GRUPO 4

SISTEMA AUTOMÁTICO PARA LA ELIMINACIÓN DE MALEZA EN EL CULTIVO DE ESPÁRRAGOS

METODOLOGÍA DE DISEÑO MECATRÓNICO

Integrantes:

- -Antony Arévalo 20166293
- -Malena Huancas 20170364
- -Abigail Atencio 20167448
- -Eliane Rodriguez 20170070
- -Dyango De Vettori 20170536
- -Sebastian Jaimes 20162051

Problema

Si bien es cierto, existen estudios sobre agricultura de precisión en el país para el control de malezas, aún no es un tipo de tecnología recurrente para el sector agrónomo.

Propuesta de solución

Como una posible solución se plantea desarrollar un sistema móvil automático y semiautónomo que identifique y elimine la maleza en cultivos de hortalizas en un terreno de 6 hectáreas y reduzca los efectos colaterales del uso excesivo de herbicidas en la economía, salud, y trazas en el cultivo.

Objetivos

Diseñar un sistema móvil de identificación y eliminación automatizado en cultivos de hortaliza.

- Investigar el estado del arte de la identificación y eliminación de maleza que afecta a los cultivo de espárragos en el Perú.
- Diseñar el sistema de identificación de malezas.
- Diseñar el sistema de eliminación de malezas.
- Diseñar el sistema de desplazamiento.
- Diseñar la interfaz de usuario.

Estado del arte

1. Producto comercial:

Fuente: https://farmdroid.dk/en/welcome/

2. Producto de investigación:

Fuente: https://core.ac.uk/reader/85002860

Estado del arte

2. Subsistemas

• Sistema de identificación de maleza

• Sistema de eliminación de maleza

• Sistema de conducción autónoma en campos de cultivo

Lista de Requerimientos

		Función Principal						
21/4/2021	E	El sistema debe ser capaz de detectar malezas en cultivos de espárrago con una precisión mayor al 80%.	Sebastian					
21/4/2021	E	El sistema debe aplicar herbicida directamente a toda maleza detectada.	Sebastian					
	Geometría							
21/4/2021	D	Los rociadores deben ubicarse a una altura exacta por encima de las ruedas.	Sebastian					
21/4/2021	D	El sistema debe contar con ruedas con separación ajustable a la distancia entre filas del arado, las cual varía entre 1 y 1.5 metros.	Sebastian					
21/4/2021	E	El sistema debe tener unas medidas generales de máximo 1.50 m de ancho, 1.60m de altura y 1.60m de largo. (altura del cultivo :[0.4 0.6]m)	Sebastian					
		Cinemática y fuerzas						
21/4/2021	E	El sistema debe tener una velocidad lineal máxima de alrededor de 0.5 m/s	Sebastian					
21/4/2021	E	El sistema debe ser capaz de soportar la fuerza ejercida debido al peso de la misma, el cual debe ser como mínimo 150 kg y como máximo 300 kg.	Sebastian					

		Modo de operación					
21/4/2021	Е	Aplicación de pesticida de forma automática cuando se detecten plantas de maleza.	Eliane				
21/4/2021	Е	Monitoreo de funciones de pulverización y navegación de forma remota por un operador.	Eliane				
21/4/2021	Е	Navegación autónoma a través de las hileras de cultivo.	Eliane				
Condiciones de operación							
21/4/2021	Е	El sistema debe ser capaz de moverse por terreno arenoso (90% arena y 10% otro) para un buen drenaje sin dificultad.	Antony				
21/4/2021	Antony						
21/4/2021	Е	La altura de trabajo es de 0 msnm.	Antony				
		Fabricación					
21/4/2021	E	Material: - Como características para la carcasa del diseño, debe tener resistencia a la corrosión y resistencia a las temperaturas extremas y una elevada maquinabilidad. - Como características para el chasis deben ser ligeros, resistentes y de fácil adaptación. - Para el eje de transmisión debe ser un material con alta resistencia para soportar altas potencias.	Abigail				
21/4/2021	D	Las piezas mecánicas necesarias para la implementación deberán ser adquiridas a través del mercado local para evitar costos de importación.	Abigail				
ļ		Transporte					
21/4/2021	D	Se requerirá de un carro para su transporte antes o después de la operación.	Abigail				

		Mantenimiento y limpieza						
21/4/2021	D	El mantenimiento preventivo se debe realizar cada 10,000	Antony					
21/ 1/2021		horas de trabajo.	Antony					
21/4/2021	D	El diseño del robot debe evitar que se acumule suciedad en	Antony					
21/4/2021		lugares de difícil acceso.	Antony					
		Costos y plazos						
21/4/2021	E	Costo de diseño: 4,000 - 6,000 nuevos soles	Antony					
21/4/2021	E	Costo de implementación: 1,000 - 2,000 nuevos soles	Antony					
21/4/2021	E	Costo del equipo: 5,000 - 8,000 nuevos soles	Antony					
21/4/2021		Entrega final: 7 de Julio de 2021	Todos					
Comunicaciones								
24/4/2024		Protocolos de comunicación entre controlador, actuadores y	Malena					
21/4/2021	D	sensores robustos.	ivialena					
		Comunicación entre el equipo y el usuario: rango de						
		alrededor de 100 metros.						
21/4/2021	Ε	Se enviarán alertas si la máquina terminó de recorrer la	Malena					
		parcela o si el camino fue bloqueado por algún obstáculo,						
		cuánta batería le queda y el nivel de pesticida.						
		Seguridad						
21/4/2021	E	La máquina estará diseñada para que el riesgo sea mínimo	Malena					
21/4/2021	<u> </u>	pues esta podrá funcionar autónomamente.	ivialella					
21/4/2021	Е	La máquina contará con una parada de emergencia en caso	Malena					
21/4/2021	L	de algún riesgo y habrá un aislamiento eléctrico.	ivialella					
21/4/2021	D	Se brindará un manual de usuario con el método de uso	Malena					
21/4/2021		documentado y explicado de forma entendible.	IVIAICIIA					

		Ergonomía	
21/4/2021	E	Se debe cumplir con la Norma Básica de Ergonomía y de Procedimiento de Evaluación de Riesgo Disergonómico (2008).	Malena
21/4/2021	D	El vehículo deberá ser estético para su comercialización.	Malena
21/4/2021	E	La máquina debe ser capaz de procesar las señales de entrada de los sensores y enviar señales de salida a los actuadores de forma precisa para poder aplicar el herbicida sin dañar las hortalizas aledañas.	Dyango
21/4/2021	D	La máquina debe poseer un sistema de control de tipo realimentado.	Dyango
21/4/2021		Variables de control: - Velocidad y posición del vehículo - Flujo del pesticida	Dyango
		Energía	
21/4/2021	D	Fuente de alimentación: panel solar y/o baterías de 24V recargables.	Eliane
21/4/2021	D	Autonomía de 8 h	Eliane

		Hardware	
21/4/2021	E	La máquina requiere por lo menos una cámara que registre el entorno en el que se encuentra.	Eliane
21/4/2021	D	Motor eléctrico.	Eliane
21/4/2021	E	La máquina requiere un controlador para el procesamiento de señales análogas y digitales.	Eliane
21/4/2021	E	Sistema integrado de válvulas y boquillas para pulverizacion de precisión.	Eliane
21/4/2021	E	Sensores LIDAR y ultrasonido para la identificación de entorno.	Eliane
21/4/2021	E	Sensores de humedad y de nivel.	Eliane
		Software	
21/4/2021	E	Implementación del algoritmo para procesamiento de imágenes en tiempo real que se encargue de activar el sistema de rociado únicamente cuando haya maleza, de forma que se evite dañar el cultivo de espárragos.	Dyango
21/4/2021	E	Interfaz humano - máquina para ingreso de comandos de operación.	Dyango

Flujo del sistema

Matriz Morfológica

1												
	Función (funciones			Subsistema	de interfaz							
	parciales)	S1	S2	S3	S4	S5	S6					
Dominio de comunicación	Enviar Información	Bluetooth	Wifi	RFID	ZigBee	WiMAX	UWB (Ultra Wide Band)					
	Mostrar Alerta de Fallo de Sistema	Aplicación	de celular	Aplicación	n para PC	Aplicación	n en tablet					
	Mostrar Posición del Vehículo en el Plano	Aplicación	de celular	Aplicación en tablet								
Dominio de interfaz	Mostrar Indicador de Obstáculo	Aplicación	de celular	Aplicación	n para PC	Aplicación	n en tablet					
	Mostrar Estado de Nivel de Batería	Aplicación	de celular	Aplicación	n para PC	Aplicación en tablet						
	Mostrar Nivel de Pesticida	Aplicación	de celular	Aplicación 0	n para PC	Aplicació	en tablet					

			Subsistems	de energía						
	S1	S2	S3	S4	S5	S6				
Acondicionar energía		Fuente lineal		Fuente switching						
Encendido de sistema	l	nterruptor simp	le	Botón de arranque						
Almacenar energía	Batería Plomo ácido	Batería Níquel- Cadmio	Batería de iones de Litio							
			Reguladores d	e conmutación	1					
Energizar actuadores										
Energizar sensores	Regu	lador integrado	lineal	Regul	ador de conmu	tación				
			Regulador de	conmutación						
Energizar controlador										
Energizar interfaz	Regu	lador de conmu	utación	Regulador integrado lineal						

	Función		Subsiste	ma de naveg	ación del vehío	culo			
	(funciones parciales)	S1	S2	S3	S4	\$5	S6		
	Proteger componentes electrónicos	Carcasa	metálica	Carcasa	de plástico	Acrilico			
	Soportar componentes (chasis)	Estructur	a metálica	Ad	ero	Fibra de vidrio			
Dominio mecánico	Transmitir movimiento	Fajas	Tren de engranajes	Engranaje planetario	Transmisió n directa	Cadenas			
	Desplazamient o del vehículo	Rue	edas	On	igas	Extremidades zoomérficas			
	Dirigir vehiculo	Sistema Ackerman	Mecanism o diferencial	Explicit Steering Configuration	Skid Steering Configuration (AN-S)	Movin	niento de midades		
Dominio de	Detectar ultrasonido obstáculos		Sensores infrarrojos	Lidar 2D	Cámara de profundidad	Sensor capacitiv			
sensores	Detectar ubicación	GPS	IMU	W	S-Fi	Sensor de brújula			

	Detectar la velocidad del robot	Encoder Acelerómet ro	Tacómetro Sensor de imán permanente	Sensor de guaya		
Dominio de comunicaci ón	Recibir Información	Cable coaxial	Cable de pares	Cable de fibra óptica		
Dominio de actuadores	Accionar mecanismo de movimiento del vehículo	Motor DC	Servomotor industrial	Motor a paso		
	Accionar indicador de fin de recorrido	Led	Celular	Consola Android		
Haard d w aar Dominio	Control de Posición	Microcontrolador	FPGA	Miniprocesador		
de control S f t w a	Control de Posición	Control PID Lineal	Algoritmo Regulador	Control Vectorial		

-		Subsistema de eliminación de malezas											
	Función		OULDER	cilia de eiil	ililiacion de ili	arczas							
	(funciones parciales)	S1	S2	S3	S4	S5	S6						
	Almacenar Pesticida	Galonera o	de plástico	Tanque	de plástico	Tanqu	e metálico						
Dominio mecánico	Transportar pesticida	Tu	bo de plásti	ico	ástico //								
	Rociar pesticida	Boquil	la de pulver	izador	Aspersores	•							
Dominio	Capturar imágenes de cultivo	Cámara 2E E-4	1	Cámara infrarroja									
de sensores	Detectar nivel del tanque del pesticida	Sensores de ultrasonido	Electro Flotadore s	Lidar 3D	Cámara de profundidad	Sensor	capacitivo						
Dominio de	Accionar mecanismo de rotación de rociadores	Servomotores		Motor DC	Motor a pasos	Arregio	hidráulico						
actuadores	Accionar mecanismo de rociado	Relé y elec (AN-S		Bomba eléctrica(E-4)									

	Evaluación técnica														
	(0-4)	So	1	So	l 2	So	Sol 3		14	Sol 5		Sol 6		Sol	Ideal
Criterio técnico	g	р	gp	р	gp	р	gp	р	gp	р	gp	р	gp	р	gp
Precisión en la aplicación del pesticida	4	3	12	3	12	3	12	2	8	3	12	2	8	4	16
Autonomía	4	3	12	3	12	3	12	3	12	2	8	1	4	4	16
Robustez	3	2	6	2	6	2	6	1	3	1	3	3	9	4	12
Facilidad de uso (configuración)	3	1	3	2	6	2	6	2	6	3	9	2	6	4	12
Rango de transmisión de datos	3	з	9	3	9	3	9	2	6	3	9	3	9	4	12
Facilidad de mantenimiento	2	2	4	3	6	2	4	3	6	2	4	2	4	4	8
Eficiencia en detección de maleza y cultivo	4	3	12	3	12	3	12	2	8	3	12	2	8	4	16
Sumatoria			46		51		49		41		45		40		76
	xi		0,605		0,671		0,644		0,539		0,592		0,526		1

	Evaluación económica														
	(0-4)	Sol 1 Sol 2		Sol 3 Sol 4		14	Sol 5		Sol 6		Sol	Ideal			
Criterio económico	g	р	gp	р	gp	р	gp	р	gp	р	gp	р	gp	р	gp
Costo total de componentes y materiales	4	3	12	2	8	2	8	2	8	2	8	3	12	4	16
Costo de fabricación	3	3	9	2	6	2	6	2	6	2	6	2	6	4	12
Costo de desarrollo y diseño (personas)	3	3	9	3	9	3	9	1	3	1	3	2	6	4	12
Costo energético	4	1	4	3	12	3	12	3	12	3	12	1	4	4	16
Costo de mantenimiento	2	2	4	2	4	2	4	2	4	3	6	3	6	4	8
Sumatoria			38		39		39		33		35		34		64
xi			0,594		0,609		0,609		0,516		0,546		0,531		1

Boceto inicial:

Prototipo

Sistema de rociado

Acople de rueda y motor

Bienvenidos a AJUDE O **FAZENDEIRO** Login with facebook Correo: 0 Contraseña: Login

Establecer posición inicial

Espacio de trabajo

Longitud de parcela:

Ancho de parcela:

Distancia entre surcos:

Referencias

- [1] S. Abouzahir, M. Sadik, E. Sabir, 2018. Enhanced Approach for Weeds Species "Detection Using Machine Vision". En 2018 International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS)- IEEE, Kenitra, Morocco, 1-6. Diciembre 2018. 1-6. https://doi.org/10.1109/ICECOCS.2018.8610505
- [2] FAO. "Recomendaciones para el manejo de malezas". pp. 9. Disponible en: http://www.fao.org/3/a0884s/a0884s.pdf
- [3] B.E. Jaramillo-Colorado, F. Palacio-Herrera, I. Pérez-Sierra, 2016. "Residuos de pesticidas organofosforados en frutas obtenidas de plazas de mercado y supermercados en Cartagena, Colombia". Revista Ciencias Técnicas Agropecuarias, 25(4), pp. 39-46.
- [4] J. Delgado, A. Alvarez, J. Yánez. "Uso indiscriminado de pesticidas y ausencia de control sanitario para el mercado interno en Perú" Rev. Panam Salud Pública. 2018;42:e3. https://doi.org/10.26633/RPSP.2018.3.
- [5] T. Utstumo, F. Urdal, A. Brevik, J. Dørum, J. Netland, J. Overskeid y J. T. Gravdah (2018). Robotic In-Row Weed Control in Vegetables. Computers and Electronics in Agriculture, 154, 36-4. Disponible en: https://doi.org/10.1016/j.compag.2018.08.043
- [6] FAO. Recomendaciones para el manejo de malezas. pp. 8. Disponible en: http://www.fao.org/3/a0884s/a0884s.pdf
- [7] "Oz weeding robot", 2016. [En línea]. Disponible en: https://www.naio-technologies.com/en/agricultural-equipment/weeding-robot-oz/
- [8] "Comment financer l'achat d'un robot agricole?", 2016. [En línea]. Disponible en: https://www.naio-technologies.com/machines-agricoles/robot-de-desherbage-oz/financer-achat-robot-agricole/
- [9] Vitirover.fr. 2021. [online] Recuperado de: https://www.vitirover.fr/en-home [Accessed 14 April 2021].
- [10] Vitirover.fr. 2021. [online] Recuperado de: https://www.vitirover.fr/en-robot [Accessed 14 April 2021].
- [11] AECOC (2020) "SwagBot, el robot autónomo para agricultura que llegará al mercado en 2020"

[Artículo]. Recuperado de:

https://www.aecoc.es/innovation-hub-noticias/swagbot-el-robot-autonomo-para-agricultura-que-llegara-al-mercado-en-2020/

[12] MAQUINAC (2019) "El robot vaquero multifunción SwagBot ya está a la venta en Australia"

[Artículo]. Recuperado de:

https://maquinac.com/2019/06/el-robot-desmalezador-y-vaquero-swagbot-ya-esta-a-la-venta-en-australia/

[13] K. Puerto (2016) "Los robots llegan a la granja para jubilar al perro pastor: SwagBot" [Artículo]. Recuperado de:https://caribbeandigital.net/los-robots-llegan-a-la-granja-para-jubilar-al-perro-pastor-swagbot/

Referencias

[14] NMAS1 (2019) "SwagBot, el robot agrícola que detecta la mala hierba y la riega con herbicidas"

[Artículo]. Recuperado de:

https://nmasl.org/news/2019/02/19/robot-agricultura

- [15] Ecorobotix (2020). "About Ecorobotix" [En linea] Disponible en: https://www.ecorobotix.com/en/about/
- [16] Ecorobotix (2020) "ARA Sprayer" Disponible en: https://www.ecorobotix.com/wp-content/uploads/2021/02/Ecorobotix FlyerPres-ARA-sprayer EN.pdf
- [17] Ecorobotix (2020). "AVO The autonomous robot weeder". Disponible en: https://www.ecorobotix.com/en/avo-autonomous-robot-weeder/
- [18] S. Campos, J. López, M. Cadena, M. Reynolds, N. Cuervo Piña & G. Ramírez (2015). "Desarrollo de un penetrómetro integrado con tecnología GPS-RTK para la generación de mapas de resistencia a la penetración del suelo". Terra Latinoamericana, 33(2), 119-128. Disponible en: http://www.scielo.org.mx/scielo.php? script=sci_arttext&pid=S0187-57792015000200119&lng=es&tlng=es.
- [19] D. Villarroel, F. Scaramuzza, A. Méndez y J. Vélez (2014). "El posicionamiento satelital y sus sistemas de corrección" [Artículo]. Recuperado de: https://inta.gob.ar/sites/default/files/script-tmp-inta c3- el posicionamiento satelital y sus sistemas .pdf
- [20] "Farmdroid FD20 fact sheet automatic seeding & weeding robot", 2020 [En línea]. Disponible en: https://farmdroid.dk/wp-content/uploads/Factsheet-FD20-v1.2.pdf
- [21] Rippa Robot, 2015. [online] Recuperado de: https://www.sydney.edu.au/news-opinion/news/2015/10/21/rippa-robot-takes-farms-forward-to-the-future-.html
- [22] Benavides, Joel, 2015. "Diseño de un sistema automático de control mecánico de malezas en cultivos de algodón" [Tesis]. Recuperado de:

http://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/6902

- [23] J. M. Jácome, M. D. Barreno, "Diseño y construcción de un prototipo robotizado para el deshierbe automático en zonas planas de cultivos de maíz en su etapa inicial, a través de técnicas de visión artificial, para la asociación "Unión y Progreso" del Cantón Píllaro, provincia de Tungurahua", Trabajo de fin de grado, Univ. de las FF. AA. ESPE, Sangolquí, Ecuador, 2017. Recuperado de: http://repositorio.espe.edu.ec/handle/21000/13831
- [24] Diseño de un robot móvil de servicio para aplicaciones de fumigación del cultivo de maíz en la provincia de Concepción de la región Junín [Tesis] Recuperado de: https://repositorio.continental.edu.pe/handle/20.500.12394/8025
- [25] Eprints.ucm.es. 2021. [online] Recuperado de: https://eprints.ucm.es/id/eprint/38352/1/T37476.pdf [Accessed 14 April 2021].
- [26] R. Pulido, E. Andrés, Z. Meneses, M. Esteban (2017) "Desarrollo de sistema autónomo y prototipado robótico par fumigación de cultivos de tomate"

[Artículo]. Recuperado de:

https://repository.ucatolica.edu.co/handle/10983/1471