Analysis Report

This report is structured as follows.

Contents

Outlier Assessment	
The influence of Hybrid on Uniformity, Ea	arly Vigor, Average Plant and Ear Heights
Duncan's posthoc test	<u> </u>
The influence of Hybrid on E, A and gs	90/1
Duncan's posthoc test	
The influence of Hybrid and Irrigation on	Stalk.ECB, Fusarium, Stay.Green, Harvesyed.plant
Kg_str_15	
Duncan's posthoc test	
	A, E and gs
Duncan's posthoc test	

Normality Assessment

The normality of the data was assessed by calculating skewness and kurtosis for each variable. Variables with skewness and/or kurtosis values exceeding 1 are indicative of deviations from normality, as suggested by established guidelines. The results are reported as follows:

Variable	Skewness	Kurtosis
uniformity	0.499	-0.505
Early.vigor	-0.112	-0.517
Average.Plant.Height	0.452	-1.068
Average.Ear.Height	0.421	-0.200
Stalk.ECB	2.178	10.569
Fusarium	1.140	2.416
Stay.Green	0.490	0.280
Harvesyed.plants	-0.608	-1.382
Kg_str_15.	0.382	-0.312
E1	0.379	-0.555
gs1	1.025	1.652
A1	0.232	-0.938
E2	0.393	-0.446
gs2	0.693	0.704
A2	0.495	-0.552
E3	0.252	-0.504
gs3	1.105	2.895
A3	0.338	-0.703
E4	0.415	-0.298
gs4	0.380	-0.300
A4	0.372	-0.371
E5	0.605	-0.136
gs5	0.735	0.594
A5	0.640	-0.069
E6	0.890	0.439
gs6	0.069	-0.488
A6	0.686	-0.229

Skewness values higher than 1.5 were observed for Stalk.ECB (2.178). Kurtosis values higher than .51 were also noted for Stalk.ECB (10.569), Fusarium (2.416), gs1 (1.652), and gs3 (2.895).

These findings suggest that Stalk.ECB, Fusarium, gs1, and gs3 demonstrate significant deviations from normality in terms of both skewness and kurtosis, which may necessitate transformations for further analysis. All other variables presented skewness and kurtosis values below the threshold of 1, indicating that their distributions approximate normality.

Outlier Assessment

All datasets were combined, and Z-scores were calculated for the variables gs, A, and E. Two values of E exhibited Z-scores greater than 3.5, specifically 3.6 and 4.0. For gs, 33 values exceeded this threshold, with the highest being 5.76. No values of A were identified as outliers. The total number of observations with Z-scores higher than 3.5 represented less than 1% of the dataset, which consists of 5,089 observations. Given the low frequency of these potential outliers and their status as plausible data points, their removal was deemed unnecessary. Therefore, all data points were retained for subsequent analyses to ensure the integrity of the dataset. The complete Z-score datasets can be found in the Excel file delivering along with this document.

The influence of Hybrid on Uniformity, Early Vigor, Average Plant and Ear Heights

The influence of Hybrid on uniformity, early vigor, average plant height, and average ear height was evaluated using one-way ANOVA. The analyses were conducted in R using the dplyr, broom, and agricolae libraries. Duncan's post-hoc test was applied to assess pairwise differences between hybrid groups. The results are presented below.

Variable	Term	df	Sum Sqs	Mean Sqs	F	р
uniformity	Hybrid	2	49.694	24.847	12.960	0.000
uniformity	Residuals	285	546.417	1.917		
E-d	Hybrid	2	9.194	4.597	9.678	0.000
Early.vigor	Residuals	285	135.385	0.475		
Average.Plant.Height	Hybrid	2	75741.022	37870.511	500.901	0.000
Average.Plant.Height	Residuals	285	21547.343	75.605		
Average.Ear.Height	Hybrid	2	18071.244	9035.622	131.850	0.000
Average.Ear.Height	Residuals	285	19530.876	68.529		

Variable	Group	Sig. Diff.	Scores
	Tall Hybrids(75cm)	a	4.479
uniformity	SSC Hybrids 40cm	a	4.229
	SSC Hybrids(75cm)	b	3.500
	Tall Hybrids(75cm)	a	4.260
Early.vigor	SSC Hybrids 40cm	b	4.031
	SSC Hybrids(75cm)	c	3.823
	Tall Hybrids(75cm)	a	217.875
Average.Plant.Height	SSC Hybrids 40cm	b	184.021
	SSC Hybrids(75cm)	b	182.951
	Tall Hybrids(75cm)	a	76.767
Average.Ear.Height	SSC Hybrids 40cm	b	60.281
	SSC Hybrids(75cm)	b	59.663

For uniformity, the one-way ANOVA revealed a significant effect of Hybrid, F(2, 285) = 12.96, p < .001, indicating that different hybrids had a significant impact on uniformity. Duncan's post-hoc test showed that the Tall Hybrids (75cm) (M = 4.479) and SSC Hybrids 40cm (M = 4.229) were grouped together with no significant difference between them (group 'a'). However, the SSC Hybrids (75cm) (M = 3.500) showed a significant difference, forming group 'b'.

For early vigor, the ANOVA also indicated a significant effect of Hybrid, F(2, 285) = 9.68, p < .001. Duncan's post-hoc test found that Tall Hybrids (75cm) (M = 4.260) belonged to group 'a', while SSC Hybrids 40cm (M = 4.031) and SSC Hybrids (75cm) (M = 3.823) were placed in groups 'b' and 'c', respectively, showing distinct differences among all groups.

For average plant height, Hybrid had a highly significant effect, F(2, 285) = 500.90, p < .001. Posthoc comparisons showed that Tall Hybrids (75cm) (M = 217.88) formed a distinct group 'a', whereas SSC Hybrids 40cm (M = 184.02) and SSC Hybrids (75cm) (M = 182.95) were grouped together in group 'b', indicating that both SSC hybrid types had similar average plant heights but were significantly different from the tall hybrids.

For average ear height, the one-way ANOVA revealed a significant influence of Hybrid, F(2, 285) = 131.85, p < .001. Duncan's test indicated that Tall Hybrids (75cm) (M = 76.77) belonged to group 'a', while SSC Hybrids 40cm (M = 60.28) and SSC Hybrids (75cm) (M = 59.66) were placed in group 'b', showing significant differences between the tall hybrids and the SSC hybrids, but not between the SSC hybrid groups.

The influence of Hybrid on E, A and gs

The influence of Hybrid on E, A, and gs was evaluated using one-way ANOVA and Duncan's post-hoc test.

Variable	Term	df	Sum Sqs	Mean Sqs	F	р
E1	Hybrid	2	1.340	0.670	0.192	0.825
	Residuals	285	992.795	3.483		
1	Hybrid	2	0.009	0.004	0.775	0.462
gs1	Residuals	285	1.574	0.006		
A1	Hybrid	2	8.615	4.307	0.079	0.924
	Residuals	285	15488.180	54.344		έO.

For E1, the one-way ANOVA revealed no significant effect of Hybrid, F(2, 285) = 0.192, p = 0.825, indicating that the hybrid groups did not significantly differ in their E values. Duncan's post-hoc test confirmed that all groups—SSC Hybrids (75cm) (M = 10.308), SSC Hybrids 40cm (M = 10.243), and Tall Hybrids (75cm) (M = 10.142)—formed a single group, showing no significant differences. For gs1, the ANOVA similarly found no significant effect of Hybrid, F(2, 285) = 0.775, p = 0.462. Duncan's post-hoc test again grouped all hybrids together, with SSC Hybrids (75cm) (M = 0.405), Tall Hybrids (75cm) (M = 0.394), and SSC Hybrids 40cm (M = 0.393) showing no significant differences.

For A1, the results of the ANOVA indicated no significant effect of Hybrid, F(2, 285) = 0.079, p = 0.924, suggesting that hybrid type did not influence A. Duncan's post-hoc test confirmed this by placing SSC Hybrids 40cm (M = 27.262), Tall Hybrids (75cm) (M = 26.947), and SSC Hybrids (75cm) (M = 26.860) in the same group, indicating no significant differences among the hybrid groups for A.

In summary, there were no significant differences between the hybrid groups in terms of E1, gs1, and A1, with all hybrid types displaying similar values across these measures.

Variable	Group	Sig. Diff.	Scores
	SSC Hybrids(75cm)	a	10.308
E1	SSC Hybrids 40cm	a	10.243
W.	Tall Hybrids(75cm)	a	10.142
	SSC Hybrids(75cm)	a	0.405
gs1	Tall Hybrids(75cm)	a	0.394
	SSC Hybrids 40cm	a	0.393
	SSC Hybrids 40cm	a	27.262
A1	Tall Hybrids(75cm)	a	26.947
	SSC Hybrids(75cm)	a	26.860

<u>The influence of Hybrid and Irrigation on Stalk.ECB, Fusarium, Stay.Green, Harvesyed.plants and Kg_str_15.</u>

The influence of Hybrid and Irrigation on Stalk.ECB, Fusarium, Stay.Green, Harvesyed.plants, and Kg_str_15 was evaluated using two-way ANOVA. Analyses were conducted in R using the dplyr, broom, and agricolae libraries, with Duncan's post-hoc test applied to assess pairwise differences between groups.

Variable	Term	df	Sum Sqs	Mean Sqs	F	р
	Hybrid	2	6974.674	3487.337	49.899	0.000
Stalk.ECB	Irrigation	1	2117.920	2117.920	30.305	0.000
	Hybrid:Irrigation	2	524.590	262.295	3.753	0.025
	Residuals	282	19708.229	69.887		
	Hybrid	2	612.528	306.264	97.787	0.000
Fusarium	Irrigation	1	51.681	51.681	16.501	0.000
rusarium	Hybrid:Irrigation	2	17.694	8.847	2.825	0.061
	Residuals	282	883.208	3.132	(6)	
	Hybrid	2	2.111	1.056	1.000	0.369
Stay.Green	Irrigation	1	28.753	28.753	27.253	0.000
Stay. Officen	Hybrid:Irrigation	2	15.361	7.681	7.280	0.001
	Residuals	282	297.521	1.055		
	Hybrid	2	696998.353	348499.177	2289.942	0.000
Harvesyed.plants	Irrigation	1	177.096	177.096	1.164	0.282
Trai vesyed.prants	Hybrid:Irrigation	2	119.620	59.810	0.393	0.675
	Residuals	282	42916.713	152.187		
	Hybrid	2	563072.714	281536.357	11.928	0.000
Kg_str_15.	Irrigation	1	2278485.244	2278485.244	96.530	0.000
Ng_su_13.	Hybrid:Irrigation	2	7388.558	3694.279	0.157	0.855
	Residuals	282	6656314.975	23603.954		

Factor	Group	Sig. Diff.	Scores
	SSC Hybrids 40cm	a	19.115
Hybrid	Tall Hybrids(75cm)	b	10.875
	SSC Hybrids(75cm)	c	7.375
Irrigation	2	a	15.167
migation	1	b	9.743
	SSC Hybrids 40cm	a	5.000
Hybrid	Tall Hybrids(75cm)	b	2.063
	SSC Hybrids(75cm)	b	1.771
Imigation	2	a	3.368
irrigation	1	b	2.521
	SSC Hybrids 40cm	a	5.177
Hybrid	SSC Hybrids(75cm)	a	5.052
	Tall Hybrids(75cm)	a	4.969
Irrigation	2	a	5.382
Hilgation	1	b	4.750
Hybrid	SSC Hybrids 40cm	a	306.084
	Hybrid Irrigation Hybrid Irrigation Hybrid Irrigation	SSC Hybrids 40cm Tall Hybrids(75cm) SSC Hybrids(75cm) Irrigation SSC Hybrids 40cm Hybrid Tall Hybrids(75cm) SSC Hybrids(75cm) SSC Hybrids(75cm) Irrigation SSC Hybrids 40cm Hybrid SSC Hybrids 40cm Hybrid SSC Hybrids 40cm Tall Hybrids(75cm) Tall Hybrids(75cm) Irrigation Irrigation Irrigation Irrigation 2 1	SSC Hybrids 40cm a

		SSC Hybrids(75cm)	a	303.981
		Tall Hybrids(75cm)	b	200.690
	Tuning 1		a	271.036
	Irrigation	2	a	269.468
	Hybrid	SSC Hybrids 40cm	a	1101.396
		SSC Hybrids(75cm)	b	1056.502
Kg_str_15.		Tall Hybrids(75cm)	c	993.588
	Irrigation	1	a	1139.441
		2	b	961.549

For Stalk.ECB, both Hybrid and Irrigation had a significant effect, F(2, 282) = 49.90, p < .001 for Hybrid and F(1, 282) = 30.31, p < .001 for Irrigation. The interaction between Hybrid and Irrigation was also significant, F(2, 282) = 3.75, p = .025. Post-hoc analysis showed that SSC Hybrids 40cm (M = 19.115) formed group 'a', Tall Hybrids (75cm) (M = 10.875) formed group 'b', and SSC Hybrids (75cm) (M = 7.375) formed group 'c', indicating significant differences across all hybrid groups. For Irrigation, level 2 (M = 15.167) was significantly higher than level 1 (M = 9.743).

For Fusarium, the ANOVA revealed significant main effects for both Hybrid, F(2, 282) = 97.79, p < .001, and Irrigation, F(1, 282) = 16.50, p < .001. The interaction effect was marginally significant, F(2, 282) = 2.83, p = .061. Post-hoc tests indicated that SSC Hybrids 40cm (M = 5.000) formed group 'a', while Tall Hybrids (75cm) (M = 2.063) and SSC Hybrids (75cm) (M = 1.771) formed group 'b'. For Irrigation, level 2 (M = 3.368) was significantly higher than level 1 (M = 2.521).

For Stay.Green, Hybrid did not have a significant effect, F(2, 282) = 1.00, p = .369, while Irrigation had a significant effect, F(1, 282) = 27.25, p < .001. The interaction between Hybrid and Irrigation was also significant, F(2, 282) = 7.28, p = .001. Duncan's post-hoc test showed no significant differences between the hybrids, with SSC Hybrids 40cm (M = 5.177), SSC Hybrids (75cm) (M = 5.052), and Tall Hybrids (75cm) (M = 4.969) all forming group 'a'. However, Irrigation level 2 (M = 5.382) was significantly higher than level 1 (M = 4.750).

For Harvesyed.plants, Hybrid had a significant effect, F(2, 282) = 2289.94, p < .001, while Irrigation did not, F(1, 282) = 1.16, p = .282. The interaction between Hybrid and Irrigation was also non-significant, F(2, 282) = 0.39, p = .675. Duncan's post-hoc test revealed that SSC Hybrids 40cm (M = 306.084) and SSC Hybrids (75cm) (M = 303.981) formed group 'a', while Tall Hybrids (75cm) (M = 200.690) formed group 'b'. No significant differences were found between the irrigation levels.

For Kg_str_15, both Hybrid and Irrigation had significant effects, F(2, 282) = 11.93, p < .001 for Hybrid and F(1, 282) = 96.53, p < .001 for Irrigation. The interaction effect was not significant, F(2, 282) = 0.16, p = .855. Post-hoc analysis showed that SSC Hybrids 40cm (M = 1101.396) formed group 'a', SSC Hybrids (75cm) (M = 1056.502) formed group 'b', and Tall Hybrids (75cm) (M =

993.588) formed group 'c'. For Irrigation, level 1 (M = 1139.441) was significantly higher than level 2 (M = 961.549).

Given that Stalk.ECB and Fusarium had previously showed to depart from the normal distribution, the test was replicated after log-transforming the variable and the results are shown below.

Variable	Term	df	Sum Sqs	Mean Sqs	F	p
	Hybrid	2	45.388	22.694	48.179	0.000
Stalk.ECB	Irrigation	1	10.623	10.623	22.552	0.000
Stark.ECB	Hybrid:Irrigation	2	0.206	0.103	0.219	0.803
	Residuals	282	132.830	0.471		4,0
	Hybrid	2	39.691	19.845	72.133	0.000
Euganium	Irrigation	1	2.765	2.765	10.049	0.002
Fusarium	Hybrid:Irrigation	2	0.174	0.087	0.316	0.729
	Residuals	282	77.584	0.275		O'

For Stalk.ECB (log-transformed), significant effects were found for Hybrid, F(2, 282) = 48.18, p < .001, and Irrigation, F(1, 282) = 22.55, p < .001. However, the interaction between Hybrid and Irrigation was no longer significant, F(2, 282) = 0.22, p = .803.

For Fusarium (log-transformed), Hybrid and Irrigation continued to show significant effects, F(2, 282) = 72.13, p < .001 for Hybrid and F(1, 282) = 10.05, p = .002 for Irrigation. The interaction effect remained non-significant, F(2, 282) = 0.32, p = .729.

The influence of Hybrid and Irrigation on A, E and gs

The two-way ANOVA assessing the influence of Hybrid and Irrigation on **E**, **gs**, and **A** revealed that the majority of the variables did not exhibit significant effects across both main factors and their interaction. Specifically, for **E**, **gs**, and **A** at time points 2 through 6, neither Hybrid nor Irrigation consistently showed significant effects, nor were the interaction terms between Hybrid and Irrigation statistically significant in most cases.

For **E4**, a marginally significant main effect of Hybrid was observed (F(2, 282) = 2.89, p = .057), with a significant Hybrid × Irrigation interaction (F(2, 282) = 5.38, p = .005). Similarly, for **gs4**, the effect of Irrigation was significant (F(1, 282) = 4.06, p = .045), though Hybrid and the interaction were not significant. Notably, **A5** and **A6** displayed significant effects of Irrigation, with F(1, 282) = 6.43, p = .012 for **A5** and F(1, 282) = 5.18, p = .024 for **E6**. The corresponding Duncan post-hoc tests for these measures further supported the observed non-significance across most group comparisons, as no consistent differentiation was found between Hybrid or Irrigation groups.

Overall, the data demonstrated non-significance across the majority of tested measures for **E**, **gs**, and **A**, indicating limited interaction effects between Hybrid and Irrigation in these variables. The results suggest that neither factor alone, nor their interaction, consistently affected these measures across time points.

Variable	Term	df	Sum Sqs	Mean Sqs	F	p
	Hybrid	2	4.499	2.250	0.525	0.592
E2	Irrigation	1	1.565	1.565	0.365	0.546
L2	Hybrid:Irrigation	2	13.730	6.865	1.603	0.203
	Residuals	282	1207.750	4.283		
	Hybrid	2	0.007	0.003	0.521	0.594
~~?	Irrigation	1	0.021	0.021	3.272	0.072
gs2	Hybrid:Irrigation	2	0.006	0.003	0.479	0.620
	Residuals	282	1.840	0.007		
	Hybrid	2	106.779	53.390	0.896	0.409
4.2	Irrigation	1	17.145	17.145	0.288	0.592
A2	Hybrid:Irrigation	2	48.442	24.221	0.407	0.666
	Residuals	282	16796.270	59.561		(0)
	Hybrid	2	6.438	3.219	0.735	0.480
	Irrigation	1	1.918	1.918	0.438	0.509
E3	Hybrid:Irrigation	2	9.224	4.612	1.054	0.350
	Residuals	282	1234.387	4.377	1.05	0.220
	Hybrid	2	0.010	0.005	0.746	0.475
	Irrigation	1	0.010	0.003	1.411	0.473
gs3	Hybrid:Irrigation	2	0.010	0.010	0.723	0.230
	Residuals	282	0.010 1.959	0.005	0.723	0.480
					0.170	0.027
	Hybrid	2	18.658	9.329	0.178	0.837
A3	Irrigation	1	5.062	5.062	0.096	0.756
	Hybrid:Irrigation	2	163.031	81.516	1.554	0.213
	Residuals	282	14796.420	52.470		
	Hybrid	2	13.278	6.639	2.894	0.057
E4	Irrigation	1	3.055	3.055	1.331	0.250
. .	Hybrid:Irrigation	2	24.682	12.341	5.379	0.005
	Residuals	282	646.972	2.294		
	Hybrid	2	0.021	0.010	2.347	0.098
ore A	Irrigation		0.018	0.018	4.057	0.045
gs4	Hybrid:Irrigation	2	0.012	0.006	1.361	0.258
	Residuals	282	1.255	0.004		
	Hybrid	2	48.287	24.143	0.607	0.546
A 1	Irrigation	1	31.814	31.814	0.800	0.372
A4	Hybrid:Irrigation	2	67.101	33.550	0.843	0.431
	Residuals	282	11219.316	39.785		
	Hybrid	2	0.491	0.246	0.063	0.939
	Irrigation	1	7.094	7.094	1.806	0.180
E5	Hybrid:Irrigation	2	11.102	5.551	1.414	0.245
	Residuals	282	1107.436	3.927	1,117	5.275
À	Hybrid	202	0.013	0.006	1.185	0.307
	Irrigation	1	0.013	0.048	8.776	0.003
gs5	Hybrid:Irrigation	2	0.048	0.048	0.248	0.003
	•				0.248	0.780
12/2	Residuals	282	1.527	0.005	0.007	0.447
Y	Hybrid	2	62.926	31.463	0.807	0.447
A5	Irrigation	1	250.470	250.470	6.425	0.012
	Hybrid:Irrigation	2	136.300	68.150	1.748	0.176
	Residuals	282	10993.875	38.985		
	Hybrid	2	3.114	1.557	0.913	0.402
E6	Irrigation	1	8.834	8.834	5.182	0.024
□ 0	Hybrid:Irrigation	2	5.888	2.944	1.727	0.180
	Residuals	282	480.774	1.705		
	Testadas					
gs6	Hybrid	2	0.003	0.001	0.208	0.812

Variable	Term	df	Sum Sqs	Mean Sqs	F	р
	Hybrid:Irrigation	2	0.009	0.004	0.629	0.534
	Residuals	282	1.924	0.007		
	Hybrid	2	16.880	8.440	0.350	0.705
A 6	Irrigation	1	8.293	8.293	0.344	0.558
A6	Hybrid:Irrigation	2	222.345	111.172	4.608	0.011
	Residuals	282	6803.477	24.126		

Variable	Factor	Group	Sig. Diff.	Scores
E2		SSC Hybrids(75cm)	a	10.552
	Hybrid	Tall Hybrids(75cm)	a	10.410
		SSC Hybrids 40cm	a	10.246
	Irrigation	2	a	10.476
	Irrigation	1	a	10.329
gs2		SSC Hybrids 40cm	a	0.413
	Hybrid	SSC Hybrids(75cm)	a	0.404
		Tall Hybrids(75cm)	a	0.402
	Imigation	2	a	0.415
	Irrigation	1	a	0.398
		SSC Hybrids(75cm)	a	27.554
	Hybrid	Tall Hybrids(75cm)	a	27.398
A2	•	SSC Hybrids 40cm	a	26.191
	T :	1	a	27.292
	Irrigation	2	a	26.804
		SSC Hybrids 40cm	a	10.934
	Hybrid	SSC Hybrids(75cm)	a	10.643
E3	•	Tall Hybrids(75cm)	a	10.596
	- · ·	2	a	10.806
	Irrigation	1	a	10.643
gs3	Hybrid	SSC Hybrids 40cm	a	0.437
		Tall Hybrids(75cm)	a	0.430
	J = 1	SSC Hybrids(75cm)	a	0.423
	Irrigation	2	a	0.436
		1	a	0.424
A3		SSC Hybrids(75cm)	a	26.526
	Hybrid	SSC Hybrids 40cm	a	26.168
		Tall Hybrids(75cm)	a	25.905
		1	a	26.332
	Irrigation	2	a	26.067
E4		SSC Hybrids 40cm	a	10.059
	Hybrid	Tall Hybrids(75cm)	ab	9.709
	11) 0114	SSC Hybrids(75cm)	b	9.544
		2	a	9.873
	Irrigation	1	a	9.667
gs4	Hybrid	SSC Hybrids 40cm	a	0.389
		Tall Hybrids(75cm)	a	0.371
	11,0114	SSC Hybrids(75cm)	a	0.371
		2	a	0.385
	Irrigation	- 1	b	0.369
A4		Tall Hybrids(75cm)	a	27.886
	Hybrid	SSC Hybrids 40cm	a	27.251
	1130110	SSC Hybrids 40cm		26.896
		SSC Hyunus(/Sciii)	a	20.070

Variable	Factor	Group	Sig. Diff.	Scores
	Irrigation	1	a	27.677
	Irrigation	2	a	27.012
E5		SSC Hybrids 40cm	a	9.959
	Hybrid	SSC Hybrids(75cm)	a	9.947
		Tall Hybrids(75cm)	a	9.866
	Tuningalina	1	a	10.081
	Irrigation	2	a	9.767
gs5		Tall Hybrids(75cm)	a	0.452
	Hybrid	SSC Hybrids 40cm	a	0.441
		SSC Hybrids(75cm)	a	0.436
	Tuni a ati a u	2	a	0.456
	Irrigation	1	b	0.430
		SSC Hybrids(75cm)	a	23.901
	Hybrid	SSC Hybrids 40cm	a	23.431
A5		Tall Hybrids(75cm)	a	22.762
	Imigation	1	a	24.297
	Irrigation	2	b	22.432
E6		SSC Hybrids(75cm)	a	8.967
	Hybrid	Tall Hybrids(75cm)	a	8.775
		SSC Hybrids 40cm	a	8.726
	Irrigation	2	a	8.998
	IIIIgation	1	b	8.648
gs6		SSC Hybrids 40cm	a	0.391
	Hybrid	SSC Hybrids(75cm)	a	0.388
		Tall Hybrids(75cm)	a	0.383
	Irrigation	2	a	0.401
	Irrigation	1	b	0.374
A6		SSC Hybrids(75cm)	a	22.297
	Hybrid	SSC Hybrids 40cm	a	21.818
		Tall Hybrids(75cm)	a	21.755
	Irrigation	2	a	22.126
	IIIIgation	1	a	21.787

All tests were replicated using log-transformed variables to address any potential violations of normality assumptions. The results of these log-transformed analyses yielded the same conclusions as the original tests. Specifically, there were no significant changes in the patterns of significance or the non-significance observed in the effects of Hybrid, Irrigation, and their interaction on **E**, **gs**, and **A** across the time points. This confirms that the overall conclusions remain robust even after transformation.

Repeated-Measures ANOVA

The repeated measures ANOVA was conducted to analyze the effect of time on the measures E, A, and gs across six weeks. The results revealed significant time effects for all three measures, indicating changes over time in the observed variables. The line plots representing the average values of each measure across time points are also provided for visual interpretation of these changes.

Variable	Stratum	Term	df	Sum Sqs	Mean Sqs	F	р
Е	ID	Residuals	1	13.034	13.034		1/10
	ID:Time	Time	5	547.068	109.414		7O),
	Within	Time	5	145.779	29.156	8.764	0.000
	Within	Residuals	1716	5708.828	3.327		
gs	ID	Residuals	1	0.220	0.220	00	
	ID:Time	Time	5	1.090	0.218		
	Within	Time	5	1.033	0.207	39.770	0.000
	Within	Residuals	1716	8.913	0.005		
A	ID	Residuals	1	1050.432	1050.432		
	ID:Time	Time	5	9919.129	1983.826		
	Within	Time	5	4975.963	995.193	24.832	0.000
	Within	Residuals	1716	68771.862	40.077		

For E, the ANOVA indicated a significant effect of time, F(5,1716)=8.764F(5, 1716)=8.764F(5,17

For gs, the results demonstrated a highly significant effect of time, F(5,1716)=39.770F(5,17

For A, the ANOVA revealed a significant effect of time, F(5,1716)=24.832F(5, 1716)=24.832F(5,1716)=24.832F(5,1716)=24.832, p<.001p<.001. The line plot for A shows relatively stable values from Time 1 to Time 3, followed by a sharp decrease at Time 6.

These findings highlight that time had a significant impact on the observed variables, suggesting dynamic changes across the six-week period.

SAMPLE