Unidade III: Ordenação Interna - Radix Sort

Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação

Introdução

Funcionamento básico

· Algoritmo em C like

· Análise dos número de movimentações e comparações

· Introdução

Funcionamento básico

· Algoritmo em C like

· Análise dos número de movimentações e comparações

Introdução

 Os métodos de ordenação apresentados comparam as chaves de pesquisa como um todo

 Outra opção é comparar as chaves por parte. Por exemplo, em uma lista de nomes, ordenamos os mesmos pelas primeiras letras

 Para cada caractere da chave primária (do menos para o mais significativo), ordene as chaves

array

329

457

657

839

436

720

355

 Para cada caractere da chave primária (do menos para o mais significativo), ordene as chaves

array

329

457

657

839

436

720

355

Introdução

Funcionamento básico

· Algoritmo em C like

· Análise dos número de movimentações e comparações

Introdução

Funcionamento básico

- Algoritmo em C like

Análise dos número de movimentações e comparações

Introdução

Funcionamento básico

· Algoritmo em C like

· Análise dos número de movimentações e comparações

Introdução

Funcionamento básico

· Algoritmo em C like

· Análise dos número de movimentações e comparações

Triplicamos o número de arrays (entrada, contagem e saída)

Array de entrada (a ser ordenado)

Array de saída (ordenado)

 Cada posição do contagem armazena o número de elementos menores ou iguais a ela no entrada. Por exemplo, se a entrada tem 3 zeros, 1 um e 2 dois, então o contagem tem 3, 4 e 6, respectivamente

Array de entrada

Array de contagem

Array de entrada

	1						
2	5	3	0	2	3	0	3

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

O array de contagem terá seis posições (0 à 5)

O array de saída terá oito posições

Array de entrada

	1		_				_
2	5	3	0	2	3	0	3

Array de contagem

Array de saída

0	1	2	3	4	5	6	7

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5

Array de entrada

	1						_
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
0	0	0	0	0	0

Inicializar todas as posições do *array* de contagem com zero

Array de entrada

 		· · · · · · · · · · · · · · · · · · ·		4			<u>-</u>
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
0	0	0	0	0	0

Array de entrada

	<u>-</u>			4			
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
0	0	1	0	0	0

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
0	0	1	0	0	1

Array de entrada

_	0	1	2	3	4	5	6	7
	2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5	
0	0	1	1	0	1	

Array de entrada

 		· · · · · · · · · · · · · · · · · · ·		4			<u>-</u>
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
1	0	1	1	0	1

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
1	0	2	1	0	1

Array de entrada

_					4			-
	2	5	3	0	2	3	0	3

Array de contagem

Array de entrada

		· · · · · · · · · · · · · · · · · · ·		4			-
2	5	3	0	2	3	0	3

Array de contagem

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	0	2	3	0	1

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	0	2	3	0	1

Fazer com que o *array* de contagem seja acumulativo de tal forma que cada posição i armazene o número de elementos menores ou iguais a i

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	0	2	3	0	1

Fazer com que o *array* de contagem seja acumulativo de tal forma que cada posição i armazene o número de elementos menores ou iguais a i

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	2	2	3	0	1

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	2	4	3	0	1

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	2	4	7	0	1

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	2	4	7	7	1

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	2	4	7	7	8

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	2	4	7	7	8

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	2	4	7	7	8

Exemplo

Array de entrada

0				<u>-</u>	5		<u> </u>
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	2	4	7	7	8

Exemplo

Array de entrada

0				4			
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
2	2	4	6	7	8

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Preencher o *array* de saída, copiando os elementos da entrada de trás para frente nas suas respectivas posições

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

1 2 4 6 7 8

Atualizar array de contagem
0 1 2 3 4 5 6 7

0 1 3

5

Exemplo

Array de entrada

0				4			7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
1	2	4	6	7	8

0	1	2	3	4	5	6	7
	0					3	

Exemplo

Array de entrada

0	<u>-</u>			4			7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	<u>-</u>			4			7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	<u>-</u>			4			<u>-</u>
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
1	2	4	5	7	8

0	1	2	3	4	5	6	7
	0				3	3	

Exemplo

Array de entrada

					5		7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
1	2	4	5	7	8

0	1	2	3	4	5	6	7
	0				3	3	

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	<u> </u>			4			7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

_	0	1	2	3	4	5
	1	2	3	5	7	8

0	1	2	3	4	5	6	7
	0		2		3	3	

Exemplo

Preencher o *array* de saída, copiando os elementos da entrada de trás para frente nas suas respectivas posições

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Preencher o *array* de saída, copiando os elementos da entrada de trás para frente nas suas respectivas posições

Array de entrada

•	-		_	4	_	•	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

 0
 2
 3
 5
 7
 8

 Atualizar array de contagem

 0
 1
 2
 3
 4
 5
 6
 7

 0
 0
 2
 3
 3
 3

5

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
0	2	3	5	7	8

0	1	2	3	4	5	6	7
0	0		2		3	3	

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
0	2	3	5	7	8

0	1	2	3	4	5	6	7
0	0		2		3	3	

Exemplo

Array de entrada

0				4			7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0		2					7
2	5	3	0	2	3	0	3

Array de contagem

0 2 3 4 7 8

Atualizar array de contagem
0 1 2 3 4 5 6 7

0 0 2 3 3 3 3

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
0	2	3	4	7	8

0	1	2	3	4	5	6	7
0	0		2	3	3	3	

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
0	2	3	4	7	8

0	1	2	3	4	5	6	7
0	0		2	3	3	3	

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
0	2	3	4	7	7

0	1	2	3	4	5	6	7
0	0		2	3	3	3	5

Exemplo

Array de entrada

	1						7
2	5	3	0	2	3	0	3

Array de contagem

0	1	2	3	4	5
0	2	3	4	7	7

0	1	2	3	4	5	6	7
0	0		2	3	3	3	5

Exemplo

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exemplo

Preencher o *array* de saída, copiando os elementos da entrada de trás para frente nas suas respectivas posições

Array de entrada

0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3

Array de contagem

Exercício Resolvido (1)

Em nosso exemplo, o algoritmo terminou sua execução?

Array de entrada

Array de contagem

Exercício Resolvido (1)

5

• Em nosso exemplo, o algoritmo terminou sua execução?

Array de entrada

Falso, pois ainda precisamos atualizar o array de contagem

Array de contagem

0 2 2 4 7 7

Atualizar *array* de contagem

Array de saída

 0
 1
 2
 3
 4
 5
 6
 7

 0
 0
 2
 2
 3
 3
 3
 5

0

Exercício Resolvido (2)

 Seja o array de entrada abaixo, quais serão os valores contidos no array de contagem antes e depois de copiarmos os elementos da entrada para a saída?

12	Δ	8	2	14	17	6	18	10	16	15	5	13	9	1	11	7	3
44		0	_	- 1			TO	TO	TO	TO	0	TO	•	-			•

Exercício Resolvido (2)

 Seja o array de entrada abaixo, quais serão os valores contidos no array de contagem antes e depois de copiarmos os elementos da entrada para a saída?

Antes de copiarmos, supondo a posição zero, teremos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

Depois, teremos:

0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

Exercício Resolvido (2)

 Seja o array de entrada abaixo, quais serão os valores contidos no array de contagem antes e depois de copiarmos os elementos da entrada para a saída?

Antes de copiarmos, supondo a posição zero, teremos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

Depois, teremos:

0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

Exercício Resolvido (3)

 O Counting Sort pode ser aplicado adequadamente na ordenação de strings e números reais?

Exercício Resolvido (3)

 O Counting Sort pode ser aplicado adequadamente na ordenação de strings e números reais?

Falso. No caso das *strings*, temos um problema combinatório para identificar a posição de cada *string* no *array* de Contagem. No caso dos números reais, temos infinitos valores entre dois números inteiros.

Exercício Resolvido (4)

- · Nosso dinheiro é um número real. Conseguimos utilizar adequadamente
- o Counting Sort para ordenar valores financeiros?

Exercício Resolvido (4)

Nosso dinheiro é um número real. Conseguimos utilizar adequadamente
 o Counting Sort para ordenar valores financeiros?

Verdadeiro. Basta multiplicarmos os valores por cem e considerar somente a parte inteira para a ordenação. No final, basta dividir os valores ordenados por cem (considere a divisão no ambiente de números reais).

Agenda

· Funcionamento básico

- Algoritmo em C like

Análise dos número de movimentações e comparações

```
void countingsort() {
    //Array para contar o numero de ocorrencias de cada elemento
    int[] count = new int[getMaior() + 1];
    int[] ordenado = new int[n];
    //Inicializar cada posicao do array de contagem
    for (int i = 0; i < count.length; count[i] = 0, i++);
    //Agora, o count[i] contem o numero de elemento iguais a i
    for (int i = 0; i < n; count[array[i]]++, i++);</pre>
    //Agora, o count[i] contem o numero de elemento menores ou iguais a i
    for (int i = 1; i < count.length; count[i] += count[i- 1], i++);</pre>
    //Ordenando
    for (int i = n-1; i >= 0; ordenado[count[array[i]]-1] = array[i], count[array[i]]--, i--);
```

```
void countingsort() {
    //Array para contar o numero de ocorrencias de cada elemento
    int[] count = new int[getMaior() + 1];
    int[] ordenado = new int[n];
```

```
void countingsort() {
    //Array para contar o numero de ocorrencias de cada elemento
    int[] count = new int[getMaior() + 1];
    int[] ordenado = new int[n];
    //Inicializar cada posicao do array de contagem
    for (int i = 0; i < count.length; count[i] = 0, i++);
    //Agora, o count[i] contem o numero de elemento iguais a i
    for (int i = 0; i < n; count[array[i]]++, i++);</pre>
    //Agora, o count[i] contem o numero de elemento menores ou iguais a i
    for (int i = 1; i < count.length; count[i] += count[i- 1], i++);</pre>
    //Ordenando
    for (int i = n-1; i >= 0; ordenado[count[array[i]]-1] = array[i], count[array[i]]--, i--);
```

```
void countingsort() {
      //Inicializar cada posicao do array de contagem
      for (int i = 0; i < count.length; count[i] = 0, i++);
      //Agora, o count[i] contem o numero de elemento iguais a i
      for (int i = 0; i < n; count[array[i]]++, i++);</pre>
      //Agora, o count[i] contem o numero de elemento menores ou iguais a i
      for (int i = 1; i < count.length; count[i] += count[i- 1], i++);</pre>
                                                                 5
                                                           4
                                                                       6
                                    2
                                          5
                                                3
                                                            2
                                                                 3
Array de entrada
                                                                 4
                                          2
                                                            3
                                                                 0
                                                ()
Array de contagem
```

```
void countingsort() {
    //Array para contar o numero de ocorrencias de cada elemento
    int[] count = new int[getMaior() + 1];
    int[] ordenado = new int[n];
    //Inicializar cada posicao do array de contagem
    for (int i = 0; i < count.length; count[i] = 0, i++);
    //Agora, o count[i] contem o numero de elemento iguais a i
    for (int i = 0; i < n; count[array[i]]++, i++);
    //Agora, o count[i] contem o numero de elemento menores ou iguais a i
    for (int i = 1; i < count.length; count[i] += count[i- 1], i++);</pre>
    //Ordenando
    for (int i = n-1; i >= 0; ordenado[count[array[i]]-1] = array[i], count[array[i]]--, i--);
```



```
void countingsort() {
    //Array para contar o numero de ocorrencias de cada elemento
    int[] count = new int[getMaior() + 1];
    int[] ordenado = new int[n];
    //Inicializar cada posicao do array de contagem
    for (int i = 0; i < count.length; count[i] = 0, i++);
    //Agora, o count[i] contem o numero de elemento iguais a i
    for (int i = 0; i < n; count[array[i]]++, i++);</pre>
    //Agora, o count[i] contem o numero de elemento menores ou iguais a i
    for (int i = 1; i < count.length; count[i] += count[i- 1], i++);</pre>
    //Ordenando
    for (int i = n-1; i >= 0; ordenado[count[array[i]]-1] = array[i], count[array[i]]--, i--);
```

Agenda

· Funcionamento básico

· Algoritmo em C like

Análise dos número de movimentações e comparações

Inicializar todas as posições do array de contagem com zero

· Para cada elemento do array de entrada, incrementá-lo no de contagem

• Fazer com que o *array* de contagem seja acumulativo de tal forma que cada posição i armazene o número de elementos menores ou iguais a i

Inicializar todas as posições do array de contagem com zero Θ(n)

· Para cada elemento do array de entrada, incrementá-lo no de contagem

 Fazer com que o array de contagem seja acumulativo de tal forma que cada posição i armazene o número de elementos menores ou iguais a i

Inicializar todas as posições do array de contagem com zero Θ(n)

- Para cada elemento do array de entrada, incrementá-lo no de contagem
 ⊕(n)
- Fazer com que o array de contagem seja acumulativo de tal forma que cada posição i armazene o número de elementos menores ou iguais a i

Inicializar todas as posições do array de contagem com zero Θ(n)

Para cada elemento do array de entrada, incrementá-lo no de contagem
 Θ(n)

 Fazer com que o array de contagem seja acumulativo de tal forma que cada posição i armazene o número de elementos menores ou iguais a i Θ(n)

Inicializar todas as posições do array de contagem com zero Θ(n)

Para cada elemento do array de entrada, incrementá-lo no de contagem
 Θ(n)

 Fazer com que o array de contagem seja acumulativo de tal forma que cada posição i armazene o número de elementos menores ou iguais a i

 $\Theta(n)$

Análise do complexidade para operações com elementos do array:

$$\Theta(n) + \Theta(n) + \Theta(n) + \Theta(n) = \Theta(n)$$

Exercício

 Mostre todas as comparações e movimentações do algoritmo anterior para o array abaixo:

12	4	8	2	14	17	6	18	10	16	15	5	13	9	1	11	7	3
1000	•	_	A Partie		S-12-7-115	10.00	100				100		55	(To a)	9-14-15 PART	77 6	_ ```