Gauß- und t-Test:

Annahmen $X_1, \dots, X_n \sim N(\mu, \sigma^2)$ stochastisch unabhängig. $\frac{\sigma^2 \text{ bekannt}}{\mu}$ Hypothesen (a) $H: \mu = \mu_0 \text{ gegen } K: \mu \neq \mu_0$ (b) $H: \mu \leq \mu_0 \text{ gegen } K: \mu > \mu_0$

(c) $H: \mu \ge \mu_0$ gegen $K: \mu < \mu_0$

Test statistik

$$T = T(X) = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} \sim N(0, 1)$$

$$T = \frac{\overline{X} - \mu_0}{S} \sqrt{n} \sim t_{n-1}$$

Testvorschrift: Lehne H z.N. α ab, falls

Chi-Quadrat-Anpassungstest: Sei X ZV, die die Werte x_1^*, \ldots, x_k^* mit den Wahrscheinlichkeiten $p_j = P(X = x_j^*), j = 1, \ldots, k$ annimmt.

Hypothese: $H: p_j = p_{0j}$ für alle j gegen $K: p_{j'} \neq p_{0j'}$ für mindestens ein j'.

Teststatistik: Unter H gilt approximativ

$$t = \sum_{j=1}^{k} \frac{(h_j - np_{0j})^2}{np_{0j}} = n \sum_{j=1}^{k} \frac{(r_j - p_{0j})^2}{p_{0j}} \sim \chi_{k-1}^2$$

Voraussetzung: $np_{0j} \geq 5$ für alle j. Testvorschrift: Lehne H z.N. α ab, falls

$$t \ge \chi^2_{k-1;1-\alpha}.$$

Kontingenztafeln

		Wert \boldsymbol{y}						
		y_1^*	y_2^*	• • •	y_m^*	• • •	y_l^*	Summe
	x_1^*	h_{11}	h_{12}	• • •	h_{1m}	• • •	h_{1l}	h_1 .
	x_{2}^{*}	h_{21}	h_{22}	• • •	h_{2m}	• • • •	h_{2l}	h_2 .
	:	:	:	:	:	;	:	:
Wert \boldsymbol{x}	x_j^*	h_{j1}	h_{j2}	• • •	h_{jm}	• • • •	h_{jl}	h_j .
	:	:	:	:	:	:	:	:
	x_k^*	h_{k1}	h_{k2}	• • •	h_{km}	• • •	h_{kl}	h_k .
	Summe	$h_{\cdot 1}$	$h_{\cdot 2}$	• • •	$h_{\cdot m}$	• • •	$h_{\cdot l}$	$h_{\cdot \cdot} = n$

 h_{jm} ist die Anzahl (oder absolute Häufigkeit) aller Paare in der Stichprobe, bei denen die x-Komponente den Wert x_i^* und die y-Komponente den Wert y_m^* annimmt

Chi-Quadrat-Unabhängigkeitstest. Sei (X,Y) Zufallsvektor, der die Werte x_1^*, \ldots, x_k^* bzw. y_1^*, \ldots, y_m^* mit den Wahrscheinlichkeiten $p_{jl} = P(X = x_j^*, Y = y_l^*)$ annimmt;

Hypothese:
$$H: \ \mathsf{P}(X=x_i^*,Y=y_l^*) = \ \mathsf{P}(X=x_i^*) \cdot \mathsf{P}(Y=y_l^*)$$
 für alle j und l

gegen

$$K \ : \ \mathsf{P}(X = x_{j'}^*, Y = y_{l'}^*)
eq \mathsf{P}(X = x_{j'}^*) \, \cdot \, \mathsf{P}(Y = y_{l'}^*) \ ext{ für mindestens ein } (j', l')$$

Teststatistik: Unter \boldsymbol{H} gilt approximativ

$$t = n \sum_{j=1}^{k} \sum_{l=1}^{m} \frac{(h_{jl} - \frac{h_{j.}h_{\cdot l}}{n})^2}{h_{j.}h_{\cdot l}} \sim \chi^2_{(k-1)(m-1)}, \text{ für } k = m = 2: \ t = n \cdot \frac{(h_{11} \cdot h_{22} - h_{12} \cdot h_{21})^2}{h_{1.}h_{2.}h_{\cdot 1}h_{\cdot 2}}$$

Testvorschrift: Lehne \boldsymbol{H} z.N. $\boldsymbol{\alpha}$ ab, falls

$$t \ge \chi^2_{(k-1)(m-1);1-\alpha}.$$