Projet OPEN DATA 2021 Airbnb

HOUNKONNOU Mehdy MENENDEZ Benjamin

Sommaire

Introduction

- I Quelques stats descriptives pour de l'analyse
 - A Premiers pas... les données
 - B Fréquence et distribution
- II Étude complète sur la constitution d'un prix
 - A Prix en fonction de la localisation, du quartier
 - B Prix en fonction du type de biens et capacité d'accueille
 - C Modélisation statistique pour la variable prix
- III Étude des liens avec le marché locatif
- IV Traitement naturel du langage pour une étude textuel
 - A Étude sur le nom titre des annonces Airbnb
 - B Étude et analyses des sentiments des commentaires des clients
 - C Modélisation du score avec les commentaires des clients

Conclusion

Introduction

Airbnb → Société Américaine fondée en 2008 par Brian Chesky, Nathan Blecharczyk et Joe Gebbia.

Place de marché de la location courte durée via internet.

Objectifs:

- Croiser différentes bases de données pour obtenir de l'information nouvelle.
- Comprendre la façon dont le prix est constitué par les propriétaires
- Extraire et utiliser les sentiments des clients grâce à a leurs avis sur leurs séjour

A - Premiers pas... les données

- Données du listing brut des biens Airbnb :
 - 10562 Observations, 74 variables descriptives
 - http://insideairbnb.com/
- Données géographiques pour le marché locatif :
 - https://www.data.gouv.fr/fr/datasets/resultats-nationaux-des-observatoires-locaux-des-loyers/
- Données démographiques pour les villes impliquées :
 - https://www.data.gouv.fr/
- Données utilisateurs, commentaires sur les séjours :
 - 239 922 Observations, 6 variables descriptives
 - http://insideairbnb.com/

B - Fréquence et distribution

B - Fréquence et distribution

B - Fréquence et distribution

A - Prix en fonction de la localisation, du quartier

A - Prix en fonction de la localisation, du quartier

B - Prix en fonction du type de biens et capacité d'accueille

C - Modélisation statistique pour la variable prix

- Régression logistique avec la catégorie des prix comme variable réponse
 - Score de prédiction \rightarrow 55%
 - AIC backward
 - \circ Ajout des variables \rightarrow Pas d'amélioration de la prédiction :
 - quartier nombre de lits
 - score commentaire client
 - type d'appartement
 - nombre de pièces
- Régression logistique avec les catégories extrêmes "Luxe" et "Low-cost"
 - Score de prédiction \rightarrow 92%

C - Modélisation statistique pour la variable prix

Création d'une nouvelle variable "total minimum revenue"

- En utilisant 3 KPI
- Transformation en log
- Adjusted R-squared \rightarrow 0,47
- RMSE \rightarrow 187703
- Importance des variables

III - Étude des liens avec le marché locatif

Le prix du marché locatif impact t-il le prix des biens Airbnb ?

• Carte intéractive, superposition du prix au m2 par zone + biens Airbnb par prix de la nuitée

Toutes les "qualitées" de biens sont représentées dans toutes les zones

Pour un même prix, la qualitée biens est meilleur dans les zones à faible prix au m2

A - Étude sur le nom titre des annonces Airbnb

"maison", "piscine", "bordeaux", "villa", "loft", "jardin", "terrasse"

A - Étude sur le nom titre des annonces Airbnb

"chambre", "bordeaux", "appartement", "petit", "studio"

B - Étude et analyse des sentiments des commentaires des clients

B - Étude et analyse des sentiments des commentaires des clients

B - Étude et analyse des sentiments des commentaires des clients

Score	Titre de l'annonce	Ргіх
28.0	Experience a beautiful Bordeaux experience in the heart of Bacalan	75
26.0	Bordeaux, idéal famille !	50
25.0	Belle chambre cosy indépendante à Blanquefort	30
21.0	Maison 6 personnes/piscine collective	100
18.0	suite parentale , 2 chambres	90
18.0	Chartreuse - 75m² av terrasse, ascenseur & parking	182
17.0	Bordeaux centre spacieux T2 49 m2 avec balcon	50
17.0	STUDIO d'architecte : GRAND THEATRE	30
17.0	Maison aux portes de Bordeaux avec piscine	270
16.5	Bordeaux - Appartement calme à vue dégagée	45

Top 10 des meilleurs biens selon les sentiments

C - Modélisation du score avec les commentaires des clients

Variable synthétique catégorielle à partir des notes de score Airbnb \rightarrow "Médiocre", "Moyen", "Haute", "Excellent"

La notes des biens correspond t-elle aux commentaires des usagers?

Objectif : Prédire la catégorie des notes de score Airbnb en fonction des commentaires des usagers.

Méthodes : Régression logistique (pour la variable catégorielle) // Régression linéaire (pour le score brut de 0-100)

C - Modélisation du score avec les commentaires des clients

	precision	recall	f1-score	support
Excellent	0.83	0.82	0.83	68108
Haute	0.84	0.73	0.78	56640
Moyen	0.79	0.88	0.84	73808
Médiocre	0.00	0.00	0.00	2
accuracy			0.82	198558
macro avg	0.62	0.61	0.61	198558
weighted avg	0.82	0.82	0.82	198558

Conclusion

• Croiser les jeu de données pour comprendre ce qui constitue le prix d'une nuité

Beaucoup de locations dans le centre ville de Bordeaux de façon très diversifié

Airbnb à une politique de satisfaction complète de sa clientèle (peu d'avis négatif)

Modélisation de la note d'un bien grâces aux sentiments des commentaires

