Steven Rosendahl Homework 2

1. Calculate gcd(5,7) and find two pairs of integers (u,v) such that gcd(5,7) = 5u + 7v.

By the definition of the gcd, we have that gcd(5,7) = 1.

$$5(3) + 7(-2) = 1$$
$$5(10) + 7(-7) = 1$$

2. Show that c|a and c|b if and only if c|gcd(a,b).

Assume c|a and c|b. Then c is a common factor of a and b. We know that gcd(a,b) is also a common factor of both a and b. Since both gcd(a,b) and c are common factors of a and b, then they must also be common factors of each other. Therefore, c|gcd(a,b).

Let d = gcb(a, b), and assume that c|d. Then d = cn for some $n \in \mathbb{Z}$. By the definition of gcd, we know that d|a. Therefore, cn|a, which means that a = cnm for some $m \in \mathbb{Z}$. Then a = cj, where $j = nm \in \mathbb{Z}$. Therefore c|a. We also know that d|b by the definition of gcd. By the same argument, we know that c|b as well. Therefore c|b and c|a.

 \triangle

3. Suppose $a_1, a_2, ..., a_n$ are integers not all equal to 0. We define $gcd(a_1, a_2, ..., a_n)$ to be the largest integer which divides a_k for all $1 \le k \le n$. Prove that $gcd(a_1, a_2, ..., a_n) = gcd(gcd(a_1, a_2), a_3, ..., a_n)$.

Let $gcd(a_1, a_2, \ldots, a_n) = d$ and $gcd(gcd(a_1, a_2), a_3, \ldots, a_n) = \alpha$. We know that, by the definition of gcd, that $d|a_k$ for $1 \le k \le n$. We know that $d|a_1$ and $d|a_2$, so it must also divide $gcd(a_1, a_2)$. Therefore, $d|gcd(gcd(a_1, a_2), a_3, \ldots, a_n)$, so $d|\alpha$. We also know that $\alpha|gcd(a_1, a_2)$, and that $\alpha|a_k$ for $1 \le k \le n$. Since α divides $gcd(a_1, a_2)$, it must divide a_1 and a_2 . Therefore $\alpha|a_k$ for $1 \le k \le n$, so $\alpha|gcd(a_1, a_2, \ldots, a_n)$, or $\alpha|d$. We know that if $d|\alpha$ and $\alpha|d$, then $|d| = |\alpha|$. In this case, both α and d are positive, so we know that $\alpha = d$.

 \triangle

4. Use your answer to the previous problem, along with the Euclidian Algorithm, to determine gcd(1092, 1155, 2002) (It's possible that you'll need a calculator to do the arithmetic on this problem).

$$1155 = 1(1092) + 63$$

$$1092 = 17(63) + 21$$

$$63 = 3(21) + 0$$

$$\therefore \gcd(1155, 1092) = \gcd(21, 0) = 21$$

$$2002 = 95(21) + 7$$

$$21 = 3(7) + 0$$

$$\therefore \gcd(21, 2002) = \gcd(7, 0) = 7$$

- 5. Let $a_1, a_2, \ldots, a_n \in \mathbb{N}$ and consider the two following definitions:
 - We say that a_1, a_2, \ldots, a_n are relatively prime if $gcd(a_1, a_2, \ldots, a_n) = 1$.
 - We say that a_1, a_2, \ldots, a_n are pairwise relatively prime if $gcd(a_i, a_j) = 1$ for all $i \neq j$.
 - (a) If a_1, a_2, \ldots, a_n are pairwise relatively prime can we conclude that a_1, a_2, \ldots, a_n are relatively prime? Either prove your answer or give a counterexample.

Let $(a_n) = (a_1, a_2, \ldots, a_n)$, and assume (a_n) is pairwise relatively prime. Then for any $i, j \leq n$ we have that $gcd(a_i, a_j, =)1$. This means that if we take any to distinct elements in (a_n) , they will have no common factors except for 1. As a result, the greatest common factor is 1, or $gcd((a_n)) = 1$, which is the definition of begin relatively prime.

 \triangle

(b) If a_1, a_2, \ldots, a_n are relatively prime can we conclude that a_1, a_2, \ldots, a_n are pairwise relatively prime? Either prove your answer or give a counterexample.

Consider $(a_n) = (2,3,4)$. We know that $gcd((a_n)) = 1$, but $gcd(2,4) \neq 1$. Therefore, we can conclude that (a_n) being relatively prime does not necessarily mean that (a_n) is pairwise relatively prime.

 \triangle

6. Suppose that a|c and b|c. Do we necessarily have that ab|c? Either prove your answer or give a counterexample.

Let a, b = 4 and c = 8. We know that 4|8, but $(4 \cdot 4)/8$. Therefore ab does not divide c.

 \triangle

7. If a|c and b|c prove that lcm(a,b)|c. Conclude that if a and b are relatively prime, then ab|c.

We know that since a|c and b|c, c is a common factor of both a and b. If we assume that c is the smallest common factor of both a and b, then c = lcm(a, b), and c|c. Otherwise, let $\delta = lcm(a, b)$. Then, by the definition of the lcm, we know that δ is a common factor of a and b, and that $\delta < c$. Since both c and δ are common factors of a and b, it follows that $\delta|c$.

Since a and b are relatively prime, gcd(a,b) = 1. We also know that ab = lcm(a,b) gcd(a,b), which means that ab = lcm(a,b). Therefore, ab|c.

 \triangle