Introduction to quantum mechanics I

Tristan Villain – Pierre-François Cohadon – Qinhan Wang Séance de tutorat du 23 octobre 2024

TD de tutorat 4 : molécule triatomique et dépendance en temps

1 Molécule triatomique linéaire

On considère les états d'un électron localisé sur un des trois atomes G, C, D d'une molécule triatomique linéaire. Les distances GC et CD sont égales et sont notées d. On note $|\psi_G\rangle$, $|\psi_C\rangle$ et $|\psi_D\rangle$ les états propres de l'observable \hat{B} , correspondants à l'électron localisé au voisinage des atomes G, C et D. On a donc :

$$\begin{array}{rcl} \hat{B}|\psi_G\rangle & = & -d|\psi_G\rangle \\ \hat{B}|\psi_C\rangle & = & 0 \\ \hat{B}|\psi_D\rangle & = & d|\psi_D\rangle \end{array}$$

L'hamiltonien de ce système est représenté dans la base $\{|\psi_G\rangle, |\psi_C\rangle, |\psi_D\rangle\}$ par :

$$\left(\begin{array}{ccc}
E_0 & -a & 0 \\
-a & E_0 & -a \\
0 & -a & E_0
\end{array}\right)$$

- 1. Calculer les énergies et les états propres de \hat{H}
- 2. Dans l'état fondamental, quelles sont les probabilités d'avoir l'électron en G,C ou D?
- 3. On considère un électron dans l'état $|\psi_G\rangle$, et on mesure son énergie. Que peut-on trouver, et avec quelle probabilité? En déduire $\langle E \rangle$ et ΔE .

2 Violet cristallisé et vert malachite

Le principe actif du colorant 42555 ("violet cristallisé") est le cation organique monovalent $C[C_6H_4N(CH_3)_2]_3^+$. Le squelette de cet ion est constitué de trois branches identiques (figure 1), le déficit électronique responsable de la charge + pouvant être prélevé sur l'une quelconque de ces trois branches. On peut traiter l'état électronique de cet ion comme un système à trois états. L'hamiltonien \hat{H} n'est pas diagonal dans la base $\{|1\rangle, |2\rangle, |3\rangle\}$ (supposée orthonormée) en raison du passage par effet tunnel de l'une à l'autre de ces configurations classiques.

1. On choisit l'origine des énergies telle que l'on ait $\hat{H}|1\rangle = \hat{H}|2\rangle = \hat{H}|3\rangle = 0$. On pose $\langle 1|\hat{H}|2\rangle = \langle 2|\hat{H}|3\rangle = \langle 3|\hat{H}|1\rangle = -A$, où A>0. Ecrire la matrice \hat{H} dans cette base.

FIGURE 1 – Les trois configurations possibles d'une molécule de colorant (figure tirée de "Mécanique Quantique", par J.L. Basdevant et J. Dalibard)

- 2. On considère les états $|\phi_1\rangle = (|1\rangle + |2\rangle + |3\rangle)/\sqrt{3}$ et $|\phi_2\rangle = (|2\rangle |3\rangle)/\sqrt{2}$. Pour chaque état, donner $\langle E \rangle$ et ΔE . Interpréter.
- 3. Donner les énergies propres et une base propre. Cette base est-elle unique?
- 4. On donne $A \simeq 0.75$ eV. Pourquoi cet ion est-il de couleur violette?
- 5. On remplace le groupement $N(CH_3)_2$ de la branche supérieure par un hydrogène. On suppose que le seul effet de cette substitution est d'élever $\langle 1|\hat{H}|1\rangle$ d'une quantité $\Delta > 0$, en laissant les autres éléments de matrice de \hat{H} inchangés.
 - Montrer que A est toujours énergie propre. Que deviennent les autres niveaux d'énergie?
 - Que deviennent-ils dans les limites $\Delta \ll A$ et $\Delta \gg A$?
- 6. Cet ion modifié (colorant 42000 "vert malachite") absorbe la lumière à deux longueurs d'onde : 620 et 450 nm. Calculer Δ et commenter l'accord théorie-expérience.

3 Time-dependence

Exercise taken from the homework of 2023-2024.

Consider a quantum mechanical system such that when measuring a certain observable \hat{A} one can obtain any of the 4 different results a_1 , a_2 , a_3 or a_4 .

- 1. Explain why this implies that the underlying Hilbert space is of dimension at least 4? In the sequel we will assume that the dimension is 4 and we denote the basis of eigenvectors of \hat{A} by $|1\rangle, |2\rangle, |3\rangle, |4\rangle$.
- 2. Repeat the proof of the lectures that these basis states of eigenvectors must be orthogonal, i.e. $\langle i|j\rangle = 0$ if $i \neq j$. We may furthermore assume that they are normalised and then $\langle i|j\rangle = \delta_{ij}$.
- 3. Assume that these basis states are "almost" eigenstates of the Hamiltonian, more precisely we assume (with $\epsilon, \eta \ll E_0, \tilde{E}_0$):

$$\begin{array}{lcl} \hat{H}|1\rangle & = & E_0|1\rangle + i\epsilon|2\rangle & & , & & \hat{H}|2\rangle = E_0|2\rangle - i\epsilon|1\rangle \\ \hat{H}|3\rangle & = & \tilde{E}_0|3\rangle + & \eta|4\rangle & & , & & \hat{H}|4\rangle = \tilde{E}_0|4\rangle + & \eta|3\rangle & . \end{array}$$

- Write the matrix associated with \hat{H} in the basis of the $|j\rangle$. Show that \hat{H} is hermitian if $E_0, \tilde{E}_0, \epsilon, \eta$ are all real.
- 4. Determine the four eigenvalues E_a and eigenvectors $|\phi_a\rangle$ of \hat{H} . The indexing a should be chosen such that for $\epsilon = \eta = 0$ the eigenvectors $|\phi_1\rangle$ and $|\phi_2\rangle$ are linear combinations of $|1\rangle$ and $|2\rangle$, and $|\phi_3\rangle$ and $|\phi_3\rangle$ are linear combinations of $|3\rangle$ and $|4\rangle$.
- 5. Suppose the system is initially at time t_0 in any of the eigenstates of \hat{H} . Determine the state vector $|\psi(t)\rangle$ (up to a phase) at an arbitrary later time. Compute the expectation value of the observable \hat{A} in this state and observe that it does not depend on time. Explain why this is always the case for expectation values in an eigenstate of \hat{H} .
- 6. Suppose now that $|\psi(t_0)\rangle = |2\rangle$. Determine $|\psi(t)\rangle$.
- 7. Compute the probability $P_{2\to 1}(t)$ that a measurement of \hat{A} at time t yields a_1 . Also compute the expectation value $\langle \hat{A} \rangle_{\psi(t)}$ of \hat{A} in this state as a function of t. What is the characteristic period associated? Are the results for $P_{2\to 1}(t)$ and $\langle \hat{A} \rangle_{\psi(t)}$ consistent?
- 8. Compute similarly $P_{2\to 3}(t)$ and $P_{2\to 4}(t)$. Comment on the result.

4 Détermination de l'état magnétique d'un atome d'argent

On considère un atome d'argent, possédant un spin $||\vec{S}||=1/2$, dans un état de spin arbitraire :

$$|\psi\rangle = \alpha |+\rangle_z + \beta |-\rangle_z,$$
 où $|\alpha|^2 + |\beta|^2 = 1$.

- 1. Réécrire les coefficients α et β en les paramétrant par 2 paramètres θ et ϕ . Montrer que cet état $|\psi\rangle$ est un état propre de l'opérateur $\hat{S}_{\vec{u}} \equiv \vec{u} \cdot \hat{\vec{S}}$ avec pour valeur propre $+\hbar/2$, où \vec{u} est un vecteur unitaire dans un espace à 3 dimensions, et déterminer la direction de \vec{u} .
- 2. Alice envoie à Bob un seul atome d'argent, dans l'état inconnu $|\psi\rangle$. Bob peut-il déterminer cet état (c'est-à-dire mesurer les coefficients α et β), en faisant des expériences de Stern-Gerlach?
- 3. Alice envoie maintenant à Bob $N \gg 1$ atomes d'argent, tous dans le même état inconnu $|\psi\rangle$, qu'il peut diviser en plusieurs paquets. Donner une stratégie possible pour que Bob détermine l'état de ces atomes, en faisant des expériences de Stern-Gerlach.