

Medidor de Gas Húmedo – Haimo WGM

El medidor de Gas Húmedo (WGM) es una nueva tecnología desarrollada para la medición en línea de pozos de gas húmedo. El WGM mide de manera precisa el contenido líquido en el gas (agua / condensado) y el caudal de gas y líquido con un equipo compacto. Dependiendo del requerimiento del cliente, el medidor puede consistir en un spool de medición o un skid de medición.

El WGM detecta el contenido de líquido mediante el principio de atenuación másica de rayos gamma múltiple y los caudales de flujo de gas utilizando el sistema de presión diferencial de un venturi. La composición de las fases calculadas se utiliza junto con la presión diferencial como variables de entrada al computador de flujo con el propósito de calcular los caudales de flujo de gas, condensado y agua con la mejor precisión en el mercado.

Los caudales de flujo a condición estándar son calculados con base en los caudales de flujo a condiciones de línea mediante un software y modelo PVT. El modelo PVT desarrollado por Haimo es una herramienta versátil para la caracterización de mezclas muti-componentes con énfasis en fluidos de yacimiento.

E	sp	ec	iti	ca	cio	nes	
---	----	----	-----	----	-----	-----	--

Especificaciones			
Tamaño del venturi	1.5 a 16 pulgadas		
Presión de Operación	0-5000 psi		
Temperatura de Operación	-50 a 150 centígrados		
Rango de Operación	90-100% Gas Void Fraction (GVF)		
	0-0.3 Lockhart–Martinelli (LM)		
Capacidad de flujo	Caudal Liquido: 20.000 bpd		
	Caudal de Gas : 250 MMscfd		
Precisión	Caudal Másico de Gas @ condición de línea: +/- 1% de precisión para GVF entre 90% y100%		
	Caudal Másico de Líquido @ condición de línea:		
	+/- 5% de precisión para GVF entre 90% y 99%		
	+/- 10% de precisión para GVF entre >99%		
	Caudal Másico Total @ condición de línea: +/-2% de precisión para GVF entre 90% y100%		
Repetibilidad	0.5%		
Dimensiones de un WGM de 3 pulgadas	742 mm x 766 mm x 930 mm (WxDxH)		
Peso	358 kg		
Conexiones	ASME, API, Hub		
Consumo de Potencia	<50 W startup / 35 W continuous		
Certificacion Eléctrica	EEx d IIB T4/T6		
Ingress Protection (IP)	IP 65/66		
Fuente Radioactiva	133Barium, 10 mCurie o Am 241 (aceptable para uso público)		
Vida útil	20 years		
Comunicación	Modbus RTU, ASCII , TCP		
	RS232/485, RJ45, 4-20mA		
Almacenamiento de datos	Local datalogger		
Modelo PVT	Permite incorporar el modelo PVT específico de un cliente		

Beneficios

- Liviano y de fácil movilización e instalación
- Reduce costos de desarrollo de campos
- Detección temprana de agua
- Mejor diagnóstico por pozo
- Operación remota
- Instalación y operación segura

Características

- Pequeño y sencillo de operar
- Alta precisión en las mediciones de caudal de gas y líquido
- Excelente respuesta dinámica a los cambios de caudal de flujo del pozo
- No requiere separación de fases
- Amplio rango de medición
- No tiene partes móviles mínimo mantenimiento
- Baja pérdida de presión (< 1 bar)
- Bajo consumo de energía
- Auto verificación y redundancia

Aplicaciones

- Mejora las pruebas de pozos y el gerenciamiento del yacimiento
- Monitoreo de campos de gas y gas condensado
- Monitoreo y optimización de la producción
- Optimización de inyección de químicos para prevenir hidratos y corrosión

