NOTES ON GEOMETRIC QUANTIZATION

NIMA MOSHAYEDI

ABSTRACT. These notes give an introduction to the quantization procedure called *geometric quantization*. It gives a definition of the mathematical background for its understanding and introductions to classical and Quantum Mechanics, to differentiable manifolds, symplectic manifolds and the geometry of line bundles and connections. Moreover, these notes are endowed with several exercises and examples.

Contents

1. Motivation	4
2. Introduction to Classical Mechanics	4
2.1. Newton's law of motion	4
2.2. Newton's principle of determinism	6
2.3. Hamiltonian mechanics	6
2.4. Poisson bracket	7
3. Symplectic linear algebra	8
3.1. Symplectic vector spaces	8
3.2. Kähler structure	10
3.3. Exercises	12
4. Differentiable manifolds	14
4.1. Exterior derivative	19
4.2. Exercises	20
5. Symplectic manifolds and Hamiltonian systems	21
5.1. Symplectic manifolds	21
5.2. The Lie derivative	22
5.3. Hamiltonian systems	23
5.4. Short summary	24
5.5. Exercises	24
6. Introduction to Quantum Mechanics	25
6.1. Failure of Classical Mechanics	25
6.2. Axioms of Quantum Mechanics	25
6.2.1. Digression: complex Hilbert space, self-adjoint operators	25
6.2.2. Axioms	27
7. Quantization	29
7.1. Quantization of $T^*\mathbb{R}^n$ and ordering ambiguity	29
7.2. Geometric Quantization	30
7.2.1. Prequantization of $T^*\mathbb{R}^n$	30
7.2.2. Prequantization on a symplectic manifold	32
7.2.3. Connection on a line bundle	33
7.2.4. Curvature of a connection	34
7.2.5. Prequantization of (M, Ω)	35
7.3. Problems with prequantization	35
7.4. Quantization I	35
7.5. Quantization II	39
7.5.1. Half-form quantization (real case)	42
7.5.2. Construction of the Hilbert space	43

References 44

1. MOTIVATION

Quantization procedures are of strong mathematical interest and there are different approaches to quantization. *Geometric quantization* [GS82; Kir85; Woo97; BW12] lies the focus on constructing the mathematical structure of a Hilbert space by constructing a certain line bundle with a particular type of connection, whereas e.g. *deformation quantization* [Wey31; Moy49; DL83; Fed94; Kono3; Cal+17] uses the noncommutativity structure of quantum observables, where it deforms the classical product on the Poisson algebra to a star product (see e.g. [GRSo5]). However, there the Hilbert space of states is not constructed explicitly, which is of importance to understand perturbative quantum field theories also in relation to the Atyiah–Segal formulation [Ati88; Seg88] of topological quantum field theories. Moreover, geometric quantization uses the symplectic structure of the classical setting, whereas deformation quantization uses the Poisson structure.

2. Introduction to Classical Mechanics

2.1. **Newton's law of motion.** In Classical Mechanics, we have Newton's axioms:

- (1) Every particle remains at rest or moves with a constant speed, unless acted upon by a force.
- (2) Rate of change of momentum = Force.
- (3) To every action on a particle, there is an equal and opposition reaction.

We want to focus on Newton's second law of motion.

Definition 2.1.1 (Particle). A *particle* is an object of insignificant size, i.e. the only information we have about a particle is its position for a given time.

Example 2.1.1. Examples of particles are: electrons, tennis balls, cars, planets, etc.

To describe the position of a particle, we need a reference frame (coordinate system). We denote by x=x(t) the curve, which is the trajectory of a given particle. Moreover, we define the velocity of a given trajectory x(t) by $v(t)=\frac{dx(t)}{dt}=\dot{x}(t)$, and the acceleration by $a(t)=\frac{dv}{dt}=\frac{d^2x}{dt^2}=\ddot{x}(t)$. We write p:=mv for the momentum. Then we can write Newton's second law of motion as

$$(2.1) F = ma,$$

where we assume \mathfrak{m} to be constant (mass). This is a second order ordinary differential equation.

Example 2.1.2 (Free particle). Consider the free particle, i.e. F = 0. Then, $m\ddot{x}(t) = 0$ and thus $x(t) = x_0 + vt$, where v is the initial velocity and x_0 is the initial position.

Remark 2.1.1. We would like to know whether Newton's second law of motion implies the first law of motion. The answer is: it is complicated. We already assume Newton's first law of motion for the second law.

Example 2.1.3 (Particle in the presence of a conservative force). Let us start first with the following definition:

Definition 2.1.2 (Conservative force). We say a force F is *conservative*, if F = F(x), i.e. it only depends on the position.

For a conservative force, we can define the potential V(x) by the equation

$$(2.2) F(x) = -\nabla V,$$

where $\nabla = (\partial_{x_1}, ..., \partial_{x_n})$, and everything is sufficiently *nice*, such that

$$V(x) = -\int_{x_0}^x F(u) du.$$

We will work with Equation (2.2) as a definition of conservative force.

With Example 2.1.3 we see that Equation (2.1) becomes

$$(2.3) -\nabla V = m\ddot{x}.$$

Remark 2.1.2. V is also called the potential energy.

We want to justify the word conservative for such a force. In this situation, there is a conserved quantity, called the total energy $E = \frac{1}{2}m\dot{x}^2 + V(x)$, where the first term is called the *kinetic* energy.

Lemma 2.1.1. If x(t) satisfies Newton's equation of motion, then $\frac{dE}{dt} = 0$ along x(t), i.e. E is conserved.

Proof. We have $E = \frac{1}{2}m\dot{x}^2 + V(x)$. Then

$$\frac{dE}{dt} = m\ddot{x}\dot{x} + \frac{dV}{dt}\frac{dx}{dt} = \dot{x}\left(m\ddot{x} + \frac{dV}{dt}\right) = 0.$$

Now, since E is constant, we can write $\frac{1}{2}m\dot{x}^2=E-V(x)$ and hence $\dot{x}=\frac{2}{m}\sqrt{E-V(x)}$, i.e.

$$\frac{\mathrm{d}x}{\sqrt{E - V(x)}} = \mathrm{d}t.$$

Solving Newton's equation of motion (which is a second order ODE) can be reduced to solving a first order ODE (2.4). This shows that the existence of conserved quantities can be useful for solving equations of motion.

Example 2.1.4 (Harmonic oscillator). The *harmonic oscillator* is described by the potential $V(x) = \frac{1}{2}kx^2$, where k is some constant. Thus, F(x) = -kx (Hooke's law), and the equation of motion (without friction) is given by

$$m\ddot{x} + kx = 0$$
.

It has a general solution of the form $x(t) = A\cos(\omega t) + B\sin(\omega t)$, with $\omega = \sqrt{\frac{k}{m}}$ and A, B some constants.

Example 2.1.5 (Uniform gravitational field). Let g denote the acceleration due to gravity. Consider the potential $V(z)=\mathrm{m} gz$ (thus $F=-\mathrm{m} g$). Then we get the equation of motion

$$\ddot{z} = -g$$
.

Solving this, we get $z(t) = z_0 + vt - \frac{1}{2}gt^2$.

- 2.2. **Newton's principle of determinism.** The initial state of a mechanical system (the totality of positions and velocities of its points at some moment) uniquely determines all of its motion. E.g. for a particle moving on a line the possible states are given by the set $\{(a,b) \mid a,b \in \mathbb{R}\}$. The modern point of view would be to regard Newton's equation as a second order ODE, hence it is enough to specify two initial conditions to solve the equation of motion.
- 2.3. **Hamiltonian mechanics.** Consider a Newtonian mechanical system, where a particle is moving in \mathbb{R}^n in the presence of a conservative force $F = -\nabla V$. Recall that $E(x,v) = \frac{1}{2}mv^2 + V(x)$ with equation of motion $-\frac{\partial V}{\partial x^j} = m\ddot{x}^j$, for j = 1,...,n.

Definition 2.3.1 (Momentum). We call p := mv the *mechanical (linear) momentum* of the system.

We can write $E(x,p)=\frac{p^2}{2m}+V(x)$ and thus $\dot{x}_j=\frac{\partial E}{\partial p_j}$. Moreover, $\dot{p}_j=m\ddot{x}^j=-\frac{\partial V}{\partial x^j}=-\frac{\partial V}{\partial x^j}$. Hence, we get a system of first order ODEs

$$\dot{x}^{j} = \frac{\partial E}{\partial p_{j}},$$

$$\dot{\mathfrak{p}}_{\mathfrak{j}} = -\frac{\partial \mathsf{E}}{\partial x^{\mathfrak{j}}},$$

for j = 1, ..., n.

Remark 2.3.1. We have not achieved anything new except for rewriting Newton's equation as a system of first order equation.

Definition 2.3.2 (Phase space). The space $\mathbb{R}^{2n} \ni (x,p)$ is called the *phase space* (or simply *state space* for the mechanical system). Here $x = (x^1, ..., x^n)$ and $p = (p_1, ..., p_n)$.

Definition 2.3.3 (Hamilton's equations). Given a function $H \in C^{\infty}(\mathbb{R}^{2n})$, we can consider the system of equations

$$\dot{x}^{j} = \frac{\partial H}{\partial p_{i}},$$

$$\dot{\mathfrak{p}}_{\mathfrak{j}} = -\frac{\partial H}{\partial x^{\mathfrak{j}}},$$

for j = 1, ..., n, called *Hamilton's equations*.

Remark 2.3.2. In Newtonian mechanics, we studied equations of motion in the configuration space (space of all possible positions), where as in the Hamiltonian approach, we will consider the phase space. We would like \mathbb{R}^{2n} to may have other structures, which can be useful to prove the equations of motions.

2.4. **Poisson bracket.** Given smooth functions f and g on \mathbb{R}^{2n} , we can define

(2.9)
$$\{f,g\} := \sum_{j=1}^{n} \left(\frac{\partial f}{\partial x^{j}} \frac{\partial g}{\partial p_{j}} - \frac{\partial g}{\partial x^{j}} \frac{\partial f}{\partial p_{j}} \right).$$

The map $\{\ ,\ \}: C^{\infty}(\mathbb{R}^{2n}) \times C^{\infty}(\mathbb{R}^{2n}) \to C^{\infty}(\mathbb{R}^{2n})$ is called the *Poisson bracket*.

Exercise 2.4.1. Show that the Poisson bracket satisfies for all f, g, h $\in C^{\infty}(\mathbb{R}^{2n})$ the following properties:

(i)
$$\{f,g\} = -\{g,f\},\$$

(ii) $\{ , \}$ is \mathbb{C} -bilinear,

(iii) $\{f, gh\} = \{f, g\}h + \{f, h\}g$, i.e. $\{f, \}$ is a derivation,

(iv) $\{f, \{g, h\}\} = \{\{f, g\}, h\} + \{g, \{f, h\}\}\$ (Jacobi identity).

Example 2.4.1. Let $p_j : \mathbb{R}^{2n} \to \mathbb{R}$, $p_j(x,p) = p_j$, and $x^j : \mathbb{R}^{2n} \to \mathbb{R}$, $x^j(x,p) = x^j$. Then

- $\{x^i, x^j\} = \{p_i, p_j\} = 0$,
- $\{x^i, p_j\} = \delta_{ij}$.

Proposition 2.4.1. Let $f \in C^{\infty}(\mathbb{R}^{2n})$, then

$$\frac{\mathrm{df}}{\mathrm{dt}} = \{\mathrm{f}, \mathrm{H}\}$$

along a solution $\{(x(t), p(t))\}\$ of Hamilton's equations.

Proof. We have

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial x^{j}} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} + \frac{\partial f}{\partial p_{j}} \frac{\mathrm{d}p_{j}}{\mathrm{d}t} \right) = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial x^{j}} \frac{\partial H}{\partial p_{j}} + \frac{\partial f}{\partial p_{j}} \frac{\partial H}{\partial x^{j}} \right) = \{f, H\}.$$

Corollary 2.4.1. Let $f \in C^{\infty}(\mathbb{R}^{2n})$. Then f is conserved along a solution (x(t), p(t)) of Hamilton's equations, and hence $\{f, H\} = 0$ along the solutions.

Example 2.4.2. $\{H, H\} = 0$ implies H is conserved.

Example 2.4.3. f, g conserved implies $\{f, g\}$ is conserved.

3. Symplectic linear algebra

3.1. Symplectic vector spaces. Let V be a finite-dimensional vector space over $k=\mathbb{R}$ or \mathbb{C} . Denote by V^* the dual of V. An element of V^* is a k-linear map $f\colon V\to k$. Let $0\leqslant m\leqslant \dim V$. Define

$$\bigwedge^m V^* := \Big\{ \varphi \colon \overbrace{V \times \cdots \times V}^m \to k \ \big| \$$

 ϕ is linear in each argument and ϕ is alternating, i.e.

$$\begin{split} \varphi(\nu_1,...,\nu_j,\nu_{j+1},...,\nu_m) = -\varphi(\nu_1,...,\nu_{j+1},\nu_j,...,\nu_m) \\ & \text{ for all } j=1,...,m-1 \Big\} \end{split}$$

8

Example 3.1.1. Let f, $g \in V^*$. Then we can define $(f \wedge g) \in \bigwedge^2 V^*$ by

$$(f \wedge g)(v_1, v_2) = f(v_1)g(v_2) - f(v_2)g(v_1).$$

In fact, it can be shown that all the elements of $\bigwedge^2 V^*$ are finite linear combinations of such elements. Given $\Omega \in \bigwedge^2 V^*$, we can define a map

$$\Omega^{\flat} \colon V \to V^*$$
 $v \mapsto \Omega^{\flat}(v),$

where $\Omega^{\flat}(v)(w) := \Omega(v, w)$.

Definition 3.1.1 (Symplectic vector space). A *symplectic vector space* is a pair (V, Ω) , where V is a (finite-dimensional) vector space and $\Omega \in \bigwedge^2 V^*$ such that Ω^{\flat} is a vector space isomorphism.

Remark 3.1.1. Since we are in the finite-dimensional setting, Ω^{\flat} is a vector space isomorphism if and only Ω^{\flat} is injective.

Remark 3.1.2. Ω^{\flat} is in fact injective if and only if there is a $v \in V$ such that $\Omega(v, w) = 0$ for all $w \in V$ implies v = 0.

Example 3.1.2. Let (W, \langle , \rangle) be an inner product space. Consider $V := W \oplus W$, with $\Omega((w_1, w_2), (w_1', w_2')) := \langle w_2', w_1 \rangle - \langle w_2, w_1' \rangle$. Then (V, Ω) is a real symplectic vector space. More generally, if $V := W \oplus W^*$ and $\Omega_{\operatorname{can}}((w, \alpha), (w', \alpha')) := \alpha'(w) - \alpha(w')$, then $(V, \Omega_{\operatorname{can}})$ is a symplectic vector space.

Remark 3.1.3. Note that the fact that (V, Ω_{can}) is a symplectic vector space is implied by Remark 3.1.2.

Definition 3.1.2 (Isotropic/Coisotropic/Lagrangian). Let (V, Ω) be a symplectic vector space. Let Y be a subspace of V. Define the symplectic complement of Y by $Y^{\perp} := \{v \in V \mid \Omega(v, y) = 0, \forall y \in Y\}$. Then

- Y is isotropic if $Y \subseteq Y^{\perp}$,
- Y is *coisotropic* if $Y^{\perp} \subseteq Y$,
- Y is *Lagrangian* if Y is isotropic and Y is symplectic if $\Omega|_{Y\times Y}$ is nondegenerate, i.e. $Y\cap Y^{\perp}=\{0\}$.

Example 3.1.3. If dim Y = 1, then Y is isotropic. If Y is isotropic, then Y^{\perp} is coisotropic. If Y is symplectic, then so is Y^{\perp} . Moreover, $Y^{\perp \perp} = (Y^{\perp})^{\perp} = Y$.

Proposition 3.1.1. Let (V, Ω) be a symplectic vector space. Then there is a basis $\{e_1, ..., e_n, f_1, ..., f_n\}$ of V such that

$$\begin{split} &\Omega(e_{i},e_{j})=0,\\ &\Omega(f_{i},f_{j})=0,\\ &\Omega(e_{i},f_{j})=\delta_{ij}. \end{split}$$

for all $i, j \in \{1, ..., n\}$. Hence, we can write $\Omega = \sum_{i=1}^{n} e_i^* \wedge f_i^*$.

Remark 3.1.4. Note that dim $V = \dim Y + \dim Y^{\perp}$. Moreover, Y is symplectic if and only if $V = Y \oplus Y^{\perp}$.

Remark 3.1.5. It is easy to see that Y is a Lagrangian subspace if and only if Y is isotropic and dim $Y = \frac{1}{2} \dim V$. Moreover, Y is Lagrangian if and only if Y is a maximal isotropic subspace.

3.2. **Kähler structure.** Let V be a real vector space.

Definition 3.2.1 (Complex structure). A *complex structure* J on V is a linear map $J: V \to V$ such that $J^2 = -id$.

Remark 3.2.1. If V has a complex structure J, then V can be turned into a complex vector space V_I by (a + ib)v = av + bJv. In particular, dim_R V is even.

Remark 3.2.2. In fact, if $\dim V$ is even, one can show that V carries a complex structure.

Assume V is a real vector space and $\dim V=2n$. Let $V^{\mathbb{C}}$ denote the *complexification* of V, i.e. $V^{\mathbb{C}}=V\oplus iV$, or equivalently $V^{\mathbb{C}}=V\otimes_{\mathbb{R}}\mathbb{C}$. We get (a+ib)(v,w)=(av-bw,bv+aw). Then $V^{\mathbb{C}}$ is a complex vector space. If $\{e_1,...,e_n\}$ is an \mathbb{R} -basis of V, then $\{(e,0),...,(e_n,0)\}$ is a \mathbb{C} -basis of $V^{\mathbb{C}}$. Let J be a complex structure on V and let J denote the complex linear extension of V to $V^{\mathbb{C}}$, i.e. J(a+ib)v=(a+ib)Jv. Moreover, denote by F_J the +i-eigenspace of J.

Definition 3.2.2 (Complex conjugation). Let $c: V^{\mathbb{C}} \to V^{\mathbb{C}}$ be the complex antilinear map, $c(\alpha \otimes \nu) := \bar{\alpha} \otimes \nu$. We call c the *complex conjugation*. given a subspace $W \subseteq V^{\mathbb{C}}$, we will write \overline{W} for c(W).

Remark 3.2.3. In particular, we have $V^{\mathbb{C}} = F_J \oplus \bar{F}_J$. Moreover, consider the map $V_J \to F_J$, $\nu \mapsto \nu - iJ\nu$. Then one can show that this map is an isomorphism of complex vector spaces.

Let F be a subspace of $V^{\mathbb{C}}$ such that $\dim F = \mathfrak{n}$ and $V^{\mathbb{C}} = F \oplus \bar{F}$. Define a complex linear map $J_F \colon V^{\mathbb{C}} \to V^{\mathbb{C}}$ by declaring that F is the +i-eigenspace of J_F and \bar{F} is the -i-eigenspace of J_F .

Lemma 3.2.1. J_F induces a complex structure on V.

Proof. We want to show first that $J_F(V) \subseteq V$. Let $v \in V$. Then, we can write $v = f + \bar{f}$, where $f \in F$. In particular, if v = f + g, then $g = \bar{f}$. Indeed, since $\bar{v} = v$, we have $\bar{f} + \bar{g} = f + g$ and thus $\bar{f} = g$. This shows that

$$J_F v = J_F f + J_F \overline{f} = if - i\overline{f} \Rightarrow \overline{J_F v} = -i\overline{f} + if = if - i\overline{f} = J_F v,$$

and hence $J_F v \in V$. Obviously, we have $J_F^2 = -id$.

We have shown that there is a one-to-one correspondence between the set of all complex structures on V and $\{F \subseteq V^{\mathbb{C}} \text{ subspace } | \dim F = n, V^{\mathbb{C}} = F \oplus \bar{F}\}.$

Remark 3.2.4. From now on we assume that (V, Ω) is a real symplectic vector space. We extend Ω complex bilinearly to $V^{\mathbb{C}}$, which will be again denoted by Ω .

Definition 3.2.3 (Symplectomorphism). A map $T: V \to V$ such that T is a vector space isomorphism and $\Omega(Tu, Tv) = \Omega(u, v)$ for all $u, v \in V$ is called a *linear symplectomorphism*.

Lemma 3.2.2. Let J be a complex structure on V such that $\Omega(J_{\mathfrak{u}},J_{\mathfrak{v}})=\Omega(\mathfrak{u},\mathfrak{v})$ for all $\mathfrak{u},\mathfrak{v}\in V$. Then F_J is a Lagrangian subspace of $V^{\mathbb{C}}$.

Lemma 3.2.3 (Converse of Lemma 3.2.2). Let F be a Lagrangian subspace of $V^{\mathbb{C}}$ such that $V = F \oplus \bar{F}$. Let J_F be the associated complex structure on V corresponding to F. Then $\Omega(J_F \mathfrak{u}, J_F \nu) = \Omega(\mathfrak{u}, \nu)$ for all $\mathfrak{u}, \nu \in V$.

Definition 3.2.4 (Compatible/positive structure). Let J be a complex structure on (V, Ω) . We say that J is *compatible* with Ω if $\Omega(Ju, Jv) = \Omega(u, v)$ for all $u, v \in V$. We say J is *positive* if $\Omega(u, Ju) > 0$ for all $u \in V \setminus \{0\}$.

Lemma 3.2.4. If J is a compatible positive complex structure on J, then the form

$$(\mathfrak{u},\mathfrak{v})\mapsto\Omega(\mathfrak{u},J\mathfrak{v})$$

defines an inner product on V.

Proof. We need to check that $\Omega(\ ,J\)$ is a symmetric bilinear form and it is positive-definite. Bilinearity is clear. It is symmetric since $\Omega(u,J\nu)=\Omega(Ju,J^2\nu)=-\Omega(Ju,\nu)=\Omega(\nu,Ju)$. It is positive-definite since $\Omega(u,Ju)>0$ for all $u\in V\setminus\{0\}$, which was an assumption. \square

Let J be a compatible complex structure on V. Let F_J be the corresponding Lagrangian subspace of $V^{\mathbb{C}}$. Define a Hermitian form h^J on F_J by

$$h^{J}(u,v) := -i\Omega(u,\bar{v}).$$

We actually need to check that it is indeed Hermitian, i.e. it is sesquilinear and $h^J(u,v) = \overline{h^J(v,u)}$.

Lemma 3.2.5. If J is positive then h^J is a positive-definite Hermitian form on F_J .

Proof. Given $u \in F_I$, we can write u = w - iJw, where $w \in V$. Thus

$$\Omega(\mathfrak{u},\bar{\mathfrak{u}}) = \Omega(w - iJw, w + iJw) = -i\Omega(Jw, w) + i\Omega(w, Jw) = 2i\Omega(w, Jw),$$

and hence $i\Omega(u, \bar{u}) = 2\Omega(w, Jw) > 0$ for $w \in V$.

Definition 3.2.5 (Hermitian form w.r.t. a Lagrangian subspace). Let F be a Lagrangian subspace of $V^{\mathbb{C}}$ such that $V^{\mathbb{C}} = F \oplus \overline{F}$. Define a form h^F on F by

$$h^{F}(u, v) := -\Omega(u, \bar{v}).$$

We can easily check that h^F is a non Hermitian form. We say F is *positive* if h^F is positive-definite, i.e. $h^F(u, u) > 0$ for $u \in F \setminus \{0\}$.

Proposition 3.2.1. Let (V,Ω) be a real symplectic vector space. Then there is a canonical bijection between the set of compatible positive complex structures on V and positive Lagrangian subspaces F of $V^{\mathbb{C}}$ such that $V^{\mathbb{C}} = F \oplus \bar{F}$.

Definition 3.2.6 (Kähler triple). A triple (V, Ω, J) , where (V, Ω) is a real symplectic vector space and J is a compatible positive complex structure on (V, Ω) is called a *Kähler triple*.

3.3. Exercises.

Exercise 3.3.1. Consider a particle moving on the real line in the presence of a force from a potential V. Let $E_0 \in \mathbb{R}$ be the energy of the particle and suppose $V(x) < E_0$ for all $x_0 \le x \le x_1$. Then a particle with initial position x_0 and a positive initial velocity will continue to move to the right of x_0 until it reaches x_1 . Show that the total time needed to travel from x_0 to x_1 is given by

$$t=\int_{x_0}^{x_1}\sqrt{\frac{m}{2(E_0-V(y))}}dy.$$

Exercise 3.3.2. We will use the notation of Exercise 3.3.1. Assume that $V(x) < E_0$ for $x_0 \le x \le x_1$ but $V(x_1) = E_0$.

- (1) Show that if $V'(x_1) \neq 0$, then the particle reaches to x_1 in a finite time.
- (2) If $V'(x_1)=0$, then the particle never reaches x_1 , i.e. the integral $\int_{x_0}^{x_1}\sqrt{\frac{m}{2(E_0-V(y))}}dy$ diverges.

Exercise 3.3.3. Let F be a function $F: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2$ given by

$$F(x^1, x^2) = \left(\underbrace{-\frac{x^2}{(x^1)^2 + (x^2)^2}}_{F_1}, \underbrace{\frac{x^1}{(x^1)^2 + (x^2)^2}}_{F_2}\right).$$

Show that:

- (1) $\frac{\partial F_1}{\partial x^2} = \frac{\partial F_2}{\partial x^1}$,
- (2) F is not *conservative*, i.e. F is not of the form $-\nabla V$.

Exercise 3.3.4. Consider a particle moving in \mathbb{R}^d with a velocity dependent force law

$$F(x, v) = -\nabla V(x) + F_2(x, v),$$

where $F_2: \mathbb{R}^2 \times \mathbb{R}^d \to \mathbb{R}^d$. Assume that $\nu F_2(x,\nu) = 0$ for all $x,\nu \in \mathbb{R}^d$. Show that then the function $E(x,\nu) = \frac{1}{2}m\nu^2 + V(x)$ is conserved.

Exercise 3.3.5 (Angular momentum). Consider a particle moving in \mathbb{R}^2 with position x and velocity v. Recall that the momentum is given by p=mv. Define the *angular momentum* of the particle by $J=x_1p_2-x_2p_1$. Suppose we have a particle of mass m moving in \mathbb{R}^2 under the influence of a conservative force with potential V(x). Show that:

- (1) If V is rotationally invariant in \mathbb{R}^2 , i.e. V(x)=V(Ax) for any rotation matrix $A=\begin{pmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{pmatrix}$, then J is conserved along a solution of Newton's equation.
- (2) If J is conserved along any solution of Newton's equation, then V is rotationally invariant.

Exercise 3.3.6. Varify the various properties of the Poisson bracket.

4. DIFFERENTIABLE MANIFOLDS

Let M be a topological space, which is Hausdorff and second countable.

Definition 4.0.1 (Smooth manifold). Let M be a topological space and $p \in M$. A chart (or local coordinate system) at p is a pair (U, φ) , where $U \subseteq M$ is an open set containing p and $\varphi \colon U \to \mathbb{R}^n$ is a homeomorphism of U onto $\varphi(U)$, which is an open subset of \mathbb{R}^n . More precisely, such a chart is called a chart of $\operatorname{rank} n$. Moreover, let (U, φ) and (V, ψ) be two coordinate charts of rank n such that $U \cap V \neq \emptyset$. Then we have the maps

$$\phi \circ \psi^{-1} \colon \psi(U \cap V) \to \phi(U \cap V)$$
$$\psi \circ \phi^{-1} \colon \phi(U \cap V) \to \psi(U \cap V).$$

We say (U, φ) and (V, ψ) are *smoothly compatible* if $\varphi \circ \psi^{-1}$ is smooth as well as $\psi \circ \varphi^{-1}$ is smooth, in other words $\varphi \circ \psi^{-1}$ is a *diffeomorphism*. Note that $\varphi(U \cap V) \subseteq \mathbb{R}^n$ and $\psi(U \cap V) \subseteq \mathbb{R}^n$, and for this situation we know how to define the term *smooth* and *diffeomorphism* etc. A smooth *atlas* \mathcal{A} of rank \mathfrak{n} of \mathcal{M} is a collection $\{(U_i, \varphi_i) \mid i \in I\}$ of smooth compatible coordinate charts such that $\mathcal{M} = \bigcup_{i \in I} U_i$. An atlas \mathcal{A} of rank \mathfrak{n} is called *maximal* if \mathcal{A} is not contained in a strictly larger smooth atlas of rank \mathfrak{n} . A *smooth structure* \mathcal{A} on \mathcal{M} is a smooth maximal atlas of rank \mathfrak{n} . The pair $(\mathcal{M}, \mathcal{A})$ is called a *smooth manifold* of dimension \mathfrak{n} .

Lemma 4.0.1. Given any smooth atlas A of M, there is a maximal smooth atlas $\overline{A} \supseteq A$.

Remark 4.0.1. As a consequence of Lemma 4.0.1, we see that it is sufficient to have a smooth atlas in order to define a smooth structure on a topological space M.

Example 4.0.1. Let $M = \mathbb{R}^n$. Then $\mathcal{A} = \{id_{\mathbb{R}^n}\}$ defines a smooth structure on \mathbb{R}^n , which is called the *standard smooth structure*. Note that \mathcal{A} is not maximal.

Example 4.0.2. Let
$$M=S^1=\{(x,y)\in\mathbb{R}^2\mid x^2+y^1=1\}$$
. Define
$$\begin{aligned} U_1=\{(x,y)\in S^1\mid -1< x<1,y>0\},\\ U_2=\{(x,y)\in S^1\mid -1< y<1,x>0\},\\ U_3=\{(x,y)\in S^1\mid -1< x<1,y<0\},\\ U_4=\{(x,y)\in S^1\mid -1< y<1,x<0\}. \end{aligned}$$

Moreover, define

Exercise 4.0.1. Show that $\{(U_i, \phi_i) \mid i = 1, 3, 4\}$ form an atlas of S^1 .

Example 4.0.3. Let $V_1 = S^1 \setminus \{(0,1)\}$ and $V_2 = S^1 \setminus \{(0,-1)\}$. We call (0,1) the *North pole* and (0,-1) the *South pole*. Define

$$\psi_1 \colon V_1 \to \mathbb{R}, \quad \psi_1(x,y) = \frac{x}{1-y},$$
 $\psi_2 \colon V_2 \to \mathbb{R}, \quad \psi_2(x,y) = \frac{x}{1+y}.$

Exercise 4.0.2. Show that $\{(V_1, \psi_1), (V_2, \psi_2)\}$ form another atlas for S^1 . What can we say about the smooth structures on S^1 given by two different atlases $\{(U_i, \phi_i) \mid i = 1, 3, 4\}$ and $\{(V_i, \psi_i) \mid i = 1, 2\}$?

Definition 4.0.2 (Smooth functions). Let (M,\mathcal{A}) be a smooth manifold of dimension n. A function $f\colon M\to k$ (for $k=\mathbb{R}$ or \mathbb{C}) is *smooth* if for every coordinate chart $(U,\varphi),\ f\circ\varphi^{-1}\colon \varphi(U)\to k$ is smooth. We will use $C^\infty(M)$ to denote the set of all *smooth functions* on M.

Definition 4.0.3 (Vector field). A *vector field* X on M is a map $X: C^{\infty}(M) \to C^{\infty}(M)$ such that for all $f, g \in C^{\infty}(M)$ and $c \in k$

(1)
$$X(f+g) = X(f) + X(g)$$
 and $X(cf) = cX(f)$,

(2)
$$X(fg) = fX(g) + X(f)g$$
, i.e. X is a derivation.

Example 4.0.4. Let $M = \mathbb{R}^n$. Then for $f_1, ..., f_n \in \ C^{\infty}(\mathbb{R}^n)$

$$X = f_1 \frac{\partial}{\partial x^1} + \dots + f_n \frac{\partial}{\partial x^n}$$

is a vector field.

Remark 4.0.2. Let X and Y be two vector fields on M. Then XY is *not* a vector field in general. Instead, [X, Y] := XY - YX is a vector field.

Definition 4.0.4 (Lie bracket). For two vector fields X and Y on M, we can define their *Lie bracket*

$$[X, Y] := XY - YX.$$

Let Vect(M) denote the space of vector fields on M. Then $[\ ,\]: Vect(M) \times Vect(M) \to Vect(M)$ is k-bilinear. Moreover, [X,[Y,Z]] = [[X,Y],Z] + [Y,[X,Z]] (Jacobi identity). In other words, $(Vect(M),[\ ,\])$ is a *Lie algebra*.

Definition 4.0.5 (Tangent vector). Given $p \in M$, a tangent vector v at p is an \mathbb{R} -linear map $v \colon C^{\infty}(M) \to \mathbb{R}$ such that v(fg) = f(p)v(g) + g(p)v(f).

Example 4.0.5. Let $M := \mathbb{R}^n$ and $\mathfrak{p} \in \mathbb{R}^n$. Then each $\mathfrak{v} \in \mathbb{R}^n$ can be regarded as a tangent vector at \mathfrak{p} as follows:

$$v(f) = \frac{d}{dt}f(p + tv)\bigg|_{t=0}.$$

Let T_pM denote the space of tangent vectors at p. Then one can show that T_pM is a vector space.

Remark 4.0.3. dim T_pM is given by the dimension of the manifold M.

Remark 4.0.4. For $\varepsilon > 0$, let $\gamma \colon (-\varepsilon, \varepsilon) \to M$ be a smooth curve such that $\gamma(0) = p$. Define $\nu_\gamma \colon C^\infty(M) \to \mathbb{R}$ by $\nu_\gamma(f) = \frac{d}{dt} (f \circ \gamma)(t) \big|_{t=0}$. Then $\nu_\gamma \in T_p M$. In fact, it can be shown that each $\nu \in T_p M$ appears in this way. This is the geometric way of thinking about a tangent vector at $p \in M$.

Definition 4.0.6 (Vector bundle). Let M be a smooth manifold. A *real (complex) vector bundle* of rank k is a pair (E, π) , where E is a smooth manifold, $\pi: E \to M$ a smooth map, which is surjective such that

- (1) For each $p \in M$, $E_p := \pi^{-1}(p)$ is a real (complex) vector space,
- (2) For each $p \in M$, there is a neighborhood U of p and a diffeomorphism

$$\phi: \pi^{-1}(\mathsf{U}) \to \mathsf{U} \times \mathbb{R}^k (\mathsf{U} \times \mathbb{C}^k),$$

such that the diagram

$$\pi^{-1}(U) \xrightarrow{\varphi} U \times \mathbb{R}^k(U \times \mathbb{C}^k)$$

$$\downarrow^{\pi}$$

$$U$$

is commutative and $\phi|_{E_p} \colon E_p \to \{p\} \times \mathbb{R}^k(\{p\} \times \mathbb{C}^k)$ is a linear isomorphism. We call E_p the *fiber* over p. Here we have denoted by pr_1 the projection onto the first factor.

Example 4.0.6 (Trivial bundle). Let $E := M \times \mathbb{R}^k \xrightarrow{\pi} M$ be a vector bundle of rank k. Such a vector bundle is called a *trivial vector bundle*.

Example 4.0.7 (Tangent bundle). Let M be a smooth manifold of dimension n. Define $TM := \bigsqcup_{p \in M} T_p M$. We call TM the *tangent bundle* of M.

Exercise 4.0.3. Show that the vector bundle TM can be given a smooth structure so that it is a vector bundle over M of rank n, where $n = \dim M$.

Exercise 4.0.4 (Cotangent bundle). We can define the *dual bundle* $T^*M := \bigsqcup_{p \in M} (T_p M)^*$, where $(T_p M)^*$ is the dual of $T_p M$. Show that T^*M is a vector bundle over M of rank n where $n = \dim M$. We call T^*M the *cotangent bundle* of M.

Remark 4.0.5. Let E and F be two vector bundles over M. Then we can construct new vector bundles over M as follows:

- (1) (Tensor product bundle) $E \otimes F \xrightarrow{\pi}$, where $(E \otimes F)_p := E_p \otimes F_p$ for all $p \in M$,
- (2) (Dual bundle) $E^* \stackrel{\pi}{\to} M$, where $E_p^* := (E_p)^*$ for all $p \in M$,
- (3) (Direct sum of bundles) $E \oplus F \xrightarrow{\pi} M$, where $(E \oplus F)_p := E_p \oplus F_p$ for all $p \in M$,
- (4) (Exterior bundle) $\bigwedge^k E^* \xrightarrow{\pi} M$, where $(\bigwedge^k E)_p^* := \bigwedge^k E_p^*$ for all $p \in M$.

Definition 4.0.7 (Section). Let (E,π) be a vector bundle over M. A *smooth section* s of E is a smooth map $s \colon M \to E$ such that $\pi \circ s = id_M$. This means $s(p) \in E_p$ for all $p \in M$.

Remark 4.0.6. We will use $\Gamma(M, E)$ to denote the space of all smooth sections on M. Note that $\Gamma(M, E)$ is a(n) (infinite-dimensional) vector space.

Example 4.0.8. Let $E := M \times \mathbb{R}^k \xrightarrow{\pi} M$. Then $\Gamma(M, E)$ can be identified with $C^{\infty}(M, \mathbb{R}^k)$, which are \mathbb{R}^k -valued smooth functions on M.

Definition 4.0.8 (Line bundle). When E is a vector bundle over M of rank 1, we call it a *line bundle* over M.

Remark 4.0.7. If $E := M \times \mathbb{R} \xrightarrow{\pi} M$, then $\Gamma(M, E) = C^{\infty}(M)$.

Example 4.0.9. Let TM be the tangent bundle over M. Then $\Gamma(M, TM) = \text{Vect}(M)$, which is the space of vector fields on M.

Example 4.0.10 (1-form). Let T*M be the cotangent bundle over M. Then a section $\alpha \in \Gamma(M, T^*M)$ is called a *differential* 1-form.

Let X be a vector field on M and α be a 1-form on M. Then $X_p \in T_pM$ and $\alpha_p \in T_p^*M$. Hence, we can define a smooth function

$$(\alpha(X))(p) := \alpha_p(X_p).$$

Moreover, if $f \in C^{\infty}(M)$, then $(f\alpha)(X) = f(\alpha(X))$ and $\alpha(fX) = f\alpha(X)$. In fact $\alpha \colon \Gamma(M,TM) \to C^{\infty}(M)$ is $C^{\infty}(M)$ -linear, i.e. $\alpha(fX+gY) = f\alpha(X) + g\alpha(Y)$ for all $f,g \in C^{\infty}(M)$ and $X,Y \in \Gamma(M,TM)$. In fact, it can be shown that

$$\Gamma(M, T^*M) = \{\alpha \colon \Gamma(M, TM) \to C^{\infty}(M) \mid \alpha \text{ is } C^{\infty}(M)\text{-linear}\}.$$

Example 4.0.11. Let $f \in C^{\infty}(M)$ and define df by df(X) := X(f), where X is a vector field on M. Then we can check that $df \colon \Gamma(M, TM) \to C^{\infty}(M)$ and that it is $C^{\infty}(M)$ -linear. Hence df defines a 1-form on M.

Example 4.0.12 (k-form). Let T*M be the cotangent bundle over M. Consider the vector bundle $\bigwedge^k T^*M$. A k-form on M is a section of $\bigwedge^k T^*M$. Let α be a k-form on M. Then for each $p \in M$ we have $\alpha_p \in \bigwedge^k (T_pM)^*$. Let $X_1, ..., X_k$ be vector fields on M. Then, we can define a smooth function $(\alpha(X_1, ..., X_k))(p) := \alpha_p(X_1(p), ..., X_k(p))$. One can check that α is $C^{\infty}(M)$ linea in each argument and alternating. Hence a k-form on M can be regarded as a map

$$\alpha \colon \underbrace{\Gamma(M, \mathsf{T}M) \times \cdots \times \Gamma(M, \mathsf{T}M)}_{\mathsf{k}} \to C^{\infty}(M),$$

which is $C^{\infty}(M)$ -multilinear and alternating.

Example 4.0.13. Let $M := \mathbb{R}^n$. Then we have $TM = \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\pi} \mathbb{R}^n$. Thus, $T^*M = \mathbb{R}^n \times (\mathbb{R}^n)^* \xrightarrow{\pi} \mathbb{R}^n$. A vector field X on \mathbb{R}^n can be written as

$$X = \sum_{i=1}^{n} f_i \frac{\partial}{\partial x^i},$$

where $\frac{\partial}{\partial x^1}$, ..., $\frac{\partial}{\partial x^n}$ are the coordinate vector fields. Let dx^i be the 1-form dual to $\frac{\partial}{\partial x^i}$. Then, any 1-form on \mathbb{R}^n can be written as $\sum_{j=1}^n g_j dx^j$. A k-form on \mathbb{R}^n can be represented as

$$\sum_{1\leqslant i_1<\dots< i_k\leqslant n}g_{i_1,\dots,i_k}dx^{i_1}\wedge\dots\wedge dx^{i_k},$$

where \wedge is the wedge product (alternating tensor product).

4.1. **Exterior derivative.** Let Ω be a k-form on M. We will think of Ω as a map

$$\underbrace{\Gamma(M,\mathsf{T}M)\times\cdots\times\Gamma(M,\mathsf{T}M)}_{\mathsf{k}}\to C^\infty(M),$$

which is $C^{\infty}(M)$ -multilinear and alternating. Then $d\Omega$ is a (k+1)-form on M defined by

$$\begin{split} d\Omega(X_1,...,X_{k+1}) &= \sum_{j=1}^{k+1} (-1)^{j+1} X_j(\Omega(X_1,...,\widehat{X}_j,...,X_{k+1})) + \\ &\qquad \qquad \sum_{1\leqslant i < j \leqslant k+1} (-1)^{i+j} \Omega([X_i,X_j],X_1,...,\widehat{X}_i,...,\widehat{X}_j,...,X_{k+1}). \end{split}$$

Example 4.1.1. Let $f \in C^{\infty}(M)$. Then df(X) = X(f).

Example 4.1.2. Let $M:=\mathbb{R}^2$ and $\alpha:=pdx$. Denote by ∂_x the tangent vector $\frac{\partial}{\partial x}$. Then $d\alpha(\partial_x,\partial_x)=d\alpha(\partial_p,\partial_p)=0$ and $d\alpha(\partial_x,\partial_p)=1$. Moreover, $dp\wedge dx(\partial_x,\partial_x)=dp\wedge dx(\partial_p,\partial_p)=0$ and $dp\wedge dx(\partial_x,\partial_p)=1$. Thus we get $d\alpha=dp\wedge dx$.

Example 4.1.3. Let $M:=\mathbb{R}^n\ni (x^1,...,x^n).$ If $\alpha:=fdx^1\wedge\cdots\wedge dx^k,$ then

$$d\alpha = \sum_{j=k+1}^{n} \frac{\partial f}{\partial x^{j}} dx^{j} \wedge dx^{1} \wedge \cdots \wedge dx^{k}.$$

More generally, if $\alpha:=\sum_{i_1<\dots< i_k} f dx^{i_1} \wedge \dots \wedge dx^{i_k},$ then

$$d\alpha = \sum_{j \notin \{i_1, \dots, i_k\}} \frac{\partial f}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

Remark 4.1.1. The operator d has the following properties:

- (1) d is \mathbb{R} -linear,
- (2) If ω is a k-form and η is an ℓ -form on M, then

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta,$$

- (3) $d \circ d = 0$,
- (4) df(X) = X(f) for all $f \in C^{\infty}(M)$.

Moreover, these properties uniquely determine d on k-forms for $0 \leqslant k \leqslant \dim M$.

4.2. Exercises.

Exercise 4.2.1. Let $M := \mathbb{R}$ and $A := \{\mathbb{R}, id_{\mathbb{R}}\}$ and $A' := \{(\mathbb{R}, \phi \colon \mathbb{R} \to \mathbb{R}, \phi(x) = x^3)\}$

- (1) Show that \mathcal{A}' is a smooth atlas on \mathbb{R} .
- (2) Show that A and A' induce different smooth structures on \mathbb{R} .

Definition 4.2.1 (Standard structure). The smooth structure on \mathbb{R} induced by \mathcal{A} (i.e. the smooth maximal atlas containing \mathcal{A}) is called *standard smooth structure* on \mathbb{R} .

(3) Define $f: (\mathbb{R}, \mathcal{A}) \to (\mathbb{R}, \mathcal{A}')$ by $f(x) = x^3$. Show that f is a diffeomorphism from \mathbb{R} with the standard smooth structure to \mathbb{R} with the smooth structure induced by \mathcal{A}' .

Exercise 4.2.2. Let M be a smooth manifold.

- (1) Let X and Y be vector fields on M and f, $g \in C^{\infty}(M, \mathbb{R})$. Show that [fX, gY] = fX(g)Y gY(f)X + fg[X, Y].
- (2) Show that [,] satisfies the Jacobi identity.

Exercise 4.2.3. Let M be a smooth manifold with dim M = n.

- (1) Let $\gamma\colon (-1,1)\to M$ be a smooth map (here (-1,1) is given the standard smooth structure) such that $\gamma(0)=p$. Let $f\in C^\infty(M,\mathbb{R})$. Define $\nu_\gamma f=\frac{d}{dt}(f(\gamma(t)))\big|_{t=0}$. Show that $\nu_\gamma\in T_pM$.
- (2) Let $p \in M$. Let (U, φ) be a coordinate chart at p such that $\varphi(p) = 0$. Let $w \in \mathbb{R}^n$ and $\varepsilon > 0$ small such that $tw \in \varphi(U)$ for all $t \in (-\varepsilon, \varepsilon)$. Define $\alpha(t) = tw$, $\alpha: (-\varepsilon, \varepsilon) \to \mathbb{R}^n$ and $\gamma(t) = \varphi^{-1}(\alpha(t))$. Then $\gamma: (-\varepsilon, \varepsilon) \to M$ is smooth. Show that $d\varphi_p(v_\gamma) = w$. Hint: Use that

$$w(f) := \frac{\mathrm{d}}{\mathrm{d}t}(f(tw))\big|_{t=0},$$

for $f \in C^{\infty}(\mathbb{R}^n)$ and $w \in \mathbb{R}^n$.

Exercise 4.2.4. Let M and N be smooth manifolds and F: M \rightarrow N be a diffeomorphism. Let $p \in M$. Show that $dF_p : T_pM \rightarrow T_{F(p)}N$ is a vector space isomorphism. (This exercise implies that M and N are diffeomorphic and thus dim $M = \dim N$.)

Exercise 4.2.5. Let M and N be smooth manifolds and F: $M \rightarrow N$ be a smooth map.

(1) Let ω be a k-form on N. Given vector fields $X_1, ..., X_k$ in M, define

$$((F^*\omega)(X_1,...,X_k))(p) := \omega(dF_p(X_1),...,dF_p(X_k)).$$

Show that $F^*\omega$ is a k-form on M. (This exercise shows that we can pull back differential forms.)

(2) Show that $F^*(d\omega) = d(F^*\omega)$ for any k-form on N with $k \in \mathbb{N}$. (This exercise shows that d commutes with the pullback.)

Exercise 4.2.6. Let V be a finite dimensional vector space and $v \in V$. For $\alpha \in \bigwedge^k V^*$, define

$$\iota_{\nu}\alpha(\nu_2,...,\nu_k):=\alpha(\nu,\nu_2,...,\nu_k).$$

- (1) Show that $\alpha \in \bigwedge^k V^*$ implies that $\iota_{\nu}\alpha \in \bigwedge^{k-1} V^*$. Hence, conclude that ι_{ν} defines a linear map $\iota_{\nu} \colon \bigwedge^k V^* \to \bigwedge^{k-1} V^*$.
- (2) Show that $\iota_v \circ \iota_v = 0$. Hint: think of a very simple fact about α .
 - 5. Symplectic manifolds and Hamiltonian systems

See also [Silo8] for more on symplectic geometry and its relation to Hamiltonian mechanics.

5.1. Symplectic manifolds.

Definition 5.1.1 (Closed/exact). We call a k-form ω *closed*, if $d\omega = 0$. It is called *exact* if there is a (k-1)-form α such that $d\alpha = \omega$.

Example 5.1.1. If ω is exact, then $d\omega = 0$, i.e. exact forms are closed as well. Let $M = \mathbb{R}^n$, then ω is closed if and only if ω is exact (this is given by the *Poincaré lemma*).

Definition 5.1.2 (Symplectic manifold). A *symplectic manifold* is a pair (M, Ω) , where M is a smooth manifold and Ω is a 2-form on M such that

- (1) Ω is closed, i.e. $d\Omega = 0$,
- (2) Ω is nondegenerate, i.e. for all $q \in M$, $\Omega^{\flat} \colon T_qM \to T_q^*M$ is injective.

Definition 5.1.3 (Tautological 1-form). Let $M := T^*N$ for some manifold N. Define a 1-form α on M as

$$\alpha_{x,p}(X_{x,p}) := \pi^{N}(d\pi^{M}_{x,p}X_{x,p}),$$

where $\pi^N \colon T^*N \to N$, $\pi^M \colon TM \to M$ and $X_{x,p} \in T_{x,p}M$. The form α is called the *tautological 1-form* on T^*N .

Example 5.1.2. Let $M := T^*\mathbb{R} \cong \mathbb{R} \times \mathbb{R} \ni (x, p)$. Let $\alpha := fdx + gdp$. Then $\alpha(\partial_x) = f$ and $\alpha(\partial_p) = 0$, thus $\alpha = fdx$. on the other hand $\alpha_{x,p}(\partial_x) = p$ and hence $\alpha = pdx$. More generally, if $M := T^*\mathbb{R}^n \ni (x^1, ..., x^n, p_1, ..., p_n)$, then $\alpha = \sum_{1 \le i \le n} p_i dx^i$

Exercise 5.1.1. Let (U, ϕ) be a local coordinate system on $M = T^*N$ given by

$$\phi(q) = (x^{1}(q), ..., x^{n}(q), p_{1}(q), ..., p_{n}(q)),$$

Show that $\alpha = \sum_{1 \le j \le n} p_j dx^j$. Moreover, show that $(T^*N, \Omega = d\alpha)$ is a symplectic manifold.

5.2. The Lie derivative.

Definition 5.2.1 (Lie derivative). Let $f \in C^{\infty}(M)$ and X be a vector field. The Lie derivative of f along X is defined as $L_X f = X(f)$. Let X and Y be two vector fields. Then we define $L_X Y = [X, Y]$. Moreover, let X be a vector filed and α a 1-form. Then $L_X \alpha$ is a 1-form defined by the equation

$$L_X(\alpha(Y)) = (L_X\alpha)(Y) + \alpha(L_XY).$$

More generally, if α is a k-form then $L_X\alpha$ is again a k-form defined by

$$(L_X\alpha)(Y_1,...,Y_k) := L_X(\alpha(Y_1,...,Y_k)) - \sum_{j=1}^k \alpha(Y_1,...,Y_{j-1},[X,Y_j],Y_{j+1},...,Y_k).$$

Remark 5.2.1. Given a k-form α , and a vector field X, $(L_X\alpha)(p)$ is the rate of change of α in the direction of the so-called *flow* of x at p.

Exercise 5.2.1. Given a vector field X and a k-form α , $\iota_X \alpha$ is a (k-1)-form defined by

$$(\iota_X \alpha)(Y_1, ..., Y_{k-1}) = \alpha(X, Y_1, ..., Y_{k-1}).$$

Show that

- (1) $\iota_X \circ \iota_X = 0$,
- (2) $L_X = d \circ \iota_X + \iota_X \circ d$ (Cartan's magic formula).

Remark 5.2.2. We denote by $\Omega^k(M)$ the space of global k-forms on M.

Definition 5.2.2 (Poisson bracket II). Let (M, Ω) be a symplectic manifold and let $f \in C^{\infty}(M)$. Then $df \in \Omega^{1}(M)$. Note that df defines a vector field X_{f} on M by $(\Omega^{\flat})^{-1}(X_{f}) = df$, i.e. $\Omega(X_{f},) = -df$ or equivalently $\iota_{X_{f}}\Omega = -df$. Moreover, note that $d(\iota_{X_{f}}\Omega) = -d(df) = 0$. We can define a Poisson bracket for $f, g \in C^{\infty}(M)$ by

$$\{\mathbf f,\mathbf g\} := \Omega(\mathbf X_{\mathbf f},\mathbf X_{\mathbf g}) = -\mathbf d\mathbf f(\mathbf X_{\mathbf g}) = -\mathbf X_{\mathbf g}(\mathbf f) = \mathbf X_{\mathbf f}(\mathbf g).$$

Exercise 5.2.2. Let $M:=T^*\mathbb{R}^n$ together with $\Omega=d\alpha$, where α is the canonical 1-form on $T^*\mathbb{R}^n$. Then

(5.1)
$$\{f,g\} = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial x^{j}} \frac{\partial g}{\partial p_{j}} - \frac{\partial g}{\partial x^{j}} \frac{\partial f}{\partial p_{j}} \right).$$

Proposition 5.2.1 (Properties of the Poisson bracket). We have that $\{\ ,\ \}$, as defined in (5.1), is \mathbb{R} -bilinear, antisymmetric and satisfies the Jacobi identity.

Proof. It is straightforward to show \mathbb{R} -bilinearity and antisymmetry. We want to show first that

(5.2)
$$X_{\{f,g\}} = [X_f, X_g].$$

To show (5.2), we will show that

(5.3)
$$\Omega(Y, X_{f,q}) = \Omega(Y, [X_f, X_q]),$$

for all $Y \in \text{Vect}(M)$. As Ω is nondegenerate, (5.2) implies (5.3). Note that $L_{X_f}\Omega = d(\iota_{X_f}\Omega) + \iota_{X_f}(d\Omega) = 0$. Hence, for all $Y \in \text{Vect}(M)$

$$0 = (L_{X_f}\Omega)(Y, X_g) = L_{X_f}(\Omega(Y, X_g)) - \Omega([X_f, Y], X_g) = \Omega(Y, [X_f, X_g]).$$

Hence we get

$$\begin{split} \Omega(Y,[X_f,X_g]) &= X_f(\Omega(Y,X_g)) - \Omega([X_f,Y],X_g) \\ &= X_f(Y(g)) - [X_f,Y](g) = X_f(Y(g)) - X_f(Y(g)) + Y(X_f(g)) = Y(X_f(g)) \\ &= -Y(X_g(f)) = Y(\{f,g\}) = d(\{f,g\})(Y) = -d(\{f,g\})(-Y) \\ &= \Omega(Y,X_{\{f,g\}}). \end{split}$$

Now let $h \in C^{\infty}(M, \mathbb{R})$. Using (5.2), we get

$$X_{\{f,g\}}(h) = [X_f,X_g](h)$$

and thus $\{\{f,g\},h\}=\{f,\{g,h\}\}-\{g,\{f,h\}\}\}$, and hence $\{f,\{g,h\}\}=\{\{f,g\},h\}+\{g,\{f,h\}\}\}$.

5.3. Hamiltonian systems.

Definition 5.3.1 (Hamiltonian system). A *Hamiltonian system* is a triple (M, Ω, H) , where (M, Ω) is a symplectic manifold and $H: M \to \mathbb{R}$ is a smooth function.

Let X_H be the Hamiltonian vector field associated to M. The integral curves of X_H are trajectories of motions. In a local coordinate system, computation of integral curves of X_H boils down to Hamilton's equations. Let $\gamma(t)$ be an integral curve of X_H . Then for any $f \in C^\infty(M,\mathbb{R})$ we have $X_H(f)(\gamma(t)) = \frac{d}{dt}f(\gamma(t))$. This implies

$$\frac{d}{dt}f(\gamma(t)) = X_H(f)(\gamma(t)) = \{H, f\}(\gamma(t)).$$

(f is conserved along γ if and only if $\{H, f\} = 0$ along γ).

5.4. **Short summary.** We want to give a short summary of this section:

- The phase space (or state space) of Classical Mechanics leads to the notion of a symplectic manifold.
- A classical observable is a function on the phase space. A particular choice of an observable corresponds to a *physical system*.
- Conservation can be expressed using the Poisson bracket.
- Let (M, Ω) be a symplectic manifold. Then $(C^{\infty}(M, \mathbb{R}), \{,\})$ is a Lie algebra.

5.5. Exercises.

Exercise 5.5.1. Let $M := \mathbb{R}^n$ and $(x^1, ..., x^n)$ be the global coordinates on \mathbb{R}^n . Let α be a k-form and β be an ℓ -form on M. Show that $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge \beta$.

Exercise 5.5.2. Let X be a vector field on M, α a k-form and β an ℓ -form on M. Show that $L_X(\alpha \wedge \beta) = (L_X \alpha) \wedge \beta + \alpha \wedge L_X \beta$.

Exercise 5.5.3 (Liouville's theorem). Let (M,Ω) be a symplectic manifold with dim M=2n. Define $\lambda=\frac{1}{n!}(\underbrace{\Omega\wedge\cdots\wedge\Omega})$ Let $f\in C^\infty(M)$ and X_f be the Hamilton-

ian vector field. Use Exercise 5.5.2 to show that $L_{X_f}\lambda = 0$. (This statement is called *Liouville's theorem*)

Exercise 5.5.4. Let (M,Ω) be a symplectic manifold. Show that $\{f,gh\}=\{f,g\}h+g\{h,f\}$ for all $f,g,h\in C^\infty(M)$, where $\{\ ,\ \}$ is the Poisson bracket.

Exercise 5.5.5. Let $M = \mathbb{R}^2 \ni (x, p)$. Let $\alpha = pdx$. Compute $\iota_X \alpha$, where $X = f \partial_x + g \partial_p$ and $\iota_{\partial_x} \omega$, $\iota_{\partial_p} \omega$, where $\omega = d\alpha$.

6. Introduction to Quantum Mechanics

6.1. **Failure of Classical Mechanics.** We want to look at the lifespan of a *Hydrogen atom*. Consider a positive charge e^+ (proton) sitting in the center of a circle with radius r and a negative charge e^- (electron) moving along the circle trajectory with velocity \vec{v} (pointing to the direction tangential to the circle). Thus, we have an acceleration \vec{a} on e^- pointing to the center (perpendicular to \vec{v}), which comes from the centripetal force, given by $|\vec{a}| = \frac{v^2}{r}$. Here $v^2 = \vec{v} \cdot \vec{v}$. Moreover we have a potential $V(r) = -\frac{e^2}{r}$ (here e is the absolute value of the charge, i.e. $e = |e^+| = |e^-|$). This potential is called *Coulomb's law*. Moreover, let \vec{E} denote the total energy, i.e. $\vec{E} = \frac{1}{2}mv^2 + V(r)$. Now since the electron is coupled to the electromagnetic field, it produces electromagnetic waves which carries energy away. Hence we get $\frac{d\vec{E}}{dt} = -\frac{e^2|\vec{a}|^2}{C}$, where C > 0 is some constant. Now suppose that Newton's second law holds. Then $|\vec{F}| = m|\vec{a}|$, hence $|\vec{a}| = \frac{1}{m}|\vec{F}| = \frac{e^2}{mr^2}$, and thus $mv^2 = \frac{e^2}{r}$. This gives us $\vec{E} = -\frac{1}{2}\frac{e^2}{r}$ and hence $\frac{d\vec{E}}{dt} = \frac{e^2}{2r^2}\frac{dr}{dt}$. Using $\frac{dr}{dt} = -\frac{e^4}{C}\frac{1}{r^2}$, we get that r(t) is rapidly decreasing. In fact, it can be shown that $r \to 0$ in a very short time. This shows also that the Hydrogen atom collapses in a short time, which in fact does not coincide with the experiments.

Upshot: Classical Mechanics does not fully explain the behaviour of atomic particles.

- 6.2. **Axioms of Quantum Mechanics.** The axioms of Quantum Mechanics are motivated by the following experimental facts:
 - Objects are observed to have wave-like and particle-like behaviour (*wave-particle duality*).
 - We can only predict the *probabilities* of an outcome.

Remark 6.2.1. We have the notion of a wave function: A wave function ψ is a function of $x \in \mathbb{R}^n$, which we interpret as describing the possible values of the position of a particle and it *evolves* in time obeying a wave-like equation.

6.2.1. *Digression: complex Hilbert space, self-adjoint operators.* We want to give some mathematical tools for the understanding of the quantum theory.

Definition 6.2.1 (Complex inner product space). A *complex inner product space* is a pair $(\mathcal{H}, \langle \ , \ \rangle)$, where \mathcal{H} is a complex vector space and the map $\langle \ , \ \rangle \colon \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ is such that for all $\phi, \psi, \phi_1, \phi_2, \psi_1, \psi_2 \in \mathcal{H}$ and $c \in \mathbb{C}$

(1)
$$\langle c\varphi, \psi \rangle = \bar{c}\langle \varphi, \psi \rangle$$
, and $\langle \varphi, c\psi \rangle = c\langle \varphi, \psi \rangle$,

(2)
$$\langle \phi, \psi_1 + \psi_2 \rangle = \langle \phi, \psi_1 \rangle + \langle \phi, \psi_2 \rangle$$
, and $\langle \phi_1 + \phi_2, \psi \rangle = \langle \phi_1, \psi \rangle + \langle \phi_1, \psi \rangle$,

(3)
$$\langle \phi, \psi \rangle = \overline{\langle \psi, \phi \rangle}$$
 (Hermitian)

(4)
$$\langle \phi, \phi \rangle \geqslant 0$$
 and $\langle \phi, \phi \rangle = 0$ if and only $\phi = 0$.

We call \langle , \rangle a complex inner product.

Define $\|\varphi\|:=\langle \varphi, \varphi \rangle^{1/2}$. Let $\{\varphi_n\}_n$ be a sequence in \mathcal{H} , we say $\{\varphi_n\}_n$ is Cauchy if $\|\varphi_n-\varphi_m\| \to 0$ as $n,m\to\infty$. Moreover, we say $(\mathcal{H},\langle\ ,\ \rangle)$ is complete if every Cauchy sequence converges in \mathcal{H} , i.e. $\{\varphi_n\}_n$ is Cauchy implies there is some $\varphi\in\mathcal{H}$ such that $\|\varphi_n-\varphi\|\to 0$ as $n\to\infty$.

Definition 6.2.2 (Complex Hilbert space). A *complex Hilbert space* is a complete complex inner product space.

Example 6.2.1. Take $\mathcal{H}:=\mathbb{C}^n$ with inner product $\langle z,w\rangle:=\sum_{j=1}^n \bar{z}_jw_j$.

Example 6.2.2. Take $\mathcal{H} := L^2(\mathbb{R}^n, dx)$ with inner product

$$\langle f, g \rangle := \int_{\mathbb{R}^n} \overline{f(x)} g(x) dx.$$

Example 6.2.3. Let (X, \mathcal{B}, μ) be a measure space, i.e. X is a set, \mathcal{B} a σ -algebra of subsets of X, and μ a measure. Then $L^2(X, \mu)$ is a Hilbert space, where

$$\langle f, g \rangle := \int_X \overline{f(x)} g(x) d\mu(x).$$

Definition 6.2.3 (Operator). Let \mathcal{H} be a Hilbert space. An *operator* on \mathcal{H} is a pair (A, Dom(A)), where Dom(A) is a dense subspace of \mathcal{H} , called the *domain* of A, and $A \colon Dom(A) \to \mathcal{H}$ is linear. A is *bounded* if there is some c > 0 such that for all $\phi \in Dom(A)$, $\|A\phi\| \leqslant c\|\phi\|$.

Remark 6.2.2. If A is bounded, then the denseness of Dom(A) implies that it can be extended to a linear map A: $\mathcal{H} \to \mathcal{H}$. Moreover $||A\varphi|| \le c ||\varphi||$ for all $\varphi \in \mathcal{H}$.

Remark 6.2.3. Given an operator (A, Dom(A)), there is an operator

$$(A^*, Dom(A^*))$$

such that $\langle A\varphi, \psi \rangle = \langle \varphi, A^*\psi \rangle$ for all $\varphi \in Dom(A)$ and for all $\psi \in Dom(A^*)$.

Definition 6.2.4 (Adjoint). The operator A^* is called the *adjoint* of A

Definition 6.2.5 (Symmetric). An operator A is called *symmetric* if for all $\varphi, \psi \in Dom(A)$

$$\langle A\phi, \psi \rangle = \langle \phi, A\psi \rangle.$$

Definition 6.2.6 (Self-adjoint). An operator A is called *self-adjoint* if $Dom(A) = Dom(A^*)$ and $A^*\phi = A\phi$ for all $\phi \in Dom(A)$.

Definition 6.2.7 (Resolvent). Let A be an operator on \mathcal{H} and let $\lambda \in \mathbb{C}$. We say that λ is in the *resolvent set* $\rho(A)$ if

$$(A - \lambda I)$$
: Dom $(A) \rightarrow \mathcal{H}$

is a bijection and $(A - \lambda I)^{-1}$ is bounded. Here I is the *identity operator* on \mathcal{H} .

Definition 6.2.8 (Specturm). The *spectrum* $\sigma(A)$ of an operator A is defined by

$$\sigma(A) := \mathbb{C} \setminus \rho(A)$$
.

Example 6.2.4 (Eigenvalue). Let A be an operator on \mathcal{H} and let $\lambda \in \mathbb{C}$. Assume that there is some $\psi \neq 0$ in \mathcal{H} such that $A\psi = \lambda \psi$. Then $\lambda \in \sigma(A)$, since $(A - \lambda I)^{-1}$ does not exist. Such a λ is called an *eigenvalue* of A.

- 6.2.2. Axioms. We can now formulate the axioms of Quantum Mechanics.
- (QM1) To every quantum system, there is an associated infinite-dimensional separable complex Hilbert space \mathcal{H} , called the *space of states*. The *pure* state of a system is represented by a unit vector in \mathcal{H} . Let ϕ_1 and ϕ_2 be two unit vectors in \mathcal{H} such that $\phi_1 = c\phi_2$ for some $c \in \mathbb{C}$. Then ϕ_1 and ϕ_2 represent the same physical state. Consider the set $\mathcal{S} := \{\psi \in \mathcal{H} \mid \|\psi\| = 1\}$. Given $\phi, \psi \in \mathcal{S}$, we have

$$|\langle \varphi, \psi \rangle|^2 \leqslant \|\varphi\|^2 \|\psi\|^2 = 1.$$

Here $|\langle \varphi, \psi \rangle|^2$ can be interpreted as the probability of a physical system at φ given the physical system at ψ .

(QM2) An observable of a quantum system with the space of states given by \mathcal{H} is a self-adjoint operator on \mathcal{H} . We define

$$A := \{ self-adjoint operators on \mathcal{H} \}.$$

(QM₃) The process of measurement corresponds to the map

$$\mathcal{A} \times \mathcal{S} \to P(\mathbb{R}) := \{ \text{probability measures on } \mathbb{R} \}$$

 $(A, \psi) \mapsto \mu^{\psi}_{A}.$

Given $E \subseteq \mathbb{R}$ measurable (more precisely Borel measurable), $\mu_A^{\psi}(E)$ is interpreted as the probability of the *measurement* of A in the *state* ψ that is in E. Moreover, the *expectation* of $A \in \mathcal{A}$ in the state $\psi \in \mathcal{S}$ is given by

$$\langle A \rangle_{\Psi} := \int_{\mathbb{R}} \lambda \mathrm{d} \mu_A^{\Psi}(\lambda).$$

(QM4) The dynamics of a quantum system is governed by the *Schrödinger equation*, i.e. there is a distinguished quantum observable \widehat{H} , such that the *time evolution* $\psi(t)$ with $\psi(0) = \psi$ satisfies

$$i\hbar \frac{d\psi(t)}{dt} = \widehat{H}\psi(t).$$

Remark 6.2.4. In the so-called *Heisenberg picture* of Quantum Mechanics, the dynamics is governed by the equation

$$i\hbar \frac{dA(t)}{dt} = -[\widehat{H}, A(t)],$$

where A(0) = A and [A, B] = AB - BA is the *commutator* of operators.

Example 6.2.5 (Free particle in position space). Consider a free particle moving in \mathbb{R}^n . Recall that the phase space is given by $M = T^*\mathbb{R}^n$ and the energy is $E(x,p) = \frac{1}{2m}p^2$. Then $\mathcal{H} = L^2(\mathbb{R}^n, dx)$ (space of wave functions) and $\widehat{\chi}^j(f(x)) = \chi^j f(x)$. Moreover, $\widehat{p}_j(f(x)) = i\hbar \frac{\partial f}{\partial x^j}$, and hence

$$\widehat{H} = \sum_{j=1}^{n} \frac{1}{2m} \widehat{p}_{j}^{2} = -\frac{\hbar^{2}}{2m} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial (x^{j})^{2}}.$$

Example 6.2.6 (Free particle in momentum space). Consider a free particle moving in \mathbb{R}^n . Then $\mathcal{H}=L^2(\mathbb{R}^n,dp)$ (space of wave functions) and $\widehat{\chi}^j(f(x))=-i\hbar\frac{\partial f}{\partial p_j}$. Moreover, $\widehat{p}_j(f(p))=p_jf(p)$, and hence

$$\widehat{H} = \sum_{j=1}^{n} \frac{1}{2m} \widehat{p}_{j}^{2}$$

Remark 6.2.5. Starting from a classical mechanical system, we want to construct a quantum mechanical system. It turns out that one can construct many quantum mechanical systems from the same classical mechanical system as suggested by the examples above. We would like to understand how to *compare* them.

7. QUANTIZATION

We want to be able to pass from a classical to a corresponding quantum system. This is encoded in a *Quantization map* \mathcal{Q} , i.e.

Classical Mechanics $\xrightarrow{\mathcal{Q}}$ Quantum Mechanics

The classical state space is given by a symplectic manifold (M,Ω) , whereas the quantum state space is given by a Hilbert space \mathcal{H} , hence $\mathscr{Q}((M,\Omega))$ has to be a Hilbert space. The classical observables are given by smooth functions $f \in C^{\infty}(M,\mathbb{R})$, whereas the quantum observables are given by self-adjoint operators, thus $\mathscr{Q}(f)$ will be a self-adjoint operator. Classical time evolution is given, for some Hamiltonian function $H \in C^{\infty}(M,\mathbb{R})$, by the equation $\frac{\mathrm{d}f}{\mathrm{d}t} = \{H,f\}$ along the flow of X_H , whereas on the quantum time evolution is given, for a Hamiltonian self-adjoint operator \widehat{H} on \mathcal{H} , by the equation $i\hbar \frac{\mathrm{d}A(t)}{\mathrm{d}t} = -[\widehat{H},A(t)]$ or equivalently $\frac{\mathrm{d}A(t)}{\mathrm{d}t} = \frac{i}{\hbar}[\widehat{H},A(t)]$. This shows that the image of the Poisson bracket under \mathscr{Q} will be given by the commutator $\frac{i}{\hbar}[$,].

Definition 7.0.1 (Quantization). *Quantization* of a classical mechanical system *roughly* means the construction of a quantum mechanical system, starting from a classical mechanical system. Ideally, we want a procedure $\mathscr Q$ that assigns to a symplectic manifold (M,Ω) a separable Hilbert space, and to a smooth function $f \in C^\infty(M,\mathbb R)$ a self-adjoint operator $\mathscr Q(f)$ such that

- (i) \mathcal{Q} is linear in f,
- (ii) $\mathcal{Q}(1) = \mathrm{id}_{\mathcal{H}}$,

(iii)
$$\mathcal{Q}(\{f,g\}) = \frac{i}{\hbar} [\mathcal{Q}(f), \mathcal{Q}(g)].$$

Moreover, we want \mathcal{H} to be *minimal*.

Remark 7.0.1. An ideal quantization procedure does not exist (see *Groenewold's thoerem* [Gro46]). In practice, we do not look for an ideal \mathcal{Q} .

7.1. **Quantization of** $T^*\mathbb{R}^n$ **and ordering ambiguity.** Consider the quantum state space $\mathcal{H}=L^2(\mathbb{R}^n,dx)$ (given in position space representation). Recall that we have position and momentum operators \widehat{x}^j and \widehat{p}_k . Let $f\in C^\infty(T^*\mathbb{R}^n)$, such that $f(x,p)=x^jp_k$. Note that in Classical Mechanics, $x^jp_k=p_kx^j$. Define $\mathcal{Q}(x^j)=\widehat{x}^j$ and $\mathcal{Q}(p_k)=\widehat{p}_k$. Now, there are many choices to define $\mathcal{Q}(f)$. For example, we could take $\widehat{x}^j\widehat{p}_k$ or $\widehat{p}_k\widehat{x}^j$ or $\frac{\widehat{x}^j\widehat{p}_k+\widehat{p}_k\widehat{x}^j}{2}$. All these possibilities are different. More generally, if f is a combicated function, it is not clear how to define $\mathcal{Q}(f)$. This is called *ordering ambiguity*. There are practical solutions to this problem such as *Wick-ordered quantization* or *Weyl quantization*, which depends on certain choices.

- 7.2. **Geometric Quantization.** Geometric quantization is roughly a quantization procedure that uses the data of symplectic geometry of a classical mechanical system and constructs a quantum mechanical system. There are two steps into the process:
- (Step1) *Prequantization*: construct a Hilbert space (called *prequantum Hilbert space*) and a prequantized observable $\mathcal{Q}_{pre}(f)$, for $f \in C^{\infty}(M)$.
- (Step2) *Correction*: Get the quantum Hilbert space \mathcal{H} and the quantum observable $\mathscr{Q}(f)$ for $f \in C^{\infty}(M)$.
- 7.2.1. Prequantization of $T^*\mathbb{R}^n$. We will construct a Hilbert space \mathcal{H} and an operator $\mathcal{Q}_{pre}(f)$ for $f \in C^{\infty}(T^*\mathbb{R}^n)$ such that $\mathcal{Q}_{pre}(1) = \mathrm{id}$ and $\mathcal{Q}_{pre}(\{f,g\}) = \frac{\mathrm{i}}{\hbar}[\mathcal{Q}_{pre}(f), \mathcal{Q}_{pre}(g)]$. First, we can recall that $\{x^k, p_j\} = \delta_{jk} \cdot 1$, and thus

$$[\mathscr{Q}_{\text{pre}}(x^k),\mathscr{Q}_{\text{pre}}(p_j)] = -i\hbar I\delta_{jk},$$

where I denotes the identity operator on the prequantum Hilbert space. In particular, we have

$$[\mathcal{Q}_{pre}(\mathbf{x}^{k}), \mathcal{Q}_{pre}(\mathbf{p}_{k})] = -i\hbar \mathbf{I}.$$

If \mathcal{H} is a Hilbert space such that $\mathcal{Q}_{pre}(\chi^k)$ and $\mathcal{Q}_{pre}(p_k)$ are two operators on \mathcal{H} such that (7.1) holds, then \mathcal{H} must be infinite-dimensional. A natural choice for \mathcal{H} will be $L^2(\mathbb{R}^{2n})$ (prequantum Hilbert space). For the construction of the operators, we start with a first attempt by setting $\mathcal{Q}_{pre}(f) := -i\hbar X_f$. Then

$$\frac{\mathrm{i}}{\hbar}[\mathscr{Q}_{\mathrm{pre}}(\mathrm{f}),\mathscr{Q}_{\mathrm{pre}}(\mathrm{g})] = -\mathrm{i}\hbar[\mathrm{X}_{\mathrm{f}},\mathrm{X}_{\mathrm{g}}] = -\mathrm{i}\hbar\mathrm{X}_{\{\mathrm{f},\mathrm{g}\}} = \mathscr{Q}_{\mathrm{pre}}(\{\mathrm{f},\mathrm{g}\}).$$

The problem is that $\mathscr{Q}_{pre}(1)=0$, since $X_{f=1}=0$. The second attempt is to set $\mathscr{Q}_{pre}(f)=-i\hbar X_f+f$. Then $\mathscr{Q}_{pre}(1)=1$, but $\frac{i}{\hbar}[\mathscr{Q}_{pre}(f),\mathscr{Q}_{pre}(g)]\neq \mathscr{Q}_{pre}(\{f,g\})$. For the third attempt, let θ be a 1-form on $T^*\mathbb{R}^n$ such that its exterior derivative is given by the symplectic form Ω on $T^*\mathbb{R}^n$, i.e. $d\theta=\Omega$. Define a covariant derivative (connection) along $X\in Vect(T^*\mathbb{R}^n)$ by

$$\nabla_{X}^{\theta} := X - \frac{\mathrm{i}}{\hbar} \theta(X).$$

The idea is then to use $\nabla_{X_f}^{\theta}$ instead of X_f .

Lemma 7.2.1. We have

(1)
$$[\nabla_X^{\theta}, f] = X(f)$$
,

(2)
$$[X, f] = X(f),$$

(3) $[\nabla_X^{\theta}, \nabla_Y^{\theta}] = \nabla_{[X,Y]}^{\theta} - \frac{i}{\hbar}\Omega(X,Y)$, where Ω is the standard symplectic form on $T^*\mathbb{R}^n$.

Proof. We leave (1) and (2) as an exercise. For (3), note that

$$\begin{split} [\nabla_X^\theta, \nabla_Y^\theta] &= \left[X - \frac{i}{\hbar} \theta(X), Y - \frac{i}{\hbar} \theta(Y) \right] = [X, Y] - \frac{i}{\hbar} [X, \theta(Y)] + \frac{i}{\hbar} [Y, \theta(X)] \\ &= [X, Y] - \frac{i}{\hbar} (X \theta(X) - Y \theta(X)) \\ &= [X, Y] - \frac{i}{\hbar} (X \theta(Y) - Y \theta(X) - \theta([X, Y]) + \theta([X, Y])) \\ &= [X, Y] - \frac{i}{\hbar} \theta([X, Y]) - \frac{i}{\hbar} (X \theta(Y) - Y \theta(X) - \theta([X, Y])) \\ &= \nabla_{[X, Y]}^\theta - \frac{i}{\hbar} d\theta(X, Y) \\ &= \nabla_{[X, Y]}^\theta - \frac{i}{\hbar} \Omega(X, Y). \end{split}$$

We define the prequantum map to be given by

(7.2)
$$\mathscr{Q}_{\mathrm{pre}}(f) := -i\hbar \nabla_{X_f}^{\theta} + f.$$

Then $\mathcal{Q}_{pre}(1) = 1$. Moreover, we get the following proposition:

Proposition 7.2.1. Let \mathscr{Q}_{pre} be defined as in (7.2). Then for all $f, g \in C^{\infty}(T^*\mathbb{R}^n)$ we have

$$\frac{\mathrm{i}}{\hbar}[\mathcal{Q}_{\mathrm{pre}}(\mathsf{f}),\mathcal{Q}_{\mathrm{pre}}(\mathsf{g})]=\mathcal{Q}_{\mathrm{pre}}(\{\mathsf{f},\mathsf{g}\}).$$

Proof. Indeed, we have

$$\begin{split} \frac{\mathrm{i}}{\hbar}[\mathcal{Q}_{\mathrm{pre}}(\mathbf{f}),\mathcal{Q}_{\mathrm{pre}}(\mathbf{g})] &= \frac{\mathrm{i}}{\hbar}[-\mathrm{i}\hbar\nabla^{\theta}_{X_{\mathrm{f}}} + \mathbf{f}, -\mathrm{i}\hbar\nabla^{\theta}_{X_{\mathrm{g}}} + \mathbf{g}] \\ &= \frac{\mathrm{i}}{\hbar}\Big((-\mathrm{i}\hbar)^{2}[\nabla^{\theta}_{X_{\mathrm{f}}}, \nabla^{\theta}_{X_{\mathrm{g}}}] - \mathrm{i}\hbar[\nabla^{\theta}_{X_{\mathrm{f}}}, \mathbf{g}] + \mathrm{i}\hbar[\nabla^{\theta}_{X_{\mathrm{g}}}, \mathbf{f}]\Big) \\ &= \frac{\mathrm{i}}{\hbar}\Big((-\mathrm{i}\hbar)^{2}\nabla^{\theta}_{[X_{\mathrm{f}}, X_{\mathrm{g}}]} - (-\mathrm{i}\hbar)^{2}\frac{\mathrm{i}}{\hbar}\Omega(X_{\mathrm{f}}, X_{\mathrm{g}}) - 2\mathrm{i}\hbar\{\mathbf{f}, \mathbf{g}\}\Big) \\ &= \frac{\mathrm{i}}{\hbar}\Big((-\mathrm{i}\hbar)^{2}\nabla^{\theta}_{[X_{\mathrm{f}}, X_{\mathrm{g}}]} - \mathrm{i}\hbar\{\mathbf{f}, \mathbf{g}\}\Big) = \mathcal{Q}_{\mathrm{pre}}(\{\mathbf{f}, \mathbf{g}\}) \end{split}$$

7.2.2. Prequantization on a symplectic manifold. The goal is to generalize the constructions before to any symplectic manifold (M,Ω) . We need to generalize $C^{\infty}(T^*\mathbb{R}^n)$ and in particular $L^2(T^*\mathbb{R}^n)$. Moreover, we need to generalize the covariant derivative ∇_X^{θ} .

Definition 7.2.1 (Complex line bundle). A *complex line bundle* $L \xrightarrow{\pi} M$ is a complex vector bundle of rank 1, i.e. for all $x \in M$, we have dim $L_x = 1$.

Example 7.2.1 (trivial bundle). Let $L := M \times \mathbb{C} \xrightarrow{\pi} M$ be the trivial line bundle over M. Note that in this example, we define a section $s \colon M \to M \times \mathbb{C}$ by s(x) = (x, 1). Moreover, if s' is any other section, then $s'(x) = f(x) \cdot s(x)$.

Definition 7.2.2 (Nowhere vanishing section). Let $L \xrightarrow{\pi} M$ be a line bundle over M. A section $s: M \to L$ is called *nowhere vanishing* if $s(x) \in L_x \setminus \{0\}$ for all $x \in M$ (recall $L_x := \pi^{-1}(\{x\})$).

Lemma 7.2.2. If $L \xrightarrow{\pi} M$, a complex line bundle over M, has a nowhere vanishing section, then L is isomorphic to the trivial line bundle $M \times \mathbb{C} \xrightarrow{\pi} M$, i.e. there is a diffeomorphism $\Phi \colon L \to M \times \mathbb{C}$ such that the diagram

$$\begin{array}{c}
L \xrightarrow{\Phi} M \times \mathbb{C} \\
\downarrow^{\pi} & pr_1 \\
M
\end{array}$$

commutes. Moreover, for all $x\in M$, we have $\Phi\big|_{L_x}\colon L_x\to \{x\}\times \mathbb{C}$ is a vector space isomorphism.

Proof. Exercise. Hint: Show that if s is a nowhere vanishing section, then it defines a map $f_s: L \to \mathbb{C}$ such that $f_s: \pi^{-1}(\{x\}) \xrightarrow{\sim} \mathbb{C}$ is an isomorphism. \square

Definition 7.2.3 (Trivializable). A line bundle is called *trivializable* if it is isomorphic to $M \times \mathbb{C}$.

Remark 7.2.1. A line bundle is trivializable if and only if it has a nowhere vanishing section.

Exercise 7.2.1. Let $L \xrightarrow{\pi} M$ be a trivializable line bundle and $s \colon M \to L$ be a nowhere vanishing section. Using s, construct a $C^{\infty}(M)$ -linear map $\alpha_s \colon \Gamma(M,L) \to C^{\infty}(M)$, which is a bijection, i.e. α_s is a $C^{\infty}(M)$ -module isomorphism.

Definition 7.2.4 (Hermitian metric). A *Hermitian metric* h on a complex line line bundle $L \xrightarrow{\pi} M$ is a *smooth* family $(h_x)_{x \in M}$, where each h_x is a Hermitian form on L_x , which is positive-definite, i.e. we have maps $h_x \colon L_x \times L_x \to \mathbb{C}$, such that h_x is sesquilinear, Hermitian, and positive-definite.

7.2.3. Connection on a line bundle.

Definition 7.2.5 (Connection). A connection ∇ on a line bundle $L \xrightarrow{\pi} M$ is a map

$$abla : \Gamma(M, L) \times \Gamma(M, TM) \to \Gamma(M, L)$$

$$(s, X) \mapsto \nabla_X s$$

such that

- (i) for all $s \in \Gamma(M, L)$, $X \mapsto \nabla_X s$ is $C^{\infty}(M)$ -linear,
- (ii) for all $X \in \Gamma(M, TM)$, $s \mapsto \nabla_X s$ is \mathbb{C} -linear,
- (iii) for all $f \in C^{\infty}(M)$, for all $X \in \Gamma(M, TM)$, and for all $s \in \Gamma(M, L)$

$$\nabla_X(fs) = X(f)s + f\nabla_X s.$$

Example 7.2.2 (Trivial connection). The *trivial connection* on the trivial line bundle $L = M \times \mathbb{C} \xrightarrow{\pi} M$ is given by the map

$$\nabla^{\mathrm{triv}} \colon \Gamma(M, L) \times \Gamma(M, TM) \to \Gamma(M, L)$$

$$(f, X) \mapsto \nabla_{x}^{\mathrm{triv}} f := X(f).$$

Recall here that $\Gamma(M, L) \cong C^{\infty}(M)$.

Example 7.2.3. Let $L := M \times \mathbb{C} \xrightarrow{\pi} M$ be the trivial line bundle over M and $\theta \in \Omega^1(M)$. Define

$$\nabla_{\mathbf{X}}^{\theta} \mathbf{f} := \mathbf{X}(\mathbf{f}) - \frac{\mathbf{i}}{\hbar} \mathbf{\theta}(\mathbf{X}) \mathbf{f},$$

where $f \in C^\infty(M)$ and $X \in \Gamma(M,TM)$. Then we can check that ∇_X^θ is indeed a connection.

Lemma 7.2.3. Let ∇ be a connection on a line bundle $L \xrightarrow{\pi} M$. Let s be a nowhere vanishing section of L. Then there is a 1-form θ^s such that

$$abla_X \tilde{\mathbf{s}} =
abla_X^{\theta^s} \tilde{\mathbf{s}} = \left(X \left(\frac{\tilde{\mathbf{s}}}{\mathbf{s}} \right) - \frac{\mathrm{i}}{\hbar} \theta^s (X) \frac{\tilde{\mathbf{s}}}{\mathbf{s}} \right) \mathbf{s},$$

for all $\tilde{s} \in \Gamma(M, L)$ and $X \in \Gamma(M, TM)$.

Proof. Consider the map $\Gamma(M,TM) \to C^{\infty}(M)$, $X \mapsto \left(-\frac{\hbar}{i}\right) \frac{\nabla_X s}{s}$. One can check that it indeed defines a 1-form θ^s . Moreover,

$$\nabla_X^{\theta^s} \tilde{s} = \nabla_X^{\theta^s} \left(\frac{\tilde{s}}{s} \cdot s \right) = X \left(\frac{\tilde{s}}{s} \right) s + \frac{\tilde{s}}{s} \nabla_X^{\theta^s} s = \left(X \left(\frac{\tilde{s}}{s} \right) - \frac{i}{\hbar} \theta^s (X) \frac{\tilde{s}}{s} \right) s.$$

Remark 7.2.2. Let $L \xrightarrow{\pi} M$ be a line bundle with a connection ∇ . Then, using a local trivialization $s \colon U \to L|_U$, we can find a 1-form θ^s on U such that $\nabla_X = \nabla_X^{\theta^s} = X - \frac{i}{\hbar} \theta^s(X)$ on U.

7.2.4. *Curvature of a connection*. Let (L, ∇) be a line bundle with connection over M. We define the *curvature* R^{∇} of ∇ as the map:

$$\begin{split} R^\nabla \colon \Gamma(M,\mathsf{T} M) \times \Gamma(M,\mathsf{T} M) \times \Gamma(M,\mathsf{L}) &\to \Gamma(M,\mathsf{L}) \\ (X,Y,s) &\mapsto R^\nabla(X,Y) s := i \left(\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]} \right) s \end{split}$$

Unlike the connection ∇ , $R^{\nabla}(X,Y)\colon \Gamma(M,L)\to \Gamma(M,L)$ is $C^{\infty}(M)$ -linear and hence defines a map $R^{\nabla}\colon \Gamma(M,TM)\times \Gamma(M,TM)\to \Gamma(M,\operatorname{End}(L))$, which is $C^{\infty}(M)$ -linear and alternating. Note that to any line bundle $\operatorname{End}(L)$ is again a line bundle and is trivializable (indeed, the map $x\mapsto \operatorname{id}_x\colon L_x\to L_x$ defines a nowhere vanishing section of $\operatorname{End}(L)$). The bundle $\operatorname{End}(L)$ over M is called the *endomorphism bundle* of L. This implies that $\Gamma(M,\operatorname{End}(L))$ can be identified with $C^{\infty}(M)$. Hence, $R^{\nabla}\colon \Gamma(M,TM)\times \Gamma(M,TM)\to C^{\infty}(M)$ is bilinear and alternating and thus R^{∇} can be identified with a 2-form on M.

Definition 7.2.6 (Prequantizable). Let (M, Ω) be a symplectic manifold. We say that (M, Ω) is *prequantizable* if there is a Hermitian line bundle (L, ∇) with a connection over M such that $R^{\nabla} = \frac{1}{\hbar}\Omega$.

Example 7.2.4. Consider the symplectic manifold $(T^*N,\Omega_{c\,\alpha n})$ for some manifold N. Moreover, consider the trivial bundle $L=T^*N\times\mathbb{C}\stackrel{\pi}{\to}\mathbb{C}$ with the connection $\nabla=\nabla^\alpha$, where α is the tautological 1-form. Given a Hermitian line bundle $L\stackrel{\pi}{\to}(T^*N,\Omega_{c\,\alpha n})$, we can talk about *square-integrable* sections of L. Note that $\lambda:=\frac{1}{n!}\Omega^{\wedge n}$ defines a volume form on T^*N . Let $s\in\Gamma(T^*N,L)$, and consider the map $x\mapsto h(s(x),s(x))$. We get $h(s,s)\in C^\infty(T^*N)$. Moreover, define

(7.3)
$$C(s,s) := \int_{T^*N} h(s,s)\lambda,$$

and $\|s\| := \left(\int_{T^*N} h(s,s)\lambda\right)^{1/2}$. We say that $s \in \Gamma(T^*N,L)$ is square-integrable if $\|s\| < \infty$.

Definition 7.2.7 (Square-integrable). A *square-integrable* section s is an element of the *completion* of smooth square-integrable sections of the line bundle L.

We denote the space of square-integrable sections of L by \mathcal{H}_{pre} .

Proposition 7.2.2. \mathcal{H}_{pre} is a Hilbert space.

7.2.5. Prequantization of (M,Ω) . We want to construct a prequantization for any symplectic manifold. Our data is a Hermitian line bundle with connection (L,∇,h) such that $R^{\nabla}=\frac{1}{h}\Omega$. The triple (L,∇,h) is called a prequantum line bundle. The prequantum Hilbert space is given by \mathcal{H}_{pre} . Given $f\in C^{\infty}(M,\mathbb{R})$, we define $\mathscr{Q}_{pre}(f):=-i\hbar\nabla_{X_f}+f$, where X_f is the Hamiltonian vector field associated to f.

Lemma 7.2.4. On
$$\Gamma(M,L) \cap \mathcal{H}_{pre}$$
 we have $-\frac{i}{\hbar}[\mathscr{Q}_{pre}(f),\mathscr{Q}_{pre}(g)] = \mathscr{Q}_{pre}(\{f,g\}).$

7.3. **Problems with prequantization.** There are several problems that arise with the prequantization scheme as derived before. First, \mathcal{H}_{pre} is too *big*. Moreover, $\mathcal{Q}_{pre}(f)$ is not positive (even if f is).

Example 7.3.1. Let $M=T^*\mathbb{R}$. Take $\theta=\frac{1}{2}(pdx-xdp)$, $H=\frac{1}{2}(p^2+x^2)$ (H is called *classical harmonic oscillator*), and $X_H=\frac{1}{2}(X_{p^2}+X_{x^2})=p\partial_x-x\partial_p$. Then $\theta(X_H)=\frac{1}{2}(p^2+x^2)$ and

$$\mathscr{Q}_{\mathfrak{pre}}(\mathsf{H}) = -i\hbar \left(\mathfrak{p} \vartheta_{x} - x \vartheta_{\mathfrak{p}} - \frac{i}{2\hbar} (\mathfrak{p}^{2} + x^{2}) + \frac{1}{2} (\mathfrak{p}^{2} + x^{2}) \right) = -i\hbar (\mathfrak{p} \vartheta_{x} - x \vartheta_{\mathfrak{p}}).$$

Observe that $p\partial_x - x\partial_p$ is a vector field coming from a curl. Thus for $r = x^2 + p^2$ and $x = r\cos\varphi$, $p = r\sin\varphi$, we get $\mathscr{Q}_{pre}(H)(f(r)e^{in\varphi}) = -i\hbar f(r)ine^{in\varphi} = n\hbar f(r)e^{in\varphi}$ for any integer n. Thus $n\hbar$ are eigenvalues of $\mathscr{Q}_{pre}(H)$ for all $n \in \mathbb{Z}$. This implies that $\mathscr{Q}_{pre}(H)$ has negative values and thus it is not a positive operator on $L^2(T^*\mathbb{R})$.

7.4. **Quantization I.** We fix the manifold $M := T^*\mathbb{R}^n$ together with its standard symplectic form Ω and we set $\theta = \sum_{j=1}^n p_j dx^j$. Let J be the standard complex structure on \mathbb{R}^{2n} , which is positive and compatible with Ω , i.e.

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix},$$

such that $\Omega(\ , J\)$ is the standard inner product on \mathbb{R}^{2n} . Note that \mathbb{R}^{2n} together with the complex structure J can be identified with \mathbb{C}^n , where the complex coordinates are given by $z=(z_1,...,z_n)$ with $z_j=x^j-ip_j$ for j=1,...,n. Moreover, define the differential operators

$$\begin{split} & \vartheta_{z_j} \coloneqq \frac{1}{2} \left(\vartheta_{x^j} + i \vartheta_{p_j} \right) \text{,} \\ & \vartheta_{\tilde{z}_j} \coloneqq \frac{1}{2} \left(\vartheta_{x^j} - i \vartheta_{p_j} \right) \text{.} \end{split}$$

A function $f: \mathbb{C}^n \to \mathbb{C}$ is *holomorphic* if and only if $\partial_{\bar{z}_j} f = 0$ for all j = 1, ..., n. Recall that we want to start with the prequantum Hilbert space and we want to *throw away*

extra information and construct a quantum Hilbert space. Consider $\mathcal{H}_{pre} = L^2(\mathbb{R}^{2n})$ as the prequantum Hilbert space, and the position Hilbert space by $L^2(\mathbb{R}^n)$. We need a mechanism that allows us to select $f \in C^{\infty}(\mathbb{R}^{2n})$ which are independent of $p_1,...,p_n$. This motivates the following definitions.

Definition 7.4.1 (Position subspace). The position subspace is given by

$$V^{\text{pos}} := \{ f \in C^{\infty}(T^*\mathbb{R}^n) \mid \nabla^{\theta}_{\vartheta_{\mathfrak{p}_j}} f = 0, \ \forall j = 1,...,n \}.$$

Definition 7.4.2 (Momentum subspace). The momentum subspace is given by

$$V^{\text{mom}} := \{ f \in C^{\infty}(T^*\mathbb{R}^n) \mid \nabla^{\theta}_{0,.i} f = 0, \ \forall j = 1,...,n \}.$$

Definition 7.4.3 (Holomorphic subspace). The holomorphic subspace is given by

$$V^{\text{hol}} := \{ f \in C^{\infty}(T^*\mathbb{R}^n) \mid \nabla^{\theta}_{\vartheta_{\tilde{z}_j}} f = 0, \ \forall j = 1,...,n \}.$$

Lemma 7.4.1. The following hold:

- (1) V^{pos} , V^{mom} , V^{hol} are subspaces of $C^{\infty}(T^*\mathbb{R}^n)$.
- (2) $\phi \in V^{pos}$ if and only if $\partial_{p_j} \phi = 0$ for all j = 1, ..., n., i.e. $\phi(x, p) = \psi(x)$ for $\psi \in C^{\infty}(\mathbb{R}^n)$.
- (3) $\phi \in V^{\text{mom}}$ if and only if $\phi(x,p) = e^{\frac{i}{\hbar}x \cdot p} \psi(p)$ for $\psi \in C^{\infty}(\mathbb{R}^n)$ such that $\partial_{x^j} \psi = 0$ for all j = 1, ..., n.
- (4) $\phi \in V^{\text{hol}}$ if and only if $\phi(x, p) = e^{-\frac{p^2}{2h}}F(z)$, where F is holomorphic on \mathbb{C}^n .

Proof. (1) is obvious. For (2), note that $\theta(\vartheta_{p_j})=0$ for all j. Thus $\nabla^\theta_{\vartheta_{p_j}}=\vartheta_{p_j}$ and hence $\nabla^\theta_{\vartheta_{p_j}}\varphi=0$ if and only if $\vartheta_{p_j}\varphi=0$. For (3), we note that $\theta(\vartheta_{x^j})=p_j$. Thus $\nabla^\theta_{\vartheta_{x^j}}=\vartheta_{x^j}-\frac{i}{\hbar}p_j$. Now $\nabla^\theta_{\vartheta_{x^j}}\left(e^{\frac{i}{\hbar}x\cdot p}\psi\right)=\vartheta_{x^j}\left(e^{\frac{i}{\hbar}x\cdot p}\psi\right)-\frac{i}{\hbar}p_je^{\frac{i}{\hbar}x\cdot p}\psi=e^{\frac{i}{\hbar}x\cdot p}\vartheta_{x^j}\psi$. This implies that $\nabla^\theta_{\vartheta_{x^j}}\left(e^{\frac{i}{\hbar}x\cdot p}\psi\right)=0$ if and only if $\vartheta_{x^j}\psi=0$ and thus $\varphi\in V^{mom}$ if and only if $\varphi=e^{\frac{i}{\hbar}x\cdot p}\psi$ with $\vartheta_{x^j}\psi=0$ for all j. Finally, for (4), we see that $\theta(\vartheta_{\tilde{z}_j})=\frac{1}{2}p_j$ and thus $\nabla^\theta_{\vartheta_{\tilde{z}_i}}=\vartheta_{\tilde{z}_j}-\frac{i}{2\hbar}p_j$. This implies

$$\nabla^{\theta}_{\vartheta_{\tilde{z}_{j}}}\left(e^{-\frac{p^{2}}{2\hbar}}F\right)=\vartheta_{\tilde{z}_{j}}\left(e^{-\frac{p^{2}}{2\hbar}}F\right)-\frac{i}{\hbar}p_{j}e^{-\frac{p^{2}}{2\hbar}}F=e^{-\frac{p^{2}}{2\hbar}}\vartheta_{\tilde{z}_{j}}F-\frac{1}{2\hbar}Fe^{-\frac{p^{2}}{2\hbar}}\vartheta_{\tilde{z}_{j}}p^{2}-\frac{i}{\hbar}p_{j}e^{-\frac{p^{2}}{2\hbar}}F.$$

This implies that $\nabla^{\theta}_{\partial_{z_j}}\left(e^{-\frac{p^2}{2h}}\right)=e^{-\frac{p^2}{2h}}\partial_{\tilde{z}_j}F$ and thus $\nabla^{\theta}_{\partial_{z_j}}\left(e^{-\frac{p^2}{2h}}\right)=0$ if and only if $\partial_{\tilde{z}_j}F=0$. Hence, $\varphi\in V^{hol}$ if and only if $\varphi=e^{-\frac{p^2}{2h}}F(z)$, where F is holomorphic. \square

Next we want to construct Hilbert spaces using V^{pos} , V^{mom} and V^{hol} . We want to start with a naive approach: Let $\phi, \psi \in V^{pos}$ and define

$$\langle \phi, \psi \rangle_{\mathcal{H}_{pos}} := \int_{\mathbb{R}^{2n}} \bar{\phi} \psi dp_1 \cdots dp_n dx^1 \cdots dx^n.$$

Moreover, define \mathcal{H}_{pos} as the completion of $\{\varphi \in V^{pos} \mid \|\varphi\|^2 < \infty\}$, where $\| \|$ is given by (7.4). The problem in this approach is that $L^2(\mathbb{R}^{2n}) \cap V^{pos} = \{0\}$ and hence $\mathcal{H}_{pos} = \{0\}$. Using the naive approach, we can not construct a nontrivial Hilbert space out of V^{pos} . The same argument shows that we can not get a nontrivial Hilbert space V^{mom} . However, next we show that the naive approach will lead to a Hilbert space \mathcal{H}_{hol} from V^{hol} , which is usally called the *Segal-Bergmann space* used in many Quantum Mechanics text books as a quantum Hilbert space. Let $\varphi, \psi \in V^{hol}$ with $\varphi = e^{-\frac{p^2}{2h}}F$ and $\psi = e^{-\frac{p^2}{2h}}G$. Define then

$$\langle \varphi, \psi \rangle_{\mathcal{H}_{hol}} \coloneqq \int_{\mathbb{R}^{2n}} \bar{\varphi} \bar{\psi} d\mathfrak{p}_1 \cdots d\mathfrak{p}_n dx^1 \cdots dx^n = \int_{\mathbb{R}^{2n}} \bar{\mathsf{F}} G e^{-\frac{p^2}{2n}} d\mathfrak{p}_1 \cdots d\mathfrak{p}_n dx^1 \cdots dx^n.$$

Then se set \mathcal{H}_{hol} to be the completion of $\{\varphi \in V^{hol} \mid \|\varphi\|^2 < \infty\}$. In contrast to \mathcal{H}_{pos} , we will show that \mathcal{H}_{hol} is an infinite-dimensional Hilbert space.

Lemma 7.4.2. The following hold:

- (1) Let $\psi_k(x,p)=z^ke^{-\frac{z^2}{4h}}e^{-\frac{p^2}{2h}}$ for $k\in\mathbb{N}$. Then $\psi_k\in\mathcal{H}_{hol}$. Note that here $z^2:=\sum_{j=1}^n z_j^2$.
- (2) $\mathcal{H}_{hol}\cong \mathscr{H}L^2(\mathbb{C}^n,\nu),$ where $\mathscr{H}L^2$ denotes the holomorphic $L^2\text{-space}$ and

$$dv = e^{-\frac{p^2}{2\hbar}} dp_1 \cdots dp_n dx^1 \cdots dx^n.$$

Proof. We start with (1). It is easy to see that $\psi_k \in V^{\text{hol}}$. We will show that $\psi_k \in L^2(\mathbb{R}^{2n})$. Note that $z^2 + \bar{z}^2 = 2\sum_{j=1}^n (x_j^2 - p_j^2) = 2(x^2 - p^2)$. Thus, we have

$$e^{-\frac{z^2}{4\hbar} - \frac{\bar{z}^2}{4\hbar}} = e^{-\frac{x^2}{2\hbar}} e^{-\frac{p^2}{2\hbar}}.$$

Hence, we get

$$\int_{\mathbb{R}^{2n}} |\psi_k|^2 dp_1 \cdots dp_n dx^1 \cdots dx^n = \int_{\mathbb{R}^{2n}} |z|^{2k} e^{-\frac{x^2}{2h}} e^{-\frac{p^2}{2h}} dp_1 \cdots dp_n dx^1 \cdots dx^n < \infty.$$

Note that $e^{-\frac{(x^2+p^2)}{2h}}$ gives a Gaussian measure and since $|z|^{2k}$ is polynomial, we get finiteness. This shows tat $\psi_k \in L^2(\mathbb{R}^{2n})$ for all $k \in \mathbb{N}$. For (2), note that $\phi \in V^{hol}$

if and only if $\phi = e^{-\frac{p^2}{2\hbar}} F$, where F is holomorphic. Thus we have a map L: $\mathcal{H}_{hol} \to \mathscr{H}(\mathbb{C}^n)$ which is given by $L(\phi) = \phi e^{\frac{p^2}{2\hbar}}$. We have denoted by $\mathscr{H}(\mathbb{C}^n)$ the space of holomorphic functions $\mathbb{C}^n \to \mathbb{C}$. Moreover,

$$\begin{split} \int_{\mathbb{R}^{2n}} |\varphi|^2 dp_1 \cdots dp_n dx^1 \cdots dx^n &= \int_{\mathbb{R}^{2n}} |F|^2 e^{-\frac{p^2}{h}} dp_1 \cdots dp_n dx^1 \cdots dx^n \\ &= \int_{\mathbb{R}^{2n}} |L(\varphi)|^2 \underbrace{e^{-\frac{p^2}{h}} dp_1 \cdots dp_n dx^1 \cdots dx^n}_{dx}. \end{split}$$

Hence $L(\phi) \in L^2(\mathbb{R}^{2n}, \nu)$, which implies that

$$L(\varphi)\in L^2(\mathbb{R}^{2n},\nu)\cap \mathscr{H}(\mathbb{C}^n)=:\mathscr{H}L^2(\mathbb{C}^n,\nu).$$

Moreover, L^{-1} : $\mathscr{H}L^2(\mathbb{C}^n,\nu)\to\mathcal{H}_{hol}$ is given by $L^{-1}(\mathsf{F})=\mathrm{e}^{-\frac{p^2}{2h}}\mathsf{F}$. Note that L is an isomorphism of Hilbert spaces. One can show that $z^k\mathrm{e}^{-\frac{z^2}{4h}}$ forms an orthogonal basis of $\mathscr{H}L^2(\mathbb{C}^n,\nu)$, which is thus infinite-dimensional and hence \mathcal{H}_{hol} is infinite-dimensional as well.

Remark 7.4.1. Instead of taking $\theta = \sum_{j=1} p_j dx^j$, we can take $\widetilde{\theta} = \frac{1}{2} \sum_{j=1}^n (p_j dx^j - x^j dp_j)$ and the connection $\nabla^{\widetilde{\theta}}$. In this case we have $\varphi \in V^{hol}$ if and only if $\varphi \in e^{-\frac{z^2}{4h}}F$, where F is holomorphic. One can define \mathcal{H}_{hol} as before and one can show that \mathcal{H}_{hol} is isomorphic to (as Hilbert spaces) $\mathscr{H}L^2(\mathbb{C}^n,\mu)$, where

$$d\mu = e^{-\frac{z^2}{2\hbar}} dp_1 \cdots dp_n dx^1 \cdots dx^n.$$

Example 7.4.1. We want to look at the case n=1. Let $M:=T^*\mathbb{R}\ni (x,\mathfrak{p})$ and consider $\theta=\frac{1}{2}(pdx-xd\mathfrak{p})$. From Remark 7.4.1 we know $\mathcal{H}_{hol}\cong \mathscr{H}L^2(\mathbb{C},\mu)$. Moreover, one can check that $\psi_k=z^ke^{-\frac{z^2}{4h}}$ gives an orthogonal basis of \mathcal{H}_{hol} . Furthermore, we can show that

$$\mathcal{Q}_{pre}(H)\left(e^{-\frac{z^2}{4\hbar}}F\right) = \hbar z e^{-\frac{z^2}{4\hbar}} \frac{dF}{dz},$$

where $H(x,p) := \frac{1}{2}(x^2 + p^2)$ is the harmonic oscillator. Thus $\mathcal{Q}(H)(\psi_k) = k\hbar\psi_k(z)$ for all $k \in \mathbb{N}$ and hence $\psi_k(z)$ are eigenvectors associated to the eigenvalues $k\hbar$ for $k \in \mathbb{N}$. Since all eigenvalues are nonnegative and ψ_k forms a basis of \mathcal{H}_{hol} , we get that $\mathcal{Q}_{pre}(H)$ is a nonnegative operator on \mathcal{H}_{hol} . This example shows that we are able to improve one of the drawbacks of prequantization.

Remark 7.4.2. kħ, for $k \in \mathbb{N}$, are not true answers for eigenvalues of the harmonic oscillator ($\frac{1}{2}$ ħ is missing). This can be achieved by using *half-form* quantization.

7.5. **Quantization II.** We have seen that the naive approach to quantization may or may not lead to a construction of a reasonable Hilbert space. Next, our goal will be to outline a construction called *half-form* quantization, which might lead to *correct* Hilbert spaces. At least, we will see that we can construct position and momentum Hilbert spaces.

Definition 7.5.1 (Distribution). Let M be a smooth manifold. A real (complex) distribution of rank k, where $k \leq \dim M$, is a subbundle D of TM ($TM^{\mathbb{C}}$) such that $D_x \subseteq T_xM$ for al $x \in M$ with $\dim_{\mathbb{R}}(D_x) = k$ for the real case, and $D_x \subseteq T_xM^{\mathbb{C}}$ with $\dim_{\mathbb{C}} D_x = k$ for the complex case.

Remark 7.5.1. Let D be a distribution on M. We will use $\Gamma(M,D)$ to denote the space of sections of D. Given a distribution D on M, we can talk about functions on M, which are constant in the *direction* of D. More precisely, we say $f \in C^{\infty}(M)$ is constant along D if X(f) = 0 for all $X \in \Gamma(M,D)$. We will use $C^{\infty}_D(M)$ to denote functions on M, which are constant along D.

Example 7.5.1. Let $M:=\mathbb{R}^2\ni (x,\mathfrak{p}).$ Let $D(x,\mathfrak{p}):=\mathrm{span}_{\mathbb{R}}\{\partial_x\}.$ Then D is a distribution and $\Gamma(M,D)=\mathrm{span}_{C^\infty(\mathbb{R}^2\mathbb{R})}\{\partial_x\}.$

Example 7.5.2. Let $M:=\mathbb{R}^2$ and $D_{(x,p)}:=\text{span}_{\mathbb{R}}\{\partial_p\}$. Then D is a real distribution and $\Gamma(M,D)=\text{span}_{C^\infty(\mathbb{R}^2,\mathbb{R})}\{\partial_p\}$. D is called a *vertical distribution* on $M\cong T^*\mathbb{R}$.

Example 7.5.3. More generally, take $M := T^*Q \xrightarrow{\pi} Q$. Then we can define a real distribution D by $D_m = \ker(d\pi_m \colon T_mM \to T_{\pi(m)}Q)$ for each $m \in M$. Let $\dim Q = n$. Then we see than $\dim(\ker d_m\pi) = n$ for all $m \in M$. Let $(x^1, ..., x^n, p_1, ..., p_n)$ be local coordinates in a neighborhood of $m \in M$. Then we can check that

$$\ker(d_m\pi) = \operatorname{span}_{\mathbb{R}}\{\partial_{\mathfrak{p}_1}, ..., \partial_{\mathfrak{p}_n}\}.$$

This distribution D is called *vertical distribution* on T*Q.

Example 7.5.4. If we complexify a real distribution, we get a complex distribution. Let $M := T^*\mathbb{R}^n$ and consider the standard complex structure J on \mathbb{R}^n together with $D(x, p) := \operatorname{span}_{\mathbb{C}} \{ \partial_{z_1}, ..., \partial_{z_n} \}$. Hence D is a complex distribution.

Given a distribution D on M and a complex line bundle L with a connection ∇ on L, we can talk about *covariantly constant* sections of L along D as follows:

Definition 7.5.2 (Covariantly constant). A section $s: M \to L$ is *covariantly constant* along D if $\nabla_X s = 0$ for all $X \in \Gamma(M, D)$.

Remark 7.5.2. We write $\Gamma_D(M, L) := \{s \in \Gamma(M, L) \mid \nabla_X s = 0, \forall X \in \Gamma(M, D)\}.$

Example 7.5.5. Let $M := T^*\mathbb{R}^n \ni (x^1,...,x^n,p_1,...,p_n)$ and let D be the vertical distribution. Let $L := M \times \mathbb{C} \xrightarrow{\pi} \mathbb{C}$ and consider the 1-form $\theta = \sum_{j=1}^n p_j dx^j$. then ∇^θ is a connection on L. Using the identification $\Gamma(M,L) = C^\infty(M)$, we see that covariantly constant sections of L are essentially the functions f satisfying $\partial_{p_j} f = 0$ for all j = 1,...,n. Hence, we get $\Gamma_D(M,L) = V^{pos}$.

Example 7.5.6. Let M, θ , ∇^{θ} and L be as in Example 7.5.5. Define

$$D_{(x,p)} := \operatorname{span}_{\mathbb{C}} \{ \partial_{z_1}, ..., \partial_{z_n} \},$$

$$\widetilde{D}_{(x,p)} := \operatorname{span}_{\mathbb{C}} \{ \partial_{\overline{z}_1}, ..., \partial_{\overline{z}_n} \}.$$

Then D and \widetilde{D} are complex distributions and $\Gamma_{\widetilde{D}}(M,L) = V^{hol}$.

We have seen that given a distribution D on a manifold M and a line bundle (L, ∇) with a connection over M, we can talk about sections of L, which are covariantly constant along D. In principle, it can happen that $\Gamma_D(M,L)$ is $\{0\}$ or too small. We want to understand what properties D should have such that $\Gamma_D(M,L)$ is as big as possible. Let $\hbar=1$ form now on. Let (M,Ω) be a symplectic manifold and (L,∇) be a prequantum line bundle on M, i.e. $R^\nabla(X,Y)=\Omega(X,Y)$ for all $X,Y\in\Gamma(M,TM)$. Let D be a distribution on M and $\Phi\in\Gamma_D(M,L)$. Then for all $X,Y\in\Gamma(M,D)$ we have $\nabla_X\Phi=0$ and $\nabla_Y\Phi=0$. Hence $[\nabla_X,\nabla_Y]\Phi=0$. Recall that $[\nabla_X,\nabla_Y]=\nabla_{[X,Y]}-i\Omega(X,Y)$ and thus

(7.5)
$$\nabla_{[X,Y]} \phi - i\Omega(X,Y) \phi = 0.$$

If we assume $[X,Y] \in \Gamma(M,D)$, then (7.5) implies that $\Omega(X,Y)=0$. From (7.5) and $\Omega(X,Y)=0$, we can see that if the distribution D satisfies (7.5) and $\Omega(X,Y)=0$ for $X,Y \in \Gamma(M,D)$. Then the necessary condition $[\nabla_X,\nabla_Y]\varphi=0$ holds and hence there is a chance that we get a reasonably $big\ \Gamma_D(M,L)$. This motivates the following definition.

Definition 7.5.3 (Real polarization). Let (M, Ω) be a symplectic manifold. A *real polarization* of M is a real distribution D such that

- (1) $X, Y \in \Gamma(M, D)$ implies that $[X, Y] \in \Gamma(M, D)$. This condition means that D is *involutive* (or *integrable*).
- (2) D_x is a Lagrangian subspace of T_xM for all $x \in M$, i.e. for all $u, v \in D_x$, $\Omega(u, v) = 0$ and dim $D_x = \frac{1}{2} \dim M$.

Definition 7.5.4 (Complex polarization). Let (M, Ω) be a symplectic manifold. A *complex polarization* of M is a complex distribution D such that

- (1) for all $X, Y \in \Gamma(M, D)$ we get $[X, Y] \in \Gamma(M, D)$ (D is *integrable*).
- (2) D_x is a Lagrangian subspace of $T_xM^{\mathbb{C}}$ for all $x \in M$.
- (3) $\dim(D_x \cap \overline{D_x})$ is constant in $x \in M$.

Remark 7.5.3. We can observe that for a real polarization D of M, the complexification $D^{\mathbb{C}}$ of D is a complex polarization because $D_x \cap \overline{D_x} = D_x$ for all $x \in M$.

Example 7.5.7. Let $M := T^*Q$ and P the vertical distribution. Then P is a polarization. P is called the *vertical polarization*.

Example 7.5.8. Let $M := T^*\mathbb{R}^n$ and J be the standard complex structure as before. Moreover, consider

$$\begin{split} &P_{(x,p)} := span_{\mathbb{C}} \{ \vartheta_{z_1}, ..., \vartheta_{z_n} \}, \\ &\overline{P}_{(x,p)} := span_{\mathbb{C}} \{ \vartheta_{z_1}, ..., \vartheta_{z_n} \}. \end{split}$$

Then P and \overline{P} are complex polarizations.

Definition 7.5.5 (Involutive distribution). A (real) distribution D on M with the property that $X, Y \in \Gamma(M, D)$ implies $[X, Y] \in \Gamma(M, D)$ is called *involutive*.

Remark 7.5.4. If a real distribution D is involutive, there is a foliation of M by integral submanifolds of D, i.e. there exists a collection $\{S_i\}_{i\in I}$ of submanifolds of M such that all the S_i are mutually disjoint and $M=\bigsqcup_{i\in I}S_i$ (this is the foliation part). Moreover, for all $x\in S_i$, we have $T_xS_i=D_x$ (this is the integral submanifold part). Each S_i is called a *leaf* on the foliation (equally, *leaf* of D). Given an involutive distribution D and an associated foliation $\{S_i\}_{i\in I}$, we can define a new topological space, which is the space of equivalence classes of M, where the equivalence relation \sim arises from the foliation: for $x,y\in M$ we have $x\sim y$ if and only if there is an $i\in I$ such that $x,y\in S_i$.

Assume that M/D is a smooth manifold and π : M \rightarrow M/D, which is the canonical projection, is smooth.

Example 7.5.9. Let $M := T^*N$, for some manifold N, and D be the vertical distribution on M. Then a leaf is exactly a fiber of T^*N over N. In this case M/D is diffeomorphic to N and π can be identified with the usual projection map $T^*N \to N$.

Example 7.5.10. Let $M := \mathbb{R}^2 \ni (x, p)$ and let D be the horizontal distribution, i.e.

$$\Gamma(M, D) = \operatorname{span}_{C^{\infty}(M, \mathbb{R})} \{ \mathfrak{d}_{x} \}.$$

Then $M/D \cong \mathbb{R}$ and $\pi \colon M \to M/D$ can be identified with the projection $(x,p) \mapsto p$.

Example 7.5.11. Let $M := \mathbb{R}^2 \setminus \{(0,0)\}$ and let D be the distribution for which

$$\Gamma(M,D) = span_{C^{\infty}(M,\mathbb{R})} \{x \partial_{p} - p \partial_{x}\}.$$

Then $M/D \cong \mathbb{R}^+$ and $\pi: M \to M/D$ can be identified with the map $(x, p) \mapsto x^2 + p^2$.

7.5.1. Half-form quantization (real case). Let (M,Ω) be a symplectic manifold and P a real polarization. Assume that the space of leaves N:=M/P is a smooth manifold and $\pi\colon M\to N$ is smooth. Moreover, define a line bundle K_P as follows: An \mathfrak{n} -form α is a section of K_P if and only if $\iota_X\alpha=0$ for all $X\in\Gamma(M,P)$.

Definition 7.5.6 (Canonical bundle). The bundle K_P is called the *canonical bundle* of P and is given by

$$(K_P)_x := \bigwedge^n (Ann(P_x)),$$

where $Ann(P_x) := \{\alpha \in T_x^*M \mid \alpha(u) = 0, \forall u \in P_x\}$ denotes the annihilator of P_x .

Definition 7.5.7 (P-polarized form). We say that $\alpha \in \Gamma(M, K_P)$ is P-polarized if $\iota_X(d\alpha) = 0$ for all $X \in \Gamma(M, P)$.

Example 7.5.12. Let $M:=T^*\mathbb{R}^n\ni (x^1,...,x^n,p_1,...,p_n)$ and P be the vertical polarization on M. Then $N\cong\mathbb{R}^n\ni (x^1,...,x^n)$ and $M\to N$ the projection. Consider an n-form $\alpha=f(x,p)dx^1\wedge\cdots\wedge dx^n\wedge dp_1\wedge\cdots\wedge dp_n$ on M. Then $\iota_{\mathfrak{d}_{\mathfrak{p}_j}}\alpha=0$ for all j=1,...,n if and only if $\alpha=f(x,p)dx^1\wedge\cdots\wedge dx^n$. Moreover,

$$\iota_{\mathfrak{d}_{\mathfrak{p}_{j}}}(d\alpha)=0 \Longleftrightarrow \mathfrak{d}_{\mathfrak{p}_{j}}f=0, \ \, \forall j=1,...,n.$$

Exercise 7.5.1. Check (7.6).

Remark 7.5.5. A P-polarized section of K_P has the form $f(x)dx^1 \wedge \cdots \wedge dx^n$.

Proposition 7.5.1. Let $\tilde{\alpha}$ be an n-form on N. Then $\pi^*(\tilde{\alpha})$ is a P-polarized section of K_P . If α is a P-polarized section of K_P , then $\alpha = \pi^*(\tilde{\alpha})$ for some n-form on N.

Definition 7.5.8 (square root of a line bundle). Let L be a line bundle on a manifold M. A line bundle $Q \to M$ is a *square root* of L if there exists an isomorphism $Q \otimes Q \to L$.

Example 7.5.13 (Trivial line bundle). A *trivial line bundle* has a square root: There is an isomorphism between $M \times (\mathbb{C} \otimes \mathbb{C}) \to M$ and $\mathbb{C} \to M$ coming from the isomorphism $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C} \xrightarrow{\sim} \mathbb{C}$.

Remark 7.5.6. We want to assume that K_P has a square root and we fix a square root S_P of K_P from now on.

Example 7.5.14. Let $M := T^*\mathbb{R}^n$ and let P be the vertical polarization on M. We have seen that $\Gamma(M, K_P) = \{fdx^1 \wedge \cdots \wedge dx^n \mid f \in C^{\infty}(T^*\mathbb{R}^n)\}$. Hence

$$\Gamma(M,S_P) = \left\{ f \sqrt{dx^1 \wedge \dots \wedge dx^n} \ \big| \ f \in C^\infty(T^*\mathbb{R}^n) \right\},$$

where $\sqrt{dx^1 \wedge \cdots \wedge dx^n}$ is just a notation to indicate the fact that

$$\sqrt{dx^1 \wedge \cdots \wedge dx^n} \otimes \sqrt{dx^1 \wedge \cdots \wedge dx^n} = dx^1 \wedge \cdots \wedge dx^n.$$

Remark 7.5.7. Recall that, given $\alpha \in \Gamma(M, K_P)$ and $X \in \Gamma(M, P)$, we get $\iota_X(d\alpha) \in \Gamma(M, K_P)$.

Using Remark 7.5.7, we can define a *partial* connection $\nabla_X^{\text{part},P} \alpha := \iota_X(d\alpha)$ for a fixed $X \in \Gamma(M,P)$ (this is partial because we can not define this for all $X \in \Gamma(M,TM)$). In fact, $\nabla^{\text{part},P}$ induces a partial connection on S_P , which is roughly given by solving

$$\underbrace{\nabla_X^{\text{part},P}(s_1 \otimes s_2)}_{\in \Gamma(M,K_P)} = \underbrace{\nabla_X^{\text{part},P}s_1}_{\in \Gamma(M,S_P)} \otimes \underbrace{s_2}_{\in \Gamma(M,S_P)} + s_1 \otimes \underbrace{\nabla_X^{\text{part},P}s_2}_{\in \Gamma(M,S_P)}.$$

Remark 7.5.8. We say that a section $\mu \in \Gamma(M, S_P)$ is P-polarized, if

$$\nabla_{X}^{\text{part},P}\mu=0,\quad\forall X\in\Gamma(M,P).$$

Example 7.5.15. Let $M := T^*\mathbb{R}^n$ and P the vertical polarization on M. Then

$$\Gamma(M,S_P) = \left\{ f(x,p) \sqrt{dx^1 \wedge \dots \wedge dx^n} \ \middle| \ f \in C^\infty(T^*\mathbb{R}^n) \right\}.$$

We get that $f(x,p)\sqrt{dx^1\wedge\cdots\wedge dx^n}$ is P-polarized if and only $\partial_{p_j}f=0$ for all j=1,...,n.

7.5.2. *Construction of the Hilbert space*. For the construction of a Hilbert space, we need to start with the following data:

- A symplectic manifold (M, Ω) ,
- A prequantum line bundle (L, ∇) on M with metric h^F ,
- A real polarization P on M,
- A square root S_P of the canonical line bundle associated to P.

We assume that N := M/P is a smooth manifold and the projection $\pi \colon M \to N$ is smooth, that N is oriented and ∇ is compatible with h^F . Let s_1 and s_2 be P-polarized sections of L. Then

$$X(h^{F}(s_{1}, s_{2})) = h^{F}(\nabla_{X}s_{1}, s_{2}) + h^{F}(s_{1}, \nabla_{X}s_{2}) = 0,$$

and thus $h^F(s_1, s_2)$ is a function on N. Let us consider the space

$$\Gamma_P(L \otimes S_P^{\mathbb{C}}) := \{P\text{-polarized sections of } L \otimes S_P^{\mathbb{C}}\}.$$

Note that $\Gamma_P(L \otimes S_P^{\mathbb{C}})$ is generated by elements of the form $s \otimes \mu$, where s is a P-polarized section of L and μ is a P-polarized section of $S_P^{\mathbb{C}}$. We define

$$\langle s_1 \otimes \mu_1, s_1 \otimes \mu_2 \rangle_{\mathcal{H}_P} := \int_N h^F(s_1, s_2) \bar{\mu}_1 \otimes \mu_2,$$

and then extend sesquilinearly. Note that $\bar{\mu}_1 \otimes \mu_2$ is an n-form on N. Consider the inner product space, which consists of $\gamma \in \Gamma_P(L \otimes S_P^\mathbb{C})$ for which $\|\gamma\|_{\mathcal{H}_P} < \infty$. The half-form Hilbert space is then given by the completion of this inner product space with respect to this norm.

Example 7.5.16. Let $M := T^*\mathbb{R}^n$ with its canonical symplectic form Ω . Let P be the vertical polarization on M, $L := M \times \mathbb{C}$ the trivial line bundle and $\theta := \sum_{j=1}^n p_j dx^j$ together with the induced connection ∇^{θ} . Then

$$\Gamma_P(M,S_P) = \left\{ f(x) \sqrt{dx^1 \wedge \dots \wedge dx^n} \ \big| \ f \in C^\infty(\mathbb{R}^n) \right\}.$$

Since

$$\left\langle s_1 \otimes f_1 \sqrt{dx^1 \wedge \dots \wedge dx^n}, s_1 \otimes f_2 \sqrt{dx^1 \wedge \dots \wedge dx^n} \right\rangle_{\mathcal{H}_P} = \int_{\mathbb{R}^n} \bar{s}_1 s_2 \bar{f}_1 f_2 dx^1 \wedge \dots \wedge dx^n,$$

we can identify \mathcal{H}_P with $L^2(\mathbb{R}^n)$.

REFERENCES

- [Ati88] M. F. Atiyah. "Topological quantum field theories". In: *Publ.math. IHÉS* 68.1 (1988), pp. 175–186.
- [BW12] S. Bates and A. Weinstein. *Lectures on the Geometry of Quantization*. University Reprints, 2012.
- [Cal+17] D. Calaque, T. Pantev, B. Toën, M. Vaquié, and G. Vezzosi. "Shifted Poisson structures and deformation quantization". In: *J. Topol.* 10.2 (2017), pp. 483–584.

- [DL83] M. DeWilde and P. B. A. Lecomte. "Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds". In: *Lett. Math. Phys.* 7.6 (1983), pp. 487–496.
- [Fed94] B. V. Fedosov. "A simple geometrical construction of deformation quantization". In: *J. Differ. Geom.* 40.2 (1994), pp. 213–238.
- [Gro46] H. J. Groenewold. "On the principles of elementary quantum mechanics". In: *Physics* 12 (1946), pp. 405–460.
- [GRSo5] S. Gutt, J. Rawnsley, and D. Sternheimer. *Poisson Geometry, Deformation Quantisation and Group Representations*. Vol. 323. London Mathemaical Society, Lecture Notes Series, Cambridge University Press, 2005.
- [GS82] V. Guillemin and S. Sternberg. "Geometric quantization and multiplicities of group representations". In: *Invent. Math.* 67.3 (1982), pp. 515–538.
- [Kir85] A. Kirillov. "Geometric quantization". In: *Dynamical systems 4* 4 (1985), pp. 141–176.
- [Kono3] M. Kontsevich. "Deformation quantization of Poisson manifolds". In: *Lett. Math. Phys.* 66.3 (2003), pp. 157–216.
- [Leeo2] J. M. Lee. *Introduction to Smooth Manifolds*. Springer Graduate Texts in Mathematics, 2002.
- [Moy49] J. E. Moyal. "Quantum mechanics as a statistical theory". In: *Mathematical Proceedings of the Cambridge Philosophical Society* 45.01 (1949), p. 99.
- [Seg88] G. B. Segal. "The definition of conformal field theory". In: *Differential geometrical methods in theoretical physics*. Vol. 250. 1988, pp. 165–171.
- [Silo8] A. C. da Silva. Lectures on Symplectic Geometry, Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2001, Corrected 2nd printing 2008.
- [Wey31] H. Weyl. "The theory of groups and quantum mechanics". In: *Dover, New York, translated from* Quantenmechanik und Gruppentheorie, *Z. Physik* (1927) 46 (1931), pp. 1–46.
- [Woo97] N. Woodhouse. *Geometric Quantization*. Oxford University Press (OUP), 1997.

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190 CH-8057 Zürich *Email address*, N. Moshayedi: nima.moshayedi@math.uzh.ch