Descriptive Statistics 3

Hand Calculations

Dr. Gordon Wright

Hand Calculations of Measures of Central Tendency and Variability

Part 1: Calculating the Mean and Standard Deviation of the data set $\{1, 2, 3, 4, 5\}$

Step 1: Calculate the Mean

The formula for the mean (\bar{x}) is:

$$\bar{x} = \frac{\sum X}{N}$$

Where: - X represents each value in the dataset - N is the number of values

Data Set: 1, 2, 3, 4, 5

$$x = \frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$$

Step 2: Calculate the Deviations from the Mean

Subtract the mean from each value: -(1-3) = -2 - (2-3) = -1 - (3-3) = 0 - (4-3) = 1 - (5-3) = 2

Step 3: Square the Deviations

$$(-2)^2 = 4$$
, $(-1)^2 = 1$, $(0)^2 = 0$, $1^2 = 1$, $2^2 = 4$

Step 4: Calculate the Variance

The formula for variance (s^2) is:

$$s^2 = \frac{\sum (X - x)^2}{N}$$

Sum of squared deviations:

$$4+1+0+1+4=10$$

$$s^2 = \frac{10}{5} = 2$$

Step 5: Calculate the Standard Deviation

The formula for the standard deviation (s) is:

$$s = \sqrt{s^2} = \sqrt{2} \approx 1.41$$

Part 2: Calculating the Mean and Standard Deviation of the data set $\{5, 4, 3, 4, 5\}$

Step 1: Calculate the Mean

$$\bar{x} = \frac{5+4+3+4+5}{5} = \frac{21}{5} = 4.2$$

Step 2: Calculate the Deviations from the Mean

- (5 4.2) = 0.8
- (4 4.2) = -0.2
- (3 4.2) = -1.2
- (4 4.2) = -0.2
- (5 4.2) = 0.8

Step 3: Square the Deviations

$$(0.8)^2 = 0.64$$
, $(-0.2)^2 = 0.04$, $(-1.2)^2 = 1.44$, $(-0.2)^2 = 0.04$, $(0.8)^2 = 0.64$

Step 4: Calculate the Variance

$$\sum = 0.64 + 0.04 + 1.44 + 0.04 + 0.64 = 2.8$$

$$s^2 = \frac{2.8}{5} = 0.56$$

Step 5: Calculate the Standard Deviation

$$s = \sqrt{0.56} \approx 0.75$$

Summary:

- Mean and Standard Deviation for $\{1, 2, 3, 4, 5\}$:
 - Mean = 3, Standard Deviation 1.41
- Mean and Standard Deviation for $\{5, 4, 3, 4, 5\}$:
 - $\ \mathrm{Mean} = 4.2, \, \mathrm{Standard \ Deviation} \quad 0.75$