

Image fundamentals, Neural Network

담당교수: 최 학남 (xncui@inha.ac.kr)

Contents

Image fundamentals

Neural Network

Pixels

• Pixels are the raw building blocks of an image. Every image consists of a set of pixels.

This image is 1,000 pixels wide and 750 pixels tall, for a total of 1,000x750=750,000 total pixels.

151	121	1	93	165	204	14	214	28	235
62	67	17	234	27	1	221	37	189	141
20	168	155	113	178	228	25	130	139	221
236	136	158	230	10	5	165	17	30	155
174	148	93	70	95	106	151	10	160	214
103	126	58	16	138	136	98	202	42	233
235	103	52	37	94	104	173	86	223	113
212	15	179	139	48	232	194	46	174	37
119	81	241	172	95	170	29	210	22	194
129	19	33	253	229	5	152	233	52	44
88	200	194	185	140	200	223	190	164	102
113	16	220	215	143	104	247	29	97	203
9	210	102	246	75	9	158	104	184	129
124	52	76	148	249	107	65	216	187	181
6	251	52	208	46	65	185	38	77	240
150	194	28	206	148	197	208	28	74	93
33	183	248	153	168	205	146	100	254	218
130	53	128	212	61	226	201	110	140	183
165	246	22	102	151	213	40	138	8	93
152	251	101	230	23	162	70	238	75	24
187	105	152	83	167	98	125	180	136	121
139	197	55	209	28	124	208	208	104	40
123	19	144	223	62	253	202	108	47	242
220	144	31	16	136	123	227	62	183	163

29	142	142	75	22	109	111	28	6	5
137	168	41	206	100	70	219	127	114	191
205	154	226	14	89	86	242	67	203	15
247	47	128	123	253	229	181	251	232	28
68	75	24	99	93	63	215	222	102	180
206	246	85	103	215	3	62	64	77	216
126	80	165	149	196	75	186	60	179	193
44	253	164	253	14	216	175	30	46	254
137	23	33	203	241	21	144	63	244	188
32	214	142	121	249	109	99	232	183	71
45	36	152	27	190	137	61	1	237	247
1	14	241	70	2	30	151	67	169	205
32	80	102	32	99	169	91	166	73	214
186	219	9	203	209	240	40	249	119	122
177	252	38	203	119	0	217	139	139	157
154	145	49	251	150	185	235	23	230	156
157	168	223	60	247	118	5	180	16	206
102	208	195	246	140	138	54	191	139	79
17	233	85	169	166	24	49	40	160	97
84	242	247	144	203	3	19	24	198	88
67	67	185	98	123	106	168	105	127	153
37	113	214	252	203	80	146	211	7	16
142	241	66	86	214	133	146	253	189	200
67	215	174	111	189	54	144	56	59	163

Gray and Color image

Gray image: 256x256x1

Color image: 256x256x3

Color image

Color image

Left: The RGB color space is additive. The more red, green and blue you mix together, the closer you get to white. Right: The RGB cube.

Image coordinate system


```
import cv2
image = cv2.imread("example.png")
print(image.shape)
cv2.imshow("Image", image)
cv2.waitKey(0)
```

```
(b, g, r) - image[20, 100] # accesses pixel at x-100, y-20
(b, g, r) - image[75, 25] # accesses pixel at x-25, y-75
(b, g, r) - image[90, 85] # accesses pixel at x-85, y-90
```

The letter "I" placed on a piece of graph paper. Pixels are accessed by their (x^cy) -coordinates, where we go x columns to the right and y rows down, keeping in mind that Python is zero-indexed.

RGB and BGR ordering

- OpenCV stores RGB channels in reverse order.
 - While we normally think in terms of Red, Green, and Blue, OpenCV actually stores the pixel values in Blue, Green, Red order.
- Why does OpenCV do this?
 - The answer is simply historical reasons. Early developers of the OpenCV library chose the BGR color format because the BGR ordering was popular among camera manufacturers and other software developers at the time.

Datasets - MNIST

MNIST

- A sample of the MNIST dataset. The goal of this dataset is to correctly classify the handwritten digits, 0-9.
- Consists of 60,000 training images and 10,000 testing images.
- Each feature vector is 784-dim, corresponding to the 28x28 grayscale pixel intensities of the image.
- These grayscale pixel intensities are unsigned integers, falling into the range [0~255].

```
41571336484976369366
47781372464328614369
17765860039541577321
35257329716946332419
```

Datasets - Animals

 A sample of the 3-class animals dataset consisting of 1,000 images per dog, cat, and panda class respectively for a total of 3,000 images.

Datasets — CIFAR-10

• CIFAR-10 consists of 60,000, 32x32x3 (RGB) images resulting in a feature vector dimensionality of 3072.

Datasets – SMILES

- SMILES dataset consists of images of faces that are either smiling or not smiling.
- In total, there are **13,165** grayscale images in the dataset, with each image having a size of 64x64.

Datasets – Kaggle :dogs vs cats

 A total of 25,000 images are provided to train your algorithm with varying image resolutions.

Datasets – flowers-17

The Flowers-17 dataset is a 17 category dataset with 80 images per class.

Datasets — CALTECH-101

- Introduced by Fei-Fei et al. [53] in 2004, the CALTECH-101 dataset is a popular benchmark dataset for object detection.
- The dataset of 8,677 images includes 101 categories spanning a diverse range of objects, including elephants, bicycles, soccer balls, and even human brains, just to name a few. The CALTECH-101 dataset exhibits heavy class imbalances

Datasets – Tiny ImageNet 200

 There are a total of 200 image classes in this dataset with 500 images for training, 50 images for validation, and 50 images for testing per class. Each image has been preprocessed and cropped to 64x64x3 pixels making it easier for students to focus on deep learning techniques rather than computer vision preprocessing functions.

Datasets -ImageNet

- ImageNet is actually a project aimed at labeling and categorizing images into almost 22,000 categories based on a defined set of words and phrases.
- At the time of this writing, there are over 14 million images in the ImageNet project.

Datasets -ImageNet

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 - A collage of ImageNet examples put together by Stanford University.
 - This dataset is massive with over 1.2 million images and 1,000 possible object categories.
 - ImageNet is considered the de facto standard for benchmarking image classification algorithms.

Datasets – Adience

• total of 26,580 images are included in the dataset with ages ranging from 0-60.

Datasets - Kaggle: Facial Expression Recognition Challenge(FER)

- A total of 35,888 images are provided in the FER challenge with the goal to label a given
- facial expression into seven different categories:
 - 1. Angry

2. Disgust (sometimes grouped in with "Fear" due to class

imbalance)

- 3. Fear
- 4. Happy
- 5. Sad
- 6. Surprise
- 7. Neutral

Datasets - Stanford Cars

 The Stanford Cars Dataset consists of 16,185 images with 196 vehicle make and model classes.

Datasets - LISA Traffic Signs

 The LISA Traffic Signs datasets consists of 47 different United States traffic signs with 7,855 annotations over 6,610 frames.

Datasets - Front/Rear View Vehicles

The Front/Rear View Vehicles dataset comes from Davis
 King's dlib library and was hand annotated by King for
 usage in a demonstration of his max-margin object
 detection algorithm.

Relation to Biology

Schematic of a biological neuron.

Activation functions

Logistic regression units

AND/OR problem: linearly separable?

Exercise:

Design the model to solve the AND problem

x_0	x_1	$x_0 \& x_1$
0	0	0
0	1	0
1	0	0
1	1	1

• Design the model to solve the OR problem

x_0	x_1	$x_0 x_1$
0	0	0
0	1	1
1	0	1
1	1	1

XOR problem: linearly separable?

x_0	x_1	$x_0 \wedge x_1$
0	0	0
0	1	1
1	0	1
1	1	0

Neural net to solve XOR problem

Neural net to solve XOR problem ()

•
$$[x0, x1] = [0, 0]$$

•
$$[x0, x1] = [0, 1]$$

•
$$[x0, x1] = [1, 0]$$

•
$$[x0, x1] = [1, 1]$$

Forward propagation

Forward propagation

Neural network

Matrix form

XOR data set


```
x_{data} = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)

y_{data} = np.array([[0], [1], [1], [0]], dtype=np.float32)
```

Pytorch practice 1: XOR with logistic regression


```
x_{data} = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)
X = Variable(torch.from numpy(x data))
Y = Variable(torch.from_numpy(y_data))
# Hypothesis using sigmoid
linear = torch.nn.Linear(2, 1, bias=True)
sigmoid = torch.nn.Sigmoid()
model = torch.nn.Sequential(linear, sigmoid)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
                                                                                                     Hypothesis: [[ 0.49999997]
                                                                                                       [0.5]
for step in range(10001):
                                                                                                      [0.5]
    optimizer.zero_grad()
                                                                                                      [0.5]
    hypothesis = model(X)
                                                                                                     Correct: [[ 0.1
    # cost/loss function
                                                                                                      [0.]
    cost = -(Y * torch.log(hypothesis) + (1 - Y)
                                                                                                       [0.1]
             * torch.log(1 - hypothesis)).mean()
                                                                                                      [0.]]
    cost.backward()
                                                                                                     Accuracy: 0.5
    optimizer.step()
    if step % 100 == 0:
        print(step, cost.data.numpy())
# Accuracy computation
# True if hypothesis>0.5 else False
predicted = (model(X).data > 0.5).float()
accuracy = (predicted == Y.data).float().mean()
print("\nHypothesis: ", hypothesis.data.numpy(), "\nCorrect: ", predicted.numpy(), "\nAccuracy: ", accuracy)
```

Pytorch practice2: XOR with Neural Network


```
x_{data} = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)
X = Variable(torch.from numpy(x data))
Y = Variable(torch.from numpy(y data))
linear1 = torch.nn.Linear(2, 2, bias=True)
linear2 = torch.nn.Linear(2, 1, bias=True)
sigmoid = torch.nn.Sigmoid()
model = torch.nn.Sequential(linear1, sigmoid, linear2, sigmoid)
                                                                                                             Hypothesis: [[ 0.0216833 ]
                                                                                                              [ 0.97211885]
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
                                                                                                              [ 0.97253156]
                                                                                                               [ 0.04630803]]
for step in range(10001):
                                                                                                             Correct: [[ O.]
    optimizer.zero_grad()
                                                                                                              [ 1.]
    hypothesis = model(X)
                                                                                                              [ 1.]
    # cost/loss function
                                                                                                              [0.]
    cost = -(Y * torch.log(hypothesis) + (1 - Y)
                                                                                                             Accuracy: 1.0
            * torch.log(1 - hypothesis)).mean()
    cost.backward()
    optimizer.step()
    if step % 100 == 0:
        print(step, cost.data.numpy())
# Accuracy computation
# True if hypothesis>0.5 else False
predicted = (model(X).data > 0.5).float()
accuracy = (predicted == Y.data).float().mean()
print("\nHypothesis: ", hypothesis.data.numpy(), "\nCorrect: ", predicted.numpy(), "\nAccuracy: ", accuracy)
```

Pytorch practice2: XOR with Neural Network


```
x_{data} = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)
X = Variable(torch.from numpy(x data))
Y = Variable(torch.from numpy(y data))
linear1 = torch.nn.Linear(2, 2, bias=True)
linear2 = torch.nn.Linear(2, 1, bias=True)
sigmoid = torch.nn.Sigmoid()
model = torch.nn.Sequential(linear1, sigmoid, linear2, sigmoid)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
```