Algebra z geometrią - zadania na ćwiczenia seria 4

Zadania "obowiązkowe":

1. Niech fbędzie bazą przestrzeni $V=\mathbb{R}^3.$ Znajdź elementy bazy dualnej f^* przestrzeni $V^*,$ jeśli

a) $f_1 = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$, $f_2 = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix}$, $f_3 = \begin{bmatrix} \frac{1}{1} \\ \frac{1}{1} \end{bmatrix}$; b) $f_1 = \begin{bmatrix} \frac{1}{0} \\ \frac{1}{1} \end{bmatrix}$, $f_2 = \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}$, $f_3 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$;

- 2. Sprawdzić, że $V:=\mathbb{R}^4$ jest sumą prostą podprzestrzeni V_1 i V_2 . Znaleźć odpowiadające temu rozkładowi rzuty P_1 na V_1 oraz P_2 na V_2 , jeśli
 - (a) $V_1 = \ker \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 3 & 1 & -1 \end{bmatrix}$, $V_2 = \operatorname{Im} \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ 1 & 0 \\ -1 & 2 \end{bmatrix}$;
 - (b) $V_1 = \operatorname{Im} \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 3 & 1 & 2 \end{bmatrix}$, $V_2 = \operatorname{Im} \begin{bmatrix} 1 & 1 & 3 \\ 1 & 2 & 2 \\ 1 & 3 & 1 \\ 0 & 1 & -1 \end{bmatrix}$.
- 3. Niech $V = \mathbb{R}_3[\,\cdot\,]$, określmy formy liniowe $\phi_1, \phi_2, \phi_3, \phi_4 \in V^*$ wzorami

$$\phi_1(v) := v(1), \ \phi_2(v) := v(2), \ \phi_3(v) := v(0), \ \phi_4(v) := \dot{v}(0).$$

- a) Znaleźć bazę e_1, e_2, e_3, e_4 przestrzeni V dualną do $\phi_1, \phi_2, \phi_3, \phi_4$.
- b) Znaleźć rozkład $w \in V$ w bazie e_1, e_2, e_3, e_4 jeśli $w(t) := t^3 + 2t^2$.
- c) Znaleźć rozkład $\psi \in V^*$ w bazie $\phi_1, \phi_2, \phi_3, \phi_4$ jeśli $\psi(v) := v(-2)$.
- d) Przedstawić $D^*\phi_4$ jako kombinację liniową $\phi_1, \phi_2, \phi_3, \phi_4$, jeśli $D \in \text{End}(V)$ jest operatorem różniczkowania: $D(v) := \dot{v}$.
- 4. W przestrzeni \mathbb{R}^3 dane sa formy dwuliniowe:
 - (a) $b(\vec{x}, \vec{y}) = x_1y_1 + 4x_2y_1 x_3y_3$
 - (b) $b(\vec{x}, \vec{y}) = x_1y_1 + 2x_1y_2 + 5x_2y_2 4x_2y_3$

Znaleźć macierze tych form w bazie standardowej w \mathbb{R}^3 oraz rozkłady na sumę formy symetrycznej i antysymetrycznej. Następnie znaleźć formy kwadratowe odpowiadające powyższym formom dwuliniowym.

Zadania "rezerwowe" - w razie jakby było "obowiązkowych" za mało:

1. Macierz odwzorowania $T \in \operatorname{End}(\mathbb{R}^4)$ w bazie standardowej dana jest wzorem:

$$T = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 6 & -1 & 0 & -3 \\ 3 & 0 & 2 & 0 \\ -6 & 0 & 0 & 2 \end{bmatrix}$$

- (a) Sprawdzić, że jej wielomian charakterystyczny T to $\omega_T(\lambda) = (\lambda + 1)^2 (\lambda 2)^2$.
- (b) Znaleźć wartości własne i wektory własne T.
- (c) Znaleźć macierz Q, taką że $T=QDQ^{-1}$, gdzie D jest macierzą diagonalną (zdiagonalizować T).
- (d) Znaleźć rozkład \mathbb{R}^4 na sumę prostą dwóch podprzestrzeni własnych T.
- 2. Znaleźć macierz formy kwadratowej Q w bazie $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$, jeśli forma $Q \colon \mathbb{R}^3 \to \mathbb{R}$ dana jest wzorem:

1

(a)
$$Q(\vec{x}) = x_1^2 + x_2^2 - x_3^2 + 2x_1x_2 - x_2x_3$$

- 3. Niech $V := \mathbb{R}_2[\,\cdot\,]$. Sprawdzić, że $Q \colon V \to \mathbb{R}$, $Q(w) := \int_0^1 w(t^2) \dot{w}(1-t) dt$ jest formą kwadratową. Obliczyć b(u,v), jeśli $u(t) = (t+2)^2$, $v(t) = (t-2)^2$, gdzie b jest symetryczną formą dwuliniową odpowiadającą Q. Znaleźć macierz $[Q]_e$ formy Q w bazie jednomianów $1,t,t^2$.
- 4. Sprawdzić, że baza dualna do bazy $e=(1,x,\frac{x^2}{2},\ldots,\frac{x^n}{n!})$ w $\mathbb{R}_n[x]$ jest dana przez $e_k^*(w)=w^{(k)}(0)$ dla $k=1,\ldots,n$. Uzasadnić, że $w=\sum_{k=0}^n w^{(k)}(0)\frac{x^k}{k!}$ (wzór Taylora dla wielomianów).
- 5. Znaleźć współrzędne formy liniowej $\phi \in (\mathbb{R}^3)^*$ w bazie f^* , gdzie $f = (e_1 + e_2 e_3, 3e_1 e_2, -2e_2 + e_3)$ jest bazą w \mathbb{R}^3 , jeśli

a)
$$\phi(x) = x_1 + x_2 + x_3$$
; b) $\phi(x) = 2x_1 - x_2 - x_3$; c) $\phi(x) = 2x_1 - 2x_2 + 3x_3$;

6. Niech $V=\mathbb{R}^3$. Sprawdzić, że $\phi_1,\phi_2,\phi_3\in V^*$ dane wzorem $\phi_k(x)=-x_1+2x_2+x_3-kx_k$, gdzie k=1,2,3 są liniowo niezależne. Znaleźć macierz F^* w tej bazie, jeśli $F\colon V\to V$ dane jest wzorem

a)
$$F\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ x_1 \end{bmatrix}$$
, b) $F\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_1 + x_2 \\ 2x_2 + x_3 \\ x_1 - 3x_2 - 2x_3 \end{bmatrix}$.

7. Operator $F \in L(\mathbb{R}^{n+1}, \mathbb{R}_n[\,\cdot\,])$ zdefiniowany jest następująco:

$$(F(x))(t) := x_0 + x_1 t + x_2 t^2 + \dots + x_n t^n \text{ dla } x = \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1}.$$

Znaleźć $F^*(\phi) \in (\mathbb{R}^{n+1})^* = \mathbb{R}_{n+1}$, jeśli $\phi \in \mathbb{R}_n[\cdot]^*$ jest formą określoną wzorem:

a)
$$\langle \phi, v \rangle := v(2)$$
, b) $\langle \phi, v \rangle := v(-t_0)$, c) $\langle \phi, v \rangle := t_0 v'(2t_0)$, d) $\langle \phi, v \rangle := \int_0^b v(t) dt$

8. W przestrzeni \mathbb{R}^3 dane są formy dwuliniowe:

(a)
$$b(\vec{x}, \vec{y}) = 3x_1y_1 + x_1y_2 - 2x_2y_3$$

(b)
$$b(\vec{x}, \vec{y}) = 4x_1y_1 - 2x_1y_2 - 2x_2y_1 + 8x_2y_2$$

Znaleźć macierze tych form w bazie standardowej w \mathbb{R}^3 oraz rozkłady na sumę formy symetrycznej i antysymetrycznej. Następnie znaleźć formy kwadratowe odpowiadające powyższym formom dwuliniowym.

9. Znaleźć macierz formy kwadratowej Q w bazie $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$, jeśli forma $Q \colon \mathbb{R}^3 \to \mathbb{R}$ dana jest wzorem:

(a)
$$Q(\vec{x}) = x_1^2 + x_2^2 + 4x_3^2 + 2x_1x_2 + 6x_2x_3 + 4x_1x_3$$

(b)
$$Q(\vec{x}) = x_1x_2 - 4x_1x_3 + 3x_2x_3$$