MOO method

Simple limit (ex of FINE)

- Only one objective function
- Second one defined as a variable
- Constraint on the varaible
- Declining at every step

(a) Initialisation : recherche du (b) Itération 1 : ajout de la (c) Itération 2 : modification de la point c^1 -extrême y_1 . contrainte ε et obtention de y_2 . contrainte ε et obtention de y_3 .

(d) Itération 3 : modification de la contrainte ε et obtention de y_4 .

(e) Itération 4 : Pas de nouveau point obtenu avec modification de la contrainte ε .

Sigma-constraint (ex of code from scratch)

- Definition of functions A and B
- <u>Deactivation</u> of function A, <u>activation</u> of function B
- Optimization: max of function A registered
- Activation of function A, deactivation of function B
- Optimization: min of function A registered
- <u>Deactivation</u> of function A, <u>activation</u> of function B
- Optimization with constraint of function A between min and max
- Plot of the Pareto front

(a) Initialisation : recherche du point c¹-extrême y₁.

(b) Initialisation : recherche du point c²-extrême y₂.

(c) Itération 1 : division de la région de recherche définie par y_1 et y_2 .

Sigma-constraint: different options

- while loop
 - while the minimum value that we know has not been reached
- Official sigma-constraint method
 - Calculate a fixed number of value that will be used as constraints
 - $step = \frac{Max Min}{\alpha}$ then go through list(range(Min, Max, step)) + Max
 - Conventionnal method: simple ≤ sign
 - Augmented method:
 - $Objectivef = costs \delta * s$ to minimize
 - emissions + s = e new constraint
 - δ very small, s new variable \geq 0, e value of the list
 - (difference is relevant for GLPK, not for gurobi)

Fig. 2. Results of the conventional ε -constraint method.

Fig. 3. Results of the ε -constraint method from model using lex-optimization in the payoff table.

Augmented method of sigma-constraint

Conventionnal method with GLPK:

Augmented method with GLPK, Both methods with Gurobi:

References

- minimize Multi-objective optimization example Pyomo Stack Overflow
- Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems | Elsevier Enhanced Reader
- Méthodes exactes pour les problèmes combinatoires bi-objectif : Application sur les problèmes de tournées de véhicules - TEL - Thèses en ligne (archivesouvertes.fr)