

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Secondo appello 16 settembre 2016

Nome:	0	Orale 26 settembre ore 9:00 aula N8
Cognome: Matricola:	0	Orale 30 settembre ore 9:00 aula N8

Esercizio 1

La società Brillacasa produce tre varietà di prodotti per la casa: Brillavetro, Brillacucina e Brillapavimenti, i cui prezzi di vendita sono, rispettivamente, 10, 30 e 20 euro/kg. Il profitto sul Brillavetro è pari al 30% del prezzo di vendita, mentre il profitto su Brillacucina e Brillapavimenti è pari al 20% del prezzo di vendita. La società desidera ottenere un fatturato mensile da questi prodotti non inferiore a 8 milioni di euro. I tre prodotti si ottengono mescolando uno stesso principio attivo brevettato Brillax con degli additivi acquistati sul mercato. Per produrre 1 kg di Brillavetro servono 5 gr di Brillax, per 1 kg di Brillacucina o Brillapavimenti servono rispettivamente 8 e 10 gr di Brillax.

Il Brillax viene prodotto in un impianto Brillacasa della capacità massima di 4 tonnellate/mese. Si consideri che l'intera produzione mensile, comunque ripartita tra i tre prodotti, possa sempre essere venduta sul mercato e che tuttavia si debba garantire la produzione di almeno 200 tonnellate/mese complessive tra Brillacucina e Brillapavimenti.

- 1. Si formuli come problema di PL il problema determinare i livelli mensili di produzione di Brillavetro, Brillacucina e Brillapavimenti tali da massimizzare il profitto complessivo della Brillacasa.
- 2. Risolvere uno dei seguenti punti a piacere:
 - a. Un'ipotesi è di produrre unicamente Brillacucina (500 ton). Utilizzando le condizioni di ortogonalità, dimostrare o confutare l'esistenza di una soluzione ottima con queste caratteristiche.
 - b. Trovare una soluzione ottima del problema primale con l'algoritmo del simplesso.

Esercizio 2

In tabella è riportata la matrice di incidenza nodi/archi di una rete di flusso composta da 8 nodi s1...6t. Per ogni arco è riportato un flusso iniziale e il valore della sua capacità massima. In particolare, s è il nodo sorgente e t è il nodo pozzo.

Rete	а	b	С	d	е	f	g	h	i	I	m	n	0	р
s	1	1	1	-1										
1	-1				1	-1								
2		-1					1							
3			-1					-1	1					
4					-1					-1		1	1	
5						1	-1	1		1	1			
6				1					-1		-1	-1		1
t													-1	-1
Capacità	4	5	6	2	6	3	3	3	4	2	1	4	5	10
Flusso	3	0	0	1	3	0	0	0	0	0	0	1	2	0

- a. Partendo dai dati in tabella, determinare se la distribuzione di flusso iniziale data è ammissibile o meno, spiegandone il motivo. In caso affermativo indicare la quantità di flusso che scorre nella rete.
- b. Se il flusso iniziale è ammissibile, determinare una soluzione ottima al problema del massimo flusso utilizzando l'algoritmo di Ford e Fulkerson a partire da quel flusso dato. Altrimenti, scaricare il flusso iniziale e risolvere il problema del massimo flusso utilizzando l'algoritmo di Ford e Fulkerson.
- c. Mostrare un taglio di capacità minima tra i nodi s e t.
- d. Partendo dalla soluzione ottima trovata al punto b, si determini il nuovo flusso massimo e il nuovo taglio di capacità minima nei seguenti casi:
 - d.1: l'arco (s, 1) aumenta la sua capacità fino a 8 unità di flusso;
 - d.2: Partendo dalla rete del punto d.1, l'arco (5, 1) aumenta la sua capacità fino a 5 unità di flusso;
 - d.3: Partendo dalla rete del punto d.2, l'arco (3, 6) aumenta la sua capacità fino a 5 unità di flusso.

N.B. Motivare opportunamente ogni risposta e mostrare tutti i calcoli svolti.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Secondo appello 16 settembre 2016

Nome:

Cognome:

Matricola:

Orale 26 settembre ore 9:00 aula N8

Orale 30 settembre ore 9:00 aula N8

Esercizio 1

Una mensa offre un menù con 2 scelte di primi (risotto alla pescatora e spaghetti al tonno) e 2 secondi (pomodori ripieni e seppie al tegame). Una porzione di risotto richiede 60 gr di riso, 10 gr di seppie e 10 gr di olio, una porzione di spaghetti richiede 60 gr di pasta, 16 gr di tonno sgocciolato e 4 gr di olio. Una porzione di pomodori ripieni richiede 120 gr di pomodori , 80 gr di tonno sgocciolato e 5 gr di olio, mentre una porzione di seppie richiede 80 gr di seppie, 20 gr di pomodori e 10 gr di olio. Tutti gli ingredienti si possono acquistare sul mercato al prezzo in tabella (in €/kg), ma il tonno è venduto in confezioni che contengono l'80% di tonno e il 20% di olio, per cui considerate il costo di 1 kg di tonno sgocciolato pari a 6,25€, con un residuo di 250 gr di olio (gratuito) che può essere riciclato risparmiando sull'acquisto di olio in bottiglia. In un giorno dovete offrire 100 primi e 100 secondi, suddivisi anche in quote disuguali tra le 2 scelte.

- 1. Formulare come problema di PL il problema di definire il numero di porzioni da produrre che minimizzi il costo degli ingredienti necessari.
- 2. Risolvere uno dei seguenti punti a piacere:
 - a. Un'ipotesi è di produrre 40 porzioni di seppie e 50 di risotto. Utilizzando le condizioni di ortogonalità, dimostrare o confutare l'esistenza di una soluzione ottima con queste caratteristiche.
 - b. Trovare una soluzione ottima del problema primale con l'algoritmo del simplesso.

Ingrediente	Costo (€/kg)
Spaghetti	1
Riso	1
Pomodori	1
Tonno sott'olio	5
Seppie	6
Olio in bottiglia	6

Esercizio 2

In tabella è riportata la matrice di incidenza nodi/archi di un digrafo composto da 7 nodi s1...6. Per ogni arco è riportata una peso. In particolare, s è il nodo sorgente.

a. Trovare il cammino orientato minimo dal nodo *s* verso tutti gli altri nodi utilizzando l'algoritmo di Dijkstra in versione efficiente.

Digrafo	а	b	С	d	е	f	g	h	i	ı	m	n	0	р
s	1	1	1											
1	-1			1		1	1							
2		-1		-1	1			1	1	1				
3			-1		-1						1	1		
4						-1		-1					1	1
5							-1		-1		-1		-1	
6										-1		-1		-1
Peso	2	4	3	1	1	1	4	3	1	3	2	3	2	2

- a.1. Indicare in quale ordine vengono aggiunti gli archi all'albero (oppure in quale ordine i flag dei nodi vengono fissati a 1).
- a.2. Indicare l'albero dei cammini orientati minimi.
- b. Come varia il valore della soluzione ottima e l'albero dei cammini orientati minimi nei seguenti tre casi distinti:
 - b.1: 1'arco (s, 2) ha peso 1;
 - b.2: l'arco (s, 3) ha peso 1;
 - b.3: l'arco (s, 1) ha peso 1.
- c. Per i casi a, b.1, b.2, b.3, calcolare il cammino minimo nell'albero dei cammini orientati minimi dal nodo *s* al nodo 6, dal nodo 5, dal nodo 5, dal nodo 3. In tutti e quattro i casi indicare il peso dei tre cammini orientati minimi.

N.B. Motivare opportunamente ogni risposta e mostrare tutti i calcoli svolti.