625.661 Statistical Models and Regression

Module 4 Discussion Questions

H.M. James Hung

In a multiple linear regression model, $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$, where x_1 and x_2 are non-random independent variables, and ε is the random error. Now a set of n items give data, $(y_1, x_{11}, x_{21}), \dots, (y_n, x_{1n}, x_{2n})$, which follow this model. Decompose SS_T into SS_R and SS_{Res} using the "hat" matrix, discuss and state the assumptions in your discussion.

Assumption: X is of full rank (e.g., all columns and all rows are linearly independent).

Let
$$\beta=(\beta_0$$
, β_1 , β_2)'. Then, the uncorrected $SS_R=SS_R(\beta_0$, β_1 , $\beta_2)=\widehat{\beta}'X'y=y'X(X'X)^{-1}X'y=y'Hy$.
$$SS_T=y'y=y'Iy=y'Hy+y'(I-H)y \qquad SS_R=y'Hy \qquad SS_{Res}=y'(I-H)y \qquad H=X(X'X)^{-1}X' \qquad \text{Assumption: } X'X \text{ is invertible.}$$

The corrected
$$SS_T = y'y - \frac{(\sum y_i)^2}{n}$$
 . $SS_R = y'Hy - \frac{(\sum y_i)^2}{n}$.

$$SS_{Res} = y'(I - H)y$$
.