1. Random variable *X* has probability distribution given by probability mass function in following table.

X	0	1	2
P(X = x)	0,3	0,4	0,3

Random variable Y has probability distribution given by probability mass function in following table.

У	0	1	2	3
P(Y = y)	0.1	0.4	0.4	0.1

 $V = X \cdot Y$ under assumption, that the random variables X, Y are independent.

Support of random variable V, $S_V = \{0,1,2,3,4,6\}$

Then to find probability distribution of random variable V we need to compute probabilities for all items from the support or random variable V.

The event {V=0} may be consider as exceptional

$$P(V=0)=P(X-Y=0)=P(X=0 \text{ or } Y=0)=P(X=0)+P(Y=0)-P(X=0 \text{ and } Y=0)=P(X=0)+P(Y=0)-P(X=0)\cdot P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)+P(Y=0)=P(X=0)=P(X=0)+P(Y=0)=P(X=0)=$$

=0.3+0.1-0.3.0.1=0.37

(because of the $P(A \cup B)=P(A)+P(B)-P(A \cap B)$)

For events {V=1}, {V=2} and so on natural approach works.

$$P(V=1)=P(X\cdot Y=1)=P(X=1 \text{ and } Y=1)=0.4\cdot 0.4=0.16$$

$$P(V=2)=P(X\cdot Y=2)=P((X=1 \text{ and } Y=2) \text{ or } (X=2 \text{ and } Y=1))=P(X=1 \text{ and } Y=2) + P(X=2 \text{ and } Y=1)=0.4\cdot0.4+0.3\cdot0.4$$

And so on...

2. Joint probability distribution of random vector ($\textbf{\textit{X}},\textbf{\textit{Y}}$) is given in the following table.

$X \setminus Y$	-1	1
0	0,125	0,125
2	0,5	С

Find constant c, marginal and conditional distributions for random variables **X** and **Y**. Additionally find the value of correlation coefficient for random variables **X** and **Y**.

In order to find value of parameter c it's necessary to apply the basic condition about probability distribution:

0,125+0,125+0,5+c=1

c = 0,25

Now we have joint probability distribution:

X	-1	1	P(X=x)
0	0,125	0,125	0,25
2	0,5	0,25	0,75
P(Y=y)	0,625	0,375	1

Last column consists of marginal probability distribution for random variable X, in last row there is marginal probability distribution for random variable Y.

Conditional probability distribution for random variable X given {Y=-1}

$$P(X=0/Y=-1)=\frac{P(X=0,Y=-1)}{P(Y=-1)}=\frac{0.125}{0.625}=0.2$$

$$P(X=2/Y=-1) = \frac{P(X=2,Y=-1)}{P(Y=-1)} = \frac{0.5}{0.625} = 0.8$$

Conditional probability distribution for random variable X given {Y=1}

$$P(X=0/Y=1) = \frac{P(X=0,Y=1)}{P(Y=1)} = \frac{0,125}{0,375} = 0,33$$

$$P(X=2/Y=1) = \frac{P(X=2,Y=1)}{P(Y=1)} = \frac{0.25}{0.375} = 0.66$$

Conditional probability distribution for random variable Y given {X=0}

$$P(Y=-1/X=0) = \frac{P(X=0,Y=-1)}{P(X=0)} = \frac{0.125}{0.25} = 0.5$$

$$P(Y=1/X=0) = \frac{P(X=0,Y=1)}{P(X=0)} = \frac{0.125}{0.25} = 0.5$$

Conditional probability distribution for random variable Y given {X=2}

$$P(Y=-1/X=2) = \frac{P(X=2,Y=-1)}{P(X=2)} = \frac{0.5}{0.75} = 0.66$$

$$P(Y=1/X=2) = \frac{P(X=2,Y=1)}{P(X=1)} = \frac{0.25}{0.75} = 0.33$$

Examination of independence:

χ	-1	1	P(X=x)
0	1/8	1/8	1/4
2	1/2	1/4	3/4
P(Y=y)	5/8	3/8	1

Random variables X and Y are not independent!

(the condition for independence says that marginal probability for X times by marginal probability for Y supposed to be joint probability – it's not hold)

There is a need to compute coefficient of correlation.

First step – computation of expected values for X and Y.

$$EX^2=0^2\cdot 1/4+2^2\cdot 3/4=3$$

$$EY^2=(-1)^2\cdot 5/8+1^2\cdot 3/8=1$$

Variance of X

$$VarX = EX^2 - (EX)^2 = 3 - (3/2)^2 = 3/4$$

Variance of Y

$$VarY = EY^2 - (EY)^2 = 1 - (-1/4)^2 = 15/16$$

Preparation for computation of covariance

$$E(X \cdot Y) = 1/8 \cdot 0 \cdot (-1) + 1/8 \cdot 0 \cdot 1 + 1/2 \cdot 2 \cdot (-1) + 1/4 \cdot 2 \cdot 1 = -1 + 1/2 = -1/2$$

$$cov(X,Y)=E(X\cdot Y)-EX\cdot EY=-1/2-3/2\cdot (-1/4)=-1/2+3/8=-1/8$$

Coefficient of correlation

$$\operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{Var} X \cdot \operatorname{Var} Y}} = \frac{-1/8}{\sqrt{\frac{3}{4} \cdot 16}}$$

3. Joint distribution of random vector (X,Y) is given by two variables density function.

$$f(x, y) = \begin{cases} c & for \quad 0 < x < 1, \ 0 < y < 1 \\ 0 & in \ other \ cases \end{cases}$$

Find constant c, marginal and conditional distributions for random variables **X** and **Y**. Additionally find the value of correlation coefficient for random variables **X** and **Y**.

$$\iint_{-\infty}^{+\infty} f(x,y) dx dy = \iint_{0}^{1} c \, dx dy = c \iint_{0}^{1} 1 \, dx dy = c \cdot 1$$

f(x,y) supposed to be joint density => $c \cdot 1 = 1 => c = 1$ Joint probability distribution for random vector (X,Y) is given by 2 dimensional density function:

$$f(x,y) = \begin{cases} 1 & 0 < x, y < 1 \\ 0 & in other cases \end{cases}$$

Marginal density for random variable X (by definition)

$$f_{x}(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

For 0<x<1

$$f_x(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{0}^{1} 1 dy = 1$$

Finally marginal density for X

$$fx(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & in other cases \end{cases}$$

Marginal density for random variable Y (by definition)

$$f_{y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

For 0<y<1

$$f_y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{1} 1 dx = 1$$

Marginal density for Y

$$fy(y) = \begin{cases} 1 & 0 < y < 1 \\ 0 & in other cases \end{cases}$$

Examination of independence:

 $f(x,y) = fx(x) \cdot fy(y) \Rightarrow \text{ random variables X and Y are independent!} \Rightarrow \text{corr}(X,Y)=0$

 $f(x,y) = fx(x) \cdot fy(y)$ => conditional prob. distributions are exactly the same like marginal prob. distributions (no need to compute conditional prob. distributions)

Conditional prob. distribution for random variable X given {Y=y}

$$f(x/y) = \begin{cases} 1 & 0 < x, y < 1 \\ 0 & in other cases \end{cases}$$

Conditional prob. distribution for random variable Y given {X=x}

$$f(y/x) = \begin{cases} 1 & 0 < x, y < 1 \\ 0 & in other cases \end{cases}$$

4. Random variable X has probability distribution given by probability mass function in following table.

X	1	2	3
P(X = x)	0,5	0,25	0,25

Random variable Y has probability distribution given by probability mass function in following table.

У	0	1	2
P(Y = y)	0,25	0,5	0,25

Find the joint probability distribution of random vector (X,Y) under the condition that X and Y are independent.

The available information about probability distribution is represented by information about marginal probability distributions for the components X and Y.

In terms of joint probability distribution for random vector (X,Y) we have the knowledge about last row and last column of following table:

Х У	0	1	2	P(X=x)
1	p ₁₁	p ₁₂	p ₁₃	$\frac{1}{2}$
2	p ₂₁	p ₂₂	p ₂₃	$\frac{1}{4}$
3	p ₃₁	p ₃₂	p ₃₃	$\frac{1}{4}$
P(Y=y)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	

The "grey part" isn't available directly. Concerning the procedure for computation of marginal probabilities we can consider unknown joint probabilities as unknown parameters p_{11} , p_{12} , p_{13} , p_{21} , p_{22} , p_{23} , p_{31} , p_{32} , p_{33} . The concept of above mentioned parameters let us to build system of equations:

$$\begin{cases} p_{11} + p_{12} + p_{13} = \frac{1}{2} & \text{This part corresponds} \\ p_{21} + p_{22} + p_{23} = \frac{1}{4} & \text{to marginal} \\ p_{31} + p_{32} + p_{33} = \frac{1}{4} & \text{distribution of X} \end{cases} \\ p_{31} + p_{32} + p_{33} = \frac{1}{4} & \text{This part corresponds} \\ p_{11} + p_{21} + p_{31} = \frac{1}{4} & \text{to marginal} \\ p_{12} + p_{22} + p_{32} = \frac{1}{2} & \text{probability} \\ p_{13} + p_{23} + p_{33} = \frac{1}{4} & \text{distribution of Y} \end{cases}$$

$$\begin{cases} \text{General condition for all probability} \\ \text{distributions.} \end{cases}$$

Above system of equations has endless number of solutions (Kronecker-Capelli Theorem).

In order to find joint probabilities is necessary to use independence of random variables X and Y.

Because of independence $P(X=1,Y=0)=P(X=1)\cdot P(Y=0)$, $P(X=1,Y=1)=P(X=1)\cdot P(Y=1)$ and so on.

Independence of random variables X and Y let us to derive joint probability distribution for random vector (X,Y)

Х У	0	1	2	P(X=x)
1	$\frac{1}{2} \cdot \frac{1}{4}$	$\frac{1}{2} \cdot \frac{1}{2}$	$\frac{1}{2} \cdot \frac{1}{4}$	$\frac{1}{2}$
2	$\frac{1}{4} \cdot \frac{1}{4}$	$\frac{1}{2} \cdot \frac{1}{4}$	$\frac{1}{4} \cdot \frac{1}{4}$	$\frac{1}{4}$
3	$\frac{1}{4} \cdot \frac{1}{4}$	$\frac{1}{2} \cdot \frac{1}{4}$	$\frac{1}{4} \cdot \frac{1}{4}$	$\frac{1}{4}$
P(Y=y)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	