Геометрия масс

Пусть в концах A и B невесомого стержня закреплены две точки с массами m_1 и m_2 . В какое место можно поставить опору так, чтобы стержень находился в равновесии? Ответ вам скорее всего известен — это «правило рычага»: нужно на отрезке AB взять такую точку M, что $\frac{AM}{MB} = \frac{m_2}{m_1}$. Эта точка — центр масс. Каким геометрическим свойством обладает данная точка? Заетим, что $m_1 \overrightarrow{MA} + m_2 \overrightarrow{MB} = 0$. Последнее свойство служит определением для центра масс n точек.

Определение. *Центром масс* системы точек $A_1,...,A_n$ с массами $m_1,...,m_n\geqslant 0$ называется такая точка M, что $m_1\overrightarrow{MA_1}+m_2\overrightarrow{MA_2}+...+m_n\overrightarrow{MA_n}=\overrightarrow{0}$.

Задача 1. Докажите, что центр масс существует у любой системы конечного числа точек. (**Тео-**рема о существовании центра масс)

Задача 2. Докажите, что центр масс единственен. (**Теорема о единственности центра масс**) Кроме того, имеется следующий важный факт:

Теорема о перегруппировке масс. Пусть имеется некоторая система точек $\mathscr{A} = \{A_1, ..., A_n\}$ с массами $m_1, ..., m_n$ соответственно. Тогда центр масс этой системы можно найти следующим образом. Разобьём множество \mathscr{A} на попарно непересекающиеся множества $\mathscr{A} = \mathscr{B}_1 \cup ... \cup \mathscr{B}_k$. В каждом множестве \mathscr{B}_i найдём центр масс точек в него входящих и обозначим полученную точку через C_i , приписав ей массу, равную, сумме масс всех точек из \mathscr{B}_i . Тогда центр масс точек из множества \mathscr{A} совпадёт с центром масс построенных таким образом точек C_i .

Например, хотим мы найти центр масс трёх точек A, B и C, имеющие равный вес — по 1. Воспользуемся данной теоремой. Центр масс точек A и B – эта середина отрезка AB, т. к. точки имеют равные веса (обозначим её точкой M), имеющая массу 1+1=2. Теперь найдём центр масс точек M и C. Несложно понять, что этой точкой будет точка K, такая, что MK/KC=2:1. Стало быть, центром масс системы из трёх точек с равными весами — это точка пересечения медиан треугольника ABC. Попутно мы доказали, что медианы пересекаются в одной точке, т. к. центр масс единственен и лежит на всех медианах (ведь аналогичные рассуждения мы могли бы повторить, разбивая семейство точек на группы A, C и B; B, C и A).

Таким образом можно решать некоторые геометрические задачи. Нужно в некоторые точки положить некоторые массы — неотрицательные вещественные числа и несколькими способами найти центр масс точек, по разному разбивая их на группы.

Задача 3. Пусть $A_1, B_1, ..., F_1$ — середины сторон AB, BC, ..., FA произвольного шестиугольника. Докажите, что точки пересечения медиан треугольников $A_1C_1E_1$ и $B_1D_1F_1$ совпадают.

Задача 4. На сторонах AB, BC, CD, DA выпуклого четырёхугольника ABCD взяты точки K, L, M, N соответственно, причём $AK: KB = DM: MC = \alpha$ и $BL: LC = AN: ND = \beta$. Пусть P — точка пересечения отрезков KM и LN. Докажите, что $NP: PL = \alpha$ и $KP: PM = \beta$.

Задача 5. Докажите, что если у многоугольника есть несколько осей симметрии, то все они пересекаются в одной точке.

Задача 6. Вписанная окружность треугольника ABC касается сторон AB, BC, AC в точках C_1, A_1, B_1 соответственно. Докажите, что прямые AA_1, BB_1, CC_1 пересекаются в одной точке.

Задача 7. Докажите теорему о перегруппировке масс.

Задача 8. При помощи масс докажите теорему Чевы: на сторонах AB, BC, CA отметили точки C_1, A_1, B_1 соответственно, прямые AA_1, BB_1, CC_1 пересекаются в одной точке $\Leftrightarrow \frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} = 1$.