

Machine Learning
Applications in
Control Engineering

Leistungselektronik und elektrische Antriebstechnik

Nachwuchsforschungsgruppe

MAGNET CHALLENGE 2023 EXPLORATORY DATA ANALYSIS (EDA)

Project Kick-Off

4/24/23

Wilhelm Kirchgässner

Data set in a nutshell

- 186747 operation points / samples
 - 2.8 GB disk space (serialized and compressed)
- Each sample consists of
 - Frequency, Temperature, B-curve (inputs)
 - Power loss, H-curve (targets)
 - A class label (material)
- Each curve consists of 1024 points

Size portions per material

Distributions

- Linear increase of max losses
- 1/freq bound for higher frequencies

Highest frequencies only for one material

Distributions

Only four distinct temperatures

MAGNET CHALLENGE 2023

EDA

Distributions

- Highest frequencies only for coldest temp.
- Materials with less portion size have fewer different freqs. at the top range

EDA

B-H-Curves per material

PADERBORN UNIVERSITY

B-H-Curves per material - Normalized

- Materials with lower max(B) have less distinct fins
- Materials with high max(H) have the most concise fins

Machine Learning
Applications in
Control Engineering

EDA

Distributions (2)

 Somewhat linear (except 3E6)

Distributions (2)

PADERBORN UNIVERSITY

- Hyperbolic decrease of max(B) over frequency
- Different for each material

EDA

Distributions (2)

PADERBORN UNIVERSITY

 High max(H) only at low frequencies, for only two materials

Machine Learning Applications in Control Engineering

EDA

Distributions (2)

No perfect linear relationship

Machine Learning Applications in Control Engineering

EDA

Distributions (2)

- Some linear to exponential relationship
- High scatter

Distributions (2)

• Similar to dB/dt

Distributions (2)

PADERBORN UNIVERSITY

- Exponential relationship becomes more linear
- Scatter does not reduce

Waveforms need to be estimated (here, template matching/ threshold-based)

PADERBORN UNIVERSITY

B-H-Curves per waveform

PADERBORN UNIVERSITY

Square waveform has less distinct fins

B-H-Area vs. Power loss

- Square waveform exhibits largest errors
- Sawtooth the smallest
- BH-Area tends to underestimate the loss
- Peaks are not at 0

B-H-Area vs. Power loss

- Higher errors occur for small max(dB/dt) and max(dH/dt)
- Modes become visible
- Error has no correlation with temperature
- Error has two modes with frequency

B-H-Area vs. Power loss per material

- 3E6, N30, and 77 show smallest errors
- 3F4 has the highest

https://git.uni-paderborn.de/lea-git/magnet-challenge-2023

Conclusion

- Estimating the H-curve is only a proxy of the loss at ~5% accuracy
- B-H curves look different for different materials (shape, max values, etc.)
- No strong linear or quadratic correlation evident yet (except max(B) → max(H))
- Modeling should consider
 - One model for all materials vs. one model per material
 - Approximating curves by subsampling (less data)
 - Merge Seq2Seq modeling B-curve → H-curve + correction with a regression model
 - Strong static modeling techniques such as Gradient Boosting Machines (XGBoost, LightGBM, CatBoost, etc.)
 - Initial value problem solvers forward/backward for estimation of H-curve

EDA

Thank you

https://git.uni-paderborn.de/lea-git/magnet-challenge-2023

Wilhelm Kirchgässner