ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ

Χειμερινό εξάμηνο 2024-25 (ΜΥΥ104-ΠΛΥ104)

Κωνσταντίνος Σκιάνης Επίκουρος Καθηγητής

Περιεχόμενα

ΔΙΑΝΥΣΜΑΤΑ

- 🗹 Εισαγωγή Βασικοί Ορισμοί
- 🗹 Πράξεις Διανυσμάτων
- 🗹 Γραμμικοί συνδυασμοί
- ☑ Ανισότητες
- ☑ Tensors

Διάνυσμα

- Διάνυσμα: Δομή που περιέχει μια διατεταγμένη λίστα αριθμών πεπερασμένου μήκους/διάστασης.
- Οι αριθμοί ενός διανύσματος καλούνται στοιχεία (ή συντελεστές)
 του.
 - διατεταγμένη: η σειρά με την οποία εμφανίζονται τα στοιχεία έχει σημασία.
 - διάσταση: ο αριθμός (πλήθος) των στοιχείων που περιέχει.
 - πεπερασμένου: δεν μπορούμε να έχουμε άπειρους αριθμούς. Η διάσταση θα πρέπει να είναι πεπερασμένη (π.χ. 2, 7, 99, 1024, 10000, ...).

Σε περίπτωση διάστασης «1», πρόκειται για απλό πραγματικό αριθμό (βαθμωτό μέγεθος). Παράδειγμα: ένα διάνυσμα με δύο στοιχεία αναπαριστά π.χ. τις συντεταγμένες ενός σημείου στο 2Δ -επίπεδο.

Αναπαράσταση διανύσματος

- Φυσική: Βέλος στο χώρο.
- Πληροφορική: Λίστα αριθμών, π.χ. (0, 1, 3.5).
- Έχει σημασία η σειρά εμφάνισης: $(0, 3.5, 1) \neq (0, 1, 3.5)$.
- Μαθηματικά: \mathbf{v} ή \vec{v} .

Διάνυσμα στήλη και γραμμή

$$ullet$$
 Διάνυσμα στήλη: $oldsymbol{v}=egin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{pmatrix}$, εναλλακτικά: $oldsymbol{v}=(v_1,v_2,...,v_N)$.

• Διάνυσμα γραμμή: $\mathbf{v} = (v_1, v_2, ..., v_N)$.

$$\bullet \mathbf{v} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} 2 \\ 4 \\ -3 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ 5 \\ 0 \end{pmatrix}$$

Διανυσματικές πράξεις Σημείο κλειδί της γραμμικής άλγεβρας:

 Μπορούμε να τα προσθέσουμε, να τα πολλαπλασιάσουμε με έναν αριθμό καθώς και να τα συνδυάσουμε μεταξύ τους.

Πρόσθεση διανυσμάτων

• Πρόσθεση:
$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
, $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$, $\mathbf{v} + \mathbf{w} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \end{pmatrix}$.

• Παράδειγμα:
$$\mathbf{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
, $\mathbf{w} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$, $\mathbf{v} + \mathbf{w} = \begin{pmatrix} 1+4 \\ 3+(-2) \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$.

Πολλαπλασιασμός διανύσματος με πραγματικό αριθμό c

- Πολλαπλασιασμός: $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, $c \cdot \mathbf{v} = \begin{pmatrix} c \cdot v_1 \\ c \cdot v_2 \end{pmatrix}$.
- Παράδειγμα: $\mathbf{v} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$, $2 \cdot \mathbf{v} = \begin{pmatrix} 2 \cdot 1 \\ 2 \cdot 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$.

Γραμμικός συνδυασμός διανυσμάτων

 Συνδυάζουμε τις δύο προηγούμενες πράξεις (πρόσθεση διανυσμάτων, πολλαπλασιασμός διανύσματος με αριθμό) για να δημιουργήσουμε ένα γραμμικό συνδυασμό των διανυσμάτων:

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix},$$
 γραμμικός συνδυασμός: $c \cdot \mathbf{v} + d \cdot \mathbf{w}, \quad c, d \in \mathbb{R}$

$$c \cdot \mathbf{v} + d \cdot \mathbf{w} = \begin{pmatrix} c \cdot v_1 \\ c \cdot v_2 \end{pmatrix} + \begin{pmatrix} d \cdot w_1 \\ d \cdot w_2 \end{pmatrix} = \begin{pmatrix} c \cdot v_1 + d \cdot w_1 \\ c \cdot v_2 + d \cdot w_2 \end{pmatrix}$$

όπου $c,d\in\mathbb{R}$.

• Παράδειγμα:
$$\mathbf{v} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
, $\mathbf{w} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$,
$$2 \cdot \mathbf{v} + (-3) \cdot \mathbf{w} = \begin{pmatrix} 2 \cdot 1 + (-3) \cdot 2 \\ 2 \cdot 4 + (-3) \cdot (-2) \end{pmatrix} = \begin{pmatrix} -4 \\ 14 \end{pmatrix}.$$

Διανύσματα

 Ένα διάνυσμα με δύο στοιχεία (2 διαστάσεων) αντιστοιχεί σε ένα σημείο στο επίπεδο. Τι συμβαίνει στις 3 διαστάσεις;

Γραμμικός συνδυασμός διανυσμάτων στις τρεις διαστάσεις (3Δ)

 Συνδυάζουμε τις δύο προηγούμενες πράξεις (πρόσθεση διανυσμάτων, πολλαπλασιασμός διανύσματος με αριθμό) για να δημιουργήσουμε έναν γραμμικό συνδυασμό των διανυσμάτων:

$$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + 4 \cdot \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} - 2 \cdot \begin{pmatrix} 3 \\ -1 \\ 9 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}.$$

- Για ένα 3Δ διάνυσμα \mathbf{u} , οι γραμμικοί συνδυασμοί είναι πολλαπλάσια του \mathbf{u} , δηλαδή $\mathbf{c} \cdot \mathbf{u}$ (π.χ. $-3 \cdot \mathbf{u}$, $1.2 \cdot \mathbf{u}$, $0 \cdot \mathbf{u}$).
- Για δύο 3Δ διανύσματα ${\bf u}$ και ${\bf v}$, οι γραμμικοί συνδυασμοί είναι ${\bf c}\cdot{\bf u}+{\bf d}\cdot{\bf v}$ (π.χ. $1\cdot{\bf u}+3\cdot{\bf v}$).
- Για τρία 3Δ διανύσματα **u**, **v** και **w**, οι γραμμικοί συνδυασμοί είναι $c \cdot \mathbf{u} + d \cdot \mathbf{v} + e \cdot \mathbf{w}$ (π.χ. $2 \cdot \mathbf{u} 3 \cdot \mathbf{v} + 0.5 \cdot \mathbf{w}$).
- ullet Από έναν συνδυασμό σε όλους τους πιθανούς συνδυασμούς (c,d,e)?

Διανύσματα

Ερωτήσεις:

- Τι σχηματίζουν στον 3Δ χώρο όλοι οι πιθανοί συνδυασμοί c · u;
- Τι σχηματίζουν στον 3Δ χώρο όλοι οι πιθανοί συνδυασμοί $c \cdot \mathbf{v} + d \cdot \mathbf{w}$:
- Τι σχηματίζουν στον 3Δ χώρο όλοι οι πιθανοί συνδυασμοί $c \cdot \mathbf{u} + d \cdot \mathbf{v} + e \cdot \mathbf{w}$:

Απαντήσεις:

- Μια γραμμή η οποία περιέχει το σημείο (0,0,0).
- Ένα επίπεδο που περιέχει το σημείο (0,0,0).
- Τον 3Δ χώρο (έναν κύβο).

Τυπική Κατάσταση: Γραμμή, Επίπεδο, Χώρος. Όχι όμως πάντα. Τι συμβαίνει όταν $\mathbf{w} = c \cdot \mathbf{u} + d \cdot \mathbf{v}$; (Το 3ο διάνυσμα είναι γραμμικός συνδυασμός των άλλων 2).

Εσωτερικό γινόμενο διανυσμάτων

• Το εσωτερικό γινόμενο δύο διανυσμάτων: $\mathbf{u} = (u_1, u_2)$ και $\mathbf{v} = (v_1, v_2)$, υπολογίζεται ως:

$$\mathbf{u}\cdot\mathbf{v}=u_1\cdot v_1+u_2\cdot v_2$$

• Ισχύει: $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (η σειρά εμφάνισης των διανυσμάτων δεν παίζει ρόλο).

Παράδειγμα

- Aν $\mathbf{u} = (1,2)$ και $\mathbf{v} = (3,1)$, τότε $\mathbf{u} \cdot \mathbf{v} = 1 \cdot 3 + 2 \cdot 1 = 5$
- Αν $\mathbf{u} = (4,2)$ και $\mathbf{v} = (-1,2)$, τότε $\mathbf{u} \cdot \mathbf{v} = 4 \cdot (-1) + 2 \cdot 2 = 0$
- ullet Αν old u=(1,0) και old v=(0,1), τότε $old u\cdot old v=1\cdot 0+0\cdot 1=0$
- Διανύσματα με εσωτερικό γινόμενο «0» είναι ορθογώνια μεταξύ τους.

Γενίκευση στις Ν διαστάσεις

Το εσωτερικό γινόμενο δύο διανυσμάτων, $\mathbf{u}=(u_1,u_2,\ldots,u_N)$ και $\mathbf{v}=(v_1,v_2,\ldots,v_N)$, υπολογίζεται ως:

$$\mathbf{u} \cdot \mathbf{v} = u_1 \cdot v_1 + u_2 \cdot v_2 + \dots + u_N \cdot v_N = \sum_{i=1}^N u_i \cdot v_i$$

Μήκος Διανύσματος

 Το μήκος ή μέτρο ενός διανύσματος είναι η τετραγωνική ρίζα του εσωτερικού του γινομένου:

$$|\mathbf{u}| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{u_1^2 + u_2^2 + \dots + u_N^2}$$

• Παράδειγμα: Αν $\mathbf{u} = (1, 2)$, το μήκος του \mathbf{u} είναι:

$$|\mathbf{u}| = \sqrt{1^2 + 2^2} = \sqrt{5}$$

• Aν $\mathbf{u} = (a, b)$, το μήκος του \mathbf{u} είναι:

$$|\mathbf{u}| = \sqrt{a^2 + b^2}$$

• $|\mathbf{u}| = \sqrt{a^2 + b^2}$, Πυθαγόρειο θεώρημα:

$$|\mathbf{u}|^2 = a^2 + b^2$$

Γωνία διανυσμάτων - Μοναδιαίο διάνυσμα

- Διάνυσμα μήκους «1»: $|\mathbf{u}|=1$.
- Από ένα διάνυσμα \mathbf{v} μπορούμε να κατασκευάσουμε το μοναδιαίο διάνυσμά του ως εξής: $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$ (διαιρούμε κάθε στοιχείο του διανύσματος με το μήκος του διανύσματος).
- Τα διανύσματα **u** και **v** είναι συγγραμμικά.

Παράδειγμα:

- Τα τυπικά μοναδιαία διανύσματα συμβολίζονται με τα γράμματα i και j.
- Στις δύο διαστάσεις έχουμε: ${f i} = (1,0)$ και ${f j} = (0,1)$.
- Το μοναδιαίο διάνυσμα ${\bf u}$ που σχηματίζει γωνία θ με τον άξονα x είναι το:

$$\mathbf{u} = (\cos \theta, \sin \theta).$$

• Ισχύει: $\cos^2 \theta + \sin^2 \theta = 1$.

Κάθετα διανύσματα

- Εάν το εσωτερικό γινόμενο δύο διανυσμάτων, u και v, είναι μηδέν
 (0) τότε τα διανύσματα είναι κάθετα μεταξύ τους.
- Γιατί; Θυμηθείτε ότι:

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\theta.$$

• Εάν η γωνία μεταξύ των μοναδιαίων διανυσμάτων ${\bf u}$ και ${\bf v}$ είναι θ , τότε:

$$\mathbf{u} \cdot \mathbf{v} = \cos \theta$$
.

• Επομένως, αν $\mathbf{u} \cdot \mathbf{v} = 0$, τότε $\cos \theta = 0$, δηλαδή η γωνία είναι 90° .

Συμπέρασμα:

- Εάν ${\bf u} \cdot {\bf v}$ έχει θετικό πρόσημο, τότε η γωνία μεταξύ τους είναι μικρότερη των 90° .
- Εάν ${\bf u}\cdot{\bf v}$ έχει αρνητικό πρόσημο, τότε η γωνία μεταξύ τους είναι μεγαλύτερη των 90° .
- Ισχύει: $\cos \theta > 0 \Leftrightarrow 0 < \theta < \frac{\pi}{2}$ και $\cos \theta < 0 \Leftrightarrow \frac{\pi}{2} < \theta < \pi$.

Ανισότητα Cauchy-Schwarz

Διατύπωση

Για όλα τα διανύσματα $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$,

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \cdot \|\mathbf{v}\|$$

 Η ισότητα ισχύει αν και μόνο αν τα u και v είναι γραμμικά εξαρτημένα.

Απόδειξη της Ανισότητας Cauchy-Schwarz

- Θεωρούμε τη συνάρτηση $f(t) = \|\mathbf{u} t\mathbf{v}\|^2 \ge 0$
- Αναπτύσσουμε το f(t):

$$f(t) = \langle \mathbf{u} - t\mathbf{v}, \mathbf{u} - t\mathbf{v} \rangle = \|\mathbf{u}\|^2 - 2t\langle \mathbf{u}, \mathbf{v} \rangle + t^2 \|\mathbf{v}\|^2$$

• Επειδή $f(t) \ge 0$ για όλα τα t, η διακρίνουσα είναι μη θετική:

$$\Delta = [2\langle \textbf{u}, \textbf{v}\rangle]^2 - 4\|\textbf{v}\|^2\|\textbf{u}\|^2 \leq 0$$

• Απλοποιούμε για να προκύψει η ανισότητα.

Ανισότητα Τριγώνου

Διατύπωση

Για όλα τα διανύσματα $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$,

$$\|u + v\| \le \|u\| + \|v\|$$

 Γεωμετρική ερμηνεία: Το άθροισμα των μηκών δύο πλευρών τριγώνου είναι μεγαλύτερο ή ίσο από το μήκος της τρίτης πλευράς.

Απόδειξη της Ανισότητας Τριγώνου

• Ξεκινάμε με το τετράγωνο της νόρμας:

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2$$

• Εφαρμόζουμε την Cauchy-Schwarz:

$$2\langle \mathbf{u}, \mathbf{v} \rangle \leq 2\|\mathbf{u}\|\|\mathbf{v}\|$$

• Επομένως:

$$\|\mathbf{u} + \mathbf{v}\|^2 \le (\|\mathbf{u}\| + \|\mathbf{v}\|)^2$$

 Λαμβάνοντας την τετραγωνική ρίζα και στα δύο μέλη προκύπτει η ανισότητα.

Ανισότητα Minkowski

Διατύπωση

Για $p \geq 1$ και διανύσματα $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$,

$$\|\mathbf{u} + \mathbf{v}\|_{p} \leq \|\mathbf{u}\|_{p} + \|\mathbf{v}\|_{p}$$

• Γενίκευση της ανισότητας τριγώνου για τις νόρμες L^p .

Ανισότητα Hölder

Διατύπωση

Για
$$p, q > 1$$
 με $\frac{1}{p} + \frac{1}{q} = 1$,

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\|_p \|\mathbf{v}\|_q$$

• Η ανισότητα Cauchy-Schwarz είναι ειδική περίπτωση όταν p=q=2.

Εφαρμογές των Ανισοτήτων Διανυσμάτων

- Προβλήματα βελτιστοποίησης
- Ανάλυση δεδομένων και μηχανική μάθηση
- Επεξεργασία σήματος
- Κβαντική μηχανική

Παράδειγμα 1: Επαλήθευση της Cauchy-Schwarz

- Έστω $\mathbf{u} = (1, 2, 3)$ και $\mathbf{v} = (4, -5, 6)$
- Υπολογίστε (u, v), ||u||, και ||v||
- Επαληθεύστε ότι $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \cdot \|\mathbf{v}\|$

Λύση του Παραδείγματος 1

•
$$\langle \mathbf{u}, \mathbf{v} \rangle = 1 \cdot 4 + 2 \cdot (-5) + 3 \cdot 6 = 4 - 10 + 18 = 12$$

•
$$\|\mathbf{u}\| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

•
$$\|\mathbf{v}\| = \sqrt{4^2 + (-5)^2 + 6^2} = \sqrt{77}$$

•
$$\|\mathbf{u}\| \cdot \|\mathbf{v}\| = \sqrt{14 \times 77} \approx 32.86$$

•
$$|\langle \mathbf{u}, \mathbf{v} \rangle| = |12| = 12$$

• Επειδή $12 \le 32.86$, η ανισότητα ισχύει.

Τι είναι ένα tensor (τανυστής);

- Ένα tensor είναι μια πολυδιάστατη γενίκευση διανυσμάτων και μητρώων.
- Μπορεί να αναπαραστήσει μεγέθη όπως διανύσματα, πίνακες, και περισσότερο πολύπλοκες μαθηματικές δομές.
- Ένα tensor βαθμού 0 είναι ένας αριθμός (ή βαθμωτό).
- Ένα tensor βαθμού 1 είναι ένα διάνυσμα.
- Ένα tensor βαθμού 2 είναι ένας πίνακας.

Tensors Βαθμού 0, 1, 2

Tensor Βαθμού 0 (scalar):

$$T^0 = 5$$

• Tensor Βαθμού 1 (Διάνυσμα):

$$\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

• Tensor Βαθμού 2 (Πίνακας):

$$\mathbf{M} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Tensor Υψηλότερου Βαθμού

- Τα tensors μπορούν να έχουν περισσότερες διαστάσεις και να αναπαρασταθούν ως πολυδιάστατοι πίνακες.
- Ένα tensor βαθμού 3 μπορεί να θεωρηθεί ως ένα κύβος δεδομένων:

$$T^3 = \{T_{ijk}\}$$
 με i, j, k να είναι οι δείκτες

 Τensors υψηλότερων βαθμών χρησιμοποιούνται συχνά στη φυσική (π.χ. στο Γενικό Σχετικιστικό Πλαίσιο).

Tensor visualization

Πράξεις με Tensors

- Addition and Subtraction: Tensors of the same rank can be added or subtracted element-wise.
- **Tensor Product**: The product of two tensors A_{ij} and B_{kl} results in a new tensor $C_{ijkl} = A_{ij}B_{kl}$.
- Contraction: Reducing the rank of a tensor by summing over one or more pairs of indices.

$$C = T_{ij}A^{j} \tag{1}$$

Tensors στη Φυσική

- Τα tensors είναι απαραίτητα στην περιγραφή φυσικών φαινομένων, όπως η Θεωρία της Σχετικότητας.
- Στη Γενική Σχετικότητα του Einstein, το tensor καμπυλότητας Riemann είναι ένα tensor βαθμού 4 που περιγράφει την καμπυλότητα του χωροχρόνου.

$$R^{\rho}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}$$

- Continuum Mechanics: Stress and strain in materials are described using tensors.
- Computer Vision and Deep Learning: Tensors are used to represent multi-dimensional data.

Python Code Example

import torch

Creating Tensors

Below is an example in Python using PyTorch for basic tensor operations.

```
# A scalar (rank-0 tensor)
scalar = torch.tensor(5)
print(f'Scalar tensor: {scalar}')
# A vector (rank-1 tensor)
vector = torch.tensor([1, 2, 3])
print(f'Vector tensor: {vector}')
# A matrix (rank-2 tensor)
matrix = torch.tensor([[1, 2], [3, 4]])
print(f'Matrix tensor:\n{matrix}')
\# A rank-3 tensor
tensor_3d = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
print(f'Rank-3 tensor:\n{tensor_3d}')
```

Tensor operations

```
# Element-wise addition
tensor_sum = vector + torch.tensor([3, 2, 1])
print(f"Element-wise addition result: {tensor_sum}")
# Matrix multiplication
mat1 = torch.tensor([[1, 2], [3, 4]])
mat2 = torch.tensor([[5, 6], [7, 8]])
mat_mul = torch.matmul(mat1, mat2)
print(f"Matrix multiplication result:\n{mat_mul}")
# Tensor reshaping
reshaped_tensor = tensor_3d.view(2, 4)
print(f"Reshaped tensor:\n{reshaped_tensor}")
# Automatic differentiation
x = torch.tensor(3.0, requires_grad=True)
y = x**2
v.backward()
print(f"The derivative of y = x^2 at x = 3 is: \{x.grad\}")
```

Explanation of Key Concepts

- **Creating Tensors**: Tensors are multi-dimensional arrays in PyTorch. We create scalar, vector, matrix, and rank-3 tensors in the example.
- Tensor Operations: We perform element-wise addition and matrix multiplication.
- **Reshaping Tensors**: The view function reshapes tensors.
- Automatic Differentiation: PyTorch supports automatic differentiation using the requires_grad=True option, and the gradient is computed using the backward() method.