Danel Ahman

(based on joint work with James Chapman and Tarmo Uustalu)

Ljubljana, 11 October 2018

Today's plan

- Directed containers
 - type-theoretic and polynomial presentations
 - their use in functional programming
 - why are they canonical such structure?
- Some constructions on directed containers (see more in papers)
 - coproducts of directed containers
 - strict directed containers and their products
 - focussing a container
- Directed containers and computational effects
- Directed containers and BX
- Directed containers and categories

Prelude

Container syntax of datatypes

- Many datatypes can be represented in terms of
 - shapes and
 - positions in shapes

Container syntax of datatypes

- Many datatypes can be represented in terms of
 - shapes and
 - positions in shapes

- Examples: lists, streams, trees, zippers, ...
- Containers provide us with a handy syntax to analyse them

Directing containers?

Containers often exhibit a natural notion of subshape

- Natural questions arise:
 - What is the appropriate specialisation of containers?
 - Does this admit a nice mathematical theory?
 - What else is this structure useful for?

A directed container is given by

```
• S : \mathbf{Set} (shapes)
• P : S \to \mathbf{Set} (positions)
```

and

•
$$\downarrow : \Pi s : S. P s \rightarrow S$$
 (subshape)

•
$$\circ : \Pi\{s : S\}. Ps$$
 (root position

•
$$\oplus$$
: $\Pi\{s:S\}$. $\Pi p:Ps.P(s\downarrow p)\to Ps$ (subshape positions)

such that

•
$$s \downarrow 0 = s$$

•
$$s \downarrow (p \oplus p') = (s \downarrow p) \downarrow p'$$

•
$$p \oplus \{s\} \circ = p$$

•
$$o\{s\} \oplus p = p$$

•
$$(p \oplus \{s\} p') \oplus p'' = p \oplus (p' \oplus p'')$$

- A directed container is given by
 - *S* : **Set** (*shapes*)
 - $P: S \to \mathbf{Set}$ (positions)

and

- $\downarrow : \Pi s : S.Ps \rightarrow S$ (subshape)
- o : $\Pi\{s:S\}$. Ps (root position)
- \oplus : $\Pi\{s:S\}$. $\Pi p:Ps.P(s\downarrow p)\to Ps$ (subshape positions)

such that

- $s \downarrow o = s$
- $s \downarrow (p \oplus p') = (s \downarrow p) \downarrow p'$
- $p \oplus_{\{s\}} o = p$
- $o_{\{s\}} \oplus p = p$
- $(p \oplus_{\{s\}} p') \oplus p'' = p \oplus (p' \oplus p'')$

Directed containers (recap)

- A directed container is given by
 - *S* : **Set** (*shapes*)
 - $P: S \to \mathbf{Set}$ (positions)

and

- $\downarrow : \Pi s : S. P s \rightarrow S$ (subshape)
- o : $\Pi\{s:S\}$. Ps (root position)
 - \oplus : $\Pi\{s:S\}$. $\Pi p:Ps.P(s\downarrow p)\to Ps$ (subshape positions)

such that

- $s \downarrow o = s$
- $s \downarrow (p \oplus p') = (s \downarrow p) \downarrow p'$
- $p \oplus_{\{s\}} o = p$
- $o_{\{s\}} \oplus p = p$
- $(p \oplus_{\{s\}} p') \oplus p'' = p \oplus (p' \oplus p'')$

Examples: non-empty lists and streams

Non-empty lists are represented as

•
$$S \stackrel{\text{def}}{=} \text{Nat}$$
 (shapes)
• $P n \stackrel{\text{def}}{=} \text{Fin} (n+1) = \{0, ..., n\}$ (positions)

•
$$n \downarrow m \stackrel{\text{def}}{=} n - m$$
 (subshapes)

•
$$o_{\{n\}} \stackrel{\text{def}}{=} 0$$

•
$$m \oplus_{\{n\}} m' \stackrel{\text{def}}{=} m + m'$$

(root position)

(subshape positions)

Examples: non-empty lists and streams

Non-empty lists are represented as

```
• S \stackrel{\text{def}}{=} \text{Nat} (shapes)

• P n \stackrel{\text{def}}{=} \text{Fin} (n+1) = \{0, ..., n\} (positions)

• n \downarrow m \stackrel{\text{def}}{=} n - m (subshapes)

• o_{\{n\}} \stackrel{\text{def}}{=} 0 (root position)

• m \oplus_{\{n\}} m' \stackrel{\text{def}}{=} m + m' (subshape positions)
```

Another example is non-empty lists with cyclic shifts

Examples: non-empty lists and streams

Non-empty lists are represented as

•
$$S \stackrel{\text{def}}{=} \text{Nat}$$
 (shapes)
• $P n \stackrel{\text{def}}{=} \text{Fin} (n+1) = \{0, ..., n\}$ (positions)
• $n \downarrow m \stackrel{\text{def}}{=} n - m$ (subshapes)
• $o_{\{n\}} \stackrel{\text{def}}{=} 0$ (root position)

(subshape positions)

- Another example is non-empty lists with cyclic shifts
- Streams are represented similarly

• $m \oplus_{\{n\}} m' \stackrel{\text{def}}{=} m + m'$

•
$$S \stackrel{\text{def}}{=} 1$$
 (shapes)

•
$$P * \stackrel{\text{def}}{=} \text{Nat}$$
 (positions)

. . .

Examples: non-empty lists with a focus

- Zippers tree-like data-structures consisting of
 - a context and a focal subtree

Examples: non-empty lists with a focus

- Zippers tree-like data-structures consisting of
 - a context and a focal subtree
- Non-empty lists with a focus
 - $S \stackrel{\text{def}}{=} \text{Nat} \times \text{Nat}$ (shapes)
 - $P(n_0, n_1) \stackrel{\text{def}}{=} \{-n_0, ..., n_1\} = \{-n_0, ..., -1\} \cup \{0, ..., n_1\} \ (pos.)$

• $(n_0, n_1) \downarrow m \stackrel{\text{def}}{=} (n_0 + m, n_1 - m)$

(subshapes)

 $\bullet \ \mathsf{o}_{\{n_0,n_1\}} \stackrel{\mathsf{def}}{=} \ \mathsf{0}$

(root)

• $m \oplus_{\{n_0,n_1\}} m' \stackrel{\text{def}}{=} m + m'$

(subshape positions)

Directed container morphisms

A directed container morphism

$$t \triangleleft q: (S \triangleleft P, \downarrow, \circ, \oplus) \longrightarrow (S' \triangleleft P', \downarrow, \circ, \circ')$$

is given by

- $t: S \rightarrow S'$
- $q: \Pi\{s: S\}. P'(ts) \to Ps$

(note the direction!)

such that

- $t(s \downarrow q p) = t s \downarrow' p$
- $o_{\{s\}} = q(o'_{\{ts\}})$
- $q p \oplus_{\{s\}} q p' = q (p \oplus'_{\{ts\}} p')$
- Identities and composition are defined component-wise
- Directed containers form a category DCont

Directed container morphisms

A directed container morphism

$$t \triangleleft q: (S \triangleleft P, \downarrow, o, \oplus) \longrightarrow (S' \triangleleft P', \downarrow', o', \oplus')$$

is given by

- $t: S \rightarrow S'$
- $q: \Pi\{s: S\}. P'(ts) \to Ps$

such that

- $t(s \downarrow q p) = t s \downarrow' p$
- $o_{\{s\}} = q(o'_{\{ts\}})$
- $q p \oplus_{\{s\}} q p' = q (p \oplus'_{\{t s\}} p')$
- Identities and composition are defined component-wise
- Directed containers form a category **DCont**

Digression: directed polynomials

A polynomial (in one variable) is given by

$$1 \stackrel{!}{\longleftarrow} \overline{P} \stackrel{s}{\longrightarrow} S \stackrel{!}{\longrightarrow} 1$$

where

- S: **Set** (or some other suitable C) (shapes)
- \overline{P} : **Set** (or some other suitable C) (total positions)
- Polynomials correspond to containers via $\overline{P} \cong \Sigma s : S. P s$

A polynomial (in one variable) is given by

$$1 \stackrel{!}{\longleftarrow} \overline{P} \stackrel{s}{\longrightarrow} S \stackrel{!}{\longrightarrow} 1$$

where

- S: **Set** (or some other suitable C)
- \overline{P} : **Set** (or some other suitable \mathcal{C})

(shapes)

(total positions)

- Polynomials correspond to containers via $\overline{P} \cong \Sigma s : S. P s$
- They interpret into polynomial functors as

Are given by the following data

such that five diagrams commute

Are given by the following data

such that five diagrams commute

Note the symmetry in s and \downarrow !

s.t.

=

containers ∩ **comonads**

Interpretation of directed containers

Any directed container

$$(S \triangleleft P, \downarrow, \circ, \oplus)$$

defines a functor/comonad

$$[\![S \lhd P, \bot, \circ, \oplus]\!]^{\mathrm{dc}} \stackrel{\mathsf{def}}{=} (D, \varepsilon, \delta)$$

where

• *D* : **Set** → **Set**

$$DX \stackrel{\text{def}}{=} \Sigma s : S. (Ps \rightarrow X)$$

- $\varepsilon_X : DX \longrightarrow X$ $\varepsilon_X (s, v) \stackrel{\text{def}}{=} v (o_{\{s\}})$
- $\delta_X : DX \longrightarrow DDX$ $\delta_X (s, v) \stackrel{\text{def}}{=} (s, \lambda p. (s \downarrow p, \lambda p'. v (p \oplus_{\{s\}} p')))$

Interpretation of directed containers

Any directed container

$$(S \triangleleft P, \downarrow, o, \oplus)$$

defines a functor/comonad

$$\llbracket S \lhd P, \downarrow, o, \oplus
bracket^{\operatorname{def}} \equiv (D, \varepsilon, \delta)$$

where

- $D : \mathbf{Set} \longrightarrow \mathbf{Set}$ $DX \stackrel{\text{def}}{=} \Sigma s : S. (P s \rightarrow X)$
- $\varepsilon_X : DX \longrightarrow X$ $\varepsilon_X (s, v) \stackrel{\text{def}}{=} v (o_{\{s\}})$
- $\delta_X : DX \longrightarrow DDX$ $\delta_X (s, v) \stackrel{\text{def}}{=} (s, \lambda p. (s \downarrow p, \lambda p'. v (p \oplus_{\{s\}} p')))$

Interpretation of dcon. morphisms

Any directed container morphism

$$t \triangleleft q: (S \triangleleft P, \downarrow, \circ, \oplus) \longrightarrow (S' \triangleleft P', \downarrow', \circ', \oplus')$$

defines a natural transformation/comonad-morphism

$$\llbracket t \lhd q \rrbracket^{\operatorname{lc}} : \llbracket S \lhd P, \downarrow, \circ, \circ \rrbracket^{\operatorname{lc}} \longrightarrow \llbracket S' \lhd P', \downarrow, \circ, \circ', \circ \rrbracket^{\operatorname{lc}}$$

by

$$\begin{array}{c} \bullet \ \llbracket t \lhd q \rrbracket_X^{\ \, \mathrm{c}} : \Sigma s : S. \left(P \, s \to X\right) \, \longrightarrow \, \Sigma s' : S'. \left(P' \, s' \to X\right) \\ \\ \llbracket t \lhd q \rrbracket_X^{\ \, \mathrm{c}} \left(s, v\right) \, \stackrel{\mathrm{def}}{=} \, \left(t \, s, v \circ q_{\{s\}}\right) \end{array}$$

- $\llbracket \rrbracket^{dc}$ preserves the identities and composition
- $[-]^c$ is a functor from [-] Cont to [-] Compared [-]

Interpretation of dcon. morphisms

Any directed container morphism

$$t \triangleleft q : (S \triangleleft P, \downarrow, o, \oplus) \longrightarrow (S' \triangleleft P', \downarrow', o', \oplus')$$

defines a natural transformation/comonad morphism

$$\llbracket t \lhd q \rrbracket^{\operatorname{dc}} : \llbracket S \lhd P, \downarrow, o, \oplus \rrbracket^{\operatorname{dc}} \longrightarrow \llbracket S' \lhd P', \downarrow', o', \oplus' \rrbracket^{\operatorname{dc}}$$

by

- ullet $[-]^{dc}$ preserves the identities and composition
- $[-]^{dc}$ is a functor from **DCont** to [Set_Set]/Comonads(Set)

Interpretation is fully faithful

• Every natural transformation/comonad-morphism

$$\tau: \llbracket S \lhd P, \downarrow, \circ, \oplus \rrbracket \rrbracket^{\operatorname{lc}} \longrightarrow \llbracket S' \lhd P', \downarrow, \circ, \oplus, \rrbracket \rrbracket^{\operatorname{lc}}$$

defines a directed container morphism

$$\lceil \tau \rceil^{\text{-c}} : (S \triangleleft P, \downarrow, \circ, \oplus) \longrightarrow (S' \triangleleft P', \downarrow', \circ', \oplus')$$

satisfying

- $\lceil [t \triangleleft q] \rceil^{\operatorname{dc} \neg \operatorname{dc}} = t \triangleleft q$
- $\bullet \ \ \llbracket \ulcorner \tau \urcorner^{\mathrm{dc}} \rrbracket^{\mathrm{dc}} = \tau$
- ullet [-] c is a fully faithful functor

Interpretation is fully faithful

Every natural transformation/comonad morphism

$$\tau: \llbracket S \lhd P, \downarrow, o, \oplus \rrbracket^{\mathrm{dc}} \longrightarrow \llbracket S' \lhd P', \downarrow', o', \oplus' \rrbracket^{\mathrm{dc}}$$

defines a directed container morphism

$$\ulcorner \tau \urcorner^{\mathrm{dc}} : (S \lhd P, \downarrow, \diamond, \oplus) \longrightarrow (S' \lhd P', \downarrow', \diamond', \oplus')$$

satisfying

- $\lceil [t \triangleleft q] \rceil^{\operatorname{dc} \neg \operatorname{dc}} = t \triangleleft q$
- $\bullet \ \llbracket \ulcorner \tau \urcorner^{\mathrm{dc}} \rrbracket^{\mathrm{dc}} = \tau$
- ullet $[-]^{dc}$ is a fully faithful functor

Directed containers = cons. \cap cmnds.

• Any comonad (D, ε, δ) , such that $D = [S \triangleleft P]^c$, determines

$$\lceil (D, \varepsilon, \delta), S \triangleleft P \rceil \stackrel{\mathsf{def}}{=} (S \triangleleft P, \downarrow, \mathsf{o}, \oplus)$$

[−] satisfies

$$\llbracket \lceil (D, \varepsilon, \delta), S \triangleleft P \rceil \rrbracket^{dc} = (D, \varepsilon, \delta)$$

$$\lceil \llbracket S \lhd P, \downarrow, o, \oplus \rrbracket^{\mathrm{dc}}, S \lhd P \rceil = (S \lhd P, \downarrow, o, \oplus)$$

Directed containers = cons. \cap cmnds.

• Any comonad (D, ε, δ) , such that $D = [S \triangleleft P]^c$, determines

$$\lceil (D, \varepsilon, \delta), S \triangleleft P \rceil \stackrel{\text{def}}{=} (S \triangleleft P, \downarrow, o, \oplus)$$

[−] satisfies

$$\begin{split} \llbracket \lceil (D, \varepsilon, \delta), S \lhd P \rceil \rrbracket^{\mathrm{dc}} &= (D, \varepsilon, \delta) \\ \lceil \llbracket S \lhd P, \downarrow, \mathsf{o}, \oplus \rrbracket^{\mathrm{dc}}, S \lhd P \rceil &= (S \lhd P, \downarrow, \mathsf{o}, \oplus) \end{split}$$

The following is a pullback in CAT:

$$\begin{array}{c|c} \mathbf{DCont} & \xrightarrow{U} & \mathbf{Cont} \\ & & & & \\ \mathbb{[-]}^{\mathrm{dc}} & & & & \\ \mathbf{f.f.} & & & & \\ \mathbf{Comonads}(\mathbf{Set}) & \xrightarrow{U} & \mathbf{[Set, Set]} \end{array}$$

Coproducts of directed containers

- Given $(S_0 \triangleleft P_0, \downarrow_0, o_0, \oplus_0)$ and $(S_1 \triangleleft P_1, \downarrow_1, o_1, \oplus_1)$, their coproduct is $(S \triangleleft P, \downarrow, o, \oplus)$ where
 - $S \triangleleft P \stackrel{\text{def}}{=} (S_0 \triangleleft P_0) + (S_1 \triangleleft P_1) = (S_0 + S_1 \triangleleft [\lambda s. P_0 s, \lambda s. P_1 s])$
 - $\operatorname{inl} s \downarrow p \stackrel{\text{def}}{=} \operatorname{inl} (s \downarrow_0 p)$ $\operatorname{inr} s \downarrow p \stackrel{\text{def}}{=} \operatorname{inr} (s \downarrow_1 p)$
 - $\begin{array}{ccc} \bullet & \mathsf{O}_{\{\mathsf{inl}\,s\}} & \stackrel{\mathsf{def}}{=} & \mathsf{O}_{\mathsf{O}\,\{s\}} \\ \mathsf{O}_{\{\mathsf{inr}\,s\}} & \stackrel{\mathsf{def}}{=} & \mathsf{O}_{\mathsf{I}\,\{s\}} \\ \end{array}$
 - $p \oplus_{\{\text{inl } s\}} p' \stackrel{\text{def}}{=} p \oplus_{0 \{s\}} p'$ $p \oplus_{\{\text{inr } s\}} p' \stackrel{\text{def}}{=} p \oplus_{1 \{s\}} p'$

Coproducts of directed containers

- Given $(S_0 \lhd P_0, \downarrow_0, o_0, \oplus_0)$ and $(S_1 \lhd P_1, \downarrow_1, o_1, \oplus_1)$, their coproduct is $(S \lhd P, \downarrow, o, \oplus)$ where
 - $S \triangleleft P \stackrel{\text{def}}{=} (S_0 \triangleleft P_0) + (S_1 \triangleleft P_1) = (S_0 + S_1 \triangleleft [\lambda s. P_0 s, \lambda s. P_1 s])$
 - $\operatorname{inl} s \downarrow p \stackrel{\text{def}}{=} \operatorname{inl} (s \downarrow_0 p)$ $\operatorname{inr} s \downarrow p \stackrel{\text{def}}{=} \operatorname{inr} (s \downarrow_1 p)$
 - $\begin{array}{ccc} \bullet & \mathsf{O}_{\{\mathsf{inl}\,s\}} & \stackrel{\mathsf{def}}{=} & \mathsf{O}_{\mathsf{0}\,\{s\}} \\ \mathsf{O}_{\{\mathsf{inr}\,s\}} & \stackrel{\mathsf{def}}{=} & \mathsf{O}_{\mathsf{1}\,\{s\}} \\ \end{array}$
 - $p \oplus_{\{\text{inl } s\}} p' \stackrel{\text{def}}{=} p \oplus_{0 \{s\}} p'$ $p \oplus_{\{\text{inr } s\}} p' \stackrel{\text{def}}{=} p \oplus_{1 \{s\}} p'$
- It interprets as $\llbracket S_0 \lhd P_0, \downarrow_0, o_0, \oplus_0
 bracket^{\operatorname{dc}} + \llbracket S_1 \lhd P_1, \downarrow_1, o_1, \oplus_1
 bracket^{\operatorname{dc}}$

Products of strict directed containers

• Given $(S_0 \triangleleft P_0, \downarrow_0, o_0, \oplus_0)$ and $(S_1 \triangleleft P_1, \downarrow_1, o_1, \oplus_1)$, there is no general way to endow $(S_0 \triangleleft P_0) \times (S_1 \triangleleft P_1)$ with dcon. struct.

Products of strict directed containers

- Given $(S_0 \triangleleft P_0, \downarrow_0, o_0, \oplus_0)$ and $(S_1 \triangleleft P_1, \downarrow_1, o_1, \oplus_1)$, there is no general way to endow $(S_0 \triangleleft P_0) \times (S_1 \triangleleft P_1)$ with dcon. struct.
- But analogously to the coprod. of (ideal) monads, the product exists for strict directed containers/coideal comonads:
 - *S* : **Set**
 - $P^+: S \to \mathbf{Set}$
 - \downarrow ⁺: $\Pi s : S. P^+ s \rightarrow S$
 - \oplus^+ : $\Pi \{s : S\}$. $\Pi p : P^+ s$. $P^+ (s \downarrow^+ p) \to P^+ s$
 - satisfying two laws (omitted)
- The directed container determined by a strict dcon. has
 - $Ps \stackrel{\text{def}}{=} 1 + P^+ s$

Products of strict directed containers ctd.

• Now, given $(S_0 \triangleleft P_0^+, \downarrow_0^+, \oplus_0^+)$ and $(S_1 \triangleleft P_1^+, \downarrow_1^+, \oplus_1^+)$, we can define $(S \triangleleft P^+, \downarrow^+, \oplus^+)$ where

•
$$S \stackrel{\text{def}}{=} \overline{S_0} \times \overline{S_1}$$

with
 $(\overline{S_0}, \overline{S_1}) \stackrel{\text{def}}{=} \nu(Z_0, Z_1). (\Sigma s_0 : S_0. P_0^+ s_0 \rightarrow Z_1, \Sigma s_1 : S_1. P_1^+ s_1 \rightarrow Z_0)$

•
$$P^{+}(s_{0}, s_{1}) \stackrel{\text{def}}{=} \overline{P_{0}^{+} s_{0}} + \overline{P_{1}^{+} s_{1}}$$
 with
$$(\overline{P_{0}^{+}}, \overline{P_{1}^{+}}) \stackrel{\text{def}}{=} \mu(Z_{0}, Z_{1}). (\lambda(s_{0}, v_{0}). \Sigma p_{0} : P_{0}^{+} s_{0}.(1 + Z_{1}(v_{0} p_{0})),$$

$$\lambda(s_{1}, v_{1}). \Sigma p_{1} : P_{1}^{+} s_{1}.(1 + Z_{0}(v_{1} p_{1})))$$

• ...

Products of strict directed containers ctd.

- Now, given $(S_0 \triangleleft P_0^+, \downarrow_0^+, \oplus_0^+)$ and $(S_1 \triangleleft P_1^+, \downarrow_1^+, \oplus_1^+)$, we can define $(S \triangleleft P^+, \downarrow^+, \oplus^+)$ where
 - $S \stackrel{\text{def}}{=} \overline{S_0} \times \overline{S_1}$ with $(\overline{S_0}, \overline{S_1}) \stackrel{\text{def}}{=} \nu(Z_0, Z_1). (\Sigma s_0 : S_0. P_0^+ s_0 \to Z_1, \Sigma s_1 : S_1. P_1^+ s_1 \to Z_0)$
 - $P^{+}(s_{0}, s_{1}) \stackrel{\text{def}}{=} \overline{P_{0}^{+} s_{0}} + \overline{P_{1}^{+} s_{1}}$ with $(\overline{P_{0}^{+}}, \overline{P_{1}^{+}}) \stackrel{\text{def}}{=} \mu(Z_{0}, Z_{1}). (\lambda(s_{0}, v_{0}). \Sigma p_{0} : P_{0}^{+} s_{0}. (1 + Z_{1}(v_{0} p_{0})), \lambda(s_{1}, v_{1}). \Sigma p_{1} : P_{1}^{+} s_{1}. (1 + Z_{0}(v_{1} p_{1})))$
 - ...
- This gives the product of the given strict dcons. in **DCont**
- It interprets as the product of the corresponding coideal cmnds.

Focussing a container

- Given any container $S_0 \triangleleft P_0$, we get $(S \triangleleft P, \downarrow, o, \oplus)$ where
 - $S \stackrel{\text{def}}{=} \Sigma s : S_0.P_0 s$
 - $P(s,p) \stackrel{\text{def}}{=} P_0 s$
 - $(s,p) \downarrow p' \stackrel{\text{def}}{=} (s,p')$
 - $\bullet \ \mathsf{o}_{\{s,p\}} \stackrel{\mathsf{def}}{=} \ p$
 - $p' \oplus_{\{s,p\}} p'' \stackrel{\text{def}}{=} p''$

Focussing a container

- Given any container $S_0 \triangleleft P_0$, we get $(S \triangleleft P, \downarrow, o, \oplus)$ where
 - $S \stackrel{\text{def}}{=} \Sigma s : S_0.P_0 s$
 - $P(s,p) \stackrel{\text{def}}{=} P_0 s$
 - $(s,p) \downarrow p' \stackrel{\text{def}}{=} (s,p')$
 - $o_{\{s,p\}} \stackrel{\text{def}}{=} p$
 - $p' \oplus_{\{s,p\}} p'' \stackrel{\text{def}}{=} p''$
- When positions in P_0 are decidable, then $[S \lhd P, \downarrow, o, \oplus]^{dc}$ is isomorphic to the comonad structure on $\partial [S_0 \lhd P_0]^c \times Id$

Focussing a container

- Given any container $S_0 \lhd P_0$, we get $(S \lhd P, \downarrow, o, \oplus)$ where
 - $S \stackrel{\text{def}}{=} \Sigma s : S_0.P_0 s$
 - $P(s,p) \stackrel{\text{def}}{=} P_0 s$
 - $(s,p) \downarrow p' \stackrel{\text{def}}{=} (s,p')$
 - $\bullet \ \mathsf{o}_{\{s,p\}} \stackrel{\mathsf{def}}{=} \ p$
 - $p' \oplus_{\{s,p\}} p'' \stackrel{\mathsf{def}}{=} p''$
- When positions in P_0 are decidable, then $[S \lhd P, \downarrow, o, \oplus]^{dc}$ is isomorphic to the comonad structure on $\partial [S_0 \lhd P_0]^c \times Id$
- Focussing forms a functor from Con_{cart} to DCon

Cofree and cofree recursive directed containers

- Cofree and cofree recursive directed containers
- Distributive laws between directed containers
 - $t^{\theta} \lhd q^{\theta} : (S_0 \lhd P_0) \circ^{\operatorname{c}} (S_1 \lhd P_1) \longrightarrow (S_1 \lhd P_1) \circ^{\operatorname{c}} (S_0 \lhd P_0)$ satisfying 11 laws (and with $t_0^{\theta}(s,v) \stackrel{\text{def}}{=} v(o_{0\{s\}})$ forced)

- Cofree and cofree recursive directed containers
- Distributive laws between directed containers
 - $t^{\theta} \lhd q^{\theta} : (S_0 \lhd P_0) \circ^{\operatorname{c}} (S_1 \lhd P_1) \longrightarrow (S_1 \lhd P_1) \circ^{\operatorname{c}} (S_0 \lhd P_0)$ satisfying 11 laws (and with $t_0^{\theta}(s,v) \stackrel{\text{def}}{=} v(o_{0\{s\}})$ forced)
 - A dep. typed version of the Zappa-Szép product, i.e., of:
 - Given monoid actions $\alpha: N \times M \to M$ and $\beta: N \times M \to N$ satisfying two compat. laws, we get a monoid on $M \times N$ with $(m_0, n_0) \oplus (m_1, n_1) \stackrel{\text{def}}{=} (m_0 \oplus_M \alpha(n_0, m_1), \beta(n_0, m_1) \oplus_N n_1)$

- Cofree and cofree recursive directed containers
- Distributive laws between directed containers
 - $t^{\theta} \lhd q^{\theta} : (S_0 \lhd P_0) \circ^{\operatorname{c}} (S_1 \lhd P_1) \longrightarrow (S_1 \lhd P_1) \circ^{\operatorname{c}} (S_0 \lhd P_0)$ satisfying 11 laws (and with $t_0^{\theta}(s,v) \stackrel{\text{def}}{=} v(o_{0\{s\}})$ forced)
 - A dep. typed version of the Zappa-Szép product, i.e., of:
 - Given monoid actions $\alpha: N \times M \to M$ and $\beta: N \times M \to N$ satisfying two compat. laws, we get a monoid on $M \times N$ with $(m_0, n_0) \oplus (m_1, n_1) \stackrel{\text{def}}{=} (m_0 \oplus_M \alpha(n_0, m_1), \beta(n_0, m_1) \oplus_N n_1)$
- Composition of directed containers
 - Dist. laws give dcon. struct. on the comp. of underlying cons.
 - Examples: ne. lists over ne. lists; streams over streams, ...

- Cofree and cofree recursive directed containers
- Distributive laws between directed containers
 - $t^{\theta} \lhd q^{\theta} : (S_0 \lhd P_0) \circ^{\operatorname{c}} (S_1 \lhd P_1) \longrightarrow (S_1 \lhd P_1) \circ^{\operatorname{c}} (S_0 \lhd P_0)$ satisfying 11 laws (and with $t_0^{\theta}(s,v) \stackrel{\text{def}}{=} v(o_{0\{s\}})$ forced)
 - A dep. typed version of the Zappa-Szép product, i.e., of:
 - Given monoid actions $\alpha: N \times M \to M$ and $\beta: N \times M \to N$ satisfying two compat. laws, we get a monoid on $M \times N$ with $(m_0, n_0) \oplus (m_1, n_1) \stackrel{\text{def}}{=} (m_0 \oplus_M \alpha(n_0, m_1), \beta(n_0, m_1) \oplus_N n_1)$
- Composition of directed containers
 - Dist. laws give dcon. struct. on the comp. of underlying cons.
 - Examples: ne. lists over ne. lists; streams over streams, ...

"This should be called an aqueduct" —A.M.Pitts

Non-empty lists over non-empty lists

• **Recall:** Given a directed container $(S \triangleleft P, \downarrow, o, \oplus)$, we get a comonad on $DX = \Sigma s : S.(Ps \rightarrow X)$

• **Recall:** Given a directed container $(S \triangleleft P, \downarrow, o, \oplus)$, we get a comonad on $DX = \Sigma s : S : (Ps \rightarrow X)$

If you stare long enough at it, then

• **Recall:** Given a directed container $(S \triangleleft P, \downarrow, o, \oplus)$, we get a comonad on $DX = \Sigma s : S.(Ps \rightarrow X)$

- If you stare long enough at it, then
 - ullet it looks a lot like the costate comonad on S imes (S o -)

• **Recall:** Given a directed container $(S \triangleleft P, \downarrow, o, \oplus)$, we get a comonad on $DX = \Sigma s : S : (Ps \rightarrow X)$

- If you stare long enough at it, then
 - ullet it looks a lot like the costate comonad on S imes (S o -)
 - what happens if instead we take $TX = \Pi s : S.(Ps \times X)$?

• **Recall:** Given a directed container $(S \triangleleft P, \downarrow, o, \oplus)$, we get a comonad on $DX = \Sigma s : S : (Ps \rightarrow X)$

- If you stare long enough at it, then
 - ullet it looks a lot like the costate comonad on S imes (S o -)
 - what happens if instead we take $TX = \Pi s : S.(Ps \times X)$?
 - it looks suspiciously like the state monad $S \to (S \times -)$

Cointerpretation of (directed) containers

• In addition to the interpretation functor

$$\llbracket - \rrbracket^{c} : \mathsf{Cont} \longrightarrow [\mathsf{Set}, \mathsf{Set}]$$

one can also define a cointerpretation functor

$$\langle\!\langle -
angle\!
angle^{\mathrm{c}}: \mathsf{Cont}^{\mathrm{op}} \longrightarrow [\mathsf{Set}, \mathsf{Set}]$$

given by

$$\langle\!\langle S \lhd P \rangle\!\rangle^{\operatorname{c}} X \stackrel{\text{def}}{=} \Pi s : S. (P s \times X)$$

which lifts to $\langle\!\langle - \rangle\!\rangle^{\mathrm{dc}}$, making the following a pullback in **CAT**

Dependently typed update monads

- In more detail, given a directed container $(S \triangleleft P, \downarrow, o, \oplus)$, the corresponding dependently typed update monad is given by
 - $T : \mathbf{Set} \longrightarrow \mathbf{Set}$ $T X \stackrel{\text{def}}{=} \langle \langle S \triangleleft P \rangle \rangle^{c} X = \Pi s : S. (P s \times X)$
 - $\eta_X : X \longrightarrow TX$ $\eta_X x \stackrel{\text{def}}{=} \lambda s. (o_{\{s\}}, x)$
 - $\mu_X: T\ T\ X \longrightarrow T\ X$ $\mu_X\ f \stackrel{\text{def}}{=} \lambda s.\ \text{let}\ (p,g) = f\ s\ \text{in}$ $\text{let}\ (p',x) = g\ (s\downarrow p)\ \text{in}\ (p\oplus_{\{s\}}\ p',x)$
- Intuitively
 - *S* set/type of states
 - (P, o, \oplus) dependently typed monoid of state updates

Dependently typed update monads ctd.

• The dependently typed update monad

$$TX \stackrel{\text{def}}{=} \Pi s : S. (Ps \times X)$$

arises as the free-model monad for a (large) Lawvere theory, whose models are given by a carrier M: **Set** and two operations

$$\mathsf{lkp}: (S \to M) \longrightarrow M \qquad \mathsf{upd}: (\Pi s: S. \, P \, s) \times M \longrightarrow M$$

subject to three natural equations

- $\operatorname{lkp}(\lambda s. \operatorname{upd}_{\lambda s. o_{\{s\}}}(m)) = m$
- $lkp(\lambda s. upd_f(lkp(\lambda s'. m s'))) = lkp(\lambda s. upd_f(m(s \downarrow (f s))))$
- $\operatorname{upd}_f(\operatorname{upd}_g(m)) = \operatorname{upd}_{\lambda s. (f s) \oplus (g (s \downarrow f s))}(m)$

Examples of dep. typed update monads

- Global state
 - *S* : **Set**
 - $Ps \stackrel{\text{def}}{=} S$
 - $s \downarrow s' \stackrel{\text{def}}{=} s'$
 - $\bullet \ \mathsf{o}_{\{s\}} \ \stackrel{\mathsf{def}}{=} \ s$
 - $s' \oplus_{\{s\}} s'' \stackrel{\mathsf{def}}{=} s''$
 - $TX \stackrel{\text{def}}{=} S \rightarrow (S \times X)$

Examples of dep. typed update monads ctd.

- Monotonic state as in F*
 - S : **Set**
 - $Ps \stackrel{\text{def}}{=} \{s' : S \mid s \mathcal{R} s'\}$ where \mathcal{R} is some fixed preorder on S, e.g.,
 - \leq when $S \stackrel{\text{def}}{=}$ Nat and modelling monotonic counters
 - transition relation of some state machine (with states in S)
 - subset relation for references when $S \stackrel{\text{def}}{=} \text{heap}$
 - $s \downarrow s' \stackrel{\text{def}}{=} s'$
 - $O_{\{s\}} \stackrel{\text{def}}{=} s$
 - $s' \oplus_{\{s\}} s'' \stackrel{\text{def}}{=} s''$
 - $TX \stackrel{\text{def}}{=} \Pi s : S. (\{s' : S \mid s \mathcal{R} \ s'\} \times X)$
 - In F* it is combined with a modal logic based Hoare logic

Examples of dep. typed update monads ctd.

- A non-overflowing (non-removal) buffer
 - fixed size buffer of length n
 - storing values of some type A
 - $S \stackrel{\text{def}}{=} A^{\leq n}$
 - P as $\stackrel{\text{def}}{=} A^{\leq n \text{len } as}$
 - $as \downarrow as' \stackrel{\text{def}}{=} as + as'$
 - \bullet $o_{\{as\}} \stackrel{\text{def}}{=} []$
 - $as' \oplus_{\{as\}} as'' \stackrel{\text{def}}{=} as' ++ as''$
 - $TX \stackrel{\text{def}}{=} \Pi as : A^{\leq n} . (A^{\leq n \text{len } as} \times X)$

Examples of dep. typed update monads ctd.

- A non-underflowing (unbounded) stack
 - $S = A^*$
 - P $as = \{ps : (1 + A)^* \mid \text{removes } ps \leq \text{len } as\}$ where

removes [] = 0

 $\mathsf{removes}\, \big(\mathsf{inl} * :: \mathit{ps}\big) = \mathsf{removes}\, \mathit{ps} + 1$

removes (inr a::ps) = removes ps - 1

- $as \downarrow [] = as$ $as \downarrow (inl * :: ps) = as/1 \downarrow ps$ $as \downarrow (inr a :: ps) = (as ++ [a]) \downarrow ps$
- $\bullet \ \mathsf{o}_{\{\mathit{as}\}} = []$
- $as' \oplus_{\{as\}} as'' = as' + as''$

Simply typed update monads

• If P constant, then we get a simply typed update monad

$$TX \stackrel{\text{def}}{=} S \rightarrow (P \times X)$$

- In this case,
 - (P, o, \oplus) is a monoid in the standard sense
 - $\downarrow : S \times P \longrightarrow S$ is an action of (P, o, \oplus) on S
- This monad is the compatible composition of the monads

$$T_{\text{reader}} X \stackrel{\text{def}}{=} S \to X$$
 $T_{\text{writer}} X \stackrel{\text{def}}{=} P \times X$

- There is a one-to-one correspondence between
 - monoid actions $\downarrow : S \times P \longrightarrow S$
 - distributive laws $\theta: T_{\mathsf{writer}} \circ T_{\mathsf{reader}} \longrightarrow T_{\mathsf{reader}} \circ T_{\mathsf{writer}}$

Directed containers and BX

Directed containers and BX

• An asymmetric lens is a comodel for the th. of global state, i.e.,

```
• X: Set (the database)
• get: X \longrightarrow S (computing the view)
```

• put : $X \times S \longrightarrow X$ (updating the database)

- satisfying natural laws relating get and put
- ullet Equivalently a coalgebra for the costate comonad S imes (S o -)

Directed containers and BX

- An asymmetric lens is a comodel for the th. of global state, i.e.,
 - X : **Set** (the database)
 - get : $X \longrightarrow S$ (computing the view)
 - put : $X \times S \longrightarrow X$ (updating the database)
 - satisfying natural laws relating get and put
- ullet Equivalently a coalgebra for the costate comonad S imes (S o -)
- Given a simply typed dcon. $(S \triangleleft P, \downarrow, o, \oplus)$, i.e., where $P : \mathbf{Set}$, we define a simply typed update lens to be given by
 - *X* : **Set**
 - $lkp : X \longrightarrow S$
 - upd : $X \times P \longrightarrow X$
 - · satisfying natural laws relating lkp and upd
- Equivalently a coalgebra for $[S \triangleleft P, \downarrow, o, \oplus]^{dc}$

Directed containers and BX ctd.

- Analogously, given a general dcon. $(S \triangleleft P, \downarrow, o, \oplus)$, we can define a dependently typed update lens to be given by
 - X : Set
 - $lkp : X \longrightarrow S$
 - upd : $(\Sigma x : X.P(\mathsf{lkp}\,x)) \longrightarrow X$
 - satisfying natural laws relating lkp and upd

Directed containers and BX ctd.

- Analogously, given a general dcon. $(S \triangleleft P, \downarrow, o, \oplus)$, we can define a dependently typed update lens to be given by
 - X : Set
 - $lkp : X \longrightarrow S$
 - upd : $(\Sigma x : X.P(lkp x)) \longrightarrow X$
 - satisfying natural laws relating lkp and upd
- Previous examples were about asymmetric update lenses, but it is also possible to do a more symmetric variant with dcons.:
 - fwd \lhd bwd : $(S_{db} \lhd P_{db}, \downarrow_{db}, o_{db}, \oplus_{db})$ \longrightarrow $(S_{view} \lhd P_{view}, \downarrow_{view}, o_{view}, \oplus_{view})$
 - now both the database and the view have their own updates

Directed containers and (small) categories

Directed containers and (small) categories

- Given a directed container $(S \triangleleft P, \downarrow, o, \oplus)$ we get a corresponding small category $\mathcal{C}_{(S \triangleleft P, \downarrow, o, \oplus)}$ as follows
 - $ob(C) \stackrel{\text{def}}{=} S$
 - $C(s,s') \stackrel{\text{def}}{=} \Sigma p : P s. (s \downarrow p = s')$
 - identities are given using o
 - composition is given using ⊕
- And vice versa, every small category $\mathcal C$ gives us a corresponding directed container $(S_{\mathcal C} \lhd P_{\mathcal C}, \downarrow_{\mathcal C}, o_{\mathcal C}, \oplus_{\mathcal C})$
- But then, is it simply the case that Cat ≅ DCont?

Directed containers and (small) categories

- Given a directed container $(S \triangleleft P, \downarrow, o, \oplus)$ we get a corresponding small category $\mathcal{C}_{(S \triangleleft P, \downarrow, o, \oplus)}$ as follows
 - $ob(C) \stackrel{\text{def}}{=} S$
 - $C(s,s') \stackrel{\text{def}}{=} \Sigma p : P s. (s \downarrow p = s')$
 - identities are given using o
 - composition is given using ⊕
- And vice versa, every small category $\mathcal C$ gives us a corresponding directed container $(S_{\mathcal C} \lhd P_{\mathcal C}, \downarrow_{\mathcal C}, o_{\mathcal C}, \oplus_{\mathcal C})$

Directed container morphisms as cofunctors

• Given a directed container morphism

$$t \triangleleft q : (S \triangleleft P, \downarrow, o, \oplus) \longrightarrow (S' \triangleleft P', \downarrow', o', \oplus')$$

we do not get a functor, but instead a cofunctor [Aguiar'97]

$$F_{t \lhd q} : \mathcal{C}_{(S \lhd P, \downarrow, o, \oplus)} \longrightarrow \mathcal{D}_{(S' \lhd P', \downarrow', o', \oplus')}$$

given by a mapping of objects

$$(F_{t \triangleleft q})_0 \stackrel{\text{def}}{=} t : ob(\mathcal{C}) \longrightarrow ob(\mathcal{D})$$

and a lifting operation on morphisms (pre-opcleavage)

$$s \xrightarrow{(F_{t \lhd q})_1(s,p) \stackrel{\text{def}}{=} q_{\{s\}} p} \circledast \quad \text{in } \mathcal{C}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad$$

Constructions on dcons. revisited

- On the one hand, we can relate existing constructions on directed containers to constructions (small) categories, e.g.,
 - the symmetry of the definition of directed polynomials in

$$s: \overline{P} \longrightarrow S$$
 and $\downarrow : \overline{P} \longrightarrow S$

manifests as every category having an opposite category

Constructions on dcons. revisited

- On the one hand, we can relate existing constructions on directed containers to constructions (small) categories, e.g.,
 - the symmetry of the definition of directed polynomials in

$$s: \overline{P} \longrightarrow S$$
 and $\downarrow : \overline{P} \longrightarrow S$

manifests as every category having an opposite category

• bidirected containers (ongoing, a bit of a conundrum) with

$$(-)^{-1}: \Pi\{s:S\}. \Pi p: P s. P(s\downarrow p)$$

then correspond to groupoids

Constructions on dcons. revisited

- On the one hand, we can relate existing constructions on directed containers to constructions (small) categories, e.g.,
 - the symmetry of the definition of directed polynomials in

$$s: \overline{P} \longrightarrow S$$
 and $\downarrow : \overline{P} \longrightarrow S$

manifests as every category having an opposite category

• bidirected containers (ongoing, a bit of a conundrum) with

$$(-)^{-1}: \Pi\{s:S\}. \Pi p: P s. P(s \downarrow p)$$

then correspond to groupoids

- On the other hand, the (small) categories view also provides new insights into directed containers and comonads, e.g.,
 - factorisation of directed container/comonad morphisms

Factorisation of morphisms

Given a directed container morphism

$$t \triangleleft q: (S \triangleleft P, \downarrow, o, \oplus) \longrightarrow (S' \triangleleft P', \downarrow', o', \oplus')$$

we can factorise $(t \lhd q)$ as $(t \lhd \lambda s. id_{P'(ts)}) \circ (id_S \lhd q)$ where

inspired by the full image factorisation of ordinary functors

Notably, this works for all pullback-preserving comonads

Conclusions

- Directed containers
 - type-theoretic and polynomial presentations
 - their use in functional programming
 - why are they canonical such structure?
- Some constructions on directed containers
 - coproducts of directed containers
 - strict directed containers and their products
 - focussing a container
 - ...
- Directed containers and computational effects
- Directed containers and BX
- Directed containers and categories