1. Below, the BinarySearch and Recursive Fibonacci algorithms are shown. In each case, what are the subproblems? Why do we say that the subproblems of BinarySearch *do not overlap* and the subproblems of Recursive Fibonacci *overlap?* Explain.

Algorithm binSearch(A, x, lower, upper)
Input: Already sorted array A of size n, value x to be
searched for in array section A[lower]A[upper]
Output: true or false
if lower > upper then return false
mid ← (upper + lower)/2
if x = A[mid] then return true
if x < A[mid] then
return binSearch(A, x, lower, mid – 1)
else
return binSearch(A, x, mid + 1, upper)

Algorithm fib(n)	n
<i>Input</i> : a natural number n <i>Output</i> : F(n)	
if $(n = 0 n = 1)$ then return	n
return fib(n-1) + fib(n-2)	

2. Consider the following instance of the Edit Distance problem: EditDistance("maple", "kale"). Taking the iterative dynamic programming approach to solve this problem, fill out the values in the table.

D	٠,٠٠٠	"k"	"ka"	"kal"	"kale"
6627					
"m"					
"ma"					
"map"					
"mapl"					
"maple"					

- 3. https://leetcode.com/problems/climbing-stairs/description/
- 4. https://leetcode.com/problems/longest-common-subsequence/description/