ACH2016 - Inteligência Artificial Aula 08 - Desempenho e Viés

Valdinei Freire da Silva valdinei.freire@usp.br - Bloco A1 100-O

Russell e Norvig, Capítulo 18 Artigos sobre Viés

Tarefa de Aprendizado Supervisionado

Dado um conjunto de treinamento com N exemplos de pares entrada-saída

$$(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N),$$

onde cada y_i foi gerado por uma função f desconhecida, isto é, $y_i = f(x_i)$.

Descubra uma função h que aproxima a verdadeira função f.

x é a entrada e y é a saída.

x e y pode ser qualquer valor, números ou categorias, x usualmente é um vetor de valores (atributos).

Melhor Hipótese

Genericamente pode-se pensar em uma função de perda:

$$L(h, \mathcal{E})$$

que avalia a qualidade da hipótese h aplicada na população \mathcal{E} .

A hipótese ótima é dada por:

$$h^* = \arg\min_{h \in \mathcal{H}} L(h, \mathcal{E}).$$

Empiricamente, para um conjunto de exemplos E, temos:

$$\hat{h}^* = \arg\min_{h \in \mathcal{H}} L(h, E).$$

Exemplo de função de perda (Loss Function):

- Acurácia: taxa de exemplos que são classificados corretamente.
- Verosimilhança: apenas para hipóteses probabilísticas.

Função de Perda Proxy

Objetivo de **inferência probabilística**: escolher o modelo probabilístico que melhor explica a população (ou dados observados).

Objetivo da classificação: escolher o modelo que melhor classifica.

Verosimilhança: mensuração probabilística que privilegia modelos que melhor explica a população.

Acurácia: mensuração que privilegia modelos que melhor classifica.

Considere um modelo probabilístico binomial h', então um modelo de classificação binária h pode ser construído da seguinte forma:

$$h(x) = \begin{cases} 0, & \text{se } h'(x) < T \\ 1, & \text{caso contrário} \end{cases}$$

T é um limiar (threshold) arbitrário.

Matriz de Confusão¹

		Predição do Modelo		
		Negativo	Positivo	
Valores	Negativo (N)	Acerto (TN)	Erro (FP)	
Corretos	Positivo (P)	Erro (FN)	Acerto (TP)	

$$accuracy = \frac{TP + TN}{TP + FN + FP + TN} = \frac{TP + TN}{P + N} = \Pr(Y = \hat{Y})$$

$$recall = \frac{TP}{TP + FN} = \frac{TP}{P} = \Pr(\hat{Y} = 1|Y = 1)$$

$$precision = \frac{TP}{TP + FP} = \Pr(Y = 1|\hat{Y} = 1)$$

 $^{^1\}mathsf{TP}=\mathsf{true}$ positive; $\mathsf{FP}=\mathsf{false}$ positive; $\mathsf{FN}=\mathsf{false}$ negative; $\mathsf{TN}=\mathsf{true}$ negative; $\mathsf{P}=\mathsf{positivos}$ na população; $\mathsf{N}=\mathsf{negativos}$ na população

Exemplo: Risco de Reincidência

	entrada x					
idade	gênero	raça		grau da infr.	ocorr. prévias	reinc. 2 anos
41	homem	afro-americana		contravenção	0	falsa
47	mulher	caucasiana		contravenção	1	verdadeira
23	homem	caucasiana		crime	5	verdadeira

Quem tem interesse na predição?

- juiz: uma predição sobre reincidência pode ser utilizada para decisões sobre liberdade condicional ou fiança
- réu: precisão (precision), todos não-reincidentes recebem predição correta
- vítima futura: revocação (recall), todos reincidentes recebem predição correta

Dados ProPublica

Regressão Logística

Atributos: idade e ocorrências prévias

Erros

Prevalência de casos positivos: 0.47.

Resultados com $T = 0.5$		Predição do Modelo			
		Negativo	Positivo		
Valores	(N = 2795)	(TN = 2356)	(FP = 439)		
Corretos (P = 2483)		(FN = 1343)	(TP = 1140)		

• Acurácia (accuracy): 0.662

• Revocação (recall): 0.459

• Precisão (precision): 0.722

Qual compromisso entre Revocação e Precisão?

Curva Precisão-Revocação²

Variando o valor de T (threshold), obtém-se diferentes compromissos.

²Fawcett. An introduction to ROC analysis.

Curva Acurácia-Revocação

Outras Medidas³

		Predicted co	ndition	Soul	rces: [20][21][22][23][24][25][26][27] view · talk · edit
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR} \times FPR - FPR}{TPR - FPR}$
condition	Positive (P)	True positive (TP),	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate $= \frac{FN}{P} = 1 - TPR$
Actual co	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{EP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$
	Prevalence $= \frac{P}{P+N}$	Positive predictive value (PPV), $ \begin{array}{c} \text{precision} \\ = \frac{TP}{PP} = 1 - FDR \end{array} $	False omission rate (FOR) $= \frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) $= \frac{\text{ENR}}{\text{TNR}}$
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$	Negative predictive value $(NPV) = \frac{TN}{PN} = 1 - FOR$	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$
	Balanced accuracy $(BA) = \frac{TPR + TNR}{2}$	$= \frac{PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes-Mallows index (FM) = \(\sqrt{PPV \times TPR} \)	Matthews correlation coefficient (MCC) = √TPR×TNR×PPV×NPV − √FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = $\frac{TP}{TP + FN + FP}$

 $^{^3 \}verb|https://en.wikipedia.org/wiki/Confusion_matrix|\\$

Receiver Operating Characteristic (ROC)

AUC = Area Under the Curve

Invariante à prevalência de casos positivos.

Caso COMPAS: Risco de Reincidência

COMPAS

- Correctional Offender Management Profiling for Alternative Sanctions
- Gerenciamento de Perfis Correcionais de Infratores para Sanções Alternativas

ProPublica

- Machine Bias: There's software used across the country to predict future criminals. And it's biased against blacks.
- Viés de Máquina: Há software usado em todo o país para prever futuros criminosos. E é tendencioso contra os negros.

entrada x						saída y'	saída <i>y</i>
idade	gênero	raça		grau da infr.	ocorr. prévias	COMPAS	reinc. 2 anos
41	homem	afro-americana		contravenção	0	alto	falsa
47	mulher	caucasiana		contravenção	1	baixo	verdadeira
23	homem	caucasiana		crime	5	alto	verdadeira
•••							

Resultados ProPublica

	Todo	s Réus	Réus Pretos		Réus Brancos	
	baixo	alto	baixo	alto	baixo	alto
não reincidiu	2681	1282	990	805	1139	349
reincidiu	1216 2035		532	1369	461	505
	Acuracy=0.654		Acuracy=0.638		Acuracy=0.670	
	Recall=0.626		Recall=0.720		Recall=0.523	
	Precision=0.614		Precision=0.630		Precision=0.591	
	FPR=0.324		FPR=0.449		FPR=0.235	
	FNR=0.374		FNR=0.280		FNR=0.477	

Conclusão: 50% das pessoas brancas que reincidiram, receberiam risco baixo.

Viés (Bias) e Racismo

Atributo Sensível: os atributos X contém ou implicitamente codifica algum atributo sensível (raça, gênero, orientação sexual, etc.) de uma entidade (pessoa).

Viés em Estatística:
$$Bias[\hat{Y}|X=x] = E[\hat{Y}|X=x] - E[Y|X=x]$$
.

Viés Sociais: decisões sistematicamente erradas em favor ou contra determinados grupos determinados pelo atributo sensível.

Conceitos:

- A é o atributo sensível: preto ou branco?
- Y é a variável alvo: a pessoa tem uma doença que precisa ser tratada?
- ullet \widehat{Y} é a decisão dada pelo classificador: recomenda o tratamento

Viés e Racismo

Conceitos:

- A é o atributo sensível
- Y é a variável alvo
- \widehat{Y} é a decisão dada pelo classificador

Justiça (Fairness):

- Cotas: Pr(Ŷ|A = negra) = Pr(Ŷ|A = branca)
 As pessoas que recebem o tratamento para uma doença são proporcionais à ocorrência do grupo na população
- Recall: $\Pr(\widehat{Y}|A = negra, Y) = \Pr(\widehat{Y}|A = branca, Y)$ As pessoas que recebem o tratamento são proporcionais à ocorrência do grupo na população que tem a doença
- Precision: $\Pr(Y|A = negra, \widehat{Y}) = \Pr(Y|A = branca, \widehat{Y})$ As pessoas que tem a doença são proporcionais à ocorrência do grupo na população que recebeu tratamento

Fontes de Viés⁴

 $^{^4}$ Suresh e Guttag. A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle, 2021.

Fontes de Viés

Dados ProPublica - Coleta de Dados

Característica dos Dados:

• 60.16% pretos (apenas 15% na população entre brancos e pretos)

• Reincidência de pretos: 52.32%

• Reincidência de brancos: 39.01%

Fontes de Viés:

- Histórica
- Representação
- Mensuração
- Avaliação

Estudos de Casos

Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings

Thomas Manzini, Yao Chong Lim, Yulia Tsvetkov, Alan W Black

Gender Biased Analogies				
$man \rightarrow doctor$	woman \rightarrow nurse			
woman → receptionist	$man \rightarrow supervisor$			
$woman \rightarrow secretary$	man o principal			
Racially Biased Analogies				
black → criminal	$caucasian \rightarrow police$			
$asian \rightarrow doctor$	$caucasian \rightarrow dad$			
$caucasian \rightarrow leader$	$black \rightarrow led$			
Religiously Biased Analogies				
$muslim \rightarrow terrorist$	christian → civilians			
$jewish \rightarrow philanthropist$	christian → stooge			
$christian \rightarrow unemployed$	jewish \rightarrow pensioners			

Table 1: Examples of gender, racial, and religious biases in analogies generated from word embeddings trained on the Reddit data from users from the USA.

Estudos de Casos

Dissecting racial bias in an algorithm used to manage the health of populations Ziad Obermeyer, Brian Powers, Christine Vogeli, Sendhil Mullainathan

Estudos de Casos

Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification

Joy Buolamwini, Timnit Gebru

Dados ProPublica - Aprendizado de Máquina

Dados ProPublica - Aprendizado de Máquina

Dados ProPublica - Viés de Agregação

Dados ProPublica - Viés de Aprendizado

Dados ProPublica - Balanceamento de Dados

Conclusão

- Aprendizado de Máquina reconhece padrões em amostras e generaliza para entidades desconhecidas.
- Erros são inerentes a qualquer método de aprendizado de máquina.
- Como garantir que generalizações sejam feitas da forma correta e pela razão correta?
- Como garantir que decisões de alto-risco que moldam as chances na vida são justas e corretas?
- Quem está disposto para aceitar erros de generalização e em qual sistema?
- Quais medidas de desempenho mudaria a disposição para aceitar generalização?
- E se for necessário utilizar regras diferentes para grupos diferentes?
- Como garantir que sistemas adotem essas medidas?
- Como garantir que não houve erros procedurais nas decisões realizadas?

Conclusão

"Is our goal to faithfully reflect the data? Or do we have an obligation to question the data, and to design our systems to conform to some notion of equitable behavior, regardless of whether or not that's supported by the data currently available to us?" ⁵

"Transparent algorithms provide defendants and the public with imperative information about tools used for safety and justice, allowing a wider audience to participate in the discussion of fairness. We argue that it is not fair that life-changing decisions are made with an error-prone system, without entitlement to a clear, verifiable, explanation." ⁶

 $^{^5\}mbox{Barocas},$ Hardt, e Narayanan. Fairness and Machine Learning: Limitations and Opportunities.

⁶Rudin, Wang e Coker. The age of secrecy and unfairness in recidivism prediction.