Graphical model formalism, factorization properties and conditional independance.

Guillaume Obozinski

Ecole des Ponts - ParisTech

Master MVA, course on Probabilistic Graphical Models

Independence concepts

Independence: $X \perp \!\!\! \perp Y$

We say that X et Y are independents and write $X \perp \!\!\! \perp Y$ ssi:

$$\forall x, y,$$
 $P(X = x, Y = y) = P(X = x) P(Y = y)$

Conditional Independence: $X \perp \!\!\! \perp Y \mid Z$

- On says that X and Y are independent conditionally on Z and
- write $X \perp \!\!\!\perp Y \mid Z$ iff:

$$\forall x, y, z,$$

$$P(X = x, Y = y \mid Z = z) = P(X = x \mid Z = z) P(Y = y \mid Z = z)$$

Conditional Independence exemple

Example of "X-linked recessive inheritance":

Transmission of the gene responsible for hemophilia

Risk for sons from an unaffected father:

- dependance between the situation of the two brothers.
- conditionally independent given that the mother is a carrier of the gene or not.

Directed graphical model or Bayesian network

$$p(a,b,c) = p(a) p(b|a) p(c|b,a)$$

$$p(x_1, x_2) = p(x_1)p(x_2)$$

$$\mathbf{x}_1$$
 \mathbf{x}_2

$$p(x_1, x_2, x_3) = p(x_1)p(x_2|x_1)p(x_3|x_2)$$

$$a \perp \!\!\!\perp b \mid c$$

Directed graphical model or Bayesian network

Factorization according to a directed graph

Definition: a distribution factorizes according to a directed graph

$$\prod_{j=1}^p p(x_j|x_{\Pi_j})$$

$$p(x_1)\prod_{j=2}^M p(x_j|x_{j-1})$$

How to parameterize an Oriented graphical model?

Conditional Probability tables

- $x_1 \in \{0, 1\}$
- $x_2 \in \{0, 1, 2\}$
- $x_3 \in \{0, 1, 2\}$

		$p(x_3=k)$		
x_1	x_2	0	1	2
0	0	1	0	0
0	1	1	0	0
0	2	0.1	0	0.9
1	0	1	0	0
1	1	0.5	0.5	0
1	2	0.2	0.3	0.5

$$p(\mathbf{x}; \boldsymbol{\theta}) = p(x_1; \boldsymbol{\theta}_1) p(x_2|x_1; \boldsymbol{\theta}_2) p(x_3|x_2, x_1; \boldsymbol{\theta}_3) p(x_4|x_3, x_2; \boldsymbol{\theta}_4) p(x_5|x_3; \boldsymbol{\theta}_5)$$

The Sprinkler

$$P(S = 1) = 0.5$$

 $P(R = 1) = 0.2$

- R = 1: it has rained
- S = 1: the sprinkler worked
- G = 1: the grass is wet

`	,	
P(G=1 S,R)	R=0	R=1

P(G=1 S,R)	R=0	R=1
S=0	0.01	0.8
S=1	0.8	0.95

• Given that we observe that the grass is wet, are R and S independent?

The Sprinkler II

- R = 1: it has rained
- S = 1: the sprinkler worked
- G = 1: the grass is wet
- P=2: the paws of the dog are wet

$$P(S = 1) = 0.5$$
 $P(R = 1) = 0.2$

P(G=1 S,R)	R=0	R=1
S=0	0.01	0.8
S=1	0.8	0.95

P(P=1 C)	G) G=0	G=1
	0.2	0.7

Blocking nodes

diverging edges	head-to-tail	converging edges
a <u></u> 此 b	a ⊭ b	<i>↔</i> a ⊥L b
$\leftrightarrow\!$	$\leftrightarrow\!$	
a⊥b c	a⊥b c	a <u></u>

The configuration with converging edges is called a v-structure

Factorization and Independence

A factorization imposes independence statements

$$\forall x, \ p(x) = \prod_{j=1}^{p} p(x_j | x_{\Pi_j}) \quad \Leftrightarrow \quad \forall j, \ X_j \perp \!\!\! \perp X_{\{1, \dots, j-1\} \setminus \Pi_j} \mid X_{\Pi_j}$$

 Is it possible to read from the graph the (conditional) independence statements that hold given the factorization.

$$X_5 \stackrel{?}{\perp \!\!\! \perp} X_2 \mid X_4$$

d-separation

Theorem

If A, B and C are three disjoint sets of node, the statement $X_A \perp \!\!\! \perp X_B | X_C$ holds if all paths joining A to B go through at least one blocking node. A node j is blocking a path

- ullet if the edges of the paths are diverging/following and $j \in \mathcal{C}$
- if the edges of the paths are converging (i.e. form a v-structure) and neither *j* nor any of its descendants is in *C*

Factorization et Independence II

 Several graphs can induce the same set of conditional independences .

- Some combinations of conditional independences cannot be faithfully represented by a graphical model
 - Ex1: $X \sim \operatorname{Ber}_{\frac{1}{2}}^{\frac{1}{2}}$ $Y \sim \operatorname{Ber}_{\frac{1}{2}}^{\frac{1}{2}}$ $Z = X \oplus Y$.
 - Ex2: $X \perp \!\!\!\perp Y \mid Z = 1$ but $X \not\perp \!\!\!\perp Y \mid Z = 0$

Markov random field (MRF) or Undirected graphical model

Is it possible to associate to each graph a family of distribution so that conditional independence coincides exactly with the notion of separation in the graph?

Global Markov Property

$$X_A \perp \!\!\! \perp X_B \mid X_C \quad \Leftrightarrow C \text{ separates } A \text{ et } B$$

Gibbs distribution

Clique Set of nodes that are all connected to one another.

Potential function The potential $\psi_C(x_C) \ge 0$ is associated to clique C.

Gibbs distribution

$$p(x) = \frac{1}{Z} \prod_{C} \psi_{C}(x_{C})$$

$$Z = \sum_{x} \prod_{C} \psi_{C}(x_{C})$$

Writing potential in exponential form $\psi_C(x_C) = \exp\{-E(x_C)\}$. $E(x_C)$ is an *energy*.

This a Boltzmann distribution.

Example 1: Ising model

 $X = (X_1, \dots, X_d)$ is a collection of binary variables, whose joint probability distribution is

$$p(x_1, \dots, x_d) = \frac{1}{Z(\eta)} \exp\left(\sum_{i \in V} \eta_i x_i + \sum_{\{i,j\} \in E} \eta_{ij} x_i x_j\right)$$

$$= \frac{1}{Z(\eta)} \prod_{i \in V} e^{\eta_i x_i} \prod_{\{i,j\} \in E} e^{\eta_{ij} x_i x_j}$$

$$= \frac{1}{Z(\eta)} \prod_{i \in V} \psi_i(x_i) \prod_{\{i,j\} \in E} \psi_i(x_i, x_j)$$

with $\psi_i(x_i) = e^{\eta_i x_i}$ and $\psi_{ij}(x_i, x_j) = e^{\eta_{ij} x_i x_j}$.

Example 2: Directed graphical model

Consider a distribution p that factorizes according to a directed graph G = (V, E), then

$$p(x_1, \dots, x_d) = \prod_{i=1}^d p(x_i \mid x_{\pi_i})$$

$$= \prod_{i=1}^d \psi_{C_i}(x_{C_i}) \quad \text{with} \quad C_i = \{i\} \cup \pi_i$$

Consequence: A distribution that factorizes according to a directed model is a Gibbs distribution for the cliques $C_i = \{i\} \cup \pi_i$. As a consequence, it factorizes according to an undirected graph in which C_i are cliques.

Theorem of Hammersley and Clifford (1971)

A distribution p, which is such that p(x) > 0 for all x satisfies the global Markov property for graph G if and only if it is a Gibbs distribution associated with G.

- Gibbs distribution: $\mathcal{P}_G: p(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}_G} \psi_C(x_C)$
- Global Markov property:

$$\mathcal{P}_M: X_A \perp \!\!\! \perp X_B \mid X_C$$
 si C separated A and B in G

Theorem

We have
$$\mathcal{P}_G \Rightarrow \mathcal{P}_M$$
 and (HC): if $\forall x, \ p(x) > 0$, then $\mathcal{P}_M \Rightarrow \mathcal{P}_G$

Markov Blanket in an undirected graph

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

$$X_i \perp \!\!\!\perp X_R \mid X_B$$
, with $R = V \setminus (B \cup \{i\})$

or equivalently such that

$$p(X_i \mid X_{-i}) = p(X_i \mid X_B).$$

Markov Blanket for a directed graph?

What is the Markov Blanket in a directed graph? By definition: the smallest set C of nodes such that conditionally on X_C , j is independent of all the other nodes in the graph?

Moralization

For a given oriented graphical model

- is there an unoriented graphical model which is equivalent?
- is there a smallest unoriented graphical which contains the oriented graphical model?

$$p(x) = \frac{1}{Z} \prod_{C} \psi_{C}(x_{C}) \quad \text{vs} \quad \prod_{j=1}^{M} p(x_{j}|x_{\Pi_{j}})$$

Moralization

Given a directed graph G, its moralized graph G_M is obtained by

- For any node i, add undirected edges between all its parents
- Remove the orientation of all the oriented edges

Proposition

If a probability distribution factorizes according to a directed graph G then it factorizes according to the undirected graph G_M .

Directed vs undirected trees

Definition: directed tree

A directed tree is a DAG such that each node has at most one parent

Remark: By definition a directed tree has no v-structure.

Moralizing trees

- What is the moralized graph for a directed tree?
- The corresponding undirected tree!

Proposition (Equivalence between directed and undirected tree)

A distribution factorizes according to a directed tree if and only if it factorizes according to its undirected version.

Corollary

All orientations of the edges of a tree that do not create v-structure are equivalent.

Operations on graphical models

Probabilistic inference

Compute a marginal distribution $p(x_i)$ or a conditional marginal $p(x_i|x_1=3,x_7=0)$

Decoding (aka MAP Inference)

Finding what is the most probable configuration for the set of random variables?

$$\operatorname{argmax}_{z} p(z|x)$$

Learning/ estimation in graphical models

Frequentist learning

The main *frequentist* learning principle for graphical model is the *maximum likelihood principle* of R. Fisher. Let

$$p(x; \theta) = \frac{1}{Z(\theta)} \prod_C \psi(x_C, \theta_C)$$
, we would like to find

$$\operatorname{argmax}_{\theta} \prod_{i=1}^{n} p(x^{(i)}; \theta) = \operatorname{argmax}_{\theta} \frac{1}{Z(\theta)} \prod_{i=1}^{n} \prod_{C} \psi(x_{C}^{(i)}, \theta_{C})$$

Bayesian learning

Graphical models can also learn using bayesian inference.