ДИСКРЕТНАЯ МАТЕМАТИКА

ИУ5 - 4 семестр, 2015 г.

Семинар 13. ЯЗЫКИ И КОНЕЧНЫЕ АВТОМАТЫ

13.1. Алфавит, слово, язык

ОПРЕДЕЛЕНИЕ Алфавит — это произвольное непустое конечное множество $V = \{a_1, \dots, a_n\}$, элементы которого называют буквами, или символами.

ОПРЕДЕЛЕНИЕ. Словом, или **цепочкой**, в алфавите V называют произвольный кортеж из множества V^k (k -ой **декартовой степени** алфавита V) для различных $k=0,1,2,\ldots$

Например, если $V=\{a,b,c\}$, то (a), (b), (c), (a,b), (a,b,c), (c,b,a,a,c) и т. д. есть слова в V.

При k=0 получаем **пустой кортеж**, называемый в данном контексте **пустым словом**, или **пустой цепочкой** и обозначаемый λ . Множество всех слов в алфавите V обозначают V^* , а множество всех непустых слов в $V-V^+$.

Пустое слово λ — это слово, не имеющее символов.

Длину слова w можно понимать как число составляющих это слово букв. **ОПРЕДЕЛЕНИЕ. Языком в алфавите** V называется произвольное подмножество множества V^* . К языкам применимы теоретико-множественные операции объединения, пересечения, разности, симметрической разности, дополнения и т.д.

Соединением (конкатенацией) языков L_1 и L_2 называют язык L_1L_2 , состоящий из всех возможных соединений слов xy, в которых слово x принадлежит первому, а слово y — второму языку, т.е.

$$L_1L_2 = \{xy | x \in L_1 \text{ if } y \in L_2\}.$$

Операция соединения языков позволяет определить операцию возведения языка в произвольную натуральную степень: для любого $L\subseteq V^*$ $L^0=\{\lambda\},$ а для любого n>0 $L^n=L^{n-1}L.$

Итерацией языка L называют объединение всех его степеней:

$$L^* = \bigcup_{n=0}^{\infty} L^n.$$

Рассматривая объединение всех степений языка L, начиная с первой, получим **позитивную итерацию**

$$L^+ = \bigcup_{n=1}^{\infty} L^n.$$

Теорема 1. Алгебра $\mathcal{L}(V) = (2^{V^*}, \cup, \cdot, \varnothing, \{\lambda\})$ есть замкнутое полукольцо.

В замкнутом полукольце $\mathcal{L}(V)$ всех языков в алфавите V рассмотрим подалгебру, порожденную множеством, состоящим из пустого языка, языка $\{\lambda\}$ и всех однобуквенных языков $\{a\},\ a\in V,$ и замкнутую относительно итерации.

Эта подалгебра является полукольцом с итерацией, обозначается $\mathcal{R}(V)$, . Элементы полукольца $\mathcal{R}(V)$ называются регулярными множествами, или регулярными языками.

ОПРЕДЕЛЕНИЕ. Пусть фиксирован некоторый алфавит V. Тогда:

- 1) Пустое множество \varnothing , множество $\{\lambda\}$ (состоящее из одной пустой цепочки) и множество $\{a\}$ для каждого $a\in V$ является регулярным языком (множеством) в алфавите V.
- 2) Если P и Q регулярные языки в алфавите V, то объединение $P \cup Q$ и соединение PQ регулярные языки в алфавите V.
- 3) Если P регулярный язык в алфавите V, то итерация P^* регулярный язык в алфавите V.
- 4) Никаких других регулярных языков, кроме определенных в пп. (1) (3), не существует.

Алгебраические операции над регулярными множествами удобно представлять с помощью так называемых регулярных выражений.

Каждое регулярное выражение представляет (или обозначает) некоторое однозначно определяемое регулярное множество, причем:

- 1) регулярные выражения \varnothing , λ и a обозначают регулярные множества \varnothing , $\{\lambda\}$ и $\{a\}$ соответственно $(a\in V)$;
- 2) если регулярное выражение p обозначает регулярное множество P, а q обозначает Q, то регулярные выражения $(p+q),\ (pq)$ и (p^*) обозначают регулярные множества $P\cup Q,\ PQ$ и P^* соответственно.

Для регулярного выражения $\alpha \alpha^*$ или $\alpha^* \alpha$ используют обозначение α^+ и называют это выражение позитивной итерацией выражения α .

Задача 1. Доказать, что язык $L^{+k} = \bigcup_{i=k>0} L^i$ регулярен для любого k при условии регулярности L .

Задача 2. Описать множество слов в алфавите $\{a,b,c\}$, которое задается регулярным выражением:

- (a) $a^*(b+c)$;
- (6) $(a+b)^*c^*(b+c)$.

13.2. Вычисление языка, допускаемого КА

Конечный автомат — это орграф, размеченный над полукольцом $\mathcal{R}(V)$ регулярных языков в алфавите V, с выделенной вершиной q_0 , которая называется начальной и выделенным подмножеством вершин F, каждый элемент которого называется заключительной вершиной.

На функцию разметки накладываются следующие ограничения: метка каждой дуги есть либо язык $\{\lambda\}$, либо непустое подмножество алфавита V .

Вершины графа называют **состояниями конечного автомата**, начальную вершину — **начальным состоянием**, заключительную вершину — **за-ключительным состоянием конечного автомата**.

Если e=(q,r) — дуга автомата M, и ее метка $\varphi(e)$ есть регулярное выражение λ , то в этом случае будем говорить, что в автомате M возможен переход из состояния q в состояние r по пустой цепочке и писать $q \to_{\lambda} r$. Дугу с меткой λ называют λ -переходом (или пустой дугой).

Если метка дуги e есть множество, содержащее входной символ a говорят, что в автомате M возможен переход из состояния q в состояние r по символу a и пишут $q \rightarrow_a r$.

Метка пути в конечном автомате есть **соединение** меток входящих в этот путь дуг (в порядке их прохождения).

Соединение в полукольце $\mathcal{R}(V)$ есть умножение полукольца.

Метка любого пути конечной длины в конечном автомате есть регулярный язык.

Метка любого **бесконечного пути** в конечном автомате есть регулярный язык, т.к. каждому контуру, включенному в путь, соответствует итерация регулярного выражения, задающего метку пути по этому контуру.

Если цепочка $x \in \varphi(W)$, где W — некоторый путь, ведущий из вершины q в вершину r конечного автомата M, то говорят, что цепочка x читается на пути W в M .

Запись: $q \Rightarrow_x^* r$.

Стоимость прохождения из состояния q в состояние r есть **объединение** меток всех путей ведущих из q в r, т.е. множество всех таких x, что $q \Rightarrow_x^* r$.

Объединение в полукольце $\mathcal{R}(V)$ есть сложение полукольца.

Язык L(M) конечного автомата M есть множество всех цепочек во входном алфавите, читаемых в M на некотором пути из начального состояния в какое-либо из заключительных.

Чтобы найти язык конечного автомата, надо вычислить сумму (объединение) тех элементов матрицы стоимостей автомата, которые находятся на пересечении строки, соответствующей начальному состоянию q_0 и в столбцов, соответствующих всем заключительным состояниям $q_f \in F$. Для этого достаточно решить одну систему линейных уравнений:

$$X^j = AX^j + \beta, \tag{13.1}$$

где A - квадратная матрица n -ого порядка, элемент a_{ij} которой является регулярным выражением, служащим меткой дуги из состояния q_i в состояние q_j , если такая дуга существует, и равный \varnothing , если нет дуги из q_i в q_j ;

 β — столбец, все компоненты которого равны \varnothing , кроме компонент с номерами t_1,\ldots,t_m , которые являются номерами заключительных состояний. Эти компоненты равны единице полукольца (λ).

Пример 13.1. Найдем язык конечного автомата, изображенного на рисунке.

Рис. 1

Запишем для этого автомата систему уравнений:

$$\begin{cases} x_0 = ax_1 + bx_2 + \lambda, \\ x_1 = bx_0 + ax_1 + \lambda, \\ x_2 = ax_0 + bx_1, \end{cases}$$

слагаемые λ добавлено в уравнения для x_0 и x_1 , так как вершины q_0 q_1 являются заключительными.

Исключая x_0 , получим

$$\begin{cases} x_1 = b(ax_1 + bx_2 + \lambda) + ax_1 + \lambda, \\ x_2 = a(ax_1 + bx_2 + \lambda) + bx_1. \end{cases}$$

Раскроем скобки

$$\begin{cases} x_1 = bax_1 + bbx_2 + b\lambda + ax_1 + \lambda, \\ x_2 = aax_1 + abx_2 + a\lambda + bx_1. \end{cases}$$
$$\begin{cases} x_1 = (ba + a)x_1 + bbx_2 + b\lambda + \lambda, \\ x_2 = (aa + b)x_1 + abx_2 + a\lambda. \end{cases}$$

Отсюда

$$\begin{cases} x_1 = (ba+a)^*(b^2x_2 + b\lambda + \lambda), \\ x_2 = (a^2 + b)(ba + a)^*(b^2x_2 + b\lambda + \lambda) + abx_2 + a\lambda. \end{cases}$$

$$x_2 = (a^2 + b)(ba + a)^*b^2x_2 + abx_2 + (a^2 + b)(ba + a)^*(b\lambda + \lambda) + a\lambda.$$

Получаем регулярное выражение, обозначающее язык КА, как значение переменной x_2 :

$$x_2 = ((a^2 + b)(ba + a)^*b^2 + ab)^*((a^2 + b)(ba + a)^*(b\lambda + \lambda) + a\lambda).$$

3. Найти языки, допускаемые конечными автоматами, заданными на рисунках.

Рис. 2

4. Найти язык, допускаемый конечным автоматом:

- (а) вход: q_1 ; выходы: q_2 , q_3 ; дуги: (q_1,q_2,a) , (q_1,q_4,a,b) , (q_2,q_4,a,b) , (q_3,q_4,λ) , (q_4,q_3,a,b) , (q_3,q_2,a,b) , (q_4,q_2,b) ;
- (б) входы: q_0 , q_1 ; выходы: q_2 , q_1 ; дуги: (q_0,q_2,a,b,c) , (q_0,q_1,a) , (q_1,q_0,a,b) , (q_1,q_2,a,c) , (q_2,q_0,c) , (q_2,q_2,a,b) .

5. Решить систему линейных уравнений с регулярными коэффициентами:

$$\begin{cases} x_1 = (01^* + 1)x_1 + x_2, \\ x_2 = 1x_1 + 00x_3 + 11, \\ x_3 = x_1 + x_2 + \lambda. \end{cases}$$

Для регулярного выражения, задающего компоненту решения x_3 , построить допускающий его конечный автомат.

- **6.** Доказать, что линейное уравнение $x = \alpha x + \beta$ с регулярными коэффициентами:
- (a) имеет единственное решение при $\lambda \not\in \alpha$;
- (б) имеет бесконечно много решений при $\lambda \in \alpha$, причем общее решение можно записать в виде $x = \alpha^*(\beta + L)$, где L произвольный язык.