

AUTOSAR4.2.2 基于Can的通信栈

普华汽车电子事业部 isoft at BU

2021年5月

普华基础软件股份有限公司 iSOFT INFRASTRUCTURE SOFTWARE CO., LTD

CETC 普华基础软件

1.1 Can通信概述

➤ CAN通信栈是在CAN总线上完成Signal的接收/发送功能、Signal的路由转发以及报文的路由转发等功能。

1.2 通信栈框架

➤ AUTOSAR中基于Can的 通信栈框架如图所示 。

2.1 CanDrv概述

- ➤ CAN Driver处于通信最底层,与硬件进行交互,将不同类型硬件所进行的操作封装为统一的API接口提供给上层,隔离硬件与上层服务。
- ➤ CAN Driver包含与硬件相关的各配置项,将物理层发生的事件通过回调函数的方式通知上层,控制CAN控制器的行为及状态,并提供与收发报文相关的服务。

2.2 CanDrv功能

- ➤ CAN驱动API命名规则
- > CAN驱动的状态机
- ➤ CAN Controller状态机
- ➤ CAN模块/Controller的初始化
- ▶ L-PDU的发送/接收
- > CAN驱动唤醒
- ▶ 通知机制
- > 错误分类

2.2.2 驱动状态机

2.2.3 Controller状态机

2.2.4 CanDrv初始化

- ➤ Can_Init在CAN模块中别的API之前被调用(除Can_GetVersionInfo)。
- > 初始化内容:
 - ① 静态变量,包括各种flag;
 - ② 整体硬件单元的一般寄存器设置;
 - ③ 每个CAN Controller的特定设置;

2.2.5 PDU的收发

▶ 发送时可选择多路发送Multiplexed Transmission:

> 确保收发数据的一致性。

多路发送

2.2.6 驱动唤醒

- > 唤醒有两种方式:中断和轮询。
- ▶ 与EcuM模块交互:
 - 1 EcuM_CheckWakeup;
 - ② EcuM_SetWakeupEvent;

2.2.7 通知机制

- > 通知机制有两种方式:
 - 1 中断
 - 2 轮询
- ▶ 与CanIf模块交互(除唤醒与EcuM交互外):
 - CanIf_ControllerBusOff;
 - ② CanIf_RxIndication;
 - 3 CanIf_TxConfirmation;

3.1 CanIf概述

- ➤ CAN Driver处于通信最底层,与硬件进行交互,将不同类型硬件所进行的操作封装为统一的API接口提供给上层,隔离硬件与上层服务。
- ➤ CAN Driver包含与硬件相关的各配置项,将物理层发生的事件通过回调函数的方式通知上层,控制CAN控制器的行为及状态,并提供与收发报文相关的服务。

3.2 CanIf功能

- Hardware object handles (HOH)
- ▶ 动态/静态L-PDU以及MetaData概念
- ➤ 接收L-PDU的BasicCAN和FullCAN概念
- ➤ L-PDU的发送
- ➤ L-PDU的接收
- ➤ CAN Controller模式控制
- > PDU模式控制
- > 软件滤波
- ➤ DLC检测
- > 对于多个CAN驱动的支持
- > 错误分类

3.2.1 HOH

- ▶ HOH为CAN邮箱的抽象,关联CAN Controller中1-n个具体邮箱。
- ➤ HOH分为Hardware Receive Handle(HRH)和Hardware Transmit Handle(HTH)。

3.2.2 静态/动态L-PDU及MetaData概念

- ➤ 这里动态指的是L-PDU的CanId在运行时会改变。
- ➤ 对于发送L-PDU改变其CanId的途径有两种:
 - ① 通过调用CanIf_SetDynamicTxId接口来实现;
 - ② 通过MetaData来实现。
- ▶ MetaData长度为0-4个byte,在I-PDU数据域后面(小端顺序)

▶ 发送L-PDU的真正CanId计算方式:

(CanIfTxPduCanId &CanIfTxPduCanIdMask) | (MetaData&(~CanIfTxPduCanIdMask))

3.2.2 静态/动态L-PDU及MetaData概念

▶ 其中CanIfTxPduCanId由配置的CanId或者 CanIf_SetDynamicTxId决定。Rx L-PDU配置了MetaData时,将接收到的CanId作为MetaData放在I-PDU数据域之后,传给上层模块,Pdu长度为数据域长度+MetaData长度。

3.2.3 BasicCAN和FullCAN概念

- ➤ FullCAN指接收邮箱只收一个CanId,通过硬件滤波实现;
- ➤ BasicCAN指接收邮箱能接收多个CanIds。
- ▶ 由CAN驱动中设置邮箱的滤波掩码决定。如果是BasicCAN,在CanIf中需要进 行软件滤波。

3.2.4 L-PDU的发送

▶ L-PDU发送请求

3.2.5 L-PDU的发送

▶ L-PDU发送确认(带Tx Buffer)

3.2.6 L-PDU的接收

3.2.7 Controller模式控制

3.2.8 PDU模式控制

- ▶ PDU模式可看作为Controller模式为STARTED时的细分。
- ▶ 分别对应4种模式:

CANIF_ONLINE、CANIF_OFFLINE、CANIF_TX_OFFLINE、CANIF_TX_OFFLINE_ACTIVE;

▶ 其中,CANIF_TX_OFFLINE_ACTIVE模式用作特殊情况(如diagnosis passive mode),该模式下不真正发送L-PDU,但会通过TxConfirmation通知上层模块发送完成。

3.2.9 软件滤波

- > 软件滤波分2部分:
 - ① HRH滤波:因为一般硬件邮箱都是通过邮箱掩码按bit位来进行滤波,这里实现基于上下限HRH滤波作为补充。
 - ② 通过HRH滤波之后,根据接收到的CanId找到匹配的Rx L-PDU(目前代码实现 LINEAR滤波方式)。

3.2.10 DLC检测

➤ 对于Rx L-PDU要实现DLC检测功能,需要配置该PDU的最小长度。只有当接收到的PDU长度≥配置的最小长度时,DLC检测通过。

3.2.11 多CAN驱动的支持

➤ 这里涉及到CAN驱动API的命名规则。

4.1 PduR概述

- ▶ PDU Router主要为通讯接口模块(CANIF)、传输协议模块(CAN TP、J1939 TP)、诊断通讯管理模块(DCM、J1939DCM)以及通讯模块(COM、LDCOM)以及IPDUM、SECOC等模块提供基于I-PDU的路由服务。
- ▶ PDU Router基础软件模块在通信栈中起着承上启下的功能,为上层服务基础 软件模块和应用屏蔽了网络细节,使得上层基础软件模块和应用不用关心应 用运行于哪种总线网络之上。同时,PDU Router提供了基于I-PDU的网关功能 ,使得不同总线之间的通讯成为可能。

4.1 PduR功能

- ▶ PDUR状态管理
- ▶ Routing Table路由表
- ▶ I-PDU的路由功能(核心)
- ➤ Zero Cost Operation概念
- ➤ Routing path groups概念
- > 错误分类

4.2.1 PduR状态机

4.2.2 Routing Table路由表

- ➤ Routing Table由1-n个Routing Paths组成,每个Routing Path由1个Src Pdu和1-n个 Dest Pdus组成。
- ➤ 只有当PDUR配置为Zero Cost Operation时才可不需要路由表。

4.2.3 I-PDU的路由功能

- ▶ I-PDU的Routing Path根据路由方向分为3种:接收路由、发送路由、网关路由,其中接收路由和网关路由可合并。
- > 接收路由:
 - ① IF路由, Src Pdu关联PDUR下层IF模块(如CanIf), Dest Pdus关联到PDUR上层模块(如Dcm);
 - ② TP路由, Src Pdu关联PDUR下层TP模块(如CanTp), Dest Pdus中只能关联到一个PDUR上层模块(如Dcm)。

4.2.3 I-PDU的路由功能

- > 发送路由:
 - ① IF路由, Src Pdu关联PDUR上层模块(如Com), Dest Pdus关联到PDUR下层模块(如CanIf);
 - ② TP路由, Src Pdu关联PDUR上层模块(如Dcm), Dest Pdus关联到PDUR下层模块(如CanTp),只有单帧才可1:n TP传输;

4.2.3 I-PDU的路由功能

- > 网关路由:
 - ① IF路由, Src Pdu关联PDUR下层模块(如CanIf), Dest Pdus关联到PDUR下层模块(如CanIf、linIf);
 - ② TP路由, Src Pdu关联PDUR下层模块(如CanTp), Dest Pdus关联到PDUR下层模块(如CanTp、linTp), TP网关时可以通过配置阈值实现"gateway on the fly";
- ▶ 注意: TP路由不能与IF路由混合。

4.2.4 Zero Cost Operation概念

- ➤ 当PDUR上下层模块唯一对应,不需要网关功能,这时PDUR可以选择"零消耗"模式,该模式下"相当于没有PDUR模块"。
- ➤ 在该模式下,COM与CANIF唯一对应,DCM与CANTP唯一对应,J1939DCM与J1939TP唯一对应,PDU的传输"透过"PDUR模块。

4.2.5 Routing path groups概念

▶ Routing path groups的概念理解为一组Routing path不大恰当,应理解为一组
Dest Pdus。

A routing path group is a group of I-PDUs that can be disabled and enabled during runtime. The group contains the destination I-PDUs and not the routing path itself.

- ➤ PduR_EnableRouting/ PduR_DisableRouting可使能/不使能Routing path group中包含的Dest Pdus。
- ➤ 对于不属于任何Routing path group的Dest Pdus, 其状态一直为Enable, 不会改变。

4.2.6 错误分类

▶ 开发错误

Type or error	Related error code	Value [hex]
Invalid configuration pointer	PDUR_E_INIT_FAILED	0x00
Null pointer has been passed as an argument	PDUR_E_PARAM_POINTER	0x09

➤ 运行错误(也是通过DET接口报错)

Type of error	Related error code	Value [hex]
Loss of a PDU instance (buffer overrun in gateway operation)	PDUR_E_PDU_INSTANCES_LOST	0x0a
API service used without module initialization or PduR_Init called in any state other than PDUR UNINIT	PDUR_E_INVALID_REQUEST	0x01
Invalid PDU identifier	PDUR_E_PDU_ID_INVALID	0x02
TP module rejects a transmit request for a valid PDU identifier	PDUR_E_TP_TX_REQ_REJECTED	0x03
If the routing table is invalid that is given to the PduR_EnableRouting or PduR DisableRouting functions	PDUR_E_ROUTING_PATH_GROUP_ID_INVALID	0x08

5.1 Com概述

- ➤ AUTOSAR COM模块主要处理信号的接收和发送功能,并为RTE层提供信号接收和发送接口函数。
- ➤ AUTOSAR COM集成了OSEK COM3.0.3标准的大部分功能,并在此基础上扩展了信号网关,信号组等功能。

5.2 Com功能

- ▶ 将signals封装到I-PDUs中发送
- ▶ 将接收到的I-PDUs解包成signals,供RTE获取
- > signals的网关功能
- ▶ signal groups的网关功能
- ▶ I-PDU通信控制,通过Com_IpduGroupControl实现
- ➤ 发送请求触发多次发送(Direct/Mixed发送模式下)
- ➤ Minimum Delay Timer(MDT)I-PDU发送最小间隔时间
- ➤ Deadline monitoring(DM)收发signals的超时监控

5.2 Com功能

- > 接收signals过滤,发送signals滤波计算TMC
- > 各种通知机制
- ➤ 提供signals初始值/无效值/更新bit机制
- > 字节大小端选择
- > 有符号数据类型signals接收时符号位扩展
- ➤ 每个发送I-PDU可配1-2种发送模式
- ➤ 支持大数据I-PDU,动态长度I-PDU收发
- ➤ 支持I-PDU counters,支持通信保护(发送时基于PDUR1:n实现)

5.2.1 Signal类型

- ➤ 信号种类: 一般信号signal, 信号组signal group, 组信号group signal, 描述信号description signal;
- ➤ 支持的信号types

Range	BOOLEAN
	FLOAT32
	FLOAT64
	SINT16
	SINT32
	SINT64
	SINT8
	UINT16
	UINT32
	UINT64
	UINT8
	UINT8_DYN
	UINT8_N

5.2.2 Signal对齐方式

- ▶ 信号封装/解封涉及到byte的大小端
- > 小端

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	7	6	5	4	3	2	1	0
Byte 1	15 ← 2	14 ← 1	LSB 13 ← 0	12	11	10	9	8
Byte	23	22	21	20	19	18	17	16
2	←10	← 9	← 8	← 7	← 6	← 5	← 4	← 3
Byte 3	31	30	29	28	27	26	25	MSB ← 11
Byte 4	39	38	37	36	35	34	33	32

> 大端

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	7	6	5	4	3	2	1	0
Byte 1	15	14	MSB ← 11	12 ←10	11 ← 9	10 ← 8	9 ← 7	8 ← 6
Byte 2	23 ← 5	22 ← 4	21 ← 3	20 ← 2	19 ← 1	LSB 18 ← 0	17	16
Byte 3	31	30	29	28	27	26	25	24
Byte 4	39	38	37	36	35	34	33	32

5.2.3 Signal过滤

- ➤ 接收到的signal值为-3,该信号bit size为10,类型为sint16
- ▶ 从I-PDU中解析出来的数据为111111101b, 需要扩展为111111111111101b
- > 滤波方式:
- ALWAYS
- NEVER
- MASKED_NEW_EQUALS_X
- MASKED NEW DIFFERS X
- MASKED_NEW_DIFFERS_MASKED_OLD
- NEW_IS_WITHIN
- NEW_IS_OUTSIDE
- ONE_EVERY_N

5.2.3 Signal过滤

- ➤ Tx/Rx signal滤波不同的作用
 - ① Rx signal滤波是过滤掉不想要的signal值;
 - ② Tx signal滤波为计算出各个signal的TMC值,每个Tx I-PDU中所有signal的TMCs。 决定其TMS,根据TMS选择I-PDU的发送模式(当配置了2种发送模式时)。

5.2.4 Transfer Property

- ➤ 发送信号的传输属性Com Transfer Property
 - 1 PENDING
 - ② TRIGGERED
 - ③ TRIGGERED_ON_CHANGE
 - 4 TRIGGERED_ON_CHANGE_WITHOUT_REPETITION
 - ⑤ TRIGGERED_WITHOUT_REPETITION

5.2.5 Update Bit

▶ 当信号配置了updata bit时,在更新发送信号时需要置1;只有当接收信号的 updata bit置1,才会执行正常信号接收流程,否则该信号被舍弃。

5.2.6 Signal网关

- ➤ Rx I-PDU中signal/group signal/srouce description signal网关到Tx I-PDU中 signal/group signal/dest description signal;
- ▶ Rx I-PDU中signal group网关到Tx I-PDU中signal group,其包含的group signals顺序要相同。

5.2.7 IPDU的发送模式及方式

- ➤ 发送I-PDU可配置1-2种发送模式:
 ComTxModeTrue和ComTxModeFalse,当
 有2种模式时根据TMS来选择哪种模式进
 行发送;
- > 每种发送模式中可选择4种发送方式:
 - 1 DIRECT
 - 2 MIXED
 - 3 NONE
 - 4 PERIODIC

5.2.8 IPDU的序列控制

> 发送I-PDU:

✓ I-PDU发送请求成功后(调用PduR_ComTransmit返回E_OK),counter加1。对于通过Com_TriggerTransmit发送I-PDU,其counter不加1。

➤ 接收I-PDU:

✓ I-PDU initialized by Com_Init or reinitialized by Com_IpduGroupControl with parameter Initialize set to true, 这时任何counter值的I-PDU都接收,并其该counter加1作为下一个接收I-PDU的期望counter;

5.2.9 IPDU的序列控制

- ➤ 如果收到的counter与期望的counter不匹配,调用配置的通知接口 ComIPduCounterErrorNotification:
- ➤ counter值的翻转,假如counter配置为4个bit,期望counter为15之后翻转到0;
- > counter阈值及匹配算法

举例:期望counter为5,阈值为2,则当接收到的counter为5/6/7都是OK的。

5.2.10 IPDU通信保护

- ➤ 通信保护功能的实现依赖于I-PDU序列控制功能,这时counter的阈值 ComIPduCounterThreshold必须配为0。
- > 发送I-PDU
 - ✓ 通过PDUR中1:n (2-3) 路由实现。
- > 接收I-PDU
 - ✓ 当成功接收ComIPduReplicationQuorum个I-PDU时(counter通过,PDU数据完全一致)才执行I-PDU正常接收流程。

6.1 LdCom概述

- ➤ AUTOSAR LDCOM模块可认为是功能及其简单的COM模块,在RTE与PDUR之间起过 渡作用。
- ➤ AUTOSAR LDCOM中每个PDU只包含一个字节对齐的signal, LD(large data) 这里指的是signal特性。
- ▶ PDU报文的封装与解析、发送的时机在应用中实现。

6.2 LdCom发送——TP API

6.2 LdCom发送——IF API

6.2 LdCom发送——Trigger Transmit

6.3 LdCom接收——TP API

6.3 LdCom接收——IF API

责任 创新 卓越 共享

网址: www.i-soft.com.cn

信箱: Marketing@i-soft.com.cn 热线: 400-650-9325