Section: Group Number:

Score: /10

Names of Group Members PRESENT:

Credit is only given for group work to those present on all days L&LA is worked in class and who are also present the day it is turned in.

(2.1)= 4.41 (2.01)2=4.0401 (2.001)2=4.004001 (2.0001)2-4.00040001

1 Definition Suppose f(x) is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$\lim_{t \to \infty} f(x) = L$$

and say

"the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.

Limits Graphically:

1. a. Consider $y = x^2$

b. Consider $f(x) = x^2$

c. Consider $f(x) = \begin{cases} x^2 & x \neq 2 \\ 3 & x = 2 \end{cases}$

2. Use the graph of g(x) in the figure to find the following values, if they exist.

> same, function is continuous

3. Use the graph of f(x) in the figure to find the following values, if they exist.

a. f(1) = -1

b.
$$\lim_{x \to 1} f(x) = 1$$

Some, function is

Summary: If
$$f(x)$$
 is continuous (more about that later), $\lim_{x \to a} f(x) = f(a)$
Hole at $x = a$ does not affect $\lim_{x \to a} f(x) = L$

Alternate f(a) along with a hole does not affect $\lim_{x \to a} f(x) = L$

Limits Numerically:

4. Let
$$f(x) = \frac{x^3 - 1}{x - 1}$$
.

a. Calculate f(x) for each value of x in the following table.

x	0.9	0.99	0.999	0.9999
$f(x) = \frac{x^3 - 1}{x - 1}$	2.71	2,9701	2.997001	2,9997
x	1.1	1.01	1.001	1.0001
$f(x) = \frac{x^3 - 1}{x - 1}$	3.31	3.0301	3.003001	3.0003

b. Make a conjecture about the value of $\lim_{x\to 1} \frac{x^3-1}{x-1}$ = 3

a. Make two tables, one showing the values of f for x = 0.01, 0.001, 0.0001, 0.00001 and one showing values of f for x = -0.01, -0.001, -0.0001. Round your answers to five

X	f(x)
0.01	2.70481
0.001	2.71692
0.0001	2.71815
0.00001	2.71827
)	

e=2.718281828459045 ---

6. In the electronic text though WebAssign, Video example 3 on page 90 is an important result we will use in the future. Take the time to look at it later.

DEFINITION **One-Sided Limits**

Right-hand limit Suppose f is defined for all x near a with x > a. If f(x) is arbitrarily close to L for all x sufficiently close to a with x > a, we write

$$\lim_{x \to a^{-1}} f(x) = L$$

and say the limit of f(x) as x approaches a from the right equals L.

2. Left-hand limit Suppose f is defined for all x near a with x < a. If f(x) is arbitrarily close to L for all x sufficiently close to a with x < a, we write

$$\lim_{x \to a} f(x) = L$$

and say the limit of f(x) as x approaches a from the left equals L.

(a) $\lim_{x \to a} f(x) = L$

(b) $\lim_{x \to a} f(x) = L$

In electronic text, there is a video lecture and video example 7 about one sided limits.

7. Let
$$f(x) = \begin{cases} 3-x, & x < 2 \\ \frac{x}{2} + 1, & x > 2 \end{cases}$$

f(2) = Undefined

 $\lim_{x\to 2} f(x)$ Does not exist.

But
$$\lim_{x \to 2^+} f(x) = 2$$

and $\lim_{x \to 2^-} f(x) = 1$

8. For the function f(t) graphed here, find the following limits.

b)
$$\lim_{t\to -1.5} f(t)$$

- c) $\lim_{t\to -1} f(t)$
- d) $\lim_{t\to 0} f(t)$
- e) $\lim_{t \to \frac{1}{2}} f(t)$

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a} f(x) = L \quad \text{and} \quad \lim_{x \to a^{\perp}} f(x) = L$$

North

As with two-sided limits, the value of a one-sided limit (if it exists) depends on the values of f(x) near x = a but not on the value of f(a).

"Two-sided" limits do not exist when left-hand limit does not equal right hand limits.

"Two-sided" limits do not exist if one of the one-sided limits dne.

9.

$$\lim_{x \to 0^{-}} f(x) = 0$$

$$\lim_{x\to 0^+} f(x) = 0$$

$$\lim_{x\to 0} f(x) > 0$$

$$\lim_{x \to \Gamma} f(x) = 2$$

$$\lim_{x\to 1^+} f(x) =$$

$$\lim_{x\to 1} f(x)$$
 DNE

$$\lim_{x\to 2^-} f(x) \le 1$$

$$\lim_{x\to 2^+} f(x) = 1$$

$$\lim_{x\to 2} f(x) = 1$$

$$\lim_{x\to 3^-} f(x) = 1$$

10. A step function Let
$$f(x) = \frac{|x|}{x}$$
, for $x \neq 0$.

a. Sketch a graph of f on the interval $\begin{bmatrix} -2,2 \end{bmatrix}$.

 $f(x) = \begin{cases} \frac{\pi}{x}, & x \neq 0 \\ -\frac{\pi}{x}, & x \neq 0 \end{cases}$

b. Does $\lim_{x\to 0} f(x)$ exist? Explain your reasoning after first examining $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0^+} f(x)$. $\lim_{x\to 0} f(x) = -1 \qquad \lim_{x\to 0^+} f(x) = 1 \qquad \lim_{x\to 0^+} f(x) \neq \lim_{x\to 0^+} f(x) \leq \lim_{x\to 0^+} f(x)$

11. Electronic text page 91, video example 6 is interesting about the Heaviside fun

12. Sketch the graph of a function with the given properties. You do not need to find a formula for the function.

Answer may be different from person to person

DMS

13. Sketch the graph of a function with the given properties. You do not need to find a formula for the function.

$$g(1) = 0$$
, $g(2) = 1$, $g(3) = -2$, $\lim_{x \to 2} g(x) = 0$, $\lim_{x \to 3^{-}} g(x) = -1$, $\lim_{x \to 3^{+}} g(x) = -2$

Infinite limits

4 Definition Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to \infty} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

lacksquare Definition Let f be defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

Similar definitions can be given for the one-sided infinite limits

$$\lim_{x\to a} f(x) = \infty$$

$$\lim_{x\to a^+} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = -\infty$$

14. a. Consider $f(x) = \frac{1}{(x-2)^2}$

lim + f(n) = +0

b. Consider $f(x) = \frac{1}{x+1}$ $\lim_{x \to -1} f(x) = 4$

1im = + (n) = + «

$$\lim_{x\to 2} f(x) = \quad \mathbf{\bullet}$$

 $\lim_{x\to -1} f(x) = \mathbf{DNE}$

c. Consider $f(x) = -\frac{1}{(x+3)^4}$

$$\lim_{x \to -3^{+}} f(x) = -\infty$$
 $\lim_{x \to -3^{-}} f(x) = -\infty$

6 Definition The line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{x \to a} f(x) = \infty \qquad \qquad \lim_{x \to a^{-1}} f(x) = \infty \qquad \qquad \lim_{x \to a^{-1}} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty \qquad \lim_{x \to a} f(x) = -\infty \qquad \lim_{x \to a^+} f(x) = -\infty$$

Infinite Limits Analytically

When finding a limit the first thing to try is direct substitution.

If you get $\frac{0}{0}$, you have more work to do. (We will discuss this in section 2.3)

If you get $\frac{\text{constant}}{0}$, the limit is infinite. The text says "The fraction $\frac{a}{b}$ grows arbitrarily large in magnitude if b approaches 0 while a remains nonzero and relatively constant."

It must be considered whether the denominator is approaching **0** through negative values or whether the denominator is approaching 0 through positive values.

Then apply the traditional positive/negative rules. $\frac{+}{-} = -$, $\frac{+}{+} = +$, $\frac{-}{+} = -$, $\frac{-}{-} = +$

The text uses writing above and below the function to describe what is happening. For example:

$$\lim_{x \to 3^{-}} \frac{\frac{2 - 5x}{2 - 5x}}{\frac{x - 3}{x - 3}} = -\infty,$$

To simplify the writing, the 1040/1070 and 1060 instructors have chosen to use a "small -" or "small +" notation or "sp" "sn"

This presentation will be required of you on your HW and test answers to get full credit. For example:

$$\lim_{x \to 3^{+}} \frac{2 - 5x}{x - 3} = \frac{-13}{\text{small } +} = -\infty$$

16. Evaluate a.
$$\lim_{x \to 3^-} \frac{2}{(x-3)^3}$$

16. Evaluate a.
$$\lim_{x\to 3^{-}} \frac{2}{(x-3)^{3}}$$
 b. $\lim_{x\to 3^{+}} \frac{2}{(x-3)^{3}}$ c. $\lim_{x\to 3} \frac{2}{(x-3)^{3}}$ dre $=\frac{2}{5\text{mall}}$ = $+\infty$

b.
$$\lim_{x \to 3^+} \frac{2}{(x-3)^3}$$

$$\lim_{x\to 3}\frac{2}{\left(x-3\right)^3}\qquad \text{deg}$$

a.
$$\lim_{x \to 8^+} \frac{2x}{x+8}$$

b.
$$\lim_{x \to 8^-} \frac{2x}{x+8}$$

b.
$$\lim_{x\to 8^-} \frac{2x}{x+8}$$
 c. $\lim_{x\to 8} \frac{2x}{x+8}$

$$=\frac{-16}{5mall+}=-80=\frac{-16}{5mall-}=+80$$

18. a. Evaluate
$$\lim_{x\to 7} \frac{4}{(x-7)^2}$$

18. a. Evaluate
$$\lim_{x\to 7} \frac{4}{(x-7)^2} = \frac{4}{\text{Small}+} = +\infty$$

b. Why was $\lim_{x\to 7} \frac{4}{(x-7)^2}$ not presented as a one sided limit?

Square in denominator makes denominator positive no matter which side 7 is approached from

19. (2.2: #30-36 even) Note: #36 looks ahead a bit

30.
$$\lim_{x \to -3} \frac{x+2}{x+3}$$

30.
$$\lim_{x \to -3^{-}} \frac{x+2}{x+3} = \frac{-1}{\text{Small}} = +\infty$$

$$\lim_{x\to 5}\frac{e^x}{(x-5)^3}$$

32.
$$\lim_{x \to 5^{-}} \frac{e^{x}}{(x-5)^{3}} = \frac{e^{5}}{(5 \text{ mall-})^{3}} = -\infty$$

34.
$$\lim_{x \to 2^{-}} \cot x$$
 = $\lim_{x \to 2^{-}} \frac{\cos x}{x^2 - 2x}$ = $\lim_{x \to 2^{-}} \frac{\cos x}{x^2 - 4x + 4}$ = $\lim_{x \to 2^{-}} \frac{\cos x}{x^2 - 4x + 4}$ = $\lim_{x \to 2^{-}} \frac{x(x-2)}{(x-2)(x-2)}$ = $\lim_{x \to 2^{-}} \frac{x}{(x-2)(x-2)}$ = $\lim_{x \to 2^{-}} \frac{x}{(x-2)(x-2)}$

36.
$$\lim_{x \to 2^{-}} \frac{x^2 - 2x}{x^2 - 4x + 4}$$

$$\frac{(-2)}{(2a-2)} = \lim_{n \to \infty}$$

$$\lim_{N \to 2} = \frac{4-4}{4-8+4} = \frac{0}{0}$$

Oscillations

There are some functions with "Strange Behavior"

20. Find
$$\lim_{x\to 0} \cos\left(\frac{1}{x}\right)$$

oscillates too much near x=0 to be able to find a limit.

21.a. Create a table of values of $\sin\left(\frac{1}{x}\right)$ for $x = \frac{2}{\pi}$, $\frac{2}{3\pi}$, $\frac{2}{5\pi}$, $\frac{2}{7\pi}$, $\frac{2}{9\pi}$, and $\frac{2}{11\pi}$. Describe the pattern of values you observe.

values of sint allernates between -1 and 1

b. Why does a graphing utility have difficulty plotting the graph of $y = \sin\left(\frac{1}{x}\right)$ near x = 0 (see

figure)?

I

Since Sin (1) is undefined. The graph oscillates too much near x = 0. There would still be a hole at x=0.

c. What do you conclude about $\lim \sin \left(\frac{1}{1}\right)$?

DNE

Summary examples of ways limits fail to exist:

- 1. The graph jumps at the specific input.
- 2. The function approaches positive or negative infinity at the specific input. It grows to large to have a limit. (This only needs to happen on one side for the limit to fail to exit)
- 3. The function oscillates too much to have a limit. (This only needs to happen on one side for the limit to fail to exist.)

Note on #2: Technically, the "infinite limits" do not exist. But we choose to indicate that they approach infinity in our notation.

HW 2.2: #1, 3, 5, 6, 8, 17, 21, 37