

Instituto Tecnológico de Costa Rica I semestre 2018 Escuela de Ingeniería Electrónica Maestría en Electrónica

Curso: MP-6157 Técnicas de Adquisición y Procesamiento de Datos

Medio: Ejercicios clase 1 Prof.: Ing. Eduardo Interiano

Notas: En la eventualidad de que se le pida entregar ejecutables. Estos serán verificados en Matlab R2017a y debe garantizar que funcionan en esta versión.

Ejercicio 1. Sea x(t) una señal de 3.3MHz distorsionada con sus 4 armónicas superiores. Calcule y grafique (de forma simple y separada para los casos a y b), las frecuencias resultantes entre 0 y la frecuencia de muestreo al ser x(t) muestreada con:

a) $f_s = 100 MHz$ b) $f_s = 10 MHz$

Ejercicio 2. ¿Cuál será la magnitud del ruido blanco en una señal muestreada a 1 MHz?, si el valor rms del ruido blanco presente antes del muestreo es de 10μV y el ancho de banda del ruido se encuentra limitado a 10 MHz.

Ejercicio 3. Sea x(t) una señal de 10kHz distorsionada con sus 4 armónicas superiores que es muestreada a 44kHz. Calcule y grafique la densidad espectral de potencia (PSD) de la señal muestreada.

Ejercicio 4. I) Construya un sistema en Simulink compuesto por un generador sinusoidal, un retenedor de orden cero (que es equivalente a un muestreador y retenedor), un filtro analógico Butterworth de orden alto (mín. 8) y un osciloscopio.

- II) Haga que el retenedor de orden cero muestre a 100 Hz y ajuste la frecuencia de corte del filtro a la frecuencia de Nyquist de 50 Hz.
- III) Simule con frecuencias bien por debajo, cerca y por sobre la frecuencia de Nyquist. Registre la entrada y la salida del sistema.
- IV) En su reporte incluya el diagrama de Simulink, las capturas del osciloscopio para las varias frecuencias y comente si los resultados son los que esperaba y justifique.