MATH 3022 ALGEBRA II: ASSIGNMENT 2

JOE TRAN

Question 1. Let I and J be ideals of a ring R with $J \subset I$.

- (a) Prove that $I/J = \{a + J : a \in I\}$ is an ideal in the quotient ring R/J.
- (b) Prove the Third Isomorphism Theorem for Rings.

Question 2 (5 pts.). (a) Let R be a commutative ring with identity. Show that if $\{0_R\}$ and R are the only ideals of R, then R is a field.

(b) Let F be a field. Use (a) to show that F[x] is not a field.

Question 3 (5 pts.). Show that the principal ideal $\langle x-1 \rangle$ in $\mathbb{Z}[x]$ is prime but not maximal.

Question 4. Let $I_0 = \{f(x) \in \mathbb{Z}[x] : f(0) = 0\}$. Show that for any positive integer n, there exists a sequence of ideals $I_1, ..., I_n$ satisfying

$$I_0 \subsetneq I_2 \subsetneq \cdots \subsetneq I_n \subsetneq \mathbb{Z}[x]$$

Question 5 (5 pts.). Let R be an integral domain. Assume that the division algorithm always holds in R[x]. Prove that R is a field.

Question 6. We have the following definition:

Definition 1. Let a be a nonzero element in a field F. The multiplicative order of a is the least positive integer k where $a^k = 1_F$.

Prove that for any positive integer n, a field F can have at most a finite number of elements of multiplicative order at most n.

Question 7. (a) Prove that for every prime p,

$$x^{p-1} - 1 = (x-1)(x-2)\cdots(x-(p-1))$$

in $\mathbb{Z}_p[x]$.

(b) Prove Wilson's Theorem: For integers $n \ge 2$, $(n-1)! = n-1 \mod n$ if and only if n is a prime.

Question 8 (10 pts.). Let p be a prime.

- (a) Show that there are $\frac{p(p+1)}{2}$ reducible polynomials over \mathbb{Z}_p of the form $x^2 + ax + b$.
- (b) Determine the number of irreducible polynomials over \mathbb{Z}_p of the form $x^2 + ax + b$.

Date: February 12, 2024.

JOE TRAN

2

- (c) Show that there exists a field of order p^2 , for every prime p.
- (d) Construct a finite field with four elements. Give the addition and multiplication table of your field.
- **Question 9.** (a) Prove the Rational Root Theorem: Let $f(x) = c_n x^n + c_{n-1}x^{n-1} + \cdots + c_0 \in \mathbb{Z}[x]$ with $c_n \neq 0$. If $f\left(\frac{a}{b}\right) = 0$ for some relatively prime integers a and b, then $a \mid c_0$ and $b \mid c_n$.
 - (b) Use (a) to prove that if r is a real number such that $r + \frac{1}{r}$ is an odd integer, then $r \notin \mathbb{Q}$.

Question 10 (5 pts.). Either prove that $f(x) = 3x^5 - 4x^4 + 7x^3 + 16x^2 - 2$ is irreducible over \mathbb{Q} or factor it into a product of irreducible factors in $\mathbb{Q}[x]$.

Question 11 (Bonus 6 pts.). Complete the questions specified on Page 5 of Test 1.