Walking the Path to Wellness: Foot Position, Brain, and Musculoskeletal Health

Peyman Mirtaheri, Dr. Scient.
Professor of Biomedical Engineering
Leader of Optical/NIRS lab &
ADEPT research group
Oslo Metropolitan University
(OsloMet)

Human gait is a complex interaction

Gait and balance involves interactions between segments of the body that are stacked on top of each other

Understanding the role of the Brain and mobility

Proprioception

Somatosensory input weighted with 70% compared to vestibular(20%) and visual (10%) [Horak 2006]

The first contact point to the ground is the foot

Stimulation of the heel

Kennedy and Inglis 2002

The arrangement of mechanoreceptors in the skin

Sensory stimulation and skin perfusion

Measurement unit: PU	Lateral probe position	Medial probe position	Supinated foot	Overpronated foot	Lateral skin stretch	Medial skin stretch
Mean perfusion value (trial number)	1.4 (1)	1.4 (3)	1.4 (1)	0.6 (2)	1.4 (1)	0.8 (5)
	0.6 (2)	0.9 (4)	1.4 (3)	0.9 (4)	0.6 (2)	0.6 (6)
	0.8 (5)	0.5 (7)	0.8 (5)	0.6 (6)	1.4 (3)	0.5 (7)
	0.6 (6)	0.5 (8)	0.5 (7)	0.5 (8)	0.9 (4)	0.5 (8)
Sum	3.4	3.3	4.1	2.6	4.3	2.4
Mean of all trials	0.85	0.825	1.025	0.65	1.075	0.6

The perfusion (microcirculation in the skin) is a reflection of activities in the region

A platform to stimulate the heel and balance

The platform has pressure sensors to adjust the stimulation values and timings.

The incredible human brain

Human brain is capable to process complex tasks with optimized energy consumption. A better understanding will facilitate better diagnostic and rehabilitation of mind and body

Feed forward control system

Neuro-activation and Neuro-vascular coupling

Changes of blood perfusion due to neuroactivation, while there are no potential changes of Glia cells

Absorption spectra of hemoglobin

Pansare et al. 2013

Hemoglobin (Hb) is the protein contained in red blood cells that is responsible for delivery of oxygen to the tissues

Oxy and deoxy response from fNIRS

Photon penetration in tissue

We may not get more that a few mm depth into the cerebral cortex (4-7 mm)

Superficial tissue affects functional NIR-Spectroscopy

Short channels are needed to separate data from the superficial tissue from the data of interest

Pipeline for data processing

Extraction of the signals to some physiological responses is important [von Lühmann et al. 2020]

Examples of the brain activation with different gait conditions

Hbo reflects the arterial and HbR the venous information

Is activation a good or bad thing?

The results shows that the brain is activated when walking

Too many meetings without break

Connectivity model

Time series $Y(t) \in \mathbb{R}^M$ with ch channels and T time points. Each channel k, associated with a 3D coordinate $c_k = (x_k, y_k, z_k)$. Low-rank projection matrix $\Psi \in \mathbb{R}^{L \times M}$.

$$\begin{aligned} \Psi Y\left(t\right) &= \sum_{\ell=1}^{p} \Phi^{(\ell)} \Psi Y\left(t-\ell\right) + \varepsilon\left(t\right) \\ \Phi^{(\ell)} &= \Phi_{0}^{(\ell)} + \Phi_{1}^{(\ell)} C_{1} + \ldots + \Phi_{6}^{(\ell)} C_{6} \\ \varepsilon\left(t\right) &\sim \mathcal{W} \mathcal{N}\left(0, \Sigma_{\varepsilon}\right) \\ \operatorname{vec}\left(\hat{\Phi}\right) &\to \mathcal{N}\left(0, \Sigma_{\Phi}\right) \end{aligned}$$

Model is based on fNIRS signals filtered by a FIR bandpass 10-400mHz

$$C_0 = \begin{cases} 1 & \text{Baseline (barefoot)} \\ 0 & \text{other} \end{cases}$$
 $C_1 = \begin{cases} 1 & \text{Flat sole} \\ 0 & \text{other} \end{cases}$
 $C_2 = \begin{cases} 1 & \text{Flat wedged} \\ 0 & \text{other} \end{cases}$
 $C_3 = \begin{cases} 1 & \text{Personal shoes} \\ 0 & \text{other} \end{cases}$
 $C_4 = \begin{cases} 1 & \text{Gaitline shoes} \\ 0 & \text{other} \end{cases}$

Connectivity patterns with ML model

A simpliefied brain model

Using the engineering to replicate the brain connectivities in a small electronic circuit using FPGA(Field Programmable Gate-Array), Ref. Prof. Muhtaroglu's projects at ADEPT

In conclusion: Understanding the sensory-motoric controls involving the brain connectivities will be a game changer for diagnostic and rehabilitaiton

- The first contact with the ground is our feet containing sensory information
- The fNIRS (functional nearinfrared spectroscopy) is an important tool to look at the brain activities
- Functional and effective connectivties are interesting tools to understand the brain functions

