

SPI Flash

12C Pull-up

Decoupling Caps uC

MicroController

Switches

Sheet: /MicroController/ File: MicroController.kicad_sch

Title: MicroController

Size: USLegal	Date:	Rev:
KiCad E.D.A. 9.0	.0	ld: 2/4

USB-C Connector

USB PD Controller

Current Sensor

LDO 3.3V

VBUS and GND resitance sensing at boot up has been considered However, low curent draw is hard to detect with INA219 High current draw will make it hard to sense just 0.166ohm on VBUS

Spec for USB C 3A: VBUS < 0.1660hm, GND < 0.08330hm

Device will suffer bad voltage drop when pulling high current at low voltage

Input Voltage Sensing

Sheet: /Power/ File: Power.kicad_sch Title: Power Size: USLegal Rev: KiCad E.D.A. 9.0.0 ld: 3/4

OLED_Pins

Output Connectors

Programming

Rotary Encoder

Mounting Holes

- Output connector consideration:
 + Banana Jack -> Standard for power supply
 + Screw terminal 3.5mm, 5mm pitch both introduce gap in the case and result in dust
 + Terminal block plug-in
 + X160 -> Doable
 + X130 -> Doable
 + DC barrel jack Tend to rated up to only 2A, fire hazard.

Sheet: /Connection/ File: Connection.kicad_sch

Title:

Size: USLegal Date: KiCad E.D.A. 9.0.0 Rev: ld: 4/4