

YEAR 12 EXTENSION 1 MATHEMATICS

6th April 2001.

Time Allowed: 2 hours, plus 5 minutes reading time

Name:

Instructions to students

- Attempt all questions
- Show all necessary working
- Calculators may be used

<u>UESTION 1</u>. Start a new page.

Marks

Find
$$\frac{d}{dx}\sqrt{2x^2+3}$$
 hence find $\int \frac{xdx}{\sqrt{2x^2+3}}$.

3

3

The graph of y=f(x) is sketched below. It consists of two straight lines and a semi-circle. Use it to evaluate $\int f(x) dx$.

By changing $\log_2 3x$ to base e differentiate $y = \log_2 3x$.

3

1

The velocity of a braking car is shown. What meaning is attached to

or what values of p is $\int_{-1}^{p} x dx = 0$? Give a geometric interpretation for your 2 iswer.

2

-) i) Given that $\cos(\theta + \psi) = \cos\theta \cos\psi \sin\theta \sin\psi$, show that $\cos 2t = 2\cos^2 t 1$ 2
 - ii) Given that $x = \cos t$, $y = \cos 2t$ give a geometric description of the locus of P(x, y).
-) $P(2p, p^2)$ and $Q(2q, q^2)$ are two points on the parabola $x^2 = 4y$. PQ is the focal chord of the parabola, with equation $y = \frac{1}{2}x(p+q) pq$.
 - i) Show that pq = -1.
 - ii) Show that the midpoint M of PQ is $(p+q, \frac{1}{2}(p^2+q^2))$.
 - iii) Given that the point of intersection of the tangents to the parabola at P and Q is T(p+q,pq) find and describe the locus of the point of intersection T and show that MT is always parallel to the y-axis.

1

1

Consider the function $y = x^{\frac{3}{2}}$ in the domain $0 \le x \le 4$.

- i) Write down the range of this function.
- ii) Draw a neat sketch of the function. Give reasons as to why the inverse is also a function.
- iii) By interchanging x and y and making y the subject write down the equation of the inverse function.
- iv) On the same number plane sketch the graph of the inverse.
- v) Describe how these two graphs are related geometrically to the line y = x. 1
- vi) Write an integral to find the area bounded by the x-axis and the curve $y = x^{\frac{2}{3}}$ 3 between x = 0 and x = 8. Also write another integral to find the area bounded by the y-axis and the curve $y = x^{\frac{3}{2}}$ between y = 0 and y = 8. Give reasons as to why these two integrals are equal. State the value of the integrals.
- vii) A student stated that the domain of the function $y = x^{\frac{3}{2}}$ is $x \ge 0$ and that the domain of the function $y = x^{\frac{2}{3}}$ is all real numbers. Is the student correct? Give reasons.

<u>UESTION 4</u>. Start a new page.

Marks

4

2

),

O and P are the centres of the circles. AXB is straight line. Prove that $\angle AOY = \angle BPY$.

i) Show that
$$\ln e = \int_{1}^{3} \frac{1}{x} dx - \int_{e}^{3} \frac{1}{x} dx$$
.

ii) Show that by one application of the Trapezoidal Rule $\int_{e}^{3} \frac{1}{x} dx = \frac{1}{6e} (9 - e^2)$. 2

iii) You are given that
$$\ln 3 = \frac{11}{10}$$
. Using this result and combining 2

parts (i), (ii) and (iii) show that e may be approximated with the equation $5e^2 + 3e - 45 = 0$.

iv) Solve this equation to find an approximation for e correct to 3 decimal places 2

QUESTION 5. Start a new page.

Marks

- a) Let $y = x \ln x$.
 - i) State the natural domain of this function.

1

ii) find $\lim_{x\to 0} x \ln x$.

1

iii) Show that a stationary point exists at $x = \frac{1}{e}$

2

2

- iv) Determine the nature of this stationary point using the second derivative.
- v) Show that no points of inflexion exist.

1

- vi) Draw a sketch of $y = x \ln x$ showing all critical points.
- 2

b) i) Using one of the logarithmic laws, expand $\ln \frac{x+1}{\sqrt{x-1}}$.

2

ii) Hence differentiate $y = \ln \frac{x+1}{\sqrt{x-1}}$.

1

QUESTION 6. Start a new page.

a) i) Find the value of the integral $\int_{1}^{\tau} \frac{1}{x^2} dx$, in terms of T.

- 2
- ii) By taking the limit as T tends to infinity, evaluate the improper integral
 - 2

$$\int_{1}^{\omega} \frac{1}{x^2} dx.$$

iii) Explain the geometric meaning of your answer.

- 2
- b) Prove by Mathematical Induction that $3^{2n} + 2^{n+2}$ is divisible by 5 for $n \ge 1$ 6

QUESTION 7. Start a new page.

Marks

a) Let $g(x) = \int_{-3}^{x} f(t) dt$, where f is the function whose graph is shown.

i) Evaluate g(3) and g(-3).

2

ii) Estimate g(0).

1

iii) On what interval is g increasing?

1

iv) Where does g have a maximum value?

1

v) Draw a sketch of g(x).

2

b) i) Sketch the graph of $y = \frac{1}{1+x^2}$.

2

3

ii) The region enclosed by the curve, the y axis and the line $y = \frac{1}{2}$ in the first quadrant is rotated about the y axis. Find the exact volume of the solid so formed.