

Lecture 19

Multiple Comparison and Linear Contrasts

Text: Chapter 9

STAT 8010 Statistical Methods I October 27, 2020

> Whitney Huang Clemson University

One-Way ANOVA & Overall F-Test

 We use one-way ANOVA to compare means of J (≥ 3) groups/conditions

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_J$$

 $H_a:$ at least a pair μ 's differ

- If H₀ is rejected, ANOVA just states that there is a significant difference between the groups but not where those differences occur
- We need to perform additional post hoc tests, multiple comparisons, to determine where the group differences are

Pairwise T-Tests

differences are

• Suppose we have 4 groups, i.e. J = 4, then we need to perform $\binom{4}{2} = 6$ two-sample tests to locate where the group

$$H_0: \mu_1 = \mu_2$$
 VS. $H_a: \mu_1 \neq \mu_2$
 $H_0: \mu_1 = \mu_3$ VS. $H_a: \mu_1 \neq \mu_3$
 $H_0: \mu_1 = \mu_4$ VS. $H_a: \mu_1 \neq \mu_4$
 $H_0: \mu_2 = \mu_3$ VS. $H_a: \mu_2 \neq \mu_3$
 $H_0: \mu_2 = \mu_4$ VS. $H_a: \mu_2 \neq \mu_4$
 $H_0: \mu_3 = \mu_4$ VS. $H_a: \mu_3 \neq \mu_4$

• What if we simply perform these tests using, say, α = 0.05 for each test?

P(making a least one type I error) = $1 - (1 - 0.05)^6 = 0.265$

if each test was independent

Family-Wise Error Rate (FWER)

Family-Wise Error Rate (FWER) $\bar{\alpha}$: the probability of making 1 or more type I errors in a set of hypothesis tests

Multiple Comparison and Linear Contrasts

CLEMS

UNIVERSITY

VERSITY

VERSI

For m independent tests, each with individual type I error rate α , then we have

$$\bar{\alpha} = 1 - (1 - \alpha)^m$$

		α	
m	0.1	0.05	0.01
1	0.100	0.050	0.010
3	0.271	0.143	0.030
6	0.469	0.265	0.059
10	0.651	0.401	0.096
15	0.794	0.537	0.140
21	0.891	0.659	0.190

The Bonferroni Correction

If we would like to control the FWER to be α , then we adjust the significant level for each of the m tests to be $\frac{\alpha}{m}$

$$FWER = P\left(\bigcup_{i=1}^{m} p_i \le \frac{\alpha}{m}\right) \le \sum_{i=1}^{m} P\left(p_i \le \frac{\alpha}{m}\right) = m\frac{\alpha}{m} = \alpha$$

where p_i is the p-value for the i_{th} test

If we have 4 treatment groups, then we need to perform 6 tests $(m = 6) \Rightarrow$ will need to set the significant level for each individual pairwise t-test to be 0.05/6 = 0.0083 to ensure that FWER is less than 0.05

Remark: Bonferroni procedure can be very conservative but gives guaranteed control over FWER at the risk of reducing statistical power. Does not assume independence of the comparisons.

Me and the significant boys

Me and the significant boys after Bonferroni correction

Example

A researcher who studies sleep is interested in the effects of ethanol on sleep time. She gets a sample of 20 rats and gives each an injection having a particular concentration of ethanol per body weight. There are 4 treatment groups, with 5 rats per treatment. She records Rapid eye movement (REM) sleep time for each rat over a 24-period.

Treatment	Control	1g/kg	2g/kg	4g/kg
Mean	82.2	81.0	73.8	65.7
Std	9.6	5.3	9.4	7.9

Recall in last lecture we reject $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ at 0.05 level. But where these differences are?

Example: Multiple Testing with Bonferroni Correction

P-value

Test	μ_1, μ_2	μ_1, μ_3	μ_1, μ_4	μ_2, μ_3	μ_2, μ_4	μ_3,μ_4
Pooled	0.816	0.202	0.018	0.175	0.007	0.179
Pooled Non-pooled	0.818	0.202	0.019	0.185	0.009	0.180

Fisher's Protected Least Significant Difference (LSD) Procedure

• We conclude that μ_i and μ_j differ at α significance level if $|\bar{X}_i - \bar{X}_j| > LSD$, where

$$LSD = t_{\alpha/2, df=N-J} \sqrt{\mathsf{MSE}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

- This procedure builds on the equal variances t-test of the difference between two means
- The test statistic is improved by using MSE rather than s_p^2

Tukey's Honest Significance Difference (HSD) Test

- The test procedure:
 - Requires equal sample size *n* per populations
 - Find a critical value ω as follows:

$$\omega = q_{\alpha}(J, N - J)\sqrt{\frac{\mathsf{MSE}}{n}}$$

where $q_{\alpha}(J, N-J)$ can be obtained from the studentized range table

- If $\bar{X}_{max} \bar{X}_{min} > \omega$ \Rightarrow there is sufficient evidence to conclude that $\mu_{max} > \mu_{min}$
- Repeat this procedure for each pair of samples. Rank the means if possible

A researcher would like to investigate the relationship between Facebook social attractiveness and the number of Facebook friends. An experiment was conducted where five groups of participant judge the same Facebook profiles, except for the one aspect that was manipulated: the number of friends for that profile.

Example: Descriptive Statistics

_	Score					
	102	302	502	702	902	
Valid	24	33	26	30	21	
Missing	0	0	0	0	0	
Mean	3.817	4.879	4.562	4.407	3.990	
Std. Deviation	0.999	0.851	1.070	1.428	1.023	
Minimum	2.200	2.600	2.000	1.000	1.600	
Maximum	6.000	6.400	6.800	7.000	5.200	

Example: Checking Model Assumptions

Assumption Checks ▼

Test for Equality of Variances (Levene's)

F	df2	p	
2.607	4.000	129.000	0.039

Question: Are Facebook attractiveness affected by # of friends?

 $H_0: \mu_1 = \mu_2 = \dots = \mu_5$ $H_a:$ At least one group mean is different from others **Question:** Are Facebook attractiveness affected by # of friends?

 $H_0: \mu_1 = \mu_2 = \dots = \mu_5$ H_a : At least one group mean is different from others

Analysis of Variance Table

Response: Score

Df Sum Sq Mean Sq F value

Friends 4 19.89 4.9726 4.142

Residuals 129 154.87 1.2005

Pr(>F)

Friends 0.00344 **

Residuals

Facebook Friends: Overall F-Test

Question: Are Facebook attractiveness affected by # of friends?

 $H_0: \mu_1 = \mu_2 = \dots = \mu_5$

 H_a : At least one group mean is different from others

Analysis of Variance Table

Response: Score

Df Sum Sq Mean Sq F value

Friends 4 19.89 4.9726 4.142

Residuals 129 154.87 1.2005

Pr(>F)

Friends 0.00344 **

Residuals

Next, we need to figure out where these differences occur

We conclude that μ_i and μ_j differ at α level if $|\bar{X}_i - \bar{X}_j| > LSD$, where

$$LSD = t_{\alpha/2, df=N-J} \sqrt{\mathsf{MSE}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

Facebook Example: Fisher's LSD

We conclude that μ_i and μ_j differ at α level if $|\bar{X}_i - \bar{X}_j| > LSD$, where

$$LSD = t_{\alpha/2, df=N-J} \sqrt{\mathsf{MSE}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

> LSD_none\$groups

groups	Score	
а	4.878788	302
ab	4.561538	502
abc	4.406667	702
bc	3.990476	902
С	3.816667	102

Facebook Example: Fisher's LSD

We conclude that μ_i and μ_j differ at α level if $|\bar{X}_i - \bar{X}_j| > LSD$, where

$$LSD = t_{\alpha/2, df=N-J} \sqrt{\mathsf{MSE}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

oups	> LSD_bon\$gro	> LSD_none\$groups			
groups	Score	groups	Score		
а	302 4.878788	а	302 4.878788		
ab	502 4.561538	ab	502 4.561538		
ab	702 4.406667	abc	702 4.406667		
b	902 3.990476	bc	902 3.990476		
b	102 3.816667	С	102 3.816667		

Facebook Example: Tukey's HSD Test

Yet there is another method to deal with multiple testing: Tukey's Honest Significant Difference (HSD) test. We conclude that μ_i and μ_i differ at α familywise level if $|\bar{X}_i - \bar{X}_i| > \omega$, where

$$\omega = q_{\alpha}(J, N - J)\sqrt{\frac{\mathsf{MSE}}{n}},$$

 $q_{\alpha}(J, N-J)$ can be obtained from the studentized range table

Critical Values of Studentized Range Distribution(q) for Familywise ALPHA = .05.

Denominator	Number of Groups (a.k.a. Treatments)							
DF	3	4	5	6	7	8	9	10
51	3.414	3.756	3.999	4.187	4.340	4.469	4.580	4.677
52	3.412	3.753	3.996	4.184	4.337	4.465	4.576	4.673
53	3.410	3.751	3.994	4.181	4.334	4.462	4.572	4.669
54	3.408	3.749	3.991	4.178	4.331	4.459	4.569	4.666
55	3.406	3.747	3.989	4.176	4.328	4.455	4.566	4.662
56	3.405	3.745	3.986	4.173	4.325	4.452	4.562	4.659
57	3.403	3.743	3.984	4.170	4.322	4.449	4.559	4.656
58	3.402	3.741	3.982	4.168	4.319	4.447	4.556	4.652
59	3.400	3.739	3.979	4.165	4.317	4.444	4.553	4.649
60	3,399	3,737	3.977	4.163	4.314	4.441	4.550	4.646

Facebook Example: Tukey's HSD Test

	diff	lwr	upr	p adj
302-102	1.0621212	0.2488644	1.87537798	0.003889635
502-102	0.7448718	-0.1132433	1.60298691	0.121456224
702-102	0.5900000	-0.2402014	1.42020143	0.288431585
902-102	0.1738095	-0.7320145	1.07963355	0.984016816
502-302	-0.3172494	-1.1121910	0.47769215	0.804080046
702-302	-0.4721212	-1.2368466	0.29260420	0.432633745
902-302	-0.8883117	-1.7345313	-0.04209203	0.034535577
702-502	-0.1548718	-0.9671402	0.65739661	0.984391504
902-502	-0.5710623	-1.4604793	0.31835479	0.391768065
902-702	-0.4161905	-1.2787075	0.44632652	0.669927748

Linear Contrasts

Multiple Comparison and Linear Contrasts

CLEMS

UNIVERSITY

Suppose we have J populations (e.g. response for J different treatments) of interest. We have seen how to perform multiple comparisons. For example, the comparison between μ_1 and μ_2 can be conducted using the test: $H_0: \mu_1 - \mu_2 = 0$ vs.

 $H_a: \mu_1 - \mu_2 \neq 0$. This comparison is actually a special case of linear contrasts

Linear Contrasts

Let c_1, c_2, \dots, c_J are constants where $\sum_{j=1}^J c_j = 0$, then $\sum_{j=1}^J c_j \mu_j$ is called a **linear contrast** of the population means.

Example: Suppose J = 4

Inferences for Linear Contrasts

Multiple Comparison and Linear Contrasts

If we want to make a inference about $L = \sum_{i=1}^{J} c_{i} \mu_{j}$. Then we use

$$\hat{L} = \sum_{j=1}^{J} c_j \bar{X}_j$$

as the point estimate. Furthermore, we can construct a $100(1-\alpha)\%$ CI for L:

$$(\hat{L}-t_{(\alpha/2,df=N-J)}\hat{se}_{\hat{L}},\hat{L}+t_{(\alpha/2,df=N-J)}\hat{se}_{\hat{L}}),$$

where
$$\hat{se}_{\hat{L}} = \sqrt{\mathsf{MSE}\left(\frac{c_1^2}{n_1} + \dots + \frac{c_J^2}{n_J}\right)}$$

To test whether L is significantly different from 0, we can conduct the following test:

$$H_0: \sum_{j=1}^J c_j \mu_j = 0 \text{ vs. } H_a: \sum_{j=1}^J c_j \mu_j \neq 0$$

Hypothesis Testing for Linear Contrasts

Null and Alternative Hypotheses:

$$H_0:\sum\limits_{j=1}^Jc_j\mu_j=0$$
 vs. $H_a:\sum\limits_{j=1}^Jc_j\mu_j\neq 0$

Test Statistic:

$$t_{obs} = \frac{\hat{L} - 0}{\hat{se}_{\hat{L}}} = \frac{\sum_{j=1}^{J} c_j \bar{X}_j}{\sqrt{\mathsf{MSE}\left(\frac{c_1^2}{n_1} + \dots + \frac{c_j^2}{n_J}\right)}}$$

Openion Decision:

Reject
$$H_0$$
 if $|t_{obs}| > t_{\alpha/2, df=N-J}$ (or p-value $< \alpha$)

Facebook Example: Linear Contrast

Multiple Comparison and Linear Contrasts

Suppose we'd like to compare μ_1 vs. $\frac{\mu_3 + \mu_4}{2}$. Let $L = 1\mu_1 - \frac{1}{2}\mu_3 - \frac{1}{2}\mu_4$. Then the above comparison is equivalent to test whether L is different from 0

- \bullet $H_0: L = 0$ vs. $H_a: L \neq 0$
- Since $|t_{obs}| = |-2.495| = 2.495 > t_{0.025,df=129} = 1.9785$. We reject H_0 at 0.05 level

Note: If we are performing several tests for different linear contrasts simultaneously, we'll need to adjust α level accordingly to control the FWER