

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Propositional Logic – Expressiveness Predicates

18-09-2018 Sundar B. CS&IS, BITS Pilani 0

Propositional Logic – Expressiveness

- Consider the following statements:
 - Ravi is a student
 - Kavi is a student
 - If you were to express these in propositional logic as:
 - ravi_student
 - kavi_student

you end up with <u>propositions that are atomic</u> (i.e. they do not have a structure).

- And the consequence is:
 - we cannot infer the relation <u>that both are students</u> between the two propositions

The need for structure

- What do we need to express such relations?
 - We need predicates.
- A proposition is also a predicate but
 - a *predicate* can capture a *property (or a relation) on one or more entities*: e.g.
 - student(ravi)
 - student(kavi)
 - friend(ravi, kavi)
 - friend(ravi, pavi)

Predicates – Expressiveness

- Consider the following statement:
 - A teaching assistant is a student and a teacher.
 - If you were to express this in propositional logic:
 - ta <--> student ∧ teacher
- But now if you want to ask:
 - Is Kavi a ta?
 - You need to ask:
 - Is Kavi a student?
 - Is Kavi a teacher?
- You can (try to) fix this by saying:
 - ta(kavi) <--> student(kavi) ∧ teacher(kavi)

This does not fix the problem adequately! Why?

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Expressiveness of Predicates

- Need for variables and quantification

18-09-2018 Sundar B. CS&IS, BITS Pilani 4

Predicates – The need for variables

- How do we address this problem?
 - Introduce variables:
 - ta(X) <--> student(X) \(\tau \) teacher(X)
- What is X?
 - X is a variable which may stand
 - for Kavi, Pavi, or Ravi in our example or
 - for "any **student** or **teacher**" in a generic context
 - In the latter form there is a *quantification* i.e. who (or what) can **X** range over?
 - i.e. the statement above should actually be read as
 - for all X ta(X) <--> student(X) ∧ teacher(X)
- In notation, we write:
 - \forall (X) ta(X) <--> student(X) \land teacher(X)
 - This is referred to as universal quantification.

Use of Predicates, Variables, and Quantification

- Write each of the following using <u>predicates</u>, <u>variables</u>, and <u>(universal) quantifiers</u>:
 - All birds fly
 - All humans are mammals
 - All students in BITS think they are brighter than others

Predicates , Variables, and Quantification - Examples

- All birds fly
 - ∀X bird(X) --> fly(X)
- All humans are mammals
 - ∀X human(X) --> mammal(X)
- All students in BITS think they are brighter than others
 - ∀X ∀Y student(X, "BITS") ∧ ¬equals(X,Y) --> think_brighter(X, Y)
 - Question:
 - Why not express it as think(brighter(X,Y))?
 - Relation (think) over a Relation (brighter)!

Predicates – Variables and Quantification

- Consider the following statements:
 - 1. There are some students in BITS who are not bright.
 - 2. For every number, there is a larger number.
 - 3. Not all birds can fly
- What do you need <u>in addition to predicates, variables, and</u> <u>universal quantifiers</u> – to specify these?

Predicates and Variables – Existential Quantification

- Writing the following statements:
 - 1. There are some students in BITS who are not bright.
 - 2. For every number, there is a larger number.
 - 3. Not all birds can fly
- require "existential quantification" of the form
 - there exists X : P(X)
 - in notation, formulas of the form
 - 3X P(X)

Predicates and Variables - Existential Quantification: Examples

- Write the following statements formally:
 - 1. There are some students in BITS who are not bright. $\exists X \text{ (student(X, "BITS")} \land \neg bright(X))}$
 - 2. For every number, there is a larger number $\forall X \text{ (number(X) --> } \exists Y \text{ number(Y)} \land \text{ larger(Y, X))}$
 - 3. Not all birds can fly $\neg(\forall X \text{ bird}(X) \dashrightarrow \text{fly}(X))$

Quantifiers: Order of quantifiers and Negation of Quantifiers

1. For every number, there is a larger number

```
\forall X \text{ (number(X) --> } \exists Y \text{ number(Y)} \land \text{larger(Y, X))}
```

- Is this different from each of the following?
 - $\forall X \exists Y (number(X) \longrightarrow number(Y) \land larger(Y, X))$
 - $\exists Y \forall X (number(X) --> number(Y) \land larger(Y, X))$
- 2. Not all birds can fly

```
\neg(\forall X \text{ bird}(X) \longrightarrow fly(X))
```

• Is this the same as $\exists X \text{ bird}(X) \land \neg fly(X)$?

Predicates, Variables, and Quantification

- Predicates capture relations (on entities or values)
- Variables range over entities (or values)
 - i.e. they may not denote a specific entity but
 - can be substituted by an entity from a collection (that is not explicitly stated)
- Quantifiers quantify the range
 - universal quantifier denotes that the <u>range is the</u> <u>universal set</u> (or collection)
 - <u>existential quantifier</u> denotes that <u>there exists at least</u> <u>one such element (in the universe</u>)

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Expressiveness of Predicates:Arguments of Predicates

18-09-2018 Sundar B. CS&IS, BITS Pilani 13

Predicate Logic: Nature of relations

- Predicates capture relations:
 - A (binary) relation can be:
 - one to one
 - successor(X, Y) on natural numbers
 - X's successor is Y
 - many to one
 - mother(X,Y) on persons
 - X's mother is Y
 - one to many
 - characterOf(N, A) on novels and persons
 - characters of N include A

Predicate Logic: Nature of relations

- Predicates may capture properties
 - lawyer(X)
 - X is a lawyer
 - god()
 - which is TRUE, if you are a monotheist
 - FALSE, otherwise

N-ary Predicates

- Predicates may N-ary (for some positive integer N) e.g.
 - plus(X,Y,Z)
 - TRUE if X + Y = Z
 - Example Usage:
 - $\forall X \ \forall Z \ (less(X,Z) < --> \exists Y \ plus(X,Y,Z))$
 - definition of <u>less than</u> on natural numbers (in fact, on all positive numbers).

N-ary Predicates

[2]

- div(S,D,Q,R)
 - TRUE if S when divided by D yields the quotient Q and the remainder R
- Sample usage:
 - $\forall X \forall Z (\exists Q \exists R \text{ div}(X,Z,Q,R) < --> (\exists P \text{ mult}(Q,Z,P) \land plus(P,R,X))$
 - relation between <u>division</u> and <u>multiplication</u>

N-ary Predicates

[2]

- royalty(Pub,W,Amt,Y)
 - TRUE if published Pub owes writer W a royalty payment of Amt in year Y.
- Sample usage:
 - wrote(A, T, P,Y) --> ∀Y1 (greater(Y1,Y) --> royalty(P,A,R,Y1))
 - if writer A authored a book titled T published by P, in year Y,
 - then P owns A a royalty payment of R in all years Y1 > Y.

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Expressiveness of Predicates

- Need for function terms
- Using function terms to specify Deterministic Relations
- Non-deterministic Relations and Partial Relations

18-09-2018 Sundar B. CS&IS, BITS Pilani 19

Predicate Logic: Deterministic Relations

- Predicates capture relations
 - In that sense a predicate <u>may not be deterministic</u>.
 - Consider the following examples:
 - i. Every child is younger than its mother
 - **ii.** Ravi and Kavi have the same maternal grandmother.

Predicate Logic: Need for function terms - Example 1

A predicate may not be deterministic: e.g.

Every child is younger than its mother

- ∀C ∀M child(C) ∧ mother(M,C) --> younger(C, M)
 - This states that for all children C, for all mothers
 M of C ...
 - This is a bit awkward and redundant!
- ∀C∃M child(C) ∧ mother(M,C) --> younger(C, M)
 - This reads better but it still leaves the possibility that there is more than one M!

Predicate Logic: Need for function terms – Example 2

A predicate may not be deterministic: e.g.

Ravi and Kavi have the same maternal grandmother.

- ∃X∃Y∃G mother(ravi, X) ∧ mother (kavi, Y) ∧
 mother(X, G) ∧ mother(Y,G)
 - This is similarly awkward.

Predicate Logic: Function terms

- How do you specify something that is deterministic?
 - Use function terms!
 - Function terms are <u>syntactic forms</u> to denote a function (i.e. <u>a deterministic relation</u>) e.g.
 - mother(X)
 - to denote X's mother (whoever that is)
 - successor(N)
 - to denote N's successor (whatever that is)
 - Function terms are values

Predicate Logic: Using Function terms – Example 1

- Use function terms to specify deterministic relations:
 - e.g. Every child is younger than its mother
 - This was specified as:

```
\forallC \existsM child(C) \land mother(M,C) --> younger(C, M)
```

but it is better specified using function terms as

∀C child(C) --> younger(C, mother(C))

Predicate Logic: Using Function terms – Example 2

- Use function terms to specify deterministic relations:
- e.g. Ravi and Kavi have the same maternal grandmother.
 - This was specified as:

```
\exists X \exists Y \exists G \text{ mother(ravi, X)} \land \text{mother (kavi, Y)} \land \text{mother(X, G)} \land \text{mother(Y,G)}
```

but it can be better specified using function terms as:

equals(mother(mother(ravi)), mother(mother(kavi)))

Predicate Logic: Function Terms: Composability

- Note that function terms are composable
 - mother(mother(ravi)) is well-formed
 - successor(successor(N)) is well-formed
- This makes predicates simpler and more readable!
 - e.g. Assume succ and pred denote the <u>"successor"</u> and the <u>"predecessor"</u> relations respectively on integers.
 - Then the statement "X's successor's predecessor is X" can be specified as
 - $\forall X \text{ equals(pred(succ(X)), } X)$
 - Without function terms, this could be specified as:
 - $\forall X \exists Y \exists Z \operatorname{succ}(Y, X) \land \operatorname{pred}(Z,Y) \longrightarrow \operatorname{equals}(X,Z)$

Predicate Logic: Non-deterministic Relations - Example

- It may be inappropriate to use function terms for relations that are not deterministic:
 - e.g. Ravi's brother is Kavi's friend.
 - equals(brother(ravi), friend(kavi))
 - This statement is ambiguous to begin with (<u>which</u> <u>brother</u>? <u>which friend</u>?)
 - The following is a better specification:
 - ∃X brother(ravi,X) ∧ friend(kavi,X)
 - Is this different from the following specification?
 - ∃X brother(ravi,X) --> friend(kavi,X)

Predicate Logic: Non-deterministic Relations – Examples

• e.g. Ravi's brother is Kavi's friend.

• It was not intended that <u>all brothers of Ravi are friends</u> of Kavi:

∀X brother(ravi,X) --> friend(kavi,X)

[Construct an example statement (in English) where the latter would be the right form!]

Predicate Logic: Partial Functions and Function Terms

- Consider this statement:
 - All of Ravi's friends and their brothers and sisters are welcome to the party
- This can be specified as:

```
∀X friend(ravi, X) -->
welcomeToParty(X) ∧ welcomeToParty(brother(X)) ∧
welcomeToParty(sister(X))
```

• Is there a problem with this specification?

Predicate Logic: Partial Functions and Function Terms

- Consider this statement in English and in Predicate Logic:
 - All of Ravi's friends and their brothers and sisters are welcome to the party
 - ∀X friend(ravi, X) -->
 welcomeToParty(X) ∧ welcomeToParty(brother(X)) ∧
 welcomeToParty(sister(X))
- brother and sister are neither total nor deterministic:
 - i.e. brother(X) may not be defined for a given X and
 - if defined it may be ambiguous.
- So this is better specified as:

```
∀X ∀Y ((friend(ravi, X) ∧ (brother(X, Y) ∨ sister(X, Y))) --> (welcomeToParty(X) ∧ welcomeToParty(Y)))
```

Predicate Logic: Partial Functions

- Note that:
 - Universal quantification does not assume existence!
 - i.e. the universal set may be empty!
 - In the above example,
 - Ravi may have not friends.
 - Some of his friends may not have a brother nor a sister.

