安徽大学 2022 — 2023 学年第 1 学期

《 数字逻辑 》(A 卷)考试试题参考答案及评分标准

一、解答题(共35分)

$$[A+B] = (000101)_2 \tag{2分}$$

$$[A+B] = (000101)_2 = (5)_{10}$$
 (1分)

2. (5 分) 解答:
$$\overline{F} = AC + \overline{B}C$$
 (3 分)

$$\overline{F} = ABC + A\overline{B}C + \overline{A} \cdot \overline{B}C \quad \text{if} \quad \overline{F} = \sum m(1,5,7)$$
 (2 \(\Delta\))

3. (6分) 解答: $F = A \cdot (B + C)$, 分别正确使用了定理 7 和定理 3 , 各得 3 分

4. (6 分) 解答:
$$F = \overline{A}B\overline{C} + \overline{B} \cdot \overline{D} + BD$$
 或 $F = \overline{A} \cdot \overline{C} \cdot \overline{D} + \overline{B} \cdot \overline{D} + BD$

说明:填对F的卡诺图得2分,化简正确得4分

$$5.(6 \, f)$$
 解答: $G(A,B,C) = \prod_{M} (1,2,4,5)$ (3 f)

$$F \cdot G = \prod_{M} (1, 2, 4, 5) \tag{3 \%}$$

6. (7 分) 解答: 1) 先求出所有等效对(隐含表,或者观察法均可): (A,B)、

$$(C, D)$$
、 (E, F) 。
$$(2 分)$$

В	CD√				
С	×	EF/AD×			
D	×	×	AB√		
Ε	×	×	×	×	
F	×	×	×	×	CD/AB √
	Α	В	С	D	E

2) 再得到最大等效类集合: {(A,B), (C,D), (E,F)} (2分)

3) 状态合并, 并写出最小化状态表: 分别用 a, b, c 表示各最

(3分)

大等效类,得最小化状态表

现态	次态/输出		
地心	x=0	x=0	
а	c/0	b/0	
h	c/1	a/1	

其中(A,B) -> a (C,D) -> b (E,F) -> c

b/0

第1页 共5页

二、组合电路分析题(共10分)

[解答]

(1) 写出逻辑函数表达式; (4分,每个1分)

$$P_0 = BD$$
 $P_1 = AD \oplus BC$ $P_2 = AC \cdot \overline{BD}$ $P_3 = ABCD$

(2) 填写真值表(4分,每填错两行扣0.5分,单行错不扣分)

Α	В	С	D	P ₃	P_2	\mathbf{P}_1	P_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

三、组合电路设计题(共10分)

(1) 真值表; (5分)

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(2) 求解电路的最简"与或"表达式(2分)

$$Y = \sum m(1,2,4,7) = \bar{A} \cdot \bar{B} \cdot C + \bar{A} \cdot B \cdot \bar{C} + A \cdot \bar{B} \cdot \bar{C} + ABC$$

(3) 画出电路图 (3分)

最少的门是使用两个异或门实现,如果只写出表达式 $Y = A \oplus B \oplus C$ 而没有画图,得 2 %。

四、时序电路分析题(共15分)

[解答]

(1)激励函数、输出函数表达式(5分,每个表达式占1分);

$$J_0 = x$$
 $K_0 = x$ $J_1 = xQ_0$ $K_1 = xQ_0$ $Z = Q_1Q_0$

(4) 画出状态表和状态图 (8分, 状态表和状态图各占 4分, 每一处次态或输出错误, 扣除 0.5分, 写成 Mealy 或 Moore 型均可得分);

0.0	Q_1^{n+1}	7	
Q_1Q_0	x = 0	x = 1	Z
00	00	01	0
01	01	10	0
10	10	11	0
11	11	00	1

(3) 分析电路逻辑功能。

(2分)

当电路输入 x=1 时,是模 4 加法计数器,计数到 $Q_1Q_0=11$ 时输出 z=1; x=0 时停止计数。(如果只写出了其中一种情况,给 1 分;如果写的是对输入 1 的个数进行计数的,给 1 分)

五、时序电路设计题(共15分)

[解答]

(1) 画出完整状态表(6分)

y_2y_1	$y_2^{(n+1)}y_1^{(n+1)}$			
	x = 0	x = 1		
00	01	11		
01	10	00		
11	00	10		
10	11	01		

(2) 求解激励函数表达式(6分)

说明:每个表达式求解正确得 3 分,如果结果错误,根据求解过程酌情给分 $D_2 = y_2 \oplus y_1 \oplus x$ $D_1 = \overline{y_1}$

(3) 画出电路图 (3分)

六、综合设计题(共15分)

(1) 完成真值表; (6分)

D_2	D_1	D_0	F ₃	F ₂	F_1
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	1	1	1

(2) 写出输出函数逻辑表达式; (6分)

$$\begin{split} F_{1}(D_{2},D_{1},D_{0}) &= \overline{D_{2}}\overline{D_{1}}D_{0} + \overline{D_{2}}D_{1}\overline{D_{0}} + D_{2}\overline{D_{1}}\overline{D_{0}} + D_{2}D_{1}D_{0} \\ &= m_{1} + m_{2} + m_{4} + m_{7} = \frac{\overline{m_{1}}\overline{m_{2}}\overline{m_{2}}\overline{m_{4}}\overline{m_{7}} \\ \end{split}$$

$$F_2(D_2, D_1, D_0) = \overline{D_2}D_1D_0 + D_2\overline{D_1}D_0 + D_2D_1\overline{D_0} + D_2D_1D_0$$

 $= m_3 + m_5 + m_6 + m_7 = \overline{m_3} \overline{m_5} \overline{m_6} \overline{m_7}$
 $F_3(D_2, D_1, D_0) = D_2D_1\overline{D_0} + D_2D_1D_0 = m_6 + m_7 = \overline{m_6} \overline{m_7}$
说明:每个表达式 3 分,没有写成与非形式的扣 2 分。

(3) 画出逻辑电路图

说明:控制端信号错误或漏接的,扣除1分。