



# FCC PART 20.21, PART 22H IC RSS-131, ISSUE 2

# TEST AND MEASUREMENT REPORT

For

# Shireen, Inc.

12910 Cloverleaf Center Drive, Suite 110, Germantown, MD 20874, USA

FCC ID: YEF18892PICOAMP IC: 8987A-PICOAMP892

Report Type:
Original Report

Product Type:
850 MHz Picocell Amplifier

Report Number:
Report Number:
Report Date:
2015-06-02

Reviewed By: Simon Ma

Bay Area Compliance Laboratories Corp.
1274 Anvilwood Avenue,
Sunnyvale, CA 94089, USA
Tel: (408) 732-9162
Fax: (408) 732 9164

**Note**: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA\* or any agency of the Federal Government.

<sup>\*</sup> This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "\*"

## **TABLE OF CONTENTS**

| 1 | GE  | NERAL INFORMATION                                                            | 5          |
|---|-----|------------------------------------------------------------------------------|------------|
|   | 1.1 | PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)                           | 5          |
|   | 1.2 | MECHANICAL DESCRIPTION                                                       |            |
|   | 1.3 | Objective                                                                    |            |
|   | 1.4 | RELATED SUBMITTAL(S)/GRANT(S)                                                | 5          |
|   | 1.5 | TEST METHODOLOGY                                                             | 5          |
|   | 1.6 | MEASUREMENT UNCERTAINTY                                                      | 6          |
|   | 1.7 | TEST FACILITY                                                                | 6          |
| 2 | SYS | STEM TEST CONFIGURATION                                                      | 8          |
| _ | 2.1 | JUSTIFICATION                                                                |            |
|   | 2.1 | EUT Exercise Software                                                        |            |
|   | 2.3 | EQUIPMENT MODIFICATIONS                                                      |            |
|   | 2.4 | EUT INTERNAL CONFIGURATION                                                   |            |
|   | 2.5 | LOCAL SUPPORT EQUIPMENT LIST AND DETAILS                                     |            |
|   | 2.6 | POWER SUPPLY AND LINE FILTERS                                                |            |
|   | 2.7 | INTERFACE PORTS AND CABLING                                                  |            |
| 2 |     | MMARY OF TEST RESULTS                                                        |            |
| 3 |     |                                                                              |            |
| 4 | FC  | C §2.1046, §22.913 & IC RSS-131 §4.3 - RF OUTPUT POWER                       |            |
|   | 4.1 | APPLICABLE STANDARDS                                                         | 10         |
|   | 4.2 | TEST PROCEDURE                                                               |            |
|   | 4.3 | TEST EQUIPMENT LIST AND DETAILS                                              |            |
|   | 4.4 | TEST ENVIRONMENTAL CONDITIONS                                                |            |
|   | 4.5 | TEST RESULTS                                                                 | 11         |
| 5 | FC  | C §2.1049, §22.917 & IC RSS-GEN §6.6 - OCCUPIED BANDWIDTH                    | 16         |
|   | 5.1 | APPLICABLE STANDARDS                                                         | 16         |
|   | 5.2 | TEST PROCEDURE                                                               |            |
|   | 5.3 | TEST EQUIPMENT LIST AND DETAILS                                              |            |
|   | 5.4 | TEST ENVIRONMENTAL CONDITIONS                                                |            |
|   | 5.5 | TEST RESULTS                                                                 | 17         |
| 6 | FC  | C §2.1053, §22.917& IC RSS-131§6.4 - SPURIOUS RADIATED EMISSIONS             | 40         |
| · | 6.1 | APPLICABLE STANDARDS                                                         |            |
|   | 6.2 | TEST PROCEDURE                                                               |            |
|   | 6.3 | TEST FROCEDURE  TEST EQUIPMENT LIST AND DETAILS                              |            |
|   | 6.4 | TEST SETUP BLOCK DIAGRAM                                                     |            |
|   | 6.5 | TEST ENVIRONMENTAL CONDITIONS.                                               |            |
|   | 6.6 | TEST RESULTS                                                                 |            |
| _ |     | C §2.1051, §22.917& IC RSS-131§6.4 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS |            |
| / |     |                                                                              |            |
|   | 7.1 | APPLICABLE STANDARDS                                                         |            |
|   | 7.2 | TEST PROCEDURE                                                               |            |
|   | 7.3 | TEST EQUIPMENT LIST AND DETAILS                                              |            |
|   | 7.4 | TEST ENVIRONMENTAL CONDITIONS                                                |            |
|   | 7.5 | TEST RESULTS                                                                 |            |
| 8 | FC  | C §22.917 &IC RSS 131 §6.4 - BAND EDGE                                       | <b>7</b> 9 |
|   | 8.1 | APPLICABLE STANDARDS                                                         | 79         |
|   | 0.1 | ALL LICABLE STANDARDS                                                        | , ,        |

| 8.3   | TEST EQUIPMENT LIST AND DETAILS                        | 79 |
|-------|--------------------------------------------------------|----|
| 8.4   | TEST ENVIRONMENTAL CONDITIONS                          | 79 |
| 8.5   | TEST RESULTS                                           | 79 |
| 9 IC  | C RSS-131 §4.2 - PASSBAND GAIN AND BANDWIDTH           | 87 |
| 9.1   | APPLICABLE STANDARDS                                   | 87 |
| 9.2   | TEST PROCEDURE                                         | 87 |
| 9.3   | TEST EQUIPMENT LIST AND DETAILS                        | 87 |
| 9.4   | TEST ENVIRONMENTAL CONDITIONS                          | 87 |
| 9.5   | TEST RESULTS                                           | 87 |
| 10 FC | CC §1.1307(B)(1), §2.1091 & IC RSS-102 - RF EXPOSURE   | 90 |
| 10.1  | 1 Applicable Standards                                 | 90 |
| 10.2  | 2 MPE Prediction                                       | 91 |
| 10.3  | 3 TEST RESULTS                                         | 91 |
| 11 EX | XHIBIT A - FCC & IC LABELING REQUIREMENTS              | 92 |
|       | 1 FCC ID Label Requirements                            |    |
|       | 2 IC Label Requirements                                |    |
| 11.3  | 3 LABEL CONTENTS AND LOCATION                          | 93 |
| 12 EX | XHIBIT B - EUT SETUP PHOTOGRAPHS                       | 94 |
| 12.1  | 1 RADIATED EMISSION BELOW 1 GHZ FRONT VIEW AT 3 METERS | 94 |
| 12.2  | 2 RADIATED EMISSION BELOW 1 GHz REAR VIEW AT 3 METERS  | 94 |
| 12.3  | RADIATED EMISSION ABOVE 1 GHz Front View at 3 Meters   | 95 |
| 12.4  | 4 RADIATED EMISSION ABOVE 1 GHz REAR VIEW AT 3 METERS  | 95 |
| 13 EX | XHIBIT C – EUT PHOTOGRAPHS                             | 96 |
| 13.1  | 1 EUT – Front View                                     | 96 |
| 13.2  | 2 EUT – REAR VIEW                                      | 96 |
| 13.3  | 3 EUT – RIGHT SIDE VIEW                                | 97 |
| 13.4  | 4 EUT – Left Side View                                 | 97 |
|       | 5 EUT – TOP VIEW                                       |    |
| 13.6  | 5 EUT – Воттом View                                    | 98 |
|       | 7 EUT – OPEN CASE VIEW                                 |    |
| 13.8  | 8 EUT – OPEN CASE VIEW- PCB BOARD BOTTOM               | 99 |

## DOCUMENT REVISION HISTORY

| Revision Number Report Number |  | Description of Revision | Date of Revision |
|-------------------------------|--|-------------------------|------------------|
| 0 R1504064-22                 |  | Original Report         | 2015-05-15       |
| 1 R1504064-22 Rev A           |  | Updated Test Data       | 2015-06-02       |

## 1 General Information

## 1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Shireen, Inc.* and their product model: 18-892, FCC ID: YEF18892PICOAMP, IC: 8987A-PICOAMP892, which will henceforth be referred to as the EUT (Equipment Under Test). The EUT is an 850 MHz band amplifier for both downlink and uplink.

## 1.2 Mechanical Description

The EUT measures approximately 148mm (L) x 161mm (W) x 37mm (H) and weighs 1kg.

The test data gathered are from typical production sample, serial number: 1314225, assigned by Client.

## 1.3 Objective

This type approval report is prepared on behalf of *Shireen, Inc.* in accordance with Part 2, Subpart J, Part 20.21, Part 22 Subpart H, of the Federal Communication Commission's rules, and IC RSS 131.

The objective is to determine compliance with FCC/IC rules for RF output power, modulation characteristics, occupied bandwidth, spurious emissions at antenna terminal, field strength of spurious radiation, frequency stability, band edge, and conducted and radiated margin.

## 1.4 Related Submittal(s)/Grant(s)

No Related Submittals

## 1.5 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 20.21 – Signal Boosters Part 22 Subpart H - Public Mobile Services IC RSS 131- Zone Enhancers for the Land Mobile Service

Applicable Standards: TIA/EIA603-D, ANSI C63.4-2009, FCC KDB 935210.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

## 1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2:2011, The Treatment of Uncertainty in EMC Measurements, the values ranging from  $\pm 2.0$  dB for Conducted Emissions tests and  $\pm 4.0$  dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

## 1.7 Test Facility

Bay area compliance Laboratories Corp. (BACL) is:

- 1- An independent Commercial Test Laboratory accredited to **ISO 17025: 2005** by **A2LA**, in the fields of: Electromagnetic Compatibility & Telecommunications covering Emissions, Immunity, Radio, RF Exposure, Safety and Telecom. This includes NEBS (Network Equipment Building System), Wireless RF, Telecommunications Terminal Equipment (TTE); Network Equipment; Information Technology Equipment (ITE); Medical Electrical Equipment; Industrial, Commercial, and Medical Test Equipment; Professional Audio and Video Equipment; Electronic (Digital) Products; Industrial and Scientific Instruments; Cabled Distribution Systems and Energy Efficiency Lighting.
- 2- An ENERGY STAR Recognized Laboratory, for the LM80 Testing, a wide variety of Luminares and Computers.
- 3- A NIST Designated Phase-I and Phase-II CAB including: ACMA (Australian Communication and Media Authority), BSMI (Bureau of Standards, Metrology and Inspection of Taiwan), IDA (Infocomm Development Authority of Singapore), IC(Industry Canada), Korea (Ministry of Communications Radio Research Laboratory), NCC (Formerly DGT; Directorate General of Telecommunication of Chinese Taipei) OFTA (Office of the Telecommunications Authority of Hong Kong), Vietnam, VCCI Voluntary Control Council for Interference of Japan and a designated EU CAB (Conformity Assessment Body) (Notified Body) for the EMC and R&TTE Directives.
- 4- A Product Certification Body accredited to **ISO Guide 65:1996** by **A2LA** to certify:
- 1- Unlicensed, Licensed radio frequency devices and Telephone Terminal Equipment for the FCC. Scope A1, A2, A3, A4, B1, B2, B3, B4 & C.
- 2. Radio Standards Specifications (RSS) in the Category I Equipment Standards List and All Broadcasting Technical Standards (BETS) in Category I Equipment Standards List for Industry Canada.
- 3. Radio Communication Equipment for Singapore.
- 4. Radio Equipment Specifications, GMDSS Marine Radio Equipment Specifications, and Fixed Network Equipment Specifications for Hong Kong.
- 5. Japan MIC Telecommunication Business Law (A1, A2) and Radio Law (B1, B2 and B3).
- 6. Audio/Video, Battery Charging Systems, Computers, Displays, Enterprise Servers, Imaging Equipment, Set-Top Boxes, Telephony, Televisions, Ceiling Fans, CFLs (Including GU24s), Decorative Light Strings, Integral LED Lamps, Luminaires, Residential Ventilating Fans.

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz as well as ANSI C63.4-2009, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: A-0027. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is an American Association for Laboratory Accreditation (A2LA) accredited laboratory (Lab Code 3297-02). The current scope of accreditations can be found at

http://www.a2la.org/scopepdf/3297-02.pdf?CFID=1132286&CFTOKEN=e42a3240dac3f6ba-6DE17DCB-1851-9E57-477422F667031258&jsessionid=8430d44f1f47cf2996124343c704b367816b

## 2 System Test Configuration

#### 2.1 Justification

The EUT was configured for testing according to TIA/EIA-603-D.

The final qualification test was performed with the EUT operating at normal mode.

## 2.2 EUT Exercise Software

N/A: signal was sent through EUT using a signal generator. The device was set to normal operating mode.

## 2.3 Equipment Modifications

No modifications were made to the EUT.

## 2.4 EUT Internal Configuration

| Manufacturer | Description | Model | Serial Number |  |
|--------------|-------------|-------|---------------|--|
| Shireen Inc  | РСВ         | 18892 | -             |  |

## 2.5 Local Support Equipment List and Details

| Manufacturers   | Descriptions                 | Models        | Serial Numbers               |  |
|-----------------|------------------------------|---------------|------------------------------|--|
| Dell Laptop     |                              | Latitude D600 | CN-0X2034-48643-<br>3A6-8307 |  |
| Rohde & Schwarz | Signal Generator             | SMIQ03        | 849192/0085/DE23746          |  |
| Agilent         | Signal Generator             | E4438C        | MY45091309                   |  |
| Agilent         | Signal Studio for WCDMA/HSPA | N7600B        | -                            |  |

## 2.6 Power Supply and Line Filters

N/A

## 2.7 Interface Ports and Cabling

| Cable Description Length (m) |    | From             | То                |
|------------------------------|----|------------------|-------------------|
| RF cable                     | <1 | Signal Generator | Input/ EUT        |
| RF cable                     | <1 | Output/ EUT      | Spectrum Analyzer |

#### **Summary of Test Results** 3

| FCC/IC Rules                            | Description of Tests                    | Results          |
|-----------------------------------------|-----------------------------------------|------------------|
| FCC §2.1046, §22.913<br>RSS-131 §4.3    | RF Output Power                         | Compliant        |
| FCC §2.1049, §22.917<br>IC RSS-Gen §6.6 | Occupied Bandwidth                      | Compliant        |
| FCC §2.1053, §22.917<br>IC RSS-131 §4.4 | Spurious Radiated Emissions             | Compliant        |
| FCC§2.1051, §22.917<br>IC RSS-131 §4.4  | Spurious Emissions at Antenna Terminals | Compliant        |
| FCC §22.917<br>IC RSS-131 §4.4          | Band Edge                               | Compliant        |
| FCC §2.1055<br>IC RSS-131 §4.5          | Frequency Stability                     | N/A <sup>1</sup> |
| FCC §2.1091<br>IC RSS-102               | RF Exposure                             | Compliant        |
| IC RSS-131 §4.1                         | Passband Gain and Bandwidth             | Compliant        |

<sup>1</sup> The unit is a signal booster. Note: This unit does not have AGC function

## 4 FCC §2.1046, §22.913 & IC RSS-131 §4.3 - RF Output Power

## 4.1 Applicable Standards

According to FCC §22.913 (a), the maximum effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts.

According to RSS 131, the manufacturer's output power rating Prated MUST NOT be greater than Pmean for all types of enhancers.

#### 4.2 Test Procedure

#### Conducted:

The RF output of the transmitter was connected to the signal generator and the spectrum analyzer through sufficient attenuation.



#### IC Mean output power:

The RF output of the transmitter was connected to the signal generator and the spectrum analyzer through directional coupler.



- 1. The following subscript "o" denotes a parameter at the enhancer output point.
- 2. Connect two signal generators to the input of the Device under Test (DUT), via a proper impedance matching network (and preferably via a variable attenuator) so that the two input signals are equal sinusoids (and can be raised equally).
- 3. Connect a dummy load of suitable load rating to the enhancer output point. Connect also a spectrum analyzer to this output point via a coupling network and attenuator, so that only a portion of the output signal is coupled to the spectrum analyzer. The coupling attenuation shall be stated in the test report.
- 4. Set the two generator frequencies f1 and f2 such that they and their third-order intermodulation product frequencies, f3=2f1-f2 and f4=2f2-f1, are all within the passband of the DUT.
- 5. Raise the input level to the DUT while observing the output tone levels, Po1 and Po2, and the intermodulation product levels, Po3 and Po4.
- 6. **For enhancers rated 500 watts or less**: Raise the input level to the DUT until the greater level of the intermodulation products at the enhancer output terminals, Po3 or Po4, equals -43 dBW.
- 7. **For enhancers rated over 500 watts**: Raise the input level to the DUT until the greater level of the intermodulation products at the enhancer output terminals, Po3 or Po4, is 67 dB below the level of either output tone level, Po1 or Po2.
- 8. Record all signal levels and their frequencies. Calculate the mean output power (Pmean) under this testing condition using Pmean = Po1 + 3 dB.

## 4.3 Test Equipment List and Details

| Manufacturers | Descriptions      | Models | Serial<br>Numbers | Calibration<br>Dates | Calibration<br>Interval |
|---------------|-------------------|--------|-------------------|----------------------|-------------------------|
| Agilent       | Spectrum Analyzer | E4440A | MY44303352        | 2014-10-16           | 1 year                  |
| Agilent       | Signal Generator  | E4438C | MY45091309        | 2014-05-03           | 1 year                  |

**Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

## **4.4** Test Environmental Conditions

| Temperature:       | 21-23° C      |  |
|--------------------|---------------|--|
| Relative Humidity: | 42-48 %       |  |
| ATM Pressure:      | 101.4-102 kPa |  |

The testing was performed by Bo Li on 2015-04-02 to 2015-04-18 in the RF Site.

## 4.5 Test Results

| Mod       | e                                       | Channel | Frequency<br>(MHz) | Input Power (dBm) | Output Power (dBm) | Gain<br>(dB) |
|-----------|-----------------------------------------|---------|--------------------|-------------------|--------------------|--------------|
|           | 0.70 3.777                              | Low     | 869.2              | 13                | 39.94              | 26.94        |
|           | 850 MHz<br>Downlink                     | Middle  | 881.6              | 13                | 39.02              | 26.02        |
| GSM/GPRS  | 20,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | High    | 893.8              | 13                | 39.91              | 26.91        |
| GSW/GFKS  | 0.70 3.777                              | Low     | 824.2              | -17               | 14.51              | 31.51        |
|           | 850 MHz<br>Uplink                       | Middle  | 836.6              | -17               | 14.99              | 31.99        |
|           | Оринк                                   | High    | 848.8              | -17               | 14.1               | 31.1         |
|           | 850 MHz<br>Downlink                     | Low     | 869.8              | 13                | 39.17              | 26.17        |
|           |                                         | Middle  | 881.5              | 13                | 38.53              | 25.53        |
| CDMA/EVDO |                                         | High    | 893.2              | 13                | 39.47              | 26.47        |
| CDMA/EVDO | 850 MHz<br>Uplink                       | Low     | 824.8              | -17               | 14.93              | 31.93        |
|           |                                         | Middle  | 836.5              | -17               | 15.32              | 32.32        |
|           |                                         | High    | 848.2              | -17               | 14.63              | 31.63        |
|           |                                         | Low     | 871.4              | 8                 | 34.64              | 26.64        |
|           | 850 MHz<br>Downlink                     | Middle  | 881.6              | 8                 | 33.47              | 25.47        |
| WCDMA     | Downink                                 | High    | 891.6              | 8                 | 35.07              | 27.07        |
| WCDMA     | 0.70 3.777                              | Low     | 826.4              | -17               | 14.43              | 31.43        |
|           | 850 MHz<br>Uplink                       | Middle  | 836.4              | -17               | 15.03              | 32.03        |
|           | Оринк                                   | High    | 846.6              | -17               | 14.41              | 31.41        |

| Mod     | de                  | Channel | Frequency<br>(MHz) | Input Power (dBm) | Output Power (dBm) | Gain<br>(dB) |
|---------|---------------------|---------|--------------------|-------------------|--------------------|--------------|
|         | 050 MH              | Low     | 869.7              | 8                 | 33.79              | 25.79        |
|         | 850 MHz<br>Downlink | Middle  | 881.5              | 8                 | 32.92              | 24.92        |
| LTE     | Downmik             | High    | 893.3              | 8                 | 34.01              | 26.01        |
| 1.4 MHz |                     | Low     | 824.7              | -20               | 12.24              | 32.24        |
|         | 850 MHz<br>Uplink   | Middle  | 836.5              | -20               | 12.62              | 32.62        |
|         | Оринк               | High    | 848.3              | -20               | 11.86              | 31.86        |
|         |                     | Low     | 870.5              | 8                 | 34.18              | 26.18        |
|         | 850 MHz<br>Downlink | Middle  | 881.5              | 8                 | 33.07              | 25.07        |
| LTE     | Downink             | High    | 892.5              | 8                 | 34.4               | 26.4         |
| 3 MHz   | 850 MHz<br>Uplink   | Low     | 825.5              | -17               | 14.47              | 31.47        |
|         |                     | Middle  | 836.5              | -17               | 15.03              | 32.03        |
|         |                     | High    | 847.5              | -17               | 14.36              | 31.36        |
|         | 850 MHz<br>Downlink | Low     | 871.5              | 8                 | 34.49              | 26.49        |
|         |                     | Middle  | 881.5              | 8                 | 33.4               | 25.4         |
| LTE     |                     | High    | 891.5              | 8                 | 34.8               | 26.8         |
| 5 MHz   | 850 MHz<br>Uplink   | Low     | 826.5              | -17               | 14.42              | 31.42        |
|         |                     | Middle  | 836.5              | -17               | 14.97              | 31.97        |
|         |                     | High    | 846.5              | -17               | 14.31              | 31.31        |
|         |                     | Low     | 874                | 8                 | 34.2               | 26.2         |
|         | 850 MHz<br>Downlink | Middle  | 881.5              | 8                 | 33.57              | 25.57        |
| LTE     | DOWNINK             | High    | 889                | 8                 | 34.66              | 26.66        |
| 10 MHz  |                     | Low     | 821.5              | -17               | 14.66              | 31.66        |
|         | 850 MHz<br>Uplink   | Middle  | 836.5              | -17               | 14.92              | 31.92        |
|         | Оринк               | High    | 844                | -17               | 14.32              | 31.32        |

## Mean output power:

## Uplink

|        | F <sub>1</sub> (MHz) | F <sub>2</sub> (MHz) | F <sub>3</sub> (MHz) | F <sub>4</sub> (MHz) | Input power (dBm) | Po1 (dBm) | P <sub>mean</sub> (dBm) |
|--------|----------------------|----------------------|----------------------|----------------------|-------------------|-----------|-------------------------|
| Low    | 826.4                | 826.65               | 826.15               | 826.9                | -17.2             | 14.99     | 17.99                   |
| Middle | 836.6                | 836.35               | 836.85               | 836.1                | -19.1             | 14.97     | 17.97                   |
| High   | 846.6                | 846.35               | 846.85               | 846.1                | -17.8             | 14.95     | 17.95                   |

## Downlink

|        | F <sub>1</sub> (MHz) | F <sub>2</sub> (MHz) | F <sub>3</sub> (MHz) | F <sub>4</sub> (MHz) | Input power (dBm) | Po1 (dBm) | P <sub>mean</sub> (dBm) |
|--------|----------------------|----------------------|----------------------|----------------------|-------------------|-----------|-------------------------|
| Low    | 871.4                | 871.65               | 871.15               | 871.9                | 8.8               | 35.08     | 38.08                   |
| Middle | 881.6                | 881.35               | 881.853              | 881.097              | 6.8               | 31.9      | 34.9                    |
| High   | 891.6                | 891.35               | 891.853              | 891.097              | 9.9               | 36.99     | 39.99                   |

Please refer to the following tables and plots.

## **Uplink**







## High



#### **Downlink**







## High



## 5 FCC §2.1049, §22.917 & IC RSS-Gen §6.6 - Occupied Bandwidth

## 5.1 Applicable Standards

Requirements: FCC §2.1049, §22.917

IC RSS-Gen §6.6

#### **5.2** Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set to at least 1% of the BW and the 26 dB & 99% bandwidth was recorded.

The RF output of the transmitter was connected to the signal generator and the spectrum analyzer through sufficient attenuation.



## 5.3 Test Equipment List and Details

| Manufacturers | Descriptions      | Models | Serial<br>Numbers | Calibration<br>Dates | Calibration<br>Interval |  |
|---------------|-------------------|--------|-------------------|----------------------|-------------------------|--|
| Agilent       | Spectrum Analyzer | E4440A | MY44303352        | 2014-10-16           | 1 year                  |  |
| Agilent       | Signal Generator  | E4438C | MY45091309        | 2014-05-03           | 1 year                  |  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

#### **5.4** Test Environmental Conditions

| Temperature:       | 21-23° C      |  |  |
|--------------------|---------------|--|--|
| Relative Humidity: | 42-48 %       |  |  |
| ATM Pressure:      | 101.4-102 kPa |  |  |

The testing was performed by Bo Li on 2015-04-02 to 2015-04-18 in the RF Site.

## 5.5 Test Results

Please refer to the following tables and plots.

| Mode       |               |         | T.                 | Input            |                    | Output           |                    |
|------------|---------------|---------|--------------------|------------------|--------------------|------------------|--------------------|
|            |               | Channel | Frequency<br>(MHz) | 99% OBW<br>(kHz) | 26 dB OBW<br>(kHz) | 99% OBW<br>(kHz) | 26 dB OBW<br>(kHz) |
| GGM/GDDG   | 850 MHz<br>DL | Low     | 869.2              | 242.3733         | 311.276            | 242.7433         | 310.963            |
|            |               | Middle  | 881.6              | 245.1974         | 312.833            | 245.298          | 314.445            |
|            |               | High    | 893.8              | 244.3905         | 309.748            | 244.4723         | 313.767            |
| GSM/GPRS   | 850 MHz<br>UL | Low     | 824.2              | 242.533          | 307.411            | 242.1678         | 312.465            |
|            |               | Middle  | 836.6              | 246.4519         | 312.217            | 246.4376         | 315.516            |
|            |               | High    | 848.8              | 244.8309         | 314.710            | 244.6757         | 312.615            |
|            | 850 MHz<br>DL | Low     | 869.8              | 1260.8           | 1425               | 1261.6           | 1437               |
|            |               | Middle  | 881.5              | 1259.7           | 1426               | 1256.6           | 1432               |
| CDMA/EVIDO |               | High    | 893.2              | 1263.7           | 1430               | 1269.9           | 1434               |
| CDMA/EVDO  | 850 MHz<br>UL | Low     | 824.8              | 1260.1           | 1433               | 1253.1           | 1438               |
|            |               | Middle  | 836.5              | 1256.7           | 1421               | 1257.4           | 1436               |
|            |               | High    | 848.2              | 1260.2           | 1424               | 1264.6           | 1434               |
|            | 850 MHz<br>DL | Low     | 871.4              | 4167.5           | 4684               | 4163.1           | 4694               |
|            |               | Middle  | 881.6              | 4149             | 4680               | 4169.9           | 4675               |
| WCDMA      |               | High    | 891.6              | 4168.1           | 4653               | 4174.2           | 4673               |
|            | 850 MHz<br>UL | Low     | 826.4              | 4160.1           | 4681               | 4185.1           | 4675               |
|            |               | Middle  | 836.4              | 4165.3           | 4656               | 4207.9           | 4936               |
|            |               | High    | 846.6              | 4154.8           | 4682               | 4181             | 4748               |

| Mode          |               | Channel | Frequency (MHz) | Input            |                    | Output           |                    |
|---------------|---------------|---------|-----------------|------------------|--------------------|------------------|--------------------|
|               |               |         |                 | 99% OBW<br>(MHz) | 26 dB OBW<br>(MHz) | 99% OBW<br>(MHz) | 26 dB OBW<br>(MHz) |
| LTE           |               | Low     | 869.7           | 1.0983           | 1.336              | 1.0963           | 1.32               |
|               | 850 MHz<br>DL | Middle  | 881.5           | 1.0963           | 1.341              | 1.0942           | 1.328              |
|               |               | High    | 893.3           | 1.0956           | 1.326              | 1.0976           | 1.349              |
| 1.4 MHz       | 0.70.7.77     | Low     | 824.7           | 1.0976           | 1.315              | 1.0995           | 1.397              |
|               | 850 MHz<br>UL | Middle  | 836.5           | 1.0979           | 1.345              | 1.1051           | 1.641              |
|               |               | High    | 848.3           | 1.094            | 1.327              | 1.0954           | 1.355              |
|               |               | Low     | 870.5           | 2.6955           | 2.986              | 2.7004           | 2.973              |
|               | 850 MHz<br>DL | Middle  | 881.5           | 2.6954           | 2.975              | 2.7078           | 2.997              |
| LTE           |               | High    | 892.5           | 2.7037           | 2.975              | 2.7051           | 2.988              |
| 3 MHz         | 850 MHz<br>UL | Low     | 825.5           | 2.6992           | 2.982              | 2.7122           | 3.491              |
|               |               | Middle  | 836.5           | 2.6961           | 2.975              | 2.7305           | 3.836              |
|               |               | High    | 847.5           | 2.6994           | 2.993              | 2.714            | 3.269              |
|               | 850 MHz<br>DL | Low     | 871.5           | 4.4931           | 5.008              | 4.486            | 4.975              |
|               |               | Middle  | 881.5           | 4.4957           | 4.992              | 4.4962           | 5                  |
| LTE           |               | High    | 891.5           | 4.4915           | 4.983              | 4.4847           | 4.978              |
| 5 MHz         | 850 MHz<br>UL | Low     | 826.5           | 4.4917           | 4.98               | 4.4983           | 5.028              |
|               |               | Middle  | 836.5           | 4.4901           | 5.001              | 4.4989           | 6.458              |
|               |               | High    | 846.5           | 4.4959           | 4.982              | 4.4921           | 4.94               |
|               | 850 MHz<br>DL | Low     | 874             | 8.9574           | 9.851              | 8.9479           | 9.912              |
| LTE<br>10 MHz |               | Middle  | 881.5           | 8.9578           | 9.878              | 8.98             | 9.965              |
|               |               | High    | 889             | 8.9432           | 9.92               | 8.9345           | 9.834              |
|               | 850 MHz<br>UL | Low     | 821.5           | 8.9559           | 9.859              | 8.991            | 11.868             |
|               |               | Middle  | 836.5           | 8.9544           | 9.853              | 8.9533           | 12.191             |
|               |               | High    | 844             | 8.9663           | 9.891              | 8.9764           | 10.684             |

## **Occupied Bandwidth**

#### **GSM/GPRS**

#### Low DL-Input



#### Low DL-Output



## Low UL-Input







#### Middle DL-Output



## Middle UL-Input



## Middle UL-Output



High DL-Input



High DL-Output



High UL-Input



High UL-Output



#### **CDMA**

## Low DL-Input



## Low DL-Output



#### Low UL-Input







#### Middle DL-Output



## Middle UL-Input



## Middle UL-Output



High DL-Input



High DL-Output



High UL-Input



High UL-Output



#### **WCDMA**

## Low DL-Input



## Low DL-Output



#### Low UL-Input







## Middle DL-Output



## Middle UL-Input



## Middle UL-Output



High DL-Input



High DL-Output



High UL-Input



High UL-Output



#### LTE 1.4 MHz

## Low DL-Input



## Low DL-Output



#### Low UL-Input







#### Middle DL-Output



#### Middle UL-Input



## Middle UL-Output



High DL-Input



High DL-Output



High UL-Input



High UL-Output



#### LTE 3 MHz

## Low DL-Input



#### Low DL-Output



#### Low UL-Input







#### Middle UL-Output



## Middle UL-Input



## Middle UL-Input



## High DL-Input



## High DL-Output



High UL-Input



High UL-Output



#### LTE 5 MHz

## Low DL-Input



## Low DL-Output



#### Low UL-Input







#### Middle DL-Output



## Middle UL-Input



## Middle UL-Output



## High DL-Input



#### High DL-Output



## High UL-Input



## High UL-Output



#### LTE 10 MHz

## Low DL-Input



### Low DL-Output



#### Low UL-Input



#### Low UL-Output



## Middle DL-Input



## Middle UL-Output



#### Middle UL-Input



#### Middle UL-Output



High DL-Input



High DL-Output



High UL-Input



High UL-Output



# 6 FCC §2.1053, §22.917& IC RSS-131§6.4 - Spurious Radiated Emissions

## **6.1** Applicable Standards

According to FCC §22.917, RSS-131 §6.4 the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

#### **6.2** Test Procedure

The transmitter was placed on the turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =  $10 \log (TX \text{ Power in Watts}/0.001)$  – the absolute level Spurious attenuation limit in dB =  $43 + 10 \log_{10}$  (power out in Watts)

## 6.3 Test Equipment List and Details

| Manufacturer       | Description                 | Model No.                        | Serial No. | Calibration Date | Calibration<br>Interval |  |
|--------------------|-----------------------------|----------------------------------|------------|------------------|-------------------------|--|
| Sunol Science Corp | System Controller           | stem Controller SC99V 122303-1 N |            | N/A              | N/A                     |  |
| Sunol Sciences     | Antenna, Biconi-Log         | JB3                              | A020106-2  | 2014-09-17       | 1 year                  |  |
| Hewlett Packard    | Pre-amplifier<br>1-26.5 GHz | 8447D                            | 2944A06639 | 2014-04-26       | 1 year                  |  |
| HP/ Agilant        | Pre Amplifier               | 8449B OPT HO2                    | 3008A0113  | 2015-03-12       | 1 year                  |  |
| E-meca             | 10dB Attenuator             | 18N-10-294                       | 64671      | N/A              | N/A                     |  |
| Micro Tronics      | Band Reject Filter          | BRM50701                         | 160        | N/A              | N/A                     |  |
| IW Microwave       | SAM-Cable                   | SPS-2303-3840-SPS                | DC1438     | N/A              | N/A                     |  |
| Hewlett Packard    | N-Type Cable                | -                                | 692        | N/A              | N/A                     |  |
| Agilent            | Analyzer, Spectrum          | E4440A                           | MY44303352 | 2014-11-13       | 1 year                  |  |
| Eaton              | Antenna, Horn               | 96001                            | 2617       | 2014-11-18       | 1 year                  |  |
| Rohde & Schwarz    | Receiver, EMI Test          | ESCI 1166.5950K03                | 100044     | 2014-07-17       | 1 year                  |  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

# 6.4 Test Setup Block Diagram

## **Radiated Emissions Testing**



## **6.5** Test Environmental Conditions

| Temperature:       | 20-21 °C        |  |  |  |  |
|--------------------|-----------------|--|--|--|--|
| Relative Humidity: | 47-49 %         |  |  |  |  |
| ATM Pressure:      | 101.4-101.6 kPa |  |  |  |  |

The testing was performed by Bo Li on 2014-04-18 in 5 Meter Chamber 3.

## 6.6 Test Results

Cellular Band: Worst Case

Uplink (Input frequency = 836.5 MHz)

| Indica             | ated                   |                  | Test Antenna |                   | Substituted        |                |                                 |                       |                            |                |                |
|--------------------|------------------------|------------------|--------------|-------------------|--------------------|----------------|---------------------------------|-----------------------|----------------------------|----------------|----------------|
| Frequency<br>(MHz) | S.A.<br>Amp.<br>(dBuV) | Azimuth (degree) | Height (cm)  | Polarity<br>(H/V) | Frequency<br>(MHz) | Level<br>(dBm) | Ant. Gain<br>Correction<br>(dB) | Cable<br>Loss<br>(dB) | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 500.4              | 34.56                  | 89               | 150          | Н                 | 500.4              | -66.9          | 0                               | 1.78                  | -68.68                     | -13            | -55.68         |
| 500.4              | 32.74                  | 89               | 150          | V                 | 500.4              | -69.21         | 0                               | 1.78                  | -70.99                     | -13            | -57.99         |
| 1708               | 77.42                  | 39               | 100          | V                 | 1708               | -24.65         | 9.086                           | 0.52                  | -16.084                    | -13            | -3.084         |
| 1708               | 78.04                  | 50               | 100          | Н                 | 1708               | -22.22         | 8.98                            | 0.52                  | -13.76                     | -13            | -0.76          |
| 1623               | 75.68                  | 0                | 150          | V                 | 1623               | -25.78         | 8.795                           | 0.5                   | -17.485                    | -13            | -4.485         |
| 1623               | 78.16                  | 20               | 150          | Н                 | 1623               | -23.79         | 8.77                            | 0.5                   | -15.52                     | -13            | -2.52          |

# Downlink (Input frequency = 893.8 MHz)

| Indic              | ated                   | ed Test Antenna  |             | Substituted       |                    |                |                                 |      |                            |                |                |
|--------------------|------------------------|------------------|-------------|-------------------|--------------------|----------------|---------------------------------|------|----------------------------|----------------|----------------|
| Frequency<br>(MHz) | S.A.<br>Amp.<br>(dBuV) | Azimuth (degree) | Height (cm) | Polarity<br>(H/V) | Frequency<br>(MHz) | Level<br>(dBm) | Ant. Gain<br>Correction<br>(dB) |      | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 3522               | 45.57                  | 38               | 100         | V                 | 3522               | -50.8          | 9.73                            | 2.1  | -43.17                     | -13            | -30.17         |
| 3522               | 41.15                  | 75               | 100         | Н                 | 3522               | -56.39         | 9.664                           | 2.1  | -48.826                    | -13            | -35.826        |
| 2672               | 57.74                  | 44               | 100         | V                 | 2672               | -39.81         | 9.763                           | 1.58 | -31.627                    | -13            | -18.627        |
| 2672               | 51.23                  | 79               | 100         | Н                 | 2672               | -47.32         | 9.695                           | 1.58 | -39.205                    | -13            | -26.205        |

# 7 FCC §2.1051, §22.917& IC RSS-131§6.4 - Spurious Emissions at Antenna Terminals

## 7.1 Applicable Standards

According to FCC §22.917 & RSS-131 §6.4, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

#### 7.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz or greater. Sufficient scans were taken to show any out of band emissions up to 10<sup>th</sup> harmonic.



## 7.3 Test Equipment List and Details

| Manufacturers   | Descriptions      | Models | Serial<br>Numbers       | Calibration<br>Dates | Calibration<br>Interval |  |
|-----------------|-------------------|--------|-------------------------|----------------------|-------------------------|--|
| Agilent         | Spectrum Analyzer | E4440A | MY44303352              | 2014-10-16           | 1 year                  |  |
| Rohde & Schwarz | Signal Generator  | SMIQ03 | 849192/0085/<br>DE23746 | 2014-04-23           | 2 years                 |  |
| Agilent         | Signal Generator  | E4438C | MY45091309              | 2014-05-03           | 1 year                  |  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

#### 7.4 Test Environmental Conditions

| Temperature:       | 21-23 °C      |  |  |
|--------------------|---------------|--|--|
| Relative Humidity: | 42-48 %       |  |  |
| ATM Pressure:      | 101.4-102 kPa |  |  |

The testing was performed by Bo Li on 2015-04-02 to 2015-04-18 in the RF Site.

#### 7.5 Test Results

Please refer to the following plots.

#### GSM/GPRS

Low DL 30 MHz-1 GHz



Low DL 1-20 GHz



Low UL 30 MHz-1 GHz



Low UL 1-20 GHz





## Middle DL 1-20 GHz



#### Middle UL 30 MHz-1 GHz



#### Middle UL 1-20 GHz



High DL 30 MHz-1 GHz



High DL 1-20 GHz



High UL 30 MHz-1 GHz



High UL 1-20 GHz



#### **CDMA**

Low DL 30 MHz-1 GHz



Low DL 1-20 GHz



Low UL 30 MHz-1 GHz



Low UL 1-20 GHz





#### Middle DL 1-20 GHz



Middle UL 30 MHz-1 GHz



Middle UL 1-20 GHz



High DL 30 MHz-1 GHz



High DL 1-20 GHz



High UL 30 MHz-1 GHz



High UL 1-20 GHz



## **WCDMA**

Low DL 30 MHz-1 GHz



Low DL 1-20 GHz



Low UL 30 MHz-1 GHz



Low UL 1-20 GHz





#### Middle DL 1-20 GHz



#### Middle UL 30 MHz-1 GHz



#### Middle UL 1-20 GHz



High DL 30 MHz-1 GHz



High DL 1-20 GHz



High UL 30 MHz-1 GHz



High UL 1-20 GHz



#### LTE 1.4 MHz

Low DL 30 MHz-1 GHz



Low DL 1-20 GHz



Low UL 30 MHz-1 GHz



Low UL 1-20 GHz





#### Middle DL 1-20 GHz



Middle UL 30 MHz-1 GHz



#### Middle UL 1-20 GHz



High DL 30 MHz-1 GHz



High DL 1-20 GHz



High UL 30 MHz-1 GHz



High UL 1-20 GHz



#### LTE 3 MHz

Low DL 30 MHz-1 GHz



Low DL 1-20 GHz



Low UL 30 MHz-1 GHz



Low UL 1-20 GHz



Middle DL 30 MHz-1 GHz



Middle DL 1-20 GHz



Middle UL 30 MHz-1 GHz



Middle UL 1-20 GHz



High DL 30 MHz-1 GHz



High DL 1-20 GHz



High UL 30 MHz-1 GHz



High UL 1-20 GHz



## LTE 5 MHz

Low DL 30 MHz-1 GHz



Low DL 1-20 GHz



Low UL 30 MHz-1 GHz



Low UL 1-20 GHz





#### Middle DL 1-20 GHz



#### Middle UL 30 MHz-1 GHz



#### Middle UL 1-20 GHz



High DL 30 MHz-1 GHz



High DL 1-20 GHz



High UL 30 MHz-1 GHz



High UL 1-20 GHz



#### LTE 10 MHz

Low DL 30 MHz-1 GHz



Low DL 1-20 GHz



Low UL 30 MHz-1 GHz



Low UL 1-20 GHz





#### Middle DL 1-20 GHz



Middle UL 30 MHz-1 GHz



Middle UL 1-20 GHz



High DL 30 MHz-1 GHz



High DL 1-20 GHz



High UL 30 MHz-1 GHz



High UL 1-20 GHz



## Intermodulation

#### GSM/GPRS

#### Low DL



#### Low UL



#### Middle DL



## Middle UL



High DL



High UL



#### **CDMA**

Low DL



Low UL



Middle DL



Middle UL



High DL



High UL



#### **WCDMA**

Low DL



Low UL



#### Middle DL



#### Middle UL



High DL



High UL



#### LTE 1.4 MHz

#### Low DL



#### Low UL



#### Middle DL



## Middle UL



High DL



High UL



#### LTE 3 MHz

#### Low DL



#### Low UL



#### Middle DL



#### Middle UL



High DL



High UL



#### LTE 5 MHz

Low DL



Low UL



#### Middle DL



#### Middle UL



High DL



High UL



#### LTE 10 MHz

#### Low DL



#### Low UL



#### Middle DL



#### Middle UL



High DL



High UL



# 8 FCC §22.917 &IC RSS 131 §6.4 - Band Edge

## 8.1 Applicable Standards

According to FCC 22.917 and RSS 1316.4, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB.

### 8.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.



## **8.3** Test Equipment List and Details

| Manufacturers | Descriptions      | Models | Serial<br>Numbers | Calibration<br>Dates | Calibration<br>Interval |
|---------------|-------------------|--------|-------------------|----------------------|-------------------------|
| Agilent       | Spectrum Analyzer | E4440A | MY44303352        | 2014-10-16           | 1 year                  |
| Agilent       | Signal Generator  | E4438C | MY45091309        | 2014-05-03           | 1 year                  |

**Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

#### **8.4** Test Environmental Conditions

| Temperature:       | 21-23° C      |
|--------------------|---------------|
| Relative Humidity: | 42-48 %       |
| ATM Pressure:      | 101.4-102 kPa |

The testing was performed by Bo Li on 2015-04-02 to 2015-04-18 in the RF Site.

#### 8.5 Test Results

Please refer to the following plots.

#### **GSM/GPRS**

Low DL



Low UL



High DL



High UL



## **CDMA**

Low DL



Low UL



High DL



High UL



## **WCDMA**

Low DL



Low UL



High DL



High UL



#### LTE 1.4 MHz

Low DL



Low UL



High DL



High UL



#### LTE 3 MHz

Low DL



Low UL



High DL



High UL



## LTE 5 MHz

Low DL



Low UL



High DL



High UL



## LTE 10 MHz

Low DL

\* Agilent Select Marker #Atten 30 dB Norma Delta Delta Pair (Tracking Ref) PAvg 100 W1 S S3 F Span Pair Span Tun Off More 1 of 2 Center 874.00 MHz Span 30 MHz Sweep 9.08 ms (601 pts) #Res BW 100 kHz VBW 300 kHz Copyright 2000-2012 Agilent Technologies

Low UL



High DL



High UL



## 9 IC RSS-131 §4.2 - Passband Gain and Bandwidth

## 9.1 Applicable Standards

According to RSS 131§4.2, Adjust the internal gain control of the equipment under test to the nominal gain for which equipment certification is sought.

With the aid of a signal generator and spectrum analyzer, measure the 20 dB bandwidth of the amplifier (i.e. at the point where the gain has fallen by 20 dB). Measure the gain-versus-frequency response of the amplifier from the mid-band frequency f0 of the passband up to at least  $f0 \pm 250\%$  of the 20 dB bandwidth.

#### 9.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.



## 9.3 Test Equipment List and Details

| Manufacturers | Descriptions      | Models | Serial<br>Numbers | Calibration<br>Dates | Calibration<br>Interval |
|---------------|-------------------|--------|-------------------|----------------------|-------------------------|
| Agilent       | Spectrum Analyzer | E4440A | MY44303352        | 2014-10-16           | 1 year                  |
| Agilent       | Signal Generator  | E4438C | MY45091309        | 2014-05-03           | 1 year                  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

#### 9.4 Test Environmental Conditions

| Temperature:       | 21-23° C      |
|--------------------|---------------|
| Relative Humidity: | 42-48 %       |
| ATM Pressure:      | 101.4-102 kPa |

The testing was performed by Bo Li on 2015-04-02 to 2015-04-18 in the RF Site.

## 9.5 Test Results

| Frequency | Input (dBm) | Output<br>(dBm) | Gain<br>(dB) | 20 dB Bandwidth<br>(MHz) |
|-----------|-------------|-----------------|--------------|--------------------------|
| Downlink  | 13.4        | 39.1            | 25.7         | 46.8                     |
| Uplink    | -17.81      | 14.75           | 32.56        | 42.4                     |

## Downlink, Input



## Downlink, Output



## Uplink, Input



## Uplink, Output



# 10 FCC §1.1307(b)(1), §2.1091 & IC RSS-102 - RF Exposure

## 10.1 Applicable Standards

According to §1.1310 and §2.1091 (Mobile Devices) RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

| Frequency Range<br>(MHz) | Electric Field<br>Strength<br>(V/m) | Magnetic Field<br>Strength<br>(A/m) | Power Density<br>(mW/cm²) | Averaging Time (minute) |
|--------------------------|-------------------------------------|-------------------------------------|---------------------------|-------------------------|
|                          | Limits for Gene                     | eral Population/Uncon               | trolled Exposure          |                         |
| 0.3-1.34                 | 614                                 | 1.63                                | *(100)                    | 30                      |
| 1.34-30                  | 824/f                               | 2.19/f                              | $*(180/f^2)$              | 30                      |
| 30-300                   | 27.5                                | 0.073                               | 0.2                       | 30                      |
| 300-1500                 | /                                   | /                                   | f/1500                    | 30                      |
| 1500-100,000             | /                                   | /                                   | 1.0                       | 30                      |

Note: f = frequency in MHz

According to IC RSS-102 Issue 4 section 4, RF limits used for general public will be applied to the EUT.

| Frequency Range<br>(MHz) | Electric Field<br>(V/m rms) | Magnetic Field<br>(A/m rms)   | Power Density (W/m²)    | Reference Period (minutes) |
|--------------------------|-----------------------------|-------------------------------|-------------------------|----------------------------|
| $0.003 - 10^{21}$        | 83                          | 90                            |                         | Instantaneous*             |
| 0.1-10                   | -                           | 0.73/f                        | <b>=</b>                | 6**                        |
| 1.1-10                   | $87/f^{0.5}$                | 14                            | <u> </u>                | 6**                        |
| 10-20                    | 27.46                       | 0.0728                        | 2                       | 6                          |
| 20-48                    | $58.07/f^{0.25}$            | $0.1540/f^{0.25}$             | $8.944/f^{0.5}$         | 6                          |
| 48-300                   | 22.06                       | 0.05852                       | 1.291                   | 6                          |
| 300-6000                 | $3.142 f^{0.3417}$          | $0.008335 f^{0.3417}$         | $0.02619f^{0.6834}$     | 6                          |
| 6000-15000               | 61.4                        | 0.163                         | 10                      | 6                          |
| 15000-150000             | 61.4                        | 0.163                         | 10                      | $616000/f^{1.2}$           |
| 150000-300000            | $0.158 f^{0.5}$             | $4.21 \times 10^{-4} f^{0.5}$ | $6.67 \times 10^{-5} f$ | 616000/ f <sup>1.2</sup>   |

Note: f is frequency in MHz.

<sup>\* =</sup> Plane-wave equivalent power density

<sup>\*</sup>Based on nerve stimulation (NS).

<sup>\*\*</sup> Based on specific absorption rate (SAR).

## **10.2** MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$ 

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

## 10.3 Test Results

#### **Downlink**

| Maximum peak output power at antenna input terminal (dBm):                 | 39.99         |
|----------------------------------------------------------------------------|---------------|
| Maximum peak output power at antenna input terminal (mW):                  | 9977.001      |
| Prediction distance (cm):                                                  | <u>79</u>     |
| <u>Prediction frequency (MHz):</u>                                         | <u>891.6</u>  |
| Antenna Gain, typical (dBi):                                               | <u>3</u>      |
| Maximum Antenna Gain (numeric):                                            | <u>1.995</u>  |
| Power density at predication frequency and distance (mW/cm <sup>2</sup> ): | <u>0.2538</u> |
| MPE limit for uncontrolled exposure at predication frequency (mW/cm²):     | 0.594         |
| Power density at predication frequency and distance (W/m <sup>2</sup> ):   | <u>2.538</u>  |
| MPE limit for uncontrolled exposure at predication frequency (W/m²):       | <u>2.718</u>  |
|                                                                            |               |

## **Uplink**

| <u>17.99</u>  |
|---------------|
| <u>62.951</u> |
| <u>79</u>     |
| <u>826.4</u>  |
| <u>3</u>      |
| <u>1.995</u>  |
| <u>0.0016</u> |
| 0.551         |
| <u>0.016</u>  |
| <u>2.581</u>  |
|               |

### Results

For uplink and downlink, the highest power density levels at **79 cm** are below the MPE uncontrolled exposure limit.