Execute Circuit

Victor Lopez

Dusk Network

July 2021

1 Private Inputs

- \mathbb{I} Set of input notes I
- c_v Crossover value
- \bullet c_b Crossover blinder
- $\mathbb O$ Set of output notes O

2 Public Inputs

- $\bullet\,$ A Tree anchor / merkle tree root
- $\bullet~\mathbb{N}$ Set of nullifiers of \mathbb{I}
- C Crossover value commitment
- F Fee value
- $\bullet\,\,\mathbb{V}$ Set of value commitments of \mathbb{O}
- \bullet T Transaction hash

3 Gadgets

$$opening(r, b, h) \rightarrow O(b), b_{first} = h, b_{last} = r$$

$$k, K = k \cdot G, K' = k \cdot G^*, doubleSchnorr(\sigma, K, K', m) \rightarrow \sigma = doubleSchnorrSign(k, m)$$

$$commitment(P, v, b) \rightarrow P == v \cdot G + b \cdot G^*$$

$$range(v, s) \rightarrow v < 2^s$$

4 Circuit

- 1. $\forall (i, N) \in (\mathbb{I}, \mathbb{N})$
 - (a) $k := i_s \cdot G$
 - (b) $k' := i_s \cdot G^*$
 - (c) $opening(A, i_o, i_h)$
 - (d) $i_h == H(i_t, i_c, i_n, k, i_r, i_p, i_{\psi})$
 - (e) $doubleSchnorr(i_{\sigma}, k, k', T)$
 - (f) $N == H(k', i_p)$
 - (g) $commitment(i_c, i_v, i_b)$
 - (h) $range(i_v, 64)$
- 2. $commitment(C, c_v, c_b)$
- 3. $range(c_v, 64)$
- 4. $\forall (o, V) \in (\mathbb{O}, \mathbb{V})$
 - (a) $commitment(V, o_v, o_b)$
 - (b) $range(o_v, 64)$
- 5. $\sum (i_v \in \mathbb{I}) \sum (o_v \in \mathbb{O}) c_v F = 0$

5 Structures

- $I = (t, v, b, c, n, s, r, p, \psi, h, o, \sigma)$ Input note
 - t Note type
 - $-\ v$ Value
 - b Blinder
 - c Value commitment
 - n Encryption nonce
 - $s s k_r$
 - -rR
 - p Position
 - $-\psi$ Encryption cipher
 - h Hash
 - o Merkle path
 - σ Schnorr signature
- O = (v, b) Output note
 - -v Value
 - b Blinder

6 Constants

- \bullet $\,G$ Jub
Jub Generator
- \bullet G^* Jub
Jub Generator Nums

7 Functions

- \bullet *H* Hash to BLS12-381
- $\bullet \ O$ Merkle Opening over H