LIMITS

Department of Mathematics, FPT University

Hanoi 2021

Table of Contents

A Preview of Calculus

- 2 The Limit of a Function
- The Limit Laws

Continuity

A Preview of Calculus

The Limit of a Function

The Limit Laws

Continuity

The Tangent Problem

How to find an equation of the tangent line to the parabola $y=x^2$ at the point P(1,1)?

We know that the slope of the secant line PQ is $oldsymbol{m_{PQ}} = rac{x^2-1}{x-1}$.

The Tangent Problem

How to find an equation of the tangent line to the parabola $y=x^2$ at the point P(1,1)?

We know that the slope of the secant line PQ is $m_{PQ} = \frac{x^2-1}{x-1}$.

Investigate the example of a falling ball

Suppose that a ball is dropped from upper observation deck of the CN Tower in Toronto, 450m above the ground. Find the velocity of the ball after 5 seconds.

If the distance fallen after t seconds is denoted by s(t) and measured in meters, then Galileo's law is expressed by the following equation $s(t) = 4.9t^2.$

Investigate the example of a falling ball

Suppose that a ball is dropped from upper observation deck of the CN Tower in Toronto, 450m above the ground. Find the velocity of the ball after 5 seconds.

If the distance fallen after t seconds is denoted by s(t) and measured in meters, then Galileo's law is expressed by the following equation

$$s(t) = 4.9t^2.$$

$$average = \frac{change \ in \ position}{time \ elapsed}$$
$$= \frac{s(5.1) - s(5)}{0.1} = 49.49 \ m/s$$

Thus, the (instantaneous) velocity after 5s is: $v = 49 \ m/s$.

Time interval	Average velocity (m/s)
$5 \le t \le 6$	53.9
$5 \le t \le 5.1$	49.49
$5 \le t \le 5.05$	49.245
$5 \le t \le 5.01$	49.049
$5 \le t \le 5.001$	49.0049

$$\begin{aligned} average &= \frac{change \ in \ position}{time \ elapsed} \\ &= \frac{s(5.1) - s(5)}{0.1} = 49.49 \ m/s \end{aligned}$$

Thus, the (instantaneous) velocity after 5s is: $v=49\ m/s$.

Time interval	Average velocity (m/s)
$5 \le t \le 6$	53.9
$5 \le t \le 5.1$	49.49
$5 \le t \le 5.05$	49.245
$5 \le t \le 5.01$	49.049
$5 \le t \le 5.001$	49.0049

$$\begin{aligned} average &= \frac{change \ in \ position}{time \ elapsed} \\ &= \frac{s(5.1) - s(5)}{0.1} = 49.49 \ m/s \end{aligned}$$

Thus, the (instantaneous) velocity after 5s is: $v=49\ m/s$.

Time interval	Average velocity (m/s)
$5 \le t \le 6$	53.9
$5 \le t \le 5.1$	49.49
$5 \le t \le 5.05$	49.245
$5 \le t \le 5.01$	49.049
$5 \le t \le 5.001$	49.0049

The Area Problem

We begin by attempting to solve the are problem: Find the area of the region S that lies under the curve y = f(x) from a to b.

Figure 2.8 The Area Problem: How do we find the area of the shaded region?

Figure 2.9 The area of the region under the curve is approximated by summing the areas of thin rectangles.

Table of Contents

- A Preview of Calculus
- 2 The Limit of a Function
- The Limit Laws
- Continuity

The Limit of a Function

In general, we write $\lim_{x \to a} f(x) = L$ if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a but not equal to a.

We write $\lim_{x\to a^-} f(x) = L$ if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and x less than a.

Similarly, "the right-hand limit of f(x) as x approaches a is equal to L" and we write $\lim_{x \to a^+} f(x) = L$

Example

$$\lim_{x \to 2^-} g(x) \neq \lim_{x \to 2^+} g(x)$$

$$\lim_{x \to 2} g(x) = 0$$

$$\lim_{x \to \infty} g(x) = 1$$

$$\lim_{x \to 5^+} g(x) = 0$$

$$\lim_{x \to 5} g(x) = 1$$

Similarly, "the right-hand limit of f(x) as x approaches a is equal to L" and we write $\lim_{x \to a^+} f(x) = L$

Example

$$\lim_{x \to 2^-} g(x) \neq \lim_{x \to 2^+} g(x)$$

$$\lim_{x \to 2} g(x) = ?$$

$$\lim_{x \to 0} g(x) = ?$$

$$\lim_{x \to a} g(x) = 1$$

$$\lim_{x \to \infty} g(x) = ?$$

Similarly, "the right-hand limit of f(x) as x approaches a is equal to L" and we write $\lim_{x \to a^+} f(x) = L$

Example

$$\lim_{x \to 2^{-}} g(x) \neq \lim_{x \to 2^{+}} g(x)$$

$$\lim_{x \to 2} g(x) = ?$$

$$\lim_{x \to 5^-} g(x) = ?$$

$$\lim_{x \to 5^+} g(x) = ?$$

$$\lim_{x \to 5} g(x) = ?$$

Infinite Limits

Let f be a function defined on both sides of a, except possibly at a itself. Then,

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large by taking x sufficiently close to a, but not equal to a.

Infinite Limits

Let f be defined on both sides of a, except possibly at a itself. Then,

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

Similar definitions can be given for the one-sided limits:

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to a^{+}} f(x) = -\infty$$

(b) $\lim_{x \to a^+} f(x) = \infty$

(c) $\lim_{x \to a^{-}} f(x) = -\infty$

 $(d)\lim_{x\to a^+} f(x) = -\infty$

Infinite Limits

Definition

x=a is called **the vertical asymptote** of f(x) if we have one of the following:

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to a^{+}} f(x) = -\infty$$

$$\lim_{x \to a^{+}} f(x) = -\infty$$

(b) $\lim_{x \to a^+} f(x) = \infty$

(c) $\lim_{x \to a^{-}} f(x) = -\infty$

(d) $\lim_{x \to a^+} f(x) = -\infty$

Table of Contents

- A Preview of Calculus
- The Limit of a Function
- The Limit Laws
- Continuity

Suppose that c is a constant and the limits $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist. Then

1.
$$\lim_{x \to a} \left[f(x) \pm g(x) \right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

- 3. $\lim_{x \to a} \left[cf(x) \right] = c \lim_{x \to a} f(x)$
- 4. $\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
- 5. $\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$

Using the limit laws, we have

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

- $8. \lim_{x \to a} x = a$
- 10. $\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$

- 7. $\lim_{x \to a} c = c$
- $9. \lim_{x \to a} x^n = a^n$
- 11. $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$

Suppose that c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then

1.
$$\lim_{x \to a} \left[f(x) \pm g(x) \right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

- 3. $\lim_{x \to a} \left[cf(x) \right] = c \lim_{x \to a} f(x)$
- 4. $\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
- 5. $\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$

Using the limit laws, we have

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

5.
$$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]$$

$$8. \lim_{x \to a} x = a$$

$$10. \lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$

7.
$$\lim_{x \to a} c = c$$

9.
$$\lim_{x \to a} x^n = a^n$$

11.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

Theorem

$$\lim_{x\to a} f(x) = L \quad \text{ if and only if } \quad \lim_{x\to a^-} f(x) = L = \lim_{x\to a^+} f(x).$$

Theorem

Let $f(x),\ g(x)$ and h(x) be defined for all $x \neq a$ over an open interval containing a. If

$$f(x) \le g(x) \le h(x)$$

for all $x \neq a$ in an open interval containing a and

$$\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x)$$

where L is a real number, then $\lim_{x\to a} g(x) = L$.

Example

Show that
$$\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$$
.

Solution

Note that w

cannot use $\lim_{x\to 0} x^2 \sin\frac{1}{x} = \lim_{x\to 0} x^2 \cdot \lim_{x\to 0} \sin\frac{1}{x} = 0$

since $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist

However, since $-1 \le \sin \frac{1}{x} \le 1$, we have

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

Taking $f(x) = -x^2$ and $h(x) = x^2$ in the Squeeze

Theorem, we obtain: $\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$.

Example

Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

Solution.

Note that we

cannot use $\lim_{x\to 0} x^2 \sin\frac{1}{x} = \lim_{x\to 0} x^2 \cdot \lim_{x\to 0} \sin\frac{1}{x} = 0$ since $\lim\sin\frac{1}{x}$ does not exist.

However, since $-1 \le \sin \frac{1}{r} \le 1$, we have

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

Taking $f(x)=-x^2$ and $h(x)=x^2$ in the Squeeze Theorem, we obtain: $\lim_{x\to 0}x^2\sin\frac{1}{x}=0.$

Example

Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

Solution.

Note that we

cannot use $\lim_{x\to 0} x^2 \sin\frac{1}{x} = \lim_{x\to 0} x^2 \cdot \lim_{x\to 0} \sin\frac{1}{x} = 0$ since $\lim \sin\frac{1}{x} = 0$ does not exist.

However, since $-1 \le \sin \frac{1}{x} \le 1$, we have

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2.$$

Taking $f(x)=-x^2$ and $h(x)=x^2$ in the Squeeze Theorem, we obtain: $\lim_{x\to 0}x^2\sin\frac{1}{x}=0.$

Example

Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

Solution.

Note that we

cannot use $\lim_{x\to 0} x^2 \sin\frac{1}{x} = \lim_{x\to 0} x^2 \cdot \lim_{x\to 0} \sin\frac{1}{x} = 0$ since $\lim \sin\frac{1}{x}$ does not exist.

However, since $-1 \le \sin \frac{1}{x} \le 1$, we have

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2.$$

Taking $f(x) = -x^2$ and $h(x) = x^2$ in the Squeeze

Theorem, we obtain: $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

Quiz questions

Choose one correct answer (TRUE or FALSE) for the following statements.

- If $\lim_{x\to 3} f(x)=0$ and $\lim_{x\to 3} g(x)=0$ then $\frac{\lim_{x\to 3} f(x)}{\lim_{x\to 3} g(x)}$ does not exist.
- $\ \, \textbf{ If } \lim_{x\to a} \big[f(x)g(x)\big] \text{ exists, then the limit must be } f(a)g(a).$

Quiz questions

Choose one correct answer (TRUE or FALSE) for the following statements.

- If $\lim_{x\to 3} f(x)=0$ and $\lim_{x\to 3} g(x)=0$ then $\frac{\lim_{x\to 3} f(x)}{\lim_{x\to 3} g(x)}$ does not exist.
- ② If $\lim_{x\to a} \left[f(x)g(x) \right]$ exists, then the limit must be f(a)g(a).

Table of Contents

- A Preview of Calculus
- The Limit of a Function
- The Limit Laws
- Continuity

Continuity

Definition

A function f is **continuous at a point** a if and only if the following three conditions are satisfied

- f(a) is defined;
- $\lim_{x \to a} f(x)$ exists.
- $\mathbf{3} \lim_{x \to a} f(x) = f(a).$

Continuity

Example

The figure shows the graph of a function f. At which numbers is f discontinuous? Why?

Types of Discontinuities

Definition

If f(x) is discontinuous at a, then

- f has a **removable discontinuity** at a if $\lim_{x\to a} f(x)$ exists. (Note: When we state that $\lim_{x\to a} f(x)$ exists, we mean that $\lim_{x\to a} f(x) = L$, where L is a real number.)
- ② f has a $\mathit{jump \ discontinuity}$ at a if $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ both exist, but $\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$. (Note: When we state that $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ both exist, we mean that both are real-valued and that neither take on the values $\pm \infty$.)
- ② f has an *infinite discontinuity* at a if $\lim_{x\to a^-}f(x)=\pm\infty$ and or $\lim_{x\to a^+}f(x)=\pm\infty$.

Types of Discontinuities

Example

Classify discontinuous points of the following functions

$$f(x) = \frac{x^2 - 4}{x - 2}.$$

2
$$g(x) = \begin{cases} -x^2 + 4 & \text{if } x \le 3 \\ 4x - 8 & \text{if } x > 3 \end{cases}$$

3
$$h(x) = \frac{x+2}{x+1}$$
.

Types of Discontinuities

Example

Classify discontinuous points of the following functions

•
$$f(x) = \frac{x^2 - 4}{x - 2}$$
.

$$g(x) = \left\{ \begin{array}{ll} -x^2 + 4 & \text{if } x \le 3 \\ 4x - 8 & \text{if } x > 3 \end{array} \right. .$$

$$h(x) = \frac{x+2}{x+1}$$
.

Types of Discontinuities

Example

Classify discontinuous points of the following functions

•
$$f(x) = \frac{x^2 - 4}{x - 2}$$
.

$$g(x) = \left\{ \begin{array}{ll} -x^2 + 4 & \text{if } x \le 3 \\ 4x - 8 & \text{if } x > 3 \end{array} \right. .$$

$$h(x) = \frac{x+2}{x+1}$$
.

Continuity over an Interval

Definition

A function f(x) is said to be **continuous from the right** at a if $\lim_{x\to a^+} f(x) = f(a)$.

A function f(x) is said to be **continuous from the left** at a if $\lim_{x\to a^-} f(x) = f(a)$.

Definition

A function f is **continuous on an interval** if it is continuous at every number in the interval.

If f is defined only on one side of an endpoint of the interval, we understand "continuous at the endpoint" to mean "continuous from the right" or "continuous from the left."

Continuity over an Interval

Definition

A function f(x) is said to be **continuous from the right** at a if $\lim_{x \to a^+} f(x) = f(a)$.

A function f(x) is said to be **continuous from the left** at a if $\lim_{x\to a^-} f(x) = f(a)$.

Definition

A function f is **continuous on an interval** if it is continuous at every number in the interval.

If f is defined only on one side of an endpoint of the interval, we understand "continuous at the endpoint" to mean "continuous from the right" or "continuous from the left."

Continuity over an Interval

Definition

A function f(x) is said to be **continuous from the right** at a if $\lim_{x\to a^+} f(x) = f(a)$. A function f(x) is said to be **continuous from the left** at a if $\lim_{x\to a^-} f(x) = f(a)$.

Definition

A function f is **continuous on an interval** if it is continuous at every number in the interval

If f is defined only on one side of an endpoint of the interval, we understand "continuous at the endpoint" to mean "continuous from the right" or "continuous from the left."

Theorem

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

- \bullet f+g
- **③** cf, cg
- **9** fg

Remarks

The following types of functions are continuous at every number in their domains:

- Polynomials
- Rational functions
- Root functions
- Trigonometric functions

Theorem

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

- \bullet f-g
- **③** cf, cg
- **9** fg

Remarks

The following types of functions are continuous at every number in their domains:

- Polynomials
- Rational functions
- Root functions
- Trigonometric functions

Composite Function Theorem

If f(x) is continuous at L and $\lim_{x\to a}g(x)=L$, then

$$\lim_{x \to a} f\big[g(x)\big] = f\bigg(\lim_{x \to a} g(x)\bigg) = f(L).$$

Theorem

If x is close to a, then g(x) is close to L; and, since f is continuous at L, if g(x) is close to L, then f(g(x)) is close to f(L).

This theorem is often expressed informally by saying "a continuous function of a continuous function is a continuous function".

The Intermediate Value Theorem

Let f be continuous over a closed, bounded interval [a,b]. If z is any real number between f(a) and f(b), then there is a number c in [a,b] satisfying f(c)=z in Figure 1.

Figure 1:

Example

Show that there is a root of the equation $4x^3 - 6x^2 + 3x - 2 = 0$ between 1 and 2.

Solution

Let $f(x) = 4x^3 - 6x^2 + 3x - 2$. This function is continuous over [1, 2].

We are looking for a solution of the given equation that is, a number c between 1 and 2 such that f(c)=0.

We have f(1) = -1 < 0 and f(2) = 12 > 0.

Therefore, by Intermediate Value Theorem there exists a number $c \in [a,b]$ such that f(c)=0.

Example

Show that there is a root of the equation $4x^3 - 6x^2 + 3x - 2 = 0$ between 1 and 2.

Solution.

Let $f(x) = 4x^3 - 6x^2 + 3x - 2$. This function is continuous over [1, 2].

We are looking for a solution of the given equation that is, a number c between 1 and 2 such that f(c)=0.

We have f(1) = -1 < 0 and f(2) = 12 > 0.

Therefore, by Intermediate Value Theorem there exists a number $c \in [a,b]$ such that f(c)=0.

Limits at Infinity

Definition

Let f be a function defined for every x>a. Then $\lim_{x\to\infty}f(x)=L$ means that

$$\forall \epsilon > 0, \ \exists M > 0 \ \text{if} \ x > M \ \text{then} \ |f(x) - L| < \epsilon.$$

Definition

The line y=L is called the **horizontal asymptote** of f(x) if we have one of the following:

- $\lim_{x \to +\infty} f(x) = L;$
- $\lim_{x \to -\infty} f(x) = L.$

Limits at Infinity

Definition

Let f be a function defined for every x>a. Then $\lim_{x\to\infty}f(x)=L$ means that

$$\forall \epsilon > 0, \ \exists M > 0 \ \text{if} \ x > M \ \text{then} \ |f(x) - L| < \epsilon.$$

Definition

The line y=L is called the **horizontal asymptote** of f(x) if we have one of the following:

- $\lim_{x \to +\infty} f(x) = L;$
- $\lim_{x \to -\infty} f(x) = L.$

1) If f(1)>0 and f(3)<0 then there exists a number c between 1 and 3 such that f(c)=0.

A. True

B. False

2) Which is the equation expressing the fact that "f is continuous at 2"?

$$A. \lim_{x \to 2} f(x) = 2$$

C.
$$\lim_{x \to 2} f(x) = 0$$

$$B. \lim_{x \to \infty} f(x) = f(2)$$

$$D. \lim_{x \to 2} f(x) = f(2)$$

3) Let $f(x) = \frac{x^3 - 1}{x^3 + x^2 - 2}$. The horizontal asymptote of f(x) is

A. y = 1

B. y = -1

 $C. \ y = 0$

D. None of them

4) $\lim_{x \to \infty} \cos x = 3$

A. Infinity

B. -1

C. 1

D. Does not exist

1) If f(1)>0 and f(3)<0 then there exists a number c between 1 and 3 such that f(c)=0.

A. True

- B. False
- 2) Which is the equation expressing the fact that "f is continuous at 2"?

$$A. \lim_{x \to 2} f(x) = 2$$

C.
$$\lim_{x \to 2} f(x) = 0$$

$$B. \lim_{x \to \infty} f(x) = f(2)$$

$$D. \lim_{x \to 2} f(x) = f(2)$$

- 3) Let $f(x) = \frac{x^3 1}{x^3 + x^2 2}$. The horizontal asymptote of f(x) is
 - A. y = 1

B. y = -1

C. y = 0

D. None of them

- 4) $\lim_{x \to \infty} \cos x = 3$
 - A. Infinity

B. -1

C. 1

D. Does not exist

1) If f(1)>0 and f(3)<0 then there exists a number c between 1 and 3 such that f(c)=0.

A. True

- B. False
- 2) Which is the equation expressing the fact that "f is continuous at 2"?
 - $A. \lim_{x \to 2} f(x) = 2$

C. $\lim_{x \to 2} f(x) = 0$

 $B. \lim_{x \to \infty} f(x) = f(2)$

- $D. \lim_{x \to 2} f(x) = f(2)$
- 3) Let $f(x) = \frac{x^3 1}{x^3 + x^2 2}$. The horizontal asymptote of f(x) is
 - A. y = 1

- B. y = -1
- C. y = 0

D. None of them

- 4) $\lim_{x \to \infty} \cos x = 1$
 - A. Infinity

B. -1

C. 1

D. Does not exist

◆ロト ◆団 ト ◆ 巨 ト ◆ 巨 ・ 夕 Q (*)

1) If f(1) > 0 and f(3) < 0 then there exists a number c between 1 and 3 such that f(c) = 0.

A. True

- B. False
- 2) Which is the equation expressing the fact that "f is continuous at 2"?
 - A. $\lim_{x \to 2} f(x) = 2$

C. $\lim_{x \to 2} f(x) = 0$

 $B. \lim_{x \to \infty} f(x) = f(2)$

- D. $\lim_{x \to 2} f(x) = f(2)$
- 3) Let $f(x) = \frac{x^3 1}{x^3 + x^2 2}$. The horizontal asymptote of f(x) is
 - A. y = 1

B. y = -1

C. y = 0

D. None of them

- 4) $\lim_{x\to\infty}\cos x = ?$
 - A. Infinity

B. -1

C. 1

D. Does not exist

◆ロト ◆団 ト ◆ 巨 ト ◆ 巨 ・ 夕 Q (*)

1) If f(1) > 0 and f(3) < 0 then there exists a number c between 1 and 3 such that f(c) = 0.

A. True

- B. False
- 2) Which is the equation expressing the fact that "f is continuous at 2"?
 - A. $\lim_{x \to 2} f(x) = 2$

C. $\lim_{x \to 2} f(x) = 0$

 $B. \lim_{x \to \infty} f(x) = f(2)$

- D. $\lim_{x \to 2} f(x) = f(2)$
- 3) Let $f(x) = \frac{x^3 1}{x^3 + x^2 2}$. The horizontal asymptote of f(x) is
 - A. y = 1

B. y = -1

C. y = 0

D. None of them

- 4) $\lim_{x\to\infty}\cos x = ?$
 - A. Infinity

B. -1

C. 1

D. Does not exist

◆ロト ◆団 ト ◆ 巨 ト ◆ 巨 ・ 夕 Q (*)

THANK YOU!