14.09.2019 Lab1

Домашнее задание №1 по курсу "Машинное обучение"

Прокопенко Тимофей

Задача 1.

Решение:

Из обратимости функции $f(t)=\delta$ следует существование $f^{-1}(\delta)=t$, где $\delta\in\mathbb{R}, t>0$. Учитывая, что для $\forall t>0$ $\mathbb{P}[X>t]\leq f(t)$ и $\mathbb{P}[X>t]$ принимает значения от 0 до 1, можно ограничить область значения функции f до $(0;\infty)$, т.е. $\delta\in(0;\infty)$.

Проведем ряд преобразований:

$$\mathbb{P}[X>t] \leq f(t) \iff 1-\mathbb{P}[X\leq t] \leq f(t) \iff \mathbb{P}[X\leq t] \geq 1-f(t)$$
 . Подставим $f(t)=\delta$ и $f^{-1}(\delta)=t$ в последнее выражение : $\mathbb{P}[X\leq f^{-1}(\delta)] \geq 1-\delta$, $orall \delta>0$

Задача 2.

Решение:

а) Для начала рассмотрим классификатор h_s на такой выборке из S (назовем ее S_1), где все $y_i=1$. То есть

$$h_S(x) = \left\{egin{array}{ll} 1, & ext{если } x \in S_1 \ 0, & ext{иначе} \end{array}
ight.$$

Для того, чтобы доказать, что в h_p найдется классификатор, совпадающий с h_s , нужно найти такой полином p(x), который принимает отрицательные значения, если $x \notin S_1$, а при $x \in S_1$ его значения неотрицательны.

Пример такого полинома: p(x)= $-\prod_{x_k\in S_1}(x-x_k)^2$. При всех $x\in\mathbb{R}$ p(x) принимает отрицательные значения, кроме точек из S_1 , где полином обращается в ноль. Таким образом мы доказали, что в классе h_p существует классификатор, совпадающий с h_s .

б) Мы знаем, что ERM-гипотеза h_s приводит к переобучению. В пункте а) было доказано, что в h_p найдется классификатор, совпадающий с h_s , таким образом применение ERM-парадигмы для h_p может привести к переобучению.

14.09.2019 Lab1

Задача 3.

Решение:

Из предположения о реализуемости можно сделать вывод, что существует такая гипотеза h^* , алгоритм которой выбирает прямоугольник, содержащий все точки положительного класса и только их.

Алгоритм A выбирает наименьший прямоугольник, содержащий все точки положительного класса. Очевидно, что этот прямоугольник лежит внутри прямоугольника, выбираемого алгоритмом гипотезы h^* . Таким образом, внутри прямоугольника, выбираемого алгоритмом A, не будет точек отрицательного класса, значит эмпирический риск будет равен нолю, т.е. A является реализацией ERM-алгоритма.

Задача 4.

Решение:

Нам необходимо выбрать радиус r таким образом, что ERM(h_r) = min(ERM(h)). Алгоритмы поиска данной ERM-гипотезы будет заключаться в следующем:

- 1. Рассчитаем все радиусы окружностей, проходящих через точки обучающей выборки ($r_i = x_{i1}^2 + x_{i2}^2$).
- 2. Выбираем радиус, порождающий классификатор, на котором ERM-ошибка минимальна.

Данный алгоритм будет являться полиномиальным, так как ERM-ошибка зависит от гипотезы h_r , гипотеза h_r зависит от выбранного радиуса r, а соответствующий радиус мы выбираем исходя из объектов обучающей выборки.