Package 'geppe'

June 24, 2024

Type Package

Title Generalised Exponential Poisson and Poisson Exponential Distributions	
Version 1.0	
Date 2024-06-23	
Author Michail Tsagris [aut, cre], Sofia Piperaki [aut]	
Maintainer Michail Tsagris <mtsagris@uoc.gr></mtsagris@uoc.gr>	
Depends R (>= 4.0)	
Imports Rfast2, stats	
Maximum likelihood estimation, random values generation, density computation and tions for the exponential-Poisson generalised exponential-Poisson and Poisson-expon tributions. References include: Rodrigues G. C., Louzada F. and Ramos P. L. (2018). exponential distribution: different methods of estimation". Journal of Applied Statistics, 45(1): 128144. <doi:10.1080 02664763.2016.1268571="">. Louzada F., Ramos, P. reira, H. P. (2020). ``Exponential-Poisson distribution: estimation and applications to fall and aircraft data with zero occurrence". Communications in StatisticsSimulation putation, 49(4): 10241043. <doi:10.1080 03610918.2018.1491988="">. Barreto-Souza W. and Cribari-Neto F. (2009). ``A generalization of the exponential-Poisson tion". Statistics and Probability Letters, 79(24): 24932500. <doi:10.1016 j.spl.2009.<="" td=""><td>ential dis- ``Poisson L. and Fer o rain- o and Com distribu-</td></doi:10.1016></doi:10.1080></doi:10.1080>	ential dis- ``Poisson L. and Fer o rain- o and Com distribu-
License GPL (>= 2)	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2024-06-24 16:00:02 UTC	
Contents	
geppe-package	

2 geppe-package

•	Quantile function of the GEP, EP and PE distributions	
Index		1
geppe-package	Generalised Exponential Poisson and Poisson Exponential Ditions	stribu-

Description

The package offers sime functions (including MLE) for the exponential-Poisson (EP), the generalised EP (GEP) and the Poisson-exponential (PE) distributions.

Details

Package: geppe Type: Package Version: 1.0

Date: 2024-06-23 License: GPL-2

Maintainers

Michail Tsagris <mtsagris@uoc.gr>.

Author(s)

Michail Tsagris <mtsagris@uoc.gr> and Sofia Piperaki <sofiapip23@gmail.com>.

References

Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.

Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.

Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.

Density computation of the GEP, EP and PE distributions $Density\ computation\ of\ the\ GEP,\ EP\ and\ PE\ distributions$

Description

Density computation of the GEP, EP and PE distributions.

Usage

```
depois(x, beta, lambda, logged = FALSE)
dgep(x, beta, alpha, lambda, logged = FALSE)
dpe(x, theta, lambda, logged = FALSE)
```

Arguments

X	A numerical vector with non-negative values.
beta	A strictly positive number, the scale parameter (β) .
alpha	A stritly positive number, the α parameter of the GEP distribution. If $a=1$, then one ends up with the EP distribution.
theta	A strictly positive number, the shape parameter (θ) .
lambda	A strictly positive number, the shape parameter (λ) .
logged	Should the logarithm of the density values be computed? The default value is FALSE.

Details

The density values of the GEP, EP and PE distributions are computed. The density function of the EP is given by $f(x)=\frac{\lambda\beta e^{-\lambda-\beta x+\lambda e^{-\beta x}}}{1-e^{-\lambda}}.$

The density function of the GEP is given by $f(x) = \frac{\alpha\lambda\beta}{\left(1-e^{-\lambda}\right)^{\alpha}} \left(1-e^{-\lambda+\lambda e^{-\beta x}}\right)^{\alpha-1} e^{-\lambda-\beta x+\lambda e^{-\beta x}}.$ $\theta\lambda e^{-\lambda x-\theta e^{\lambda x}}$

The density function of the PE is given by $f(x)=rac{\theta\lambda e^{-\lambda x-\theta e^{\lambda x}}}{1-e^{-\theta}}.$

Value

A vector with the (logged) density values.

Author(s)

Sofia Piperaki.

R implementation and documentation: Sofia Piperaki <sofiapip23@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

References

Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.

Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.

Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.

See Also

```
rgep, pgep
```

Examples

```
x <- rgep(100, 1, 2, 3)
y <- dgep(x, 1, 2, 3, logged = TRUE)
sum(y)</pre>
```

Distribution function of the GEP, EP and PE distributions

Distribution function of the GEP, EP and PE distributions

Description

Distribution function of the GEP, EP and PE distributions.

Usage

```
pepois(x, beta, lambda)
pgep(x, beta, alpha, lambda)
ppe(x, theta, lambda)
```

Arguments

X	A numerical vector with non-negative values.
beta	A strictly positive number, the scale parameter (β) .
alpha	A stritly positive number, the α parameter of the GEP distribution. If $a=1$, then one ends up with the EP distribution.
theta	A strictly positive number, the shape parameter (θ) .
lambda	A strictly positive number, the shape parameter (λ).

Details

The cumulative distribution values of the GEP, EP and PE distributions are computed. The probability function of the EP is given by $f(x)=\frac{e^{\lambda e^{-\beta x}}}{1-e^{\lambda}}$.

The probability function of the GEP is given by $f(x)=\left(\frac{1-e^{-\lambda+\lambda e^{-\beta x}}}{1-e^{-\lambda}}\right)^{\alpha]}$.

The probability function of the PE is given by $f(x) = \frac{1-e^{\theta-\theta e^{-\lambda x}}}{1-e^{-\theta}}.$

Value

A vector with the cumulative distribution density values.

Author(s)

Sofia Piperaki.

R implementation and documentation: Sofia Piperaki <sofiapip23@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

References

Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.

Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.

Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.

See Also

dgep, qgep

Examples

```
x \leftarrow rgep(100, 1, 2, 3)

y \leftarrow pgep(x, 1, 2, 3)
```

Maximum likelihood estimation of the GEP, EP and PE distributions

Maximum likelihood estimation of the GEP, EP and PE distributions

Description

Maximum likelihood estimation of the GEP, EP and PE distributions.

Usage

```
epois.mle(x)
gep.mle(x)
pe.mle(x)
```

Arguments

Χ

A numerical vector with non negative values.

Details

Maximum likelihood estimation of the EP, GEP and PE distributions is performed.

Value

A list including:

param A vector with the estimated values of α , β , θ , λ , depending on the distribution

used.

loglik The log-likelihood value of the distribution.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.

Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.

Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.

See Also

rgep

Examples

```
x <- repois( 1000, 1, 3)
epois.mle(x)</pre>
```

Quantile function of the GEP, EP and PE distributions Quantile function of the GEP, EP and PE distributions

Description

Quantile function of the GEP, EP and PE distributions.

Usage

```
qepois(p, beta, lambda)
qgep(p, beta, alpha, lambda)
qpe(p, theta, lambda)
```

Arguments

p	A numerical vector with probability values.
beta	A strictly positive number, the scale parameter (β).
alpha	A stritly positive number, the α parameter of the GEP distribution. If $a=1$, then one ends up with the EP distribution.
theta	A strictly positive number, the shape parameter (θ) .
lambda	A strictly positive number, the shape parameter (λ) .

Details

The quantiles of the GEP, EP and PE distributions are computed.

The quantile function of the EP is given by $x_q = -\frac{\log\left[\lambda^{-1}\log\left(q\left(1-e^{\lambda}\right)+e^{\lambda}\right)\right]}{\beta}$.

The quantile function of the GEP is given by $x_{q}=-\frac{\log\left[1+\lambda^{-1}\log\left(1-q^{1/\alpha}\left(1-e^{-\lambda}\right)\right)\right]}{\beta}.$

The quantile function of the PE is given by $x_q = \frac{\log\left(\theta\right) - \log\left[-\log\left(q - e^{\theta}\left(q - 1\right)\right)\right]}{\lambda}$.

Value

A vector with the quantile values.

Author(s)

Sofia Piperaki.

R implementation and documentation: Sofia Piperaki <sofiapip23@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

References

Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.

Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.

Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.

See Also

```
rgep, pgep
```

Examples

```
y \leftarrow qgep(seq(0.1, 0.9, by = 0.1), 1, 2, 3)
```

Random values generation from the GEP, EP and PE distributions

Random values generation from the GEP, EP and PE distributions

Description

Random values generation from the GEP, EP and PE distributions.

Usage

```
repois(n, beta, lambda)
rgep(n, beta, alpha, lambda)
rpe(n, theta, lambda)
```

Arguments

n	The sample size.
beta	A strictly positive number, the scale parameter (β).
alpha	A stritly positive number, the α parameter of the GEP distribution. If $a=1$, then one ends up with the EP distribution.
theta	A strictly positive number, the shape parameter (θ) .
lambda	A strictly positive number, the shape parameter (λ) .

Details

In order to generate values from these distributions the inverse rejection sampling is used.

Value

A vector with generated values from the GEP, EP or the PE distribution.

Author(s)

Sofia Piperaki.

R implementation and documentation: Sofia Piperaki <sofiapip23@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

References

Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.

Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.

Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.

See Also

dgep

Examples

```
x < - rgep(100, 1, 2, 3)
```

Index

```
Density computation of the GEP, EP and
                                              gpe (Quantile function of the GEP, EP
        PE distributions, 3
                                                       and PE distributions), 7
depois (Density computation of the GEP,
                                               Quantile function of the GEP, EP and
        EP and PE distributions), 3
                                                       PE distributions, 7
dgep, 5, 9
                                               Random values generation from the GEP,
dgep (Density computation of the GEP,
                                                       EP and PE distributions, 8
        EP and PE distributions), 3
                                               repois (Random values generation from
Distribution function of the GEP, EP
                                                       the GEP, EP and PE
        and PE distributions, 4
                                                       distributions), 8
dpe (Density computation of the GEP,
                                               rgep, 4, 6, 8
        EP and PE distributions), 3
                                               rgep (Random values generation from
epois.mle (Maximum likelihood
                                                       the GEP, EP and PE
        estimation of the GEP, EP and
                                                       distributions), 8
        PE distributions), 6
                                               rpe (Random values generation from the
                                                       GEP, EP and PE distributions),
gep.mle (Maximum likelihood estimation
        of the GEP, EP and PE
        distributions), 6
geppe-package, 2
Maximum likelihood estimation of the
        GEP, EP and PE distributions, 6
pe.mle (Maximum likelihood estimation
        of the GEP, EP and PE
        distributions), 6
pepois (Distribution function of the
        GEP, EP and PE distributions),
pgep, 4, 8
pgep (Distribution function of the GEP,
        EP and PE distributions), 4
ppe (Distribution function of the GEP,
        EP and PE distributions), 4
qepois (Quantile function of the GEP,
        EP and PE distributions), 7
qgep, 5
qgep (Quantile function of the GEP, EP
        and PE distributions), 7
```