A SURVIVAL ANALYSIS OF THE SURRENDER OF LIFE INSURANCE POLICIES OF LIFE INSURANCE COMPANIES IN GHANA

Kweku David (1090013) Osafo Agyare Benjamin (1092913)

Supervisor **Dr.G.A Okyere**

May 15, 2017

1 / 19

Outline of Presentation

- Introduction
 - Problem Statement
- Objectives
- Methodology
- 4 Analysis and Results
- Conclusion and Recommendation
 - Conclusion
 - Recomendation
- 6 References

()

Statement of the Problem

In recent years, life insurance companies in Ghana have had to grapple with the challenge of policy surrenders, as the rate keeps increasing to unprecedented levels by the day, in spite of the increasing education and awareness to boost the insurance penetration rate, which is currently below two per cent (2%).

Staggering data available indicate that for the period of January to December, 2013, partial and full surrenders/cancellations were in the region of seventy three per cent (73%)

May 15, 2017 3 / 19

Objectives

- To use the Kaplan-Meier estimator to estimate the probability of a life insurance policy holder surrendering.
- 2 To determine the factors causing surrender of life insurance policies using the Cox proportional hazard model.

)

Methodology

Introduction

The major methods of survival analysis employed in our study are the Kaplan-Meier(product limit) estimator and the Cox proportional hazard model.

(,

Methodology

Definition

The Kaplan-Meier estimator of the survival distribution is given by:

$$\hat{S}(t) = \prod_{t_i \le t} \left(1 - \frac{d_i}{n_i} \right) \tag{1}$$

The variance of the estimator is given by the Greenwood's formula:

$$Var(\hat{S}(t)) = (\hat{S}(t))^{2} \sum_{t_{i} \leq t} \frac{d_{j}}{n_{j}(n_{j} - d_{j})}$$
(2)

Assumptions Of The Kaplan-Meier Estimator

- There is presence of non-informative censoring.
- If a censored event occurs on an event time t_i , then we assume

Methodology

Definition

According to the Cox PH model, the hazard function for life i at time t, denoted by $\lambda(t, \underline{z}_i)$, is given by:

$$\lambda(t,\underline{z}_i) = \lambda_0(t) \times \exp(\underline{\beta}.\underline{z}_i^T) = \lambda_0(t) \times \exp\left(\sum_{j=1}^p \beta_j \times X_{i,j}\right)$$
 (3)

Assumptions Of The Cox PH Model

- The hazard function of two groups is proportional over time.
- The log of the hazard function is linear.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ り へ ○

May 15, 2017 7 / 19

Residual Analysis

Definition

If X has the hazard function $\lambda(x|Z)$, then the cumulative hazard $\Lambda(x|Z)$ satisfies exponential(1). The Cox-Snell residual is defined(Cox and Snell,1986) as:

$$r_j = \hat{\Lambda}_0(T_j) \exp(\hat{\beta}' Z_j), j = 1, ...n$$
(4)

Plot of $\hat{\Lambda}_r(r_j)$ versus r_j will produce a straight line with slope 1 if the Cox model provides a good fit of the data.

May 15, 2017 8 / 19

The Kaplan-Meier Estimate

τ_i	n.risk	n.event	survival
1	73642	961	0.98695
2	72419	3458	0.93982
3	68269	15090	0.73209
4	52107	10457	0.58517
5	40497	7575	0.47571
6	30383	6826	0.36884
7	21171	4594	0.28880
8	15767	3437	0.22585
9	11629	2576	0.17582

$ au_j$	n.risk	n.event	survival
10	7774	2007	0.13043
11	5490	1466	0.09560
12	3868	1029	0.07017
13	2694	811	0.04904
14	1694	558	0.03289
15	1052	396	0.02051
16	557	190	0.01351
17	298	103	0.00884
18	145	18	0.00774

May 15, 2017 9 / 19

$ au_j$	$\hat{S}_{KM}(t)$	Ê(t)	$\hat{f}(t)$	$ au_j$	$\hat{S}_{KM}(t)$	Ê(t)	$\hat{f}(t)$
1	0.98695	0.01305	0.01305	10	0.13043	0.86957	0.04539
2	0.93982	0.06018	0.04713	11	0.0956	0.9044	0.03483
3	0.73209	0.26791	0.20773	12	0.07017	0.92983	0.02543
4	0.58517	0.41483	0.14692	13	0.04904	0.95096	0.02113
5	0.47571	0.52429	0.10946	14	0.03289	0.96711	0.01615
6	0.36884	0.63116	0.10687	15	0.02051	0.97949	0.01238
7	0.2888	0.7112	0.08004	16	0.01351	0.98649	0.007
8	0.22585	0.77415	0.06295	17	0.00884	0.99116	0.00467
9	0.17582	0.82418	0.05003	18	0.00774	0.99226	0.0011

Interpretation Of Results

Kaplan-Meier estimates indicates that, persons who subscribed to life policies had higher surrender probabilities within their first 3 and 4 years of subscription, with probabilities of 0.20773 and 0.14692 respectively.

The surrender probabilities then decreased marginally within periods 5 and 6 from 0.10946 to 0.10687. From period 6 to 7, there was a sharp decline in the probability to 0.08004. It then decreases steadily through to period 18.

() May 15, 2017 11 /

Cox-PH Model

	<pre>coef exp(coef)</pre>		z Pr(> z)
age	-1.208e-02	9.880e-01	-24.834	<2e-16
gender1	9.089e-02	1.095e+00	10.735	<2e-16
Income	-7.443e-07	1.000e+00	-0.506	0.6129
${\tt dissatisfied}.$	7.537e-02	1.078e+00	8.882	<2e-16
customer1				
new.policy1	2.655e-02	1.027e+00	0.655	0.5124
interest.	1.757e-02	1.018e+00	2.115	0.0344
arbitrage1				
emergency.	1.037e-01	1.109e+00	11.514	<2e-16
fund1				

()

	coef	<pre>exp(coef)</pre>	Z	p
age	-0.012084	0.987989	-24.84	<2e-16
gender1	0.090841	1.095095	10.73	<2e-16
dissatisfied	. 0.074999	1.077883	8.86	<2e-16
customer1				
interest.	0.017154	1.017302	2.07	0.038
arbitrage1				
emergency.	0.102740	1.108203	11.57	<2e-16
fund1				

(

The Final Model

putting in the estimates of the β^s into the final model,

```
\lambda(t|z) = \lambda_0 \exp(-0.012084 age + 0.090841 gender1 + 0.074999 dissatisfaction1 + 0.017154 interestrate1 + 0.102740 emergency fund1)
```

C

Cox-Snell Residual Analysis

Figure 1: Cox-Snell Residual Plot

C

Conclusions and Recommendation

Conclusions

- From the analysis, it is observed that the prospect of surrendering of life policies increases during first 3 years from the policy inception date. The highest probability of surrendering of policies occurs at time 3 (years) from the Kaplan-Meier estimates and has a probability value of 0.20773 being approximately 21%.
- From the Cox-PH model, it is found that with the factors considered, it can be inferred that surrender of life policies does not depend on the income level of the the policyholder and subscription onto new policies but on age, gender,policyholder's dissatisfaction with services provided by insurer, need for emergency fund, interest rate arbitrage and other factors that might have not been considered.

Recommendations

- It is recommended that, advertisement and marketing strategies should be geared towards enticing more females to subscribe onto the life policies.
- Insurers are recommended to design life policies that will suit the youth to increase/sustain their retention rate of their polices in the life companies.
- Management should implement measures that would help cater for client needs in respect of areas including response to feed back, grievances, among others.
- Insurers should implement policies that would allow its
 policyholders who have had their policy in force for some minimum
 number of years to qualify to apply for policy loans in times of
 emergency.

References

Altman, Douglas G Practical statistics for medical research. CRC press, 1990.

Allison, Paul D
Definition of the Event

The Reviewer's Guide to Quantitative Methods in the Social Sciences,:413, 2010.

Sandra-Odonnell Censoring.

from http://documents.mx/download/link/censoringpdf

Zogbenu, M. (2016).

High surrender rates : Credit houses to blame?

fromhttp://www.graphic.com.gh/business/business-news/

May 15, 2017

18 / 19

THANK YOU