Validación tomográfica de modelos magnetohidrodinámicos tridimensionales de la corona solar

Lloveras D.G.¹, Mac Cormack C.^{1,2}, Vásquez A.M.^{1,2}, Nuevo F.A.¹, Sachdeva N.³, Manchester IV W.³, van der Holst B.³, Frazin R.A.³

¹ Insituto de Astronomía y Física del Espacio, CONICET-UBA, Argentina

² Departamento de Ciencia y Tecnología, Universidad Nacional de Tres de Febrero (UNTREF), Argentina

³ CLaSP (Univ. of Michigan), Ann Arbor - Michigan, EEUU

Abstract / Los modelos magnetohidrodinámicos (MHD) tridimensionales (3D) de la corona solar, necesarios para modelar y predecir el tiempo espacial, deben ser validados observacionalmente. A escala global esto puede ser hecho mediante tomografía de medida de emisión diferencial (DEMT), que provee resultados 3D de densidad y temperatura electrónica en la baja corona $(1.0-1.25\,\rm R_{\odot})$. Realizamos una validación DEMT de la versión mas reciente del Alfvén Wave Solar Model (AWSoM) del Space Weather Modeling Framework (SWMF). Se lleva a cabo un análisis comparativo a lo largo de las líneas de campo de la densidad y temperatura electrónicas del modelo y la tomografía, así como de cantidades energéticas integrales. Para este estudio se seleccionaron dos rotaciones de mínimo solar, una entre los ciclos solares (SC) 23 y 24, y otra entre los SCs 24 y 25. Discutimos las diferencias observadas ente el modelo y los productos tomográficos, y las limitaciones y posibles mejoras futuras para el modelo AWSoM.

Keywords / Sun: corona — Sun: fundamental parameters — Sun: UV radiation — Sun: abundances

Contacto / dlloveras@iafe.uba.ar

Presentación oral

Presentación oral