河海大学常州校区 2018-2019 学年第一学期

《大学物理 II》(M电+物联网:2017 级)期末(课内)考试(B)

卷

授课班号_	专	·业		_ 学号		姓名	
1、有	题号		-	_	总分	审核	关常量:
	越与		1	2			
	题分	74	13	13			
	得分						

真空电容率(真空介电常量) $\varepsilon_0 = 8.854187817 \times 10^{-12} C^2 / (N \text{D} m^2)$

真空磁导率 $\mu_0 = 4\pi \times 10^{-7}$ T \Box m/A

2、有关公式:

库仑力
$$\vec{F}_{12} = -\vec{F}_{21} = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r_{12}^2} \vec{e}_{r12}$$

点电荷电场强度 $\vec{E} = \frac{1}{4\pi\epsilon_o} \frac{q}{r^2} \vec{e}_r$

电偶极矩(电矩) $\vec{p} = q\vec{l}$

无限长均匀带电直棒电场 $E = \frac{\lambda}{2\pi\varepsilon_0 r}$

均匀带电圆环轴线上电场 $E=rac{qx}{4\piarepsilon_0\left(x^2+R^2
ight)^{3/2}}$ 均匀带电圆盘轴线上电场 $E=rac{\sigma}{2arepsilon_0}\left(1-rac{x}{\sqrt{R^2+x^2}}
ight)$

静电场中的高斯定理 $\iint \vec{E} \, d\vec{S} = \frac{1}{\epsilon} \sum_{i} q_{i}$

电势
$$V_a = \int_a^\infty \vec{E} \, \Box d\vec{l} = \int \frac{dq}{4\pi\varepsilon_0 r}$$

电势差
$$U_{ab}=\int_a^b ec{E}\Box dec{l}=rac{A_{ab}}{q_0}$$

电势 $V_a=\int_a^\infty ar{E}\Box dar{l}=\int rac{dq}{4\piarepsilon_0 r}$ 电势差 $U_{ab}=\int_a^b ar{E}\Box dar{l}=rac{A_{ab}}{q_0}$ 带电导体表面附近电场 $ar{E}=rac{\sigma}{arepsilon_0}ar{e}_n$

电容器电容
$$C = \frac{q}{V_A - V_B}$$

平行板电容器
$$C = \frac{\varepsilon_0 S}{d}$$

圆柱形电容器
$$C = \frac{2\pi\varepsilon_0}{\ln\frac{R_B}{R_A}}$$

球形电容器
$$C = 4\pi\varepsilon_0 \frac{R_{\scriptscriptstyle A}R_{\scriptscriptstyle B}}{R_{\scriptscriptstyle B} - R_{\scriptscriptstyle A}}$$

电场能量
$$W_e = \iiint_V \frac{1}{2} \varepsilon_0 E^2 dV = \frac{1}{2} \frac{Q^2}{C}$$

恒定电流的磁场

毕奥一萨伐尔定律
$$B = \frac{\mu_0}{4\pi} \int_L \frac{Id\vec{l} \times \vec{r}}{r^3}$$

载流长直导线磁场
$$B = \frac{\mu_0 I}{4\pi r} \left(\sin \beta_1 - \sin \beta_2 \right)$$

载流圆线圈轴线上磁场
$$B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}}$$

磁矩 $\bar{m} = IS\bar{e}_n$

无限长直螺线管磁场:内部 $B = \mu_0 nI$;外部B = 0

磁通量
$$\Phi_m = \iint_S \vec{B} \Box d\vec{S}$$

安培环路定理
$$\iint_L \vec{B} \Box d\vec{l} = \mu_0 \sum I$$

洛伦兹力 $\vec{F} = q\vec{v} \times \vec{B}$

安培定律 $\vec{F} = \int_{r} Id\vec{l} \times \vec{B}$

磁力矩 $\vec{M} = \vec{m} \times \vec{B}$

光的偏振

马吕斯定律 $I_2 = I_1 \cos^2 \alpha$

布儒斯特定律 $\tan i_B = \frac{n_2}{n}$

电磁感泵

法拉第电磁感应定律

$$\xi_i = -\frac{d\Phi_m}{dt}$$

动生电动势 $\xi_i = \int_I (\vec{v} \times \vec{B}) \Box d\vec{l}$

自感系数
$$L = \frac{\Phi_m}{I} = -\frac{\xi_i}{dI/dt}$$

互感系数
$$M = \frac{\Phi_m}{I} = -\frac{\xi_i}{dI/dt}$$

双缝干涉

双缝干涉明纹位置

$$x = \pm k \frac{D\lambda}{d}, k = 0, 1, 2, \cdots$$

双缝干涉暗纹位置

$$x = \pm (2k+1)\frac{D\lambda}{d}, k = 0, 1, 2, \dots$$

光程 nx

位相差与光程差的关系

$$\Delta \phi = \frac{2\pi \delta}{\lambda}$$

膜干涉

薄膜干涉反射光光程差

$$= \begin{cases} k\lambda, k = 1, 2, 3, \dots 明 纹 \\ (2k+1)\frac{\lambda}{2}, k = 1, 2, 3, \dots 暗 纹 \end{cases}$$

劈尖膜相邻明纹或暗纹间距

$$l = \frac{\lambda}{2\sin\theta} \approx \frac{\lambda}{2\tan\theta} \approx \frac{\lambda}{2\theta}$$

单缝衍射

暗纹公式 $a \sin \theta = \pm 2k \frac{\lambda}{2}, k = 1, 2, 3, \cdots$

中央明纹的半角宽度

$$\Box \theta_0 = \theta_1 = \arcsin \frac{\lambda}{a} \approx \frac{\lambda}{a}$$

中央明纹线宽度 $\Box x \approx 2f\theta_1 = \frac{2\lambda f}{2}$

光栅桁射 光栅方程(a+b)sin $\theta=k\lambda$

缺级 $k = \frac{a+b}{a}k', k' = \pm 1, \pm 2, \cdots$

两相邻主极大之间有N-1个极小值,N-2个次极大

一、填空题(共74分,每空2分)

阅卷	得分

1、 已知一均匀带电量 q、半径为 r 的圆环中心轴线上距圆环中心,r 处的电场强度大小为 $F = \frac{1}{2}$ qx

中心 x 处的电场强度大小为 $E = \frac{1}{4\pi\varepsilon_0} \frac{qx}{\left(x^2 + r^2\right)^{\frac{3}{2}}}$, 方向

为沿轴线向外,则计算如图所示一个半径为 R、均匀带有电量 Q 的圆盘中心轴线上距圆盘中心 x 处的电场强度方法为:如图所示,以圆盘中心为圆心,在圆盘上取 $r\sim r+dr$ 范围的圆盘部分为微元,该微元恰好是一个均匀带电圆环,其所带电量为 dq=

根据圆环中心轴线上的场强公式,该圆环微元在P点产生的场强大小为

- 2、 根据高斯定理:
 - (1) 一个半径为 R,均匀带有电量 Q 的球面产生的电场,距离球心 r 处的电场强度大小为: 当 r<R 时,E=______,当 r>R 时,E=_____,电场方向
 - (2)与一根带电线密度为 à 的无限长线距离为 d 处的电场强度大小

E=____;

(3) 与一个带电面密度为 σ 的无限大平面距离为 d 处的电场强度大小 E=_____;

3、 如图所示,一导体球腔带有电量q,若腔内非球心处有

一点电荷 $-\frac{q}{2}$,则:球腔内表面带电量为_____;

球腔外表面带电量为_____; 球腔外电场强度为_____;

若球腔接地,则:球腔内表面带电量为____; 球腔外表面电量为____; 球腔外电场强度为

4、 如右图所示,一载有恒定电流 *I* 的无限长直导线与一矩形线圈共面放置,矩形线圈的高为 *2a*, 宽为 *a*, 靠近无

	限长导线的一边与长直导线平行相距 a。当线圈以恒定速度 v 向上运动时,在图示时刻线圈中的感应电动势大小为
	当直导线中电流改为 $I=5\cos 4t(A)$ 的交变电流,矩形线圈一直静止,线圈上的
	感应电动势为。
5、	如图一长直导线横截面半径为 a ,导线外同轴地套一半径为 b 的导体薄圆筒,设导线单位长度的电荷为 $+\lambda$,取外导体圆筒电势为零,则两导体之间任意一点 P 的电场强度
	为。
6,	用波长为 λ 的单色平行光垂直入射在一块多缝光柵上,其光柵常数 $d=3\mu m$,缝宽
	$a=1 \mu m$,则在单缝衍射的中央明条纹中共有条谱线(主极大)。
7、	波长 λ =550 nm 的单色光垂直入射于光栅常数 d =2 \times 10 $^{-4}$ cm 的平面衍射光栅上,
	可能观察到的光谱线的最大级次为。
8,	某种透明媒质对于空气的临界角(指反射)等于 $\arcsin \frac{\sqrt{3}}{3}$,光从空气射向此媒质时
	的布儒斯特角是; 此媒质的折射率为。
9、	在玻璃 (折射率 n_3 = 1.60) 表面镀一层 MgF_2 (折射率 n_2 = 1.38) 薄膜作为增透膜。为了使波长为 700 nm 的光从空气 $(n_1$ = 1.00)正入射时尽可能少反射, MgF_2 薄膜的最少厚度应是nm。
10、	两个电容器的电容之比 $C_1:C_2=1:2$,把它们串联起来充电后(两个电容的电量相同),它们的电场能量之比 $W_1:W_2=_\。$ 如果是并联起来充电(两个电容的电压相同),则它们的电场能量之比为 $W_1:W_2=_\。$
11、	两个相距很远的金属球半径分别为 R_1 和 R_2 ,带电量分别为 q_1 和 q_2 ,现用一很长的导线将两金属球连接起来,此时两球的带电量分别为和。
12、	将一个均匀带电荷+ Q 的球形肥皂泡由半径 r_1 吹胀到 r_2 ,则距球心 r 处($r_1 < r < r_1$)任一点的电场强度大小由

13、	球表面附近的电场强度为 E_1 ,方向指[向地球中心,则 [±]	也球带的总电量(2
	=; 在离地面 h (h << R)	,场强降为 E_2 ,	方向指向地心,	则h以下大
	气层内的平均电荷密度 ρ=	(体积)	视为 $4\pi R^2 h$)	

二、计算题(共26分)

1、(本题 13 分) 如图,在一个半径为 R_1 的金属球 A 外面套有一同 心金属球壳 B。已知球壳 B 的内外半径分别为 R_2 和 R_3 。设 A 球总电量 q,球壳 B 的总电量为 Q。

阅卷	得分

- (1) 求球壳 B 内、外表面上所带的电荷及球 A 和球壳 B 的电势; (5分)
- (2) 求半径在 R_1 和 R_2 之间的球壳中的电场能量; (5分)
- (3) 将金属球 A 接地,求金属球 A 所带的电量 q 。(3分)

2、(本题 13 分) 一截面为矩形的螺绕环,内外半径分别为 R_1 和 R_2 ,高为 h ,绕有 N 匝线圈。在螺绕环的中心轴线处置一无限长直导线。求:

阅卷	得分

- (1) 螺绕环的自感系数; (5分)
- (2) 长直导线与螺绕环的互感系数; (5分)
- (3) 当螺绕环中通以 $I=I_0\sin(\omega t)$ 的交变电流时,长直导线中的感应电动势。(3分)

