

IEEE Video and Image Processing Cup 2021

Privacy Preserving In-Bed Human Pose Estimation

Team NFP-Undercover

Department of Electronic and Telecommunication Engineering,

University of Moratuwa, Sri Lanka.

Team Members:

Jathurshan Pradeepkumar, Udith Haputhanthri, Mohamed Afham, Mithunjha Anandakumar

Graduate Member: Ashwin De Silva

Supervisor: Dr. Chamira Edussooriya

Task

LWIR Imaging Modality

RGB Imaging Modality

Human Pose Estimation

Robust Human Pose Estimation

Non-Contact

Unlabeled & Covered

Shuangjun Liu and Sarah Ostadabbas, "Seeing under the cover: A physics guided learning approach for in-bed pose estimation," 22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI2019), Shenzhen, China. arXiv preprint arXiv:1907.02161, 2019.

Task

Training Dataset

Uncovered Labeled

Covered Unlabeled

Validation Dataset

Covered & Labeled

Test Dataset

Covered

Our Contribution

Algorithm: Overview

Data

Two-fold Data Augmentation for Cross-Domain Discrepancy Reduction

Augmentation 1: CycAug (Training)

Augmentation 1: CycAug (Training)

Augmentation 1: CycAug (Training)

$$Loss = Adversarial\ Loss + (\lambda \times Cycle\ Consistency\ Loss)$$

$$More\ Realistic \qquad Unpaired\ Translation$$

$$L_{GAN}(G, D_y, X_{uncover}, Y_{cover}) + L_{GAN}(F_{o}P_{wdrawyc} X_{uncover}) + L_{GAN}(F_{o}P_{wdra$$

Augmentation 1: CycAug (Inferencing)

Uncovered LWIR Image

Generator

Generated Covered LWIR Image

Augmentation 1: CycAug (Inferencing)

Uncovered LWIR Image

Generator for Thin Cover

Generator for Thick Cover

Generated Thin Covered LWIR Image

Generated Thick Covered LWIR Image

Augmentation 2: ExtremeAug

Augmentation 2: ExtremeAug

Supervised Learning: Pose Estimation

Supervised Learning: Pose Estimation

Knowledge Distillation

Knowledge Distillation

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. *arXiv preprint arXiv:1503.02531*, 2015. Kullback S, Leibler RA On information and sufficiency. Ann Math Stat 22:79–86

Method	pckAUC	pck@0.2	pck@0.5	pckAUC - hospital	pckAUC - home
Simple Baseline [1]	5.96	3.21	12.41	7.48	4.95
Source (Uncover) data only [2]	21.78	15.59	39.52	21.55	21.93
Uncover data + CycAug	46.42	40.22	72.44	46.57	46.32
Uncover data + CycAug + ExtremeAug	47.16	40.46	73.38	47.48	46.95
Uncover data + CycAug + ExtremeAug + Knowledge Distillation	49.8	43.65	76.13	50.62	49.25

^[1] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking. In ECCV, pages 472–487, 2018.

^[2] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour- glass networks for human pose estimation. In ECCV, pages 483–499, 2016

Method	pckAUC	pck@0.2	pck@0.5	pckAUC - hospital	pckAUC - home
Simple Baseline [1]	5.96	3.21	12.41	7.48	4.95
Source (Uncover) data only [2]	21.78	15.59	39.52	21.55	21.93
Uncover data + CycAug	46.42	40.22	72.44	46.57	46.32
Uncover data + CycAug + ExtremeAug	47.16	40.46	73.38	47.48	46.95
Uncover data + CycAug + ExtremeAug + Knowledge Distillation	49.8	43.65	76.13	50.62	49.25

^[1] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking. In ECCV, pages 472–487, 2018.

^[2] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour- glass networks for human pose estimation. In ECCV, pages 483–499, 2016

Method	pckAUC	pck@0.2	pck@0.5	pckAUC - hospital	pckAUC - home
Simple Baseline [1]	5.96	3.21	12.41	7.48	4.95
Source (Uncover) data only [2]	21.78	15.59	39.52	21.55	21.93
Uncover data + CycAug	46.42	40.22	72.44	46.57	46.32
Uncover data + CycAug + ExtremeAug	47.16	40.46	73.38	47.48	46.95
Uncover data + CycAug + ExtremeAug + Knowledge Distillation	49.8	43.65	76.13	50.62	49.25

^[1] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking. In ECCV, pages 472–487, 2018.

^[2] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour- glass networks for human pose estimation. In ECCV, pages 483–499, 2016

Method	pckAUC	pck@0.2	pck@0.5	pckAUC - hospital	pckAUC - home
Simple Baseline [1]	5.96	3.21	12.41	7.48	4.95
Source (Uncover) data only [2]	21.78	15.59	39.52	21.55	21.93
Uncover data + CycAug	46.42	40.22	72.44	46.57	46.32
Uncover data + CycAug + ExtremeAug	47.16	40.46	73.38	47.48	46.95
Uncover data + CycAug + ExtremeAug + Knowledge Distillation	49.8	43.65	76.13	50.62	49.25

^[1] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking. In ECCV, pages 472–487, 2018.

^[2] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour- glass networks for human pose estimation. In ECCV, pages 483–499, 2016

Method	pckAUC	pck@0.2	pck@0.5	pckAUC - hospital	pckAUC - home
Our best model	50.065	42.187	77.46	50.270	49.963

Estimated Prediction Time per image		
With CPU	With GPU	
1.3512 s	0.14069 s	

Reproducibility

Link to GitHub Repo: https://github.com/MohamedAfham/CD HPE

Conclusion

- ✓ Domain Adaptive
- ✓ Two-fold Data Augmentation for Cross-Domain Discrepancy Reduction
- ✓ Two Stage novel learning pipeline
- ✓ Agnostic to modality
- ✓ Trainable using limited resources
- ✓ Code publicly available

We are,

Jathurshan Pradeepkumar
Undergraduate
Department of Electronic and Telecommunication
University of Moratuwa

Udith Haputhanthri
Undergraduate
Department of Electronic and Telecommunication
University of Moratuwa

Mohamed Afham
Undergraduate
Department of Electronic and Telecommunication
University of Moratuwa

Mithunjha Anandakumar
Undergraduate
Department of Electronic and Telecommunication
University of Moratuwa

Ashwin De Silva
Graduate Member (Tutor)
Johns Hopkins University

Dr. Chamira Edussooriya

B.Sc.Eng. (Moratuwa) M.A.Sc., Ph.D. (UVic), MIEEE

Supervisor

Senior Lecturer

Department of Electronic and Telecommunication

University of Moratuwa