切变模量的测量——实验报告

崔士强 PB22151743

2023年5月25日

1 实验目的

本实验的目的是测量一段金属丝的切变模量

2 实验原理

对于一个半径为 R,长度为 L 的圆柱体,固定其上端,转动下端,在弹性限度内,切变模量可表示为

$$G = \frac{2ML}{\pi R^4 \varphi}$$

其中 M 为钢丝的恢复力矩, φ 为扭转角. 若在金属丝下悬挂一圆盘, 圆盘可自由转动, 则有:

$$M = D\varphi$$

因此有:

$$G = \frac{2DL}{\pi R^4}$$

设圆盘转动惯量为 I_0 , 则有:

$$M = I_0 \frac{d^2 \varphi}{dt^2}$$

解方程得:

$$T_0 = 2\pi \sqrt{\frac{I_0}{D}}$$

然而圆盘上的夹具导致转动惯量 I_0 难以直接测出,因此我们在圆盘上放置一个内半径为 $r_{\rm Ph}$,外半径为 $r_{\rm Ph}$,质量为 m 的金属环,其转动惯量设为 I_1 ,此时扭摆周期设为 I_1 ,则有

$$I_1 = \frac{1}{2}m\left(r_{|\uparrow}^2 + r_{|\!\!/\!\!\uparrow|}^2\right)$$

$$T_1 = 2\pi \sqrt{\frac{I_0 + I_1}{D}}$$

可以解出:

$$I_0 = I_1 \frac{T_0^2}{T_1^2 - T_0^2}$$

3 实验装置 2

$$\begin{split} D &= \frac{2\pi^2 m \left(r_{\mbox{\tiny [P]}}^2 + r_{\mbox{\tiny [P]}}^2\right)}{T_1^2 - T_0^2} \\ G &= \frac{4\pi L m \left(r_{\mbox{\tiny [P]}}^2 + r_{\mbox{\tiny [P]}}^2\right)}{R^4 \left(T_1^2 - T_0^2\right)} \end{split}$$

因此测出 $T_1, T_0, m, L, R, r_{\text{h}}, r_{\text{h}}$ 这几个物理量即可得到扭转模量 D 和切变模量 G.

3 实验装置

本实验用到的仪器包括:支架,待测金属丝,圆盘,金属环,钢卷尺,游标卡尺,螺旋测微器,秒表.实验装置如图 1 所示.

图 1: 实验装置

4 数据处理 3

4 数据处理

实验数据如下表所示

2R/mm	$2r_{eta}/mm$	$2r_{5 angle}/mm$	L/cm	m/g	n_0T_0/s	n_1T_1/s
0.772	79.52	100	48.3	478.4	88.42	187.44
0.771	79.72	100	48.28	478.4	88.58	187.51
0.769	79.52	100	48.3	478.4	88.56	187.43
0.768	79.76	100	48.3	478.4		
0.768	79.74	100	48.29	478.4		
0.768						
0.772						
0.776						
0.769						
0.768						

1. 金属丝直径 d

$$\overline{d} = \frac{1}{10} \sum_{i=1}^{10} d_i \approx 0.7701 \text{mm}$$

$$\sigma_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^{10} \left(d_i - \overline{d} \right)^2} \approx 0.002644 \text{mm}$$

$$\Delta_{B,d} = \sqrt{\Delta_{app}^2 + \Delta_{est}^2} \approx \Delta_{app} = 0.004 \text{mm}$$

$$U_{d,P} = \sqrt{\left(t_P \frac{\sigma_d}{\sqrt{n}} \right)^2 + \left(k_P \frac{\Delta_{B,d}}{C} \right)^2} \approx 3.4449 \times 10^{-3} \text{mm}, P = 0.95$$

2. 金属环内直径 $d_{\rm p}$

$$\overline{d_{\rm pl}} = \frac{1}{5} \sum_{i=1}^{5} d_{\rm pl} \approx 79.652 \mathrm{mm}$$

$$\sigma_{d_{\rm pl}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{5} \left(d_{\rm pl} - \overline{d} \right)^2} \approx 0.12133 \mathrm{mm}$$

$$\Delta_{B,d} = \sqrt{\Delta_{app}^2 + \Delta_{est}^2} \approx \Delta_{app} = 0.02 \mathrm{mm}$$

$$U_{d_{\rm pl},P} = \sqrt{\left(t_P \frac{\sigma_{d_{\rm pl}}}{\sqrt{n}} \right)^2 + \left(k_P \frac{\Delta_{B,d_{\rm pl}}}{C} \right)^2} \approx 0.15253 \mathrm{mm}, P = 0.95$$

3. 金属环外直径 $d_{\rm Ph}$

$$\overline{d_{9 \text{h}}} = \frac{1}{5} \sum_{i=1}^{5} d_{9 \text{h}i} \approx 100.00 \text{mm}$$

4 数据处理 4

$$\sigma_{d_{\text{S}\!\!/}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{5} \left(d_{\text{S}\!\!/}i - \overline{d} \right)^2} = 0$$

$$\Delta_{B,d} = \sqrt{\Delta_{app}^2 + \Delta_{est}^2} \approx \Delta_{app} = 0.02 \text{mm}$$

$$U_{d_{\text{S}\!\!/},P} = \sqrt{\left(t_P \frac{\sigma_{d_{\text{S}\!\!/}}}{\sqrt{n}} \right)^2 + \left(k_P \frac{\Delta_{B,d_{\text{S}\!\!/}}}{C} \right)^2} \approx 0.022632 \text{mm}, P = 0.95$$

4. 钢丝长度 L

$$\overline{L} = \frac{1}{5} \sum_{i=1}^{5} L_i \approx 48.294 \text{cm}$$

$$\sigma_L = \sqrt{\frac{1}{n-1} \sum_{i=1}^{5} \left(L_i - \overline{L} \right)^2} \approx 0.008944 \text{cm}$$

$$\Delta_{B,L} = \sqrt{\Delta_{app}^2 + \Delta_{est}^2} \approx \Delta_{app} = 0.12 \text{cm}$$

$$U_{L,P} = \sqrt{\left(t_P \frac{\sigma_L}{\sqrt{n}} \right)^2 + \left(k_P \frac{\Delta_{B,L}}{C} \right)^2} \approx 0.07918 \text{cm}, P = 0.95$$

5. 圆环质量 m

$$\overline{m} = m = 478.4g$$

$$\sigma_m = 0$$

$$\Delta_{B,m} = \sqrt{\Delta_{app}^2 + \Delta_{est}^2} \approx \Delta_{app} = 0.08g$$

$$U_{m,P} = \sqrt{\left(t_P \frac{\sigma_m}{\sqrt{n}}\right)^2 + \left(k_P \frac{\Delta_{B,m}}{C}\right)^2} \approx 0.05227g, P = 0.95$$

6. T_0

$$\overline{T_0} = \frac{1}{3} \sum_{i=1}^{3} T_{0_i} \approx 2.5291 s$$

$$\sigma_{T_0} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{3} \left(T_{0_i} - \overline{T_0} \right)^2} \approx 0.002491 s$$

$$\Delta_{B,T_0} = \frac{1}{n_0} \sqrt{\Delta_{app}^2 + \Delta_{est}^2} \approx \frac{1}{n_0} \Delta_{est} \approx 2.857 \times 10^{-3} s$$

$$U_{T_0,P} = \sqrt{\left(t_P \frac{\sigma_{T_0}}{\sqrt{n}} \right)^2 + \left(k_P \frac{\Delta_{B,T_0}}{C} \right)^2} \approx 3.6160 \times 10^{-3} s, P = 0.95$$

4 数据处理 5

7. T_1

$$\overline{T_1} = \frac{1}{3} \sum_{i=1}^{3} T_{1_i} \approx 3.7492s$$

$$\sigma_{T_1} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{3} \left(T_{1_i} - \overline{T_0}\right)^2} \approx 0.000872s$$

$$\Delta_{B,T_1} = \frac{1}{n_1} \sqrt{\Delta_{app}^2 + \Delta_{est}^2} \approx \frac{1}{n_1} \Delta_{est} \approx 2 \times 10^{-3} s$$

$$U_{T_1,P} = \sqrt{\left(t_P \frac{\sigma_{T_1}}{\sqrt{n}}\right)^2 + \left(k_P \frac{\Delta_{B,T_1}}{C}\right)^2} \approx 1.6978 \times 10^{-3} s, P = 0.95$$

扭转模量不确定度

$$U_D = \sqrt{\left(\frac{\partial D}{\partial m} U_{m,P}\right)^2 + \left(\frac{\partial D}{\partial d_{|\!\!|\!\!|}} U_{d_{|\!\!|\!\!|},P}\right)^2 + \left(\frac{\partial D}{\partial d_{|\!\!|\!\!|}} U_{d_{|\!\!|\!\!|},P}\right)^2 + \left(\frac{\partial D}{\partial t^1} U_{t1,P}\right)^2 + \left(\frac{\partial D}{\partial t^0} U_{t0,P}\right)^2}$$

代入数据得

$$U_D \approx 5.1728 \times 10^{-5} \text{Pa}, P = 0.95$$

扭转模量

$$\hat{D} = \frac{\pi^2 m \left(d_{\uparrow \! \uparrow}^2 + d_{\not \! \uparrow \! \uparrow}^2 \right)}{2 \left(T_1^2 - T_0^2 \right)} \approx 6.7594 \times 10^{-3} \text{Pa}$$

扭转模量最终结果

$$D = \hat{D} \pm U_D = 6.7594 \times 10^{-3} \pm 5.1728 \times 10^{-5} \text{Pa}$$

切变模量不确定度

$$U_G = \sqrt{\left(\frac{\partial G}{\partial L}U_{L,P}\right)^2 + \left(\frac{\partial G}{\partial m}U_{m,P}\right)^2 + \left(\frac{\partial G}{\partial d_{|\!\!|\!\!|}}U_{d_{|\!\!|\!\!|},P}\right)^2 + \left(\frac{\partial G}{\partial d_{|\!\!|\!\!|}}U_{d_{|\!\!|\!\!|},P}\right)^2 + \left(\frac{\partial G}{\partial d}U_{d,P}\right)^2 + \left(\frac{\partial G}{\partial t}U_{t1,P}\right)^2 + \left(\frac{\partial G}{\partial t}$$

代入数据得

$$U_G \approx 2.8389 \times 10^9 \text{Pa}$$

切变模量

$$\hat{G} = \frac{16\pi Lm \left(d_{p\downarrow}^2 + d_{g\uparrow}^2\right)}{d^4 \left(t_1^2 - t_0^2\right)} \approx 9.45398 \times 10^{10} \text{Pa}$$

切变模量最终结果

$$G = \hat{G} \pm U_G = (9.45398 \pm 0.28389) \times 10^{10} \text{Pa}$$

相对不确定度为 3.0027%, 符合实验要求.

5 思考题

1.

$$\gamma_{max} = R \frac{\varphi_{max}}{L} \approx 1.2524 \times 10^{-3} \ll 1$$

2. 采取的措施包括: 测量多个周期求平均值,避免直接测量转动惯量等.

需要注意: 放置圆环时,圆环重心需要与金属线重合.测量金属丝长度时从上夹具下端到下夹具上端等.