

"Classifiers"

Under the guidance of

R & D project by

Prof. Pushpak Bhattacharyya pushpakbh@gmail.com
IIT Bombay

Aditya M Joshi adityaj@cse.iitb.ac.in IIT Bombay

Overview

Introduction to Classification

What is classification?

A machine learning task that deals with identifying the class to which an instance belongs

A classifier performs classification

Classification learning

Training phase

Learning the classifier from the available data 'Training set' (Labeled)

Testing how well the classifier performs 'Testing set'

Generating datasets

- Methods:
 - Holdout (2/3rd training, 1/3rd testing)
 - Cross validation (n fold)
 - Divide into n parts
 - Train on (n-1), test on last
 - Repeat for different combinations
 - Bootstrapping
 - Select random samples to form the training set

Evaluating classifiers

- Outcome:
 - Accuracy
 - Confusion matrix
 - If cost-sensitive, the expected cost of classification (attribute test cost + misclassification cost)

etc.

Decision Trees

Example tree

Leaf nodes : Class predictions

Example algorithms: ID3, C4.5, SPRINT, CART

Decision Tree schematic

Decision Tree Issues

How to determine the attribute for split?

Alternatives:

Information Gain

Gain (A, S) = Entropy (S) – Σ ((Sj/S)*Entropy(Sj))

Other options:

Gain ratio, etc.

Lazy learners

Lazy learners

- •'Lazy': Do not create a model of the training instances in advance
- •When an instance arrives for testing, runs the algorithm to get the class prediction
- Example, K nearest neighbour classifier(K NN classifier)
- "One is known by the company one keeps"

K-NN classifier schematic

For a test instance,

- 1) Calculate distances from training pts.
- 2) Find K-nearest neighbours (say, K = 3)
- 3) Assign class label based on majority

$$dist(X_1, X_2) = \sqrt{\sum_{i=1}^{n} (x_{1i} - x_{2i})^2}.$$

$$v' = \frac{v - min_A}{max_A - min_A},$$

K-NN classifier Issues

How to determine distances between values of categorical attributes?

Alternatives:

- 1. Boolean distance (1 if same, 0 if different)
- 2. Differential grading (e.g. weather 'drizzling' and 'rainy' are closer than 'rainy' and 'sunny')

Decision Lists

Decision Lists

 A sequence of boolean functions that lead to a result

```
f (y) = cj, if j = min { i | hi (y) = 1 } exists
0 otherwise
```


Decision List example

Decision List learning

R
$$\mathcal{R} = \{(h_i, b_i)\}_{i=1}^r$$

$$S' = S - Qk$$

training set $S = P \cup N$

$$\mathcal{H} = \{h_i(\mathbf{x})\}_{i=1}^{|\mathcal{H}|}$$

Set of candidate feature functions

For each hi,

Qi = Pi U Ni

(hi = 1)

Select hk, the feature with highest utility

else 0

 $U i = max \{ | Pi | - pn * | Ni |, |Ni | - pp * |Pi | \}$

Decision list Issues

What is the terminating condition?

1. Size of R (an upper threshold)

2. $Q_k = null$

3. S' contains examples of same class

Probabilistic classifiers

Probabilistic classifiers: NB

- Based on Bayes rule
- Naïve Bayes : Conditional independence assumption

$$P(C_i|X) = \frac{P(X|C_i) \cdot P(C_i)}{P(X)}$$

$$P(X \mid C_i) = \prod_{k=1}^{d} P(X_k \mid C_i)$$

Naïve Bayes Issues

Problems due to sparsity of data?

Problem: Probabilities for some values may be zero

Solution: Laplace smoothing

For each attribute value, update probability m / n as : (m + 1) / (n + k) where k = domain of values

Probabilistic classifiers: BBN

FH, S	<i>FH</i> , ~ <i>S</i>	$\sim FH,~S$	~FH, ~S
0.8	0.5	0.7	0.1
0.2	0.5	0.3	0.9

An added term for conditional probability between attributes:

$$P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i|Parents(Y_i))$$

BBN learning

(when network structure known)

- Input: Network topology of BBN
- Output : Calculate the entries in conditional probability table

(when network structure not known)

• ???

Learning structure of BBN

Use Naïve Bayes as a basis pattern

- Add edges as required
- Examples of algorithms: TAN, K2

Artificial Neural Networks

Artificial Neural Networks

- Based on biological concept of neurons
- Structure of a fundamental unit of ANN:

Perceptron learning algorithm

- Initialize values of weights
- Apply training instances and get output
- Update weights according to the update rule:

n: learning rate

 $w_i \leftarrow w_i + \Delta w_i$

t: target output

o: observed output

• Repeat till converges Δw_i

$$\Delta w_i = \eta(t - o)x_i$$

Can represent linearly separable functions only

Sigmoid perceptron

Basis for multilayer feedforward networks

$$\sigma(y) = \frac{1}{1 + e^{-y}}$$

$$\frac{d\sigma(y)}{dy} = \sigma(y) \cdot (1 - \sigma(y))$$

Multilayer feedforward networks

Multilayer? Feedforward?

Diagram from Han-Kamber

Backpropagation

Apply training instances as input and produce output
Update weights in the 'reverse' direction as follows:

$$\Delta w_{ii} = \eta \delta j o_i$$

Diagram from Han-Kamber

ANN Issues

Learning the structure of the network

- 1. Construct a complete network
- 2. Prune using heuristics:
 - Remove edges with weights nearly zero
 - Remove edges if the removal does not affect accuracy

Support vector machines

Support vector machines

 Basic ideas Margin "Maximum separating-margin classifier" +1 **Support vectors** Separating hyperplane : wx+b = 0

SVM training

Maximize
$$\sum_{k=1}^{R} \alpha_k - \frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_k \alpha_l Q_{kl}$$
 where $Q_{kl} = y_k y_l(\mathbf{x}_k.\mathbf{x}_l)$

Subject to these constraints:

$$0 \le \alpha_k \le C \quad \forall k \qquad \sum_{k=1}^R \alpha_k y_k = 0$$

Then define:

$$\mathbf{w} = \sum_{k=1}^{R} \alpha_k y_k \mathbf{x}_k$$

$$b = y_K (1 - \varepsilon_K) - \mathbf{x}_K \cdot \mathbf{w}_K$$

where $K = \arg \max_k \alpha_k$

Lagrangian multipliers are

ner

Dot product of xk and xl

Focussing on dot product

$$\text{Maximize } \sum_{k=1}^R \alpha_k - \frac{1}{2} \sum_{k=1}^R \sum_{l=1}^R \alpha_k \alpha_l Q_{kl} \text{ where } Q_{kl} = y_k y_l (\mathbf{\Phi}(\mathbf{x}_k).\mathbf{\Phi}(\mathbf{x}_l))$$

- For non-linear separable points,
 we plan to map them to a higher dimensional (and linearly separable) space
- The product $\Phi(\mathbf{X}_k).\Phi(\mathbf{X}_l)$ in be time-consuming. Therefore, we use kernel functions

Kernel functions

$$\text{Maximize} \sum_{k=1}^R \alpha_k - \frac{1}{2} \sum_{k=1}^R \sum_{l=1}^R \alpha_k \alpha_l Q_{kl} \text{ where } \quad Q_{kl} = y_k y_l \ k(\mathbf{x}, \mathbf{x}')$$

 Without having to know the non-linear mapping, apply kernel function, say,

$$k(\mathbf{x}, \mathbf{x}') = (\operatorname{scale} \cdot \langle \mathbf{x}, \mathbf{x}' \rangle + \operatorname{offset})^{\operatorname{degree}}$$

 Reduces the number of computations required to generate Q kl values.

Testing SVM

SVM Issues

What if n-classes are to be predicted?

Problem: SVMs deal with two-class classification

Solution: Have multiple SVMs each for one class

Combiningclassifiers

Combining Classifiers

- 'Ensemble' learning
- Use a combination of models for prediction
 - Bagging : Majority votes
 - Boosting: Attention to the 'weak' instances
- Goal: An improved combined model

Bagging

At random. May use bootstrap sampling with replacement

Boosting (AdaBoost)

The last slice

Data preprocessing

- Attribute subset selection
 - Select a subset of total attributes to reduce complexity

- Dimensionality reduction
 - Transform instances into 'smaller' instances

Attribute subset selection

 Information gain measure for attribute selection in decision trees

Stepwise forward / backward elimination of attributes

Dimensionality reduction

High dimensions : Concomplexity

Number of attributes of a data instance

Principal Component Analysis

- Computes k orthonormal vectors : Principal components
- Essentially provide a new set of axes in decreasing order of variance

Weka & Weka Demo

Weka & Weka Demo

ARFF file format

@RELATION nursery Name of the relation

- @DATA Data instances: Comma separated, each on a new line 3,less_conv,convenient,slightly_prob,recommended,spec_prior

Parts of weka

Weka demo

Key References

- Data Mining Concepts and techniques; Han and Kamber, Morgan Kaufmann publishers, 2006.
- Machine Learning; Tom Mitchell, McGraw Hill publications.
- Data Mining Practical machine learning tools and techniques; Witten and Frank, Morgan Kaufmann publishers, 2005.

end of slideshow

Extra slides 1

Difference between decision lists and decision trees:

1. Lists are functions tested sequentially (More than one attributes at a time)

Trees are attributes tested sequentially

2. Lists may not require a 'complete' coverage for values of an attribute.

All values of an attribute correspond to atleast one branch of the attribute split.

Learning structure of BBN

- K2 Algorithm :
 - Consider nodes in an order
 - For each node, calculate utility to add an edge from previous nodes to this one
- TAN :
 - Use Naïve Bayes as the baseline network
 - Add different edges to the network based on utility
- Examples of algorithms: TAN, K2

Delta rule

- Delta rule enables to converge to a best fit if points are not linearly separable
- Uses gradient descent to choose the hypothesis space

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) \ x_{id}$$

