Normes et Sécurité Chapitre 2 : Les attaques

sources: lasecwww.epfl.ch securit.free.fr www.ssi.gouv.fr

. . .

Introduction

Introduction

Vocabulaire :

- Pare-feu (coupe-feu, garde-barrière ou firewall)
 - système pour protéger un ordinateur ou un réseau d'ordinateurs des intrusions provenant d'un réseau tiers (notamment internet)

Bastion

- Machines sécurisés du réseau accessibles de l'extérieur supportant les services comme la messagerie, HTTP, le FTP public, etc...
- DMZ : zone démilitarisé
 - zone isolée hébergeant les applications accessible de l'extérieur
 - « zone tampon » entre le réseau à protéger et le réseau hostile.
- IDS
 - Système de détection d'intrusion

Introduction

Objectifs & méthodes

Méthodes & exemples

Plan

- I-Attaques sur l'information
- II-Attaques réseaux
 - faiblesses des protocoles réseaux
 - cartographie du réseaux, identification des systèmes, écoute du trafic
 - sauter le firewall, commutateur, DoS
 - faiblesses d'authentification(ARP, IP, mot de passe)
 - faiblesse d'implémentation, bogues (TCP syn, bogues IP/TCP, OS)
 - faiblesse de configuration (OS, mots de passe)
- III-Attaques indirectes
 - Mails
 - Virus, vers, cheval et autres animaux

Attaques sur l'information

- Collecte d'information (Footprinting)
 - l'attaquant doit se renseigner sur la cible
 - découvrir ou se trouvent les machines de la cible
 - Un première source d'information sont les registres de noms
 - enregistrement du domaine --> une adresse IP
 - bases de données whois de l'Internet
 - Les IP de l'Internet attribuées par cinq organismes
 - Pour l'Europe : RIPE (Réseaux IP Européens)
 - informations sont publiques :
 - les IP allouées, noms, adresses et numéro de téléphone des responsables

Attaques sur l'information

- Social Engineering
 - technique pour extirper des informations à des personnes
 - ne nécessite pas de logiciel
 - repose sur la force de persuasion
 - 4 grandes méthodes :
 - par téléphone
 - par lettre
 - par Internet
 - par contact direct

Attaques sur l'information : Social Engineering

- Par téléphone
 - technique la plus facile
 - Méthode : avoir le renseignement le plus rapidement possible
 - un bon attaquant
 - aura préparé son personnage et son discours
 - sera sûr de lui
 - sera très persuasif dans le timbre de sa voix
 - En cas de coup de fil d'une personne inconnue
 - > ne donnez aucun renseignement

Attaques sur l'information : Social Engineering

- Par lettre
 - lettre très professionnelle
 - papier à lettre avec :
 - logo,
 - adresse, téléphone, fax, email...
 - l'attaquant utilisera très certainement une boîte postale pour l'adresse de sa société fictive

Attaques sur l'information : Social Engineering

- Par internet
 - idem au téléphone
 - l'attaquant se fera passer pour un administrateur système, un responsable informatique ou un ingénieur système
- Par contact direct
 - plus dur à faire
 - le paraître compte beaucoup :
 - costard / cravate, attaché-case, agenda rempli, documents divers, carte de visite, badge...
 - risques important pour l'attaquant
 - il est déterminé à obtenir les renseignements souhaités
 - → il sera donc très persuasif et préparé

Plan

- I-Attaques sur l'information
- II-Attaques réseaux
 - faiblesses des protocoles réseaux
 - cartographie du réseaux, identification des systèmes, écoute du trafic
 - sauter le firewall, commutateur, DoS
 - faiblesses d'authentification(ARP, IP, mot de passe)
 - faiblesse d'implémentation, bogues (TCP syn, bogues IP/TCP, OS)
 - faiblesse de configuration (OS, mots de passe)
- III-Attaques indirectes
 - Mails
 - Virus, vers, cheval et autres animaux

Attaques réseaux

Attaques réseaux : Trouver une cible

- Ping : une machine répond si elle est active
- Protocole ICMP
 - Internet Control Message Protocol
 - RFC 950
- Généralement bloqué
- Permet de connaître les machines d'un réseau

Repérer la topologie du réseau

- Outil: traceroute
 - Première étape d'une future attaque d'un réseaux
 - Bloquer par les firewall
 - Cartographie du réseau

http://candle.ctit.utwente.nl/wp5/tel-sys/exercises/traceroute/traceroute.html

- Nom : Scanning
 - Identifié un système : type d'OS, services TCP/UDP
 - Dresser les moyens de pénétration
 - Différent type de scan : cf doc
- Outils : nmap (généraliste), sscan (spécialisé)

- Nom : Scanning
- Différent type de balayage
 - scan ouvert : connexion TCP complète
 - scan semi-ouvert : semi-connexion avec drapeau SYN
 - scan furtif : semi-connexion avec drapeau SYN|ACK
 - scan par contrôle d'erreur : ICMP echo
 - autres types de scan : UDP...

- [root@nowhere.net /root]# nmap 192.168.1.1
- Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
- Interesting ports on (192.168.1.1) :

(The 1544 ports scanned but not shown below are in state :

closed)

Port State Service

21/tcp open ftp

- 53/tcp open domain
- 80/tcp open http
- 110/tcp open pop-3
- 111/tcp open sunrpc
- 113/tcp open auth
- 631/tcp open cups
- 845/tcp open unknown
- 901/tcp open samba-swat
- 10000/tcp open snet-sensor-mgmt

- Scan TCP ouvert
 - Etablissement d'une connexion TCP, puis fermeture
 - Facile à détecter
- SYN : synchroniser les numéros de séquence
- ACK : le numéro d'acquittement du paquet est significatif
- RST : réinitialiser la connexion

Connexion OK

le service existe

- Scan TCP ouvert
 - Avantages :
 - rapide, précis, ne requière pas de privilèges particuliers
 - Inconvénients :
 - facilement détectable et enregistrable [NdT : logged]

Connexion OK =

le service existe

- Scan TCP semi-ouvert :
 - Connextion TCP ne terminant pas la connexion
 - Envoie de RST au lieu de ACK (RST : réinitialiser la connexion)

Connexion OK

- Scan TCP semi-ouvert :
 - Avantages :
 - rapide, fiable, évite les IDS primaires, évite l'accord TCP en trois étapes
 - Inconvénients :
 - requière le privilège root, règles empêchant beaucoup d'essais de scan SYN

Connexion OK

- Scan TCP furtif
 - Différent type utilisant les flags ACK, FIN, RST, NULL...
 - Difficilement détectable
 - Moins précis

Connexion OK

- Scan TCP furtif
 - Avantages :
 - rapide, évite les parefeux/IDS basiques, évite l'accord TCP en trois étapes
 - Inconvénients :

moins solide (fausses alarmes)

Connexion OK

- Scan en mode distribué
 - Utiliser N machines, centralisé les informations, partage des info
 - Script kiddies
- il existe d'autre type de scan
 - Exemple :
 - Découvrir si une machine est un firewall
 - Découvrir le type d'OS
 - cf nmap

Écouter le trafic réseau

- Nom : Sniffing
 - But
 - Généralement utiliser pour capturer les mots de passe
 - Principe
 - Intercepter les données passant sur un segment du réseau
 - Besoin d'un accès administrateur

Attaques réseaux : faiblesse des protocole

- Exemple : fragmentation des paquets IP
 - But : attaque pour passer les firewalls
 - Attaque : Tiny fragments
 - Fragmenter sur deux paquets une demande de connexion TCP
 - 1er paquet = les 8 octets TCP (port source + destination + # de synchronisation)
 - 2ème paquet = le reste avec les flag SYN = 1 et ACK = 0
 - Règle de filtrage appliquée sur le premier paquet
 - Actuellement : les firewalls regardent tous les fragments

- Attaque par déni de service (DoS)
 - But : rendre indisponible un service, un système, un réseau
 - Utilise :
 - Une faiblesse d'implémentation / de protocole
 - Un bogue
 - Première attaque en 1998 et 2000
 - Principe général : Attaque par inondation
 - Inonder le réseau/une machine avec des paquets --> saturation
 - ou envoyer des attaques sur les faiblesses OS / protocoles
 - But :
 - occuper toute la bande passante,
 - la victime ne peut plus fonctionner correctement

- Exemple simple : ping flooding
 - Consiste à envoyer un flux maximal de ping vers une cible
 - Nécessité d'avoir une plus grande bande passante que la cible
 - Conséquences :
 - Ralentissement système
 - Blocage système
 - Crash système
 - Comment s'en protéger ?
 - Utilisation d'un firewall

- Exemple 2 : Attaque par smurf-and-fraggle
 - Principe
 - Idem au flooding
 - Utilisation d'un réseau tiers
 - Ping utilisant des adresses de diffusion avec une fausse adresse source
 - Utilisation d'une faiblesse de configuration des routeurs
 - Le pare-feu ne devrait pas accepter la requête ping
 - Adresses de diffusion doivent être filtrer sur le pare-feu

- Exemple 2 : Attaque par smurf-and-fraggle
 - smurf --> TCP ; fraggle --> UDP

Attaques réseaux : Déni de Service Distribué

- Attaque par déni de service distribué (DDoS)
 - Utilisation de N machines esclaves pour saturer la victime
 - Hiérarchie de machines
 - Exemple
 - TFN (Tribe Flood Network), Stacheidrath (TFN + cryptage)
 - Trinoo
 - TFN2K (TFN + port au hasard)

Attaques réseaux : Faiblesse d'authentification

- Mécanisme d'authentification dans les protocoles
 - La source est-elle bien l'auteur de l'information?
- Des protocoles n'ont pas de mécanisme d'authentification fiable
- Exemple de d'attaques :
 - Spoofing : ARP, IP, DNS
 - Technique consistant à utiliser l'adresse d'une machine afin d'en usurper l'identité.
 - Permet de récupérer l'accès à des informations en se faisant passer pour la machine dont on « spoofe »l'adresse IP
 - Principe de « man-in-the-middle »
 - vol de session TCP (session hijacking)

Attaques réseaux : Faiblesse d'authentification

- Attaque ARP spoofing
 - Protocole ARP (Adress Resolution Protocol)
 - résolution adresse MAC (niveau 2 du modèle OSI)
 - Exemple d'adresse MAC : 00-AA-00-3F-89-4A
 - Chaque entité maintient une table de correspondance entre IP et MAC

Attaques réseaux : Faiblesse d'authentification

- Attaque ARP spoofing
 - S'appuie sur le protocole ARP (Adress Resolution Protocol)
 - Requête ARP

MAC src:02608C9ACB59

MAC dest 00A024594BDF

ARP_RARP ARP: Reply, Target IP: 126.102.102.102

Target Hdwr Addr: 00A024594BDF

- Principe
 - répondre à la place de la cible avec son adresse IP
 - cible = une passerelle, une machine

 Dérouter le trafic vers soit en se faisant passer pour la passerelle

- Attaque IP spoofing
 - Dans certains cas, l'adresse source IP est utilisée pour autoriser une communication
 - Certains programmes (rlogin, rsh) peuvent autoriser certaines sources à se connecter sans authentification.
 - Il est facile de forger l'adresse source d'un paquet IP et d'usurper la confiance faite à cette source
 - la réponse à un message forgé est envoyée à l'adresse usurpée

- Les applications à pirater (rlogin, rsh, ..)
 - TCP utilise des numéros de séquence pour suivre les données envoyées et reçues
 - un numéro de séquence initial aléatoire (ISN) est choisi pour chaque nouvelle connexion

- Attaque
 - A envoie ses paquets avec une adresse source C
 - Il doit deviner l'ISN que B va proposer à C
 - C, qui n'a rien demandé à personne, envoie un reset à B
 - Le pirate doit empêcher C de répondre

- Génération de l'ISN TCP
 - Le standard (RFC 793) indique qu'il faut incrémenter l'ISN de 1 toutes les 4 microsecondes
 - En réalité, l'incrément peut (ou pouvait) facilement être deviné
 - Maintenant : ISN --> génération aléatoire
 - Procédé du pirate :
 - Ouvrir des connexions réelles (par ex SMTP/POP) → obtenir des ISN et des échantillons d'incréments
 - Lancer la connexion forgée en utilisant le dernier ISN plus un incrément déduit des échantillons
 - Lancer une multitude de connexions forgées avec des incréments variables

- Attaque Man-In-The-Middle
 - Insérer la machine pirate entre les machines A et B
 - Différents types
 - Relais transparent
 - La machine pirate transforme les données à la volée
 - Rester transparent, comporte comme un routeur, A et B reste en relation
 - Sniffing + modification des données

- Relais applicatif
 - La machine pirate l'échange entre les machine A et B
 - A discute avec le pirate et le pirate discute avec B

- Hijacking
 - La machine pirate utilise la session engagée entre A et B
 - Permet de rediriger un flux TCP en outrepassant les authentifications
 - Phase 1 : sniffing, déterminer qu'une authentification à eu lieu
 - Phase 2 : IP spoofing avec désynchronisation des ISN
 - Phase 3 : ARP spoofing

- Faiblesse d'implémentation ou bogues
 - Attaques sur les systèmes d'exploitation
 - Utilisation
 - failles dans les protocoles
 - failles dans les programmes : exploit

- Failles dans les protocoles
 - Même principe que les attaques pour passer les pare-feu

- Faille dans les programmes : exploit
 - Les logiciels contiennent des défauts
 - Les défauts peuvent être exploités par des pirates
 - Un « exploit » est la méthode, le script, qui permet d'exploiter le défaut
 - Les exploits sur les serveurs sont les plus dangereux :
 - Peuvent être fait à distance
 - Les serveurs ont souvent des privilèges élevés

- Failles conceptuelles
 - Exemple classique : directory traversal
 - Les documents d'un serveur web sont accessibles depuis une racine.
 - Si le serveur ne vérifie pas les URL, on peut accéder à d'autres fichiers

Failles techniques

- Classique : le buffer overflow
 - Si un programme ne vérifie pas la quantité de données qu'il reçoit, il risque d'écraser une zone mémoire qui contient des variables, du code ou des adresses de saut
 - En connaissant bien l'architecture de la machine on peut fournir du code machine qui sera exécuté

- Rappel: la pile
 - La pile sert à stocker des informations momentanément
 - On retire les informations dans l'ordre inverse des dépôts
 - C' est une pile!
 - Opérations effectuées sur la pile lors d'un appel de procédure:
 - 1. Les paramètres de la procédure sont déposés sur la pile.
 - 2. L'adresse de retour est déposée sur la pile.
 - 3. La valeur actuelle du pointeur de trame est déposée sur la pile.
 - 4. Une zone de mémoire pouvant contenir toutes les variables locales de la procédure est réservée sur la pile.
 - 5. Le début de cette zone est stockée dans le pointeur de trame.

- Exemple
- void f(int a, int b) {
 - char buffer[10];
 - strcpy(buffer,"hello world.");
- }
- void main() {
 - f(1,2);
- }

base de la pile

Remplissage de la pile

sommet de la pile

bas de la mémoire

- sp: pointeur de pile,
- fp: pointeur de trame,
- sfp: pointeur de trame précédant sauvegardé

Attaques réseaux

```
haut de la
                                                                         base de la
                                           mémoire
                                                                         pile

    Exemple (suite)

void f(int a, int b) {
                                                             Ъ
  char buffer[10];
                                                             z.
  strcpy(buffer,"hello world.");
                                                                          Remplissage
                                                            ret
                                                            sfp
                                                                          de la pile
                                Remplissage
void main() {
                                                           buffer
                                buffer
  • f(1,2);
                                                                         sommet
                                                                         de la pile
                                           bas de la
                                           mémoire
```

Il est difficile de deviner l'avancement de la pile et de choisir « ret »

Attaques réseaux

- Exemple
 - Le serveur web MS-IIS avait un buffer overflow sur les URL(1999/2001)
 - NetMeeting avait un buffer overflow sur l'adresse à appeler
 - libjpeg

•

- Autre Exemples
 - L'attaque +++ATHZero
 - Vise certains modems compatibles Hayes.
 - Lorsque ce type de modem reçoit la commande +++ATH0, il risque de se déconnecter.
 - L'attaque Cisco ® 7161
 - Se connecter au port 7161 d'un routeur Cisco ® et d'envoyer un retour chariot.
 - Le routeur peut alors planter
 - A vérifier...

Attaques réseaux : Faiblesse de configuration

- Exploitation d'erreurs de configuration du système
 - OS des machines
 - OS des éléments du réseau (routeurs, switchs, hub...)
- Politique de mots de passe trop laxiste
 - Mots de passe appartenant à un dictionnaire
 - Dictionnaire spécialisé

Plan

- I-Attaques sur l'information
- II-Attaques réseaux
 - faiblesses des protocoles réseaux
 - cartographie du réseaux, identification des systèmes, écoute du trafic
 - sauter le firewall, commutateur, DoS
 - faiblesses d'authentification(ARP, IP, mot de passe)
 - faiblesse d'implémentation, bogues (TCP syn, bogues IP/TCP, OS)
 - faiblesse de configuration (OS, mots de passe)
- III-Attaques indirectes
 - Mails
 - Virus, vers, cheval et autres animaux

Attaques indirectes: mail

- Envoi d'un email : protocole SMTP
 - le message est envoyé au serveur de courrier électronique chargé du transport (nommé MTA pour Mail Transport Agent), jusqu'au MTA du destinataire
 - les MTA communiquent entreeux grâce au protocole SMTP
 - Le serveur MTA du destinataire délivre alors le courrier au serveur de courrier électronique entrant (nommé MDA pour Mail Delivery Agent)
 - Le MDA stocke le courrier en attendant que l'utilisateur vienne le relever (protocole POP ou IMAP)

- Email forgé
 - Le protocole SMTP (Simple Mail Transfer Protocol) RFC 821, 1982
 - SMTP n'utilise aucune authentification
 - il est facile de forger des messages : utilisez telnet
 - SMTP utilise des connexions TCP sur le port 25
 - Quelques simples commandes comme :
 - HELO (annonce d'un serveur)
 - Mail From: (définition expéditeur)
 - Rcpt To: (définition destinataire)
 - Data: (définition du contenu)

Attaquae indirectoe: Attaqua nar mail

```
Connection closed by foreign host.
```

- Principe
 - Le message est déposé dans un serveur SMTP
 - Le serveur va le déposer dans le serveur plus proche de la destination
 - Interrogation du DNS → donne l'adresse du serveur SMTP responsable pour le domaine destination
 - Le serveur SMTP du domaine cible va déposé le massage dans la boite du destinataire
- Chaque serveur ajoute un en-tête au message
- Le serveur qui reçoit le message initialement note :
 - Le commentaire de la commande hello
 - L'adresse IP de l'émetteur du message
 - L'heure de réception
- Il est souvent possible de retrouver l'auteur du message

SPAM

- E-mail non-sollicité, non-ciblé, à très grand tirage
- L'adresse source est toujours falsifiée (représailles)
- Message déposé dans + de 100 serveurs SMTP avec une liste de + 10k destinations
- Message envoyé à chaque destinataire
- · Problèmes :
 - Les serveurs abusés sont surchargés (souvent plus de 24h)
 - Les disques se remplissent de logs et de messages (risque de blocage)
 - Le mail de l'admin est inondée de messages d'erreurs (adresses invalides)
 - L'ISP peut menacer de couper la ligne
 - Inclusion dans listes noires

- Pourquoi le SPAM est il possible ?
 - Relais ouverts
 - Permet à des tiers appartenant à des réseau quelconques d'envoyer des courriers électronique
 - Utilisés par les spammeurs, permet de masquer l'origine des messages
 - Pour qu'un serveur SMTP ne fasse pas de relais pour des tiers (open relay) il faut configurer deux règles:
 - L'expéditeur ou le destinataire doit être local
 - Seules les machines locales ont le droit de spécifier des expéditeurs locaux.
 - Les spammers essaient de passer entre les gouttes en utilisant des formes spéciales d'adresses (!<>&)

- Le Mail Bombing
 - Envoyer un nombre faramineux d'emails (plusieurs milliers) à un ou des destinataires.
 - L'objectif étant de :
 - Saturer le serveur de mails
 - Saturer la bande passante du serveur et du ou des destinataires,
 - Rendre impossible aux destinataires de continuer à utiliser l'adresse électronique.
 - Logiciels permettant de réaliser le mail bombing.

- Virus, Ver, Trojan et autres animals
 - Type
 - Virus: programme qui se propage à l'aide d'autres programmes
 - Ver: programme autonome
 - Cheval de Troie: Programme utile qui contient un programme malveillant (ou ce dernier par abus de langage)
 - · exemples : sendmail, openssh, tcpdump
 - Backdoor: accès caché à un ordinateur
 - Effet des Virus
 - Perte de données
 - Perte de temps de travail
 - Perte d'image de marque
 - Perte de fonctionnalité (e-mail ou systèmes bloqués)
 - Nouvelles fonctionnalités (serveur de spam!)
 - Perte de confidentialité (c.f. SirCam, BadTrans, Bugbear)

- Evolution des Virus
 - Epoque Classique:
 - Propagation passive par échange de disquettes
 - Propagation lente d'ou besoin d'efficacité
 - 1er virus connu: 1981 sur Apple II ?
 - 1986, le premier virus informatique voit le jour au Pakistan ?
 - Furtivité
 - Simple:
 - le virus compresse le fichier original, crée un fichier infecté de même taille
 - Sophistiqué:
 - Le virus modifie le système de manière à ne plus être visible
 - Il modifie les routines de lecture de fichiers pour qu'elles ne révèlent pas le virus
 - Exemples:
 - Brain: infecte le boot sector mais garde une copie originale. Il redirige les accès au boot sector vers la copie
 - Frodo: modifie les routines d'accès aux fichiers, chckdsk détruit les fichiers!

Polymorphisme

- Le virus se modifie à chaque infection de manière à être méconnaissable
- Une partie du virus peut être chiffrée avec une clé différente à chaque fois
- Le reste doit être modifié tout en gardant la même fonctionnalité (insertion d'opérations nulles, remplacements équivalents, différents algorithmes)
- Exemple: Tequilla (1991, Suisse)

Epoque Moderne

- Les virus modernes utilisent Internet pour se propager activement
- Il peuvent infecter la planète en quelques heures
- Souvent simples et faciles à détecter
- Efficaces, car ils se propagent plus vite que les anti-virus peuvent être mis à jour
- Active-Mail
 - Message qui s'exécute tout seul lors de la visualisation, sans besoin de cliquer. Possible grâce à des défauts dans les logiciels de messagerie

- Exemples
 - Melissa
 - Loveletter, aka « I love you »
 - Message avec attachement en script VBS
 - Double extension de fichier pour faire croire que c'est du texte: iloveyou.txt.vbs
 - Envoie une copie de lui-même à tous les membres du carnet d'adresses
 - Se propage aussi par IRC en modifiant les fichiers le d'initialisation (mIRC)
 - Modifie la page de démarrage IE
 - Remplace les fichiers son et image par lui-même

Sircam

- Sircam est un virus qui se propage par email et par les disques partagés
- Pour se propager par e-mail il infecte un fichier local et l'envoie comme attachement à toutes les adresses e-mail qu'il trouve sur la machine.
- perte de confidentialité
- BugBear (septembre 2002)
 - Se propage comme active-mail en utilisant des failles de MS-IE pour exécuter automatiquement un attachement
 - Infecte les fichiers accessibles sur des partages réseau
 - Installe un backdoor (port 36794)
 - Arrête tous les antivirus actifs sur la cible
 - Envoie une copie des mots de passe enregistrés localement à une vingtaine de bals
 - Installe un espion de clavier

- SQL Slammer, janvier 2003
 - Il s'agit d'un ver qui profite d'un buffer overflow pour infecter des serveurs SQL et leur faire infecter d'autres serveurs
 - Le ver arrive dans un paquet UDP de 376 octets sur le port 1434
 - Il contient un petit programme qui génère des adresses IP aléatoires (à l'aide de l'horloge du système)
 - Une copie du paquet est envoyée à chaque adresse générée
 - Comme c'est de l'UDP le ver peut envoyer les paquets à plein débit, sans avoir à négocier une connexion TCP
 - C'est une des raisons qui rend ce ver si virulent

- Virus spéciaux:
 - Le Canular (Hoax)
 - Décrit une menace catastrophique
 - Contient aucune référence à des sources d'infos fiables (mais des réf. floues)
 - Demande à être envoyé à toutes les personnes que vous connaissez
 - Joke : Programme amusant que vous allez envoyer à tous vos amis
 - Publicité virale (idem)
 - Dégâts
 - Canular: perte de temps (ou plus, cf mtx hotline)
 - Joke: Vecteur idéal pour virus. Donne de mauvaises habitudes aux utilisateurs
 - Pub: Consommation de bande passante

Backdoors

- Programmes qui permettent de gérer des ordinateurs à distance, à l'insu de son utilisateur
- Installés par des chevaux de Troie et souvent classifiés comme tels
- Caractéristiques
 - Taille: plus il est petit, plus il est facile à installer
 - Fonctionnalités: téléchargement d'autres programmes, espionnage réseau, écran, clavier.
 - Mode de communication: Attente sur un port TCP ou UDP prédéfini.
 - Mieux: port aléatoire communiqué par e-mail ou IRC.
 - Encore mieux: communication par ICMP, chiffrement.
- Exemple : BackOrifice, NetBus, SubSeven