Practical 7

Using Excel 2010 to select a simple random sample (without replacement)

Simple random sampling approach:

- 1. First assign a random number to each of the elements in the population.
- 2. Select the n elements with the smallest random numbers assigned to them.
- 3. Using this approach will for the most part eliminate the chance of selecting the same element twice from the population.

Steps:

- Open textbook on page 319.
 Exercise: Select a simple random sample of 30 managers from 2500 managers.
- 2. **Enter data:** On the computer, open the **EAI** file on ClickUP in the **Data files for Practicals** folder.
- 3. Type the following formula into cell D2: =rand(). This function will generate a random number between 0 and 1, WHICH WILL NOT BE THE SAME AS THE NUMBER GENERATED IN THE TEXTBOOK, BECAUSE THIS IS A RANDOM NUMBER.

D2		▼ :	= =RAND()
	Α	В	С	D
		Annual	Training	Random
1	Manager	Salary	Program	numbers
2	1	55769.50	Nο	0.41884
3	2	50823.00	Yes	
4	3	48408.20	Nο	
5	4	49787.50	Nο	
6	5	52801.60	Yes	

4. Copy the formula in D2 to the rest of the elements in the population in cell D3: D2501, by dragging the formula down the column.

	Α	В	С	D
		Annual	Training	Random
1	Manager	Salary	Program	numbers
2	1	55769.50	Nο	0.39757
3	2	50823.00	Yes	0.67243
4	3	48408.20	Nο	0.17564
5	4	49787.50	Nο	0.15561
6	5	52801.60	Yes	0.50606
7	6	51767.70	Nο	0.19933

Turn off the automatic recalculation option for the worksheet. Select **Formulas** on the **Ribbon**, select the **Calculation options** tab, and in the calculation section select **Manual**. If we had not turned off automatic recalculation, the random numbers in column D would not have appeared in ascending order. In other words, if the automatic recalculation option is not turned off when the sort operation takes place Excel will do a recalculation and a new set of random numbers will be generated.

- 6. To find the managers with the 30 smallest random numbers, sort the data in column A to D in ascending order by the random numbers in column D
 - i) Select any cell in the range D2: D2501
 - ii) Click the **Home** tab on the **Ribbon**
 - iii) In the Editing group, click Sort and Filter
 - iv) Choose Sort Smallest to Largest

NOTE: The simple random sample of 30 managers which you will select will **NOT** be the same as the simple random sample of managers selected in the textbook, since different random numbers are generated each time this procedure is used.

Exercise P1 - Point estimation

1. Open your textbook on p.325 at exercise 9. Enter the 5 months of sales data on a new spread sheet. Calculate exercise 9a and b by using Excel 2010 as shown in the spread sheets below.

Formula sheet

A	Α	В	С	D
1	1	94	Point estimate of population mean:	=AVERAGE(B1:B5)
2	2	100	Point estimate of population std deviation:	=STDEV.S(B1:B5)
3	3	85		
4	4	94		
5	5	92		

Value sheet

	Α	В	С	D
1	1	94	Point estimate of population mean:	93
2	2	100	Point estimate of population std deviation:	5.3852
3	3	85		
4	4	94		
5	5	92		

2. Do Exercise 10 on p.325 by making use of Excel 2010. Open the **Morningstar** data file on ClickUP in the **Data files for Practicals** folder. Compare your answers with the textbook answers on p.974

Exercise P2 - Sampling distribution for \bar{x}

CUMULATIVE PROBABILITY FORMULA IN GENERAL: =NORM.DIST(\overline{x} , μ , $\frac{\sigma}{\sqrt{n}}$, TRUE)

SAMPLE AVERAGE FORMULA IN GENERAL: =NORM.INV(area to the left, μ , $\frac{\sigma}{\sqrt{n}}$)

1. Open your textbook on p.337 at exercise 20. Calculate exercise 20 by using Excel 2010 as shown in the spread sheets below.

20a. \bar{x} is normally distributed with $E(\bar{x})=17.5$ and $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{4}{\sqrt{50}}=0.57$

Formula sheet

	Α	В	С
1	b.	P(16.5 < xbar < 18.5)	=NORM.DIST(18.5,17.5,0.57,TRUE)-NORM.DIST(16.5,17.5,0.57,TRUE)
2	c.	P(17 < xbar <18)	=NORM.DIST(18,17.5,0.57,TRUE)-NORM.DIST(17,17.5,0.57,TRUE)

Value sheet

	Α	В	С
1	b.	P(16.5 < xbar < 18.5)	0.9206
2	c.	P(17 < xbar <18)	0.6196

Exercise P3 - Sampling distribution for \bar{p}

CUMULATIVE PROBABILITY FORMULA IN GENERAL: = NORM.DIST($\overline{p}, p, \sigma_{\overline{n}}$, TRUE)

SAMPLE PROPORTION FORMULA IN GENERAL: =NORM.INV(area to the left, p, $\sigma_{\overline{p}}$)

where
$$\sigma_{\overline{p}} = \sqrt{\frac{p(1-p)}{n}}$$

1. Open your textbook on p.344 at exercise 34. Calculate exercise 34 by using Excel 2010 as shown in the spread sheets below.

34a. \bar{p} is normally distributed because np=126 and n(1-p)=274 – both greater than 5. $E(\bar{p})=0.42$ and $\sigma_{\bar{p}}=\sqrt{\frac{(0.42)(0.58)}{300}}=0.0285$

Formula sheet

	Α	В	С
1	b.	P(0.37 < pbar < 0.47)	=NORM.DIST(0.47,0.42,0.0285,TRUE)-NORM.DIST(0.37,0.42,0.0285,TRUE)

Value sheet

	Α	В	С
1	b.	P(0.37 < pbar < 0.47)	0.9206

c. Larger samples will increase the probabilities.