Analyse 1 uitwerkingen

College 1

Sophie van den Eerenbeemt Dennis van den Berg

16 november 2016

1. Zijn de volgende deelverzamelingen van \mathbb{R} begrensd naar boven / beneden? Bepaal supremum, in mum, maximum en minimum (voorzover die bestaan).

$$A = \{x \in \mathbb{R} \mid \exists_{n \in \mathbb{N}} \colon 2n - 1 < x < 2n\}$$

$$B = \left\{ -\frac{1}{n} \mid n \in \mathbb{N}_+ \right\}$$

$$C = \{x \in \mathbb{R} \mid 4x - x^2 > 3\}$$

$$D = \{x \in \mathbb{R} \mid 4x - x^2 \ge 3\}$$

$$E = [0, 1] \setminus \mathbb{Q}$$

2. Zij $A \subset \mathbb{R}$ neit leeg en begrensd, $\varepsilon > 0$. Laat zien: Er is een $x \in A$ zodanig dat $x > \sup A - \varepsilon$ en er is een $y \in A$ zodanig dat $y < \inf A + \varepsilon$.

(Hint: Geef een bewijs uit het ongerijmde!)

To be proven. $\exists x \in A : x > \sup A - \varepsilon$

Bewijs. Stel dat de bewering niet waar is. Dan:

$$\neg(\exists x \in A : x > \sup A - \varepsilon)$$
$$\forall x \in A : x \le \sup A - \varepsilon$$

Maar dan is $\sup A - \varepsilon$ een kleinere bovengrens van A dan $\sup A$, want $\varepsilon > 0$, dus is $\sup A$ niet het supremum van A. ξ

Dan moet dus gelden dat: $\exists x \in A : x > \sup A - \varepsilon$

To be proven. $\exists y \in A : y < \inf A + \varepsilon$

Bewijs. Stel dat de bewering niet waar is. Dan:

$$\neg(\exists x \in A : y < \inf A + \varepsilon)$$
$$\forall x \in A : y \ge \inf A + \varepsilon$$

Maar dan is inf $A + \varepsilon$ een grotere ondergrens van A dan inf A, want $\varepsilon > 0$, dus is inf A niet het infimum van A.

Dan moet dus gelden dat: $\exists y \in A : y < \inf A + \varepsilon$

☐ Q. E. D.

☐ Q. E. D.

Zij $A, B \subset \mathbb{R}$ niet leeg en begrensd. Definieer:

$$-A = \{-a \mid a \in A\}$$

$$A + B = \{a + b \mid a \in A, b \in B\}$$

$$A - B = \{a - b \mid a \in A, b \in B\}$$

Laat zien

$$\sup(-A) = -\inf A$$

$$\sup(A+B) = \sup A + \sup B$$

$$\inf(A-B) = \inf A - \sup B$$

$$(\forall a \in A \forall b \in B: a < b) \rightarrow \sup A \leq \inf B$$