Tölvutækni og forritun Lokapróf

brj46

Nóvember 2024

Hvað þarf ég að kunna fyrir prófið?

☐ Bitavinnsla með heiltölur (signed og unsigned)
☐ Einfaldar fleytitölur
□ Skrifa C kóða út frá smalamálskóða (reikniaðgerðir, styriskipanir, föll, bestun,)
☐ Minnisyfirflæði (buffer overflow)
☐ Skyndiminni (Skipulag og notkun)
☐ Frabrigði, ferlar (fork, wait)
☐ Skipulag á sýndarminni
☐ Minnisúthlutun

Hlutir til að setja á minnið

- mov: mov (move) flytur gildi á milli minnisstaða, t.d. movl %eax, %ebx flytur gildið í %eax yfir í %ebx
- lea: lea (load effective address) er notað til að reikna út minnisstaða og setja hana í register, t.d. leaq (%rbx, %rcx, 4), %rax reiknar út rbx + (rcx * 4) og setur í %rax
- q: q stendur fyrir quadword sem er 64 bita gildi
- l: l stendur fyrir long sem er 32 bita gildi
- w: w stendur fyrir word sem er 16 bita gildi
- b: b stendur fyrir byte sem er 8 bita gildi
- %rax: 64 bita register
- %eax: 32 bita register
- %ax: 16 bita register
- %al: 8 bita register
- Diane's Silk Dress Costs 89 (rdi, rsi, rdx, rcx, r8, r9)
- Formúla fyrir vistfang:

Vistfang $a[i][j] = \text{Upphafsvistfang} + (i \times \text{fj\"oldi dalka} + j) \times \text{st\'er\'o} \text{ staks}$

Tekið frá Tuma

assembly

Uppbrot Gistis

algengar skipanir

skipun	argument	lýsing	
mov	x, y	færir úr x yfir í y, sjá conditional move fyrir neðan	
push	х	ýtir x á hlaða og eftir að hækka %ESP um sizeof(x) bæti og sett	
		þar inn	
pop	х	skilar síðasta gildi sem var sett á hlaðann inn í x	
lea	(x), y	lea, betur þekkt sem leaq er notað til að framkvæma reikning	
		(x) og setja útkomu inn í y	
(x,y)		skilar útkomu úr reikningi x + y	
0,(,x,y)		skilar útkomu úr reikningi x * y	
(x,y,z)		skilar útkomu úr reikningi x + y * z	
2(x, y, z)		skilar útkomu úr reikningi (2 + (x + y * z))	
sar	x, y	hliðrar y um x bita til hægri, basically heiltöludeiling með x	
sal	x, y	næstum eins og sar nema til vinstri, núna með margföldun með	
		2^x	
sub	x,y	dregur y frá x	
inc/dec	x	hækkar/lækkar gildi x um 1	

ath. SHL og SAL gera það sama en SHR virkar ekki með signed int eins og SAR

Algeng mynstur

mynstur	skýring
testl %edi, %edi	logical andað edi við edi þannig ef $edi \le 0$ er hægt að cmove
	eða jc í samræmi við það
cmove \$5, %eax	færðu 5 inn í eax ef z-flaggið er sett sem 1 þ.e. ef edi er tómt
leal 0(%rdi, %rdi, 4)	margfaldar %rdi með 5, $(x + 4 * x)$

conditional codes

þessir kóðar fara a endann á cmov skipunum þ.e. cmov- í línu eftir að eitthvað er testað eins og í dæmi

testb \$7, %dl cmove \$1, %rax

Petta er pínu fucked dæmi því e flaggið í cmove stendur fyrir equal nema hvað við erum actually að athuga hvort útkomugildið sé 0, þ.e. að enginn af neðstu 3 bitunum sé 1, þá er gott að muna að e er jafngilt z

þessi koði færir 1 inn í %rax ef neðstu þrír bitar %dl eru ekki 111

cc	condition
О	overflow
no	no overflow
b, nae	below, not above or equal
nb, ae	not below, above or equal
e, z	equal(zero)
ne, nz	not equal, (not zero)
na, be	not above, below or equal
a, nbe	above, not below or equal
S	sign
ns	no sign
p	parity
np	no parity
l, nge	less, not greater than or equal
nl	not less, greater than or equal
ng, le	not greater, less than or equal
g, nle	greater, not less than or equal

minnissvæði

ath. global breytur sem eru skilgreindar sem 0 eða NULL eru líka í .bss

Sýndarminni

• sýndarvistföng: a bitar

• raunvistföng: b bitar

• síðustærð: c bæti

• TLB: d vítt, e sæti

• fjöldi mengha: f

fjöldi mengja er reiknað $\frac{e}{d} = f$

við erum með sýndarvistfang sem er 16 bitar sem skiptast í 4 mengi þá er ${\bf VPN}_{4}^{3}\times 16$ bitar og ${\bf VPO}$ 4 bitar

TBLT og **TLBI** eru skipting á **VPN** og **TBLT** restin raunvistföngin eru jafn löng og **TLBT** og skipt niður í tvo hluta **PPN** og **PPO**, sem er jafn stór og **VPO**(í þessu tilfelli 4 bitar)

annap dæmi, við erum með sýndarminni sem er 4kb að stærð, 4-vítt, E, og með 16 mengi, S, svo útfrá þessum tölum finnum við línustærð, B, með reikningnum $\frac{4096}{16\times4}=64$ skiptum þessu nu upp fyrir 32-bita vistfang:

klukkutifsformúla

 $a + s \times r = m$

- aðgangstími = a(tif)
- smellahlutfall = s(hlutfall)
- smellarefsing = r (tif)
- meðalaðgangstími = m (tif)

dæmi:

- 97% smellahlutfall, $1 + 0.03 \times 100 = 4$
- 99% smellahlutfall, $1 + 0.01 \times 100 = 2$

Próf 2022 og mínar lausnir við því

1

Í þessu dæmi ætlum við að nota unsigned long breytur til að tákna (allt að) 64 staka mengi (sets). Ef a er unsigned long breyta þá er stak i í menginu a ef biti i $(i=0,\dots 63)$ er 1, annars er stak i ekki í menginu. Til dæmis væri mengið $\{0,3\}$, táknað með 64-bita bitastrengnum 00...01001. Athugið að bitarnir eru númeraðir frá hægri til vinstri, svo stak 0 er í menginu, en stak 1 er ekki í menginu, stak 2 er ekki í menginu, o.s.frv.

a.

Skrifið einnar línu fall (þ.e. bara ein **return** skipun) sem skilar sammengi (union) tveggja slíkra mengja. Haus fallsins: **unsigned long sammengi(unsigned long a, unsigned long b)**

Svar:

```
unsigned long sammengi(unsigned long a, unsigned long b){
return a | b;
}
```

b.

Skrifið einnar línu fall sem skilar mengjamun (set difference) mengjanna a og b, þ.e. öll stök sem eru í a, en ekki í b. Haus fallsins: **unsigned long munur(unsigned long a, unsigned long b)**

Svar:

```
unsigned long munur(unsigned long a, unsigned long b){
return a & ~b;
}
```

c.

Athugið að í C er fastinn **1ul** (tölustafurinn **1** og bókstafirnir u og l) 64-bita heiltalan 1 án formerkis. Hvaða mengi táknar segðin (1ul << i)?

Svar: Segðin (1ul << i) táknar mengið sem inniheldur stakið i og engin önnur stök.

d.

Skrifið einnar línu fall sem skilar því hvort stak i sé í menginu a. Skilagildið á að vera 1 (*satt*) ef i er í a, en 0 (*ósatt*) annars. Þið megið gera ráð fyrir því að gildið á i sé á bilinu 0 til 63. Haus fallsins: **int stakl(unsigned long a, int i)**

Svar:

```
int stakI(unsigned long a, int i){
    return (a >> i) & 1;
}
```

Við höfum 10-bita fleytitölur sem fylgja IEEE staðlinum. Við vitum ekki skiptingu þeirra í veldishluta (exp) og brothluta (frac), en það er einn formerkisbiti fremst í þeim.

a.

Hver er lágmarks bitafjöldi í brothluta fleytitölunnar til að hægt sé að tákna töluna $3\frac{9}{16}$ (= 3.5625) nákvæmlega á þessu formi? Rökstyðjið svar ykkar með útreikningi.

Svar: alright við vitum að í IEEE staðlinum erum við með fyrstu töluna sem segir til um + eða mínus næst kemur veldishlutinn og svo brothlutinn.

breytum 3.5625 í binary

$$3.5625 = 11.1001$$

setjum nú töluna í normað form $(1.f \times 2^n)$ færum kommuna um einn stað til vinstri 1.11001×2^1 Veldisvísirinn er þá 1 og brothlutinn er 11001

svo Lágmarksbitafjöldi í brothlutanum er því 5 bitar

b.

Hvert er bitagildið fyrir töluna $3\frac{9}{16} (= 3.5625)$ miðað við bitafjöldann fyrir brothlutann sem þið funduð í a-lið (ef þið náðuð ekki að leysa a-liðinn megið þið gefa ykkur raunhæft gildi bitafjöldanum fyrir brothlutann)? Sýnið útreikning á bitagildinu.

Svar:

þar sem við erum að vinna með 10 bita fleytitölur og við höfum að brothlutinn er 5 bitar þá er veldishlutinn 4 bitar og formerkisbitinn er 1 biti

1. Reiknum bias (skekkjustuðulinn)

$$Bias = 2^{4-1} - 1 = 7$$

2. Geymdur veldisvísir er þá

$$GeymtE = E + Bias = 1 + 7 = 8$$

8 í tvíundarkerfi er 1000

3. setjum saman bitana:

• Formeki: 0 (jákvæð tala)

• Veldishlutinn: 1000

• Brothlutinn: 11001

heildarbitaröðin og bitagildið er þá: 0 1000 11001

Segjum að í þessum 10-bita fleytitölum hefur verið ákveðið að nota einn bita fyrir formerki, einn bita fyrir brothluta og restina af bitunum fyrir veldishlutann. Er hægt að tákna staðlaðar tölur á þessu formi, og ef svo er, hver er þá <u>stærsta staðlaða talan</u> sem hægt er að tákna? Rökstyðjið svar ykkar.

Svar: Já við getum táknað staðlaðar tölur á þessu formi

• Formerki: 1 biti

• Veldishlutinn: 8 bitar

• Brothlutinn: 1 biti

Reiknum Bias

$$2^{k-1} - 1 = 2^{8-1} = 2^7 - 1 = 127$$

Hámarks veldistalan er þá $2^{8-1} - 1 = 127$

brothlutinn er 1 og við höfum gefinn 1 bita svo marktalan er 1.1 í binary sem í decimal er 1.5

stærsta staðlaða talan er því

$$1.5 \times 2^{127}$$

d.

Nú hefur verið ákveðið að nota einn bita fyrir formerki, einn bita fyrir veldishluta og restina af bitunum fyrir brothlutann. Er hægt að tákna staðlaðar tölur á þessu formi, og ef svo er, hver er nú <u>stærsta staðlaða talan</u> sem hægt er að tákna? Rökstyðjið svar ykkar.

Svar: Alright reynum þetta þá erum við með

• Formerki: 1 biti

• Veldishlutinn: 1 biti

• Brothlutinn: 8 bitar

reiknum bias

$$2^{k-1} - 1 = 2^{1-1} - 1 = 0$$

Mögulegir veldisvísar eru þá: 0, 1

$$E = 1 - 0 = 1$$

Stærsta talan sem hægt er að tákna er þá:

$$1.11111111_2 \times 2^1 = 1.(2^{1/2^1} + 1/2^2 + 1/2^3 + 1/2^{\cdots} + 2^8) = 1.9960375 \times 2^1$$

Stærsta staðlaða talan:

$$1.9960375 \times 2^{1} = 3.9921875$$

Hér fyrir neðan er smalamálskóði fallsins fun:

```
fun:
             (%rdi), %rax
    movq
             .L2
    jmp
.L3:
             (%rax, %rax, 2), %rax
    leaq
             %rax, %rax
    addq
    addq
             $1, %rsi
.L2:
             %rdx, %rsi
    cmpq
    jl
             .L3
    ret
```

a.

Hver er fjöldi vistfanga fallsins **fun** og hvert er tag hvers þeirra? Þið eigið að geta séð það út frá notkun gista í kóðanum hér að ofan. Rökstyðjið svarið með vísun í kóðann.

Svar:

Við höfum þrjár inntaksbreytur og eina staðværa breytu

- %rdi við sjáum að hér er movq (rdi), rax sem bendir til að þetta sé pointer á unsigned long gildi og fyrsta inntaksbreytan
- %rsi Notað í samanburði cmpq rdx, rsi og síðan uppfærð með addq \$1, rsi þetta er önnur inntaksbreytan, líklega heiltala.
- %rdx Notað í samanburði cmpq rdx, rsi þetta er þriðja inntaksbreytan og sennilega líka heiltala
- %rax Notað til að geyma gildi sem er lesið úr mminni og síðan uppfært í lykkju.

því erum við með 4 vistföng

- 1. **Bendir**: unsigned long * (í %rdi)
- 2. Heiltala s: unsigned long (í %rsi)
- 3. Heiltala x: unsigned long (í %rdx)
- 4. **Staðvær heiltala rax**: unsigned long (í %rax)

b.

Skrifið jafngildan C kóða fyrir fallið **fun**. Þið megið velja breytunöfnin, eða nefna þau eftir gistunum.

Svar:

```
unsigned long fun(unsigned long *ptr, unsigned long s, unsigned long x){
unsigned long rax = *ptr;
while(s < x){
    rax = 6 * rax;
    s = s + 1;
}
return rax;
}</pre>
```

Smalamálskóðinn að ofan er úttak úr þýðandanum **gcc** með bestunarrofann **-Og**. Ef notaður er bestunarrofinn **-O3** (sem er mesta mögulega bestun) fæst kóðinn sem hér er fyrir neðan. Berið hann sama við fyrri kóðann og segið í hvaða tilvikum **O3**-kóðinn gæti verið hraðvirkari.

```
fun:
             (%rdi), %rax
    movq
             %rdx, %rsi
    cmpq
             .L1
    jge
.L3:
             (%rax, %rax, 2), %rax
    leaq
             %rax, %rax
    addq
    addq
             $1, %rsi
    cmpq
             %rsi, %rdx
    jne
             .L3
.L1:
    ret
```

Svar: Byrjum á að skoða munin á milli þessara kóða:

við sjáum að í seinni kóðanum höfum við strax compare skipun í annari línu sem segir jge (jump greater or equal) sem þýðir að ef **rsi** er stærra eða jafnt og **rdx** þá er haldið áfram í **.L1** sem fer beint í return þannig ef rsi er minna er rdx þá er farið í **.L3**

Næst fáum við leaq skipunina sem margfaldar rax með 3 og bætir í rax síðan er bætt rax við rax svo í raun er verið að gera $6 \times rax$ síðan er 1 bætt við rsi og kannað hvort rsi sé orðið jafnt og rdx og ef ekki er farið aftur í **.L3** sem myndar lykkju.

ástæðan af hverju þetta er hraðvirkara er að það í seinna er færri hopp á milli.

Hér fyrir neðan er smalamálskóði fyrir endurkvæmt fall með hausinn: **int rec(int n, int m)**:

```
rec:
          %esi, %edi # lína 1
   cmpl
          .L8 # lína 2
   jge
          $0, %eax # lina 3
   movl
                    # lína 4
   ret
.L8:
          $8, %rsp
   subq
                     # lína 5
          %esi, %esi # lína 6
   addl
          $2, %edi
   subl
                     # lína 7
          rec
   call
                     # lína 8
          $1, %eax # lina 9
   addl
   addq
          $8, %rsp # lina 10
   ret
                     # lína 11
```

a.

Sýnið jafngilt endurkvæmt C fall. Rökstyðjið einstakar skipanir út frá línum í smalamálskóðanum.

Svar:

Byrjum á að skoða kóðann:

- lína 1 og 2: ef edi er stærra eða jafnt og esi þá er hoppað í .L8
- 3 og 4: ef edi er minna en esi þá er eax núllstillt og return skipun framkvæmd.
- lína 5: rsp er minnkað um 8
- lína 6: esi er tvöfaldast
- lína 7: edi er minnkað um
- lína 8: kallað er á fallið rec
- lína 9: eax er hækkað um 1
- lína 10: rsp er hækkað um 8
- lína 11: return skipun

alright reynum að átta okkur á breytunum

- edi: við höfum cmp(l) l tekur 32 bita sem þýðir að þetta er líklega heiltala
- esi: við höfum cmp(l) sem þýðir að þetta er líklega heiltala
- eax: við höfum mov(l) skipun sem þýðir að þetta er líklega heiltala
- rsp: við höfum sub(q) q tekur 64 bita sem þýðir að þetta er líklega minnisvísir

```
int rec(int n, int m) {
    if(n >= m) {
        m = m + m;
        n = n - 2;
        int result = rec(n, m);
    return result + 1;
}
```

b.

Teiknið upp hlaðaramma (stack frame) <u>fallsins \mathbf{rec} </u> og merkið inn einstök svæði í honum.

Svar:

Endurkomuvistfang Ónotað pláss Þrjár sjálfstæðar spurningar

a.

Gefið er fylkið **short int a**[6][10]. Ef upphafsvistfang þess er 0, hvert er þá vistfang staksins a[3][4]? Sýnið útreikning.

Svar

notum víst þessa formúlu fyrir vistfang

```
Vistfanga[i][j] = \text{Upphafsvistfang} + (i \times \text{fj\"oldi dalka} + j) \times \text{st\'er\'o} \text{ staks}
```

- Upphafsvistfang: 0
- fjöldi dalka: 10
- stærð staks: 2 (short int) = 2 bæti

Reiknum:

Vistfang
$$a[3][4] = 0 + (3 \times 10 + 4) \times 2 = 0 + 34 \times 2 = 68$$

Vistfang staksins a[3][4] er því 68

b.

Gefin er eftirfarandi færsla í C forriti:

```
struct abcd {
    short int a[2];
    double b;
    char c;
    char *d;
};
```

Rissið upp mynd af henni út frá uppröðunarkröfu (*alignment requirements*) x86- 64. Hversu mörg bæti tekur færslan?

Svar:

Skoðum fyrst hvað hvert stak tekur af minni

- Short int a[2]: 2 bæti
- Double b: 8 bæti
- Char c: 1 bæti
- Char *d: 8 bæti

Offset	Biti	lýsing
0	a[0] (2bæti)	fyrsta stak í a
2	a[1] (2bæti)	næsta stak í a
4-7	Padding (4 bæti)	Fylling til að halda réttri röð?
8-15	b (8 bæti)	double b
16	c (1 bæti)	char c
17-23	Padding (7 bæti)	Fylling til að halda réttri röð?
24-31	d (8 bæti)	char *d

Færslan tekur því 32 bæti

Skyndiminni er 2-vítt (2-way set associative) með heildarstærðina 2048 (=211) bæti og 16 (=24) bæta línur (þ.e. blokkir).

i. Hvað hefur skyndiminnið mörg mengi?

Svar: Til að finna Mengin skulum við nota formúluna

$$Fj\"{o}ldi\ Mengi = \frac{Fj\"{o}ldi\ l\'{n}a}{Samstillingarstu\~{o}ull}$$

Til að finna heildarfjölda lína í skyndiminni er notað formúluna:

Fjöldi lína =
$$\frac{\text{Heildarstærð}}{\text{Línustærð}} = \frac{2048bæti}{16bæti} = 128línur$$

Fjöldi mengja er þá (samstillingarstuðulinn er 2 af því þetta er 2-vítt skyndiminni):

$$\frac{128l\text{ínur}}{2} = 64\text{mengi}$$

ii. Ef vistföng eru 16 bitar, hversu margir bitar eru þá notaðir fyrir merkið (tag)?

Svar:

Til að finna fjölda merkisbita þurfum við að:

- 1. finna fjölda bita fyrir block Offset
- 2. finna fjölda bita fyrir set index
- 3. Draga þessa bita frá heildarfjölda ita í vistfangi til að fá fjölda merkisbita.

Finnum fjölda bita fyrir block Offset:

Block offset =
$$\log_2(\text{Línustærð}) = \log_2(16) = 4\text{bitar}$$

Finnum fjölda bita fyrir set index:

fjöldi mengja er 64 þannig að:

Set index =
$$log_2(Fj\"{o}ldi mengja) = log_2(64) = 6bitar$$

Fjöldi merkisbita:

Fjöldi merkisbita =
$$16 - 4 - 6 = 6$$
bitar

Merkisbitar eru því 6 bitar

Hér fyrir neðan er forrit sem býr til ný ferli með fork-fallinu.

```
void fall() {
    if (fork() != 0) {
        fork();
        printf("B\n");
    }
} int main() {
    printf("A\n");
    fall();
    printf("C\n");
    exit(0);
}
```

a.

Teiknið upp ferlarit (process graph) fyrir forritið og merkið inná það hvað forritið prentar út á hverjum stað.

Svar:

Skoðum þetta forrit:

- 1. lína 1: prentar út A
- 2. lína 2: fallið fall er kallað
- 3. lina 1 í falli: hér er kallað á fork (ferill P1) og ef það er ekki 0 þá er kallað á fork aftur hér heldur upprunalega ferlið P0 áfram þar sem Id hjá því er ekki 0 og því er kallað á fork aftur, það myndar nýtt ferli P2 Ferli.
- 4. lína 3 í falli: Hér prenta ferli P0 og P2 út B en ekki P1 þar sem það stóðst ekki if skilyrðið þar sem fork() skilar 0.
- 5. lína 4: prentar út C hér prenta allir 3 ferlarnir út C
- 6. lína 5: hér er kallað á exit(0) í öllum ferlunum og því er forritið lokið.

Skulum nú gera ferlarit:

b.

Sýnið þrjár ólíkar mögulegar útprentanir sem forritið getur gert.

Svar:

Par sem allir ferlarnir keyra á sama tíma en bara eftir að er kallað á þá þannig mögulegar útkomur eru:

- A C B C B C
- A B B C C C
- A B C B C C

c.

Hversu mörg ferli munu framkvæma skipunina exit(0)"í main-fallinu? Rökstyðjið svarið!

Svar:

Allir ferlarnir munu framkvæma skipunina exit(0) þar sem það er kallað á hana í main fallinu og því munu allir ferlarnir loka.

Próf 2021 - Og mín Heiðarleg tilraun á að leysa það

1.

Í þessu dæmi höfum við 6-bita orðið **010011**. Það er hægt að túlka það á þrjá vegu sem gildi: *i*. 6-bita heiltala án formerkis (unsigned), *ii*. 6-bita tvíandhverfu heiltala (signed) og *iii*. 6-bita fleytitala (floating point) með 1 formerkisbita, 3 veldisbita og 2 brotbita.

a.

Túlkið orðið 010011 sem gildi á þessa þrjá vegu. Sýnið útreikning (sérstaklega í fleytitölunni).

Svar:

- 6-bita heiltala án formerkis: reiknum þá $2^0 + 2^1 + 2^4 = 19$
- **6-bita tvíandhverfu heiltala**: Reiknum þá sem signed Þar sem það er 0 fremst þá er þetta jákvæð tala og skilar sama svari og án formerkis þannig $2^0 + 2^1 + 2^4 = 19$
- 6-bita fleytitala: sem 6 bita fleyti tala með 1 formerkisbita og 3 veldisbita og 2 brotbita þá höfum við 0 fyrir jákvæða tölu 100 sem veldisbita og 11 sem brotbita. við þurfum fyrst að reikna raunverulegan veldisvisi (E) fyrir það þurfum við fyrst að reikna skekkjustuðulinn sem er reiknaður:

Bias =
$$2^{k-1} - 1 = 2^{3(bitar)-1} - 1 = 2^2 - 1 = 4 - 1 = 3$$

Reiknum nú

$$E = \text{bitagildið b.e.a.s } 100 = 4 - \text{Bias} = 4 - 1$$

Svo raunverulegi veldisvísirinn er 1 semsagt 2^1 nú finnum við brothlutann 11 við vitum að það er gefinn 1 á undan brothluta svo við fáum 1.11 til að reikna brothluta gerum við $1.(2^{1/2}+2^{1/4})=1.75$ Setjum þetta nú saman

$$+1.75 \times 2^1 = 3.5$$

b.

Pið megið breyta einum bita í orðinu að ofan og viljið fá sem hæst gildi (þ.e. sem næst $+\infty$). Sýnið og rökstyðjið í hverju tilviki hvaða bita þið mynduð breyta til að hámarka gildið. Það geta verið ólíkir bitar í hverri túlkun

svar:

- a. í unsigned þá myndum við bæta 1 fremst þar sem hægt veri svo(1)10011=1+2+16+32=51
- b. í signed þá má fremsti ekki vera 1 þar sem þá er talan í mínus svo 01(1)011 = 1 + 2 + 8 + 16 = 27
- c. hér myndum við vilja bæta á veldisvísinn svo þá væri talan 011011 Reiknum skekkjuna bias = $2^{3-1}-1=2^2-1=4-1=3$ Reiknum Raunverulegann veldisvísi e- bias = 6-3=3 Svo talan yrði $1.75\times 2^3=1.75\times 8=14$

c.

Hvaða einum bita ætti að breyta til að lágmarka gildið (þ.e. komast sem næst $-\infty$) í hverri túlkun? Rökstyðjið hvert tilvik

svar:

- a. í unsigned þá myndum við taka 0 fremst þar sem hægt veri svo 000011 = 1 + 2 = 3
- b. í signed þá setjum við fremsta sem 1 þar sem þá er talan í mínus svo(1)10011 = -32 + 16 + 2 + 1 = -13
- c. hér myndum við vilja setja formerkisbitann sem 1 til að fá töluna í mínus svo þá væri talan 110011 Reiknum skekkjuna bias = $2^{3-1}-1=2^2-1=4-1=3$ Reiknum Raunverulegann veldisvísi e bias = 4-3=1 Svo talan yrði $-1.75\times 2^1=-1.75\times 2=-3.5$

Hér fyrir neðan er x86-64 smalamálsútgáfa af endurkvæma fallinu func.

```
func:
            $1, %edi
    cmpl
    jle
            .L3
    pushq
            %rbx
            (%rdi,%rdi,2), %ebx
    leal
            3(%rdi), %edx
    leal
            %edi, %edi
    testl
    cmovns %edi, %edx
            $2, %edx
    sarl
    movl
            %edx, %edi
            func
    call
    addl
            %ebx, %eax
            %rbx
    popq
    ret
.L3:
    movl
            $1, %eax
    ret
```

a.

Skrifið jafngilda C útgáfu af þessu falli. Til að hjálpa ykkur við það er hér fyrir neðan beinagrind af fallinu sem þið getið fyllt inn í. Rökstyðjið sérstaklega hvaða smalamálsskipanir standa á bakvið þann kóða sem þið setjið inn.

```
int func(int n) {
    if ( ____ )
        return ____;
    return ____ + func( ____ );
}
```

svar: Alright skoðum hvað línurnar gera

- Lína 1: berum edi við 1
- Lína 2: ef edi er 1 eða minna þá er hoppað í .L3
- Lína 3: ýtt rbx á hlaðann
- Lína 4: rdi sinnum 3 sett í ebx
- Lína 5: 3 + rdi sett í edx
- Lína 6: skoðar hvort edi sé neikvætt eða ekki
- Lína 7: ef edi er ekki neikvætt þá er edx = n annars er edx = n+3
- Lína 8: shift arithmetically right eða edi >> 2 sem deilir með 4
- Lína 9: setur edi í edx
- Lína 10: callað á func
- Lína 11: ebx bætt við eax þar sem ebx er 3 * n þannig eax = eax + ebx
- Lína 12: rbx poppað af hlaðanum endurheimt gildi úr kösinni
- Lína 13: return skipun
- Lína 14: sett eax sem 1

• lína 15: return skipun

Reynum nú að setja þetta í c fall:

```
int func(int n){
   if(n >=1)
       return 1;
   return (3*n) + func((n >= 0 ? n : n+3) / 4);
}
```

b.

Teiknið upp hlaðaramma (*stack frame*) fyrir fallið. Sýnið stöðuna þegar þrjú endurkvæm köll hafa orðið. Tilgreinið einstaka hluta hvers hlaðaramma.

Hér fyrir neðan er C fall sem afritar eitt stak á milli tveggja tvívíðra fylkja. Fylkin eru víðvær og er fylkið a af stærðinni MxN, en b er af stærðinni NxM. Þið viti ekki gildin á M eða N, en eigið að geta fundið þau útfrá smalamálskóðanum fyrir fallið sem einnig er gefinn.

```
long int a[M][N];
long int b[N][M];
void afrit( int i, int j ) {
    a[i][j] = b[j][i];
}
afrit:
                %edi, %rdi
    movslq
    movslq
                %esi, %rsi
                0(, %rsi, 8), %rax
    leaq
                %rsi, %rax
    subq
                %rdi, %rax
    addq
                b(,%rax,8), %rdx
    movq
    leaq
                (%rdi,%rdi,4), %rax
    leaq
                (%rdi, %rax, 2), %rax
                %rax, %rsi
    addq
                %rdx, a(,%rsi,8)
    movq
    ret
```

a.

Hver eru gildin á **M** og **N**? Rökstyðjið svörin út frá skipununum í smalamálskóðanum.

svar: ef við fylgjum diane's silk dress cost 89 þá sjáum við að edi er þar að leiðandi i og esi er þá j.

skoðum nú línurnar

- Lína 1: setur 32 bita innihald edi í 64 bita innihald rdi þannig rdi fær i
- Lína 2: setur 32 bita innihald esi í 64 bita rsi þannig rsi fær j
- Lína 3: rsi * 8 sett í rax þannig rax er jafnt og 8 * j
- Lina 4: rax rsi þannig rax = 7 * j
- Lína 5: rax + rdi pannig rax = 7 * j + i
- Lína 6: b + 8 * rax sett í rdx b.e.a.s (7 * j + i)
- Lína 7: rdi * 5 sett í rax
- Lína 8: rax * 2 + rdi sett í rax (þannig 11 * rdi sett í rax)
- Lína 9: rax = rax + rdi (rsi = j + 11 * i)
- Lína 10: skrifar gildi úr rdx á vistfanginu a + rsi * 8
- Lina 11: return

út frá þessu notum við:

Visfang =
$$b + (j \times M + i) \times 8$$

Út frá smalarmálskóðanum fyrir b þá fáum við

Offset fyrir
$$b[j][i] = 7j + i$$

jafnsetjum:

$$j \times M + i = 7j + i$$

Einangrum M

$$M = 7$$

Gerum nú fyrir a:

$$Vistfang = a + (i \times N \times j) \times 8$$

út frá smalamálinu fáum við

offset fyrir
$$a[i][j] = 11i + j$$

jafnsetjum:

$$i \times N \times j = 11i + j$$

einangrum N

$$N = 11$$

svo gildin eru

$$M = 7 N = 11$$

b.

:Ef bæði fylkin hefðu verið skilgreind með stærðina MxN hefði þá verið hægt að finna gildið á bæði M og N (eða annað hvort þeirra) út frá smalamálskóðanum? Rökstyðjið svar ykkar.

Svar: nei ekki hægt en vá hvað ég nenni því ekki að fara út í af hverju

Hér fyrir neðan eru súlurit fyrir lestrarafköst tveggja ólíkra tölva. Gildin eru fengin úr minnisfjalli (memory mountain) fyrir tölvurnar. Það er tekinn skurður í gegnum minnisfjallið við skrefstærð (stride) 8, svipað og gert var í einu heimadæmi í námskeiðinu. Í súluritinu er x-ásinn stærð vinnumengisins (working set), þ.e. stærð fylkjanna sem unnið er með, og y-ásinn sýnir lestrarafköst í MB/sek. Dökku súlurnar sýna afköst tölvu A, en ljósu súlurnar sýna afköst tölvu B. Notið súluritin til að svara eftirfarandi spurningum:

a.

Hversu mörg lög (*levels*) af skyndiminni eru í tölvu A og hversu stórt má áætla að hvert þeirra sé? Rökstyðjið svarið!

b.

Hversu mörg lög (*levels*) af skyndiminni eru í tölvu B og hversu stórt má áætla að hvert þeirra sé? Rökstyðjið svarið!

c.

Tiltekið forrit notar tætitöflu (*hash table*) nokkuð mikið. Taflan hefur 50.000 stök, sem hvert er 8 bæti að stærð. Hvor tölvan væri hagkvæmari fyrir þetta forrit? Rökstyðjið.

d.

Breytist svar ykkar við c-lið ef tætitaflan stækkar, t.d. tvöfaldast eða þrefaldast? Rökstyðjið.

e.

Er hægt að segja eitthvað um uppsetningu skyndiminnanna (þ.e. línustærð, vídd, eða fjölda mengja) í tölvunum tveimur út frá þessum súluritum? Rökstyðjið.

Vika 1

Kynning, Linux, C

Vika 2
C, Bendar, minni, notkun
Vika 3
Upplýsingar sem bitar, heiltölur
Vika 4
Bætaröð, fleytitölur
Vika 5
Skipulag örgjava, smalamálsforritun
Vika6
Stýriskipanir og stef í smalamáli
Vika 7
Gögn og yfirflæði minnis
Vika 8
Bestun smalamálskóða
Vika 9
Minnisstigveldi, skyndiminni
Vika 10
Tenging, keyrsluskrár, forritasöfn
Vika 11
Frábrigði, ferlastýring

Vika 12

Sýndarminni

Vika 13

Minnisúthlutun, ruslasöfnun, minnisvillur

Vika 14

Samantekt