University of Toronto FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION - DECEMBER 2001

MAT291F - Calculus III

Duration: 2 1/2 hours

Examiners: S. Abou-Ward, I. Soprounov

SURNAME	
GIVEN NAME	
STUDENT NO.	
SIGNATURE	

INSTRUCTIONS:

No Aids of Any Kind.

Answer all questions.

Present your solutions in the space provided; use the back of the **preceding** page if more space is required.

TOTAL MARKS: 100

For Marker Use Only		
Question	Mark	
1	/13	
2	/19	
3	/21	
4	/15	
5	/17	
6	/15	
LATOT	/100	

Page 1 of 9 pages

1. (a) (5 marks) Use differentials to approximate f(2.1,1.2) if $f(x,y)=e^{x-2y}$, using (2.1) as the starting point.

(b) (4 marks) Find
$$\frac{\partial f}{\partial v}$$
 if $f(x,y) = (x + 3y)^4$, $x = u^2v$, $y = 2u - v$ when $u = -1$ and $v = 2$.

(c) (4 marks) Find
$$\frac{\partial z}{\partial y}$$
 if $xy\sin(x+z) + e^z = 1$.

2. (a) (4 marks) Find and classify the extrema of $f(x,y)=(x^2+y^2-2)^2$.

(b) (8 marks) Let k be a positive integer. Find and classify all local extrema of $f(x,y)=x^k+y^k$.

(P.S. - Consider the two cases: k = 1 and k > 1).

(c) (7 marks) Find the minimum value of the function $f(x,y,z) = \frac{1}{x} \div \frac{1}{y} \div \frac{1}{z}$ with x > 0, y > 0, z > 0, and $x^2 + y^2 + z^2 = 1$.

3. (a) (8 marks) Determine whether the function is a gradient $\nabla \phi(x, y, z)$ and if so, find such a function ϕ ,

$$\left(\frac{y}{z} - e^z\right)i + \left(\frac{x}{z} + 1\right)j - \left(xe^z + \frac{xy}{z^2}\right)k$$
.

4. (b) (i) (4 marks) Find a parameterization for the hyperboloid $x^2 + y^2 + z^2 = 25$.

(ii) (4 marks) Find an expression for a unit normal to this surface.

(iii) (5 marks) Find an equation for the plane tangent to the surface at $(x_0, y_0, 0)$, where $x_0^2 + y_0^2 = 25$.

5. (a) (6 marks) Evaluate the double integral:

$$\int_0^1 \int_0^{\cos^{-1} y} e^{\sin x} dx dy \ .$$

(b) (9 marks) Let D be the region in the vy-plane enclosed by the parallelogram with vertices (1.2), (2.3), (3.1) and (4.2). Use the transformation x=2u+v+1, y=-u+v+2, to evaluate $\int \int_{D} (xy^2-x^2-vy)dxdy$.

6. (a) (5 marks) Let $F = (x^2 + y - 4)i + 3xyj + (2xz + z^2)k$. Calculate the divergence and curl of F.

(b) (5 marks) Find the flux of the curl of F across the surface $x^2+y^2+z^2=16$. $z\geq 0$.

(c) (7 marks) Use the divergence theorem to find the flux of F across the surface of the unit cube $[0,1] \times [0,1] \times [0,1]$.

7. (15 marks) Let C be the circle $x^2 + y^2 = 1$, z = 0, and let

$$F(x,y,z) = (x^2y^3 + y - \cos(x^3))i + (x^3y^2 + \sin(y^3) + x)j + zk$$

Use Stoke's theorem to calculate the line integral $\oint_C Pdx + Qdy + Rdz$.