Machine Learning in Robotics

Assignment-1

16-6-2016

Written by Hrishik Mishra hrishik.mishra@tum.de

Lehrstuhl für Steuerungs & Regelungstechnik $Supervised\ by$ Dongheui Lee

 $Summer\ Semester-2016$

Exercise-1: Estimating velocity motion model of a mobile robot through linear regression.

Through k-fold cross validation, the model parameters p_1 (for position) and p_2 (for orientation) were selected which accrued the least estimation errors in position and orientation as given in. [1]

K	p_1	p_2	$param_x$	$param_y$	$param_{\theta}$
2	5	3	0.00220625732556086	-0.00269493977200706	-0.000595151484125002
			0.921732195858891	-0.00135809592112290	-0.000171073749124448
			0.00657348550645994	-0.0115383171659957	0.999714709020228
			-0.00162656965276813	0.473042321915390	0.000839355025048955
			-0.000991575978557237	0.000244539456729993	0.000126866877646434
			0.00248490664424307	-0.00826729432491700	0.00178272525920989
			0.00231358751656282	7.46931348188875e - 05	-0.000141046904408991
			-1.16646541576460e - 05	4.38102067757857e - 05	-4.52228930367076e - 06
			-0.0130056609219627	0.0164373055385540	-0.000622237972551573
			0.000122681135091493	-0.000976996332548495	-1.32208929849420e - 05
			1.28355799646602e - 05	-5.28891350696321e - 06	
			-0.00445663266774616	0.00429852335997573	
			-4.30989334269219e - 05	-4.41870625680025e - 06	
			1.66957256114036e - 06	-2.69105974566428e - 07	
			0.00259767597943068	-0.00381272453688410	
			-4.02394497236582e - 07	2.10157140577462e - 06	
5		1	0.00250438198744831	-0.00432378702432523	0.000807837315929524
	4		0.919758171529195	-0.00100147026158884	-0.000319015102912379
			-0.00285535207851188	0.00144804828720765	0.998697948732518
			-0.000743846577077336	0.467984381559629	0.000321416083203675
			-0.00103415346607637	0.000568498345337271	
			0.00137429795052516	-0.00252770680607292	
			0.00248687885776973	-0.00102513134746683	
			0.000136005129586935	1.92455105264459e - 05	
			-0.000269081593446607	-0.00167419363591914	
			6.69261198540723e - 05	-0.000672538046125717	
			1.30609808751867e - 05	-7.84620179300530e - 06	
			-0.00428157284345875	0.00347662125530490	
			-4.51742614704264e - 05	8.71551716809008e - 06	

Table 1: Simulation results with different k-fold validations

The visualized dynamics is provided for each of the k-fold parameters below.

Figure 1: Inputs: $v=0.5, \omega=-0.03,\, k=2$

Figure 2: Inputs: $v=0, \omega=0.05,\, k=2$

Figure 3: Inputs: $v=1, \omega=0,\, k=2$

Figure 4: Inputs: $v=1, \omega=0.05,\, k=2$

Figure 5: Inputs: $v=-1, \omega=-0.05, \, k=2$

Figure 6: Inputs: $v=0.5, \omega=-0.03,\, k=5$

Figure 7: Inputs: $v=0, \omega=0.05, \, k=5$

Figure 8: Inputs: $v=1, \omega=0, \, k=5$

Figure 9: Inputs: $v=1, \omega=0.05, \, k=5$

Figure 10: Inputs: $v=-1, \omega=-0.05, \, k=5$

Exercise-2: Handwritten digits classification using Bayesian classifier.

The parameter d is the complexity of the Principal Component Analysis (PCA) model. In this simulation, the value of d was changed from 1 to 60 in steps of 2. Figure shows the classification errors as a function of the eigen depth, d. Based on the figure, it can be inferred that the optimal value for d is 25 and the total classification error is 4.27%. Also, based on data provided in [1],the d value of 15 results in an error of 7.03%

Figure 11: Classification error as function of eigen depth in PCA

The confusion matrix as given by the MATLAB function confusionmat for d=25 is,

§ 968	0	2	0	0	5	1	1	3	0
0	1103	6	4	0	1	3	0	17	1
5	0	1003	4	2	0	4	1	13	0
0	0	7	970	1	10	0	6	12	4
1	0	6	0	954	0	1	2	2	16
4	0	1	22	0	855	2	0	6	2
18	1	1	0	2	14	917	0	5	0
0	5	30	1	6	6	0	946	12	22
4	0	7	21	1	5	3	3	918	12
4	3	10	8	19	3	0	6	17	939

The total number of successfully classified digits were 9573. From the confusion matrix, we can infer that 6 quite often (22 times) gets classified as 4, and 9 gets classified as 8 and misclassified instead of 2 as often (17 times).

Exercise-3: Human motion clustering.

The motion data available was passed through two different classification algorithms, k-means and non-uniform Binary split. Figure 12 demonstrates the classification of the 3-d motion points in an XY-view for the letters l, o and x. As required in [1], the convergence of the k-means algorithm to a decrement of the **distortion** function could not be reached to 10^{-6} since the computing was taking an inordinate amount of time. The results shown aforementioned are computed with a decrement of 10^3 .

Figure 12: K-means clustering with k = 7

Similarly, the results of classification are shown in Figure 13. From the result, it was inferred that the *non-uniform Binary split* algorithm's classification is largely dependent on the infinitesimally small vector which, in this case, was specified in [1].

Figure 13: non-uniform binary clustering with k = 7

References

[1]. Assignment 1.pdf, Prof. Dongheui Lee, Lehrstuhl für STEUERUNGS- & REGELUNG-STECHNIK, Machine Learning in Robotics.