Outline

Data-driven simulation and control

Ivan Markovsky

K.U.Leuven, ESAT-SISTA

Joint work with Paolo Rapisarda

(ロ > ◆母 > ◆臣 > ◆臣 > 臣 のへ(

Introduction

Data-driven simulation

Output matching control

Data-driven LQ tracking

LTI system representations

• Difference equation

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_1 w(t+1) = 0$$

Convolution

$$w = \Pi \operatorname{col}(u, y), \quad y(t) = \sum_{\tau = -\infty}^{t} h(\tau) u(t - \tau)$$

• Input/state/output equations

$$w = \Pi \operatorname{col}(u, y), \qquad \begin{array}{rcl} x(t+1) & = & Ax(t) + Bu(t) \\ y(t) & = & Cx(t) + Du(t) \end{array} \tag{I/S/O}$$

 $\mathcal{B}(A, B, C, D)$ — the system defined by (I/S/O) we will assume that $\Pi = I$

Introduction

Data-driven simulation

Output matching control

Data-driven LQ tracking

Introduction

ata-driven simulation

Output matching contr

Data-driven LO tracking

Behavior of a system = solution set of an equation

We identify the system with its behavior \mathcal{B} ,

$$\mathscr{B} := \{ w \in (\mathbb{R}^{w})^{\mathbb{N}} \mid \text{representation eqns holds} \}, e.g.$$

$$\mathscr{B}(A, B, C, D) = \{ w \in (\mathbb{R}^{w})^{\mathbb{N}} \mid \exists x, \text{ such that (I/S/O) holds} \}$$

w is the number of variables, $\mathbb{N} := \{1, 2, ...\}$ is the time axis

Restriction of the behavior to the interval $\{1, 2, ... t\}$

$$\mathscr{B}_{t} := \{ w_{p} \in (\mathbb{R}^{w})^{t} \mid \exists w_{f} \text{ such that } (w_{p}, w_{f}) \in \mathscr{B} \}$$

 $\frac{\log(\mathscr{B})}{\log(\mathscr{B})} - \log \operatorname{of} \mathscr{B} \quad \text{(observability index of I/S/O repr.)}$ $\frac{\log(\mathscr{B})}{\log(\mathscr{B})} - \operatorname{order} \operatorname{of} \mathscr{B}$

Notation for Hankel matrices

Given a signal w = (w(1), ..., w(T)) and $t \le T$, define

$$\mathcal{H}_{t}(w) := \begin{bmatrix} w(1) & w(2) & w(3) & \cdots & w(T-t+1) \\ w(2) & w(3) & w(4) & \cdots & w(T-t+2) \\ w(3) & w(4) & w(5) & \cdots & w(T-t+3) \\ \vdots & \vdots & \vdots & & \vdots \\ w(t) & w(t+1) & w(t+2) & \cdots & w(T) \end{bmatrix}$$

block-Hankel matrix with *t* block-rows, composed of *w*

Introduction

Data-driven simulation

Output matching control

Data-driven LQ trackir

Notes:

- \mathscr{B} is specified implicitly by $w_{\rm d}$,
- the ini. cond. x_{ini} is specified implicitly by w_{ini} .

Algorithm 1: data-driven simulation, using I/S/O repr.

- 1. identification $w_d \mapsto (A, B, C, D)$
- 2. observer $(w_{\text{ini}}, (A, B, C, D)) \mapsto x_{\text{ini}}$
- 3. classical simulation $(u, x_{ini}, (A, B, C, D)) \mapsto y$

Can we find y without deriving an explicit representation of \mathcal{B} ?

The simulation problem

Classical simulation problem: Given

Data-driven simulation

- system $\mathscr{B} := \mathscr{B}(A, B, C, D)$,
- input $u \in (\mathbb{R}^m)^t$, and
- initial conditions $x_{\text{ini}} \in \mathbb{R}^{n}$,

find the response y of \mathcal{B} to u and ini. cond. x_{ini} .

Data-driven simulation problem: Given

- trajectory $w_d \in (\mathbb{R}^w)^T$ of \mathscr{B} ,
- input $u \in (\mathbb{R}^m)^t$, and
- initial trajectory $w_{\text{ini}} \in (\mathbb{R}^{\mathsf{w}})^{T_{\text{ini}}}$, $w_{\text{ini}} \in \mathscr{B}_{T_{\text{ini}}}$,

find the response y of \mathscr{B} to u, such that $(w_{\text{ini}},(u,y)) \in \mathscr{B}_{T_{\text{ini}}+t}$.

◆□▶◆□▶◆■▶◆■▶ ● か9へで

Introduction

Data-driven simulation

Output matching control

Data-driven LQ tracking

Basic idea

Assuming that w_d is a trajectory of \mathcal{B} (exact data),

lin. comb. of the columns of $\mathcal{H}_t(w_d)$ are trajectories of \mathcal{B} , *i.e.*,

for all g, $\mathscr{H}_t(w_d)g \in \mathscr{B}_t$

 \implies computing the response of \mathscr{B} to given input and initial conditions from data w_d , requires choosing a suitable g

Under what conditions is every trajectory generated that way?

The fundamental lemma

 u_d is persistently exciting of order L if $\mathcal{H}_L(u_d)$ is of full row rank.

Fundamental Lemma: Assume that

- the LTI system \mathcal{B} is controllable,
- u_d is persistently exciting of order L+ order(\mathscr{B}), and
- $w_d := (u_d, y_d)$ is a trajectory of \mathscr{B} , *i.e.*, $w_d \in \mathscr{B}_T$.

Then

image
$$(\mathcal{H}_L(w_d)) = \mathcal{B}_L$$
.

ntroduction

Data-driven simulation

Output matching contro

Data-driven LQ trackin

Define

$$U := \mathscr{H}_{T_{ini}+t}(u_{d}), \qquad \mathsf{Y} := \mathscr{H}_{T_{ini}+t}(\mathsf{y}_{d})$$

and the partitionings

$$U =: \begin{bmatrix} U_p \\ U_f \end{bmatrix}, \qquad Y =: \begin{bmatrix} Y_p \\ Y_f \end{bmatrix}.$$

Algorithm 2: data-driven simulation

1. compute the least norm solution of

$$egin{bmatrix} U_{
m p} \ Y_{
m p} \ U_{
m f} \end{bmatrix} g = egin{bmatrix} u_{
m ini} \ y_{
m ini} \ u \end{bmatrix}.$$

2. compute $y := Y_f g$.

Construction of responses from data

Problem: Find y, such that $(w_{\text{ini}}, (u, y)) \in \mathcal{B}$, where w_{ini}, u are given, and \mathcal{B} is implicitly defined by w_{d} .

Under the conditions of the FL, there is *g*, such that

$$\mathscr{H}_{T_{\mathrm{ini}}+t}(w_{\mathrm{d}})g=(w_{\mathrm{ini}},(u,y)).$$

The eqns with RHS y, define y, for given g. The others restrict g.

Generic data-driven simulation algorithm:

- 1. compute any solution g of the equations with RHS $w_{\rm ini}$, u
- 2. substitute *g* in the equations for *y*

Introduction

Data-driven simulation

Output matching conti

Data-driven LQ tracking

Special case u = 0: free response

Allows to compute an observability matrix \mathcal{O} of \mathcal{B} from data, by finding $n \ge \operatorname{order}(\mathcal{B})$ linearly indep. free responses.

Let 1_{max} be an upper bound for the lag of \mathscr{B} and take $T_{ini} = 1_{max}$.

Algorithm 3: compute an observability matrix @

1. compute the least norm solution of

$$egin{bmatrix} U_{
m p} \ Y_{
m p} \ U_{
m f} \end{bmatrix} G = egin{bmatrix} U_{
m p} \ Y_{
m p} \ 0 \end{bmatrix}$$

- 2. compute $Y := Y_f G$
- 3. compute a rank revealing factorization $Y = \mathcal{O}X_{\text{ini}}$

Special case $w_{\text{ini}} = 0$: zero initial cond. response

Let h be the impulse response of \mathcal{B} , and define

$$\mathcal{F}_{t}(h) := \begin{bmatrix} h(0) & & & & \\ h(1) & h(0) & & & \\ h(2) & h(1) & h(0) & & & \\ \vdots & \ddots & \ddots & \ddots & \\ h(t-1) & \cdots & \cdots & h(1) & h(0) \end{bmatrix}$$

For any $w = \operatorname{col}(u, y) \in \mathscr{B}_t$,

$$y = \mathscr{O}x_{\text{ini}} + \mathscr{T}_t(h)u$$

We can compute a basis for $\mathscr{B}_{0,t} := \operatorname{image} \left(\mathscr{T}_t(h) \right)$ from data, by finding t_m lin. indep. zero initial cond. responses.

Introduction

Data-driven simulation

Output matching control

Data-driven LQ trackii

Special case $w_{\text{ini}} = 0$, $u = I\delta$: impulse response

With the same construction we can find the first t Markov parameters of \mathcal{B} , which is a system identification method.

Algorithm 5: compute the impulse response

1. compute the least norm solution of

$$\begin{bmatrix} U_{\mathsf{p}} \\ \mathsf{Y}_{\mathsf{p}} \\ U_{\mathsf{f}} \end{bmatrix} \mathsf{G} = \begin{bmatrix} 0 \\ 0 \\ \mathsf{col}(\mathit{I}_{\mathsf{m}}, 0) \end{bmatrix}$$

2. compute $h := Y_f G$

Algorithm 4: compute a basis of $\mathcal{B}_{0,t}$

1. compute the least norm solution of

$$egin{bmatrix} egin{pmatrix} m{U}_{\mathrm{p}} \ m{Y}_{\mathrm{p}} \ m{U}_{\mathrm{f}} \end{bmatrix} m{G} = egin{bmatrix} m{0} \ m{0} \ m{\mathscr{H}}_{t,t\mathtt{m}}(u_{\mathrm{d}}) \end{bmatrix}$$

2. compute $Y_0 := Y_fG$

Then image(Y_0) = image($\mathscr{T}_t(h)$) = $\mathscr{B}_{0,t}$.

Introduction

Data-driven simulation

Output matching control

Data-driven LO tracking

Simulation example $w_d \mapsto h$

Compared algorithms

- Algorithm 5 (block computation)
- iterative version of Algorithm 5
- impulse from the Identification Toolbox of MATLAB

Approximation error $\mathbf{e} = ||\mathbf{h} - \hat{\mathbf{h}}||_{\mathbf{F}}$ and execution time

method	i l	error, e	time, sec.
Algorithm 5		10^{-14}	0.293
iterative algo	rithm	10^{-14}	0.066
impulse		0.059	0.584

"Classical" output matching problem: Given

- system $\mathscr{B} = \mathscr{B}(A, B, C, D)$,
- initial condition $x_{\text{ini}} \in \mathbb{R}^{n}$, and
- reference response $y_r \in (\mathbb{R}^p)^{T_r}$

find an input $u_f \in (\mathbb{R}^m)^{T_r}$, such that the response of \mathscr{B} to u_f and ini. cond. x_{ini} is y_r .

Data-driven output matching problem: Given

- trajectory $w_d \in (\mathbb{R}^w)^T$ of \mathscr{B} ,
- initial trajectory $w_{\text{ini}} \in (\mathbb{R}^{\text{w}})^{T_{\text{ini}}}$, $w_{\text{ini}} \in \mathscr{B}_{T_{\text{ini}}}$, and
- reference response $y_r \in (\mathbb{R}^p)^{T_r}$

find an input $u_f \in (\mathbb{R}^m)^{T_r}$, such that $(w_{\text{ini}}, (u_f, y_r)) \in \mathscr{B}_{T_{\text{ini}} + T_r}$.

Output matching control

Simulation example

2nd order, m = 1 input, p = 1 output random trajectory of \mathscr{B} with T = 200 samples

Output matching = "inverse simulation"

Note: simulation can be viewed as an "input matching" problem.

Algorithm 6: data-driven output matching

1. compute the least norm solution of

$$egin{bmatrix} egin{pmatrix} m{U_{
m p}} \ m{Y_{
m p}} \ m{Y_{
m f}} \end{bmatrix} g = egin{bmatrix} m{u_{
m ini}} \ m{y_{
m ini}} \ m{y_{
m r}} \end{bmatrix}$$

2. compute $u_f := U_f q$

An arbitrary input is allowed.

Output matching control

Structure of the output matching controller

In the example, \mathscr{B} is non-minimum phase $\implies \mathscr{B}^{-1}$ unstable.

More general tracking problem:

follow a reference traj. w_r by trading-off errors in both u and y

Linear quadratic tracking problem

Given

- a trajectory $w_d \in (\mathbb{R}^w)^T$ of \mathscr{B} ,
- an initial trajectory $w_{\text{ini}} \in (\mathbb{R}^{\text{w}})^{T_{\text{ini}}}, w_{\text{ini}} \in \mathscr{B}_{T_{\text{ini}}}$,
- a reference trajectory $w_r \in (\mathbb{R}^w)^{T_r}$, and
- a positive definite matrix $\Phi \in \mathbb{R}^{w \times w}$.

find a trajectory of ${\mathscr B}$ that is optimal with respect to the criterion

$$J(W_{\mathrm{r}},W) := (W_{\mathrm{r}} - W)^{\top} \Phi(W_{\mathrm{r}} - W)$$

and has as a prefix the initial trajectory w_{ini} , i.e., find

$$\textit{w}^*_f := \arg\min_{\textit{w}_f} \textit{J}(\textit{w}_r, \textit{w}_f) \quad \text{subject to} \quad (\textit{w}_{ini}, \textit{w}_f) \in \mathscr{B}_{\textit{T}_{ini} + \textit{T}_f}.$$

Data-driven LQ tracking

Observer design

Let h be the impulse response of \mathcal{B} . We have,

$$y_{\text{ini}} = \mathscr{O}(A, C)x(1) + \mathscr{T}_{T_{\text{ini}}}(h)u_{\text{ini}}, \tag{1}$$

where

$$\mathscr{O}(A,C) := \operatorname{col}(C,CA,\ldots,CA^{T_{\operatorname{ini}}-1})$$

defines a system of equations for the initial state x(1).

$$w_{\text{ini}} \in \mathscr{B}_{\mathcal{T}_{\text{ini}}} \implies \text{existence of solution} \ (A, B, C, D) \text{ minimal} \implies \text{uniqueness}$$

Solution using an I/S/O representation

The classical but indirect solution is:

Algorithm 7: data-driven LQ tracking, using I/S/O repr.

1.
$$W_d \xrightarrow{\text{Identification}} (A, B, C, D)$$

2.
$$(W_{\text{ini}}, (A, B, C, D)) \xrightarrow{\text{Observer (1,2)}} X_{\text{ini}}$$

3.
$$(\Phi, w_r, x_{ini}, (A, B, C, D)) \xrightarrow{\text{Synthesis } (3,4,5)} w_f^*$$

We aim to find algorithms that do not derive a repr. of \mathcal{B} .

4□ → 4回 → 4 = → 4 = → 9 < 0</p>

Data-driven LQ tracking

Regulator synthesis

LQ tracking problem:

$$\min_{x,u,y} (w_r - \operatorname{col}(u,y))^\top \Phi(w_r - \operatorname{col}(u,y))$$
subject to
$$x(t+1) = Ax(t) + Bu(t), \quad x(1) = x_{\text{ini}}$$

$$y(t) = Cx(t) + Du(t), \quad \text{for } t = 1, \dots, T_r.$$

The solution for the $w_r = 0$ case (regulation problem) is

$$x^{*}(t+1) = (A - BL_{t})x^{*}(t), \quad x(1) = x_{ini}$$

$$w_{f}^{*}(t) = \begin{bmatrix} -L_{t} \\ C - DL_{t} \end{bmatrix} x^{*}(t)$$
(3)

a state feedback.

$$\Phi =: \begin{bmatrix} \Phi_u & \Phi_{uy} \\ \Phi_{yu} & \Phi_y \end{bmatrix}.$$

The optimal input is a state feedback with time-varying gain

$$L_{t} := \left(B^{\top} S_{t+1} B + \Phi_{u} + \Phi_{uy} D + D^{\top} \Phi_{uy}^{\top} + D^{\top} \Phi_{y} D\right)^{-1} \times \left(B^{\top} S_{t+1} A + \Phi_{uy} C + D^{\top} \Phi_{y} C\right) \quad (4)$$

where S is given by the Riccati difference equation

$$S_{t} = A^{\top} S_{t+1} A + C^{\top} \Phi_{y} C - \left(B^{\top} S_{t+1} A + \Phi_{uy} C + D^{\top} \Phi_{y} C \right)^{\top}$$

$$\times \left(B^{\top} S_{t+1} B + \Phi_{u} + \Phi_{uy} D + D^{\top} \Phi_{uy}^{\top} + D^{\top} \Phi_{y} D \right)^{-1}$$

$$\times \left(B^{\top} S_{t+1} A + \Phi_{uy} C + D^{\top} \Phi_{y} C \right), \qquad S_{T_{r}} = 0. \quad (5)$$

Introduction

Data-driven simulation

Output matching control

Data-driven LQ tracking

With $\widetilde{h} := \operatorname{col}(I\delta, h)$,

$$\textit{w}_{\text{f}} := \Big(\mathsf{col} \, \big(\textit{u}_{\text{f}}(\texttt{1}), \textit{y}_{\text{f}}(\texttt{1}) \big), \ldots, \mathsf{col} \, \big(\textit{u}_{\text{f}}(\textit{T}_{\text{r}}), \textit{y}_{\text{f}}(\textit{T}_{\text{r}}) \big) \Big) = \mathscr{T}_{\textit{T}_{\text{r}}}(\widetilde{\textit{h}}) \textit{u}_{\text{f}}$$

Then

$$w_{\rm f} = \mathscr{T}_{T_{\rm r}}(\widetilde{h})u_{\rm f} + w_{\rm f,0}, \quad \text{where} \quad w_{\rm f,0} := \operatorname{col}(0, y_{\rm f,0})$$

The tracking problem becomes

$$\min_{u_{\rm f}} \left(w_{\rm r} - w_{\rm f,0} - \mathscr{T}_{T_{\rm r}}(\widetilde{h}) \right)^{\top} \Phi \left(w_{\rm r} - w_{\rm f,0} - \mathscr{T}_{T_{\rm r}}(\widetilde{h}) \right)$$

and the solution is

$$u_{\mathbf{f}}^* = \left(\mathscr{T}_{T_{\mathbf{r}}}^{\top}(\widetilde{h})\Phi\mathscr{T}_{T_{\mathbf{r}}}(\widetilde{h})\right)^{-1}\mathscr{T}_{T_{\mathbf{r}}}^{\top}(\widetilde{h})\Phi(w_{\mathbf{r}} - w_{\mathbf{f},1})$$

$$y_{\mathbf{f}}^* = \mathscr{T}_{T_{\mathbf{r}}}(h)u_{\mathbf{f}}^* + y_{\mathbf{f},1}$$
(6)

In

Data-driven simulation

Output matching control

Solution using the impulse response representation

LQ tracking problem:

$$\min_{W_f} (w_r - w_f)^\top \Phi(w_r - w_f) \quad \text{subject to} \quad (w_{\text{ini}}, w_f) \in \mathscr{B}_{\mathcal{T}_{\text{ini}} + \mathcal{T}_f}$$

Let $y_{f,0}$ be the free response of \mathscr{B} initiated by w_{ini} .

$$y_{\mathrm{f}} = y_{\mathrm{f},0} + \mathscr{T}_{T_{\mathrm{r}}}(h)u_{\mathrm{f}}$$

so that the tracking problem becomes

$$\min_{U_{\mathrm{f}}} (w_{\mathrm{r}} - w_{\mathrm{f}})^{ op} \Phi(w_{\mathrm{r}} - w_{\mathrm{f}})$$
 subject to $y_{\mathrm{f}} = \mathscr{T}_{\mathcal{T}_{\mathrm{r}}}(h)u_{\mathrm{f}} + y_{\mathrm{f},0}$

a weighted least squares problem.

Introduction

Data-driven simulation

Output matching contr

Data-driven LQ tracking

Ingredients of the solution:

- the free response y_{f.0} and
- the impulse response h.

We can compute them directly from w_d .

Algorithm 8: data-driven LQ tracking, using impulse resp. repr.

- 1. $(w_{\text{ini}}, w_{\text{d}}, T_{\text{r}}) \xrightarrow{\text{Algorithm 2}} y_{\text{f},0}$
- 2. $(w_d, T_r) \xrightarrow{\text{Algorithm 6}} h$
- 3. $(\Phi, W_r, W_{f,0}, h) \xrightarrow{(6)} W_f^*$

troduction

Data-driven simulation

Output matching control

Data-driven LQ tracking

Data-driven solution

Define the zero initial conditions subbehavior of ${\mathscr{B}}$

$$\mathscr{B}_{0,\mathcal{T}_r} := \left\{ w \in (\mathbb{R}^w)^{\mathcal{T}_r} \mid (\underbrace{0,\ldots,0}_{\mathsf{lag}(\mathscr{B})}, w) \in \mathscr{B}_{\mathsf{lag}(\mathscr{B})+\mathcal{T}_r} \right\}$$

Theorem: Let $W_0 \in \mathbb{R}^{T_r w \times \bullet}$ be a matrix, such that

$$\text{image}\left(\textit{W}_{0}\right)=\mathscr{B}_{0,\textit{T}_{r}}$$

Then the LQ optimal trajectory is

$$W_{\rm f}^* = W_0 (W_0^\top \Phi W_0)^+ W_0^\top \Phi (W_{\rm r} - W_{\rm f,0}) + W_{\rm f,0}$$
 (7)

where $w_{f,0}$ is the free response of \mathscr{B} , caused by w_{ini} .

ntroduction

Data-driven simulation

Output matching control

Data-driven LQ tracking

Algorithm 9: data-driven LQ tracking

- 1. $(w_{ini}, w_d, T_r) \xrightarrow{\text{Algorithm 2}} y_{f,0}$
- 2. $(W_d, T_r) \xrightarrow{\text{Algorithm 4}} W_0$
- 3. $(\Phi, w_r, y_{f,0}, W_0) \xrightarrow{(7)} w_f^*$

Proof

Any zero initial conditions trajectory $w = \text{col}(u, y) \in (\mathbb{R}^w)^{T_r}$ is of the form $w = \mathscr{T}_T(\widetilde{h})u$. Therefore,

$$\mathscr{B}_{0,T_{r}} = \operatorname{image}\left(\mathscr{T}_{T_{r}}(\widetilde{h})\right) = \operatorname{image}\left(W_{0}\right)$$

Consider the space $\mathscr{W}=(\mathbb{R}^{\mathrm{w}})^{T_{\mathrm{r}}}$ with inner product defined by $\langle w_1,w_2\rangle=w_1^\top\Phi w_2$. The projector on $\mathscr{B}_{0,T_{\mathrm{r}}}$ in \mathscr{W} is

$$\mathscr{T}_{T_{\mathbf{r}}}(\widetilde{h})\big(\mathscr{T}_{T_{\mathbf{r}}}^{\top}(\widetilde{h})\Phi\mathscr{T}_{T_{\mathbf{r}}}(\widetilde{h})\big)^{-1}\mathscr{T}_{T_{\mathbf{r}}}^{\top}(\widetilde{h})\Phi = W_0\big(W_0^{\top}\Phi W_0\big)^+W_0^{\top}\Phi$$

Then the data-driven solution (7) follows from the solution (6), using the impulse response representation.

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ りへの

Introduction

Data-driven simulati

Output matching contr

Data-driven LQ tracking

Simulation example

Aim: illustrate numerically the equivalence of the three methods.

 \mathscr{B} — 2nd order, m = 1 input, p = 1 output (the same system as in the output matching example)

 $v_{\rm d}$ — random trajectory of \mathscr{B} with T=200 samples

Φ — identity (assign equal weights to the variables)

Experiment 1: data-driven regulation

$$w_{\rm r} = 0$$
, $T_{\rm r} = 30$, and $w_{\rm ini} = (1,1)$

Experiment 2: data-driven step tracking

$$u_{\rm r} = 0$$
, $y_{\rm r}(t) = \begin{cases} 0, & \text{for } t = 1, 2 \dots, 30 \\ 1, & \text{for } t = 31, 52, \dots, 60 \end{cases}$, $w_{\rm ini} = (1, 1)$

ntroduction

Data-driven simulation

utput matching control

Data-driven LQ tracking

Result for Experiment 1

◆ロ > ◆ 個 > ◆ 重 > ◆ 重 > り へ で

ntroduction

Data-driven simulation

Output matching control

Data-driven LQ tracking

Conclusions

- Given $w_d \in \mathcal{B}_T$, we can compute feedforward LQ tracking control without deriving a repr. of \mathcal{B} . (data-driven control)
- For doing this we need
 - \$\mathcal{B}\$ to be controllable,
 - $u_{\rm d}$ to be persistently exciting of sufficient order.
- The construction of the optimal control is based on
 - free response $y_{f,0}$ of \mathcal{B} under w_{ini} , and
 - zero ini. cond. trajectories W_0 (a basis for \mathcal{B}_{0,T_t}).

Result for Experiment 2

4ロト 4回ト 4 三ト 4 三 ト 三 り 4 ○

Introduction

Data-driven simulati

Output matching contro

Data-driven LQ tracking

Perspectives for future work

- Find data-driven solutions to other control problems
- Derivation of a feedback controller directly from data
- Recursive algorithms
- Dealing with perturbed data

Final goal:

approximate recursive algorithms for data-driven control.