Sensor Location Optimisation using Gaussian Processes

A Graphical Overview

V : All Points

0	0	0		0		0		0		0	0	0
0		0		0		0		0		0		0
				0	0	0	0	0				
0	0		0	0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0			
0	0	0	0	0	0		0	0	0	0	0	0
			0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0		0	0	0
				0	0		0	0				
0	0	0		0		0		0		0	0	0
0	0	0		0		0		0		0	0	0

V: All Points

A: Sensors

V: All Points

A : Sensors

y: Sensor candidate

V : All Points

A: Sensors

y : Sensor candidate

A : Rest of the locations

Gain in Mutual Information:

 $MI(A + y) - MI(A) = H(y | A) - H(y | \tilde{A})$

 $=> Cov(y|A)/Cov(y|\tilde{A})$

Cov(y | A) and Cov(y | A) are obtained via GPs

V : All Points

A: Sensors

y: Sensor candidate

A : Rest of the locations

lacktriangle U : Pseudo Inputs for Sparse P representation of $\tilde{\mathbf{A}}$

Small Scale Numpy and GPy give consistent results Using Isotropic/ Stationary Kernels. (numpy and GPy) Using Isotropic/ Stationary Kernels. (numpy and GPy)

Roadmap Sensors GP Project

Focus on Covariance Estimation?
Or Scalable GPs with simpler covariance