Chapitre 3

Fractions rationnelles

3.1 Corps de fractions d'un anneau intègre. Fractions rationnelles

Soit $\mathbb A$ un anneau commutatif intègre (par exemple $\mathbb Z$, ou l'anneau $\mathbb K[X]$ des polynômes à coefficients dans un corps $\mathbb K$). On va fabriquer à partir de $\mathbb A$ un corps en inversant les éléments non nuls de $\mathbb A$.

Sur l'ensemble des couples (a,b) d'éléments de $\mathbb A$ avec $b\neq 0,$ on définit la relation \sim par

$$(a,b) \sim (c,d)$$
 si et seulement si $ad = bc$.

La relation \sim est une relation d'équivalence. On note $\frac{a}{b}$ la classe d'équivalence de (a,b); on a donc $\frac{a}{b}=\frac{c}{d}$ si et seulement si ad=bc. On note $\operatorname{Frac}(\mathbb{A})$ l'ensemble de ces classes d'équivalences (fractions). On définit sur $\operatorname{Frac}(\mathbb{A})$ l'addition et la multiplication par :

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

Ces opérations sont bien définies : pour l'addition, ceci veut dire que si $(a,b) \sim (a',b')$ et $(c,d) \sim (c',d')$, alors $(ad+bc,bd) \sim (a'd'+b'c',b'd')$.

Théorème 3.1 Frac(\mathbb{A}), muni de l'addition et de la multiplication, est un corps. On l'appelle le **corps de fractions de** \mathbb{A} . L'application $\mathbb{A} \to \operatorname{Frac}(\mathbb{A})$ qui envoie a sur $\frac{a}{1}$ est un homomorphisme injectif d'anneaux, qui permet d'identifier \mathbb{A} à un sous-anneau de Frac(\mathbb{A}).

Avec cette identification, tout élément b non nul de \mathbb{A} a un inverse $b^{-1} = \frac{1}{b}$ dans $\operatorname{Frac}(\mathbb{A})$, et $\frac{a}{b} = a \times b^{-1}$.

Le corps de fractions de \mathbb{Z} est bien sûr \mathbb{Q} , le corps des nombres rationnels.

Définition 3.2 Le corps des fractions rationnelles en X à coefficients dans le corps \mathbb{K} est le corps de fractions de $\mathbb{K}[X]$. On le note $\mathbb{K}(X)$.

On peut choisir un représentant privilégié pour une fraction rationnelle : Une fraction rationnelle est dite sous **forme réduite** quand elle est écrite comme $\frac{A}{B}$, où A et B sont des polynômes premiers entre eux et B est unitaire. Une fraction rationnelle a une unique forme réduite. Si $F = \frac{P}{Q}$, on trouve sa forme réduite en calculant un pgcd D de P et Q; on a alors $Q = \lambda DB$ avec B polynôme unitaire et $\lambda \in \mathbb{K}$ constante non nulle, et on définit A par $P = \lambda DA$; la forme réduite de F est $\frac{A}{B}$.

On a l'habitude de dire que P est le numérateur et Q le dénominateur de la fraction $\frac{P}{Q}$. Mais ceci est un abus de langage, car le numérateur et le dénominateur sont associés à un représentant de la fraction, et pas à la fraction elle-même. On peut cependant parler du numérateur et du dénominateur de la forme réduite d'une fraction rationnelle, grâce à l'unicité de celle-ci.

Exercice 3.1

Mettre sous forme réduite les fractions rationnelles suivantes :

$$\frac{X^3 + 4X^2 + X - 6}{X^4 - X^3 - 5X^2 - X - 6} \qquad \frac{X^4 + X^2 + 1}{X^3 + 3X^2 + 3X + 2} \; .$$

Exercice 3.2

Pour $F = \frac{A}{B} \in \mathbb{K}[X]$, on pose $\deg(F) = \deg(A) - \deg(B)$. Montrer que $\deg(F)$ est bien défini (ne dépend pas du représentant choisi de la fraction rationnelle) et que $\deg(F \times G) = \deg(F) + \deg(G)$ et $\deg(F + G) \leq \max(\deg(F), \deg(G))$.

Montrer que les fractions rationnelles de degré ≤ 0 forment une sous- \mathbb{K} -algèbre de $\mathbb{K}(X)$.

3.2 Fonction rationnelle

Définition 3.3 Soit $F \in \mathbb{K}[X]$ une fraction rationnelle, $F = \frac{A}{B}$ sa forme réduite. Un pôle de F (dans \mathbb{K}) est une racine de B (dans \mathbb{K}). La multiplicité du pôle est sa multiplicité en tant que racine de B. Un zéro de F (dans \mathbb{K}) est une racine de A (dans \mathbb{K}). La multiplicité du zéro est sa multiplicité en tant que racine de A

Une fraction rationnelle a un nombre fini de pôles. Une fraction rationnelle non nulle a un nombre fini de zéros.

Si $F = \frac{A}{B}$ est une fraction rationnelle sous forme réduite, et c un élément de \mathbb{K} qui n'est pas un pôle de F, alors on peut définir la valeur de F en c par

$$F(c) = \frac{A(c)}{B(c)} \in \mathbb{K} .$$

Si $\frac{C}{D}$ est un autre représentant de F et que $D(c) \neq 0$, alors on a aussi $F(c) = \frac{B(c)}{D(c)}$.

On obtient ainsi la **fonction rationnelle** $c \mapsto F(c)$ associée à la fraction rationnelle F. Cette fonction rationnelle est définie sur \mathbb{K} privé de l'ensemble (fini) des pôles de F. On a F(c) = 0 si et seulement si c est un zéro de F. Si c n'est pôle ni de F ni de F, on a F(c) = F(c) + F(c) + F(c) et F(c) + F(c) + F(c) + F(c) et F(c) + F(c

Théorème 3.4 (On suppose le corps \mathbb{K} infini.) Soit F et G deux fractions rationnelles telles que pour tout $c \in \mathbb{K}$ qui n'est pôle ni de F ni de G, on a F(c) = G(c). Alors F = G.

On peut substituer une fraction rationnelle non constante à l'indéterminée dans une autre fraction rationnelle. Soit $G=\frac{A}{B}$ non constante sous forme réduite, et

$$F = \frac{a_0 + a_1 X + \dots + a_n X^n}{b_0 + b_1 X + \dots + b_q X^q} ,$$

alors on pose

$$F(G) = (a_0 + a_1G + \dots + a_nG^n) \times (b_0 + b_1G + \dots + b_qG^q)^{-1}$$

$$= B^{q-n} \frac{a_0B^n + a_1AB^{n-1} + \dots + a_nA^n}{b_0B^q + b_1AB^{q-1} + \dots + b_qA^q}$$

Cette substitution est bien licite car la fraction rationnelle $b_0 + b_1G + \cdots + b_qG^q$ n'est pas la fraction rationnelle nulle.

Proposition 3.5 Soit G une fraction rationnelle non constante. L'application $F \mapsto F(G)$ de K(X) dans lui-même est un homomorphisme de \mathbb{K} -algèbres.

La substitution correspond à la composition des fonctions rationnelles, là où la composée est définie : si $c \in \mathbb{K}$ n'est pas un pôle de G et G(c) n'est pas un pôle de F, alors C n'est pas un pôle de F(G) et F(G)(c) = F(G(c)).

Exercice 3.3

Soit $c \in \mathbb{K}$. L'ensemble des fractions rationnelles de $\mathbb{K}(X)$ dont c n'est pas pôle est-il une sous- \mathbb{K} -algèbre de $\mathbb{K}(X)$? L'ensemble des fractions rationnelles de $\mathbb{K}(X)$ dont c est un zéro est-il une sous- \mathbb{K} -algèbre de $\mathbb{K}(X)$?

Exercice 3.4

Comparer les pôles et les zéros de F(X + a) à ceux de F.

Exercice 3.5

Soit $G = \frac{aX + b}{cX + d}$ avec $ad - bc \neq 0$. Montrer que $F \mapsto F(G)$ est un homomorphisme bijectif de $\mathbb{K}(X)$ sur lui-même, et trouver la bijection réciproque.

3.3 Décomposition en éléments simples

3.3.1 Le théorème général

Théorème 3.6 Soit $F = \frac{A}{B} \in \mathbb{K}(X)$ une fraction rationnelle, où on suppose B unitaire non constant (deg(B) > 0). Soit

$$B = P_1^{\alpha_1} \cdots P_n^{\alpha_n}$$

sa décomposition en produit de facteurs irréductibles dans $\mathbb{K}[X]$ (les P_i sont irréductibles unitaires distincts deux à deux, et les α_i sont des entiers strictement positifs). Alors il existe une unique famille de polynômes de $\mathbb{K}[X]$

$$(E, C_{1,1}, C_{1,2}, \dots, C_{1,\alpha_1}, C_{2,1}, \dots, C_{2,\alpha_2}, \dots, C_{n,\alpha_n})$$

telle que $\deg(C_{i,j}) < \deg(P_i)$ (ou $C_{i,j} = 0$) pour tout i = 1, ..., n et tout $j = 1, ..., \alpha_i$, et que

$$F = E + \frac{C_{1,1}}{P_1} + \frac{C_{1,2}}{P_1^2} + \dots + \frac{C_{1,\alpha_1}}{P_1^{\alpha_1}} + \frac{C_{2,1}}{P_2} + \dots + \frac{C_{2,\alpha_2}}{P_2^{\alpha_2}} + \dots + \frac{C_{n,\alpha_n}}{P_n^{\alpha_n}} \ .$$

Les fractions rationnelles $\frac{C}{P^j}$ avec P irréductible dans $\mathbb{K}[X]$ et $\deg(C) < \deg(P)$, $C \neq 0$, s'appellent des **éléments simples**. La décomposition de F donnée par le théorème ne dépend pas du choix du représentant (A,B) pour la fraction rationnelle. Elle s'appelle la **décomposition en éléments simples** de F.

Le polynôme E s'appelle la **partie entière** de F. Si $F = \frac{A}{B}$, c'est le quotient de la division euclidienne de A par B.

Les éléments simples qui peuvent apparaı̂tre dans la décomposition de F sont les $\frac{C}{P^j}$ où P est un facteur irréductible du dénominateur de la forme réduite de F, et j est inférieur ou égal à la plus grande puissance α avec laquelle P divise ce dénominateur; de plus, il y a nécessairement un élément simple $\frac{C}{P^\alpha}$ avec $C \neq 0$ dans la décomposition de F.

3.3.2 Pratique de la décomposition en éléments simples sur $\mathbb C$

Soit $F = \frac{A}{B}$ une fraction rationnelle sur \mathbb{C} , qu'on supposera toujours sous forme réduite,

$$B = (X - a_1)^{\alpha_1} (X - a_2)^{\alpha_2} \cdots (X - a_n)^{\alpha_n}.$$

Les $a_i \in \mathbb{C}$ sont les pôles de F, et α_i leurs multiplicités. La décomposition en éléments simples de F est de la forme

$$F = E + \frac{c_{1,1}}{X - a_1} + \frac{c_{1,2}}{(X - a_1)^2} + \dots + \frac{c_{1,\alpha_1}}{(X - a_1)^{\alpha_1}} + \frac{c_{2,1}}{X - a_2} + \dots + \frac{c_{n,\alpha_n}}{(X - a_n)^{\alpha_n}},$$

où E est la partie entière de F et $c_{i,j}\in\mathbb{C}$ pour $i=1,\ldots,n$ et $j=1,\ldots,\alpha_i.$ La partie

$$\frac{c_{i,1}}{X - a_i} + \frac{c_{i,2}}{(X - a_i)^2} + \dots + \frac{c_{i,\alpha_i}}{(X - a_i)^{\alpha_i}}$$

de la décomposition s'appelle la **partie polaire relative au pôle** a_i . Remarquer que si l'on soustrait à F sa partie polaire relative au pôle a_i , on obtient une fraction rationnelle qui n'a plus a_i pour pôle.

Le nombre c_{i,α_i} se détermine facilement.

Proposition 3.7 (Les notations sont celles qui ont été introduites ci-dessus). Si $B = (X - a_i)^{\alpha_i} S$, avec $S(a_i) \neq 0$, on a $c_{i,\alpha_i} = A(a_i)/S(a_i)$. Si $\alpha_i = 1$ (a_i est pôle simple de F), alors $c_{i,1} = A(a_i)/B'(a_i)$.

Exemple:

$$F = \frac{5X^3 + 11X^2 - 2X - 2}{X^4 + 2X^3 - X^2 - 2X}.$$

On trouve facilement les racines 0,1,-1,-2 du dénominateur (toutes simples). la décomposition aura la forme

$$F = \frac{a}{X} + \frac{b}{X - 1} + \frac{c}{X + 1} + \frac{d}{X + 2}.$$

La dérivée du dénominateur est $4X^3+6X^2-2X-2$. On obtient donc en évaluant le quotient du numérateur par la dérivée du dénominateur : $a=\frac{-2}{-2}=1$,

$$b = \frac{12}{6} = 2$$
, $c = \frac{6}{2} = 3$, $d = \frac{6}{-6} = -1$, et donc

$$F = \frac{1}{X} + \frac{2}{X-1} + \frac{3}{X+1} + \frac{-1}{X+2}.$$

Il est toujours prudent de vérifier. Une première méthode consiste à multiplier par X des deux côtés et faire tendre X vers $+\infty$; on trouve bien 5 des deux côtés. Une deuxième méthode consiste à fixer pour X une valeur qui n'est pas un pôle (par exemple 2) et à évaluer des deux côtés : on trouve bien $\frac{13}{4}$ des deux côtés.

Un autre exemple:

$$F = \frac{3X^2 - X + 1}{X^2(X+1)}.$$

La décomposition aura la forme

$$F = \frac{a}{X^2} + \frac{b}{X} + \frac{c}{X+1}.$$

Les coefficients a et c se calculent par la méthode de la proposition 3.7. On a $a=\frac{1}{1}=1,\,c=\frac{5}{1}=5.$ Pour b, on peut multiplier par X des deux côtés et faire tendre X vers $+\infty$. On obtient 3=b+5, d'où b=-2. Finalement

$$F = \frac{1}{X^2} + \frac{-2}{X} + \frac{5}{X+1}.$$

En faisant X = 1, on obtient bien $\frac{3}{2}$ des deux côtés.

On peut calculer la partie polaire de F relative à un pôle a en amenant ce pôle en 0 par la substitution de a+Y à X et en utilisant la division des polynômes suivant les puissances croissantes.

Théorème 3.8 (Division des polynômes suivant les puissances croissantes) Soient A et S deux polynômes de $\mathbb{K}[X]$, avec $S(0) \neq 0$. Soit n un entier naturel. Alors il existe un unique couple (Q, R) de polynômes tel que

$$A = SQ + X^{n+1}R$$
 et $\deg(Q) \le n$.

Le polynôme Q est le quotient de la division suivant les puissances croissantes de A par S à l'ordre n. Le reste de cette division est $X^{n+1}R$.

Proposition 3.9 Supposons que a soit pôle de F d'ordre $\alpha : F = \frac{A}{(X-a)^{\alpha}S}$ avec $A(a) \neq 0$ et $S(a) \neq 0$. Soit

$$A(a + Y) = S(a + Y) \times (c_1 Y^{\alpha - 1} + c_2 Y^{\alpha - 2} + \dots + c_{\alpha}) + Y^{\alpha} R$$

la division de A(a+Y) par S(a+Y) suivant les puissances croissantes de Y à l'ordre $\alpha-1$. Alors la partie polaire de F relative au pôle a est

$$\frac{c_1}{X-a} + \frac{c_2}{(X-a)^2} + \dots + \frac{c_{\alpha}}{(X-a)^{\alpha}}$$
.

En pratique, on n'utilise cette méthode de la division selon les puissances croissantes que pour les pôles d'ordre élevé (au moins 3). On utilise souvent d'autres outils de détermination : donner une valeur particulière à l'indéterminée X (ce qui est toujours recommandé pour vérifier les calculs), multiplier par X et "faire tendre X vers $+\infty$ ", utiliser des propriétés de parité...

Exemple: Soit

$$F = \frac{2X^5 + 10X^3 + 12X}{(X+1)^3(X-1)^3}.$$

La décomposition va être de la forme

$$F = \frac{a}{(X-1)^3} + \frac{b}{(X-1)^2} + \frac{c}{X-1} + \frac{d}{(X+1)^3} + \frac{e}{(X+1)^2} + \frac{f}{X+1}.$$

Pour déterminer la partie polaire relative au pôle 1, on fait le changement de variable X=1+Y avant de faire la division suivant les puissances croissantes. Comme on veut faire une division suivant les puissances croissantes à l'ordre 2, on peut oublier les puissances de Y plus grandes que 2 :

$$F(1+Y) = \frac{2(1+Y)^5 + 10(1+Y)^3 + 12(1+Y)}{((1+Y)+1)^3((1+Y)-1)^3} = \frac{24 + 52Y + 50Y^2 + \cdots}{Y^3(8+12Y+6Y^2+\cdots)}.$$

Ensuite on fait la division suivant les puissances croissantes à l'ordre 2 de $24 + 52Y + 50Y^2 + \cdots$ par $8 + 12Y + 6Y^2 + \cdots$. Comme on est seulement intéressé par le quotient, on oublie tout ce qui dépase le degré 2 :

et on a

$$F = \frac{3}{(X-1)^3} + \frac{2}{(X-1)^2} + \frac{1}{X-1} + \frac{d}{(X+1)^3} + \frac{e}{(X+1)^2} + \frac{f}{X+1}.$$

On pourrait recommencer pour obtenir la partie polaire relative au pôle -1, mais il vaut mieux raisonner en **utilisant la parité**. En changeant X en -X, on obtient

$$-F(X) = F(-X) = \frac{-3}{(X+1)^3} + \frac{2}{(X+1)^2} + \frac{-1}{X+1} + \frac{-d}{(X-1)^3} + \frac{e}{(X-1)^2} + \frac{-f}{X-1}.$$

Finalement

$$F = \frac{3}{(X-1)^3} + \frac{2}{(X-1)^2} + \frac{1}{X-1} + \frac{3}{(X+1)^3} + \frac{-2}{(X+1)^2} + \frac{1}{X+1}.$$

3.3.3 Pratique de la décomposition en éléments simples sur \mathbb{R}

Soit maintenant $F = \frac{A}{B}$ une fraction rationnelle sur \mathbb{R} , toujours sous forme réduite,

$$B = (X - a_1)^{\alpha_1} \cdots (X - a_n)^{\alpha_n} ((X - u_1)^2 + v_1^2)^{\beta_1} \cdots ((X - u_p)^2 + v_p^2)^{\beta_p}$$

la décomposition du dénominateur en produit de facteurs irréductibles sur \mathbb{R} . La décomposition en éléments simples de F est de la forme

$$F = E + \sum_{i=1}^{n} \left(\frac{c_{i,1}}{X - a_i} + \dots + \frac{c_{i,\alpha_i}}{(X - a_i)^{\alpha_i}} \right) + \sum_{j=1}^{p} \left(\frac{d_{j,1}X + e_{j,1}}{(X - u_j)^2 + v_j^2} + \dots + \frac{d_{j,\beta_j}X + e_{j,\beta_j}}{((X - u_j)^2 + v_j^2)^{\beta_j}} \right) ,$$

où les $c_{i,k}$ et les $d_{j,\ell}$ et $e_{j,\ell}$ sont des nombres réels. Les éléments simples de la forme $\frac{c}{(X-a)^k}$ s'appellent éléments simples de première espèce, ceux

de la forme $\frac{dX+e}{((X-u)^2+v^2)^\ell}$ éléments simples de deuxième espèce. La décomposition en éléments simples est utile pour l'intégration des fonctions rationnelles.

Pour effectuer la décomposition en éléments simples sur $\mathbb R$ d'une fraction rationnelle à coefficients réels, on peut effectuer la décomposition sur $\mathbb C$ puis regrouper les parties polaires correspondant aux pôles conjugués u_j+iv_j et u_j-iv_j , ce qui est facile si ces pôles sont simples. On peut utiliser d'autres méthodes.

Un exemple:

$$F = \frac{X(2X^4 + 3X^3 + 7X^2 + 4X + 4)}{(X^2 + 1)(X^2 + X + 1)^2} = \frac{aX + b}{X^2 + 1} + \frac{cX + d}{(X^2 + X + 1)^2} + \frac{eX + f}{(X^2 + X + 1)^2}$$

On multiplie par $X^2 + 1$ et on fait X = i. On obtient

$$\frac{i(2-3i-7+4i+4)}{(-1+i+1)^2} = ai+b,$$

ce qui donne a = 1 et b = 1. On peut ensuite calculer c et d en multipliant par $(X^2 + X + 1)^2$ et en faisant X = j (racine de $X^2 + X + 1$), puis trouver e et f

en multipliant par X et en faisant tendre X vers $+\infty$, et en faisant X=0. On peut aussi procéder ainsi :

$$\frac{cX+d}{(X^2+X+1)^2} + \frac{eX+f}{(X^2+X+1)} = F - \frac{X+1}{X^2+1} = \frac{X^3+X-1}{(X^2+X+1)^2}.$$

On fait la division euclidienne $X^3 + X - 1 = (X^2 + X + 1)(X - 1) + X$, et on a finalement :

$$F = \frac{X(2X^4 + 3X^3 + 7X^2 + 4X + 4)}{(X^2 + 1)(X^2 + X + 1)^2} = \frac{X + 1}{X^2 + 1} + \frac{X}{(X^2 + X + 1)^2} + \frac{X - 1}{(X^2 + X + 1)}.$$

Exercice 3.6

Effectuer la division suivant les puissances croissantes de $X^6 - 2X^4 + X^3 + 1$ par $X^3 + X^2 + 1$ à l'ordre 6. Trouver le quotient de la division suivant les puissances croissantes de $(X+1)^{10}$ par $(X-1)^7$ à l'ordre 2.

Exercice 3.7

Décomposition en éléments simples :

(a)
$$\frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$
 (b) $\frac{X^2 + 1}{(X - 1)(X - 2)(X - 3)}$

(c)
$$\frac{X^4 - 5X^3 + 10X^2 - 8X - 1}{(X - 1)^3 (X - 2)}$$
 (d)
$$\frac{X(X^6 - 1)}{(X^2 - 1)^3}$$

(e)
$$\frac{3X-1}{X^2(X+1)^2}$$
 (f) $\frac{X^2+X+1}{(X-1)^2(X+1)^2}$

(g)
$$\frac{X^2}{(X-1)^2(X+1)^3}$$
 (h) $\frac{X^2+1}{((X-1)(X-2)(X-3))^2}$

(i)
$$\frac{-12X}{X^6 - 14X^4 + 49X^2 - 36}$$
 (j) $\frac{1}{(X^3 + 3X^2 + 2X)^4}$

Exercice 3.8

Exemples de décomposition en éléments simples de première et de seconde espèces, dans $\mathbb{R}(X)$:

(a)
$$\frac{X^5}{(X^2+X+1)^3}$$
 (b) $\frac{2X^5+19X^4+76X^3+157X^2+165X+72}{(X^2+4X+5)^3}$

(c)
$$\frac{X^6 - 2X^5 + 4X^4 - 6X^3 - X^2 + 8X + 121}{(X - 1)^3 (X^2 + 4)}$$
 (d)
$$\frac{1}{(X - 1)^5 X(X^2 + 1)}$$

(e)
$$\frac{X^9}{(X^2-1)^3(X^2+X+1)^2}$$
 (f) $\frac{4(X^6+2)}{(X-1)^3(X^2+1)^2}$

(g)
$$\frac{X}{(X^2-1)(X^2+1)^3}$$

Exercice 3.9

Décomposer sur $\mathbb R$ les fractions rationnelles suivantes :

$$\frac{X - X^3}{(1 + X^4)(1 + X^2)^4} \quad \text{et} \quad \frac{X^2}{(X+1)^3(X^2 + X + 1)^2}$$

Exercice 3.10

Décomposer sur \mathbb{R} , puis sur \mathbb{C} , les fractions rationnelles suivantes :

$$\frac{X^3 - 4X^2 + 2X + 1}{(X^2 + 1)(X^2 + 4)} \quad \text{et} \quad \frac{X^5 + 5}{(X + 1)^5 - X^5 - 1}$$

Exercice 3.11

Décomposer sur \mathbb{C} , puis sur \mathbb{R} , les fractions rationnelles suivantes :

$$\frac{1}{X^{2n}-1}$$
 et $\frac{1}{X^{2n+1}-1}$

Exercice 3.12

Décomposer $\frac{1}{(X^2-1)^n}$ et $\frac{1}{(X-a)^n(X-b)^n}$. Indication pour le premier : on peut penser à développer $2^n = \left((X+1)-(X-1)\right)^n$ en utilisant la formule du binôme, puis à diviser par $(X^2-1)^n$.

Exercice 3.13

Décomposer
$$\frac{X^7+1}{(X^2+X+1)^3}$$
 et $\frac{X^2}{(X+1)^3(X-1)^2}$.

Exercice 3.14

Décomposer
$$\frac{4X^2 + X + 4}{(X - 1)(X + 2)^2}$$
 et $\frac{X^6}{(X^2 - 5X + 6)(X - 1)^3}$.

Exercice 3.15

Décomposer
$$\frac{X^8+X+1}{X^4(X-1)^3}$$
 et $\frac{X^4+1}{X^2(X^2+X+1)^2}$.

Exercice 3.16

Décomposer
$$\frac{X^6}{(X^2+1)^2(X+1)^2}$$
 et $\frac{(X^2+1)^2}{(X-1)^6}$.

Exercice 3.17

Décomposer
$$\frac{X^4+1}{X^4+X^2+1} \quad \text{et} \quad \frac{X^2}{X^4-2X^2\cos a+1} \ .$$