Übungsblatt 7

Abgabetermin: 08.06.2017, 9:20 Uhr.

Aufgabe 1 $(1+2+1 = 4 \ Punkte)$

- a) Sei (V, γ) ein euklidischer Vektorraum und sei $U \subseteq V$ ein Untervektorraum. Bestimmen Sie die adjungierte Abbildung $\pi^{\rm ad}$ der Orthogonalprojektion $\pi: V \to U$.
- b) Sei $V = \mathbb{R}[X]^{\leq 2}$ der euklidische Vektorraum der Polynome vom Grad höchstens 2 mit der Basis $\mathfrak{B} = (1, X, X^2)$ und mit dem Skalarprodukt $\gamma(f, g) = \int_0^1 f(x)g(x)dx$. Wir betrachten den Ableitungs-Operator $D: V \to V, f \to f'$. Bestimmen Sie die Darstellungsmatrix von D^{ad} bezüglich der Basis \mathfrak{B} .
- c) Sei (V, γ) ein euklidischer Vektorraum und $f: V \to V$ eine lineare Abbildung. Wir nehmen an, f ist normal, d.h. es gilt $f^{\mathrm{ad}} \circ f = f \circ f^{\mathrm{ad}}$. Zeigen Sie $V \cong \ker(f) \widehat{\oplus} \operatorname{im}(f)$. (Hinweis: Die Methoden von §25 beziehen sich auf unitäre Vektorräume. Sie dürfen zur Lösung dieser Aufgabe daher nur das Material aus §24 der Vorlesung benutzen.)

Aufgabe 2 (4 Punkte)

Die Fibonacci-Folge $(f_n)_{n\geq 1}$ ist definiert durch die Startwerte $f_1=f_2=1$ und die rekursive Vorschrift $f_n=f_{n-1}+f_{n-2}$ für $n\geq 3$. Finden Sie einen selbstadjungierten Operator φ auf $(\mathbb{R}^2,\langle\cdot,\cdot\rangle)$ so dass gilt: $\binom{f_{n+1}}{f_n}=\varphi^n(\binom{1}{0})$. Wenden Sie nun den Spektralsatz auf φ an, um eine geschlossene Form für den n-ten Term f_n zu bestimmen. (D.h. Sie sollen eine explizite Formel für f_n angeben, in der nur die Zahl n auftaucht.)

Aufgabe 3 (2+2=4 Punkte)

Führen Sie die Hauptachsentransformation für folgende reellen Matrizen durch:

$$A = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$

Bestimmen Sie auch die entsprechenden Transformationsmatrizen $T_A, T_B \in O(n)$. Skizzieren Sie weiterhin die Niveaumenge $N_A(3) = \{v \in \mathbb{R}^2 | v^t A v = 3\}$, die Orthonormalbasis (welche Sie während der Hauptachsentransformation bestimmen), sowie in einer neuen Skizze die Niveaumenge $N_{T_A^{-1}AT_A}(3) = \{v \in \mathbb{R}^2 | v^t T_A^{-1}AT_A v = 3\}$.

Aufgabe 4 $(2+2 = 4 \ Punkte)$

Sei V ein endlich-dimensionaler \mathbb{C} -Vektorraum. Es bezeichne S(V) den \mathbb{C} -Vektorraum der Sesquilinearformen auf V und $H(V) \subseteq S(V)$ die Teilmenge der hermiteschen Sesquilinearformen auf V.

- a) Zeigen Sie: H(V) ist ein \mathbb{R} -Untervektorraum von S(V), bildet jedoch keinen \mathbb{C} -Vektorraum. Bestimmen Sie $\dim_{\mathbb{R}} H(V)$. Fassen Sie außerdem S(V) als \mathbb{R} -Vektorraum auf und bestimmen Sie hierin das Komplement von H(V). Bestimmen Sie hiermit $\dim_{\mathbb{C}} S(V)$. (Gehen Sie in dieser Reihenfolge vor.)
- b) Sei $h \in S(V)$. Wir betrachten die Abbildung q(v) = h(v, v). Bestimmen Sie eine Polarisationsformel analog zu Definition 21.1.(Q2) der Vorlesung, d.h. finden Sie einen Ausdruck für h(v, w), in dem nur die Funktion q auftaucht. Folgern Sie, dass h in H(V) liegt genau dann, wenn q nur reelle Werte annimmt.