UNCLASSIFIED

AD 295 083

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

AS AD No. 29508

NBS REPORT 7619

PREDICTING THE PERFORMANCE OF BAND 7
COMMUNICATION SYSTEMS
USING ELECTRONIC COMPUTERS

by

Donald L. Lucas and George W. Haydon

NO OTS

U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

BOULDER LABORATORIES Boulder, Colorado

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of non-periodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 (\$1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (Includes Titles of Papers Published in Outside Journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

8530-20-85504

October 15, 1962

7619

PREDICTING THE PERFORMANCE OF BAND 7 COMMUNICATION SYSTEMS USING ELECTRONIC COMPUTERS

by

Donald L. Lucas and George W. Haydon

Prepared for
U. S. Navy - Bureau of Ships

Delivery Order 1700R-692-61, dated April 12, 1961

U. S. DEPARTMENT OF COMMERCE:
NATIONAL BUREAU OF STANDARDS
BOULDER LABORATORIES
Boulder, Colorado

IMPORTANT NOTICÉ

NATIONAL BUREAU OF STANDARDS REPORTS are usually preliminary or progress accounting decuments intended for use within the Government. Before material in the reports is fermally published it is subjected to additional evaluation and review. For this reason, the publication, reprinting, reproduction, or open-literature listing of this Report, either in whole or in part, is not authorized unless permission is obtained in writing from the Office of the Director, National Bureau of Standards, Washington 25, D. C. Such permission is not needed, however, by the Government agency for which the Report has been specifically propored if that agency wishes to reproduce additional copies for its own use.

CONTENTS

			Page
List	of F	igures	i
List	of T	ables	ii
Ī.	Int	roduction	1
n.	Pr	ogram Description	5
	ì.	MUF-FOT	6
	Ž.	System Loss	7
	3.	Field Strength Option	9
	4.	Radio Noise	9
	5.	Available Signal-to-Noise	9
	6.	Required Signal-to-Noise	10
	7.	Reliability	10
	8.	Lowest Useful Frequency	10
m.	Pr	ogram Use	10
IV.	De	scription of Data Tapes	13
	1.	"Long-term" Data Tapes	13
	2,	"Short-term" Data Tapes	15
		(a) Description	15
		(b) Program	17
v.	Pr	ogram Options	19
	1.	MUF and FOT	19
	2,	MUF, FOT, Mode, Arrival Angle, and Reliability	19
	3,	FOT and LUF	19
	4.	MUF, FOT, Mode, Arrival Angle,	
		and System Loss	19
	5.	MUF, FOT, Mode, Arrival Angle,	
		and Field Strength	2.0

			Page
	6.	MUF, FOT, Mode, Arrival Angle,	
		and Signal-to-Noise	2 0
	7.	MUF, FOT, and Reliability	20
	8.	FOT Graphs	20
	9.	FOT and LUF Graphs	20
VI.	Cor	nputer Inputs	21
	1.	Circuit Card Format	21
	Ž.	Method Card Format	23
	3.	Assembling the Data Decks	24
	4.	Purpose of Cards in Data Deck	25
		(a) Method Card	25
		(b) Frequency Complement Card	25
		(c) Circuit Cards	26
		(d) Nines Card	26
		(e) Month and Sunspot Number Card	26
		(f) Minus One Card	26
		(g) Blank Card	26
VII.	Pro	ogram Output	44
VIII.	Cor	nplete Fortran Listing of Computer Program	
	for	Predicting HF System Performance	47
IX.	Ma	thematical Expressions	9 0
	l.	Great Circle Distance	90
	2.	Bearing from Receiver to Transmitter	90
	3.	Geographic Latitude of Control Points Along	
		Great Circle Route	90
	4.	Geographic Longitude of Control Points Along	
		Great Circle Route	90

	· ·	Page
5.	Geomagnetic Latitude of Control Points Along	
	Great Circle Route	91
6.	Local Mean Time at Receiver	91
7.	Sun's Zenith Angle at Control Points	91
8.	Ionospheric Absorption Index "I"	91
9.	E-Layer Distance Factor	92
10.	E-2000 MUF	92
11.	E-Layer MUF	9 2
12.	F-Layer Distance Factor	92
13.	F2-Layer Fourier Generation of foF2 and	
	M-3000 Factor	92
14.	F2-Layer Gyro Frequency	96
15.	F2-4000 MUF	96
16.	F-MUF for Low and High Solar Activity	96
17.	Interpolation for Intermediate Values of	
	Solar Activity	96
18.	Angle at the Ionosphere	97
19.	Ionospheric Absorption (single reflection)	97
20.	Basic Transmission Loss for Isotropic Antenna	
	in Free Space	97
21.	Relationship Between ϕ and Δ	98
22.	Ground Reflection Factors for Vertical and	
	Horizontal Polarization	98
23.	Rhombic Antenna Power Gain Relative to Isotropic	
	in Free Space	99
24.	Power Gain of Half-Wave Horizontal Dipole	101
25.	Power Gain of Vertical Antennas	101

			Page
	26.	Efficiency Factor for Short Vertical Antennas	102
	27.	Ground Reflection Loss	102
	28.	Relationship of Field Strength to Transmission	
		Loss	102
X.	Ĝėı	neralized Block Diagram of HF Systems Performance	
	Ro	itine	103
XI.		nclusions	104
XII.	Āċl	knowledgement	105
XIII.	Řei	erences	106

LIST OF FIGURES

	·	Page
i.	Computer Print-Out of Circuit MUF and FOT	27
Ž.	Computer Print-Out of Circuit MUF, FOT and	
•	Circuit Reliability	28
3.	Computer Print-Out of Circuit LUF and FOT	29
4.	Alternative Computer Print-Out of Circuit LUF	
	and FOT	30
5.	Computer Print-Out of Circuit MUF, FOT and	
	System Loss	31
6.	Computer Print-Out of Circuit MUF, FOT and	
•	Received Field Strength	32
7.	Computer Print-Out of Circuit MUF, FOT and	
	Available Signal-to-Noise	33
8.	Alternative Computer Print-Out of Circuit MUF,	
	FOT and Circuit Reliability	34
9.	Graphical Representation of Circuit FOT	35
10.	Graphical Representation of Circuit LUF and FOT	36
11.	Data for High Frequency Communication Predictions	37
12.	Auxiliary Data Cards	38
13.	Example Method Card and Circuit Card	39
14.	Example Data Deck for Run Under One Method Only	
	from Cards	40
15,	Example Data Deck for Run Under Two Methods	
•	from Cards	41
16.	Example Data Deck for One Method Using Circuits	
	from Magnetic Tape	42

		Page
17.	Example HF Prediction Deck to Execute Under	
	IBM-7090 Fortran Monitor	43
18.	Generalized Block Diagram of HF Systems Performance	
	Routine	103
	LIST OF TABLES	
ì.	Geographical Function in Latitude	94
Ž.	Geographical Functions in Latitude and Longitude	95

PREDICTING THE PERFORMANCE OF BAND 7 COMMUNICATION SYSTEMS USING ELECTRONIC COMPUTERS

by

Donald L. Lucas and George W. Haydon

ABSTRACT

Radio system parameters are combined with geophysical and ionospheric characteristics to predict the performance of high frequency sky-wave communication circuits through the use of electronic computers. A program is presented to compute Maximum Usable Frequencies, Optimum Traffic Frequencies, Lowest Useful Frequencies, probable mode of propagation, angle of arrival, circuit reliability, system loss, available signal-to-noise and field strength. Numerical representation is used for all parameters not expressed in closed mathematical form.

I. INTRODUCTION

Long distance high frequency radio systems are subject to marked variations in performance, most of which are directly related to changes in the ionosphere. Changes in the ionosphere result in variations in the maximum frequency which will be returned back to earth, in the strength of the radio waves due to increased absorption, in optimum vertical angles of wave arrival and departure, and in the background noise level as atmospheric radio noise is propagated from great distances. Effective operation of long distance high frequency radio systems increases in proportion to the ability to predict variations in circuit performance and thereby optimize frequency selection, antenna

choice and other circuit parameters to capitalize on anticipated ionospheric conditions. It is the purpose of this report to present a current
computer routine which has been developed to combine the more predictable ionospheric characteristics with circuit parameters to calculate
the expected performance of high frequency sky-wave radio systems.
Basic ionospheric characteristics which are considered predictable
enough to be useful are:

- (1) The monthly median of the ordinary ray vertical incident critical frequencies of the F2 layer (foF2).
- (2) The monthly median of the factors relating the vertical incident critical frequency to Maximum Usable Frequency on a 3000 km path (M-3000 factor).
- (3) The monthly median minimum virtual height of the F2 layer.

 The following ionospheric characteristics are derived in the prediction process:
- (1) The E-layer critical frequency as a function of solar activity and angle of the sun.
- (2) Ionospheric absorption as a function of operating frequency, gyro frequency, solar activity, angle of the sun, and vertical angle of departure.
- (3) Factors relating the E-layer critical frequencies at different departure angles.
- (4) Factors relating F-layer critical frequencies at different departure angles.

The following geophysical data are utilized:

- (1) E-region gyro frequency.
- (2) F-region gyro frequency.
- (3) Geomagnetic latitudes.
- (4) World-wide distribution of land and sea.

- (5) World-wide distribution of atmospheric noise including seasonal, diurnal and frequency variations.
 - (6) Cosmic noise including frequency dependence.
- (7) Man-made noise in the receiving area including frequency dependence.

The following circuit data are needed:

- (1) Transmitter location.
- (2) Receiver location.
- (3) Transmitter power.
- (4) Transmitting antenna (physical dimensions and orientation).
- (5) Receiving antenna (physical dimensions and orientation).
- (6) Type of traffic (modulation, type of intelligence, speed of transmission, required quality).

The above data are combined to determine the following performance characteristics of the circuit:

- (1) The Maximum Usable Frequency (MUF).
- (2) The Optimum Traffic Frequency (FOT).
- (3) System loss (ratio of power received to power transmitted).
- (4) Field strength at the receiver.
- (5) Monthly median of hourly median available signal-to-noise ratio.
- (6) Circuit reliability (per cent of days the hourly median signalto-noise ratio can be expected to equal or exceed a given value).
- (7) The Lowest Useful Frequency (LUF), the frequency below which the circuit reliability is expected to be less than 90%.

In addition to the above circuit performance characteristics, the following other circuit characteristics are determined:

- (1) The short great circle distance.
- (2) Bearing of the transmitter at the receiver.

- (3) Bearing of the receiver at the transmitter.
- (4) Propagation path having the lowest system loss, e.g., 2 hops via F layer = 2F.
- (5) Vertical reception angle associated with the best propagation . path.

The solution of the problem is divided into two parts: (1) an estimation of the available signal, and (2) an estimation of the required signal. The available signal depends upon:

- (1) The transmitter power.
- (2) The transmitter antenna gain.
- (3) Loss due to spreading of the radio energy as it propagates to greater distance.
 - (4) Losses in the ionosphere due to absorption.
 - (5) Losses at each ground reflection.
 - (6) The gain of the receiving antenna.

The required signal depends upon:

- (1) The atmospheric noise at the receiver location.
- (2) The man-made noise at the receiver location.
- (3) Cosmic noise.
- (4) The required signal-to-noise ratio depending upon type and quality of service desired.

The most basic calculation in the estimation of available signal power is the system loss calculation. The ionospheric, geophysical and circuit characteristics are combined to estimate a quasi-minimum system loss (the minimum loss expected on any day of the month at the hour for which the calculations are made). The distribution of losses above the quasi-minimum have been empirically determined and are a function of geographic location and time of day. These statistical distributions are used to account for the numerous other factors which

contribute to variations between predicted signal levels and those observed on a given day. These factors include polarization mismatch between the signal and the antenna, focusing by the ionosphere, defocusing by the earth, variations between theoretical and actual antenna performance and day to day variations in ionospheric layer heights, ionospheric absorption and critical frequencies.

Basic F2-layer data for long term predictions are numerical maps of the F2 region as determined from world-wide observations using 1954 as typical of a low solar activity period and 1958 as typical of a high solar activity period. In addition to 1954 and 1958, F2 data from other periods of high and low solar activity have been incorporated in the March, June, September and December predictions, since these seasonal extremes are often used in long term planning.

Numerical maps of the F2 layer for monthly predictions will be a part of the "Ionospheric Predictions" CRPL Series D issued by the Central Radio Propagation Laboratory starting with the January 1963 issue.

Sporadic E and F1-layer predictions are considered in this report, only insofar as propagation by these modes enter into the empirically determined signal distributions.

II. PROGRAM DESCRIPTION

The computer routine is based on established manual methods and assumes a working knowledge of these methods [Laitinen, 1949], [Haydon, 1962], [NBS Circular No. 462], along with a familiarity of Fortran II computer language [McCracken, 1962].

The computer method described is designed for any (32K IBM-7090 class) computer with the necessary compiler and tape units. The Fortran II computer language assures flexibility and ease of modification

as better knowledge of the various parameters becomes available. The program provides the communicator with a completely general method for predicting the performance of any sky-wave high frequency radio system. The system performance calculations may be performed for any month of the year, and any degree of solar activity for any hour of the day. Numerical mapping is included for those parameters not evaluated directly by the closed mathematical expressions (Section IX).

The program is designed to be used with either a "long-term" prediction data tape which utilizes coefficients foF2 and M-3000 factors representing periods for high and low solar extremes, or a "short-term" data tape which utilizes monthly coefficients issued by CRPL approximately three months in advance.

1. MUF-FOT

The Maximum Usable Frequency and Optimum Traffic Frequency are based on F2-region numerical mapping of ionospheric characteristics recently developed by CRPL [Jones and Gallet, 1961], and a semi-empirical relationship between the sun's zenith angle and solar activity for the regular E region [Haydon, 1962]. Conventional prediction methods [NBS Circular No. 462] using control points along the great circle 2000 kilometers from each terminal for the F2 layer, and control points 1000 kilometers from each terminal for the regular E layer are used for paths greater than 4000 kilometers. The midpoint of the path is considered as the control point for both E and F layer on paths less than 4000 km.

Since the basic data for the predictions are monthly median values, predictions for specific days within the month are not available.

2. System Loss

1. System loss computations are based on ray-path theory with path limitations based on ray-path geometry between a spherical earth and a concentric ionosphere. Limitations fall into two categories, arrival angle and penetration frequency, and the probable paths for a given circuit at a given hour and frequency are chosen on the basis of these limitations.

F2-region propagation is considered unlikely in these computations if the angle at the F2 region is too sharp for F2-layer support or if the penetration frequency of the E region rises to a value which will support the operating frequency. In this last case, E region transmission is geometrically possible. Multiple hop transmission for a given circuit is possible solely by the E region or the F2 region, but the computer routine also includes the case where some hops of a given path are supported by the E region and other hops supported by the F2 region.

Three F2-region paths, two E-region paths, and one E-F2-region path are inspected for a given circuit at a given hour for a given frequency. The path that is geometrically possible with the least theoretical loss is assumed to be the most useful mode with a loss typical for the circuit. The total field is not included in this routine.

- 2. Layer heights used for the F2 region are minimum vertical heights averaged for a given month. E-layer height is assumed to be 110 km. The average height of the absorbing region is assumed to be 100 km.
- 3. Ionospheric layer heights at the reflection points are averaged in calculation of the vertical radiation angle (Δ) and the angle of incidence at the ionosphere (ϕ '). Unequal take-off angles in multi-hop cases are not included.

- 4. Absorption in the lower regions is represented by a semiempirical relationship involving the angle of incidence at the ionosphere, the gyro frequency in the absorbing region, the zenith angle of the sun, solar activity, and the operating frequency.
- 5. Estimation of the ground reflection losses is evaluated for either land or sea reflections. Shore line and mixed paths are not included and random polarization of the downcoming waves is assumed.
- 6. Convergence and divergence of the ionospheric waves are included in the routine only in the empirical determined system loss distributions.
- 7. Theoretical vertical and horizontal reflection coefficients are evaluated for the ground losses and the antenna patterns.
- 8. Receiving antenna response (gain) is assumed to be equal to the antenna gain of an identical antenna used as a transmitting antenna. All gains are relative to an isotropic in free space.

The complete computer routine contains a subroutine for three general types of antennas.

- a. Terminated rhombics at any height above the terrain, any leg length and tilt angle. Poor earth ($\sigma = .001$ mhos/meter; $\epsilon = 4$) is assumed as the terrain, but any ground conductivity and dielectric constant could be used. Off-azimuth radiation may be computed for the rhombics.
 - b. Horizontal half-wave dipoles for any height above finite earth.
- c. Vertical ship antennas for constant length elements or for multiples of any wave lengths not less than .02 λ . Practical efficiencies of grounded verticals less than one-quarter wave length are computed and included in the antenna gain.

- 9. Signal distribution is assumed to vary with geomagnetic latitude and length of the circuit and quasi-minimum losses are adjusted to median losses in terms of these empirical distributions [Haydon, 1962].
- 10. Off-great-circle transmissions are not included in these calculations.

3. Field Strength Option

The field strength option is computed similar to the system loss, then mathematically related to the system loss (Section IX).

4. Radio Noise

The CCIR world-wide maps of atmospheric noise are used as representative of the distribution of noise [CCIR Report No. 65].

Man-made noise estimates are based upon the type of receiving area [Haydon, 1962]. Measured values of man-made noise are also acceptable.

Galactic noise at the receiver site [CCIR Report No. 65] is estimated by a least squares polynomial in frequency. The highest of the three noise types is assumed to predominate and the total noise field is not estimated. All noise values are expressed in db relative to 1 watt for a one-cycle bandwidth. The 1 Mc/s atmospheric noise above KTB is adjusted to a 1 c/s band relative to one watt by least squares polynomial representation of the seasonal maps [Lucas and Harper, 1962].

5. Available Signal-To-Noise

The monthly median of the hourly median available signal is compared with the average noise in a four-hour time block at the receiver site. This gives an estimate of the monthly median of hourly median total signal power relative to noise in a one-cycle band.

6. Required Signal-To-Noise

The required signal-to-noise depends upon the service required, e.g., error rate in teletype, intelligibility of voice, etc. A basic signal-to-noise requirement based upon a steady static signal and random noise adjusted for signal fading degradation, diversity improvement, etc., determines the required signal-to-noise.

7. Reliability

Reliability is estimated at discrete frequency bands by calculating the ratio of the available monthly median signal-to-noise of Paragraph 5 to the required hourly median signal-to-noise of Paragraph 6. Using the above parameter and the operating frequency, theoretical reliability is obtained for a given circuit of a given length and geomagnetic latitude by use of statistical two-dimensional maps.

8. Lowest Useful Frequency

The Lowest Useful Frequency is calculated by stepping through the HF band until a reliability of 90% or more is obtained, then stepping down in small increments of frequency until a frequency is found that has (within the tolerance of the frequency increment) 90% reliability. This frequency is the classical 90% LUF.

III. PROGRAM USE

The IBM-7090 Fortran II listing is shown in Section VIII. The cards corresponding to these listings with the associated control cards necessary for the specific monitor being used are all that is necessary to compile the program. A pictorial view of a sample deck ready to run under the IBM-7090 monitor is shown in Figure 17. System subroutines used in the program are as follows:

Subroutine		Call	Argument		
1.	Sine	SINF (x)	(radians)		
2.	Arc sine	ASINF (x)	$(-1 \le x \le 1)$		
3.	Cosine	COSF (x)	(radians)		
4.	Arc cosine	ACOSF (x)	$(-1 \le x \le 1)$		
5.	Absolute value	ABSF (x)	(floating)		
6.	Absolute value	XABSF (x)	(fixed)		
7.	Arc tangent	ATANF (x)	(-∞≤ x ≤∞)		
8.	Square root	SQRTF (x)	$(0 \le x \le \infty)$		
9.	Transfer of sign	SIGNF (x,y)	(arg 1, arg 2)		
1Ō.	Logarithm (Base 10)	LOG10F (x)	(0 < x ≤ ∞)		
11.	Natural logarithm	LOGF (x)	(0 < x ≤ ∞)		
12.	Integer function	INTF (x)	(-∞≦x≤∞)		

The entire program including common variables and system subroutines occupies approximately 24000 decimal locations.

Routines included in the program with a brief description of their function are:

MUFLUF -- (2550 decimal locations)

This is the main program. It calculates the Maximum Usable Frequencies, Optimum Traffic Frequencies, and other parameters needed not only in the calculation of these critical frequencies but also in one or more subroutines.

LUFFY -- (3857 decimal locations)

This subroutine is larger and more complex than MUFLUF, but is a subprogram because the option is asked for in MUFLUF. This routine calculates the systems performance of a given circuit, i.e., system loss, reliability, signal-to-noise and field strength. The subprograms that follow are used by LUFFY to perform a specific task needed in the system performance calculations.

POLY -- (107 decimal locations)

This subroutine is called upon to evaluate all parameters that are represented by Nth degree polynomials of the power series in X.

Example:

$$Y = \left(A_{0,0} \times {}^{0} + A_{0,1} \times {}^{1} + \dots + A_{0,n} \times {}^{n}\right) Z^{0}$$

$$+ \left(A_{1,0} \times {}^{0} + A_{1,1} \times {}^{1} + \dots + A_{1,n} \times {}^{n}\right) Z^{1}$$

$$+ \dots$$

$$+ \left(A_{m,0} \times {}^{0} + A_{m,1} \times {}^{1} + \dots + A_{m,n} \times {}^{n}\right) Z^{m}$$

LOSS -- (214 decimal locations)

This subroutine evaluates the ground reflection losses as a function of the reflection angle and operating frequency over finite earth. Random polarization is assumed in the calculations as the vertical and horizontal reflection coefficients are assumed to contribute equally in the polarization effects of the loss.

This routine is unique in that complex arithmetic is absent in the calculations of these reflection losses [Phillips, 1961].

GAIN -- (684 decimal locations)

This routine calculates theoretical power gains of horizontal rhombics in three dimensions, horizontal dipoles, and practical grounded vertical radiators, all over finite earth. Practical lower limits of gain have been set as -10 db relative to an isotropic in free space.

CI -- (411 decimal locations)

This function subroutine evaluates the sine and cosine integral

$$Si (x) = \int_{0}^{x} \frac{\sin y}{y} dy$$

$$Ci (x) = \int_{0}^{x} \frac{\cos v}{v} dv$$

when called for by the loss and gain routines.

NOISY -- (215 decimal locations)

This routine calculates the world-wide distribution of atmospheric noise and major land bodies which are represented by Fourier coefficients.

The evaluation is made at a given longitude and latitude of the receiving location or ground reflection point.

CURVY == (1462 decimal locations)

This routine, although not pertinent to the solution of any problem encountered in system performances, produces a semi-line graph representation of the diurnal variation of either or both the Optimum Traffic Frequency and the Lowest Useful Frequency.

VREFCO -- (230 decimal locations)

This routine calculates the ground reflection coefficient (K_{v} .) for vertically polarized waves.

NOTE:

The ground reflection coefficient (K_H) for horizontally polarized waves is calculated within subroutine GAIN.

IV. DESCRIPTION OF DATA TAPES

1. "Long-term" Data Tape.

The binary data tape for the storage of coefficients representing those variables not expressed in closed form has a packing density of 556 frames per inch. Twelve logical records - one for each month - are used. Each logical record is composed of physical records 256 words in length. Approximately 800 feet of tape are used.

Each logical record contains six one-dimensional arrays, three three-dimensional arrays, one two-dimensional arrya in the following order:

IL (4), JL (4), KL (4), LK (4), JAL (4), Q (20,60,4),

A (10, 7, 14), P (29, 16, 6), ABP (2, 6)

The variables IL, JL, KL, LK, and JAL are limits to which the Fourier generation of the foF2 and M-3000 factors are carried, e.g., IL (1) is associated with the two dimensional set of coefficients Q (M, N, 1).

The "Q" arrays [Lucas, 1961] contains the coefficients used in the generation of the foF2 and M-3000 factors in the following order for each month:

- 1. Q (M, N, 1) foF2 low solar activity
- 2. Q (M, N, 2) foF2 high solar activity
- 3. Q(M, N, 3) M-3000 low solar activity
- 4. Q (M, N, 4) M-3000 high solar activity

The "A" array contains the coefficients needed for other parameters not represented in closed form:

- A (M, N, 1) gyro-frequency distribution [Lucas, 1961]
- A (M, N, 2) H'f2 layer height charts [Haydon, 1962]
- A (M, N, 3) blank to leave space for numerical representation of measured patterns of antennas
- A (M, N, 4) nighttime frequency dependence of atmospheric noise [Lucas and Harper, 1962].
- A (M, N, 5) daytime frequency dependence of atmospheric noise
- A (M, N, 6) man-made noise level in industrial area [Haydon, 1962]

- A (M, N, 7) man-made noise level in residential area
- A (M, N, 8) man-made noise level in rural area
- A (M, N, 9) man-made noise level in remote unpopulous area
- A (M, N, 10) daytime distribution of circuit reliability in temperate regions [Haydon, 1962]
- A (M, N, 11) nighttime distribution of circuit reliability in temperate regions
- A (M, N, 12) distribution of circuit reliability in polar region
- A (M,N,13) distribution of short circuit reliability in auroral region
- A (M, N, 14) distribution of long circuit reliability in auroral region

The "P" array of each logical record contains five maps of the world-wide distribution of atmospheric noise [Lucas and Harper, 1962] for the month being considered. The major land bodies of the world are also represented in this array.

P(M,N,1)	2000-0400 LMT
P (M, N, 2)	1600-2000 LMT
P (M, N, 3)	1200-1600 LMT
P(M,N,4)	0800-1200 LMT
P (M, N, 5)	0400-0800 LMT
P (M, N, 6)	major land bodies of the world

The array "ABP" contains the convergence factors for the Fourier generation of the "P" matrix [Lucas and Harper, 1962].

The elements of the matrices that are not sensitive to month are identical for all logical records.

- 2. "Short-term" Data Tape.
- (a) Description of "Short-term" Data Tape

The "short-term" data tape is identical to the "long-term" data tape with the exception of the foF2 and the M=3000 coefficients. On the "short-term" tape each particular month's coefficients are stored in positions used by the coefficients representing high and low solar activity extremes on the "long term" tape. The solar activity index associated with the "short-term" coefficients must be used when predictions are made using these coefficients. The routine which follows is designed to generate and update a "short-term" data tape as the coefficients become available. It is designed to use the "long-term" or "short-term" tape (Logical #2 and Logical tape #3)which will become the new "short-term" data tape. Precede the data deck with one card which contains the first and last months for which the "short-term" tape is to be updated. A minus 1 card punched in columns 55-56 must follow each individual foF2 or M-3000 coefficient deck. A sample deck for one month's data is:

(b) Program to Use CRPL Series D Predicted Coefficients to Generate and Update "Short-term" Tape.

```
Ċ
      ALWAYS USE MOST RECENT TAPE FOR UPDATING SHORT-TERM TAPE
      DIMENSION Q(20,60,4), [L(4), JL(4), KL(4), LK(4), JAL(4), A(10,7,14), P1(
     129.16.6).ABP(2.6)
    1 FORMAT (19X.214.4X.214.12X.215.E17.7)
    2 FORMAT (51x.215.E17.7)
  101 FORMAT(212)
      READ INPUT TAPE 5,101,MONTH1,MONTH2
      REWIND 2
      REWIND 3
      MONTHS=MONTH2+1
      LÖCK = MONTH1=1
      IF(LOCK) 4.55.4
    4 DO 3 II=1.LOCK
      READ TAPE 2. IL.JL.KL.LK.JAL.Q.A.P1.ABP
    3 WRITETAPE 3, IL.JL, KL.LK, JAL, Q.A.P1.ABP
   55 DO 100 ÎI*MONTHI, MONTHZ
      READ TAPE 2. IL.JL.KL,LK,JAL,Q,A,P1,ABP
      10=1
    5 READ INPUT TAPE 5.1.1.J.K.L.M.N.P
      IL(10)=I+1
      JL(10)=J+1
      KL(10) #K+1
      LK(10)=L+1
      JAL(10)=2#J+1
   20 M=M+1
      N=N+1
      Q(M,N,10)=P
      READ INPUT TAPE 5.2.M.N.P
```

IF(M) 40,20,20

```
40 10=10+2
   IF(4-10) 6.5.5
 6 DO 7 10=2,4,2
   IL(10) = IL(10-1)
   JL(10) = JL(10-1)
   KL(10)=KL(10-1)
   LK(10)=LK(10-1)
    JAL(10)=JAL(10-1)
    DO 7 M=1,20
    DO 7 N=1.60
  7 Q(MaNaIO) =Q(MaNaIO=1)
100 WRITETAPE 3. IL.JL.KL.LK.JAL.Q.A.P1.ABP
    IF(MONTH3-12) 301,301,401
301 DO 201 K=MONTH3,12
    READ TAPE 2. IL. JL. KL. LK. JAL. Q. A. P1. ABP
201 WRITETAPE 3. IL. JL. KL. LK. JAL. Q. A. PI. ABP
401 REWIND 2
    REWIND 3
    CALL EXIT
    END
```

Minor changes in the Fortran program found above would allow the updating of the "long-term" tape as better coefficients become available.

Extreme caution should be exercised when changes are being made to the data tape. Fortran statements identical to the read statements in the main program "MUFLUF" should be used to re-write the tape.

Inspection and checking of coefficients contained on the tape may be accomplished by merely dumping the tape off-line. It is suggested, however, that for easier inspection it be read by the "read tape" statements contained in "MUFLUF".

Data tapes for the IBM-7090 containing all the logical records may be obtained from the Radio Systems Division, National Bureau of Standards, Boulder, Colorado.

V. PROGRAM OPTIONS

Options included in the program aid in the solution of a wide range of systems problems. Options designed to be printed on standard 9 by 11 paper are:

1. MUF and FOT (Figure 1)

The Maximum Usable Frequency (MUF) and Optimum Traffic Frequency (FOT) are printed three circuit months per page.

2. MUF, FOT, MODE, ARRIVAL ANGLE, AND RELIABILITY (Figure 2)

The Maximum Usable Frequency, Optimum Traffic Frequency, theoretical angle of arrival, probable mode of propagation and circuit reliability are printed one circuit month per page. MUF=FOT's are calculated for each hour of GMT. Mode, angle and reliability are calculated only for even hours of GMT.

3. FOT and LUF (Figures 3 and 4)

The Optimum Traffic Frequency and the Lowest Useful High Frequency are printed three circuit months per page. The Optimum Traffic Frequency is always given each hour of GMT while the communicator has a choice of each hour or every even hour of GMT for the Lowest Useful High Frequency.

4. MUF, FOT, MODE, ARRIVAL ANGLE AND SYSTEM LOSS (Figure 5)

The Maximum Usable Frequency, Optimum Traffic Frequency, theoretical angle of arrival, probable mode of propagation and monthly median of hourly median system loss are printed one circuit month per

page. MUF and FOT's are calculated for all hours of GMT while mode, angle, and system loss are calculated for even hours of GMT.

5. MUF, FOT, MODE, ARRIVAL ANGLE AND FIELD STRENGTH (Figure 6)

The Maximum Usable Frequency and Optimum Traffic Frequency, theoretical angle of arrival, probable mode of propagation and monthly median of the hourly median field strength are printed one circuit month per page. MUF and FOT's are calculated for all hours of GMT while mode, angle, and field strength are calculated for even hours of GMT.

6. MUF, FOT, MODE, ARRIVAL ANGLE AND SIGNAL-TO-NOISE (Figure 7)

The Maximum Usable Frequency, Optimum Traffic Frequency, probable mode of propagation, theoretical angle of arrival and monthly median of the hourly signal-to-noise at the receiving antenna terminals are printed one circuit month per page. MUF and FOT's are calculated for all hours of GMT while mode, angle, and signal-to-noise are calculated for even hours of GMT.

7. MUF, FOT AND RELIABILITY (Figure 8)

The Maximum Usable Frequency, Optimum Traffic Frequency and circuit reliability are calculated every even hour of GMT and printed two circuit months per page.

8. FOT GRAPHS (Figure 9)

The Optimum Traffic Frequencies are plotted frequencies vs.

GMT time on a nonlinear frequency scale by the on-line printer.

9. FOT AND LUF GRAPHS (Figure 10)

The Optimum Traffic Frequencies and Lowest Useful High Frequencies are plotted frequencies vs. GMT time on a nonlinear frequency scale by the on-line printer. The above options may utilize one of two input data tapes. Longterm predictions are available from a data tape with numerical coefficients for the months representing both high and low solar activity.

These extremes are used to predict MUF associated with the intermediate sunspot number.

Short-term predictions are available from a data tape with numerical coefficients for approximately three months in advance. No interpolation is made when using this data tape.

VI. COMPUTER INPUTS

1. Circuit Card Format

A data sheet should be prepared for each circuit before punching the card. The number in the left hand column below refers to information on the data sheet (Figure 11). The fields should be punched as follows (Figure 13) with numbers right justified.

Data Sh	eet	Card Columns
1.		<u>1 = 5</u>
2.		6-11
3.		12-16
4.		17-22
5.		28-30
6.		31-33
7.		34-36
8.		37-39
9.	(See Note #1)	40-41
10.	(See Note #2)	40-41
11.		42-44
12.		45-47
13.	·	48-50

51 - 52
51-52
53 - 55
53 - 55
56-58
59-62
63-66
71-72

NOTES:

- 1. (a) If rhombic is circled, enter -1
 - (b) If $\lambda/2$ dipole is circled, enter=3
 - (c) If vertical is circled, enter -2
 - (d) If vertical in multiples of wave length is given, enter in height cols. -14 for λ/4; -12 for λ/2; -1 for λ, etc.
- 2. If this number is given instead of the information which appears in Note 1 (d) above, enter this number.
- 3. (a) If check in Industrial, enter -1
 - (b) If check in Residential, enter -2
 - (c) If check in Rural, enter -3
 - (d) If check in Remote Unpopulous, enter -4
- 4. If number is given, enter this number in lieu of #17 from data sheet.
- 5. Bearing in degrees east of north.

2. Method Card Format

The following is a list of methods available. The numbers on the right call the various methods when placed in the columns shown.

			olum		Sample Print-
Calculations to be Performed	<u>Ca</u> 2	4	orun 6	1118 8	Out
MUF-FOT listing from circuits on cards	ì	1	0	Ō	Figure 1
MUF-FOT listing from circuits on tape	i	ō	Ô	Ö	- 15010 1
FOT curve from circuits on cards	ĺ	1	Ô	i	Figure 9
FOT curve from circuits on tape	1	0	Õ	1	
Reliability-mode-angle from circuits on cards	2	i	0	Ó	Figure 2
Reliability-mode-angle from circuits on tape	2	Ó	0	Ō	
FOT-LUF listing every hour from circuits on cards	3	1	0	0	Figure 3
FOT-LUF listing every hour from circuits on tape	3	0	Q	0	
FOT listing every hour, LUF every 2 hours from circuits on cards	3	1	1	0	Figure 4
FOT listing every hour, LUF every 2 hours from circuits on tape	3	0	1	0	
FOT-LUF curves from circuits on cards	3	1	0	1	Figure 10
FOT-LUF curves from circuits on tape	3	0	0	1	Ţ
System loss from circuits on cards	4	1	Q	Ō	Figure 5
System loss from circuits on tape	4	0	Ó	Ō	***
Field strength (dbu) from circuits on cards	4	1	1	0	Figure 6
Field strength (dbu) from circuits on tape	4	0	1	0	
Reliability-FOT every 2 hours from circuits on cards	5	1	0	Ō	Figure 8
Reliability-FOT every 2 hours from circuits on tape	5	0	0	0	

Available S/N from circuits on cards 6 1 0 0 Figure 7
Available S/N from circuits on tape

3. Assembling the Data Decks

Only one data tape is needed with these routines (Tape #2). A utility tape #3 is also needed which will contain the circuits from a given run. If a large number of circuits are to be run repeatably, it is wise to save the tape and run from it in lieu of circuit cards.

To assemble a data deck, first make the method and frequency complement cards for the desired HF predictions. If the circuits are to be read from cards, the circuit cards must follow the frequency card. Following the last circuit card, insert a "nines card" (the number 9 punched in columns 1 through 19), to indicate the end of the circuit cards. The next cards will indicate the months and solar activity levels for which the calculations are to be made.

The months January through December are indicated by numbers 1 through 12 placed on the card in columns 23 and 24. On the same card, in columns 25, 26 and 27, punch the appropriate sunspot number. If it is desired to terminate the calculations of these circuits under the called method, a card with -1 punched in columns 23 and 24 should follow the "month and sunspot number" card. However, if another method is to be run for the same circuits, follow the -1 card by method and frequency cards that allow the circuits to be read from tape (see method card format). The circuits will be read from tape #3 just prepared. Following the new frequency and method cards, place the desired month and sunspot number cards. Notice the nine's card has been omitted. A -1 card inserted after the month and sunspot number card will terminate the method and a blank card following the -1 card will terminate the job.

The data deck (to be run from cards) is composed of the following cards in the order they appear.

- 1. Method card
- 2. Frequency complement card
- 3. Group of circuit cards
- 4. Nines card
- 5. Group of month and sunspot cards
- 6. -1 card

(See Figures 14 and 15)

Any number of different methods with different circuits may be set up sequentially in the above order. When it is desired to terminate the job, place a blank card after the -1 card.

A data deck to be run from tape is composed of only:

- 1. Method card
- 2. Frequency complement card
- 3. Group of month and sunspot cards
- 4. -l card

(See Figure 16)

4. Purpose of Cards in Data Deck

(a) Method Card:

The method card shown in Figure 13 allows the communicator a choice of computations shown in the example print-outs (Figures 1 through 10) with the option of having data for the circuits on either cards or magnetic tape.

(b) Frequency Complement Card:

The frequency card allows the communicator a choice of 10 frequencies for which calculations will be made, e.g., 3.1240, 4.7856 30.0000. If fewer than 10 frequencies are wanted merely put

the desired ones sequentially on card from the beginning, then punch unused fields with 990000. If method #3 is to be run, it is suggested that a frequency card identical to Figure 12 be used.

(c) Circuit Cards (Figure 13):

The circuit cards are designed to contain all necessary circuit parameters to be run under any choice of the computations shown in Figures 1 through 10.

(d) Nines Card (Figure 12):

The nines card is a circuit card which is not computed. The machine senses this card and is told the entire list of circuits has been calculated for the given month.

(e) Month and Sunspot Number Card (Figure 12):

The month card contains the month of the year and its associated sunspot number for the desired circuit calculations.

(f) Minus One Card (Figure 12):

The minus one card instructs the machine that all computations are complete for a given method.

(g) Blank Card (Figure 12):

A blank card following a "minus one card" instructs the machine that all computations for a given run are complete.

4	1 Transhi 0.75N -	ITTER - 73.9:	Ján Vě	R 32.3	ECE I VER			BR BEARINGS .8 321.3	32.0	007 N.MIL 672.	
GHT	NUF	FOT	GMT	MUF	FOT	GHT	NUF	FOT	GMT	MUF	. FOT
ì	5.7	4.9	7	5.7	4.9	13	10.3	9,2	19	11.6	10.8
Ž	5.2	4.4	ā	5.5	4.7	14	11.4	10.6	20	11.7	9.9
3	5.2	4.5	9	5.4	4.6	15	11.6	11.4	21	11.2	9.5
4	5.4	4.6	10	4.9	4.2	16	11.6	11.8	22	9.7	8.2
5	5.4	4.6	11	5.1	4.3	17	11.8	11.6	23	7.7	6.6
6	5.7	4 . 9	12	7.4	6.9	18	11.5	11.5	24	6.5	5.5
	2 TRANSM 1.50N		JAN 1W	Ř 27. č	ECEIVER			GC BEARINGS -5 22-2	Ž•(016 N.MIL 1581.	
		• • •			•	GMT	MUF	FOT	GMT		FOT
GM1		FOT	CHT	MUF	FOT						
1	10.3	8.8	7	8.1	6.9	13	22.7	19.3	19	13.5	11.5
2	10.0	9.2	ě	12.9	11.0	14	21.7	18.5	20	11.0	10.1
3	10.6	9.0	Ť	19.6	16.6	15	21.5	18.2	21	10.8	9.2
4	9.9	8.4	10	22.0	19.3	16	21.0	17.8	22	9.8	8.3
5	93	7.9	11	23.6	20.0	17	19.5	16.6	23	9.7	8.3
•	0.1	4.9	12	23.7	20-2	1.6	16.6	14.2	24	10.1	8.4
1	3 Transh 12.10n	177ER - 8.5	JAN 30	51.5				LD BEARINGS .8 167.0	16.	024 M.MIL 2400.	
ÇA1	T MUF	FOT	ÇMT	MUF	FQT	GMT	MUF	FOT	CHT	NUF	FOT
ļ	13.4	11.4	7	15.9	13.6	13	25.8	21.9	19	14.8	12.6
Ŝ	13.0	11.1	•	23.5	19.9	14	25.3	21.5	20	13.9	11.0
3	11.0	10.1	9	26.6	22.6	15	24.4	20.7	21	13.1	11.1
•	10.7	9.1	10	27.3	23.2	16	23.0	19.5	22	13.0	11.0
5	9.Ž	7,0	11	27.4	23.3	17	20.2	17.1	23	13.0	11.0
•	9.0	8.4	13	26.6	22.6	16	16.7	14.2	24	13.0	11.1

Figure 1. Computer Print-Out of Circuit MUF and FOT

		Ž		JAN				SSN=	29	5.		Ğ	E a	2.016
	TRANS	MITTER				RECE					BEAR	INGS		N.MILES
	51.50N	∸ •0.	. Ö1W		27.	92N		5.671	ď	212		22.2		1581.3
R	hömb î c	23H	96L	670			1 SE=			RHOM	BIC	20H		
PW	Ř= 30.				400			EQUE		_				\$/N= 45DB
GMT		FOT	3	5	7	9	11	13	15	20	25	30 i	FOT	
1	10.3	6.8	_	_							_			
			3F	2F	16	1F	00	00	00	. 00	00	00	1F	MODE
			28	18	5	5	0	Ó	0	0	0	0	5	ANGLE
2	10. Ą	9.2	90	99	99	99	Õ	Ó	Ó.	Ō	Ō	Õ	99	RELIABILITY
3	10.6	9.0						_		•				
			3Ē	2F	1F	00	00	0Ô	00	00	ÕÕ	00	1F	MODE
			28	18	4	Ō	Õ	Ô	Õ	0	0	0	4	ANGLE
4	9.9	8.4	90	99	99	Ō	0	Ø	Õ	Ō	Õ	Õ	99	RELIABILITY
5	9.3	7.9												
			3F	2F	ØØ	00	ÕÕ	ÕÕ	ÕÕ	ŌŌ.	ÓÖ	00	1F	MODE
			26	16	Ō	Ó	Ō	Ò	Ò	Õ	Ó	0	4	ANGLË
6	8.1	6.9	89	99	Õ	0	Ō	Ó	0	Ō	0	Ő	99	RELIABILITY
7	8.1	6.9												
			3F	3F	2F	1F	00	00	ÒÕ	GO.	00	00	1F	MÕÕĒ
			25	25	16	3	Ø.	Ó	Õ	Õ	Õ	Ö	3	ANGLĒ
8	12.9	11.0	Ð	98	99	99	Ō	Ó	Ò	Ò	Ò	Ô	99	RELIABILITY
9	19.6	16.6												
			ŽĒ	3F	2F	2F	2F	2F	ŀF	ÓÕ	ÕÕ	0.0	ìF	MÖDE
			5	25	15	15	15	15	3	Õ.	Ó	Ó	3	ANGLÉ
10	22.8	19.3	Ò	Ŝ	99	99	99	99	99	Ó	Õ	0	99	RELIABILITY
Ĩì	23.6	20.0												-
			ŻĖ	2É	3F	2F	2F	2F	1F	1F	00	OÕ	1F	MODE
			5	5	24	15	15	15	3	3	Ó	Ó	3	ANĞLÊ
12	23.7	20.2	0	0	81	99	99	99	99	99	Ó	0	99	RELIABILITY
13	22.7	19.3												
* -	*		2É	2E	3F	2F	2F	2F	1Ē	00	00	00	16	MODE
			5	5	24	15	15	15	3	0	0	Ò	3	ANGLE
14	21.7	18.5	0	Ó	89	99	99	99	99	Ö	Ó	0	99	RELIABILITY
15	21.5	18.2												
•			2E	3F	2F	2F	2F	1 F	16	00	00	рo	1F	MODE
			5	23	14	14	14	2	2	Ó	Ö	0	2	ANGLE
16	21.0	17.8	0	23	99	99	99	99	99	0	Ó	Ó	99	RELIABILITY
17	19.5	16.6												
			3F	3F	2F	2F	ŀF	1.F	00	00	00	<u>00</u>	15	MODE
			23	23	14	14	2	2	0	Q	O	0	2	ANGLE
18	14.6	14.2	44	99	99	99	99	99	Q	Q	0	Q	99	RELIABILITY
19	13.5	11.5							•					
			3F	3F	2F	1F	00	QQ.	00	00	00	00	1.F	MODE
			23	23	14	2	O	Ō	Q	0	0	Q	2	ANGLE
20	11.0	10.1	83	99	99	99	0	0	Ö	0	Õ	Ō	99	RELIABILITY
21	10.8	9.2					-		-	-	••	•		* * :
_			3F	2F	15	ÔΟ	00	QQ	00	ÓÖ	00	<u>00</u>	1.F	MODE
			25		3	Ö	0	Õ	Ô	0	Ö		3	ANGLE
22	9.8	8.3	87		98	Ò	Ö	Õ	0	Õ	Õ	Ö	99	RELIABILITY
23	9.7	8.3					-		-	-	-	-	•	
		•	3F		16	00	00	00	QQ	00	00	QQ	15	MÖDE
			27		4	Ō	Ç	Ö	0	Q	0	Ò	•	ANGLE
24	10.1	8.6	89	99	99	Ó	Q	Ó	Ō	Õ	Õ	Ö.	99	RELIABILITY
	-						-	-	-	•-	**	-		

Figure 2. Computer Print-Out of Circuit MUF, FOT and Circuit Reliability

	1		JAN			\$\$N= 2	5.	BR BEARINGS 321.3	32.0	07	
1	TRANSM	LTTER		Ŕ	ece i ver			BEARINGS		N.MIL	ES
40	0.75N -	73.931	i	32.3	3N = 6	4.70%	135	.8 321.3		672.	5
ŘW	DMATC	- 73.931 32H 118(DKW	. AŠĎ	FG		NOISE	· 3		ANT	= 3D.	B
	= 20.00						_	ŘÉ	à. Ŝ/I	V= 450	B
	- 2040	7N#	äMŦ		**	ÂMT	LNE	FOT	GMT		FÖT
1	÷3.0	4.9	7	-3.0				9.2			
_	-3.0	4.4		-3.0	4.7	14	3.5				
3	-3.0	4.5		-3.C		15				-3.0	
	-3.0	4.6		-3.0	4.2	16	4.4			-3.0	
5	-3.0	4.6		- 3.0			4.4				
	-3. 0	4.9		-3.Ċ				=		-3.0	5.5
	2		JAN			55N= 2	5.	GC BEARINGS .5 22.2	2.0	16 T	
•	TRANSM	ITTER		R	ECEIVER			BEARINGS		N.MIL	
Š	1.50N ·	- 0.01	H	27.9	2N - 1	5.67W	212	22.2		1581.	3
ŘĤ	OMBIC	23H 96	670	EG	NO I SE	3	RHO	IBIC 20H	114L	70DE	6
	= 30-0					•	*****	D.E.	0.5/1	N= 45D	À
			AME		664	GMT	LUF		GMT		FOT
GMT		FOT	_								
_	-3.0	8.8			6.9			19.3			11.5
•	÷3.0			4.4				18.5	-	3.2	
	-3.0		9	5.5	16.6			18.2			
	-3.0	8.4	10	6.1	19.3	16	5.8	17.8 16.6		-3. 0	
	-3.0 -3.0		11	6.7	20.0	17 18		14.2			
· ·											
	3		JAN			22M± 5	₹.	LD BEARINGS L.8 167.0 IBIC ZOH	TÔ+	VZ9	
	TRANSM	ITTER		R	ece i ver	:		BEAR INGS		N-WIL	ř2
1	2.10N	- 8.50	E	51.5	ON -	0.01W	351	1.8 167.0		2400.	4
RM	OMBIC	20H 114	L 700	EĞ	NOI SE=	3	RHO	IBIC 20H	114L	70DE	6
DMD	= 10.0	UKM				_		R.S.	0.5/	N= 430	Ā
GMT		FOT	GMT	LUF	FOT	GMT	LUF	FOT	GMT	LUF	FOT
1	4.1	11.4	7	6.4	13.6	13	9.2	21.9	19	4,4	12.6
2	4.1	11.1		7.5	19.9	14	9.7	21.5	20	4,4	11.8
3	4.4	10-1	9	8.4	22.6	15	8.1	20.7	21	4.4	11-1
4	4.4	9.1	10	8.9	23.2	16	6.7	19.5	22	4.4	11.0
5	4.4	7,8	11	9.5	23.3	17	5.5	17.1	23	4.4	11.0
6	4.7	8.4	12	9.5	22.6	18	4.4	14.2	24	4.4	11-1
		_									

Figure 3. Computer Print-Out of Circuit LUF and FOT

	1	- 444 = 1	JÂN	=		S SN= 29	5.	BEARINGS .8 321.3	R 32.0	07 N.MÎL	ĒC
_ `	TRANSM	ITTER		R	ECEIVER		135	DEAKINGS		472	E S Ē
4(D.75N -	- 73.93	Ŭ	.3Z • 3	3N - 0	4.70W	_ 157	*8 321.3	Aait	0/4. 2ñ	9 ♣
			L 63DI	: 6		MOT 25:	• 5	EnT (EÀ É/A	y− JU J= AĜÑ	D Ā
						w	=	- T	E4.3/r	!= マフリ !!!	D. ĈĀŤ
GMT	LUF	FOT			FUI	GP I	EUF	FUI	On t		
1		4.9	7					9.2			
Ž	-3.0	4.4	8 -	-3-0				10.6			
3			-					11.4			
4	=3.0	4.6	10	-3.0	4.2	16	4.4	11-8	22	-3.0	8.2
5		**	11		4.3			11.8	- '		
_	-3.0							11.5			
	Ĵ		JAN			SSN= 2	Š.	BEARINGS .5 22.2 IBIC 201	C 2.0	16	
	TRANSM	ITTÉR	••	Q	FCFIVER	-		BEARINGS		N.MIL	ËS
Ë	1. SOM	- 0.61	u .	27.0	2M = 1	5.474	212	.5 22.2	•	1581.	3
ر م	āmā ir	- 0.01 224 64	 1 476	5 1 Bé	MAT SE	3	BHOR	RÍC ŽÔL	1141	70DE	Ĝ
AII	= 30.0		L OID	60	uā i ac -	,	KIIGI		EQ. 5/1	Na ÁSÓ	Ä
PHR	- 30.0	UNS	A.+		-0°	6 M T	4442	EAT	, tu ipu.	LUF	
								FOT			
1								19.3			
	-3.0	9.2						18.5			
3		9.0	-		16.6			18.2 17.8			9.2
4		8,4		-	19.3						
5		7.9						16.6 _.			
								14.2 BEARING 1.8 167.0			
	4		JAM	_	. é e e + ve e	['] 99u≃ €	9 ÷	DEADING	Pů toé,	N MİL	Ē¢
_	IKWH2W	TILEK	_		IECE I AEM			DEWLINA:	•	Men'i	.Ç.J
j	2.10N	÷ 8.50)Ē	21.5	50N -	0.01W	351	1010	,	2400	7
RH	iónbic -	20H 114	L 700	E6	NOISE=	3	RHQI	481¢ SOI	4 119L	7006	: Ç
	10.0								REQ.\$/	N= 430) 0
GMT		FQT	GMT	LUF	FOT	GMT	LUF	FOT	GMT	LUF	FOT
1		11.4	7		13.6	13		21.9	19		12.6
2	4.1	11.1	8	7.5	19.9	14	8.7	21.5	20	4.4	11.6
3		10.1	9		22.6	15		20.7	21		11.1
4	4.4	9.1	10	8.9	23.2	16	6.7	19.5	55	4.4	11.0
5		7.8	11		23.3	17		17-1	23		11.0
6	4.7	8.4	12	9.5	22.6	18	4.4	14.2	24	4.4	11-1

Figure 4. Alternative Computer Print-Out of Circuit LUF and FOT

		2		JAN				S Š N=	· 2!	5.		i	SČ 2	2.016
	TRANSP	ALTTER					EIVĒ			-	BEAR	ING		N.MILES
9	51.50N		.01W		27	. 92N	-	15.61	7 W	212	2.5	22.		1581.3
RI	HOMBIC	23H	96L	671	DEĞ		DÍ SÉ:		-	RHOP			1 114	
		•••				PÊRA			DUEN					
GMT	MUF	FÔT	3	5	7	9	11	13	15	20	25	30	FOT	•
1	10.3	8.8	_	_	_	_					_			
_			3F	2F	16	1F	00	ÓÔ	0.0	00	ÖÖ	00	1F	MÓĐĒ
			28	18	5	5	Õ	Ö	0	Ó	0	Ō	5	ANGLE
Ž	10.8	9.2	133		129		Õ	Õ	Õ	Ŏ	ŏ	Ŏ	120	LOSSDB
3	10.6	9.0					•	_		•	_	_		
_			3F	2F	1Ê	ÕÕ	ÓÓ	00	00	ŐÕ	ÕO	ÔÕ	1Ē	MÔĐĒ
			28	18	4	0	0	Õ	Ŏ	Ö	Ö	0	4	ANGLÊ
4	9.9	8.4	133	121	131	ō	Ö	Ō	Õ	ŏ	ŏ	Õ	124	LOSSDB
5	9.3	7.9				•	•	•	•	_	•	_	***	
	,,,	•••	3F	2F	ÓÓ	ĈÔ	ÔÔ	0 0	00	ΘO	ÕÖ	OÒ	1Ê	MODE
			Ž6	16	Ö	Õ	Ò	Q	Õ	Ö	Ó	Õ	4	ANGLE
6	8.1	6.9		122	Ô	Ó	ā	ŏ	Õ	õ	Ô	Ō	134	LOSSDB
7	8.1	6.9	634	***	•	•	•	·	•	•	•	•	137	20001100
•	~	 7	3F	3F	2F	1F	ÔÔ	ÕÕ	ŌŌ	ĆŌ	00	ÕÕ	ĺF	MODÉ
			25	25	16	3	Ģ	0	Õ	Õ	Õ	0	3	ANGLE
8	12.9	11.0	169	137	121	131	3	Ö	Õ	0	ŏ	Ö	123	
ĝ	19.6	16.6	107	131	141	131	•	Ÿ	•	Ų	Ÿ	•	163	6033.100
7	1710	10.0	ŽĒ	3F	2F	ŹF	2F	2F	16	00	00	ÕÒ	1Ē	MÖDÉ
			Š	25	15	15	15	15	3	Õ	Ö	Ô	3	ANGLE
10	22.8	19.3	2 9 1	166	137	122	114	111	_	Ó	Õ	Ö	110	LOSSDB
ii	23.6	20.0	44 1	ÎÕO	131	124	117	111	110	U	U	U	110	£03300
	23.0	20.0	2E	2Ē	3Ē	2F	2F	2F	1Ē	1 F	Ö0	00	1F	MODE
			5	5	24	15	15	15	3	3.	0	7.7	, 3	ANGLÉ
12	23.7	20.2		235	151	128	116				0	Ŏ	. *	
13	22.7	19.3	370	63 3	İST	140	TTO	114	119	111	U	Ò	111	LOSSOB
13	2641	72.5	2E	26	3F	25	26	àŝ	1F	ÀÃ	00	00	16	MODÉ
			45 5	2E	24	2F 15	2F 15	2F 15	3	00	00	00		MODE
14	21.7	10 Ē	_	_			118		7	-	0	0	3	ANGLE
14 15	21.5	18.5 18.2	224	229	149	127	IIÓ	113	120	Ó	0	0	114	LOSSDB
13	£7.2	10.5	36	3F	2F	25	20	•		00	00	خط		MOOF
			SĒ	= -	**	2F	2F	1F	1F	00	00	00	ļķ	MODE
14	21 0	17.0	254	23	14	14	14	3	2	Ō	0	0	2	ANGLE
16 17	21.0 19.5	17.8	256	159	134	1,20	112	125	119	Ô	Ō	Ō	115	LOSSDB
. ·	7442	îo.ô	26	26	àc	26			00	-	۸۵	-		MAAA
			3F 23	3F	2F	2F	1F	1F	ÓÖ	00	00	00	1F	MODE
16	14.4	14.2		23	14	14	2	Š	9	0	0	Ó	2	ANGLE
	16.6	2 1 7 2	Îżż	128	111	109	121	151	0	Ô	Ö	Ô	119	LOSSDB
ĨÀ	13.5	11.5	26	35	25			-		-	-	-		#005
			3F	3F	2F	1F	00	ÓÕ	00	00	ÔÕ	<u>60</u>	1F	MODE
20			23	23	14	Š	Õ	0	Ö	Õ	Õ	Ō	Ş	ANGLE
20	11.8	10-1	151	122	114	131	0	0	0	Ó	Ô	Ö	127	LOSSDB
21	10.8	9.2	98	26	1 6	^^	۸À	۸A	00					MODE
			3F	2F	1,5	00	00	ÖÖ	00	ÕÕ	ÕÕ	00	ıþ	MODE
22	.		25	16	3	Ŏ	Õ	0	Õ	Õ	Õ	Õ	3	ANGLE
22	9.8	8.3	7 5 5	123	ī 36	Ô	0	Q	0	0	Ō	Ō	129	LOSSDB
23	9.7	8.3	20	22	12	00	60	^^	۸۸	^^				MODE
			3F	3F	1F	00	00	00	00	00	00	00	1.F	MODE
94	10 1	. 4	27	27	122	Õ	Ŏ	Õ	0	Ö	Q	0	124	ANGLE
24	10.1	5.6	7 34	121	7 5 C	0	Ö	Ô	0	Õ	Ō	Ũ	124	LOSSDB

Figure 5. Computer Print-Out of Circuit MUF, FOT and System Loss

		2 MITTE	Ŕ	JAN		ŘEĆÉ	I VER	ŜSN=	25	•	BEAR		GČ Š	2.016 N.MILES
	51.50N	-	0.01W		27.	92N	- 1	5.67	W	212	2.5	22.		1581.3
Ě	HOMB I C	23H	96L	670	ΈĞ	•			I SE=					ANT= ODB
Pi	IR# 30.	OOKW			OPE	RATIN	IĞ FA					F	IËLD	STRENGTH.
GMT	MUF	FOT	3	5	7	9	11	13	15	20	25	30	FOT	
1	10.3	8.8	_							-,				
			2F	2F	ìĒ	1F	00	CO	ÖÖ	00	00	0.0	1F	MODE
			18	18	5	5	0	0	0	Ó	Ő	Ô	5	
Ž	10.8	9.2	30	40	40	47	Ŏ	Ō	Õ	Ô.		Ŏ	47	
3	10.6	9.0				• •	•	•		•	•	•	• • •	
			2F	2F	1£	ÓÕ	ĈÕ	ĈÔ	ĈÓ	ÖÔ	ŌŌ	ĊÓ	1Ê	MODE
			18	18	4	Ó	Ő	Õ	Õ	Ö	Ô	Ō	4	1717
4	9.9	8:4	29	40	40	Õ	Õ	ŏ	ŏ	Ŏ	ŏ	ă	44	
Š	9.3	7.9		•••	•••	•	_	•	•		•		•	
_			2E	2F	00	ÕØ	ĊÓ	ĞÓ	ĈÔ	ÔŌ	ÕÕ	ÔÖ	1F	MÖDE
			- 5	16	ō	0	Ô	Ö	Õ	Ō	Ö	Ŏ	4	.55.
6	8.1	6.9	29	39	Ŏ	ő	Õ	Õ	Ŏ	Ö	Õ	ŏ	38	
Ž	8.1	6.9			•		•	•	•	•	Ÿ	•	50	
•	•••	•••	3F	2F	ŽĒ	ĺĒ	ČÔ	00	00	ÒO	00	ĠÖ	16	MÖDĒ
			25	16	16	3	Ĝ	0	Ö	Ö	0	Õ	3	
8	12.9	11.0	# 5	24	37	39	Ö	ő	Ö	Ö	Ô	Ô	44	
ġ	19.6	16.6		ĒA	٠,٢	37	•	Ų	v	U	•	U	77	900
•	.,,,	70i0	2E	3Ē	2F	2F	2F	2Ê	1Ê	ÓÔ	00	0Õ	1F	MODE
			Š	25 25	15	15	15	15	3	Õ	0	Ö	3	
10	22.8	10.1	-119	-8	Žĺ	35	41	45	47	Ö	Ö	Ö	52	
ii	23.6	20.0	- 4 4 7	- 0	6.4	99	74	79	71	U	U	•	96	000
••		FASA	2Ē	28	3F	2F	2F	2F	1F	1Ē	ÓÖ	ÖÖ	1F	MÖĎĚ
			Š	5	24	15	15	15	3	3	0	0	3	
12	23.7	20.2	-174		4	29	37	42	45	51	Ó	0	52	
īš	22.7	19.3	-214	-01	•	27	7.	72	72	71	Ų	•	26	DDO
•		1,03	ŹĚ	2E	3F	2F	2F	2F	1 F	00	00	00	1Ë	MÕÕË
			5	5	24	15	15	15	3	Ö	Ö	0	3	
14	21.7	18.5	-160	-55	6	30	38	43	45	Ö	Ö	Ö	50	
15	21.5	18.2	= 7.00	- 53	Ÿ	90	30	73	73	U	Ų	U	ŞŪ	n bin
• •		1005	2E	3F	2F	2F	2Ē	ÌĒ	ÌĖ	00	00	00	16	MODE
				23	14	14	14	3	2		O.	v -	1r 2	- -
16	21.0	17.8	÷84	÷0	25	38	43	43	47	0	Ö	0	50	
17	19.5	16.6	- 54	Q	Ę 3	96	73	43	71	U	Ų	Ų	ŞŪ	UBU
•	• * * * *	îoiō	ŹF	2F	2 F	2F	16	1Ë	00	00	00	00	16	MODE
			14	14	14	14	2	2	Ö	0	Ö	7.7	2	
18	16.6	14.2	16	33	42	49	43	47	Ö	Ö	Ö	Ō Ō	48	
19			34	33	76	77	43	41	Ü	Ň	Ü	Ų	70	DĐŲ
	13.5	11.5	2E	2F	2F	1F	00	80	00	00	06	00	16	MODE
			5	14	14	3				00	ÓÖ	ĆÔ	1F	
20	11.8	10.1	29	38	45	41	Ó	Ó	Ō	0	Ō	0 Õ	2	
ŠĪ	10.8	9.2	ĕ.7	SĀ	45	ΑŤ	Ų	Ų	Õ	Ų	Ų	Û	44	DBU
5.0	44.4	795	2E	2F	1F	00	00	00	00	00	00	-		MODE
			5	16	3	0					00	00	IF	MODE
22	9.8	8.3	29	39	37	Ö	0	Ô	Ö	Õ	Ó	0	3	
23	9.7	6.3	67	37	31	Ų	Ų	Ų	Ų	Õ	Ô	Õ	42	OBU
- - -	₹ ♥ •	463	2F	2F	1F	00	00	00	00	00	00	00	16	MODE
			17	17	4	Ô	Ô			ÕÕ	00	90	1F	MODE
24	10.1	8.6	29	40	3 9	Ö	Ŏ.	Ó	Ô	Ö	Ų	0	44	AKILE
= 7	-718	417	é 3	44	37	v	Ä	v	Ų	Ų	Ü	Ų	44	DB Ų
		_												

Figure 6. Computer Print-Out of Circuit MUF, FOT and Received Field Strength

		2		JAN				Š ŠN=	Ž	5.			ĞC 2	2.016
		MITTE	3	•		RECE	IVER		_		BEAF	RING		N.MILES
	51.50N	- (0.01W		27.	92N	- 1	5.67	W	212	2.5	22.	Ž	1581.3
Ŕ	HÔMBÍC		96L	670	EG	NO	I SE			RHOI	4B IC	201	H 114	L 70DEG
P٧	IR= 30.	ÕÕKĦ			OPER			EQUE	NĈ Î					/N= 45D8
GMT		FOT	3	5	7	9	11	13	15	20	25		FOT	
ì	10.3	8.8	•		•	•								
_		===	3F	2F	ĺĖ	1F	0.0	00	ĈÒ	ÔÔ	00	00	1F	MODE
			28	18	5	-; 5	Õ	Ô	Ó	Ŏ	Õ	Õ	5	ANGLE
2	10.8	9.2	59	77	72	84	Ŏ	Ŏ	Ŏ	Ŏ	ō	Ò	84	S/NDB
3	10.6	9.0	-	• •	• -	04	•	•	•	•	•	•	•	07.110.00
_		,,,,	3F	2F	16	00	00	ÓŌ	ĈÔ	ÔÔ	OŌ	ÕÕ	1F	MODE
			28	18	4	Ö	Õ	Ö	Ō	Ö	Ö	Ö	4	ANGLE
4	9.9	8.4	59	76	70	Ô	ă	Ô	Ō	Ō	ő	Ô	80	\$/NDB
5	9.3	7.9	27			U	U	U	•	·	U	•	90	3711000
	749	107	3F	2Ē	ŌŌ	ÔŌ	00	ÓŎ	CŌ	0.0	ÕÕ	ÓÖ	ĹĒ	MÕÕĒ
			26	16	Ô	0	0	0		0.0	0	Ô	4	ANGLE
Á	4 4	4.0			Ô	Ó			0	_				
6	8.1	6.9	58	75	U	U	Ó	Ö	Ô	0	Õ	Ô	67	S/NDB
•	8.1	6.9	40	35	34	4 44	ÂÁ	àà	ãá	* *	**	-		466 <i>F</i>
			3F	3F	2F	1F	00	00	00	ÇÕ	ÖÖ	00	1F	MODE
	44.4	44 4	25	25	16	3	Ō	0	Ô	Ó	Õ	Õ	3	ANGLE
8	12.9	11.0	23	60	80	73	Õ	Õ	Q	Ō	Ó	0	83	5/NDB
9	19.6	16.6										tan 22	2.2	4. 5. 5. 5.
			2E	3F	2F	ŽĒ	2F	2F	1F	00	00	ÕÕ	1F	MODE
			5	25	15	15	15	15	3	0	Õ	Õ	3	ANGLE
10	22.8	19.3	÷9.8	31	64	82	92	97	93	Õ	Ø	0	102	S/NDB
11	23.6	20.0												
			2E	2Ē	3F	2F	2F	2F	1F	1F	00	00	1F	MODE
			5	5	24	15	15	15	3	3	Ø.	Ć.	.3	ANGLĒ
12	23.7		-153	÷37	50	76	88	94	90	102	Ô	Ō	102	S/NDB
13	22.7	19.3												
			2E	2E	3F	2F	2F	2F	1F	ÓÓ	00	00	ŢĒ	MÔĐĒ
			5	5	24	15	15	15	3	0	0	C	3	ANĞLE
14	21.7		-139	-31	52	77	88	95	89	0	Ö	0	98	\$/NDB
15	21.5	18-2												
			2E	3F	2F	2F	2F	1F	ļř	00	ÓÓ	ÖÖ	1F	MODE
			5	23	14	14	14	2	2	Ø	Ø	Q	2	ANGLE
16	21.0	17.8	-63	38	67	84	94	83	90	0	0	0	96	S/NDB
17	19.5	16.6												
			3F	3F	2F	2F	1F	1 F	00	90	QQ.	ÇÕ	1F	MODE
			23	23	14	14	2	Ź	0	0	Ó	0	2	ANGLE
18	16.6	14.2	43	69	84	95	79	87	0	Ö	Ø	Ō	90	S/NDB
19	13.5	11.5												
			3F	3F	2F	1F	90	CO	CO	00	00	00	1F	MODE
			23	23	14	2	Ó	Q	0	Ó	0	O	2	ANGLE
20	11.8	10.1	55	75	87	73	0	0	0	Ö	Ó	0	78	S/NDB
21	10.8	9.2						_						20 - 10 - 2 - 2
_			3F	2F	1F	ÓŌ	00	60	CO	00	00	00	1 F	MODE
			25	16	3	Ō	Ö	Õ	Õ	Ö	Õ	Õ	3	ANGLE
22	9.8	8.3	57	74	65	Ŏ	Ŏ	Ŏ	Õ	Ŏ	Õ	Ŏ	74	\$/NDB
23	9.7	8.3	*- *	-		-	-	=	-	~		-	₹ '₹	2 * * * 2 2 3 5
			3F	3F	15	00	00	CO	00	00	00	00	1F	MODE
			27	27	4	Ö	Õ	Ö	Ŏ	Ó	Ŏ	Ŏ	- 4	ANGLE
24	10.1	8.6	58	76	69	Õ	Õ	Ö	Ŏ	ŏ	Ŏ	ŏ	80	\$/NDB
₩	= - =	# Z 4	~ ~	7 =	₹ ₹	=	_	-	Ÿ	Ž	•	Ä	70	41.112600

Figure 7. Computer Print-Out of Circuit MUF, FOT and Available Signal-to-Noise

	i		JAN				Š ŠN=	25	ë		B	R 3	2.00°	7
TRA	NSMÍŤŤ	ER			RECE	IVĒR	į.			BEAR	INGS		N.	MILES
40.7	-	73.93W		32.	33N	_	4.70	14	135	.8 3	21.3			672.5
RHOMB		H 118L	63D					I ŜE=	3	••••			ANT=	3DB
PHR= 2			0,50		ÖĞİ	TABT	LITI		-		ā		Š/N=	4508
GMT			•	خ					-	44				,
	NUF	FOT	3	5	7	9	11	13	15	20	25	30	FOT	MĈŚ
2	5.2	4.4	99	Ö	0	0	Ŏ	Ø	0	0	0	Ō	99	
4	5.4	4.6	99	0	O.	. 0	Ö	Ō	0	Õ	0	0	99	
6	5.7	4.9	99	Õ	Ō	0	Ó	Ō	0	0	0	0	99	
8	5.5	4.7	99	Ģ	Ó	Õ	0	Õ	C.	Ó	Ō	Ô	9 9	
10	4.9	4.2	99	Ó	0	Ó	0	Ĉ	Õ	Ō	Õ	Õ	99	
12	7.4	6.9	99	99	0	Ó	0	Ō	Ō	Ō	Õ	Õ	99	
14	11.4	10.6	0	99	99	99	Ó	Ó	Õ	Ò	Ó	Ò	99	
16	11.8	11.8	Õ	97	99	99	99	Õ	Ò	Ģ O	Ó	Õ	99	
18	11.5	11.5	Ğ	98	99	99	99	Õ	Ö	Ŏ	Õ	Õ	99	
ŽÕ	11.7	9.9	32	99	99	99	Õ.	Õ,	Ö	Õ	0	Ö	9 <u>9</u>	
22	9.7	8.2	99	99	99	Ö	Ğ	0	Õ	0	Ò	Ö	99	
24	6.5	5.5	99	99	0	Õ	Ō	Ó	Ó	Ó	Ø	0	99	

	Ż		JAN				Š SN≢	29	5.		G	C. 2	2.010	5
TRA	NSMITT	ER			RECE	IVER		_			RINGS			MILES
51.5	ON -	0.01W				- 1			212	2.5				581.3
RHOMB	IC 23	H 96L	670	EG.		ISE=		-	RHOP		20H	114		70DEG
PHR= 3	0.OOKM			•		IABI		ES					S/N=	45DB
GMT	MUF	FOT	. 3	5	7	9	11	13	15	20	25	30		MCS
2	10.8	9.2	90	99	99	99	0	0	0	0	0	Ō	99	
4	9.9	8.4	90	99	99	Ó	0	0	Q	0	Ô	Ŏ	99	
6	8.1	6.9	89	99	0	0	0	0	Õ	Ö	Ô	0	99	
8	12.9	11.0	0	98	99	9 9	0	0	0	Ģ	0	Ó	99	
10	22.8	19.3	Ó	5	99	99	99	99	99	Ŏ	Õ	Õ	99	
12	23.7	20.2	0	0	81	99	99	99	99	99	Õ	Ŏ	99	
14	21.7	18.5	0	Q	89	99	99	99	99	0	Q	0	99	
16	21.0	17.8	Ô	23	99	99	99	99	99	Õ	Ó	Õ	99	
18	16.6	14.2	44	99	99	99	99	99	Ģ	Ō	Õ	Õ	99	
20	11.8	10.1	83	99	99	99	0	0	0	Ō	0	0	99	
22	9.8	8.3	87	99	98	0	Ō	Õ		Ő	Ŏ	ō	99	
24	10.1	8.6	89	99	99	Õ	0 0	Ŏ	Ō	Ō	Õ	Ŏ	99	

Figure 8. Alternative Computer Print-Out of Circuit MUF, FOT and Circuit Reliability

Figure 9. Graphical Representation of Circuit FOT

Figure 10. Graphical Representation of Circuit LUF and FOT

DATA FOR HIGH FREQUENCY COMMUNICATION PREDICTIONS

	Τo			
			~	Circle Market
Transmitter Location		Receiver Location	Customer	Circuit Number

1. Transmitter Latitude (Degrees in Decimal Form) North = +; South = -	Degrees
2. Transmitter Longitude (Degrees in Decimal Form) West = +; East = +	Degrees
3. Receiver Latitude (Degrees in Decimal Form)	Degrees
4. Receiver Longitude (Degrees in Decimal Form)	Degrees
5. Power Delivered to Transmitting Antenna	KW
6. Transmitting Antenna - Height	Meters
7 Leg Length	Meters
8 Tilt Angle	Degrees
9 Type; Rhombic, λ/2 Dipole, or Vertical	•
10. Transmitting Antenna Gain if Type Other Than Item #9	DB
11. Receiving Antenna - Height	Meters
12 Leg Length	Meters
13 Tilt Angle	Degrees
14 Type; Rhombic, λ/2 Dipole, or Vertical	_
15. Receiving Antenna Gain if Type Other Than Item #14	ĎB
16. Man-Made Noise at Receiver Input	
-	
FrequencyBandwidthDB < 1 Watt	
	and the state of t
17. Type of Receiving Area if #16 is Unknown	
Industrial Residential Rural Remote Unpopulous	
18. Required Hourly Median Signal-to-Noise in 1 c/s Bandwidth	DB
19. Detailed Description of Service if #18 is Unknown	
Type of Service, e.g., Radiotelephone	
Modulation, e.g., SSB	
Bandwidth	
Number of Channels	
Words Per Minute Per Channel	
Maximum Teletype Error Rate	
Minimum Radiotelephone Intelligibility	
Diversity Employed	
Any Other Description of Service	
> । यायाचा चारकराष्ट्रावयरात यह चार्थरा हैसेप चित्रकारी विकास विकास विकास विकास विकास विकास विकास विकास विकास विकास विकास विकास विकास विकास विकास विकास विकास	
20. Enter Bearing of Transmitting Rhombic Antenna if Off-Great-	
Circle Path	
21. Enter Bearing of Receiving Rhombic Antenna if Off-Great-	
Circle Path	
22. Two Letter Code for Receiver Location	
- wer and waters and say budgited Hooghton	· _

Figure 11

Nines Card

Month and Sunspot Card

Month = 3; Sunspot Number 14

Minus One Card

Frequency Complement Card

Frequencies = 3.0000, 5.0000 30.0000

Note: This frequency card should contain only frequencies of the high frequency band (3-30 Mc/s) unless fewer than ten frequencies are desired. In this case, enter 990000 in the unused fields at end of complement.

Figure 12

Example Method Card

C COMMENT	FORTRAN STATEMENT	ŀ
NUMBER		DENTIFICATION
12343	5	73 74 75 76 77 70 79 90

Example Circuit Card

4610	8T - 450 - 4580 - 15-2	AND THE PROPERTY OF
C comment &	FORTRAN STATEMENT	
BIS S	1 000 000 0000 00000000000000000000000	DENTIFICATION
112 3 4 5 4	0000 6000 06088 00000000000000000000000	23 75 76 77 78 75 83

Transmitter latitude = 46.10 North

Transmitter longitude = 64.80 West

Receiver latitude = 32, 30 South ...

Receiver longitude = 64.80 East

Transmitter power = 1 kilowatt

Transmitter antenna height = 25 meters

Transmitter antenna leg length = 0

Transmitter antenna tilt angle = 0

Transmitter antenna type = -2 (vertical)

Receiver antenna height = 30 meters

Receiver antenna leg length = 180 meters

Receiver antenna tilt angle = 70 degrees

Receiver antenna type = -1 (rhombic)

Required S/N = 42 decibels

Bearing of transmitting rhombic = 0 (on great circle or not rhombic type)

Bearing of receiving rhombic = 0 (on great circle or not rhombic type)

Abbreviation for receiving location = BD

Figure 13

EXAMPLE DATA DECK FOR RUN UNDER ONE METHOD ONLY FROM CARDS

	99 38 7	999 55 468	999 340 32	999	71	77.5				一 一	調整					対して												1
C community of the control of the co	ON A		000			-	11	in			 	_	 	ME		00	6.0	0 0 0	0.0	8 0	0 6	0 9	0 C	0.0	10Cs	itiFi	0AT:	١
1121		1 1 1 1 2 2 2 2																						ĺ				- 1
1.1 1.	- 1	3 3 3 4 4 4 4																							ĺ			١,
515 5	5 5 E	5 5 5 6 6 6			-	555																			•			- 1
717.7	, , , 8 - 8 - 1	777	777 801	7 8 4	777	771	7 7 8 8							77:					77	77	77 68	7 7 8 6	11 88	7 7 4 2	7 7 8 8	7 7 8 8	771 881	7

Figure 14

EXAMPLE DATA DECK FOR RUN UNDER TWO METHODS FROM CARD

Figure 15

EXAMPLE DATA DECK FOR ONE METHOD USING CIRCUITS FROM MAGNETIC TAPE

						.											A. A.																ない。一般		1		h
	3.0	0				e e			ď			Sept 8	7	114) }					*				X	. ev	4	1	7			انو م	7	34	ئىلىلىدۇر 16.6 -	:1	\$
	C COMMENT TO STATEMENT									FO																			···.	* :-	·			ider Z	itif:	ICAT	104
	810 0 810 111 1 1 1 1	111	1 1 1	1111	11 1	9 3 1 11 10 1	nn	25.25	0 0 17 10 1-1-		24 32	22.2	33		١À		4	44 45	4 47	-	10 5	1 12 2	3 34 5	4 % :	57 56	59 GE	61 62		4 16 (K 6/	# #	76 /1	াব;	3 74	0 0 1 1	0 0 11 11 1 1	73 M
,	2 2 2 2 2																																				- 1
1.	30 333	1	-																														- 1				- 1
	5 5 5 5 5																																- 1				
	1177777	1					111	11	11	77	11	11	7 7	111	11	7 7	11	11	11	77	11	Ť	7-7	11	17	11	7 7	7 7	11	7 7	77	77	7	7 7	11	77	11
11			8.818			1.8	11	11			1	11	1 8 (14	8 8	• •	11	11	11	11	8 (1	1	8 6	1 4			8 (1	1 1	8 8	8 8	6	8 8	8 8		

Figure 16

EXAMPLE HF PREDICTION DECK TO EXECUTE UNDER IBM-7090 FORTRAN MONITOR

Figure 17

VII. PROGRAM OUTPUT

The output is shown in Figures 1 through 10. The output is designed for 9 by 11 standard computer paper.

A description of variables appearing in the print-outs reading left to right:

- 1. Sequential circuit number appearing in the extreme upper left is generated within the machine and is designed to be useful for ready reference to a master list. Sample: 118
- 2. Month of year for which predictions are calculated.

 Sample: MARCH
 - 3. Sunspot number used in predictions. Sampe: SSN = 10.
- 4. Customer identification number which is generated from a two-letter code for receiver location, bearing (receiver to transmitter), and great circle distance of path. Sample: KD 12.012
- 5. Transmitter geographic coordinates in hundredths of degrees. Sample: 13.45N 144.80E
- 6. Receiver geographic coordinates in hundredths of degrees. Sample: 26.72N 127.80E
- 7. Great circle bearing of transmitter to receiver and bearing of receiver to transmitter. Sample: 312.4 · 126.5
- 8. Type of antenna used at transmitting terminal. Sample: Rhombic 12H 39L 58 Deg.

H - height in meters

L - leg length in meters

Deg = tilt angle in degrees

- 9. Level of man-made noise at receiver site. Sample:NOISE = 3
- 10. Type of antenna used at receiving terminal. Sample: VERTICAL 14H OL ODEG.

The -14H indicates the grounded vertical is 1/4 (λ). The same analogy would apply for -12H (λ /2), -1H (λ), etc. A print-out without the minus indicates the vertical height in meters (e.g., 13H indicates the grounded vertical is 13 meters high).

- 11. Great circle distance of path in nautical miles. Sample: N. Miles 1243.2
- 12. The effective power delivered to the transmitting antenna.

 Sample: PWR = 20.00 kw
- 13. The required signal-to-noise in a one-cycle band (db > 1 watt) at receiving antenna terminals. Sample: REQ. S/N = 45 db
 - 14. Greenwich mean time. Sample: GMT
 - 15. Maximum Usable Frequency. Sample: MUF
 - 16. Optimum Traffic Frequency. Sample: FOT
- 17. Truncated numbers representing the frequency complement card (Figure 14). Sample 4, 6, 8.... 23
- 18. Probable mode associated with least loss. Sample: 3F, 4E and 4X. 4X indicates propagation by E and F₂ region using four hops.
- 19. The theoretical angle of arrival associated with the most probable mode of propagation. Sample: 20
- 20. Reliability defined as the per cent of days with the month the available signal-to-noise will be adequate. Sample: Reliability
- 21. Signal-to-noise defined as the available monthly median. Sample: S/N...db
- 22. System loss defined as the ratio of the power delivered to the transmitting antenna relative to that available at the receiving antenna terminals. Transmission loss may be obtained by using isotropic antennas. Sample: Loss...db
- 23. The Lowest Useful High Frequency defined as the lowest frequency that will give 90% reliability at a given hour. Sample: LUF

- 24. A zero appearing in the LUF column denotes a LUF greater than the FOT.
 - 25. A -3 in the LUF column denotes a LUF below 3 Mc/s.
- 26. A calculation in any method showing all zeros denotes a frequency for which the calculation was not completed due to mode limitations or the primary calculation for the desired mode exceeded the absolute value 999.

VIII. COMPLETE FORTRAN LISTING OF COMPUTER PROGRAM FOR PREDICTING HF SYSTEM PERFORMANCE

	FOR PREDICTING HF SYSTEM PERFORMANCE	
Ĉ	MUFLUFH-F PREDICTIONS BY D.L.LUCAS AND G.W.HAYDONCRPL	
Ĉ	FORMATS AND STORAGE ASSIGNMENTS	
	6 FORMAT(10F7.4)	0001
	1 FORMAT(2(F5.2.F6.2).12.5F3.0.12.3F3.0.12.13.F3.0.2F4.0.4X.A2)	0002
	3 FORMAT(10X+15+10X+A6+ 10X+4HSSN=F5+0+10X+A2+F7+3/9X+ 11HTR	QÕÕ3
	2ANSMITTER - 13X - BHRECEIVER - 12X - BHBEARINGS - 6X - 7HN - MILES / 7X - +F6 - 2 - A1 -	0004
	32H - +F7.2.A1.5X+F6.2.A1.2H - +F7.2.A1.3X+2F6.1.4X+F8.1)	0005
	4 FÖRMAT (F10.0)	0006
	5 FORMAT(412)	0007
	676 FORMAT(12A6)	0008
	7 FORMAT(1x/6x)	0009
	43HGMT+2X+3HMUF+3X+3HFOT+3(5X+3HGMT+2X+3HMUF+3X+3HFOT)/ 1HO4(4X+13+	0010
	52F6.1)/1H04(4X,13.2F6.1)/1H04(4X,13.2F6.1)/1H04(4X,13.2F6.1)/1H04(0011
	64X+13+2F6+1)/1H04(4X+13+2F6+1)/1H A1)	0012
	DIMENSION AMON(12) + GLAT(5) + ABI(24) + ABIY(5+24) + CLCK(24) + GY(5) +	0013
	1F2S(5+24)+F2H(5+24)+GML(5+24)+GMH(5+24)+MF(3)+ME(2)	0014
	2+ELD(10)+FLD(10)+F24(5)+GMA(5)+ADJ(4)+ABC(12)	0015
	DIMENSION RD(5)+SUN(12)+A(10+7+14)+RASSN(12)+EMF(5+24)	0016
	DIMENSION @(20,60,4).IL(4).JL(4).KL(4).LK(4).JAL(4) .CKC(24)	0017
	1.G(60).AB(60).S(20.24).C(20.24).GAMMA(5.24).BA(60)	0018
	DIMENSION CLAT(5) +CLONG(5) +EMUFY(5+24) +FMUFY(5+24) + UFY(5) +FOTY(5)	0019
	5.IG(24)	0020
	DIMENSION UF (24) + FOT (24) + P(29+16+6) + ABP(2+6)	0021
	DIMENSION AHA(2)+ARA(2)+AVA(2)	9022
	DIMENSION X1XX(12)	0023
	DIMENSION FREL(12)	0024
	COMMON ABP.P	0025
	COMMON A+Q+G+AB+S+C+GAMMA+BA+EMUFY+FMUFY+IG+UF+FOT+SUN+AVA+ARA+GLA	0026
	1T+ABI+ABIY+CLCK+GY+F2S+F2H+GML+GMH+MF+ME+ELD+FLD+F24+GMA+ADJ+ABC+	0027
	2EMF + CKC + CLAT + CLONG + AK + BK + CK + DK + PI 2 + EK + EEK + GLT + GLG + AAA + ALA + ASA +	0028
-	3AFC+ANC+AWC+AEC+ASC+AZZ+MAN+RSN+KW+PWR+IANT+IANR+Y2+X2+MOUSE+SSN+	0029
	4NOCIR:K4. AX:XLONG:AL:YLAT:XLAT:YLONG:YL:BTRY:GCDKM:GCDNM:K1:K2:K	0030
	53 K5 GCD IRSN MON ID MOUSE AY METHOD AHA BMONS MAP	0031
	COMMON FREL	0032
	COMMON XNH+XNL+XND+RNH+RNL+RND+HA+JIG+HAR+XTR+XETA+WETA+IHR+MIT	0033
	REWIND 2	0034
	REWIND 3	0035
	909 FORMAT(1H1)	0036
	DO 101 I=1,24	0037
	101 IG(I)=I	0038

Ċ	CONSTANTS TO BE USED FREQUENTLY	
	AK=1.745329E+2	0039
	BK=5.729577Ē1	0040
	ČK=1.11136ĒŽ	0041
	DK=.0062137	ò042
	PI2=1:57079	0043
	ĒK=•539956	0044
	ÉEK=+6214	0045
	ĜĿT≖78• * ÁK	ÔÔ46
	ĠĿĠ≖70°+AK	0047
B	AMÓN(1)=412145606060	Ó Ó48
B	AMON (2) = 262522606060	0049
B	AMON (3) =442151606060	0050
B	AMÔN (4) #214751606060	0051
B	AMON (5)=442170606060	0052
₿	AMÖN (6)#416443606060	0053
B	AMON (7) #416443606060	0054
B	AMON (8)=216427606060	0055
₿	AMON (9) =622547606060	0056
₿	AMON (10) =462363606060	0057
B	AMON (11)=454665606060	0058
. 8	AMON (12)=242523606060	0059
₿	AAA=6060606060	0060
B	AFC=266060606060	0061
8	AHA(1)=606060603040	0062
8	AHA(2)=243147464325	0063
₿	AVA(1) =6060606525	0064
8	AVA(2)=516331232143	0065
8	ARA(1)=6060606051	0066
₿	ARA(2)=304644223123	0067
₿	AZZ=0060606060	0968
₿	ANC=4560606060	0069
₿	AWC=6660606060	0070
8	AEC=256060606060	0071
B	ASC=626969606060	0072
В	FNINE=111111111111	0073
	SUN(1)=-21.	0074
	SUN(2)==13.	0075
	SUN(3)=-03.	0076
	ŞUN (4) = 09.	9977

	SUN(5) = 18.	0078
	\$UN(6)=23.	0079
	ŠUN(7) = 21.	0080
	SUN(8)=14.	0081
	SUN (9) #04.	0082
	SUN(10)==08.	0083
	SUN(11)=-14.	ÖÖ84
	SUN(12)=-23.	0085
	ADJ(1)=9.	0086
	ADJ(2)=17.	Õ087
	ADJ(3)=20.	0088
	ÀĎJ(4)=28.	0089
Ĉ	READ CIRCUIT DATA AND SEARCH DATA TAPE	
	WRITE OUTPUT TAPE 6,909	0090
464	READ INPUT TAPE 5:5:	0091
;	Í METHÓÐ • MĒTH • Í HR • MÁP	0092
	READ INPUT TAPE 5.6.(FREL(1):1=1:10)	0093
	MÍŤ#1	0094
	IF (MÉTHÓD) 463-12-463	0095
12	ŘĒWĪNĎ 2	0096
	WRITE OUTPUT TAPE 6.909	0097
	RÉWIND 3	0098
	CALL EXIT	0099
463	L1=2	0100
	GO TO (30-30-30-30-31-30)-METHOD	0101
30	<u>il=1</u>	0102
31	NOCIR# 0	0103
	MONTH=0	0104
	IF(METH) 7770.7771.7770	0105
7770	READ INPUT TAPE 5.676.X1XX	0106
	WRITE OUTPUT TAPE 3.676.X1XX	0107
	IF(FNINE=X1XX(1)) 7770,7771,7770	0108
7771	REWIND 3	0109
85	READ INPUT TAPE 5.1.	0110
	1 X1X+Y1Y+X2X+Y2Y+MONS+SUNS+TWR+XNHQ+XNLQ+XNDO+1TANT+RNHO+RN	0111
	1LO•RNDO•IRANT•MANN•RRSN•XETA•WETA•HAO	0112
10	XĪ=XĪX	0113
	AJ⊕AĴA	0114
	X2+X2X	0115
	Y2=Y2Y	0116

	IANT=ITANT	0117
	IANŘ*IŘÁNŤ	0118
	MANEMANN	0119
	ŔŚN≅ŔŔŚŇ	0120
	İRSN≈RSN	0121
	PWR≖TWR	0122
	XNH≅XNHÔ	0123
	XNL=XNLÔ	0124
	XNÔ≡XNÔÔ	0125
	RNH=RNHO	Õ126
	ŘNĻ≡ŘNLÔ	0127
	ŘNĎ≅ŘNĎÖ	0128
	HA≅HÀÔ	0129
	IF(MONS) 464;11,82	0130
82	LOCK = MONS = MONTH = 1	0131
	\$\$N=\$UN\$	0132
	MONT H=MONS	0133
	MOUSĒ=MONS	0134
	K2=1	0135
	READ INPUT TAPES . 1 . X1 X . Y1 Y . X2 X . Y2 Y . MONS . SUNS . TWR . XNHO . XNLO . XNDO .	0136
	î î Tânî • RNHO • RNLO • RNDO • Î RANÎ • MANN • RRSN • XÊTA • WÊTA • HAO	0137
	GÓ TỐ 10	0138
11	GO TO (15,77) +KZ	0139
15	NOCÎR#0	0140
	WRITE QUTPUT TAPE 6,909	0141
62	JÍĠ#O	0142
	MITHI	0143
	KZ#2	0144
	IF(LOÇK) 77.731.33	0145
33	D0730 IU=1.LOÇK	0146
730	READ TAPE 2	0147
731	READ TAPE 2.IL.JL.KL.LK.JAL.Q.A.P.ABP	0148
77	READ INPUT TAPE3.1.x1x.Y1Y.x2x.Y2Y.MONS.SUNS.TWR.XNHO.XNLO.XNDO.	0149
	<u>l</u> itant.RnHO.RnLO.RnDO.Irant.Mann.Rrsn.xeta.Wéta.Hao	0150
	IF(91.=X1X) 78.78.16	0151
78	REWIND 3	0152
	READ INPUT TAPE 5+1+	0153
	1 X1X+Y1Y+X2X+Y2Y+MONS+SUNS+TWR+XNHO+XNLO+XNDO+ITANT+RNHO+RN	0154
	1LO+RNDO+IRANT+MANN+RRSN+XETA+WETA+HAO	0155
	IF(MONS) 83,16,83	0156

83	1F(MONS-MONTH) 84.16.16	ō157
	REWIND 2	0158
	MONTH=0	0159
16	SSP⇒SUN (MÕUSĒ) *AK	0160
	BMONS*AMÓN (MÖUSÉ)	0161
	NĢCIR=NOCIR+1	0162
	JiP=1	0163
	JEP=1	0164
Č	GREAT CIRCLE DISTANCE AND DISTANCE TO CONTROL POINTS	
-	XX1=X1+AK	0165
	XXŽ=XŽ+AK	0166
	YY1=Y1+AK	0167
	YYŽ=YŽ+AK	Ö168
•	GCD=SINF(XXI)*SINF(XXZ)+COSF(XXI)*COSF(XXZ)*COSF(YYZ=YYI)	0169
	ĠĠĎ=ACOSF(ĠĠĎ)	0170
	RD(1) =GCD/2•	0171
	RD(2) = 18.*AK	0172
	ŘD(3) #ĞCD-18•*AK	0173
	ŔĎ(4) ≋9 • *AK	0174
	RD(5)=GCD=9.*AK	0175
	GCĎKM≖ĠĆĎ+ĊK+ŘK	<u>0</u> 176
	ĞÇĎNM=ĞÇĎKM+ĚK	0177
Ċ	BEARINGSS-+ FORWARD AND BACKWARD	
	DF=YY2=YY1	0178
	IF(ABSF(DF)+3+141592654) 26+22+22	0179
22	IF(DF) 24+25+25	0180
24	DF#6.283185308+DF	0181
	GO TO 26	0182
25	DF=-6.283185308+DF	0183
26	Ų=•5*(PI2=XX1+PI2=XX2+GCD)	0184
	CIND=SINF(U)+SINF(U=P[2+XX])	0185
	IF(CIND) 27.28.27	0186
27	BTRY=114.5816*ATANF(SORTF(ABSF(SINF(U-PI2+XX2)*SINF(U-GCD))/CIND))	0187
	IF(DF) 7029•21•39	0188
21	IF(XX1=XX2) 28.39.39	0189
28	3 BTRY=180.	0190
	GO TO 39	0191
7029	P BTRY=36Q•+BTRY	0192
39	P RF=YY1-YY2	0193
	IF(ABSE(RE)=3.141592654) 126.122.122	0194

122	IF(RF) 124,125,125	0195
124	ŘĚ≠6÷283185308≠RÉ	0196
	GÔ TO 126	0197
125	ŘF*=6•283185308+ŘF	0198
126	₩=•5*(P12~XX2+P12~XX1+GCD)	0199
	CÎND=SINF(U)+SINF(U=PI2+XX2)	0200
	IF(GIND) \$7.778.57	0201
57	XTR=114.5816*ATANF(SQRTF(ABSF(SINF(U-F)2+XX1)*SINF(U-GCD))/CIND))	0202
	IF(RF) 8029,51,79	0203
51	1F(XX2=XX1)778,79,79	0204
778	XTR=180.	0205
	GO TO 79	0206
8029	XĪR ≠36Ô•=XĪR	0207
79	IF(4000GCDKM) 40.41.41	0208
40	K1=1	0209
	K2#Ž	0210
	K3 ± 3	0211
	K4#4	0212
	K5±5	Ö 213
	GO TO 43	0214
41	K1#1	0215
	K2=1	0216
	K3=1	0217
	K4=1	0218
	K5=1	0219
Ç	CONTROL POINT LOCAL TIME . GEOGRAPHIC LATITUDE AND LONGITUDE	
43	DO 61 IT=L1,24,L1	0220
	GMT = IT	0221
	COLO=GMT-Y2/15.	0222
	IF(24.=COLO) 94.95.95	0223
94	COLO=COLO-24.	0224
	GO TO 96	0225
95	IF(COLO) 98,98,96	0226
98	COLO=COLO+24.	0227
96	CKC(IT)=COLO	0228
	\$\$L=(15.*GMT-180.)	0229
	DO 61 11*K1*K5	0230
	PP=RD([])	0231
	CENLAT=COSF(PP)+COSF(P12=XX2)+SINF(PP)	0232
;	L+SINF(PI2-XX2)+COSF(BTRY+AK)	0233

		CENLAT*(PI2-ACOSF(CENLAT))*BK	0234
		CENLG= ((COSF(PP)=COSF(P12-XX2)+COSF(P12-CENLAT+AK))/(SINF(P12	0235
	í	(=xx2)+SINF(PIZ=CENLAT+AK))	0236
	2	IF(ABSF(CENLG)=1.) 3001.3001.3000	0237
ž.	۵۵۵	CENLG=1.	0238
		CÉNLG*ACOSF (CENLG)	0239
31	,01	CENLG=(YY2=SIGNF(CENLG+DF+)+BK	0240
		IF(180AB\$F(CENLG)) 71.69.69	0241
	71	IF(CENLG) 73.72.72	0242
		CENLG=360.+CENLG	0243
	• •	GO TO 69	0244
	ŤÓ	CENLG=360.	0245
c		GEOMAGNETIC LOCATION OF CONTROL POINTS	
•	ÁĜ	GAT # ACOSF (SINF (GLT) + SINF (CENLAT + AK) + COSF (GLT) + COSF (CENLAT + AK) +	0246
		ICOSF (CENLG*AK=GLG))	0247
	•	GLAT(II)=PIZ-GAT	0246
		GLAT(II)=CENLAT	0249
	70	ČŁŌNĠ(Iİ)≢ĆĔNĿĠ	0250
Ċ	•	SUNS ZENITH ANGLE	
		Ž#(SŠL=ČĚNLG)#ÁK	025 1
	56	CYCEN#SINF(CENLAT#AK)#SINF(SSP)+COSF(CENLAT#AK)#COSF(SSP)#COSF(Z)	0252
		CYCEN=ACOSF (CYCEN)	0253
		CYCEN=ABSF (CYCEN)	0254
c		ABSORPTION INDEX I AT CONTROL POINTS	
Ŧ	32	IF(102.*AK=CYCEN) 58.58.59	0255
	58	ABIY(II.IT)=0.	0256
		GO TO 886	0257
	59	ABIY(II,IT)=(1.+.0037#SSN)#COSF(.881#CYCEN)##1.3	0258
	886	GO TO (165+166)+K2	0259
	165	ABI(IT)=ABIY(II+IT)	0260
		GO TO 61	0261
	166	ABI(IT)=(ABIY(1+IT)+ABIY(2+IT)+ABIY(3+IT))/3.	0262
	61	CONTINUE	0263
		DO 2112 II=K1.K5	0264
		DO 2112 IT=L1.24.L1	0265
		ABIC=ABIY(II+IT)	0266
Ç		E-LAYER DISTANCE FACTOR	
		ARÇ#DK#GÇDKM	0267
		IF(16ARC) 88.87.87	0566
	87	ELFC=((((((=4.368460907E-9*ARC+1.334494261E-7)*ARC-5.976618436E-6)	0269

	1#ARC+2.624808315E-4)#ARC-5.038476266E-3)#ARC+3.761385053E-2)#ARC+1	0270
	2.133200756E=2) +ARC+.2085	0271
	GO TO 100	0272
(88 ÉLFC=1.02	0273
Č	E-2000 CONTROL POINT MUF	•
10	00 EMC=(((-10.66484998*ABIC+39.26151056)*ABIC~52.41191754)*ABIC+37.67	0274
	17260721*ABIC+3.345996232	0275
	EMF(II+IT)=EMC	0276
21	ĺŽ ĒMUFY(II;ÍT)≡ĒMC+ĒLFC	0277
Ċ	GENERATE CONTROL POINT FOF2 AND M-3000 FACTORS	
	ÜÒ 1112 II=K2•K3	0278
5	04 ČENLĢ=ČLONG(II)	0279
	GÉNLAT=CLAT(İI)	0280
	ÎF(CÊNĻĠ) 412,414,414	0281
4	14 ĈLĠ=36Ō•∸ĊĒNĿĠ	0282
	GO TO 413	0283
4	12 ČLG=ABŞF(ČENLG)	0284
A :	ÍÐ BÖY±SINF(CLG+AK)	0285
	ĊOG=SINF(2•+CĻĞ+AK)	0286
	ĎOĢ≐COŚĔ (Ź•*ĆĿG*AK)	0287
	ĞÖB∉CÖSF(CÉNLAT+AK)	0288
	BÓG=\$ÍNF(CÉNĻAT+AK)	0289
	HÓG#COSF(ÇLG#AK)	0290
	DO 500 IO=1+4	0291
\$	15 I=IL(IO)	0292
	1=1广(1 <u>0</u>)	0293
	K=KL(10)	0294
	L=LK(10)	0295
	JA±JAL(10)	0296
	DO 408 KA=1.K	0297
	KP=KA-1	0298
40	08 G(KA)=BOG++KP	0299
	LA=0	0300
	LO=L=1	9391
	<u> </u>	9302
	DO 409 KA=KK,LO,2	0303
	G(KA)=BOG++LA+GOB+HOG	0304
	G(KA+1)=BOG**LA*GOB*BOY	0305
4	09 LA=LA+1	0306
	LB=0	0307

	£L+1	0308
	! M= ~1	0309
	DO 410 KA=LL.IM.2	0310
	Ġ(KA)≡BOĞ##ĿB#GOB##2#DŌĞ	0311
	Ğ(KA+1)≡BÖĞ##LB#ĞÖB##2#¢ÖG	0312
410	LB=LB+1	0313
	DO 411 JB=1.J	0314
	AB(JB) =0.	0315
	[\$=2#J8=1	0316
	DO 411 KA=1.1	0317
413	. AB(JB)=AB(JB)+Q(TS+KA+TO)+G(KA)	0318
	ĐÕ 4Ô7 JB=2•J	0319
	BA(JB) #0.	0320
•	! \$ # 2 * JB=2	0321
	ĐO 407 -KA≐1÷I	0322
407	BA(JB)#BA(JB)+Q(IS•KA•IQ)#G(KA)	0323
	DO 500 IT=L1+24+L1	0324
503	GMT≖ÍÍ	0325
	ĊĿŌCK±ĠMŤ=ĈĒNĻĢ/15.	0326
	IF(24,-CLOCK) 64.65.65	0327
64	- ĈŁOĊK±ĊĻOČK~24.	0328
	GO TO 66	0329
6	F(CLOCK) 68,68.66	0330
68	CLOCKECLOCK+24.	0331
66	CLCK(IT)=CLOCK	0332
	TIME={15.*CLOCK-180.1*AK	0333
	DQ 998 JB+2.J	0334
	FB=JB-1	0335
	S(JB+IT)=SINF(FB+TIME)	0336
998	C(JB+IT)=COSF(FB*TIME)	0337
	GAMMA(ÎO,IT)=AB(1)	0338
	DO 500 JB=2,J	0339
500	GAMMA([0,[T)=GAMMA([0,[T)+AB(JB)*C(JB,[T)+BA(JB)*S(JB,[T)	0340
Ç	F2-REGION GYRO-FREQUENCY	20 :
132	CALL POLY(1.7.7.CENLG/180CENLAT/90Y)	0341
	GYRO=Y/2.	0342
	GY([I])=Y	0343
Ċ	F2-LAYER CONTROL POINT F2-4000 MUF	
	DO 1112 IT=L1.24.L1	0344
	F2LS=GAMMA(1,:T)+GAMMA(3,:T)+1,:1	0345

	F2\$(IÌ•IŤ)≠F2LŠ	0346
	F2HS=GAMMA(2,1T)+GAMMA(4,1T)+1.1	0347
	F2H(IÍ•IŤ)≖F2HS	0348
Ĉ	FZ=LAYER DISTANCE FACTOR	
	1F(24ARC) 157,157,158	0349
157	FLFC=1.	0350
	GO TO 159	0351
158	FLFC=((((((=6.712654756E=9*ARC+4.49151441E=7)*ARC=9.985831104E=6)*	0352
	1ARC+6.865259817E=5)*ARC+9.202437332E=5)*ARC+2.264634341E=3)*ARC+4.	0353
	2699243101E-3)*ARC	03 5 4
159	GÁMMA(Î∮ĨŤ)≅ĠAMMA(Î∮ĨŤ)+ĠYRÖ	0355
	ĞÁMMA(2•ÍT)≅ĞAMMA(2•ÍT)+ĞYŘÖ	0356
	FMLS=GAMMA(1+1T)+FLFC*(F2LS=GAMMA(1+1T))	0357
	ĞML(ÎÎ÷ĬŤ)≡ĞAMMA(1÷ĬŤ)	0358
	FMHŠ=GAMMA(Ž•ÍŤ)+FLFČ+(F2HŠ=GAMMA(Ž•ÍŤ))	0359
	ĞMH(II÷İT)≆ĞAMMA(2•IT)	0360
Ċ	F2-LAYER ÇONTROL POINT MUF	
	FMUFY(II.IT)=(FMLS*(180SSN)+FMHS*(SSN-10.))/170.	0361
1112	CONTINUE	0362
Ċ	CIRCUIT MUF AND FOT	
	DO 1012 IT=L1.24.L1	0363
	GMT=IT	0364
	DÒ 1000 İI#K2•K3	0365
	IF(K2÷1) 602,603,602	0366
603	ļŘ≢ļ	0367
	ĢÓ TO 604	0368
602	IR=II+2	0369
604	IF(EMUFY(IR.IT)=FMUFY(II.IT)) 1007.1007.1008	0370
1007	UFY(II)=FMUFY(II-IT)	0371
	GO TO 1009	0372
1008	UFY(II)=EMUFY(IR•IT)	0373
1009	FOTFY=+85#FMUFY([[+]T)	0374
	IF((EMUFY(IR.IT)=FOTFY)) 1010.1011.1011	0375
1010	FOTY(II)=FOTFY	0376
	GO TO 1000	<u> </u>
1011	FOTY(II)=EMUFY(IR.IT)	0378
1000	CONTINUE	0379
	II#K2	0380
	IF(1-II) 606,605,606	0381
605	UF(IT)=UFY(1)	0382

	FOT(IT)=FOTY(1)	0383
	GO TO 1012	0384
<u> 404</u>	IF (UFY(2)= UFY(3)) 607+607+608	0385
	UF(1T) = UFY(2)	0386
U.Ų.I	GO TO 609	0387
É O È	UF(IT)=UFY(3)	0388
	1F (FOTY(2)=FOTY(3)) 610+611	0389
	FOT(1T)=FOTY(2)	0390
616	GÔ TÔ 1012	0391
411	FOT(IT)=FOTY(3)	0392
	CONTINUE	0393
1012	IRY≈BTRY/10.	0394
	TRY=IRY	0395
•	HAرŤŘY+₄ÔOÖO1#ĞČĎNM	0396
	XLAT=ABSF(X1)	0397
	XLÓNG=ABSF(Y1)	0398
	YLAT=ABSF(XZ)	0399
	YLÔNG=ABŚF (Y2)	0400
	AX=ANC	Ô4Ō1
	if(xi) 700,701,701	0402
700	AX=ASC	0403
701	ALPAWC	<u>0</u> 404
	1F(Y1) 702,703,703	0405
702	AL=AÉ¢	0406
703	AY#ANC	0407
	1F(X2) 704.705.705	0408
704	AY≈A\$C	0409
705	YL=AWC	0410
	IF(Y2) 706+2221+2221	0411
706	YL*AEC	0412
2221	GO TO (2223-2224-2224-2224-2224) METHOD	0413
2223	IF(MAP) 3223,3223,3224	0414
3224	CALL CURVY(FOT-UF)	0415
	GO TO 10	0416
3223	WRITE OUTPUT TAPE 6.3.NOCIR.BMONS.SSN.HA.HAR.XLAT.AX.XLONG.AL.	0417
	1YLAT•AY•YLQNG•YL•XTR•BTRY•GCDNM	0418
	WRITE QUTPUT TAPE 6.7.	0419
	1 (IG(I)*UF(I)*FOT(I)*IG(I+6)*UF(I+6)*FOT(I+6)*IG(I+12)*	0420
	2 UF(I+12) • FOT(I+12) • IG(I+18) • UF(I+18) • FOT(I+18) • I=1 • 6) • AAA	0421
	IF(3-MIT) 969,969,970	0422

969	WRITE OUTPUT TAPE 6,909	0423
	MIT=1	0424
	GO TO 10	0425
970	MIT=MIT+1	Ō42 6
	GÕ TÕ 1Ô	0427
ŽŽŽ4	CALL LUFFY	· 0428
	GO TO 10	0429
	ĒNŌ	0430

	SUBROUTINE LUFFY	0001
Ć	FÖRMATS AND STORAGE ASSIGNMENTS	
	DÍMĒNSION FDĒK(10) ĐĒDĒK(10)	0002
	DIMENSION AMON(12) + GLAT(5) + ABI(24) + ABIY(5+24) + CLCK(24) + GY(5) +	0003
	1F2S(5+24)+F2H(5+24)+GML(5+24)+GMH(5+24)+MF(3)+ME(2)+ELL(10)+FLL(10	0004
	2) • ELD(10) • EDEL(10) • FLD(10) • FDEL(10) • F24(5) • GMA(5) • FLF(10) • F\$KY(10)	0005
	3.ESKY(10).GE(10).GF(10).FSE(10).FSF(10).NOS(11).FXMT(10).EXMT(10).	0006
	4FRCR(10) .ERCR(10) .ADJ(4) .ABC(12) .MODE(12)	0007
	DÎMÊNSIÔN Q(20.60.4). [L(4).JL(4).KL(4).LK(4).JAL(4)CKC(24)	0008
	1+G(60)+AB(60)+S(20+24)+C(20+24)+GAMMA(5+24)+BA(60)	0009
	DIMENSION RD(5) + SUN(12) + A(10 + 7 + 14) + RASSN(12) + EMF(5+24)	0010
	DIMENSION CLAT(5)+CLONG(5)+EMUFY(5+24)+FMUFY(5+24)+ UFY(5)+FOTY(5)	0011
	5•İĞ(24)	0012
	DÍMĒNŠION UF(24) +FOT(24) +FF(24) +F(29+16+6) +ABP(2+6)	0013
	DÍMĒNSÍŌN AHA(Z)+ARĀ(Z)+AVA(Z)+RANT(Z)+TĀNT(Z)	0014
	DIMENSÍONNXLOS(11) + NANGLÉ(11)	0015
	ĐÍMĒNŠIÓN TOP(4)	0016
	DIMENSION IFR(10)	0017
	DIMENSION FREL(12)	0018
	ČOMMON-AŘP+P	0019
	COMMON A.Q.G.AB.S.C.GAMMA.BA.EMUFY.FMUFY.IG.UF.FOT.SUN.AVA.ARA.GLA	0020
	1T+ABI+ABIY+CLCK+GY+F2S+F2H+GML+GMH+MF+ME+ELD+FLD+F24+GMA+ADJ+ABC+	0021
	ZEMF+CKC+CLAT+CLONG+AK+BK+CK+DK+P12+EK+EEK+GLT+GLG+AAA+ALA+ASA+	0022
	3AFÇ+ANC+AWC+AEC+AŞC+AZZ+MAN+RSN+KW+PWR+JANT+JANR+YZ+XZ+MOUSE+S\$N+	0023
	4NOCIŘ+K4. AX+XLONG+AL+YLAT+XLAT+YLONG+YL+BTRY+GCDKM+GCDNM+K1+K2+K	0024
	53 •K5 •GCD • IR\$N •MON • ID •MOUSÉ •AY •MÉTHOD • AHA • BMONS •MAP	0025
	COMMON FREL	0026
	COMMON XNH+XNL+XND+RNH+RNL+RND+HA+JIG+HAR+XTR+XETA+WETA+IHR+MIT	0027
	COMMON KAP, KUP, MA, TANT, INH, INL, IND, RANT, JNH, JNL, JND	0028
	2 FQRMAT(2X+2A6+1X+13+1HH+1X+13+1HL+1X+13+3HDEG+12X+6HN01SE=13+12X+4	0029
	IHANT=[3,2HDB)	0030
	1 FORMAT(2X,2A6,1X,13,1HH,1X,13,1HL,1X,13,3HDEG,4X,6HNOISE=13,2A6,1X	0031
	1.13.1HH.1X.13.1HL.1X.13.3HDEG)	0032
	80 FORMAT(6X:4HPWR=F6.2:2HKW:11X:21HOPERATING FREQUENCIES:9X:14HFIELD	0033
	1 STRENGTH/5X+14HGMT MUF FOT+1X+1014+4H FOT)	0034
	3 FORMAT(10X+15+10X+A6+ 10X+4H\$\$N=F5.0+10X+A2+F7.3/9X+ 11HTR	0035
	ZANSMITTER.13X.8HRECEIVER.12X.8HBEARINGS.6X.7HN.MILES/7X .F6.2.A1.	0036
	32H = +F7+2+A1+5X+F6+2+A1+2H = +F7+2+A1+3X+2F6+1+4X+F8+1)	0037
	4 FORMAT(6X+4HANT=13+2HDB+13X+6HNOISE=13+7X+2A6+1X+13+1HH+1X+13+1HL+	0038
	11X+13+3HDEG)	0039

9	FORMAT(4x+13+2F6+1/20x+11(13+A1)+6H MODE/20X+1114+7H ANGLE/4X+	0040
;	213+2F6+1+1X+1114+13H RELIABILITY)	0041
12	FÖRMAT (1x+A2+F7+3+15+2F10+2)	0042
13	FORMAT (6X+4HANT=13+2HDB+20X+6HNO1SE=13+20X+4HANT=13+2HDB)	0043
14	FORMAT (6x+4HPWR+F6.2+2HKW+11x+21HOPERATING FREQUENCIES+10x+8HREQ+S	0044
:	1/N±13•2HDB/5X•14HGMT MUF FOT•1X•1014•4H FOT}	0045
29	FORMAT(4X.13.2F6.1/20X.11(13.A1).6H MODE/20X.1114.7H ANGLE/4X.	0046
;	213•2F6•1•1X•1114•9H S/N••DB)	0047
34	FORMAT (6x+4HPWR=F6.2+2HKW+16x+13HRELIABILITIES+13x+8HREQ+S/N=13+2H	0048
	1DB/9X+14HGMT MUF FOT+1X+1014+9H FOT MCS)	0049
7	FÖRMÁT (6X)	0050
	43HGMT-2x-3HLUF-3x-3HFOT-3(5x-3HGMT-2x-3HLUF-3x-3HFOT)/ 1HO4(4x-13-	0051
!	52F6.1)/1H04(4X.13.2F6.1)/1H04(4X.13.2F6.1)/1H04(4X.13.2F6.1)/1H04(0052
(64X+13+2F6+1)/1H04(4X+13+2F6+1)/1H-A1)	0053
8	FORMAT (31x+21HOPERATING FREQUENCIES/5x+14HGMT MUF FOT+1x+1014+	0054
	14H FOT)	0055
19	FORMAT(4X+13+2F6+1/20X+11(13+A1)+6H MODE/20X+1114+7H ANGLE/4X+	0056
	213+2F6+1+1X+1114+10H LÕŠŠ++ĎB)	0057
59	FORMAT(4x+13+2F6+1/20x+11(13+A1)+6H MODE/20X+1114+7H ANGLE/4X+	0058
	ŽI3•ŽF6•1•1X•11I4•5H DBU)	0059
24	FORMAT (6X+4MPWR*F6.2.2HKW+42X+8HREQ.S/N=13.2HDB)	0060
70	FORMAT(6X+3HGMT+2X+3HLUF+3X+3HFQT+3(5X+3HGMT+2X+3HLUF+3X+3HFQT)/1	0061
	1H04(4X•[3•6X•F6•])/1H04(4X•[3•2F6•])/1H04(4X•[3•6X•F6•])/[H04(4X•[0062
;	23+2F6+1)/1H04(4X+13+6X+F6+1)/1H04(4X+13+2F6+1)/1H A1)	0063
94	FORMAT(8X+13+2F6+1+1X+1114)	0064
907	FORMAT(1H0/1H0/1H0)	0065
908	FORMAT(1H)	0066
909	FORMAT(1H1)	0067
	FREL(11)=500.	0068
	FREL(12)=500.	0069
	DO 6461 [A=1+10	0070
6461	IFR(IA)=FREL(IA)	0071
Ç	BEARINGS OF RHOMBICS	
	IF(XETA) 1320,1320,1321	0072
1321	XETA#ABŞF(XETA#XTR)	0073
	IF(XETA=180.) 1320.1320.211	0074
=	XETA=360e=XETA	0075
	IF(WETA) 1323.1323.1324	0076
1324	WETA=ABSF(WETA=BTRY)	0077
	IF(WETA=180.) 1323.1323.210	0078

210	WĒTA÷360.≃WĒTA	0079
1323	XQ=+001	0080
	ŘQ≈•001	0081
	XP≖4÷	0082
	ŘP=4.	0083
	INH=XNH	0084
	ÎNL#XNĻ	0085
	ĪNĎ≑XNĎ	0086
	JNH=RNH	0087
	JNL=RNL	0088
	JNĎ≅ŘNĎ	0089
	NIĞ=Ô	0090
	JĪĞ=JIĞ+1	0091
	MA®XABŞF (MAN)	0092
Ġ	CONSTANTS TO BE USED FREQUENTLY	
	TOP(1)=20.	0093
	TOP(2)=20.	0094
	TOP(3)+25.	0095
	TOP(4)=23.5	0096
	RO±6376.6	0097
	KIP≋1	0098
	IF(MAP) 5612.5612.5613	0099
5612	WRITE OUTPUT TAPE 6.3.	0100
	1 NOCIR+BMONS+SSN+HA+HAR+XLAT+AX+XLONG+AL+YLAT+AY+YLONG+YL+	0101
	2XTR . BTRY . GCDNM	0102
5613	FK=69.057	0103
	LZP=1	0104
	LIP#1	0105
	MIP=2	0106
	IF(IHR) 8400+8400+3219	0107
	GO TO (3219,3219,3220,3221,3219,3219),METHOD	0108
3220	MIP=1	0109
	GO TO 3219	0110
	MA=Q	0111
3219	DO 3214 IT=MIP+24+MIP	0112
	FREL(11)=FOT(1T)	0113
	JUG=0	0114
	KAT=1	0115
	DO 251 [J=1+1]	0116
	NANGLE (IJ) =0	0117

		MOĎĒ(ÌJ)≡O	0118
2	51	ABC(IJ) =AZZ	0119
		FREQ#FREL(1)	0120
		DFREQ#3.	0121
		NF=1	0122
Ć		F2 REGION LAYER HEIGHTS	
		FL=O•	0123
		DO 926 11=K1+K3	0124
		CALL POLY(2+7+7+CLCK(IT)/10+=1+2+CLAT(II)/90++Y)	0125
9	26	FL=FL+Y	0126
		ŘK=K3	0127
		FL=FL/RK+100.	ô128
		GO TO (927.928).K2	0129
Ĉ		MÖDE CHOOSING F2 AND E-LAYER	
9	28	ME(1)#GCDKM/2000++69	0130
		MĒ(2)=MĒ(1)+1	0131
		MF(1)=GCDKM/4000++88	0132
		MĒ(2)=MĒ(1)+1	0133
		MF(3)#MF(2)+1	0134
		GÓ TŐ 929	0135
9	27	ME(1)=1	0136
		MĒ(2)=2	0137
		MF(1)#1	0138
		MF(2)=2	0139
		MF(3)+3	0140
c		RADIATION ANGLE E-LAYER MODES	
9	29	DO 930 IK=1.2	0141
		IM=ME(IK)	0142
		PI=ME(IK)	0143
		ELD(IM)=GCDKM/PI	0144
		EDEL(IM) =ATANF((COSF(GCD/(2.*PI))=RO/(RO+110.))/SINF(GCD/(2.*PI)))	0145
	•	1+8K	0146
		IF(EDEL(IM)) 1032.930.930	0147
10	32	DO 1033 II=1+2	0148
10)33	ME(II)=ME(II)+1	0149
		GO TO 929	0150
9	30	CONTINUE	0151
Ç		RADIATION ANGLE F2-LAYER MODES	
19	34	DO 931 IK=1.3	0152
		IM=MF(IK)	0162

	A . 4	A . F /
	PI=IM	0154
	FLD(IM)=GCDKM/PI	0155
	FDEL(IM) #ATANF((COSF(GCD/(2.*PI))-RO/(RO+FL))/SINF(GCD/(2.*PI)))	0156
	L#BK	0157
w ·	IF(FDEL(IM)) 932.931.931	0158
	DO 1933 ÎÎ=1,3	0159
1933	MF(ÎÎ)≐MF(ÎÎ)+]	0160
	60 10 1934	0161
931	CONTINUE	0162
	GO TO(933,934),K2	0163
Ê	PENETRATION FREQUENCIESE-REGION	
934	DZ#EMF (4+1T)	0164
	ĎY≐ÉMĒ (5.1Ť)	0165
	ÍF(ĎZ≃ĎY) 940;940;941	0166
940	ZR≠DZ	Õ167
	Í2=2	0168
	ŽŚ≇ĎY	0169
	GO TO 939	0170
941	ŽŘ≛ĎY	0171
	12=3	0172
	ZŞ≡DZ	0173
	GÓ TO 939	0174
933	ŽR≅ĖMĖ(1•IT)	0175
	ZS≠ZŘ	0176
939	DO 1663 II=1.10	0177
	£LL(II)=0.	0178
1663	FLL(II)=0,	0179
	DO 827 II=1.2	0180
	IM=ME(II)	0181
	ERCR(IM) *0.	0182
	EXMT(IM)=0.	0183
Ç	MODE ELIMINATION É AND F2 REGIONS	
	ARZ=ELD(IM)*DK	0184
	IF(16.=ARZ) 2900.2900.2901	0185
2900	ELFK=1.02	0186
	GO TO 2902	0187
2901	ELFK=((((((-4.368460907E+9*ARZ+1.334494261E-7)*ARZ+5.976618436E-6)	0188
	1*ARZ+2.624808315E-4)*ARZ-5.038476266E-3)*ARZ+3.761385053E-2)*ARZ-1	0189
	2•133200756E-2)*ARZ+•2085	0190
2902	Y=ZR*ELFK+.05	0191

	1F(Y#FREQ) 328,328,827	0192
328	EUL(1M)=1000.	0193
827	CONT INUE	0194
	DO 227 II=1;3	Õ195
	IMAMF(II)	0196
	FRCR(IM)=0,	0197
	FXMT(IM)=O.	0198
	ARŽ=RO+2.+(PI2-FDEL(IM)*AK-ASINF(RO+SINF(PI2+FDEL(IM)*AK)/(RO+110.	0199
	1)11+ĎK	0200
	ĬĒ(16ARZ) 2903.2904	0201
2903	ĒLFK=1.02	0202
	GO TO 2905	0203
2904	ELFK=((((((=4.368460907E~9*ARZ+1.334494261E=7)*ARZ=5.976618436E=6)	0204
	1*ARZ+2.624808315E-4)*ARZ-5.038476266E-3)*ARZ+3.761385053E-2)*ARZ-1	0205
	2 • 133200756E=2) *AR2+ • 2085	0206
2905	Y=ELFK+Z\$++0\$	0207
	IF(Y=FREQ) 227,227,228	0208
228	FLL(IM)#1000.	0209
227	CONTINUE	0210
	DØ 946 II*K2•K3	0211
	F24(II)=(F25(II+IT)*(180S\$N)+F2H(II+IT)*(S\$N-10.))/170.	0212
946	GMA()=(GML(.)+(80SSN)+GMH(. T)+(SSN+10.))/ 70.	0213
	\$1=(FREQ-GMA(K2))/(F24(K2)-GMA(K2))	0214
	\$2#(FREQ-GMA(K3))/(F24(K3)-GMA(K3))	0215
	IF(\$1-\$2) 947,947,948	0216
947	Ř * \$2	0217
	GO TO 949	0218
948	R±S1	0219
949	DO 945 IK=1.3	0220
	IM≅MF(ĮK)	0221
	IF(FLL(IM)) 508.508.945	0222
508	ARK=FLD(IM)+DK	0223
	FLF(IM)=((((((-6.712654756E-9*ARK+4.49151441E=7)*ARK+9.985831104E+	0224
	16)#ARK+6.865259817E=5)#ARK+9.202437332E=5)#ARK+2.264634341E=3)#ARK	0225
	2+4.699243101E=3) *ARK	0226
	[F(FLF([M)=R) 950.945.945	0227
950	FLL(IM)=1900.	0228
945	CONTINUE	0229
	GYR=(GY(K2)+GY(K3))/2+	0230
	GO TO (1740.9119).KIP	0231

ξ	MAJOR LAND BODIES	
1740	WLĎ±Ō•	0232
	DO 826 II=K1+K3	0233
	IF (CLONG(II)) 1702.1702.1701	0234
1701	CZG=360CLONG(11)	0235
	GO TO 1703	023 6
1702	CZG=ABSF(CLONG(II))	0237
1703	CALL NOISY(6;XŽ,CZG,Y)	0238
826	WLD=WLD+Y	0239
	WĎ≆WĿĎ/ŘK	0240
9119	ĪĒ(WD) 953,954,954	0241
953	ÉR=80∙	0242
	ŜİĜMA≅5•	0243
	GO TO 955	0244
954	ER≢4.	0245
	ŠÍĠMA*.ÖÖĪ	Ō246
<u> </u>	Ē-LAYĒŘ MŌDĒS	
-	GROUND LOSS REFLECTION FACTORS AND LOSS	
955	DO 726 II=1.2	0247
	ÌM≐MĒ(IÌ)	0248
	IF(ELL(IM))600,600,726	0249
600	RS=IM=1	0250
	CALL LOSS(EDEL(IM) +ER+FREQ+\$IGMA+Y)	0251
	GE(IM)=ABSF(Y#RS)	0252
	RI=IM	0253
•	ŠKYWAVĘ ABSORPTION	
	ESKY(IM)#615.5#RI#ABI(IT)/(COSF(ASINF(RO#SINF(PI2+EDEL(IM)#AK)/(RO	0254
	1+100.)))*(FREQ+1.12*GYR)**1.98)	0255
	RS=IM	0256
•	ANGLE AT IONOSPHERE	
_	PHE=RO#SINF(PI2+EDEL(IM)*AK)/(RO+110.)	0257
	FREE SPACE LOSS	
	ZOR= GCD/(2.*RS)	0258
	FR=(2+RS#SINF(ZOR)#RO/PHE)#EEK	0259
201	FSE(IM)=36.58+20.#LOG10F(FR)+20.#LOG10F(FREQ)	0260
126	CONTINUE	0261
:	F2=LAYER MODES	
,	GROUND LOSS REFLECTION FACTORS AND LOSS	
	D0 626 [I=1,3	0262
	IM=MF(11)	0263

		IF(FEL(IM)) 601+601+626	0264
	601	ŘŚ=!M−1	0265
		CALL LOSS(FDEL(IM).ER.FREQ.SIGMA.Y)	0266
		ĠĒ(ĬM)=ABSĒ(Y#RS)	0267
		ŘI≡ÍM	0268
Ē		ŠKY WÁVĒ ÁBSORPTIŌN	
		#SKY(IM)=615.5*RI*ABI(IT)/(COSF(ASINF(RO*SINF(PI2+FDEL(IM)*AK)/(RO	0269
	ì	+100.)))*(FREQ+1.12*GYR)**1.98)	0270
		ŘŜ≅IM	0271
Ċ		ANGLE AT IONOSPHERE	
		PHE=RO+SINF(PI2+FDEL(IM)+AK)/(RO+FL)	0272
Ĉ		FREE SPACE LOSS	
		ŽÒŘ≅ ĞČD/(Ź÷ŘRŠ)	0273
٠		FR=(2.+RS+SINF(ZOR)+RO/PHE)+EEK	0274
		F\$F(IM)#36.58+20.*LOG1OF(FR)+20.*LOG1OF(FREQ)	0275
	626	CÔNTINUÉ	0276
Ç		ANTENNA DETERMINATION	
		KAP=XABSF(IANT)	0277
		IF(IANT) 18 +181+181	0278
	181	KAP#4	0279
		DO 82 II=1+2	0280
		IM=ME(II)	0281
	82	EXMT(IM)=IANT	0282
		DO 62 [= 1 + 3	0283
		IM=MF(II)	0284
	62	FXMT(IM)=IANT	0285
		GO TO 1185	0286
	18	GO TO (31.32.33).KAP	0287
	31	TANT(1)=ARA(1)	0288
		TANT(2)=ARA(2)	0289
		GO TO 180	0290
	32	TANT(1)=AVA(1)	0291
		TANT(2) #AVA(2)	0292
		GO TO 180	0293
	33	TANT(1) = AHA(1)	0294
		TANT (2) = AHA (2)	0295
	180	DO 182 II=1.2	0296
		IM#MĒ(II)	0297
		IF(ELL(IM))603,603,182	0298
	603	CALL GAIN(KAP+EDEL(IM) +XÉTA+FREQ+XQ+XP+XND+XNL+XNH+EXMT(IM))	0299

182	CONTINUE	0300
Ć	POWER GAIN OF TRANSMITTING ANTENNA	
	DO 382 II=1.3	0301
	ÎMAMÊ(ÎÎ)	0302
	1F(FLL(IM)) 605.605.382	0303
605	CALL GAIN(KAP+FDEL(IM)+XETA+FREQ+XQ+XP+XND+XNL+XNH+FXMT(IM)+	0304
382	CONTINUE	0305
1185	ÍF (MÉTHÓD-4) 185.184.185	0306
184	ĬĔ(ĬĦŔ) 185+185+183	0307
183	ÎANR®Ô	8080
	MA≖Ó	0309
185	KUP=XABSF(IANR)	0310
	ĬĒ (IANĒ) 187•281•281	0311
281	KUP±4	0312
	DO 482 11#1,3	031 3
	ĬM≄MĔ(ĨĨ)	0314
482	FRCR(IM)=IANR	0315
	DO 582 II=1+2	0316
	IM≐MĒ(II)	0317
582	ĒRĢŘ (ÎM)±ÍANŔ	03.18
	GO TO 1285	0319
187	GO TO (741.42.43).KUP	0320
741	RANT(1) *ARA(1)	0321
	RANT(2) #ARA(2)	0322
	GO TO 280	0323
42	RANT(1)=AVA(1)	0324
	RANT(2)=AVA(2)	0325
	GO TO 280	0326
43	RANT(1)=AHA(1)	0327
	RANT(2) #AMA(2)	0328
Ç .	RESPONSE OF RECEIVING ANTENNA	
280	DO 282 II=1.3	0329
	IMEMF(II)	0330
	IF(FLL(IM)) 607+607+282	0331
	CALL GAIN(KUP+FDEL(IM)+WETA+FREQ+RQ+RP+RND+RNL+RNH+FRCR(IM))	0332
282	CONTINUE	0333
	DÓ 782 II=1+2	0334
	IM#ME(II)	0335
	IF(ELL(IM))609,609,782	0336
609	CALL GAIN(KUP+EDEL(IM)+WETA+FREQ+RQ+RP+RND+RNL+RNH+ERCR(IM))	0337

782	CONTINUE	0338
1285	ÎÊ(MAP) 285,285,388	0339
285	GO TO (286.388).LIP	0340
286	GO TO (330,330,330,1331),KAP	0341
1331	GÔ TÔ (232+232+232+233)+KUP	0342
233	WRITE OUTPUT TAPE 6,13, LANT, MA, LANR	0343
	GO TO 388	0344
330	GO TO (335+335+335+336)+KUP	0345
335	WRITE OUTPUT TAPE 6.1.	Ö346
;	Î TÂNÎ ĐĨNH ĐÎNL ĐĨNĐ ĐÁ ĐÃ ĐỘ JNH ĐỊNL ĐỊNĐ	0347
	GÖ TÖ 388	0348
336	WRITE QUIPUT TAPE 6.2.	0349
. :	Î TANÎ (ÎNH (INL (ÎND) (MA) IANÊ	0350
	GO TO 388	0351
232	WRITE OUTPUT TARE 6,4, IANT, MA, RANT, JNH, JNL, JND	0352
388	LÍP=2	0353
	DO 333 II=K2.K3	0354
	ŤÍP#Ô•	0355
Č	DETERMINATION OF TYPE OF CIRCUIT (POLAR . TEMPERATE . ETC)	
	ŘM±ABSŘ(ĠĿAŤ(IĮ))	0356
	IF(RM-60.*AK) 331.331.332	0357
331	ĬĎ≅1	0358
	IF(ABIY(1+IT)) 9732+9732+333	0359
9732	ŤÍP=5.	0360
	GO TO 333	0361
332	IF(RM=70.*AK) 334,334, 35	0362
334	ID=3	0363
	IF(K2-1) 333,333, 36	0364
36	ID#4	0365
	GO TO 1725	0366
35	ID=2	0367
333	CONTINUE	0368
c	TRANSMISSION LOSS E-LAYER MODES	
1725	DO 960 II=1.2	0369
	IM=ME(II)	0370
960	ELL(IM)=ESKY(IM)+GE(IM)+FSE(IM)=EXMT(IM)=ERCR(IM)+ADJ(ID)+ELL(IM)	0371
	LD=ME(1)	0372
	LE=ME(2)	0373
	IF(ELL(LD)=ELL(LE)) 961.961.962	0374
961	ELOS=ELL(LD)	0375

		MŌĒ≠ĿĎ	0376
		GO TO 963	0377
	äžá	ELOS≡ÉLL(\LĒ)	0378
	702	MĎĚ *LĒ	0379
Ĉ		TRANSMISSION LOSS FZ-LAYER MODES	,
C		DO 964 11=1.3	0380
	703	iM=MF(11)	0381
	04.4	FLL(IM)=FSKY(IM)+GF(IM)+FSF(IM)=FXMT(IM)=FRGR(IM)+ADJ(ID)+FLL(IM)	0382
	704	LG#MF(1)	0383
		LH≅MF(2)	0384
		LJ±MF(3)	0385
		ÎF(FLL(LĞ)=FLL(LH)) 965+965+966	0386
	945	FL1=FLL(LG)	0387
	,,,	MDF=LG	0388
		GO TO 967	0389
	966	FL1=FLL(LH)	0390
		MĎÉ*LH	0391
	967	ĬF(FL1=FLL(LJ)) 968,968,969	0392
	968	FLÖS‡FL1	0393
		ĜO TO 970	0394
	969	FLÓS≑FLL(LJ)	0395
		MDF=LJ	0396
	970	IF(ELOS=FLOS) 971.971.972	0397
	971	NXLOS(NF)=ELOS	0398
		NANGLÉ (NF) =ÉDEL (MDE) +.5	Ģ 399
		MÔDE (NF) =MDE	0400
		ABC(NF)=AEC	0401
		GO TO 911	0402
	972	NXLQS(NF)=FLQS	0403
		NANGLE(NF)=FDEL(MDF)+.5	0404
		MQDE (NF) #MDF	0405
		ABC(NF) #AFC	0406
Ç	•	MIXED MODES OF PROPAGATION	
	911	FHOP=MF(1)=1	0407
		IF(FHOP) 3903.3898	0408
		XHQP=FHQP+1•	0409
(.	AVERAGE HEIGHT OF REFLECTING LAYERS	
	_	EFHT=(110.+FHOP#FL)/(FHOP+1.)	0410
(•	RADIATION ANGLE	
		EFDEL=ATANF((COSF(GCD/(2.*XHOP))-RO/(RO+EFHT))/SINF(GCD/(2.*XHOP))	0411

	1)*8K	0412
Č	ANĞLE AT IONOSPHERE	
	PHE#RO*SINF(PI2+EFDEL*AK)/(RO+110.)	Õ413
	ARZ=79.138*(P12=EFDEL*AK-ASINF(PHE))	0414
	IF(EFDEL-1.) 3899.3900.3901	0415
3899) ŘHÔP≃ŘHÔŘ+1•	0416
	GO TO 3898	0417
Ğ	MÔĐE ELIMINATION	
3900	ELFK=1.02	0418
	ĜŌ TO 3902	0419
3901	ELFK={ (-4.368460907E-9*ARZ+1.334494261E-7)*ARZ-5.976618436E-6)	0420
	1*ARZ+2.624808315E=4)*ARZ=5.038476266E=3)*ARZ+3.761385053E=2)*ARZ=1	0421
	2.133200756E-2)*ARZ+.2085	0422
3902	Y=ŽS*ĒLFK	<u>0</u> 423
4332	! ÎF(Y=FREG) 3903;3905;3905	Ō4 2 4
3903	NÖS(NF) =1000.	Ō4ŹŚ
	GO TO 612	Ó426
3905) Y≅ŽR*ĒLĒK	0427
	IF(Y=FREQ) 650+650+651	0428
651	NOS(NF)=1000.	0429
	GO TO 612	0430
650) AŘK≡(ĠČĎKM+ĎK÷ARŽ)/FHOP	0431
	FLFK #(((((-6.712654756E=9*ARK+4.49151441E=7)*ARK-9.985831104E=	0432
	16)*ARK+6.865259817E-5)*ARK+9.202437332E-5)*ARK+2.264634341E-3)*ARK	0433
	2+4-699243101E=31*ARK	0434
	REF#(FREQ+GMA(12))/(F24(12)-GMA(12))	0435
	IF(FLFK+REF) 652.653.653	0436
652	NOS(NF) =1000.	0437
	GO TO 612	0438
Ç	SKY WAVE ABSORPTION	
653	EFSKY=615.5*XHOP*ABIY(1.1T)/(COSF(ASINF(RO*SINF(PI2+EFDEL*AK)/(RO	0439
	1+100+)))*(FREQ+1+12*GYR)**1+98)	0440
Ç	GROUND REFLECTION LOSS	
	CALL LOSS(EFDEL+ER+FREQ+SIGMA+Y)	0441
	GEF#ABSF(Y*FHOP)	0442
Ç	ANGLE AT IONOSPHERE	
_	SPHE=RO*SINF(PI2+EFDEL*AK)/(RO+EFHT)	0443
Ç	FREE SPACE LOSS	
	ZOR#GCD/(2.*(FHOP+1.))	0444
	FR#(2+*(FHOP+1+)+SINF(ZOR)*RO/SPHE)*EEK	0445

	EFSF=36.58+20.*L0G10F(FR)+20.*L0G10F(FREQ)	0446
	GO TO (3180,3180,3180,3181).KAP	0447
3181	EFXMT = I ANT	0448
	GO TO 3182	0449
Ĉ	POWER GAIN OF TRANSMITTING ANTENNA	•
3180	CALL GAIN(KAP-EFDEL, XETA+FREQ+XQ+XP+XND+XNL+XNH+EFXMT)	0450
3182	ĞÖ TÖ (3183+3183+3183+3184)+KUP	0451
3184	ÉFRCR= I ANR	0452
	GÖ TÖ 3190	0453
¢	RESPONSE OF RECEIVING ANTENNA	
3183	CALL GAIN(KUP + EFDEL + WETA + FREQ + RO + RP + RND + RNL + RNH + EFRCR)	0454
Ĉ	TRANSMISSION LOSS	
3190	NOS(NF)=EFSKY+GEF+EFSF=EFXMT=EFRCR+ADJ(ID)	0455
612	ÎF(NÔ\$(NF)=NXLOS(NF)) 623.622.622	0456
6 2 3	NANGLE (NF) =EFDEL++5	0457
	MÖDĒ (NĒ)≡ĒHÖP+1.	0458
8	ABC(NF) =676060606060	0459
	NXLOS (NF) = NOS (NF)	0460
622	IF(NXLOS(NF)=990) 6911+624+624	0461
624	AŘČ(NF)=AŽŽ	0462
	NANGLE (NF) =0	0463
	MODE (NF) =0	0464
	ĜÕ TO 8740	0465
6911	KAJ≈1	0466
	GO TO (6912-6912-6912-9779-6912-6912) METHOD	0467
6912	POR≠10.*LOG10F(PWR*1000.)	0468
	IF(JUG)3869+3869+8712	0469
Ç	IMC/S ATMOSPHERIC NOISE DETERMINATION	
3869	CC=GKC(1T)	0470
Ç	SEASON AND HOUR BLOCK FOR ATMOSPHERIC NOISE DETERMINATION	0471
	LIB=4	0472
	ICC±CC/2•	0473
	IF(ICC) 8889.8889.8888	0474
8888	GO TO (8701.8701.8702.8702.8705.8705.8706.8706.8708.8708.8887.	0475
	18887) • ICC	0476
8887	CC=CC-24•	0477
8889	KJ= <u>1</u>	0478
	TM==2•	0479
	JK=1	0480
	60 TO 8702	0481

	0482
8701 KJ=1	0483
îM=2÷	0484
JK≡5	0485
GO TO 8703	0486
8702 KJ#5	0487
TM≖6•	0488
JK = 4 ,	0489
KAJ=3	0490
GO TO 8703	0490 0491
8705 KJ=4	0491 0492
T:M≠1Õ•	0492 0493
JK≅3	0494 0494
LIB#5	0495
GO TO 8703	0496
8706 KJ=3	_
TM=14•	0497
JK=2	0498
L18≆Š	0499
GO TO 8703	0500 0501
8708 KJ#Ź	-
îM#18.	0502
JK#1	0000
KAJ#2	0503
8703 IF(Y2) 9702+9702+9701	0504
9701 ÇÊG#360•-Y2	0505
GO TO 9703	0506
9702 CÉG=ABSF(YŽ)	0507
9703 CALL NOISY(KJ+X2 +CEG+ATNO)	0508
CALL NOISY (JK+X2+CEG+ATNY)	0509
ATNO=(ATNO+(ATNY=ATNO)+(CC=TM)/4.)	0510
LOB=0	0511
JŲĢ≖JŲG+1	0512
GO TO(8712.8713).KAJ	0513
C FREQUENCY DEPENDENCE OF ATMOSPHERIC NOISE	-2
8713 MOT=MOUSE/3	0514
IF(MQT) 8714.8715.8714	0515
8715 MQT=4	0516
8714 IF(X2) 8716.8717.8717	0517
8716 LOB=1 ·	0518
8717 [F(MQT-3) 8718:8719:8719	0519

8718	LIB=5-LOB	0520
	GO TO 8712	0521
8719	LIB=4+LÒB	0522
8712	IF(L18-4) 2179,2179,2178	0523
2179	IF(ATNO-20.) 2130.2178.2178	0524
2130	ATNQ#20.	0525
2178	CALL POLY(LIB.7.7.ATNQ/105FREQ/101.35.Y)	0526
	ATNO=Y*10.+130.	0527
Č	GALACTÍC NOISE	
	IF(FREQ=GMA(2)) 8720.8720.8721	0528
8721	GNOS= ((((((((,1095032130E-10*FREQ+.2442852795E-8)*FREQ15854096	0529
Í	108E=5)*FREQ+.1513740543E=3)*FREQ=.6306642189E-2)*FREQ+.139Q178355E	0530
	2+0)*FREQ1701088795E+1)*FREQ+.1121130396E+2)*FREQ3426395658E+2)	0531
3	3*FRĒQ+•2020285454E+3	0532
	Ğ0 ŤÔ 9797	0533
87 <u>2</u> 0	ĞNÔ\$#1ÔÔÔ•	0534
Ć	MAN MADE NOISE	
9797	ÎF(MAN) 8722+8723+8723	0535
8722	KJ=XABSF(MAN)+5	0536
	\$08=0.	0537
	CALL POLY (KJ+1+10+\$OB+FREQ+Y)	0538
	XNOIS=Y	0539
	ĜO TO 8724	0540
8723	XNÔ! S#MAN	0541
Ç	DETERMINATION OF CONTROLLING NOISE	
8724	RCNSE=ATNO	0542
	IF(ATNO=GNOS) 8725.8725.8726	0543
8726	RCNSE=GNOS	0544
8725	IF(RCNSE-XNOIS) 8729+8729+8728	0545
8728	RCNSE=XNOIS	0546
Ċ	AVAILABLE SIGNAL-TO-NOISE RATIO	
8729	XLOS≅NXLOS(NF)	0547
	ROT = XLOS-POR	0548
	GOT *RCNSE-ROT	0549
	GO TO (505,505,505,505,506), METHOD	0550
506	NXLOS(NF)=GOT	0551
	GO TO 9777	0552
505	WANT=GOT=RSN	0553
Ç	CIRCUIT RELIABILITY	
	IF(ABSF(WANT)=(TOP(ID)+TIP))867.867.868	0554

868	RELESIGNF (100. WANT)	0555
	GO TO 869	0556
867	KJ±ĪĎ+10	0557
	GO TO (888.8733;8733;8733),ID	0558
888	IF(ABIY(1.1T)) 8733.8733.8732	0559
8732	KJ=KJ=1	0560
8733	CALL POLY(KJ+5+10+FREG/10+-1+35+WANT/10++Y)	0561
	REL=Y+10.+50.	0562
869	IF(ID-1) 8734,8734,8735	0563
8735	XŘL≅900•	0564
	ĞÖ TÖ 8736	0565
8734	XÂL≅99•	0566
8736	ÎF(REL-XRL) 8739,8739,8738	0567
8738	ŔĔĿŦXŘĿ	0568
8739	IF(REL-1.) 8740.8740.8741	0569
8740	ŘĒL≆Ô•	057 0
8741	NXLOŠ (NF) ¥ŘĒĻ	0571
	KIP#2	0572
	IF(METHOD=3) 9777,3207,9777	0573
Ç	ITERATION FOR LUF	
3207	IF(REL=90.) 3201.3202.3203	0574
3201	GÔ TO (3204+3202)+KAŤ	0575
3202	FF(IT)*FREQ	0576
	GÓ TÓ 3214	0577
3203	IF(FREQ=3.) 3208.3208.3209	0578
3208	FF(T)=+3.	0579
	GO TO 3214	0580
3209	FREQ#FREQ+.1+DFREQ	0581
	IF(FREQ=3.)3208.4850.4850	0582
4850	KAT#2	0583
	GO TO 939	0584
3204	∑Ĵ≠KĴ	0585
	GO TO 9777	0586
9779	IF(IHR) 9777,9777,9778	0587
Ç	FIELD STRENGTH	
9778	ALOSS=-NXLOS(NF)	0588
	NXLOS(NF)=ALOSS+107.2+8.6859*LOGF(FREQ)+4.343*LOGF(1000.*PWR)	0589
¢	FURTHER ITERATION FOR LUF	-
9777	NF=NF+1	0590
	IF(NF=11) 914,914,260	0591

914	FREQ#FREL(NF)	0592
	IF(FREQ-FREL(11)) 917.917.916	0593
917	ÎF(FREQ-30.) 939.939.916	0594
916	NXLOS (NF) =0	0595
	FF(IT)=0.	0596
	ĜO TO 9777	0597
260	GO TO (250,250,3214,3212,7007,250) METHOD	0598
	GO TO (7009,7008).LZP	0599
7009	WRÎTÊ OUTPUT TAPÊ 6.34.PWR.IRSN.IFR	0600
7008	WRITE OUTPUT TAPE 6.94.	0601
	1 IG(IT) • UF(IT) • FOT(IT) • NXLOS	0602
	NÏĢ≡NĪĢ+1	0603
	GO TO (3214,3214,21),NIG	0604
21	WRITE OUTPUT TAPE 6.908	0605
	NÎĜ≅O	0606
	GO TO 3214	0607
25ô	GO TO (2250,2666),LZP	0608
Ž250	WRÎTÊ QUÎPUT TAPE 6.14.PWR.IRSN.IFR	0609
2666	GÕ TÕ (2667+2667+2667+2667+2667)•METHOD	0610
2668	WRITE OUTPUT TAPE 6.29.	0611
	1 IG(IT-1) +UF(IT-1) +FOT(IT-1) + (MODE(I) +ABC(I) +I=1+11) + NANGLE	0612
	Ź÷ĪĠ(ĬŤ)÷UĖ(IŤ)÷POŤ(IŤ)÷NXLOS	0613
	GO TO 3214	0614
2667	WRITE OUTPUT TAPE 6.9.	0615
	1 IG([T=1).UF([T-1).FOT([T=]).(MODE([).ABC([).f=1.1]).NANGLE	0616
	2 • IG(ÎT) •UF(IT) •FOT(IT) •NXLOS	0617
	GO TO 3214	0618
3212	GO TO (3213,3215),LZP	0619
3213	IF([HR) 8002,8002,8003	0620
8003	WRITE OUTPUT TAPE 6,80,PWR.IFR	0621
	GO TO 77	0622
8002	WRITE QUIPUT TAPE 6.8. IFR	0623
3215	IF(IHR) 69.69.77	0624
69	WRITE OUTPUT TAPE 6.19.	0625
	I IG(IT=1).UF(IT-1).FOT(IT-1).(MODE(I).ABC(I).I=1.11).NANGLE	0626
	2+IG(IT)+UF(IT)+FQT(IT)+NXLQS	0627
	GO TO 3214	0628
77	WRITE OUTPUT TAPE 6.59.	0629
	IG(IT-1).UF(IT-1).FQT(IT-1).(MQDE(I).ABC(I).I=1.11).NANGLE	0630
	2+IG(IT)+UF(IT)+FOT(IT)+NXLOS	0631

3214 (LŽP=2	0632
(ĜO TO (2270,51,290,51,41,51);MĒTHOD	0633
41	ĢO TO (40,51),JIG	0634
40 I	WRITE OUTPUT TAPE 6:907	0635
(GÓ TO 270	0636
51 1	WRITE OUTPUT TAPE 6,909	0637
,	JİG=0	0638
(GO TO 270	0639
290	ÎF(MAP) 6228,6228,6229	0640
5229	¢ALL CURVY(FOT,FF)	0641
. (GÓ TÓ 270	0642
5228	WRÍTË ÖUTPUT TAPÉ 6:24:PWR:IRSN	0643
	ĬĔ(Į́HR) 2291,2290	0644
2291	WRITE OUTPUT TAPE 6.7.	0645
Ĩ	(G() FF() FOT() IG(+6) FF(+6) FOT(+6) IG(+12)	0646
Ž	FF(1+12)+FOT(1+12)+IG(1+18)+FF(1+18)+FOT(1+18)+I=1+6)+AAA	0647
(GO TO 2270	0648
2290 I	WRITE OUTPUT TAPE 6.70.	0649
ĺ	(G() FOT() G(+6 FOT(+6 G(+12 FOT(+12 G(+1	0650
2	8) »FOT([+18) »IG([+1] »FF([+1)» FOT([+1)» IG([+7)»FF([+7)»FOT([+7)»IG	0651
3	(I+13) •FF(I+13) •FOT(I+13) •IG(I+19) •FF(I+19) •FOT(I+19) •I#1 •6•2) •AAA	0652
2270	IF(3=MIT) 1969,1969,1970	0653
1969	WRITE OUTPUT TAPE 6.909	0654
	MIT=1	0655
	GO TO 270	0656
1970	MļĪ=MļT+1	0657
270	RETURN	0658
	END	0659

	SUBROUTINE CURVY(COT.BOT)	0001
	GENERATES LINE GRAPHS	
	DIMENSION COT(24) +ROT(73) +BOT(24) +WOT(73)	0002
	DIMENSION AOT (73) .COB (55) .BOB (55) .XOB (73)	0003
	DIMENSION FOEK(10) EDEK(10)	0004
	DIMENSION AMON(12), GLAT(5), ABI(24), ABIY(5,24), CLCK(24), GY(5),	0005
	1F2\$(5,24);F2H(5,24);GML(5,24);GMH(5;24);MF(3);ME(2);ELL(10);FLL(10	0006
	2) • ELD(10) • EDEL(10) • FLD(10) • FDEL(10) • F24(5) • GMA(5) • FLF(10) • FSKY(10)	0007
	3+ESKY(10)+GE(10)+GF(10)+FSE(10)+FSF(10)+NOS(11)+FXMT(10)+EXMT(10)+	0008
	4FRCR(10) + ERCR(10) + ADJ(4) + ABC(12) + MODE(12)	0009
	DÍMĒNŠÍŎN Q(20:60:4): (4): JE(4): JE(4): JEK(4): JAL(4): (KC(24)	0010
	1 ÷ G(60) ÷ AB(60) • S(20 • 24) • C(20 • 24) • GAMMA(5 • 24) • BA(60)	0011
	DIMENSION RO(5) + SUN(12) +A(10+7+14) +RASSN(12) +EMF(5+24)	0012
	DÍMENSIÓN CLAT(5) + CLONG(5) + EMUFY(5 + 24) + FMUFY(5 + 24) + UFY(5) + FÖTY(5)	0013
	5 • IG(24)	0014
	DÍMĒNŠIŌN UĒ(24) • ĒŌĪ(24) • ĒĒ(24) • P(29 • 16 • 6) • ABP(2 • 6)	0015
	DIMÊNŠĪŌN AHA(Ž) JAŘÁ(Ž) JAVA(Ž) JRANŤ(Ž) JŤANŤ(Ž)	0016
	DIMENSIONNXLOS(11) + NANGLE(11)	0017
	DÍMENSION TOP(4) FREL(12)	0018
	CÓMMỘN ABP+P	0019
	COMMON A.U.G.AB.S.C.GAMMA.BA.EMUFY.FMUFY.IG.UF.FUT.SUN.AVA.ARA.GLA	0020
	1T+ABİ+ABİY+CLCK+GY+F2S+F2H+GML+GMH+MF+ME+ELD+FLD+F24+GMA+ADJ+ABC+	0021
	ZÉMF+ČKC+CLAT+ČLÖNG+AK+BK+CK+DK+PIZ+EK+EEK+GLT+GLG+AAA+ALA+ASA+	0042
	3AFC+ANC+AWC+AEC+ASC+AZZ+MAN+KSN+KW+PWR+IANT+IANR+YZ+XZ+MQUSE+SSN+	0023
	4NOCIR+K4. AX+XLONG+AL+YLAT+XLAT+YLONG+YL+BTRY+GCDKM+GCDNM+K1+K2+K	0024
	53.K5.GCD.IRSN.MON.ID.MOUSE.AY.METHOD.AHA.BMONS.MAP	0025
	COMMON FREL	C026
	COMMON XNH+XNL+XND+RNH+RNL+RND+HA+JIG+HAR+XTR+XETA+WETA+IHR+MIT	0027
	COMMON KAP+KUP+MAT+MAT+MAT+MAT+AM+PAX MOMMOD	0028
ì	73 FORMAT(10X+4HANT=13+2HDE+2CX+6HNOISE=13+2OX+4HANT=13+2HDB)	0029
ç	71 FORMAT(6X+2A6+1X+13+1HH+1X+13+1HL+1X+13+3HDEG+2X+6HNC1SE=13+2A6+1X	0030
	1+[3+]HH+]X+[3+]HL+]X+[3+3HDEG)	0031
7	72 FORMAT(6x+2A6+1x+13+1HH+1x+13+1HL+1X+13+3HDEG+12X+6HNO1SE=13+12X+	0032
	14HANT=[3,2HDB)	0033
7	74 FQRMAT(10X+4HANT=13+2HDB+13X+6HNOISE=13+7X+2A6+1X+13+1HH+1X+13+1HL	0034
	1.1X.13.3HDEG)	0035
2	24 FORMAT(10x+4HPWR=F6+2+2HKW+42X+8HREQ+5/N=13+2HDB)	0036
	3 FORMAT(14X+15+10X+A6+ 10X+4HS5N±F5+0+10X+A2+F7+3/13X+ 11HTR	0037

		TTER•13									2,A1,	0038
		∮F7•2•A			_	F7.2.A	1.3X.2	F6.1.4	X • F8 • 1)		0039
15	FORMA	T (7X+73/				04	06	9.0		12	14	0040
	1 16	18	_	-	_			IICH ME	AN TIM	E)		0041
Ź	FORMA	F(2X÷A1	1X+A2+	A1•73A	1+A1+A	2.1X.A	1)					0042
25	FORMAT	r(iHi)										0043
1	FORMAT	•										0044
	WRITE	OUTPUT										0045
	1		RIBMONS	• SSN • H	A PHAR 9	XLAT .A	X . X LON	IĞ + A'L • Y	LATIAY	•YLÔNĞ	şYL ş	0046
		TRY • GÇDI										0047
		(HOD-3)										0048
		(330.33										0049
		(232+23										0050
233	WRITE	ŎUŤĒŲŤ	TAPE 6	• 73 • I A	NT +MA+	IANR						0051
	GO TO											0052
		(335.33			UP							0053
335		OUTPUT										0054
		TANT	INHIIN	- • ÍNÐ • I	MA•RAN	Ť,JNH,	ゴルド・フル	D				0055
	GO TO											0056
		OUTPUT		_								0057
	1		INHIN	. • IND •	MA I AN	R						ÕÕ58
	GO TO											0059
232	_	ÖUTPUT										0060
_		IANT	MA JRANT	. • HNC • 1	ういて・ つい	D						0061
388	ĻIP=2											0062
	•	OUTPUT	TAPE 6	24 • PWF	R•IR\$N							0.063
4044												0064
		I=1,24	•									0065
	X=ÇOT (- •										0066
		.) 202,	203,202	2								0067
203	X#CQT(24)										0068
	ROT(1)											0069
202	XX=COT											0070
			l									0071
	J=J+Ì											0072
	CEG=11											0073
303		·1)=X+(X										0074
4455		HQD-31	6402 • 64	05.640).2							0075
6405												0076
	00 808	I=1.24										0077

	X=XX	0078
	ĬĖ(I=1) 802;803;802	0079
803	X#80T(24)	0080
	ĬF(X) 51.53.54	0081
51	X=1.	0082
	GO TO 54	0083
53	X=COT(24)	0084
54	WÕT(1)=X	0085
802	XX=BOT(I)	0086
	ĪF(XX) 55.57.58	0087
55	XX=1.	0088
	GÔ TÔ 58	0089
57	XX=COT(1)	0090
58	DO 808 II=1.3	0091
	j=↓+ j	0092
	CEG=11	0093
808	WÔŤ(J+1)≅X+(XX=X)*ČĒG/3¢	0094
6402	DO 608 1=2.72.1	0095
8 608	XÔB(1) =406060606060	0096
	DO 20 I=1,73,3	0097
B 20	XOB(1)=2060606060	0098
	DO 30 I=1.55	0099
₿	BQB(I) =606060606060	0100
B 30	Ç0B(1)=6060606060	0101
В	COB(1) = 600360606060	0102
8	COB(5)= 600460606060	0103
₿	COB(9) = 6005606060	0104
В	COB(13)=6006606060	0105
₿	COB(17)=600760606060	0106
₿	COB(21)=601060606060	0107
В	COB(23) =601160606060	0109
₿	COB(25)=011260606060	0109
₿	COB(27)=010160606060	0110
₿	COB(29)=010260606060	0111
8	COB(31)=010360606060	0112
B	COB(33)=010460606060	0113
B -	COB(35)=010560606060	0114
8	COB(37)=010660606060	0112
₿	COB(39)=010760606060	0116
В	COB(41)=011060606060	0117

8	ČÓB(43)=011160606060	0118
B	COB(45)=021260606060	0119
B	COB(47)=020260606060	0120
8	COB(49) ±020460606060	0121
₿	ĆŌB(51)≆020660606060	0122
В	COB(53)=021060606060	0123
8	€08(55)=031260606060	0124
B	BOB(29)=456060606060	0125
B	BOB(21)=622060606060	0126
B	BOB(22)=616060606060	0127
B	BOB(23)=236060606060	0128
Ē	BOB(24)=446060606060	0129
B	BOB(27)=706060606060	0130
8	BOB(28)=236060606060	0131
B	BOB(30)=256060606060	0132
B	BOB(31)=646060606060	0133
·B	BOB(32)=506060606060	0134
B	BOB(33) *256060606060	0135
B	BOB(34)=516060606060	0136
8	BOB (35) = 266060606060	0137
B	-ĎÔŤ≃546969606060	0138
	ZÓB#31•	0139
₿	DQB=4060606060	0140
	ĐÔ 200 IK#1.55	0141
	ÍM≐56÷IK	0142
	DO 100 I#1.73	0143
B 100	AQT(I)#6060606060	0144
	IF(208-20.) 4.4.63	0145
63	WÔB±1•	0146
	GO TO 5	0147
	IF(ZOB=8.) 4062.4062.4063	0148
4063	WOB≡•5	0149
	GO TO 5	0150
	WOB = • 25	0151
5	ZOB=ZOB=WOB	0152
	[Ta]	0153
12	ISPOT*IT	0154
	IF(ROT(IT)=ZOB) 6+8+8	0155
ĝ	SOB=ZOB+WOB	0156
	IF(ROT(IT)=SOB) 10,6,6	0157

10	9 AÒT(ÍSPÒT)≅ĐOT	0158
	Î Î=1 Ī+2	0159
	GÔ TÔ 16	0160
(6 ÌÎ=ĮĨ+l	0161
16	6 IF(ISPOT-73) 12:13:13	0162
13	3 IF(METHOD=3) 200,6565,200	0163
6569	5 ÎT÷1	0164
33	3 ISPOT=IT	0165
	ÎF(WOT(IT)=20B) 66+38+38	0166
34	8 SÓB≖ZÓB+WOB	0167
	ĬĔ(WŌŤ(ĬŤ)÷ŠOB) 80+66+66	0168
8	0 IF(AQT(ISPOT)=DOT) 81+66+81	0169
B 8:	1 AÖT(İSPÖT)=336060606060	0170
	11=11+2	0171
	ĜÔ TO 67	0172
6	6 1T=1T+1	0173
6	7 F(ISPOT-73) 33,200,200	0174
200	0 WRITE OUTPUT TAPÉ 6,2,	0175
	BOB(IM) •COB(IM) •DOB • AOT •DOB • COB(IM) •BOB(IM)	0176
14	4 WRITE OUTPUT TAPE 6,15,XOB	0177
	WRITE OUTPUT TAPE 6.25	0178
	ŘEŤURN	0179
	ËND	0180

	SUBROUTINE GAIN(KOP, DELTA, BETA, FMC, SIGMA, ER, PHI, EL, H, RAIN)	0001
Ć	POWER GAIN OF ANTENNAS	
9749	FORMAT (1F12.6)	0002
	RHI=PHÍ+.01745329252	0003
	RELTA+DELTA+.01745329252	0004
	ĜO TO (6,7,6),KOP	0005
6	T=COSF (RELTA)	0006
	ŘETA#BETA*.01745329252	0007
	Q=SINF(RELTA)	0008
	R≠Q≠Q	0009
	S≢Ř≑Ř	0010
	X=18000.#SIGMA/FMC	0011
	RHO=SQRTF((ER-T+T)+(ER-T+T)+X+X)	0012
•	ŘHŌ12≖SQŘŤF(ŘHŌ)	0013
	ALPHA==ATANF(X/(ER=T+T))	0014
	PSIH≡ATANF(2.#RHOIZ#Q#SINF(ALPHA#.5)/(RHO=R);	0015
	CH#SQRTF(RHO#RHO+S=2•#RHŌ#R*CÓSF(ALPHÀ))/(RHÓ+R+2•#RHÒ12#Q#CÓSF(ÀL	0016
	1PHA*•5))	0017
	WAVĒ=299.7925/FMC	0018
	FAG=(3-141592654#EL)/WAVE	0019
	Ul=1.=T+SINF(RHI+RETA)	0020
	U2#1T#SINF(RHI=RETA)	0021
	ËFF=0•	0022
	X*1.	0023
	GO TO (2.2.3).KOP	0024
	2 RAIN#(3.2*COSF(RHI)*COSF(RHI)*SINF(FAC*U1)*SINF(FAC*U1)*SINF(FAC*U	0025
	12) #SINF(FAC#U2) #(CH#CH+1. =2. #CH#COSF(PSIH=(12.56637062#H)/WAVE#Q))	0056
•	2)/(U]#U]#U2#U2)#(COSF(RÉTA)#SINF(RHI)#T)#(COSF(RÉTA)#SINF(RHI)#T)	0027
	ROK=3.	0028
	GO TO 4	9929
	3 RAIN=(+5562474+COSF(1+570796+T)+COSF(1+570796+T)+(CH+CH+1+=2++CH+C	0030
	105F(PSIH=(12.56637062*H)/WAVE*Q)))/\$	0031
	ROK≠=4.77	0032
	GO TO 4	0033
	7 E=ER	0034
	JF(H) 24.24.20	0035
2	0 WAVE=299.7925/FMC	0036
	A=(6.283185*H)/WAVE	0.037
	X=H/WAVE	0038
	GO TO 25	0039

24	EN=INTF(ABSF(H)/10.)	0040
	IF(EN) 50.51.50	0041
51	HÍ=ABŚF(H)	0042
	GO TO 52	0043
50	H1#EN/(ABSF(H) #10.#EN)	0044
52	A#H1#6.283185	0045
	X=H1	0046
2 ⁵	D=2.*A	ōö47
	ŘŌK≋+Ś₀	0048
	Z=2.*D	0049
	W=Ĉł(Ż÷W1)	0050
	WŽ≑ČI (Ď∌W3)	0051
	RA=30,*(=,5*COSF(D)*(,5772156649+LQGF(Z)=W)+(1,+COSF(D))*(,577	0052
;	12156649+LOGF(D)=W2)+SINF(D)+(+5*W1=W3))	0053
Ż6	S=SINF (RELTA)	0054
	C=COSF (RELTA)	0055
	HM#A/6+283185307	0056
	ANUM#CÔSF(A*\$)+ÇOSF(A)	0057
2ġ	CALL VREFCO(RELTA+E+FMC+SIGMA+CV+PSIV)	0058
	FAC1=CV#CV+1.=2.#CV#COSF(PSIV=12.5663706#HM#S)	0059
	FAC2=2.+COSF(6.2831853072+HM+S)	0060
29	RAIN =(120. *ANUM*ANUM)/(RA*C*C)	0061
	RAIN#RAIN#FACI	0062
4	IF(RAIN) 11+11+31	0063
31	RAIN=4.342944819#LOGF (RAIN)	0064
	IF(X+.25) 69.70.70	0065
69	EFF=(((6416.702573*X=6091.333295)*X+2179.890548)*X-364.8173803)*X+	0066
	125.64620146	0067
	GO TO 71	9968
70	EFF±0.	0069
71	RAIN=RAIN=EFF-ROK	0070
41	IF(RAIN+10.)11.11.10	0071
11	RAIN==10.	0072
10	RETURN	0073
	END	0074

	SUBROUTINE VREFCO(DELTA+ER+FREQ+SIGMA+CV+PSIV)	0001
Ĉ	VERTICAL GROUND REFLECTION COEFFICIENT	
	PI=3.141592654	0002
	X=18000.*SIGMA/FREG	0003
	U=(ER+ER+X+X)	0004
	V=ŠQŘŤF(U)	0005
	Q#ŚINF (DELTA)	0006
	Ř≠Q≑Q	0007
	Š≆Ř # Ř	8000
	T=COSF (DELTA)	0009
	RHO=SQRTF((ER-T+T)+(ER-T+T)+X+X)	0010
,	ŘHÔ12=ŠQŘTF(ŘHŐ)	0011
	ALPHA==ATANF(X/(ER-T+T))	0012
	À=2.#RHQ12#Q#V#SINF(ALPHA#.5+ASINF(X/V))	0013
	8≡ŘHÔ÷U#Ř	0014
	îF(B) 10,20,30	0015
	20 IF(A) 21,22,23	0016
	21 PSIV=5#Pİ	0017
	GÔ TÔ 50	0018
	ŽŽ PŠÍV#Ô•	0019
	GO TO 50	0020
	23 PSĮV#.5#PI	0021
	GO ŤO 50	0022
	10 PSIV=ATANF(A/B)+PI	0023
	GÓ TO 50	<u>0</u> 024
	30 PSIV=ATANF(A/B)	0025
	50 CV=\$QRTF(RHQ*RHQ+U*U*\$+2.*RHQ*U*R*CÖ\$F(ALPHA+2.*ASINF(X/V)))/(RHQ+	0026
	1U#R+2.#RH012*V#@#COSF(ALPHA*.5+ASINF(X/V)))	0027
	ŔĔŤŮŔŊ	0028
	END	0029

		FUNCTION CI(X+SI)	0001
¢		SINE AND COSINE INTEGRAL	
	4	ÎÊ(X-10.)5.60.60	0002
	5	SQ≅X≠X	0003
		ČÌ=•5772156649+LÓĞF(X)	0004
		TERM#-1.4*SQ/4.	0005
		G≖4.	0006
	10	CI*ÇÎ+TÊŘM	0007
	_	#ERM==1.++TERM+SQ+(G-2.)/((G=1.)+G+G)	0008
		Ĝ#Ĝ+Ż•	0009
		ÍF(ABSF(TERM)=,00005) 20+20+10	0010
	20	\$1=0•	0011
	-	TERM#X	0012
		Ğ=3 i	0013
	25	ŜÎ+ĪĒŘM	0014
		ŤĔŘM==1.#ŤĔŘM#ŠQ#(G=2.)/((G=1.)#G#Ġ)	0015
		Ĝ≖Ĝ+2÷	0016
		ÎF(ABSF(TERM)=.00005) 80.80.25	0017
	60	ŤĔŔM1#1.	0018
		T=1.	0019
		C=1.	0020
	61	FAC=(4++T+T=2++T)/(X+X)	0021
		TERM2=-1.*FAC+TERM1	0022
		IF(ABSF(TERM2)-ABSF(TERM1))62+64+64	0023
	62	C=C+TERM2	0024
	~ .	Î≡T+1•	0025
		IF (ABSF (TERM2/C) +10.E-10)65.65.63	0026
	63	TERM1=TERM2	0027
		GO TO 61	0028
	64	\$C#2•*T	0029
		THETA=X=SC	0030
		PI=.5-(12.*THETA)/(4.*SC)+(14.*THETA-2.*THETA*THETA)/(8.*SC*SC	0031
		1)+(3.+18.*THETA+8.*THETA*THETA)/(16.*SC*SC*SC)	0032
		C=C+TERM2*P1	0033
	65	TERM1#1./X	0034
		D=TERM1	0035
		T#1.	0036
	66	FAC=(4.*T*T+2.*T)/(X*X)	0037
		TERM2=-1.+FAC+TERM1	0038
		IF(ABSF(TERM2)-ABSF(TERM1))67+69+69	0039

67	D=D+TERM2	0.040
	T#T+1+	0041
	IF(ABSF(TERM2/D)-10.E-10)70.70.68	0042
68	TĒRM1=TĒRM2	0043
	ĞÖ TÖ 66	0044
69	\$D=2.+T+1.	0045
	THETA=X=SD	0046
	PI=.5-(12.*THETA)/(4.*SD)+(14.*THETA-2.*THETA*THETA)/(8.*SD*SD	0:047
	1)+(3.+18.*THETA+8.*THETA*THETA)/(16.*SD*SD)	0048
	D=D+TERM2*PI	0049
7:Ô	ČX±Cô\$F(X)	0050
•	SX#SINF(X)	ÖÖ 5 1
	ČĮ≅(Ć*SX÷Ď*ČX)/X	0052
	\$1=1.570796327-(C*CX+D*SX)/X	0053
80	RETURN	0054
	ÊND	0055

SUBROUTINE LOSS(RELTA+ER+FREG+SIGMA+Y)	0001
GROUND REFLECTION LOSS	
DELTA=RELTA++01745329	0002
P1=3-141592654	0003
X=18000.#SIGMA/FREQ	0004
U=(ER+ER+X+X)	0005
V=SQRTF(U)	0006
Q#SINF(DELTA)	0007
Ř≖Ġ₩Ģ	8000
\$≅R#R	0009
T=COSF (DELTA)	0010
ŘHO=SQRŤF((ĔŘ-Ť*Ť)*(ĔŘ-Ť*Ť)+X*X)	0011
ŘHÔ12≐ŚQŘŤĚ(ŘHÔ)	0012
ALPHA=-ATANF(X/(ER-T+T))	ÕO 13
ĊH#\$QŘŤĚ(ŘHŎ#ŘHŌ+Š÷2•#ŘHO#Ř#ČOŠĚ(ALPHA})/(ŘHĎ+Ř+2•#ŘHÓÌŹ#Q#ČÖŠĚ(AL	0014
1PHA+.5))	0015
50 CV=SQRTF(RHO#RHO+U#U#S=2.#RHO#U#R#COSF(ALPHA+2.#ASINF(X/V)))/(RHO+	0016
1U#R+2+#RH012#V#Q#CŐŚF(ALPHA#+5+AŚIÑF(X/V)))	0017
Y=10.*LOG1OF((CH*CH+CV*CV)/2:)	0018
ŘĒŤUŔN	0019
ÉNÓ	0020

	SUBROUTINE POLY(KJ,NN,MM,V,X,Y)	<u> </u>
	POWER SERIES VARIABLES	
	DIMENSION A(10,7,14)	0002
	DIMENSION P(29,16+6)+ABP(2+6)	6 603
	COMMON ABP.P	0004
	COMMON A	0005
	Y≆Ô	<u> </u>
	:M≅MM,	6667
120	N=NN	9 008
	COEF=0	000 9
127	ĠŌĒF≡ĆŌĒF#V+A(M+N+KJ)	0010
•	N=N-1	ōō11
	IF(N) 122+122+127	0012
122	Y=Y+X+COEF	ŎŎ13
	M*M-1	0014
	ÎF(M) 126,126,120	0015
126	RETURN	Ō Ö 16
	END	0017

٠	SUBROUTINE NOISY (KJ. XP. CEG. ATNO)	0001
	FOURIER VARIABLES AND ATMOSPHERIC RADIO NOISE	
	DIMENSION P(29,16,6).ABP(2,6).ZZ(29)	0002
	COMMON ABP P	0003
	ALF=ABP(1+KJ)	Ō Ó Ô4
	BET#ABP(2,KJ)	0005
	Q=0.00872664664626*CEG	0006
	C1=COSF(Q)	0007
	SI#SINF(O)	0008
	ĎÔ 56 J≅1+29	0009
	ŘĕÖ∙	0010
	ŠX#S1	0011
	ČX=C1	0012
	DO 55 K#1+15	0013
	R=R+\$X+P(J+K+KJ)	0014
	\$\$=\$X#C1+CX#\$1	0015
	CX=CX+C1-SX+S1	0016
55	\$X*\$S	0017
56	<u>Ž</u> Ž(J)#Ř+Ř(J•16•KJ)	0018
	Q#+01745329252#(XP+90+)	0019
	S1=SINF(Q)	0020
	\$X*\$1	0021
	Cl=COSF(Q)	0022
	CX=C1	0023
	R≠0•	0024
	DO 57 K=1.29	0025
	R#R+5X+ZZ(K)	0026
	\$\$#\$X#C1+CX#\$1	0027
	CX=CX*C1-SX*S1	0028
57	\$X = \$\$	0029
	ATNO=R+ALF+BET#Q	0030
	RETURN	0031
	END	0032

IX. MATHEMATICAL EXPRESSIONS

1. Great circle distance in kilometers, degrees and nautical miles

2. Bearing from receiver to transmitter, degrees east of north. $(0 \le btry \le 360^{\circ})$.

btry = 114.5816 · tan⁻¹
$$\sqrt{|\sin(u-90+x2)|}$$
 · sin (u-gcd) / cind
u = (180. - x1 - x2 + gcd)/2
cind = sin (u) · sin (u - 90 + x1)

3. Geographic latitude of control points along great circle route.

4. Geographic longitude of control points along great circle route. (y = y2 - y')

y' =
$$\arccos \left[\cos (pp) - \cos (90 - x2)\right]$$

 $\cdot \cos (90 - x3)/\sin (90 - x3)$

x3 = control point geographic latitude

5. Geomagnetic latitude of control points along great circle route. $(y = 90 - y^{\dagger})$

$$y' = \arccos \left[\sin (x4) \cdot \sin (x3) + \cos (x4) \cdot \cos (x3) \right]$$

$$\cdot \cos (x3 - x4)$$

x4 = latitude of geomagnetic north pole

6. Local time at receiver terminal.

LMT = GMT - y2/15

LMT = local mean time - hours

GMT - Greenwich mean time - hours

7. Sun's zenith angle at control points.

$$\cos (\psi) = \sin (z) \cdot \sin (ssp) + \cos (z) \cdot \cos (ssp) \cdot \cos [(15 \times GMT) - 180].$$

 $\psi = sun's zenith angle - degrees$

z = control point latitude - degrees

ssp = latitude of subsolar point of sun for middle

of month in question - degrees

GMT - Greenwich mean time - hours

8. Ionospheric absorption index "I"

$$I = (1 + .0037 SSN) (\cos .881 \psi)^{1.3}$$

SSN ψ predicted or observed 12 month moving average Zurich sunspot number. (0 \leq SSN \leq 200)

9. E-layer distance factor.

elfc = 2.085000000 ·
$$10^{-1}$$
 = 1.33200756 · 10^{-2} · x +

3.761385053 · 10^{-2} x^2 = 5.038476266 · 10^{-3} · x^3 +

2.624808315 · 10^{-4} x^4 = 5.976618436 · 10^{-6} · x^5 +

1.334494261 · 10^{-7} x^6 = 4.368460907 · 10^{-9} · x^7

x = great circle distance - hundreds of statute miles

10. E-2000 MUF.

emc =
$$3.345996232 + 37.67736072 \cdot 1 = 52.41191754 \cdot 1^2$$

+ $39.26151056 \cdot 1^3 - 10.66484988 \cdot 1^4$

I = absorption index

- 11. E-layer MUF.

 emufy = (emc) · (elfc)

 emc = E-2000 MUF
- 12. F-layer distance factor.

 flifc = $4.699243101 \cdot 10^{-3} \times + 2.264634341 \cdot 10^{-3} \cdot x^{2}$ + $9.202437332 \cdot 10^{-5} \cdot x^{3} + 6.865259817 \cdot 10^{-5} \cdot x^{4} 9.985831104 \cdot 10^{-6} \cdot x^{5} + 4.49151441 \quad 10^{-7} \cdot x^{6} 6.712654756 \cdot 10^{-9} \cdot x^{7}$

x = great circle distance - hundreds of statute miles
 13. F2-layer Fourier generation of foF2 and M-3000 factors.
 Fourier time variation function, used to obtain foF2 or M-3000 factor:

$$(x,y,t) = ab (x,y) + \sum_{jb=2}^{j} [ab_{jb} (x,y) \cos (jb-1) t + ba_{jb} (x,y) \sin (jb-1) t]$$

$$ab_{jb} (x,y) = \sum_{ka=1}^{j} Q_{is,ka,io} G_{ka} (xy) \quad is = 2jb-1$$

$$ba_{jb} (x,y) = \sum_{ka=1}^{j} Q_{is,ka,io} G_{ka} (xy) \quad is = 2jb-2$$

$$ba_{jb} (x,y) = \sum_{ka=1}^{j} Q_{is,ka,io} G_{ka} (xy) \quad is = 2jb-2$$

$$ba_{jb} (x,y) = \sum_{ka=1}^{j} Q_{is,ka,io} G_{ka} (xy) \quad is = 2jb-2$$

$$ba_{jb} (x,y) = \sum_{ka=1}^{j} Q_{is,ka,io} G_{ka} (xy) \quad is = 2jb-2$$

$$ba_{jb} (x,y) = \sum_{ka=1}^{j} Q_{is,ka,io} G_{ka} (xy) \quad is = 2jb-2$$

 $x = geographic latitude of control point - degrees (-90 <math>\leq x \leq 90$)

y = geographic longitude of control point - degrees $(0^{\circ} \le x \le 360^{\circ} - \text{East of North})$

t = local time at receiver - (hour angle) (180 \leq t \leq 180°)

I, j, k, L = constants describing number of harmonics in the Fourier functions

io = matrix for foF2 or M-3000 (high or low SSN)

Qis, ka, io = Fourier coefficients defining the function

Latitudinal and longitudinal variation functions are shown in Tables 1 and 2.

For a detailed explanation of the generation of (x,y,t) refer to [Jones and Gallet, 1961]. The above formulas and constants have been altered from the originals in the reference to make the generation permissible on a larger variety of computers.

Table 1. Geographical Function in Latitude

MAIN LATITUD	JDINAL VARIATION	
ka	G _{kā} (x, y)	
	1	
Ž	sin (x)	
3	sin ² (x)	
k	sin ^{k-1} (x)	

Table 2. Geographical Functions in Latitude and Longitude.

MIXED LATITUDINAL AND LONGITUDINAL		
VARIATION - FIRST ORDER IN LONGITUDE		
ka	G _{kā} (x, y)	
k + 1	cos (x) cos (y)	
k + 2	cos (x) sin (y)	
k + 3	sin (x) cos (x) cos (y)	
k + 4	sin (x) cos (x) sin (y)	
• • •		
L - 1	sin La (x) cos (x) cos (y)	
L	sin La (x) cos (x) sin (y)	
	$La = \frac{L - k}{2} - 1$	
AND LAMEN	JDINAL AND LONGITUDINAL	
	SECOND ORDER IN LONGITUDE	
L+1	cos ² (x) cos (2 y)	
L + 2	cos ² (x) sin (2 y)	
L + 3	sin (x) cos ² (x) cos (2 y)	
L + 4	sin (x) cos ² (x) sin (2 y)	
I = 1	sin ^{Lb} (x) cos ² (x) cos (2 y)	
Ī	$\sin \frac{Lb}{x} (x) \cos^2(x) \sin(2y)$	
	$\frac{Lb = I - L}{2} - 1$	

14. F2-layer gyro frequency may be adequately represented for MUF-FOT predictions by a set of least squares coefficients describing the orthogonal polynomial.

$$y = (a_{1,1} + a_{1,2} + a_{1,3} + a_{1,3} + a_{1,7} +$$

$$(a_{7,1} + a_{7,2} + a_{7,3} z^2 \dots a_{7,7} x^6) z^6$$

y = gyro frequency of F2 layer - Mc/s

x = longitude of control point - degrees

z = latitude of control point = degrees

a = set of least squares coefficients describing the orthogonal polynomial (y)

15. F2-4000 MUF.

 $F2-4000 \text{ MUF} = (foF2) \times (M-4000 \text{ factor})$

16. F-MUF for low and high solar activity.

$$F-MUF = ZDF + flfc \cdot \left[(F2-4000) - ZDF \right]$$

 $ZDF = foF2 + \frac{1}{2}F2$ -layer gyro frequency

M-4000 factor = (1.1) · M-3000 factor

17. Interpolation for intermediate values of solar activity.

 $(10 \le SSN \le 180)$

$$F-MUF = [F - MUF_{(1)} \cdot (180 - SSN) + F-MUF_{(H)} (SSN-10)]/170$$

18. Angle at the ionosphere (φ).

$$\phi' = \sin^{-1} \left[p \left(\sin (90 + \tan^{-1} (\cos^{A'}/2 - p/(p + H_{\ell}))) \right) - \frac{\sin^{A'}/2}{p + H_{\ell}} \right)$$

φ' = angle of incidence - degrees

p = radius of earth - km

A' = great circle distance - degrees

H = layer height = km

19. Ionospheric absorption (single reflection)

$$A = \frac{615.5 \text{ N sec } \phi \text{ (I)}}{(f + f_g)^{1.98}}$$

φ = angle of incidence for 100 km - degrees

f = operating frequency

I = absorption index

f_g = gyro frequency - Mc/s

20. Basic transmission loss for isotropic antennas in free space.

$$L_{bf} = 10 \log_{10} (p_r/p_a) = 10 \log_{10} (4 \pi d/\lambda)^2$$
$$= 36.58 + 20 \log_{10} (d) + 20 \log_{10} (f_{Mc/s})$$

 p_r = power available at receiving antenna

p_a = power delivered to transmitting antenna

d = ray path distance - miles

 λ = wave length

f_{Mc/s} = frequency - Mc/s

21. Relationship between ϕ' and Δ .

$$\sin \phi' = \frac{p}{p+H_{A}} \cos \Delta$$

 ϕ' = angle of incidence at ionosphere

p = radius of earth

H, = layer height

 Δ = radiation angle of wave

22. Ground reflection factors for vertical and horizontal polarization.

$$K_{H} = \frac{\sin \Delta - \sqrt{(\epsilon_{r} - ix) - \cos^{2} \Delta}}{\sin \Delta + \sqrt{(\epsilon_{r} - ix) - \cos^{2} \Delta}}$$

$$K_{\tilde{V}} = \frac{(\epsilon_{r} - ix) \sin \Delta - \sqrt{(\epsilon_{r} - ix) = \cos^{2} \Delta}}{(\epsilon_{r} - ix) \sin \Delta + \sqrt{(\epsilon_{r} - ix) - \cos^{2} \Delta}}$$

= relative dielectric constant of earth,

$$x = \frac{\sigma}{\omega \epsilon_v} \sim 18 \times 10^3 \sigma/f$$
,

 $\sigma = \text{conductivity of earth (mhos/meter)},$

 ω = angular frequency,

f = frequency in megacycles,

 Δ = angle of elevation in degrees, and

 $i = \sqrt{-1}$.

 ϵ_{r} = dielectric constant of free space

23. Rhombic antenna power gain relative to isotropic in free space.

$$g(\Delta, \beta) = 3.2 \left(\frac{\pi \ell}{\lambda}\right) \left[\left\{ D_{V}(\Delta, \beta) \right\}^{2} + \left\{ D_{H}(\Delta, \beta)^{2} \right] \right]$$

$$D_{V}(\Delta, \beta) = \cos \phi \cdot \frac{\sin u_{1}}{u_{1}} \cdot \frac{\sin u_{2}}{u_{2}} \cdot \sin \beta \cdot \sin \Delta$$

$$\cdot \left[\left| K_{V} \right|^{2} + 1 - 2 \left| K_{V} \right| \cos \left(\psi_{V} - \frac{4\pi h}{\lambda} \cdot \sin \Delta \right) \right]^{\frac{1}{2}}$$

$$D_{H}(\Delta, \beta) = \cos \phi \cdot \frac{\sin u_{1}}{u_{1}} \cdot \frac{\sin u_{2}}{u_{2}} \cdot (\cos \beta - \sin \phi \cdot \cos \Delta)$$

$$\left[\left| K_{H} \right| 2 \phi 1 - 2 \left| K_{H} \right| \cos \left(\psi_{H} - \frac{4\pi h}{\lambda} \cdot \sin \Delta \right) \right]^{\frac{1}{2}}$$

$$u_{1} = \frac{\pi \ell}{\lambda} \left[1 + \cos \Delta \cdot \sin \left(\phi + \beta \right) \right]$$

$$u_{2} = \frac{\pi \ell}{\lambda} \left[1 - \cos \Delta \cdot \sin \left(\phi + \beta \right) \right]$$

g (Δ, β) = power gain relative to isotropic in free space

 Δ = angle of departure in degrees,

 β = angle of azimuth in degrees,

1 = rhombic leg lenth in meters,

h = antenna height in meters,

φ = tilt angle in degrees.

$$\psi_{V} = \tan^{-1} \left[\frac{2p^{\frac{1}{2}} \cdot y^{\frac{1}{2}} \cdot \sin \Delta \cdot \sin \left(\tan^{-1} \frac{x}{\epsilon_{r}} + \frac{\alpha}{2} \right)}{p - y \cdot \sin^{2} \Delta} \right] + \pi$$

$$|K_{H}| = \frac{\left[\frac{p^{2} + \sin^{4} \Delta - 2p \cdot \sin^{2} \Delta \cdot \cos a}{\left[p + \sin^{2} \Delta + 2p^{\frac{1}{2}} \cdot \sin \Delta \cdot \cos \frac{a}{2}\right]}\right]^{\frac{1}{2}}$$

$$|K_{V}| = \frac{\left[p^{2} + y^{2} \cdot \sin^{4} \Delta - 2p \cdot y \cdot \sin^{2} \Delta \cdot \cos(\alpha + 2\sin^{-1}\frac{x}{y})\right]^{\frac{1}{2}}}{p + y \cdot \sin^{2} \Delta + 2p^{\frac{1}{2}}y^{\frac{1}{2}} \cdot \sin \Delta \cdot \cos(\frac{\alpha}{2} + \sin^{-1}\frac{x}{y^{\frac{1}{2}}})\right]^{\frac{1}{2}}}$$

$$\psi_{H} = \tan^{-1} \left[\frac{2p^{\frac{1}{2}} \cdot \sin \Delta \cdot \sin \frac{\alpha}{2}}{p - \sin^{2} \Delta} \right]$$

$$y = \epsilon_{r}^{2} + x^{2}$$

$$p = \left[\left(\epsilon_{r} - \cos^{2} \Delta \right)^{2} + x^{2} \right]^{\frac{1}{2}}$$

$$\alpha = -\tan^{-1} \frac{x}{\left(\epsilon_{r} - \cos^{2} \Delta \right)}$$

$$x = 18 \times 10^{3} \text{ O/f}$$

 $\epsilon_{\mathbf{r}}$ = relative dielectric constant of the ground σ = conductivity of the ground in mhos per meter $\epsilon_{\mathbf{r}}$ = operating frequency in megacycles per second $\epsilon_{\mathbf{r}}$ = - $\epsilon_{\mathbf{r}}$ + $\epsilon_{\mathbf{r}}$

 $K_V = -|K_V| e^{i\psi}V = \text{vertical reflection coefficient.}$

24. Power gain of half-wave horizontal dipole.

$$E_{\Delta} = (.74582)^{2} \left[\cos \left(\frac{\pi}{2} \cdot \cos \Delta \right) \right]^{2} \left[K_{H}^{2} + 1 - 2 \cdot K_{H} \cdot \cos \Delta \right]$$

$$\cdot \quad (\psi_{H} - \frac{4\pi H}{\lambda} \cdot \sin \Delta)$$

K₁₁ = amplitude of horizontal reflection coefficient

 ψ_{H} = phase amplitude of horizontal reflection coefficient

H = height of antenna - meters

 $\lambda = 299.7925/\text{frequency in megacycles}$

$$\frac{H}{\lambda} = \frac{1}{2}$$

Δ = angle of elevation

Note: 72 ohms assumed impedance of antenna

$$Gain_{decibels} = 10. \times log_{10} (E_{\Delta})$$

25. Power gain of vertical antennas

$$\mathbf{E}_{\Delta} = \frac{120}{RA} \cdot \left[\frac{\cos(A) \sin \Delta - \cos(A)}{\cos(\Delta)} \right]^{2} \cdot \left[K_{V}^{2} + \left[-2 \cdot K_{V} \cos(\psi_{V} - 2A \cdot \sin \Delta) \right] \right]$$

$$R_{a} = 30 \left[-\frac{\cos{(2A)}}{2} \cdot \left\{ C + \ln{(4A)} - C_{i}(4A) \right\} + \left\{ + \cos{(2A)} \right\} \times \left\{ C + \ln{(2A)} - C_{i}(2A) \right\}$$

+ sin (2A) x
$$\left\{ \frac{S_{i}(4A)}{2} - S_{i}(2A) \right\} \right]$$

C = .5772156649

H = height of antenna - meters

Si = sine integral

Ci = cosine integral

 $A = 2 \pi H/\lambda$

26. Efficiency factor for short vertical antennas.

EFF = 25.64620146 = 364.8173803 x
+ 2179.890548
$$x^2$$
 = 6091.333295 x^3
+ 6416.702573 x^4

x = wave length of antenna

$$(1/16 \le x \le 1/4)$$

27. Ground reflection loss.

$$G_{\ell} = 10 \quad \log_{10} \left[\frac{K_{H}^{2} + K_{V}^{2}}{2} \right]$$

28. Relationship of field strength to transmission loss.

(Decibels above isotropic)

$$E = 107.2 + 20 \log_{10} (f_{mc}) - L_b$$

fmc = frequency - Mc/s

L_b = transmission loss - decibels

X. GENERALIZED BLOCK DIAGRAM OF HF SYSTEM PERFORMANCE ROUTINE

Figure 18

XI. CONCLUSIONS

The computer solution of HF systems problems based on established manual methods is efficient and practical.

The radio systems engineer may with this basic tool check predictions against operational data to update the prediction scheme and to test new prediction parameters with little effort.

The routine is based on average monthly values; therefore, it is most useful in systems problems such as allocation of frequencies and circuit design. Use of the relative values produced by the prediction scheme are no doubt more important to the communication engineer than are absolute values. The routine is most valuable for the experienced engineer with an adequate knowledge of the shortcomings, as well as the usefulness of such a prediction scheme.

XII. ACKNOWLEDGEMENT

The invaluable assistance in program development techniques by John D. Harper, Jr., of the National Bureau of Standards, is gratefully acknowledged.

XIII. REFERENCES

- Chrisman, Mary E., and Charles D. Stearns, Computation and plotting of rhombic antenna gains using electronic digital computers, NBS Report 7235 (March 13, 1962).
- CCIR Report No. 65, Atmospheric radio noise data (Los Angeles, 1959).
- Duncan, David B., and John F. Kenney, On the solution of the normal equation and related topics, Edwards Bros., Inc., Ann Arbor, Michigan (1946).
- Haydon, George W., Ionospheric predictions and disturbance forecasts, Lecture No. 47, NBS Radio Propagation Course (to be published) (1962).
- Jones, W. B., and R. M. Gallet, Numerical mapping in geophysics II. Methods for applying numerical maps of the ionosphere, NBS Report 6755 (March 8, 1961).
- Laitinen, Paul O., Linear communication antennas, U. S. Army Signal Radio Propagation Agency, Technical Report No. 7 (May 1949).
- Laitinen, Paul O., and George W. Haydon, Analysis and prediction of sky-wave field intensities in the high frequency band, Technical Report No. 9, U. S. Army Signal Radio Propagation Agency (March 1950).
- Lucas, Donald L., and George W. Haydon, MUF-FOT predictions by electronic computers, NBS Report 6789 (August 13, 1961).
- Lucas, Donald L., and John D. Harper, Jr., A numerical representation of atmospheric radio noise in band 7 (to be published) (1962).
- McCracken, Daniel D., A guide to Fortran programming (Wiley and Sons, New York, N. Y., April 1962).
- NBS Circular No. 462, Ionospheric radio propagation (June 25, 1948).
- NBS CRPL Series D, Basic radio propagation.

- Ostrow, S. M., and M. PoKempner, The difference in the relationship between ionospheric critical frequencies and sunspot number for different sunspot cycles, J. of Geo. Res., <u>57</u>, No. 4, pp. 473-480 (December 1952).
- Phillips, Keith L., Theory of radiation patterns and gains for horizontal rhombic antennas adapted to electronic computers, NBS Report 7200 (October 10, 1961).
- U. S. Army Signal Radio Propagation Agency, Radiation from antennas in the 2 to 30 megacycle band, Technical Report No. 2 (May 1958).

U. S. DEPARTMENT OF COMMERCE Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin. Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON. D. C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments, Magnetic Measurements. Dielectrics. High Voltage.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Scale. Volumetry and Densimetry.

Reat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research, Crystal Chemistry.

Mechanics, Sound, Pressure and Vacuum. Fluid Mechanics, Engineering Mechanics, Rheology, Combustion

Polymers, Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Characterization. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research.

Metallurgy. Engineering Metallurgy. Microscopy and Diffraction. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition.

Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials. Metallic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Operations Research.

Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis.

Atomic Physics. Spectroscopy. Infrared Spectroscopy. Far Ultraviolet Physics. Solid State Physics. Electron Physics. Atomic Physics. Plasma Spectroscopy.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Elementary Processes. Mass Spectrometry. Photochemistry and Hadiation Chemistry.

Office of Weights and Measures.

BOULDER, COLO.

Cryogenic Engineering Laboratory, Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Cryogenic Technical Services.

CENTRAL RADIO PROPAGATION LABORATORY

Ionosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics. Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Frequency Utilization. Modulation Research. Antenna Research. Radiodetermination.

Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. High Latitude Ionosphere Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.

RADIO STANDARDS LABORATORY

Radio Physics. Radio Broadcast Service. Radio and Microwave Materials. Atomic Frequency and Time-Interval Standards. Radio Plasma. Millimeter-Wave Research.

Circuit Standards. High Frequency Electrical Standards. High Frequency Calibration Services. High Frequency Impedance Standards. Microwave Calibration Services. Microwave Circuit Standards. Low Frequency Calibration Services.