AML300 Constitutive Modeling and Application of New Materials Major 2007, 2hours.

#1 Consider the structure shown in the figure. A rigid bar pinned at A is supported by composite rods. The rods are made of same material but the fibers in rod 1 are at 45° and in rod 2 at 90° to the principal material direction. The cross-section of both rods is 600 mm² and length is 3 m. $E_1 = 140$ Gpa, $E_2 = 10$ Gpa, $G_{12} = 7$ Gpa, $v_{12} = 0.3$, $\alpha_1 = -2 \times 10^{-6}$ /K and $\alpha_2 = 28 \times 10^{-6}$ /K.

- a) Calculate v21
- b) What is E_x , α_x for rod 2.
- c) Calculate E_x, α_x for rod 1.
- d) If both rods undergo a temperature riss of 50 C determine the load vector due to temperature change.
- e) Write the multi-point constraint between nodes 2 and 4.
- f). Write the assembled stiffness and force matrices. Modify the stiffness and load matrix for the multipoint constraints.
- g) The displacements at nodes 1, 3 are zero. By elimination method impose these boundary conditions to get 2 x 2 stiffness and 2x1 force matrix.
- h) Find the displacement of node 2 and node 4. Determine the stresses in the members (taking temperature into account).

#2. a) Show that for 3-parameter solid show in figure 2, the differential equation is $D\sigma + (\eta_2/E_2)\sigma = (E_1 + E_2) D\varepsilon + (\eta_1 E_2/\eta_2) \varepsilon$ where D=d/dt

- b) Determine the creep compliance J?
- c) For the strain history shown in figure 2, determine the response?

- #3. A block of Kelvin material (Kelvin in distortion, elastic in dilatation) is held in a container with rigid walls so that $\varepsilon_{22} = \varepsilon_{33} = 0$ when stress $\sigma_{11} = -\sigma_0$ [u(t)]. Determine ε_{11} and relating stress component σ_{22} and σ_{33} . The walls are frictionless.
- (a) Write the deviatoric stress s_{11} in terms of σ_{11} and $\sigma_{22}(=\sigma_{33})$.

(b) For linear Kelvin material

$$\tau = (2G + \zeta d/dt) \epsilon$$

where τ is the shear and ϵ is the shear strain. What are the values of operators P^G and Q^G .

- (c) Write the relation between s_{11} and e_{11} using the operators P^G and Q^G .
- (d) Since the material is elastic in dilatation, use the relation σ_{ii} =3K ϵ_{ii} to write another equation between stresses and strain.
- (e) Using equations found in steps (2) and (4) eliminate σ_{22} . Find ε_{11} as a function of time.
- #4. Show that the apparent direct modulus of an orthotropic material as a function of ' θ ' can be written as:

$$E_1/E_x = (1+a-4b) \cos^4\theta + (4b-2a) \cos^2\theta + a$$

Where
$$a=E_1/E_2$$
, $b=1/4(E_1/G_{12}-2v_{12})$

Hence show E_x is greater than E_1 and E_2 for the same values of θ if $G_{12} > E_1/(2(1 + \upsilon_{12}))$

- #5) a) For a Maxwell fluid $P(t) = 1 + \eta/E$, $Q(t) = \eta d/dt$. For a cantilever beam subjected to a step load F(t) at end x=1 and fixed at x=0 determine w(t). For an elastic beam $w = FI^3/3EI$.
- b) If a traction force T Newtons/ meter acts on a 3-noded element of length L what is the ratio in which the load is divided between the nodes.
- c) In a symmetric laminate, electrical resistance strain gauge rosettes with gauges oriented at 0, 45 and 90 relative to x direction are placed, on both top and bottom of the test specimen. The strains in the top rosette and bottom rosette are

$$-2 \times 10^{-1}$$

Determine ε_0 and κ .

Some useful relations

$$\frac{1}{E_{i}} = \frac{m^{2}}{E_{i}} (m^{2} - n^{2} v_{iz}) + \frac{n^{2}}{E_{z}} (n^{2} - m^{2} v_{zz}) + \frac{m^{2}}{G_{zz}} n^{2}$$

$$\varepsilon_{_{O}}=\varepsilon_{_{z}}\cos^{^{2}}\theta+\varepsilon_{_{z}}\sin^{^{2}}\theta+\gamma_{_{D}}\cos\theta\sin\theta$$

$$\alpha_x = m^2 \alpha_1 + n^2 \alpha_2$$

$$\frac{1}{s} \frac{b_{s} + b_{1}s}{a_{o} + a_{1}s} = \frac{b_{o}}{a_{o}} \frac{1}{s} + \left(\frac{b_{1}}{a_{1}} - \frac{b_{o}}{a_{0}}\right) \frac{1}{s + \frac{a_{0}}{a_{0}}}$$