Fractal Geometry

Alex Rutar* University of Waterloo

Winter 2020[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: January 13, 2020

Contents

Chapter	I Stochastic Calculus	
1	Martingale Theory	2

I. Stochastic Calculus

Definition. Given a measure space $(\Omega, \mathcal{F}, \mathbb{P})$, a measurable function $f : \Omega \to \mathbb{R}$ is called a **random variable**.

Definition. A **stochastic process** $X = \{X_t\}_{t \in T}$ is a collection of random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Typically $t \in \mathbb{Z}^+$ or $t \in \mathbb{R}^+$ (including 0); t is a discrete or continuous time parameter. Given some $\omega \in \Omega$ the map $t \mapsto X_t(\omega)$ is called a **realization** or **path** of this process. We will regard $\{X_t\}_{t\geq 0}$ as a random element in some path space, equipped with a proper σ -algebra and probability.

Consider $X_t(\omega)$ as a function $X:[0,\infty)\times\Omega\to\mathbb{R}$ equipped with the product σ -algebra.

Definition. The **distribution** of a stochastic process is the collection of all its finite-dimensional distributions.

Two processes *X* and *Y* can be "the same" in different senses:

Definition. Two process $X = \{X_t\}_{t \geq 0}$ and $Y = \{Y_t\}_{t \geq 0}$ are called **distinguishable** if almost all their sample paths agree; in other words, $\mathbb{P}(X_t = Y_t, 0 \leq t < \infty) = 1$. We say that Y is a **modification** of X if for each $t \geq 0$ we have $\mathbb{P}(X_t = Y_t) = 1$. Finally, X and Y are said to have the **same distribution** if all the finite dimensional distributions agree. In other words, if for all $n \in \mathbb{N}$ and $0 \leq t_1 < t_2 < \cdots < t_n < \infty$, we have $(X_{t_1}, \dots, X_{t_n}) \stackrel{d}{=} (Y_{t_1}, \dots, Y_{t_n})$.

Example. Let X be a continuous stochastic process and N a Poisson point process on $[0, \infty)$. Then define

$$Y_t := \begin{cases} X_t & : t \notin N \\ X_t + 1 & : t \in N \end{cases}$$

Thus $\mathbb{P}(X_t = Y_t) = 1$ for all t, so X is a modification of Y. However, $\mathbb{P}(X_t = Y_t, t \ge 0) = 0$, so that X and Y are not indistinguishable.

A filtration formalizes the idea of "information acquired over time".

Definition. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A **filtration** is a non-decreasing family $\{\mathcal{F}_t\}_{t\geq 0}$ of sub- σ -algebras of \mathcal{F} so that $\mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{F}$ for $0 \leq s < t < \infty$. We write $F_{\infty} = \sigma(\bigcup_{t>0} \mathcal{F}_t)$.

Let $\{X_t\}_{t\geq 0}$ be a stochastic process. The filtration generated by $\{X_t\}_{t\geq 0}$ is $\{\sigma(X_s:0\leq s\leq t)\}_{t\geq 0}$, in other words \mathcal{F}_t is the smallest σ -algbra which makes X_s measurable for all $s\in [0,t]$.

Definition. A stochastic process $\{X_t\}_{t\geq 0}$ is called **adapted** to a filtration $\{\mathcal{F}_t\}_{t\geq 0}$ if X_t is \mathcal{F}_t -measurable for every $t\geq 0$.

The filtration generated by $\{X_t\}_{t\geq 0}$ is the smallest filtration which makes $(X_t)_{t\geq 0}$ adapted.

A filtration $\{\mathcal{F}_t\}_{t\geq 0}$ is said to satisfy the "usual condition" if

- 1. It is right-continuous: $\lim_{s\to t^+} := \bigcap_{s>t} \mathcal{F}_s = \mathcal{F}_t$
- 2. \mathcal{F}_0 contains all the \mathbb{P} -null events in \mathcal{F} .

1 Martingale Theory

Consider a filtered space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in S})$ where $S = \mathbb{N}$ or $S = \mathbb{R}^+$.

Definition. A random time T is called a stopping time if $\{T \leq t\} \in \mathcal{F}_t$ ("we know it happens when it happens").

Example. (i) Constants are trivial stopping times.

- (ii) Last hit a constant before *N* is not a stopping time
 - **1.1 Proposition.** If S, T are stopping times, $T \vee S$, $T \wedge S$, T + S are stopping times.

PROOF That $T \wedge S$ and $T \vee S$ are stopping times are trivial. For T + S, $\{T + S > t\} = \{T = 0, S > t\} \cup \{0 < T \le t, T + S > t\} \cup \{T > t\}$. It suffices to prove that

$$\{0 < T \le t < T + S > t\} = \bigcup_{\substack{r \in \mathbb{Q}^+ \\ 0 < r < t}} \{r < T \le t, S > t - r\}.$$

If there exists r with $r < T \le t$, then S > t = r and S + T > r + (t - r) = t, so \supseteq holds. Conversely, if $0 < T \le t$ and $T + S \ge t$; then there exists $r \in \mathbb{Q}$ such that r < T and r + S > t. Hence $r < T \le t$ and S > t - r.

Definition. The σ -algebra generated by a stopping time T is the collection of all the events A for which $A \cap \{T \leq t\} \in \mathcal{F}_t$ for every $t \geq 0$. This is the "information you collect until the stopping time".

Exercise: show that the collection given in the definition above is actually a σ -algebra.

We write $X_{T \wedge t}$ is a random variable evaluated at time $T \wedge t$ (or T); in other words, $(X_{T \wedge t})(\omega) = X_{T \wedge t}(\omega)$. Then $\{T_{T \wedge t}\}_{t \geq 0}$, or X^T , is a stochastic process stopped at time t. **Definition.**