Data and Computer Communications

Chapter 8 – Multiplexing

Eighth Edition by William Stallings

Lecture slides by Lawrie Brown

Multiplexing

It was impossible to get a conversation going, everybody was talking too much.

Yogi Berra

Multiplexing

- multiple links on 1 physical line
- common on long-haul, high capacity, links
- have FDM, TDM, STDM alternatives

Frequency Division Multiplexing

FDM System Overview

(a) Transmitter

(b) Spectrum of composite baseband modulating signal

(c) Receiver

FDM Voiceband Example

Analog Carrier Systems

- long-distance links use an FDM hierarchy
- > AT&T (USA) and ITU-T (International) variants
- Group
 - 12 voice channels (4kHz each) = 48kHz
 - in range 60kHz to 108kHz
- Supergroup
 - FDM of 5 group signals supports 60 channels
 - on carriers between 420kHz and 612 kHz
- Mastergroup
 - FDM of 10 supergroups supports 600 channels
- > so original signal can be modulated many times

Wavelength Division Multiplexing

- FDM with multiple beams of light at different freq
- carried over optical fiber links
 - commercial systems with 160 channels of 10 Gbps
 - lab demo of 256 channels 39.8 Gbps
- architecture similar to other FDM systems
 - multiplexer consolidates laser sources (1550nm) for transmission over single fiber
 - Optical amplifiers amplify all wavelengths
 - Demux separates channels at the destination
- also have Dense Wavelength Division Multiplexing (DWDM)

Synchronous Time Division Multiplexing

TDM System Overview

Interleaving at the bit level or in blocks of bytes

TDM Link Control

- > no headers and trailers
- data link control protocols not needed
- flow control
 - data rate of multiplexed line is fixed
 - if one channel receiver can not receive data, the others must carry on
 - corresponding source must be quenched
 - leaving empty slots
- error control
 - errors detected & handled on individual channel

Data Link Control on TDM

(b) Input data streams

 $\cdots \ f_2 \ F_1 \ d_2 \ f_1 \ d_2 \ d_1 \ d_2 \ d_1 \ d_2 \ d_1 \ C_2 \ d_1 \ A_2 \ C_1 \ F_2 \ A_1 \ f_2 \ F_1 \ f_2 \ f_1 \ d_2 \ f_1 \ d_2 \ d_1 \ d_2 \ d_1 \ d_2 \ d_1 \ C_2 \ C_1 \ A_2 \ A_1 \ F_2 \ F_1$

(c) Multiplexed data stream

Legend: F = flag field d = one octet of data field

A = address field f = one octet of FCS field

C = control field

Framing

- no flag or SYNC chars bracketing TDM frames
- must still provide synchronizing mechanism between src and dest clocks
- added digit framing
 - one control bit added to each TDM frame
 - identifiable bit pattern used on control channel
 - eg. alternating 01010101...unlikely on a data channel
 - compare incoming bit patterns on each channel with known sync pattern

Pulse Stuffing

- have problem of synchronizing data sources
- with clocks in different sources drifting
- also issue of data rates from different sources not related by simple rational number
- Pulse Stuffing a common solution
 - have outgoing data rate (excluding framing bits)
 higher than sum of incoming rates
 - stuff extra dummy bits or pulses into each incoming signal until it matches local clock
 - stuffed pulses inserted at fixed locations in frame and removed at demultiplexer

TDM Example

Digital Carrier Systems

- long-distance links use an TDM hierarchy
- AT&T (USA) and ITU-T (International) variants
- US system based on DS-1 format
- can carry mixed voice and data signals
- 24 channels used for total data rate 1.544Mbps
- each voice channel contains one word of digitized data (PCM, 8000 samples per sec)
- same format for 56kbps digital data
- can interleave DS-1 channels for higher rates
 - DS-2 is four DS-1 at 6.312Mbps

DS-1 Transmission Format

Notes:

- The first bit is a framing bit, used for synchronization.
- 2. Voice channels:
 - 8-bit PCM used on five of six frames.
 - •7-bit PCM used on every sixth frame; bit 8 of each channel is a signaling bit.
- 3. Data channels:
 - Channel 24 is used for signaling only in some schemes.
 - •Bits 1-7 used for 56 kbps service
 - Bits 2-7 used for 9.6, 4.8, and 2.4 kbps service.

SONET/SDH

- Synchronous Optical Network (ANSI)
- Synchronous Digital Hierarchy (ITU-T)
- have hierarchy of signal rates
 - Synchronous Transport Signal level 1 (STS-1) or Optical Carrier level 1 (OC-1) is 51.84Mbps
 - carries one DS-3 or multiple (DS1 DS1C DS2)
 plus ITU-T rates (eg. 2.048Mbps)
 - multiple STS-1 combine into STS-N signal
 - ITU-T lowest rate is 155.52Mbps (STM-1) (Synchronous Transport Module)

SONET Frame Format

Statistical TDM

- in Synch TDM many slots are wasted
- Statistical TDM allocates time slots dynamically based on demand
- multiplexer scans input lines and collects data until frame full
- line data rate lower than aggregate input line rates
- may have problems during peak periods
 - must buffer inputs

Statistical TDM Frame Format

Cable Modems

- dedicate two cable TV channels to data transfer
- each channel shared by number of subscribers, using statistical TDM
- Downstream
 - cable scheduler delivers data in small packets
 - active subscribers share downstream capacity
 - also allocates upstream time slots to subscribers
- Upstream
 - user requests timeslots on shared upstream channel
 - Headend scheduler notifies subscriber of slots to use

Cable Modem Scheme

Asymmetrical Digital Subscriber Line (ADSL)

- link between subscriber and network
- uses currently installed twisted pair cable
- is Asymmetric bigger downstream than up
- uses Frequency division multiplexing
 - reserve lowest 25kHz for voice (POTS)
 - uses echo cancellation or FDM to give two bands
- has a range of up to 5.5km

ADSL Channel Configuration

(a) Frequency-division multiplexing

Discrete Multitone (DMT)

- multiple carrier signals at different frequencies
- divide into 4kHz subchannels
- > test and use subchannels with better SNR
- 256 downstream subchannels at 4kHz (60kbps)
 - in theory 15.36Mbps, in practice 1.5-9Mbps

DMT Transmitter

xDSL

- High data rate DSL (HDSL)
 - 2B1Q coding on dual twisted pairs
 - up to 2Mbps over 3.7km
- Single line DSL
 - 2B1Q coding on single twisted pair (residential) with echo cancelling
 - up to 2Mbps over 3.7km
- Very high data rate DSL
 - DMT/QAM for very high data rates
 - over separate bands for separate services

Summary

- looked at multiplexing multiple channels on a single link
- > FDM
- > TDM
- Statistical TDM
- > ADSL and xDSL