

Statistik

CH.11 - Hypothesentests

2024 | | Prof. Dr. Buchwitz, Sommer, Henke

Wirgeben Impulse

Lernziele

- Spezifizieren des Konzeptes von Hypothesentests
- Kennenlernen von Hypothesentests für Mittelwerte und Anteilswerte
- Erweiterung des Testportfolios auf Tests für diskrete Verteilungen (Anpassungstest) und Tests auf Unabhängigkeit von Merkmalen

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Bitte evaluieren Sie den Kurs!

http://evasys.fh-swf.de/evasys/online.php?pswd=WJVFL

4

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Ausgangslage

Vorgehen Hypothesentests

- Formulieren Sie Nullhypothese H_0 und Alternativhypothese H_1 .
- Legen Sie ein Signifikanzniveau α fest.
- Wählen Sie die passende Teststatistik.
- Bestimmen Sie den Wert der Teststatistik, ab dem die Nullhypothese verworfen werden muss.
- Bestimmen Sie den Vergleichswert aus den Stichprobendaten.
- Entscheiden Sie durch Vergleich der Werte aus (4) und (5), ob Sie die Nullhypothese verwerfen können.

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Tests für den Mittelwert bei bekannter Varianz

Test	H ₀	H ₁	Teststatistik	Verwerfe H_0 , wenn gilt:
Beidseitig	μ = μ_0	$\mu \neq \mu_0$		$ z > z_{1-\alpha/2}$
Rechtsseitig	$\mu \leq \mu_0$	$\mu > \mu_0$	$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	$z>z_{1-lpha}$
Linksseitig	$\mu \ge \mu_0$	$\mu < \mu_0$, .	$z < z_{lpha}$

Tests für den Mittelwert bei unbekannter Varianz

Test	H ₀	H ₁	Teststatistik	Verwerfe H ₀ , wenn gilt:
Beidseitig Rechtsseitig	$\mu = \mu_0$, , , ,	$t = \bar{x} - \mu_0$	$\mid t \mid > t_{n-1, 1-\alpha/2}$
Linksseitig	$\mu \le \mu_0$ $\mu \ge \mu_0$, , ,	$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$	$t > t_{n-1, 1-\alpha}$ $t < t_{n-1, \alpha}$

R-Funktion: t.test()

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Tests für den Anteilswert

Test	H ₀ H ₁		Teststatistik	Verwerfe H_0 , wenn gilt:		
Beidseitig	$\pi = \pi_0$		_	$ z >z_{1-\alpha/2}$		
Rechtsseitig	$\pi \leq \pi_0$	$\pi > \pi_0$	$Z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$	$z > z_{1-\alpha}$		
Linksseitig	$\pi \geq \pi_0$	$\pi < \pi_0$	V n	$z < z_{lpha}$		

■ R-Funktion: prop.test()

Beispiel

Aufgabe: Ein Schraubenproduzent behauptet, dass seine Lieferung eines speziellen Schraubentyps einen Ausschussanteil von höchstens 1% enthält. Der Empfänger der Lieferung ist jedoch der Meinung,dass der Anteil höher ist. Er nimmt eine Stichprobe von 1000 Schrauben und findet in dieser 15 nicht den Anforderungen entsprechenden Schrauben.

- Kann die Behauptung des Lieferanten bei einem Signifikanzniveau von α = 0.05 widerlegt werden?
- Hinweis: Verteilungstabelle siehe nächste Seite.

Verteilungsfunktion F(z) **für** $z \sim N(\mu = 0, \sigma^2 = 1)$

	Verteilungsfunktion $F(z)$ der Standardnormalverteilung $N(0, 1)$ Beispiel: $F(z) = P(z \le 1.96) = 0.9750$									
z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
0.0	0.0074	0.0075	0.0077	0.0077	0.0077	0.0070	0.0070	0.0070	0.0000	0.0004

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Verteilungstest

- Ausgangssituation: Es liegen Daten von zwei oder mehr unabhängig gewonnenen Stichproben vor.
- **Ziel:** Zwei (oder mehrere) Grundgesamtheiten sollen hinsichtlich ihrer *Verteilung* verglichen werden.
- Analytische Fragestellung: Weichen die beiden empirischen Verteilungen so sehr voneinander ab, dass die Nullhypothese verworfen werden muss?

$$H_0: F_1 = F_2 = \ldots = F_k$$

■ Folge: Wenn H_0 verworfen werden muss, dann kann man davon ausgehen, dass die Stichproben nicht dieselbe Verteilungsfunktion aufweisen und infolgedessen nicht aus der gleichen Grundgesamtheit stammen.

Beispiel

An einer Hochschule wurde in einer Befragung von 1529 Studierenden ermittelt, ob die Studierenden in den Semesterferien einem Ferienjob nachgehen.

	male	female	Sum
Job	718	593	1311
No Job	79	139	218
Sum	797	732	1529

Unterscheidet sich das Verhalten von männlichen und weiblichen Studierenden signifikant (α = 5%)?

Chi-Quadrat Test

- Voraussetzung: Jede Zelle muss mindestens 5 Beobachtungen enthalten.
- Vorgehensweise: 6-Schritte Schema für das Testen von Hypothesen
- **Teststatistik:** Die \mathcal{X}^2 -Teststatistik setzt die Abweichungen von beobachteten (f_o) und erwarteten f_e Häufigkeiten in Relation zu den erwarteten Häufigkeiten:

$$\chi^2 = \sum_{\text{alle Zellen}} \frac{(f_o - f_e)^2}{f_e}$$

■ Die \mathcal{X}^2 -Teststatistik folgt einer \mathcal{X}^2 -Verteilung mit $(r-1)\cdot (s-1)$

Chi-Quadrat-Test

■ Die **erwarteten** Häufigkeiten ergeben sich als:

$$\frac{\sum \mathsf{Spalte} \cdot \sum \mathsf{Zeile}}{\mathsf{Gesamtanzahl}}$$

■ Die Nullhypothese lautet stets:

$$H_0: F_1 = F_2 = \ldots = F_k$$

Es handelt sich hier immer um einen rechtsseitigen Test.

\mathcal{X}^2 -Verteilung

Quantile der $\mathcal{X}^2_{n;\,\gamma}$ -Verteilung

	Quantile $\mathcal{X}_{n;\;\gamma}^2$ der \mathcal{X}_n^2 -Verteilung Beispiel: $P(\mathcal{X}_{10}^2 \leq 20.4832) = 0.975$									
$n \setminus \gamma$	0.995	0.99	0.975	0.95	0.9	0.75	0.5	0.25	0.1	0.05
1	7.879	6.635	5.024	3.841	2.705	1.323	0.4549	0.1015	0.0158	0.0039
2	10.597	9.210	7.378	5.992	4.605	2.773	1.3863	0.5754	0.2107	0.1026
3	12.838	11.345	9.348	7.815	6.251	4.108	2.3660	1.2125	0.5844	0.3518
4	14.860	13.277	11.143	9.488	7.779	5.385	3.3567	1.9226	1.0636	0.7107
5	16.750	15.086	12.832	11.070	9.236	6.626	4.3515	2.6746	1.6103	1.1455
6	18.548	16.812	14.449	12.592	10.645	7.841	5.3481	3.4546	2.2041	1.6354
7	20.278	18.475	16.013	14.067	12.017	9.037	6.3458	4.2549	2.8331	2.1673
8	21.955	20.090	17.535	15.507	13.362	10.219	7.3441	5.0706	3.4895	2.7326
9	23.589	21.666	19.023	16.919	14.684	11.389	8.3428	5.8988	4.1682	3.3251
10	25.188	23.209	20.483	18.307	15.987	12.549	9.3418	6.7372	4.8652	3.9403
11	26.757	24.725	21.920	19.675	17.275	13.701	10.3410	7.5841	5.5778	4.5748
12	28.299	26.217	23.337	21.026	18.549	14.845	11.3403	8.4384	6.3038	5.2260
13	29.820	27.688	24.736	22.362	19.812	15.984	12.3398	9.2991	7.0415	5.8919
14	31.319	29.141	26.119	23.685	21.064	17.117	13.3393	10.1653	7.7895	6.5706
15	32.801	30.578	27.488	24.996	22.307	18.245	14.3389	11.0365	8.5468	7.2609
16	34.267	32.000	28.845	26.296	23.542	19.369	15.3385	11.9122	9.3122	7.9616
17	35.718	33.409	30.191	27.587	24.769	20.489	16.3382	12.7919	10.0852	8.6718
18	37.157	34.805	31.526	28.869	25.989	21.605	17.3379	13.6753	10.8649	9.3905
19	38.582	36.191	32.852	30.143	27.204	22.718	18.3377	14.5620	11.6509	10.1170
20	39.997	37.566	34.170	31.410	28.412	23.828	19.3374	15.4518	12.4426	10.8508
21	41.401	38.932	35.479	32.671	29.615	24.935	20.3372	16.3444	13.2396	11.5913
22	42.796	40.289	36.781	33.924	30.813	26.039	21.3370	17.2396	14.0415	12.3380
23	44.181	41.638	38.076	35.172	32.007	27.141	22.3369	18.1373	14.8480	13.0905
24	45.559	42.980	39.364	36.415	33.196	28.241	23.3367	19.0373	15.6587	13.8484
25	46.928	44.314	40.647	37.653	34.382	29.339	24.3366	19.9393	16.4734	14.6114
26	48.290	45.642	41.923	38.885	35.563	30.435	25.3365	20.8434	17.2919	15.3792 21
27	49.645	46.963	43.194	40.113	36.741	31.528	26.3363	21.7494	18.1139	16.1514

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Unabhängigkeitstest

- \sim \mathcal{X}^2 -Tests können auch verwendet werden, um die Frage zu beantworten, ob zwei Merkmale unabhängig voneinander sind.
- Im Beispiel: Ist die Annahme von Ferienjobs abhängig vom Geschlecht der Studierenden?
- Hypothesen:
 - $ightharpoonup H_0$: Annahme von Ferienjobs und Geschlecht sind voneinander **unabhängig**.
 - $ightharpoonup H_1$: Annahme von Ferienjobs und Geschlecht sind voneinander **ab**hängig.

Verständnisfragen

- 1 Wozu können \mathcal{X}^2 -Tests verwendet werden?
- 2 Wie müssen Null- und Alternativhypothese beim \mathcal{X}^2 -Test ausgestaltet werden?
- Welches Skalenniveau müssen die Merkmale aufweisen, um im \mathcal{X}^2 -Test verwendet werden zu können?