第十四届国际天文与天体物理奥林匹克竞赛

数据分析试题

哥伦比亚 波哥大(线上) 2021年11月15日

数据分析1: 标度关系

在你开始做这个问题之前,请阅读单独信封中的一般说明.

螺旋星系是盘状的旋转结构, 其动态状态可以通过所谓的旋转曲线得到相当的把握, 该曲线量化了盘在离中心不同距离的平均旋转速度(见图1, 曲线B). 一个有趣的特征是曲线的平坦区域, 这归因于暗物质的存在. 如果没有暗物质, 在离中心较远的地方, 旋转速度会稳步下降, 如曲线A所描述.

图1: 旋转曲线. 圆周速度(Y轴)与半径(X轴)的关系

在盘状星系中,已经观察到整个星系的本征光度与渐进的旋转速度(由星系外缘的旋转曲线即 R_{max} 给出)之间有很强的相关性,这一结果被称为Tully-Fisher关系.如果是特定波段的光度,这个关系也是成立的.图2中显示了一个星系团中的一些星系.每个点都是一个星系,实线是整个样本中K波段的绝对亮度与 $\log_{10}(V_{\text{max}})$ 的最佳拟合线性关系.

图2: $K波段的绝对星等与<math>\log_{10}(V_{max}[km\ s^{-1}])$. 几个星系的Tully-Fisher关系. 每个点代表一个星系. 暗点是五个选定的星系, 我们将在1.2部分提供一些数据.

图3: 气体分数与恒星质量的关系.

另一个有趣的趋势显示在图3中: 具有较大恒星质量 (M_*) 的星盘往往具有较小的气体比例 $(M_{\rm gas}/M_*)$.

在下面的问题中, 你将被要求利用刚才介绍的比例关系来提取有关星系的物理信息. 请考虑以下准则.

- 假设 V_{max} 是在所有星系的相同半径(R_{max})处测量的, 位于旋转曲线的平坦部分, 远远超过恒星盘的末端.
- 用 M_{dm} 来表示达到 R_{max} 处的暗物质质量,用 M_{tot} 表示所有成分(气体、恒星和暗物质)的总和.
- 假设所有星系都有相同的星族¹, 并假设气体成分不与恒星光相互作用.
- 星系闭很远,它的距离比星团的大小大得多。
- 在球形对称的质量分布中,要推断离中心有r距离的粒子的引力作用,只需考虑到该半径以内的总质量M (< r),就好像它被放在分布的最中心.

1术语星族指的是一个星系中存在的恒星的类型,以及每种类型相对于恒星总数的数量.

第一部分

1.1 根据对图3的分析, 找出下列关系中合适的常数: $M_{ess} = a \times M_{*}^{b}$

$$a = ?$$

$$b = ?$$

1.2 在Tully-Fisher关系图中,有5个突出的点.这5个星系的数据在下表中给出.使用这个数据集,使用最小二乘法进行线性拟合,为表下的TF关系找到适当的常数.

注: 在线性拟合中,将 $\log_{10}(V_{\text{max}})$ 作为x变量,将K作为y变量.

$V_{ m max} \ [{ m km/s}]$	$K[{ m mag}]$
79.4	-16.8
100.1	-19.2
158.5	-21.3
251.2	-21.4
316.2	-24.0

$$K = c imes \log_{10}(V_{ ext{max}}) + d$$
 $c = ?$
 $d = ?$

第二部分

对于星团中的两个星系, G₁和G₂, 记录的视星等是:

 $k_1 = 19.2$; $k_2 = 25.2$

利用这些信息和第一部分中标定的关系, 在下列方程中找到正确的指数.

2.1

$$rac{M_{*1}}{M_{*2}} = 10^e \qquad ; \qquad e = ?$$

2.2

$$\frac{M_{\rm gas1}}{M_{\rm gas2}} = 10^f \qquad ; \qquad f = ? \label{eq:mgas2}$$

2.3

$$\frac{M_{\rm tot1}}{M_{\rm tot2}} = 10^g \qquad ; \qquad g = ?$$

第三部分

3.1

星系	视星等k	$M_{ m gas} \ [M_{\odot}]$	$M_{*} \ [M_{\odot}]$	$M_{ m dm} \ [M_{ m \odot}]$	$M_{ m tot} \ [M_{\odot}]$
G_1	19.2				4.39×10^{11}

利用以下事实填补表中缺失的数值:对于星系 G_1 ,在 R_{max} 之内,暗物质与重子的质量比为6.82.

第四部分

4.1 考虑到由于CCD的校准误差,每个视星等的系统误差为 $\sigma_{\rm sys}=\pm 0.2$. 那么A必须读作A = 19.2 \pm 0.2,也就是说,我们唯一知道的是,A很可能位于[19.0,19.4]的区间内. A的情况也是如此.

重新计算比例关系 $\frac{M_{*1}}{M_{*2}}=10^e$ 中的指数(可在2.1中找到),将e表示为通过考虑L和L的极端可能变化而估计的区间.

$$e \in [?, ?]$$

4.2 现在我们考虑, 任何关系附近的数据总是有一个自然分布. 例如, 对于给定的K星等, TF关系给出的单一值为 $\log_{10}(V_{\text{max}})$, 但更现实的是报告一个可信值的区间, 该区间来自TF关系平均值附近数据的自然扩散. 我们把这称为统计误差, σ_{stat} .

使用问题1.2中的TF关系从K中推断出 $\log_{10}(V_{max})$,估计统计误差.为此,考虑每一点的 $\log_{10}(V_{max})$ 值与实际测量的 $\log_{10}(V_{max})$ 之间的差异,并将 σ_{stat} 作为这些差值的均方根(RMS)的两倍[†].

$$\sigma_{\rm stat} = ?$$

†一组数值的均方根是这些数值平方的算术平均值的平方根.

4.3 重新计算比例关系 $\frac{M_{\mathrm{tot1}}}{M_{\mathrm{tot2}}}=10^{\mathrm{g}}$ 中的指数,将g表示为通过考虑系统和统计误差引起的极端可能变化而估计的区间.

 $g \in [?, ?]$

数据分析笟 恒星和系外行星

在开始这个问题之前,请阅读单独信封中的一般说明.

在这个问题中, 我们将探索系外行星的物理特性和它们的宿主恒星之间的联系, 并将利用观测数据尽可能多地发现这些系统. 你可以忽略星际消光.

第一部分

行星名	恒星名	$T_{\rm eff}$ (K)	$g (\mathrm{m \ s^{-2}})$	$m_{\rm v}~({ m mag})$	视差(毫角秒)
Gorgona	HD 209458	5980	347	7.63	20.67

表1: Gorgona系外行星及其母星HD 209458的观测数据

有效温度(T_{eff})和恒星表面的重力加速度(g)可以通过光谱的形状和吸收线来测量.目视星等(m_v)和视差则分别通过光度测量和天体测量来测量.

此外,据观察,每隔3.52天,这颗恒星的亮度就会因为它前面的行星的凌星而下降,就像这条光曲线中所表示的那样:

使用给定的信息来计算HD 209458系统的下列量.

恒星光度	恒星半径	恒星质量	行星轨道 平均半径	行星半径, 以木星半径为单位
L_{\star}	R_{\star}	M_{\star}	a	$R_{ m p}$
$[L_{\odot}]$	$[R_{\odot}]$	$[M_{\odot}]$	[au]	$[R_{ m J}]$

注: 假设所有F型和G型恒星的测光校正是相同的.

宜居带被定义为一颗行星表面可能有液态水的区域. 这主要与从宿主恒星接收的辐射量有关, 辐射量必须在一定范围内, 以确保行星表面温度的有利范围.

我们将行星接收的有效通量定义为: $S_{\text{eff}} = \frac{L}{a^2}$,其中L为太阳单位的恒星光度,a为平均轨道半径 (au). 宜居带的最小通量可近似为 $S_{\min} = S_{\text{eff}\odot} + n \cdot T_{\star} + b \cdot T_{\star}^2 + c \cdot T_{\star}^3 + d \cdot T_{\star}^4$. 其中 $T_{\star} = (T_{\text{eff}} - T_{\text{eff}\odot})$, $S_{\text{eff}\odot}$ 是太阳情况下的等效通量,它与系数n、b c、d一起在下表中给出. 宜居的最大通量, S_{\max} ,用同样的公式但不同的常数可算出.

常数	$S_{ m max}$	$S_{ m min}$
$S_{ m eff_{\odot}}$	1.0512	0.3438
n	1.3242×10^{-4}	5.8942×10^{-5}
b	1.5418×10^{-8}	1.6558×10^{-9}
c	-7.9895×10^{-12}	-3.0045×10^{-12}
d	-1.8328×10^{-15}	-5.2983×10^{-16}

下表给出了7个不同恒星-行星系统的真实数据.而行星的名称已经被改变,以纪念哥伦比亚的一些自然保护区.

恒星	皇参数	行星参	数
$T_{ m eff} \ [{ m K}]$	$M_{ m V} [{ m mag}]$	名字	a [au]
6180	3.68	Tayrona	0.04
5730	3.87	Iguaque	0.04
5980	4.21	Gorgona	0.04
5480	6.04	Amacayacu	0.08
5770	3.48	Malpelo	0.05
6130	3.07	Pisba	0.03
6140	3.85	Tatamá	0.06

2.1 在下图中, 纵轴代表恒星的有效温度, 横轴代表行星接收的有效通量. 图中标记的点代表地球, 虚线标志着宜居带的界限.

在两个轴上的刻度线位置标上数字. 在同一张图上画出Gorgona和Amacayacu的确切位置, 假设如果它们也位于距离相应恒星1 au的位置.

2.2 现在,考虑表格中给出的每颗行星的实际轨道半径,用"YES"或"NO"来表示哪些行星位于宜居带. 在Working Sheet上展示你的定量推理.

行星名	是否在宜居带内? YES/NO
Tayrona	
Iguaque	
Gorgona	
Amacayacu	
Malpelo	
Pisba	
Tatamá	

第三部分

在最后一页, 你会发现一份38颗系外行星的名单, 目标是找出低质量系外行星(LME)和高质量系外行星(HME)是否倾向于围绕具有不同特征的恒星运行.

3.1 为了得到一个可信的低质量子样本,我们可以应用一种叫做"迭代 σ 排除"的方法. 其思路是计算质量的平均值(μ)和标准差(σ),并从样本中排除那些质量高于 μ + σ 的行星. 然后对剩余的子样本再重复同样的步骤两次. 我们会说,最后的子样本中的行星是低质量的,而那些在迭代过程中被排除的行星是高质量的. 将你在这一过程中发现的数字填入下表.

低质量样本	样本容量	μ	σ	$\mu + \sigma$	排除的行星数
全部/原始	38				
第一次迭代后子样本					
第二次迭代后子样本					
最终迭代后子样本					

- **3.2** 用X轴表示列表中行星的序列号(1, 2, 3,), Y轴表示行星的质量, 做一个图. 在你在迭代中发现的 $\mu + \sigma$ 阈值处标记3条横线.
- 3.3 让我们研究一下这两组宿主星的有效温度可能存在的差异, 计算一些描述性的统计数据.

	最小值	第一四分位数	中位数 第二四分位数	第三四分位数	最大值
LME					
HME					

3.4 画出总结你刚才计算的数字的箱型图. 你是否看到低质量和高质量行星所围绕的恒星的温度有明显的不同?写下"是"或"否".

行星类型与主星温度(K)的关系

	1	/- U - U	I
序	行星名	行星质量	恒星 $T_{ m eff}$
号	13 = 1	$[M_{ m J}]$	in in it is a second
1	KEPLER-37 b	0.01	5520
2	KEPLER-21 b	0.02	6256
3	HD 97658 b	0.02	5468
4	HD 46375 b	0.23	5345
5	HD 219134 h	0.28	5209
6	HD 88133 b	0.30	5582
7	HD33283 b	0.33	5877
8	HD 149026 b	0.36	6096
9	BD-10 3166 b	0.46	5578
10	HD 75289 b	0.47	6196
11	HD 217014 b	0.47	5755
12	HD 2638 b	0.48	5564
13	WASP-13 b	0.49	6025
14	WASP-34 b	0.59	5771
15	HD 209458 b	0.69	5988
16	HAT-P-30 b	0.71	6177
17	WASP-76 b	0.92	6133
18	WASP-74 b	0.97	5727
19	HAT-P-6 b	1.06	6442
20	HD189733 b	1.14	5374
21	WASP-82 b	1.24	6257
22	KELT-7 b	1.29	6460
23	HD 149143 b	1.33	6067
24	KELT-3 b	1.42	6404
25	KELT-2A b	1.49	6164
26	HD86081 b	1.50	6015
27	HAT-P-7 b	1.74	6270
28	HD 118203 b	2.14	5847
29	HAT-P-14 b	2.20	6490
30	WASP-38 b	2.71	6178
31	HD17156 b	3.20	5985
32	KELT-6 c	3.71	6176
33	HD 75732 d	3.86	5548
34	HD 115383 b	4.00	5891
35	HD 120136 b	5.84	6210
36	WASP-14 b	7.34	6195
37	HAT-P-2 b	8.74	6439
38	XO-3 b	11.79	6281