ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ŘÍDICÍ TECHNIKY

Diplomová práce

Automatizovaný systém stahování webového obsahu potřebného k doplňování cleansetu

Michal Staněk

Vedoucí práce: Ing. Jan Kubr, Ph.D.

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Staněk	Jméno: Michal	Osobní číslo: 420236

Fakulta/ústav: Fakulta elektrotechnická

Zadávající katedra/ústav: Katedra řídicí techniky

Studijní program: **Kybernetika a robotika**Studijní obor: **Kybernetika a robotika**

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Automatizovaný systém stahování webového obsahu potřebného k doplňování cleansetu

Název diplomové práce anglicky:

Automatic system for updating cleanset by downloading web content

Pokyny pro vypracování:

Práce se zaměřuje na vylepšování vlastností množiny neškodných souborů (cleansetu) využívané při detekci škodlivých webových stránek.

- 1. Analyzujte možné způsoby obohacování cleansetu a vhodný způsob implementujte.
- 2. Navrhněte a implementujte automatizovaný systém stahování dat pro obohacování cleansetu. Systém začleňte do stávající infrastruktury.
- 3. Proveďte zobecnění vzniklého systému pro využití i v jiných projektech.
- 4. Výsledné řešení otestujte a zhodnoťte jeho přínos.

Seznam doporučené literatury:

- [1] Eric Lawrence, CreateSpace Independent Publishing Platform (2015). Debugging with Fiddler: The complete reference from the creator of the Fiddler Web Debugger, 2nd Edition. ISBN: 9781511572903.
- [2] Ryan Mitchell, O'Reilly Media, Inc. (2018). Web Scraping with Python, 2nd Edition. ISBN: 9781491985564.
- [3] Harry Colvin, CreateSpace Independent Publishing Platform (2015). VirtualBox: An Ultimate Guide Book on Virtualization with VirtualBox. ISBN: 1522769889.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Jan Kubr, Ph.D., katedra počítačové grafiky a interakce FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Datum zadání diplomové práce: **06.01.2020** Termín odevzdání diplomové práce:

Platnost zadání diplomové práce:

do konce letního semestru 2020/2021

 Ing. Jan Kubr, Ph.D.
 prof. Ing. Michael Šebek, DrSc.
 prof. Mgr. Petr Páta, Ph.D.

 podpis vedoucí(ho) práce
 podpis vedoucí(ho) ústavu/katedry
 podpis děkana(ky)

III. PŘEVZETÍ ZADÁNÍ

Diplomant bere na vědomí, ž	že je povinen vypracovat	diplomovou práci sam	ostatně, bez cizí pomoci	, s výjimkou poskytnutých konzu	ltací
Seznam použité literatury, jir	ných pramenů a jmen ko	nzultantů je třeba uvés	v diplomové práci.		

Datum převzetí zadání Podpis studenta

Poděkování Chtěl bych poděkovat panu Ing. Janu Kubrovi, Ph.D., za odborné vedení mé práce, za pomoc a věcné rady při zpracování této práce.

Proh	nláše
Proh Prohlašuji, že jsem předloženou práci vypracoval samostatně a veškeré použité informační zdroje v souladu s Metodickým pok přípravě vysokoškolských závěrečných prací.	že jsem uv
Prohlašuji, že jsem předloženou práci vypracoval samostatně a veškeré použité informační zdroje v souladu s Metodickým pok	že jsem uv

České vysoké učení technické v Praze Fakulta elektrotechnická

© 2020 Michal Staněk. Všechna práva vyhrazena.

Tato práce vznikla jako školní dílo na Českém vysokém učení technickém v Praze, Fakultě elektrotechnické. Práce je chráněna právními předpisy a mezinárodními úmluvami o právu autorském a právech souvisejících s právem autorským. K jejímu užití, s výjimkou bezúplatných zákonných licencí, je nezbytný souhlas autora.

Odkaz na tuto práci

Staněk, Michal. Automatizovaný systém stahování webového obsahu potřebného k doplňování cleansetu. Diplomová práce. Praha: České vysoké učení technické v Praze, Fakulta elektrotechnická, 2020.

Abstrakt

Tato práce psaná v programovacím jazyku Python se zabývá zabezpečeným stahováním html a js souborů webových stránek k doplňování cleansetu antivirového programu. Stahování souborů probíhá na bázi zachytávání komunikace internetového prohlížeče ovládaného nástrojem Selenium. K zachytávání je využit MitM klient Fiddler. Zabezpečení je realizováno obalením stahovacího procesu do virtuálního prostředí s využitím nástroje VirtualBox. Část práce je ve formě Docker balíčku nasazena v systému Kubernetes, zbytek je spouštěn v systému Jenkins. Běh navrženého systému je monitorován s využitím nástroje Grafana. Díky navrženému systému je možné zachytávat statisíce souborů týdně. Práce dále zkoumá možnosti navrženého systému pro využití v oblasti malware analýzy.

Klíčová slova Python, VirtualBox, Fiddler, Docker, Kubernetes, Jenkins, webscrapper, html, js

Abstract

Purpose of this thesis written in Python language is secure downloading of html and js files from websites for antivirus cleanset updating. Files downloading is implemented by capturing web traffic of internet browser controlled by Selenium. Traffic capturing is provided by MitM client Fiddler. For security, the whole process is wrapped in virtual environment provided by Virtual-Box. Part of the system is dockerized and deployed in Kubernetes, the rest is deployed in Jenkins. Whole system is continuously monitored with Grafana tool. Designed system is capable of capturing hundreds of thousands files a week. Furthermore, the thesis questions options of using the system for malware analysis.

Keywords Python, VirtualBox, Fiddler, Docker, Kubernetes, Jenkins, webscrapper, html, js

Obsah

1 Úvod				
	1.1	Motivace	1	
	1.2	Cíle práce	2	
2	Ana	alýza a řešení problému	3	
	2.1	Předzpracování zadaných adres	3	
	2.2	Získání čistých souborů z webových stránek	4	
		2.2.1 Emulace webového prohlížeče	4	
		2.2.2 Zachytávání komunikace Fiddlerem	6	
	2.3	Zabezpečení stahovacího procesu	8	
	2.4	Nahrání získaného obsahu do databáze cleansetu	9	
	2.5	Začlenění do stávající infrastruktury	9	
	2.6	Programovací jazyk	10	
3	Pou	užité technologie	11	
	3.1	Fiddler	11	
	3.2	Selenium	12	
	3.3	Jenkins	12	
	3.4	Kafka	12	
	3.5	VirtualBox	13	
	3.6	Docker	14	
	3.7	Python	15	
4	Imp	blementace	17	
	4.1	Klient pro stahování webového obsahu	17	
		4.1.1 Skript pro ovládání pomocných programů	18	

		4.1.2	Skript pro nastavení Fiddleru	19
	4.2	Zprace	ování dat a upload do databáze	20
		4.2.1	Třídění dat	21
		4.2.2	Upload do databáze	23
	4.3	Virtua	dizace	25
	4.4	Imple	mentace frontového systému Kafka	29
		4.4.1	Kafka producer	29
		4.4.2	Kafka consumer	30
	4.5	4.5 Integrace do stávající infrastruktury		
		4.5.1	Vytvoření a nastavení virtuálního stroje	33
		4.5.2	Systém Jenkins	33
		4.5.3	Systém Kubernetes	36
		4.5.4	Schéma integrovaného systému	38
5	Ově	ření fu	ınkčnosti	39
	5.1	Testov	vání	39
		5.1.1	Komponenty využívající frontový systém Kafka	39
		5.1.2	Zabezpečené stahování a filtrování dat	40
		5.1.3	Přenos souborů do HCP úložiště	42
	5.2	Monit	orování	43
6	Přír	os a b	oudoucí využití	45
	6.1	Zobec	nění projektu a budoucí využití	45
	6.2	Zhodn	ocení přínosu	45
Zá	věr			47
Li	terat	ura		49
\mathbf{A}	Sezi	nam p	oužitých zkratek	53
В	Obs	ah při	loženého CD	55

Úvod

Dnešní doba je plná rizik, která představují hrozbu pro každodenního uživatele internetu. Ať už se jedná o phishing (zisk citlivých údajů pomocí podvodné internetové komunikace) či různé druhy malwaru (nežádoucí programy mající za úkol poškodit uživatele). V boji s těmito riziky je důležité chránit sebe a svá data pomocí antivirových programů. Jedním z nejrozšířenějších programů je Avast, který má přes 435 milionů aktivních uživatelů a měsíčně zabrání až dvěma miliardám útoků[1].

1.1 Motivace

Avast, stejně jako většina antivirových programů, uchovává informace o všech známých škodlivých entitách. Tato databáze se denně rozšiřuje o spousty nových záznamů, které obsahují nejen informace o celých souborech, ale i kusy kódu webového obsahu (tzv. string detekce), které jsou považovány za příznak podvodných úmyslů. Může se však stát, že je tento kus kódu moc obecný a dochází tak i k blokování čistého obsahu (tzv. false-positive detekcím). Aby se těmto situacím předcházelo, je zapotřebí udržovat i databázi s čistými záznamy (tzv. cleanset). Tyto záznamy jsou převážně html a js soubory.

Dříve, než se nová string detekce začlení do jádra antiviru, je její obsah porovnán se všemi záznamy na cleansetu a pokud dojde ke shodě (tj. detekční string je součástí nějakého souboru na cleansetu), je tato detekce považována za nevalidní. Tímto dochází k zabránění false-positive detekcím.

Ideálním stavem je tedy mít záznam o veškerém čistém obsahu internetu, což je samozřejmě nemožné. Avšak čím více záznamů cleanset obsahuje, tím kvalitnější je běh antivirového programu. V současné době dochází k doplňo-

vání cleansetu pouze občasně, a to převážně manuálně za pomoci jednoduchých skriptů.

1.2 Cíle práce

Hlavním cílem této práce je vytvořit plně automatizovaný systém, který bude databázi s čistými záznamy periodicky doplňovat o nový obsah, čímž by mělo dojít ke zlepšení funčnosti antivirového programu. Dále bude potřeba systém začlenit do již stávající infrastruktury. Primárním úkolem je tedy vytvořit systém, který by modernizoval doplňování cleansetu, avšak současně je možné jej zobecnit k využití i v jiných aplikacích. Systému bylo dáno kódové označení *Magpie* (česky Straka), protože aplikace, stejně jako straky, bude shromažďovat data z různých míst a ukládat je na jedno místo. Výsledná aplikace bude řádně otestována a bude zhodnocen její přínos.

Analýza a řešení problému

Jednotlivé body práce lze rozdělit na vícero dílčích podproblémů:

- Předzpracování zadaných adres webových stránek
- Získání čistých souborů z webových stránek
- Zabezpečení stahovacího procesu
- Nahrání získaného obsahu do databáze cleansetu
- Začlenění do stávající infrastruktury
- Určení programovacího jazyka

2.1 Předzpracování zadaných adres

K předzpracování zadaných adres lze využít frontový systém Kafka (více v kapitole 3.4).

Systém by měl reagovat na dva typy vstupů. Prvním vstupem budou adresy s vysokou prevalencí, tedy adresy, jež jsou velmi často navštěvované uživateli na internetu. Případem takové adresy může být třeba internetový obchod www.amazon.com. Tyto adresy budou systému periodicky dodávány z externích modulů. Jako vstupní data lze využít seznamy poskytované službou Alexa Top Sites [23], jež obsahují nejnavštěvovanější stránky kategorizované podle obsahu, či obdobný seznam jiné služby nazývané Majestic Million [24].

Kromě automatického zpracovávání výše zmíněných seznamů může být vstupem i ručně zadaná adresa či seznam adres. Tato situace nastává v případě potřeby operátora systému dodat na cleanset soubory z webových strá-

nek s menší prevalencí, či, ve více obecném řešení, potřeby stáhnout zdrojové soubory cílových webových stránek pro odlišné účely.

V případě využití Kafky je možné adresy z odlišných seznamů nahrát do frontového systému, odkud se budou postupně odebírat. Využití Kafky má výhodu v již naimplementovaném řešení fronty. Jednou z funkcionalit Kafky, které lze využít, je potvrzení zpracované zprávy po přijetí. Tím je zaručeno zpracování všech zpráv ve frontě.

2.2 Získání čistých souborů z webových stránek

Problematiku při implementaci stahování dat činí přesměrovávání (tzv. redirecty), které se na mnoha webových stránkách používá. Redirecty je možné neřešit a zabývat se pouze obsahem dané url, což by proces získání zdrojových souborů usnadnilo. Stažená data by však byla nekompletní.

V průběhu stahování dat by také měla být implementována logika selekce vybraných typů souborů. Pro cleanset jsou validní pouze html a js soubory, ostatní soubory (css soubory, obrázky a jiné) lze tedy filtrovat. Tuto selekci je možné provádět přímo při stahování souborů, či následně po stáhnutí celého obsahu zadané adresy.

Jednou z možností jak přistupovat k získání čistých souborů je otevírat stránky ve webovém prohlížeči a k získání souborů použít nástroj Fiddler (více v kapitole 3.1). Jiným způsobem je emulace webového prohlížeče v Pythonu s následným stahováním zdrojových kódů stránek bez využití programů třetích stran (webový prohlížeč, Fiddler).

Jednotlivé rozebírané metody získání čistých souborů z webových stránek jsou následující:

- Emulace webového prohlížeče a následné parsování webových stránek
- Spouštění stránek v prohlížeči a zachytávání komunikace Fiddlerem

2.2.1 Emulace webového prohlížeče

Výhodou emluace webového prohlížeče je rychlost a jednoduchost z hlediska využitých nástrojů (absence nutnosti využívat programy třetích stran). Pro práci s webovými stránkami v Pythonu existuje více knihoven, z nichž nejčastěji používaná je knihovna Requests. Její základ je postaven na knihovně Urllib, která je sice již obsažena v základní instalaci Pythonu a není nutno ji doinstalovávat, avšak z hlediska použití vyžaduje velké množství obalovacího

kódu (kód, který zaručuje spravný běh programu v nestandardních situacích), jenž je už v knihovně Requests implementován.

Obrázek 2.1: Diagram zachytávání komunikace pomocí web scrapperu

Obrázek 2.1 znázorňuje cyklus získávání dat pomocí emulovaného prohlížeče. Knihovně Requests je zadána požadovaná url adresa. Knihovna získá ze serveru zdrojový kód této stránky, který uloží a zároveň jej předá html parseru. Následným výstupem je seznam url adres, které jsou ve zdrojovém kódu původní stránky obsaženy. Seznam získaných adres je nyní novým vstupem knihovny Requests. Tento cyklus se opakuje, dokud není list s url adresami prázdný. Pro cyklus je možné implementovat i hloubku procházení, aby se zabránilo nekonečné iteraci. Tento parametr určuje, do jaké úrovně se mají získávat adresy při parsování. Zde se předpokládá, že první úroveň obsahuje původní adresu a dále každá adresa n-té úrovně je získána při parsování (n-1)-té adresy.

Nevýhodou emulace webového prohlížeče pomocí knihovny Requests je obtížná interakce se stránkami využívajícími javascript k postupnému načítání obsahu či k přesměrování na jinou adresu. Vytvořit komplexní web scrapper (tj. nástroj, který prochází obsah webových stránek), který by dokázal rea-

govat i na javascriptem řízený obsah, není triviální úkol. Knihovna Requests je v tomto ohledu nedostačující a toto řešení indikuje neošetřit javascriptové přesměrování a postupné načítání obsahu.

K samotnému parsování již stažené webové stránky je možné využít knihovnu BeautifulSoup [7], která implementuje html a xml parsery v jazyku Python. Pomocí ní je snadné procházet html kód a iterovat přes tagy komponentů stránky. Lze tak vyhledat všechny části, které obsahují přesměrování na jiné url adresy, či spouštění javascriptového souboru.

Přesměrování lze ošetřit pomocí hlídání response kódů (kód, který vrací server při komunikaci s webovým prohlížečem). Při přesměrování jsou běžné kódy 301, respektive 302. Pokud tedy vrátí server kód pro přesměrování, je nutné v hlavičce odpovědi najít adresu pro přesměrování a přidat ji do fronty ke zpracování.

Velkou výhodou tohoto řešení je bezpečnost, protože samotné stahování zdrojového kódu stránek probíhá bez nutnosti stažené soubory spouštět. Tímto řešením nehrozí nebezpečí infikace pracovního počítače škodlivým obsahem (o této problematice více v sekci 2.3). Výraznou nevýhodou je ovšem neschopnost získání obsahu webových stránek, který se načítá asynchronně za pomoci javascriptu (využití technologie Ajax).

2.2.2 Zachytávání komunikace Fiddlerem

Jiným postupem je použít nástroj Selenium (více v kapitole 3.2) k ovládání webového prohlížeče s využitím Fiddleru (kapitola 3.1) pro zachytávání komunikace. Nevýhodou této metody je zpomalení vzniklé spouštěním internetového prohlížeče a nástroje Fiddler. Naopak výhodou je již implementované řešení webového prohlížeče umožňujícího interagovat se stránkami využívajícími javascript. Nastroj Fiddler umožňuje zachytávat i šifrovanou komunikaci pomocí protokolu https. K tomu je potřeba vygenerovat bezpečnostní certifikát a přidat jej mezi důveryhodné certifikáty v internetovém prohlížeči.

Obrázek 2.2 znázorňuje cyklus zachytávání dat pomocí nástroje Fiddler. Internetovému prohlížeči je předána adresa pomocí nástroje Selenium. Prohlížeč následně komunikuje se serverem, který vrací všechny požadované zdrojové soubory potřebné k načtení požadované adresy. Tato komunikace je zachycena pomocí nástroje Fiddler. Nástroj Fiddler je využíván k testovacím účelům a zachytává veškerou internetovou komunikaci (tzv. traffic), která skrze nástroj proudí. Využítí této metody tedy obnáší implementování třídení zachycené komunikace a selekce html a js souborů.

Obrázek 2.2: Diagram zachytávání komunikace Fiddlerem

2.2.2.1 Selekce html a js souborů

Fiddler standardně zachytává veškerou komunikaci. Nástroj je však možné konfigurovat pomocí inicializačního scriptu, který je psaný v javascriptu. Pomocí tohoto skriptu je možné nastavit Fiddler tak, aby zachytával pouze soubory html a js. Tím lze odfiltrovat nepotřebné soubory, které se v zachycené komunikaci mohou objevit (css soubory, obrázky a jiné).

Dále je potřeba filtrovat režijní komunikaci mezi prohlížečem a servery, která vzniká při spouštění prohlížeče a načítání stránek. Tato komunikace je nevyžádaná a je potřeba ji vytřídit. I zde je možné využít inicializačního skriptu Fiddleru a implementovat třídění již při zachytávání komunikace. Zachytávat tedy pouze soubory ze serverů, které odpovídají zpracovávané url. To ovšem přináší problémy s přesměrováním, které může seznam chtěných serverů navyšovat. Druhý způsob je zachytávat html a js komunikaci ze všech serverů a selekci řešit až později při zpracování dat v Pythonu. Nedostatkem této možnosti je zvýšená náročnost na paměť při zpracovávání více souborů. Avšak předpokladem je, že tato nevyžádaná komunikace bude v poměru s chtěnými soubory minimální, tudíž by k výraznému zvýšení paměťové náročnosti dojít nemělo.

2.3 Zabezpečení stahovacího procesu

Z bezpečnostních důvodů je kladen důraz na zabezpečení veškerého procesu stahování webového obsahu. Při doplňování cleansetu se předpokládá neinfikovanost stažených souborů, avšak při obecnějším využití navrhovaného systému již tento předpoklad neplatí. Jedním z možných způsobů docílení bezpečnosti je vytvoření a obsluha virtuálního stroje. Tento virtuální stroj lze využít jako karanténní prostředek, který zaručí stahování souborů bez potenciální infikace fyzického systému (obr. 2.3).

Obrázek 2.3: Zaobalení stahovacího procesu virtuálním strojem

Otevíráním webových stránek v prohlížeči dochází ke spouštění javascriptových souborů, což je potenciálně nebezpečné. Proto je zabezpečovací proces nutné řešit pouze u metody využívající nástroj Fiddler. Při emulaci prohlížeče v Pythonu dochází rovnou ke stahování zdrojových kódů webových stránek bez nutnosti jejich spouštění.

Pro virtualizaci systému lze použít nástroj VMware workstation od firmy VMware nebo VirtualBox vyvíjený firmou Oracle. Firma VMware nabízí pro práci se svými virtuálními stroji infrastrukturu nazývanou vSphere. Tato infrastruktura obsahuje vlastní SDK nástroje pro implementaci do programovacího jazyka Python [13], avšak celé toto řešení není nabízeno s freeware licencí. Naopak virtualizační nástroj Virtualbox je zdarma, nabízí však méně propra-

cované nástroje pro programovací jazyk Python. Pro práci s VirtualBox SDK lze využít knihovnu pyvbox [14]. Tato knihova obaluje většinu metod, které SDK VirtualBoxu obsahuje.

Virtuální stroj (neboli VM z anglického Virtual Machine) lze spouštět pro každou webovou stránku zvlášť, čímž je docíleno maximálního zabezpečení, avšak zvyšuje se tím čas potřebný ke zpracování jedné adresy. Startování VM je předpokládáno jako časově velmi náročné. Virtuální stroj lze také restartovat vždy po určitém čase nebo po daném množství zpracovaných url adres. Tím lze docílit výrazného zrychlení běhu systému.

2.4 Nahrání získaného obsahu do databáze cleansetu

Dalším krokem je přesun získaného obsahu do samotné databáze cleansetu. Ta je součástí většího systému aplikací, který nese interní označení Scavenger. Zjednodušeně lze říci, že tento systém obsahuje záznamy o všech antiviru známých souborech a url adresách (nakažených i čistých). Soubory se v systému Scavenger indexují pomocí hashe vzniklé hashovacím algoritem sha-256. Tímto lze docílit jednoduché kontroly duplicity (stejné soubory mohou mít rozdílné názvy, ale hash souboru je pro identické soubory stejná). K hashi souboru se přikládají metadata s informací o původu souboru a času výskytu.

K nahrání souborů do Scavengeru lze využít sítový souborový systém Samba, který implementuje přenos souborů po síti pomocí sítového protokolu SMB, a to převážně v systémech Windows. Tato metoda je však z hlediska firemní infrastruktury zastaralá. Novější způsob představuje využití datové platformy HCP (Hitachi content platform) [19]. Tato platforma se specializuje na přesun a zpracování velkého množství dat z různých zdrojů. Ke komunikaci se zmíněným systémem HCP lze využít interně vyvinutý python klient, který přesun souborů usnadní.

2.5 Začlenění do stávající infrastruktury

Předpokládá se, že systém bude spouštěn periodicky, ale měl by být také spustitelný na vyžádání uživatelem. Pro takové požadavky lze použít systém Jenkins (více v kapitole 3.3), který je firmou Avast používaný ke správě obdobných aplikací. Jednotlivé části aplikace Magpie je možné rozdělit do samostatných procesů (v terminologii systému Jenkins tzv. jobů), které se dají sekvenčně

pouštět v závislosti na úspěšném ukončení předcházejícího jobu. Tento přístup přináší přehledné rozhraní, které umožňuje jednotlivé části samostatně monitorovat, spolu s jednoduchým přístupem k výstupům jobů. Tímto způsobem by bylo možné přistoupit k získaným datům přímo, bez nutnosti data nahrávat do databáze v systému Scavenger, v případě, kdy by byl systém spuštěný manuálně.

Jiným přístupem je využít firemní mutaci nástroje Kubernetes, která by umožňovala mít systém spuštěný bez přestávky. Krom neustálého spuštění skriptu je velkou výhodou Kubernetes tzv. škálování, kdy lze při velkém vytížení jednoduše navýšit výpočetní prostředky danému procesu a tím urychlit jeho běh. Pro spuštění skriptu v Kubernetes je nejprve potřeba tento skript dockerizovat. Dockerizace je proces, při kterém je vytvořen tzv. docker image, neboli balíček, který je plně spustitelný ve virtualizovaném prostředí, například v Kubernetes. Při dockerizaci je nutné vytvořit Makefile, který obsahuje informace o vzniku balíčku.

Je také možné pro jednotlivé části systému Magpie využít rozdílné technologie, například kombinaci obou výše zmíněných.

2.6 Programovací jazyk

Převážná část práce bude psána v programovacím jazyku Python [2]. Python obsahuje velké množství dostupných knihoven, čímž lze docílit snadné integrity mezi jednotlivými komponentami aplikace Magpie. Tato volba je i v souladu s firemní politikou.

Při volbě stahování dat s využitím nástroje Fiddler bude dalším využitým programovacím jazykem JavaScript, neboť v tomto jazyku je psán inicializační soubor zmíněného nástroje.

Použité technologie

V této kapitole jsou stručně popsány všechny technologie využité při zpracovávání této práce.

3.1 Fiddler

Fiddler [3] je nástroj vyvíjen firmou Telerik, sloužící k zachytávání internetové komunikace. Funguje na principu techniky MitM (Man-in-the-middle), kdy se prostředník vtěsná mezi dva účastníky internetového provozu a nechá je komunikovat skrz sebe (obr. 3.1). Fiddler může být automatizován pomocí

Obrázek 3.1: MitM technika [8]

inicializačního souboru, který obsahuje různá pravidla a je psaný v javascriptu. Při správném nastavení je Fiddler schopný zachytávat i šifrovanou komunikaci.

3.2 Selenium

Selenium [4] je opensource nástroj používaný k automatizovanému přístupu k webovým aplikacím. Těchto vlastností se často využívá při testování, avšak v této práci je použit pouze k obsluze webového prohlížeče. Selenium obsahuje vlastní vývojové prostředí, které lze využít bez velké znalosti programování, existují však i jeho implementace do většiny populárních programovacích jazyků. V této práci je využita knihovna Selenium pro programovací jazyk Python.

3.3 Jenkins

Jenkins [6] je opensource CI/CD systém (continuous integration/continuous delivery) umožňující vykonávání automatických či periodických operací (tzv. jobů) a používá se převážně ke spouštění skriptů. Joby lze spoustět různými způsoby. Pravidelně v předem určený čas, na vyžádání přes webové rozhraní, pomocí api, či automaticky po doběhnutí jiného jobu.

3.4 Kafka

Kafku lze řadit mezi frontové systémy [5]. Jedná se o opensource platformu sloužící ke streamování dat v reálném čase. Její zaměření je převážně na zpracování velkého množství zpráv bez narůstající latence. Zprávy se však neukládají do fronty, jako je tomu u některých jiných frontových systémů, např. RabbitMQ, avšak do tzv. topiců. Jeden topic může obsahovat více částí (tzv. partition), do kterých se zprávy distribuují (obr. 3.2). Zprávy do topicu posílá

Obrázek 3.2: Znázornění Kafka systému [9]

proces, který se nazývá producer. Obdobně proces, který data čte, je nazýván consumer. Ten dostává zprávy z topicu v závislosti na indexaci a časové známky. K jednomu topicu může být přihlášeno více nezávislých consumerů, které jsou rozděleny do odlišných skupin (tzv. Group ID) a každá skupina dostává identické zprávy. Tím je zabráněno vzájemnému čtení stejných zpráv.

Tato politika čtení zpráv je velkou výhodou oproti zmiňovanému systému RabbitMQ, kde po přečtení zpráva mizí.

Zprávy zůstávají v topicu po určitou dobu, kterou určuje hodnota retence. Po tuto dobu jsou zprávy přístupny pro každou skupinu consumerů. V Kafce funguje tzv. potvrzovací systém. Consumer dostane zprávu, a po jejím zpracování vyšle tzv. commit, kterým oznámí úspěšné zpracování. Pokud by v průběhu nastala chyba, tento commit se nepošle a zpráva se vrátí zpátky, kde může být přečtena jiným consumerem ve skupině.

3.5 VirtualBox

VirtualBox [10] je opensource virtualizační nástroj vyvíjený firmou Oracle. Slouží k instalaci a obsluze virtuálních operačních systémů na jednom fyzickém stroji. Jeho výhodou je multiplatformnost, což znamená, že je možné ho nainstalovat na MS Windows i operační systémy s unixovým jádrem (Linux, Mac OS). Tímto lze docílit například spuštění linuxového systému pod operačním systémem Windows.

Obrázek 3.3: PC s virtuálními stroji [12]

Další důležitou funkcionalitou VirtualBoxu jsou tzv. snapshoty. Snapshot zachycuje virtuální stroj a veškeré jeho nastavení v daném čase, ve kterém je vytvořen. Tímto lze jednoduše vracet provedené změny zpět do bodu vytvoření snapshotu. Toho je možné využít při testování aplikací, využití je avšak možné i v oblasti bezpečnosti. Pokud je vytvořen snapshot čistého systému, lze se do něj vrátit v případě potenciálního nakažení virtuálního stroje.

3.6 Docker

Docker je souhrn produktů typu PaaS (platform as a service) vyvíjený firmou Docker, Inc. [11]. Služba využívá virtualizaci operačních systémů či jiných platforem k vytvoření tzv. kontejnerů. Tyto kontejnery obsahují vlastní knihovny a konfigurace, ke spuštění však potřebují centrální systém nazývaný Docker Engine. V tomto je tato služba oproti virtuálním strojům (např. Virtualbox) více odlehčená, nevýhodou je však nutnost centrálního operačního systému.

Obrázek 3.4: Systém s dockerizovanými aplikacemi [11]

K dockerizaci aplikace je potřeba vytvořit tzv. Dockerfile, který obsahuje sekvenci příkazů k sestavení kontejneru. Ten je poté možné spustit ve službě Kubernetes dostupné firmou Docker, Inc. Tato služba je tzv. Task Manager,

neboli systém, v kterém je možné spravovat jednotlivé procesy, zde spuštěné instance kontejnerů.

3.7 Python

Python je skriptovací programovací jazyk. Jedná se o hybridní programovací jazyk, což znamená, že program nemusí být nutně objektově orientovaný, ale části mohou mít více procedurální charakter. Tím dochází k lepší čitelnosti kódu a celkovému zjednodušení. Síla Pythonu je i ve velkém množství balíků s knihovnami, které podporují jeho všestrannost. Zároveň je tento programovací jazyk velmi rozšířený ve firmě Avast. Kvůli těmto okolnostem byl vybrán Python 3.7 jako hlavní programovací jazyk pro tuto diplomovou práci.

Implementace

Z analýzy je patrné, že by zvoleným programovacím jazykem pro systém Magpie měl být Python. Prvním krokem implementace projektu je vytvořit funkční jádro, ke kterému by bylo možné přidávat ostatní komponenty a vylepšovat jeho funkcionalitu. Za toto jádro lze považovat stahování zdrojového kódu stránek. Následně je potřeba tento proces zabezpečit, zdokonalit a integrovat do stávající infrastruktury Avastu. Jednotlivé sekce implementace jsou následující:

- Klient pro stahování webového obsahu
- Zpracování dat a upload do databáze
- Virtualizace
- Implementace frontového systému Kafka
- Integrace pomocí systému Jenkins

4.1 Klient pro stahování webového obsahu

Při implementaci klientu pro stahování webového obsahu byla zvolena metoda s využitím programu Fiddler pro zachytávání internetové komunikace. Tato metoda přináší komplexnější odposlech bez nutnosti emulace webového prohlížeče. Bylo nutné vytvořit skript pro ovládání internetového prohlížeče a Fiddleru, tento skript byl napsaný v jazyku Python, a dále bylo zapotřebí nastavit Fiddler pomocí inicializačního souboru, který je napsaný v javascriptu. Sekce je tedy rozdělena do dvou podsekcí:

• Skript pro ovládání pomocných programů

• Skript pro nastavení Fiddleru

4.1.1 Skript pro ovládání pomocných programů

Tento skript je psaný v programovacím jazyku Python, stejně jako většina práce. Jeho hlavní činností je spuštění programu Fiddler a správa internetového prohlížeče. K ovládání webového prohlížeče byl použit nástroj Selenium (kapitola 3.2) v podobě knihovny importované do jazyka Python. Pro komunikaci s webovým prohlížečem je nutné nainstalovat takzvaný webdriver, který zajistí správnou konfiguraci Selenia pro daný prohlížeč. Webdriver Geckodriver [15] je určený pro komunikaci s internetovým prohlížečem Mozilla Firefox [16], naproti tomu webdriver ChromeDriver [18] je vyvinut pro komunikaci s internetovým prohlížečem Google Chrome [17]. V práci byl využit internetový prohlížeč Mozilla Firefox, tudíž i nástroj Geckodriver.

Základní implementace Selenia s ovládáním webového prohlížeče v jazyku Python může vypadat jako ve výřezu kódu (tzv. snippetu) 4.1.

```
import time

from selenium.webdriver import Firefox
from selenium.webdriver.firefox.options import Options

opts = Options()
opts.headless = True

browser = Firefox(options=opts)
browser.get("https://www.seznam.cz")

time.sleep(2)
browser.quit()
```

Obrázek 4.1: Implementace nástroje Selenium s ovládáním prohlížeče

Selenium nabízí možnost konfigurace webdriveru, což umožnuje nastavovat různé parametry. V tomto případě je zvolen přepínač headless, který určuje spouštění webového prohlížeče bez grafického uživatelského prostředí (tzv. GUI), čímž lze docílit rychlejšího průběhu. Samotné načtení webové stránky se provádí pomocí metody get(), která přijímá v parametru url stránky (ve snippetu stránka https://www.seznam.cz). Příkazem quit() lze internetový prohlížeč zavřít. Metoda get() je implementována, aby čekala na úplné na-

čtení stránky, avšak nepočítá s asynchronním načítáním. Pro kompletní načtení webové stránky je tedy potřeba přidat časovač (tzv. timer), který před zavřením prohlížeče skript pozastaví na určitou dobu (zde 2 sekundy).

4.1.2 Skript pro nastavení Fiddleru

Program Fiddler se primárně ovládá přes grafické rozhranní, je však možné změnit jeho výchozí konfiguraci. K tomuto účelu slouží inicializační skript, který nese označení CustomRules.js, jedná se tedy o skript psaný v javaScriptu. Fiddler při spuštění vždy načítá set pravidel, podle kterých se nastaví. Defaultně jsou tato pravidla brána ze skriptu, který se nachází v instalačním adresáři programu. Skriptem CustomRules.js lze tato pravidla nahradit.

```
static function OnBeforeResponse(oSession: Session) {
 var code = oSession.responseCode
  if (code == 200 || code == 301 || code == 302) {
   var path = "c:\\tmp\\fiddler_data\\"
    var filename_dat = path + oSession.id + ".dat";
    var filename_meta = path + oSession.id + ".meta";
    System.IO.File.WriteAllBytes(
    filename_dat, oSession.responseBodyBytes);
    var url = oSession.url;
    var host = oSession.host);
    var referer = oSession.oRequest.headers["Referer"]);
    var response = oSession.responseCode);
    var redirect = oSession.oResponse.headers["Location"]);
    var time = System.DateTime.Now);
    WriteMeta(url, host, referer, response, redirect, time)
 }
}
```

Obrázek 4.2: Implementace inicializačního skriptu Fiddleru

Skript obsahuje mnoho funkcí pro různé sekce programu, z hlediska této práce je však důležitá pouze funkce OnBeforeResponse(), která je zavolána

vždy, když přijde ze serverové části nějaká odpověď (tzv. response). Implementace této metody je znázorněna v snippetu 4.2.

Tělo funkce OnBeforeRequest () obsahuje jedinou podmínku založenou na kódu odpovědi (tzv. response kód) serverové části. Tento kód se nejdříve získá z relace oSession (relace, která obsahuje veškeré informace o komunikaci s danou url). Pokud je response kód 200, jedná se o tzv. success (úspěch), což znamená, že server na daný dotaz prohlížeče vrací odpověď. Tento typ odpověď je snaha zachytávat, neboť obsahují zdrojové soubory webových stránek. Pokud se však stránka na serveru nachází jinde než na prohlížečem dotazované url, může dojít k přesměrování. Response kódy pro přesměrování zpravidla spadají do intervalu 300 – 399, avšak nejčastější případy přesměrování mají kódy 301, respektive 302. Kód 301 je rezervován pro trvalá přesměrování (tzv. moved permanently), kód 302 dříve sloužil pro přesměrování dočasná (tzv. moved temporarily), od standardu HTTP/1.1 je však více využíván pro všeobecná přesměrování [20]. Pokud tedy dojde k zachycení odpovědi, která obsahuje jeden z těchto tří kódů (200, 301, 302), podmínka je splněna.

Při nastání této situace jsou vytvořeny dva soubory, které jsou pojmenovány podle id relace. Soubor s koncovkou .dat je určený pro záznam zachycených dat, soubor .meta slouží k uchování metadat o zachycené komunikaci. Následně se volá funkce WriteAllBytes(), která z relace oSession přijme parametr responseBodyBytes, který obsahuje tělo odpovědi ze serveru, tedy zachycená data, a zapíše je do datového souboru. Dále se shromáždí metadata potřebná pro filtraci souborů (tabulka 4.1), která se zapíší do souboru .meta.

url zdrojová stránka souboru

host název serveru, na kterém je zdrojová stránka

referer stránka, z které přišla žádost o načtení současné url

response kód kód, který byl zaznamenán v hlavičce souboru

redirect destinace v případě přesměrování

time čas záznamu souboru

Tabulka 4.1: Metadata stažených souborů

4.2 Zpracování dat a upload do databáze

Protože byl ke stahování dat použit program Fiddler, který zaznamenává kompletní komunikaci prohlížeče s webovým serverem, je potřeba stažená data profiltrovat. K tomuto účelu byl vytvořen skript v programovacím jazyku Python. Následně je zapotřebí protříděná data nahrát do systému Scavenger,

kde se nachází databáze cleansetu. Tato sekce tedy může být rozdělena na dvě části:

- Třídění dat
- Upload do databáze

4.2.1 Třídění dat

Pro potřeby třídění dat byl program Fiddler konfigurován, aby spolu se zdrojovým kódem webových stránek zaznamenával i pomocná metadata. Tato metadata jsou využívána v Python skriptu, který třídění dat implementuje. Vstupem skriptu je setříděný list, který obsahuje stažená data spolu s jejich metadaty. Tyto soubory jsou inkrementálně očíslovány podle toho, v jakém pořadí byly Fiddlerem zaznamenány (implementováno v inicializačním skriptu Fiddleru 4.1.2).

Protože Fiddler zaznamenává veškerou komunikaci, je zapotřebí odlišit komunikaci vyvolanou přístupem na požadovanou webovou stránku od zbylé (např. režijní komunikace mezi prohlížečem a serverem). První soubor, který je v sekvenčním průchodu důležitý, bude v metadatech obsahovat požadovanou webovou stránku v hodnotě pole *url* (viz tabulka s metadaty 4.1). Hlavní smyčka třídícího skriptu je znázorněna na snippetu 4.3.

Metoda get_file_ids() načítá id stažených souborů (očíslováno podle zaznamenaného pořadí) a ukládá je do listu, přes který iteruje hlavní smyčka skriptu. Metoda netloc_from_url() vrací netloc (tj. doménové jméno první úrovně) zadané adresy. Každá url adresa se řídí daným formátem, zjednodušeně takto:

$$< scheme >: // < netloc > / < path >$$
 (4.1)

Pro příklad http://www.example.com/index je tedy http schéma, index cesta a www.example.com hledaný netloc. Toho bylo použito při procházení setříděného listu očíslovaných souborů. Před iterací je ještě zapotřebí inicializovat dvě datové struktury. Set referers bude obsahovat všechny již známé a chtěné referery (tj. netloc adresy, které si vyžádaly načtení zdrojových souborů současné url 4.1). Jak již bylo dříve zmíněno, prvním takovým refererem je původní zadaná adresa. Druhá struktura, list valid_ids, bude uchovávat názvy souborů, které byly vyhodnoceny jako validní (tj. soubory zachycené při komunikaci s původní zadanou adresou).

```
sorted_list = get_files_ids(directory)
stripped_url = netloc_from_url(url)
referers = {stripped_url}
valid_ids = []
for file_id in sorted_list:
    data = f"{directory}/{file_id}.dat"
    meta = get_meta_from_file(f"{directory}/{file_id}.meta")
    netloc_url = netloc_from_url(meta["url"])
    netloc_referer = netloc_from_url(meta["referer"])
    netloc_redirect = netloc_from_url(meta["redirect"])
    response = meta["response_code"]
    redirect_response = response == 301 or response == 302
    if redirect_response and meta["host"] in referers:
        if meta["redirect"] is not "":
            referers.add(netloc_redirect)
    elif os.path.getsize(data) < 9:</pre>
        continue
    elif netloc_url in referers or (
        netloc_referer is not "" and
        netloc_referer in referers
        valid_ids.append(file_id)
        referers.add(netloc_url)
```

Obrázek 4.3: Implementace filtrování stažených dat

V hlavní smyčce se nejprve načtou metadata k souboru pomocí metody get_meta_from_file() a uloží se do slovníku meta. Poté se tato data oříznou pomocí metody netloc_from_url() a dále se pracuje jen s jejich netloc částí. První podmínka vyhodnocuje přesměrování. Pokud je response_code v metadatech souboru roven 301 nebo 302, což značí přesměrování, a pokud je zároveň host této adresy již v setu referers, nejedná se o validní soubor, jde však o soubor, který nese informace o přesměrování. Je tedy potřeba přidat netloc adresy, na kterou dojde k přesměrování (v metadatech klíčové slovo redirect).

Druhá podmínka je přidána pro optimalizaci. Fiddler zaznamenává velké

množství souborů, které mají režijní charakter. Tyto soubory se vyznačují malou velikostí a jsou z hlediska filtrace nedůležité. Z toho důvodu se dál zpracovávají pouze soubory, které mají více než 8 bytů.

Poslední podmínka již kontroluje samotné validní soubory. Pokud je netloc adresy nebo netloc referera adresy již v setu referers, jedná se o soubor zachycený při komunikaci s cílovou adresou a soubor je přidán do validního listu. Dále je netloc adresy přidán do referers z důvodu, kdy by tato adresa odkazovala na jinou url při další komunikaci. Po iteraci nad všemi soubory v setříděném listu je výstupní list valid_ids předán ke zpracování skriptu pro upload dat do databáze.

4.2.2 Upload do databáze

Pro nahrávání dat do databáze byl již dříve týmem, který spravuje systém Scavenger, vytvořen klient v podobě python knihovny. Tento klient používá HCP (Hitachi content platform) pro přesun dat mezi klientem a servery Scavengeru a představuje novější řešení oproti dříve používanému klientu Samba. Při uploadu dat do databáze lze tedy vycházet z tohoto kódu. V prvním kroku procesu uploadu do Scavengeru klient přesune požadovaný soubor do tzv. namespace (vyhrazený prostor na serverové části unikátní pro daného klienta) v HCP úložišti a připojí k němu požadovaná metadata. K tomuto namespace je připojen proces (tzv. feeder), který periodicky odebírá přítomné soubory i s jejich metadaty a přesouvá je do systému Scavenger, kde jsou soubory indexovány pomocí hashovací funkce sha-256.

Implementace klientu je velmi jednoduchá (snippet 4.4). Z knihovny je

```
def upload_file(file, target_name, meta):
    client = Client(**config.HCP_CONFIG)
    client.upload_object(file, target_name, meta)
```

Obrázek 4.4: Implementace použití HCP klientu pro upload

potřeba provést import třídy Client() a její inicializaci, při které se předává konfigurace klientu. Konfigurace obsahuje jméno namespace, tedy cílový prostor v úložišti, ke kterému se připojit, přihlašovací jméno a heslo. Všechny tyto údaje byly vygenerovány týmem spravující HCP úložiště. Dále už stačí jen volat metodu upload_object() a předat jí potřebné parametry. Mezi tyto parametry paří cesta k nahrávanému souboru (file), název, jaký ponese

soubor v úložišti (target_name), a požadovaná metadata, která se mají k souboru přiložit (meta). Zde není potřeba nahrávat všechna metadata získaná při stahování souborů. Ve snippetu 4.5 je kód, který tento výběr zajišťuje.

```
def set_meta_for_upload(meta_file, url):
    meta = {
        "source_url": meta_file["url"],
        "source_url_referer": meta_file["referer"],
        "trigger_url": url,
    }
    return meta
```

Obrázek 4.5: Implementace načtení metadat pro HCP upload

Metoda set_meta_fot_upload() má dva vstupní parametry. Prvním je slovník meta_file, který obsahuje všechna stažená metadata, druhým je url, což je původní dotazovaná adresa. Výstupem metody je slovník s metadaty určenými pro upload do HCP úložiště. Pro soubor uložený na cleansetu je důležitý údaj o adrese, na které se soubor vyskytoval – source_url – a kdo na tuto adresu odkazoval – source_url_referer. Třetím důležitým údajem je původní volaná adresa trigger_url. Ta je důležitá v případě, že by se na cleansetu objevily dva totožné soubory. V takové situaci se nový soubor již nepřidá, aktualizují se však jeho metadata a v budoucnu je stále patrné, že byl tento soubor viděn při komunikaci s vícero rozdílnými adresami.

Snippet 4.6 znázorňuje hlavní smyčku skriptu pro upload souborů do HCP úložiště a následně do Scavengeru. V ní dochází k iteraci přes všechny validní soubory (výstup z třídění dat 4.2.1). Pro každý soubor se nejdříve určí cesta souboru file_name. Následně se nastaví metadata pro upload zavoláním metody set_meta_for_upload(), které se předá cesta k souboru s metadaty a původní tázaná url (zde directory z důvodu, že se stažené soubory ukládají do složek pojmenovaných podle původní zadané adresy). Na závěr cyklu hlavní smyčky je volána funkce upload_file. Prvním parametrem je cesta k datovému souboru. Následuje cílový název souboru v HCP úložišti. Zde, aby se zajistila unikátnost souborů v úložišti, se soubory přejmenovávají podle klíče:

```
{původní_ adresa}{pořadí_ zpracovaného_ souboru}
```

Toto je možné z důvodu, že se následně soubory automaticky přejmenovávají při přenosu z HCP úložiště do Scavengeru pomocí hashovací funkce

```
for counter, file in enumerate(filenames):
    file_name = f"{root}\\{directory}\\{file}"

meta = hcp_feeder.set_meta_for_upload(
    files_filter.get_meta_from_file(f"{file_name}.meta"),
    directory
)

hcp_feeder.upload_file(
    f"{file_name}.dat",
    f"{directory}{counter}",
    meta
)
```

Obrázek 4.6: Implementace hlavní smyčky pro upload

sha-256. Posledním parametrem pro upload jsou metadata souboru.

4.3 Virtualizace

Z důvodu použití programu Fiddler pro stahování dat namísto emulace webového prohlížeče v Pythonu je nutné tento proces zabezpečit (výsledek analýzy v sekci 2.3). Toho bylo docíleno obalením stahovacího procesu do virtuálního prostředí díky využití programu Virtualbox. K tomu byla využita knihovna pyvbox [14], která implementuje Virtualbox API v prostředí Pythonu. Není potřeba virtualizovat celý proces, ale jen část, která se zabývá stahováním dat. Bylo tedy zapotřebí vytvořit skript, který dokáže nastartovat virtuální stroj, v něm spustit aplikaci pro stahování souborů a tyto soubory přenést z virtuálního prostředí zpět do fyzického systému.

K tomuto účelu byla vytvořena třída Vbox, jejíž inicializace (tzv. konstruktor) je zobrazena ve snippetu 4.7. Instanci této třídy lze použít k ovládání virtuálního stroje. K tomu je nutné inicializovat tři objekty – VirtualBox(), Session() a Machine(). Instance třídy VirtualBox() slouží k ovládání Virtualbox manažeru (program, který řídí jednotlivé zaregistrované virtuální stroje). Obecné nastavování se tedy provádí přes tento objekt. Třída Session() je navázána na relaci konkrétního virtuálního stroje. Ovládání běhu stroje probíhá tedy s využitím tohoto objektu. Třída Machine() reprezentuje konkrétní stroj tak, jak je zobrazen v manažeru Virtualboxu. Při inicializaci této třídy

je zapotřebí předat název stroje, což je zde řešeno pomocí převzaté metody find_machine(). Název stroje je možné předat konstruktoru pomocí parametru machine. Pokud není žádný konkrétní stroj vybrán, je proveden výčet všech dostupných strojů přihlášených pod Virtualbox manažerem (metoda list_all_machines) a načten první dostupný stroj.

```
import virtualbox
class Vbox:
    def __init__(self, machine=""):
    # init virtualbox
    self.vbox = virtualbox.VirtualBox()
    # init session
    self.session = virtualbox.Session()
    # define machine and create a session
   machines = self.list_all_machines(self.vbox)
    if machine not in machines:
        if len(machines) == 0:
            print("No virtual machines to load")
            sys.exit()
        print(
            "No or corrupted machine name, "
            f"loading machine {machines[0]}"
        )
        machine = machines[0]
    self.machine = self.vbox.find_machine(machine)
```

Obrázek 4.7: Implementace inicializace třídy Vbox

Pro ovládání spuštění virtuálního stroje s časováním byla vytvořena metoda boot_with_timeout() (snippet 4.8). Tato metoda přijímá tři parametry. Prvním parametrem je timeout, neboli čas, po kterém se metoda přeruší a zabrání se tak případnému nekonečného cyklu. Další dva parametry jsou přihlašovací jméno a heslo do uživatelského účtu ve virtuálním systému. Tyto údaje jsou potřeba pro inicializaci uživatele, ke které v průběhu spouštění systému (tzv. bootování) dochází. Na začátku je zavolána metoda launch_machine(),

která zahájí proces bootování. Aby nedocházelo k nepředvídatelnému průběhu, volá se zde další metoda wait_for_session_locked(), která zajišťuje, že bootovací proces nebude pokračovat, dokud se neuzamkne virtuální stroj (parametr machine třídy Vbox) pro současnou relaci (parametr session). Při ovládání stroje skrze neuzamčenou relaci může nastat chyba a následné ukončení skriptu.

```
def boot_with_timeout(self, timeout, login, password):
    self.launch_machine()
    self.wait_for_session_locked()
    t_boot = 1
    while t_boot < timeout:</pre>
        print(f"Booting... ({t_boot}/{timeout})")
        try:
            gs = self.login(login, password)
            gs.directory_exists("c:/")
            print("Machine has started.")
            return gs
        except virtualbox.library.VBoxError as e:
            print(f"Machine not started yet: {e}")
        time.sleep(1)
        t_boot += 1
    raise DidntBootInTimeException(
        "Timeout reached. Machine didn't boot in time."
    )
```

Obrázek 4.8: Implementace bootovacího algoritmu pro VirtualBox

Poněvadž VirtualBox API nemá implementovanou kontrolu průběhu bootování, nelze nijak zkontrolovat, zda je už virtuální stroj načtený a připravený k použití. Z tohoto důvodu je vytvořen while cyklus, kde k této kontrole periodicky dochází. V každém průběhu cyklu dochází k inicializaci uživatelského účtu a následnému testu existence kořenové složky c:/ metodou directory_exists(). Předpokládá se zde, že dojde k chybě, protože systém ještě není připravený takovéto příkazy zpracovávat. V takové situaci je výjimka odchycena a přechází se na další průběh cyklu. Pokud by již metoda
directory_exists() proběhla bez chybové hlášky, dá se očekávat, že je systém již připravený k používání. V tomto případě dojde k ukončení metody.
Výstupem je objekt s inicializovaným uživatelským účtem v případě, že bootování proběhlo bez problémů, či chybová hláška DidntBootInTimeException
v situaci, kdy vypršel časový limit dříve, než mohl systém naběhnout.

```
commands = (
   f"cd c:/tmp & "
   f"python {config.VBOX_SCRIPT_PATH} {url}"
)
gs.execute(
   "C:\\Windows\\System32\\cmd.exe",
   ["/C", commands]
)
```

Obrázek 4.9: Spouštění příkazů ve virtuálním systému

S již vytvořeným objektem uživatelského účtu lze následně spouštět příkazy přes příkazový řádek (tzv. command line) virtuálního systému (snippet 4.9), kde parametr commands obsahuje jednotlivé příkazy, tedy přesun do pracovní složky a spuštění skriptu pro stahování webového obsahu (viz sekce 4.1) s parametrem požadované adresy url.

Pro přesun stažených souborů z virtuálního prostředí do reálného systému byla převzata metoda directory_copy_from_guest() (snippet 4.10), která je

```
gs.directory_copy_from_guest(
    dir_from_path,
    dir_to_path,
    [virtualbox.library.DirectoryCopyFlag(1)]
)
```

Obrázek 4.10: Spouštění příkazů ve virtuálním systému

implementována ve třídě pro uživatelský účet virtuálního stroje. Tato metoda kopíruje celou složku, která je předána v parametru dir_from_path, do cílové lokace specifikované paramterem dir_to_path. Třetím parametrem metody je konfigurační hodnota (tzv. flag), která určuje typ přenosu.

4.4 Implementace frontového systému Kafka

Dalším krokem je implementace frontového systému Kafka, jehož serverová část je součástí firemní infrastruktury. K těmto účelům byly vygenerovány týmem spravujícím interní mutaci Kafky přihlašovací údaje pro systém Magpie (přihlašovací jméno, heslo a SSL certifikát). Pro implementaci samotného klientu byla použita Python knihovna confluent-kafka [21], jejíž výhodou je možnost zabezpečené komunikace klientu se serverem. Byly vytvořeny dva skripty obsahující rozdílné klienty:

- Kafka producer
- Kafka consumer

4.4.1 Kafka producer

Úkolem skriptu implementujícího klienta Kafka producer je posílání předzpracovaných url do frontového systému. Za tímto účelem byla vytvořena třída KafkaProducer využívající import třídy Producer z knihovny confluent-kafka (snippet 4.11). Tímto způsobem lze přetížit konstruktor nadřazené třídy a obo-

```
from confluent_kafka import Producer

class KafkaProducer(Producer):
    def __init__(self):
        super().__init__(**config.KAFKA_PRODUCER)
```

Obrázek 4.11: Implementace třídy Kafka Producer

hatit ho o konfigurační informace KAFKA_PRODUCER, tedy o přihlašovací jméno, heslo a cestu k SSL certifikátu.

Při generování těchto informací byl vytvořen i tzv. TOPIC, podle kterého se na serverové části ukládají zprávy. Producer klienti produkují zprávy do určitých topiců, ke kterým jsou přihlášeni consumeři, kteří odtud zprávy stahují. Topic je tedy jakási nástěnka na serverové části Kafky. Metoda pro posílání zpráv do topicu send_message_to_kafka() je znázorněna na snippetu 4.12. Metoda přijímá v argumentu tělo zprávy message a následně produkuje zprávu voláním metody produce() zděděné z nadřazené třídy. Při produkování zprávy je v parametru předán název topicu, do kterého se má zpráva

```
def send_message_to_kafka(self, message):
    self.produce(config.KAFKA_TOPIC, message.encode("utf-8"))
    self.flush()
    print(f"Message sent")
```

Obrázek 4.12: Posílání zpráv do frontového systému Kafka

poslat. Zároveň je volána metoda flush(), která zajistí vyprázdnění lokální fronty a přenesení všech zatím neodeslaných zpráv na server.

Implementace hlavní smyčky posílání zpráv je k vidění na snippetu 4.13. Pro každou url v listu načtených adres se nejdříve kontroluje, zda se jedná

```
for url in enumerate(urls):
   if not tools.is_url(url):
   continue

if not url.startswith("http"):
   url = "http://" + url

   kafka_producer.send_message_to_kafka(url)
```

Obrázek 4.13: Implementace hlavní smyčky posílání zpráv do Kafky

o url adresu. Toho je docíleno pomocí metody is_url(), která využívá knihovnu URLParser vyvíjenou pro interní účely firmy. Pokud je vyhodnoceno, že vstupní string url není url adresa, je tento vstup přeskočen. Dále probíhá kontrola, zda adresa obsahuje informaci o protokolu, poněvadž knihovna Selenium, která je využita pro stahování webového obsahu, zpracovává pouze adresy obsahující protokol. Pokud je zjištěno, že vstupní string protokol neobsahuje (nezačíná znaky http), je k adrese přidán nezabezpečený protokol. Takto ošetřená adresa je následně předána metodě pro posílání zpráv send_mesasge_to_kafka().

4.4.2 Kafka consumer

Implementace skriptu pro přijímání zpráv ze serverové části byla opět realizována s využitím knihovny confuent-kafka. Byla vytvořena třída, která dědí z importované třídy Consumer (snippet 4.14). I zde je konstruktor přetížen, a to z důvodu doplnění inicializace klientu o konfigurační data KAFKA_CONSUMER.

```
from confluent_kafka import Consumer

class KafkaConsumer(Consumer):
    def __init__(self):
        super().__init__(**config.KAFKA_CONSUMER)
        self.subscribe([config.KAFKA_TOPIC])
```

Obrázek 4.14: Implementace třídy Kafka Consumer

Jedná se o přihlašovačí jméno, heslo, SSL certifikát a oproti klientu producer navíc i parametr group id. Tento parametr určuje, do jaké skupiny consumerů tento klient spadá. Každý topic totiž může mít přihlášeno vícero skupin consumerů. V takové situaci jsou zprávy odebírány vždy v rámci skupiny (přestože již skupina A odebrala z topicu zprávu, tato zpráva je stále viditelná pro skupinu B, dokud ji neodebere člen této skupiny). Dále při inicializaci probíhá přihlášení k odběru stejného topicu KAFKA_TOPIC, který je využíván klientem pro posílání. Toho je docíleno metodou subscribe(). Jeden consumer může být přihlášený k oběru více než jednoho topicu. Z tohoto důvodu je jejím vstupem pole, které může obsahovat více elementů. Pro účely této práce postačuje však pouze jeden topic.

Tato třída obsahuje metodu consume_url(), která implementuje přijímání zpráv ze serveru (snippet 4.15). Toho je docíleno převzatou metodou poll(),

```
def consume_url(self):
    print("Consuming message...")
    msg = self.poll(config.KAFKA_CONSUMER_POLL_TIMEOUT)

if msg is None:
    return None
    elif msg.error():
        print(f"Error: {msg.error().name()}")
        raise confluent_kafka.KafkaException(msg.error())
    else:
        print("Message consumed")
        return msg.value().decode('utf-8')
```

Obrázek 4.15: Přijímání zpráv z frontového systému Kafka

která je volána s parametrem timeout. Tato metoda se připojí k serverové části a po dobu zadaného limitu (tzv. timeout) je připravena přijímat zprávy. Další postup následuje podle typu zprávy, která byla přijata. V první podmínce probíhá kontrola, zda vůbec k nějaké komunikaci došlo. Pokud byla fronta prázdná po celou dobu čekání, metoda poll() nevrací žádnou hodnotu a msg tak není deklarována. V tomto případě je z metody consume_url() navrácen None (prázdná hodnota). V případě, kdy ke komunikaci došlo, avšak v průběhu nastala chyba, je tato chyba zachycena v objektu příchozí zprávy msg.error(). Druhá podmínka tedy kontroluje, zda byl průběh komunikace bezchybný. Pokud ne, je výstupem metody objekt s chybovou hláškou. Pokud nenastal žádný z předešlých dvou případů, lze očekávat, že msg obsahuje objekt přijaté zprávy. V tomto případě je tedy výstupem metody dekódovaná hodnota zprávy msg.value().

V hlavním programu pro příjem zpráv z Kafky dochází nejdříve k inicializaci Kafka klienta typu consumer (snippet 4.16). Následuje nekonečná smyčka,

```
from lib.kafka_consumer import KafkaConsumer

if __name__ == "__main__":
    kafka_consumer = KafkaConsumer()

while True:
    url_to_process = kafka_consumer.consume_url()

if url_to_process is None:
    continue

process_url(url_to_process)
```

Obrázek 4.16: Hlavní smyčka přijímání zpráv z Kafky

v které se volá již popsaná metoda consume_url(). Pokud tato metoda vrátí *None*, tedy situace, kdy je fronta prázdná, pokračuje se v běhu cyklu. V opačné situaci je volána metoda process_url(), které je zpráva předána. Tato metoda je provázána se spouštěním virtuálního prostředí a následným během klientu pro stahování webového obsahu (o propojení více v sekci 4.5.2). Skript pro hlavní smyčku příjmu zpráv z Kafky je v podobě docker containeru spuštěn v systému Kubernetes (více v sekci 4.5.3).

4.5 Integrace do stávající infrastruktury

Při vývoji bylo rozhodnuto využít oba v analýze rozebírané systémy pro interní správu skriptů. Projekt je tedy rozložen, část je spouštěna v Jenkinsu a část v Kubernetes. V systému Jenkins jsou spouštěny skripty pro nahrávání url do Kafky, stahování a filtraci dat a skript pro komunikaci s HCP úložištěm. Systém Jenkins přináší pro tyto skripty výhodu jednoduché konfigurovatelnosti a možnost periodického spouštění. Oproti tomu systém Kubernetes byl využit pro skript přijímající zprávy z Kafky, jelikož je potřeba jeho neustálého běhu. Dále bylo zapotřebí vytvořit a nastavit virtuální stroj, který se bude spouštět pro stahování souborů ze zadaných url.

4.5.1 Vytvoření a nastavení virtuálního stroje

K vytvoření virtuálního stroje byl použit grafický manažer Virtualboxu. Firemní infrastruktura obsahuje úložiště s již předvytvořené šablony operačních systémů ve formátu .ovf (open virtualization format), které se dají do Virtualboxu nahrát (tzv. import appliance). Pro potřeby projektu byla využita šablona s operačním systémem Windows 7 v 32bitové verzi. Takto vytvořený virtuální systém je již zcela spustitelný, je potřeba jej však ještě nastavit pro potřeby běhu systému Magpie. Je potřeba nainstalovat program Fiddler, potřebné knihovny pro Python (základní verze Pythonu je již obsažena v použité šabloně operačního systému) a nástroj geckodriver, který slouží ke komunikaci python knihovny Selenium s webovým prohlížečem. Prerekvizity virtuálního prostředí jsou tedy následující:

- Fiddler
- Python knihovna selenium
- Geckodriver

Takto nastavený virtuální stroj je již připravený k využití. Pro systém byl následně vytvořen tzv. snapshot (uložení stavu virtuálního stroje). Při provozu bude systém vždy spouštěn z daného snapshotu a po provedení akcí nad zadanou url do daného snapshotu opět uveden. Tím se vynuluje riziko spojené s případným nakažením systému škodlivým obsahem.

4.5.2 Systém Jenkins

Do systému Jenkins byl přesunut skript pro upload url do Kafky (Kafka producer), skript pro zabezpečené stahování dat a skript pro upload dat do databáze

cleansetu. Pro každý skript byl vytvořen samostatný projekt, neboli job, který jde parametrizovat a periodicky spouštět (job je již spuštěná instance jenkins projektu, často se ale toto označení používá obecněji pro celý projekt). Jenkins joby je možné napojit přímo na git repozitář systému Magpie, takže se při jejich startu vždy stáhne nejaktuálnější verze kódu, který má být spuštěn. To jde nastavit v konfiguraci jobu, v sekci Source Code Management.

Dále bylo potřeba v prostředí každého jobu nastavit údaje, které se podle firemních nařízení z bezpečnostních důvodů nesmějí uvádět v kódu git repozitáře. Jedná se o přístupové údaje k aplikacím, tedy hesla, certifikáty, či tokeny.

4.5.2.1 Job pro nahrávání url do Kafky

Pro skript, který zajišťuje předzpracovávání zadaných adres a následný upload do Kafky, byl vytvořen job feeder_kafka_urls. Tento job obsahuje proces rozebíraný v sekci 4.4.1. Job je nastaven tak, aby přijímal tři typy argumentů (tzv. parametrizace jobu, neboli spouštění s parametry) (viz obr. 4.17).

Project feeder kafka urls

This build requires parameters: download_alexa Download list of top sites according to Alexa urls_file.txt Browse... No file selected. file with urls (each url on a separate line) urls url or urls separated by space

Obrázek 4.17: Parametry pro job feeder_kafka_urls

Prvním argumentem je parametr s názvem download_alexa, který zajišťuje, že se před nahráním url do Kafky spustí kód pro stáhnutí top url
stránek z listu na adrese https://www.alexa.com/topsites. Tato možnost je
zaškrtnuta v základním nastavení (tzv. defaultně), a to z důvodu periodického
spouštění tohoto jobu. Zbylé dva parametry jsou zde pro manuální spouštění.
Prvním je možnost textového souboru urls_file.txt, kdy uživatel může nahrát soubor s požadovaným listem webových adres, které chce stáhnout. Zbývá
textový parametr urls, kde se mohou adresy zadávat přímo do textového pole.
Toho lze využít při potřebě stáhnout jen jednu požadovanou adresu.

Skript využívá přístup do frontového systému Kafka. Bylo tedy zapotřebí

v konfiguraci jobu nastavit požadované přístupové údaje. To je možné v konfigurační sekci Bindings, kde lze vytvořit tzv. environmentální proměnné (proměnná, která je přístupná odkudkoliv v celém prostředí) pro daný job. Takto byl nastavený SSL certifikát pro klienty Kafky a přístupové heslo pro autorizaci posílaných zpráv.

Konfigurace dále obsahuje sekci Build, v které je potřeba nastavit příkaz (tzv. command), který se má při spuštění provézt. Jedná se o command příkazové řádky operačního systému Windows, který spouští skript pro upload souborů do frontového systému Kafka v prostředí pythonu se zadanými parametry.

4.5.2.2 Job pro stahování a filtraci dat

Druhým vytvořeným projektem v systému Jenkins je job pro spouštění zabezpečeného stahování a následné filtrování dat url_processing. K tomu je zapotřebí virtuální stroj, který byl vytvořen v sekci 4.5.1. Tento job je spouštěn samostatně pro každou url, kterou dostává parametrem při spuštění. Tento parametr je předáván ze skriptu, který dostává zprávy z frontového systému Kafka. Ten je však spuštěn v systému Kubernetes. Proto byl v konfigurační sekci jobu vytvořen tzv. trigger token, tedy autorizační string. Pomocí tohoto stringu je možné tento job spouštět, a to pomocí dotazu na specifickou url adresu (viz 4.2).

$$JENKINS \ URL/job/url \ processing/build?token = TOKEN$$
 (4.2)

JENKINS_URL značí webovou adresu serveru, na kterém běží firemní verze tohoto systému a TOKEN je vygenerovaný autorizační řetězec znaků. Takto zadaný dotaz spustí job bez parametru. Pro předání parametru je nutné tento dotaz upravit,

$$.../url_processing/BuildWithParameters?token = TOKEN\&url = URL \eqno(4.3)$$

kde URL značí předávaný parametr url.

Je také nutné nastavit environmentální proměnné pro přihlašovací údaje do virtuálního systému. Toho je opět docíleno pomocí konfigurační sekce Bindings v nastavení Jenkins projektu.

Při startu jobu se spustí skript, který ovládá virtuální stroj. Toto je nastaveno v konfigurační sekci Build. Po úspěšném startu virtuálního stroje je ve virtuálním prostředí spuštěn klient pro stahování webového obsahu a následně jsou stažené soubory přeneseny zpět do prostředí jobu v Jenkinsu. Zde

dochází k filtraci dat a soubory, které jsou vyhodnocené jako relevantní pro zadanou url adresu, jsou po doběhnutí jobu exportovány v podobě tzv. job artefaktů (soubory, které jsou i po ukončení jobu dostupné). Tento export je proveden v konfigurační sekci Post-build Actions. Zde je také nastaveno, aby se po doběhnutí jobu spustil proces pro upload dat do databáze cleansetu (tzv. job trigger). Poněvadž jsou oba procesy v prostředí Jenkinsu, není potřeba generovat trigger token.

4.5.2.3 Job pro upload dat do databáze cleansetu

Třetím projektem vytvořeným v systému Jenkins je job pro upload do databáze cleansetu nazvaný scav_hcp_feeder. Tento job nemá žádné vstupní parametry, využívá však exportované artefakty z jobu pro stahování a filtraci dat. Toto je nastaveno v konfigurační sekci Build (viz obr. 4.18).

Obrázek 4.18: Přenos artifactů mezi joby

Parametr Project name určuje, z jakého projektu se mají exportované artifacty kopírovat, zde projekt url_processing. Parametrem Which build lze přímo určit specifické číslo buildu projektu, z kterého se mají exportované artifacty získat. Lze také nastavit, aby se vždy braly z posledního úspěšného buildu, což je znázorněno na obrázku (viz obr. 4.18). Konfigurační sekce Build dále obsahuje příkaz pro spuštění samotného skriptu pro přenos těchto exportovaných souborů.

Poněvadž se v jobu přistupuje do HCP úložiště, je potřeba v sekci Bindings nastavit environmentální proměnné obsahující přihlašovací údaje.

4.5.3 Systém Kubernetes

V Kubernetes je spuštěn skript odebírající zprávy z frontového systému Kafka, který byl dockerizován. Dockerizace je proces vytvoření tzv. docker image (samostatně spustitelný balík v prostředí podporující funkcionalitu dockeru, např. Kubernetes). Tento balíček byl následně nahrán (tzv. deploy) do systému

Kubernetes. Tím je docíleno neustálého běhu skriptu, což je pro tento typ programu praktické.

4.5.3.1 Dockerizace skriptu Kafka consumer

Pro vytvoření docker image je nutné nejprve vytvořit tzv. Dockerfile (obdoba Makefile pro kompilaci jazyku C). Jedná se o soubor, který obsahuje sekvenci příkazů, které se mají při kompilaci docker balíčku provést. Dockerfile pro balíček obsahující skript Kafka consumer je znázorněn na snippetu 4.19.

```
FROM AVAST_DOCKER/python:3.7

COPY requirements.txt .

RUN pip install --no-cache-dir \
-r requirements.txt \
--index-url https://AVAST_ARTIFACTORY/pip/packages

ADD kafka_consumer_runner.py /
ADD lib/kafka_consumer.py /lib/
ADD config/config.py /config/

CMD ["python", "./kafka_consumer_runner.py"]
```

Obrázek 4.19: Dockerfile

První řádek s příkazem FROM určuje, odkud stáhnout tzv. image template (tj. docker balíček, který obsahuje prostředí, které se má při kompilaci docker kontejneru vytvořit). Protože je skript kafka consumer napsaný v Pythonu, je zapotřebí použít příslušný template. Kvůli bezpečnosti a pro zajištění integrity má firma vlastní úložiště s docker balíčky. Proto je balíček python:3.7 stažen z interního úložiště.

Dalším příkazem je překopírován soubor requirements.txt do prostředí nově vzniklého kontejneru. Tento soubor obsahuje seznam nestandardních python knihoven, tedy knihoven, které je potřeba doinstalovat a nejsou obsaženy v instalaci pythonu.

Dále je spuštěn příkaz pip install, který tyto nestandardní knihovny nainstaluje. K tomu je z bezpečnostních důvodů opět využito interní úložiště obsahující předschválené python knihovny.

Těmito příkazy je tedy připravené prostředí kontejneru. Zbývá přesunout zdrojové soubory skriptu, který zde poběží. Toho je docíleno příkazy ADD. Posledním příkazem CMD je spuštěn samotný skript.

Takto vytvořený Dockerfile je potřeba sestavit (tzv. build) a následně nasadit (tzv. deploy). K sestavení balíčku byl využit firemní server TeamCity (server pro kontinuální integraci a správu sestavování aplikací vyvíjený firmou JetBrains [22]). Zdejší firemní struktura obsahuje šablony pro build docker balíčků, které jsou následně nahrány do již zmíněného firemního úložiště.

Při nasazení aplikace do Kubernetes bylo opět využito firemní šablony. Při nasazování je potřeba vytvořit .yaml soubor, obsahující veškerou konfiguraci vznikající aplikace. Tento soubor byl převzat, bylo zde zapotřebí pouze nastavit environmentální proměnné, které skript využívá. Jednalo se o přihlašovací údaje a SSL certifikát k frontovému serveru Kafka a token, pomocí kterého skript spouští jenkins job pro stahování souborů (viz sekce 4.5.2.2).

4.5.4 Schéma integrovaného systému

Schéma 4.20 znázorňuje celkové propojení systému Magpie. Skript Kafka Producer získává URL adresy a posílá je do frontového systému Kafka. Zde jsou adresy postupně odebírány skriptem Kafka Consumer, který pro každou adresu spouští job pro stahování souborů. Doběhnutím tohoto jobu je inicializován job pro HCP upload, kterému jsou stažené soubory (na diagramu znázorněny silnější šipkou) předány ve formě job artefaktů. Soubory jsou nahrány do HCP úložiště a následně do Scavengeru.

Obrázek 4.20: Diagram systému Magpie

Ověření funkčnosti

5.1 Testování

Před nasazením aplikace do provozu bylo nutné zajistit důkladné otestování. Tento proces byl realizován formou end-to-end. Tato metoda kontroluje, zda je běh testované aplikace předpokládaný a zda aplikace vrací na zadaná vstupní data očekávané výstupy. Tento typ testování byl použit nejdříve pro jednotlivé komponenty, a následně pro celý běh aplikace. Komponenty, které byly při testování monitorovány, jsou následující:

- Nahrávání adres do frontového systému Kafka
- Přijímání zpráv z Kafky a následná inicializace stahovacího procesu
- Zabezpečené stahování a filtrování dat
- Nahrávání validních dat do HCP úložistě

5.1.1 Komponenty využívající frontový systém Kafka

Skripty pro komunikaci se systémem Kafka byly testovány již v průběhu vývoje, neočekávaly se zde tedy rozsáhlé komplikace. Při formě end-to-end byl zlomek testovacích adres v procesu Kafka Producer nahrán do Kafky a následně byly v procesu Kafka Consumer všechny adresy úspěšně přečteny. Následně byl proveden tzv. zatěžkávací test, tedy test, jehož snahou je určit, jak náročný provoz je daný systém schopný unést bez poruchy. Předpokládaná zátěž systému Magpie je v řádu tisíců až desetitisíců zpráv týdně. V zatěžkávacím testu byl tedy proveden přenos milionu zpráv. Tento přenos trval

přibližně hodinu, což je v porovnání s předpokládanou zátěží více než dostačující propustnost. Následně byly všechny přijaté zprávy uloženy do souboru, jehož velikost byla porovnána se souborem obsahujícím vstupní data. Ze shody velikosti obou souborů bylo vyhodnoceno, že byl přenos úspěšný.

5.1.2 Zabezpečené stahování a filtrování dat

Testování této komponenty bylo nejobsáhlejší a probíhalo na vícero testovacích množinách. Prvotní testovací množina dat obsahovala 1000 vzorků a jednalo se o starší seznam nejnavštěvovaných url adres shromážděný službou Alexa top sites [23]. Pro každou adresu byly staženy zdrojové soubory a následně byla provedena analýza výstupních dat. Při této analýze bylo zjištěno, že přes prvotní předpoklady není ošetření přesměrování se stavovými kódy 301 a 302 dostačující. Stavový kód 301 se používá pro trvalé přesměrování (tzv. Moved Permanently), kód 302 byl původně navržen pro dočasné přesměrování, nyní je nejčastěji používaným stavovým kódem pro obecná přesměrování. Z analýzy vyplynulo, že množství stránek používá i jiné stavové kódy pro přesměrování. Z ještě nezmíněných se nejčastěji objevoval kód 307, který od standardu HTTP/1.1 nahradil kód 302 pro dočasné redirecty (tzv. Temporary redirect). Proto bylo ošetření přesměrovávacích stavových kódů rozšířeno. Byl upraven inicializační skript (snippet 4.2) pro program Fiddler, který obsahuje podmínku pro zachytávané stavové kódy (snippet 5.1).

```
if (code == 200 || code == 301 || code == 302)
```

Obrázek 5.1: Původní podmínka selekce stavových kódů

Zmiňovaná podmínka byla rozšířena na zachytávání všech stavových kódů z intervalu (300, 308) včetně (znázorněno na snippetu 5.2).

```
if (oSession.responseCode == 200 ||
   (300 <= oSession.responseCode <= 308))</pre>
```

Obrázek 5.2: Upravená podmínka selekce stavových kódů

Z analýzy následně vyplynula důležitost uchovávání logu (výpis informačních zpráv) prohlížeče. Tento výpis je důležitý v situacích, kdy zadaná stránka již neexistuje, nebo se v průběhu připojení naskytly jiné komplikace a obsah

stránky není dostupný. V takovém případě není nutné pokračovat třídícím algoritmem, poněvadž všechny zachycené soubory obsahují pouze režijní komunikaci prohlížeče a Fiddleru. Geckodriver (webdriver používaný nástrojem Selenium k ovládání internetového prohlížeče Mozilla Firefox) ovšem tuto funkcionalitu nepodporuje. Z toho důvodu bylo od těchto nástrojů odstoupeno a byl použit Chromedriver ve spojení s internetovým prohlížečem Google Chrome. K tomu bylo zapotřebí na virtuální stroj nainstalovat zmíněný webdriver ve verzi shodné s nainstalovaným prohlížečem Google Chrome (pro oba programy byla nainstalována nejnovější verze 80). Základní ovládání prohlížeče se liší pouze v importování a následné inicializaci rozdílné třídy reprezentující prohlížeč z knihovny nástroje Selenium. Kód pro ovládání prohlížeče nástrojem Selenium 4.1 byl tedy přepsán. Základní ovládání prohlížeče Google Chrome s využitím logování je znázorněno na snippetu 5.3.

```
from selenium.webdriver import Chrome
import selenium.webdriver.common.desired_capabilities
import selenium.webdriver

chrome_options = selenium.webdriver.ChromeOptions()

d = desired_capabilities.DesiredCapabilities.CHROME
d['goog:loggingPrefs'] = {'browser': 'ALL'}

browser = Chrome(
    options=chrome_options,
    desired_capabilities=d
)

browser.get("https://www.seznam.cz")
log = browser.get_log('browser')
```

Obrázek 5.3: Ovládání prohlížeče Google Chrome pomocí nástroje Selenium

Obdobně jako u prohlížeče Firefox lze měnit nastavení prohlížeče skrze instanci dedikované třídy, zde ChromeOptions. Dále je potřeba vytvořit instanci třídy DesiredCapabilities, v které je možné nastavit logovací preference (5.4). Parametr 'ALL' určuje úroveň logování, tedy zda se mají ukládat všechny informační zprávy (ALL), nebo jen zprávy typu ERROR či WARNING. Tato instance je předána spolu s třídou pro nastavení prohlížeče jako parametry při inicializaci prohlížeče. Po načtění stránky lze přistoupit k logu

```
d['goog:loggingPrefs'] = {'browser': 'ALL'}
```

Obrázek 5.4: Logovací preference prohlížeče

pomocí metody get_log(), která vrací strukturu obsahující informace v závislosti na nastavených logovacích preferencích. Při iteraci nad touto strukturou lze přistoupit k jednotlivým záznamům (snippet 5.5).

```
for entry in log:

if 'Fiddler - DNS Lookup Failed' in entry['message']:

raise DNSLookUpFailException(entry['message'])

if 'Fiddler - Connection Failed' in entry['message']:

raise ConnectionFailException(entry['message'])

if 'Fiddler - Receive Failure' in entry['message']:

raise ReceiveFailureException(entry['message'])
```

Obrázek 5.5: Iterace nad strukturou obsahující logování prohlížeče

Tento výpis byl následně použit k vytvoření podmínek kontrolujících, zda byla stránka skutečně načtena. Chybové hlášky prohlížeče nejsou nijak exaktní, bylo tedy nutné podmínky vytvořit na základě porovnávání stringů. Z analýzy vyplynulo, že se při neexistující stránce nebo při přerušeném připojení objevují tři rozdílné výpisy. Byly tedy vytvořeny podmínky, které tyto výpisy odchytávají a vytvářejí výjimky, které se na začátku procesu filtrování dat vyhodnocují.

5.1.3 Přenos souborů do HCP úložiště

Posledním krokem testování byl klient pro HCP úložiště. Samotná komunikace s úložištěm je zajištěna pomocí knihovny vytvořené týmem spravujícím systém Scavenger, tuto funkcionalitu tedy testovat nutné nebylo. V testovacím procesu bylo převážně kontrolováno správné přikládání metadat k nahrávaným souborům. K testování byl opět využit starší seznam nejnavštěvovaných url adres shromážděný službou Alexa top sites [23] o velikosti 1000 vzorků. Jelikož je přenos závislý na stažených datech, byly tyto vzorky nejdříve zpracovány komponentou pro stahování a filtraci dat. Soubory, které byly v tomto kroku vyhodnocené jako validní, byly spolu s jejich metadaty nahrány do HCP úložiště a následně byla provedena kontrola nahraných dat. Metadata nahraných

souborů byla porovnána se staženými metadaty a ve všech případech byla shledána shoda. Z toho bylo vyvozeno, že přikládání metadat k nahrávaným souborům funguje v pořádku.

Při této analýze bylo avšak zjištěno, že přejmenovávání nahraných souborů podle klíče

```
{původní adresa}{pořadí zpracovaného souboru}
```

není optimální. V HCP úložišti mohou být pouze soubory s unikátním názvem. K přenosu souborů z HCP úložiště do systému Scavenger nedochází hned, avšak periodicky s časovým odstupem. V situaci, kdy by v tomto čase byla zpracována stejná url adresa vícekrát, by došlo k pokusu o nahrání souboru, který by měl stejné jméno jako soubor již přítomný v HCP úložišti, a přenos by neproběhl. Bylo tedy nutné klíč přetvořit, aby byla zachována unikátnost. K tomuto účelu je k názvu souboru přidáván i současný čas. Nový klíč pro přejmenovávání nahrávaných souborů tedy vypadá následovně:

```
{původní_adresa}{pořadí_zpracovaného_souboru}{aktuální_čas}
```

Dále byla na začátek přenosu přidána kontrola, zda při filtraci dat byly vůbec některé soubory označeny jako validní. Pokud tomu tak není, proces se automaticky ukončí.

5.2 Monitorování

K monitorování funkčnosti aplikace byl využit analytický nástroj Grafana [25] v kombinaci s databázovým systémem Graphite [26], který uchovává data s časovou známkou. Tato data je následně možné znázorňovat ve formě grafů pomocí nástroje Grafana. K posílání dat do systému Graphite byla využita python knihovna *Statsd* [27].

Při chodu aplikace jsou monitorovány údaje o stažených souborech (počet souborů a jejich velikost) spolu s úspěšností zpracování zadaných adres.

Na grafu 5.6 je zachycen podíl úspěšně zpracovaných adres v rámci jednoho dne. Z grafu je patrné, že systém Magpie je schopný za jeden den zpracovat přibližně 1500 zadaných adres, z čehož je přibližně 90 % úspěšně. Ve zbylých případech nebylo možné navázat spojení z požadovanou adresou. Tato desetiprocentní neúspěšnost systému je dána vstupními daty. Jelikož se zpracovávají globálně nejnavštěvovanější adresy podle serveru Majestic Milion, je velice pravděpodobné, že se v těchto seznamech objeví adresy, které jsou již

Obrázek 5.6: Zpracované adresy v rámci jednoho dne

nefunkční, zablokované či jinak nedostupné. I přesto je systém Magpie schopný úspěšně zpracovávat až 1400 adres denně.

Graf 5.7 znázornuje počet stažených souborů za minutu v rámci jednoho dne. Interval minuty je daný nástrojem Graphite, který data takto automaticky agreguje. Z grafu je patrná funčnost systému s průměrem přibližně čtyřiceti stažených souborů za minutu. V rámci jednoho dne je tedy možné získat až 50 tisíc souborů, z čehož je přibližně 15 tisíc unikátních.

Obrázek 5.7: Počet stažených souborů v rámci jednoho dne

Přínos a budoucí využití

6.1 Zobecnění projektu a budoucí využití

V současné době je projekt Magpie využíván k doplňování cleansetu stahováním zdrojových souborů webových stránek s vysokou prevalencí. Při vývoji se ale již počítalo s jeho širším využitím v jiných aplikacích potřebujících zabezpečený zisk zdrojových souborů. Jedním z takových případů může být analýza phishingových stránek. Jedná se o stránky, které využívají nepozornosti uživatele k zisku citlivých informací. Při analýze těchto stránek, tedy při rozhodování, zda je stránka phishingového charakteru, je často potřeba podívat se do zdrojových souborů stránky. K zisku těchto dat by bylo možné využívat systém Magpie.

Jiným využitím Magpie při analýze malwaru může být zisk infikovaných souborů s následným nahráním do systému Scavenger. Systém Scavenger obsahuje kromě databáze cleansetu mimojiné i databázi škodlivých souborů. Rozhodovací logika vložení nahrávaného souboru do příslušné databáze je lehce implementovatelná v systému Scavenger pomocí filtrů založených na metadatech nahrávaných souborů. Pokud by byla tedy metadata obohacena o tuto informaci, je Magpie schopný zpracovávat i infikovaná data. Této funkcionalitě značně přispívá fakt, že je jádro projektu realizováno ve virtuálním prostředí, což umožňuje zabezpečené stahování nejen čistých souborů.

6.2 Zhodnocení přínosu

Hlavní přínos systému Magpie je v automatizaci doplňování cleansetu. Dříve bylo doplňování čistých či infikovaných html a js souborů do databáze Scavengeru prací analytiků, kteří museli pro každý nahraný soubor manuálně zvolit,

zda se jedná o soubor infikovaný či nikoliv. Tímto způsobem není možné zpracovávat obsáhlý počet čistých souborů, které je třeba nahrávat na cleanset, aby byla zajištěna jeho funkčnost. Díky systému Magpie je možné cleanset obohacovat o desetitisíce nových souborů týdně, čímž je mnohonásobně navýšena stávající frekvence přidávání dat. Toto je zobrazeno na grafu 6.1, který zachycuje frontu v systému Scavenger s nově přidanými soubory na cleanset v rámci jednoho dne. Zde je vidět, že systém Magpie obohacuje cleanset o řádově stovky unikátních souborů každou hodinu jeho provozu.

Obrázek 6.1: Unikátní soubory přidané do systému Scavenger

V důsledku toho je cleanset obsáhlejší, což přispívá k lépe fungující automatizaci při vydávání nových detekcí. Virové detekce vytvářejí analytici, kteří musí kontrolovat, zda detekce neblokuje čisté soubory na cleansetu. Virové detekce zároveň vznikají i díky automatickým nástrojům, u kterých je silný cleanset neméně důležitý. Díky silnému cleansetu klesá množství špatných detekcí vytvořených automatickými nástroji a Magpie takovýto cleanset vytváří.

Závěr

Diplomová práce spočívala ve vytvoření automatizovaného systému pro obohacování cleansetu o čisté html a js soubory stahováním těchto souborů ze zadaných url adres. Prvním bodem zadání byla analýza možných způsobů realizace tohoto systému. Během této analýzy bylo zjištěno, jaké jsou nejlepší postupy při realizaci projektu.

Na základě toho byl vytvořen projekt Magpie. Projekt byl navržen v programovacím jazyku Python a je rozdělen do několika komponent. Pro předzpracování vstupních dat byl vytvořen skript využívající frontový systém Apache Kafka. Pomocí skriptu je možné zpracovávat seznamy url adres služby Alexa Top Sites, či ručně zadané adresy. Tento skript je nasazen v systému Jenkins. Dále byl vytvořen skript pro čtení zpráv z frontového systému Kafka. Tento skript byl dockerizován a nasazen v systému Kubernetes. Jádro projektu spočívá ve stahování dat pomocí MitM klientu Fiddler v kombinaci s internetovým prohlížečem Google Chrome ovládaným pomocí nástroje Selenium. Tento proces je spouštěn na virtuálním stroji s využitím programu Oracle Virtualbox a nasazen v systému Jenkins. Stažená data jsou odesílána do HCP úložiště a následně nahrána do databáze cleansetu v systému Scavenger, k čemuž slouží poslední komponenta také nasazená v systému Jenkins.

Dalším bodem zadání bylo zobecnění vzniklého systému pro budoucí využití v jiných projektech. Se zobecněním bylo počítáno již při samotném návrhu hlavní aplikace. Systém Magpie je schopný zpracovávat nejen adresy pro stahování dat k doplňování cleansetu. Toho bude v budoucnu využito při analýze phishingových i jinak potenciálně nebezpečných url adres.

Posledním bodem zadání bylo důsledné otestování navrženého systému. Testování proběhlo na vícero testovacích množinách s využitím seznamu adres služby Alexa Top Sites. Každá komponenta byla otestována zvlášt a nakonec bylo využito i end-to-end testování celé aplikace.

Díky systému Magpie je nyní možné rozšiřovat cleanset o desetitísice nových souborů týdně, což je oproti dosavadnímu ručnímu rozšiřování výrazné zlepšení.

Literatura

- [1] Avast corporate factsheet. Avast Software [online]. Copyright ©2019, Avast Software [cit. 14.04.2020]. Dostupné z: https://cdn2.hubspot.net/hubfs/2706737/media-materials/ corporate-factsheet/Avast_corporate_factsheet_A4_en.pdf
- [2] Welcome to Python.org. Welcome to Python.org [online]. Copyright ©2001 [cit. 14.04.2020]. Dostupné z: https://www.python.org/
- [3] Fiddler Free Web Debugging Proxy Telerik. Telerik UI for ASP.NET AJAX, MVC, Core, Xamarin, Angular, HTML5 and jQuery [online]. Copyright © 2020, Progress Software Corporation [cit. 14.04.2020]. Dostupné z:

https://www.telerik.com/fiddler

- [4] SeleniumHQ Browser Automation. SeleniumHQ Browser Automation [online]. [cit. 14.04.2020]. Dostupné z: https://www.selenium.dev/
- [5] Apache Kafka. Apache Kafka [online]. Copyright © 2017 [cit. 14.045.2020]. Dostupné z:
 https://kafka.apache.org/

https://kafka.apache.org/

[6] Jenkins, Build great things at any scale. [online]. [cit. 14.045.2020]. Dostupné z:

https://www.jenkins.io/

- [7] Beautiful Soup: We called him Tortoise because he taught us.. Swear not by the wiki, the fickle wiki, the inconstant wiki [online]. Copyright © 1996 [cit. 14.04.2020]. Dostupné z: https://www.crummy.com/software/BeautifulSoup/
- [8] What is MITM (Man in the Middle) Attack | Imperva. Cyber Security Leader | Imperva, Inc. [online]. Copyright © 2020 Imperva. All rights reserved [cit. 14.04.2020]. Dostupné z: https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/
- [9] Overview of Kafka. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2020-04-14]. Dostupné z: https://en.wikipedia.org/wiki/Apache_Kafka#/media/File:
 - https://en.wikipedia.org/wiki/Apache_Kafka#/media/File: Overview_of_Apache_Kafka.svg
- [10] Oracle VM VirtualBox. User Manual v6.1.4. Oracle Corporation [online]. Copyright © 2020 Oracle Corporation [cit. 14.04.2020]. Dostupné z: http://download.virtualbox.org/virtualbox/UserManual.pdf
- [11] What is a Container? | App Containerization | Docker. Empowering App Development for Developers | Docker [online]. Copyright © 2020 Docker Inc. All rights reserved [cit. 14.04.2020]. Dostupné z: https://www.docker.com/resources/what-container
- [12] Virtualizace na desktopu. *Michal Zobec: Virtuální PC Blog* [online]. Dostupné z:
 - https://www.virtualnipc.cz/wp-content/gallery/140701-1-uvod-do-virtualizace-na-desktopu/cache/140701-uvod-do-virtualizace-na-desktopu-img-1.png-nggid013-ngg0dyn-640x480x100-00f0w010c010r110f110r010t010.png
- [13] vSphere Automation SDK for Python. VMware Inc. [online]. Copyright ©2020 VMware, Inc. [cit. 14.04.2020]. Dostupné z: https://code.vmware.com/web/sdk/6.7/vsphere-automation-python
- - https://buildmedia.readthedocs.org/media/pdf/pyvbox/latest/pyvbox.pdf

[15] Releases · mozilla/geckodriver · GitHub. The world's leading software development platform · GitHub [online]. Copyright © 2020 GitHub, Inc. [cit. 14.04.2020]. Dostupné z:

https://github.com/mozilla/geckodriver/releases

[16] Firefox Browser. *Mozilla* [online]. Copyright ©1998-2020 [cit. 14.04.2020]. Dostupné z:

https://www.mozilla.org/cs/firefox/new/

[17] Webový prohlížeč Google Chrome. *Google* [online]. [cit. 14.04.2020]. Dostupné z:

https://www.google.com/intl/cs_CZ/chrome/

[18] ChromeDriver - WebDriver for Chrome. ChromeDriver - WebDriver for Chrome [online]. [cit. 14.04.2020]. Dostupné z: https://chromedriver.chromium.org/

- [19] Hitachi Content Platform (HCP) Harness Data Growth. *Hitachi Vantara*. [online]. [cit. 14.04.2020]. Dostupné z: https://www.hitachivantara.com/en-us/products/storage/object-storage/content-platform.html
- [20] HTTP/1.1: Status Code Definitions. World Wide Web Consortium (W3C) [online]. [cit. 14.04.2020]. Dostupné z: https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
- [21] Kafka Python Client Confluent Platform. Confluent [online]. Copyright ©2020 [cit. 14.04.2020]. Dostupné z: https://docs.confluent.io/current/clients/python.html
- [22] TeamCity: the Hassle-Free CI and CD Server by JetBrains. *JetBrains: Developer Tools for Professionals and Teams* [online]. [cit. 14.04.2020]. Dostupné z:

https://www.jetbrains.com/teamcity/

[23] Alexa - Top sites. Alexa - Keyword Research, Competitive Analysis and Website Ranking [online]. Copyright © Alexa Internet, Inc. 1996 [cit. 14.04.2020]. Dostupné z:

https://www.alexa.com/topsites

[24] The Majestic Million. SEO Backlink Checker and Link Building Toolset / Majestic.com [online]. [cit. 14.04.2020]. Dostupné z: https://majestic.com/reports/majestic-million

- [25] Grafana. Grafana Labs [online]. Copyright 2020 © Grafana Labs [cit. 14.04.2020]. Dostupné z: https://grafana.com/
- [26] Graphite Graphite [online]. [cit. 14.04.2020]. Dostupné z: https://graphiteapp.org/
- [27] statsd · PyPI. PyPI · The Python Package Index [online]. Copyright © 2020 [cit. 14.04.2020]. Dostupné z: https://pypi.org/project/statsd/
- [28] Eric Lawrence, CreateSpace Independent Publishing Platform (2015). Debugging with Fiddler: The complete reference from the creator of the Fiddler Web Debugger, 2nd Edition. ISBN: 9781511572903.
- [29] Ryan Mitchell, O'Reilly Media, Inc. (2018). Web Scraping with Python, 2nd Edition. ISBN: 9781491985564.
- [30] Harry Colvin, CreateSpace Independent Publishing Platform (2015). VirtualBox: An Ultimate Guide Book on Virtualization with VirtualBox. ISBN: 1522769889.

PŘÍLOHA **A**

Seznam použitých zkratek

 \mathbf{AJAX} Asynchronous JavaScript and XML

API Application programming interface

CI/CD Continuous integration/continuous delivery

 ${f CSS}$ Cascading style sheet

 ${f GUI}$ Graphical user interface

HCP Hitachi content platform

HTML Hypertext markup language

HTTP Hypertext transfer protocol

JS JavaScript

 \mathbf{MitM} Man in the middle

 ${f OS}$ Operating system

PaaS Platform as a service

SDK Software development kit

SHA Secure hash algorithm

SMB Server message block

A. SEZNAM POUŽITÝCH ZKRATEK

 ${f SSL}$ Secure sockets layer

URL Uniform resource locator

VBOX VirtualBox

 \mathbf{VM} Virtual machine

 \mathbf{XML} Extensible markup language

PŘÍLOHA **B**

Obsah přiloženého CD

Magpieadresář s Python projektem
config
config.pyconfigurační soubor
lib
files_filter.py metody pro filtrování dat
hcp_feeder.pymetody pro HCP komunikaci
kafka_consumer.pyimplementace klientu Kafka consumer
kafka_producer.py implementace klientu Kafka producer
logger.pyimplementace logování
tools.pymetody pro obecné nástroje
virtualbox_handler.pymetody pro program VirtualBox
vbox_scripts
browser_controller.py.skript spouštěný ve virtuálním prostředí
CustomRules.jsinicializační skript prograu Fiddler
Dockerfile dockerizační skript
hcp_feeder_runner.py spouštěcí skript pro HCP upload
kafka_consumer_runner.py spouštěcí skript pro Kafka consumer
local_runner.py spouštěcí skript pro lokální spuštění
requirements.txt soubor s knihovnami pro dockerizační skript
url_processing_runner.pyspouštěcí skript pro zpracování dat
urls_to_kafka_runner.pyspouštěcí skript pro Kafka producer
Text
thesis.pdftext práce ve formátu PDF
thesis.textext práce ve formátu LATEX
pictureszdrojové obrázky pro formát LATEX