Introduction to Data Science SKKU University, Summer 2015

Prof. Jevin D. West
University of Washington
Lecture 5 – July 3, 2015

Week in Review

- Introduction to Data Science
- Data Science Opportunities
- Version Control Systems (Github)
- Introduction to R

Next Week

- Management in Data Science
- Experimental Design
- Cloud Computing
- Probability Distributions
- Central Limit Theorem
- Visualizing Data in R (ggplot)
- Data Science Examples

Schedule

* The schedule will update regularly so make sure to check it regularly

- Week 1
 - Introduction to R (and python)
 - Version Control Systems
 - Opportunities in Data Science
 - Data Ingestion
 - Assignments: Quiz #1, Assign. #1, Group Project (Data Set Identified)
- Week 2
 - Cloud Computing
 - Experimental Design
 - Basics in probability and statistics
 - Assignments: Quiz #2, Assign. #2, Group Project (Question, Preliminary Stats)
- Week3
 - Basics in machine learning
 - Network analysis
 - Information visualization
 - Data Ethics
 - Assignments: Quiz #3, Assign. #3, Group Project (Final Paper, Final Presentation)

Agenda

■ 9:30 – 10:00 Black Box

■ 10:00 – 10:30 R Functions

■ 10:30 – 10:40 Break

■ 10:40 – 11:30 Empirical Frameworks

■ 11:30 – 12:00 Questions

Logistics

- Attendance
- Repositories (individual and team)
- Class materials can be found in this repository:
 - https://github.com/jevinw/SKKU_DataScience_2015

Schedule

- DUE Today: Assignment #1
- DUE Today: Script and figures from last class
- DUE Today: Data set identified (repository)
- DUE Tuesday, July 7: Question Identified with a 1page description and answers to the following:
 - Why are you investigating this question?
 - How are you going to try and answer your question?
 - What are the limitations of your question?
 - Who else has answered this question? How will you build upon other work done with this question?
 - Provide references
- Wednesday, July 8: Quiz #2
- DUE Friday, July 10: Assignment #2

Empirical Frameworks

Readings

- Thomas Davenport (2006). "Competing on Analytics", Harvard Business Review, Jan. 2006, Vol. 84 Issue 1, pp. 99-107
- The Fourth Paradigm, Jim Gray on eScience:
 A Transformed Scientific Method, pgs xvii –
 xxxi

Science Paradigms

Jim Gray

Empirical

Theoretical

Computational

Data Exploration

⁻ The Fourth Paradigm, Jim Gray on eScience: A Transformed Scientific Method, pgs xvii – xxxi

Empirical Frameworks

- Empirical (Merriam-Webster):
 - originating in or based on observation or experience
 - 2. relying on experience or observation alone often without due regard for system and theory
 - capable of being verified or disproved by observation or experiment

Empirical frameworks and DS

- You have a question, a theory, or a decision
 - Note that this is not a foregone conclusion!
- How to answer, test, decide based on data?
 - This is your empirical framework
- Key components
 - What data will you use?
 - What empirical methods?
 - How will you communicate results?

Primary types of frameworks

- Experimental
 - You are able to affect the environment
- Observational / Non-experimental
 - You have no/limited control over the environment
- Middle ground: Quasi-Experimental
 - You look for something resembling an experiment
- Any of the above can be causal or descriptive

Experimental

- You can affect the environment
- Common scenarios:
 - You can offer subjects incentives or promotions
 - You can assign different treatments
- Examples
 - AT&T: What causes people to churn?
 - Kaiser: How to reduce patient recidivism?
 - IMT 589: How to get people to read?

Experimental

PROS

- Well-defined counterfactual
- Causal inference simpler
- Greater statistical power

CONS

- Difficult to implement
- Can cause confusion
- Can create inequity
- May be unethical

Observational

- You have no or limited control over the environment
- Common scenarios
 - Want to know the effect of something in the past
 - You want to segment customers
- Examples
 - AT&T: What causes people to churn?
 - Kaiser: How to reduce patient recidivism?
 - IMT 589: How to get people to read?

Observational

PROS

- Easy to implement
- Does not interfere with normal operations

CONS

- Weak counterfactual
- Correlation vs. causality
- Limited control

Quasi-Experimental

- Idea: Look for something resembling an experimental intervention
- Common Scenarios
 - Natural experiments
 - Policy experiments
- Examples:
 - Weather patterns and air pollution
 - Schlenker & Walker (2012): "Airports, Air Pollution, and Contemporaneous Health"
 - College scholarships and lifetime earnings
 - Alex Solis (2012): "Credit access and college enrollment"

Questions?

- Empirical Frameworks
 - Experimental
 - Observational
 - Quasi-experimental

Empirical frameworks and final projects

- Setting up a solid framework is critical!
- Start with a single, well-defined, intriguing and non-obvious question
 - How did Twitter behavior change in response to the crisis in Syria?
 - Is the sentiment of Yelp! reviews correlated with global and local economic trends?
 - This is not easy!
- What sub-questions you must answer along the way?
- Plan out your analysis by listing every step and every figure/table you will produce in advance

"Data Science" and "Big Data"

Homework

Big Data

