Univerza *v Ljubljani* Fakulteta za *matematik*o *in fizik*o

Diferenčne metode za parcialne diferencialne enačbe

10. naloga pri Matematično-fizikalnem praktikumu

Avtor: Marko Urbanč (28191096) Predavatelj: prof. dr. Borut Paul Kerševan

Kazalo

1	Uvod	2
2	Naloga	2
3	Opis reševanja	2
4	Rezultati	2
5	Komentarji in izboljšave	2
Li	Literatura	

1 Uvod

V prejšnji nalogi smo rekli, da obstajata v glavnem dva velika razreda za reševanje parcialnih diferencialnih enačb (PDE). To sta spektralne metode, ki smo jih raziskali v prejšnji nalogi in pa diferencialne metode, ki jih spoznamo tu. Diferencialne metode so v glavnem metode, ki rešujejo PDE tako, da jih diskretizirajo in jih pretvorijo v sistem linearnih enačb. Te metode so v glavnem zelo podobne kot metode za reševanje sistemov navadnih diferencialnih enačb (ODE). V glavnem se razlikujejo v tem, da so PDE lahko tudi nelinearne in moramo posledično uporabiti iterativne metode za reševanje sistemov linearnih enačb. Tu bomo spoznali metodo končnih diferenc (FDM). Ta temleji na Taylorjevem razvoju s katerim lahko aproksimiramo odvod funkcije. To aproksimacijo nato vstavimo v PDE in dobimo sistem linearnih enačb. Ta sistem nato rešimo iterativno in dobimo končno rešitev.

Fizikalni kontekst za to nalogo bo reševanje enodimenzionalne nestacionarne Schrödingerjeve enačbe, ki se glasi

$$\left(i\hbar\frac{\partial}{\partial t} - H\right)\psi(x, t) = 0.$$
 (1)

Predstavlja osnovno orodje za nerelativistični opis kvantnih sistemov. V enačbi 1 je H Hamiltonian sistema, ki je v splošnem odvisen od časa. V našem primeru bomo obravnavali časovno neodvisen Hamiltonian

$$H = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) . \tag{2}$$

Z menjavo spremenljivk $H/\hbar \to H, \, x\sqrt{m/\hbar} \to x$ efektivno postavimo $\hbar=m=1.$ V tem primeru je Hamiltonian enak

$$H = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + V(x) . \tag{3}$$

Razvoj stanja $\psi(x, t)$ v času $\psi(x, t + \Delta t)$ je opisan z približkom

$$\psi(x, t + \Delta t) = e^{-iH\Delta t}\psi(x, t) \approx \frac{1 - \frac{1}{2}iH\Delta t}{1 + \frac{1}{2}iH\Delta t}\psi(x, t).$$
 (4)

Območje $x \in [a, b]$ diskretiziramo na krajevno mrežo z N točkami $x_j = a + j\Delta x$, kjer je $\Delta x = (b-a)/(N-1)$. Časovni razvoj spremljamo ob časovni mreži z M točkami $t_m = m\Delta t$, kjer je Δt časovni korak.

- 2 Naloga
- 3 Opis reševanja
- 4 Rezultati
- 5 Komentarji in izboljšave

Literatura