

INGENIERÍA BIOMÉDICA PUCP-UPCH

Detector de signos vitales ad hoc para niños durante intervención quirúrgica

INTEGRANTES:

Alejandra Vilca Landa

Andrea Zaharia Seinfeld

Harold Angeles Gavidia

Luis Díaz Leguizamon

Mauricio Gallardo Urpeque

CURSO:

Proyectos de Biodiseño 1

ASESOR:

MSc PhD Candidate Rossana Rivas Tarazona

2021-2

Índice

1.	Prot	olemática			
	1.1.	3			
		3			
		4			
	1.2.	Definición o	5		
		6			
		7			
		1.2.2.1.			
		1.2.2.2.			
		1.2.2.3.			
		8			
		1.2.3. Stal	keholder map		
		g			
			ol de problemas		
	1.3.	•			
			nparación con estándares		
	1.4.	·			
	1.5.	17			
			d map con propuestas de solución		
		1.5.2. Defi	inición de dos propuestas elegidas	17	
			erminación de la propuesta final de solución		
2.	Bibli				

1. Problemática

1.1. Contexto general

Los signos vitales son indicadores cuantitativos de ciertos parámetros fisiológicos como la temperatura interna, la presión sanguínea, la frecuencia cardiaca y respiración. La monitorización de estos parámetros es de carácter imperativo. Uno de los espacios en donde se necesita controlarlos es en las cirugías, en donde se interviene a un paciente para poder tratar algún problema de salud. Si bien todo tipo de operación es riesgosa, uno de los grandes retos se desarrolla específicamente en las cirugías pediátricas; puesto que los niños tienden a fluctuar sus signos vitales de manera más peligrosa que en casos con usuarios adultos. Los niños tienen una grasa subcutánea más delgada y una proporción más alta entre áreas superficiales y peso corporal, además que la pérdida de calor en ellos es más rápida que en las personas mayores. Asimismo, con la aplicación de anestesia general en las intervenciones quirúrgicas es más probable que se observen casos de hipotermia debido a lo explicado anteriormente. [1]

Según el Informe de evaluación anual del plan operativo institucional 2018 del INSNSB (Instituto Nacional de Salud del Niño de San Borja), se registraron pacientes derivados a los diferentes departamentos de cirugía dentro del instituto. En el caso de cirugías cardiacas se documentaron 479 intervenciones. Por otro lado, en el eje neonatal se contabilizaron 1082 intervenciones. Esto refleja la gran cantidad de pacientes pediátricos que se someten a cirugías que involucran el uso crítico e indispensable de monitores de signos vitales. Una de las mayores dificultades que ha observado el INSNSB, específicamente en el área de cirugía, es la necesidad de adecuar la infraestructura de las salas de intervenciones quirúrgicas, la modernización de los sistemas y herramientas, mejorar la adquisición de insumos, suministros médicos y medicamentos. No solo son una realidad local, sino también una nacional. Además, estas carencias surgen como efectos colaterales de la falta latente de presupuesto económico y la alta demanda poblacional que existe actualmente en el Perú. [2]

1.1.1. Contexto social

En el contexto social de cirugías pediátricas, existen diversos factores que se deben considerar como: la comunicación con el médico, la familia, el paciente y el entorno en donde se desarrolla la intervención. En el ámbito pediátrico la familia actúa como ente de apoyo, primordialmente emocional; por ello, es importante que los padres reciban información completa y entendible acerca de los procedimientos quirúrgicos a realizar. El propósito es capacitar a la familia para transmitir tranquilidad y evitar el estrés o ansiedad en el niño. [3]

Asimismo, según el INEI, la tasa de mortalidad infantil hasta el 2018 en Perú era del 15% y en provincias como Puno, Cusco, Loreto, Cajamarca y Huancavelica se encontraron las tasas más altas causadas por cirugías pediátricas, infecciones respiratorias agudas, deficiencia nutricionales, entre otras. Estos departamentos son los que no suelen tener buen equipamiento médico, por lo que es esencial implementar buenos equipos biomédicos para poder disminuir estas tasas de mortalidad. [4]

Finalmente, en el INSNSB durante el año 2018, se registró el fallecimiento de 20 neonatos de un total de 276 egresados. Dicha cifra representa el 7.25% del total de egresados que, aunque esté por debajo del porcentaje esperado de 8.50%, aún representa una considerable cantidad de pacientes [2]. El sistema de salud peruano ha demostrado avances hacia la disminución de la mortalidad infantil durante intervenciones médicas. Sin embargo, las diversas dificultades persistentes en centros médicos dispositivos desactualizados [20], falta de gestión en la usabilidad de tecnologías de salud [2] genera preocupación.

Fuente: INEI. Comportamiento de la Mortalidad Infantil por departamento. 2017

Figura 1. Tasa de mortalidad infantil por departamento [4].

1.1.2. Contexto económico

En cuanto al contexto económico, el Perú tiene una gran desventaja en comparación a los países vecinos latinoamericanos y otros primermundistas. [3] Por otro lado, con la llegada de la pandemia a principios del 2020, se ha dejado de lado varios problemas de salud que son esenciales para el diagnóstico y su tratamiento respectivo.

Según el IPE, "Antes de la pandemia, el Perú ya exhibía brechas en la calidad de su sistema de salud. De acuerdo con cifras del Ministerio de Salud (Minsa), el país contaba con 13,6 médicos por cada diez mil habitantes. Asimismo, se registraban apenas 0,4 camas de cuidados intensivos (UCI) por cada cien mil habitantes. El déficit se replicaba también en términos de equipamiento, donde según datos de la Organización Panamericana de la Salud, el país tenía cinco ventiladores mecánicos por cada cien mil habitantes." [3]

Gasto destinado a salud per cápita, Perú 2007-2017.

Figura 2. Gasto destinado a salud per cápita [4].

1.2. Definición del problema

Dentro del contexto económico, se ha resaltado un importante número de disparidades que actualmente representan la realidad nacional en el sector salud. Algunas regiones en el Perú se encuentran mejor capacitadas para afrontar problemas sanitarios que otras; por ejemplo, la ejecución presupuestal en compra de medicamentos, vacunas, suministros médicos y construcción de infraestructura sanitaria fue de 98.6% en Huancavelica y 98.1% en Ica y Ucayali; mientras que las regiones más rezagadas fueron Cusco con 67.2%, Piura con 68.2% y Ayacucho con 68.5%. Es importante recalcar, análogamente, que los departamentos de Amazonas (4.1%) y Lambayeque (0%) resaltan por su baja e incluso nula ejecución. Además, de los S/ 2,307 millones destinados para la construcción de edificios y estructuras a nivel nacional en el 2019, solo se ejecutaron S/ 1,238 millones; es decir, únicamente el 53.7%. [29]

El problema a solucionar radica principalmente en que muchos instrumentos estándar para adultos no son apropiados para niños pequeños (menores de 5 años) debido a las reducidas dimensiones de su cuerpo, extremidades, entre otros, lo cual puede causar complicaciones durante y después de la operación. Si tenemos en cuenta las dificultades que enfrenta el sector sanitario nacional, la simplificación y economización de equipos médicos, en especial en situaciones específicas como cirugías pediátricas debido a la escasez de insumos, propone un gran beneficio al requerir menor inversión y complejidad en su mantenimiento. Es por eso, que el reto consiste en re-diseñar un monitor de signos vitales enfocado principalmente en señales pediátricas que pueda adecuarse a las condiciones mencionadas previamente.

Es importante recalcar que en Alemania existen monitores de signos vitales que son usados específicamente para cirugías pediátricas. Según el documento "Manual de Uso de Monitor

de Signos Vitales", los sensores que se utilizan para niños tienen unas menores dimensiones a comparación de los que se utilizan en dispositivos estandarizados para adultos. Asimismo, afirma que hoy en día se utilizan los mismos dispositivos llamados "Monitores multiuso" y solamente se parametriza el rango de edad al cual va dirigido en un momento en específico. Es así como, si no se realiza una parametrización exacta para el tipo de anatomía de estudio, dará un resultado erróneo. Si las mediciones son inexactas, esto conlleva a futuras complicaciones operatorias.

Por otro lado, según Vega. A (2020), se menciona que dentro de la clasificación de monitores de uso se encuentran tres tipos, los de anestesia, adulto y pediátrico, y neonatal. Cabe resaltar que, si bien es cierto, las variables fisiológicas son las mismas, esto no contempla que sean iguales las formas de evaluarlas. Esto da a conocer que para cada tipo de paciente (clasificado por rango de edad) la toma de mediciones debería ser variable.[31]

1.2.1. Figura 3. Mapa problem statement [elaboración propia]

¿Cómo podríamos rediseñar un monitor de signos vitales que se adecue a las dimensiones de niños menores de 5 años para evitar complicaciones en intervenciones quirúrgicas?

1.2.2. Empathy map

1.2.2.1. Figura 4. Empathy map del doctor [elaboración propia]

1.2.2.2. Figura 5. Empathy map del niño [elaboración propia]

1.2.2.3. Figura 6. Empathy map de la enfermera [elaboración propia]

1.2.2.4. Figura 7. Empathy map de los padres [elaboración propia]

1.2.3. Figura 8. Stakeholder map [elaboración propia]

1.2.4. Figura 9. Mapa de Ishikawa [elaboración propia] [7] [8]

1.2.5. Figura 10. Árbol de problemas [elaboración propia]

Árbol de problemas

1.3. Análisis de los efectos y su impacto

Desventaja en la modernización de tecnologías de salud

La desventaja en la modernización de tecnologías de salud en varias regiones del país siempre ha estado presente. Una de las grandes causas es la centralización de los servicios y las complicaciones para distribuir las herramientas necesarias fuera de la capital, y más aún cuando es en zonas rurales y de difícil acceso. Si bien se ha venido trabajando en esta brecha que impide que todos los peruanos acudan a centros de salud en buen estado y con las tecnologías necesarias, esto no ha sido suficiente.

"Entre los retos para incrementar la cobertura prestacional se encuentran la brecha de infraestructura y equipamiento de servicios de salud, la poca articulación de los establecimientos de salud del primer nivel de atención, la subutilización de la oferta pública existente y recurso humano no bien remunerado con escasos o nulos incentivos." [9]

Se ha evidenciado un gran avance en los últimos años con respecto a lo propuesto previamente, ya que de acuerdo al Banco Mundial, entre otros factores analizados, mencionó que la tasa de mortalidad infantil pasó de 29.5% en el 2000 a 10.3% en 2019. Sin embargo, este mismo señala que esta mejora no asegura que haya

aumentado la calidad del servicio que se ofrece, y este va en paralelo con la falta de modernización en las tecnologías que se ofrecen en dichos centros.

Es importante mencionar que uno de los factores que más influyen en esta desventaja tecnológica, si es que no es el que más lo hace, es la falta de inversión que le designa el Estado peruano a este sector. Entre el 2015 y el 2019 no se ejecutó el 10% del presupuesto público (s/ 8.718). Esto no solo refleja la deficiente gestión del dinero, sino también la constatación de la tan mencionada brecha de inequidad. [10]

Complicaciones en la operación

Un monitor de signos vitales que mide de manera imprecisa algún o varios parámetros puede generar complicaciones al momento de la operación, puesto que la medición de un parámetro de manera errónea expone a un dificultoso tratamiento dentro de la intervención [11]. Si un monitor no evidencia alguna irregularidad en la fisiología del paciente, este último puede sufrir diversos procesos decadentes. Existe una alta incidencia de complicaciones en el aparato respiratorio en niños y varía entre 42-85/10,000 casos. Los IC (incidentes críticos) en cirugías pediátricas más frecuentemente reportados en un estudio de la Sociedad Holandesa de Anestesiología fueron: hipoxemia e hipoventilación 26% (más frecuente en neonatos y lactantes), laringoespasmo 14%, broncoespasmo 10.6% y bronco laringoespasmo 9.6%. Se reportaron en diferentes investigaciones, a los IC cardiovasculares como los segundos más frecuente en niños. Esto se evidencia en el estudio de De Graff en el cual se registraron en un 13%, donde los eventos más frecuentes fueron la hipotensión (38%) y las arritmias (16%). Esto contrasta con estudios anteriores que reportaban a las arritmias como el incidente más frecuente. [11]

Además la ansiedad preoperatoria estresa a los niños, a sus padres y esto puede conllevar a problemas en el procedimiento pre/post quirúrgico. Melamed & Siegel divulgaron que el proceso de hospitalización y cirugía infantil causaban estrés o ansiedad entre el 10% y el 35% de los niños lo cual desencadenaba problemas emocionales en los pacientes. Concluyeron que algunas de estas manifestaciones influyen de forma directa en el cuidado y en los procedimientos que realiza el personal sanitario, requiriendo un aumento de manipulaciones intra-postquirúrgicas. [12]

Parámetros de signos vitales inexactos

La medición de los signos vitales puede ser inexacta debido a diversos factores. Estos tienden a variar de acuerdo a la edad de la persona a la cual se le está midiendo, el ejercicio físico que ha realizado, el peso en relación a la estatura, el sexo, la alimentación, los fármacos que consume, entre otros. Estos a su vez se ven afectados por la sensibilidad del equipo biomédico ya que no siempre se logra la precisión deseada. [13] El hecho de que uno de los factores que afecta la medición de los signos vitales sea la edad, evidencia que el monitor en sí no es deficiente, sino que su uso no está destinado para todos los grupos etarios. Es por ello que el monitor no presenta la sensibilidad necesaria para todos los casos que se puedan presentar, con lo cual medir un signo vital no tiene credibilidad.[14]

Limitación de servicios médicos

"En los centros de salud u hospitalarios del país, encontramos diversas necesidades de innovación y tecnología, sobre todo con los dispositivos biomédicos, un claro ejemplo sería la falta de monitores de funciones vitales, ya que se pierde efectividad, tiempo, comodidad del médico y puede tener consecuencias graves, e incluso hasta mortales". [15] Esta cita pertenece a Bondia, H; quien realizó un estudio sobre la problemática de la falta de monitoreo en los centros de salud, especialmente en secciones de operaciones y triajes. Se afirma que en 44% de los establecimientos a los cuales se les realizó una visita no contaban con equipamiento suficiente para la atención de diversos tipos de enfermedades y dentro de las mismas también hacen hincapié en la falta de monitores de funciones vitales neonatales de 5 parámetros. [15]

La falta de una monitorización exacta de signos vitales se enfoca en la falta de dispositivos en los distintos lugares del Perú. Es importante recalcar que no solo existen mediciones inexactas por parte del dispositivo biomédico, sino que el mayor problema consiste en la falta ineludible de estos mismos en el país. Por ejemplo, el boletín epidemiológico de la dirección regional de salud de Cusco N°28 realizó una publicación en la cual se reportaba un recuento de muertes en niños menores de 5 años a causa de neumonía y se menciona que en la intervención que se les realizaba existía una falta de dispositivos de medida exactos con lo cual el proceso de registro de signos vitales se ralentizaba. [16]

Figura 11. Tendencias de neumonías en menores de 5 años 2016-2019 DIRESA Cusco [16]

Figura 12. Tendencias de neumonías en menores de 5 años 2016-2019 DIRESA Cusco [16]

1.3.1. Comparación con estándares

Según la OPS (Organización Panamericana de la Salud), existe una ETS (Evaluación de Tecnologías Sanitarias) la cual se encarga de administrar el proceso sistemático de ciertos efectos e impactos que pueden surgir a raíz de la tecnología sanitaria. Esta se utiliza principalmente para la toma de decisiones y el planteamiento de posibles beneficios costo-efectivos en este ámbito, rigiéndose por aspectos sociales y económicos de cada región. [27]

En este sentido, el BID (Banco Interamericano de Desarrollo) evaluó a 71 países, donde se encontró que 22 de 27 países de latinoamérica y el caribe resultaron por debajo del promedio mundial en relación a la salud. Para esta investigación se tomaron en consideración aspectos como la esperanza de vida, la mortalidad de menores de 5 años, el acceso a los servicios de salud, la equidad y la centralización de los recursos, entre otros. En la región latinoamericana, Chile obtuvo el primer lugar. El informe destaca, entre otros, a Costa Rica y Uruguay. Además, considera que Argentina, Paraguay, Brasil, México y Colombia tienen oportunidades de mejora. Por último, se menciona que el Perú, y algunos otros países de la región, obtuvieron un desempeño funesto. [28]

Finalmente, según la investigación "El estudio también sirvió de marco para contabilizar la inversión en salud como porcentaje del PIB en América Latina y el Caribe. De acuerdo con la entidad, este gasto aumentó de 6,3% a 7,2% entre 1995 y 2014, lo que indica que "el nivel promedio del gasto total en salud per cápita al final del período era de US\$1.109"." [%] Por otro lado, es importante mencionar, que en el Perú sí ha aumentado el presupuesto que se destina para este sector (7.6% del total en 2009 a un 12.7% en 2020); sin embargo, si bien se ha visto un incremento, no es

lo suficientemente alto como para demostrar un buen desarrollo en comparación con los otros países de la región, como Chile. [18][28]

1.4. Análisis de las causas y sus factores

<u>Efecto: Desventaja en la modernización de tecnologías de salud</u> Causa: Poca inversión en el sector salud

La salud es uno de los derechos fundamentales del ser humano y es un indicador importante del nivel de desarrollo y crecimiento de cada país. En el mundo, se observa una tendencia de mejoría en la medición de diferentes problemas de este tipo. La esperanza de vida ha incrementado de 71.1 años en el 2000 a 76.5 en 2018. Asimismo, el Perú ha gozado de un crecimiento económico en las últimas dos décadas que incrementó el presupuesto público total de S/. 34,046 millones en 2000 a más de S/. 188,571 millones en 2019. Dicho aumento en la cantidad de recursos económicos disponibles deberían reflejar un incremento proporcional en el presupuesto destinado hacia el sector mencionado. Sin embargo, de acuerdo al Banco Interamericano de Desarrollo (BID) en el 2018, las ineficiencias y derroches del gasto público en Perú ascienden al 2.5% del PBI. Estos porcentajes reflejan una potencial oportunidad de mejoramiento en los gastos destinados a servicios sin la necesidad de aumentar el presupuesto. [18]

Según el Informe de Calidad del gasto público en Salud en el Perú, entre los años 2009 y 2020, la utilización del presupuesto destinado este sector ha ido incrementado, desde 7.6% hasta el 12.7%. No obstante, para poder brindar una solución que involucre a los recursos humanos, equipamiento e infraestructura, el Estado propone realizar una mayor inversión en el mencionado sector haciendo un uso eficiente de los mismos para brindar un mejor servicio. [18]

Figura 13. Presupuesto nacional destinado a la salud en Perú 2009-2020 [18]

Es una realidad la limitada cantidad de recursos orientados al sector salud en Perú y es por ello que es de suma importancia el uso eficiente de los mismos. Se prevé que los gastos en salud incrementarán en las próximas décadas a causa de factores como el envejecimiento de la población, mayor incidencia de enfermedades crónicas y mayor demanda de servicios de salud. Así, aquellos recursos disponibles deben generar servicios mejores y más eficientes para el bienestar de la población [18].

Efecto: Complicaciones en la operación

Causa: Carencia de equipos especializados para cirugía pediátrica

Las cirugías pediátricas resultan un desafío particular debido a las reducidas dimensiones del cuerpo del paciente. Por ello, es necesario el uso de equipos médicos específicamente diseñados para niños o bebés. Instrumentos de mala calidad pueden potencialmente fallar o romperse y causar daño al paciente; por ejemplo, en el 2008, la Food and Drug Administration (FDA) de EEUU reportó cerca de 1000 incidentes de fragmentos de instrumentos rotos dentro de pacientes que llevaron a diversos problemas como reacciones de tejidos cercanos, infecciones, discapacidades e incluso muertes [19]. Por otro lado, estudios en el Reino Unido reportan que existen herramientas adquiridas de ciertos fabricantes con una tasa de 35% de falla o sea uno de cada tres instrumentos son de calidad subestándar [19]. En el Perú, una gran parte de los establecimientos públicos de salud actualmente carecen de muchos de los equipos requeridos para permitir el desarrollo laboral completo del personal médico [20]. Es común el uso de tecnologías obsoletas en hospitales peruanos y, por ende, procedimientos especializados, como los de cirugía pediátrica, no se benefician de herramientas modernas para agilizar las intervenciones y aminorar las complicaciones.

Efecto: Parámetros de signos vitales inexactos

Causa: Falla de los equipos debido a falta de mantenimiento y recursos

El buen estado de los equipos y suministros médicos está directamente relacionado con la precisión de la medición de los diversos parámetros de salud del paciente. En el ambiente pediátrico es vital la constante supervisión y mantenimiento de los equipos médicos incluso en los aspectos más mínimos. Por ejemplo, cubrir pequeñas aperturas en los equipos donde un niño pueda introducir sus dedos, calibrar las máquinas de rayos X para administrar dosis de radiación adecuadas o programar los equipos para que calculen el peso en kilogramos en vez de libras para reducir las posibilidades de errores de dosis [32]. Las áreas de pediatría y, en especial, los hospitales de niños demandan una mayor cantidad de personal médico y de mantenimiento por la naturaleza de los cuidados ofrecidos. El Perú, con un promedio de 13,6 médicos por cada diez mil habitantes y un sector biomédico emergente, encara grandes desafíos en relación al mantenimiento de equipos e instrumentos médicos [3]. Evidentemente la falta de mantenimiento de equipos electrónicos resulta en imprecisiones en su funcionamiento; además, estudios demuestran que registros de signos vitales de mala calidad, especialmente en ambientes de alta criticidad, condujeron a perturbaciones fisiológicas e incapacidad de detectar pacientes en vías de deterioro [33]. Por este motivo, es imperativo que el sistema de salud y la administración de los centros hospitalarios se encarguen de proveer el mantenimiento y recursos necesarios para garantizar el correcto funcionamiento de los dispositivos electrónicos y herramientas manuales. En la mayoría de los hospitales pertenecientes al MINSA, se utilizan tecnologías anticuadas que limitan la calidad de atención hacia los pacientes.

Efecto: Limitaciones de servicios médicos

Causa: Difícil acceso a los servicios de atención médica

En el Diagnóstico de Brechas de Infraestructura y Equipamiento del Sector Salud publicado por el Ministerio de Salud en Enero de 2021, se realiza un análisis de la situación actual en el sistema de salud peruano sobre las diversas brechas existentes en infraestructura y equipamientos. Se tomaron en consideración diferentes indicadores en potenciales áreas de deficiencias y se otorgó un porcentaje representativo de la magnitud de la brecha actual en dichos sectores.

	Indicador de Brecha	Valor Absoluto	Porcentaje
1.	Porcentaje de establecimientos de salud del primer nivel de atención con capacidad instalada inadecuada.	6785	77.78%
2.	Porcentaje de nuevos establecimientos de salud requeridos del primer nivel de atención.	281	20.74%
3.	Porcentaje de hospitales con capacidad instalada inadecuada.	124	51.00%
4.	Porcentaje de nuevos hospitales requeridos.	172	56.21%
5.	Porcentaje de institutos especializados con capacidad instalada inadecuada.	9	60.00%
6.	Porcentaje de laboratorios del Instituto Nacional de Salud con capacidad instalada inadecuada	39	95.12%
7.	Porcentaje de laboratorios regionales de salud pública con capacidad instalada inadecuada.	23	95.83%
8.	Porcentaje de sedes administrativas con inadecuado índice de ocupación	1664	79.92%
9.	Porcentaje de sistemas de información de salud que no funcionan adecuadamente	9	75%
10.	Porcentaje de centros de promoción y vigilancia comunal requeridos	1264	66,91%

Tabla 2. Indicadores de brecha de infraestructura y equipamiento del sector salud 2018 [26]

Los porcentajes reflejados en la tabla 2 evidencian disparidades sustanciales entre el modelo de servicio ideal con el actual en el territorio nacional. En el *Manual de Procesos y Procedimientos del Proceso de Cirugía Pediátrica* publicado por el Departamento de Cirugía Pediátrica del Hospital Nacional Edgardo Rebagliati Martins en enero del 2020, se identifica como oportunidad de mejora que el Departamento de Cirugía Pediátrica mantenga una relación directa de trabajo con las áreas de emergencias, cirugía, laboratorio, hospitalización, entre otras, para que así, se desarrolle de manera eficiente los procesos hospitalarios [21]. En este caso, al tratarse de cirugías pediátricas, es de suma criticidad la atención inmediata y organizada para el paciente. Además, es esencial mejorar la comunicación interna del hospital, ya que este tipo de obstáculos disminuye la calidad de atención y la facilidad de acceso a los servicios necesarios de forma oportuna.

1.5. Descripción de la propuesta de solución

1.5.1. Figura 14. *Mind map* con propuestas de solución [elaboración propia]

1.5.2. Definición de dos propuestas elegidas

Media wearable de medición de frecuencia cardiaca y saturación de oxígeno:

SockTec es un dispositivo biomédico dedicado a la medición y control de la frecuencia cardiaca y saturación de oxígeno en pacientes pediátricos de 4 a 5 años y destinado a su uso en espacios de intervenciones quirúrgicas. Está diseñado con sensores CI de ROHM y MAX 30102 para parametrizar valores de frecuencia cardiaca y saturación de oxígeno, respectivamente. La mayor parte de las operaciones realizadas a niños en ese rango de edades se da por apendicitis. Mediante un dispositivo periférico que vigile estos signos vitales, se ayudaría a despejar la zona de intervención (región inferior derecha del abdomen).

Figura 15. Bosquejo preliminar de SockTec [elaboración propia]

Smartwatch adaptado a las condiciones del niño y con un diseño amigable para la medición de frecuencia cardiaca y saturación de oxígeno:

VitalWatch es un dispositivo biomédico que dispone su utilidad para medir la frecuencia cardiaca, saturación de oxígeno y temperatura corporal en pacientes pediátricos de 4 a 5 años, mediante la adaptación de sensores para cada uno de los parámetros. La principal razón para incorporar la medición de temperatura por sensores RTD (pt100) en la zona de la muñeca es para una mejor precisión que en zonas distales del cuerpo. Además, los niños entre esas edades tienden a fluctuar estos valores de manera muy espontánea por lo que monitorear constantemente este y los otros dos parámetros es esencial en el desarrollo de la operación como en el post.

Figura 16. Bosquejo preliminar de VitalWatch [elaboración propia]

1.5.3. Determinación de la propuesta final de solución

Para elegir la solución final que será el proyecto a desarrollar se propone una evaluación preliminar donde se analizan factores a considerar en la elección. Dentro de los parámetros elegidos se evidencian:

- Familiarización de las bases científicas: Referido al conocimiento que el grupo tiene acerca de términos médicos relacionados con la propuesta, como anatómicos, fisiológicos, así como nociones sobre elementos del propio dispositivo: arduinos, raspberry, sensores de mediciones de signos vitales y usos apropiados, etc.
- Grado de solución del problema: Referido al impacto que genera el dispositivo propuesto en relación a la problemática.
- Alcance del desarrollo conceptual de la estrategia: Referido a la noción, a priori, de cada uno de los integrantes de la posibilidad de resolver óptimamente el producto (conceptual) en el tiempo establecido.

53

	FACTORES PARA	PUNTAJES DE 1-5				
	Familiarización o	-				
	Grado de solució	-				
	Alcance del desa	-				
	PROMEDIO	-				
			•		_	
Estrategia 1	Andrea Zaharia	Harold Angeles	Mauricio Gallardo	Luis Diaz	Alejandra Vilca	
	4	4	4	3	4	
	5	4	4	4	4	
	4	5	4	5	5	
	13	13	12	12	13	63
Estrategia 2	Andrea Zaharia	Harold Angeles	Mauricio Gallardo	Luis Diaz	Alejandra Vilca	
	3	4	3	2	4	
	4	4	3	4	4	

FORMATO DE VALORACIÓN DE LA ESTRATEGIA DE SOLUCIÓN

Figura 17. Tabla de valoración para la elección de la propuesta de solución [elaboración propia]

Finalmente, después de la valoración realizada se escogió la propuesta de solución llamada "SockTec".

Figura 18. Diseño final de SockTec [elaboración propia]

2. **Bibliografía**

- [1] Yingtong, J., Han, D. and Han, L., 2021. The Accuracy of a Wireless Axillary Thermometer for Core Temperature Monitoring in Pediatric Patients Having Noncardiac Surgery: An Observational Study. [en línea] ScienceDirect. Disponible
- https://www.sciencedirect.com/science/article/pii/S108994722100071X. [Accedido: 2 Septiembre 2021].
- [2] Zopfi, A. and Alvarez, C., 2021. Informe de Evaluación Anual del Plan Operativo Institucional 2018. [en Insnsb.gob.pe. Disponible en:

http://www.insnsb.gob.pe/docs-trans/upp/EVALUACION%20ANUAL%20DEL%20POI%202018.pdf.

[Accedido: 2 Septiembre 2021].

- [3] Montoya Castilla, I., 2021. Repercusiones psicológicas de la cirugía pediátrica ambulatoria en el paciente y su familia. [en línea] Tdx.cat. Disponible en: https://www.tdx.cat/handle/10803/10154#page=1. [Accedido: 4 Septiembre 2021].
- [4] Loayza, M., Gutierrez, A. and Munayco, C., 2019. Análisis de Situación de la Salud del Perú. [en línea] Dge.gob.pe. Disponible en: https://www.dge.gob.pe/portal/docs/asis/Asis_peru19.pdf [Accedido: 4 Septiembre 2021].
- [5] "Inversión de pandemia | Instituto Peruano de Economía", Instituto Peruano de Economía, 2021. [en línea]. Disponible en: https://www.ipe.org.pe/portal/inversion-de-pandemia-salud/. [Accedido: 5 Septiembre 2021]
- [6] Cabezas, C., 2021. Atención médica y de salud en el Perú. [en línea] SCielo. Disponible en: https://www.scielosp.org/article/rpmesp/2019.v36n2/165-166/es/. [Accedido: 9 Septiembre 2021]
- [7] Mayao, D. and Ixbalamque, C., 2021. Complicaciones en anestesia pedriátrica. [en línea] Medigraphic.com. en:https://www.medigraphic.com/pdfs/rma/cma-2017/cmas171ap.pdf. Disponible [Accedido: 10 Septiembre 2021]
- [8] Alvarez, L. and Marroquín, J., 2021. Hipotermia posoperatoria en el paciente pediátrico en cirugía SCielo. electiva. [en línea] Disponible en:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-87712017000300026. [Accedido: 10 Septiembre 2021]
- [9] Gutiérrez, C., Romaní Romaní, F., Wong, P. and Del Carmen Sara, J., 2021. Brecha entre cobertura poblacional y prestacional en salud: un reto para la reforma de salud en el Perú. [en línea] Disponible en: . [Accedido 13 -Sep- 2021].
- [10] E. Mezones-Holguin et al., "Cobertura de aseguramiento en salud: el caso peruano desde la Ley de Universal", Rpmesp.ins.gob.pe, 2021. línea]. Disponible Aseguramiento [en en: https://rpmesp.ins.gob.pe/rpmesp/article/view/3998/3314. [Accedido: 17- Sep- 2021].
- D.Garcia and C.lxbalanque,Tdx.cat,2021.[en línea].Disponible [11] en: https://www.tdx.cat/bitstream/handle/10803/461162/TESI.pdf?sequence=1. [Accedido: 14- Sep- 2021].
- [12] M. Gutierrez, "La ansiedad de los niños y de sus familias en el proceso de una intervención quirúrgica Disponible programdada". 2021. [en líneal. https://www.tdx.cat/bitstream/handle/10803/461162/TESI.pdf?sequence=1. [Accedido: 14- Sep- 2021].
- Ri.uaemex.mx, 2021. [Online]. Available: http://ri.uaemex.mx/bitstream/handle/20.500.11799/70132/secme-16151_2.pdf?sequence=2&isAllowed=y. [Accessed: 06- Oct- 2021].
- [14] Redalyc.org, 2021. [en línea]. Disponible en: https://www.redalyc.org/pdf/2738/273825390009.pdf. [Accedido: 17- Sep- 2021].
- [15] Bondia, H., 2019. Diseño de un Prototipo de Monitoreo de Funciones vitales en FPGA para Hospitales **Nacionales** del Perú. [en línea] Repositorio.utp.edu.pe. Disponible https://repositorio.utp.edu.pe/bitstream/handle/20.500.12867/2471/Herbert%20Bondia Trabaio%20de%20 Suficiencia%20Profesional Titulo%20Profesional 2019.pdf?sequence=4&isAllowed=y. [Accedido 14 -Sep-
- [16] Navarro, D., 2019. Boletín Epidemiológico N°28-2019. [en línea] Diresacusco.gob.pe. Disponible en: http://www.diresacusco.gob.pe/inteligencia/epidemiologia/boletines/2019/28-2019.pdf. [Accedido: 14 -Sep-
- [17] Ureta, C., 2016. Factores intrínsecos y extrínsecos asociados al nivel de estrés en el personal de enfermeria que labora en la sala de operaciones Clínica San Pablo. [en línea] Repositorio.unac.edu.pe. Disponible

http://repositorio.unac.edu.pe/bitstream/handle/20.500.12952/4578/Torrecillas%20Golac%20v%20Ureta%2 OPOrras%20FCS%202DA%20ESPE%202016.pdf?sequence=4&isAllowed=y. [Accedido 14 -Sep- 2021].

- [18] Zacnich, Á. García and E. García, "Informe de calidad del gasto público en salud 2019", Comexperu.org.pe, 2019. [en línea]. Disponible en: https://www.comexperu.org.pe/upload/articles/reportes/informe-calidad-001.pdf. [Accedido: 13- Sep- 2021]. [19] E. Dominguez and B. Rocos, "Patient Safety Incidents Caused by Poor Quality Surgical Instruments", 2021. [en línea]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687421/. [Accedido: 06-Oct- 2021].
- [20] A. Soto, "Scielo", Barreras para una atención eficaz en los hospitales de referencia del Ministerio de Salud del Perú: atendiendo pacientes en el siglo XXI con recursos del siglo XX, 2019. [en línea]. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci arttext&pid=S1726-46342019000200020. [Accedido: 16-Sep- 2021].
- [21] M. Olivas and N. Taipe, "Manual de procesos y procedimientos del proceso de cirugía pedriátrica", Essalud.gob.pe, 2020. [en línea]. Disponible en: http://www.essalud.gob.pe/transparencia/procesos procedimientos/MPP HNERM Departamento Cirujia Pediatrica.pdf. [Accedido: 15- Sep- 2021].
- [22] Essalud. "Resolución de presidencia ejecutiva N° 283", Essalud.gob.pe, 2010. [en línea]. Disponible en: http://www.essalud.gob.pe/transparencia/pdf/rof/rof GCIn juli 2010.pdf. [Accedido: 13- Sep- 2021].
- [23] M. Estrada and K. Trelles, "Infraestructura y equipamiento de los establecimientos de salud del segundo nivel de atención", Bvs.minsa.gob.pe, 2014. [en línea]. Disponible en: http://bvs.minsa.gob.pe/local/MINSA/3365.pdf. [Accedido: 13- Sep- 2021].
- [24] MINSA, "Actualización de los valores de los indicadores de brecha del sector salud", Minsa.gob.pe, 2021. [en línea]. Disponible en: https://www.minsa.gob.pe/Recursos/OTRANS/08Proyectos/2021/Valores-indicadores-Brecha-Salud3.XLSX [Accedido: 13- Sep- 2021].
- [25] MINSA, "Diagnóstico de brechas de infraestructura y equipamiento del sector salud", Minsa.gob.pe, 2021. [en línea]. Disponible en: https://www.minsa.gob.pe/Recursos/OTRANS/08Proyectos/2021/DIAGNOSTICO-DE-BRECHAS.pdf. [Accedido: 13- Sep- 2021].
- [26] Secretaria General MINSA, "Diagnóstico de brechas de infraestructura o acceso a servicios en el sector salud", 2020. [en línea]. Disponible en: https://www.minsa.gob.pe/Recursos/OTRANS/08Proyectos/2019/Diagnostico-Brechas-Infraestructura-sect or-Salud.pdf. [Accedido: 16- Sep- 2021]
- [27] "Evaluación de tecnologías de salud OPS/OMS | Organización Panamericana de la Salud", Paho.org, 2021. [en línea]. Disponible en: https://www.paho.org/es/temas/evaluacion-tecnologias-salud. [Accedido: 20- Sep- 2021].
- [28] Flagships.iadb.org, 2021. [en línea]. Disponible en: https://flagships.iadb.org/sites/default/files/dia/chapters/Capitulo-8-Un-gasto-eficiente-para-vidas-mas-sanas.pdf. [Accedido: 20- Sep- 2021].
- [29] "OMS | El Perú", *Who.int*, 2021. [en línea]. Disponible en: https://www.who.int/workforcealliance/countries/per/es/. [Acedido: 21- Sep- 2021].
- [30] "PROFESSIONAL MEDICAL PRODUCTS", *Gimaitaly.com*, 2021. [en línea]. Disponible en: https://www.gimaitaly.com/DocumentiGIMA/Manuali/ES/M35132ES.pdf. [Accedido: 24- Sep- 2021]
- [31]Vega, A., 2020. Prototipado de un Sistema de Monitoreo de Signos Vitales Inalámbrico. [en línea] Repositorio.unab.cl. Disponible en:
- sistema_de_2020_tesis.pdf?sequence=1&isAllowed=y[Accedido 24 September 2021].
- [32] Williams, "For the Kids: Managing Medical Equipment in Children's Hospitals", 2021. [en línea]. Disponible
- https://meridian.allenpress.com/bit/article/43/5/360/141400/For-the-Kids-Managing-Medical-Equipment-in. [Accedido: 06- Oct- 2021].
- [33] C. Keene, V. Kong, D. Clarke and P. Brysiewicz, "The effect of the quality of vital sign recording on clinical decision making in a regional acute care trauma ward", 2021. [en línea]. Disponible en: https://www.sciencedirect.com/science/article/pii/S1008127516302577. [Accedido: 06- Oct- 2021].