

Status and perspectives of $\sin 2\alpha$ measurements

H Sagawa^a

^aKEK, Tsukuba

In the neutral B meson system, it is possible to measure the CKM angle α using the decay mode $b \to u\bar{u}d$ in the presence of pollution from gluonic $b \to d$ penguin decays. Here the recent status of the measurements of CP-violating asymmetry parameters using time-dependent analyses in $B^0 \to \pi^+\pi^-$ and $B^0 \to \rho\pi$ decays and the perspectives of a $\sin 2\alpha$ measurement are presented.

1 Introduction

In 1973, Kobayashi and Maskawa (KM) proposed a model where CP violation is accommodated as an irreducible complex phase in the weak-interaction quark mixing matrix [1]. Recent measurements of the CP-violating asymmetry parameters $\sin 2\beta$ (= $\sin 2\phi_1$) [2] by the Belle [3] and BaBar [4] Collaborations established CP violation in the neutral B meson system. Measurements of other CP-violating asymmetry parameters provide important tests of the KM model. Any mode with a contribution from $b \to u\bar{u}d$ is a possible source of measurement of the Cabibbo-Kobayashi-Maskawa (CKM) angle α (= ϕ_2). Here the recent status of the measurements of CP-violating asymmetry parameters using time-dependent analyses in $B^0 \to \pi^+\pi^-$ and $B^0 \to \rho\pi$ decays [5] and the perspectives of a $\sin 2\alpha$ measurement are presented.

2 $B^0 \rightarrow \pi^+\pi^-$ decays

The $B^0 \to \pi^+\pi^-$ decay is one of the important modes for the measurement of $\sin 2\alpha$. The KM model predicts CP-violating asymmetries in the time-dependent rates for B^0 and \bar{B}^0 decays to a common CP eigenstate, f_{CP} . In the decay chain $\Upsilon(4S) \to B^0\bar{B}^0 \to f_{CP}f_{\rm tag}$, in which one of the B mesons decays at time t_{CP} to f_{CP} and the other decays at time $t_{\rm tag}$ to a final state $f_{\rm tag}$ that distinguishes between B^0 and \bar{B}^0 , the $B^0 \to \pi^+\pi^-$ decay rate has a time-dependence given by

$$\mathcal{P}_{\pi\pi}^{q}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + q \cdot \{ S_{\pi\pi} \sin(\Delta m_d \Delta t) - C_{\pi\pi} \cos(\Delta m_d \Delta t) \} \right], \tag{1}$$

where τ_{B^0} is the B^0 lifetime, Δm_d is the mass difference between the two B^0 mass eigenstates, $\Delta t = t_{CP} - t_{\rm tag}$, and the b-flavor charge q = +(-1) when the tagging B meson is a $B^0(\bar{B}^0)$. The CP-violating asymmetry parameters $S_{\pi\pi}$ and $C_{\pi\pi} (= -\mathcal{A}_{\pi\pi})$ [6] defined in Eq. (1) are expressed as

$$C_{\pi\pi} = \frac{1 - |\lambda_{\pi\pi}|^2}{1 + |\lambda_{\pi\pi}|^2}, \qquad S_{\pi\pi} = \frac{2\text{Im}\lambda_{\pi\pi}}{1 + |\lambda_{\pi\pi}|^2},$$
 (2)

where $\lambda_{\pi\pi}$ is a complex parameter that depends on both B^0 - \bar{B}^0 mixing and on the amplitudes for B^0 and \bar{B}^0 decay to $\pi^+\pi^-$. A measurement of time-dependent CP-violating asymmetries in the mode $B^0 \to \pi^+\pi^-$ is sensitive to direct CP violation and the CKM angle α . If the decay proceeded only via a $b \to u$ tree amplitude, $S_{\pi\pi} = \sin 2\alpha$ and $C_{\pi\pi} = 0$, or equivalently $|\lambda_{\pi\pi}| = 1$. The situation is complicated by the possibility of significant contributions from gluonic $b \to d$ penguin amplitudes that have a different weak phase and additional strong phases. In general, $S_{\pi\pi}$ is given by $\sqrt{1-C_{\pi\pi}^2}\sin 2\alpha_{eff}$ Here $\alpha_{eff}-\alpha$ (= θ) depends on the magnitudes and relative weak and strong phases of the tree and penguin amplitudes. As a result, $S_{\pi\pi}$ may not be equal to $\sin 2\alpha$ and direct CP violation, $C_{\pi\pi} \neq 0$, may

Candidate B mesons are reconstructed kinematically using two variables, the energy difference $\Delta E \equiv E_B^{cms} - E_{beam}^{cms}$ and the beam-energy constrained mass $M_{bc} \equiv \sqrt{(E_{beam}^{cms})^2 - (p_B^{cms})^2}$ [7], where E_{beam}^{cms} is the cms beam energy, and E_B^{cms} and P_B^{cms} are the cms energy and momentum of the B candidate.

Charged tracks in $B^0 o h^+h'^-$ candidates are identified as charged pions or kaons. Here h and h' represent a π or K. The Belle Collaboration uses the likelihood ratio (KID) for a particle to be a K^\pm meson, which is based on the combined information from the Aerogel Cherenkov counter and CDC dE/dx measurement. Tracks are positively identified as pions with KID<0.4 for $B^0 \to \pi^+\pi^-$ candidates. The BaBar Collaboration uses the Cherenkov angle measurement θ_c from a detector of internally reflected Cherenkov light. The probability density function (PDF) from the difference between measured and expected values of θ_c is used in the extended likelihood function for the fit to extract yields and CP parameters.

Background from the process $e^+e^- \rightarrow q\bar{q}$ continuum (q = u, d, s, c) are suppressed by their event topology. The Belle Collaboration forms signal and background likelihood functions \mathcal{L}_S and \mathcal{L}_{BG} from a Fisher discriminant determined from six modified Fox-Wolfram moments [8] and the cms B flight direction with respect to the beam axis. The continuum background is reduced by impos-

ing requirements on the likelihood ratio $LR = \mathcal{L}_S/(\mathcal{L}_S + \mathcal{L}_{BG})$ for different flavor-tagging dilution factor intervals. The BaBar Collaboration uses the angle θ_S between the sphericity axis of the B candidate and the sphericity axis of the remaining particles in the cms frame, and cut on $|\cos\theta_S|$. The shapes of Fisher discriminant $\mathcal{F}[9]$ for signal and background events are included as PDFs in the maximum likelihood fit.

Leptons, kaons, and charged pions that are not associated with the reconstructed *B* candidate are used to identify the flavor of the accompanying *B* meson.

The vertex reconstruction algorithm is the same as that used for the $\sin 2\beta$ ($\sin 2\phi_1$) analysis. The time difference Δt is obtained from the measured distance between the z positions along the beam direction of the $B_{\pi\pi}^0$ and $B_{\rm tag}^0$ decay vertices and the boost factor $\beta\gamma$ of the e^+e^- system.

Fig. 1 and Fig. 2 show distributions of ΔE for events enhanced in signal $\pi^+\pi^-$ and $K^\mp\pi^\pm$ decays from the Belle Collaboration [10] and the BaBar Collaboration [11], respectively. The Belle and BaBar Collaborations obtained the following results using an unbinned maximum likelihood fit based on 85×10^6 and $88\times10^6B\bar{B}$ pairs, respectively,:

$$C_{\pi\pi} = -0.77 \pm 0.27 \pm 0.08,$$
 $S_{\pi\pi} = -1.23 \pm 0.41^{+0.08}_{-0.07}$ (Belle), $C_{\pi\pi} = -0.30 \pm 0.25 \pm 0.04,$ $S_{\pi\pi} = -0.02 \pm 0.34 \pm 0.05$ (BaBar).

The first and the second errors correspond to statistical and systematic errors, respectively, unless otherwise stated. The average values of $C_{\pi\pi}$ and $S_{\pi\pi}$ are

$$C_{\pi\pi} = -0.49 \pm 0.19, \qquad S_{\pi\pi} = -0.47 \pm 0.26,$$

and the difference of the results between the Belle and BaBar Collaborations is 2.2σ [12]. In Fig. 3 and Fig. 4 the Δt distributions for events enhanced in signal $B^0 \to \pi^+\pi^-$ decays are shown for the Belle Collaboration [10] and the BaBar Collaborations [11], respectively.

Fig. 5 shows the two-dimensional confidence regions in the $\mathcal{A}_{\pi\pi}(=-C_{\pi\pi})$ vs. $\mathcal{S}_{\pi\pi}$ plane using the Feldman-Cousins frequentist approach [13]. In order to form confidence intervals, the $\mathcal{A}_{\pi\pi}$ and $\mathcal{S}_{\pi\pi}$ distributions of the results of fits to MC pseudo-experiments for various input values of $\mathcal{A}_{\pi\pi}$ and $\mathcal{S}_{\pi\pi}$ are used for the Belle result, and the obtained errors of $\mathcal{A}_{\pi\pi}$ and $\mathcal{S}_{\pi\pi}$ are used for the BaBar result. The case that CP symmetry is conserved, $\mathcal{A}_{\pi\pi}=\mathcal{S}_{\pi\pi}=0$, is ruled out at the 99.93% confidence level (C.L.), equivalent to 3.4 σ significance for Gaussian errors from the Belle result. More data is necessary to clarify the difference between the Belle result and the BaBar result.

Figure 1. ΔE distributions in the M_{bc} signal region for (a) $B^0 \to \pi^+\pi^-$ candidates and (b) $B^0 \to K^+\pi^-$ candidates with LR > 0.825 from the Belle Collaboration. The sum of the signal and background functions is shown as a solid curve. The solid curve with hatched area represents the $\pi^+\pi^-$ component, the dashed curve represents the $K^+\pi^-$ component, the dotted curve represents the continuum background, and the dot-dashed curve represents the charmless three-body B decay background component.

Figure 2. ΔE distributions for events enhanced in signal (a) $\pi^+\pi^-$ and (b) $K^{\mp}\pi^{\pm}$ candidates from the BaBar Collaboration. Solid curves represent projections of the maximum likelihood fit, dashed curves represent $q\bar{q}$ and $\pi\pi \leftrightarrow K\pi$ cross-feed background.

Figure 3. The raw, unweighted Δt distributions for $B^0 \to \pi^+\pi^-$ candidates with LR > 0.825 in the signal region from the Belle Collaboration: (a) candidates with q = +1, i.e. the tag side is identified as B^0 ; (b) candidates with q = -1; (c) $B^0 \to \pi^+\pi^-$ yields after background subtraction; (d) the CP asymmetry for $B^0 \to \pi^+\pi^-$ after background subtraction. In Figs. (a) through (c), the solid curves show the results of the unbinned maximum likelihood fit to the Δt distributions of the whole $B^0 \to \pi^+\pi^-$ candidates. In Fig. (d), the dashed (dotted) curve is the contribution from the cosine (sine) term.

Figure 4. Distributions of Δt for events enhanced in signal $\pi\pi$ decays from the BaBar Collaboration: the tag side is identified as (a) B^0 or (b) \bar{B}^0 , and (c) the asymmetry as a function of Δt . Solid curves represent projections of the maximum likelihood fit, dashed curves represent the sum of $q\bar{q}$ and $K\pi$ background events.

The decay amplitudes for B^0 and \bar{B}^0 to $\pi^+\pi^-$ can be written by using the *c*-convention notation [14]:

$$A(B^{0} \to \pi^{+}\pi^{-}) = -(|T|e^{i\delta_{T}}e^{i\phi_{3}} + |P|e^{i\delta_{P}}),$$

$$A(\bar{B}^{0} \to \pi^{+}\pi^{-}) = -(|T|e^{i\delta_{T}}e^{-i\phi_{3}} + |P|e^{i\delta_{P}}),$$
(3)

where T and P are the amplitudes for the tree and penguin graphs and δ_T and δ_P are their strong phases. The expressions for $S_{\pi\pi}$ and $\mathcal{A}_{\pi\pi}$ are

$$S_{\pi\pi} = [\sin 2\phi_2 + 2|P/T| \sin(\phi_1 - \phi_2) \cos \delta - |P/T|^2 \sin 2\phi_1] / \mathcal{R}_{\pi\pi},$$

$$\mathcal{H}_{\pi\pi} = -[2|P/T| \sin(\phi_2 + \phi_1) \sin \delta] / \mathcal{R}_{\pi\pi},$$

$$\mathcal{R}_{\pi\pi} = 1 - 2|P/T| \cos \delta \cos(\phi_2 + \phi_1) + |P/T|^2,$$
(4)

where the strong phase difference $\delta \equiv \delta_P - \delta_T$. When $\mathcal{A}_{\pi\pi}$ is positive and $0^\circ < \phi_1 + \phi_2 < 180^\circ$, δ is negative. Fig. 6 shows the two-dimensional confidence regions in the $\mathcal{A}_{\pi\pi}$ vs. $\mathcal{S}_{\pi\pi}$ plane together with the pQCD prediction [15] for various values of ϕ_2 (= α). Fig. 7 shows predictions for $C_{\pi\pi}$ (= $-\mathcal{A}_{\pi\pi}$) and $\mathcal{S}_{\pi\pi}$ for several analysis steps with experimental and theoretical constraints [16]. In Fig. 8, the interpretation of the confidence regions of $\mathcal{A}_{\pi\pi}$ vs. $\mathcal{S}_{\pi\pi}$ is shown in terms of ϕ_2 and δ for the Belle data [10]. The range of ϕ_2 that corresponds to the 95.5% C.L. region of $\mathcal{A}_{\pi\pi}$ and $\mathcal{S}_{\pi\pi}$ is $78^\circ \leq \phi_2 \leq 152^\circ$ for $\phi_1 = 23.5^\circ$ [17] and $0.15 \leq |P/T| \leq 0.45$ [18]. The result is in agreement with

constraints on the unitarity triangle from other measurements [19]. Other interpretations for the current results can be found in ref. [16].

Figure 5. Confidence regions for $\mathcal{A}_{\pi\pi}$ and $\mathcal{S}_{\pi\pi}$ from the Belle and BaBar results.

Figure 6. Plot of $\mathcal{A}_{\pi\pi}$ versus $\mathcal{S}_{\pi\pi}$ for various values of ϕ_2 with ϕ_1 =24.0°, 0.18 < R_C < 0.30, and -41° < δ < -32° in the pQCD method. Here $R_C = |P/T|$. Dark areas are allowed regions in the pQCD method for different ϕ_2 values. The results of $\mathcal{A}_{\pi\pi}$ and $\mathcal{S}_{\pi\pi}$ from the Belle and BaBar Collaborations and the confidence regions from the Belle Collabolation are also shown.

Figure 7. Predictions for $C_{\pi\pi}$ (= $-\mathcal{A}_{\pi\pi}$) and $\mathcal{S}_{\pi\pi}$ for several analysis steps with experimental and theoretical constraints. The Belle and BaBar results are shown.

Figure 8. The region for ϕ_2 and δ which corresponds to the 68.3%, 95.5%, and 99.73% C.L. regions of $\mathcal{A}_{\pi\pi}$ and $\mathcal{S}_{\pi\pi}$ from the Belle result in Fig. 6. $\phi_1 = 23.5^{\circ}$ and |P/T| = 0.45. The horizontal dashed line corresponds to $\phi_2 = 180^{\circ} - \phi_1$.

Using isospin relations [20], we can constrain the difference, θ between α_{eff} and α . From the central values of the recent world average values of the branching ratios of $B^0 \to \pi^+\pi^-$, $B^+ \to \pi^+\pi^0$ and the 90% C.L. upper limit on the $B^0 \to \pi^0\pi^0$ branching ratio [21] together with $C_{\pi\pi}$, the upper limit on θ is 54°.

3
$$B^0 \rightarrow \rho \pi \rightarrow \pi^+ \pi^- \pi^0$$
 decays

In principle, the CKM angle α can be measured in the presence of penguin contributions using a full Dalitz plot analysis of the final state. However, there are difficulties of combinatorics and lower efficiency in three-body topology with π^0 and large backgrounds from misreconstructed signal events and other decays. In order to extract α cleanly, data with large statistics are required.

Unlike $B^0 \to \pi^+\pi^-$ decay, $B^0 \to \rho^\pm\pi^\mp$ decay is not a CP eigenstate, and four flavor-charge configurations $(B^0(\bar{B}^0) \to \rho^\pm\pi^\mp)$ must be considered. Following a quasitwo-body approach [22], the analysis is restricted to the two regions of the $\pi^\pm\pi^0h^\pm$ Dalitz plot $(h = \pi \text{ or } K)$ that are dominated by $\rho^\pm h^\mp$. The decay rate is given by

$$f_q^{\rho^{\pm}h^{\mp}}(\Delta t) = (1 \pm A_{CP}^{\rho h}) \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}}$$

$$\times [1 + q \cdot ((S_{\rho h} \pm \Delta S_{\rho h}) \sin(\Delta m_d \Delta t) - q \cdot (C_{\rho h} \pm \Delta C_{\rho h}) \cos(\Delta m_d \Delta t))], \quad (5)$$

where $\Delta t = t_{\rho h} - t_{\rm tag}$ as the time interval between the decay of $B_{\rho h}^0$ and that of the other B^0 meson in the event, $B_{\rm tag}^0$.

The time- and flavor-integrated charge asymmetries $A_{CP}^{\rho\pi}$ and $A_{CP}^{\rho K}$ measure direct CP violation. For the $\rho\pi$ mode, the quantities $S_{\rho\pi}$ and $C_{\rho\pi}$ parameterize mixing-induced CP violation related to the CKM angle α , and flavor-dependent direct CP violation, respectively. $\Delta C_{\rho\pi}$ describes the asymmetry between the rates $\Gamma(B^0 \to \rho^+\pi^-) + \Gamma(\bar{B}^0 \to \rho^-\pi^+)$ and $\Gamma(B^0 \to \rho^-\pi^+) + \Gamma(\bar{B}^0 \to \rho^+\pi^-)$. $\Delta S_{\rho\pi}$ is related to the strong phase difference between the amplitudes contributing to $B^0 \to \rho\pi$ decays. One finds the relations $S_{\rho\pi} \pm \Delta S_{\rho\pi} = \sqrt{1-(C_{\rho\pi}\pm\Delta C_{\rho\pi})^2}\sin(2\alpha_{\rm eff}^\pm \pm \delta)$, where $2\alpha_{\rm eff}^\pm = \arg[(q/p)(\bar{A}_{\rho\pi}^+/A_{\rho\pi}^+)]$, $\delta = \arg[\bar{A}_{\rho\pi}^-/A_{\rho\pi}^+]$, $\arg[q/p]$ is the B^0 - \bar{B}^0 mixing phase, and $A_{\rho\pi}^+(\bar{A}_{\rho\pi}^+)$ and $A_{\rho\pi}^-(\bar{A}_{\rho\pi}^-)$ are the transition amplitudes of the processes $B^0(\bar{B}^0) \to \rho^+\pi^-$ and $B^0(\bar{B}^0) \to \rho^-\pi^+$, respectively. The angles $\alpha_{\rm eff}^\pm$ are equal to α if contributions from penguin amplitudes are absent. For the self-tagging ρK mode, the values of the four time-dependent parameters are $C_{\rho K} = 0$, $\Delta C_{\rho K} = -1$, $S_{\rho K} = 0$, and $\Delta S_{\rho K} = 0$. The results on direct CP violation can be

Figure 9. Time distributions for events selected to enhance the $\rho\pi$ signal tagged as (a) B^0 -tag and (b) \bar{B}^0 -tag, and (c) time-dependent asymmetry between B^0 -tag and \bar{B}^0 -tag from the BaBar Collaboration [23]. The solid curve is a likelihood projection of the fit result. The dashed line is the sum of B- and continuum-background contributions.

expressed using the asymmetries

$$A_{+-} = \frac{N(\bar{B}_{\rho\pi}^{0} \to \rho^{+}\pi^{-}) - N(\bar{B}_{\rho\pi}^{0} \to \rho^{-}\pi^{+})}{N(\bar{B}_{\rho\pi}^{0} \to \rho^{+}\pi^{-}) + N(\bar{B}_{\rho\pi}^{0} \to \rho^{-}\pi^{+})}$$

$$= \frac{A_{CP}^{\rho\pi} - C_{\rho\pi} - A_{CP}^{\rho\pi} \cdot \Delta C_{\rho\pi}}{1 - \Delta C_{\rho\pi} - A_{CP}^{\rho\pi} \cdot C_{\rho\pi}}$$

$$A_{-+} = \frac{N(\bar{B}_{\rho\pi}^{0} \to \rho^{-}\pi^{+}) - N(\bar{B}_{\rho\pi}^{0} \to \rho^{+}\pi^{-})}{N(\bar{B}_{\rho\pi}^{0} \to \rho^{-}\pi^{+}) + N(\bar{B}_{\rho\pi}^{0} \to \rho^{+}\pi^{-})}$$

$$= \frac{A_{CP}^{\rho\pi} + C_{\rho\pi} + A_{CP}^{\rho\pi} \cdot \Delta C_{\rho\pi}}{1 + \Delta C_{\rho\pi} + A_{CP}^{\rho\pi} \cdot C_{\rho\pi}}$$
(7)

With a data sample of 89 million $B\bar{B}$ pairs [23], the BaBar Collaboration found $428^{+34}_{-33}(\text{stat}) \rho \pi$ and $120^{+21}_{-20}(\text{stat}) \rho K$ events and the following measurements of the CP violation parameters are obtained:

$$A_{CP}^{\rho\pi} = -0.18 \pm 0.08 \pm 0.03,$$

 $C_{\rho\pi} = +0.36 \pm 0.18 \pm 0.04,$
 $S_{\rho\pi} = +0.19 \pm 0.24 \pm 0.03.$

For the other parameters in the description of the $B^0(\bar{B}^0) \rightarrow \rho \pi$ decay-time dependence,

$$\Delta C_{\rho\pi} = +0.28 \pm 0.19 \pm 0.04,$$

 $\Delta S_{\rho\pi} = +0.15 \pm 0.25 \pm 0.03,$

are found. For the asymmetries A_{+-} and A_{-+} , which probe direct CP violation,

$$A_{+-} = -0.62^{+0.24}_{-0.28} \pm 0.06,$$

 $A_{-+} = -0.11^{+0.16}_{-0.17} \pm 0.04,$

are measured. The raw time-dependent asymmetry in the tagging categories dominated by kaons and leptons is shown in Fig. 9.

4 Prospects

Table 1 shows the expected error on *CP*-violating parameters in $B^0 \to \pi^+\pi^-$ and $B^0 \to \rho^\pm\pi^\mp$ decays with accumulated luminosities of 140 fb⁻¹, 400 fb⁻¹, 3000 fb⁻¹ (3 ab⁻¹), and 30000 fb⁻¹ (30 ab⁻¹) in the future.

Fig. 10 shows the prospects of $\alpha_{eff} - \alpha$ for the ICHEP'02 central values of the $B \to \pi\pi$ branching ratios and the central values of $S_{\pi\pi}$ and $C_{\pi\pi}$ from the BaBar measurement at luminosities of the current and future B-factories (87 fb⁻¹, 500 fb⁻¹, 2 ab⁻¹, 10 ab⁻¹). The inner and outer boarders can be obtained from the isospin analysis when $B^0 \to \pi^0\pi^0$ flavors are tagged and not tagged, respectively. Only a luminosity of around 10 ab⁻¹ allows to separate the solutions.

For $B \to \rho \pi$ decays, the isospin analysis is not feasible yet with the present statistics of the B factories. In [24], the projections into the future full SU(2) analysis was demonstrated. If the branching fraction of $B^0 \to \rho^0 \pi^0$ is below the experimental sensitivity, a strong constraint on α is expected above luminosity of around 2 ab⁻¹. In this workshop, theoretical problems such as form factors and σ meson [25], and experimental problems for several sources of backgrounds were pointed out.

Detailed discussions can be found in [27] for $B^0 \to \pi^+\pi^-$ and in [24] for $B^0 \to \rho\pi$ at this workshop.

parameters	$140 \; {\rm fb^{-1}}$	$400 \; {\rm fb^{-1}}$	3 ab^{-1}	30 ab^{-1}
$\mathcal{A}_{\pi\pi}$	0.21	0.13	0.05	0.02
$\mathcal{S}_{\pi\pi}$	0.31	0.19	0.07	0.03
$A_{CP}^{ ho\pi}$	0.07	0.04	0.02	0.008
$C_{ ho\pi}$	0.14	0.09	0.03	0.013
$S_{ ho\pi}$	0.18	0.11	0.04	0.014

Table 1. The errors of *CP*-violating parameters in $B^0 \to \pi^+\pi^-$ and $B^0 \to \rho^+\pi^+$ decays at 140 fb⁻¹, 400 fb⁻¹, 3 ab⁻¹, and 30 ab⁻¹, assuming that statistical and systematic errors are proportional to $1/\sqrt{\mathcal{L}}$ and $1/\sqrt[4]{\mathcal{L}}$, respectively. Here L is accumulated luminosity.

Figure 10. $\alpha_{eff} - \alpha$ for the ICHEP'02 central values of the $B \to \pi\pi$ branching fractions and the central values of $S_{\pi\pi}$ and $C_{\pi\pi}$ from the BaBar measurement at luminosities of the current and future B-factories (87 fb⁻¹, 500 fb⁻¹, 2 ab⁻¹, and 10 ab⁻¹).

5 Summary

In summary, the Belle and BaBar Collaborations obtain the following measurements of the *CP*-violating asymmetry parameters in $B^0 \to \pi^+\pi^-$ decays:

$$\mathcal{A}_{\pi\pi} = +0.77 \pm 0.27 \pm 0.08, \quad \mathcal{S}_{\pi\pi} = -1.23 \pm 0.41^{+0.08}_{-0.07}$$
 (Belle), $\mathcal{A}_{\pi\pi} = +0.30 \pm 0.25 \pm 0.04, \quad \mathcal{S}_{\pi\pi} = -0.02 \pm 0.34 \pm 0.05$ (BaBar),

The following measurements of the *CP*-violating asymmetry parameters in $B^0 \to \rho \pi$ decays using a quasi two-body analysis are obtained by the BaBar Collaboration:

$$A_{CP}^{\rho\pi} = -0.18 \pm 0.08 \pm 0.03,$$
 $C_{\rho\pi} = +0.36 \pm 0.18 \pm 0.04, \quad \Delta C_{\rho\pi} = +0.28 \pm 0.19 \pm 0.04,$ $S_{\rho\pi} = +0.19 \pm 0.24 \pm 0.03, \quad \Delta S_{\rho\pi} = +0.15 \pm 0.25 \pm 0.03.$

For the asymmetries A_{+-} and A_{-+} , which probe direct CP violation,

$$A_{+-} = -0.62^{+0.24}_{-0.28} \pm 0.06, \qquad A_{-+} = -0.11^{0.16}_{-0.17} \pm 0.04,$$

are obtained.

References

 M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

- 2. $\phi_1 (= \beta) \equiv \arg[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*], \phi_2 (= \alpha) \equiv \arg[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*], \text{ and } \phi_3 (= \gamma) \equiv \arg[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*].$
- 3. Belle Collaboration, K. Abe *et al.*, Phys. Rev. D **66**, 071102 (2002).
- 4. BaBar Collaboration, B Aubert *et al.*, Phys. Rev. Lett. **89**, 201802 (2002).
- Throughout this paper, the inclusion of the charge conjugate mode decay is implied unless otherwise stated.
- 6. $C_{\pi\pi} = -\mathcal{R}_{\pi\pi}$. The BaBar Collaboration uses $C_{\pi\pi}$ and the Belle Collaboration uses $\mathcal{R}_{\pi\pi}$. Usually the partial-rate asymmetry or direct CP violation parameter is defined by $[N(\bar{B} \to \bar{f}) N(B \to f)]/[N(\bar{B} \to \bar{f}) + N(B \to f)]$. Its sign is consistent with the sign of $\mathcal{R}_{\pi\pi}$. Here B represents either a B^0 or B^+ meson, f represents a flavor-specific final state, and \bar{B}^0 and \bar{f} are their conjugates.
- 7. The Belle Collaboration uses the beam-energy constrained mass $M_{\rm bc}$. The BaBar Collaboration uses the beam-energy substituted mass $m_{\rm ES} = \sqrt{(s/2 + {\bf p_i} \cdot {\bf p_B})^2/E_i^2 {\bf p_B}^2}$, where \sqrt{s} is the total cms energy , and the B momentum ${\bf p_B}$ and the four-momentum of the initial state $(E_i, {\bf p_i})$ are defined in the laboratory frame.
- 8. The Fox-Wolfram moments were introduced in G.C. Fox and S. Wolfram, Phys. Rev. Lett. **41**, 1581 (1978). The Fisher discriminant used by the Belle Collaboration is described in Phys. Lett. B **511**, 151 (2001) and Phys. Rev. D **66**, 092002 (2002).
- 9. $\mathcal{F} = 0.53 0.60 \times \sum_{i} p_{i}^{*} + 1.27 \times \sum_{i} p_{i}^{*} |\cos(\theta_{i}^{*})|^{2}$, where p_{i}^{*} is the momentum of particle i and θ_{i}^{*} is the angle between its momentum and the B thrust axis in the cms frame. The sum is over all particles in the event excluding those of the B candidate.
- 10. Belle Collaboration, K. Abe *et al.*, hep-ex/0301032, to appear in Phys. Rev. D.
- 11. BaBar Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. **89**, 281802 (2002).
- Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag.
- G.J. Feldman and R.D. Cousins, Phys. Rev. D 57, 3873 (1998).
- M. Gronau and J.L. Rosner, Phys. Rev. D 65, 093012 (2002).
- 15. Y.-Y. Keum and A.I. Sanda, Phys. Rev. D **67**, 054009 (2003); private communication with Y.-Y. Keum.
- 16. The CKMfitter site on the web: http://ckmfitter.in2p3.fr/.
- 17. Using the recent average values of $\sin 2\phi_1$ from the Belle [3] and BaBar [4] Collaborations, $\phi_1 = (23.5^{+2.4}_{-2.2})^{\circ}$.
- 18. The recent theoretical estimates prefer $|P/T| \sim 0.3$.
- 19. Y. Nir, Nucl. Phys. B (Proc. Suppl.) 117, 111 (2003).

- M. Gronau, D. London, N. Sinha, R. Sinha, Phys. Lett. B 514, 315 (2001).
- Heavy Flavor Averaging Group Rare Decays, Pre Winter 2003 in
 - http://www.slac.stanford.edu/xorg/hfag/rare/index.html.
- 22. The BaBar Physics Book, Editors P.F. Harrison and H.R. Quinn, SLAC-R-504 (1998).
- BaBar Collaboration, B. Aubert *et al.*, hep-ex/0306030, submitted to Phys. Rev. Lett.
- 24. J. Stark, these proceedings.
- 25. A.D. Polosa, these proceedings. The σ meson was introduced as a very broad light resonance. The E791 Collaboration had an evidence of a very broad scalar resonance with $m_{\sigma} = 478 \text{MeV}$ and $\Gamma_{\sigma} = 324 \text{MeV}$ [26]. $B^0 \to \sigma \pi^0$ can spoil the penguin relation on the isospin analysis in $B^0 \to \rho \pi$.
- E791 Collaboration, E.M. Aitala *et al.*, Phys. Rev. Lett. **86**, 770 (2001).
- 27. L. Roos, these proceedings.