ਅਧਿਆਇ – <u>1</u> ਵਾਸਤਵਿਕ ਸੰਖਿਆਵਾਂ <u>DAY 1</u>

9ਵੀਂ ਜਮਾਤ ਵਿੱਚ ਅਸੀਂ ਵਾਸਤਵਿਕ ਸੰਖਿਆਵਾਂ ਬਾਰੇ ਪੜਿਆ ਸੀ। ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਉਹੀ ਚਰਚਾ ਜਾਰੀ ਕਰਾਂਗੇ। ਇਸ ਵਿੱਚ ਅਸੀਂ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੇ ਮਹੱਤਵਪੂਰਨ ਗੁਣ ਯੁਕਲਿਡ ਵੰਡ ਐਲਗੋਰਿਥਮ ਅਤੇ ਅੰਕਗਣਿਤ ਦੀ ਮੁਲਭੁਤ ਪ੍ਰਮੇਯ।

ਯੁਕਲਿਡ ਵੰਡ ਐਲਗੋਰਿਥਮ : ਜਿਵੇਂ ਕਿ ਨਾਮ ਤੋਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਇਹ ਵੰਡ ਨਾਲ ਕਿਸੇ ਨਾ ਕਿਸੇ ਰੂਪ ਵਿੱਚ ਸੰਬੰਧਿਤ ਹੈ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਜੇ

- ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ 2 ਨਾਲ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਬਾਕੀ 0 ਜਾਂ 1 ਹੋਵੇਗ।
- ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ 3 ਨਾਲ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਬਾਕੀ 0, 1 ਜਾਂ 2 ਹੋਵੇਗਾ।
- ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ 4 ਨਾਲ ਵੰਡਿਆ ਜਾਂਦਾ ਤਾਂ ਬਾਕੀ 0, 1, 2 ਜਾਂ 3 ਹੋਵੇਗਾ।
- ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ 5 ਨਾਲ ਵੰਡਿਆ ਜਾਂਦਾ ਤਾਂ ਬਾਕੀ 0, 1, 2, 3 ਜਾਂ 4 ਹੋਵੇਗਾ।

ਭਾਵ ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ ਭਾਜਕ ਨਾਲ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਬਾਕੀ 0 ਜਾਂ ਭਾਜਕ ਤੋਂ ਛੋਟਾ ਹੋਵੇਗਾ।

ਭਾਜ = ਭਾਜਕ × ਭਾਜਫਲ + ਬਾਕੀ

ਯੁਕਲਿਡ ਵੰਡ ਪਰਿਮੇਯ

ਕੋਈ ਦੋ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ a ਅਤੇ b ਲਈ ਦੋ ਵਿਲੱਖਣ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ q ਅਤੇ r ਹੁੰਦੀਆਂ ਹਨ ਕਿ a=bq+r; $0 \le r < b$

ਇੱਥੇ a ਨੂੰ ਭਾਜ, b= ਭਾਜਕ, q= ਭਾਜਫਲ ਅਤੇ r=ਬਾਕੀ ਲਿਆ ਗਿਆ ਹੈ। ਆਓ ਕੁੱਝ ਉਦਾਹਰਨਾਂ ਨਾਲ ਹੱਲ ਕਰੀਏ।

1. ਦਿਖਾਓ ਕਿ ਹਰ ਇੱਕ ਧਨਾਤਮਕ ਜਿਸਤ ਸੰਪੂਰਨ ਸੰਖਿਆ 2q ਅਤੇ ਧਨਾਤਮਕ ਟਾਂਕ ਸੰਪੂਰਨ ਸੰਖਿਆ 2q + 1 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ, ਜਿੱਥੇ q ਕੋਈ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ। ਹੱਲ: 2q ਜਾਂ 2q + 1 ਵਿੱਚ 2 ਦਾ ਮਤਲਬ, ਸੰਖਿਆ 2 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ,

ਹੁਣ,
$$a=2q+r$$
; $0 \le r < 2$ $r=0$ ਤਾਂ $a=2q$ ਅਤੇ ਜੇ $r=1$ ਤਾਂ $a=2q+1$ $\Rightarrow 2q$ ਇੱਕ ਜਿਸਤ ਸੰਪੂਰਨ ਅਤੇ $2q+1$ ਇੱਕ ਟਾਂਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ।

2. ਦਿਖਾਓ ਕਿ ਹਰ ਇੱਕ ਟਾਂਕ ਸੰਪੂਰਨ ਸੰਖਿਆ 4q+1 ਜਾਂ 4q+3 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਹੱਲ: 4q+1 ਜਾਂ 4q+3 ਦਾ ਮਤਲਬ ਸੰਖਿਆ 4 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ। ਹੁਣ, a=bq+r ; $0 \le r < b$

$$m{b} = m{4}$$
 ਤਾਂ $a = 4q + r$; $0 \le r < 2$ (i.e. $r = 0,1,2$ or3) $r = 0$ ਤਾਂ $a = 4q$ $r = 1$ ਤਾਂ $a = 4q + 1$ $r = 2$ ਤਾਂ $a = 4q + 2$ $r = 3$ ਤਾਂ $a = 4q + 3$ \Rightarrow ਕੋਈ ਵੀ ਟਾਂਕ ਸੰਪਰਨ ਸੰਖਿਆ $4q + 1$ ਜਾਂ $4q + 3$ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

3. ਦਿਖਾਓ ਕਿ ਕਿਸੇ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਦਾ ਵਰਗ ਕਿਸੇ ਸੰਪੂਰਨ ਸੰਖਿਆ 3m ਜਾਂ 3m+1 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

ਹੱਲ:
$$a = bq + r$$
 ; $0 \le r < b$
 $b = 3$ ਤਾਂ $a = 3q + r$; $0 \le r < 3$
ਜੇ $r = 0$ ਤਾਂ $a = 3q$
ਵਰਗ ਕਰਨ ਤੇ $a^2 = (3q)^2 = 9q^2 = 3.3q^2 = 3(m)$ {ਜਿੱਥੇ $m = 3q^2$ }
ਜੇ $r = 1$ ਤਾਂ $a = 3q + 1$
ਵਰਗ ਕਰਨ ਤੇ $a^2 = (3q + 1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1$
 $= 3(m) + 1$ {ਜਿੱਥੇ $m = 3q^2 + 2q$ }
ਜੇ $r = 2$ ਤਾਂ $a = 3q + 2$
ਵਰਗ ਕਰਨ ਤੇ $a^2 = (3q + 2)^2 = 9q^2 + 12q + 4 = (9q^2 + 12q + 3) + 1$
 $= 3(3q^2 + 4q) + 1 = 3(m) + 1$
{ਜਿੱਥੇ $m = 3q^2 + 4q$ }
ਕਿਸੇ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਦਾ ਵਰਗ ਕਿਸੇ ਸੰਪੂਰਨ ਸੰਖਿਆ m ਲਈ $3m$ ਜਾਂ $3m + 1$ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

4. ਦਿਖਾਓ ਕਿ ਕਿਸੇ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਦਾ ਘਣ 9m ਜਾਂ 9m+1 or 9m+8 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

ਹੱਲ:
$$a = bq + r$$
 ; $0 \le r < b$ $b = 3$ ਤਾਂ $a = 3q + r$; $0 \le r < 3$ ਜੇ $r = 0$ ਤਾਂ $a = 3q$ ਘਣ ਕਰਨ ਤੇ $a^3 = (3q)^3 = 27q^3 = 9.3q^3 = 9(m)$ {ਜਿੱਥੇ $m = 3q^3$ } ਜੇ $r = 1$ ਤਾਂ $a = 3q + 1$ ਘਣ ਕਰਨ ਤੇ $a^3 = (3q + 1)^3 = 27q^3 + 27q^2 + 9q + 1$ $= 9(3q^3 + 3q^2 + 1) + 1 = 9(m) + 1$ {ਜਿੱਥੇ $m = 3q^3 + 3q^2 + 1$ } ਜੇ $r = 2$ ਤਾਂ $a = 3q + 2$ ਘਣ ਕਰਨ ਤੇ $a^3 = (3q + 2)^3 = 27q^3 + 54q^2 + 36q + 8$

=
$$9(3q^3 + 6q^2 + 4q) + 8 = 9(m) + 8$$

{\text{Height} $m = 3q^3 + 6q^2 + 4q$ }

ਕਿਸੇ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਦਾ ਘਣ $9m\ or\ 9m+1$ ਜਾਂ 9m+8 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਅਭਿਆਸ

- 1. ਦਿਖਾਓ ਕਿ ਜਿਸਤ ਸੰਖਿਆ 4q ਜਾਂ 4q + 2 ਰੁਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ, ਜਿੱਥੇ q ਕੋਈ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ।
- 2. ਦਿਖਾਓ ਕਿ ਕੋਈ ਜਿਸਤ ਸੰਖਿਆ 6q, 6q + 2 ਜਾਂ 6q + 4 ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।
- 3. ਅਭਿ 1.1, ਪ੍ਰਸ਼ਨ 2