# Partial Regularization of First-Order Resolution Proofs

J. Gorzny<sup>1</sup> E. Postan<sup>2</sup> B. Woltzenlogel Paleo<sup>3,4</sup>

<sup>1</sup>University of Waterloo

<sup>2</sup>Universidad Nacional de Rosario

<sup>3</sup>Australian National University

<sup>4</sup>Vienna University of Technology

13 July 2018

407

## **The Quest for Simple Proofs**

"The 24th problem in my Paris lecture was to be: Criteria of simplicity, or proof of the greatest simplicity of certain proofs. Develop a theory of the method of proof in mathematics in general. Under a given set of conditions there can be but one simplest proof. Quite generally, if there are two proofs for a theorem, you must keep going until you have derived each from the other, or until it becomes quite evident what variant conditions (and aids) have been used in the two proofs."

-David Hilbert [Thi03]



#### **First-Order Proof Compression Motivation**

 The best, most efficient provers, do not generate the best, least redundant proofs.

 Many compression algorithms for propositional proofs; few for first-order proofs.

 Finding a minimal proof is NP-hard, so use heuristics to find smaller proofs (see [FMP11])



#### The 'Real World'



#### **Proofs as Interfaces**

- Larger proofs harder/longer to check; use more resources
- Proofs that are too large may mean solutions can't be written (SAT 2014)
- May use a strict subset of original hypothesis: better proofs!



#### **Our Goal**

Lifting propositional proof compression algorithms to first-order logic.

Previous work: LowerUnits [FMP11].

This work: RecyclePivotWithIntersection [FMP11, BIFH+08]



## **Recycling Pivots**

Removes *irregularities*: inferences  $\eta$  where the pivot occurs as a pivot of another inference below  $\eta$  on the path to the root

- Store a set of safe  $S(\eta)$  literals for each node  $\eta$
- If there are multiple paths, take intersection of safe literals
- Bottom-up: compute safe literals; mark deletions
- Top-down: regularize



## **Recycling Pivots**

Removes *irregularities*: inferences  $\eta$  where the pivot occurs as a pivot of another inference below  $\eta$  on the path to the root

- Store a set of safe  $S(\eta)$  literals for each node  $\eta$
- If there are multiple paths, take intersection of safe literals
- Bottom-up: compute safe literals; mark deletions
- Top-down: regularize



## **Recycling Pivots**

Removes *irregularities*: inferences  $\eta$  where the pivot occurs as a pivot of another inference below  $\eta$  on the path to the root

- Store a set of safe  $S(\eta)$  literals for each node  $\eta$
- If there are multiple paths, take intersection of safe literals
- Bottom-up: compute safe literals; mark deletions
- Top-down: regularize



#### **Regularization Can Be Bad**

Resolution without irregularities is still complete. But:

#### Theorem ([Tse70])

There are unsatisfiable formulas whose shortest regular resolution refutations are exponentially longer than their shortest unrestricted resolution refutations.











































 $\downarrow$  regularization



## **Pre-Regularization Checks I**

$$\eta_{1} : \vdash p(W, X) \qquad \eta_{2} : p(W, X) \vdash q(c) \\
\{\vdash q(c), p(a, X)\} \qquad \{p(W, X) \vdash q(c), p(a, X)\} \\
\eta_{3} : \vdash q(c) \qquad \eta_{4} : q(c) \vdash p(a, X) \\
\{\vdash q(c), p(a, X)\} \qquad \{q(c) \vdash p(a, X)\} \\
\eta_{6} : p(Y, b) \vdash \qquad \downarrow \qquad \{\vdash p(a, X)\} \\
\{p(Y, b) \vdash \} \qquad \qquad \downarrow \qquad \{\vdash p(a, X)\} \\
\sigma = \{W \to a\} \implies \sigma \eta_{1} \in \mathcal{S}(\eta_{1})$$



#### **Pre-Regularization Checks I**

$$\eta_6$$
:  $p(Y, b) \vdash \eta_1$ :  $\vdash p(W, X)$ 

$$\sigma = \{W \to Y, X \to b\}$$



## Pre-Regularization Checks II

$$\eta_{1} : \vdash p(W,c) \qquad \eta_{2} : p(W,X) \vdash q(c)$$

$$\{\vdash q(c), p(a,X)\} \qquad \{p(W,X) \vdash q(c), p(a,X)\}$$

$$\{\vdash q(c), p(a,X)\} \qquad \eta_{4} : q(c) \vdash p(a,X)$$

$$\{q(c) \vdash p(a,X)\} \qquad \{q(c) \vdash p(a,X)\}$$

$$\{p(Y,b) \vdash \} \qquad \downarrow \qquad \{\vdash p(a,X)\}$$

$$\sigma = \{W \rightarrow a, X \rightarrow c\} \implies \sigma \eta_{1} \in \mathcal{S}(\eta_{1})$$
but...



## **Pre-Regularization Checks II**

$$\eta_6$$
:  $p(Y,b) \vdash \eta_1$ :  $\vdash p(c,a)$ 

no  $\sigma!$ 



## **Pre-Regularization Unifiability**

#### **Definition**

Let  $\eta$  be a node with pivot  $\ell'$  unifiable with safe literal  $\ell$  which is resolved against literals  $\ell_1, \ldots, \ell_n$  in a proof  $\psi$ .  $\eta$  is said to satisfy the *pre-regularization unifiability property* in  $\psi$  if  $\ell_1, \ldots, \ell_n$ , and  $\bar{\ell}'$  are unifiable.























## **Regularization Unifiability**

#### **Definition**

Let  $\eta$  be a node with safe literals  $\mathcal{S}(\eta) = \phi$  that is marked for regularization with parents  $\eta_1$  and  $\eta_2$ , where  $\eta_2$  is marked as a deletedNode in a proof  $\psi$ .  $\eta$  is said to satisfy the *regularization unifiability property* in  $\psi$  if there exists a substitution  $\sigma$  such that  $\eta_1 \sigma \subseteq \phi$ .



#### **First-Order RPI**

- Traverse bottom up, collect safe literals (apply unifiers to pivots), check pre-regularization property
- Traverse top-down, check regularization property



#### **Experiment Setup**

- Greedy First-Order Lower Units, Recycle Pivots With Intersection implemented as part of Skeptik (in Scala)
- > 2400 randomly generated resolution proofs
- minutes to generate, seconds to compress



| Algorithm       | # of Proofs Compressed |              |              | # of Removed Nodes |                |              |
|-----------------|------------------------|--------------|--------------|--------------------|----------------|--------------|
|                 | TPTP                   | Random       | Both         | TPTP               | Random         | Both         |
| GFOLU(p)        | 55 (17.9%)             | 817 (35.9%)  | 872 (33.7%)  | 107 (4.8%)         | 17,769 (4.5%)  | 17,876 (4.3  |
| FORPI(p)        | 23 (7.5%)              | 666 (29.2%)  | 689 (26.2%)  | 36 (1.6%)          | 28,904 (7.3%)  | 28,940 (7.3  |
| GFOLU(FORPI(p)) | 55 (17.9%)             | 1303 (57.1%) | 1358 (52.5%) | 120 (5.4%)         | 48,126 (12.2%) | 48,246 (12.2 |
| FORPI(GFOLU(p)) | 23 (7.5%)              | 1302 (57.1%) | 1325 (51.2%) | 120 (5.4%)         | 48,434 (12.3%) | 48,554 (12.3 |
| Best            | 59 (19.2%)             | 1303 (57.1%) | 1362 (52.5%) | 120 (5.4%)         | 55,530 (14.1%) | 55,650 (14.0 |



| Algorithm       | First-Order Compression |                 | Algorithm   | Propositional Compression [3] |  |
|-----------------|-------------------------|-----------------|-------------|-------------------------------|--|
|                 | All                     | Compressed Only |             |                               |  |
| GFOLU(p)        | 4.5%                    | 13.5%           | LU(p)       | 7.5%                          |  |
| FORPI(p)        | 6.2%                    | 23.2%           | RPI(p)      | 17.8%                         |  |
| GFOLU(FORPI(p)) | 10.6%                   | 23.0%           | (LU(RPI(p)) | 21.7%                         |  |
| FORPI(GFOLU(p)) | 11.1%                   | 21.5%           | (RPI(LU(p)) | 22.0%                         |  |
| Best            | 12.6%                   | 24.4%           | Best        | 22.0%                         |  |















#### Conclusion

- Another simple, quick algorithm lifted from propositional to first-order logic for proof compression. Use both!
  - LowerUnits compresses more often
  - RPI compresses more
- Future work:
  - Explore other proof compression algorithms?
  - Explore ways of dealing with the post-deletion property quickly

## Thank you for your attention. Any questions?

- Source code: https://github.com/jgorzny/Skeptik
- Data: https://cs.uwaterloo.ca/~jgorzny/data/
- Expanded paper on Arxiv!



#### References i

- Omer Bar-Ilan, Oded Fuhrmann, Shlomo Hoory, Ohad Shacham, and Ofer Strichman, *Linear-time reductions of resolution proofs*, Haifa Verification Conference, Springer, 2008, pp. 114–128.
- Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo, Compression of propositional resolution proofs via partial regularization, International Conference on Automated Deduction, Springer, 2011, pp. 237–251.
- Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek, *Solving* and verifying the boolean pythagorean triples problem via cube-and-conquer, CoRR abs/1605.00723 (2016).
- Rüdger Thiele, *Hilbert's twenty-fourth problem*, The American mathematical monthly **110** (2003), no. 1, 1–24.



#### References ii





#### To-do

