Modeling Unmanned Aerial Swarms Using Unreal Game Engine and AirSim Simulator

Presented By: Naimah-Joy Chapman, Elijah Keck, Dillion Mead, and John Mueller

Outline

- I. Introduction
- II. Objectives
- III. FAA Right-of-Way Rules
- IV. Design Considerations
- V. System Design
- VI. Demonstration Videos
- VII.Challenges and Lessons Learned

Introduction

Unmanned Aerial Vehicles in Practice:

- Controlled within Visual Line of Sight (VLOS) by human pilot
- Operating environment is dangerous
- Flight restricted by distance and time

Marketability of Autonomy:

- Does not need human pilot
- Beyond VLOS
- Can fly within any environment with reduced risk
- Flights can be less restricted

Introduction

Subset of Autonomy - Collision Avoidance

- Mid-air collisions are undesirable
- Autonomous systems don't have same faculty as humans
- Truly autonomous flight must have guaranteed operation

Why a simulation?

- Project budget of \$0!
- Easy to execute multiple tests
- Nearly no risk involved

Objectives

Implementation of Autonomous Collision Avoidance System

- ★ Object Detection
 - Lidar sensor primary
 - Camera secondary
 - Transform data for evaluation
- ★ Collision Detection
 - Ascertain distance of obstacles
 - Evaluate obstacle distance
 - React within avoidance radius
 - Initiate collision avoidance
 - Restart collision detection

- ★ Avoidance Behavior
 - FAA Right-of-Way Rules
 - Make right turn maneuver
- **★** Mission Pathing
 - Save list of waypoints
 - Identify next unvisited waypoint
 - Orient UAV to Path heading
 - Call move commands
 - Mark waypoints as visited

FAA Right-of-Way Rules

- "When a rule of this section gives another aircraft the right-of-way, the pilot shall give way to that aircraft and may not pass over, under, or ahead of it unless well clear"
- Small UAV always yield to other aircraft types
- Head-On Approach
- Converging
- Overtaking
- Formations of Aircraft

Head-On Approach

Neither aircraft have right of way

- Both must avoid to right

Converging

Aircraft to "Right" has right of way

- "Left" aircraft must avoid to right and pass behind other aircraft.

Overtaking

Aircraft in front has right of way

- Rear aircraft must pass on right

Design Considerations

- Assumptions
 - Sensors for detection are oriented in the direction of movement
 - There is no interference with the sensors
 - UAV will only move in a forward direction
 - There are no adversarial actors
 - Any non-autonomous UAV are controlled with known parameters
 - Only small UAV aircraft in environment
 - No landing or water scenarios

- Dependencies
 - Microsoft AirSim Simulator
 - Unreal Engine 4
 - Visual Studio 2019
 - Utilizes Python Environment
- Design Constraints
 - Limited to Unreal Engine 4 & AirSim environments

System Design

Collision Avoidance System

Avoidance Behavior

Collision Detection

Mission Pathing

Demonstration

Demonstration

Demonstration

Position Plot

Position Plot

X Velocity Plot

Y Velocity Plot

Challenges and Lessons Learned

- Python classes passing objects through multiple classes is different than we initially thought
- Data structure for coordinate data differs between Lidar and agent kinematics
- Multi-agent behavior is difficult to solve
- AirSim appears at times to be non-deterministic
- NED sucks (lul)

Thank You

Questions?