Ramsey number The Ramsey number R(k, l) is the smallest number n such that any red-blue two-coloring of K_n 's edges will always create a red K_k or a blue K_l .

Finite sample space A finite sample space is just some finite set Ω .

Probability function Given a finite sample space Ω , a probability function Pr on Ω is just a map $Pr: \Omega \to [0,1]$ with the property that

$$\sum_{\omega in\Omega} Pr(\omega) = 1.$$

Finite probability space A pair (Ω, Pr) , where Ω is a finite sample space and Pr is a probability function.

Uniform distribution A pair (Ω, Pr) , where Ω is a finite sample space and Pr is the probability function given by $\Pr(\omega) = 1/|\Omega|$, for every $\omega \in \Omega$.

Event An event A is just some subset of a finite sample space.

Random variable A random variable X on some finite sample space Ω is just a map from Ω to \mathbb{R} .

Expectation The expectation of a random variable X is the integral of X over Ω . For finite spaces, this is just the sum

$$\sum_{\omega in\Omega} Pr(\omega) \cdot X(\omega).$$

The probabilistic method in combinatorics first arose in 1947, when Erdös used it to prove the following claim:

Theorem 1 $R(k,k) > \lfloor 2^{k/2} \rfloor$.

Proof. Fix some value of n, and consider a random uniformly-chosen 2-coloring of K_n 's edges: in other words, let us work in the probability space $(\Omega, Pr) = (\text{all 2-colorings of } K_n$'s edges, $Pr(\omega) = 1/2^{\binom{n}{2}}$.)

For some fixed set R of k vertices in $V(K_n)$, let A_R be the event that the induced subgraph on R is monochrome. Then, we have that

$$Pr(A_R) = 2 \cdot \left(2^{\binom{n}{2} - \binom{k}{2}}\right) / 2^{\binom{n}{2}} = 2^{1 - \binom{k}{2}}.$$

Thus, we have that the probability of at least one of the A_R 's occurring is bounded by

$$Pr(\bigcup_{|R|=k}A_R) \leq \sum_{R \subset \Omega, |R|=k} Pr(A_R) = \binom{n}{k} 2^{1-\binom{k}{2}}.$$

If we can show that $\binom{n}{k} 2^{1-\binom{k}{2}}$ is less that 1, then we know that with nonzero probability there will be some 2-coloring $\omega \in \Omega$ in which none of the A_R 's occur! In other words, we know that there is a 2-coloring of K_n that avoids both a red and a blue K_k .

Solving, we see that

$$\binom{n}{k} 2^{1 - \binom{k}{2}} < \frac{n^k}{k!} \cdot 2^{1 + (k/2) - (k^2/2)} = \frac{2^{1 + k/2}}{k!} \cdot \frac{n^k}{2^{k^2/2}} < 1$$

whenever $n = \lfloor 2^{k/2} \rfloor, k \geq 3$. So we're done!

3 Example 2: Splitting Graphs

We close here with one last example of the probabilistic method:

Theorem 2 If G is a graph, then G contains a bipartite subgraph with at least E/2 edges.

Proof. Pick a subset of G's vertices, T, uniformly at random (i.e. select T by flipping a coin for each of G's vertices, and placing vertices in T iff our coin comes up heads.) Let $B = V(G) \setminus T$.

Call an edge $\{x,y\}$ of E(G) crossing iff exactly one of x,y lie in T, and let X be the random variable defined by

X(T) = number of crossing edges for T.

Then, we have that

$$X(T) = \sum X_{x,y}(T),$$

where $X_{x,y}(T)$ is the 0-1 random variable defined by $X_{x,y}(T) = 1$ if $\{x,y\}$ is an edge of G that's crossing, and 0 otherwise.

The expectation $\mathbb{E}(X_{x,y})$ is clearly 1/2, because we chose x and y to be in T at random. Thus, by the linearity of expectation, we have that

$$\mathbb{E}(X) = \sum \mathbb{E}(X_{x,y}) = E/2.$$

so the expected number of crossing edges for a random subset of G is E/2. Thus, there must be some $T \subset V(G)$ such that $X(T) \geq E/2$; taking the collection of crossing edges this set creates then gives us a bipartite graph (B,T) with $\geq E/2$ edges in it.

example 3 In an university, there are 1600 delegates, who have formed 16000 committees of 80 person each. Prove that one can find two committed having at least four common members.

Solution. Sample a pair of committees uniformly at random (i.e., randomly pick one of the $\binom{16000}{2}$ possible pairs). Let X be the number of people who are in both chosen committees. Note that $X = X_1 + \cdots + X_{1600}$, where each X_i is the $\{0,1\}$ -random variable telling whether the i-th person was in both chosen committees. By linearity of expectation,

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_{1600}].$$

The magic is that each $\mathbb{E}[X_i]$ is easy to calculate! Let n_i be the number of committees that the *i*-th person belongs to. Then, each $\mathbb{E}[X_i] = \mathbb{P}[i$ -th person is in both picked committees] = $\binom{n_i}{2} / \binom{16000}{2}$. The only piece of information we know about the $\{n_i\}$ is that their sum $\sum_i n_i = 16000 \cdot 80$, so this suggests that we use convexity to bound $\mathbb{E}[X]$ in terms of the average of $\{n_i\}$, which we denote by $\overline{n} = (16000 \cdot 80) / 1600 = 800$:

$$\mathbb{E}\left[X\right] \geq 1600 \cdot \binom{\overline{n}}{2} / \binom{16000}{2} = 1600 \cdot \binom{800}{2} / \binom{16000}{2} = 1600 \cdot \frac{800 \cdot 799}{16000 \cdot 15999} = 3.995.$$

(One could see that since $799 \approx 800$ and $15999 \approx 16000$, the last fraction is roughly 1/400.) But by the Lemma, we know that **some outcome of the probabilistic sampling produces an** $X \geq 3.995$. Since X is always an integer, that outcome must in fact have $X \geq 4$. In particular, we conclude that some pair of committees has ≥ 4 common members.