Supplementary Materials for

The joint effects of physical activity and air pollution on type 2 diabetes in Chinese adults

Linjun Ao^{1*}, Junmin Zhou^{1*}, Mingming Han², Hong Li³, Yajie Li⁴, Yongyue Pan⁵, Jiayi Chen¹, Xiaofen Xie¹, Ye Jiang¹, Jing Wei⁶, Gongbo Chen⁷, Shanshan Li⁸, Yuming Guo⁸, Feng Hong⁹, Zhifeng Li¹⁰, Xiong Xiao¹¹, Xing Zhao¹ on behalf of the China Multi-Ethnic Cohort (CMEC) collaborative group

This PDF file includes:

Supplementary Text Figs. S1 to S17 Tables S1

¹ Corresponding authors. xiaoxiong.scu@scu.edu.cn

Supplementary Text

Proof

$$f_{T,V}\{(t,v)|r(t,v,X),Y(t,v)\}=f_{T,V}\{(t,v)|r(t,v,X)\}$$

$$f_{T,V}\{(t,v)|r(t,v,X),Y(t,v)\}$$

$$= \int f_{T,V}\{(t,v)|x,r(t,v,X),Y(t,v)\}dF_{X}(x|r(t,v,X),Y(t,v))$$

$$= \int f_{T,V}\{(t,v)|x\}dF_{X}(x|r(t,v,X),Y(t,v))$$

$$= \int r(t,v,x)dF_{X}(x|r(t,v,X),Y(t,v))$$

$$= r(t,v,X)$$

$$f_{T,V}\{(t,v)|r(t,v,X)\}$$

$$= \int f_{T,V}\{(t,v)|x,r(t,v,X)\}dF_X(x|r(t,v,X))$$

$$= \int f_{T,V}\{(t,v)|x\}dF_X(x|r(t,v,X))$$

$$= \int r(t,v,x)dF_X(x|r(t,v,X))$$

$$= r(t,v,X)$$

S1 Fig. Flow diagram of participants' enrolment

S2 Fig. Causal Inference Workflow

Figure S2: Causal Inference Workflow. A workflow for causal inference approaches using the estimated bi-dimensional GPS to design and analyze observational data. The design and analysis phases are kept separate, and the technical details about each phase are discussed in Methods section.

Table S1. The characteristics of the study participants with different levels of physical activity.

	[0, 12.78]	(12.78, 23.30]	(23.30, 38.50]	(38.50, 142]	P
n	17241	17250	17239	17244	
Age, mean (SD)	57.44 (11.85)	50.33 (11.41)	49.90 (10.47)	50.12 (9.50)	< 0.001
Type 2 diabetes, n (%): yes	1805 (10.5)	1231 (7.1)	1184 (6.9)	1123 (6.5)	< 0.001
$PM_{10}(\mu g/m^3)$, mean (SD)	77.79 (24.01)	77.41 (23.88)	71.20 (23.43)	63.31 (21.23)	< 0.001
PM _{2.5} (μg/m ³), mean (SD)	45.78 (15.96)	45.59 (15.94)	41.35 (15.75)	35.96 (14.45)	< 0.001
PM ₁ (μg/m ³), mean (SD)	29.83 (6.63)	29.80 (6.67)	27.98 (6.57)	25.71 (5.95)	< 0.001

The intervals [0, 12.78], (12.78, 23.30], (23.30, 38.50], (38.50, 142] are based on quartiles of physical activity (MET-h/d).

S3-5 Figs: The main analysis results of the relationship between PMs and type 2 diabetes at different levels of PA.

S3 Fig. The exposure-response relationship between PM_{10} and type 2 diabetes at different levels of PA. The OR limit is set to 3 for all subgraphs.

S4 Fig. The exposure-response relationship between PM_{2.5} and type 2 diabetes at different levels of PA. The OR limit is set to 3 for all subgraphs.

S5 Fig. The exposure-response relationship between PM₁ and type 2 diabetes at different levels of PA. The OR limit is set to 3 for all subgraphs.

S6-11 Figs: When excluding subjects taking any antidiabetic medication, the relationship between PA and type 2 diabetes at different PMs levels (S6-8 Figs) and the relationship between PMs and type 2 diabetes at different PA levels (S9-11 Figs).

S6 Fig. The exposure-response relationship between PA and type 2 diabetes at different levels of PM₁₀. The OR limit is set to 5 for all subgraphs.

S7 Fig. The exposure-response relationship between PA and type 2 diabetes at different levels of PM_{2.5}. The OR limit is set to 5 for all subgraphs.

S8 Fig. The exposure-response relationship between PA and type 2 diabetes at different levels of PM₁. The OR limit is set to 5 for all subgraphs.

S9 Fig. The exposure-response relationship between PM_{10} and type 2 diabetes at different levels of PA. The OR limit is set to 3 for all subgraphs.

S10 Fig. The exposure-response relationship between PM_{2.5} and type 2 diabetes at different levels of PA. The OR limit is set to 3 for all subgraphs.

S11 Fig. The exposure-response relationship between PM₁ and type 2 diabetes at different levels of PA. The OR limit is set to 3 for all subgraphs.

S12-17 Figs: When including 1-year average exposure of PM_{10} , $PM_{2.5}$ and PM_{1} instead of 3-year average exposures, the relationship between PA and type 2 diabetes at different levels of PMs (S12-14 Figs), and the relationship between PMs and type 2 diabetes at different levels of PA (S15-17 Figs).

S12 Fig. The exposure-response relationship between PA and type 2 diabetes at different levels of PM_{10} . The OR limit is set to 5 for all subgraphs.

S13 Fig. The exposure-response relationship between PA and type 2 diabetes at different levels of PM_{2.5}. The OR limit is set to 5 for all subgraphs.

S14 Fig. The exposure-response relationship between PA and type 2 diabetes at different levels of PM₁. The OR limit is set to 5 for all subgraphs.

S15 Fig. The exposure-response relationship between PM₁₀ and type 2 diabetes at different levels of PA. The OR limit is set to 3 for all subgraphs.

S16 Fig. The exposure-response relationship between PM_{2.5} and type 2 diabetes at different levels of PA. The OR limit is set to 3 for all subgraphs.

S17 Fig. The exposure-response relationship between PM₁ and type 2 diabetes at different levels of PA. The OR limit is set to 3 for all subgraphs.