Lecture 34: Argument principle

Math 660—Jim Fowler

Friday, August 6, 2010

Example 1

$$f(z) = \frac{1}{z^4 + 4}$$

Compute $\int_{\gamma} f \ dz$ for γ a circle of radius two and center 1.

Let $D^2=\{z\in\mathbb{C}:|z|<1\}$ and $f:D^2\to\mathbb{C}$ analytic. Assume $f(z)\not\equiv 0$.

Let $D^2=\{z\in\mathbb{C}:|z|<1\}$ and $f:D^2\to\mathbb{C}$ analytic. Assume $f(z)\not\equiv 0$.

Assume f(z) has only finitely many zeroes, z_1, \ldots, z_n , with multiplicity.

Let $D^2=\{z\in\mathbb{C}:|z|<1\}$ and $f:D^2\to\mathbb{C}$ analytic. Assume $f(z)\not\equiv 0$.

Assume f(z) has only finitely many zeroes, z_1, \ldots, z_n , with multiplicity.

 $f(z) = (z - z_1) \cdots (z - z_n)g(z)$ for g(z) analytic and nowhere zero.

Let $D^2=\{z\in\mathbb{C}:|z|<1\}$ and $f:D^2\to\mathbb{C}$ analytic. Assume $f(z)\not\equiv 0$.

Assume f(z) has only finitely many zeroes, z_1, \ldots, z_n , with multiplicity.

 $f(z) = (z - z_1) \cdots (z - z_n)g(z)$ for g(z) analytic and nowhere zero.

$$\frac{f'(z)}{f(z)} = \frac{1}{z - z_1} + \cdots + \frac{1}{z - z_n} + \frac{g'(z)}{g(z)}$$

$$\int_{\gamma} \frac{1}{g(z)} dz = 0, s$$

 $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = n(\gamma, z_1) + \cdots + n(\gamma, z_n)$

Now $\int_{\gamma} \frac{g'(z)}{g(z)} dz = 0$, so

Now $\int_{\gamma} \frac{g'(z)}{g(z)} dz = 0$, so

zeroes in D^2 .

 $\frac{1}{2\pi i} \int_{\mathbb{R}^n} \frac{f'(z)}{f(z)} dz = n(\gamma, z_1) + \cdots + n(\gamma, z_n)$

In fact, this is true even if there are infintely many

Counting zeroes, again

Theorem (

If f(z) is meromorphic in Ω , with zeroes a_j and poles b_k , then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z) dz}{f(z)} = \sum_{i} n(\gamma, a_{i}) - \sum_{k} n(\gamma, b_{k})$$

for every γ homologous to zero in Ω .

Counting zeroes, again

Theorem (Argument principle)

If f(z) is meromorphic in Ω , with zeroes a_j and poles b_{ℓ} , then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z) dz}{f(z)} = \sum_{i} n(\gamma, a_{i}) - \sum_{k} n(\gamma, b_{k})$$

for every γ homologous to zero in Ω .

Corollary (Rouché's theorem)

Suppose $\gamma \in \Omega$ with $[\gamma] = [0] \in H_1(\Omega)$,

and $n(\gamma, a) = 0$ or 1 for $a \notin \omega$. Suppose f(z) and g(z) are analytic in Ω , and satisfy |f(z) - g(z)| < |f(z)| on γ . Then f(z) and g(z) have the same number of zeroes

inside γ .

Finding zeroes via Taylor's theorem

Suppose we want to know how many zeroes f(z) has inside $B_R(0)$.

Finding zeroes via Taylor's theorem

Suppose we want to know how many zeroes f(z) has inside $B_R(0)$.

Use Taylor's theorem to write $f(z) = p(z) + z^n f_n(z)$ for a polynomial p(z) with degree n - 1.

Finding zeroes via Taylor's theorem

Suppose we want to know how many zeroes f(z) has inside $B_R(0)$.

Use Taylor's theorem to write $f(z) = p(z) + z^n f_n(z)$ for a polynomial p(z) with degree n-1.

If we can prove $R^n|f_n(z)| < |p(z)|$, then we need only determine solutions of p(z) = 0.

Example

How many roots does $z^7 - 2z^5 + 6z^3 - z + 1 = 0$ have inside the disk |z| < 1?

If g(z) is analytic in Ω , then $g(z)\frac{f'(z)}{f(z)}$ has

If g(z) is analytic in Ω , then $g(z)\frac{f'(z)}{f(z)}$ has residue hg(a) at a zero a of order h

If g(z) is analytic in Ω , then $g(z)\frac{f'(z)}{f(z)}$ has residue hg(a) at a zero a of order h and residue -hg(a) at a pole a of order h.

If g(z) is analytic in Ω , then $g(z)\frac{f'(z)}{f(z)}$ has residue hg(a) at a zero a of order h and residue -hg(a) at a pole a of order h. Therefore.

$$\frac{1}{2\pi i} \int_{\gamma} g(z) \frac{f'(z)}{f(z)} dz = \sum_{j} n(\gamma, a_{j}) g(a_{j}) - \sum_{j} n(\gamma, b_{k}) g(b_{k})$$

f(z) = w has n solutions z_1, \ldots, z_n in disk $|z - z_0| < \epsilon$.

$$., z_n$$
 in disk

f(z) = w has n solutions z_1, \ldots, z_n in disk

 $|z-z_0|<\epsilon$.

 $\sum_{i} z_{j}(w) = \frac{1}{2\pi i} \int_{|z-z_{0}|=\epsilon} \frac{f'(z)}{f(z)-w} z dz$

$$f(z) = w$$
 has n solutions z_1, \ldots, z_n in disk $|z - z_0| < \epsilon$.

 $\sum_{i} z_{j}(w)^{m} = \frac{1}{2\pi i} \int_{|z-z_{0}|=\epsilon} \frac{f'(z)}{f(z)-w} z^{m} dz$

$$|z| \le w$$
 has n solutions z_1, \ldots, z_n in disk $|z| < \epsilon.$
$$\sum_i z_j(w) = \frac{1}{2\pi i} \int_{|z-z_0|=\epsilon} \frac{f'(z)}{f(z)-w} z \, dz$$

$$|1 < \epsilon$$
.

 $\sum_{i} z_{j}(w)^{m} = \frac{1}{2\pi i} \int_{|z-z_{0}|=\epsilon} \frac{f'(z)}{f(z)-w} z^{m} dz$

so $z_i(w)$ are roots of a polynomial with coefficients

depending analytically on w.

 $\sum_{i} z_{j}(w) = \frac{1}{2\pi i} \int_{|z-z_{0}|=\epsilon} \frac{f'(z)}{f(z)-w} z \, dz$

 $|z-z_0|<\epsilon$.

f(z) = w has n solutions z_1, \ldots, z_n in disk