Main Template

Ethan Anthony

CONTENTS

1	Introduction																										
	1.1	Categorization of Components																								2	2

1 INTRODUCTION

1.1 CATEGORIZATION OF COMPONENTS

Rather than trying to understand full circuits at once, it is easier to break them into two groups: passive components and active components.

Passive Components

1.1

Passive components are ones that don't require any power supply to operate. For example, a resistor or a capacitor are both passive components.

Active Circuits

1.2

Active components require power to operate. In other words, they need to be connected to a power supply to function. Logic gates (74LSXX) are active since they require a power supply.

Another way to divide components is between linear and non-linear.

Linear Components

1.3

Linear components are... They also can be subdivided into components that store energy (capacitors and inductors) and components that dissipate energy (resistors).

Non-Linear Components

1.4

•••