Curs 5

Logica de ordinul I - sintaxa

Limbaj de ordinul I ${\cal L}$
\square unic determinat de $ au=(R,F,C,\mathit{ari})$
Termenii lui \mathcal{L} , notați $\mathit{Trm}_{\mathcal{L}}$, sunt definiți inductiv astfel:
orice variabilă este un termen;
orice simbol de constantă este un termen;
\square dacă $f \in \mathbf{F}$, $ar(f) = n$ și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen
Formulele atomice ale lui ${\mathcal L}$ sunt definite astfel:
□ dacă $R \in \mathbb{R}$, $ar(R) = n$ și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.
Formulele lui \mathcal{L} sunt definite astfel:
orice formulă atomică este o formulă
\square dacă $arphi$ este o formulă, atunci $\lnot arphi$ este o formulă
$\hfill\Box$ dacă φ și ψ sunt formule, atunci $\varphi\lor\psi$, $\varphi\land\psi$, $\varphi\to\psi$ sunt formule
\Box dacă φ este o formulă și x este o variabilă, atunci $\forall x \varphi, \exists x \varphi$ sunt formule

Logica de ordinul I - semantică

- O structură este de forma $\mathcal{A}=(A,\mathbf{F}^{\mathcal{A}},\mathbf{R}^{\mathcal{A}},\mathbf{C}^{\mathcal{A}})$, unde
 - ☐ A este o mulţime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - \Box R^A = {R^A | R ∈ R} este o mulțime de relații pe A; dacă R are aritatea n, atunci R^A ⊆ Aⁿ.
 - $\square \ \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$

Logica de ordinul I - semantică

- O structură este de forma $A = (A, \mathbf{F}^A, \mathbf{R}^A, \mathbf{C}^A)$, unde
 - A este o mulţime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{A} = \{R^{A} \mid R \in \mathbf{R}\}$ este o mulțime de relații pe A; dacă R are aritatea n, atunci $R^{A} \subseteq A^{n}$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ ($\mathcal A$ -interpretare) este o funcție $\mathit I: V \to A$.

Inductiv, definim interpretarea termenului t în A sub I notat t_I^A .

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \vDash \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

Logica de ordinul I - semantică

- O structură este de forma $A = (A, \mathbf{F}^{A}, \mathbf{R}^{A}, \mathbf{C}^{A})$, unde
 - ☐ A este o mulţime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathbf{R}\}$ este o mulțime de relații pe A; dacă R are aritatea n, atunci $R^{\mathcal{A}} \subseteq A^n$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ ($\mathcal A$ -interpretare) este o funcție $\mathit I:V \to A$.

Inductiv, definim interpretarea termenului t în A sub I notat t_I^A .

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \vDash \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

O formulă φ este adevărată într-o structură $\mathcal A$, notat $\mathcal A \vDash \varphi$, dacă este adevărată în $\mathcal A$ sub orice interpretare. Spunem că $\mathcal A$ este model al lui φ .

O formulă φ este adevărată în logica de ordinul I, notat $\vDash \varphi$, dacă este adevărată în orice structură. O formulă φ este validă dacă $\vDash \varphi$.

O formulă φ este satisfiabilă dacă există o structură $\mathcal A$ și o $\mathcal A$ -interpretare I astfel încât $\mathcal A$, $I \vDash \varphi$.

Validitate și satisfiabilitate

Propoziție

Dacă φ este o formulă atunci

 φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Demonstrație

Exercițiu!

Validitate și satisfiabilitate

Propoziție

Dacă φ este o formulă atunci

 φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Demonstrație

Exercițiu!

Vom arăta că pentru a verifica validitatea/satisfiabilitatea este suficient să ne uităm la o singură structură.

Cuprins

1 Variabile libere. Variabile legate. Enunțuri

2 Forma Skolem

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

 \square Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \Box Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducţie după formule:

```
\begin{array}{lcl} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \, \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \, \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \square Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducţie după formule:

```
\begin{array}{lll} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \, \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \, \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

 \square O variabilă $v \in Var(\varphi)$ care nu este liberă se numește legată în φ .

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \square Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducţie după formule:

```
\begin{array}{lll} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \, \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \, \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

- \square O variabilă $v \in Var(\varphi)$ care nu este liberă se numește legată în φ .
- ☐ Un enunț este o formulă fără variabile libere.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- $\hfill \Box$ Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducţie după formule:

```
\begin{array}{lcl} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \, \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \, \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

- \square O variabilă $v \in Var(\varphi)$ care nu este liberă se numește legată în φ .
- ☐ Un enunț este o formulă fără variabile libere.
- □ Pentru orice structură \mathcal{A} și orice enunț φ , o \mathcal{A} -interpretare I nu joacă niciun rol în a determina dacă \mathcal{A} , $I \vDash \varphi$.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y \ (\forall y \ (R(y,x) \lor R(y,z)) \to \forall x \ R(x,y))$$

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y (\forall y (R(y,x) \lor R(y,z)) \rightarrow \forall x R(x,y))$$

- \square Prima aparitie a lui x este liberă,
- \square dar a doua apariție a lui x este legată de apariția lui $\forall x$.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y (\forall y (R(y,x) \lor R(y,z)) \rightarrow \forall x R(x,y))$$

- □ Prima aparitie a lui x este liberă,
- \square dar a doua apariție a lui x este legată de apariția lui $\forall x$.
- \square Primele două apariții ale lui y sunt legate de a doua apariție a lui $\forall y$,
- \square iar a treia apariție a lui y este legată de prima apariție a lui $\forall y$.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y (\forall y (R(y,x) \lor R(y,z)) \rightarrow \forall x R(x,y))$$

- Prima aparitie a lui x este liberă,
- \square dar a doua apariție a lui x este legată de apariția lui $\forall x$.
- \square Primele două apariții ale lui y sunt legate de a doua apariție a lui $\forall y$,
- \square iar a treia apariție a lui y este legată de prima apariție a lui $\forall y$.
- □ z este liberă.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

Care din următoarele formule sunt enunțuri?

- $\forall x \forall y (R(x,y) \lor R(x,z))$
- $\exists \forall x \forall y (R(x,y) \lor \forall z R(x,z))$

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

Care din următoarele formule sunt enunțuri?

- $\bigvee x \forall y R(x,y)$ enunț
- $\forall x \forall y (R(x,y) \lor \forall z R(x,z))$ enunt
- $\forall x R(x,y)$

Enunțuri

Fie φ o formulă și $FV(\varphi) = \{x_1, \dots, x_n\}$.

Propozitie

Pentru orice structură ${\cal A}$ avem

$$\mathcal{A} \vDash \varphi \text{ dacă și numai dacă } \mathcal{A} \vDash \forall x_1 \cdots \forall x_n \varphi.$$

Enunțuri

Fie φ o formulă și $FV(\varphi) = \{x_1, \dots, x_n\}.$

Propozitie

Pentru orice structură ${\cal A}$ avem

 $\mathcal{A} \vDash \varphi$ dacă și numai dacă $\mathcal{A} \vDash \forall x_1 \cdots \forall x_n \varphi$.

Demonstrație

Exercițiu!

A verifica validitatea unei formule revine la a verifica validitatea enunțului asociat.

- □ Substituţiile înlocuiesc variabilele libere cu termeni.
- $\hfill\square$ O substituție aplicată unui termen întoarce un alt termen.

- □ Substituțiile înlocuiesc variabilele libere cu termeni.
- □ O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?

- ☐ Substituțiile înlocuiesc variabilele libere cu termeni.
- □ O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?

- ☐ Substituţiile înlocuiesc variabilele libere cu termeni.
- □ O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?

- □ Substituțiile înlocuiesc variabilele libere cu termeni.
- □ O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?

Atenție! în al doilea caz am schimbat satisfiabilitatea formulei. Nu putem substitui variabila x în φ cu un termen t care conține o variabilă legată în φ .

- ☐ Substituţiile înlocuiesc variabilele libere cu termeni.
- O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?

Atenție! în al doilea caz am schimbat satisfiabilitatea formulei. Nu putem substitui variabila x în φ cu un termen t care conține o variabilă legată în φ .

□ Fie φ o formulă și t_1, \ldots, t_n termeni care nu conțin variabile din φ . Notăm $\varphi[x_1/t_1, \ldots, x_n/t_n]$ formula obținută din φ substituind toate aparițiile libere ale lui x_1, \ldots, x_n cu t_1, \ldots, t_n .

$$\varphi[x_1/t_1,\ldots,x_n/t_n] = \{x_1 \leftarrow t_1,\ldots,x_n \leftarrow t_n\}\varphi$$

Formule echivalente

 \square Fie φ și ψ două formule. Notăm prin

$$\varphi \bowtie \psi$$

faptul că $\vDash \varphi \leftrightarrow \psi$, adică φ și ψ au aceleași modele.

Exemplu

Dacă P este un simbol de relație de aritate 1 și x și y sunt variabile distincte, atunci

$$\forall x P(x) \exists \forall y P(y)$$
 şi $P(x) \exists P(y)$

- \square O formulă φ este în formă rectificată dacă:
 - nici o variabilă nu apare și liberă și legată
 - cuantificatori distincți leagă variabile distincte

- \square O formulă φ este în formă rectificată dacă:
 - 📘 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.

- \square O formulă φ este în formă rectificată dacă:
 - 📘 nici o variabilă nu apare și liberă și legată
 - cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- □ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

- \square O formulă φ este în formă rectificată dacă:
 - 💶 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- □ Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- □ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

Exemplu

$$\forall x P(x) \land \exists x \forall y R(x,y) \land S(x)$$

- \square O formulă φ este în formă rectificată dacă:
 - 📘 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- ☐ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

Exemplu

$$\forall x P(x) \land \exists x \forall y R(x,y) \land S(x) \ \exists \ \forall x P(x) \land \exists x_1 \forall y R(x_1,y) \land S(x_2)$$

- \square O formulă φ este în formă rectificată dacă:
 - nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- ☐ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

Exemplu

$$\forall x P(x) \land \exists x \forall y R(x,y) \land S(x) \vDash \forall x P(x) \land \exists x_1 \forall y R(x_1,y) \land S(x_2)$$

În continuare vom presupune că toate formulele sunt în formă rectificată.

Forma prenex

O formulă prenex este o formulă de forma

$$Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi$$

unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, \dots, n\}$, x_1, \dots, x_n sunt variabile distincte și φ nu conține cuantificatori.

O formulă prenex este o formulă de forma

$$Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi$$

unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, ..., n\}$, $x_1, ..., x_n$ sunt variabile distincte și φ nu conține cuantificatori.

Exemplu

Fie R este un simbol de relație de aritate 2. Formula

$$\forall x \exists y \forall z ((R(x,y) \vee \neg R(x,z)) \wedge R(x,x))$$

este în formă prenex.

$$\neg\exists x \neg \varphi \quad \exists \quad \forall x \varphi$$

$$\neg \forall x \neg \varphi \quad \exists \quad x \varphi$$

$$\neg\exists x \varphi \quad \exists \quad \forall x \neg \varphi$$

$$\neg \forall x \varphi \quad \exists \quad x \neg \varphi$$

$$\neg\exists x \neg \varphi \quad \exists x \varphi \qquad \forall x \varphi \wedge \forall x \psi \quad \exists x (\varphi \wedge \psi)$$

$$\neg \forall x \neg \varphi \quad \exists \exists x \varphi \qquad \exists x \varphi \vee \exists x \psi \quad \exists \exists x (\varphi \vee \psi)$$

$$\neg \exists x \varphi \quad \exists x \neg \varphi$$

$$\neg \forall x \varphi \quad \exists x \neg \varphi$$

$$\neg\exists x \neg \varphi \quad \exists x \varphi \qquad \forall x \varphi \land \forall x \psi \quad \exists x (\varphi \land \psi) \\
\neg \forall x \neg \varphi \quad \exists \exists x \varphi \qquad \exists x \varphi \lor \exists x \psi \quad \exists x (\varphi \lor \psi) \\
\neg \exists x \varphi \quad \exists x \neg \varphi \qquad \forall x \forall y \varphi \quad \exists x \exists y \varphi \quad \exists x \exists y \varphi \quad \exists y \exists x \varphi$$

 $\begin{tabular}{lll} \square Se înlocuiesc \rightarrow $\mathfrak{s}\mathfrak{i}$ \leftrightarrow : \\ $\varphi \rightarrow \psi $ & $\exists & \neg \varphi \lor \psi \\ $\varphi \leftrightarrow \psi $ & $\exists & (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$ \end{tabular}$

$$\neg\exists x\,\neg\varphi\quad \exists x\,\varphi\quad \forall x\,\varphi\quad \forall x\,\psi\quad \exists x\,(\varphi\wedge\psi)$$

$$\neg\forall x\,\neg\varphi\quad \exists x\,\varphi\quad \exists x\,\varphi\quad \exists x\,\psi\quad \exists x\,(\varphi\vee\psi)$$

$$\neg\exists x\,\varphi\quad \exists x\,\varphi\quad \forall x\,\psi\quad \exists x\,\forall y\,\varphi\quad \exists x\,\forall y\,\varphi$$

$$\neg\forall x\,\varphi\quad \exists x\,\exists y\,\varphi\quad \exists x\,\exists y\,\varphi\quad \exists x\,\exists y\,\exists x\,\varphi$$

$$\forall x\,\varphi\vee\psi\quad \exists x\,\exists y\,\varphi\quad \exists x\,\exists y\,\varphi\quad \exists x\,\exists y\,\exists x\,\varphi$$

$$\forall x\,\varphi\wedge\psi\quad \exists x\,(\varphi\wedge\psi)\,\,\mathrm{dac\,}\check{a}\,x\not\in FV(\psi)$$

$$\exists x\,\varphi\wedge\psi\quad \exists\, x\,(\varphi\wedge\psi)\,\,\mathrm{dac\,}\check{a}\,x\not\in FV(\psi)$$

$$\exists x\,\varphi\wedge\psi\quad \exists\, x\,(\varphi\wedge\psi)\,\,\mathrm{dac\,}\check{a}\,x\not\in FV(\psi)$$

$$\exists x\,\varphi\wedge\psi\quad \exists\, x\,(\varphi\wedge\psi)\,\,\mathrm{dac\,}\check{a}\,x\not\in FV(\psi)$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists \forall x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \lor \neg \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists \forall x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists \forall x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

$$\exists \forall x (\exists v R(x, v) \land \neg \exists z R(z, y))$$

$$\exists \forall x \exists v (R(x, v) \land \neg \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists \forall x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists \forall x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

$$\exists \forall x (\exists v R(x, v) \land \neg \exists z R(z, y))$$

$$\exists \forall x \exists v (R(x, v) \land \neg \exists z R(z, y))$$

$$\exists \forall x \exists v (R(x, v) \land \forall z \neg R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists \forall x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists \forall x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

$$\exists \forall x (\exists v R(x, v) \land \neg \exists z R(z, y))$$

$$\exists \forall x \exists v (R(x, v) \land \neg \exists z R(z, y))$$

$$\exists \forall x \exists v (R(x, v) \land \neg \forall z \neg R(z, y))$$

$$\exists \forall x \exists v \forall z (R(x, v) \land \neg R(z, y))$$

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \vDash \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \bowtie \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Demonstrație

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \vDash \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Demonstrație

Demonstrăm prin inducție după structura formulei φ .

 $\hfill\Box$ φ este formulă atomică.

Atunci φ este în formă prenex, deci $\varphi^* := \varphi$.

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \bowtie \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Demonstrație

- $\square \varphi$ este formulă atomică.
 - Atunci φ este în formă prenex, deci $\varphi^* := \varphi$.
- $\square \varphi = \forall x \psi.$

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \bowtie \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Demonstrație

- $\square \varphi$ este formulă atomică.
 - Atunci φ este în formă prenex, deci $\varphi^* := \varphi$.
- $\square \varphi = \forall x \psi.$
 - Conform ipotezei de inducție, există o formulă ψ^* în formă prenex astfel încât $\psi \vDash \psi^*$ și $FV(\psi) = FV(\psi^*)$.

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \vDash \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Demonstrație

- $\square \varphi$ este formulă atomică.
 - Atunci φ este în formă prenex, deci $\varphi^* := \varphi$.
- $\square \varphi = \forall x \psi.$
 - Conform ipotezei de inducție, există o formulă ψ^* în formă prenex astfel încât $\psi \vDash \psi^*$ și $FV(\psi) = FV(\psi^*)$.
 - Definim $\varphi^* := \forall x \psi^*$.

Demonstrație (cont.)

 $\square \varphi = \neg \psi.$

Demonstrație (cont.)

Demonstrație (cont.)

 $\square \varphi = \neg \psi.$

Conform ipotezei de inducție, există o formulă $\psi^* = Q_1 x_1 \dots Q_n x_n \, \psi_0$ în formă prenex astfel încât $\psi \bowtie \psi^*$ și $FV(\psi) = FV(\psi^*)$. Notăm $\forall^c = \exists$, $\exists^c = \forall$ și definim

$$\varphi^* := Q_1^c x_1 \dots Q_n^c x_n \neg \psi_0.$$

Atunci φ^* este în formă prenex, $\varphi^* \dashv \neg \psi^* \dashv \neg \psi = \varphi$ și $FV(\varphi^*) = FV(\psi^*) = FV(\psi) = FV(\varphi)$.

Demonstrație (cont.)

 \qed $\varphi=\psi\vee\chi$ și, conform ipotezei de inducție, există formulele în formă prenex

$$\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0, \quad \chi^* = S_1 z_1 \dots S_m z_m \chi_0$$
 astfel încât $\psi \vDash \psi^*$, $FV(\psi) = FV(\psi^*)$, $\chi \vDash \chi^*$ și $FV(\chi) = FV(\chi^*)$.

Demonstrație (cont.)

 \qed $\varphi=\psi\vee\chi$ și, conform ipotezei de inducție, există formulele în formă prenex

$$\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0, \quad \chi^* = S_1 z_1 \dots S_m z_m \chi_0$$
 astfel încât $\psi \vDash \psi^*$, $FV(\psi) = FV(\psi^*)$, $\chi \vDash \chi^*$ și $FV(\chi) = FV(\chi^*)$. Definim

$$\varphi^* := Q_1 x_1 \dots Q_n x_n S_1 z_1 \dots S_m z_m \psi_0 \vee \chi_0.$$

Demonstrație (cont.)

 $\ \square \ \varphi = \psi \lor \chi$ și, conform ipotezei de inducție, există formulele în formă prenex

$$\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0, \quad \chi^* = S_1 z_1 \dots S_m z_m \chi_0$$

astfel încât $\psi \vDash \psi^*$, $FV(\psi) = FV(\psi^*)$, $\chi \vDash \chi^*$ și $FV(\chi) = FV(\chi^*)$.

Definim

$$\varphi^* := Q_1 x_1 \dots Q_n x_n S_1 z_1 \dots S_m z_m \psi_0 \vee \chi_0.$$

Atunci φ^* este în formă prenex, $FV(\varphi^*) = FV(\varphi)$ și

$$\varphi^* \vDash \psi^* \lor \chi^* \vDash \psi \lor \chi = \varphi.$$

Deoarece φ a fost în formă rectificată, echivalența \exists este justificată de următoarele proprietăți:

$$\forall x \varphi \lor \psi \vDash \forall x (\varphi \lor \psi) \text{ dacă } x \notin FV(\psi)$$
$$\exists x \varphi \lor \psi \vDash \exists x (\varphi \lor \psi) \text{ dacă } x \notin FV(\psi)$$

Fie \mathcal{L} un limbaj de ordinul.

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducere de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

Fie \mathcal{L} un limbaj de ordinul.

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducere de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

În continuare φ este un enunț în formă prenex:

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \theta,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile distincte două câte două și θ este formulă liberă de cuantificatori.

Fie \mathcal{L} un limbaj de ordinul.

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducere de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

În continuare φ este un enunț în formă prenex:

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \theta,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile distincte două câte două și θ este formulă liberă de cuantificatori.

Vom asocia lui φ un enunț universal φ^{sk} într-un limbaj extins $\mathcal{L}^{sk}(\varphi)$.

☐ Un enunț se numește universal dacă conține doar cuantificatori universali.

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c]$, $\mathcal{L}^1 = \mathcal{L} \cup \{c\}$.

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \, \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- \square dacă $\varphi = \forall x_1 \dots \forall x_k \exists x \psi$

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- \square dacă arphi este universală, atunci $arphi^{\mathit{sk}} = arphi$ și $\mathcal{L}^{\mathit{sk}}(arphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \, \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- □ dacă $\varphi = \forall x_1 ... \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{\mathit{sk}}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \, \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- □ dacă $\varphi = \forall x_1 ... \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ . Dacă φ^1 este liberă de cuantificatori sau universală, atunci $\varphi^{sk}=\varphi^1$. Dacă φ^1 nu este universală, atunci formăm $\varphi^2, \varphi^3, \ldots$, până ajungem la o formulă universală și aceasta este φ^{sk} .

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{sk}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \, \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- □ dacă $\varphi = \forall x_1 ... \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ . Dacă φ^1 este liberă de cuantificatori sau universală, atunci $\varphi^{sk}=\varphi^1$. Dacă φ^1 nu este universală, atunci formăm $\varphi^2, \varphi^3, \ldots$, până ajungem la o formulă universală și aceasta este φ^{sk} .

Definiție

 $\varphi^{\it sk}$ este o formă Skolem a lui φ .

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x \, P(x)$. Atunci

$$\varphi^1 =$$

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x \, P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă.

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x \, P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exempli

Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \, \forall y \, \forall z \, R(x,y,z)$. Atunci

$$\varphi^1 =$$

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x \, P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exempli

Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \, \forall y \, \forall z \, R(x,y,z)$. Atunci

$$\varphi^1 = (\forall y \,\forall z \,R(x,y,z))[x/c] = \forall y \,\forall z \,R(c,y,z),$$

unde c este un nou simbol de constantă.

Exempli

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x \, P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exemplu

Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \, \forall y \, \forall z \, R(x, y, z)$. Atunci

$$\varphi^1 = (\forall y \,\forall z \, R(x, y, z))[x/c] = \forall y \,\forall z \, R(c, y, z),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{sk} = \varphi^1 = \forall y \, \forall z \, R(c,y,z)$.

Exemplu

Fie P un simbol de relatie de aritate 2 și $\varphi = \forall y \exists z P(y, z)$. Atunci

$$\varphi^1 =$$

Exemplu

Fie P un simbol de relatie de aritate 2 și $\varphi = \forall y \exists z P(y, z)$. Atunci

$$\varphi^1 = (\forall y P(y, z))[z/f(y)] = \forall y P(y, f(y))$$

unde f este un simbol nou de funcție unară.

Exemplu

Fie P un simbol de relatie de aritate 2 și $\varphi = \forall y \exists z P(y, z)$. Atunci

$$\varphi^1 = (\forall y P(y, z))[z/f(y)] = \forall y P(y, f(y))$$

unde f este un simbol nou de funcție unară. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{sk} = \varphi^1 = \forall y P(y, f(y))$.

Exempli

$$\varphi := \forall y \,\exists z \,\forall u \,\exists v (R(y,z) \wedge P(f(u),v)).$$

$$\varphi^1 =$$

Exemplu

$$\varphi := \forall y \exists z \forall u \exists v (R(y,z) \land P(f(u),v)).$$

$$\varphi^1 = \forall y (\forall u \exists v (R(y,z) \land P(f(u),v)))[z/g(y)])$$

$$= \forall y \forall u \exists v (R(y,g(y)) \land P(f(u),v)),$$
unde g este un nou simbol de functie unară

Exemplu

$$\varphi := \forall y \,\exists z \,\forall u \,\exists v (R(y,z) \land P(f(u),v)).$$

$$\varphi^1 = \forall y \,(\forall u \,\exists v \,(R(y,z) \land P(f(u),v)))[z/g(y)])$$

$$= \forall y \,\forall u \,\exists v \,(R(y,g(y)) \land P(f(u),v)),$$
 unde g este un nou simbol de funcție unară
$$\varphi^2 =$$

Exemplu

$$\varphi := \forall y \,\exists z \,\forall u \,\exists v (R(y,z) \land P(f(u),v)).$$

$$\varphi^1 = \forall y \,(\forall u \,\exists v \,(R(y,z) \land P(f(u),v)))[z/g(y)])$$

$$= \forall y \,\forall u \,\exists v \,(R(y,g(y)) \land P(f(u),v)),$$
unde g este un nou simbol de funcție unară
$$\varphi^2 = \forall y \,\forall u \,(R(y,g(y)) \land P(f(u),v))[v/h(y,u)]$$

$$= \forall y \,\forall u \,(R(y,g(y)) \land P(f(u),h(y,u))),$$
unde h este un nou simbol de funcție binară.

Exempli

Fie \mathcal{L} un limbaj și $P, R \in \mathbb{R}$, $f \in \mathbb{F}$, ari(P) = ari(R) = 2 și ari(f) = 1. Determinați forma Skolem pentru:

$$\varphi^{1} = \forall y \ (\forall u \,\exists v \, (R(y,z) \land P(f(u),v)))[z/g(y)])$$

$$= \forall y \,\forall u \,\exists v \, (R(y,g(y)) \land P(f(u),v)),$$
unde g este un nou simbol de funcție unară
$$\varphi^{2} = \forall y \,\forall u \, (R(y,g(y)) \land P(f(u),v))[v/h(y,u)]$$

$$= \forall y \,\forall u \, (R(y,g(y)) \land P(f(u),h(y,u))),$$
unde h este un nou simbol de funcție binară.

 $\varphi := \forall v \exists z \forall u \exists v (R(v,z) \land P(f(u),v)).$

Deoarece φ^2 este un enunț universal, rezultă că $\varphi^{sk} = \varphi^2 = \forall y \, \forall u \, (R(y,g(y)) \wedge P(f(u),h(y,u))).$

Teorema de formă Skolem

Fie φ un enunț în formă prenex.

- $\blacksquare \models \varphi^{\mathit{sk}} \to \varphi, \ \mathsf{deci} \ \varphi^{\mathit{sk}} \vDash \varphi \ \mathsf{in} \ \mathcal{L}^{\mathit{sk}}(\varphi).$

Teorema de formă Skolem

Fie φ un enunț în formă prenex.

- $\blacksquare \models \varphi^{sk} \to \varphi$, deci $\varphi^{sk} \models \varphi$ în $\mathcal{L}^{sk}(\varphi)$.

Demonstrație [schiță]

Folosind următoarele proprietăți

$$\begin{split} &\models \varphi_{\mathsf{x}}(t) \to \exists x\, \varphi \\ &\models \varphi \text{ implică} \models \forall x\, \varphi \text{ și} \\ &\models \forall x\, (\varphi \to \psi) \to (\forall x\, \varphi \to \forall x\, \psi) \\ \text{putem demonstra că} &\models \varphi^1 \to \varphi, \models \varphi^2 \to \varphi^1, \text{ etc.} \end{split}$$

Teorema de formă Skolem

Fie φ un enunț în formă prenex.

- $\blacksquare \models \varphi^{sk} \to \varphi$, deci $\varphi^{sk} \models \varphi$ în $\mathcal{L}^{sk}(\varphi)$.

Demonstrație [schiță]

Folosind următoarele proprietăți

$$\models \varphi_{\mathsf{x}}(t) \to \exists \mathsf{x} \, \varphi \\ \models \varphi \; \mathsf{implic} \mathsf{a} \models \forall \mathsf{x} \, \varphi \; \mathsf{s} \mathsf{i} \\ \models \forall \mathsf{x} \, (\varphi \to \psi) \to (\forall \mathsf{x} \, \varphi \to \forall \mathsf{x} \, \psi) \\ \mathsf{putem} \; \mathsf{demonstra} \; \mathsf{c} \mathsf{a} \models \varphi^1 \to \varphi, \models \varphi^2 \to \varphi^1, \; \mathsf{etc}.$$

2 "←" Se aplică (i).
"⇒" exercitiu.

Observație

În general, φ și $\varphi^{\it sk}$ nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{\it sk}(\varphi)$.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} =$

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Fie $\mathcal{L}^{sk}(\varphi)$ -structura $\mathcal{A}=(\mathbb{Z},<,f^{\mathcal{A}})$, unde $f^{\mathcal{A}}(n)=n-1$ pentru orice $n\in\mathbb{Z}$.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Fie $\mathcal{L}^{sk}(\varphi)$ -structura $\mathcal{A}=(\mathbb{Z},<,f^{\mathcal{A}})$, unde $f^{\mathcal{A}}(n)=n-1$ pentru orice $n\in\mathbb{Z}$. Atunci $\mathcal{A}\vDash\varphi$, deoarece pentru orice număr întreg m există un număr întreg n astfel încât m< n.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Fie $\mathcal{L}^{sk}(\varphi)$ -structura $\mathcal{A}=(\mathbb{Z},<,f^{\mathcal{A}})$, unde $f^{\mathcal{A}}(n)=n-1$ pentru orice $n\in\mathbb{Z}$. Atunci $\mathcal{A}\vDash\varphi$, deoarece pentru orice număr întreg m există un număr întreg n astfel încât m< n. Pe de altă parte, $\mathcal{A}\not\vDash\varphi^{sk}$, deoarece pentru orice $n\in\mathbb{Z}$, avem că $n\geq f^{\mathcal{A}}(n)=n-1$.

Logica de ordinul I

- ☐ Cercetarea validității poate fi redusă la cercetarea satisfiabilității.
- □ Cercetarea satisfiabilității unei formule poate fi redusă la cercetarea satisfiabilității unui enunț în forma Skolem.

Vom arăta că pentru a verifica validitatea/satisfiabilitatea este suficient să ne uităm la o singură structură.

Pe săptămâna viitoare!