

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ		
КАФЕДРА ИУ5		
РАСЧЕТНО-ПОЯС <i>ККУРСО</i>	ЕНИТЕЛЬНАЯ В <i>ОМУПРОЕКТУ</i>	
H	A TEMY:	
Решение задач	и машинного обу	учения
Студент группы РТ5-61 (Группа)	(Подпись, дата)	Калин В.Д (И.О.Фамилия)
Руководитель курсового проекта	(Подпись, дата)	Гапанюк Ю.Е. (И.О.Фамилия)
Консультант	(Полпись, лата)	(И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	Завел	УТВЕРЖДАЮ ующий кафелрой	r	
	Завед	у гверждаю ующий кафедрой	(Индекс)	
			(И.О.Фамилия)	
	«	»	20 г.	
3 А Д А	ние			
на выполнение к	урсового прое	кта		
по дисциплине «Технологии машинного обучения»	>			
Студент группы РТ5-61				
Калин Владимир Д (Фамилия, и	Цмитриевич мя, отчество)			
Тема курсового проекта				
Направленность КП (учебный, исследовательский, пр	рактический, производо	ственный, др.)		
Источник тематики (кафедра, предприятие, НИР)			-	
Задание решение задачи машинного обучения на о студентом единолично.	основе материалов дис	циплины. Выпол	пняется	
Оформление курсового проекта:				
Расчетно-пояснительная записка на16 листах Перечень графического (иллюстративного) матери		ı, слайды и т.п.) 		
Дата выдачи задания « 12 » февраля 2020 г.				
Руководитель курсового проекта	(Подпись, дата)		ок Ю.Е. Рамилия)	
Студент	(Подпись, дата)	Калин Е (И.О.Ф	З.Д. Рамилия)	

Примечание: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на

кафедре.

Оглавление	
1. Задание установленного образца	4
2. Введение	5
3. Основная часть.	6
3.1 Описание набора данных	6
3.2 Ход работы	7
4. Выводы по проделанной работе	18

Задание установленного образца

Схема типового исследования, проводимого студентом в рамках курсовой работы, содержит выполнение следующих шагов:

- Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее трех метрик и обосновать выбор.
- Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее пяти моделей, две из которых должны быть ансамблевыми.
- Формирование обучающей и тестовой выборок на основе исходного набора данных.
- Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производятся

- обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания.
 Рекомендуется построение графиков обучения и валидации, влияния значений гиперпарметров на качество моделей и т.д.

Введение

Курсовой проект — самостоятельная часть учебной дисциплины «Технологии машинного обучения» — учебная и практическая исследовательская студенческая работа, направленная на решение комплексной задачи машинного обучения. Результатом курсового проекта является отчет, содержащий описания моделей, тексты программ и результаты экспериментов.

Курсовой проект опирается на знания, умения и владения, полученные студентом в рамках лекций и лабораторных работ по дисциплине.

Основная часть. Описание постановки задачи и последовательности действий по решению поставленной задачи

Описание набора данных

В данной работе для исследований был выбран следующий датасет: https://archive.ics.uci.edu/ml/machine-learning-databases/00332/

Задача: анализ популярности новостей на онлайн сервисах поисковых запросов и предсказание динамики процесса.

Ход работы

В ходе данной работы были разработаны алгоритмы анализа входного датасета для достижения поставленной задачи.

Реализация алгоритмов велась на языке Python в среде разработки PyCharm. Запуск и демонстрация алгоритмов производились на базе сервера Jupyter Notebook, который запускается из-под среды разработки PyCharm. Ниже приведены результаты работы алгоритмов на некоторых входных данных:

Out[13]: /coohorn ovicarid DoinGrid at AvaAOho1AN

```
In [14]: sns.jointplot(x=' global_subjectivity', y=' shares', data=data)
```

Out[14]: <seaborn.axisgrid.JointGrid at 0x16fe47b0>

In [15]: sns.boxplot(x=data[' shares'])

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x3c6c90>

In [16]: sns.violinplot(x=data[' shares'])

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0xbd0b10>

In [17]: data.corr()

Out[17]:

	timedelta	n_tokens_title	n_tokens_content	n_unique_tokens	n_non_stop_words	n_non_stop_unique_tokens	num_hrefs	nur
timedelta	1.000000	-0.240320	-0.062867	0.002866	0.000089	0.003805	-0.000832	
n_tokens_title	-0.240320	1.000000	0.018160	-0.005318	-0.004754	-0.005420	-0.053496	
n_tokens_content	-0.062867	0.018160	1.000000	-0.004737	0.017512	0.000373	0.423065	
n_unique_tokens	0.002866	-0.005318	-0.004737	1.000000	0.999572	0.999852	-0.004352	
n_non_stop_words	0.000089	-0.004754	0.017512	0.999572	1.000000	0.999532	0.005521	
n_non_stop_unique_tokens	0.003805	-0.005420	0.000373	0.999852	0.999532	1.000000	-0.004983	
num_hrefs	-0.000832	-0.053496	0.423065	-0.004352	0.005521	-0.004983	1.000000	
num_self_hrefs	0.064530	-0.014856	0.304682	0.006620	0.013598	0.007584	0.396452	
num_lmgs	-0.027636	-0.008858	0.342600	0.018802	0.028486	0.014230	0.342633	
num_vldeos	0.000936	0.051460	0.103899	-0.000597	-0.000899	-0.000963	0.114518	
average_token_length	0.130465	-0.071403	0.167789	0.026407	0.031554	0.034185	0.222588	
num_keywords	0.046884	-0.008077	0.072845	-0.003679	-0.001439	-0.004440	0.125890	
data_channel_is_lifestyle	0.054492	-0.070815	0.037548	-0.001853	-0.000314	-0.000417	0.052906	
ata_channel_is_entertainment	-0.049109	0.132791	0.080200	0.011016	0.010903	0.010554	-0.007968	
data_channel_le_bus	0.055788	-0.023902	-0.008105	-0.000264	-0.000012	0.001840	-0.058360	
data_channel_ls_socmed	0.076287	-0.090394	0.033424	-0.000945	-0.000078	-0.000526	0.050470	
data_channel_is_tech	0.083277	-0.046716	0.025408	-0.002328	0.000061	-0.000921	-0.061734	
data_channel_is_world	-0.170250	0.049223	0.025400	-0.002326	-0.002702	-0.003801	-0.031587	
kw_min_min	0.591199	-0.110672	-0.054345	0.001601	-0.002702	0.002001	-0.031567	
	0.029503	-0.005890	0.000066	-0.000552	-0.000595	-0.002601	0.012844	
kw_max_mln								
kw_avg_min	0.133225	-0.031400	-0.003545	-0.000826	-0.000892	-0.000644	0.008307	
kw_min_max	-0.076590	0.012926	-0.022786	0.000577	-0.000553	-0.000089	-0.020150	
kw_max_max	-0.637824	0.120841	0.058860	-0.001624	0.000394	-0.002032	0.051265	
kw_avg_max	-0.493093	0.115746	-0.096460	0.000805	-0.002939	-0.002006	-0.019269	
kw_min_avg	-0.157204	-0.002370	-0.022286	0.004563	0.003284	0.002510	0.058920	
kw_max_avg	-0.051820	0.006918	-0.030496	-0.002120	-0.003408	-0.003894	0.069692	
kw_avg_avg	-0.163164	0.004296	-0.079624	-0.002083	-0.005415	-0.005944	0.121419	
self_reference_min_shares	-0.011438	-0.004563	-0.030686	0.001036	0.000339	0.000989	-0.004804	
self_reference_max_shares	-0.014501	0.000128	0.025857	-0.000222	0.000170	-0.000077	0.080394	
self_reference_avg_sharess	-0.015855	0.000661	-0.013809	0.001992	0.001614	0.002009	0.025239	
weekday_ls_monday	-0.006129	0.004274	-0.002484	-0.002142	-0.002147	-0.002042	-0.005759	
weekday_la_tuesday	-0.005781	0.009322	-0.004027	0.010538	0.010501	0.010510	-0.010891	
weekday_la_wednesday	0.009961	0.008935	-0.016891	-0.002224	-0.002517	-0.002070	-0.032437	
weekday_la_thuraday	0.004042	-0.015472	-0.007395	-0.002248	-0.002360	-0.002283	-0.012776	
weekday_ls_friday	-0.002853	-0.002015	-0.015949	-0.001398	-0.001963	-0.001301	-0.001306	
weekday_le_saturday	-0.004067	-0.015013	0.034538	-0.002563	-0.001508	-0.002623	0.054861	
weekday_la_aunday	0.004226	0.006289	0.036394	-0.001803	-0.001338	-0.002167	0.044220	
ls_weekend	0.000272	-0.005996	0.052024	-0.003186	-0.002082	-0.003502	0.072279	
LDA_00	0.080894	-0.070038	0.026218	-0.002213	-0.001031	0.000342	-0.020100	
LDA_01	0.004423	0.063568	-0.009724	-0.000827	-0.002869	-0.000965	-0.053803	
LDA_02	-0.141713	0.038365	0.087268	-0.006855	-0.003286	-0.004965	-0.012531	
LDA_03	-0.030838	0.042208	-0.140141	-0.003689	-0.009761	-0.009781	0.123786	
LDA 04	0.092906	-0.085063	0.041265	-0.004260	-0.001072	-0.002097	-0.054977	
global_aubjectivity	0.133837	-0.056804	0.127879	-0.000180	0.002565	0.005498	0.203464	
global sentiment polarity	0.158646	-0.072226	0.021937	0.000523	0.000831	0.002043	0.086859	
global_rate_positive_words	0.207604	-0.064951	0.133979	0.000014	0.001535	0.005002	0.056428	
global_rate_negative_words	0.010266	0.015530	0.125013	-0.000877	0.001036	0.002590	0.032515	
rate_positive_words	0.198854	-0.086589	0.098960	-0.000877	0.002421	0.002360	0.101663	
rate_positive_words	-0.071968	0.034186	0.101053	-0.000667	0.002421	0.001709	0.059817	
	0.126344	-0.049619		-0.001667	0.001245		0.188236	
avg_positive_polarity			0.135123			0.004671		
min_positive_polarity	0.054772	-0.025069 -0.021662	-0.261493	0.009193	0.000904	0.008380	-0.082168 0.286733	

```
60 rows × 60 columns
                       4
In [18]: sharescorr=data.corr()
sharescorr[' shares']
                     sharescorr['shares']

timedelta
n_tokens_title
n_tokens_content
n_unique_tokens
n_non_stop_words
n_non_stop_words
num_hrefs
num_self_hrefs
num_ings
num_videos
average_token_length
num_keywords
data_channel_is_lifestyle
data_channel_is_entertainment
data_channel_is_bus
data_channel_is_bus
data_channel_is_tech
data_channel_is_tech
data_channel_is_tech
data_channel_is_tech
data_channel_is_world
kw_min_min
                                                                                                           0.008662
0.008783
0.002459
Out[18]:
                                                                                                           0.000806
                                                                                                           0.000443
                                                                                                           0.000114
                                                                                                           0.045404
                                                                                                        -0.001900
0.039388
0.023936
                                                                                                       -0.022007
                                                                                                           0.021818
                                                                                                            0.005831
                                                                                                         -0.017000
                                                                                                         -0.017006
-0.012376
0.005021
-0.013253
                         -0.049497
-0.001051
                                                                                                           0.030114
                                                                                                           0.030114
0.030406
0.003901
0.007863
0.044686
0.039551
                                                                                                           0.064306
                                                                                                            0.110413
                                                                                                           0.055958
0.047115
0.057789
0.009726
                                                                                                          -0.007941
                                                                                                         -0.003801
                                                                                                        -0.003881
-0.003884
0.015082
0.008230
0.016958
-0.003793
                                                                                                         -0.010183
                                                                                                         -0.059163
                                                                                                           0.083771
                                                                                                         -0.016622
0.031604
0.004163
0.000543
                                                                                                           0.006615
                                                                                                         -0.013241
                                                                                                        -0.005183
0.012142
-0.000040
0.010068
-0.032029
                                                                                                         -0.019297
                                                                                                         -0.019300
                                                                                                           0.021967
                                                                                                           0.012772
                        shares
Name: shares, dtype: float64
                                                                                                           1.000000
   In [ ]: for col in pd.read_csv('dataset.csv',sep=",").columns:
    if col != 'url':
        print("Konoeka {}".format(col))
    print(pd.read_csv('dataset.csv',sep=",").corr()[col])
                                           timedelta
                          Kononka timedelta
timedelta
n_tokens_title
n_tokens_content
n_unique_tokens
n_non_stop_words
n non_stop words
                                                                                                         1.000000
                                                                                                       -0.240320
-0.062867
0.002866
0.000089
0.003805
```

Выводы по проделанной работе

в ходе курсовой работы были закреплены полученные в течение курса знания и навыки. Для исследования использовались различные модели в

Список использованных источников

- 1. Конспект лекций по дисциплине "Технологии машинного обучения". 2020:
 - https://github.com/ugapanyuk/ml_course_2020/wiki/COURSE_TMO
- Документация scikit-learn: https://scikit-learn.org/stable/index.html
- 3. Метрики в задачах машинного обучения: https://habr.com/ru/company/ods/blog/328372/