Random Walk with absorbing barriers:

Consider a sequence of random variables $X_0, X_1, \ldots, X_n, \ldots$ with values in the set $\mathcal{X} = \{0, 1, \ldots, k\}$ defined recursively as follows.

- $X_0 := x_0$ (fixed, deterministic $x_0 \in \mathcal{X}$).
- If $X_n = x$ and 0 < x < k then

$$X_{n+1} = \begin{cases} x+1 \text{ with probability } p; \\ x-1 \text{ with probability } 1-p. \end{cases}$$

• If $X_n = x$ and $x \in \{0, k\}$ then $X_{n+1} = x$ with probability 1.

Write a code for simulating $X_0, X_1, \ldots, X_n, \ldots$ Choose, for example, k = 20, p = 0.4.

Compute empirically

$$\psi_0 = \mathbb{P}(X_n = 0 \text{ for some } n | X_0 = x_0) \text{ and } \psi_k = \mathbb{P}(X_n = k \text{ for some } n | X_0 = x_0)$$
 as functions of x_0 .

Random Walk with elastic barriers:

Consider a sequence of random variables $X_0, X_1, \ldots, X_n, \ldots$ with values in the set $\mathcal{X} = \{0, 1, \ldots, k\}$ defined recursively as follows.

- $X_0 := x_0$ (fixed, deterministic $x_0 \in \mathcal{X}$).
- If $X_n = x$ then

$$X_{n+1} = \begin{cases} \min(x+1,k) \text{ with probability } p; \\ \max(x-1,0) \text{ with probability } 1-p. \end{cases}$$

Choose, for example, k = 20, p = 0.4. Compute empirically

$$\pi(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(X_i = x)$$

for $x \in \mathcal{X}$.

Remark. Both above questions have simple analytic answers. You may try to find them out theoretically.