Parishram (2025)

Physical Chemistry

Electrochemistry

DPP:6

- **Q1** A gas X at 1 atm is bubbled through a solution Pcontaining a mixture of $1MY^-$ and $1MZ^-$ at $25^{\circ}\mathrm{C}$. If the reduction potential of Z>Y>X, then:
 - (A) Y will oxidize X and not Z
 - (B) Y will oxidize Z and not X
 - (C) Y will oxidize both X and Z
 - (D) Y will reduce both X and Z
- Q2 Which one of the following metals cannot evolve H_2 from acids or H_2O or from its compounds?
 - (A) Hg
 - (B) Al
 - (c) Pb
 - (D) Fe
- Q3 For a cell reaction involving a two-electron change, the standard EMF of the cell is found to be $0.295~\mathrm{V}$ at $25^{\circ}\mathrm{C}$. The equilibrium constant of the reaction at $25^{\circ}\mathrm{C}$ will be
 - (A) 1×10^{10}
 - (B) $1 imes 10^{-10}$
 - (C) $29.5 imes 10^{-2}$
 - (D) 2×10^{10}
- **Q4** Electrode potential of the half-cell $Pt(s)|Hg(l)|Hg_2Cl_2(s)|Cl^-(aq)$

increased by:

- (A) Increasing $[Cl^{-}]$
- (B) Decreasing $[Cl^{-}]$
- (C) Increasing Hg_2Cl_2 (s)
- (D) Decreasing $\mathrm{Hg}(l)$
- **Q5** A solution containing H^+ and D^+ ions is in equilibrium with a mixture of H_2 and D_2 gases at $25^{\circ}\mathrm{C}$. If the partial pressures of both gases are 1.0 atm, find the ratio of $[D^+]/[H^+]$. (Given: $E_{D^+/D_2}^\circ = -0.003~\mathrm{V}$)
 - (A) 1.23
- (B) 1.12
- (C) 0.11
- (D) 1.0
- Q6 In a concentration cell the same metal electrodes are present in both the anode and the cathode compartments, but at different concentrations. Calculate the emf of a cell containing $0.040 \mathrm{M}\cdot\mathrm{Cr}^{3+}$ in one compartment and $1.0 {
 m MCr}^{3+}$ in the other if ${
 m Cr}$ electrodes are used in both.
 - (A) 0.028 V
 - (B) 0.249 V
 - (C) 0.083~V
 - (D) 0.125 V

Q1 (A) (A) **Q4**

Q2 (A) (B) Q5

Q3 (A) (A) Q6

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Video Solution:

Q2 Video Solution:

Q3 Video Solution:

Q4 Video Solution:

Q5 Video Solution:

Q6 Video Solution:

