University of Kasdi Merbah Ouargla Faculty of New Information and Communication Technologies Department of Computer Science and Information Technology Master 1 Artificial intelligence and data science

Programming for Data Scientists

Solution of 'TP Exam'

Student					

Exercise 1

Suppose that we have the following randomly generated array A.

<pre>import numpy as np A = np.random.randint(1,23, size=(5,5)) A</pre>	A = [[2 17 21 22 6] [3 9 19 1 22] [15 8 21 19 20] [22 2 15 12 5]
	[22 2 15 12 5] [17 2 16 5 11]]

Fill the next table:

Editor	Console
<pre>B = A[2:4, :] print(B)</pre>	[[15 8 21 19 20] [22 2 15 12 5]]
<pre>C = A[1, np.newaxis] print(C)</pre>	C is: [[3 9 19 1 22]]
<pre>print(A[::-1,[0,3]])</pre>	[[17 5] [22 12] [15 19] [3 1] [2 22]]
<pre>D = np.concatenate((B,C), axis=0) print(D)</pre>	D is: [[15 8 21 19 20] [22 2 15 12 5] [3 9 19 1 22]]
<pre>E = np.concatenate([A, D])[::-2] print(E)</pre>	[[3 9 19 1 22] [15 8 21 19 20] [22 2 15 12 5] [3 9 19 1 22]]

Exercise 2

We have the following Pandas' DataFrame **df_1**:

index		Name	WBC
Туре	Rank		
A+	1st	Billie	9500
	3rd	Jasper	6400
	2nd	Lawson	5200
A-	3rd	Declan	7850
	1st	Maison	10055
	2nd	Davis	8050
B+	2nd	Saoirse	8110
	3rd	Maddison	6200
	1st	Kylie	9550
B-	1st	Rosalie	11000
	2nd	Hamish	11550
	3rd	Ellis	4800

WBC: White Blood Count

1. Extract the people of the 3rd rank in A+ and B- types. (using loc, 1 single ins)

```
players_df.loc[["A+", "B-"], '3rd', :]
```

Using df_1, create a new DataFrame df_2 composed of only A+ and B+. (using loc, 1 single ins)

```
df_2 = players_df.loc[["A+", "A-"]]
```

2. Split **df_1** into two families A and B, A must contain A+ and A-, B must contain B+ and B-, the new index will be (Family, Type, Rank).

```
players_df.loc[["A+", "A-"], 'Family']= 'A'
players_df.loc[["B+", "B-"], 'Family']= 'B'
players_df = players_df.reset_index()
players_df = players_df.set_index(['Family','Type','Rank'])
```

3. Display the WBC mean of the A and B. (1 single ins)

```
players_df.groupby("Family")['WBC'].mean()
```

4. We want to add a new column to the DataFrame which called **Compact**, this column will contain all the data of each row according to the following formula: {Family}_{Type}_{Rank}_{WBC}_{Name}

Using groupby("Type").apply(yourFuncName), add the new column to df_1.

```
def add_compact(x):
    ranks = np.array(["_".join(r) for r in x.index.values])
    compact = np.array([v1+"_"+v2+"_"+v3 for v1,v2,v3 in zip(ranks,
    x.WBC.values.astype(str), x.Name.values)])
    x['Compact'] = compact
    return x

players_df.groupby("Type").apply(add_compact)
```