Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

PA-1 : Parameters Initialisation 1-In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuro

Setting up your ML application

Train/dev/test sets

Applied ML is a highly iterative process

Idea # layers # hidden units learning rates activation functions Experiment Code

NLP, Vision, Speech, Structural dorta Ads Search Security legistic

Train/dev/test sets

Mismatched train/test distribution

Corts

Training set: Dev/test sets: Cat pictures from Cat pictures from users using your app webpages tran / der

tran / der

Thomas / der

Not having a test set might be okay. (Only dev set.)

Setting up your ML application

Bias/Variance

Bias and Variance

O and V paas paas hain

Bias and Variance

Cat classification

High bias and high variance

Setting up your ML application

Basic "recipe" for machine learning

Basic recipe for machine learning

Regularizing your neural network

Regularization

Logistic regression

$$\min_{w,b} J(w,b)$$

$$\lim_{w,b} J(w,b) = \lim_{x \to \infty} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^$$

eural network

Neural network

$$\int (\omega^{rn}, b^{rn}, \dots, \omega^{rn}, b^{rn}) = \lim_{n \to \infty} \int (y^{rn}, y^{rn}) + \lim_{n \to \infty} \int (\omega^{rn}, b^{rn}, \dots, \omega^{rn}, b^{rn}) = \lim_{n \to \infty} \int (y^{rn}, y^{rn}) + \lim_{n \to \infty} \int (\omega^{rn}, b^{rn}, \dots, \omega^{rn}, b^{rn}, \dots, \omega^{rn}, b^{rn}) = \lim_{n \to \infty} \int (\omega^{rn}, b^{rn}, \dots, \omega^{rn}, \dots, \omega$$

Regularizing your neural network

Why regularization reduces overfitting

How does regularization prevent overfitting?

How does regularization prevent overfitting?

Regularizing your neural network

Dropout regularization

Dropout regularization

what we do we assoctiate a probability with each node denoting its probability of being dropped out. then we actially drop those nodes and do our traini

Implementing dropout ("Inverted dropout")

Making predictions at test time

No drop out at the testong time.

Regularizing your neural network

Understanding dropout

Intuition: Can't rely on any one feature, so have to

spread out weights. Shrink weights.

Regularizing your neural network

Other regularization methods

Data augmentation

Jo data hai usi ko ghuma phira ke naya data bana do. Kahin se aur dataa mil jaa

Setting up your optimization problem

Normalizing inputs

Normalizing training sets

Why normalize inputs?

What that means is that when you're training a very deep network your derivatives or your slopes can sometimes get either very, very big or very, very sm

deeplearning.ai

Setting up your optimization problem

Vanishing/exploding gradients

for other than relu, numerator is 1

Setting up your optimization problem

Numerical approximation of gradients

Checking your derivative computation

Checking your derivative computation

Setting up your optimization problem

Gradient Checking

To check correctness of gradient descent and to find bug in back propo case it is useful.

Gradient check for a neural network

Take $W^{[1]}, b^{[1]}, ..., W^{[L]}, b^{[L]}$ and reshape into a big vector θ .

Take
$$dW^{[1]}$$
, $db^{[1]}$, ..., $dW^{[L]}$, $db^{[L]}$ and reshape into a big vector $d\theta$.

To do the gradet of J(0)?

Gradient checking (Grad check)

for each
$$\bar{z}$$

$$\Rightarrow 20_{\text{oppox}} = 2(0_{1},0_{2},...,0_{i+\xi},...) - 2(0_{1},0_{2},...,0_{i-\xi},...)$$
Only change theta_i

$$2 \in 2$$

$$2 \in$$

Setting up your optimization problem

Gradient Checking implementation notes

Gradient checking implementation notes

- Don't use in training – only to debug

- If algorithm fails grad check, look at components to try to identify bug.

- Remember regularization.

- Doesn't work with dropout.

- Run at random initialization; perhaps again after some training.