1.2017年北京市海淀区高考数学零模试卷(理科)

已知函数. $f(x) = \frac{e^x}{x}$

- (I) 若曲线 y = f(x) 与直线 y = kx 相切于点P, 求点P的坐标;
- (II) 当 $a \le e$ 时,证明: 当 $x \in (0,+\infty)$, $f(x) \ge a(x-\ln x)$
- 2. 怀柔区2016—2017学年度高三第二学期适应性练习数学(文史类) 已知函数 $f(x) = ax + \ln x (a \in R)$.
 - (1) 若a=2, 求曲线 y=f(x)在 x=1 处的切线方程;
 - (2) 求 f(x) 的单调区间;
 - (3) 若对任意 $x \in (0, +\infty)$, 都有 f(x) < 2 成立, 求实数 a 的取值范围.
- 3.怀柔区2016—2017学年度高三第二学期适应性练习数学(理工类)

已知函数 $f(x) = ax + \ln x (a \in R)$.

- (1) 求 f(x) 的单调区间;
- (2) 设 $g(x) = x^2 2x + 2$,若对任意 $x_1 \in (0, +\infty)$,均存在 $x_2 \in [0, 1]$,使得 $f(x_1) < g(x_2)$,求 a 的取值范围.
- 4.西城区高三统一测试数学(文科)

已知函数 $f(x)=e^{-\frac{1}{2}}\hat{x}$. 设l 为曲线 y=f(x) 在点 $P(x_0,f(x_0))$ 处的切线,其中 $x_0\in[-1,1]$.

- (I) 求直线 l 的方程(用 x_0 表示):
- (II) 求直线l在y轴上的截距的取值范围;
- (III) 设直线 y = a 分别与曲线 y = f(x) 和射线 y = x 1 ($x \in [0, +\infty)$) 交于 M, N 两点,求 | MN | 的最小值及此时 a 的值.
- 5.西城区高三统一测试数学(理科) 2017.4

已知函数 $f(x)=e^{t}-\frac{1}{2}\hat{x}$. 设 l 为曲线 y=f(x) 在点 $P(x_{0},f(x_{0}))$ 处的切线,其中 $x_{0}\in[-1,1]$.

- (I) 求直线 l 的方程(用 x_0 表示);
- (II) 设 O 为原点,直线 $^{x=1}$ 分别与直线 l 和 x 轴交于 A,B 两点,求 $^{\triangle}$ 的面积的最小值.
- 6.顺义区2017届高三第二次统练数学试卷(文科)

已知函数 $f(x) = 1 + \ln x - ae^x$.

- (I) 若曲线 y = f(x)在 x = 1处的切线与 x 轴平行, 求实数 a 的值;
- (II) 若对任意 $x \in (0,+\infty)$, 不等式 $f(x) \le 0$ 恒成立, 求实数 a 的取值范围.
- 7.顺义区2017届高三第二次统练数学试卷(理科)

已知函数 $f(x) = pe^{-x} + x + 1 (p \in R)$.

- (I) 当实数 p = e 时,求曲线 y = f(x) 在点 x = 1 处的切线方程;
- (II) 求函数 f(x)的单调区间;
- (III) 当 p = 1时,若直线 y = mx + 1与曲线 y = f(x)没有公共点,求实数 m 的取值范围. **8.**石景山区**2017年高三统一练习数 学**(文)试 卷

已知函数 $f(x) = e^x$.

(I) 过原点作曲线 y = f(x) 的切线,求切线方程;

- (II) 当x>0时,讨论曲线 y=f(x)与曲线 $y=mx^2(m>0)$ 公共点的个数.
- 9.石景山区2017年高三统一练习数 学(理)试卷

已知函数 $f(x) = \ln x$.

- (I) 求曲线 y = f(x) 在点(1, f(1)) 处的切线方程;
- (II) 求证: 当x > 0时, $f(x) \ge 1 \frac{1}{x}$;
- (III) 若 $x-1>a\ln x$ 对任意x>1恒成立,求实数a 的最大值.
- 10.海淀区高三年级第二学期期中练习数学(文科)

已知函数 $f(x) = e^x - x^2 + ax$, 曲线 y = f(x) 在点 (0, f(0)) 处的切线与 x 轴平行.

- (I) 求a的值;
- (II) 若 $g(x) = e^x 2x 1$, 求函数 g(x) 的最小值;
- (III) 求证: 存在c < 0, 当x > c 时, f(x) > 0.
- 11.海淀区高三年级第二学期期中练习数学(理科)

2017.4

已知函数 $f(x) = x^2 - 2ax + 4(a-1)\ln(x+1)$, 其中实数 a < 3.

- (I) 判断 x=1 是否为函数 f(x) 的极值点,并说明理由;
- (II) 若 $f(x) \le 0$ 在区间[0,1]上恒成立,求 a 的取值范围.
- 12.丰台区2017年高三年级第二学期综合练习(一)数 学(文科)

已知函数 $f(x) = \frac{x+1}{e^x}$, $A(x_1, m)$, $B(x_2, m)$ 是曲线 y = f(x) 上两个不同的点.

- (I) 求 f(x) 的单调区间,并写出实数 m 的取值范围;
- (II) 证明: $x_1 + x_2 > 0$.
- 13. 丰台区2017年高三年级第二学期综合练习(一)数 学(理科)

已知函数 $f(x) = \ln(kx) + \frac{1}{x} - k \ (k > 0)$.

- (I) 求 f(x) 的单调区间;
- (II) 对任意 $x \in [\frac{1}{k}, \frac{2}{k}]$,都有 $x \ln(kx) kx + 1 \le mx$,求 m 的取值范围.
- 14.房山区2017年高三一模试卷高三数学(文)

已知函数 $f(x) = e^x - ax$.

- (I) 若曲线 y = f(x) 在点(1, f(1))处的切线与直线 y = ax + 2 平行, 求实数 a 的值;
- (II) 讨论 f(x) 的单调性;
- (III) 当0 < a < 1时,证明: 曲线 y = f(x) 在直线 y = (e-1)x 的上方.
- 15.房山区2017年高三一模试卷高三数学(理)

已知函数 $f(x) = x-1+ae^x$.

- (I) 若曲线 y = f(x) 在点(1, f(1)) 处的切线平行于x轴, 求a的值;
- (II) 求 f(x) 的极值;
- (III) 当a=1时,曲线 y=f(x) 与直线 y=kx-1 没有公共点,求k的取值范围.
- 16. 北京市东城区2016-2017学年度第二学期高三综合练习(一)数学(文科)

设函数
$$f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + ax$$
, $a \in \mathbf{R}$.

- (I) 若x = 2 是 f(x) 的极值点,求a 的值,并讨论 f(x) 的单调性;
- (II) 已知函数 $g(x) = f(x) \frac{1}{2}ax^2 + \frac{2}{3}$, 若 g(x) 在区间 (0,1) 内有零点,求a 的取值范围;
- (III)设 f(x) 有两个极值点 x_1 , x_2 ,试讨论过两点 $(x_1,f(x_1))$, $(x_2,f(x_2))$ 的直线能否过点
- (1,1), 若能, 求a的值; 若不能, 说明理由.

17.北京市东城区2016-2017学年度第二学期高三综合练习(一)数学理科)

已知函数 $f(x) = 2 \ln x + \frac{1}{x} - mx (m \in \mathbf{R})$.

- (I) 当m = -1时,求曲线y = f(x)在点(1, f(1))处的切线方程;
- (II) 若f(x)在 $(0,+\infty)$ 上为单调递减,求m的取值范围;
- (III) 设0 < a < b, 求证: $\frac{\ln b \ln a}{b a} < \frac{1}{\sqrt{ab}}$
- 18.北京市朝阳区2017届高三第一次(3月)综合练习数学(理)试题

已知函数 $f(x) = \ln x - ax - 1$ ($a \in \mathbf{R}$), $g(x) = xf(x) + \frac{1}{2}x^2 + 2x$.

- (I) 求 f(x) 的单调区间;
- (II) 当a=1时,若函数 g(x) 在区间 $(m,m+1)(m \in \mathbb{Z})$ 内存在.唯一的极值点,求m的值.
- 19.北京市朝阳区高三年级第一次综合练习数学测试题(文史类) 2017.3

已知函数 $f(x) = x^3 - 3ax + e$, $g(x) = 1 - \ln x$, 其中 e 为自然对数的底数.

- (I)若曲线 y = f(x) 在点(1, f(1))处的切。线与直线l: x + 2y = 0垂直,求实数 a 的值;
- (II) 设函数 $F(x) = -x[g(x) + \frac{1}{2}x 2]$,若 F(x) 在区间 $(m, m+1)(m \in \mathbb{Z})$ 内存在唯一的极值点,求m 的值:
- (III) 用 $\max\{m,n\}$ 表示m,n中的较大者,记函数 $h(x) = \max\{f(x),g(x)\}(x>0)$. 若函数 h(x) 在 $(0,+\infty)$ 上恰有2个零点,求实数 a 的取值范围.
- 20.北京市朝阳区高三年级第二次综合练习数学学科测试(理工类)

已知函数 $f(x) = e^x + x^2 - x$, $g(x) = x^2 + ax + b$, $a, b \in \mathbf{R}$.

- (I) 当 a = 1 时,求函数 F(x) = f(x) g(x) 的单调区间;
- (II) 若曲线 y = f(x) 在点 (0,1) 处的切线 l 与曲线 y = g(x) 切于点 (1,c),求 a,b,c 的值;
- (Ⅲ) 若 $f(x) \ge g(x)$ 恒成立,求a+b 的最大值.
- 21.北京市朝阳区高三年级第二次综合练习 数学学科测试(文史类)

已知函数 $f(x) = x \ln x$, $g(x) = \frac{a}{2}x^2 + x - a \ (a \in \mathbf{R})$.

- (I) 若直线 x = m (m > 0) 与曲线 y = f(x) 和 y = g(x) 分别交于 M, N 两点.设曲线 y = f(x) 在点 M 处的切线为 l_1 , y = g(x) 在点 N 处的切线为 l_2 .
 - (i) 当m=e时, 若 $l_1 \perp l_2$, 求a的值;
 - (ii) 若 $l_1 // l_2$, 求a的最大值;
- (II)设函数 h(x) = f(x) g(x) 在其定义域内恰有两个不同的极值点 x_1 , x_2 , 且 $x_1 < x_2$. 若 $\lambda > 0$,且 $\lambda \ln x_2 \lambda > 1 \ln x_1$ 恒成立,求 λ 的取值范围.
- 22. 北京市东城区2016-2017学年度第二学期高三综合练习(二)数学(理科)

设函数 $f(x) = (x^2 + ax - a) \cdot e^{-x} (a \in \mathbf{R})$.

- (I) 当a = 0时,求曲线y = f(x)在点(-1, f(-1))处的切线方程;
- (II) 设 $g(x) = x^2 x 1$, 若对任意的 $t \in [0,2]$, 存在 $s \in [0,2]$ 使得 $f(s) \ge g(t)$ 成立, 求 a 的取值范围.

1.2017年北京市海淀区高考数学零模试卷(理科)

已知函数 $f(x) = \frac{e^x}{x}$.

- (I) 若曲线 y=f(x) 与直线 y=kx 相切于点 P,求点 P 的坐标;
- (Ⅱ) 当 a≤e 时, 证明: 当 x∈ (0, +∞), f (x) ≥a (x lnx).

【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程,

【分析】(I) 设点 P 的坐标为 (x_0, y_0) , \mathbf{f}' $(\mathbf{x}) = \frac{e^{\mathbf{x}}(\mathbf{x}-1)}{\mathbf{x}^2}$,由题意列出方程组,能求

出点 P 的坐标.

(II) 设函数 g (x) =f (x) -a (x-lnx) =
$$\frac{e^x}{x}$$
-a(x-lnx), g' (x)= $\frac{(e^x-ax)(x-1)}{x^2}$,

 $x \in (0, +\infty)$,设 h(x)= e^x - ax, $x \in (0, +\infty)$,则 h'(x)= e^x - a,由此利用分类讨论和导数性质能证明: 当 $x \in (0, +\infty)$,f(x) \geqslant a(x - lnx).

【解答】解:(I)设点 P 的坐标为(x_0 , y_0), $f'(x) = \frac{e^x(x-1)}{x^2}$,

由题意知
$$\begin{cases} \frac{e^{\frac{x_0}{x_0}(x_0-1)}}{\frac{x_0^2}{2}} =_k \\ \frac{e^{\frac{x_0}{x_0}}}{\frac{e^{\frac{x_0}{x_0}}}{x_0}} =_k x_0 \end{cases}$$
解得 $x_0=2$,所以 $y_0=\frac{e^{\frac{x_0}{x_0}}}{\frac{e^2}{x_0}} =_k x_0$

从而点 P 的坐标为 $(2, \frac{e^2}{2})$.

证明: (II) 设函数 g (x) = f (x) - a (x - lnx) = $\frac{e^x}{x}$ - a (x - lnx),

$$g'(x) = \frac{(e^x - ax)(x-1)}{x^2}, x \in (0, +\infty),$$

设 h (x) = e^x - ax, x \in (0, + ∞), 则 h'(x) = e^x - a,

①当 a≤1 时,因为 x>0,所以 e^x>1,所以 h'(x) =e^x - a>0,

所以 h(x) 在区间 $(0, +\infty)$ 上单调递增,所以 h(x) > h(0) = 1 > 0:

②当 1 < a ≤ e 时, 令 h'(x)=0,则 x=lna,

所以 $x \in (0, lna), h'(x) < 0; x \in (lna, +\infty), h'(x) > 0.$

所以 h(x) \geq h(lna) =a(1 - lna) \geq 0,

由①②可知: $x \in (0, +\infty)$ 时,有 h (x) ≥0,

所以有:

x	(0, 1)	1	(1, +∞)
g' (x)	-	0	+
g (x)	\	极小值	↑

所以 g (x) $_{min}$ =g (1) =e - a \geqslant 0,从而有当 x \in (0, + ∞) 时,f (x) \geqslant a (x - lnx).

2. 怀柔区 2016—2017 学年度高三第二学期适应性练习数学(文史类)

已知函数 $f(x) = ax + \ln x (a \in R)$.

- (1) 若a=2, 求曲线 y=f(x)在 x=1 处的切线方程;
- (2) 求 f(x) 的单调区间;
- (3) 若对任意 $x \in (0, +\infty)$, 都有 f(x) < 2 成立, 求实数 a 的取值范围.
- 3.怀柔区 2016—2017 学年度高三第二学期适应性练习数学(理工类)

已知函数 $f(x) = ax + \ln x (a \in R)$.

- (1) 求 f(x) 的单调区间;
- (2) 设 $g(x) = x^2 2x + 2$,若对任意 $x_1 \in (0, +\infty)$,均存在 $x_2 \in [0, 1]$,使得 $f(x_1) < g(x_2)$,求 a 的取值范围.
- 4.西城区高三统一测试数学(文科)

已知函数 $f(x)=e^{x}-\frac{1}{2}x^{2}$. 设 l 为曲线 y=f(x) 在点 $P(x_{0},f(x_{0}))$ 处的切线,其中 $x_{0}\in[-1,1.$

- (I) 求直线l的方程(用 x_0 表示);
- (II) 求直线l在y轴上的截距的取值范围;
- (III) 设直线 y = a 分别与曲线 y = f(x) 和射线 y = x 1 ($x \in [0, +\infty)$) 交于 M, N 两点,求 | MN | 的最小值及此时 a 的值.

解:(I) 对
$$f(x)$$
 求导数,得 $f'(x) = e^x - x$, [1分]

所以切线
$$l$$
的斜率为 $f'(x_0) = e^{x_0} - x_0$, [2分]

由此得切线l的方程为: $y-(e^{x_0}-\frac{1}{2}x_0^2)=(e^{x_0}-x_0)(x-x_0)$,

分]

(II) 由(I)得,直线
$$l$$
在 y 轴上的截距为 $(1-x_0)e^{x_0}+\frac{1}{2}x_0^2$. [4

分]

所以
$$g'(x) = x(1-e^x)$$
, 令 $g'(x) = 0$, 得 $x = 0$.

g(x), g'(x) 的变化情况如下表:

х	-1	(-1,0)	0	(0,1)	1
g'(x)		_	0	_	
g(x)	$\frac{2}{e} + \frac{1}{2}$	>	1	/	$\frac{1}{2}$

所以函数
$$g(x)$$
 在[-1,1]上单调递减,

[6

分]

所以
$$[g(x)]_{max} = g(-1) = \frac{2}{e} + \frac{1}{2}$$
, $[g(x)]_{min} = g(1) = \frac{1}{2}$,
所以直线 l 在 y 轴上的截距的取值范围是 $[\frac{1}{2}, \frac{2}{e} + \frac{1}{2}]$. [8分]

(III) 过M 作x轴的垂线,与射线 y=x-1交于点Q,

所以
$$\triangle$$
 MNQ 是等腰直角三角形. [9分]

所以
$$|MN| = |MQ| = |f(x) - g(x)| = |e^x - \frac{1}{2}x^2 - x + 1|$$
. [10]

分]

谈
$$h(x) = e^x - \frac{1}{2}x^2 - x + 1$$
, $x \in [0, +\infty)$,

所以
$$h'(x) = e^x - x - 1$$
.

$$\Leftrightarrow k(x) = e^x - x - 1$$
, $\bigcup k'(x) = e^x - 1 > 0 \ (x > 0)$,

所以 k(x) = h'(x) 在 $[0,+\infty)$ 上单调递增,

所以 $h'(x) \ge h'(0) = 0$,

从而 h(x) 在 $[0,+\infty)$ 上单调递增,

[12

分]

所以 $[h(x)]_{min} = h(0) = 2$,此时 M(0,1), N(2,1).

所以
$$|MN|$$
 的最小值为2,此时 $a=1$. [13

分]

5.西城区高三统一测试数学(理科) 2017.4

已知函数 $f(x)=e^{t}-\frac{1}{2}\hat{x}$. 设 l 为曲线 y=f(x) 在点 $P(x_{0},f(x_{0}))$ 处的切线,其中 $x_{0}\in[-1,1]$.

- (I) 求直线l的方程(用 x_0 表示);
- (II) 设O为原点,直线x=1分别与直线l和x轴交于A,B两点,求 $\triangle AOB$ 的面积的最小值.

解: (I) 对
$$f(x)$$
 求导数,得 $f'(x) = e^x - x$, [1分]

所以切线
$$l$$
的斜率为 $f'(x_0) = e^{x_0} - x_0$, [2分]

由此得切线 l 的方程为: $y-(e^{x_0}-\frac{1}{2}x_0^2)=(e^{x_0}-x_0)(x-x_0)$,

$$\mathbb{E}[y] = (e^{x_0} - x_0)x + (1 - x_0)e^{x_0} + \frac{1}{2}x_0^2.$$

分]

(II) 依题意, 切线方程中令x=1,

得
$$y = (e^{x_0} - x_0) + (1 - x_0)e^{x_0} + \frac{1}{2}x_0^2 = (2 - x_0)(e^{x_0} - \frac{1}{2}x_0)$$
. [5分]

所以 A(1, y), B(1,0).

所以
$$S_{\triangle AOB} = \frac{1}{2} |OB| \cdot |y|$$

$$= \frac{1}{2} |(2 - x_0)(e^{x_0} - \frac{1}{2}x_0)|$$

$$= |(1 - \frac{1}{2}x_0)(e^{x_0} - \frac{1}{2}x_0)|, x_0 \in [-1,1].$$
[7分]

设
$$g(x) = (1 - \frac{1}{2}x)(e^x - \frac{1}{2}x)$$
, $x \in [-1,1]$. [8分]

$$||g'(x)| = -\frac{1}{2}(e^x - \frac{1}{2}x) + (1 - \frac{1}{2}x)(e^x - \frac{1}{2}) = -\frac{1}{2}(x - 1)(e^x - 1) .$$
 [10]

令 g'(x) = 0, 得 x = 0 或 x = 1.

g(x), g'(x) 的变化情况如下表:

х	-1	(-1, 0)	0	(0,1)	1
g'(x)		_	0	+	
g(x)	$\frac{3}{2}(\frac{1}{2}+\frac{1}{e})$	7	1	1	$\frac{1}{2}(e-\frac{1}{2})$

所以 g(x)在(-1,0)单调递减;在(0,1)单调递增,

[12

分]

所以
$$g(x)_{min} = g(0) = 1$$
,

从而 $\triangle AOB$ 的面积的最小值为 1.

6.顺义区 2017 届高三第二次统练数学试卷 (文科)

已知函数 $f(x) = 1 + \ln x - ae^x$.

- (I) 若曲线 y = f(x)在 x = 1处的切线与 x 轴平行,求实数 a 的值;
- (II) 若对任意 $x \in (0,+\infty)$, 不等式 $f(x) \le 0$ 恒成立, 求实数 a 的取值范围.

(II) 由条件知对任意 $x \in (0,+\infty)$, 不等式 $f(x) \le 0$ 恒成立,

$$h'(x) = \frac{\frac{1}{x} - 1 - \ln x}{e^x} = \frac{1}{e^x} \left(\frac{1}{x} - 1 - \ln x \right), \quad x \in (0, +\infty)$$

$$(x) = \frac{1}{x} - 1 - \ln x, \quad x \in (0, +\infty), \quad \text{yi } g'(x) = -\frac{1}{x^2} - \frac{1}{x}, \quad \text{if } g'(x) < 0$$
 -----7 分

∴函数
$$g(x) = \frac{1}{x} - 1 - \ln x$$
 在 $x \in (0, +\infty)$ 上单调递减.-----8 分

注意到
$$g(1)=0$$
,即 $x=1$ 是 $g(x)$ 的零点------9 分

而当
$$x \in (0,1)$$
时, $g(x) = \frac{1}{x} - 1 - x \ln x > 0$; 当 $x \in (1,+\infty)$ 时, $g(x) < 0$.

又
$$e^x > 0$$
, 所以当 $x \in (0,1)$ 时, $h(x) > 0$; 当 $x \in (1,+\infty)$ 时, $h(x) < 0$. -------11 分 则当 x 变化时, $h(x)$ 的变化情况如下表:

x	(0,1)	1	(1,+∞)
h'(x)	+	0	-
h(x)	7	极大值 $\frac{1}{e}$	Z

因此,函数 h(x) 在 $x \in (0,+\infty)$ 取得最大值 $h(1) = \frac{1}{e}$,

所以实数 $a \ge \frac{1}{e}$. -------13 分

7.顺义区 2017 届高三第二次统练数学试卷 (理科)

已知函数 $f(x) = pe^{-x} + x + 1 (p \in R)$.

- (I) 当实数 p=e 时,求曲线 y=f(x) 在点 x=1 处的切线方程;
- (II) 求函数 f(x) 的单调区间;
- (III) 当 p=1时,若直线 y=mx+1与曲线 y=f(x)没有公共点,求实数 m 的取值范围.

18.
$$\mathbb{H}$$
: (I) $\stackrel{.}{=} p = e \, \mathbb{H}$, $f(x) = e^{-x+1} + x + 1$, $f'(x) = -e^{-x+1} + 1$

$$f(1) = 3$$
, $f'(1) = 0$

∴ 曲线 y = f(x)在点 x = 1处的切线方程为 y = 3 ------4 分

(II) :
$$f(x) = pe^{-x} + x + 1$$
, : $f'(x) = -pe^{-x} + 1$ -----5

① 当 $p \le 0$ 时, f'(x) > 0 , 则函数 f(x) 在的单调递增区间为 $(-\infty, +\infty)$;

②当
$$p > 0$$
时,令 $f'(x) = 0$,得 $e^x = p$,解得 $x = \ln p$.-----7 分则当 x 变化时, $f'(x)$ 的变化情况如下表:

х	$(-\infty, \ln p)$	ln p	$(\ln p, +\infty)$
f'(x)	-	0	+
f(x)	7	$2 + \ln p$	7

-----9 分

所以, 当 p > 0 时, f(x) 的单调递增区间为 $(\ln p, +\infty)$, 单调递减区间为 $(-\infty, \ln p)$. ------10 分

(III) 当 p = 1时, $f(x) = e^{-x} + x + 1$, 直线 y = mx + 1 与曲线 y = f(x) 没有公共点,

等价于关于x的方程 $mx+1=e^{-x}+x+1$ 在 $\left(-\infty,+\infty\right)$ 上没有实数解,

即关于x的方程 $(m-1)x = e^{-x}$ (*) 在 $(-\infty,+\infty)$ 上没有实数解.

①当m=1时,方程(*)化为 $e^{-x}=0$,

显然在 $(-\infty,+\infty)$ 上没有实数解.

------12 分

②当 $m \neq 1$ 时,方程(*)化为 $xe^x = \frac{1}{m-1}$,令 $g(x) = xe^x$,则有 $g'(x) = (1+x)e^x$.令g'(x) = 0,得x = -1,则当x变化时,g'(x)的变化情况如下表:

X	$(-\infty, -1)$	-1	$(-1,+\infty)$
g'(x)	_	0	+
g(x)	>	$-\frac{1}{e}$	7

当
$$x = -1$$
 时, $g(x)_{\min} = -\frac{1}{e}$, 同时当 x 趋于 $+\infty$ 时, $g(x)$ 趋于 $+\infty$,

所以当 $\frac{1}{m-1}$ < $-\frac{1}{e}$ 时,方程(*)无实数解,解得实数m的取值范围是(1-e,1).

8.石景山区 2017 年高三统一练习数 学(文) 试 卷

已知函数 $f(x) = e^x$.

(I) 过原点作曲线 y = f(x) 的切线, 求切线方程;

(II) 当x>0时,讨论曲线 y=f(x)与曲线 $y=mx^2(m>0)$ 公共点的个数.

解: (I) 由题意,设切点为 $M(x_0,y_0)$,由题意可得

(II) 当 x > 0, m > 0时, 曲线 y = f(x) 与曲线 $y = mx^2(m > 0)$ 的公共点个数 即方程 $f(x) = mx^2$ 根的个数.

由
$$f(x) = mx^2$$
 得 $m = \frac{e^x}{x^2}$.

随 x 变化时, g'(x) , g(x) 的变化情况如下表:

х	(0,2)	2	$(2,+\infty)$
g'(x)	_	0	+
g(x)	>	极小值 g(2)	1

其中 g(2) =
$$\frac{e^2}{4}$$
.所以 g(2) 为 $g(x) = \frac{e^x}{x^2}$ 在 $(0, +\infty)$ 的最小值.

所以对曲线 y = f(x) 与曲线 $y = mx^2(m > 0)$ 公共点的个数,讨论如下:

当
$$m \in (0, \frac{e^2}{4})$$
时,有 0 个公共点; 当 $m = \frac{e^2}{4}$ 时,有 1 个公共点;

9.石景山区 2017 年高三统一练习数 学 (理) 试 卷

已知函数 $f(x) = \ln x$.

(I) 求曲线 y = f(x) 在点(1, f(1))处的切线方程;

- (II) 求证: 当x > 0时, $f(x) \ge 1 \frac{1}{x}$;
- (III) 若 $x-1>a\ln x$ 对任意x>1恒成立,求实数a的最大值.
- 18. (本小题共 13 分)

解: (I)
$$f'(x) = \frac{1}{x}$$
, $f'(1) = 1$, 又 $f(1) = 0$, 所以切线方程为 $y = x - 1$;3 分

(II) 由题意知
$$x > 0$$
, 令 $g(x) = f(x) - (1 - \frac{1}{x}) = \ln x - 1 + \frac{1}{x}$.

$$g'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x-1}{x^2}$$
5 $\%$

$$\Rightarrow g'(x) = \frac{x-1}{x^2} = 0$$
, $\# = 1$6 \(\frac{x}{2} \)

易知当x > 1时,g'(x) > 0,易知当0 < x < 1时,g'(x) < 0.

即
$$g(x)$$
 在 $(0,1)$ 单调递减,在 $(1,+\infty)$ 单调递增

.....7 分

所以
$$g(x)_{min} = g(1) = 0$$
, $g(x) \ge g(1) = 0$

即
$$g(x) = f(x) - (1 - \frac{1}{x}) \ge 0$$
,即 $f(x) \ge (1 - \frac{1}{x})$8 分

(III) 设 $h(x) = x - 1 - a \ln x (x \ge 1)$, 依题意,对于任意x > 1,h(x) > 0恒成立.

$$h'(x) = 1 - \frac{a}{x} = \frac{x - a}{x}$$
,9 $\%$

 $a \le 1$ 时,h'(x) > 0,h(x) 在 $[1,+\infty)$ 上单调增,

当
$$x > 1$$
时, $h(x) > h(1) = 0$,满足题意.

......11 分

a>1时,随 x 变化, h'(x) , h(x) 的变化情况如下表:

х	(1, a)	а	$(a,+\infty)$
h'(x)	-	0	+
h(x)	7	极小值	1

h(x) 在 (1,a) 上单调递减, 所以 g(a) < g(1) = 0

即当 a > 1时,总存在 g(a) < 0,不合题意.

.....12 分

综上所述,实数a的最大值为1.

......13 分

10.海淀区高三年级第二学期期中练习数学(文科)

已知函数 $f(x) = e^x - x^2 + ax$, 曲线 y = f(x) 在点 (0, f(0)) 处的切线与 x 轴平行.

- (I) 求a的值;
- (II) 若 $g(x) = e^x 2x 1$, 求函数 g(x) 的最小值;
- (III) 求证: 存在c < 0, 当x > c 时, f(x) > 0.
- (I) $f'(x) = e^x 2x + a$,

由己知可得 f'(0) = 0,

所以1+a=0, 得a=-1.

(II) $g'(x) = e^x - 2$, $\Leftrightarrow g'(x) = 0$, $\Leftrightarrow x = \ln 2$,

所以x, g'(x), g(x)的变化情况如下表所示:

x	(-∞, ln 2)	ln 2	$(\ln 2, +\infty)$
g'(x)	_	0	+
g(x)	`	极小值	1

所以 g(x) 的最小值为 $g(\ln 2) = e^{\ln 2} - 2\ln 2 - 1 = 1 - 2\ln 2$.

(III) 证明: 显然 $g(x) = f'(x) \perp \mid g(0) = 0$,

由(II)知, g(x)在($-\infty$, $\ln 2$)上单调递减,在($\ln 2$, $+\infty$)上单调递增.

$$\mathbb{Z} g(\ln 2) < 0$$
, $g(2) = e^2 - 5 > 0$,

由零点存在定理,存在唯一实数 $x_0 \in (\ln 2, +\infty)$,满足 $g(x_0) = 0$,

$$\mathbb{E}[e^{x_0} - 2x_0 - 1 = 0, \quad e^{x_0} = 2x_0 + 1,$$

综上,g(x) = f'(x)存在两个零点,分别为 0, x_0 .

所以

x < 0 时, g(x) > 0 ,即 f'(x) > 0 , f(x) 在 $(-\infty, 0)$ 上单调递增;

 $0 < x < x_0$ 时, g(x) < 0 ,即 f'(x) < 0 , f(x) 在 $(0,x_0)$ 上单调递减;

 $x > x_0$ 时, g(x) > 0, 即 f'(x) > 0, f(x) 在 $(x_0, +\infty)$ 上单调递增,

所以 f(0) 是极大值, $f(x_0)$ 是极小值,

$$f(x_0) = e^{x_0} - x_0^2 - x_0 = 2x_0 + 1 - x_0^2 - x_0 = -x_0^2 + x_0 + 1 = -(x_0 - \frac{1}{2})^2 + \frac{5}{4}$$

因为
$$g(1) = e - 3 < 0, g(\frac{3}{2}) = e^{\frac{3}{2}} - 4 > 0$$
,

所以
$$x_0 \in (1, \frac{3}{2})$$
,所以 $f(x_0) > 0$,

因此 $x \ge 0$ 时,f(x) > 0.

因为f(0) = 1且f(x)在 $(-\infty,0)$ 上单调递增,

所以一定存在c < 0满足f(c) > 0,

所以存在c < 0, 当x > c时, f(x) > 0.

11.海淀区高三年级第二学期期中练习数学(理科)

已知函数 $f(x) = x^2 - 2ax + 4(a-1)\ln(x+1)$, 其中实数 a < 3.

- (I) 判断 x=1 是否为函数 f(x) 的极值点,并说明理由;
- (II) 若 $f(x) \le 0$ 在区间[0,1]上恒成立,求 a 的取值范围.
- 18. (本小题满分 13 分)

解: 法1:

(I) 由 $f(x) = x^2 - 2ax + 4(a-1)\ln(x+1)$ 可得

函数定义域为 $(-1,+\infty)$,

$$f'(x) = 2x - 2a + \frac{4(a-1)}{x+1}$$

$$= \frac{2[x^2 + (1-a)x + (a-1)x]}{x+1}$$

$$= \frac{2(x-1)[x-(a-2)]}{x+1},$$

由 f'(x) = 0 得 $x_1 = 1, x_2 = a - 2$.

因为a < 3,所以a - 2 < 1.

当 $a \le 1$ 时, $a-2 \le -1$,所以f'(x),f(x)的变化如下表:

х	(-1,1)	1	$(1,+\infty)$
f'(x)	_	0	+
f(x)	`	极小值	1

f'(x),f(x)的变化如下表:

х	(-1, a-2)	a-2	(a-2,1)	1	(1,+∞)
f '(x)	+	0	_	0	+
f(x)	1	极大值	`	极小值	1

综上,x=1是函数 f(x) 的极值点,且为极小值点.

(II) 易知f(0)=0,

由(I)可知,

当 $a \le 2$ 时,函数f(x)在区间[0,1]上单调递减,

所以有 $f(x) \le 0$ 恒成立;

当2 < a < 3时,函数f(x)在区间[0,a-2]上单调递增,

所以
$$f(a-2) > f(0) = 0$$
, 所以不等式不能恒成立;

所以 $a \le 2$ 时有 $f(x) \le 0$ 在区间[0,1]上恒成立.

法 2:

(I) 由
$$f(x) = x^2 - 2ax + 4(a-1)\ln(x+1)$$
可得

函数定义域为 $(-1,+\infty)$,

$$f'(x) = 2x - 2a + \frac{4(a-1)}{x+1}$$

$$= \frac{2[x^2 + (1-a)x + (a-1)x]}{x+1}$$

因为
$$a < 3$$
,所以 $g(x) = 0$ 的判别式 $\Delta = (1-a)^2 - 4(a-2) = a^2 - 6a + 9 = (a-3)^2 > 0$,

{说明: 写明
$$\Delta = (1-a)^2 - 4(a-2) = a^2 - 6a + 9 = (a-3)^2 \neq 0$$
 也可以}

由二次函数性质可得,1是 $g(x) = x^2 + (1-a)x + (a-2)$ 的异号零点,

所以 1 是 f'(x) 的异号零点,

所以x=1是函数f(x)的极值点.

(II) 易知f(0)=0,

因为
$$f'(x) = \frac{2(x-1)[x-(a-2)]}{x+1}$$
,

又因为a < 3,所以a - 2 < 1,

所以当 $a \le 2$ 时,在区间[0,1]上f'(x) < 0,所以函数f(x)单调递减,

所以有 f(x) ≤ 0 恒成立;

当2 < a < 3时,在区间[0,a-2]上f'(x) > 0,所以函数f(x)单调递增,

所以
$$f(a-2) > f(0) = 0$$
, 所以不等式不能恒成立:

所以 $a \le 2$ 时有 $f(x) \le 0$ 在区间[0,1]上恒成立.

12.丰台区 2017 年高三年级第二学期综合练习(一)数 学(文科)

已知函数 $f(x) = \frac{x+1}{e^x}$, $A(x_1,m)$, $B(x_2,m)$ 是曲线 y = f(x) 上两个不同的点.

- (I) 求 f(x) 的单调区间,并写出实数 m 的取值范围;
- (II) 证明: $x_1 + x_2 > 0$.
- 解: f(x)的定义域为**R**.

$$(I) f'(x) = -\frac{x}{e^x},$$

由 f'(x) = 0 得, x = 0,

由 f'(x) > 0 得, x < 0 ,

由 f'(x) < 0 得, x > 0 ,

所以 f(x) 的单调增区间为 $(-\infty, 0)$,单调减区间为 $(0, +\infty)$.

m 的取值范围是(0,1).

.....6 ゲ

(II) 由(I)知, $x_1 \in (-1,0)$, 要证 $x_2 > -x_1 > 0$, 只需证 $f(x_2) < f(-x_1)$

因为 $f(x_1) = f(x_2) = m$,所以只需证 $f(x_1) < f(-x_1)$,

只需证
$$\frac{x_1+1}{e^{x_1}} < \frac{-x_1+1}{e^{-x_1}}$$
, 只需证 $(x_1-1)e^{2x_1} + x_1 + 1 < 0$ $(x_1 \in (-1,0))$

因为 $(h'(x))' = 4xe^{2x} < 0$,

所以h'(x)在(-1,0)上单调递减,所以h'(x) > h'(0) = 0,

所以h(x)在(-1,0)上单调递增,所以h(x) < h(0) = 0,

13. 丰台区 2017 年高三年级第二学期综合练习(一)数 学(理科)

已知函数 $f(x) = \ln(kx) + \frac{1}{r} - k \ (k > 0)$.

- (I) 求 f(x) 的单调区间;
- (II) 对任意 $x \in [\frac{1}{k}, \frac{2}{k}]$, 都有 $x \ln(kx) kx + 1 \le mx$, 求 m 的取值范围.

解:由己知得, f(x)的定义域为 $(0,+\infty)$.

$$(I) f'(x) = \frac{x-1}{x^2},$$

令 f'(x) > 0, 得 x > 1, 令 f'(x) < 0, 得 0 < x < 1.

所以函数 f(x) 的单调减区间是(0,1), 单调增区间是

(1,+∞).5 分

(II) $\boxplus x \ln(kx) - kx + 1 \le mx$,

得
$$\ln(kx) + \frac{1}{x} - k \le m$$
,即 $m \ge f(x)_{max}$.

由(I)知,

- (1) 当 $k \ge 2$ 时,f(x)在 $[\frac{1}{k}, \frac{2}{k}]$ 上单调递减,所以 $f(x)_{max} = f(\frac{1}{k}) = 0$,所以 $m \ge 0$;
- (2) 当 $0 < k \le 1$ 时,f(x)在 $[\frac{1}{k}, \frac{2}{k}]$ 上单调递增,所以 $f(x)_{max} = f(\frac{2}{k}) = \ln 2 \frac{k}{2}$, 所以 $m \ge \ln 2 - \frac{k}{2}$;
- (3) 当1 < k < 2时, f(x)在 $[\frac{1}{k}, 1)$ 上单调递减,在 $[1, \frac{2}{k}]$ 上单调递增, 所以 $f(x)_{max} = max \left\{ f(\frac{1}{k}), f(\frac{2}{k}) \right\}.$ 又 $f(\frac{1}{k}) = 0$, $f(\frac{2}{k}) = \ln 2 - \frac{k}{2}$,
- ② 若 $f(\frac{2}{k}) < f(\frac{1}{k})$, 即 $\ln 2 \frac{k}{2} < 0$, 所以 $2 \ln 2 \le k < 2$, 此时 $f(x)_{\max} = 0$, 所以 $m \ge 0$ 综上所述, 当 $k \ge 2 \ln 2$ 时, $m \ge 0$; 当 $0 < k < 2 \ln 2$ 时,

14.房山区 2017 年高三一模试卷高三数学(文)

已知函数 $f(x) = e^x - ax$.

- (I) 若曲线 y = f(x) 在点 (1, f(1)) 处的切线与直线 y = ax + 2 平行, 求实数 a 的值;
- (II) 讨论 f(x) 的单调性;
- (III) 当0 < a < 1时,证明:曲线 y = f(x)在直线 y = (e-1)x的上方.

19. (I)
$$f(x)' = e^x - a$$

因为函数 y = f(x) 在点(1, f(1)) 处的切线平行于直线 y = ax + 2

所以
$$k=f(1)'=e^1-a=a$$

所以
$$a = \frac{1}{2}e$$

.....3 分

(II) 当 $a \le 0$ 时,f(x) > 0恒成立,所以f(x)在 R 上单调递增

当
$$a > 0$$
 时,令 $f(x) = e^x - a = 0$,解得 $x = \ln a$

X	$(-\infty, \ln a)$	ln a	$(\ln a, +\infty)$
f(x)	_	0	+
f(x)	\		\uparrow

综上所述: 当 $a \le 0$ 时, f(x)在 R 上单调递增

当a > 0时,f(x)在 $(-\infty, \ln a)$ 上单调递减,

在 $(\ln a, +\infty)$ 上单调递增

.....8 分

(III) 当 0 < a < 1时,欲证曲线 y = f(x) 在直线 y = (e-1)x 的上方

只需证明:
$$F(x) = e^x - ax - (e-1)x$$
 的最小值大于零

$$F'(x) = e^x - a - (e - 1)$$
, $\Leftrightarrow F'(x) = e^x - a - (e - 1) = 0$, \emptyset

$$e^{x} = a + e - 1$$
 , 因为 $0 < a < 1$ 时,所以

$$a+e-1>0$$
 ,所以 x=ln(a+e-1)

X	$(-\infty, \ln(a+e-1))$	$\ln(a+e-1)$	$(\ln(a+e-1),+\infty)$
f(x)	_	0	+
f(x)	\	$(a+e-1)(1-\ln(a+e-1))$	↑

因为0 < a < 1,所以0 < a + e - 1 < e,所以 $1 - \ln(a + e - 1) > 0$,

所以 $F(x) = e^x - ax - (e-1)x$ 的最小值大于零

所以曲线 y = f(x) 在直线 y = (e-1)x 的上方

.....13 分

15.房山区 2017 年高三一模试卷高三数学 (理)

已知函数 $f(x) = x-1+ae^x$.

- (I) 若曲线 y = f(x) 在点(1, f(1)) 处的切线平行于 x 轴, 求 a 的值;
- (II) 求 f(x) 的极值;
- (III) 当a=1时,曲线y=f(x)与直线y=kx-1没有公共点,求k的取值范围.
- 18. (1) $f'(x) = 1 + ae^x$

因为 $f(x) = x - 1 + ae^x$, 在点(1, f(1))处的切线平行于 x 轴,

所以
$$k=f'(1)=1+ae^1=0$$

所以
$$a = -\frac{1}{e}$$

(II) 当 $a \ge 0$ 时,令f'(x) > 0恒成立,所以函数无极值

当
$$a < 0$$
时,令 $f'(x) = 1 + ae^x = 0$,解得 $x = \ln(-\frac{1}{a})$

X	$(-\infty, \ln(-\frac{1}{a}),$	$\ln(-\frac{1}{a}),$	$(\ln(-\frac{1}{a}), +\infty)$
f'(x)	+	0	1
f(x)	↑	$\ln(-\frac{1}{a}) - 2$	\

$$f(x)_{\text{W} + \text{fi}} = \ln(-\frac{1}{a}) - 2$$

(III)法一、当 a=1 时, $f(x) = x - 1 + e^x$ 与 y = kx - 1 无公共点

只需证
$$h(x) = x(1-k) + e^x$$
 无零点

即
$$h(x) = 0$$
 无根,即 $e^x = (k-1)x$,由数形结合知

当k=1时无零点

当k < 1时有一个零点

当k > 1时, e^x 与(k-1)x相切时,有一个零点

设切点
$$(x_0,y_0)$$
, $e^{x_0}=\frac{e^{x_0}}{x_0}$,所以 $x_0=1$,所以切点为 $(1, e)$

所以 k-1=e,所以 k = 1+e 综上所述 $1 \le k < e+1$

法二、当 a=1 时, $f(x) = x-1+e^x$ 与 y = kx-1无公共点

只需证
$$h(x) = x(1-k) + e^x$$
无零点

$$h'(x) = 1 - k + e^x$$

- (1)当k=1时, $h(x)=e^x$,无零点
- (2)当k < 1时,h'(x) > 0,h(x)单调递增,

$$h(\frac{1}{k-1}) = -1 + e^{\frac{1}{k-1}} < 0 \, h \ (0 \Rightarrow \)$$

所以h(x)有一个零点

(3)当
$$k > 1$$
时,令 $h'(x) = e^x - k + 1 = 0$

解得 $x = \ln(k-1)$

х	$(-\infty, \ln(k-1)),$	ln(k-1),	$(\ln(k-1), +\infty)$
f'(x)		0	+
f(x)	\	极小	↑

$$h(x)_{\text{W}} = h(\ln(k-1) = (1-k)\ln((k-1)-1)$$

当
$$\ln(k-1)=1$$
,即 $k=e+1$, $h'(x)_{\overline{W}^{\Lambda}}=0$, 有一个零点

当
$$\ln(k-1)$$
 < 1,即 $1 < k < e+1$, $h'(x)_{\text{极小}} > 0$,无零点

当
$$\ln(k-1)>1$$
,即 $k>e+1$, $h'(x)_{\overline{W}^{\perp}}<0$, $h(0)=1>0$,一定有零点 综上所述: $1\leq k< e+1$

16. 北京市东城区 2016-2017 学年度第二学期高三综合练习(一)数学(文科)

设函数
$$f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + ax$$
, $a \in \mathbf{R}$.

(I) 若x=2是 f(x)的极值点,求a的值,并讨论 f(x)的单调性;

(II) 已知函数 $g(x) = f(x) - \frac{1}{2}ax^2 + \frac{2}{3}$, 若 g(x) 在区间 (0,1) 内有零点,求 a 的取值范围;

(III) 设 f(x) 有两个极值点 x_1 , x_2 , 试讨论过两点 $(x_1, f(x_1))$, $(x_2, f(x_2))$ 的直线能否过点

(1,1), 若能, 求a的值; 若不能, 说明理由.

解析: (I) 由
$$f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + ax$$
 求得 $f'(x) = x^2 - x + a$
 $\therefore f'(2) = 4 - 2 + a = 0 \Rightarrow a = -2$,代入 $f'(x) = x^2 - x - 2 = (x - 2)(x + 1)$
令 $f'(x) = 0$ 得 $x_1 = 2$, $x_2 = -1$
 $\therefore \exists x \in (-\infty, -1), (2, +\infty)$ 时, $f'(x) > 0$, $f(x)$ 单调递增;
 $\exists x \in (-1, 2)$ 时, $f'(x) < 0$, $f(x)$ 单调递减.

------4 分

(II) 由
$$g(x) = f(x) - \frac{1}{2}ax^2 + \frac{2}{3} = \frac{1}{3}x^3 - (\frac{1}{2} + \frac{1}{2}a)x^2 + ax + \frac{2}{3}$$

求得 $g'(x) = x^2 - (1+a)x + a = (x-1)(x-a)$

- ∴ 当 $a \ge 1$ 时,当 $x \in (0,1)$ 时,g'(x) > 0恒成立,g(x)单调递增,又 $g(0) = \frac{2}{3} > 0$ 此时 g(x) 在区间 (0,1) 内没有零点;
- 当0 < a < 1时, 当 $x \in (0,a)$ 时, g'(x) > 0, g(x)单调递增;

当 $x \in (a,1)$ 时, g'(x) < 0 , g(x) 单调递减. 又 $g(0) = \frac{2}{3} > 0$

此时欲使 g(x) 在区间 (0,1) 内有零点,必有 g(1) < 0.

$$g(1) < 0 \Rightarrow \frac{1}{3} - (\frac{1}{2} + \frac{1}{2}a) + a + \frac{2}{3} = \frac{1}{2}a + \frac{1}{2} < 0 \Rightarrow a < -1$$
 \implies

当 $a \le 0$ 时,当 $x \in (0,1)$ 时, g'(x) < 0 恒成立, g(x) 单调递减此时欲使 g(x) 在区间 (0,1) 内有零点,必有 $g(1) < 0 \Rightarrow a < -1$. 综上, a 的取值范围为 $(-\infty,-1)$.

······g 分

(III)不能. 原因如下:

设f(x)有两个极值点 x_1 , x_2 , 则导函数 $f'(x) = x^2 - x + a$ 有两个不同的零点

$$\therefore \Delta > 0 \Rightarrow 1 - 4a > 0 \Rightarrow a < \frac{1}{4}, \quad \exists x_1, \quad x_2 \text{ 为方程 } x^2 - x + a = 0 \text{ 的两根}$$

$$x_1^2 - x_1 + a = 0 \Rightarrow x_1^2 = x_1 - a$$

$$\therefore f(x_1) = \frac{1}{3}x_1^3 - \frac{1}{2}x_1^2 + ax_1 = \frac{1}{3}x_1(x_1 - a) - \frac{1}{2}x_1^2 + ax_1 = -\frac{1}{6}x_1^2 + \frac{2}{3}ax_1 = -\frac{1}{6}(x_1 - a) + \frac{2}{3}ax_1$$

$$\therefore f(x_1) = (\frac{2}{3}a - \frac{1}{6})x_1 + \frac{1}{6}a \qquad \text{同理 } f(x_2) = (\frac{2}{3}a - \frac{1}{6})x_2 + \frac{1}{6}a$$

由此可知过两点 $(x_1, f(x_1))$, $(x_2, f(x_2))$ 的直线方程为 $y = (\frac{2}{3}a - \frac{1}{6})x + \frac{1}{6}a$

若直线过点(1,1),则1=(
$$\frac{2}{3}a-\frac{1}{6}$$
)+ $\frac{1}{6}a\Rightarrow \frac{5}{6}a=\frac{7}{6}\Rightarrow a=\frac{7}{5}$

前面已经讨论过若 f(x) 有两个极值点,则 $a < \frac{1}{4}$, 显然不合题意.

综上,过两点 $(x_1, f(x_1))$, $(x_2, f(x_2))$ 的直线不能过点(1,1).

-----14 分

17.北京市东城区 2016-2017 学年度第二学期高三综合练习(一)数学理科)

已知函数
$$f(x) = 2 \ln x + \frac{1}{x} - mx (m \in \mathbf{R})$$
.

- (I) 当m = -1时,求曲线y = f(x)在点(1, f(1))处的切线方程;
- (II) 若f(x)在 $(0,+\infty)$ 上为单调递减,求m的取值范围;

(III) 设
$$0 < a < b$$
, 求证:
$$\frac{\ln b - \ln a}{b - a} < \frac{1}{\sqrt{ab}}$$
.

(18) (共13分)

解: (I) f(x) 的定义域为 $(0,+\infty)$.

所以
$$f'(x) = \frac{2}{x} - \frac{1}{x^2} + 1$$
.

因为f(1) = 2 且 f'(1) = 2,

(II) 若函数 f(x) 在($0,+\infty$)上为单调递减,

则 $f'(x) \le 0$ 在 $(0,+\infty)$ 上恒成立.

即
$$\frac{2}{x} - \frac{1}{x^2} - m \le 0$$
在 $(0, +\infty)$ 上恒成立.

即
$$\frac{2}{x} - \frac{1}{x^2} \le m$$
在 $(0, +\infty)$ 上恒成立.

设
$$g(x) = \frac{2}{x} - \frac{1}{x^2}(x > 0)$$
,

则 $m \ge [g(x)]_{\max}$.

因为
$$g(x) = \frac{2}{x} - \frac{1}{x^2} = -(\frac{1}{x} - 1)^2 + 1(x > 0)$$
,

所以当x=1时,g(x)有最大值1.

所以m的取值范围为 $[1,+\infty)$.

.....9 分

(III) 因为
$$0 < a < b$$
,不等式 $\frac{\ln b - \ln a}{b - a} < \frac{1}{\sqrt{ab}}$ 等价于 $\ln b - \ln a < \frac{b - a}{\sqrt{ab}}$.

即
$$\ln \frac{b}{a} < \sqrt{\frac{b}{a}} - \sqrt{\frac{a}{b}}$$
 , 令 $\sqrt{\frac{b}{a}} = t(t > 1)$, 原不等式转化为 $2 \ln t < t - \frac{1}{t}$.

$$\diamondsuit h(t) = 2\ln t + \frac{1}{t} - t,$$

由(II)知
$$f(x) = 2\ln x + \frac{1}{x} - x$$
 在 $(0, +\infty)$ 上单调递减,

所以
$$h(t) = 2 \ln t + \frac{1}{t} - t$$
 在 $(1, +\infty)$ 上单调递减.

所以, 当t > 1时, h(t) < h(1) = 0.

即当
$$t > 1$$
时, $2 \ln t + \frac{1}{t} - t < 0$ 成立.

所以,当时
$$0 < a < b$$
,不等式 $\frac{\ln b - \ln a}{b - a} < \frac{1}{\sqrt{ab}}$ 成立.13分

18.北京市朝阳区 2017 届高三第一次 (3月) 综合练习数学 (理) 试题

已知函数
$$f(x) = \ln x - ax - 1$$
 ($a \in \mathbf{R}$), $g(x) = xf(x) + \frac{1}{2}x^2 + 2x$.

- (I) 求 f(x) 的单调区间;
- (II) 当a=1时,若函数g(x)在区间 $(m,m+1)(m\in \mathbb{Z})$ 内存在。唯一的极值点,求m的值.
- (18) (本小题满分 13 分)

解: (I) 由己知得
$$x > 0$$
, $f'(x) = \frac{1}{x} - a = \frac{1 - ax}{x}$.

(i) 当 $a \le 0$ 时,f'(x) > 0恒成立,则函数f(x)在 $(0,+\infty)$ 为增函数;

(ii) 当
$$a > 0$$
时,由 $f'(x) > 0$,得 $0 < x < \frac{1}{a}$;

由
$$f'(x) < 0$$
, 得 $x > \frac{1}{a}$;

所以函数 f(x) 的单调递增区间为 $(0,\frac{1}{a})$,单调递减区间为 $(\frac{1}{a},+\infty)$4 分

(II)
$$\boxtimes \exists g(x) = xf(x) + \frac{1}{2}x^2 + 2x = x(\ln x - x - 1) + \frac{1}{2}x^2 + 2x = x\ln x - \frac{1}{2}x^2 + x$$
,

则
$$g'(x) = \ln x + 1 - x + 1 = \ln x - x + 2 = f(x) + 3$$
.

由(I)可知,函数g'(x)在(0,1)上单调递增,在 $(1,+\infty)$ 上单调递减.

又因为
$$g'(\frac{1}{e^2}) = -2 - \frac{1}{e^2} + 2 = -\frac{1}{e^2} < 0$$
, $g'(1) = 1 > 0$,

所以g'(x)在(0,1)上有且只有一个零点 x_1 .

又在 $(0,x_1)$ 上g'(x)<0,g(x)在 $(0,x_1)$ 上单调递减;

在 $(x_1,1)$ 上g'(x)>0,g(x)在 $(x_1,1)$ 上单调递增.

所以x,为极值点,此时m=0.

$$\mathbb{Z} g'(3) = \ln 3 - 1 > 0$$
, $g'(4) = 2 \ln 2 - 2 < 0$,

所以g'(x)在(3,4)上有且只有一个零点 x_2 .

又在 $(3,x_2)$ 上g'(x)>0,g(x)在 $(3,x_2)$ 上单调递增;

在
$$(x_2,4)$$
上 $g'(x)$ < 0 , $g(x)$ 在 $(x_2,4)$ 上单调递减.

所以 x_3 为极值点,此时m=3...

19.北京市朝阳区高三年级第一次综合练习数学测试题(文史类) 2017.3

已知函数 $f(x) = x^3 - 3ax + e$, $g(x) = 1 - \ln x$, 其中 e 为自然对数的底数.

- (I)若曲线 y = f(x) 在点(1, f(1))处的切。线与直线l: x + 2y = 0垂直,求实数 a 的值;
- (II) 设函数 $F(x) = -x[g(x) + \frac{1}{2}x 2]$,若 F(x) 在区间 $(m, m+1)(m \in \mathbb{Z})$ 内存在唯一的极值点,求m 的值;
- (III) 用 $\max\{m,n\}$ 表示 m,n 中的较大者,记函数 $h(x) = \max\{f(x),g(x)\}(x>0)$. 若函数 h(x) 在 $(0,+\infty)$ 上恰有 2 个零点,求实数 a 的取值范围.
- 20. (本小题满分 13 分)

解:

(I) 易得,
$$f'(x) = 3x^2 - 3a$$
, 所以 $f'(1) = 3 - 3a$,

(II) 因为
$$F(x) = -x[g(x) + \frac{1}{2}x - 2] = -x[(1 - \ln x) + \frac{1}{2}x - 2] = x \ln x - \frac{1}{2}x^2 + x$$

则
$$F'(x) = \ln x + 1 - x + 1 = \ln x - x + 2$$
. 设 $t(x) = \ln x - x + 2$,

则
$$t'(x) = \frac{1}{x} - 1 = \frac{1 - x}{x}$$
.

则由t'(x) > 0, 得0 < x < 1, F'(x) 为增函数;

由t'(x) < 0, 得x > 1, F'(x) 为减函数;

$$\overrightarrow{\text{mi}} F'(\frac{1}{e^2}) = -2 - \frac{1}{e^2} + 2 = -\frac{1}{e^2} < 0, \quad F'(1) = 1 > 0.$$

则 F'(x) 在 (0,1) 上有且只有一个零点 x_1 ,

且在 $(0,x_1)$ 上F'(x)<0,F(x)为减函数;

在 $(x_1,1)$ 上F'(x)>0,F(x)为为增函数.

所以 x_1 为极值点,此时m=0.

$$X = F'(3) = \ln 3 - 1 > 0$$
, $F'(4) = 2 \ln 2 - 2 < 0$,

则 F'(x) 在 (3,4) 上有且只有一个零点 x,

且在 $(3,x_2)$ 上F'(x)>0,F(x)为增函数;

在 $(x_2,4)$ 上F'(x)<0,F(x)为减函数.

所以 x_2 为极值点,此时m=3.

- (III) (1) 当 $x \in (0,e)$ 时,g(x) > 0,依题意, $h(x) \ge g(x) > 0$,不满足条件;
 - (2) $\pm x = e \text{ if}$, g(e) = 0, $f(e) = e^3 3ae + e$,

①若
$$f(e) = e^3 - 3ae + e \le 0$$
,即 $a \ge \frac{e^2 + 1}{3}$,则 $e \ne h(x)$ 的一个零点;

②若
$$f(e) = e^3 - 3ae + e > 0$$
,即 $a < \frac{e^2 + 1}{3}$,则 e 不是 $h(x)$ 的零点;

- (3) 当 $x \in (e, +\infty)$ 时, g(x) < 0, 所以此时只需考虑函数 f(x) 在 $(e, +\infty)$ 上零点的情况.因为 $f'(x) = 3x^2 3a > 3e^2 3a$, 所以
- ①当 $a \le e^2$ 时,f'(x) > 0,f(x)在 $(e, +\infty)$ 上单调递增.

又
$$f(e) = e^3 - 3ae + e$$
,所以

(i)
$$\exists a \le \frac{e^2 + 1}{3}$$
 时, $f(e) \ge 0$, $f(x)$ 在 (e, +∞) 上无零点;

(ii)
$$\stackrel{\text{def}}{=} \frac{e^2 + 1}{3} < a \le e^2 \text{ fb}, f(e) < 0$$
,

$$X = f(2e) = 8e^3 - 6ae + e \ge 8e^3 - 6e^3 + e > 0$$
,

所以此时 f(x) 在 $(e, +\infty)$ 上恰有一个零点;

②当
$$a > e^2$$
时,令 $f'(x) = 0$,得 $x = \pm \sqrt{a}$.

由
$$f'(x) < 0$$
, 得 $e < x < \sqrt{a}$;

由
$$f'(x) > 0$$
, 得 $x > \sqrt{a}$:

所以 f(x) 在 (e,\sqrt{a}) 上单调递减,在 $(\sqrt{a},+\infty)$ 上单调递增.

因为
$$f(e) = e^3 - 3ae + e < e^3 - 3e^3 + e < 0$$
,

$$f(2a) = 8a^3 - 6a^2 + e > 8a^2 - 6a^2 + e = 2a^2 + e > 0,$$

所以此时 f(x) 在 $(e,+\infty)$ 上恰有一个零点;

20.北京市朝阳区高三年级第二次综合练习数学学科测试(理工类)

已知函数
$$f(x) = e^x + x^2 - x$$
, $g(x) = x^2 + ax + b$, $a, b \in \mathbf{R}$.

- (I) 当a = 1时,求函数F(x) = f(x) g(x)的单调区间;
- (II) 若曲线 y = f(x) 在点 (0,1) 处的切线 l 与曲线 y = g(x) 切于点 (1,c),求 a,b,c 的值;

- (III) 若 $f(x) \ge g(x)$ 恒成立,求 a+b 的最大值.
- (19)(本小题满分 14 分)

解: (I)
$$F(x) = e^x - 2x - b$$
, 则 $F'(x) = e^x - 2$.

令 $F'(x) = e^x - 2 > 0$, 得 $x > \ln 2$, 所以 F(x) 在 $(\ln 2, +\infty)$ 上单调递增.

(II) 因为 $f'(x) = e^x + 2x - 1$, 所以 f'(0) = 0, 所以 l 的方程为 v = 1.

依题意,
$$-\frac{a}{2}=1$$
, $c=1$.

于是l与抛物线 $g(x) = x^2 - 2x + b$ 切于点(1,1),

$$\pm 1^2 - 2 + b = 1$$
 得 $b = 2$.

所以
$$a = -2, b = 2, c = 1.$$
8分

(III) 设 $h(x) = f(x) - g(x) = e^x - (a+1)x - b$, 则 $h(x) \ge 0$ 恒成立.

易得
$$h'(x) = e^x - (a+1)$$
.

(1) 当a+1≤0时,

因为h'(x) > 0,所以此时h(x)在 $(-\infty, +\infty)$ 上单调递增.

- ①若a+1=0,则当 $b \le 0$ 时满足条件,此时 $a+b \le -1$;
- ②若a+1<0,取 $x_0<0$ 且 $x_0<\frac{1-b}{a+1}$

此时
$$h(x_0) = e^{x_0} - (a+1)x_0 - b < 1 - (a+1)\frac{1-b}{a+1} - b = 0$$
,所以 $h(x) \ge 0$ 不恒成立. 不满足条件:

(2) 当a+1>0时,

令
$$h'(x) = 0$$
, 得 $x = \ln(a+1)$. 由 $h'(x) > 0$, 得 $x > \ln(a+1)$;

由
$$h'(x) < 0$$
, 得 $x < \ln(a+1)$.

所以h(x)在 $(-\infty, \ln(a+1))$ 上单调递减,在 $(\ln(a+1), +\infty)$ 上单调递增.

要使得 "
$$h(x) = e^x - (a+1)x - b \ge 0$$
 恒成立", 必须有

"当
$$x = \ln(a+1)$$
时, $h(x)_{\min} = (a+1) - (a+1)\ln(a+1) - b \ge 0$ "成立.

所以
$$b \le (a+1)-(a+1)\ln(a+1)$$
.则 $a+b \le 2(a+1)-(a+1)\ln(a+1)-1$.

 $\Leftrightarrow G(x) = 2x - x \ln x - 1, x > 0, \text{ } \bigcup G'(x) = 1 - \ln x.$

由G'(x) < 0, 得x > e.所以G(x)在(0,e)上单调递增,在 $(e,+\infty)$ 上单调递减,

所以, 当x = e时, $G(x)_{max} = e - 1$.

从而, 当a=e-1,b=0时, a+b的最大值为e-1.

综上, a+b 的最大值为e-1.

21.北京市朝阳区高三年级第二次综合练习 数学学科测试(文史类)

已知函数 $f(x) = x \ln x$, $g(x) = \frac{a}{2}x^2 + x - a$ $(a \in \mathbf{R})$.

- (I) 若直线 x = m (m > 0) 与曲线 y = f(x) 和 y = g(x) 分别交于 M ,N 两点.设曲线 y = f(x) 在点 M 处的切线为 l_1 , y = g(x) 在点 N 处的切线为 l_2 .
 - (i) 当m=e时, 若 $l_1 \perp l_2$, 求a的值;
 - (ii) 若 $l_1 // l_2$, 求a的最大值;
- (II)设函数 h(x)=f(x)-g(x) 在其定义域内恰有两个不同的极值点 x_1 , x_2 ,且 $x_1 < x_2$. 若 $\lambda>0$,且 $\lambda \ln x_2 \lambda > 1 \ln x_1$ 恒成立,求 λ 的取值范围.
- (20) (本小题满分 13 分)
- 解: (I) 函数 f(x) 的定义域为 $\{x | x > 0\}$.

$$f'(x) = 1 + 1 = g'(x) = ax + 1$$
.

因为 $l_1 \perp l_2$, 所以 $f'(e) \cdot g'(e) = -1$.

即 2(ae+1) = -1.

(ii)因为 $l_1 /\!\!/ l_2$,则f'(m) = g'(m)在 $(0,+\infty)$ 上有解.

即 $\ln m - am = 0$ 在 $(0,+\infty)$ 上有解.

设
$$F(x) = \ln x - ax$$
, $x > 0$,

则
$$F'(x) = \frac{1}{x} - a = \frac{1-ax}{x}$$
.

(1) 当 $a \le 0$ 时,F'(x) > 0恒成立,则函数F(x)在 $(0,+\infty)$ 上为增函数.

1°
$$\pm a < 0$$
 $\forall x = e^a$, $F(e^a) = a - ae^a = a(1 - e^a) < 0$.

$$\mathbb{R} x = \mathbf{e}, \quad F(\mathbf{e}) = 1 - a\mathbf{e} > 0,$$

所以F(x)在 $(0,+\infty)$ 上存在零点.

 2° 当 a=0 时, $F(x)=\ln x$ 存在零点, x=1 ,满足题意.

(2)
$$\pm a > 0$$
 时,令 $F'(x) = 0$,则 $x = \frac{1}{a}$.

则 F(x) 在 $(0,\frac{1}{a})$ 上为增函数, $(\frac{1}{a},+\infty)$ 上为减函数.

所以
$$F(x)$$
 的最大值为 $F(\frac{1}{a}) = \ln \frac{1}{a} - 1 \ge 0$.

解得
$$0 < a \le \frac{1}{e}$$
.

$$\Re x = 1$$
, $F(1) = -a < 0$.

因此当 $a \in (0, \frac{1}{6}]$ 时,方程F(x) = 0在 $(0, +\infty)$ 上有解.

所以,
$$a$$
的最大值是 $\frac{1}{e}$.

------8分

另解: 函数 f(x) 的定义域为 $\{x|x>0\}$.

$$f'(x) = 1 + \ln x$$
, $g'(x) = ax + 1$.

则
$$f'(m) = 1 + \ln m$$
, $g'(m) = am + 1$.

因为
$$l_1 /\!\!/ l_2$$
,则 $f'(m) = g'(m)$ 在 $(0,+\infty)$ 上有解.

即 $\ln m = am$ 在 $(0,+\infty)$ 上有解.

因为
$$m > 0$$
,所以 $a = \frac{\ln m}{m}$.

$$\Leftrightarrow F(x) = \frac{\ln x}{x} (x > 0).$$

$$F'(x) = \frac{1 - 1 \, \text{nx}}{x^2} = 0.$$

得x = e.

当 $x \in (0,e)$, F'(x) > 0, F(x) 为增函数;

当 $x \in (e, +\infty)$, F'(x) < 0, F(x)为减函数;

所以
$$F(x)_{\text{max}} = F(e) = \frac{1}{e}$$
.

(II)
$$h(x) = x \ln x - \frac{a}{2}x^2 - x + a \quad (x > 0)$$

$$h'(x) = \ln x - ax$$
.

因为 x_1, x_2 为h(x)在其定义域内的两个不同的极值点,

所以 x_1, x_2 是方程 $\ln x - ax = 0$ 的两个根.

$$\mathbb{P} \ln x_1 = ax_1, \quad \ln x_2 = ax_2.$$

两式作差得,
$$a = \frac{\ln x_1 - \ln x_2}{x_1 - x_2}$$
.

因为 $\lambda > 0$, $0 < x_1 < x_2$, 由 $\lambda \ln x_2 - \lambda > 1 - \ln x_1$, 得 $1 + \lambda < \ln x_1 + \lambda \ln x_2$.

则
$$1+\lambda < a(x_1+\lambda x_2) \Leftrightarrow a > \frac{1+\lambda}{x_1+\lambda x_2}$$

$$\Leftrightarrow \frac{\ln x_1 - \ln x_2}{x_1 - x_2} > \frac{1 + \lambda}{x_1 + \lambda x_2}$$

$$\Leftrightarrow \ln \frac{x_1}{x_2} < \frac{(1+\lambda)(x_1-x_2)}{x_1+\lambda x_2}.$$

令
$$t = \frac{x_1}{x_2}$$
, 则 $t \in (0,1)$, 由题意知:

$$\ln t < \frac{(1+\lambda)(t-1)}{t+\lambda} \, \text{在} \, t \in (0,1) \, 上恒成立,$$

$$\Rightarrow \varphi(t) = \ln t - \frac{(1+\lambda)(t-1)}{t+\lambda},$$

则
$$\varphi'(t) = \frac{1}{t} - \frac{(1+\lambda)^2}{(t+\lambda)^2} = \frac{(t-1)(t-\lambda^2)}{t(t+\lambda)^2}$$
.

(1) 当 $\lambda^2 \ge 1$,即 $\lambda \ge 1$ 时,

又 $\varphi(1) = 0$,则 $\varphi(t) < 0$ 在(0,1)上恒成立. (2) 当 λ^2 <1,即0< λ <1时, $t \in (0, \lambda^2)$ 时, $\varphi'(t) > 0$, $\varphi(t)$ 在 $(0, \lambda^2)$ 上为增函数; 当 $t \in (\lambda^2, 1)$ 时, $\varphi'(t) < 0$, $\varphi(t)$ 在 $(\lambda^2, 1)$ 上为减函数. 又 $\varphi(1) = 0$, 所以 $\varphi(t)$ 不恒小于0, 不合题意. 综上, $\lambda \in [1,+\infty)$. ………13 分 解: (I) 当a = 0时,因为 $f(x) = x^2 \cdot e^{-x}$, 所以 $f'(x) = (-x^2 + 2x) \cdot e^{-x}$, f'(-1) = -3e.2 分 又因为f(-1)=e,3 分 所以曲线 y = f(x) 在点 (-1, f(-1)) 处的切线方程为 (II) "对任意的 $t \in [0,2]$,存在 $s \in [0,2]$ 使得 $f(s) \ge g(t)$ 成立"等价于"在区间[0,2]因为 $g(x) = x^2 - x - 1 = (x - \frac{1}{2})^2 - \frac{5}{4}$, 所以 g(x) 在 [0,2] 上的最大值为 g(2)=1. $f'(x) = (2x+a) \cdot e^{-x} - (x^2 + ax - a) \cdot e^{-x}$ $=-e^{-x}[x^2+(a-2)x-2a]$ $=-e^{-x}(x-2)(x+a)$ ① 当 $-a \le 0$,即 $a \ge 0$ 时, $f'(x) \ge 0$ 在[0,2] 上恒成立, f(x) 在[0,2] 上为单调递增函数, f(x) 的最大值为 $f(2) = (4+a) \cdot \frac{1}{a^2}$,

-----9分

由 $(4+a)\cdot\frac{1}{a^2}\geq 1$,得 $a\geq e^2-4$.

当 $x \in (0,-a)$ 时, f'(x) < 0, f(x)为单调递减函数,

当 $x \in (-a,2)$ 时, f'(x) > 0 , f(x) 为单调递增函数.

② $\pm 0 < -a < 2$, $\mathbb{B} - 2 < a < 0$ \mathbb{B} ,

 $\forall t \in (0,1), \ \varphi'(t) > 0, \ \text{所以} \varphi(t) \div (0,1)$ 上单调递增.