Lab Assignment-7

Name – Md Junaid Mahmood

Enrolment Number – 19116040

Department – Computer Science & Engineering

Year – 2nd Year

Part 1 (ReLU Function)

(i) Now the number is given in 2's complement form and we need to detect whether it is positive or not. Let $A = A_3 A_2 A_1 A_0$, be the input 4-bit number. Here, A_3 is the most significant bit of A. Boolean logic for achieving this functionality is: $Y = A_3'$.

When A is negative, $A_3 = 1$. Thus, Y = 0, showing that the number isn't positive. When A is positive, $A_3 = 0$. Thus, Y = 1, showing that the number is positive.

(ii) For implementing the ReLU Function, we have assumed that $A = A_3 A_2 A_1 A_0$ is the input 4-bit number and $B = B_3 B_2 B_1 B_0$ is the output 4-bit number. Boolean Logic for achieving ReLU Function is:

$$B_3 = A_3' \& A_3$$

$$B_2 = A_3' \& A_2$$

$$B_1 = A_3' \& A_1$$

$$B_0 = A_3' \& A_0$$

Here & represents and gate and A_3 ' represents complement of the bit A_3 . Using this Boolean logic, circuit was created. For simulation, for the first 20ms, value of A was kept between -1 to -8 starting from -1 and ending at -8. For next 20ms, value of A was kept between 7 to 0 starting from 7 and ending at 0. Result of the simulation along with the circuit are attached below.

Circuit Diagram for the ReLU Function is:

Corresponding Simulation Result are:

Part 2 (Training an overly Simplistic Perceptron)

In this section, we have adopted following convention, $X = X_1 X_0$, $T = T_1 T_0$ and $W = W_3 W_2 W_1 W_0$. In addition, an additional 4-bit number B was used for representing $(1)_{10}$, such that $B = B_3 B_2 B_1 B_0 = (0001)_2$. The output for the circuit was shown using a 4-bit number $Z = Z_3 Z_2 Z_1 Z_0$. The value of W was kept constant at 2. Now, $(1)_{10} = (01)_2$ and $(-1)_{10} = (11)_2$. Thus, only Most Significant Bit of X and T would vary. Boolean logic for achieving this functionality is:

At first let Y_1 be an intermediate value such that $Y_1 = X_1 \times T_1$.

- 1. If $X_1 = T_1$, then $Y_1 = 0$. Thus, input carry to the first adder is 0. In addition, we have: $B_j \times Y_1 = B_j \times Y_1 =$
- 2. If $X_1 \neq T_1$, then $Y_1 = 1$. Thus, input carry to the first adder is 1. In addition, we have: B_j xor $Y_1 = B_j$ xor $1 = B_j$ for all j = 0, 1, 2, 3, where B_j represents the complement of bit B_j . Thus, we are simply subtracting B_j from B_j (where B_j and B_j).

In this way, the required functionality was achieved. Circuit Diagram corresponding to above logic is:

Corresponding Simulation Result are:

In above simulation value of X_1 is represented by yellow line and that of T_1 is represented by red line. Following results were obtained:

- 1. During 5ms to 15ms value of X_1 and T_1 are different. Thus, output is given by $Z = (0001)_2$.
- 2. During 0ms to 5ms and 15ms to 20ms value of X_1 and T_1 are same. Thus, output is given by $Z = (0011)_2$.

Thus, above simulation results are correct.

Part 3 (Doing inference with an overly Simplistic Perceptron)

Now, mod(19116040, 4) + 1 = 1. Thus, set 1 corresponding to CSE group was chosen. Thus, equation of straight line is X + 3Y - 3 = 0. Comparing this equation with Ax + BY + C = 0, we get: $A = (1)_{10} = (0001)_2$, $B = (3)_{10} = (0011)_2$ and constant term $C = (-3)_{10} = (1101)_2$. The two points, which were chosen for testing the circuit is (X, Y) = (-4, 1) and (4, 1). Following steps are involved in the construction of the above circuit:

1. Using Bough-Wooley Multiplier, 8-bit product for A.X and B.Y was obtained.

- 2. To add two 8-bit numbers, a 8-bit adder was designed using 4-bit adder as the building block. The 4-bit adder was designed using full adder as the building block. Description of the 4-bit adder is mentioned below:
 - The four full adders were arranged with output carry of one adder as the input carry of another adder as shown in the circuit below.
 - There is an input named 'Final'. 'Final' is kept 1 if the respective 4-bit adder is the last or final block in the construction of any higher bit adder (such as an 8-bit adder). Otherwise, it is kept 0.
 - If 'Final' is 0, then the output carry from the 4-bit adder is passed as output 'S4' without any modification.
 - If 'Final' is 1, then the output carry from the 4-bit adder is passed as output 'S4' without any modification, if both the input numbers to the 4-bit adder are of same sign. If the two input numbers are of opposite sign, then the complement of the output carry is passed as the output 'S4'.

Circuit Diagram for 4-bit adder is:

Symbol used for the above 4-bit adder is:

- 3. Thus, using two 4-bit adder S = A.X + B.Y was calculated. The output S was a 9-bit number. As a result, using two 4-bit adder and one full adder, the final output W = S + C was calculated. If S and C were of opposite sign, then the complement of the output carry of the full adder was taken as W_9 (Most Significant Bit of W). Otherwise, the output carry was passed as it is to W_9 . Thus, W = A.X + B.Y + C and W_9 is the most significant bit of W.
- 4. Result is given by: Output = W_9 xnor B_3 . If W and B are of same sign, then Output = 1. Otherwise, it is equal to 0.

In this way, the required functionality was achieved. Circuit Diagram corresponding to above logic is:

A symbol was created for above circuit and it was used for simulation. Symbol for above circuit is:

Corresponding Simulation Circuit is:

In above simulation circuit, value A, B, C and Y are kept constant at:

1.
$$A = A_3 A_2 A_1 A_0 = (0001)_2$$

2.
$$B = B_3 B_2 B_1 B_0 = (0011)_2$$

3.
$$C = C_3 C_2 C_1 C_0 = (1101)_2$$

4.
$$Y = Y_3 Y_2 Y_1 Y_0 = (0001)_2$$

Now, for $X = X_3 X_2 X_1 X_0$, value is $(1100)_2$ for first 5ms. This corresponds to the situation $X = (-4)_{10}$ and (X, Y) = (-4, 1). For next 5ms, value of X is $(0100)_2$. This corresponds to the situation $X = (4)_{10}$ and (X, Y) = (4, 1). Thus, only bit X_3 is changing and all other bits of X are constant.

Corresponding Simulation Result are attached below:

Yellow line shows the bit X₃ and red line shows the Output. We have:

- 1. When $X_3 = 1$, then (X, Y) = (-4, 1). This point is below the line X + 3Y 3 = 0. Hence, Output = 0.
- 2. When $X_3 = 0$, then (X, Y) = (4, 1). This point is above the line X + 3Y 3 = 0. Hence, Output = 1.

Hence, above simulation results are correct for the given two points.