Condition} \ \mathcal{C}_3$ 1 sujet 2 sujets $\mathbf{Condition} \ \mathcal{C}_3$ 1 sujet 2 sujets $\mathbf{Collaboratif}$ Scénario 1B Scénario 1A Scénario 1B Scénario 2B Scénario 2A		

Figure 4.8 – Illustration des rendus pour l'affichage de la molécule

configuration collaborative. Les données, confrontées à un test de Shapiro et Wilk [1965], ne sont pas distribuées selon une loi normale. Cependant, un test de Brown et Forsythe [1974] permet de confirmer l'homoscedasticité. L'analyse de la variance est alors pratiquée avec différents tests statistiques suivant les cas :

- test de Friedman [1940] pour les variables intra-sujets non-paramètriques;
- test de Kruskal et Wallis [1952] pour les variables inter-sujets nonparamètriques.

4.4.1 Amélioration des performances en binôme

Données et statistiques

La figure 4.9 page ci-contre présente le temps de réalisation \mathcal{V}_{d1} en fonction du nombre de sujets \mathcal{V}_{i1} . L'analyse montre qu'il y a un effet significatif du nombre de sujets \mathcal{V}_{i1} sur le temps de réalisation \mathcal{V}_{d1} ($\chi^2 = 4.9$, df = 1, p = 0.027).

La figure 4.10 page suivante présente la distance passive \mathcal{V}_{d3} et active \mathcal{V}_{d4} entre les effecteurs terminaux en fonction du nombre de sujets \mathcal{V}_{i1} . L'analyse

Figure 4.9 – Temps de réalisation en fonction du nombre de sujets

 $\begin{tabular}{ll} \textbf{Figure 4.10} - \textbf{Distance passive et active entre les effecteurs terminaux en fonction du nombre de sujets} \\ \end{tabular}$

montre qu'il n'y a pas d'effet significatif du nombre de sujets \mathcal{V}_{i1} sur la distance passive \mathcal{V}_{d3} ($\chi^2=2.8, df=1, p=0.092$). Cependant, l'analyse montre qu'il y a un effet significatif du nombre de sujets \mathcal{V}_{i1} sur la distance active \mathcal{V}_{d4} ($\chi^2=21.6, df=1, p\ll 0.05$).

On peut également comparer les distances passive et active en fonction du nombre de sujets V_{i1} . L'analyse montre qu'il y a un effet significatif de la nature de la distance (passive ou active) au sein d'un monôme ($\chi^2 = 42.6$, $df = 1, p \ll 0.05$). Par contre, l'analyse ne montre pas d'effet significatif de la nature de la distance (passive ou active) au sein d'un binôme ($\chi^2 = 2.5$, df = 1, p = 0.114).

Figure 4.11 – Nombre de sélections par main dominante/dominée en fonction du nombre de sujets

La figure 4.11 présente le nombre de sélections par main dominante/dominée \mathcal{V}_{d2} en fonction du nombre de sujets \mathcal{V}_{i1} . Les binômes n'utilisant que leur main dominante, il n'y a pas de résultat pour la main dominée. On constate un déséquilibre du nombre de sélections entre la main dominante et la main dominée pour les monômes. L'analyse montre qu'il y a un effet significatif du nombre de sujets \mathcal{V}_{i1} sur le nombre total de sélections (somme des mains dominante et dominée pour les monômes) \mathcal{V}_{d2} ($\chi^2 = 6.3$, df = 1, p = 0.012).

Le nombre de sélections pour la main dominante comptabilise les sélections des deux sujets du binôme contrairement aux monômes : ceci explique le nombre plus élevé de sélections en binômes. Cependant, si on compare le nombre moyen de sélections par sujet (pour la main dominante), l'analyse montre qu'il n'y a pas d'effet significatif du nombre de sujets \mathcal{V}_{i1} sur le nombre de sélections de la main dominante \mathcal{V}_{d2} ($\chi^2 = 0$, df = 1, p = 0.912).

La figure 4.12 page suivante présente la vitesse moyenne des effecteurs terminaux \mathcal{V}_{d5} des effecteurs terminaux en fonction du nombre de sujets \mathcal{V}_{i1} .

Figure 4.12 – Vitesse moyenne de la main dominante et dominée en fonction du nombre de sujets

L'analyse montre un effet significatif du nombre de sujets \mathcal{V}_{i1} sur la vitesse moyenne \mathcal{V}_{d5} ($\chi^2=122.6,\ df=1,\ p\ll 0.05$). L'analyse montre un déséquilibre de vitesse moyenne entre la main dominante et dominée des monômes avec un effet significatif ($\chi^2=51.1,\ df=1,\ p\ll 0.05$). L'analyse montre également un effet significatif du nombre de sujets \mathcal{V}_{i1} sur la vitesse moyenne \mathcal{V}_{d5} de la main dominante ($\chi^2=23,\ df=1,\ p\ll 0.05$).

Analyse et discussion

Le premier résultat sur la figure 4.9 page 119 nous permet de confirmer notre hypothèse \mathcal{H}_1 : les binômes sont plus performants que les monômes. Cependant, la suite de l'analyse va permettre de mettre en avant les paramètres précis pour lesquels il y a un gain de performances ainsi que les scénarios les plus adaptés à cette configuration de travail.

Pour commencer, les distances moyennes entre les effecteurs terminaux nous permet d'observer un désequilibre de performances entre les monômes et les binômes (voir figure 4.10 page 119). En effet, la distance passive entre les effecteurs terminaux (distance moyenne sur toute la durée de la tâche) est plus importante pour les monômes que pour les binômes. Cependant, la distance active (seulement lorsque les deux effecteurs terminaux sont en phase de sélection) montre un effet inverse. En effet, la manipulation bimanuelle (pour les monômes) constitue une charge de travail cognitive importante. Le sujet doit alors être capable de gérer deux effecteurs terminaux à chaque instant. Cette configuration a mené la plupart des sujets à utiliser seulement un effecteur terminal en laissant le second sur le côté afin que le curseur ne

gêne pas à l'écran. La main dominée n'est utilisée que dans les cas où le sujet estime que c'est absolument nécessaire pour achever la tâche. Ceci a pour effet d'augmenter la distance passive moyenne. Cependant, la distance est censée représenter l'espace de travail couvert au sein de l'environnement virtuel.

Dans ce cas, elle est incorrecte car bien que la distance soit importante, elle ne représente pas un espace de travail étant donné que le deuxième effecteur terminal n'est pas utilisé.

La distance active permet d'éviter ce biais de mesure. En effet, cette mesure ne prend pas en compte les phases d'inactivité d'un effecteur terminal. On constate alors que les binômes couvrent un plus grand espace de travail. Les monômes couvrent un espace de travail plus restreint car ils peuvent focaliser visuellement sur une seule zone de travail à la fois. Par conséquent, les deux effecteurs terminaux se trouvent toujours proche de la zone de manipulation, dans la zone de focus du sujet.

La figure 4.11 page 120 confirme ce déséquilibre. En effet, on constate un nombre total de sélections plus grand pour les binômes (19.4 sélections) que pour les monômes (14.1 sélections). Là encore, le sujet effectuant la tâche en monôme n'exploite pas pleinement les deux outils en sa possession : la charge de travail cognitive est trop importante. En effet, la Théorie des Ressources Multiples (TRM) [WICKENS 1984] estime que la gestion de plusieurs ressources pour la même modalité est impossible. Cependant, les analyses statistiques montre que l'outil utilisé par la main dominante obtient un taux d'utilisation identique entre les monômes et les binômes. Les binômes en configuration monomanuelle répartissent correctement la charge de travail entre les deux ressources disponibles ce qui n'est pas le cas des monômes.

Cependant, l'outil associé à la main dominante est géné par la configuration bimanuelle. En effet, l'analyse montre une différence significative entre la vitesse moyenne de la main dominante des monômes et celle des binômes. La configuration bimanuelle provoque une séquentialité dans les actions du sujet : il manipule avec un outil, puis avec l'autre mais rarement les deux en même temps. Cette séquentialité a pour effet des pauses alternatives entre les outils ce qui explique une vitesse moyenne plus basse.

Cette section nous a permis de constater que le travail en binôme permet de meilleures performances que le travail en monôme. Une analyse plus détaillé a mis en avant la difficulté du travail en configuration bimanuelle : la charge de travail cognitive à assumer avec deux outils est trop importante. Cette difficulté a pour effet de fortement dégrader le taux d'utilisation d'un des deux outils. On constate également une légére baisse de l'utilisation de l'outil associé à la main dominante. Pour résumer, il est préférable de distri-

buer les ressources disponibles (outils de manipulation dans notre cas) entre différents participants : la configuration bimanuelle apporte une charge de travail cognitive trop importante.

4.4.2 Évolution des performances en fonction de la complexité de la tâche

Données et statistiques

Figure 4.13 – Temps de réalisation des scénarios

La figure 4.13 présente le temps de réalisation \mathcal{V}_{d1} en fonction de la complexité de la tâche \mathcal{V}_{i2} (temps cumulé des monômes et des binômes). L'analyse montre un effet significatif de la complexité de la tâche \mathcal{V}_{i2} sur le temps de réalisation \mathcal{V}_{d1} ($\chi^2 = 59.2$, df = 3, $p \ll 0.05$). Un test post-hoc de MANN et WHITNEY [1947] avec une correction de HOLM [1979] permet de trier les scénarios en deux classes de complexité : {1A, 2A} et {1B, 2B}.

La figure 4.14 page suivante présente le temps de réalisation \mathcal{V}_{d1} des différents scénarios \mathcal{V}_{i2} en fonction du nombre de sujets \mathcal{V}_{i1} . En regroupant les scénarios par classe de complexité, l'analyse montre qu'il n'y a pas d'effet significatif du nombre de sujets \mathcal{V}_{i1} sur le temps de réalisation \mathcal{V}_{d1} pour les scénarios 1A et 2A ($\chi^2 = 0.1$, df = 1, p = 0.713). Cependant, l'analyse montre un effet significatif du nombre de sujets \mathcal{V}_{i1} sur le temps de réalisation \mathcal{V}_{d1} pour les scénarios 1B et 2B ($\chi^2 = 10.4$, df = 1, p = 0.001).

La figure 4.15 page suivante présente le nombre de sélections \mathcal{V}_{d2} des différents scénarios \mathcal{V}_{i2} en fonction du nombre de sujets \mathcal{V}_{i1} . En regroupant les scénarios par classe de complexité, l'analyse montre un effet significatif du nombre

Figure 4.14 — Temps de réalisation des scénarios en fonction du nombre de sujets

Figure 4.15 — Nombre de sélections de chaque scénario en fonction du nombre de sujets

de sujets V_{i1} sur le nombre de sélections V_{d2} pour les scénarios 1A et 2A $(\chi^2 = 11.5, df = 1, p \ll 0.05)$. Cependant, l'analyse montre qu'il n'y a pas d'effet significatif du nombre de sujets V_{i1} sur le nombre de sélections V_{d2} pour les scénarios 1B et 2B $(\chi^2 = 0.4, df = 1, p = 0.504)$.

Figure 4.16 — Distance passive et active entre les effecteurs terminaux sur chaque scénario en fonction du nombre de sujets

La figure 4.16 présente les distances passives \mathcal{V}_{d3} et actives \mathcal{V}_{d4} des différents scénarios \mathcal{V}_{i2} en fonction du nombre de sujets \mathcal{V}_{i1} . En regroupant les scénarios par classe de complexité, l'analyse montre un effet significatif du nombre de sujets \mathcal{V}_{i1} sur la distance passive \mathcal{V}_{d3} pour les scénarios 1A et 2A ($\chi^2 = 6.3$, df = 1, p = 0.012) mais pas d'effet significatif sur les scénarios 1B et 2B ($\chi^2 = 1.6, df = 1, p = 0.207$). Cependant, on constate un effet significatif du nombre de sujets \mathcal{V}_{i1} sur la distance active \mathcal{V}_{d4} pour les scénarios 1A et 2A ($\chi^2 = 17.3, df = 1, p \ll 0.05$) ainsi que sur les scénarios 1B et 2B ($\chi^2 = 9.7, df = 1, p = 0.002$).

Figure 4.17 – Vitesse moyenne sur chaque scénario en fonction du nombre de sujets

La figure 4.17 présente la vitesse moyenne \mathcal{V}_{d5} des différents scénarios \mathcal{V}_{i2} en fonction du nombre de sujets \mathcal{V}_{i1} . En regroupant les scénarios par classe de complexité, l'analyse montre un effet significatif du nombre de sujets \mathcal{V}_{i1} sur la vitesse moyenne \mathcal{V}_{d5} pour les scénarios 1A et 2A ($\chi^2 = 32.2$, df = 1, $p \ll 0.05$). De même, l'analyse montre un effet significatif du nombre de sujets \mathcal{V}_{i1} sur la vitesse moyenne \mathcal{V}_{d5} pour les scénarios 1B et 2B ($\chi^2 = 72.5$, df = 1, $p \ll 0.05$).

Analyse et discussion

L'analyse du temps de réalisation des différentes tâches ainsi que la table 4.1 page 111 nous permet de classifier ces tâches par niveau de complexité : les scénarios 1A et 2A sont simples alors que les scénarios 1B et 2B sont complexes. En effet, les scénarios 1A et 2A concernent la molécule TRP-ZIPPER contenant peu d'atomes et de résidus libres. Par contre, les scénarios 1B et 2B, dont le nombre d'atomes et de résidus libres est plus important, est constitué de champ de force à fortes contraintes physiques et nécessité la formation de plusieurs cassures.

En observant les différences de performances entre les monômes et les binômes sur la figure 4.14 page 124, on constate que l'apport du travail collaboratif n'est vrai que dans le cas des tâches complexes. La contrainte des tâches complexes réside dans la nécessité d'avoir recourt aux deux outils pour achever la tâche. En effet, en observant la figure 4.16a page précédente, l'analyse de la distance active montre une différence significative entre les monômes et les binômes pour les scénarios simples. Sur la base des résultats de la section précédente (voir section 4.4.1 page 118), les monômes ont tendance

à délaisser le deuxième outil à cause de la forte charge cognitive qu'ajoute la configuration bimanuelle. L'outil délaissé augmente ainsi la valeur de la distance passive mesurée en étant mis à l'écart. En observant seulement les scénarios simples 1A et 2A, on constate que la distance passive des monômes est plus importante que celle des binômes. On en conclue que les monômes que la complexité de ces scénarios n'a pas nécessité une manipulation bimanuelle et que la tâche a pu être achevée avec un seul outil de déformation. Il y a donc peu d'intérêt d'effectuer ces tâches peu complexe en collaboration puisqu'il n'y a aucune amélioration significative des performances bien que le nombre de ressources utilisées (les outils de déformation) soit doublé.

Cependant, pour les scénarios complexes, l'analyse ne montre pas de différence significative de la distance passive entre les monômes et les binômes. Pour ces scénarios, l'utilisation du deuxième outil est nécessaire et malgré la charge cognitive importante que cela représente pour les monômes, la tâche est réalisée à l'aide des deux outils (configuration bimanuelle). Dans ce cadre, la configuration monomanuelle adoptée par les binômes permet de meilleures performances comme le montre les analyses pour une distance active similaire. En effet, l'espace de travail couvert par les monômes est identique à celui des binômes mais leur incapacité à traiter cognitivement cette charge supplémentaire de travail les rend moins performants.

L'analyse du nombre de sélections vient appuyer ces conclusions. En effet, les monômes effectuent moins de sélections que les binômes dans la réalisation des scénarios simples. Cependant, on comptabilise un nombre de sélections similaires entre les monômes et les binômes dans les scénarios complexes.

Dans cette section, nous avons montré que les améliorations de performances des binômes par rapport aux monômes étaient très liées à la complexité de la tâche. En effet, sur des tâches de faible complexité, les monômes obtiennent de bonnes performances (même en configuration monomanuelle) alors que les binômes souffrent de conflits de coordination : les performances sont similaires. Cependant, dans le cas de tâche complexes, les conflits de coordination ne sont pas suffisamment pénalisants et la collaboration permet d'obtenir de meilleures performances que le travail seul. Dans la section précédente, nous avons montré que la configuration bimanuelle ne permet pas d'égaler les performances d'un travail en collaboration. Complétons cette conclusion par le fait qu'elle est surtout vraie pour les scénarios complexes.

Figure 4.18 – Temps de réalisation de chaque essai

4.4.3 Amélioration de l'apprentissage pour les binômes

Données et statistiques

La figure 4.18 présente le temps de réalisation \mathcal{V}_{d1} des différents essais \mathcal{V}_{i3} . L'analyse montre un effet significatif du numéro de l'essai \mathcal{V}_{i3} sur le temps de réalisation \mathcal{V}_{d1} ($\chi^2 = 20.2$, df = 2, $p \ll 0.05$). Un test post-hoc de MANN et WHITNEY [1947] avec une correction de HOLM [1979] montre une évolution significative entre le premier essai et le deuxième essai ainsi qu'entre le deuxième essai et le troisième.

Figure 4.19 – Temps de réalisation de chaque essai en fonction du nombre de sujets

La figure 4.19 présente le temps de réalisation \mathcal{V}_{d1} des différents essais \mathcal{V}_{i3} en fonction du nombre de sujets \mathcal{V}_{i1} . L'analyse montre qu'il n'y a pas d'effet significatif du nombre de sujets \mathcal{V}_{i1} sur le temps de réalisation \mathcal{V}_{d1} pour le premier essai ($\chi^2 = 1.3$, df = 1, p = 0.263), le deuxième essai ($\chi^2 = 1.2$, df = 1, p = 0.276) ou le troisième essai ($\chi^2 = 2.5$, df = 1, p = 0.115).

De plus, l'analyse montre un effet significatif du numéro de l'essai \mathcal{V}_{i3} sur le temps de réalisation \mathcal{V}_{d1} pour les monômes ($\chi^2 = 7.1, df = 2, p = 0.028$)

et pour les binômes ($\chi^2 = 19.8$, df = 2, $p \ll 0.05$). Un test post-hoc de Mann et Whitney [1947] avec une correction de Holm [1979] montre une évolution significative seulement à partir de dernier essai pour les monômes alors que l'évolution est significative dès le deuxième essai pour les binômes.

Figure 4.20 — Nombre de sélections de chaque essai en fonction du nombre de sujets

La figure 4.20 présente le nombre de sélections \mathcal{V}_{d2} des différents essais \mathcal{V}_{i3} en fonction du nombre de sujets \mathcal{V}_{i1} . L'analyse montre qu'il n'y a pas d'effet significatif du nombre de sujets \mathcal{V}_{i1} sur le nombre de sélections \mathcal{V}_{d2} pour le premier essai ($\chi^2 = 3.3$, df = 1, p = 0.068) ou le troisième essai ($\chi^2 = 0.1$, df = 1, p = 0.715). Cependant, l'analyse montre un effet significatif du nombre de sujets \mathcal{V}_{i1} sur le nombre de sélections \mathcal{V}_{d2} pour le deuxième essai ($\chi^2 = 3.8$, df = 1, p = 0.05).

De plus, l'analyse montre qu'il n'y a pas d'effet significatif du numéro de l'essai \mathcal{V}_{i3} sur le nombre de sélections \mathcal{V}_{d2} pour les monômes ($\chi^2 = 0.5$, df = 2, p = 0.763). Cependant, l'analyse montre un effet significatif du numéro de l'essai \mathcal{V}_{i3} sur le nombre de sélections \mathcal{V}_{d2} pour les binômes ($\chi^2 = 9.1$, df = 2, p = 0.011). Le test post-hoc de MANN et WHITNEY [1947] avec une correction de HOLM [1979] montre une diminution significative du nombre de sélections pour les binômes entre le premier et le dernier essai.

La figure 4.21 page suivante présente la distance active \mathcal{V}_{d4} des différents essais \mathcal{V}_{i3} en fonction du nombre de sujets \mathcal{V}_{i1} . La distance passive n'a pas été prise en considération étant donné le biais de mesure décrit dans la section 4.4.1 page 118. L'analyse montre un effet significatif du nombre de sujets \mathcal{V}_{i1} sur la distance active \mathcal{V}_{d4} pour le premier essai ($\chi^2 = 21.4$, df = 1, $p \ll 0.05$) et pour le deuxième essai ($\chi^2 = 8.5$, df = 1, p = 0.004) mais pas

Figure 4.21 – Distance active entre les effecteurs terminaux pour chaque essai en fonction du nombre de sujets

pour le troisième essai ($\chi^2 = 0.8$, df = 1, p = 0.362).

De plus, l'analyse montre qu'il n'y a pas d'effet significatif du numéro de l'essai \mathcal{V}_{i3} sur la distance active \mathcal{V}_{d4} pour les binômes ($\chi^2 = 2.6$, df = 2, p = 0.275). Cependant, l'analyse montre un effet significatif du numéro de l'essai \mathcal{V}_{i3} sur la distance active \mathcal{V}_{d4} pour les monômes ($\chi^2 = 7.3$, df = 2, p = 0.025). Un test post-hoc de MANN et WHITNEY [1947] avec une correction de HOLM [1979] montre une évolution significative entre le premier essai et le troisième essai.

Figure 4.22 – Vitesse moyenne pour chaque essai en fonction du nombre de sujets

La figure 4.22 présente la vitesse moyenne \mathcal{V}_{d5} des différents essais \mathcal{V}_{i3} en fonction du nombre de sujets \mathcal{V}_{i1} . L'analyse montre un effet significatif du nombre de sujets \mathcal{V}_{i1} sur la vitesse moyenne \mathcal{V}_{d5} pour le premier essai ($\chi^2 = 50$, df = 1, $p \ll 0.05$), le second essai ($\chi^2 = 25.6$, df = 1, $p \ll 0.05$) et le troisième essai ($\chi^2 = 33.1$, df = 1, $p \ll 0.05$).

De plus, l'analyse montre un effet significatif du numéro de l'essai \mathcal{V}_{i3} sur la vitesse moyenne \mathcal{V}_{d5} pour les monômes ($\chi^2 = 40.5$, df = 2, $p \ll 0.05$) et les binômes ($\chi^2 = 9$, df = 2, p = 0.011). Le test post-hoc de Mann et Whitney [1947] avec une correction de Holm [1979] montre dans chaque cas (monôme et binôme) une augmentation significative après le premier essai.

Analyse et discussion

L'observation des temps de réalisation de la tâche (voir figure 4.18 page 128) nous permet de caractériser un apprentissage réel sur l'ensemble des trois réalisations de la tâche. Le détail de l'apprentissage en fonction du nombre de sujets sur la figure 4.19 page 128 apporte cependant un point important : les binômes améliorent plus rapidement leurs performances que les monômes. En effet, on constate une amélioration franche des performances dès le second essai dans le cas des binômes alors que ce n'est que sur le dernier essai que les monômes montrent une évolution. L'amélioration plus rapide des performances chez les binômes suggère un apprentissage plus rapide de la tâche, des outils et de tous les éléments de la plate-forme ².

En observant l'évolution des variables \mathcal{V}_{d1} (temps de réalisation) et \mathcal{V}_{d2} (nombre de sélections), on constate que les binômes ont un apprentissage rapide. Le temps de réalisation décroît ainsi que le nombre de sélections ce qui n'est pas le cas des monômes. En effet, le temps de réalisation des monômes décroît alors que le nombre de sélections ne décroît pas de manière significative. Au-fur-et-à-mesure des essais, les monômes apprennent et intègre la manipulation en configuration bimanuelle : ils augmentent ainsi leurs performances (diminution du temps de réalisation et du nombre de sélections de la main dominante) tout conservant un nombre de sélections relativement constant (par une augmentation du nombre de sélections de la main dominée).

On observe clairement l'apprentissage progressif du deuxième outil mis à disposition des monômes dans la figure 4.21 page ci-contre. Alors que l'espace de travail des binômes reste stable sur l'ensemble des essais, celui des monômes s'étend au-fur-et-à-mesure des essais jusqu'à atteindre une valeur similaire à celle des binômes. En effet, seul l'apprentissage permet de s'affranchir en partie de la charge cognitive importante que représente la manipulation bimanuelle [Wickens 1984] : avec l'apprentissage, les monômes sont capables de gérer un espace de travail de plus en plus grand. Le potentiel du deuxième

^{2.} On observe une amélioration des performances par apprentissage mais rien ne permet de distinguer quel aspect de la tâche a été intégrée le plus vite.

outil n'est pas ignoré et il est utilisé (avec la main dominée) comme un moyen de fixer un résidu déjà déplacé pendant que l'autre outil déforme. Ceci permet de déformer une partie de la molécule tout en conservant la stabilité de la partie déjà déformée. Les monômes ont la capacité d'adopter une stratégie plus adaptée à la situation car aucune limite de surcharge cognitive ne contraint les sujets.

En ce qui concerne les vitesses moyennes, les monômes comme les binômes s'améliorent en manipulant plus rapidement. Cependant, les binômes restent nettement plus rapides que les monômes. Cette amélioration peut être mise en relation avec l'amélioration des temps de réalisation : la tâche est réalisée plus rapidement car les sujets manipulent plus rapidement.

Dans cette section, nous avons mis en évidence les améliorations en terme d'apprentissage pour les configurations collaboratives sans distinction sur les aspects de l'apprentissage (plate-forme, outils, tâche, etc.). En effet, les binômes atteignent des performances optimales rapidement tandis que les monômes ont besoin de plus de temps pour converger vers de bonnes performances. La capacité des binômes à communiquer, échanger et conseiller permet de mutualiser l'apprentissage et de l'accélérer. De plus, un binôme peut bénéficier des connaissances spécifiques ou de l'expérience d'un des membres du binôme et ainsi mutualiser les aptitudes de chacun pour créer une vraie dynamique de groupe. La configuration bimanuelle offre une alternative de manipulation aux monômes avec une surcharge de travail trop importante : l'apprentissage est plus difficile. De plus, les monômes ont probablement atteint les limites de la charge cognitive maximum supportée avec cette configuration : l'ajout de nouvelles fonctionnalités serait probablement inefficace (contrairement aux binômes).

4.4.4 Résultats qualitatifs

Le questionnaire est destiné à évaluer la collaboration du point du vue de l'utilisateur.

Tout d'abord, la grande majorité des sujets travaillant en binôme se sont trouvés utiles dans cette tâche de collaboration ($\mu = 3.1$, $\sigma = 0.8$)³. Ce résultat élevé permet de vérifier que les sujets ne se sentent pas mis de côté et participent activement à la réalisation de la tâche. Cette collaboration peut se traduire par une participation active à la déformation ou par une participation plutôt passive (échanges verbaux, conseils, remarques, etc.).

^{3.} L'échelle de notation comprise entre 1 à 5 mais les moyennes ont été normalisées entre 0 et 4.

Dans un cas comme dans l'autre, les sujets ne sont pas isolés ce qui permet d'éviter les phénomènes de paresse sociale.

Le sentiment d'avoir été meneur durant la réalisation de la tâche est relativement neutre ($\mu = 2$, $\sigma = 0.6$). Cependant, cette question semble biaisée. En effet, les sujets ne souhaitent pas prétendre avoir été meneur ou chef des opérations par modestie. Paradoxalement, ils ne souhaitent pas non plus avouer avoir été dirigé par quelqu'un d'autre par fierté. D'ailleurs, on observe un écart-type relativement bas concernant cette note ce qui signifie que la majorité des sujets ont répondu de façon neutre.

L'évaluation de la communication confirme ce qui a été observé dans la précédente expérimentation (voir section 3.4.3 page 98). En effet, l'importance de la communication verbale a été mise en avant ($\mu = 2.4$, $\sigma = 1.2$). Par opposition, les sujets ont considéré qu'ils n'utilisaient quasiment pas la modalité virtuelle ($\mu = 0.9, \sigma = 1$) et encore moins la modalité gestuelle ($\mu = 0.3, \sigma = 1$) $\sigma=0.6$) pour communiquer. La communication verbale étant la plus naturelle, il n'est pas étonnant d'obtenir un tel score. De la même façon, la communication gestuelle est compliquée étant donné que les sujets sont en train de manipuler une interface haptique. De plus, leur vision se focalise principalement sur le déroulement de la tâche à l'écran mais pas sur le partenaire ce qui laisse peu de place à la communication gestuelle. Cependant, les sujets estiment ne pas souvent avoir recours aux communications virtuelles. Cette modalité de communication offre des possibilités intéressantes puisqu'elle est intégrée à l'environnement de travail et matérialisée principalement par le curseur. L'expérimentation ne proposant aucun fonctionnalité particulière permettant d'exploiter cette modalité de communication explique probablement ce faible taux d'utilisation. La dernière expérimentation (voir chapitre 6 page 165) propose des outils de désignation qui vont permettre d'exploiter le potentiel de ce canal de communication.

Pour finir, les sujets ont été interrogés sur leur configuration de travail préférée. Le questionnaire propose aux sujets d'évaluer une configuration pour laquelle ils n'ont pas testés. La configuration monomanuelle en monôme (qui n'a pas été testée) a été relativement peu choisie ($\mu=0.8, \sigma=1$). Les sujets évalués en monôme sont mitigés sur l'intérêt d'une configuration monomanuelle en binôme ($\mu=2.2, \sigma=1.2$). De la même façon, les sujets évalués en binôme sont mitigés sur l'intérêt d'une configuration bimanuelle en monôme ($\mu=1.9, \sigma=1.3$). Quoiqu'il en soit, ils ont été seulement 41.7 % à préférer la configuration bimanuelle en monôme alors qu'ils ont été 58.3 % à opter pour la configuration monomanuelle en binôme. Une majorité des sujets semble préférer la configuration collaborative.

4.5 Synthèse

4.5.1 Résumé des résultats

Dans cette seconde expérimentation, nous avons comparé et étudié les performances de monômes et de binômes sur une tâche de déformation avec un nombre identique de ressources. De plus, nous avons cherché à observer l'apport de la configuration collaborative sur l'apprentissage sur les performances. L'objectif était de placer la configuration collaborative dans un contexte de déformation avec de nouvelles contraintes par rapport aux tâches de recherche et de sélection.

Il a été montré qu'avec un nombre de ressources déterminées (un outil de manipulation et deux outils de déformation dans notre cas), il est préférable de les répartir sur plusieurs sujets. Cette répartition des ressources permet une meilleure distribution cognitive des charges de travail. En effet, la charge cognitive est trop importante pour un utilisateur seul. La configuration collaborative, bien que souffrant de conflits de coordination, obtient tout de même des meilleures performances.

Deuxièmement, nous avons montré que la configuration collaborative est particulièrement performante pour les scénarios à forte complexité. En ce qui concerne les scénarios à faible complexité, les performances d'une configuration collaborative ne sont ni meilleures, ni moins bonne que celle d'un seul manipulateur en configuration bimanuelle. On notera tout de même que les sujets semblent préférer la configuration collaborative.

Le troisième résultat important concerne l'apprentissage. Nous avons montré que le travail en collaboration a une influence sur l'évolution de l'apprentissage. En effet, l'apprentissage est catalysé par la communication et les échanges entre les sujets. La complexité de la tâche ainsi que de la plateforme (rendu visuel, outils, etc.) nécessite un apprentissage important. L'apprentissage accéléré provoqué par une configuration collaborative est donc un avantage permettant d'appréhender plus rapidement la tâche à réaliser.

30 4.5.2 Conclusion

Cette expérimentation nous a permis de comparer une configuration collaborative à une configuration bimanuelle possédant chacune le même nombre de ressources. Nous avons vu les avantages d'une configuration collaborative avec des binômes. L'étape suivante sera l'étude du travail collaboratif sur des

groupes de plus de deux sujets. Ceci devrait permettre d'augmenter encore le potentiel cognitif du groupe.

Pour mener une telle étude, il va falloir proposer des scénarios plus complexes. Cette deuxième expérimentation a montré une nouvelle fois le rôle prépondérant de la taille de la molécule dans la complexité de la tâche. Nous verrons que les molécules proposées dans la prochaine étude sont significativement plus importantes que celle utilisées jusqu'à présent.

L'ajout de sujets supplémentaires va probablement générer des dynamiques de groupes qui n'avait pas de raison d'exister au sein d'un binôme. Cette troisième étude permettra l'observation des dynamiques et de les caractériser. L'objectif sera de détecter les limites et les contraintes afin de pouvoir fournir des outils pour répondre aux problématiques soulevées.

Cette deuxième expérimentation a également permis de remettre en cause la pertinence d'une manipulation en configuration bimanuelle. D'après les analyses, la charge cognitive qu'apporte la gestion d'un deuxième outil de déformation est trop importante. Cependant, l'outil de déformation est relativement complexe à appréhender. Il ne faut donc pas exclure la possibilité de fournir un outil simple et un outil complexe pour une manipulation en configuration bimanuelle. Nous verrons que la configuration de la dernière étude (voir chapitre 6 page 165) propose une configuration bimanuelle avec un outil simple de déplacement et un outil plus complexe de désignation.

Le questionnaire nous a également permis de mettre en avant les lacunes en ce qui concerne l'utilisation de la modalité virtuelle. La dernière expérimentation sera l'occasion d'introduire des nouveaux outils adaptés pour permettre d'utiliser efficacement cette modalité pour la communication et en particulier, un outil de désignation.

Bibliographie

[Brown et Forsythe 1974]

Brown, Morton B. et Alan B. and Forsythe (juin 1974). « Robust tests for equality of variances ». Anglais. Dans *Journal of the American statistical association* 69.346, pages 364–367 (cf. page 118).

[Delalande et al. 2009]

DELALANDE, Olivier, Nicolas Férey, Gilles Grasseau et Marc Baaden (avr. 2009). « Complex molecular assemblies at hand via interactive simulations ». Anglais. Dans *Journal of computational chemistry* 30.15, pages 2375–2387 (cf. page 106).

[Delalande $et \ al. \ 2010$]

DELALANDE, Olivier, Nicolas Ferey, Benoist Laurent, Marc Guéroult, Brigitte Hartmann et Marc Baaden (jan. 2010). « Multiresolution approach for interactively locating functionally linked ion binding sites by steering small molecules into electrostatic potential maps using a haptic device ». Anglais. Dans *Pacific Symposium on Biocomputing*, pages 205–215 (cf. page 106).

[Dominjon 2006]

15

25

35

DOMINJON, Lionel (avr. 2006). « Contribution à l'étude des techniques d'interaction 3D pour la manipulation d'objets avec retour haptique en environnement virtuel à échelle humaine ». Thèse de doctorat. Laval, France : École doctorale d'Angers (cf. page 112).

[Ferey *et al.* 2008]

FEREY, Nicolas, Guillaume BOUYER, Christine MARTIN, Patrick BOURDOT, Julien Nelson et Jean-Marie Burkhardt (mar. 2008). « User needs analysis to design a 3D multimodal protein-docking interface ». Anglais. Dans *Proceedings of the 2008 IEEE Symposium on 3D User Interfaces.* 3DUI '08. Washington, DC, USA: IEEE Computer Society, pages 125–132. ISBN: 978-1-4244-2047-6 (cf. page 106).

$_{60}$ [Friedman 1940]

FRIEDMAN, Milton (mar. 1940). « A comparison of alternative tests of significance for the problem of m rankings ». Anglais. Dans *The annals of mathematical statistics* 11.1, pages 86–92 (cf. page 118).

[Gorlatch et al. 2009]

Gorlatch, Sergei, Jens Müller-Iden, Martin Alt, Jan Dünnweber, Hamido Fujita et Yutaka Funyu (avr. 2009). « Clayworks: toward user-oriented software for collaborative modeling and simulation ». Anglais. Dans *Knowledge-Based Systems* 22.3, pages 209–215 (cf. page 107).

[HOLM 1979]

HOLM, Sture (1979). « A simple sequentially rejective multiple test procedure ». Anglais. Dans *Scandinavian journal of statistics* 6.2, pages 65–70 (cf. pages 123, 128–131).

₅ [Kruskal et Wallis 1952]

KRUSKAL, William H. et W. Allen WALLIS (déc. 1952). « Use of ranks in one-criterion variance analysis ». Anglais. Dans *Journal of the American statistical association* 47.260, pages 583–621 (cf. page 118).

[Levine $et \ al. \ 1997$]

Levine, David, Michael Facello, Philip Hallstrom, Gregory Reeder, Brian Walenz et Fred Stevens (avr. 1997). « STALK: an interactive system for virtual molecular docking». Anglais. Dans *IEEE Computer in Sciences and Engineering* 4.2, pages 55–65. ISSN: 1070-9924 (cf. page 106).

[MANN et Whitney 1947]

MANN, Henry Berthold et Donald Ransom WHITNEY (mar. 1947). « On a test of whether one of two random variables is stochastically larger than the other ». Anglais. Dans *The annals of mathematical statistics* 18.1, pages 50–60 (cf. pages 123, 128–131).

[MÜLLER $et\ al.\ 2006]$

MÜLLER, Jens, Martin Alt, Jan DÜNNWEBER et Sergei GORLATCH (déc. 2006). « Clayworks : a system for collaborative real-time modeling and high-performance simulation ». Anglais. Dans Second IEEE International Conference on e-Science and Grid Computing. e-Science'06, page 104 (cf. page 107).

[Peterlík 2009]

25

Peterlík, Igor (jan. 2009). « Haptic interaction with non-linear deformable objects ». Anglais. Thèse de doctorat. Brno, Czech Republic: The Faculty of Informatics, Masaryk University (cf. page 106).

[SHAPIRO et WILK 1965]

SHAPIRO, Samuel S. et Martin B. WILK (déc. 1965). « An analysis of variance test for normality (complete samples) ». Anglais. Dans *Biometrika* 52.3/4, pages 591–611 (cf. page 118).

[Shen et al. 2006]

SHEN, WeiMing, YongMin Zhong, Bijan Shirinzadeh, XiaoBu Yuan, Gursel Alici et Julian Smith (2006). « A cellular neural network for deformable object modelling ». Anglais. Dans *Information Technology for Balanced Manufacturing Systems*. Tome 220. IFIP International Fe-

deration for Information Processing. Springer Boston, pages 329–336 (cf. page 106).

[Stadler et al. 1997]

STADLER, Jörg, Ralf MIKULLA et Hans-Rainer Trebin (juin 1997). « IMD : a software package for molecular dynamics studies on parallel computers ». Anglais. Dans *International Journal of Modern Physics* 8.5, pages 1131–1140 (cf. page 106).

[SÜMENGEN et al. 2007]

SÜMENGEN, Selçuk, Mustafa Tolga Eren, Serhat Yesilyurt et Selim Balcisoy (2007). « Real-time deformable objects for collaborative virtual environments ». Anglais. Dans International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. GRAPP (AS/IE)'07, pages 121–128 (cf. page 106).

[Tang et al. 2010]

10

Tang, ZiYing, GuoDong Rong, XiaoHu Guo et Balakrishnan Prabha-Karan (mar. 2010). « Streaming 3D shape deformations in collaborative virtual environment ». Anglais. Dans *IEEE Virtual Reality Conference*. Waltham, MA, USA, pages 183–186 (cf. page 107).

[WICKENS 1984]

WICKENS, Christopher D. (1984). « Processing resources in attention ». Anglais. Dans *Varieties of Attention*. Academic Press, pages 63–101 (cf. pages 122, 131).