

Links da Disciplina

- 1. Discord: https://discord.gg/wt5CVZZWJs
- 2. Drive: tiny.cc/DrivedaTurma1
- 3. Github: https://github.com/TarikPonciano/Programador-de-Sistema-SENAC

Equivalência Lógica

- 1. Dizemos que duas proposições são logicamente equivalentes (ou simplesmente equivalentes) quando os resultados de suas tabelas-verdade são idênticos
- 2. Uma consequência prática da equivalência lógica é que ao trocar uma dada proposição por qualquer outra que lhe seja equivalente, estamos apenas mudando a maneira de dizê-la.

Equivalências Básicas

- 1. p e p = p Ex: André é inocente e inocente = André é inocente
- 2. p ou p = p Ex: Ana foi ao cinema ou ao cinema = Ana foi ao cinema
- 3. p e q = q e p Ex: O cavalo é forte e veloz = O cavalo é veloz e forte

Equivalências Básicas

- 1. p ou q = q ou p Ex: O carro é branco ou azul = O carro é azul ou branco
- 2. $p \leftrightarrow q = q \leftrightarrow p$ Ex: Amo se e somente se vivo = Vivo se e somente se amo.
- 3. $p \leftrightarrow q = (p \rightarrow q) e (q \rightarrow p) Ex$: Amo se e somente se vivo = Se amo então vivo, e se vivo então amo

Equivalências Básicas

p e p	р
p ou p	p
p e q	q e p
p ou q	q ou p
$p \leftrightarrow q$	$\mathbf{q} \leftrightarrow \mathbf{p}$
$p \leftrightarrow q$	(p → q) e (q → p)

Equivalências da Condicional

Estas equivalências podem ser verificadas, ou seja, demonstradas, por meio da comparação entre as tabelas-verdade.

Se p então q = Se não q então não p.

Ex: Se chove então me molho = Se não me molho então não chove

Se p então q = Não p ou q.

Ex: Se estudo então passo no concurso = Não estudo ou passo no concurso

p → q	~q → ~p
p → q	∼p V q

Leis Associativas, Distributivas e da Dupla Negação

→Leis Associativas

(p e q) e s	p e (q e s)
(p ou q) ou s	p ou (q ou s)

→Leis Distributivas

p e (q ou s)	(p e q) ou (p e s)
p ou (q e s)	(p ou q) e (p ou s)

→ Leis da Dupla Negação

~(~p) p	~(~p)
---------	-------

Leis Associativas, Distributivas e da Dupla Negação

S não é não P = S é P

Todo S não é não P = Todo S é P

Algum S não é não P = Algum S é P

Nenhum S não é não P = Nenhum S é P

Exemplos:

- 1) A bola de futebol não é não esférica = A bola de futebol é esférica
- 2) Todo número inteiro não é não racional = Todo número inteiro é racional
- 3) Algum número racional não é não natural = Algum número racional é natural
- Nenhum número negativo não é não natural = Nenhum número negativo é natural

Negação de Proposição Simples

O símbolo que representa a negação é uma pequena *cantoneira* (¬) ou um sinal de til.

Basta pôr a palavra **não** antes da sentença, e já a tornamos uma negativa. Exemplos:

João é médico. Negativa: João não é médico.

Maria é estudante. **Negativa**: Maria **não** é estudante.

Para negar uma proposição no formato de conjunção (**p e q**), faremos o seguinte:

- 1. Negaremos a primeira parte (~p);
- 2. Negaremos a segunda parte (~q);
- 3. Trocaremos e por ou.

Exemplo: a questão dirá: "Não é verdade que João é médico e Pedro é dentista", e pedirá que encontremos, entre as opções de resposta, aquela frase que seja logicamente equivalente a esta fornecida.

Solução:

- 1. Nega-se a primeira parte (~p) = João não é médico;
- 2. Nega-se a segunda parte (~q) = Pedro não é dentista;
- 3. Troca-se E por OU, e o resultado final será o seguinte:

Exemplo: a questão dirá: "Não é verdade que João é médico e Pedro é dentista", e pedirá que encontremos, entre as opções de resposta, aquela frase que seja logicamente equivalente a esta fornecida.

Solução:

- 1. Nega-se a primeira parte (~p) = João não é médico;
- 2. Nega-se a segunda parte (~q) = Pedro não é dentista;
- 3. Troca-se E por OU, e o resultado final será o seguinte:

JOÃO NÃO É MÉDICO OU PEDRO NÃO É DENTISTA.

Traduzindo para a linguagem da lógica, dizemos que:

$$\sim (p \land q) = \sim p V \sim q$$

Como fomos chegar à essa conclusão?

~(p \land q)	~p V ~q
F	F
V	V
V	V
V	V

Para negar uma proposição no formato de disjunção (**p ou q**), faremos o seguinte:

- 1. Negaremos a primeira parte (~p);
- 2. Negaremos a segunda parte (~q);
- 3. Trocaremos ou por e.

Para negar uma proposição no formato de disjunção (**p ou q**), faremos o seguinte:

- 1. Negaremos a primeira parte (~p);
- 2. Negaremos a segunda parte (~q);
- 3. Trocaremos ou por e.

Exemplo: a questão dirá: "Não é verdade que Pedro é dentista ou Paulo é engenheiro", e pedirá que encontremos, entre as opções de resposta, aquela frase que seja logicamente equivalente a esta fornecida.

Solução:

- 1. Nega-se a primeira parte (~p) = Pedro não é dentista;
- 2. Nega-se a segunda parte (\sim q) = Paulo não é engenheiro;
- 3. Troca-se OU por E, e o resultado final será o seguinte:

Exemplo: a questão dirá: "Não é verdade que Pedro é dentista ou Paulo é engenheiro", e pedirá que encontremos, entre as opções de resposta, aquela frase que seja logicamente equivalente a esta fornecida.

Solução:

- 1. Nega-se a primeira parte (~p) = Pedro não é dentista;
- 2. Nega-se a segunda parte (~q) = Paulo não é engenheiro;
- 3. Troca-se OU por E, e o resultado final será o seguinte:

PEDRO NÃO É DENTISTA E PAULO NÃO É ENGENHEIRO.

Traduzindo para a linguagem da lógica, dizemos que:

$$\sim (p V q) = \sim p \land \sim q$$

Como chegamos a essa conclusão?

~(p V q)	~p ∧~q
F	F
F	F
F	F
V	V

Para negar uma proposição no formato de disjunção exclusiva (**ou p ou q**), faremos o seguinte:

1. Trocamos a disjunção por um bicondicional;

Exemplo: "Ou João é rico ou Pedro é bonito."

P = João é rico

Q = Pedro é bonito

Negando-a temos;

"João é rico se e somente se Pedro é bonito"

$$\sim$$
(P \bigoplus Q) = P \leftrightarrow Q

P	Q	P Q	~(P \(\mathcal{Q} \))	$\mathbf{P} \leftrightarrow \mathbf{Q}$
V	V	F	V	V
V	F	V	F	F
F	V	V	F	F
F	F	F	V	V

Negação de Proposição Condicional

Para negar uma proposição no formato condicional ($\mathbf{p} \rightarrow \mathbf{q}$), faremos o seguinte:

- 1. Mantém-se a primeira parte (p);
- 2. Nega-se a segunda parte (~q).

Negação de Proposição Condicional

Exemplo: Como fica a negativa de "se chover então levarei o guarda-chuva".

Sol:

- 1. Mantém-se a primeira parte (p) = Chove;
- 2. Nega-se a segunda parte (~q) = Não levo o guardachuva;

CHOVE E NÃO LEVO O GUARDA-CHUVA.

Negação de Proposição Condicional

Traduzindo para a linguagem da lógica, dizemos que:

$$\sim (p \rightarrow q) = p \land \sim q$$

Como ficaria a tabela verdade?

Negação de Proposição Bicondicional

Para negar uma proposição no formato condicional ($\mathbf{p} \leftrightarrow \mathbf{q}$), faremos o seguinte:

- 1. Transformamos em condicional ligadas por conjunção: $p \leftrightarrow q = [(p \rightarrow q) \ e \ (q \rightarrow p)]$
- 2. Nega-se toda a expressão

$$\sim$$
(p \leftrightarrow q) = [(p e \sim q) ou (q e \sim p)]

(Obs: a BICONDICIONAL tem esse nome: porque equivale a duas condicionais!)

Tabela de Negação

Negativa de (p e q)	~p ou ~q
Negativa de (p ou q)	~p e ~q
Negativa de (ou p ou q)	$b \leftrightarrow d$
Negativa de (p → q)	pe~q
Negativa de (p↔q)	[(p e ~q) ou (q e ~p)]

Resumo das principais equivalências e negações

DESCRIÇÃO	RESUMO
Equivalência da condicional	$p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p$
Equivalência da condicional	$p \rightarrow q \iff \sim p \lor q$
Negação da condicional	$\sim (p \to q) \Leftrightarrow p \land \sim q$
Equivalência da disjunção	$p \lor q \Leftrightarrow \sim p \to q$
Equivalência da disjunção	$p \lor q \Leftrightarrow \sim q \to p$
Equivalência da disjunção	$p \lor q \Leftrightarrow \sim ((\sim p) \land (\sim q))$
Negação da conjunção	$\sim (p \land q) \Leftrightarrow (\sim p) \lor (\sim q)$
Negação da disjunção	$\sim (p \lor q) \Leftrightarrow (\sim p) \land (\sim q)$
Negação da conjunção	$\sim (p \wedge q) \Leftrightarrow p \rightarrow \sim q$
Negação da conjunção	$\sim (p \wedge q) \Leftrightarrow q \rightarrow \sim p$
Equivalência da bicondicional	$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$
Equivalência da bicondicional	$p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\sim p \land \sim q)$
Negação da bicondicional	$\sim (p \leftrightarrow q) \iff p \lor q$
Negação da disjunção exclusiva	$\sim (p \vee q) \Leftrightarrow p \leftrightarrow q$
Equivalência da disjunção (exclusiva)	$p \underline{\vee} q \Leftrightarrow (p \vee q) \wedge (\sim (p \wedge q))$
Negação de "Todo a é b"	"Algum a não é b"
Negação de "Nenhum a é b"	"Algum a é b"
Negação de "Algum a é b"	"Nenhum a é b"
Negação de "Algum a não é b"	"Todo a é b"

obrigado!

Referências

https://www.infoescola.com/matematica/logica-proposicional/ https://www.infoescola.com/matematica/conectivos-logicos/ https://www.infoescola.com/matematica/classificacao-de-proposicoes-logicas/

https://educative.com.br/wp-content/uploads/2019/08/Exerc%C3%ADciosneg-e-equiv.pdf

https://voceconcursado.com.br/blog/equivalencia-logica-aula-praticacompleta/

https://www.atfcursosjuridicos.com.br/repositorio/material/15053377219336-11fichadeaulaequivalenciasenegacoes.pdf

Referências

https://docente.ifrn.edu.br/cleonelima/disciplinas/fundamentos-de-programacao-2.8401.1m/fundamentos-de-logica-e-algoritmos-1.8401.1v/apostila-equivalencias-logicas

https://docente.ifrn.edu.br/cleonelima/disciplinas/fundamentos-de-programacao-2.8401.1m/fundamentos-de-logica-e-algoritmos-1.8401.1v/negacao-de-proposicoes-simples-e-compostas/view

