Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Кафедра информационных систем и программной инженерии

Методы и программные средства вычислений

Методические указания к лабораторным работам

Составитель: С.Ю. КИРИЛЛОВА

Лабораторная работа № 1 ТЕОРИЯ ПОГРЕШНОСТЕЙ И МАШИННАЯ АРИФМЕТИКА

1. Цель работы

При численном решении математических и прикладных задач почти неизбежно появление на том или ином этапе их решения погрешностей следующих трех типов: 1) погрешность задачи; 2) погрешность метода; 3) погрешность округлений (погрешность действий). Все три описанных типа погрешностей в сумме дают полную погрешность результата решения задачи. В данной работе рассматриваются некоторые возможные подходы к учету погрешностей действий.

2. Основные сведения и примеры

Теоретический материал. Пусть a - точное значение, a^* - приближенное значение некоторой величины. Абсолютной погрешностью приближенного значения a^* называется величина $\Delta(a^*) = \left| a - a^* \right|$. Относительной погрешностью значения a^* (при $a \neq 0$) называется величина $\delta(a^*) = \frac{\Delta(a^*)}{|a|}$. Так как значение a, как правило, не известно, чаще полу-

чают оценки погрешностей вида: $|a-a^*| \le \overline{\Delta}(a^*); \quad \frac{|a-a^*|}{|a|} \le \overline{\delta}(a^*)$. Вели-

чины $\overline{\Delta}(a^*)$ и $\overline{\delta}(a^*)$ называют *верхними границами* (или просто *границами*) абсолютной и относительной погрешностей.

Значащую цифру числа a^* называют *верной*, если абсолютная погрешность числа не превосходит единицы разряда, соответствующего этой цифре.

Пример 1.1. Вычислить абсолютную и относительную погрешности приближенного значения числа e.

Решение. Число e - трансцендентное число, представляется бесконечной непериодической дробью e=2.71828. Приближенное значение числа $e^*=2.7$. Граница абсолютной погрешности $|e-e^*| \le 0.019$, относительная погрешность числа

$$\delta(e^*) = |e - e^*|/|e^*|, \quad \delta(e^*) \le 0.007.$$

Пример 1.2. Определить значащие цифры числа.

Решение. Значащие цифры чисел подчеркнуты: 0.0<u>3589</u>, <u>10.4920</u>, 0.00456200.

Пример 1.3. Определить верные цифры числа.

Решение. Верные цифры числа $a^* = 356.78245$ подчеркнуты.

Если $\Delta(a^*)$ =0.01, то верных цифр в числе 5: a = 356.78245.

Если $\Delta(a^*)$ =0.03, то верных цифр в числе 4: $a = \underline{356.7}8245$.

Если $\Delta(a^*)$ =0.00006, то верных цифр в числе 7: a = 356.78245.

Пример 1.4. Вычислить погрешности арифметических действий.

Решение. Приведем фрагменты документа MathCAD. Пусть числа x и y заданы с абсолютными погрешностями Δx и Δy :

x:=2.5378 Δx:=0.0001

y:=2.536 $\Delta y:=0.001$

Тогда относительные погрешности чисел:

$$\delta x \coloneqq \frac{\Delta x}{|x|} \qquad \delta x = 3.94 \cdot 10^{-5} \qquad \qquad \delta y \coloneqq \frac{\Delta y}{|y|} \qquad \delta y = 3.94 \cdot 10^{-4}$$

Найдем погрешности суммы и разности чисел:

S1 := x + y
$$\Delta$$
S1 := Δ x + Δ y Δ S1 := Δ S1 / |S1| S1 = 5.0738 Δ S1 = 1.1·10⁻³ Δ S1 = 2.17·10⁻⁴ S2 := x - y Δ S2 := Δ x + Δ y Δ S2 := Δ S2 / |S2| S2 = 1.8·10⁻³ Δ S2 = 1.1·10⁻³ Δ S2 = 0.61 Δ S2 / Δ S1 = 2.8·10³

Относительная погрешность разности в 2000 раз больше относительной погрешности суммы!

Возьмем теперь другие значения x и y и вычислим погрешности произведения и частного:

x:=2.5378 $\Delta x:=0.0001$ $\delta x=3.94\cdot10^{-5}$ y:=0.006 $\Delta y:=0.001$ $\delta y=0.17$

Тогда погрешности произведения и частного:

Абсолютная погрешность частного в 20000 раз больше абсолютной погрешности произведения!

Пример 1.5. Определить погрешность функции многих переменных. **Решение.** Приведем фрагменты документа MathCAD:

$$\begin{split} f(x,y,z) &\coloneqq x \cdot \sin(y) + \sqrt[3]{z} \\ \frac{d}{dx} f(x,y,z) &\to \sin(y) \qquad \frac{d}{dy} f(x,y,z) \to x \cdot \cos(y) \qquad \frac{d}{dz} f(x,y,z) \to \frac{1}{3 \cdot z^{\left(\frac{2}{3}\right)}} \end{split}$$

Установим значения переменных:

$$x := -3.59$$
 $y := 0.467$ $z := 563.2$

По приведенным начальным условиям считаем, что погрешности равны:

$$\Delta x := 0.01$$
 $\Delta y := 0.001$ $\Delta z := 0.1$

Находим значение и погрешности функции:

f(x,y,z) = 6.64198865

$$\Delta f(x, y, z) := \left| \sin(y) \right| \cdot \Delta x + \left| x \cdot \cos(y) \right| \cdot \Delta y + \left| \frac{1}{3 \cdot z^{\left(\frac{2}{3}\right)}} \right| \cdot \Delta z$$

$$\Delta f(x, y, z) = 8.196 \cdot 10^{-3}$$

$$\delta f(x, y, z) := \frac{\Delta f(x, y, z)}{|f(x, y, z)|} \qquad \delta f(x, y, z) = 1.234 \cdot 10^{-3}$$

Пример 1.6. Для пакета MathCAD найти значения машинного нуля, машинной бесконечности, машинного эпсилон.

Теоретический материал. Для представления вещественных чисел в компьютере применяют, в основном, два способа: с фиксированной и с плавающей точками.

В основе значительно чаще употребляемого представления с плавающей точкой лежит экспоненциальная форма записи вещественного числа и двоичная система счисления: $x = \mu \cdot 2^p$, $\mu = \pm (\gamma_1 \cdot 2^{-1} + \gamma_2 \cdot 2^{-2} + ... + \gamma_t \cdot 2^{-t})$. Здесь μ — мантисса; $\gamma_1, \gamma_2, ..., \gamma_t$ — двоичные цифры, причем всегда $\gamma_1 = 1$, p — целое число, называемое двоичным порядком. Количество t цифр, которое отводится для записи мантиссы, называется разрядностью мантиссы. Диапазон представления числа ЭВМ ограничен конечной разрядностью мантиссы и значением числа

p. Все представимые числа на ЭВМ удовлетворяют неравенствам: $0 < X_0 \le |x| < X_\infty$, где $X_0 = 2^{-(p_{\max}+1)}$, $X_\infty = 2^{p_{\max}}$. Все числа, по модулю большие X_∞ , не представимы на ЭВМ и рассматриваются как машинная бесконечность. Все числа, по модулю меньшие X_0 , для ЭВМ не отличаются от нуля и рассматриваются как машинный нуль. Важной характеристикой является число ε_M , называемое машинное эпсилон (macheps). Эта величина определяется как расстояние между единицей и ближайшим следующим за ней числом системы машинных чисел с плавающей точкой и характеризует относительную точность ЭВМ, то есть границу относительной погрешности представления чисел в ЭВМ. Покажем, что $\varepsilon_M \approx 2^{-t}$. Пусть $x^* = \mu \cdot 2^p$, тогда граница абсолютной погрешности представления этого числа равна $\overline{\Delta}(x^*) \approx 2^{-t-1} \cdot 2^p$. Поскольку $\frac{1}{2} \le \mu < 1$, то величина относительной погрешности представления оценивается так:

$$\overline{\delta}(x^*) \approx \frac{\overline{\Delta}(x^*)}{\left|x^*\right|} \approx \frac{2^{-t-1} \cdot 2^p}{\mu \cdot 2^p} = \frac{2^{-t-1}}{\mu} \le \frac{2^{-t-1}}{2^{-1}} = 2^{-t}.$$

Машинное эпсилон определяется разрядностью мантиссы и способом округления чисел, реализованным на конкретной ЭВМ.

Решение. Примем следующие способы определения приближенных значений параметров, требуемых в задаче:

- 1. Положим $X_{\infty} = 2^n$, где n первое натуральное число, при котором происходит переполнение.
- 2. Положим $X_0 = 2^{-m}$, где m первое натуральное число, при котором 2^{-m} совпадает с нулем.
- 3. Положим $\epsilon_M = 2^{-k}$, где k наибольшее натуральное число, при котором сумма вычисленного значения $1+2^{-k}$ еще больше 1. Фактически ϵ_M есть граница относительной погрешности представления числа $x^* \approx 1$.

В результате вычислительного эксперимента получили: машинная бесконечность $X_\infty \approx 10^{307}\,;$ машинный нуль $X_0 \approx 10^{-306}\,;$ машинное эпсилон $\epsilon_M \approx 10^{-15}.$

Приведем вид документа MathCAD:

Машинная бесконечность: $\inf(n) := 2^n$

3. Задачи к работе

Задача 1.1. Дан ряд $\sum_{n=0}^{\infty} a_n$. Найти сумму ряда аналитически. Вычис-

лить значения частичных сумм ряда $S_N = \sum_{n=0}^N a_n$ и найти величину погрешности при значениях $N=10,\ 10^2,\ 10^3,\ 10^4,\ 10^5$.

Порядок решения:

- 1. Найти сумму ряда S аналитически как предел частичных сумм ряда.
- 2. Используя функцию $S\left(N\right) = \sum_{n=0}^{N} a_n$, вычислить значения частичных сумм ряда при указанных значениях N.
- 3. Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
 - 4. Представить результаты в виде гистограммы.

Задача 1.2. Дана матрица
$$A=\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
. В каждый из диаго-

нальных элементов матрицы A по очереди внести погрешность в 1%. Как изменился определитель матрицы A? Указать количество верных цифр и вычислить величину относительной погрешности определителя в каждом случае.

Задача 1.3. Для заданной матрицы A найти обратную матрицу (если это возможно). Затем в элемент a_{11} внести погрешность в 10% и снова найти обратную матрицу. Объяснить полученные результаты.

ИСХОДНЫЕ ДАННЫЕ К ЗАДАЧАМ

К задаче 1.1

Вариант	a_n	Вариант	a_n	Вариант	a_n		
1	2	11	60	21	24		
	$\overline{n^2 + 5n + 6}$		$11(n^2 + 12n + 35)$	21	$7(n^2 + 8n + 15)$		
2	36	12	144	22	36		
	$\overline{11(n^2+5n+4)}$	12	$\overline{5(n^2+6n+8)}$		$\frac{n^2 + 5n + 4}{}$		
3	9	13	36	23	46		
	$\frac{n^2 + 7n + 12}{n^2 + 7n + 12}$		$\overline{n^2 + 7n + 10}$		$\frac{n^2 + 5n + 6}{n^2 + 6}$		
4	48	14	48	24	96		
	$5(n^2+6n+8)$		$n^2 + 8n + 15$		$n^2 + 9n + 20$		
5	48	15	20	25	60		
3	$\overline{5(n^2+6n+5)}$	13	$\overline{n^2 + 4n + 3}$	23	$\overline{n^2 + 6n + 8}$		
6	72	16	32	26	72		
0	$\overline{5(n^2+6n+8)}$		$\frac{n^2 + 5n + 6}{n^2 + 6}$	20	$\frac{n^2 + 7n + 10}{n^2 + 7n + 10}$		
7	24	17	144	27	24		
/	$\frac{n^2 + 8n + 15}{n^2 + 8n + 15}$	17	$n^2 + 18n + 80$	21	$\frac{n^2 + 4n + 3}{n^2 + 4n + 3}$		
8	32	18	24	28	96		
	$n^2 + 9n + 20$		$\frac{n^2 + 4n + 3}{n}$		$\frac{n^2 + 8n + 15}{n^2 + 8n + 15}$		
9	216	19	180	29	72		
	$7(n^2 + 8n + 15)$	17	$\overline{n^2 + 20n + 99}$	2)	$\frac{n^2 + 6n + 8}{}$		
10	84	20	112	20	12		
	$13(n^2 + 14n + 48)$		$15(n^2 + 16n + 63)$	30	$\overline{5(n^2+6n+8)}$		

К задаче 1.2

Вариант		A		Вариант		A		Вариант		A	
	3	2	2		30	34	19		1.3	1	13
1	33	28	24	3	314	354	200	5	3.4	1.4	23
	360	320	270		2	8	13		5	3	1.5
2	9	5	6		-7	-7	-1		3	1	13
	17	9	11	4	0	-2	-6	6	5	3	15
	7	4	5		5	6	4		11	5	40

К задаче 1.3

Вариант		\boldsymbol{A}		Вариант		\boldsymbol{A}		Вариант		\boldsymbol{A}	
	2	16	-6		2	4.4	-2		3	5	3
1	3	24	5	3	1	2	-1	5	9	15	9
	1	8	11		3	-5	0		6	7	2
2	48	3	6		2	0.4	6		5	5.5	5.5
	32	2	4	4	1.1	0.2	3	6	1	1	1
	5	-1	2		2.3	1.2	4		5	-1	2

4. Контрольные вопросы

- 1. Сформулируйте правила округления приближенных чисел: по дополнению и усечением.
- 2. Сформулируйте определение верной цифры числа. Приведите примеры.
- 3. Докажите утверждение об оценке абсолютной погрешности суммы и разности двух чисел.
- 4. На основании формулы вычисления погрешности функции многих переменных сформулируйте правило вычисления абсолютной и относительной погрешностей функции одной переменной.
 - 5. Типы погрешностей, возникающих при численном решении задач.
- 6. Что называется абсолютной и относительной погрешностями приближенных чисел?
- 7. Сформулируйте определение значащей цифры числа. Приведите примеры.
- 8. Как оцениваются погрешности вычисления значения функции многих переменных?
- 9. Как в соответствии с принципом Крылова записывается приближенное число?
- 10. Сформулируйте правила Крылова для выполнения арифметических действий над приближенными числами.
- 11. Что называется машинной бесконечностью, машинным нулем и машинным эпсилон?