DS nº 04

- Faire tous les exercices dans un même fichier NomPrenom.py à sauvegarder,
- mettre en commentaire l'exercice et la question traités (ex : # Exercice 1),
- ne pas oublier pas de commenter ce qui est fait dans votre code (ex : # Je crée une fonction pour calculer la racine d'un nombre),
- il est possible de demander un déblocage pour une question mais uniquement celles avec une ★. Celle-ci sera notée 0.
- il faut vérifier avant de partir que le code peut s'exécuter et qu'il affiche les résultats que vous attendez.

Exercice 1

Pour tout entier naturel n, on considère la fonction f_n définie sur $\mathbb R$ par :

$$f_n(x) = x^{n+1} - x^n - 1.$$

On admet les résultats suivants sur f_n :

. le tableau de variations de f_n est :

• $f_n(2) > 0$ pour $n \ge 1$.

Donc il existe un unique $\alpha_n \in [1,2]$ tel que f_n s'annule en α_n . L'objectif est d'étudier la suite $(\alpha_n)_{n \in \mathbb{N}}$.

- 1. \star Soit n fixé en amont. Ecrire une fonction f qui prend comme argument x et renvoie la valeur de $f_n(x)$.
- 2. Afficher la valeur de $f_{10}(1)$.
- 3. Tracer les courbes de f_n , pour n entier de 1 à 10. La plage d'affichage sera le rectangle $[1,2] \times [-1,1]$ (fonctions xlim et ylim du module matplotlib.pyplot en Python).
- 4. Conjecturer le comportement de la suite $(\alpha_n)_{n\geq 0}$: monotonie, limite (réponse en commentaire).
- 5. \star Écrire une fonction dichotomie qui prend comme entrée une fonction f, les bornes initiales a et b, la précision ε et qui renvoie une approximation d'une solution à ε près de l'équation f(x) = 0 de l'intervalle [a, b].
- 6. En utilisant l'algorithme précédent, déterminer des valeurs approchées de α_n à 10^{-6} près pour n variant de 2 à 200. Quelle conjecture pouvez-vous faire? (réponse en commentaire).

Exercice 2

1. Préliminaires :

Ecrire une fonction maxi qui prend comme argument une liste et renvoie la valeur maximale ainsi que sa position dans la liste. Si il y a plusieurs maxima, la fonction ne renvoie que la première position.

Dans cette question l'utilisation des fonctions Python max et index sont interdites.

TOURNEZ LA PAGE.

Dans cet exercice, on manipule des suites (finies) d'entiers sous la forme de listes d'entiers. Ainsi la suite (0,1,3,8,8) sera représentée par la liste [0,1,3,8,8].

La liste est croissante (respectivement décroissante, monotone) si la suite est croissante (respectivement décroissante, monotone).

2. Monotonie:

- (a) Ecrire une fonction estCroissante qui teste si une liste d'entiers est croissante. La fonction renvoie un booléen True ou False.
- (b) Afficher le résultat de la fonction estCroissante pour la liste L=[0,1,3,8,8]. (La réponse doit être True).
- (c) Écrire de même une fonction estDecroissante qui teste si une liste d'entiers est décroissante.
- (d) Écrire de même une fonction estMonotone qui teste si une liste d'entiers est monotone.
- 3. Soit la liste $L = [u_0, u_1, \dots, u_{n-1}]$ de longueur n. On appelle tranche de L une liste de la forme $[u_i, u_{i+1}, \dots, u_j]$ où $0 \le i \le j < n$.

On cherche une tranche de L croissante et de longueur maximale.

Par exemple, une tranche croissante de longueur maximale de [0, 1, 0, 1, 3, 3, 5, 0, 1, 7] est [0, 1, 3, 3, 5], correspondant aux indices i = 2 et j = 6.

- (a) \star Écrire une fonction LC de deux arguments, une liste L et un entier p, qui renvoie l'entier d tel que la liste $[u_p, \cdots, u_d]$ est la tranche croissante de L la plus longue possible en partant de la pième position. Autrement dit, $[u_p, \cdots, u_d]$ est croissante avec ou bien d=n-1 ou bien $u_d > u_{d+1}$.
- (b) Afficher le résultat de LC pour la liste L=[0,1,0,1,3,3,5,0,1,7] et l'entier 2.
- (c) Écrire une fonction maxCroissante d'argument une liste L qui renvoie la plus longue tranche croissante de L. S'il n'y a pas unicité, on renvoie la première trouvée.
- 4. Soit la liste $L = [u_0, u_1, \dots, u_{n-1}]$ de longueur n. Une monotonie de L est un couple d'indices (i, j) tel que $0 \le i < j < n$, que la sous-liste $[u_i, u_{i+1}, \dots, u_j]$ est monotone et qu'elle ne l'est plus si on l'étend, à droite ou à gauche, d'un élément supplémentaire (lorsque c'est possible). La monotonie est dite "banale" lorsque j = i + 1.
 - (a) Proposez une liste d'entiers de longueur 5 qui ne présente que des monotonies banales. (réponse en commentaire)
 - (b) Écrire une fonction cahots, de complexité linéaire, qui teste si une liste ne comporte que des monotonies banales.
 - (c) Après avoir créé une liste arbitraire L de valeurs toutes distinctes, on peut l'ordonner par L.sort(). Imaginer ensuite une méthode pour réordonner de manière à ce qu'elle ne comporte que des monotonies banales.