Accountable Off-Policy Evaluation via a Kernelized Bellman Statistics

Yihao Feng*, Tongzheng Ren*, Ziyang Tang, Qiang Liu

The University of Texas at Austin

ICML 2020

Off Policy RL: Medical Treatment

States (\mathcal{S}): Physiological condition of patients

Actions (\mathcal{A}): Usage of medical treatments

Rewards (\mathcal{R}): Health recovery of patients

On Policy: ② High Risk!

• Off Policy: © Safe and data efficient!

Off-Policy Evaluation (OPE)

• Given data $\mathcal{D} = \{s_i, a_i, r_i, s_i'\}_{i=1}^n$ collected with (unknown) behavior policy π_{BEH} to estimate the discounted total return of the target policy π :

$$\eta^{\pi} := \lim_{T \to \infty} \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right] = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right].$$

• Useful when on-policy data is not available.

Recommendation

Existing OPE Estimations

Methods	Estimating η^{π}
Value Based	$\mathbb{E}_{x \sim \mu_0 \times \pi}[Q^{\pi}(x)]$
Importance Sampling	$R(\tau)\prod_{t=1}^{T}\frac{\pi(a_t s_t)}{\pi_0(a_t s_t)}$
Density Based [LLTZ18]	
Doubly Robust [JL15] ,	
Model-based [LGR ⁺ 18],	

For high-stakes decision applications, we may need more information to make sure that these estimators are reliable...

Motivation

More information for high-stake decisions:

- Data is limited, we need to quantify the uncertainty of the predictions.
- \bullet We want to determine the **lower** and the **upper** bounds for η^π with high probability.
- If possible, we can provide a post-hoc correction for existing OPE estimators, such that the corrected estimation is in the high confidence interval.

Existing Confidence Interval for OPE

Prior works [e.g. TTG15, HSN17]:

- Most bounds are Importance Sampling (IS) based.
- \odot Behavior **aware** (need π_{BEH}).
- Trajectory based: data inefficient.
- © Curse of horizon.

Our work:

- Value based bound.
- © Behavior agnostic (black-box)!
- © Transition based: data efficient!
- Work for long or infinite horizon MDP!

General Idea

Value-based Estimator:

$$\eta^{\pi} = \mathbb{E}_{x \sim \mu_0 \times \pi} [Q^{\pi}(x)].$$

- Assume we have a feasible set Q_n , such that:
 - $\mathbb{P}(Q^{\pi} \in \mathcal{Q}_n) \geq 1 \delta$.
 - $Q_n \to \{Q^\pi\}$ as $n \to \infty$.
- Define

$$\eta^+(\text{resp. }\eta^-) = \max_{Q \in \mathcal{Q}_n}(\text{resp. }\min_{Q \in \mathcal{Q}_n}) \ \mathbb{E}_{\mathbf{x} \sim \mu_0 \times \pi}\big[Q(\mathbf{x})\big]\,,$$

thanks to the property of Q_n , we have

- $\bullet \mathbb{P}(\eta^{\pi} \in [\eta^{-}, \eta^{+}]) \geq 1 \delta.$
- $\bullet \eta^-, \eta^+ \to \eta^\pi \text{ as } n \to \infty$.

Choice of Q_n

We choose Q_n based on a consistent test statistics $\mathbb{D}(Q, Q^{\pi})$ for the hypothesis $Q = Q^{\pi}$:

$$Q_n = \left\{ Q \in \mathcal{F} \mid \hat{\mathbb{D}}_n(Q, Q^{\pi}) \in \mathsf{Cl}_{\delta,n} \right\},$$

where

- $ullet \mathcal{F}$ is a proper function class that contains Q^{π} .
- $\bullet \, \hat{\mathbb{D}}_n(Q,Q^{\pi})$ is the empirical estimate of $\mathbb{D}(Q,Q^{\pi})$ with off-policy data.
- $\text{Cl}_{\delta,n}$ is the confidence interval of $\hat{\mathbb{D}}_n(Q^\pi,Q^\pi)$ under confidence level δ .

Choice of $\mathbb{D}(Q,Q^{\pi})$

• Kernel loss [FLL19] as a test statistic:

$$\mathbb{D}_{K}(Q, Q^{\pi}) = L_{K}(Q) := \mathbb{E}_{x, \bar{x} \sim \mu} \left[\mathcal{R}_{\pi} Q(x) \cdot K(x, \bar{x}) \cdot \mathcal{R}_{\pi} Q(\bar{x}) \right], \qquad (1)$$

where $\mathcal{R}_{\pi}Q = \mathcal{B}_{\pi}Q - Q$ and

$$\mathcal{B}_{\pi}Q(s,a) \coloneqq \mathbb{E}_{(s',a') \sim P(\cdot|s,a) \times \pi(\cdot|s')} \left[r(s,a) + \gamma Q(s',a')|s,a \right]. \tag{2}$$

- Why kernel loss?
 - Consistency:

$$L_K(\hat{Q}) = 0 \Leftrightarrow \hat{Q} = Q^{\pi}.$$

• Can measure the deviation from \hat{Q} to Q^{π} without the knowledge of Q^{π} !

Empirical Estimation and Concentration

• We can use the so-called *V-statistics* to estimate the kernel loss:

$$\hat{\mathbb{D}}_{K}^{V}(Q, \mathbf{Q}^{\pi}) = \hat{\mathcal{L}}_{K}^{V}(Q) = \frac{1}{n^{2}} \sum_{i,j \in [n]} \hat{\mathcal{R}}_{\pi}Q(x_{i}) \cdot K(x_{i}, x_{j}) \cdot \hat{\mathcal{R}}_{\pi}Q(x_{j}).$$

Theorem (Concentration of V-statistics)

Assume the behaviour policy π_{BEH} is ergodic, then with probability $1-\delta$,

$$\left|\hat{L}_{K}^{V}(Q) - L_{K}(Q)\right| \le C\left(\frac{n-1}{n}\sqrt{\frac{\log 2/\delta}{n}} + \frac{1}{n}\right),\tag{3}$$

where C is an absolute constant that depends on the maximum reward R_{\max} , discounted factor γ and the maximum value of kernel K.

Choice of \mathcal{F} : RKHS

Consider the optimization problem:

$$\eta^+ = \max_{Q \in \mathcal{F}} \mathbb{E}_{\mathbf{X} \sim \mu_0 \times \pi}[Q(\mathbf{X})], \quad \text{s.t.} \quad \hat{\mathbb{D}}_K^V(Q, \mathbf{Q}^{\pi}) \le \lambda_{\delta, n},$$

where $\lambda_{\delta,n}$ is chosen via Eq (3).

- Assume \mathcal{F} is a RKHS with dimension $d \leq n$, can be effectively solved with convex optimization methods!
- Compatible with simple linear feature and more expressive features like neural feature.

Post-hoc Diagnosis

- Given a black-box estimate of Q^{π} , how can we know if it is accurate?
- Check if

$$\hat{\mathbb{D}}_{K}^{V}(\hat{Q}, \mathbf{Q}^{\pi}) \leq \lambda_{\delta, n}.$$

- Yes: \hat{Q} is a reasonable estimate of Q^{π} .
- No: \hat{Q} is not a reasonable estimate of Q^{π} , need **correction**.

Post-hoc Correction

- \bullet We want minimum manipulation of \hat{Q} to keep the desired properties that \hat{Q} may have.
- ullet With a given estimator \hat{Q} that need to correct, let the final estimator be

$$Q = \hat{Q} + Q_{\text{debias}},$$

and solve the following problem to get the correction term $Q_{
m debias}$:

$$\min_{Q_{\text{debias}} \in \mathcal{F}} \| \, Q_{\text{debias}} \|_{\mathcal{F}}, \quad \text{s.t.} \quad \hat{\mathbb{D}}^{\, V}_{\, K} (\, \hat{Q} + Q_{\text{debias}}, \, Q^{\pi}) \leq \lambda_{\delta, n} \, .$$

• If \mathcal{F} is a RKHS with dimension $d \leq n$, can be solved with convex optimization methods effectively.

Experiments

Figure: Off-policy evaluation results on Inverted-Pendulum.

Experiments

Feng, Ren, Tang, Liu (UT Austin)

Thanks!

Reference I

- [FLL19] Yihao Feng, Lihong Li, and Qiang Liu. A kernel loss for solving the bellman equation. In Advances in Neural Information Processing Systems, pages 15430–15441, 2019.
- [HSN17] Josiah P Hanna, Peter Stone, and Scott Niekum. Bootstrapping with models: Confidence intervals for off-policy evaluation. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.
 - [JL15] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. arXiv preprint arXiv:1511.03722, 2015.
- [LGR+18] Yao Liu, Omer Gottesman, Aniruddh Raghu, Matthieu Komorowski, Aldo A Faisal, Finale Doshi-Velez, and Emma Brunskill. Representation balancing mdps for off-policy policy evaluation. In <u>Advances in Neural Information Processing Systems</u>, pages 2644–2653, 2018.
- [LLTZ18] Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: Infinite-horizon off-policy estimation. In <u>Advances in Neural Information</u> Processing Systems, pages 5356–5366, 2018.
- [TTG15] Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh.

 High-confidence off-policy evaluation. In <u>Twenty-Ninth AAAI Conference on Artificial</u>
 Intelligence, 2015.