PUNE INSTITUTE OF COMPUTER TECHNOLOGY DHANKAWADI, PUNE - 43 BE PROJECT SYNOPSIS

DEPARTMENT OF COMPUTER ENGINEERING ACADEMIC YEAR: 2019-20

Group Id: 35

Project Group Members:

Roll Number	Name	Guide
4235	Hrushabh Hirudkar	1. Dr AS Ghotkar
4242	Anuj Kanetkar	2. Dr SS Sonawne
4256	Shriniwas Nayak	3. Dr GV Kale

Project Title: Generating relevant questions for a query using natural language processing techniques

Domain: Artificial Intelligence/Machine Learning

Sponsorship: Tech Mahindra

Department: Maker's Lab

External Guide: Mr Nikhil Malhotra

Synopsis:

1.	Abstract :	2
2.	Keywords:	2
3.	Architecture :	2
4.	Mathematical Model:	3
5.	Name of Conferences where paper can be published	3
6.	Project Time Line	4
7.	References	4

Abstract:

In today's technologically advancing world, getting answers for questions, general or specific is germane to the development of the user and as a result, development of the overall community. In this synopsis, we propose to find the relevant questions to a query entered by the user to solve doubts. Using text similarity, we can find out relevant questions to the query put forth by the user. This synopsis discusses the approaches for text similarity for questions and the use of different metrics to evaluate the similarity between questions.

Keywords:

NLP, Word2vec, Information Retrieval, Lexical Similarity, Semantic Similarity, String Similarity, Corpus Similarity

Architecture:

Mathematical Model:

Cosine Similarity is one of the methods used to calculate the similarity between two documents 'A' and 'B'. Each document consists of different words which are represented as two different vectors and the cosine product helps to find the angle between them, thus helping us to conclude on their similarity.

For example, If the cosine of the angle between vector of the two documents is 0 then they are similar and if it is -1 it represents that they are completely different.

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}}$$

Name of Conferences where paper can be published:

- 1. IEEE International Conference on Machine Learning and Applications (ICMLA)
 June 2020
- 2. ACM International Conference on Machine Learning and Computing (ICMLC) February 2020

Project Time Line

Tasks	June	July	August	September	October	November	December	January	February	March	
Group Selection											
Guide Allocation		8									
Problem Finalization											
Synopsis Submission											
Synopsis Review											
UML Diagrams											
SRS											
Testing											
Preliminary Report											
Setup Installation											
Project Demonstration											
Final Project Report											

References:

- Song Y., Roth D. (2015). "Unsupervised Sparse Vector Densification for Short Text Similarity", Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. DOI:10.3115/v1/N15-1138
- Sidorov et.al.(2015). "Computing text similarity using Tree Edit Distance", 2015
 Annual Conference of the North American Fuzzy Information Processing Society
 (NAFIPS) held jointly with 2015 5th World Conference on Soft Computing (WConSC).
 DOI: 10.1109/NAFIPS-WConSC.2015.7284129

- 3. Kashyap, A., Han, L., Yus, R. et al. Lang Resources & Evaluation (2016) 50: 125. https://doi.org/10.1007/s10579-015-9319-2
- 4. Schwarz C. (2019). Isemantica: "A command for text similarity based on latent semantic analysis".
- 5. Gomaa W, Fahmi A. (2013). "A Survey of Text Similarity Approaches", International Journal of Computer Applications (0975 –8887)Volume 68–No.13