Université Mohamed Khider Biskra	Probabilités
Faculté des FSENV	$2^{\grave{e}me}$ Année.
Département de Mathématiques	2019/2020.

TD 4: Variables aléatoires et lois de probabilités discrètes

Exercice §1_

Dans une urne \mathcal{U} on dispose de N jetons numérotés de 1 à N. On en tire simultanément n jetons $(n \leq N)$.

- (1) Soit X la variable aléatoire correspondant "au plus grand numéro tiré". Quelle est la loi de probabilité de X.
- (2) Soit Y la variable aléatoire correspondant "au plus petit numéro tiré". Quelle est la loi de probabilité de Y.

Exercice §2 (Loi Bernoulli)_

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. Une variable aléatoire X est dite suivre une loi de Bernoulli lorsque l'ensemble de résultats possibles se réduit à deux évènements élémentaires "Succès" ou "Echec", telle que $X(\Omega) = \{0,1\}$: $\mathbb{P}(X=1) = p$ et $\mathbb{P}(X=0) = 1 - p = q$.

Montrer que $\mathbb{E}(X) = p$, $\mathbb{V}ar(X) = p(1-p) = pq$

Exercice §3 (Loi Binomiale)_

Soit X une variable aléatoire définie par: $k \in \{0, 1, 2, ..., n\}$,

$$\mathbb{P}(X=k) = C_n^k p^k q^{n-k} \quad \text{où} \quad q = 1 - p.$$

- (1) Montrer que $\sum_{k=0}^{n} C_n^k p^k q^{n-k} = 1$. (2) Calculer $\sum_{k=0}^{n} k C_n^k p^k q^{n-k}$, $\sum_{k=0}^{n} k^2 C_n^k p^k q^{n-k}$.
- (3) Déduire que $\mathbb{E}(X) = np$ et $\mathbb{V}ar(X) = npq$

Exercice §4: (Loi géométrique)_

Soit X une variable aléatoire suit une loi géométrique noté par $\mathcal{G}(p)$:

$$k \in \{1, 2, \dots + \infty\}$$
 et $\mathbb{P}(X = k) = pq^{k-1}$.

Montrer que
$$\sum_{k\geq 1} P(X=k) = 1$$
, $\mathbb{E}(X) = \frac{1}{p}$, $\mathbb{V}ar(X) = \frac{q}{p^2}$.

Exercice §5: (Loi de Poisson)_

On dit qu'une variable aléatoire X suit une loi de Poisson, notée $\mathcal{P}(\lambda)$ où $\lambda \geq 0$ si $X(\Omega) = \{0, 1, 2, ..., +\infty\} = \mathbb{N}$ telle que

$$\mathbb{P}(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}.$$

- (1) Montrer que $\sum_{k=0}^{+\infty} \mathbb{P}(X=k) = 1$.
- (2) Montrer que $\mathbb{E}(X) = \lambda$ et la variance $\mathbb{V}ar(X) = \lambda$

Exercice §06:

On lance une pièce de monnaie, bien équilibrée 20 fois de suite. Quelle probabilité d'obtenir: (a) 8 fois face (b) 9 fois face (c) 10 fois face (d) plus de 7 fois (e) moins de 4 fois face

Exercice §07_

Soit Z une variable aleatoire vérifiant a > 0

$$\forall n \in \mathbb{N}^* : \mathbb{P}(Z=n) = \frac{a}{n} \mathbb{P}(Z=n-1).$$

- (1) Exprimer $\mathbb{P}(Z=n)$ en fonction de $\mathbb{P}(Z=0)$.
- (2) Déterminer $\mathbb{P}(Z=0)$ puis déduire $\mathbb{P}(Z=n)$.
- (3) A quelle loi de probabilité usuelle correspond-elle?

Exercice §08-(Loi géomértique)_

On dit que la variable aléatoire discrète X suit une loi géométrique de paramètre $p \in]0,1[$ si X est à valeurs dans \mathbb{N}^* , avec $\mathbb{P}(X=n)=p(1-p)^{n-1}$. Soit $m \in \mathbb{N}$,

- (1) Déterminer $\mathbb{P}(X > m)$.
- (2) Montrer que X vérifie la propriété suivante, dite d'absence de mémoire

$$\forall (m, n) \in \mathbb{N}^2 : \mathbb{P}(X > n + m \mid X > n) = \mathbb{P}(X > m).$$