

Please write clearly i	n block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	/

INTERNATIONAL AS FURTHER MATHEMATICS

(9665/FM01) Unit FP1 Pure Mathematics

Wednesday 4 January 2023 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

FM01

Answer **all** questions in the spaces provided.

- **1** A curve has equation $y = 2x^2 + 3x$
- 1 (a) A line passes through two points on the curve, one where $x = -\frac{5}{4}$ and the other where $x = -\frac{5}{4} + h$

Find the gradient of this line in the form a+bh where a and b are integers.

[4 marks]

Answer _____

1 (b)	Show how the answer to part (a) can be used to find the gradient of the curve at the point where $x = -\frac{5}{4}$	Do not write outside the box
	[2 marks]	
		6

Turn over for the next question

2	The quadratic	equation
2	The quadratic	equation

$$x^2 + bx + c = 0$$

where b and c are real, has -4+7i as one of its roots.

Find the value of $\,b\,$ and the value of $\,c\,$

[4 marks]

b =

c =

4

3		For each of the improper integrals below, either find its exact value or explain who finite value.	y it has
		Show all necessary working.	
3	(a)	$\int_{3}^{\infty} \frac{1}{\sqrt[5]{x}} \mathrm{d}x$	3 marks]
		Answer	
3	(b)	$\int_3^\infty \frac{1}{x^2} \mathrm{d}x$	3 marks]
		Answer	

6

4	(a)	Find the general solution of the equation
		$\sin\left(5x-\frac{\pi}{12}\right)=0.5$
		giving your answer in terms of π [4 marks]
		Answer

4	(b)	Hence find the solution of the equation
-	(~ <i>)</i>	richee ind the solution of the equation

$$\sin\left(5x - \frac{\pi}{12}\right) = 0.5$$

which is closest to $\frac{3\pi}{2}$ giving your answer in terms of π

[3 marks]

Answer____

_

Turn over for the next question

5	(a)	Show that $\frac{1}{r!} - \frac{1}{(r+1)!} = \frac{r}{(r+1)!}$	[1 mark]
5	(b)	Use the method of differences to find an expression for the sum of the series $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + + \frac{n}{(n+1)!}$	[4 marks]
		Answer	

5	(c)	Use you	r answer to	part (b) to find	the value of
	\ · /			P 21. 2 (.2)	,	

$$\sum_{r=5}^{\infty} \frac{r}{(r+1)!}$$

Give your answer in the form $\frac{1}{k}$ where k is an integer. [2 marks]

Answer

Turn over for the next question

6	Find all the solutions of the equation	Do not write outside the box
	$3z^2=z^*$ [7 marks]	
	Answer	7

7 [The volume of a square-based pyramid is given by the formula $V = \frac{1}{3}a^2h$ where a is the length of the side of the square base, and h is the height.]

A water tank in the shape of an inverted square-based pyramid has height 10 metres, and the length of the side of the square base is 6 metres.

Not drawn to scale

The tank fills with water at a rate of 0.54 m³ per minute.

At time t minutes the depth of water in the tank is h metres.

The horizontal surface of the water at time t minutes is in the shape of a square of side x metres.

7 (a)	Explain why $x = 0.6h$	[1 mark]

7	(b)	Find an expression in terms of h for the volume of water in the tank at time t minutes. [2 marks]	Do not write outside the box
			-
		Answer	-
7	(c)	Find the rate at which the depth of water in the tank is increasing when $h=4$ [5 marks]	
			-
			-
			-
			-
			-
			-
			- - <u> </u>
			g

$$\frac{x^2}{4} + y^2 = 1$$

The ellipse E_2 has equation

$$\frac{x^2}{4} + \frac{y^2}{k} = 1$$

where $\,k\,$ is a positive constant.

8	(a)	Describe fully	the	transformation	that maps	E_1	onto	$E_{\mathbf{z}}$
---	-----	----------------	-----	----------------	-----------	-------	------	------------------

[2 marks]

8 (b) It is given that the line L has equation

$$y = 2x + c$$

where c is a constant.

8 (b) (i) Show that if L intersects E_2 then

$$c^2 - k \le A$$

where A is a constant to be found.

[5 marks]

		Do not write outside the box
8 (b) (ii) Given that the line $y = 2x + 7$ is a tangent to E_2 find the value of k	
(2) (1)	To order that the line $y = 2x + 1$ is a tangent to E_2 find the value of x	[2 marks]
	k =	9

9		The function $\ f$ is defined by
		$f(x) = \frac{4x+5}{x^2+4x+5}$
9	(a) (i)	Explain why the graph of $y = f(x)$ has no vertical asymptotes. [2 marks]
9	(a) (ii)	Write down the equation of the horizontal asymptote of the graph of $y = f(x)$ [1 mark]
		Answer
9	(b)	Prove that if the line $y = k$ where k is a constant, intersects the graph of $y = f(x)$ then
		$k^2 + 3k - 4 \le 0$ [4 marks]

			Do not write outside the box
			-
			_
			_
			-
			-
9	(c)	Use the result in part (b) to find the coordinates of the stationary points of the graph of $y = f(x)$	
		[5 marks]	
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
		Answer	-
		Question 9 continues on the next page	

Do not write outside the box

15

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

10	The circle C is the locus of points on an Argand diagram such the	ıat
	z = 5	
	The line L is the locus of points on an Argand diagram such that	t
	Re(z) = 3	
10 (a)	Draw C and L on the Argand diagram.	[2 marks]
	$\operatorname{Im}(z)$	
	O Re	$\overrightarrow{e}(z)$
10 (b)	Find all the points which are ${\bf both}$ a distance of exactly one unit f of exactly one unit from L	
		[6 marks]

		Do l out
Answer		
The half-line H is the locus of points on an Argand diagram such that		
$\arg(z+5) = \frac{2\pi}{5}$		
The half-line H meets the circle C at the point z_1		
Find z_1 giving your answer in the form $r(\cos\theta + i\sin\theta)$		
	[3 marks]	
$z_1^{}=$		

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

