Introduction to Systems Engineering Synthesis and Feedback

Jean-Charles Chaudemar

ISAE-SUPAERO

1MAE003 - Introduction to Systems Engineering

Get the gist of the course

Troubleshooting of Rodin

Modelling languages

Outline

Get the gist of the course

2 Troubleshooting of Rodin

Modelling languages

Important ideas - 1/2

- Systems engineering enables the realisation of a baseline for the development of an intended complex system
- System engineer is in charge of all processes required to achieve this baseline
- Requirements are the main shape of this baseline for early design
- SE is of utmost importance to minimize requirement errors

Important ideas - 1/2

- Systems engineering enables the realisation of a baseline for the development of an intended complex system
- System engineer is in charge of all processes required to achieve this baseline
- Requirements are the main shape of this baseline for early design
- SE is of utmost importance to minimize requirement errors

Economical stakes

Tight relationship with the project management

Important ideas - 2/2

- Modelling is a technics for studying abstract system according to specific aspects e.g. mechanical models for structural stress, mathematical models to study physics and behaviour
- Model analysis focusing on properties like safety, deadlock or liveness
- Output for requirement-related document: Users' Requirement Document, Technical Requirement Document, System Architecture Document

Important ideas - 2/2

- Modelling is a technics for studying abstract system according to specific aspects e.g. mechanical models for structural stress, mathematical models to study physics and behaviour
- Model analysis focusing on properties like safety, deadlock or liveness
- Output for requirement-related document: Users' Requirement Document, Technical Requirement Document, System Architecture Document

Main advantages

- Re usability
- Sharing viewpoints and understanding
- Early implementation, Verification & Validation

Event-B

- Formal language in order to state required properties and to find out new ones
- Models correct by construction thanks to theorem solvers/provers
- Refinement principle enables to tackle the complexity through progressive modelling
- Many Proof Obligation rules generated and discharged automatically

Outline

Get the gist of the course

- Troubleshooting of Rodin
- Modelling languages

Tips for Rodin - 1/3

If you are not using the same PC environment, if your workspace is blind and if you don't know why, then do this:

- Create a new workspace
- Select File/Import/General/Project from Folder or Archive
- Click Next

THEN pray to get your project !!!

Tips for Rodin - 2/3

Reasons why an invariant PO could not be discharged automatically:

- Not automatical proof, need to try several provers
- Slow PC, so the prover would stop before achieving the proof end
- Invariants are incomplete or wrong
- Missing a guard, or incorrect guard(s)

Reasons why a guard PO (refinement) could not be discharged automatically:

- Refined event incomplete
- Current guard(s) inconsistent with regard to the previous abstract event

9/14

Tips for Rodin - 3/3

- Follow and respect scrupulously the rules. For instance, the deadlock freedom rule involves the guards of each guarded event, then you have to use exactly the same guards.
- Do not try to modify them in order to get a discharged PO rule.
- The DLF rule is a theorem, therefore if it is correctly written, you need to select a prover in order to discharge it.
- Do not hesitate to remove one invariant and to write it at the bottom of your invariants list. Sometimes, the position of one invariant may affect theorem provers.

Outline

Get the gist of the course

- 2 Troubleshooting of Rodin
- Modelling languages

Languages for MBSE

Requirement simulation tool

- Tool developed by a French company called Argosim
- Specify and validate formal requirement through simulation
- Offer a native graphical framework contrary to Rodin platform where plug-ins like B2UML or BRAMA give this graphical feature

Pros & Cons

Comparison of Event-B vs. Stimulus.

Give the Pros and Cons for Event-B

Pros

Pros & Cons

Comparison of Event-B vs. Stimulus.

Give the Pros and Cons for Event-B

Pros

- Theorem provers to validate the correctness of models by construction
- Simulation comes later after an exhaustive validation since the test does not allow to evaluate the whole space of possible values
- The formal notation sounds richer through first order predicate logic
- Refinement method gives the basis for an iterative and progressive methodology to be developed and adapted according to a specific domain

Pros & Cons

Comparison of Event-B vs. Stimulus.

Give the Pros and Cons for Event-B

Pros

- Theorem provers to validate the correctness of models by construction
- Simulation comes later after an exhaustive validation since the test does not allow to evaluate the whole space of possible values
- The formal notation sounds richer through first order predicate logic
- Refinement method gives the basis for an iterative and progressive methodology to be developed and adapted according to a specific domain

Cons

- No amenable graphical editor
- Time analysis, even if it is constrained-time and not real-time
- Visualisation of results by plotting the behaviour