Bayesian Inference: Intro via Conjugacy

June 8, 2021

Bayes' Rule

Bayes' Rule

$$p(\theta|x) = \frac{p(x|\theta)}{p(x)} = \frac{p(x|\theta)}{p(x)} = \frac{p(\theta)}{p(x|\theta)} = \frac{p(x|\theta)p(\theta)}{\int p(x|\theta)p(\theta) d\theta}$$
evidence

Posterior

The posterior distribution is proportional to the prior times the likelihood:

$$p(\theta|x) \propto p(x|\theta)p(\theta)$$

The posterior distribution is a distribution over θ .

Evidence

The evidence, or marginal likelihood, can be used for model comparison.

1

Bayesian inference: conjugate example

Sometimes, we can compute the posterior distribution by hand, given prior and likelihood.

Setup: flipping a coin

Probability that it lands heads is (unknown) θ .

Prior probability over θ assumed to follow a Beta(3,3) distribution:

$$p(\theta) = \frac{\theta^{3-1}(1-\theta)^{3-1}}{B(3,3)}$$

Note: $\theta \sim Beta(a,b)$ means $p(\theta) \propto \theta^{a-1}(1-\theta)^{b-1}$

Will collect data by flipping coin once. Likelihood of observing heads (x = 1) or tails (x = 0) is given by a Bernoulli distribution:

$$p(x|\theta) = \theta^x (1-\theta)^{1-x}$$

2

Bayesian inference: conjugate example

Setup: flipping a coin

Probability that it lands heads is (unknown) θ .

Prior probability over θ assumed to follow a Beta(3,3) distribution:

$$p(\theta) = \frac{\theta^{3-1}(1-\theta)^{3-1}}{B(3,3)}$$

Note: $\theta \sim Beta(a,b)$ means $p(\theta) \propto \theta^{a-1}(1-\theta)^{b-1}$

Will collect data by flipping coin once. Likelihood of observing heads (x = 1) or tails (x = 0) is given by a Bernoulli distribution:

$$p(x|\theta) = \theta^{x} (1 - \theta)^{1 - x}$$

.

Computing the posterior after observing x=1

$$p(\theta|x) \propto p(x|\theta)p(\theta) = \theta^1(1-\theta)^0\theta^2(1-\theta)^2 = \theta^3(1-\theta)^2 \implies \theta|x \sim \textit{Beta}(4,3)_3$$

Bayesian inference: conjugacy

The idea

We have conjugacy when the prior and the posterior distributions are in the same family (e.g. in the previous example, the prior and posterior are beta distributions).

Definition

Conjugacy can be defined as follows (gelman2013bayesian). If $\mathcal F$ is a class of sampling distributions and $\mathcal P$ is a class of prior distributions for θ , then the class $\mathcal P$ is conjugate for $\mathcal F$ if

$$p(\theta \mid y) \in \mathcal{P}$$
 for all $p(\cdot \mid \theta) \in \mathcal{F}$ and $p(\cdot) \in \mathcal{P}$

Bayesian inference: Posterior predictive distribution

Given

 $p(\theta|x)$ - posterior $p(\theta)$ - prior $p(x|\theta)$ - likelihood

Posterior predictive distribution

Consider the probability of new data x'. Posterior predictive distribution is:

$$p(x'|x) = \int p(x',\theta|x) d\theta = \int p(x'|\theta,x)p(\theta|x) d\theta = \int p(x'|\theta)p(\theta|x) d\theta$$

Incorporates the knowledge and uncertainty about θ that we still had after seeing data x.

5

Bayesian inference: tractability notes

Generally, computing the posterior distribution is much harder than in this example!

Consider the denominator in $p(\theta|x) = \frac{p(x|\theta)p(\theta)}{\int p(x|\theta)p(\theta)} d\theta$ - integrals are hard

In nonconjugate examples, we need approaches to work with the posterior distribution when we cannot calculate it directly. Stay tuned!