Corrigé du contrôle continu n°2

Exercice 1. Soit H_1 l'ensemble des matrices de type $\begin{pmatrix} x & x \\ -x & -x \end{pmatrix}$ où $x \in \mathbb{R}$, et soit H_2 l'ensemble des matrices de type $\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$ où $x \in \mathbb{R}$.

- (1) Les ensembles H_1 ou H_2 ne sont pas des sous-anneaux de l'anneau de matrices $\mathcal{M}_2(\mathbb{R})$ car ils ne contiennent pas la matrice identité qui est le neutre multiplicatif de l'anneau $\mathcal{M}_2(\mathbb{R})$.
- (2) On remarque que $\begin{pmatrix} x & x \\ -x & -x \end{pmatrix} \begin{pmatrix} y & y \\ -y & -y \end{pmatrix}$ est toujours égale à la matrice nulle. Donc la loi produit n'a pas de neutre dans H_1 . Ainsi, H_1 muni de la somme et du produit de matrices usuels n'est pas un anneau.
- (3) Posons $M(x) = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$ pour tout $x \in \mathbb{R}$. On calcule facilement M(x) + M(y) = M(x+y) et M(x)M(y) = M(xy). Donc H_2 est stable par les lois + et \times , qui sont donc les lois induites de celles de $\mathcal{M}_2(\mathbb{R})$. Ainsi, H_2 est facilement un sous-groupe de $(\mathcal{M}_2(\mathbb{R}), +)$, et la loi \times est associative et distributive par rapport à +. Le neutre pour + est la matrice nulle et pour \times c'est M(1). Ainsi, H_2 muni de la somme et du produit de matrices usuels est un anneau. Il est commutatif puisque M(x)M(y) = M(xy) = M(yx) = M(y)M(x).
- (4) En fait, $\varphi(x) = M(x)$. Donc, $\varphi(1) = M(1)$, $\varphi(x+y) = \varphi(x) + \varphi(y)$ et $\varphi(xy) = \varphi(x)\varphi(y)$. On a donc un morphisme d'anneaux. Il est trivialement surjectif. Puisque $\varphi(x) = 0$ équivaut à x = 0, il est injectif. Donc, on a bien un isomorphisme d'anneaux.

Exercice 2. Posons $A = \{a + jb \mid a, b \in \mathbb{Z}\}$ où $j = \exp(\frac{2i\pi}{3}) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ est un nombre complexe satisfaisant $j^3 = 1$ et $1 + j + j^2 = 0$.

- (1) Déjà $A \subset \mathbb{C}$ et $1 = 1 + j0 \in A$. Soit $a, b, a', b' \in \mathbb{Z}$. Alors, (a + jb) - (a' + jb') = (a - a') + j(b - b') avec a - a' et b - b' des entiers relatifs. Donc, $(a + jb) + (a' + jb') \in A$, et A est un sous-groupe de $(\mathbb{C}, +)$. Puis, (a + jb)(a' + jb') = (aa' - bb') + j(ab' + a'b - bb') avec aa' - bb' et ab' + a'b - bb' des entiers relatifs. Donc, $(a + jb)(a' + jb') \in A$ et A est stable par le produit. En conclusion, A est un sous-anneau de l'anneau $(\mathbb{C}, +, \times)$.
- (2) Posons $N(z) = |z|^2$ pour tout $z \in \mathbb{C}$. Rappelons que |z| désigne le module du nombre complexe z et que $|z|^2 = z\overline{z}$ où \overline{z} est le conjugué de z. De plus, N(zz') = N(z)N(z') pour tous complexes z et z'.
 - (a) Soit $z \in A$ que l'on écrit a+jb avec a et b entiers relatifs. Déjà, N(z) étant un module c'est un réel positif. On calcule

$$N(z) = z\overline{z} = (a + ib)(a + \overline{i}b) = a^2 + b^2 - ab \in \mathbb{Z}.$$

Donc, N(z) est un entier positif : $N(z) \in \mathbb{N}$.

- (b) Soit $z \in A$. Alors $\overline{z} \in A$. Si N(z) = 1, on a $z\overline{z} = 1$, donc $z \in U(A)$ et \overline{z} est l'inverse de z pour le produit. Réciproquement, si $z \in U(A)$, alors il existe $y \in U(A)$ tel que zy = 1 et on obtient 1 = N(zy) = N(z)N(y) avec N(y) et N(z) entiers naturels. Donc N(z) = 1. Ainsi, $z \in U(A) \iff N(z) = 1$.
- (3) Soit $a, b \in \mathbb{Z}$ tel que N(a+jb)=1. Alors $a^2+b^2=1+ab\geqslant 0$. Si ab=-1 comme a et b sont des entiers, $a^2=b^2=1$ et $N(a+jb)=3\neq 1$, impossible!! Donc, ab est un entier >-1, autrement dit $ab\geqslant 0$.
- (4) On remarque que $N(a+jb)=a^2+b^2-ab=(a-b)^2+ab$ somme de deux entiers positifs. Si $z=a+jb\in U(A)$ alors N(a+jb)=1, ce qui entraı̂ne soit $(a-b)^2=1$ et ab=0, soit $(a-b)^2=0$ et ab=1. Donc, a=0 et $b=\pm 1$, ou $a=\pm 1$ et b=0, ou $a=b=\pm 1$, c'est-à-dire $z=\pm j$ ou $z=\pm 1$ ou $z=\pm (1+j)=\mp \bar{j}$. Tous ces éléments ont bien un module qui vaut 1 donc ce sont des unités de A. Ainsi,

$$U(A) = \{1, -1, j, -j, \overline{j}, -\overline{j}\}.$$

Dans le groupe multiplicatif U(A), les éléments j et \bar{j} sont d'ordre 3, 1 est d'ordre 1, -1 est d'ordre 2, -j et $-\bar{j}$ sont d'ordre 6.

- (5) On admet que A est un anneau principal.
 - (a) Soit $z \in A$ tel que N(z) est un nombre premier. Alors, $z \neq 0$ et $z \notin U(A)$. Si $z = z_1 z_2$, il vient $N(z_1)N(z_2) = N(z) = p$ avec $N(z_1)$ et $N(z_2)$ entiers naturels. Donc $N(z_1)$ ou $N(z_2)$ vaut 1, autrement dit z_1 ou z_2 est une unité de A. Par conséquant, z est un élément irréductible de A.
 - (b) On calcule N(2+j) = 4+1-2=3 nombre premier, donc 2+j est un élément irréductible de A. Puis N(2+3j) = 4+9-6=7 nombre premier, donc 2+3j est un élément irréductible de A. Enfin $N(3+8j) = 9+64-24=49=7^2$ n'est pas un nombre premier. On remarque que 3+8j=(2+3j)(3+j) avec 2+3j et 3+j qui sont deux éléments irréductibles. Donc 3+8j n'est pas irréductible.

Exercice 3. Soit (A, +, .) un anneau commutatif, I et J deux idéaux de A. On définit le quotient de l'idéal I par l'idéal J de la manière suivante :

$$(I:J) = \{x \in A \mid xJ \subset I\}$$

où $xJ = \{x.y \mid y \in J\}.$

(1) Déjà, $(I:J) \subset A$ et (I:J) contient 0 puisque $0J = \{0\} \subset I$. Soit $x,y \in (I:J)$. Pour tout $z \in J$ on a par distributivité

$$(x+y)z = xz + yz \in I$$

car I est un sous-groupe de (A, +). Donc $(x + y)J \subset I$. Ainsi, $x + y \in (I : J)$.

Soit $x \in (I:J)$ et $a \in A$. Pour tout $z \in J$ on a par associativité, commutativité et propriété d'absorption de I

$$(ax)z = a(xz) \in I$$

 $\operatorname{car} xz \in xJ \subset I$. Donc $(ax)J \subset I$. Ainsi, $ax \in (I:J)$.

De plus, si $x \in I$, par absorption, $xJ \subset I$.

Ainsi, (I:J) est un idéal de A contenant I.

(2) On se place dans le cas où $A = \mathbb{Z}$. Si $x \in (18\mathbb{Z} : 3\mathbb{Z})$, alors $3x\mathbb{Z} \subset 18\mathbb{Z}$, autrement dit 18|3x, ie 6|x, donc $x \in 6\mathbb{Z}$. Inversement, si $x \in 6\mathbb{Z}$, il existe $y \in \mathbb{Z}$ tel que x = 6y et donc, $x(3z) = 18yz \in 18\mathbb{Z}$ pour tout entier z, autrement dit $x \in (18\mathbb{Z} : 3\mathbb{Z})$. Ainsi

$$(18\mathbb{Z}:3\mathbb{Z})=6\mathbb{Z}.$$

Si $x \in (18\mathbb{Z} : 6\mathbb{Z})$, alors $6x\mathbb{Z} \subset 18\mathbb{Z}$, autrement dit 18 | 6x, ie 3 | x, donc $x \in 3\mathbb{Z}$. Inversement, si $x \in 3\mathbb{Z}$, il existe $y \in \mathbb{Z}$ tel que x = 3y et donc, $x(6z) = 18yz \in 18\mathbb{Z}$ pour tout entier z, autrement dit $x \in (18\mathbb{Z} : 6\mathbb{Z})$.

$$(18\mathbb{Z}:6\mathbb{Z})=3\mathbb{Z}.$$

De manière générale, soit I et J deux idéaux de \mathbb{Z} . Si $J = \{0\}$, alors (I : J) = A, et si $I = \{0\}$, alors $(I : J) = \{0\}$.

Supposons désormais J et I non nuls. J et I étant des idéaux de \mathbb{Z} , il existe $m, n \in \mathbb{N}^*$ tels que $J = n\mathbb{Z}$ et $I = m\mathbb{Z}$. Si $x \in (m\mathbb{Z} : n\mathbb{Z})$, alors m|nx. Posons d le pgcd de m et n, m' = m/d et n' = n/d. Il vient après simplification : m'|n'x. Or m' et n' sont premiers entre eux. Par le théorème de Gauss, m'|x, ie. $x \in m'\mathbb{Z}$. Inversement, soit $x \in m'\mathbb{Z}$. Il existe $y \in \mathbb{Z}$ tel que x = m'y et donc, $x(nz) = m'nyz = mn' \in m\mathbb{Z}$ pour tout entier z, autrement dit $x \in (m\mathbb{Z} : n\mathbb{Z})$. Ainsi

$$(m\mathbb{Z}:n\mathbb{Z})=m'\mathbb{Z}$$
 où $m'=m/(m\wedge n)$.

Exercice 4. Soit (A, +, .) un anneau fini intègre. Pour tout $a \in A$ on considère l'application $\varphi_a : A \to A$ par définie $\varphi_a(x) = a.x$.

- (1) Soit a un élément non nul de A. Pour tout $x, y \in A$, on a par distributivité, $\varphi_a(x+y) = a.(x+y) = a.x + a.y = \varphi_a(x) + \varphi_a(y)$. Donc, φ_a est un endomorphisme du groupe (A, +). Comme A est intègre son noyau est $\{0\}$. Donc φ_a est injective de A dans A. Comme A est fini, elle est bijective. Donc, φ_a est un automorphisme du groupe (A, +).
- (2) Pour tout $a \neq 0$, φ_a étant bijective, 1 a un unique antécédent (qui est l'inverse de a). Donc a est inversible pour le produit. Par conséquent, A est un corps.