09/438,600

Filed:

November 12, 1999

Please enter the amendments below and consider the following remarks.

## In the claims:

Please cancel Claims 1-15 and 21 without prejudice or disclaimer to Applicants' right to pursue the subject matter of this claim in one or more continuation, continuation-in-part, or divisional applications.

Please add the following claims:

22.

A microfluidic device comprising:

- i) a first microchannel;
- ii) at least a first entrance port and at least a first exit port for the transportation of at least one test sample;
- iii) a fluid propelling component that controls the flow rate of said test sample;
- iv) a detector that detects a binding pair in said test sample; and
- v) a recirculating arm that recirculates said test sample back into said first microchannel; wherein said first microchannel comprises a plurality of spacially distinct regions upon which specific binding pair members are immobilized.

23.

A microfluidic device according to claim 22 wherein said first microchannel is serpentine.

3

A microfluidic device according to claim 22 further comprising at least one valve in said

1

09/438,600

Filed:

November 12, 1999

exit port.

4

A microfluidic device according to claim 22 wherein said first microchannel branches into multiple second microfluidic channels each of which comprises a plurality of spacially distinct regions upon which specific binding pair members are immobilized.

**/** 

A microfluidic device according to claim 22 and 25 wherein said device is fabricated from a material selected from the group consisting of silicon, silicon dioxide, glass, plastic and ceramic.

27.

A microfluidic device according to claim 22 wherein said spacially distinct regions comprise porous polymers.

1 28.

A microfluidic device according to claim 22 wherein each of said spacially distinct regions has a different immobilized specific binding pair member.

8

29. A microfluidic device according to claim 27 wherein said porous polymer is a hydrogel pad.

9

A microfluidic device according to claim 29 wherein said hydrogel pad is a patterned gel

3

09/438,600

Filed:

November 12, 1999

pad further comprising spatially separated portions within said hydrogel pad.

A microfluidic device according to claim 22 wherein said spacially distinct regions in said microchannel comprise beads with said immoblized binding pair members.

A microfluidic device according to claim 22 wherein said spacially distinct regions comprise microstructures fabricated into said microchannel.

A microfluidic device according to claim 32 wherein said microstructures comprise a series of columns molded into said first microchannel.

A microfluidic device according to claim 32 wherein said microstructures comprise domes molded into said first microchannel.

A microfluidic device according to claim 22 wherein said specific binding pair members are nucleic acids.

36. A microfluidic device according to claim 35 wherein said nucleic acid is a DNA.

7. A microfluidic device according to claim 35 wherein said nucleic acid is a RNA.

4

Chy Phy



09/438,600

Filed:

November 12, 1999

17

38. A microfluidic device according to claim 22 wherein said specific binding pair members are proteins.

الا

A microfluidic device according to claim 38 wherein said proteins are antigens.

19

,7

40.

A microfluidic device according to claim 38 wherein said proteins are antibodies.

LP

A microfluidic device according to claim 22 wherein said fluid propelling component comprises a pressurized gas, a vacuum, an electrical field, a magnetic field or a centrifugal force.

21

A microfluidic device according to claim 22 wherein said detector is an optical, electrical or electrochemical detector.

1

で

A method of detecting a specific binding member in a test sample, said method comprising:

- i) passing said test sample through the microfluidic device described in claims 22, 23 or 4 to form a binding pair;
- ii) detecting said binding pair.

5

5

09/438,600

Filed:

November 12, 1999

23

44.

A method according to claim 40 wherein said test sample is recirculated prior to said

detecting.

), UN 14 40

A method according to claim 22 and 23 wherein the flow rate of said test sample is

adjusted using said fluid propelling component to allow maximum contact between said

binding pairs.

## **REMARKS**

Applicants gratefully acknowledge the withdrawal of the 35 U.S.C.§ 112 rejections.

Claims 1-15 and 21 have been canceled. Claims 22-45 have been added.

Support for claim 22, 43 and 45 can be found in the specification on page 5, lines 10-20.

Support for claims 23, 27, 35 and 36 can be found in the specification on page 8, lines 1-4.

Support for claims 24 and 44 can be found in the specification on page 7, lines 8-9.

Support for claims 25, 28 and 31 can be found in the specification on page 8, lines 20-22.

Support for claim 26 can be found in the specification on page 7, lines 11-14.

Support for claim 29 can be found in the specification on page 8, lines 4-5.

Support for claim 30 can be found in the specification on page 8, lines 9-10.

Support for claims 32, 33 and 34 can be found in the specification on page 8, lines 12-15.

Support for claims 35, 36, 37, 38, 39and 40 can be found in the specification on page 2, lines 10-

13.