Spatial Regression (Part 1)

RICARDO ANDRADE

Linear Regression

We try to explain Y in terms of X.

Linear Regression

Sometimes the standard linear regression is not a good assumption.

Generalized Linear Model

Find a transformation where the assumptions of the standard linear regression work.

Generalized Linear Model

Assumptions:

We are interested in a property of the soil called soiliness.

We take samples at different locations in a parcel.

We have one covariate X.

We can use a GLM with log transformation.

Now look at the residuals.

Then don't look like iid.

Generalized Additive Model

Like a GLM, but we can add smooth functions as explanatory variables.

Spatial effect incorporated as smooth function.

Cross-Validation

Can be used for model selection.

Compute MSE or a different metric of performance with competing models.

Cross-Validation

Burkina Faso

We have prevalence data and elevation.

Burkina Faso

GAM with Binomial family and logit transformation.

