

Ayudantía 2 - Lógica Proposicional

22 de marzo de 2024

Martín Atria, Paula Grune, Caetano Borges

Resumen

• ¿Qué es la lógica proposicional?:

Es un sistema que busca obtener conclusiones a partir de premisas. Los elementos más simples (letras 'p', 'q' u otras) representan proposiciones o enunciados. Los conectivas lógicas $(\neg, \land, \lor y \rightarrow)$, representan operaciones sobre proposiciones, capaces de formar otras proposiciones de mayor complejidad.

Semántica:

Una valuación o asignación de verdad para las variables proposicionales en un conjunto P es una función $\sigma: P \to \{0,1\}$, donde '0' equivale a 'falso' y '1' a verdadero.

■ Tablas de verdad:

Las fórmulas se pueden representar y analizar en una tabla de verdad.

		p	q	$p \rightarrow q$	p	q	$p \wedge q$
p	$\neg p$	0	0	1	0	0	0
0	1	0	1	1			0
1	1 0	1	0	0	1	0	0
		1	1	1	1	1	1

ullet Equivalencia lógica \equiv

Dos fórmulas son lógicamente equivalentes (denotado como $\alpha \equiv \beta$) si para toda valuación σ se tiene que $\sigma(\alpha) = \sigma(\beta)$

Leyes de equivalencia

$$\neg(\neg\alpha) \equiv \alpha$$

$$\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma)$$
$$\alpha \vee (\beta \vee \gamma) \equiv (\alpha \vee \beta) \vee \gamma$$

$$\alpha \wedge (\alpha \vee \beta) \equiv \alpha$$
$$\alpha \vee (\alpha \wedge \beta) \equiv \alpha$$

$$\neg(\alpha \land \beta) \equiv (\neg \alpha) \lor
(\neg \beta)
\neg(\alpha \lor \beta) \equiv
(\neg \alpha) \land (\neg \beta)$$

5. Distributividad:

$$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)
\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

8. Implicancia:

$$\alpha \to \beta) \equiv (\neg \alpha) \lor \beta$$

3. Conmutatividad:

$$\alpha \land \beta \equiv \beta \land \alpha$$
$$\alpha \lor \beta \equiv \beta \lor \alpha$$

6. Idempotencia:

$$\begin{array}{l} \alpha \wedge \alpha \equiv \alpha \\ \alpha \vee \alpha \equiv \alpha \end{array}$$

9. Doble implicancia:

$$\alpha \leftrightarrow \beta \equiv (\alpha \to \beta) \land (\beta \to \alpha)$$

Conectivos funcionalmente completos

Un conjunto de conectivos lógicos se dice funcionalmente completo si toda fórmula en L(P) es lógicamente equivalente a una fórmula que sólo usa esos conectivos.

Ejemplos:

•
$$\{\neg, \land, \lor\}$$

• $\{\neg, \land\}$

$$\bullet \ \{\neg, \wedge\}$$

$$\bullet \ \{\neg, \lor\}$$

$$\bullet \ \{\neg, \lor\}$$

$$\bullet \ \{\neg, \rightarrow\}$$

1. Inducción Estructural

A. Palíndromos

Dado un alfabeto finito Σ , se puede definir recursivamente el conjunto \mathcal{P}_{Σ} como:

- $\epsilon \in \mathcal{P}_{\Sigma}$
- $a \in \mathcal{P}_{\Sigma}$ para todo $a \in \Sigma$
- Si $u \in \mathcal{P}_{\Sigma}$, entonces $a \cdot u \cdot a \in \mathcal{P}_{\Sigma}$ para todo $a \in \Sigma$

Por otro lado, para una palabra $w = a_1 a_2 \dots a_n \in \Sigma^*$ se define su palabra reversa $w^R = a_n \dots a_2 a_1$.

4.B.1

Demuestre usando inducción que para toda palabra $w \in \Sigma^*$, si $w \in \mathcal{P}_{\Sigma}$, entonces $w = w^R$.

Solución

Se busca demostrar por inducción que para toda palabra $w \in \Sigma^*$, si $w \in \mathcal{P}_{\Sigma}$ entonces $w = w^R$.

Uamos inducción estructural sobre \mathcal{P}_{Σ} . Se definen $S[0] = \{\epsilon, a\}$ con $a \in \mathcal{P}_{\Sigma}$ y S[n] la enésima capa del conjunto \mathcal{P}_{Σ} .

BI: Existen dos casos base que revisaremos a continuación:

- 1. Se tiene ϵ en la primera capa S[0], caso en que cumple claramente $\epsilon = \epsilon^R$.
- 2. Se tienen aquellas letras $a \in \Sigma$ en la primera capa, cumpliéndose también que $a = a^R$.

HI: Se define $w \in \mathcal{P}_{\Sigma}$ perteneciente a la enésima capa S[n], de modo que se cumple $w = w^R$.

TI: Ahora sea $u \in \mathcal{P}_{\Sigma}$ tal que $|u| \geq 2$ perteneciente a S[n+1], entonces se tiene que $\exists a \in \Sigma$ tal que $u = a \cdot w \cdot a$ con $w \in \mathcal{P}_{\Sigma}$ (Por la regla de construcción recursiva de \mathcal{P}_{Σ}).

Ahora, $u^R = (a \cdot w \cdot a)^R = a \cdot w^R \cdot a = a \cdot w \cdot a = u$, quedando así demostrado que si $u \in \mathcal{P}_{\Sigma} \implies u = u^R$.

4.B.2

Demuestre usando inducción que para toda palabra $w \in \Sigma^*$, si $w = w^R$, entonces $w \in \mathcal{P}_{\Sigma}$.

Solución

Se busca demostrar por inducción que para toda palabra $w \in \Sigma^*$, si $w = w^R$, entonces se cumple que $w \in \mathcal{P}_{\Sigma}$ mediante inducción estructural sobre Σ^* .

BI: Se considera ϵ que claramente cumple $\epsilon = \epsilon^R$, luego por definición del conjunto base de \mathcal{P}_{Σ} , se tiene que $\epsilon \in \mathcal{P}_{\Sigma}$.

HI: Se asume que para toda palabra u de largo menor a w, se tiene que si $u = u^R$, entonces se cumple $u \in \mathcal{P}_{\Sigma}$.

TI: Ahora, dado $w \in \Sigma^*$, por la definición recursiva del conjunto Σ^* , se tiene que $w = u \cdot a$ para algún $u \in \Sigma^*$ y $a \in \Sigma$, con $u = a_1 \cdot a_2 \cdot \cdots \cdot a_n$. Para demostrar la implicancia, asumiremos que $w = w^R$, de modo que:

$$a_1 \cdot a_2 \cdot \dots \cdot a_n \cdot a = w = w^R = (a_1 \cdot a_2 \cdot \dots \cdot a_n \cdot a)^R = a \cdot a_n \cdot \dots \cdot a_2 \cdot a_1$$

A partir de esto se deduce que $a = a_1$, con lo que se define $w' = a_2 \cdot \dots \cdot a_n$ y $w = a \cdot w' \cdot a$. Dado que |w'| < w, por hipótesis inductiva entonces $w' \in \mathcal{P}_{\Sigma}$. Finalmente, por la definición recursiva de \mathcal{P}_{Σ} , puesto que $w = a \cdot w' \cdot a$ y $w' \in \mathcal{P}_{\Sigma}$, se cumple que $w \in \mathcal{P}_{\Sigma}$, quedando así demostrada la implicancia.

B. Lógica

Sea $\varphi \in \mathcal{L}(P)$ una fórmula construida usando los conectivos del conjunto $C = \{\neg, \land, \lor\}$. Llamamos φ' a la fórmula obtenida desde φ reemplazando todas las ocurrencias de \land por \lor , las de \lor por \land , y todas las variables proposicionales por sus negaciones.

Demuestre que φ' es lógicamente equivalente a $\neg \varphi$.

Solución

Demostraremos por inducción estructural.

BI: Con $\varphi = p$ se tiene que $\varphi' \equiv \neg p \equiv \neg \phi$ con lo que la propiedad se cumple.

HI: Supongamos que $\varphi, \psi \in \mathcal{L}(P)$ son fórmulas construidas usando los conectivos de C.

TI: Demostraremos que una fórmula $\theta \in \mathcal{L}(P)$ construida inductivamente a partir de φ y/o ψ también cumple la propiedad. Hay tres casos posibles:

1. $\theta = \neg \varphi$:

En este caso se tiene que $\theta' \equiv (\neg \varphi)' \stackrel{\text{HI}}{\equiv} (\varphi')' \equiv \varphi \stackrel{\text{Doble negación}}{\equiv} \neg (\neg \varphi) \equiv \neg \theta$, con lo que la propiedad se cumple.

2. $\theta = \varphi \vee \psi$:

En este caso se tiene que $\theta' \equiv (\varphi \lor \psi)' \equiv \varphi' \land \psi' \stackrel{\text{HI}}{\equiv} \neg \varphi \land \neg \psi \stackrel{\text{De Morgan}}{\equiv} \neg (\varphi \lor \psi) \equiv \neg \theta$, con lo que la propiedad se cumple.

3. $\theta = \varphi \wedge \psi$:

En este caso se tiene que $\theta' \equiv (\varphi \wedge \psi)' \equiv \varphi' \vee \psi' \stackrel{\text{HI}}{\equiv} \neg \varphi \vee \neg \psi \stackrel{\text{De Morgan}}{\equiv} \neg (\varphi \wedge \psi) \equiv \neg \theta$, con lo que la propiedad se cumple.

Concluímos entonces por inducción estructural que para toda fórmula $\varphi \in \mathcal{L}(P)$ construida mediante los conectivos de C se cumple que $\varphi' \equiv \neg \varphi$.

2. Tabla de Verdad

\mathbf{A}

Escriba el siguiente enunciado con lógica proposicional

- Si superman fuera capaz y deseara prevenir el mal, entonces lo haría.
- Si superman fuera incapaz de prevenir el mal, entonces sería impotente.
- Si superman no deseara prevenir el mal, entonces sería malévolo.
- Si superman existe, no es ni impotente ni malévolo.
- Superman no previene el mal.

Demuestre que superman no existe.

Solución:

Vamos a definir las siguientes proposiciones:

- P: "Superman es capaz"
- Q: "Superman desea prevenir el mal"
- R: "Superman es impotente"
- S: "Superman es malévolo"
- E: "Superman existe"
- M: "Superman previene el mal"

El enunciado se puede escribir formalmente como:

$$[(P \land Q \to M) \land (\neg P \to R) \land (\neg Q \to S) \land (E \to \neg (R \lor S)) \land (\neg M)]$$

Ahora nos piden demostrar que $\neg E$. Vamos a hacer un análisis de cada proposición de la conjunción de forma separada.

1.
$$(P \wedge Q \rightarrow M)$$

P	Q	M	$P \wedge Q$	$P \wedge Q \to M$
1	1	1	1	1
1	1	0	1	0
1	0	1	0	1
1	0	0	0	1
0	1	1	0	1
0	1	0	0	1
0	0	1	0	1
0	0	0	0	1

$$2. \ (\neg P \to R)$$

P	R	$\neg P$	$\neg P \to R$
1	1	0	1
1	0	0	1
0	1	1	1
0	0	1	0

3.
$$(\neg Q \to S)$$

Q	S	$\neg Q$	$\neg Q \to S$
1	1	0	1
1	0	0	1
0	1	1	1
0	0	1	0

4.
$$(E \to \neg (R \lor S))$$

E	R	S	$\neg (R \lor S)$	$E \to \neg (R \lor S)$
1	1	1	0	0
1	1	0	0	0
1	0	1	0	0
1	0	0	1	1
0	1	1	0	1
0	1	0	0	1
0	0	1	0	1
0	0	0	1	1

5.
$$(\neg M)$$

M	$\neg M$
1	0
0	1

Llamemos

$$N = [(P \land Q \to M) \land (\neg P \to R) \land (\neg Q \to S) \land (E \to \neg (R \lor S)) \land (\neg M)]$$

Para demostrar que superman no existe, debemos demostrar que $N \to \neg E$, es decir, que si se cumplen todas nuestras frases (N), entonces superman no existe. Ahora notemos que para que $N \to \neg E$ sea verdad tendremos la siguiente tabla de verdad.

N	E	$\neg E$	$N \to \neg E$
1	1	0	0
1	0	1	1
0	1	0	1
0	0	1	1

(los siguientes pasos están separados para fácilitar la lectura)

- lacksquare Ahora notemos que el único caso que falla es cuando N:=1 y E:=1.
- Pero que E := 1 por la tabla 4. hace que necesariamente R := 0 y S := 0.
- ullet Viendo la tabla 2., tendremos que P:=1. Viendo la tabla 3. también tendremos que Q:=1.
- Así viendo la tabla 1. y ocupando que P := 1, Q := 1 y M := 0 (por tabla 5.) tendremos que $(P \land Q \to M)$ es 0.
- \blacksquare Pero esto hace falso a N ya que una de sus conjunciones es 0.

\mathbf{B}

El conectivo ternario EQ se define como:

$$EQ(p,q,r) = \begin{cases} 1 & \text{si y solo si } 3(q+r) - 5p \ge 0 \\ 0 & \text{en otro caso} \end{cases}$$

Determine la tabla de verdad de EQ

Solución

p	q	r	3(q+r) - 5p	EQ(p,q,r)
0	0	0	0	1
0	0	1	3	1
0	1	0	3	1
0	1	1	6	1
1	0	0	-5	0
1	0	1	-2	0
1	1	0	-2	0
1	1	1	1	1

3. Equivalencia Lógica

Demuestre que

$$(p \lor (p \to q)) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q) \equiv p \land q$$

Solución

$$(p \lor (p \to q)) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q)$$

$$\equiv (p \lor (\neg p \lor q)) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q)$$

$$\equiv ((p \lor \neg p) \lor q) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q)$$

$$\equiv \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q)$$

$$\equiv (\neg r \lor p) \land (p \land (r \lor q)) \land (\neg r \lor q)$$

$$\equiv (\neg r \lor p) \land (p \land (r \lor q)) \land (\neg r \lor q)$$

$$\equiv p \land (\neg r \lor p) \land (r \lor q) \land (\neg r \lor q)$$

$$\equiv p \land (r \lor q) \land (\neg r \lor q)$$

$$\equiv p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land (r \land \neg r) \lor q)$$

$$\Rightarrow p \land ($$