SEQUENCE LISTING

<110>	SmithKline Beecham Corporation Lambert, Millard H Xu, Robert Wisely , Bruce Collins, Jon												
<120>	CAR LIGAND-BINDING DOMAIN POLYPEPTIDE CO-CRYSTALLIZED WITH A LIGAND, AND METHODS OF DESIGNING LIGANDS THAT MODULATE CAR ACTIVITY												
<130>	PR60235												
<150> <151>	60/488,415 2003-07-18												
<160>	7												
<170>	PatentIn version 3.2												
<210> <211> <212> <213>	1 1450 DNA Homo sapiens												
<220> <221> <222>	CDS (1316)												
<400> gtgag	1 cttgc tccttaagtt acaggaactc tccttataat agacacttca ttttcctagt	60											
	cctca tgaaaaatga ctgaccactg ctgggcagca ggagggatga taatcctaac	120											
	tcact ggcaactcct gagatcagag gaaaaccagc aacagcgtgg gagtttgggg	180											
	cattc cataccagat tctgtggcct gcaggtgaca tgctgcctaa gagaagcagg	240											
	gtgac agccacccca acacgtgacg tc atg gcc agt agg gaa gat gag Met Ala Ser Arg Glu Asp Glu 1	293											
ctg a Leu A	igg aac tgt gtg gta tgt ggg gac caa gcc aca ggc tac cac ttt irg Asn Cys Val Val Cys Gly Asp Gln Ala Thr Gly Tyr His Phe 10 20	341											
aat o Asn A	gcg ctg act tgt gag ggc tgc aag ggt ttc ttc agg aga aca gtc lla Leu Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Val 25 30 35	389											
agc a Ser I 40	aaa agc att ggt ccc acc tgc ccc ttt gct gga agc tgt gaa gtc Lys Ser Ile Gly Pro Thr Cys Pro Phe Ala Gly Ser Cys Glu Val 45 50 55	437											
agc a Ser	aag act cag agg cgc cac tgc cca gcc tgc agg ttg cag aag tgc Lys Thr Gln Arg Arg His Cys Pro Ala Cys Arg Leu Gln Lys Cys 60 65 70	485											
tta Leu	gat gct ggc atg agg aaa gac atg ata ctg tcg gca gaa gcc ctg Asp Ala Gly Met Arg Lys Asp Met Ile Leu Ser Ala Glu Ala Leu	533											

								00	2				85					
			75					80										
gca Ala	ttg Leu	cgg Arg 90	cga Arg	gca Ala	aag Lys	GIN	gcc Ala 95	cag Gln	cgg Arg	cgg Arg	gca Ala	Cag Glr 100	1 61	a a n T	ca hr	cct Pro		581
gtg Val	caa Gln 105	ctg Leu	agt Ser	aag Lys	gag Glu	caa Gln 110	gaa Glu	gag Glu	ctg Leu	atc Ile	cgg Arg 11) ini	a ct r Le	c c	tg .eu	ggg Gly		629
gcc Ala 120	cac His	acc Thr	cgc Arg	cac His	atg Met 125	ggc Gly	acc Thr	atg Met	ttt Phe	gaa Glu 130	ווטו	tt Ph	t gt e va	9 6	ag 51n	ttt Phe 135		677
agg Arg	cct Pro	cca Pro	gct Ala	cat His 140	ctg Leu	ttc Phe	atc Ile	cat His	cac His 145	GII) CC	c tt o Le	g co u Pi	·O	acc Thr 150	ctg Lei	}	725
gcc Ala	cct Pro	gtg Val	ctg Leu 155	Pro	ctg Leu	gtc Val	aca Thr	cac His 160	Phe	gca Ala	a ga a As	c at p Il	E ~:	ac <u>s</u> sn 65	act Thr	tto Phe	2	773
atg Met	gta Val	ctg Leu 170	ı Glr	gto Val	atc Ile	aag Lys	ttt Phe 175	Thr	aag Lys	ga S As	c ct p Le	g co u Pr 18	O A	tc al	ttc Phe	cg:	t g	821
tco Ser	cto Lei 185	Pro	att	t gaa e Glu	gac J Asp	cag Gln 190	Ile	tco Ser	cti Lei	t ct J Le	c aa u Ly 19	' S G	ja g ly A	ca la	gct Ala	gt Va	9	869
gaa G1: 200	ıIle	tgi e Cy:	t ca s Hi	c ate	c gta e Va 20!	Lei	aat Asr	aco Thi	ac Th	t tt r Ph 21	ie c	ys L	tc c eu G	aa iln	aca Thr	ca G1 21	**	917
aa Asi	tt n Ph	c ct e Le	c tg u Cy	c gg s G1 22	g cc y Pro	t cti o Lei	cge Are	tao g Ty	c ac r Th 22	L T	t g	aa g lu A	at g sp (iga ily	gco Ala 230	ית	jt 'g	965
gt Va	9 gg 1 G1	g tt y Ph	c ca e Gl 23	n va	a ga 1 G1	g tti u Pho	t tte	g ga u G1 24	u Le	g ci	tc t eu P	tt c he H	13 1	ttc Phe 245	ca ^r	t go s G	ga Iy	1013
ac Th	a ct r Le	a cg u Ar 25	'g L)	a ct /s Le	g ca u Gl	g ct n Le	c ca u G1 25	חַ פו	g co u Pr	t g	ag t lu T	y, y	tg al 260	ctc Leu	tt Le	g gg u A	ct la	1061
gc A1	a Me	g gg et A	cc ct	tc t1 eu Ph	c to ne Se	t cc r Pr 27	o As	c cg p Ar	g Pi	t g ro G	IY Y	tt a /al 1 !75	icc Thr	cag Gln	ag Ar	a g g A	at sp	1109
ga G1 28	ig at u I	tt ga le A	at c	ag ci ln Lo	tg ca eu G1 28	ia ga In G1 35	g ga u Gl	ig at	g g et A	ca c la L 2	tg a eu 1 90	hr i	ctg Leu	caa Gln	ag Se	ic ter T	ac yr 95	1157
a!	tc a	ag g ys G	gc c ly G	in G	ag co ln Ai	ga ag rg Ai	ig co	ro A	ry A	at o sp A 05	gg 1 krg 1	ttt Phe	ctg Leu	tat Tyr		eg a la L 10	ag ys	1205
t L	tg c eu L	ta g eu G	ily L	tg c eu L 15	tg g eu A	ct ga	ig C	eu A	gg a rg s 20	gc a er :	itt [le	aat Asn	gag Glu	gce A1a 325	<u>.</u>	ac g yr C	igg Sly	1253

PCT/US2004/023092 WO 2005/019239

1356

1416 1450

3	
tac caa atc cag cac atc cag ggc ctg tct gcc atg atg ccg ctg ctc Tyr Gln Ile Gln His Ile Gln Gly Leu Ser Ala Met Met Pro Leu Leu 330 335 340	1301
cag gag atc tgc agc tgaggccatg ctcacttcct tccccagctc acctggaaca Gln Glu Ile Cys Ser 345	1356
ccctggatac actggagtgg gaaaatgctg ggaccaaaga ttgggccggg ttcaaaggga	1416
gcccagtggt tgcaatgaaa gactaaagca aaac	1450
<210> 2 <211> 348 <212> PRT <213> Homo sapiens	
<400> 2	
Met Ala Ser Arg Glu Asp Glu Leu Arg Asn Cys Val Val Cys Gly Asp 1 10 15	
Gln Ala Thr Gly Tyr His Phe Asn Ala Leu Thr Cys Glu Gly Cys Lys 20 30	
Gly Phe Phe Arg Arg Thr Val Ser Lys Ser Ile Gly Pro Thr Cys Pro 35 40 45	
Phe Ala Gly Ser Cys Glu Val Ser Lys Thr Gln Arg Arg His Cys Pro 50 60	
Ala Cys Arg Leu Gln Lys Cys Leu Asp Ala Gly Met Arg Lys Asp Met 65 70 75 80	
Ile Leu Ser Ala Glu Ala Leu Ala Leu Arg Arg Ala Lys Gln Ala Gln 85 90 95	
Arg Arg Ala Gln Gln Thr Pro Val Gln Leu Ser Lys Glu Gln Glu Glu 100 105	
Leu Ile Arg Thr Leu Leu Gly Ala His Thr Arg His Met Gly Thr Met 115 120 125	
Phe Glu Gln Phe Val Gln Phe Arg Pro Pro Ala His Leu Phe Ile His 130 135 140	
His Gln Pro Leu Pro Thr Leu Ala Pro Val Leu Pro Leu Val Thr His 145 150 150	
Phe Ala Asp Ile Asn Thr Phe Met Val Leu Gln Val Ile Lys Phe Thr 165 170 175	

PCT/US2004/023092 WO 2005/019239

Lys Asp Leu Pro Val Phe Arg Ser Leu Pro Ile Glu Asp Gln Ile Ser 180 185 190

Leu Leu Lys Gly Ala Ala Val Glu Ile Cys His Ile Val Leu Asn Thr 195 200 205

Thr Phe Cys Leu Gln Thr Gln Asn Phe Leu Cys Gly Pro Leu Arg Tyr 210 220

Thr Ile Glu Asp Gly Ala Arg Val Gly Phe Gln Val Glu Phe Leu Glu 225 230 235

Leu Leu Phe His Phe His Gly Thr Leu Arg Lys Leu Gln Leu Gln Glu 245 255

Pro Glu Tyr Val Leu Leu Ala Ala Met Ala Leu Phe Ser Pro Asp Arg 260 265 270

Pro Gly Val Thr Gln Arg Asp Glu Ile Asp Gln Leu Gln Glu Glu Met 275 280

Ala Leu Thr Leu Gln Ser Tyr Ile Lys Gly Gln Gln Arg Arg Pro Arg 290 295

Asp Arg Phe Leu Tyr Ala Lys Leu Leu Gly Leu Leu Ala Glu Leu Arg 305 310

Ser Ile Asn Glu Ala Tyr Gly Tyr Gln Ile Gln His Ile Gln Gly Leu 325 330 335

Ser Ala Met Met Pro Leu Leu Gln Glu Ile Cys Ser 340 345

<210> <211> <212> 3 714

DNA

Homo sapiens

<220> <221> CDS <222> (1)..(714)

<400> 3 cct gtg caa ctg agt aag gag caa gaa gag ctg atc cgg aca ctc ctg Pro Val Gln Leu Ser Lys Glu Gln Glu Glu Leu Ile Arg Thr Leu Leu 1 10 15

ggg gcc cac acc cgc cac atg ggc acc atg ttt gaa cag ttt gtg cag

48

96

									5							
Gly .	Ala	His	Thr 20	Arg	His	Met	Gly	Thr 25		Phe	Glu	Gln	Phe 30	٧a٦	Gln	
ttt Phe	agg Arg	cct Pro 35	cca Pro	gct Ala	cat His	Leu	ttc Phe 40	atc Ile	cat His	cac His	cag Gln	CCC Pro 45	ttg Leu	CCC Pro	acc Thr	144
ctg Leu	gcc Ala 50	cct Pro	gtg Val	ctg Leu	cct Pro	ctg Leu 55	gtc Val	aca Thr	cac His	ttc Phe	gca Ala 60	gac Asp	atc Ile	aac Asn	act Thr	192
ttc Phe 65	atg Met	gta val	ctg Leu	caa Gln	gtc Val 70	atc Ile	aag Lys	ttt Phe	act Thr	aag Lys 75	gac Asp	ctg Leu	ccc Pro	gtc Val	ttc Phe 80	240
cgt Arg	tcc Ser	ctg Leu	ccc Pro	att Ile 85	gaa Glu	gac Asp	cag Gln	atc Ile	tcc ser 90	ctt Leu	ctc Leu	aag Lys	gga Gly	gca Ala 95	gct Ala	288
gtg val	gaa Glu	atc Ile	tgt Cys 100	His	atc Ile	gta Val	ctc Leu	aat Asn 105	acc Thr	act Thr	ttc Phe	tgt Cys	ctc Leu 110	caa Gln	aca Thr	336
caa Gln	aac Asn	ttc Phe 115	Leu	tgc Cys	999 G1y	cct Pro	ctt Leu 120	cgc Arg	tac Tyr	aca Thr	att Ile	gaa Glu 125	gat Asp	gga Gly	gcc Ala	384
cgt Arg	gtg Val 130	Gly	ttc Phe	cag Gln	gta Val	gag Glu 135	ttt Phe	ttg Leu	gag Glu	ttg Leu	ctc Leu 140	Pne	cac His	ttc Phe	cat His	432
gga Gly 145	Thr	cta Leu	cga Arg	aaa Lys	ctg Leu 150	Gln	ctc Leu	caa Gln	gag Glu	cct Pro 155	GIU	tat Tyr	gtg	Ct C Leu	ttg Leu 160	480
gct Ala	gco	ato Mei	gco Ala	cto Leu 165	<u>ı</u> Phe	tct Ser	cct Pro	gac Asp	cga Arg 170	Pro	gga Gly	a gtt / Val	acc Thr	cag Glr 175	aga Arg	528
gat Asp	gaç Gli	ati Ile	t gat e Asp 180	o G1r	g ctg n Leu	caa Gln	gag Gli	gag Glu 185	ı Met	gca Ala	ctg Lei	g act u Thr	ctg Lei 190	i Gir	a agc n Ser	576
tac Tyr	ate	c aag e Ly: 19	s Gly	c caq y Gli	g cag n Glr	g cga n Arg	agg Arg 200) Pro	cgg Arg	gat J Asp	cg Ar	g tti g Phe 20:	e Lei	g tai	t gcg r Ala	624
aag Lys	tte Le 21	ų Le	a gg u Gl	c cte	g cto u Lei	g gct u Ala 215	a GII	g cto	c cgg u Arg	g age	c at r Il 22	e ASI	t gag n Gli	g gc	c tac a Tyr	672
gg G1 22	у Ту	c ca r Gl	a at n Il	c ca e Gl	g cad n Hi: 230	s Ile	c ca e Gl	g gg n Gl	c cto y Lei	tc u se 23	r Al	c ate	g at	g t		714
_																

<210> 4 <211> 238 <212> PRT <213> Homo sapiens

<400> 4

6

Pro Val Gln Leu Ser Lys Glu Gln Glu Leu Ile Arg Thr Leu Leu 10 15 Gly Ala His Thr Arg His Met Gly Thr Met Phe Glu Gln Phe Val Gln 20 25 30 Phe Arg Pro Pro Ala His Leu Phe Ile His His Gln Pro Leu Pro Thr 35 40 45 Leu Ala Pro Val Leu Pro Leu Val Thr His Phe Ala Asp Ile Asn Thr 50 60 Phe Met Val Leu Gln Val Ile Lys Phe Thr Lys Asp Leu Pro Val Phe 65 75 80 Arg Ser Leu Pro Ile Glu Asp Gln Ile Ser Leu Leu Lys Gly Ala Ala 90 95 Val Glu Ile Cys His Ile Val Leu Asn Thr Thr Phe Cys Leu Gln Thr 100 105 110 Gln Asn Phe Leu Cys Gly Pro Leu Arg Tyr Thr Ile Glu Asp Gly Ala 115 120 Arg Val Gly Phe Gln Val Glu Phe Leu Glu Leu Leu Phe His Phe His 130 140 Gly Thr Leu Arg Lys Leu Gln Leu Gln Glu Pro Glu Tyr Val Leu Leu 145 150 160 Ala Ala Met Ala Leu Phe Ser Pro Asp Arg Pro Gly Val Thr Gln Arg 165 170 175 Asp Glu Ile Asp Gln Leu Gln Glu Glu Met Ala Leu Thr Leu Gln Ser 180 185 Tyr Ile Lys Gly Gln Gln Arg Arg Pro Arg Asp Arg Phe Leu Tyr Ala 195 200 205 Lys Leu Leu Gly Leu Leu Ala Glu Leu Arg Ser Ile Asn Glu Ala Tyr 210 220 Gly Tyr Gln Ile Gln His Ile Gln Gly Leu Ser Ala Met Met 225 230 235

<210> 5

	7	
<211> <212> <213>	11 PRT Artificial	
<220> <223>	Amino acid sequence of an artificial His tag	
<400>	5	
Met Lys	s Lys Gly His His His His Gly 5 10	
<210> <211> <212> <213>	6 69 DNA Artificial	
<220> <223>	Forward primer for amplifying amino acids 103-348, including sequences encoding a His tag, and including an NdeI restriction site	
<400> cggcgg		60
aaggag	caa	69
<210> <211> <212> <213>	7 45 DNA Artificial	
<220> <223>	Reverse primer for amplifying amino acids 103-348, incorporating a BamHI site	ıg
<400> cggcgg	7 Jegeg gateettatt agetgeagat eteetggage agegg	45