

ALGEBRA Chapter 17

ECUACIONES DE SEGUNDO GRADO

ECUACIÓN DE SEGUNDO GRADO

Denominada también ECUACIÓN CUADRÁTICA, es aquella ecuación polinomial de una incógnita, que se reduce a la forma general:

$$|ax^2 + bx + c = 0|; a \neq 0$$

$$ax^2 + bx + c = 0$$
; $a \neq 0$; $a, b, c \in \mathbb{R}$

Fórmula general:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

Raíces de la ecuación:

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

Discriminante (△):

$$\Delta = b^2 - 4ac$$

NATURALEZA DE LAS RAÍCES:

Sea la ecuación cuadrática

$$ax^2 + bx + c = 0 \quad ; \quad a \neq 0$$

$$\Delta = b^2 - 4ac$$

Primer caso:

Si:
$$\Delta > 0$$

La ecuación tiene raíces reales y diferentes.

Segundo caso:

Si:
$$\Delta = 0$$

La ecuación tiene raíces reales e iguales (solución única).

Tercer caso:

Si:
$$\Delta < 0$$

La ecuación tiene raíces complejas y conjugadas.

TEOREMA DE CARDANO - VIETE:

Sea la ecuación cuadrática:

$$ax^2 + bx + c = 0 \quad ; \quad a \neq 0$$

✓ Suma de Raíces:

$$S = x_1 + x_2 = -\frac{b}{a}$$

✓ Producto de Raíces:

$$P=x_1.x_2=\frac{c}{a}$$

FORMACIÓN DE UNA ECUACIÓN CUADRÁTICA A PARTIR DE SUS RAÍCES:

$$x^2 - Sx + P = 0$$

PROPIEDADES ADICIONALES:

La ecuación tiene raíces simétricas si y solo si:

$$x_1 + x_2 = 0 \qquad \qquad b = 0$$

La ecuación tiene raíces recíprocas si y solo si:

$$x_1.x_2=1$$
 $a=c$

Hallar el conjunto solución

$$x(x-7) + 4 = 22$$

$$x(x-7)+4=22$$

$$x^2 - 7x + 4 = 22$$

$$x^{2} - 7x - 18 = 0$$

$$x - 9 - 9x$$

$$x + 2 + 2x$$

$$(x-9)(x+2)=0$$

$$x - 9 = 0$$
 \vee $x + 2 = 0$

$$x = 9$$
 \vee $x = -2$

$$x = -2$$

$$C.S = \{-2; 9\}$$

01

Problema 2

Siendo x_1 y x_2 las raíces de la ecuación

$$x^2-2x+7=0$$

halle el valor de $(x_1, x_2)^{x_1 + x_2}$

Recordemos:

Sea: $ax^2 + bx + c = 0$

cuyas raíces son: x_1 y x_2

SUMA DE RAÍCES:

$$x_1 + x_2 = -\frac{b}{a}$$

PRODUCTO DE RAÍCES:

$$x_1 \cdot x_2 = \frac{c}{a}$$

$x^2-2x+7=0$

$$> x_1 + x_2 = -\frac{(-2)}{1} \implies x_1 + x_2 = 2$$

$$x_1.x_2 = \frac{7}{1}$$
 $x_1.x_2 = 7$

Nos piden:
$$(x_1, x_2)^{x_1 + x_2}$$

(7)

Resolución:

$$\therefore (x_1, x_2)^{x_1 + x_2} = 49$$

Si m y n son las raíces de la ecuación

$$x^2 - 5x + 2 = 0$$

halle el valor de $T = \frac{m^2 + n^2}{7}$

Recordemos:

Sea: $ax^2 + bx + c = 0$

cuyas raíces son: x_1 y x_2

SUMA DE RAÍCES:

$$x_1 + x_2 = -\frac{b}{a}$$

PRODUCTO DE RAÍCES:

$$x_1.x_2 = \frac{c}{a}$$

$$x^2 - 5x + 2 = 0$$

$$(m+n)=-\frac{(-5)}{1}=5$$
 $(m.n)=\frac{2}{1}=2$

$$(m+n)^{2} = m^{2} + n^{2} + 2mn$$

$$5^{2} = m^{2} + n^{2} + 2(2)$$

$$25 - 4 = m^{2} + n^{2}$$

$$m^{2} + n^{2} = 21$$

Nos piden:
$$T = \frac{m^2 + n^2}{7} = \frac{21}{7}$$

$$T = 3$$

Calcule el valor de m si las raíces de la ecuación (m+1) $x^2 - 2mx + (m-3) = 0$; son iguales.

Recordemos:

$$ax^2 + bx + c = 0$$

La ecuación tiene raíces iguales si y solo si $\Delta = 0$:

$$b^2 - 4ac = 0$$

$$(m+1)x^2 - 2mx + (m-3) = 0$$

La ecuación tiene raíces iguales $\Rightarrow b^2 - 4ac = 0$

$$(-2m)^2 - 4(m+1)(m-3) = 0$$

 $4m^2 - 4(m^2 - 2m - 3) = 0$

$$4m^2 - 4m^2 + 8m + 12 = 0$$

$$8m+12 = 0$$

$$8m = -12$$

$$m = -3/2$$

∴ m es igual a -3/2

Resolucióna

Problema 5

la ecuación **Forme** segundo grado cuyas raíces sean $2 + \sqrt{2}$ y $2 - \sqrt{2}$.

Sean:
$$x_1 = 2 + \sqrt{2}$$
 \wedge $x_2 = 2 - \sqrt{2}$

de
$$ightharpoonup S = x_1 + x_2$$
 aíces
$$S = 2 + \sqrt{2} + 2 - \sqrt{2}$$

$$S = 4$$

$$S = x_1 + x_2$$
 $\Rightarrow P = x_1 \cdot x_2$ $P = (2 + \sqrt{2})(2 - \sqrt{2})$ $P = 2^2 - \sqrt{2}$ $P = 2$

Formando la ecuación:

$$x^2 - Sx + P = 0$$

Rpta:
$$x^2 - 4xx + 23 = 0$$

En una feria de libros realizada por la editorial PERSON se ha sorteado cierta cantidad de libros. Si la ecuación

$$3x^2 + (a-2)x + 2 = 0$$

La cual tiene raíces simétricas, nos permite calcular el valor de 4a cuyo resultado fueron los libros sorteados, ¿cuál fue la cantidad de ejemplares que sorteó la editorial?

Recordemos:

Sea: $ax^2 + bx + c = 0$

cuyas raíces son: x_1 y x_2

La ecuación tiene raíces simétricas si y solo si:

$$x_1 + x_2 = 0 \qquad b = 0$$

©

$$3x^2 + (a-2)x + 2 = 0$$

0

La ecuación tiene raíces simétricas:

$$\Rightarrow a-2=0$$

$$b = 2$$

Cantidad de libros sorteados:

$$4a = 4(2)$$

$$4a = 8$$

8 libros sorteó la editorial PERSON.

La familia de Dalia desea ir al cine. Si al lugar su padre compra 4a entradas y si, además, el valor de a se obtiene de la ecuación $(2a+3)x^2+5x+5a=0$ La cual presenta raíces reciprocas, ¿Cuántas personas componen la familia de Dalia ?

Recordemos:

$$ax^2 + bx + c = 0$$

cuyas raíces son: x_1 y x_2

La ecuación tiene raíces recíprocas si y solo si:

$$x_1.x_2 = 1$$

$$a = c$$

$$(2a+3)x^2 + 5x + 5a = 0$$

La ecuación tiene raíces reciprocas:

$$\Rightarrow 2a + 3 = 5a$$

$$3 = 5a - 2a$$

$$3 = 3a$$

$$1 = a$$

$$\therefore 4a = 4(1)$$

4 personas componen la familia de Dalia.