Exercise 5.1. Let

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & -2 \end{pmatrix}, C = \begin{pmatrix} 1 & -2 & 3 \\ -2 & 1 & -1 \end{pmatrix}, D = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}.$$

- (a) Mark all the products that are defined and give the dimension of the result: AB, BA, ABC, ABD, BC, BC^T , B^TC , DC, D^TC^T .
- (b) Compute AB, A(3B+C), B^TA , A(BD), (AB)D.

Answer. Let A, B, C, D be as above.

- (a) The sizes of the different matrices are as follows: $A_{2\times 2}$, $B_{2\times 3}$, $C_{2\times 3}$, $D_{3\times 1}$. We therefore have
 - AB is a 2×3 matrix.
 - \bullet BA is undefined.
 - \bullet ABC is undefined.
 - \bullet BC is undefined.
 - BC^T is a 2×2 matrix.
 - B^TC is a 3×3 matrix.
 - \bullet DC is undefined.
 - D^TC^T is a 1×2 matrix equal to $(CD)^T$.
- (b) Let us compute

$$AB = \begin{pmatrix} 7 & 2 & -2 \\ 6 & 1 & 4 \end{pmatrix} \; ; \; 3B + C = \begin{pmatrix} 4 & -2 & 9 \\ 7 & 4 & -7 \end{pmatrix} \; ; \; A(3B + C) \begin{pmatrix} 18 & 6 & -5 \\ 19 & -2 & 20 \end{pmatrix}$$

Continuing with the computations,

$$B^{T} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \\ 2 & -2 \end{pmatrix} \; ; \; B^{T}A = \begin{pmatrix} 10 & 5 \\ 3 & 1 \\ -4 & 2 \end{pmatrix} \; ; \; BD = \begin{pmatrix} 0 \\ -6 \end{pmatrix}.$$

We shall now verify that A(BD) = (AB)D, as expected,

$$A(BD) = \begin{pmatrix} -12 \\ -6 \end{pmatrix} \; ; \; (AB)D = \begin{pmatrix} -12 \\ -6 \end{pmatrix}.$$

*

Exercise 5.2. Let T_{γ} be the matrix of rotation by γ in \mathbb{R}^2 . Check by matrix multiplication that $T_{\gamma}T_{-\gamma} = T_{-\gamma}T_{\gamma} = I$.

Answer. Recall that

$$T_{\gamma} = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix}.$$

Since cos is an even function, and sin is an odd function we also have

$$T_{-\gamma} = \begin{pmatrix} \cos \gamma & \sin \gamma \\ -\sin \gamma & \cos \gamma \end{pmatrix}.$$

$$T_{\gamma}T_{-\gamma} = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix} \begin{pmatrix} \cos \gamma & \sin \gamma \\ -\sin \gamma & \cos \gamma \end{pmatrix}$$
$$= \begin{pmatrix} \cos^2 \gamma + \sin^2 \gamma & \cos \gamma \sin \gamma - \sin \gamma \cos \gamma \\ \sin \gamma \cos \gamma - \cos \gamma \sin \gamma & \sin^2 \gamma + \cos^2 \gamma \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Completely analogous computation shows that $T_{-\gamma}T_{\gamma} = I$ as well.

*

Exercise 5.3. Multiply two rotation matrices T_{α} and T_{β} (it is a rare case when the multiplication is commutative, i.e. $T_{\alpha}T_{\beta} = T_{\beta}T_{\alpha}$, so the order is not essential). Deduce formulas for $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$ from here.

Answer. The formula for the matrix representing rotation by γ is given in the previous answer. We have

$$T_{\beta}T_{\alpha} = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
$$= \begin{pmatrix} \cos \beta \cos \alpha - \sin \beta \sin \alpha & -\cos \beta \sin \alpha - \cos \alpha \sin \beta \\ \sin \beta \cos \alpha + \cos \beta \sin \alpha & -\sin \alpha \sin \beta + \cos \beta \cos \alpha \end{pmatrix}$$

On the other hand $T_{\beta}T_{\alpha}$ corresponds to composition: first rotating by α , then rotating the result by β . Thus, it is equivalent to the rotation $T_{\alpha+\beta}$ (which also explains why the product is commutative $T_{\alpha}T_{\beta} = T_{\beta+\alpha}$). We therefore have

$$T_{\beta}T_{\alpha} = T_{\alpha+\beta} = \begin{pmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{pmatrix}.$$

Comparing the entries of the two matrices in our calculation we obtain the formulas

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta;$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta.$$

*

Exercise 5.4. Find the matrix of the orthogonal projection in \mathbb{R}^2 onto the line $x_1 = -2x_2$.

Answer. Let us denote the transformation in question by T. We can decompose T as $T_{-\gamma}T_1T_{\gamma}$, where T_1 is the orthogonal projection onto x_1 -axis

$$[T_1] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

and γ is the angle between $(1,0)^T$ and $(2,-1)^T$. The matrix of rotation is represented by

$$[T_{\gamma}] = \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \; \; ; \; \; [T_{-\gamma}] = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}.$$

Finally, we have

$$T = T_{-\gamma} T_1 T_{\gamma} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} = \begin{pmatrix} \frac{4}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix}.$$

*

Exercise 5.5. Find linear transformations $A, B : \mathbb{R}^2 \to \mathbb{R}^2$ such that $AB = \mathbf{0}$ but $BA \neq \mathbf{0}$.

Answer. We can represent these linear transformations by a 2×2 matrix in the standard basis:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \; ; \; B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}.$$

It is easy to verify that

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \; ; \; BA = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

*

Exercise 5.6. Prove that trace(AB) = trace(BA).

Answer. Suppose $A_{m \times n}$ is an $m \times n$ matrix, and $B_{n \times m}$ is an $n \times m$ matrix. Then C = AB is an $m \times m$ matrix whose (i, j)-entry is given by the formula

$$\sum_{k=1}^{n} A_{ik} B_{kj}.$$

In particular, the sum of the diagonal entries is

$$\sum_{i=1}^{m} C_{ii} = \sum_{i=1}^{m} \sum_{k=1}^{n} A_{ik} B_{ki} = \sum_{i=1}^{m} \sum_{k=1}^{n} B_{ki} A_{ik} = \sum_{k=1}^{n} \sum_{i=1}^{m} B_{ki} A_{ik},$$

which is the sum of the diagonal entries D_{kk} of the matrix D = BA.

*

Exercise 5.7. Construct a non-zero matrix A such that $A^2 = 0$.

Answer. One can simply take

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

*

Exercise 5.8. Find the matrix of the reflection through the line y = -2x/3. Perform all the multiplications.

Answer. We can rewrite 3y = -2x and decompose the reflection into $T = T_{-\gamma}T_1T_{\gamma}$, where

$$[T_1] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

is the reflection through the x-axis, and

$$[T_{\gamma}] = \begin{pmatrix} \frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{13}} \\ \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \end{pmatrix}$$

is the matrix representation of rotation by γ , the angle between $(1,0)^T$ and $(3,-2)^T$. We therefore have

$$T = \begin{pmatrix} \frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \\ -\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{13}} \\ \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \end{pmatrix} = \begin{pmatrix} \frac{9}{13} & -\frac{6}{13} \\ -\frac{6}{13} & \frac{4}{13} \end{pmatrix}.$$