Asymptotic Notations

Big O: Exact on Upper

Theta: Exact

Omega: Exact on linear

-Big O Notation

G Dinect way:

4 Ignorie lower order terms 4 Ignore leading term constant

 $73n^{2} + 5n + 6$ (Cn2)

 \rightarrow 3n + 10n logn +3 O(n logn)

 $\Rightarrow 10n^3 + 40n + 10$

O(h3)

For all n≥no

Example

f(h) = 2n + 3can be written as O(n) [g(n)=n] Let us take, C=3

2nt3 ≤3n

 $3 \le n$ We got $n_0=3$

$$[100, log 200, (10)^4, ---]$$
 $\in O(1)$

$$0 \left[\frac{n}{4} + 2n+3, \frac{n}{100} + \log n, n + 10000, \log n + 10, --- \right] \in O(n)$$

$$U \left[n^2 + n, 2n^2, n^2 + 1000n, n^2 + n \log n + n, \frac{n^2}{10000}, -- \right] \in O(n^2)$$

Big O notation works for multiple variables also

$$100 n^2 + 1000m + n : O(n^2 + m)$$

 $1000 m^2 + 200 mn + 30m + 20n : O(m^2 + mn)$

Applications

4 Used when we have an upper bound.

```
bool is Prime (int i)

[

if (n==1)

retwin false;

if (n==2 | | n==3)

retwin thue;

if (n\% 2==0 | | n\% 3==0)

retwin false;

for (int i=5; i*i <= n; i=i+6)

if (n\% i==0 | | n\% (i+2) == 0)

retwin false;

Hetwin thue;
```

+Big Omega Notation

 $f(n) = \Omega(g(n))$ iff there exist constants (, Cwhere c70) and no (where no ≥ 0) such that $Cg(n) \leq f(n)$ for all $n \geq n_0$.

$$f(n) = 2n+3 = \mathcal{L}(n)$$

$$c=1$$

$$n \leq 2n+3 \qquad n_0=0$$

$$-3 \leq n$$

$$\begin{cases} n^2, 2n^2+5, 1000 n^2, 2n^3+n, --3 \\ U & 2n+3, 100n+log n, --- 3 \\ U & 5000, (10)^5, log 2000, --- 3 \end{cases}$$

$$\begin{array}{l}
\in \mathcal{N}(h^2) \\
\in \mathcal{N}(h) \\
\in \mathcal{N}(l)
\end{array}$$

$$\begin{cases}
f(n) = O(g(n)) \\
g(n) = \mathcal{N}(f(n))
\end{cases}$$

-> Theta Notation

$$f(n) = \Theta(g(n))$$
 iff there exist constants C_1 , C_2 (where $C_1 \ge 0$ and $C_2 \ge 0$) and no (where $C_1 \ge 0$) such that $C_1 \le C_2 \le 0$ for all $C_2 \ge 0$

Example:
$$f(n) = 2n+3 : O(n)$$

 $C_{1} = 1, (2 = 3)$
 $1 \times n \le 2n+3 \le 3n$
 $n \ge 3$ $n \ge 0$ $n_{0} = 3$

Dinect Method

$$1000n^{2} + 100n logn + 2n : O(n^{2})$$

 $200n^{3} + 30n + 5x : O(n^{3})$
 $2000n + 2logn : O(n)$

4 If
$$f(n) = O(g(n))$$

then $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
and $g(n) = O(f(n))$ and $g(n) = \Omega(f(n))$

La Represents exact bound