

Process général

Sommaire

Describe

NaN

ANALYSE

outliers

Analyse du fond Pairplot

Num var

Corrélations

- _ longitude _ latitude
- _ age
- chambres
- population

04/02/2022

Hist.

5/18

ANALYSE

Sommaire

PRE-PROCESSING

+ households + population

Polynomiale total rooms

californiens by Aurélie RAOUL

-ogements

PRE-PROCESSING

Nettoyage

Type

ocean proximity

MODÈLES

Logements californiens by Aurélie RAOUL

11/18

MODÈLES

learning_curve > x=train_sizes

MODÈLES

forniens by Aurélie RAOUL

Model	Score (Toutes colonnes)	Paramètres
RandomForestRegressor	0.9999996421039528	{'randomforestregressor_max_features': 'auto', 'randomforestregressor_n_estimators': 81}
Linear	1.0	{'linearregression_fit_intercept': True, 'linearregression_normalize': False, 'linearregression_positive': True}
Ridge	1.0	{'ridge_alpha': 1, 'ridge_fit_intercept': True, 'ridge_solver': 'auto'}
Lasso	0.9999989999649406	{'lassocv_alphas': None, 'lassocv_fit_intercept': True}
KNeighborsRegressor	0.9999946882516152	{'kneighborsregressor_n_neighbors': 7}
SGDRegressor	-2.4498384279180864e+26	{'sgdregressor_fit_intercept': True, 'sgdregressor_loss': 'squared_error', 'sgdregressor_penalty': 'l1'}
HuberRegressor	0.999999999999741	{'huberregressor_fit_intercept': False}
QuantileRegressor	Trop long à exécuter	

Sommaire

ÉVALUATION ET CHOIX

Métriques

Visualisation de la cible

Erreur

Modèle	R2	MAE	MSE	RMSE	Media AE
Lasso	1.0	91.296	13289.368	115.28	76.549
Linear	1.0,	0.0	0.0	0.0	0.0
Ridge	1.0,	0.0	0.0	0.0	0.0
SGDRegressor	-2.44e+26	1.59e+18	3.2555e+36	1.8031e+18	1.405e+18
KNeighborsRegressor	1.0	125.487	70587.303	265.683	71.429
Forest	1.0	21.317	4756.045	68.964	6.173
HuberRegressor	1.0	0.015	0.0	0.019	0.014

MAE = Mean Absolute Error : l'importance d'une erreur est linéaire avec son amplitude. Si le dataset contient des outliers

MSE = Mean Squared Error : vous accordez une grande importance aux grandes erreurs

RMSE = Root Mean Squared Error : Remise à l'échelle, donc racine carré de MSE

Media AE = Median Absolute Error : très peu sensible aux outliers

Synthèse

Discussion

