FGI 2 [HA], 18. 11. 2013

Arne Struck, Tronje Krabbe

16. November 2013

5.3 1.

- 2. a) $Sat(\alpha_1) = \{s_0\} \quad |\alpha_1 = \mathbf{EX}b$
 - b) $Sat(\mathbf{AG}\alpha_1) = \emptyset$
 - c) $Sat(\alpha_2) = \{s_1, s_2\} \quad |\alpha_2 = \mathbf{AG} \neg b$
 - d) $Sat(\mathbf{EX}\alpha_2) = \{s_0, s_1, s_2\}$

- 3. a) $\beta_1 = \mathbf{AGEX} b \text{ gilt nicht, da das Ergebnis von 2b) } \emptyset \text{ ist.}$
 - b) $\beta_2 = \mathbf{EXAG} \neg b \text{ gilt, da } s_0 \text{ Element der Ergebnismenge von 2d) ist.}$
- 4. a)

 $\mathbf{AXAG}a$ bedeutet, dass für alle Pfade im nächsten Zustand gelten muss, dass für alle folgenden Pfade der Folge a gilt, also in allen Zuständen (außer dem Root) gilt a.

 $\mathbf{AGAX}a$ bedeutet, dass für alle folgenden Pfade der Folge in allen nächsten Zuständen a gelten muss. Also gilt a auch hier immer, außer im Root. Die beiden Ausdrücke sind also äquivalent.

b) $(\neg b \land \neg g)$ beschreibt den Zustand s_1 aus dem ersten Teil. **EXEG** $(\neg b \land \neg g)$ heißt, dass in einem der nächsten Zustände ein Pfad existiert auf dem $(\neg b \land \neg g)$ gilt. Dies ist im M_{AKW} kein einziges mal der Fall, da nach s_1 zwangsläufig s_2 gilt.

 $\mathbf{EGEX}(\neg b \land \neg g)$ heißt, dass ein Pfad existiert auf dem im folgenden Element $(\neg b \land \neg g)$ der Fall ist, also ein Pfad der als 2. Zustand s_1 eintrifft, dies ist möglich (siehe 1).

Damit sind die Ausdrücke nicht äquivalent.

5. a)

 $\mathbf{AGAX}b$ siehe 4a).

 $\mathbf{GX}b$ bedeutet, dass für allgemein im nächsten Zustand b gelten mussdamit gilt für alle Zustände außerhalb des Roots (rekursiver Aufbau). Also gilt für beide Ausdrücke, dass in jedem Zustand b gilt (außer im Root). Damit sind sie äquivalent.

- b) $\mathbf{EG}b$ gilt in M_{AKW} , da vom Root ein Pfad aus existiert in dem b gilt (siehe 1). $\mathbf{G}b$ gilt allerdings nicht, da auch Pfade existieren, auf denen nicht immer b gilt.
- **5.4** 1.

TODO

2.

TODO

3.

TODO

4.

TODO