ENGENHARIA DE SOFTWARE INTRODUÇÃO

Luís Morgado

2016

ENGENHARIA DE SOFTWARE

- Desenvolvimento de Software como uma actividade de engenharia
 - Sistemático
 - Quantificável
- Desenvolvimento, operação e manutenção de software
 - Complexidade
 - Mudança
 - Dependência crítica

SOFTWARE E COMPLEXIDADE

SOFTWARE E COMPLEXIDADE

COMPLEXIDADE DE SOFTWARE

EXEMPLO: ARQUITECTURAS DE JOGOS

EVOLUÇÃO EXPONENCIAL

IBM Real-Time Computer Complex - NASA Manned Spacecraft Center Década de 1960

EXEMPLO: INDÚSTRIA AUTOMÓVEL

SPECTRUM

This Car Runs on Code

By Robert N. Charette

IMAGE: DAIMLER

The avionics system in the F-22 Raptor, the current U.S. Air Force frontline jet fighter, consists of about 1.7 million lines of software code. The F-35 Joint Strike Fighter, scheduled to become operational in 2010, will require about 5.7 million lines of code to operate its onboard systems. And Boeing's new 787 Dreamliner, scheduled to be delivered to customers in 2010, requires about 6.5 million lines of software code to operate its avionics and onboard support systems.

These are impressive amounts of software, yet if you bought a premium-class automobile recently, "it probably contains close to 100 million lines of software code," says Manfred Broy, a professor of informatics at Technical University, Munich, and a leading expert on software in cars. All that software executes on 70 to 100 microprocessor-based electronic control units (ECUs) networked throughout the body of your car.

LEI DE MOORE

MUDANÇA RÁPIDA

Tempo de difusão da tecnologia (50 milhões de utilizadores)

COMPLEXIDADE

Grau de dificuldade de previsão das propriedades de um sistema dadas as propriedades das partes individuais [Weaver, 1948]

- Relacionada com a informação que é necessária para a caracterização de um sistema
- Um sistema é tanto mais complexo quanto mais informação for necessária para a sua descrição
- Reflecte-se no esforço necessário para geração da organização (ordem) do sistema

O PROBLEMA DA COMPLEXIDADE

COMPLEXIDADE ESTRUTURAL

- UM PROBLEMA DE INTERAÇÃO
 - De partes do sistema
 - De elementos de informação
 - De elementos das equipas de desenvolvimento
- Um sistema com duas vezes mais partes é muito mais do que duas vezes mais complexo

EXPLOSÃO COMBINATÓRIA

O PROBLEMA DA COMPLEXIDADE

Variação da probabilidade de correcção total em função do número de partes

COMPLEXIDADE E ORGANIZAÇÃO□

TIPOS DE COMPLEXIDADE

COMPLEXIDADE **DESORGANIZADA**

- resulta do número e heterogeneidade das partes de um sistema
- as partes podem interactuar entre si, mas a interacção é irregular
- as características globais do sistema podem ser inferidas com base em métodos estatísticos

COMPLEXIDADE ORGANIZADA

- resulta dos padrões de inter-relacionamento entre as partes
- as interacções entre partes obedecem a padrões correlacionáveis no espaço e no tempo
- ORDEM, ORGANIZAÇÃO
 - Com um propósito (finalidade)

DINÂMICA DE EVOLUÇÃO

• **ENTROPIA**

- Medida do grau de dispersão relativa que existe num sistema fechado num dado instante de tempo
- Diferentes formalizações consoante o contexto de aplicação (e.g. Termodinâmica, Teoria da Informação)
- Formalização proposta por Boltzmann:

$$S = k \log(W)$$

k – Constante de Boltzmann

W – Multiplicidade dos graus de liberdade de um sistema

SISTEMA

- Agregado de partes relacionadas entre si com uma função específica
- **ESTADO** (MACRO)
 - Configuração global (macro) resultante das partes e
 relações entre partes de um sistema
- MICRO-ESTADO
 - Configuração específica (micro) das partes de um sistema
- MULTIPLICIDADE de um estado
 - Número de micro-estados admissíveis do estado

- Exemplo
 - Conjunto de dados

ESTADO (macro)	MICRO-ESTADOS (2 dados)	
2	1+10	
3	1+2, 2+1	
4	1+3, 2+2, 3+1	
5	1+4, 2+3, 3+2, 4+1	
6	1+5, 2+4, 3+3, 4+2, 5+1	
7	1+6, 2+5, 3+4, 4+3, 5+2, 6+1	
8	2+6, 3+5, 4+4, 5+3, 6+2	
9	3+6, 4+5, 5+4, 6+3	
10	4+6, 5+5, 6+4	
11	5+6, 6+5	
12	6+6	

ESTADO (macro)	MULTIPLICIDADE W	Prob. Ocorrência <i>P</i> (s)
2	1	2,8%
ENTROPIA	2	5,6%
4	ultiplicidade dos estad	8.5%
	na, indicando a tendênc na assumir estados de	11,1%
máxima mul		13,9%
7	6	16,7%
8	5	13,9%
9	4	11,1%
10	3	8,3%
11	2	5,6%
12	1	2,8%

FORÇAS CAUSAIS ENTRÓPICAS

2º LEI DA TERMODINÂMICA

 Num processo espontâneo a alteração total de entropia num sistema e no seu ambiente é positiva:

$$\Delta S_{\text{universo}} = \Delta S_{\text{sistema}} + \Delta S_{\text{ambiente}} \ge 0$$

- Num sistema fechado a entropia apenas pode manter-se ou aumentar
- A acção de um sistema é inerentemente geradora de entropia

SISTEMA FÍSICO

Formação de ordem interior (matriz organizadora / auto-organização)

SISTEMA LÓGICO

Organização, estrutura, conhecimento

Informação

Remoção de defeitos, ...

ESFORÇO

- Desenvolvimento
- Manutenção
- Evolução

Low Information Content High Compressibility Orderly

Baixa flexibilidade Baixa autonomia High Information Content Low Compressibility Random

> Perda de coerência Perda de função

ARQUITECTURA DE SOFTWARE

- MÉTRICAS
- PRINCÍPIOS
- PADRÕES

[Booch, 2004]

COMPLEXIDADE

- Redução
- Controlo

MÉTRICAS DE ARQUITECTURA

Nível coerência funcional de um subsistema/módulo (até que ponto esse módulo realiza uma única função)

• **ACOPLAMENTO**

Grau de interdependência entre subsistemas

• SIMPLICIDADE

Nível de facilidade de compreensão/comunicação da arquitectura

ADAPTABILIDADE

 Nível de facilidade de alteração da arquitectura para incorporação de novos requisitos ou de alterações nos requisitos previamente definidos

ACOPLAMENTO

REDUÇÃO DO NÍVEL DE ACOPLAMENTO

- Maior facilidade de desenvolvimento, instalação, manutenção e expansão
- Melhor escalabilidade, devido à possibilidade de distribuição e replicação de módulos que prestem serviços, sem que isso tenha um impacto significativo nos clientes desses subsistemas/módulos
- Maior tolerância a falhas, logo maior robustez, uma vez que a falha de um subsistema/módulo tem um impacto restrito

TIPOS DE ACOPLAMENTO

COESÃO

Nível de coesão dos módulos:

BAIXO

ALTO

COESÃO

NÍVEL COERÊNCIA FUNCIONAL DE UM SUBSISTEMA

(até que ponto esse subsistema realiza uma única função)

NÍVEL DE COESÃO

- Um nível de coesão baixo leva a que, em caso de necessidade de alteração de um subsistema, o número de módulos afectados seja elevado
- Se o nível de coesão for elevado, o número de módulos afectados será minimizado
- Um módulo com um nível de coesão baixo é mais complexo, logo mais difícil de conceber e de testar

PRINCÍPIOS DE ARQUITECTURA

- MODULARIDADE
 - DECOMPOSIÇÃO
 - ENCAPSULAMENTO

• ABSTRACÇÃO □

COMPLEXIDADE

MODULARIDADE

- DECOMPOSIÇÃO
 - De um sistema em partes coesas
 - Para sistematizar interacções
 - Para lidar com a explosão combinatória
 - FACTORIZAÇÃO
 - Eliminação de redundância
 - Garantia de consistência
- ENCAPSULAMENTO
 - Isolamento dos detalhes internos das partes de um sistema em relação ao exterior
 - Para reduzir dependências (interacções)
 - Relacionar estrutura e função no contexto de uma parte
 - Acesso exclusivo através das interfaces disponibilizadas
 - INTERFACES
 - Contractos funcionais para interação com o exterior

FACTORIZAÇÃO

REDUÇÃO DE REDUNDÂNCIA

MECANISMOS DE FACTORIZAÇÃO

HERANÇA

- Nível de acoplamento alto
- B **é** A

DELEGAÇÃO

- Nível de acoplamento baixo
- B utiliza A
- Agregação de partes
- Acoplamento pode variar dinamicamente

B utiliza A

ABSTRACÇÃO

FERRAMENTA BASE PARA LIDAR COM A COMPLEXIDADE

ABSTRACÇÃO

CONTROLO DA COMPLEXIDADE

- Abstracção como ferramenta essencial para lidar com a complexidade
- Obtenção e sistematização progressiva de conhecimento
- MODELO

MODELOS EM ENGENHARIA

O PROBLEMA DOS MODELOS

- A realidade é muito mais rica que qualquer abstracção!
- "... the good thing about bubbles and arrows, as opposed to programs, is that they never crash." [Meyer, 1997]

NECESSIDADE DE LIGAÇÃO EFICAZ ENTRE MODELOS E REALIZAÇÃO

tamas de comunicação

Discrepâncias entre modelo e realização Falhas de operação

LINGUAGENS DE MODELAÇÃO

DESCRIÇÃO DO SISTEMA A DIFERENTES NÍVEIS DE ABSTRACÇÃO

MODELAÇÃO DE UM SISTEMA

PERSPECTIVAS DE MODELAÇÃO

ESTRUTURA DE UM SISTEMA

ESPAÇO PARTES DO SISTEMA RELAÇÕES ENTRE PARTES

SUPORTE DA FUNÇÃO

DINÂMICA DE UM SISTEMA

FUNÇÃO

TRANSFORMAÇÃO DINÂMICA

PROCESSO DE DESENVOLVIMENTO

PROCESSO DE DESENVOLVIMENTO

PROCESSO DE DESENVOLVIMENTO

BIBLIOGRAFIA

[Pressman, 2003]

R. Pressman, Software Engineering: a Practitioner's Approach, McGraw-Hill, 2003.

[Booch et al., 1998]

G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Addison Wesley, 1998.

[Miles & Hamilton, 2006]

R. Miles, K. Hamilton, Learning UML 2.0, O'Reilly, 2006.

[Eriksson et al., 2004]

H. Eriksson, M. Penker, B. Lyons, D. Fado, UML 2 Toolkit, Wiley, 2004.

[Douglass, 2009]

B. Douglass, Real-Time Agility: The Harmony/ESW Method for Real-Time and Embedded Systems Development, Addison-Wesley, 2009.