Prova P3 - EAI-21-2020 - COMP

Nome: RODRIGO ALVES DE ALMEIDA Duração: 2:30h Data_prova: 27/06/20Horário/Inicio: 10:10 Término 12:25

1Q: (2.0) Obter a tabela primitiva de fluxo de estados (TPFE) de uma máquina sequencial assíncrona modelo Moore. Esta máquina opera no modo fundamental normal e tem as variáveis CLK e G de entrada e a variável Y de saída. A saída Y se comporta segundo o diagrama de temporização da figura 1.

Figura 1. Diagrama de Temporização

- Descrição da maquina:
 A maquina começa operando no estado normal
 - · Nesse estado Y= G.CLK
 - · Se CLK for de 1-0 e G=1, a magis na entra no estab de reposo, onde Y=0
 - · O estado de repouso só termina quando G vai de 1-30, e a maquina volta para o estado mormal

2Q: A MEFA abaixo é implementada usando Latch C. Ela tem duas entradas (Ain, Rin) e duas saidas (Aout, Rout), onde as saidas também fazem o papel de variáveis de estado. Pede-se:

(1,5) a) Tabela de fluxo de estados; b) (1,0) Implemente a tabela do item (a) na arquitetura RS. Obs: A equação característica do RS é Q_{N-1}= S' + RQ_N

Dado: Tabela de operações do latch C

operações do la					
C1 C2	Q14=1				
0 0	0				
0 1	QN				
1 1	1				
1 0	QN				

a) Latch C:

Latch 1:

Latch 2:

00 00 10 10 00 00 00 00 00 00 00 00 00 0	And Royal	m 00	04	11	12
11 01 00 10 01	00	00	10	10	6
01/01/01	01	(N)	OD	00	00
10 11 11 10 10	A 4	01	D	11	01
	10	4 4	11	10	10

1) Aart
$$S' = Rin Raut(t)' R = Rin + Raut(t)$$

3Q: A tabela primitiva de fluxo de estados no modelo Moore abaixo descreve um detector de sequencias, onde temos as entradas X1 e X2 e uma saída Z. Pede-se: a)(1.5) a tabela de fluxo de estados minimizada; b) (1.5) sintetize a tabela de fluxo do item (a) como máquina de Huffman minimizada, livre de corrida crítica, livre de hazard lógico e a saída Z não tem glitch.

110					
Estados	00	01	11	10	z
-(1)	(1)	2	1	5	0
2	1	(2)	3	-	0
(3)	=	6	(3)	4	1
4	1	_	3	3	1
5	1	_	7	(S)	0
-6	8	(e)	3	_	1
7	-	9	$\overline{(7)}$	5	0
8	(8)	6	_	10	1
9	1	(9)	7	_	0
10	8	_	3	(19)	1

4Q: A Figura 4 mostra o grafo de transição de estado (GTE) que descreve uma máquina de estado finito síncrona (MEFS) modelo Mealy. As entradas são [a,b] e as saídas são [x,y]. Pede-se:

a) (1.0) Converta o GTE modelo Mealy da Figura 4 para GTE modelo Moore

b) (1.5) Sintetize a MEFS especificada no GTE do item (a), usando flip-flops JK e portas, usando o menor número de variáveis de estado, isto é, as saídas podem ter também o papel de variáveis de estados. Pede-se: As equações de excitação e de saída minimizadas na forma de soma de produto.

Dado:

Figura 4. GTE modelo Mealy

1. 1

11

11

10

$$X = Z(+)$$

$$Y = W(+)$$

$$Z(t+1) = \overline{abz} + \overline{bzw} + \overline{abz} + \overline{bzw}$$

 $W(t+1) = \overline{zw} + \overline{bzw}$

$$b = ab$$

$$k_0 = (bw + ab + bw)$$