

Introdução aos Nanossatélites e Cubesats

Walter Abrahão Lázaro Camargo DIPST - INPE SJC

OBC On Board Computer

Design dos · Avaliar os objetivos que indicam Computadores sistemas computacionais. • Avaliar requisitos de todas as disciplinas que indiquem utilidades de Requisitos e 1. Definir Requisitos software Objetivos da Missão • Desenvolver uma arvore de requisitos de computação Avaliar arquiteturas e interfaces candidatas 2. Alocar os requisitos de Realizar a divisão das funções alto nível Avaliar requisitos de confiabilidade Estabelecer um baseline Definir as tarefas Estabelecer os requisitos de temporização e tamanho do software 3. Definir os requisitos do Estabelecer os requisitos de tamanho, Computador peso, consumo e processamento do Computador • Identificar o sistema operacional e o Identificar Hardwares possíveis ambiente de desenvolvimento Identificar as ferramentas de suporte 4. Definir a estratégia de Detalhar o processo de controle de desenvolvimento e versão/configuração Documentar os testes e abordagens entrega de integração

 Deploy (entrega) do sistema, e o procedimento de manutenção

OBDH – On Board Data Handling

- Redundância (cold/hot)
- Barramentos de dados
- Tipos de Interfaces
- Relógio
- Processamento de Telecomandos
- Encapsulamento de telemetrias
- Armazenamento
 - Software
 - Coleta de dados

 Os sistemas computacionais que suportam a missão incluem o computador de bordo, os computadores auxiliares (Cargas-úteis / Controles), bem como os computadores de solo.

Conceitos

• Sistemas Embarcados (Embedded Systems):

 Um processador ou microprocessador, proventdo controle em tempo real, como um dos componentes de um sistema maior.

• Processamento em Tempo Real (Real-Time Processing):

 Manuseando, e processando informação no tempo que o evento ocorre ou quando a informação é criada.

• Hard Real-Time:

• Requisito que a precisão de tempo precisa ser ótima, senão causa severas consequências.

Soft Real-Time:

• Requisito que a precisão de tempo pode desviar sem causar consequências.

Software do Sistema Operacional (Operational System Software):

 Gerencia os recursos do computador e as atividades que precisam dos recursos.

• Software da Aplicação em Voo (Application Flight Software):

 Software específico da missão que contêm o trabalho requerido pelo usuário ou pela missão.

... Informações... O que precisa existir:

Req. de Sistema → Alocar em Subsistema → identificar modos de operação → alocar requisitos de alto nível do Computador de bordo → definir interface com outros subsistemas → identificar requisitos periféricos,

HW

- Itens de configuração de HW
- Placa
- Chips / Componentes / Interfaces

SW

- Itens de configuração de SW
- Componentes de Software
- Unidades de software (onde vai ser processado/entregue)

DOC

- Requisitos
- Design
- Design Detalhado
- Controles de Interface (Interface Control Documents ICDs)

Para chegar num baseline devemos:

- 1. Alocar os requisitos de missão e sistemas em componentes de processamento (funções)
- Particionar e alocar os requisitos em espaço/solo, cargaútil/barramento, subsistema, hw/sw
- 3. Definir os requisitos do sistema computacional, detalhando o tipo de processamento e os requisitos de armazenamento de informação
- 4. Desenvolver os modos/estados operacionais baseado nos requisitos.
- Avaliar as interfaces internas e externas do sistema de processamento, para estabelecer as arquiteturas e topologias candidatas
- 6. Selecionar uma arquitetura baseline
- 7. Criar uma especificação de arquitetura, modos, estados, para criar a documentação dos sistemas computacionais
- 8. Estabelecer uma abordagem de implementação e seus processos
- 9. Determinar a estratégia de entrega e de uso dos produtos

SRR

PDR

Questões gerais para levantar requisitos:

- O que o sistema deve fazer?
- Por que deve ser feito?
- Como podemos realizar e quais são as alternativas?
- Quais funções podem ser alocadas para cada parte de um sistema?
- As funções técnicas são possíveis?
- O sistema é testável?

Avaliação das Arquiteturas

- Topologia
- Estrutura dos dados
- Arquitetura do hardware
- Arquitetura do software

Conceitos de Redundância

- Cold (Fria)
 - Apenas um computador é energizado e está ativo.
 - Troca por um terceiro elemento
 - Hot (Quente)
 - Ambas estão energizadas e ativas
 - Troca pelos redundantes ou por um terceiro elemento.

Particionamento das Funções Lógicas

Realiza Processamento no Espaço	Realiza Processamento em Solo
 Quando timing é crítico. Quando dado deve ser processado para reduzir o pacote pro solo. 	 Quando interação humana é necessária Quando o downlink é satisfatório
Realiza Processamento em Hardware	Realiza Processamento em Software
 Quando é necessário alta performance Quando o processamento é muito matemático Quando existe um hardware disponível/bem definido/custo acessível Quando a função deve ser replicada em múltiplos sats. 	 Quando o processamento é muito complexo Quando ocorre mudanças após o hardware ter sido comprado Quando o hardware é muito caro, e pode ser substituído por SW. Quando há muita memória inutilizada
Aloca processos entre B. de Serviços / Carga útil	Não Aloca processos entre B. de Serviços / Carga Útil
 Quando é necessário ajustar o protocolo Quando o funcionamento da Carga é Crítico 	 Quando o processamento na carga útil é mínimo Quando existe sinergia entre padrões
Aloca Processamento Através das Organizações	Não Aloca Processamento Através das Organizações
 Quando há impeditivos (contratos, geográficos, etc) para comunicação Inter organizacional. Quando há um controle muito rígido do destino dos dados 	 Quando o projeto é pequeno Quando o subsistema é tão completo que exige uma organização específica.

Softwares tem cinco atividades principais

- Atividades do sistema operacional controles de recursos, tarefas, interrupções, etc.
- Atividades de **gestão do sistema** detecção e correção de erros, eventos programados,
- Atividades de controle determinação e controle de orbita e atitude
- Atividades de comando e gestão de dados coleta dados de status dos subsistemas.
- Atividades de **gestão das cargas úteis** monitoramento, gerenciamento, e interfaces com a carga útil.

Regras para escolha de Computadores

- Características "físicas" (peso / volume / consumo / capacidade / velocidade)
- Radiação
- Usa um firmware específico ou um sistema operacional
- Tipos/quantidades de Entradas e Saídas
- Tipos de memórias

Disponibilidade

Desenvolvimento de Software

- Padrões (MIL-STDs, IEEE, SAE, ANSI, ISO)
- CMMI (Capability Maturity Model Integration)
- Disponibilidades e considerações
 - Host machine ambiente de desenvolvimento
 - Target machine computador onde o software vai ser embarcado
 - Cross-compiler compila software para outra arquitetura
- Ferramentas de Modelagem

Estilos/Orientações de Desenvolvimento

Testes e Integração

Simulation based functional Verification Onboard Software testing on Satellite Testbench

© Eickhoff, J.: Simulating Spacecraft Systems, Springer, 2009

Sistemas Operacionais....

FreeRTOS™

The Market Leading, De-facto Standard and Cross Platform Real Time Operating System (RTOS). Don't Let Your RTOS Lock You In.

Immediate Free Download and Use * Feature Rich * Tiny Footprint * Easy To Use Pre-configured Projects *
Can Be Used In Commercial Applications * Massive User Community * Free Support * Optional
Commercial Licensing/Support * Strict Coding Standard * Safety Critical Version Available * Tickless Mode
for Low Power Applications

Protocolos de Comunicação

- CAN
- 12C
- RS 485
- SERIAL AD-HOC