

Statistical Methods of Data Analysis

Random Number Generation

Prof. Dr. Dr. Wolfgang Rhode Dr. Maximilian Linhoff 2023

Overview

Motivation

Generation of equally distributed random numbers

Testing randomness

Transformation of the uniform distribution

Rejection Sampling

W. Rhode & M. Linhoff | 2023 2/49

Overview

Motivation

Generation of equally distributed random numbers

Testing randomness

Transformation of the uniform distribution

Rejection Sampling

Occurrences of random numbers

- Random numbers can be found everywhere
- Everyday occurrences:Dice, shuffling cards, ...
- Physics: Particle interactions, simulations,...

¹CTA/M-A. Besel/IAC (G.P. Diaz)/ESO, Wikimedia

Pseudorandom number generators

- Why no "real" generators? (Atmospheric noise, electronic noise, ...)
 - Reproducibility
 - Searching for errors
 - Speed
- General rule:

$$\rightarrow x_{j+1} = f(x_1, \dots, x_j)$$

All generated random numbers are then completely deterministic!

Overview

Motivation

Generation of equally distributed random numbers

Testing randomness

Transformation of the uniform distribution

Rejection Sampling

Linear Congruent Generators (LCG)

Seed ("Start-value"):
$$x_0 \in \mathbb{N}_+$$

 $x_{j+1} = ((a \cdot x_j + c) \mod m)$
 $\rightarrow u_j = x_j/m$

- Example: c = 3, a = 5, m = 16, $x_0 = 0$
- → 0, 3, 2, 13, 4, 7, 6, 1, 8, 11, 10, 5, 12, 15, 14, 9, 0, ...
- Length of repeating sequence is referred to as period length
 - For LCGs the period length depends on *a, c* and *m*
 - An upper limit is given by m

Linear Congruent Generators (LCG)

Seed ("Start-value"):
$$x_0 \in \mathbb{N}_+$$

$$x_{j+1} = ((a \cdot x_j + c) \mod m)$$

$$\to u_j = x_j / m$$

- How to choose the parameters to obtain the maximal period length?
 - 1. $c \neq 0$
 - 2. c and m are coprime
 - 3. Each prime factor of *m* divides (*a* 1)
 - 4. If m is divisible by 4, so is (a 1)

XOR-Shift Generator

$$\begin{aligned} x_0 &\in \mathbb{N}_+ \\ t_1 &= \left((x_j \ll a) \oplus x_j \right) \\ t_2 &= \left((t_1 \gg b) \oplus t_1 \right) \\ x_{j+1} &= \left((t_2 \ll c) \oplus t_2 \right) \end{aligned}$$

- Period length is bound by k
 - Maximum period length: $2^k 1$
- How to choose *a*, *b* and *c*?

 See George Marsaglia. "Xorshift RNGs". In: *Journal of Statistical Software* 8.14 (), pp. 1–6. DOI:

10.18637/jss.v008.i14

Bitwise Operations:

k: Number of bits

⇒: Bitwise shift

⊕: XOR Operation

$$\oplus(0,0)=0$$

$$\oplus(1,1)=0$$

$$\oplus(1,0) = 1 = \oplus(0,1)$$

$$x_j = 11011100$$

$$x_j \gg 3 = 00011011$$

$$(x_j \gg 3) \oplus x_j = 11000111$$

XOR-Shift Generator - Implementation

```
1 def xorshift32(seed, N):
       Implementation of the "favorite choice" for 32-Bit from
       "George Marsaglia, Xorshift RNGs, Journal of Statistical Software".
       Every step performs a bit shift, XOR-operation (^ in python)
       and limits the result to the valid 32-bit range.
      x = seed
       a = 13
10
11
       b = 17
12
      c = 5
13
      for in range(N):
14
          x = ((x << a)^x) & 0xFFFF FFFF
15
          x = ((x >> b) ^ x) & 0xFFFF FFFF
16
           x = ((x << c)^x) & 0xFFFF FFFF
          vield x
```


Mersenne-Twister

- Published in 1997
- One of the most used random number generators
 - Default in numpy until version 1.16, C++11 standard library, Root::TRandom3
- Uses XOR-Shift amongst others to achieve bitwise random numbers
- Needs 624 Variables to save its state
- Generates 624 random numbers in each step
- Has a period length of

$$2^{19937} - 1$$

- Sounds great, but:
 - Also has some weaknesses in some statistical tests
 - Not very fast despite improvements to earlier iterations

Permutated Congruential Generators (PCG)

- Published 2014
- New standard in **numpy** since version 1.17
- Uses a LCG for its state
- Additionally uses bit-shifting transformation functions
- "extremely fast, extremely statistically good, and extremely space efficient"

See Melissa E. O'Neill. PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation. Tech. rep. HMC-CS-2014-0905. Claremont, CA: Harvey Mudd College, 2014. URL: https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf.

Overview

Motivation

Generation of equally distributed random numbers

Testing randomness

Transformation of the uniform distribution

Rejection Sampling

What is randomness?

- It is hard to "prove" randomness
- One can look for patterns in the generated numbers

```
int getRandomNumber()
{
return 4; // chosen by fair dice roll.
// guaranteed to be random.
}
```


¹https://xkcd.com/221/

²https://dilbert.com/strip/2001-10-25

Spectral test - 1D

- Generally: How frequent do *n*-tuples of generated numbers occur?
- 1D: How frequent are numbers?
- Problem:
 - Disregards order of numbers
 - Example:

0, **1**, **2**, **3**, **5**, **0**, **1**, **2**, **3**, **4**, **0**, **1**, **2**, **4**, **5**, ...

Spectral test - 2D

- 2D: How often do value-pairs occur?
- **Example:** LCG (c = 3, a = 5, m = 16, $x_0 = 0$)
- → 0, 3, 2, 13, 4, 7, 6, 1, 8, 11, 10, 5, 12, ...

Spectral test - Procedure (2D)

- 1. Draw *n* random numbers (integers)
- 2. n^2 possible value pairs, only n value pairs are realized
- 3. Normalizing the integers results in a grid spacing of 1/m
- 4. Finitely number of families ("parallel lines") of straight lines can be laid through the occupied points
- 5. Consider the largest distance of adjacent families
- 6. If the lattice is equally populated, the distance of the line pairs is minimal: $d_2 = m^{-1/2}$
- 7. If the lattice is unevenly populated, the distance is $d_2 \gg m^{-1/2}$

Spectral test - 3D

- 3D: How often do triplets occur?
- → Planes instead of lines
- Example:

$$LCG(c = 3456, a = 1601, m = 10000, x_0 = 0)$$

Spectral Test - Higher Dimensions

- 4-dim? n-dim? Badly representable!
- (n-1)-dimensional hyperplanes
- For the n-dimensional case it follows:
 - If the grid is equally populated, the distance of the line pairs is the minimum realized distance $d_n \approx m^{-1/n}$
 - If the lattice is unevenly populated, the distance is $d_n \gg m^{-1/n}$

Other tests

- Birthday Spacing test
 - \blacksquare *m* birthdays in a year with *n* days
 - Distribution of the distances of all birthdays to each other should be Poisson distributed
 - \blacksquare In the actual test n and m are chosen much larger than in the classical problem
- Runs Test
 - Count number n of consecutive 0's or 1's in the generated numbers
 - Number n should be binomially distributed with B(n, 0.5)
- Testsuites
 - Diehard-Testsuite
 - TestU01

Hints for practical use of Pseudorandom Number Generators (PRNGs)

- PRNGs should generate the same sequence of numbers on all systems (Mostly not the case!)
- Seed: Wrongly chosen start parameters can shorten the period duration shorten strongly
- "Start-up time": With some generators some of the first random numbers generated random numbers have to be discarded if the start parameters are start parameters are badly chosen (MT19937)
- Combine: If the period of a used PRNG is too short, several generators can be combined

Overview

Motivation

Generation of equally distributed random numbers

Testing randomness

Transformation of the uniform distribution

Rejection Sampling

Transformation of the uniform distribution

■ Wanted: random variable *y* with the probability density

$$g(y)$$
; $y \in [y_{\min}, y_{\max}]$

 \blacksquare Given: equally distributed random variable u with the probability density

$$f(u) = U(0,1) = \begin{cases} 1, & 0 \le x < 1 \\ 0, & \text{else} \end{cases}$$

Relation:

$$g(y) = \left| \frac{\mathrm{d}u}{\mathrm{d}y} \right| \cdot f(u)$$

$$g(y) = \frac{dG(y)}{dy} \Rightarrow dG(y) = g(y) dy = U(0, 1) du$$

Integrate:

$$u = \int_0^u U(0, 1) du' = \int_{y_{\min}}^y g(y') dy' = G(y)$$
$$y = G^{-1}(u)$$

 \rightarrow Random variable with the desired distribution can be constructed by applying G^{-1} to the equally distributed variable u

Example

- Generation of random numbers in the range $[0, \pi]$ following $f(y) = \sin(y)$
 - 1. Create PDF g(y) by normalizing f(y)

$$g(y) = \frac{\sin(y)}{\int_0^{\pi} \sin(y') \, dy'}$$
$$= \frac{1}{2} \sin(y)$$

2. Integrate up to y and invert

$$u = G(y) = \int_0^y \frac{1}{2} \sin(y') \, dy' = \frac{1 - \cos(y)}{2}$$
$$y = G^{-1}(u) = \arccos(1 - 2u)$$

Example: sin(x)

- Advantages:
 - Very efficient
 - No need to discard drawn numbers
 - → No waste of computing time
- Disadvantages:
 - Only possible if the desired distribution is integrable
 - Inverse function must exist
- Alternative: Rejection sampling

Overview

Motivation

Generation of equally distributed random numbers

Testing randomness

Transformation of the uniform distribution

Rejection Sampling

Rejection Sampling (von Neumann)

■ Wanted: Random variable **y** with probability density function

$$g(y)$$
; $y \in [y_{\min}, y_{\max}]$

- g(y) is not integrable or G(y) is not invertable
- Given: Equally distributed random variables (u_1, u_2) with probability density functions:

$$f(u_{1}) = U(y_{\min}, y_{\max}) = \begin{cases} \frac{1}{y_{\min} - y_{\max}}, & y_{\min} \le x \le y_{\max} \\ 0, & \text{else} \end{cases}$$

$$f(u_{2}) = U(0, g_{\max}) = \begin{cases} \frac{1}{g_{\max}}, & g_{\max} = \max(g(y)) \\ 0, & \text{else} \end{cases}$$

Rejection Sampling (von Neumann)

- Two random numbers must be drawn for each single, potential random number
- Many numbers are rejected (depending on the sampling pdf)
- → Inefficient (E < 1)

$$E = \frac{\int_a^b g(y) \, dy}{(b - a)d}$$
(If $g(y)$ is normed) = $\frac{1}{(b - a)d}$

Rejection Sampling (von Neumann)

- Procedure:
 - If $g(u_1) \le u_2$, reject u_1
 - If $g(u_1) > u_2$, accept u_1 as random number
- Example: Normal distribution between -10 and 10

Normal-distributed numbers: Box-Müller-method

- Issue: Normal distribution can not be integrated analytically
- → Can not use the transformation method
- Solution: Integrate in 2D

$$I^{2} = \frac{1}{2\pi} \int_{-\infty}^{x} dx' \int_{-\infty}^{y} dy' \exp\left(-\frac{1}{2} (x'^{2} + y'^{2})\right)$$

Box-Müller-Method

■ Transform to polar coordinates:

$$x = r\cos\phi$$

$$y = r\sin\phi$$

$$I^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} d\phi \int_{0}^{r} dr' r' \exp\left(-\frac{1}{2}r'^{2}\right)$$

ightarrow Use the inversion method for ϕ and r

Box-Müller-Method

1. Inversion method for ϕ :

$$u_1 = F(\phi) = \frac{1}{2\pi} \int_0^{\phi} d\phi \int_0^{\infty} dr' \ r' \exp\left(-\frac{1}{2}r'^2\right) = \frac{\phi}{2\pi} \leftrightarrow \phi = 2\pi u_1$$

2. Inversion method for r:

$$u_2 = F(r) = \frac{1}{2\pi} \int_0^{2\pi} d\phi \int_0^r dr' \ r' \exp\left(-\frac{1}{2}r'^2\right) = 1 - \exp\left(-\frac{1}{2}r^2\right) \Leftrightarrow r = \sqrt{-2\ln(u_2)}$$

Box-Müller-Method

■ After transforming back, **x** and **y** are independent random variables:

$$x = r\cos(\phi) = \sqrt{-2\ln(u_2)}\cos(2\pi u_1)$$
$$y = r\sin(\phi) = \sqrt{-2\ln(u_2)}\sin(2\pi u_1)$$

Polar-Method: Instead of the analytical calculation of the trigonometric function, use the rejection method

Polar method

- Create equally distributed u_1, u_2
- Transform: $v_1 = 2u_1 1$, $v_2 = 2u_2 1$
- Calculate $s = v_1^2 + v_2^2$, reject if $s \ge 1$
- Use as independent, normally distributed random numbers:

$$x_1 = v_1 \sqrt{-\frac{2}{s} \ln(s)}$$

$$x_2 = v_2 \sqrt{-\frac{2}{s} \ln(s)}$$

Polar method - Reasoning / Proof

■ Polar coordinates of point (x_1, x_2) :

$$x_1 = \cos \theta \sqrt{-2 \ln(s)}$$
$$x_2 = \sin \theta \sqrt{-2 \ln(s)}$$

■ Distribution function for $\sqrt{-2 \ln(s)} \le r = \sqrt{s}$:

$$F(r) = P\left(\sqrt{-2\ln(s)} \le r\right)$$
$$= P(-2\ln(s) \le r^2)$$
$$= P(s \ge e^{-r^2/2})$$

Polar method - Reasoning / Proof

- $s = r^2$ is equally distributed between [0, 1]
- \rightarrow $F(r) = 1 e^{-r^2/2}$
- Corresponding probability density:

$$f(r) = \frac{\mathrm{d}F(r)}{\mathrm{d}r} = re^{-r^2/2}$$

■ Now create the combined distribution function

Polar method - Reasoning / Proof

■ Common distribution function:

$$\begin{split} F(x_1, x_2) &= P(x_1 \le k_1, x_2 \le k_2) = P(r\cos(\theta) \le k_1, r\sin(\theta) \le k_2) \\ &= \frac{1}{2\pi} \int_{x_1 \le k_1} \int_{x_2 \le k_2} re^{-r^2/2} \, \mathrm{d}r \, \mathrm{d}\phi \\ &= \frac{1}{2\pi} \int_{x_1 \le k_1} \int_{x_2 \le k_2} e^{-(x_1^2 + x_2^2)/2} \, \mathrm{d}x_1 \, \mathrm{d}x_2 \\ &= \left(\frac{1}{2\pi} \int_{-\infty}^{k_1} e^{-x_1^2/2} \, \mathrm{d}x_1\right) \cdot \left(\frac{1}{2\pi} \int_{-\infty}^{k_2} e^{-x_2^2/2} \, \mathrm{d}x_2\right) \\ &= \mathcal{N}(x_1) \cdot \mathcal{N}(x_2) \end{split}$$

Generation of Poisson-distributed random numbers

■ Possibility 1:

- Generate exponentially distributed random variables
- Sum u_i until the sum exceeds μ (i_{max} numbers)
- Random number: $x = i_{max} 1$
- Reasoning:
 - Logarithm of exponentially distributed values = equally distributed values

Reminder:

$$P(r) = \frac{\mu^r e^{-\mu}}{r!}$$

Generation of Poisson-distributed random numbers

$$\frac{1}{\tau}e^{-t/\tau} \text{ with } t = -\tau \ln(x)$$

$$\to \sum_{i} t_{i} = -\tau \sum_{i} \ln(x_{i})$$

$$\to \frac{\sum_{i} t_{i}}{\tau} = -\sum_{i} \ln(x_{i})$$

$$\to e^{-\frac{\sum_{i} t_{i}}{\tau}} = \prod_{i} x_{i}$$

Generation of Poisson-distributed random numbers

- Possibility 2:
 - For large *μ*: Poissonian ≈ Gaussian
 - "Large": $\mu > 10$
- For a normally distributed random variable *Z*:

$$n = \max(0, \operatorname{int}(\mu + Z\sqrt{\mu} + 0.5))$$

Generation of χ^2 -distributed random numbers

- For even *n*:
 - Construct product of n/2 equally distributed random numbers

$$x = -2 \ln \left(\prod_{i=1}^{n/2} u_i \right)$$

 $\rightarrow x$ is a χ^2 -distributed random variable

Generation of χ^2 -distributed random numbers

- For odd *n*:
 - Add the square of a normally distributed random variable Z

$$x = -2 \ln \left(\prod_{i=1}^{n/2} u_i \right) + Z^2$$

 $\rightarrow x$ is a χ^2 -distributed random variable

Generation of χ^2 -distributed random numbers

- For large n:
 - Approximate with Gaussian distribution
 - The variable **y** is approximately normally distributed:

$$y=\sqrt{2\chi^2}-2\sqrt{2n-1}$$

- Generate a random number Z which is standard-normal distributed
- Calculate

$$x = \frac{1}{2} \left(Z + \sqrt{2n-1} \right)^2$$

Reject if

$$Z<(-\sqrt{2n-1})$$

Applications in particle physics

- Examples:
 - Inelastic Muon-Nucleus scattering
 - \blacksquare π -production
 - Local reference frame

■ Given: Double differential cross section:

$$\frac{d^2 \sigma(E, v, \theta)}{d\theta dv}$$

Calculation

1. Calculate the total cross section:

$$\sigma_{\text{total}}(E) = \int_{V_{\text{min}}}^{V_{\text{max}}} \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \frac{d^2 \sigma(E, v, \theta)}{d\theta dv} dv d\theta$$

2. Calculate the (total) probability $P_{\rm w}$ for an interaction in a medium:

$$P_W = \frac{N_A \rho L}{A} \int_{E=0}^{E=\infty} \sigma(E) f(E) dE$$

 ρ = Density of medium

A = Atomic weight

L = Length of path

 N_A = Avogadro constant

f(E) = Probability of particle energy

- Caution:
 - If L is chosen too large, P will be greater than 1!
 - → Wrong results!
 - If *L* is chosen very small, a lot of operations have to be performed until an interaction occurs
 - → Waste of resources, numerical problems
- The probability P_F for n interactions on the path L is Poisson distributed:

$$P_e(n, \lambda = P_W) = \frac{\lambda^n}{n!} e^{-\lambda}$$

Variant a: Thin detector

- P_w is small
- Calculate the counter probability for zero interactions:

$$1 - P_E(n = 0)$$

Now energy and location of the interaction are known

Variant b: Thick Detector

■ Calculate the mean free path length:

$$l = \frac{\int x P_{E(n=0)}(x) \, \mathrm{d}x}{\int P_{E(n=0)}(x) \, \mathrm{d}x}$$

Calculate the interaction probability as the counter probability for zero interactions:

$$P_{\text{int}} = 1 - P(x) = 1 - e^{-\frac{x}{l}}$$

Calculate the interaction point with the transformation method