Foundations of Cybersecurity Exercise Sheet 7 Singapore University of Technology and Design October 25, 2017

Note: Some notes.

- There can be multiple acceptable answers. Justify carefully your reasoning.
- Go to the point, avoid copying verbatim definitions from the slides or the book.
- Show the solutions of classwork (groups of max 3 persons) to an instructor before the end of the class.
- Submit your homework solutions (groups of max 2) to eDimension by the deadline below.

Classwork due on Wednesday October 25, 10:00 PM

Question 1

Hash "Foundations of Cybersecurity" using SHA-512.

Question 2

Compute any official test vector of HMAC-SHA256 (see https://tools.ietf.org/html/rfc4868#section-2.7.2.1).

Question 3

Let us define a hash function $H_n(.)$ that executes SHA-512 and outputs the n bits. Find a collision of H_8 , H_{16} , H_{24} , H_{32} , and H_{40} . Measure how long it takes to find a collision.

Question 4

For H_8 , H_{16} , H_{24} , H_{32} and H_{40} find a preimage of the corresponding hashes: "\00", "\00"*2, "\00"*3, "\00"*4, and "\00"*5. Measure how long it takes to find a preimage.

Question 1

Using the collision files from https://shattered.io/ create a new SHA-1 collision.

Question 2

Find two messages that produce the same tag for AES-based CBC-MAC. Show code that demonstrates that.

Question 3

Let's assume that CBC-MAC is used as a MAC scheme. Suppose c is one block long, a and b are strings that are a multiple of the block length, and $MAC_K(a||c) = MAC_K(b||c)$. Then $MAC_K(a||d) = MAC_K(b||d)$ for any block d. Explain why this claim is true.