

الامتحان الوطني الموحد للبكالوريا

الدورة الاستدراكية **2014** الموضوع

RS 22

المركز الوطني للتقويم والامتحانات والتوجيه

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعبة أو المسلك

تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
- عدد الصفحات: 3 (الصفحة الأولى تتضمن تعليمات و مكونات الموضوع والصفحتان المتبقيتان تتضمنان موضوع الامتحان)؛
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟
 - ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؟
 - بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه و لا علاقة له بالتمارين السابقة أو اللاحقة .

مكونات الموضوع

يتكون الموضوع من خمسة تمارين مستقلة فيما بينها و تتوزع حسب المجالات كما يلي :

3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	المتتاليات العددية	التمرين الثاني
3 نقط	حساب الاحتمالات	التمرين الثالث
3 نقط	الأعداد العقدية	التمرين الرابع
8 نقط	دراسة دالة وحساب التكامل	التمرين الخامس

الاعتمان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2014 – الموضوع – ماحة : الرياضيات — هعبة العلوم التجريبية بمساكيما

الموضوع

التمرين الأول (3 ن)

0.5

0.5

0.75

1

0.75

0.5

1.5

0.25

1.25

(P) و المستوى A(0,0,1) النقطة $(O,\vec{i},\vec{j},\vec{k})$ و المستوى و المستوى (P) و المستوى (P) و المستوى الذي معادلته $\Omega(0,3,-2)$ و الفلكة (S) التي مركزها $\Omega(0,3,-2)$ و شعاعها هو (S)

$$(P)$$
تمثيل بارامتري للمستقيم (Δ) المار من النقطة A والعمودي على $z=t$ تمثيل بارامتري للمستقيم $z=1-2t$

 (Δ) ب- تحقق من أن H(2,1,-1) هي نقطة تقاطع المستوى (P)والمستقيم

$$\vec{u} = 2\vec{i} + \vec{j} - 2\vec{k}$$
 حيث $\Omega \vec{A} \wedge \vec{u} = 3(\vec{i} + 2\vec{j} + 2\vec{k})$ 0.75

بـ بين أن مسافة النقطة Ω عن المستقيم (Δ) تساوي 3

(S) و الفلكة (Δ) مماس الفلكة (Δ) مماس الفلكة (S) و تحقق من أن (Δ) هي نقطة تماس المستقيم

التمرين الثانيي (3 ن)

 IN^* نعتبر المتتالية العددية $u_{n+1} = \frac{5u_n - 4}{1 + u_n}$ و $u_1 = 5$: المعرفة بما يلي المعرفة بما يلي : u_{n}

 IN^* من $u_n > 2$ اکتا الترجع أن (1 من 10.75)

 IN^* من $v_n = \frac{3}{u_n - 2}$: المعرفة بما يلي ($(v_n)_{n \in IN^*}$ لكل العددية (2

اً- بين أن $(v_n)_{n \in IN^*}$ عمن $v_{n+1} = \frac{1+u_n}{u_n-2}$ أ- بين أن المتتالية $v_{n+1} = \frac{1+u_n}{u_n-2}$ أ- بين أن

 IN^* ن من $u_n = 2 + \frac{3}{n}$ ن و استنتج أن v_n بدلالة v_n بدلالة v_n

 $\lim_{n\to+\infty}u_n$ 3-- ϵ

التمرين الثالث (3 ن)

لتحديد سؤالي اختبار شفوي خاص بمباراة توظيف، يسحب مترشح، عشوائيا ، بالتتابع و بدون إحلال بطاقتين من صندوق يحتوي على 10 بطاقات: ثمان بطاقات تتعلق بمادة الرياضيات و بطاقتان تتعلقان بمادة اللغة الفرنسية (نعتبر أنه لا يمكن التمييز بين البطاقات باللمس).

" سحب بطاقتين تتعلقان بمادة اللغة الفرنسية " : A نعتبر الحدث B : " سحب بطاقتين تتعلقان بمادتين مختلفتين " B

$$p(B) = \frac{16}{45}$$
 و $p(A) = \frac{1}{45}$

2) ليكن X المتغير العشوائي الذي يربط كل سحبة بعدد البطاقات المسحوبة المتعلقة بمادة اللغة الفرنسية

أ- تحقق من أن القيم التي يأخذها المتغير العشوائي X هي 0 و 1 و 2

$$X$$
 بين أن $p(X=0)=rac{28}{45}$ بم أعط قانون احتمال

الصفحة 3 RS 22	الاعتمان الوطني الموحد للبكالوريا – الحورة الاستحراكية 2014 – الموضوع
3	 ماحة : الرياضيات — هعبة العلوم التجريبية بمسالكما وهعبة العلوم والتكنولوجيات بمسلكيما
	التمرين الرابع (3 ن)

التمرين الرابع (3 ن)

$$z^2 - 4z + 5 = 0$$
 : المعادلة (C العقدية الأعداد العقدية المعادلة) مجموعة الأعداد العقدية

$$D$$
 و D و B و A النقط A و A النقط A و A و A انعتبر ،في المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر A و A و A و A و A النقط A و A

$$\omega=1$$
 و $d=-i$ و $c=i$ و $b=2-i$ و $a=2+i$: و $d=-i$ و $d=-i$

$$\frac{a-\omega}{b-\omega}=i$$
 أ- بين أن 0.25

0.5

0.5

0.5

$$\Omega$$
ب- استنتج أن المثلث ΩAB قائم الزاوية و متساوي الساقين في Ω

$$\frac{\pi}{2}$$
 ليكن z لحق نقطة M من المستوى و z' لحق النقطة M صورة M بالدوران R الذي مركزه z' و زاويته z'

$$z'=iz+1-i$$
 أ- بین أن

$$R(D) = B$$
 و $R(A) = C$ ب- تحقق من أن

ج- بين أن النقط
$$A$$
 و B و C و تنتمي إلى نفس الدائرة محددا مركزها

التمرين الخامس (8 ن)

$$f(x) = (xe^x - 1)e^x$$
: نعتبر الدالة العددية f المعرفة على f بما يلي

(
$$2~cm$$
 : الوحدة) $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ و ليكن $\left(C\right)$ المنحنى الممثل للدالة f في معلم متعامد ممنظم $\left(C\right)$

بین أن
$$f(x) = 0$$
 و أول النتیجة هندسیا الم

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty \quad \text{iii} \quad \lim_{x \to +\infty} f(x) = +\infty \quad \text{iiii} \quad \mathbf{(2)}$$
0.75

ب- استنتج أن المنحنى
$$(C)$$
 يقبل فرعا شلجميا بجوار $+\infty$ يتم تحديد اتجاهه 0.5

$$f'(0) = 0$$
 نان R ثم تحقق من أن $f'(x) = e^{x} \left(e^{x} - 1 + 2xe^{x} \right)$ 1 أ- بين أن (3)

$$[-\infty,0]$$
 من $e^x-1\leq 0$ و أن $e^x-1\leq 0$ لكل $e^x-1\geq 0$ لكل عن $e^x-1\leq 0$ اكل عن $e^x-1\leq 0$

$$IR$$
 على الدالة f تزايدية على $[0,+\infty[$ و تناقصية على $]-\infty,0]$ و تناقصية على الدالة f على 1.25

(
$$\frac{1}{2}e^{\frac{1}{2}}<1$$
ن المعادلة $f(x)=0$ تقبل حلا وحيدا α في $f(x)=0$ و أن $\frac{1}{2}<\alpha<1$ و أ- بين أن المعادلة $f(x)=0$ تقبل حلا وحيدا α

(نقبل أن للمنحنى
$$(C)$$
 نقطة انعطاف وحيدة غير مطلوب تحديدها (C) نقبل أن للمنحنى (C) نقطة انعطاف وحيدة غير مطلوب تحديدها (C)

$$\int_{0}^{\frac{1}{2}} xe^{2x} dx = \frac{1}{4}$$
 نان بین أن مكاملة بالأجزاء ، بین أن (5 مكاملة بالأجزاء)

و محور الأفاصيل و المستقيمين (
$$C$$
) احسب ب cm^2 مساحة حيز المستوى المحصور بين المنحنى (C)

$$x = \frac{1}{2}$$
 و $x = 0$ اللذين معادلتاهما

حل التمرين 1 .

 $(O, \vec{i}, \vec{j}, \vec{k})$ افي الفضاء المنسوب إلى معلم متعامد ممنظم مباشر (P) : 2x + y - 2z - 7 = 0 و A(0; 0; 1) و $\Omega(0; 3; -2)$ حيث $\Omega(0; 3; -2)$

$$x=2t$$
 $y=t$ $(t\in IR)$. غثيل بارامتري $z=1-2t$

للمستقيم (Δ) المار من A والعمودي على (P).

لدينا: 2x + y - 2z - 7 = 0 هي معادلة ديكارتية للمستوى (P) الدينا: 2x + y - 2z - 7 = 0 إذن فالمتجهة التي مثلوث إحداثياتها (2; 1; -2) هي متجهة منظمية على (P) وبالتالي فهي متجهة موجهة للمستقيم (Δ) والمار من النقطة (1; 0; 0) هو: ومنه فالتمثيل البارامتري للمستقيم (Δ) هو:

$$(\Delta): \begin{cases} x = 0 + 2t \\ y = 0 + t \\ z = +1 - 2t \end{cases} (t \in \mathbb{IR})$$

$$(\Delta): \left\{ egin{array}{ll} x=2t \ y=t \ (t\in IR) \end{array}
ight. : ignificant \ z=1-2t \end{array}
ight.$$

(P) ب. أتحقق من أن (1 - 1; 1; 2; 1) هي نقطة تقاطع المستوى (Δ) .

بما أن (Δ) عمودي على (P) فإن (Δ) يخترق المستوى (P) في نقطة H أتأكد أن مثلوث إحداثياتها هو (1 - ; 1 ; 2): ولدينا: $0 = 7 - 7 = 7 - (1 - 2 \times (2) + (1) + (1) + (1 \times (2) \times (2) + (2) \times (2) + (2 \times (2) \times (2) \times (2) \times (2) + (2 \times (2) \times (2) \times (2) \times (2) + (2 \times (2) \times (2)$

ومن أجل t=1 في التمثيل البارامتري للمستقيم (Δ) أجد: x=2 وهي إحداثيات النقطة X=1

إذن (1 - ;1 ;2) \mathbf{H} هي نقطة تقاطع المستوى (P) والمستقيم (Δ).

z = -1

$$ΩA ∧ u = 3 (\vec{i} + 2\vec{j} + 2\vec{k})$$

$$\vec{u} = 2\vec{i} + \vec{i} - 2\vec{k}$$
(2)

 $\overline{\Omega A}(0; -3; 3)$ إذن: $\Omega(0; 3; -2)$ و A(0; 0; 1)

وما أن:
$$\vec{u} = 2\vec{i} + \vec{j} - 2\vec{k}$$
 فإن:

 $\overline{\Omega A} \wedge \overline{u} = 3 \left(\overline{i} + 2 \, \overline{j} + 2 \overline{k} \right)$: 0.3 يساوي (0.4 عن (0.4) تساوي 0.4

 (Δ) لدينا: (2;0;0;0) و (0;0;0;1) تنتمي إلى

 (Δ) متجهة موجهة لـ u (2; 1; - 2) و

اذن:

$$d(\Omega; (\Delta)) = \frac{\left\| \overline{\Omega A} \wedge \overline{u} \right\|}{\left\| \overline{u} \right\|} = \frac{\left\| 3(\overline{i} + 2\overline{j} + 2\overline{k}) \right\|}{\left\| 2\overline{i} + \overline{j} - 2\overline{k} \right\|} : 0.05$$

$$= \frac{|3| \left\| \overline{i} + 2\overline{j} + 2\overline{k} \right\|}{\left\| 2\overline{i} + \overline{j} - 2\overline{k} \right\|} = 3 \frac{\sqrt{1^2 + 2^2 + 2^2}}{\sqrt{2^2 + 1^2 + (-2)^2}}$$

$$= 3$$

ج - أستنتج أن المستقيم (Δ) ثماس للفلكة (S) وأتحقق أن H هي نقطة تماس المستقيم (Δ) والفلكة (S).

- لدينا حسب نتيجة السؤال السابق: مسافة Ω مركز الفلكة (S) عن المستقيم (Δ) تساوي 3 الذي هو شعاع الفلكة، إذن المستقيم (Δ) ماس للفلكة (S).
 - . (Δ) نعلم أن النقطة (1; -1) تنتمي إلى المستقيم (Δ).

$$\Omega H = \left\| \overline{\Omega H} \right\|$$
 و $\Omega H (2; -2; 1)$ ولدينا: $= \sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{9} = 3$

بما أن H تبعد عن Ω مركز الفلكة بالمسافة β التي تساوي شعاع الفلكة فإن β وبالتالي فالنقطة β هي نقطة تماس الفلكة β والمستقيم β.

حل التمرين 2_

: هي المتتالية بحيث (u_n) هي المتتالية بحيث

$$(\forall n \in IN^*) : u_{n+1} = \frac{5u_n - 4}{1 + u_n}$$
 $u_1 = 5$

 \mathbf{IN}^* من \mathbf{n} لكل $\mathbf{u}_{_{\mathbf{n}}} > 2$ أبين بالترجع أن: 2

• من أجل n=1 لدينا: 2 < 5 > 1 إذن الخاصية صحيحة من أجل الحد الأول.

• نفترض أن: $2 < u_n > 1$ من أجل $n \ge 1$ ولنبين أنها صحيحة من أجل n + 1:

$$\begin{aligned} u_{n+1}-2 &= \frac{5u_n-4}{1+u_n}-2 \\ &= \frac{5u_n-4-2-2\,u_n}{1+u_n} = \frac{3u_n-6}{1+u_n} = \frac{3\,(u_n-2)}{1+u_n} \\ u_n-2>0 &= u_n>0 &= u_n>0 \\ u_{n+1}-2 &= \frac{3\,(u_n-2)}{1+u_n} > 0 \\ u_{n+1}-2 &= \frac{3\,(u_n-2)}{1+u_n} > 0 \\ u_{n+1}>2 &= \frac{u_n-2}{1+u_n} > 0 \end{aligned}$$

إذن الخاصية صحيحة من أجل n + 1

$$(\forall n \in IN^*): u_n > 2$$
 وبالتالي:

$$v_{n}=rac{3}{u_{n}-2}$$
 لدينا $\left(v_{n}
ight)_{n\in IN}$ المتتالية المعرفة كما يلي: (2 $v_{n}=\frac{3}{u_{n}-2}$ لكل $v_{n+1}=\frac{1+u_{n}}{u_{n}-2}$ أبين أن المتتالية

.1 حسابية أساسها (v_n) حسابية

$$v_{n+1} = \frac{3}{u_{n+1} - 2}$$
 : الكل n من IN دينا :
$$= \frac{3}{\frac{5u_n - 4}{1 + u_n} - 2} = \frac{3}{\frac{5u_n - 4 - 2 - 2u_n}{1 + u_n}}$$

$$v_{n+1} = \frac{3}{\frac{3u_n - 6}{1 + u_n}}$$
 $v_{n+1} = \frac{3}{\frac{3u_n - 6}{1 + u_n}}$
 $v_{n+1} = \frac{3(1 + u_n)}{3(u_n - 2)}$: يعني أن: $v_{n+1} = \frac{1 + u_n}{u - 2}$ لكل $v_{n+1} = \frac{1 + u_n}{u - 2}$

$$v_{n+1} - v_n = \frac{1 + u_n}{u_n - 2} - \frac{3}{u_n - 2}$$

$$= \frac{1 + u_n - 3}{u_n - 2}$$

$$= \frac{u_n - 2}{u_n - 2} = 1 \qquad (u_n \neq 2)$$

 $(V_n)_{n\in\mathbb{N}}$ يان متتالية حسابية أساسها $(V_n)_{n\in\mathbb{N}}$

 $\mathbf{u}_{n} = 2 + \frac{3}{n}$ الكل \mathbf{v}_{n} بدلالة \mathbf{n} وأستنج أن: \mathbf{n} الكل \mathbf{n}

و لدينا: $1 = \frac{3}{5-2} = \frac{3}{5-2}$ وأساسها $v_1 = \frac{3}{u_1-2} = \frac{3}{5-2} = 1$ إذن حسب حسابية حدها الأول $v_1 = 1$ وأساسها $v_1 = 1$ إذن حسب صيغة الحد العام لمتالية حسابية: لدينا

 $v_n = v_1 + (n-1) r : IN^*$ لكل n من

$$v_n = 1 + (n-1) \times 1$$
 يعني

$$v_n = n : IN^*$$
 إذن: لكل n من

 u_{n} - $2=\frac{3}{v_{n}}$ يعني $v_{n}=\frac{3}{u_{n}-2}:IN^{*}$ من الكل n من نعلم أن لكل .

$$\left(\forall n \in \mathbb{IN}^*\right) : u_n = \frac{3}{v_n} + 2$$
 :

$$\left(\forall n \in \mathbb{IN}^*\right) : u_n = \frac{3}{n} + 2$$
 يعني أن:

$$\left(\forall n \in IN^* \right) : u_n = \frac{3}{n} + 2$$
 لدينا $\lim_{n \to +\infty} \frac{3}{n} = 0$ وبما أن $\lim_{n \to +\infty} u_n = 2$ فإن $\lim_{n \to +\infty} u_n = 2$

التجربة العشوائية تقتضى السحب بالتتابع وبدون إحلال لبطاقتين من صندوق يحتوي على 10 بطاقات.

> A (1 هو الحدث: «سحب بطاقتين تتعلقان عادة اللغة الفرنسية» B هو الحدث: «سحب بطاقتين تتعلقان عادتين مختلفتين» حيث عدد بطاقات الرياضيات هو 8 وعدد بطاقات الفرنسية

$$p(B) = \frac{16}{45}$$
 و $p(A) = \frac{1}{45}$.

ـ بما أننا في حالة فرضية تساوي الاحتمالات فإن:

$$p(A) = \frac{\text{card } A}{\text{card } \Omega}$$
 حيث Ω هو كون الإمكانيات في هذه

card $\Omega = A_{10}^2 = 90$ التجربة العشوائية و

وبما أن A هو الحدث: سحب بطاقتين للغة الفرنسية من أصل card $A = A_2^2 = 2$ بطاقتين فإن:

$$p(A) = \frac{2}{90} = \frac{1}{45}$$
 : وبالتالي لدينا:

$$p(B) = \frac{\text{card } B}{\text{card } \Omega} = \frac{2 \times A_2^1 \times A_8^1}{90}$$
 كذلك لدينا: $\frac{32}{90} = \frac{16}{45}$

(لأن عدد إمكانيات B هو $A_2^1 \times A_8^1$ مع أخذ بالاعتبار ترتيب البطاقتين أي الضرب في الذي هو عدد المواقع في الترتيب).

2) X هو المتغير العشوائي الذي يُعطى عدد بطاقات اللغة الفرنسية.

أ. أتحقق أن القيم التي يأخذها X هي: 0 و 1 و 2.

بما أننا نسحب بطاقتين من الصندوق وعدد بطاقات الفرنسية بداخله هو 2 فإن إمكانيات سحب بطاقة للغة الفرنسية هي:

- البطاقتين المسحوبتين هما للرياضيات: في هذه الحالة X يأخذ القيمة 0.
- البطاقتين مكونتين من واحدة لمادة الرياضيات والأخرى لمادة الفرنسية وفي هذه الحالة X يأخذ القيمة 1.
 - البطاقتين المسحوبتين هما للغة الفرنسية وهنا X يأخذ

وبالتالي فالقيم الممكنة للمتغير العشوائي
$$X$$
 هي: 0 و 1 و 2 أي: $X(\Omega) = \{0; 1; 2\}$

X ب. أبين أن: $\frac{28}{45}$ $p(X=0) = \frac{28}{45}$ • الحدث (X = 0) يعنى أن البطاقتين المسحوبتين هي لمادة الرياضيات،

اذن: $A_s^2 = 56$ وبالتالي: card (X = 0) = $A_s^2 = 56$

$$p(X = 0) = \frac{\text{card}(X = 0)}{\text{card}\Omega} = \frac{56}{90} = \frac{28}{45}$$

• قانون احتمال X:

لدينا: (X = 1) هو الحدث B (سحب بطاقتين مختلفتي المادة) و (X = 2) هو الحدث A (سحب بطاقتين للغة الفرنسية) وبالتالي فقانون احتمال X هو:

Χ (Ω) 0		1	2	
	$p(X = x_i)$	$p(X = 0) = \frac{28}{45}$	$p(X=1) = \frac{16}{45}$	$p(X=2) = \frac{1}{45}$

حل التمرين 4

 $z^2 - 4z + 5 = 0$) أحل في مجموعة الأعداد العقدية المعادلة: $\Delta = (-4)^2 - 4 \times 5 \times 1$ مُميز هذه المعادلة هو: = 16 - 20 = -4

 $\Delta = (2i)^2$ اذن: $z_2 = \frac{4+2i}{2}$ وحلي المعادلة هما: $z_1 = \frac{4-2i}{2}$ وحلي المعادلة هما: $z_2 = 2 + i$ $z_1 = 2 - i$.

إذن مجموعة الحلول هي: S = {2 - i ; 2 + i}

2) في المستوى العقدي المنسوب إلى المعلم المتعامد الممنظم المباشر $\left(O, \overline{e_1}, \overline{e_2}\right)$

D(d=-i) و C(c=i) ه B(b=2-i) و A(a=2+i) Ω ($\omega = 1$)

$$\frac{a-\omega}{b-\omega} = i : i$$
اـ أبين أن:
$$\frac{a-\omega}{b-\omega} = \frac{2+i-1}{2-i-1}$$
 لدينا:
$$= \frac{1+i}{1-i}$$

$$= \frac{(1+i)(1+i)}{(1-i)(1+i)} = \frac{1/2}{2}$$

• ولدينا كذلك:

$$id + 1 - i = i (-i) + 1 - i$$

= 1 + 1 - i
= 2 - i = b

وهذا يعني أن: R(D) = B

ج- أبين أن النقط A و B و C و D تنتمي إلى نفس الدائرة، أحدد مركزها:

 $\Omega A = \Omega C$: إذن R(A) = C إذن $\Omega D = \Omega B$ إذن R(D) = B

وحسب النتيجة 2) ب ـ لدينا: $\Omega A = \Omega B$ ، نستنتج إذن أن: $\Omega A = \Omega B = \Omega C$ وهذا يعني أن النقط $\Omega A = \Omega B = \Omega C = \Omega D$ و $\Omega B = \Omega C = \Omega D$ تنتمي إلى الدائرة التي مركزها Ω .

حل التمرين 5 ـ

 $f(x) = (xe^x - 1) e^x$: كمايلي IR للعرفة على الدالة المعرفة على

(2cm منحناها في معلم متعامد منظم (O, i, j) (الوحدة (C)

1) أبين أن: $0 = \lim_{x \to \infty} f(x) = 0$ وأأوّل النتيجة هندسياً.

• أعلم أن:

 $\lim_{x \to \infty} e^x = 0 \quad \lim_{x \to \infty} xe^x = 0$

$$\lim_{x \to 0} f(x) = -1 \times 0 = 0$$
 : iii.

يعني أن المنحنى (C) يقبل المستقيم ذي المعادلة: $\lim_{x \to +\infty} f(x) = 0$

y = 0 كمقارب أفقي بجوار y = 0

(يعني أن محور الأفاصيل هو مقارب أفقي للمنحنى (C) بجوار ∞ -)

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$$
 و $\lim_{x \to +\infty} f(x) = +\infty$ أبين أن (2)

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (xe^x - 1)e^x = +\infty$$
 : لدينا:

$$\lim_{x \to +\infty} (xe^x - 1) = +\infty$$
 و $\lim_{x \to +\infty} e^x = +\infty$ \dot{V}

 $\frac{\mathbf{a} - \omega}{\mathbf{b} - \omega} = \mathbf{i}$ إذن:

ب. أستنتج أن المثلث ΩAB قائم الزاوية ومتساوي الساقين في Ω .

لدينا: ΩΒ:|b-ω| و ΩΒ:|b-ω|

$$\left| \frac{\mathbf{a} - \omega}{\mathbf{b} - \omega} \right| = \frac{|\mathbf{a} - \omega|}{|\mathbf{b} - \omega|} = |\mathbf{i}| = 1$$
 (فإن: $\frac{\mathbf{a} - \omega}{\mathbf{b} - \omega} = \mathbf{i}$) فإن: $\frac{\mathbf{a} - \omega}{\mathbf{b} - \omega} = \mathbf{i}$

 $\Omega A = \Omega B$ أي أن: $\alpha - \omega = |b - \omega|$

من جهة أخرى نعلم أن:

$$\left(\overline{\Omega B; \Omega A}\right) = \arg\left(\frac{a - \omega}{b - \omega}\right) [2\pi]$$
$$= \arg(i) [2\pi]$$
$$= \frac{\pi}{2} [2\pi]$$

أي أن الزاوية $\widehat{A\Omega B}$ قائمة (2).

من النتيجتين (1) و (2) نستنتج أن: ΩAB مثلث قائم الزاوية ومتساوي الساقين في Ω.

(3) لدينا: $\mathbf{R}(\mathbf{z}')$ و $\mathbf{R}(\mathbf{z}')$ و $\mathbf{R}(\mathbf{z}')$ هو الدوران $\mathbf{M}(\mathbf{z})$ لدينا: $\mathbf{R}(\mathbf{z})$ و $\mathbf{R}(\mathbf{z})$ و $\mathbf{R}(\mathbf{z})$ الذي مركزه $\mathbf{R}(\mathbf{z})$ و زاويته $\frac{\pi}{2}$

أ- أبين أن: z' = iz + 1 - i

أعلم أنه حسب الصيغة العقدية للدوران R لدينا:

 $\mathbf{R}(\mathbf{D}) = \mathbf{B}$ و $\mathbf{R}(\mathbf{A}) = \mathbf{C}$: في المحقق أن

z' = iz + 1 - i . لدينا z' = iz + 1 - i . السؤال أ لدوران R إذن:

ia + 1 - i = i (2 + i) + 1 - i= 2i - X + X - i

> = i = c $P(\Lambda) = C$

وهذا يعني أن: R(A) = C

$$\begin{split} \lim_{x \to +\infty} \frac{f(x)}{x} &= \lim_{x \to +\infty} \frac{x \left(e^x - \frac{1}{x} \right) e^x}{x} \\ &= \lim_{x \to +\infty} \left(e^x - \frac{1}{x} \right) e^x \end{split}$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty : i \lim_{x \to +\infty} \left(e^x - \frac{1}{x} \right) = +\infty : i i$$
ويما أن: $0 + \infty$

ب. أستنتج أن المنحني (C) يقبل فرعاً شلجمياً بجوار ∞+، أحدده.

$$\lim_{x \to +\infty} f(x) = +\infty - \int_{-\infty}^{\infty} (2 + \infty) dx$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$$

إذن المنحنى (C) يقبل محور الأراتيب كاتجاه مقارب بجوار ∞+.

IR کی
$$f'(x) = e^x (e^x - 1 + 2xe^x)$$
 کی $f'(x) = e^x (e^x - 1 + 2xe^x)$ (3) ثم أتحقق أن: $f'(0) = 0$

الدالة f قابلة للاشتقاق على IR (جداء دالتين قابلتين للاشتقاق على IR)

ولدينا:

$$(\forall x \in IR) ; f'(x) = (xe^{x} - 1)' e^{x} + (xe^{x} - 1)(e^{x})'$$

$$= (xe^{x})' e^{x} + (xe^{x} - 1) e^{x}$$

$$= (e^{x} + x e^{x}) e^{x} + (xe^{x} - 1) e^{x}$$

$$= e^{x} [e^{x} + x e^{x} + xe^{x} - 1]$$

$$(\forall x \in IR) : f'(x) = e^x (e^x - 1 + 2x e^x)$$
 إذن:

$$f'(0) = e^0 (e^0 - 1 + 2 \times 0 \times e^0)$$
 : Levil = 1 x (1 - 1) = 0

$$(\forall x \in [0, +\infty[); e^x - 1 \ge 0]; e^x - 1 \ge 0)$$
 $(\forall x \in [-\infty, 0]; e^x - 1 \le 0]$

:نادالة $x\mapsto e^x$ تزايدية على IR، إذن

- ولكل x ≥ 0 يعني e^x ≥ e^x يعني 0 ≤ 1 1 عني x ≥ 0 يعني 0 ≤ 1 1 كل x ≥ 0.
 وبالتالى: 0 ≤ 1 1 كل e^x 1 ≥ 0.
- $e^{x} 1 \le 0$ يعني $e^{x} \le e^{x} \le e^{0}$ يعني $x \le 0$ د لكل $x \le 0$ يعني $x \le 0$ يعني $e^{x} 1 \le 0$ وبالتالي: $0 \ge 1 1 \le 0$ لكل $e^{x} 1 \le 0$

ج- أبين أن الدالة f تزايدية على $]\infty + ;0]$ وتناقصية على $[0;\infty -[$ ثم أضع جدول تغيرات الدالة f على $[0;\infty -[$

- لدينا: $(\forall x \in IR)$: $f'(x) = e^x (e^x 1 + 2x e^x)$: $(0, +\infty)$ وحسب السؤال السابق لدينا: لكل x من $(0, +\infty)$ و $(0, +\infty)$ و هذا يعنى أن $(0, +\infty)$ تزايدية على $(0, +\infty)$.
 - $xe^{x} \le 0$ e e e > 0 : Levil : (0 ; 0) or x = 0 e e × 0 = 0 e × 0 .

 $f'(x) \le 0$: $e^x - 1 + 2x e^x$ أي أن: $0 \le 0'(x) \le 0$ إذن: $0 \ge 0$ أي أن: $0 \ge 0$ وهذا يعني أن 0 تناقصية على المجال 0 ; ∞ -[.

• جدول التغيرات على IR:

				100
X	- ∞	0		+∞
f'(x)	_	Ó	+	
f(x)	0			≠ +∞
		<u>1</u>		

 $[0;+\infty[$ في α أ. أبين أن المعادلة f(x)=0 تقبل حلاً وحيداً α في $\frac{1}{2}<\alpha<1$ وأن

• أعلم أن الدالة: $x \mapsto e^x$ متصلة على $]\infty + ;0]$ والدالة $x \mapsto xe^x$ متصلة على $]\infty + ;0]$ إذن دالة الجذاء: $x \mapsto xe^x \mapsto x$

وحسب نتيجة السؤال السابق لدينا، f تزايدية قطعاً على $f' = (1; +\infty)$ و $f' = (1; +\infty)$ و تنعدم في نقطة واحدة هي 0 على $f' = (1; +\infty)$ و تنعدم في نقطة واحدة هي 0 على $f' = (1; +\infty)$

f(1) = (e-1) e > 0 : Levil : $\frac{1}{2} < \alpha < 1$.

$$\int_{0}^{\frac{1}{2}} x e^{2x} dx = \int_{0}^{\frac{1}{2}} u'(x) v(x) dx \qquad (a)$$

$$= \left[u(x) v(x) \right]_{0}^{\frac{1}{2}} - \int_{0}^{\frac{1}{2}} u(x) v'(x) dx$$

$$= \left[x \times \frac{1}{2} e^{2x} \right]_{0}^{\frac{1}{2}} - \int_{0}^{\frac{1}{2}} \frac{1}{2} e^{2x} dx$$

$$= \frac{1}{2} \times \frac{1}{2} e^{-1} \frac{1}{2} \left[\frac{1}{2} e^{2x} \right]_{0}^{\frac{1}{2}}$$

$$= \frac{1}{4} e^{-1} \frac{1}{4} (e^{-1}) = \frac{1}{4} e^{-1} \frac{1}{4} e^{+1}$$

$$\int_{0}^{\frac{1}{2}} x e^{2x} dx = \frac{1}{4} \qquad (b)$$

(C) أحسب يـ cm^2 مساحة حيز المستوى المحصور بين المنحنى $x = \frac{1}{2}$ و x = 0 المنافع ومحور الأفاصيل والمستقيمين اللذين معادلتاهما

لتكن A مساحة الحيز المطلوب، لدينا:

$$A = \int_{0}^{\frac{1}{2}} |f(x)| dx \times (\text{identify})$$

$$\left(\forall x \in \left[0; \frac{1}{2}\right]\right); f(x) \le 0$$
 أن: وأعلم أن:

|f(x)| = -f(x) إذن:

$$A = -\int_0^{\frac{1}{2}} f(x) dx \times 4 cm^2 : \text{ylub}$$

$$= -\int_0^{\frac{1}{2}} (xe^x - 1) e^x dx \times 4cm^2$$

$$= \left(-\int_0^{\frac{1}{2}} xe^{2x} dx + \int_0^{\frac{1}{2}} e^x dx \right) \times 4cm^2$$

$$= \left(-\frac{1}{4} + \left[e^x \right]_0^{\frac{1}{2}} \right) \times 4cm^2$$

$$= \left(-\frac{1}{4} + \sqrt{e} - 1 \right) \times 4cm^2$$

$$= (4 \sqrt{e} - 5) \text{cm}^2$$

$$A = (4 \sqrt{e} - 5) \text{cm}^2$$

$$\vdots$$

$$\begin{split} f\left(\frac{1}{2}\right) &< 0 \text{ i.j. } \frac{1}{2}e^{\frac{1}{2}} < 1 \text{ i.j. } f\left(\frac{1}{2}\right) = \left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}\right) &= \left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}\right) &= \left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}, 1\right) &= \left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}, 1\right) &= \left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}, 1\right) &= \left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}, 1\right) &= \left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}, 1\right) &= \left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}, 1\right) &= \left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}, 1\right) &= \left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}, 1\right) &= \left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}e^{\frac{1}{2}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}e^{\frac{1}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\ f\left(\frac{1}{2}e^{\frac{1}} - 1\right)e^{\frac{1}{2}} \text{ o.j.} \\$$

ولدينا 0 < 0 f(1) < 0 إذن حسب مبرهنة القيم الوسيطية $\alpha \in \left[\frac{1}{2};1\right]$ فإن:

 (O, \vec{i}, \vec{j}) ب المعلم ((C)). ب انشاء ((C)) في المعلم ((C)

لدينا: 0 = (0) f يعني وجود مماس موازي لمحور الأفاصيل في النقطة ذات الأفصول 0.

$$\int_0^{\frac{1}{2}} x e^{2x} dx = \frac{1}{4}$$
 باستعمال مكاملة بالأجزاء، أبين أن: $(v(x) = x) u'(x) = e^{2x}$ أضع: $(v(x) = x) u'(x) = e^{2x}$

$$\left(v'(x) = 1\right)$$
 و $u(x) = \frac{1}{2}e^{2x}$: إذن