Quality of Service. Port Mirroring

Lecture 7

SoftUni Team Technical Trainers

Software University

https://softuni.bg

Table of Contents

- 1. Quality of service
- 2. Port mirroring
- 3. Demonstration

Have a Question?

Quality of Service (QoS)

What is QoS?

- Network devices do NOT care about the type of traffic, they need to forward:
 - Switches use destination MAC
 - Routers use routing tables
- The logic in forwarding is simply FIFO (First In First Out)
- QoS is a way to prioritize

Characteristics of Network Traffic

- Bandwidth the speed of the link
- Delay the time it takes for a packet to get from the source to the destination (can be one-way or round-trip delay)
- Jitter the variation of the one-way delay for each packet
- Loss the amount of the lost data

Traffic and Application Types

- Non-interactive application (a.k.a. batch application),
 for example downloading a file
 - bandwidth, delay, jitter, loss
- Interactive application, for example Telnet or SSH
 - bandwidth, <u>delay</u>, jitter, <u>loss</u>
- Voice and video application
 - bandwidth, <u>delay</u>, <u>jitter</u>, <u>loss</u>

QoS Tools

- Classification and marking
- Queuing
- Policing and shaping
- Congestion avoidance

Classification and Marking

- For each packet to have different treatment, we have to first identify and mark them
- There are different methods to classify a packet:
 - Header inspection looks for MAC, IP, port numbers
 - Payload inspection looks inside the packet, making deep packet inspection.
 - On Cisco routers, this is done with NBAR (Network-Based Application Recognition)

Classification and Marking (2)

- Once classified, we need to mark the packet or frame
 - For L3 packets, we modify the ToS field:

For L2 frames, we modify the Priority field (for trunks only):

IP Precedence

Originally, only the <u>precedence</u> in the ToS byte was used:

The possible values for precedence:

IP Precedence	Decimal value	Bit pattern
Routine	0	000
Priority	1	001
Immediate	2	010
Flash	3	011
Flash Override	4	100
Critical	5	101
Internetwork Control	6	110
Network Control	7	111

Differentiated Services

- In 1998, the ToS filed gets a new name: DS field
- The first 6 bits set a code point which affects the Per Hop Behavior
- DSCP: Differentiated Services Code Point
- DSCP PHB (Per Hop Behavior) options:
 - Default PHB
 - Class-Selector PHB
 - Assured Forwarding PHB
 - Expedited Forwarding PHB

Default PHB

- The default PHB means that we have a packet that is marked with a DSCP value of 000000
- This packet should be treated as "best effort"

Class-Selector PHB

 Used for compatibility between precedence-capable devices and DSCP-capable devices (the only used bits are the first 3)

Class selector name	DSCP value	IP Precedence value	IP Precedence name
Default / CSO	000000	000	Routine
CS1	001000	001	Priority
CS2	010000	010	Immediate
CS3	011000	011	Flash
CS4	100000	100	Flash Override
CS5	101000	101	Critical
CS6	110000	110	Internetwork Control
CS7	111000	111	Network Control

Assured Forwarding PHB

AF has two functions - queueing and congestion avoidance

Drop probability	Class 1	Class 2	Class 3	Class 4
Low	001010	010010	011010	100010
	AF11	AF21	AF31	AF41
Medium	001100	010100	011100	100100
	AF12	AF22	AF32	AF42
High	001110	010110	011110	100110
	AF13	AF23	AF33	AF43

Expedited Forwarding PHB

- The DSCP value is normally called "EF"
- EF has two functions queueing and policing
- These packets experience minimum delay and packet loss
- We need to set a rate limit for this priority queue, because it can "eat" the entire bandwidth
- The real-time application packets (like VoIP) should be here
- In binary it is 101110, the decimal value is 46

QoS Tools

- Classification and marking
- Queuing
- Shaping and policing
- Congestion avoidance

Queuing/Congestion Management

- In a router, after consulting with the routing table, the router will put a packet in an interface's queue (same applies for a switch, with frames)
- Queuing is needed only if there is congestion

Queuing/Congestion Management (2)

Most network devices has multiple output queues

- Different scheduling options exist, for example:
 - FIFO
 - Priority Queuing
 - WFQ (Weighted Fair Queuing)
 - CBWFQ (Class Based Weighted Fair Queuing)

Queuing Mechanisms

- FIFO (First In First Out)
 - Single queue, not good for voice and video
- PQ (Priority Queuing)
 - 4 queues, served in priority order (high, medium, normal, low)
 - The problem: lower priority queues are served only when higher are empty
- CQ (Custom Queuing)
 - Up to 16 queues, round-robin, provides bandwidth guarantees
 - The problem: the voice traffic has to always wait its turn (because of the round-robin), which results in delay

Queuing Mechanisms (2)

- WFQ (Weighted Fair Queuing)
 - The bandwidth is divided based on flows (source and destination IP, port, etc.)
 - A weight is added to the flow
 - Puts priority on small packets (for voice, for example) over large packets
 - The problem: not based on classes and does not provide bandwidth guarantees
- CBWFQ (Class-Based Weighted Fair Queuing)
 - Traffic classes get fair bandwidth guarantees (minimum bandwidth for each class)
 - The problem: provides no priority queue and therefore suitable only for data networks
 - The solution: Additional priority queue LLQ (Low Latency Queue)

CBWFQ and **LLQ**

- Voice traffic can be attached to LLQ (Low Latency Queue) in order to be sent <u>immediately</u>
- It is important to limit the LLQ to ensure the other queues get served as well, otherwise que starvation will occur

QoS Tools

- Classification and marking
- Queuing
- Policing and shaping
- Congestion avoidance

Policing

 Policers discard traffic in order to meet the CIR (Committed Information Rate)

Shaping

- Shapers hold packets in a queue, causing delay
- This prevents the traffic from getting dropped at the other end

QoS Tools

- Classification and marking
- Queuing
- Shaping and policing
- Congestion avoidance

Congestion Avoidance

Remember the TCP windowing?

- Tail drop when congestion occurs, all packets at the end are dropped
- This causes TCP global synchronization
- With congestion avoidance mechanisms, once the output queue is at certain level, it will drop (random) TCP segments in order to reduce the window size
 - Example: WRED (Weighted Random Early Detection)

What is Port Mirroring?

- Also called port monitor or <u>SPAN</u> (Switch Port Analyzer) in Cisco
- Let's you copy all traffic from a source port or source VLAN to a destination interface

Why Port Mirroring?

- SPAN can be useful for a number of reasons:
 - If you want to use Wireshark to capture a communication, you need to sniff
 - To redirect all traffic from a VLAN to an IDS/IPS
 - Redirect all VoIP calls from a VLAN so you can record the calls

Types of SPAN

Local SPAN

RSPAN - Remote SPAN

SPAN Specifics

- Both SPAN and RSPAN have some specifics:
 - Source interface can be anything L2/L3 port, access/trunk port,
 Etherchannel
 - If the source is trunk, all VLANs are copied (no filtering)
 - As source, you can use either ports or VLAN, but cannot mix them
 - Be careful not to overload the destination interface (it is easy!)
 - Some L2 frames, like CDP and STP BPDUs are not copied by default

Summary

- 1. Quality of service
- 2. Port mirroring
- 3. Demonstration

Questions?

SoftUni Diamond Partners

Coca-Cola HBC Bulgaria

Решения за твоето утре

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

