Efficient explicit solvers for multipatch discontinuous Galerkin isogeometric analysis

Jesse Chan¹, J. A. Evans²

 1 Department of Computational and Applied Math, Rice University 2 Ann and H.J. Smead Aerospace Engineering Sciences, UC Boulder

ECCM-CFD 2018 June 9-15, 2018

- Time-dependent solutions of hyperbolic equations.
- Low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown
- High performance on many-core (explicit time-stepping).

Figure courtesy of Axel Modave.

- Time-dependent solutions of hyperbolic equations.
- Low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- High performance on many-core (explicit time-stepping).

Fine linear approximation.

- Time-dependent solutions of hyperbolic equations.
- Low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- High performance on many-core (explicit time-stepping).

Coarse quadratic approximation.

- Time-dependent solutions of hyperbolic equations.
- Low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- High performance on many-core (explicit time-stepping).

Coarse quadratic approximation.

- Time-dependent solutions of hyperbolic equations.
- Low numerical dissipation and dispersion.
- High order approximations: more accurate per unknown.
- High performance on many-core (explicit time-stepping).

A graphics processing unit (GPU).

Multi-patch discontinuous Galerkin formulations

Model problem: (second order) acoustic wave equation

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \Delta p = f.$$

Pressure-velocity system (first order formulation)

$$\frac{1}{c^2} \frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} = f$$
$$\frac{\partial \mathbf{u}}{\partial t} + \nabla p = 0.$$

■ Weak patch coupling through DG numerical flux (SIPG, upwind).

Langer et al 2014. Multipatch discontinuous Galerkin isogeometric analysis.

 $Wilcox\ et\ al\ 2010.\ A\ high-order\ DG\ method\ for\ wave\ propagation\ through\ coupled\ elastic-acoustic\ media.$

Method of lines multi-patch DG discretization

■ Semi-discrete system:

$$\mathbf{M}_h \frac{\mathrm{d} \mathbf{u}}{\mathrm{d} t} = \mathbf{A}_h \mathbf{u} \quad \Rightarrow \quad \frac{\mathrm{d} \mathbf{u}}{\mathrm{d} t} = \mathbf{M}_h^{-1} \mathbf{A}_h \mathbf{u}.$$

- Global mass matrix M_h is (patch) block diagonal.
- Tailored patch discretizations: explicit time-stepping, curved domains.
 - Efficient mass matrix inversion over each patch.
 - High order accuracy, energy stability on curved geometries.
 - Improved stable timestep restriction (CFL).

Outline

Spline spaces and optimal knot vectors

2 Curved domains and weight-adjusted mass matrices

3 Stable timestep restrictions

Outline

1 Spline spaces and optimal knot vectors

2 Curved domains and weight-adjusted mass matrices

3 Stable timestep restrictions

B-spline basics

■ Standard 1D B-splines: $B_i^0(x) = \mathbb{1}_{\xi_i \le x \le \xi_{i+1}}$,

$$B_i^k(x) = \frac{x - \xi_i}{\xi_{i+p} - \xi_i} B_i^{k-1}(x) + \frac{\xi_{i+p+1} - x}{\xi_{i+p+1} - \xi_{i+1}} B_{i+1}^{k-1}(x).$$

■ Assume patches are mapped quads/cubes: tensor product basis

$$B_{ijk}^{p}(x,y,z) = B_i^{p}(x)B_j^{p}(y)B_k^{p}(z).$$

Assume maximally continuous, open knot vectors

$$\xi_{p+1} < \dots < \xi_{p+1+K},$$

$$\xi_1 = \dots = \xi_{p+1},$$

$$\xi_{p+1+K} = \dots = \xi_{2p+1+K}.$$

B-spline bases and optimal spline spaces

■ Sup-inf: "worst best approximation" in X from X_n

$$d_n(X; X_n) = \sup_{x \in X} \inf_{y \in X_n} ||x - y||, \quad \dim(X_n) = n.$$

■ Spline spaces with optimal knot vectors: minimal sup-inf for

$$X = \left\{ f \in L^2([-1,1]) : \frac{\partial^{p-1} f}{\partial x^{p-1}} \text{ continuous}, \quad \|f\|_{L^2} \leq 1 \right\},$$

Melkman and Micchelli 1978. Spline spaces are optimal for $\it L^2$ $\it n$ -width.

Optimal knot vectors: roots of eigenfunctions

Figure: Eigenfunctions $y_{K+1,p}(x)$ for K=8 and various p.

■ Optimal knots are roots of eigenfunctions $y_{K+1,p}(x)$.

$$(-1)^{p} \frac{\partial^{2p} y}{\partial x^{2p}} = \lambda y(x), \qquad \frac{\partial^{k} y}{\partial x^{k}}(-1) = \frac{\partial^{k} y}{\partial x^{k}}(1) = 0, \quad 1 \leq k \leq p-1.$$

■ Approximate $y_{K+1,p}(x)$ using fine spline space; difficult for high K, p!

Knot smoothing: approximating optimal knots

■ Greville abscissae τ_i : coefficients for linear coordinate x.

$$x = \sum_{1 \le j \le p+K} \tau_j B_j^p(x), \qquad \tau_j = \frac{1}{p} \sum_{1 \le i \le p} \xi_{i+j-1}, \quad j = 1, \dots, p.$$

■ Replace Greville abscissae with equispaced points \hat{x}_i and iterate

$$\tilde{\xi}_i^{k+1} = \sum_{1 \le i \le p+K} \hat{x}_i B_j^p(\xi_i; \tilde{\xi}^k), \qquad \tilde{\xi}_i^0 = \xi_i,$$

Knot smoothing: approximating optimal knots

■ Greville abscissae τ_i : coefficients for linear coordinate x.

$$\xi_i = \sum_{1 \leq j \leq p+K} \tau_j B_j^p(\xi_i), \qquad \tau_j = \frac{1}{p} \sum_{1 \leq i \leq p} \xi_{i+j-1}, \quad j = 1, \ldots, p.$$

■ Replace Greville abscissae with equispaced points \hat{x}_i and iterate

$$\tilde{\xi}_i^{k+1} = \sum_{1 \le i \le n+K} \hat{x}_i B_j^p(\xi_i; \tilde{\xi}^k), \qquad \tilde{\xi}_i^0 = \xi_i,$$

Knot smoothing: approximating optimal knots

■ Greville abscissae τ_i : coefficients for linear coordinate x.

$$\xi_i = \sum_{1 \leq j \leq p+K} \tau_j B_j^p(\xi_i), \qquad \tau_j = \frac{1}{p} \sum_{1 \leq i \leq p} \xi_{i+j-1}, \quad j = 1, \dots, p.$$

■ Replace Greville abscissae with equispaced points \hat{x}_i and iterate

$$\tilde{\xi}_i^{k+1} = \sum_{1 \le i \le p+K} \widehat{x}_i B_j^p(\xi_i; \tilde{\xi}^k), \qquad \tilde{\xi}_i^0 = \xi_i,$$

Approximation properties: oscillatory functions

- L^2 best approximations with smoothed knots (fixed p, K): decreased high frequency errors, increased low frequency errors.
- Similar errors approximating solution $\cos\left(\frac{k\pi x}{2}\right)\cos\left(\frac{k\pi t}{2}\right)$ (k odd).

Approximation properties: oscillatory functions

- L^2 best approximations with smoothed knots (fixed p, K): decreased high frequency errors, increased low frequency errors.
- Similar errors approximating solution $\cos\left(\frac{k\pi x}{2}\right)\cos\left(\frac{k\pi t}{2}\right)$ (k odd).

Spectral properties of A_h

Eigenvalues, eigenfunctions of 1D Laplacian: uniform vs smoothed knots.

$$|\lambda_k - \lambda_{h,k}|, \qquad ||w_k(x) - w_{h,k}(x)||_{L^2}^2$$

Figure: Eigenvalue and eigenvector errors for p = 4, K = 32 splines.

Spectral properties of A_h

Constant 1D advection: numerical dispersion error $|\text{Re}(\omega) - \text{Re}(\omega_h)|$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0, \qquad u(x,t) = e^{i(kx - \omega t)}, \quad u_h(x,t) = e^{i(kx - \omega_h t)}.$$

(a) Dispersion errors (uniform knots) (b) Dispersion errors (smoothed knots)

Figure: Dispersion errors using full upwinding, p = 4, and K = 1, 4, 8.

1 Spline spaces and optimal knot vectors

2 Curved domains and weight-adjusted mass matrices

3 Stable timestep restrictions

Approximation properties: curvilinear domains

- Smoothed knot vectors: more accurate on curved domains.
- Differences between first, second order forms (L^2 vs energy norm?).

(a) Warped mesh, $\alpha = 1/8$

(b) L^2 errors ($\alpha = 1/64$)

Figure: L^2 approx. errors: $\cos\left(\frac{\pi x}{2}\right)\cos\left(\frac{\pi y}{2}\right)$, $p=2,\ldots,8$ and K=p.

Approximation properties: curvilinear domains

- Smoothed knot vectors: more accurate on curved domains.
- Differences between first, second order forms (L^2 vs energy norm?).

Figure: L^2 errors for increasing α (p = 3, K = 8 splines on a single patch).

Approximate mass matrix inversion

■ Patch mass matrices M_J : tensor product basis but no Kronecker structure due to $J(\hat{x})$, and mass lumping is inaccurate.

$$(\mathbf{M}_J)_{ijk,lmn} = \int_{\widehat{D}} B^{p}_{ijk}(\widehat{\mathbf{x}}) B^{p}_{lmn}(\widehat{\mathbf{x}}) \mathbf{J}(\widehat{\mathbf{x}}) \, \mathrm{d}\widehat{\mathbf{x}}.$$

■ Preconditioning: approximating \mathbf{M}_J^{-1} impacts semi-discrete stability. Note - Krylov methods approximate \mathbf{M}_J^{-1} as a non-linear operator!

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} \|u\|_{L^2}^2 = \frac{\mathrm{d}}{\mathrm{d}t} \left(\boldsymbol{u}^T \boldsymbol{M}_J \boldsymbol{u} \right) \leq 0.$$

Isogeometric collocation: restores tensor product structure, but semi-discrete stability is more difficult to prove.

Gao and Calo 2014. Fast isogeometric solvers for explicit dynamics.

Wathen and Rees 2009. Chebyshev semi-iteration in preconditioning for problems including the mass matrix.

Auricchio et al 2012. Isogeometric collocation for elastostatics and explicit dynamics.

Restoring Kronecker structure to M^{-1}

■ Replace M_J with "weight-adjusted" approximation:

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{M}_{J} \mathbf{u} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \widehat{\mathbf{M}} \mathbf{M}_{1/J}^{-1} \widehat{\mathbf{M}} \mathbf{u}, \qquad \left(\widehat{\mathbf{M}}\right)_{ijk,lmn} = \int_{\widehat{D}} \mathcal{B}_{ijk}^{p}(\widehat{\mathbf{x}}) \mathcal{B}_{lmn}^{p}(\widehat{\mathbf{x}}) \, \mathrm{d}\widehat{\mathbf{x}}.$$

lacktriangle Weight-adjusted inverse: tensor product + matrix-free eval. of $oldsymbol{M}_{1/J}$

$$\begin{split} & \mathbf{\textit{M}}_{J}^{-1} \approx \left(\widehat{\mathbf{\textit{M}}} \mathbf{\textit{M}}_{1/J}^{-1} \widehat{\mathbf{\textit{M}}}\right)^{-1} = \widehat{\mathbf{\textit{M}}}^{-1} \mathbf{\textit{M}}_{1/J} \widehat{\mathbf{\textit{M}}}^{-1} \\ & \widehat{\mathbf{\textit{M}}}^{-1} = \widehat{\mathbf{\textit{M}}}_{1D}^{-1} \otimes \widehat{\mathbf{\textit{M}}}_{1D}^{-1} \otimes \widehat{\mathbf{\textit{M}}}_{1D}^{-1}. \end{split}$$

Energy stability with respect to equivalent norm

$$C_1(J) \| \boldsymbol{u} \|_{\widehat{\boldsymbol{M}} \boldsymbol{M}_{1/J}^{-1} \widehat{\boldsymbol{M}}} \leq \| \boldsymbol{u} \|_{\boldsymbol{M}_J} \leq C_2 \| \boldsymbol{u} \|_{\widehat{\boldsymbol{M}} \boldsymbol{M}_{1/J}^{-1} \widehat{\boldsymbol{M}}}.$$

Chan, et al. 2016. Weight-adjusted DG methods: wave prop. in heterogeneous media. (SISC).

Chan, et al. 2016. Weight-adjusted DG methods: curvilinear meshes (arXiv).

Also applied to GD methods (Banks and Hagstrom 2016. On Galerkin difference methods).

Weight-adjusted DG for curvilinear meshes

■ Weight-adjusted projection \tilde{P}_h on curved domains

$$\widetilde{P}_h(u) := \widehat{P}_h\left(\frac{1}{J}\widehat{P}_h(uJ)\right).$$

where \widehat{P}_h is the L^2 projection onto the reference element.

■ L^2 estimates for weight-adjusted projection:

$$\left\| u - \tilde{P}_h u \right\|_{L^2(D^k)} \lesssim \left\| \frac{1}{\sqrt{J}} \right\|_{L^{\infty}}^2 \left\| J \right\|_{W^{N+1,\infty}(D^k)} h^{N+1} \left\| u \right\|_{W^{N+1,2}(D^k)}.$$

High order Sobelev norm of J - can lose accuracy if the geometric mapping is not sufficiently regular!

L^2 vs weight-adjusted projection

Figure: L^2 vs weight-adjusted projection: $\cos\left(\frac{\pi x}{2}\right)\cos\left(\frac{\pi y}{2}\right)$, p=4.

1 Spline spaces and optimal knot vectors

2 Curved domains and weight-adjusted mass matrices

3 Stable timestep restrictions

Stable timestep restrictions: h, p scaling

■ Estimate $dt \leq 1/\rho(\mathbf{M}_h^{-1}\mathbf{A}_h)$. Bound $\rho(\mathbf{M}_h^{-1}\mathbf{A}_h)$ using Rayleigh quotients and Bendixon-Hirsch; depends on h and **constants** C_T , C_I .

$$\|u\|_{L^{2}\left(\partial\widehat{D}\right)} \leq C_{T} \|u\|_{L^{2}\left(\widehat{D}\right)}, \qquad \|\nabla u\|_{L^{2}\left(\widehat{D}\right)} \leq C_{I} \|u\|_{L^{2}\left(\widehat{D}\right)}.$$

■ CFL: $O(h/p^2)$ for polynomials, O(h/p) for splines if $h \le O(1/p)$.

Degree of approximation p

(a) Inverse inequality, K = 2p

Degree of approximation p

(b) Trace inequality, K = 2p

Stable timestep restrictions: h, p scaling

■ Estimate $dt \leq 1/\rho(\mathbf{M}_h^{-1}\mathbf{A}_h)$. Bound $\rho(\mathbf{M}_h^{-1}\mathbf{A}_h)$ using Rayleigh quotients and Bendixon-Hirsch; depends on h and **constants** C_T , C_I .

$$\|u\|_{L^{2}\left(\partial\widehat{D}\right)} \leq C_{T} \|u\|_{L^{2}\left(\widehat{D}\right)}, \qquad \|\nabla u\|_{L^{2}\left(\widehat{D}\right)} \leq C_{I} \|u\|_{L^{2}\left(\widehat{D}\right)}.$$

■ CFL: $O(h/p^2)$ for polynomials, O(h/p) for splines if $h \le O(1/p)$.

(b) Smoothed knots

A 3D multi-patch example

- 12 patch pipe model, first order formulation, pulse inflow condition.
- Isotropic p = 6, K = 16 splines, smoothed knots on each patch.

Chan, Evans, 2017, Multi-patch discontinuous Galerkin spline FEM for time-domain wave propagation (in preparation).

17 / 18

Summary and acknowledgements

- Optimal/smoothed knot vectors for time-domain simulations.
- Restore Kronecker product with weight-adjusted mass matrix.
- Future directions:
 - Conforming spaces for first order formulations.
 - Nonlinear systems (compressible flow).

This research is supported by DMS-1712639 and TOTAL E&P Research and Technology USA.

Chan, Evans. 2017. Multi-patch discontinuous Galerkin spline FEM for time-domain wave propagation (in preparation).

Chan, et al. 2016. Weight-adjusted DG methods: curvilinear meshes (arXiv).

Additional slides

Patch refinement vs knot insertion (uniform knots)

- Patch size H, number of sub-elements K: h = H/K.
- Optimal $O(h^{p+1})$ L^2 error for both patch refinement, knot insertion.

Convergence of WADG on curvilinear meshes

Figure: Optimal L^2 convergence rates observed for curvilinear meshes.

Curvilinear meshes: DG eigenvalues (circular domain)

(a) Central fluxes

(b) $\operatorname{Im}(\lambda_i)$ for central fluxes

(c) Upwind fluxes

Comparison with L^2 projection and Low-Storage Curvilinear DG

$$\tilde{\phi}_i = \frac{\phi_i}{\sqrt{J}}, \qquad \mathbf{M}_{ij} = \int_{D^k} \tilde{\phi}_j \tilde{\phi}_i J = \int_{\widehat{D}} \phi_j \phi_i = \widehat{\mathbf{M}}_{ij}.$$

 10^{-2}

Figure: Arnold-type mesh with $\|J\|_{W^{N+1,\infty}}=O(h^{-1})$ for N=3.

 10^{0}

 10^{-1}

Mesh size h

Comparison with L^2 projection and Low-Storage Curvilinear DG

$$\widetilde{\phi}_i = rac{\phi_i}{\sqrt{J}}, \qquad \pmb{M}_{ij} = \int_{D^k} \widetilde{\phi}_j \widetilde{\phi}_i J = \int_{\widehat{D}} \phi_j \phi_i = \widehat{\pmb{M}}_{ij}.$$

Figure: Arnold-type mesh with $||J||_{W^{N+1,\infty}} = O(h^{-1})$ for N=3.

Comparison with L^2 projection and Low-Storage Curvilinear DG

$$\widetilde{\phi}_i = \frac{\phi_i}{\sqrt{J}}, \qquad \mathbf{M}_{ij} = \int_{D^k} \widetilde{\phi}_j \widetilde{\phi}_i J = \int_{\widehat{D}} \phi_j \phi_i = \widehat{\mathbf{M}}_{ij}.$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-10}$$

$$10^{-2}$$

$$10^{-10}$$

$$10^{-2}$$

$$10^{-1}$$

$$10^{-10}$$

$$10^{-2}$$

$$10^{-1}$$

$$10^{-1}$$

Figure: Curvilinear mesh constructed through random perturbation for N = 3.

Mesh size h

High order convergence slowed by growth of $||J||_{W^{N+1,\infty}} = O(h^N)$.

Figure: Moderately warped curved Arnold-type mesh for N=3.

High order convergence is stalled by growth of $||J||_{W^{N+1,\infty}} = O(h^{N+1})$.

Figure: Heavily warped curved Arnold-type mesh for N = 3.

Weight-adjusted DG: not locally conservative

- Con: loss of local conservation for $w(x) \notin P^N$!
- Pro: superconvergence of conservation error

Conservation error
$$\leq Ch^{2N+2} \|w\|_{W^{N+1,\infty}} \|p\|_{W^{N+1,2}}$$

where C depends on mesh quality and max/min values of w.

■ Pro: can restore local conservation with rank-1 update (Shermann-Morrison).

Effect of conservation on shock speeds

■ Weighted Burgers' equation, w(x) curves characteristic lines.

$$w(x)\frac{\partial u}{\partial t} + \frac{1}{2}\frac{\partial u^2}{\partial x} = 0.$$

■ WADG yields high order convergence, correct shock speed for both w(x) smooth, discontinuous (within an element).

Effect of conservation on shock speeds

■ Weighted Burgers' equation, w(x) curves characteristic lines.

$$w(x)\frac{\partial u}{\partial t} + \frac{1}{2}\frac{\partial u^2}{\partial x} = 0.$$

■ WADG yields high order convergence, correct shock speed for both w(x) smooth, discontinuous (within an element).

Best guess: where and what is locally conserved matters; non-conservation of *nonlinear flux* results in incorrect shock speeds.