Optimization Te donique:

Exhaustive Search areedy Search Arid Search Time Consuming but avarantees eg: Man walking on ahill

2 avadient Descent! (3 types)

Fast -> Sometimes we are lost eg! F1 car

(3) Robust Mtds (Simulated Annealing, Genetic Algo, Elvolutionary Algo)
eg: Dirt Truck (faster than Greedy algo, but
slaver than G-D algo)

Types of aradient Descenti

- (1) Batch Gradient Descent
- (2) Min: Joatch Gr. Descent
- (3) Stochastic Gr. Descent

Trainer: Dr. Darshan Ingle.

Neural Network Learning Parameters

Neural Network Learning Parameters

Neural Network Learning Parameters

$$h = \sigma(\omega \cdot x + b)$$
 $y = \sigma(0, \omega + b)$

Activection functions

weights

ainer: Dr. Darshan Ingle.

More Terminologies of a NN

Types of Neural Network

In real life, weights are initialized randomly.

Forward and Backward Propagation

$$Z = \left[\omega_{1} \cdot x_{1} + \omega_{2} \cdot x_{2} + \omega_{3} \cdot x_{3} \right] + b$$

$$y = \sigma \left(z \right) \quad \text{Sigmoid}$$

$$V = \sigma \left(z \right) \quad \text{Sigmoid}$$

$$V = \sigma \left(z \right) \quad \text{Sigmoid}$$

$$V = \sigma \left(z \right) \quad \text{Sigmoid}$$

Minimize Loss
$$\Rightarrow$$
 Optimizers

 $1 \text{ acc} = (4-4)^2$

$$L_{65} = (y - \bar{y})$$

$$= (1 - 0)^{2}$$

2 w 3 a 1 - 1.

Trainer: Dr. Darshan Ingle.

Multi Layer Neural Network Training w.r.t Gradient

CHAIN RULE IN BACKPROPAGATION TO THE STATE OF THE STATE O

CHAIN RULE IN BACKPROPAGATION.

