

Curso 16/17 :: Prueba 2

Escuela Superior de Informática

2025/0	3/27 18	49:12	

1/5

Este examen consta de 23 preguntas con un total de 40 puntos. La duración máxima del examen son 80 minutos. Tres preguntas de test erróneas restan un punto. Sólo una opción es correcta a menos que se indique algo distinto. No está permitido el uso de calculadora. Escriba con letra clara y utilizando únicamente el espacio reservado.

Apellidos: ______ Nombre: ______ Grupo: ______

•						_
1.	[1p] ¿E	¿En qué ámbito tiene sentido considerar el control de flujo, pero no	el de conges	stión?		
	\Box a	a) En un enlace punto a punto.				
	\Box b	b) En una WAN formada por routers heterogéneos.				
	\Box c	c) En una aplicación cliente-servidor basada en TCP.				
	\Box d	d) Cuando se consideran medios de transmisión libres de errores.				
2.		Dispone de un switch Ethernet aislado al que tiene conectados v sos recursos (tipo Raspberry Pi). ¿Cuál de los siguientes mecanimos				ores de
			_	congestión [
			l) Control de	_		
2		El algoritmo de enrutado flooding consiste en	,			
٥.						
		a) Enviar los paquetes por una interfaz determinada.				
		b) Cada paquete que llega se reenvía por las demás interfaces.	4 . 1 1	1		
		c) Intercambiar información acerca de las redes a las que están cor				1.
		d) Cada router tiene una tabla en la que se indica la mejor distancia salida para alcanzarlo.	а сопостаа а	cualquier ou	to router de otra subred	y ia
4.	[1p] ¿(¿Qué es un túnel IP?				
	∐ a	a) Ninguna es correcta.				
	∐ ь	b) Una combinación del protocolo Cisco L2F y PPTP.				
		c) Una encapsulación de los paquetes IP sobre otro protocolo, simu		_	=	
	∐ d	d) Una dirección IP que se utiliza como medio para alcanzar una r	ed distinta a	<mark>la red en</mark> la q	ue se encuentra el paqu	ete.
5.	[1p] ¿(¿Qué dato NO aparece en la tabla NAPT?				
	\Box a	a) Los puertos expuestos del router.	e) Los protoc	olos de trans	porte utilizados.	
	\Box b	b) La dirección IP externa del router.	l) Las direcc	iones IP de l	os hosts internos.	
6.	[1p] El	Elige la afirmación FALSA respecto a NAT:				
	\Box a	a) Normalmente NAT se ejecuta en el router que tiene la IP pública	a.			
		b) Utiliza muchas direcciones IP de la red y eso reduce el rendimie				
	\Box c	c) Permite acceder a Internet a los hosts de una red que utiliza dire	eccionamient	o privado.		
	\Box d	d) Utiliza la técnica «port forwarding» para dar acceso a un servid	or interno de	sde la red pú	blica.	
7.	[1p] ;C	¿Cuál es una característica de VPN?				
	_	a) Normalmente se utiliza para conectar dos dispositivos vecinos.				
	_	b) Proporciona cifrado extremo-a-extremo a nivel de aplicación.				
		c) Permite el acceso a usuarios <i>out-site</i> (fuera de la red corporativa	a).			
		d) Se utiliza para conectar un dispositivo a la red corporativa intern		blica.		
8		¿Sobre qué protocolo se consigue un mayor rendimiento al encapsu	_			
0.	_		e) ARP			
			I) IPv6			
_		,				
9.		STP desactiva las líneas de comunicación que producen bucles entre cables si producen problemas?	e los switche	s. Pero ¿por	qué no se eliminan físic	amente
	\Box a	a) Los enlaces redundantes proporcionan tolerancia a fallos.				

30 de mayo de 2017

d) En los switches con soporte VLAN tiene que haber bucles. En los demás no hace falta STP.

b) Los enlaces redundantes reducir energía consumida y ancho de banda.

c) El fabricante obliga a conectar los switches de alta gama con varios cables.

Redes de Computadores II Curso 16/17 :: Prueba 2

Escuela Superior de Informática

10.	[Ip]	Las entradas en la tabla de direcciones MAC de un conmutad	dor t	ienen un tiemp	oo de caducidad cor	n el fin de:
		a) Aumentar la seguridad de la red.				
		b) Porque es necesario para el funcionamiento del protocol	o AF	RP.		
		c) Permitir la movilidad de equipos.				
		d) Ninguna de las anteriores.				
11.		Dos host A y B están conectados respectivamente a sendas V minador. La dirección IP de A es 20.18.20.162/28. ¿Cuál de l				
		a) 20.18.20.158/28		c) 20.18.20.	164/28	
		b) 20.18.20.160/26		d) 20.18.20.		
12.		Indique cuál es la red de máscara más larga (con más unos) 130.116.122.	a la	que pueden p	ertenecer las direcc	iones 152.130.116.108 y
		a) 152.130.116.96/27		c) 152.130.1	16.192/26	
		b) 152.116.0.0/24		d) 152.130.1		
13	[1n]	¿En qué caso se comporta un switch Ethernet igual de un hu	h?	,		
13.	[15]	a) Nunca, son dispositivos completamente diferentes.	υ.			
	\Box	b) Cuando la dirección origen de la trama no está en su table	10			
		c) Cuando la dirección destino de la trama no está en su tab				
				án an cu tabla		
		d) Cuando ni la dirección destino de la trama ni la origen n				
14.		En STP, el administrador puede influir sobre la elección del s	switc	•	-	
		a) se elija un switch del perímetro.	Ц	=	switch con mucho	=
	Ш	b) se elija un switch con pocos puertos.	Ш	d) un ataque	e impida el acceso a	los routers.
15.	[1p]	Frame Relay es una tecnología de				
		a) Conmutación de celdas.		c) Enrutamie	ento estático.	
		b) Enrutamiento dinámico.		d) Conmuta	ción <mark>de circuit</mark> os vir	rtuales.
16.	[1p]	Frame Relay es una tecnología que permite crear				
10.	[15]	a) Una malla completamente conectada (full-mesh).				
	\Box	b) Tablas de encaminamiento sin rutas por defecto.				
	П	c) Enlaces simplex virtuales para dos dispositivos ajenos a	la rec	1		
	\Box	d) Tablas de conmutación simplificadas para mejorar aume				
17	[1n]	Marca la afirmación verdadera sobre SONET:		ia iatoriora.		
1/.	[1b]) 0	1 1 1	,
		a) No permite multiplexación.	\vdash	=	ore la capa de transp	
	Ш	b) No se utiliza en fibra óptica.	Ш			limensional de bytes.
18.	[1p]	¿Qué ventaja aporta IPv6 respecto a IPv4 en cuando a la frag	gmen	itación de paqu	uetes?	
	Ц	a) En IPv6 los encaminadores no fragmentan, solo el origen				
	Ц	b) En IPv6 los encaminadores también pueden reensamblar	r, per	ro en IPv4 no p	oodían.	
		c) En IPv6 no es necesario fragmentar porque la MTU de to	odas	las te <mark>cnología</mark>	<mark>s d</mark> e enla <mark>ce es</mark> la mi	sma.
	Ш	d) No hay ninguna diferencia, el procedimiento de fragmen	ıtació	ón no ha ca <mark>mb</mark>	iado.	
19.	[1p]	¿Por qué IPv6 no utiliza el protocolo ARP?				
		a) La equivalencia entre direcciones físicas y lógica es dire	cta y	se puede dedi	icir loca <mark>lmente.</mark>	
		b) Se utiliza un nuevo protocolo llamado Neighbor Discove				ncaminadores locales.
		c) En IPv6 el problema es averiguar las direcciones lógicas	, las	físicas son sie	mpre conocidas.	
		d) Se utiliza, pero solo para las «entregas indirectas».				
20.	[1p]	Marca la afirmación falsa en relación a ICMPv6.				
		a) Hereda toda la funcionalidad de ICMPv4.				
		b) Incorpora los mecanismos de gestión de grupos multicas	st.			
		c) Incorpora los mecanismos de descubrimiento de vecinos				
		d) Incorpora los mecanismos de traducción de nombres de		inio		
	Ш	u) meorpora los mecanismos de traducción de nombres de	uUIII	11110.		

30 de mayo de 2017 2/5

Curso 16/17 :: Prueba 2

Escuela Superior de Informática

- 21. [7p] Se interconectan seis commutadores entre sí de acuerdo con la topología de la figura y con los costes indicados. Complete dicha figura del siguiente modo:
 - Indique el conmutador raíz (escriba «root» al lado del conmutador).
 - Marque con una R el puerto raíz de cada conmutador (escriba un R en la caja).
 - Marque con una D los puertos designados para cada LAN (escriba una D en la caja).
 - Marque con una B los puertos bloqueados (escriba una B en la caja).

30 de mayo de 2017 3/5

Curso 16/17 :: Prueba 2

Escuela Superior de Informática

22. [6p] Considere la siguiente topología que utiliza un protocolo de vector-distancia:

□ a) N3 y N5 □ b) N5 y N6 □ c) N3, N5 y N6 □ d) Todas (b) Considerando que la métrica en entrega directa es 0. ¿Cuál es el coste de R1 para llegar a 60.0.0.12 cuando el protocolo de encaminamiento ha convergido? □ a) 1 □ b) 2 □ c) 3 □ d) 4 (c) ¿Cuántas filas tiene el vector-distancia de R6 tras alcanzar la convergencia? □ a) 2 □ b) 4 □ c) 5 □ d) 6 (d) ¿Cuántas filas tiene el vector-distancia de R4 tras alcanzar la convergencia? □ a) 4 □ b) 5 □ c) 6 □ d) 7	(a)	¿Qué redes aparecen en el vec	tor-distancia inicial de R7?		
de encaminamiento ha convergido? a) 1 b) 2 c) 3 d) 4 (c) ¿Cuántas filas tiene el vector-distancia de R6 tras alcanzar la convergencia? a) 2 b) 4 c) 5 (d) ¿Cuántas filas tiene el vector-distancia de R4 tras alcanzar la convergencia?		□ a) N3 y N5	□ b) N5 y N6	□ c) N3, N5 y N6	☐ d) Todas
(c) ¿Cuántas filas tiene el vector-distancia de R6 tras alcanzar la convergencia?	(b)	<u>*</u>	_	es el coste de R1 para llegar a 6	0.0.0.12 cuando el protocolo
□ a) 2 □ b) 4 □ c) 5 □ d) 6 (d) ¿Cuántas filas tiene el vector-distancia de R4 tras alcanzar la convergencia?		□ a) 1	□ b) 2	□ c) 3	□ d) 4
(d) ¿Cuántas filas tiene el vector-distancia de R4 tras alcanzar la convergencia?	(c)	¿Cuántas filas tiene el vector-d	distancia de R6 tras alcanzar la	convergencia?	
		□ a) 2	□ b) 4	□ c) 5	□ d) 6
$\square \mathbf{a}) \ 4 \qquad \qquad \square \mathbf{b}) \ 5 \qquad \qquad \square \mathbf{c}) \ 6$	(d)	¿Cuántas filas tiene el vector-d	listancia de R4 tras alcan <mark>zar la</mark>	convergencia?	
		□ a) 4	□ b) 5	□ c) 6	□ d) 7

- (e) Sobre la figura, dibuje la tabla de rutas de R4 tras alcanzar la convergencia.
- (f) Sobre la figura, dibuje la tabla de rutas de R5 tras alcanzar la convergencia.

30 de mayo de 2017 4/5

Curso 16/17 :: Prueba 2

Escuela Superior de Informática

- 23. [7p] A partir de la dirección 192.168.0.0/16 se necesita asignar direcciones a:
 - Subnet A con 150 dispositivos (hosts y routers).
 - Subnet B con 128 dispositivos.
 - Subnet C con 75 dispositivos.
 - Enlaces serie para conexión entre dos routers.

Elija el bloque más pequeño que puede satisfacer las necesidades indicadas. Asigne espacio de direccionamiento primero a las redes mayores. Conteste las siguientes cuestiones:

(u)	Cua	ntas direcciones asignables libres quedan en la subnet A'	•	
		a) 0		c) 104
	\Box	b) 2	$\overline{\Box}$	d) 128
	_			u) 120
(b)	¿Cuá	l es la dirección de red de la subnet B?		
		a) 192.168.0.150/25		c) 192.168.1.0/24
		b) 192.168.0.152/25		d) 192.168.1.2/24
(-)	· C 4	1 1- dii/- d- hd d- 1h C9		
(C)	¿Cua	l es la dirección de broadcast de la subnet C?		
		a) 192.168.0.127		c) 192.168.2.127
	Ш	b) 192.168.1.255	Ш	d) 192.168.2.255
(d)	¿Cuá	ntas direcciones asignables libres quedan en la subnet C	?	
		a) 51		c) 55
		b) 53		d) 57
			_	
(e)	¿Cuá	les son las direcciones posibles de los routers que conect	emos	
	Ц	a) 192.168.0.1, 192.168.1.1		c) 192.168.2.127, 192.168.2.128
		b) 192.168.1.1, 192.168.2.1		d) 192.168.2.129, 192.168.2.130
		je una posible topología y asigne direcciones a los rout esles respectivamente la primera y última dirección de ca		

30 de mayo de 2017 5/5