Berechnung und Darstellung des Subnettings

7-3

Aufgabe

Betrachtung anhand der IP-Adresse **192.168.10.10** mit der Subnetmaske **255.255.25.0**.

• Notieren sie die IP-Adresse in der CIDR-Darstellung:

192.168.10.10/24

• Setzen sie die Adresse und die Subnetmaske in ein Bitmuster um:

IP-Adresse:

- 1. Überlegen sie sich, wie sie aus dem bestehenden IP-Subnetz 4 Subnetze generieren können und markieren sie die gefundene Lösung in ihrem Bitmuster farblich (grün).
- 2. Markieren und bezeichnen sie den Teil der Netzwerk- (blau) und der Hostadresse (rot) mit unterschiedlichen Farben
- 3. Notieren sie beim letzten Byte die Wertigkeit der einzelnen Bits in Potenzschreibweise und Zahlenwert 2² für die Subnetzmaske und 2⁶ für die Hosts
- 4. Ergänzen sie anschliessend die fehlenden Adressen und Informationen

Tabellarische Darstellung:

Subnetmaske -> 255.255.255.192 oder /26				
Subnetz	Netzadresse	Subnetbits	Max. Adres- sen	Anz. Hosts
Netz 0	192.168.10.0	00	0-63	62 → 1-62
Netz 1	192.168.10.64	01	64-127	62 → 65-126
Netz 2	192.168.10.128	10	128-191	62→129-190
Netz 3	192.168.10.192	11	192-255	62→193-254

Berechnung und Darstellung des Subnettings

7-3

Information zum Adressraum eines Subnetzes:

Die erste Nummer der Adresse entspricht der Netzadresse. Die letzte Nummer der Adresse wird für den Broadcast benötigt. Damit ist die effektive Anzahl von adressierbaren Hosts immer um 2 kleiner als die Differenz zwischen 2 folgenden Netzadressen.

Und noch etwas Mathematik:

Aus den benötigten Subnetadressbits lässt sich mathematisch die Anzahl der möglichen Netzwerke und adressierbaren Hosts pro Netzwerk folgendermassen berechnen.

Anzahl Netze: $2^{(Anz_Subnetbits)} \rightarrow 2^2 = 4$

Anzahl Hosts: $2^{(Anz_Hostbits)} - 2 \rightarrow 2^6 = 64 - 2 = 62$

(-2 wegen Netzadresse und Broadcast)

Praxis-Beispiel:

Minus Netz und Broadcast Adresse

Lösung:

Benötigte Bits pro Webhoster:	0000'0 <mark>111 → 3</mark> Bits		
Maximale Hosts pro Kunde	2^{3} – 2 entspricht 8 – 2 = 6 (-1 für Gateway)		
Reserve pro Webhoster:	6 ,5 oder 4 = 1 bis 2 Adressen Reserve		
Mögliche Subnetze:	$2^{(8-3)} = 2^{5} = 32 \rightarrow 32$ Webhoster sind möglich		
Subnetmaske:	255.255.258 oder /29		
Netzwerkadressen 1. und 2.:	197.125.15. <mark>8/29</mark> und 197.125.15. <mark>16/29</mark>		
Broadcastadressen 1. und 2.:	197.125.15. <mark>15/29</mark> und 197.125.15. <mark>23/29</mark>		
Adressen für Hosts 1. Netz:	197.125.15.9/29 bis 197.125.15.14/29		
Adressen für Hosts 2. Netz:	197.125.15.17/29 bis 197.125.15.22/29		

