Redes de Computadores

Evandro J.R. Silva

ejrs.profissional@gmail.com

Bacharelado em Ciência da Computação Faculdade Estácio Teresina

05 a 06 de Agosto

Sumário

- 1 Introdução
- 2 Modelo em Camadas
 - Modelo OSI
 - TCP/IP

- 3 Camada de Aplicação
 - Arquiteturas de aplicação de rede
 - Comunicação entre processos

O que é uma rede de computadores?

- O que é uma rede de computadores?
 - É uma conexão entre, no mínimo, dois dispositivos.

Nos primórdios da computação (duas primeiras décadas):

Nos primórdios da computação (duas primeiras décadas):

Nos primórdios da computação (duas primeiras décadas):

Ou seja

Todo o processamento ocorre no MAINFRAME

 Os dispositivos em uma rede estão conectados através de um enlace de comunicação.

- Os dispositivos em uma rede estão conectados através de um enlace de comunicação.
- A conexão era baseada em comutação de circuito

- Os dispositivos em uma rede estão conectados através de um enlace de comunicação.
- A conexão era baseada em comutação de circuito

Antes da comunicação os dispositivos reservavam recursos.

- Os dispositivos em uma rede estão conectados através de um enlace de comunicação.
- A conexão era baseada em comutação de circuito

- Antes da comunicação os dispositivos reservavam recursos.
- Dados eram transferidos em um fluxo contínuo.

Com o advento da comutação de pacotes a conectividade foi facilitada permitindo uma expansão das redes de computadores para uma escala global.

As redes podem conectar dispotivos através de:

- As redes podem conectar dispotivos através de:
 - Fio de cobre;

- As redes podem conectar dispotivos através de:
 - Fio de cobre;
 - Fibra óptica;

- As redes podem conectar dispotivos através de:
 - Fio de cobre:
 - Fibra óptica;
 - Microondas;

- As redes podem conectar dispotivos através de:
 - Fio de cobre:
 - Fibra óptica;
 - Microondas;
 - Infravermelho;

- As redes podem conectar dispotivos através de:
 - Fio de cobre:
 - Fibra óptica;
 - Microondas;
 - Infravermelho;
 - Satélites;
 - etc.

- As redes podem conectar dispotivos através de:
 - Fio de cobre:
 - Fibra óptica;
 - Microondas;
 - Infravermelho;
 - Satélites;
 - etc.
- Podem ter vários tamanhos e modelos.

- As redes podem conectar dispotivos através de:
 - Fio de cobre:
 - Fibra óptica;
 - Microondas;
 - Infravermelho;
 - Satélites;
 - etc.
- Podem ter vários tamanhos e modelos.
- Internet: uma rede de redes.

- Dois tipos gerais de transmissão
 - Enlace ponto a ponto
 - Enlace broadcast

- Dois tipos gerais de transmissão
 - Enlace ponto a ponto
 - Pares de máquinas conectadas;
 - Enlace broadcast

- Dois tipos gerais de transmissão
 - Enlace ponto a ponto
 - Pares de máquinas conectadas;
 - Unicast → quando não há rota entre os pontos.
 - Enlace broadcast

- Dois tipos gerais de transmissão
 - Enlace ponto a ponto
 - Pares de máquinas conectadas;
 - Unicast → quando não há rota entre os pontos.
 - Enlace broadcast
 - Um pacote enviado por uma máquina é recebido por todas as outras máquinas;

- Dois tipos gerais de transmissão
 - Enlace ponto a ponto
 - Pares de máquinas conectadas;
 - Unicast → quando não há rota entre os pontos.
 - Enlace broadcast
 - Um pacote enviado por uma máquina é recebido por todas as outras máquinas;
 - Um campo de endereço dentro do pacote especifica o destinatário;

- Dois tipos gerais de transmissão
 - Enlace ponto a ponto
 - Pares de máquinas conectadas;
 - Unicast → quando não há rota entre os pontos.
 - Enlace broadcast
 - Um pacote enviado por uma máquina é recebido por todas as outras máquinas;
 - Um campo de endereço dentro do pacote especifica o destinatário;
 - Multicast → quando um subconjunto de máquinas é o destinatário.

Dois tipos gerais de transmissão

■ Elementos compartilhados pela rede

- Elementos compartilhados pela rede
 - Dados;

- Elementos compartilhados pela rede
 - Dados;
 - Mensagens;

- Elementos compartilhados pela rede
 - Dados;
 - Mensagens;
 - Impressoras;

- Elementos compartilhados pela rede
 - Dados;
 - Mensagens;
 - Impressoras;
 - Armazenamento;
 - etc.

Classificação das redes

- Classificação das redes
 - Quanto a distância.
 - Quanto a topologia.

- Classificação das redes
 - Quanto a distância.
 - Quanto a topologia.

Classificação de redes quanto a distância

Distância do interprocessador	Processadores localizados no mesmo		
1 m	Metro quadrado		Pessoal
10 m	Cômodo		
100 m	Prédio	-	Local
1 km	Campus		
10 km	Cidade		Metropolitana
100 km	País		
1000 km	Continente		Longas distâncias
10000 km	Planeta	_	Internet

- Classificação de redes quanto a distância
 - Personal Area Network (PAN)

- Classificação de redes quanto a distância
 - Personal Area Network (PAN)
 - Bluetooth;
 - RFID.
 - Local Area Network (LAN)

Classificação de redes quanto a distância

- Local Area Network (LAN)
 - Rede particular com baixo a médio alcance.

- Classificação de redes quanto a distância
 - Metropolitan Area Network (MAN)

Classificação de redes quanto a distância

Wide Area Network (WAN)

Classificação de redes quanto a distância

- Wide Area Network (WAN)
 - Abrange uma ampla área geográfica.
 - Pode envolver países ou continentes.

- Classificação das redes
 - Quanto a distância.
 - Quanto a topologia.

Classificação de redes quanto a topologia

Topologia anel ou ring

Topologia mesh

- Desde o início já se previa a comunicação entre dispositivos incomunicáveis.
- Dispositivos diferentes, com arquiteturas diferentes, exigindo softwares diferentes.
- Fazê-los se comunicarem é uma tarefa complexa.

- Desde o início já se previa a comunicação entre dispositivos incomunicáveis.
- Dispositivos diferentes, com arquiteturas diferentes, exigindo softwares diferentes.
- Fazê-los se comunicarem é uma tarefa complexa.
- Solução: dividir para conquistar!

- Desde o início já se previa a comunicação entre dispositivos incomunicáveis.
- Dispositivos diferentes, com arquiteturas diferentes, exigindo softwares diferentes.
- Fazê-los se comunicarem é uma tarefa complexa.
- Solução: dividir para conquistar!
 - Em vez de soluções genéricas e complexas que cuidariam de todo o processo de comunicação, o processo deve ser subdividido.

- Desde o início já se previa a comunicação entre dispositivos incomunicáveis.
- Dispositivos diferentes, com arquiteturas diferentes, exigindo softwares diferentes.
- Fazê-los se comunicarem é uma tarefa complexa.
- Solução: dividir para conquistar!
 - Em vez de soluções genéricas e complexas que cuidariam de todo o processo de comunicação, o processo deve ser subdividido.
 - As redes passaram a ser divididas em camadas, onde em cada uma delas um determinado problema teria suas soluções.

	Remetente	Destinatário
	Escrever carta	Ler carta
	Envelopar	Abrir envelope
	Endereçar	Ler endereço
	Entregar no correio	Receber do carteiro
1	Remessa postal	Recebimento postal

- O modelo OSI (Open Systems Interconnect) foi criado, no fim da década de 1970, pela ISO (International Organization for Standardization).
- O objetivo era estabelecer um padrão para que dispositivos de diferentes marcas pudessem se comunicar.
- O OSI acabou servido apenas de referência, já que não foi desenvolvido muito além do próprio modelo.

- Princípios
 - Uma camada deve ser criada onde houver necessidade de outro grau de abstração.

- Uma camada deve ser criada onde houver necessidade de outro grau de abstração.
- Cada camada deve executar uma função bem definida.

- Cada camada deve executar uma função bem definida.
- A função de cada camada deve ser escolhida tendo em vista a definição de protocolos padronizados internacionalmente.

- A função de cada camada deve ser escolhida tendo em vista a definição de protocolos padronizados internacionalmente.
- Os limites de camadas devem ser escolhidos para minimizar o fluxo de informações pelas interfaces.

- Os limites de camadas devem ser escolhidos para minimizar o fluxo de informações pelas interfaces.
- O número de camadas deve ser grande o bastante para que funções distintas não precisem se desnecessariamente colocadas na mesma camada, e pequeno o suficiente para que a arquitetura não se torne difícil de controlar.

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Camada de Aplicação

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

- Camada de Aplicação
 - Onde devem estar aplicações específicas, como transferência de arquivos, correio eletrônico, login remoto, aplicações multimídias, etc.

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Estácio

Camada de Aplicação

Camada de Apresentação

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Estácio

Camada de Aplicação

- Camada de Apresentação
 - Onde deve ocorrer a conversão adequada dos dados recebidos pela camada de Aplicação em um formato comum a ser usado na transmissão.

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Camada de Sessão

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Camada de Sessão

- Permite que usuários em diferentes máquinas estabeleçam sessões de comunicação.
- Oferece serviços de controle de diálogo, gerenciamento de tokens (para impedir que ambos os usuários tentem executar a mesma operação crítica ao mesmo tempo) e sincronização.

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Estácio

Camada de Sessão

Camada de Transporte

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Estácio

Camada de Sessão

Camada de Transporte

Fornece comunicação fim a fim com confiabilidade. Pode fornecer também controle do fluxo de dados, detecção e recuperação de erros. Caso seja necessário, divide os dados em unidades menores e garante que tais fragmentos cheguem corretamente à outra extremidade.

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Estácio

Camada de Rede

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Camada de Rede

- Determina a maneira como os pacotes são roteados da origem até o destino.
- Rotas podem ser tabelas estáticas com atualização automática — ou dinâmicas — de acordo com a carga atual da rede.
- Nesta camada pode haver o controle de congestionamento (gargalos).

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Estácio

Camada de Rede

Camada de Enlace de Dados

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Estácio

Camada de Rede

- Camada de Enlace de Dados
 - Detecta e, opcionalmente, corrige erros que ocorram no nível físico.
 - Os dados vindos da camada superios são divididos em quadros.
 - Controle de fluxo, para evitar que um transmissor mais rápido envie uma quantidade de dados excessiva a um receptor mais lento.

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Estácio

Camada Física

Modelo OSI

Aplicação

Apresentação

Sessão

Transporte

Rede

Dados

Física

Modelo de Referência OSI

Camada Física

- Transmite bits por um canal de comunicação.
- É onde se deve lidar com questões como:
 - Quais sinais elétricos utilizar para representar os bits 0 e 1?
 - Quanto tempo deve durar a representação de um bit?
 - A transmissão pode acontecer em ambos os sentidos?

Modelo OSI

Arquitetura/Modelo TCP/IP

- ARPANET (Advanced Research Projects Agency Network)
 - É uma rede de computadores criada em 1969 para transmissão de dados militares sigilosos e interligação dos departamentos de pesquisa nos Estados Unidos.

- ARPANET (Advanced Research Projects Agency Network)
 - É uma rede de computadores criada em 1969 para transmissão de dados militares sigilosos e interligação dos departamentos de pesquisa nos Estados Unidos.
 - A rede foi crescendo, se juntando a ela outras universidades e repartições públicas.

- ARPANET (Advanced Research Projects Agency Network)
 - É uma rede de computadores criada em 1969 para transmissão de dados militares sigilosos e interligação dos departamentos de pesquisa nos Estados Unidos.
 - A rede foi crescendo, se juntando a ela outras universidades e repartições públicas.
 - Com o advento das redes de rádio e satélites, os protocolos existentes começaram a ter problemas de interligação com elas.

- ARPANET (Advanced Research Projects Agency Network)
 - É uma rede de computadores criada em 1969 para transmissão de dados militares sigilosos e interligação dos departamentos de pesquisa nos Estados Unidos.
 - A rede foi crescendo, se juntando a ela outras universidades e repartições públicas.
 - Com o advento das redes de rádio e satélites, os protocolos existentes começaram a ter problemas de interligação com elas.
 - A partir daí foi construído uma arquitetura, que levou o nome de seus dois pincipais protocolos: TCP/IP.

ARQUITETURA TCP/IP

Aplicação
Transporte
Rede

Enlace de dados

Física

ARQUITETURA OSI

7 Aplicação
 6 Apresentação
 5 Sessão
 4 Transporte
 3 Rede

Enlace de dados

Física

Enquanto o modelo OSI especifica quais funções pertencem a cada uma de suas camadas, as camadas do conjunto de protocolos TCP/IP contêm protocolos relativamente independentes.

ARQUITETURA TCP/IP	PROTOCOLOS TCP/IP
	Telnet
	SMTP
	HTTP
APLICAÇÃO	FTP
	DNS
	SMNP
	DHCP
TRANSPORTE	TCP
TRANSFURTE	UDP
	IPv4, IPv6
REDE	ICMPv4, ICMPv6
	ARP, RARP
	Ethernet
ENLACE DE DADOS	PPP
/FÍSICA	Frame Relay
	ATM
	WLAN

Camada de Aplicação

Princípio de Aplicações de Rede

- Princípio básico: aplicativos / aplicações são programas que vão rodar em dispositivos diferentes e se comunicarem entre si.
- A duas principais arquiteturas de aplicação: cliente-servidor e sistema P2P.

- Arquitetura cliente-servidor
 - Existe um hospedeiro (servidor) que está sempre em funcionamento.

- Existe um hospedeiro (servidor) que está sempre em funcionamento.
- Outros hospedeiros (clientes) fazem requisições constantes ao servidor. Perceba que os clientes não se comunicam diretamente!

- Existe um hospedeiro (servidor) que está sempre em funcionamento.
- Outros hospedeiros (clientes) fazem requisições constantes ao servidor. Perceba que os clientes não se comunicam diretamente!
- Algumas aplicações gerais que utilizam esta arquitetura: Web, FTP, Telnet, email ...

- Existe um hospedeiro (servidor) que está sempre em funcionamento.
- Outros hospedeiros (clientes) fazem requisições constantes ao servidor. Perceba que os clientes não se comunicam diretamente!
- Algumas aplicações gerais que utilizam esta arquitetura: Web, FTP, Telnet, email ...
- Alguns exemplos mais específicos: Jogos online (fps, mmorpg, etc.);
 Redes Sociais; Sites (serviços públicos ou privados);

- Existe um hospedeiro (servidor) que está sempre em funcionamento.
- Outros hospedeiros (clientes) fazem requisições constantes ao servidor. Perceba que os clientes não se comunicam diretamente!
- Algumas aplicações gerais que utilizam esta arquitetura: Web, FTP, Telnet, email ...
- Alguns exemplos mais específicos: Jogos online (fps, mmorpg, etc.);
 Redes Sociais; Sites (serviços públicos ou privados);
- O endereço (IP) do servidor é bem conhecido, ou seja, um servidor está sempre disponível para os clientes se conectarem.

- Existe um hospedeiro (servidor) que está sempre em funcionamento.
- Outros hospedeiros (clientes) fazem requisições constantes ao servidor. Perceba que os clientes não se comunicam diretamente!
- Algumas aplicações gerais que utilizam esta arquitetura: Web, FTP, Telnet, email ...
- Alguns exemplos mais específicos: Jogos online (fps, mmorpg, etc.);
 Redes Sociais; Sites (serviços públicos ou privados);
- O endereço (IP) do servidor é bem conhecido, ou seja, um servidor está sempre disponível para os clientes se conectarem.
- E o que acontece se um servidor recebe mais requisição do que pode suportar?

Arquitetura P2P

 Comunicação direta entre duplas (pares, peer em Inglês) de hospedeiros.

- Comunicação direta entre duplas (pares, peer em Inglês) de hospedeiros.
- Podem gerar tráfego intenso! (Terror das ISPs)

- Comunicação direta entre duplas (pares, peer em Inglês) de hospedeiros.
- Podem gerar tráfego intenso! (Terror das ISPs)
- Uma das aplicações mais conhecidas: torrent.

Arquitetura P2P

- Comunicação direta entre duplas (pares, peer em Inglês) de hospedeiros.
- Podem gerar tráfego intenso! (Terror das ISPs)
- Uma das aplicações mais conhecidas: torrent.

Possui autoescalabilidade, à medida em que novos pares ficam disponíveis.

- Comunicação direta entre duplas (pares, peer em Inglês) de hospedeiros.
- Podem gerar tráfego intenso! (Terror das ISPs)
- Uma das aplicações mais conhecidas: torrent.

- Possui autoescalabilidade, à medida em que novos pares ficam disponíveis.
- Como não depende da potência de um servidor, o tráfego é distribuído.

- Arquitetura P2P
 - Principais desafios

- Principais desafios
 - ISPs ficarem ok com isso. A infraestrutura é pressionada. Aqui temos 2 problemas: (1) taxa de upload normalmente muito menor que a de download e (2) o usuário consegue topar sua largura de banda. Lembrando que no contrato ISPs não são obrigadas a entregar 100% da velocidade. Isto permite às empresas ter um excedente de clientes em cada link.

- Principais desafios
 - ISPs ficarem ok com isso. A infraestrutura é pressionada. Aqui temos 2 problemas: (1) taxa de upload normalmente muito menor que a de download e (2) o usuário consegue topar sua largura de banda. Lembrando que no contrato ISPs não são obrigadas a entregar 100% da velocidade. Isto permite às empresas ter um excedente de clientes em cada link.
 - 2 Segurança.

- Principais desafios
 - ISPs ficarem ok com isso. A infraestrutura é pressionada. Aqui temos 2 problemas: (1) taxa de upload normalmente muito menor que a de download e (2) o usuário consegue topar sua largura de banda. Lembrando que no contrato ISPs não são obrigadas a entregar 100% da velocidade. Isto permite às empresas ter um excedente de clientes em cada link.
 - Segurança.
 - Incentivos da / para a comunidade de usuários (comunidades de torrent fechadas).

Comunicação entre processos

- O termo mais técnico para um programa é processo. Os programas em execução na máquia são processos gerenciados pelo SO.
 A comunicação entre dois dispositivos é feita através de processos.
- Tipos de processos na rede

Comunicação entre processos

- O termo mais técnico para um programa é processo. Os programas em execução na máquia são processos gerenciados pelo SO.
 A comunicação entre dois dispositivos é feita através de processos.
- Tipos de processos na rede
 - Cliente : processo que inicia a comunicação, envia as requisições.
 - Servidor : processo que recebe as requisições.

Interface entre o processo e a rede

 Um processo envia e recebe mensagens através de uma interface denominada socket.

Interface entre o processo e a rede

O programador tem controle apenas sobre a Camada de Aplicação.
 Porém, pode acontecer o caso de poder escolher o Protocolo da Camada de Transporte e alguns parâmetros como tamanho do buffer e segmentos.

Estácio

Interface entre o processo e a rede

Quando o processo envia a mensagem, o enderçamento deve conter, além do IP, o número de porta (que serve como um socket receptor.

