Amendments to Claims

This listing of claims will replace all prior revisions and listings of claims in this application.

Listing of Claims

1. (Currently Amended) A method comprising:

generating a phase-shift keyed optical signal; and

propagating the phase shift keyed optical signal through a semiconductor optical amplifier in deep saturation, such that an optical signal exhibiting a regulated, amplified optical power is produced;

wherein the amplified optical power is regulated to a saturation output power such that $\Delta P_{OUT}(dB)/\Delta P_{IN}(dB)$ of the optical amplifier is less than [[about]] 0.25, wherein P_{OUT} is the power of the optical signal output from the amplifier, and P_{IN} is the power of the optical signal input into the amplifier.

1

2. (**Previously presented**) The method of claim 1, wherein the amplified optical power is regulated to about the saturation output power of the semiconductor optical amplifier.

1

3. (**Previsously Presented**) The method of claim 1, wherein a gain recovery time of the optical amplifier is larger than the bit period of the optical signal.

1

4. (Original) The method of claim 1, wherein the optical signal has a data-independent intensity profile.

1

5. (Original) The method of claim 1 wherein the optical signal is RZ-DPSK signal.

1

6. (Original) The method of claim 1, wherein the optical signal is an $\pi/2$ -DPSK signal.
1
7. (Original) The method of claim 1, wherein the optical signal is a constant-intensity DPSK signal.
1
8. (Original) The method of claim 1, wherein the optical signal is an RZ-DQPSK signal.
1
9. (Cancelled)
1
10. (Currently Amended) A method for optical limiting amplification comprising:
inputting a phase-shift keyed optical signal having a data independent intensity profile into a semiconductor optical amplifier in a deep saturation regime such that an optical signal exhibiting a regulated, amplified optical power is produced and output, wherein $\Delta P_{OUT}(dB)/\Delta P_{IN}(dB)$ is less than [[about]] 0.25, where P_{OUT} is the power of the optical signal output from the amplifier, and P_{IN} is the power of the optical signal input into the amplifier.
1
11. (Previously Presented) The method of claim 10, wherein a gain recovery time of the optical amplifier is larger than the bit period of the optical signal.
1
12. (Original) The method of claim 10, wherein the optical signal is an RZ-DPSK signal.
13. (Original) The method of claim 10, wherein the optical signal is an $\pi/2$ -DPSK signal.
1
14. (Original) The method of claim 10, wherein the optical signal is a constant-intensity DPSK signal.
1
15. (Original) The method of claim 10, wherein the optical signal is an RZ-DQPSK signal.
1

16.(Cancelled)

17. (Currently Amended) An optical signal processor apparatus comprising:

a semiconductor optical amplifier device adapted to operate in deep saturation and to receive an RZ-DPSK optical signal having an amplitude-shift keyed optical label portion, such that the optical label portion of the signal is removed upon propagation through the semiconductor optical amplifier device;

wherein $\Delta P_{OUT}(dB)/\Delta P_{IN}(dB)$ is less than [[about]] 0.25, where P_{OUT} is the power of the optical signal output from the amplifiers, and P_{IN} is the power of the optical signal input into the amplifiers.

18. (Cancelled)

19. (Currently Amended) An optical communication system for transmitting multi-channel phase-shift keyed optical signals comprising:

a plurality of semiconductor optical amplifiers,

wherein the system is adapted to transmit the optical signals such that the plurality of semiconductor optical amplifiers operate in a deep saturation regime so as to provide optical power equalization of a plurality of channels of the multi-channel optical signals.

wherein $\Delta P_{OUT}(dB)/\Delta P_{IN}(dB)$ is less than [[about]] 0.25, where P_{OUT} is the power of the optical signal output from the amplifiers, and P_{IN} is the power of the optical signal input into

20. (Currently Amended) An apparatus comprising:

a means for generating a phase-shift keyed optical signal; and

a means for propagating the optical signal through a semiconductor optical amplifier in deep saturation to regulate the amplified optical power;

wherein $\Delta P_{OUT}(dB)/\Delta P_{IN}(dB)$ is less than [[about] 0.25, where P_{OUT} is the power of the optical signal output from the amplifiers, and P_{IN} is the power of the optical signal input into the amplifiers.