

JADWAL BELAJAR HARIAN

Berikut adalah rencana studi intensif selama 15 hari untuk mempelajari dasar-dasar **data mining** dan mempersiapkan diri untuk lomba. Setiap hari akan difokuskan pada topik tertentu, dengan alokasi waktu rata-rata 4-6 jam per hari.

Hari 1-3: Pemahaman Dasar Data Mining

- 1. **Tujuan**: Memahami konsep dasar, proses, dan aplikasi data mining.
 - Pelajari konsep dasar:
 - Apa itu data mining?
 - Proses CRISP-DM (Cross Industry Standard Process for Data Mining).
 - Jenis-jenis data mining (klasifikasi, klustering, asosiasi, prediksi, dll).
 - Baca buku: "Data Mining: Concepts and Techniques" (Bab 1-2).
 - Tonton video pengantar di YouTube (misalnya dari channel StatQuest atau Kaggle Learn).
 - Diskusikan dalam tim untuk memastikan semua memahami dasar teori.

2. Output:

Mind map atau catatan tentang proses dan jenis data mining.

Hari 4-6: Pemahaman Data dan Pengolahan Awal

- 1. **Tujuan**: Memahami teknik eksplorasi data dan pre-processing.
 - Pelajari dasar-dasar Python atau R untuk data analysis.
 - Eksplorasi pustaka seperti:
 - Python: Pandas, NumPy, Matplotlib, Seaborn.
 - **R**: dplyr, ggplot2.

- · Pelajari teknik:
 - Pembersihan data (mengatasi missing values, outliers).
 - Transformasi data (normalisasi, encoding).
 - Visualisasi data untuk eksplorasi.

2. Output:

Notebook (Jupyter atau RStudio) dengan eksplorasi data sederhana.

Hari 7-9: Teknik Data Mining

- 1. Tujuan: Memahami algoritma utama dalam data mining.
 - Klasifikasi:
 - Algoritma: Decision Tree, Random Forest, K-Nearest Neighbors (KNN).
 - Klustering:
 - Algoritma: K-Means, Hierarchical Clustering.
 - Asosiasi:
 - Algoritma: Apriori, FP-Growth.
 - Gunakan dataset dari Kaggle atau UCI Machine Learning Repository untuk eksperimen.
- 2. Praktik:
- Implementasi sederhana menggunakan **scikit-learn** di Python.
- Tinjau hasil dengan metrik evaluasi (accuracy, precision, recall, dll).
- 3. Output:
- Notebook yang berisi implementasi algoritma dan analisis hasil.

Hari 10-12: Studi Kasus & Penguatan

- 1. **Tujuan**: Menerapkan teknik pada studi kasus data mining.
 - Pilih 1-2 studi kasus yang sesuai dengan tema lomba.
 - Lakukan analisis end-to-end:
 - Eksplorasi data.
 - Pre-processing.

- Pemilihan dan penerapan algoritma.
- Evaluasi hasil.

2. Output:

· Studi kasus yang siap dipresentasikan.

Hari 13-14: Simulasi Lomba

- 1. **Tujuan**: Mempraktikkan kemampuan dalam kondisi lomba.
 - Simulasikan penyelesaian masalah dalam waktu terbatas.
 - · Fokus pada pembagian tugas tim:
 - Pemrosesan data.
 - Pemodelan.
 - Dokumentasi/presentasi.
 - Evaluasi hasil dan catat perbaikan yang diperlukan.

2. Output:

Latihan soal yang selesai dalam batas waktu.

Hari 15: Penyempurnaan dan Persiapan Lomba

- 1. **Tujuan**: Menyempurnakan strategi dan mempersiapkan mental.
 - Review semua materi dan studi kasus.
 - Siapkan slide presentasi yang profesional.
 - Latihan presentasi di depan rekan/mentor untuk mendapatkan masukan.

2. Output:

Tim siap secara teknis dan mental untuk lomba.

Sumber Belajar Tambahan

- 1. Platform Online:
 - Kaggle Learn

- DataCamp
- Coursera

2. Buku:

- "Data Science for Beginners" oleh Andrew Park.
- "Introduction to Data Mining" oleh Tan, Steinbach, dan Kumar.

3. **Tools**:

- · Jupyter Notebook atau Google Colab.
- · Python (Anaconda distribution).

Kalau dipecah per-hari

Hari 1: Pengantar Data Mining

Waktu:

- **09:00-10:30**: Belajar konsep dasar data mining (Apa itu data mining, proses CRISP-DM).
- 10:30-11:00: Istirahat.
- 11:00-12:30: Baca materi dari buku "Data Mining: Concepts and Techniques" (Bab 1-2).
- 14:00-15:30: Diskusi tim dan buat mind map tentang data mining.

Hari 2: Jenis Data Mining dan Proses CRISP-DM

Waktu:

- **09:00-10:30**: Pelajari jenis-jenis data mining (klasifikasi, klustering, asosiasi, prediksi).
- 10:30-11:00: Istirahat.
- **11:00-12:30**: Tonton video penjelasan tentang jenis data mining (StatQuest, YouTube).

 14:00-15:30: Diskusi tim untuk merumuskan aplikasi data mining di kehidupan nyata.

Hari 3: Eksplorasi Tools dan Dataset

Waktu:

- 09:00-10:30: Instal dan eksplorasi tools (Python, Jupyter Notebook, Pandas, Matplotlib).
- 10:30-11:00: Istirahat.
- 11:00-12:30: Cari dan eksplorasi dataset sederhana (misalnya dari Kaggle).
- 14:00-15:30: Diskusi tim tentang temuan awal dari dataset.

Hari 4: Eksplorasi Data dan Preprocessing

Waktu:

- 09:00-10:30: Pelajari eksplorasi data (menggunakan Pandas, visualisasi dengan Seaborn).
- 10:30-11:00: Istirahat.
- 11:00-12:30: Pelajari teknik pembersihan data (missing values, outliers).
- 14:00-15:30: Diskusi tim sambil mencoba preprocessing pada dataset yang ditemukan.

Hari 5: Transformasi dan Visualisasi Data

Waktu:

- 09:00-10:30: Pelajari teknik transformasi data (normalisasi, encoding).
- 10:30-11:00: Istirahat.
- 11:00-12:30: Latihan membuat visualisasi data (Seaborn, Matplotlib).
- 14:00-15:30: Diskusi tim untuk menganalisis hasil visualisasi.

Hari 6: Evaluasi Data yang Sudah Diproses

Waktu:

- 09:00-10:30: Evaluasi hasil preprocessing dan eksplorasi.
- 10:30-11:00: Istirahat.
- 11:00-12:30: Siapkan data untuk digunakan dalam algoritma data mining.

Hari 7: Pengenalan Klasifikasi

Waktu:

- 09:00-10:30: Pelajari algoritma Decision Tree dan Random Forest.
- 10:30-11:00: Istirahat.
- 11:00-12:30: Implementasi algoritma menggunakan scikit-learn.
- 14:00-15:30: Diskusi hasil evaluasi algoritma.

Hari 8: Klustering

Waktu:

- **09:00-10:30**: Pelajari algoritma K-Means dan Hierarchical Clustering.
- 10:30-11:00: Istirahat.
- 11:00-12:30: Implementasi algoritma klustering pada dataset.
- 14:00-15:30: Diskusi hasil evaluasi.

Hari 9: Asosiasi dan Penerapan Lain

Waktu:

• **09:00-10:30**: Pelajari algoritma Apriori dan FP-Growth.

- 10:30-11:00: Istirahat.
- 11:00-12:30: Implementasi asosiasi menggunakan Python.
- 14:00-15:30: Analisis hasil asosiasi dengan tim.

Hari 10: Studi Kasus 1

Waktu:

- 09:00-10:30: Pilih studi kasus pertama.
- 10:30-11:00: Istirahat.
- 11:00-12:30: Lakukan eksplorasi dan preprocessing data.
- 14:00-15:30: Terapkan algoritma dan evaluasi hasil.

Hari 11: Studi Kasus 2

Waktu:

- 09:00-10:30: Pilih studi kasus kedua.
- 10:30-11:00: Istirahat.
- 11:00-12:30: Eksplorasi dan preprocessing data.
- 14:00-15:30: Terapkan algoritma dan evaluasi hasil.

Hari 12: Penyempurnaan Studi Kasus

Waktu:

- 09:00-10:30: Review hasil dari kedua studi kasus.
- 10:30-11:00: Istirahat.
- 11:00-12:30: Diskusi tim untuk menyusun laporan dan presentasi awal.

Hari 13: Simulasi Lomba 1

Waktu:

- 09:00-11:30: Simulasi penyelesaian soal dalam waktu terbatas.
- 11:30-12:00: Istirahat.
- 12:00-13:30: Evaluasi hasil simulasi dan diskusikan perbaikan.

Hari 14: Simulasi Lomba 2

Waktu:

- 09:00-11:30: Simulasi soal lain dengan pembagian tugas yang lebih efektif.
- 11:30-12:00: Istirahat.
- 12:00-13:30: Diskusi hasil dan penyempurnaan.

Hari 15: Finalisasi dan Latihan Presentasi

Waktu:

- 09:00-10:30: Finalisasi laporan dan slide presentasi.
- 10:30-11:00: Istirahat.
- 11:00-12:30: Latihan presentasi dengan tim.
- 14:00-15:30: Review akhir dan persiapan mental untuk lomba.

catatan materi per hari berdasarkan jadwal yang telah disusun:

Hari 1: Pengantar Data Mining

- Data Mining adalah proses menemukan pola atau informasi yang berguna dari kumpulan data besar.
- CRISP-DM (Cross Industry Standard Process for Data Mining):
 - Business Understanding: Menentukan tujuan bisnis.
 - Data Understanding: Pengumpulan dan eksplorasi data.
 - Data Preparation: Pembersihan dan transformasi data.
 - Modeling: Menerapkan algoritma data mining.
 - Evaluation: Menilai model.
 - Deployment: Penerapan model pada skala penuh.
- Jenis-jenis Data Mining:
 - Klasifikasi: Menentukan kategori data berdasarkan label yang ada (misal: spam vs tidak spam).
 - Klusterisasi: Mengelompokkan data berdasarkan kemiripan (misal: segmentasi pelanggan).
 - Asosiasi: Menemukan pola hubungan antar item dalam dataset (misal: analisis keranjang belanja).
 - Prediksi: Meramalkan nilai berdasarkan data yang ada.

Hari 2: Jenis Data Mining dan Proses CRISP-DM

- Klasifikasi:
 - Tujuannya adalah untuk memprediksi kategori data.
 - Algoritma populer: Decision Tree, KNN, Random Forest.
- Klusterisasi:
 - Tujuannya adalah untuk mengelompokkan data berdasarkan kesamaan.
 - Algoritma populer: K-Means, Hierarchical Clustering.
- Asosiasi:
 - Menemukan hubungan antar item (misal: "Jika seseorang membeli A, maka dia cenderung membeli B").
 - Algoritma populer: Apriori, FP-Growth.

Hari 3: Eksplorasi Tools dan Dataset

Materi:

- Python:
- Pandas: Digunakan untuk manipulasi data dan analisis data tabular.
- NumPy: Digunakan untuk komputasi numerik.
- Matplotlib/Seaborn: Digunakan untuk visualisasi data.
- Google Colab atau Jupyter Notebook:
 - Platform untuk menulis dan menjalankan kode Python secara interaktif.
- Dataset:
- Cari dataset dari sumber seperti Kaggle atau UCI Machine Learning Repository.
- Pastikan untuk memilih dataset yang sesuai dengan tujuan lomba.

Hari 4: Eksplorasi Data dan Preprocessing

- Exploratory Data Analysis (EDA):
 - Analisis statistik dasar (mean, median, mode).
 - Visualisasi distribusi data menggunakan histogram, boxplot, dan scatter plot.
- Preprocessing:
 - Mengatasi missing values: Mengisi nilai yang hilang dengan ratarata, median, atau teknik lain.
 - Mengatasi outliers: Identifikasi dan penanganan data yang menyimpang.
 - Normalisasi dan Standardisasi: Proses untuk menyamakan skala fitur.

Hari 5: Transformasi dan Visualisasi Data

Materi:

- Transformasi Data:
 - One-Hot Encoding: Teknik untuk mengubah data kategori menjadi bentuk numerik.
 - Min-Max Scaling dan Standardization: Metode untuk menskalakan data agar sesuai dengan rentang tertentu.
- Visualisasi Data:
 - Matplotlib: Visualisasi dasar seperti grafik garis dan pie chart.
 - Seaborn: Visualisasi data yang lebih kompleks, termasuk heatmaps, pairplots, dll.

Hari 6: Evaluasi Data yang Sudah Diproses

Materi:

- Evaluasi Preprocessing:
 - Periksa hasil preprocessing dengan memeriksa distribusi data dan visualisasi.
 - Pastikan tidak ada masalah besar dengan data yang telah dibersihkan dan ditransformasi.

Hari 7: Pengenalan Klasifikasi

- Klasifikasi: Proses untuk memprediksi label kategori berdasarkan fitur.
 - Decision Tree: Model yang membagi data berdasarkan fitur-fitur terbaik untuk klasifikasi.
 - Random Forest: Ensemble method yang menggunakan banyak decision trees untuk meningkatkan akurasi.
 - K-Nearest Neighbors (KNN): Algoritma yang mengklasifikasikan data

Hari 8: Klustering

Materi:

- **K-Means**: Algoritma klustering yang membagi data ke dalam jumlah kluster yang sudah ditentukan.
 - Langkah-langkah: Inisialisasi kluster, iterasi berdasarkan jarak, update pusat kluster.
- Hierarchical Clustering: Membangun dendrogram yang menunjukkan pengelompokan hierarkis data.

Hari 9: Asosiasi dan Penerapan Lain

Materi:

- Apriori Algorithm: Digunakan untuk menemukan aturan asosiasi dalam dataset besar, terutama dalam analisis keranjang belanja.
 - Menentukan itemset yang sering muncul dan aturan asosiasi.
- FP-Growth: Alternatif yang lebih efisien daripada Apriori untuk menemukan pola asosiasi.

Hari 10: Studi Kasus 1

- Terapkan EDA, preprocessing, dan algoritma klasifikasi atau klustering pada dataset pilihan.
- Evaluasi model menggunakan confusion matrix, accuracy, precision, recall.

Hari 11: Studi Kasus 2

Materi:

- Pilih dataset lain dan terapkan teknik yang sama dari hari sebelumnya.
- Bandingkan hasil dari dua studi kasus untuk mencari pola atau kesalahan yang terjadi.

Hari 12: Penyempurnaan Studi Kasus

Materi:

- **Fine-tuning Model**: Mengubah parameter model untuk meningkatkan performa (misalnya menggunakan Grid Search untuk Decision Tree atau Random Forest).
- Cross-Validation: Teknik untuk mengevaluasi model menggunakan pembagian data menjadi beberapa subset.

Hari 13: Simulasi Lomba 1

Materi:

- Terapkan semua teknik yang telah dipelajari dalam skenario lomba simulasi.
- Fokus pada alokasi tugas dan manajemen waktu yang efektif selama simulasi.

Hari 14: Simulasi Lomba 2

- Ulangi simulasi lomba dengan perubahan dataset atau masalah baru.
- Latihan membagi tugas antar anggota tim dan evaluasi kinerja.

Hari 15: Finalisasi dan Latihan Presentasi

- Penyusunan laporan dan slide presentasi:
 - Ikuti struktur yang jelas: Pendahuluan, Data yang Digunakan, Proses, Hasil, Kesimpulan.
- Latihan **presentasi**: Fokus pada cara menyampaikan hasil dengan jelas dan efektif.