CIS501 - Lecture 4

Woon Wei Lee Fall 2013, 10:00am-11:15am, Sundays and Wednesday

For today:

- Administrative stuff and discussions
 - Presentations!
- Classification intro:
 - Discriminative vs Generative classification
 - Density Estimation
 - Bayes decision rule

Classification: Discriminative vs Generative

The challenge

- Distinguish between data from two "classes"
- Geometrical perspective shown on right (fig.1).
 - There is training data (small coloured points) and an "unseen" instance (star)

Two approaches:

- Determine the class conditional distributions
 → assign point to most likely class (fig. 2)
- Identify discriminative direction or features (fig. 3)

Classification: Discriminative vs Generative

The challenge

- Distinguish between data from two "classes"
- Geometrical perspective shown on right (fig.1).
 - There is training data (small coloured points) and an "unseen" instance (star)

Two approaches:

- Determine the class conditional distributions
 → assign point to most likely class (fig. 2)
- Identify discriminative direction or features (fig. 3)

The probabilistic perspective:

Generative classifiers

Underlying concepts:

- Notion that the data is a manifestation of an underlying generator
- Characterized by its distribution p(x)
- Classification of new points based on goodnessof-fit to this assumed generator

Steps in modeling:

- 1. Model selection
- 2. Density estimation of the data
- 3. Classification of new data

Models covered:

- kNN
- Naive Bayes Classifier

Density estimation

- How can we estimate the densities p(x)?
- Start with data that is pre-"labelled" as belonging to either Class 1 (c_1) or 2 (c_2) \rightarrow "**Training data**"
- The instances corresponding to the individual classes are used in isolation to fix $p(x|c_i)$

(simple) parametric example:

Gaussian distribution

Two-class training data:

C ₁	0	1.5	2	2.5	4
C ₂	3.5	5	7	8	10

Model each class as a gaussian...

$$p(x|c_1)=N(1.8,2.575)$$
; $p(x|c_2)=N(6.7,6.45)$

• *x*=4.5 (identify class)

$$p(x|c_1) = \frac{1}{\sqrt{2\pi 2.575}} e^{-\left[\frac{(4.5-1.8)^2}{2\times 2.575}\right]} = 0.060362 , p(x|c_2) = 0.10794$$

 \Rightarrow c \rightarrow c₂ (Congrats, your first classifier!)

Non-parameteric estimation

- Crudest method: histogram method (illustrated above)
- Divide axis into uniformly sized bins, calculate:

$$p(x|c_2) = \frac{n}{Nl} \propto \frac{1}{6}$$

- Notes:
 - Conceptually simple/easy to implement
 - Q: What are the disadvantages?

k-NN approach

• Still based on:

$$p(x|c_2) = \frac{k}{Nl} = \frac{1}{61}$$

- i.e. only / changes
- Allows the size of the sampling area to change w.r.t. the data distribution
- Sparse areas of the axes can still yield non-zero probabilities
- Question: What does changing the value of k do?

(Refresher) Bayes Theorem

Bayes theorem is given by:

$$p(c|x) = \frac{p(c, x)}{p(x)}$$
$$= \frac{p(x|c)p(c)}{p(x)}$$

- Specialized terms in Bayesian Analysis:
 - c The model or property to be inferred
 - x -The "observations"
 - p(x|c) The "Likelihood"
 - p(c) The "prior"
 - p(c|x) The "posterior"
 - p(x) The "evidence"

Thomas Bayes 1702-1761

Bayes decision rule

- In the case of classification, "c" denotes the category or class from which the data was sampled
- In general, the classification problem is as follows:
 - Given a particular observation, *x* and *n* potential classes, determine the class which satisfies:

$$c = \underset{\forall i \in \{1, 2, \dots, n\}}{argmax_i} p(c_i | x)$$

- p(x) is independent of the class, and...
- .. *p*(*c*) is frequently assumed to be the same for all classes.
- In which case, the likelihood term is interchangeable with the posterior term above.

