EJERCICIOS - UNIDAD I MATEMÁTICA -2023

MÓDULO1. CONJUNTOS NUMÉRICOS.

Conjuntos numéricos	4
Números reales	5
Intervalos	7
Logaritmo	9
Números complejos	10

SIGNOS Y SÍMBOLOS UTILIZADOS EN MATEMÁTICA

Operadores Relacionales

Tal que Ø Conjunto Vacío = Igual a >> Mucho mayor que = Idéntico a, se define como << Mucho menor que # Diferente ≤ Menor o igual ≅ Aproximadamente igual > Mayor que < Menor que 3! Existe un único ≥ Mayor o igual que v ó ⊥ Perpendicular ⊏ Está incluido co Sí y solo sí ∀ Para todo // Paralelo .. Por lo tanto ⇒ Entonces Σ La sumatoria de ∃ Existe ∏ La productoria de Unión

Alfabeto Griego

lfa	A	α
eta	В	β
amma	Г	γ
Delta	Δ	δ
Epsilon	E	ε
Zeta	Z	ζ
Eta	Н	η
Theta	Θ	θ
Iota	1	τ
Карра	K	к
Lambda	Λ	λ
Mu	M	μ

CONJUNTOS NUMÉRICOS

- 1) Si A = {a, b, c, d} y B = {c, d, e, f}, determina el conjunto complemento de B con respecto a A.
- 2) Dados los conjuntos $A = \{1, 2, 3\}$ y $B = \{2, 3, 4\}$, verifica si A es subconjunto de B.
- 3) Si U es el conjunto universal y A = $\{a, b, c\}$, B = $\{b, c, d\}$, y C = $\{c, d, e\}$, encuentra $(A \cap B) \cup C$.
- 4) Si A = {1, 2, 3, 4, 5}, B = {4, 5, 6, 7}, y C = {2, 4, 6}, determina el conjunto complemento de (A U B) con respecto una c
- 5) Si A = $\{x \mid x \text{ es un número primo menor que 10}\}\ y B = <math>\{x \mid x \text{ es un número par}\}\$ encuentra A \cap B.
- 6) Sean A ={1,2,3,4,5,6,7,8,9}; B ={2,4,6,8}; C ={1,3,5,7,9}, **U**=N (el conjunto de los números naturales), realiza las siguientes operaciones: a) $A \cup B$, b) $A \cup C$, c) $B \cup C$. d) $A \cap B$, e) $B \cap C$, f) $A \cap B$, g) $B \cap C$, i) A'
- 7) Dados los conjuntos A = {1, 2, 3, 4,5,6} y B = {3, 4, 5, 6}, determina: a) A ∪ B (unión de conjuntos) b) A ∩ B (intersección de conjuntos) c) A B (diferencia de conjuntos) d) B A (diferencia de conjuntos)
- 8) Si el conjunto universo $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $y A = \{1, 3, 5, 7, 9\}$ $y B = \{2, 4, 6, 8, 10\}$, encuentra: a) $A \cup B$ b) $A \cap B$ c) A' (complemento de A) d) B' (complemento de B)
- 9) Considere el conjunto $A = \{1, 2, 3, 4\}$ y $B = \{3, 4, 5, 6\}$. Encuentra la cardinalidad de: a) A b) B c) $A \cup B$ d) $A \cap B$
- 10) Dados los conjuntos $A = \{a, b, c, d, e\}$ y $B = \{c, d, e, f, g\}$, verifica si las siguientes afirmaciones son verdaderas o falsas JUSTIFICA TU RESPUESTA: a) $A \subseteq B$ (A es subconjunto de B) b) $B \subseteq A$ (B es subconjunto de A) c) $A \subseteq B$ (A es subconjunto propio de B) d) $B \subseteq A$ (B es subconjunto propio de A)
- 11) Dados los conjuntos A = {1, 2, 3, 4} y B = {3, 4, 5, 6}, determina los conjuntos resultantes de las siguientes operaciones: a) A ∪ B (unión) b) A ∩ B (intersección) c) A B (diferencia) d) B A (diferencia)
- 12) Dados los conjuntos A = $\{1, 2, 3\}$ y B = $\{3, 4, 5\}$, determina si las siguientes afirmaciones son verdaderas o falsas, JUSTIFICA TU RESPUESTA: a) $2 \in A$ b) $5 \notin A$ c) $A \subseteq B$ d) $B \subseteq A$
- 13) Considera los conjuntos $A = \{x \mid x \text{ es un número entero positivo menor que 5} \} y B = \{x \mid x \text{ es un número primo menor que 10}\}$. Encuentra: a) $A \cup B$ b) $A \cap B$
- 14) Considere los conjuntos A = {rojo, verde, azul} y B = {azul, amarillo}. Determina: a) A ∪ B b) A ∩ B c) B − A
- 15) Resuelve los siguientes problemas y marca con una cruz la respuesta correcta:
 - a) Se hizo una encuesta a 50 estudiantes sobre sus preferencias respectos a dos libros A y B. Se observó que los que leen ambos libros son el doble de los que leen solo A, el triple de los que leen solo B y el cuádruplo de los que no leen ninguno de los dos libros. ¿Cuántas personas leen la revista A?

- a. 24
- b. 32
- c. 36
- d. NRC
- b) Se realizó una encuesta a todos los ingresantes a ingeniería sobre la práctica de algún deporte. El 60% de los estudiantes practica fútbol; el 50% tenis, el 40% de los que practican tenis también practican fútbol ¿Qué porcentaje de los estudiantes no realiza ninguno de estos deportes?
 - a. 10%
 - b. 30%
 - c. 15%
 - d. NRC

NÚMEROS REALES

16) Dados los siguientes números reales, ordénalos de menor a mayor:

$$-1.41111...$$
; $-1.5.\sqrt{2}$; 2; 1.9999...; $(\sqrt{2}-0.2)$; 1.4444...; $-1.4444...$

17) Coloca ∈, ∉, ⊂, ⊄ según corresponda:

-3Z	$\sqrt{-9}$ R	1.3333 I
-1/3 Q	I Q	$(\sqrt{2} + \frac{4}{3}) \dots R$
$\sqrt{2}$ Q	I R	0 Z
√3R	$1 - \sqrt{3}$ <i>I</i>	√-25 R

18) Tacha los números que no correspondan a la clasificación:

Naturales: 0 ; -1 ; 41; -0,8 ; 2 ; ; 1,131133111.....

Enteros: -4;25;0;1/2;-0,2;47;2,6;-1,5.

Racionales: -4;2/5;0;2,23;1,8;-5^{1/2};2;-1,5

Irracionales: 4;1/3;2,8;;7,2;7,212200148....; $2\sqrt{2}$; $-\sqrt[3]{5}$, $-2\sqrt{2}$;

- 19) Completa:
 - a. Un ejemplo de un número racional no entero es
 - b. Un ejemplo de un número real no racional es
 - c. Un ejemplo de un número real no irracional
 - d. Un ejemplo de un número entero no natural
- 20) Resuelve:

$$-4 + \frac{3}{4} - \frac{1}{2}.5 + \frac{5}{8}.\left(-\frac{2}{15}\right) - \frac{3}{2}.\left[-\frac{1}{2} + \frac{1}{2}.(-4)\right] =$$

b.
$$-\left(-\frac{2}{3}\right)^2 + \left(\frac{1}{2}\right)^3 \cdot (-1) - \frac{2}{5} \cdot (-2)^3 + \frac{11}{2} - \left(\frac{1}{6}\right)^2 \cdot 3^{-1} =$$

c.
$$\left(\sqrt{6}.\sqrt[4]{12}\right)^3:18^{\frac{1}{2}}$$

d.
$$\frac{-100^{\frac{1}{2}}}{\sqrt[3]{10:\sqrt{0,001}}}$$

e.
$$\frac{10^{2n+1}}{10^{n+1}}$$

f.
$$\frac{x^{-3}y^4}{x^4y^{-3}}$$
; $con \ x, y \neq 0$

g.
$$\frac{14a^7b^4(c^3)^2}{21a^6b^6c^8}$$
; con a, b, $c \neq 0$

h.
$$(a^{-1} - b^{-1})^{-1}$$
. $(a^{-1} + b^{-1})^{-1}$; $con \ a, b \neq 0$, $|a| \neq |b|$

i.
$$\sqrt{\frac{a}{2}} - \sqrt{\frac{1}{2a}} - \sqrt{\frac{2}{a}}, con \ a > 0$$

j.
$$\left(1 - \frac{1}{\sqrt{2}}\right)^{-1}$$

$$\frac{\left(1-\frac{3}{2}\right)^2.(-2)^3}{\frac{-5+3}{-2.3}} =$$

$$\overline{-2.3}$$

$$\frac{\left(\frac{1}{3}-1\right)^2}{\sqrt{\frac{11}{25}+1}}.(-12) =$$

١.

$$\frac{\sqrt{\frac{16}{25}} \cdot \left(\frac{1}{5}\right)^2}{\frac{1}{\left(3 + \frac{1}{3}\right)^2}} =$$

m.

$$\frac{\sqrt{\left(\frac{2}{3}\right)^3 \cdot \left(\frac{2}{3}\right)^{-7} + \frac{5}{4}}}{1 - \left(\frac{1}{4}\right)^{-2}} =$$

n.

$$\frac{\frac{7}{10} - \frac{1}{5}}{1 - \frac{1}{2}} + \frac{\frac{7}{4}}{2 - \frac{1}{4}} =$$

0.

$$\frac{2 - \frac{1}{3} - \frac{2}{3}}{2 + \frac{1}{3}} + \frac{1 - \frac{7}{2}}{1 + \frac{1}{2}} - \frac{1}{1 - \frac{3}{4}} =$$

p.

$$\frac{(2^3)^{-2} \cdot \left(3^{\frac{3}{2}}\right)^{\frac{2}{3}}}{(2^{10})^{\frac{1}{2}} \cdot 3^{\frac{1}{3}}} =$$

q.

$$\frac{\left(1-\frac{3}{2}\right).\left(\frac{2}{3}-\frac{3}{4}\right)^2}{\left(\frac{2}{3}-2\right)^2.\left(\frac{1}{3}-1\right)} =$$

r

$$\frac{\left(1:\frac{3}{2}\right) + \left(\frac{2}{3}.\frac{3}{4}\right)^2}{\left(\frac{2}{3}:2\right)^2 - \left(\frac{1}{3}:1\right)} =$$

21) Racionaliza los siguientes denominadores.

a)
$$\frac{2}{\sqrt{6}} =$$

c)
$$\frac{3}{\sqrt{7}} =$$

$$e)\frac{1}{1-\sqrt{5}} =$$

b)
$$\frac{2}{3.\sqrt{2}} =$$

$$\mathsf{d)}\;\frac{2}{4\!-\!2.\sqrt{3}}\!=\!$$

$$f)\frac{1}{\sqrt{5}-\sqrt{7}} =$$

INTERVALOS:

22) Indica si son verdaderas o falsas las siguientes expresiones. Justifica.

El valor absoluto de -8 es 8	
La distancia entre -2 y 5 es 3	
La distancia de -3 a 3 es igual a $\left -3\right ^2$	
La distancia de -5 a 5 es igual a 10	

23) Resuelve gráficamente y analíticamente las siguientes operaciones entre intervalos:

- a) $(1;5] \cap [2;7]$
- b) $(1,3) \cap [3,6]$
- c) $(-1;1] \cup [0;3]$

d)
$$\{(-3;-1)\cup[7,8]\}\cap[0;6]$$

24) Escriba, si es posible, como intervalo o unión de intervalos los siguientes conjuntos de números reales:

a)
$$A = \{ x / 5 < x < 9 \}$$

b)
$$B = \{ x / -1 \le x \le 3 \}$$

c)
$$C = \{ x / x < -2 \lor x > 2 \}$$

d) D = {
$$x / -4 < x < 2 \land x \neq -1$$
}

- 25) Escriba en notación conjuntista los siguientes intervalos de números reales:
 - a) (-2,3)
 - b) [-1,7]
 - c) [5,∞)
 - d) $(-\infty, -5]$
 - e) $(-\infty, \infty)$
- 26) Completar la siguiente tabla:

REPRES. GRÁFICA	INTERVALO	DEF. MATEMÁTICA
-1 3	[-1,3]	{x∈IR/ -1≤x≤3}
0 2		
-2 4		
	[-2,1)	
		{x∈IR/ 1 <x≤5}< td=""></x≤5}<>
-1 ∞		
		{x∈ IR/ x<2}
	(0,∞)	
3		
	(-1,5)	
		{x∈ R/ x≤0}
	[2/3,∞)	
		{x∈ IR/ -2 <x≤2}< td=""></x≤2}<>
		{x∈ IR/ x <3}
		{x∈ IR/ x ≥3}
2 ∞		

LOGARITMO

27) Conociendo que log 2 = 0.3010, calcula los siguientes logaritmos decimales:

a)
$$log \ 0.02 = X$$

b)
$$log 5 = X$$

c)
$$log 0.0625 = X$$

d)
$$og \sqrt[4]{8} = X$$

28) Aplicando definición de logaritmo calcular el valor de y

a)
$$log_{1/2} 0.25 = y$$

b)
$$log_{\sqrt{5}} 125 = y$$

c)
$$\log 0.001 = y$$

d)
$$log 10.000 = y$$

e)
$$ln \frac{1}{e^5} = y$$

f)
$$log_{\sqrt{3}} \sqrt[5]{\frac{1}{81}} = y$$

g)
$$log_y 81 = -4$$

h)
$$log_2 y^3 = 6$$

i)
$$log_2 \sqrt[5]{2} + log_2 8 + log_2 \frac{1}{4} =$$

j)
$$ln1 + lne + lne^3 + ln\sqrt[3]{e} + ln\frac{1}{e}$$

k)
$$\log 810 + \log 0.03 + \log \sqrt[5]{\frac{1}{9}}$$

I)
$$\log \sqrt[5]{0.04} + \log \sqrt[3]{\frac{0.25}{8}} + \log \sqrt{\frac{1.6}{5}}$$

m)
$$\log_a a \sqrt[5]{a} + \log_{\frac{1}{a}} \frac{\sqrt[3]{a}}{\sqrt{a}} + \log_2 \frac{1}{4} =$$

n)
$$\log_{a-b} \sqrt[3]{\frac{1}{a-b}} + \log_{\frac{a}{b}} \frac{b}{a} + \log_{a+b} \sqrt{a+b} =$$

o)
$$\log_a a^3 \sqrt[3]{a} - \log_b \frac{\sqrt[5]{b^2}}{b^2} + \log_{a+b} (ab)^{-3} =$$

29) Escribir como un solo logaritmo, e indique los valores que deben tomar x,y, a, b en cada caso.

a)
$$log(xy) - 2log\left(\frac{x}{y}\right) =$$

b)
$$2ln(a-b) - ln(a^2 - b^2) =$$

c)
$$4 \log_2 \frac{\sqrt{a-b}}{a} - \frac{1}{2} \log_2 \left(\frac{a-b}{a}\right)^4 =$$

30) Desarrolla las siguientes expresiones:

a)
$$ln \frac{x^2y(m+n)}{mn} =$$

b)
$$log_2 \frac{a^2 - b^2}{a.b} =$$

c)
$$\log 2\sqrt{2\sqrt{2\sqrt{2}}}$$

NÚMEROS COMPLEJOS

31) Resolver las siguientes operaciones:

a)
$$(3+6i) + (2-3i) =$$

f)
$$(3+6i)^2 =$$

32) Dados los siguientes números complejos:

$$z_1 = 5-3i;$$

$$z_2 = \frac{1}{2} + \frac{5}{4}i;$$

$$z_4 = 7;$$

$$z_5 = -1-i;$$

$$z_6 = -2+i$$

- a) Representarlos gráficamente.
- b) Encuentra sus opuestos y sus conjugados.
- c) Realiza las siguientes operaciones:

i.
$$Z_1 . Z_2$$

ii.
$$z_1:z_5$$

iv.
$$z_6.\overline{z_6}$$

vi.
$$z_6:z_3$$

- 33) Halle el valor de k para que el producto (3-6i).(4+ki) sea:
 - a) Un número imaginario puro.
 - b) Un número real.

- 34) ¿Cuánto debe valer x para que $(2 + xi)^2$ sea imaginario puro.
- 35) Realiza las siguientes operaciones. Escribe los resultados complejos en su forma binómica.

a)
$$2(3+i)-(2-4i).(2-4i)=$$

b)
$$(1+2i)^2 + (-3+4i)i - (2-2i)(1-2i) =$$

c)
$$\left(-1 + \frac{1}{2}i\right)\left(1 + \frac{1}{2}i\right) + \left(\frac{1}{2} + 2i\right) - \left(\frac{1}{3} - \frac{1}{2}i\right)i =$$

d)
$$\frac{(3-4i)(2+i)}{(2-3i)i^3-2i}$$

e)
$$\left| \frac{(1-i)(2+i)}{(2-3i)-2(1-2i)} \right|$$

36) Evalué y simplifica las siguientes expresiones para $z_1 = 1 + 2i$; $z_2 = 3 - i$; $z_3 = 2i$, expresa los resultados complejos en forma binómica identificando la parte real e imaginaria.

a)
$$z_1 z_2 - z_3$$

b)
$$\overline{z_1\overline{z_2}-\overline{z_1}z_2}$$

c)
$$|z_1^2(z_2-z_3)|$$

d)
$$\frac{|z_3(z_2-z_3)|}{|z_3|}$$

e)
$$\left| \frac{z_3 + z_2}{\overline{z_1} \overline{z_2}} \right|$$

37) Un rectángulo de centro en el origen de coordenadas tiene un vértice en el punto a que se corresponde con el complejo 3+3i. Halla los otros vértices, el perímetro y el área del rectángulo.

38) Escribe en forma binómica y cartesiana los números complejos cuya representación se corresponde a los puntos a, b, c, d, e, f.

