PH203: Optics

Lecture #3

02.11.2018

From Fermat's principle set of rays parallel to the axis of a paraboloid mirror will pass through its focus

A paraboloidal satellite dish

One of the 30 paraboloidal dishes each of 45 meter diameter fully steerable Giant Metrewave Radio Telescope (GMRT) @ Pune

Radio waves from interstellar space is recorded

Radio wave forms part of EM spectrum

Problem: Consider an elliptical reflector having foci at S_1 and S_2 . All the rays emanating from S_1 will pass through S₂ after undergoing reflection

An ellipse is the set of all points in a plane, the sum of whose distances from two distinct fixed points (foci) is constant

For an arbitrary point on the ellipse,

$$S_1P + S_2P = cons$$

 $S_1P + S_2P = const$ \Rightarrow All rays from S_1 will pass through S_2

Since optical path that connects S_1 and P will be a st line, and likewise for point P to S_2

 \Rightarrow Both together will make ray path between S_1 and S_2 via reflection at the ellipsoid will be a minimum Same will be true for any other reflection point

This is an example where time taken by a ray connecting the points S_1 and S_2 via reflection at any point P on the ellipse is stationary

This property is often used in constructing lasers like a Ruby laser that emits light at $\lambda = 694.3 \text{ nm}$

1st Ruby laser https://en.wikipedia.org/wiki/Ruby_laser

In a ruby laser the laser rod and the flash lamp coincide with the focal lines of a cylindrical reflector with elliptical cross section

http://www.physics-and-radio-electronics.com/physics/laser/rubylaserdefinitionconstructionworking.html

Flash lamp is used to pump the ground state atoms (which absorb the pump light) to a higher energy metastable state and stimulated to emit characteristic radiation corresponding to the energy difference between the metastable state and ground state thereby yielding light amplification

By means of a pair of mirrors at the end of the Ruby rod feedback is provided to this amplified light, which yields the laser light

Ray paths in an inhomogeneous medium:

Let R. I. : n(x) is increasing continuously e.g. hot air near the ground on a hot day

It can be approximated as a limiting case of a continuous set of thin slabs of media of slightly higher refractive indices in subsequent layers

At each interface, apply law of refraction: $n_1 \sin \phi_1 = n_2 \sin \phi_2 = n_3 \sin \phi_3 = \cdots$

$$\Rightarrow n_1 \sin\left(\frac{\pi}{2} - \theta_1\right) = n_2 \sin\left(\frac{\pi}{2} - \theta_2\right) = n_3 \sin\left(\frac{\pi}{2} - \theta_3\right) = \dots$$

In the limiting case of continuous variation in R. I.:

$$\Rightarrow n(x)\sin\phi(x) = n(x)\cos\theta(x) = \widetilde{\beta}$$
 (a constant)

$$\Rightarrow n(x)\cos\theta(x) = n_1\cos\theta_1 = \widetilde{\beta}$$

 \Rightarrow As the R. I. changes the ray bends in a way to maintain the product $n(x) \cos \theta(x)$ constant

Ray equation

From the figure

$$(ds)^2 = (dx)^2 + (dz)^2 \implies \left(\frac{ds}{dz}\right)^2 = \left(\frac{dx}{dz}\right)^2 + 1$$

Again

$$\frac{dz}{ds} = \cos\theta = \frac{\widetilde{\beta}}{n(x)} \qquad \text{Hence} \qquad \left(\frac{dx}{dz}\right)^2 = \frac{n^2(x)}{\widetilde{\beta}^2} - 1 \quad : \text{Ray equation}$$

By further differentiation

$$\left(\frac{dx}{dz}\right)^{2} = \frac{n^{2}(x)}{\widetilde{\beta}^{2}} - 1 \rightarrow 2\left(\frac{dx}{dz}\right)\frac{d^{2}x}{dz^{2}} = \frac{1}{\widetilde{\beta}^{2}}\frac{d}{dz}n^{2}(x)$$

$$= \frac{1}{\widetilde{\beta}^{2}}\frac{dn^{2}(x)}{dx}\frac{dx}{dz}$$

$$\frac{d^2x}{dz^2} = \frac{1}{\widetilde{2}\widetilde{\beta}^2} \frac{dn^2(x)}{dx}$$
: alternate form of ray equation

If we consider light propagation in a uniform medium of ri : n(x) = n

 \Rightarrow RHS will be 0 because n(x) = n is independent of spatial coordinate x

$$\frac{d^2x}{dz^2} = 0 \quad \Rightarrow \frac{d}{dz} \left(\frac{dx}{dz} \right) = 0 \Rightarrow \left(\frac{dx}{dz} \right) = \text{const} \quad \Rightarrow \quad x = Az + \text{const} \quad \text{This is eq to a straight line}$$

Phenomenon of mirage

On a hot day near the ground R. I. of air near the ground

$$n(x) \approx n_0 + kx$$
 $0 < x < \text{few metres}$

where
$$k = 1.234 \times 10^{-5} m^{-1}$$

From ray eq.

$$\frac{d^2x}{dz^2} = \frac{1}{2\tilde{\beta}^2} \frac{dn^2}{dx} = \frac{1}{2\tilde{\beta}^2} [2n_0k + 2k^2x] = \frac{n_0k}{\tilde{\beta}^2} + \frac{k^2x}{\tilde{\beta}^2} = \frac{k}{\tilde{\beta}^2} [n_0 + kx]; \quad X \equiv x + \frac{n_0}{k}$$

$$\frac{d^2X}{dz^2} = \kappa^2 X(z); \quad \kappa = \frac{k}{\tilde{\beta}}$$

Hence the ray path: $X(z) = x(z) + \frac{n_0}{k} = C_1 e^{\kappa z} + C_2 e^{-\kappa z}$;

 $C_{1,2}$ are determined from boundary condition:

At
$$z=0$$
, and assume a ray at $x=x_1$ is launched at an angle θ_1 Thus, $x_1=-\frac{n_0}{k}+C_1+C_2$ (1) $\Rightarrow x=x_1;$ $\frac{dx}{dz}\Big|_{z=0}=\tan\theta_1$ and using $\tilde{\beta}=n_1\cos\theta_1$

We will get

$$C_1 = \frac{1}{2} \left[x_1 + \frac{1}{k} (n_0 + n_1 \sin \theta_1) \right]$$

$$C_2 = \frac{1}{2} \left[x_1 + \frac{1}{k} (n_0 - n_1 \sin \theta_1) \right]$$

$$x(z=0) = -\frac{n_0}{k} + C_1 e^{\kappa z} + C_2 e^{-\kappa z}$$

Thus,
$$x_1 = -\frac{n_0}{k} + C_1 + C_2$$
 (1)

$$\left. \frac{dx}{dz} \right|_{z=0} = \tan \theta_1 = C_1 \kappa - C_2 \kappa$$

$$\tan \theta_1 = \frac{\sin_{-1}}{\cos \theta_1} = \frac{n_1 \sin \theta_1}{\tilde{\beta}} = C_1 \kappa - C_2 \kappa \dots (2)$$

$$\tan \theta_1 = \frac{\sin_{-1}}{\cos \theta_1} = \frac{n_1 \sin \theta_1}{\widetilde{\beta}} = C_1 \kappa - C_2 \kappa \dots (2)$$

Multiply (1) by κ and to (2) and solve for C_1

$$\Rightarrow C_1 = \frac{1}{2} \left[x_1 + \frac{n_0}{k} + \frac{n_1 \text{ si}}{k} \right]$$

Assume $x_1 = 1.5 m$ at which $n_1 = 1.00026$ and $k = 1.234 \times 10^{-5} m^{-1}$

Corresponding ray paths for different θ 's are shown in the figure

$$\Rightarrow$$
 each ray has a specific $\,\widetilde{eta} = n_1 \cos heta_1\,$

Consider a ray path, which becomes horizontal at x = 0, which corresponds to $\theta_1 = -0.28^{\circ}$

Assume r.i. = n_e at the eye level

Let θ_e : angle the eye makes with the horizontal at x_1 \Rightarrow $\tilde{\beta}=n_0\cos0^{\rm o}=n_e\cos\theta_e$ Just above the ground

For
$$\theta_e \ll 1, \cos \theta_e \approx 1 - \frac{1}{2}\theta_e^2$$
 $\Rightarrow \theta_e \cong \sqrt{2\left(1 - \frac{n_0}{n_e}\right)}$

At const air pressure, $n_{0,e}$ are related to temperatures of air at the ground and eye levels as

$$T_{0}(n_{0}-1) = T_{e}(n_{e}-1) \quad \Rightarrow \quad 1 - \frac{n_{0}-1}{n_{e}-1} = 1 - \frac{T_{e}}{T_{0}}$$
 LHS:
$$\frac{n_{e}-n_{0}}{n_{e}-1} = n_{e} \frac{\left(1 - \frac{n_{0}}{n_{e}}\right)}{n_{e}-1} \quad \text{Thus,} \quad \left(1 - \frac{n_{0}}{n_{e}}\right) = \frac{n_{e}-1}{n_{e}} \left(1 - \frac{T_{e}}{T_{0}}\right) = \left(1 - \frac{1}{n_{e}}\right) \left(1 - \frac{T_{e}}{T_{0}}\right)$$

$$\Rightarrow \theta_{e} = \sqrt{2\left(1 - \frac{1}{n_{e}}\right) \left(1 - \frac{T_{e}}{T_{0}}\right)}$$

Typically on a hot day, $T_0 \sim 323~K$ At a height of 1.5 m from the ground, $T_e \sim 303~K$

One gets
$$\theta_{\rm e}=5.67\times 10^{-3} radians=0.00567\times \frac{180}{\pi}\approx 0.325^{\circ}$$

Thus only PME ray will reach eye and hence to one's eye, ray from $x = x_1$ will appear to come from point below the ground level i.e. $x < 0 \implies$ point P will appear as mirage

No other ray from *P* reaches eye!

In the region R_2 no ray from P will reach and hence that region will appear as the shadow region

Temperatures nearer the sea/ocean are cooler than in the atmosphere above it

$$n^2(x) = n_0^2 + n_2^2 e^{-\alpha x}$$

where $n_0 = 1.00023, n_2 = 0.45836, \alpha = 2.303^{-1}$

 \Rightarrow R.I. is max at x=0 and decreases with height

Height of P = 0.5 m

For eye at E, received rays appear to come from P^{T}

Ray paths in a graded index medium:

$$n^2(x) = n_1^2 - \gamma^2 x^2$$

From Ray eq:

$$\left(\frac{dx}{dz}\right)^2 = \frac{n^2(x)}{\tilde{\beta}^2} - 1$$

$$\int \frac{dx}{\sqrt{n^2(x) - \tilde{\beta}^2}} = \pm \frac{1}{\tilde{\beta}} \int dz \qquad \Rightarrow \int \frac{dx}{\sqrt{n_1^2 - \gamma^2 x^2 - \tilde{\beta}^2}} = \pm \frac{1}{\tilde{\beta}} \int dz$$

$$\int \frac{dx}{\gamma \sqrt{\frac{n_1^2 - \tilde{\beta}^2}{\gamma^2} - x^2}} = \pm \frac{1}{\tilde{\beta}} \int dz \quad \Rightarrow \quad \int \frac{dx}{\sqrt{\frac{n_1^2 - \tilde{\beta}^2}{\gamma^2} - x^2}} = \pm \left(\frac{\gamma}{\tilde{\beta}}\right) \int dz \quad \Rightarrow \quad \int \frac{dx}{\sqrt{x_0^2 - x^2}} = \pm \Gamma \int dz$$

where $x_0 = \frac{\sqrt{n_1^2 - \tilde{\beta}^2}}{\gamma}$

Let $x = x_0 \sin \theta \implies dx = x_0 \cos \theta \ d\theta$ \Rightarrow Integral becomes $\int \frac{x_0 \cos \theta \ d\theta}{x_0 \cos \theta} = \pm \Gamma \int dz$

$$\Rightarrow \quad \theta = \sin^{-1}\left(\frac{x}{x_0}\right) = \pm \Gamma(z - z_0) \quad \Rightarrow x = \pm x_0 \sin[\Gamma(z - z_0)]$$