MATH 4044 – Statistics for Data Science

Practical Week 13 Solutions

Question 1

The sinking of the Titanic is a famous event. Many well-known facts – from the proportions of first-class passengers to the 'women and children first' policy, and the fact that that policy was not entirely successful in saving the women and children in the third class – are reflected in the survival rates for various classes of passengers. These data were originally collected by the British Board of Trade in their investigation of the sinking. There is no complete agreement among primary sources as to the exact numbers on board, the number rescued, and the number lost.

The data for this question is stored in a SAS data file called titanic.sas7bdat. For each person on board the fatal maiden voyage of the ocean liner Titanic, this dataset records gender, age [adult/child], economic status [first/second/third class, or crew] and whether or not that person survived. Specifically, variables in the data file are as follows:

Variable	Description
Class	0 = 'crew', 1 = 'first', 2 = 'second', 3= 'third'
Age	1 = 'adult', 0 = 'child'
Gender	1 = 'male', 0 = 'female'
Survived	1 = 'Yes', 0 = 'No'

[Source: Journal of Statistics Education data archive.]

(a) Obtain mosaic plots of Survived versus Gender, Age and Class. Also consider tests of independence. Comment on chances of survival by gender, age and class. How well did the 'women and children first' policy work?

Figure 1. Mosaic plot of Survived versus Gender

The mosaic plot in Figure 1 indicates a higher survival rate for females than for males. More specifically, there was a much higher than expected number of female passengers

who survived the disaster. In contrast, there was a much lower than expected number of male survivors. This is confirmed by counts and percentages reported in Table 1. From Table 2, the chi-squared statistic for the test of independence is 456.87 (d.f. = 1) with the corresponding P-value < 0.001, confirming a highly statistically significant relationship between survival and gender.

		Tab	le of Surviv	ed by Gen	der		
Survived	Gender	Frequency	Expected	Std Residual	Cell Chi-Square	Percent	Column Percent
No	Female	126	318.2	-21.3746	116.1	5.72	26.81
	Male	1364	1171.8	21.3746	31.5155	61.97	78.80
	Total	1490				67.70	
Yes	Female	344	151.8	21.3746	243.2	15.63	73.19
	Male	367	559.2	-21.3746	66.0451	16.67	21.20
	Total	711				32.30	
Total	Female	470				21.35	100.00
	Male	1731				78.65	100.00
	Total	2201				100.00	

Table 1. Frequency table for Survived by Gender

Statistic	DF	Value	Prob
Chi-Square	1	456.8742	<.0001
Likelihood Ratio Chi-Square	1	434.4688	<.0001
Continuity Adj. Chi-Square	1	454.4998	<.0001
Mantel-Haenszel Chi-Square	1	456.6666	<.0001
Phi Coefficient		-0.4556	
Contingency Coefficient		0.4146	
Cramer's V		-0.4556	

Table 2. Chi-square test results for Survived versus Gender

The mosaic plot in Figure 2 representing the relationship between survival and age indicates that there were relatively few children on board, and their survival rate was higher than that of adults. More specifically, there was a higher than expected number of children who survived, and a much lower than expected number of adults who survived, confirmed by counts and percentages reported in Table 3. From Table 4, the chi-squared statistic for the test of independence is 20.96 (d.f. = 1) with the corresponding P-value < 0.001, confirming a highly statistically significant relationship between survival and age.

Figure 2. Mosaic plot of Survived versus Age

		Т	able of Sur	vived by A	lge		
		_		Std	Cell		Column
Survived	Age	Frequency	Expected	Residual	Chi-Square	Percent	Percent
No	Child	52	73.7892	-4.5777	6.4341	2.36	47.71
	Adult	1438	1416.2	4.5777	0.3352	65.33	68.74
	Total	1490				67.70	
Yes	Child	57	35.2108	4.5777	13.4836	2.59	52.29
	Adult	654	675.8	-4.5777	0.7025	29.71	31.26
	Total	711				32.30	
Total	Child	109				4.95	100.00
	Adult	2092				95.05	100.00
	Total	2201				100.00	

Table 3. Frequency table for Survived by Age

Statistic	DF	Value	Prob
Chi-Square	1	20.9555	<.0001
Likelihood Ratio Chi-Square	1	19.5606	<.0001
Continuity Adj. Chi-Square	1	20.0048	<.0001
Mantel-Haenszel Chi-Square	1	20.9460	<.0001
Phi Coefficient		-0.0976	
Contingency Coefficient		0.0971	
Cramer's V		-0.0976	

Table 4. Chi-square test results for Survived versus Age

The relationship between survival and class is the most interesting one. The mosaic plot in Figure 3 indicates the highest survival rate for passengers in first class. There was significantly higher than expected number of first class passengers who survived the disaster and a significantly lower than expected number of first class passengers who perished. In contrast, there was a much lower than expected number of male survivors. Third class passengers seem to have had much lower chance of survival, similar to the ship's crew. Counts of those who survived and perished in second class were close to expected counts assuming independence. The survival rate was higher than in the third class and lower than in the first class. This is confirmed by counts and percentages reported in Table 5. From Table 6, the chi-squared statistic for the test of independence is 190.40 (d.f. = 3) with the corresponding P-value < 0.001, confirming a highly statistically significant relationship between survival and class.

Figure 3. Mosaic plot of Survived versus Class

		Tab	le of Survi	ved by Cla	iss		
				Std	Cell		Column
Survived	Class	Frequency	Expected	Residual	Chi-Square	Percent	Percent
No	Crew	673	599.1	6.8685	9.1120	30.58	76.05
	First	122	220.0	-12.5930	43.6640	5.54	37.54
	Second	167	192.9	-3.5210	3.4863	7.59	58.60
	Third	528	477.9	4.8887	5.2439	23.99	74.79
	Total	1490				67.70	
Yes	Crew	212	285.9	-6.8685	19.0955	9.63	23.95
	First	203	105.0	12.5930	91.5040	9.22	62.46
	Second	118	92.0650	3.5210	7.3060	5.36	41.40
	Third	178	228.1	-4.8887	10.9894	8.09	25.21
	Total	711				32.30	
Total	Crew	885				40.21	100.00
	First	325				14.77	100.00
	Second	285				12.95	100.00
	Third	706				32.08	100.00
	Total	2201				100.00	

Table 5. Frequency table for Survived by Class

Statistic	DF	Value	Prob
Chi-Square	3	190.4011	<.0001
Likelihood Ratio Chi-Square	3	180.9014	<.0001
Mantel-Haenszel Chi-Square	1	0.0001	0.9915
Phi Coefficient		0.2941	
Contingency Coefficient		0.2822	
Cramer's V		0.2941	

Table 6. Chi-square test results for Survived versus Class

Therefore, based on all of the above, the policy of 'women and children first' appears to have worked best for passengers in the first class, and not so well in the third class.

(b) Fit and interpret a logistic model for the probability of surviving the Titanic disaster with three main effects of Gender, Age and Class.

Logistic model was fit to predict the probability of survival, i.e. p = P (Survived = 1). Dummy variables for categorical predictors Gender, Age and Class were defined using reference coding. Odds ratios for survival will therefore be estimated relative to female passengers, children and crew.

Model fit statistics in Table 7 indicate the model with intercept only to be inferior to the model that includes categorical predictors Gender, Age and Class. All three tests for the global hypothesis of zero beta indicate a highly statistically significant model, P-value < 0.001. Type 3 analysis of effects shows that all three predictors are statistically significant (*P*-value < 0.001).

From the parameters estimates section in Table 7, the estimated model for log odds of survival is

log(p/(1-p)) = 2.25 - 1.06xAge - 2.42xGender + 0.86xFirst - 0.16xSecond - 0.92xThird

This equation confirms that women and children in first class had a significantly higher chance of survival compared to all other passengers and crew.

Model performance statistics in Table 8 are based on analysis of all possible pairs of passengers in which one survived and the other did not. These statistics show 67.7% concordant pairs (passenger with the higher predicted probability of survival is the one who actually survived), 15.7% discordant pairs (the model predicted higher probability of survival for the passenger in the pair who perished) and 16.6% ties (the model predicts the same probability of survival for both passengers in the pair). Based on the c

statistic, the probability is 76% that a passenger who survived has higher predicted probability than does a passenger who did not survive. Therefore, the model works quite well overall.

				Mod	lel l	Fit Statist	ics			
Criter	ioi	n II	nter	cept	Onl	ly Inter	cept	and Cov	ariate	es
AIC				277	1.45	57		22	22.00	61
SC			2777.15			53		22	256.24	11
-2 Log	g L		2769			57		22	210.00	61
	Te	stin	g G	loba	l Nu	ıll Hypotl	nesis	: BETA=	0	
Te			_			hi-Square				
Lik	œl	ihoo	d R	atio		559.3950	5 5	<.0	0001	
Sc	or	е				556.726	7 5	<.0	0001	
Wa	ıld					402.3282	2 5	<.0	0001	
	Type 3				Ana	alysis of	Effec	ts		
						Wald	_			
	- 1	Effe	ct	DF	Ch	i-Square	Pr>			
	-	Age		1		18.9236		<.0001		
		Gen		1		297.0678		<.0001		
	(Clas	S	3		108.2432		<.0001		
Δ	ına	lysi	s of	Max	imı	ım Likeli	hood	Estimat	es	
	Π					Standard		Wald		
Parameter		DF	Es	tima	te	Error	Chi	-Square	Pr>	· ChiSq
Intercept		1		2.24	77	0.2988		56.5771		<.0001
Age	1	1	-	1.06	15	0.2440		18.9236		<.0001
Gender	1	1	-	2.42	01	0.1404	2	97.0678		<.0001
Class	1	1		0.85	77	0.1573		29.7149		<.0001
Class	2	1	-	0.16	04	0.1738		0.8521		0.3560
Class	3	1	-	0.92	01	0.1486		38.3441		<.0001

Table 7. Model fit statistics and parameter estimates

Association of Predicted Probabilities and Observed Responses						
Percent Concordant	67.7	Somers' D	0.519			
Percent Discordant	15.7	Gamma	0.623			
Percent Tied	16.6	Tau-a	0.227			
Pairs	1059390	С	0.760			

Table 8. Model performance statistics

Odds ratios together with 95% confidence intervals are listed in Table 9 and illustrated in Figure 4. With the exception of the comparison between the second class and the crew, confidence intervals do not contain one, which means that there were significant differences in the chances of survival in all other cases.

The estimated odds ratio for adults compared to children indicates that children had 1/0.346 = 2.89 times higher odds of survival than adults. For females, the estimated odds ratio translates into 1/0.089 = 11.24 times higher odds of survival compared to males. Compared to the crew, first class passengers had 2.36 times higher odds of surviving the disaster. Finally, the odds of survival for third class passengers were 0.40 times lower than for members of the crew.

Odds Ratio Esti	Odds Ratio Estimates and Profile-Likelihood Confidence Intervals										
Effect	Unit	Estimate	95% Confid	ence Limits							
Age 1 vs 0	1.0000	0.346	0.214	0.558							
Gender 1 vs 0	1.0000	0.089	0.067	0.117							
Class 1 vs 0	1.0000	2.358	1.732	3.210							
Class 2 vs 0	1.0000	0.852	0.603	1.193							
Class 3 vs 0	1.0000	0.398	0.297	0.531							

Table 9. Odds ratio estimates for main effects of Gender, Age and Class

Figure 4. Plot of odds ratios for main effects of Gender, Age and Class

(c) Now fit and interpret a model with both main effects and interactions. Specifically, start with a model that includes the same three variables and all possible two-way interactions, and use a backwards elimination technique.

Note: A backwards elimination method will produce what is called a hierarchical model. In this kind of model, main effects cannot be removed from the model if these effects are involved in an interaction that remains in the model.

	Mod	el Fit	Statisti	cs	
Criterion	Intercept	Only	Interc	ept a	and Covariates
AIC	2771	1.457			2154.757
SC	2777	7.153			2211.724
-2 Log L	2769	.457			2134.757
Test	ing Global	Chi-	Square	DF	Pr > ChiSq
Likelih	ood Ratio		34.6997	_	<.0001
Score			20.9320		<.0001
Wald		3	11.3833	9	<.0001
	Residua Chi-Squ		-Square		
	30.3			<.00	

Table 10. Model fit statistics

Comparing model fit statistics in Table 10 to those in Table 7, both AIC and SC measures have decreased, indicating that the model that includes interactions between Age and Gender as well as Gender and Class is slightly better than the model without interactions.

Model performance statistics in Table 12 indicate a slight improvement as well; the c statistic has increased from 0.76 to 0.766. The percentage of concordant pairs has increased to 16.8% but the number of ties remained the same. As the improvements are small, one may choose to work with the simpler model.

Odds ratio estimates are shown in Table 13 and Figure 5. Of particular note is the estimated odds ratio for female passengers in first class relative to female passengers travelling in third class. At 42.67, the estimate indicates odds of survival 42.67 times higher for female passengers in the first class.

Interpretation of other estimates is left as an exercise.

			Sı	ımm	ary	of Ba	ckward E	lim	ination		
	Effe	ct					Number		Wald		
Step	Rem	ove	d			DF	In	CI	hi-Square	Pr:	> ChiSq
1	Age	*Gen	de	r*Cla	ass	2	6		0.0009		0.9996
2	Age	*Clas	SS			2	5		0.0257		0.9872
				Tv	me 3	Δna	lysis of E	ffe	rts		
				٠,	рос		Wa		010		
		Effe	ct			DF			Pr > ChiS	q	
		Age				1	0.24	85	0.618	32	
		Gen	de	r		1	5.35	84	0.020)6	
		Age	G	ende	r	1	8.90	55	0.002	28	
	Class						87.28	70	<.0001		
		Gen	de	r*Cla	ISS	3	48.25	20	<.000	1	
		Ana	lve	ie of	F Mas	vimu	m Likolih	00	d Estimate		
		Alla	ly 3	15 01	IVICI	AIIIIU	Standa		Wa	_	
Paramet	er			DF	Est	imat	- carrara		Chi-Squa		r > ChiS
Intercep		_	H	1		077			8.392		0.003
Age		1		1		. 180			0.248		0.618
Gender		1	Ť	1		.788			5.358		0.020
Age*Gei	nder	1	1	1	-1	.358	1 0.45	51	8.905	_	0.002
									4.00		0.037
	luci	1	Ť	1	1	.664	0.800	03	4.324	15	0.037
Class Class	luci		Ė	1		.664			4.324 0.005		0.037
Class Class	luci	1		-	0		7 0.68	74		52	
Class Class Class		1 2 3	1	1	-2	.049	7 0.68 4 0.63	74 81	0.005	52	0.942
Class	Clas	1 2 3 s 1	-	1	-2 -1	0.049	7 0.687 4 0.638 3 0.819	74 81 99	0.005	52 04 10	0.942 0.001

Table 11. Parameter estimates

Association of Predicted Probabilities and Observed Responses				
Percent Concordant	68.3	Somers' D	0.532	
Percent Discordant	15.1	Gamma	0.638	
Percent Tied	16.6	Tau-a	0.233	
Pairs	1059390	С	0.766	

Table 12. Model performance statistics

Figure 5. Plot of odds ratios for main and interaction effects

Odds Ratio Estimates and Wald Confidence Intervals					
Odds Ratio	Estimate	95% Confidence Limits			
Age 1 vs 0 at Gender=0	0.835	0.411	1.697		
Age 1 vs 0 at Gender=1	0.215	0.125	0.369		
Gender 1 vs 0 at Age=0 Class=0	0.167	0.037	0.760		
Gender 1 vs 0 at Age=0 Class=1	0.055	0.014	0.217		
Gender 1 vs 0 at Age=0 Class=2	0.078	0.027	0.227		
Gender 1 vs 0 at Age=0 Class=3	0.797	0.347	1.831		
Gender 1 vs 0 at Age=1 Class=0	0.043	0.013	0.146		
Gender 1 vs 0 at Age=1 Class=1	0.014	0.005	0.040		
Gender 1 vs 0 at Age=1 Class=2	0.020	0.010	0.042		
Gender 1 vs 0 at Age=1 Class=3	0.205	0.138	0.304		
Class 1 vs 0 at Gender=0	5.281	1.100	25.347		
Class 2 vs 0 at Gender=0	1.051	0.273	4.043		
Class 3 vs 0 at Gender=0	0.124	0.035	0.432		
Class 1 vs 2 at Gender=0	5.025	1.586	15.921		
Class 1 vs 3 at Gender=0	42.674	15.106	120.552		
Class 2 vs 3 at Gender=0	8.492	4.451	16.201		
Class 1 vs 0 at Gender=1	1.752	1.236	2.485		
Class 2 vs 0 at Gender=1	0.489	0.307	0.778		
Class 3 vs 0 at Gender=1	0.590	0.437	0.797		
Class 1 vs 2 at Gender=1	3.582	2.102	6.104		
Class 1 vs 3 at Gender=1	2.968	1.995	4.416		
Class 2 vs 3 at Gender=1	0.829	0.507	1.354		

Table 13. Odds ratio estimates for main and interaction effects of Gender, Age and Class

Appendix – SAS code

```
ods graphics on;
proc format;
value Surv 0 = 'No' 1 = 'Yes';
value P Gender 0 = 'Female' 1 = 'Male';
value P Age 0 = 'Child' 1 = 'Adult';
value P Class 0 = 'Crew' 1 = 'First' 2 = 'Second' 3 = 'Third';
run;
title ' Mosaic plot (default) Survived vs Gender';
proc freq data=math4044.titanic;
tables Survived*Gender / norow chisq plots=MOSAIC; /* alias for
MOSAICPLOT */
format Survived Surv. Gender P Gender.;
run;
title ' Mosaic plot (default) Survived vs Age';
proc freq data=math4044.titanic;
tables Survived*Age / norow chisq plots=MOSAIC; /* alias for
MOSAICPLOT */
format Survived Surv. Age P Age.;
run;
title ' Mosaic plot (default) Survived vs Class';
proc freq data=math4044.titanic;
tables Survived*Class / norow chisq plots=MOSAIC; /* alias for
MOSAICPLOT */
format Survived Surv. Class P Class.;
run;
title 'Mosaic plot (colour by response) Survived vs Gender';
proc freq data=math4044.titanic;
tables Survived*Gender / norow cellchi2 expected stdres crosslist;
ods output CrossList=FreqList(where=(Expected>0));
format Survived Surv. Gender P Gender.;
run;
/* colour by response (notice that PROC FREQ reverses Y axis) */
proc template;
define statgraph mosaicPlotParm;
begingraph;
layout region;
MosaicPlotParm category=(Gender Survived) count=Frequency /
colorresponse=StdResidual name="mosaic";
continuouslegend "mosaic" / title="StdRes";
endlayout;
endgraph;
end;
run;
```

```
proc sgrender data=FreqList template=mosaicPlotParm;
run;
title 'Mosaic plot (colour by response) Survived vs Age';
proc freq data=math4044.titanic;
tables Survived*Age / norow cellchi2 expected stdres crosslist;
ods output CrossList=FreqList(where=(Expected>0));
format Survived Surv. Age P Age.;
run;
proc template;
define statgraph mosaicPlotParm;
begingraph;
layout region;
MosaicPlotParm category=(Age Survived) count=Frequency /
colorresponse=StdResidual name="mosaic";
continuouslegend "mosaic" / title="StdRes";
endlayout;
endgraph;
end;
run;
proc sgrender data=FreqList template=mosaicPlotParm;
run;
title 'Mosaic plot (colour by response) Survived vs Class';
proc freq data=math4044.titanic;
tables Survived*Class / norow cellchi2 expected stdres crosslist;
ods output CrossList=FreqList(where=(Expected>0));
format Survived Surv. Class P Class.;
run;
proc template;
define statgraph mosaicPlotParm;
begingraph;
layout region;
MosaicPlotParm category=(Class Survived) count=Frequency /
colorresponse=StdResidual name="mosaic";
continuouslegend "mosaic" / title="StdRes";
endlayout;
endgraph;
end;
run;
proc sgrender data=FreqList template=mosaicPlotParm;
run;
```

```
title 'Logistic model with three categorical predictors';
proc logistic data=math4044.titanic;
class Age (ref='0') Gender (ref='0') Class (ref='0') /
param=reference;
model Survived (event='1') = Age Gender Class / clodds=pl;
run;
quit;
title 'Logistic model with three categorical predictors plus
interactions';
proc logistic data=math4044.titanic;
class Age (ref='0') Gender (ref='0') Class (ref='0') /
param=reference;
model Survived (event='1') = Age | Gender | Class /
selection=backward clodds=pl;
oddsratio Age;
oddsratio Gender;
oddsratio Class;
run;
quit;
ods graphics off;
```