Lecture 12: Rademacher Bounds and Rademacher Calculus

Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

12.1 Rademacher Bounds

Lemma 12.1 (Masart's Lemma). Let A be some finite set of vectors in \mathbb{R}^m s.t. $||a|| \leq r$ then:

$$\mathbb{E}\left[\sup_{a\in A}\frac{1}{m}\sum_{i=1}^{m}\sigma_{i}a_{i}\right]\leq \frac{r\sqrt{2\ln|A|}}{m}$$

Proof. Set

$$\mu = \mathbb{E}\left[\sup_{a \in A} \frac{1}{m} \sum_{i=1}^{m} \sigma_i a_i\right]$$

Then for every $\lambda > 0$

$$\begin{split} e^{\lambda\mu} &\leq \mathbb{E}\left[\exp(\lambda\sup_{a\in A}\frac{1}{m}\sum_{i=1}^m\sigma_ia_i)\right] \\ &= \mathbb{E}\left[\sup_{a\in A}\exp(\lambda\sum_{i=1}^m\sigma_ia_i)\right] \leq \mathbb{E}\left[\sum_{a\in A}\exp(\lambda\sum_{i=1}^m\sigma_ia_i)\right] = \sum_{a\in A}\mathbb{E}\left[\exp(\lambda\sum_{i=1}^m\sigma_ia_i)\right] \\ &= \sum_{a\in A}\prod_{i=1}^m\mathbb{E}\left[\exp(\lambda\sigma_ia_i)\right] \leq \sum_{a\in A}\prod_{i=1}^m\frac{1}{2}\left[\exp(\lambda a_i) + \exp(-\lambda a_i)\right] \\ &\leq \sum_{a\in A}\prod_{i=1}^m\left[\exp(\lambda a_i^2/2)\right] \\ &= \sum_{a\in A}\left[\exp(\lambda\|a\|^2/2)\right] \leq |A|e^{\lambda r^2/2} \end{split} : \frac{e^x + e^{-x}}{2} \leq e^{x^2/2} \end{split}$$

Taking log and dividing by λ we get that:

$$\mu \le \frac{\ln|A|}{\lambda} + \frac{\lambda r^2}{2}$$

Taking $\lambda = r\sqrt{2\ln|A|}$ we obtain the Lemma.

Corollary 12.2 (Finite Classes). Let \mathcal{F} be a finite set of functions such that $|f(\mathbf{z})| \leq 1$ then:

$$\mathfrak{R}_m(\mathcal{F}) \le \sqrt{\frac{2\ln|F|}{m}}$$

Proof. Given \mathcal{F} and a sample $S = \{\mathbf{z}_1, \dots, \mathbf{z}_m\}$ consider the set of vectors $A = \{(f(\mathbf{z}_1), \dots, f(\mathbf{z}_m)) : f \in \mathcal{F}\}$, then note that for every $a \in A$ we have $||a|| = \sqrt{\sum_{i=1}^m f(\mathbf{z}_i)} \leq \sqrt{m}$. Applying Massart's Lemma we obtain that

$$\mathfrak{R}_{S}(\mathcal{F}) = \mathbf{E}\left[\sup_{a \in A} \left| \sum \sigma_{i} a_{i} \right| \right] \leq \sqrt{\frac{2 \ln |\mathcal{F}|}{m}}.$$

Lemma 12.3. Let H be a Hilbert space (for simplicity assume $H = \mathbb{R}^d$) and define $\mathcal{F} = \{f_{\mathbf{w}}(\mathbf{x}) : f_{\mathbf{w}}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle, \|\mathbf{w}\| \leq 1\}$ Then

$$\Re_S(\mathcal{F}) \le \frac{\max_i \|\mathbf{x}^{(i)}\|_2}{\sqrt{m}}$$

Proof.

$$m\mathfrak{R}_{S}(\mathcal{F}) = \mathbb{E}\left[\sup_{\|\mathbf{w}\| \leq 1} \sum_{i=1}^{m} \sigma_{i} \langle \mathbf{w}, \mathbf{x}^{(i)} \rangle\right]$$

$$= \mathbb{E}\left[\sup_{\|\mathbf{w}\| \leq 1} \langle \mathbf{w}, \sum_{i=1}^{m} \sigma_{i} \mathbf{x}^{(i)} \rangle\right]$$

$$= \mathbb{E}\left[\left\|\sum_{i=1}^{m} \sigma_{i} \mathbf{x}^{(i)}\right\|\right] = \mathbb{E}\left[\sqrt{\left\|\sum_{i=1}^{m} \sigma_{i} \mathbf{x}^{(i)}\right\|^{2}}\right]$$

$$\leq \sqrt{\mathbb{E}\left[\left\|\sum_{i=1}^{m} \sigma_{i} \mathbf{x}^{(i)}\right\|^{2}\right]}$$

$$= \sqrt{\mathbb{E}\left[\sum_{i,j=1}^{m} \sigma_{i} \sigma_{j} \langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \rangle\right]}$$

$$= \sqrt{\mathbb{E}\left[\sum_{i=1}^{m} \|\mathbf{x}^{(i)}\|^{2}\right]}$$

$$\leq \sqrt{m \max \|\mathbf{x}^{(i)}\|^{2}}$$

$$\mathbb{E}(\sigma_{i}\sigma_{j}) = \begin{cases} 1 & i = j \\ 0 & \text{o.w.} \end{cases}$$

12.1.1 Rademacher Calculus

The following facts are easy to prove, and we leave them as an exercise:

Fact 12.1.

1. Let
$$c \cdot \mathcal{F} + b = \{c \cdot f + b : f \in \mathcal{F}\}$$
. Then

$$\Re(c \cdot \mathcal{F} + b) = |c|\Re(\mathcal{F})$$

2. Let conv $\mathcal{F} = \{ \sum \alpha_i f_i : \{ f_i \} \subseteq \mathcal{F} \ \alpha_i \ge 0, \ \sum \alpha_i = 1 \}$. Then $\mathfrak{R}(\operatorname{conv} \mathcal{F}) = \mathfrak{R}(\mathcal{F})$

Lemma 12.4. Let $\phi_{\mathbf{z}}$ be ρ -Lipschitz functions for every $\mathbf{z} \in \mathcal{X}$ (i.e. $|\phi_{\mathbf{z}}(a) - \phi_{\mathbf{z}}(b)| \leq \rho |a - b|$). Denote

$$\phi \circ \mathcal{F} = \{ \phi_{\mathbf{z}}(f(\mathbf{z})) : f \in \mathcal{F} \}.$$

Then

$$\mathfrak{R}_m(\phi \circ \mathcal{F}) \le \rho \mathfrak{R}_m(\mathcal{F})$$

Proof. w.l.o.g we may assume $\rho = 1$, the more general case will follow by settin $\phi'_{\mathbf{z}} = \frac{1}{\rho} \phi$ and applying property 1. Given $S = \{\mathbf{z}_1, \dots, \mathbf{z}_m\}$, Let us write

$$\mathfrak{R}_{S}(\phi_{[t]} \circ \mathcal{F}) = \mathbb{E}_{\sigma} \left[\left| \sup_{f \in \mathcal{F}} \sum_{i \leq t} \sigma_{i} \phi_{\mathbf{z}_{i}}(f(\mathbf{z}_{i})) + \sum_{i > t} \sigma_{i} f(\mathbf{z}_{i}) \right| \right]$$

We will show by induction that $\mathfrak{R}_S(\phi_{[t]} \circ \mathcal{F}) \leq \mathfrak{R}_S(\mathcal{F})$. Since the case for t = 1 is similar to the induction step, we will show the proof only for t = 1. Let us write $\pm \mathcal{F} = \{\pm f : f \in \mathcal{F}\}$ then:

$$\begin{split} & \mathbb{E}_{\sigma} \left[\left| \sup_{f \in \mathcal{F}} \sigma_{1} \phi_{\mathbf{z}_{1}}(f(\mathbf{z}_{1})) + \sum_{i>1} \sigma_{i} f(\mathbf{z}_{i}) \right| \right] \\ & = \frac{1}{2} \mathbb{E}_{\sigma} \left[\left| \sup_{f \in \mathcal{F}} \phi_{\mathbf{z}_{1}}(f(\mathbf{z}_{1})) + \sum_{i>1} \sigma_{i} f(\mathbf{z}_{i}) \right| \right] + \frac{1}{2} \mathbb{E}_{\sigma} \left[\left| \sup_{f' \in \mathcal{F}} -\phi_{\mathbf{z}_{1}}(f'(\mathbf{z}_{1})) + \sum_{i>1} \sigma_{i} f'(\mathbf{z}_{i}) \right| \right] \\ & = \frac{1}{2} \mathbb{E}_{\sigma} \left[\left| \sup_{f \in \mathcal{F}} \phi_{\mathbf{z}_{1}}(f(\mathbf{z}_{1})) + \sum_{i>1} \sigma_{i} f(\mathbf{z}_{i}) \right| + \left| \sup_{f' \in \mathcal{F}} -\phi_{\mathbf{z}_{1}}(f'(\mathbf{z}_{1})) + \sum_{i>1} \sigma_{i} f'(\mathbf{z}_{i}) \right| \right] \\ & = \frac{1}{2} \mathbb{E}_{\sigma} \left[\sup_{f \in \pm \mathcal{F}} \left[\phi_{\mathbf{z}_{1}}(f(\mathbf{z}_{1})) + \sum_{i>1} \sigma_{i} f(\mathbf{z}_{i}) \right] + \sup_{f' \in \pm \mathcal{F}} \left[-\phi_{\mathbf{z}_{1}}(f'(\mathbf{z}_{1})) + \sum_{i>1} \sigma_{i} f'(\mathbf{z}_{i}) \right] \right] \\ & = \frac{1}{2} \mathbb{E}_{\sigma} \left[\sup_{f, f' \in \pm \mathcal{F}} (\phi_{\mathbf{z}_{1}}(f(\mathbf{z}_{1})) - \phi_{\mathbf{z}_{1}}(f'(\mathbf{z}_{1}))) + \sum_{i>1} \sigma_{i} f(\mathbf{z}_{i}) + \sum_{i>1} \sigma_{i} f'(\mathbf{z}_{i}) \right] \\ & \leq \frac{1}{2} \mathbb{E}_{\sigma} \left[\sup_{f, f' \in \pm \mathcal{F}} |f(\mathbf{z}_{1}) - f'(\mathbf{z}_{1})| + \sum_{i>1} \sigma_{i} f(\mathbf{z}_{i}) + \sum_{i>1} \sigma_{i} f'(\mathbf{z}_{i}) \right] \end{split}$$

Next, we claim that we can remove the absolute value from the term $|f(\mathbf{z}_1) - f'(\mathbf{z}_1)|$, since we are taking supremum over the terms, and the sum of the two other terms will not be effected by replacing f with f', hence:

$$\frac{1}{2} \mathbb{E} \left[\sup_{f, f' \in \pm \mathcal{F}} |f(\mathbf{z}_1) - f'(\mathbf{z}_1)| + \sum_{i>1} \sigma_i f(\mathbf{z}_i) + \sum_{i>1} \sigma_i f'(\mathbf{z}_i) \right] \\
= \frac{1}{2} \mathbb{E} \left[\sup_{f, f' \in \pm \mathcal{F}} f(\mathbf{z}_1) - f'(\mathbf{z}_1) + \sum_{i>1} \sigma_i f(\mathbf{z}_i) + \sum_{i>1} \sigma_i f'(\mathbf{z}_i) \right] = \\
= \mathbb{E} \left[\sup_{f, f' \in \pm \mathcal{F}} \sigma_1 f(\mathbf{z}_1) + \sum_{i>1} \sigma_i f(\mathbf{z}_i) \right] = \mathfrak{R}_S(\mathcal{F})$$