Getting started with Isolation Forests

ANOMALY DETECTION IN PYTHON

Bekhruz (Bex) Tuychiev Kaggle Master, Data Science Content Creator

Survey data

- A sample respondent:
 - 12 years old
 - 160 cm tall
 - weighs 190 pounds

Multivariate anomalies

Multivariate anomalies:

- have two or more attributes
- attributes are not necessarily anomalous
- only anomalous when all attributes are considered

Decision trees

Decision trees

Isolation Trees

iTrees:

- short for isolation trees
- randomized versions of decision trees
- splitting (branching) occurs randomly
- random split is more likely to occur in inlier/outlier gap

Example 2D data

Fitting an iTree

Fitting an iTree

Fitting an iTree

How points are classified

Points are outliers:

- if close to the root node
- or require fewer splits

US Airbnb data

```
import pandas as pd
airbnb_df = pd.read_csv("airbnb.csv")
```


US Airbnb data

```
airbnb_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 6 columns):
     Column
                                    Non-Null Count
                                                    Dtype
                                    10000 non-null int64
    minimum_nights
    number_of_reviews
                                    10000 non-null int64
    reviews_per_month
                                    10000 non-null float64
     calculated_host_listings_count 10000 non-null int64
 3
     availability_365
                                    10000 non-null int64
     price
                                    10000 non-null int64
dtypes: float64(1), int64(5)
```

fit_predict

```
from pyod.models.iforest import IForest

iforest = IForest()
labels = iforest.fit_predict(airbnb_df)

print(labels)
```

```
array([0, 0, 0, ..., 1, 0, 0])
```

Filter outliers

```
outliers = airbnb_df[labels == 1]
print(outliers.shape)
```

(1000, 6)

Let's practice!

ANOMALY DETECTION IN PYTHON

Overview of Isolation Forest hyperparameters

Bekhruz (Bex) Tuychiev Kaggle Master, Data Science Content Creator

ANOMALY DETECTION IN PYTHON

Most important hyperparameters

Hyperparameters which influence IForest the most:

- contamination
- n_estimators
- max_samples
- max_features

What is contamination?

How IForest classifies data points:

- 1. Raw anomaly scores are generated
- 2. Set a threshold called contamination
- 3. The highest percentage of anomaly scores denoted with contamination are chosen as outlying datapoints

Setting contamination

```
from pyod.models.iforest import IForest

# Accepts a value between 0 and 0.5
iforest = IForest(contamination=0.05)
```

What is n_estimators?

```
# More trees for larger datasets
iforest = IForest(n_estimators=1000)
iforest.fit(airbnb_df)
```

max_samples and max_features

```
iforest = IForest(n_estimators=200, max_samples=0.6, max_features=0.9)
iforest.fit(airbnb_df)
```


Tree growth

- iTrees:
 - o grow in a randomized fashion
 - split is chosen randomly between feature min and max
 - o grow until:
 - all points are isolated
 - maximum depth is reached

Max tree depth

• Equals the logarithm of the sample size

IForest advantages

- Very efficient on large datasets
- Doesn't need all normal instances like other algorithms
- No statistical assumptions
- Performs well out-of-the-box

Challenges of outlier detection

- Supervised-learning models rely on metrics like RMSE or log loss
- Outlier detection is an unsupervised-learning problem
- Outlier classifiers should be combined with supervised-learning models

Let's practice!

ANOMALY DETECTION IN PYTHON

Hyperparameter tuning of Isolation Forest

ANOMALY DETECTION IN PYTHON

Bekhruz (Bex) Tuychiev Kaggle Master, Data Science Content Creator

Tuning contamination

- No determined way of tuning it
- Have to rely on:
 - intuition
 - EDA insights
 - domain knowledge
 - business expectations

Survey example

- Research similar surveys
- Learn the proportion of the poorest and the wealthiest
- Research is better than blindly choosing a value

Big Mart sales data

7060 non-null

7060 non-null

max_retail_price 7060 non-null

```
import pandas as pd
big_mart = pd.read_csv("big_mart_sales.csv")
big_mart.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7060 entries, 0 to 7059
Data columns (total 5 columns):
           Non-Null Count
    Column
                                   Dtype
    weight
            7060 non-null
                                   float64
    fat_content 7060 non-null
                                   object
```

object

float64

float64

type

sales

dtypes: float64(3), object(2)

Encode categoricals

```
big_mart = pd.get_dummies(big_mart)
```

	weight	max_retail_price	sales	fat_content_low_fat	fat_content_regular
0	9.30	249.8092	3735.1380	1	0
1	5.92	48.2692	443.4228	0	1
2	17.50	141.6180	2097.2700	1	0
3	19.20	182.0950	732.3800	0	1
4	8.93	53.8614	994.7052	1	0

evaluate_outlier_classifier

```
def evaluate_outlier_classifier(model, data):
    # Get labels
    labels = model.fit_predict(data)

# Return inliers
    return data[labels == 0]
```

evaluate_regressor

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
```


evaluate_regressor

```
def evaluate_regressor(inliers):
    X = inliers.drop("sales", axis=1)
    y = inliers[['sales']]
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10)
    lr = LinearRegression()
    lr.fit(X_train, y_train)
    preds = lr.predict(X_test)
    rmse = mean_squared_error(y_test, preds, squared=False)
    return round(rmse, 3)
```

Tuning contamination

```
contaminations = [0.05, 0.1, 0.2, 0.3]
scores = dict()
for c in contaminations:
   # Instantiate IForest with the current c
    iforest = IForest(contamination=c, random_state=10)
   # Get inliers with the current IForest
    inliers = evaluate_outlier_classifier(iforest, big_mart)
   # Calculate and store RMSE into scores
    scores[c] = evaluate_regressor(inliers)
```

Look at the output

```
print(scores)
```

```
{0.05: 1148.555, 0.1: 1147.48, 0.2: 1082.307, 0.3: 1029.33}
```


Tuning multiple hyperparameters

```
estimators = [100, 200, 300,]
max_samples = [0.6, 0.8, 1]
scores = dict()
```

Cartesian product

```
from itertools import product
list(product(estimators, max_samples))
```

```
[(100, 0.6),

(100, 0.8),

(100, 1),

(200, 0.6),

(200, 0.8),

(200, 1),

(300, 0.6),

(300, 0.8),

(300, 0.8),
```

Inside the loop

```
estimators = [100, 200, 300,]
max\_samples = [0.6, 0.8, 1]
scores = dict()
for e, m in product(estimators, max_samples):
   # Instantiate an IForest
    iforest = IForest(n_estimators=e, max_samples=m, contamination=.3)
   # Get the inliers with the current IForest
    inliers = evaluate_outlier_classifier(iforest, big_mart)
    # Calculate and store RMSE into scores
    scores[(e, m)] = evaluate_regressor(inliers)
```

Looking at the output

```
print(scores)
```

```
{(100, 0.6): 959.398,
 (100, 0.8): 986.056,
 (100, 1): 1195.875,
 (200, 0.6): 947.628,
 (200, 0.8): 933.115,
 (200, 1): 1195.875,
 (300, 0.6): 949.412,
 (300, 0.8): 935.962,
 (300, 1): 1195.875}
```

Parallel execution

```
# Faster compuation with n_jobs=-1
iforest = IForest(n_estimators=1000, n_jobs=-1)
iforest.fit(big_mart)
```

Let's practice!

ANOMALY DETECTION IN PYTHON

Interpreting the output of IForest

ANOMALY DETECTION IN PYTHON

Bekhruz (Bex) Tuychiev Kaggle Master, Data Science Content Creator

An alternative

```
from pyod.models.iforest import IForest

iforest = IForest(contamination=0.2, max_features=0.5, random_state=1)

iforest = iforest.fit(airbnb_df)

labels = iforest.labels_
print(labels)
```

```
array([0, 0, 0, ..., 1, 0, 0])
```

Predictions on new data

```
import numpy as np

new_data = [[34, 40, 0.44, 3, 2, 90]]

iforest.predict(new_data)
```

array([0])

Probability scores

```
all_probs = iforest.predict_proba(airbnb_df)
print(all_probs)
array([[0.71401381, 0.28598619],
       [0.75553703, 0.24446297],
       [0.6844169 , 0.3155831 ],
print(all_probs.shape)
(10000, 2)
```


Outlier probability scores

```
outliers = airbnb_df[iforest.labels_ == 1]
outlier_probs = iforest.predict_proba(outliers)
print(outlier_probs[:10])
array([[0.51999538, 0.48000462].
```

Abandoning contamination

```
# Fit to Airbnb
iforest = IForest(max_features=0.5, random_state=1)
iforest.fit(airbnb_df)
# Calculate probabilities
probs = iforest.predict_proba(airbnb_df)
# Propbs for outliers
outlier_probs = probs[:, 1]
```

Abandoning contamination

```
# Filter only when probability is higher than 65%
outliers = airbnb_df[outlier_probs >= 0.65]
print(len(outliers))
```

193

Let's practice!

ANOMALY DETECTION IN PYTHON

