1.设函数	$f: R^n \to R$ 连续可微, $d \in R^n$ 为该函数在点 $x \in R^n$ 处
的下降方向. 试建立函数 $\phi(\alpha) = f(x + \alpha d)$ 在 $\alpha \ge 0$ 上的最小值	
点的必要条件.	
解	当函数 $\phi(d) = +(x+dd)$ 在 0 20上的最小值点 $d=d^*$ 时
- 4,1	根据 局部最优解的 = 阶 公要条件
	则有 $\nabla \phi(\vec{x}) = \nabla f(x+\vec{x}d) = 0$
	且 Hesse 矩阵 $\nabla^2 \phi(\vec{a}) = \nabla^2 f(x + \vec{d}d)$ 是丰正友的
	$P \nabla^2 \phi(\vec{x}) = \nabla^2 f(x + d^2 d) \neq 0$
$2.$ 设 $a_1, a_2,, a_m \in R^n$. 求下面问题的最优解	
	$\min_{x \in R^n} \sum_{i=1}^m a_i - x ^2.$
龢;	$ \hat{x} f(x) = \sum_{i=1}^{m} a_i - x ^2 $
MT;	当 v+(x) = -2 = (ai-x) = 0 时,即可得到 + (x) 的稳定点
	絶定点的。
	$\mathcal{E}_{i}^{p} \chi = \frac{1}{m} \sum_{i=1}^{m} a_{i}$
	又因为 √²+(x)=2mE>0 E为单位矩阵
	因此可知中午(x)为正定矩阵, 所以X=前等 ai是最优解
	PMXX=前台UI及取抗脚