- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)															(N	ome	e)				lum		ma	trice	ola)			

CODICE = 611290

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	0000

1. La funzione
$$f(x)=\left\{ egin{array}{ll} \dfrac{1}{\mathrm{e}^{\mathrm{e}^x}} & \quad \mathrm{per}\ x<0 \\ ax+1/\mathrm{e} & \quad \mathrm{per}\ x\geq 0 \end{array}
ight.$$
risulta derivabile in $x=0$ per a uguale a

A: N.A. B: N.E. C: -e D: 1/e E: $-e^{-1}$

2. La serie numerica

$$\sum_{n=1}^{\infty} \frac{n + \log(n^3)}{n^3 + \log(n^\alpha)}$$

converge per $\alpha \geq 0$ tale che

A: $1 < \alpha < 2$ B: $0 \le \alpha \le 3$ C: $\alpha > 1$ D: N.A. E: $\alpha \ge 3$

3. L'integrale

$$\int_0^1 \log(x) \, dx$$

vale

A: N.A. B: 0 C: N.E. D: -1 E: $\frac{-1+2e}{e}$

4. L'integrale

$$\int_0^3 \frac{x}{x+1} \, dx$$

vale

decrescente

A: $1 - \log(2/3)$ B: $\log(3e)$ C: $1 + \log(9/16)$ D: $\frac{1}{2}\log(5/2)$ E: N.A

5. La funzione $f: \mathbb{R}^+ \setminus \{1\} \to \mathbb{R}$ definita da $f(x) = 5^{\log_5(x)}$ è

A: iniettiva B: limitata superiormente C: non derivabile D: N.A. E: monotona

6. Data $f(x) = (\log(x))^{(2^x)}$, allora f'(e) vale

A: 2 B: N.E. C: $\frac{2^e}{e}$ D: e^{e-1} E: N.A.

7. La funzione $f(x) = x^4 - x^2$ è convessa per

A: N.E. B: $x \in \mathbb{R}^+$ C: $x \in [-1/\sqrt{2}, 0] \cup [1/\sqrt{2}, +\infty[$ D: $|x| \ge 6^{-1/2}$ E: x < 1

8. Modulo e argomento del numero complesso $z=(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})^{34}$ sono

A: $(-1, \pi)$ B: $(2\sqrt{2}, -\pi/2)$ C: N.A. D: $(1, \pi/3)$ E: $(1, \frac{\pi}{2})$

9. Inf, min, sup e max dell'insieme

 $A = \{k \in \mathbb{R} : \text{La soluzione di } y'(x) = k y(x), \ y(0) = 1 \text{ è limitata per } x \in [0, +\infty[\}$

valgono

 $\text{A: N.A.} \quad \text{B: } \{0, N.E., \pi, N.E.\} \quad \text{C: } \{-1, -1, 1, 1\} \quad \text{D: } \{-\infty, N.E., 0, 0\} \quad \text{E: } \{-\infty, N.E., 2\pi, 2\pi\}$

10. Il limite

$$\lim_{k \to +\infty} \frac{\int_0^{+\infty} e^{-x/k} dx}{k}$$

vale

A: 1 B: 0 C: N.A. D: $+\infty$ E: N.E.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

 (Cognome)															(No	me)			_		ume	i ma	tric	ola)			

Α	В	\mathbf{C}	D	\mathbf{E}	
11	ט	\sim	רב		

1	0000
2	00000
3	0000
4	0000
5	0000
6	00000
7	
8	
9	0000
10	0000

1. Il limite

$$\lim_{k \to +\infty} \frac{\int_0^{+\infty} e^{-x/k} dx}{k}$$

vale

A: $+\infty$ B: N.E. C: 0 D: N.A. E: 1

2. La funzione $f(x) = \begin{cases} \frac{1}{e^{e^x}} & \text{per } x < 0 \\ & \text{risulta derivabile in } x = 0 \text{ per } a \text{ uguale a} \end{cases}$

A: 1/e B: N.E. C: -e D: N.A. E: $-e^{-1}$

3. Modulo e argomento del numero complesso $z=(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})^{34}$ sono

A: $(2\sqrt{2}, -\pi/2)$ B: $(1, \frac{\pi}{2})$ C: $(-1, \pi)$ D: N.A. E: $(1, \pi/3)$

4. La funzione $f:\ \mathbb{R}^+\backslash\{1\}\to\mathbb{R}$ definita da $f(x)=5^{\log_5(x)}$ è

A: limitata superiormente B: non derivabile C: N.A. D: iniettiva E: monotona decrescente

5. Inf, min, sup e max dell'insieme

 $A = \{k \in \mathbb{R} : \text{La soluzione di } y'(x) = k y(x), \ y(0) = 1 \text{ è limitata per } x \in [0, +\infty[\}] \}$

valgono

A: $\{-\infty, N.E., 2\pi, 2\pi\}$ B: $\{-\infty, N.E., 0, 0\}$ C: $\{0, N.E., \pi, N.E.\}$ D: $\{-1, -1, 1, 1\}$ E: N.A.

6. Data $f(x) = (\log(x))^{(2^x)}$, allora f'(e) vale

A: e^{e-1} B: N.A. C: N.E. D: $\frac{2^e}{e}$ E: 2

7. La funzione $f(x) = x^4 - x^2$ è convessa per

A: N.E. B: $|x| \ge 6^{-1/2}$ C: $x \in \mathbb{R}^+$ D: x < 1 E: $x \in [-1/\sqrt{2}, 0] \cup [1/\sqrt{2}, +\infty[$

8. La serie numerica

$$\sum_{n=1}^{\infty} \frac{n + \log(n^3)}{n^3 + \log(n^\alpha)}$$

converge per $\alpha \geq 0$ tale che

A: $1 < \alpha < 2$ B: $0 \le \alpha \le 3$ C: $\alpha \ge 3$ D: $\alpha > 1$ E: N.A.

9. L'integrale

$$\int_0^1 \log(x) \, dx$$

vale

A: 0 B: N.E. C: N.A. D: $\frac{-1+2e}{e}$ E: -1

10. L'integrale

$$\int_0^3 \frac{x}{x+1} \, dx$$

vale

A: $\frac{1}{2}\log(5/2)$ B: N.A. C: $1 - \log(2/3)$ D: $1 + \log(9/16)$ E: $\log(3e)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)														(No	me)			(Nı	ımeı	ro di	trico	la)			

Α	В	\mathbf{C}	D	Ε	
	_	_	_		

1	
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	0000

1. La funzione $f(x) = x^4 - x^2$ è convessa per

A: $x \in [-1/\sqrt{2}, 0] \cup [1/\sqrt{2}, +\infty[$ B: x < 1 C: $x \in \mathbb{R}^+$ D: $|x| \ge 6^{-1/2}$ E: N.E.

2. La funzione $f(x) = \begin{cases} \frac{1}{e^{e^x}} & \text{per } x < 0 \\ ax + 1/e & \text{per } x \ge 0 \end{cases}$ risulta derivabile in x = 0 per a uguale a

A: 1/e B: N.A. C: N.E. D: $-e^{-1}$ E: -e

3. La funzione $f: \mathbb{R}^+ \setminus \{1\} \to \mathbb{R}$ definita da $f(x) = 5^{\log_5(x)}$ è

D: N.A. E: monotona A: limitata superiormente B: iniettiva C: non derivabile decrescente

4. L'integrale

$$\int_0^1 \log(x) \, dx$$

vale

B: N.A. C: -1 D: $\frac{-1+2e}{e}$ E: N.E.

5. Modulo e argomento del numero complesso $z=(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})^{34}$ sono

A: $(2\sqrt{2}, -\pi/2)$ B: N.A. C: $(1, \pi/3)$ D: $(1, \frac{\pi}{2})$ E: $(-1, \pi)$

6. Inf, min, sup e max dell'insieme

 $A = \{k \in \mathbb{R} : \text{La soluzione di } y'(x) = k y(x), \ y(0) = 1 \text{ è limitata per } x \in [0, +\infty[\}] \}$

valgono

A: $\{-\infty, N.E., 0, 0\}$ B: N.A. C: $\{0, N.E., \pi, N.E.\}$ D: $\{-\infty, N.E., 2\pi, 2\pi\}$ E: $\{-1, -1, 1, 1\}$

7. Il limite

$$\lim_{k \to +\infty} \frac{\int_0^{+\infty} e^{-x/k} dx}{k}$$

vale

A: N.A. B: $+\infty$ C: 1 D: N.E. E: 0

8. Data $f(x) = (\log(x))^{(2^x)}$, allora f'(e) vale

A: N.E. B: $\frac{2^{e}}{e}$ C: 2 D: N.A. E: e^{e-1}

9. L'integrale

$$\int_0^3 \frac{x}{x+1} \, dx$$

vale

A: $\frac{1}{2}\log(5/2)$ B: N.A. C: $1 + \log(9/16)$ D: $\log(3e)$ E: $1 - \log(2/3)$

10. La serie numerica

$$\sum_{n=1}^{\infty} \frac{n + \log(n^3)}{n^3 + \log(n^\alpha)}$$

converge per $\alpha \geq 0$ tale che

A: $0 \le \alpha \le 3$ B: $1 < \alpha < 2$ C: N.A. D: $\alpha > 1$ E: $\alpha \ge 3$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)														(No	me)			(Nı	ımeı	ro di	trico	la)			

CODICE = 474038

1	00000
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$

1. Modulo e argomento del numero complesso $z=(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})^{34}$ sono

A: $(-1, \pi)$ B: $(1, \frac{\pi}{2})$ C: $(1, \pi/3)$ D: N.A. E: $(2\sqrt{2}, -\pi/2)$

2. La funzione $f: \mathbb{R}^+ \setminus \{1\} \to \mathbb{R}$ definita da $f(x) = 5^{\log_5(x)}$ è

A: limitata superiormente B: non derivabile C: N.A. D: iniettiva E: monotona decrescente

3. Il limite

$$\lim_{k \to +\infty} \frac{\int_0^{+\infty} e^{-x/k} dx}{k}$$

vale

A: 0 B: N.A. C: $+\infty$ D: N.E. E: 1

4. Data $f(x) = (\log(x))^{(2^x)}$, allora f'(e) vale

A: N.A. B: e^{e-1} C: 2 D: N.E. E: $\frac{2^e}{e}$

5. Inf, min, sup e max dell'insieme

 $A = \{k \in \mathbb{R} : \text{La soluzione di } y'(x) = k y(x), \ y(0) = 1 \text{ è limitata per } x \in [0, +\infty[\}] \}$

valgono

A: $\{-\infty, N.E., 0, 0\}$ B: $\{-\infty, N.E., 2\pi, 2\pi\}$ C: $\{-1, -1, 1, 1\}$ D: $\{0, N.E., \pi, N.E.\}$ E: N A

6. La funzione $f(x)=\left\{ egin{array}{ll} \dfrac{1}{\mathrm{e}^{\mathrm{e}^x}} & \quad \mathrm{per}\ x<0 \\ ax+1/\mathrm{e} & \quad \mathrm{per}\ x\geq0 \end{array} \right.$ risulta derivabile in x=0 per a uguale a

A: $-e^{-1}$ B: N.E. C: N.A. D: 1/e E: -e

7. La funzione $f(x) = x^4 - x^2$ è convessa per

A: $x \in [-1/\sqrt{2}, 0] \cup [1/\sqrt{2}, +\infty[$ B: $x \in \mathbb{R}^+$ C: N.E. D: $|x| \ge 6^{-1/2}$ E: x < 1

8. L'integrale

$$\int_0^1 \log(x) \, dx$$

vale

A: 0 B: N.E. C: -1 D: $\frac{-1+2e}{e}$ E: N.A.

9. La serie numerica

$$\sum_{n=1}^{\infty} \frac{n + \log(n^3)}{n^3 + \log(n^\alpha)}$$

converge per $\alpha \geq 0$ tale che

A: N.A. B: $1 < \alpha < 2$ C: $\alpha \ge 3$ D: $0 \le \alpha \le 3$ E: $\alpha > 1$

10. L'integrale

$$\int_0^3 \frac{x}{x+1} \, dx$$

vale

A: $\frac{1}{2}\log(5/2)$ B: $1 - \log(2/3)$ C: $1 + \log(9/16)$ D: $\log(3e)$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	gnoi	me)						(No	me)			(11)	ume	i O Ui	ma	trico	

Α	В	С	D	Ε	

1	
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	00000

1. Data $f(x) = (\log(x))^{(2^x)},$ allora $f'(\mathbf{e})$ vale

A: N.A. B: N.E. C: e^{e-1} D: $\frac{2^e}{e}$ E: 2

2. La funzione $f(x) = \begin{cases} \frac{1}{e^{e^x}} & \text{per } x < 0 \\ ax + 1/e & \text{per } x \ge 0 \end{cases}$ risulta derivabile in x = 0 per a uguale a

A: 1/e B: $-e^{-1}$ C: N.A. D: -e E: N.E.

3. La funzione $f: \mathbb{R}^+ \setminus \{1\} \to \mathbb{R}$ definita da $f(x) = 5^{\log_5(x)}$ è

A: iniettiva B: monotona decrescente C: non derivabile D: N.A. E: limitata superiormente

4. La serie numerica

$$\sum_{n=1}^{\infty} \frac{n + \log(n^3)}{n^3 + \log(n^\alpha)}$$

converge per $\alpha \geq 0$ tale che

A: N.A. B: $1 < \alpha < 2$ C: $\alpha \ge 3$ D: $0 \le \alpha \le 3$ E: $\alpha > 1$

5. L'integrale

$$\int_0^1 \log(x) \, dx$$

vale

A: N.E. B: -1 C: $\frac{-1+2e}{e}$ D: N.A. E: 0

6. Il limite

$$\lim_{k \to +\infty} \frac{\int_0^{+\infty} e^{-x/k} dx}{k}$$

vale

A: 0 B: 1 C: N.E. D: N.A. E: $+\infty$

7. Modulo e argomento del numero complesso $z=(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})^{34}$ sono

A:
$$(2\sqrt{2}, -\pi/2)$$
 B: $(1, \frac{\pi}{2})$ C: $(-1, \pi)$ D: $(1, \pi/3)$ E: N.A.

8. Inf, min, sup e max dell'insieme

$$A = \{k \in \mathbb{R} : \text{La soluzione di } y'(x) = k y(x), \ y(0) = 1 \text{ è limitata per } x \in [0, +\infty[]\}$$

valgono

A: $\{-\infty, N.E., 0, 0\}$ B: $\{0, N.E., \pi, N.E.\}$ C: $\{-\infty, N.E., 2\pi, 2\pi\}$ D: $\{-1, -1, 1, 1\}$ E: N.A.

9. La funzione $f(x) = x^4 - x^2$ è convessa per

A:
$$|x| \ge 6^{-1/2}$$
 B: $x < 1$ C: $x \in \mathbb{R}^+$ D: N.E. E: $x \in [-1/\sqrt{2}, 0] \cup [1/\sqrt{2}, +\infty[$

10. L'integrale

$$\int_0^3 \frac{x}{x+1} \, dx$$

vale

A: $1 - \log(2/3)$ B: $\frac{1}{2} \log(5/2)$ C: $1 + \log(9/16)$ D: N.A. E: $\log(3e)$

			(Co	gnoi	me)						(No	me)			(N ₁	ımeı	ro di	i ma	trico	la)

Α	В	\mathbf{C}	D	Ε	
	_	_	_		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

			(Co	gnoi	me)						(No	me)			(N ₁	ımeı	ro di	i ma	trico	la)

CODICE = 805572

Α	В	\mathbf{C}	D	\mathbf{E}	
11	ט	\sim	רב		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

			(Co	gnoi	me)						(No	me)			(N ₁	ımeı	ro di	i ma	trico	la)

Α	В	С	D	Ε	
		_			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

(Cognome)								(Nome)								(N ₁	ımeı	ro di	i ma	trico	la)										

Α	В	С	D	Ε	
		_			

1	$\bigcirc \bullet \bigcirc \bigcirc \bigcirc$
2	
3	
4	
5	
6	
7	
8	
9	
10	

(Cognome)								(Nome)								(Nı	ıme	ro di	trico	la)										

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

23 giugno 2011

PARTE B

1. Studiare, al variare del parametro $\lambda \geq 0$, il grafico della funzione

$$f(x) = \log(\lambda + x) e^{-x}$$
 per $x > 0$.

Soluzione: La funzione f risulta definita per ogni $x, \lambda > 0$ e agli estremi del dominio si ha

$$\lim_{x \to 0^+} f(x) = \log(\lambda) \qquad \lim_{x \to +\infty} f(x) = 0.$$

Per studiare crescenza e decrescenza osserviamo che $f'(x) = \frac{e^{-x}}{x+\lambda} - e^{-x} \log(x+\lambda)$ e pertanto la derivata si annulla se

$$\frac{1}{x+\lambda} = \log(x+\lambda).$$

L'equazione $1/z = \log(z)$ ha una sola soluzione, dato che 1/z è monotona strettamente decrescente, mentre $\log(z)$ è monotona strettamente crescente e $1/z - \log(z)$ tende a $+\infty$ per z che tende a zero e a $-\infty$ per z che tende a $+\infty$. Si vede facilmente che l'unica soluzione z_0 di $1/z = \log(z)$ soddisfa $z_0 \in [1, e]$ ($z_0 = 1.76322...$) e pertanto la funzione f è crescente per $0 < x < z_0 - \lambda$ e in $x = z_0 - \lambda$ si ha un massimo relativo. Se $z_0 - \lambda < 0$ quindi la funzione è descrescente e non ci sono massimi relativi. Qualitativamente i diversi casi sono riporati nei 3 grafici della pagina seguente

Volendo studiare la convessità la derivata seconda risulta $f''(x) = e^{-x} \log(x + \lambda) - \frac{2e^{-x}}{x + \lambda} - \frac{e^{-x}}{(x + \lambda)^2}$ che ha un unico cambio di segno in un punto compreso tra 2 e 3.

2. Trovare la soluzione del problema di Cauchy

$$\begin{cases} y''(t) - 2y'(t) + y(t) = t + \cos(2t) \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

Soluzione L'equazione caratteristica ha 2 radici reali e coincidenti uguali a 1. Non c'é pertanto risonanza e l'integrale generale risulta essere

Figura 1: $\lambda < z_0$

Figura 2: $\lambda = z_0$

Figura 3: $\lambda > z_0$

$$y(t) = C_1 e^t + C_2 e^t t + \frac{50 + 25t - 3\cos(2t) - 4\sin(2t)}{25}.$$

Imponendo le condizioni iniziali si ha la soluzione

$$y(t) = \frac{1}{25} \left(30e^{t}t + 25t - 47e^{t} - 3\cos(2t) - 4\sin(2t) + 50 \right)$$

3. Dire per quali $x \in \mathbb{R}$ la funzione

$$f(x) = \sum_{k=0}^{+\infty} x^{3k}$$

è definita e se possibile calcolare $f'(1/\pi)$

Soluzione La serie in questione è una serie geometrica in x^3 pertanto la somma vale

$$f(x) = \sum_{k=0}^{+\infty} x^{3k} = \frac{1}{1 - x^3}$$

per $|x^3|<1$, cioè per -1< x<1. Dove la somma converge si può derivare termine a termine e $f'(x)=\frac{3x^2}{(1-x^3)^2}$ e quindi

$$f'(1/\pi) = \frac{3\pi^4}{(-1+\pi^3)^2}.$$

4. Sia f una funzione continua, non-negativa e tale che f(0) = 0. Sia inoltre

$$\int_0^1 \frac{f(s)}{s} \, ds = 1.$$

Studiare il limite

$$\lim_{t\to 0^+} t \int_t^1 \frac{f(s)}{s^2} \, ds$$

Soluzione Se l'integrale improprio $0 \leq \int_0^1 \frac{f(s)}{s^2} \, ds < +\infty$ allora si ha il prodotto di una quantità infinitesima per una limitata e il limite esiste ed è uguale a zero. Se invece $\int_0^1 \frac{f(s)}{s^2} \, ds = +\infty$ (ed essendo f non negativa non ci sono altre possibilità) si ha un limite della forma $0 \cdot \infty$ che si può trasformare in $\frac{\infty}{\infty}$ studiando

$$\lim_{t\to 0^+}\frac{\int_t^1\frac{f(s)}{s^2}\,ds}{\frac{1}{t}}.$$

Applicando L'Hopital e derivando si arriva a studiare il limite

$$\lim_{t \to 0^+} -\frac{\frac{f(t)}{t^2}}{-\frac{1}{t^2}} = -\lim_{t \to 0^+} f(t) = 0,$$

e anche in questo caso il limite esiste ed è uguale a zero.