

7. Neural Networks

Florin Leon

"Gheorghe Asachi" Technical University of Iași Faculty of Automatic Control and Computer Engineering

> "Al. I. Cuza" University of Iași Faculty of Computer Science

Neural Networks

- 1. Introduction
- 2. The Perceptron. Adaline
- 3. The Multilayer Perceptron
- 4. Deep Networks
- 5. Conclusions

Neural Networks

1. Introduction

- 2. The Perceptron. Adaline
- 3. The Multilayer Perceptron
- 4. Deep Networks
- 5. Conclusions

Classification

- A training set is given with a set of instances (also called vectors, records, objects)
- Instances have attributes
- Each instance has attributes with certain values
- Usually the last attribute is the class

- It represents the approximation of a function
 - Any kind of function, not just the type $f: \mathbb{R}^n \to \mathbb{R}$
 - Only the output is continuous; some inputs may be discrete or non-numeric

- The same basic idea: learning a relationship between inputs (vector x) and output (y) from data
- The only difference between classification and regression is the type of output: discrete and continuous, respectively
- Classification estimates a discrete output, the class
- Regression estimates a function h such that h(x) ≈ y(x) with a certain precision
- For each training instance, the desired output value is given ⇒ supervised learning

Neural networks

 The perceptron type neural networks, presented in this lecture, are generally used for regression and classification problems

- The way the brain of living things works is completely different from that of conventional numerical computers
- An artificial neural network is a simplified model of the biological brain
- The human brain has an average of 86 billion neurons and 150 trillion synapses
- The computations are parallel, complex and nonlinear
- Each neuron has a simple structure (only apparently...),
 but their interconnection provides the computing power

Interconnection of neurons

Typical neuronal impulse

- Information is stored and processed throughout the network: they are global, not local
- An essential feature is plasticity: the ability to adapt, to learn
- The possibility of learning led to the idea of modeling some (much) simplified neural networks using computers

Artificial neural networks

Analogies

Biological NN	Artificial NN			
Soma (cell body)DendritesAxonSynapses	NeuronInputsOutputWeights			

Neural Networks

- 1. Introduction
- 2. The Perceptron. Adaline
- 3. The Multilayer Perceptron
- 4. Deep Networks
- 5. Conclusions

The artificial neuron

- The first mathematical model of a neuron was proposed by McCulloch and Pitts (1943)
- \bullet a_i are excitatory inputs, b_i are inhibitory inputs

$$c_{t+1} = \begin{cases} 1 & \text{If } \sum_{i=0}^n a_{i,t} \ge \theta \text{ and } b_{1,t} = \dots = b_{m,t} = 0 \\ 0 & \text{Otherwise} \end{cases}$$

The McCulloch-Pitts neuron

It cannot learn; the parameters are determined analytically

The original perceptron

 Rosenblatt (1958), trying to solve the problem of learning, proposed a model of neuron called perceptron, by analogy with the human visual system

The standard perceptron

 The input signals are summed, and the neuron generates a signal only if the sum exceeds the threshold

 The perceptron has adjustable synaptic weights and a sign or step activation function

$$Y^{sign} = \begin{cases} +1, & \text{if } X \ge 0 \\ -1, & \text{if } X < 0 \end{cases}$$

$$Y^{step}$$

$$Y^{step} = \begin{cases} 1, & \text{if } X \ge 0 \\ 0, & \text{if } X < 0 \end{cases}$$

- The purpose of the perceptron is to classify the inputs $x_1, x_2, ..., x_n$ with two classes A_1 and A_2
- The n-dimensional input space is divided into two by a hyperplane defined by the equation

$$\sum_{i=1}^{n} x_i w_i - \theta = 0$$

Geometric interpretation

Examples: 2 and 3 inputs

4

The threshold as a weight

$$y = F\left(\sum_{i=1}^{n+1} w_i x_i\right)$$

$$\frac{1}{net \ input}$$

- Learning takes place by successively adjusting weights to reduce the difference between actual and desired outputs for all training data
- If, for a training vector, the actual output is y and the desired output is y_d , then the error is: $e = y_d y$
- If the error is positive, we need to increase the perceptron output y
- If the error is negative, we need to decrease the output y

Learning

- If y = 0 and $y_d = 1 \Rightarrow e = 1$
- $\mathbf{x} \cdot \mathbf{w} = 0$
- $\mathbf{x} \cdot \mathbf{w}_d = 1$
- If x > 0, w should increase
- If x < 0, w should decrease
- Then: $\Delta w = \alpha \cdot x = \alpha \cdot x \cdot e$
- \bullet α is the learning rate

Learning

- If y = 1 and $y_d = 0 \Rightarrow e = -1$
- $\mathbf{x} \cdot \mathbf{w} = 1$
- $\mathbf{x} \cdot \mathbf{W}_d = 0$
- If x > 0, w should decrease
- If x < 0, w should increase
- Then: $\Delta w = \alpha \cdot (-x) = \alpha \cdot x \cdot e$

Learning

The perceptron learning rule:

$$\Delta w = \alpha \cdot x \cdot e$$

Using the step activation function

all weights w_i are initialized with 0 or random values in the [-0.5, 0.5] interval the learning rate alpha is initialized with a value in the (0, 1] interval, e.g. 0.1 the maximum number of epochs P is initialized, e.g. 100 p = 0 // the number of current epoch errors = true // a flag indicating the existence of training errors

```
while p < P and errors == true
   errors = false
   for each training vector x_i with i = 1..N
          y_i = F(sum(x_{ij} * w_i)) with j = 1..n+1
          if (y_i != y_{di})
             e = y_{di} - y_{i}
             errors = true
             for each input j = 1..n+1
                w_i = w_i + alpha * x_{ii} * e
   p = p + 1
```

The perceptron training algorithm

Training example: the AND logic function

	Inputs		Desired	Initia1		Actual	Error	Final	
Epoch	1		output	weights		output		weights	
	<i>x</i> ₁	x_2	Y_d	w ₁	w_2	Y	е	w_1	w_2
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	_1	0.2	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	0.0
2	0	0	0	0.3	0.0	0	0	0.3	0.0
	0	1	0	0.3	0.0	0	0	0.3	0.0
	1	0	0	0.3	0.0	1	-1	0.2	0.0
	1	1	1	0.2	0.0	1	0	0.2	0.0
3	0	0	0	0.2	0.0	0	0	0.2	0.0
	0	1	0	0.2	0.0	0	0	0.2	0.0
	1	0	0	0.2	0.0	1	_1	0.1	0.0
	1	1	1	0.1	0.0	0	1	0.2	0.1
4	0	0	0	0.2	0.1	0	0	0.2	0.1
	0	1	0	0.2	0.1	0	0	0.2	0.1
	1	0	0	0.2	0.1	1	_1	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1
5	0	0	0	0.1	0.1	0	0	0.1	0.1
	0	1	0	0.1	0.1	0	0	0.1	0.1
	1	0	0	0.1	0.1	0	0	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1

Threshold: $\theta = 0.2$; learning rate: $\alpha = 0.1$

Graphic representation

The perceptron can only represent linearly separable functions

Discussion

- The perceptron can represent complex linearly separable functions, for example, the majority function
 - A decision tree would need 2ⁿ nodes
- It can learn everything it can represent, but it cannot represent many functions
 - It cannot represent non-linearly separable functions, e.g. XOR

33

Adaline

Linear activation function

$$y = \sum_{i=1}^{n+1} w_i x_i$$

The error of a training vector

$$E_i = \frac{1}{2} \left(y_{di} - y_i \right)^2$$

The error on the training set

$$E = \frac{1}{N} \sum_{i=1}^{N} E_i = \frac{1}{2N} \sum_{i=1}^{N} (y_{di} - y_i)^2$$

Mean square error (MSE)

The training rule

$$\Delta_i w_j = -\alpha \frac{\partial E_i}{\partial w_j}$$

$$\frac{\partial E_i}{\partial w_j} = \frac{\partial E_i}{\partial y_i} \frac{\partial y_i}{\partial w_j}$$

$$\frac{\partial E_i}{\partial y_i} = -\left(y_{di} - y_i\right)$$

$$\frac{\partial y_i}{\partial w_j} = \frac{\partial \left(\sum_k x_{ik} w_k\right)}{\partial w_j} = \frac{\partial x_{ij} w_j}{\partial w_j} = x_{ij}$$

$$\Delta w = \alpha \cdot x \cdot e \quad \longleftarrow \quad \alpha \text{ is the learning rate}$$

Delta rule

In the general case:

$$\frac{\partial E_i}{\partial w_j} = -x_{ij} (y_{di} - y_i) f'(y_i)$$

The weight updates:

$$\Delta_i w_j = \alpha \cdot x_{ij} \cdot e_i \cdot f'(y_i)$$

The delta rule for the linear activation function

$$\Delta_i w_j = \alpha \cdot x_{ij} \cdot e_i \cdot f'(y_i) \qquad f'(y_i) = 1$$

$$w_j(p+1) = w_j(p) + \alpha \cdot x_{ij}(p) \cdot e_i(p)$$

p = the step after which the updates are made (the training vector or epoch)

- It is the same expression as in the perceptron learning rule
- But in the previous case the step activation function was used, which is not derivable
- The delta rule can only be applied for derivable activation functions

Neural Networks

- 1. Introduction
- 2. The Perceptron. Adaline
- 3. The Multilayer Perceptron
- 4. Deep Networks
- 5. Conclusions

- The multilayer perceptron is a feed-forward neural network with one or more hidden layers
 - An input layer
 - One or more hidden / intermediate layers
 - An output layer
- The computations are performed only in neurons from the hidden layers and from the output layer
- The input signals are propagated forward successively through the layers of the network

A multilayer perceptron with two hidden layers

- A hidden layer "hides" its desired output. Knowing the input-output mapping of the network ("black box"), it is not obvious what the desired output of a neuron in a hidden layer should be
- Classical neural networks have 1 or 2 hidden layers.
 Each layer can contain, for example, 10 50 100 neurons

- A neural network with a single hidden layer, possibly with an infinite number of neurons, can approximate any continuous real function
- However, an extra layer can greatly reduce the number of neurons needed in the hidden layers

Perceptron with 1 input

$$S_{A} = \{x < x_{o} | u(x) < u_{prag} \},$$

$$S_B \equiv \{x \ge x_o | u(x) \ge u_{prag} \},$$

Perceptron with 2 inputs

Multilayer perceptron with 1 hidden layer

Multilayer perceptron with 2 hidden layers

The most commonly used functions are the unipolar sigmoid (or logistic function):

$$f(x) = \frac{1}{1 + e^{-x}}$$

Activation functions

and especially the bipolar sigmoid (the hyperbolic tangent):

 $f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$

- A single-layer perceptron has the same limitations even if it uses a nonlinear activation function
- A multilayer perceptron with linear activation functions is equivalent to a single-layer perceptron
- A linear combination of linear functions is also a linear function. For example:

•
$$f(x) = 2x + 2$$

•
$$g(y) = 3y - 3$$

$$g(f(x)) = 3(2x + 2) - 3 = 6x + 3$$

- A multilayer network learns in a similar way as the perceptron
- The network receives the input vectors and computes the output vectors
- If there is an error (a difference between the desired output and the actual output), the weights are adjusted to reduce the error

The backpropagation algorithm

- Authors:
 - Bryson & Ho, 1969
 - Rumelhart, Hinton & Williams, 1986
- The algorithm has two phases:
 - The network receives the input vector and propagates the signal forward, layer by layer, until the output is generated
 - The error signal is propagated back, from the output layer to the input layer, adjusting the weights of the network

The phases of the backpropagation algorithm

- Set all the weights and thresholds of the network to small, but non-zero random values
- In general, they can be in the [-0.1, 0.1] interval
- A heuristic recommends values from the interval $(-2.4 / F_i, 2.4 / F_i)$, where F_i is the number of inputs of neuron i (fan-in)
- The initialization of the weights is done independently for each neuron
- In the following, we will use the following indices:
 i for the input layer, j for the hidden layer and
 k for the output layer

- Activate the back-propagation neural network by applying inputs $x_1(p)$, $x_2(p)$, ..., $x_n(p)$ with desired outputs $y_1^d(p)$, $y_2^d(p)$, ..., $y_0^d(p)$
- Calculate the actual outputs of the neurons in the hidden layer:

$$y_{j}(p) = sigmoid \left[\sum_{i=1}^{n} x_{i}(p) \cdot w_{ij}(p) - \theta_{j} \right]$$

where *n* is the number of inputs of neuron *j* in the hidden layer and a sigmoid activation function is used

Calculate the actual outputs of the neurons in the output layer:

$$y_k(p) = sigmoid \left[\sum_{j=1}^m y_j(p) \cdot w_{jk}(p) - \theta_k \right]$$

where *m* is the number of inputs of neuron *k* in the output layer

 Calculate the error gradient for the neurons in the output layer, with the delta rule

see next slide $\delta_k(p) = y_k(p) \cdot [1 - y_k(p)] \cdot e_k(p)$ $e_k(p) = y_{d,k}(p) - y_k(p)$

$$\Delta w_{jk}(p) = \alpha \cdot y_j(p) \cdot \delta_k(p)$$

$$w_{jk}(p+1) = w_{jk}(p) + \Delta w_{jk}(p)$$

The derivative of the activation function

For unipolar sigmoid

$$f'(x) = \frac{e^{-x}}{(1+e^{-x})^2} = f(x) \cdot (1-f(x)).$$

For bipolar sigmoid

$$f'(x) = \frac{2a \cdot e^{-a \cdot x}}{\left(1 + e^{-a \cdot x}\right)^2} = \frac{a}{2} \cdot \left(1 - f(x)\right) \cdot \left(1 + f(x)\right).$$

Assuming a unipolar sigmoid:

$$\delta_k(p) = y_k(p) \cdot (1 - y_k(p)) \cdot e_k(p).$$

Step 3b. Weight updating

 Calculate the error gradient for the neurons in the hidden layer:

$$\delta_j(p) = y_j(p) \cdot \left[1 - y_j(p)\right] \cdot \sum_{k=1}^l \delta_k(p) w_{jk}(p)$$

Calculate the weight corrections:

$$\Delta w_{ij}(p) = \alpha \cdot x_i(p) \cdot \delta_j(p)$$

Update the weights at the hidden neurons:

$$w_{ij}(p+1) = w_{ij}(p) + \Delta w_{ij}(p)$$

Step 4: Iteration

- Increment p
- The presentation of all training vectors (instances) to the network represents and epoch
- The training of the network continues until the mean square error reaches an acceptable threshold or until a predefined maximum number of training epochs is reached

$$E = \frac{1}{V} \sum_{p=1}^{V} \sum_{k=1}^{O} \left(y_k^d(p) - y_k(p) \right)^2$$
V is the number of training vectors
O is the number of outputs

- The gradient descent formulas are based on the idea of minimizing the network error by adjusting the weights
- But $\partial E / \partial w$ cannot be calculated directly, so the chain rule applies:

$$\frac{\partial E}{\partial w} = \underbrace{\frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial net} \cdot \frac{\partial net}{\partial w}}_{\mathbf{e}} \cdot \underbrace{\frac{\partial net}{\partial w}}_{\mathbf{f'}} \cdot \underbrace{\frac{\partial net}{\partial w}}_{\mathbf{x}}$$

Justification

$$\frac{\partial E}{\partial w} = \underbrace{\frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial net} \cdot \frac{\partial net}{\partial w}}_{\mathbf{e}} \cdot \underbrace{\frac{\partial net}{\partial w} \cdot \frac{\partial net}{\partial w}}_{\mathbf{f'}}$$

The differentials on the right side can be calculated, and finally the weights are adjusted:

$$\Delta w_{jk} = \alpha \cdot y_j \cdot [y_k (1 - y_k)] \cdot e_k$$
$$\Delta w_{ij} = \alpha \cdot x_i \cdot [y_j (1 - y_j)] \cdot \sum_k \delta_k w_{jk}$$

- The adjustment of the weights in the output layer is done as in step 3a
- Adjusting the weights of each hidden layer is done as in step 3b
- If the network has many hidden layers, the gradients are small and the training is very slow or does not converge at all
- Therefore, recent deep learning architectures use other training methods

Example: a network with one hidden layer for approximating the XOR binary function

- The threshold applied to a neuron in a hidden or output layer is equivalent to another connection with the weight equal to θ, connected to a fixed input equal to –1
- The weights and the thresholds are initialized randomly, for example:

$$w_{13} = 0.5$$
, $w_{14} = 0.9$, $w_{23} = 0.4$, $w_{24} = 1.0$

$$W_{35} = 1.2, W_{45} = 1.1$$

$$\theta_3 = 0.8, \ \theta_4 = 0.1, \ \theta_5 = 0.3$$

- We consider a training set where inputs x_1 and x_2 are equal to 1, and desired output y_5^d is 0
- The actual outputs of neurons 3 and 4 in the hidden layer are calculated as:

$$y_3 = sigmoid (x_1w_{13} + x_2w_{23} - \theta_3) = 1/\left[1 + e^{-(1\cdot0.5 + 1\cdot0.4 - 1\cdot0.8)}\right] = 0.5250$$

$$y_4 = sigmoid (x_1w_{14} + x_2w_{24} - \theta_4) = 1/\left[1 + e^{-(1\cdot0.9 + 1\cdot1.0 + 1\cdot0.1)}\right] = 0.8808$$

Now the actual output of neuron 5 in the output layer is determined as:

$$y_5 = sigmoid (y_3w_{35} + y_4w_{45} - \theta_5) = 1/[1 + e^{-(-0.52501.2 + 0.88081.1 - 1 \cdot 0.3)}] = 0.5097$$

The following error is obtained:

$$e = y_{d,5} - y_5 = 0 - 0.5097 = -0.5097$$

- We propagate the error from the output layer backward to the input layer
- First, we calculate the error gradient for neuron 5 in the output layer:

$$\delta_5 = y_5 (1 - y_5) e = 0.5097 \cdot (1 - 0.5097) \cdot (-0.5097) = -0.1274$$

- Then we determine the weight corrections
 - **Assuming that the learning rate** α is 0.1

$$\Delta w_{35} = \alpha \cdot y_3 \cdot \delta_5 = 0.1 \cdot 0.5250 \cdot (-0.1274) = -0.0067$$

$$\Delta w_{45} = \alpha \cdot y_4 \cdot \delta_5 = 0.1 \cdot 0.8808 \cdot (-0.1274) = -0.0112$$

$$\Delta \theta_5 = \alpha \cdot (-1) \cdot \delta_5 = 0.1 \cdot (-1) \cdot (-0.1274) = -0.0127$$

Next we calculate the error gradients for neurons 3 and 4 in the hidden layer:

$$\delta_3 = y_3(1 - y_3) \cdot \delta_5 \cdot w_{35} = 0.5250 \cdot (1 - 0.5250) \cdot (-0.1274) \cdot (-1.2) = 0.0381$$

$$\delta_4 = y_4(1 - y_4) \cdot \delta_5 \cdot w_{45} = 0.8808 \cdot (1 - 0.8808) \cdot (-0.1274) \cdot 1.1 = -0.0147$$

We then determine the weight/threshold corrections:

$$\Delta w_{13} = \alpha \cdot x_1 \cdot \delta_3 = 0.1 \cdot 1 \cdot 0.0381 = 0.0038$$

$$\Delta w_{23} = \alpha \cdot x_2 \cdot \delta_3 = 0.1 \cdot 1 \cdot 0.0381 = 0.0038$$

$$\Delta \theta_3 = \alpha \cdot (-1) \cdot \delta_3 = 0.1 \cdot (-1) \cdot 0.0381 = -0.0038$$

$$\Delta w_{14} = \alpha \cdot x_1 \cdot \delta_4 = 0.1 \cdot 1 \cdot (-0.0147) = -0.0015$$

$$\Delta w_{24} = \alpha \cdot x_2 \cdot \delta_4 = 0.1 \cdot 1 \cdot (-0.0147) = -0.0015$$

$$\Delta \theta_4 = \alpha \cdot (-1) \cdot \delta_4 = 0.1 \cdot (-1) \cdot (-0.0147) = 0.0015$$

At last, we update all weights and thresholds:

$$\begin{split} w_{13} &= w_{13} + \Delta w_{13} = 0.5 + 0.0038 = 0.5038 \\ w_{14} &= w_{14} + \Delta w_{14} = 0.9 - 0.0015 = 0.8985 \\ w_{23} &= w_{23} + \Delta w_{23} = 0.4 + 0.0038 = 0.4038 \\ w_{24} &= w_{24} + \Delta w_{24} = 1.0 - 0.0015 = 0.9985 \\ w_{35} &= w_{35} + \Delta w_{35} = -1.2 - 0.0067 = -1.2067 \\ w_{45} &= w_{45} + \Delta w_{45} = 1.1 - 0.0112 = 1.0888 \\ \theta_{3} &= \theta_{3} + \Delta \theta_{3} = 0.8 - 0.0038 = 0.7962 \\ \theta_{4} &= \theta_{4} + \Delta \theta_{4} = -0.1 + 0.0015 = -0.0985 \\ \theta_{5} &= \theta_{5} + \Delta \theta_{5} = 0.3 + 0.0127 = 0.3127 \end{split}$$

The training process is repeated until the mean square error is less than an acceptable value, e.g. here, 0.001

The final results

Inputs		Desired output	Actual output	Error	Sum of squared
x_1	x_2	y_d	<i>y</i> ₅	e	errors
1	1	0	0.0155	-0.0155	0.0010
0	1	1	0.9849	0.0151	†
1	0	1	0.9849	0.0151	
0	0	0	0.0175	-0.0175	

V is the number of training vectors (here 4)

O is the number of outputs (here 1)

$$E = \frac{1}{V} \sum_{p=1}^{V} \sum_{k=1}^{O} (y_k^d(p) - y_k(p))^2$$

Learning curve for XOR

The final parameters of the network

Decision boundaries

- (a) Decision boundary constructed by hidden neuron 3
- (b) Decision boundary constructed by hidden neuron 3
- (c) Decision boundaries constructed by the complete network: neuron 5 combines the boundaries

- Incremental learning (online learning)
 - The weights are updated after processing each training vector
 - As in the previous example
- Batch learning
 - After processing a training vector, the error gradients accumulate in the weight corrections Δw
 - The weights are updated only once at the end of an epoch, after presenting all the training vectors: $w \leftarrow w + \Delta w$
 - Advantage: the results of the training no longer depend on the order in which the training vectors are presented

Methods to accelerate learning

 Sometimes networks learn faster when using the bipolar sigmoid function (hyperbolic tangent) instead of the unipolar sigmoid

$$f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

Momentum

Generalized delta rule:

$$\Delta w_{jk}(p) = \beta \cdot \Delta w_{jk}(p-1) + \alpha \cdot y_j(p) \cdot \delta_k(p)$$

- The term β is a positive number $(0 \le \beta < 1)$ called momentum constant
- Typically, β is around 0.95

Example: Gradient Descent

$$f(x) = x_1^2 - x_2^2$$

Example: GD with momentum

in grey: GD+M in black: the step GD would do

We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

Learning with momentum for XOR

- In order to accelerate convergence and avoid instability, two heuristics can be applied:
 - If ΔE has the same algebraic sign for several consequent epochs, then the learning rate α should be increased
 - If the algebraic sign of ΔE alternates for several consequent epochs, then the learning rate α should be decreased

Adaptive learning rate

- Let E_p be the sum of the quadratic errors in the present epoch
- If $E_p > r \cdot E_{p-1}$, then $\alpha \leftarrow \alpha \cdot d$
- If $E_p < E_{p-1}$, then $\alpha \leftarrow \alpha \cdot u$
- Then the new weights are computed
- Typical values: r = 1.04, d = 0.7, u = 1.05

Learning with adaptive rate

Learning with momentum and adaptive rate

- In order not to saturate sigmoid functions, which would decrease the convergence speed, the inputs and outputs are usually scaled in the range [0.1, 0.9], or [-0.9, 0.9], depending on the type of sigmoid used
- If the network is used for regression and not for classification, the activation function of the output neurons can be linear or semi-linear (limited to 0 and 1, or -1 and 1, respectively) instead of sigmoid
- Establishing the number of layers and especially the number of neurons in each layer is relatively difficult and may require numerous attempts to achieve the desired performance

Heuristic: Kudrycki's rule

- H = 3.0 or
- $H_1 = 3 \cdot H_2$

where:

- O is the number of outputs
- H is the number of neurons in the hidden layer (for a single hidden layer)
- H_1 is the number of neurons in the first hidden layer and H_2 is number of neurons in the second hidden layer (for 2 hidden layers)

Neural Networks

- 1. Introduction
- 2. The Perceptron. Adaline
- 3. The Multilayer Perceptron
- 4. Deep Networks
- 5. Conclusions

- Classic networks
 - 1-2 layers
 - Sigmoid activation functions
 - Cost functions based on the MSE
 - Training algorithms: Backpropagation, RProp, Levenberg-Marquardt etc.

- Deep networks
 - More layers
 - Simpler activation functions: ReLU
 - Cost functions based on the MLE
 - Training algorithms: SGD, RMSProp, Adam, etc.
 - Other methods of weight initialization, regularization, pre-training
- Apart from the number of layers, the differences are not strict!

- The first layers of a classical multilayer perceptron with a larger number of hidden layers do not train well
- When the weights are small or the sigmoid activation functions are saturated (small gradients), the weight corrections Δw are small and the training is very slow
- Also, the last layers, those close to the output, can learn the problem "quite well" and so the error signal sent to the first layers becomes even smaller
- Other training methods are needed to take advantage of the first layers

93

ReLU activation function

ReLU (Rectified Linear Unit)

$$f(x) = \max(0, x)$$

Leaky ReLU

$$f(x) = \left\{ egin{array}{ll} x & ext{if } x > 0 \ 0.01x & ext{otherwise} \end{array}
ight.$$

■ Parametric ReLU (PReLU) $f(x) = \begin{cases} x & \text{if } x > 0 \\ ax & \text{otherwise} \end{cases}$

a can be learned

ReLU activation function

- ReLU is the activation function recommended in many cases for deep networks
- It is nonlinear
- It is easy to optimize by differential methods
 - Even if the gradient is 0 on the negative side, in practice it works well
 - It has been observed that learning is about 6 times faster than with sigmoid functions

$$\frac{df}{dx} = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x < 0 \end{cases}$$

The cost function

Example: a neuron that receives input 1 and should output 0

The initial state

Learning

With the MSE cost function

Learning

With the cross-entropy cost function

$$w_j = w_j + \alpha \sum_{i=1}^n x_{ij} (y_i - p_i)$$

Florin Leon - Inteligenta artificiala

- For current problems, the number of training instances can be very large
- SGD works similar to gradient descent, but does not take into account all instances when calculating gradients, but only a minibatch
- At each iteration, other instances are randomly chosen
- The gradients are just an approximation of the real gradients
- The time complexity can be controlled by the size of the minibatch

Other training algorithms

- RMSProp (Root Mean Square Propagation)
- Adam (Adaptive Moment)
- RMSProp with Nesterov momentum
- AdaDelta
- AdaGrad
- AdaMax
- Nadam (Nesterov-Adam)

- Rosenblatt's perceptron can learn linearly separable functions
- The multilayer perceptron can approximate nonlinearly separable functions, with complex decision boundaries
- The most used training algorithm for the multilayer perceptron is the backpropagation algorithm
- Deep networks, beside a greater number of layers, may have different activation functions and training algorithms than traditional networks, in addition to other optimizations