Diagonalisation and applications

TOTAL POINTS 7

1.Question 1

In this quiz you will diagonalise some matrices and apply this to simplify calculations.

Given the matrix T=[[6 -1], [2 3]] and change of basis matrix C=[[1 1], [1 2]] (whose columns are eigenvectors of T), calculate the diagonal matrix $D=C^{\Lambda}(-1)TC$.

1 / 1 point

(

[[5 0], [0 4]]

2.Question 2

Given the matrix $T=[[2\ 7], [0\ -1]]$ and change of basis matrix $C=[[7\ 1], [-3\ 0]]$ (whose columns are eigenvectors of T), calculate the diagonal matrix $D=C^{\Lambda}(-1)TC$.

1 / 1 point

[[-1 0], [0 2]]

3. Question 3

Given the matrix $T=[[1\ 0], [2\ -1]]$ and change of basis matrix $C=[[1\ 0], [1\ 1]]$ (whose columns are eigenvectors of T), calculate the diagonal matrix $D=C^{\wedge}(-1)TC$

1 / 1 point

[[10], [0-1]]

4.Question 4

Given a diagonal matrix $D=[[a\ 0], [0\ a]]$, and a change of basis matrix $C=[[1\ 2], [0\ 1]]$ with inverse $C=[[1\ -2], [0\ 1]]$, calculate $T=CDC^{\wedge}(-1)$.

1 / 1 point

5.Question 5

Given that $T=[[6 -1], [2 3]]=[[1 1], [1 2]][[5 0], [0 4]][[2 -1], [-1 1]], calculate T^3.$

1 / 1 point

• [[186 -61], [122 3]]

6.Question 6

Given that $T=[[2\ 7], [0\ -1]]=[[7\ 1], [-3\ 0]][[-1\ 0], [0\ 2]][[0\ -1/3], [1\ 7/3]],$ calculate T^3.

1 / 1 point

[[8 21], [0 -1]]

7.Question 7

Given that $T=[[1\ 0],\ [2\ -1]]=[[1\ 0],\ [1\ 1]][[1\ 0],\ [0\ -1]][[1\ 0],\ [-1\ 1]],$ calculate T^5.

1 / 1 point

[[1 0], [2 -1]]