

Unidade Curricular: Inteligência Artificial Maria Barros (up201608444) e Miguel Ferreira (up201606158)

Definição do problema

Antes da definição do problema, é necessário primeiro conhecer o dataset. Para este trabalho, o dataset com que vamos trabalhar possui informação sobre **19 diferentes países**, com informações diárias durante **43 dias**, sobre diferentes informações:

Tendências de mobilidade a locais como supermercados, farmácias...

Tendências de mobilidade a locais como restaurantes, shoppings...

Tendências de mobilidade a locais de trabalho

Tendências de mobilidade a locais como parques, jardins, marinas...

Tendências de mobilidade a transportes públicos

Tendências de mobilidade a locais de residência

Número total de casos

Número total de mortes

Como primeiro problema, decidimos então focar-nos na previsão do número total de casos, utilizando como features todas as tendências de mobilidade, e ainda o número de casos do dia anterior

Ferramentas a utilizar

A primeira parte do trabalho consistiu então numa primeira avaliação do dataset

Nº Casos

N° Casos do dia anterior

O primeiro passos consistiu então na criação de uma nova coluna, em que cada entrada corresponde ao número de **casos no dia anterior**. Desta vez, para prever o número de casos para cada dia, este valor pode ser utilizado como característica, e ajudar nessa previsão

De forma a dificultar a previsão, considerámos, noutra abordagem, não **o número de casos do dia anterior** (dado que facilita bastante a tarefa da previsão), mas sim o número de casos conhecidos **na semana anterior**

Ferramentas a utilizar

De seguida, e de forma a conseguir averiguar quais os algoritmos que produziriam melhores resultados para o dataset, traçaram-se as **curvas de aprendizagem** para diferentes algoritmos. Os algoritmos testados foram **Regressão Linear, KNN, Naïve Bayes, SGD, SVC, MLP, Decicion Tree** e **Random Forest**, estando os resultados da linha de aprendizagem apresentados a seguir. Várias métricas foram utilizadas para avaliar os resultados

Negative Mean Squared Error

Max Error

Negative Mean Absolute Error

 \mathbb{R}^2

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s	TPEINO	PREVISÃO DO NÚMERO DE CASOS A
0,998	0,994	2,1E+06	6E-05	2,6E+04	6,7E-02	2,7E+02	2,7E-03	TREINO	PARTIR DO NÚMERO DE CASOS DO DIA
									ANTERIOR

TESTE

TREINO

TESTE

TREINO

TESTE

Resultados muito satisfatórios tanto no set de treino e no set de teste

PREVISÃO DO NÚMERO DE CASOS A PARTIR DO NÚMERO DE CASOS DA **SEMANA ANTERIOR**

Resultados muito satisfatórios tanto no set de treino mas muito mais no set de teste

TUNNING DOS HYPERPARÂMETROS DO **MODELO ANTERIOR**

Melhoramento dos resultados, mas ainda existe bastante overfitting

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
0,998	0,994	2,1E+06	6E-05	2,6E+04	6,7E-02	2,7E+02	2,7E-03
R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
0,935	0,903	1,6E+08	2,4E-03	5,4E+04	1,9E-01	1,7E+03	1,2E-02
R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
0,993	0,983	8,6E+06	2,2E-04	3,6E+04	1,2E-01	8,2E+02	5,3E-03
R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
-5,274	0,524	4,5E+08	2,1E-02	7,8E+04	4,1E-01	7,2E+03	7,5E-02
R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
0,948	0,802	6,9E+07	2,4E-03	1,1E+05	3,0E-01	2,0E+03	2,0E-02
R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
-4,775	0,077	3,9E+08	3,5E-02	8,3E+04	6,3E-01	6,2E+03	9,7E-02

Introdução de novas features

Foram adicionadas algumas *features* novas de modo a tentar complementar e facilitar a previsão do número de casos

Contabilização do número de **milhões de habitantes** de cada país (de forma a normalizar número total de casos e de fatalidades)

Valor do **Produto Interno Bruto** de cada país

Ranking da **eficiência do sistema de saúde** de cada país

Com o aumento da dimensão do espaço de *features*, foi também utilizado **PCA** e técnicas para determinar a **Feature Importance** de cada *feature*

	R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s	TREINO
	0,995	0,992	6,7E+02	1,4E-04	1,9E+02	1,0E-01	1,1E+01	4,7E-03	IKLINO
L									
	R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s	TESTE
	-121,522	0,303	3,2E+04	2,8E-02	5,1E+02	5,4E-01	9,9E+01	9,3E-02	
Н									
	R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s	TREINO
	0,997	0,995	3,6E+02	8,0E-05	1,7E+02	8,6E-02	6,7E+00	3,5E-03	IKLINO
L									
	D2	D2 -	NACE	NACE -	D.A.E.	D.45 -	D 4 A F	N 4 A E -	
	R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s	TESTE
	-0,552	0,844	9,7E+03	6,4E-03	3,6E+02	2,8E-01	4,2E+01	4,0E-02	

ADIÇÃO DE NOVAS FEATURES E REDUÇÃO DA DIMENSÃO COM PCA

Resultados muito bons para set de treino, mas piora com o set de teste

ADIÇÃO DE NOVAS FEATURES E ELIMINAÇÃO DAS MENOS IMPORTANTES

Apresenta melhor resultados no set de teste comparativamente aos resultados com PCA

> **Tuning de hyperparâmetros** implementado em todos os splits

Estes resultados mostram que remover features pouco importantes melhora significativamente os resultados

Adição de mais features

Foram adicionadas várias colunas relativas **ao número de casos na semana anterior**, e não apenas o dia de casos relativo ao dia correspondente a 1 semana antes da previsão

Ao adicionar todas estas *features*, ficamos com a informação não só do número de casos 1 semana antes, mas também **da tendência da evolução do número de casos durante uma semana**, na expectativa de ajudar na previsão

Para este problema, foram novamente traçadas **as curvas de aprendizagem** para os mesmos algoritmos mencionados anteriormente, e o que apresentou a melhor *performance* foi o **Random Forest**

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
0,993	0,974	2,0E+03	9,5E-04	2,1E+02	9,8E-02	1,5E+01	1,1E-02

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
0,831	0,900	3,2E+04	5,2E-03	5,5E+02	2,7E-01	9,2E+01	4,3E-02

TREINO

TESTE

RESULTADOS APÓS ADIÇÃO DOS DADOS RELATIVOS À SEMANA ANTERUOR

Podemos verificar que houve um **melhoramento** quando comparado com o modelo anterior

Tuning de hyperparâmetros implementado em todos os splits

Novo Problema: Previsão das Fatalidades

N° Fatalidades	Nº Fatalidades 8 dias antes	Nº Fatalidades 9 dias antes	N° Fatalidades 10 dias antes
CAR 7			
GAP 7 DIAS			

(...)

Outro problema escolhido foi a previsão do **número de fatalidades** para todos os países

Para isso, e de forma a complementar aos dados disponíveis, foram adicionados, em similaridade para a previsão do número total de casos, o número de fatalidades na semana anterior

Da mesma forma que no problema anterior, este número de fatalidades durante a semana anterior permite obter **a tendência de evolução do número de fatalidades** de forma a ajudar na previsão das mesmas

Para este problema, foram novamente traçadas **as curvas de aprendizagem** para os mesmos algoritmos mencionados anteriormente, e o que apresentou a melhor *performance* foi o **Random Forest**

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
0,998	0,997	5,2E+00	1,0E-04	1,3E+01	5,4E-02	9,5E-01	4,3E-03

R2	R2_s	MSE	MSE_s	ME	ME_s	MAE	MAE_s
0,936	0,962	1,2E+02	1,9E-03	3,1E+01	1,6E-01	5,1E+00	2,3E-02

TREINO

TESTE

RESULTADOS DA PREVISÃO DO NÚMERO DE FATALIDADES

Os resultados indicam que o modelo conseguiu prever com alguma eficácia o número de fatalidades

Tuning de hyperparâmetros implementado em todos os splits

