Applications réseau Cours 1

Corentin Travers travers@labri.fr

AMU - L3 info

2021-2022

Objectifs du module

- Comprendre le concept de réseau en couches
- Savoir programmer une connexion réseau
- Savoir gérer les problématiques de la gestion d'une connexion coté serveur et coté client
- Connaître différents types d'organisation réseau d'une application : client/serveur, pair-à-pair...
- Acquérir les bases de l'administration d'un serveur

Plan (tentative)

- 1. Introduction, modèles en couches
- 2. TCP/UDP, sockets java
- 3. TCP : entête, connexion, contrôle de congestion
- 4. IPv4/IPv6, Couche application (HTTP, SMTP, DNS)
- 5. Programmation serveur : clients multiples, E/S asynchrones
- 6. Programmation serveur : threads, select, E/S asynchrones
- Systèmes distribués, architectures N-tiers, systèmes pairs à pairs
- 8. Systèmes pairs à pairs (suite)
- Administration réseaux
- 10. Sécurité

Quelques mots sur le projet

Le but est de programmer une application réseau.

- Connexion entre machines
- Communication
- Gestion des différentes connexions

Créer un programme qui tourne sur plusieurs machines, et qui gère les communications entre celles-ci.

Page Ametice du module

Page ametice :

https://ametice.univ-amu.fr/course/view.php?id=86638 On y trouvera :

- Informations sur les dates des cours/td/tp
- Supports de cours/td/tp
- Lien vers ressources
- Forum pour échanger, poser des questions, etc.

Si vous n'avez pas accès à la page : m'écrire (travers@labri.fr) en précisant votre nom, prénom, numéro d'étudiant et email AMU.

Intervenants

:

- Florian Beguet TD/TP (Luminy)
- Basile Couetoux TD/TP (Luminy)
- Shantanu Das TD/TP (Luminy)+ Cours/TD/TP (Aix)
- Corentin Travers Cours/TD (Luminy) travers@labri.fr

Modalités du contrôle de connaissances

- Session 1 : NF = 0, 1 * Pa + 0, 15 * Tp + 0, 35 * Pr + 0, 4 * EF
- Session 2 : *NF* = *EF*
- NF note finale
- Pa partiel
- Tp Compte rendus de Tps
- Pr Projet (avec soutenance)
- EF épreuve finale

Distanciel/Présentiel

- 3 premières semaines de janvier :
 - Cours/TD en télé-enseignement
 - TP en présentiel
- Ensuite :
 - Cours/TD/TP en présentiel (sauf contre-ordre)

Les réseaux informatiques

- Omniprésents
- indispensables à connaître pour un informaticien
- Le plus connu : Internet, qui est un réseaux de réseaux
- Beaucoup d'autres réseaux :
 - réseaux bancaires, réseaux de capteurs, réseaux ad-hoc etc.
 - réseaux non informatiques : réseaux ferroviaires, routiers, aériens, etc., réseaux sociaux
 - réseaux biologiques : réseaux de neurones, chaînes alimentaires, d'interactions intra/inter-espèces, etc.

Les réseaux informatiques

En tant qu'informaticien :

- Utilisation :
 - Programmation
 - Gestion de systèmes
 - Bases de données
 - ...
- Administration :
 - Conception de réseaux
 - Administration de réseaux
 - Sécurité (défense ou tests d'intrusion)

Un peu d'histoire

Avant l'informatique :

• 1838 : télégraphe

• 1844 : invention du code Morse

• 1858 : premier câble transatlantique

• 1876 : téléphone

Un peu d'histoire

Premiers réseaux informatiques :

- 1955: SABRE (Semi Automated Business Related Environment), premier réseau commercial par IBM Utilisé pour la réservation de billets d'avion
- 1958 : premier MODEM pour communiquer sur une ligne téléphonique
- 1969 : lancement d'ARPANET, réseau militaire américain, ancêtre d'Internet, avec 4 machines
- 1972 : première application significative de messagerie électronique
- 1973 : TCP/IP
- 1979 : Ethernet
- 1984 : DNS
- 1986 : plus de 5000 machines sur Internet
- 1990 : plus de 100 000 machines connectées

2021 This Is What Happens In An Internet Minute

Internet en 2021

- Environ 5,1 milliards d'utilisateurs (65% de la population mondiale)
- Environ 5,6 milliards de recherches google par jour
- Environ 1,7 milliards de site web (la moitié en activité)
- Trafic annuel de l'ordre du zetta octect (10²¹ octets)
- Environ 40 % du trafic mondial généré par des bots

- Un réseau connecte des machines entre elles
- Différentes topologies possibles
 - Structure en étoile :

Facile à mettre en place, pas tolérant aux pannes

- Un réseau connecte des machines entre elles
- Différentes topologies possibles
 - Structure en étoile
 - Structure en anneau :

Historique (peu utilisé actuellement), une panne bloque tout le réseau

- Un réseau connecte des machines entre elles
- Différentes topologies possibles
 - Structure en étoile
 - Structure en anneau
 - Structure en maillage :

Tolérant à un certain nombre de pannes

- Un réseau connecte des machines entre elles
- Différentes topologies possibles
 - Structure en étoile
 - Structure en anneau
 - Structure en maillage

Il en existe d'autres (exemple : structure en arbre)

Internet

INTERconnected NETworks

- Internet est un réseau de réseaux
- De (très, très...) nombreux réseaux connectés entre eux

 Pour transmettre l'information entre les différents réseaux : routage

Internet

INTERconnected NETworks

 Internet a une structure en maillage (entre les différents réseaux qui le composent) :

- Choix historique pour résister à des attaques nucléaires Ancêtre d'Internet : ARPANET, réseau militaire
- Extrêmement robuste au niveau global

Protocoles

- Communication ⇒ besoin de normes
- Pour communiquer, les humains utilisent des langues (français, anglais, etc...)
- Les machines utilisent des protocoles

Protocoles pour:

- Utiliser un support physique (réseau local)
- Transporter l'information (routage)
- Utiliser l'information (application)

Performances

Deux principaux critères de performance :

- Le débit
 - Mesure la quantité d'information qui peut transiter en un temps donné
 - bits/s : nombre de bits transmis en une seconde
 - Exemples :

Ethernet: 10Mbits/s, 100 Mbits/s ou 1Gbit/s

Fibre: 1Gbit/s, 10 Gbit/s ou plus

Modem téléphonique : jusqu'à 56 kbits/s...

- La latence
 - Mesure le temps entre l'émission et la réception
 - L'aller-retour est connu sous le nom de ping

Protocoles

Exemples de protocoles :

- Réseau local :
 - Ethernet, Token Ring, 802.11a/b/g/n/ac (WiFi), ...
- Routage :
 - IP. ATM. . . .
- Applications :
 - HTTP, FTP, SMPT, POP3, Bittorrent, SIP, . . .

Le modèle en couches

Pour mettre en place un réseau, de nombreux mécanismes sont nécessaires.

Pour gérer cela, le modèle en couche :

- Permet de séparer différentes fonctionnalités
- Permet de faire des choix pratiques de conception pour une couche sans affecter les autres (idéalement)

Exemple:

IP peut fonctionner sur Ethernet, Wifi, Tokenring, etc... sans modification, et même sur ces différents types de réseaux en même temps.

À chaque couche correspond un protocole

Le modèle OSI

Dans ce cours, nous nous concentrerons surtout sur les couches hautes (couches basses en M1).

Intégration des couches

 Au niveau de l'émetteur, chaque couche transmet à la couche inférieure, inversement pour le récepteur

Intégration des couches

- Chaque couche décrit dans un en-tête (et en-queue éventuel) la nature ou des détails de ce qu'elle souhaite transmettre
 - La nécessité de certaines infos est évidente. par ex, l'adresse IP
 - D'autres sont plus subtiles, par ex l'autorisation de découper un paquet
- Chaque couche s'occupe exclusivement de :
 - rendre les services dûs à la couche supérieure
 - utiliser les services fournis par la couche inférieure

Intégration des couches

 Chaque couche ajoute des données nécessaires à son fonctionnement au niveau de l'émetteur, les enlève au niveau du récepteur

Principe d'encapsulation/decapsulation

Le modèle TCP/IP

Le modèle TCP/IP, utilisé pour Internet, est plus ancien, basé sur des choix pratiques, et fusionne certaines couches du modèle OSI.

Les couches physique et liaison

Couche Physique:

- Responsable de la transmission binaire
- Concerne surtout les électroniciens, voire les physiciens

Couche Liaison:

- Responsable de la transmission point-à-point (réseau local)
- Fournit des adresses physiques (locales)
- Exemples: Ethernet, Wifi, etc...

Dans le modèle TCP/IP, ces deux couches sont fusionnées en la couche "Accès réseau"

Les couches physique et liaison

Exemple: Ethernet

Unité de transmission : la trame

64 - 1518 byte

IEEE 802.3 Ethernet Frame Format

Adresses physiques: uniquement au niveau local

- Responsable de la transmission de bout en bout
- Assure l'interopérabilité entre différents réseaux locaux
- En particulier, détermine le parcours des données entre les réseaux et fournit des adresses logiques (globales)
- Exemple le plus répandu : IP

Appelée couche Internet dans le modèle TCP/IP

Elle permet de faire abstraction du routage :

Seules les couches basses (jusqu'à la couche Réseau) concernent les équipements intermédiaires

Exemple: IP

Unité de transmission : le paquet

IP packet makeup

Adresses globales : permettent de communiquer avec d'autres réseaux

La couche Transport

- En fonction des cas, gère la connexion, le contrôle de flux et fournit certaines garanties
- TCP :
 - Fournit une connexion
 - Garantit la fiabilité de cette connexion
 - Gère le contrôle de flux pour éviter des pertes de données
- UDP :
 - Beaucoup plus léger que TCP
 - Sans connexion
 - Pas de garantie contre les pertes
 - Pas de contrôle de flux
 - Utile pour les applications nécessitant une réception rapide des données (exemple : VoIP)

TCP et UDP ajoutent la notion de port : permet de contacter différents services sur une même machine

La couche Transport

 À partir de la couche Transport, un réseau unique (d'un point de vue conceptuel)

Chaque machine a une adresse globale et peut être atteinte par toutes les autres

La couche Session

- Gère la synchronisation des échanges
- Permet l'ouverture et la fermeture de session

N'existe pas dans le modèle TCP/IP (intégrée à la couche Application)

La couche Présentation

- Chargée du codage des données applicatives
- Si besoin, chargée de l'encryption

N'existe pas dans le modèle TCP/IP (intégrée à la couche Application)

La couche Application

- Contient toutes les données nécessaires à l'application elle-même
- Dépend entièrement de l'application
- Exemples:
 HTTP (Web), FTP (transfert de fichiers), SMTP (email)...

IPv4/IPv6

- Plusieurs versions d'IP
- Actuellement, IPv4 et IPv6 coexistent
- IPv4:
 - Omniprésent
 - Adresses sur 32 bits : environ 4 milliards d'adresses disponibles
 - ⇒ Pénurie d'adresses!
- IPv6
 - Pas présent partout
 - Incompatible avec IPv4
 - Introduit (principalement) pour résoudre la pénurie d'adresses :
 - environ 667 millions de milliards d'adresses IPv6 disponibles par mm2 de la surface de la Terre...

IPv4

Paquet IPv4

- IHL (Internet Header Length) : taille de l'entête
- Time-to-live : nombre de sauts maximum

évite qu'un paquet reste indéfiniment dans une boucle

IPv6

Paquet IPv6

DNS

Domain Name System

- Difficile de se souvenir de 139.124.244.38...
- DNS permet d'accéder à des adresses IP en utilisant des adresses mémorisables par des humains :

```
www.univ-amu.fr
```

- Fonctionne pour IPv4 et IPv6
- DNS est un système hiérarchique: www.univ-amu.fr appartient d'abord à la zone .fr, puis à la zone univ-amu.fr.
- L'adressage de chaque zone est géré par un ou plusieurs serveurs DNS.

DNS

Domain Name System

Quand un client interroge un serveur DNS:

- Le serveur interroge un serveur DNS racine, qui lui renvoie l'adresse du serveur DNS qui gère le domaine
- Le serveur interroge le serveur DNS qui gère le domaine, qui renvoie l'adresse du serveur qui gère le sous-domaine
- Etc... jusqu'à obtenir l'adresse IP recherchée

