	School: Campus:			
Centurion UNIVERSITY	Academic Year: Subject Name: Subject Code:			
	Semester: Program: Branch: Specialization:			
	Date:			
	Applied and Action Learning (Learning by Doing and Discovery)			
Name of the Experiement: Build the Network – Peer-to-Peer Simulation				

* Coding Phase: Pseudo Code / Flow Chart / Algorithm

☐ Initialize Network Define the number of nodes (peers) participating in the network. Assign each node a unique ID and empty ledger/memory.
☐ Create Connections Each node connects to a few other nodes randomly (simulating a mesh network). Maintain a list of peers each node can send/receive messages from.
☐ Message Broadcast One node (the initiator) sends a transaction or message to its peers. Each peer forwards the message to its connected nodes (except the sender).
☐ Verification Process Each node validates the message (e.g., checks if it's new and not already received). Invalid or duplicate messages are ignored.
☐ Ledger Update If the message (transaction/block) is valid, it's added to the node's ledger.
☐ Consensus (Optional) If simulating blockchain consensus, include a simple rule like: The first valid message received by all nodes is accepted. Nodes reject conflicting data.
☐ End Simulation Display how many nodes successfully received and accepted the message. Show that the network achieved synchronization without a central server.

Software used

- 1. MetaMask Wallet
- 2. VS Code.
- 3. MS Word.
- 4. Brave for researching.

* Implementation Phase: Final Output (no error)

☐ Input: Number of peers (e.g., 6)		
☐ Establish peer connections.		
□ Node 1 broadcasts a message.		
□ Nodes 2–6 receive and validate the message.		
☐ Ledger updated in each node.		
□ Output:		
Message broadcast from Node 1 Node 2 received message from Node 1 Node 3 received message from Node 2 Node 4 received message from Node 3 All nodes synchronized □		

* Observations:

• The message reaches all nodes without any c	central server.
---	-----------------

- Duplicate messages are automatically avoided using validation.
- The network demonstrates decentralization, fault tolerance, and equal node importance.
- Communication delay or missing peers can affect synchronization similar to real blockchain networks.
- When consensus rules are added, the simulation behaves like a mini blockchain environment.

ASSESSMENT

Rubrics	Full Mark	Marks Obtained	Remarks
Concept	10		
Planning and Execution/	10		
Practical Simulation/ Programming			
Result and Interpretation	10		
Record of Applied and Action Learning	10		
Viva	10		
Total	50		

Signature of the Student:

Name:

Signature of the Faculty: Regn. No. :

Page No.....

^{*}As applicable according to the experiment. Two sheets per experiment (10-20) to be used.