A.3:

Betrachten Sie das Beispiel aus der Vorlesung, in dem $insertion_sort$ und $Foo\ Sort$ verglichen wurden. Bestimmen Sie unter Beibehaltung der dort getroffenen Annahmen diejenige Anzahl von zu sortierenden Zahlen m, so dass die Laufzeit von $insertion_sort$ bei m Zahlen (m+1 Zahlen) kleiner (bzw. größer) ist als die Laufzeit von $Foo\ Sort$. Wie groß ist die Laufzeit bei dieser Eingabe?

- Asymptotische Laufzeit $insertion_sort: 2 \cdot m^2$
- Rechenleistung insertion_sort: $10^9 \ Op/s$
- Asymptotische Laufzeit $Foo\ Sort: 50 \cdot m \cdot \log\ m$
- Rechenleistung Foo Sort: 10⁷ Op/s

Gleichsetzen der Laufzeiten, um Anzahl der sortierenden Zahlen zu bestimmen, bei der die Laufzeit gleich ist:

$$\frac{2m^2}{10^9} = \frac{50m \cdot \log m}{10^7}$$

$$\Leftrightarrow m = 25 \cdot 10^2 \cdot \log m$$

- Bis m = 38.037 ist $insertion_sort$ schneller
- Ab m = 38.038 ist *Foo Sort* schneller
- Laufzeit beim Schnittpunkt: 2,894s