Reinforcement Learning

- Function Approximation
 - Why function approximation?
 - Problem with large state spaces
 - Large memory for large table task
 - data should be accurate
 - Generalization
 - to generalize from previous encounters with different states that are in some sense similar to the current ones
 - Generalization => function approximation
 - to generalize desired functions (e.g value function, q function etc.)
 - utilize supervised learning

Reinforcement Learning

- Deep-Q Network
 - Approximate Q(s, a) (Q-function) with deep-neural-network
 - Off-policy learning
 - update rule s equal to q-learning and error is defined by
 - $MSE = (R_{t+1} + \gamma max_{a'}Q(s', a', \theta) Q(s, a, \theta))^2$
 - using Target network
 - off policy effect: differentiate learning-policy from behave-policy
 - by t time interval, update target network
 - Replay memory
 - fixed-size-queue where store {<s, $a \leftarrow \pi(s)$, r, s'>, <s, $a \leftarrow \pi(s)$, r, s'> ..}
 - to do batch-learning with random sampling
 - stable learning and diverse states are considered to learn