Математические основы информационной безопасности

Груздев Дмитрий Николаевич

Машинное обучение

В 1962 г. Артур Самуэль написал самообучающуюся программу игры в шашки, которая обыграла чемпиона штата Коннектикут.

"Компьютерная программа обучается на основе опыта Е по отношению к некоторому классу задач Т и меры качества Р, если качество решения задач из Т, измеренное на основе Р, улучшается с приобретением опыта Е."

Том Митчел

Анализ данных

- обасть математики и информатики, занимающаяся построением и исследованием методов и алгоритмов извлечения знаний из экспериментальных данных
- процесс исследования, фильтрации, преобразования и моделирования данных с целью извлечения информации и принятия решений

Виды анализа данных:

- Описательный определение основных характеристик данных
- Разведочный построение графиков, диаграмм
- Индуктивный расчет статистик, проверка статистических гипотез
- Прогностический применение экстраполирующих алгоритмов
- Казуальный определение взаимозависимостей в данных на логическом уровне
- Механистический глубокое понимание работы системы

Аналитик данных

- Сбор данных (организует сам или получает задачу).
- Определение параметров набора данных.
- Проведение предварительной обработки.
- Интерпретация данных и решение задачи.
- Выводы и рекомендации для бизнеса.
- Визуализация результатов.

Признаки объекта

Вопрос о выдаче кредита:

Объект: человек

Признаки: пол, возраст, зарплата, количество детей, размер обуви

Задача об оценке квартиры:

Объект: квартира

Признаки: площадь, этаж, расстояние до метро, наличие школы,

кондиционера, цвет обоев

Анкета на сайте знакомств:

Объект: человек

Признаки: пол, возраст, увлечения, любимые книги, фильмы

Объекты и признаки

 $X_1, X_2, ..., X_m$ — набор объектов $X_j^{(1)}, X_j^{(2)}, ..., X_j^{(n)}$ — признаки ј-го объекта

$$X_i = (X_i^{(1)}, X_i^{(2)}, ..., X_i^{(n)})$$

Матрица "объекты-признаки" (m = 26, n = 4)

Цветок (лепесток)	Длина х ⁽¹⁾	Ширина х ⁽²⁾	Цвет х ⁽³⁾	Гладкость Х ⁽⁴⁾
1	12.5	3.2	белый	-
2	8.3	2.4	синий	+
26	9.1	3.3	синий	-

$$X_2 = (8.3, 2.4, белый, +)$$

Объекты и ответы

x₁, x₂, ..., x_m – набор объектов y₁, y₂, ..., y_m – набор ответов (признаки для прогнозирования) (x₁, y₁), ..., (x_m, y_m) – пары объект-ответ

Квартира (объект)	Площадь Х ⁽¹⁾	Этаж х ⁽²⁾	До метро х ⁽³⁾	Школа х ⁽⁴⁾	Кондиционер х ⁽⁵⁾	Цена У
1	32.5	4	550	-	-	7.2
2	118.3	1	750	+	+	21.5
33	65.1	12	1100	-	+	12.4

Виды машинного обучения

Алгоритмы машинного обучения:

- Обучение с учителем
- Обучение без учителя

Другие: обучение с подкреплением, системы рекомендаций.

Обучение с учителем

Построение функциональной зависимости по прецедентам "объект-ответ". Возможность вычислять ответ для любого объекта.

Задачи:

- классификации
- зегрессии
- ранжирования
- прогнозирования

<u>Классификация</u>

Множество допустимых ответов конечно.

Допустимые ответы называются метками классов.

Класс – множество объектов с одинаковой меткой.

<u>Регрессия</u>

Допустимым ответом является число или числовой вектор.

<u>Ранжирование</u>

Ответ задачи – конечное упорядоченное множество.

Прогнозирование

Обучение без учителя

В данных присутствуют объекты без ответов. Требуется установить зависимости между объектами.

Задачи:

- кластеризация
- снижение размерности
- фильтрация выбросов

Кластеризация

Снижение размерности

Линейная зависимость

Квартира (объект)	Площадь х ⁽¹⁾	Этаж х ⁽²⁾	До метро х ⁽³⁾	Школа х ⁽⁴⁾	Кондиционер х ⁽⁵⁾	Цена У
1	32.5	4	550	-	-	7.2
2	118.3	1	750	+	+	21.5
33	65.1	12	1100	-	+	12.4

$$h_{\Theta}(x_i) = \Theta_0 + \Theta_1 x_j^{(1)} + \Theta_2 x_j^{(2)} + \dots + \Theta_n x_j^{(n)}$$

$$x_i(0) = 1$$

$$h_{\Theta}(x_j) = \Theta x_j, \ \Theta = ?$$

Функция ошибки

Площадь	Цена
32.5	7.2
118.3	21.5
65.1	12.4

$$h_{\Theta}(x_j) = \Theta_0 + \Theta_1 x_j^{(1)}$$

$$E_{\odot} = \Sigma |y_i - h_{\odot}(x_i)|$$
 - линейная

$$E_{\odot} = \frac{1}{2} * \Sigma (y_i - h_{\odot}(x_i))^2$$
 - квадратичная

Задача: минимизировать Е_⊙.

Градиентный спуск

$$E_{\Theta} = \frac{1}{2} * \Sigma (h_{\Theta}(x^{(0)}) - y^{(0)})^2 - min$$
 $E_{\Theta}^{(0)} = \frac{1}{2} * (h(x^{(0)}) - y^{(0)})^2 - min$
 $h(x^{(0)}) > y^{(0)} => \text{ немного уменьшить } h(x^{(0)})$
 $h(x^{(0)}) < y^{(0)} => \text{ немного увеличить } h(x^{(0)})$

Направление изменения $h(x^{(0)})$ совпадает $c - dE_{\Theta}^{(0)}/dh(x^{(0)}) = -(h(x^{(0)}) - y^{(0)})$
 $h(x^{(0)}) = \Theta_0 + \Theta_1 x_1 + ... + \Theta_n x_n - \text{увеличить}$
 $x_1 > 0 => \text{ немного увеличить } \Theta_1$
 $x_1 < 0 => \text{ немного уменьшить } \Theta_1$

Направление изменения Θ_1 совпадает $c x_1 = dh(x^{(0)})/d\Theta_1$

Аналогично, для случая когда $h(x^{(0)})$ необходимо уменьшить

Направление изменения Θ_1 совпадает $c - dE_{\Theta}^{(0)}/d\Theta_1 = -dE_{\Theta}^{(0)}/dh(x^{(0)}) * dh(x^{(0)})/d\Theta_1$

Направление изменения Θ_1 совпадает $c - dE_{\Theta}/d\Theta_1$

Градиентный спуск

$$\Theta_i := \Theta_i - \alpha * dE_{\Theta}/d\Theta_i, \ \alpha > 0$$

$$\Delta\Theta_i = -\alpha * dE_{\Theta}/d\Theta_i$$

Алгоритм настройки параметров О:

```
повторять 
для i = 1..n 
\Theta_i := \Theta_i - \alpha^* dE_\Theta/d\Theta_i 
пока E убывает
```

Задаваемые параметры:

- начальное значение Θ
- значение α скорость обучения

<u>Начальное значение</u> <u>Ө</u>

Начальные значения Θ_і обычно задаются случайными небольшими числами.

Скорость обучения а

Маленькая **скорость обучения** заставляет алгоритм сходиться очень долго, слишком большая — расходиться

Работа алгоритма градиентного спуска на параболе из точки (-1.2, 1.42). Вариатны скорости обучения: 0.03, 0.2, 1.05

<u>Градиентный спуск для</u> <u>линейной регрессии</u>

$$\begin{split} h_{\Theta}(x) &= \Theta_{0} + \Theta_{1} x^{(1)} + \Theta_{2} x^{(2)} + \dots + \Theta_{n} x^{(n)} \\ E_{\Theta} &= \frac{1}{2} * \Sigma (y_{j} - h_{\Theta}(x_{j}))^{2} \\ \Delta\Theta_{i} &= -\alpha * dE_{\Theta} / d\Theta_{i} = -\alpha * \Sigma (y_{j} - h_{\Theta}(x_{j})) * x_{j}^{(i)} \end{split}$$

Добавление новых признаков

Сжатие х ⁽¹⁾	Высота У
2.5	17.5
0.3	0.3
1.7	9.3

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x^{(1)}$$

Сжатие х ⁽¹⁾	(X ⁽¹⁾) ² X ⁽²⁾	Высота У
2.5	6.25	17.5
0.3	0.09	0.3
1.7	2.89	9.3

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x^{(1)} + \Theta_2 x^{(2)}$$

Добавление новых признаков

$$X_0 = 1, X_1 = X, X_2 = cos(X)$$

$$x_0 = 1$$
, $x_1 = x$, $x_2 = x^2$, $x_3 = \sin(x)$

<u>Переобучение</u>

Переобучение - явление, когда построенная модель хорошо объясняет примеры из обучающей выборки, но относительно плохо работает на примерах, не участвовавших в обучении (на примерах из тестовой выборки).

Проверка эффективности

Данные делятся:

- обучающая выборка для настройки параметров алгоритма;
- контрольная выборка объекты не участвуют в обучении, используются для оценки эффективности алгоритма.

Варианты:

- На отложенных данных данные делятся на обучающую и контрольную выборки один раз.
- Оценка скользящего контроля данные делятся на обучающую и контрольную выборки несколько раз. Результат усредняется.

https://sesc-infosec.github.io/