

DPP - 1

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/64

Video Solution on YouTube:-

https://youtu.be/B713k2l2ebE

Q 1. A body is moving down inclined plane of slope 37°. The coefficient of friction between the body and plane varies as $\mu=0.3$ x, where x is distance traveled down the plane. The body will have maximum speed at –

$$(\sin 37^{\circ} = \frac{3}{5} \text{ and } g = 10 \text{ m/s}^2)$$

- (a) x = 1.16 m
- (b) x = 2 m
- (c) bottom of plane
- (d) x = 2.5 m
- Q 2. A stationary body of mass m is slowly lowered (zero initial velocity) onto a long massive platform of mass M (M>>m) moving at a speed $V_0 = 4$ m/s as shown in fig. How far will the body slide along the platform? ($\mu = 0.2$ and g = 10 m/s²)

Q 3. A small body starts sliding down an inclined plane of inclination θ , whose base length is equal to L. The coefficient of friction between the body and the surface is μ . If the angle θ is varied keeping L constant, at what angle will the time of sliding be least?

Q 4. In the figure, what should be mass m so that block A slide up with a constant velocity?

hysicsaholics

(c) 4 Kg

- (d) 2.5 Kg
- Q 5. In the diagram shown in figure. Match the following table

	Table-1	Table-2	
(A)	Absolute acceleration of 1 kg	(P) 11 m/s^2	
	block		
(B)	Absolute acceleration of 2 kg	(Q) 6 m/s ²	
	block		
(C)	Relative acceleration between	(R) 17 m/s^2	
	the two		
		(S) None	

- Q 6. A block of mass 4 kg is kept over a rough horizontal surface. The coefficient of friction between the block and the surface is 0.1. At t = 0, velocity 3 m/s $\hat{\imath}$ is imparted to the block and simultaneously force 2N (- $\hat{\imath}$) starts acting on it. Its displacement in first 5 second is
 - (a) 8î
- (b) -8î
- (c) 3î
- $(d) -3\hat{\imath}$
- Q 7. A long block A is at rest on a smooth horizontal surface. A small block B, whose mass is half of A, is placed on A at one end and projected along A with some velocity u. The coefficient of friction between the blocks is μ.

- (a) The blocks will reach a final common velocity u/3
- (b) Friction on A is towards right.
- (c) Before the blocks reach a common velocity, the acceleration of A relative to B is $\frac{2}{3}\mu g$.
- (d) Before the blocks reach a common velocity the acceleration of A relative to B is $\frac{3}{2}\mu g$.
- Q 8. Blocks A and B in the figure are connected by a bar of negligible weight and they are sliding down due to their weight. If mass of A and B are 170 kg each and $\mu_A = 0.2$ and

hysicsaholics

 $\mu_B = 0.4$, where μ_A and μ_B are the coefficients of friction between blocks and plane, calculate the force in the bar. ($g = 10 \text{ m/s}^2$).

- (a) 150 N
- (c) 200 N

(a) 98 Kg

(c) 12 Kg

- (b) 75 N (d) 250 N
- Q 9. 8kg and 6kg blocks are moving towards each other. Find m if it is moving down with acceleration 1 m/Sec^2 ?

Q 10. In given figure mass of A is 10 kg and that of B is 20 kg. friction coefficient at all surfaces is 0.5. Find F if acceleration of A is 2 m/Sec²?

Answer Key

Q.1 d	Q.2 a	Q.3 d	Q.4 b	Q.5 A(S), B(P), C(S)
Q.6 c	Q.7 a, b, d		Q.9 c	
Q.11	Q.12			