Formalizing 2-Adjoint Equivalences in Homotopy Type Theory

Based on joint work $w/\ J.\ Chang,\ C.\ Kapulkin,\ R.\ Sandford$

Daniel Carranza

Western Homotopy Theory Seminar, August 2020

Contents

- Formalizing HoTT using Lean
- 2 Introduction to Equivalences
- 3 Quasi-Inverses and Full Adjoint Equivalences
- 4 2-Adjoint Equivalences

About this project

- NSERC USRA project
- Collaborators
 - Jonathan Chang
 - Ryan Sandford
 - Supervisor: Chris Kapulkin
- Formalization found on Github
 - Contains formalizations of results in HoTT book, optimized proofs, and new material
 - gebner/hott3
- Paper forthcoming

Formalizing HoTT

- Formalization?
 - Coq, Agda

- We will be using Lean 3
 - ► HoTT for Lean 3 library

• Demo: ap and naturality of homotopies.

Lean and ap

• For $f: A \rightarrow B$ and x, y: A,

$$f[-]:(x=y)\to (fx=fy).$$

• For p, q : x = y,

$$f[-]:(p=q)\to (f[p]=f[q]).$$

Daniel Carranza

Lean and homotopies

• For $f, g: \prod_{x:A} Bx$,

$$f \sim g :\equiv \prod_{x:A} fx = gx.$$

• For $H: f \sim g$ and x: A,

$$H_x$$
: $fx = gx$.

Proposition

For $f,g:A\to B$, $H:f\sim g$ and p:x=y, the following diagram commutes.

Using Univalence

Lemma (Equivalence Induction)

For
$$P:\prod_{A,B:\mathcal{U}}(A\simeq B)\to\mathcal{U}$$
 and $f:A\simeq B$,

$$P(A, A, id_A) \rightarrow P(A, B, f).$$

Lemma (Based Homotopy Induction)

Given $f: A \rightarrow B$, the types

$$\sum_{g:A o B}f\sim g$$
 and $\sum_{g:A o B}g\sim f$

are contractible with center $(f, refl_f)$.

Equivalence of types?

Definition

For $f: A \rightarrow B$, f has a quasi-inverse if:

$$\operatorname{\mathsf{qinv}} f :\equiv \sum_{g:B \to A} (gf \sim \operatorname{\mathsf{id}}_A) \times (fg \sim \operatorname{\mathsf{id}}_B).$$

$$A \simeq B :\equiv \sum_{f:A \to B} qinv f$$
? No good

Half Adjoint Equivalence

Definition

For $f: A \rightarrow B$, f is a half adjoint equivalence if:

ishadj
$$f := \sum_{g: B o A} \; \sum_{\eta: gf \sim \operatorname{id}_A} \; \sum_{\varepsilon: fg \sim \operatorname{id}_B} f[\eta] \sim \varepsilon_f.$$

Left Half Adjoint Equivalence

Definition

For $f: A \rightarrow B$, f is a left half adjoint equivalence if:

ishadjl
$$f :\equiv \sum_{g:B o A} \sum_{\eta: gf \sim \operatorname{id}_A} \sum_{\varepsilon: fg \sim \operatorname{id}_B} \eta_g = g[\varepsilon].$$

How they interact?

qinv is not a proposition

Theorem

For $f: A \rightarrow B$, an equivalence,

$$\operatorname{qinv} f \simeq \prod_{x:A} x = x$$

Proof.

$$\begin{split} \mathsf{qinv}\, \mathsf{id}_A &\equiv \sum_{g:B \to A} (g \sim \mathsf{id}_A) \times (g \sim \mathsf{id}_A) \\ &\simeq \sum_{g:B \to A} \sum_{\eta:g \sim \mathsf{id}_A} g \sim \mathsf{id}_A \\ &\simeq \sum_{u:\sum_{g:B \to A} g \sim \mathsf{id}_A} \mathsf{pr}_1 u \sim \mathsf{id}_A \end{split}$$

qinv is not a proposition

Theorem

For $f: A \rightarrow B$, an equivalence,

$$qinv f \simeq \prod_{x:A} x = x$$

Proof.

$$\begin{split} \mathsf{qinv}\,\mathsf{id}_A &\simeq \sum_{u: \sum_{g: B \to A} g \sim \mathsf{id}_A} \mathsf{pr}_1 u \sim \mathsf{id}_A \\ &\simeq \mathsf{id}_A \sim \mathsf{id}_A \\ &\equiv \prod_{x: A} x = x. \quad \Box \end{split}$$

qinv is not a proposition

Corollary

qinv id $_{S^1}$ is not a proposition.

Proof.

By previous theorem, it suffices to show $\prod_{x:S^1} x = x$ is not a proposition. We know $\pi_1(S^1) = \mathbb{Z}$, so construct $h, h' : \prod_{x:S^1} x = x$ s.t.

$$h_{\text{base}} = \text{refl}_{\text{base}}$$

 $h'_{\text{base}} = \text{loop} : \text{base} = \text{base}.$

 $refl_{base} \neq loop so h \neq h'$.

From Quasi-inverses to Half Adjoint Equivalences

Theorem

For $f: A \rightarrow B$, ishadj f is a proposition.

Proof.

Assume ishadj f is inhabited.

$$\begin{split} \mathsf{i}\mathsf{shadj}\,\mathsf{i}\mathsf{d}_A &\simeq \sum_{g:B\to A} \sum_{\eta:g\sim \mathsf{i}\mathsf{d}_A} \sum_{\varepsilon:g\sim \mathsf{i}\mathsf{d}_A} \mathsf{i}\mathsf{d}_A[\eta] \sim \varepsilon \\ &\simeq \sum_{\varepsilon:\mathsf{i}\mathsf{d}_A\sim \mathsf{i}\mathsf{d}_A} \mathsf{i}\mathsf{d}_A[\mathsf{refl}] \sim \varepsilon \\ &\simeq \sum_{\varepsilon:\mathsf{i}\mathsf{d}_A\sim \mathsf{i}\mathsf{d}_A} \mathsf{refl} \sim \varepsilon \end{split}$$

Apply based homotopy induction.

◆□▶◆□▶◆壹▶◆壹▶ 壹 めの()

Full Adjoint Equivalences

Definition

For $f: A \rightarrow B$, the data of a full-adjoint equivalence is

$$\operatorname{adj} f :\equiv \sum_{g:B \to A} \sum_{\eta: gf \sim \operatorname{id}_A} \sum_{\varepsilon: fg \sim \operatorname{id}_B} f[\eta] \sim \varepsilon_f \times \eta_g \sim g[\varepsilon].$$

Theorem

For $f: A \rightarrow B$, an equivalence,

$$\operatorname{adj} f \simeq \prod_{x:A} \operatorname{refl}_x = \operatorname{refl}_x.$$

Proof.

$$\begin{split} \mathsf{adj}\, \mathsf{id}_A &\equiv \sum_{g: B \to A} \sum_{\eta: g \sim \mathsf{id}_A} \sum_{\varepsilon: g \sim \mathsf{id}_A} \mathsf{id}_A[\eta] \sim \varepsilon \times \eta_g \sim g[\varepsilon] \\ &\simeq \sum_{\varepsilon: \mathsf{id}_A \sim \mathsf{id}_A} \mathsf{id}_A[\mathsf{refl}] \sim \varepsilon \times \mathsf{refl} \sim \mathsf{id}_A[\varepsilon] \\ &\simeq \sum_{\varepsilon: \mathsf{id}_A \sim \mathsf{id}_A} \mathsf{refl} \sim \varepsilon \times \mathsf{refl} \sim \mathsf{id}_A[\varepsilon] \end{split}$$

Theorem

For $f: A \rightarrow B$, an equivalence,

$$\operatorname{\mathsf{adj}} f \simeq \prod_{x:A} \operatorname{\mathsf{refl}}_x = \operatorname{\mathsf{refl}}_x.$$

Proof.

$$\begin{split} \operatorname{\mathsf{adj}} \operatorname{\mathsf{id}}_A &\simeq \sum_{\varepsilon: \operatorname{\mathsf{id}}_A \sim \operatorname{\mathsf{id}}_A} \operatorname{\mathsf{refl}} \sim \varepsilon \times \operatorname{\mathsf{refl}} \sim \operatorname{\mathsf{id}}_A[\varepsilon] \\ &\simeq \sum_{\varepsilon: \operatorname{\mathsf{id}}_A \sim \operatorname{\mathsf{id}}_A} \sum_{\tau: \operatorname{\mathsf{refl}} \sim \varepsilon} \operatorname{\mathsf{refl}} \sim \operatorname{\mathsf{id}}_A[\varepsilon] \\ &\simeq \sum_{u: \sum_{\varepsilon: \operatorname{\mathsf{id}}_A \sim \operatorname{\mathsf{id}}_A} \operatorname{\mathsf{refl}} \sim \varepsilon} \operatorname{\mathsf{refl}} \sim \operatorname{\mathsf{id}}_A[\operatorname{\mathsf{pr}}_1 u] \end{split}$$

18 / 36

Theorem

For $f: A \rightarrow B$, an equivalence,

$$\operatorname{adj} f \simeq \prod_{x:A} \operatorname{refl}_x = \operatorname{refl}_x.$$

Proof.

$$\begin{split} \operatorname{\mathsf{adj}} \operatorname{\mathsf{id}}_A &\simeq \sum_{u: \sum_{\varepsilon: \operatorname{\mathsf{id}}_A \sim \operatorname{\mathsf{id}}_A} \operatorname{\mathsf{refl}} \sim \varepsilon} \operatorname{\mathsf{refl}} \sim \operatorname{\mathsf{id}}_A[\operatorname{\mathsf{pr}}_1 u] \\ &\simeq \operatorname{\mathsf{refl}} \sim \operatorname{\mathsf{id}}_A[\operatorname{\mathsf{refl}}] \\ &\equiv \operatorname{\mathsf{refl}} \sim \operatorname{\mathsf{refl}} \equiv \prod_{x: A} \operatorname{\mathsf{refl}}_x = \operatorname{\mathsf{refl}}_x. \quad \Box \end{split}$$

Corollary

 $adj id_{S^2}$ is not a proposition.

Proof.

By previous theorem, it suffices to show $\prod_{x:S^2} \operatorname{refl}_x = \operatorname{refl}_x$ is not a proposition. We know $\pi_2(S^2) = \mathbb{Z}$, so construct $h, h' : \prod_{x:S^2} \operatorname{refl}_x = \operatorname{refl}_x$ s.t.

$$egin{aligned} h_{\mathsf{base}} &= \mathsf{refl}_{\mathsf{refl}_{\mathsf{base}}} \ h_{\mathsf{base}}' &= \mathsf{cell} : \mathsf{refl}_{\mathsf{base}} &= \mathsf{refl}_{\mathsf{base}}. \end{aligned}$$

 $refl_{refl_{base}} \neq cell so h \neq h'$.

2-Adjoint Equivalences?

• What are 2-adjoint equivalences?

Finding the missing coherence

 \bullet Building blocks: $g[\![\tau]\!], \tau_{\mathsf{g}}, f[\![\theta]\!], \theta_{\mathsf{f}}$

• Candidate: g Does not typecheck

Naturality coherence

Lemma

For $H: gf \sim id_A$,

Coh $H: H_{gf} \sim gf[H]$.

Proof.

Half 2-Adjoint Equivalences

Definition

For $f: A \rightarrow B$, f is a half 2-adjoint equivalence if

$$\mathsf{ish2adj} \ f :\equiv \sum_{g:B \to A} \sum_{\eta: gf \sim \mathsf{id}_A} \sum_{\varepsilon: fg \sim \mathsf{id}_B} \sum_{\tau: f[\eta] \sim \varepsilon_f} \sum_{\theta: \eta_g \sim g[\varepsilon]} \mathsf{Coh} \ \eta \cdot g[\![\tau]\!] \sim \theta_f$$

Left Half 2-Adjoint Equivalences

Definition

For $f: A \rightarrow B$, f is a left half 2-adjoint equivalence if

ish2adj
$$f := \sum_{g:B o A} \sum_{\eta:gf \sim \operatorname{id}_A} \sum_{\varepsilon:fg \sim \operatorname{id}_B} \sum_{\tau:f[\eta] \sim \varepsilon_f} \sum_{\theta:\eta_x \sim g[\varepsilon]} \tau_g \cdot \operatorname{Coh} \varepsilon \sim f[\![\theta]\!]$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Half 2-Adjoint Equivalences

Lemma

For $f: A \to B$ with $(g, \eta, \varepsilon, \theta)$: ishadjl f,

$$\sum_{\tau: f[\eta] \sim \varepsilon_f} \mathsf{Coh} \ \eta \cdot g[\![\tau]\!] \sim \theta_{\mathit{fx}} \ \textit{is contractible}.$$

For $f: A \to B$ with $(g, \eta, \varepsilon, \tau)$: ishadj f,

$$\sum_{\theta:\eta_{\mathbf{g}}\sim\mathbf{g}[\varepsilon]}\tau_{\mathbf{g}}\cdot\mathsf{Coh}\,\varepsilon_{\mathbf{y}}\sim f[\![\theta]\!]\ \textit{is contractible}.$$

Promoting to a Half 2-Adjoint Equivalence

Theorem

- **1** ishadjl $f \rightarrow \text{ish2adj } f$
- 2 ishadj $f \rightarrow \text{ish2adjl } f$

Proof.

Take missing coherences to be center of contraction.

Corollary

- 2 adj $f \rightarrow \text{ish2adjl } f$

Proof.

Discard coherence and use above theorem.

Half Two-Adjoint Equivalences are propositions

Theorem

For $f: A \rightarrow B$, ish2adj f is a proposition.

Proof.

Assume f is a 2-adjoint equivalence.

$$\begin{split} \operatorname{ish2adj} f &\equiv \sum_{g:B \to A} \sum_{\eta: gf \sim \operatorname{id}_A} \sum_{\varepsilon: fg \sim \operatorname{id}_B} \sum_{\tau: f[\eta] \sim \varepsilon_f} \sum_{\theta: \eta_g \sim g[\varepsilon]} \operatorname{Coh} \eta \cdot g[\![\tau]\!] \sim \theta_f \\ &\simeq \sum_{g:B \to A} \sum_{\eta: gf \sim \operatorname{id}_A} \sum_{\varepsilon: fg \sim \operatorname{id}_B} \sum_{\theta: \eta_g \sim g[\varepsilon]} \sum_{\tau: f[\eta] \sim \varepsilon_f} \operatorname{Coh} \eta \cdot g[\![\tau]\!] \sim \theta_f \\ &\simeq \sum_{h: \operatorname{ishadjl}} \sum_{f} \sum_{\tau: f[\eta] \sim \varepsilon_f} \operatorname{Coh} \eta \cdot g[\![\tau]\!] \sim \theta_f \end{split}$$

Half Two-Adjoint Equivalences are propositions

Theorem

For $f: A \rightarrow B$, ish2adj f is a proposition.

Proof.

$$\begin{split} \mathsf{ish2adj}\, f &\simeq \sum_{h: \mathsf{ishadjl}\, f} \sum_{\tau: f[\eta] \sim \varepsilon_f} \mathsf{Coh}\, \eta \cdot g \llbracket \tau \rrbracket \sim \theta_f \\ &\simeq \sum_{\tau: f[\eta] \sim \varepsilon_f} \mathsf{Coh}(h_\eta) \cdot (h_g) \llbracket \tau \rrbracket \sim (h_\theta)_f \end{split}$$

Apply previous lemma.

How they interact

Full 2-Adjoint Equivalence

Definition

For $f: A \rightarrow B$, the data of a *full 2-adjoint equivalence* is

$$\begin{split} \text{2adj } f : &\equiv \sum_{g:B \to A} \sum_{\eta: gf \sim \operatorname{id}_A} \sum_{\varepsilon: fg \sim \operatorname{id}_B} \sum_{\tau: f[\eta] \sim \varepsilon_f} \sum_{\theta: \eta_g \sim g[\varepsilon]} \\ & \operatorname{\mathsf{Coh}} \eta \cdot g \llbracket \tau \rrbracket \sim \theta_f \times \tau_g \cdot \operatorname{\mathsf{Coh}} \varepsilon \sim f \llbracket \theta \rrbracket. \end{split}$$

Theorem

For $f: A \rightarrow B$, an equivalence,

2adj
$$f \simeq \prod_{x:A} \operatorname{refl}_{\mathsf{refl}_x} = \operatorname{refl}_{\mathsf{refl}_x}$$
.

Proof.

$$\begin{split} \text{2adj id}_A &\equiv \sum_{g:B \to A} \sum_{\eta:g \sim \operatorname{id}_A} \sum_{\varepsilon:g \sim \operatorname{id}_A} \sum_{\tau:\operatorname{id}_A[\eta] \sim \varepsilon} \sum_{\theta:\eta_g \sim g[\varepsilon]} \\ & \operatorname{Coh} \eta \cdot g[\![\tau]\!] \sim \theta \times \tau_g \cdot \operatorname{Coh} \varepsilon \sim \operatorname{id}_A[\![\theta]\!] \\ &\simeq \sum \quad \operatorname{refl}_{\operatorname{refl}} \sim \theta \times \operatorname{refl}_{\operatorname{refl}} \sim \operatorname{id}_A[\![\theta]\!] \end{split}$$

4 D > 4 B > 4 B > 4 B > 9 Q @

 θ :refl \sim refl

Theorem

For $f: A \rightarrow B$, an equivalence,

2adj
$$f \simeq \prod_{x:A} \operatorname{refl}_{\mathsf{refl}_x} = \operatorname{refl}_{\mathsf{refl}_x}$$
.

Proof.

$$\begin{split} \text{2adj id}_{A} &\simeq \sum_{\theta: \text{refl} \sim \text{refl}} \text{refl}_{\text{refl}} \sim \theta \times \text{refl}_{\text{refl}} \sim \text{id}_{A} \llbracket \theta \rrbracket \\ &\simeq \sum_{\theta: \text{refl} \sim \text{refl}} \sum_{A: \text{refl}_{\text{refl}} \sim \theta} \text{refl}_{\text{refl}} \sim \theta \\ &\simeq \sum_{u: \sum_{\theta: \text{refl} \sim \text{refl}} \text{refl}_{\text{refl}} \sim \theta} \text{refl}_{\text{refl}} \sim \text{pr}_1 u \end{split}$$

33 / 36

Theorem

For $f: A \rightarrow B$, an equivalence,

2adj
$$f \simeq \prod_{x:A} \text{refl}_{\text{refl}_x} = \text{refl}_{\text{refl}_x}$$
.

Proof.

$$\begin{aligned} \text{2adj id}_{A} &\simeq \sum_{u: \sum_{\theta: \text{refl}} \text{refl}_{\text{refl}} \sim \theta} \text{refl}_{\text{refl}} \sim \text{pr}_{1} u \\ &\simeq \text{refl}_{\text{refl}} \sim \text{refl}_{\text{refl}} \\ &\equiv \prod_{x: A} \text{refl}_{\text{refl}_{x}} = \text{refl}_{\text{refl}_{x}}. \quad \Box \end{aligned}$$

Corollary

2adj id_{S^3} is not a proposition.

Proof.

By previous theorem, it suffices to show $\prod_{x:S^3} \operatorname{refl}_{\operatorname{refl}_x} = \operatorname{refl}_{\operatorname{refl}_x}$ is not a proposition. We know $\pi_3(S^3) = \mathbb{Z}$, so construct $h, h' : \prod_{x:S^3} \operatorname{refl}_{\operatorname{refl}_x} = \operatorname{refl}_{\operatorname{refl}_x}$ s.t.

$$\begin{split} h_{\mathsf{base}} &= \mathsf{refl}_{\mathsf{refl}_{\mathsf{refl}_{\mathsf{base}}}} \\ h'_{\mathsf{base}} &= \mathit{cell} : \mathsf{refl}_{\mathsf{refl}_{\mathsf{base}}} = \mathsf{refl}_{\mathsf{refl}_{\mathsf{base}}}. \end{split}$$

 $\text{refl}_{\text{refl}_{\text{base}}} \neq \text{cell so } h \neq h'.$

Summary

Modularity starts at qinv

- Formalization found on Github: 528 lines
 - gebner/hott3
 - Paper forthcoming

Sementical argument

Thank you!

