Epreuve écrite

Numéro d'ordre du candidat

Examen de fin d'études secondaires 2007

Section: BC	
Branche: CHIMIE	
1. Structure des molécules - propr	iétés des corps 16 points
 a) Pour le 2-hydroxypropanal, représenter b) Pour l'acide α-aminopropanoique (alar 	l'énantiomère R. TA 2 nine) représenter d'abord l'énantiomère S,
puis sa formule en projection de Fische c) pour l'acide 2-hydroxypropanoique rep	r. résenter l'énantiomère S en projection de Newman
suivant l'axe C2 – C3 dans sa configura d) pour la butanone représenter et donner	
Etudier et comparer, sur base d'une analyse corps suivants :	des forces intermoléculaires, la volatilité des
a) le butane (M = 58 g/mol) b) le propanal (M = 58 g/mol) c) le propanol (M = 60 g/mol)	TA 6
2. Polymérisation et polycondensation	13 points
a) étudier la polymérisation du st • type de réaction	yrène en polystyrène
réaction globale initiation et mécanism b) étudier la polycondensation de	ne de la réaction QC 7 l'éthanediol et de l'acide téréphtalique
(= acide benzène-1,4-dioique) c) étudier la formation du tripept	en PET QC 3.
	$R = -CH_3 / Val : R = (CH_3)_2 CH) QC 3$

Epreuve écrite

Examen de fin d'études secondaires 2007	Numero d'ordre du candidat
Section: BC	
Branche: CHIMIE	
Dianche. Chillylle	
3. Composés oxygénés	17 points
b) Trouver la formule et le nom de B et c c) Dresser les systèmes et l'équation redo	anate de potassium en solution acide donne un se pas avec le réactif de Schiff. de l'alcool A. TA 2 EN 3 TA 2 EN 4 A de l'oxydation par le permanganate. De remanganate de potassium avec c = 0,1 M nécessaire et alcool. EN 3 B, réagit avec la liqueur de Fehling. Sé. TA 1
4. Calcul du pH	14 points
* solution obtenue en mélangeant 10 (masse vol = 1,39 g/ cm³ * solution obtenue en mélangeant 25 de c = 0,10 mol/l avec 100 cm³ c c = 0,25 mol/l b) Une prise de 25 cm³ d'une solution d est titrée par une solution d'acide chl L'équivalence est atteinte après ajout * montrer que la réacti * calculer la concentra	ate de potassium par 500 ml de solution E N 1 0 cm³ d'acide nitrique à 65 %-masse 1) avec 1000 cm³ d'eau E N 2 100 cm³ de solution d'acide éthanoique de solution d'éthanoate de sodium de EN 2 1 céthylamine de concentration inconnue orhydrique 1M. 1 de 16,6 cm³ de solution. 1 do nest totale 1 tion initiale 1 tion initiale 1 tion initiale 2 totale 3 totale 4 tion initiale 5 totale 5 totale 5 totale 6 totale 7 totale 7 totale 8

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H ₃ O ⁺	H ₂ O	eau	-1,74
ac. chlorique	HCIO ₃	ClO ₃ -	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl ₃ COOH	CCl3COO-	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃	an. iodate	0,80
cat. hexaqua thallium III	[TI(H ₂ O) ₆] ³⁺	[TI(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO.	an. hydrogénooxalate	1.23
ac. dichloroéthanoïque	CHCl ₂ COOH	CHCl ₂ COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HClO ₂	ClO ₂	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH ₂ FCOOH	CH₂FCOO ⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	[Ga(H ₂ O) ₆] ³⁺	[Ga(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂CICOOH	CH ₂ CICOO	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH ₂ BrCOO	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	[V(H ₂ Q) ₆] ³⁺	[V(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂	an. nitrite	3,14
ac. iodoéthanoïque	CH ₂ ICOOH	CH ₂ ICOO	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO ⁻	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN-	an. cyanate	3,66
ac. méthanoïque	НСООН	HCOO-	an. méthanoate	3,75
ac. lactique	СН₃СНОНСООН	CH ₃ CHOHCOO⁻	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH₃COO ⁻	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH ₃ CH ₂ COO	an. propanoate	4,87
cat. hexaqua aluminium	[Al(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C ₅ H ₅ NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH₃OH ⁺	NH ₂ OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H ₂ S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO-	an. hypochlorite	7,55
cat. hexaqua cadmium	[Cd(H ₂ O) ₆] ²⁺	[Cd(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	[Zn(H ₂ O) ₆] ²⁺	[Zn(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN-	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O ⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH ₃ CH ₂ NH ₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	(C ₂ H ₅) ₃ NH ⁺	$(C_2H_5)_3N$	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH ₃) ₂ NH	diméthylamine	10,87
cat. diéthylammonium	$(C_2H_5)_2NH_2^+$	$(C_2H_5)_2NH$	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H ₂ O	OH-	anion hydroxyde	15,74

acides de force négligeable

bases fortes
(plus fortes que OH')
O²⁻, NH₂, anion alcoolate RO')

TABLEAU PERIODIQUE DES ELEMENTS

		1,0	He	2	20,2	Ne	10	39,9	Ar	18	33.8	7		313	X	7 7	(222)	Rn	86			
					II S	ш			U		T	R		126 9		53	(0)			T		
ipaux					16,0		8					×			Te		(60					
groupes principaux	>				14,0		7	31,0		15	6	u		18			0,6					
grou	>				12,0	ပ	9	28,1	Si	14	9	O.	3	8.7			7,2		82			
	=				10,8	8	5	0,7	A		7,	e		4.8			204,4	F	81			
										=				112,4			200,6	Hg				
										_	63,5	20	29	107,9	Ag	47	197,0	Au	79			
											58,7	Z	28	106,4	Pd	46	165,1	Pt	78			
								aires		N	6'89	ပ္ပ	27	102,9	Rh	45	192,2	I	77	(268)	Mt	109
								groupes secondaires			55,8	Fe	26	101,1	Ru	44	190,2	Os	92	(269)	Hs	108
								groupes			54,9	Mn	25	(26)	Tc	43	186,2	Re	75	(264)	Bh	107
										5	52,0	င်	24	95,9	Mo		183,9	>	74	(266)	Sg	106
										>	6'09	>	23	92,9	S N	41	180,9	Ia	73	(262)	Op	105
										2	47,9	F	22	91,2	Zr	40	1/8,5	÷	72	(261)	Rf	104
aux	7									=	45,0	Sc	21	88,9	>	39	1/5,0	ב ב	71	(797)	ב	103
groupes principaux	=			00	0	ם ,	24.2	64,0	PIN I	12	40,1	Ca	20	9,78	S	11	137,3		96	0,022	Ка	88
groupe	10	1		6 9	2.5	;	220	20,07	2	11	38,1	*	19	85,5	KD	3/	132,9	3	55	(573)	-	87

	1389 17401	1400	1110	(4 1 11)			. 11		T				-
-	5		7,44	(140)	4,001	152,0	15/3	158,9	162.5	164.9	1673	1689	1730
_	Ce	Pr	Z	Pm	Sm		כיש			71		1	2:
				:	5	1	30	2	à	00		E	YD
1	28	26	09	61	62	63	64	65	99	67	RR	80	70
0	0000	0 400	0000	0 100		T		2	000	0	00	00	2
7	22,0	0,162	738,0	737,0	(244)	(243)	(247)	(247)	(251)	(254)	(757)	(25g)	(250)
,	7	-			1			\\	(10-1	(+0+)	(401)	(400)	(503)
7	=	ra	D	S	Pu	Am	E	RK	٣	FC	Em	M	N
_	-	-	00				;	1	;	2		25	22
2	30	181	9.5	93	94	95	96	97	98	66	100	101	100
							1				000	-	104