



Escola Tècnica Superior d'Enginyeria Informàtica

| Group identifier | Leil | oniz       | Official submission date | 07/03/2018 |
|------------------|------|------------|--------------------------|------------|
| Deliverable n°   | #2.5 | 5          | Real submission date     | 06/03/2018 |
| Typo             | X    | Individual | Stéphane Díaz-Alejo Leó  | n          |
| Туре             |      | In group   |                          |            |

## Sections of deliverable

| -  |           |        |          |                    |        |        |          |       |        |          |      |     |      |       |       |    |
|----|-----------|--------|----------|--------------------|--------|--------|----------|-------|--------|----------|------|-----|------|-------|-------|----|
| -  |           |        |          |                    |        |        |          |       |        |          |      |     |      |       |       |    |
|    |           |        |          |                    |        |        |          |       |        |          |      |     |      |       |       |    |
| So | lution to | the po | osed pro | oblem <sup>,</sup> | with e | xplana | ition an | d com | ments. | . If the | task | was | to s | summa | arize | of |
|    |           |        | •        |                    |        |        |          |       |        |          |      | •   |      |       |       |    |

Solution to the posed problem with explanation and comments. If the task was to summarize of a topic, it is mandatory an explanation with a schema. You can use more sheets of paper if it is not enough with the two pages of this one.

## **FACTORIAL:**

The input size of the problem would be the integer n:

Doubts and questions (there should be three at least)

$$n \equiv n$$

The best critical instruction is the condition of the trivial case as it is going to be executed as many times as any other:

The algorithm does not execute a different number of elementary operations depending on input data for the same size of the input.

So, T(n) would be:

$$T(n) = 1 + T(n-1) = 2 + T(n-2) = ... = n - 1 + T(1) = n + T(0) = n + 1$$
  
 $T(n) \in \Theta(n)$ 





Escola Tècnica Superior d'Enginyeria Informàtica

## **FIBONACCI:**

The input size of the problem would be the integer n:

$$n \equiv n$$

The best critical instruction is the condition of the trivial case as it is going to be executed as many times as any other:

The algorithm does not execute a different number of elementary operations depending on input data for the same size of the input.

So, T(n) would be:

$$T(n) = 1 + T(n-1) + T(n-2) = * = (\frac{1+\sqrt{5}}{2})^n$$
  
$$T(n) \in \Theta(2^n)$$

a) 
$$1 + 2 + 2 T(n - 2) = 2^0 + 2^1 + 2^2 + 2^3 T(n - 3) = \dots = \sum_{i=0}^{n} 2^i = 2^{n+1} - 1$$
  
b)  $1 + 2 + 2^2 T(n - 2 * 2) = 2^0 + 2^1 + 2^2 + 2^3 T(n - 2 * 3) = \dots = \sum_{i=0}^{n/2} 2^i = 2^{n/2} - 1$ 

b) 
$$1 + 2 + 2^2 T(n - 2 * 2) = 2^0 + 2^1 + 2^2 + 2^3 T(n - 2 * 3) = \dots = \sum_{i=0}^{n/2} 2^i = 2^{-n/2} - 1$$

$$T(n) \simeq \Phi^n$$
;  $\Phi \in \sqrt{2}$ , 2

$$\Phi^n = \Phi^{n-1} + \Phi^{n-2}$$

$$\Phi^2 = \Phi^1 + 1 \rightarrow x^2 - x - 1 = 0$$

$$\mathbf{X} = \frac{1 + \sqrt{5}}{2}$$