Travail 1

Transistor MOS : Analyse DC

μ m], $L=1$ [$k\Omega$]. Représe	a main le schém $[\mu m]$) monté en entez toutes les $3 [V]$. Identifiez	source comn sources de te	nune, polarisé ension nécessa	é avec une rés sires et suppos	sistance de dr	$ain R_D =$

Préno	m:	Nom:		NOMA:
2.	fonctionnement DC		pour obtenir une expression a ton de la tension de grille V_G . stor PMOS?	
	Système d'équation	s:		
	Conditions de bonn	e polarisation :		

NOMA:

Prénom:

Nom:

Préno	m:	Nom:	NOMA:
4.	V_D en fonction de dV_D/dV_G . Choisiss	la main la caractéristique de transfert, à savoir la courbe la tension de grille V_G . Tracez par ailleurs la dérivée sez ensuite graphiquement le point de fonctionnemen nique de sortie et donnez la valeur du gain en tension c	de la tension de sortie et DC (ou point Q) qui

ELEC1530 - Travail 1 4

Tension V_G choisie :

Gain:

Prénom:	Nom:	NOMA:

5. Identifiez les différents paramètres du modèle du transistor utilisé, sur base du modèle Spice. Quelles sont alors les valeurs de polarisation obtenues sur base de ces paramètres et du point de fonctionnement choisi? Commentez les différences entre les valeurs calculées et les valeurs simulées.

Paramètre	Unité	Valeur extraite à partir du modèle Spice
μ_p		
C_{ox}		
$V_{T0,p}$		
$V_{EA,p}$		

Grandeur	Unité	Valeur calculée	Valeur simulée sur Spice
I_{SD}			
$V_D = V_{OUT}$			

Commentaires:

6. Selon le point de fonctionnement DC choisi, dessinez à la main le schéma de polarisation de l'amplificateur et calculez la valeur des résistances de polarisation en choisissant parmi la liste suivante de résistances (en $[\Omega]$) :

Montage avec résistances de polarisation

Calcul des résistances :

Validation par simulation : Commentaires :

Grandeur	Unité	Valeur calculée	Valeur simulée sur Spice
I_{BIAS}			
V_{BIAS}			