Assignment #3

UW-Madison MATH 421

GEOFF YOERGER February 16, 2021

Exercise #1: Sketch the set of all points (x, y) in the plane satisfying

Figure 1: |x| + |y| = 1: A diamond

Figure 2: $x^2 + y^2 = 1$: A circle

Figure 3: $\max\{\left|x\right|,\left|y\right|\}=1$: A square

Exercise #2: Following the instructions on the previous problem: Spivak, Chapter 4, Problem 17 (i) and (ii).

Figure 4: $f(x) = \lfloor x \rfloor$: (i) Steps

Figure 5: $f(x) = x - \lfloor x \rfloor$: (ii) Sawteeth

Exercise #3: Prove, using only the definition, that $\lim_{x\to 3} 5x = 15$.

Proof. Fix $\epsilon > 0$. Let $\delta = \frac{\epsilon}{5}$. If $0 < |x - 3| < \delta$, then

$$|f(x) - 15| = |5x - 15|$$

$$= 5|x - 3|$$

$$< 5\delta$$

$$= 5\frac{\epsilon}{5}$$

$$= \epsilon$$

Since ϵ was arbitrary, $\lim_{x\to 3} 5x = 15$

Exercise #4: Prove, using only the definition, that $\lim_{x\to 2} x^2 + 2x = 8$.

Proof. Fix $\epsilon > 0$. Let $\delta = \min\left\{1, \frac{\epsilon}{7}\right\}$. If $0 < |x-2| < \delta$, then

$$\begin{split} |f(x)-8| &= |x^2+2x-8| \\ &= |x+4||x-2| \\ &= |(x-2)+6||x-2| \\ &\leq (|x-2|+6)|x-2| \\ &< (1+6)|x-2| & \text{Since } |x-2| < 1 \\ &< 7\frac{\epsilon}{7} & \text{Since } |x-2| < \frac{\epsilon}{5} \\ &= \epsilon \end{split}$$

Since ϵ was arbitrary, $\lim_{x\to 2} x^2 + 2x = 8$

Exercise #5: Prove the following theorem:

Theorem. If x and y are numbers, then $||x| - |y|| \le |x - y|$.

Proof. Notice that $\forall x \forall y : |x| - |y| \le |x - y|$. This was proved in HW2 §8.3. Swapping variables,

$$\begin{split} |y| - |x| &\leq |y - x| \Leftrightarrow |y| - |x| \leq |x - y| \\ &\Leftrightarrow -(|x| - |y|) \\ &\Leftrightarrow -(|x| - |y|) \leq |x - y| \wedge |x| - |y| \leq |x - y| \\ &\Leftrightarrow ||x| - |y|| \leq |x - y| \end{split}$$

Exercise #6: Spivak, Chapter 5, 16 (a)

Theorem. If $\lim_{x\to a} f(x) = L$, then $\lim_{x\to a} |f|(x) = |L|$.

Proof. Fix $\epsilon > 0$. By definition, $\exists \delta$ such that $0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$. Suppose $0 < |x - a| < \delta$ So,

$$||f|(x) - |L|| = ||f(x)| - |L||$$

$$\leq |f(x) - L|$$

$$< \epsilon$$

Thus, $0 < |x - a| < \delta \implies |f(x) - L| < \epsilon \implies ||f|(x) - |L|| < \epsilon$. Since ϵ was arbitrary, $\lim_{x \to a} |f|(x) = |L|$

Exercise #7: Spivak, Chapter 5, Problem 12 (a)

Theorem. If $\forall x (f(x) \leq g(x))$, $\lim_{x \to a} f(x) = L$ exists, and $\lim_{x \to a} g(x) = M$ exists, then $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$, equivicantly $L \leq M$

Proof. Suppose for a contradiction that L > M. By definition, $\lim_{x \to a} (g(x) - f(x)) = M - L$. Let $\epsilon = L - M$. By definition, $\exists \delta > 0$ such that $0 < |x - a| < \delta \implies |g(x) - f(x)| + L - M| < \epsilon = L - M$. Thus,

$$g(x) - f(x) + L - M < L - M$$

 $g(x) - f(x) < 0$
 $g(x) < f(x)$
 $f(x) > g(x)$

But, $f(x) \leq g(x)$, thus a contradiction arises, and $\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x)$

Exercise #8: Spivak, Chapter 5, Problem 37 (a)

Define $\lim_{x\to a} f(x) = \infty$ as $\forall N, \exists \delta > 0$ such that $0 < |x-a| < \delta \implies f(x) > N$.

Theorem. $\lim_{x\to 3} \frac{1}{(x-3)^2} = \infty$

Proof. Fix N. Let $\delta = \frac{1}{\sqrt{N}}$. If $0 < |x - 3| < \delta = \frac{1}{\sqrt{N}}$, then

$$|x-3| = \sqrt{(x-3)^2} < \frac{1}{\sqrt{N}}$$

$$\frac{1}{\sqrt{(x-3)^2}} > \sqrt{N}$$

$$\frac{1}{(x-3)^2} > N$$

Since N was arbitrary, $0 < |x-3| < \delta \implies \frac{1}{(x-3)^2} > N$, so $\lim_{x \to a} \frac{1}{(x-3)^2} = \infty$