Analyse | CM: 9

Par Lorenzo

14 novembre 2024

0.1 Limites d'une fonction

0.1.1 Définition

Définition 0.1. On dit qu'une fonction f admet une limite $l \in \mathbb{R}$ en x_0 si $\forall \varepsilon > 0, \exists \delta > 0, |x - x_0| < \delta \implies |f(x) - l| < \varepsilon$ On note $\lim_{x \to x_0} f(x) = l$

Remarques 0.1.

On peut remplacer $< par \le$

L'ordre est important, δ dépend de ε

Définition 0.2. Soient f définie sur un intervalle I de \mathbb{R} , et $x_0 \in \mathbb{R}$ dans I ou aux extrémités de I.

On dit que f admet par limite $+\infty$ en x_0 si $\forall M > 0, \exists \delta > 0, |x - x_0| < \delta \implies f(x) \ge M$ On dit que f admet par limite $-\infty$ en x_0 si $\forall M > 0, \exists \delta > 0, |x - x_0| < \delta \implies f(x) \le -M$

Définition 0.3. On dit que f admet une limite $l \in \mathbb{R}$ en $+\infty$ si $\forall \varepsilon > 0, \exists n > 0, x > n \implies |f(x) - l| < \varepsilon$

Définition 0.4. f admet une limite $en + \infty$ $en + \infty$ $si \ \forall M > 0, \exists m > 0, x > m \implies f(x) > M$

Définition 0.5. On appelle limite à droite en x_0 de f, la limite de f en x_0 restreinte aux valeurs $x > x_0$ et on note $\lim_{x \to x_0^+} f(x) = \lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$

Remarques 0.2.

Si
$$x > x_0$$
, $|x - x_0| = x - x_0$ et $|x - x_0| < \delta$ devient $x_0 < x < x_0 + \delta$
Si $x < x_0$, $|x - x_0| = -(x - x_0)$ et $|x - x_0| < \delta$ devient $x_0 - \delta < x < x_0$

Proposition 0.1.

Si f admet une limite en x_0 alors f admet une limite en x_0^+ et en x_0^- et les limites coincident. Si une fonction admet une limite à gauche et une limite à droite en x_0 et qu'elles sont égales, alors f admet cette même limite en x_0 .

Démonstration 0.1.

À faire (juste les définitions)

0.1.2 Propriétés

Théorème 0.1. Si f admet une limite, elle est unique.

Démonstration 0.2.

Pareil que pour les suite (supposer deux limites différentes puis absurde)

Corollaire 0.1. Si la limite à gauche est différente de la limite à droite, alors f n'admet pas de limite.

0.1.3 Règles de calcul

Notons $\lim_{x\to x_0} f(x) = l$, $\lim_{x\to x_0} g(x) = l'$

- $\forall \lambda \in \mathbb{R}, \lim_{x \to x_0} \lambda f(x) = \lambda l$
- $\lim_{x \to x_0} (f+g)(x) = l + l'$
- $\lim_{x\to x_0} (f\times g)(x) = l\times l'$
- Si $l \neq 0$, $\lim_{x \to x_0} \frac{g(x)}{f(x)} = \frac{l'}{l}$
- Si $f \leq g$ alors $l \leq l'$

Remarques 0.3. Si f < g alors $l \le l'$

Théorème 0.2. Théoreme des gendarmes

 $Si \ f \le g \le h \ alors \lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x) \le \lim_{x \to x_0} h(x)$

Propriétés 0.1.

On note $g \circ f$ la composition des fonctions f et g définie par $(g \circ f)(x) = g(f(x))$

0.2 Continitué en 1 point

Définition 0.6. On dit que f est continue en x_0 si f admet une limite en x_0 et cette limite vaut $f(x_0)$ autrement dit $\forall \varepsilon > 0, \exists \delta > 0, |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$

0.2.1 Règles de calcul

Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ continue dans x_0 .

- $\forall \lambda \in \mathbb{R}, \lambda f$ est continue en x_0
- f + g est continue en x_0
- $f \times g$ est continue en x_0
- Si $f(x) \neq 0$ alors $\frac{g}{f}$ est continue en x_0

Proposition 0.2.

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ avec $f(I) \subset J$. Si f est continue en x_0 et g aussi alors $g \circ f$ est continue en x_0 . $\lim_{x \to x_0} (g \circ f)(x) = (g \circ f)(x_0)$

0.3Prolongement par continuitué

Définition 0.7. Soit f une fonction définie sur l'intervalle I privé de x_0 f:I $\{x_0\} \to \mathbb{R}$. On dit que f est prolongeable par continuité par continuité en x_0 so f admet une limite finie l en x_0 .

On note $\frac{1}{f:I\to\mathbb{R}}$ le prolongement défini par

$$\tilde{f}(x) = \begin{cases} f(x)six \neq x_0 \\ lsix = x_0 \end{cases}$$

Continuité sur un intervalle 0.4

Définition 0.8. Soit $f: I \to \mathbb{R}$ est dite continue sur l'intervalle I si elle est continue en tout point de I.

0.5Théoreme des valeurs intermédiaires

Théorème 0.3. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur le segment [a,b]. Alors pour toute valeurs y comprise entre f(a) et f(b), il existe un $c \in [a,b]$ tel que y = f(c)

Démonstration 0.3.

Comme f est continue sur [a, b], f est continue en tout point $c \in [a, b]$ Autrement dit $\lim_{x\to c}(x)=f(c).$

Supposons que $f(a) \leq f(b)$. Alors $y \in [f(a), f(b)]$ signifie $f(a) \leq y \leq f(b) \iff$ $f(a) \le \lim_{x \to c} f(x) \le f(b)$

Corollaire 0.2. Si $f:[a,b] \to \mathbb{R}$ continue et f(a)f(b) < 0 alors $\exists c \in]a,b[$ tel que f(c) = 0

Corollaire 0.3. Si f est continue sur un intervalle I alors $f(I) = \{y = f(x) | x \in I\}$ est aussi un intervalle.

Remarques 0.4.

c n'est pas forcément unique.

en général $f([a,b]) \neq [f(a),f(b)]$