ALGEBRA RELAȚIONALĂ

Proiecția (π)

- $L = (a_1,...,a_n)$ listă de atribute ale relației R
- Proiecția returnează o relație eliminând toate atributele care nu sunt în L

$$\pi_L(R) = \{ t \mid t_1 \in R \land t.a_1 = t_1.a_1 \land ... \land t.a_n = t_1.a_n \}$$

EX:

- Algebra relațională operează cu mulțimi

$$\Rightarrow \pi_{cid, grade}(Enrolled) \Leftrightarrow SELECT \begin{tabular}{l} DISTINCT \ cid, grade \\ FROM Enrolled \end{tabular}$$

Selecția (σ)

- Selectează tuplurile unei relații R care verifică o condiție c (predicat de selecție)

Compunerea

Reuniunea

$$R_1 \cup R_2 \Leftrightarrow SELECT DISTINCT * FROM R_1$$

$$UNION$$

$$SELECT DISTINCT * FROM R_2$$

Intersecția

$$R_1 \cap R_2 \Leftrightarrow SELECT DISTINCT * FROM R_1$$

$$INTERSECT$$

$$SELECT DISTINCT * FROM R_2$$

Diferența

$$R_1 \setminus R_2 \iff SELECT DISTINCT * FROM R_1$$

$$EXCEPT$$

$$SELECT DISTINCT * FROM R_2$$

Produs cartezian

- Combinarea a două relații $R_1(a_1, ..., a_n)$ și $R_2(b_1, ..., b_m)$

$$R_1 \ X \ R_2 = \{ \ t \ | \ t_1 \in R_1 \land t_2 \in R_2 \land t.a_1 = t_1.a_1 \land ... \land t.a_n = t_1.a_n \land t.b_1 = t_2.b_1 \land ... \land t.b_m = t_2.b_m \}$$

SELECT DISTINCT * FROM R₁, R₂

θ-Join

- Combinarea a două relații R₁ și R₂ cu respectarea condiției c

$$R_1(x) R_2 = \sigma_c(R_1 X R_2)$$

- Echivalentă în SQL cu INNER JOIN

Equi-Join

- Combină două relații pe baza unei condiții compuse doar din egalități ale unor atribute aflate în prima și a doua relație și proiectează doar unul dintre atributele redundante (deoarece sunt egale)â

<u>Join Natural</u>

- Combină două relații pe baza egalității atributelor ce au *același nume* și proiectează doar unul dintre atributele redundante

Câtul

- Nu este un operator de bază, însă simplifică mult interogarea în anumite situații
- Fie R_1 cu 2 atribute, $x \neq i y$, $\neq i R_2$ cu un atribut y:

$$R_1 / R_2 = \{ \langle x \rangle \mid \exists \langle x, y \rangle \in R_1 \ \forall \langle y \rangle \in R_2 \}$$

adică, $R_1 \setminus R_2$ conține toate tuplurile x astfel încât pentru <u>fiecare</u> dintre tuplurile y din R_2 , există câte un tuplu xy în R_1

- Generalizând, x și y pot reprezenta orice mulțime de atribute; y este mulțimea atributelor din R_2 , și $x \cup y$ reprezintă atributele lui R_1 .
- Câtul nu este operator esențial, ci doar o "scurtătură"
- *Ideea*: Pentru R₁/ R₂, vom determina valorile x care nu sunt 'conectate' cu anumite valori y din R₂ (valoarea x este <u>deconectată</u> dacă, atașând la ea o valoare y din R₂, obținem un tuplu xy ce nu se regăsește în R₁)

Valorile x deconectate: $R_1 / R_2 = \pi_x(R_1)$

Redenumirea

- Dacă atributele și relațiile au același nume este necesar să putem redenumi una din ele

