

Generate Neural Template Explanations for Recommendation

Lei Li¹, Yongfeng Zhang², Li Chen¹

¹ Hong Kong Baptist University, ² Rutgers University

csleili@comp.hkbu.edu.hk

October 19, 2020

Recommendation Everywhere

E-commerce (taobao.com)

Video (youtube.com)

Social network (instagram.com)

罗小黑战记

哈尔的移动城堡

我想吃掉你的胰脏

企鹅公路

天空之城

Movie (movie.douban.com)

Explanation for Recommendation

- Help users understand recommendations
- Benefits of Explanation (Tintarev and Mashoff. Handbook'15)
 - Trust: increase users' confidence in the system
 - Effectiveness: help users make good decisions
 - **Persuasiveness**: convince users to try or buy
 - **Efficiency**: help users make decisions faster
 - Satisfaction: increase the ease of use or enjoyment

Typical Explanation Styles

Images (Chen et al. SIGIR'19)

Neighbors (Li et al. WWW'20)

Chick-Fil-A is recommended for you based on your preference on its aspects.

You might be interested in [feature], on which this product performs well.

You might be interested in [feature], on which this product performs poorly.

Features (He et al. CIKM'15)

Templates (Zhang et al. SIGIR'14)

Textual Sentences

- Able to communicate rich information to users
- Massive textual data available (e.g., user reviews)

Limitations of Existing Textual Explanations

- Pre-defined templates
 - Require human effort to create
 - Restrict the sentence expressiveness

•	Free-stv	yle sentenc	es
		, .	

- Topics of sentences sometimes irrelevant to the recommendation
- Sentences similar or even identical

CF (Sarwar et al. WWW'01)	Customers who bought this item also bought.
EFM (Zhang et al. SIGIR'14)	You might be interested in [<i>feature</i>], on which this product performs well.

Reference	They have a huge <i>variety</i> of things.
NRT (Li et al. SIGIR'17)	The food is good.
Att2Seq (Dong et al. EACL'17)	I'm not sure if I need to go back.
Reference	The black garlic <i>ramen</i> was good as well.
NRT	The food is good.
Att2Seq	The food was great.

Motivation

- Improve overall user experience and the recommendation acceptance
- Propose a Neural Template (NETE) approach that can produce expressive and high-quality explanations
- Bridge the benefits of template and generation approaches
 - Learn templates from data
 - Generate template-shaped explanations about specific features

Reference	They have a huge <i>variety</i> of things.
NETE	They have a variety of things to choose from.
Reference	The black garlic <i>ramen</i> was good as well.
NETE	The <u>ramen</u> was delicious.

Problem Formulation

- Recommendation
 - Predict a rating $\hat{r}_{u,i}$, given a user u and an item i
- Explanation
 - Generate an explanation sentence $\hat{S}_{u,i}$, given a feature $f_{u,i}$
- Feature Prediction
 - The feature $f_{u,i}$ can be either manually set by the user u
 - Or predicted by a prediction method based on the user's interests

Overview of Our Neural Template Model

Personalized Recommendation

- Capture the interactions between users and items via MLP
- The non-linear transformations of MLP have better representation ability than linear models, e.g., MF (Mnih and Ruslan. NIPS'08)

$$\begin{cases}
\mathbf{z}_1 = \sigma(\mathbf{W}_1[\mathbf{p}_u, \mathbf{q}_i] + \mathbf{b}_1) \\
\mathbf{z}_2 = \sigma(\mathbf{W}_2\mathbf{z}_1 + \mathbf{b}_2) & \text{and } \hat{r}_{u,i} = \mathbf{w}_r\mathbf{z}_L + b_r \\
\dots \\
\mathbf{z}_L = \sigma(\mathbf{W}_L\mathbf{z}_{L-1} + \mathbf{b}_L)
\end{cases}$$

Mean squared error loss function

$$\mathcal{L}_r = \frac{1}{|\mathcal{T}|} \sum_{u, i \in \mathcal{T}} (r_{u, i} - \hat{r}_{u, i})^2$$

Explanation Generation (1)

- Essentially a table-to-text generation task (Wiseman et al. EMNLP'18)
- Encoder
 - MLP encodes user u and item i for personalization, and the sentiment (derived from the predicted rating $\hat{r}_{u,i}$) for sentiment control

$$\mathbf{h}_0 = \tanh(\mathbf{W}_e[\mathbf{p}_u, \mathbf{q}_i, \mathbf{s}_{u,i}] + \mathbf{b}_e)$$

- Decoder
 - Sentences from vanilla decoder could be irrelevant to the recommendation
 - Propose a Gated Fusion Recurrent Unit (GFRU) that could include a given feature in the generated sentence

Gated Fusion Recurrent Unit (GFRU)

- Two GRUs (Cho et al. EMNLP'14) process two types of information
 - The context GRU takes the previously generated word as input
 - The feature GRU takes the given feature
- One Gated Fusion Unit (GFU) (Arevalo. ICLR'17 Workshop) merges them

Explanation Generation (2)

Hidden states of each time step can be computed by GFRU

$$\mathbf{h}_t = g(\mathbf{x}_{t-1}, \mathbf{h}_{t-1}, \mathbf{x}_f)$$

 During decoding, a word with the largest probability over the vocabulary is sampled

$$p(y_t|y_{< t}, \mathbf{h}_0) = \operatorname{softmax}_{y_t}(\mathbf{W}_v \mathbf{h}_t + \mathbf{b}_v)$$

Cross-entropy loss function

$$\mathcal{L}_e = \frac{1}{|\mathcal{T}|} \sum_{u, i \in \mathcal{T}} \frac{1}{|S_{u, i}|} \sum_{t=1}^{|S_{u, i}|} -\log p(y_t)$$

Model Training

- Two tasks
 - Recommendation
 - Explanation
- Little research studies if and how the two tasks are compatible in a joint learning framework
- Investigate the influence of different learning frameworks
 - Single-task learning
 - Multi-task learning

$$\mathcal{L}_r$$
 \mathcal{L}_e

$$\mathcal{J} = \min_{\Theta} (\lambda_r \mathcal{L}_r + \lambda_e \mathcal{L}_e + \lambda_n ||\Theta||^2)$$

Feature Prediction

- Extract features from user reviews via a toolkit (Zhang et al. SIGIR'14)
- Utilize point-wise mutual information (PMI) to predict a user's interest to each feature
 - Measure its relationship with the user's preferred features

$$\begin{split} \hat{f}_i &= \operatorname{argmax}_{f \in \mathcal{F}_i} \operatorname{PMI}(\mathcal{F}_u, f) \\ \operatorname{PMI}(\mathcal{F}_u, f) &= \log \frac{p(\mathcal{F}_u | f)}{p(\mathcal{F}_u)} \approx \log \frac{\prod_{f' \in \mathcal{F}_u} p(f' | f)}{\prod_{f' \in \mathcal{F}_u} p(f')} = \sum_{f' \in \mathcal{F}_u} \log \frac{p(f' | f)}{p(f')} = \sum_{f' \in \mathcal{F}_u} \operatorname{PMI}(f', f) \\ \operatorname{PMI}(f_u, f_i) &= \log \frac{p(f_u, f_i)}{p(f_u)p(f_i)} = \log \frac{p(f_u | f_i)}{p(f_u)} \end{split}$$

• Two times better than randomly selecting the target item's features

Datasets

- TripAdvisor
 - Hotel
- Yelp
 - Restaurant
- Amazon
 - Movie & TV
- The explanation is a review sentence containing features

	TA-HK	YELP19	AZ-MT
# of users	9,765	27,147	7,506
# of items	6,280	20,266	7,360
# of reviews	320,023	1,293,247	441,783
# of features	5,069	7,340	5,399
Avg. # of reviews / user	32.77	47.64	58.86
Avg. # of reviews / item	50.96	63.81	60.02
Avg. # of words / explanation	13.01	12.32	14.14

^{*} TA and AZ denote TripAdvisor and Amazon, respectively.

Evaluation Metrics

- Recommendation
 - Rating prediction: RMSE and MAE
 - Personalized ranking: NDCG and HR
- Explanation
 - Text quality: BLEU (Papineni et al. ACL'02) and ROUGE (Lin. ACL'04 Workshop)
 - Explainability: previous work mostly ignored
 - Design 4 metrics
 - Unique Sentence Ratio (USR)
 - Feature Matching Ratio (FMR)
 - Feature Coverage Ratio (FCR)
 - Feature Diversity (DIV)

$$USR = |\mathcal{S}|/N$$
 $FMR = \frac{1}{N} \sum_{u,i} \delta(f_{u,i} \in \hat{S}_{u,i})$
 $FCR = N_q/|\mathcal{F}|$

$$DIV = \frac{2}{N \times (N-1)} \sum_{u,u',i,i'} \left| \hat{\mathcal{F}}_{u,i} \cap \hat{\mathcal{F}}_{u',i'} \right|$$

Ablation Study

Investigate the impacts of different settings

	Learning F	ramework	Deco	der	Given Features			
	Single-task	Multi-task	GFRU	GRU	In ground-truth	By PMI		
NETE	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$			
NETE-GRU	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$			
NETE-MUL		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$			
NETE-GM		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$			
NETE-PMI	$\sqrt{}$					$\sqrt{}$		

Quantitative Analysis on Explanations (1)

						- / >			`			
		Persona	alization		BLEU	J (%)	ROUGE-1 (%)			ROUGE-2 (%)		
	USR	FMR	FCR	DIV	BLEU-1	BLEU-4	Precision	Recall	F1	Precision	Recall	F1
						TA-l	HK dataset	:				
		YELP19 dataset										
		AZ-MT dataset										
NRT	0.00	-	0.01	5.46	14.02	0.57	23.57	14.24	16.87	2.53	1.70	1.92
Att2Seq	0.34	-	0.18	2.81	12.78	1.01	20.53	13.49	15.42	2.77	1.87	2.09
NETE-GM	0.00	-	0.01	4.12	12.31	0.50	22.77	13.43	16.18	2.40	1.51	1.76
NETE-GRU	0.38	-	0.11	2.34	12.10	0.95	20.16	12.93	14.93	2.63	1.75	1.97
NETE-MUL	0.05	0.61	0.03	2.63	17.20	1.94	33.79	20.01	24.17	7.50	4.32	5.16
NETE-PMI	0.72	0.50	0.19	3.06	13.02	0.82	20.93	12.76	14.99	2.36	1.63	1.81
NETE	0.57**	0.71	0.19*	1.93**	18.76**	2.46**	33.87**	21.43**	24.81**	7.58**	4.77**	5.46**
Improvement (%)	+69.1	-	+5.6	+45.2	+33.8	+143.6	+43.7	+50.5	+47.1	+174.3	+154.9	+161.2

Our methods consistently achieve the best performance on three datasets

Quantitative Analysis on Explanations (2)

	Person	alization		BLEU (%)		ROUGE-1 (%)			ROUGE-2 (%)		
USR	FMR	FCR	DIV	BLEU-1	BLEU-4	Precision	Recall	F1	Precision	Recall	F1
ulti-ta	sk				TA-HK dataset						
0.00	-	0.00	13.61	14.26	0.80	17.57	16.52	16.56	2.45	2.64	2.48
0.18	-	0.17	3.93	14.76	1.01	19.26	14.45	15.83	2.43	1.96	2.06
0.00	-	0.00	14.40	14.01	0.83	17.55	16.19	16.42	2.50	2.60	2.50
0.27	-	0.15	3.00	13.84	0.92	18.55	13.64	15.02	2.23	1.76	1.86
0.02	0.66	0.07	3.92	22.09	3.33	32.59	23.96	26.30	8.87	6.51	7.00
0.79	0.38	0.30	2.92	14.55	0.82	17.84	13.96	14.90	2.01	1.70	1.74
0.57**	0.78	0.27**	2.22**	22.39**	3.66**	35.68**	24.86**	27.71**	10.20**	6.98**	7.66**
+210.7	-	+57.1	+77.1	+51.7	+261.3	+85.2	+50.5	+67.3	+317.0	+164.0	+209.1
	USR 0.00 0.18 0.00 0.27 0.02 0.79 0.57**	USR FMR UITI-TASK 0.00 - 0.18 - 0.00 - 0.27 - 0.02 0.66 0.79 0.38 0.57** 0.78	USR FMR FCR UITI-TASK 0.00 - 0.00 0.18 - 0.17 0.00 - 0.00 0.27 - 0.15 0.02 0.66 0.07 0.79 0.38 0.30 0.57** 0.78 0.27**	Ulti-task 0.00 - 0.00 13.61 0.18 - 0.17 3.93 0.00 - 0.00 14.40 0.27 - 0.15 3.00 0.02 0.66 0.07 3.92 0.79 0.38 0.30 2.92 0.57** 0.78 0.27** 2.22**	USR FMR FCR DIV BLEU-1 UITI-TASK 0.00 - 0.00 13.61 14.26 0.18 - 0.17 3.93 14.76 0.00 - 0.00 14.40 14.01 0.27 - 0.15 3.00 13.84 0.02 0.66 0.07 3.92 22.09 0.79 0.38 0.30 2.92 14.55 0.57** 0.78 0.27** 2.22** 22.39**	USR FMR FCR DIV BLEU-1 BLEU-4 UITI-TASK TA-1 0.00	USR FMR FCR DIV BLEU-1 BLEU-4 Precision UITI-task TA-HK dataset 0.00 - 0.00 13.61 14.26 0.80 17.57 0.18 - 0.17 3.93 14.76 1.01 19.26 0.00 - 0.00 14.40 14.01 0.83 17.55 0.27 - 0.15 3.00 13.84 0.92 18.55 0.02 0.66 0.07 3.92 22.09 3.33 32.59 0.79 0.38 0.30 2.92 14.55 0.82 17.84 0.57** 0.78 0.27** 2.22** 22.39** 3.66** 35.68**	USR FMR FCR DIV BLEU-1 BLEU-4 Precision Recall TA-HK dataset 0.00 - 0.00 13.61 14.26 0.80 17.57 16.52 0.18 - 0.17 3.93 14.76 1.01 19.26 14.45 0.00 - 0.00 14.40 14.01 0.83 17.55 16.19 0.27 - 0.15 3.00 13.84 0.92 18.55 13.64 0.02 0.66 0.07 3.92 22.09 3.33 32.59 23.96 0.79 0.38 0.30 2.92 14.55 0.82 17.84 13.96 0.57** 0.78 0.27** 2.22** 22.39** 3.66** 35.68** 24.86**	USR FMR FCR DIV BLEU-1 BLEU-4 Precision Recall F1 UITI-TASK TA-HK dataset [0.00	USR FMR FCR DIV BLEU-1 BLEU-4 Precision Recall F1 Precision UITI-TASK TA-HK dataset □ 0.00 □ - 0.00 13.61 □ 14.26 □ 0.80 □ 17.57 □ 16.52 □ 16.56 □ 2.45 □ 1.01 □ 19.26 □ 14.45 □ 15.83 □ 2.43 □ 1.00 □ - 0.00 □ 14.40 □ 14.01 □ 0.83 □ 17.55 □ 16.19 □ 16.42 □ 2.50 □ 1.02 □ 0.66 □ 0.07 □ 3.92 □ 22.09 □ 3.33 □ 32.59 □ 23.96 □ 26.30 □ 8.87 □ 0.79 □ 0.38 □ 0.30 □ 2.92 □ 14.55 □ 0.82 □ 17.84 □ 13.96 □ 14.90 □ 2.01 □ 0.57** □ 0.78 □ 0.27* □ 2.22** □ 2.39** □ 3.66** □ 35.68** □ 24.86** □ 2.771** □ 10.20**	USR FMR FCR DIV BLEU-1 BLEU-4 Precision Recall F1 Precision Recall UITI-TASK TA-HK dataset □ 0.00 □ - 0.00 13.61 □ 14.26 □ 0.80 □ 17.57 □ 16.52 □ 16.56 □ 2.45 □ 2.64 □ 14.76 □ 1.01 □ 19.26 □ 14.45 □ 15.83 □ 2.43 □ 1.96 □ 1.00 □ - 0.00 □ 14.40 □ 14.01 □ 0.83 □ 17.55 □ 16.19 □ 16.42 □ 2.50 □ 2.60 □ 0.27 □ - 0.15 □ 3.00 □ 13.84 □ 0.92 □ 18.55 □ 13.64 □ 15.02 □ 2.23 □ 1.76 □ 0.02 □ 0.66 □ 0.07 □ 3.92 □ 22.09 □ 3.33 □ 32.59 □ 23.96 □ 26.30 □ 8.87 □ 6.51 □ 0.79 □ 0.38 □ 0.30 □ 2.92 □ 14.55 □ 0.82 □ 17.84 □ 13.96 □ 14.90 □ 2.01 □ 1.70 □ 0.57** □ 0.78 □ 0.27** □ 2.22** □ 22.39** □ 3.66** □ 35.68** □ 24.86** □ 27.71** □ 10.20** □ 6.98** □ 1.70 □ 0.57** □ 0.78 □ 0.27** □ 2.22** □ 22.39** □ 3.66** □ 35.68** □ 24.86** □ 27.71** □ 10.20** □ 6.98** □ 1.70 □

- Less than 3% unique sentences across the whole dataset
 - Multi-task learning is harmful to sentence diversity

- USR different but BLEU and ROUGE close
 - BLEU and ROUGE cannot properly evaluate sentence diversity
 - It motivates us to design new metrics

Quantitative Analysis on Explanations (3)

		Person	alization		BLEU	BLEU (%)		ROUGE-1 (%)			ROUGE-2 (%)		
	USR	FMR	FCR	DIV	BLEU-1	BLEU-4	Precision	Recall	F1	Precision	Recall	F1	
						TA-	HK dataset	t	GRU				
NRT	0.00	-	0.00	13.61	14.26	0.80	17.57	16.52	16.56	2.45	2.64	2.48	
Att2Seq	0.18	-	0.17	3.93	14.76	1.01	19.26	14.45	15.83	2.43	1.96	2.06	
NETE-GM	0.00	-	0.00	14.40	14.01	0.83	17.55	16.19	16.42	2.50	2.60	2.50	
NETE-GRU	0.27	-	0.15	3.00	13.84	0.92	18.55	13.64	15.02	2.23	1.76	1.86	
NETE-MUL	0.02	0.66	0.07	3.92	22.09	3.33	32.59	23.96	26.30	8.87	6.51	7.00	
NETE-PMI	0.79	0.38	0.30	2.92	14.55	0.82	17.84	13.96	14.90	2.01	1.70	1.74	
NETE	0.57**	0.78	0.27**	2.22**	22.39**	3.66**	35.68**	24.86**	27.71**	10.20**	6.98**	7.66**	
Improvement (%)	+210.7	- 1	+57.1	+77.1	+51.7	+261.3	+85.2	+50.5	+67.3	+317.0	+164.0	+209.1	

- Diverse sentences
- Given features mostly included
- Improved feature coverage ratio & diversity
 - Single-task learning
 - GFRU

- Most similar to ground-truth
 - Informativeness of given features
 - Effectiveness of GFRU

Quantitative Analysis on Explanations (4)

	Personalization			BLEU	BLEU (%)		OUGE-1 (%	5)	ROUGE-2 (%)				
	USR	FMR	FCR	DIV	BLEU-1	BLEU-4	Precision	Recall	F1	Precision	Recall	F1	
		TA-HK dataset											
NRT	0.00	-	0.00	13.61	14.26	0.80	17.57	16.52	16.56	2.45	2.64	2.48	
Att2Seq	0.18	-	0.17	3.93	14.76	1.01	19.26	14.45	15.83	2.43	1.96	2.06	
NETE-GM	0.00	-	0.00	14.40	14.01	0.83	17.55	16.19	16.42	2.50	2.60	2.50	
NETE-GRU	0.27	-	0.15	3.00	13.84	0.92	18.55	13.64	15.02	2.23	1.76	1.86	
NETE-MUL	0.02	0.66	0.07	3.92	22.09	3.33	32.59	23.96	26.30	8.87	6.51	7.00	
NETE-PMI	0.79	0.38	0.30	2.92	14.55	0.82	17.84	13.96	14.90	2.01	1.70	1.74	
NETE	0.57**	0.78	0.27**	2.22**	22.39**	3.66**	35.68**	24.86**	27.71**	10.20**	6.98**	7.66**	
Improvement (%)	+210.7	-	+57.1	+77.1	+51.7	+261.3	+85.2	+50.5	+67.3	+317.0	+164.0	+209.1	

Predicted features may not match those in the ground-truth explanations

Qualitative Case Study on Explanations

- Good linguistic quality
 - Learn templates from data, e.g., "___ was large/comfortable"
- Good controllability
 - Generate more targeted explanations for specific features
 - Produce personalized explanations for different user-item pairs
 - Take into account the sentiment of the predicted ratings

Rating	Feature	Explanation
4		The rooms are spacious and the bath-
		room has a large tub.
	bathroom	The bathroom was large and had a sep-
3.90		arate shower.
	tub	The bathroom had a separate shower and
		tub.
	rooms	The rooms are large and comfortable.
4		The rooms are brilliant and ideal for
		business travellers.
4.13	rooms	The rooms are very spacious and the
		rooms are very comfortable.
2		The broken furniture and dirty sur-
		faces are a dead giveaway.
2.96	furniture	The furniture is worn.
4		Ideal for plane spotters and very close
		to the airport.
2.76	airport	It is not close to the airport .

Recommendation Performance

]	Rating P	rediction	1		Personalized Ranking						
	TA-	HK	YEL	YELP19		MT	TA-HK		YELP19		AZ-MT		
	RMSE	MAE	RMSE	MAE	RMSE	MAE	NDCG@5	HR@5	NDCG@5	HR@5	NDCG@5	HR@5	
							Baselines						
MF	0.798	0.613	1.011	0.782	0.963	0.719	0.361	0.559	0.116	0.140	0.449	0.416	
SVD++	0.798	0.610	1.011	0.785	0.965	0.718	0.362	0.553	0.116	0.138	0.443	0.350	
DeepCoNN	0.796	0.607	1.011	0.789	0.959	0.721	0.630	0.963	0.225	0.216	1.044	1.096	
NRT	0.792	0.605	1.007	0.783	0.957	0.718	0.687	1.074	0.218	0.218	1.305	1.178	
	i _						Ours						
NETE-GM	0.793	0.606	1.008	0.785	0.957	0.713	0.719	1.119	0.281	0.288	1.616	1.452	
NETE-MUL	0.790	0.608	1.008	0.781	0.956	0.717	0.594	0.915	0.234	0.246	1.587	1.507	
NETE	0.792	0.608	1.010	0.789	0.961	0.727	1.039*	1.509*	0.484*	0.515*	1.671*	1.578*	
Improvement (%)	-	-	- 1	-	-	-	+51.2	+40.5	+115.1	+136.2	+28.0	+34.0	

- Accuracy is close
- Not all items evaluated
 - Data selection bias (Harald. RecSys'13)

- Performance gap widens
- NETE outperforms the others
 - The advantage of single-task learning

Conclusion and Future Work

- Propose a model NETE
 - Generate neural template sentences
 - Improve the expressiveness and quality of explanations
- Design four novel metrics
 - Specifically care about the explainability of the generated sentences
- Show the controllability of NETE
 - Generate explanations about the given user, item, sentiment, and features
- Will increase the expressiveness of the explanations
 - Consider adjective words
 - Extend the model to multiple features

References (1)

- [1] Tintarev, Nava, and Judith Masthoff. "Explaining recommendations: Design and evaluation." Recommender systems handbook. 2015.
- [2] Sarwar Badrul, et al. "Item-based collaborative filtering recommendation algorithms." WWW'01.
- [3] Zhang, Yongfeng, et al. "Explicit factor models for explainable recommendation based on phrase-level sentiment analysis." SIGIR'14.
- [4] Li, Piji, et al. "Neural rating regression with abstractive tips generation for recommendation." SIGIR'17.
- [5] Dong, Li, et al. "Learning to generate product reviews from attributes." EACL'17.
- [6] Li, Xueqi, et al. "Directional and Explainable Serendipity Recommendation." WWW'20.
- [7] Chen, Xu, et al. "Personalized Fashion Recommendation with Visual Explanations based on Multimodal Attention Network: Towards Visually Explainable Recommendation." SIGIR'19.
- [8] He, Xiangnan, et al. "Trirank: Review-aware explainable recommendation by modeling aspects." CIKM'15.
- [9] Mnih, Andriy, and Ruslan R. Salakhutdinov. "Probabilistic matrix factorization." NIPS'08.

References (2)

- [10] Wiseman, Sam, et al. "Learning neural templates for text generation." EMNLP'18.
- [11] Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." EMNLP'14.
- [12] Arevalo, John, et al. "Gated multimodal units for information fusion." ICLR'17 Workshop.
- [13] Zhang, Yongfeng, et al. "Do users rate or review? Boost phrase-level sentiment labeling with review-level sentiment classification." SIGIR'14.
- [14] Papineni, Kishore, et al. "BLEU: a method for automatic evaluation of machine translation." ACL'02.
- [15] Lin, Chin-Yew. "ROUGE: A Package for Automatic Evaluation of Summaries." ACL'04 Workshop.
- [16] Steck, Harald. "Evaluation of recommendations: rating-prediction and ranking." RecSys'13.

Q&A

Thank you!