V 1. -----

Функция f(x) задана таблично на отрезке [0,a] в точках $\ x_i$,

$$x_i = ih, \quad i = 0,1,...,N, h = a/N$$

- а) Построить интерполяционный многочлен по точкам x_i .
- б) Интерполировать функцию кубическим сплайном.
- в) Результаты сравнить. Оценить разность.

V 2. -----

Функция f(x) задана таблично на отрезке [0,a] в точках x_i ,

$$x_i = ih, \quad i = 0,1,...,N, h = a/N$$

- а) Построить интерполяционный многочлен по точкам $\ x_i$.
- б) Приблизить функцию по методу наименьших квадратов полиномом заданной степени n, n<9. Оценить погрешность.
- в) Результаты сравнить.

V 3. -----

Найти решение задачи Коши

$$\frac{du}{dx} = \int_0^x f(t)dt, \ u = u(x), 0 < x < l$$

$$u(0) = u_0$$

методом Рунге – Кутта второго порядка

Функция f(t) задана и может быть найдена как в точках сетки $x_i=ih, \quad i=0,1,...,N, h=l/N$, так и в любой точке отрезка [0,l]

- а) Исследовать поведение решения на сгущающихся сетках (при увеличении n).
- б) Выяснить, будет ли сходимость.

V 4. -----

Найти решение задачи Коши

$$\frac{du}{dx} = \int_0^x f(t)dt, \ u = u(x), 0 < x < l$$

$$u(0) = u_0$$

методом Адамса второго порядка

Функция f(t) задана и может быть найдена как в точках сетки $x_i=ih,\quad i=0,1,\dots,N, h=l/N$, так и в любой точке отрезка [0,l]

- а) Исследовать поведение решения на сгущающихся сетках (при увеличении n).
- б) Выяснить, будет ли сходимость.

Решить систему линейных алгебраических уравнений

$$-\gamma y_{i-1} + 2y_i + \gamma y_{i+1} = f_i$$
, $i = 1, ..., N-1$
 $y_0 = f_0$, $y_N = f_N$,

где $\frac{1}{5} \leq \gamma \leq 1$. Правая часть f_i , $i=0,\ldots,N$, задана.

- а) Выяснить, как величина γ влияет на решение при данном N.
- б) Выбор метода и возможность его применения обосновать.

Решить систему линейных алгебраических уравнений

$$-\gamma y_{i-1} + 2y_i + \gamma y_{i+1} = f_i, i = 1, ..., N - 1$$
$$y_0 = f_0, y_N = f_N,$$

где $1 \leq \gamma \leq \frac{3}{2}$. Правая часть f_i , $i=0,\ldots,N$, задана.

- а) Выяснить, как величина γ влияет на решение при данном N.
- б) Выбор метода и возможность его применения обосновать.

Даны ортогональные полиномы $Q_n(x)\,$ и $P_m(x)\,$ на отрезке [-1,1].

Выяснить, какой из квадратурных методов — метод трапеций или парабол, лучше воспроизводит свойство ортогональности полиномов при некоторых заданных n и m, зависимость точности от того, каким задано число точек сетки N.

V 8. -----

Найти решение краевой задачи

$$\frac{d^2u}{dx^2} + a\frac{du}{dx} = f(x)$$
, $u = u(x)$, $0 < x < l$

$$u(0) = u_0$$
 , $u(l) = u_1$

на сетке $x_i = ih$, i = 0,1,...,N, h = l/N.

Функция f(x) и величина a заданы.

Установить наличие или отсутствие сходимости при уменьшении шага сетки.