Ejemplo simulación controladores PID (Identificación)

Si setiene un sistema representado por la función de transferencia:

$$G = \frac{8}{s^3 + 6s^2 + 11s + 6}$$

Y se quiere diseñar un controlador PID por metodologías de lazo abierto para este sistema. La respuesta del sistema en lazo abierto ante un escalón unitario es la siguiente:

Tal como se observa el sistema tiene un comportamiento estable en lazo abierto y sobre-amortiguado, lo cual indica que se pueden aplicar las metodologías de identificación de lazo abierto

Identificación

A continuación se presenta el proceso de identificación por los métodos de Ziegler & Nichols, Miller y Alfaro y un comparativo de los resultados obtenidos.

Ziegler & Nichols

La grafica de abajo muestra la recta tangente al punto de inflexión o de máxima pendiente de la curva:

Despues de realizar el trazo de la recta tangente y de hacer una proyección para facilitar la ubicación de los cortes en la gráfica se obtiene:

```
to = 0.409; %Tiempo muerto
tau_ = 2.62; %Tau prima
tau = tau_ - to
```

tau = 2.2110

```
yfinal = 1.33;
yinicial = 0;
ufinal = 1;
uinicial = 0;
K = (yfinal - yinicial)/(ufinal - uinicial)
```

K = 1.3300

La función de transferencia aproximada de primer orden más tiempo muerto es:

Gzn =

Continuous-time transfer function.

Al comparar la curva de reacción de proceso G con la aproximación de ziegler y nichols se obtiene:

```
step(G,Gzn)
grid
legend('curva de reacción', 'aproximación Z&N')
```


En la figura anterior se puede observar que ambas gráficas inician y terminan en los mismos valores. Adicionalmente se observa un error significativo en la aproximacion (zona más curva) debido al trazo de la recta tangente.

Miller modificado

Para mejorar la repetibilidad del método de Ziegler y Nichols, este método propone ubicar tau a partir de un punto conocido en la respuesta. Debido a que se busca un equivalente de primer orden el tau' se busca donde la respuesta del sistema alcance el 63.2% de su valor final, de esta manera los resultados serán más consistentes y mejorará la aproximación.

Para este ejemplo, se tomará el tiempo muerto del método anterior y solo se calculará tau'. La ganancia estática también es la misma independiente del método

P = 0.632 * yfinal % El tiempo muerto se obtiene a partir de recta tangente

P = 0.8406

$$tau_{-} = 1.95$$

 $tau_{-} = 1.9500$

tau = 1.5410

El modelo que se obtiene es:

Gm =

Continuous-time transfer function.

Al comparar la curva de reacción y los 2 métodos enunciados anteriormente se obtiene:

```
step(G,Gzn,Gm)
grid
legend('curva de reacción', 'aproximación Z&N', 'aproximación miller')
```


En la gráfica anterior se puede observar que el error se redujo de manera evidente.

Métodos de 2 puntos (Alfaro)

D = -0.262;

Por último se realizará la identificación por medio de un método de 2 puntos. Para este ejemplo, se utilizará el método de Alfaro, sin embargo, todos los métodos de 2 puntos siguen el mismo procedimiento de aplicación.

```
P1 = 0.25 * yfinal %La ubicación de los puntos es específica para el método
P1 = 0.3325

P2 = 0.75 * yfinal

P2 = 0.9975

A = -0.91;
B = 0.91;
C = 1.262;
```

Se ubicarán en la curva de reacción los puntos P1 y P2 para identificar sus respectivos tiempos:

A partir de estos tiempos se calculan los parámetros de la aproximación

```
tau = A*t1 + B*t2

tau = 1.2622

to = C*t1 + D*t2

to = 0.6296
```

La función de transferencia aproximada sería:

```
Ga = tf(K, [tau 1], 'inputDelay', to)

Ga =

exp(-0.63*s) * ------
1.262 s + 1

Continuous-time transfer function.
```

Finalmente, al comparar los tres métodos con la curva de reacción del proceso se obtiene:

```
step(G,Gzn,Gm, Ga)
grid
legend('curva de reacción', 'aproximación Z&N', 'aproximación miller', '2 puntos (alfan
```


En la gráfica anterior se puede apreciar como los métodos de 2 puntos reducen significativamente el error de aproximación, a partir de un procedimiento sistemático de aplicación.

Conclusiones

Despues de verificar los diferentes métodos de identificación de lazo abierto es posible concluir lo siguiente:

- Los métodos de identificación de lazo abierto, en general son de muy fácil aplicación y ofrecen unos niveles de incertidumbre razonables para el diseño posterior de controladores
- Los métodos de 2 puntos permiten una identificación por medio de procedimientos sistemáticos donde siempre se obtienen los mismos resultados
- Los métodos de dos puntos ofrecen mejor aproximación en comparación con los métodos de ziegler y Nichols y Miller (1 punto)