Ćwiczenie nr 1: Opracowanie danych pomiarowych

Cel ćwiczenia:

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła prostego

Wahadło proste jest, jak wskazuje jego nazwa, układem mechanicznym charakteryzującym się prostotą tak eksperymentu jak i opisu teoretycznego. Dlatego nadaje się dobrze na ćwiczenie wprowadzające, mające na celu poznanie podstawowych metod opracowania danych pomiarowych. Interpretacja wyników opiera się na równaniu określającym okres drgań T jako funkcję długości wahadła l oraz przyspieszenia ziemskiego g, $T=2\pi$

Wzór ten jest słuszny, jeżeli wychylenie ciężarka z położenia równowagi jest małe.

Wahadło umożliwia uzyskanie danych eksperymentalnych, na przykładzie których można poznać typowe metody ich opracowania, a to:

odrzucanie wyników obarczonych błędem grubym

- ocena niepewności pomiaru typu A
- ocena niepewności pomiaru typu B
- prawo przenoszenia niepewności
- obliczanie niepewności rozszerzonej
- jej zastosowanie do oceny zgodności z wartością dokładną
- wykonywanie wykresów
- linearyzacja nieliniowych zależności funkcyjnych

- dopasowanie prostej do punktów doświadczalnych

- odrzucanie wyników obarczonych błędem grubym
- ocena niepewności pomiaru typu A
- ocena niepewności pomiaru typu B
- prawo przenoszenia niepewności
- obliczanie niepewności rozszerzonej
- jej zastosowanie do oceny zgodności z wartością dokładną wykonywanie wykresów
- linearyzacja nieliniowych zależności funkcyjnych
- dopasowanie prostej do punktów doświadczalnych

1. Układ pomiarowy

Wykonanie ćwiczenia

1. Pomiary okresu dla ustalonej długości wahadła:

- a) Przy użyciu przymiaru milimetrowego zmierz długość wahadła rozumianą jako odległość od środka ciężarka do punktu zamocowania jego nici,
- b) Wprowadź wahadło w ruch drgający o amplitudzie kątowej nie przekraczającej trzech stopni. Następnie zmierz czas $k=20 \div 40$ okresów. Ważne jest, by uruchamiać i zatrzymywać sekundomierz w tej samej fazie ruchu (np. maksymalne wychylenie w prawo), bez zatrzymywania wahadła.

- c) Pomiar ten powtórz dziesięciokrotnie. Liczba okresów k w kolejnych pomiarach może być taka sama, lub zmieniana w podanych wyżej granicach.
- 2. Pomiary zależności okresu drgań od długości wahadła.
- 3. Wykonaj kilkanaście pojedynczych pomiarów okresu (jak w pt. 1b), zmieniając długość wahadła w zakresie od około 10 cm do długości maksymalnej.

Wyniki pomiarów

Tabela 1. Pomiar okresu drgań przy ustalonej długości wahadła długość wahadła 1=100 mm = 0.1m niepewność pomiaru u(1) =1mm = 0.001m

lp	Liczba okresów	Czas t	Okres
_	k	Okresów	t/k
1	20	12,58	0,63
2	20	12,76	0,64
3	20	12,65	0,63
4	20	12,77	0,64
5	20	12,20	0,61
6	20	12,81	0,64
7	20	12,84	0,64
8	20	12,58	0,63
9	20	12,57	0,63
10	20	12,92	0,65

Tabela 2. Pomiar zależności okresu drgań od długości wahadła

lp	Długość	Liczba	Czas t	Okres T	T^2
		okresów	Okresów	t/k	
		k		[s]	$[s^2]$
1	100	20	12,83	0,64	0,41
2	120	20	13,57	0,68	0,46
3	160	20	15,31	0,77	0,59
4	200	20	17,39	0,87	0,80
5	240	20	19,25	0,96	0,93
6	280	20	21,48	1,07	1,15
7	320	20	22,89	1,14	1,31
8	360	20	24,32	1,22	1,48
9	400	20	26,03	1,30	1,69
10	440	20	27,98	1,40	1,96

Opracowanie wyników-

1.Oceń, czy wyniki pomiaru okresu nie zawierają błędów grubych. (Zwrócić uwagę na największą i najmniejszą wartość Ti w uzyskanym zestawie danych).

Najniższa wartość T w tabeli 1: 0,61 Najwyższa wartość T w tabeli 1: 0,65

Wartości w tabeli 2 rosną mniej więcej równomiernie zatem błędy grube nie występują

2.Oblicz niepewność pomiaru okresu (typu A) Dla tabeli 1:

Średnia arytmetyczna: 0,634s

Niepewność standardowa średniej: $sqrt(((-0.004)^2 + (0.006)^2 + (-0.004)^2 + (0.006)^2 + (-0.004)^2 + (-0.0$

3. Na podstawie uzyskanych wartości 1 i T oblicz przyspieszenie ziemskie.

Średnia T: 0,634

$$g = \frac{4\pi^2 l}{T^2}.$$

 $g = 9.82158... \text{ m/s}^2 \approx 9.82 \text{ m/s}^2$

4. Oblicz niepewność złożoną uc(g) przy pomocy prawa przenoszenia niepewności.

 $u(T) \approx 0.011s$

$$u_c(g) = \sqrt{\left(\frac{\partial g}{\partial T}\right)^2 u(T)^2 + \left(\frac{\partial g}{\partial l}\right)^2 u(l)^2} = \sqrt{\frac{64\pi^4 l^2}{T^6} u(T)^2 + \frac{16\pi^4}{T^4} u(l)^2} = \sqrt{\frac{64\pi^4 l^2}{T^6} u(T)^2 + \frac{16\pi^4}{T^6} u(l)^2} = \sqrt{\frac{64\pi^4 l^2}{T^6} u(l)^2 + \frac{16\pi^4}{T^6} u(l)^2} = \sqrt{\frac{64\pi^4 l^2}{T^6} u(l)^2}$$

= sqrt(957,99*0,000121 + 9626,79*0,000001) = sqrt(0,11591679 + 0,00962679) \approx sqrt(0,1255) \approx 0,354 m/s²

5. Oblicz niepewność rozszerzoną U(g)

$$U(g) = k * u_g(g)$$

$$2 \le k \le 3$$

Dla
$$k = 3$$
:

$$U(g) = 0.2946 \text{ m/s}^2$$

6. Wykonaj wykres zależności okresu drgań od T wahadła

(czy chodziło o 1 wahadła?)

7. Wykonaj wykres zlinearyzowany T2 w funkcji l oraz dopasuj prostą typu y = ax, czyli przechodzącą przez początek układu współrzędnych

8. Z otrzymanej wartości współczynnika nachylenia oblicz wartość przyśpieszenia ziemskiego Dla l w metrach:

$$\begin{split} T^2 &= 4*1 \\ g &= (4*(3,14)^2*1)/(4*1) \approx 9,86 \text{ m/s}^2 \end{split}$$

9. Na podstawie uzyskanej z dopasowania niepewności u (a) oblicz niepewność u (g)

$$u(a) = ((0,01)^2 + (-0,02)^2 + (-0,05)^2 + 0 + (-0,03)^2 + (0,03)^2 + (0,03)^2 + (0,04)^2 + (0,04)^2 + (0,09)^2 + (0,2)^2)/9 = 0,0061(5) \approx 0,00616$$

$$u(g) = |(d(g)/d(T^2)| * u(a) = (4*(3,14)^2*(T^2)/4)/(T^4) * u(a) = (3,14)^2/T^2 * 0,00616$$

Dla
$$T^2 = 0.8$$
:

$$u(g) \approx 0.0949 \text{ m/s}^2$$