A Book of Abstract Algebra (2nd Edition)

Chapter 24, Problem 2EH

Bookmark

Show all steps: (

ON

Problem

 $A[x_1, x_2]$ denotes the ring of all the polynomials in *two letters* x_1 and x_2 with coefficients in A. For example, $x^2 - 2xy + y^2 + x - 5$ is a quadratic polynomial in [x, y]. More generally, $A[x_1, ..., x_n]$ is the ring of the polynomials in n letters $x_1, ..., x_n$ with coefficients in A. Formally it is defined as follows:Let $A[x_1]$ be denoted by A_1 ; then $A_1[x_2]$ is $A[x_1, x_2]$. Continuing in this fashion, we may adjoin one new letter x_1 at a time, to get $A[x_1, ..., x_n]$.

Give a reasonable definition of the *degree* of any polynomial p(x, y) in A[x, y] and then list all the polynomials of degree ≤ 3 in $Z_3[x, y]$.

Step-by-step solution

Step 1 of 1

Polynomials p(x,y) in A[x,y] are algebraic expressions consisting of terms in the form $a_i x^i y^j$. The degree of the polynomial p(x,y) is largest sum of exponents of x and y.

All the polynomials of degree ≤ 3 in $_{3}[x, y]$ are listed below:

 $\mathsf{Degree}(0) \ \rightarrow \ a_{00} \in \ _3 \ \mathsf{but} \ \ a_{00} \neq 0 \ \text{\# of polynomials} = 2$

Degree(1) $\rightarrow a_{00} + a_{01}y + a_{10}x$ here all the coefficient belong to $_3$ but coefficients of x and y are not simultaneously zero, so # of polynomials $= 3 \times 3 \times 3 - 3 = 24$. Here, we minus 3 for excluding the cases when $a_{01} = a_{10} = 0$

Degree(2)
$$\rightarrow a_{00} + a_{10}x + a_{01}y + a_{11}xy + a_{20}x^2 + a_{02}y^2$$

Coefficients of xy, x^2 and y^2 are not simultaneously zero

Degree(3)
$$\rightarrow a_{00} + a_{10}x + a_{01}y + a_{11}xy + a_{20}x^2 + a_{02}y^2 + a_{21}x^2y + a_{12}xy^2 + a_{30}x^3 + a_{03}y^3$$

Coefficients of x^2y , xy^2 , x^3 and y^3 are not simultaneously zero

of polynomials $= 3^{10} - 3^6 = 3^6 \times 80 = 729 \times 80 = 58320$

Comment