Valutazione delle prestazioni (S. 6.8)

Equazione di base delle prestazioni $T = \frac{N \cdot S}{R}$

- T: tempo di esecuzione
- N: conteggio dinamico delle istruzioni
- > S: numero medio di cicli di clock per istruzione
- R: frequenza di clock (l'inverso della frequenza è il periodo di clock)
- La frequenza di operazione (throughput) **P** indica meglio la prestazione di un processore. Throughput (P): numero medio di istruzioni eseguite nell'unità di tempo (istruzioni al secondo)
- Senza pipeline $P_{np} = \frac{R}{S}$
- Con pipeline ideale $P_p = R$
- ▶ Il guadagno ideale S è attenuato da stalli e penalità di salto

22

24

Effetti di penalità di salto

- ▶ Per il processore con
 - ▶ Calcolo della destinazione di salto al secondo stadio
 - Predizione dinamica di salto
 - Buffer di destinazione di salto
- Penalità di salto residue: solo per errori di predizione
 - $oldsymbol{\delta_{penalita\ salto}}$ è l'incremento del tempo di esecuzione per tali penalità
 - Es. istruzioni di salto: 20% del conteggio dinamico, tasso errore di predizione: 10%
- $\delta_{penalita\ salto} = 0.20 \cdot 0.10 \cdot 1 = 0.02$
- ▶ Le dipendenze di dato e gli errori di predizione di salto sono indipendenti quindi si ha una somma degli effetti

Prof. Tramontana

Effetti di stalli

- Filma degli effetti quantitativi dei conflitti sul guadagno della pipeline, valutando $P_p = \frac{R}{1+\delta}$
- δ è l'incremento del tempo di esecuzione, con δ = 0 si ha il caso ideale
- Per il processore con inoltro degli operandi
- Stalli residui (pari a un ciclo) per dipendenze di dato da istruzioni Load (Figura 6.8)
- Es. istruzioni Load pari a 25% del conteggio dinamico, con 40% di queste seguite da istruzioni dipendenti
- $\delta_{stallo} = istr_{load} \cdot istr_{dinend} \cdot cicli_{extra} = 0.25 \cdot 0.40 \cdot 1 = 0.1$

$$P_p = \frac{R}{1 + \delta_{stallo}} = \frac{R}{1,1} = 0.91R$$

23

Effetti di cache miss

- ightharpoonup Supponendo il tempo di risposta della memoria RAM pari a p_{m} cicli di clock
 - $\rightarrow m_i$: frazione di istruzioni prelevate soggette a cache miss
 - ▶ d: frazione di istruzioni Load o Store del conteggio dinamico
 - $lacktriangleright m_d$: frazione degli accessi a memoria soggetti a cache miss
- $oldsymbol{\delta_{miss}}$: incremento del tempo di esecuzione per cache miss
- $\delta_{miss} = (m_i + d \cdot m_d) \cdot p_m$
- ▶ Esempio: con $m_i = 0.05$, d = 0.3, $m_d = 0.1$, $p_m = 10$, allora $\delta_{miss} = (0.05 + 0.3 \cdot 0.1) \cdot 10 = 0.8$
- $oldsymbol{\delta_{miss}}$ è spesso il contributo dominante della somma
- $\delta = \delta_{stallo} + \delta_{penalita_salto} + \delta_{miss}$ e dai numeri precedenti $\delta = 0.1 + 0.02 + 0.8 = 0.92$

Numero di stadi della pipeline

- Aumentare il numero di stadi della pipeline (profondità), fa crescere il throughput ideale, tuttavia
 - cresce la probabilità di stallo perché più istruzioni sono nella pipeline e istruzioni distanti avrebbero dipendenze e potrebbero creare conflitti
 - percellizzazione di azioni in stadi diversi
- Il costo di realizzazione cresce
- Il ritardo della ALU, che è l'unità funzionale più lenta, limita la frequenza, e quindi anche la parcellizzazione degli altri stadi

Prof Tramoniana 26

Organizzazione hardware superscalare

- > Prelievo, decodifica, esecuzione sono svolte da unità funzionali separate
- Unità di prelievo: preleva più istruzioni per ciclo, alimenta una coda di ingresso all'unità di smistamento
- Unità di smistamento: decodifica le istruzioni in testa alla coda, e le emette verso le unità funzionali appropriate: ALU, Load/Store, ciascuna con una propria pipeline

28

Funzionamento superscalare

- Più unità funzionali in parallelo, ciascuna con la sua pipeline
- > Si ha la caratteristica dell'emissione multipla
- ▶ Si prelevano più istruzioni (per es. 4) per ciascun ciclo di clock, si ha un throughput potenziale di più istruzioni per ciclo di clock
- Sommario
 - organizzazione hardware per l'emissione multipla
 - > conflitti in un'architettura superscalare
 - esecuzione fuori ordine
 - > completamento dell'esecuzione
 - > cautele nello smistamento

Prof. Tramontana

Esempio di esecuzione superscalare

- Prelievo di due istruzioni per ciascun ciclo di clock, idem per decodifica e smistamento
- Le istruzioni in ogni coppia sono smistate a unità funzionali diverse
- > Si ha accesso multiplo al banco dei registri sia in lettura che in scrittura
- Non ci sono dipendenze di dato, salti, etc.

29

27