Santander Customer Transaction Prediction

by Shubh Gupta

Problem Background:

At Santander, the mission is to help people and businesses prosper. We are always looking for ways to help our customers understand their financial health and identify which products and services might help them achieve their monetary goals. Our data science team is continually challenging our machine learning algorithms, working with the global data science community to make sure we can more accurately identify new ways to solve our most common challenge, binary classification problems such as: is a customer satisfied? Will a customer buy this product? Can a customer pay this loan?

Problem Statement:

In this challenge, we need to identify which customers will make a specific transaction in the future, irrespective of the amount of money transacted.

Dataset:-

Training Data

The training data have 200000 observations and 202 variables.

	ID_code	target	var_0	var_1	var_2	var_3	var_4	var_5	var_6	var_7		var_190	var_191	var_192	var_193	var_194	var_195	var_196
0	train_0	0	8.9255	-6.7863	11.9081	5.0930	11.4607	-9.2834	5.1187	18.6266	22	4.4354	3.9642	3.1364	1.6910	18.5227	-2.3978	7.8784
1	train_1	0	11.5006	-4.1473	13.8588	5.3890	12.3622	7.0433	5.6208	16.5338		7.6421	7.7214	2.5837	10.9516	15.4305	2.0339	8.1267
2	train_2	0	8.6093	-2.7457	12.0805	7.8928	10.5825	-9.0837	6.9427	14.6155	100	2.9057	9.7905	1.6704	1.6858	21.6042	3.1417	-6.5213
3	train_3	0	11.0604	-2.1518	8.9522	7.1957	12.5846	-1.8361	5.8428	14.9250		4.4666	4.7433	0.7178	1.4214	23.0347	-1.2706	-2.9275
4	train_4	0	9.8369	-1.4834	12.8746	6.6375	12.2772	2.4486	5.9405	19.2514	755	-1.4905	9.5214	-0.1508	9.1942	13.2876	-1.5121	3.9267

Test Data

The test data contains 200000 observations and 201 variables.

Removing ID_code from both train and test data.

Distribution of Target Variable :-

We will check the distribution of the target variable by plotting a bar graph and pie chart.

Bar Graph

Pie Chart

Observations:-

- 1. The dataset is highly imbalanced.
- 2. The number of data points in class 0 is approximately 90%.
- 3. The number of data points in class 1 is approximately 10%.
- 4. The number of people that will make transactions are very less as compared to those who will not make.

Missing Value Analysis :-

Missing Values in training data

	count
target	0
var_0	0
var_1	0
var_2	0
var_3	0
var_4	0
var_5	0
var_6	0
var_7	0
var_8	0

Missing Values in test data

	count
var_0	0
var_1	0
var_2	0
var_3	0
var_4	0
var_5	0
var_6	0
var_7	0
var_8	0
var_9	0

Observation:-

No missing values in both the train and test dataset.

Splitting the Train Data:

Splitting the train data into dependent and independent variables to check the multicollinearity between the independent variables.

Independent Variables

Dependent Variable

0	0
1	0
2	0
3	0
4	0

Multicollinearity Analysis :-

We will calculate VIF(Variance Inflation Factor) for each independent variable to check the existence of multicollinearity.

	var	vif
0	var_0	1.0
1	var_1	1.0
2	var_2	1.0
3	var_3	1.0
4	var_4	1.0
5	var_5	1.0
6	var_6	1.0
7	var_7	1.0
8	var_8	1.0
9	var_9	1.0

Observation:-

VIF of all the variables is 1 which is acceptable according to the rule of thumb.

Distribution of Independent Variables :-

Distribution for train data

Distribution for Test Data

Observation:-

Both the train and test data are almost normally distributed.

Outlier Analysis :-

We can check outliers in the dataset by plotting box plots.

Box Plots for the Train Data

Box Plots for the Test Data

Removing Outliers:

We will calculate upper fence and lower fence based on IQR(Interquartile Range). Data points which are falling below the lower fence and above the upper fence will be declared as outliers.

Remove Outliers from the Train Data

```
var 0 : igr : 4.304349999999999 : mimimum : 1.9973250000000018 : maximum : 19.214725
var 1 : igr : 6.09865 : mimimum : -13.88800000000002 : maximum : 10.5066
var 2 : igr : 3.794225000000001 : mimimum : 3.031137499999998 : maximum : 18.208037500000003
var 3 : igr : 3.070024999999999 : mimimum : 0.6490375000000013 : maximum : 12.9291375
var 4 : igr : 2.377950000000002 : mimimum : 6.31624999999997 : maximum : 15.828050000000005
var 5 : igr : 12.12515 : mimimum : -29.388075 : maximum : 19.112525
var 6 : igr : 1.23529999999999 : mimimum : 2.91475 : maximum : 7.85594999999998
var 7 : igr : 5.159100000000002 : mimimum : 6.20514999999999 : maximum : 26.841550000000005
var 8 : igr : 5.2557 : mimimum : -10.20135 : maximum : 10.821449999999999
var 9 : igr : 1.965624999999993 : mimimum : 3.6703625000000013 : maximum : 11.532862499999998
var 10 : igr : 7.977875000000001 : mimimum : -15.561762500000002 : maximum : 16.349737500000003
var 11 : igr : 8.363425 : mimimum : -20.0557375 : maximum : 13.39796249999998
var 12 : iqr : 0.27019999999999 : mimimum : 13.48870000000000 : maximum : 14.56949999999998
var 13 : igr : 7.201975 : mimimum : -5.7301625 : maximum : 23.077737499999998
var 14 : iqr : 3.488549999999999 : mimimum : 0.5490500000000002 : maximum : 14.503249999999998
var 15 : igr : 0.61169999999999 : mimimum : 13.345250000000000 : maximum : 15.79204999999998
var 16 : iqr : 3.603624999999999 : mimimum : 2.0468375000000014 : maximum : 16.4613375
var_17 : iqr : 9.665450000000000 : mimimum : -24.97440000000000 : maximum : 13.687400000000004
var 18 : igr : 11.8353750000000003 : mimimum : -8.575112500000007 : maximum : 38.76638750000001
```

Remove Outliers from the Test Data

```
var 0 : igr : 4.296624999999999 : mimimum : 1.99803750000000024 : maximum : 19.184537499999998
var 1 : igr : 6.043525 : mimimum : -13.7654125 : maximum : 10.4086875
var 2 : igr : 3.7594250000000002 : mimimum : 3.0964624999999995 : maximum : 18.134162500000002
var 3 : igr : 3.0971 : mimimum : 0.5848500000000003 : maximum : 12.97325
var 4 : igr : 2.3623250000000000 : mimimum : 6.34758749999999 : maximum : 15.7968875
var 5 : igr : 12.143975 : mimimum : -29.4173625 : maximum : 19.1585375
var 6 : igr : 1.2332 : mimimum : 2.9227999999999 : maximum : 7.8556
var 7 : igr : 5.160650000000002 : mimimum : 6.192924999999996 : maximum : 26.835525000000004
var 8 : igr : 5.233925 : mimimum : -10.1547875000000001 : maximum : 10.780912500000001
var 9 : igr : 1.961024999999985 : mimimum : 3.68226250000000024 : maximum : 11.526362499999996
var 10 : igr : 7.9884 : mimimum : -15.608600000000003 : maximum : 16.345000000000002
var 11 : igr : 8.354525 : mimimum : -20.0537875 : maximum : 13.3643125
var 12 : igr : 0.2719000000000225 : mimimum : 13.48314999999995 : maximum : 14.570750000000004
var 13 : igr : 7.197524999999999 : mimimum : -5.722912499999998 : maximum : 23.067187499999996
var 14 : igr : 3.50162500000000015 : mimimum : 0.5170624999999971 : maximum : 14.523562500000004
var 15 : igr : 0.6132000000000000 : mimimum : 13.34259999999997 : maximum : 15.7954
var 16 : igr : 3.581100000000001 : mimimum : 2.08274999999998 : maximum : 16.40715
var 17 : iqr : 9.6863 : mimimum : -25.02735 : maximum : 13.71784999999999
var 18 : igr : 11.776800000000001 : mimimum : -8.427500000000002 : maximum : 38.679700000000004
```

Observation:-

There are 26536 outliers in the train data and 27091 outliers in the test data.

Missing Values Imputation :-

First we will replace all the outliers with the Null values and then replace all the null values with the mean of that particular variable.

Imputing Mean Values in the Train data

var_0	0.0520
var_1	0.0030
var_2	0.0245
var_3	0.0110
var_4	0.0380
var_195	0.0660
var_196	0.0000
var_197	0.0255
var_198	0.0470
var_199	0.0100

Imputing Mean Values in the Test Data

var_0	0.0610
var_1	0.0020
var_2	0.0280
var_3	0.0065
var_4	0.0445
var_195	0.0520
var_196	0.0000
var_197	0.0255
var_198	0.0575
var_199	0.0070

Standardization:

Since both the train and test data are normally distributed, we will use Standardization for feature scaling in order to scale all the variables of both train and test data to have a mean of 0 and variance or standard deviation of 1.

Model Training:

We will use following three models for training the dataset in both R and Python and then compare the performance of these models to select the best one:-

- 1. Logistic Regression
- 2. Decision Tree
- 3. XGBoost

Performance Metrics:-

We will check the performance of each model with the help of following eight performance metrics:-

- 1. Accuracy
- 2. Recall
- 3. Precision
- 4. Specificity
- 5. False Positive Rate
- 6. False Negative Rate
- 7. F1 Score
- 8. ROC-AUC curve

Logistic Regression in R:-

Evaluation Metrics	Percentage Values
Accuracy	78%
Recall	78%
Precision	97%
Specificity	77%
FPR	23%
FNR	22%
F1 Score	87%
AUC	85%

Logistic Regression in Python :-

Evaluation Metrics	Percentage Values
Accuracy	52%
Recall	53%
Precision	11%
Specificity	52%
FPR	48%
FNR	47%
F1 Score	18%
AUC	53%

Decision Tree in R:-

Evaluation Metrics	Percentage Values
Accuracy	62%
Recall	63%
Precision	93%
Specificity	54%
FPR	46%
FNR	37%
F1 Score	75%
AUC	59%

Decision Tree in Python :-

Evaluation Metrics	Percentage Values
Accuracy	81%
Recall	15%
Precision	13%
Specificity	88%
FPR	12%
FNR	85%
F1 Score	14%
AUC	53%

XGBoost in R :-

Evaluation Metrics	Percentage Values
Accuracy	78%
Recall	78%
Precision	97%
Specificity	77%
FPR	23%
FNR	22%
F1 Score	87%
AUC	85%

XGBoost in Python:-

Evaluation Metrics	Percentage Values		
Accuracy	99%		
Recall	97%		
Precision	99%		
Specificity	99%		
FPR	0.005%		
FNR	2%		
F1 Score	98%		
AUC	100%		

Models Comparison in R:-

	Accuracy	Recall	Precision	Specificity	FPR	FNR	F1 Score	AUC
Logistic Regression	0.78	0.78	0.97	0.77	0.23	0.22	0.87	0.85
Decision Tree	0.62	0.63	0.93	0.54	0.46	0.37	0.75	0.59
XGBoost	0.78	0.78	0.97	0.77	0.23	0.22	0.87	0.85

Models Comparison in Python :-

	Accuracy	Recall	Precision	Specificity	FPR	FNR	F1 Score	AUC
Logistic Regression	0.52	0.53	0.11	0.52	0.48	0.47	0.18	0.53
Decision Tree	0.81	0.15	0.13	0.88	0.12	0.85	0.14	0.53
XGBoost	0.99	0.97	0.99	0.99	0.00005	0.02	0.98	1.00

Model Selection Parameters :-

The model should be selected based on the following parameters :-

- 1. High Accuracy
- 2. High F1 Score
- 3. High AUC Score
- 4. Low FPR
- 5. Low FNR

Freezed Model :-

Since XGBoost performs much better than other models based on the above parameters in both R and Python, we will freeze XGBoost as our final model for predicting the target class of test data.

Conclusion:-

The above freezed model can be used for **Santander Customer Transaction Prediction** problem to identify **which customers will make a specific transaction in the future, irrespective of the amount of money transacted.**