1. 设p为奇素数,求证: $\forall a, b \in \mathbb{Z}$,同余方程 $(x^2 - a)(x^2 - b)(x^2 - ab) \equiv 0 \pmod{p}$ 必有解.

分类讨论:
$$(1): a$$
或者 b 是二次剩余

则有 $x^2 - a \equiv 0 (mod \quad p)$ 或 $x^2 - b \equiv 0 (mod \quad p)$ 有解 x_0
于是 $(x^2 - a)(x^2 - b)(x^2 - ab) \equiv 0 (mod \quad p)$ 有解 x_0
 $(2): a$ 和 b 都不是二次剩余
则根据勒让德符号,有:
$$(\frac{a}{p}) = (\frac{b}{p}) = -1$$
于是 $(\frac{ab}{p}) = (-1)(-1) = 1$
所以 $x^2 - ab \equiv 0 (mod \quad p)$ 有解 x_0
手是 $(x^2 - a)(x^2 - b)(x^2 - ab) \equiv 0 (mod \quad p)$ 有解 x_0
综上,原式必有解

2. 设p为奇素数,若 $x^2 - 7 \equiv 0 \pmod{p}$ 有解,求p.

即
$$x^2\equiv 7 (mod p)$$
有解
于是根据勒让德符号,有 $(\frac{7}{p})=1$
由于 $p,7$ 是奇素数,而且根据题设, $p!=7$,所以 $(p,7)=1$
根据二次互反律, $(\frac{7}{p})=(-1)^{\frac{7-1}{2}\frac{p-1}{2}}(\frac{p}{7})=(-1)^{\frac{p-1}{2}}(\frac{p}{7})$
分类讨论:
$$(1)$$

$$p=1+4k$$
时,原式化为 $(\frac{p}{7})$

$$(2)$$

$$p=3+4k$$
时,原式化为 $-(\frac{p}{7})$

$$\pi(\frac{p}{7})=1, \exists p=(1,2,4)+7k$$

$$(\frac{p}{7})=-1, \exists p=(3,5,6)+7k$$
根据以上讨论,有 $p=1+4k$ 且 $p=(1,2,4)+7k$ 时有 $(\frac{7}{p})=1$
或者 $p=3+4k$ 且 $p=(3,5,6)+7k$ 时有 $(\frac{7}{p})=1$
通过中国剩余定理,求解 $(5+7)$ 程组
$$\begin{cases} p\equiv 1 (mod 4) & p\equiv 3,5,6 (mod 7) \\ p\equiv 1,2,4 (mod 7) & p\equiv 3,5,6 (mod 7) \\ m$$
得 $(p)=1,9,25,27,19,3 (mod 28)$

3. 设p为奇素数, $p | x^4+1$,证: $p \equiv 1 \pmod{8}$.

由
$$p|x^4+1$$
,所以 $x^4+1=kp$, $x^4=kp-1$ 所以 $x^4\equiv -1 (mod p)$ 设二次同余式 $(x^2)^2\equiv -1 (mod p)$,故本同余式有解根据勒让德符号, $(\frac{-1}{p})=(-1)^{\frac{p-1}{2}}=1$ 所以 $p=1+4k\equiv 1,5 (mod 8)$ 又根据 $(x^2)^2\equiv -1 (mod p)$,有 $(x^2+1)^2=x^4+2x^2+1\equiv 2x^2 (mod p)$,有解根据勒让德符号,有 $(\frac{2x^2}{p})=1$ 所以, $(\frac{2}{p})(\frac{x}{p})(\frac{x}{p})=(\frac{2}{p})=(-1)^{\frac{p^2-1}{8}}$ 而 $p\equiv 1,5 (mod 8)$ 所以为满足条件, $p\equiv 1 (mod 8)$

4. 判断下列方程是否有解

- (1) $x^2 \equiv 118 \pmod{229}$;
- (2) $x^2 \equiv 681 \pmod{1789}$;

根据勒让德符号
$$(\frac{118}{229}) = (\frac{2}{229})(\frac{59}{229}) = (-1)^{\frac{228+230}{8}}(\frac{59}{229})$$

$$= -(\frac{59}{229})$$

$$= -1*(-1)^{29*114}(\frac{229}{59}) = -1*(\frac{52 = 13*4}{59}) = -1(\frac{13}{59}) = 1$$
有解
(2)
根据勒让德符号 $(\frac{681}{1789}) = -1$, 无解

7. 求解同余方程 $3x^2 + x + 6 \equiv 0 \pmod{45}$.

$$45=5 imes 9, (5,9)=1,$$
所以原方程可以等价为:
$$\begin{cases} f(x)\equiv 0 (mod \quad 5).....(1) \\ f(x)\equiv 0 (mod \quad 9).....(2) \end{cases}$$
 将 0 . 1 . 2 . 3 . 4 代入 (1) 得到解, $x\equiv 1,2 (mod \quad 5)$ 将 0 . 0 . 0 0 书书 0 0 和 0 0 和