	<pre>import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import KMeans</pre>
In [23]:	<pre>data.head()</pre>
	<pre>sliced_x = data.iloc[:,0:4] sliced_y = data.iloc[:,-1] sliced_y</pre>
Out[23]:	sliced_y.value_counts() species setosa 50 versicolor 50
In [24]:	virginica 50 Name: count, dtype: int64 #Convert y values into int
111 [24].	<pre>sliced_y = LabelEncoder().fit_transform(sliced_y) sliced_y.sort sliced_y</pre>
Out[24]:	array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
In [25]:	<pre># Convert x values betn 0 to 1 for col in sliced_x.columns: sliced_x[col] =MinMaxScaler().fit_transform(sliced_x[[col]]) sliced_x</pre>
Out[25]:	0 0.222222 0.625000 0.067797 0.041667
	1 0.166667 0.416667 0.041667 2 0.111111 0.500000 0.050847 0.041667 3 0.083333 0.458333 0.084746 0.041667
	4 0.194444 0.666667 0.067797 0.041667 145 0.666667 0.416667 0.711864 0.916667
	146 0.555556 0.208333 0.677966 0.750000 147 0.611111 0.416667 0.711864 0.791667 148 0.527778 0.583333 0.745763 0.916667
	149 0.444444 0.416667 0.694915 0.708333 150 rows × 4 columns
In [26]:	<pre># Find optimal cluster size krange = range(1,10) points=[]</pre>
	<pre>for k in krange: km = KMeans(n_clusters=k, n_init=10) km.fit_predict(sliced_x, sliced_y)</pre>
	<pre>points.append(km.inertia_) points C:\Users\Shrey\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL,</pre>
	when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn(C:\Users\Shrey\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn(
	<pre>C:\Users\Shrey\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn(C:\Users\Shrey\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL,</pre>
	when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn(C:\Users\Shrey\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.
	<pre>warnings.warn(C:\Users\Shrey\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn(C:\Users\Shrey\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL,</pre>
	when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn(C:\Users\Shrey\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.
Outer	warnings.warn(C:\Users\Shrey\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn([41.16611042137329,
Out[26]:	12.127790750538193, 6.982216473785235, 5.516933472040371, 4.580948640117294,
	3.92379168760291, 3.5091173931693023, 3.146928226430177, 2.824930685729874]
In [19]:	<pre># krange=range(1,5) # points = [] # for k in krange:</pre>
	<pre># km = KMeans(n_clusters=k, n_init=5) # km.fit_predict(sliced_x, sliced_y) # points.append(km.inertia_) # points</pre>
In [28]: Out[28]:	<pre>plt.plot(krange, points) [<matplotlib.lines.line2d 0x2adb1b4b790="" at="">]</matplotlib.lines.line2d></pre>
	40 - 35 - 30 - 25 - 20 - 15 - 10 - 5 -
	1 2 3 4 5 6 7 8 9
In [32]:	<pre># We choose cluster size = 3 & Predict km = KMeans(n_clusters=3) result = km.fit_predict(sliced_x, sliced_y) result</pre>
	C:\Users\Shrey\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'au to' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()check_params_vs_input(X, default_n_init=10)
Out[32]:	C:\Users\Shrey\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn(array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
In [34]:	2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1]) # Assign result to a column sliced_x['cluster'] = result sliced_x.head()
Out[34]:	
	1 0.166667 0.416667 0.041667 0 2 0.111111 0.500000 0.050847 0.041667 0 3 0.083333 0.458333 0.084746 0.041667 0
In [37]:	4 0.194444 0.666667 0.067797 0.041667 0 cluster0 = sliced_x[sliced_x.cluster==0]
· 1	<pre>cluster1=sliced_x[sliced_x.cluster==1] cluster2=sliced_x[sliced_x.cluster==2] # cluster1['cluster'].value_counts()</pre>
Out[37]:	<pre>km.cluster_centers_ array([[1.96111111e-01, 5.95000000e-01, 7.83050847e-02,</pre>
	[4.41256831e-01, 3.07377049e-01, 5.75715477e-01, 5.49180328e-01, 2.00000000e+00], [7.07264957e-01, 4.50854701e-01, 7.97044763e-01, 8.24786325e-01, -8.88178420e-16]])
In [39]:	<pre>plt.scatter(cluster1.sepal_length,cluster1.sepal_width,color="green") plt.scatter(cluster2.sepal_length,cluster2.sepal_width,color="blue") plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],label="centroid",color="black",marker="*")</pre>
Out[39]:	plt.legend() <matplotlib.legend.legend 0x2adafd826d0="" at=""></matplotlib.legend.legend>
	1.0 - ** centroid
	0.8
	0.6
	0.4
	0.0
Tn 「 [¬]	0.0 0.2 0.4 0.6 0.8 1.0
In []:	
In []: In []:	
In []:	

In [21]: **import** pandas **as** pd

import seaborn as sns