

Architettura degli Elaboratori I

Corso di Laurea Triennale in Informatica
Università degli Studi di Milano
Dipartimento di Informatica "Giovanni Degli Antoni"

Codifica dell'informazione

L'elaborazione digitale

- Per poter svolgere la sua funzione un elaboratore deve poter rappresentare l'informazione su cui lavora attraverso una grandezza fisica: valori di tensione elettrica
- Consideriamo un segnale di tensione che varia nel tempo
- Rappresenta un fenomeno fisico, ad esempio una misurazione di temperatura in una stanza, peso di un oggetto, vibrazione di una corda, ...
- I valori che il segnale può assumere sono strettamente legati, o in analogia, con il fenomeno rappresentato. Per questo si chiama segnale analogico o continuo

- Mappiamo i valori del segnale su un insieme di n range di valori a cui associamo n simboli o cifre (le cifre sono simboli associati a valori numerici di base)
- Elaborazione digitale: rappresentare il fenomeno con un dato numero di cifre (in inglese digits)
 - Si possono rappresentare sia misurazioni di fenomeni fisici (la temperatura) che altre informazioni più astratte (ad esempio, un punteggio)
- Esempio: n = 2, 2 range di valori, 2 simboli (alto/basso, 0/1, vero/falso, A/B, ...)

L'elaborazione digitale

• Il tipo di informazione più importante trattata da un elaboratore è quella numerica

Supponiamo di dover rappresentare il valore diciotto

Analogico: il valore del segnale (voltaggio) rappresenta il valore 18

Digitale: il valore del segnale rappresenta una cifra del valore 18. Servono più segnali, uno per ogni cifra!

- I computer moderni utilizzano rappresentazioni binarie, con due simboli che, per convenzione, chiamiamo $0 \ e \ 1$
- La memoria digitale è fatta da miliardi di componenti (basati su transistor) in grado di mantenere al loro interno un segnale che può rappresentare il simbolo 0 o il simbolo 1, le due cifre binarie (binary digits, **bit**)
- Come si costruisce la corrispondenza tra un valore (*diciotto*) e la sua rappresentazione digitale? Come si possono fare operazioni tra numeri rappresentati in quel modo?
- Le risposte stanno nella teoria dei sistemi di numerazione

Sistema di numerazione

There are only 10 types of people in the world: those who understand binary, and those who don't.

- Un sistema di numerazione è composto da due ingredienti fondamentali: la base e la notazione
- Base: insieme di simboli (cifre) che possiamo usare per rappresentare un numero; ogni simbolo è associato ad una quantità numerica elementare
- $B_{10} = \{0,1,2,3,4,5,6,7,8,9\}$ base 10, quelle che usiamo noi, sistema decimale
- $B_8 = \{0,1,2,3,4,5,6,7\}$, base 8, sistema ottale
- $B_{16} = \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$, base 16, sistema esadecimale
- $B_2 = \{0,1\}$, base 2, sistema binario, quello usato dagli elaboratori
- Avendo a disposizione n cifre in base B ogni cifra può assumere B valori diversi e in totale si possono scrivere B^n stringhe diverse
- Esercizio: quanti numeri diversi posso scrivere con 4 cifre in base 16?
 - Risposta: $16^4 = 65.536$
- Esercizio: quante cifre della base B servono per poter scrivere almeno p stringe diverse?
 - Risposta: [log_B p]

Sistema di numerazione: base

- Quali sono i valori di base associati ai simboli? Indico con val(i) il valore associato al simbolo i della base
- Scegliamo dei simboli che ci aiutino a ricordare immediatamente il valore:
 - Di solito la cifra (i) è associata, in tutte le basi in cui compare al valore i in base 10. Ad esempio (9) rappresenta il valore 9 nelle basi decimale ed esadecimale
 - Nella base 16 le cifre non bastano: le lettere «A», «B», «C», «D», «E», «F» rappresentano i valori 10, 11, 12, 13, 14, 15 (in base 10)
- Attenzione: conta solo il numero dei simboli e i loro valori associati, non i simboli scelti! Altre scelte possibili: $B_2 = \{\top, \bot\}, B_7 = \{I, V, X, L, C, D, M\}, B_3 = \{\triangle, \boxdot, \Box\}$

Esercizi

- Che aspetto ha un numero scritto in base 16?
- Risposta: 9F3A o in alternativa 0x9F3A, 9F3A hex
- Il numero 10011001 in quale base è scritto?
- Risposta: base 2, base 8, base 16 o base 10

Sistema di numerazione: notazione

- Notazione: regole con cui si calcola il valore rappresentato a partire dalla sequenza di simboli che lo rappresenta
- Una notazione fondamentale è quella **posizionale**: si fa la somma pesata dei valori associati ai simboli; i pesi dipendono dalla base utilizzata e dalla posizione del simbolo nella sequenza
- Le posizioni si indicano con valori interi ordinati, partendo da 0 e da destra a sinistra

$$val(4)B^{0} + val(8)B^{1} + val(9)B^{2} + val(1)B^{3}$$

$$= 4 \times 10^{0} + 8 \times 10^{1} + 9 \times 10^{2} + 1 \times 10^{3}$$

$$= 4 + 80 + 900 + 1000 = 1984$$

Valore rappresentato da una stringa di n cifre in base B $\sum_{i=0}^{n-1} val(d_i)B^i$

• La cifra più a sinistra è detta Most Significant Digit (MSD), quella più a destra Least Significant Digit (LSD)

Esercizio: Quanto vale «10100» e quali sono il successivo e precedente nelle basi 10, 8 e 2?

- $\bullet B_{10}$: val. 10100, succ. «10101» (10101), prec. «10099» (10099)
- • B_8 : val. 4160, succ. «10101» (4161), prec. «10077» (4159)
- • B_2 : val. 20, succ. «10101» (21), prec. «10011» (19)

- A seconda del tipo di numeri che vogliamo rappresentare (naturali, interi, reali) useremo notazioni diverse
- La notazione impatta ovviamente anche su come vengono svolte le operazioni tra i numeri e quindi anche su come deve essere fatto l'hardware in grado di interpretare e manipolare i numeri rappresentati in un certo sistema di numerazione

Codifica dei Naturali N

Numeri naturali $\mathbb{N} = \{1,2,3,...\}$

- I numeri naturali si scrivono in notazione posizionale pura (come nell'esempio precedente)
- Da base B a base 10: calcolo della somma pesata

$$(111011)_2 = \sum_{i=0}^5 b_i 2^i = 1 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + 1 \times 2^3 + 1 \times 2^4 + 1 \times 2^5 = (59)_{10}$$

Da base 10 a base B: algoritmo iterativo delle divisioni

```
Dato (N)<sub>10</sub> da convertire nella base B:
1.dividere N per B (con una divisione intera);
2.il resto della divisione diventa la prima cifra meno significativa che resta da calcolare del numero in base B;
3.se il quoziente è 0 abbiamo finito;
4.se il quoziente è diverso da 0 si torna al passo 1 considerando il quoziente come dividendo N;
```

Numeri naturali $\mathbb{N} = \{1,2,3,...\}$

• Esercizio: convertire il numero $(113)_{10}$ nelle basi 2, 8 e 16

Base 2

 $113: 2 = 56 \ resto \ di \ 1$

 $56: 2 = 28 \ resto \ di \ 0$

 $28: 2 = 14 \ resto \ di \ 0$

 $14:2 = 7 \ resto \ di \ 0$

 $7:2 = 3 \ resto \ di \ 1$

3:2 = 1 resto di 1

 $1:2 = 0 \ resto \ di \ 1$

Risultato: 1 1 1 0 0 0 1

Base 8

 $113:8 = 14 \ resto \ di \ 1$

 $14:8 = 1 \ resto \ di \ 6$

 $1:8 = 0 \ resto \ di \ 1$

Risultato: 1 6 1

Base 16

113: 16 = 7 resto di 1

 $7:16 = 0 \ resto \ di \ 7$

Risultato: 7 1

Numeri naturali $\mathbb{N} = \{1,2,3,...\}$

Da base 2 a base 16 e vice versa

- È un caso particolare della conversione tra due basi B_1 e B_2 dove una è una potenza dell'altra, cioè $B_2 = B_1^m$ per un qualche m intero positivo
- In questo caso $B_1 = 2$, $B_2 = 16$ e quindi m = 4
- La cifra in posizione i di un numero in base B^m corrisponde all' i-esimo gruppo di m cifre del numero in base B
- Nel nostro caso abbiamo 16 possibili gruppi diversi di 4 cifre binarie, possiamo costruire una tabella che mette in corrispondenza ogni cifra esadecimale con una stringa di 4 bit

0	0000
1	0001
2	0010
3	0011

4	0100
5	0101
6	0110
7	0111

8	1000
9	1001
A	1010
В	1011

С	1100
D	1101
E	1110
F	1111

- Per le conversioni è sufficiente ispezionare la tabella e trovare le corrispondenze (nota: non dovrebbe servire impararla a memoria!)
- Esercizio: convertire $(A\ 8\ F\ B)_{16}$ in base 2 Soluzione: Ispezionando, simbolo per simbolo, la tabella ottengo $(1010\ 1000\ 1111\ 1011)_2$

Rappresentazione grafica numeri binari

• Un numero binario su n bit può essere interpretato come un punto in uno spazio n-dimensionale

1 bit, una dimensione

2 bit, due dimensioni

3 bit, tre dimensioni

- In tutti i casi, numeri adiacenti (collegati) differiscono solo di un bit
- Dati due numeri binari n_1 e n_2 il numero di posizioni in cui un bit ha valore diverso tra un numero e l'altro si chiama distanza di Hamming tra n_1 e n_2
- Misura la distanza tra due codifiche, la differenza tra due rappresentazioni di due numeri che è diversa, in generale, dalla differenza tra i due valori rappresentati
- Esercizio: quanto è la distanza di Hamming tra 10111010 e 10010111?
- Risposta: se evidenzio i bit diversi ho $10\mathbf{1}1\mathbf{1}0\mathbf{1}0$ e $10\mathbf{0}1\mathbf{0}\mathbf{1}1\mathbf{1}$ quindi la distanza di Hamming è pari a 4 (numero di bit che devo complementare per trasformare un numero nell'altro)

Codice di Grey

- Supponiamo di avere n = 3 bit
- Quanti numeri naturali possiamo scrivere in base B=2? Risposta: B^n , in questo caso $2^3=8$

Numero decimale	Codifica binaria (posizionale)	Codifica binaria (Grey)
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

- Nella codifica posizionale, le distanze di Hamming tra codifiche di numeri successivi sono, nell'ordine, 1,2,1,3,1,2,1
- Nel codice di Grey le distanze sono sempre pari a 1!
- Svantaggio: più complicato calcolare il valore di un numero a partire dalla sua codifica
- Vantaggi? Esperimento degli interruttori...
- I codici che hanno questa proprietà sono detti codici a distanza unitaria.
 Come trovarli? Percorso Hamiltoniano sulla rappresentazione grafica (percorso che visita tutti i punti una volta sola percorrendo i collegamenti)

Operazioni aritmetiche

• Si usano le stesse regole della base 10 con somme e riporti (differenze e prestiti), che valgono indipendentemente dalla base utilizzata

	b_1	b_2	Somma	Riporto
	0	0	0	0
	0	1	1	0
	1	0	1	0
riporto	1	1	0	1
1	1	1	1	1

	b_1	b_2	Differenza	Prestito
	0	0	0	0
	0	1	1	1
	1	0	1	0
prestito	1	1	0	0
1	1	1	1	1

- Tutte le operazioni che producono un risultato a partire da uno o più operandi possono causare un overflow
- Vuol dire che il risultato dell'operazione è **troppo grande** per essere rappresentato su n bit, ne servono almeno n+1
- Quale è il numero **naturale** più grande che posso rappresentare con n bit? Risposta: $2^n 1$
- **Esercizio**: sommare 0101 e 1011 su 4 bit

$$\begin{array}{r}
 1111 \\
 0101 + \\
 \hline
 1011 = \\
 \hline
 10000
 \end{array}$$

- I due operandi valgono 5 e 11, la somma dovrebbe essere 16, ma se mi limito a lavorare con 4 bit leggo 0!
- Devo usare un bit in più! Sulla carta si può sempre fare, ma in hardware è impossibile: si lavora con n bit fissati, se non bastano si deve segnalare un errore!

Il problema dell'overflow

Base europea di Kourou (Guyana Francese) Primo lancio dell'Ariane 5 (ESA), 4 Giugno 1996 (video)

- Dopo 39s dal lancio il sistema di navigazione inerziale misura un elevato ma normale valore di velocità orizzontale
- Il software converte il dato letto in binario su 16 bit, è un'eredità di Ariane 4, il razzo precedente **più lento**
- Il valore della velocità è troppo grande per essere rappresentato su 16 bit, si genera un overflow
- Il sistema inerziale va in crash, il controllo passa al sistema inerziale di backup che, dopo pochi millisecondi, va in crash per lo stesso motivo
- L'unità inerziale a questo punto è fuori controllo, trasmette dati completamente errati
- Il computer di bordo, interpreta le stringhe di bit come dati di volo e aziona una manovra correttiva non necessaria flettendo completamente gli ugelli del motore principale
- Il missile guadagna un angolo di attacco di 20 gradi e subisce un carico aerodinamico insostenibile: si disintegra completamente (perdita stimata 370M USD)

Codifica degli Interi Z

Numeri interi $\mathbb{Z} = \{ ... - 3, -2, 0, 1, 2, 3, ... \}$

- I numeri naturali sono sufficienti se dobbiamo solo contare (o ordinare), ma utilizzare solo quelli sarebbe fortemente limitante (ad esempio, non potremmo svolgere differenze arbitrarie tra numeri naturali)
- Consideriamo i numeri **interi** che presentano una caratteristica in più: **il segno**, che dobbiamo rappresentare in qualche modo
- Ci sono diverse soluzioni che presentano vantaggi e svantaggi per un elaboratore, ne vediamo due:
 - Modulo e segno (molto semplice, ma non molto vantaggiosa)
 - Complemento a 2 (più complicata, ma vantaggiosa e quindi molto usata)

Modulo e segno

• Supponiamo di avere a disposizione *n* bit

MSD indica il segno:

- 0 per positivo (+)
- 1 per negativo (–)

Restanti n-1 bit indicano il modulo con la stessa notazione dei numeri naturali (spesso chiamata unsigned)

- **Esempio**: il numero 10011, se interpretato come naturale vale 19, se invece lo interpretiamo come un intero in notazione modulo e segno vale -3
- Per un essere umano è il metodo più naturale: è una rappresentazione che ricalca il modo in cui noi pensiamo i numeri ma ...
- ... per un elaboratore è piuttosto inefficiente!
 - Ridondanza: lo zero ha due codifiche +0 e -0
 - Complessità: certe operazioni risultano laboriose, ad esempio la somma algebrica richiede di (a) controllare il segno degli operandi, (b) sottrarre il maggiore al minore se i segni sono diversi o (c) sommare i valori se i segni sono uguali e (d) calcolare il segno del risultato. Queste operazioni non possono essere svolte contemporaneamente, c'è una sequenzialità, e il circuito che le realizza diventa complesso

- Esiste un modo di rappresentare i numeri interi che ci permetta di fare la somma algebrica in modo semplice, analogamente a quanto succedeva con i naturali (così da avere, come per ℕ, hardware semplice)? Sì, il **complemento a 2** (C2)
- Supponiamo, come prima, di avere a disposizione n bit e un numero intero N da codificare
- Se N è positivo o nullo lo codifico come il naturale di valore N (come prima!) su n-1 bit e pongo MSD a 0
- Se N è negativo lo codifico come il naturale $2^n |N|$ su n bit cioè il valore che mancherebbe a |N| per arrivare a 2^n (il suo complemento a 2^n)
- Attenzione! In entrambi i casi devo stare molto attento al problema della rappresentabilità!

- Esercizi: suppongo di avere n=4 bit
- $N = 5 \rightarrow$ converto 5 su 3 bit (metodo delle divisioni iterative) e aggiungo uno 0 a sinistra $\rightarrow 0101$
- $N = -5 \rightarrow \text{converto } 2^4 5 = 16 5 = 11 \text{ su } 4 \text{ bit } \rightarrow 1011$
- $N = 8 \rightarrow$ converto 8 su 3 bit \rightarrow overflow! I 4 bit non bastano ne servono almeno 5
- $N = -1 \rightarrow \text{converto } 2^4 1 = 15 \text{ su } 4 \text{ bit } \rightarrow 1111$
- $N = -8 \rightarrow \text{converto } 2^4 8 = 8 \text{ su } 4 \text{ bit } \rightarrow 1000$
- $N = -11 \rightarrow$ converto $2^4 11 = 5$ su 4 bit \rightarrow **0101** ma quindi è 5 o -11? Attenzione all'intervallo rappresentabilità!

- Con n bit posso scrivere 2^n stringhe binarie, le rappresento su una ruota in ordine orario crescente secondo il valore che avrebbero se fossero naturali
- Per i positivi devo usare n-1 bit e aggiungere 0 a sinistra:
 - 1. I'N più grande è $2^{n-1} 1$
 - 2. Tutti i positivi e lo zero iniziano con 0
- Le stringhe restanti sono assegnate ai negativi che si dispongono «all'inverso» seguendo la regola del complemento: il numero N è assegnato alla stringa che avrebbe valore 2^n-N nei naturali
 - 1. I'N più piccolo è -2^{n-1}
 - 2. Tutti i negativi iniziano con 1
 - Chi sta fuori dall'intervallo $[-2^{n-1}, 2^{n-1}-1]$ non può essere rappresentato su n bit in complemento a 2!
 - Prima buona proprietà: lo zero ha una sola codifica!

- Metodo alternativo per convertire N in C2 su n bit:
 - 1. Verifico la rappresentabilità su n bit (va sempre fatto!)
 - 2. Converto *N* in binario
- Faccio il complemento a 1 (inverto tutti i bit)
 - 4. Sommo 1 in binario (regole dei naturali)
 - **Esercizio:** convertire -6 su 3 bit
 - 1. Il numero più piccolo su 3 bit è $-2^2 = -4$, non si può fare!
 - Esercizio: convertire −6 su 4 bit
 - 1. Il numero più piccolo su 4 bit è $-2^3 = -8$, ok!
 - 2. 6 in binario su 4 bit è 0110
 - 3. Complemento a 1: 1001
 - 4. Sommo 1:

$$\begin{array}{c}
1 \\
1 \ 0 \ 0 \ 1 + \\
\hline
1 \ 0 \ 1 \ 0 \\
\hline
\end{array}$$
risultato

 Per convertire da C2 a base 10 basta usare la regola posizionale dando al bit più significativo un peso negativo

$$(111011)_{C2} = -b_{n-1}2^{n-1} + \sum_{i=0}^{n-2} b_i 2^i$$

$$= -1 \times 2^5 + 1 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + 1 \times 2^3 + 1 \times 2^4$$

$$= (-5)_{10}$$

- Altra buona proprietà: le somme algebriche si fanno con lo stesso procedimento dei naturali ignorando l'ultimo riporto

Esercizio: eseguire
$$4 - 5$$
 (su 4 bit)
$$(4)_{10} = (0100), (-5)_{10} = (1011),$$
 faccio $4 + (-5)$
$$0100 + 1011 = 1011 = 1111$$

Esercizio: eseguire
$$7 - 1$$
 (su 4 bit)
$$(7)_{10} = (0111)_{C2}, (-1)_{10} = (1111)_{C2},$$
faccio $7 + (-1)$

$$1111$$

$$0111 + 111 = (1) 0110$$

- Il problema dell'overflow si ripropone anche per le somme in C2
- Il risultato di una somma di due numeri in C2 su n bit potrebbe cadere fuori dall'intervallo di rappresentabilità $[-2^{n-1}, 2^{n-1}-1]$

Il numero più grande su 8 bit è 127!

Il numero più piccolo su 8 bit è -128!

- Può succedere solo quando si sommano numeri dello stesso segno
- Si riconosce facilmente:
 - 1. Sommo due numeri positivi (bit di segno 0) e ho un risultato negativo (bit di segno 1)
 - 2. Sommo due numeri negativi (bit di segno 1) e ho un risultato positivo (bit di segno 0)
- Alternativa: controllare gli ultimi due riporti generati, se sono diversi c'è stato overflow

Codifica dei Reali R

- Sono i numeri «veri e propri» quelli che descrivono fenomeni del mondo, esempi: $0.45, \pi, 2.71828182845904523536, 6.626 \times 10^{-34}$
- Come li rappresentiamo su n bit?
- Presentano due fondamentali differenze con i naturali e gli interi:
 - Non li usiamo per contare ma per «misurare», un processo che di solito richiede di poter rappresentare numeri piccolissimi (vicini allo zero, e.g., la massa atomica dell'ossigeno $\cong 2.6 \times 10^{-23} \mathrm{g}$) e numeri molto grandi (e.g., diametro dell'universo osservabile $\cong 8.8 \times 10^{23} \mathrm{km}$)
 - A differenza di naturali e degli interi non sono enumerabili, non si possono contare: tra due reali qualsiasi ci sono infiniti reali
- Non possiamo rappresentare i numeri reali, possiamo solo approssimarli con dei numeri razionali a precisione finita, quindi anch'essi approssimazioni di $\mathbb{Q} \subset \mathbb{R}$
- I numeri razionali sono il risultato di una divisione tra interi, lo sviluppo decimale è infinito ma periodico (e.g., 0.5000 ..., 1.3333 ..., 0.285714285714 ...)

- Primo problema: come estendiamo la notazione posizionale per poter rappresentare una frazione di un numero?
- Introduco la virgola e associo alle posizioni alla sua destra indici negativi, la formula della somma pesata si estende naturalmente

$$(11.001)_2 = \sum_{i=0}^2 b_i 2^i + \sum_{i=-3}^{-1} b_i 2^i = 1 \times 2^0 + 1 \times 2^1 + 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = (3.125)_{10}$$

- Con questo procedimento posso convertire da base 2 a base 10 un numero con parte frazionaria
- Assumiamo per semplicità che le parti intere siano sempre naturali, anche se possiamo facilmente generalizzare agli interi pensandole codificate in C2

Da base 10 a base 2: algoritmo iterativo delle moltiplicazioni (il «duale» di quello delle divisioni)

Dato $(I.F)_{10}$ da convertire nella base B=2:

- 1. *I* si converte in binario naturale;
- 2.Moltiplicare .F per 2
- 3.La parte intera del risultato diventa la prima cifra più significativa che resta da calcolare;
- **4.**Tornare a **2** considerando la parte frazionaria del risultato al posto di .*F*;

Si termina quando:

- 1. la parte frazionaria del risultato è 0
 - In questo caso il numero frazionario può essere rappresentato con un numero finito di cifre senza perdita di approssimazione! Succede solo ai numeri del tipo $p(2^{-q})$ con $p,q\in\mathbb{N}$, ad esempio $7(2^{-2})=\frac{7}{4}=1.75$
- 2. Abbiamo finito i bit: troncamento o arrotondamento

Esercizio convertire in binario $(4.4375)_{10}$ Parte intera 100, parte frazionaria:

```
.4375 \times 2 = .875 parte intera 0

.875 \times 2 = 1.75 parte intera 1

.75 \times 2 = 1.5 parte intera 1

.5 \times 2 = 1.0 parte intera 1
```

Risultato: $(100.0111)_2$

Esercizio convertire in binario $(10.76)_{10}$ parte intera 1010, parte frazionaria:

```
.76 \times 2 = 1.52 parte intera 1

.52 \times 2 = 1.04 parte intera 1

.04 \times 2 = .08 parte intera 0

.08 \times 2 = .16 parte intera 0

.16 \times 2 = .32 parte intera 0

\vdots
```

Risultato: $(1010.11000 ...)_2$

Troncamento e arrotondamento

- Alcuni numeri frazionari richiedono un numero di cifre dopo la virgola molto alto, in certi casi anche infinito. Noi però abbiamo sempre a disposizione un numero finito e limitato di bit
- Troncamento: genero cifre fino a quando esaurisco i bit e lascio così
- Esempio di prima: $(10.76)_{10} \rightarrow (1010.11000010100 ...)_2$ se in totale avessi 6 bit \rightarrow 1010.11 $\frac{000010100}{...}$
- Esempio in base 10: $\pi = 3.14159265358979323846264338327950288419716939 ... <math>\rightarrow 3.1415$
- Il troncamento è sempre un arrotondamento **verso lo zero** (per difetto sui positivi, per eccesso sui negativi)
- Arrotondamento: scarto le cifre come nel troncamento, ma scelgo se arrotondare per eccesso o per difetto cercando di minimizzare l'errore di approssimazione
- Esercizio arrotondare $(101.11011010100)_2$: per eccesso 101.110 + 000.001 = 101.111
- Esercizio arrotondare $(0.001010011010100)_2$: per difetto 0.00101 (come troncamento)

- Abbiamo visto come funziona la notazione posizionale in base 2 per i numeri con parte frazionaria, ma per avere un sistema di numerazione non basta: dobbiamo prendere una decisione fondamentale su come organizzare gli n bit di cui disponiamo
- Come ripartisco gli n bit tra parte intera e frazionaria? ($n=n_I+n_F$)
- La risposta a questa domanda ha implicazioni forti sulla rappresentazione dei reali e sta alla base dei due metodi principali che vediamo:
 - Rappresentazione in virgola fissa
 - Rappresentazione in virgola mobile

Virgola fissa

- Assegno un numero di bit n_I alla parte intera, i restanti $n-n_I=n_F$ a quella frazionaria e mantengo questa ripartizione per sempre
- Nel nostro primo esempio su n=5 bit con il numero 11.001 abbiamo usato $n_I=2$ bit per la parte intera e $n_F=3$ bit per la parte frazionaria
- La virgola non cambia mai posizione. Ha sempre n_I cifre alla sua sinistra e n_F alla sua destra, essendo implicita può essere omessa (non uso bit per indicare la sua posizione nel numero)
- **Domanda**: quale è il numero massimo rappresentabile? Risposta: $2^{n_I} 1 + \sim 1 \cong 2^{n_I}$ nell'esempio sopra è $(11.111)_{C2} = (3.875)_{10}$, cioè quasi $4 \cong 4$
- **Domanda**: quale è il numero più vicino allo 0 rappresentabile?
- Risposta: 2^{-n_F}
- 2^{-n_F} è il contributo più piccolo possibile dato da un bit nella nostra codifica, è anche la differenza di valore tra due rappresentazioni numeriche successive (due tacche): viene anche chiamato **precisione**

• Più cifre dedichiamo alla parte frazionaria, più piccola è la precisione e più fitte sono le tacche: otteniamo una approssimazione migliore

Virgola mobile

- Nella rappresentazione in virgola mobile la virgola **non ha un posizione prefissata**, ci permette di rappresentare nella stessa codifica i numeri: 11.011 e -0.0001111; queste due scritture non possono coesistere nello stesso codice a virgola fissa!
- La posizione della virgola non è più implicita, dobbiamo «consumare» bit per dire dove sta
- Dati *n* bit, la notazione del numero è suddivisa in tre campi:
 - 1 bit per il segno s del numero (0 per dire positivo, 1 per dire negativo)
 - n_e bit che codificano un numero intero con segno detto esponente e
 - n_m bit che codificano un numero frazionario positivo in virgola fissa detto mantissa m

Come si calcola il valore che questi tre campi rappresentano?

Con questa formula: $(-1^s) \times m \times 2^e$ L'esponente fa muovere la virgola!

Questa notazione è anche detta «scientifica»

I due esempi precedenti (esponente scritto in base 10):

0 1 ...0001.1011 1 -4 ...00001.111

Virgola mobile

- Per semplicità e convenienza di notazione introduciamo la forma normalizzata
- Il numero in virgola mobile è normalizzato se la parte intera della mantissa ha una sola cifra significativa
- In base 2 implica che la mantissa è sempre fatta così $1.10110 \dots$, significa anche che 1. è implicito
- Rende più semplici alcune operazioni, come i confronti:
- Domanda: chi è il maggiore tra 1101×2^{-1} e 10.11×2^{1} (non normalizzati)
- Domanda riformulata: chi è il maggiore tra 1.101×2^2 e 1.011×2^2 (normalizzati)
- Nel secondo caso è più facile rispondere! Basta confrontare gli esponenti (ordini di grandezza) e, se sono uguali, si confrontano le mantisse

Virgola mobile

- Facciamo un confronto tra virgola fissa e mobile, per semplicità consideriamo la base 10 (lo stesso vale per una base B generica)
- Supponiamo di avere a disposizione n=6 cifre decimali e un bit di segno che trascuriamo
- Per la virgola fissa assegniamo 3 cifre alla parte intera e 3 a quella frazionaria es: 123.447, 003.012, etc. ...
- Per la virgola mobile assegniamo 4 cifre alla mantissa (di cui una per la parte intera) e 2 all'esponente con segno, es 1.122×10^{-21} , 0.043×10^{04} , etc. ...
- Numero massimo? Virgola fissa: $999.999 \cong 10^3$, virgola mobile $9.999 \times 10^{99} \cong 10^{100}$, oltre: overflow
- Numero più vicino allo zero? Virgola fissa: $000.001 = 10^{-3}$, virgola mobile $0.001 \times 10^{-99} = 10^{-102}$, più vicino allo zero: underflow
- La rappresentazione in virgola mobile, a differenza di quella in virgola fissa, ci consente di scrivere numeri molto grandi e molto piccoli! Ma come è possibile se abbiamo solo 6 cifre e quindi il numero di numeri diversi (le tacche) è lo stesso*?
- La differenza sta in come le tacche sono distribuite sulla linea!
- Virgola fissa: precisione costante

Virgola mobile: precisione variabile (con l'esponente)

Lo standard IEEE 754

- L'implementazione della rappresentazione in virgola mobile dentro i calcolatori moderni è regolata da uno standard: l'IEEE-SA Standard n. 754 for Floating-Point Arithmetic (in breve, IEEE 754)
- Formato a precisione singola (detto «float») su 32 bit (quello che vediamo)
- Formato a precisione doppia (detto «double») su 64 bit
- Regola: in precisione singola un numero in virgola mobile è fatto così

s: 1 bit		1	E (esp	oner	nte) s	u 8 bi	t											m (mant	tissa)	su 23	bit									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	5	3	2	1	0

- Questi 32 bit possono rappresentare:
 - 1. Numeri in virgola mobile normalizzati
 - Numeri in virgola mobile non normalizzati (detti sub-normalizzati o de-normalizzati)
 - 3. Codici speciali

Lo standard IEEE 754: Numeri normalizzati

- Se 0 < E < 255 (binario naturale) allora i 32 bit stanno codificando un numero normalizzato. Di conseguenza dobbiamo interpretare i 3 campi in questo modo:
- s è il segno del numero (0 per dire positivo, 1 per dire negativo)
- m è la parte frazionaria del numero assunto in forma normalizzata: $(1.m)_2$, dove 1. è implicito (ricordiamoci che siamo in base 2!)
- E è il valore dell'esponente **a cui è stato sommato 127**, si dice «in eccesso» 127, quindi il vero esponente è e=E-127
- Il numero rappresentato è $(-1)^s \times 1. m \times 2^e$
- Esercizio: cosa rappresenta il seguente numero in formato IEEE 754 a precisione singola?

s: 1 bit		j	E (esp	oner	nte) s	u 8 bi	it											m (mant	tissa)	su 23	bit									
1	1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	5	3	2	1	0

- Risposta:
 - $E = 1 \times 2^7 + 1 \times 2^0 = 128 + 1 = 129$ quindi siamo di fronte ad un numero normalizzato
 - Esponente e = E 127 = 2, mantissa 1.01100
 - Spostamento della virgola $1.01100 \times 2^2 = 101.1$, in base $10: 1 \times 2^2 + 1 \times 2^0 + 1 \times 2^{-1} = 4 + 1 + \frac{1}{2} = 5.5$

Lo standard IEEE 754: Numeri normalizzati

- Esercizio: rappresentare il valore 3.25 in formato IEEE 754 a precisione singola
- Converto in binario la parte intera 11 e la parte frazionaria .01
- Normalizzo $11.01 = 1.101 \times 2^{1}$
- $s = 0, E = 1 + 127 = 128 = (10000000)_2, m = 101000 \dots$

s: 1 bit		j	E (esp	oner	nte) s	u 8 b	it											m (mant	issa)	su 23	bit									
0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	5	3	2	1	0

Lo standard IEEE 754: Numeri de-normalizzati

- Se E=0 e $m\neq 0$ allora i 32 bit stanno codificando un numero **sub-normalizzato**. Di conseguenza dobbiamo interpretare i 3 campi in questo modo:
- s è il segno del numero (0 per dire positivo, 1 per dire negativo)
- m è la parte frazionaria del numero la cui parte intera è assunta essere 0: $(0,m)_2$, dove 0. è implicito
- E viene scartato e si assume e = -126 (attenzione! Non -127)
- Il numero rappresentato è $(-1)^s \times 0.m \times 2^{-126}$
- I numeri de-normalizzati ci aiutano a infoltire la rappresentazione nelle vicinanze dello 0, ma non solo ...

Lo standard IEEE 754: risoluzione

- Esercizio: numero normalizzato più vicino allo 0?
- Risposta: $\nu_0 = 1.000 ... \times 2^{-126} = 2^{-126} \cong 1.17 \times 10^{-38}$
- Esercizio: chi è il successivo?
- Risposta: $v_1 = 1.00 \dots 001 \times 2^{-126} = (1 + 2^{-23}) \times 2^{-126} = 2^{-126} + 2^{-149} \cong 1.17 \times 10^{-38} + 1.4 \times 10^{-45}$

- Esercizio: numero de-normalizzato più vicino allo 0?
- Risposta: $\delta_0 = 0.000 \dots 1 \times 2^{-126} = 2^{-149} \cong 1.4 \times 10^{-45}$
- Esercizio: chi è il successivo?
- Risposta: $\delta_1 = 0.00 \dots 010 \times 2^{-126} = 2 \times \delta_0 = 2^{-148} \cong 2.8 \times 10^{-45}$

Nelle vicinanze dello 0 otteniamo una risoluzione maggiore e localmente costante!

Lo standard IEEE 754: codici speciali

Valore di <i>E</i>	Valore di <i>m</i>	Cosa rappresentano i 32 bit in IEEE 754?
0 < E < 255	qualsiasi	Numero normalizzato
E = 0	$m \neq 0$	Numero de-normalizzato
E = 0	O	
E = 0	m = 0	± 0 (a seconda di s)
E = 255	m = 0	\pm ∞ (a seconda di s)
E = 255	$m \neq 0$	NaN («Not a Number»)

- Due codifiche per lo 0! (ma con i reali potrebbe non essere ridonante...)
- NaN è un simbolo che indica il risultato di una operazione non permessa, ad esempio $\frac{12.45}{0}$, $\sqrt{-9}$, $\infty \infty$, $\log(-5)$, $\frac{0}{0}$...

Lo standard IEEE 754: considerazioni

- Perché quel formato? Perché sommare 127 al vero valore dell'esponente?
- Riduce la complessità dell'hardware che deve manipolare questi numeri, facilitando alcune operazioni frequenti
- Esempio: confronto fra due numeri in IEEE 754, chi è il maggiore?
 - Se i segni sono diversi è immediato (il maggiore è quello con s=0)
 - Se i segni sono uguali basta confrontare i restanti bit come si faceva con i naturali! L'esponente, in posizione più alta, domina i bit della mantissa e il segno non va gestito perché non è codificato esplicitamente (eccesso 127)
- Per un numero generico di bit n, l'eccesso si calcola come $K=2^{n-1}-1$, l'eccesso-K è un altro modo di rappresentare numeri interi
- In generale le operazioni in virgola mobile richiedono hardware più complesso delle corrispettive svolte su numeri naturali e interi. Sono però anche le più frequenti che ci serve svolgere, visto che molti fenomeni del mondo sono descritti da numeri reali (che noi approssimiamo)
- Negli elaboratori di solito c'è una unità dedicata a queste operazioni (floating-point unit, o co-processore in virgola mobile) e il numero di operazioni in virgola mobile che una CPU può svolgere in un intervallo di tempo è una metrica della sua potenza di calcolo: FLOPS (Floating-point Operations per Second)

Considerazioni finali

- Abbiamo visto modi di rappresentare l'informazione numeri utilizzando simboli binari, 1 e 0, che gli elaboratori sanno rappresentare e manipolare in hardware
- In diversi linguaggi di programmazione, il programmatore ha accesso alla scelta della rappresentazione da usare mediante la specifica del tipo.
- Ad es. in Cint significa di solito 32 bit in C2, unsigned int 32 bit in naturale, float IEEE 754 precisione singola, double IEEE 754 precisione doppia. In Go è analogo, in JavaScript i «Number» sono IEEE 754 in doppia precisione