Project 3: GT FileSystem

Authors: Eva Grace Bennett, Gopesh Singal

Design Justification

When creating the system, the logging mechanism was based upon the write_t structure; whenever a process attempts to write to a file it has opened, a write_t object is created, serving as an in-memory log of the write attempt. This write_t object holds the data it wrote to the file, as well as the data it overwrote. In doing so, if the write was chosen to be aborted, then the changes made to the in-memory representation of the file, the file_t object, can be undone and reverted to just before the write operation was applied. When performing gtfs_sync_write_file, the write_t is then applied to the disk memory, being applied to the log tracking the write changes and to the file in question. This is to align with the specifications outlined in note @232 on Piazza, where under Method 2 it is stated we may "sync all corresponding pending in-memory logs by moving them to on-disk logs and applying them to the file" for gtfs_sync_write_file.

Data Persistence

When gtfs_sync_write_file is called by a process, the write_t structure passed in is applied to the on-disk logs and file, ensuring that even if the process were to crash, the data is now recoverable from the disk memory. The process would simply need to call gtfs_open_file once more to receive the persisted changes. In a sense, for a change written to persist, the process needs to call gtfs_sync_write_file or gtfs_clean to update the disk memory.

Crash Recovery

Performance for Reading / Writing