PJ: Cold Brew Machine

조원 : 홍기화

[프로젝트 목적] Cold Brew Coffee Automation System

2 Sensor Data Processing(Digital Filter)

Weight Sensor Data -> ADC(<=3mV Change)

ADC -> DFT

DFT -> Digital Filter(LPF)

Where 1 : Weight Sensor Where 2 : Temperature Sensor

[프로젝트 목적] Cold Brew Coffee Automation System

1. Remote Control

2. Drop Count

3. Weight Sensor

4. LCD Display

[PJ CBM : BOM]

대분류	소분류	품명	수량(ea)	단위가격(원)	총액(원)
electronic parts	мси	TI tms570 launchpad	1	37570	37570
	LCD	LC1621 LCD	1	7700	7700
	Weight Sensor	Load cell BND-611N 1kg	2	25300	50600
	Weight Sensor	Load cell BND-611N 2kg	1	14500	14500
	Weight sensor adc IC	HX711 Module (24bit AD)	1	1540	1540
	Drop Sensor	photo interrupter	1	1760	1760
	Temperature sensor	ETH-01DV	1	8910	8910
	UV-LED	uv-c 4545 smd led 5mW	3	5000	15000
	IR receiver + control board	(chinese)	1	2000	2000
	step motor controller	ULN2003 Module	1	1300	1300
	step motor for valve control	28BYJ-48	1	1200	1200
	FAN		1	17500	17500
	TEC Module	TEC-12705	2	5400	10800
	Relay		2	2000	4000
	Camera	usb3.0	1	75000	75000
Mechanical parts	door switch	ramps 1.4 limit switch	3	2400	7200
	펠티어 단열스폰지	펠티어 단열스폰지	1	600	600
	Peltier heatsink	Peltier-Heatsink-Set(협신전자)	1	16500	16500
	LED PCB	smd led 기판	1	1800	1800
	투명튜브	에어호스 6mm	1	800	800
	electric wire	0.3SQ × 12C 10color 1m	1	1300	1300
	wire mold	wire duct PVC 사각몰드 밤색 1호	3	300	900
	문 경첩	경첩	2	1000	2000
	문고리	문고리	1	1000	1000
	문자석	문자석	1	1200	1200
	case	플라베니아 5T 회색	1	4950	4950
	단열재	압축스티로폼 20mm	1	2000	2000
	물병	물병_티보틀	1	5000	5000
	실리콘마개	SL.Sto6105 (싸이랩코리아)	1	4500	4500
	Water valve	FSC0600 호스6mm 미세조절	1	2600	2600
	Water tank	daiso 1001333	2	1760	3520
	Li-po 2800mAh 35C	Li-po 2800mAh 35C	1	51900	51900
	3D Printer	Ender 3	1	230000	230000
	3d print 필라멘트	PLA 필라멘트 1kg	2	17500	35000
	볼트너트	m3,m4,m5 볼트 너트 와셔 세트(은색)	1	6100	6100
	더치기구	더치기구	1	19500	19500
합계 총액					647,750

☐ Camera Focus

175mm 위치에 초점을 수동으로 맞춘다. ←

☐ Dark House 3D Print

■ ROI 추출 (Hough Circle)

< Hough Circle Detection >

< Radius, Center filtering >

Color Average (with Black and White Filter)

< 가운데 쪽 한 점 색상 분석 >

```
r: 124
center: 326,236
limit = 211111111
center r = 255, g = 95, b = 255
```


< 전체 색 평균 >

```
r: 118
center: 330,238
avg r = 189, g = 70, b = 185
```


☐ Color Average (with Black and White Filter) -> Applied to Ground Coffee Beans

☐ Ground Coffee Size Analysis: threshold change to get particle lines

```
GaussianBlur(croi, croi, cv::Size(3, 3), θ, θ);
cvtColor(croi, croi, COLOR_RGB2GRAY);
threshold(croi, croi, 120, 255, THRESH_BINARY);
Laplacian(croi, dst, CV_16S, 3, 1, θ, BORDER_DEFAULT);
convertScaleAbs(dst, abs_dst);
```

GaussianBlur(croi, croi, cv::Size(3, 3), 0, 0);
cvtColor(croi, croi, COLOR_RGB2GRAY);
threshold(croi, croi, 100, 255, THRESH_BINARY);
Laplacian(croi, dst, CV_16S, 3, 1, 0, BORDER_DEFAULT);
convertScaleAbs(dst, abs_dst);

☐ Ground Coffee Size Analysis: Area Display on Contours

☐ Ground Coffee Size Analysis : Area Display on Contours

```
x = blob area data (0~1000)
```

y = data count ++; (0~1000)

[WEEK 5 : 상세 진행 상황, 문제 & 해결방안]

발생문제

해결방안

- 사용하기 어렵다.
- □ Contour 인식을 다양한 상황에서 □ 필터링을 통해 인식 정확도를 향상한다.
- -> blob 인식 한계

인식이 잘 되는 경우

인식이 잘 안 되는 경우

□ 해결방법 1 : Bilateral (contour라인은 유지하며 색 blur)

□ 해결방법 2 : Sharp image

```
<sharpened 결과>
    cvtColor(croi2, croi2, COLOR_BGR2GRAY);

Point anchor = Point (-1,-1);
Mat kernel = Mat(3,3,CV_32F);

kernel.at<float>(0,0) = -1;
kernel.at<float>(0,1) = -1;
kernel.at<float>(0,2) = -1;
kernel.at<float>(1,0) = -1;
kernel.at<float>(1,0) = -1;
kernel.at<float>(1,1) = 9;
kernel.at<float>(1,2) = -1;
kernel.at<float>(2,0) = -1;
kernel.at<float>(2,0) = -1;
kernel.at<float>(2,1) = -1;
kernel.at<float>(2,2) = -1;

filter2D(croi2, croi2, -1, kernel, anchor, 0, BORDER_DEFAULT);
imwrite("after sharpened.jpg", croi2);
```


[PJ CBM : 상세 진행 상황, 문제 & 해결방안]

발생문제

해결방안

- □ Contour 인식을 다양한 상황에서 □ DCT(Discrete Cosine Transform) 사용하기 어렵다.

blob 인식 한계

인식이 잘 되는 경우

인식이 잘 안 되는 경우

□ 해결방법 : DCT

< DCT 변환 후 이미지 >

```
< dct_out2 (dct 하고 난 결과 matrix) 의 성분 분석 >
```

```
channel num : 1
type : 5 : type 5 는 opency 문서상에 CV_32F 로 되어있다. 따라서 실수 1 채널 임을 알 수 있다.
```

아래는 매트릭스 시작부분(5x5) 값 출력 확인 정보.

```
164914, -986.93, -27611.8, 885.382, -25399.8, -342.662

1070.79, -376.439, -392.989, 749.378, -1019.16, -456.593

-29700.1, 602.148, -54508.5, -627.298, 7064.51, 325.642

62.864, 112.199, -1335.56, -595.616, 1772.05, 542.122

-23684.8, 220.209, 5651.07, -499.911, 21854.6, 616.836
```

아래는 매트릭스 끝부분 일부의 값 출력 확인 정보.

```
, -7.2127733, -0.41208896, -4.430706, 0.33321682, -0.4084633, -0.35603428, 5.1039228, 0.17 050008, 1.1738181, -2.3127103, -3.3720632, 3.7254994, -4.0751104, -2.5469992, 2.3778839, -
```

Dc 값 (dct out2.at<float>(0.0) = 163763~~ 이런식으로 나오고 나머지 멀리 떨어진 ac 값들은 위와 같은 값이 나온다.

< 125x125 ROI 코드 + (0,0)=0; >

```
dct_out2.at<float>(0,0)=0;
dct_125 = dct_out2(Range(0,125),Range(0,125));
meanStdDev(dct_125, mean, stddev);
imwrite("after dct roi.jpg", dct_125);
cout << " 125x125 : " << dct_125 << endl;
cout << " mean : " << mean << endl;
cout << " stddev :" << stddev << endl;</pre>
```


after_dct_roi.jpg

□ 해결방법 : DCT

알갱이가 클 때

알갱이가 작을 때

□ 해결방법 : DCT

mean : [-9.60]674664283038] stddev :[772.0268123370257]

mean : [-9.427824454484044] stddev :[758.5713192324557]

mean : [-9.603626961376845] stddev :[767.0692896284687] mean : [-8.402592419734717] stddev :[779.4965161821599]

mean : [-8.363238039486468] stddev :[784.1948357911308]

mean : [-8.52400558482492] stddev :[788.6245738515271] mean : [-8.51,483561628818] stddev :[787.9079488896617]

mean : [-8.783586014666199] stddev :[806.7052165413548]

mean : [-8.858097348047494] stddev :[808.5567838862721] mean : [-7.775558051560401] stddev :[748.0032626638935]

mean : [-8.318526640209436] stddev :[791.8764773190211]

mean : [-7.936445702630787] stddev :[765.1635316026013]

[프로젝트 일정]

DSP(Camera)
Sensor fix(고장 수리)
DFT, LPF
WebGL
Interrupt Priority check
Debug

6/10~7/11

Mon	Tue	Wed	Thu	Fri
10	11	12	13	14
17	18	19	20	21
24	25	26	27	28
				\Longrightarrow
1	2	3	4	5
8	9	10	11	