

Praktikum Implementierung tiefer Neuronaler Netze auf der GPU

Julien Aziz

Betreuer: Daniel Zimmermann

Motivation - Neuroevolution

- Methode um Neuronale Netze zu trainieren/generieren
- Population von Neuronalen Netzen
- Evolutionäre Optimierung
 - Mutation, Kombination, Ersetzung
- Evaluation in Trainingsumgebungen

Motivation

Neuronale Netze

Implementierung

Motivation - Neuroevolution

Neuronale Netze

Fazit

Implementierung

Motivation

Motivation - Ziel

- Implementierung Neuronaler Netze in Julia
- Ausführung der Hauptfunktionalitäten auf der GPU
- Validierung mit Flux
- Neuronale Netze
 - Elman-Netz
 - Gated Reccurent Unit (GRU)
 - Long Short-Term Memory (LSTM)

Motivation

Neuronale Netze

Implementierung

Neuronale Netze - Rekurrenz

Elman-Netz

 $h_t = \tanh(W_h x_t + U_h h_{t-1} + b)$

Motivation

Neuronale Netze

Implementierung

Fazit

5

Neuronale Netze - Rekurrenz

- Elman-Netz
 - $h_t = \tanh(W_h x_t + U_h h_{t-1} + b)$
- Gated recurrent unit
 - Update Gate
 - Reset Gate

Motivation

Neuronale Netze

Julien Aziz – Implementierung tiefer Neuronaler Netze auf der GPU

Implementierung

Neuronale Netze - Rekurrenz

Elman-Netz

$$h_t = \tanh(W_h x_t + U_h h_{t-1} + b)$$

Gated recurrent unit

- Update Gate
- Reset Gate

Long short-term memory

- Input Gate
- Forget Gate
- Output Gate

Motivation

Neuronale Netze

Implementierung

Implementierung - Hauptfunktionalitäten

- NN-Parameter in Struct gespeichert
 - Gewichtsmatrizen
 - Interne Zustände
- Initialisierung Einmalig pro Generation
 - Eingabe: NN-Gewichte von Optimierer
 - Initialisierung des Modells
- Schrittfunktion N-Mal pro Generation
 - Eingabe: Observationen aus Trainingsumgebung
 - Ausgabe: Nächste Aktion des Agenten

Neuronales Netz

Brain: Struct

initialize(brain: Brain, weights)
step(brain: Brain, input, output, memory_offset)
reset(brain: Brain)
get_individual_size(brain: Brain): Int
get_memory_requirements(brain: Brain): Int
get_required_threads(brain: Brain): Int

Motivation

Neuronale Netze

Implementierung

Implementierung – GPU Ausführung

- Cuda Kernel Funktion als Einstiegspunkt
 - Ausführung als Blockgrid
 - Jeder Block hat bis zu 1024 Threads
- GPU-Speicher
 - Globaler Speicher
 - Statischer geteilter Speicher
- Vorgehen: Ein Block pro Individuum
 - Ein Thread pro Neuron


```
@cuda threads = x blocks = y shmem = z kernel_function()
```

Motivation

Neuronale Netze

Implementierung

Implementierung – Parallelisierung

Generation n

Implementierung – Beschleunigungen

- Überwachung der GPU-Aktivitäten mit "nvprof"
 - Hier: Profiling des GRU Testskripts

Туре	Time(%)	Time	Calls	Avg	Min	Max	Name
GPU activities:	40.81%	1.11623s	200000	5.5810us	2.1760us	78.271us	julia_getindex_kernel_6568(CuKernelContext,
	32.82%	897.63ms	300011	2.9920us	1.0870us	199.10us	[CUDA memcpy DtoH]
	20.72%	566.85ms	100000	5.6680us	1.9520us	124.83us	<pre>julia_getindex_kernel_6263(CuKernelContext,</pre>
	5.26%	144.00ms	1000	144.00us	16.799us	2.6583ms	julia_kernel_test_brain_step_5262(CuDeviceAr
	0.37%	10.218ms	2001	5.1060us	1.9840us	320.51us	[CUDA memcpy HtoD]
	0.01%	329.92us	1	329.92us	329.92us	329.92us	julia_kernel_test_brain_initialize_2977(CuDe

- Weitere Beschleunigungen
 - NN-Berechnungen auf statischem GPU Speicher
 - Speicherung der Zwischenergebnisse
 - @Inbounds Annotationen

Motivation • Neuronale Netze • Implementierung • Fazit

Implementierung – Validierung

- Zunächst Implementierung auf der CPU
- Flux als Referenz
 - Machine Learning Bibliothek für Julia
- Vergleich der GPU-Implementierung mit CPU & Flux
- Unit Tests der GPU Implementierungen
 - Initialisierung der Gewichte & Zustände
 - Korrekte Ausgabe der Netze über mehrere Zeitschritte

Motivation

Neuronale Netze

Implementierung

Fazit & Ausblick

- Performante Implementierung Neuronaler Netze auf der GPU
 - Korrekte Ausgaben über lange Zeithorizonte
 - Geringe Laufzeiten mit Standard Hardware
- Laufzeitbeschleunigung
 - Hoher Parallelisierungsgrad
 - Effiziente Speichernutzung
- Implementierung neuer Trainingsumgebungen
 - GUI-Testing

Motivation

Neuronale Netze

Implementierung

Appendix - Rekurrente Netze

Gated recurrent unit

- Update Gate: $u_t = \sigma(W_{ux}x_t + U_{uh}h_{t-1} + b_u)$
- Reset Gate: $r_t = \sigma(W_{ux}x_t + U_{uh}h_{t-1} + b_r)$
- Memory state: $h'_t = tanh(W_{hh}x_t + U_{hh}(h_{t-1} \odot r_t) + b_h)$
- Output: $h'_t = u_t \odot h'_t + (1 u_t) \odot h_{t-1}$

Long short-term memory

- Input Gate: $i_t = \sigma(W_{ix}x_t + U_{ih}h_{t-1} + b_y)$
- Forget Gate $f_t = \sigma(W_{fx}x_t + U_{fh}h_{t-1} + b_f)$
- Output Gate $o_t = \sigma(W_{ox}x_t + U_{oh}h_{t-1} + b_o)$
- Memory state: $c'_t = \sigma(W_{cx}X_t + U_{cx}h_{t-1} + b_c)$
- Long-term: $c_t = f_t \odot c_{t-1} + i_t \odot c'_t$
- Output: $o_t \odot \sigma(c_t)$

Appendix Trainingsframework

Motivation

Neuronale Netze

Implementierung

Fazit

13