FUNDAMENTALS OF MACHINE LEARNING

AA 2022-2023

Prova Intermedia (FACSIMILE)

3 Novembre, 2022

Istruzioni: Niente libri, niente appunti, niente dispositivi elettronici, e niente carta per appunti. Usare matita o penna di qualsiasi colore. Usare lo spazio fornito per le risposte. Instructions: No books, no notes, no electronic devices, and no scratch paper. Use pen or pencil. Use the space provided for your answers.

This exam has 5 questions, for a total of 100 points and 10 bonus points.

1.

2.

Nome: Matricola: Multiple Choice: Select the correct answer from the list of choices.			
			(a) [5 points] True or False: Using the kernel trick, we can get non-linear decision boundaries using algorithms designed originally for linear models. \bigcirc True \bigcirc False
			(b) [5 points] True or False: A zero-mean Gaussian Prior (i.e. $p(\mathbf{w}) = \mathcal{N}(0, \sigma I)$) on model parameters in a MAP estimate corresponds to adding an L2 regularization term (e.g. $ \mathbf{w} _2$) to the loss in an MLE estimate. \bigcirc True \bigcirc False
(c) [5 points] True or False: In the Primal Form of the SVM, increasing hyperparameter C will decrease the complexity of the resulting classifier. \bigcirc True \bigcirc False			
(d) [5 points] True or False: The Maximum a Priori and Maximum likelihood solution for linear regression are always equivalent. \bigcirc True \bigcirc False			
(e) [5 points] If a hard-margin support vector machine tries to minimize $ \mathbf{w} _2$ subject to $y_n(\mathbf{w}^T\mathbf{x}_n+b) \geq 2$, what will be the size of the margin? $\bigcirc \frac{1}{ \mathbf{w} } \bigcirc \frac{2}{ \mathbf{w} } \bigcirc \frac{1}{2 \mathbf{w} } \bigcirc \frac{1}{4 \mathbf{w} }$			
$C = \mathbf{w} = C = 2 \mathbf{w} = C = 4 \mathbf{w} $ (f) [5 points] The posterior distribution of B given A is:			
$\bigcirc P(B \mid A) = \frac{P(A \mid B) P(A)}{P(B)}$			
$\bigcirc P(B \mid A) = \frac{P(A,B)P(B)}{P(A)}$			
$\bigcirc P(B \mid A) = \frac{P(A B)P(B)}{P(A)}$			
$ \bigcirc P(B \mid A) = \frac{P(A \mid B) P(B)}{P(A \mid B)} $			
$\bigcirc P(B \mid A) = \frac{P(A B)P(B)}{P(A,B)}$			
(g) [5 points] Let \mathbf{w}^* be the solution obtained using unregularized least-squares regression. What solution will you obtain is you scale all input features by a factor of c before solving? $\bigcirc c\mathbf{w}^* \bigcirc c^2\mathbf{w}^* \bigcirc \frac{1}{c^2}\mathbf{w}^* \bigcirc \frac{1}{c}\mathbf{w}^*$			
·			
Multiple Answer Select ALL correct choices: there may be more than one correct choice, but there is always at least one correct choice.			
(a) [5 points] What are support vectors?			
\bigcirc The examples \mathbf{x}_n from the training set required to compute the decision function $f(\mathbf{x})$ in an SVM.			
○ The class means.			
The training samples farthest from the decision boundary.			
O The training samples \mathbf{x}_n that are on the margin (i.e. $y_n f(\mathbf{x}_n) = 1$).			

(b)		Which of the following are true about the relationship between the MAP and MLE estimators regression?
		They are equal if $p(\mathbf{w}) = 1$
	\bigcirc	They are equal if $p(\mathbf{w}) = \mathcal{N}(0, \sigma)$ for very small σ .
	\circ	They are never equal.
	\circ	They are equal in the limit of infinite training samples.
(c)		You train a linear classifier on 10,000 training points and discover that the training accuracy 7%. Which of the following, done in isolation, has a good chance of improving your training
		Add novel features.
		Train on more data.
		Train on less data
	_	Regularize the model
(d)	_	In a soft-margin support vector machine, if we increase C , which of the following are likely
	\bigcirc	The margin will grow wider.
	\bigcirc	Most nonzero slack variables will decrease.
	\bigcirc	$ \mathbf{w} _2$ will grow larger.
	\circ	There will be more points inside the margin.
(e)	[5 points] the bias?	Which of the following are reasons why you might adjust your model in ways that increase
	\bigcirc	You observe high training error and high validation error.
	\bigcirc	You have few data points.
	\bigcirc	You observe low training error and high validation error.
	\circ	Your data are not linearly separable.
(f)		Which of the following are true of polynomial regression (i.e. least squares regression with al basis mapping)?
	\bigcirc	If we increase the degree of polynomial, we increase variance.
	\bigcirc	The regression function is nonlinear in the model parameters.
	\bigcirc	The regression function is linear in the original input variables.
	\circ	If we increase the degree of polynomial, we decrease bias.
(g)	[5 points]	Which of the following classifiers can be used on non linearly separable datasets?
	\bigcirc	The hard margin SVM.
	\bigcirc	Logistic regression.
	\bigcirc	The linear generative Bayes classifiers.
	\bigcirc	Fisher's Linear Discriminant.
		Total Question 2: 3
		sume the class conditional distributions for a two-class classification problem are $p(\mathbf{x} \mid \mathcal{C}_1) =$ and $p(\mathbf{x} \mid \mathcal{C}_2) = \mathcal{N}(\boldsymbol{\mu}_2, \beta^{-1}I)$. Show that the optimal decision boundary is <i>linear</i> , i.e. that it

35

can be written as $H = \{\mathbf{x} \mid \mathbf{w}^T \mathbf{x} + b = 0\}$ for some \mathbf{w} and b.

Hint: Remember that points \mathbf{x} on the optimal decision boundary will satisfy $p(\mathbf{x} \mid \mathcal{C}_1) = p(\mathbf{x} \mid \mathcal{C}_1)$, and that the formula for the multivariate Gaussian density is:

$$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\}$$

4. [15 points] Assume we have a training set of only two points (one from each class):

$$\mathcal{D} = \{([0,0],-1),([2,0],+1)\}$$

Solve for the optimal hard margin primal SVM parameters \mathbf{w} and b for this dataset.

5. [10 points (bonus)] Write the primal SVM objective as an empirical risk minimization problem over a linearly separable dataset $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$. Show that any \mathbf{w} and b minimizing this empirical risk is also a solution to the standard hard-margin SVM objective with constraints.