Trabalho Prático 2

Análise de Séries Temporais - 1/2023

Ana Carolina Vianna - 18/0097261

César Augusto Galvão - 19/0011572

Yan Flávio Vianna - 14/0166149

Table of contents

Modelos ETS: seleção, transformações e resíduos	3
Modelo sem transformação	;
Seleção	
Resíduos	2
Modelo com transformação	2
Seleção	2
Resíduos	(
Estudo de desempenho preditivo	6
Resultados da Janela Deslizante	(
Performance em relação aos horizontes de previsão	6
ARIMA	
	(
E15	,
Resultados	(
Anêndice	6

Introdução: série selecionada, características e decomposição

A série temporal escolhida foi a de número *id* correspondente a 2183. De acordo com a definição do próprio pacote, refere-se a *Fluid power shipments - hydraulic index*. Foram realizadas medidas mensais de 1983 a 1992 e o horizonte de previsão requerido é das 18 ocorrências seguintes.

O gráfico da série, com in e out-sample, é exposto a seguir.

Série Temporal M3-2183

A série aparenta ter dois períodos, pelo menos: um ciclo anual e outro que compreende um período maior. No entanto, ao se tentar decompor a série com múltiplas sazonalidades, obté-se o seguinte:

- Adicionando uma componente sazonal com ciclo menor que 1 ano uma das componentes sazonais apresenta heteroscedasticidade;
- Adicionando uma componente sazonal com ciclo maior que 1 ano resíduos apresentam periodicidade ou heteroscedasticidade.

Optou-se portanto pela decomposição STL (apesar de os dados terem inicialmente formado um objeto msts) apenas com a sazonalidade anual, mas fica evidente que esta decomposição não é adequada quando se avalia a componente de tendência, que aparenta ainda carregar algum componente periódico. Os resíduos aparentam um comportamento aleatório e têm média -0.104, o que é próximo de zero o suficiente considerando a magnitude dos dados da série. A decomposição é exposta a seguir.

Modelos ARIMA: seleção, transformações e resíduos

 ${\it COMENTAR}$ - para que serve diff normal e sazonal - o que conseguimos depois de aplicar - teste de estacionariedade - deixar pronto para a modelagem

[1] 1

[1] 1

- ACf e PACF
- Construção do modelo
- Resíduos

Modelos ETS: seleção, transformações e resíduos

Modelo sem transformação

Seleção

Modelo	AIC	AICc	BIC
ETS(M,Ad,M)	1761.30	1768.36	1810.87
ETS(M,M,M)	1761.94	1769.00	1811.51
ETS(Ad,A,A)	1764.25	1771.30	1813.81
ETS(M,Ad,A)	1767.73	1774.78	1817.29
ETS(M,A,M)	1769.04	1775.29	1815.86
ETS(A,A,A)	1771.20	1777.44	1818.01
ETS(M,A,A)	1774.56	1780.81	1821.38
ETS(M,M,M)	1781.06	1787.30	1827.87
ETS(A,N,A)	1812.26	1817.06	1853.56
ETS(M,N,M)	1827.18	1831.98	1868.48

Decomposition by ETS(M,Ad,M) method

Resíduos

Modelo com transformação

Seleção

a série com transformacao

Série com transformação Box-Cox $\lambda = 0.712$

decomposicao

Decomposição da série com transformação Box-Cox

selecao do modelo com transformação

Modelo transformado	AIC	AICc	BIC
ETS(M,Ad,M)	1761.30	1768.36	1810.87
ETS(M,M,M)	1761.94	1769.00	1811.51
$\mathrm{ETS}(\mathrm{Ad},\!\mathrm{A},\!\mathrm{A})$	1764.25	1771.30	1813.81
$\mathrm{ETS}(\mathrm{M},\mathrm{Ad},\mathrm{A})$	1767.73	1774.78	1817.29
ETS(M,A,M)	1769.04	1775.29	1815.86
ETS(A,A,A)	1771.20	1777.44	1818.01
ETS(M,A,A)	1774.56	1780.81	1821.38
ETS(M,M,M)	1781.06	1787.30	1827.87
ETS(A,N,A)	1812.26	1817.06	1853.56
$\mathrm{ETS}(\mathrm{M,N,M})$	1827.18	1831.98	1868.48

OS MODELOS SAO OS MESMO, PODEMO SELECIONAR O SEGUNDO MELHOR

Resíduos

Estudo de desempenho preditivo

Resultados da Janela Deslizante

Performance em relação aos horizontes de previsão

ARIMA

ETS

Resultados

apresente em tabelas e gráficos as previsões dos 4 modelos selecionados e também apresente em uma tabela os resultados de acurácia dos 4 modelos selecionados e dos modelos benchmarks. Comente os resultados de modo objetivo;

Apêndice

Todo o projeto de composição deste documento pode ser encontrado aqui: https://github.com/cesargalvao/trabalhos_series