Inference 2, 2023, lecture 1

Rolf Larsson

October 31, 2023

Outline of the course

- Book: Liero, Zwanzig: Introduction to the Theory of Statistical Inference,
- Chapman and Hall 2012.

 12 theory lectures
- 3 problem solving lectures (e.g. old exams)
- Examination:
 - Three obligatory home assignments (see studium)
 - Written examination (not with book, but with hand-written formula sheet)

Outline of the lectures

Chapter	Topic	Lectures no.
1	Introduction	
2	Statistical Model	1
3	Inference Principles	2-5
	Problem solving	5
4	Estimation	6-9
5	Testing Hypotheses	10-13
	Problem solving	14
	Old exams	15

Today

- 2.1 Data
- 2.2 Statistical model
- 2.3 Statistic
- 2.4 The Exponential family

Some notation:

- An observation vector $\mathbf{x} = (x_1, ..., x_n)$
- is a realization of the random vector $\mathbf{X} = (X_1, ..., X_n)$.
- We have $\mathbf{x} \in \mathcal{X}$, the sample space.
- ullet On ${\mathcal X}$, we define a class of probability measures

$$\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \},\$$

where the set Θ is called the **parameter space**.

- We call \mathcal{P} the **statistical model**.
- Let the set $A \subseteq \mathcal{X}$. Then,
 - $\mathbf{P}_{\theta}(A) = \int_{A} f(\mathbf{x}; \theta) d\mathbf{x}$ if **X** is continuous,
 - $\mathbf{P}_{\theta}(A) = \sum_{\mathbf{x} \in A} P_{\theta}(\mathbf{x})$ if **X** is discrete.

5 / 19

Definition (2.1)

A **sample X** = $(X_1, ..., X_n)$ is a collection of **independent** random variables where X_i is distributed according to a distribution $P_{i,\theta}$, i = 1, 2, ..., n, where n is the **sample size**.

6/19

Example 1: Exponential distribution

- Let $X_1, ..., X_n$ be independent and exponential with intensity β .
- Then, for X_i ,

$$\mathbf{P}_{i,\beta}(A) = \int_A \beta e^{-\beta x} dx.$$

- Let $\mathbf{A} = A_1 \otimes ... \otimes A_n$.
- Then, (why?)

$$\mathbf{P}_{\beta}(\mathbf{A}) = \prod_{i=1}^{n} \mathbf{P}_{i,\beta}(A_i) = \beta^n \int_{\mathbf{x} \in \mathbf{A}} e^{-\beta \sum_{i} x_i} d\mathbf{x}.$$

Example 2: Poisson distribution

- Let $X_1,...,X_n$ be independent and Poisson with intensity parameter λ .
- Then, for X_i ,

$$\mathbf{P}_{i,\lambda}(A) = \sum_{x \in A} \frac{\lambda^x}{x!} e^{-\lambda}.$$

• Let $\mathbf{A} = A_1 \otimes ... \otimes A_n$. Write down $\mathbf{P}_{\lambda}(\mathbf{A})$ with notation as above.

Statistic

Definition (2.2)

A **statistic** T is a function of the sample

$$T: \mathbf{x} \in \mathcal{X} \to T(\mathbf{x}) = t \in \mathcal{T}$$

where \mathcal{T} is a set.

With T as a random variable, its distribution is given by

$$P_{\theta}^{T}(B) = P_{\theta}(\{\mathbf{x} : T(\mathbf{x}) \in B\}).$$

Statistic

Example 2: Poisson distribution

Let $X_1,...,X_n$ be independent and Poisson with intensity parameter λ . We observe $\mathbf{x} = (x_1,...,x_n)$.

- It $T(\mathbf{x}) = \sum_{i=1}^{n} x_i$ a statistic?
- 2 Is $T(\mathbf{x}) = x_1$ a statistic?
- **3** Is $T(\mathbf{x}) = 5$ a statistic?

Definition (2.3)

A class of probability measures $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is called an **exponential family** if there exists

- a positive integer k,
- real-valued functions $\zeta_1, ..., \zeta_k$,
- real-valued statistics $T_1, ..., T_k$
- ullet and a function h on ${\mathcal X}$
- such that the probability (density) function has the form

$$p(x;\theta) = A(\theta) \exp \left(\sum_{j=1}^{k} \zeta_j(\theta) T_j(x) \right) h(x).$$

Example 1: Exponential distribution

- Let $X_1, ..., X_n$ be independent and exponential with intensity β .
- The density function is

$$f(x; \beta) = \beta \exp(-\beta x).$$

Does this distribution belong to the exponential family?

Which of the following distributions belong to the exponential family?

- **1** Poisson with parameter λ .
- **2** $N(\mu, \sigma^2)$.
- **3** Uniform distribution on $[0, \theta]$.

Definition

An exponential family with a minimal number k of statistics $T_1, ..., T_k$ is called a **strictly** k-dimensional exponential family.

Example 3: Let X be multinomial on $\mathcal{X} = \{1, 2, 3, 4\}$.

- Does this distribution belong to the exponential family?
- ② What is the minimal number k of statistics $T_1, ..., T_k$?

Let
$$A = \{x : p(x; \theta) > 0\}.$$

Definition

The functions $T_1, ..., T_k$ is called \mathcal{P} -affine independent if for real constants $c_0, c_1, ..., c_k$,

$$\sum_{j=1}^{k} c_j T_j(x) = c_0 \quad \text{for all } x \in \mathcal{A}$$

$$\Rightarrow$$

$$c_j = 0 \quad \text{for } j = 0, 1, ..., k.$$

Theorem (2.1)

Let P be an exponential family. Then

- The family $\mathcal P$ is strictly k-dimensional if the functions $1,\zeta_1,...,\zeta_k$ are linearly independent and the statistics $T_1,...,T_k$ are $\mathcal P$ -affine independent.
- **2** The statistics $T_1, ..., T_k$ are \mathcal{P} -affine independent if the covariance matrix $Cov_{\theta}T$ is positive definite for all $\theta \in \Theta$.

cf example 3 (multinomial distribution on $\{1, 2, 3, 4\}$)

Theorem (2.2)

Let \mathcal{P} be an exponential family. Then

- If $X_1, ..., X_n$ is a sample of independent random variables with distributions belonging to the exponential family, then the joint distribution of the vector $\mathbf{X} = (X_1, ..., X_n)$ is an element of an exponential family.
- ② If $X_1,...,X_n$ is a sample of i.i.d. random variables with a distribution of the exponential family form with functions ζ_j , j=1,...,k, and $T=(T_1,...,T_k)$, then the distribution of \mathbf{X} belongs to an exponential family with functions ζ_j and $T(\mathbf{x})=\sum_{i=1}^n T(x_i)$.

Example 4: Normal distribution

- Let $X_1, ..., X_n$ be independent $N(\mu, \sigma^2)$.
- Show that $T(\mathbf{x}) = (\sum_i x_i, \sum_i x_i^2)$.

News of today

- Sample
- Statistic
- The Exponential Family
 - Strictly k dimensional
 - The joint distribution of independent random variables which are in the exponential family is also in the exponential family.