EXPT. NO. 8	NAME:	Page No.: 1	Youva
	EXPERIMENT-8	[UI9CSO1	23
	SINGLE SIDE BAND (SSB-SC) MODULATIO	N	
	AIM: Write and simulate a program for single side-be modulation scheme. Draw the message/carrier wow resultant modulated signal in time domain and show input/output using mottab code in virtue	heforms and hequency dos	
	APPARTUS: MATLAB		
	THEORY:	- Hart	
	1.) Modulation: Modulation is a process by which of a carrier wave is varied with a modulating (message) signal.		
	2) Analog modulation: It is a kind of modulation, w signal and the carrier wave to in Nature.	here the mession	log
	3.) Single Side Band (SSB-SC) modulation:	4	
	- SSB-SC is a type of Amplitude Modulation		
	- In conventional A.M., we have two side band a carrier wave a no information is contained by the		
	- In SSB-SC modulation, only one side band is to		cause.
	Teacher's Signature:		

Generation of SSB-SC: By Hilbert Transform method

EXPT.	NAME: Page No.: (3) Date.
	both USB (upper side bond) and LSB (lower side bond) having the same information.
	- Therefore, the transmission bandwidth is reduced to half and also required less power compare to other method of A.M.
	4.) There are two methods of generation of SSB-SC!
	1) Frequency discrimination method 1) Hilbert transform method or Phase discrimination method
	5.) Applications:
	→ In point-to-point communications
	-> Radar Communication
	-> where the power saving and low bondwidth requirements are important-
	to many voice applications.
+	

EXPT.	NAME:			Page No.: (5)	Young			
	Language and Fill of							
_ >	MATLAB Code:							
	clc;							
	dear all;							
	dose all;							
	am = 1 ;	1/0	amplitude of m	odwahng sign	ol			
	ac = 1;	%	emplifude of	cornier signe	4			
	fm = 500;	1/5	modulating sig	nal Programuy				
	fc = 5000;	%	corner freques	ncy				
	fs = 100000;	7.	sampling free	rency				
	ts = Vcs;		sampling into					
	N= 10000;	7.	no of sompl	el				
	$t = (-N/2 : 1 : (N_2-1)) * ts;$		time Thtere					
	$m = \alpha m \times \cos(2 \times pi \times fm \times t);$	%	modulating s	gnal	Signed .			
	mh = am * sinc 2*pi * fm*t);	7.	hilbert transfor	motor of m	indica			
	c = ac x cos (2xpi x fext); / carrier signal							
	ch = ac * sin (2 * pi * fc * t);				Signo			
	gt = m. xc-mh. xch;	1	S&B-Sc sig	nal				
	% time domain of all signals							
	plot (t, m, 'red', linewidth', 1.5);							
	axis ([0 0.005 -2.5 2.5]);							
	x label ('time');							
	ylobel ('amplitude');							
	title ('modulating signal');							
	grid on;							

EXPT.	NAME: Page No.: Page No.: Page No.: Oate. 21 Oct
	[V19C3012]
	subplot (3,2,6);
	plot (f, SF/max (SF), 'blue', 'linewidth', 1.5);
	axis C [-2 xfc 2 xfc -0.1 1.1]);
	× label ('frequency');
	ylabel ('ampulude');
	title ('modulating signal');
	grid on;
	CONCLUSION: We successfully observed single side Bond (38B-3C)
	modward scheme and as the come to know
	that here low bondwidth is required for transmission.
	Hence, we also save power.
	Y