Cognoms i Nom:

Codi

Examen parcial de Física - ONES 5 de juny del 2019

Model A

Qüestions: 100% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

$$(\varepsilon_0 = 8.854 \, 10^{-12} \, C \, V^{-1} m^{-1} \, , \, \mu_0 = 4\pi \, 10^{-7} \, T \, m/A \, , \, h = 6.63 \cdot 10^{-34} \, \mathrm{Js} \,)$$

- **T1)** El camp elèctric d'una ona electromagnètica és $\vec{E}(y,t) = E_0 \cos(ky + \omega t)(\hat{i})$. Aleshores, el camp magnètic de l'ona és:
 - a) $\vec{B}(y,t) = B_0 \cos(ky + \omega t)(-\hat{i}).$
 - b) $\vec{B}(y,t) = B_0 \cos(ky + \omega t)(-\hat{k}).$
 - c) $\vec{B}(y,t) = B_0 \cos(ky + \omega t)(\hat{k}).$
 - d) $\vec{B}(y,t) = B_0 \cos(ky + \omega t)(\hat{j}).$
- T2) Un feix de llum incideix sobre una superfície. L'angle d'incidència amb la normal és de 30 graus, l'angle entre els raigs reflectits i refractats és de 100 graus. Quin és l'angle de refracció?
 - a) 50°
- b) 70°
- c) 100°
- d) 30°
- T3) Segons la nova normativa europea que té com a objectiu reduir les emissions de CO₂, la potència màxima de les llums en mode de permanència (standby) està limitada a 0,5 W. Calculeu la quantitat màxima de fotons que pot emetre un llum vermell (longitud d'ona 650 nm) en modo de permanència en 1 minut.
 - a) 1.6×10^{21}
- b) 1.6×10^{18}
- c) 9.8×10^{22} d) 9.8×10^{19}
- T4) El làser Vulcan, que s'utilitza en experiments de fusió nuclear, emet llum amb una longitud d'ona de 633 nm en polsos de 10^{-12} s. Si durant un pols emet $3.18 \cdot 10^{21}$ fotons, quina és la potència del làser aproximadament?
 - a) 10 mW

b) 10^{10} W

c) 10^5 W

- d) 10^{15} W
- **T5**) Dues ones procedents d'una font de llum coherent violeta ($\lambda = 400$ nm) arriben a un punt determinat, havent seguit dos camins diferents, amb una diferència de camí de $\Delta \lambda = 1, 2\mu m$. En aquest punt:
 - a) es produeix interferència destructiva total
 - b) es produeix interferència constructiva parcial
 - c) es produeix interferència destructiva parcial
 - d) es produeix interferència constructiva total

- **T6)** Una ona harmònica té una funció d'ones $y(x,t) = A \sin\{2\pi[(x/2) (t/4)]\}$ on x s'expressa en cm i t en segons. Podem afirmar que la diferència de fase a) en un cert punt, en un interval de 3 s és de 45° . b) en un cert punt, en un interval de 2 s és de 180°. c) entre 2 punts separats 4 cm és de 90° . d) entre 2 punts separats 0.5 cm és de 45° . T7) Quins paràmetres d'una ona electromagnètica (camp elèctric \vec{E} , camp magnètic \vec{B}) no són possibles?
- - a) $\vec{E}_0 = 2 \text{ V/m } \hat{j}$, $\vec{B}_0 = 6.6 \times 10^{-9} \text{ T } \hat{k}$, propagant-se en el sentit negatiu de l'eix x
 - b) $\vec{E}_0=6$ V/m $(-\hat{k}),\,\vec{B}_0=2\times 10^{-8}$ T \hat{j} propagant-se en el sentit positiu de l'eix x
 - c) $\vec{E}_0=12~{\rm V/m}$ (- \hat{i}), $\vec{B}_0=4\times10^{-8}~{\rm T}$ \hat{j} , propagant-se en el sentit negatiu de l'eix z
 - d) $\vec{E}_0 = 20 \text{ V/m } \hat{j}$, $\vec{B}_0 = 6.6 \times 10^{-8} \text{ T } (-\hat{i})$, propagant-se en el sentit positiu de l'eix z
- T8) Un satèl·lit emet ones electromagnètiques linealment polaritzades amb una potència mitjana de 12 kW de tal manera que les ones emeses només arriben a una zona de la Terra que cobreix una superfície de 9·10⁶ km², on és perfectament vàlida l'aproximació d'ones planes. Quins són els valors més aproximats de les amplituds del camps elèctric i magnètic dels senyals a la superfície de la Terra?
 - a) $0.001 \text{ V/m i } 3.3 \cdot 10^{-12} \text{ T}$
- b) $0.001 \text{ V/m i } 2.04 \cdot 10^{-10} \text{ T}$
- c) $0.087 \text{ V/m i } 2.59 \cdot 10^{-7} \text{ T}$
- d) $0.087 \text{ V/m i } 2.89 \cdot 10^{-10} \text{ T}$
- T9) Si comparem la radiació infraroja amb la llum visible en el buit, quina de les afirmacions següents és certa?
 - a) La longitud d'ona infraroja és més petita que la de la llum visible.
 - b) La radiació infraroja és propaga més ràpid que la llum visible.
 - c) El nombre d'ona infraroig és més petit que el de la llum visible.
 - d) La frequència infraroja és més gran que la de la llum visible.
- T10) Un feix de llum natural (no polaritzada) d'intensitat 8 W/m² travessa tres filtres polaritzadors consecutius, amb un angle θ entre eixos de transmissió (o polarització) de dos filtres consecutius. Si a la sortida es detecta una intensitat de 2.25 W/m², quin és el valor de l'angle θ ?
 - a) 30°
- b) 45°
- c) 15°
- d) 60°

Cognoms i Nom:

Codi

Examen parcial de Física - ONES 5 de juny del 2019

Model B

Qüestions: 100% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

$$(\varepsilon_0 = 8.854 \, 10^{-12} \, C \, V^{-1} m^{-1} \, , \, \mu_0 = 4\pi \, 10^{-7} \, T \, m/A \, , \, h = 6.63 \cdot 10^{-34} \, \mathrm{Js} \,)$$

- T1) Un satèl·lit emet ones electromagnètiques linealment polaritzades amb una potència mitjana de 12 kW de tal manera que les ones emeses només arriben a una zona de la Terra que cobreix una superfície de 9·10⁶ km², on és perfectament vàlida l'aproximació d'ones planes. Quins són els valors més aproximats de les amplituds del camps elèctric i magnètic dels senyals a la superfície de la Terra?
 - a) $0.001 \text{ V/m i } 2.04 \cdot 10^{-10} \text{ T}$
- b) $0.087 \text{ V/m i } 2.59 \cdot 10^{-7} \text{ T}$
- c) $0.001 \text{ V/m i } 3.3 \cdot 10^{-12} \text{ T}$
- d) $0.087 \text{ V/m i } 2.89 \cdot 10^{-10} \text{ T}$
- T2) Dues ones procedents d'una font de llum coherent violeta ($\lambda = 400$ nm) arriben a un punt determinat, havent seguit dos camins diferents, amb una diferència de camí de $\Delta \lambda = 1, 2\mu m$. En aquest punt:
 - a) es produeix interferència destructiva total
 - b) es produeix interferència constructiva parcial
 - c) es produeix interferència constructiva total
 - d) es produeix interferència destructiva parcial
- **T3)** Quins paràmetres d'una ona electromagnètica (camp elèctric \vec{E} , camp magnètic \vec{B}) no són possibles?
 - a) $\vec{E}_0 = 2 \text{ V/m } \hat{j}, \vec{B}_0 = 6.6 \times 10^{-9} \text{ T } \hat{k}$, propagant-se en el sentit negatiu de l'eix x
 - b) $\vec{E}_0 = 20 \text{ V/m} \ \hat{j}, \ \vec{B}_0 = 6.6 \times 10^{-8} \text{ T } (-\hat{i}),$ propagant-se en el sentit positiu de l'eix z
 - c) $\vec{E}_0=12~{\rm V/m}$ (- \hat{i}), $\vec{B}_0=4\times10^{-8}~{\rm T}$ \hat{j} , propagant-se en el sentit negatiu de l'eix z
 - d) $\vec{E}_0 = 6 \text{ V/m } (-\hat{k}), \vec{B}_0 = 2 \times 10^{-8} \text{ T } \hat{j}$ propagant-se en el sentit positiu de l'eix x
- **T4)** El camp elèctric d'una ona electromagnètica és $\vec{E}(y,t) = E_0 \cos(ky + \omega t)(\hat{i})$. Aleshores, el camp magnètic de l'ona és:
 - a) $\vec{B}(y,t) = B_0 \cos(ky + \omega t)(-\hat{k}).$
 - b) $\vec{B}(y,t) = B_0 \cos(ky + \omega t)(-\hat{j}).$
 - c) $\vec{B}(y,t) = B_0 \cos(ky + \omega t)(\hat{k}).$
 - d) $\vec{B}(y,t) = B_0 \cos(ky + \omega t)(\hat{j}).$

æዩ)	C; companyon la rac	liació infrancia amb	la llum visible en el	buit quina de les efirmacions	
13)	Si comparem la radiació infraroja amb la llum visible en el buit, quina de les afirmacion següents és certa?				
	a) La radiació infraroja és propaga més ràpid que la llum visible.				
	b) La freqüència infraroja és més gran que la de la llum visible.				
	c) La longitud d'ona infraroja és més petita que la de la llum visible.				
	d) El nombre d'ona infraroig és més petit que el de la llum visible.				
T6)	Segons la nova normativa europea que té com a objectiu reduir les emissions de CO_2 , la potència màxima de les llums en mode de permanència (standby) està limitada a 0,5 W. Calculeu la quantitat màxima de fotons que pot emetre un llum vermell (longitud d'ona 650 nm) en modo de permanència en 1 minut.				
	a) 9.8×10^{22}	b) 1.6×10^{18}	c) 9.8×10^{19}	d) 1.6×10^{21}	
T7)	Un feix de llum natural (no polaritzada) d'intensitat 8 W/m² travessa tres filtres polaritzadors consecutius, amb un angle θ entre eixos de transmissió (o polarització) de dos filtres consecutius. Si a la sortida es detecta una intensitat de 2.25 W/m², quin és el valor de l'angle θ ?				
	a) 60°	b) 15°	c) 30°	d) 45°	
T8)	El làser Vulcan, que s'utilitza en experiments de fusió nuclear, emet llum amb una longitud d'ona de 633 nm en polsos de 10^{-12} s. Si durant un pols emet $3.18 \cdot 10^{21}$ fotons, quina és la potència del làser aproximadament?				
	a) 10^5 W				
	 b) 10¹⁵ W c) 10¹⁰ W 				
	d) 10 mW				
	a) 10 111 · ·				
T9)	Un feix de llum incideix sobre una superfície. L'angle d'incidència amb la normal és de 30 graus, l'angle entre els raigs reflectits i refractats és de 100 graus. Quin és l'angle de refracció?				
	a) 30^{o}		b) 100^{o}		
	c) 50°		d) 70^{o}		
T10)	Una ona harmònica té una funció d'ones $y(x,t)=A\sin\{2\pi[(x/2)-(t/4)]\}$ on x s'expressa en cm i t en segons. Podem afirmar que la diferència de fase				

a) entre 2 punts separats 4 cm és de 90° .

b) entre 2 punts separats 0.5 cm és de 45° .

c) en un cert punt, en un interval de 3 s és de 45° .

d) en un cert punt, en un interval de 2 s és de 180° .

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	С	С
T2)	a	c
T3)	d	a
T4)	d	c
T5)	d	d
T6)	b	c
T7)	a	c
T8)	a	b
T9)	c	c
T10)	a	d

Resolució del Model A

- T1) D'acord amb l'expressió del camp elèctric, l'ona es propaga cap a les y negatives. Per tant, el vector unitari que indica la direcció de propagació és $\vec{u} = -\hat{j}$. El camp magnètic tindrà doncs la direcció $\pm \hat{k}$ (perpendicular al camp elèctric i a la direcció de propagació). Per a determinar el sentit podem utilitzar la regla de la mà dreta o bé considerar que $\vec{B} = [\vec{u} \times \vec{E}]/c$ d'on s'obté que $\vec{B}(y,t) = \vec{B}_0 \cos(ky + \omega t)(\hat{k})$.
- T2) L'angle de reflexió és igual a l'angle d'incidència de 30°. La suma dels tres angles:
 - (1) de l'angle de reflexió de 30°
 - (2) entre els raigs reflectits i refractat de 100°
 - (3) l'angle de refracció desconegut
 - és 180° i per tant l'angle de refracció és $180 100 30 = 50^{\circ}$
- T3) La energia d'un fotó de freqüència $f = c/\lambda$ és de $hf = hc/\lambda$. El nombre de fotons N està relacionat amb l'energia total transmesa E = Pt com N = E/(hf) i el nombre total de fotons és $N = Pt \lambda/(hc) = 0,5W \cdot 60s \cdot 650 \times 10^{-9} m/(6.63 \times 10^{-34} Js \cdot 3 \times 10^{8} m/s) = 9.8 \times 10^{19}$
- **T4)** Si emet $N = 3.18 \cdot 10^{21}$ fotons en un pols de $\Delta t = 10^{-12}$ s, el nombre de fotons emesos per unitat de temps és $n = N/\Delta t = (3.18 \cdot 10^{21})/(10^{-12}) = 3.18 \cdot 10^{33}$ fotons/s. Com que l'energia d'un fotó és $E = hf = hc/\lambda = 3.14 \cdot 10^{-19}$ J, la potència d'emissió és $P = nE = (3.18 \cdot 10^{33})(3.14 \cdot 10^{-19}) = 10^{15}$ W.
- **T5**) En aquest cas $\Delta x/\lambda = 1.2 \times 10^{-6} m/400 \times 10^{-9} m = 3$ i hi ha una interferència constructiva total.
- T6) Comparant l'expressió general de la funció d'ona $y(x,t) = A \sin\{2\pi[(x/\lambda) (t/T)]\}$ amb la de l'enunciat, és immediat veure que la longitud d'ona és $\lambda = 2$ cm i T = 4s. Aleshores, tenint en compte que la diferència de fase entre dos punts separats una distància Δx és $\Delta \varphi = 2\pi \Delta x/\lambda = 2\pi \Delta x/2$, per a $\Delta x = 0.5$ cm tenim $\Delta \varphi = \pi/2$ rad = 90°, i per a $\Delta x = 4$ cm tenim $\Delta \varphi = 4\pi$ rad = 0°. I tenint en compte que la diferència de fase entre dos instants de temps en el mateix punt és $\Delta \varphi = 2\pi \Delta t/T = 2\pi \Delta t/4$ per a $\Delta t = 3$ s tenim $\Delta \varphi = \pi/2$ rad = 270°, i per a $\Delta t = 2$ s tenim $\Delta \varphi = \pi$ rad = 180°.

- **T7)** La ona electromagnètica descrita en a) no és possible, ja que no compleix la relació entre els vectors del camp elèctric \vec{E} , magnètic \vec{B} i la direcció de propagació \vec{n} : $\vec{E} = c[\vec{B} \times \vec{n}]$.
- T8) L'àrea de la superfície terrestre on incideixen les ones és $A = (9 \cdot 10^6 \text{ km}^2)(10^3 \text{ m})^2/(1 \text{ km})^2 = 9 \cdot 10^{12} \text{ m}^2$ Per tant la seva intensitat mitjana és $I = P/A = (12 \cdot 10^3)/(9 \cdot 10^{12}) = 1.33 \cdot 10^{-9} \text{ W/m}^2$ Tenint en comte que $I = E_0 B_0/(2\mu_0)$ i $B_0 = E_0/c$ $E_0 = [2Ic\mu_0]^{1/2} = 0.0010 \text{ V/m i } B_0 = E_0/c = 3.33 \cdot 10^{-12} \text{ T}$
- T9) L'energia E d'un fotó infraroig és més petita que la d'un fotó de llum visible, mentre que la velocitat dels dos és la mateixa i igual a $c=3\cdot 10^8$ m/s. Per tant, tenint en compte que E=hf, on h és la constant de Plank i f la freqüència, la freqüència infraroja és més petita que la de la llum visible, la longitud d'ona infraroja $\lambda=cT=c/f$ és més gran, i el nombre d'ones $k=2\pi/\lambda$ és més petit.
- **T10)** La intensitat resultant I després que la llum natural (no polaritzada) d'intensitat inicial I_{nat} travessi el muntatge serà (on els tres factors entre calaudàtors reflecteixen l'efecte dels respectius polaritzadors)

 $I = I_0[1/2][(\cos \theta)^2][(\cos \theta)^2]$ i, per tant, $(\cos \theta)^4 = 2I/I_0$, d'on surt que $\theta = 30^\circ$.