Redes Neurais Artificiais Pedro H A Konzen 21 de julho de 2023

## Licença

CA 94042, USA.

ii

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt\_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View,

## Prefácio

Nestas notas de aula são abordados tópicos introdutórios sobre redes neurais artificiais Como ferramenta computacional de apoio, vários exemplos de aplicação de códigos Python+PyTorch são apresentados.

Agradeço a todas e todos que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

50

# Conteúdo

| C  | apa   |        |                                          |      | i        |
|----|-------|--------|------------------------------------------|------|----------|
| Li | cenç  | a      |                                          |      | ii       |
| P  | refác | io     |                                          |      | iii      |
| Sı | ımár  | io     |                                          |      | v        |
| 1  | Int   | roduçã | 0                                        |      | 1        |
| 2  | Per   | ceptro | n                                        |      | 3        |
|    | 2.1   | Unida  | de de Processamento                      | <br> | <br>. 3  |
|    |       | 2.1.1  | Um problema de classificação             | <br> | . 4      |
|    |       | 2.1.2  | Problema de regressão                    | <br> | <br>. 10 |
|    |       | 2.1.3  | Exercícios                               |      |          |
|    | 2.2   | Algori | itmo de Treinamento                      | <br> | <br>. 14 |
|    |       | 2.2.1  | Método do Gradiente Descendente          | <br> | <br>. 15 |
|    |       | 2.2.2  | Método do Gradiente Estocástico          | <br> | <br>. 18 |
|    |       | 2.2.3  | Exercícios                               | <br> | <br>. 21 |
| 3  | Per   | ceptro | n Multicamadas                           |      | 22       |
|    | 3.1   |        | lo MLP                                   |      | . 22     |
|    |       | 3.1.1  | Treinamento                              | <br> |          |
|    |       | 3.1.2  | Aplicação: Problema de Classificação XOR | <br> | <br>. 24 |
|    |       | 3.1.3  | Exercícios                               | <br> | <br>. 27 |
|    | 3.2   |        | ação: Problema de Classificação Binária  |      |          |
|    |       | 3.2.1  | Dados                                    | <br> | <br>. 27 |
|    |       | 3.2.2  | Modelo                                   | <br> | <br>. 29 |
|    |       |        |                                          |      |          |

iv

|     | ΓEÚDO    |                             |
|-----|----------|-----------------------------|
|     | 3.2.3    | Treinamento e Teste         |
|     | 3.2.4    | Verificação                 |
|     | 3.2.5    | Exercícios                  |
| 3.3 | 3 Aplica | ção: Aproximação de Funções |
|     | 3.3.1    | Função unidimensional       |
|     | 3.3.2    | Função bidimensional        |
|     | 3.3.3    | Exercícios                  |
| 3.4 | Diferer  | nciação Automática          |
|     | 3.4.1    | Autograd Perceptron         |
|     | 3.4.2    | Autograd MLP                |
|     | 3.4.3    | Exercícios                  |
| 3.5 | 6 Aplica | ção: Equação de Laplace     |
|     | 3.5.1    | Diferenças Finitas          |
|     | 3.5.2    | Autograd                    |
|     | 3.5.3    | Exercícios                  |
|     | ostas do | s Exercícios                |
|     |          |                             |
|     |          |                             |
|     |          |                             |
|     |          |                             |

## Capítulo 1

## Introdução

Uma rede neural artificial é um modelo de aprendizagem profunda (deep learning), uma área da aprendizagem de máquina (machine learning). O termo tem origem no início dos desenvolvimentos de inteligência artificial, em que modelos matemáticos e computacionais foram inspirados no cérebro biológico (tanto de humanos como de outros animais). Muitas vezes desenvolvidos com o objetivo de compreender o funcionamento do cérebro, também tinham a intensão de emular a inteligência.

Nestas notas de aula, estudamos um dos modelos de redes neurais usualmente aplicados. A unidade básica de processamento data do modelo de neurônio de McCulloch-Pitts (McCulloch and Pitts, 1943), conhecido como perceptron (Rosenblatt, 1958, 1962), o primeiro com um algoritmo de treinamento para problemas de classificação linearmente separável. Um modelo similiar é o ADALINE (do inglês, adaptive linear element, Widrow and Hoff, 1960), desenvolvido para a predição de números reais. Pela questão histórica, vamos usar o termo perceptron para designar a unidade básica (o neurônio), mesmo que o modelo de neurônio a ser estudado não seja restrito ao original.

Métodos de aprendizagem profunda são técnicas de treinamento (calibração) de composições em múltiplos níveis, aplicáveis a problemas de aprendizagem de máquina que, muitas vezes, não têm relação com o cérebro ou neurônios biológicos. Um exemplo, é a rede neural que mais vamos explorar nas notas, o perceptron multicamada (MLP, em inglês multilayer percep-

tron), um modelo de progressão (em inglês, feedfoward) de rede profunda em que a informação é processada pela composição de camadas de perceptrons. Embora a ideia de fazer com que a informação seja processada através da conexão de múltiplos neurônios tenha inspiração biológica, usualmente a escolha da disposição dos neurônios em uma MLP é feita por questões algorítmicas e computacionais. I.e., baseada na eficiente utilização da arquitetura dos computadores atuais.

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA  $4.0\,$ 

**pt** 100 150 200 250 300 350 400 450 500 550 600

## Capítulo 2

## Perceptron

### 2.1 Unidade de Processamento

A unidade básica de processamento (neurônio artificial) que exploramos nestas notas é baseada no perceptron (consultemos a Fig. 2.1). Consiste na composição de uma função de ativação  $f: \mathbb{R} \to \mathbb{R}$  com a préativação

$$z = \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.1}$$

$$= w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b \tag{2.2}$$

onde,  $\boldsymbol{x} \in \mathbb{R}^n$  é o vetor de entrada,  $\boldsymbol{w} \in \mathbb{R}^n$  é o vetor de pesos e  $b \in \mathbb{R}$  é o **bias**. Escolhida uma função de ativação, a **saída do neurônio** é dada por

$$y := \mathcal{N}\left(\boldsymbol{x}; (\boldsymbol{w}, b)\right) \tag{2.3}$$

$$= f(z) = f(\boldsymbol{w} \cdot \boldsymbol{x} + b) \tag{2.4}$$

O treinamento (calibração) consiste em determinar os parâmetros  $(\boldsymbol{w},b)$  de forma que o neurônio forneça as saídas y esperadas com base em algum critério predeterminado.



Figura 2.1: Esquema de um perceptron: unidade de processamento.

Uma das vantagens deste modelo de neurônio é sua generalidade, i.e. pode ser aplicado a diferentes problemas. Na sequência, vamos aplicá-lo na resolução de um problema de classificação e noutro de regressão.

### 2.1.1 Um problema de classificação

Vamos desenvolver um perceptron que emule a operação  $\land$  (e-lógico). I.e, receba como entrada dois valores lógicos  $A_1$  e  $A_2$  (V, verdadeiro ou F, falso) e forneça como saída o valor lógico  $R = A_1 \land A_2$ . Consultamos a seguinte tabela verdade:

$$\begin{array}{c|ccc} A_1 & A_2 & R \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & F \end{array}$$

#### Modelo

Nosso modelo de neurônio será um perceptron com duas entradas  $x \in \{-1,1\}^2$  e a função sinal

$$f(z) = \operatorname{sign}(z) = \begin{cases} 1, z > 0 \\ 0, z = 0 \\ -1, z < 0 \end{cases}$$
 (2.5)

como função de ativação, i.e.

$$\mathcal{N}(\boldsymbol{x}; (\boldsymbol{w}, b)) = \operatorname{sign}(\boldsymbol{w} \cdot \boldsymbol{x} + b), \tag{2.6}$$

onde  $\boldsymbol{w} \in \mathbb{R}^2$  e  $b \in \mathbb{R}$  são parâmetros a determinar.

### Pré-processamento

Uma vez que nosso modelo recebe valores  $\boldsymbol{x} \in \{-1,1\}^2$  e retorna  $\boldsymbol{y} \in \{-1,1\}$ , precisamos (pre)processar os dados do problema de forma a utilizálo. Uma forma, é assumir que todo valor negativo está associado ao valor lógico F (falso) e positivo ao valor lógico V (verdadeiro). Desta forma, os dados podem ser interpretados como na tabela abaixo.

### Treinamento

Agora, nos falta treinar nosso neurônio para fornecer o valor de y esperado para cada dada entrada  $\boldsymbol{x}$ . Isso consiste em um método para escolhermos os parâmetros  $(\boldsymbol{w},b)$  que sejam adequados para esta tarefa. Vamos explorar mais sobre isso na sequência do texto e, aqui, apenas escolhemos

$$\boldsymbol{w} = [1, 1] \tag{2.7}$$

$$b = -1 \tag{2.8}$$

Com isso, nosso perceptron é

$$\mathcal{N}(\mathbf{x}) = \operatorname{sign}(x_1 + x_2 - 1) \tag{2.9}$$

Verifique que ele satisfaz a tabela verdade acima!

### Implementação

Código 2.1: perceptron.py

1 import torch

```
2
3
   # modelo
   class Perceptron(torch.nn.Module):
       def __init__(self):
6
           super().__init__()
7
           self.linear = torch.nn.Linear(2,1)
8
9
       def forward(self, x):
10
           z = self.linear(x)
           y = torch.sign(z)
11
12
           return y
13
14 model = Perceptron()
  W = torch.Tensor([[1., 1.]])
16 b = torch.Tensor([-1.])
   with torch.no_grad():
       model.linear.weight = torch.nn.Parameter(W)
18
       model.linear.bias = torch.nn.Parameter(b)
19
20
21 # dados de entrada
22 X = torch.tensor([[1., 1.],
                      [1., -1.],
23
24
                      [-1., 1.],
                      [-1., -1.]])
25
26
  print(f"\nDados de entrada\n{X}")
27
28
29
30 # forward (aplicação do modelo)
31
  y = model(X)
32
33 print(f"Valores estimados\n{y}")
```

### Interpretação geométrica

Empregamos o seguinte modelo de neurônio

$$\mathcal{N}(\boldsymbol{x};(\boldsymbol{w},b)) = \operatorname{sign}(w_1 x_1 + w_2 x_2 + b) \tag{2.10}$$

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

pt

00 —

50 <del>|---</del>

nn 📖

 $\frac{1}{50}$ 

-350

400

450

500

0

Observamos que

$$w_1 x_1 + w_2 x_2 + b = 0 (2.11)$$

corresponde à equação geral de uma reta no plano  $\tau: x_1 \times x_2$ . Esta reta divide o plano em dois semiplanos

$$\tau^{+} = \{ \boldsymbol{x} \in \mathbb{R}^{2} : w_{1}x_{1} + w_{2}x_{2} + b > 0 \}$$
(2.12)

$$\tau^{-} = \{ \mathbf{x} \in \mathbb{R}^2 : w_1 x_1 + w_2 x_2 + b < 0 \}$$
(2.13)

O primeiro está na direção do vetor normal a reta  $\mathbf{n} = (w_1, w_2)$  e o segundo na sua direção oposta. Com isso, o problema de treinar nosso neurônio para nosso problema de classificação consiste em encontrar a reta

$$w_1 x_1 + w_2 x_2 + b = 0 (2.14)$$

de forma que o ponto (1,1) esteja no semiplano positivo  $\tau^+$  e os demais pontos no semiplano negativo  $\tau^-$ . Consulte a Figura 2.2.



Figura 2.2: Interpretação geométrica do perceptron aplicado ao problema de classificação relacionado à operação lógica  $\land$  (e-lógico).

### Algoritmo de treinamento: perceptron

O algoritmo de treinamento perceptron permite calibrar os pesos de um neurônio para fazer a classificação de dados linearmente separáveis. Trata-se de um algoritmo para o **treinamento supervisionado** de um neurônio, i.e. a calibração dos pesos é feita com base em um dado **conjunto de amostras de treinamento**.

Seja dado um **conjunto de treinamento**  $\{x^{(s)},y^{(s)}\}_{s=1}^{n_s}$ , onde  $n_s$  é o número de amostras. O algoritmo consiste no seguinte:

```
1. \boldsymbol{w} \leftarrow \boldsymbol{0}, b \leftarrow 0.

2. Para e \leftarrow 1, \dots, n_e:

(a) Para s \leftarrow 1, \dots, n_s:

i. Se y^{(s)} \mathcal{N} \left( \boldsymbol{x}^{(s)} \right) \leq 0:

A. \boldsymbol{w} \leftarrow \boldsymbol{w} + y^{(s)} \boldsymbol{x}^{(s)}

B. b \leftarrow b + y^{(s)}
```

onde,  $n_e$  é um dado número de épocas<sup>1</sup>.

```
1
   import torch
2
3
   # modelo
4
5
   class Perceptron(torch.nn.Module):
6
       def __init__(self):
7
            super().__init__()
8
            self.linear = torch.nn.Linear(2,1)
9
       def forward(self, x):
10
11
            z = self.linear(x)
12
            y = torch.sign(z)
13
            return y
14
15
   model = Perceptron()
16
   with torch.no_grad():
       W = model.linear.weight
17
```

 $<sup>^1\</sup>mathrm{N\'u}$ mero de vezes que as amostrar serão per<br/>corridas para realizar a correção dos pesos.

```
b = model.linear.bias
18
20 # dados de treinamento
21 X_train = torch.tensor([[1., 1.],
22
                       [1., -1.],
23
                       [-1., 1.],
24
                       [-1., -1.]
25 y_train = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
26
27 ## número de amostras
28 \text{ ns} = y_{train.size}(0)
29
30 print("\nDados de treinamento")
31 print("X_train =")
32 print(X_train)
33 print("y_train = ")
34 print(y_train)
35
36 # treinamento
37
38 ## num max épocas
39 nepochs = 100
40
41
   for epoch in range(nepochs):
42
43
       # update
       not_updated = True
44
45
       for s in range(ns):
            y_est = model(X_train[s:s+1,:])
46
            if (y_est*y_train[s] <= 0.):</pre>
47
                with torch.no_grad():
48
49
                    W += y_train[s]*X_train[s,:]
50
                    b += y_train[s]
51
                    not_updated = False
52
53
       if (not_updated):
            print('Training ended.')
54
55
            break
56
57
```

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

 $\operatorname{pt}$ 

```
58 # verificação

59 print(f'W =\n{W}')

60 print(f'b =\n{b}')

61 y = model(X_train)

62 print(f'y =\n{y}')
```

### 2.1.2 Problema de regressão

Vamos treinar um perceptron para resolver o problema de regressão linear para os seguintes dados

| S | $x^{(s)}$ | $y^{(s)}$ |
|---|-----------|-----------|
| 1 | 0.5       | 1.2       |
| 2 | 1.0       | 2.1       |
| 3 | 1.5       | 2.6       |
| 4 | 2.0       | 3.6       |

#### Modelo

Vamos determinar o perceptron<sup>2</sup>

$$\tilde{y} = \mathcal{N}(x; (w, b)) = wx + b \tag{2.15}$$

que melhor se ajusta a este conjunto de dados  $\{(x^{(s)}, y^{(s)})\}_{s=1}^{n_s}, n_s = 4.$ 

#### **Treinamento**

A ideia é que o perceptron seja tal que minimize o erro quadrático médio (MSE, do inglês, *Mean Squared Error*), i.e.

$$\min_{w,b} \frac{1}{n_s} \sum_{s=1}^{n_s} \left( \tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.16}$$

Vamos denotar a **função erro** (em inglês, loss function) por

$$\varepsilon(w,b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left( \tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.17}$$

<sup>&</sup>lt;sup>2</sup>Escolhendo f(z) = z como função de ativação.

$$= \frac{1}{n_s} \sum_{s=1}^{n_s} \left( wx^{(s)} + b - y^{(s)} \right)^2$$
 (2.18)

Observamos que o problema (2.16) é equivalente a um problema linear de mínimos quadrados. A solução é obtida resolvendo-se a equação normal<sup>3</sup>

$$M^T M \boldsymbol{c} = M^T \boldsymbol{y}, \tag{2.19}$$

onde  $\boldsymbol{c}=(w,p)$  é o vetor dos parâmetros a determinar e M é a matriz  $n_s\times 2$  dada por

$$M = \begin{bmatrix} \mathbf{x} & \mathbf{1} \end{bmatrix} \tag{2.20}$$

### Implementação

Código 2.2: perceptron\_mq.py

```
import torch
2
   # modelo
3
4
   class Perceptron(torch.nn.Module):
5
6
       def __init__(self):
            super().__init__()
7
            self.linear = torch.nn.Linear(1,1)
8
9
10
       def forward(self, x):
11
                 self.linear(x)
12
            return z
13
   model = Perceptron()
   with torch.no_grad():
15
16
       W = model.linear.weight
17
       b = model.linear.bias
18
19
   # dados de treinamento
   X train = torch.tensor([0.5,
21
                             1.0,
22
                             1.5,
```

<sup>3</sup>Consulte o Exercício 2.1.4.

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA  $4.0\,$ 

pt

100+

60 -

0

300

-350

4

50

500 —

550

-600

```
23
                              [2.0]).reshape(-1,1)
24
   y_train = torch.tensor([1.2,
25
26
                              2.6,
27
                              3.6]).reshape(-1,1)
28
29
  ## número de amostras
30 \text{ ns} = y_{train.size}(0)
31
32 print("\nDados de treinamento")
33 print("X_train =")
34 print(X_train)
35 print("y_train = ")
  print(y_train)
36
37
38
  # treinamento
39
40 ## matriz
41 M = torch.cat((X_train,
42
                    torch.ones((ns,1))), dim=1)
43
  ## solucão M.Q.
44 c = torch.linalg.lstsq(M, y_train)[0]
45 with torch.no_grad():
46
       W = c[0]
47
       b = c[1]
48
49 # verificação
50 print(f'W =\n{W}')
51 print(f'b =\n{b}')
52 y = model(X_train)
53 \text{ print}(f'y = n\{y\}')
```

#### Resultado

Nosso perceptron corresponde ao modelo

$$\mathcal{N}(x;(w,b)) = wx + b \tag{2.21}$$

com os pesos treinados w=1.54 e b=0.45. Ele corresponde à reta que melhor se ajusta ao conjunto de dados de  $\{x^{(s)}, y^{(s)}\}$ . Consulte a Figura 2.3.

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

**bt** 100 150 200 250 300 350 400 450 500 550 600



Figura 2.3: Interpretação geométrica do perceptron aplicado ao problema de regressão linear.

### 2.1.3 Exercícios

Exercício 2.1.1. Crie um Perceptron que emule a operação lógica do  $\lor$  (ou-lógico).

| $A_1$ | $A_2$ | $A_1 \vee A_2$ |
|-------|-------|----------------|
| V     | V     | V              |
| V     | F     | V              |
| F     | V     | V              |
| F     | F     | F              |

**Exercício 2.1.2.** Busque criar um Perceptron que emule a operação lógica do xor.

| $A_1$ | $A_2$ | $A_1$ xor $A_2$ |
|-------|-------|-----------------|
| V     | V     | F               |
| V     | F     | V               |
| F     | V     | V               |
| F     | F     | F               |

É possível? Justifique sua resposta.

Exercício 2.1.3. Assumindo o modelo de neurônio (2.15), mostre que (2.17) é função convexa.

Exercício 2.1.4. Mostre que a solução do problema (2.16) é dada por (2.19).

**Exercício 2.1.5.** Crie um Perceptron com função de ativação  $f(x) = \tanh(x)$  que melhor se ajuste ao seguinte conjunto de dados:

| S | $x^{(s)}$ | $y^{(s)}$ |
|---|-----------|-----------|
| 1 | -1,0      | -0,8      |
| 2 | -0,7      | -0,7      |
| 3 | -0,3      | -0,5      |
| 4 | 0,0       | -0,4      |
| 5 | 0,2       | -0,2      |
| 6 | 0,5       | 0,0       |
| 7 | 1,0       | 0,3       |

### 2.2 Algoritmo de Treinamento

Na seção anterior, desenvolvemos dois modelos de neurônios para problemas diferentes, um de classificação e outro de regressão. Em cada caso, utilizamos algoritmos de treinamento diferentes. Agora, vamos estudar algoritmos de treinamentos mais gerais<sup>4</sup>, que podem ser aplicados a ambos os problemas.

Ao longo da seção, vamos considerar o **modelo** de neurônio

$$\tilde{y} = \mathcal{N}(\boldsymbol{x}; (\boldsymbol{w}, b)) = f(\underline{\boldsymbol{w} \cdot \boldsymbol{x} + b}),$$
(2.22)

com dada função de ativação  $f: \mathbb{R} \to \mathbb{R}$ , sendo os vetores de entrada  $\boldsymbol{x}$  e dos pesos  $\boldsymbol{w}$  de tamanho  $n_{in}$ . A pré-ativação do neurônio é denotada por

$$z := \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.23}$$

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

Pь

---1

200 -

50

n H

350 -

400 —

450

500

550

--60

 $<sup>^4\</sup>mathrm{Aqui},$ vamos explorar apenas algoritmos de treinamento supervisionado.

Fornecido um **conjunto de treinamento**  $\{(\boldsymbol{x}^{(s)}, y^{(s)})\}_{1}^{n_{s}}$ , com  $n_{s}$  amostras, o objetivo é calcular os parâmetros  $(\boldsymbol{w}, b)$  que minimizam a **função erro quadrático médio** 

$$\varepsilon(\boldsymbol{w}, b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left( \tilde{y}^{(s)} - y^{(s)} \right)^2$$
 (2.24)

$$=\frac{1}{n_s}\sum_{s=1}^{n_s}\varepsilon^{(s)}\tag{2.25}$$

onde  $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}; (\boldsymbol{w}, b)\right)$  é o valor estimado pelo modelo e  $y^{(s)}$  é o valor esperado para a s-ésima amostra. A função erro para a s-ésima amostra é

$$\varepsilon^{(s)} := (\tilde{y}^{(s)} - y^{(s)})^2.$$
 (2.26)

Ou seja, o treinamento consiste em resolver o seguinte **problema de oti- mização** 

$$\min_{(\boldsymbol{w},b)} \varepsilon(\boldsymbol{w},b) \tag{2.27}$$

Para resolver este problema de otimização, vamos empregar o Método do Gradiente Descendente.

### 2.2.1 Método do Gradiente Descendente

O Método do Gradiente Descendente (GD, em inglês, *Gradiente Descent Method*) é um método de declive. Aplicado ao nosso modelo de Perceptron consiste no seguinte algoritmo:

- 1.  $(\boldsymbol{w}, b)$  aproximação inicial.
- 2. Para  $e \leftarrow 1, \ldots, n_e$ :

(a) 
$$(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)}$$

onde,  $n_e$  é o **número de épocas**,  $l_r$  é uma dada **taxa de aprendizagem**  $(l_r, do inglês, learning rate)$  e o **gradiente** é

$$\frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)} := \left(\frac{\partial \varepsilon}{\partial w_1}, \dots, \frac{\partial \varepsilon}{\partial w_{n_{in}}}, \frac{\partial \varepsilon}{\partial b}\right) \tag{2.28}$$

O cálculo do gradiente para os pesos  $\boldsymbol{w}$  pode ser feito como segue

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{\partial}{\partial \boldsymbol{w}} \left[ \frac{1}{n_s} \sum_{s=1}^{n_s} \varepsilon^{(s)} \right]$$
 (2.29)

$$= \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial \boldsymbol{w}}$$
 (2.30)

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial \boldsymbol{w}}$$
(2.31)

Observando que

$$\frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} = 2\left(\tilde{y}^{(s)} - y^{(s)}\right) \tag{2.32}$$

$$\frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} = f'\left(z^{(s)}\right) \tag{2.33}$$

$$\frac{\partial z^{(s)}}{\partial \boldsymbol{w}} = \boldsymbol{x}^{(s)} \tag{2.34}$$

obtemos

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \boldsymbol{x}^{(s)}$$
(2.35)

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial b}$$
(2.36)

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \cdot 1 \tag{2.37}$$

### Aplicação: Problema de Classificação

Na Subseção 2.1.1, treinamos um Perceptron para o problema de classificação do e-lógico. A função de ativação f(x) = sign(x) não é adequada para a aplicação do Método GD, pois  $f'(x) \equiv 0$  para  $x \neq 0$ . Aqui, vamos usar

$$f(x) = \tanh(x). \tag{2.38}$$

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

рı

70

0

0

50

300 -

-350

100

450 -

00

-550

Código 2.3: perceptron\_gd.py

```
import torch
  # modelo
3
4
  class Perceptron(torch.nn.Module):
       def __init__(self):
6
            super().__init__()
7
            self.linear = torch.nn.Linear(2,1)
8
9
       def forward(self, x):
10
11
           z = self.linear(x)
12
           y = torch.tanh(z)
13
            return y
14
15 model = Perceptron()
16
17 # treinamento
18
19 ## optimizador
   optim = torch.optim.SGD(model.parameters(), lr=1e-1)
21
22 ## função erro
23 loss_fun = torch.nn.MSELoss()
24
25 ## dados de treinamento
26 \text{ X\_train} = \text{torch.tensor}([[1., 1.],
27
                       [1., -1.],
                       [-1., 1.],
28
29
                       [-1., -1.]
30 \ y_{train} = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
31
32 print("\nDados de treinamento")
33 print("X train =")
34 print(X_train)
35 print("y_train = ")
36 print(y_train)
37
38 ## num max épocas
39 nepochs = 5000
```

```
40
   tol = 1e-3
41
42
   for epoch in range(nepochs):
43
44
        # forward
45
        y_est = model(X_train)
46
47
        # erro
48
        loss = loss_fun(y_est, y_train)
49
        print(f'{epoch}: {loss.item():.4e}')
50
51
        # critério de parada
52
        if (loss.item() < tol):</pre>
53
54
            break
55
        # backward
56
        optim.zero_grad()
57
58
        loss.backward()
59
        optim.step()
60
61
62
   # verificação
63
   y = model(X_train)
  print(f'y_est = {y}')
```

### 2.2.2 Método do Gradiente Estocástico

O Método do Gradiente Estocástico (SGD, do inglês, Stochastic Gradient Descent Method) é um variação do Método GD. A ideia é atualizar os parâmetros do modelo com base no gradiente do erro de cada amostra (ou um subconjunto de amostras). A estocasticidade é obtida da randomização com que as amostras são escolhidas a cada época. O algoritmos consiste no seguinte:

- 1. **w**, b aproximações inicial.
- 2. Para  $e \leftarrow 1, \ldots, n_e$ :

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

рu

00 -

.50 -

00

50

300 -

350

-400

450 —

500

550

-600

1.1. Para  $s \leftarrow \mathtt{random}(1, \ldots, n_s)$ :

$$(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon^{(s)}}{\partial (\boldsymbol{w}, b)}$$
 (2.39)

### Aplicação: Problema de Classificação

Código 2.4: perceptron\_sgd.py

```
1 import torch
2 import numpy as np
4
  # modelo
6
   class Perceptron(torch.nn.Module):
       def __init__(self):
7
8
           super().__init__()
9
           self.linear = torch.nn.Linear(2,1)
10
11
       def forward(self, x):
12
           z = self.linear(x)
13
           y = torch.tanh(z)
14
           return y
15
16 model = Perceptron()
17
18
   # treinamento
19
20 ## optimizador
21 optim = torch.optim.SGD(model.parameters(), lr=1e-1)
22
23 ## função erro
24 loss_fun = torch.nn.MSELoss()
25
26 ## dados de treinamento
27 X_train = torch.tensor([[1., 1.],
28
                      [1., -1.],
29
                      [-1., 1.],
                      [-1., -1.]])
30
31 y_train = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
32
```

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

 $\operatorname{pt}$ 

```
33 ## num de amostras
34 ns = y_train.size(0)
35
36 print("\nDados de treinamento")
37 print("X_train =")
38 print(X_train)
39 print("y_train = ")
40 print(y_train)
41
42 ## num max épocas
43 nepochs = 5000
44 \text{ tol} = 1e-3
45
46
  for epoch in range(nepochs):
47
48
       # forward
49
       y_est = model(X_train)
50
51
       # erro
       loss = loss_fun(y_est, y_train)
52
53
54
       print(f'{epoch}: {loss.item():.4e}')
55
56
       # critério de parada
57
       if (loss.item() < tol):</pre>
58
            break
59
       # backward
60
61
       for s in torch.randperm(ns):
62
            loss_s = (y_est[s,:] - y_train[s,:])**2
63
            optim.zero_grad()
64
            loss_s.backward()
65
            optim.step()
66
            y_est = model(X_train)
67
68
69 # verificação
70 y = model(X_train)
71 print(f'y_est = {y}')
```

### 2.2.3 Exercícios

Exercício 2.2.1. Calcule a derivada da função de ativação

$$f(x) = \tanh(x). \tag{2.40}$$

Exercício 2.2.2. Crie um Perceptron para emular a operação lógica  $\land$  (e-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Exercício 2.2.3. Crie um Perceptron para emular a operação lógica  $\vee$  (ou-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Exercício 2.2.4. Crie um Perceptron que se ajuste ao seguinte conjunto de dados:

| S | $x^{(s)}$ | $y^{(s)}$ |
|---|-----------|-----------|
| 1 | 0.5       | 1.2       |
| 2 | 1.0       | 2.1       |
| 3 | 1.5       | 2.6       |
| 4 | 2.0       | 3.6       |

No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

22

Capítulo 3

## Perceptron Multicamadas

### 3.1 Modelo MLP

Uma Perceptron Multicamadas (MLP, do inglês, *Multilayer Perceptron*) é um tipo de Rede Neural Artificial formada por composições de camadas de perceptrons. Consulte a Figura 3.1.



Figura 3.1: Estrutura de uma rede do tipo Perceptron Multicamadas (MLP).

Denotamos uma MLP de n camadas por

$$\boldsymbol{y} = \mathcal{N}\left(\boldsymbol{x}; \left(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)}\right)_{l=1}^{n}\right), \tag{3.1}$$

onde  $(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)})$  é a tripa de **pesos**, **biases** e **função de ativação** da *l*-ésima camada da rede,  $l=1,2,\ldots,n$ .

A saída da rede é calculada por iteradas composições das camadas, i.e.

$$\mathbf{a}^{(l)} = f^{(l)} \underbrace{\left( W^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l-1)} \right)}_{\mathbf{z}^{(l)}}, \tag{3.2}$$

para  $l=1,2,\ldots,n,$  denotando  $\boldsymbol{a}^{(0)}:=\boldsymbol{x}$  e  $\boldsymbol{a}^{(n)}:=\boldsymbol{y}.$ 

### 3.1.1 Treinamento

Fornecido um **conjunto de treinamento**  $\{x^{(s)}, y^{(s)}\}_{s=1}^{n_s}$ , com  $n_s$  amostras, o treinamento da rede consiste em resolver o problema de minimização

$$\min_{(\boldsymbol{W},\boldsymbol{b})} \varepsilon \left( \tilde{\boldsymbol{y}}^{(s)}, \boldsymbol{y}^{(s)} \right) \tag{3.3}$$

onde  $\varepsilon$  é uma dada **função erro** (em inglês, loss function) e  $\tilde{\boldsymbol{y}}^{(s)}$ ,  $\boldsymbol{y}^{(s)}$  são as saídas estimada e esperada da l-ésima amostra, respectivamente.

O problema de minimização pode ser resolvido por um Método de Declive e, de forma geral, consiste em:

- 1. W, b aproximações iniciais.
- 2. Para  $e \leftarrow 1, \ldots, n_e$ :

(a) 
$$(W, \boldsymbol{b}) \leftarrow (W, \boldsymbol{b}) - l_r \boldsymbol{d} (\nabla_{W \boldsymbol{b}} \varepsilon)$$

onde,  $n_e$  é o **número de épocas**,  $l_r$  é uma dada **taxa de aprendizagem** (em inglês, learning rate)) e o vetor direção  $\mathbf{d} = \mathbf{d} (\nabla_{W,\mathbf{b}} \varepsilon)$ , onde

$$\nabla_{W,\boldsymbol{b}}\varepsilon := \left(\frac{\partial \varepsilon}{\partial W}, \frac{\partial \varepsilon}{\partial \boldsymbol{b}}\right). \tag{3.4}$$

O cálculo dos gradientes pode ser feito de trás para frente (em inglês, backward), i.e. para os pesos da última camada, temos

$$\frac{\partial \varepsilon}{\partial W^{(n)}} = \frac{\partial \varepsilon}{\partial y} \frac{\partial y}{\partial z^{(n)}} \frac{\partial z^{(n)}}{\partial W^{(n)}}, \tag{3.5}$$

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{y}} f' \left( W^{(n)} \boldsymbol{a}^{(n-1)} + \boldsymbol{b}^{(n)} \right) \boldsymbol{a}^{(n-1)}. \tag{3.6}$$

Para os pesos da penúltima, temos

$$\frac{\partial \varepsilon}{\partial W^{(n-1)}} = \frac{\partial \varepsilon}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{z^{(n)}}} \frac{\partial \mathbf{z^{(n)}}}{\partial W^{(n-1)}},\tag{3.7}$$

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{y}} f'\left(\boldsymbol{z}^{(n)}\right) \frac{\partial \boldsymbol{z}^{(n)}}{\partial \boldsymbol{a}^{(n-1)}} \frac{\partial \boldsymbol{a}^{(n-1)}}{\partial \boldsymbol{z}^{(n-1)}} \frac{\partial \boldsymbol{z}^{(n-1)}}{\partial W^{(n-1)}}$$
(3.8)

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{y}} f'\left(\boldsymbol{z}^{(n)}\right) W^{(n)} f'\left(\boldsymbol{z}^{(n-1)}\right) \boldsymbol{a}^{(n-2)}$$
(3.9)

e assim, sucessivamente para as demais camadas da rede. Os gradientes em relação aos *biases* podem ser analogamente calculados.

### 3.1.2 Aplicação: Problema de Classificação XOR

Vamos desenvolver uma MLP que faça a operação **xor** (ou exclusivo). I.e, receba como entrada dois valores lógicos  $A_1$  e  $A_2$  (V, verdadeiro ou F, falso)

e forneça como saída o valor lógico  $R = A_1 x or A_2$ . Consultamos a seguinte tabela verdade:

Assumindo V = 1 e F = -1, podemos modelar o problema tendo entradas  $\mathbf{x} = (x_1, x_2)$  e saída y como na seguinte tabela:

### Modelo

Vamos usar uma MLP de estrutura 2-2-1 e com funções de ativação  $f^{(1)}(\boldsymbol{x}) = \tanh(\boldsymbol{x})$  e  $f^{(2)}(\boldsymbol{x}) = id(\boldsymbol{x})$ . Ou seja, nossa rede tem duas entradas, uma **camada escondida** com 2 unidades (função de ativação tangente hiperbólica) e uma camada de saída com uma unidade (função de ativação identidade).

#### **Treinamento**

Para o treinamento, vamos usar a função **erro quadrático médio** (em inglês, mean squared error)

$$\varepsilon := \frac{1}{n_s} \sum_{s=1}^{n_s} \left| \tilde{y}^{(s)} - y^{(s)} \right|^2, \tag{3.10}$$

onde os valores estimados  $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}\right) \in \left\{\boldsymbol{x}^{(s)}, y^{(s)}\right\}_{s=1}^{n_s}, n_s = 4$ , conforme na tabela acima.

### Implementação

O seguinte código implementa a MLP e usa o Método do Gradiente Descendente (DG) no algoritmo de treinamento.

```
Código 3.1: mlp_xor.py
```

```
import torch
3 # modelo
4
5 model = torch.nn.Sequential(
6
       torch.nn.Linear(2,2),
7
       torch.nn.Tanh(),
       torch.nn.Linear(2,1)
8
9
10
11
  # treinamento
12
13 ## optimizador
14 optim = torch.optim.SGD(model.parameters(), lr=1e-2)
15
16 ## função erro
17 loss_fun = torch.nn.MSELoss()
18
19 ## dados de treinamento
20 X_train = torch.tensor([[1., 1.],
21
                      [1., -1.],
22
                      [-1., 1.],
23
                      [-1., -1.]])
24 y_train = torch.tensor([-1., 1., 1., -1.]).reshape(-1,1)
26 print("\nDados de treinamento")
27 print("X_train =")
28 print(X_train)
29 print("y_train = ")
30 print(y_train)
31
32 ## num max épocas
33 nepochs = 5000
34 \text{ tol} = 1e-3
35
36
  for epoch in range(nepochs):
37
38
       # forward
       y_est = model(X_train)
39
```

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

**t** 100 150 200 250 300 350 400 450 500 550 600

```
40
41
        # erro
        loss = loss_fun(y_est, y_train)
42
43
44
        print(f'{epoch}: {loss.item():.4e}')
45
46
        # critério de parada
        if (loss.item() < tol):</pre>
47
48
             break
49
        # backward
50
        optim.zero_grad()
51
        loss.backward()
52
53
        optim.step()
54
55
56
   # verificação
57 y = model(X_train)
58 \text{ print}(f'y_est = \{y\}')
```

#### 3.1.3 Exercícios

[[tag::construcao]]

## 3.2 Aplicação: Problema de Classificação Binária

Vamos estudar uma aplicação de redes neurais artificiais em um problema de classificação binária não linear.

### 3.2.1 Dados

Vamos desenvolver uma rede do tipo Perceptron Multicamadas (MLP) para a classificação binária de pontos, com base nos seguintes dados.

```
1 from sklearn.datasets import make_circles
2 import matplotlib.pyplot as plt
```

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

pt

```
4 plt.rcParams.update({
5
        "text.usetex": True,
6
        "font.family": "serif",
7
        "font.size": 14
8
        })
9
10 # data
11 print('data')
12 \quad n_samples = 1000
13 print(f'n_samples = {n_samples}')
14 # X = points, y = labels
15 X, y = make_circles(n_samples,
16
                        noise=0.03, # add noise
17
                        random_state=42) # random seed
18
19 fig = plt.figure()
20 ax = fig.add_subplot()
21 ax.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.coolwarm)
22 ax.grid()
23 ax.set_xlabel('$x_1$')
24 ax.set_ylabel('$x_2$')
25 plt.show()
```

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

ptŀ

00 -

50 <del>-</del>

00

250 -

300

3.

400

-450 -

-500

---550

-600



Figura 3.2: Dados para a o problema de classificação binária não linear.

### 3.2.2 Modelo

Vamos usar uma MLP de estrutura 2-10-1, com função de ativação

$$elu(x) = \begin{cases} x & , x > 0 \\ \alpha (e^x - 1) & , x \le 0 \end{cases}$$
 (3.11)

na camada escondida e

$$\operatorname{sigmoid}(x) = \frac{1}{1 + e^x} \tag{3.12}$$

na saída da rede.

Para o treinamento e teste, vamos randomicamente separar os dados em um conjunto de treinamento  $\{\boldsymbol{x}_{\text{train}}^{(k)}, y_{\text{train}}^{(k)}\}_{k=1}^{n_{\text{train}}}$  e um conjunto de teste  $\{\boldsymbol{x}_{\text{test}}^{(k)}, y_{\text{test}}^{(k)}\}_{k=1}^{n_{\text{test}}}$ , com y=0 para os pontos azuis e y=1 para os pontos vermelhos.

### 3.2.3 Treinamento e Teste

### Código 3.2: mlp\_classbin.py

```
1 import torch
2 from sklearn.datasets import make_circles
3 from sklearn.model_selection import train_test_split
4 import matplotlib.pyplot as plt
6 # data
7 print('data')
8 \text{ n samples} = 1000
9 print(f'n_samples = {n_samples}')
10 \# X = points, y = labels
11 X, y = make_circles(n_samples,
12
                        noise=0.03, # add noise
13
                        random_state=42) # random seed
14
15 ## numpy -> torch
16 X = torch.from_numpy(X).type(torch.float)
  y = torch.from_numpy(y).type(torch.float).reshape(-1,1)
18
19 ## split into train and test datasets
20 print('Data: train and test sets')
21 X_train, X_test, y_train, y_test = train_test_split(X,
22
23
                                                         test_size=0.2,
24
                                                         random_state=42)
25 print(f'n_train = {len(X_train)}')
26 print(f'n_test = {len(X_test)}')
27 plt.close()
28 plt.scatter(X_train[:,0], X_train[:,1], c=y_train,
29
               marker='o', cmap=plt.cm.coolwarm, alpha=0.3)
30 plt.scatter(X_test[:,0], X_test[:,1], c=y_test,
               marker='*', cmap=plt.cm.coolwarm)
31
32 plt.show()
33
34 # model
35 model = torch.nn.Sequential(
36
       torch.nn.Linear(2, 10),
37
       torch.nn.ELU(),
       torch.nn.Linear(10, 1),
38
       torch.nn.Sigmoid()
39
```

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

pt

```
40
       )
41
42 # loss fun
43 loss_fun = torch.nn.BCELoss()
44
45 # optimizer
46 optimizer = torch.optim.SGD(model.parameters(),
                                  lr = 1e-1)
47
48
49 # evaluation metric
50 def accuracy_fun(y_pred, y_exp):
51
       correct = torch.eq(y_pred, y_exp).sum().item()
       acc = correct/len(y_exp) * 100
52
53
       return acc
54
55 # train
56 \text{ n\_epochs} = 10000
57 \quad n_{out} = 100
58
59 for epoch in range(n_epochs):
       model.train()
60
61
62
       y_pred = model(X_train)
63
64
       loss = loss_fun(y_pred, y_train)
65
66
       acc = accuracy_fun(torch.round(y_pred),
67
                            y train)
68
69
       optimizer.zero_grad()
70
       loss.backward()
71
       optimizer.step()
72
73
       model.eval()
74
75
        #testing
       if ((epoch+1) % n_out == 0):
76
77
            with torch.inference_mode():
78
                y_pred_test = model(X_test)
                loss_test = loss_fun(y_pred_test,
79
```

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

pt

TÀN L

50

00

-35

400

450 -

500 -

550 —

-600

#### 3.2.4 Verificação

Para a verificação, testamos o modelo em uma malha uniforme de  $100 \times 100$  pontos no domínio  $[-1, 1]^2$ . Consulte a Figure 3.3.



Figura 3.3: Verificação do modelo de classificação binária.

```
1  # malha de pontos
2  xx = torch.linspace(-1.1, 1.1, 100)
3  Xg, Yg = torch.meshgrid(xx, xx)
4
5  # valores estimados
6  Zg = torch.empty_like(Xg)
7  for i,xg in enumerate(xx):
```

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

pt | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600

```
8     for j,yg in enumerate(xx):
9         z = model(torch.tensor([[xg, yg]])).detach()
10         Zg[i, j] = torch.round(z)
11
12     # visualização
13 fig = plt.figure()
14 ax = fig.add_subplot()
15 ax.contourf(Xg, Yg, Zg, levels=2, cmap=plt.cm.coolwarm, alpha=0.5)
16 ax.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.coolwarm)
17 plt.show()
```

#### 3.2.5 Exercícios

[[tag:construcao]]

## 3.3 Aplicação: Aproximação de Funções

Redes Perceptron Multicamadas (MLP) são aproximadoras universais. Nesta seção, vamos aplicá-las na aproximação de funções uni- e bidimensionais.

## 3.3.1 Função unidimensional

Vamos criar uma MLP para aproximar a função gaussiana

```
y = e^{-x^2},
para \ x \in [-1,1].
1 import torch
2 import mathematical in pyrlot as plt
```

```
2 import matplotlib.pyplot as plt
3
4 # modelo
5
6 model = torch.nn.Sequential(
7 torch.nn.Linear(1,25),
8 torch.nn.Tanh(),
9 torch.nn.Linear(25,1)
10 )
11
```

```
12 # treinamento
13
14 ## fun obj
15 fobj = lambda x: torch.exp(-x**2)
16 \ a = -1.
17 b = 1.
18
19 ## optimizador
20 optim = torch.optim.SGD(model.parameters(),
21
                             lr=1e-2, momentum=0.9)
22
23 ## função erro
24 loss_fun = torch.nn.MSELoss()
25
26 ## num de amostras por época
27 \text{ ns} = 100
28 ## num max épocas
29 nepochs = 5000
30 ## tolerância
31 \text{ tol} = 1e-5
32
33 for epoch in range (nepochs):
34
35
       # amostras
36
       X_{train} = (a - b) * torch.rand((ns,1)) + b
37
       y_train = fobj(X_train)
38
39
       # forward
40
       y_est = model(X_train)
41
42
       # erro
43
       loss = loss_fun(y_est, y_train)
44
45
       print(f'{epoch}: {loss.item():.4e}')
46
47
       # critério de parada
       if (loss.item() < tol):</pre>
48
49
            break
50
       # backward
51
```

Þь

.00+

-

400

450

500 —

-550 —

--60c

```
52
        optim.zero_grad()
53
        loss.backward()
54
        optim.step()
55
56
57 # verificação
58 fig = plt.figure()
59 ax = fig.add_subplot()
60
61 x = torch.linspace(a, b,
62
                         steps=50).reshape(-1,1)
63
64 \text{ y_esp} = \text{fobj(x)}
65 ax.plot(x, y_esp, label='fobj')
66
67 \text{ y_est} = \text{model(x)}
68 ax.plot(x, y_est.detach(), label='model')
69
70 ax.legend()
71 ax.grid()
72 ax.set_xlabel('x')
73 ax.set_ylabel('y')
74 plt.show()
```

## 3.3.2 Função bidimensional

torch.nn.Tanh(),

torch.nn.Linear(50,25),

Vamos criar uma MLP para aproximar a função gaussiana

```
y = e^{-(x_1^2 + x_2^2)}, \tag{3.14}
\text{para } \boldsymbol{x} = (x_1, x_2) \in [-1, 1]^2.
\text{1 import torch}
\text{2 import matplotlib.pyplot as plt}
\text{3}
\text{4 # modelo}
\text{5}
\text{6 model = torch.nn.Sequential(}
\text{7 torch.nn.Linear(2,50),}
```

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

ot

```
10
       torch.nn.Tanh(),
11
       torch.nn.Linear(25,5),
12
       torch.nn.Tanh(),
13
       torch.nn.Linear(5,1)
14
15
16
  # treinamento
17
18 ## fun obj
19 \ a = -1.
20 b = 1.
21
  def fobj(x):
22
       y = torch.exp(-x[:,0]**2 - x[:,1]**2)
23
       return y.reshape(-1,1)
24
25 ## optimizador
26 optim = torch.optim.SGD(model.parameters(),
27
                             lr=1e-1, momentum=0.9)
28
29 ## função erro
30 loss_fun = torch.nn.MSELoss()
31
32 ## num de amostras por eixo por época
33 \text{ ns} = 100
34 ## num max épocas
35 nepochs = 5000
36 ## tolerância
37 \text{ tol} = 1e-5
38
39
  for epoch in range(nepochs):
40
41
       # amostras
42
       x0 = (a - b) * torch.rand(ns) + b
       x1 = (a - b) * torch.rand(ns) + b
43
44
       X0, X1 = torch.meshgrid(x0, x1)
45
       X_train = torch.cat((X0.reshape(-1,1),
                              X1.reshape(-1,1)),
46
47
                             dim=1)
48
       y_train = fobj(X_train)
49
```

Ьr

00+

) |----

0

50

3

-40

-450-

-500 <del>---</del>

550

-600

```
50
        # forward
51
        y_est = model(X_train)
52
53
        # erro
54
        loss = loss_fun(y_est, y_train)
55
56
        print(f'{epoch}: {loss.item():.4e}')
57
58
        # critério de parada
        if (loss.item() < tol):</pre>
59
60
            break
61
        # backward
62
        optim.zero_grad()
63
64
        loss.backward()
65
        optim.step()
66
67
68 # verificação
69 fig = plt.figure()
70 ax = fig.add_subplot()
71
72 n = 50
73 \times 0 = \text{torch.linspace(a, b, steps=n)}
74 	 x1 = torch.linspace(a, b, steps=n)
75 X0, X1 = torch.meshgrid(x0, x1)
76 X = torch.cat((X0.reshape(-1,1),
                    X1.reshape(-1,1)),
77
78
                   dim=1)
79
80 \text{ y_esp} = \text{fobj(X)}
81 Y = y_{esp.reshape((n,n))}
82 levels = torch.linspace(0., 1., 10)
83 c = ax.contour(X0, X1, Y, levels=levels, colors='white')
84 ax.clabel(c)
85
86 \text{ y_est} = \text{model(X)}
87 	ext{ Y} = y_{est.reshape}((n,n))
88 ax.contourf(X0, X1, Y.detach(), levels=levels)
89
```

```
90 ax.grid()
91 ax.set_xlabel('x_1')
92 ax.set_ylabel('x_2')
93 plt.show()
```

#### 3.3.3 Exercícios

[[tag::construcao]]

# 3.4 Diferenciação Automática

Uma RNA é uma composição de funções definidas por parâmetros (pesos e biases). O treinamento de uma RNA ocorre em duas etapas<sup>1</sup>:

- 1. **Propagação** (*forward*): os dados de entrada são propagados para todas as funções da rede, produzindo a saída estimada.
- 2. Retropropagação (backward): a computação do gradiente do erro<sup>2</sup> em relação aos parâmetros da rede é realizado coletando as derivadas (gradientes) das funções da rede. Pela regra da cadeia, essa coleta é feita a partir da camada de saída em direção a camada de entrada da rede.

A Diferenciação Automática (**Autograd**, do inglês, *Automatic Gradient*) consiste na computação de derivadas a partir da regra da cadeia em uma estrutura computacional composta de funções elementares. Esse é o caso em RNAs, a computação do gradiente da saída da rede em relação a sua entrada pode ser feita de forma similar à computação do gradiente do erro em relação aos seus parâmetros.

### 3.4.1 Autograd Perceptron

Para um Perceptron<sup>3</sup>

$$\tilde{y} = \mathcal{N}(\mathbf{x}, (\mathbf{w}, b))$$

$$= f(\mathbf{w} \cdot \mathbf{x} + b)$$
(3.15a)
(3.15b)

<sup>&</sup>lt;sup>1</sup>Para mais detalhes, consulte a Subseção 3.1.1.

<sup>&</sup>lt;sup>2</sup>Medida da diferença entre o valor estimado e o valor esperado.

<sup>&</sup>lt;sup>3</sup>Consulte o Capítulo 2 para mais informações sobre o Perceptron.

temos que o gradiente da saída y em relação à entrada  $\boldsymbol{x}$  pode ser computada como segue

$$\frac{\partial \tilde{y}}{\partial \boldsymbol{x}} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial \boldsymbol{x}} 
= f'(z)\boldsymbol{w}$$
(3.16a)

Exemplo 3.4.1. Vamos treinar um Perceptron com função de ativação f(z) = z

$$\tilde{y} = \mathcal{N}(x; (w,b))$$

$$= wx + b$$
(3.17a)
$$(3.17b)$$

que se ajusta ao conjunto de pontos<sup>4</sup>

Uma vez treinado com função erro MSE<sup>5</sup>, espera-se que o Perceptron corresponda a reta de mínimos quadrados<sup>6</sup>

$$y = 1.54x + 0.45 \tag{3.18}$$

Portanto, espera-se que

$$\frac{\partial \tilde{y}}{\partial x} = 1.54. \tag{3.19}$$

Código 3.3: autograd\_percep.py

import torch

2

3 # modelo

4 model = torch.nn.Linear(1,1)

<sup>&</sup>lt;sup>4</sup>Consulte o Exercício 2.2.4.

<sup>&</sup>lt;sup>5</sup>MSE, Erro Quadrático Médio.

<sup>&</sup>lt;sup>6</sup>Para mais informações sobre essa aplicação, consulte a Subseção 2.1.2.

```
5
6
   # treinamento
7
8 ## optimizador
9 optim = torch.optim.SGD(model.parameters(),
10
                              lr=1e-1)
11
12 ## função erro
13 loss_fun = torch.nn.MSELoss()
14
15 ## dados de treinamento
16 X_train = torch.tensor([[0.5],
17
                              [1.0],
18
                              [1.5],
19
                              [2.0]])
20 y_train = torch.tensor([[1.2],
21
                              [2.1],
22
                              [2.6],
23
                              [3.6]])
24
25
  ## num max épocas
26 nepochs = 5000
27 \text{ nstop} = 10
28
29 \text{ cstop} = 0
30 loss_min = torch.finfo().max
31
  for epoch in range(nepochs):
32
33
        # forward
34
        y_est = model(X_train)
35
36
        # erro
37
        loss = loss_fun(y_est, y_train)
38
39
        # critério de parada
40
        if (loss.item() >= loss_min):
41
            cstop += 1
42
        else:
            loss_min = loss.item()
43
44
            cstop = 0
```

96

.00

2

--25

-30

-350

400 —

50

500

-550-

-600

```
45
46
        print(f'{epoch}: {loss.item():.4e}, '\
               + f'cstop = {cstop}/{nstop}')
47
48
49
        if (cstop == nstop):
50
            break
51
        # backward
52
53
        optim.zero_grad()
        loss.backward()
54
55
        optim.step()
56
57
58
   # verificação
   print(f'w = {model.weight}')
   print(f'b = {model.bias}')
60
61
62
   # autograd dy/dx
63
64 ## forward
65 \times = torch.tensor([[1.]],
                       requires_grad=True)
66
67
   y = model(x)
68
69 ## backward
70 y.backward()
71 \text{ dydx} = x.grad
72 \text{ print}(f'dy/dx = \{dydx\}')
```

# 3.4.2 Autograd MLP

Os conceitos de diferenciação automática (**autograd**) são diretamente estendidos para redes do tipo Perceptron Multicamadas (MLP, do inglês, *Multilayer Perceptron*). No seguinte exemplo, exploramos o fato de MLPs serem aproximadoras universais e avaliamos a derivada de uma MLP na aproximação de uma função.

Exemplo 3.4.2. Vamos criar uma MLP

$$\tilde{y} = \mathcal{N}\left(x; \left(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)}\right)_{l=1}^{n}\right), \tag{3.20}$$

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

þь

00 -

+-250

รก่ก 🗕

350

00 -

450 -

500 -

-550

60

```
que aproxima a função y = \text{sen}(\pi x) para x \in [-1, 1]
                      Código 3.4: autograd_fun1d.py
   import torch
  import matplotlib.pyplot as plt
4 # modelo
5
6 model = torch.nn.Sequential(
7
       torch.nn.Linear(1,50),
8
       torch.nn.Tanh(),
9
        torch.nn.Linear(50,25),
10
       torch.nn.Tanh(),
11
       torch.nn.Linear(25,1)
12
13
14
  # treinamento
15
16
  ## fun obj
17 fobj = lambda x: torch.sin(torch.pi*x)
  a = -1.
18
19 \ b = 1.
20
21
  ## optimizador
22
  optim = torch.optim.SGD(model.parameters(),
23
                              lr=1e-1, momentum=0.9)
24
25 ## função erro
26 loss_fun = torch.nn.MSELoss()
27
28 ## num de amostras por época
29 ns = 100
30 ## num max épocas
31 \text{ nepochs} = 10000
32 ## tolerância
33 \text{ tol} = 1e-5
34
35 for epoch in range (nepochs):
36
37
        # amostras
```

```
CAPÍTULO 3. PERCEPTRON MULTICAMADAS
       X_{train} = (a - b) * torch.rand((ns,1)) + b
38
39
       y_train = fobj(X_train)
40
41
       # forward
42
       y_est = model(X_train)
43
44
       # erro
       loss = loss_fun(y_est, y_train)
45
46
47
       lr = optim.param_groups[-1]['lr']
       print(f'{epoch}: loss = {loss.item():.4e}, lr = {lr:.4e}')
48
49
       # critério de parada
50
       if ((loss.item() < tol) or (lr <= 1e-7)):</pre>
51
52
            break
53
54
       # backward
       optim.zero_grad()
55
       loss.backward()
56
57
       optim.step()
```



Figura 3.4: Comparação da autograd da MLP com a derivada exata  $f'(x) = \pi \cos(\pi x)$  para o Exemplo 3.4.2.

Uma vez treinada, nossa MLP é uma aproximadora da função seno, i.e.  $\tilde{y} \approx \text{sen}(\pi x)$ . Usando de autograd podemos computar  $\tilde{y}' \approx \pi \cos(\pi x)$ . O código abaixo, computa  $d\tilde{y}/dx$  a partir da rede e produz o gráfico da figura acima.

```
1 # verificação
  fig = plt.figure()
  ax = fig.add_subplot()
4
  xx = torch.linspace(a, b,
5
6
                       steps=50).reshape(-1,1)
7
  # y' = cos(x)
  dy_esp = torch.pi*torch.cos(torch.pi*xx)
  ax.plot(xx, dy_esp, label="f'(x) = \pi(x)")
10
11
   # model autograd
  dy_est = torch.empty_like(xx)
12
13
  for i,x in enumerate(xx):
14
       x.requires_grad = True
```

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

թե

#### 3.4.3 Exercícios

[[tag:construcao]]

# 3.5 Aplicação: Equação de Laplace

Vamos criar uma MLP para resolver

$$-\Delta u = 0, \quad \mathbf{x} \in D = (0, 1)^2,$$
 (3.21a)  
 $u = 0, \quad \mathbf{x} \in \partial D.$  (3.21b)

Como exemplo, vamos considerar um problema com solução manufaturada

$$u(\mathbf{x}) = x_1(1 - x_1) - x_2(1 - x_2). \tag{3.22}$$

### 3.5.1 Diferenças Finitas

Código 3.5: mlp\_eqlaplace\_df.py

```
1 import torch
2 import matplotlib.pyplot as plt
3 import random
4 import numpy as np
5
6 # modelo
7 model = torch.nn.Sequential(
```

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

pt

```
8
       torch.nn.Linear(2,50),
9
       torch.nn.Tanh(),
10
       torch.nn.Linear (50,10),
11
       torch.nn.Tanh(),
12
       torch.nn.Linear(10,5),
13
       torch.nn.Tanh(),
14
       torch.nn.Linear(5,1)
15 )
16
  # SGD - (Stochastic) Gradient Descent
17
   optim = torch.optim.SGD(model.parameters(),
19
                             1r = 1e-3,
20
                             momentum = 0.9,
21
                             dampening = 0.)
22
23
   # Solução esperada
   def u(x, y):
24
25
       return a*x*(1-x) - a*y*(1-y)
26
27
28
   def laplace_loss(X, U, h2, n, uc=u, p=1.):
29
       # num de amostras
       nc = 2*n + 2*(n-2)
30
31
       ni = n**2 - nc
32
33
       # loss interno
34
       lin = 0.
35
       for i in range (1, n-1):
36
          for j in range(1,n-1):
37
            s = j + i*n
            1 = (U[s-n, 0] - 2 * U[s, 0] + U[s+n, 0])/h2 # x
38
39
            1 += (U[s-1, 0] - 2 * U[s, 0] + U[s+1, 0])/h2 # y
40
            lin += 1**2
       lin /= ni
41
42
43
       # loss contorno
       1c = 0.
44
45
        \# \ 0 <= x <= 1 \ e \ y == 0
46
       for i in range(n):
47
            s = i*n
```

Ьr

```
48
            x = M[s,0]
49
            y = M[s,1]
            1c += (U[s,0] - uc(x,y))**2
50
        \# \ 0 <= x <= 1 \ e \ y == 1
51
52
        for i in range(n):
            s = n-1 + i*n
53
            x = M[s,0]
54
            y = M[s,1]
55
            1c += (U[s,0] - uc(x,y))**2
56
        \# \ 0 == x \ e \ 0 < y < 1
57
58
        for j in range(1, n-1):
59
            s = j
            x = M[s, 0]
60
            y = M[s,1]
61
            1c += (U[s,0] - uc(x,y))**2
62
        # 1 == x e 0 < y < 1
63
64
        for j in range(1, n-1):
65
            s = j + n*(n-1)
            x = M[s, 0]
66
67
            y = M[s,1]
            1c += (U[s,0] - uc(x,y))**2
68
        1c *= p/nc
69
70
        loss = lin + lc
71
72
        return loss
73
74
75
   # dados do problema
76
77 # collocation points
78 \, a = 1
79 \, n = 11
80 \text{ ns} = n**2
81 h = 1./(n-1)
82 h2 = h**2
83
84 # malha
85 x = torch.linspace(0, 1, n)
86 \text{ y} = \text{torch.linspace}(0, 1, n)
87
```

pt

TÀN

50

00

3

-350

400

450-

-500

-550-

-600

```
88 M = torch.empty((ns, 2))
89 s = 0
90 for i, xx in enumerate(x):
91
      for j, yy in enumerate(y):
92
         M[s,0] = xx
93
         M[s,1] = yy
94
         s += 1
95
96 # gráfico
97 \text{ X, Y = np.meshgrid(x, y)}
98 \text{ U_esp} = u(X, Y)
99
100 # training
101 \text{ nepochs} = 10000
102 \text{ nout_loss} = 100
103 \text{ nout_plot} = 500
104
105 for epoch in range (nepochs):
106
107
         # forward
108
         U_{est} = model(M)
109
110
         # loss function
111
         loss = laplace_loss(M, U_est, h2, n, u, p=10.)
112
         if ((epoch % nout_loss) == 0):
113
114
             print(f'{epoch}: loss = {loss.item():.4e}')
115
         # output current solution
116
117
         if ((epoch) % nout_plot == 0):
118
             # verificação
119
             fig = plt.figure()
120
             ax = fig.add_subplot()
121
122
             ns = 50
123
             x1 = torch.linspace(0., 1., ns)
124
             x2 = torch.linspace(0., 1., ns)
125
             X1, X2 = torch.meshgrid(x1, x2)
126
             # exact
127
             Z_esp = torch.empty_like(X1)
```

```
128
             for i,x in enumerate(x1):
                 for j,y in enumerate(x2):
129
130
                      Z_{esp[i,j]} = u(x, y)
131
             c = ax.contour(X1, X2, Z_esp, levels=10, colors='white')
132
             ax.clabel(c)
133
134
             X_{plot} = torch.cat((X1.reshape(-1,1),
135
                                   X2.reshape(-1,1)), dim=1)
136
             Z_{est} = model(X_{plot})
             Z_est = Z_est.reshape((ns,ns))
137
             cf = ax.contourf(X1, X2, Z_est.detach(), levels=10, cmap='coolwarm')
138
139
             plt.colorbar(cf)
140
141
             ax.grid()
142
             ax.set_xlabel('$x_1$')
143
             ax.set_ylabel('$x_2$')
144
             plt.show()
145
146
         # backward
147
        optim.zero_grad()
        loss.backward()
148
         optim.step()
149
```

## 3.5.2 Autograd

Código 3.6: mlp\_eqlaplace\_ag.py

```
1 import torch
2 import matplotlib.pyplot as plt
3 import random
4 import numpy as np
6 # modelo
7 model = torch.nn.Sequential(
       torch.nn.Linear(2,50),
       torch.nn.Tanh(),
9
10
       torch.nn.Linear(50,10),
11
       torch.nn.Tanh(),
12
       torch.nn.Linear(10,5),
13
       torch.nn.Tanh(),
```

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

```
torch.nn.Linear(5,1)
14
15
16
17 # SGD - (Stochastic) Gradient Descent
  optim = torch.optim.SGD(model.parameters(),
19
                             1r = 1e-3,
20
                             momentum = 0.9,
21
                             dampening = 0.)
22
23
   # Solução esperada
24
   def u(x, y):
25
       return a*x*(1-x) - a*y*(1-y)
26
27
28
   def laplace_loss(X, U, h2, n, uc=u, p=1.):
29
       # num de amostras
30
       nc = 2*n + 2*(n-2)
31
       ni = n**2 - nc
32
33
       # loss interno
       lin = 0.
34
35
       for i in range (1, n-1):
36
         for j in range(1,n-1):
37
            s = j + i*n
38
            x = X[s:s+1,:].detach()
39
           x.requires_grad = True
40
           u = model(x)
41
            grad_u = torch.autograd.grad(u, x,
42
                                           create_graph = True,
43
                                           retain_graph = True)[0]
44
           u_x = grad_u[0,0]
45
           u_y = grad_u[0,1]
46
47
           u_xx = torch.autograd.grad(u_x, x,
48
                                         create_graph = True,
49
                                         retain_graph = True)[0][0,0]
50
            u_yy = torch.autograd.grad(u_y, x,
51
                                         create_graph = True,
52
                                         retain_graph = True)[0][0,1]
53
            lin = torch.add(lin, (u_xx + u_yy)**2)
```

```
lin /= ni
54
55
56
        # loss contorno
57
        1c = 0.
58
        \# \ 0 <= x <= 1 \ e \ y == 0
        for i in range(n):
59
60
            s = i*n
            x = M[s,0]
61
62
            y = M[s,1]
63
            1c += (U[s,0] - uc(x,y))**2
        \# \ 0 \ <= \ x \ <= \ 1 \ e \ y \ == \ 1
64
65
        for i in range(n):
            s = n-1 + i*n
66
67
            x = M[s,0]
68
            y = M[s,1]
            1c += (U[s,0] - uc(x,y))**2
69
70
        \# \ 0 == x \ e \ 0 < y < 1
        for j in range(1, n-1):
71
72
             s = j
73
            x = M[s, 0]
74
            y = M[s,1]
             1c += (U[s,0] - uc(x,y))**2
75
        # 1 == x e 0 < y < 1
76
77
        for j in range(1, n-1):
78
            s = j + n*(n-1)
            x = M[s,0]
79
80
             y = M[s,1]
             1c += (U[s,0] - uc(x,y))**2
81
82
        1c *= p/nc
83
        loss = lin + lc
84
85
        return loss
86
87
88 # dados do problema
89
90 # collocation points
91 \ a = 1
92 	 n = 11
93 \text{ ns} = n**2
```

pt

100+

--250

300-

-350

-450

0

6

```
94 h = 1./(n-1)
95 \text{ h2} = \text{h**2}
96
97 # malha
98 \times = torch.linspace(0, 1, n)
99 y = torch.linspace(0, 1, n)
100
101 M = torch.empty((ns, 2))
102 s = 0
103 for i, xx in enumerate(x):
104
      for j, yy in enumerate(y):
105
        M[s,0] = xx
106
        M[s,1] = yy
107
         s += 1
108
109 # gráfico
110 X, Y = np.meshgrid(x, y)
111 U_{esp} = u(X, Y)
112
113 # training
114 \text{ nepochs} = 10000
115 \text{ nout_loss} = 100
116 nout_plot = 500
117
118 for epoch in range (nepochs):
119
120
         # forward
121
         U_{est} = model(M)
122
123
         # loss function
124
         loss = laplace_loss(M, U_est, h2, n, u, p=10.)
125
126
         if ((epoch % nout_loss) == 0):
127
             print(f'{epoch}: loss = {loss.item():.4e}')
128
129
         # output current solution
         if ((epoch) % nout_plot == 0):
130
131
             # verificação
132
             fig = plt.figure()
133
             ax = fig.add_subplot()
```

pt

```
134
135
             ns = 50
             x1 = torch.linspace(0., 1., ns)
136
137
             x2 = torch.linspace(0., 1., ns)
138
             X1, X2 = torch.meshgrid(x1, x2)
             # exact
139
140
             Z_esp = torch.empty_like(X1)
             for i,x in enumerate(x1):
141
142
                 for j,y in enumerate(x2):
                     Z_{esp[i,j]} = u(x, y)
143
144
             c = ax.contour(X1, X2, Z_esp, levels=10, colors='white')
145
             ax.clabel(c)
146
             X_plot = torch.cat((X1.reshape(-1,1),
147
148
                                  X2.reshape(-1,1)), dim=1)
149
             Z_est = model(X_plot)
             Z_est = Z_est.reshape((ns,ns))
150
             cf = ax.contourf(X1, X2, Z_est.detach(), levels=10, cmap='coolwarm')
151
152
             plt.colorbar(cf)
153
             ax.grid()
154
             ax.set_xlabel('$x_1$')
155
             ax.set_ylabel('$x_2$')
156
157
             plt.show()
158
        # backward
159
        optim.zero_grad()
160
        loss.backward()
161
162
        optim.step()
```

#### 3.5.3 Exercícios

[[tag::construcao]]

Notas de Aula - Pedro Konzen \*/\* Licença CC-BY-SA 4.0

pt

# Resposta dos Exercícios

**Exercício 2.1.3.** Dica: verifique que sua matriz hessiana é positiva definida.

**Exercício 2.1.4.** Dica: consulte a ligação Notas de Aula: Matemática Numérica: 7.1 Problemas lineares.

**Exercício 2.2.1.**  $(\tanh x)' = 1 - \tanh^2 x$ 

Bibliografia

- [1] Goodfellow, I., Bengio, Y., Courville, A.. Deep learning, MIT Press, Cambridge, MA, 2016.
- [2] Neural Networks: A Comprehensive Foundation, Haykin, S.. Pearson:Delhi, 2005. ISBN: 978-0020327615.
- [3] Raissi, M., Perdikaris, P., Karniadakis, G.E.. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.

  Journal of Computational Physics 378 (2019), pp. 686-707. DOI: 10.1016/j.jcp.2018.10.045.
- [4] Mata, F.F., Gijón, A., Molina-Solana, M., Gómez-Romero, J., Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities. Physica A: Statistical Mechanics and its Applications 610 (2023), pp. 128415. DOI: 10.1016/j.physa.2022.128415.