Setul de probleme 3

soluțiile se primesc

miercuri 7 ianuarie între orele 14 și 16, la cabinetul C-402

17 decembrie 2014

Problema 1. Fie G = (V, E) un digraf. Dacă $X \subseteq V$, notăm cu $\delta^+(X) = \{xy \in E | x \in X, y \in V - X\}$ şi cu $\delta^-(X) = \delta^+(V - X)$. $\delta^+(v)$ şi $\delta^-(v)$ sunt prescurtări pentru $\delta^+(\{v\})$ şi $\delta^-(\{v\})$.

Numim circulație în G o funcție $f: E \to \mathbf{R}$ cu proprietatea că

$$\sum_{e \in \delta^+(v)} f(e) = \sum_{e \in \delta^-(v)} f(e), \text{ pentru orice } v \in V.$$

Fie $l, u: E \to \mathbf{R}^+$ două funcții cu proprietatea că $l(e) \leq u(e)$ pentru orice arc $e \in E$. Demonstrați că exact una din următoarele afirmații este adevărată:

- (a) Există o circulație f în G astfel încât $l(e) \le f(e) \le u(e), \forall e \in E$.
- (b) Există $X \subseteq V$ astfel încât

$$\sum_{e \in \delta^+(X)} u(e) < \sum_{e \in \delta^-(X)} l(e).$$

(2+2 puncte)

Problema 2. O componentă conexă a unui graf se numește e-pară dacă are un număr par de muchii (în particular, vârfurile izolate sunt componente e-pare). Notăm cu eh(G) numărul componentelor conexe e-pare ale grafului G.

- a) Demonstrați că dacă F = (V, E) este o pădure, atunci $eh(F) \equiv |V| \pmod{2}$. Fie T = (V, E) un arbore cu un număr de vârfuri impar mai mare sau egal cu 3.
- b) Demonstrați că dacă $eh(T-v) \in \{0,2\}, \forall v \in V$, atunci L(T) graful reprezentativ al muchiilor lui T are exact un cuplaj perfect.
- c) Demonstrați că dacă L(T) are exact un cuplaj perfect, atunci $eh(T-v) \in \{0,2\}, \forall v \in V.$

(1+1+1 puncte)

Problema 3. Considerăm următoarea problemă de decizie:

P Intrare: G = (V, E) digraf și $p \in \mathbb{N}$.

Întrebare: Există $A \subseteq V$ astfel încât $|A| \le p$ și G - A nu are circuite?

Demonstrați că dacă SM este problema mulțimii stabile maxime (notele de curs, pag. 267), atunci $SM \propto P$.

(1+1+1 puncte)

Problema 4. Fie $D = (d_1, d_2, \dots, d_n) \in \{0, 1, \dots, n-1\}^n$. Construim graful M_D astfel:

• Pentru $\forall i \in \{1, ..., n\}$ considerăm mulțimile R_i și S_i :

$$R_i = \begin{cases} \{r_{1,2}, \dots, r_{1,n}\} & \text{dacă } i = 1, \\ \{r_{i,1}, \dots, r_{i,i-1}, r_{i,i+1}, \dots, r_{i,n}\} & \text{dacă } 1 < i < n, \\ \{r_{n,1}, \dots, r_{n,n-1}\} & \text{dacă } i = n. \end{cases}$$

$$S_i = \begin{cases} \emptyset & \text{dacă } d_i = n-1, \\ \{s_{i,1}, \dots, s_{i,n-1-d_i}\} & \text{dacă } d_i < n-1, \end{cases}$$

• Subgraful indus de $R_i \cup S_i$ în M_D este

$$[R_i \cup S_i]_{M_D} \cong \begin{cases} N_{n-1} & \operatorname{dacă} d_i = n-1 \\ K_{n-1,n-1-d_i} & \operatorname{dacă} d_i < n-1. \end{cases}$$

• Mulţimea muchiilor grafului M_D este reuniunea muchiilor subgrafurilor de mai sus, la care se adaugă toate muchiile $\{r_{i,j}, r_{j,i}\}$ pentru $i, j \in \{1, \ldots, n\}$ şi $i \neq j$.

Demonstrați că există un graf $G = (\{1, ..., n\}, E)$ astfel încât d_i este gradul vârfului i în G, $\forall i \in \{1, ..., n\}$, dacă și numai dacă graful M_D are un cuplaj perfect.

(2+2 puncte)

Precizări

- 1. Este încurajată asocierea în echipe formate din 2 studenți care să realizeze în comun tema.
- 2. Depistarea unor soluții copiate între echipe diferite conduce la anularea punctajelor tuturor acestor echipe.
- 3. Nu e nevoie să se rescrie enunțul problemelor. Nu uitați să treceți numele și grupele din care fac parte membrii echipei la începutul lucrarii.
- 4. Este încurajată redactarea latex a soluțiilor.
- 5. Nu se primesc soluții prin e-mail.