

CS 422-04: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Lecture 4: Components of Learning Decision Trees

- Recall, most data mining / machine learning algorithms operate on matrices.
- The canonical picture to keep in mind is this:

• Example of a *matrix* data layout.

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Example of a document data layout.

Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

• Example of a *transaction* data layout.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk

Example of a graph data layout.

 As it turns out, graphs can be represented as matrices.

Formalism:

- Input:x, A matrix (n-dimension, n >= 1) of attributes
- Output: \overrightarrow{y} , the response vector
- Target function: $f: \mathcal{X} \to \mathcal{Y}$
- Data: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Hypothesis: $g: \mathcal{X} \to \mathcal{Y}$
- Hope: $g \approx f$

Slide source: Prof. Yaser S. Abu-Mostafa Learning from Data, 2012.

- Machine learning: Generalizing to cases we have not seen before!
- But wait ... can't we simply see all or most of the data?

- Machine learning: Generalizing to cases we have not seen before!
- But wait ... can't we simply see all or most of the data?
- Suppose: You have data that consists of 1,000
 Boolean fields, and you have 1,000,000,000,000
 records in a database.
- How much insight do these 1 trillion records represent?

- Theoretically, you will need 2¹⁰⁰⁰ records to represent all of your data.
- The 1 trillions records are one *gazillionth** of 1 percent of 2^{1000} !
 - * Gazillionth = 10E-285!!

- Theoretically, you will need 2¹⁰⁰⁰ records to represent all of your data.
- The 1 trillions records are one *gazillionth** of 1 percent of 2^{1000} !
 - * Gazillionth = 10E-285!!

Morals:

- Curse of dimensionality is real
- Generalization is how we deal with combinatorial explosion!

- R has the following data types to represent attributes:
 - Numeric
 - Integer
 - Factor
 - Character

- R has the following data types to represent attributes:
 - Numeric: Can take "float" or "double" values.
 - Integer: Cannot take decimal or fraction values.
 - Factor: An enumeration data type that takes only certain values: {"blue", "green", "red"}; or {0, 1, 2}.
 - Values of a factor can be *ordinal*, i.e., order of values matter. Example: {"small", "medium", "large"} is different than {"small", "large", "medium"}.
 - Factors are also referred to as categorical variables.
 - Character: Single character or character strings.

- Certain algorithms have an affinity for certain data types:
 - Certain classification requires that numeric (or continuous) data be represented as categorical (factor) attributes.

Association algorithms prefer a binary attribute (a factor of 0)

and 1).

 One of the important step during the transformation phase is to ensure that algorithms get the attribute in the form they can operate on it.

• Example: Binarization (Tan, Ch. 2)

Table 2.5. Conversion of a categorical attribute to three binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3
awful	0	0	0	0
poor	1	0	0	1
OK	2	0	1	0
good	3	0	1	1
great	4	1	0	0

Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3	x_4	x_5
awful	0	1	0	0	0	0
poor	Hacts, Ivhich,	0	1	0	0	0
OK	2	0	0	1	0	0
good	mlo m3 mm I	0	0	0	100	0
great	4	0	0	0	0	1

Example: Discretization

Step 1: Sort:

```
{1, 2, 10, 15, 18, 20, 22, 25, 30}
```

Step 2: Create split points

```
{1, 2, 10, 15, 18, 20, 22, 25, 30}
```

 Step 3: Map split values to discrete categorical variables; e.g.: {1, 2, 10} → "Small", ...

Decision tree

- Our first classification algorithm.
- **Classification**: The task of learning a target function, g, that maps each attribute set x to one of the predefined class labels, \vec{y} .
- Let's play a game of 20 questions.
 - Category: Movie.
 - Ask me questions!

Decision tree

A bird's eye view.

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

	binary	catego	rical	JOUS Class
Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrowe
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Default class = No

Tid	Home owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

