2-a1 For First Order Upwind:

For dissipation, one can set a=1, since we can re-scale x and t to achieve that. That means V_{ph} is only related to h_t and h_x .

We first set h_t =0.01 to see what's going on if CFL is satisfied. As h_x goes to h_t , |s(k)| goes to 1. (Figure 2-a1-1). This is true since S(k)=exp(-ikh_x) when λ =1.

We first set h_t =0.01 to see what's going on if CFL is not satisfied. As h_x goes bigger, |s(k)| blows up. (Figure 2-a1-2). This will bring unstability. (L=30.)

For dispersion, if $\lambda \rightarrow 1$ or $\lambda \rightarrow 0$, $V_{ph} \rightarrow 1$. And $\lambda \rightarrow 1$ has a bigger effect in eliminating dispersion.

2-a2 For Crank-Nicholson:

For dissipation, |s(k)|=1. So there is no dissipation in C-N. (Figure 2-a2-1)

For dispersion, again one can set a=1, since we can re-scale x and t to achieve that. That means V_{ph} is only related to h_t and h_x .

We first set h_t =0.01 to see what's going on. As h_x goes to 0, V_{ph} goes to 1. (Figure 2-a2-2)

We than set h_x =0.01 to see what's going on. As h_t goes to 0, V_{ph} goes to 1. (Figure 2-a2-3)

Finally, we set λ =0.25(h_t = h_x) to see what's going on. As h_x goes to 0, V_{ph} goes to 1. (Figure 2-a2-4)

Our conclusion here is for C-N, the dispersion always exists. To control it, we can try to make both h_x and h_t smaller. However, for functions decomposed into Fourier series with distinct small K_m and large K_n (i.e $K_n \rightarrow \infty$), we cannot avoid dispersion.

2-b Observation of Dissipation and Dispersion

	Dissipation and Dispersion	Dispersion
15t	ווספוקמנוטוו	ווסאבופוטוו
1 st Upwind CFL λ=1	2 1.5 1 0.5 0.5 1.1 2 0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.8 0.9 1	2 1.5 0.5 0.5 0.5 1 1 1.5 2 0.0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
	2Cos(5πx)	0.5(cos(15x)+cos(x)+cos(5x)+cos(10x))
	No dissipation	No Dispersion
1 st Upwind CFL λ=0.5	2 1.5 0.6 0.5 0.5 1.1 1.5 20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	15 10 05 05 -1 -1 -15 -2 0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9
	2Cos(5πx)	0.5(cos(5πx)+cos(0.5πx)-cos(πx)-cos(3πx));
	Dissipation: The max is smaller than 2	Dispersion: Small Wiggles Observed
	on the right.	
1 st Upwind	Unstable	Unstable
non-CFL λ=10	**************************************	1 08- 08- 08- 08- 08- 08- 08- 08- 08- 08-
	2Cos(5πx)	$0.5(\cos(15x)+\cos(x)+\cos(5x)+\cos(10x))$
Crank-Nich olson	2 1.5 0.5 0.5 0.5 0.5 1.5 20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	4 35 3 25 2 1.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
	2Cos(5πx)	0.5(cos(15x)+cos(x)+cos(5x)+cos(10x))
	No dissipation	Dispersion