Diskrete Wahrscheinlichkeitstheorie

Zusammenfassung für die Klausurvorbereitung

Christian Rupp

20. Mai 2014

Inhaltsverzeichnis

1	Vorwort					
2			Formeln inatorik	2 3		
3	Disk	rete W	/ahrscheinlichkeitsräume	3		
	3.1	Grund	llagen	3		
		3.1.1	disjunkte Ereignisse	4		
		3.1.2	Siebformel, Prinzip der Inklusion/Exklusion	4		
		3.1.3	Boolsche Ungleichung	4		
		3.1.4	Wahl der Wahrscheinlichkeiten	4		
	3.2	Beding	gte Wahrscheinlichkeiten	4		
		3.2.1	Multiplikationssatz	5		

1 Vorwort

Dieses Dokument orientiert sich an den Inhalten der Vorlesung Diskrete Wahrscheinlichkeitstheorie der Fakultät für Informatik der Technischen Universität München aus dem Sommersemester 2014. Es erhebt keinen Anspruch auf Vollständigkeit und Korrektheit.

2 Hilfreiche Formeln

- Allgemeine Binomische Formel: $(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^n b^{n-i}$
- $\sum_{x=0}^{r} {a \choose x} {b \choose r-x} = {a+b \choose r}$
- $\bullet \left(1 + \frac{1}{n}\right)^n = e$

2.1 Kombinatorik

Anzahl der Verteilungen von v Bällen auf m Urnen.

	beliebig	höchstens	mindestens	genau
	viele Bälle	ein Ball	ein Ball	ein Ball
	pro Urne	pro Urne	pro Urne	pro Urne
	(beliebig)	(injektiv)	(surjektiv)	(bijektiv)
Bälle unterscheidbar	m^n	$m^{\underline{n}}$	$m! * S_{n,m}$	n!
Urnen unterscheidbar	\parallel			
Bälle gleich	$\binom{n+m-1}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$	1
Urnen unterscheidbar	$\binom{n}{n}$			
Bälle unterscheidbar	$\sum_{k=0}^{m} S_{n,k}$	1	$S_{n,m}$	1
Urnen gleich				
Bälle gleich	$\sum_{k=0}^{m} P_{n,k}$	1	$P_{n,m}$	1
Urnen gleich	$\bigsqcup_{k=0}^{n} I_{n,k}$			

3 Diskrete Wahrscheinlichkeitsräume

3.1 Grundlagen

- \bullet diskreter Wahrscheinlichkeitsraum: $\Omega = \{\omega_1, \dots, \omega_n\} \mid n \in \mathbb{N}$
- Elementarereignis:

$$-0 \le \Pr[\omega_i] \le 1$$
$$-\sum_{i=1}^n \Pr[\omega_i] = 1$$
$$-\Pr[\omega_i] := \frac{1}{|\Omega|}$$

• Ereignis:

$$\begin{array}{l} - \ E \subseteq \Omega \\ - \ \Pr[E] := \sum_{\omega \in E} \Pr[\omega] \\ - \ \Pr[E] := \frac{|E|}{|\Omega|} \end{array}$$

- $\Pr[\emptyset] = 0, \Pr[\Omega] = 1$
- $0 \le \Pr[A] \le 1$
- $\Pr[\bar{A}] = 1 \Pr[A]$
- $A \subseteq B \Rightarrow \Pr[A] \le \Pr[B]$

Laplace verteilt heißt, das jedes Elementarereignis gleich wahrscheinlich ist.

3

3.1.1 disjunkte Ereignisse

 $\forall (i,j) \in \mathbb{N} : i \neq j, A_i \cap A_j = \emptyset$

- $\Pr[\bigcup_{i=1}^n A_i] = \sum_{i=1}^n \Pr[A_i]$
- $Pr[A \cup B] = Pr[A] + Pr[B]$
- $\Pr[\bigcup_{i=1}^{\infty}] = \sum_{i=1}^{\infty} \Pr[A_i]$

3.1.2 Siebformel, Prinzip der Inklusion/Exklusion

- Zwei Ereignisse: $\Pr[A \cup B] = \Pr[A] + \Pr[B] \Pr[A \cap B]$
- Drei Ereignisse: $\Pr[A_1 \cup A_2 \cup A_3] = \Pr[A_1] + \Pr[A_2] + \Pr[A_3] \dots \Pr[A_1 \cap A_2] \Pr[A_1 \cap A_3] \Pr[A_2 \cap A_3] \dots + \Pr[A_1 \cap A_2 \cap A_3]$
- Allgemeiner Fall: $\Pr[\bigcup_{i=1}^n A_i] = \sum_{i=1}^n \Pr[A_i] \sum_{1 \le i_1 < i_2 \le n} \Pr[A_{i_1} \cap A_{i_2}] \pm \dots + (-1)^{l-1} \sum_{1 \le i_1 < \dots < i_2 \le n} \Pr[A_{i_1} \cap \dots \cap A_{i_2}] \pm \dots + (-1)^{l-1} \Pr[A_1 \cap \dots \cap A_n]$

Anmerkung: Üblicherweise benötigt man den Allgemeinen Fall während dieser Vorlesung nicht!

3.1.3 Boolsche Ungleichung

- Ereignisse A_1, \dots, A_n : $\Pr[\bigcup_{i=1}^n A_i] \leq \sum_{i=1}^n \Pr[A_i]$
- \bullet unendliche Ereignisse: Pr $[\cup_{i=1}^{\infty}A_i] \leq \sum_{i=1}^{\infty}\Pr[A_i]$

 $\underline{\text{Anmerkung:}}$ Hiermit kann man den Allgemeinen Fall der Siebformel abschätzen.

3.1.4 Wahl der Wahrscheinlichkeiten

Sofern nichts anderes gegeben ist, gilt das Prinzip von Laplace und alle Elementarereignisse sind gleichwahrscheinlich.

$$\Pr[E] = \frac{|E|}{|\Omega|}$$

3.2 Bedingte Wahrscheinlichkeiten

- $\Pr[B|B] = 1$
- $\Pr[A|\Omega] = \Pr[A]$
- $\Pr[A|B] := \frac{\Pr[A \cap B]}{\Pr[B]}$

Anmerkung: $\Pr[\emptyset|B] = 0$ und $\Pr[\bar{A}|B] = 1 - \Pr[A|B]$

 $\overline{\text{Andere Schreibweise}} \colon \Pr[A \cap B] = \Pr[B|A] * \Pr[A] = \Pr[A|B] * \Pr[B]$

$3.2.1\ Multiplikations satz$

$$\Pr[A_1 \cap \ldots \cap A_n] > 0 \Rightarrow \Pr[A_1] * \Pr[A_2 | A_1] * \Pr[A_3 | A_1 \cap A_2] * \ldots \cdots * \Pr[A_n | A_1 \cap \ldots \cap A_{n-1}]$$