1/1 point

1/1 point

1 / 1 point

1/1 point

1/1 point

Grade received 100% To pass 80% or higher

1. In this quiz, you will practice changing from the standard basis to a basis consisting of orthogonal vectors.

Given vectors $\mathbf{v} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

- $O_{\mathbf{v_b}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
- $O_{\mathbf{v_b}} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$
- $O_{\mathbf{v_b}} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$
- $\mathbf{v}_{\mathbf{b}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
- **⊘** Correct

The vector ${f v}$ is projected onto the two vectors ${f b_1}$ and ${f b_2}$.

- Given vectors $\mathbf{v} = \begin{bmatrix} 10 \\ -5 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.
 - efined by ${f b_1}$ and ${f b_2}$? You are given that ${f b_1}$ and ${f b_2}$ are orthogonal to each other. $\lceil -2/5 \rceil$
 - $O_{\mathbf{v_b}} = \begin{bmatrix} -2/5\\11/5 \end{bmatrix}$
 - $\mathbf{v_b} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$
 - $\mathbf{v_b} = \begin{bmatrix} 2/5 \\ 11/5 \end{bmatrix}$
 - $O_{\mathbf{v_b}} = \begin{bmatrix} 11/5 \\ 2/5 \end{bmatrix}$
 - **⊘** Correct

The vector ${f v}$ is projected onto the two vectors ${f b_1}$ and ${f b_2}.$

- Given vectors $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.
 - $\mathbf{v_b} = \begin{bmatrix} 2/5 \\ -4/5 \end{bmatrix}$
 - $O_{\mathbf{v_b}} = \begin{bmatrix} -2/5 \\ 5/4 \end{bmatrix}$

 - $O_{\mathbf{v_b}} = \begin{bmatrix} 5/4 \\ -5/2 \end{bmatrix}$
 - **⊘** Correct

The vector ${f v}$ is projected onto the two vectors ${f b_1}$ and ${f b_2}$.

4. Given vectors $\mathbf{v}=\begin{bmatrix}1\\1\\1\end{bmatrix}$, $\mathbf{b_1}=\begin{bmatrix}2\\1\\0\end{bmatrix}$, $\mathbf{b_2}=\begin{bmatrix}1\\-2\\-1\end{bmatrix}$ and $\mathbf{b_3}=\begin{bmatrix}-1\\2\\-5\end{bmatrix}$ all written in the standard basis, what

is ${\bf v}$ in the basis defined by ${\bf b_1}$, ${\bf b_2}$ and ${\bf b_3}$? You are given that ${\bf b_1}$, ${\bf b_2}$ and ${\bf b_3}$ are all pairwise orthogonal to each other.

- $\mathbf{v_b} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$
- $\mathbf{O} \quad \mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ 2/15 \end{bmatrix}$
- $\mathbf{v_b} = \begin{bmatrix} 3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$
- $\mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$
- **⊘** Correct

The vector ${f v}$ is projected onto the vectors ${f b_1},{f b_2}$ and ${f b_3}.$

5. Given vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{b_3} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{b_4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \end{bmatrix}$ all written in the standard

basis, what is ${\bf v}$ in the basis defined by ${\bf b_1}$, ${\bf b_2}$, ${\bf b_3}$ and ${\bf b_4}$? You are given that ${\bf b_1}$, ${\bf b_2}$, ${\bf b_3}$ and ${\bf b_4}$ are all pairwise orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

- $\mathbf{v}_{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
- $\mathbf{v_b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$
- $\mathbf{v_b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$
- **⊘** Correct

The vector ${f v}$ is projected onto the vectors ${f b_1},{f b_2},{f b_3}$ and ${f b_4}.$