Laboratorium SJ.

Lab. 1 - Karty kontrolne

Zadania do wykonania w środowisku Matlab (czas: 2h15m)

- 1) Napisać funkcję do wizualizacji danych z próbek pomiarowych.
- Wejściem funkcji jest macierz N x M zawierająca wyniki pomiarów M-próbek N-elementowych. Funkcja powinna tworzyć wykres zawierający trzy podwykresy ustawione jeden pod drugim: pierwszy do prezentacji wyników surowych próbek, drugi przedstawiający wartości średnie dla próbek (karta pomiarów wartości średniej), trzeci przedstawiający odchylenia standardowe próbek (karta pomiarów odchylenia standardowego). Oś odciętych w każdym wykresie powinna przedstawiać nr próbki, na osi rzędnych wartości wskaźników. Przetestować funkcje na danych wygenerowanych z rozkładu normalnego (randn).
- 2) Zapoznać się z funkcją 'boxplot'. Przetestować funkcję 'boxplot' używając danych symulowanych za pomocą funkcji 'rand', 'randn'. Zmodyfikować napisaną powyżej funkcję wykorzystując w niej polecenie 'boxplot'.
- 3) Napisać funkcję wykreślającą kartę kontrolną wartości średnich wraz z dolnymi i górnymi liniami kontrolnymi. Użyć danych z tabeli 1. Wejściem funkcji jest macierz NxM zawierająca wyniki pomiarów M-próbek N-elementowych. Ograniczenie na N: 2 do 25, dla próbek o liczności nie występującej w tab. dokonać interpolacji z sąsiednich danych w tabeli 1.
- 4) Napisać funkcję wykreślającą kartę kontrolną odchylenia standardowego wraz z dolnymi i górnymi liniami kontrolnymi. Użyć danych z poniższej tabeli. Wejściem funkcji jest macierz NxM zawierająca wyniki pomiarów M-próbek N-elementowych. Ograniczenie na N: 2 do 25, dla próbek o liczności nie występującej

N	A ₃ (N)	B ₃ (N)	B ₄ (N)
2	2.659	0	3.267
3	1.954	0	2.568
4	1.628	0	2.266
5	1.427	0	2.089
6	1.287	0.030	1.970
7	1.182	0.118	1.882
8	1.099	0.185	1.815
9	1.032	0.239	1.761
10	0.975	0.284	1.716
15	0.789	0.428	1.572
20	0.680	0.510	1.490
25	0.606	0.565	1.435

Tabela 1. Mnożniki do wyznaczania górnych i dolnych linii kontrolnych. A_3 – mnożniki dla linii kontrolnych dla wartości średniej; B_3 , B_4 – mnożniki dla dolnej i górnej (odpowiednio) granicy kontrolnej dla odchylenia standardowego. Dla wartości średniej $D(G)LK=\overline{\overline{X}}\pm A_3(N)^*\overline{S}$, Dla odchylenia standardowego $DLK=B_3(N)^*\overline{S}$, $GLK=B_4(N)^*\overline{S}$.

Funkcje napisane w pkt. 3 i 4 wykorzystać w funkcji napisanej w pkt.1. do wykreślenia linii kontrolnych na odpowiednich wykresach.

5) Załóżmy, że zmienne losowe zakłócające stabilny przebieg procesu dodają się do zmiennej odpowiadającej stabilnemu, czyli uregulowanemu, procesowi. Próbka pobierana w chwili t odpowiada obserwacjom pewnej zmiennej losowej Y(t),

$$Y(t) = X_0 + \sum_{i=1}^{k} I_i(t) \cdot X_i$$
,

gdzie X_i pochodzi z rozkładu F_i o wartości oczekiwanej μ_i i wariancji σ_i^2 , a funkcja wskaźnikowa I(t) ma postać: I(t)=1 z prawdopodobieństwem ρ_i lub I(t)=0 z prawdopodobieństwem 1- ρ_i . Jeżeli podany model

jest właściwy i mamy k możliwych wyznaczalnych przyczyn rozregulowania, to w danej próbce obecna jest jedna z 2^k możliwych kombinacji zmiennych losowych odpowiadających tym przyczynom rozregulowania. Skrajnymi możliwościami spośród wszystkich 2^k kombinacji są: niewystąpienie żadnej przyczyny rozregulowania oraz wystąpienie wszystkich przyczyn rozregulowania. Zakładamy, że próbki pobierane są dostatecznie rzadko, by postać zmiennej Y dla jednej próbki była niezależna od jej postaci dla innej próbki. Jednocześnie zakładamy, że każda funkcja wskaźnikowa k zachowuje stałą wartość (0 lub 1) w czasie pobierania jednej próbki.

W przypadku szczególnym, gdy rozkłady wszystkich zmiennych losowych są normalne, obserwowana zmienna losowa Y(t) może być przedstawiona jako:

$$Y(t) = N(\mu_0 + \sum_{i \in I} (i \cdot \mu_i), \ \sigma_0^2 + \sum_{i \in I} (i \cdot \sigma_i^2)),$$

gdzie $X_0 = N(\mu_0, \sigma_0^2)$.

Dla opisanego powyżej modelu napisać funkcję w środowisku Matlab realizującą M-próbek N-elementowych (macierz NxM) zmiennej Y dla założonej liczby k przyczyn rozregulowania procesu X_0 , prawdopodobieństw realizacji zmiennych zakłócających X_i . Założyć, że proces podstawowy oraz procesy zakłócające mają rozkład normalny o zadanych wartościach oczekiwanych i wariancjach.