Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 13 giugno 2019

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (6 punti)

a) Sia $W = \{A \in M_3(\mathbb{R}) | A + A^T = \mathbf{0} \}$, ove A^T indica la trasposta della matrice $A \in \mathbf{0}$ indica la matrice nulla.

Si stabilisca se W è un sottospazio di $M_3(\mathbb{R})$ e in caso affermativo se ne determini una base.

b) Sia $U = \langle (1,0,1,-1), (2,1,0,1), (0,1,-2,3) \rangle \subseteq \mathbb{R}^4$. Si scrivano le equazioni cartesiane di U.

Esercizio 2. (11 punti)

Sia $F_s: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$F_s(x_1, x_2, x_3) = (x_1 + 2x_3, -3x_1 + 6x_2 - 6x_3, 2x_1 + 5x_2 - 2sx_3).$$

- a) Si stabilisca per quali valori di s si ha che F_s è un isomorfismo.
- b) Posto s = -2, si determinino una base di Ker F_{-2} e una base di Im F_{-2} e si determini, se possibile, un vettore non nullo $\mathbf{v} \in \text{Ker } F_{-2} \cap \text{Im } F_{-2}$.
- c) Si determini la controimmagine tramite F_{-2} del vettore (-1,9,3).
- d) Si stabilisca se esistono due basi ordinate \mathcal{B} e \mathcal{B}' di \mathbb{R}^3 tali che la matrice associata a F_{-2} rispetto alla base \mathcal{B} nel dominio e alla base \mathcal{B}' nel codominio sia:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

In caso affermativo, si determinino \mathcal{B} e \mathcal{B}' .

Esercizio 3. (10 punti)

Sia $T_k: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$T(\mathbf{e}_1) = -k\mathbf{e}_2 + \mathbf{e}_3$$
 $T(\mathbf{e}_2) = \mathbf{e}_1 - 2\mathbf{e}_2$ $T(\mathbf{e}_3) = -\mathbf{e}_1 + 2\mathbf{e}_2$

e sia A_k la matrice associata a T_k rispetto alla base canonica (in dominio e codominio).

- a) Si stabilisca per quali valori di k si ha che T_k è diagonalizzabile.
- b) Si determinino, se possibile, i valori di k tali che A_k sia simile alla matrice

$$\begin{pmatrix} -4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

c) Posto k = -4, si verifichi che $\mathbf{v}_1 = \mathbf{e}_2 + \mathbf{e}_3$ e $\mathbf{v}_2 = \mathbf{e}_1 + 2\mathbf{e}_2 + \mathbf{e}_3$ sono autovettori di T_{-4} e, se possibile, si completi l'insieme $\{\mathbf{v}_1, \mathbf{v}_2\}$ ad una base di \mathbb{R}^3 costituita da autovettori di T_{-4} .

d) Si determini, se possibile, una matrice invertibile Ptale che $P^{-1}A_{-4}P$ sia diagonale.

Esercizio 4 (3 punti) Si determini, se possibile, l'inverso di [22]₉₅ in \mathbb{Z}_{95} .