Contents

1	\mathbf{Intr}	oduction													1
	1.1	The half-infinite double chain						 							1

ii CONTENTS

List of Figures

1 1	Half-infinite double chain																	-
1.1	nan-immue double cham																	

Chapter 1

Introduction

1.1 The half-infinite double chain

For the half-infinite double we define the Hamiltonian as

$$H = \sum_{i=1}^{\infty} \epsilon \left[|i,1\rangle \langle i,1| + |i,2\rangle \langle i,2| \right] + \left[|i,1\rangle \langle i+1,1| + |i,2\rangle \langle i+1,2| \right] + t \left[|i,1\rangle \langle i,2| + h.c. \right]. \tag{1.1}$$

However in this model one assumes, that the binding t is the same between the positions parallel to the chain and between the upper and lower site of position i in the chain. A more general approach would be to also take models into account where the binding t and \bar{t} aren't the same as it is depicted in figure 1.1.

Figure 1.1: Half-infinite double chain

For this one needs to just slightly alter the Hamiltonian of equation 1.1 to

$$H = \sum_{i=1}^{\infty} \epsilon \left[\left| i, 1 \right\rangle \left\langle i, 1 \right| + \left| i, 2 \right\rangle \left\langle i, 2 \right| \right] + t \left[\left| i, 1 \right\rangle \left\langle i + 1, 1 \right| + \left| i, 2 \right\rangle \left\langle i + 1, 2 \right| + h.c. \right] + \overline{t} \left[\left| i, 1 \right\rangle \left\langle i, 2 \right| + h.c. \right]. \tag{1.2}$$