Constant Rule	$\frac{d}{dx}[c] = 0$, c is a constant	
Constant Multiple Rule	$\frac{d}{dx}[cu] = c \frac{d}{dx}[u], c \text{ is a constant}$	
Sum and Difference Rules	$\frac{d}{dx} \left[u \pm v \right] = \frac{du}{dx} \pm \frac{dv}{dx}$	$(u\pm v)'=u'\pm v'$
Product Rule	$\frac{d}{dx}[uv] = u\frac{dv}{dx} + v\frac{du}{dx}$	(uv)' = u'v + v'u
Quotient Rule	$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{v \frac{du}{dx} + u \frac{dv}{dx}}{v^2}$	$\left(\frac{u}{v}\right)' = \frac{u' \ v - v' \ u}{v^2}$
Power Rules	$\frac{d}{dx}[x^n] = n x^{n-1}$	$\frac{d}{dx}\Big(U^n\Big) = n \ U^{n-1}U'$
Chain Rule	$\frac{dy}{dx} = \frac{dy}{du} \bullet \frac{du}{dx}$	
Exponential Rule	$\frac{d}{dx}[e^X] = e^X$	$\frac{d}{dx}[e^u] = e^u \frac{du}{dx}$
Derivative of Natural Log (ln)	$\frac{d}{dx}[\ln x] = \frac{1}{x}$	$\frac{d}{dx}[\ln u] = \frac{1}{u}\frac{du}{dx} = \frac{u'}{u}$
Other bases and Differentiation	ax ax	$[a] = a^{u} \ln(a) \frac{du}{dx}$ $[a] = \left(\frac{1}{\ln a}\right) \left(\frac{1}{u}\right) \frac{du}{dx}$

$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$	$\left(\frac{1}{\sqrt{x}}\right)' = -\frac{1}{2x\sqrt{x}}$	$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$
$\left(\frac{1}{U}\right)' = -\frac{U'}{U^2}$	$\left(\frac{1}{\sqrt{U}}\right)' = -\frac{U'}{2U^{3/2}}$	$\left(\sqrt{U}\right)' = \frac{U'}{2\sqrt{U}}$

Product Rule: $\log_b MN = \log_b M + \log_b N$

Power Rule: $\log_b M^p = p \log_b M$

Quotient Rule: $\log_b \frac{M}{N} = \log_b M - \log_b N$

General Power Rule	$\int kdx = kx + C$
	$\int kf(x)dx = k \int f(x)dx$
	$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$
	$\int [f(x) - g(x)]dx = \int f(x)dx - \int g(x)dx$
	$\int x^n dx = \frac{x^{n+1}}{n+1} + C , n \neq -1$
	$\int u^n \frac{du}{dx} dx = \int u^n du = \frac{u^{n+1}}{n+1} + C , n \neq -1$
Simple Exponential Rule	$\int e^{x} dx = e^{x} + C$
General Exponential Rule	$\int e^{x} \frac{du}{dx} dx = \int e^{x} du = e^{u} + C$
Simple Logarithmic Rule	$\int \frac{1}{x} dx = \ln x + C$
General Logarithmic Rule	$\int \frac{du/dx}{u} dx = \int \frac{1}{u} du = \ln u + C$
Area	$\int_{a}^{b} f(x)dx = F(x) \begin{vmatrix} b \\ a \end{vmatrix} = F(b) - F(a)$
	F'(x) = f(x)
Integration by Parts	$\int u dv = uv - \int v du$

$\int a.dx$	a.x
$\int x^n dx$	$\frac{x^{n+1}}{n+1} ; for n \neq -1$
$\int \frac{dx}{x}$	$\ln x $
$\int e^{ax} dx$	$\frac{1}{a}e^{ax}$
$\int xe^{ax}dx$	$\frac{e^{ax}}{a^2}(ax-1)$
$\int x^2 e^{ax} dx$	$\frac{e^{ax}}{a^3}\left(a^2x^2 - 2ax + 2\right)$
$\int \frac{e^{ax}}{x} dx$	$\ln x + \frac{ax}{1.1!} + \frac{(ax)^2}{2.2!} + \dots$
$\int a^x dx = \int e^{x \ln a} dx$	$\frac{a^x}{\ln a}$
$\int \ln x dx$	$x \ln x - x$
$\int x \ln x dx$	$\frac{1}{2}x^2\ln x - \frac{1}{4}x^2$
$\int \frac{dx}{\sqrt{a^2 + x^2}}$	$\ln\left x+\sqrt{a^2+x^2}\right $
$\int \sqrt{a^2 + x^2} dx$	$\frac{u}{2}\sqrt{a^2+x^2} + \frac{a^2}{2}\ln\left x + \sqrt{a^2+x^2}\right $
$\int \frac{dx}{x^2 - a^2}$	$\frac{1}{2a} \ln \left \frac{x - a}{x + a} \right $
$\int \frac{dx}{ax+b}$	$\frac{1}{a}\ln ax+b $