

Figure 4-98. A polar surface plot

Surface Triangulations

For some applications, the evenly sampled grids required by the preceding routines are overly restrictive and inconvenient. In these situations, the triangulation-based plots can be very useful. What if rather than an even draw from a Cartesian or a polar grid, we instead have a set of random draws?

```
In[11]: theta = 2 * np.pi * np.random.random(1000)
    r = 6 * np.random.random(1000)
    x = np.ravel(r * np.sin(theta))
    y = np.ravel(r * np.cos(theta))
    z = f(x, y)
```

We could create a scatter plot of the points to get an idea of the surface we're sampling from (Figure 4-99):

```
In[12]: ax = plt.axes(projection='3d')
    ax.scatter(x, y, z, c=z, cmap='viridis', linewidth=0.5);
```


Figure 4-99. A three-dimensional sampled surface

This leaves a lot to be desired. The function that will help us in this case is ax.plot_trisurf, which creates a surface by first finding a set of triangles formed between adjacent points (the result is shown in Figure 4-100; remember that x, y, and z here are one-dimensional arrays):

Figure 4-100. A triangulated surface plot

The result is certainly not as clean as when it is plotted with a grid, but the flexibility of such a triangulation allows for some really interesting three-dimensional plots. For example, it is actually possible to plot a three-dimensional Möbius strip using this, as we'll see next.

Example: Visualizing a Möbius strip

A Möbius strip is similar to a strip of paper glued into a loop with a half-twist. Topologically, it's quite interesting because despite appearances it has only a single side! Here we will visualize such an object using Matplotlib's three-dimensional tools. The key to creating the Möbius strip is to think about its parameterization: it's a two-

dimensional strip, so we need two intrinsic dimensions. Let's call them θ , which ranges from 0 to 2π around the loop, and w which ranges from –1 to 1 across the width of the strip:

```
In[14]: theta = np.linspace(0, 2 * np.pi, 30)
    w = np.linspace(-0.25, 0.25, 8)
    w, theta = np.meshgrid(w, theta)
```

Now from this parameterization, we must determine the (x, y, z) positions of the embedded strip.

Thinking about it, we might realize that there are two rotations happening: one is the position of the loop about its center (what we've called θ), while the other is the twisting of the strip about its axis (we'll call this ϕ). For a Möbius strip, we must have the strip make half a twist during a full loop, or $\Delta \phi = \Delta \theta/2$.

```
In[15]: phi = 0.5 * theta
```

Now we use our recollection of trigonometry to derive the three-dimensional embedding. We'll define r, the distance of each point from the center, and use this to find the embedded (x, y, z) coordinates:

```
In[16]: # radius in x-y plane
    r = 1 + w * np.cos(phi)

x = np.ravel(r * np.cos(theta))
y = np.ravel(r * np.sin(theta))
z = np.ravel(w * np.sin(phi))
```

Finally, to plot the object, we must make sure the triangulation is correct. The best way to do this is to define the triangulation *within the underlying parameterization*, and then let Matplotlib project this triangulation into the three-dimensional space of the Möbius strip. This can be accomplished as follows (Figure 4-101):

Figure 4-101. Visualizing a Möbius strip

Combining all of these techniques, it is possible to create and display a wide variety of three-dimensional objects and patterns in Matplotlib.

Geographic Data with Basemap

One common type of visualization in data science is that of geographic data. Matplotlib's main tool for this type of visualization is the Basemap toolkit, which is one of several Matplotlib toolkits that live under the mpl_toolkits namespace. Admittedly, Basemap feels a bit clunky to use, and often even simple visualizations take much longer to render than you might hope. More modern solutions, such as leaflet or the Google Maps API, may be a better choice for more intensive map visualizations. Still, Basemap is a useful tool for Python users to have in their virtual toolbelts. In this section, we'll show several examples of the type of map visualization that is possible with this toolkit.

Installation of Basemap is straightforward; if you're using conda you can type this and the package will be downloaded:

```
$ conda install basemap
```

We add just a single new import to our standard boilerplate:

```
In[1]: %matplotlib inline
   import numpy as np
   import matplotlib.pyplot as plt
   from mpl_toolkits.basemap import Basemap
```

Once you have the Basemap toolkit installed and imported, geographic plots are just a few lines away (the graphics in Figure 4-102 also require the PIL package in Python 2, or the pillow package in Python 3):

```
In[2]: plt.figure(figsize=(8, 8))
    m = Basemap(projection='ortho', resolution=None, lat_0=50, lon_0=-100)
    m.bluemarble(scale=0.5);
```