CSE 8803 Homework 4

Jingyi Feng

December 10, 2023

1 Solution

$$min_{W,H} \|X - WH\|_F$$
 $X \in \mathbb{R}^{m \times n}, W \in \mathbb{R}^{m \times k}, H \in \mathbb{R}^{k \times n}, k < min(m, n)$ (1)

The above nonconvex optimization problem has a global minimum based on SVD. According to Eckart-Young-Mirsky theorem, the best k-rank approximation of X, X_k , is obtained from truncated SVD, where $X_k = \sum_{i=1}^k \sigma_i u_i v_i^*$. u_i, v_i are the ith column vectors of U and V in $X = U\Sigma V^*$ correspondingly, and σ_i is the ith diagonal entry of Σ .

Proof: By the definition of Frobenius norm, we know

$$||X - X_k||_F^2 = ||\sum_{i=k+1}^n \sigma_i u_i v_i^*||_F^2 = \sum_{i=k+1}^n \sigma_i^2$$
(2)

Let C_k be any k-rank $m \times n$ matrix, $A = X - C_k$ and $B = C_k$. We know A + B = X. Let A_i and B_i be the i-rank approximation of A and B. Following the triangle inequality of norms,

we know for spectral norm, $||A + B||_{\sigma} \le ||A||_{\sigma} + ||B||_{\sigma}$. Hence, we can know

$$\sigma_{i}(A) + \sigma_{j}(B) = \|A - A_{i-1}\|_{\sigma} + \|B - B_{j-1}\|_{\sigma}$$

$$\geq \|A + B - (A_{i-1} + B_{j-1})\|_{\sigma}$$

$$\geq \|X - X_{i+j-2})\|_{\sigma}$$

$$= \sigma_{i+j-1}(X)$$
(3)

Let j = k + 1. C_k has rank k, hence $\sigma_{k+1}(B) = 0$. Therefore we have $\sigma_i(X - C_k) \ge \sigma_{k+i}(X)$. Take sum on i, finally we have

$$||X - C_k||_F^2 = \sum_{i=1}^n \sigma_i (X - C_k)^2 \ge \sum_{i=k+1}^n \sigma_i (X)^2 = ||X - X_k||_F^2 \quad \blacksquare$$
 (4)

Because $W \in \mathbb{R}^{m \times k}$, $H \in \mathbb{R}^{k \times n}$, WH is a rank k matrix. Hence $||X - WH||_F$ reaches global minimum when $WH = X_k$.

1.1 Algorithm

Compute the economic SVD decomposition of matrix X. We get $X = \hat{U}\hat{\Sigma}\hat{V}^*$. Notice that $\hat{U} \in \mathbb{R}^{m \times k}, \hat{\Sigma} \in \mathbb{R}^{k \times k}, \hat{V}^* \in \mathbb{R}^{k \times n}$. Hence we can let $W = \hat{U}$ and $H = \hat{\Sigma}\hat{V}^*$, or $W = \hat{U}\hat{\Sigma}^{\frac{1}{2}}$ and $H = \hat{\Sigma}^{\frac{1}{2}}\hat{V}^*$, or $W = \hat{U}\hat{\Sigma}$ and $H = \hat{V}^*$, based on our choices.

2 Solution

We first compute the least square problem without non-negative constraint, then show the solution is exactly same with the solution with non-negative constraint.

For the NLS problem

$$\min_{x \ge 0} \|Ax - b\|_2 \qquad A \in \mathbb{R}_+^{m \times 1}, b \in \mathbb{R}_+^{m \times 1}, x \in \mathbb{R}_+$$
 (5)

we firstly consider the regular LS problem

$$min_x \|Ax - b\|_2$$
 $A \in \mathbb{R}_+^{m \times 1}, b \in \mathbb{R}_+^{m \times 1}, x \in \mathbb{R}$ (6)

To solve LS problems, we can use normal equation $A^TAx = A^Tb$, which gives the solution $x = \frac{A^Tb}{A^TA}$. Now we add the non-negative constraint, the inner product $A^Tb = A_1b_1 + A_2b_2 + \dots + A_mb_m \geq 0$ because $A \in \mathbb{R}_+^{m \times 1}$ and $b \in \mathbb{R}_+^{m \times 1}$. Easy to see $||A||^2 > 0$. Therefore, $x \geq 0$, which gives us $argmin_{x\geq 0} ||Ax - b||_2$. Hence the closed form solution of the above NLS problem is exactly the general solution $x = \frac{A^Tb}{A^TA}$ for regular LS problem.

2.1 Algorithm

See algorithm 1.

Algorithm 1 NLS

Require: $A \in \mathbb{R}_+^{m \times 1}, b \in \mathbb{R}_+^{m \times 1}$

 $p, q \leftarrow 0$

 $p = A^T A$

 $q = A^T b$

 $x \leftarrow q/p$

return x

3 Solution

For the special case, k=2, in the following NLS problem,

$$min_{x\geq 0} \|Ax - b\|_2 \qquad A \in \mathbb{R}_+^{m \times 2}, b \in \mathbb{R}_+^{m \times 1}, x \in \mathbb{R}_+^{2 \times 1}$$
 (7)

we can write it in the the form of

$$min_{x_1 \ge 0, x_2 \ge 0} \|A_1 x_1 + A_2 x_2 - b\|_2 \qquad A \in \mathbb{R}_+^{m \times 2}, b \in \mathbb{R}_+^{m \times 1}, x_1, x_2 \in \mathbb{R}_+$$
 (8)

We can apply the block principal pivoting method to search for the optimal active set on the index set $V = \{1, 2\}$ to get corresponding optimization problem and its solution. Active set methods is solving an unconstrained least squares problem for the nonzero variables x_P and setting the rest variables x_A to zeros, where $A \cup P = V$ and $A \cap P = \emptyset$. However, we can enumerate the active sets and passive sets because |V| = 2.

A	P	loss f(x)	optimization problem
{1,2}	Ø	$ b _2$	$\min_{x\geq 0}\ b\ _2$
{1}	{2}	$ A_2x_2 - b _2$	$ min_{x_2 \ge 0} A_2x_2 - b _2$
{2}	{1}	$ A_1x_1 - b _2$	$min_{x_1 \ge 0} \ A_1 x_1 - b\ _2$
Ø	{1,2}	$ A_1x_1 + A_2x_2 - b _2$	$min_{x_1 \ge 0, x_2 \ge 0} \ A_1 x_1 + A_2 x_2 - b\ _2$

For each possible passive set P, we have a corresponding optimization problem. Hence, we need to search through all of those problems to get solutions for $x \geq 0$, and choose the x with the minimal f(x), respectively, to be the optimal solution.

According to problem 2, we can always have the optimal solution $x \geq 0$ by solving $\min_{x_2 \geq 0} \|A_2 x_2 - b\|_2$ or $\min_{x_1 \geq 0} \|A_1 x_1 - b\|_2$ with unique optimal solution $x_1 = \frac{A_1^T b}{A_1^T A_1}$ or $x_2 = \frac{A_2^T b}{A_2^T A_2}$. If $P = \{1, 2\}$, $x_1 > 0$ and $x_1 > 0$. Hence the solution $x = [x_1, x_2]^T$ is not the solution of either $\min_{x_2 \geq 0} \|A_2 x_2 - b\|_2$ nor $\min_{x_1 \geq 0} \|A_1 x_1 - b\|_2$. If $P = \emptyset$, consider the solution $argmin_{x_i \geq 0} \|A_i x_i - b\|_2 = \frac{A_i^T b}{A_i^T A_i}$, where $A_i x_i$ is exactly the projection of b onto the span of A_i . Therefore, we know

$$||A_i x_i - b||_2^2 = ||Proj_{A_i} b||^2 = ||b||^2 - ||Proj_{A_i^{\perp}} b||^2 \le ||b||^2$$
(9)

Because $||A_ix_i - b||_2 \le ||b||$, we know that $\min_{x\ge 0} ||b||_2$ is a special case of $\min_{x_i\ge 0} ||A_ix_i - b||_2$ when $b \perp A_ix_i$, i.e. $P = \emptyset$ can be solved by solving either $P = \{1\}$ or $P = \{2\}$. WLOG, we assume it is included in $P = \{1\}$.

In conclusion, we need to brute-force the following problems.

$$min_{x_1 \ge 0, x_2 \ge 0} \|A_1 x_1 + A_2 x_2 - b\|_2$$

$$min_{x_1 \ge 0} \|A_1 x_1 - b\|_2$$

$$min_{x_2 \ge 0} \|A_2 x_2 - b\|_2$$
(10)

Consider the following relationship between those problems represented in Figure 1. If we

Figure 1: Projection onto A_1 and A_2

want to project b_{new} onto both the direction of A_1 and A_2 to solve $\min_{x_1 \geq 0, x_2 \geq 0} \|A_1x_1 + A_2x_2 - b\|_2$, we can always find the closed solution x such that $x = [x_1, 0]^T$ or $x = [0, x_2]^T$ where $x_1, x_2 \in \mathbb{R}^+$ to approximate $x = [x_1, x_2]^T$ where $x_1 \cdot x_2 \in \mathbb{R}^-$. To put it bluntly, we can solve $\min_{x_1 \geq 0, x_2 \geq 0} \|A_1x_1 + A_2x_2 - b\|_2$ by ignoring the negative x_1 or x_2 , set it to 0, and transform the original optimization problem $\min_{x_1 \geq 0, x_2 \geq 0} \|A_1x_1 + A_2x_2 - b\|_2$ into the optimization problem $\min_{x_1 \geq 0} \|A_1x_1 - b\|_2$ or $\min_{x_2 \geq 0} \|A_2x_2 - b\|_2$. By the proof of active set method, we know the error is convergent in iterations. Based on above explanation, we can solve for $x \in \mathbb{R}^{2\times 1}_+$ using the following algorithm.

3.1 Algorithm

See algorithm 2.

Algorithm 2 Rank2NLS

```
Require: A = [A_1, A_2] \in \mathbb{R}_+^{m \times 2}, b \in \mathbb{R}_+^{m \times 1}
x = [x_1, x_2]^T \in \mathbb{R}_+^{2 \times 1} \leftarrow argmin_x \|Ax - b\|_2
if x_1 > 0 and x_2 > 0 then
return x
else
x_1 \leftarrow (A_1^T b)/(A_1^T A_1)
x_2 \leftarrow (A_2^T b)/(A_2^T A_2)
if x_1 \cdot \|A_1\| \ge x_2 \cdot \|A_2\| then
x \leftarrow [x_1, 0]^T
else
x \leftarrow [0, x_2]^T
end if
end if
end if
return x
```

4 Solution

Consider the NMF problem with matrix A and we want to find rank-3 approximation of A. The optimization problem is

$$min_{W \ge 0, H \ge 0} \|A - WH\|_F \qquad A \in \mathbb{R}_+^{m \times n}, W \in \mathbb{R}_+^{m \times 3}, H \in \mathbb{R}_+^{3 \times n}$$

$$\tag{11}$$

which is equivalent in Frobenius norm to

$$min_{H \ge 0, W \ge 0} \| W^T H^T - A^T \|_F \qquad A \in \mathbb{R}_+^{m \times n}, W \in \mathbb{R}_+^{m \times 3}, H \in \mathbb{R}_+^{3 \times n}$$
 (12)

General idea We are going to apply alternating NLS algorithm in Problem 2 to solve this NMF problem by solving W and H^T column by column based on (13), where w_i is the ith column of W, h_i^T is the ith row of H or the ith column of H^T .

$$||WH - A||_F = ||\sum_{i=1}^k w_i h_i^T - A||_F = \sum_{i=1}^k \sum_{j=1}^n ||w_i h_{ij} - A_j||_2$$
(13)

In each iteration on i, we update one pair of columns in W and H^T by minimizing the Frobenius norm of the difference $||A - \sum_{j=1}^{i-1} w_j h_j^T - w_i h_i^T||_F$, where $\sum_{j=1}^{i-1} w_j h_j^T$ comes from the column pairs from previous iteration. As iteration number goes large, the Frobenius norm of difference $||A - WH||_F$ goes down, until reaching a given tolerance. By reducing the Frobenius norm of difference each time, finally we can converge to a local minimum Frobenius norm(not global minimum).

Steps We randomly initialize w_1 . Based on (9), we can update h_1^T entry by entry, i.e. $h_{11}, h_{12}, ..., h_{1n}$ based on the algorithm in problem 2 First, with w_1 , h_{11} and A_1 , form the

Figure 2: Update order of h_1 : entry-wise

NLS problem, where A_i is the *i*th column of A

$$min_{x\geq 0} \|w_1 h_{11} - A_1\|_2 \tag{14}$$

According to Problem 2, we can get a unique minimizer of this problem, hence we have h_{11} . Next, with w_1 , h_{12} and A_2 , form the NLS problem

$$min_{x\geq 0} \|w_1 h_{12} - A_2\|_2 \tag{15}$$

So on and so forth, we have $h_{11}, h_{12}, ..., h_{1n}$, which is h_1^T . The solution we got is $h_{1i} = \frac{\langle w_1, A_i \rangle}{\|w_1\|^2}$. To improve computational efficiency, we can solve h_1^T by solving the NLS problems all at

once. Hence, we can solve $h_1^T = \frac{Aw_1}{\|w_1\|^2}$

Now, we move to the second iteration. Because $A = \sum_{i=1}^k w_i h_i^T$ and we already know $w_1 h_1^T$, let $R_{(1)} = A - w_1 h_1^T \in \mathbb{R}^{m \times n}$. We want to get w_2 based on $R_{(1)}$ and h_1^T . Consider (8), and we can form NLS problems similar to (14) and (15), where $R_{(1)i}^T$ is the *i*th column of $R_{(1)}^T$.

$$min_{x\geq 0} \|h_1 w_{21} - R_{(1)1}^T\|_2$$

$$min_{x\geq 0} \|h_1 w_{22} - R_{(1)2}^T\|_2$$
...
$$min_{x>0} \|h_1 w_{2m} - R_{(1)m}^T\|_2$$
(16)

By solving above NLS problems, we can solve $w_{21}, w_{22}, ..., w_{2m}$, which is w_2 . Writing in vector form, $w_2 = \frac{Ah_1^T}{\|h_1^T\|^2}$.

Repeat the process, we can solve h_2^T , w_3 , h_3^T . When all the columns of W and H^T are updated and we have not reached the tolerance, we can start over by solve a new w_1 based on h_3^T from last iteration. So on and so forth, we stop when we reach the tolerance.

4.1 Algorithm

See algorithm 3.

5 Solution

We can easily derive the algorithm for this problem using the combination of the methods in both Problem 3 and Problem 4. Consider the NMF problem with matrix A and we want to find rank-4 approximation of A. The optimization problem is

$$min_{W \ge 0, H \ge 0} \|A - WH\|_F \qquad A \in \mathbb{R}_+^{m \times n}, W \in \mathbb{R}_+^{m \times 4}, H \in \mathbb{R}_+^{4 \times n}$$

$$\tag{17}$$

Algorithm 3 BCD

```
Require: A \in \mathbb{R}_{+}^{m \times n}, \epsilon
W \in \mathbb{R}_{+}^{m \times 3} \leftarrow \infty, H \in \mathbb{R}_{+}^{3 \times n} \leftarrow \infty
    Initial random W[1]
    i \leftarrow 1
    while true do
        H^T[i] \leftarrow A \cdot W[i] / \|W[i]\|^2
        if i == 3 then
           W[1] \leftarrow A \cdot H^T[i] / \|H^T[i]\|^2
           W[i+1] \leftarrow A \cdot H^T[i] / \|H^T[i]\|^2
        end if
       i \leftarrow i + 1
       if i > 3 then
           i \leftarrow 1
        end if
        if ||A - WF|| \le \epsilon then
           break
        end if
    end while
    return W, H
```

which is equivalent in Frobenius norm to

$$min_{H \ge 0, W \ge 0} \| W^T H^T - A^T \|_F \qquad A \in \mathbb{R}_+^{m \times n}, W \in \mathbb{R}_+^{m \times 4}, H \in \mathbb{R}_+^{4 \times n}$$
 (18)

General idea We are going to apply alternating NLS algorithm in Problem 3 to solve this NMF problem by solving W and H^T columns by columns based on (19), where W_i is the ith block of 2 columns of W, H_i^T is the ith block of 2 rows of H or the ith block of 2 columns of H^T , $(H_i^T)_j$ and A_j are the jth column of A and H_i^T , respectively.

$$||WH - A||_F = ||\sum_{i=1}^{k/2} W_i H_i^T - A||_F = \sum_{i=1}^{k/2} \sum_{j=1}^n ||W_i (H_i^T)_j - A_j||_2$$
(19)

In each iteration on i, we update two pair of columns in W and H^T by minimizing the Frobenius norm of the difference $||A - \sum_{j=1}^{i-1} W_j H_j^T - W_i H_i^T||_F$, where $\sum_{j=1}^{i-1} W_j H_j^T$ comes from the column pairs from previous iteration. As iteration number goes large, the Frobenius

norm of difference $||A - WH||_F$ goes down, until reaching a given tolerance. By reducing the Frobenius norm of difference each time, finally we can converge to a local minimum Frobenius norm(not global minimum).

Steps Steps are similar with steps in problem 4, but we use Rank2NLS algorithm instead of NLS to solve for each sub-problem

$$\min_{x\geq 0} \|W_{1}(H_{1})_{1} - A_{1}\|_{2}
\min_{x\geq 0} \|W_{1}(H_{1})_{2} - A_{2}\|_{2}
\dots
\min_{x\geq 0} \|W_{1}(H_{1})_{n} - A_{n}\|_{2}
\min_{x\geq 0} \|H_{1}(W_{2})_{1} - R_{(1)1}^{T}\|_{2}
\min_{x\geq 0} \|H_{1}(W_{2})_{2} - R_{(1)2}^{T}\|_{2}
\dots
\min_{x\geq 0} \|H_{1}(W_{2})_{m} - R_{(1)m}^{T}\|_{2}$$
(20)

With randomly initialized W_1 , to improve computational efficiency, we solve each of H_1, W_2, H_2 all at once. Repeating the above procedure, we stop when we reach the tolerance ϵ .

5.1 Algorithm

Algorithm 4 BlockRank2NLS

```
Require: A = [A_1, A_2] \in \mathbb{R}_+^{m \times 2}, B \in \mathbb{R}_+^{m \times n}
   x = [x_1, x_2, ..., x_n] \in \mathbb{R}_+^{2 \times n} \leftarrow argmin_x ||Ax - b||_2
   p \leftarrow (BA_1)/(A_1^T A_1)
   q \leftarrow (BA_2)/(A_2^T A_2)
   for i = 1, 2, ..., n do
       if x_{i1} > 0 and x_{i2} > 0 then
          return x_i = x_i
       else
          if p_i \cdot ||A_1|| \ge q_i \cdot ||A_2|| then
              x_i \leftarrow [p_i, 0]^T
          else
              x_i \leftarrow [0, q_i]^T
          end if
       end if
   end for
   return x
```

Algorithm 5 Rank2BCD

```
\overline{ \begin{aligned} & \mathbf{Require:} \ A \in \mathbb{R}_{+}^{m \times n}, \epsilon \\ & W \in \mathbb{R}_{+}^{m \times 4} \leftarrow \infty, H \in \mathbb{R}_{+}^{4 \times n} \leftarrow \infty \end{aligned} }
    Initial random W[1:2]
   i \leftarrow 1
    while true do
       H^{T}[i:i+1] \leftarrow \text{BlockRank2NLS}(W[1:2], A)
       if i == 3 then
           W[1:2] \leftarrow \text{BlockRank2NLS}(H^T[i:i+1], A)
           W[i+2:i+3] \leftarrow \text{BlockRank2NLS}(H^T[i:i+1], A)
       end if
       i \leftarrow i + 2
       if i > 3 then
           i \leftarrow 1
       end if
       if ||A - WF|| \le \epsilon then
           break
       end if
    end while
   return W, H
```