Rajiv Gandhi Institute of Petroleum Technology BTP- II PRESENTATION

FLOW ASSURANCE USING OLGA SOFTWARE

PETROLEUM ENGINEERING & GEO ENGINEERING DEPARTMENT

SUBMITTED BY
RITESH RAGHUVANSHI - 20PE3035
MANOJ KUMAR L M - 20PE3018

DR. SHAILESH KUMAR

OVERVIEW

- 1. INTRODUCTION
- 2. ABOUT SOFTWARE
- 3. ANALYSIS
 - I. CHEMICAL COMPOSITION
 II. MULTIPHASE FLOW
 III. THERMAL EFFECTS
- 4. INPUT TOOLS & FUNCTIONS
- 5. CASES
- 6. OBSERVATION
- 7. IMPROVEMENTS & SCOPE

CASE 1 - NO WAX DEPOSITION + VERTICAL PIPE

- SUB CASE I FLOWLINE UNDER SOIL
- SUBCASE II FLOWLINE ABOVE SOIL

CASE 2 - WAXY CRUDE + NETWORK

- SUBCASE I -EFFECT OF THERMAL CONDUCTIVITY
- SUB CASE II EFFECT OF PIPELINE THICKNESS

CASE 3 - ASPHALTENE + HORIZONTAL PIPE

INTRODUCTION

• Flow Assurance is a process that is used to ensure that hydrocarbon fluids are transmitted economically from the reservoir to the end user over the life of a project in any environment

- Hydrates
- Wax
- Asphaltenes
- Naphthenates

- Gas
- Water

- Heat transfer coefficient
- Material aspects

OLGA SOFTWARE

Main windows displayed on the screen

 OLGA is a modelling tool for the transportation of oil, natural gas and water in the same pipeline, Components so-called multiphase transportation.

The name is short for "oil and gas simulator".

• It's a Transient Dynamic simulator

External Tool Used

 MultiFlash - For generating input fluid files in OLGA

Diagrammatic Representation

Model Browser

Flow path Geometry Data

I. CHEMICAL COMPOSITION

- Wax formation occur due to presence of n paraffins in crude (C>16)
 - Asphaltene formation occurs due to presence of polycyclic aromatic compound
- Hydrates will occur because of presence of free water

ASPHALTENE

EXAMPLE

Tempe	erature: 57.674 °C	Pressure: 1.000 atm			
Numb	er of Phases: 3	Solution Stability: Stable			
Phase Com	positions				
	Component	OVERALL (mol fraction)	GAS (mol fraction)	LIQUID1 (mol fraction)	WAX (mol fraction)
95 N75		7.53524092e-07	0	4.901500656e-07	0.02021124295
96 N76		6.08947727e-07	0	3.582121533e-07	0.0166615013
97 N77		4.98981003e-07	0	2.679835734e-07	0.01387384609
98 N78		4.089413179e-07	0	2.038974279e-07	0.01150655073
99 N79		3.352039281e-07	0	1.645986575e-07	0.009453708429
100 N80	+	9.607977285e-07	0	1.579749708e-07	0.02981457656
Tota	al	1	0.7331665312	0.2668026567	3.081209572e-05

II. MULTIPHASE FLOW

• Due to high velocity of gas, it blocks the passage of oil creating different flow regimes and ultimately reducing production

III. THERMAL EFFECTS

- As the temperature decreases the amount of wax formation increases
- The temperature below which the wax starts appearing is the WAT

WAX PRECIPITATION

- The amount of precipitated asphaltene increases as pressure decreases from the upper onset pressure to the saturation pressure of the oil.
- The precipitation reaches a maximum value at the saturation pressure and decreases as pressure decreases below the saturation pressure.

INPUT TOOLS & FUNCTIONS

STEP 2 - DEFINE FLOWLINE GEOMETRY

LENGTH	400 m
ELEVATION	400 m
SECTIONS	1
DIAMETER	0.12 m
ROUGHNESS	5 x 10^-5 m

STEP 3 - RUN SIMULATION

Simulation time: 60 hrs

CASE 1 - VERTICAL PIPE + SAMPLE A (NO N - PARAFFINS)

I. CHEMICAL COMPOSITION

II. MULTIPHASE FLOW

- No wax deposition is observed no n paraffin compounds are present
- The flow regime lies between stratified flow and annular flow indicating two phase (oil and gas) inside the flowline

III. THERMAL EFFECT

SUB CASE I - FLOW LINE UNDER THE SOIL

FLOWLINE BURRIED UNDER THE SOIL

PIPELINE LENGTH (m)

- Overall Heat Transfer coefficient combination of conduction, convection & radiation
- Increase in flow rate implies increase in velocity increase in convective heat transfer coefficient
- Its also affected by the surrounding environment and thermal conductivity of soil

III. THERMAL EFFECT

SUB CASE II - FLOWLINE ABOVE THE SOIL

PIPELINE LENGTH (m)

- Conductive heat transfer will be reduced due to no solid environment present in contact with pipeline
- Overall heat trasfer coefficient is contributed mostly by convection inside fluid and conduction by pipe material
- Heat transfer (under soil) > Heat Transfer (above soil)

CASE II - NETWORK + WAXY CRUDE

STEP 1 - INPUT DATA IN MODEL BROWSER

INLET	2 MASS SOURCE NODES
OUTLET	PRESSURE NODE
CONNECTION	INTERNAL NODE
HEAT TRANSFER	OVERALL U VALUE

LENGTH OF EACH SECTION	100 m
ELEVATION	1 m

STEP 2 - DEFINE PIPELINE GEOMETRY

I. CHEMICAL COMPOSITION

PIPELINE LENGTH (m)

- Wax Deposition Rate FLOWPATH 3 > FLOWPATH 2 > FLOWPATH 1
- Flow regime constantly shifts between slug flow & stratified flow due to presence of gas

II. MULTIPHASE FLOW

PIPELINE LENGTH (m)

• RED LINE - WAX DEPOSITION IN FLOWPATH 1

FLOW REGIME VALUES

- GREEN LINE WAX DEPOSITION IN FLOWPATH 2
- PINK LINE WAX DEPOSITION IN FLOWPATH 3

III. THERMAL EFFECT

SUB CASE I - EFFECT OF THERMAL CONDUCTIVITY (MATERIAL PROPERTY)

PIPELINE LENGTH (m)

• FOURIER'S LAW

Q = KAdT/dx

- K -Thermal Conductivity (W/m C)
- Q Heat Transferred (W)
- Heat Transfer directly proportional to thermal conductivity

MATERIAL - I	MATERIAL - II
THERMAL CONDUCTIVITY - 50 W/m - C	THERMAL CONDUCTIVITY - 100 W/m - C
DENSITY - 7850 Kg/m^3	DENSITY - 7850 Kg/m^3
LEGEND - BLACK LINE	LEGEND - RED LINE

- The separation between the lines increases with time indicating material II is having greater wax deposition rate than material I
- Material with less thermal conductivity is preferred to prevent wax deposition

III. THERMAL EFFECT

SUB CASE II - EFFECT OF FLOWLINE THICKNESS (MATERIAL PROPERTY)

PIPELINE LENGTH (m)

Heat Transfer Equation

$$Q = UA(T2 - T1)$$

- A Surface Area (m^2)
- U Overall Heat Transfer Coefficient (W/m^2)
- Q Heat Transferred (W)

MATERIAL - I	MATERIAL - II
THICKNESS - 9 mm	THICKNESS - 20 mm
LEGEND - BLACK	LEGEND - RED

- Heat transfer is directly proportional to surface area, hence the thickness of the material
- Heat Transfer in Material II > Heat Transfer in Material I
- Hence, Wax Deposition in Material II > Wax Deposition
 in Material I

CASE III – ASPHALTENE DEPOSITION + HORIZONTAL PIPE

INLET CLOSED NODE

OUTLET PRESSURE NODE

SOURCE MASS FLOW SOURCE

STEP 1 - INPUT DATA IN MODEL BROWSER

STEP 2 - DEFINE PIPELINE GEOMETRY

LENGTH OF PIPE	400 m
ELEVATION	0 m (HORIZONTAL PIPE)

I. CHEMICAL COMPOSITION

II. MULTIPHASE FLOW

Animated simulation of flow inside horizontal flowline

III. THERMAL EFFECT

As the temperature increases the AOP decreases

TEMPERATURE	АОР
50 C	23000 psi
100 C	15800 psi

IMPROVEMENTS & SCOPE

- Flow assurance consists of three major analysis Chemical composition, Multiphase flow & Heat Transfer
- It is clear that flow assurance not only depends on the pipeline design, but it's also based on the crude chemical composition, environment such as pressure and temperature, etc
- Mitigation techniques such as pigging, mechanical scrapping, chemical inhibitors, etc. can be simulated
- Further, Flow assurance simulations can be implemented in wells using the WELL EDITOR TOOLS
- PVT data, wax tables and other observations can be exported to ECLIPSE software for well & reservoir simulations

