

Name: Althery ST.

Reg No.: 251090130029

Midterm Examination- September 2025

"Tanin

M. Tech. (CSE/CSIS) Semester-I Computational Methods and Stochastic Processes (MAT 5128)

Date: 12 September 2025

Time: 02:15 PM - 03:45 PM

Max. Marks: 30

	Date: 12 September 2025 Time: 62.13 Tim	Marks
NO	ΓE: 1. Answer all questions.2. Draw diagrams and write equations wherever necessary.	
1.	The singular values of the following matrix are	0.5 Marks
	$\begin{bmatrix} 3 & 0 \\ 0 & 4 \\ 0 & 0 \end{bmatrix}$	
	(a) $\sqrt{3}$, $\sqrt{4}$, 0 (b) -3 , -4 (c) $\sqrt{3}$, $\sqrt{4}$ (d) 3, 4, 0	
2.	The number of closed walks of length 2 in the following graph is:	0.5 Marks
	$P_5: leftarrow lef$	
	(a) 10 (b) 8 (c) 6 (d) 4	
3.	Consider the second-order partial differential equation	0.5 Marks
	$u_{xx} + 2u_{xy} + u_{yy} = 0.$	
	Which of the following best describes this PDE?	
	(a) parabolic (b) hyperbolic (c) elliptic (d) Poisson	
4.	Let G be a graph with 15 vertices and 11 edges. Then the number of connected components in G is at least:	0.5 Marks
	(a) 2 (b) 4 (c) 3 (d) 1	
	A cubic graph is a graph in which every vertex has degree 3. If a connected cubic graph has 15 edges, then prove that the number of vertices in the graph G is 10.	2 Marks
6.	Find QR decomposition of the following matrix: $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$	3 Marks

		. 3
7.	Using Kirchhoff's Matrix-Tree theorem, find the number of spanning trees in the following	Marks
	graph:	Iviaires
	ep	
	(i) (i)	
		Įs
	(1)	
-	Solve $y'' + xy = 1$, with boundary conditions $y(0) = 0$; $y'(1) = 1$ and step $h = 0.5$, using	3 Marks
8	Solve $y'' + xy = 1$, with boundary conditions $y(0) = 0$, $y'(1) = 0$	Marks
	finite difference method.	
	Show that if a graph G is a tree, then there exists a unique path between every pair of vertices.	3
9	Show that if a graph G is a tree, then there exists a unique path G	Marks
-	With step $h = 0.5$, solve $xy'' + y = 0$ with boundary conditions $y(1) = 1$; $y(2) = 2$ using	Marks
10	finite difference method.	Iviaiks
		3
—	Construct a maximal subgraph of the following graph with the property P: Subgraph has no	Marks
'	cycles.	Iviaires
	V_2 V_4	
	<u> </u>	
	V_1 V_5	
	V_1 V_3	
12	Find the singular value decomposition of the following matrix	4
12	Find the singular value decomposition of the following manner	Marks
	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	
1	$A = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	
	$A = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 2 \ \end{bmatrix}$	
	[, , _]	
<u> </u>		
13		14
	graph given below.	Marks
	12	
	6	
1		
1	\\\ \frac{7}{7}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	A	
	4 1 5	
	11	