07 - Il Teorema di Hahn-Banach e il Teorema di Separazione

₩ Definizione: Sub-additività, Positiva omogeneità

Sia E uno spazio vettoriale.

Una funzione $f:E \to \mathbb{R}$ si dice:

- sub-additiva, quando $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ per ogni $\mathbf{x}, \mathbf{y} \in E$;
- positivamente omogenea, quando $f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$ per ogni $\mathbf{x} \in E$ e per ogni $\lambda \geq 0$.

Il teorema di Hahn-Banach

P Lemma 7.1: Lemma di estensione

Sia E uno spazio vettoriale.

Sia $F \subseteq E$ un sottospazio vettoriale.

Sia $\mathbf{x}_0 \in E \setminus F$.

Sia $G = \operatorname{span}(F \cup \{\mathbf{x}_0\})$.

Sia $\varphi:F o\mathbb{R}$ un funzionale lineare.

Sia $f:G
ightarrow \mathbb{R}$ una funzione sub-additiva e positivamente omogenea.

Si supponga che $\varphi(\mathbf{x}) \leq f(\mathbf{x})$ per ogni $\mathbf{x} \in F$.

Allora, esiste $\psi: G \to \mathbb{R}$ funzionale lineare tale che $\psi_{|F} = \varphi$ e $\psi(\mathbf{x}) \leq f(\mathbf{x})$ per ogni $x \in G$.

Osservazioni preliminari

1. Siano $A, B \subseteq \mathbb{R}$ due insiemi separati, con $a \leq b$ per ogni $a \in A$ e per ogni $b \in B$. Allora, $\sup(A) \leq \inf(B)$.

2. Si ha $G = F + \operatorname{span}(\mathbf{x}_0) = \{\mathbf{u} + \lambda \mathbf{x}_0 \mid \mathbf{u} \in F, \ \lambda \in \mathbb{R}\}$, e tale scrittura è unica in quanto $F \cap \operatorname{span}(\mathbf{x}_0) = \{\mathbf{0}\}$.

3. Siano $\mathbf{u}, \mathbf{v} \in G$, e siano $h, k \in \mathbb{R}$.

Sia $\mathbf{u} = \mathbf{x}_{\mathbf{u}} + \lambda_{\mathbf{u}} \mathbf{x}_{0}$ e $\mathbf{v} = \mathbf{x}_{\mathbf{v}} + \lambda_{\mathbf{v}} \mathbf{x}_{0}$; tali scritture sono uniche per l'osservazione preliminare 2.

Si ha
$$h\mathbf{u}+k\mathbf{v}=\underbrace{h\mathbf{x_u}+k\mathbf{x_v}}_{\in F}+\underbrace{(h\lambda_\mathbf{u}+k\lambda_\mathbf{v})}_{\in \mathbb{R}}\mathbf{x_0}$$
, da cui segue

 $\mathbf{x}_{h\mathbf{u}+k\mathbf{v}} = h\mathbf{x}_{\mathbf{u}} + k\mathbf{x}_{\mathbf{v}}$ e $\lambda_{h\mathbf{u}+k\mathbf{v}} = h\lambda_{\mathbf{u}} + k\lambda_{\mathbf{v}}$, sempre per unicità della scrittura degli elementi di G data dall'osservazione preliminare 2.

Dimostrazione

Siano $\mathbf{x}, \mathbf{y} \in F$.

Per le proprietà di φ ed f, si ha

$$arphi(\mathbf{x}) + arphi(\mathbf{y}) = arphi(\mathbf{x} + \mathbf{y})$$
 Linearità di $arphi$
 $\leq f(\mathbf{x} + \mathbf{y})$ Poiché $\mathbf{x} + \mathbf{y} \in F$ e f maggiora $arphi$ in F
 $= f((\mathbf{x} - \mathbf{x_0}) + (\mathbf{x_0} + \mathbf{y})) \leq f(\mathbf{x} - \mathbf{x_0}) + f(\mathbf{x_0} + \mathbf{y})$ Per subadditività di f

Dal primo e dall'ultimo membro della catena di disuguaglianze segue allora che $\varphi(\mathbf{x}) - f(\mathbf{x} - \mathbf{x}_0) \le f(\mathbf{x}_0 + \mathbf{y}) - \varphi(\mathbf{y})$ per ogni $\mathbf{x}, \mathbf{y} \in F$.

Ciò significa che gli insiemi $A = \{\varphi(\mathbf{x}) - f(\mathbf{x} - \mathbf{x}_0) \mid \mathbf{x} \in F\}$ e $B = \{f(\mathbf{x}_0 + \mathbf{y}) - \varphi(\mathbf{y}) \mid \mathbf{y} \in F\}$ sono separati; in particolare, si ha $\sup(A) \leq \inf(B)$ per l'osservazione preliminare 1.

Sia $r \in \mathbb{R}$ tale che $\sup(A) \leq r \leq \sup(B)$.

Sia $\mathbf{u} \in G$; si ha $\mathbf{u} = \mathbf{x}_{\mathbf{u}} + \lambda_{\mathbf{u}} \mathbf{x}_{\mathbf{0}}$ per unici $\mathbf{x}_{\mathbf{u}} \in F$ e $\lambda_{\mathbf{u}} \in \mathbb{R}$, per l'osservazione preliminare 2.

Si definisca allora $\psi:G o\mathbb{R}$ definita ponendo $\psi(\mathbf{u})=\varphi(\mathbf{x_u})+\lambda_\mathbf{u} r$ per ogni $\mathbf{u}\in G.$

Si provi che ψ soddisfa le proprietà espresse nella tesi.

Vale $\psi_{|F} = \varphi$; infatti, per ogni $\mathbf{u} \in F$ si ha $\mathbf{u} = \mathbf{u} + 0\mathbf{x}_0$, dunque $\mathbf{x}_{\mathbf{u}} = \mathbf{u}$ e $\lambda_{\mathbf{u}} = 0$ per unicità della scrittura degli elementi di G.

 ψ è un funzionale lineare; infatti, per ogni $\mathbf{u}, \mathbf{v} \in G$ e per ogni $h, k \in \mathbb{R}$, si ha $\mathbf{x}_{h\mathbf{u}+k\mathbf{v}} = h\mathbf{x}_{\mathbf{u}} + k\mathbf{x}_{\mathbf{v}}$ e $\lambda_{h\mathbf{u}+k\mathbf{v}} = h\lambda_{\mathbf{u}} + k\lambda_{\mathbf{v}}$ per l'osservazione preliminare 3.

Allora, $\psi(h\mathbf{u} + k\mathbf{v}) = \varphi(h\mathbf{x}_{\mathbf{u}} + k\mathbf{x}_{\mathbf{v}}) + (h\lambda_{\mathbf{u}} + k\lambda_{\mathbf{v}})r$; sfruttando la linearità di φ si ottiene $\psi(h\mathbf{u} + k\mathbf{v}) = h(\varphi(\mathbf{x}_{\mathbf{u}}) + \lambda_{\mathbf{u}}r) + k(\varphi(\mathbf{x}_{\mathbf{v}}) + \lambda_{\mathbf{v}}r) = h \psi(\mathbf{u}) + k \psi(\mathbf{v})$, che mostra la linearità di ψ .

Resta da provare che $\psi(\mathbf{u}) \leq f(\mathbf{u})$ per ogni $\mathbf{u} \in \mathbf{G}$

Sia dunque $\mathbf{u} \in G$.

Si può supporre $\mathbf{u} \notin F$ senza perdere di generalità, in quanto se $\mathbf{u} \in F$ si ha $\psi(\mathbf{u}) = \varphi(\mathbf{u}) \leq f(\mathbf{u})$ in quanto $\psi_{|F} = \varphi$ e f maggiora φ in F.

Sia quindi $\mathbf{u} \in G \setminus F$; si ha $\mathbf{u} = \mathbf{x}_{\mathbf{u}} + \lambda_{\mathbf{u}} \mathbf{x}_{0}$, per unici $\mathbf{x}_{\mathbf{u}} \in F$ e $\lambda_{\mathbf{u}}$. Essendo $\mathbf{u} \notin F$, si ha $\lambda_{\mathbf{u}} \neq 0$.

Si supponga $\lambda_{\mathbf{u}} > 0$.

Si consideri $rac{\mathbf{x_u}}{\lambda_\mathbf{u}} \in F$; si ha

$$r \leq f\left(\mathbf{x}_0 + rac{\mathbf{x_u}}{\lambda_\mathbf{u}}
ight) - arphi\left(rac{\mathbf{x_u}}{\lambda_\mathbf{u}}
ight)$$
 Essendo r minorante dell'insieme B ed essendo $rac{\mathbf{x_u}}{\lambda_\mathbf{u}} \in F$

 $\Rightarrow \lambda_{\mathbf{u}}r \leq f(\mathbf{x}_{\mathbf{u}} + \lambda_{\mathbf{u}}\mathbf{x}_{0}) - \varphi(\mathbf{x}_{\mathbf{u}})$ Moltiplicando per $\lambda_{\mathbf{u}}$ ambo i membri, sfruttando la linearità di φ e la positiva omogeneità di f, essendo $\lambda_{\mathbf{u}} > 0$ nel caso in esame

$$\implies \varphi(\mathbf{x_u}) + \lambda_{\mathbf{u}}r \leq f(\mathbf{x_u} + \lambda_{\mathbf{u}}\mathbf{x_0})$$

$$\implies \psi(\mathbf{u}) \leq f(\mathbf{u})$$
 Per scrittura di \mathbf{u} e per definizione di ψ

Si supponga ora $\lambda_{\mathbf{u}} < 0$.

Si consideri $rac{\mathbf{x_u}}{-\lambda_\mathbf{u}} \in F$; si ha

$$\varphi\left(rac{\mathbf{x_u}}{-\lambda_\mathbf{u}}
ight) - f\left(rac{\mathbf{x_u}}{-\lambda_\mathbf{u}} - \mathbf{x_0}
ight) \leq r$$
 Essendo r maggiorante dell'insieme A ed essendo $rac{\mathbf{x_u}}{-\lambda_\mathbf{u}} \in F$

\Longrightarrow	$arphi(\mathbf{x_u})$ –	$-f(\lambda_{\mathbf{u}}\mathbf{x}_0+\mathbf{x}_{\mathbf{u}})$	$\leq \lambda_{\mathbf{u}} r$
-------------------	-------------------------	--	-------------------------------

Moltiplicando per $\lambda_{\mathbf{u}}$ ambo i membri, sfruttando la linearità di φ e la positiva omogeneità di f, essendo $\lambda_{\mathbf{u}} > 0$ nel caso in esame

$$\implies \ \ arphi(\mathbf{x_u}) + \lambda_{\mathbf{u}}r \leq f(\lambda_{\mathbf{u}}\mathbf{x}_0 + \mathbf{x_u})$$

$$\implies \psi(\mathbf{u}) \leq f(\mathbf{u})$$

Per scrittura di ${f u}$ e per definizione di ψ

🖹 Teorema 7.2: Teorema di Hahn-Banach

Sia E uno spazio vettoriale.

Sia $F\subseteq E$ un sottospazio vettoriale di E

Sia $arphi:F o\mathbb{R}$ un funzionale lineare.

Sia $f:E o\mathbb{R}$ una funzione sub-additiva e positivamente omogenea.

Si supponga che $\varphi(\mathbf{x}) \leq f(\mathbf{x})$ per ogni $\mathbf{x} \in F$.

Allora, esiste $\psi: E \to \mathbb{R}$ funzionale lineare tale che $\psi_{|F} = \varphi$ e $\psi(\mathbf{x}) \leq f(\mathbf{x})$ per ogni $x \in E$.

Dimostrazione

Si consideri il seguente insieme:

$$\mathcal{S} = ig\{ (G, \eta) \mid \quad G \subseteq E ext{ sottospazio vettoriale di } E: \quad G \supseteq F \ \eta: G o \mathbb{R} ext{ funzionale lineare}: \quad \eta_{|_F} = arphi \quad \wedge \quad orall \mathbf{x} \in G, \ \eta(\mathbf{x}) \leq f(\mathbf{x}) ig\}$$

.

Si introduca su tale insieme la relazione d'ordine ≤ definita ponendo

$$(G_1,\eta_1) \preceq (G_2,\eta_2)$$
 quando $G_1 \subseteq G_2$ e $\eta_2|_{G_1} = \eta_1$.

Si provi che l'insieme ordinato (S, \leq) ammette un elemento massimale, tramite il lemma di Zorn.

Intanto, $S \neq \emptyset$ in quanto $(F, \varphi) \in S$.

Sia $C = \{(G_i, \eta_i)\}_{i \in \mathcal{I}} \subseteq \mathcal{S}$ una catena in \mathcal{S} ; si mostri che essa ammette maggiorante in \mathcal{S} .

Sia $G=igcup_{i\in\mathcal{I}}G_i$, e si definisca $\eta:G o\mathbb{R}$ ponendo, per ogni $\mathbf{u}\in G, \eta(\mathbf{u})=\eta_i(\mathbf{u})$, con $i\in\mathcal{I}$ tale che $\mathbf{u}\in G_i$.

Si mostri che $(G, \eta) \in \mathcal{S}$.

Q Osservazione preliminare

Per ogni $\mathbf{u}, \mathbf{v} \in G$, esiste $i \in \mathcal{I}$ tale che $\mathbf{u}, \mathbf{v} \in G_i$.

Infatti, essendo $\mathbf{u}, \mathbf{v} \in G$ si ha $\mathbf{u} \in G_{i_1}$ e $\mathbf{v} \in G_{i_2}$ per qualche $i_1, i_2 \in \mathcal{I}$.

Essendo $\{(G_i, \eta_i)\}_{i \in \mathcal{I}}$ una catena, essa è totalmente ordinata rispetto a \leq , per cui si ha $G_{i_1} \subseteq G_{i_2}$ oppure $G_{i_2} \subseteq G_{i_1}$, da cui seguono rispettivamente $\mathbf{u}, \mathbf{v} \in G_{i_1}$ oppure $\mathbf{u}, \mathbf{v} \in G_{i_2}$.

Fatta questa osservazione, si proceda con la dimostrazione.

Per quanto concerne G si ha evidentemente $F \subseteq G \subseteq E$;

G è un sottospazio vettoriale di E. Infatti, fissati $\mathbf{u}, \mathbf{v} \in G$, sia $i \in \mathcal{I}$ per cui $\mathbf{u}, \mathbf{v} \in G_i$, che esiste per l'osservazione preliminare; ne viene che $\mathbf{u} + \mathbf{v} \in G_i \subseteq G$ essendo G_i uno spazio vettoriale.

Per quanto concerne η , essa è intanto ben definita.

Infatti, sia $\mathbf{u} \in G$, e siano $i_1, i_2 \in \mathcal{I}$ tali che $\mathbf{u} \in G_{i_1}$ e $\mathbf{u} \in G_{i_2}$;

essendo $\{(G_i,\eta_i)\}_{i\in\mathcal{I}}$ una catena, essa è totalmente ordinata rispetto a \preceq , per cui si ha $G_{i_1}\subseteq G_{i_2}$ e $\eta_{i_2}|_{G_{i_1}}=\eta_{i_1}$, oppure $G_{i_2}\subseteq G_{i_1}$ e $\eta_{i_1}|_{G_{i_2}}=\eta_{i_2}$.

In entrambi i casi, si ha allora che $\eta_{i_1}(\mathbf{u}) = \eta_{i_2}(\mathbf{u})$.

 η è un funzionale lineare.

Siano infatti $\mathbf{u}, \mathbf{v} \in G$, e siano $\lambda, \mu \in \mathbb{R}$;

sia $i \in \mathcal{I}$ per cui $\mathbf{u}, \mathbf{v} \in G_i$, che esiste per l'osservazione preliminare.

Allora, $\lambda \mathbf{u} + \mu \mathbf{v} \in G_i$; si ha allora

$$\eta(\lambda \mathbf{u} + \mu \mathbf{v}) = \eta_i(\lambda \mathbf{u} + \mu \mathbf{v})$$
 Essendo $\lambda \mathbf{u} + \mu \mathbf{v} \in G_i$

$$=\lambda \eta_i(\mathbf{u}) + \mu \eta_i(\mathbf{v})$$
 Essendo η_i lineare

$$\lambda = \lambda \eta(\mathbf{u}) + \mu \eta(\mathbf{v})$$
 Essendo $\mathbf{u}, \mathbf{v} \in G_i$

La proprietà $\eta|_F = \varphi$ è immediata;

essa segue infatti dal fatto che, fissato $\mathbf{u} \in F$ e fissato un qualunque $i \in \mathcal{I}$, si ha $\eta(\mathbf{u}) = \eta_i(\mathbf{u}) = \varphi(\mathbf{u})$, per definizione di η essendo $F \subseteq G_i$ per costruzione, e per costruzione di η_i .

Altrettanto immediata risulta la disuguaglianza $\eta(\mathbf{x}) \leq f(\mathbf{x})$ per ogni $\mathbf{x} \in G$.

Infatti, fissato $\mathbf{x} \in G$ e fissato $i \in \mathcal{I}$ tale che $\mathbf{x} \in G_i$, si ha $\eta(\mathbf{x}) = \eta_i(\mathbf{x}) \leq f(\mathbf{x})$ per definizione di η e per costruzione di η_i .

Dunque, $(G, \eta) \in \mathcal{S}$, per cui le ipotesi del lemma di Zorn sono verificate.

Allora, S ammette un elemento massimale (H, ψ) .

Per concludere la dimostrazione, resta da provare che H=E; fatto questo, la tesi è acquisita dal momento che ψ soddisfa le proprietà da essa richieste per definizione di \mathcal{S} .

Si proceda per assurdo, supponendo quindi $H \subseteq E$; esiste quindi $\mathbf{x}_0 \in E \setminus H$.

Allora, per il [Lemma 7.1], posto $\tilde{H} = \operatorname{span}(H, \mathbf{x}_0) \supsetneq H$ si ha che esiste $\tilde{\psi} : \tilde{H} \to \mathbb{R}$ funzionale lineare tale che $\tilde{\psi}_{|H} = \psi$ e $\tilde{\psi}(\mathbf{x}) \le f(\mathbf{x})$ per ogni $\mathbf{x} \in \tilde{H}$.

Ma allora, da ciò seguirebbe che $(\tilde{H}, \tilde{\psi}) \in \mathcal{S}$ e che $(\tilde{H}, \tilde{\psi}) \succeq (H, \psi)$, contro la massimalità di (H, ψ) .

Dunque, H = E.

Corollari del teorema di Hahn-Banach

Proposizione 7.3: Estensione di un funzionale lineare continuo ad un funzionale lineare continuo avente stessa norma

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

Sia $F \subseteq E$ un sottospazio vettoriale di E.

Sia $\varphi \in F^*$.

Allora, esiste $\psi \in E^*$ tale che $\psi|_F = \varphi$ e $\|\psi\|_{E^*} = \|\varphi\|_{F^*}$.

Dimostrazione

Se $\varphi = \mathbf{0}_{F^*}$, la tesi è acquisita immediatamente con $\psi = \mathbf{0}_{E^*}$, che soddisfa le proprietà richieste.

Si supponga ora $arphi
eq \mathbf{0}_{F^*}$.

Poiché $\varphi \in F^*$, per la disuguaglianza fondamentale della norma $\|\cdot\|_{F^*}$ ([Proposizione 6.6]) si ha $|\varphi(\mathbf{x})| \leq \|\varphi\|_{F^*} \|\mathbf{x}\|_E$ per ogni $\mathbf{x} \in F$.

Si definisca $f: E \to \mathbb{R}$ ponendo $f(\mathbf{x}) = \|\varphi\|_{F^*} \|\mathbf{x}\|_E$ per ogni $\mathbf{x} \in E$.

Essendo $\varphi \neq \mathbf{0}_{F^*}$, si ha $\|\varphi\|_{F^*} \neq 0$, per cui f è una norma su E;

inoltre, si ha $|\varphi(\mathbf{x})| \leq f(\mathbf{x})$ per ogni $\mathbf{x} \in F$, per quanto osservato prima.

Per il [Teorema 7.2], esiste allora $\psi: E \to \mathbb{R}$ funzionale lineare tale che $\psi|_F = \varphi$ e

 $|\psi(\mathbf{x})| \leq f(\mathbf{x})$ per ogni $\mathbf{x} \in E$.

Si provi che ψ è continua e che $\|\psi\|_{E^*} = \|\varphi\|_{F^*}$, così da acquisire la tesi.

La continuità di ψ segue subito dalla [Proposizione 6.4], in quanto per ogni $\mathbf{x} \in E$ vale $|\psi(\mathbf{x})| \leq f(\mathbf{x}) = \|\varphi\|_{F^*} \|\mathbf{x}\|_E$.

L'uguaglianza tra le norme segue dalle due seguenti osservazioni:

• Per ogni $\mathbf{x} \in E$ con $\|\mathbf{x}\| = 1$ si ha $|\psi(\mathbf{x})| \le f(\mathbf{x}) = \|\varphi\|_{F^*} \|\mathbf{x}\|_E = \|\varphi\|_{F^*};$

ne segue che $\|\psi\|_{E^*} \leq \|\varphi\|_{F^*}$ per definizione di $\|\cdot\|_{E^*}$ quale ρ_1 .

• Poiché $\psi|_F=arphi$, si ha $\|arphi\|_{F^*}=\sup_{\mathbf{x}\in F}|arphi(\mathbf{x})|=\sup_{\mathbf{x}\in F}|\psi(\mathbf{x})|\leq \sup_{\mathbf{x}\in E}|\psi(\mathbf{x})|=\|\psi\|_{E^*}$. $\|\mathbf{x}\|=1$ $\|\mathbf{x}\|=1$

Pertanto si ha $\|\psi\|_{E^*} \leq \|\varphi\|_{F^*} \leq \|\psi\|_{E^*}$, cioè $\|\psi\|_{E^*} = \|\varphi\|_{F^*}$.

Proposizione 7.4: Esistenza di un funzionale lineare continuo di norma unitaria che in un punto ha come valore la sua norma

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

Sia $\mathbf{x}_0 \in E$.

Esiste $\psi \in E^*$ tale che $\psi(\mathbf{x}_0) = \|\mathbf{x}_0\|_E$ e $\|\psi\|_{E^*} = 1$.

Dimostrazione

Se $\mathbf{x}_0 = \mathbf{0}$, si ha $\|\mathbf{x}_0\|_E = 0$.

Sia $\varphi \in E^* \setminus \{\mathbf{0}_{E^*}\}$; si ha $\varphi(\mathbf{x}_0) = 0$ per linearità di φ , e si ha $\|\varphi\|_{E^*} \neq 0$.

La tesi è allora acquisita con $\psi = \frac{\varphi}{\|\varphi\|_{E^*}}$, che soddisfa le proprietà richieste.

Si supponga ora $\mathbf{x}_0 \neq \mathbf{0}$.

Sia $F = \operatorname{span}(\mathbf{x}_0) = \{\lambda \mathbf{x}_0 \mid \lambda \in \mathbb{R}\}.$

Si definisca $\varphi: F \to \mathbb{R}$ ponendo $\varphi(\lambda \mathbf{x}_0) = \lambda \|\mathbf{x}_0\|_E$ per ogni $\lambda \in \mathbb{R}$.

Evidentemente, φ è lineare; la definizione stessa di φ ne implica la continuità per la [Proposizione 6.4]. Dunque, $\varphi \in F^*$.

Allora, per la [Proposizione 7.3] esiste $\psi \in E^*$ tale che $\psi|_F = \varphi$, ossia $\psi(\lambda \mathbf{x}_0) = \lambda \|\mathbf{x}_0\|_E$ per ogni $\lambda \in \mathbb{R}$, e anche $\|\psi\|_{E^*} = \|\varphi\|_{F^*}$.

Dalla prima proprietà per $\lambda = 1$, si ha $\psi(\mathbf{x}_0) = \|\mathbf{x}_0\|_E$;

resta da verificare che $\|\psi\|_{E^*}=1$, ossia $\|\varphi\|_{F^*}=1$ in quanto le due norme coincidono per la seconda proprietà.

Per definizione di $\|\varphi\|_{F^*}$ come ρ_1 , si ottiene

$$\|arphi\|_{F^*} = \sup_{\substack{\lambda \in \mathbb{R} \ \|\lambda \mathbf{x}_0\|_E = 1}} |arphi(\lambda \mathbf{x}_0)| = \sup_{|\lambda| = rac{1}{\|\mathbf{x}_0\|_E}} \ \left|\lambda \|\mathbf{x}_0\|_E
ight| = \sup_{|\lambda| = rac{1}{\|\mathbf{x}_0\|_E}} \ |\lambda| \ \|\mathbf{x}_0\|_E = 1.$$

L

Corollario 7.5: Valutazione identica sullo spazio duale

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

Sia $\mathbf{x}_0 \in E$.

Si hanno i seguenti fatti:

- Se $\mathbf{x} \in E$ è tale che $\varphi(\mathbf{x}) = 0$ per ogni $\varphi \in X^*$, allora $\mathbf{x} = \mathbf{0}$;
- Se $\mathbf{x}, \mathbf{y} \in E$ sono tali che $\varphi(\mathbf{x}) = \varphi(\mathbf{y})$ per ogni $\varphi \in X^*$, allora $\mathbf{x} = \mathbf{y}$.

Dimostrazione

Sia $\mathbf{x} \in E$ tale che $\varphi(\mathbf{x}) = 0$ per ogni $\varphi \in X^*$.

Per la [Proposizione 7.4], esiste $\psi \in X^*$ tale che $\psi(\mathbf{x}) = \|\mathbf{x}\|$;

d'altra parte, per ipotesi si ha $\psi(\mathbf{x}) = 0$.

Ne segue che $\mathbf{x} = \mathbf{0}$.

Il primo punto è dunque acquisito;

il secondo segue direttamente dal fatto che, dati $\mathbf{x}, \mathbf{y} \in E$ sono tali che $\varphi(\mathbf{x}) = \varphi(\mathbf{y})$ per ogni $\varphi \in X^*$, si ha $\varphi(\mathbf{x} - \mathbf{y}) = 0$ per ogni $\varphi \in X^*$, per linearità di tali funzionali.

Dunque, per il punto precedente, si ha $\mathbf{x} - \mathbf{y} = \mathbf{0}$, cioè $\mathbf{x} = \mathbf{y}$.

Il funzionale di Minkowski

Premesse

₩ Definizione: Insiemi convessi e stellati

Sia E uno spazio vettoriale.

Sia $A \subseteq E$.

A si dice convesso quando, per ogni $\mathbf{x}, \mathbf{y} \in A$ e per ogni $\lambda \in [0, 1]$, vale $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in A$.

Equivalentemente,

A è convesso quando, per ogni $\mathbf{x}, \mathbf{y} \in A$ e per ogni $\lambda, \mu \geq 0$ tali che $\lambda + \mu = 1$, vale $\lambda \mathbf{x} + \mu \mathbf{y} \in A$.

A si dice stellato rispetto a un punto $\mathbf{x}_0 \in A$ quando, per ogni $\mathbf{x} \in A$ e per ogni $\lambda \in [0; 1]$, vale $\lambda \mathbf{x}_0 + (1 - \lambda)\mathbf{x} \in A$.

Equivalentemente,

A è stellato rispetto a $\mathbf{x}_0 \in A$ quando, per ogni $\mathbf{x} \in A$ e per ogni $\lambda, \mu \geq 0$ tali che $\lambda + \mu = 1$, vale $\lambda \mathbf{x}_0 + \mu \mathbf{x} \in A$.

Q Osservazione

A è convesso se e solo se è stellato rispetto a ogni suo punto.

Osservazione: Sottospazi vettoriali sono convessi

Sia E uno spazio vettoriale.

Sia $F \subseteq E$ un sottospazio vettoriale di E.

Allora, F è convesso.

Infatti, per ogni $\mathbf{x}, \mathbf{y} \in F$ e per ogni $\lambda \in [0; 1]$ si ha $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in F$ per chiusura rispetto alla somma e alla moltiplicazione per scalari.

Osservazione 2: Chiusura di un insieme convesso è convessa

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq E$ convesso.

Allora, \overline{A} è convesso.

Infatti, siano $\mathbf{x}, \mathbf{y} \in \overline{A}$, e sia $\lambda \in [0; 1]$.

Siano $\{\mathbf{x}_n\}_{n\in\mathbb{N}}\subseteq A$ e $\{\mathbf{y}_n\}_{n\in\mathbb{N}}\subseteq A$ due successioni in A, convergenti rispettivamente a \mathbf{x} e \mathbf{y} .

Allora, la successione $\{\lambda \mathbf{x}_n + (1-\lambda)\mathbf{y}_n\}_{n\in\mathbb{N}}$ è contenuta in A per convessità di A, e converge a $\lambda \mathbf{x}_n + (1-\lambda)\mathbf{y}_n$, che dunque appartiene a \overline{A} .

Proposizione 7.6: Criterio di continuità delle funzioni sub-additive che si annullano nello zero

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $f: E \to \mathbb{R}$ una funzione sub-additiva, tale che $f(\mathbf{0}) = 0$.

f è continua in E se e solo se f è continua in $\mathbf{0}$.

Dimostrazione

Se f è continua in E, chiaramente f è continua in $\mathbf{0}$.

Viceversa, si supponga f continua in $\mathbf{0}$;

si fissi $\mathbf{x}_0 \in E$, e si provi la continuità di f in \mathbf{x}_0 .

Si fissi $\varepsilon > 0$.

Per continuità di f in $\mathbf{0}$ esiste $\delta > 0$ tale che, per ogni $\mathbf{x} \in E$ con $\|\mathbf{x}\| < \delta$, si abbia $|f(\mathbf{x}) - f(\mathbf{0})| < \varepsilon$, ossia $|f(\mathbf{x})| < \varepsilon$, in quanto $f(\mathbf{0}) = 0$ per ipotesi.

Sia $\mathbf{x}' \in X$ con $\|\mathbf{x}' - \mathbf{x}_0\| < \delta$; si provi che $|f(\mathbf{x}') - f(\mathbf{x}_0)| < \varepsilon$.

Per costruzione di δ , si ha $|f(\mathbf{x}' - \mathbf{x}_0)| < \varepsilon$.

Per subadditività di f, si ha $f(\mathbf{x}') = f(\mathbf{x}_0 + (\mathbf{x}' - \mathbf{x}_0)) \le f(\mathbf{x}_0) + f(\mathbf{x}' - \mathbf{x}_0)$, da cui segue che

 $f(\mathbf{x}') - f(\mathbf{x}_0) \le f(\mathbf{x}' - \mathbf{x}_0) \le |f(\mathbf{x}' - \mathbf{x}_0)| < \varepsilon.$

D'altra parte, essendo $\|\mathbf{x}' - \mathbf{x}_0\| < \delta$, si ha anche $\|\mathbf{x}_0 - \mathbf{x}'\| < \delta$.

Per costruzione di δ , si ha allora $|f(\mathbf{x}_0 - \mathbf{x}')| < \varepsilon$.

Per subadditività di f, si ha $f(\mathbf{x}_0) = f(\mathbf{x}' + (\mathbf{x}_0 - \mathbf{x}')) \le f(\mathbf{x}') + f(\mathbf{x}_0 - \mathbf{x}')$, da cui segue che

 $f(\mathbf{x}_0) - f(\mathbf{x}') \le f(\mathbf{x}_0 - \mathbf{x}') \le |f(\mathbf{x}_0 - \mathbf{x}')| < \varepsilon.$

Allora, si ha $f(\mathbf{x}') - f(\mathbf{x}_0) < \varepsilon$ e $f(\mathbf{x}_0) - f(\mathbf{x}') < \varepsilon$, da cui $|f(\mathbf{x}') - f(\mathbf{x}_0)| < \varepsilon$, come si voleva provare.

La continuità di f in \mathbf{x}_0 è dunque acquisita.

☆ Definizione: Funzionale di Minkowski

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia V un intorno di $\mathbf{0}$.

Si dice funzionale di Minkowski associata a V la funzione $\varphi_V : E \to \mathbb{R}_0^+$ definita ponendo $p_V(\mathbf{x}) = \inf\{\lambda > 0 : \mathbf{x} \in \lambda V\}.$

Q Osservazione

 p_V è ben definita, cioè $0 \leq \inf\{\lambda > 0 : \mathbf{x} \in \lambda V\} < +\infty$.

Il fatto che $\inf\{\lambda > 0 : \mathbf{x} \in \lambda V\} \ge 0$ segue direttamente da come è definito l'insieme.

Si provi $\inf\{\lambda>0:\mathbf{x}\in\lambda V\}<+\infty$, ossia $\{\lambda>0:\mathbf{x}\in\lambda V\}
eq\varnothing$.

Se $\mathbf{x} = \mathbf{0}$ si ha $\mathbf{0} \in \lambda V$ per ogni $\lambda > 0$.

Si supponga allora $\mathbf{x} \neq \mathbf{0}$.

Essendo V un intorno di $\mathbf{0}$, esiste $\delta > 0$ tale che $B(\mathbf{0}, \delta) \subseteq V$.

Allora, si ha $\frac{\delta \mathbf{x}}{2\|\mathbf{x}\|} \in B(\mathbf{0},\delta) \subseteq V$, dunque $\mathbf{x} \in \frac{2\|\mathbf{x}\|}{\delta}V$.

Segue che $rac{2\|\mathbf{x}\|}{\delta} \in \{\lambda > 0: \mathbf{x} \in \lambda V\}.$

i≣ Proprietà del funzionale di Minkowski

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia V un intorno di $\mathbf{0}$.

Sia p_V il funzionale di Minkowski associato a V.

Esso soddisfa le seguenti proprietà:

- $p_V(\mathbf{0}) = 0.$
 - Infatti, $\lambda \mathbf{0} = \mathbf{0} \in V$ per ogni $\lambda > 0$.
- p_V è positivamente omogenea.

Infatti, si fissi $k \ge 0$. Se k = 0, per la proprietà precedente si ha $p_V(0\mathbf{x}) = 0 = 0$ $p_V(\mathbf{x})$ per ogni $\mathbf{x} \in E$.

Si supponga quindi k > 0, e sia $\mathbf{x} \in E$.

Sia $\lambda > 0$ tale che $\mathbf{x} \in \lambda V$; allora, $k\mathbf{x} \in k\lambda V$, per cui $p_V(k\mathbf{x}) \leq k\lambda$. Per arbitrarietà di λ , segue $p_V(k\mathbf{x}) \leq k \, p_V(\mathbf{x})$.

Sia $\mu > 0$ tale che $k\mathbf{x} \in \mu V$; allora, $\mathbf{x} \in \frac{\mu}{k} V$, per cui $p_V(\mathbf{x}) \leq \frac{\mu}{k}$, ossia $\mu \geq k p_V(\mathbf{x})$. Per arbitrarietà di μ , segue $p_V(k\mathbf{x}) \geq k p_V(\mathbf{x})$.

• Si ha $V \subseteq p_V^{-1}([0;1])$.

Infatti, per ogni $\mathbf{x} \in V$ si ha che $1 \in \{\lambda > 0 : \mathbf{x} \in \lambda V\}$, per cui $p_V(\mathbf{x}) \leq 1$.

• Se V è stellato rispetto a $\mathbf{0}$, si ha $p_V^{-1}([0;1]) \subseteq V$.

Infatti, sia $\mathbf{x} \in p_V^{-1}([0;1])$.

Esiste allora $\lambda \in]0;1]$ tale che $x \in \lambda V$; dunque, $\frac{1}{\lambda} \mathbf{x} \in V$.

Essendo $\frac{1}{\lambda} \ge 1$, **x** appartiene al segmento di estremi $\mathbf{0}$ e $\frac{1}{\lambda}$ **x**; essendo V stellato rispetto a $\mathbf{0}$ e $\frac{1}{\lambda}$ **x** $\in V$, segue dunque $\mathbf{x} \in V$.

• Se V è convesso, p_V è sub-additiva.

Siano infatti $\mathbf{x}, \mathbf{y} \in E$; sia $\varepsilon > 0$.

Applicando la seconda proprietà dell'estremo inferiore a p_V , esiste $\lambda > 0$ tale che $\mathbf{x} \in \lambda V$ e $\lambda < p_V(\mathbf{x}) + \frac{\varepsilon}{2}$;

analogamente, esiste $\mu > 0$ tale che $\mathbf{y} \in \mu V$ e $\mu < p_V(\mathbf{y}) + \frac{\varepsilon}{2}$.

Sommando membro a membro si ottiene $\lambda + \mu < p_V(\mathbf{x}) + p_V(\mathbf{y}) + \varepsilon$.

Si ha l'identità $\frac{\mathbf{x}+\mathbf{y}}{\lambda+\mu} = \frac{\lambda}{\lambda+\mu} \frac{\mathbf{x}}{\lambda} + \frac{\mu}{\lambda+\mu} \frac{\mathbf{y}}{\mu}$.

Essendo $\frac{\lambda}{\lambda+\mu}$, $\frac{\dot{\mu}}{\lambda+\mu} > 0$ e $\frac{\lambda}{\lambda+\mu} + \frac{\dot{\mu}}{\lambda+\mu} = 1$, ne segue che $\frac{\mathbf{x}+\mathbf{y}}{\lambda+\mu}$ appartiene al segmento di estremi $\frac{\mathbf{x}}{\lambda}$ e $\frac{\mathbf{y}}{\mu}$.

Essendo $\frac{\mathbf{x}}{\lambda}, \frac{\mathbf{y}}{\mu} \in V$ per costruzione di λ e μ ed essendo V convesso per ipotesi, si ha allora $\frac{\mathbf{x}+\mathbf{y}}{\lambda+\mu} \in V$, ossia $\mathbf{x}+\mathbf{y} \in (\lambda+\mu)V$.

Allora, $p_V(\mathbf{x} + \mathbf{y}) \leq \lambda + \mu$ per definizione di $p_V(\mathbf{x}, \mathbf{y})$; d'altra parte, era stato ricavato che $\lambda + \mu < p_V(\mathbf{x}) + p_V(\mathbf{y}) + \varepsilon$.

Pertanto, $p_V(\mathbf{x} + \mathbf{y}) < p_V(\mathbf{x}) + p_V(\mathbf{y}) + \varepsilon$; segue $p_V(\mathbf{x} + \mathbf{y}) \le p_V(\mathbf{x}) + p_V(\mathbf{y})$ per arbitrarietà di $\varepsilon > 0$.

• p_V è continua in **0**.

Infatti, si fissi $\varepsilon > 0$.

Si consideri l'insieme $\frac{\varepsilon}{2}V$, che è un intorno di **0** essendolo V;

esiste allora $\delta > 0$ tale che, per ogni $\mathbf{x} \in E$ con $\|\mathbf{x}\| < \delta$, vale $\mathbf{x} \in \frac{\varepsilon}{2}V$.

Pertanto, per ogni $\mathbf{x} \in E$ con $\|\mathbf{x}\| < \delta$, vale $\mathbf{x} \in \frac{\varepsilon}{2}V$, dunque $p_V(\mathbf{x}) \leq \frac{\varepsilon}{2}$ per definizione di p_V .

Ne segue che, per ogni $\mathbf{x} \in E$, vale $p_V(\mathbf{x}) \leq \frac{\varepsilon}{2} < \varepsilon$, ossia $|p_V(\mathbf{x})| < \varepsilon$ per nonnegatività di p_V .

• Se V è convesso, p_V è continua.

Infatti, p_V è continua in $\mathbf{0}$ e sub-additiva essendo V convesso.

Segue la continuità in tutto E dalla [Proposizione 7.6].

Proposizione 7.7: Esistenza di un funzionale lineare continuo con estremo inferiore positivo su un convesso la cui chiusura non possiede lo zero

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $A\subseteq E$ convesso e tale che $\overset{\circ}{A}\neq\varnothing$ e $\mathbf{0}\notin\overline{A}$.

Allora, esiste $\psi \in E^*$ tale che $\inf_{\mathbf{y} \in A} \psi(\mathbf{y}) > 0$.

Osservazioni preliminari

Fissati $\mathbf{x}_0 \in E$, la funzione $g: E \to E$; $\mathbf{x} \mapsto \mathbf{x}_0 - \mathbf{x}$ è un omeomorfismo.

Ne segue che $(g(A))^\circ=g(\overset{\circ}{A})$ e $\overline{g(A)}=g(\overline{A})$ per ogni $A\subseteq E.$

Inoltre, g preserva la convessità, ossia g(A) è convesso per ogni $A \subseteq E$ convesso.

Dimostrazione

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$, che esiste per ipotesi.

Sia
$$V = \mathbf{x}_0 - A = {\mathbf{x}_0 - \mathbf{y} \mid \mathbf{y} \in A}.$$

Dalle osservazioni preliminari segue che $\mathbf{0} \in \mathbf{x}_0 - \overset{\circ}{A} = \overset{\circ}{V}$, cioè V è un intorno di $\mathbf{0}$, ed inoltre è convesso essendo A convesso per ipotesi.

Allora, p_V è una funzione positivamente omogenea e sub-additiva, essendo associata a un intorno convesso di $\mathbf{0}$.

Sia
$$F = \operatorname{span}(\mathbf{x}_0) = \{\lambda \mathbf{x}_0 \mid \lambda \in \mathbb{R}\}.$$

Si definisca la funzione $\varphi: F \to \mathbb{R}$ ponendo $\varphi(\lambda \mathbf{x}_0) = \lambda p_V(\mathbf{x}_0)$; questa è evidentemente un funzionale lineare continuo, ossia $\varphi \in F^*$.

Si ha $\varphi(\lambda \mathbf{x}_0) \leq p_V(\lambda \mathbf{x}_0)$ per ogni $\lambda \in \mathbb{R}$;

infatti, per $\lambda < 0$ si ottiene la catena $\varphi(\lambda \mathbf{x}_0) = \lambda p_V(\mathbf{x}_0) \le 0 \le p_V(\lambda \mathbf{x}_0)$, sfruttando la nonnegatività di p_V .

Per $\lambda \geq 0$ si ha $\varphi(\lambda \mathbf{x}_0) = \lambda p_V(\mathbf{x}_0) = p_V(\lambda \mathbf{x}_0)$, sfruttando la positiva omogeneità di p_V .

Allora, per il [Teorema 7.2] esiste $\psi : E \to \mathbb{R}$ funzionale lineare tale che $\psi|_F = \varphi$, ossia $\psi(\lambda \mathbf{x}_0) = \lambda p_V(\mathbf{x}_0)$ per ogni $\lambda \in \mathbb{R}$, e tale che $\psi(\mathbf{x}) \leq p_V(\mathbf{x})$ per ogni $\mathbf{x} \in E$.

Per acquisire la tesi, si provi che ψ è continua, dimodoché $\psi \in E^*$, e che $\inf_{\mathbf{y} \in A} \psi(\mathbf{y}) > 0$.

Si provi dapprima la continuità di ψ , mostrando che ψ è continua in $\mathbf{0}$.

Sia $\mathbf{x} \in E$; si ha che $\psi(\mathbf{x}) \leq p_V(\mathbf{x})$ per costruzione di ψ ; sfruttando anche la linearità di ψ si ottiene inoltre $-\psi(\mathbf{x}) = \psi(-\mathbf{x}) \leq p_V(-\mathbf{x})$.

Allora, $(0 \le) |\psi(\mathbf{x})| \le \max\{p_V(\mathbf{x}), p_V(-\mathbf{x})\}.$

Essendo $\mathbf{x} \mapsto p_V(\mathbf{x})$ continua in $\mathbf{0}$, è continua in $\mathbf{0}$ anche $\mathbf{x} \mapsto p_V(-\mathbf{x})$;

inoltre, essendo il massimo tra due funzioni continue in uno stesso punto anch'essa continua in tale punto, si deduce che anche $\max\{p_V(\mathbf{x}),p_V(-\mathbf{x})\}$ è continua in $\mathbf{0}$;

segue per confronto che ψ è continua in $\mathbf{0}$, dunque in tutto E.

Resta da provare che $\inf_{\mathbf{y} \in A} \psi(\mathbf{y}) > 0$.

Si osserva intanto che, per ogni $\mathbf{y} \in A$, vale $\psi(\mathbf{y}) \geq p_V(\mathbf{x}_0) - 1$.

Infatti, si ha

$$p_V(\mathbf{x}_0) - \psi(\mathbf{y}) = \psi(\mathbf{x}_0) - \psi(\mathbf{y})$$
 In quanto $\mathbf{x}_0 \in F$ e ρ

$$=\psi(\mathbf{x}_0-\mathbf{y})$$
 Per linearità di ψ

$$\leq p_V(\mathbf{x}_0 - \mathbf{y})$$
 Poiché $\psi(\mathbf{x}) \leq p_V(\mathbf{x})$ per ogni $\mathbf{x} \in E$

$$\leq 1$$
 Segue dalla definizione di p_V , in quanto $\mathbf{x}_0 - \mathbf{y} \in \mathbf{x}_0 - A = V$

Dal primo e dall'ultimo membro della catena segue proprio $\psi(\mathbf{y}) \geq p_V(\mathbf{x}_0) - 1$, per ogni $\mathbf{y} \in A$

Dunque, si ha $\inf_{\mathbf{y} \in A} \psi(\mathbf{y}) \geq p_V(\mathbf{x}_0) - 1$.

Per acquisire la tesi, si vuole mostrare che $p_V(\mathbf{x}_0) - 1 > 0$, ossia $p_V(\mathbf{x}_0) > 1$.

Per l'osservazione preliminare, si ha $\overline{V} = \mathbf{x}_0 - \overline{A}$.

Poiché $\mathbf{0} \notin \overline{A}$, ne segue che $\mathbf{x}_0 \notin \overline{V}$.

Allora, esiste $\delta > 0$ tale che $B(\mathbf{x}_0, \delta) \cap V = \emptyset$.

Sia $ar{\lambda}=1+rac{\delta}{2\|\mathbf{x}_0\|}$; chiaramente, $ar{\lambda}>1$.

si ha $\bar{\lambda}\mathbf{x}_0 \notin V$.

Infatti, si ha $d(\bar{\lambda}\mathbf{x}_0,\mathbf{x}_0) = \|\bar{\lambda}\mathbf{x}_0 - \mathbf{x}_0\| = \frac{\delta}{2\|\mathbf{x}_0\|}\|\mathbf{x}_0\| = \frac{\delta}{2} < \delta$, pertanto $\bar{\lambda}\mathbf{x}_0 \in B(\mathbf{x}_0,\delta)$ e dunque $\bar{\lambda}\mathbf{x}_0 \notin V$ per costruzione di δ .

Allora, si ha a maggior ragione $\lambda \mathbf{x}_0 \notin V$ per ogni λ tale che $0 < \lambda \leq \bar{\lambda}$, per cui $p_V(\mathbf{x}_0) \geq \bar{\lambda} > 1$, come volevasi mostrare.

Il teorema di separazione

Proposizione 7.8: Somma e ridimensionamento preservano la convessità

Sia E uno spazio vettoriale.

Siano $A, B \subseteq E$ convessi.

Siano $h, k \in \mathbb{R}$.

Allora, anche hA + kB è convesso.

Siano $\mathbf{x}, \mathbf{y} \in hA + kB$;

si ha $\mathbf{x} = h\mathbf{a}_1 + k\mathbf{b}_1$ e $\mathbf{y} = h\mathbf{a}_2 + k\mathbf{b}_2$, con $\mathbf{a}_1, \mathbf{a}_2 \in A$ e $\mathbf{b}_1, \mathbf{b}_2 \in B$.

Fissato $\lambda \in [0; 1]$, si ricava che $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} = h(\lambda \mathbf{a}_1 + (1 - \lambda)\mathbf{a}_2) + k(\lambda \mathbf{b}_1 + (1 - \lambda)\mathbf{b}_2)$.

Essendo $\lambda \mathbf{a}_1 + (1 - \lambda)\mathbf{a}_2 \in A$ per convessità di A e $\lambda \mathbf{b}_1 + (1 - \lambda)\mathbf{b}_2 \in B$ per convessità di B, ne segue che $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in hA + kB$.

Proposizione 7.9: Somma di un chiuso e di un compatto in uno spazio normato è chiusa

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $C \subseteq E$ chiuso.

Sia $K \subseteq E$ compatto.

Allora, C + K è chiuso.

Dimostrazione

Sia $\mathbf{u} \in \overline{C+K}$; per acquisire la tesi si provi che $\mathbf{u} \in C+K$.

Essendo $\mathbf{u} \in \overline{C+K}$, esistono due successioni $\{\mathbf{x}_n\}_{n\in\mathbb{N}} \subseteq A$ e $\{\mathbf{y}_n\}_{n\in\mathbb{N}} \subseteq K$ tali che $\mathbf{u} = \lim_n \mathbf{x}_n + \mathbf{y}_n$.

Essendo K compatto, dunque sequenzialmente compatto, la successione $\{\mathbf{y}_n\}_{n\in\mathbb{N}}\subseteq K$ ammette un'estratta $\{\mathbf{y}_{n_k}\}_{k\in\mathbb{N}}$ tale che $\lim_k \mathbf{y}_{n_k} = \mathbf{y} \in K$.

Ne segue che, $\lim_k \mathbf{x}_{n_k} = \lim_k \ (\mathbf{x}_{n_k} + \mathbf{y}_{n_k}) - \mathbf{y}_{n_k} = \mathbf{u} - \mathbf{y};$

essendo C chiuso e $\{\mathbf{x}_{n_k}\}_{k\in\mathbb{N}}\subseteq C$ convergente a $\mathbf{u}-\mathbf{y}$, ne segue che $\mathbf{u}-\mathbf{y}\in C$.

Allora,
$$\mathbf{u} = \underbrace{(\mathbf{u} - \mathbf{y})}_{\in C} + \underbrace{\mathbf{y}}_{\in K} \in C + K$$

Q Osservazione

Sia $(E, \|\cdot\|)$ uno spazio normato.

Siano $C, D \subseteq E$ chiusi.

Generalmente, C + D non è chiuso.

Ad esempio, nello spazio euclideo \mathbb{R} , si considerino gli insiemi $C = \mathbb{Z}$ e $D = \{n + \frac{1}{n} \mid n \in \mathbb{N}\}$. Essi sono chiusi in quanto discreti.

Tuttavia, C + D non è chiuso.

Infatti, 0 è un punto di accumulazione per C+D in quanto, per ogni $n\in\mathbb{N}$, si ha $\frac{1}{n}=\underbrace{-n}_{\in C}+\underbrace{\left(n+\frac{1}{n}\right)}_{\in D}\in C+D;$

Ma $0 \notin C + D$ in quanto, se esistessero $m \in \mathbb{Z}$ e $n \in \mathbb{N}$ tali che $0 = m + n + \frac{1}{n}$, si avrebbe $\mathbb{Z} \ni m + n = -\frac{1}{n} \notin \mathbb{Z}$, il che è contraddittorio.

Teorema 7.10: Teorema di Separazione

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $C \subseteq E$ chiuso e convesso.

Sia $K \subseteq E$ compatto e convesso.

Si supponga $C \cap K = \emptyset$.

Allora, esiste $\psi \in E^*$ tale che $\sup_{\mathbf{y} \in C} \psi(\mathbf{y}) < \inf_{\mathbf{z} \in K} \psi(\mathbf{z})$.

Dimostrazione

Si consideri l'insieme K-C; esso è convesso per la [Proposizione 7.8], e chiuso per la [Proposizione 7.9].

Inoltre, $\mathbf{0} \notin K - C$;

infatti, se fosse $\mathbf{0} \in K - C$, si avrebbe $\mathbf{0} = \mathbf{x} - \mathbf{y}$ con $\mathbf{x} \in K$ e $\mathbf{y} \in C$, e dunque $K \ni \mathbf{x} = \mathbf{y} \in C$, contro il fatto che $K \cap C = \emptyset$.

Essendo allora K-C chiuso e $\mathbf{0} \notin K-C$, esiste r>0 tale che $B(\mathbf{0},r)\cap (K-C)=\varnothing$.

Si ponga ora $A = K - C + B\left(\mathbf{0}, \frac{r}{2}\right)$; esso è convesso per la [Proposizione 7.8].

Inoltre, $\overset{\circ}{A} \neq \varnothing$.

Infatti, per ogni $\mathbf{x} \in K - C$ si ha $B\left(\mathbf{x}, \frac{r}{2}\right) = \mathbf{x} + B\left(\mathbf{0}, \frac{r}{2}\right) \in K - C + B\left(\mathbf{0}, \frac{r}{2}\right) = A$.

Infine, $\mathbf{0} \notin \overline{A}$.

Infatti, per ogni $\mathbf{x} \in C$, per ogni $\mathbf{y} \in K$ e per ogni $\mathbf{z} \in B(\mathbf{0}, \delta)$ si ha

 $d(\mathbf{0}, \mathbf{y} - \mathbf{x} + \mathbf{z}) \ge d(\mathbf{y} - \mathbf{x} + \mathbf{z}, \mathbf{z}) - d(\mathbf{0}, \mathbf{z})$ Disuguaglianza triangolare

 $= \|\mathbf{y} - \mathbf{x}\| - \|\mathbf{z}\|$

Definizione di d, metrica indotta dalla norma $\|\cdot\|$

 $\geq r - rac{r}{2} = rac{r}{2}$

 $\|\mathbf{y} - \mathbf{x}\| \ge r$ in quanto $\mathbf{y} - \mathbf{x} \in K - C$ e $B(\mathbf{0}, r) \cap (K - C) = \emptyset$ $\|\mathbf{z}\| < \delta$ in quanto $\mathbf{z} \in B(\mathbf{0}, \delta)$

Dunque si ha $d(\mathbf{0},A) \geq \frac{r}{2}$, per cui $B\left(\mathbf{0},\frac{r}{2}\right) \cap A = \emptyset$, quindi $\mathbf{0} \notin \overline{A}$.

Pertanto, per la [Proposizione 7.7] esiste $\psi \in E^*$ tale che $\inf_{\mathbf{x} \in A} \psi(\mathbf{x}) = m > 0$.

Si provi che $\sup_{\mathbf{y} \in C} \psi(\mathbf{y}) < \inf_{\mathbf{z} \in K} \psi(\mathbf{z}).$

Si fissino $\mathbf{y} \in C$ e $\mathbf{z} \in K$;

vale $\mathbf{z} - \mathbf{y} \in A$, per cui $\psi(\mathbf{z} - \mathbf{y}) \ge m$, ossia $\psi(\mathbf{z}) - \psi(\mathbf{y}) \ge m$ per linearità di ψ .

Dunque, si ha $\psi(\mathbf{z}) \geq \psi(\mathbf{y}) + m$ per ogni $\mathbf{y} \in C, \mathbf{z} \in K$; allora, gli insiemi $\{\psi(\mathbf{z}) \mid \mathbf{z} \in K\}$ e $\{\psi(\mathbf{y}) + m \mid \mathbf{y} \in C\}$ sono separati, e per come è diretta la disuguaglianza si deduce quindi che

$$\inf_{\mathbf{z} \in K} \psi(\mathbf{z}) \geq \sup_{\mathbf{y} \in C} (\psi(\mathbf{y}) + m) = \left(\sup_{\mathbf{y} \in C} \psi(\mathbf{y})
ight) + m > \sup_{\mathbf{y} \in C} \psi(\mathbf{y}).$$