Introduction aux systèmes UNIX -Preprocessing and mapping of NGS data École de bioinformatique AVIESAN-IFB 2018

**Denis Puthier, TAGC/Inserm**, U1090, denis.puthier@univ-amu.fr

Claire Toffano-Nioche, CNRS, claire.toffano-nioche@u-psud.fr

Julien Seiler, IGBMC, seilerj@igbmc.fr

Gildas le Corguillé, lecorguille@sb-roscoff.fr

Short URL:

https://bit.ly/2-pre\_processessing\_and\_mapping\_2021

Et tout le staff!!

#### Accès au Jupyter Lab (s'il ne tourne pas déjà)

- Navigateur : <a href="https://jupyterhub.cluster.france-bioinformatique.fr/">https://jupyterhub.cluster.france-bioinformatique.fr/</a>
- Accès au service avec votre couple "username/password"
- Choisir l'option "Medium" et démarrer le serveur (bouton "start")



#### Présentation du jeu de données

- Immuno-précipitation de chromatine (ChIP-Seq).
  - Un traitement (ADN fragmenté + immunoprécipitation par Ac. anti-ESR1 )
  - Un control (~ ADN fragmenté)



#### Research

## GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility

Vasiliki Theodorou, <sup>1</sup> Rory Stark, <sup>2</sup> Suraj Menon, <sup>2</sup> and Jason S. Carroll <sup>1,3,4</sup>

<sup>1</sup>Nuclear Receptor Transcription Lab, <sup>2</sup>Bioinformatics Core, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 ORE, United Kingdom; <sup>3</sup>Department of Oncology, University of Cambridge, Cambridge CB2 OXZ, United Kingdom

## Télécharger des fichiers

- On peut utiliser un navigateur (e.g Cyberduck) pour téléverser sur le serveur
- Mieux, on peut effectuer directement le téléchargement depuis le terminal si on dispose de l'URL.
  - On utilise alors la commande wget.

```
$ cd /shared/projects/$ cd chip-seq/fastq
$ pwd # print working directory
$ wget https://zenodo.org/record/5571592/files/siNT_ER_E2_r3_chr21.fastq.gz
$ ls
```

## **Decompression**

- La commande gunzip.
  - La commande gunzip permet de décompresser un fichier au format \*.gz. Sa syntaxe générale est la suivante:
    - gunzip [-cfhkLNqrtVv] [-S suffix] file [file [...]]

```
$ # on décompresse le fichier *.gz.
$ gunzip siNT_ER_E2_r3_chr21.fastq.gz
$ # Regardez l'extension du fichier siNT_ER_E2_r3_chr21.fastq
$ # Que remarquez vous ?
$ 1s
```

#### Les lectures brutes (raw reads) sont au format fastq

```
Header
Sequence
+ (optional header)
Quality
```

- La qualité est généralement au format Sanger (cf prochaine diapo).
- Exercice
  - Utilisez une des commandes vues précédemment pour visualiser le contenu du fichier fastq

# Les lectures brutes (raw reads) sont au format fastq

```
Header
Sequence
+ (optional header)
Quality
```

```
$ # Vous pouvez utiliser la commande less pour visualiser le contenu du
$ # fichier.
$ # q pour quitter
$ less siNT ER E2 r3 chr21.fastq
```

#### Le score de qualité Sanger

- Une valeur de score Sanger est attribuée à chaque base séquencée
  - Basée sur p, la probabilité d'erreur (i.e. que la base soit fausse)

```
Q_{Sanger} = -10*log_{10}(p)
p = 0.1 \Leftrightarrow Q_{Sanger} = 10
p = 0.01 \Leftrightarrow Q_{Sanger} = 20
p = 0.001 \Leftrightarrow Q_{Sanger} = 30
```

- Les scores sont encodés en ASCII 33
  - Objectif : compresser les données en diminuant le nombre de caractères utilisés pour encoder la qualité.
- Le score de qualité Sanger varie entre 0 et 40

#### Le score de qualité Sanger

- ! correspond à 0
- "correspond à 1
- # correspond à 2
- \$ correspond à 3
- ...
- I correspond à 40

| Dec | Hex | Char             | Dec | Hex | Char  |   | Dec | Hex | Char | Dec | Hex | Char |
|-----|-----|------------------|-----|-----|-------|---|-----|-----|------|-----|-----|------|
| 0   | 00  | Null             | 32  | 20  | Space | t | 64  | 40  | 0    | 96  | 60  |      |
| 1   | 01  | Start of heading | 33  | 21  | 1     |   | 65  | 41  | A    | 97  | 61  | a    |
| 2   | 02  | Start of text    | 34  | 22  | er :  |   | 66  | 42  | в    | 98  | 62  | b    |
| 3   | 03  | End of text      | 35  | 23  | #     |   | 67  | 43  | С    | 99  | 63  | c    |
| 4   | 04  | End of transmit  | 36  | 24  | ş     |   | 68  | 44  | D    | 100 | 64  | d    |
| 5   | 05  | Enquiry          | 37  | 25  | *     |   | 69  | 45  | E    | 101 | 65  | e    |
| 6   | 06  | Acknowledge      | 38  | 26  | ٤     |   | 70  | 46  | F    | 102 | 66  | £    |
| 7   | 07  | Audible bell     | 39  | 27  | 1     |   | 71  | 47  | G    | 103 | 67  | g    |
| 8   | 08  | Backspace        | 40  | 28  | (     |   | 72  | 48  | н    | 104 | 68  | h    |
| 9   | 09  | Horizontal tab   | 41  | 29  | )     |   | 73  | 49  | I    | 105 | 69  | i    |
| 10  | OA  | Line feed        | 42  | 2A  | *     |   | 74  | 4A  | J    | 106 | 6A  | j    |
| 11  | OB  | Vertical tab     | 43  | 2B  | +     |   | 75  | 4B  | K    | 107 | 6B  | k    |
| 12  | oc  | Form feed        | 44  | 2C  | ,     |   | 76  | 4C  | L    | 108 | 6C  | 1    |
| 13  | OD  | Carriage return  | 45  | 2D  | -3    |   | 77  | 4D  | M    | 109 | 6D  | m    |
| 14  | OE  | Shift out        | 46  | 2 E |       |   | 78  | 4E  | N    | 110 | 6E  | n    |
| 15  | OF  | Shift in         | 47  | 2F  | 1     |   | 79  | 4F  | 0    | 111 | 6F  | 0    |
| 16  | 10  | Data link escape | 48  | 30  | 0     |   | 80  | 50  | P    | 112 | 70  | p    |
| 17  | 11  | Device control 1 | 49  | 31  | 1     |   | 81  | 51  | Q    | 113 | 71  | q    |
| 18  | 12  | Device control 2 | 50  | 32  | 2     |   | 82  | 52  | R    | 114 | 72  | r    |
| 19  | 13  | Device control 3 | 51  | 33  | 3     |   | 83  | 53  | s    | 115 | 73  | s    |
| 20  | 14  | Device control 4 | 52  | 34  | 4     |   | 84  | 54  | Т    | 116 | 74  | t    |
| 21  | 15  | Neg. acknowledge | 53  | 35  | 5     |   | 85  | 55  | U    | 117 | 75  | u    |
| 22  | 16  | Synchronous idle | 54  | 36  | 6     |   | 86  | 56  | V    | 118 | 76  | v    |
| 23  | 17  | End trans, block | 55  | 37  | 7     |   | 87  | 57  | W    | 119 | 77  | w    |
| 24  | 18  | Cancel           | 56  | 38  | 8     |   | 88  | 58  | x    | 120 | 78  | ×    |
| 25  | 19  | End of medium    | 57  | 39  | 9     |   | 89  | 59  | Y    | 121 | 79  | У    |
| 26  | 1A  | Substitution     | 58  | зд  |       |   | 90  | 5A  | Z    | 122 | 7A  | z    |
| 27  | 1B  | Escape           | 59  | зв  | ,     |   | 91  | 5B  | Ε    | 123 | 7B  | {    |
| 28  | 1C  | File separator   | 60  | ЗC  | <     |   | 92  | 5C  | N .  | 124 | 7C  | I.   |
| 29  | 1D  | Group separator  | 61  | ЗD  | = 1   |   | 93  | 5D  | ]    | 125 | 7D  | }    |
| 30  | 1E  | Record separator | 62  | ЗE  | >     |   | 94  | 5E  | Ž.   | 126 | 7E  | ~    |
| 31  | 1F  | Unit separator   | 63  | зғ  | 2     |   | 95  | 5F  |      | 127 | 7F  |      |

# Analyser la qualité avec fastQC

#### **Fast Quality Control (FastQC)**

- Propose un certain nombre de diagrammes qualité pour évaluer la qualité du séquençage.
- o fastqc [-o output dir] [--(no)extract] [-f fastq|bam|sam] fq1 fq2 ...

```
$ cd ...
                             # On remonte d'un niveau dans l'arborescence
$ mkdir qc
                             # On créé un répertoire
$ ls -1 ; cd qc
                     # 2 instructions sur la même ligne séparées par ';'
$ module load fastqc/0.11.8 # Charge le chemin de fastqc dans l'environnement
                           # Obtenir de l'aide
$ fastqc -h
$ # Lancer fastqc
$ # Ici le \ indique un retour à la ligne mais vous n'êtes pas censé le
$ # taper et aller à la ligne
$ fastqc -f fastq -o ./ ../fastq/siNT_ER_E2_r3_chr21.fastq \
        2> siNT ER E2 r3 chr21 fastqc.log
$ less siNT_ER_E2_r3_chr21_fastqc.log # la sortie d'erreur de fastqc
$ ls
                                          # Que voyez vous ?
```

#### Jupyter Lab: accès au fichier html

- Côté gauche, avec l'onglet on se place à la racine du cluster
- Sélectionner les répertoires jusqu'au répertoire de travail /shared/projects/<project>/chip-seq/qc
- Cliquer sur le fichier html pour l'ouvrir dans l'onglet



#### Télécharger les résultats avec Cyberduck (OSX)







#### Résultats de FastcQC



#### Résultats de FastcQC

- Exploration des résultats de fastqc en interactif.
  - A quoi correspond le diagramme "Per base sequence quality".
  - A quoi correspond le diagramme "Per sequence quality score" ?
  - A quoi correspond le diagramme "Per base sequence content" ?
  - A quoi correspond le diagramme "Per sequence GC content" ?
  - A quoi correspond le diagramme "Per sequence N content" ?
  - A quoi correspond le diagramme "Sequence length distribution" ?
  - A quoi correspond le diagramme "Sequence duplication level" ?
  - A quoi correspond le diagramme "Kmer content" ?







#### Rogner les reads

- Une étape de pré-processing
  - Les reads en entrée sont rognés afin d'éliminer des extrémités de mauvaises qualités.
  - En fonction de la capacité de l'outil à faire des alignements locaux ou globaux et de la qualité intrinsèque des données, cette étape peut être cruciale.
    - Risque: peu de reads alignés
- Quelques logiciels existants
  - Sickle-trim (sliding window-based trimming)
  - FASTX-Toolkit (cut a defined number of nucleotides)
  - Trimmomatic
  - Cutadapt







#### Principe de sickle

- Objectif:
  - Supprimer les extrémités de mauvaise qualité.
- Solution:
  - Parcourir le read avec un fenêtre coulissante de droite à gauche. Calculer la qualité moyenne dans chaque fenêtre
  - Si la valeur de qualité chute en dessous d'une valeur seuil q, déléter l'extrémité 3'.
  - Si la taille restante du read est inférieure à une longueur seuil I, déléter le read.

# L'interface de sickle

Sickle contient plusieurs sous-commandes: pe et se.

```
$ module load sickle-trim/1.33
```

--version, output version information and exit

Usage: sickle <command> [options]

\$ sickle -h

```
Command:

pe paired-end sequence trimming

se single-end sequence trimming
```

--help, display this help and exit

\$ sickle se --help # Obtenir de l'aide sur la sous-commande se.

#### **Exercice** (noté)

- Créez un répertoire trimmed au même niveau dans l'arborescence que fastq.
- Déplacez vous dans ce répertoire.
- Invoquez l'aide de sickle (se)
- Construisez une commande qui combine les options suivantes:
  - Fournissez à sickle le fichier d'entrée siNT\_ER\_E2\_r3\_chr21.fastq.
  - Qualité de type "Sanger", seuils de qualité et de longueur tous deux à 20.
  - Demandez à sickle se de produire un fichier de sortie que vous nommerez
     siNT\_ER\_E2\_r3\_chr21\_trim.fastq et qui devra être créé dans le dossier trimmed.
  - Rediriger la sortie standard dans un fichier que vous nommerez
     siNT\_ER\_E2\_r3\_chr21\_sicke\_log.txt placé dans le dossier trimmed.
- Comptez le nombre de lignes présentes dans les fichiers fastq avant et après utilisation de sickle (commande wc -l).
- Lisez le contenu du fichier log. Obtenez-vous le même résultat ?

# Corrigé

```
$ cd ...
                  # On remonte d'un niveau dans l'arborescence
$ mkdir trimmed # On créé un répertoire
5 cd trimmed
            # On se déplace dans ce répertoire
$ # On lance sickle
$ # Ici le \ indique un retour à la ligne mais vous n'êtes pas censé le
$ # taper et aller à la ligne
$ # 2> redirige la sortie d'erreur
$ sickle se -f ../fastq/siNT ER E2 r3 chr21.fastq \
        -t sanger -o siNT ER E2 r3 chr21 trim.fastq \
        > siNT ER E2 r3 chr21 sickle.log
$ # le nombre de lignes présentes dans les fichiers fastq
$ wc -1 ../fastq/siNT ER E2 r3 chr21.fastq # Données brutes
$ wc -1 siNT ER E2 r3 chr21 trim.fastq # Données nettoyées
```

# Mapping

# Aligner les reads

- Objectif
  - Trouver la région du génome qui a produit les read.
    - Trouver dans le génome le mot correspondant au read



#### L'approche de bowtie: seed and extend

Une extrémité du read est interrogée (la graine)



- On cherche ses régions correspondantes sur le génome (à l'aide d'un index créé initialement) avec ou sans mismatch.
- On teste si le reste du read s'aligne avec la séquence









#### Aligner les reads

- Pour l'alignement nous utiliserons Bowtie 2.
- Bowtie 2 nécessite de préparer un index.
  - Cet index permettra une recherche optimisée de la position d'un mot w dans le génome.
  - Des index pour les génomes utilisés classiquement sont disponibles sur le site de bowtie 2.
  - Ici nous voulons restreindre le génome au chromosome 21, nous devons donc construire cet index.

```
# Créez un répertoire pour y stocker l'index dans chip-seq/
$ cd ..
$ mkdir index
$ cd index
```

#### Création de l'index

- Ne faire qu'une seule fois par génome d'intérêt et version majeure!
- Allez sur le site de l'UCSC à l'adresse suivante
  - https://genome.ucsc.edu/
- Cliquez sur Downloads > Genome Data > human > hg38 > Data set by chromosome.
- Recherchez le fichier chr21.fa.gz
- Cliquez bouton droit "Copy link address"

```
$ # Téléchargez l'index avec wget
$ wget http://hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes/chr21.fa.gz
$ # décompression
$ gunzip chr21.fa.gz
$ module load bowtie2/2.3.4.3 samtools/1.9 # ici on charge 2 outils à la fois
$ # Construction de l'index
$ bowtie2-build chr21.fa chr21_hg38
```

# Alignement

- On crée un répertoire de travail et on se positionne dans celui-ci
- On lancera l'alignement dans depuis le dossier 'bam'.

```
# Create a directory
$ mkdir ../bam
# Change directory
$ cd ../bam
```

• L'alignement est réalisé avec **bowtie2**, qui produit un flux de texte au format **sam** (texte), **volumineux**.

```
# Perform alignment
```

```
$ bowtie2 -p 4 -x ../index/chr21_hg38 -U ../trimmed/siNT_ER_E2_r3_chr21_trim.fastq \
2> siNT_ER_E2_r3_chr21_trim_bowtie2.log
```

- L'alignement est réalisé avec **bowtie2**, qui produit un flux de texte au format **sam** (texte), **volumineux**.
- Ce flux de texte peut être redirigé () vers 'samtools view -hbs' (-h: header, -b output is BAM, -S: input is SAM) pour produire une version compressée (format bam).

```
# -bS (sortie en bam, entrée en sam)
$ bowtie2 -p 4 -x ../index/chr21_hg38 -U ../trimmed/siNT_ER_E2_r3_chr21_trim.fastq \
2> siNT_ER_E2_r3_chr21_trim_bowtie2.log | samtools view -hbS
```

- L'alignement est réalisé avec **bowtie2**, qui produit un flux de texte au format **sam** (texte), **volumineux**.
- Ce flux de texte peut être redirigé () vers 'samtools view -hbs' (-h: header, -b output is BAM, -S: input is SAM) pour produire une version compressée (format bam).
- On sélectionne le sous-ensemble des reads pour lequel la mapping quality (-q: quality) est au moins égale à 30.

```
# -q 30 (quality 30)
$ bowtie2 -p 4 -x ../index/chr21_hg38 -U ../trimmed/siNT_ER_E2_r3_chr21_trim.fastq \
2> siNT_ER_E2_r3_chr21_trim_bowtie2.log | samtools view -hbS -q 30
```

- L'alignement est réalisé avec **bowtie2**, qui produit un flux de texte au format **sam** (texte), **volumineux**.
- Ce flux de texte peut être redirigé (|) vers 'samtools view -hbs' (-h: header, -b output is BAM, -S: input is SAM) pour produire une version compressée (format bam).
- On sélectionne le sous-ensemble des reads pour lequel la mapping quality (-q: quality) est au moins égale à 30.
- Le flux de texte est redirigé (|) vers 'samtools sort' (trie par coordonnées génomiques).

```
# Trie l'alignement

$ bowtie2 -p 4 -x ../index/chr21_hg38 -U ../trimmed/siNT_ER_E2_r3_chr21_trim.fastq \
2> siNT ER E2 r3 chr21 trim bowtie2.log | samtools view -hbS -q 30 | samtools sort
```

#### Alignement (now you can run)

- L'alignement est réalisé avec **bowtie2**, qui produit un flux de texte au format **sam** (texte), **volumineux**.
- Ce flux de texte peut être redirigé (|) vers 'samtools view -hbs' (-h: header, -b output is BAM, -S: input is SAM) pour produire une version compressée (format bam).
- On sélectionne le sous-ensemble des reads pour lequel la mapping quality (-q: quality) est au moins égale à 30.
- Le flux de texte est redirigé (|) vers 'samtools sort' (trie par coordonnées génomiques).
- Le flux de texte est redirigé dans un fichier ('>')

```
# '>' est un opérateur de redirection

$ bowtie2 -p 4 -x ../index/chr21_hg38 -U ../trimmed/siNT_ER_E2_r3_chr21_trim.fastq \
2> siNT_ER_E2_r3_chr21_trim_bowtie2.log | samtools view -hbS -q 30 | samtools sort \
> siNT_ER_E2_r3_chr21_trim.bam
```

## **Alignement**

- L'alignement est réalisé avec **bowtie2**, qui produit un flux de texte au format **sam** (texte), **volumineux**.
- Ce flux de texte peut être redirigé () vers 'samtools view -hbs' (-h: header, -b output is BAM, -S: input is SAM) pour produire une version compressée (format bam).
- On sélectionne le sous-ensemble des reads pour lequel la mapping quality (-q: quality) est au moins égale à 30.
- Le flux de texte est redirigé (|) vers 'samtools sort' (trie par coordonnées génomiques).
- Le flux de texte est redirigé dans un fichier ('>')
- Le fichier est indexé pour optimiser la recherche de position dans le BAM (création d'un fichier \*.bai).

```
# Indexation de l'alignement

$ bowtie2 -p 4 -x ../index/chr21_hg38 -U ../trimmed/siNT_ER_E2_r3_chr21_trim.fastq \
2> siNT_ER_E2_r3_chr21_trim_bowtie2.log | samtools view -hbS -q 30 | samtools sort \
> siNT_ER_E2_r3_chr21_trim.bam

$ samtools index siNT_ER_E2_r3_chr21_trim.bam
$ ls
```

#### **Fichier bam**

- SAM: 'Sequence Alignment/MAP'
- BAM: binary/compressed version of SAM
- Stocke les informations liées à l'alignement
  - Coordonnées du read aligné
  - Mapping quality
  - CIGAR String
  - Bitwise FLAG
    - read paired, read mapped in proper pair, read unmapped, ...
  - 0

Sequence Alignment/Map Format Specification

The SAM/BAM Format Specification Working Group 2 Sep 2016

#### Visualiser le contenu du fichier bam

- Le fichier bam est compressé.
- On peut voir son contenu avec la commande samtools.

```
# Visualiser le contenu du fichier bam
# On utilise l'argument -h pour visualiser aussi le 'header'.
# On renvoie le flux de texte dans less.
# On ajoute le paramètre -S pour tronquer les lignes qui excèdent
# la largeur de l'écran
$ samtools view -h siNT_ER_E2_r3_chr21_trim.bam | less -S
```

# Bitwise flag

- De nombreuses informations sont stockées dans la colonne 2 du fichier SAM/BAM
  - read pairs
  - reads mapped in proper pairs
  - reads unmapped
  - mates unmapped
  - reads reverse strand
  - mates reverse strand
  - first in pair
  - second in pair
  - not primary alignment
  - 0 ...

#### Bitwise flag

- $00000000001 \rightarrow 2^0 = 1 \text{ (read paired)}$
- $0000000010 \rightarrow 2^1 = 2$  (read mapped in proper pair)
- $0000000100 \rightarrow 2^2 = 4 \text{ (read unmapped)}$
- $0000001000 \rightarrow 2^3 = 8 \text{ (mate unmapped) } \dots$
- $0000010000 \rightarrow 2^4 = 16$  (read reverse strand)
- $0000001001 \rightarrow 2^0 + 2^3 = 9 \rightarrow \text{(read paired, mate unmapped)}$
- $00000001101 \rightarrow 2^0+2^2+2^3=13...$
- ...

#### The extended CIGAR string

- Quelques exemples de drapeaux (flag)
  - M match ou mismatch...
  - Insertion par rapport à la référence
  - D Délétion par rapport à la référence
  - N Espace dans l'alignement (Gap)
- http://samtools.sourceforge.net/SAM1.pdf

ATTCAGATGCAGTA ATTCA--TGCAGTA

5M2D7M

#### Pourquoi filtrer sur la qualité ?

- Sommes-nous plus confiants
  - dans l'alignement du read 1 ?
  - dans l'alignement read 2 ?







#### Pourquoi filtrer sur la qualité ?

- Sommes-nous plus confiants
  - dans l'alignement 1?
    - Si la moyenne de qualité des nucléotides séquencés dans le read est 40
  - dans l'alignement 1'?
    - Si la moyenne de qualité des nucléotides séguencés dans le read est 10 ?



#### Filtering for Mapping Quality (MAPQ)

- Mapping quality is a score that integrates both the quality of the read itself and the number of positions it maps
- Mapping quality score is computed from the probability that alignment is wrong:
  - takes mappability and sequence quality into account
  - -10.log<sub>10</sub>(Prob(alignment is wrong))
    - p=0.01 -> MAPQ: 20
    - p=0.001 -> MAPQ: 30
    - p=0.0001 -> MAPQ: 40
    - ...

#### Merci pour votre attention.

# Remerciements à toute l'équipe pédagogique et technique pour le support