Teoria dos Grafos Unidade 7: Coloração

Prof. Dr. Paulo César Rodacki Gomes paulo.gomes@ifc.edu.br

Blibliografia

- Jonathan Gross e Jay Yellen. Graph Theory and its Applications. CRC Press. 2000.
- Joan M. Aldous, Robin J. Wilson. Graphs and Applications: as introductory approach. Springer. 2001
- Thomas Cormen et al. Algoritmos: teoria e prática. Ed. Campus. 2004.

Tópicos

- Motivação
- Introdução/definições
- Teorema de Kuratowsky
- Exercícios

Motivação

Três vizinhos desejam conectar suas casas às redes de telefone, energia elétrica e água, de tal forma que as conexões não se cruzem.

Motivação

Suponha que precisamos projetar um campo de golfe com 9 buracos. É recomendável que linhas de trajetória de bolas nao se cruzem, visto que isso poderia causar inconvenientes e até provocar riscos aos jogadores.

Definições

Um Grafo G é dito **planar** se ele puder ser desenhado no plano de tal forma que nenhum par de arestas se encontre, a não ser em um vértice.

Tal desenho é chamado **representação planar** de G (ou "desenho plano") de G.

O grafo G é dito **não-planar** se não existir representação planar para G.

Planaridade

Os sólidos regulares são planares

Exercício: Mostre que os grafos abaixo são planares. Faça isso encontrando representações planares.

Multigrafos

Quando estudamos planaridade, podemos restringir o foco em grafos simples sempre que for conveniente.

- Verifique se cada uma das afirmações a seguir é verdadeira ou falsa para um grafo G. Apresente uma prova ou contra exemplo para justificar sua resposta:
 - a) Qualquer sub-grafo de um grafo planar é planar.
 - b) Qualquer sub-grafo de um grafo não-planar é não-planar.
 - c) Qualquer grafo que contém um sub-grafo planar é planar.
 - d) Qualquer grafo que contém um sub-grafo não-planar é não-planar.

- 2. Quais árvores são planares?
- 3. Para quais valores de n o grafo ciclo C_n é planar?
- 4. Para quais valores de n o grafo completo K_n é planar?
- 5. Para quais valores de s o grafos bipartidos completos $K_{1,s}$ e $K_{2,s}$ são planares?
- 6. Para quais valores de r e s ($r \le s$) o grafos bipartidos completos $K_{r,s}$ são planares?

Dado um grafo G, como saber se G é planar?

Insersão de vértices de grau 2 num grafo não afeta a planaridade do grafo!

- Se G é um grafo planar, então uma sub-divisão de G também é planar.
- Se G é um grafo não-planar, então uma sub-divisão de G também é não-planar.

sub-divisão de K₅

sub-divisão de K_{3.3}

 Se G é um grafo que contém uma sub-divisão de K₅ ou K_{3,3}, então G é não-planar

• Se G é um grafo não-planar, então G contém uma sub-divisão de K₅ ou K_{3,3}.

Teorema de Kuratowsky*:

Um grafo G é planar se e somente se não contiver uma sub-divisão de K_5 ou $K_{3,3}$.

teorema enunciado pelo matemático polonês Kazimirez Kuratowsky, em 1930.

Para cada um dos ítens abaixo, tente desenhar um grafo planar que atenda a descrição dada, ou então prove que tal grafo não existe.

- a) Um grafo simples com 6 vértices e 13 arestas;
- b) Um grafo não-simples (multigrafo) com 6 vértices e 13 arestas;
- c) Um grafo bipartido simples com 7 vértices e 11 arestas;
- d) Um grafo bipartido não-simples (multigrafo) com 7 vértices e 11 arestas.

Desenhe um grafo bipartido G não planar com 15 vértices e 18 arestas que satisfaça a seguinte fórmula: $n \leq (2 \times e) - 4$ (onde e é o número de arestas).

 Utilize o teorema de Kuratowsky para demonstrar que cada um dos grafos abaixo é nao planar (tente encontrar sub-divisões de K₅ ou K_{3,3}.

