La fonction exponentielle

Définition:

Domaine de définition : $D_f=\mathbb{R}$

<u>Équation</u>: y = exp(x)

Notations: $exp(x), e^x$

Х	$-\infty$	0	$+\infty$
exp	0	→ 1	$\rightarrow +\infty$

<u>Propriétés :</u>

- $\exp(0) = 1$
- $(\exp(x))' = \exp(x)$
- $\exp(a+b) = \exp(a) \times \exp(b)$
- $(\exp(a))^n = \exp(n.a)$

Représentation graphique

- $\exp(1) = e \approx 2,72$
- $\exp(-a) = \frac{1}{\exp(a)}$
- $\exp(a-b) = \frac{\exp(a)}{\exp(b)}$
 - $\forall x \in \mathbb{R}, \ \exp(x) > 0$

Composition de l'exponentielle:

- Si f(x) et g(x) 2 fonctions définies sur $\mathbb R$ telles que $f(x) = \exp(g(x))$ la dérivée de la fonction f est donnée par : $f'(x) = g'(x) \times \exp(g(x))$
- Soit k >0, la fonction $f(x) = \exp(k.x)$ est strictement croissante.
- Soit k < 0, la fonction $f(x) = \exp(k.x)$ est strictement décroissante.

 $f(x) = e^{-3.x}$

méthode

exemple