IIC2523 Sistemas Distribuidos

Hernán F. Valdivieso López (2025 - 2 / Clase 19)

Cifrado de mensajes ¿Beneficios de aplicar criptografía?

Temas de la clase

- 1. Criptografía Simétrica
- 2. Intercambio de Claves: *Diffie-Hellman*
- 3. Criptografía Asimétrica
- 4. Funciones *Hash* y Firmas Digitales
- 5. Protocolos Híbridos

Cifrado - Introducción

- Proporciona un mecanismo para ocultar los mensajes para garantizar su confidencialidad e integridad.
- Es la base para la autenticación de mensajes.

Conceptos Básicos

- **Texto plano**: El mensaje original, inteligible.
- **Texto cifrado**: El mensaje transformado, ininteligible sin la clave correcta.
- Llave: Un parámetro secreto utilizado en el algoritmo de encriptar/desencriptar.
- **Encriptar**: Proceso de transformar texto plano en texto cifrado.
- Desencriptar: Proceso inverso, transformar texto cifrado en texto plano.

- Se utiliza una misma clave secreta tanto para encriptar como para desencriptar un mensaje.
- También se le llama criptografía de clave secreta.

- Se utiliza una misma clave secreta tanto para encriptar como para desencriptar un mensaje.
- También se le llama criptografía de clave secreta.

Ventajas

Es extremadamente rápida y eficiente para encriptar grandes volúmenes de datos.

Cifrado simétrico - Pipeline

Nodo A

 K_{ak}

Ambas partes se ponen de acuerdo de usar la misma clave

Nodo K

Cifrado simétrico - Pipeline

Cifrado simétrico - Pipeline

Cifrado simétrico - Algoritmos

- AES (Advanced Encryption Standard): El estándar de cifrado simétrico actual más ampliamente adoptado, que puede usar claves de 128, 192 o 256 bits.
- DES (Data Encryption Standard): Un estándar antiguo de EE. UU. que ahora se considera inseguro debido a su pequeña longitud de clave (56 bits), vulnerable a ataques de fuerza bruta modernos.
 - Existe Triple-DES (*3DES*) que aplica DES tres veces para mayor seguridad... pero que también fue retirado.
- IDEA (International Data Encryption Algorithm): Un sucesor de DES, que usa una clave de 128 bits.

Desafío Principal

La distribución segura de la clave secreta inicial es un problema fundamental. ¿Cómo se aseguran las dos partes (Nodo A y B) de que un tercero (Nodo 🠸) no intercepte la clave cuando la intercambian por primera vez.

Desafío Principal

- La distribución segura de la clave secreta inicial es un problema fundamental. ¿Cómo se aseguran las dos partes (Nodo A y K) de que un tercero (Nodo 🠸) no intercepte la clave cuando la intercambian por primera vez.
- Necesitamos un mecanismo para compartir la llave de forma segura.

Intercambio de llaves

Intercambio de llaves

Diffie-Hellman

- Protocolo criptográfico creado por Whitfield Diffie y Martin Hellman en 1976
- Permite que dos partes establezcan una clave secreta compartida a través de un canal de comunicación inseguro sin que nunca se transmita explícitamente la clave secreta.
- Solo se transmiten datos públicos, pero construidos de tal forma, que combinándolo con un número secreto que cada parte conoce, llegan al mismo valor.
- Un atacante que observe el intercambio sólo verá los datos públicos compartidos, pero no podrá derivar la clave secreta sin conocer uno de los números secretos originales.

OP_compleja_2 ($P_{públicos}$, a, K) = S

Nodo A

 $OP_{compleja_2}(P_{públicos'}, k, A) = S$

Nodo K

Desencriptar con S

Nodo K

Nodo A

Nodo

Conozco $P_{público'}$ A y B

... no sé qué llave están usando 🤬

Intercambio de llaves - Ejemplo más "intuitivo"

Intercambio de llaves - Ejemplo más "intuitivo"

Intercambio de llaves - Ejemplo más "intuitivo"

Intercambio de llaves

Ataque *Man-in-the-Middle* en Diffie-Hellman

- Diffie-Hellman no verifica la identidad de las partes.
- Cualquiera puede interceptar y hacerse pasar por otro.

Intercambio de llaves

Ataque *Man-in-the-Middle* en Diffie-Hellman

- Diffie-Hellman no verifica la identidad de las partes.
- Cualquiera puede interceptar y hacerse pasar por otro.
- Necesitamos un mecanismo para verificar la identidad.

- Se utiliza un par de claves matemáticamente relacionadas: una llave pública (PK) y una llave privada (SK).
- La clave pública se puede compartir libremente, mientras que la clave privada debe conocerla únicamente su creador.
- También se le llama criptografía de clave pública.

- Se utiliza un par de claves matemáticamente relacionadas: una llave pública (PK) y una llave privada (SK).
- La clave pública se puede compartir libremente, mientras que la clave privada debe conocerla únicamente su creador.
- 🔶 🛮 También se le llama criptografía de clave pública.

Ventajas

- Otra forma de resolver el problema de la distribución de claves inicial en la criptografía simétrica.
- Permite la autenticación y el no-repudio.
 - No-repudio: Quien "firma" un mensaje con su llave privada no puede negar ser el dueño porque solo él tiene esa llave.

Cifrado Asimétrico - Pipeline

Cifrado Asimétrico - Pipeline

Cifrado Asimétrico - Pipeline

Cifrado Asimétrico - Pipeline para Firmas Digitales

Cifrado Asimétrico - Pipeline para Firmas Digitales

Cifrado Asimétrico - Pipeline para Firmas Digitales

Cifrado Asimétrico - Algoritmos

- RSA (Rivest, Shamir y Adelman): El algoritmo de clave pública más conocido y ampliamente utilizado. Su seguridad se basa en la dificultad de factorizar números primos muy grandes.
- <u>ECC (Elliptic Curve Cryptography</u>): Ofrece un nivel de seguridad comparable al de RSA pero con claves más cortas y requisitos de procesamiento más bajos. Es ideal para dispositivos con recursos limitados, como móviles.
 - *Bitcoin* y *Ethereum* utilizan ECC, específicamente el algoritmo de firma digital de curva elíptica (ECDSA), para firmar transacciones.

Desafío Principal

- Es computacionalmente mucho más lenta que la criptografía simétrica (100 a 1000 veces más).
- Para la firma de documentos, mientras más grande es dicho documento, más lento y costoso es el proceso.

Cifrado Asimétrico

Desafío Principal

- Es computacionalmente mucho más lenta que la criptografía simétrica (100 a 1000 veces más).
- Para la firma de documentos, mientras más grande es dicho documento, más lento y costoso es el proceso.
- Necesitamos otro mecanismo para firmar documentos que sea más rápido.

- Una función hash toma un mensaje de cualquier longitud como entrada y produce una cadena de bits de longitud fija como salida.
- Garantiza la integridad de los datos (cualquier cambio en el mensaje original producirá un hash diferente).
- Son la base de las firmas digitales.

Propiedades Esenciales

- Unidireccional (One-way)
 - Es computacionalmente inviable revertir el *hash* para encontrar el mensaje original.
- Resistencia a colisiones débiles (Weak Collision Resistance):
 - Dado un mensaje (m) y su hash (h), es computacionalmente inviable encontrar otro mensaje diferente (m') que produzca el mismo hash (h).
- Resistencia a colisiones fuertes (Strong Collision Resistance):
 - Es computacionalmente inviable encontrar cualquier par de mensajes diferentes (m, m') que produzcan el mismo *hash*.

Funciones *Hash* y Firmas Digitales - *Pipeline*

Funciones *Hash* y Firmas Digitales - *Pipeline*

Resultados Clave

- Integridad del Mensaje: Si el mensaje fue alterado en tránsito, el hash calculado no coincidirá con el de la firma.
- No-Repudio: El emisor de la firma no puede negar haber firmado el documento, ya que solo él posee la clave privada utilizada para crear la firma.

Protocolos Híbridos

Protocolos Híbridos

- La criptografía simétrica es rápida pero la distribución de claves es un desafío.
- La criptografía asimétrica resuelve la distribución de claves pero es lenta.
- Los protocolos híbridos combinan las ventajas de ambas.

Protocolos Híbridos - *Pipeline* resumido

1. Establecimiento de Sesión

- Las partes utilizan la criptografía de clave pública para intercambiar, de forma segura, una clave de sesión secreta de uso único.
- Este proceso inicial es lento, pero solo se realiza una vez por sesión.
- La clave de sesión es efímera, es decir, se genera para una sesión específica y luego se descarta, lo que aumenta la seguridad.

2. Comunicación de Datos

Toda la comunicación siguiente (datos masivos) se cifra y descifra utilizando esta clave simétrica.

Transport Layer Security (TLS) es el protocolo estándar para asegurar comunicaciones en redes informáticas, garantizando confidencialidad, integridad y autenticación.

¿Por qué enfocarnos en TLS 1.3?

- Es la versión más reciente y segura del protocolo (publicada en 2018).
- Mejora significativa en rendimiento y privacidad respecto a versiones anteriores.
- Corrige vulnerabilidades y elimina características inseguras presentes en TLS 1.2 y anteriores.
- Amplio soporte en navegadores y sistemas modernos.

Saludo del Cliente

Te mando 📻 🐠 Una lista de Encriptaciones que acepto

Servidor

Respuesta del Servidor

Te mando Usaremos la encriptación X También incluyo certificado

Y con eso estoy listo 🗸

Procesos internos

Construir secreto

Construir secreto

Cliente confirma todo ya utilizando llave secreta

Cliente

(Respuesta encriptada) Certificado verificado Y con eso también estoy listo 🗸

Servidor

Construir secreto

Construir secreto

Comunicación encriptada

Extra - Enlaces de interés

- CryptoHack Plataforma de desafíos prácticos en criptografía.
- \bullet Hash Table VisuAlgo Ver visualmente algunas implementaciones de hash.
- <u>CryptoZombies</u> Curso gamificado para aprender criptografía y contratos inteligentes (en Ethereum).
- ♦ TLS 1.3 Handshake: Taking a Closer Look

Poniendo a prueba lo que hemos aprendido 👀

Considera las siguientes afirmaciones sobre mecanismos criptográficos:

- El no-repudio asegura que el receptor no pueda negar haber recibido el mensaje. Ι.
- El protocolo *Diffie-Hellman* presenta vulnerabilidad frente a ataques de intermediario porque 11. no autentica la identidad de las partes.
- El cifrado simétrico resuelve el problema de distribución inicial de claves utilizando un par de |||llaves pública y privada.

¿Cuáles de las afirmaciones anteriores son correctas?

- Solo I
- Solo II
- Solo III
- l y II
- II y III

Poniendo a prueba lo que hemos aprendido 👀

Considera las siguientes afirmaciones sobre mecanismos criptográficos:

- El no-repudio asegura que el receptor no pueda negar haber recibido el mensaje. Ι.
- El protocolo *Diffie-Hellman* presenta vulnerabilidad frente a ataques de intermediario porque 11. no autentica la identidad de las partes.
- El cifrado simétrico resuelve el problema de distribución inicial de claves utilizando un par de |||llaves pública y privada.

¿Cuáles de las afirmaciones anteriores son correctas?

- Solo I
- Solo II
- Solo III
- l y II
- II y III

Próximos eventos

Próximas clases

- Lunes: Resumen de clase como estudio de la 12
- Miércoles: No hay clases, solo trabajar en el control
- Post I2: Autenticación y autorización como mecanismo de seguridad.

Evaluación

- Hoy se publica control 5, no evalúa esta clase.
- 🔶 Próxima semana es la l2 🎃

IIC2523 Sistemas Distribuidos

Hernán F. Valdivieso López (2025 - 2 / Clase 19)

Créditos (animes utilizados)

Sword Art Online

