

Assignment Project Exam Help

https://eduassistpro.github.

Office S2.14, Strand Building, Stra

Add White edu_assist_pr

Nature-Inspired Learning Algorithms (7CCSMBIM)

Outline

- Problem and Difficulties
- 2 Introduction

SSIGNMENT Project Exam Help Binary Encoding and Decoding

- Billary Encouning and Deco
- Decis
- * Popul https://eduassistpro.github.
- Selection
- Mating-Crosspoer WeChat edu_assist_pr
- Convergence
- Performance Evaluation
- Binary GA Example by Hand
- 6 Why do GAs work? Schema Theorem
- Examples

Learning Aims and Objectives

Aims

Assignments Projecto Lynam Help

- To apply the binary genetic algorithm to optimisation problems.
- objectiv https://eduassistpro.github.
 - To study how the binary genetic algorithm works in d
 - To conduct dedu_assist_pr

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Problem and Difficulties

Problem Statement:

Assignment-Project Exam Help

- Gradient information is not required
- Difficulti https://eduassistpro.github.
 - non-convexity
 - multi-Acald WeChat edu_assist_pr
 - non-smoothness
 - discontinuity
 - dimensionality

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Introduction

The Genetic Algorithm

Assignments Project plansum Help optimisation.

- GA is
- . GA ihttps://eduassistpro.github.
- History of GA
 - Folutionally Computing Evolved in the 1960'd U_assist_program of the 1960'd U_assist_program of the middle of th

8/87

Darwin's Theory of Evolution ¹

Assipping and the particle of items and imperior the population is stable.

- from https://eduassistpro.github.
- Only a small percentage of the offspring produced s
- · Which At the disprove depends on each unassist_pr

Sue Ellen Haupt, ValliappaLakshmanan, CarenMarzban, AntonelloPasini, and John K. Williams. Environmental Science Models and Artificial Intelligence. Artificial Intelligence Methods in the Environmental Sciences. Springer Science (3-14, 103-126), 2009.

Introduction

The Binary Genetic Algorithm

As Biological Management at under the Company of th

• co https://eduassistpro.github.

mutation, offspring and convergence, · ·

Add WeChat edu_assist_pr

Introduction

Advantages:

Assignment Project Exam Help

- Derivative information is not required.
- https://eduassistpro.github.
- Is less likely trapped in local optimum.
- Tend A clos for Westinhat edu_assist_pr

• N_{var} : number of decision variables of the chromosome

As No in the Impropried Exam Help

- N_{pop}
- $N_{N_{kee}}$ https://eduassistpro.github.
- $N_{pop} N_{keep}$: number of chromosomes to be discarded
- xlo: lower bound of variable x eChat edu_assist_pr
- ullet P_n : probability of the n^{th} chromosome in the mating pool of N_{keep} to be chosen
- c_n : cost of the n^{th} chromosome
- C_n : normalised cost of the n^{th} chromosome
- μ : mutation rate (or probability of mutation)

11/87

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Initial population with

Assignment Project Exame Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Reproduction

Mutation

The Binary Genetic Algorithm

Figure 1: Flowchart of a binary genetic algorithm.

Binary Encoding and Decoding

Binary number conversion:

Axy Si Convert 25.3 125 to Dina Project Exam Help The integer part: 25.

$25.3125_{10} = 11001.0101_2$

Binary to Decimal:

$$(1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0).(0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4})$$

Binary Encoding and Decoding

Given a number $x \in [x_{lo}, x_{hi}]$, how many bits (*m*) are required to achieve

Arssignments Project Exam Help

Example https://eduassistpro.github. $\frac{100-25}{300-3} < -\Rightarrow < \Rightarrow = .$

 $0000000000010 \rightarrow 25 + 2 \times \frac{100 - 25}{2^{13} - 1} = 25.0183$

Decoding: $x = x_{lo} + decimal(1001 \cdots 001_2) \frac{x_{hi} - x_{lo}}{2^m - 1}$

Decision Variables and Cost Function

• The optimisation/decision variables are represented by *chromosome*.

Assignment Project Exam Help

- Eac
- ™ https://eduassistpro.github.
- The cost is evaluated by a cost (fitness) function.

AddoWe@hat edu_assist_pr

- Genotype: The bit string representation of the chromosome
- Phenotype: The decision variables. The genotype can be mapped to phenotype through decoding or vice versa through encoding.
- Allele: the value of a single bit in the chromosome

Decision Variables and Cost Function

Example: Consider an optimisation problem with decision variables of p_1, p_2, \cdots ,

Assignment Project Exam Help

https://eduassistpro.github.

 $gene_2(p_2)$

```
Allele: the allele of the first bit from the left is Qu_assist_pr
```

Population

• The GA starts with a group of chromosomes known as the population.

Assignment Project Exam Help

- A population represented by a N
- matrix filled with random 0s and
- https://eduassistpro.github.

evolved to improve their quality in each generation

Add WeChat edu_assist_pr

Example: A cost function: cost = f(x, y) with 7 bits in each gene.

Assignment Project Exam Help

https://eduassistpro.github.

11100101100100 00110010001100 11872

Add: WeChat edu_assist_pr

01000101111011 -12097 11101100000001 -12588 01001101110011 -11860

Table 1: Example initial population

20/87

Natural Selection

• Two approaches: X_{rate} and Thresholding.

Assips a provint hose of the scale of the state of the state of the fittest from ones will survive and the weaker ones will die, i.e., "Survival of the fittest" from

Dai

https://eduassistpro.github.

Add WeChat edu_assist_pr

Natural Selection: X_{rate}

Natural Selection using X_{rate}

Assignment Project Exam Help

- Natural selection occurs each generation or iteration of the algorithm.
- * The https://eduassistpro.github.
 - $N_{keep} = X_{rate} N_{pop}$.
- The the dill Were Canata edu_assist_pr
- The **bottom** N_{pop} N_{keep} chromosomes w new offspring.

Example: $N_{pop} = 8$ and $X_{rate} = 50\%$. $N_{keep} = X_{rate}N_{pop} = 0.5 \times 8 = 4$.

Assign Project Exam Help

https://eduassistpro.github.

01000101111011

Add the Chat edu_assist_pr

Table 2: Ranked population. The upper four will be kept and the lower four will be discarded and replaced.

Natural Selection: Thresholding

Natural Selection using Thresholding:

Assignmente Projecta E-xiams Help

- Chromosomes with a cost **higher** than the threshold will be discarded and repl
- https://eduassistpro.github.
- The threshold can be changed in each generation.

Advantage ver vole nativa exect nat edu_assist_pr

Less computationally expensive as population d

Selection:

Assignment Project Exam Help

- 1) Pairing from top to bottom
- 2)
- https://eduassistpro.github.
 - 3.2) Cost weighting
- 4) Aura we Chat edu_assist_pr

 Purposes: Determine who should reproduce o

Selection: Two chromosomes are selected from the mating pool of N_{Keep}

Ahromosomes to produce that new offspring Selection will take place until e1p $N_{pop}-N_{keep}$ offspring are born to replace the discarded chromosomes.

- chrohttps://eduassistpro.githqub.
 - Property: Simple and easy to implement.
- 2) Randon Gilling: Wilfer Can In at medu_assist_processing chromosomes.
 - *Property:* All chromosomes (in the mating pool of N_{Keep}) have chance to mate. Introduce diversity to the population resulting in higher chance of producing offspring of quality.

- 3) Weighted Random Paring (roulette wheel weighting): The probabilities
- Assignment on strong too arxive service appropriate their cost.
 - mati https://eduassistpro.github.
 - Two techniques: Rank weightin and cost wedu_assist_pr

3.1) Rank weighting (roulette wheel weighting):

Assignment Project Exam Help

whe N_{keep} to be

https://eduassistpro.github.

-12359

0.1

1.0

Table 3: Probability table for rank weighting.

00101111000110

3.1) Rank weighting (roulette wheel weighting):

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

3.2) Cost weighting (roulette wheel weighting):

Example https://eduassistpro.github.

n	Chromosome	$C_n = c_n - c_{N_k}$	P_n	
1	00(100100)110	eCinatedu_	assist	nr
2	1101100000001	-12588+12	_000.01_	_P'
3	00101111001000	-12363 + 12097 = -266	0.111 0.891	
4	00101111000110	-12359 + 12097 = -262	0.109 1.000	

Table 4: Probability table for cost weighting.

3.2) Cost weighting (roulette wheel weighting):

Assignment Project Exam Help It is cost function dependent.

- https://eduassistpro.github.
- · Ae probabilitie We to be thrusted early assistly presentive.

Remark for Normalisation: Different scaling functions can be used. For example,

Assignment Project Exam Help

where a https://eduassistpro.github.

In our example, we choose a=1 and b=-c $C_n=c_n-c_{N_{keep+1}}$

4) Tournament selection:

Assignification and the chromosome with the lowest cost in the subset

Prohttps://eduassistpro.github.

- It works best for larger population sizes because s
- The cholmin Wise copulations of Good quality (with lower cost) h
 - Chromosomes of good quality (with lower cost) chosen.

Crossover

Crossover:

Assignment Project Exam Help

- 1) Single-point crossover
- 2)
- https://eduassistpro.github.

 $\begin{array}{c} \text{process (by exchanging information).} \\ Add \ We Chat \ edu_assist_pr \end{array}$

Step 4:

1) Single-point crossover:

Step 1: A crossover point is randomly selected between the first and last bits of the parents' chromosomes.

A Step 2: Generate two offspring by swapping the chromosomes from the crossover point between two 10° Step 3: Replace any two chromosomes to be discarded in the pool of $N_{pop} - N_{keep}$ in the population.

Treep in the population

https://eduassistpro.github

ced.

1) Single-point crossover:

Assignment Project Exam Help Chromosome Family Binary String

https://eduassistpro.github.

```
\operatorname{Add}_{{}_{4}}^{6} \operatorname{WeC}_{{}_{pa(2)}}^{6} at edu_assist_properties of the second second
```

00101111001000

Table 5: Pairing and mating process of single-point crossover.

offspring₄

Crossover

 ${\bf 2)} \ \ {\bf Double\text{-}point\ crossover} : \ {\bf The\ segments\ in\ between\ two\ randomly\ generated}$

As sois graphing crossover: Bits are randomly chosen for swapping between parents.

https://eduassistpro.github.

Add WeChat edu_assist_pr

Mutations

Mutations:

Purposes: Random mutations alteracertain bercentage of he bits in the list. Of chromosomes. It allows the GA to explore a cost surface by introducing. Help new information.

Mutation pr

Step 1: Cho https://eduassistpro.github. Step 2: Deter

Add We hat edu_assist_pr Step 3: Flip the chosen bits.

Remark: If elitism is NOT implemented,

$$#mutation = \mu N_{pop} N_{bits}.$$

• Mutations:

Assignment=Projecto. Extantile Help Population after Mating Population after Mutations New Cost

477

https://eduassistprojgithub.

00101111000110 0000101 And 100 100 Christo edu_assist_procession on the control of the control

00101111001000 00110111001000 -12103

Table 6: Mutating the population.

Assign Project Exam Help

https://eduassistpro.github.

00101111010000

Add the Chat edu_assist_pr

Table 7: New ranked population at the start of the second generation.

Convergence

Stopping Criteria:

Assignment solver of the Exam Help • A set number of iterations is exceeded.

- No c
- No chttps://eduassistpro.github.
- Population statistics on mean and minimum cost.

-20 L

generation

Convergence

Question: Find the maximum percentage of the possible solution being searched

Assignment Project Exam Help

Total num

https://eduassistpro.github.

maximu

initial population in the popu

 $\frac{29}{128 \times 128} \times 100 = 0.18\%$ of the solution space has been searched.

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Statistics

Area is a separate in the Proof the best of the xeat multiplifted p

Converg

https://eduassistpro.github.

Benchm

Functions of different properties

Function Add WeChat edu_assist_pr

$$f_1(\mathbf{x}) = \sum_{i=1}^{n} x_i^2, -5.12 \le i \le n$$

minimum: $\mathbf{x}^* = 0, f_1(\mathbf{x}^*) = 0$

Function 2:

Function https://eduassistpro.github.

$$f_3(\mathbf{x}) = 6n + \sum floor(x_i), -$$

minimum: Add 12] We Chat edu_assist_pr

Function 4:

Assignment Project Exam Help

Function https://eduassistpro.github.

Function 6:

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help Chromosome: [x, y, z]

https://eduassistpro.github. Encoding\

Add We Chat edu_assist_pr

With
$$x_{lo} = 2$$
, $x_{hi} = 5$ and $m = 2$,

$$00 \rightarrow 2 + decimal(00) \times \frac{5-2}{2^2-1} = 2$$

$$01 \rightarrow 2 + decimal(01) \times \frac{5-2}{2^2-1} = 3$$

$$10 \rightarrow 2 + decimal(10) \times \frac{5-2}{2^2-1} = 4$$

$$11 \rightarrow 2 + decimal(11) \times \frac{5-2}{2^2-1} = 5$$

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Step 1: Pop

https://eduassistpro.github.

1 101110

4, 5,

Ãdau WeChat edu assist_pr

4 110100

5, 3, 2

-19

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment is Project its Exam Help

Step 2: Ran

https://eduassistpro.github.

1 101110 4, 5,

Add WeChat ed Lassist_pr

4 000011	2, 2, 5	9
----------	---------	---

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help Step 3: Selection with cost weighting (roulette wheel weighting)

https://eduassistpro.github.

110100

- 5, 3, 2 -19 -19
- 3 001100 4 00001Add 2, We Chat edu_assist_pr

$$P_{n} = \left| \frac{C_{n}}{\sum_{m=1}^{N_{keep}} C_{m}} \right| = \left| \frac{C_{n}}{\sum_{m=1}^{3} C_{m}} \right| = \left| \frac{C_{n}}{-33-28-21} \right| = \left| \frac{C_{n}}{-82} \right|$$

$$P_{1} = \left| \frac{-33}{-82} \right|, P_{2} = \left| \frac{-28}{-82} \right|; P_{3} = \left| \frac{-21}{-82} \right|$$

• Generate two random numbers: 0.9649, 0.2785

What happen if the same chromosome is chosen?

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Is Exam Help

Step 4: Cro

 p_3 : 0011 https://eduassistpro.github.

• Generate randomly a crossover point: 2

offspring: 101100 WeChat edu_assist_proffspring: 101100

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Step 5: Mut

Ranked phttps://eduassistpro.github.

row = [2 2 3 4]; column = [4 5 2 5]. Which the ducod assist 101110 101110 4, 5, 4 110100 110010 5, 2, 4 -213 001100 3, 5, 2 011100 -122, 5, 2 001110 001100

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

- The 1st
- Ranke https://eduassistpro.github.

Chromos	some	Decoded , ,	Cost	
1 101110 Acc 160	WeChat	edu 5, 2	ssist_	pr
3 001100		2, 5, 2		•
4 110010		5, 2, 4	-3	

• Repeat steps 1 to 5 until stopping criteria have been met.

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Binary genetic algorithms are considered.

Achani Bed em Monatwiz, 1592 joet Exam Help

"Short, low-order, above-average schemata receive exponentially increasing trials in subsequ

https://eduassistpro.github.

Add WeChat edu_assist_pr

• A scheme: a template representing a subset of binary strings using symbols

Assignments Project Exam Help Example:

```
Schema
```

Schema https://eduassistpro.github.

```
Schema \star\star\star\star\star matches 2 strings: {00000, 00001, , 11110, 11111}.
```

String 11160 s matched by 2 Schemata: 11100 assist_0_property and the control of the control of

```
****}.
```


Schema properties:

As green and '1' positions), i.e., the length of the template minus the number of don't care

2. **Defi https://eduassistpro.github.** the first and the last fixed positions.

$$S_2 = \star \star \star \star 00 \star \star 0\star \Rightarrow o(S_2) = 3, \delta(S_2) = 9 - 5 = 4$$

$$S_3 = 11101 \star \star 001 \Rightarrow o(S_3) = 8, \delta(S_3) = 10 - 1 = 9$$

Binary GAs:

Assignment Project Exam Help

- eval
- 4. t https://eduassistpro.github.
 - Selection and the Weegbrin at edu_assist_pr
 - Crossover: single-point crossover (crossover points are allowed any point in between the first and last bits).
 - Mutation: uniform mutation (with the probability of mutation p_m for each bit).
 - Elitism is not implemented.

University of London $\xi(S,t)$: the number of strings in the population at generation t matched by a

schema S.

Axament: Comite recommend and the popular recommend and the popular recommendations.

https://eduassistpro.github.

Add We hat edu_assist_pr

$$v_5 = 110001 \quad f(v_5) = -8$$

$$v_6 = 110011 \quad f(v_6) = -3$$

$$S_1 = \star \star 01 \star \star, \qquad \xi(S_1, t) = 3$$

f(S,t): average cost of all strings in the population matched by the schema S.

Assignment Project Exam Help Assuming that there are p strings $\{u_1, \dots, u_p\}$ in the population matched by a

schema S

https://eduassistpro.github.

Example:

$$S_1 = \star \star 01 \star id_{\text{matches}}$$

$$f(S_1,t) = \underbrace{f(X_1,t)}_{3} = \underbrace{f(X_1,t)}_{3} \underbrace$$

Objective: Investigate the probability of survival of all schemata S $(S_1, \dots, S_{2^N bir})$ in the GA process (selection, crossorer mutation).

https://eduassistpro.github.

where $F(t) = \sum f(v_j)$.

- 1. The range of trim and the construction of t
- 2. The average probability of a string matched by schema S to be selected: $\frac{f(S,t)}{F(t)}$.
- 3. The number of strings to be selected for recombination: N_{pop} ($N_{keep}=0$).

 $\xi(S,t+1)$: the number of strings matched by S after the selection process.

Assignment Project Exam Help

 $_{\text{where }\overline{\textit{F}}\text{(}}\text{ht}\underline{\textbf{t}}\text{ps://eduassistpro.github.}$

Add We Charto edu_assist_predu_
$$=\xi(S,t)\frac{f(S,t)}{\overline{F}(t)}$$
 = $\xi(S,t)\frac{F(S,t)}{\overline{F}(t)}$ = $\xi(S,t)(1+\varepsilon(t))$

where $\varepsilon(t) = \frac{f(S,t)) - \overline{F}(t)}{\overline{F}(t)}$.

$$\xi(S,t+1) = \xi(S,t)(1+\varepsilon(t))$$

$$= \xi(S, t-1)(1 + \varepsilon(t-1))(1 + \varepsilon(t))$$

Assignments. Project Exam Help $= \xi(S, t \quad 2)(1 + \varepsilon(t \quad 2))(1 + \varepsilon(t \quad 1))(1 + \varepsilon(t))$

https://eduassistpro.github.

Add WeChat edu_assist_pr

- $\varepsilon(t) > 0$ for most of t: $\xi(S, t+1)$ is increasing
- $\varepsilon(t) < 0$ for most of t: $\xi(S, t+1)$ is decreasing

Implication: Above average schemata receive increasing number of strings in the next generation; however, below average schemata will die out as t increases.

Recombination - Crossover

Probability of destruction of a schema $S: p_d(S) = \frac{\delta(S)}{N_{bia}-1}$ Arganization Help Example

A string *v*

 $s_1 = 110$ https://eduassistpro.github.

$$S_b = 11 \star \star \star \star \star \star \star 10$$

$$p_d(S_b) = \frac{9}{9} = 1, p_s(S_b) = 0$$

$$p_d(S_{2^{N_{bits}}}) = \frac{0}{9} = 0, p_s(S_{2^{N_{bits}}}) = 1$$

 $v_1' = 1101110010$

Assignment Project Exam Help Example 1: After crossover Example 3: After crossover

 $o_1^c = 1101$

 $o_2^c = 010$ https://eduassistpro.github.

 S_a survives but not S_b .

e.

Example 2 Add Gover VeChata edu_assist_pr

$$o_1^c = \mathbf{110}|0000011$$

$$o_1^c = 11011|00011$$

$$o_2^c = 010|1110010$$

$$o_2^c = 01000|\mathbf{10010}|$$

 S_a survives but not S_b .

Both S_a and S_b cannot survive.

Assignment p_s Project Exam Help Modification of $p_s(S)$ considering that, e.g., the schema of v_1' and v_2' is the same

and $p_s(s)$ considering that, e.g., the schema of v_1 and v_2 is the same

https://eduassistpro.github.

Schema growth equation with the consideratio $Add \underset{\xi(S,\,t+1)}{\text{Add}} \underbrace{WeChat}_{\overline{F}(t)} \underbrace{edu_assist_pr}_{\text{bits}} -$

Mutation: Uniform mutation - each bit will be mutated if a random number $r < p_m$,

Arssignment Project Exam Help

Probabilit

https://eduassistpro.github.

Probability of a schema S survival (no mutation tak Add $WeChat\ edu_assist_properties (1-p)$

Schema growth equation with the consideration of crossover and mutation:

Assignment Projects Exams Help

https://eduassistpro.github.

"Short, low-order, above-average schemata receive

in subsequent generations reneting the du_assist_pr