# Introduction to Data Science with Python

Alexis Bogroff

May 24, 2022

#### Presenter



Alexis Bogroff Lecturer and Mentor in Data Science at Paris 1 Panthéon-Sorbonne, ESILV, Openclassrooms, EM-Lyon

#### Presenter



Alexis Bogroff Lecturer and Mentor in Data Science at Paris 1 Panthéon-Sorbonne, ESILV, Openclassrooms, EM-Lyon

- 4 years Teaching Assistant and lecturer in VBA, Python for finance, SQL, Data Analysis and Data Science
- 9 months Researcher Assistant at Paris 1 Panthéon-Sorbonne within H2020 European Project
- 1 year Data Scientist at Pléiade Asset Management

#### Measures

- Centrality:
  - Goal: representation of the majority's value
  - Mean (average): average age, mean size
  - Median: median salary, median patrimony
- Dispersion:
  - Goal: majority's spread (variation) around the central value
  - Standard deviation (sqrt variance): financial markets volatility
  - Interquartile Range (IQR)
  - Min-Max: job proposal salary



#### Pandas - Mean

- Sensible to extreme values
  - Age: good representation
  - Patrimony: biased, not representative

$$mean = \frac{x_1 + x_2 + \dots + x_n}{n}$$

| name | age | group | country | patrimony |
|------|-----|-------|---------|-----------|
|      | 25  |       |         | 3000      |
| ma   | 36  |       | gb      | 7000      |
|      | 40  |       | gb      | 2000      |
|      |     |       |         | 60000     |
| na   | 25  |       | es      | 8000000   |
| pe   | 40  |       |         | 4000      |
|      |     |       |         |           |

#### Pandas - Median

- Insensitive to extreme values
  - Age: good representation
  - Patrimony: good representation of the majority

#### Order values, then:

$$median = \frac{x_{center_2} - x_{center_1}}{2}$$

| name | age | group | country | patrimony |
|------|-----|-------|---------|-----------|
|      | 25  |       |         | 3000      |
| ma   | 36  |       | gb      | 7000      |
|      | 40  |       | gb      | 2000      |
|      | 18  |       |         | 60000     |
| na   | 25  |       | es      | 8000000   |
| ре   | 40  |       |         | 4000      |
|      |     |       |         |           |

```
median_age = df['age'].median()
int(median_age)

< 0.2s

30

median_patrimony = df['patrimony'].median()
int(median_patrimony)

< 0.2s

5500</pre>
```

# Pandas - Standard Deviation (std)

- Sensible to extreme values
- In the unit of the varaible
- Interpretable
  - Age: good representation
  - Patrimony: Patrimony: biased, not representative

$$\overline{x} = mean(values)$$

$$std = \sqrt{\frac{(x_1 - \overline{x}) + ... + (x_n - \overline{x})}{n}}$$

| name | age | group | country | patrimony |
|------|-----|-------|---------|-----------|
|      | 25  |       |         | 3000      |
| ma   | 36  |       | gb      | 7000      |
|      | 40  |       | gb      | 2000      |
|      | 18  |       |         | 60000     |
| na   | 25  |       | es      | 8000000   |
| ре   | 40  |       |         | 4000      |
|      |     |       |         |           |

```
median_age = df['age'].median()
int(median_age)

< 0.2s
30

median_patrimony = df['patrimony'].median()
int(median_patrimony)

< 0.2s
5500</pre>
```

# Pandas - Interquartile Range (iqr)

- Insensitive to extreme values
- In the unit of the varaible
- Interpretable
  - Age: good representation
  - Patrimony: quite good representation

 $iqr = 3rd\_quantile - 1st\_quantile$ 



```
igr age = df temp['age'].guantile(.75) \
           - df temp['age'].guantile(.25)
   int(igr age)
   iqr_patrimony = df_temp['patrimony'].quantile(.75) \
                   - df temp['patrimony'].quantile(.25)
   int(igr patrimony)
 ✓ 0.5s
3000
   print(int(df temp['patrimony'].quantile(.25)))
   print(int(df_temp['patrimony'].quantile(.75)))
 √ 0.4s
4000
```

<sup>&</sup>lt;sup>1</sup>Quantile values 1st: 25%, 2nd: 50%, 3rd: 75% - after ordering → ⟨፮⟩ ⋅ ፮ ⋅ ୬ ⋅ ος

#### Pandas - Min Max

- Sensible to extreme values
- In the unit of the variable
- Interpretable
- Easy to compute
- Idea of max range

min-max = max(values)-min(values)



# Patterns Analysis

- Univariate Analysis
  - Time Series
    - Trend
    - Seasonality
    - Auto-correlation
  - Other quantitative variables
  - Qualitative variables
- Multivariate Analysis (between variables)
  - Quantitative variables
    - Linear
    - Non-Linear
  - Qualitative variables

- Time Series
  - Generate plot using Pandas DataFrame method



|            | revenue |
|------------|---------|
| date       |         |
| 2021-01-01 | 12000   |
| 2021-02-01 | 13000   |
| 2021-03-01 | 13000   |
| 2021-04-01 | 13000   |
| 2021-05-01 | 18000   |
| 2021-06-01 | 19000   |
| 2021-07-01 | 21000   |
| 2021-08-01 | 23000   |
| 2021-09-01 | 18000   |
| 2021-10-01 | 13000   |
| 2021-11-01 | 13000   |
| 2021-12-01 | 13000   |
| 2022-01-01 | 12000   |
| 2022-02-01 | 13000   |
| 2022-03-01 | 13000   |
| 2022-04-01 | 13000   |
| 2022-05-01 | 18000   |
| 2022-06-01 | 19000   |
| 2022-07-01 | 21000   |
| 2022-08-01 | 23000   |
| 2022-09-01 | 20000   |
| 2022-10-01 | 20000   |
| 2022-11-01 | 21000   |
| 2022-12-01 | 20000   |
|            |         |

- Time Series
  - Compute overall trend



#### Time Series

- Compute rolling mean
  - Get trend along time
  - Smoothen curve, easier to read
  - + info vs overall trend
  - Delay first dates





- Time Series
  - Autocorrelogram
    - Correlation between dates (lags)



```
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
√ 0.4s
  plot_acf(df_time['revenue'])
   0.6s
                        Autocorrelation
 1.00
 0.75
 0.50
 0.25
 0.00
-0.25
-0.50
-0.75
                                             12
```

- Other quantitative variables
  - Descriptive statistics





- Other quantitative variables
  - Histogram
    - Overview
    - Extreme values
    - All information

|   | transaction | price |
|---|-------------|-------|
|   | transac_olp | 15    |
|   | transac_ixh |       |
|   | transac_qkh | 20    |
|   | transac_qlz | 20    |
| 4 | transac_mal | 19    |
|   | transac_fjh |       |
| 6 | transac_rdn | 20    |
|   | transac_oaj | 20    |
| 8 | transac_taz | 23    |
|   | transac_tgs |       |
|   |             |       |



- Other quantitative variables
  - Boxplot
    - Overview
    - Extreme values
    - Contracted information
    - Quartiles
    - Outliers (seaborn)

|   | transaction | price |
|---|-------------|-------|
|   | transac_olp | 15    |
|   | transac_ixh |       |
|   | transac_qkh | 20    |
|   | transac_qlz | 20    |
| 4 | transac_mal | 19    |
|   | transac_fjh |       |
| 6 | transac_rdn | 20    |
|   | transac_oaj | 20    |
| 8 | transac_taz | 23    |
|   | transac_tgs |       |
|   |             |       |



- Qualitative variables
  - Information on categories

|   | transaction | client_type |
|---|-------------|-------------|
| 0 | transac_olp | veggie      |
| 1 | transac_ixh | veggie      |
| 2 | transac_qkh | vegan       |
| 3 | transac_qlz | omnivorous  |
| 4 | transac_mal | vegan       |
| 5 | transac_fjh | veggie      |
| 6 | transac_rdn | veggie      |
| 7 | transac_oaj | omnivorous  |
| 8 | transac_taz | vegan       |
| 9 | transac_tgs | veggie      |

- Qualitative variables
  - Bar plot
    - Overview
    - Ordinal variables: (small, medium, large companies)

|   | transaction | client_type |
|---|-------------|-------------|
|   | transac_olp | veggie      |
|   | transac_ixh | veggie      |
|   | transac_qkh | vegan       |
|   | transac_qlz | omnivorous  |
| 4 | transac_mal | vegan       |
|   | transac_fjh | veggie      |
| 6 | transac_rdn | veggie      |
|   | transac_oaj | omnivorous  |
| 8 | transac_taz | vegan       |
| 9 | transac_tgs | veggie      |



- Quantitative variables with linear relation
  - Scatter plot
  - Linear regression
  - Relation / link

|   | rain | temperature |
|---|------|-------------|
|   | 120  | 15          |
|   | 120  | 17          |
|   | 80   | 20          |
|   |      | 20          |
| 4 | 50   | 19          |
|   | 100  | 17          |
| 6 |      | 20          |
|   |      | 20          |
| 8 |      | 23          |
| 9 | 150  | 17          |
|   |      |             |

```
import seaborn as sns
   sns.regplot(x='rain', y='temperature', data=df_multi_quanti)
   0.1s
:AxesSubplot:xlabel='rain', ylabel='temperature'>
  22
temperature
81
  16
                                             120
                                                    140
```

- Quantitative variables with linear relation
  - Bar plot raw data
  - More interesting when Time Series (not here)

|   | rain  | temperature |
|---|-------|-------------|
|   | Talli | temperature |
|   | 120   | 15          |
|   | 120   | 17          |
|   | 80    | 20          |
|   |       | 20          |
| 4 | 50    | 19          |
|   | 100   | 17          |
| 6 |       | 20          |
|   |       | 20          |
| 8 |       | 23          |
| 9 | 150   | 17          |
|   |       |             |



- Quantitative variables with linear relation
  - Correlation matrix
  - Pearson correlation (linear)
  - Symetric matrix

| 0 120 15<br>1 120 17<br>2 80 20<br>3 0 20<br>4 50 19<br>5 100 17<br>6 0 20<br>7 0 20<br>8 0 23 |   | rain | temperature |
|------------------------------------------------------------------------------------------------|---|------|-------------|
| 2 80 20<br>3 0 20<br>4 50 19<br>5 100 17<br>6 0 20<br>7 0 20<br>8 0 23                         |   | 120  | 15          |
| 3 0 20<br>4 50 19<br>5 100 17<br>6 0 20<br>7 0 20<br>8 0 23                                    |   | 120  | 17          |
| 4 50 19<br>5 100 17<br>6 0 20<br>7 0 20<br>8 0 23                                              |   | 80   | 20          |
| 5 100 17<br>6 0 20<br>7 0 20<br>8 0 23                                                         |   |      | 20          |
| 6 0 20<br>7 0 20<br>8 0 23                                                                     | 4 | 50   | 19          |
| 7 0 20<br>8 0 23                                                                               |   | 100  | 17          |
| 8 0 23                                                                                         | 6 |      | 20          |
|                                                                                                |   |      | 20          |
| 0 450 47                                                                                       | 8 |      | 23          |
| 9 150 17                                                                                       |   | 150  | 17          |



- Quantitative variables with linear relation
  - Pairplot: Histograms and scatter plots
  - Very useful for +3 variables

|   | rain | temperature |
|---|------|-------------|
|   | 120  | 15          |
|   | 120  | 17          |
|   | 80   | 20          |
|   |      | 20          |
| 4 | 50   | 19          |
|   | 100  | 17          |
| 6 |      | 20          |
|   |      | 20          |
| 8 |      | 23          |
|   | 150  | 17          |



- Quantitative variables with linear relation
  - Groupby
  - Aggregation functions: mean, max, std, etc.
  - Groups: type of clients, of investments, etc.
  - Less information, more lisibility

| rain | temperature                             |
|------|-----------------------------------------|
| 120  | 15                                      |
| 120  | 17                                      |
| 80   | 20                                      |
|      | 20                                      |
| 50   | 19                                      |
| 100  | 17                                      |
|      | 20                                      |
|      | 20                                      |
|      | 23                                      |
| 150  | 17                                      |
|      | 120<br>120<br>80<br>0<br>50<br>100<br>0 |



- Quantitative variables with linear relation
  - Bar plot
  - Here based on grouped data
  - Complementary to raw data bar plot

|   | rain | temperature |
|---|------|-------------|
|   | 120  | 15          |
|   | 120  | 17          |
|   | 80   | 20          |
|   |      | 20          |
| 4 | 50   | 19          |
|   | 100  | 17          |
| 6 |      | 20          |
|   |      | 20          |
| 8 |      | 23          |
| 9 | 150  | 17          |
|   |      |             |



- Quantitative variables with non-linear relation
  - Scatter plot
  - Linear regression misleading

|   | age | salary |
|---|-----|--------|
| 0 | 17  | 600    |
| 1 | 19  | 600    |
| 2 | 21  | 600    |
| 3 | 45  | 2500   |
| 4 | 38  | 2500   |
| 5 | 55  | 2500   |
| 6 | 19  | 800    |
| 7 | 32  | 2500   |
| 8 | 23  | 850    |
| 9 | 23  | 850    |
|   |     |        |



- Quantitative variables with non-linear relation
  - Correlation matrix
  - Pearson correlation (linear) also misleading





- Quantitative variables with non-linear relation
  - Correlation matrix
  - Spearman correlation (non-linear) instead
  - Rank based correlation

| _ |     |        |
|---|-----|--------|
|   | age | salary |
| 0 | 17  | 600    |
| 1 | 19  | 600    |
| 2 | 21  | 600    |
| 3 | 45  | 2500   |
| 4 | 38  | 2500   |
| 5 | 55  | 2500   |
| 6 | 19  | 800    |
| 7 | 32  | 2500   |
| 8 | 23  | 850    |
| 9 | 23  | 850    |

```
from scipy import stats
stats.spearmanr(df_multi_quanti_non_linear)

v 0.2s

SpearmanrResult(correlation=0.9209224503231543, pvalue=0.0001553715621233412)
```

- Quantitative variables with non-linear relation
  - Pairplot
  - Different regims well separated?

|   | age | salary |
|---|-----|--------|
| 0 | 17  | 600    |
| 1 | 19  | 600    |
| 2 | 21  | 600    |
| 3 | 45  | 2500   |
| 4 | 38  | 2500   |
| 5 | 55  | 2500   |
| 6 | 19  | 800    |
| 7 | 32  | 2500   |
| 8 | 23  | 850    |
| 9 | 23  | 850    |
|   |     |        |



- Quantitative variables with non-linear relation
  - Analyse regimes relations separatly

|   | age | salary |
|---|-----|--------|
| 0 | 17  | 600    |
| 1 | 19  | 600    |
| 2 | 21  | 600    |
| 3 | 45  | 2500   |
| 4 | 38  | 2500   |
| 5 | 55  | 2500   |
| 6 | 19  | 800    |
| 7 | 32  | 2500   |
| 8 | 23  | 850    |
| 9 | 23  | 850    |
|   |     |        |



- Quantitative variables with non-linear relation
  - Analyse regimes correlations separatly

|   | age | salary |
|---|-----|--------|
| 0 | 17  | 600    |
| 1 | 19  | 600    |
| 2 | 21  | 600    |
| 3 | 45  | 2500   |
| 4 | 38  | 2500   |
| 5 | 55  | 2500   |
| 6 | 19  | 800    |
| 7 | 32  | 2500   |
| 8 | 23  | 850    |
| 9 | 23  | 850    |



- Qualitative variables
  - Counts
  - Proportions on pie chart

| city        | sweat_size                                                                |
|-------------|---------------------------------------------------------------------------|
| paris       | М                                                                         |
| marseille   | S                                                                         |
| lyon        | М                                                                         |
| marseille   | S                                                                         |
| paris       | М                                                                         |
| marseille   | S                                                                         |
| bordeaux    | XS                                                                        |
| montpellier | М                                                                         |
| paris       | М                                                                         |
| paris       | М                                                                         |
|             | paris marseille lyon marseille paris marseille bordeaux montpellier paris |





(bordeaux, XS)



- Qualitative variables
  - Vizualize modalities separately

|   | city        | sweat_size |
|---|-------------|------------|
| 0 | paris       | М          |
|   | marseille   | s          |
| 2 | lyon        | М          |
|   | marseille   | s          |
| 4 | paris       | М          |
|   | marseille   | s          |
| 6 | bordeaux    | xs         |
|   | montpellier | М          |
| 8 | paris       | М          |
| 9 | paris       | М          |





- Qualitative variables
  - Counts on group by

|   | city        | sweat_size |
|---|-------------|------------|
| 0 | paris       | М          |
|   | marseille   |            |
| 2 | lyon        | М          |
|   | marseille   |            |
| 4 | paris       | М          |
|   | marseille   |            |
| 6 | bordeaux    | XS         |
|   | montpellier | М          |
| 8 | paris       | М          |
| 9 | paris       | М          |
|   |             |            |







#### <AxesSubplot:ylabel='city'>



- Qualitative variables
  - Counts on group by

|   | city        | sweat_size |
|---|-------------|------------|
| 0 | paris       | М          |
|   | marseille   | s          |
| 2 | lyon        | М          |
|   | marseille   | s          |
| 4 | paris       | М          |
|   | marseille   | s          |
| 6 | bordeaux    | xs         |
|   | montpellier | М          |
| 8 | paris       | М          |
| 9 | paris       | М          |

```
from scipy.stats import chi2 contingency
   crosstab = pd.crosstab(df_multi_quali['city'], df_multi_quali['sweat_size'])
   crosstab
 / 049
sweat size M S XS
       city
  bordeaux
   marseille
 montpellier
      paris
            4 0
   results = chi2_contingency(crosstab)
   print('pvalue', results[1])
 √ 0.2s
pvalue 0.010336050675925726
```

- Quantitative with qualitative variable
  - Boxplot
  - Quality of separation between modalities

|   | age_company_months | default |
|---|--------------------|---------|
| 0 | 13                 |         |
|   | 100                |         |
|   | 90                 |         |
|   | 300                |         |
| 4 | 12                 |         |
|   | 20                 |         |
| 6 | 500                |         |
|   | 40                 |         |
| 8 |                    | 1       |
|   | 250                | 0       |



- Quantitative with qualitative variable
  - Statistical test ANOVA
  - Correlation



```
from statsmodels.formula.api import ols
  from statsmodels.api import stats
  model = ols('default ~ age_company_months', data=df_multi_quanti_quali).fit()
  anova table = stats.anova lm(model)
  anova table
   0.3s
                    df
                          sum_sq
                                  mean_sq
                                                         PR(>F)
age_company_months
                         0.715502
                                   0.715502
                                                       0.076463
           Residual
                    8.0 1.384498 0.173062
                                                 NaN
                                                           NaN
```

#### Correlation

- Move repetitively in conjunction
- Methods
  - Pearson
  - Spearman (Rank)
- Spurious correlation (ice cream, Eiffel Tower)



50 75 100

#### Statistical Laws

- Normal Law / Gauss Curve
  - Totally resumed by mean and variance
  - Constant mean (0 if centered) and variance (1 if reduced)
  - Uncorrelated individuals
  - Symetric (Skewness=0)
  - Precise bell shape (Kurtosis=3)



#### Statistical Laws

- Power Laws: multiplicative growth
- Examples:
  - Normal: human age, size, weight, grades
  - Power: lakes size, wealth



#### Statistical Tests

- Intention: prevent sampling error
- Hypothesis (Normal Law)
- Examples:
  - Normality test
  - ANOVA
  - Pearson's r
  - Chi square



