

Sebastiano Catellani

MrsP

Proposed solution

Implementatio

Experiments

Multiprocessor resource sharing Protocol Implementation and evaluation

Sebastiano Catellani

University of Padua Supervisor: Prof. Tullio Vardanega

Overview

Sebastiano Catellani

MrsP Proposed

solution

MrsP

Implementation

Proposed solution

Experiments

3 Implementation

Sebastiano Catellani

MrsP

Proposed solution

Implementatio

Experiments

Figure: Partitioned Fixed-Priority scheduler on a platform with m processors (P_1, \ldots, P_m) and a global resource

MrsP Multiprocessor resource sharing Protocol - 1

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Experiments

Burns and Wellings design a multiprocessor extension of PCP/SRP with the aim of adapt a schedulability analysis to the protocol

Response Time Analysis incorporating PCP/SRP

The parameter e_j reflects the **contention** for the resource (r):

$$\begin{aligned} \mathbf{e_j} &= |map(G(r))| \times c_j \\ R_i &= C_i + max\{\mathbf{e_j}, \hat{b}\} + \sum_{\tau_j \in hp(i)} \lceil \frac{R_i}{T_j} \rceil C_j \\ C_i &= WCET_i + \sum_{r^j \in F(\tau_i)} n_i \mathbf{e_j} \end{aligned}$$

MrsP Multiprocessor resource sharing Protocol - 2

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Experiments

Protocol's properties

- It inherits the properties of PCP/SRP
- At most one job per processor requires the resource
- The length of the requests queue is at most $|map(G(r_j))|$
- At most e_i to gain the resource and to execute the critical section

Proposed solution Algorithm

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Experiments

- 1) Each resource has a set of ceilings, one for each processor
- 2) An access request causes the rise of the job's priority and activates a local ceiling
- 3) The requests are queued and served in arrival order
- 4) A job executes, until resource's release, at the inherited priority
- 5) If preempted, the lock holder migrates to the first processor available

Key features

- Points 2 and 4 make MrsP independence-preserving
- Point 5 guarantees a limited waiting and blocking time

Implementation Data structures

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Implementation Queue management - 1

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Experiments

Focused on managing the access requests queue

If preempted, the lock holder (J_x)

- inherits the ceiling $(c_3 + 1)$
- $oldsymbol{0}$ migrates to P_3
- lacktriangledown preempts J_y

Implementation Queue management - 2

Sebastiano Catellani

MrsP

Proposed

Implementation

The job will be re-queued in the ready_queue

The algorithm catches the operations that

(a) a processor becomes available

(b) add a new request to the queue

Implementation Primitive: mrsp_lock

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Implementation Primitive: mrsp_unlock

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Implementation

Primitive: pfp_schedule and finish_switch - 1

Sebastiano Catellani

MrsP

Proposed solution

Implementation

- t_1 : J_2 is marked for migration
- t_2 : J_4 's priority is lower than the local ceiling
- t_3 : default migration mechanism

Implementation

Primitive: pfp_schedule and finish_switch - 2

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Experiments

• t: J_1 completes and P_1 returns available

Experiments Overview

Sebastiano Catellani

MrsP

Proposed solution

Implementati

Experiments

Experiment #1: Comparison among protocols

MrsP outperfmors protocols based on simple ceiling or non preemption

Experiment #2: Sampling of the overheads

MrsP brings benefits at reasonable costs

Experiment #3: Absence of global resources

The protocol doesn't interfere with the scheduler

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Experiments

The experiment observes the response times of L_1 , H_2 and L_3 while varying the critical section length and the WCET of H_2

Sebastiano Catellani

MrsP

Proposed solution

Implementatio

Figure: Response time of L_1

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Figure: Response time of H_2

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Figure: Response time of L_3

Experiment #2 Sampling of the overheads

Sebastiano Catellani

MrsP

Proposed solution

Experiment #3 MrsP without global resources

The collected data show the same number of deadline miss

Sebastiano Catellani

MrsP

Proposed solution

Implementation

Figure: Number of deadline miss

Experiment #3 MrsP without global resources - pfp_schedule performance

Sebastiano Catellani

MrsP

Proposed solution

Implementati

Experiments

(c) pfp_schedule: Average