Integrating ¹⁹Focused Screening with Make-on-Demand Chemical Spaces for Enhanced Fragment Follow-Up

Patrick Penner, Chrystèle Henry, Martin Schröder, Anna Vulpetti Prague September 11th, 2025

Fragment screening

Fragment-based drug design arose as an alternative approach to high-throughput screening.

Fragment screening achieves:

- Higher hit rates
- Lower MW hits
- Hits with higher solubility

... but at lower affinity

Lead fragment
$$IC_{50}$$
 (PIM1) > 200 μ M

Vemurafenib IC_{50} (BRAF-V600E) = 50 nM

Nature Reviews | Drug Discovery

U NOVARTIS

¹⁹F NMR fragment screening (FAXS)

Local environment of fluorine library (LEF5500)

[6] Vulpetti et al. 2022

¹⁹Focused screening

[6] Vulpetti et al. 2022 [7] Vulpetti et al. 2024

QM assisted ML workflow

[8] Penner et Vulpetti 2024

Enamine REAL Space

"... comprises 76.9B make-ondemand molecules and is currently the largest offer of commercially available compounds."

- 172 well-validated parallel synthesis protocols
- 181 288 building blocks
- Success rate of over 80%

Workflow overview

Three conceptual approaches to assemble the ¹⁹Focused set

Close analogs

- In the Enamine REAL Space product space
- Substructure searching methodology (SpaceMACS)

Distant analogs

- In the Enamine REAL Space product space
- Methods with scaffold hopping potential (FastROCS)
- Structurally more different from known chemical matter
- Focus on novelty

Building-blocks

- In the Enamine REAL building-blocks
- Fragment-like, diverse motifs
- Focus on follow-up potential (reaction handles) and novelty

In silico workflow

In silico characterization:

- Descriptor calculation by RDKit (MW, HBA, HBD, tPSA, RotB)
- logP/logD, pKa, Solubility (global Novartis models)
- Docking

Close analogs 30 molecules

Distant analogs 29 molecules

Building blocks 66 BBs

Pre-screening

- Screened all compounds by SPR and DSF
- 4 out of around 30 compounds in the close and distant analog sets were active
- 1 compound from the building-blocks set was active
- Sets biased by available chemistry were more successful
- It was encouraging to see a building-block hit < 100 μM
- We wanted to follow up on challenging hits

Set	Compounds active in SPR (<100 µM)
Close Analogs	4
Distant Analogs	4
Building-blocks	1

QM Predictions

 QM predictions were added to LEFShift to handle compounds far outside of the training data

- Validation showed that neither an ML-based method or a QM-based method performed strictly better
- QM predictions are more stable for distant compounds
- Handling molecules for QM is a bit different than for other methods
 - V2000 Mols truncate coordinates to 4 decimal places, which affects results

Fluorine	Shieldings from Truncated Coordinates	Shieldings from Full Coordinates
Fluorine 5	254.4190	254.4423
Fluorine 6	252.8276	252.8554
Fluorine 7	252.8237	252.8515
Trifluoromethyl Average	253.3568	253.3831

The experimental precision for 19 F chemical shift is ~ 0.003 ppm[11]

[8] Penner et Vulpetti 2024 [11] Rosenau et al. 2018

Mixture design

- Optimizing mixture design can be a challenging algorithm
 - This is a lot easier in ¹⁹F NMR
- A simple approach proved pragmatic
 - Sorting by predicted chemical shift and periodically assigning to mixtures
 - The simplicity facilitates human intervention
- We tried to separate problematic compounds
 - Uncertain predictions
 - Solubility risks
 - etc.

[10] Stark et al. 2016

¹⁹F chemical shift prediction overview

- Errors are largely in the expected range
- The four predictions with the largest error were all declared as uncertain
- Unassigned stereocenters made QM difficult
- Because the prediction had marked them as uncertain, we could separate them into different mixtures
- They were assignable by exclusion

Fluorine Motif	MAE ^a (ppm)	RMSE ^b (ppm)
CF (n = 67)	2.174	3.977
CF ₂ (n = 20)	0.583	1.133
CF ₃ (n = 28)	0.875	1.339

^a mean absolute error ^b root-mean-square error

-250

-225

CF (67) CF2 (20)

CF3 (28)

[8] Penner et Vulpetti 2024

Chemical space docking

- Synthon-based combinatorial docking approach
- The initial step involves determining an anchoring synthon
- We guarantee follow-up by starting in the Enamine chemical space
- Is that follow-up useful to SAR?
 - Distant analogs can be split into their synthons
 - Building-blocks need to have reactive handles pointing in the right direction

[12] Beroza et al. 2022 [13] Mueller et al. 2022

Filtering cascade

Remove strained molecules and select poses by HYDE score

Solubility and Substructure Filters

MM-GBSA based LipE

Single-edge FEP+

Single-edge vs. Cycle Closure FEP+

- Compound 1 is the original ¹⁹Focused screening hit
- Compounds 2-6 are hits from the follow-up (2-3 from SPR, 4-6 from DSF)
- The stronger hits were better predicted in single-edge FEP+
- Cycle closure FEP+ improves predictions for some compounds
- Many molecules were overpredicted in single-edge FEP+

Compound	SPR K _D	¹⁹ F NMR K _I	Single-edge FEP+	Cycle Closure FEP+
	(µM)	(µM)	(μ M)	(μ M)
Compound 1	>100	870	n/a	1361
Compound 2	108	330	124	319
Compound 3	53	66.6	66.4	91.4
Compound 4	>100	748	347	705
Compound 5	>100	1170	202	195
Compound 6	>100	1538	378	1057

Summary

- We tried different approaches to make-on-demand spaces
 - Close analogs stay close to known chemistry and find quick hits
 - Distant analogs are also influenced by known chemistry but manage to explore into different chemotypes
 - Building-blocks were the riskiest approach but fundamentally address make-on-demand spaces
- QM can be a helpful addition to property prediction
 - Was better at handling novel chemistry
 - Is a high precision method and needs to be handled that way
- Positioning the screening in a make-on-demand space facilitated follow-up
 - Following up on the distant analog hits was the most successful
 - Full molecules may avoid issues with extension directions

References

- 1. D. A. Erlanson, S. W. Fesik, R. E. Hubbard, W. Jahnke, H. Jhoti, Nat. Rev. Drug Discov. 2016-07, 15, 605–619. http://doi.org/10.1038/nrd.2016.109
- 2. C. Dalvit, E. Ardini, M. Flocco, G. P. Fogliatto, N. Mongelli, M. Veronesi, J. Am. Chem. Soc. 2003-11, 125, 14620–14625. https://doi.org/10.1021/ja038128e
- 3. A. Vulpetti, U. Hommel, G. Landrum, R. Lewis, C. Dalvit, J. Am. Chem. Soc. 2009, 131, 12949–12959. https://doi.org/10.1021/ja905207t
- 4. C. Dalvit, A. Vulpetti, J. Med. Chem. 2019, 62, 2218–2244. https://doi.org/10.1021/acs.jmedchem.8b01210
- 5. D. Antcliffe, A. C. Gordon, Critical Care 2016-03, 20, 68. https://doi.org/10.1186/s13054-016-1222-8
- 6. A. Vulpetti, A. Lingel, C. Dalvit, N. Schiering, L. Oberer, C. Henry, Y. Lu, ChemMedChem 2022, 17, e202200163. https://doi.org/https://doi.org/10.1002/cmdc.202200163
- 7. A. Vulpetti, J.-M. Rondeau, M.-H. Bellance, J. Blank, R. Boesch, A. Boettcher, F. Bornancin, S. Buhr, L. E. Connor, C. E. Dumelin, O. Esser, M. Hediger, S. Hintermann, U. Hommel, E. Koch, G. Lapointe, L. Leder, S. Lehmann, P. Lehr, P. Meier, L. Muller, D. Ostermeier, P. Ramage, S. Schiebel-Haddad, A. B. Smith, A. Stojanovic, J. Velcicky, R. Yamamoto, K. Hurth, J. Med. Chem. 2024, 67, 8141–8160. http://doi.org/10.1021/acs.jmedchem.4c00240
- 8. P. Penner, A. Vulpetti, J. Comput.-Aided Mol. Des. 2024, 38, 4. https://doi.org/10.1007/s10822-023-00542-0
- 9. REAL Space Enamine, https://enamine.net/compound-collections/real-compounds/real-space-navigator (last accessed 2025-08-25)
- 10. J. L. Stark, H. R. Eghbalnia, W. Lee, W. M. Westler, J. L. Markley, J. Proteome Res. 2016, 15, 1360–1368. https://doi.org/10.1021/acs.jproteome.6b00121
- 11. C. P. Rosenau, B. J. Jelier, A. D. Gossert, A. Togni, Angewandte Chemie International Edition 2018, 57, 9528–9533. https://doi.org/10.1002/anie.201802620
- 12. P. Beroza, J. J. Crawford, O. Ganichkin, L. Gendelev, S. F. Harris, R. Klein, A. Miu, S. Steinbacher, F.-M. Klingler, C. Lemmen, Nat. Commun. 2022, 13, 6447. https://doi.org/10.1038/s41467-022-33981-8
- 13. J. Müller, R. Klein, O. Tarkhanova, A. Gryniukova, P. Borysko, S. Merkl, M. Ruf, A. Neumann, M. Gastreich, Y. S. Moroz, G. Klebe, S. Glinca, J. Med. Chem. 2022, 65, 15663–15678. https://doi.org/10.1021/acs.jmedchem.2c00813