Homework 1

ITCS-6114/8114: Algorithms and Data Structures

Due: Thursday, September 9, 2021

Homeworks are due **before midnight** on Thursday, September 9. **Late homeworks will receive no credit.** Homeworks are to be done individually and will be graded on the basis of correctness, clarity, and legibility. Show the steps in your work. Each question is worth **10 points**, for a total of **50 points**.

Be sure to write your name, section, and email address on your homework submission.

Important: Please follow the academic integrity guidelines.

In short, submit your own work.

- 1. For the following, decide whether $T(n) = \Theta(f(n)), T(n) = \Omega(f(n)), T(n) = O(f(n)),$ or none of the above. Justify your answers.
 - (a) $T(n) = n^2 + 3n + 4$, $f(n) = 6n + \log n$.
 - (b) T(n) = n, $f(n) = (\log n)^{10}$.
 - (c) $T(n) = \sum_{i=1}^{n} 3^{i}$, $f(n) = 3^{n-1}$.
 - (d) $T(n) = n^{\log c}$, $f(n) = c^{\log n}$, where c > 1 is a constant.
- 2. Let A[] be an array of n distinct numbers. If index i<j and A[i] > A[j], then the pair (i, j) is called an **inversion** of A. In other words, two elements of the array are considered to form an inversion if they are "out of order".
 - (a) List the five inversions of the array <2, 3, 8, 6, 1>
 - (b) What array with elements from the set $\{1, 2, ..., n\}$ has the most inversions? How many does it have? Justify your answer.
 - (c) What is the relationship between the running time of insertion sort and the number of inversions in the input array? Justify your answer.
 - (d) Give an algorithm that counts the number of inversions in any permutation on n elements in $\Theta(n \log n)$ worst-case time.

(Hint: Consider which of the sorting algorithms may be modified to solve this problem.)

3. Given a set S of n integers and another integer x, describe an efficient algorithm that determines whether or not there exist two elements in S whose sum is exactly x. Justify the running time of your algorithm.

- 4. (a) Prove every polynomial $p(n) = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0$ with $a_k > 0$ belongs to $\Theta(n^k)$.
 - (b) Use a recursion tree to compute an asymptotic solution for the recurrence J(n) = J(n/2) + J(n/3) + n.
- 5. Give asymptotic bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers.
 - (a) $T(n) = 5T(n/2) + n^2$
 - (b) $T(n) = 3T(n/27) + n^{0.25}$
 - (c) $T(n) = 16T(n/4) + n^2 + n\log n$
 - (d) T(n) = 3T(n-1) + 1