EPFL

PROJECT CSE I

Notes

Fabio Matti

supervised by Prof. Fabio Nobile Dr. Davide Pradovera

1 FINITE ELEMENT METHOD

1.1 THE GENERAL APPROACH

Summarizes Chapter 1 in Quarteroni: Introduction to Finite Elements Method Usually, the problems may be expressed in a simple equation

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = u_D & \text{on } \partial\Omega \end{cases}$$
 (1.1)

where L denotes a linear differential operator (e.g. $-\Delta$ in the Poisson equation), u the solution to be found, and f is a source term independent of u. Some boundary condition u_D is imposed on the solution u.

However, equation (1.1) usually does not allow all physically significant solutions (particularly non-differentiable ones). Therefore, we convert the problem to a weak form. This is achieved by multiplying (1.1) with a test function $v \in V$, and integrating over the whole domain Ω :

$$\int_{\Omega} (L\mathfrak{u})\nu = \int_{\Omega} f\nu, \ \forall \nu \in V$$
 (1.2)

Usually, integration by parts allows us to "transfer" the derivatives from the Lu term to the test function ν , such that the order (with respect to the derivatives taken) is more "balanced" between the two terms. As a trade-off, a boundary term appears and needs to be eliminated to facilitate the finite element solution. This term can often be eliminated by restricting ourselves to test functions from a subspace $V' \subset V$. The weak problem then reads

$$\int_{\Omega} (L_{u}u)(L_{v}v) = \int_{\Omega} fv, \ \forall v \in V'$$
(1.3)

with a linear differential operator L_u acts on the solution u, and a linear differential operator L_v , appearing due to the integration by parts, acts on the test function v. For simplicity, we refer to the left-hand side as the bilinear form

$$a(u,v) = \int_{\Omega} (L_u u)(L_v v) \tag{1.4}$$

and the right-hand side as the linear form

$$F(v) = \int_{\Omega} fv \tag{1.5}$$

To solve (1.3), we prefer to look for approximate solutions \mathfrak{u}_h in a finite dimensional space V_h with $\dim(V_h)=N_h$ (what role does V_h' , the space wherein ν lies to satisfy the boundary conditions, play? as far as I can tell V_h' is the subspace of V_h , in which all functions vanish at the boundary where \mathfrak{u} is known). Choosing a basis $\{\phi_i\}_{i\leqslant N_h}$ then allows us to represent the approximate solution as

$$u_{h} = \sum_{j \leq N_{h}} u_{j} \varphi_{j} \tag{1.6}$$

for some coefficients u_i that need to be determined. We thus see, that (1.3) turns into a linear system, since we only need to test the equality for the basis elements ϕ_i of V_h :

$$\sum_{i=1}^{N_h} u_i a(\phi_i, \phi_i) = F(\phi_i), i \in \{1, ..., N_h\}$$
(1.7)

If we write $A_{ij} = \mathfrak{a}(\phi_j, \phi_i)$ and $\mathbf{F} = (F(\phi_1), \dots, F(\phi_{N_h}))^T$, we have reduced the problem to finding $\mathbf{u} = (u_1, \dots, u_{N_h})^T$, such that

$$A\mathbf{u} = \mathbf{F} \tag{1.8}$$

and have identified an approximate solution to (1.1) as $u \approx u_h = \sum_{j \leqslant N_h} u_j \phi_j$. Choosing the space V_h is fundamental to have an accurate method that gives a good approximation u_h of u. Furthermore, the choice of basis $\{\phi_i\}_{i \leqslant N_h}$ influences how $\mathbb A$ ends up looking. Of particular interest are bases for which $\mathfrak a(\phi_j,\phi_i)$ vanishes for almost all i and j, thus yielding a sparse matrix $\mathbb A$. The choice of basis also controls the conditioning of $\mathbb A$ (need to find an example to illustrate this).

1.2 THE POISSON EQUATION

Taken from FEniCS manual (too lazy for bibtex...)

We aim to solve an equation of the form

$$-\Delta \mathbf{u}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \tag{1.9}$$

on a domain $\mathbf{x} \in \Omega$, with a solution $\mathbf{u}(\mathbf{x})$ that satisfies a certain boundary condition $\mathbf{u}(\mathbf{x}) = \mathbf{u}_{\mathbf{d}}(\mathbf{x})$ for all $\mathbf{x} \in \partial \Omega$ that lie on the border of Ω .

To do this, we first convert this equation to its weak form by multiplying both sides with a arbitrary test function $v(\mathbf{x})$, which vanishes on the border (i.e. $v(\text{mathbf}\mathbf{x}) = 0$, $\forall \mathbf{x} \in \partial \Omega$), and by then integrating over all of Ω :

$$-\int_{\Omega} \Delta u(\mathbf{x}) \nu(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) \nu(\mathbf{x}) d\mathbf{x}$$
 (1.10)

We may now rearrange the gradient product rule $\nabla(ab) = (\nabla a)b + a(\nabla b)$ and Gauss' theorem (as long as v(x) is differentiable in a neighborhood of Ω) combined with the fact that v(x) vanishes on $\partial\Omega$ to convert the right-hand side to

$$-\int_{\Omega} \Delta \mathbf{u}(\mathbf{x}) \nu(\mathbf{x}) d\mathbf{x} = -\int_{\Omega} \nabla (\nabla \mathbf{u}(\mathbf{x}) \nu(\mathbf{x})) d\mathbf{x} + \int_{\Omega} \nabla \mathbf{u}(\mathbf{x}) \nabla \nu(\mathbf{x}) d\mathbf{x}$$

$$= -\int_{\partial \Omega} \nabla \mathbf{u}(\mathbf{x}) \nu(\mathbf{x}) d\mathbf{\omega} + \int_{\Omega} \nabla \mathbf{u}(\mathbf{x}) \nabla \nu(\mathbf{x}) d\mathbf{x}$$

$$= \int_{\Omega} \nabla \mathbf{u}(\mathbf{x}) \nabla \nu(\mathbf{x}) d\mathbf{x}$$
(1.11)

Consequently, the weak formulation of the problem is to find u(x), such that for arbitrary v(x), we have

$$\int_{\Omega} \nabla \mathbf{u}(\mathbf{x}) \nabla \nu(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) \nu(\mathbf{x}) d\mathbf{x}$$
 (1.12)

To simplify and generalize the notation, we may use the linear form $L:V\to\mathbb{R}$ as

$$L(v) = \int_{\Omega} f(\mathbf{x})v(\mathbf{x})d\mathbf{x}$$
 (1.13)

and also the bilinear form $\alpha:V\times V\to \mathbb{R}$

$$a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \nabla \mathbf{u}(\mathbf{x}) \nabla \mathbf{v}(\mathbf{x}) d\mathbf{x}$$
 (1.14)

1.3 EXAMPLE: ONE DIMENSIONAL POISSON EQUATION

Initial idea taken from Wikipedia article about FEM.

To illustrate the choice of basis functions, we will now consider the simple one dimensional case $\Omega = [\mathfrak{a}, \mathfrak{b}]$, such that the weak formulation of the problem turns into

$$\int_{a}^{b} u'(x)v'(x)dx = \int_{a}^{b} f(x)v(x)dx$$
 (1.15)

We now subdivide the domain [a,b] into M subintervals, each of length h = (b-a)/M, with nodes at $x_k = a+hk, k \in \{0,1,\ldots,M\}$. We proceed to choose as the basis functions the class of the piecewise linear Lagrange interpolating polynomials on $[x_k, x_{k+1}], k \in \{0,1,\ldots,M\}$, defined as

$$\nu_k(x) = \frac{x - x_{k-1}}{x_k - x_{k-1}} \mathbf{1}_{\{x \in [x_{k-1}, x_k]\}} + \frac{x_{k+1} - x}{x_{k+1} - x_k} \mathbf{1}_{\{x \in [x_k, x_{k+1}]\}}$$
(1.16)

If we now interpolate f(x) and u(x) as piecewise linear Lagrange polynomaials, we get the representation

$$f(x) \approx \sum_{i=1}^{M} f(x_{i-1}) \frac{x - x_i}{x_{i-1} - x_i} + f(x_i) \frac{x - x_{i-1}}{x_i - x_{i-1}}$$

$$= \sum_{i=1}^{M-1} f(x_i) \nu_i(x)$$
(1.17)

and analogously

$$u(x) = \sum_{i=1}^{M-1} u(x_i) v_i(x)$$
 (1.18)

We now restricted ourselves to the discrete variational formulation of the problem

$$\sum_{i=1}^{M-1} u(x_i) \int_a^b v_i'(x) v_j'(x) dx = \sum_{i=1}^{M-1} f(x_i) \int_a^b v_i(x) v_j(x) dx$$
 (1.19)

which needs to be satisfied for all $j \in \{0, 1, ..., M\}$.

This equation can be rewritten in terms of two matrices \boldsymbol{K} and \boldsymbol{L} which we define as

$$K_{ij} = \int_a^b \nu_i(x)\nu_j(x)dx \tag{1.20}$$

$$L_{ij} = \int_{a}^{b} \nu'_{i}(x)\nu'_{j}(x)dx \tag{1.21}$$

such that we get

$$\sum_{i=1}^{M-1} u(x_i) L_{ij} = \sum_{i=1}^{M-1} f(x_i) K_{ij}$$
 (1.22)

Notice, that we only need the entries K_{ij} and L_{ij} with $i \in \{1, 2, ..., M-1\}$, since we already know the boundary conditions of u(x) at $x = x_0$ and $x = x_M$.

We realize, that the L_2 inner product of $\nu_i(x)$ with $\nu_j(x)$ (and consequently also the one of $\nu_i'(x)$ with $\nu_j'(x)$) is zero for all |i-j|>1, hence, we distinguish two different cases.

1. i = j: Here, the inner product turns out to be

$$\int_{a}^{b} \nu_{i}(x)\nu_{i}(x)dx = \int_{a}^{b} \left(\frac{x - x_{i-1}}{x_{i} - x_{i-1}}\right)^{2} \mathbf{1}_{\{x \in [x_{i-1}, x_{i}]\}} + \left(\frac{x_{i+1} - x}{x_{i+1} - x_{i}}\right)^{2} \mathbf{1}_{\{x \in [x_{i}, x_{i+1}]\}} dx$$

$$= 2 \int_{x_{i-1}}^{x_{i}} \left(\frac{x - x_{i-1}}{x_{i} - x_{i-1}}\right)^{2} dx$$

$$= \frac{2}{h^{2}} \int_{x_{i-1} - x_{i-1}}^{x_{i-1}} u^{2} du$$

$$= \frac{2}{h^{2}} \frac{1}{3} h^{3}$$

$$= \frac{2h}{3}$$
(1.23)

and for the derivatives it is

$$\int_{a}^{b} \nu_{i}'(x)\nu_{i}'(x)dx = \int_{a}^{b} \left(\frac{1}{x_{i} - x_{i-1}}\right)^{2} \mathbf{1}_{\{x \in [x_{i-1}, x_{i}]\}} + \left(\frac{-1}{x_{i+1} - x_{i}}\right)^{2} \mathbf{1}_{\{x \in [x_{i}, x_{i+1}]\}} dx$$

$$= 2 \int_{x_{i-1}}^{x_{i}} \left(\frac{1}{x_{i} - x_{i-1}}\right)^{2} dx$$

$$= \frac{2}{h^{2}} \int_{0}^{h} 1 du$$

$$= \frac{2}{h} \tag{1.24}$$

2. |i - j| = 1: Here, we can limit ourselves to the case where j = i + 1, since the other case is fully symmetric. We calculate

$$\begin{split} \int_{a}^{b} \nu_{i}(x) \nu_{i+1}(x) dx &= \int_{a}^{b} \frac{x_{i+1} - x}{x_{i+1} - x_{i}} \frac{x - x_{i}}{x_{i+1} - x_{i}} \mathbf{1}_{\{x \in [x_{i}, x_{i+1}]\}} dx \\ &= \int_{x_{i}}^{x_{i+1}} \frac{x_{i+1} - x}{x_{i+1} - x_{i}} \frac{x - x_{i}}{x_{i+1} - x_{i}} dx \\ &= \frac{1}{h^{2}} \int_{x_{i} - x_{i}}^{x_{i+1} - x_{i}} (x_{i+1} - x_{i} - u) u du \\ &= \frac{1}{h^{2}} \int_{0}^{h} (h - u) u du \\ &= \frac{1}{h^{2}} (\frac{h^{3}}{2} - \frac{h^{3}}{3}) \\ &= \frac{h}{6} \end{split} \tag{1.25}$$

and for the derivative it is

$$\int_{a}^{b} \nu_{i}'(x)\nu_{i+1}'(x)dx = \int_{a}^{b} \frac{-1}{x_{i+1} - x_{i}} \frac{1}{x_{i+1} - x_{i}} \mathbf{1}_{\{x \in [x_{i}, x_{i+1}]\}} dx$$

$$= -\frac{1}{h^{2}} \int_{x_{i}}^{x_{i+1}} 1 dx$$

$$= -\frac{1}{h} \tag{1.26}$$

Now, using the previously defined matrices K_{ij} and L_{ij} , we get the matrix equation

$$Lu = Kf (1.27)$$

with

$$u = (u_0, u(x_1), \dots, u_M)^T$$
 (1.28)

$$f = (f(x_0), f(x_1), \dots, f(x_M))^T$$
 (1.29)

$$\mathbf{L} = \begin{pmatrix} 1 \\ \frac{2}{h} & -\frac{1}{h} \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & -\frac{1}{h} & \frac{2}{h} & \ddots \\ & & -\frac{1}{h} & \ddots & -\frac{1}{h} \\ & & & \ddots & \frac{2}{h} \\ & & & & 1 \end{pmatrix}$$
 (1.30)

$$\mathbf{K} = \begin{pmatrix} \frac{u_0}{f(x_0)} \\ \frac{2h}{3} & \frac{h}{6} \\ \frac{h}{6} & \frac{2h}{3} & \frac{h}{6} \\ & \frac{h}{6} & \frac{2h}{3} & \ddots \\ & & \frac{h}{6} & \ddots & \frac{h}{6} \\ & & & \ddots & \frac{2h}{3} \\ & & & \frac{u_M}{f(x_M)} \end{pmatrix}$$
(1.31)

Here, we have adjusted the first rows in $\bf L$ and $\bf K$, such that the boundary conditions are necessarily satisfied. To obtain the finite element solution, we simply solve this linear system.

2 MAXWELL'S EQUATIONS

Let $\mathbf{E} = (E_1, E_2, E_3)^T$ denote the electric field, $\mathbf{B} = (B_1, B_2, B_3)^T$ the magnetic field strength, and $\mathbf{j} = (j_1, j_2, j_3)^T$ the electric current density. We suppose Maxwell's equations hold:

$$\nabla \cdot (\epsilon \mathbf{E}) = \rho \tag{2.1}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{2.2}$$

$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B} \tag{2.3}$$

$$\nabla \times (\mu^{-1}\mathbf{B}) = \partial_{\mathbf{t}}(\epsilon \mathbf{E}) + \mathbf{j} \tag{2.4}$$

We can therefore write $\mathbf{B} = \nabla \times \mathbf{A}$ for some vector potential \mathbf{A} , and $\mathbf{E} = -\nabla \phi - \partial_t \mathbf{A}$ for some scalar potential ϕ . Plugging these identities into (2.4), we get

$$\nabla \times (\mu^{-1}\nabla \times \mathbf{A}) = \partial_{t}\nabla \phi - \partial_{t}^{2}\mathbf{A} + \mathbf{i}$$
 (2.5)

We may choose $\nabla \phi = 0$ (why?) as a gauge, and introduce a harmonic time dependence of **A** and **j** with frequencies ω , such that $\mathbf{A}(\mathbf{x},t) = \mathbf{A}(\mathbf{x}) \exp(i\omega t)$ and $\mathbf{j}(\mathbf{x},t) = \mathbf{j}(\mathbf{x}) \exp(i\omega t)$. Plugging this into (2.5) yields us

$$\nabla \times (\mu^{-1}\nabla \times \mathbf{A}) - \omega^2 \mathbf{A} = \mathbf{j}$$
 (2.6)

We reduce this equation to its weak formulation, by multiplying it with a vector-valued function $\mathbf{v} \in \mathsf{H}_{curl}(\Omega)$, where we denoted

$$\mathsf{H}_{curl}(\Omega) = \{\mathfrak{u}: \Omega \to \mathbb{C}, \text{ such that } \mathfrak{u} \in \mathsf{L}^2(\mathbb{C})^3, \nabla \times \mathfrak{u} \in \mathsf{L}^2(\mathbb{C})^3\}$$
 and by integrating over all of Ω :

$$\int_{\Omega} (\nabla \times (\mu^{-1} \nabla \times \mathbf{A})) \cdot \mathbf{v} - \omega^{2} \int_{\Omega} \mathbf{A} \cdot \mathbf{v} = \int_{\Omega} \mathbf{j} \cdot \mathbf{v}$$
 (2.8)

To further simplify this expression, we will derive an identity for the scalar product of a vector-valued function \mathbf{v} with the curl of a vector-valued function \mathbf{u} . For this, we use the completely antisymmetric tensor ε_{ijk} (frequently referred to as the Levi-Civita tensor), to rewrite the k-th component of the curl as

$$(\nabla \times \mathbf{u})_{k} = \sum_{i} \sum_{j} \varepsilon_{ijk} \partial_{i} u_{j}$$
 (2.9)

where ϑ_i denotes the partial derivative with respect to the i-th coordinate direction. Rewriting the scalar product as a sum and identifying $\mathbf{u} = \mu^{-1} \nabla \times \mathbf{A}$, we apply the product rule to get

$$(\nabla \times \mathbf{u}) \cdot \mathbf{v} = \sum_{k} (\nabla \times \mathbf{u})_{k} \nu_{k}$$

$$= \sum_{k} (\sum_{i} \sum_{j} \varepsilon_{ijk} \partial_{i} u_{j}) \nu_{k}$$

$$= \sum_{k} \sum_{i} \sum_{j} \partial_{i} (\varepsilon_{ijk} u_{j} \nu_{k}) - \sum_{k} \sum_{i} \sum_{j} u_{j} (\varepsilon_{ijk} \partial_{i} \nu_{k})$$

$$= \sum_{k} \sum_{i} \sum_{j} \partial_{i} (\varepsilon_{jki} u_{j} \nu_{k}) - \sum_{k} \sum_{i} \sum_{j} u_{j} ((-\varepsilon_{ikj}) \partial_{i} \nu_{k})$$

$$= \sum_{i} \partial_{i} (\mathbf{u} \times \mathbf{v})_{i} + \sum_{j} u_{j} (\nabla \times \mathbf{v})_{j}$$

$$= \nabla \cdot (\mathbf{u} \times \mathbf{v}) + \mathbf{u} \cdot (\nabla \times \mathbf{v})$$
(2.10)

Consequently, we may rewrite the double curl term in the weak formulation as

$$\int_{\Omega} (\nabla \times (\mu^{-1}\nabla \times \mathbf{A})) \cdot \mathbf{v} = \int_{\Omega} \nabla \cdot ((\mu^{-1}\nabla \times \mathbf{A}) \times \mathbf{v}) + \int_{\Omega} (\mu^{-1}\nabla \times \mathbf{A}) \cdot (\nabla \times \mathbf{v})$$

$$= \int_{\partial\Omega} ((\mu^{-1}\nabla \times \mathbf{A}) \times \mathbf{v}) \cdot \mathbf{n} + \int_{\Omega} (\mu^{-1}\nabla \times \mathbf{A}) \cdot (\nabla \times \mathbf{v})$$
(2.11)

We will now have a look at what conditions \mathbf{v} needs to satisfy, such that the boundary term (first integral) vanishes, and we would end up with

$$\int_{\Omega} (\mu^{-1} \nabla \times \mathbf{A}) \cdot (\nabla \times \mathbf{v}) - \omega^2 \int_{\Omega} \mathbf{A} \cdot \mathbf{v} = \int_{\Omega} \mathbf{j} \cdot \mathbf{v}$$
 (2.12)

Let **n** denote the normal vector to $\partial\Omega$ at a point $\mathbf{x}\in\partial\Omega$. For the boundary term to vanish, we require

$$((\mu^{-1}\nabla \times \mathbf{A}) \times \mathbf{v}) \cdot \mathbf{n} = 0 \tag{2.13}$$

for all $\mathbf{x} \in \partial \Omega$. Denoting $\mathbf{u} = \mu^{-1} \nabla \times \mathbf{A}$, we rearrange

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{n} = \sum_{k} \left(\sum_{i} \sum_{j} \varepsilon_{ijk} \mathbf{u}_{i} \mathbf{v}_{j} \right) \mathbf{n}_{k}$$

$$= \sum_{i} \mathbf{u}_{i} \left(\sum_{j} \sum_{k} \varepsilon_{jki} \mathbf{v}_{j} \mathbf{n}_{k} \right)$$

$$= \mathbf{u} \cdot (\mathbf{v} \times \mathbf{n})$$
(2.14)

For non-trivial **u** and **v**, this expression is zero if and only if $\mathbf{v} \perp \mathbf{n}$, meaning **v** is orthogonal to $\partial\Omega$ for all $\mathbf{x} \in \partial\Omega$.

3 WEAK DERIVATIVE

Taken from Quarteroni: Introduction to Finite Elements Method Let $\Omega \subset \mathbb{R}^d$ open. The support of $f : \Omega \to \mathbb{R}$ is defined as

$$\operatorname{supp}(f) = \overline{\{x \in \Omega \mid f(x) \neq 0\}}$$
(3.1)

f has compact support, if there exists a compact subset $K \subset \Omega$, such that supp(f) $\subset K$, and define

$$\mathcal{D}(\Omega) = \{ f \in C^{\infty}(\Omega) \mid f \text{ has compact support} \}$$
 (3.2)

(If I remember correctly, extending this notion to $f \in C^1(\Omega)$ should yield an almost identical treatment, unless we also include higher order (weak) partial derivatives). Let $T: \mathcal{D} \to \mathbb{R}$, $\phi \mapsto \langle T, \phi \rangle = T(\phi)$ be a linear map. We say that T is continuous, if

$$\lim_{n \to \infty} \langle \mathsf{T}, \varphi_n \rangle = \langle \mathsf{T}, \varphi \rangle \tag{3.3}$$

with $\{\phi_k\}_{k\in\mathbb{N}}\subset\mathcal{D}(\Omega)$ converging to ϕ . Such (linear and continuous) maps are called distribution on $\mathcal{D}(\Omega)$, and they form the space of distributions $\mathcal{D}'(\Omega)$.

The (weak) partial coordinate-derivatives of T (namely $\partial_i T$, $i \in \{1, ..., d\}$) are characterized by distributions that satisfy

$$\langle \partial_{i} \mathsf{T}, \varphi \rangle = -\langle \mathsf{T}, \partial_{i} \varphi \rangle \tag{3.4}$$

for all $\varphi \in \mathcal{D}(\Omega)$.

Interesting for us is mainly the following case: Given a function $f \in L^2(\Omega)$, we define a distribution $T_f \in \mathcal{D}'(\Omega)$ to be

$$\langle \mathsf{T}_{\mathsf{f}}, \varphi \rangle = \int_{\mathsf{O}} \mathsf{f}(\mathsf{x}) \varphi(\mathsf{x}) \mathsf{d}\mathsf{x}$$
 (3.5)

for all $\varphi \in \mathcal{D}(\Omega)$.

This allows us to define a weak derivative to functions that are (in the classical sense) not differentiable (i.e. not in $C^1(\Omega)$). Consider for example the absolute value function $|\cdot| \in L^2(K)$ where $K \subset \mathbb{R}$ is compact. Since

$$\int_{K} (\partial_{x}|x|) \varphi(x) dx = -\int_{K} |x| \varphi'(x) dx$$

$$= -\int_{K \cap \mathbb{R}_{+}} x \varphi'(x) dx - \int_{K \cap \mathbb{R}_{-}} (-x) \varphi'(x) dx$$

$$= \int_{K \cap \mathbb{R}_{+}} \varphi(x) dx + \int_{K \cap \mathbb{R}_{-}} (-1) \varphi(x) dx$$

$$= \int_{K} sign(x) \varphi(x) dx \qquad (3.6)$$

we may conclude that the weak derivative of the absolute value function is therefore the signum function. Notice, how the derivative of the absolute value function is only not well-defined at $\mathbf{x}=0$, i.e. on a set of zero measure. This nuisance is circumvented when talking about the weak derivative, since the measure zero sets have zero integral.

4 IDEAS

What might be really interesting is to instead look at the problem in space-time using the Maxwell tensor

$$\mathbb{F} = \begin{bmatrix} 0 & -E_1/c & -E_2/c & -E_3/c \\ E_1/c & 0 & B_3 & -B_2 \\ E_2/c & -B_3 & 0 & B_1 \\ E_3/c & B_2 & -B_1 & 0 \end{bmatrix}$$
(4.1)

In the covariant formulation of the Maxwell theory, the inhomogeneous Maxwell equations reduce to a single equation

$$\partial_{a} F^{ab} = -J^{b} \tag{4.2}$$

with the four current density $J=(\mu c\rho, \mu j)$. The weak formulation of the problem could then be stated as (using Einstein's sum convention, i.e. summing over repeated indices)

$$\int_{\Omega \times \mathbb{R}} \mathsf{F}^{ab} \mathfrak{d}_{a} \nu_{b} = \int_{\Omega \times \mathbb{R}} \mathsf{J}^{b} \nu_{b} \tag{4.3}$$

where boundary conditions are yet to be determined. If we somehow would manage to find a suitable function space for the four-dimensional \mathbf{v} , it might be possible to find both \mathbf{E} and \mathbf{B} from a finite element method.