Les suites numériques

M1 – Chapitre 1

I. Suites particulières

Suite arithmétique	Suite géométrique	Suite arithmético-géométrique
$U_{n+1} = U_n + r$	$U_{n+1} = qU_n$	$\int U_{n+1} = aU_n + b$
$U_n = U_p + (n - p)r$	$U_n = U_p q^{n-p}$	$\alpha = a\alpha + b$
$S_n = (n+1)\frac{U_p + U_{p+n}}{2}$	$S_n = U_0 \frac{1 - q^{n+1}}{1 - q}$	$\Rightarrow U_{n+1} - \alpha = a(U_n - \alpha)$ $\underline{V_n = U_n - \alpha} \Rightarrow V_{n+1} = aV_n \Rightarrow V_n = a^n V_0$ $\operatorname{donc} \left[\overline{U_n = a^n (U_0 - \alpha) + \alpha} \right] \operatorname{avec} \left[\alpha = \frac{b}{1 - a} \right]$

Suite récurrente linéaire du 2 ^{ème} ordre			
$\boxed{U_{n+2} = aU_{n+1} + bU_n}$	$\Delta < 0$	$\Delta > 0$	$\Delta = 0$
$q^2 - aq - b = 0$	$q=re^{\pm ei heta}$	q_1 et q_2 sol.	q_0 sol.
$(a,b)\in\mathbb{R}^2$	$U_n = r^n(\lambda \cos n\theta + \mu \sin n\theta)$	$II = \lambda a^n + \mu a^n$	
$(a,b)\in\mathbb{C}^2$		$U_n = \lambda q_1^n + \mu q_2^n$	$U_n = (\lambda n + \mu)q_0^n$

II. Suites convergentes, divergentes

1. Suite convergente

Définition	Unicité
U_n converge vers $l \Leftrightarrow$	Cette limite est unique
$\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $n \ge n_0 \Rightarrow U_n - l \le \varepsilon$	

2. Suite bornée

Suite bornée	Théorème
U_n bornée $\Leftrightarrow \exists (m, M), m \leq U_n \leq M$	U_n converge $\Rightarrow U_n$ bornée

3. Suite extraite

Définition	Théorème
On appelle suite extraite de (U_n)	$(U_n) \to l$
toute suite (V_n) telle que $V_n = U_{\varphi(n)}$	$\Rightarrow U_{\varphi(n)} \to l$

4. Suite divergente

Définition	Définitions	
U_n diverge si elle n'a pas de	$U_n \to +\infty \Leftrightarrow$	$U_n \to -\infty \Leftrightarrow$
limite finie ou si elle tend	$\forall A>0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N},$	$\forall A>0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N},$
vers ±∞	$n \ge n_0 \Rightarrow U_n > A$	$n \ge n_0 \Rightarrow U_n < -A$

III. Opérations sur les limites

Somme et produit de limites	Théorème d'encadrement (des gendarmes)
$\lim_{n \to +\infty} U_n = l \text{ et } \lim_{n \to +\infty} V_n = l'$ $\Rightarrow \lim_{n \to +\infty} U_n + V_n = l + l'$ $\Rightarrow \lim_{n \to +\infty} U_n V_n = l \cdot l'$	$\exists n_0 \in \mathbb{N}, n \ge n_0,$ $U_n \le V_n \le W_n \text{ et } \lim_{n \to +\infty} U_n = \lim_{n \to +\infty} W_n = l$ $\Rightarrow \lim_{n \to +\infty} V_n = l$

v3

Les suites numériques M1 - Chapitre 1

IV. Limite de suites monotones

Théorème	Théorème
Toute suite croissante à partir d'un certain	Toute suite décroissante à partir d'un certain
rang et majorée converge.	rang et minorée converge.
Si elle n'est pas majorée, elle diverge vers +∞	Si elle n'est pas minorée, elle diverge vers +∞

Suites adjacentes V.

Définition	Théorème
(U_n) et (V_n) sont adjacentes $\Leftrightarrow (U_n) \nearrow, (V_n) \searrow \operatorname{et} \lim_{n \to +\infty} U_n - V_n = 0$	(U_n) et (V_n) sont adjacentes $\Rightarrow \lim_{n \to +\infty} U_n = \lim_{n \to +\infty} V_n = l$