October 18, 2021

- 1. A group of twenty people, consisting of ten married couples, is randomly seated in a row of twenty seats.
 - (a) Suppose that one of the couples is Alice and Bob. The number of possible arrangements that Alice and Bob are seated next to each other.

Solution: 2! * 19!

- 19! represents arrangements of all individuals plus AB as one individual. 2! is the interchanging of A and B.
- (b) The number of possible arrangements that everyone is seated next to their spouse (i.e. that every couple is seated together)

Solution: $2^{10} * 10!$

- 10! is the number of arrangements of the couples, assume couples are unitary. $2^{10} = (2!)^{10}$ accounts for additional arrangements if you are counting the different ordering of each couple.
- 2. A police department in a small city consists of 10 officers. If the department policy is to have 5 of the officers patrolling the streets, 2 of the officers working full time at the station, and 3 of the officers on reserve at the station, how many different divisions of the 10 officers into the 3 groups are possible?

Solution: $\binom{10}{5}\binom{5}{3}\binom{2}{2}$

3. We roll 6 standard 6-sided dice. Find the number of possible outcomes possible if order of dice does not matter.

Solution:
$$\frac{(5+6)!}{(5!6!)}$$
 (18)

4. We roll 6 standard 6-sided dice. Find the number of outcomes with at least two dice showing 6 if order does not matter.

Solution:
$$\frac{(5+4)!}{(5!4!)}$$
 (19)

5. We roll 6 standard 6-sided dice. Find the number of possible outcomes possible if order of dice does matters.

11

Solution: 6^6

6. We roll 6 standard 6-sided dice. Find the number of outcomes with at least two dice showing 6 if order matters.

Solution: $6^6 - (5^6 + {6 \choose 1}5^5)$

Using difference method, we subtract from the total number of arrangements 6^6 the amount of arrangements that do not include 2 dice with a 6. In other words, 5^6 gives us the number of arrangements where the 6 dice do not have a value of 6. Finally, the second term, $\binom{6}{1}5^5$ accounts for all the arrangements without a value of six in 5 remaining dice(since we accounted for the first die with term, 5^6 .