Aprendizado de Máquina e Reconhecimento de Padrões 2021.2

Regularization

Strongly based on videos from StatsQuest

Prof. Dr. Samuel Martins (Samuka)
samuel.martins@ifsp.edu.br

Suppose we have collected data from mice.

Suppose we have collected data from mice.

Since it looks relatively linear, we will use Linear Regression to model the relationship between weight (x_1) and size (y).

$$\hat{\mathbf{y}} = \mathbf{h}_{\theta}(\mathbf{x}) = \mathbf{\theta}_0 + \mathbf{\theta}_1 \mathbf{x}_1$$

Suppose we have collected data from mice.

Since it looks relatively linear, we will use Linear Regression to model the relationship between weight (x_1) and size (y).

$$\hat{\mathbf{y}} = \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{\theta}_0 + \mathbf{\theta}_1 \mathbf{x}_1$$

Our **Linear Regression** model exactly overlaps the two training instances.

Our Linear Regression model exactly overlaps the two training instances.

Sum of training errors/residuals
(e.g., MSE) = **o**

Our Linear Regression model exactly overlaps the two training instances.

Sum of training errors/residuals

(very) low bias

Our **Linear Regression** model exactly overlaps the two training instances.

Sum of training errors/residuals

possible indicate of

overfitting

Now, consider we have just a few training instances

Sum of validation errors/residuals

Now, consider we have just a few training instances (e.g., two training instances). $\mathbf{y} \, \mathbf{\dot{1}}$

size

Sum of validation errors/residuals

training instances

weight

validation instances

 $\mathbf{x_1}$

In other words, we could introduce a small amount of bias into how the model is fit to the training data.

In other words, we could introduce a small amount of bias into how the model is fit to the training data.

Consequently, we would **decrease** the **variance** thus **avoiding overfitting.**

In other words, we could introduce a small amount of bias into how the model is fit to the training data.

Consequently, we would **decrease** the **variance** thus **avoiding overfitting.**

Bias-Variance trade-off

- Increasing ↑ variance reduce ↓ bias, and vice versa.
- Reducing ↓ variance increase ↑ bias, and vice versa.

In other words, we could introduce a small amount of bias into how the model is fit to the training data.

Consequently, we would **decrease** the **variance** thus **avoiding overfitting.**

Bias-Variance trade-off

- Increasing ↑ variance reduce ↓ bias, and vice versa.
- Reducing ↓ variance increase ↑ bias, and vice versa.

In other words, we could introduce a small amount of bias into how the model is fit to the training data.

Consequently, we would **decrease** the **variance** thus **avoiding overfitting.**

Bias-Variance trade-off

- Increasing ↑ variance reduce ↓ bias, and vice versa.
- Reducing ↓ variance increase ↑ bias, and vice versa.

In other words, we could introduce a small amount of bias into how the model is fit to the training data.

Consequently, we would **decrease** the **variance**

thus avoiding overfitting.

Bias-Variance trade-off

- Increasing ↑ variance reduce ↓ bias,
 and vice versa.
- Reducing \(\psi \) variance increase \(\psi \) bias,
 and vice versa.

We get this

Regularization in ML

- Technique that prevents the model from overfitting by adding extra information to it.
- In Regression, it is a form of regression that shrinks the coefficient estimates towards zero.

Common regularization for Regression:

- Ridge regression
- Lasso Regression
- Elastic Net

Ridge Regression

size weight

Linear Regression

n features
$$\hat{\mathbf{y}} = \mathbf{h}_{\theta}(\mathbf{x}) = \mathbf{\theta}^{T} \cdot \mathbf{x}$$
 for the case $\theta_{0} + \theta_{1}\mathbf{x}_{1} + \theta_{2}\mathbf{x}_{2} + \dots + \theta_{n}\mathbf{x}_{n}$ for the case $\theta_{0} + \theta_{1}\mathbf{x}_{1}$

$$J(\theta) = MSE(\mathbf{X}, \mathbf{h}_{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (\hat{\mathbf{y}}^{(i)} - \mathbf{y}^{(i)})^2$$

size weight

Ridge Regression (L2 Regularization)

$$\hat{\mathbf{y}} = \mathbf{h}_{\theta}(\mathbf{x}) = \underbrace{\theta^T \cdot \mathbf{x}}_{\text{for the case}}$$

$$\theta_0 + \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_n \mathbf{x}_n$$

$$\theta_0 + \theta_1 \mathbf{x}_1$$

size weight

Ridge Regression (L2 Regularization)

n features
$$\hat{\mathbf{y}} = \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^{T} \cdot \mathbf{x}$$
 for the case $\theta_{0} + \theta_{1}\mathbf{x}_{1} + \theta_{2}\mathbf{x}_{2} + \dots + \theta_{n}\mathbf{x}_{n}$ for the case $\theta_{0} + \theta_{1}\mathbf{x}_{1}$

$$J(\theta) = MSE(\mathbf{X}, \mathbf{h}_{\theta}) + \alpha \sum_{i=1}^{n} \theta^{2}$$

$$\mathbf{regularization \, term}$$

$$\mathbf{penalty}$$

Ridge Regression (L2 Regularization)

$$\hat{\mathbf{y}} = \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^{T} \cdot \mathbf{x} \quad \text{for the case}$$

$$\theta_{0} + \theta_{1}\mathbf{x}_{1} + \theta_{2}\mathbf{x}_{2} + \dots + \theta_{n}\mathbf{x}_{n} \quad \boldsymbol{\theta}_{0} + \theta_{1}\mathbf{x}_{1}$$

Goal: Find θ that **minimizes** the cost function $J(\theta)$

The intercept
$$\theta_0$$
 is not regularized.

The intercept
$$\theta_0$$
 is not regularized.
$$J(\theta) = \text{MSE}(\mathbf{X}, \mathbf{h}_{\theta}) + \alpha \sum_{i=1}^{n} \theta^2$$
 for the case $\alpha(\theta_1^2)$

regularization term penalty

Ridge Regression (L2 Regularization)

$$\hat{\mathbf{y}} = \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^{T} \cdot \mathbf{x} \quad \text{for the case}$$

$$\theta_{0} + \theta_{1}\mathbf{x}_{1} + \theta_{2}\mathbf{x}_{2} + \dots + \theta_{n}\mathbf{x}_{n} \quad \boldsymbol{\theta}_{0} + \theta_{1}\mathbf{x}_{1}$$

Ridge Regression (L2 Regularization)

$$\hat{\mathbf{y}} = \mathbf{h}_{\theta}(\mathbf{x}) = \mathbf{\theta}^{T} \cdot \mathbf{x}$$
 for the case
$$\theta_{0} + \theta_{1}\mathbf{x}_{1} + \theta_{2}\mathbf{x}_{2} + \dots + \theta_{n}\mathbf{x}_{n}$$
 for the case
$$\theta_{0} + \theta_{1}\mathbf{x}_{1} + \theta_{2}\mathbf{x}_{2} + \dots + \theta_{n}\mathbf{x}_{n}$$

Goal: Find θ that **minimizes** the cost function $J(\theta)$

The intercept
$$\theta_0$$
 is not regularized.
$$J(\theta) = \text{MSE}(\mathbf{X}, \mathbf{h}_{\theta}) + \alpha \sum_{i=1}^{n} \theta^2$$
 for the case $\alpha(\theta_1^2)$

It determines how severe that penalty is.

regularization term penalty

This forces the learning algorithm to

not only fit the data but also keep the model weights as small as possible.

Ridge Regression (L2 Regularization)

Goal: Find θ that **minimizes** the cost function $J(\theta)$

weight

The intercept
$$\theta_0$$
 is not regularized.
$$J(\theta) = \text{MSE}(\mathbf{X}, \mathbf{h}_{\theta}) + \alpha \sum_{i=1}^{n} \theta^2$$
 for the case $\alpha(\theta_1^2)$

It determines how severe that penalty is. regularization term penalty

This forces the learning algorithm to

not only fit the data but also keep the model weights as small as possible.

We should scale the data before

performing Regularization, as it is

sensitive to the feature scale.

By adding a small amount of bias during model training, we get less variance.

Ridge Regression (L2 Regularization)

n features
$$\hat{\mathbf{y}} = \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \cdot \mathbf{x}$$
 for the case $\theta_0 + \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_n \mathbf{x}_n$ $\theta_0 + \theta_1 \mathbf{x}_1$

Goal: Find θ that **minimizes** the cost function $J(\theta)$

weight

training instances

validation instances

The intercept θ_0 is not regularized.

It determines how severe that penalty is.

regularization term penalty

This forces the learning algorithm to not only fit the data but also keep the model weights as small as possible.

We should scale the data before

sensitive to the feature scale.

Impact of the α factor

When the slope of the line (parameter θ_1) is steep (high), then the prediction for Size (dependent variable y) is very sensitive to relatively small changes in Weight (independent variable x_1).

Linear Regression

Linear Regression

Linear Regression

The Ridge Regression Penalty resulted in a line with a smaller slope.

The predictions made with the Ridge

Regression model are less sensitive to changes in Weight (independent variable

x₁) are than the Linear Regression model.

$$J(\theta) = MSE(\mathbf{X}, \mathbf{h}_{\theta}) + \alpha \sum_{i=1}^{n} \theta^{2}$$

TO BE CONTINUED....

Aprendizado de Máquina e Reconhecimento de Padrões 2021.2

Regularization

Prof. Dr. Samuel Martins (Samuka)

samuel.martins@ifsp.edu.br

