

FCC PART 22H, PART 24E MEASUREMENT AND TEST REPORT

For

UNISTAR TELECOM CO., LIMITED

7A01, Tianjing Building, Tian' an High-tech Plaza, Futian District, Shenzhen, China

FCC ID: 2AC9P-M3

Report Type: Product Type: Original Report 3G mobile phone Sevin Li **Test Engineer:** Dean Liu Report Number: RDG141226004-00C **Report Date:** 2015-01-21 Sola Huas Sula Huang **Reviewed By:** RF Engineer Bay Area Compliance Laboratories Corp. (Dongguan) **Test Laboratory:** No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
JUSTIFICATION	
EQUIPMENT MODIFICATIONS	6
SUPPORT EQUIPMENT LIST AND DETAILS	
CONFIGURATION OF TEST SETUPBLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §1.1310 & §2.1093- RF EXPOSURE	9
APPLICABLE STANDARD	9
TEST RESULT	9
FCC §2.1047 - MODULATION CHARACTERISTIC	10
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1051, §22.917(A) & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS APPLICABLE STANDARD	
TEST PROCEDURE	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	
FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST FROCEDORE TEST EQUIPMENT LIST AND DETAILS.	
Test Data	
FCC §22.917(A) & §24.238(A) - BAND EDGES	40
APPLICABLE STANDARD	
TEST PROCEDURE	40
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	40
FCC 82.1055, 822.355 & 824.235 - FREOUENCY STABILITY	52

DECLADATHON LETTED	50
TEST DATA	53
TEST EQUIPMENT LIST AND DETAILS	53
TEST I ROCEDURE	
Test Procedure	52
APPLICABLE STANDARD	52

Report No.: RDG141226004-00C

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *UNISTAR TELECOM CO., LIMITED*'s product, model number: *M3* (*FCC ID: 2AC9P-M3*) (or the "EUT") in this report was a *3G mobile phone*, named M3 by applicant, which was measured approximately: 15 cm (L) x 7.5 cm (W) x 0.8 cm (H), rated input voltage: DC3.8V rechargeable Li-ion battery or DC5V charging from adapter.

Report No.: RDG141226004-00C

Adapter information: Model: HSA050100U

Input: AC100-240V, 50/60Hz, 0.2A

Output: DC 5.0V, 1000mA

Manufacturer: Dongguan HESI Charger CO.,LTD

Note: The series product, model M3, M3U, M3BS, M3CA, X55, UTTA X55, UNISTAR X55, L55 are electrically identical, the difference between them is just the model name, we selected M3 for fully testing, the detail was explained in the attached declaration letter.

Objective

This report is prepared on behalf of *UNISTAR TELECOM CO.*, *LIMITED* in accordance with Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communications Commission's rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: 2AC9P-M3 FCC Part 15C DSS submissions with FCC ID: 2AC9P-M3 FCC Part 15C DTS submissions with FCC ID: 2AC9P-M3

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services

Part 24 Subpart E - Personal Communication Services

Applicable Standards: TIA/EIA 603-D-2010, ANSI C63.4-2003.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp.(Dongguan).

FCC Part 22H/24E Page 4 of 59

^{*} All measurement and test data in this report was gathered from production sample serial number: 84000803286 (Assigned by Applicant). The EUT was received on 2014-12-26.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Report No.: RDG141226004-00C

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 22H/24E Page 5 of 59

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D-2010.

The test items were performed with the EUT operating at testing mode.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Universal Radio Communication Tester	CMU200	109038
N/A	ANTENNA	N/A	N/A

Report No.: RDG141226004-00C

Configuration of Test Setup

FCC Part 22H/24E Page 6 of 59

Block Diagram of Test Setup

Report No.: RDG141226004-00C

FCC Part 22H/24E Page 7 of 59

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310, §2.1093	RF Exposure	Compliance
\$2.1046; \$ 22.913 (a); \$ 24.232 (c)	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Not Applicable
§ 2.1049; § 22.905 § 22.917; § 24.238	Occupied Bandwidth	Compliance
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliance
§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	Compliance
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	Compliance
§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance

Report No.: RDG141226004-00C

FCC Part 22H/24E Page 8 of 59

FCC §1.1310 & §2.1093- RF EXPOSURE

Report No.: RDG141226004-00C

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliant, please refer to the SAR report: RDG141226004-20.

FCC Part 22H/24E Page 9 of 59

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC $\S 2.1047(d)$, Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Report No.: RDG141226004-00C

FCC Part 22H/24E Page 10 of 59

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

Report No.: RDG141226004-00C

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications..

Test Procedure

GSM

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + only

MS Signal

> 33 dBm for GSM 850 > 30 dBm for GSM 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stabe)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test

channel) and BCCH channel] Channel Type > Off P0 > 4 dB

TCH > choose desired test channel

Hopping > Off

AFRF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Connection Press Signal on to turn on the signal and change settings

GPRS

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + GPRS or GSM + EGSM

Main Service > Packet Data

Service selection > Test Mode A – Auto Slot Config. off

MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting

> Slot configuration > Uplink/Gamma

> 33 dBm for GPRS 850 > 30 dBm for GPRS 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stabe)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test

channel) and BCCH channel]

FCC Part 22H/24E Page 11 of 59

Channel Type > Off P0 > Slot Config > 4 dB

Unchanged (if already set under MS signal) choose desired test channel Off

TCH > Hopping >

Main Timeslot >

Network Coding Scheme > CS4 (GPRS)

Bit Stream > 2E9-1 PSR Bit Stream

Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Press Signal on to turn on the signal and change settings AF/RF

Connection

UMTS Rel 99

	Mode	Rel99
	Subtest	-
	Loopback Mode	Test Mode 1
	Rel99 RMC	12.2kbps RMC
	HSDPA FRC	Not Applicable
	HSUPA Test	Not Applicable
WCDMA General	Power Control Algorithm	Algorithm2
Settings	βс	Not Applicable
Settings	βd	Not Applicable
	βес	Not Applicable
	βc/βd	8/15
	βhs	Not Applicable
	βed	Not Applicable

Report No.: RDG141226004-00C

UMTS Rel 6 HSDPA

Mode	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA	
Subtest	1	2	3	4	
Loopback Mode	Test Mode 1				
Rel99 RMC	12.2kbps RMC				
HSDPA FRC	H-Set1				
HSUPA Test	Not Applicable				
Power Control Algorithm	Algorithm 2				
βc	2/15	12/15	15/15	15/15	
βd	15/15	15/15	8/15	4/15	
βec	-	-	-	-	
βc/βd	2/15	12/15	15/8	15/4	
βhs	4/15	24/15	30/15	30/15	
βed	Not Applicable			•	
DACK	8				
DNAK	8				
DCQI	8				
Ack-Nack repetition factor	3				
CQI Feedback (Table 5.2B.4)	4ms				
CQI Repetition Factor (Table 5.2B.4)	2				
Ahs = βhs/βc	30/15	•	•	•	
	Subtest Loopback Mode Rel99 RMC HSDPA FRC HSUPA Test Power Control Algorithm βc βd βec βc/βd βhs βed DACK DNAK DCQI Ack-Nack repetition factor CQI Feedback (Table 5.2B.4) CQI Repetition Factor (Table 5.2B.4)	Subtest 1 Loopback Mode Test Mode 1 Rel99 RMC 12.2kbps RMC HSDPA FRC H-Set1 HSUPA Test Not Applicable Power Control Algorithm Algorithm 2 βc 2/15 βd 15/15 βec - βc/βd 2/15 βhs 4/15 βed Not Applicable DACK 8 DNAK 8 DCQI 8 Ack-Nack repetition factor 3 CQI Feedback (Table 5.2B.4) 4ms CQI Repetition Factor (Table 5.2B.4) 2	Subtest 1 2 Loopback Mode Test Mode 1 Rel99 RMC 12.2kbps RMC HSDPA FRC H-Set1 HSUPA Test Not Applicable Power Control Algorithm Algorithm 2 βc 2/15 12/15 βd 15/15 15/15 βec - - βc/βd 2/15 12/15 βhs 4/15 24/15 βed Not Applicable DACK 8 DNAK 8 DCQI 8 Ack-Nack repetition factor 3 CQI Feedback (Table 5.2B.4) 4ms CQI Repetition Factor (Table 5.2B.4) 2	Subtest 1 2 3 Loopback Mode Test Mode 1 Rel99 RMC 12.2kbps RMC Rel99 RMC 12.2kbps RMC H-Set1 HSDPA FRC H-Set1 H-Set1 HSUPA Test Not Applicable Power Control Algorithm Algorithm 2 βc 2/15 12/15 15/15 βd 15/15 15/15 8/15 βec - - - - βc/βd 2/15 12/15 15/8 15/8 βhs 4/15 24/15 30/15 βed Not Applicable Not Applicable DACK 8 Not Applicable DACK 8 8 DNAK 8 8 DCQI 8 8 Ack-Nack repetition factor 3 CQI Feedback (Table 5.2B.4) CQI Repetition Factor (Table 5.2B.4) 2	

FCC Part 22H/24E Page 12 of 59

UMTS Rel 6 HSPA (HSDPA & HSUPA)

	Mode	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA			
	Subtest	1	2	3	4	5			
	Loopback Mode	Test Mode 1		•					
	Rei99 RMC	12.2kbps RMC	;						
	HSDPA FRC	H-Set1	H-Set1						
	HSUPA Test	HSUPA Loopb	ack						
14/00044	Power Control Algorithm	Algorithm2							
WCDMA General	βc	11/15	6/15	15/15	2/15	15/15			
Settings	βd	15/15	15/15	9/15	15/15	0			
Settings	βec	209/225	12/15	30/15	2/15	5/15			
	βc/βd	11/15	6/15	15/9	2/15	-			
	βhs	22/15	12/15	30/15	4/15	5/15			
				47/15					
	βed	1309/225	94/75	47/15	56/75	47/15			
	DACK	8							
	DNAK	8							
HSDPA	DCQI	8							
Specific	Ack-Nack repetition factor	3							
Settings	CQI Feedback (Table 5.2B.4)	4ms							
Settings	CQI Repetition Factor (Table	CQI Repetition Factor (Table							
	5.2B.4)	2							
	Ahs = βhs/βc	30/15							
	D E-DPCCH	6	8	8	5	7			
	DHARQ	0	0	0	0	0			
	AG Index	20	12	15	17	12			
	ETFCI (from 34.121 Table								
	C.11.1.3)	75	67	92	71	67			
	Associated Max UL Data Rate								
	kbps	242.1	174.9	482.8	205.8	308.9			
HSUPA Specific		E-TFCI 11 E-TFCI PO 4			E-TFCI 11 E-TFCI PO 4				
Settings		E-TFCI 67			E-TFCI 67				
		E-TFCI PO 18			E-TFCI PO 18				
	Reference E_TFCIs	E-TFCI 71			E-TFCI 71				
	Tolorono L_Trolo	E-TFCI PO 23		E-TFCI 11	E-TFCI PO 23				
		E-TFCI 75		E-TFCI PO 4	E-TFCI 75				
		E-TFCI PO 26		E-TFCI 92	E-TFCI PO 26				
		E-TFCI 81		E-TFCI PO	E-TFCI 81				
		E-TFCI PO 27		18	E-TFCI PO 27				

Report No.: RDG141226004-00C

Radiated method:

ANSI/TIA 603-D section 2.2.17

FCC Part 22H/24E Page 13 of 59

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2014-05-09	2015-05-09
Sunol Sciences	Antenna	JB3	A060611-3	2014-07-28	2017-07-27
HP	Amplifier	olifier 8447E 2434A		2014-09-01	2015-09-01
R&S	Spectrum Analyzer	FSEM	DE31388	2014-05-09	2015-05-09
ETS LINDGREN	Horn Antenna	3115	000 527 35	2012-09-06	2015-09-06
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2014-02-19	2015-02-19
Giga	Signal Generator	1026	320408	2014-05-09	2015-05-09
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2012-09-06	2015-09-06

Report No.: RDG141226004-00C

Test Data

Environmental Conditions

Temperature:	21.6 °C
Relative Humidity:	37 %
ATM Pressure:	101.9 kPa

The testing was performed by Dean Liu on 2014-12-20.

FCC Part 22H/24E Page 14 of 59

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Conducted Power

Cellular Band (Part 22H) & PCS Band (Part 24E)

Report No.: RDG141226004-00C

	Channel	Peak Output Power (dBm)					
Band	No.	GSM	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	
	128	31.66	30.84	30.33	28.36	27.41	
Cellular	190	31.75	31.24	30.41	28.63	27.58	
	251	32.06	31.53	30.70	28.94	27.89	
	512	29.49	28.96	28.15	26.93	25.65	
PCS	661	29.35	28.78	28.01	26.74	25.48	
	810	29.42	28.84	28.07	26.82	25.51	

	Channel	Peak Output Power (dBm)					
Band	Channel No.	EGPRS 1 TX Slot	EGPRS 2 TX Slot	EGPRS 3 TX Slot	EGPRS 4 TX Slot		
	128	26.57	25.32	22.84	21.74		
Cellular	190	26.73	25.36	23.16	21.68		
	251	26.58	25.25	22.85	21.64		
	512	25.69	24.35	21.83	20.81		
PCS	661	25.23	23.87	21.62	20.35		
	810	24.66	23.31	20.47	20.28		

WCDMA Band II

			Average Output Power (dBm)					
Mode	3GPP Sub Test	Low Channel (Ave. Power)	Low Channel (PAR)	Middle Channel (Ave. Power)	Middle Channel (PAR)	High Channel (Ave. Power)	High Channel (PAR)	
Rel 99	1	22.32	2.97	22.11	3.02	21.81	2.44	
	1	21.48	3.31	21.24	3.42	20.94	2.87	
HSDPA	2	21.44	3.26	21.22	3.43	20.96	2.82	
ПЗДРА	3	21.42	3.33	21.26	3.43	20.90	2.88	
	4	21.51	3.31	21.19	3.39	20.91	2.85	
	1	21.46	3.32	21.25	3.39	20.95	2.84	
	2	21.45	3.28	21.24	3.34	20.93	2.78	
HSUPA	3	21.47	3.35	21.23	3.34	20.94	2.82	
	4	21.44	3.30	21.20	3.36	20.98	2.82	
	5	21.45	3.32	21.22	3.40	20.91	2.83	

FCC Part 22H/24E Page 15 of 59

WCDMA Band V

Report No.: RDG141226004-00C

		Average Output Power (dBm)								
Mode	3GPP Sub Test	Low Channel (Ave. Power)	Low Channel (PAR)	Middle Channel (Ave. Power)	Middle Channel (PAR)	High Channel (Ave. Power)	High Channel (PAR)			
Rel 99	1	22.12	3.36	22.05	2.78	22.11	3.45			
	1	21.24	3.08	21.13	3.04	21.16	3.46			
HCDDA	2	21.24	3.08	21.10	3.00	21.11	3.46			
HSDPA	3	21.19	3.08	21.13	3.01	21.12	3.42			
	4	21.20	3.08	21.10	3.05	21.16	3.47			
	1	21.25	3.08	21.12	3.03	21.14	3.42			
	2	21.28	3.10	21.14	3.05	21.11	3.43			
HSUPA	3	21.19	3.03	21.14	3.00	21.10	3.37			
	4	21.27	3.05	21.06	3.04	21.12	3.38			
	5	21.25	3.02	21.12	3.02	21.17	3.38			

Note: peak-to-average ratio (PAR) <13 dB

FCC Part 22H/24E Page 16 of 59

ERP & EIRP

Report No.: RDG141226004-00C

		D	S	ubstituted Me	ethod	A114.	Absolute			
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)		
GSM 850										
824.200	Н	93.20	18.2	0.0	1.0	17.2	38.45	21.3		
824.200	V	103.15	31.2	0.0	1.0	30.2	38.45	8.3		
836.600	Н	92.97	18.0	0.0	1.0	17.0	38.45	21.5		
836.600	V	103.46	31.7	0.0	1.0	30.7	38.45	7.8		
848.800	Н	93.12	18.3	0.0	1.0	17.3	38.45	21.2		
848.800	V	103.90	32.2	0.0	1.0	31.2	38.45	7.3		
				EDGE 850						
824.200	Н	88.37	13.3	0.0	1.0	12.3	38.45	26.2		
824.200	V	98.52	26.6	0.0	1.0	25.6	38.45	12.9		
836.600	Н	88.15	13.2	0.0	1.0	12.2	38.45	26.3		
836.600	V	98.48	26.7	0.0	1.0	25.7	38.45	12.8		
848.800	Н	87.97	13.1	0.0	1.0	12.1	38.45	26.4		
848.800	V	98.18	26.5	0.0	1.0	25.5	38.45	13.0		
				PCS 1900						
1850.200	Н	90.72	18.9	11.4	1.4	28.9	33.0	4.1		
1850.200	V	86.78	14.8	11.4	1.4	24.8	33.0	8.2		
1880.000	Н	90.11	18.5	11.7	1.4	28.8	33.0	4.2		
1880.000	V	86.37	14.9	11.7	1.4	25.2	33.0	7.8		
1909.800	Н	89.60	18.2	11.8	1.4	28.6	33.0	4.4		
1909.800	V	86.11	15.0	11.8	1.4	25.4	33.0	7.6		
	•			EDGE 1900						
1850.200	Н	86.44	14.6	11.4	1.4	24.6	33.0	8.4		
1850.200	V	82.91	11	11.4	1.4	21.0	33.0	12.0		
1880.000	Н	86.79	15.2	11.7	1.4	25.5	33.0	7.5		
1880.000	V	82.81	11.4	11.7	1.4	21.7	33.0	11.3		
1909.800	Н	85.94	14.6	11.8	1.4	25.0	33.0	8.0		
1909.800	V	82.04	11	11.8	1.4	21.4	33.0	11.6		
			W	CDMA Band	П					

624.200	11	93.20	10.2	0.0	1.0	17.2	30.43	21.3		
824.200	V	103.15	31.2	0.0	1.0	30.2	38.45	8.3		
836.600	Н	92.97	18.0	0.0	1.0	17.0	38.45	21.5		
836.600	V	103.46	31.7	0.0	1.0	30.7	38.45	7.8		
848.800	Н	93.12	18.3	0.0	1.0	17.3	38.45	21.2		
848.800	V	103.90	32.2	0.0	1.0	31.2	38.45	7.3		
EDGE 850										
824.200	Н	88.37	13.3	0.0	1.0	12.3	38.45	26.2		
824.200	V	98.52	26.6	0.0	1.0	25.6	38.45	12.9		
836.600	Н	88.15	13.2	0.0	1.0	12.2	38.45	26.3		
836.600	V	98.48	26.7	0.0	1.0	25.7	38.45	12.8		
848.800	Н	87.97	13.1	0.0	1.0	12.1	38.45	26.4		
848.800	V	98.18	26.5	0.0	1.0	25.5	38.45	13.0		
				PCS 1900						
1850.200	Н	90.72	18.9	11.4	1.4	28.9	33.0	4.1		
1850.200	V	86.78	14.8	11.4	1.4	24.8	33.0	8.2		
1880.000	Н	90.11	18.5	11.7	1.4	28.8	33.0	4.2		
1880.000	V	86.37	14.9	11.7	1.4	25.2	33.0	7.8		
1909.800	Н	89.60	18.2	11.8	1.4	28.6	33.0	4.4		
1909.800	V	86.11	15.0	11.8	1.4	25.4	33.0	7.6		
	EDGE 1900									
1850.200	Н	86.44	14.6	11.4	1.4	24.6	33.0	8.4		
1850.200	V	82.91	11	11.4	1.4	21.0	33.0	12.0		
1880.000	Н	86.79	15.2	11.7	1.4	25.5	33.0	7.5		
1880.000	V	82.81	11.4	11.7	1.4	21.7	33.0	11.3		
1909.800	Н	85.94	14.6	11.8	1.4	25.0	33.0	8.0		
1909.800	V	82.04	11	11.8	1.4	21.4	33.0	11.6		
			W	CDMA Band	II					
1852.400	Н	82.47	10.6	11.5	1.4	20.7	33.0	12.3		
1852.400	V	79.42	7.5	11.5	1.4	17.6	33.0	15.4		
1880.000	Н	81.58	10.0	11.7	1.4	20.3	33.0	12.7		
1880.000	V	78.55	7.1	11.7	1.4	17.4	33.0	15.6		
1907.400	Н	80.98	9.6	11.8	1.4	20.0	33.0	13.0		
1907.400	V	77.86	6.8	11.8	1.4	17.2	33.0	15.8		
			W	CDMA Band	V					
826.400	Н	84.53	9.5	0.0	1.0	8.5	38.45	29.95		
826.400	V	93.88	22.0	0.0	1.0	21.0	38.45	17.45		
836.600	Н	84.85	9.9	0.0	1.0	8.9	38.45	29.55		
836.600	V	93.49	21.7	0.0	1.0	20.7	38.45	17.75		
846.600	Н	84.28	9.4	0.0	1.0	8.4	38.45	30.05		
846.600	V	93.19	21.5	0.0	1.0	20.5	38.45	17.95		

FCC Part 22H/24E Page 17 of 59

FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH

Report No.: RDG141226004-00C

Applicable Standard

FCC §2.1049, §22.917, §22.905 and §24.238.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2014-05-09	2015-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23.1-21.7 °C
Relative Humidity:	50-43 %
ATM Pressure:	100.8-101.6 kPa

The testing was performed by Dean Liu from 2015-01-05 and 2015-01-20.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.

FCC Part 22H/24E Page 18 of 59

Band	Channel No.	Mode	99% Occupied Bandwidth (kHz)	26 dB Occupied Bandwidth (kHz)
Callular	100	GSM	246	316
Cellular	190	EGPRS	246	308
PCS	661	GSM	246	316
		EGPRS	250	316
WCDMA Band II	9400	Rel 99	4160	4720
	9400	HSDPA	4180	4700
	9400	HSUPA	4160	4740
	4183	Rel 99	4160	4720
WCDMA Band V	4183	HSDPA	4160	4740
Duna v	4183	HSUPA	4160	4720

Report No.: RDG141226004-00C

FCC Part 22H/24E Page 19 of 59

GMSK 850 Cellular Band

Report No.: RDG141226004-00C

Date: 6.JAN.2015 10:44:52

EDGE 850 Cellular Band

FCC Part 22H/24E Page 20 of 59

GMSK PCS Band

Report No.: RDG141226004-00C

Date: 6.JAN.2015 11:45:12

EDGE 1800 PCS Band

Date: 20.JAN.2015 19:42:07

FCC Part 22H/24E Page 21 of 59

REL99 Band II

Report No.: RDG141226004-00C

Date: 6.JAN.2015 09:56:15

HSDPA Band II

Date: 6.JAN.2015 09:43:06

FCC Part 22H/24E Page 22 of 59

HSUPA Band II

Report No.: RDG141226004-00C

Date: 6.JAN.2015 09:21:51

REL99 Band V

Date: 5.JAN.2015 20:14:24

FCC Part 22H/24E Page 23 of 59

HSDPA Band V

Report No.: RDG141226004-00C

Date: 5.JAN.2015 20:36:03

HSUPA Band V

Date: 5.JAN.2015 20:45:42

FCC Part 22H/24E Page 24 of 59

FCC §2.1051, §22.917(a) & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Report No.: RDG141226004-00C

Applicable Standard

FCC §2.1051, §22.917(a) and §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2014-05-09	2015-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23.1-24.4 °C
Relative Humidity:	50-58 %
ATM Pressure:	100.8-100.9 kPa

The testing was performed by Dean Liu on 2015-01-05 and 2014-01-06.

Please refer to the following plots.

FCC Part 22H/24E Page 25 of 59

GSM850_High Channel

Report No.: RDG141226004-00C

Date: 6.JAN.2015 10:58:59

Date: 6.JAN.2015 11:00:02

FCC Part 22H/24E Page 26 of 59

PCS 1900_Low Channel

Report No.: RDG141226004-00C

Date: 6.JAN.2015 11:40:58

Date: 6.JAN.2015 11:46:05

FCC Part 22H/24E Page 27 of 59

Report No.: RDG141226004-00C

Date: 6.JAN.2015 11:39:09

REL99 Band II_Low Channel

Date: 6.JAN.2015 09:51:18

FCC Part 22H/24E Page 28 of 59

Report No.: RDG141226004-00C

Date: 6.JAN.2015 09:50:59

Date: 6.JAN.2015 09:50:35

FCC Part 22H/24E Page 29 of 59

HSDPA Band II_Low Channel

Report No.: RDG141226004-00C

Date: 6.JAN.2015 09:47:53

Fundamental

Date: 6.JAN.2015 09:48:33

FCC Part 22H/24E Page 30 of 59

Report No.: RDG141226004-00C

Date: 6.JAN.2015 09:49:15

HSUPA Band II_Low Channel

Date: 6.JAN.2015 09:23:32

FCC Part 22H/24E Page 31 of 59

Report No.: RDG141226004-00C

Date: 6.JAN.2015 09:24:27

Date: 6.JAN.2015 09:26:25

FCC Part 22H/24E Page 32 of 59

REL99 Band V_Low Channel

Report No.: RDG141226004-00C

Date: 5.JAN.2015 20:57:16

Date: 5.JAN.2015 20:57:57

FCC Part 22H/24E Page 33 of 59

$HSDPA \ Band \ V_ \ Low \ Channel$

Report No.: RDG141226004-00C

Date: 5.JAN.2015 20:38:08

Date: 5.JAN.2015 20:39:59

FCC Part 22H/24E Page 34 of 59

$HSUPA \ Band \ V_ \ Low \ Channel$

Report No.: RDG141226004-00C

Date: 5.JAN.2015 20:43:37

Date: 5.JAN.2015 20:42:56

FCC Part 22H/24E Page 35 of 59

FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS

Report No.: RDG141226004-00C

Applicable Standard

FCC § 2.1053, §22.917 and § 24.238.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001)$ – the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Test Equipment List and Details

		VIII III III			
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2014-05-09	2015-05-09
Sunol Sciences	Antenna	JB3	A060611-3	2014-07-28	2017-07-27
HP	Amplifier	8447E	2434A02181	2014-09-01	2015-09-01
R&S	Spectrum Analyzer	FSEM	DE31388	2014-05-09	2015-05-09
ETS LINDGREN	Horn Antenna	3115	000 527 35	2012-09-06	2015-09-06
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2014-02-19	2015-02-19
Giga	Signal Generator	1026	320408	2014-05-09	2015-05-09
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2012-09-06	2015-09-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC Part 22H/24E Page 36 of 59

Test Data

Environmental Conditions

Temperature:	21.6 °C
Relative Humidity:	37 %
ATM Pressure:	101.9 kPa

The testing was performed by Dean Liu on 2014-12.20

EUT Operation Mode: Transmitting

Cellular Band

Report No.: RDG141226004-00C

			S	ubstituted Me	thod			
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			Freque	ncy:824.200 M	IHz			
1648.400	Н	44.57	-56.6	10.5	1.5	-47.6	-13.0	34.6
1648.400	V	44.85	-56.7	10.5	1.5	-47.7	-13.0	34.7
2472.600	Н	51.86	-46.2	12.9	2.6	-35.9	-13.0	22.9
2472.600	V	53.01	-43.7	12.9	2.6	-33.4	-13.0	20.4
242.17	Н	36.21	-71.9	0.0	0.5	-72.4	-13.0	59.4
190.67	V	35.27	-70.9	0.0	0.5	-71.4	-13.0	58.4
	Frequency:836.600 MHz							
1673.200	Н	42.91	-58.2	10.6	1.5	-49.1	-13.0	36.1
1673.200	V	43.12	-58.3	10.6	1.5	-49.2	-13.0	36.2
2509.800	Н	50.16	-47.9	13.1	2.8	-37.6	-13.0	24.6
2509.800	V	53.07	-44	13.1	2.8	-33.7	-13.0	20.7
242.63	Н	35.98	-72.1	0.0	0.5	-72.6	-13.0	59.6
190.77	V	34.54	-71.6	0.0	0.5	-72.1	-13.0	59.1
			Freque	ncy:848.800 M	IHz			
1697.600	Н	42.89	-58.1	10.8	1.5	-48.8	-13.0	35.8
1697.600	V	43.30	-57.9	10.8	1.5	-48.6	-13.0	35.6
2546.400	Н	49.34	-47.2	13.1	2.8	-36.9	-13.0	23.9
2546.400	V	49.72	-47.4	13.1	2.8	-37.1	-13.0	24.1
242.66	Н	35.43	-72.7	0.0	0.5	-73.2	-13.0	60.2
190.21	V	34.95	-71.3	0.0	0.5	-71.8	-13.0	58.8

FCC Part 22H/24E Page 37 of 59

PCS Band

Report No.: RDG141226004-00C

		n .	Sı	ubstituted Me	thod	A1 1 4		
Frequency (MHz)	requency Polar Rea	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			Frequen	cy:1850.200 N	ИHz			
3700.400	Н	37.33	-57.5	14.0	2.5	-46.0	-13.0	33.0
3700.400	V	39.52	-54.8	14.0	2.5	-43.3	-13.0	30.3
242.62	Н	36.21	-71.9	0.0	0.5	-72.4	-13.0	59.4
190.47	V	35.27	-70.9	0.0	0.5	-71.4	-13.0	58.4
			Frequen	cy:1880.000 N	ИHz			
3760.000	Н	38.84	-55.5	13.8	2.9	-44.6	-13.0	31.6
3760.000	V	40.42	-52.6	13.8	2.9	-41.7	-13.0	28.7
242.74	Н	35.96	-72.1	0.0	0.5	-72.6	-13.0	59.6
190.37	V	35.24	-71	0.0	0.5	-71.5	-13.0	58.5
	Frequency:1909.800 MHz							
3819.600	Н	39.67	-54.1	13.6	3.3	-43.8	-13.0	30.8
3819.600	V	42.37	-49.8	13.6	3.3	-39.5	-13.0	26.5
242.55	Н	35.88	-72.2	0.0	0.5	-72.7	-13.0	59.7
190.64	V	35.17	-71	0.0	0.5	-71.5	-13.0	58.5

WCDMA Band II

		D:	Substituted Method		Absolute			
Frequency (MHz)	equency Polar Rea	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
			Frequen	cy:1852.400 N	ИHz			
3704.800	H	37.24	-57.5	13.9	2.5	-46.1	-13.0	33.1
3704.800	V	40.36	-53.9	13.9	2.5	-42.5	-13.0	29.5
242.64	Н	35.69	-72.4	0.0	0.5	-72.9	-13.0	59.9
190.22	V	35.21	-71	0.0	0.5	-71.5	-13.0	58.5
	Frequency:1880.000 MHz							
3760.000	Н	38.57	-55.7	13.8	2.9	-44.8	-13.0	31.8
3760.000	V	42.45	-50.6	13.8	2.9	-39.7	-13.0	26.7
242.91	Н	36.05	-72	0.0	0.5	-72.5	-13.0	59.5
190.46	V	35.29	-70.9	0.0	0.5	-71.4	-13.0	58.4
	Frequency:1907.600 MHz							
3815.200	Н	39.94	-53.9	13.6	3.3	-43.6	-13.0	30.6
3815.200	V	41.22	-50.9	13.6	3.3	-40.6	-13.0	27.6
242.84	Н	35.97	-72.1	0.0	0.5	-72.6	-13.0	59.6
190.57	V	34.57	-71.6	0.0	0.5	-72.1	-13.0	59.1

FCC Part 22H/24E Page 38 of 59

WCDMA Band V

			S	ubstituted Me	thod			
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			Freque	ncy:824.400 M	Hz			
1652.800	Н	44.17	-56.9	10.5	1.5	-47.9	-13.0	34.9
1652.800	V	42.36	-59.2	10.5	1.5	-50.2	-13.0	37.2
2479.200	Н	34.24	-63.9	12.9	2.6	-53.6	-13.0	40.6
2479.200	V	33.75	-63.1	12.9	2.6	-52.8	-13.0	39.8
242.24	Н	35.62	-72.5	0.0	0.5	-73.0	-13.0	60.0
190.71	V	34.75	-71.4	0.0	0.5	-71.9	-13.0	58.9
	Frequency:836.600 MHz							
1673.200	Н	39.31	-61.8	10.6	1.5	-52.7	-13.0	39.7
1673.200	V	35.17	-66.2	10.6	1.5	-57.1	-13.0	44.1
2509.800	Н	34.45	-63.6	13.1	2.8	-53.3	-13.0	40.3
2509.800	V	34.24	-62.9	13.1	2.8	-52.6	-13.0	39.6
242.88	Н	36.27	-71.8	0.0	0.5	-72.3	-13.0	59.3
190.55	V	35.48	-70.7	0.0	0.5	-71.2	-13.0	58.2
			Freque	ncy:848.600 M	Hz			
1693.200	Н	42.97	-58.1	10.7	1.5	-48.9	-13.0	35.9
1693.200	V	40.25	-61	10.7	1.5	-51.8	-13.0	38.8
2539.800	Н	34.54	-62.3	13.1	2.8	-52.0	-13.0	39.0
2539.800	V	33.68	-63.4	13.1	2.8	-53.1	-13.0	40.1
242.67	Н	36.07	-72	0.0	0.5	-72.5	-13.0	59.5
190.62	V	35.43	-70.8	0.0	0.5	-71.3	-13.0	58.3

Report No.: RDG141226004-00C

Note:

FCC Part 22H/24E Page 39 of 59

¹⁾ The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.

²⁾ Absolute Level = SG Level - Cable loss + Antenna Gain3) Margin = Limit-Absolute Level

FCC §22.917(a) & §24.238(a) - BAND EDGES

Applicable Standard

According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Report No.: RDG141226004-00C

According to \$24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2014-05-09	2015-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23.1-21.7 °C
Relative Humidity:	50-43 %
ATM Pressure:	100.8-101.6 kPa

The testing was performed by Dean Liu from 2015-01-05 and 2015-01-20.

FCC Part 22H/24E Page 40 of 59

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.

D 1	Mala	Band	Reading	Limit
Band	Mode	Edge	dBm	dBm
	GSM	Left	-13.47	≤-13
Cellular	GSM	Right	-15.58	≤-13
Cenulai	EGPRS	Left	-19.17	≤-13
	LOFKS	Right	-15.23	≤-13
	GSM	Left	-16.87	≤-13
PCS	OSM	Right	-17.88	≤-13
rcs	EGPRS	Left	-23.01	≤-13
		Right	-22.58	≤-13
	Rel 99	Left	-14.03	≤-13
		Right	-13.84	≤-13
WCDMA	HSDPA -	Left	-17.96	≤-13
Band II		Right	-19.52	≤-13
	HSUPA	Left	-16.72	≤-13
	пзора	Right	-14.71	≤-13
	Rel 99	Left	-18.6	≤-13
	Kei 99	Right	-15.94	≤-13
WCDMA	HSDPA	Left	-16.76	≤-13
Band V	IISDFA	Right	-13.89	≤-13
	HSUPA	Left	-16.49	≤-13
	IISUFA	Right	-14.98	≤-13

Report No.: RDG141226004-00C

FCC Part 22H/24E Page 41 of 59

GSM 850, Left Band Edge

Report No.: RDG141226004-00C

Date: 6.JAN.2015 10:50:38

GSM 850, Right Band Edge

Date: 6.JAN.2015 10:52:11

FCC Part 22H/24E Page 42 of 59

EDGE850, Left Band Edge

Report No.: RDG141226004-00C

Date: 20.JAN.2015 18:03:20

EDGE850, Right Band Edge

Date: 20.JAN.2015 18:09:19

FCC Part 22H/24E Page 43 of 59

GSM 1900, Left Band Edge

Report No.: RDG141226004-00C

Date: 6.JAN.2015 11:55:41

GSM 1900, Right Band Edge

Date: 6.JAN.2015 11:54:02

FCC Part 22H/24E Page 44 of 59

EDGE 1900, Left Band Edge

Report No.: RDG141226004-00C

Date: 20.JAN.2015 19:44:18

EDGE 1900, Right Band Edge

Date: 20.JAN.2015 19:45:38

FCC Part 22H/24E Page 45 of 59

REL99 Band II, Left Band Edge

Report No.: RDG141226004-00C

Date: 6.JAN.2015 10:11:10

REL99 Band II, Right Band Edge

Date: 6.JAN.2015 10:10:31

FCC Part 22H/24E Page 46 of 59

HSDPA Band II, Left Band Edge

Report No.: RDG141226004-00C

Date: 6.JAN.2015 09:40:45

HSDPA Band II, Right Band Edge

Date: 6.JAN.2015 09:39:33

FCC Part 22H/24E Page 47 of 59

HSUPA Band II, Left Band Edge

Report No.: RDG141226004-00C

Date: 6.JAN.2015 09:30:27

HSUPA Band II, Right Band Edge

Date: 6.JAN.2015 09:32:52

FCC Part 22H/24E Page 48 of 59

REL99 Band V, Left Band Edge

Report No.: RDG141226004-00C

Date: 5.JAN.2015 20:27:13

REL99 Band V, Right Band Edge

Date: 5.JAN.2015 20:29:51

FCC Part 22H/24E Page 49 of 59

HSDPA Band V, Left Band Edge

Report No.: RDG141226004-00C

Date: 5.JAN.2015 20:32:54

HSDPA Band V, Right Band Edge

Date: 5.JAN.2015 20:31:48

FCC Part 22H/24E Page 50 of 59

HSUPA Band V, Left Band Edge

Report No.: RDG141226004-00C

Date: 5.JAN.2015 20:49:22

HSUPA Band V, Right Band Edge

Date: 5.JAN.2015 20:50:06

FCC Part 22H/24E Page 51 of 59

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a), § 2.1055 (d), §22.355, §24.235

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency	Tolerance for	or Transmitt	ers in the	Public N	Mobile Services
I I C q a C I I C ,	I OTOTALICO I	or reministra	CID III CIIC	I GOILE I	TOOLIG DOL TICOD

Report No.: RDG141226004-00C

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

FCC Part 22H/24E Page 52 of 59

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Dongzhixu	High Temperature Test Chamber	DP1000	201105083-3	2014-08-01	2015-08-01
R&S	Universal Radio Communication Tester	CMU200	109 038	2014-05-09	2015-05-09

Report No.: RDG141226004-00C

Test Data

Environmental Conditions

Temperature:	21.6 °C
Relative Humidity:	37%
ATM Pressure:	101 .9kPa

The testing was performed by Dean Liu on 2014-12-20.

FCC Part 22H/24E Page 53 of 59

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Cellular Band (Part 22H)

GMSK, Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit
℃	V_{DC}	Hz	ppm	ppm
-30	3.8	-15	-0.018	2.5
-20	3.8	-18	-0.022	2.5
-10	3.8	-14	-0.017	2.5
0	3.8	-16	-0.019	2.5
10	3.8	-18	-0.022	2.5
20	3.8	-16	-0.019	2.5
30	3.8	-20	-0.024	2.5
40	3.8	-17	-0.020	2.5
50	3.8	-19	-0.023	2.5
25	3.6	-16	-0.019	2.5
25	4.2	-14	-0.017	2.5

Report No.: RDG141226004-00C

F	EDGE, Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit	
°C	V_{DC}	Hz	ppm	ppm	
-30	3.8	17	0.020	2.5	
-20	3.8	14	0.017	2.5	
-10	3.8	20	0.024	2.5	
0	3.8	16	0.019	2.5	
10	3.8	19	0.023	2.5	
20	3.8	22	0.026	2.5	
30	3.8	25	0.030	2.5	
40	3.8	21	0.025	2.5	
50	3.8	24	0.029	2.5	
25	3.6	23	0.027	2.5	
25	4.2	19	0.023	2.5	

FCC Part 22H/24E Page 54 of 59

PCS Band (Part 24E)

GMSK, Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
ပ	V _{DC}	Hz	ppm	
-30	3.8	23	0.012	Pass
-20	3.8	22	0.012	Pass
-10	3.8	20	0.011	Pass
0	3.8	19	0.010	Pass
10	3.8	25	0.013	Pass
20	3.8	24	0.013	Pass
30	3.8	23	0.012	Pass
40	3.8	20	0.011	Pass
50	3.8	21	0.011	Pass
25	3.6	17	0.009	Pass
25	4.2	19	0.010	Pass

Report No.: RDG141226004-00C

E	EDGE, Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result	
℃	V_{DC}	Hz	ppm		
-30	3.8	-17	0.009	Pass	
-20	3.8	-13	0.007	Pass	
-10	3.8	-19	0.010	Pass	
0	3.8	-23	0.012	Pass	
10	3.8	-20	0.011	Pass	
20	3.8	-18	0.010	Pass	
30	3.8	-16	0.009	Pass	
40	3.8	-14	0.007	Pass	
50	3.8	-20	0.011	Pass	
25	3.6	-19	0.010	Pass	
25	4.2	-16	0.009	Pass	

FCC Part 22H/24E Page 55 of 59

WCDMA Band II: Re199

Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
°C	V _{DC}	Hz	ppm	
-30	3.8	-21	-0.011	Pass
-20	3.8	-18	-0.010	Pass
-10	3.8	-26	-0.014	Pass
0	3.8	-25	-0.013	Pass
10	3.8	-20	-0.011	Pass
20	3.8	-22	-0.012	Pass
30	3.8	-23	-0.012	Pass
40	3.8	-21	-0.011	Pass
50	3.8	-19	-0.010	Pass
25	3.6	-25	-0.013	Pass
25	4.2	-21	-0.011	Pass

Report No.: RDG141226004-00C

WCDMA Band V: Re199

	Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit	
${\mathbb C}$	V _{DC}	Hz	ppm	ppm	
-30	3.8	-14	-0.017	2.5	
-20	3.8	-16	-0.019	2.5	
-10	3.8	-19	-0.023	2.5	
0	3.8	-15	-0.018	2.5	
10	3.8	-20	-0.024	2.5	
20	3.8	-15	-0.018	2.5	
30	3.8	-19	-0.023	2.5	
40	3.8	-16	-0.019	2.5	
50	3.8	-15	-0.018	2.5	
25	3.6	-14	-0.017	2.5	
25	4.2	-16	-0.019	2.5	

FCC Part 22H/24E Page 56 of 59

Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
ပ	V_{DC}	Hz	ppm	
-30	3.8	-16	-0.009	Pass
-20	3.8	-18	-0.010	Pass
-10	3.8	-19	-0.010	Pass
0	3.8	-20	-0.011	Pass
10	3.8	-21	-0.011	Pass
20	3.8	-17	-0.009	Pass
30	3.8	-16	-0.009	Pass
40	3.8	-18	-0.010	Pass
50	3.8	-18	-0.010	Pass
25	3.6	-20	-0.011	Pass
25	4.2	-22	-0.012	Pass

Report No.: RDG141226004-00C

WCDMA Band V: HSDPA

	Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit	
℃	V _{DC}	Hz	ppm	ppm	
-30	3.8	-22	-0.026	2.5	
-20	3.8	-18	-0.022	2.5	
-10	3.8	-19	-0.023	2.5	
0	3.8	-22	-0.026	2.5	
10	3.8	-17	-0.020	2.5	
20	3.8	-24	-0.029	2.5	
30	3.8	-21	-0.025	2.5	
40	3.8	-19	-0.023	2.5	
50	3.8	-23	-0.027	2.5	
25	3.6	-18	-0.022	2.5	
25	4.2	-19	-0.023	2.5	

FCC Part 22H/24E Page 57 of 59

Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
ပ	V_{DC}	Hz	ppm	
-30	3.8	-19	-0.010	Pass
-20	3.8	-21	-0.011	Pass
-10	3.8	-17	-0.009	Pass
0	3.8	-14	-0.007	Pass
10	3.8	-22	-0.012	Pass
20	3.8	-18	-0.010	Pass
30	3.8	-21	-0.011	Pass
40	3.8	-24	-0.013	Pass
50	3.8	-17	-0.009	Pass
25	3.6	-16	-0.009	Pass
25	4.2	-22	-0.012	Pass

Report No.: RDG141226004-00C

WCDMA Band V: HSUPA

	Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit	
${\mathbb C}$	V _{DC}	Hz	ppm	ppm	
-30	3.8	-17	-0.020	2.5	
-20	3.8	-18	-0.022	2.5	
-10	3.8	-16	-0.019	2.5	
0	3.8	-21	-0.025	2.5	
10	3.8	-19	-0.023	2.5	
20	3.8	-22	-0.026	2.5	
30	3.8	-19	-0.023	2.5	
40	3.8	-20	-0.024	2.5	
50	3.8	-17	-0.020	2.5	
25	3.6	-18	-0.022	2.5	
25	4.2	-20	-0.024	2.5	

FCC Part 22H/24E Page 58 of 59

DECLARATIION LETTER

UNISTAR TELECOM CO.,LIMITED

7A01, Tianjing Building, Tian'an High-tech Plaza, Futian District, Shenzhen, China Telephone Number: (86) 755-83580970 Fax Number: (86) 755-83580970

Product Similarity Declaration

Report No.: RDG141226004-00C

Date: 2015-01-07

To Whom It May Concern,

We, UNISTAR TELECOM CO.,LIMITED, hereby declare that our product M3, Model Number: M3, M3U, M3BS, M3CA, X55, UTTA X55, UNISTAR X55, L55 are electrically identical with the same electromagnetic emissions and electromagnetic compatibility characteristics. Model Numbers: M3U, M3BS, M3CA, X55, UTTA X55, UNISTAR X55, L55 are electrically identical with the Model Number: M3 that was certified by BACL. Their only difference is the model name.

The rest are the same.

Please contact me if you have any question.

Rachel Du.

Signature:

Rachel Du

Business Manager

***** END OF REPORT *****

FCC Part 22H/24E Page 59 of 59