

第五章 图的表示与应用

课程QQ号: 689423416 金耀 数字媒体技术系 fool1025@163.com 13857104418

知识回顾

- ❖无向图与有向图
- ❖握手定理
- ❖图的同构
- ❖通路与回路 (3种)
- ◆连通性 (3种)
- ❖割集 (2类)

第五章 图的基本概念和矩阵表示

- 1.6 矩阵表示
- 1.7 路径
- 1.8 图的着色
- 1.9 匹配

§6矩阵表示

- 一、邻接矩阵
- 二、可达矩阵
- 三、关联矩阵
- 四、连通性与矩阵关系

◇邻接矩阵

【定义】 D=<V,E>为有向图,顶点集 $V=\{v_1,v_2,\ldots,v_n\}$,V中的结点按下标由小到大编序,构造n阶矩阵 $A=(a_{ii})_{n\times n}$,其中:

$$a_{ij} = \begin{cases} \mathbf{m}, \text{ 若存在m} \$v_i \mathbf{v}_j \mathbf{1} \mathbf{E} \mathbf{H} \mathbf{E} \mathbf{h} \mathbf{f} \mathbf{h} \mathbf{v} \\ \mathbf{0}, \text{ 若不存在} v_i \mathbf{v}_j \mathbf{1} \mathbf{E} \mathbf{H} \mathbf{E} \mathbf{h} \mathbf{f} \mathbf{h} \mathbf{v} \end{cases}$$
 $(i, j=1, 2, \dots, n)$

则称A为有向图D的邻接矩阵, 记为A(D).

◇邻接矩阵

【定义】 G=<V,E>为无向图, 顶点集 $V=\{v_1,v_2,.....,v_n\}$, V中的结点按下标由小到大编序, 构造n阶矩阵 $A=(a_{ij})_{n\times n}$, 其中:

$$a_{ij} = \begin{cases} 1, & v_i = v_j \text{ 直接相连} \\ 0, v_i = v_j \text{ 不直相连的有向这} \end{cases} (i, j=1, 2, \dots, n)$$

则称A为有向图G的邻接矩阵, 记为A(G).

邻接矩阵与结点编序有关:

同一个图形结点编序不同得到的邻接矩阵不同, 但是表示的都是同一张图. 也就是说这些结点不同编序得到的图都是同构的, 同时它们的邻接矩阵也是相似的.

❖邻接矩阵的性质

- (1) 零图的邻接矩阵的元素全为零,并称它为零矩阵.
- (2) 图的每一结点都有自回路而再无其他边时,则该图的邻接矩阵是单位矩阵.
- (3) 简单图的邻接矩阵主对角元素全为零.
- (4) 若设简单图D的邻接矩阵 $A=(a_{ij})_{n\times n}$,则它的补图 \overline{G} 的邻接矩阵

$$\overline{A} = (\overline{a}_{ij})_{n \times n} \gg :$$

$$\overline{a}_{ij} = \begin{cases} 1 - a_{ij}, & i \neq j \\ 0, & i = j \end{cases} \qquad i, j = 1, 2, \dots, n$$

有向图的邻接矩阵

定义 设有向图D=<V,E>, $V=\{v_1,v_2,...,v_n\}$, $E=\{e_1,e_2,...,e_m\}$, 令 $a_{ij}^{(1)}$ 为项点 v_i 邻接到项点 v_j 边的条数,称 $(a_{ij}^{(1)})_{m\times n}$ 为D的邻接矩阵,记作A(D),简记为A.

性质

(1)
$$\sum_{j=1}^{n} a_{ij}^{(1)} = d^{+}(v_{i}), \quad i = 1, 2, \dots, n$$

(2)
$$\sum_{i=1}^{n} a_{ij}^{(1)} = d^{-}(v_j), \quad j = 1, 2, \dots, n$$

(3)
$$\sum_{i,j}^{n} a_{ij}^{(1)} = m --- D$$
中长度为 1 的通路数

(4)
$$\sum_{i=1}^{\infty} a_{ii}^{(1)} --- -D$$
中长度为 1 的回路数

文理: 读无向图
$$G=$$
, $V=\{v_1,v_2,...,v_n\}$ 的邻接矩阵 $A=(a_{ij})_{n\times n}$,则
$$deg(v_i)=\sum_{k=1}^n a_{ik}+a_{ii}=\sum_{k=1}^n a_{ki}+a_{ii}$$

$$\sum_{i=1}^n deg(v_i)=\sum_{i=1}^n (\sum_{k=1}^n a_{ik}+a_{ii})=\sum_{i=1}^n \sum_{k=1}^n a_{ik}+\sum_{i=1}^n a_{ii}$$

设有向图
$$G=$$
, $V=\{v_1,v_2,...,v_n\}$ 的邻接矩阵 $A=(a_{ij})_{n\times n}$,则
$$deg^+(v_i)=\sum_{k=1}^n a_{ik}\;,\qquad deg^-(v_i)=\sum_{k=1}^n a_{ki}$$

有向图的邻接矩阵实例

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

例: 求下图G的邻接矩阵A。

解: 邻接矩阵A求解如下:

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

例: 画出多重图G. 其邻接矩阵A如下:

$$A = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 0 \end{bmatrix}$$

解:由于A是4阶方阵,因而G有4个项点,设其为 v_1 , v_2 , v_3 , v_4 ,在邻接矩阵 $A=(a_{ij})$ 中,若 $a_{ij}=n$,则从 v_i 到 v_j 画n条边。若 $a_{ii}=n$,则 v_i 有n个环。该多重图如下图所示:

D中的通路及回路数

定理 设A为n阶有向图D的邻接矩阵,则 $A^l(l \ge 1)$ 中元素

- $a_{ij}^{(l)}$ 为D中 v_i 到 v_j 长度为l的通路数,
- $a_{ii}^{(l)}$ 为 v_i 到自身长度为l的回路数,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{(l)}$$
 为 D 中长度为 l 的通路总数,
$$\sum_{i=1}^{n} a_{ii}^{(l)}$$
 为 D 中长度为 l 的回路总数.

D中的通路及回路数(续)

推论 设 $B_l = A + A^2 + ... + A^l (l \ge 1)$,则 B_l 中元素

$$\sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij}^{(l)} \quad 为 D 中长度小于或等于 l 的通路数,$$

 $\sum_{i=1}^{n} b_{ii}^{(l)}$ 为D中长度小于或等于l 的回路数.

例 问在有向图D中

- (1) 长度为1, 2, 3, 4的通路各有多少条? 其中回路分别为多少条?
- (2) 长度小于或等于4的通路为多少条? 其中有多少条回路?

例(续)

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \quad A^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix}$$
$$A^3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \\ 3 & 0 & 1 & 0 \end{bmatrix} \quad A^4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 \\ 4 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{bmatrix}$$

无向图的关联矩阵

定义 设无向图G=<V,E>, $V=\{v_1,v_2,...,v_n\}$, $E=\{e_1,e_2,...,e_m\}$,令 m_{ij} 为 v_i 与 e_j 的关联次数,称 $(m_{ij})_{n\times m}$ 为G的关联矩阵,记为M(G).

$$M(G) = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad e_2 \begin{pmatrix} e_1 & e_1 \\ e_2 & e_4 \end{pmatrix}$$

无向图的关联矩阵

定义 设无向图G=<V,E>, $V=\{v_1,v_2,...,v_n\}$, $E=\{e_1,e_2,...,e_m\}$, 令 m_{ij}

性质 (1) 每一列恰好有两个1或一个2

(2)
$$\sum_{j=1}^{m} m_{ij} = d(v_i) \quad (i = 1, 2, ..., n)$$

$$(3) \quad \sum_{i,j} m_{ij} = 2m$$

- (4) v_i 为孤立点当且仅当第i行全为0
- (5) 平行边的列相同

有向图的关联矩阵

定义 设无环有向图
$$D=$$
, $V=\{v_1,v_2,...,v_n\}$, $E=\{e_1,e_2,...,e_m\}$, 令

$$m_{ij} = \begin{cases} 1, & v_i 为 e_j$$
的始点 $0, & v_i 与 e_j$ 不关联 $-1, & v_i 为 e_j$ 的终点

则称 $(m_{ij})_{n \times m}$ 为D的关联矩阵,记为M(D).

有向图的关联矩阵(续)

$$M(D) = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 1 & 0 \end{bmatrix}$$

性质

- (1) 每一列恰好有一个1和一个-1
- (2) 第i行1 的个数等于 $d^+(v_i)$, -1 的个数等于 $d^-(v_i)$
- (3) 1的总个数等于-1的总个数, 且都等于m
- (4) 平行边对应的列相同

有向图的可达矩阵

定义 设D=<V,E>为有向图, $V=\{v_1,v_2,...,v_n\}$,令

$$p_{ij} = egin{cases} \mathbf{1}, & v_i$$
可达 v_j $\mathbf{0}, &$ 否则

称 $(p_{ij})_{n \times n}$ 为D的可达矩阵, 记作P(D), 简记为P.

性质:

P(D)主对角线上的元素全为1.

D强连通当且仅当P(D)的元素全为1.

二. 可达矩阵

从图G的邻接矩阵A可以得到可达矩阵P,即令 $B_n=A+A^2+A^3+\ldots+A^n$,再把 B_n 中非零元素改为1,零元素不变,这种变换后的矩阵就是可达矩阵P。 $设 G=\langle V,E\rangle$ 为线图,A、P分别是G的邻接矩阵和可达性矩阵,则有:

$$P = A^{(1)} \vee A^{(2)} \vee A^{(3)} \vee \dots \vee A^{(n)} = \bigvee_{i=1}^{n} A^{(i)}$$

这里, $A^{(i)}$ 表示i个A进行布尔乘法。

二. 可达矩阵

例: 求下图的邻接矩阵和可达性矩阵。

解: 邻接矩阵
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$
, 可达性矩阵为 $A^2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$, $A^3 = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$, $A^4 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$, $A^5 = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$, $P = A \ V A^2 \ V A^3 \ V A^4 \ V A^5 = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$.

三. 可达矩阵

例:求下面多重图的邻接矩阵A和关联矩阵M。

解:
$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$
 ; $M = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$

三. 可达矩阵

例: 求下图G的邻接矩阵A和关联矩阵 M_{\odot}

解:这两个矩阵与顶点和边的排列次序有关。

一种排列次序得到下面的矩阵:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}; \qquad M = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

四. 连通性与矩阵关系

❖连通性与矩阵关系:

- \triangleright 无向线图G是连通图当且仅当它的可达性矩阵P的所有元素都均为1;
- \triangleright 有向线图D是强连通图当且仅当它的可达性矩阵P的所有元素都均为1;
- ightharpoonup 有向线图D是单向连通图当且仅当它的可达性矩阵P及其转置矩阵 P^T 经布尔运算加后所得矩阵 $P'=P \lor P^T$ 中除对主角元外的其余元素均为1;
- \triangleright 有向线图D是弱连通图当且仅当它的邻接矩阵A及其转置矩阵 A^T 经布尔加运算后所得矩阵 $B=A\bigvee A^T$ 作为邻接矩阵而求出的可达性矩阵P'中所有元素均为1.

第五章 图的基本概念和矩阵表示

- 1.6 矩阵表示
- 1.7 路径
- 1.8 图的着色
- 1.9 匹配

§ 7 路径

- 一、最短路径
- 二、Dijkstra算法
- 三、拓扑排序和关键路径

- ❖给边赋权值的图来建模
 - 航线系统建模

> 计算从波士顿到洛杉矶之间空中距离最短的通路?

♦基本概念

- > 带权图:给每条边赋值权值为一个数的图.
- ho 一条路径的长度:若 $p:v_1 o v_2 o \dots v_k$ 表示带权图 v_1 到 v_k 的一条路径, p的权值为该路径经过的所有边的权值总和, c o w(p).
- 量短路径: 若p为从u到v的一条路径,使w(p)最小,此时的p就是最短路径. 最短路径的权值为 $\delta(u,v)$ =min $\{w(p)\}$

最短路径可能不存在:

- (1) 存在负权回路(如下图),
- (2) 不存在从u到v的路径, 肯定也不存在最短路径.

◇求从源点到其余各点的最短路径的算法的基本思想:

> 依最短路径的长度递增的次序求得各条路径

其中, 从源点到顶点V₁的 最短路径是所有最短路径 中长度最短者.

❖求从源点到其余各点的最短路径的算法的基本思想:

- 》路径长度最短的**最短路径**的特点: 在这条路径上,必定只含一条弧、并且这条弧的权值最小。
- > 下一条路径长度次短的最短路径的特点:

它只可能有两种情况:或者是直接从源点到该点(只含一条弧);或者是从源点经过顶点V₁,再到达该顶点(由两条弧组成)。

◇求从源点到其余各点的最短路径的算法的基本思想:

再下一条路径长度次短的最短路径的特点:

它可能有三种情况:或者是直接从源点到该点(只含一条

弧); 或者是从源点经过顶点V₁, 再到达该顶点(由两条弧组

成);或者是从源点经过顶点V2,再到达该顶点。

> 其余最短路径的特点:

它或者是直接从源点到该点(只含一条弧); 或者是从源点经过已求得最短路径的顶点, 再到达该顶点。

二. Dijkstra算法(*)

❖Dijkstra第法

```
Dijkstra 算法 (1959)  
设G有n个项点;这的长度\ell_{ij}>0;  
结点\nu_i和\nu_j没有这相连 (不是邻接点),则令\ell_{ij}=∞,  
今\ell_{ii}=0。
```

二. Dijkstra算法(*)

❖Dijkstra第法

基本思想:

- (1) 需要指定起点 \mathbf{v}_1 (即从顶点 \mathbf{v}_1 开始计算);
- (2) 引进两个集合P和T.

P的作用是记录已求出最短路径的顶点(以及相应的最短路径长度), T则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离);

(3) 初始时,P中只有起点S; T中是除S之外的顶点,并且T中顶点的路径是"起点S到该顶点的路径".然后,从T中找出路径最短的顶点,并将其加入到P中;接着,更新T中的顶点和顶点对应的路径. 然后,再从T中找出路径最短的顶点,并将其加入到P中;接着,更新T中的顶点和顶点对应的路径.重复该操作,直到遍历完所有顶点.

二. Dijkstra算法(*)

❖Dijkstra算法

算法步骤:

■Step1:

```
初始化:将v_1 置为P标号,d(v_1)=0,P=\{v_1\},\forall v_i(i\neq 1) 置v_i 为T标号,即T=V-P,且 d(v_i)=W(v_1,v_i) 若v_i adj v_i d(v_i)=\infty else
```

二. Dijkstra算法

❖Dijkstra**洋法**

算法步骤:

■Step2:找最小

寻找具有最小值的T标号的结点。若为 V_1 ,则将 V_1 的T标号改为P标

$$\mathbf{S}$$
, $\mathbf{L}P=P\cup\{\mathbf{v_l}\}$, $\mathbf{T}=\mathbf{T}-\{\mathbf{v_l}\}$ 。

❖Dijkstra第法

算法步骤:

■Step3: 修改

修改与 \mathbf{v}_1 相邻的结点的T标号的值. $\forall \mathbf{v}_i \in T$:

$$\mathbf{d(v_i)} = \begin{cases} \mathbf{d(v_l)} + \mathbf{W(v_l, v_i)} & \triangleq \mathbf{d(v_l)} + \mathbf{W(v_l, v_i)} < \mathbf{d(v_i)} \\ \mathbf{d(v_i)} & \triangleq \mathbf{NI} \end{cases}$$

■Step4: 重复(2)和(3),直到 V_n 改为P标号为止。

例: 试求无向赋权图中以1到以6的最短路径

$$P=\{v_1\}$$
 $T=\{v_2, v_3, v_4, v_5, v_6\}$

 \mathbf{V}_3

$$P=\{v_1, v_2, v_3, v_5, v_4, v_6\}$$

 $T=\{\}$

二. Dijkstra算法

	$v_2 v_3 v_4 v_5$	\mathbf{v}_{6}	
step1	50 30 100 10,	/V [∞]	10(v ₅)第1短
step2	$50 \ 30 \ 20/V_5$	∞	20(v ₄)第2短
step3	$40 \ \ 30/V_1$	∞	30(v ₃)第3短
step4	$35/V_3$	50	35(v ₂)第4短
step5		45/V	7 ₂ 45(v ₆)第5短

	\mathbf{v}_2	\mathbf{v}_3	\mathbf{v}_4	\mathbf{v}_{5}	\mathbf{v}_{6}	\mathbf{v}_7		
step1	2	5	3	∞	00	00	2(v ₂)第1短	V
step2		4	3	00	9	00	3(v ₄)第2短	2 2 7
step3		4		8	9	00	4(v ₃)第3短	(V_1) $\xrightarrow{5}$ (V_3) $\xrightarrow{5}$ (V_6)
step4				7	9	∞	7(v ₅)第4短	3 1 7
step5					8	14	8(v ₆)第5短	$\sqrt{4}$ $\sqrt{5}$
step6						13	13(v ₇)第6短	
_								

最短路径(*)

帶权图 $G=\langle V,E,w\rangle$,其中 $w:E\to \mathbb{R}$. $\forall e\in E,w(e)$ 称作e的权. $e=(v_i,v_j)$, $记w(e)=w_{ij}$. 若 v_i,v_j 不相邻,记 $w_{ij}=\infty$.

通路L的权: L的所有边的权之和, 记作w(L). u和v之间的最短路径: u和v之间权最小的通路.

野
$$L_1 = v_0 v_1 v_3 v_5$$
, $w(L_1) = 10$, $L_2 = v_0 v_1 v_4 v_5$, $w(L_2) = 12$, $L_3 = v_0 v_2 v_4 v_5$, $w(L_3) = 11$.

标号法 (E.W. Dijkstra, 1959) (*)

设带权图 $G=\langle V,E,w\rangle$, 其中 $\forall e\in E,w(e)\geq 0$.

设
$$V=\{v_1,v_2,\ldots,v_n\}$$
,求 v_1 到其余各顶点的最短路径

- 1. 令 $l_1 \leftarrow 0, p_1 \leftarrow \lambda, l_j \leftarrow +\infty, p_j \leftarrow \lambda, j=2,3,...,n,$ $P=\{v_1\}, T=V-\{v_1\}, k\leftarrow 1, t\leftarrow 1. \qquad / \lambda$ 未示空
- 2. 对所有的 $v_j \in T$ 且 $(v_k, v_j) \in E$ 令 $l \leftarrow \min\{l_j, l_k + w_{kj}\}$,若 $l = l_k + w_{kj}$,则令 $l_j \leftarrow l, p_j \leftarrow v_k$.
- 3. $\#l_i = \min\{l_j | v_j \in T_t\}$. $\Leftrightarrow P \leftarrow P \cup \{v_i\}, T \leftarrow T - \{v_i\}, k \leftarrow i$.
- 4. 令 $t \leftarrow t+1$, 者t < n,则转2.

Dijkstra标号法(*)

例 求 v_0 到 v_5 的最短路径

t	v_0	v_1	v_2	v_3	v_4	v_5
1	$(0,\lambda)^*$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$
2		$(1,v_0)^*$	$(4,v_0)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$
3			$(3,v_1)^*$	$(8,v_1)$	$(6,v_1)$	$(+\infty,\lambda)$
4				$(8,v_1)$	$(4,v_2)^*$	$(+\infty,\lambda)$
5				$(7,v_4)^*$	_	$(10,v_4)$
6				-		$(9,v_3)^*$

 v_0 到 v_5 的最短路径: $v_0v_1v_2v_4v_3v_5$, $d(v_0,v_5)=9$

例:用Dijkstra算法求下图(a)(b)从a到z的最短路径及其长度.

- 解: (a)图中a到z的最短路径长为8,路径为 (a, d, i, l, z).
 - (b)图中a到z的最短路径长为4,路径为 (a, b, g, z).

E.W.Dijkstra (1930~2002)

- 1提出"goto有害论";
- 2 提出信号量和PV原语;
- 3 解决了"哲学家聚餐"问题;
- 4 Dijkstra最短路径算法和银行家算法的创造者;
- 5 第一个Algol 60编译器的设计者和实现者;
- 6 THE操作系统的设计者和开发者;

与D. E. Knuth并称为我们这个时代最伟大的计算机科学家的人。

与癌症抗争多年,于2002年8月6日在荷兰Nuenen自己的家中去世,享年72岁。

网格模型上的最短路径

近似最短路径

精确最短路径

流形学习(ISOMAP)

对一个工程或者系统,人们最关心的往往是两个方面的问题:

- (1) 工程能否顺利进行 对AOV网进行拓扑排序
- (2) 估算整个工程完成所必须的最短时间 对AOE网求关键路径

AOV (activity on vertex network)

思考: AOV网中能不能出现回路?

如何判断AOV网是否有回路?

◇拓扑排序

【定义】设G=(V,E)是一个有向图,V的顶点序列 $v_0,v_1,...,v_{n-1}$ 当且仅当满足以下条件:

若从顶点 v_i 到 v_j 有一条路径,在顶点序列中 v_i 必须存在于 v_j 之前,则称此顶点序列为一个拓扑序列。

> 对一个有向图构造拓扑序列的过程称为拓扑排序.

注: 拓扑排序的排序结果很可能是不唯一的.

❖拓扑排序的过程

过程如下:

- ① 每次输出一个入度为() (即没有前驱) 的结点,并删除该点 与该点指出的有向边.
- ② 重复此过程直至全部入度为()的结点被输出,得到的结点输出序列就是拓扑序列.
- ③ 如果所有入度为()的结点都被输出,但图还不为空,说明该有 向图中必存在环.

❖拓扑排序的过程

例: 由右图可得拓扑排序过程如下:

- 1) 入度为0的结点只有 V_1 ,所以输出 V_1 ,并删除这 $a_1,a_2,a_3,\{V_1\}$.
- 2) 入度为0的结点有 V_2,V_3,V_4 ,可以任选一个结点输出, 比如先输出 V_2 ,并删除这 a_4 , $\{V_1,V_2\}$.
- 3) 入度为0的结点有 V_3, V_4 ,可以任选一个结点输出, 比如先输出 V_3 ,并删除这 $a_5, \{V_1, V_2, V_3\}$.

• • •

9) 入度为0的结点只有V9,输出V9,全部结点被输出,图为空,拓扑排序完成,最后排序结果为 $\{V1,V2,V3,V4,V5,V6,V7,V8,V9\}$.

本例题答案不唯一, 满足拓扑排序的条件即可.

❖AOE (Activity On Edge Network)

【定义】AOE网是指用边表示活动的网,是一个带权的有向无环图.

- 项点: 事件 (Event),
- 狐: 活动 (Activity),
- 权值:活动持续的时间.

◇关键路径

由于整个工程只有一个开始点和一个完成点,在正常的情况 (无环)下,

- 网中只有一个入度为零的点 (称作源点)
- 一个出度为零的点 (称作汇点)

【定义】完成工程的最短时间指的是从源点到汇点的最长路径的长度,而这个长度最长的路径就叫做关键路径.

❖关键活动

【定义】假设开始点是 v_1 ,从 v_1 到 v_i 的最长路径长度叫做事件 v_i 的最早发生时间。

- 这个时间决定了所有以水为尾的弧所表示的活动的最早开始时间.
- 活动 a_i 的最早开始时间通常用e(i)表示.

【定义】活动的最迟开始时间l(i) 是指在不推迟整个工程完成的前提下,活动 a_i 最迟必须开始进行的时间。

【定义】我们把l(i) = e(i)的活动叫做关键活动。

◇关键活动

若活动 a_i 由弧 $\langle i,j \rangle$ 表示,持续时间记为 $dut(\langle i,j \rangle)$,则关系如下图所示:

- 》活动i的最早开始时间等于事件j的最早发生时间 $e(i)=v_{\varrho}(i)$
- 》活动i的最迟开始时间等于事件k的最迟时间减去活动i的持续时间

$$l(i) = v_l(j) - dut(\langle i, j \rangle)$$

❖关键活动

 $v_e[j]$ 和 $v_l[j]$ 可以采用下面的递推公式计算,需分两步进行:

(1) 向汇点递推

- $v_e(源点) = 0$;
- $v_e(j) = Max\{v_e(i) + dut(\langle i, j \rangle)\}$

a) 向汇点递推

ho 公式意义: 从指向顶点 V_j 的弧的活动中取最晚完成的一个活动的完成时间作为 V_j 的最早发生时间 $v_e[j]$, 如右图所示.

六.拓扑排序和关键路径

◇关键活动

(2) 向源点递推

b) 向源点递推

由上一步的递推,最后总可求出汇点的最早发生时间 $v_e[n]$. 因汇点就是结束点,最迟发生时间与最早发生时间相同,即 $v_l[n]=v_e[n]$. 从汇点最迟发生现时间 $v_l[n]$ 开始,利用下面公式:

- $v_l($ 汇点 $) = v_e($ 汇点);
- $v_l(i) = Min\{v_l(j) dut(\langle i, j \rangle)\}$
- ho 公式意义:由从 V_i 项点指出的弧所代表的活动中取需最早开始的一个开始时间作为 V_i 的最迟发生时间,如下图所示.

例: 求右图中AOE网的拓扑排序和关键路径.

解:由图可得,拓扑排序为 V_1 - V_2 - V_3 - V_4 - V_5 - V_6 .

关键路径求解如下:

顶点	ve	vl	活动	е	1	l-e
V ₁	0	0	a ₁	0	1	1
v ₂	3	4	a ₂	0	0	0
v ₃	2	2	a ₃	3	4	1
V ₄	6	6	a ₄	3	4	1
v ₅	6	7	a ₅	2	2	0
V ₆	8	8	a ₆	2	5	3
			a ₇	6	6	0
			a ₈	6	7	1

由上表可知,活动 a_2 、 a_5 、 a_7 的最早开始时间和最迟开始时间相等 (e=l) , 所以 a_2 、 a_5 、 a_7 为关键活动.故得出关键路径为: V_1 - V_3 - V_4 - V_6 .

例: 求右图中AOE网的关键路径.

解: 由图可得,关键路径求解如下:

事件j	$e_v[j]$	$L_v[j]$	活动 i	e[i]	L[i]	L[i]-e[i]
1	0	0	1	0	0	0
2	6	6	2	0	2	2
3	4	6	3	0	3	3
4	5	8	4	6	6	0
5	7	7	5	4	6	2
6	7	10	6	5	8	3
7	16	16	7	7	7	0
8	14	14	8	7	7	0
9	18	18	9	7	10	3
			10	16	16	0
			11	14	14	0

由上表可知,活动 a_1 、 a_4 、 a_7 、 a_8 、 a_{10} 、 a_{11} 为关键活动,所以关键路径为 V_1 - V_2 - V_5 - V_7 - V_9 或者 V_1 - V_2 - V_5 - V_8 - V_9 .

第五章 图的基本概念和矩阵表示

- 1.6 矩阵表示
- 1.7 路径
- 1.8 图的着色
- 1.9 匹配

§8图的着色

- 一、对偶图
- 二、四色猜想
- 三、平面图面着色
- 四、平面图点着色

(点)着色

定义 设无向图G无环,对G的每个顶点涂一种颜色,使相邻的顶点涂不同的颜色,称为图G的一种点着色,简称着色。若能用k种颜色给G的顶点着色,则称G是k-可着色的,记作: $\chi(G)=k$

图的着色问题: 用尽可能少的颜色给图着色.

例2

例

例: 学生会下设6个委员会, 第一委员会={张, 李, 王}, 第二委员会={李, 赵, 刘}, 第三委员会={张, 刘, 王}, 第四委员会={赵, 刘, 孙}, 第五委员会={张, 王}, 第六委员会={李, 刘, 王}. 每个月每个委员会都要开一次会, 为了确保每个人都能参加他所在的委员会会议, 这6个会议至少要安排在几个不同时间段?

至少要4个时段

第1时段:一,四

第2时段:二,五

第3时段:三

第4时段:六

应用

- ❖有η项工作,每项工作需要一天的时间完成.有些工作由于需要相同的人员或设备不能同时进行,问至少需要几天才能完成所有的工作?
- ◇ 计算机有k个寄存器, 现正在编译一个程序, 要给每一个变量分配一个寄存器. 如果两个变量要在同一时刻使用, 则不能把它们分配给同一个寄存器. 如何给变量分配寄存器?
- ◆无线交换设备的波长分配. 有n台设备和k个发射波长, 要给每一台设备分配一个波长. 如果两台设备靠得太近, 则不能给它们分配相同的波长, 以防止干扰. 如何分配波长?

一. 对偶图

- 》将平面图G嵌入平面后,通过以下手续(简称D过程):
 - (1)对图G的每个面 D_i 的内部作一项点且仅作一项点 v_i^* ;
 - (2)经过每两个面 D_i 和 D_j 的每一共同边界 e^*_k 作一条边 e^*_k = (v^*_i,v_j) 与 e_k 相交;
 - (3)当且仅当 e_k 只是面 D_i 的边界时, v_i^* 恰存在一自回路与 e_k 相交。

所得的图称为图G的对偶图,记为 G^* 。

如果图G的对偶图 G^* 同构于G,则称图G是自对偶图。

对偶图是相互的。

如下图所示, 左图为对偶图, 右图为自对偶图。

一. 对偶图

一个平面图可以有多种画法,如下图所示,a)、b)为同一平面图,但(a)中的对偶图有5度结点,(b)中的对偶图却没有。可见一个图的对偶图不是唯一的。

G与 G^* 的关系:

平面图G的对偶图G*是平面图;

若连通平面图G是(n,m)图,则它有m-n+2个面,则G*是(m-n+2,m)图,有n个面;

G中面的次数为G*中面中点的度数;

G的圈对应着G*的割(边)集;

一. 对偶图

例:分别作出下图中两种图的对偶图。

解:作图如下,实线图与虚线图互为对偶图。

二. 四色猜想

四色定理(Four color theorem)

- 一每个平面地图都可以只用四种颜色来染色
- ② 没有两个邻接的区域颜色相同

❖基本概念

- 》平面图着色问题起源于地图的着色,对地域连通且相邻国家有一段公共边界的平面地图G的每个国家涂上一种颜色,使相临的国家涂不同的颜色,称为对G的一种面着色,
- 》若能用k种颜色给G的面着色,就称对G的面进行了k着色,或称 G是k-面可着色的,
- 》若G是k-面可着色的,但不是 (k-1)-面可着色的,就称G的面色数为k,记为 χ^* (G)=k.

❖基本性质

【定理】地图G是k-面可着色的当且仅当它的对偶图 G^* 是k-可着色的.

【定理】在简单连通平面图中至少有一个顶点 v_0 ,其次数 $d(v_0) \leq 5$.

证明:用反证法

设(n, m)图G是简单连通平面图,所有顶点的次数不小于6,则 $m \le 3n-6$,又 $2m = \sum d(v) \ge 6n$,即 $m \ge 3n$,矛盾 故存在 v_0 ,其次数 $d(v_0) \le 5$.

三. 平面图面着色(*)

- ▶ 五色定理: 用5种颜色可以给任一简单连通平面图G=<V,E>正常着色。
 - 证明:对图的顶点数作归纳:
 - (i) 当n≤5时,显然成立;
 - (ii)假设k个项点时成立,考虑k+1阶简单连通平面图G;
 - 由引理知图G至少存在一顶点 v_0 其次数 $d(v_0) \leq 5$ 。
 - 显然 $G-v_0$ 是k阶简单连通平面图,由归纳假设可用5种颜色进行着色。
- 假设已用红、黄、蓝、 绿、黑5种颜色对G- v_0 着好了色,现在考虑对G中顶点 v_0 的着色。
- a)若 $d(v_0)$ <5,显然可用它的邻接顶点所着颜色之外的一种颜色对 v_0 进行着色,即G可以用5种颜色着色;
- b)若 $d(v_0)=5$,显然只需要考虑与 v_0 邻接的顶点被着以不同的5种颜色的情况进行讨论:

三. 平面图面着色(*)

令 $W_1=\{x|x\in G$,且x着红色或蓝色 $\}$, $W_2=\{x|x\in G$,且x着黄色或绿色 $\}$,考虑 W_1 导致的G的导出子图< $W_1>$

- ①若 v_1 和 v_3 分属于 $< W_1>$ 的两个不同连通分图,那么将 v_1 所在分图的红蓝色对调,并不影响图G- v_0 的正常着色。然后将 v_0 着上红色,即得图G的正常着色;
- ②若 v_1 和 v_3 属于< W_1 >的同一分图中,则 v_1 和 v_3 之间必有一条顶点属于红蓝集的路径P,它加上 v_0 可构成回路C: (v_0,v_1,P,v_3,v_0) ;

由于C的存在,将黄绿集分为两个子集,一个在C内,另一个在C外,于是黄绿集的导出子图至少有两个分图,一在C内,一在C外。于是问题转化为①的类型,对黄绿集按①的办法处理,即得图G的正常着色。

证毕。

例: 试用3种颜色, 给下图所示的平面图着色, 使两个邻接的面不会有同样的颜色。

解:用r,b,w表示不同的颜色,着色如下图所示。

❖基本概念

【定义】图G的正常着色(简称着色)是指对它的每一个结点指定一种颜色、使得没有两个相邻的结点有同一种颜色。

【定义】如果图G在着色时用了n种颜色,称G是n-色的。对于图G着色时,需要的最少颜色数称为图G的着色数,记为x(G)。

❖着色方法介绍

韦尔奇·鲍威尔(Welch Powell)方法

过程如下:

- 1) 将图G中的结点按照次数的递减次序进行排列. (可能并不是唯一的,有些结点有相同的次数.)
- 2) 用第一种颜色对第一点着色,并且按排列次序,对与前面着色点不邻接的每一点着上同样的颜色.
- 3) 用第二种颜色对尚未着色的点重复第二步,用三种颜色继续这种做法,直到所有的结点全部着上色为止.

四. 平面图点着色

例: 以下图为例进行点着色:

- 1) 按次数递减排序结点: $A_5, A_3, A_7, A_1, A_2, A_4, A_6, A_8$;
- 2) 用第一种颜色对 A_5 着色,并对不相邻的结点 A_1 也着同一颜色;
- 3) 对结点 A_3 和它不相邻的 A_4 , A_8 着第二种颜色;
- 4) 对结点 A_7 和它不相邻的结点 A_2 , A_6 着第三种颜色;
- > 则此图为三色的.

G不可能是二色的,因为 A_1 , A_2 , A_3 邻接,必须用三种颜色. 所以 $\mathbf{X}(G)=3$.

四. 平面图点着色

例: 给下图所示的3个图的顶点正常着色, 问每个图至少需要几种颜色?

解:用r,b,w,g表示不同的颜色,对图的顶点正常着色如下图所示。可见(a)需要2种颜色,(b)需要3种颜色,(c)需要4种颜色。

第五章 图的基本概念和矩阵表示

- 1.6 矩阵表示
- 1.7 路径
- 1.8 图的着色
- 1.9 匹配

§ 9 匹配

- 二、霍尔定理

引例

◆每学年评奖学金,把一等奖(1项),二等奖(2项),三等奖(3 项)颁给某班同学,如何描述奖学金与同学之间的关系?

❖运动会颁奖, 如何描述名次与运动员之间的关系?

❖基本概念

【定义】给定简单无向图G=<V,E>,

- ightharpoonup 若 $M \subseteq E$ 且M 中任意两条边都是不邻接的,则子\$M 称为G的一个匹配或对\$.
- >把M中的边所关联的两个结点称为在M下是匹配的.

❖基本概念

[c, c]令M是G的一个匹配,

- \rightarrow 若结点v与M中的边关联,则称v是M-饱和的;
- \rightarrow 若结点v与M中的边不关联,称v是M-不饱和的;
- 》若G中的每个结点都是M-饱和的,则称M是完全匹配(不唯一).
- \rightarrow 若G中没有匹配 M_1 ,使 $|M_1|>|M|$,则称M是最大匹配(不唯一).
- □ 每个完全匹配是最大匹配, 但反之不真.

❖基本概念

【定义】令M是图G=<V,E>中的一个匹配。

- 》若存在一个链,它是由分别由E-M和M中的边交替构成,则称该链是G中的M-交错链;
- 》若M-交错链的始结点和终结点都是M-不饱和的,则称该链为M-增广链;
- \nearrow 若M-交错链的始结点也是它的终结点而形成圈,则称该圈为M-交错圈。
- □给定两个集合S和T, S与T的对称差, 记为S Δ T, 规则如下: S \oplus T=(S \cup T)-(S \cap T)

❖基本定理

【定理】设 M_1 和 M_2 是图G中的两个匹配,则在 $< M_1 \oplus M_2 >$ 中,每个分图或是交错链,或是交错图.

【定理】给定二部图 $G=\langle V_1,E,V_2\rangle$, G中存在使 V_1 中每个结点饱和的匹配等价于对任意 $S\subseteq V_1$ 有 $|N(S)|\geq |S|$, 其中N(S)表示与S中结点邻接的所有结点集合.

❖标记法求交错链

首先把X中所有不是M的边的端点用(*)加以标记,然后交替进行以下所述的过程1)和2).

- 1) 选一个X的新标记过的结点,比如说 x_i ,用 (x_i) 标记不通过在M中的边与 x_i 邻接且未标记过的Y的所有结点.对所有X的新标记过的结点重复这一过程.
- 2) 选一个Y的新标记过的结点,比如说 y_i ,用 (y_i) 标记通过M的 边与 y_i 邻接且未标记过的X的所有结点。对所有Y的新标记过结点重复这一过程。

例: 以下图为例进行标记法求交错链的展

示:

- 1) 把*x*₂标记(*).
- 2) 从 x_2 出发,应用过程1),把 y_1 和 y_3 标记(x_2).
- 3) 从 y_1 出发,应用过2),把 x_3 标记(y_1).从 y_3 出发,应用过程2),把 x_4 标记(y_3).
- 4) 从 x_3 出发,应用过程1),把 y_4 标记(x_3),因 y_4 不是M中边的端点,说明已找到了一条交替链,即(x_2,y_1,x_3,y_4).

◇求最大匹配方法

过程:

- 1) 找出一条关于匹配M的交替链 γ .
- 2) 把 γ 中属于M的边从M中删去,而把 γ 中不属于M的边添到M中,得到一新集合M',此M'也是G的匹配;
 - ①添入的边自身不相交;
 - ②添入的边不与M中不属于 γ 的边相交;
- 3) 反复进行这样的过程, 直至找不出关于M的交替链为止.

例: 以下图为例, 求解该图的最大匹配:

- \rightarrow 失取**一个**初始匹配 $M=\{x_1y_5, x_3y_1, x_4y_3\},$
- Arr 再用标记法从点 x_2 开始求得一条交替链: $\gamma=(x_2y_1x_3y_4)$.
- 》然后用γ调整匹配M: 将γ中属于M的边删去并将其中不属于M的其它边添加到M中, 形成M'. 因为对M'用标记法只能从y₂开始, 但都不能求出M'的任何交替链, 故判定M'是一个最大匹配.

$$M=\{x_1 y_5, x_3 y_1, x_4 y_3\},\$$

 $M'=\{x_2 y_1, x_1 y_5, x_3 y_4, x_4 y_3\}.$

例:某单位按编制有7个空缺, P_1,P_2,\ldots,P_7 .

有10个申请者 a_1, a_2, \ldots, a_{10} ,他们的合格工作岗位集合依次是:

$${P_1, P_5, P_6}, {P_2, P_6, P_7}, {P_3, P_4}, {P_1, P_5}, {P_6, P_7}, {P_3}, {P_2, P_3},$$

 $\{P_1, P_3\}, \{P_1\}, \{P_5\}.$

如何安排他们工作使得无工作的人最少?

解: 根据题意可绘制下图:

由上图可求得一个最大匹配:

 $M = \{ (P_1, a_9), (P_2, a_2), (P_3, a_6), (P_4, a_3), (P_5, a_4), (P_6, a_1), (P_7, a_5) \}.$

根据该匹配分配工作能使无工作的人最少.

二.霍尔定理

【霍尔定理】在偶图 $G=\langle V_1,E,V_2\rangle$ 中存在从 V_1 到 V_2 的匹配,当且仅当 V_1 中任意k个结点至少与 V_2 中的k个结点相邻, $k=1,2,...,|V_1|$.

- 这个定理中的条件通常称为相异性条件.
- 判断一个偶图是否满足相异性条件通常比较复杂.

二. 霍尔定理

◇判断偶图是否存在匹配的一个充分条件

t条件: 设 $G = \langle V_1, E, V_2 \rangle$ 是一个偶图. 如果满足条件

- (1) V_1 中每个结点至少关联t条边;
- (2) V2中每个结点至多关联t条边;

则G中存在从 V_1 到 V_2 的匹配. 其中t为正整数.

证明:

由条件 (1) 知, V_1 中k个结点至少关联tk条边 ($1 \le k \le |V_1|$).

由条件(2)知,这tk条边至少与V2中k个结点相关联,

于是 V_1 中的k个结点至少与 V_2 中的k个结点相邻接,因而满足相异性条件,所以G中存在从 V_1 到 V_2 的匹配.

二.霍尔定理

例:现有三个课外小组:物理组,化学组和生物组,有五个学生: S_1 , S_2 , S_3 , S_4 , S_5 .

- (1) 已知 S_1 , S_2 为物理组成员; S_1 , S_3 , S_4 为化学组成员; S_3 , S_4 , S_5 为生物组成员.
- (2) 已知 S_1 为物理组成员; S_2 , S_3 , S_4 为化学组成员; S_2 , S_3 , S_4 , S_5 为生物组成员.
- (3) 已知 S_1 即为物理组成员, 又为化学组成员; S_2 , S_3 , S_4 , S_5 为生物组成员.

在以上三种情况的每一种情况下, 在 S_1 , S_2 , S_3 , S_4 , S_5 中选三位组长, 不兼职, 问能否办到?

二.霍尔定理

解:用 c_1, c_2, c_3 分别表示物理组,化学组和生物组,

$$V_1 = \{c_1, c_2, c_3\}, V_2 = \{s_1, s_2, s_3, s_4, s_5\}.$$

以 V_1 , V_2 为互补结点子集, 若 S_i 在 C_i 中, 则 (S_i, C_i) 在E中.

(1) $G_1 = \langle V_1, E, V_2 \rangle$ 如图a所示.

在 G_1 中, V_1 中的每个结点至少关联2条边,而 V_2 中的每个结点至多关联2条边,因此满足t条件,故存在从 V_1 到 V_2 的匹配。事实上,选 S_2 为物理组的组长,选 S_3 为化学组的组长,选 S_5 为生物组的组长,它们对应的匹配如图d所示。

二. 霍尔定理

(2) $G_2 = \langle V_1, E_2, V_2 \rangle$ 如图b所示.

所给条件不满足t条件,但是满足相异性条件,因而存在从 V_1 到 V_2 的 它配。一个可能的 它配如图e所示。 V_1 第 V_2

(3) $G_3 = \langle V_1, E_3, V_2 \rangle$ 如图c所示.

 G_3 既不满足t条件,也不满足相异性条件,所以不存在从 V_1 到 V_2 的 匹配,当然三个不兼职的组长从 S_1,S_2,S_3,S_4,S_5 中选不出来.

应用实例(一)

- (1) 赵,钱为数学组成员,赵,孙,李为计算机组成员,孙,李,周为生物组成员。
- (2) 赵为数学组成员, 钱, 孙, 李为计算机组成员, 钱, 孙, 李, 周为生物组成员.
- (3) 赵为数学组和计算机组成员, 钱, 孙, 李, 周为生物组成员.

图像/网格匹配

图像配准

全景图拼接

受限玻尔兹曼机RBM

v层: 可见层,输入特征。(好比黑白图片, v层就是某处是否为白色)

h层: 隐含层

常量: n_v, n_h --> 可见层和隐含层神经元数目 num of visiable /hidden

变量: $w_{i,j}$ -> 权值矩阵 a -> 可见层偏置向量 b -> 隐含层偏置向量 θ = (w,a,b) ->把所有变量放到一起

状态: v=(v1,v2,...)T h=(h1,h2,...)T 可见层和隐含层的状态向量

习题

1. 5.18 有向图D如图5-1所示,求D中在定义意义下长度为4的通路总数,并指出其中有多少条是 $^{(40)}$ 回路?又有几条是 v_3 到 v_4 的通路?

2. 5.21 计算机系期末要安排7门公共课的考试,课程编号为1到7。下列每一对课程有学生同时选 30 修: 1和2,1和3,1和4,1和7,2和3,2 和4,2 和5,2和7,3和4,3和 6,3和7,4和5,4和6,5和6,5和7,6和7.这7门课的考试至少要安排在几个不同的时间段?给出一个安排方案。

3. 6.5 今有工人甲、乙、丙要完成3项任务a,b,c,已知甲能胜任a,b,c这3项任务,乙能胜任a,b ($^{(30)}$ 两项任务,丙能胜任b,c两项任务。你能给出一种安排方案,使每个工人各完成一项他们能胜任的任务吗?