

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

© CKE 2013	WPI	SUJE ZDAJĄCY	Miejsce
graficzny	KOD	PESEL	Miejsce na naklejkę z kodem
Układ			

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 7 stron (zadania 1-3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2014

WYBRANE:			
(środowisko)			
(kompilator)			
(program użytkowy)			

Czas pracy: 90 minut

Liczba punktów do uzyskania: 20

MIN-R1_1P-142

Zadanie 1. Korale (8 pkt)

Rozważamy następującą **rekurencyjną** procedurę *Korale*, której parametrem jest dodatnia liczba całkowita n.

Korale(n)

- 1. Jeżeli n = 1, to
 - 1.1. nawlecz czarny koralik na prawy koniec sznurka,
 - 1.2. zakończ działanie procedury.
- 2. Jeżeli n jest parzyste, to
 - 2.1. wykonaj Korale(n/2),
 - 2.2. nawlecz biały koralik na prawy koniec sznurka,
 - 2.3. zakończ działanie procedury.
- 3. Jeżeli *n* jest nieparzyste, to
 - 3.1. wykonaj Korale((n-1)/2),
 - 3.2. nawlecz czarny koralik na prawy koniec sznurka,
 - 3.3. zakończ działanie procedury.
- a) Uzupełnij tabelę i w ten sposób przedstaw wynik działania powyższego algorytmu dla podanych argumentów *n*:

n	wynik działania Korale(n)
1	-
2	
3	
4	———
7	
8	
15	
16	

b) Ile koralików zostanie nawleczonych na sznurek w wyniku wywołania procedury *Korale* dla danej liczby *n*? Odpowiedź uzasadnij.

c) Zaprojektuj i zapisz nierekurencyjną procedurę *KoraleBis(n)*, po wykonaniu której uzyskamy taki sam efekt, jak po wykonaniu *Korale(n)*. W procedurze *KoraleBis* można nawlekać koraliki tylko na jeden, wybrany koniec sznurka.

Algorytm:

***	Nr zadania	1.a	1.b	1.c
Wypełnia	Maks. liczba pkt	2	3	3
egzaminator	Uzyskana liczba pkt			

Zadanie 2. Bisekcja (6 pkt)

Bisekcja jest jedną z metod szukania przybliżenia miejsca zerowego funkcji rzeczywistej f(x), ciągłej w zadanym przedziale $\langle a, b \rangle$ i o wartościach mających różne znaki na końcach przedziału.

Algorytm bisekcji oblicza wartości funkcji na obu końcach przedziału, oraz w jego środku, tj. dla $x = \frac{a+b}{2}$. Jeżeli wartość funkcji w środku przedziału jest zerem, to x jest szukanym miejscem zerowym tej funkcji. W przeciwnym przypadku zawęża się przedział < a, b> do przedziału < a, x> lub < x, b> tak, aby na końcach tego nowego przedziału wartości funkcji

Wszystkie opisane czynności powtarza się, aż do znalezienia miejsca zerowego lub do zmniejszenia się długości analizowanego przedziału poniżej zadanej **dokładności** d – wówczas wynikiem jest środek ostatniego przedziału.

Twoje zadania:

znowu miały różne znaki.

Dla funkcji $f(x) = x^3 - x - 2$ oraz przedziału <0, 2>:

a) Wykonaj trzy pierwsze kroki algorytmu bisekcji i uzupełnij tabelkę:

١.	vv y KOI	iaj uzy	pici wszc	KIOKI digoi	y tilla bische	ji i uzupeninj	tabencę.	
	krok	а	b	f(a)	f(b)	$x = \frac{a+b}{2}$	f(x)	$\operatorname{czy} f(a) i f(x)$ mają te same znaki?
	1	0	2	-2	4	1	-2	tak, więc wybieram przedział <x, b=""></x,>
	2	1	2					
	3							

b) Podaj, w którym **kroku** algorytmu bisekcji długość analizowanego przedziału <*a*, *b*> będzie po raz pierwszy mniejsza niż 0,1.

c) Dane są: domknięty przedział $\langle a, b \rangle$, rzeczywista funkcja f, ciągła na tym przedziale i taka, że $f(a) \cdot f(b)$ jest ujemne, oraz dodatnia liczba rzeczywista d, nie większa niż (b-a).

Zapisz algorytm, który poda przybliżenie miejsca zerowego funkcji f w przedziale < a, b>, przy zadanej dokładności d.

***	Nr zadania	2.a	2.b	2.c
Wypełnia	Maks. liczba pkt	1	2	3
egzaminator	Uzyskana liczba pkt			

Zadanie 3. (6 pkt)

Przeanalizuj poniższy algorytm dla dodatniej liczby całkowitej n:

```
jeżeli n = 1, to suma \leftarrow 1

w przeciwnym przypadku

suma \leftarrow 1 + n

i \leftarrow n - 1

dopóki i > 1 wykonuj

suma \leftarrow 1 + i * suma

i \leftarrow i - 1
```

a) Podaj wartość zmiennej *suma* po zakończeniu działania algorytmu dla następujących wartości argumentu *n*:

n	suma
4	
6	

Dla kolejnych zdań zdecyduj, które z podanych odpowiedzi są prawdziwe, a które – fałszywe. **Zaznacz znakiem X** odpowiednie pola tabeli.

b) Wynikiem działania algorytmu przedstawionego na początku zadania jest

	prawda	fałsz
$1+2\cdot(1+3\cdot(1+(n-2)\cdot(1+(n-1)\cdot(1+n))))$		
$1+2^2+3^3+\ldots+n^n$		
$1! + 2! + 3! + \dots + n!$		
1+2+3++n		

c) Liczba binarna 101011111100 zapisana w systemie szesnastkowym ma postać

	prawda	fałsz
AEC		
CFC		
AFC		
DFC		

d) Liczba 262 to

	prawda	fałsz
wielokrotność liczby 2.		
największy wspólny dzielnik liczb: 1310 i 524.		
kwadrat liczby pierwszej.		
najmniejsza wspólna wielokrotność liczb: 31 i 42		

e) Witając się z drugą osobą, podajemy sobie ręce. Jeśli wśród *n* osób każda chce się przywitać z każdą, to ile razy nastąpi uścisk dłoni?

	prawda	fałsz
$n \cdot (n-1)/2$		
$\log_2 n$		
$n^2 - n/2$		
$n^2/2$		·

***	Nr zadania	3.a	3.b	3.c	3.d	3.e
Wypełnia	Maks. liczba pkt	2	1	1	1	1
egzaminator	Uzyskana liczba pkt					

BRUDNOPIS