1

ASSIGNMENT-1

R.YAMINI

1 QUESTION NO-2.27

Construct $\triangle ABC$ such that $AC = 3, \angle A = 70^{\circ} and \angle B =$ 50°.

2 Solution

To find angle C:

$$\angle A + \angle B + \angle C = 180^{\circ} \tag{2.0.1}$$

$$\angle C = 180^{\circ} - 120^{\circ}$$
 (2.0.2)

$$=60^{\circ}$$
 (2.0.3)

Now we shall find the sides by using the formula

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

To find side a

$$a = b \frac{\sin A}{\sin B}$$
 (2.0.4)
= 3 \frac{\sin 70^\circ}{\sin 50^\circ}

$$= 3 \frac{\sin 70^{\circ}}{\sin 50^{\circ}}$$
 (2.0.5)

$$= 3.68$$
 (2.0.6)

To find side *c*

$$c = b \frac{\sin C}{\sin B}$$
 (2.0.7)
= 3 $\frac{\sin 60^{\circ}}{\sin 50^{\circ}}$ (2.0.8)

$$= 3 \frac{\sin 60^{\circ}}{\sin 50^{\circ}}$$
 (2.0.8)

$$= 3.3915$$
 (2.0.9)

Now to find the coordinates of B(p,q)

To find p

$$p = c \cos 70^{\circ} \tag{2.0.10}$$

$$= 3.3915 \cos 70^{\circ}$$
 (2.0.11)

$$= 1.159$$
 (2.0.12)

To find q

$$q = c \sin 70^{\circ} \tag{2.0.13}$$

$$= 3.3915 \sin 70^{\circ}$$
 (2.0.14)

$$= 3.187 \tag{2.0.15}$$

The vertices of $\triangle ABC$ are

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1.159 \\ 3.187 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
 (2.0.16)

Lines AB,BC,CA are then generated and plotted using these coordinates to construct $\triangle ABC$ Plot of the $\triangle ABC$

Fig. 2.1: Plot of $\triangle ABC$