PARTE I - Conceitos básicos.

1 Introdução.

A ideia de introduzir coordenadas para aplicar de modo sistemático a álgebra aos problemas geométricos foi desenvolvida no século XVIII nos trabalhos de Descartes e Fermat. Actualmente, se imaginarmos uma folha de papel com vários pontos assinalados:

A

 O_{ullet}

 $\stackrel{\bullet}{B}$

parece-nos natural escolher uma **origem** e uns **eixos** e identificar cada um desses pontos com um par de números reais (a,b) a que chamamos **coordenadas** dos pontos.

Assim, a escolha de uma origem ${\cal O}$ e de uns eixos perpendiculares determina uma aplicação bijectiva:

$$\phi: \mathcal{A} \longrightarrow \mathbf{R}^2$$

entre a folha de papel \mathcal{A} (bom, uma folha infinita...) e \mathbb{R}^2 . Os objectos geométricos (rectas, circunferências...) podem então descrever-se através de equações algébricas envolvendo as coordenadas.

Poder-se-ia definir um **espaço afim** (real, de dimensão n) simplesmente como um conjunto $\mathcal A$ onde os pontos podem descrever-se mediante n coordenadas, isto é, um conjunto $\mathcal A$ munido de uma bijecção

$$\phi: \mathcal{A} \longrightarrow \mathbf{R}^n$$
.

No entanto, vamos apresentar uma outra definição (aparentemente mais complicada mas matematicamente equivalente) que reforça a ideia de poder escolher diferentes origens de coordenadas (qualquer ponto de $\mathcal A$ poderá servir como origem de coordenadas), diferentes eixos ...

Para compreender essa outra definição, vamos esquecer as coordenadas e pensar nos movimentos. A partir de um ponto O, podemos atingir qualquer outro ponto de \mathcal{A} efectuando uma translação¹:

Obviamente, deslocar-nos de O para A e depois de A para B é o mesmo que deslocar-nos directamente de O para B:

Em resumo, considere-se a aplicação que a cada par de pontos A e B de $\mathcal A$ associa a translação $t_{\overrightarrow{AB}}$ que leva o ponto A ao ponto B. Tem-se

- 1. se fixarmos um ponto O, todo o ponto A corresponde univocamente a uma translação $t_{\overrightarrow{OA}}$;
- 2. dados O, A e B pontos quaisquer de A, tem-se $t_{\overrightarrow{OA}} + t_{\overrightarrow{AB}} = t_{\overrightarrow{OB}}$.

(Note-se que o conjunto de translações de ${\mathcal A}$ é um espaço vectorial 2)

Estas duas propriedades são as escolhidas para definir matematicamente o conceito de espaço afim.

 $^{^1}$ Nos livros do ensino secundário aparece frequentemente a noção de **vector livre** \overrightarrow{AB} entre A e B. Independentemente da definição "formal" ou "informal" que se proporcionar de vector livre, podem ser visualizados como translações.

²A composta de translações é uma translação, a composição é comutativa, associativa ...

2 Espaços afins.

Definição 2.1 Sejam \mathcal{A} um conjunto não vazio e E um espaço vectorial real. Uma **estrutura afim** (real) em \mathcal{A} sobre E é uma aplicação $\Phi: \mathcal{A} \times \mathcal{A} \longrightarrow E$ que a cada par (A,B) de $\mathcal{A} \times \mathcal{A}$ faz corresponder um vector de E, designado por \overrightarrow{AB} , verificando duas condições:

- 1. para cada $A \in \mathcal{A}$ a aplicação $\Phi_A : \mathcal{A} \longrightarrow E$ definida por $\Phi_A(M) := \overrightarrow{AM}$ é uma aplicação bijectiva;
- 2. (relação de Chasles) para todos os $A, B, C \in \mathcal{A}$ tem-se

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}.$$

Um conjunto não vazio $\mathcal A$ munido de um estrutura afim sobre um espaço vectorial E diz-se espaço afim associado ao espaço vectorial E ou espaço afim sobre E.

Se o espaço vectorial E for de dimensão finita n, dizemos que o espaço afim tem **dimensão** n. Os espaços afins de dimensão 1 dizem-se **rectas afins**, os espaços afins de dimensão 2 dizem-se **planos afins**.

Os elementos de $\mathcal A$ são chamados **pontos do espaço afim** e são denotados, em geral, por maiúsculas. Os elementos de E são chamados **vectores do espaço afim** e são denotados, em geral, por minúsculas.

Dados um ponto A e um vector \overrightarrow{v} , o único ponto B que verifica $\overrightarrow{AB}=\overrightarrow{v}$ é designado por $A+\overrightarrow{v}$, ou seja,

$$A + \overrightarrow{v} := \Phi_A^{-1}(\overrightarrow{v}).$$

Proposição 2.2 Propriedades elementares

Seja $\mathcal A$ um espaço afim associado a um espaço vectorial E. Para todos os pontos A, B, C e D de $\mathcal A$ e todo o vector \overrightarrow{v} de E tem-se:

- 1. A = B se e só se $\overrightarrow{AB} = \overrightarrow{0}$;
- 2. $\overrightarrow{AB} = -\overrightarrow{BA}$;
- 3. $\overrightarrow{A(B+\overrightarrow{v})} = \overrightarrow{AB} + \overrightarrow{v}$;

- 4. $(\overrightarrow{A+\overrightarrow{u}})(\overrightarrow{B+\overrightarrow{v}}) = \overrightarrow{AB} + (\overrightarrow{v} \overrightarrow{u});$
- 5. (regra do paralelogramo)

$$\overrightarrow{AB} = \overrightarrow{DC}$$
 se e só se $\overrightarrow{AD} = \overrightarrow{BC}$.

Exercício 2.3 Prove as propriedades elementares.

3 Referenciais e coordenadas.

Definição 3.1 Seja \mathcal{A} um espaço afim sobre um espaço vectorial E. Um referencial \mathcal{R} em \mathcal{A} é um par $\mathcal{R} = \{O; \mathcal{B}\}$ com O um ponto de \mathcal{A} , chamado origem do referencial, e \mathcal{B} uma base de E.

Se \mathcal{R} é um referencial em \mathcal{A} e M um ponto de \mathcal{A} , chamamos **coordenadas** do ponto M no referencial \mathcal{R} às coordenadas do vector \overrightarrow{OM} na base \mathcal{B} .

Se (x_1, x_2, \dots, x_n) são as coordenadas de um ponto M num referencial \mathcal{R} escrevemos

$$M \equiv (x_1, x_2, \dots, x_n)_{\mathcal{R}}$$

ou simplesmente, se não houver ambiguidade, $M \equiv (x_1, x_2, \dots, x_n)$. Usar-se-á também essas notações para as coordenadas de vectores numa dada base, assim:

$$M \equiv (x_1, x_2, \dots, x_n)_{\mathcal{R}} \iff \overrightarrow{OM} \equiv (x_1, x_2, \dots, x_n)_{\mathcal{B}}$$

Notas 3.2

Seja $\mathcal{R} = \{O; \mathcal{B}\}$ um referencial num espaço afim \mathcal{A} de dimensão n. Tem-se que:

- 1. o ponto O tem coordenadas $(0,0,\ldots,0)$;
- 2. se um ponto A tem coordenadas (a_1, a_2, \ldots, a_n) e um ponto B tem coordenadas (b_1, b_2, \ldots, b_n) então, na base \mathcal{B} , $\overrightarrow{AB} = (b_1 a_1, \ldots, b_n a_n)$;
- 3. se um ponto A tem coordenadas (a_1, a_2, \ldots, a_n) e um vector \overrightarrow{v} tem, na base \mathcal{B} , coordenadas (v_1, v_2, \ldots, v_n) então o ponto $B = A + \overrightarrow{v}$ tem coordenadas

$$(a_1+v_1,\ldots,a_n+v_n).$$

Repetimos, se fixarmos um referencial num espaço afim A de dimensão n,

- cada ponto do espaço \mathcal{A} identifica-se com n coordenadas reais;
- o vector \overrightarrow{AB} que une dois pontos A e B do espaço $\mathcal A$ é determinado pela diferença das coordenadas de B e A.

E agora ...

o que acontece se mudarmos o referencial?

Exemplo 3.3 Mudança de coordenadas num plano afim real.

Sejam $\mathcal{R}=\{O,(\overrightarrow{v}_1,\overrightarrow{v}_2)\}$ e $\mathcal{R}'=\{O',(\overrightarrow{v}_1',\overrightarrow{v}_2')\}$ dois referenciais de um plano afim real \mathcal{A} associado a um plano vectorial E.

Seja M um ponto de $\mathcal A$ tal que

$$M \equiv (x_1, x_2)_{\mathcal{R}}$$
 e $M \equiv (x_1', x_2')_{\mathcal{R}'}$

Isto é

$$\overrightarrow{OM} = x_1 \overrightarrow{v}_1 + x_2 \overrightarrow{v}_2$$

е

$$\overrightarrow{O'M} = x_1' \overrightarrow{v}_1' + x_2' \overrightarrow{v}_2'$$

Precisamos de obter a relação entre (x_1,x_2) e (x_1',x_2') . A observação chave é que

$$\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M} \qquad (*)$$

Vamos supor que conseguimos expressar os elementos do referencial \mathcal{R}' em função dos elementos do referencial \mathcal{R} , ou seja ...

• conhecemos as coordenadas de O' no referencial \mathcal{R} :

$$O' \equiv (\omega_1, \omega_2)_{\mathcal{R}}, \quad \text{isto \'e} \quad \overrightarrow{OO'} = \omega_1 \overrightarrow{v}_1 + \omega_2 \overrightarrow{v}_2;$$

• podemos expressar os vectores da base $(\overrightarrow{v}_1', \overrightarrow{v}_2')$ em função dos vectores da base $(\overrightarrow{v}_1, \overrightarrow{v}_2)$:

$$\overrightarrow{v}_{1}' = \alpha_{11} \overrightarrow{v}_{1} + \alpha_{21} \overrightarrow{v}_{2}$$

$$\overrightarrow{v}_{2}' = \alpha_{12} \overrightarrow{v}_{1} + \alpha_{22} \overrightarrow{v}_{2}$$

Para simplificar, vamos usar a notação matricial:

$$(\overrightarrow{v}_1', \overrightarrow{v}_2') = (\overrightarrow{v}_1, \overrightarrow{v}_2) \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \tag{**}$$

A partir de (*) obtemos

$$(x_1'\overrightarrow{v}_1' + x_2'\overrightarrow{v}_2') = -(\omega_1\overrightarrow{v}_1 + \omega_2\overrightarrow{v}_2) + (x_1\overrightarrow{v}_1 + x_2\overrightarrow{v}_2) = (-\omega_1 + x_1)\overrightarrow{v}_1 + (-\omega_2 + x_2)\overrightarrow{v}_2$$

Matricialmente:

$$(\overrightarrow{v}_1', \overrightarrow{v}_2') \begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = (\overrightarrow{v}_1, \overrightarrow{v}_2) \begin{pmatrix} -\omega_1 + x_1 \\ -\omega_2 + x_2 \end{pmatrix}$$

geometria - 2010/2011

E usando (**)

$$(\overrightarrow{v}_1, \overrightarrow{v}_2) \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = (\overrightarrow{v}_1, \overrightarrow{v}_2) \begin{pmatrix} -\omega_1 + x_1 \\ -\omega_2 + x_2 \end{pmatrix}$$

Como $(\overrightarrow{v}_1, \overrightarrow{v}_2)$ são linearmente independentes tem-se

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} -\omega_1 + x_1 \\ -\omega_2 + x_2 \end{pmatrix}$$

logo

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \end{pmatrix} + \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Nota 3.4 Expressão matricial usando coordenadas homogéneas

A igualdade anterior pode também ser expressa através da equação matricial:

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \omega_1 \\ \alpha_{21} & \alpha_{22} & \omega_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

(As coordenadas $(x_1, x_2, 1)$ costumam chamar-se coordenadas homogéneas 3 do ponto M)

Exemplo 3.5 Mudança de coordenadas num espaço afim tridimensional.

Seguindo **exactamente** o mesmo raciocínio, obtemos a seguinte expressão para a mudança de coordenadas num espaço afim tridimensional⁴:

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} + \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Onde (x_1, x_2, x_3) e (x_1', x_2', x_3') são as coordenadas de um ponto M nos referenciais $\mathcal{R} = \{O, \mathcal{B}\}$ e $\mathcal{R}' = \{O', \mathcal{B}'\}$, respectivamente; $(\omega_1, \omega_2, \omega_3)$ são as coordenadas de O' no referencial \mathcal{R} e as colunas da matriz (α_{ij}) são as coordenadas na base \mathcal{B} dos vectores da base \mathcal{B}' .

³A importância e utilidade desta notação aparecerão mais tarde.

⁴Existe uma expressão análoga à da nota 3.4 para coordenadas "homogéneas" de pontos num espaco tridimensional.

Definição 3.6 Orientação num espaço vectorial, orientação num espaço afim Seja A um espaço afim associado a um espaço vectorial E.

- Se $\mathcal{B} = (\overrightarrow{v}_1, \cdots, \overrightarrow{v}_n)$ e $\mathcal{B}' = (\overrightarrow{v}_1', \cdots, \overrightarrow{v}_n')$ são duas bases de E, dizemos que \mathcal{B} e \mathcal{B}' têm a **mesma orientação** se o determinante da matriz de mudança de coordenadas é positivo. Se o determinante for negativo dizemos que têm **orientação oposta**.
- Se considerarmos uma base \mathcal{B} de E, as bases com a mesma orientação de \mathcal{B} dizem-se com **orientação positiva** e as restantes, com **orientação negativa**.
- Um espaço vectorial E munido de uma base fixada \mathcal{B} diz-se um **espaço vectorial orientado**.
- Se \mathcal{A} é um espaço afim, dizemos que dois referenciais têm a **mesma orientação** se a bases associadas aos referenciais têm a mesma orientação.
- Um espaço afim A munido de um referencial fixado R diz-se um **espaço afim orientado**.

Exemplos 3.7

- 1. Em \mathbb{R}^n , se nada for dito em contrário, considera-se como base fixada a base canónica. Assim, as bases orientadas positivamente são aquelas em que o determinante da matriz das coordenadas é positivo e as bases orientadas negativamente aquelas em que o determinante é negativo.
- 2. Em \mathbb{R}^2 , uma base $\{\overrightarrow{v}_1, \overrightarrow{v}_2\}$ tem *orientação positiva* se

$$\det\left(\begin{array}{cc} v_{11} & v_{12} \\ v_{21} & v_{22} \end{array}\right) > 0$$

onde
$$\overrightarrow{v}_1 = (v_{11}, v_{21})$$
 e $\overrightarrow{v}_2 = (v_{12}, v_{22})$.

As bases orientadas positivamente correspondem a bases seguindo uma rotação contrária aos ponteiros do relógio

3. Em \mathbf{R}^3 , uma base $\{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ tem *orientação positiva* se

$$\det \left(\begin{array}{ccc} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33} \end{array} \right) > 0$$

onde
$$\overrightarrow{v}_1 = (v_{11}, v_{21}, v_{31}), \ \overrightarrow{v}_2 = (v_{12}, v_{22}, v_{32}) \ e \ \overrightarrow{v}_3 = (v_{13}, v_{23}, v_{33}).$$

As bases orientadas positivamente em ${f R}^3$ obedecem à regra do saca-rolhas.

4 Espaços euclidianos.

Definição 4.1 Um **espaço euclidiano** \acute{e} um espaço afim \mathcal{A} cujo espaço vectorial associado E está munido de um produto escalar.

O produto escalar em E permitirá definir em $\mathcal A$ conceitos métricos, isto é, distância entre pontos, perpendicularidade ...

Recorde-se que um produto escalar num espaço vectorial real E é uma aplicação $E \times E \longrightarrow \mathbf{R}$ que a cada par $(\overrightarrow{u}, \overrightarrow{v})$ associa um real $\overrightarrow{u} \cdot \overrightarrow{v}$ verificando certas propriedades que recordamos de seguida:

Nota 4.2 Propriedades de um produto escalar definido em E

Dados \overrightarrow{u} , \overrightarrow{v} , e \overrightarrow{w} vectores de E e $\lambda \in \mathbf{R}$ tem-se:

1.
$$(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w};$$

2.
$$\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w};$$

3.
$$\overrightarrow{u} \cdot (\lambda \overrightarrow{w}) = \lambda (\overrightarrow{u} \cdot \overrightarrow{w}) = (\lambda \overrightarrow{u}) \cdot \overrightarrow{w};$$

4.
$$\overrightarrow{v} \cdot \overrightarrow{w} = \overrightarrow{w} \cdot \overrightarrow{v}$$
:

5.
$$\overrightarrow{v} \cdot \overrightarrow{v} \geq 0$$
;

6. se
$$\overrightarrow{u} \cdot \overrightarrow{v} = 0$$
, $\forall \overrightarrow{v} \in E$, então $\overrightarrow{u} = 0$.

O exemplo básico é o produto escalar usual ou produto interno usual de \mathbb{R}^n :

$$(v_1, v_2, \dots, v_n) \cdot (w_1, w_2, \dots, w_n) = v_1 w_1 + v_2 w_2 + \dots + v_n w_n$$

Usando o produto escalar define-se a noção de **comprimento** ou **norma** de um vector \overrightarrow{v} de E através de:

$$\|\overrightarrow{v}\| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}}$$

As normas assim definidas costumam chamar-se **normas euclidianas** e verificam certas propriedades⁵ que recordamos de seguida:

Nota 4.3 Propriedades das normas euclidianas

Sejam
$$\overrightarrow{v}, \overrightarrow{w} \in E$$
 e $\lambda \in \mathbf{R}$.

1.
$$\|\overrightarrow{v}\| \ge 0$$
 e $\|\overrightarrow{v}\| = 0$ se e só se $\overrightarrow{v} = 0$;

2.
$$\|\lambda \overrightarrow{v}\| = |\lambda| \|\overrightarrow{v}\|$$
;

 $^{^5}$ Em geral, uma norma é uma aplicação $\| \ \| : E \longrightarrow {f R}^+$ verificando simplesmente as três primeiras propriedades que indicamos na nota 4.3. As normas euclidianas, pelo facto de serem definidas através de um produto escalar, verificam várias propriedades extra.

- 3. $\|\overrightarrow{v} + \overrightarrow{w}\| \le \|\overrightarrow{v}\| + \|\overrightarrow{w}\|$ (designaldade triangular).
- 4. $|\overrightarrow{v}\cdot\overrightarrow{w}|\leq \|\overrightarrow{v}\|\ \|\overrightarrow{w}\|$ (designaldade de Cauchy-Schwarz) e verifica-se a igualdade se e só se \overrightarrow{v} e \overrightarrow{w} são proporcionais;
- 5. $\|\overrightarrow{v} + \overrightarrow{w}\| = \|\overrightarrow{v}\| + \|\overrightarrow{w}\|$ se e só se $\overrightarrow{v} = \lambda \overrightarrow{w}$ ou $\overrightarrow{w} = \lambda \overrightarrow{v}$, com $\lambda \geq 0$;
- 6. $\|\overrightarrow{u} + \overrightarrow{v}\|^2 + \|\overrightarrow{u} \overrightarrow{v}\|^2 = 2\|\overrightarrow{u}\|^2 + 2\|\overrightarrow{v}\|^2$ (lei do paralelogramo).

A norma euclidiana em \mathbb{R}^n induzida pelo produto escalar usual é dada por:

$$\|(v_1, v_2, \dots, v_n)\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

e diz-se a norma euclidiana ou norma usual.

Mais algumas definições a lembrar ...

- Dois vectores $\overrightarrow{v}, \overrightarrow{w} \in E$ dizem-se **ortogonais** e escreve-se $\overrightarrow{v} \perp \overrightarrow{w}$ se o seu produto escalar é nulo.
- Um vector $\overrightarrow{v} \in E$ diz-se **vector unitário** ou **versor** se $\|\overrightarrow{v}\| = 1$.
- Uma base de E diz-se base ortogonal se os vectores da base são ortogonais dois a dois.
- Uma base ortogonal de E diz-se base ortonormada se os vectores da base são unitários.

Dada uma base ortonormada $\mathcal B$ de E, se $\overrightarrow{v}\equiv (v_1,v_2,\ldots,v_n)_{\mathcal B}$ e $\overrightarrow{w}\equiv (w_1,w_2,\ldots,w_n)_{\mathcal B}$, tem-se:

$$\overrightarrow{v} \cdot \overrightarrow{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n$$

e

$$\|\overrightarrow{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Ou seja, para uma base ortonormada, o produto escalar e a norma correspondem ao produto escalar e à norma usual nas coordenadas. Por isso é interessante o seguinte teorema:

Teorema 4.4 Para todo o espaço vectorial real de dimensão finita munido de um produto escalar existe uma base ortonormada.

Definição 4.5 Seja A um espaço euclidiano. Dados $A, B \in A$ definimos a **distância euclidiana** entre A e B, que designamos por d(A, B) ou por AB como

$$d(A,B) = \|\overrightarrow{AB}\|$$

Definimos ainda o **segmento** de extremos A e B como o conjunto:

$$\overline{AB} = \{A + t\overrightarrow{AB} : t \in [0, 1]\}$$

e **medida** do segmento \overline{AB} , que designamos por AB, como a distância d(A,B) ou, equivalentemente, a norma $\|\overrightarrow{AB}\|$.

Note-se que, se $\mathcal A$ está munido de um referencial $\mathcal R=\{O,\mathcal B\}$, com $\mathcal B$ uma base ortonormada de E, tem-se

$$d(A,B) = \|\overrightarrow{AB}\| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2}$$

onde $A \equiv (a_1, a_2, \dots, a_n)_{\mathcal{R}}$ e $B \equiv (b_1, b_2, \dots, b_n)_{\mathcal{R}}$.

Os referenciais $\mathcal{R} = \{O, \mathcal{B}\}$ com \mathcal{B} uma base ortonormada de E serão chamados **referenciais ortonormados** do espaço euclidiano \mathcal{A} .

IMPORTANTE : É possível provar (usando a propriedade 5 da nota 4.3) que um ponto C pertence ao segmento \overline{AB} se e só se

$$d(A,B) = d(A,C) + d(C,B)$$

Nota 4.6 Mudanças de coordenadas entre referenciais ortonormados.

Em espaços vectoriais munidos de um produto escalar, as mudanças entre bases ortonormadas representam-se matricialmente através de **matrices ortogonais** (matrizes cuja inversa é igual à matriz transposta). Isto é, A é uma matriz de mudança de base entre duas bases ortonormais se e só se

$$AA^t = Id$$

Assim, as mudanças de coordenadas entre referenciais ortonormados possuem uma propriedade muito especial que facilita bastante as contas. Por exemplo, se \mathcal{R} e \mathcal{R}' são referenciais ortonormados de um espaço euclidiano, de modo que a expressão seguinte define a mudança de coordenadas:

$$AX' + W = X$$

então, para obter a expressão correspondente à mudança de coordenadas inversa, basta fazer

$$A^tX + (-A^tW) = X'$$

Observe-se ainda que, como $AA^t = Id$ e det $A = \det A^{-1}$, se tem det $A = \pm 1$.

Passamos de seguida a um problema nada trivial:

como definir matematicamente a nocão de ângulo?

Definir-se-á o ângulo entre dois vectores através do produto escalar. De modo mais preciso, dados dois vectores \overrightarrow{u} e \overrightarrow{v} de um plano vectorial, definir-se-á o ângulo (orientado e não orientado) por eles formado usando a quantidade:

$$c = \frac{\overrightarrow{v} \cdot \overrightarrow{u}}{\|\overrightarrow{v}\| \|\overrightarrow{u}\|}$$

Observe-se que essa quantidade verifica $-1 \leq \frac{\overrightarrow{v} \cdot \overrightarrow{u}}{\|\overrightarrow{v}\| \|\overrightarrow{u}\|} \leq 1$ e, de facto:

- c=-1 se os vectores \overrightarrow{u} e \overrightarrow{v} são proporcionais mas *apontam* em sentidos contrários;
- c=1 se os vectores \overrightarrow{u} e \overrightarrow{v} são proporcionais e *apontam* no mesmo sentido;
- c = 0 se os vectores \overrightarrow{u} e \overrightarrow{v} são ortogonais.

Por outras palavras, esse quociente parece ser uma boa medida da *abertura* entre \overrightarrow{u} e \overrightarrow{v} . De facto, a escolha de um produto escalar (para além de proporcionar uma noção de comprimento ...), permite medir a *abertura* entre vectores .

Definição 4.7 Ângulos não orientados, cosseno de um ângulo não orientado. Seja E um espaço vectorial munido de um produto escalar.

• Dizemos que dois pares (não ordenados) de vectores não nulos $\{\overrightarrow{u}, \overrightarrow{v}\}$ e $\{\overrightarrow{u}', \overrightarrow{v}'\}$ formam o mesmo **ângulo não orientado** se

$$\frac{\overrightarrow{v} \cdot \overrightarrow{u}}{\|\overrightarrow{v}\| \|\overrightarrow{u}\|} = \frac{\overrightarrow{v}' \cdot \overrightarrow{u}'}{\|\overrightarrow{v}'\| \|\overrightarrow{u}'\|}$$

- A relação anterior é uma relação de equivalência entre os pares de vectores. Cada classe de equivalência diz-se um **ângulo não orientado**. A classe de equivalência do par $(\overrightarrow{u}, \overrightarrow{v})$ designa-se por $\angle \{\overrightarrow{u}, \overrightarrow{v}\}$.
- Sejam \overrightarrow{v} , $\overrightarrow{u} \in E$, vectores não nulos. Define-se o cosseno do ângulo (não orientado) formado por \overrightarrow{v} e \overrightarrow{u} como o real:

$$\cos \angle \{\overrightarrow{v}, \overrightarrow{u}\} = \frac{\overrightarrow{v} \cdot \overrightarrow{u}}{\|\overrightarrow{v}\| \|\overrightarrow{u}\|}$$

(Note-se que o produto escalar é simétrico, assim o quociente $\frac{\overrightarrow{v} \cdot \overrightarrow{u}}{\|\overrightarrow{v}\| \|\overrightarrow{u}\|}$ associado ao conjunto $\{\overrightarrow{u}, \overrightarrow{v}\}$ está bem definido.)

Observe-se que o cosseno definido em 4.7 é simplesmente uma aplicação que associa a um par de vectores um número real. Esta aplicação cosseno está obviamente relacionada com a função cosseno usual (função real, de variável real, periódica de período 2π ...). De facto, a partir das desigualdades

$$-1 \le \cos \angle \{\overrightarrow{u}, \overrightarrow{v}\} \le 1$$

(consequência directa da desigualdade de Cauchy-Schwarz) podemos associar a cada par de vectores $(\overrightarrow{u}, \overrightarrow{v})$ o único real $\theta \in [0, \pi]$ que verifica:

$$\cos \angle \{\overrightarrow{u}, \overrightarrow{v}\} = \cos \theta$$

(o segundo cos é a função cosseno usual). O real θ costuma chamar-se *medida do ângulo* **não orientado** formado por \overrightarrow{v} e \overrightarrow{u} .

Proposição 4.8 Propriedades

Seja E um espaço vectorial real munido de um produto escalar.

1.
$$\forall \overrightarrow{v}, \overrightarrow{w} \in E \ e \ \forall \lambda, \mu \in \mathbf{R}, \ \lambda, \mu > 0, \ \angle \{\overrightarrow{v}, \overrightarrow{w}\} = \angle \{\lambda \overrightarrow{v}, \mu \overrightarrow{w}\}.$$

2. Teorema de Carnot

$$\forall \overrightarrow{v}, \overrightarrow{w} \in E, \|\overrightarrow{v} + \overrightarrow{w}\|^2 = \|\overrightarrow{v}\|^2 + \|\overrightarrow{w}\|^2 + 2\overrightarrow{v} \cdot \overrightarrow{w}$$

ou, equivalentemente,

$$\forall \overrightarrow{v}, \overrightarrow{w} \in E, \quad \|\overrightarrow{v} + \overrightarrow{w}\|^2 = \|\overrightarrow{v}\|^2 + \|\overrightarrow{w}\|^2 + 2\|\overrightarrow{v}\| \|\overrightarrow{w}\| \cos \angle \{\overrightarrow{v}, \overrightarrow{w}\}.$$

3. Teorema de Pitágoras

Sejam $\overrightarrow{v}, \overrightarrow{w} \in E$. Se \overrightarrow{v} e \overrightarrow{w} são ortogonais, tem-se

$$\|\overrightarrow{v} + \overrightarrow{w}\|^2 = \|\overrightarrow{v}\|^2 + \|\overrightarrow{w}\|^2$$

Corolário 4.9 Teorema do cosseno

Sejam A, B e C três pontos distintos de um espaço afim euclidiano. Verifica-se

$$d(B,C)^2 = d(A,C)^2 + d(A,B)^2 - 2d(A,B)d(A,C)\cos\angle\{\overrightarrow{AB},\overrightarrow{AC}\}\$$

Corolário 4.10 O Teorema de Pitágoras

Sejam $A, B \in C$ três pontos distintos de um espaço afim euclidiano. Tem-se que \overrightarrow{AB} e \overrightarrow{AC} são ortogonais se e só se

$$d(B,C)^2 = d(A,B)^2 + d(A,C)^2$$

Definição 4.11 Ângulos orientados, cosseno e seno de um ângulo orientado. Seja E um plano vectorial orientado munido de um produto escalar.

• Dizemos que dois pares de vectores linearmente independentes $(\overrightarrow{u}, \overrightarrow{v})$ e $(\overrightarrow{u}', \overrightarrow{v}')$ formam o mesmo ângulo orientado se

$$\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|} = \frac{\overrightarrow{u}' \cdot \overrightarrow{v}'}{\|\overrightarrow{u}'\| \|\overrightarrow{v}'\|}$$

e se $(\overrightarrow{u},\overrightarrow{v})$ e $(\overrightarrow{u}',\overrightarrow{v}')$ definem bases de E com a mesma orientação.

- A relação anterior é uma relação de equivalência entre os pares de vectores. Cada classe de equivalência diz-se um **ângulo orientado**. A classe de equivalência do par $(\overrightarrow{u}, \overrightarrow{v})$ designa-se por $\angle(\overrightarrow{u}, \overrightarrow{v})$.
- Define-se o cosseno do ângulo orientado formado por \overrightarrow{u} e \overrightarrow{v} como o real:

$$\cos \angle (\overrightarrow{u}, \overrightarrow{v}) = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}$$

• Define-se o seno do ângulo orientado $\angle(\overrightarrow{u}, \overrightarrow{v})$, e designamos por $\sin \angle(\overrightarrow{u}, \overrightarrow{v})$, como

$$\sin \angle (\overrightarrow{u}, \overrightarrow{v}) = \varepsilon \sqrt{1 - c^2}$$

 $com\ c=\cos\angle(\overrightarrow{u},\overrightarrow{v})$, $\varepsilon=1$ se $(\overrightarrow{u},\overrightarrow{v})$ é uma base com orientação positiva e $\varepsilon=-1$ se $(\overrightarrow{u},\overrightarrow{v})$ é uma base com orientação negativa.

• O único real $\theta \in [0, 2\pi[$ verificando

$$\cos \angle (\overrightarrow{u}, \overrightarrow{v}) = \cos \theta \quad e \quad \sin \angle (\overrightarrow{u}, \overrightarrow{v}) = \sin \theta$$

chama-se **medida do ângulo orientado** formado pelos vectores \overrightarrow{u} e \overrightarrow{v} , nesta ordem.

• Os ângulos orientados $\angle(\overrightarrow{u}, \overrightarrow{v})$ e $\angle(\overrightarrow{v}, \overrightarrow{u})$ dizem-se **ângulos orientados opostos**.

A definição introduzida de ângulo orientado pode estender-se a pares de vectores proporcionais. Note-se que, se \overrightarrow{u} e \overrightarrow{v} são proporcionais, então:

$$\frac{\overrightarrow{u}\cdot\overrightarrow{v}}{\|\overrightarrow{u}\|\|\overrightarrow{v}\|} = \pm 1$$

Se o valor deste quociente é 1, o par $(\overrightarrow{u}, \overrightarrow{v})$ diz-se o **ângulo nulo**, se for -1, diz-se o **ângulo raso**. Em qualquer um dos dois casos, podemos definir o seno como anteriormente e obtemos:

$$\sin\angle(\overrightarrow{u},\overrightarrow{v})=0$$

Saliente-se que, se dois pares de vectores formam o mesmo ângulo orientado, então formam o mesmo ângulo não orientado.

Proposição 4.12 Sejam \overrightarrow{v} e \overrightarrow{u} vectores de um plano vectorial orientado.

1. $\forall \lambda, \mu \in \mathbf{R}, \ \lambda, \mu > 0$, tem-se $\angle(\overrightarrow{u}, \overrightarrow{v}) = \angle(\lambda \overrightarrow{u}, \mu \overrightarrow{v})$; em particular

$$\cos \angle (\overrightarrow{u}, \overrightarrow{v}) = \cos \angle (\lambda \overrightarrow{u}, \mu \overrightarrow{v})$$
 $e \quad \sin \angle (\overrightarrow{u}, \overrightarrow{v}) = \sin \angle (\lambda \overrightarrow{u}, \mu \overrightarrow{v});$

- 2. $\sin \angle (\overrightarrow{u}, \overrightarrow{v}) = -\sin \angle (\overrightarrow{v}, \overrightarrow{u});$
- 3. $\sin \angle (\overrightarrow{u}, \overrightarrow{v}) = -\sin \angle (\overrightarrow{u}, -\overrightarrow{v})$.

Nota 4.13 Produto vectorial num espaço tridimensional

Sejam \overrightarrow{u} e \overrightarrow{v} dois vectores linearmente independentes num espaço vectorial tridimensional orientado E munido de um produto escalar. Existe um único vector, que se designará por $\overrightarrow{u} \wedge \overrightarrow{v}$, tal que:

- $\overrightarrow{u} \wedge \overrightarrow{v}$ é ortogonal a \overrightarrow{u} e \overrightarrow{v} ;
- a base $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{u} \wedge \overrightarrow{v}\}$ tem orientação positiva;
- $\|\overrightarrow{u} \wedge \overrightarrow{v}\| = \|\overrightarrow{u}\| \|\overrightarrow{v}\| |\sin \angle (\overrightarrow{u}, \overrightarrow{v})|.$

Se \overrightarrow{u} e \overrightarrow{v} são linearmente dependentes definimos $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0}$.

Este vector $\overrightarrow{u} \wedge \overrightarrow{v}$ diz-se **produto vectorial** dos vectores \overrightarrow{u} e \overrightarrow{v} . Se, numa base ortonormada com orientação positiva, $\overrightarrow{u} = (u_1, u_2, u_3)$ e $\overrightarrow{v} = (v_1, v_2, v_3)$, então pode provar-se que

$$\overrightarrow{u} \wedge \overrightarrow{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$

Simbolicamente, escrevemos:

$$\overrightarrow{u} \wedge \overrightarrow{v} = \det \left(egin{array}{ccc} \overrightarrow{e}_1 & \overrightarrow{e}_2 & \overrightarrow{e}_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{array}
ight)$$

onde $\{\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3\}$ são os vectores de uma base ortonormada de E com orientação positiva. Saliente-se que o produto vectorial também é chamado *produto externo* e designado por $\overrightarrow{u} \times \overrightarrow{v}$.

Proposição 4.14 Propriedades do produto vectorial

Sejam \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} três vectores de um espaço vectorial tridimensional orientado e munido de um produto escalar.

1.
$$\overrightarrow{w} \cdot (\overrightarrow{u} \wedge \overrightarrow{v}) = \det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w});$$

2.
$$\overrightarrow{u} \wedge \overrightarrow{v} = -\overrightarrow{v} \wedge \overrightarrow{u}$$
;

3.
$$(\lambda \overrightarrow{u}) \wedge \overrightarrow{v} = \lambda (\overrightarrow{u} \wedge \overrightarrow{v});$$

4.
$$(\overrightarrow{u} + \overrightarrow{u}') \wedge \overrightarrow{v} = \overrightarrow{u} \wedge \overrightarrow{v} + \overrightarrow{u}' \wedge \overrightarrow{v};$$

5.
$$\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0}$$
 se e só se \overrightarrow{u} e \overrightarrow{v} são linearmente dependentes;

6.
$$(\overrightarrow{u} \wedge \overrightarrow{v}) \wedge \overrightarrow{w} = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{u} - (\overrightarrow{v} \cdot \overrightarrow{w}) \overrightarrow{u};$$

$$(\overrightarrow{u} \wedge \overrightarrow{v}) \wedge \overrightarrow{w} + (\overrightarrow{v} \wedge \overrightarrow{w}) \wedge \overrightarrow{u} + (\overrightarrow{w} \wedge \overrightarrow{u}) \wedge \overrightarrow{v} = \overrightarrow{0};$$

8.
$$(\overrightarrow{u}_1 \wedge \overrightarrow{u}_2) \cdot (\overrightarrow{v}_1 \wedge \overrightarrow{v}_2) = (\overrightarrow{u}_1 \cdot \overrightarrow{v}_1)(\overrightarrow{u}_2 \cdot \overrightarrow{v}_2) - (\overrightarrow{u}_1 \cdot \overrightarrow{v}_2)(\overrightarrow{u}_2 \cdot \overrightarrow{v}_1);$$

9.
$$\|\overrightarrow{u} \wedge \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2 - (\overrightarrow{u} \cdot \overrightarrow{v}).$$

Nota 4.15 Seja E um espaço vectorial tridimensional orientado, munido de um produto escalar.

• Sejam \overrightarrow{u} , $\overrightarrow{v} \in E$, não nulos. Recorde-se que $\overrightarrow{u} \wedge \overrightarrow{v}$ verifica:

$$\|\overrightarrow{u} \wedge \overrightarrow{v}\| = \|\overrightarrow{u}\| \|\overrightarrow{v}\| |\sin \angle (\overrightarrow{u}, \overrightarrow{v})|.$$

A norma do produto vectorial $\overrightarrow{u} \wedge \overrightarrow{v}$ representa a área do paralelogramo definido pelos vectores \overrightarrow{u} e \overrightarrow{v} .

Pelo teorema de Pitágoras
$$b^2 = \|\overrightarrow{u}\|^2 - a^2 = \|\overrightarrow{u}\|^2 - \|\overrightarrow{u}\|^2 (\cos \angle(\overrightarrow{u}, \overrightarrow{v}))^2 \text{ donde } b = \|\overrightarrow{u}\| |(\sin \angle(\overrightarrow{u}, \overrightarrow{v})) \text{ e} \|\overrightarrow{v}\| b = \|\overrightarrow{v}\| \|\overrightarrow{u}\| |\sin \angle(\overrightarrow{u}, \overrightarrow{v})| = \|\overrightarrow{u} \wedge \overrightarrow{v}\|$$

• Sejam $\overrightarrow{v}, \overrightarrow{w}$ e \overrightarrow{u} três vectores linearmente independentes de E. Se calcularmos o produto escalar $\overrightarrow{u} \cdot (\overrightarrow{v} \wedge \overrightarrow{w})$ obtemos:

$$V = |\overrightarrow{u} \cdot (\overrightarrow{v} \wedge \overrightarrow{w})| = ||\overrightarrow{u}|| \cdot ||\overrightarrow{v} \wedge \overrightarrow{w}|| |\cos \angle (\overrightarrow{u}, \overrightarrow{v} \wedge \overrightarrow{w})|$$

O real positivo V representa o volume do paralelepípedo definido pelos vectores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} . (O produto escalar $\overrightarrow{u} \cdot (\overrightarrow{v} \wedge \overrightarrow{w})$ costuma chamar-se produto misto dos vectores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} .)

5 Rectas, planos e outros subespaços afins.

Considere-se uma linha recta num plano ...

Se fixarmos um qualquer dos seus pontos, as translações a qualquer outro ponto da recta são feitas seguindo vectores proporcionais:

Por outras palavras,

$$\{\overrightarrow{AB} : B \text{ percorre a recta}\}$$

é uma recta vectorial. De modo análogo, se escolhermos um ponto num plano qualquer do espaço, as translações desse ponto a um outro ponto qualquer do plano formam um plano vectorial.

Definição 5.1 Sejam $\mathcal A$ um espaço afim sobre um espaço vectorial E munido de uma estrutura afim Φ e $\mathcal U$ um subconjunto não vazio de $\mathcal A$. O conjunto $\mathcal U$ diz-se **subespaço afim** de $\mathcal A$ se existir um ponto A de $\mathcal U$ tal que $\Phi_A(\mathcal U)$ é um subespaço vectorial de E.

(Recorde-se que $\Phi_A(\mathcal{U}) = \{\overrightarrow{AB} : B \in \mathcal{U}\}.$)

Exemplos 5.2 Seja $\mathcal A$ um espaço afim associado a um espaço vectorial real E.

- 1. Seja $A \in \mathcal{A}$. O conjunto $\{A\}$ é um subespaço afim já que, ao considerar a aplicação Φ_A , tem-se $\Phi_A(\{A\}) = \{\overrightarrow{0}\}$.
- 2. O espaço afim total \mathcal{A} é um subespaço afim. Para todo o ponto A de \mathcal{A} obtém-se $\Phi_A(\mathcal{A}) = E$.
- 3. Dados A e B pontos distintos de \mathcal{A} , o subconjunto

$$\mathcal{U} = \{A, B\}$$

não é um subespaço afim.

Nota 5.3 Subespaço vectorial associado a um subespaço afim.

Note-se que, no exemplo inicial da recta, se escolhermos um outro ponto qualquer, obtemos o mesmo tipo de translações:

Por outras palavras, o facto de ser ou não subespaço afim não depende do ponto A escolhido primeiramente. De facto, se \mathcal{U} é um subespaço afim, então, para todos os pontos $A, A' \in \mathcal{U}$ tem-se

$$\Phi_A(\mathcal{U}) = \Phi_{A'}(\mathcal{U})$$

Assim, o subespaço vectorial $\Phi_A(\mathcal{U})$ não depende do ponto A considerado e costuma chamar-se **subespaço vectorial associado** ao subespaço afim \mathcal{U} . A dimensão de $\Phi_A(\mathcal{U})$ diz-se **dimensão** do subespaço afim \mathcal{U} .

- Os subespaços de dimensão 0 são os pontos do espaço afim.
- Os subespaços de dimensão 1 são chamados rectas afins.
- Os subespaços de dimensão 2 são chamados planos afins.
- Se dim A = n, os subespaços de dimensão n 1 são chamados **hiperplanos** afins.

Exemplo 5.4 Rectas num espaço afim.

Seja $\mathcal A$ um espaço afim sobre E. Um subconjunto $r\subset \mathcal A$ é uma recta se existir um ponto $A\in r$ tal que

$$\{\overrightarrow{AM} : M \in r\}$$

é uma recta vectorial de E. Se \overrightarrow{v} é um vector gerador desta recta vectorial, tem-se

$$r = \{A + \overrightarrow{AM} : M \in r\} = \{A + \lambda \overrightarrow{v} : \lambda \in \mathbf{R}\}$$

geometria - 2010/2011

O vector \overrightarrow{v} diz-se um **vector director** da recta r e a expressão:

$$r = A + \langle \overrightarrow{v} \rangle$$

diz-se uma equação vectorial da recta r.

Rectas e coordenadas.

• Suponha-se que \mathcal{A} é um plano afim munido de um referencial $\mathcal{R} = \{O, \mathcal{B}\}$. Se $A \equiv (a_1, a_2)_{\mathcal{R}}$ e $\overrightarrow{v} \equiv (v_1, v_2)_{\mathcal{B}}$ então, um ponto $M \equiv (x_1, x_2)_{\mathcal{R}}$ pertence à recta r se e só se existe $\lambda \in \mathbf{R}$ tal que:

$$\begin{cases} x_1 = a_1 + \lambda v_1 \\ x_2 = a_2 + \lambda v_2 \end{cases}$$

• Suponha-se que \mathcal{A} é um espaço afim tridimensional munido de um referencial $\mathcal{R} = \{O, \mathcal{B}\}$. Se $A \equiv (a_1, a_2, a_3)_{\mathcal{R}}$ e $\overrightarrow{v} \equiv (v_1, v_2, v_3)_{\mathcal{B}}$ então, um ponto $M \equiv (x_1, x_2, x_3)_{\mathcal{R}}$ pertence à recta r se e só se existe $\lambda \in \mathbf{R}$ tal que:

$$\begin{cases} x_1 = a_1 + \lambda v_1 \\ x_2 = a_2 + \lambda v_2 \\ x_3 = a_3 + \lambda v_3 \end{cases}$$

As expressões anteriores costumam chamar-se **equações paramétricas** da recta r no referencial \mathcal{R} porque os pontos da recta ficam definidos em função do parâmetro λ . No caso de espaços afins de dimensão n as equações paramétricas são análogas.

Note-se que, se B é um ponto da recta r distinto de A, o vector não nulo \overrightarrow{AB} é um vector director de r e então:

$$r = A + \langle \overrightarrow{AB} \rangle$$

é uma equação vectorial de r. A partir desta equação vectorial, usando as coordenadas de A e B num determinado referencial, podemos obter umas equações paramétricas de r.

Exemplo 5.5 Planos num espaço afim.

Seja $\mathcal A$ um espaço afim sobre E. Um subconjunto $\pi\subset\mathcal A$ é um plano se existir um ponto $A\in r$ tal que

$$\{\overrightarrow{AM} : M \in \pi\}$$

é um plano vectorial de E. Se $(\overrightarrow{v}, \overrightarrow{w})$ é uma base deste plano vectorial, tem-se

$$\pi = \{A + \overrightarrow{AM} : M \in r\} = \{A + (\lambda \overrightarrow{v} + \mu \overrightarrow{w}) : \lambda, \mu \in \mathbf{R}\}$$

Os vectores \overrightarrow{v} e \overrightarrow{w} dizem-se **vectores directores** do plano π e a expressão:

$$\pi = A + \langle \overrightarrow{v}, \overrightarrow{w} \rangle$$

diz-se uma equação vectorial do plano π .

Planos e coordenadas.

Suponha-se que \mathcal{A} é um espaço afim tridimensional munido de um referencial $\mathcal{R}=\{O,\mathcal{B}\}$. Se $A\equiv(a_1,a_2,a_3)_{\mathcal{R}},\ \overrightarrow{v}\equiv(v_1,v_2,v_3)_{\mathcal{B}}$ e $\overrightarrow{w}\equiv(w_1,w_2,w_3)_{\mathcal{B}}$, então, um ponto $M\equiv(x_1,x_2,x_3)_{\mathcal{R}}$ pertence à recta r se e só se existem $\lambda,\mu\in\mathbf{R}$ tais que:

$$\begin{cases} x_1 = a_1 + \lambda v_1 + \mu w_1 \\ x_2 = a_2 + \lambda v_2 + \mu w_2 \\ x_3 = a_3 + \lambda v_3 + \mu w_3 \end{cases}$$

A expressões anteriores costumam chamar-se **equações paramétricas** do plano π no referencial \mathcal{R} (os pontos do plano ficam definidos em função dos parâmetros λ e μ).

Note-se que, se \overrightarrow{AB} e \overrightarrow{C} são três pontos do plano tais que \overrightarrow{AB} e \overrightarrow{AC} são linearmente independentes⁶, tem-se que \overrightarrow{AB} e \overrightarrow{AC} são dois vectores directores do plano e assim :

$$\pi = A + <\overrightarrow{AB}, \overrightarrow{AC}>$$

é uma equação vectorial do plano π . A partir desta equação vectorial, usando as coordenadas de A, B e C num determinado referencial, obtemos umas equações paramétricas de π .

 $^{^6}$ Diz-se, neste caso, que os pontos A, B e C formam um triângulo ou são vértices de um triângulo.

Nota 5.6 Equação vectorial e equações paramétricas de um subespaço afim

Sejam $\mathcal A$ um espaço afim sobre um espaço vectorial E e $\mathcal U$ um subespaço afim de $\mathcal A$ associado a um subespaço vectorial U de E. Como acontece com rectas e planos, se A é um ponto qualquer de $\mathcal U$, tem-se que

$$U = \Phi_A(\mathcal{U})$$

ou seja

$$\mathcal{U} = \{ A + \overrightarrow{u} : \overrightarrow{u} \in U \}$$

Por isso costuma-se escrever

$$\mathcal{U} = A + U$$

(salienta-se que esta notação é coerente com o uso de coordenadas num referencial.)

Se $\{\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k\}$ é uma base do subespaço vectorial U a expressão:

$$A+ < \overrightarrow{u}_1, \dots, \overrightarrow{u}_k >$$

ou, equivalentemente,

$$A + (\lambda_1 \overrightarrow{u}_1 + \dots + \lambda_k \overrightarrow{u}_k), \qquad \lambda_1, \dots, \lambda_k \in \mathbf{R}$$

diz-se uma **equação vectorial** do subespaço afim \mathcal{U} . Se considerarmos um referencial $\mathcal{R} = \{O, \mathcal{B}\}$ em \mathcal{A} , as equações paramétricas de \mathcal{U} são dadas por:

$$\begin{cases} x_1 = a_1 + \lambda_1 u_{11} + \dots + \lambda_k u_{1k} \\ x_2 = a_2 + \lambda_1 u_{21} + \dots + \lambda_k u_{2k} \\ \vdots & \vdots & \vdots \\ x_n = a_n + \lambda_1 u_{n1} + \dots + \lambda_k u_{nk} \end{cases}$$

onde
$$A\equiv (a_1,a_2,\ldots,a_n)_{\mathcal{R}}$$
, e $\overrightarrow{u_j}\equiv (u_{1j},\ldots u_{nj})_{\mathcal{B}}$, para $j=1,\ldots,k$.

Estas equações são chamadas **equações paramétricas** do subespaço afim $\mathcal U$ no referencial $\mathcal R$. Salienta-se que **um subespaço afim de dimensão** k **é dado por** n **equações dependendo de** k **parámetros.**

Exemplo 5.7 Conjuntos definidos por equações cartesianas.

Em todos os casos indicados de seguida considerar-se-á um espaço afim $\mathcal A$ munido de um referencial $\mathcal R$. Para simplificar a escrita, identificar-se-á cada ponto A de $\mathcal A$ com a suas coordenadas no referencial $\mathcal R$.

• Seja \mathcal{A} um plano afim munido de um referencial \mathcal{R} . Considere-se o seguinte subconjunto de \mathcal{A} :

$$\mathcal{U} = \{(x_1, x_2) \in \mathcal{A} : ax_1 + bx_2 + c = 0\}$$

com a e b não simultaneamente nulos. Suponha-se $a \neq 0$ (o caso $b \neq 0$ é análogo) e note-se que $(x_1, x_2) \in \mathcal{U}$ se e só

$$x_1 = -c - \frac{b}{a}x_2$$

Introduzindo um parâmetro auxiliar λ , obtemos que $(x_1, x_2) \in \mathcal{U}$ se e só se existe λ tal que:

$$\begin{cases} x_1 = -c & -\lambda \frac{b}{a} \\ x_2 = & \lambda \end{cases}$$

Assim, \mathcal{U} é a recta r que passa pelo ponto (-c,0) e é dirigida pelo vector $(-\frac{b}{a},1)$.

A equação inicial

$$ax_1 + bx_2 + c = 0$$

diz-se equação cartesiana ou equação linear da recta.

• Seja \mathcal{A} um espaço afim tridimensional munido de um referencial \mathcal{R} . Considere-se o seguinte subconjunto de \mathcal{A} :

$$\mathcal{U} = \{(x_1, x_2, x_3) \in \mathcal{A} : ax_1 + bx_2 + cx_3 + d = 0\}$$

com $a, b \in c$ não simultaneamente nulos. Suponha-se $a \neq 0$ (os outros casos são análogos) e note-se que $(x_1, x_2, x_3) \in \mathcal{U}$ se e só se

$$x_1 = -d - \frac{b}{a}x_2 - \frac{c}{a}x_3$$

Podemos introduzir os parâmetros auxiliares λ e μ e obtemos que $(x_1, x_2, x_3) \in \mathcal{U}$ se e só se existem λ e μ tais que

$$\begin{cases} x_1 = -d - \lambda \frac{b}{a} - \mu \frac{c}{a} \\ x_2 = \lambda \\ x_3 = \mu \end{cases}$$

Assim, \mathcal{U} é o plano que passa pelo ponto (-d,0,0) e é dirigido pelos vectores $(-\frac{b}{a},1,0)$ e $(-\frac{c}{a},0,1)$.

A equação inicial

$$ax_1 + bx_2 + cx_3 + d = 0$$

diz-se equação cartesiana ou equação linear do plano.

• Seja \mathcal{A} um espaço afim de dimensão n associado a um espaço vectorial E munido de um referencial \mathcal{R} . Sejam $a_1, \ldots, a_n \in \mathbf{R}$, não todos nulos, e $b \in \mathbf{R}$. O conjunto

$$\mathcal{H} = \{(x_1, \dots, x_n) \in \mathcal{A} : a_1 x_1 + \dots + a_n x_n = b\}$$

é um hiperplano afim de ${\cal A}$ associado ao hiperplano vectorial:

$$H = \{(v_1, \dots v_n) \in E : a_1v_1 + \dots + a_nv_n = 0\}$$

A verificação é análoga aos casos anteriores. A equação inicial

$$a_1x_1 + \cdots + a_nx_n = b$$

diz-se equação cartesiana ou equação linear do hiperplano.

Proposição 5.8 A intersecção não vazia de subespaços afins é um subespaço afim associado à interseção dos respectivos subespaços vectoriais.

Corolário 5.9 Seja A um espaço afim, de dimensão n, munido de um referencial R. O conjunto de pontos de A que verificam um sistema de equações lineares:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{13}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{23}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$
(*)

se for não vazio, é um subespaço afim de A de dimensão n-r, sendo r à característica do sistema.

Nota 5.10 Equações cartesianas de subespaços afins.

Reciprocamente, todo o subespaço afim de $\mathcal A$ de dimensão k pode obter-se como um conjunto de soluções de um sistema de n-k equações lineares (não necessariamente homogéneas). O sistema diz-se um sistema de **equações cartesianas** do subespaço.

• Passagem de equações cartesianas a equações paramétricas:

Trata-se simplesmente de resolver o sistema, expressando o conjunto de soluções dependendo de n-r paramétros, com r a característica do sistema.

• Passagem de equações paramétricas a equações cartesianas:

Se um subespaço afim, de um espaço afim de dimensão n, tem dimensão k, então está definido por n equações paramétricas dependendo de k parâmetros, $\lambda_1, \ldots, \lambda_k$. Usando k das equações paramétricas podemos por os parâmetros em função das coordenadas x_1, \ldots, x_n e substitui-os nas outras n-k equações. No caso de hiperplanos afins posemos usar o determinante para obter directamente a equação cartesiana (exemplos5.11, alínea2).

Exemplos 5.11

Seja $\mathcal A$ um espaço afim munido de um referencial $\mathcal R$. Para simplificar, identificar-se- $\tilde a$ 0 os pontos de $\mathcal A$ com as suas coordenadas no referencial $\mathcal R$.

1. Recta afim.

Seja $\mathcal U$ uma recta afim de $\mathcal A$, $\mathcal U=A+<\overrightarrow{v}>$. Se $\overrightarrow{v}=(v_1,v_2,\ldots,v_n)\neq\overrightarrow{0}$ e $A=(a_1,a_2,\ldots,a_n)$ tem-se

$$\mathcal{U} = (a_1, a_2, \dots, a_n) + \langle (v_1, v_2, \dots, v_n) \rangle$$

As equações paramétricas de *U* são:

$$\begin{cases} x_1 = a_1 + \lambda v_1 \\ x_2 = a_2 + \lambda v_2 \\ \vdots & \vdots \\ x_n = a_n + \lambda v_n \end{cases}$$

Como $\overrightarrow{v} \neq \overrightarrow{0}$, alguma das coordenadas de \overrightarrow{v} é não nula. Suponha-se $v_1 \neq 0$ (os outros casos são análogos). Tem-se $\lambda = \frac{x_1 - a_1}{v_1}$ e substituindo nas equações paramétricas obtemos n-1 equações cartesianas:

$$\begin{cases} x_2 - \left(\frac{x_1 - a_1}{v_1}\right) v_2 & -a_2 = 0 \\ \vdots & \vdots & \Longleftrightarrow \end{cases} \begin{cases} x_2 - \left(\frac{v_2}{v_1}\right) x_1 = a_2 - \frac{a_1 v_2}{v_1} \\ \vdots & \vdots & \vdots \\ x_n - \left(\frac{x_1 - a_1}{v_1}\right) v_n & -a_n = 0 \end{cases} \iff \begin{cases} x_2 - \left(\frac{v_2}{v_1}\right) x_1 = a_2 - \frac{a_1 v_2}{v_1} \\ \vdots & \vdots \\ x_n - \left(\frac{v_n}{v_1}\right) x_1 = a_n - \frac{a_1 v_n}{v_1} \end{cases}$$

2. Hiperplano afim.

Seja $\mathcal H$ um hiperplano afim de $\mathcal A$ definido pela equação vectorial:

$$\mathcal{H} = A + \langle \overrightarrow{w}_1, \overrightarrow{w}_2, \dots, \overrightarrow{w}_{n-1} \rangle$$

 $com\ H = <\overrightarrow{w}_1, \overrightarrow{w}_2, \dots, \overrightarrow{w}_{n-1} > um\ hiperplano\ vectorial\ de\ \mathbf{R}^n.$

Recorde-se que um ponto M pertence a $\mathcal H$ se e só se o vector \overrightarrow{AM} pertence ao hiperplano vectorial H. O vector \overrightarrow{AM} pertence a H se e só se o sistema de n vectores

$$\{\overrightarrow{AM}, \overrightarrow{w}_1, \overrightarrow{w}_2, \dots, \overrightarrow{w}_{n-1}\}\$$

é linearmente dependente. Se $A=(a_1,a_2,\ldots,a_n)$ e $M=(x_1,x_2,\ldots,x_n)$ tem-se que

$$\overrightarrow{AM} = (x_1 - a_1, x_2 - a_2, \dots, x_n - a_n)$$

Suponha-se que $\overrightarrow{w}_j = (w_{1j}, w_{2j}, \dots, w_{nj})$ para $j = 1, \dots, n-1$

O sistema

$$\{\overrightarrow{AM}, \overrightarrow{w}_1, \overrightarrow{w}_2, \dots, \overrightarrow{w}_{n-1}\}$$

é linearmente dependente se e só se

$$\det \left(\begin{array}{cccc} x_1 - a_1 & x_2 - a_2 & \dots & x_n - a_n \\ w_{11} & w_{21} & \dots & w_{n1} \\ w_{12} & w_{22} & \dots & w_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ w_{1n-1} & w_{2n-1} & \dots & w_{nn-1} \end{array} \right) = 0$$

Se desenvolvermos o determinante anterior, obtemos uma equação

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n + b = 0$$

ou seja, uma equação cartesiana ou equação reduzida do hiperplano afim \mathcal{H} .

ATENÇÃO: Em geral, a reunião de dois subespaços afins não é um subespaço afim.

Proposição 5.12 Sejam $\mathcal{U}=A+U$ e $\mathcal{V}=B+V$ dois subespaços afins de um espaço afim \mathcal{A} associado a um espaço vectorial E. O menor subespaço afim que contém \mathcal{U} e \mathcal{V} , designado por $\mathcal{U}+\mathcal{V}$, verifica:

$$U + V = A + \left(U + V + \langle \overrightarrow{AB} \rangle\right)$$

Exemplos 5.13 Seja \mathcal{A} um espaço afim.

1. Sejam A um ponto e $r=B+<\overrightarrow{v}>$ uma recta de $\mathcal{A},$ tal que $B\notin r.$ O menor subespaço afim \mathcal{U} que contém A e r é o plano afim:

$$\mathcal{U} = A + \langle \overrightarrow{AB}, \overrightarrow{v} \rangle$$

2. Rectas complanares e rectas enviesadas

Sejam $r=A+<\overrightarrow{u}>$ e $r'=B+<\overrightarrow{v}>$ duas rectas afins de \mathcal{A} . O menor subespaço afim r+r' que contém r e r' verifica:

$$r + r' = A + \langle \overrightarrow{AB}, \overrightarrow{u}, \overrightarrow{v} \rangle$$

- (a) Se dim(r+r')=1, isto é, dim $<\overrightarrow{AB},\overrightarrow{u},\overrightarrow{v}>=1$, as rectas são coincidentes (iguais) r=r'.
- (b) Se dim(r+r')=2, isto é, dim $<\overrightarrow{AB},\overrightarrow{u},\overrightarrow{v}>=2$, as rectas são distintas e complanares (contidas no plano afim r+r').
- (c) Se $\dim(r+r')=3$, isto é, $\dim<\overrightarrow{AB},\overrightarrow{u},\overrightarrow{v}>=3$, as rectas **NÃO** estão contidas num plano, são rectas chamadas *enviesadas*.

6 Paralelismo e perpendicularidade

Definição 6.1 Sejam \mathcal{U} e \mathcal{V} dois subespaços afins de um espaço afim \mathcal{A} associados respectivamente aos subespaços vectoriais U e V. Dizemos que \mathcal{U} e \mathcal{V} são **incidentes** se $\mathcal{U} \subseteq \mathcal{V}$ ou $\mathcal{V} \subseteq \mathcal{U}$. Dizemos que \mathcal{U} e \mathcal{V} são **paralelos** 7 e escrevemos $\mathcal{U}/\!\!/\mathcal{V}$, se $U \subseteq V$ ou $V \subseteq U$.

Exemplos 6.2 Seja \mathcal{A} um espaço afim.

1. Duas rectas de ${\cal A}$

$$r = A + \langle \overrightarrow{v} \rangle$$
 e $r' = A' + \langle \overrightarrow{v}' \rangle$

são paralelas se e só se os vectores \overrightarrow{v} e \overrightarrow{v}' são proporcionais.

2. Considere-se o espaço afim \mathcal{A} munido de um referencial $\mathcal{R} = \{O; \mathcal{B}\}$. Para simplificar as notações, identificam-se cada ponto com a suas coordenadas no referencial.

Dois hiperplanos afins

$$\mathcal{H} = \{(x_1, \dots x_n) \in \mathcal{A} : a_1 x_1 + \dots a_n x_n = b\}$$

$$\mathcal{H}' = \{(x_1, \dots x_n) \in \mathcal{A} : a'_1 x_1 + \dots a'_n x_n = b'\}$$

são paralelos se e só se (a_1,\ldots,a_n) e (a'_1,\ldots,a'_n) são proporcionais.

Proposição 6.3 Se \mathcal{U} e \mathcal{V} são paralelos, então são disjuntos ou um deles está contido no outro, isto é:

$$\mathcal{U}/\!\!/\mathcal{V} \implies (\mathcal{U} \subseteq \mathcal{V}) \lor (\mathcal{V} \subseteq \mathcal{U}) \lor (\mathcal{U} \cap \mathcal{V} = \emptyset)$$

Em particular, se \mathcal{U} e \mathcal{V} são paralelos com dim $\mathcal{U} = \dim \mathcal{V}$ então $\mathcal{U} \cap \mathcal{V} = \emptyset$ ou $\mathcal{U} = \mathcal{V}$.

Corolário 6.4 O V Postulado de Euclides

Seja $\mathcal A$ um espaço afim. Se $\mathcal U$ é um subespaço afim associado ao subespaço vectorial U, e P é um ponto qualquer de $\mathcal A$, o subespaço afim

$$\mathcal{U}' = P + U$$

é o único subespaço paralelo a \mathcal{U} , com dim $\mathcal{U} = \dim \mathcal{U}'$ e incidente em P.

Em particular, dados uma recta r e um ponto B existe uma única recta r' paralela a r incidente no ponto B.

⁷Alguns autores chamam subespaços paralelos só àqueles que estão associados ao mesmo subespaço (U=V). Outros, falam de *paralelismo fraco* (a nossa definição, $U\subseteq V$) e *paralelismo estrito* (quando U=V).

Nota 6.5 Recorda-se que dois subespaços vectoriais U e V dizem-se ortogonais se e só se

$$\overrightarrow{u} \cdot \overrightarrow{v} = \mathbf{0} \qquad \forall \overrightarrow{u} \in U, \overrightarrow{v} \in V$$

De facto, para verificar que dois subespaços são ortogonais, como o produto escalar é linear, basta verificar que os vectores de uma base de V são ortogonais aos vectores de uma base de U.

Definição 6.6 Seja W um subespaço vectorial de um espaço vectorial E munido de um produto escalar. Chamamos complemento ortogonal de W e designamos por W^{\perp} a

$$W^{\perp} = \{ \overrightarrow{v} \in \mathbf{R}^n : \overrightarrow{v} \cdot \overrightarrow{w} = \mathbf{0} \quad \forall \overrightarrow{w} \in W \}$$

Exemplos 6.7 Considerar-se-á um espaço vectorial E munido de um produto escalar e de uma **base ortonormada**.

1. Se W é uma recta vectorial gerada por um vector \overrightarrow{w} tal que $\overrightarrow{w} = (a_1, a_2, \dots, a_n)$, então o complemento ortogonal de W é o hiperplano vectorial:

$$W^{\perp} = \{(x_1, x_2, \dots, x_n) : a_1x_1 + a_2x_2 + \dots a_nx_n = 0\}$$

2. Reciprocamente, se W é um hiperplano vectorial definido pela equação cartesiana:

$$a_1x_1 + a_2x_2 + \dots a_nx_n = 0$$

então o complemento ortogonal W^{\perp} é a recta vectorial gerada pelo vector $\overrightarrow{w} = (a_1, a_2, \dots, a_n)$.

3. Em geral, se W é um subespaço vectorial com base $\{\overrightarrow{w}_1,\ldots,\overrightarrow{w}_k\}$ então o complemento ortogonal W^{\perp} é o subespaço vectorial de dimensão n-k:

$$W^{\perp} = \{ \overrightarrow{v} : \overrightarrow{v} \cdot \overrightarrow{w}_1 = \dots = \overrightarrow{v} \cdot \overrightarrow{w}_k = 0 \}$$

Observe-se que cada um dos produtos escalares $\overrightarrow{v}\cdot\overrightarrow{w}_i$, define uma equação cartesiana. Assim, obtemos o espaço W^\perp definido através de k equações cartesianas. Reciprocamente, se W está definido por r equações cartesianas **independentes**, W^\perp é o subespaço gerado pelos vectores cujas coordenadas são os coeficientes das equações cartesianas.

Proposição 6.8 Propriedades do complemento ortogonal

Seja W um subespaço vectorial de um espaço vectorial E de dimensão finita munido de um produto escalar.

- 1. W^{\perp} é um subespaço vectorial de E;
- 2. $W \subseteq (W^{\perp})^{\perp}$;
- 3. $W^{\perp} \cap W = \{\overrightarrow{0}\};$
- 4. $W^{\perp} + W = E$.

Em particular, $\dim W^{\perp} + \dim W = n$ e $W = (W^{\perp})^{\perp}$. Se H é um hiperplano, a recta vectorial H^{\perp} diz-se recta normal ao hiperplano H.

Definição 6.9 Projecção ortogonal de um vector num subespaço

Sejam E um espaço vectorial munido de um produto escalar e W um subespaço vectorial de E não nulo. Chama-se **projecção ortogonal** de \overrightarrow{v} em W ao vector \overrightarrow{w} tal que

$$\overrightarrow{v} = \overrightarrow{w} + \overrightarrow{u}$$

 $com \overrightarrow{w} \in W \ e \overrightarrow{u} \in W^{\perp}$. A projecção ortogonal de \overrightarrow{v} em W designa-se por $proj_W(\overrightarrow{v})$.

Note-se que as alinhas 3 e 4 da proposição anterior justificam que projecção ortogonal está bem definida e que $\overrightarrow{v} = proj_W(\overrightarrow{v}) + proj_{W^{\perp}}(\overrightarrow{v})$. A projecção ortogonal de um vector num subespaço vectorial obtém-se com um método à la Gram-Schmidt.

Proposição 6.10 Sejam E um espaço vectorial munido de um produto escalar, W um subespaço vectorial de E, $\overrightarrow{v} \in E$ e $proj_W(\overrightarrow{v})$ a projecção ortogonal de \overrightarrow{v} em W. Tem-se

$$\|\overrightarrow{v} - proj_W(\overrightarrow{v})\| \le \|\overrightarrow{v} - \overrightarrow{w}\| \qquad \forall \overrightarrow{w} \in W$$

Exemplo 6.11 Projecção ortogonal numa recta

Sejam E um espaço vectorial munido de um produto escalar e $<\overrightarrow{w}>$ uma recta vectorial $(\overrightarrow{w}\neq\overrightarrow{0})$ de E. Dado um vector $\overrightarrow{v}\in E$, escrevemos

$$\overrightarrow{v} = \lambda \overrightarrow{w} + \overrightarrow{u}$$

com $\overrightarrow{u} \in <\overrightarrow{w}>^{\perp}$. Como $\overrightarrow{w}\perp\overrightarrow{u}$ tem-se $\overrightarrow{w}\cdot\overrightarrow{v}=\lambda\overrightarrow{w}\cdot\overrightarrow{w}+0$ donde $\lambda=\frac{\overrightarrow{w}\cdot\overrightarrow{v}}{\|\overrightarrow{w}\|^2}$ e portanto a projeção ortogonal de \overrightarrow{v} na recta vectorial $<\overrightarrow{w}>$, que designamos $proj(\overrightarrow{v})$, é

$$proj(\overrightarrow{v}) = \lambda \overrightarrow{w} = \left(\frac{\overrightarrow{w} \cdot \overrightarrow{v}}{\|\overrightarrow{w}\|^2}\right) \overrightarrow{w}$$

No caso particular em que \overrightarrow{w} é um vector unitário, a projecção de \overrightarrow{v} na recta vectorial $<\overrightarrow{w}>$ é o vector $(\overrightarrow{v}\cdot\overrightarrow{w})\overrightarrow{w}$, isto é, $\lambda=\overrightarrow{v}\cdot\overrightarrow{w}$.

Note-se que não é necessária informação sobre o complemento ortogonal $<\overrightarrow{w}>^{\perp}$ para obter esta projecção. Observe-se também que o comprimento da projecção ortogonal é

$$a = \|proj(\overrightarrow{v})\| = \left\| \left(\frac{\overrightarrow{w} \cdot \overrightarrow{v}}{\|\overrightarrow{w}\|^2} \right) \overrightarrow{w} \right\| = \frac{|\overrightarrow{w} \cdot \overrightarrow{v}|}{\|\overrightarrow{w}\|}.$$

Se designarmos $h = \|\overrightarrow{v}\|$ obtemos

$$|\cos \angle (\overrightarrow{w}, \overrightarrow{v})| = \frac{|\overrightarrow{w} \cdot \overrightarrow{v}|}{\|\overrightarrow{v}\| \|\overrightarrow{w}\|} = \frac{a}{h}$$

Proposição 6.12 Seja $\mathcal U$ um subespaço afim de um espaço afim euclidiano $\mathcal A$. Fixado um ponto $P \in \mathcal A$ existe um único subespaço afim $\mathcal V$ passando pelo ponto P e tal que o subespaço vectorial associado a $\mathcal V$ é o complemento ortogonal do subespaço associado a $\mathcal U$. Verifica-se ainda $\mathcal V \cap \mathcal U = \{P\}$ e $\mathcal V + \mathcal U = \mathcal A$.

(Este subespaço afim é chamado **complemento ortogonal** de \mathcal{U} incidente em P)

(Demonstração)

Seja U o subespaço vectorial associado a \mathcal{U} . O subespaço afim $\mathcal{V}=P+U^{\perp}$ é o único subespaço afim que verifica as condições indicadas.

Definição 6.13 Seja A um espaço euclidiano munido de um referencial ortonormado.

1. Duas rectas de \mathcal{A}

$$r = A + \langle \overrightarrow{v} \rangle$$
 e $r' = A' + \langle \overrightarrow{v}' \rangle$

dizem-se **perpendiculares** se os vectores \overrightarrow{v} e \overrightarrow{v}' são ortogonais.

2. Se \mathcal{H} é um hiperplano afim definido pela equação cartesiana:

$$a_1x_1 + \dots + a_nx_n + b = 0$$

o complemento ortogonal de \mathcal{H} passando pelo ponto $P(p_1,\ldots,p_n)$ é a recta afim

$$r_P = (p_1, \dots, p_n) + \langle (a_1, a_2, \dots, a_n) \rangle$$

O vector $\overrightarrow{n}=(a_1,a_2,\ldots,a_n)$ chama-se um **vector normal** do hiperplano e a recta vectorial $<\overrightarrow{n}>$ diz-se direcção **normal** ou **perpendicular** ao hiperplano. Toda a recta associada a $<\overrightarrow{n}>$ diz-se recta **perpendicular** ao hiperplano.

3. Dois hiperplanos afins \mathcal{H} e \mathcal{H}' dizem-se **perpendiculares** se as rectas normais são perpendiculares.

Exemplo 6.14 Num plano afim euclidiano, dada uma recta r e um ponto P existe uma única recta r' perpendicular a r e que incide em P. Suponha-se o plano munido de um referencial ortonormado. Se a recta r é definida por uma equação cartesiana:

$$ax + by + c = 0$$

então, a recta r' perpendicular a r e que incide no ponto $P(p_1,p_2)$ pode definir-se pela equação vectorial

$$r' = (p_1, p_2) + \langle (a, b) \rangle$$

Exemplo 6.15 Recta perpendicular a um plano

Seja $\mathcal A$ um espaço afim euclidiano tridimensional munido de um referencial ortonormado. Toda a recta definida por uma equação vectorial do tipo

$$r = P + < (a, b, c) >$$

é perpendicular a todo o plano definido por uma equação cartesiana

$$ax + by + cz + k = \mathbf{0}$$

O vector (a, b, c) é o **vector normal** ao plano.

Exemplo 6.16 Perpendicular comum a duas rectas enviesadas

Sejam $r \in S$ duas rectas enviesadas de um espaço afim euclidiano tridimensional A, com

$$r = A + \langle \overrightarrow{w} \rangle$$
 e $s = B + \langle \overrightarrow{v} \rangle$

Considere-se $\overrightarrow{u}=\overrightarrow{w}\wedge\overrightarrow{v}$ e recorde-se que $<\overrightarrow{u}>$ é uma recta vectorial ortogonal às rectas $<\overrightarrow{w}>$ e $<\overrightarrow{v}>$. Os planos afins

$$\pi_r = A + \langle \overrightarrow{w}, \overrightarrow{u} \rangle$$
 e $\pi_s = B + \langle \overrightarrow{v}, \overrightarrow{u} \rangle$

não são paralelos e incidem portanto numa recta afim t chamada $perpendicular\ comum\$ às rectas r e s.

$$t = \pi_r \cap \pi_s$$

Note-se que t está associada à recta vectorial $<\overrightarrow{u}>$. As rectas t e s são complanares e não paralelas, podemos então definir Q como o ponto de incidência de t e s. De modo análogo, podemos definir P, o ponto de incidência das rectas t e r. Os pontos P e Q são chamados p es t0 da perpendicular comum às rectas t1 e t2.

Proposição 6.17 Projecção ortogonal de um ponto num subespaço afim

Seja $\mathcal U$ um subespaço afim de um espaço afim euclidiano $\mathcal A$. Dado um ponto P, seja $\mathcal V_P$ o complemento ortogonal de $\mathcal U$ incidindo em P. O ponto Q tal que

$$\{Q\} := \mathcal{U} \cap \mathcal{V}_P$$

diz-se projecção ortogonal do ponto P no subespaço \mathcal{U} .

Exemplos 6.18 Seja A um espaço afim euclidiano.

Projecção ortogonal de um ponto numa recta.
 Sejam r uma recta de A definida pela equação vectorial

$$r = M + \langle \overrightarrow{w} \rangle$$

P um ponto de \mathcal{A} e \mathcal{H}_P o hiperplano perpendicular a r e que incide em P (recorde-se que \mathcal{H}_P está associado ao hiperplano vectorial $<\overrightarrow{w}>^{\perp}$). Seja Q a projecção ortogonal de P em r, isto é, $Q=r\cap\mathcal{H}_P$. Tem-se

$$\overrightarrow{MP} = \overrightarrow{MQ} + \overrightarrow{QP} = \lambda \overrightarrow{w} + \overrightarrow{QP}$$

$$\overrightarrow{MQ} = \lambda \overrightarrow{w} = \left(\frac{\overrightarrow{MP} \cdot \overrightarrow{w}}{\|\overrightarrow{w}\|^2}\right) \overrightarrow{w}$$

e então

$$Q = M + \frac{\overrightarrow{MP} \cdot \overrightarrow{w}}{\|\overrightarrow{w}\|^2} \overrightarrow{w}$$

2. Projecção ortogonal de um ponto num hiperplano

Sejam $\mathcal H$ um hiperplano afim de um espaço afim $\mathcal A$, \overrightarrow{n} um vector normal a $\mathcal H$, e P um ponto de $\mathcal A$. Seja Q a projecção ortogonal de P em $\mathcal H$, se M é um ponto qualquer de $\mathcal H$ tem-se

$$\overrightarrow{MP} = \overrightarrow{MQ} + \overrightarrow{QP} = \overrightarrow{MQ} + \mu \overrightarrow{n}$$

O vector \overrightarrow{n} é ortogonal a \overrightarrow{MQ} portanto

$$\overrightarrow{MP} \cdot \overrightarrow{n} = \mu(\overrightarrow{n} \cdot \overrightarrow{n})$$

donde
$$\mu = \dfrac{\overrightarrow{MP} \cdot \overrightarrow{n}}{\|\overrightarrow{n}\|^2}$$
 e então

$$\overrightarrow{QP} = \mu \overrightarrow{n} = \left(\frac{\overrightarrow{MP} \cdot \overrightarrow{n}}{\|\overrightarrow{n}\|^2}\right) \overrightarrow{n}$$

Como $\overrightarrow{PQ} = -\overrightarrow{QP}$ obtemos

$$Q = P - \left(\frac{\overrightarrow{MP} \cdot \overrightarrow{n}}{\|\overrightarrow{n}\|^2}\right) \overrightarrow{n}$$

7 Problemas métricos

Sejam X e Y subconjuntos de um espaço euclidiano \mathcal{A} , munido de uma distância euclidiana d. Define-se d(X,Y) como

$$d(X,Y) = \inf\{d(x,y) : x \in X \land y \in Y\}$$

Teorema 7.1 Distância entre um ponto e um subespaço afim

Sejam \mathcal{A} um espaço afim euclidiano, \mathcal{U} um subespaço afim de \mathcal{A} , P um ponto de \mathcal{A} e Q a projecção ortogonal de P em \mathcal{U} . Então, para todo o $M \in \mathcal{U}$, verifica-se $d(P,Q) \leq d(P,M)$. Em particular

$$d(P, \mathcal{U}) = d(P, Q)$$

(Demonstração)

Se $P \in \mathcal{U}$ então P = Q e $d(P, \mathcal{U}) = d(P, P) = 0$.

Se $P \notin \mathcal{U}$, então $P \neq Q$. Para todo o $M \in \mathcal{U}$, $M \neq Q$, tem-se que os pontos M, P e Q não são colineares e $\cos(\overrightarrow{QM},\overrightarrow{QP}) = 0$. Aplicando o teorema de Pitágoras obtemos

$$d(M, P)^2 = d(M, Q)^2 + d(Q, P)^2$$

Como $M \neq Q$, tem-se d(M, P) > d(Q, P) e portanto

$$d(Q,P) \le \inf\{d(M,P) : M \in \mathcal{U}\}$$

Como $Q \in \mathcal{U}$ deduz-se

$$d(Q, P) = \min\{d(M, P) : M \in \mathcal{U}\}\$$

Exemplos 7.2

Seja A um espaço afim euclidiano.

1. Distância de um ponto a uma recta

Sejam P um ponto de A e r uma recta definida pela equação vectorial

$$r = M + \langle \overrightarrow{w} \rangle$$

Pela alínea 1 dos exemplos 6.18, a projecção ortogonal Q de P em r verifica:

$$Q = M + \frac{\overrightarrow{MP} \cdot \overrightarrow{w}}{\|\overrightarrow{w}\|^2} \overrightarrow{w}$$

Assim

$$\|\overrightarrow{MQ}\| = \frac{|\overrightarrow{MP} \cdot \overrightarrow{w}|}{\|\overrightarrow{w}\|} = \|\overrightarrow{MP}\||\cos(\overrightarrow{MP}, \overrightarrow{w})|$$

Usando Pitágoras,

$$d(P,Q)^2 = \|\overrightarrow{MP}\|^2 - \|\overrightarrow{MQ}\|^2 = \|\overrightarrow{MP}\|^2 \left(1 - |\cos(\overrightarrow{MP},\overrightarrow{w})|^2\right)$$

donde

$$d(P,r) = d(P,Q) = \|\overrightarrow{MP}\||\sin(\overrightarrow{MP},\overrightarrow{w})|$$

2. Distância de um ponto a um hiperplano

Sejam \mathcal{H} um hiperplano afim de \mathcal{A} , \overrightarrow{n} um vector normal a \mathcal{H} , e P um ponto de \mathcal{A} . Seja Q a projecção ortogonal de P em \mathcal{H} . Pela aljnea 2 dos exemplos 6.18, tem-se

$$d(P, \mathcal{H}) = d(P, Q) = \|\overrightarrow{PQ}\| = \frac{\left|\overrightarrow{MP} \cdot \overrightarrow{n}\right|}{\|\overrightarrow{n}\|}$$

Note-se que, se A está munido de um referencial ortonormado, $\mathcal H$ está definido, nesse referencial, pela equação cartesiana

$$a_1x_1 + a_2x_2 + \dots + a_nx_n + b = 0$$

e se $P = (p_1, p_2, \dots, p_n)$, nesse referencial, então

$$d(P,\mathcal{H}) = \frac{|a_1p_1 + a_2p_2 + \dots + a_np_n + b|}{\sqrt{a_1^2 + a_2^2 + \dots + a_n^2}}$$

Teorema 7.3 Distâncias entre subespaços paralelos.

Sejam \mathcal{U} e \mathcal{U}' dois subespaços paralelos de \mathcal{A} , com dim $\mathcal{U} \leq \dim \mathcal{U}'$, associados respectivamente, aos subespaços vectoriais U e U' (note-se que $U \subseteq U'$). Considerem-se P_1 e P_2 pontos de \mathcal{U} e Q_1 e Q_2 as projecções ortogonais desses pontos em \mathcal{U}' . Tem-se

$$\overrightarrow{P_1Q_1} = \overrightarrow{P_1P_2} + \overrightarrow{P_2Q_2} + \overrightarrow{Q_2Q_1}$$

como $\overrightarrow{P_1,P_2},\overrightarrow{Q_2,Q_1}\in U'$ e $\overrightarrow{P_1Q_1},\overrightarrow{P_2Q_2}\in (U')^{\perp}$ vem que

$$\overrightarrow{P_1Q_1} = \overrightarrow{P_2Q_2}$$

Seja $d=d(P_1,Q_1)$. Note-se que, para todo o $P\in\mathcal{U}$, se Q_P é a projeção ortogonal de P em \mathcal{U}' , verifica-se $d(P,Q_P)=d$. Se $P\in\mathcal{U}$ e $M\in\mathcal{U}'$, pela proposição 7.1, $d(P,M)\geq d(P,Q_P)=d$ e assim

$$d(\mathcal{U}, \mathcal{U}') = d$$

Teorema 7.4 Distâncias entre duas rectas enviesadas num espaço tridimensional

Suponha-se A espaço afim euclidiano tridimensional. Sejam r e s duas rectas enviesadas de A, definidas, respectivamente, pelas equações cartesianas:

$$r = A + \langle \overrightarrow{w} \rangle$$
 e $s = B + \langle \overrightarrow{v} \rangle$

Os planos

$$\mathcal{U} = A + \langle \overrightarrow{w}, \overrightarrow{v} \rangle$$
 e $\mathcal{U}' = B + \langle \overrightarrow{w}, \overrightarrow{v} \rangle$

são paralelos e verificam $r \subset \mathcal{U}$ e $s \subset \mathcal{U}'$. Em particular, $d(\mathcal{U}, \mathcal{U}') \leq d(r, s)$. Mas, se P e Q são os pés da perpendicular comum (exemplo 6.16), tem-se que $d(\mathcal{U}, \mathcal{U}') = d(P, Q)$, logo

$$d(r,s) = d(P,Q)$$

Se $\overrightarrow{u} = \overrightarrow{w} \wedge \overrightarrow{v}$ é um vector director da perpendicular comum, tem-se

$$\overrightarrow{BA} = \overrightarrow{BQ} + \overrightarrow{QP} + \overrightarrow{PA} = \overrightarrow{BQ} + \lambda \overrightarrow{u} + \overrightarrow{PA}$$

e, como \overrightarrow{u} é ortogonal a \overrightarrow{BQ} e a \overrightarrow{PA} , segue que

$$\lambda = \frac{\overrightarrow{BA} \cdot \overrightarrow{u}}{\|\overrightarrow{u}\|^2}$$

Em particular,

$$d(P,Q) = \|\overrightarrow{PQ}\| = \|\lambda\overrightarrow{u}\| = \frac{|\overrightarrow{BA} \cdot \overrightarrow{u}|}{\|\overrightarrow{u}\|} = \frac{|\det(\overrightarrow{BA}, \overrightarrow{w}, \overrightarrow{v})|}{\|\overrightarrow{w} \wedge \overrightarrow{v}\|}$$

Apresenta-se de seguida o resumo dos principais resultados envolvendo distâncias no plano e no espaço tridimensional.

Distâncias no plano

Seja \mathcal{A} um plano afim euclidiano munido de um referencial ortonormado.

1. Distância de um ponto a uma recta.

Seja r uma recta de \mathcal{A} definida pela equação cartesiana:

$$Ax + By + K = \mathbf{0}$$

Se $P = (p_1, p_2)$ verifica-se

$$d(P,r) = \frac{|Ap_1 + Bp_2 + K|}{\sqrt{A^2 + B^2}}$$

2. Distância entre duas rectas paralelas.

Considere-se um ponto numa delas e aplique-se a fórmula anterior.

Distâncias no espaço tridimensional

Seja \mathcal{A} um espaço afim euclidiano tridimensional munido de um referencial ortonormado.

1. Distância de um ponto a um plano

Seja π um plano de \mathcal{A} definido pela equação cartesiana Ax + By + Cz + K = 0. Se $P = (p_1, p_2, p_3)$ verifica-se

$$d(P,\pi) = \frac{|Ap_1 + Bp_2 + Cp_3 + K|}{\sqrt{A^2 + B^2 + C^2}}$$

2. Distância entre uma recta e um plano paralelos

Considere-se um ponto na recta e aplique-se a fórmula anterior.

3. Distância entre dois planos paralelos.

Considere-se um ponto num deles e aplique-se a fórmula anterior.

4. Distância entre um ponto e uma recta no espaço.

Seja r uma recta definida pela equação vectorial $r=M+<\overrightarrow{w}>$. Tem-se

$$d(P,r) = \|\overrightarrow{MP}\||\sin(\overrightarrow{MP},\overrightarrow{w})|$$

5. Distância entre duas rectas paralelas.

Considere-se um ponto numa das duas rectas e aplique-se a fórmula anterior.

6. Distância entre duas rectas enviesadas

Se $r = A + \langle \overrightarrow{w} \rangle$ e $s = B + \langle \overrightarrow{v} \rangle$ são duas rectas enviesadas

$$d(r,s) = \frac{|\mathsf{det}(\overrightarrow{BA}, \overrightarrow{w}, \overrightarrow{v})|}{\|\overrightarrow{w} \wedge \overrightarrow{v}\|}$$

Definição 7.5 Ângulo entre rectas, entre rectas e hiperplanos, entre hiperplanos. Seja \mathcal{A} um espaço afim euclidiano.

• Sejam r e s duas rectas afins de $\mathcal A$ dirigidas, respectivamente, pelos vectores **unitários** \overrightarrow{v} e \overrightarrow{w} . Define-se a *medida do aĥgulo* (não orientado) formado pelas rectas r e s como o único $\theta \in [0, \pi/2]$ tal que

$$\cos\theta = |\overrightarrow{v} \cdot \overrightarrow{w}|.$$

• Sejam r uma recta afim de $\mathcal A$ dirigida por um vector \overrightarrow{v} , $\mathcal H$ um hiperplano afim de $\mathcal A$ e \overrightarrow{n} um vector normal a $\mathcal H$. Define-se a *medida do ângulo* formado pela recta r e o hiperplano $\mathcal H$ como o único $\theta \in [0,\pi/2]$ tal que

$$\cos \theta = \sqrt{1 - \cos(\overrightarrow{v}, \overrightarrow{n})^2}$$

• Sejam \mathcal{H} e \mathcal{H}' dois hiperplanos afins de \mathcal{A} , \overrightarrow{n} e $\overrightarrow{n'}$ vectores normais **unitários** a \mathcal{H} e \mathcal{H}' , respectivamente. Define-se a *medida do ângulo* formado pelos hiperplanos \mathcal{H} e \mathcal{H}' como o único $\theta \in [0, \pi/2]$ tal que

$$\cos\theta = |\overrightarrow{n} \cdot \overrightarrow{n'}|.$$

8 Exercícios resolvidos

Para simplificar os enunciados, quando não houver ambiguidade, num espaço afim A de dimensão n munido de um referencial \mathcal{R} , se $A \equiv (a_1, \ldots, a_n)_{\mathcal{R}}$, escrever-se-á $A = (a_1, \ldots, a_n)$.

Espaços afins, referenciais, espaços euclidianos.

- 1. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}$ dois referenciais de um plano afim real \mathcal{A} . Determine as coordenadas, no referencial \mathcal{R} , do ponto $M \equiv (0, -2)_{\mathcal{R}'}$ e as coordenadas, no referencial \mathcal{R}' , do ponto $N \equiv (1, 0)_{\mathcal{R}}$ sabendo que:
 - (a) $O' \equiv (1,1)_{\mathcal{R}};$

(b)
$$\left\{ \begin{array}{lll} \overrightarrow{v}_1' & = & -\overrightarrow{v}_1 & + & 3\overrightarrow{v}_2 \\ \overrightarrow{v}_2' & = & 2\overrightarrow{v}_2 \end{array} \right.$$

Quais as coordenadas de O no referencial \mathcal{R}' ? Definem \mathcal{R} e \mathcal{R}' a mesma orientação? (Resolução)

Se (x_1,x_2) e (x_1',x_2') designam as coordenadas de um ponto nos referenciais \mathcal{R} e \mathcal{R}' , respectivamente, tem-se que:

$$\left(\begin{array}{cc} -1 & 0 \\ 3 & 2 \end{array}\right) \left(\begin{array}{c} x_1' \\ x_2' \end{array}\right) + \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Como $M \equiv (0,-2)_{\mathcal{R}'}$, então

$$\left(\begin{array}{cc} -1 & 0 \\ 3 & 2 \end{array}\right) \left(\begin{array}{c} 0 \\ -2 \end{array}\right) + \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 \\ -3 \end{array}\right)$$

donde $M \equiv (1,-3)_{\mathcal{R}}$. Para calcular $N \equiv (1,0)_{\mathcal{R}}$, vamos determinar a expressão matricial⁸ da mudança de coordenadas oposta. Tem-se

$$\left(\begin{array}{cc} -1 & 0 \\ 3 & 2 \end{array}\right) \left(\begin{array}{c} x_1' \\ x_2' \end{array}\right) = - \left(\begin{array}{c} 1 \\ 1 \end{array}\right) + \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

e, multiplicando pela matriz inversa da matriz a esquerda, obtemos:

$$\left(\begin{array}{c} x_1' \\ x_2' \end{array}\right) = \left(\begin{array}{cc} -1 & 0 \\ 3/2 & 1/2 \end{array}\right) \left[- \left(\begin{array}{c} 1 \\ 1 \end{array}\right) + \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \right]$$

donde

$$\left(\begin{array}{c} x_1' \\ x_2' \end{array}\right) = \left(\begin{array}{cc} 1 \\ -2 \end{array}\right) + \left(\begin{array}{cc} -1 & 0 \\ 3/2 & 1/2 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Substituindo nesta expressão, como $N\equiv (1,0)_{\mathcal{R}}$, obtemos

$$N \equiv (0, -1/2)_{\mathcal{R}'}$$

As coordenadas de O no referencial \mathcal{R}' são (1,-2)

Note-se que

$$\det\left(\begin{array}{cc} -1 & 0\\ 3/2 & 1/2 \end{array}\right) = -1/2$$

portanto \mathcal{R} e \mathcal{R}' definem orientações opostas.

⁸Equivalentemente, basta resolver um sistema de equações de modo a obter (x_1, x_2) em função de (x_1, x_2) . Apresenta-se este tipo de resolução para desenvolver o uso da linguagem matricial.

- 2. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}$ dois referenciais de um plano afim real \mathcal{A} . Determine as coordenadas, no referencial \mathcal{R} , do ponto $M \equiv (-1, 0)_{\mathcal{R}'}$ e as coordenadas, no referencial \mathcal{R}' , do ponto $N \equiv (-1, 0)_{\mathcal{R}}$ sabendo que:
 - (a) $O \equiv (-2,0)_{R'}$;

$$\begin{array}{lclcl} \text{(b)} & \left\{ \begin{array}{cccc} \overrightarrow{v}_1' & = & \overrightarrow{v}_1 & + & \overrightarrow{v}_2 \\ \overrightarrow{v}_2' & = & & -\overrightarrow{v}_2 \end{array} \right. \end{array}$$

Definem \mathcal{R} e \mathcal{R}' a mesma orientação?

(Resolução)

Para obter directamente a expressão matricial de uma das mudanças de coordenadas precisamos de todos os dados de um referencial em função do outro, o que não é o caso no enunciado. Podemos determinar a base $(\overrightarrow{v}_1, \overrightarrow{v}_2)$ em função da base $(\overrightarrow{v}_1', \overrightarrow{v}_2')$ ou calcular as coordenadas de O' no referencial \mathcal{R} .

Se $O' \equiv (\omega_1, \omega_2)_{\mathcal{R}}$, tem-se

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} x_1' \\ x_2' \end{array}\right) + \left(\begin{array}{c} \omega_1 \\ \omega_2 \end{array}\right) = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

onde (x_1, x_2) e (x_1', x_2') designam as coordenadas de um ponto nos referenciais \mathcal{R} e \mathcal{R}' , respectivamente. Como $O \equiv (-2, 0)_{\mathcal{R}'}$ verifica-se

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} -2 \\ 0 \end{array}\right) + \left(\begin{array}{c} \omega_1 \\ \omega_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

donde $(\omega_1, \omega_2) = (2, 2)$ e o resto do exercício resolve-se de modo análogo ao exercício anterior, obtendo-se:

$$M \equiv (1,1)_{\mathcal{R}}, \qquad N \equiv (-3,-1)_{\mathcal{R}'}$$

Note-se que

$$\det \left(egin{array}{cc} 1 & 0 \ 1 & -1 \end{array}
ight) = -1$$

portanto \mathcal{R} e \mathcal{R} definem orientações opostas.

- 3. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3')\}$ dois referenciais de um espaço afim tridimensional \mathcal{A} . Determine a expressão matricial para a mudança de coordenadas entre estes dois referenciais sabendo que:
 - (a) $O \equiv (0, 0, -2)_{\mathcal{R}'}$;

(b)
$$\begin{cases} \overrightarrow{v}_1' = 2\overrightarrow{v}_1 + 2\overrightarrow{v}_2 - \overrightarrow{v}_3 \\ \overrightarrow{v}_2' = \overrightarrow{v}_1 + 2\overrightarrow{v}_2 \\ \overrightarrow{v}_3' = 2\overrightarrow{v}_1 & - \overrightarrow{v}_3 \end{cases}$$

Definem \mathcal{R} e \mathcal{R}' a mesma orientação?

(Resolução)

O exercício é análogo ao anterior, desta vez, determinar-se-á a base $(\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3)$ em função da base $(\overrightarrow{v}_1', \overrightarrow{v}_2', \overrightarrow{v}_3')$. Usando a notação matricial:

$$(\overrightarrow{v}_1',\overrightarrow{v}_2',\overrightarrow{v}_3') = (\overrightarrow{v}_1,\overrightarrow{v}_2,\overrightarrow{v}_3) \begin{pmatrix} 2 & 1 & 2 \\ 2 & 2 & 0 \\ -1 & 0 & -1 \end{pmatrix}$$

multiplicando pela matriz inversa da matriz à direita

$$(\overrightarrow{v}_1', \overrightarrow{v}_2', \overrightarrow{v}_3') \begin{pmatrix} -1 & 1/2 & -2 \\ 1 & 0 & 2 \\ 1 & -1/2 & 1 \end{pmatrix} = (\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3)$$

A expressão matricial da mudança de referencial é então (recorde-se que temos os elementos do referencial \mathcal{R} em função dos elementos do referencial \mathcal{R}'):

$$\begin{pmatrix} -1 & 1/2 & -2 \\ 1 & 0 & 2 \\ 1 & -1/2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}$$

O determinante da mudanca de base é positivo portanto os referenciais definem a mesma orientação.

4. Sejam A, B e C três pontos de um plano afim A tais que os vectores \overrightarrow{AB} e \overrightarrow{AC} são linearmente independentes. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}$ referenciais de A. Determine a relação entre as coordenadas, nos referenciais \mathcal{R} e \mathcal{R}' , de um ponto genérico de A sabendo que

$$A \equiv (a_1, a_2)_{\mathcal{R}} \qquad A \equiv (a'_1, a'_2)_{\mathcal{R}'}$$

$$B \equiv (b_1, b_2)_{\mathcal{R}} \qquad B \equiv (b'_1, b'_2)_{\mathcal{R}'}$$

$$C \equiv (c_1, c_2)_{\mathcal{R}} \qquad C \equiv (c'_1, c'_2)_{\mathcal{R}'}$$

(Resolução) É preciso encontrar uma expressão matricial do tipo

$$\left(\begin{array}{cc} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{array}\right) \left(\begin{array}{c} x_1' \\ x_2' \end{array}\right) + \left(\begin{array}{c} \omega_1 \\ \omega_2 \end{array}\right) = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Assim, se avaliarmos os pontos A, B e C, obtemos um sistema de seis equações com seis incógnitas. Vamos a usar a linguagem matricial para apresentar a solução de modo conveniente. Introduzimos um novo referencial $\mathcal{R}'' = \{A, (\overrightarrow{AB}, \overrightarrow{AC})\}$. Tem-se:

(a)
$$A \equiv (a_1, a_2)_{\mathcal{R}};$$

$$\begin{cases}
\overrightarrow{AB} = (b_1 - a_1)\overrightarrow{v}_1 + (b_2 - a_2)\overrightarrow{v}_2 \\
\overrightarrow{AC} = (c_1 - a_1)\overrightarrow{v}_1 + (c_2 - a_2)\overrightarrow{v}_2
\end{cases}$$

(b)
$$A \equiv (a'_1, a'_2)_{\mathcal{R}'};$$

$$\begin{cases}
\overrightarrow{AB} &= (b'_1 - a'_1)\overrightarrow{v}_1 + (b'_2 - a'_2)\overrightarrow{v}_2 \\
\overrightarrow{AC} &= (c'_1 - a'_1)\overrightarrow{v}_1 + (c'_2 - a'_2)\overrightarrow{v}_2
\end{cases}$$

Obtemos então a relação entre as coordenadas (x_1'', x_2'') no referencial \mathcal{R}'' e as coordenadas nos referenciais \mathcal{R} e \mathcal{R}' :

$$\begin{pmatrix} b_1 - a_1 & c_1 - a_1 \\ b_2 - a_2 & c_2 - a_2 \end{pmatrix} \begin{pmatrix} x_1'' \\ x_2'' \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} b_1'-a_1' & c_1'-a_1' \\ b_2'-a_2' & c_2'-a_2' \end{pmatrix} \begin{pmatrix} x_1'' \\ x_2'' \end{pmatrix} + \begin{pmatrix} a_1' \\ a_2' \end{pmatrix} = \begin{pmatrix} x_1' \\ x_2' \end{pmatrix}$$

Consideremos as matrices:

$$M = \begin{pmatrix} b_1 - a_1 & c_1 - a_1 \\ b_2 - a_2 & c_2 - a_2 \end{pmatrix}, \quad M' = \begin{pmatrix} b'_1 - a'_1 & c'_1 - a'_1 \\ b'_2 - a'_2 & c'_2 - a'_2 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \quad \text{e} \quad \Lambda' = \begin{pmatrix} a'_1 \\ a'_2 \end{pmatrix}$$

Para simplificar, escrevemos as igualdades matriciais anteriores como:

$$MX'' + \Lambda = X$$
 e $M'X'' + \Lambda' = X'$

Assim, usando a primeira igualdade:

$$X^{\prime\prime} = -M^{-1}\Lambda + M^{-1}X$$

e substituindo na segunda igualdade

$$M'(-M^{-1}\Lambda + M^{-1}X) + \Lambda' = X'$$

donde

$$M'M^{-1}X + (\Lambda' - M'M^{-1}\Lambda) = X'$$

que é a expressão matricial da mudança de coordenadas.

- 5. Seja \mathcal{A} um plano euclidiano. Seja $\mathcal{R} = \{O, (\overrightarrow{e}_1, \overrightarrow{e}_2)\}$ um referencial ortonormado de \mathcal{A} . Considere-se o referencial $\mathcal{R}' = \{O', (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ definido por:
 - (a) $O \equiv (0, -2)_{\mathcal{R}'}$;

(b)
$$\left\{ \begin{array}{cccc} \overrightarrow{v}_1 & = & \overrightarrow{e}_1 & + & \overrightarrow{e}_2 \\ \overrightarrow{v}_2 & = & \overrightarrow{e}_1 & - & \overrightarrow{e}_2 \end{array} \right.$$

A base $(\overrightarrow{v}_1, \overrightarrow{v}_2)$ é uma base ortogonal? O referencial \mathcal{R}' é um referencial ortonormado? Os referenciais \mathcal{R} e \mathcal{R}' definem a mesma orientação?

(Resolução)

Tem-se

$$\overrightarrow{v}_1 \cdot \overrightarrow{v}_2 = (\overrightarrow{e}_1 + \overrightarrow{e}_2) \cdot (\overrightarrow{e}_1 - \overrightarrow{e}_2) = \overrightarrow{e}_1 \cdot \overrightarrow{e}_1 + \overrightarrow{e}_2 \cdot \overrightarrow{e}_1 - \overrightarrow{e}_1 \cdot \overrightarrow{e}_2 - \overrightarrow{e}_2 \cdot \overrightarrow{e}_2 = 0$$

portanto $\overrightarrow{v}_1 \bot \overrightarrow{v}_2$ e a base é uma base ortogonal.

O vector \overrightarrow{v}_1 verifica:

$$\overrightarrow{v}_1 \cdot \overrightarrow{v}_1 = (\overrightarrow{e}_1 + \overrightarrow{e}_2) \cdot (\overrightarrow{e}_1 + \overrightarrow{e}_2) = \overrightarrow{e}_1 \cdot \overrightarrow{e}_1 + \overrightarrow{e}_2 \cdot \overrightarrow{e}_1 + \overrightarrow{e}_1 \cdot \overrightarrow{e}_2 + \overrightarrow{e}_2 \cdot \overrightarrow{e}_2 = 2$$

portanto $\|\overrightarrow{v}_1\| = \sqrt{2}$ e \overrightarrow{v}_1 não é um vector unitário. A base $(\overrightarrow{v}_1, \overrightarrow{v}_2)$ não é uma base ortonormada e portanto o referencial \mathcal{R}' não é um referencial ortonormado.

Note-se que o determinante da matriz de mudança de base é negativo, portanto \mathcal{R} e \mathcal{R}' definem orientações opostas.

Nota 1: Como \mathcal{R} é um referencial ortonormado, em particular a base $(\overrightarrow{e}_1, \overrightarrow{e}_2)$ é uma base ortonormada e então, poder-se-ia trabalhar em coordenadas, usando o produto escalar usual:

$$\overrightarrow{v}_1 = (1,1)$$
 $\overrightarrow{v}_2 = (1,-1)$

$$\overrightarrow{v}_1 \cdot \overrightarrow{v}_2 = (1,1) \cdot (1,-1) = 0 \qquad \|\overrightarrow{v}_1\| = \sqrt{1+1} = \sqrt{2}$$

Nota 2: Alternativamente, podemos resolver o exercício considerando a matriz da mudança de base:

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$$

e observando que $AA^t \neq Id$, portanto A não é uma matriz que defina uma mudança entre duas bases ortonormadas.

6. Prove que uma matriz real A quadrada de ordem 2 é ortogonal (i.e. verifica $AA^t=Id$) se e só se

$$A = \left(\begin{array}{cc} a & -\epsilon b \\ b & \epsilon a \end{array}\right)$$

 $\operatorname{com}\, \epsilon = \pm 1 \,\operatorname{e}\, a^2 + b^2 = 1.$

(Resolução)

Seja

$$A = \left(\begin{array}{cc} a & c \\ b & d \end{array}\right)$$

Como A é ortogonal, $det A = \pm 1$, logo $\epsilon = ad - bc = \pm 1$. Assim,

$$A^{-1} = \epsilon^{-1} \left(\begin{array}{cc} d & -c \\ -b & a \end{array} \right)$$

Se $A^tA = Id$, então $A^t = A^{-1}$ e portanto

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \epsilon^{-1} \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right)$$

donde $d=\epsilon a$ e $c=-\epsilon b$. Também, como det $A=\pm 1$, tem-se $\pm 1=ad-bc=\epsilon(a^2+b^2)$, logo $a^2+b^2=1$.

7. Seja $\mathcal A$ um plano euclidiano munido de um referencial $\mathcal R=\{O,(\overrightarrow{v}_1,\overrightarrow{v}_2)\}$ tais que os vectores da base associada são unitários mas $\overrightarrow{v}_1\cdot\overrightarrow{v}_2=1/2$.

Determine a distância entre os pontos $A \equiv (1,1)_{\mathcal{R}}$ e $B \equiv (3,0)_{\mathcal{R}}$. Qual seria o valor de d(A,B) se o referencial \mathcal{R} fosse ortonormado?

(Resolução)

Por definição $d(A,B) = \|\overrightarrow{AB}\|$. Tem-se

$$\overrightarrow{AB} = (3-1)\overrightarrow{v}_1 + (0-1)\overrightarrow{v}_2 = 2\overrightarrow{v}_1 - \overrightarrow{v}_2$$

logo

$$\overrightarrow{AB} \cdot \overrightarrow{AB} = (2\overrightarrow{v}_1 - \overrightarrow{v}_2) \cdot (2\overrightarrow{v}_1 - \overrightarrow{v}_2) = 4\overrightarrow{v}_1 \cdot \overrightarrow{v}_1 - 2\overrightarrow{v}_1 \cdot \overrightarrow{v}_2 - 2\overrightarrow{v}_2 \cdot \overrightarrow{v}_1 + \overrightarrow{v}_2 \cdot \overrightarrow{v}_2 = 4 - 1 - 1 + 1 = 3$$

e então d(A, B) = 3.

Se o referencial fosse ortonormado ter-se-ia:

$$d(A, B) = \sqrt{(3-1)^2 + (0-1)^2} = \sqrt{5}$$

8. Seja \mathcal{A} um plano euclidiano munido de um referencial ortonormado. Considerem-se os pontos A=(2,1) e B=(0,-1). Calcule a distância d(A,B). Determine se o ponto M=(-2,-3) pertence ao segmento \overline{AB} . (Resolução)

$$d(A, B) = \sqrt{(2-0)^2 + (-1-1)^2} = \sqrt{8} = 2\sqrt{2}$$

O segmento \overline{AB} é o conjunto

$$\overline{AB} = \{A + t\overline{AB} : t \in [0, 1]\}$$

Assim, $M \in \overline{AB}$ se e só se $\overrightarrow{AM} = t\overrightarrow{AB}$ com $t \in [0,1]$. Tem-se $\overrightarrow{AB} = (-2,-2)$ e

$$\overrightarrow{AM} = (-4, -4) = 2(-2, -2) = 2\overrightarrow{AB}$$

Portanto, M não pertence ao segmento \overline{AB} .

9. Sejam A, B e C pontos de um espaço afim euclidiano. Sabe-se que d(A,C)=2, d(A,B)=1 e $\cos(\overrightarrow{AB},\overrightarrow{AC})=1/2$. Calcule d(B,C).

(Resolução)

Aplicando o teorema dos cossenos:

$$d(B,C)^{2} = d(A,B)^{2} + d(A,C)^{2} - 2d(A,B)d(A,C)\cos(\overrightarrow{AB},\overrightarrow{AC}) = 1 + 4 - 2 = 3$$

donde $d(B,C) = \sqrt{3}$.

10. Prove que, se $\|\overrightarrow{u}\| = \|\overrightarrow{v}\|$ então

$$(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = 0$$

(As diagonais de um losango são perpendiculares.)

(Resolução)

Usando as propriedades do produto escalar obtemos

$$(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = \overrightarrow{u} \cdot \overrightarrow{u} + \overrightarrow{v} \cdot \overrightarrow{u} - \overrightarrow{u} \cdot \overrightarrow{v} - \overrightarrow{v} \cdot \overrightarrow{v} = ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2 = 0$$

geometria - 2010/2011

11. Determine o produto escalar dos vectores \overrightarrow{v} e \overrightarrow{w} . Calcule o cosseno do ângulo que formam e indique se os vectores são ortogonais.

(a)
$$\overrightarrow{v} = (2,1), \ \overrightarrow{w} = (2,-2);$$

(b)
$$\overrightarrow{v} = (1, -1, 1), \overrightarrow{w} = (2, 0, -2);$$

(c)
$$\overrightarrow{v} = (1, -2, 3), \overrightarrow{w} = (3, -5, 0);$$

(d)
$$\overrightarrow{v} = (4, -1, 0, 1), \ \overrightarrow{w} = (7, 1, 1, -2).$$

(Resolução)

(a)
$$\overrightarrow{v} = (2,1), \ \overrightarrow{w} = (2,-2).$$

$$\overrightarrow{v} \cdot \overrightarrow{w} = (2,1) \cdot (2,-2) = 4-2=2.$$

Tem-se que $\|\overrightarrow{v}\| = \sqrt{5}$ e $\|\overrightarrow{w}\| = \sqrt{8} = 2\sqrt{2}$ donde

$$\cos(\overrightarrow{v},\overrightarrow{w}) = \frac{2}{\sqrt{5}(2\sqrt{2})} = \frac{\sqrt{10}}{10}$$

Os vectores \overrightarrow{v} e \overrightarrow{w} não são ortogonais.

(b)
$$\overrightarrow{v} = (1, -1, 1), \overrightarrow{w} = (2, 0, -2).$$

$$\overrightarrow{v} \cdot \overrightarrow{w} = (1, -1, 1) \cdot (2, 0, -2) = 2 - 2 = 0.$$

Assim $\cos(\overrightarrow{v}, \overrightarrow{w}) = 0$ e os vectores \overrightarrow{v} e \overrightarrow{w} são ortogonais.

(c)
$$\overrightarrow{v} = (1, -2, 3), \overrightarrow{w} = (3, -5, 0).$$

$$\overrightarrow{v} \cdot \overrightarrow{w} = (1, -2, 3) \cdot (3, -5, 0) = 3 + 10 = 13.$$

Tem-se que $\|\overrightarrow{v}\| = \sqrt{14}$ e $\|\overrightarrow{w}\| = \sqrt{34}$ donde

$$\cos(\overrightarrow{v},\overrightarrow{w}) = \frac{13}{\sqrt{14}\sqrt{34}} = \frac{13\sqrt{119}}{238}$$

Os vectores \overrightarrow{v} e \overrightarrow{w} não são ortogonais.

(d)
$$\overrightarrow{v} = (4, -1, 0, 1), \overrightarrow{w} = (7, 1, 1, -2).$$

$$\overrightarrow{v} \cdot \overrightarrow{w} = (4, -1, 0, 1) \cdot (7, 1, 1, -2) = 28 - 1 - 2 = 25$$

Tem-se que $\|\overrightarrow{v}\| = \sqrt{18} = 3\sqrt{2}$ e $\|\overrightarrow{w}\| = \sqrt{55}$ donde

$$\cos(\overrightarrow{v}, \overrightarrow{w}) = \frac{25}{3\sqrt{2}\sqrt{55}} = \frac{25\sqrt{110}}{3}$$

Os vectores \overrightarrow{v} e \overrightarrow{w} não são ortogonais.

12. Determine o produto vectorial dos vectores \overrightarrow{v} e \overrightarrow{w} de \mathbf{R}^3

$$\overrightarrow{v} = (1,0,-3)$$
 $\overrightarrow{w} = (2,2,0)$

(Resolução)

Simbolicamente:

$$\overrightarrow{u} \wedge \overrightarrow{v} = \det \begin{pmatrix} \overrightarrow{e}_1 & \overrightarrow{e}_2 & \overrightarrow{e}_3 \\ 1 & 0 & -3 \\ 2 & 2 & 0 \end{pmatrix} = 6\overrightarrow{e}_1 + (-6)\overrightarrow{e}_2 + 2\overrightarrow{e}_3 = (6, -6, 2)$$

13. Calcule a área do paralelogramo definido pelos vectores de \mathbf{R}^3 $\overrightarrow{v}=(1,0,-3)$ e $\overrightarrow{w}=(2,2,0)$. (Resolução)

Recorde-se que a área A de tal paralelogramo é dada pela norma $\|\overrightarrow{v}\wedge\overrightarrow{w}\|$. usando o exercjcio anterior tem-se

$$A = \|(6, -6, 2)\| = \sqrt{74}$$

14. Calcule o volume do paralelepípedo formado pelos vectores de \mathbf{R}^3 $\overrightarrow{u}=(4,0,0)$, $\overrightarrow{v}=(1,0,-3)$ e $\overrightarrow{w}=(2,2,0)$. (Resolução)

Recorde-se que o volume V de dito paralelepjpedo é dado pelo valor absoluto $|\overrightarrow{u}\cdot(\overrightarrow{v}\wedge\overrightarrow{w})|$. Como $\overrightarrow{v}\wedge\overrightarrow{w}=(6,-6,2)$ tem-se

$$V = |(4,0,0) \cdot (6,-6,2)| = 24$$

Rectas, planos, paralelismo.

- 15. Seja \mathcal{A} um espaço afim tridimensional munido de um referencial $\{O; \mathcal{B}\}$. Indique os subespaços vectoriais associados aos seguintes subespaços afins de \mathcal{A} e a dimensão de tais subespaços afins:
 - (a) $\mathcal{U} = \{(x, y, z) \in \mathcal{A} / x + y + z + 3 = 0\};$
 - (b) $\mathcal{U} = \{(x, y, z) \in \mathcal{A} / y = 3 3x \land z = x\};$
 - (c) $\mathcal{U} = \{(x, y, z) \in \mathcal{A} / y = 3 3x \land z = x \land 2x 4 = 0\}.$

(Resolução)

(a) $U = \{(x, y, z) \in A / x + y + z + 3 = 0\}.$

O subespaço vectorial associado é

$$U = \{(x, y, z) \in A / x + y + z = 0\} = <(1, -1, 0), (1, 0, -1) >$$

Trata-se de um plano vectorial, portanto $\mathcal U$ é um plano afim (dimensão 2).

(b) $\mathcal{U} = \{(x, y, z) \in \mathcal{A} / y = 3 - 3x \land z = x\}.$

O subespaço vectorial associado é

$$U = \{(x, y, z) \in A / y + 3x = 0 \land z - x = 0\} = <(1, -3, 1) >$$

Trata-se de uma recta vectorial, portanto \mathcal{U} é uma recta afim (dimensão 1).

(c) $\mathcal{U} = \{(x, y, z) \in \mathcal{A} / y = 3 - 3x \land z = x \land 2x - 4 = 0\}.$

O subespaço vectorial associado é

$$U = \{(x, y, z) \in \mathcal{A} / y + 3x = 0 \land z - x = 0 \land 2x = 0\}.$$

Resolvendo o sistema obtemos que $U=\{\overrightarrow{0}\}$, a dimensão de $\mathcal U$ é 0. Trata-se de um ponto do espaço afim $\mathcal A$. De facto, resolvendo o sistema de equações obtemos

$$U = \{(2, -3, 2)\}$$

16. Num plano afim real $\mathcal A$ munido de um referencial $\mathcal R$ calcule as equações paramétricas e a equação cartesiana da recta afim r que passa pelo ponto A=(0,-5) e tem como vector director $\overrightarrow{v}=(-1,-3)$. Indique três pontos distintos que pertençam à recta r. Represente graficamente.

(Resolução)

Uma equação vectorial de $r\,$ é

$$r = (0, -5) + < (-1, -3) >$$

Uma equações paramétricas de r são:

$$\begin{cases} x = -\lambda \\ y = -5 - 3\lambda \end{cases}$$

A partir da igualdade:

$$\frac{x}{-1} = \frac{y+5}{-3}$$

obtemos a equação cartesiana de r:

$$-3x + y + 5 = 0$$

Os pontos A = (0, -5), B = (-2, -11) e N = (5/3, 0) pertencem a r.

17. Num plano afim real $\mathcal A$ munido de um referencial $\mathcal R$ calcule as equações paramétricas e a equação cartesiana da recta afim r que passa pelos pontos A=(1,-2) e B=(-3,0). Indique três pontos distintos que pertençam à recta r. Represente graficamente.

(Resolução)

Uma equação vectorial de $r\,$ é

$$r = (1, -2) + < (-4, 2) >$$

Uma equações paramétricas de r são:

$$\begin{cases} x = 1 & -4\lambda \\ y = -2 & +2\lambda \end{cases}$$

A partir da igualdade:

$$\frac{x-1}{-4} = \frac{y+2}{2}$$

obtemos a equação cartesiana de r:

$$2x + 4y + 6 = 0$$

Os pontos A = (1, -2), B = (-3, 0) e N = (-7, 2) pertencem a r.

18. Num plano afim real $\mathcal A$ munido de um referencial $\mathcal R$ calcule a equação vectorial e as equações paramétricas da recta afim definida pela equação cartesiana

$$2x - y + 2 = 0$$

Determine dois pontos distintos que incidam nesta recta.

(Resolução)

Note-se que 2x - y + 2 = 0 se e só se y = 2x + 2. Considere-se $x = \lambda$ para obter as equações paramétricas:

$$\begin{cases} x = \lambda \\ y = 2 +2\lambda \end{cases}$$

Uma equação vectorial de r é então

$$r = (0,2) + < (1,2) > .$$

Os pontos A=(0,2) e B=(2,6) pertencem à recta r.

19. Num espaço afim tridimensional \mathcal{A} munido de um referencial \mathcal{R} calcule as equações paramétricas e o sistema de equações cartesianas que definem a recta afim que passa pelo ponto A=(-2,0,1) e tem como vector director $\overrightarrow{v}=(3,-1,-3)$. (Resolução)

A recta r pode definir-se mediante a equação vectorial:

$$r = (-2, 0, 1) + \langle (3, -1, -3) \rangle$$

A recta r pode definir-se então pelas equações paramétricas:

$$\begin{cases} x = -2 + 3\lambda \\ y = -\lambda \\ z = 1 - 3\lambda \end{cases}$$

O sistema de 2 equações cartesianas pode obter-se a partir das igualdades

$$\frac{x+2}{3} = \frac{y}{-1} = \frac{z-1}{-3}$$

Por exemplo, um sistema de equações cartesianas para r é:

$$\begin{cases}
-x - 3y - 2 &= 0 \\
-3x - 3z - 3 &= 0
\end{cases}$$

ou, equivalentemente,

$$\begin{cases} x+3y+2 &= 0\\ x+z+1 &= 0 \end{cases}$$

20. Num espaço afim tridimensional $\mathcal A$ munido de um referencial $\mathcal R$ calcule as equações paramétricas e o sistema de equações cartesianas que definem a recta afim que passa pelos pontos A=(2,2,2) e B=(3,3,3).

(Resolução)

A recta r pode definir-se mediante a equação vectorial:

$$r = (2, 2, 2) + \langle (1, 1, 1) \rangle$$

A recta r pode definir-se então pelas equações paramétricas:

$$\begin{cases} x = 2 + \lambda \\ y = 2 + \lambda \\ z = 2 + \lambda \end{cases}$$

O sistema de 2 equações cartesianas pode obter-se a partir das igualdades

$$\frac{x-2}{1} = \frac{y-2}{1} = \frac{z-2}{1}$$

Por exemplo, um sistema de equações cartesianas para r é:

$$\begin{cases} x - y &= 0 \\ x - z &= 0 \end{cases}$$

21. Num espaço afim tridimensional $\mathcal A$ munido de um referencial $\mathcal R$ calcule a equação vectorial e as equações paramétricas da recta afim definida pelas equações cartesianas

$$\begin{cases} x - 3y - 2 &= 0 \\ 2y - z - 1 &= 0 \end{cases}$$

Determine dois pontos distintos que incidam nesta recta.

(Resolução)

Note-se que

$$c\left(\begin{array}{ccc} 1 & -3 & 0 \\ 0 & 2 & -1 \end{array}\right) = c\left(\begin{array}{cccc} 1 & -3 & 0 & -2 \\ 0 & 2 & -1 & -1 \end{array}\right) = 2$$

portanto o sistema tem solução (não única) e o conjunto de soluções é um subespaço afim de dimensão 1 (uma recta afim como é bem referido no enunciado) .

Resolvemos o sistema, em função de y, por exemplo,

$$\begin{cases} x - 3y - 2 &= 0 \\ 2y - z - 1 &= 0 \end{cases} \iff \begin{cases} x &= 3y + 2 \\ z &= 2y - 1 \end{cases}$$

Se $\lambda = y$ obtemos as equações paramétricas:

$$\begin{cases} x = 2 + 3\lambda \\ y = \lambda \\ z = -1 + 2\lambda \end{cases}$$

donde deduzimos a equação vectorial

$$(2,0,-1)+<(3,1,2)>.$$

Os pontos A=(2,0,-1) (corresponde a $\lambda=0$) e N=(-1,-1,-3) (corresponde a $\lambda=-1$) incidem na recta.

22. Num espaço afim tridimensional munido de um referencial considere o ponto A=(0,0,0). Determine as equações paramétricas e a equação cartesiana do plano π que passa pelo ponto A e está associado ao plano vectorial <(1,1,0),(-1,0,-2)>.

(Resolução)

O plano π tem a equação vectorial

$$\pi = (0,0,0) + \langle (1,1,0), (-1,0,-2) \rangle$$
.

Umas equações paramétricas são:

$$\begin{cases} x = \lambda & -\mu \\ y = \lambda \\ z = & -2\mu \end{cases}$$

Recorde-se que um ponto (x, y, z) incide no plano π se e só se

$$\det \begin{pmatrix} x & y & z \\ 1 & 1 & 0 \\ -1 & 0 & -2 \end{pmatrix} = 0$$

Assim, a equação cartesiana de π é:

$$-2x + 2y + z = 0$$

23. Num espaço afim tridimensional munido de um referencial considere os pontos:

$$A = (1,0,1)$$
 $B = (1,-2,0)$ $C = (1,0,0)$

Justifique que $\{A,B,C\}$ são vértices de um triângulo. Indique uma equação vectorial e uma equação cartesiana do plano afim π definido por A,B e C.

(Resolução)

Os vectores $\overrightarrow{AB}=(0,-2,-1)$ e $\overrightarrow{AC}=(0,0,-1)$ são linearmente independentes, portanto A,B e C formam um triângulo.

Uma equação vectorial de plano π é

$$\pi = (1,0,1) + < (0,-2,-1), (0,0,-1) >$$

A partir de

$$\det \left(\begin{array}{ccc} x-1 & y & z-1 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{array} \right) = 0$$

obtemos a equação cartesiana de π

$$2x - 2 = 0$$

ou, equivalentemente

$$x - 1 = 0.$$

24. Num espaço afim tridimensional munido de um referencial considere o subespaço afim $\mathcal U$ definido pelo sistema de equações lineares

$$\begin{cases} x-y &= -1\\ y+z &= 0\\ 3x-2y+z &= -3 \end{cases}$$

Calcule as equações paramétricas de \mathcal{U} .

(Resolução)

Resolve-se o sistema indicado:

$$\begin{cases} x & -y & = & -1 \\ y & +z & = & 0 \\ 3x & -2y & +z & = & -3 \end{cases} \Longrightarrow \begin{cases} x & -y & = & -1 \\ y & +z & = & 0 \\ y & +z & = & 0 \end{cases} \Longrightarrow \begin{cases} x & = & -1+y \\ z & = & -y \end{cases}$$

Tomando $y=\lambda$ obtêm-se as equações paramétricas:

$$\begin{cases} x = -1 + \lambda \\ y = \lambda \\ z = -\lambda \end{cases}$$

donde deduzimos a equação vectorial

$$U = (-1, 0, 0) + \langle (1, 1, -1) \rangle,$$

logo $\mathcal U$ é uma recta afim. Note-se que o estudo da característica das matrizes associadas ao sistema confirmaria o resultado.

25. Num espaço afim tridimensional munido de um referencial considere o subespaço afim $\mathcal U$ definido pelo sistema de equações lineares

$$\begin{cases} x & -y & = & -1 \\ y & +z & = & 0 \\ 2x & -2y & +z & = & -3 \end{cases}$$

Calcule as equações paramétricas de $\mathcal{U}.$

(Resolução)

Resolve-se o sistema indicado:

$$\begin{cases} x & -y & = & -1 \\ y & +z & = & 0 \\ 2x & -2y & +z & = & -3 \end{cases} \iff \begin{cases} x & -y & = & -1 \\ y & +z & = & 0 \\ z & = & -1 \end{cases} \iff \begin{cases} x = & 0 \\ y = & 1 \\ z = & -1 \end{cases}$$

Assim, $\mathcal{U} = \{(0,1,-1)\}$. Trata-se de um ponto (subespaço afim de dimensão 0).

Note-se que o estudo da característica das matrizes associadas ao sistema confirmaria o resultado.

26. Num espaço afim tridimensional munido de um referencial calcule a intersecção do plano afim π definido pela equação cartesiana

$$3x + 3y - 1 = 0$$

e a recta r incidente no ponto A=(1,1,1) e dirigida pelo vector $\overrightarrow{v}=(0,1,0)$.

(Resolução)

Uma equação vectorial da recta r é

$$r = (1, 1, 1) + < (0, 1, 0) >$$

Assim, um ponto M=(x,y,z) incide em r se e só se existe $\lambda \in \mathbf{R}$ tal que

$$(x, y, z) = (1, 1 + \lambda, 1)$$

M pertence ao plano π se verificar

$$0 = 3x + 3y - 1 = 3(1) + 3(1 + \lambda) - 1 = 3 + 3 + 3\lambda - 1 = 3\lambda + 5$$

donde $\lambda = -5/3$ e então

$$r \cap \pi = \{(1, -2/3, 1)\}.$$

27. Num espaço afim tridimensional munido de um referencial calcule a interseção do plano afim definido pela equação cartesiana

$$3x + 3y - 1 = 0$$

e a recta r incidente no ponto A=(-1/3,0,1) e dirigida pelo vector $\overrightarrow{v}=(0,0,1)$.

(Resolução)

Uma equação vectorial da recta r é

$$r = (-1/3, 0, 1) + < (0, 0, 1) >$$

Assim, um ponto M=(x,y,z) incide em r se e só se existe $\lambda \in \mathbf{R}$ tal que

$$(x, y, z) = (-1/3, 0, 1 + \lambda)$$

M pertence ao plano π se se verificar

$$0 = 3x + 3y - 1 = 3(-1/3) - 1 = -2$$

A igualdade anterior é impossível, portanto $r \cap \pi = \emptyset$

28. Num espaço afim tridimensional munido de um referencial calcule a interseção do plano afim π definido equação vectorial

$$\pi = (1, 2, 1) + \langle (0, 3, 0), (0, -2, -2) \rangle$$

e da recta r definida pelas equações cartesianas:

$$\begin{cases} x & -2z = 1 \\ x + y + z = 4 \end{cases}$$

(Resolução)

Um ponto M=(x,y,z) pertence ao plano π se e só se existem $\lambda,\mu\in\mathbf{R}$ tais que

$$(x, y, z) = (1, 2 + 3\lambda - 2\mu, 1 - 2\mu)$$

Este ponto verifica o sistema de equações cartesianas que definem r se e só se

$$\left\{ \begin{array}{llll} 1 & -2(1-2\mu) & = & 1 \\ 1 & +(2+3\lambda-2\mu) & +(1-2\mu) & = & 4 \end{array} \right. \iff \left\{ \begin{array}{llll} +4\mu & = & 2 \\ 3\lambda & -4\mu & = & 0 \end{array} \right.$$

Resolvendo este sistema obtemos $\lambda=2/3$ e $\mu=1/2$ donde

$$r \cap \pi = \{(1,3,0)\}.$$

29. Num espaço afim tridimensional munido de um referencial calcule a interseção do plano afim π definido equação vectorial

$$\pi = (1, 2, 1) + \langle (0, 3, 0), (0, -2, -2) \rangle$$

e da recta definida pela equação vectorial

$$r = (0, 1, 0) + < (2, 1, 0) >$$

(Resolução)

Para facilitar a resolução podemos calcular uma equação cartesiana do plano π :

$$\det \left(\begin{array}{ccc} x-1 & y-2 & z-1 \\ 0 & 3 & 0 \\ 0 & -2 & -2 \end{array} \right) = 0 \Longleftrightarrow x-1 = 0$$

Um ponto M=(x,y,z) incide em r se e só se existe $\lambda \in \mathbf{R}$ tal que

$$(x, y, z) = (2\lambda, 1 + \lambda, 0)$$

M pertence ao plano π se se verificar

$$0 = x - 1 = 2\lambda - 1$$

donde $\lambda = 1/2$ e

$$\pi \cap r = \{(1, 3/2, 0)\}$$

Resolução alternativa:

Um ponto M=(x,y,z) pertence ao plano π se existem $\mu,\nu\in\mathbf{R}$ tais que

$$(x, y, z) = (1, 2 + 3\mu - 2\nu, 1 - 2\nu)$$

Assim, se $M \in r \cap \pi$, existem $\lambda, \mu, \nu \in \mathbf{R}$ tais que

$$(2\lambda, 1 + \lambda, 0) = (1, 2 + 3\mu - 2\nu, 1 - 2\nu)$$

Obtem-se um sistema de equações:

$$\begin{cases} 2\lambda & = & 1 \\ 1+\lambda & = & 2+3\mu-2\nu & \Longleftrightarrow \\ 0 & = & 1-2\nu \end{cases} \iff \begin{cases} 2\lambda & = & 1 \\ \lambda & -3\mu & +2\nu & = & 1 \\ 2\nu & = & 1 \end{cases}$$

que admite solução.

30. Seja $\mathcal A$ um espaço afim tridimensional munido de um referencial $\{O;\mathcal B\}$. Sejam r_1 e r_2 as rectas definidas por:

$$r_1 = (1,2,0) + < (1,0,1) >$$

 $r_2 = (0,2,-1) + < (1,0,-1) >$

Calcule r_1+r_2 . São r_1 e r_2 rectas complanares ou enviesadas? isto é, existe ou não um plano afim de $\mathcal A$ que contém tais rectas? Se existir, calcule a equação cartesiana.

(Resolução)

Pelo exemplo ??

$$r_1 + r_2 = (1, 2, 0) + (1, 0, 1), (1, 0, -1), (-1, 0, -1) >$$

Como os vectores $\{(1,0,1),(1,0,-1),(-1,0,-1)\}$ são linearmente dependentes, uma equação vectorial de r_1+r_2 é

$$r_1 + r_2 = (1, 2, 0) + \langle (1, 0, 1), (1, 0, -1) \rangle$$

Este subespaço afim é um plano, portanto as rectas são complanares e não enviesadas. A equação cartesiana é dada por

$$\det \begin{pmatrix} x-1 & y-2 & z \\ 1 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix} = 0 \Longleftrightarrow y-2 = 0$$

31. Seja $\mathcal A$ um espaço afim tridimensional munido de um referencial $\{O;\mathcal B\}$. Calcule a equação cartesiana do plano afim de $\mathcal A$ que contém o ponto B=(1,0,2) e a recta

$$r = (1, 2, 3) + < (0, 1, 1) > .$$

Qual a equação cartesiana do plano vectorial associado?

(Resolução)

Uma equação vectorial de r é r=(1,2,3)+<(0,1,1)>. Se A=(1,2,3) o menor subespaço afim $\mathcal U$ que contém r e B=(1,0,2) pode definir-se por

$$\mathcal{U} = A + \langle (0,1,1), \overrightarrow{AB} \rangle = (1,2,3) + \langle (0,1,1), (0,-2,-1) \rangle$$

Trata-se de um plano cuja equação cartesiana é dada por:

$$\det \left(\begin{array}{ccc} x-1 & y-2 & z-3 \\ 0 & 1 & 1 \\ 0 & -2 & -1 \end{array} \right) = 0 \Longleftrightarrow x-1 = 0$$

A equação cartesiana do plano vectorial associado é x=0.

32. Seja $\mathcal A$ um espaço afim tridimensional munido de um referencial $\{O;\mathcal B\}$. Calcule a equação cartesiana do plano afim de $\mathcal A$ que contém o ponto B=(2,0,1) e a recta r=<(1,1,1)>. Qual a equação cartesiana do plano vectorial associado? (Resolucão)

Uma equação vectorial de r é r = (0,0,0)+<(1,1,1)>. De modo análogo ao exercycio anterior, o menor subespaço afim $\mathcal U$ que contém r e B pode definir-se por

$$\mathcal{U} = (0,0,0) + \langle (1,1,1), (2,0,1) \rangle$$

Trata-se de um plano cuja equação cartesiana é dada por:

$$\det \begin{pmatrix} x & y & z \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix} = 0 \Longleftrightarrow -x - y + 2z = 0$$

A equação vectorial do plano vectorial associado também é -x-y+2z=0

33. Seja $\mathcal A$ um espaço afim de dimensão 4 munido de um referencial $\{O;\mathcal B\}$. Calcule as equações paramétricas da recta r de $\mathcal A$ que incide nos pontos A=(1,1,0,0) e B=(0,-3,0-2).

(Resolução)

Uma equação vectorial é

$$r = (1, 1, 0, 0) + < (-1, -4, 0, -2) >$$

E uma equações paramétricas são

$$\begin{cases} x = 1 & -\lambda \\ y = 1 & -4\lambda \\ z = 0 \\ t = & -2\lambda \end{cases}$$

34. Considere, num espaço afim ${\mathcal A}$ de dimensão 4 munido de um referencial, o conjunto ${\mathcal U}$ definido por

$$\mathcal{U} = \{(x, y, z, t) \in \mathcal{A} : x - z = 2\}$$

É um subespaço afim? Qual a dimensão? Determine uma equação vectorial e umas equações paramétricas. (Resolução)

É um subespaço afim de dimensão 3 (um hiperplano afim). Umas equações paramétricas podem ser:

$$\begin{cases} x = 2 + \lambda \\ y = \mu \\ z = \lambda \\ t = \nu \end{cases}$$

Uma equação vectorial é (2,0,0,0)+<(1,0,1,0),(0,1,0,0),(0,0,0,1)>

35. Num espaço afim de dimensão 4 munido de um referencial determine a equação cartesiana do hiperplano afim associado ao hiperplano vectorial

$$H = \{(x, y, z, t) \in \mathbf{R}^4 : x + y - z = 0\}$$

que incide no ponto A=(1,4,1,0). Determine também uma equação vectorial de tal hiperplano. (Resolução)

Um hiperplano afim ${\mathcal H}$ associado ao hiperplano H admite uma equação cartesiana

$$x + y - z + k = 0$$

Se o ponto A = (1, 4, 1, 0) pertence a \mathcal{H} é preciso que

$$1 + 4 - 1 + k = 0$$

donde k=-4 e o hiperplano ${\cal H}$ está definido pela equação cartesiana

$$x + y - z - 4 = 0$$

Tomando $x, y \in t$, por exemplo, como parámetros, com $\lambda = x, \mu = y \in \nu = t$, obtemos:

$$\begin{cases} x = \lambda \\ y = \mu \\ z = -4 + \lambda + \mu \\ t = \nu \end{cases}$$

donde deduzimos uma equação vectorial de \mathcal{H} :

$$\mathcal{H} = (0, 0, -4, 0) + \langle (1, 0, 1, 0), (0, 1, 1, 0), (0, 0, 0, 1) \rangle$$

36. Num espaço afim de dimensão n munido de um referencial determine a equação cartesiana do hiperplano associado ao hiperplano vectorial

$$H = \{(x_1, x_2, \dots, x_n) \in \mathbf{R}^n : x_1 + x_2 + \dots + x_n = 0\}$$

que incide no ponto $A = (1, 1, \dots, 1)$.

(Resolução)

Um hiperplano afim ${\mathcal H}$ associado ao hiperplano H admite uma equação cartesiana

$$x_1 + x_2 + \dots + x_n + k = 0$$

Se o ponto A = (1, 1, ..., 1) pertence a \mathcal{H} é preciso que

$$1+\cdots+1+k=0$$

donde k=--n e o hiperplano ${\cal H}$ está definido pela equação cartesiana

$$x_1 + x_2 + \cdots + x_n - n = 0$$

- 37. Num espaço afim tridimensional munido de um referencial:
 - (a) Calcule uma equação vectorial e uma equação cartesiana do plano afim paralelo a $\pi=(0,0,0)+<(1,0,1),(0,1,-1)>$ incidente no ponto A=(0,0,3).
 - (b) Calcule a equação cartesiana do plano afim paralelo ao plano de equação x-2y+4=0 que incide no ponto B=(1,1,1). Quais as equações paramétricas deste plano?
 - (c) Calcule uma equação vectorial da recta afim paralela à recta A, B > 0 que incide no ponto C = (1, 0, 0).
 - (d) Considere as rectas afins $r_1 = (0,0,2) + < (1,1,1) > e$ $r_2 = < (1,2,0) >$. Calcule uma equação vectorial do plano paralelo às rectas r_1 e r_2 que incide no ponto M = (1,2,-1).

(Resolução)

(a) O plano π' paralelo a π e incidente em A=(0,0,3) tem a equação vectorial:

$$\pi' = (0,0,3) + < (1,0,1), (0,1,-1) >$$

A equação cartesiana é então:

$$\det \begin{pmatrix} x & y & z-3 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} = 0 \Longleftrightarrow -x+y+z-3=0$$

(b) O plano π'' paralelo ao plano indicado admite uma equação cartesiana do tipo

$$x - 2y + k = 0$$

Como $B=(1,1,1)\in\pi'$, é preciso

$$1 - 2 + k = 0$$

donde k=1 e a equação requerida é

$$x - 2y + 1 = 0$$

Umas equações paramétricas deste plano são:

$$\left\{ \begin{array}{lll} x&=&-1&+2\lambda\\ y&=&&\lambda\\ z&=&&\mu \end{array} \right.$$

(c) A recta vectorial associada à recta afim $< A, B > \epsilon < \overrightarrow{AB} > = < (1, 1, -2) >$. A recta s paralela à recta < A, B > incidente em C define-se pela equação vectorial:

$$s = (1,0,0) + < (1,1,-2) > .$$

(d) Um plano paralelo às rectas r_1 e r_2 deve estar associado ao plano vectorial

$$U = <(1, 1, 1), (1, 2, 0)>$$

Portanto, uma equação vectorial do plano requerido é

$$(1,2,-1)+<(1,1,1),(1,2,0)>.$$

38. Estude posição relativa das rectas r_1 e r_2 de um espaço afim tridimensional munido de um referencial, se

$$r_1 \equiv (1,2,1) + < (1,1,2) > \qquad r_2 \equiv (0,0,1) + < (1,1,2) >$$

(Resolução)

As rectas r_1 e r_2 são paralelas (estão associadas à mesma recta vectorial). Note-se que

$$r_1 + r_2 = (1, 2, 1) + \langle (1, 1, 2), (-1, -2, 0) \rangle$$

Como dim $r_1 + r_2 = 2$ as rectas são distintas.

39. Seja ${\cal A}$ um espaço afim de dimensão quatro munido de um referencial. Considere o subespaço afim ${\cal U}$ de ${\cal A}$ definido por

$$\mathcal{U} = \{(x, y, z, t) \in \mathcal{A} : x + y - t = 0 \land y + z - 2t + 1 = 0\}$$

Determine o subespaço vectorial associado a \mathcal{U} . Determine o subespaço afim \mathcal{U}' paralelo a \mathcal{U} , da mesma dimensão, que incide no ponto (0,2,1,0).

(Resolução)

O subespaço vectorial U associado a $\mathcal U$ é (na base associada ao referencial):

$$U = \{(x, y, z, t) \in E : x + y - t = 0 \land y + z - 2t = 0\}$$

Um subespaço \mathcal{U}' paralelo a \mathcal{U} pode definir-se por

$$\mathcal{U}' = \{(x, y, z, t) \in E : x + y - t + k = 0 \land y + z - 2t + m = 0\}$$

Se \mathcal{U}' incide em (0,2,1,0) é preciso que k=-2 e m=-3 donde

$$\mathcal{U}' = \{(x, y, z, t) \in E : x + y - t - 2 = 0 \land y + z - 2t - 3 = 0\}$$

40. Posições relativas de duas rectas no plano

Sejam r e r' duas rectas afins de um plano euclidiano (munido de um referencial) definidas, respectivamente, pelas equações cartesianas

$$ax + by = c$$
 $a'x + b'y = c'$

Determine as posições relativas das rectas em função dos coeficientes das equações cartesianas.

(Resolução)

Considerem-se A e A' as matrizes associadas a esse sistema de equações:

$$A = \left(\begin{array}{cc} a & b \\ a' & b' \end{array}\right) \qquad A' = \left(\begin{array}{ccc} a & b & c \\ a' & b' & c' \end{array}\right)$$

Então:

(a) as rectas r e r' são coincidentes (iguais) se e só se

$$c(A) = c(A') = 1$$

ou seja, se e só se as filas (a, b, c) e (a', b', c') são proporcionais;

(b) as rectas r e r' concorrem num único ponto M (solução do sistema) se e só se

$$c(A) = c(A') = 2$$

ou seja, se e só se (a,b) e (a',b') não sao proporcionais;

(c) as rectas r e r' são paralelas (o sistema não possui solução) se e só se

$$c(A) = 1$$
 c $c(A') = 2$

ou seja, se e só se (a,b) e (a',b') são proporcionais mas (a,b,c) e (a',b',c') não são.

41. Posições relativas de dois planos num espaço afim tridimensional

Sejam π e π' dois planos afins de um espaço afim tridimensional (munido de um referencial) definidos, respectivamente, pelas equações cartesianas

$$ax + by + cz = d$$
 $a'x + b'y + c'z = d'$

Determine as posições relativas dos planos em função dos coeficientes das equações cartesianas.

(Resolução)

Considerem-se A e A' as matrizes associadas a esse sistema de equações:

$$A = \begin{pmatrix} a & b & c' \\ a' & b' & c' \end{pmatrix} \qquad A' = \begin{pmatrix} a & b & c & d \\ a' & b' & c' & d' \end{pmatrix}$$

Então:

(a) os planos π e π' são coincidentes (iguais) se e só se

$$c(A) = c(A') = 1$$

ou seja, se e só se as filas (a, b, c, d) e (a', b', c', d') são proporcionais;

(b) os planos π e π' concorrem numa recta (solução do sistema) se e só se

$$c(A) = c(A') = 2$$

ou seja, se e só se (a,b,c) e (a',b',c') não sao proporcionais.

(c) os planos π e π' são paralelos (o sistema não possui solução) se e só se

$$c(A) = 1$$
 c $c(A') = 2$

ou seja, se e só se (a,b,c) e (a',b',c') são proporcionais mas (a,b,c,d) e (a',b',c'.d') não são.

42. Posições relativas de três planos no espaço

Sejam π , π' e π'' três planos afins distintos de um espaço afim tridimensional (munido de um referencial) definidos, respectivamente, pelas equações cartesianas

$$ax + by + cz = d$$
 $a'x + b'y + c'z = d'$ $a''x + b''y + c''z = d''$

Determine as posições relativas dos planos em função dos coeficientes das equações cartesianas.

(Resolução)

Considerem-se A e A' as matrizes associadas a esse sistema de equações:

$$A = \begin{pmatrix} a & b & c' \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix} \qquad A' = \begin{pmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \end{pmatrix}$$

Então:

(a) os planos π e π' são coincidentes (iguais) se e só se

$$c(A) = c(A') = 1$$

ou seja, se e só se as filas (a,b,c,d), (a',b',c',d') e (a'',b'',c'',d'') são proporcionais;

(b) os planos π , π' e π'' concorrem numa recta (solução do sistema) se e só se

$$c(A) = c(A') = 2;$$

Nota: Se r é uma recta do espaço definida por duas equações cartesianas

$$ax + by + cz = d$$
 $a'x + b'y + c'z = d'$,

os planos do espaço que contêm r admitem uma equação do tipo

$$\lambda(ax + by + cz - d) + \mu(a'x + b'y + c'z - d') = 0, \quad \lambda, \mu \in \mathbf{R}$$

Esta família de planos costuma chamar-se o feixe de planos definido por r.

(c) os planos π , π' e π'' concorrem num ponto (solução única do sistema) se e só se

$$c(A) = c(A') = 3$$

ou seja, se e só se os vectores $\{(a,b,c),(a',b',c'),(a'',b'',c'')\}$ são linearmente independentes;

- (d) Se c(A) = 1 e c(A') = 2 a intersecção dos três planos é vazia (o sistema não possui solução). Há duas configurações possíveis:
 - Os três planos são paralelos e distintos.
 - Dois dos planos são coincidentes e o terceiro é paralelo aos anteriores e distinto deles:
- (e) Se c(A) = 2 e c(A') = 3), a intersecção dos três planos também é vazia. As configurações possíveis neste caso são
 - Dois dos planos são paralelos e o terceiro incide numa recta com cada de aqueles;
 - os planos formam um prisma triangular, isto é, são dois a dois incidentes numa recta:

ATENÇÃO: Recorde-se que o caso c(A) = 1 e c(A') = 3 não é possível, em geral $c(A') \le c(A) + 1$.

43. Num espaço afim tridimensional munido de um referencial, determine as posições relativas dos planos π , π' e π'' definidos respectivamente pelas equações cartesianas:

$$x + y + z = 1$$
, $2x + 2y + 2z = 2$, $-3x - 3y - 3z = -3$

(Resolução)

Os três planos são coincidentes.

44. Num espaço afim tridimensional munido de um referencial, determine as posições relativas dos planos π , π' e π'' definidos respectivamente pelas equações cartesianas:

$$x + y + z = 1$$
, $x + y + z = 2$, $x + y + z = 5$;

(Resolução)

Os três planos são paralelos e distintos.

45. Num espaço afim tridimensional munido de um referencial, determine as posições relativas dos planos π , π' e π'' definidos respectivamente pelas equações cartesianas:

$$x + y + z = 1$$
, $2x + 2y + 2z = 2$, $x + y + z = 5$;

(Resolução)

Os planos π_1 e π_2 são coincidentes e o plano π_3 é paralelo (e distinto) aos anteriores.

46. Num espaço afim tridimensional munido de um referencial, determine as posições relativas dos planos π , π' e π'' definidos respectivamente pelas equações cartesianas:

$$x + y = 1,$$
 $x - 2y = 2,$ $2x - y = 3$

(Resolução)

As matrizes associadas ao sistema são:

$$\left(\begin{array}{cccc}
1 & 1 & 0 \\
1 & -2 & 0 \\
2 & -1 & 0
\end{array}\right) \qquad \left(\begin{array}{ccccc}
1 & 1 & 0 & 1 \\
1 & -2 & 0 & 2 \\
2 & -1 & 0 & 3
\end{array}\right)$$

As duas matrizes têm característica 2, portanto o sistema define um subespaço afim de dimensão 1 (uma recta afim). Escolhendo, por exemplo, as duas primeiras equações, obtemos essa recta afim pode definir-se pela equação vectorial:

$$r = (4/3, -1/3, 0) + < (0, 0, 1) >$$

(Os três planos são incidentes numa recta, formam parte do feixe de planos definido pela recta)

47. Num espaço afim tridimensional munido de um referencial, determine as posições relativas dos planos π , π' e π'' definidos respectivamente pelas equações cartesianas:

$$x + y = 1,$$
 $x - 2y = 2,$ $z = 5$

(Resolução)

As matrizes associadas ao sistema são:

$$\left(\begin{array}{cccc}
1 & 1 & 0 \\
1 & -2 & 0 \\
0 & 0 & 1
\end{array}\right) \qquad \left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & -2 & 0 & 2 \\
0 & 0 & 1 & 5
\end{array}\right)$$

As duas matrizes têm característica 3, portanto o sistema define um subespaço afim de dimensão 0(um ponto). Resolvendo o sistema obtemos as coordenadas desse ponto: (4/3, -1/3, 5).

48. Num espaço afim tridimensional munido de um referencial, determine as posições relativas dos planos π , π' e π'' definidos respectivamente pelas equações cartesianas:

$$x + y + z = 1,$$
 $x + y + z = 2,$ $x - 2y + z = 5;$

(Resolução)

A intersecção dos três planos é vazia (o sistema não tem solução). Os dois primeiros planos são paralelos e distintos e o terceiro plano incide numa recta com cada um deles.

49. Num espaço afim tridimensional munido de um referencial, determine as posições relativas dos planos π , π' e π'' definidos respectivamente pelas equações cartesianas:

$$x + y + z = 1$$
, $x + y - z = 1$, $2x + 2z = 5$.

(Resolução)

As matrizes associadas ao sistema são:

$$\left(\begin{array}{cccc} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 2 & 0 \end{array}\right) \qquad \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 2 & 2 & 0 & 5 \end{array}\right)$$

A primeira matriz tem característica 2 e a segunda característica 3, portanto o sistema não possui solução: a intersecção dos três planos é vazia. Não há nenhuma relação de paralelismo entre esses planos, isto é, os planos intersectam-se dois a dois numa recta: formam um prisma triangular.

Ortogonalidade, problemas métricos.

- 50. Determine o complemento ortogonal da recta vectorial gerada pelo vector \overrightarrow{v} .
 - (a) $\overrightarrow{v} = (2,1);$
 - (b) $\overrightarrow{v} = (2, -2);$
 - (c) $\overrightarrow{v} = (1, -1, 1);$
 - (d) $\overrightarrow{v} = (1, -2, 3);$
 - (e) $\overrightarrow{v} = (7, 1, 1, -2);$
 - (f) $\overrightarrow{v} = (1, 1, 1, \dots, 1).$

(Resolução)

(a) $\overrightarrow{v} = (2,1)$.

O complemento ortogonal de $<\overrightarrow{v}>$ é a recta vectorial de ${f R}^2$ definida pela equação cartesiana:

$$2x + y = 0$$

(b) $\overrightarrow{v} = (2, -2)$.

O complemento ortogonal de $<\overrightarrow{v}>$ é a recta vectorial de ${f R}^2$ definida pela equação cartesiana:

$$2x + -2y = 0$$

(c) $\overrightarrow{v} = (1, -1, 1)$.

O complemento ortogonal de $<\overrightarrow{v}>$ é o plano vectorial de ${f R}^3$ definido pela equação cartesiana:

$$x - y + z = 0$$

(d) $\overrightarrow{v} = (1, -2, 3).$

O complemento ortogonal de $<\overrightarrow{v}>$ é o plano vectorial de ${f R}^3$ definido pela equação cartesiana:

$$x - 2y + 3z = 0$$

(e) $\overrightarrow{v} = (7, 1, 1, -2)$.

O complemento ortogonal de $<\overrightarrow{v}>$ é o hiperplano vectorial de ${f R}^4$ definido pela equação cartesiana:

$$7x + y + z - 2t = 0$$

(f) $\overrightarrow{v} = (1, 1, \dots, 1).$

O complemento ortogonal de $<\overrightarrow{v}>$ é o hiperplano vectorial de \mathbf{R}^n definido pela equação cartesiana:

$$x_1 + x_2 + \dots + x_n = 0$$

51. Determine o complemento ortogonal do plano vectorial gerado pelos vectores \overrightarrow{v} e \overrightarrow{w} .

(a)
$$\overrightarrow{v} = (1, -1, 1), \overrightarrow{w} = (2, 0, -2);$$

(b)
$$\overrightarrow{v} = (1, -2, 3), \overrightarrow{w} = (3, -5, 0);$$

(c)
$$\overrightarrow{v} = (0, -1, 0, 1), \overrightarrow{w} = (0, 1, 1, -2).$$

(Resolução)

(a) $\overrightarrow{v} = (1, -1, 1), \overrightarrow{w} = (2, 0, -2).$

O complemento ortogonal $<\overrightarrow{v},\overrightarrow{w}>^{\perp}$ está definido pelas equações cartesianas:

Resolvendo o sistema obtemos que $<\overrightarrow{v},\overrightarrow{w}>^{\perp}$ é a recta vectorial < (1,2,1)>.

(b) $\overrightarrow{v} = (1, -2, 3), \overrightarrow{w} = (3, -5, 0);$

O complemento ortogonal $<\overrightarrow{v},\overrightarrow{w}>^{\perp}$ está definido pelas equações cartesianas:

Resolvendo o sistema obtemos que $<\overrightarrow{v},\overrightarrow{w}>^{\perp}$ é a recta vectorial < (5,3,1/3)>.

(c) $\overrightarrow{v} = (0, -1, 0, 1), \overrightarrow{w} = (0, 1, 1, -2).$

O complemento ortogonal $<\overrightarrow{v},\overrightarrow{w}>^{\perp}$ está definido pelas equações cartesianas:

Resolvendo o sistema obtemos que $\langle \overrightarrow{v}, \overrightarrow{w} \rangle^{\perp}$ é o plano vectorial $\langle (1,0,0,0)(0,1,1,1) \rangle$.

52. Determine duas rectas vectoriais V e W de \mathbf{R}^2 tais que $V \cap W = \{\overrightarrow{0}\}$ mas V e W não são ortogonais. (Resolução)

As rectas
$$V = <(2,2) > e \ \overrightarrow{w} = <(0,-1) > verificam <(2,2) > \cap <(0,-1) > = \{\overrightarrow{0}\}$$
 mas

$$(2,2)\cdot(0,-1)=-2\not=0$$

53. Sejam \overrightarrow{v} e \overrightarrow{w} vectores de \mathbf{R}^n não nulos e λ , μ números reales estritamente possitivos. Prove que

$$\cos(\overrightarrow{v}, \overrightarrow{w}) = \cos(\lambda \overrightarrow{v}, \mu \overrightarrow{w})$$

(Resolução)

$$\cos(\lambda \overrightarrow{v}, \mu \overrightarrow{w}) = \frac{(\lambda \overrightarrow{v}) \cdot (\mu \overrightarrow{w})}{\|\lambda \overrightarrow{v}\| \|\mu \overrightarrow{w}\|} = \lambda \mu \frac{\overrightarrow{v} \cdot \overrightarrow{w}}{\|\lambda \| \|\overrightarrow{v}\| \|\mu \| \overrightarrow{w}\|} = \frac{\overrightarrow{v} \cdot \overrightarrow{w}}{\|\overrightarrow{v}\| \|\overrightarrow{w}\|}$$

já que $|\lambda| = \lambda$ e $|\mu| = \mu$.

54. No plano ${f R}^2$, determine a projecção ortogonal do vector $\overrightarrow{v}=(1,1)$ na recta vectorial < (0,3)>.

Tem-se que $(1,1) = \lambda(0,3) + \overrightarrow{u}$, com $\overrightarrow{u} \perp (0,3)$. Assim,

$$(0,3)\cdot(1,1)=\lambda(0,3)\cdot(0,3)+0$$

donde $\lambda=\frac{3}{9}=1/3$ e portanto, a projecção de (1,1) na recta < (0,3) > é

$$\frac{1}{3}(0,3)=(0,1).$$

55. No plano \mathbf{R}^2 , determine a projecção ortogonal do vector $\overrightarrow{v} = (x, y)$ na recta vectorial < (0, 3) >. (Resolução)

Tem-se que $(x,y) = \lambda(0,3) + \overrightarrow{u}$, com $\overrightarrow{u} \perp (0,3)$. Assim,

$$(0,3)\cdot(x,y)=\lambda(0,3)\cdot(0,3)+0$$

donde $\lambda = \frac{3y}{9} = y/3$ e portanto, a projecção de (x,y) na recta < (0,3) > é

$$\frac{y}{3}(0,3)=(0,y).$$

56. Em ${f R}^3$, determine a projeção ortogonal do vector $\overrightarrow{v}=(1,1,1)$ na recta vectorial <(-1,0,2)>.

(Resolução)

Tem-se que $(1,1,1) = \lambda(-1,0,2) + \overrightarrow{u}$, com $\overrightarrow{u} \perp (-1,0,2)$. Assim,

$$(-1,0,2)\cdot(1,1,1)=\lambda(-1,0,2)\cdot(-1,0,2)+0$$

donde $\lambda = \frac{1}{5}$ e portanto, a projecção de (1,1,1) na recta < (-1,0,2) > é

$$\frac{1}{5}(-1,0,2) = (-\frac{1}{5},0,\frac{2}{5}).$$

57. Em ${f R}^3$, determine a projeção ortogonal do vector $\overrightarrow{v}=(x,y,z)$ na recta vectorial <(-1,0,2)>.

(Resolução)

Tem-se que $(x, y, z) = \lambda(-1, 0, 2) + \overrightarrow{u}$, com $\overrightarrow{u} \perp (-1, 0, 2)$. Assim,

$$(-1,0,2)\cdot(x,y,z) = \lambda(-1,0,2)\cdot(-1,0,2) + 0$$

donde $\lambda = \frac{-x+2z}{5}$ e portanto, a projecção de (x,y,z) na recta < (-1,0,2) > $cute{e}$

$$\frac{-x+2z}{5}(-1,0,2)=\left(\frac{x-2z}{5},0,\frac{-2x+4z}{5}\right).$$

58. Em ${f R}^3$, determine a projeção ortogonal do vector $\overrightarrow{v}=(1,0,2)$ no plano vectorial <(1,1,1),(2,0,0)>.

(Resolução)

Tem-se que $(1,0,2) = \lambda(1,1,1) + \mu(2,0,0) + \overrightarrow{u}$, com $\overrightarrow{u} \in <(1,1,1),(2,0,0)>^{\perp}$. Em particular

$$\overrightarrow{u} \cdot (1,1,1) = 0$$
 e $\overrightarrow{u} \cdot (2,0,0) = 0$

Assim

$$(1,1,1)\cdot(1,0,2)=\lambda(1,1,1)\cdot(1,1,1)+\mu(1,1,1)\cdot(2,0,0)+0$$

6

$$(2,0,0)\cdot(1,0,2) = \lambda(2,0,0)\cdot(1,1,1) + \mu(2,0,0)\cdot(2,0,0) + 0$$

Obtém-se então um sistema:

$$\begin{cases} 3 = 3\lambda +2\mu \\ 2 = 2\lambda +4\mu \end{cases}$$

Resolvendo o sistema obtemos $\lambda=1$ e $\mu=0$. A projeção ortogonal de (1,0,2) no plano vectorial indicado é o vector

$$\lambda(1,1,1) + \mu(2,0,0) = 1(1,1,1) + 0(2,0,0) = (1,1,1)$$

59. Em ${f R}^3$, determine a projeção ortogonal do vector $\overrightarrow{v}=(x,y,z)$ no plano vectorial <(1,1,1),(2,0,0)>.

(Resolução)

Tem-se que $(x, y, z) = \lambda(1, 1, 1) + \mu(2, 0, 0) + \overrightarrow{u}$, com $\overrightarrow{u} \in (1, 1, 1), (2, 0, 0) >^{\perp}$. Em particular

$$\overrightarrow{u} \cdot (1,1,1) = 0$$
 e $\overrightarrow{u} \cdot (2,0,0) = 0$

Assim

$$(1,1,1)\cdot(x,y,z) = \lambda(1,1,1)\cdot(1,1,1) + \mu(1,1,1)\cdot(2,0,0) + 0$$

e

$$(2,0,0)\cdot(x,y,z)=\lambda(2,0,0)\cdot(1,1,1)+\mu(2,0,0)\cdot(2,0,0)+0$$

Obtém-se então um sistema:

$$\begin{cases} x+y+z &=& 3\lambda & +2\mu \\ 2x &=& 2\lambda & +4\mu \end{cases}$$

Resolvendo o sistema obtemos $\lambda=\frac{y+z}{2}$ e $\mu=\frac{2x-y-z}{4}$. A projeção ortogonal de (x,y,z) no plano vectorial indicado é o vector

$$\lambda(1,1,1) + \mu(2,0,0) = \frac{y+z}{2}(1,1,1) + \frac{2x-y-z}{4}(2,0,0) = \frac{1}{2}(2x,y+z,y+z)$$

60. Determine uma base ortonormada do subespaço vectorial W de ${f R}^3$ definido pela equação cartesiana

$$2x - y + z = 0$$

(Resolução)

Calculamos, em primeiro lugar, uma base de W. Como 2x=y-z, considerando y e z como parámetros obtemos as equações paramétricas:

$$\left. \begin{array}{ccc}
x & = & \lambda & -\mu \\
y & = & \lambda \\
z & = & \mu
\end{array} \right\}$$

donde W = <(1, 1, 0), (-1, 0, 1)>.

Seja $\overrightarrow{v}_1 = (1,1,0)$. Definimos \overrightarrow{v}_2 como $\overrightarrow{v}_2 = \lambda \overrightarrow{v}_1 + (-1,0,1)$. É preciso que $\overrightarrow{v}_1 \perp \overrightarrow{v}_2$ portanto

$$0 = \overrightarrow{v}_1 \cdot \overrightarrow{v}_2 = \lambda \overrightarrow{v}_1 \cdot \overrightarrow{v}_1 + \overrightarrow{v}_1 \cdot (-1, 0, 1)$$

donde

$$0 = \lambda(1, 1, 0) \cdot (1, 1, 0) + (1, 1, 0) \cdot (-1, 0, 1)$$

logo $\lambda = 1/2$ e $\overrightarrow{u}_2 = 1/2(1,1,0) + (-1,0,1) = (-1/2,1/2,1)$.

A base $\{(1,1,0),(-1/2,1/2,1)\}$ é uma base ortogonal de W. Para obter uma base ortonormal $\{\overrightarrow{u}_1,\overrightarrow{u}_2\}$ do plano W precisa-se só de normalizar os vectores \overrightarrow{v}_1 e \overrightarrow{v}_2 . Obtemos então:

$$\overrightarrow{u}_1 = \frac{\overrightarrow{v}_1}{\|\overrightarrow{v}_1\|} = (\sqrt{2}/2, \sqrt{2}/2, 0)$$

$$\overrightarrow{u}_2 = \frac{\overrightarrow{v}_2}{\|\overrightarrow{v}_2\|} = (-\sqrt{6}/6, \sqrt{6}/6, \sqrt{6}/3)$$

- 61. Seja \mathcal{A} um plano euclidiano munido de um referencial ortonormado.
 - (a) Determine a recta s_1 perpendicular à recta r_1 definida pela equação vectorial:

$$r_1 = (0,1) + < (3,-2) >$$

e que incide no ponto $P_1 = (2, 4)$.

(b) Determine a recta s_2 perpendicular à recta r_2 definida pela equação cartesiana:

$$2x + 5y - 1 = 0$$

e que incide no ponto $P_2 = (-1, 5)$.

(Resolução)

(a) A recta vectorial ortogonal à recta < $(3,-2) > \acute{e}$ a recta < (2,3) >. Assim

$$s_1 = (2,4) + < (2,3) >$$

(b) A recta vectorial normal à recta afim r_2 está dirigida pelo vector (2,5). Assim

$$s_2 = (-1,5) + < (2,5) >$$

- 62. Seja ${\cal A}$ um espaço euclidiano tridimensional munido de um referencial ortonormado.
 - (a) Calcule a recta r perpendicular ao plano π definido pela equação cartesiana:

$$x + 2y + 4 = 0$$

e que incide no ponto P = (1, 1, 1).

(b) Calcule a recta r' perpendicular ao plano π' definido pela equação vectorial:

$$\pi'' = (0,1,1) + < (2,0,0), (-1,-1,3) >$$

e que incide no ponto P = (1, 1, 1).

(Resolução)

(a) A recta vectorial normal ao plano π é < (1,2,0) >. Assim, a recta r pode definir-se pela equação vectorial:

$$r = (1, 1, 1) + \langle (1, 2, 0) \rangle$$

(b) O vector director \overrightarrow{u} da recta r' deve ser perpendicular aos vectores (2,0,0) e (-1,-1,3), podemos então considerar:

$$\overrightarrow{u} = (2,0,0) \wedge (-1,-1,3) = (0,-6,-2)$$

e definir r' pela equação vectorial

$$r' = (1, 1, 1) + < (0, -6, -2) >$$

- 63. Seja $\mathcal A$ um espaço euclidiano tridimensional munido de um referencial ortonormado.
 - (a) Calcule o plano π perpendicular à recta s definida pela equação vectorial:

$$s = (0, 0, -2) + \langle ((0, 2, -1)) \rangle$$

e que incide no ponto P = (1, 1, 1).

(b) Calcule o plano π' perpendicular à recta s' definida pelas equações cartesianas:

$$\begin{cases}
 2x - 3y + z - 4 & = & 0 \\
 2x + 2y + z & = & 0
 \end{cases}$$

e que incide no ponto P = (1, 1, 1).

(Resolução)

(a) A recta s está dirigida pelo vector (0,2,-1). Os planos afins perpendiculares a s são então definidos por uma equação cartesiana do tipo

$$2y - z + k = 0$$

Se π indice no ponto P, tem-se k=-1 donde π é o plano definido pela equação cartesiana:

$$2u - z - 1 = 0$$

(b) A recta s' está definida como a intersecção dos planos afins π_1 e π_2 definidos respectivamente pelas equações cartesianas:

$$2x - 3y + z - 4 = 0$$
 e $2x + 2y + z = 0$

Se \overrightarrow{u} é um vector director de s' tem-se que \overrightarrow{u} é ortogonal aos vectores (2,-3,1) e (2,2,1) ou , equivalentemente, \overrightarrow{u} é proporcional ao produto vectorial de (2,-3,1) e (2,2,1). Podemos então considerar

$$\overrightarrow{u} = (2, -3, 1) \land (2, 2, 1) = (-5, 0, 10)$$

O plano π' , perpendicular à recta s' dirigida por \overrightarrow{u} , admite então uma equação cartesiana do tipo

$$-5x + 10z + k = 0$$

Como $P(1, 1, 1) \in \pi'$ tem-se k = -5.

64. Num espaço euclidiano tridimensional ${\cal A}$ munido de um referencial ortonormado, considere as rectas afins:

$$r = (1, 2, 3) + < (2, -3, 1) >$$

 $s = < (2, 2, 1) >$

Calcule a recta t perpendicular a r e a s que incide no ponto M=(5,0,0).

(Resolução)

A recta perpendicular a r e a s está dirigida pelo vector \overrightarrow{u} , com

$$\overrightarrow{u} = (2, -3, 1) \land (2, 2, 1) = (-5, 0, 10)$$

donde

$$t = (5,0,0) + < (-5,0,10) >$$

- 65. Seja \mathcal{A} um espaço afim de dimensão quatro munido de um referencial ortonormado.
 - (a) Calcule a recta r perpendicular ao hiperplano ${\mathcal H}$ definido pela equação cartesiana:

$$x + 2y + 4t - 1 = 0$$

e que incide no ponto P = (10, 0, 0, 0).

(b) Calcule o hiperplano \mathcal{H}' perpendicular à recta s definida pela equação vectorial:

$$s = (1, 0, -1, 1) + < (0, -2, -3, 5) >$$

e que incide no ponto P = (10, 0, 0, 0).

(Resolução)

(a) A recta normal ao hiperplano H está dirigida pelo vector

$$\vec{n} = (1, 2, 0, 4)$$

Assim, a recta r perpendicular a $\mathcal H$ e que incide no ponto P pode definir-se pela equação vectorial

$$r = (10, 0, 0, 0) + < (1, 2, 0, 4) >$$

(b) O hiperplano \mathcal{H}' é definido por uma equação cartesiana do tipo

$$-2y - 3z + 5t + k = 0$$

Como $P \in \mathcal{H}'$, tem-se k = 0 donde \mathcal{H}' é o hiperplano

$$-2y - 3z + 5t = 0$$

66. Seja A um espaço afim euclidiano tridimensional munido de um referencial ortonormado. Calcule a perpendicular comum às rectas enviesadas:

$$r = (1,2,3) + < (0,0,1) >$$
 $s = (2,0,0) + < (0,1,-1) >$

(Resolução 1)

O vector director da perpendicular comum é $\overrightarrow{u}=(0,0,1)\land (0,1,-1)=(-1,0,0)$. Se A=(1,2,3), B=(2,0,0) e P e Q são os pés da perpendicular comum, com $P\in r$ e $Q\in s$, tem-se

$$\overrightarrow{AB} = \overrightarrow{AP} + \overrightarrow{PQ} + \overrightarrow{QB}$$

Note-se que $\overrightarrow{AP} \in <(0,0,1)>$, $\overrightarrow{PQ} \in <(-1,0,0)>$ e $\overrightarrow{QB} \in <(0,1,-1)>$ donde

$$\overrightarrow{AB} = \lambda(0,0,1) + \mu(-1,0,0) + \nu(0,1,-1)$$

Os vectores (0,0,1) e (0,1,-1) são ortogonais ao vector (-1,0,0), portanto

$$\overrightarrow{AB} \cdot (0,0,1) = \lambda - \nu$$
 $e \quad \overrightarrow{AB} \cdot (0,1,-1) = -\lambda + 2\nu$

Como $\overrightarrow{AB} = (1, -2, -3)$ obtemos o sistema:

$$\begin{array}{rcl}
-3 & = & \lambda - \nu \\
1 & = & -\lambda + 2\nu
\end{array}$$

donde $\lambda=-5$ e $\nu=-2$. Em particular, $\overrightarrow{AP}=-5(0,0,1)$ donde

$$P = A + \overrightarrow{AP} = (1, 2, 3) - 5(0, 0, 1) = (1, 2, -2).$$

A perpendicular comum t pode então definir-se pela equação vectorial

$$t = P + \langle \overrightarrow{u} \rangle = (1, 2, -2) + \langle (1, 0, 0) \rangle$$

(Resolução 2)

Seja $\overrightarrow{u}=(0,0,1) \land (0,1,-1)=(-1,0,0)$. A perpendicular comum é a intersecção dos planos afins:

$$\pi_r = (1,2,3) + < (0,0,1), (-1,0,0) >$$
 e $\pi_s = (2,0,0) + < (0,1,-1), (-1,0,0) >$

Os planos π_r e π_s podem definir-se, respectivamente, pelas equações cartesianas:

$$y - 2 = 0 \qquad y + z = 0$$

Assim t é a recta definida pelo sistema de equações cartesianas,

$$y-2 = 0$$

$$y+z = 0$$

ou, equivalentemente, a recta definida pela equação vectorial:

$$t = (0, 2, -2) + < (1, 0, 0) >$$

67. Seja A um espaço afim euclidiano tridimensional munido de um referencial ortonormado. Calcule os pés da perpendicular comum às rectas enviesadas:

$$r = (1, 2, 1) + \langle (1, 0, -1) \rangle$$
 $s = (1, 0, 0) + \langle (0, 2, 2) \rangle$

(Resolução)

Sejam t a perpendicular comum, P e Q os pés da perpendicular, com $P \in r$ e $Q \in s$. Considerem-se ainda os pontos $A = (1, 2, 1) \in r$ e $B = (1, 0, 0) \in s$. Tem-se

$$\overrightarrow{AB} = \overrightarrow{AP} + \overrightarrow{PQ} + \overrightarrow{QB}$$

A perpendicular comum está dirigida pelo vector

$$\overrightarrow{u} = (1,0,-1) \land (0,2,2) = (2,-2,2)$$

Portanto, como, $\overrightarrow{AP} \in \langle (1,0,-1) \rangle$, $\overrightarrow{PQ} \in \langle \overrightarrow{u} \rangle$ e $\overrightarrow{QB} \in \langle (0,2,2) \rangle$, tem-se

$$\overrightarrow{AB} = \lambda(1,0,-1) + \mu(2,-2,2) + \nu(0,2,2)$$

Os vectores (1,0,-1) e (2,-2,2) são ortogonais logo:

$$\overrightarrow{AB} \cdot (1,0,-1) = \lambda(1,0,-1) \cdot (1,0,-1) + \nu(0,2,2) \cdot (1,0,-1)$$

Como $\overrightarrow{AB} = (0, -2, -1)$ obtemos $1 = 2\lambda - 2\nu$.

Os vectores (0,2,2) e (2,-2,2) são ortogonais logo:

$$\overrightarrow{AB} \cdot (0,2,2) = \lambda(1,0,-1) \cdot (0,2,2) + \nu(0,2,2) \cdot (0,2,2)$$

Como $\overrightarrow{AB} = (0, -2, -1)$ tem-se $-6 = -2\lambda + 8\nu$.

Resolvendo o sistema:

$$\left.\begin{array}{rcl}
1 & = & 2\lambda - 2\nu \\
-6 & = & -2\lambda + 8\nu
\end{array}\right\}$$

obtemos $\lambda = -1/3$ e $\nu = -5/6$. Em particular

$$\overrightarrow{AP} = \lambda(1, 0, -1) = -1/3(1, 0, -1) = (-1/3, 0, 1/3)$$

logo

$$P = A + \overrightarrow{AP} = (1, 2, 1) + (-1/3, 0, 1/3) = (2/3, 2, 4/3)$$

E também

$$\overrightarrow{QB} = \nu(0, 2, 2) = -5/6(0, 2, 2) = (0, -5/3, -5/3)$$

donde

$$Q = B + \overrightarrow{BQ} = B - \overrightarrow{QB} = (1, 0, 0) - (0, -5/3, -5/3) = (1, 5/3, 5/3)$$

68. Num plano euclidiano ${\cal A}$ munido de um referencial ortonormado,, seja r a recta afim definida pela equação vectorial

$$r = (0, -5) + < (1, 1) >$$

- (a) Calcule a projecção ortogonal do ponto P=(2,2) na recta r.
- (b) Calcule a projecção ortogonal do ponto P = (x, y) na recta r

(Resolução)

(a) Seja Q a projecção ortogonal de P=(2,2). Se A=(0,-5) tem-se $\overrightarrow{AP}=(2,7)$ e

$$\overrightarrow{AP} = \overrightarrow{AQ} + \overrightarrow{QP} = \lambda(1,1) + \overrightarrow{QP}$$

Como \overrightarrow{QP} e (1,1) são ortogonais, tem-se

$$\overrightarrow{AP} \cdot (1,1) = \lambda(1,1) \cdot (1,1)$$

donde $\lambda = 9/2$. Em particular

$$Q = A + \overrightarrow{AQ} = A + \lambda(1, 1) = (0, -5) + (9/2)(1, 1) = (9/2, -1/2)$$

(b) Seja Q a projecção ortogonal de P=(x,y). Se A=(0,-5) tem-se $\overrightarrow{AP}=(x,y+5)$ e

$$\overrightarrow{AP} = \overrightarrow{AQ} + \overrightarrow{QP} = \lambda(1,1) + \overrightarrow{QP}$$

Como \overrightarrow{QP} e (1,1) são ortogonais, tem-se

$$\overrightarrow{AP} \cdot (1,1) = \lambda(1,1) \cdot (1,1)$$

donde

$$x + y + 5 = 2\lambda$$

Em particular

$$Q = A + \overrightarrow{AQ} = A + \lambda(1,1) = (0,-5) + \frac{x+y+5}{2}(1,1) = (\frac{x+y+5}{2}, \frac{x+y-5}{2})$$

69. Num espaço euclidiano tridimensional $\mathcal A$ munido de um referencial ortonormado, considere-se π o plano afim definido pela equação vectorial

$$\pi = (-1,1,0) + < (1,1,1), (1,0,1) >$$

- (a) Calcule a projecção ortogonal do ponto P=(3,2-1) no plano afim π .
- (b) Calcule a projecção ortogonal do ponto P = (x, y, z) no plano afim π .

(Resolução)

(a) A equação cartesiana de π é

$$x - z + 1 = 0$$

Um vector director da recta normal a π é então (1,0,-1). Sejam $A=(-1,1,0)\in\pi$, P=(3,2,-1) e Q a projeção ortogonal de P em π . Tem-se

$$\overrightarrow{AP} = \overrightarrow{AQ} + \overrightarrow{QP} = \overrightarrow{AQ} + \lambda(1, 0, -1)$$

Como \overrightarrow{AQ} e (1,0,-1) são ortogonais obtemos

$$\overrightarrow{AP} \cdot (1,0,-1) = \lambda(1,0,-1)(1,0,-1)$$

donde $\lambda = 5/2$. Assim

$$Q = P + \overrightarrow{PQ} = (3, 2, -1) - \lambda(1, 0, -1) = (3, 2, -1) - (5/2, 0, -5/2) = (1/2, 2, 3/2)$$

Resolução alternativa

A partir da equação vectorial de π , como $\overrightarrow{AQ} \in <(1,1,1),(1,0,1)>$, existem $\lambda,\mu\in\mathbf{R}$ tais que

$$\overrightarrow{AP} = \overrightarrow{AQ} + \overrightarrow{QP} = (\lambda(1,1,1) + \mu(1,0,1)) + \overrightarrow{QP}$$

O vector \overrightarrow{QP} é ortogonal aos vectores (1,1,1) e (1,0,1) portanto:

$$\overrightarrow{AP} \cdot (1,1,1) = \lambda(1,1,1) \cdot (1,1,1) + \mu(1,0,1)(1,1,1)$$

$$\overrightarrow{AP} \cdot (1,0,1) = \lambda(1,1,1) \cdot (1,0,1) + \mu(1,0,1)(1,0,1)$$

Tem-se que $\overrightarrow{AP}=(4,1,-1)$ donde

$$\left.\begin{array}{rcl}
4 & = & 3\lambda + 2\mu \\
3 & = & 2\lambda + 2\mu
\end{array}\right\}$$

Resolve-se o sistema e obtém-se $\lambda=1$ e $\mu=1/2$. Assim

$$Q = A + \overrightarrow{AQ} = A + (\lambda(1, 1, 1) + \mu(1, 0, 1)) = A + (3/2, 1, 3/2) = (1/2, 2, 3/2)$$

(b) De modo análogo à primeira alynea, como a equação cartesiana de π é

$$x - z + 1 = 0$$

um vector director da recta normal a π é então (1,0,-1). Sejam $A=(-1,1,0)\in\pi$, P=(x,y,z) e Q a projeção ortogonal de P em π . Tem-se

$$\overrightarrow{AP} = \overrightarrow{AQ} + \overrightarrow{QP} = \overrightarrow{AQ} + \lambda(1, 0, -1)$$

Como \overrightarrow{AQ} e (1,0,-1) são ortogonais obtemos

$$\overrightarrow{AP} \cdot (1,0,-1) = \lambda(1,0,-1)(1,0,-1)$$

Verifica-se que $\overrightarrow{AP} = (x+1, y-1, z)$ e portanto

$$x + 1 - z = 2\lambda$$

Assim

$$Q = P + \overrightarrow{PQ} = (x, y, z) - \lambda(1, 0, -1) = (x, y, z) - \frac{x - z + 1}{2}(1, 0, -1)$$

logo

$$Q=\left(\frac{x+z-1}{2},y,\frac{x+z+1}{2}\right)$$

70. Num espaço euclidiano tridimensional $\mathcal A$ munido de um referencial ortonormado, considere-se r a recta afim definida pela equação vectorial

$$r = (0, 0, -2) + \langle (1, 1, 1) \rangle$$

- (a) Calcule a projecção ortogonal do ponto $P=({\bf 3},{\bf 2}-{\bf 1})$ na recta r.
- (b) Calcule a projecção ortogonal do ponto P=(x,y,z) na recta r.

(Resolução)

(a) Sejam A=(0,0,-2), P=(3,2,-1) e Q a projeção ortogonal de P na recta r. Tem-se

$$\overrightarrow{AP} = \overrightarrow{AQ} + \overrightarrow{QP} = \lambda(1, 1, 1) + \overrightarrow{QP}$$

Como \overrightarrow{QP} é ortogonal ao vector (1,1,1), tem-se

$$\overrightarrow{AP} \cdot (1,1,1) = \lambda(1,1,1) \cdot (1,1,1)$$

donde $\lambda=2$, já que $\overrightarrow{AP}=(3,2,1)$. Assim

$$Q = A + \overrightarrow{AQ} = A + \lambda(1, 1, 1) = (0, 0, -2) + 2(1, 1, 1) = (2, 2, 0)$$

(b) Sejam A = (0, 0, -2), P = (x, y, z) e Q a projeção ortogonal de P na recta r. Tem-se

$$\overrightarrow{AP} = \overrightarrow{AQ} + \overrightarrow{QP} = \lambda(1, 1, 1) + \overrightarrow{QP}$$

Como \overrightarrow{QP} é ortogonal ao vector (1,1,1), tem-se

$$\overrightarrow{AP} \cdot (1, 1, 1) = \lambda(1, 1, 1) \cdot (1, 1, 1)$$

Note-se que $\overrightarrow{AP} = (x, y, z + 2)$ e portanto

$$x + y + z + 2 = 3\lambda$$

Assim

$$Q = A + \overrightarrow{AQ} = A + \lambda(1, 1, 1) = (0, 0, -2) + \frac{x + y + z + 2}{3}(1, 1, 1)$$

donde

$$Q = (\frac{x+y+z+2}{3}, \frac{x+y+z+2}{3}, \frac{x+y+z-4}{3})$$

71. Num espaço euclidiano $\mathcal A$ de dimensão 4 munido de um referencial ortonormado,, seja $\mathcal U$ o subespaço afim definido pela equação vectorial:

$$\mathcal{U} = (0, 0, -1, 1) + \langle (1, 0, 2, 0), (1, 1, 0, 0) \rangle$$
.

Calcule a projeção ortogonal do ponto P=(x,y,z,t) em \mathcal{U} . Calcule a distância entre O=(0,0,0,0) e \mathcal{U} .

(Resolução)

Seja U=<(1,0,2,0),(1,1,0,0)>. Sejam $A=(0,0,-1,1),\ P=(x,y,z,t)$ e Q a projecção ortogonal de P em $\mathcal U$. Tem-se

$$\overrightarrow{AP} = \overrightarrow{AQ} + \overrightarrow{QP}$$

$$\begin{array}{lcl} (x,y,z+1,t-1)\cdot (1,0,2,0) & = & \lambda(1,0,2,0)\cdot (1,0,2,0) + \mu(1,1,0,0)\cdot (1,0,2,0) \\ (x,y,z+1,t-1)\cdot (1,1,0,0) & = & \lambda(1,0,2,0)\cdot (1,1,0,0) + \mu(1,1,0,0)\cdot (1,1,0,0) \end{array}$$

Resolve-se o sistema:

$$x + 2z + 2 = 5\lambda + \mu$$

 $x + y = \lambda + 2\mu$

e obtém-se $\lambda=rac{x-y+4z+4}{9}$ e $\mu=rac{4x+5y-2z-2}{9}$ Assim

$$Q = A + \overrightarrow{AQ} = (0, 0, -1, 1) + \frac{x - y + 4z + 4}{9}(1, 0, 2, 0) + \frac{4x + 5y - 2z - 2}{9}(1, 1, 0, 0)$$

donde

$$Q=\left(\frac{5x-4y+2z+2}{9},\frac{4x+5y-2z-2}{9},\frac{2x-2y+8z-1}{9},1\right)$$

A projecção ortogonal do ponto O = (0,0,0,0) é

$$Q_O = (2/9, -2/9, -1/9, 1)$$

e então

$$d(O, \mathcal{U}) = d(O, Q_O) = \|\overrightarrow{OQ_O}\| = \|(2/9, -2/9, -1/9, 1)\| = \frac{\sqrt{90}}{9}$$

- 72. Num plano euclidiano munido de um referencial ortonormado calcule:
 - (a) A distância do ponto P=(1,1) à recta afim s definida pela equação cartesiana:

$$x + y - 4 = 0$$

(b) A distância do ponto P = (1,1) à recta fim t definida pela equação vectorial:

$$t = (1,0) + < (0,-3) >$$

(c) A distância entre as rectas paralelas r e r^\prime definidas pelas equações cartesianas:

$$2x - 3y + 1 = 0$$
 $2x - 3y = 0$

(Resolução)

(a) Aplica-se a fórmula:

$$d(P,s) = \frac{|1+1-4|}{\sqrt{2}} = \sqrt{2}$$

(b) Sejam $M=(1,0),\ \overrightarrow{w}=(0,-3)$ e P=(1,1). Tem-se

$$d(P,r) = \|\overrightarrow{MP}\| |\sin(\overrightarrow{w}, \overrightarrow{MP})|$$

Como $\overrightarrow{MP}=(0,1)$ vem que $\|\overrightarrow{MP}\|=1$, $\|\overrightarrow{w}\|=3$ e

$$\cos(\overrightarrow{MP}, \overrightarrow{w}) = \frac{-3}{3} = 1$$

Assim

$$d(P,r) = \|\overrightarrow{MP}\|\sqrt{1 - \cos(\overrightarrow{MP}, \overrightarrow{w})^2} = 0$$

Resolução alternativa: A equação cartesiana de t é

$$x - 1 = 0$$

Assim,

$$d(P,t) = \frac{1-1}{\sqrt{1}} = 0$$

(c) Considere-se o ponto $Q=(3,2)\in r'$. Tem-se

$$d(r, r') = d(r, Q) = \frac{1}{\sqrt{13}} = \sqrt{13}/13$$

73. Num espaço euclidiano tridimensional $\mathcal A$ munido de um referencial ortonormado, calcule:

(a) a distância do ponto P=(1,1,-1) ao plano afim π definido pela equação cartesiana:

$$x + 3y - z + 1 = 0$$

(b) a distância entre os planos paralelos π_1 e π_2 definidos pelas equações cartesianas:

$$y - 2z + 1 = 0$$
 $y - 2z + 3 = 0$

(c) a distância do ponto P=(1,1,-1) à recta afim r definida pela equação vectorial:

$$r = (0,0,2) + < (0,1,1) >$$

(d) a distância entre as rectas paralelas r_1 e r_2 definidas pelas equações vectoriais:

$$r_1 = (0,0,2) + < (0,1,1) > \qquad r_2 = (3,3,3) + < (0,1,1) >$$

(e) a distância entre as rectas enviesadas s_1 e s_2 definidas pelas equações vectoriais:

$$s_1 = (0,0,2) + < (0,1,1) >$$
 $s_2 = (3,3,3) + < (0,-1,1) >$

(Resolução)

(a) Aplica-se a fórmula:

$$d(P,\pi) = \frac{1+3+1+1}{\sqrt{1+3^2+1}} = \frac{6}{\sqrt{11}} = \frac{6\sqrt{11}}{11}$$

(b) Seja Q=(0,-3,0). Tem-se que $Q\in\pi_2$ e como π_1 e π_2 são paralelos

$$d(\pi_1, \pi_2) = d(\pi_1, Q) = \frac{|-3+1|}{\sqrt{1+4}} = \frac{2\sqrt{5}}{5}$$

(c) Sejam A=(0,0,2) e $\overrightarrow{w}=(0,1,1)$. Como $A\in r$ e \overrightarrow{w} é um vector director de r tem-se

$$d(P,r) = \|\overrightarrow{AP}\||\sin(\overrightarrow{AP},\overrightarrow{w})|$$

Note-se que $\overrightarrow{AP}=(1,1-3)$, logo $\|\overrightarrow{AP}\|=\|(1,1,-3)\|=\sqrt{11}$ e assim

$$\cos(\overrightarrow{AP}, \overrightarrow{w}) = \frac{\overrightarrow{AP} \cdot \overrightarrow{w}}{\|\overrightarrow{AP}\| \|\overrightarrow{w}\|} = \frac{-2}{(\sqrt{11})(\sqrt{2})} = -\frac{\sqrt{22}}{11}$$

Finalmente,

$$d(P,r) = (\sqrt{11})\sqrt{1 - \cos(\overrightarrow{AP}, \overrightarrow{w})^2} = \sqrt{11 - 2} = 3$$

(d) Sejam A=(0,0,2), B=(3,3,3) e $\overrightarrow{w}=(0,1,1)$. Como r_1 e r_2 são rectas paralelas e $B\in r_2$ tem-se

$$d(r_1, r_2) = d(r_1, B) = \|\overrightarrow{AB}\| |\sin(\overrightarrow{AB}, \overrightarrow{w})|$$

Note-se que $\overrightarrow{AB}=(3,3,1)$, logo $\|\overrightarrow{AB}\|=\|(3,3,1)\|=\sqrt{19}$ e assim

$$\cos(\overrightarrow{AB}, \overrightarrow{w}) = \frac{\overrightarrow{AB} \cdot \overrightarrow{w}}{\|\overrightarrow{AP}\| \|\overrightarrow{w}\|} = \frac{4}{(\sqrt{19})(\sqrt{2})} = 2\frac{\sqrt{38}}{19}$$

Obtemos então

$$d(P,r) = (\sqrt{19})\sqrt{1 - \cos(\overrightarrow{AP}, \overrightarrow{w})^2} = (\sqrt{19})\sqrt{1 - 4\frac{38}{19^2}} = \sqrt{19 - 8} = \sqrt{11}$$

(e) Sejam $R_1=(0,0,2),\ R_2=(3,3,3),\ \overrightarrow{v}=(0,1,1)$ e $\overrightarrow{w}=(0,-1,1).$ Verifica-se que

$$d(s_1, s_2) = \frac{|\det(\overrightarrow{R_1, R_2}, \overrightarrow{v}, \overrightarrow{w})|}{\|\overrightarrow{v} \wedge \overrightarrow{w}\|}$$

Como

$$\det(\overrightarrow{R_1,R_2},\overrightarrow{v},\overrightarrow{w}) = \det\begin{pmatrix} 3 & 3 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix} = 6$$

e

$$\|\overrightarrow{v}\wedge\overrightarrow{w}\| = \|(0,1,1)\wedge((0,-1,1)\| = \|(2,0,0)\| = 2$$

obtém-se

$$d(s_1, s_2) = \frac{6}{2} = 3$$

9 Exercícios propostos

Para simplificar os enunciados, quando não houver ambiguidade, num espaço afim A de dimensão n munido de um referencial \mathcal{R} , se $A \equiv (a_1, \ldots, a_n)_{\mathcal{R}}$, escrever-se-á $A = (a_1, \ldots, a_n)$.

Espaços afins, referenciais, espaços euclidianos.

- 1. Sejam A, B e C três pontos de um plano afim real tais que $\{\overrightarrow{AB}, \overrightarrow{AC}\}$ são linearmente independentes.
 - (a) Se considerarmos o referencial afim $\mathcal{R} = \{A; (\overrightarrow{AB}, \overrightarrow{AC})\}$, quais as coordenadas de A, B e C em \mathcal{R} ?
 - (b) Justifique que os vectores $\{1/3\overrightarrow{AB}, -2\overrightarrow{AC}\}$ também são linearmente independentes. Quais as coordenadas de A, B e C no referencial $\mathcal{R}' = \{A; (1/3\overrightarrow{AB}, -2\overrightarrow{AC})\}$
 - (c) Seja $D = A + (\overrightarrow{AC} + \overrightarrow{AB})$. Quais as coordenadas de D nos referenciais \mathcal{R} e \mathcal{R}' ?
- 2. Sejam A, B e C três pontos de um plano afim real tais que $\{\overrightarrow{AB}, \overrightarrow{AC}\}$ são linearmente independentes.
 - (a) Se considerarmos o referencial afim $\mathcal{R} = \{B; (\overrightarrow{AB}, \overrightarrow{AC})\}$, quais as coordenadas de A, B e C em \mathcal{R} ?
 - (b) Se considerarmos o referencial afim $\mathcal{R}' = \{A; (\overrightarrow{BC}, \overrightarrow{CA})\}$, quais as coordenadas de A, B e C em \mathcal{R} ? (São \overrightarrow{BC} e \overrightarrow{AC} linearmente independentes?)
- 3. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}$ dois referenciais de um plano afim real \mathcal{A} . Determine as coordenadas, no referencial \mathcal{R} , do ponto $M \equiv (2, -2)_{\mathcal{R}'}$ sabendo que:
 - $O' \equiv (2,-1)_{\mathcal{R}}$;

$$\bullet \left\{ \begin{array}{rcl} \overrightarrow{v}_1' &=& 2\overrightarrow{v}_1 & -& 3\overrightarrow{v}_2 \\ \overrightarrow{v}_2' &=&& 3\overrightarrow{v}_2 \end{array} \right.$$

- 4. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}$ dois referenciais de um plano afim real \mathcal{A} . Determine as coordenadas, no referencial \mathcal{R}' , do ponto $M \equiv (2, -2)_{\mathcal{R}}$ sabendo que:
 - $O' \equiv (2,-1)_{\mathcal{R}};$

$$\bullet \left\{ \begin{array}{rcl} \overrightarrow{v}_1' & = & 2\overrightarrow{v}_1 & - & 3\overrightarrow{v}_2 \\ \overrightarrow{v}_2' & = & & 3\overrightarrow{v}_2 \end{array} \right.$$

- 5. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}$ dois referenciais de um plano afim real \mathcal{A} . Determine as coordenadas, no referencial \mathcal{R}' , do ponto $M \equiv (1,3)_{\mathcal{R}}$ sabendo que:
 - $O' \equiv (0,-2)_{\mathcal{R}};$

geometria - 2010/2011

$$\bullet \left\{ \begin{array}{lll} \overrightarrow{v}_1' & = & -\overrightarrow{v}_1 & + & 2\overrightarrow{v}_2 \\ \overrightarrow{v}_2' & = & \overrightarrow{v}_1 & + & \overrightarrow{v}_2 \end{array} \right.$$

- 6. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2', \overrightarrow{v}_3')\}$ dois referenciais de um espaço afim tridimensional \mathcal{A} . Determine as coordenadas, no referencial \mathcal{R}' , do ponto $M \equiv (1, 0, -1)_{\mathcal{R}'}$ sabendo que:
 - $O' \equiv (0, 0, -2)_{\mathcal{R}};$

$$\bullet \begin{cases}
\overrightarrow{v}_1' = -\overrightarrow{v}_1 + 2\overrightarrow{v}_2 \\
\overrightarrow{v}_2' = \overrightarrow{v}_1 + \overrightarrow{v}_2 \\
\overrightarrow{v}_3' = \overrightarrow{v}_1 & -2\overrightarrow{v}_3
\end{cases}$$

- 7. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2', \overrightarrow{v}_3')\}$ dois referenciais de um espaço afim tridimensional \mathcal{A} . Determine as coordenadas, no referencial \mathcal{R}' , do ponto $M \equiv (1, 0, -1)_{\mathcal{R}}$ sabendo que:
 - $O' \equiv (0, 0, -2)_{\mathcal{R}};$

$$\bullet \begin{cases}
\overrightarrow{v}_1' = -\overrightarrow{v}_1 + 2\overrightarrow{v}_2 \\
\overrightarrow{v}_2' = \overrightarrow{v}_1 + \overrightarrow{v}_2 \\
\overrightarrow{v}_3' = \overrightarrow{v}_1 - 2\overrightarrow{v}_3
\end{cases}$$

- 8. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}$ dois referenciais de um plano afim real \mathcal{A} . Determine as coordenadas, no referencial \mathcal{R} , do ponto $M \equiv (2, -2)_{\mathcal{R}'}$ sabendo que:
 - $O \equiv (1,-1)_{\mathcal{R}'}$;

$$\bullet \begin{cases}
\overrightarrow{v}_1' = 2\overrightarrow{v}_1 - 3\overrightarrow{v}_2 \\
\overrightarrow{v}_2' = 3\overrightarrow{v}_2
\end{cases}$$

- 9. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}$ dois referenciais de um plano afim real \mathcal{A} . Determine as coordenadas, no referencial \mathcal{R} , do ponto $M \equiv (2, -2)_{\mathcal{R}'}$ sabendo que:
 - $O' \equiv (1,-1)_{\mathcal{R}}$;

$$\bullet \left\{ \begin{array}{lcl} \overrightarrow{v}_1 & = & \overrightarrow{v}_1' & - & 3\overrightarrow{v}_2' \\ \overrightarrow{v}_2 & = & & 2\overrightarrow{v}_2' \end{array} \right.$$

- 10. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2', \overrightarrow{v}_3')\}$ dois referenciais de um espaço afim tridimensional \mathcal{A} . Determine as coordenadas, no referencial \mathcal{R}' , do ponto $M \equiv (1, 0, -1)_{\mathcal{R}}$ sabendo que:
 - $O' \equiv (0, 0, -2)_{\mathcal{R}};$

$$\bullet \begin{cases}
\overrightarrow{v}_1 = 2\overrightarrow{v}_1' + 2\overrightarrow{v}_2' - \overrightarrow{v}_3' \\
\overrightarrow{v}_2 = \overrightarrow{v}_1' + 2\overrightarrow{v}_2' \\
\overrightarrow{v}_3 = 2\overrightarrow{v}_1' - \overrightarrow{v}_3'
\end{cases}$$

11. Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}$ dois referenciais de um plano afim real \mathcal{A} . Determine as coordenadas, no referencial \mathcal{R} , do ponto $M \equiv (x_1', x_2')_{\mathcal{R}'}$ sabendo que existem três pontos A, B e C verificando:

$$A \equiv (1,1)_{\mathcal{R}} \qquad A \equiv (0,-1)_{\mathcal{R}'}$$

$$B \equiv (0,-2)_{\mathcal{R}} \qquad B \equiv (1,-1)_{\mathcal{R}'}$$

$$C \equiv (1,0)_{\mathcal{R}} \qquad C \equiv (0,2)_{\mathcal{R}'}$$

12. Determine se é possível resolver o exercício anterior no caso em que

$$A \equiv (0,1)_{\mathcal{R}}$$
 $A \equiv (1,-1)_{\mathcal{R}'}$
 $B \equiv (0,-2)_{\mathcal{R}}$ $B \equiv (1,-1)_{\mathcal{R}'}$
 $C \equiv (0,3)_{\mathcal{R}}$ $C \equiv (2,-1)_{\mathcal{R}'}$

13. O cruel general Bum-Bum⁹

Era uma vez uma guerra terrível entre os Bonzinhos e os Mauzinhos. O cruel general Bum-Bum dirigia os exércitos dos Mauzinhos, escondido num local desconhecido dos Bonzinhos. Um dia histórico, os serviços de espionagem dos Bonzinhos interceptaram a seguinte mensagem, enviada pelo general Bum-Bum ..

"como a Infantaria está colocada no ponto (2,0), a Cavalaria no ponto (0,1), vamos situar a Artilharia no ponto (1,1) ..."

Um pouco mais tarde, o piloto mais audaz dos Bonzinhos chega ao quartel geral e diz ..

"Venho de sobrevoar o terreno inimigo. Descobri que a Infantaria inimiga está no ponto (2,3), a Cavalaria no ponto (4,2) e Artilharia acaba de chegar ao ponto (3,2)!"

Estes dados bastavam para um estudante de CC, do exército dos Bonzinhos, evidentemente, calcular a posição do mais mauzinho dos Mauzinhos: o general Bum-Bum.

- 14. Escreva a expressão matricial da mudança de coordenadas num espaço afim de dimensão n.
- 15. Seja \mathcal{A} um plano euclidiano. Seja $\mathcal{R} = \{O, (\overrightarrow{e}_1, \overrightarrow{e}_2)\}$ um referencial ortonormado de \mathcal{A} . Considere-se o referencial $\mathcal{R}' = \{O', (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ definido por:

•
$$O \equiv (1,-1)_{\mathcal{R}'};$$

$$\bullet \left\{ \begin{array}{cccc} \overrightarrow{v}_1 &= 2 & \overrightarrow{e}_1 &+ & \overrightarrow{e}_2 \\ \overrightarrow{v}_2 &= & \overrightarrow{e}_1 &+ & \overrightarrow{e}_2 \end{array} \right.$$

⁹Tradução livre de um exercício do livro *Álgebra Lineal y Geometría Analítica*, de M. Castellet e I. Llerena, Editorial Reverté, Barcelona (1992)

A base $(\overrightarrow{v}_1, \overrightarrow{v}_2)$ é uma base ortogonal? O referencial \mathcal{R}' é um referencial ortonormado? Os referenciais \mathcal{R} e \mathcal{R}' definem a mesma orientação?

- 16. Seja \mathcal{A} um plano euclidiano. Seja $\mathcal{R} = \{O, (\overrightarrow{e}_1, \overrightarrow{e}_2)\}$ um referencial ortonormado de \mathcal{A} . Considere-se o referencial $\mathcal{R}' = \{O', (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ definido por:
 - $O \equiv (1,-1)_{\mathcal{R}'};$

$$\bullet \left\{ \begin{array}{lll} \overrightarrow{v}_1 & = & \sqrt{2}/2\overrightarrow{e}_1 & + & \sqrt{2}/2\overrightarrow{e}_2 \\ \overrightarrow{v}_2 & = & -\sqrt{2}/2\overrightarrow{e}_1 & + & \sqrt{2}/2\overrightarrow{e}_2 \end{array} \right.$$

A base $(\overrightarrow{v}_1, \overrightarrow{v}_2)$ é uma base ortogonal? O referencial \mathcal{R}' é um referencial ortonormado? Os referenciais \mathcal{R} e \mathcal{R}' definem a mesma orientação? Determine as coordenadas, no referencial \mathcal{R} , do ponto $M \equiv (2, -2)_{\mathcal{R}'}$ e, no referencial \mathcal{R}' , do ponto $N \equiv (2, -2)_{\mathcal{R}}$.

17. Seja \mathcal{A} um plano euclidiano munido de um referencial $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ tais que os vectores da base associada são unitários mas $\overrightarrow{v}_1 \cdot \overrightarrow{v}_2 = 1/4$.

Determine a distância entre os pontos $A \equiv (0,1)_{\mathcal{R}}$ e $B \equiv (-2,0)_{\mathcal{R}}$. Qual seria o valor de d(A,B) se o referencial \mathcal{R} fosse ortonormado?

- 18. Seja A um plano euclidiano munido de um referencial ortonormado. Considerem-se os pontos A=(-1,1) e B=(0,1). Calcule a distância d(A,B). Determine se o ponto M=(-1,-3) pertence ao segmento \overline{AB} .
- 19. Sejam A, B e C pontos de um espaço afim euclidiano. Sabe-se que d(A,C)=3, d(A,B)=1 e $\cos(\overrightarrow{AB},\overrightarrow{AC})=1/3$. Calcule d(B,C).
- 20. Seja \mathcal{A} um plano euclidiano munido de um referencial ortonormado com origem O. Determine o $\cos(\overrightarrow{OA}, \overrightarrow{OB})$ se
 - (a) A = (1,1), B = (1,-2);
 - (b) $A = (\sqrt{2}, \sqrt{2}), B = (1, -1).$

Indique se o triângulo ΔAOB é rectângulo.

- 21. Seja \mathcal{A} um espaço euclidiano munido de um referencial ortonormado com origem O. Determine o $\cos(\overrightarrow{OA}, \overrightarrow{OB})$ se
 - (a) A = (0, -1, 1), B = (1, 0, -2);
 - (b) A = (1, 2, 3), B = (3, 2, 1);
 - (c) A = (1, -1, 0, 0), B = (-3, 1, 1, -2).
- 22. Num espaço afim tridimensional munido de um referencial ortonormado com origem O, determine a área do paralelogramo e a área do triângulo com vêrtices O, A=(2,0,-1) e B=(1,1,0).
- 23. Num espaço afim tridimensional orientado munido de um referencial ortonormado com origem O, determine a área do paralelogramo e a área do triângulo com vêrtices A=(1,1,1), B=(2,0,1) e C=(1,3,2).

24. Seja $\mathcal A$ um espaço afim tridimensional munido de um referencial $\{O; \overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$, com \overrightarrow{v}_i vectores unitários para i=1,2,3 tais que

$$\overrightarrow{v}_1 \cdot \overrightarrow{v}_2 = 0$$
, $\overrightarrow{v}_1 \cdot \overrightarrow{v}_3 = 1/4$, $\overrightarrow{v}_2 \cdot \overrightarrow{v}_3 = 1/2$

Determine a área do paralelogramo e a área do triângulo com vêrtices O, A=(2,0,-1) e B=(1,1,0).

- 25. No plano afim orientado munido de um referencial ortonormado directo com origem O, determine o seno e o cosseno do ângulo orientado formado pelos vectores \overrightarrow{OA} e \overrightarrow{OB} , nesta ordem. Represente geometricamente.
 - (a) A = (0,2), B = (1,-1);
 - (b) A = (1,1), B = (1,-1).
- 26. Num espaço afim tridimensional orientado munido de um referencial ortonormado directo com origem O, calcule o volume do paralelepípedo com vértices $O,A=(1,0,-1),\ B=(1,0,-3)$ e C=(0,2,0).
- 27. Seja $\mathcal A$ um espaço afim tridimensional munido de um referencial $\{O; \overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$, com \overrightarrow{v}_i vectores unitários para i=1,2,3 tais que

$$\overrightarrow{v}_1 \cdot \overrightarrow{v}_2 = 0$$
, $\overrightarrow{v}_1 \cdot \overrightarrow{v}_3 = 1/4$, $\overrightarrow{v}_2 \cdot \overrightarrow{v}_3 = 1/2$

Determine o volume do paralelepípedo com vértices $O,A=(1,0,-1),\ B=(1,0,-3)$ e C=(0,2,0).

- 28. Num espaço afim tridimensional orientado munido de um referencial ortonormado directo com origem O, determine um vector perpendicular aos vectores \overrightarrow{OA} e \overrightarrow{OB} .
 - (a) A = (1,0,2), B = (1,2,-1);
 - (b) A = (3, 1, 1), B = (1, 0, -1).

Calcule a área do paralelogramo formado por esses vectores. Calcule ainda o volume do paralelepípedo formado por esses vectores e o vector \overrightarrow{OC} , com C = (0, 0, -4).

- 29. Seja \mathcal{A} um plano afim euclidiano munido de um referencial ortonormado. Considerem-se os pontos A=(3,1) e B=(0,0). Calcule a distância d(A,B). Determine se o ponto M=(6,2) pertence ao segmento \overline{AB} .
- 30. Sejam A, B e C pontos de um espaço afim euclidiano. Sabe-se que d(A,C)=3, d(A,B)=4 e $\cos(\overrightarrow{AB},\overrightarrow{AC})=1/4$. Calcule d(B,C).
- 31. Critério LAL de congruência de triângulos

Sejam $\triangle ABC$ e $\triangle A'B'C'$ dois triângulos de um plano afim euclidiano. Se d(A,B)=d(A',B'), d(B,C)=d(B',C') e $\angle ABC=\angle A'B'C'$ então

$$d(B,C) = d(B',C'),$$
 $\angle BCA = \angle B'C'A',$ e $\angle CAB = \angle C'A'B'.$

32. Critério ALA de congruência de triângulos

Sejam $\triangle ABC$ e $\triangle A'B'C'$ dois triângulos de um plano afim euclidiano. Prove que, se $d(A,B)=d(A',B'),\ \angle ABC=\angle A'B'C'$ e $\angle CAB=\angle C'A'B'$ então

$$d(B,C) = d(B',C'),$$
 $d(C,A) = d(C',A'),$ e $\angle BCA = \angle B'C'A'.$

Rectas, planos, paralelismo.

33. Seja \mathcal{A} um espaço afim tridimensional munido de um referencial. Considere os seguintes subespaços afins de \mathcal{A} :

$$\mathcal{U}_1 = (-2, -1, 0) + \langle (1, 0, -1), (1, -1, 0) \rangle;$$

$$U_2 = \{(x, y, z) \in A / x + y + z + 3 = 0\};$$

$$\mathcal{U}_3 = \{(x, y, z) \in \mathbf{R}^3 / y = 3 - 3x, z = x\};$$

$$U_4 = (1,0,0) + \langle (2,-2,0) \rangle;$$

$$U_5 = (3, -2, 0) + \langle (1, -1, 0), (-2, 2, 0) \rangle$$

Indique os subespaços vectoriais associados. Calcule as equações vectoriais e indique a dimensão do subespaço. Calcule as equações cartesianas dos planos. Determine $\mathcal{U}_4 \cap \mathcal{U}_1$.

- 34. Num plano afim real \mathcal{A} munido de um referencial \mathcal{R} calcule as equações paramétricas e a equaçõo cartesiana da recta afim que passa pelo ponto A=(2,2) e tem como vector director $\overrightarrow{v}=(3,-1)$. Determine dois pontos distintos que incidam nesta recta. Represente graficamente.
- 35. Num plano afim real \mathcal{A} munido de um referencial \mathcal{R} calcule as equações paramétricas e a equação cartesiana da recta afim que passa pelos pontos A=(10,-2) e B=(0,3). Represente graficamente.
- 36. Num plano afim real \mathcal{A} munido de um referencial \mathcal{R} calcule a equação vectorial e as equações paramétricas da recta afim definida pela equação cartesiana

$$x - 3y - 1 = 0$$

Determine dois pontos distintos que incidam nesta recta.

- 37. Num espaço afim tridimensional \mathcal{A} munido de um referencial \mathcal{R} calcule as equações paramétricas e o sistema de equações cartesianas que definem a recta afim que passa pelo ponto A=(1,2,3) e tem como vector director $\overrightarrow{v}=(3,-1,4)$.
- 38. Num espaço afim tridimensional munido de um referencial calcule as equações paramétricas dos planos pelas equações cartesianas indicadas de seguida:

(a)
$$2x - 3z - 1 = 0$$
;

(b)
$$3y - 2z = 0$$
:

(c)
$$x + y + z - 4 = 0$$
.

39. Num espaço afim tridimensional munido de um referencial calcule as equações cartesianas dos planos pelas equações vectoriais indicadas de seguida:

(a)
$$(0,1,1)+<(1,0,-1),(0,2,0)>;$$

(b)
$$(0,0,0)+<(2,1,0),(1,0,0)>$$
.

40. Num espaço afim tridimensional munido de um referencial considere os planos π_1 e π_2 definidos pelas equações vectoriais:

$$\pi_1 = (-1,0,1) + \langle (1,0,-1), (0,2,0) \rangle$$

$$\pi_2 = (0,0,0) + < (-2,1,2), (3,1,-3) >$$

São π_1 e π_2 planos coincidentes? Justifique.

- 41. Num espaço afim tridimensional \mathcal{A} munido de um referencial \mathcal{R} calcule as equações paramétricas e o sistema de equações cartesianas que definem a recta afim que passa pelos pontos A=(0,2,2) e B=(0,0,0).
- 42. Num espaço afim tridimensional \mathcal{A} munido de um referencial \mathcal{R} calcule a equação vectorial e as equações paramétricas da recta afim definida pelas equações cartesianas

$$\begin{cases} 1/3y - 2z - 1 &= 0\\ 1/2x + z &= 0 \end{cases}$$

Determine dois pontos distintos que incidam nesta recta.

- 43. Num espaço afim tridimensional munido de um referencial considere o ponto A=(0,-1,0). Determine as equações paramétricas e a equação cartesiana do plano que passa pelo ponto A e está associado ao plano vectorial <(1,1,1),(-2,1,2)>.
- 44. Num espaço afim tridimensional munido de um referencial considere os pontos:

$$A = (2,0,2)$$
 $B = (2,-2,0)$ $C = (-2,0,0)$

Justifique que $\{A,B,C\}$ são vértices de um triângulo. Indique uma equação vectorial e uma equação cartesiana do plano afim π definido por A,B e C.

45. Num espaço afim tridimensional munido de um referencial, considere o subespaço afim definido pelo sistema de equações lineares

$$\begin{cases} 2y - z + 1 &= 0 \\ 3y - 9 &= 0 \end{cases}$$

Calcule as equações paramétricas do subespaço.

46. Num espaço afim tridimensional munido de um referencial, considere o subespaço afim definido pelo sistema de equações lineares

$$\begin{cases} 2y - z + 1 &= 0 \\ 3y - 9 &= 0 \\ x - 1 &= 0 \end{cases}$$

Calcule as equações paramétricas do subespaço.

47. Num espaço afim tridimensional munido de um referencial, calcule a intersecção do plano afim definido pela equação cartesiana

$$y - 5 = 0$$

e a recta incidente no ponto A = (1,0,1) e dirigida pelo vector $\overrightarrow{v} = (0,1,1)$.

48. Num espaço afim tridimensional munido de um referencial, calcule a interseção do plano afim definido pela equação cartesiana

$$x + y + z - 1 = 0$$

e a recta incidente no ponto A = (0,0,1) e dirigida pelo vector $\overrightarrow{v} = (0,0,1)$.

49. Num espaço afim tridimensional munido de um referencial, calcule a intersecção do plano afim definido pela equação vectorial

$$\pi = (0, -2, 1) + < (3, 0, 0), (0, 3, 3) >$$

e da recta r definida pelas equações cartesianas

$$\begin{cases} x - y - 1 &= 0 \\ x + 3z &= 0 \end{cases}$$

50. Seja \mathcal{A} um espaço afim tridimensional munido de um referencial. Sejam r_1 e r_2 as rectas definidas por:

$$r_1 = (1,2,3) + < (2,1,0) >$$

 $r_2 = (0,2,-1) + < (1,-1,0) >$

Calcule $r_1 + r_2$. São r_1 e r_2 rectas complanares ou enviesadas? isto é, existe ou não um plano afim de \mathcal{A} que contem tais rectas? Se existir, calcule a equação cartesiana.

51. Seja $\mathcal A$ um espaço afim tridimensional munido de um referencial. Sejam r_1 e r_2 as rectas definidas por:

$$r_1 = (1,2,3) + < (2,1,0) >$$

 $r_2 = (0,2,3) + < (1,-1,0) >$

Calcule $r_1 + r_2$. São r_1 e r_2 rectas complanares ou enviesadas? isto é, existe ou não um plano afim de \mathcal{A} que contem tais rectas? Se existir, calcule a equação cartesiana.

52. Seja $\mathcal A$ um espaço afim tridimensional munido de um referencial. Calcule a equação cartesiana do plano afim de $\mathcal A$ que contém o ponto B=(1,1,1) e a recta r=<(1,0,1)>. Qual a equação cartesiana do plano vectorial associado?

53. Seja $\mathcal A$ um espaço afim de dimensão 7 munido de um referencial. Calcule as equações paramétricas da recta de $\mathcal A$ que incide nos pontos

$$A = (1, -1, 0, 0, 0, 2, -2)$$
 e $B = (0, 3, 0, 4, 3, 4, 0)$.

54. Considere, num espaço afim tridimensional ${\cal A}$ munido de um referencial, o conjunto ${\cal U}$ definido por

$$\mathcal{U} = \{ (x, y, z, t) \in \mathcal{A} : x + y - 2t = 1 \}$$

É um subespaço afim? Qual a dimensão? Determine uma equação vectorial e umas equações paramétricas.

55. Num espaço afim de $\mathcal A$ associado a um espaço vectorial E de dimensão 4, munido de um referencial, determine a equação cartesiana do hiperplano afim associado ao hiperplano vectorial

$$H = \{(x, y, z, t) \in E : 2z - 3t = 0\}$$

que incide no ponto A=(1,4,1,0). Determine também uma equação vectorial de tal hiperplano.

56. Num espaço afim \mathcal{A} associado a um espaço vectorial E de dimensão n, munido de um referencial, determine a equação cartesiana do hiperplano associado ao hiperplano vectorial

$$H = \{(x_1, x_2, \dots, x_n) \in E : x_1 + 2x_2 = 0\}$$

que incide no ponto $A = (1, 1, \dots, 1)$.

- 57. Num espaço afim tridimensional munido de um referencial:
 - (a) Calcule uma equação vectorial e uma equação cartesiana do plano afim paralelo a $\pi = (1,0,1) + < (2,0,1), (0,1,-1) >$ incidente no ponto A = (-1,0,5).
 - (b) Calcule a equação cartesiana do plano afim paralelo ao plano de equação 3x y + 4z = 0 que incide no ponto B = (1, 0, 1). Quais as equações paramétricas deste plano?
 - (c) Calcule uma equação vectorial e as equações paramétricas da recta afim paralela à recta A, B >que incide no ponto C = (1, -1, -1).
- 58. Num espaço afim tridimensional ${\cal A}$ munido de um referencial, considere o conjunto ${\cal U}$ definido como

$$\mathcal{U} = \{(x, y, z) \in \mathcal{A} : x + y = 0 \land y - 2z + 1 = 0\}$$

Calcule uma equação vectorial de \mathcal{U} e indique a dimensão. Determine o subespaço afim paralelo a \mathcal{U} e incidente em (0,0,0).

- 59. Num espaço afim tridimensional munido de um referencial, considere as rectas afins $r_1 = (0,0,2) + < (1,2,0) > e$ $r_2 = < (1,-2,0) >$. Calcule uma equação vectorial e uma equação cartesiana do plano paralelo às rectas r_1 e r_2 que incide no ponto M = (0,0,-3).
- 60. Seja $\mathcal A$ um espaço afim de dimensão 5 associado a um espaço vectorial E e munido de um referencial. Considere o subespaço afim $\mathcal U$ de $\mathcal A$ definido por

$$\mathcal{U} = \{(x, y, z, t, u) \in \mathcal{A} : x - 2u = 0 \land 2y + z - 2t + 3 = 0\}$$

Determine o subespaço vectorial associado a \mathcal{U} . Determine o subespaço afim \mathcal{U}' paralelo a \mathcal{U} , da mesma dimensão, que incide no ponto (-2,0,0,1,0).

61. Num espaço afim tridimensional munido de um referencial, considere as rectas afins r_1 e r_2 definidas por:

$$r_1 \equiv (0,0,2) + \langle (1,1,0) \rangle$$
 $r_2 \equiv (0,0,3) + \langle (1,-1,0) \rangle$

- (a) qual a dimensão de $r_1 + r_2$? são rectas enviesadas?
- (b) indique a equação vectorial e a equação cartesiana do plano afim paralelo às rectas r_1 e r_2 e incidente no ponto (0,0,5);
- (c) indique a equação da recta s paralela à recta r_1 incidente no ponto (1,1,-1);
- (d) são as rectas r_1 e s complanares? Se forem, indique a equação cartesiana do plano que definem.
- 62. Num espaço afim tridimensional \mathcal{A} munido de um referencial, consideramos as rectas afins \mathcal{L}_1 e \mathcal{L}_2 definidas por:

$$\mathcal{L}_1 \equiv (1,2,4) + < (1,1,0) >$$

$$\mathcal{L}_2 = \{(x, y, z) \in \mathcal{A} : z = 0 \land x + y = 2\}$$

Calcule uma equação vectorial de \mathcal{L}_2 . Justifique que \mathcal{L}_1 e \mathcal{L}_2 são rectas enviesadas. Calcule a equação vectorial e a equação cartesiana do plano afim incidente no ponto P=(0,0,-1) e paralelo a \mathcal{L}_1 e a \mathcal{L}_2 .

63. Num espaço afim tridimensional A munido de um referencial, considere a recta afim definida por:

$$\mathcal{L} = \{(x, y, z) \in \mathcal{A} : x + y = 1 \text{ e } x - y = 1\}$$

Calcule a equação vectorial desta recta. Seja π o plano afim que contém \mathcal{L} e incide no ponto (2,0,0). Indique a equação vectorial e a equação cartesiana de π . Dê um exemplo de recta \mathcal{L}' tal que \mathcal{L} e \mathcal{L}' são enviesadas.

- 64. Num espaço afim tridimensional munido de um referencial,
 - (a) Indique a equação vectorial e a equação cartesiana do plano π paralelo à recta $r \equiv (0,0,1)+<(-1,1,0)>$ e incidente com a recta s definida pelos pontos A=(0,0,2) e B=(0,0,3).
 - (b) Considere um plano de equação cartesiana 2x + y z + 1 = 0 e indique a equação cartesiana do plano paralelo ao anterior e incidente em (0,0,0).
 - (c) Justifique sucintamente se os planos afins $\pi = (0,0,1) + < (1,1,1), (1,-1,0) > e$ $\pi' = (2,2,3) + < (0,2,1), (1,1,1) > são ou não iguais;$
 - (d) Indique duas rectas afins enviesadas r' e r'' tais que r' esté contida no plano afim z-4=0.
- 65. Seja $\mathcal A$ um espaço afim de dimensão 4 munido de um referencial. Sejam A, B e C os pontos de $\mathcal A$:

$$A = (1, 1, 0, -2)$$
 $B = (2, 1, 0, -3)$ $C = (0, 1, 0, +1)$

Indique a equação vectorial do plano afim $\mathcal U$ de $\mathcal A$ que contem $A, B \in C$. Considere também o subespaço afim $\mathcal V$:

$$V = \{(x, y, z, t) \in A : x + y + t = 0\}$$

Indique uma equação vectorial de \mathcal{V} . Qual a dimensão de \mathcal{V} ? São \mathcal{V} e \mathcal{U} paralelos? são iguais? Justifique sucintamente.

66. Sejam \mathcal{H} , \mathcal{H}' e \mathcal{H}' os hiperplanos de um espaço afim \mathcal{A} de dimensão 4 (munido de um referencial) definidos pelas equações:

$$\mathcal{H} \equiv x + 2y + z - t = 0$$

 $\mathcal{H}' \equiv 2x + 4y + 2z - 2t + 1 = 0$
 $\mathcal{H}'' \equiv -3x - 6y - 3z + 3t - 1 = 0$

São hiperplanos paralelos? São disjuntos? Justifique.

Ortogonalidade, problemas métricos.

- 67. No espaço vectorial \mathbf{R}^n , munido do produto escalar usual, determine o produto escalar dos vectores \overrightarrow{v} e \overrightarrow{w} .
 - (a) $\overrightarrow{v} = (-1,0), \ \overrightarrow{w} = (2,-5);$
 - (b) $\overrightarrow{v} = (3, -1, 1/2), \overrightarrow{w} = (4, 0, -8);$
 - (c) $\overrightarrow{v} = (1, -2, 3), \overrightarrow{w} = (6, -6, 8);$
 - (d) $\overrightarrow{v} = (1, -2, 2, -1), \overrightarrow{w} = (-3, 0, 1, -6).$
- 68. No espaço vectorial \mathbf{R}^n , munido do produto escalar usual, determine o complemento ortogonal da recta vectorial gerada pelo vector \overrightarrow{v} .
 - (a) $\vec{v} = (0,4)$;
 - (b) $\overrightarrow{v} = (3, -2);$
 - (c) $\overrightarrow{v} = (4, -1, 2/3);$
 - (d) $\overrightarrow{v} = (1/8, -1/4, 2);$
 - (e) $\overrightarrow{v} = (-5, -3, 1, -3)$.
- 69. No espaço vectorial \mathbf{R}^n , munido do produto escalar usual, determine o complemento ortogonal do plano vectorial gerado pelos vectores \overrightarrow{v} e \overrightarrow{w} .
 - (a) $\overrightarrow{v} = (2, -1, 0), \ \overrightarrow{w} = (1, 0 2);$
 - (b) $\overrightarrow{v} = (1, -2, 3), \ \overrightarrow{w} = (3, 3, 3);$
 - (c) $\overrightarrow{v} = (1/3, -1/3, 0, 1/3), \overrightarrow{w} = (0, 1, 1, -2).$
- 70. No espaço vectorial \mathbf{R}^2 , munido do produto escalar usual, determine a projecção ortogonal do vector \overrightarrow{v} na recta vectorial $<\overrightarrow{w}>$, se $\overrightarrow{v}=(2,-3)$ e $\overrightarrow{w}=(5,1)$.

geometria - 2010/2011

- 71. No espaço vectorial \mathbf{R}^2 , munido do produto escalar usual, determine a projecção ortogonal do vector \overrightarrow{v} na recta vectorial $<\overrightarrow{w}>$, se $\overrightarrow{v}=(x,y)$ e $\overrightarrow{w}=(5,1)$.
- 72. No espaço vectorial \mathbf{R}^3 , munido do produto escalar usual, determine a projecção ortogonal do vector \overrightarrow{v} na recta vectorial $<\overrightarrow{w}>$, se $\overrightarrow{v}=(1,0,3)$ e $\overrightarrow{w}=(2,2,2)$.
- 73. No espaço vectorial \mathbf{R}^2 , munido do produto escalar usual, determine a projecção ortogonal do vector \overrightarrow{v} na recta vectorial $<\overrightarrow{w}>$, se $\overrightarrow{v}=(x,y,z)$ e $\overrightarrow{w}=(2,2,2)$.
- 74. No espaço vectorial ${f R}^3$, munido do produto escalar usual, determine a projeção ortogonal do vector \overrightarrow{v} no subespaço vectorial W, se $\overrightarrow{v}=(1,-1,0)$ e W está definido pela equação vectorial

$$W = < (4, 1, 2) >$$

75. No espaço vectorial ${\bf R}^3$, munido do produto escalar usual, determine a projeção ortogonal do vector \overrightarrow{v} no subespaço vectorial W, se $\overrightarrow{v}=(x,y,z)$ e W está definido pela equação vectorial

$$W = < (4, 1, 2) >$$

76. No espaço vectorial \mathbf{R}^3 , munido do produto escalar usual, determine a projeção ortogonal do vector \overrightarrow{v} no subespaço vectorial W, se $\overrightarrow{v} = (0,0,4)$ e W está definido pela equação vectorial

$$W = <(0,1,2),(1,1,-1)>$$

77. No espaço vectorial ${\bf R}^3$, munido do produto escalar usual, determine a projeção ortogonal do vector \overrightarrow{v} no subespaço vectorial W, se $\overrightarrow{v}=(x,y,z)$ e W está definido pela equação vectorial

$$W = <(0,1,2),(1,1,-1)>$$

- 78. No espaço vectorial \mathbf{R}^4 , munido do produto escalar usual, determine a projecção ortogonal do vector $\overrightarrow{v} = (x, y, z, t)$ na recta vectorial gerada pelo vector $\overrightarrow{w} = <(1, 0, -1, 0)>$.
- 79. No espaço vectorial ${f R}^3$, munido do produto escalar usual, determine a projeção ortogonal do vector \overrightarrow{v} no subespaço vectorial W, se $\overrightarrow{v}=(1,-1,0)$ e W está definido pela equação cartesiana

$$x - z = 0$$

80. No espaço vectorial ${f R}^3$, munido do produto escalar usual, determine a projeção ortogonal do vector \overrightarrow{v} no subespaço vectorial W, se $\overrightarrow{v}=(a,b,c)$ e W está definido pela equação cartesiana

$$x - z = 0$$

81. No espaço vectorial ${f R}^2$, munido do produto escalar usual, determine uma base ortonormada do subespaço vectorial W definido pela equação cartesiana

$$2x + y = 0$$

82. Seja \mathcal{A} um plano afim euclidiano munido de um referencial ortonormado.

(a) Determine a recta s_1 perpendicular à recta r_1 definida pela equação vectorial:

$$r_1 = (2,0) + < (2,-2) >$$

- e que incide no ponto $P_1 = (1,4)$.
- (b) Determine a recta s_2 perpendicular à recta r_2 definida pela equação cartesiana:

$$-2x + 3y - 1 = 0$$

- e que incide no ponto $P_2 = (-1, 5)$.
- 83. Seja \mathcal{A} um espaço afim euclidiano tridimensional munido de um referencial ortonormado.
 - (a) Calcule a recta r perpendicular ao plano π definido pela equação cartesiana:

$$2x + y - z + 4 = 0$$

- e que incide no ponto P = (-1, 1, 1).
- (b) Calcule a recta r' perpendicular ao plano π' definido pela equação vectorial:

$$\pi' = (1,0,1) + < (2,0,0), (-1,-1,3) >$$

- e que incide no ponto P' = (1, -1, 0).
- 84. Seja \mathcal{A} um espaço afim euclidiano tridimensional munido de um referencial ortonormado.
 - (a) Calcule o plano π perpendicular à recta s definida pela equação vectorial:

$$s = (1, 1, 0) + \langle ((1, 1, -1)) \rangle$$

- e que incide no ponto P = (2, 0, -1).
- (b) Calcule o plano π' perpendicular à recta s' definida pelas equações cartesianas:

$$\begin{cases} x - y + 2z - 2 &= 0 \\ -x + 2y + z &= 0 \end{cases}$$

- e que incide no ponto P = (5, 0, -1).
- 85. Num espaço euclidiano tridimensional munido de um referencial ortonormado considere as rectas afins:

$$r = (1, 0, -2) + < (2, -2, 1) >$$

 $s = < (0, 2, 1) >$

- Calcule a recta t perpendicular a r e a s que incide no ponto M = (0,3,0).
- 86. Seja \mathcal{A} um espaço afim de dimensão quatro munido de um referencial ortonormado.

(a) Calcule a recta r perpendicular ao hiperplano $\mathcal H$ definido pela equação cartesiana:

$$x + y + 3z - 1 = 0$$

e que incide no ponto P = (0, 1, -2, 0).

(b) Calcule o hiperplano \mathcal{H}' perpendicular à recta s definida pela equação vectorial:

$$s = (1, 5, -1, 1) + \langle (1, -2, -2, 0) \rangle$$

e que incide no ponto P' = (0, 1, -2, 0).

87. Seja \mathcal{A} um espaço afim euclidiano tridimensional munido de um referencial ortonormado. Calcule a perpendicular comum às rectas enviesadas:

$$r = (0, -1, -2) + \langle (1, 0, 1) \rangle$$
 $s = (2, 0, 0) + \langle (2, 0, -1) \rangle$

88. Seja \mathcal{A} um espaço afim euclidiano tridimensional munido de um referencial ortonormado. Calcule os pés da perpendicular comum às rectas enviesadas:

$$r = <(2, 1, -1)>$$
 $s = (0, 1, 0)+<(1, 0, 1)>$

89. Num plano euclidiano munido de um referencial ortonormado, seja r a recta afim definida pela equação vectorial

$$r = (4, -1) + < (2, -1) >$$

- (a) Calcule a projecção ortogonal do ponto P = (-3,0) na recta r.
- (b) Calcule a projecção ortogonal do ponto P = (x, y) na recta r

90. Num plano euclidiano munido de um referencial ortonormado, seja r a recta afim definida pela equação cartesiana

$$y - 5 = 0$$

- (a) Calcule a projecção ortogonal do ponto P = (2,2) na recta r.
- (b) Calcule a projecção ortogonal do ponto P = (x, y) na recta r.
- 91. Num espaço euclidiano tridimensional munido de um referencial ortonormado, seja π o plano afim definido pela equação vectorial

$$\pi = (0,0,5) + < (-1,2,0), (1,0,-1) >$$

- (a) Calcule a projecção ortogonal do ponto P=(0,2-1) no plano afim π .
- (b) Calcule a projecção ortogonal do ponto P = (x, y, z) no plano afim π .
- 92. Num espaço euclidiano tridimensional munido de um referencial ortonormado, seja π o plano afim definido pela equação cartesiana

$$x + y + z + 1 = \mathbf{0}$$

(a) Calcule a projecção ortogonal do ponto P=(3,2-1) no plano afim π .

- (b) Calcule a projecção ortogonal do ponto P=(x,y,z) no plano afim $\pi.$
- 93. Num espaço euclidiano tridimensional munido de um referencial ortonormado, seja r a recta afim definida pela equação vectorial

$$r = (1, 0, -2) + \langle (2, 0, 0) \rangle$$

- (a) Calcule a projecção ortogonal do ponto P=(-1,2-1) na recta r.
- (b) Calcule a projecção ortogonal do ponto P = (x, y, z) na recta r.
- 94. Num espaço euclidiano de dimensão 4 munido de um referencial ortonormado, seja \mathcal{U} o subespaço afim definido pela equação vectorial:

$$\mathcal{U} = (2,0,0,1) + \langle (0,1,-1,0), (-1,-1,0,0) \rangle$$
.

Calcule a projeção ortogonal do ponto P = (x, y, z, t) em \mathcal{U} .

- 95. Num plano euclidiano munido de um referencial ortonormado, calcule:
 - (a) A distância do ponto P = (1,1) à recta afim s definida pela equação cartesiana:

$$3x + y + 5 = 0$$

(b) A distância do ponto P = (1,1) à recta fim t definida pela equação vectorial:

$$t = (1, -2) + < (1, -3) >$$

(c) A distância entre as rectas paralelas r e r' definidas pelas equações cartesianas:

$$x - 4y + 1 = 0$$
 $x - 4y = 0$

- 96. Num espaço euclidiano tridimensional munido de um referencial ortonormado, calcule:
 - (a) a distância do ponto P=(2,0,-1) ao plano afim π definido pela equação cartesiana:

$$5x + y - 4z + 2 = 0$$

(b) a distância entre os planos paralelos π_1 e π_2 definidos pelas equações cartesianas:

$$x + 3z - 2 = 0$$
 $2x + 6z + 1 = 0$

(c) a distância do ponto P = (2, 0, -1) à recta afim r definida pela equação vectorial:

$$r = (1, 1, 0) + \langle (0, -2, 1) \rangle$$

(d) a distância entre as rectas paralelas r_1 e r_2 definidas pelas equações vectoriais:

$$r_1 = (-1,0,3) + < (1,-1,1) > r_2 = (0,0,4) + < (1,-1,1) >$$

geometria - 2010/2011

(e) a distância entre as rectas enviesadas s_1 e s_2 definidas pelas equações vectoriais:

$$s_1 = (-1,0,2) + < (1,-1,1) >$$
 $s_2 = (0,0,4) + < (2,0,0) >$

- 97. Num espaço euclidiano tridimensional munido de um referencial ortonormado, calcule
 - (a) o ângulo formado pelas rectas r e s definidas pelas equações vectoriais:

$$r = (-2, 1, 0) + \langle (4, 1, -4) \rangle$$
 $s = (2, 0, 1) + \langle (-3, 0, -2) \rangle$

(b) o ângulo formado pela recta t e o plano π , se

$$t = (6,0,-3) + < (2,0,-2) >$$

e π está definido pela equação cartesiana:

$$z - 5 = 0$$

(c) o ângulo formado pelos planos π_1 e π_2 definidos, respectivamente, pelas equações cartesianas:

$$2x - z - 1 = 0$$
 $3x + y + z - 1 = 0$

98. Seja \mathcal{A} um espaço afim euclidiano de dimensão 4 munido de um referencial ortonormado. Seja \mathcal{U} o subespaço afim definido pelo sistema de equações cartesianas:

$$x + y - z + 2 = 0$$
 $x + z - 2t - 1 = 0$

- (a) Determine a dimensão de \mathcal{U} , o subespaço perpendicular a \mathcal{U} que incide em P=(0,2,0,0).
- (b) Determine a distância entre $P \in \mathcal{U}$.
- 99. Considere duas rectas r_1 e r_2 de um plano euclidiano definidas, num referencial ortonormado, pelas equações

$$r_1: A_1x + B_1y + C_1 = 0$$

$$r_2: A_2x + B_2y + C_2 = 0$$

Seja θ o ângulo formado pelas rectas. Verifique que:

$$\cos \theta = \frac{|A_1 A_2 + B_1 B_2|}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}$$

Deduza que duas rectas são perpendiculares se e só se $A_1A_2 + B_1B2 = 0$.

100. Primeira Chamada 2006/2007

Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}\$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}\$ dois referenciais de um plano afim real \mathcal{A} verificando:

• $O' \equiv (0,2)_{\mathcal{R}}$;

$$\bullet \begin{cases} \overrightarrow{v}_1' = 3\overrightarrow{v}_1 \\ \overrightarrow{v}_2' = -2\overrightarrow{v}_2 \end{cases}$$

- (a) Determine a expressão matricial da mudança de coordenadas entre os referenciais \mathcal{R} e \mathcal{R}' . Calcule as coordenadas no referencial \mathcal{R}' dos pontos $A \equiv (1,2)_{\mathcal{R}}$ e $B \equiv (-1,3)_{\mathcal{R}}$.
- (b) Determine, no referencial \mathcal{R} , as equações paramétricas e a equação cartesiana da recta r definida pelos pontos A e B. Seja s a recta paralela a r que passa pelo origem de coordenadas O. Qual a equação cartesiana de s no referencial \mathcal{R}' ?
- (c) Suponha o referencial \mathcal{R} ortonormado. Qual a distância d(A,B)? O referencial \mathcal{R}' é um referencial ortonormado?
- (d) Suponha o referencial \mathcal{R} ortonormado. Indique uma equação vectorial e uma equação cartesiana (no referencial \mathcal{R}) da recta perpendicular a r que passa pelo ponto $E \equiv (4,1)_{\mathcal{R}}$.

101. Primeira Chamada 2006/2007

Sejam A, B e C os vértices de um triângulo de um plano euclidiano. Considere A', B' e C' os pontos médios dos lados \overline{BC} , \overline{CA} e \overline{AB} , respectivamente e $m_{A'}$, $m_{B'}$ e $m_{C'}$ as mediatrizes do triângulo, isto é,

- a recta $m_{A'}$ perpendicular a \overline{BC} e que passa por A';
- a recta $m_{B'}$ perpendicular a \overline{CA} e que passa por B';
- a recta $m_{C'}$ perpendicular a \overline{AB} e que passa por C'.

Suponha que as mediatrices $m_{A'}$ e $m_{B'}$ intersectam-se num ponto O.

(a) Prove, usando o Teorema de Pitágoras, que

$$d(O, A) = d(O, C)$$
 e $d(O, B) = d(O, C)$

Prove ainda que o ponto O também pertence à mediatriz $m_{C'}$. O ponto O diz-se circuncentro do triângulo de vértices A, B e C.

- (b) Justifique o seguinte enunciado:
 - "Dado um triângulo de um plano euclidiano, existe uma única circunferência que passa pelos vértices do triângulo (chamada a circunferência circunscrita) cujo centro é o circuncentro do triângulo".
- (c) Num plano euclidiano munido de um referencial ortonormado, determine o centro e o raio da circunferência que passa pelos pontos:

$$A = (1,0), \qquad B = (1,1) \qquad e \qquad C = (2,0)$$

102. Segunda Chamada 2006/2007

Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}$ dois referenciais de um plano afim real \mathcal{A} verificando:

• $O' \equiv (1,1)_{\mathcal{R}}$;

$$\bullet \left\{ \begin{array}{l} \overrightarrow{v}_1' = 2\overrightarrow{v}_2 \\ \overrightarrow{v}_2' = -\overrightarrow{v}_1 \end{array} \right.$$

- (a) Determine a expressão matricial da mudança de coordenadas entre os referenciais \mathcal{R} e \mathcal{R}' . Calcule as coordenadas no referencial \mathcal{R}' dos pontos $A \equiv (1,0)_{\mathcal{R}}$ e $B \equiv (-1,-1)_{\mathcal{R}}$.
- (b) Determine, no referencial \mathcal{R} , as equações paramétricas e a equação cartesiana da recta r definida pelos pontos A e B. Seja s a recta paralela a r que passa pelo origem de coordenadas O. Qual a equação cartesiana de s no referencial \mathcal{R}' ?
- (c) Suponha o referencial \mathcal{R} ortonormado. Qual a distância d(A,B)? O referencial \mathcal{R}' é um referencial ortonormado?
- (d) Suponha o referencial \mathcal{R} ortonormado. Indique uma equação vectorial e uma equação cartesiana (no referencial \mathcal{R}) da recta perpendicular a r que passa pelo ponto $E \equiv (0,3)_{\mathcal{R}}$.

103. Segunda Chamada 2006/2007

Sejam A, B e C os vértices de um triângulo do plano euclidiano. Considere:

$$a=d(B,C), \quad b=d(C,A), \quad c=d(A,B)$$

$$\alpha=\angle\{\overrightarrow{AB},\overrightarrow{AC}\}, \quad \beta=\angle\{\overrightarrow{BC},\overrightarrow{BA}\} \quad \text{e} \quad \gamma=\angle\{\overrightarrow{CA},\overrightarrow{CB}\}$$

(a) Prove o teorema dos Cossenos, isto é, prove que

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

- (b) Verifique que se o triângulo é isósceles, isto é, se b=c então $\cos\beta=\cos\gamma$.
- (c) Prove uma das seguintes igualdades:

$$c = a \cos \beta + b \cos \alpha$$
, $b = a \cos \gamma + c \cos \alpha$, $a = b \cos \gamma + c \cos \beta$.

Deduza que se $\cos \beta = \cos \gamma$ então b=c (isto é, o triângulo é isósceles). (Sugestão: use as igualdades anteriores para obter $c-b=(b-c)\cos \alpha + a(\cos \beta - \cos \gamma)$)

(d) Sejam B e C dois pontos não diametralmente opostos de uma circunferência com centro A. Se M é o ponto médio entre B e C, prove que a recta que passa por M e A é perpendicular ao segmento \overline{BC} .

- 104. Testes 2007/2008 (Exercícios relativos à Parte I)
 - (a) Num espaço afim de dimensão 4 munido de um referencial $\mathcal R$ considere a recta r que passa pelo ponto $A=(1,0,0,1)_{\mathcal R}$ e está dirigida pelo vector $\overrightarrow{v}=(0,1,1,2)$ e o hiperplano afim $\mathcal U$ definido, no referencial $\mathcal R$, pela equação cartesiana:

$$x + z + 2t - 1 = 0$$

Determine as equações cartesianas de r neste referencial. Calcule a intersecção $r \cap \mathcal{U}$.

- (b) Sejam $\mathcal{R} = \{O, (\overrightarrow{v}_1, \overrightarrow{v}_2)\}\$ e $\mathcal{R}' = \{O', (\overrightarrow{v}_1', \overrightarrow{v}_2')\}\$ dois referenciais de um plano afim real verificando:
 - $O' \equiv (1, -1)_{\mathcal{R}};$

$$\bullet \left\{ \begin{array}{lll} \overrightarrow{v}_1' & = & + & 3\overrightarrow{v}_2 \\ \overrightarrow{v}_2' & = & -\overrightarrow{v}_1 & + & \overrightarrow{v}_2 \end{array} \right.$$

Considere a recta r definida, no referencial \mathcal{R} , pela equação cartesiana:

$$r: x - 2y + 3 = 0$$

Determine a equação cartesiana de r no referencial \mathcal{R}' . Supondo o referencial \mathcal{R} ortonormado, determine, **no referencial** \mathcal{R}' , a equação cartesiana da recta perpendicular a r que passa pelo ponto O'.

(c) Sejam π um plano afim de um espaço euclidiano tridimensional \mathcal{A} , A um ponto de π e \overrightarrow{n} um vector normal a π . Seja P um ponto de \mathcal{A} e q(P) a projecção ortogonal de P em π . Mostre que

$$q(P) = P - \left(\frac{\overrightarrow{AP} \cdot \overrightarrow{n}}{\overrightarrow{n} \cdot \overrightarrow{n}}\right) \overrightarrow{n}$$

Deduza a fórmula da distância entre um ponto e um plano num espaço tridimensional, num referencial ortonormado.

(d) Sejam A, B e C três pontos formando um triângulo de um espaço afim \mathcal{A} . Verifique que os planos π_1 e π_2 definidos de seguida são iguais:

$$\pi_1 = A + \langle \overrightarrow{AB}, \overrightarrow{AC} \rangle$$

$$\pi_2 = C + \langle \overrightarrow{CA}, \overrightarrow{BC} \rangle$$

I. Cond	ceitos básicos.	1
1	Introdução	1
2	Espaços afins	3
3	Referenciais e coordenadas	5
4	Espaços euclidianos	10
5	Rectas, planos e outros subespaços afins	18
6	Paralelismo e perpendicularidade	27
7	Problemas métricos	34
8	Exercícios resolvidos	39
	Espaços afins, referenciais, espaços euclidianos.	39
	Rectas, planos, paralelismo	45
	Ortogonalidade, problemas métricos	58
9	Exercícios propostos	71
	Espaços afins, referenciais, espaços euclidianos.	71
	Rectas, planos, paralelismo	76
	Ortogonalidade, problemas métricos	81