ENG2009 – Modelling of Engineering Systems

Tutorial 3

Laplace Transform and Transfer Function

Laplace Transform

Properties of Laplace Transform (2nd order derivatives)

Example: The differential equation of the mass-spring-damper systems is (see Lecture 2):

Find the Laplace transform of the system, assuming zero initial conditions (x(0) = 0, $\dot{x}(0) = 0$)

Solution:

Step 1 and 2: Laplace transform and apply initial condition: x(0) = 0 and $\dot{x}(0) = 0$,

Assuming zero initial conditions (x(0) = 0, $\dot{x}(0) = 0$):

• Let the applied force as input, i.e. f(t) = u(t), therefore

$$\mathcal{L}(x(t)) = X(s)$$

$$\mathcal{L}(u(t)) = U(s)$$

• Using property $\mathcal{L}\left(\frac{df(t)}{dt}\right) = sF(s) - f(0)$, therefore

$$\mathcal{L}\left(\frac{dx(t)}{dt}\right) = \mathcal{L}(\dot{x}(t)) = sX(s) - x(0) = sX(s)$$

• Using property $\mathcal{L}\left(\frac{d^2f(t)}{dt^2}\right) = s^2F(s) - sf(0) - \dot{f}(0)$, therefore

$$\mathcal{L}\left(\frac{d^2x(t)}{dt^2}\right) = \mathcal{L}(\ddot{x}(t)) = s^2X(s) - sx(0) - \dot{x}(0) = s^2X(s)$$

Step 3: solve for X(s)

Therefore

$$\ddot{x}(t) = \frac{1}{M}(-B\dot{x}(t) - Kx(t) + u(t))$$

becomes

$$s^2X(s) = \frac{1}{M} \left(-BsX(s) - kX(s) + U(s) \right)$$

Rearrange to yield

$$X(s)(Ms^2 + Bs + K) = U(s)$$

Properties of Laplace Transform (Final value theorem)

Example: (Final Value Theorem)

Find the final value of the system corresponding to the following system, where the input u(t) is an unit step i.e. u(t) = 1.

$$Y(s) = U(s)\frac{6}{s+2}$$

Hint: use Final Value Theorem

Solution:

System model represented in Laplace as

$$Y(s) = U(s) \frac{6}{s+2}$$

Step 1: Simple check shows that this system is stable as the denominator has a root at left half of s-plane, i.e. s=-2. Therefore Final Value Theorem is valid.

Step 2: The input u(t) is an unit step i.e. u(t) = 1. From Laplace table

$$\mathcal{L}(u(t)) = \mathcal{L}(1) = \frac{1}{s}$$

Therefore,

$$Y(s) = \frac{1}{s} \left(\frac{6}{s+2} \right)$$

Step 3: Therefore, the final value of y(t) is:

$$\lim_{t \to \infty} (y(t)) = \lim_{s \to 0} (sY(s)) = s \frac{1}{s} \left(\frac{6}{s+2} \right) \Big|_{s=0} = \frac{6}{2} = 3$$

Thus, after the transients have decayed to zero, y(t) will settle to a constant value of 3.

Solving Differential equation

Example: Consider the mechanical systems below, where input=force f(t) = u(t), output=position of mass x(t) and m = 1, b = 2, k = 10:

The differential equation is given by:

$$\ddot{x}(t) + 2\dot{x}(t) + 10x(t) = u(t)$$

Assume that the initial conditions are: x(0) = 0, $\dot{x}(0) = 1$, u(t) = 0. (Note that the input of the system u(t) is zero)

Find the position x(t) over time t.

Solution:

The differential equation:

$$\ddot{x}(t) + 2\dot{x}(t) + 10x(t) = u(t)$$

Given x(0) = 0, $\dot{x}(t) = 1$, u(t) = 0.

Step 1:

- $\mathcal{L}(x(t)) = X(s)$
- $\mathcal{L}(\dot{x}(t)) = sX(s) x(0) : 1^{st}$ derivative property
- $\mathcal{L}(\ddot{x}(t)) = s^2 X(s) sx(0) \dot{x}(0) : 2^{\text{nd}}$ derivative property
- $\mathcal{L}(u(t)) = 0$

Laplace of $\ddot{x}(t) + 2\dot{x}(t) + 10x(t) = 0$:

$$(s^2X(s) - sx(0) - \dot{x}(0)) + 2(sX(s) - x(0)) + 10(X(s)) = 0$$

Step 2: apply initial condition: x(0) = 0 and $\dot{x}(0) = 1$,

$$(s^2X(s) - sx(0) - \dot{x}(0)) + 2(sX(s) - x(0)) + 10(X(s)) = 0$$

$$(s^2X(s) - s.0 - 1) + 2(sX(s) - 0) + 10(X(s)) = 0$$

$$s^2X(s) - 1 + 2sX(s) + 10X(s) = 0$$

Step 3: solve for X(s)

$$s^{2}X(s) - 1 + 2sX(s) + 10X(s) = 0$$

$$s^{2}X(s) + 2sX(s) + 10X(s) = 1$$

$$X(s)(s^{2} + 2s + 10) = 1$$

$$X(s) = \frac{1}{s^{2} + 2s + 10}$$

Step 4: get the results from Laplace Transform Table

By completing the square we can rewrite the denominator

$$X(s) = \frac{1}{s^2 + 2s + 10}$$
$$= \frac{1}{(s+1)^2 + 9} = \frac{1}{(s+1)^2 + 3^2}$$

From table of Laplace transform no. (20):

$$\frac{b}{(s+a)^2+b^2} \stackrel{\mathcal{L}}{\leftrightarrow} e^{-at} \sin(bt), \ a=1, \ b=3$$

Therefore

$$\frac{1}{3} \frac{3}{(s+1)^2 + 3^2} \stackrel{\mathcal{L}}{\leftrightarrow} \frac{1}{3} e^{-1t} \sin(3t)$$

Therefore the solution for the differential equation $\ddot{x}(t) + 2\dot{x}(t) + 10x(t) = u(t)$ is:

$$x(t) = \frac{1}{3}e^{-1t}\sin(3t)$$

DIY: Find the transfer function, is the system is stable? if yes, find final value using FVT and compare the results with the analytical solution x(t) above.

Example comparison: x(t) odeint (numerical solution) and x(t) from exact solution above.

Exercises:

Q1) Solve the differential equation (using inverse Laplace transform)

$$\ddot{y}(t) + y(t) = 0$$

where
$$y(0) = 1, \dot{y}(0) = 2$$

Q2) Use Laplace transform to solve

$$\ddot{y}(t) + 2\dot{y}(t) + 5y(t) = e^{-3t}$$

where
$$y(0) = 1$$
 and $\dot{y}(0) = 1$.

Hint: use partial fraction

DIY: For both systems, find the transfer function. Are the system stable? If yes, find final value using FVT and compare the results with the analytical solution x(t) above.

Solutions:

Q1) Solution:

Given

$$\ddot{y}(t) + y(t) = 0$$

where
$$y(0) = 1, \dot{y}(0) = 2$$

Step 1:

- $\mathcal{L}(y(t)) = Y(s)$
- $\mathcal{L}(\ddot{y}(t)) = s^2 Y(s) sy(0) \dot{y}(0) : 2^{\text{nd}}$ derivative property

Laplace of $\ddot{y}(t) + y(t) = 0$:

$$(s^2Y(s) - sy(0) - \dot{y}(0)) + Y(s) = 0$$

Step 2: apply initial condition: y(0) = 1, $\dot{y}(t) = 2$,

$$(s^2Y(s) - sy(0) - \dot{y}(0)) + Y(s) = 0$$

$$(s^2Y(s) - s.1 - 2) + Y(s) = 0$$

$$(s^2Y(s) - s - 2) + Y(s) = 0$$

Step 3: solve for Y(s)

$$(s^2 + 1)Y(s) = s + 2$$

$$Y(s) = \frac{s+2}{s^2+1}$$

Step 4: get the results from Laplace Transform Table

Rearrange:

$$Y(s) = \frac{s+2}{s^2+1}$$

$$= \frac{s}{s^2 + 1} + \frac{2}{s^2 + 1}$$

From table of Laplace transform no. (18): $\frac{s}{s^2+1} \overset{\mathcal{L}}{\longleftrightarrow} \cos(t)$

From table of Laplace transform no. (17): $\frac{1}{s^2+1} \stackrel{\mathcal{L}}{\longleftrightarrow} \sin(t)$

Therefore

$$\frac{s}{s^2+1} + \frac{2}{s^2+1} \stackrel{\mathcal{L}}{\leftrightarrow} \cos(t) + 2\sin(t)$$

Q2) Solution

Taking Laplace transferms

$$\frac{s^{2}}{(s)} = \frac{1}{(s+3)}$$
So $(s^{2}+2s+5) \cdot (s) = 1 + 2(s \cdot y(s) - 1) + 5 \cdot y(s) = \frac{1}{(s+3)}$

$$\Rightarrow y(s) = \frac{1}{(s^{2}+2s+5)(s+3)} + \frac{s+3}{s^{2}+2s+5}$$

$$\frac{1}{(s^{2}+2s+5)(s+3)} = \frac{As+6}{s^{2}+2s+5} + \frac{c}{s+3}$$

$$\frac{1}{(s^{2}+2s+5)(s+3)} = \frac{As+6}{s^{2}+2s+5}$$

$$\frac{1}{(s^{2}+2s+5)(s+3)} = \frac{a+6}{s^{2}+2s+5}$$

$$\frac{1}{(s^{2}+2s+5)(s+3$$

Transfer Function:

Example : Obtain the differential equation of the mass-spring-damper system below (Lecture 2) and evaluate its transfer function. (position x(t) is the output and applied force u(t) is the input):

Physical Model

Solution:

Step 1:

The differential equation of the mass-spring-damper systems in Lecture 2 is (position x(t) is the output and applied force u(t) is the input):

$$\ddot{x}(t) = \frac{1}{M}(-B\dot{x}(t) - Kx(t) + u(t))$$

Step 2:

In Laplace form, assuming zero initial conditions (x(0) = 0, $\dot{x}(0) = 0$):

$$s^2X(s) = \frac{1}{M} \left(-BsX(s) - kX(s) + U(s) \right)$$

Step 3:

Manipulate to yield the transfer function:

$$\frac{X(s)}{U(s)} = \frac{1}{Ms^2 + Bs + K}$$

Exercises:

Q3) Find the transfer functions for the following systems. Then analyse if the systems is stable.

a)
$$\ddot{y}(t) + 2\dot{y}(t) + 5y(t) = 3u(t)$$

b)
$$\ddot{y}(t) - \ddot{y}(t) + 3\dot{y}(t) + 5y(t) = 2\dot{u}(t) + 7u(t)$$

Solutions:

Q3 a) Solution:

Step 1:

The differential equation is (where the output is y(t) and input is u(t)):

$$\ddot{y}(t) + 2\dot{y}(t) + 5y(t) = 3u(t)$$

Step 2:

In Laplace form, assuming zero initial conditions (y(0) = 0, $\dot{y}(0) = 0$):

$$s^2Y(s) + 2sY(s) + 5Y(s) = 3U(s)$$

Step 3

Manipulate to yield the transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{3}{s^2 + 2s + 5}$$

Step 4: Stability analysis

Poles: roots of denominator: $s^2 + 2s + 5 = 0$

Solving quadratic roots yield poles at: -1 + 2j and -1 - 2j

Both poles real numbers are negative, therefore system is **stable**.

Q3 b) Solution:

Step 1:

The differential equation is (where the output is y(t) and input is u(t)):

$$\ddot{y}(t) - \ddot{y}(t) + 3\dot{y}(t) + 5y(t) = 2\dot{u}(t) + 7u(t)$$

Step 2:

In Laplace form, assuming zero initial conditions $(y(0) = 0, \dot{y}(0) = 0, \ddot{y}(0) = 0)$:

$$s^{3}Y(s) - s^{2}Y(s) + 3sY(s) + 5Y(s) = 2sU(s) + 7U(s)$$

Step 3:

Manipulate to yield the transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{2s+7}{s^3 - s^2 + 3s + 5}$$

Step 4: Stability analysis

Poles: roots of denominator: $s^3 - s^2 + 3s + 5 = 0$

Solving qubic roots yield poles at: 0.8910 + 2.3664j, 0.8910 - 2.3664j and -0.7820.

Two of the poles real numbers are positive, therefore system is **unstable**.

Table of Laplace Transforms

Number	F(s)	$f(t), t \geq 0$	
1	1	$\delta(t)$	
2	$\frac{1}{s}$	1(t)	
3	$\frac{1}{s^2}$	t	
4	$\frac{1}{s}$ $\frac{1}{s^2}$ $\frac{2!}{s^3}$ $\frac{3!}{s^4}$	t^2	
5	$\frac{3!}{s^4}$	t^3	
6	$\frac{m!}{s^{m+1}}$	t^m	
7	$\frac{1}{(s+a)}$	e^{-at}	
8	$\frac{1}{(s+a)^2}$	te^{-at}	
9	$\frac{1}{(s+a)^3}$	$\frac{1}{2!}t^2e^{-at}$	
10	$\frac{1}{(s+a)^m}$	$\frac{1}{(m-1)!}t^{m-1}e^{-at}$	
11	$\frac{a}{s(s+a)}$	$(m-1)!$ $1-e^{-at}$	
12	$\frac{a}{s^2(s+a)}$	$\frac{1}{a}(at - 1 + e^{-at})$	
13	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at} - e^{-bt}$	
14	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	
15	$\frac{a^2}{s(s+a)^2}$	$1 - e^{-at}(1 + at)$	
16	$\frac{(b-a)s}{(s+a)(s+b)}$	$be^{-at} - ae^{-at}$	
17	$\frac{a}{(s^2+a^2)}$	sin at	
18	$\frac{s}{(s^2+a^2)}$	cos at	
19	$\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos bt$	
20	$\frac{b}{(s+a)^2+b^2}$	$e^{-at}\sin bt$	
21	$\frac{a^2 + b^2}{s\left[(s+a)^2 + b^2\right]}$	$1 - e^{-at} \left(\cos bt + \frac{a}{b} \sin bt \right)$	

Properties of Laplace Transforms

Number	Laplace Transform	Time Function	Comment
	F(s)	f(t)	Transform pair
1	$\alpha F_1(s) + \beta F_2(s)$	$\alpha f_1(t) + \beta f_2(t)$	Superposition
2	$F(s)e^{-s\lambda}$	$f(t-\lambda)$	Time delay ($\lambda \geq 0$)
3	$\frac{1}{ a }F\left(\frac{s}{a}\right)$	f(at)	Time scaling
4	F(s+a)	$e^{-at}f(t)$	Shift in frequency
5	$s^m F(s) - s^{m-1} f(0)$ - $s^{m-2} \dot{f}(0) - \dots - f^{(m-1)}(0)$	$f^{(m)}(t)$	Differentiation
6	$\frac{1}{s}F(s)$	$\int_0^t f(\zeta)d\zeta$	Integration
7	$F_1(s)F_2(s)$	$f_1(t) * f_2(t)$	Convolution
8	$\lim_{s\to\infty} sF(s)$	$f(0^{+})$	Initial Value Theorem
9	$\lim_{s\to 0} sF(s)$	$\lim_{t\to\infty}f(t)$	Final Value Theorem
10	$\frac{1}{2\pi j} \int_{\sigma_c - j\infty}^{\sigma_c + j\infty} F_1(\zeta) F_2(s - \zeta) d\zeta$		Time product
11	$\frac{1}{2\pi} \int_{-i\infty}^{+j\infty} Y(-j\omega) U(j\omega) d\omega$	$\int_0^\infty y(t)u(t)dt$	Parseval's Theorem
12	$-\frac{d}{ds}F(s)$	tf(t)	Multiplication by time

Python: Simulation of a mass-damper system (see Lecture 6 example)

```
import math
import numpy as np
from numpy import arange
from scipy import integrate
from matplotlib import pyplot as plt
\#mass and damping of the damper
m=1
#lambda to describe the force as a function of time
\#the assigned expression (t<=1) assumes a value of True (1) when t is less than
#1 and False (0) when t is greater than 1
force = lambda t:t<=1</pre>
\#Function with the rhs of the equation, retuens a list with 2 elements
f = lambda y, t: [y[1], force(t)-2*y[1]]
\#Array containing time instances for which the equation is to be solved
ti = np.linspace(0,7,100)
#plot force
plt.plot(ti, force(ti))
plt.title('Force (input)')
plt.xlabel('$t$')
plt.ylabel('$input$')
plt.show()
#solve equation with odeint
vOdeint = integrate.odeint(f,[0,-2],ti)
#expression for the analytical solution vAnalytical = -2*np.exp(-2*ti)+0.5*(1-np.exp(-2*ti))-(ti>=1)*0.5*(1-np.exp(-2*(ti-1)))
#plot analytical and numerical solution
plt.plot(ti,vAnalytical)
#plt.legend(['Analytical'])
plt.plot(ti,vOdeint[:,1],'--')
plt.legend(['Analytical','Odeint'])
plt.title('velocity v(t)')
plt.xlabel('$t$')
plt.ylabel('$v(t)$')
plt.show()
```

