Présentation 1 PSAR

Modélisation et Résolution du problème du Sudoku

La Programmation Par Contraintes sur le problème du Sudoku

Qu'est ce que c'est la PPC?

C'est la technique mathématique permettant de formuler et résoudre les problèmes combinatoires.

Exemple:

- La planification (Emplois du temps)
- L'ordonnancement
- Les problèmes du Sudoku, N-Queens, etc...

Technique utilisé dans la PPC

Principalement:

- Filtrage
- Propagation
- Backtracking

Problème de Satisfaction des Contraintes (CSP)

CSP est un triplé (X, D, C), où:

- **X** est un ensemble des variables $\{x_1, \ldots, x_n\}$.
- **D** est un ensemble des domaines $\{D_{x1}, \ldots, D_{xn}\}$, ensemble des valeurs possibles pour ces variables.
- **C** est un ensemble des contraintes $\{C_1, \ldots, C_n\}$ où chaque contrainte C_i est définie sur l'ensemble des variables $\{x_{i1}, \ldots, x_{ip}\} \in X$.

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

1	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

1	2	3		2		6	
9			3		5		1
		1	8		6	4	
		8	1		2	9	
7							8
		6	7		8	2	
		2	6		9	5	
8			2		3		9
		5		1		3	

1	3	3		2		6	
9			3		5		1
		1	8		6	4	
		8	1		2	9	
7							8
		6	7		8	2	
		2	6		9	5	
8			2		3		9
		5		1		3	

1	4	3		2		6	
9			3		5		1
		1	8		6	4	
		8	1		2	9	
7							8
		6	7		8	2	
		2	6		9	5	
8			2		3		9
		5		1		3	

1	4	3	5	2	7	6	8	9
9			3		5			1
		1	8		6	4		
		8	1		2	9		
7								8
		6	7		8	2		
		2	6		9	5		
8			2		3			9
		5		1		3		

1	4	3	5	2	7	6	9	8
9			3		5			1
		1	8		6	4		
		8	1		2	9		
7								8
		6	7		8	2		
		2	6		9	5		
8			2		3			9
		5		1		3		

4	8	3	9	2	1	6	5	7
9	6	7	3	4	5	8	2	1
2	5	1	8	7	6	4	9	3
5	4	8	1	3	2	9	7	6
7	2	9	5	6	4	1	3	8
1	3	6	7	9	8	2	4	5
3	7	2	6	8	9	5	1	4
8	1	4	2	5	3	7	6	9
6	9	5	4	1	7	3	8	2

Brute force

<u>Problème:</u> Dans le pire des cas, on peut atteindre un nombre d'étape exponentiel (600 millions) pour résoudre une grille 9x9

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

Programmation Par Contrainte

Variables: Chacun des 81 cases de la grille

<u>Contraintes:</u> 1 occurrence d'un chiffre par colonne, ligne et cellule.

<u>Domaines:</u> {1, 2, 3, 4, 5, 6, 7, 8, 9}

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7				X		8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

Programmation Par Contrainte

Variables: Chacun des 81 cases de la grille

<u>Contraintes:</u> 1 occurrence d'un chiffre par colonne, ligne et cellule.

<u>Domaines:</u> {1, 2, 3, 4, 5, 6, 7, 8, 9}

Exemple: La case avec la croix rouge X

$$D(X) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = D(X) = \{4\}$$

Exemple 2 - N-Queens

Programmation Par Contrainte

<u>Variables:</u> X_i la position de la reine dans la colonne i.

Domaines:
$$D_{x_i}$$
 = {1, . . ., N} ∀i

Contraintes:
$$X_i \neq X_j$$
, $\forall i,j \in \{1, 2, 3, 4\}, i \neq j$
 $X_i \neq X_j + (j - i), 1 \leq i \leq j \leq N$
 $X_i \neq X_j + (i - j), 1 \leq i \leq j \leq N$

Solution:
$$S_1 = (X_2, X_4, X_1, X_3)$$

 $S_2 = (X_3, X_1, X_4, X_2)$

Exemple 2 - N-Queens

Programmation Par Contrainte

La technique permettant de résoudre le problème du N-Queens est le *Backtracking* (Propagation + Backtrack).

Plan du Cahier des Charges

- Introduction
 - A) A propos du PPC
 - B) A propos du Sudoku
 - C) A propos du Solver Or-Tools
- I. Présentation du problème posé
 - A) Les objectifs
- III. Expression du besoin
 - A) Bête à corne
- IV. Contraintes et Tests
 - A) Tests sur d'autres problèmes (N-Queens)
 - B) Contraintes et interprétation des résultats

Questions?

Merci!

Nous contacter:

david.toty@etu.upmc.fr maxime.tran@etu.upmc.fr

