10月12日作业分析

作业: 习题二: 45,46,47,48,50,51,39,54,55,57,59,62

习题二: 45 有些同学直接写出表达式: $\beta=2\alpha_1-\alpha_2+\alpha_3$,需要写出步骤。可有两种方法:

= 2, 解得 x_1 =2, x_2 =-1, x_3 =1,即 β =2 α_1 - α_2 + α_3 . 解法一:设 $\beta=x_1\alpha_1+x_2\alpha_2+x_3\alpha_3$,得方程组 [x_1

 $(\alpha_1^T,\alpha_2^T,\alpha_3^T,\beta^T) = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 2 & 2 & 0 & 2 \\ 3 & 3 & 3 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 2 & 0 & -2 \\ 0 & 3 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}. \quad \square \not \beta \beta = 2\alpha_1 - \alpha_2 + \alpha_3 \ .$

*很多行向量的题目可以用转置成列向量来求解。

47 有些同学直接用行列式 $\begin{vmatrix} p & 1 & 1 \\ 1 & t & 1 \\ 1 & 2t & 1 \end{vmatrix} = -t(p-1)$ 判断相关性,缺少依据。可如下:

解:不妨设
$$\alpha_1,\alpha_2,\alpha_3$$
为列向量,则有
$$x_1\beta_1+x_2\beta_2+x_3\beta_3=(\beta_1,\beta_2,\beta_3)\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}=(\alpha_1,\alpha_2,\alpha_3)\begin{pmatrix}p&1&1\\1&t&1\\1&2t&1\end{pmatrix}\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}=\theta.$$
 因为 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,故 $\begin{pmatrix}p&1&1\\1&t&1\\1&2t&1\end{pmatrix}\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}=\theta$,从而当且仅当 $\begin{pmatrix}p&1&1\\1&t&1\\1&2t&1\end{pmatrix}=-t(p-1)=0$ 时

方程组有非零解. 故 t=0 或 p=1 时, β , β , β , 线性相关,否则线性无关

47 有些同学做得不对。可如下:

证明: 设 $A=(\alpha_1, \alpha_2,..., \alpha_n)$, 则有 $D=|A^TA|=|A^T|\cdot|A|=|A|^2$, 故 n 维列向量 $\alpha_1, \alpha_2, ..., \alpha_n$ 线性无关 $\Leftrightarrow |A| \neq 0 \Leftrightarrow D = |A|^2 \neq 0$.

50 有些同学证明错误。可如下:

证明: 设 β 为任意n维列向量,则 $\alpha_1,\alpha_2,\ldots,\alpha_n,\beta$ 为n+1个n维的列向量.由于向量个数大于维数,故向量组 $\alpha_1,\alpha_2,\ldots,\alpha_n,\beta$ α_n , β 线性相关. 由条件, α_1 , α_2 ,..., α_n 线性无关,故 β 可由 α_1 , α_2 ,..., α_n 唯一线性表示.

39 该题有两种证明, 见如下:

证法一: 此法也用于 62 题的证明。由 $m=r(E_m)=r(AB)\leqslant r(A)\leqslant n$, $n=r(E_n)=r(BA)\leqslant r(A)\leqslant m$,故 m=n,于是 $B=A^{-1}$.

证法二:不妨设 m>n,将 A,B 分块为: $A=\begin{pmatrix}A_1\\A_2\end{pmatrix}$, $B=(B_1,B_2)$,其中, $A_1\in\mathbb{R}^{n\times n}$, $A_2\in\mathbb{R}^{(m-n)\times n}$, $B_1\in\mathbb{R}^{n\times n}$, $B_2\in\mathbb{R}^{n\times (m-n)}$. 由 $AB=E_m$,得 $AB=\begin{pmatrix}A_1B_1&A_1B_2\\A_2B_1&A_2B_2\end{pmatrix}=\begin{pmatrix}E_n&O\\O&E_{m-n}\end{pmatrix}$. 于是 $A_1B_1=E_n$, $A_1B_2=O$, $A_2B_2=E_{m-n}$.

曲
$$AB=E_m$$
,得 $AB=\begin{pmatrix} A_1B_1 & A_1B_2 \\ A_2B_1 & A_2B_2 \end{pmatrix}=\begin{pmatrix} E_n & O \\ O & E_{m-n} \end{pmatrix}$. 于是 $A_1B_1=E_n$, $A_1B_2=O$, $A_2B_2=E_{m-n}$.

由 $A_1B_1=E_n$,得 A_1 可逆,故 $B_2=A_1^{-1}A_1B_2=A_1^{-1}$ O=O ,于是 $A_2B_2=A_2O=O\neq E_{m-n}$,矛盾.故 m=n,于是 $B=A^{-1}$. 55 大家都是先求 $\mathbf{r}(A)=2$,再求 $\mathbf{r}(B)=2$ 得关系式,再用 β_3 可表示求出 a,b。该题 β_3 的表示与 $\mathbf{r}(A)$ 可同时求出,如下:

解:
$$(\alpha_1, \alpha_2, \alpha_3, \beta_3) = \begin{pmatrix} 1 & 3 & 9 & b \\ 2 & 0 & 6 & 1 \\ -3 & 1 & -7 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 1/2 \\ 0 & 1 & 2 & 3/2 \\ 0 & 0 & 0 & b-5 \end{pmatrix}$$
, 故 $r\{\alpha_1, \alpha_2, \alpha_3\} = 2, b = 5$.

大家和定元家
$$I(A)=2$$
、 特家 $I(B)=2$ 特 大家 $I(A)=2$ ($I(A)=2$) $I(A)=2$

57 该题有两种证明,见如下:

证法一: 由 β_1 = α_1 , β_2 = α_1 + α_2 , ..., β_n = α_1 + α_2 +...+ α_n 可得 α_1 = β_1 , α_2 = β_2 - β_1 , ..., α_n = β_n - β_{n-1} . 于是 $\{\beta_1,\beta_2,\ldots,\beta_n\}$ 与 $\{\alpha_1,\alpha_2,\ldots,\beta_n\}$ α_n }等价,故秩相同.

证法二:不妨设向量为列向量,则有 $(\beta_1,\beta_2,\cdots,\beta_n)$ $\underset{i=n-1,\cdots,2}{\overset{c_{i+1}-c_i}{\longrightarrow}}(\alpha_1,\alpha_2,\cdots,\alpha_n)$. 故 $\mathbf{r}(\beta_1,\beta_2,\ldots,\beta_n)=\mathbf{r}(\alpha_1,\alpha_2,\ldots,\alpha_n)$,即 $\mathbf{r}\{\beta_1,\beta_2,\ldots,\beta_n\}=\mathbf{r}(\alpha_1,\alpha_2,\ldots,\alpha_n)$,即 $\mathbf{r}\{\beta_1,\alpha_2,\ldots,\beta_n\}=\mathbf{r}(\alpha_1,\alpha_2,\ldots,\alpha_n)$ $\beta_2, \ldots, \beta_n = r\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$.

59 该题有两种证明, 见如下:

证法一: 因为向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 和向量组 $\beta_1, \beta_2, \ldots, \beta_t$ 均可由向量组 $\alpha_1, \ldots, \alpha_s, \beta_1, \ldots, \beta_t$ 表示, 故有: $r_1 \leq r_3, r_2 \leq r_3$, 即 $\min\{r_1,r_2\} \leq r_3$.

不妨设 $\alpha_1, \ldots, \alpha_{r1}$ 和 $\beta_1, \ldots, \beta_{r2}$ 分别是向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 和向量组 $\beta_1, \beta_2, \ldots, \beta_t$ 的极大无关组,则向量组 $\alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_t$ 和向量组 $\alpha_1,\ldots,\alpha_{r1},\beta_1,\ldots,\beta_{r2}$ 等价,故: $r_3=r\{\alpha_1,\ldots,\alpha_{r1},\beta_1,\ldots,\beta_{r2}\}$ $\leq r_1+r_2$.

证法二: 不妨设为列向量,并设 $A=(\alpha_1,\ldots,\alpha_s)$, $B=(\beta_1,\ldots,\beta_t)$,则 $r_1=r(A) \leq r(A,B)=r_3,r_2=r(B) \leq r(A,B)=r_3$,即 $\min\{r_1,r_2\} \leq r_3$.

$$r_3 = r(A, B) \le r\begin{pmatrix} A & B \\ O & B \end{pmatrix} = r\begin{pmatrix} A & O \\ O & B \end{pmatrix} = r(A) + r(B) = r_1 + r_2.$$