Projeto e Análise de Algoritmos

Parte 6: Problemas NP-Completos

Eduardo Freire Nakamura nakamura@dcc.ufam.edu.br

Departamento de Ciência da Computação (DCC)
Instituto de Ciências Exatas (ICE)
Universidade Federal do Amazonas (UFAM)

Introdução

- Problemas estudados até agora
 - Algoritmos polinomiais
 - Entrada de tamanho n
 - Tempo é no pior caso O(n^k)
- Todo problema pode ser resolvido em tempo polinomial?
- E se dispormos de tempo infinito?

O problema da parada

"Dada uma descrição de um programa e uma entrada finita, decida se o programa termina de rodar ou rodará indefinidamente, dada essa entrada"

Alan Turing (1912-1941) provou em 1936 que não existe nenhum algoritmo que resolva este problema

Classes de problemas

- Classe de problemas NP-Difícil
 - Não existe solução
- Classe de problemas NP
 - Existe solução não polinomial conhecida
 - Toda solução pode ser verificada em tempo polinomial

Classes de problemas

- Classe de problemas P
 - Existe solução em tempo polinomial conhecida
- Classe de problemas NP-Completo
 - Existe soluções conhecidas
 - Entretanto...
 - Até hoje ninguém encontrou um algoritmo polinomial
 - Até hoje ninguém provou que tal algoritmo não existe

Classe de problemas

Suposto relacionamento entre classes: P ≠ NP (não há provas)

$P = NP \text{ ou } P \neq NP?$

- Millennium Prize Problems (www.claymath.org/millennium)
 - Dez problemas clássicos
 - US\$ 1 milhão para quem resolver

- Somente um foi resolvido
 - Conjectura de Poincaré (1904)
 - 2002 (prova)
 - 2006 (Medalha Fields)
 - 2010 (Millenium Prize)
 - Dr. Grigori Yakovlevich Perelman

Por que é importante?

Eu não encontro nenhuma solução eficiente, acho que sou meio limitado...

Por que é importante?

Eu não encontro nenhuma solução eficiente, mas nenhum destes cientistas famosos consegue também...

Um aspecto intrigante

- Vários problemas NP-completos são muito semelhantes a problemas polinomiais, diferindo em detalhes
- Um exemplo
 - Caminho mínimo: algoritmos polinomiais O(V x E)
 - Caminho máximo: NP-Completo (mesmo se todos os pesos das arestas for 1)

Como provar NP-completo?

Veja o que é NP-Completo:

Como provar NP-completo?

- Para provar que um problema X é NP-completo é necessário seguir os seguintes passos
 - Mostre que X está na classe NP
 - Para isso, apresente um algoritmo que verifique em tempo polinomial se uma solução é válida
 - Mostre que X está na classe NP-Difícil
 - Para isso, apresente uma redução polinomial que transforme instâncias de um problema Y (conhecidamente NP-Difícil) no problema X

O problema base NP-completo

- Satisfabilidade (SAT)
- Dada uma expressão booleana
 - Conectivos AND (∧), OR (∨), NOT (¬)
 - Variáveis
 - Parênteses

$$(a_1 \lor \neg a_2) \land (a_1 \lor a_2 \lor a_3) \land (\neg a_1 \lor a_3) \land$$

- Pergunta-se
 - Existe alguma atribuição de valores a estas variáveis que torne a expressão VERDADEIRA?

Uma variação comum

- 3SAT
 - Satisfabilidade de 3 literais por grupo
 - Continua sendo NP-Completo
- Disjunção de conjunções ou conjunção de disjunções, agrupadas 3 a 3

$$(a_1 \lor \neg a_4 \lor a_3) \land (a_1 \lor a_2 \lor a_3) \land (\neg a_1 \lor a_2 \lor a_3) \land \dots$$

Satisfabilidade

- Dada uma atribuição de valores às variáveis
 - Podemos verificar em tempo polinomial se ela é verdadeira
 - Basta substituir os valores das variáveis e executar as operações lógicas

Algoritmo

- Existe apenas um algoritmo
- Testar todas as possibilidades de atribuições de valores para todas as variáveis e verificar todas a procura de uma que satisfaça a expressão booleana
- Qual é o custo deste algoritmo?

Problema do Caixeiro Viajante

Dados

Constante k, conjunto de cidades C = {c₁, c₂, ..., c_n} e uma distância d(c_i; c_j) para cada par de cidades c_i, c_j ∈ C

Questão

 Existe um "roteiro" para todas as cidades em C cujo comprimento total seja menor ou igual a k?

Caminho em um grafo

Considere um grafo com peso nas arestas, dois vértices
 i, j e um inteiro k > 0

- Fácil
 - Existe um caminho de i até j com peso ≤ k?
 - Dijkstra
- Difícil
 - Existe um caminho de i até j com peso ≥ k?

Coloração de um Grafo

Em um grafo G = (V, E), mapear c : V → S, sendo S um conjunto finito de cores tal que se <v,w> ∈ E então c(v)
 ≠ c(w) (vértices adjacentes possuem cores distintas)

 Dados G e um inteiro positivo k, existe uma coloração de G usando k cores?

- Fácil k = 2
- Difícil k > 2

Coloração de um Grafo - Horários

- Em uma aplicação modelada como um problema de coloração de vértices, os vértices de mesma cor representam indivíduos que não conflitam entre si
- Atribuição de frequências de rádio
- Separação de produtos explosivos
- Agendamento de cursos na universidade

Atribuição de frequencias de rádio

- Os vértices representam as estações de rádio
- Duas estações são vizinhas quando suas áreas de transmissão se sobrepõem, resultado em interferência se elas usassem a mesma freqüência
- Cada cor contém estações que podem receber a mesma freqüência

Separação de produtos explosivos

- Os vértices são produtos químicos necessários em algum processo de produção
- Existe uma aresta ligando cada par de produtos que podem explodir, se colocados lado a lado
- O número mínimo de cores representa o número mínimo de compartimentos para guardar estes produtos em segurança

Agendamento de horário

- Os vértices representam os cursos de uma universidade
- Dois cursos são adjacentes se um aluno se matricula para ambos os cursos
- O número mínimo de cores representa o número mínimo de horários necessários para acomodar os cursos

Ciclo de Hamilton

- Ciclo de Hamilton
 - Ciclo que passa por todos os vértices uma única vez
- Caminho de Hamilton
 - Caminho que passa por todos os vértices uma única vez

- Exemplo de ciclo de Hamilton
 - 014230
- Exemplo de caminho de Hamilton:
 - 01423

Ciclo de Hamilton

- Existe um ciclo de Hamilton no grafo G?
- Fácil
 - Grafos com grau máximo ≤ 2 (vértices com no máximo duas arestas incidentes)
- Difícil
 - Grafos com grau > 2
- Caso especial do PCV
 - Pares de vértices com uma aresta entre eles tem distância
 1 e pares de vértices sem aresta entre eles têm distância infinita

Cobertura de arestas e vértices

 Uma cobertura de arestas de um grafo G = (V, E) é um subconjunto E' ⊂ E de k arestas tal que todo v ∈ V é parte de pelo menos uma aresta de E

Uma resposta para k=4

$$E' = \{<0,3>; <2,3>; <1,5>; <4,6>\}$$

Cobertura de arestas e vértices

 Uma cobertura de vértices é um subconjunto V' ∈ V tal que se <u,v> ∈ E, então u ∈ V' ou v ∈ V', isto é, cada aresta do grafo é incidente em um dos vértices de V'

- Resposta para o exemplo
 - $V' = \{3, 4, 5\}$, para k = 3
- Fácil
 - □ ∃ uma cobertura de arestas ≤ k?

Projeto e Análise de Algoritmos

- Difícil
 - □ ∃ uma cobertura de vétices ≤ k?

Transformação polinomial

- Sejam P₁ e P₂ dois problemas de decisão
 - Suponha que um algoritmo A₂ resolva P₂
- Se for possível transformar P₁ em P₂ e a solução de P₂ em solução de P₁
 - Então A₂ pode ser utilizado para resolver P₁
- Se pudermos realizar as transformações nos dois sentidos em tempo polinomial
 - Então P₁ é polinomialmente transformável em P₂

Transformação polinomial

 Para mostrar um exemplo de transformação polinomial, definiremos clique de um grafo e conjunto independente de vértices de um grafo

Conjunto independente de vértices

O conjunto independente de vértices de um grafo
 G=(V,E) é constituído do subconjunto V' ∈ V , tal que v,
 w ∈ V ⇒ <v,w> ∉ E

- Todo par de vértices de V' é não adjacente
 - V' é um subgrafo totalmente desconectado

Aplicações

- Em problemas de dispersão é necessário encontrar grandes conjuntos independentes de vértices
 - Procura-se um conjunto de pontos mutuamente separados
- Exemplo
 - Identificar localizações para instalação de franquias
 - Duas localizações não podem estar perto o suficiente para competirem entre si

Aplicações

- Solução
 - O maior conjunto independente fornece o maior número de franquias que podem ser concedidas sem prejudicar as vendas
- Em geral, conjuntos independentes evitam conflitos entre elementos

Clique de um grafo

- Clique de um grafo G = (V,E) é constituído do subconjunto V' ∈ V , tal que v, w ∈ V' ⇒ <v,w> ∈ E
- Todo par de vértices de V' é adjacente (V' é um subgrafo completo)

Exemplo de cardinalidade 3
V'={1, 3, 4}

Aplicação

- Identificar agrupamentos de objetos relacionados
 - Encontrar grandes cliques em grafos
- Exemplo
 - Empresa de fabricação de peças por meio de injeção plástica que fornece para diversas outras empresas montadoras
 - É preciso identificar os clientes que adquirem os mesmos produtos, para negociar prazos de entrega comuns e assim aumentar o tamanho dos lotes produzidos

Aplicação

- Exemplo (cont.)
 - Construir um grafo com cada vértice representando um cliente e ligar com uma aresta os que adquirem os mesmos produtos
 - Um clique no grafo representa o conjunto de clientes que adquirem os mesmos produtos

A transformação polinomial

- Considere P₁ o problema clique e P₂ o problema conjunto independente de vértices
- Transformação polinomial
 - Obter o grafo complementar G'
 - G possui um clique de tamanho ≥ k se, e somente se, G' possui um conjunto independente de vértices ≥ k

A transformação polinomial

- Se existe um algoritmo polinomial que resolva o conjunto independente, ele pode ser utilizado para resolver o clique
- Clique é redutível ao Conjunto independente de vétices

Outro exemplo

- Transformação polinomial do Caixeiro Viajante para o ciclo de Hamilton
 - 1. Para as cidades, use os vértices
 - 2. Para as distâncias, use 1 se existir um arco no grafo original e 2 se não existir
- Use o PCV para achar um roteiro ≤ V
 - O roteiro é o ciclo de Hamilton

Heurísticas

- Algoritmo que pode produzir um bom resultado (ou até a solução ótima)
 - Pode também não obter solução ou obter uma distante da ótima
- Pode haver instâncias em que uma heurística nunca vai encontrar uma solução

- Algoritmo do vizinho mais próximo, heurística gulosa simples
 - 1. Inicie com um vértice arbitrário
 - 2. Procure o vértice mais próximo do último vértice adicionado que não esteja no caminho e adicione ao caminho a aresta que liga esses dois vértices
 - 3. Quando todos os vértices estiverem no caminho, adicione uma aresta conectando o vértice inicial e o último vértice adicionado

	0			3		
0	х	3	10	11	7	25
1	3	X	8	12	9	26
2	10	8	X	9	4	20
3	11	12	9	х	5	15
4	7	9	4	5	X	18
5	25	3 x 8 12 9	20	15	18	X

Caminho ótimo: 0-1-2-5-3-4-0Custo: 3+8+20+15+5+7=58

	0	1	2	3	4	5
0	х	3	10	11		25
1	3	X	8	12	9	26
2	10	8	X	9	4	20
3	11	12	9	X	5	15
4	7	9	4	5	X	18
5	25	x 8 12 9	20	15	18	х

Caminho vizinho: 0

Custo:

Caminho ótimo: 0-1-2-5-3-4-0

	0	1	2	3	4	5
0	х	3	10	11	7	25
1	3	X	8	12	9	26
2	10	8	X	9	4	20
3	11	12	9	X	5	15
4	7	9	4	5	X	18
5	25	8 12 9 26	20	15	18	Х

Caminho vizinho: 0-1

Custo: 3

Caminho ótimo: 0-1-2-5-3-4-0

	0	1	2	3	4	5
0	х	3	10	11	7	25
1	3	X	8	12	9	26
2	10	8	X	9	4	20
3	11	12	9	X	5	15
4	7	9	4	5	X	18
5	25	26	20	15	18	х

Caminho vizinho: 0-1

Custo: 3

Caminho ótimo: 0-1-2-5-3-4-0

	0	1	2	3	4	5
0	Х	3	10	11	7	25
1	3	X	8	12	9	26
2	10	8	X	9	4	20
3	11	12		X	5	15
4	7	9	4	5	X	18
5	25	26	20	15	18	х

Caminho vizinho: 0-1-2

Custo: 3+8

Caminho ótimo: 0-1-2-5-3-4-0

	0	1	2	3	4	5
0	х	3	10	11	7	25
1	3	X	8	12	9	26
2	10	8	х	9	4	20
3	11	12 9 26	9	X	5	15
4	7	9	4	5	X	18
5	25	26	20	15	18	х

Caminho vizinho: 0-1-2

Custo: 3+8

Caminho ótimo: 0-1-2-5-3-4-0

	0	1	2	3	4	5
0	X	3	10	11	7	25
1	3	X	8	12	9	26
2	10	8	х	9	4	20
3	11	12	9	х	5	15
4	7	9	4	5	X	18
5	25	26	20	15	18	х

Caminho vizinho: 0-1-2-4

Custo: 3+8+4

Caminho ótimo: 0-1-2-5-3-4-0

	0	1	2	3	4	5
0	х	3	10	11	7	25
1	3	X	8	12	9	26
2	10	8	X	9	4	20
3	11	12	9	X	5	15
4	7	9	4	5	X	18
5	25	26	20	15	18	Х

Caminho vizinho: 0-1-2-4

Custo: 3+8+4

Caminho ótimo: 0-1-2-5-3-4-0

	0	1	2	3	4	5
0	х	3	10	11	7	25
1	3	X	8	12	9	26
2	10	8	х	9	4	20
3	11	12	x 9	х	5	15
4	7	9	4	5	х	18
5	25	26	20	15	18	Х

Caminho vizinho: 0-1-2-4-3

Custo: 3+8+4+5

Caminho ótimo: 0-1-2-5-3-4-0Custo: 3+8+20+15+5+7 = 58

	0	1	2	3	4	5
0	х	3	10	11	7	25
1	3	X		12	9	26
2	10	8	X	9	4	20
3	11	12	9	х	5	15
4	7	9	4	5	X	18
5	25	26	20	15	18	Х

Caminho vizinho: 0-1-2-4-3

Custo: 3+8+4+5

Caminho ótimo: 0-1-2-5-3-4-0Custo: 3+8+20+15+5+7=58

	0	1	2	3	4	5
0	х	3	10	11	7	25
1	3	X	8	12	9	26
2	10	8	X	9	4	20
3	11	12	9	x	5	15
4	7	9	4	5	х	18
5	25	26	20	15	18	Х

Caminho vizinho: 0-1-2-4-3-5

Custo: 3+8+4+5+15

Caminho ótimo: 0-1-2-5-3-4-0

	0	1	2	3	4	5
0	Х	3	10	11	7	25
1	3	X	8	12	9	26
2	10	8	х	9	4	20
3	11	12	9	x	5	15
4	7	9	4	5	X	18
5	x 3 10 11 7 25	26	20	15	18	Х

Caminho vizinho: 0-1-2-4-3-5

Custo: 3+8+4+5+15

Caminho ótimo: 0-1-2-5-3-4-0

	0		2			
0	х	3	10	11	7	25
1	3	X	8	12	9	26
2	10	8	х	9	4	20
3	11	12	9	x	5	15
4	7	9	4	5	X	18
5	25	3 x 8 12 9	20	15	18	Х

Caminho vizinho: 0-1-2-4-3-5-0

Custo: 3+8+4+5+15+25=60

Caminho ótimo: 0-1-2-5-3-4-0

Análise

Qual é o custo do vizinho mais próximo?

Exercício

- Escreva a heurística do vizinho mais próximo e faça sua análise de complexidade
- Escreva uma heurística para o problema do ciclo de Hamilton, baseada no vizinho mais próximo e faça sua análise