This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A cyclopenta[a]naphthalene compound of formula I, II, III, IV or V

$$\begin{array}{c|c}
X^{1} & X^{2} & X^{3} \\
 & \beta & \\
 & Z-A \xrightarrow{n} R
\end{array}$$

$$\begin{array}{c|c}
X^{1a} & X^{2} & X^{3} \\
E^{1} & & B \\
\hline
\alpha & B \\
Z-A \xrightarrow{}_{n} R
\end{array}$$
II

$$X^{1}$$
 β
 $Z-A$
 R

III

$$X^{1a}$$
 X^{1b}
 A^{1b}
 A

in which:

- A is in each case, independently of one another, 1,4-phenylene, in which =CH- may be replaced once or twice by =N-, and which may be monosubstituted to tetrasubstituted, independently of one another, by halogen (-F, -Cl, -Br, -I), -CN, -CH₃, -CH₂F, -CHF₂, -CF₃, -OCH₃, -OCH₂F, -OCHF₂ or -OCF₃, 1,4-cyclohexylene, 1,4-cyclohexenylene or 1,4-cyclohexadienylene, in which -CH₂- may in each case be replaced once or twice, independently of one another, by -O- or -S- in such a way that heteroatoms are not linked directly, and which all may be monosubstituted or polysubstituted by halogen;
- Z is in each case, independently of one another, a single bond, a double bond, $-CF_2O_-$, $-OCF_2-$, $-CH_2CH_2-$, $-CF_2CF_2-$, $-CF_2-CH_2-$, $-CH_2-CF_2-$, $-CH_2-CH_2-$, $-CH_2-$, $-CH_$

- R is hydrogen, an alkyl, alkoxy, alkenyl or alkynyl radical having from 1 to 15 or 2 to 15 carbon atoms respectively which is unsubstituted, monosubstituted by -CN or -CF₃ or at least monosubstituted by halogen, where, in addition, one or more CH₂ groups in these radicals may each, independently of one another, be replaced by -O-, -S-, -CO-, -COO-, -OCO- or -OCO-O- in such a way that heteroatoms are not linked directly, halogen, -CN, -SCN, -NCS, -SF₅, -CF₃, -OCF₃, -OCH₂F;
- X¹, X^{1a}, X^{1b}, X² and X³ are each, independently of one another, hydrogen, an alkyl, alkoxy, alkenyl or alkynyl radical having from 1 to 15 or 2 to 15 carbon atoms respectively which is unsubstituted or at least monosubstituted by halogen, where, in addition, one or more CH₂ groups in these radicals may each, independently of one another, be replaced by -O-, -S-, -CO-, -COO-, -OCO- or -OCO-O- in such a way that heteroatoms are not linked directly, halogen, -CN, -SF₅, -SCN, -NCS, -CF₃, -OCF₃, -OCHF₂ or -OCH₂F;
- E¹ and E² are each, independently of one another, hydrogen, an alkyl, alkoxy, alkenyl or alkynyl radical having from 1 to 15 or 2 to 15 carbon atoms respectively which is unsubstituted, monosubstituted by -CN or -CF₃ or at least monosubstituted by halogen, where, in addition, one or more CH₂ groups in these radicals may each, independently of one another, be replaced by -O-, -S-, -CO-, -COO-, -OCO- or -OCO-O- in such a way that heteroatoms are not linked directly, halogen, -CN, -SCN, -NCS, -SF₅, -CF₃, -OCF₃, -OCH₂, -OCH₂F or -(-Z-A-)_n-R; and

n is 0, 1, 2 or 3;

where

in the formula I, ring B does not stand for the formula \mathbf{c} if X^1 , X^2 and X^3 are simultaneously hydrogen, and.

.

2. (Previously Presented) A cyclopenta[a]naphthalene compound according to Claim 1, wherein

- 3. (Previously Presented) A cyclopenta[a]naphthalene compound according to Claim 1, wherein
 - Z is a single bond, -CF₂O-, -OCF₂-, -CF₂CF₂-, -CH=CH-, -CF=CH-, -CH=CF- or -CF=CF-.
- 4. (Previously Presented) A cyclopenta[a]naphthalene compound according to claim 1, wherein

- 5. (Previously Presented) A cyclopenta[a]naphthalene compound according to claim 1, wherein
 - R is an alkyl radical, alkoxy radical or alkenyl radical having from 1 to 7 or 2 to 7 carbon atoms respectively.
- 6. (Previously Presented) A cyclopenta[a]naphthalene compound according to claim 1, wherein
 - E¹ and E², independently of one another, are hydrogen, an alkyl radical or alkoxy radical having from 1 to 7 carbon atoms, fluorine, chlorine or -(-Z-A-)_n-R, in which n is 1, Z is a single bond, A is 1,4-cyclohexylene or optionally mono- or poly-fluorine-substituted 1,4-phenylene, and R is alkyl, alkoxy or alkenyl having from 1 to 7 or 2 to 7 carbon atoms respectively.
- 7. (Previously Presented) A cyclopenta[a]naphthalene compound according to claim 1, wherein at least one of X^1 , X^2 and X^3 or at least one of X^{1a} , X^{1b} , X^2 and X^3 is -CF₃, fluorine or chlorine.
- 8. (Previously Presented) A cyclopenta[a]naphthalene compound according to claim 1, wherein X^1 , X^2 and X^3 or X^{1a} , X^{1b} , X^2 and X^3 are -CF₃, fluorine and/or chlorine.
- (Previously Presented) A cyclopenta[a]naphthalene compound according to claim 1, wherein
 X¹, X² and X³ or X^{1a}, X^{1b}, X² and X³ are fluorine.

- 10. (Canceled)
- 11. (Previously Presented) A liquid-crystalline medium comprising at least two liquid-crystalline compounds, wherein at least one liquid-crystalline compound is a cyclopenta[a]naphthalene compound according to claim 1.
- 12. (Previously Presented) An electro-optical display element containing a liquid-crystalline medium according to Claim 11.
- 13. (Currently Amended) A cyclopenta[a]naphthalene compound of formula I, II, III, IV or VVI, VII, VIII, IX or X,

$$\begin{array}{c|c}
X^{1} & X^{2} & X^{3} \\
E^{1} & X^{2} & B \\
\hline
X^{1a} & B \\
\hline
X^{1a} & B \\
\hline
X^{1} & A \\
\hline
X^{1} & A \\
\hline
X^{2} & A \\
\hline
X^{3} & A \\
\hline
X^{1} & A \\
\hline
X^{2} & A \\
\hline
X^{3} & A \\
\hline
X^{1} & A \\
\hline
X^{2} & A \\
\hline
X^{3} & A \\
\hline
X^{1} & A \\
\hline
X^{2} & A \\
\hline
X^{3} & A \\
\hline
X^{1} & A \\
\hline
X^{2} & A \\
\hline
X^{3} & A \\
\hline
X^{1} & A \\
\hline
X^{2} & A \\
\hline
X^{3} & A \\
\hline
X^{1} & A \\
\hline
X^{2} & A \\
\hline
X^{3} & A \\
\hline
X^{1} & A \\
\hline
X^{2} & A \\
\hline
X^{3} & A \\
\hline
X^{1} & A \\
\hline
X^{2} & A \\
\hline
X^{3} & A \\
\hline
X^{1} & A \\
\hline
X^{2} & A \\
\hline
X^{3} & A \\
\hline
X^{2} & A \\
\hline
X^{3} & A \\
\hline
X^{4} & A \\
\hline
X^{5} & A \\
X^{5} & A \\
\hline
X^{5} & A \\
X^{5} & A \\
\hline
X^{5} & A \\
X^{5} & A \\
\hline
X^{5} & A \\
X^{5} & A$$

$$E^{2}$$

$$A^{1b}$$

$$A^{2}$$

$$A^{3}$$

$$A^{$$

in which:

A is in each case, independently of one another, 1,4-phenylene, in which =CH- may be replaced once or twice by =N-, and which may be monosubstituted to tetrasubstituted, independently of one another, by halogen (-F, -Cl, -Br, -I), -CN, -CH₃, -CH₂F, -CHF₂, -CF₃, -OCH₃, -OCH₂F, -OCHF₂ or -OCF₃, 1,4-cyclohexylene, 1,4-cyclohexenylene or 1,4-cyclohexadienylene, in which -CH₂- may in each case be replaced once or twice, independently of one another, by -O- or -S- in such a way that heteroatoms are not linked directly, and which all may be monosubstituted or polysubstituted by halogen;

- Z is in each case, independently of one another, a single bond, a double bond, $-CF_2O_-$, $-OCF_2-$, $-CH_2CH_2-$, $-CF_2CF_2-$, $-CF_2-CH_2-$, $-CH_2-CF_2-$, $-CH_2-CH_2-$, $-CH_2-$, $-CH_$
- R is hydrogen, an alkyl, alkoxy, alkenyl or alkynyl radical having from 1 to 15 or 2 to 15 carbon atoms respectively which is unsubstituted, monosubstituted by -CN or -CF₃ or at least monosubstituted by halogen, where, in addition, one or more CH₂ groups in these radicals may each, independently of one another, be replaced by -O-, -S-, -CO-, -COO-, -OCO- or -OCO-O- in such a way that heteroatoms are not linked directly, halogen, -CN, -SCN, -NCS, -SF₅, -CF₃, -OCF₃, -OCHF₂ or -OCH₂F;
- X¹, X^{1a}, X^{1b}, X² and X³ are each, independently of one another, hydrogen, an alkyl, alkoxy, alkenyl or alkynyl radical having from 1 to 15 or 2 to 15 carbon atoms respectively which is unsubstituted or at least monosubstituted by halogen, where, in addition, one or more CH₂ groups in these radicals may each, independently of one another, be replaced by -O-, -S-, -CO-, -COO-, -OCO- or -OCO-O- in such a way that heteroatoms are not linked directly, halogen, -CN, -SF₅, -SCN, -NCS, -CF₃, -OCF₃, -OCHF₂ or -OCH₂F;
- E¹ and E² are each, independently of one another, hydrogen, an alkyl, alkoxy, alkenyl or alkynyl radical having from 1 to 15 or 2 to 15 carbon atoms respectively which is unsubstituted, monosubstituted by -CN or -CF₃ or at least monosubstituted by halogen, where, in addition, one or more CH₂ groups in these radicals may each, independently of one another, be replaced by -O-, -S-, -CO-, -COO-, -OCO- or -OCO-O- in such a way that heteroatoms are not linked directly, halogen, -CN, -SCN, -NCS, -SF₅, -CF₃, -OCF₃, -OCH₂, -OCH₂F or -(-Z-A-)_n-R; and

n is 0, 1, 2 or 3;

where

in the formula I, ring B does not stand for the formula e if X¹, X² and X³ are simultaneously hydrogen,

in formula I, ring B does not stand for formula e if X^2 and X^3 are simultaneously fluorine or if E^1 is hydrogen and simultaneously X^1 and X^2 are fluorine and

at least one of X^1 , X^2 and X^3 or at least one of X^{1a} , X^{1b} and X^2 and X^3 is $-CF_3$, fluorine and/or chlorine.

14. (Previously Presented) A cyclopenta[a]naphthalene compound according to Claim 13, wherein

- 15. (Previously Presented) A cyclopenta[a]naphthalene compound according to Claim 13, wherein
 - Z is a single bond, $-CF_2O$ -, $-OCF_2$ -, $-CF_2CF_2$ -, -CH=CH-, -CF=CH-, -CH=CF- or -CF=CF-.
- 16. (Previously Presented) A cyclopenta[a]naphthalene compound according to claim 13, wherein

 A is

- 17. (Previously Presented) A cyclopenta[a]naphthalene compound according to claim 13, wherein
 - R is an alkyl radical, alkoxy radical or alkenyl radical having from 1 to 7 or 2 to 7 carbon atoms respectively.
- 18. (Previously Presented) A cyclopenta[a]naphthalene compound according to claim 13, wherein

 E^1 and E^2 , independently of one another, are hydrogen, an alkyl radical or alkoxy radical having from 1 to 7 carbon atoms, fluorine, chlorine or $-(-Z-A-)_n-R$, in which n is 1, Z is a single bond, A is 1,4-cyclohexylene or optionally mono- or poly-fluorine-substituted 1,4-phenylene, and R is alkyl, alkoxy or alkenyl having from 1 to 7 or 2 to 7 carbon atoms respectively.

- 19. (Previously Presented) A liquid-crystalline medium comprising at least two liquid-crystalline compounds, wherein at least one liquid-crystalline compound is a cyclopenta[a]naphthalene derivative according to claim 13.
- 20. (Previously Presented) An electro-optical display element containing a liquid-crystalline medium according to Claim 19.