Gradual Verification

with Implicit Dynamic Frames

Master Thesis of

Johannes Bader

Karlsruhe Institute of Technology Karlsruhe, Germany

Advised by

Assoc. Prof. Jonathan Aldrich

Carnegie Mellon University Pittsburgh, USA

Assoc. Prof. Éric Tanter University of Chile Santiago, Chile Poland

Gradual Verification

(with Implicit Dynamic Frames)

```
int getFour(int i)
    requires ?; // haven't figured that one out, yet
    ensures result = 4;
{
    i = i + 1;
    return i;
}
```

Motivation

- Program verification (against some specification)
- Two flavors: static & dynamic

```
// spec: callable only if (this.balance >= amount)
void withdrawCoins(int amount)
{
    // business logic
    this.balance -= amount;
}
```

Dynamic Verification

- runtime checks
- testing techniques
- guarantee compliance at runtime

```
void withdrawCoins(int amount)
{
   assert this.balance >= amount;
   // business logic
   this.balance -= amount;
}
```

Dynamic Verification – Drawbacks

runtime checks

runtime overhead

testing techniques

additional efforts

guarantee compliance at runtime pot. late detection

```
void withdrawCoins(int amount)
   requires this.balance >= amount;
   // business logic
   this.balance -= amount;
```

Static Verification

- declarative
- formal logic
- guarantee compliance in advance

```
void withdrawCoins(int amount)
   requires this.balance >= amount;
{
   // business logic
   this.balance -= amount;
}
```

Static Verification — Drawbacks

- declarative
- formal logic

- limited syntax decidability
- guarantee compliance in advance annotation pressure

```
void withdrawCoins(int amount)
   requires this.balance >= amount;
   ensures this.balance = old(this.balance) - amount;
{
   // business logic
   this.balance -= amount;
}
```

Solution? Static + Dynamic

Means:

- "relaxed" static verification (warnings on failure)
- turn contracts into runtime assertions

Notable implementations:

- Java with JML annotations
 - "ESC/Java" for static verification
 - "JML4c" for dynamic verification
- Code Contracts for .NET (by RiSE, MSR)

Solution? Static + Dynamic

Solution! Static ⊕ Dynamic

```
"Static Typing Where Possible,
Dynamic Typing When Needed" (Erik Meijer)
```

```
void withdrawCoins(int amount)
    requires this.balance >= amount;
{
    ...
}
...
acc.balance = 100;
acc.withdrawCoins(50); // can prove acc.balance >= 50
acc.withdrawCoins(30); // can't prove acc.balance >= 30
acc.withdrawCoins(30); // can't prove acc.balance >= 30
```

Approach

Syntax

 $s \in Stmt$

 $\phi \in \text{Formula}$

Program State

 $\pi \in PROGRAMSTATE$

Semantics

Static $\vdash \{\phi\} \ s \ \{\phi\}$

Dynamic $\pi \longrightarrow \pi$

Formula $\pi \models \phi$

Soundness

Syntax

 $\widetilde{s} \in \widetilde{\mathbf{S}} \mathbf{TMT}$

 $\widetilde{\phi} \in \widetilde{\mathbf{F}}\mathbf{ORMULA}$

Program State

 $\widetilde{\pi} \in \widetilde{P}_{ROGRAMSTATE}$

Semantics

Static $\widetilde{\vdash} \{\widetilde{\phi}\} \ \widetilde{s} \ \{\widetilde{\phi}\}$

Dynamic $\widetilde{\pi} \longrightarrow \widetilde{\pi}$

Formula $\widetilde{\pi} \stackrel{\sim}{\models} \widetilde{\phi}$

Syntax

 $s \in Stmt$

 $\phi \in FORMULA$

Program State

 $\pi \in \mathsf{PROGRAMSTATE}$

Semantics

Static $\vdash \{\phi\} \ s \ \{\phi\}$

Dynamic $\pi \longrightarrow \pi$

Formula $\pi \models \phi$

$$e ::= x \mid n \mid e_1 + e_2$$

$$s ::= x := e \mid \operatorname{assert} \phi \mid s_1; s_2$$

$$\phi$$
 ::= true | $(e_1 = e_2)$ | $\phi_1 \wedge \phi_2$

$$= (VAR \rightarrow \mathbb{N}_0) \times STMT$$

Syntax

 $s \in STMT$

 $\phi \in \text{Formula}$

Program State

 $\pi \in \mathsf{PROGRAMSTATE}$

Semantics

Static $\vdash \{\phi\} \ s \ \{\phi\}$

Dynamic $\pi \longrightarrow \pi$

Formula $\pi \models \phi$

$$\frac{x := e}{\vdash \{\phi[e/x]\} \ x := e \ \{\phi\}} \text{ HASSIGN}$$

$$\frac{\phi \Rightarrow \phi_a}{\vdash \{\phi\} \text{ assert } \phi_a \ \{\phi\}} \text{ HASSERT}$$

$$\frac{\phi_{q1} \Rightarrow \phi_{q2}}{\vdash \{\phi_p\} \ s_1 \ \{\phi_{q1}\} \ \vdash \{\phi_{q2}\} \ s_2 \ \{\phi_r\}} + \{\phi_p\} \ s_1; \ s_2 \ \{\phi_r\}$$
 HSEQ

Syntax

 $s \in STMT$

 $\phi \in \text{Formula}$

Program State

 $\pi \in \mathsf{PROGRAMSTATE}$

Semantics

Static $\vdash \{\phi\} \ s \ \{\phi\}$

Dynamic $\pi \longrightarrow \pi$

Formula $\pi \models \phi$

$$\frac{\mathcal{N}_{\sigma}(e) = n}{\langle \sigma, x := e; s \rangle \longrightarrow \langle \sigma[x \mapsto n], s \rangle} \text{ SsAssign}$$

$$\frac{\langle \sigma, \text{assert } \phi_a; s \rangle \vDash \phi_a}{\langle \sigma, \text{assert } \phi_a; s \rangle \longrightarrow \langle \sigma, s \rangle} \text{ SsAssert}$$

Syntax

 $s \in STMT$

 $\phi \in \text{Formula}$

Program State

 $\pi \in \mathsf{PROGRAMSTATE}$

Semantics

Static $\vdash \{\phi\} \ s \ \{\phi\}$

Dynamic $\pi \longrightarrow \pi$

Formula $\pi \models \phi$

$$\langle [x \mapsto 3], s \rangle \vDash (x = 3)$$

 $\langle [x \mapsto 3, y \mapsto 5], s \rangle \vDash (y \neq x)$

$$\phi_1 \Rightarrow \phi_2 \stackrel{\mathsf{def}}{\Longleftrightarrow} \forall \pi. \ \pi \vDash \phi_1 \implies \pi \vDash \phi_2$$

$$(a = b) \land (b = c) \Rightarrow (a = c)$$

Syntax

 $s \in STMT$

 $\phi \in \text{Formula}$

Program State

 $\pi \in PROGRAMSTATE$

Semantics

Static $\vdash \{\phi\} \ s \ \{\phi\}$

Dynamic $\pi \longrightarrow \pi$

Formula $\pi \models \phi$

$$\frac{\vdash \{\phi\} \ s \ \{\phi'\}}{\models \{\phi\} \ s \ \{\phi'\}} \text{ Soundness}$$

$$\models \{\phi\} \ s \ \{\phi'\}$$

$$\iff$$

$$\forall \pi, \pi'. \ \pi \xrightarrow{s} \pi' \land \pi \models \phi \implies \pi' \models \phi'$$

Gradualization – Overview

Syntax

 $s \in STMT$

 $\phi \in \text{Formula}$

Program State

 $\pi \in \mathsf{PROGRAMSTATE}$

Semantics

Static $\vdash \{\phi\} \ s \ \{\phi\}$

Dynamic $\pi \longrightarrow \pi$

Formula $\pi \models \phi$

Soundness

Syntax

 $\widetilde{s} \in \widetilde{\mathbf{S}} \mathbf{TMT}$

 $\widetilde{\phi} \in \widetilde{F}ORMULA$

Program State

 $\tilde{\pi} \in \widetilde{P}_{ROGRAMSTATE}$

Semantics

Static $\widetilde{\vdash} \{\widetilde{\phi}\} \ \widetilde{s} \ \{\widetilde{\phi}\}$

Dynamic $\widetilde{\pi} \longrightarrow \widetilde{\pi}$

Formula $\widetilde{\pi} \stackrel{\sim}{\models} \widetilde{\phi}$

Gradualization – Goal 1/3

Introduction of wildcard formula ?

- placeholder for arbitrary (satisfiable) formula
- enables Hoare deduction despite incomplete information
- enables gradual annotation of programs (? as default)

Formula Precision

$$\widetilde{\phi_1} \sqsubseteq \widetilde{\phi_2} \stackrel{\mathsf{def}}{\iff} \gamma(\widetilde{\phi_1}) \subseteq \gamma(\widetilde{\phi_2})$$

Gradualization – Goal 2/3

Compatibility with static language

- don't reject source code that was accepted before
- observable behavior is not changed

dynamic

static

FORMULA
$$\subseteq$$
 FORMULA STMT \subseteq STMT
$$\vdash \{\phi\} \ s \ \{\phi'\} \implies \vdash \{\phi\} \ s \ \{\phi'\}$$

$$\pi \xrightarrow{s} \pi' \implies \exists \pi''. \ \pi \xrightarrow{s} \pi'' \land (\forall \phi. \ \pi' \vDash \phi \implies \pi'' \vDash \phi)$$

Gradualization – Goal 3/3

Gradual guarantee (Siek et al.), adapted Reducing precision will not

- introduce verification failure
- change observable behavior

static

dynamic

Given
$$\widetilde{\phi_{1}} \sqsubseteq \widetilde{\phi_{2}} \wedge \widetilde{\phi'_{1}} \sqsubseteq \widetilde{\phi'_{2}} \wedge \widetilde{s_{1}} \sqsubseteq \widetilde{s_{2}} \wedge \widetilde{\pi_{1}} \sqsubseteq \widetilde{\pi_{2}}$$

$$\widetilde{\vdash} \{\widetilde{\phi_{1}}\} \widetilde{s_{1}} \{\widetilde{\phi'_{1}}\} \Longrightarrow \widetilde{\vdash} \{\widetilde{\phi_{2}}\} \widetilde{s_{2}} \{\widetilde{\phi'_{2}}\}$$

$$\widetilde{\pi_{1}} \xrightarrow{\widetilde{s_{1}}} \widetilde{\pi'_{1}} \Longrightarrow \exists \widetilde{\pi'_{2}}. \ \widetilde{\pi_{2}} \xrightarrow{\widetilde{s_{2}}} \widetilde{\pi'_{2}} \wedge \widetilde{\pi'_{1}} \sqsubseteq \widetilde{\pi'_{2}}$$

Gradual Predicate Lifting

Introduction

$$\forall \phi_1, \phi_2 \in \text{FORMULA. } P(\phi_1, \phi_2) \implies \widetilde{P}(\phi_1, \phi_2)$$

Monotonicity

$$\forall \widetilde{\phi_1}, \widetilde{\phi_2}, \widetilde{\phi_1'}, \widetilde{\phi_2'} \in \widetilde{\mathrm{Formula}}. \ \widetilde{\phi_1} \sqsubseteq \widetilde{\phi_1'} \land \widetilde{\phi_2} \sqsubseteq \widetilde{\phi_2'} \land \widetilde{P}(\widetilde{\phi_1}, \widetilde{\phi_2}) \implies \widetilde{P}(\widetilde{\phi_1'}, \widetilde{\phi_2'})$$

$$P(\phi_{1},\phi_{a},\phi_{2}) \stackrel{\text{def}}{=} \phi_{1} = \phi_{2} \wedge \phi_{1} \Rightarrow \phi_{a} \qquad \qquad \phi \Rightarrow \phi_{a} \qquad \qquad F(\phi_{1},\widetilde{\phi_{a}},\widetilde{\phi_{2}}) \stackrel{\text{def}}{=} \widetilde{\phi_{1}} \approx \widetilde{\phi_{2}} \wedge \widetilde{\phi_{1}} \cong \widetilde{\phi_{a}} \qquad \qquad F(\phi_{1},\widetilde{\phi_{a}},\widetilde{\phi_{2}}) \stackrel{\text{def}}{=} \widetilde{\phi_{1}} \approx \widetilde{\phi_{2}} \wedge \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \wedge \widetilde{\phi_{1}} \cong \widetilde{\phi_{a}} \qquad \qquad F(\phi_{1},\widetilde{\phi_{a}},\widetilde{\phi_{2}}) \stackrel{\text{def}}{=} \widetilde{\phi_{1}} = \widetilde{\phi_{2}} \vee \widetilde{\phi_{1}} = ? \vee \widetilde{\phi_{2}} = ? \qquad \qquad F(\phi_{1},\widetilde{\phi_{1}}) \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \otimes \widetilde{\phi_{1}} \cong ? \vee \widetilde{\phi_{2}} = ? \qquad \qquad \widetilde{F}(\phi_{1},\widetilde{\phi_{1}}) \cong \widetilde{\phi_{2}} \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \otimes \widetilde{\phi_{1}} \cong ? \vee \widetilde{\phi_{2}} \cong ? \qquad \qquad \widetilde{F}(\phi_{1},\widetilde{\phi_{1}}) \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \otimes \widetilde{\phi_{1}} \cong ? \vee \widetilde{\phi_{2}} \cong ? \qquad \qquad \widetilde{F}(\phi_{1},\widetilde{\phi_{2}}) \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \otimes \widetilde{\phi_{1}} \cong ? \vee \widetilde{\phi_{2}} \cong ? \qquad \qquad \widetilde{F}(\phi_{1},\widetilde{\phi_{2}}) \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \cong \widetilde{\phi_{2}} \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \cong \widetilde{\phi_{1}} \cong \widetilde{\phi_{2}} \cong \widetilde{\phi_$$

Johannes Bader Gradual Verification 21

Gradual Predicate Lifting

Introduction

$$\forall \phi_1, \phi_2 \in \text{FORMULA. } P(\phi_1, \phi_2) \implies \widetilde{P}(\phi_1, \phi_2)$$

Monotonicity

$$\forall \widetilde{\phi_1}, \widetilde{\phi_2}, \widetilde{\phi_1'}, \widetilde{\phi_2'} \in \widetilde{\mathrm{Formula}}. \ \widetilde{\phi_1} \sqsubseteq \widetilde{\phi_1'} \land \widetilde{\phi_2} \sqsubseteq \widetilde{\phi_2'} \land \widetilde{P}(\widetilde{\phi_1}, \widetilde{\phi_2}) \implies \widetilde{P}(\widetilde{\phi_1'}, \widetilde{\phi_2'})$$

(Optimality)

 \widetilde{P} is smallest predicate closed under above rules

$$\widetilde{P}(\widetilde{\phi_1}, \widetilde{\phi_2}) \iff \exists \phi_1 \in \gamma(\widetilde{\phi_1}), \phi_2 \in \gamma(\widetilde{\phi_2}). \ P(\phi_1, \phi_2)$$

Gradual Predicate Lifting

$$\widetilde{\pi} \ \widetilde{\models} \ \widetilde{\phi}$$

$$\iff \exists \pi \in \gamma(\widetilde{\pi}), \phi \in \gamma(\widetilde{\phi}). \ \pi \models \phi$$

$$\iff \exists \phi \in \gamma(\widetilde{\phi}). \ \widetilde{\pi} \models \phi$$

$$\iff \widetilde{\pi} \models \widetilde{\phi} \lor \widetilde{\phi} = ?$$

$$\frac{\widetilde{\pi} \vDash \phi}{\widetilde{\pi} \widetilde{\vDash} \phi} \text{ EVALPHISTATIC}$$

$$\frac{}{\widetilde{\pi} \ \widetilde{\models} \ ?}$$
 EVALPHISTATIC

$$\widetilde{P}(\widetilde{\phi_1}, \widetilde{\phi_2}) \iff \exists \phi_1 \in \gamma(\widetilde{\phi_1}), \phi_2 \in \gamma(\widetilde{\phi_2}). \ P(\phi_1, \phi_2)$$

Gradual Function Lifting

Introduction

$$\forall \phi \in \text{FORMULA. } f(\phi) \sqsubseteq \widetilde{f}(\phi)$$

Monotonicity

$$\forall \widetilde{\phi_1}, \widetilde{\phi_2} \in \widetilde{F}ORMULA. \ \widetilde{\phi_1} \sqsubseteq \widetilde{\phi_2} \implies \widetilde{f}(\widetilde{\phi_1}) \sqsubseteq \widetilde{f}(\widetilde{\phi_2})$$

(Optimality)

 \widetilde{f} has most precise return values among all liftings

$$\Leftrightarrow$$
 $\widetilde{f}(\widetilde{\phi}) = \alpha(\overline{f}(\gamma(\widetilde{\phi})))$ where $\langle \alpha, \gamma \rangle$ is $\{\overline{f}\}$ -partial Galois connection

Gradual Partial Function Lifting

Introduction

$$\forall \phi \in \text{FORMULA} \cap \text{dom}(f). \ f(\phi) \sqsubseteq \widetilde{f}(\phi)$$

Monotonicity

$$\forall \widetilde{\phi_1}, \widetilde{\phi_2} \in \widetilde{\mathrm{F}}$$
ORMULA. $\widetilde{\phi_1} \sqsubseteq \widetilde{\phi_2} \land \widetilde{\phi_1} \in \mathsf{dom}(\widetilde{f}) \implies \widetilde{f}(\widetilde{\phi_1}) \sqsubseteq \widetilde{f}(\widetilde{\phi_2})$

(Optimality)

 \widetilde{f} has smallest domain and most precise return values among all liftings

$$\iff \widetilde{f}(\widetilde{\phi}) = \alpha(\overline{f}(\gamma(\widetilde{\phi})))$$
 where $\langle \alpha, \gamma \rangle$ is $\{\overline{f}\}$ -partial Galois connection

Gradual Verification - Approach

Syntax

 $s \in STMT$

 $\phi \in \text{Formula}$

Program State

 $\pi \in \mathsf{PROGRAMSTATE}$

Semantics

Static $\vdash \{\phi\} \ s \ \{\phi\}$

Dynamic $\pi \longrightarrow \pi$

Formula $\pi \models \phi$

Soundness

Syntax

 $\widetilde{s} \in \widetilde{\mathbf{S}} \mathbf{TMT}$

 $\widetilde{\phi} \in \widetilde{F}ORMULA$

Program State

 $\widetilde{\pi} \in \widetilde{P}_{ROGRAMSTATE}$

Semantics

Static $\widetilde{\vdash} \{\widetilde{\phi}\} \ \widetilde{s} \ \{\widetilde{\phi}\}$

Dynamic $\widetilde{\pi} \longrightarrow \widetilde{\pi}$

Formula $\widetilde{\pi} \stackrel{\sim}{\models} \widetilde{\phi}$

Gradual Verification - Approach

Syntax

 $s \in Stmt$

 $\phi \in \text{Formula}$

Program State

 $\pi \in \mathsf{PROGRAMSTATE}$

Semantics

Static $\vdash \{\phi\} \ s \ \{\phi\}$

Dynamic $\pi \longrightarrow \pi$

Formula $\pi \models \phi$

Soundness

syntax extension

abstract interpretation

predicate lifting

partial function lifting

predicate lifting

Syntax

 $\widetilde{s} \in \widetilde{\mathbf{S}}_{\mathsf{TMT}}$

 $\widetilde{\phi} \in \widetilde{F}ORMULA$

Program State

 $\widetilde{\pi} \in \widetilde{P}_{ROGRAM}$ STATE

Semantics

Static $\widetilde{\vdash} \{\widetilde{\phi}\} \ \widetilde{s} \ \{\widetilde{\phi}\}$

Dynamic $\widetilde{\pi} \longrightarrow \widetilde{\pi}$

Formula $\widetilde{\pi} \stackrel{\sim}{\models} \widetilde{\phi}$

Gradual Soundness

$$\frac{\vdash \{\phi\} \ s \ \{\phi'\}}{\models \{\phi\} \ s \ \{\phi'\}} \text{ Soundness}$$

$$\vDash \{\phi\} \ s \ \{\phi'\}$$

$$\iff$$

$$\forall \pi, \pi'. \ \pi \xrightarrow{s} \pi' \land \pi \vDash \phi \implies \pi' \vDash \phi'$$

$$\frac{\widetilde{\vdash} \left\{\widetilde{\phi}\right\} \, \widetilde{s} \, \left\{\widetilde{\phi'}\right\}}{\widetilde{\vdash} \left\{\widetilde{\phi}\right\} \, \widetilde{s}; \text{ assert } \widetilde{\phi'} \, \left\{\widetilde{\phi'}\right\}} \, \widetilde{\text{Soundness}}$$

$$\widetilde{\vDash} \ \{\widetilde{\phi}\} \ \widetilde{s} \ \{\widetilde{\phi}'\}$$

$$\stackrel{\mathsf{def}}{\Longleftrightarrow}$$

$$\forall \widetilde{\pi}, \widetilde{\pi'}. \ \widetilde{\pi} \overset{\widetilde{s}}{\longrightarrow} \widetilde{\pi'} \wedge \widetilde{\pi} \ \widetilde{\vDash} \ \widetilde{\phi} \ \Longrightarrow \ \widetilde{\pi'} \ \widetilde{\vDash} \ \widetilde{\phi'}$$

$$\widetilde{\vdash} \ \{?\} \ y \ := \ 4 \ \{ (x = 2) \ \land \ (y = 4) \}$$

$$\widetilde{\vdash} \ \{?\} \ y \ := \ 4; \ assert \ (x = 2) \ \{ (x = 2) \ \land \ (y = 4) \}$$

Johannes Bader Gradual Verification 30

Gradual Verification — Put to the Test

$$\frac{\widetilde{\phi_1} \widetilde{\Rightarrow} \widetilde{\phi_2}}{\widetilde{\vdash} \{?\} \ y := 2 \ \{\widetilde{\phi_1}\}} \qquad \widetilde{\vdash} \ \{\widetilde{\phi_2}\} \ x := 3 \ \{(x = 3) \ \land \ (y = 2)\}$$

$$\widetilde{\vdash} \ \{?\} \ y := 2; \ x := 3 \ \{(x = 3) \ \land \ (y = 2)\}$$

$$\widetilde{\vdash} \ \{?\} \ y := 2; \ x := 3 \ \{(x = 3) \ \land \ (y = 2)\}$$

a)
$$\widetilde{\phi_1}=(y=2)$$
 $\widetilde{\phi_2}=(y=2)$

"good" (Hoare triples even valid)but only one option

b)
$$\widetilde{\phi_1}=?$$
 $\widetilde{\phi_2}=?$

"too weak" (no information forwarded) idea: try to be more precise

c)
$$\widetilde{\phi_1} = (y = 2) \land (x = 4)$$

 $\widetilde{\phi_2} = (y = 2)$

"too strict" (unnecessary assumption) idea: try to produce valid Hoare triple

• Idea: treat static Hoare logic as (multivalued) function

$$\vdash \{\cdot\} \cdot \{\cdot\} \subseteq FORMULA \times STMT \times FORMULA$$

$$\vdash \{\cdot\} \cdot \{\cdot\} : FORMULA \times STMT \to \mathcal{P}^{FORMULA}$$

• lift that function (rules similar to partial function)

$$\vec{\vdash} \{\cdot\} \cdot \{\cdot\} : \widetilde{F}ORMULA \times \widetilde{S}TMT \to \widetilde{F}ORMULA$$

- Properties
 - can derive gradual lifting
 - stronger, assertion-free notion of soundness
 - deterministic verifier
 - free transitivity (no assertions to justify premises of $\widetilde{\mathrm{HSeQ}}$)

Introduction
$$\forall \phi_1, \phi_2. \ P(\phi_1, \phi_2) \implies \phi_1 \in \mathsf{dom}(\vec{P})$$

Strength
$$\forall \widetilde{\phi_1}, \widetilde{\phi_2}. \ \overrightarrow{P}(\widetilde{\phi_1}) = \widetilde{\phi_2} \implies \forall \phi_1 \in \gamma(\widetilde{\phi_1}), \ \phi. \ P(\phi_1, \phi)$$
 $\implies \exists \phi_2 \in \gamma(\widetilde{\phi_2}). \ P(\phi_1, \phi_2) \ \land \ (\phi_2 \Rightarrow \phi)$

Monotonicity

$$\forall \widetilde{\phi_1}, \widetilde{\phi_2} \in \widetilde{\mathrm{F}}\mathrm{ORMULA}. \ \widetilde{\phi_1} \sqsubseteq \widetilde{\phi_2} \wedge \widetilde{\phi_1} \in \mathsf{dom}(\vec{P}) \implies \vec{P}(\widetilde{\phi_1}) \sqsubseteq \vec{P}(\widetilde{\phi_2})$$

(Optimality)

 \vec{P} has smallest domain and most precise return values among all liftings

Obtaining a Gradual Lifting

Let

$$\vec{\vdash} \{\cdot\} \cdot \{\cdot\} : \widetilde{F}ORMULA \times \widetilde{S}TMT \to \widetilde{F}ORMULA$$

be a deterministic lifting of

$$\vdash \{\cdot\} \cdot \{\cdot\} \subseteq FORMULA \times STMT \times FORMULA$$

Let

$$\widetilde{\vdash} \{\cdot\} \cdot \{\cdot\} : \widetilde{F}ORMULA \times \widetilde{S}TMT \times \widetilde{F}ORMULA$$

be defined as

$$\widetilde{\vdash} \ \{\widetilde{\phi_1}\} \ \widetilde{s} \ \{\widetilde{\phi_2}\} \quad \stackrel{\mathsf{def}}{\Longleftrightarrow} \quad \exists \widetilde{\phi_2'}. \ \ \overrightarrow{\vdash} \ \{\widetilde{\phi_1}\} \ \widetilde{s} \ \{\widetilde{\phi_2'}\} \wedge \widetilde{\phi_2'} \ \widetilde{\Rightarrow} \ \widetilde{\phi_2}$$

Then $\widetilde{\vdash} \{\cdot\} \cdot \{\cdot\}$ is a gradual lifting of $\vdash \{\cdot\} \cdot \{\cdot\}$

$$\frac{\vec{\vdash} \{\widetilde{\phi}\} \ \widetilde{s} \ \{\widetilde{\phi}'\}}{\widetilde{\vdash} \{\widetilde{\phi}\} \ \widetilde{s} \ \{\widetilde{\phi}'\}} \ \vec{\text{Soundness}}$$

- satisfiable (but not a tautology)
- very helpful for optimizations

Deterministic Lifting – HASSIGN

$$\frac{x := e}{\vdash \{\phi[e/x]\} \ x := e \ \{\phi\}} \text{ HASSIGN}$$

$$\frac{x \notin \mathsf{FV}(\phi) \quad x \notin \mathsf{FV}(e)}{\vec{\vdash} \{\phi\} \ x := e \ \{\phi \land (x = e)\}} \ \vec{\mathsf{H}} \text{Assign1}$$

$$\frac{\vec{\mathrm{H}} \text{Assign1} \ does \ not \ apply}{\vec{\vdash} \ \{\widetilde{\phi}\} \ x \ := \ e \ \{?\}} \ \vec{\mathrm{H}} \text{Assign2}$$

Deterministic Lifting -HASSERT

$$\frac{\phi \Rightarrow \phi_a}{\vdash \{\phi\} \text{ assert } \phi_a \{\phi\}} \text{ HASSERT}$$

$$\frac{\phi \Rightarrow \phi_a}{\vec{\vdash} \{\phi\} \text{ assert } \phi_a \{\phi\}} \vec{\text{HASSERT1}}$$

$$\frac{\phi_a \in \text{SATFORMULA}}{\vec{\vdash} \ \{?\} \text{ assert } \phi_a \ \{?\}} \vec{H} \text{Assert2}$$

Deterministic Lifting – HSEQ

$$\frac{\phi_{q1} \Rightarrow \phi_{q2}}{\vdash \{\phi_p\} \ s_1 \ \{\phi_{q1}\} \ \vdash \{\phi_{q2}\} \ s_2 \ \{\phi_r\}} + \{\phi_p\} \ s_1; \ s_2 \ \{\phi_r\}$$
 HSEQ

$$\frac{\widetilde{\phi_{q1}} \stackrel{\Rightarrow}{\Rightarrow} \widetilde{\phi_{q2}}}{\stackrel{\vdash}{\vdash} \{\widetilde{\phi_{p}}\}} \underbrace{\widetilde{s_{1}} \{\widetilde{\phi_{q1}}\} \stackrel{\vdash}{\vdash} \{\widetilde{\phi_{q2}}\} \widetilde{s_{2}} \{\widetilde{\phi_{r}}\}}_{\stackrel{\vdash}{\vdash} \{\widetilde{\phi_{p}}\} \widetilde{s_{1}}; \widetilde{s_{2}} \{\widetilde{\phi_{r}}\}} \stackrel{\text{HSeq}}{\vdash}$$

Demo

http://olydis.github.io/GradVer/impl/HTML5/