MINI ENSAYO DE MATEMÁTICA Nº 5

- 1. Si $\frac{7}{10}$ se resta de la suma entre $\frac{2}{5}$ y $\frac{4}{3}$, se obtiene
 - A) $\frac{29}{20}$
 - B) $\frac{31}{30}$

 - C) 0 D) $-\frac{31}{30}$
- 2. Si x es el menor de tres números enteros consecutivos que suman 114, entonces el sucesor del número mayor es
 - A) 36
 - B) 37
 - C) 40
 - D) 57
 - E) 58
- 3. $\sqrt{(8-1)^2 + (25-1)^2} =$
 - A) $\sqrt{7} + 5$
 - B) √691
 - C) √689
 - D) 25
 - E) 31

- 4. El valor de $-a^{-3} \cdot b^2 a^2 \cdot b^{-3}$, cuando $a = b = -\frac{1}{3}$ es
 - A) -6
 - B) $-\frac{2}{243}$
 - C) 0
 - D) $-\frac{2}{243}$
 - E) 6
- 5. Con la tercera parte de p tarros de pintura se pinta la quinta parte de una casa. ¿Cuántos tarros de pintura se necesitan para pintar la tercera parte de la casa?
 - A) $\frac{p}{5}$ tarros

 - B) p tarros C) 9p tarros
 - D) $\frac{9}{5}$ p tarros
 - E) $\frac{5}{9}$ p tarros
- 6. Si medio kilo de naranjas cuesta \$ 400 y se proyecta que el kilo subirá a \$ 1.000, ¿cuál será el porcentaje de aumento?
 - A) 200%
 - B) 150%
 - C) 50%
 - D) 25%
 - E) 20%
- 7. Una persona recibe a fin de mes \$ a que equivale a un 9% menos de lo que recibe habitualmente. ¿Cuánto debería recibir normalmente esa persona?
 - A) \$1,10 a
 - B) \$ 0,91 a
 - C) $\frac{a}{0.91}$
 - D) \$ 0,9 a
 - E) \$ $\frac{a}{0.9}$

- 8. $\frac{0,\overline{7}\cdot 0,\overline{4}}{0,\overline{28}} =$
 - A) 1
 - B) 1,1
 - C) $1, \bar{1}$
 - D) 1,2
 - E) $1, \bar{2}$
- 9. Si 3x 2 = 16, entonces $\frac{x^2 5x + 6}{3x^2 8x + 4} =$
 - A) 6
 - B) $\frac{16}{3}$
 - C) $\frac{24}{41}$
 - D) $\frac{5}{48}$
 - E) $\frac{3}{16}$
- 10. El precio de dos artículos A y B es de \$ 860 y \$ 720, respectivamente. Entre los dos artículos, Rosario compró 11 unidades, gastando a lo más \$ 8.650. ¿Cuál es la máxima cantidad de unidades que puede comprar Rosario del artículo A?
 - A) 4
 - B) 5
 - C) 6
 - D) 8
 - E) 10
- 11. En un trayecto corto, Emilio da cierta cantidad de pasos de 80 cm cada uno, demorándose 10 minutos cuando camina. Al devolverse corriendo, disminuye la cantidad de sus pasos en un $33\frac{1}{3}$ % y se demora 4 minutos. ¿De qué longitud es cada paso que da Emilio al correr?
 - A) 1,3 m
 - B) 1,2 m
 - C) 1,1 m
 - D) 1 m
 - E) No es posible calcularlo

- 12. Dados los números reales $p = \frac{3}{8}$, $q = \frac{14}{37}$ y $r = \frac{7}{19}$, entonces se verifica que
 - A) p < q < r
 - B) P < r < q
 - C) q < r < p
 - D) q
 - E) r
- 13. Un corredor de los 100 metros planos que se prepara para las Olimpiadas, ha registrado un tiempo de 10 segundos. ¿Cuál es la rapidez de este atleta?
 - A) 36 Km/hora
 - B) 40 km/hora
 - C) 45 km/hora
 - D) 50 km/hora
 - E) 60 km/hora
- 14. Entre empanadas y sopaipillas, Karen gastó \$ 2.550. El valor de cada sopaipilla es de \$ 120 y el valor de cada empanada es de \$ 650. Entre sopaipillas y empanadas compró 8 unidades, ¿cuál es la ecuación que permite determinar la cantidad **x** que gastó Karen en sopaipillas?
 - A) $120 \cdot x + 650 \cdot (x 2.550) = 8$
 - B) 650x + 120(x 2.550) = 8
 - C) $\frac{x}{120} + \frac{2.550 x}{650} = 8$
 - D) $\frac{x}{120} + \frac{x 2.550}{650} = 8$
 - E) 120x + (x 8)650 = 2.550
- 15. Si $\frac{3x + 2y = -3}{3x 2y = 5}$, entonces $4y^2 9x^2 =$
 - A) -33,3
 - B) $-\frac{23}{3}$
 - C) -15
 - D) 3
 - E) 15

16. ¿Para qué valor de \mathbf{k} el sistema $\begin{vmatrix} kx + ay = 5 \\ ax + ky = k \end{vmatrix}$, tiene infinitas soluciones?

- A) -5 ó 5
- B) $\sqrt{5}$ ó $-\sqrt{5}$
- C) -25 ó 25
- D) 0
- E) No se puede determinar

17. Sea f(x + 3) = 2x - 1. Entonces f(x) =

- A) 2x + 2
- B) 2x 7
- C) 2x + 5
- D) 2x · 7
- E) 2x 5

18. ¿Cuántos números enteros cumplen con la siguiente condición: "el triple del exceso de un número sobre 2, no es negativo y es menor que 5"?

- A) 0
- B) 1 C) 2
- D) 3
- E) 4

19. El conjunto solución de la inecuación $\frac{x}{3} - 2x \le \frac{x}{6} - 1$ es

- A) $\left\{ x \in IR / x \le \frac{6}{11} \right\}$
- B) $\left\{ x \in IR / x \ge \frac{6}{11} \right\}$
- C) $\left\{ x \in IR / x \ge \frac{6}{13} \right\}$
- D) $\left\{ x \in IR / x \le -\frac{6}{13} \right\}$
- E) IR

20. En la figura 1, L_1 // L_2 , A y B son puntos que pertenecen a las rectas L_1 y L_2 , respectivamente. Si $\alpha=50^{\circ}$, entonces el valor de x es

- B) 40°
- C) 30°
- D) 20°
- E) no se puede determinar

- 21. En la figura 2, ABCD es un cuadrilátero de modo que $\overline{AB} = 4$ cm, $\overline{BC} = 3$ cm, $\overline{AD} = 12$ cm y $\overline{CD} = 13$ cm. Entonces, el área del cuadrilátero ABCD es
 - A) 36 cm²
 - B) 32 cm²
 - C) 26 cm²
 - D) 24 cm²
 - E) 12 cm²

- 22. El trapecio de la figura 3, tiene área 180 cm². Si la altura mide x cm, $\overline{AB} = x + 5$ cm y $\overline{CD} = x + 1$ cm, ¿cuál es la semisuma de las bases?
 - A) 12 cm
 - B) 15 cm
 - C) 18 cm
 - D) 30 cm
 - E) 36 cm

- 23. En la figura 4, \triangle ABC rectángulo en C, E y F son dos puntos de la hipotenusa \overline{AB} tales que $\overline{AE} = \overline{FB} = 3$ cm. ¿Cuál es el área del cuadrilátero EFCD?
 - A) 18 cm²
 - B) $12\sqrt{3}$ cm²
 - C) $9\sqrt{3} \text{ cm}^2$
 - D) $\frac{15\sqrt{3}}{2}$ cm²
 - E) 6 cm²

- 24. En la figura 5, ABCD y BPQC son cuadrados congruentes de lado $8\sqrt{2}$ cm. Si \widehat{ABC} y \widehat{PBC} son semicircunferencias, entonces el perímetro de la región sombreada es
 - A) $8\sqrt{2} \pi \text{ cm}$
 - B) $4\sqrt{2} \pi \text{ cm}$
 - C) 8π cm
 - D) 4π cm
 - E) 16π cm

- 25. En la figura 6, \triangle ABC rectángulo isósceles de base \overline{AB} , $\overline{BC}=4\sqrt{2}$, D y E puntos medios de \overline{AC} y \overline{BC} , respectivamente, F punto medio de \overline{DE} . ¿Cuál es la ecuación de la recta que pasa por F y es paralela a \overline{AC} ?
 - A) x y + 2 = 0
 - B) x + y 2 = 0
 - C) x y + 4 = 0
 - D) x + y 4 = 0
 - E) x y 2 = 0

- 26. En la figura 7, $\overline{AP} \cong \overline{PB} \cong \overline{BQ}$ y los ΔABC y ΔPQR son rectángulos en C y R, respectivamente. ¿Cuál(es) de las siguientes afirmaciones es (son) **siempre** verdadera(s)?
 - I) $\triangle ABC \cong \triangle QPR$
 - II) \triangle ABC y \triangle QPR tiene igual área.
 - III) $\overline{CP} \cong \overline{BR}$
 - A) Sólo I
 - B) Sólo II
 - C) Sólo III
 - D) Sólo I y II
 - E) I, II y III

- 27. En la figura 8, ABCD es un rectángulo. Se puede determinar el perímetro de la región achurada si :
 - (1) El perímetro del rectángulo ABCD es 32 cm.
 - (2) $\overline{AP} \cong \overline{PQ} \cong \overline{QB}$
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional

fig. 8

- 28. El cuadrilátero ABCD de la figura 9, es un rectángulo si :
 - (1) $\angle DAB = \angle BCD = 90^{\circ}$
 - (2) $\overline{AB} \cong \overline{CD}$
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional

fig. 9

- 29. El ángulo de inclinación de la recta ax + by + c = 0 es obtuso si :
 - (1) $ac > 0 \ y bc > 0$
 - (2) ab > 0
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional
- 30. Sea **a** un número entero positivo. Al multiplicar **a** por 4 se obtiene un número cuadrado perfecto si :
 - (1) a es un número par.
 - (2) a es el cuadrado de un número entero.
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional

CLAVES

1	В	6	D	11	В	16	Α	21	Α	26	С
2	С	7	С	12	E	17	В	22	В	27	Α
3	D	8	Ε	13	Α	18	С	23	В	28	С
4	E	9	Ε	14	С	19	В	24	С	29	D
5	E	10	В	15	Ε	20	В	25	Α	30	В