

Lecture-3 Density estimation

CS 277: Machine Learning and Data Science

Dr. Joydeep Chandra Associate Professor Dept. of CSE, IIT Patna

Outline

Outline:

- Density estimation:
 - Maximum likelihood (ML)
 - Bayesian parameter estimates
 - MAP
- Bernoulli distribution
- Binomial distribution
- Multinomial distribution
- Normal distribution

Density estimation

Density estimation: is an unsupervised learning problem

Goal: Learn relations among attributes in the data

Data: $D = \{ D_1, D_2, ..., D_n \}$

 $D_i = \mathbf{x}_i$ a vector of attribute values

Attributes:

- modeled by random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$ with
 - Continuous or discrete valued variables

Density estimation: learn the underlying probability distribution:

$$p(X) = p(X_1, X_2, ..., X_d)$$
 from D

Density estimation

Data: $D = \{ D_1, D_2, ..., D_n \}$

 $D_i = \mathbf{x}_i$ a vector of attribute values

Objective: estimate the underlying probability distribution over variables X, p(X), using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed p(X))

Density estimation

Types of density estimation:

Parametric

the distribution is modeled using a set of parameters Θ

$$p(X|\Theta)$$

- Example: mean and covariances of a multivariate normal
- Estimation: find parameters Θ describing data D

Non-parametric

- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- **Examples:** Nearest-neighbor

Learning via parameter estimation

In this lecture we consider parametric density estimation

Basic settings:

- A set of random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$
- A model of the distribution over variables in X with parameters $\Theta:\hat{p}(\mathbf{X}\,|\,\Theta)$
- **Data** $D = \{ D_1, D_2, ..., D_n \}$

Objective: find parameters such that $p(X|\Theta)$ fits data D the best

Parameter estimation

Maximum likelihood (ML)

maximize
$$p(D | \Theta, \xi)$$

- yields: one set of parameters Θ_{ML}
- the target distribution is approximated as:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid \mathbf{\Theta}_{ML})$$

Bayesian parameter estimation

– uses the posterior distribution over possible parameters

$$p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi)p(\Theta \mid \xi)}{p(D \mid \xi)}$$

- Yields: all possible settings of Θ (and their "weights")
- The target distribution is approximated as:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid D) = \int_{\mathbf{\Theta}} p(X \mid \mathbf{\Theta}) p(\mathbf{\Theta} \mid D, \xi) d\mathbf{\Theta}$$

Parameter estimation

Other possible criteria:

Maximum a posteriori probability (MAP)

```
maximize p(\mathbf{\Theta} \mid D, \xi) (mode of the posterior)
```

- Yields: one set of parameters Θ_{MAP}
- Approximation:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid \mathbf{\Theta}_{MAP})$$

Expected value of the parameter

$$\hat{\mathbf{\Theta}} = E(\mathbf{\Theta})$$
 (mean of the posterior)

- Expectation taken with regard to posterior $p(\mathbf{\Theta} \mid D, \xi)$
- Yields: one set of parameters
- Approximation:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid \hat{\mathbf{\Theta}})$$

Parameter estimation: Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that

head x_i = 1

• $tail x_i = 0$

Model: probability of a head **Θ**

probability of a tail (1-0)

Objective:

We would like to estimate the probability of a **head** $\hat{\theta}$ from data

THE THE PROPERTY OF THE CHIMICAL STREET, STREE

Parameter estimation: Example

Assume the unknown and possibly biased coin

- Probability of the head is O
- Data:

HHTTHHTHTTTHTHHHHHHHHH

Heads: 15

• **Tails:** 10

What would be your estimate of the probability of a head?

$$\tilde{\theta} = ?$$

Parameter estimation: Example

Assume the unknown and possibly biased coin

- Probability of the head is O
- Data:

HHTTHHTHTHTTHTHHHHHHHHH

Heads: 15

Tails: 10

What would be your estimate of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

$$\widetilde{\theta} = \frac{15}{25} = 0.6$$

This is the maximum likelihood estimate of the parameter Θ

Probability of an outcome

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: we know the probability θ Probability of an outcome of a coin flip x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$
 Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1-\theta)$ for $x_i = 0$

Probability of a sequence of outcomes

Data: D a sequence of outcomes x_i such that

- head x_i = 1
- $tail x_i = 0$

Model: probability of a head **Θ**

probability of a tail (1-0)

Assume: a sequence of independent coin flips

D = H H T H T H (encoded as D= 110101)

What is the probability of observing the data sequence **D**:

$$P(D \mid \theta) = ?$$

Probability of a sequence of outcomes

Data: D a sequence of outcomes x_i such that

- head x_i = 1
- $tail x_i = 0$

Model: probability of a head **Θ**

probability of a tail (1-0)

Assume: a sequence of independent coin flips

D = H H T H T H encoded as D= 110101

What is the probability of observing the data sequence **D**:

$$P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta$$

Probability of a sequence of outcomes

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- $tail x_i = 0$

Model: probability of a head **Θ**

probability of a tail (1-0)

Assume: a sequence of independent coin flips

D = H H T H T H encoded as D= 110101)

What is the probability of observing the data sequence **D**:

$$P(D \mid \theta) = \theta\theta (1 - \theta)\theta (1 - \theta)\theta$$

likelihood of the data

THE STREET STORY OF TECHNOLOGY

Probability of a sequence of outcomes

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- $tail x_i = 0$

Model: probability of a head **O**

probability of a tail (1-0)

Assume: a sequence of independent coin flips

D = H H T H T H encoded as D= 110101)

What is the probability of observing the data sequence **D**:

$$P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta$$
$$P(D \mid \theta) = \prod_{i=1}^{6} \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter θ Our learning goal:

• Find the parameter θ that fits the data D the best?

One solution to the "best": Maximize the likelihood

$$P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Intuition:

• more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

$$Error(D, \theta) = -P(D \mid \theta)$$

Example: Bernoulli distribution

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Objective:

We would like to estimate the probability of a **head** $\hat{\theta}$

Probability of an outcome x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$

Bernoulli distribution

Any Questions??