利用遷移學習進行跨疾病病程預測的模型建立

模型建立流程

資料預處理

Raw data

單一患者1999-2010的所有醫療紀錄

ID	SEQ_NO	FUNC_DATE	 DRUG_DAY	ACODE_ICD9_1	DRUG_NO	DRUG_USE	
8f14	15669	19990111	 30	29590	9005C		
8f14	289	19990112	 30		B00465310	1	ŀ
8f14	59	19990126	 7	5233	A013870	3	
8f14	876	19990121	 3	50	A033312	300	

各疾病病患的病程表示矩陣

 牙周病病患病程表示矩陣

 8 2 0 1

 3 1 2 0

 0 0 0 0

 4 2 1 1

 6 2 0 0

 5 1 0 2

 類風濕性關節炎病患病程表示矩陣

 9 1 0 0 1 3 0 0

 3 0 0 0 0 5 1 0 0

 4 1 0 0 0 0 0 0 0

 5 2 0 0 6 2 0 0

 9 1 0 2 9 0 0 1

鼻竇炎病患 病程表示矩陣

特徵:當量轉換與用藥數值計算

序列資料:整理出不同時間長度的序列資料以了解時間對預測效果的影響

TL-CDC - 目標疾病病程發展預測模型 來源疾病病程發展預測模型 時間序列 注意力 全連接層 參數遷移 模型 機制 目標疾病病程發展預測模型 Output 參數凍結 目標疾病病患 病程表示張量 參數微調(p=0.1或0.5) [3, 4, 128] 時間序列模型 注意力機制 Output 5 1 0 2 9 4 0 1 LSTM [3, 48, 8]0.09 bmm 📙 O_{t+1} O_{t+4} O_{t+3} 0.27 0.23 [3, 4, 1]LSTM Cell LSTM Cell LSTM Cell [3, 4, 128][3, 128, 1] [3, 4, 1] 線性轉換 $Output^T$ Att_w Att_w Output X_{t} 8 2 0 1 X_{t+1} 3 1 2 0 X_{t+2} 0 0 0 0 Log10(x+1) bmm [3, 128][3, 4][3, 4]GRU 8 2 0 1 0.27 3 1 2 0 O_{t+1} O_{t+4} 0.23 Log10(x+1 凍結 [3, 128 4] [3, 4, 1] [3, 128, 1] GRU Cell GRU Cell GRU Cell GRU Cell 參數 bmm: batch matrix-matrix product 5 1 0 2 微調 Output $h_4 + h_4$ Att_w [3, 48, 4] Log10(x+1) 0.41 0.09 bmm 0.27 **Bi-LSTM** 輸出 0.23 O_{t+4} [3, 4, 1][3, 4, 256] $[3,\overline{256},1]$ [3,4,1] $Output^T$ Att_w Att_w Output LSTM Cell LSTM Cell LSTM Cell [3, 256][3, 4][3, 4]bmm 0.09 LSTM Cell LSTM Cell LSTM Cell 0.27 0.23 [3, 2564][3, 4, 1] [3, 256, 1]

利用注意力機制的權重值對模型的訓練過程進行可視化並解釋

THANK YOU