NATIONAL PHYSICAL LABORATORY

Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Certificate of Calibration

This certificate provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, unless permission for the publication of an approved extract has been obtained in writing from NPL Management Ltd. It does not of itself impute to the subject of calibration any attributes beyond those shown by the data contained herein.

REPORT ON THE RESULTS OF AMBIENT AIR QUALITY ANALYSER CALIBRATIONS CARRIED OUT AT NERC "SUPERSITES" IN LONDON, BIRMINGHAM AND

MANCHESTER, MAY 2022.

CUSTOMER:

IMPERIAL COLLEGE LONDON UNIVERSITY OF BIRMINGHAM UNIVERSITY OF MANCHESTER

IDENTIFICATION

The instruments calibrated are identified in Table 1.

CALIBRATION PERIOD

The instruments were calibrated as shown in Table 1.

UNCERTAINTIES

The reported uncertainties are based on a standard uncertainty multiplied by a coverage factor, k = 2, providing a level of coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

VALIDITY

The results quoted here are valid on the date of measurement only. However, subject to ongoing quality assurance checks, analysers of this type are likely to remain stable, or undergo readily quantifiable drifts, for periods of up to six months.

Reference NERC 0522 bs Date of Issue: 10th May 2022

Checked by:

Signed P. Bullelow.
Name: D M Butterfield

1 of 6 (Authorised Signatory) on behalf of NPLML

2LC01-07/15

1 MEASUREMENT PROCEDURE

The procedure used was NPL procedure QPDQM/B/521.

1.1 Gaseous Analysers:

1.1.1 Analyser Response Factors

Stable calibration standards, validated against primary standards, are transported to each site and sampled by the analyser.

The analyser also samples from a cylinder containing certified metrology grade zero air.

The analyser factor quoted is the response to the intercalibration standard, expressed in nmol.mol⁻¹/logged unit, with the zero point being the response to zero air.

For ozone, the response factor is the slope of the calibration function, m, relating analyser response to NPL standard response, i.e.

Site analyser = m NPL standard + c

Thus, the units for the ozone calibration factor are logged unit/(nmol.mol⁻¹)

For oxides of nitrogen analysers, the NO_x and NO channel response factors are derived from the NO in nitrogen cylinder.

For ozone analysers, the calibration is carried out by comparison of the analyser response with that of a calibrated ozone photometer, over a range of ozone concentrations generated by the photometer.

1.1.2 Uncertainty due to analyser linearity/repeatability effects

To determine analyser linearity/repeatability effects, a series of amount fractions are produced (using dynamic dilution techniques) covering the analyser range. The analyser output is noted for each of these amount fractions. A linear regression is then carried out, relating analyser output to the dilution factor at each point. The linearity error is defined as the maximum residual of the regression slope.

For the CAPS nitrogen dioxide analysers, linearity is measured by measuring the NO₂ produced at a range of concentrations during the converter efficiency test detailed in 1.1.4 below. A linear regression is then carried out, relating CAPS NO₂ measurement to the NO₂ measured by the chemiluminescent analyser. The linearity error is defined as the standard error of the residuals of the regression slope.

1.1.4 Converter Efficiency

Converter efficiency is determined as follows:

A stable amount fraction of NO is produced, by two stage dynamic dilution, and the analyser outputs, NO_x and NO_y are noted after a suitable stabilisation period.

Ozone is added to the sample, converting some NO to NO2, while the total NOx in the sample

Reference: NERC 0522 bs page 2 of 6

Checked:

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

remains constant. Again, following appropriate stabilisation times, the NO_x and NO outputs are noted.

Converter (in)efficiency is defined as the change in scaled NO_x signal as a percentage ratio of the change in the scaled NO signal.

1.1.5 Estimation of Site Cylinder Amount fractions

The site cylinder amount fractions are evaluated by sampling from the site cylinder and using the analyser response factors, section 2.2, to derive their amount fraction.

2 RESULTS

2.1 Analysers Calibrated

The analysers calibrated, are given in Table 1.

Table 1

			NO ₂	CO ₂ /CO	Ozone	SO ₂	Particle
		NOy	analyser	and CH4	analyser	analyser	analyser
Site	date	analyser		analyser			
		T200U	t500u	LGR	T400		Fidas
London	6/5/2022	23419	23556	23499	23555		9378
		T200U	T500u	LGR	TE49i	T100U	Fidas
Birmingham	5/5/2022	23450		23543		23449	9424
		TE42iY	T500U	TE 48i	TE49i		Fidas
Manchester	4/5/2022	NOy	23240				6825

Reference: NERC 0522 bs page 3 of 6

Checked:

2.2 Gaseous Analyser Response Factors, Uncertainties due to Linearity/repeatability, and NO₂ Converter Efficiencies.

			London	Birmingham	Manchester
Ozone		Zero response	0.0	1.0	0.2
		Response Factor	0.922	0.846*	0.915
		Linearity error	0.6	0.7	0.4
		Analyser software span coefficient	0.906	0.988	1.060
NO _y	NO _y	Zero response	3.6	-0.7	0.9
		Response Factor	1.223	1.093	1.715
		Linearity error	3.5	3.7	0.9
	NO	Zero response	2.0	-1.1	0.0
		Response Factor	1.215	1.087	1.683
		Linearity error	0.8	1.3	1.6
		Conv effy	97.4	97.9	99.5
CAPs NO ₂		Zero response	0.0	2.4	0.0
		Response Factor	0.959	0.818	0.950
		Linearity error	5.5	2.4	1.2
CO		Zero response	0.04	0.03	6.12
		Response Factor	0.882	0.973	0.842
		Linearity error	0.09	0.10	0.16
LGR CH ₄		Zero response	0.02	0.01	0.01
		Response Factor	0.934	1.005	0.975
		Linearity error	0.05	0.03	n/a**
LGR CO ₂		Zero response	0.28	0.36	0.76
2011		Response Factor	0.957	0.983	0.970
		Linearity error	17.9	5.2	n/a**
SO_2		Zero response		1.5	
		Response Factor		0.874	
		Linearity error		4.8	

Data presented above, for response factor, are derived from the analyser front panel, and are thus in units of nmol.mol $^{-1}$ /indicated nmol.mol $^{-1}$. (CO₂, CH₄ and CO data are in μ mol.mol $^{-1}$ /indicated μ mol.mol $^{-1}$)

Analyser zero data are in indicated nmol/mol or indicated $\mu mol/mol$

Data on linearity error, more correctly, uncertainty due to linearity and repeatability, are in nmol/mol or μ mol/mol.

Converter efficiency data are in %.

Reference: NERC 0522 bs

Checked:

BS

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

*The ozone analyser at Birmingham was displaying a "low flow" warning

2.3 Uncertainties in the Response Factors

The reported uncertainties are based on a standard uncertainty multiplied by a coverage factor, k = 2, providing a level of coverage probability of approximately 95%.

They are derived from uncertainties in the transfer standards used and measured drifts, and measurements of analyser zero and span noise, and uncertainty due to linearity/repeatability.

Measurand	London	Birmingham	Manchester	
CO_2	3.5	3.0	n/a	
CH ₄	6.1	3.4	n/a	
CO	3.4	3.4	2.9	
NOy	3.5	3.5	3.3	
NO	3.3	3.3	3.8	
NO_2	5.9	5.3	6.0	
SO ₂		3.9		
O ₃	4.0	4.0	4.0	

Uncertainties in converter efficiency are of the order of 3 to 4 % absolute.

2.4 Ranges over which the Analysers were Calibrated

The following Table list the maximum concentrations, as reported by the respective analyser, over which the analyser was tested, i.e. the range of the linearity test. These values are, therefore, the range over which the calibrations are valid.

Measurand London		Birmingham	Manchester	
CO ₂ (µmol/mol)	2090	2034		
CH ₄ (µmol/mol)	10.18	10.24		
CO(µmol/mol)	27.8	26.6	30.2	
NO _y (nmol/mol)	706	681	755	
NO (nmol/mol)	675	670	746	
NO ₂ (nmol/mol)	106	120	71	
SO ₂ (nmol/mol)		716		
O ₃ (nmol/mol)	194	195	194	

2.5 Results of FIDAS calibrations

	London	Birmingham	Manchester
flow/slm (at 273 K and 1013 mbar)	4.46	4.40	4.48
dust peak	140.02	n/a	141.28
hepa test particles/cm ³	0	0	0

Reference: NERC 0522 bs page 5 of 6

Checked:

135

^{**} The full range of instrument tests are not carried out on the CO₂/CH₄ analyser at Manchester

2.6 Amount fraction of On-site Standards

The amount fractions of the on-site standards are given in Table 6:

		London		Birmingham		Manchester	
		ID	Conc	ID	Conc	ID	Conc
			nmol/mol		nmol/mol		nmol/mol
NO	NO _x	113321	441	112969	481	145254	453
	NO		440		480		
NO ₂		d360296	364	112367	455		
SO_2				D116860	372		
СО						293878	4.99*

^{*}Units are µmol/mol

The uncertainties in the site standard measurements are $\pm 5\%$ of value.

3 Accreditation to ISO 17025

NPL is currently accredited to ISO 17025, often referred to as UKAS accreditation, for calibration of Nitrogen Oxides, Ozone, Carbon Monoxide, and Sulphur Dioxide analysers, the on-site calibration standards relating to these analysers, and flow rate measurements for particle analysers. Our calibration schedule, in full, is available here:

 $\underline{https://www.ukas.com/wp\text{-}content/uploads/schedule} \underline{uploads/00001/0478Calibration\%20Multiple.pdf}$

However, due to the logistical requirements of supplying calibration and other test gases to the chemiluminescent NO_y instruments, we are forced to deviate from our accredited procedure. The tests which are carried out according to our procedures, and are, thus, accredited, are the calibration of ozone, carbon monoxide, and sulphur dioxide analysers, and the flow rate measurement of particle analysers.

We are not currently accredited for the on-site calibration of NO_y chemiluminescent analysers, CH_4/CO_2 analysers, the calibration of single channel NO_2 analysers, or for the non-flow aspects of the FIDAS calibrations. All results relating to these analyser types are not, therefore, ISO 17025 compliant.

Reference: NERC 0522 bs page 6 of 6

Checked: (5)