

27.4 Registers

This section describes the registers of the STM.

 Table 1
 Register Overview - STM (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read	Write		Number	
CLC	Clock Control Register	0000 _H	U,SV	SV,E,P	Application Reset	7	
ID	Module Identification Register	0008 _H	U,SV	BE	Application Reset	8	
TIM0	Timer Register 0	0010 _H	U,SV	BE	Application Reset	9	
TIM1	Timer Register 1	0014 _H	U,SV	BE	Application Reset	10	
TIM2	Timer Register 2	0018 _H	U,SV	BE	Application Reset	10	
TIM3	Timer Register 3	001C _H	U,SV	BE	Application Reset	10	
TIM4	Timer Register 4	0020 _H	U,SV	BE	Application Reset	11	
TIM5	Timer Register 5	0024 _H	U,SV	BE	Application Reset	11	
TIM6	Timer Register 6	0028 _H	U,SV	BE	Application Reset	12	
CAP	Timer Capture Register	002C _H	U,SV	BE	Application Reset	12	
CMPx	Compare Register x	0030 _H +x *4	U,SV	U,SV,P	Application Reset	13	
CMCON	Compare Match Control Register	0038 _H	U,SV	U,SV,P	Application Reset	14	
CR	Interrupt Control Register	003C _H	U,SV	U,SV,P	Application Reset	16	
SCR	Interrupt Set/Clear Register	0040 _H	U,SV	U,SV,P	Application Reset	17	
TIM0SV	Timer Register 0 Second View	0050 _H	U,SV	BE	Application Reset	9	
CAPSV	Timer Capture Register Second View	0054 _H	U,SV	BE	Application Reset	13	
OCS	OCDS Control and Status Register	00E8 _H	U,SV	SV,P,OEN	Debug Reset	19	
KRSTCLR	Kernel Reset Status Clear Register	00EC _H	U,SV	SV,E,P	Application Reset	22	
KRST1	Kernel Reset Register 1	00F0 _H	U,SV	SV,E,P	Application Reset	21	

Table 1 Register Overview - STM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page Number	
		Address	Read	Write			
KRST0	Kernel Reset Register 0	00F4 _H	U,SV	SV,E,P	Application Reset	21	
ACCEN1	Access Enable Register 1	00F8 _H	U,SV	SV,SE	Application Reset	20	
ACCEN0	Access Enable Register 0	00FC _H	U,SV	SV,SE	Application Reset	20	

27.4.1 Clock Control Register

Clock Control Register

The STM clock control register is used to switch the STM on or off and to control its input clock rate. After reset, the STM is always enabled and starts counting. The STM can be disabled by setting bit DISR to 1.

CL Clo		Contro	l Regis	ter				(000	0 _H)		Ap	plicati	on Res	et Valu	e: 0000	0000 _H
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									0							
1									r							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							0						EDIS	0	DISS	DISR

Field	Bits	Туре	Description
DISR	0	rw	Module Disable Request Bit Used for enable/disable control of the STM module. Note: f_{STM} is generated by the CCU. OB No disable requested
DISS	1	r	 1_B Disable requested Module Disable Status Bit Bit indicates the current status of the STM module. 0_B STM module is enabled 1_B STM module is disabled
EDIS	3	rw	Sleep Mode Enable Control Used for module sleep mode control.
0	2	rw	Reserved Read as 0; shall be written with 0.
0	31:4	r	Reserved Read as 0; should be written with 0.

AURIX™ TC3xx

System Timer (STM)

Module Identification Register

The STM Module Identification Register ID contains read-only information about the module version.

ID Modul	e Ident	ificatio	on Regi	ster			(000	8 _H)		Ар	plicatio	on Res	et Valu	e: 0000	C007 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	•	ı	ı	'	•	МОГ	NUM	•	1	•	ı	•	ı	
ı								r							1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			MOD	TYPE							МОГ	REV			

Field	Bits	Туре	Description
MODREV	7:0	r	Module Revision Number MODREV defines the module revision number. The value of a module revision starts with 01 _H (first revision). Current revision is 0x7.
MODTYPE	15:8	r	Module Type This bit field defines the module as a 32-bit module: C0 _H
MODNUM	31:16	r	Module Number Value This bit field defines the module identification number for the STM: 0068 _H

27.4.2 Timer/Capture Registers

Registers TIM0 to TIM6 provide 32-bit views at varying resolutions of the underlying STM counter.

Timer Register 0

Register TIMOSV address the STM[31:0] bits at a second optional address as TIMO.

TIMO

Timer	Registe	er O				(0010 _H)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							STM_	_31_0								
<u>I</u>	I				I		I	r	I	I				I		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	1	1	1	' '	1	STM_	_31_0	' '	' '	1	1	1	' '		
								r								

Field	Bits	Туре	Description
STM_31_0	31:0	r	System Timer Bits [31:0] - STM[31:0] This bit field contains bits [31:0] of the 64-bit STM.

Timer Register 0 Second View

Register TIMOSV address the STM[31:0] bits at a second optional address as TIMO.

TIMOSV

Timer	- Registe	er 0 Se	cond V	iew		(0050 _H)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	•	•	1	1		ı	STM	_31_0	1	'	•	•				
<u>l</u>	1	1	I	I	1	1		r	I	I	1	1	1	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	•	•	ı	ı	1		STM	_31_0	ı	ı	•	•	1			
	1	1	1	1	1	1	1	r	1	I	1	1	1	1		

Field	Bits	Туре	Description
STM_31_0	31:0	r	System Timer Bits [31:0] - STM[31:0]
			This bit field contains bits [31:0] of the 64-bit STM.

Timer Register 1

TIM1

Timer	Registe	er 1				(0014 _H)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							STM	_35_4								
<u>I</u>						1	1	r					II.			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
							STM	_35_4								
	1	1	1	1	1	1	1	r	1	1	1	1	1			

Field	Bits	Туре	Description
STM_35_4	31:0	r	System Timer Bits [35:4] - STM[35:4] This bit field contains bits [35:4] of the 64-bit STM.

Timer Register 2

TIM2

Timer	Registe	er 2				(0018 _H)				Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STM	_39_8							
L	1		II.		II.			r				<u>I</u>		<u>I</u>	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	ı	ı	1	ı	1	STM	_39_8	ı	ı	ı	1	ı	1	1
1	1	ı	ı		1	ı	ı	r	1	1	1				

Field	Bits	Туре	Description
STM_39_8	31:0	r	System Timer Bits [39:8] - STM[39:8]
			This bit field contains bits [39:8] of the 64-bit STM.

Timer Register 3

TIM3

Timer	Registe	er 3				(001C _H)				Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STM_	43_12							
								r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	ı	ı	ı	ı	ı	STM_	43_12	I	I	ı	ı	ı	ı	!
								r							

Field	Bits	Туре	Description
STM_43_12	31:0	r	System Timer Bits [43:12] - STM[43:12] This bit field contains bits [43:12] of the 64-bit STM.

Timer Register 4

TIM4

Timer	Regist	er 4				(0020 _H)				Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•	ı	,	,	,	ļ.	STM_	47_16	Į.	ļ	ı	ı	ı	ļ.	'
	1	I	1	1	1	I	1	r	I	I	I	I	I	I	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	ı	ı	ı	ı	ı	STM_	47_16	I	I	ı	ı	ı	ı	ı
L	1	1				1		r			1	1	1	1	

Field	Bits	Туре	Description
STM_47_16	31:0	r	System Timer Bits [47:16] - STM[47:16]
			This bit field contains bits [47:16] of the 64-bit STM.

Timer Register 5

TIM5

1	imer	Regist	er 5				(0024 _H)				Application Reset Value: 0000 0000 _H						
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		,	,	ı	Į.	Į.	Į.	STM_	51_20		ļ	ı	Į.	Į.	Į.		
L		1	1	1	1	1	1	1	r		<u> </u>	1	1	1	1		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				ı	ı	ı	ı	STM_	51_20		!	ı	ı	ı	ı		
1									r								

Field	Bits	Туре	Description
STM_51_20	31:0	r	System Timer Bits [51:20] - STM[51:20] This bit field contains bits [51:20] of the 64-bit STM.

Timer Register 6

TIM6

Field	Bits	Туре	Description
STM_63_32	31:0	r	System Timer Bits [63:32] - STM[63:32] This bit field contains bits [63:32] of the 64-bit STM.

Timer Capture Register

CAP

Tir	mer	Captur	e Regi	ster			(002C _H)				Application Reset Value: 0000 0000 _H					
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		,	•		ı	,		STMCA	P_63_32	2	ı.			ı.		'
		<u>l</u>	İ	<u>i</u>	<u>i</u>	<u>l</u>	<u>i</u>	r	h	İ	<u>İ</u>	<u>i</u>	<u>i</u>	<u>İ</u>	<u>i</u>	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	STMCAP_63_32															
			1	1	<u> </u>	<u> </u>		r	h	I.	I .	1	1	I .	1	

Field	Bits	Туре	Description
STMCAP_63_3 2	31:0	rh	Captured System Timer Bits [63:32] - STMCAP[63:32] The capture register STMCAP always captures the STM bits [63:32] when one of the registers TIM0 to TIM6 or TIM0SV is read. This capture operation is performed in order to enable software to operate with a coherent value of all the 64 STM bits at one time stamp. This bit field contains bits [63:32] of the 64-bit STM.
			Note: Reading register TIMOSV captures also the read value for register TIM6. In this way reading TIMOSV followed by CAPSV delivers the timer values for the first read request.

Timer Capture Register Second View

CAPSV

Field	Bits	Туре	Description
STMCAP_63_3 2	31:0	rh	Captured System Timer Bits [63:32] - STMCAP[63:32] The capture register STMCAP always captures the STM bits [63:32] when one of the registers TIM0 to TIM6 or TIM0SV is read. This capture operation is performed in order to enable software to operate with a coherent value of all the 64 STM bits at one time stamp. This bit field contains bits [63:32] of the 64-bit STM.
			Note: Reading register TIMOSV captures also the read value for register TIM6. In this way reading TIMOSV followed by CAPSV delivers the timer values for the first read request.

27.4.3 Compare Registers

The compare register CMPx holds up to 32-bits; its value is compared to the value of the STM.

Compare Register x

CMPx (x=0-1)

Compa	are Reg	gister x				(0030 _H +x*4)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							СМІ	PVAL								
rw																
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
CMPVAL																
							r	w								

Field	Bits	Туре	Description
CMPVAL	31:0	rw	Compare Value of Compare Register x
			This bit field holds up to 32 bits of the compare value (right-adjusted).

Compare Match Control Register

The STM Compare Match Control Register controls the parameters of the compare logic.

CMCON

Compa	are Mat	ch Con	trol Re	egister			(003	3 _H)		Application Reset Value: 0000 000					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	0 MSTART1								0	!			MSIZE1		'
	r					I	1		r	I .		I .	rw	<u> </u>	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0 MSTART						1		0				MSIZEO	! 	
L	r						I	1	r	1	1	1	rw	1	

Field	Bits	Туре	Description
MSIZEO	4:0	rw	Compare Register Size for CMP0 This bit field determines the number of bits in register CMP0 (starting from bit 0) that are used for the compare operation with the System Timer. 00 _H CMP0[0] used for compare operation 01 _H CMP0[1:0] used for compare operation 1E _H CMP0[30:0] used for compare operation 1F _H CMP0[31:0] used for compare operation
MSTART0	12:8	rw	Start Bit Location for CMP0 This bit field determines the lowest bit number of the 64-bit STM that is compared with the content of register CMP0 bit 0. The number of bits to be compared is defined by bit field MSIZE0. 00 _H STM[0] is the lowest bit number 01 _H STM[1] is the lowest bit number 1E _H STM[30] is the lowest bit number 1F _H STM[31] is the lowest bit number
MSIZE1	20:16	rw	Compare Register Size for CMP1 This bit field determines the number of bits in register CMP1 (starting from bit 0) that are used for the compare operation with the System Timer. 00 _H CMP1[0] used for compare operation 01 _H CMP1[1:0] used for compare operation 1E _H CMP1[30:0] used for compare operation 1F _H CMP1[31:0] used for compare operation

AURIX™ TC3xx

System Timer (STM)

Field	Bits	Туре	Description
MSTART1	28:24	rw	Start Bit Location for CMP1 This bit field determines the lowest bit number of the 64-bit STM that is compared with the content of register CMP1 bit 0. The number of bits to be compared is defined by bit field MSIZE1. 00 _H STM[0] is the lowest bit number 01 _H STM[1] is the lowest bit number 1E _H STM[30] is the lowest bit number 1F _H STM[31] is the lowest bit number
0	7:5, 15:13, 23:21, 31:29	r	Reserved Read as 0; should be written with 0.

27.4.4 Interrupt Registers

Interrupt Control Register

The two compare match interrupts of the STM are controlled by the STM Interrupt Control Register.

_	n

Interru	upt Cor	ntrol Re	egister	•		(003C _H)					Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	ı	1	ı	ı	1	ı		0		1			ı	1		
	1	ı	I	1	ı	I		r	1	ı	1		1	ı	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				0					CMP1 OS	CMP1I R	CMP1 EN	0	CMP0 OS	CMP0I R	CMP0 EN	
I.		II.		r				1	rw	rh	rw	r	rw	rh	rw	

Field	Bits	Туре	Description						
CMPOEN	0	rw	Compare Register CMP0 Interrupt Enable Control This bit enables the compare match interrupt with compare register CMP0. O _B Interrupt on compare match with CMP0 disabled 1 _B Interrupt on compare match with CMP0 enabled						
CMPOIR	1	rh	Compare Register CMP0 Interrupt Request Flag This bit indicates whether or not a compare match event of compare register CMP0 has occured. CMP0IR can be cleared by software and can be set by software, too (see ISCR register). After a STM reset operation, CMP0IR is immediately set as a result of a compare match event with the reset values of the STM and the compare registers CMP0. Note: This flag does not gate the interrupt generation. i.e., even if this flag is not cleared, compare match event interrupts are forwarded if CMPxEN is set. O _B A compare match event has not been detected since the bit was						
			last cleared. 1 _B A compare match event has been detected.						
CMPOOS	2	rw	Compare Register CMP0 Interrupt Output Selection This bit determines the interrupt output that is activated on a compare match event of compare register CMP0. B. Interrupt output STMIR0 selected B. Interrupt output STMIR1 selected						

Field	Bits	Туре	Description								
CMP1EN	4	rw	Compare Register CMP1 Interrupt Enable Control This bit enables the compare match interrupt with compare register CMP1. O _B Interrupt on compare match with CMP1 disabled 1 _B Interrupt on compare match with CMP1 enabled								
CMP1IR	5	rh	Compare Register CMP1 Interrupt Request Flag This bit indicates whether or not a compare match event of compare register CMP1 has occured. CMP1IR can be cleared by software and can be set by software, too (see ISCR register). After a STM reset operation, CMP1IR is immediately set as a result of a compare match event with the reset values of the STM and the compare register CMP1. Note: This flag does not gate the interrupt generation. i.e., even if this flag is not cleared, compare match event interrupts are forwarded if CMPxEN is set. OB A compare match event has not been detected since the bit was last cleared. 1B A compare match event has been detected.								
CMP10S	6	rw	Compare Register CMP1 Interrupt Output Selection This bit determines the interrupt output that is activated on a compare match event of compare register CMP1. O _B Interrupt output STMIR0 selected 1 _B Interrupt output STMIR1 selected								
0	3, 31:7	r	Reserved Read as 0; should be written with 0.								

Interrupt Set/Clear Register

The bits in the STM Interrupt Set/Clear Register make it possible to set or cleared the compare match interrupt request status flags of register ICR.

Note: Reading register ISCR always returns 0000 0000_H.

ISCR

Interr	upt Set	/Clear	Regist	er			(0040) _H)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
								0								
<u> </u>							I	r								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				1	•)			1			CMP1I RS	CMP1I RR	CMP0I RS	CMP0I RR	
						,	•					W	W	W	W	

AURIX™ TC3xx

System Timer (STM)

Field	Bits	Туре	Description
CMPOIRR	0	W	Reset Compare Register CMP0 Interrupt Flag
			0 _B Bit ICR.CMP0IR is not changed.
			1 _B Bit ICR.CMP0IR is cleared.
CMPOIRS	1	w	Set Compare Register CMP0 Interrupt Flag
			0 _B Bit ICR.CMP0IR is not changed.
			1 _B Bit ICR.CMP0IR is set. The state of bit CMP0IRR is "don't care" in this
			case.
CMP1IRR	2	w	Reset Compare Register CMP1 Interrupt Flag
			0 _B Bit ICR.CMP1IR is not changed.
			1 _B Bit ICR.CMP1IR is cleared.
CMP1IRS	3	w	Set Compare Register CMP1 Interrupt Flag
			0 _B Bit ICR.CMP1IR is not changed.
			1 _B Bit ICR.CMP1IR is set. The state of bit CMP1IRR is "don't care" in this
			case.
0	31:4	r	Reserved
			Read as 0; should be written with 0.

27.4.5 Interface Registers

OCDS Control and Status Register

The OCDS Control and Status (OCS) register is cleared by Debug Reset.

The OCS register can only be written when the OCDS is enabled.

If OCDS is being disabled, the OCS register value will not change. When OCDS is disabled the OCS suspend control is ineffective.

ocs

OCDS	Contro	l and S	tatus R	egiste	r		(00E8	3 _H)			Debug Reset Value: 0000 0000 _H				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	0	SUSST A	SUS_P		SI	JS					') D			
	r	rh	W		r۱	N				I.		r	I.		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1				0	1	1	1					0	1
	1					r				1	1	1	1	rw	

Field	Bits	Туре	Description						
SUS	27:24	rw	OCDS Suspend Control Controls the sensitivity of STMx to the suspend signal coming from CPUx (CPUxSUSOUT) 0 _H Will not suspend 1 _H Reserved, do not use this combination 2 _H 64-bit counter will be stopped others, Reserved, do not use this combination						
SUS_P	28	w	SUS Write Protection SUS is only written when SUS_P is 1, otherwise unchanged. Read as 0.						
SUSSTA	29	rh	Suspend State 0 _B Module is not (yet) suspended 1 _B Module is suspended						
0	2:0	rw	Reserved Read as 0; must be written with 0.						
0	23:3, 31:30	r	Reserved Read as 0; must be written with 0.						

Table 2 Access Mode Restrictions of OCS sorted by descending priority

Mode Name	Acce	ss Mode	Description
write 1 to SUS_P	rw	SUS	
(default)	r	SUS	

Access Enable Register 0

The Access Enable Register 0 controls write access for transactions with the on chip bus master TAG ID 000000B to 011111B (see On Chip Bus chapter for the products TAG ID <-> master peripheral mapping). The BPI_FPI is prepared for a 6-bit TAG ID. The registers ACCEN0 / ACCEN1 are providing one enable bit for each possible 6-bit TAG ID encoding.

Mapping of TAG IDs to ACCENO.ENx: ENO -> TAG ID 000000B, EN1 -> TAG ID 000001B, ..., EN31 -> TAG ID 011111B.

ACCENO

Access	Access Enable Register 0 (00FC _H)									Application Reset Value: FFFF FFFF,							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
EN31	EN30	EN29	EN28	EN27	EN26	EN25	EN24	EN23	EN22	EN21	EN20	EN19	EN18	EN17	EN16		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
EN15	EN14	EN13	EN12	EN11	EN10	EN9	EN8	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		

Field	Bits	Туре	Description
ENn (n=0-31)	n	rw	Access Enable for Master TAG ID n
			This bit enables write access to the module kernel addresses for transactions with the Master TAG ID n O _B Write access will not be executed 1 _B Write access will be executed

Access Enable Register 1

The Access Enable Register 1 controls write access for transactions with the on chip bus master TAG ID 100000B to 111111B (see On Chip Bus chapter for the products TAG ID master peripheral mapping).

Mapping of TAG IDs to ACCEN1.ENx: EN0 -> TAG ID 100000B, EN1 -> TAG ID 100001B, ..., EN31 -> TAG ID 111111B.

ACCEN1

Access	s Enable	e Regis	ter 1			(00F8 _H)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			ı	•	'	•		0	•		ı	ı	'	'	'	
1	1	I.			1	1		r		I.			1	1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	ı	ı				' '	0		ı					'	
	1	1	1	1	1	1	1	r	1	1	1	1	1	1		

Field	Bits	Туре	Description
0	31:0	r	Reserved
			Read as 0; should be written with 0.

Kernel Reset Register 0

The Kernel Reset Register 0 is used to reset the related module kernel. To reset a module kernel it is necessary to set the RST bits by writing with ´1´ in both Kernel Reset Registers related to the module kernel that should be reset (kernel 0 or kernel 1). In order support modules with two kernel the BPI_FPI provides two set of kernel reset registers. The RST bit will be re-set by the BPI with the end of the BPI kernel reset sequence.

Kernel Reset Register 0 includes a kernel reset status bit that is set to '1' by the BPI_FPI in the same clock cycle the RST bit is re-set by the BPI_FPI. This bit can be used to detect that a kernel reset was processed. The bit can be re-set to '0' by writing to it with '1'.

KRST0 Kernel		Regist	er 0				(00F4	4 _H)		Ар	plicatio	on Res	et Valı	ıe: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•	•	'	•	'	•	'	0	•	'		ı	1	" '	
	1		1		I			r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	1	' ') D	1	1	1	1	1	1	RSTST AT	RST
,					•		r							rh	rwh

Field	Bits	Туре	Description								
RST	0	rwh	Kernel Reset This reset bit can be used to request for a kernel reset. The kernel reset will be executed if the reset bits of both kernel registers are set. The RST bit will be cleared (re-set to '0') by the BPI_FPI after the kernel reset was executed. O _B No kernel reset was requested 1 _B A kernel reset was requested								
RSTSTAT	1	rh	Kernel Reset Status This bit indicates wether a kernel reset was executed or not. This bit is set by the BPI_FPI after the execution of a kernel reset in the same clock cycle both reset bits. This bit can be cleared by writing with '1' to the CLR bit in the related KRSTCLR register. O _B No kernel reset was executed 1 _B Kernel reset was executed								
0	31:2	r	Reserved Read as 0; should be written with 0.								

Kernel Reset Register 1

The Kernel Reset Register 1 is used to reset the STM kernel. STM kernel registers related to the Debug Reset (Class 1) are not influenced. To reset the STM kernel it is necessary to set the RST bits by writing with '1' in both Kernel Reset registers. The RST bit will be cleared with the end of the BPI kernel reset sequence.

KRST1

Kernel	Reset	Regist	er 1				(00F) _H)		Ар	plicati	on Res	et Valu	e: 000	0 0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•		ı	'	•	ı		D	•	•	•	ı			
	1	<u> </u>	<u> </u>	1	1	<u> </u>	1	r	1	1	1	<u> </u>	<u> </u>	<u> </u>	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							0								RST
1	1	1	1	1	1	1	r	1	1	1	1	1	1	1	rwh

Field	Bits	Туре	Description
RST	0	rwh	Kernel Reset
			This reset bit can be used to request for a kernel reset. The kernel reset will be executed if the reset bits of both kernel reset registers is set. The RST bit will be cleared (re-set to '0') after the kernel reset was executed. O _B No kernel reset was requested 1 _B A kernel reset was requested
0	31:1	r	Reserved Read as 0; should be written with 0.

Kernel Reset Status Clear Register

The Kernel Reset Register Clear register is used to clear the Kernel Reset Status bit (<>_KRST0.RSTSTAT).

KRSTCLR

Kerne	Gernel Reset Status Clear Register						(00EC _H)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	1	1			ı			0	1					1			
1	Ш	I	l	l	I	l		r		l	l	l	l				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		1			1		0	1	1					1	CLR		
		•			•		r								W		

Field	Bits	Туре	Description
CLR	0	w	Kernel Reset Status Clear
			Read always as 0.
			0 _B No action
			1 _B Clear Kernel Reset Status KRST0.RSTSTAT
0	31:1	r	Reserved
			Read as 0; should be written with 0.