Using Sentiment Analysis on 10-k Filings to Predict Oil Prices

Peter Kowalchuk

School of Professional Studies, City University of New York

Data 698: Analytics Master's Research Project

Jamiel Sheikh

Introduction

Can SEC fillings predict the price of a commodity?

Natural Language Processing (NLP) techniques such as Sentiment Analysis are finding their way into Financial Analysis

This study attempts to prove that it is possible to predict the price of a commodity from the content of the Security and Exchange Commission (SEC) 10-K filings.

Commodity: Oil

Literature Review

Has this been researched already?

Assessment of Sentiment Analysis on company fillings - G. H. Soong and C. C. Tan (2021)

Sentiment Analysis on non-filling data to predict company stock price - Gao, Kampas, and Rinne (2018)

SEC fillings contain broader market information - U.S. Securities and Exchange Commission, "How to Read a 10-K," 2011

Sentiment Analysis on reports used to determine investors' perception of risk - Bao and Datta (2014)

Risk in the financial Sector prediction from report's Sentiment - Rolnicki. (2018)

No studies on predicting the price of a commodity

Hypothesis The goal of the study

Hypothesis 1: it is possible to design a linear regression prediction model that, with *reasonable accuracy*, can predict the price of oil from SEC 10-K report filings' computed Sentiment Data.

Hypothesis 2: it is possible to design a regression model that explains oil prices using Sentiment data from SEC 10-K reports as the predictor variable.

Hypothesis 3: SEC 10-K reports from companies that operate directly in the oil sector produce better Sentiment based regression models for oil prices than companies that do not directly operate in the oil sector.

Methodology

How the study performed the Analysis

Study Results

Study findings

Issues found when analyzing entire reports

Study Results

Study findings

Histogram plot of Sentiment Data in study

Bootstrap Sentiment data distributions for 2015

Study Results Study findings

Histogram plot of Sentiment Data in study

Positive and Negative Sentiment vs. WTI oil price

Study Results Study findings

No model with an MSE of \$2 was found

Certain combinations of Sentiment produced better correlations

Study Results

Study findings

Linear Model generated with Operator and Service Companies

Linear Model generated with Operator companies

Linear Model generated with Service Companies

Conclusions

- Models to predict the price of a commodity were not generated in this study
- Model that explain the price of a commodity were produced, but of low quality
- Model using commodity sector specific companies produced lower quality models

