Definition 9.1 (Normal Subgroup). A subgroup H of G is normal if for any $a \in G$, aH = Ha.

Theorem 9.1 (Normal Subgroup Test). A subgroup H of G is normal in $G \iff xHx^{-1} \subseteq H$ for all x in G.

Proof. We must show fisrt:

The subgroup
$$H \subseteq G$$
 is normal $\implies \forall x \in G, xHx^{-1} \subseteq H$

By the definition of normal, we know $\forall a \in G, aH = Ha$, that is, $\forall a \in G, h \in H, \exists h', ah = h'a$. Therefore, for all elements xhx^{-1} in xHx^{-1} , $xhx^{-1} = h'xx^{-1} = h'e = h$ which is in H.

So $xHx^{-1} \subseteq H$.

Secondly, we must show:

$$\forall x \in G, xHx^{-1} \subseteq H \implies \text{the subgroup } H \subseteq G \text{ is normal}$$

By the definition of normal, we need to show $\forall a \in G, aH = Ha$, or equivalently, $aH \subseteq Ha$ and $Ha \subseteq aH$.

By the hypothesis, we know $aHa^{-1} \subseteq H$, that is, $\forall h \in H, aha^{-1} \in H$.

By multiplying a at right side, we get $(aha^{-1})a = ah(a^{-1}a) = ah \in Ha$ where $ah \in aH$. And we finished the left half part of our goal. By taking a^{-1} as the argument of hypothesis, we can finish the right half part in a similar way.

Example. Let H be a normal subgroup of G and K be any subgroup of G. Shows that $HK = \{hk \mid h \in H, k \in K\}$ is a subgroup of G.

Proof. By two-steps test of subgroup:

- 1. $ee \in HK$, thus HK is not empty.
- 2. $\forall h_0 k_0 \ h_1 k_1 \in HK$, $h_0 k_0 h_1 k_1 = h_0 (k_0 h_1) k_1 = h_0 (h'_1 k_0) k_1 = h_0 h'_1 k_0 k_1 \in HK$, thus HK is closed under multiplication.

3. $\forall hk \in HK, (hk)^{-1} = k^{-1}h^{-1} = (h^{-1})'k^{-1} \in HK.$

Theorem 9.2 (Quotient Group). Let G a group and H a normal group of G, the quotient group $G/H = \{aH \mid a \in G\}$ is a group under multiplication $\forall aH \ bH \in G/H \mapsto (aH)(bH)$.

Proof. Before our proof, we need to show an important property of this multiplication:

$$\forall aH \ bH \in G, (aH)(bH) = abH$$

For all $h_0 \ h_1 \in H$, $ah_0bh_1 = a(h_0b)h_1 = a(bh'_0)h_1 = abh'_0h_1 \in abH$. Also, for all $h \in H$, $abh = aebh \in (aH)(bH)$.

Group axioms:

- \bullet *eH* is the identity:
 - $\forall aH \in G/H, aHeH = aeH = aH$
 - $\forall aH \in G/H, eHaH = eaH = aH$
- For all $aH \in G/H$, $a^{-1}H$ is the inverse of aH:
 - $-aHa^{-1}H = aa^{-1}H = eH$
 - $-a^{-1}HaH = a^{-1}aH = eH$
- For all aH bH $cH \in G/H$, the associativity: (aHbH)cH = abHcH = (ab)cH = a(bc)H = aHbcH = aH(bHcH)

Theorem 9.3 (G/Z). Let G a group, Z(G) the center of G, if G/Z(G) is cyclic, G is Abelian.

Proof. Let $b \ c \in G$ but $b \ c \notin Z(G)$. If no such b or c, then G is Abelian. Since G/Z(G) is cyclic, $G/Z(G) = \langle aZ(G) \rangle$ for some a. b and c must in some coset, say, $b \in a^m Z(G)$ and $c \in a^n Z(G)$.

$$bc = a^m g a^n g'$$

 $= a^m a^n g g'$ $(g \in Z(G))$
 $= a^n a^m g g'$ (By property of power)
 $= a^n a^m g' g$ $(g \in Z(G))$
 $= a^n g' a^m g$ $(g \in Z(G))$
 $= cb$ (By definition)

Thus, b and c commute.

Lemma 9.1. Suppose G is a finite group, and H is a normal subgroup of G. If $|aH \in G/H| = n$. Then there is an element of order n in G.

Proof. Since |aH| = n, $(aH)^n = a^nH = H$. Suppose |a| = k, we have $(aH)^k = a^kH = H$, thus |aH| = n divides k. So we have $|a^{\frac{k}{n}}| = n$.

Theorem 9.4 $(G/Z(G) \approx Inn(G))$. For any group G, G/Z(G) is isomorphic to $Inn(G) = \{\phi_g(x) = gxg^{-1} \mid g \in G\}$.

Proof. We claim the following function is an isomorphism:

$$\psi(aZ(G)) = \phi_a$$

However, we must show that it **is** a function. That is, for all $a \ b \in G$, $aZ(G) = bZ(G) \implies \psi(aZ(G)) = \psi(bZ(G))$. Since aZ(G) = bZ(G), by property of coset, $a \in bZ(G)$. Then $\forall x, \phi_a(x) = axa^{-1} = (bg)x(bg)^{-1} = bgxg^{-1}b^{-1} = bxb^{-1} = \phi_b(x)$. Thus ψ is a function.

• One-to-one: $\forall aZ(G) \ bZ(G) \in G/Z(G), \psi(aZ(G)) = \psi(bZ(G)).$

$$\psi(aZ(G)) = \psi(bZ(G))$$

$$\phi_a = \phi_b$$

$$axa^{-1} = bxb^{-1} \quad \text{(introduce } x\text{)}$$

$$b^{-1}ax = xb^{-1}a$$

Thus $b^{-1}a \in Z(G)$, by property of coset, aZ(G) = bZ(G).

- Onto: $\forall \phi_g \in Inn(G), \ \psi(gZ(G)) = \phi_g$
- Structure-Preserve: $\forall aZ(G) \ bZ(G) \in G/Z(G)$

$$\psi(aZ(G)bZ(G)) = \psi(abZ(G))$$

$$= \phi_{ab}$$

$$= \phi_a \circ \phi b$$

$$= \psi(aZ(G)) \circ \psi(bZ(G))$$

Theorem 9.5 (Cauchy's Theorem). Let G be finite Abelian group and let p be a prime where p divides |G|. Then there is an element of order p in G.

Proof. Induction on the number of prime factors of |G|:

- Base: We must show that $\forall G, G$ is Abelian, |G| = p where p is prime has an element of order p. Since |G| = p, G must be cyclic, then the order of the generator of G is p.
- Induction: We have the induction hypothesis: $\forall G$ a Abelian group, $|G| = \text{product of } n \text{ primes}, p \text{ divides } |G|, \exists x \in G, |x| = p.$

Suppose $g \in G$, if p divides |g|, then $|g^{\frac{|g|}{p}}| = p$, we assume that p doesn't divide |g|. Let q a prime that divides |g|, then $|g^{\frac{|g|}{q}}| = q$. We let $h = g^{\frac{|g|}{q}}$, and $H = \langle h \rangle$. Since G is Abelian, $\langle h \rangle$ is a normal subgroup. Consider G/H, since G is abelian, so is G/H, and $|G/H| = \frac{|G|}{|H|}$ which is the product of n+1-1=n primes. Also, p divides G but not divides H, so p divides G/H. Then by induction hypothesis, we know $\exists x \in G/H, |x| = p$. By Lemma 9.1, $\exists x \in G, |x| = p$.

Definition 9.2 (Internal Direct Product). Let $\{H_0, H_1, H_2 \cdots H_{n-1}\}$ be a finite collection of normal subgroups of G. We say G is an internal direct product of $\{H_0, H_1, H_2 \cdots H_{n-1}\}$ (write $G = H_0 \times H_1 \times \cdots \times H_{n-1}$) if:

- $G = H_0 H_1 \cdots H_{n-1} = \{ h_0 h_1 \cdots h_{n-1} \mid h_i \in H_i \}$
- $(H_0H_1 \cdots H_{i-1}) \cap H_i = \{e\} \text{ for all } 0 \le i < n$

Lemma 9.2 (Unique Representation of Internal Direct Product). For all $h = h_0 h_1 \cdots h_{n-1}$ and $h' = h'_0 h'_1 \cdots h'_{n-1}$, h = h' implies $h_i = h'_i$ for all $0 \le i < n$

Proof. Induction on n:

- Base: We must show $h_0 = h'_0$ implies $h_0 = h'_0$ which is trivial.
- Induction: We have the following induction hypothesis:

$$h_0 h_1 \cdots h_{i-1} = h'_0 h'_1 \cdots h'_{i-1} \implies h_j = h'_j \quad (\forall 0 \le j < i)$$

and we must show:

$$h_0 h_1 \cdots h_i = h'_0 h'_1 \cdots h'_i \implies h_j = h'_j \quad (\forall 0 \le j \le i)$$

Let $h = h_0 h_1 \cdots h_{i-1}$ and $h' = h'_0 h'_1 \cdots h'_{i-1}$, $hh_i = h'h'_i$ gives $h = h'h'_i h_i^{-1}$, where $h h' \in H_0 H_1 \cdots H_{i-1}$ and $h_i^{-1} h'_i \in H_i$. Then $h'h'_i h_i^{-1} \in H_0 H_1 \cdots H_{i-1}$. By the property of group multiplication, $h'_i h_i^{-1} \in H_0 H_1 \cdots H_{i-1}$. But by the property of internal direct product, $(H_0 H_1 \cdots H_{i-1}) \cap H_i = \{e\}$. So $h'_i h_i^{-1} = e \to h_i = h'_i$, $hh_i = h'h'_i \to h = h'$. By induction hypothesis, $h_j = h'_j$ ($\forall 0 \le j < i$).

Example. Let G is the internal direct product of subgroups $H_0, H_1 \cdots H_{n-1}$. Let $h_i \in H_i$, $h_j \in H_j$ where $0 \le i, j < n$. $h_i h_j = h_j h_i$ if $i \ne j$.

Proof. By property of normal, $h'_i h_j = h_j h_i = h_i h'_j$, then by Lemma 9.2, $h_i = h'_i$ $h_j = h'_j$. Thus $h_j h_i = h_i h'_j = h_i h_j$

Lemma 9.3 (Center of $h \in H$). Let G be the internal direct product of subgroups $H_0, H_1, \dots, H_{n-1}, \forall h \in H_i, \prod_{j=0, i\neq j} H_j$ is a subgroup of C(h).

Proof. Since for any normal subgroup H of G, and any subgroup K of G, HK is a subgroup of G, then $\prod_{j=0,i\neq j}H_j$ is a subgroup of G. Consider $k\in H_s$ for some s. By property of normal subgroup H_s , hk=k'h for some k'. Also, for normal subgroup H_i , hk=kh' for some h'. Then hk=k'h=kh', by Lemma 9.2, h=h' and k=k'. So hk=k'h=kh, $k\in C(h)$. Now we consider any element k in $\prod_{j=0,i\neq j}H_j$, it must be the product of elements k_s in the corresponding H_s , h commutes with all the k_s , so does k. Thus, $\forall k\in\prod_{j=0,i\neq j}H_j, k\in C(h)$.

Theorem 9.6 (Internal Direct Product \approx External Direct Product). If G is the internal direct product of subgroups $H_0, H_1 \cdots H_{n-1}$, then $H_0 \times H_1 \times \cdots \times H_{n-1} \approx H_0 \oplus H_1 \oplus \cdots \oplus H_{n-1}$.

Proof. We claim the following function:

$$\phi(h_0 h_1 \cdots h_{n-1}) = (h_0, h_1, \cdots, h_{n-1})$$

is an isomorphism, and by Lemma 9.2, we know ϕ is a function.

- One-to-one: trivial.
- Onto: trivial.

• Structure-Preserve:

$$\phi(h_0h_1 \cdots h_{n-1})\phi(h'_0h'_1 \cdots h'_{n-1})
= (h_0, h_1, \cdots h_{n-1})(h'_0, h'_1, \cdots h'_{n-1})
= (h_0h'_0, h_1h'_1, \cdots, h_{n-1}h'_{n-1})
= \phi(h_0h'_0h_1h'_1 \cdots h_{n-1}h'_{n-1})
= \phi(h_0h_1h'_1 \cdots h_{n-1}h'_0h'_{n-1})
= \cdots
= \phi(h_0h_1 \cdots h_{n-1}h'_0h'_1 \cdots h'_{n-1})$$

Lemma 9.4 (Normal Subgroup of External Direct Product). For all $G = H_0 \oplus H_1$, $H_0 \oplus \{e\}$ and $\{e\} \oplus H_1$ are normal subgroups of G.

Proof.
$$\forall (a,b) \in H_0 \oplus H_1, (h,e) \in H_0 \oplus \{e\}, (a,b)(h,e)(a^{-1},b^{-1}) = (aha^{-1},bb^{-1}) = (aha^{-1},e) \in H_0 \oplus \{e\}.$$
 Similarly for $\{e\} \oplus H_1$.

Lemma 9.5 (Isomorphism respect normal). For any group G \overline{G} and normal subgroup H of G, if $\phi : G \approx \overline{G}$, then $\phi(H)$ is normal.

Proof. We need to show $\forall g \in \overline{G}, g\phi(H)g^{-1} \in \phi(H)$. Since $\phi^{-1}(g)H\phi^{-1}(g^{-1}) \in H$, by applying ϕ , we get $g\phi(H)g^{-1} \in \phi(H)$.

Lemma 9.6 (Isomorphism is congruent on Quotient). For all group G \overline{G} and normal subgroup H of G. If $\phi: G \approx \overline{G}$, then $G/H \approx \overline{G}/\phi(H)$.

Proof. We claim the following function is an isomorphism:

$$\psi(gH) = \phi(g)\phi(H)$$

We need to show the function we claim **is** a function. $\forall gH \ g'H \in G/H$, gH = g'H, shows that $\psi(gH) = \psi(g'H)$. Since gH = g'H, $g^{-1}g' \in H$, then $\phi(g^{-1}g') \in \phi(H) \to \phi(g^{-1})\phi(g') \in \phi(H) \to \phi(g)\phi(H) = \phi(g')\phi(H)$.

• One-to-one:
$$\psi(gH) = \psi(g'H) \to \phi(g)\phi(H) = \phi(g')\phi(H)$$
, then
$$\phi(g^{-1})\phi(g') \in \phi(H)$$
$$\to \phi^{-1}(\phi(g^{-1})\phi(g'))$$
$$= \phi^{-1}(\phi(g^{-1}))\phi^{-1}(\phi(g'))$$
$$= g^{-1}g' \in H$$

which implies gH = g'H.

• Onto: $\forall g\phi(H) \in \overline{G}/\phi(H)$

$$\psi(\phi^{-1}(g\phi(H)))$$

$$=\psi(\phi^{-1}(g)\phi^{-1}(\phi(H)))$$

$$=\psi(\phi^{-1}(g)H)$$

$$=\phi(\phi^{-1}(g))\phi(H)$$

$$=g\phi(H)$$

• Structure-Preserve:

$$\psi(gHg'H)$$

$$=\psi(gg'H)$$

$$=\phi(gg')\phi(H)$$

$$=\phi(g)\phi(g')\phi(H)$$

$$=\phi(g)\phi(H)\phi(g')\phi(H)$$

$$=\psi(gH)\psi(g'H)$$

Lemma 9.7 (Quotien Group of External Direct Product). $(H_0 \oplus H_1)/(H_0 \oplus \{e\}) \approx H_1$ and $(H_0 \oplus H_1)/(H_1 \oplus \{e\}) \approx H_0$.

Proof. We claim the following function is an isomorphism:

$$\phi((e,h)(H_0 \oplus \{e\})) = h$$

But first, we need to show it **is** a function. We need to show that for any $h(H_0 \oplus \{e\}) \in (H_0 \oplus H_1)/(H_0 \oplus \{e\})$ where $h \in H_0 \oplus H_1$, ϕ is defined at $h(H_0 \oplus \{e\})$. Since $h = (h_0, h_1) = (e, h_1)(h_0, e)$, $h(H_0 \oplus \{e\}) = (e, h_1)(h_0, e)(H_0 \oplus \{e\})$ where $(h_0, e) \in (H_0 \oplus \{e\})$. Thus $h(H_0 \oplus \{e\}) = (e, h_1)(H_0 \oplus \{e\})$. Then we need to show that $(e, h_0)(H_0 \oplus \{e\}) = (e, h_1)(H_0 \oplus \{e\}) \implies \phi((e, h_0)(H_0 \oplus \{e\})) = \phi((e, h_1)(H_0 \oplus \{e\}))$. It is clearly that any element in $(e, h_0)(H_0 \oplus \{e\})$ has form (a, h_0) . Similarly, in $(e, h_1)(H_0 \oplus \{e\})$ it is (a, h_1) . Thus $h_0 = h_1$.

- One-to-one: Trivial.
- Onto: Trivial.

• Structure-Preserve:

$$\phi((e, h_0)(H_0 \oplus \{e\})(e, h_1)(H_0 \oplus \{e\}))$$

$$=\phi((e, h_0h_1)(H_0 \oplus \{e\}))$$

$$=h_0h_1$$

$$=\phi((e, h_0)(H_0 \oplus \{e\}))\phi((e, h_1)(H_0 \oplus \{e\}))$$

For $\{e\} \oplus H_1$, we observe that

$$(H_0 \oplus H_1)/(\{e\} \oplus H_1)$$

 $\approx (H_1 \oplus H_0)/(H_1 \oplus \{e\})$
 $\approx H_0$

Lemma 9.8 (Cancellation of Internal Direct Product is False). The following proposition is False: Let $G = H \times K$ and $G = H' \times K$, then H = H'.

Proof. Consider
$$Z_2 \oplus Z_2$$
, we have $(Z_2 \oplus \{e\}) \times (\{e\} \oplus Z_2) = Z_2 \oplus Z_2$, and $\langle (1,1) \rangle \times (\{e\} \oplus Z_2) = Z_2 \oplus Z_2$. But $Z_2 \oplus \{e\} \neq \langle (1,1) \rangle$.