第4节逻辑联结词(二)

(5) 条件 "→"

表示"如果…那么…", "若…则…"等。

例: P: 土壤缺少水分。Q: 这颗植物会死亡。

P→Q:如果土壤缺少水分,这颗植物就会死亡。

称 P是 P→Q 的前件, Q 是 P→Q的后件。 也可以说 P 是 Q 的充分条件, Q 是 P的必要条件。

P→Q 的真值应该如何定义?

P: 土壤缺少水分。Q: 这颗植物会死亡。

P	Q	P→Q	
F	F	T	➡ 善意规定
F	T	Table	
I	<u> </u>	E A	Carl Later &
T	T	The Base	

 ◆当且仅当 P 为 T, Q 为 F 时, P→Q 的真值 值为 F; 而在其它情况下, P→Q 的真值 均为 T。

❖注意"善意规定"。

例: P: 天气好。 Q: 我去公园。

1.如果天气好,我就去公园。

 $P \rightarrow Q$

2.只要天气好,我就去公园。

 $P \rightarrow Q$

3.天气好,我就去公园。

 $P \rightarrow Q$

4.仅当天气好,我才去公 园。

 $Q \rightarrow P$

5.只有天气好,我才去公园。

 $Q \rightarrow P$

6.我去公园,仅当天气好。

 $Q \rightarrow P$

用"→"表达必须前件是后件的充分条件,即若前件成立,后件一定成立。 这一点要特别注意!!!它决定了哪个作为前件,哪个作为后件。

(6) 等价(双条件) "↔"

表示"当且仅当"、"充分必要"等。

例: P: △ABC是等边三角形。

Q: △ABC是等角三角形。

P↔Q: △ABC是等边三角形当且仅当

它是等角三角形。

P↔Q的真值表:

按思维习惯, $P\rightarrow Q$, $Q\rightarrow P$ 应同时成立。

P	Q	P↔Q
F	F	
F	T	"). L L
T	F	F
T	Т	T

当且仅当P与Q的真值相同时, P↔Q的真值为T, 否则为F。

$P \lor Q$ 与 $P \leftrightarrow Q$ 的真值表有点类似

比较下面二表:

Р	Q	P⊽Q		
F	F	F		
F	Т	Т		
Т	F	Т		
Т	Т	F		

	P	Q	P↔Q
F		F	T
	F	Т	L
	Т	F	F
	T	Т	T

$$P \overline{\vee} Q \Leftrightarrow \neg (P \leftrightarrow Q)$$

上面我们介绍了六种逻辑联结词,这六种连结 词基本可以表达自然语言的所有联结词的含义。

可以把这6种联结词看成6种运算。在后面的代数系统部分大家可以看到,运算的概念是很广的,有运算对象,有结果就是运算。

逻辑连结词可以看成是运算,因为有运算结果; 其运算的对象是命题;

运算规则是每个连结词的真值表。

Р	Q	¬P	$P \! \wedge \! Q$	P ee Q	$P \overline{\vee} Q$	P→Q	P↔Q
F	F	Т	F	F	F	Т	Т
F	Т	Т	F	Т	Т	Т	F
Т	F	F	F	Т	Т	F	F
Т	Т	F	Т	Т	F	Т	Т

"一"为一元运算;

因为一个命题 P 可以确定 ¬P的真值。

" \land , \lor , $\overline{\lor}$, \rightarrow , \leftrightarrow "均为二元运算。

因为它们的真值必须由两个运算对象确定。