Group Theory

Lecture 11, Sunday January 8, 2023 Ari Feiglin

11.1 p-groups

Notice that if we focus on the conjugate group action and we take I to be a set of representatives of each orbit, then

$$G = \bigcup_{x \in I} \operatorname{conj}(x)$$

since the orbits partition the set being acted on (G in this case). Notice that $x \in G$ has an orbit of length 1 if and only if for every $g \in G$ we have $gxg^{-1} = x$ that is gx = xg for all $g \in G$, which is equivalent to $x \in Z(G)$. If we define I' to be the set of representatives of orbits of length larger than 1, we can write the above union as

$$G = \bigcup_{x \in Z(G)} G \cdot x \cup \bigcup_{x \in I'} \operatorname{conj}(x) = Z(G) \cup \bigcup_{x \in I'} \operatorname{conj}(x)$$

Using the orbit-stabilizer theorem this means:

$$|G| = |Z(G)| + \sum_{x \in I'} [G : C_G(x)]$$

We summarize this result in the following lemma:

Lemma 11.1.1:

If we define I' to be a set of representatives of orbits of size larger than 1 then:

$$|G| = |Z(G)| + \sum_{x \in I'} [G : C_G(x)]$$

Theorem 11.1.2 (Cauchy's Theorem):

If G is a group whose order is divisible by a prime p, G has an element of order p.

Proof:

If G is abelian then suppose $e \neq g \in G$ let m = o(g). If p divides m then $g^{\frac{m}{p}}$ has order p as required. Else take $G/\langle g \rangle$ which has order p which must be divisible by p since m is not. Then inductively there must be $h\langle g \rangle \in G/\langle g \rangle$ with order p, so $h^p \in \langle g \rangle$ and therefore the order of h is divisible by p and by above there must be such an element. If G is not abelian, if Z(G)'s order is divisible by p we are finished (since it is abelian). Otherwise there is an $x \notin Z(G)$ such that $p \in [G:C_G(x)]$ (since otherwise since the order of G is the sum of the order of Z(G), which is not divisible by p, and the indexes of $C_G(x)$ s, which if they are all divisible by p then G cannot be since Z(G) isn't). So p must divide the order of $C_G(x)$, and since $C_G(x) < G$ inductively it has an element of order p.

Definition 11.1.3:

A p-group for a prime p is a group where every element's order is a power of p.

Notice that if G is finite, it is a p-group if and only if its order is a power of p. If it is a p group suppose it is divisible by some other prime q, then by Cauchy's theorem it has an element of order q which is a contradiction. And by Lagrange if its order is p then every element must have an order of a power of p.

Definition 11.1.4:

Suppose $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ are sets, then we define the direct product and direct sum of these sets:

$$\prod_{\lambda \in \Lambda} G_{\lambda} = \{ f \colon \Lambda \longrightarrow \Lambda \mid \forall \lambda \in \Lambda : f(\lambda) \in G_{\lambda} \}$$

$$\sum_{\lambda \in \Lambda} G_{\lambda} = \left\{ f \in \prod_{\lambda \in \Lambda} G_{\lambda} \mid f(\lambda) = e_{G_{\lambda}} \text{ except for a finite number of cases} \right\}$$

Notice that the direct sum and product are non-trivial by the axiom of choice. This is not required if these sets are groups (choose $f(\lambda) = e_{G_{\lambda}}$). Notice that if these sets are groups then the sum and products are groups themselves under the operation $(f \cdot g)(\lambda) = f(\lambda) \cdot g(\lambda)$.

Proposition 11.1.5:

If P is a p-group acting on X then

$$FP(X) \equiv |X| \pmod{p}$$

Proof:

Every cycle must divide the order of P and therefore every other cycle (which is not a fixed cycle) is a non-trivial power of p and is therefore equivalent to 0 modulo p. And since the order of X is the sum of the order of its cycles, this means it is equivalent to the sum of the order of its fixed cycles modulo p, which is equal to FP(X).

Proposition 11.1.6:

The center of a finite p-group is non-trivial.

Proof:

Let P act on itself through conjugation then since the set of fixed points are Z(P) then

$$|Z(P)| \equiv |P| \equiv 0 \pmod{p}$$

So $|Z(P)| \neq 1$ and is therefore not trivial.

Proposition 11.1.7:

Every group of order p^2 is abelian.

Proof:

Such a group is a p-group. If P is not abelian, then $\{e\} \neq Z(P) \subset P$, and therefore |Z(P)| = p, and therefore |P/Z(P)| = p and therefore is cyclic and therefore P is abelian in contradiction.

Theorem 11.1.8:

Suppose P is a finite p-group and H < P then H is a proper subset of its normalizer.

Proof:

We have H act on the set of left cosets of H via $h \cdot (gH) = (hg)H$. We suppose H is a non-trivial subgroup (the case

where H is trivial is trivial), and thus its order is a non-trivial power of p. We know that H is necessarily a p-group and therefore

$$FP(H) \equiv |H| \pmod{p} \implies FP(H) \equiv 0 \pmod{p}$$

Since H is a fixed point in this action, $FP(f) \ge 1$ so there must be some other fixed point gH for $g \notin H$. So for all $h \in H$ hgH = gH and therefore $g^{-1}Hg \le H$ as $g^{-1}hg = g^{-1}gh' = h' \in H$ and therefore g is in the normalizer of H but not H.

11.2 Sylow's Theorems

Definition 11.2.1:

We use the notation $a^n \parallel b$ to mean a^n is the maximal power of a which divides b. That is $a^n \parallel b$ but $a^{n+1} \leq b$.

Definition 11.2.2:

Suppose G is a group whose group is divisible by a prime $p, P \leq G$ is a p-Sylow subgroup of G if it is a p-group whose index is coprime to p.

Theorem 11.2.3:

If G is a finite group of order divisible by p then it has a p-Sylow group of order $p^t \parallel |G|$.

Proof:

Suppose $p^t \parallel |G|$. Then by Cauchy's theorem there must be an element g of G of order p, then $p^{t-1} \parallel |G|/\langle g \rangle|$, by induction there is a p-Sylow subgroup of the form $P/\langle g \rangle$ of order p^{t-1} . Then P must be a p-Sylow subgroup of G (since it has order p^t).

If G is not abelian and $p \in |Z(G)|$ then there is an element $g \in G$ of order p, and the proof continues as above. Otherwise there is $x \notin Z(G)$ (since the order of G is equal to the sum of Z(G) and the centers) such that $p \in [G:C_G(x)]$ and therefore $p^t \parallel C_G(x)$ which is an abelian subgroup of G and therefore contains a p-Sylow group of order $p^t \parallel |G|$ by the previous paragraph.

If $A, B \leq G$ and $B \subseteq N_G(A)$, then AB = BA since for all $b \in B$, $b \in N_G(A)$ so $bAb^{-1} = A$ and therefore bA = Ab for all $b \in B$ so AB = BA. And further, $A \subseteq AB$ since $abAb^{-1}a^{-1} = aAa^{-1} = A$. And by the isomorphism theorems

$$^{AB}/_{A} \cong ^{B}/_{A \cap B} \implies |AB| = \frac{|A| \cdot |B|}{|A \cap B|}$$

Such a B is said to normalize A (if $B \subseteq N_G(A)$, that is $bAb^{-1} = A$ for every $b \in B$).

Lemma 11.2.4:

Suppose P is a p-Sylow subgroup of G and Q is some p-subgroup of G. If Q normalizes P then $Q \subseteq P$, that is $Q \subseteq N_G(P)$ means $Q \subseteq P$.

Proof:

The order of |PQ| must be a power of p since this is true for |P|, |Q|, and $|P \cap Q|$, and so PQ is a p-group. Since P is a p-Sylow group it is a maximal p-group, and so $Q \subseteq PQ = P$ as required.

Theorem 11.2.5 (Sylow's Second Theorem):

All p-Sylow subgroups are conjugates.

Theorem 11.2.6 (Sylow's Third Theorem):

The number of p-Sylow subgroups is equivalent to 1 modulo p.

We will prove both theorems simultaneously.

Proof:

Let Ω be the set of all p-Sylow subgroups of G, by the first Sylow Theorem, Ω is nonempty (we assume p divides the order of G). G acts on Ω through conjugation. Let $P \in \Omega$, and P also acts on Ω through conjugation and the set of all fixed points are the set of p-Sylow groups Q such that P normalizes Q ($pQp^{-1} = Q$). And so $Q \subseteq P$ and by symmetry $P \subseteq Q$ and so P = Q. And so the set of all fixed points includes only P (since P is trivially a fixed point), and since for p-groups $P(X) \equiv |X| \pmod{p}$ we have that

$$|\Omega| \equiv 1 \pmod{p}$$

which proves the third Sylow Theorem.

Suppose for the sake of contradiction that G's action on Ω is not transitive (there is more than one orbit). Let Ω_0 be one orbit in Ω , then there is a $Q \notin \Omega_0$ which acts on Ω_0 by conjugation which it inherits from G (therefore it is well-defined). But since $Q \notin \Omega_0$ then the action cannot have any fixed points because as explained above the only fixed point would be Q itself which is not in Ω_0 . So there are 0 fixed points and therefore:

$$|\Omega_0| \equiv 0 \pmod{p}$$

But there is a $P \in \Omega_0$ which acts on Ω_0 via conjugation and has a single fixed point itself so

$$|\Omega_0| \equiv 1 \pmod{p}$$

in contradiction.

So the conjugation of G on Ω must have a single orbit and therefore all p-Sylow subgroups are conjugates.

Theorem 11.2.7:

Every p-subgroup is contained within a p-Sylow subgroup.

Proof:

Let Q be some p-subgroup of G then it acts on Ω , and we know $\operatorname{FP}(\Omega) \equiv |\Omega| \equiv 1 \pmod{p}$, and therefore $\operatorname{FP}(\Omega) \neq \emptyset$. And if $P \in \operatorname{FP}(\Omega)$ then Q normalizes P and is therefore contained in it.