

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6668/01)

June 2009 6668 Further Pure Mathematics FP2 (new) Mark Scheme

Que:	stion nber	Scheme		Marks
Q1	(a)	$\frac{1}{r(r+2)} = \frac{1}{2r} - \frac{1}{2(r+2)}$	$\frac{1}{2r} - \frac{1}{2(r+2)}$	B1 aef (1)
	(b)	$\sum_{r=1}^{n} \frac{4}{r(r+2)} = \sum_{r=1}^{n} \left(\frac{2}{r} - \frac{2}{r+2} \right)$		
		$= \left(\frac{2}{1} - \frac{2}{3}\right) + \left(\frac{2}{2} - \frac{2}{4}\right) + \dots$ $\dots + \left(\frac{2}{n-1} - \frac{2}{n+1}\right) + \left(\frac{2}{n} - \frac{2}{n+2}\right)$	List the first two terms and the last two terms	M1
		$= \frac{2}{1} + \frac{2}{2}; -\frac{2}{n+1} - \frac{2}{n+2}$	Includes the first two underlined terms and includes the final two underlined terms. $\frac{2}{1} + \frac{2}{2} - \frac{2}{n+1} - \frac{2}{n+2}$	M1 A1
		$= 3 - \frac{2}{n+1} - \frac{2}{n+2}$		
		$= \frac{3(n+1)(n+2) - 2(n+2) - 2(n+1)}{(n+1)(n+2)}$ $= \frac{3n^2 + 9n + 6 - 2n - 4 - 2n - 2}{(n+1)(n+2)}$	Attempt to combine to an at least 3 term fraction to a single fraction and an attempt to take out the brackets from their numerator.	M1
		$= \frac{3n^2 + 5n}{(n+1)(n+2)}$		
		$= \frac{n(3n+5)}{(n+1)(n+2)}$	Correct Result	A1 cso AG (5)
				[6]

Questic		Scheme		Ma	ırks
Q2 (a	a)	$z^{3} = 4\sqrt{2} - 4\sqrt{2}i, -\pi < \theta, \pi$ y $4\sqrt{2}$ 0 $arg z$ $4\sqrt{2}$ $(4\sqrt{2}, -4\sqrt{2})$			
			attempt to find the as and argument of $4\sqrt{2} - 4\sqrt{2}i$.	M1	
			ne cube root of the argument by 3.	M1	
		$\Rightarrow z = 2\left(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right)$ 2\left(\cos\left(-\frac{\pi}{12}\right)\right)	$-\frac{\pi}{12}$) + i sin $\left(-\frac{\pi}{12}\right)$)	A1	
		11150, 2 0(005(4) 115111(4))	otracting 2π to the z^3 in order to find other roots.	M1	
		$\Rightarrow z = 2\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$ Any one of	the final two roots	A1	
		and $z = 2\left(\cos\left(\frac{-3\pi}{4}\right) + i\sin\left(\frac{-3\pi}{4}\right)\right)$ Both of the	he final two roots.	A1	
		Special Case 1 : Award SC: M1M1A1M1A0A0 for ALL three of $2(\cos \frac{\pi}{12})$ and $2(\cos \frac{7\pi}{4} + i \sin \frac{3\pi}{4})$ and $2(\cos \left(\frac{7\pi}{12}\right) + i \sin \left(\frac{7\pi}{12}\right))$. Special Case 2: If r is incorrect (and not equal to 8) and candidate states the () correctly then give the first accuracy mark ONLY where this is applied	e brackets		[6]

Question Number	Scheme		Marks	S
Q3	$\sin x \frac{\mathrm{d}y}{\mathrm{d}x} - y \cos x = \sin 2x \sin x$			
		ot to divide every term ifferential equation by $\sin x$. Can be implied.	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y\cos x}{\sin x} = \sin 2x$			
	Integrating factor = $e^{\int -\frac{\cos x}{\sin x} dx}$ = $e^{-\ln \sin x}$	$ \frac{\operatorname{os} x}{\operatorname{in} x} (\operatorname{d} x) \text{or } e^{\int \pm \operatorname{their} P(x) (\operatorname{d} x)} \\ e^{-\ln \sin x} \text{or } e^{\ln \operatorname{cosec} x} $	dM1 A1 aef	
	$=\frac{1}{\sin x}$ $\frac{1}{\sin x}$	or $(\sin x)^{-1}$ or $\csc x$	A1 aef	
	$\left(\frac{1}{\sin x}\right)\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y\cos x}{\sin^2 x} = \frac{\sin 2x}{\sin x}$			
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y}{\sin x} \right) = \sin 2x \times \frac{1}{\sin x}$ $\frac{\mathrm{d}}{\mathrm{d}x} \left(y \times \text{their} \right)$	$r I.F.) = \sin 2x \times \text{their I.F}$	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y}{\sin x} \right) = 2\cos x$	$\frac{y}{\sin x} = 2\cos x \text{ or}$ $\frac{y}{\sin x} = \int 2\cos x (dx)$	A1	
	$\frac{y}{\sin x} = \int 2\cos x \mathrm{d}x$			
		le attempt to integrate HS with/without + K	dddM1	
	$y = 2\sin^2 x + K\sin x$	$y = 2\sin^2 x + K\sin x$	A1 cao	[8]

Question Number	Scheme		Mark	S
Q4	$A = \frac{1}{2} \int_{0}^{2\pi} (a + 3\cos\theta)^{2} d\theta$ Applies $\frac{1}{2} \int_{0}^{2\pi} r^{2} (d\theta)$ correct linguisting in Engineering Contract of Engineering Section 1.	mits.	B1	
	$(a + 3\cos\theta)^2 = a^2 + 6a\cos\theta + 9\cos^2\theta$ $= a^2 + 6a\cos\theta + 9\left(\frac{1 + \cos 2\theta}{2}\right)$ $= \frac{\cos^2\theta}{2} = \frac{\pm 1 \pm \cos\theta}{2}$ $\frac{\cos^2\theta}{2} = \frac{\pm 1 \pm \cos\theta}{2}$ Correct underlined express $A = \frac{1}{2} \int_0^{2\pi} \left(a^2 + 6a\cos\theta + \frac{9}{2} + \frac{9}{2}\cos 2\theta\right) d\theta$		M1 A1	
	Integrated expression wi least 3 out of 4 terms of the final expression $\theta = \left(\frac{1}{2}\right) \left[a^2\theta + 6a\sin\theta + \frac{9}{2}\theta + \frac{9}{4}\sin2\theta\right]_0^{2\pi}$ Ignore the $\frac{1}{2}$. Ignore line integrated expression wi least 3 out of 4 terms of the final expression with least 4 out of 4 terms of the final expression with least 4 out of 4 terms of 4 ter	form 2θ . mits. ect ft tion.	M1* A1 ft	
	$= \frac{1}{2} \left[\left(2\pi a^2 + 0 + 9\pi + 0 \right) - (0) \right]$ $= \pi a^2 + \frac{9\pi}{2}$ $\pi a^2 + \frac{9\pi}{2}$ Hence, $\pi a^2 + \frac{9\pi}{2} = \frac{107}{2}\pi$ Integrated expression equal to $\frac{1}{2}$	2	A1 dM1*	
	$a^{2} + \frac{9}{2} = \frac{107}{2}$ $a^{2} = 49$ As $a > 0$, $a = 7$ a Some candidates may achieve $a = 7$ from incorrect working. Such candidates will not get full marks	= 7	A1 cso	[8]

Question Number	Scheme			Marks	5
Q5 (a)	$y = \sec^2 x = (\sec x)^2$ $\frac{dy}{dx} = 2(\sec x)^1 (\sec x \tan x) = 2\sec^2 x \tan x$	Either $2(\sec x)^{1}(\sec x \tan x)$ or $2\sec^{2} x \tan x$	B1	aef	
	Apply product rule: $\begin{cases} u = 2\sec^2 x & v = \tan x \\ \frac{du}{dx} = 4\sec^2 x \tan x & \frac{dv}{dx} = \sec^2 x \end{cases}$	Two terms added with one of either $A \sec^2 x \tan^2 x$ or $B \sec^4 x$	M1		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4\sec^2 x \tan^2 x + 2\sec^4 x$	in the correct form. Correct differentiation	A1		
	$= 4\sec^{2} x(\sec^{2} x - 1) + 2\sec^{4} x$ Hence, $\frac{d^{2} y}{dx^{2}} = 6\sec^{4} x - 4\sec^{2} x$	Applies $\tan^2 x = \sec^2 x - 1$ leading to the correct result.	A1	AG	(4)
(b)	$y_{\frac{\pi}{4}} = \left(\sqrt{2}\right)^2 = \underline{2}, \ \left(\frac{dy}{dx}\right)_{\frac{\pi}{4}} = 2\left(\sqrt{2}\right)^2 (1) = \underline{4}$	Both $y_{\frac{\pi}{4}} = \underline{2}$ and $\left(\frac{dy}{dx}\right)_{\frac{\pi}{4}} = \underline{4}$	B1		()
	$\left(\frac{d^2 y}{dx^2}\right)_{\frac{\pi}{4}} = 6\left(\sqrt{2}\right)^4 - 4\left(\sqrt{2}\right)^2 = 24 - 8 = 16$	Attempts to substitute $x = \frac{\pi}{4}$ into both terms in the expression for $\frac{d^2y}{dx^2}.$	M1		
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 24\sec^3 x(\sec x \tan x) - 8\sec x(\sec x \tan x)$	Two terms differentiated with either $24\sec^4 x \tan x$ or $-8\sec^2 x \tan x$ being correct	M1		
	$= 24\sec^4 x \tan x - 8\sec^2 x \tan x$				
	$\left(\frac{d^2y}{dx^2}\right)_{\frac{\pi}{4}} = 24\left(\sqrt{2}\right)^4(1) - 8\left(\sqrt{2}\right)^2(1) = 96 - 16 = 80$	$\left(\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}\right)_{\frac{\pi}{4}} = \underline{80}$	B1		
	$\sec x \approx 2 + 4\left(x - \frac{\pi}{4}\right) + \frac{16}{2}\left(x - \frac{\pi}{4}\right)^2 + \frac{80}{6}\left(x - \frac{\pi}{4}\right)^3 + \dots$	Applies a Taylor expansion with at least 3 out of 4 terms ft correctly. Correct Taylor series expansion.	M1 A1		(6)
	$\left\{\sec x \approx 2 + 4\left(x - \frac{\pi}{4}\right) + 8\left(x - \frac{\pi}{4}\right)^2 + \frac{40}{3}\left(x - \frac{\pi}{4}\right)^3 + \ldots\right\}$			[10]

Question Number	Scheme		Marks
Q6	$w = \frac{z}{z + i}, z = -i$		
(a)	$w(z+i) = z \implies wz + iw = z \implies iw = z - wz$ $\implies iw = z(1-w) \implies z = \frac{iw}{(1-w)}$	Complete method of rearranging to make z the subject.	M1
	$\Rightarrow 1w = z(1-w) \Rightarrow z = \frac{1}{(1-w)}$	$z = \frac{\mathrm{i}w}{(1-w)}$	A1 aef
	$ z = 3 \implies \left \frac{\mathrm{i} w}{1 - w} \right = 3$	Putting $ z $ in terms of their $ z = 3$	dM1
	$\begin{cases} i w = 3 1 - w \implies w = 3 w - 1 \implies w ^2 = 9 w - 1 ^2 \\ \implies u + iv ^2 = 9 u + iv - 1 ^2 \end{cases}$		
	$\Rightarrow u^2 + v^2 = 9\left[(u-1)^2 + v^2\right]$	Applies $w = u + iv$, and uses Pythagoras correctly to get an equation in terms of u and v without any i's.	ddM1
	$\begin{cases} \Rightarrow u^2 + v^2 = 9u^2 - 18u + 9 + 9v^2 \\ \Rightarrow 0 = 8u^2 - 18u + 8v^2 + 9 \end{cases}$	Correct equation.	A1
	$\Rightarrow 0 = u^2 - \frac{9}{4}u + v^2 + \frac{9}{8}$	Simplifies down to $u^2 + v^2 \pm \alpha u \pm \beta v \pm \delta = 0.$	dddM1
	$\Rightarrow \left(u - \frac{9}{8}\right)^2 - \frac{81}{64} + v^2 + \frac{9}{8} = 0$		
	$\Rightarrow \left(u - \frac{9}{8}\right)^2 + v^2 = \frac{9}{64}$		
	{Circle} centre $\left(\frac{9}{8}, 0\right)$, radius $\frac{3}{8}$	One of centre or radius correct. Both centre and radius correct.	A1 A1 (8)
(b)	v •	Circle indicated on the Argand diagram in the correct position in follow through quadrants. Ignore plotted coordinates.	B1ft
	O u	Region outside a circle indicated only.	B1
			(2)
			[10]

Question Number	Scheme	ľ	Marks	S
Q7	$y = x^2 - a^2 , \ a > 1$			
(a)	Correct Shape. Ignore cusps. Correct coordinates.	B1 B1		(2)
(b)	$ x^2 - a^2 = a^2 - x$, $a > 1$			(-)
	$ x^2 - a^2 = a^2 - x$, $a > 1$ $\{ x > a\}, x^2 - a^2 = a^2 - x$ $x^2 - a^2 = a^2 - x$	M1	aef	
	$\Rightarrow x^2 + x - 2a^2 = 0$			
	$\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4(1)(-2a^2)}}{2}$ Applies the quadratic formula or completes the square in order to find the roots.	M1		
	$\Rightarrow x = \frac{-1 \pm \sqrt{1 + 8a^2}}{2}$ Both correct "simplified down" solutions.	A1		
	$\{ x < a\}, \qquad -x^2 + a^2 = a^2 - x$ $-x^2 + a^2 = a^2 - x \text{ or } $ $x^2 - a^2 = x - a^2$	M1	aef	
	$\left\{ \Rightarrow x^2 - x = 0 \Rightarrow x(x - 1) = 0 \right\}$			
	$\Rightarrow x = 0, 1$ $x = 0$ $x = 1$	B1 A1		(6)
(c)	$ x^2 - a^2 > a^2 - x$, $a > 1$			
	$\Rightarrow x = 0, 1$ $ x^2 - a^2 > a^2 - x, a > 1$ $x < \frac{-1 - \sqrt{1 + 8a^2}}{2} \text{{or}} x > \frac{-1 + \sqrt{1 + 8a^2}}{2}$ $x \text{ is less than their least value}$ $x \text{ is greater than their maximum}$ $x \text{ value}$ $x \text{ for } \{ x < a\}, \text{ Lowest } < x < \text{Highest}$	B1 f		
	{or} $0 < x < 1$ For $\{ x < a\}$, Lowest $< x <$ Highest $0 < x < 1$	M1 A1		(4)
			I	[12]

Question Number	Scheme		Marks
Q8	$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 2e^{-t}, x = 0, \frac{dx}{dt} = 2 \text{ at } t = 0.$		
(a)	AE, $m^2 + 5m + 6 = 0 \implies (m+3)(m+2) = 0$ $\implies m = -3, -2.$		
	So, $x_{CF} = Ae^{-3t} + Be^{-2t}$	$Ae^{m_1t} + Be^{m_2t}$, where $m_1 \neq m_2$. $Ae^{-3t} + Be^{-2t}$	M1 A1
	$\left\{ x = k e^{-t} \implies \frac{dx}{dt} = -k e^{-t} \implies \frac{d^2x}{dt^2} = k e^{-t} \right\}$		
	$\Rightarrow k e^{-t} + 5(-k e^{-t}) + 6k e^{-t} = 2e^{-t} \Rightarrow 2k e^{-t} = 2e^{-t}$ \Rightarrow k = 1	Substitutes $k e^{-t}$ into the differential equation given in the question.	M1
		Finds $k = 1$.	A1
	$\left\{ \text{So, } x_{\text{PI}} = e^{-t} \right\}$		
	So, $x = Ae^{-3t} + Be^{-2t} + e^{-t}$	their $x_{\rm CF}$ + their $x_{\rm PI}$	M1*
	$\frac{dx}{dt} = -3Ae^{-3t} - 2Be^{-2t} - e^{-t}$	Finds $\frac{dx}{dt}$ by differentiating their x_{CF} and their x_{PI}	dM1*
	$t = 0, \ x = 0 \implies 0 = A + B + 1$	Applies $t = 0$, $x = 0$ to x	
	$t = 0$, $\frac{\mathrm{d}x}{\mathrm{d}t} = 2 \implies 2 = -3A - 2B - 1$	and $t = 0$, $\frac{dx}{dt} = 2$ to $\frac{dx}{dt}$ to form simultaneous equations.	ddM1*
	$\begin{cases} 2A + 2B = -2 \\ -3A - 2B = 3 \end{cases}$ $\Rightarrow A = -1, B = 0$ So, $x = -e^{-3t} + e^{-t}$		
	$\Rightarrow A = -1, B = 0$		
	So, $x = -e^{-3t} + e^{-t}$	$x = -e^{-3t} + e^{-t}$	A1 cao (8)

Question Number	Scheme		
(b)	$x = -e^{-3t} + e^{-t}$ $\frac{dx}{dt} = 3e^{-3t} - e^{-t} = 0$ $3 - e^{2t} = 0$ $\Rightarrow t = \frac{1}{2}\ln 3$	Differentiates their x to give $\frac{dx}{dt}$ and puts $\frac{dx}{dt}$ equal to 0. A credible attempt to solve. $t = \frac{1}{2} \ln 3 \text{ or } t = \ln \sqrt{3} \text{ or awrt } 0.55$	M1 dM1* A1
	So, $x = -e^{-\frac{3}{2}\ln 3} + e^{-\frac{1}{2}\ln 3} = -e^{\ln 3^{-\frac{3}{2}}} + e^{\ln 3^{-\frac{1}{2}}}$ $x = -3^{-\frac{3}{2}} + 3^{-\frac{1}{2}}$ $= -\frac{1}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}$	Substitutes their t back into x and an attempt to eliminate out the ln's. uses exact values to give $\frac{2\sqrt{3}}{9}$	ddM1 A1 AG
	$\frac{d^2x}{dt^2} = -9e^{-3t} + e^{-t}$ At $t = \frac{1}{2}\ln 3$, $\frac{d^2x}{dt^2} = -9e^{-\frac{3}{2}\ln 3} + e^{-\frac{1}{2}\ln 3}$	Finds $\frac{d^2x}{dt^2}$ and substitutes their t into $\frac{d^2x}{dt^2}$	dM1*
	$= -9(3)^{-\frac{3}{2}} + 3^{-\frac{1}{2}} = -\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = -\frac{3}{\sqrt{3}} + \frac{1}{\sqrt{3}}$ As $\frac{d^2x}{dt^2} = -\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = \left\{-\frac{2}{\sqrt{3}}\right\} < 0$ then x is maximum.	$-\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} < 0 \text{ and maximum}$ conclusion.	A1 (7) [15]