Prof. Dr. Elmar Schömer André Müller

Datenstrukturen und effiziente Algorithmen · WS 2014/15

Übungsblatt 14

Bearbeitung freiwillig

Dieses Übungsblatt enthält Aufgaben, wie sie (Umfang und Schwierigkeitsgrad betreffend) typischerweise in den Klausuren gestellt werden.

Am Mittwoch, den 18.02. (Aschermittwoch) findet eine Zusatzübung von 14-16 Uhr in Raum 03-428 (großer Vorlesungsraum der Informatik) statt.

14.1 Asymptotische Laufzeit und \mathcal{O} -Notation

Begründen Sie kurz und präzise, ob die folgenden Aussagen richtig oder falsch sind.

- a) Es gilt $f(n) = 2^{2n} \in \mathcal{O}(2^n)$, mit $n \in \mathbb{N}$.
- b) $f(n) = n, n \in \mathbb{N}$, dann gilt $f(n) \in \mathcal{O}((\log n)^{\log n})$

14.2 Rekurrenzen

Geben Sie für die folgenden Rekurrenzen jeweils eine explizite Abschätzung des Wachstumsverhaltens in O-Notation an. Es sei jeweils $n \in \mathbb{N}$.

a)
$$T(n) = 2T(\left|\frac{n}{4}\right|) + 4\sqrt{n}$$
, $T(1) = 1$

b)
$$T(n) = T(|\sqrt{n}|) + \log n$$
, $T(1) = 0$

14.3 Suchen & Sortieren

Stimmt folgende Aussage? Begründen Sie!

In einem binären Suchbaum kann man zu jedem Element x das nächst kleinere Element $y \le x$ im Worst-Case in konstanter Laufzeit finden.

14.4 Hashing

Gegeben ist eine Hashtabelle mit m Buckets, die eine 1-universelle Hashfunktion $h: U \to H$ verwendet und Kollisionen mittels Verkettung behandelt. Die Tabelle wurde mit n Schlüsseln befüllt. Wie sollte m in Abhängigkeit von n gewählt werden, so dass die erwartete Gesamtanzahl an Kollisionen in $\mathcal{O}(1)$ liegt?

14.5 Graphenalgorithmen

- a) In einem ungerichteten Baum T=(V,E) mit reellen Kantengewichten $w:E\to\mathbb{R}$ kann man den längsten Weg von einem Knoten s zu einem anderen Knoten t nicht in linearer Zeit $\mathcal{O}(|V|+|E|)$ finden.
- b) Der Algorithmus von Kruskal liefert für den selben Eingabegraphen G = (V, E) mit reellen Kantengewichten $w: E \to \mathbb{R}$ immer den gleichen Spannbaum wie der Algorithmus von Prim.

- c) Gegeben sei ein gerichteter Graph G = (V, E) mit Kantengewichten $w: E \to \mathbb{R}$ sowie ein Knoten $s \in V$. Sei G' = G mit Kantengewichten $w': E \to \mathbb{R}$. Für alle $e \in E$ gelte nun $w'(e) = w(e)^2$. Dann sind die kürzesten Wege von s zu allen anderen Knoten in G' und in G gleich.
- d) In einem gerichteten Graph mit positiven Kantengewichten, der einen Zyklus enthält, kann es sein, dass der Dijkstra-Algorithmus eine Kante mehrfach relaxiert.

14.6 2-Färbbarkeit

Sei G=(V,E) ein ungerichteter Graph. Wir nennen G k-färbbar, wenn man seine Knoten so mit k Farben markieren kann, dass keine zwei benachbarten Knoten die gleiche Farbe haben. Beschreiben Sie einen Algorithmus, der mittels Breitensuche feststellt, ob ein Graph 2-färbbar ist.

14.7 Dicke Pfade

Gegeben ist ein zusammenhängender, gerichteter und gewichteter Graph G=(V,E,w). Wir definieren die Dicke eines Pfades P auf G als das Maximum aller Kantengewichte in P. Geben Sie einen effizienten Algorithmus an, der für G und zwei Vertices $u,v\in V$ die minimale Dicke findet, die ein Pfad von u nach v haben kann. Geben Sie die Worst-Case-Laufzeit Ihres Algorithmus an und begründen Sie diese \underline{kurz} .

14.8 Wackeliges Array

Wir sagen ein Array A mit 2n + 1 Elementen sei wackelig, wenn gilt:

$$A[1] \le A[2] \ge A[3] \le A[4] \ge \dots \le A[2n] \ge A[2n+1].$$

Gegeben sei nun ein unsortiertes Array B mit 2n+1 reellen Zahlen B[1] bis B[2n+1]. Beschreiben Sie einen Algorithmus, der eine Permutation A von B ausgibt, so dass A ein wackeliges Array ist. Dieser sollte eine erwartete (oder, falls möglich, sogar Worst-Case) Laufzeitkomplexität von $\mathcal{O}(n)$ haben. Begründen Sie die Laufzeitkomplexität Ihres Algorithmus kurz, aber nachvollziehbar!