Лекции по алгебре 4 модуль.

Андрей Тищенко

2023/2024 гг.

Лекция 3 апреля

Квадратичные формы

Определение: Многочлен второй степени от n переменных, то есть выражение вида

$$q(x_1, \dots, x_n) = \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

Где $a_{ij} \in \mathbb{R}$, называют квадратичной формой.

Замечание: Многочлен q(x) называется однородным степени k, если

$$\forall \alpha \quad q(\alpha x) = \alpha^k q(x)$$

Замечание: Квадратичная форма - это отображение $q:V\longrightarrow \mathbb{R}$ (вектор в число)

Рассмотрим n-мерное вектороное пространство V над \mathbb{R} . Зафиксируем в нём базис e_1, \ldots, e_n :

Тогда у любого $x \in V$ есть набор координат в этом базисе x_1, \ldots, x_n .

To есть $\forall x \in V : x = x_1 e_1 + \dots + x_n e_n$

Пусть
$$x^e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Rightarrow q(x)$$
 можно представить в виде $q(x) = (x^e)^T A x^e$, где

 $A = (a_{ij})$ матрица квадратичной формы q(x) в базисе e_1, \ldots, e_n, a_{ij} - коэффициенты квадратичной формы.

Пример: В \mathbb{R}^3

$$q(x) = x_1^2 + 8x_1x_3 = x_1^2 + 4x_1x_3 + 4x_3x_1 = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 4 \\ 0 & 0 & 0 \\ 4 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Замечание: Матрица квадратичной формы всегда симметрическая. То есть

$$A^T = A$$

Замечание: По любой билинейной форме можно построить квадратичную форму, взяв $q(x)=b(x,\ x)$. Тогда $a_{ij}=\frac{b_{ij}+b_{ji}}{2}$

Пример: $b(x, y) = x_1y_1 + ex_1y_3 + 5x_3y_1 \Rightarrow q(x) = b(x, x) = x_1^2 + 8x_1x_3$

Определение: Билинейная форма называется симметрической, если

b(x, y) = b(y, x), например, скалярное произведение

Называется кососиметрической, если

$$b(x, y) = -b(y, x)$$

Пример: Кососиметрическая билинейная форма с матрицей $B=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow$ $\Rightarrow B^T=-B$

Замечание: По любой квадратичной форме можно построить симметрическую билинейную форму. Это называется <u>поляризацией</u> квадратичной формы.

$$b(x, y) = \frac{1}{2} [q(x+y) - q(x) - q(y)]$$

Полярная билинейная форма к q(x) (имеет ту же матрицу, что и $q(x),\,b(x,\,x)=q(x)$)

Утверждение: При переходе от базиса e к базису e' в линейном пространстве V матрица квадратичной формы меняется так:

 $A' = C^T \cdot A \cdot C$, "Стас" без рофлов, реально Стасямба конкретная

 A^\prime - матрица квадартичной формы в новом базисе e^\prime

 ${\cal C}$ - матрица перехода от базиса e к базису e'

Доказательство: Свзять координат вектора:

x = Cx', так как $x' = C^{-1}x$ - формула изменения координат вектора при замене базиса.

Тогда $\forall x \quad q(x) = x^T A x = (Cx')^T A (Cx') = (x')^T C^T A C x' = (x')^T A' x',$ значит $A' = C^T A C$ (Можно в качестве x брать все векторы канонического базиса $(0,\dots 0,\ 1,\ 0,\dots,\ 0)$ и показать совпадение матричных элементов)

Определение: Если квадратичная форма в некотором базисе записана в виде $q(x) = x^T A x$, то есть если A - матрица квадратичной формы в некотором базисе, то $\operatorname{Rg} A$ называется рангом квадратичной формы q(x).

Почему это определение корректно? То есть почему $\operatorname{Rg} A$ не зависит от базиса.

Лемма: Пусть $A, U \in M_n(\mathbb{R}), \det U \neq 0$. Тогда $\operatorname{Rg} A \cdot U = \operatorname{Rg} A = \operatorname{Rg} U \cdot A$, то есть при умножении на невырожденную матрицу ранг не меняется.

Доказательство: $\operatorname{Rg} A \cdot U \leqslant \operatorname{Rg} A$, так как столбцы матрицы AU есть линейные комбинации столбцов матрицы A.

Ранг матрицы по теореме о ранге матрицы равен максимальному числу линейно независимых столбцов не могло вырасти, так как все столбцы AU линейно выражаются через столбцы исходной матрицы. Покажем $\operatorname{Rg} A \cdot U \geqslant \operatorname{Rg} A$.

$$\operatorname{Rg} A = \operatorname{Rg} A(U \cdot U^{-1}) = \operatorname{Rg}(AU)U^{-1} \leqslant \operatorname{Rg}(AU)$$

$$\operatorname{Rg} U \cdot A = \operatorname{Rg}(UA)^T = \operatorname{Rg} A^T U^T = \operatorname{Rg} A^T = \operatorname{Rg} A = \operatorname{Rg} A U$$

Утверждение: (об инвариантности ранга квадратичной формы)

Пусть q(x) - квадратичная форам на линейном пространстве V.

Пусть $a = (a_1, \ldots, a_n)$ и $b = (b_1, \ldots, b_n)$ - базисы в V.

Пусть A - матрица квадратичной формы в базисе a

Пусть B - матрицы квадратичной формы в базисе b

Тогда $\operatorname{Rg} A = \operatorname{Rg} B$ и ранг квадратичной формы корректно определен.

Доказательство: Было доказано, что $B=C^TAC\Rightarrow$ по лемме, так как мы умножаем матрицу A на матрицы C^T слева и на C справа, то ${\rm Rg}\,B={\rm Rg}\,A,$ ч.т.д.

Определение: квадратичную форму q(x) будем назвать положительно определённой, если

$$\forall x \neq 0 \quad q(x) > 0$$

отрицательно определённой, если

$$\forall x \neq 0 \quad q(x) < 0$$

знакопеременной, если

$$\exists x, \ y \in V : q(x) < 0 < q(y)$$

Пример: $q_1(x) = x_1^2 + 2x_2^2 + 5x_3^2$ на \mathbb{R}^3 - положительно определена $q_2(x) = x_1^2 - x_3^2$ - знакопеременна $\left(y = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}, \ x = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \Rightarrow q(x) < 0 < q(y) \right)$. $q_3(x) = -x_1^2 - 2x_2^2 - 3x_3^2$ - отрицательно определена на \mathbb{R}^3 , но $q_3'(x) = -x_1^2 - 3x_3^2$ - не является отрицательно определённой, так как $q_3'\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0$ - это неположительно определённая квадратная форма.

Теорема: (Критерий Сильвестра положительной определённости) Пусть A - матрица квадратичной формы q(x) в некотором базисе. Тогла

q(x) положительно определена $\Leftrightarrow \frac{\text{последовательность главных угловых}}{\text{миноров в A строго положительна}}$

То есть
$$\begin{cases} \Delta_1 = a_{11} > 0 \\ \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0 \\ \dots \\ \Delta_n = \det A > 0 \end{cases}$$

Следствие:

Квадратичная форма отрицательно определена
$$\Leftrightarrow$$

$$\begin{cases} \Delta_1 < 0 \\ \Delta_2 > 0 \\ \dots \\ (-1)^n \Delta_n > 0 \end{cases}$$

To есть знаки главных угловых миноров чередуются, начиная с минуса.

Доказательство: Так как A - отрицательно определена $\Leftrightarrow -A$ положительно определена $\det(-A) = (-1)^n \det A$, ч.т.д.

Пример:
$$q(x) = -x_1^2 - x_2^2 - \cdots - x_n^2$$
 - отрицательно определённая
$$A = \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -1 \end{pmatrix}$$

Определение: Квадратичную форму $q(x) = \alpha_1 x_1^2 + \dots + \alpha_n x_n^2$, где $\alpha_i \in \mathbb{R}, \ i = \overline{1, \ n}$, то есть в квадратичной форме нет попарных произведений вида Cx_ix_j , называют квадратичной формой каноничесмкого вида. Если $\alpha_i \in \{-1, \ 0, \ 1\}$, то канонический вид называют нормальным.

Замечание: Матрица квадратичной формы в каноническом виде является диагональной.

Лекция 10 апреля

 $x \in V$ $q(x) = \alpha_1 x_1^2 + \dots + \alpha_n x_n^2 \ (\alpha_i \in \mathbb{R}, \ i = \overline{1, \ n})$ - канонический вид. Если все коэффициенты α_i являются элементами множества $\{-1, \ 0, \ 1\}$, то это называется нормальным видом.

Утверждение. Любую квадратичную форму можно привести к каноническому и к нормальному виду.

Методы приведения

1. Метод Лагранжа.

Главная идея состоит в последовательном выделении полных квадратов. При этом на каждом шаге под квадрат полностью уходит одна переменная (невыполнение этого условия является частой ошибкой при решении задач). Получается, что не более чем за n шагов алгоритм даст канонический вид.

Если на некотором этапе переменных в квадрате не осталось, но есть выражение вида $c \cdot x_i \cdot x_i$ ($i \neq j$), то делают замену переменных:

$$\begin{cases} x_i = x_i' - x_j' \\ x_j = x_i' + x_j' \end{cases} \Rightarrow cx_i x_j = c\left((x_i')^2 - (x_j')^2\right)$$

Получили новые квадраты, продолжаем выполнение метода (то есть выделяем полный квадрат при необходимости).

$$\alpha_i x_i^2 + 2x_i \underbrace{\left(\beta_1 x_1 + \dots + \beta_n x_n\right)}_{\text{HET } x_i} = \alpha_i \left(x_i^2 + 2x_i \frac{\beta_i x_1 + \dots + \beta_n x_n}{\alpha_i} + \left(\frac{\beta_1 x_1 + \dots + \beta_n x_n}{\alpha_i} \right)^2 \right)$$

$$-\frac{\beta_1 x_1 + \dots + \beta_n x_n}{\alpha_i} = \alpha_i \underbrace{\left(x_i + \frac{\beta_1 x_1 + \dots + \beta_n x_n}{\alpha_i}\right)}_{\text{Заменяем на } y_i} - \underbrace{\frac{\left(\beta_1 x_1 + \dots + \beta_n x_n\right)^2}{\alpha_i}}_{\text{уже без } x_i}$$

То есть x_i полностью ушла под квадрат.

- 2. Метод Якоби. (может быть пройдём на семинаре)
- 3. Симметичный Гаусс. (может быть пройдём на семинаре)
- 4. Метод приведения к главным осям (только для канонического). (может быть пройдём на семинаре)

Теорема. Закон инерции квадратичной формы

Для любых двух канонических видов одной квадратичной формы. $q(x)=\lambda_1x_1^2+\cdots+\lambda_kx_k^2,\ \lambda_i\neq 0,\ i=\overline{1,\ k}$ $q(y)=\mu_1y_1^2+\cdots+\mu_my_m^2,\ \mu_j\neq 0,\ j=\overline{1,\ m}$ где $x,\ y\in V$

То есть это запись одной и той же квадратичной формы в разных базисах.

- 1. $k=m=\operatorname{Rg} A \leftarrow$ равно рангу квадратичной формы. При этом k=m может быть меньше размерности V, то есть $k=m\leqslant n=\dim V$
- 2. Количество положительных λ_i совпадает с количество положительных μ_j . Это называется положительный индекс инерции квадратичной формы.

Обозначение: i_+

3. Количество отрицательных λ_i совпадает с количеством отрицательрных μ_i и называется отрицательным индексом инерции.

Обозначение: i_{-}

Определение: Сигнатурой квадратичной формы называют два числа (i_+, i_-) .

Замечание: Если у двух квадратичных форм совпадают сигнатуры, то существует невырожденная линейное преобразование (=замена координат, =замена базиса), которое одну квадратичную форму переводит в другую. Сначала обе в нормальный вид, он совпадает, так как одинаковое количество +1 и -1, и для одной преобразование в обратную сторону.

Замечание: Если у двух квадратичных форм разные сигнатуры (i_+, i_-) , то одну нельзя перевести в другую невырожденным линейным преобразованием. То есть квадратичные формы разные.

Замечание: $\operatorname{Rg} A = i_+ + i_-$. Иногда вводят величину $S = i_+ - i_-$. Знание $\operatorname{Rg} A$ и S эквивалентно знанию i_+ и i_- , и поэтому число S иногда называют сигнатурой.

Линейные отображения и линейные операторы

Пусть V_1 и V_2 - два линейных пространства над полем F

Определение: Отображение $\varphi: V_1 \longrightarrow V_2$ называется <u>линейным</u>, если

1.
$$\forall x, y \in V_1, \varphi(x+y) = \varphi(x) + \varphi(y)$$

2.
$$\forall x \in V_1, \ \forall \alpha \in F \ \varphi(\alpha x) = \alpha \varphi(x)$$

Замечание: эти два условия равносильны $\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$

Замечание: Линейное отображение это гомоморфизм линейных пространств, и есть обозначение $\varphi \in \text{Hom}(V_1, V_2)$

Определение: Если $V_1 = V_2 = V$ (пространства совпадают), то линейное отображение φ называется линейным оператором (л. о.)

Пусть e_1, \ldots, e_n - базис в $V_1, \dim V_1 = n$ f_1, \ldots, f_m - базис в $V_2, \dim V_2 = m$

Рассмотрим векторы $\varphi(e_1), \ldots, \varphi(e_n) \in V_2$ (образы базисных векторов первого пространства под действием φ), и разложим их по базису второго пространства f_1, \ldots, f_m :

$$\begin{cases} \varphi(e_1) = a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m \\ \vdots \\ \varphi(e_n) = a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_m \end{cases}$$

Определение: Матрица линейного отображения в паре базисов (e_1, \ldots, e_n) и (f_1, \ldots, f_m) это матрица:

$$[\varphi]_{ef} = A_{ef} = \underbrace{\begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}_{m \times n}}_{\text{dim } V_1}$$
 dim V_2

По столбцам стоят координаты образов векторов первого базиса при разложении по второму базису.

Определение: Пусть
$$\varphi: V_1 \longrightarrow V$$
 - линейный оператор и e_1, \dots, e_n - базис. Пусть
$$\begin{cases} \varphi(e_1) = a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n \\ \vdots \\ \varphi(e_n) = a_{1n}e_1 + a_{2n}e_2 + \dots + a_{nn}e_n \end{cases}$$

То есть образы базисных векторов под дейсвтием φ разложим по тому же базису.

Тогда:

$$A_e = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

Называется матрицей линейного оператора

Пример: $\varphi(x) = \Pi p_L x$, где $L = \mathcal{L}(\bar{i})$ в V_3 , где \bar{i} - ось абсцисс. Рассмотрим стандартный базис $\{\bar{i}, \bar{j}, \bar{k}\}$ в V_3 .

$$\begin{cases} \varphi(i) = i = 1 \cdot i + 0 \cdot j + 0 \cdot k \\ \varphi(j) = 0 \\ \varphi(k) = 0 \end{cases} \Rightarrow A_{\{i, j, k\}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Teopeма: (о том, что действие линейного оператора полностью определяется его матрицей)

Пусть φ - линейный оператор в пространстве V

$$e=(e_1,\dots,\ e_n)$$
 - базис в $V,\ x\in V$ - вектор.
$$x^e=\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$$
 - столбец координат вектора x в базисе e , то есть $x=x_1e_1+\dots+x_ne_n$

Пусть A_e - матрица линейного оператора φ в базисе e, тогда:

$$(\varphi(x))^e = A_e \cdot x^e$$
, (матричное произведение)

Доказательство:
$$\varphi(x) = \varphi(x_1e_1 + \dots + x_1e_1)$$
 по линейности $x_1\varphi(e_1) + \dots + x_n\varphi(e_n)$ определение $x_1\varphi(e_1) + \dots + x_n\varphi($

 $A_e \cdot x^e$, ч.т.д.

Замечание: Для линейных отображений аналогично

$$\left(\varphi(x)\right)^f = A_{ef}x^e$$

Замечание: При фиксированном базисе есть биекция между линейными операторами (линейными отображениями) и матрицами $n \times n$, $(m \times n)$.