Apuntes de Introducción a las partículas elementales y Teoría Cuantica de Campos

Amaro A. Díaz Concha y Fernanda C. Mella Alvarez

Departamento de Física Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción "Todos los hombres por naturaleza desean saber" — Aristóteles de Estagira

Prefacio

Este apunte está basado en las clases de **Dr. Julio Oliva** con el apoyo de diversas fuentes literarias las cuales estarán especificadas en la bibliografía.

Se compilarán los conocimientos necesarios y ejercicios resueltos para poder afrontar exitosamente cursos introductorios de **Partículas elementales** y **Teoría cuántica de campos**. Estos contenidos se dividirán en dos tomos los cuales serán los dos cursos dictados por el profesor, los cuales además, estarán divididos cada uno en 3 capítulos.

Además y como apoyo a la imaginación y los ejercicios se añadirá a cada ejercicis diversas interpretaciones que ayuden a relacionar la matemática expresada con fenómenos físicos.

Cualquier consulta, notificación de error o posible aporte hacia este apunte debe enviarse al correo electrónico de cualquiera de los autores de este apunte, amdiaz2022@udec.cl ó fmella2022@udec.cl.

Índice general

Introducción	II
1. Nociones Previas	2
1.1. Mécanica Clásica	2
1.1.1. Derivación de las Ecuaciones de Euler-Lagrange	2
1.1.2. Cantidades conservadas	4
1.2. Tercera clase	8
1.3. Cuarta clase	11
1.4. Quinta clase	12
	15
	18
1.7. Clase 8	21
	24
1.9. Décima clase	28
	32
	35
-	37
1.12. Decimotercera clase	37

Capítulo 1

Nociones Previas

En el estudio de partículas elementales, notamos que experimentalmente se observan efectos tanto cuanticos como relativistas fenomenologicamente. Por lo que para trabajar con ellas se deberá tener en cuenta tanto la mécanica cuántica como la relatividad especial. La teoría con la que más nos acomodará trabajar será la **Teoría Cuantica de Campos (QFT)** pues tomará ambos efectos en consideración y nos permitirá estudiar eventos que sucedan a velocidades comparables con la velocidad de la luz c en regiones pequeñas.

	$Small \to$			
Fast ↓	Classical	Quantum		
	mechanics	mechanics		
	Relativistic	Quantum		
	mechanics	field theory		

Pero ¿Qué es QFT? Entenderemos la Teoría cuantica de campos como la cuantización de un campo clásico. De manera que incluyamos técnicas de mécanica cuántica (no relativista) al tomar los grados de libertad de un campo clásico y traducirlos tal que actue como operadores sobre un espacio de Hilbert. Por lo tanto en QFT serán operadores dependientes del espacio y el tiempo.

Es por esto que para poder estudiar QFT se deberán tener nociones tanto de mécanica clásica como cuántica. En este apunte, no se considerarán los efectos del campo gravitacional. Como las interacciones a estudiar ocurren en regiones pequeñas, el efecto gravitacional será considerado despreciable.

1.1. Mécanica Clásica

Desde la mécanica racional, es importante que nosotros tengamos claro conceptos como el significado de una acción S, el Lagrangiano L y más adelante conceptos de simetría y otros.

En esta primera sección, se disutirá la derivación de las ecuaciones de Euler-Lagrange, su utilidad; además de simentrías en transformaciones con sus cantidades conservadas asociadas.

1.1.1. Derivación de las Ecuaciones de Euler-Lagrange

Sabemos de la mécanica lagrangiana que las ecuaciones de Euler-Lagrange nos servirán para derivar las ecuaciones de movimiento del sistema. Utilizando el principio de invarianza de Hamilton, estas ecuaciones se podrán derivar a partir de la acción S[q(t)]. Así, sea la acción S[q(t)], donde q(t) son las coordenadas generalizadas del sistema.

$$S[q(t)] = \int dt L(q, \dot{q}) \tag{1.1}$$

Ahora, ¿Cómo cambia S si q(t) cambia un poco?

Sea q(t) una función dependiente del tiempo, bien definida en el intervalo $t \in [t_1, t_2]$. Donde los puntos $q(t_1)$ y $q(t_2)$ estarán fijos, de manera que aunque q(t) cambie su valor en t_1 y t_2 no cambiara. Así, como se muestra en la figura [citar], si consideramos todos los caminos que puede tomar q(t), diferenciados por una diferencia infinitesimal $\delta q = \Phi(t)$ que a su vez será dependiente del tiempo, se podrá variar la acción.

[foto clasica de la invarianza d la acción]

$$\delta S = S[q(t) + \phi(t)] - S[q(t)]$$

$$= \int_{t_1}^{t_2} dt L(q(t) + \phi(t), \frac{d}{dt} (q + \Phi)) - \int_{t_1}^{t_2} dt L(q(t), \dot{q}(t))$$
(1.2)

Además, considerando que:

$$f(x + \epsilon_1, y + \epsilon_2) = f(x, y) + \frac{\partial f}{\partial x} \epsilon_1 + \frac{\partial f}{\partial y} \epsilon_2 + \mathcal{O}(\epsilon_1^2, \epsilon_2^2, \epsilon_1, \epsilon_2)$$
(1.4)

Por lo tanto, introduciendo (1.4) con $f(x + \epsilon_1, y + \epsilon_2) = L(q(t) + \phi(t), \frac{d}{dt}(q + \Phi))$ en (1.2).

$$\begin{split} \delta S &= \int_{t_1}^{t_2} dt \left(L(q(t), \dot{q}(t)) + \frac{\partial L}{\partial q} \Phi + \frac{\partial L}{\partial \dot{q}} \frac{d\Phi}{dt} \right) - \int_{t_1}^{t_2} dt L(q(t), \dot{q}(t)) \\ &= \int_{t_1}^{t_2} dt \left(\frac{\partial L}{\partial q} \Phi + \frac{\partial L}{\partial \dot{q}} \frac{d\Phi}{dt} \right) \\ &= \int_{t_1}^{t_2} dt \left(\frac{\partial L}{\partial q} \Phi + \frac{d}{dt} \left(\Phi \frac{\partial L}{\partial \dot{q}} \right) - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \Phi \right) \\ &= \int_{t_1}^{t_2} dt \frac{d}{dt} \left(\Phi \frac{\partial L}{\partial \dot{q}} \right) + \int_{t_1}^{t_2} dt \Phi \left(\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \right) \\ &= 0 + + \int_{t_1}^{t_2} dt \Phi \left(\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \right) \\ \delta S &= \int_{t_1}^{t_2} dt \Phi \left(\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \right). \end{split}$$

Si se asume que el princión de acción es estacionario $\delta S=0$. Entonces:

$$\int_{t_1}^{t_2} dt \Phi \left(\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \right) = 0 \tag{1.5}$$

Finalmente, considerando a f(t) arbitraria, en (1.5) el integrando de la integral deberá ser igual a cero. Por lo tanto,

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0 \tag{1.6}$$

Que será la ecuación de Euler-Lagrange. Así, a partir de un Lagrangiano $L(q(t), \dot{q}(t), t)$ se podrán derivar las ecuaciones de movimiento del sistema.

Es importante destacar que las ecuaciones de Euler-Lagrange podrán traducirse para Teoría Clásica de Campos. Donde, en teoría de campos, trabajamos con una **densidad lagrangiana** $\mathcal{L}(\phi^{\alpha}, \partial_{\mu}\phi^{\alpha}, x^{\mu})$, con ϕ^{α} son los campos (dependientes del espacio-tiempo x^{μ}) y $\partial_{\mu}\phi^{\alpha} = \frac{\partial\phi^{\alpha}}{\partial x^{\mu}}$ son sus derivadas. Así, considerando la acción:

$$S = \int d^4x \, \mathcal{L}(\phi^{\alpha}, \partial_{\mu}\phi^{\alpha}, x^{\mu}). \tag{1.7}$$

Así, al igual que para las ecuaciones de Euler-Lagrange, al extremizar la acción $\delta S=0$, se obtendrán las ecuaciones de campo que describirán la dinámica del sistema.

$$\frac{\partial \mathcal{L}}{\partial \phi^{\alpha}} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi^{\alpha})} \right) = 0. \tag{1.8}$$

Esto se revisará a mayor detalle en la sección (tanto) de Teoría Clásica de Campos.

1.1.2. Cantidades conservadas

Aunque las ecuaciones de Euler-Lagrange describirán la dinámica de un sistema bajo un marco referencial. Solamente usar el marco de la mécanica racional quedará corto en el estudio de partículas elementales. Pues existirán interacciones o decaimientos, como el decaimiento beta [referenciar a cuando se hable de el más adelante], que no conservarán el número de partículas. Es por esto, que será importante preguntarnos: ¿Qué cantidades se conservan y cuando se conservarán?

Estudiemos estas preguntas suponiendo que tenemos una partícula en presencia de una energía potencial U(x). El lagrangiano del sistema:

$$L = \frac{m\dot{x}^2}{2} - U(x) \tag{1.9}$$

Nos llevará a las ecuaciones de movimiento del sistema:

$$m\frac{d^2x(t)}{dt^2} = -\frac{\partial U(x)}{\partial x}$$

A lo cual multiplicamos por $\frac{dX}{dt}$

$$m\frac{dX}{dt}\frac{d^2x(t)}{dt^2} = -\frac{dX}{dt}\frac{\partial U(x)}{\partial x}$$

Ahora, sacamos la derivada temporal hacia fuera

$$\frac{d}{dt}\left(\frac{m}{2}\left(\frac{dx}{dt}\right)^2\right) = -\frac{d}{dt}\left(\frac{\partial x}{\partial x}\right)$$

$$\frac{d}{dt}\left(\frac{m}{2}\left(\frac{dx}{dt}\right)^2 + \left(\frac{\partial x}{\partial x}\right)\right) = 0$$

La combinación

$$\frac{m}{2} \left(\frac{dx}{dt}\right)^2 + U(x) = E \tag{1.10}$$

En lo cual E corresponde a la energía del sistema. E es una constante independiente del tiempo. En general diremos que una cantidad Q = a(x, (x)) es conservada si

$$\frac{d}{dt}Q\left(x(t), \frac{dx(t)}{dt}\right) = 0 \tag{1.11}$$

En el contexto de la mecánica cláscia en el que estamos interesados en encontrar x(t), las cantidades conservadas con extremadamente útiles. Las cantidades conservadas tambíen se llaman integrales de movimiento. Si un sistema tiene un número suficientemente alto de integrales de movimiento, entonces podemos

encontrar las historias de los grados de libertad sin integrar.

$$q_i = q_i(t) \quad i = 1, \dots, N \tag{1.12}$$

El **Teorema de Noether**, nos dice que bajo una simetria de un Lagrangiano L implicará la existencia de una corriente conservada $j^{\mu}(x)$. Tal que:

$$\partial_{\mu} j^{\mu} = 0 \tag{1.13}$$

Inicialmente, este teorema podremos asociarlo a una transformación infinitesimal que diremos que es una simetría si el funcional de la acción es invariante / cuasi-invariante. Así, esta transformación tendrá asociada una cantidad conservada.

Ejemplos de transformaciones infinitesimales, la transformación infinitesimal tendrá una forma bien precisa, dado lo siguiente.

Transformación: traslación temporal. Sea una coordenada q(t) que depende del tiempo, a la cual haremos una tralación al futoro en a seg. q(t-a), notemos que a puede ser cualquier número, digamos que a es infinitesimal, con lo cual lo llamaremos ϵ , ahora, tomando la serie de Taylor a $q(t-\epsilon)$ tenemos lo siguiente:

$$q(t - \epsilon) = q(t) - \epsilon \frac{dq}{dt} + O(\epsilon^2)$$
(1.14)

Para lo cual el tèrmino de $O(\epsilon^2)$ puede ser despreciado ya que será muy pequeño, ahora sigamos

$$q(t - \epsilon) - q(t) = -\epsilon \frac{dq}{dt} = \delta q \tag{1.15}$$

A δq lo llamaremos traslación temporal

Trasformación: Traslación espacial Sea un vector posición r(t) el cual es situado con respecto a un eje coordenado cartesiano al cual lo trasladaremos espacialmente en un vector a con lo cual la posición luego de la traslación será $\vec{r}(t) + \vec{a}$, ahora bien, supongamos que el vector \vec{a} es infinitesimal, con lo cual la llamaremos $\vec{\epsilon}$, asì, la traslacion temporal infinitesimal estará dado por

$$(r(\vec{t}) + \vec{\epsilon}) - r(\vec{t}) = \vec{\epsilon} = \delta \vec{r}$$
 (1.16)

En lo cual $\delta \vec{r}$ es llamada traslación espacial.

Transfomación: Rotación espacial.

Sabemos que en una rotación espacial una cantidad conservada sería el momento angular. Ahora, definamos una rotación.

$$x' = \cos\theta x - \sin\theta y \tag{1.17}$$

$$y' = \sin \theta x + \cos \theta y \tag{1.18}$$

Ahora, en el caso que la rotación fuera infinitesimal, llamaremos $\theta=\epsilon$, con lo cual la rotación definida quedaría dada por

$$x' = x - \epsilon y \to \delta x = x' - x = -\epsilon y \tag{1.19}$$

$$y' = \epsilon x + y \to \delta y = y' - y = \epsilon x \tag{1.20}$$

con lo cual obtenemos que

$$\delta x = -\epsilon y \tag{1.21}$$

$$\delta y = \epsilon x \tag{1.22}$$

$$\delta z = 0 \tag{1.23}$$

Así la rotación espacial según el vector posicion \vec{r} sería

$$\delta \vec{r} = \vec{r} \times \delta \hat{\phi} \tag{1.24}$$

Acordar que el producto vectorial solo tiene sentido en 3 y 7 dimensiones. Ahora hablemos de la acción

$$S[q(t)] = \int dt L(q, \dot{q}) \tag{1.25}$$

Ahora, se define la acciòn quasi-invariante como:

$$\delta S = S[q + \delta q] - S[q] = \int dt \frac{dB}{dt}$$
(1.26)

B es una función que depende del tiempo.

Encontraremos que, en el caso que B=0 decimos que la acción es invariante, desarollando obtenemos

$$\delta S = \int dt \left(\partial_q L \delta q + \partial_{\dot{q}} L \frac{d}{dt} \delta q \right) \tag{1.27}$$

$$= \int dt \left(\partial_q L - \frac{d}{dt} \partial_{\dot{q}} L \right) \delta q + \int dt \frac{d}{dt} \left(\partial_{\dot{q}} L \, \delta q \right) \tag{1.28}$$

Usando la ecuación de movimiento obtenemos:

$$\delta S = \int dt \frac{d}{dt} \left(\partial_{\dot{q}} L \, \delta q \right) = \int dt \frac{dB}{dt} \tag{1.29}$$

$$= \int_{t_1}^{t_2} dt \frac{d}{dt} \left(\partial_{\dot{q}} L \delta q - B \right) = 0 \tag{1.30}$$

si usted es capaz de encontrar una transformación que deja la accioón quasi-invariante, entonces la siguente cantidad encontrará que es constante

$$\partial_{\dot{a}}L\delta q - B = C^{te} \tag{1.31}$$

en lo cual la constante no dependerá del tiempo. Ahora veamos que sucede cuando usamos una traslación temporal.

Traslación temporal:

$$S[q(t)] = \int dt \left[\frac{m\dot{q}^2}{2} - U(q) \right]$$
(1.32)

Ahora bien, la variación de la acción de define por

$$\delta S = S[q + \delta q] - S[q] \tag{1.33}$$

$$= \int dt \left[\frac{m}{2} \left(\frac{d}{dt} \left(q - \epsilon \frac{dq}{dt} \right) \right)^2 - U(q) - \epsilon \dot{q} \right] - \int dt \left[\frac{m \dot{q}^2}{2} - U(q) \right]$$
 (1.34)

$$= \int dt \left[\frac{m}{2} (\dot{q}^2 - 2\epsilon \dot{q}\ddot{q}) - U(q) + \epsilon \dot{q}\partial_t U \right] - \int dt \left[\frac{m}{2} \dot{q}^2 - U(q) \right]$$
(1.35)

$$= \int dt \left[-m\epsilon \dot{q}\ddot{q} + \epsilon \dot{q}\partial_t U \right] \tag{1.36}$$

$$= \int dt \frac{d}{dt} \left[\epsilon \left(-\frac{m}{2} \dot{q}^2 + U(q) \right) \right] \tag{1.37}$$

Con lo cual hemos encontrado nuestra función B para esta traslación en particular. Tal que

$$B = \epsilon \left(-\frac{m}{2}\dot{q}^2 + U(q) \right) \tag{1.38}$$

Notese que en este caso nunca usamos la ecuación de movimiento para encontrar cuánto vale B en el caso de esta traslación. Ahora que sabemos cual es el valo de la función B, entonces podemos calcular cúal es la cantidad conservada según lo obtenido anteriormente.

$$\partial \dot{q}L = m\dot{q} \tag{1.39}$$

Así, la cantidad conservada está dada por

$$C^{te} = m\dot{q}(-\epsilon\dot{q}) - \epsilon\left(-\frac{m}{2}\dot{q}^2 + U(q)\right)$$
(1.40)

De lo cual podemos identificar a la energía del sistema, con lo cual

$$C^{te} = -\epsilon \left(\frac{m\dot{q}^2}{2} + U(q) \right) = -\epsilon E \tag{1.41}$$

Asì, la conservación d la energía emerge como la aplicación del teorema de Noether a la quasi-invariancia bajo transformaciones temporales.

Acción de la partícula libre: Sabemos que la acción de la partícula libre está dada por

$$S = \int dt \frac{m}{2} \left| \frac{d\vec{r}}{dt} \right|^2 \tag{1.42}$$

Ahora bien, si usamos la convención de Einstein

$$S = \int dt \frac{m}{2} \frac{dx^{i}}{dt} \frac{dx^{i}}{dt} \quad , x^{i} = (x^{1}, x^{2}, x^{3})$$
 (1.43)

Ahora usaremos traslaciones espaciales.

Traslaciones espaciales:

$$\delta x^i = \epsilon^i \quad , \quad \delta \vec{r} = \vec{\epsilon} \tag{1.44}$$

Ahora lo aplicamos a la variación de la acción:

$$S[x + \delta x] = \int dt \frac{m}{2} \frac{d}{dt} (x^i + \epsilon^i) \frac{d}{dt} (x^i + \epsilon^i)$$
(1.45)

$$= \int dt \frac{m}{2} \frac{dx^i}{dt} \frac{dx^i}{dt} = S[x] \tag{1.46}$$

Con lo cual

$$\delta S = S[x + \delta x] - S[x] = 0 = \int dt \frac{d}{dt} 0 \tag{1.47}$$

Para un grado de libertad:

$$\partial_{\dot{q}} L \delta q - B = C^{te} \tag{1.48}$$

Para varios grados de libertad obtenemos

$$\partial_{di} L \delta q_i - B = C^{te} \tag{1.49}$$

Y para traslaciones espaciales

$$\partial_{x^{k}} L \delta x^{k} - B = C^{te} \tag{1.50}$$

Ahora, si tenemos un lagrangeano para varios grados de libertad $L=L(x^i,\dot{x^i})$ se obtiene lo siguiente

$$\partial_{x^{k}}L = \partial_{x^{k}}(\frac{1}{2}mx^{i}x^{i}) \tag{1.51}$$

$$= \frac{m}{2} \left(\frac{\partial \dot{x^i}}{\partial \dot{x^k} x^i + x^i \partial \dot{x^k}} \right) \tag{1.52}$$

$$=\frac{m}{2}\left(\delta_k^i \dot{x^i} + \dot{x^i} \delta_k^i\right) \tag{1.53}$$

$$= mx^k \tag{1.54}$$

En lo cual notamos que solo sobrevive ese términos por las deltas de Kronecker. Ahora, la cantidad conservada está dada por:

$$m\dot{x}^k\epsilon^k - B = C^{te} \tag{1.55}$$

En lo cual, como sabemos, en una transformación traslación B=0 Con lo cual, podemos concluir que:

$$m\dot{x}^k\epsilon^k = C^{te} \tag{1.56}$$

por lo tanto, de igual forma se cumplirá:

$$m\dot{x}^{k} = \tilde{C}^{te} \tag{1.57}$$

y así, en transformaciones espaciales la cantidad conservada será el momento lineal

$$m\vec{v} = \vec{p} \tag{1.58}$$

1.2. Tercera clase

Si tenenmos en cuenta el lagrangeano para una partícula libre no relativista, como sigue

$$L = \frac{1}{2}m|\vec{v}|^2 \tag{1.59}$$

Para el cual, si introducimos una variación infinitesimal, en específico, una transformación espacial, de la siguiente manera

$$\delta S = S[\vec{r} + \delta \vec{r}] - S[\vec{r}] = 0 \tag{1.60}$$

en lo cual $\delta \vec{r} = \vec{\epsilon}$ se le llamará a la traslación espacial, tendremos que por el teorema de Noether, el siguiente término se mantendrá constante

$$c^{te} = \partial_{\dot{\vec{r}}} L \cdot \delta \vec{r} - \not B \tag{1.61}$$

$$= \partial_{\dot{x}} L \delta x + \partial_{\dot{y}} l \delta y + \partial_z L \delta z \tag{1.62}$$

Ahora bien, usaremos la siguiene notación para las coordenadas $\partial_{\vec{r}}L \to \partial_{x^k}L$ en lo cual $x^k = (x, y, z)$. Ahora bien, el término constante lo podemos escribir como

$$c^{te} = \partial_{x^k} L \epsilon^k \tag{1.63}$$

Lo cual si tomamos la derivada del lagrangeano para una partícula libre no relativista

$$\partial_{\dot{x^k}} L = \frac{1}{2} \partial_{\dot{x^k}} \tag{1.64}$$

$$=\frac{1}{2}m(\delta_k^i\dot{x^i}+\dot{x^i}\delta_k^i)\tag{1.65}$$

$$= m\dot{x^k} \tag{1.66}$$

Así y por tanto, se concluye que el término que, por teorema de Noether se conserva, es el siguiente

$$c^{te} = m\dot{x}^k \epsilon^k \tag{1.67}$$

Lo cual, en términos simples, nos dice que para toda coordenada x^k , el momento lineal se conserva para transformaciones espaciales, lo que viene siendo la primera ley de newton.

$$c^{te} = mv_x (1.68)$$

Para la partícula libre no relativista, nuevamente, tenemos este lagrangeano

$$L = \frac{1}{2}m|\vec{v}|^2 \tag{1.69}$$

En lo cual tenemos que, la energía $E = \frac{1}{2}m|\vec{v}|^2$ será invariante bajo transformaciones temporales y que, el momento lineal $\vec{p} = m\vec{v}$ será invariante bajo transformaciones espaciales. Con ello, podemos formular la relación de dispersión no relativista, la cual está dada por

$$E = \frac{|\vec{p}|}{2m} \tag{1.70}$$

Relatividad especial:

- 1. Todos los observadores inerciales son equivalentes, mediante experimentos físicos no puedo dar cuenta si estoy en movimiento rectilíneo uniforme o no, experimento del tren.
- 2. Todos los observadores inerciales están de acuerdo en que la luz en el vació se mueve a una rapidez constante, $c = 300000 [\rm km/s]$.
- 3. Principio de homogeneidad del espacio-tiempo: todos los puntos e instantes son equivalentes, las leyes que rigen la física serán las mismas aquí y en la quebrá del ají .
- 4. Isotropía del espacio tiempo: todas las direcciones son equivalentes.

Notar que la relatividad de los observadores no inerciales lleva a la gravitación, lo mismo sucede con la suposición que los rayos de luz no necesariamente viajan en línea recta, nuevamente nos llevará a la gravitación. Notemos que cuando tenemos dos boost en diferentes direcciones, esto, no corresponde a un boost puro, si no que lleva consigo una rotación en el espacio- tiempo, este fenómeno es llamado como Precesión de Thomas.

Landau volumen II, teoría clásica de campos, primeras 5 páginas del capítulo

Los principios 1 y 4 implican que, si tenemos dos eventos, que ocurren en instantes diferentes en el espacio tiempo. Sean dos observadores, K y \bar{K} para los cuales, los dos eventos tendrán etiquetas distintas, es decir

• Con respecto al sistema K los eventos tendrán coordenadas (t_1, x_1, y_1, z_1) y

$$(t_2, x_2, y_2, z_2)$$

• Con respecto al sistema \bar{K} los eventos tendrán coordenadas $(\bar{t_1}, \bar{x_1}, \bar{y_1}, \bar{z_1})$ y $(\bar{t_2}, \bar{x_2}, \bar{y_2}, \bar{z_2})$

Ahora, dichos eventos podrán ser observados en diferente orden de sucesos, o no, dependiendo se su relación entre sí en su causalidad, si existe causalidad entre uno y otro, entonces su ordena estará fijo, segunda ley de la termodinámica, pero en caso que no hay causalidad entre sí, dichos eventos podrán ser observados en orden distintos dependiendo del observador.

Invariacia del intervalo: Consecuencia del principio de la relatividad especial, formulación de la métrica de minkwosky

$$c^{2}(t_{2}-t_{1})^{2}-(x_{2}-x_{1})^{2}-(y_{2}-y_{1})^{2}-(z_{2}-z_{1})^{2}=c^{2}(\bar{t_{2}}-\bar{t_{1}})^{2}-(\bar{x_{2}}-\bar{x_{1}})^{2}-(\bar{y_{2}}-\bar{y_{1}})^{2}-(\bar{z_{2}}-\bar{z_{1}})^{2} \quad (1.71)$$

La conservación del interalo entre eventos P y Q tiene consecuencias dramáticas. ¿Y entonces qué? Primero asumiremos que P y Q están infinitesimalmente cerca, esto significa que

$$t_2 = t_1 + dt$$

$$x_2 = x_1 + dx$$

$$y_2 = y_1 + dy$$

$$z_2 = z_1 + dz$$

y además

$$\begin{split} \bar{t_2} &= \bar{t_1} + \bar{d}t \\ \bar{x_2} &= \bar{x_1} + \bar{d}x \\ \bar{y_2} &= \bar{y_1} + \bar{d}y \\ \bar{z_2} &= \bar{z_1} + \bar{d}z \end{split}$$

La conservación del intervalo implica que:

$$c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2} = c^{2}d\bar{t}^{2} - d\bar{x}^{2} - d\bar{y}^{2} - d\bar{z}^{2}$$
(1.72)

Ahora nos preguntamos, si nos damos las coordenadas con cachirulo, o sea, con respecto al observador inercial, ¿cómo se podrán escribir en función de las coordenadas sin cachirulo? Para ello nos encontramos

con un sistema de ecuaciones diferenciale parciales con 10 componentes, lo cual puede sonar feo, pero es la forma de obtener las transformaciones de lorentz en todas las dimensiones

$$c^{2} (\partial_{t}\bar{t}dt + \partial_{x}\bar{t}dx + \bar{t}_{y}dy + \bar{t}_{z}dz) - (\partial_{t}\bar{x}dt + \partial_{x}\bar{x}dx + \partial_{y}\bar{x}dy + \partial_{z}\bar{x}dz) \dots$$

Existen 10 transformaciones parametrizadas por 10 parámetros continuos, relativistas

- 1 Traslación temporal
- 2 Traslaciones espaciales
- 3 Rotaciones (las rotaciones son con el eje temporal fijo)
- 3 Boosts

Traslación temporal

$$ar{t}=t+a$$

$$ar{x}=x,\quad ar{y} \qquad \qquad =y,\quad ar{z}=z$$

Traslación espacial en x

$$ar{t} = t$$
 $ar{x} = x + h_x, \quad ar{y}$
 $= y, \quad ar{z} = z$

y así con todas las coordenadas.

Ahora bien, las rotaciones en el espacio serán, rotaciones en un plano (x, y) que es equivalente a una rotación alrededor del eje z,

$$\bar{t} = t$$

$$\bar{x} = \cos \alpha x - \sin \alpha y$$

$$\bar{y} = \sin \alpha x + \cos \alpha y$$

$$\bar{z} = z$$

 $\alpha \in [0, 2\pi].$

Lo que implica que, nuestro intervalo invariante será

$$c^{d}t^{2} - (\cos\alpha dx - \sin\alpha dy)^{2} - (\sin\alpha dx + \cos\alpha dy)^{2} - dz^{2}$$
$$= c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2}$$

O sea, las rotaciones nos dejan invariante el invervalo (métrica de minkowsky) En rotación en el plano (y, z) le llamaremos $\theta \in [0, 2\pi]$ y en rotaciones en el plano (z, x) llamaremos al ángulo $\phi \in [0, 2\pi]$. Boost a lo largo del eje x:

$$\bar{t} = \frac{t - v/c^2 x}{\sqrt{q - v^2/c^2}}$$

$$\bar{x} = \frac{x - vt}{\sqrt{1 - v^2/c^2}}$$

$$\bar{y} = y$$

$$\bar{z} = z$$

Tarea: probar que deja el intervalo invariante

Boost a lo largo del eje y:

$$\bar{t} = \frac{t - v_y/c^2 y}{\sqrt{1 - v_y^2/c^2}}$$

$$\bar{x} = x$$

$$\bar{y} = \frac{y - v_y/c^2 y}{\sqrt{1 - v_y^2/c^2}}$$

Tarea: boost a lo largo del eje z y tomamos $c \to \infty$ sakurai de cuantica

1.3. Cuarta clase

Entonces, en la última clase, los principios de la relatividad especial, implican la invariancia del intervalo. La conservación del intervalo implica que:

$$c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2} = c^{2}d\bar{t}^{2} - d\bar{x}^{2} - d\bar{y}^{2} - d\bar{z}^{2}$$
(1.73)

Hay 10 tipos de transformaciones continuas que preservan el intervalo, las cuales son

- 1 Traslación temporal
- 2 Traslaciones espaciales
- 3 Rotaciones (las rotaciones son con el eje temporal fijo)
- 3 Boosts

Las rotaciones espaciales son del tipo

$$\tilde{t} = t, \quad \tilde{x} = x + a, \quad \tilde{y} = y, \quad \tilde{z} = z$$
 (1.74)

Las rotacione son del tipo

$$\begin{split} \tilde{t} &= t \\ \tilde{x} &= \cos \theta x - \sin \theta y \\ \tilde{y} &= \sin \theta x + \cos \theta y \\ \tilde{z} &= z \end{split}$$

Boost a lo largo del eje x

$$\tilde{t} = \frac{t - v_x x/c^2}{\sqrt{q - v_x^2/c^2}}$$

$$\tilde{x} = \frac{x - v_x t}{\sqrt{1 - v_x^2/c^2}}$$

$$\tilde{y} = y$$

$$\tilde{z} = z$$

Boost a lo largo del eje y, boost a lo largo del eje z.

Vimos que en el límite no relativista $c \to \infty$

$$\tilde{t} = t, \quad \tilde{x} = x - vt, \quad \tilde{y} = y, \quad \tilde{z}$$
 (1.75)

Lo cual corresponde al conocido boost de Galileo, el cual describe la posición mediante la velocidad relativa entre dos observadores inerciales (velocidad constante).

Asumamos que la partícula se mueve

$$\frac{d\tilde{x}}{dt} = \tilde{v}, \quad \frac{dx}{dt} = v$$

Con lo cual tenemos \tilde{v} vs v, a lo cual

$$\frac{d\tilde{x}}{dt} = \frac{dx}{dt} - V\frac{dt}{d\tilde{t}} = \frac{dx}{dt} - V\frac{dt}{d\tilde{t}}$$

Con lo cual la composición de velocidades en el límite no relativista es

$$\tilde{v} = v - V \tag{1.76}$$

Lo cual no es compatible con la unicidad del valor de la rapidez de la luz en el vacío. Con lo cual es necesario encontrar una composición de velocidades que cumpla con los postulados de la relatividad especial. Para ello

$$d\tilde{x} = \frac{dx - Vdt}{\sqrt{1 - V^2/c^2}}$$
$$d\tilde{t} = \frac{dt - v/c^2}{\sqrt{1 - V^2/c^2}}$$

Con lo cual

$$\tilde{v} = \frac{d\tilde{x}}{d\tilde{t}} = \frac{dx - Vdt}{dt - V/c^2 dx} \cdot \frac{\frac{1}{dt}}{\frac{1}{dt}}$$
$$= \frac{\frac{dx}{dt} - V}{1 - V/c^2 \frac{dx}{dt}}$$

Así, la suma de velocidades relativista está dado por

$$\tilde{v_x} = \frac{v_x - V}{1 - \frac{v}{c^2}v_x} \tag{1.77}$$

Ahora veamos el caso en el cual $v_x = c$

$$\tilde{v_x} = \frac{c - V}{1 - \frac{V}{c^2}c} = \frac{c - V}{\frac{c - V}{c}} = c$$

$$i\bar{h}\partial_t \Phi = -\frac{\bar{h}^2}{2m} \nabla^2 \Phi$$
(1.78)

En lo cual, el término $\frac{-\bar{h}^2}{2m}\nabla^2\Phi = \frac{p^2}{2m}\nabla^2\Phi$ Con lo cual, la relación de dispersión queda tal que:

$$E = mc^{2}\sqrt{1 - \frac{p^{2}}{m^{2}c^{2}}}$$

$$= mc^{2}\left(1 + \frac{1}{2}\frac{p^{2}}{m^{2}c^{2}} + \frac{1}{4}\frac{p^{4}}{m^{4}c^{4}}\right) = mc^{2} + \frac{p^{2}}{2m} + \frac{p^{4}}{4m^{3}c^{2}}$$

Quedó de tarea el probar la invariancia de la acción ante composición de velocidades

1.4. Quinta clase

$$S_{NR}[x(t)] = \int_{t_1}^{t_2} dt \left(\frac{m}{2} \left(\frac{dx}{dt}\right)^2\right)$$
(1.79)

Corresponde a la acción de la partícula libre no relativista, ahora bien, para una partícula relativista se tiene lo siguiente

$$S_{REL}[x(t)] = -mc^2 \int_{t_1}^{t_2} dt \sqrt{1 - \frac{1}{c^2} \left(\frac{dx}{dt}\right)^2}$$
 (1.80)

Ahora con dos observadores inerciales K y \tilde{K} , para lo cual K tiene coordenadas (x,y) y además \tilde{K} tiene coordenadas (\tilde{x},\tilde{t}) , se simplifican mucho los cáculos asumiendo que el eje x está alineado con el movimiento relativo del sistema de referencia \tilde{K} . Ahora resulta ser que la acción S[x(t)] es invariante bajo boost. (no entendí la letra).

$$\tilde{t} = \frac{t - x\frac{V}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}}$$

$$\tilde{x} = \frac{x - Vt}{1 - \frac{V^2}{c^2}}$$

En donde,

- 1. V es la velocidad relativa de \tilde{K} con respecto a K
- 2. $v(t) = \frac{dx}{dt}$ velocidad de la partícula según K
- 3. $\tilde{v}(t) = \frac{d\tilde{x}}{dt}$ velocidad de la partícula según \tilde{K}

Además se encuentra que $S_{REL}[x(t)]$ es cuasi-invariante bajo transfomaciones temporales

$$\delta_{TT}x = -\epsilon \frac{dx}{dt} \tag{1.81}$$

Lo que implica la conservación de energía relativista, que forma

$$E = \frac{-mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{1.82}$$

Además $S_{REL}[x(t)]$ es invariante bajo transformaciones espaciales

$$\delta_{TE}x = a \tag{1.83}$$

Se conserva el momentum lineal relativista

$$p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{1.84}$$

Estas dos relaciones implicarán la relación de dispersión relativista.

$$E = \sqrt{p^2 m^2 + m^2 c^4} \tag{1.85}$$

¿ Cuál es la cantidad conservada del boost, que depende explícitamente del tiempo.

$$\frac{dQ}{dt} = 0 \frac{\partial Q}{\partial x} dx + \frac{\partial Q}{\partial t} dt + \frac{\partial Q}{\partial y} + \dots = 0$$
 (1.86)

Obsevarmos que si $p=0 \to E=mc^2$. Queremos hacer cuántica la relatividad especial con la relación de dispersión relativista.

$$E^2 = p^2 c^2 + c^2 p^4 (1.87)$$

Argumento eurístico que lleva a la ecuación de Schödinger

$$p \to -i\hbar \frac{\partial}{\partial x}$$

$$E \to i\hbar \frac{\partial}{\partial t}$$

Efecto fotoeléctrico

$$E = \hbar\omega \tag{1.88}$$

Difracción de electrones

$$\lambda = \frac{h}{mv}$$
 , relación de Broflie (1.89)

en el cual el monento es el siguiente

$$p = \frac{h}{\lambda} \tag{1.90}$$

Se tiene la siguiente función de onda plana

$$\Psi = Ae^{-i(\omega t - kx)} \quad , \quad k = \frac{\omega}{\lambda} \tag{1.91}$$

Con esta, tenemos que encontrar operadores tal que

$$\hat{E}\Psi = \hbar\omega\Psi \to p = -i\hbar\frac{\partial}{\partial x}$$
$$\hat{p}\Psi = \frac{\hbar}{\lambda}\Psi \to E = i\hbar\frac{\partial}{\partial t}$$

Así, finalmente tenemos la relación de dispersión relativista y además los operadores energía y momento, lo cual si lo reemplazamos en dicha relación de dispersión queda como sigue

$$\begin{split} E^2 &= p^2c^2 + m^2c^4 \\ &-\hbar\partial_t^2\Psi = -c\hbar^2\partial_x^2\Psi + m^2c^4\Psi \quad , \quad /\frac{1}{\hbar^2c^2} \\ &\frac{1}{c^2}\partial_t^2\Psi - \partial_x^2\Psi + \frac{m^2c^2}{h^2}\Psi = 0 \end{split}$$

Con lo cual, hemos llegado a la siguiente ecuación

$$\left| \frac{1}{c^2} \partial_t^2 \Psi - \partial_x^2 \Psi + \frac{m^2 c^2}{\hbar^2} \Psi = 0 \right| \tag{1.92}$$

La cual corresponde a la ecuación de Klein-Gordon \dot{z} Podemos demostrar la constancia de una cantidad definida positiva? con c=1 y $\hbar=1$. En este caso, c=1 significa que se mueve a la rapidez de la luz, y para rapideces menores sería en factor de por ejemplo un $80\,\%$ o c=0.8.

$$\begin{split} \Psi^*\partial_t^2\Psi - \Psi^*\partial_x^2 - m^2\Psi^*\Psi &= 0 \\ \Psi\partial_t^2\Psi^* - \Psi\partial_x^2\Psi^* + m^2\Psi\Psi^* &= 0 \\ \Psi^*\partial_t^2\Psi^* - \Psi\partial_t^2\Psi^*\Psi\partial_x^2\Psi^* - \Psi^*\partial_x^2\Psi &= 0 \\ \partial_t\left(\Psi^*\partial_t\Psi - \Psi\partial_t\Psi^*\right) + \partial_x\left(\Psi\partial_x\Psi^* - \partial_x\Psi\right) &= 0 \end{split}$$

Luego, de ello definimos lo siguiente

$$\rho = \Psi^* \partial_t \Psi - \Psi \partial_t \Psi^* \tag{1.93}$$

Lo cual no es definido positivo, a diferencia del $\rho_{SSHR} = \Psi^* Psi > 0$, si bien ρ es conservado, no admite una interpretación probabilística. Más aún $\rho^* = -\rho \to \rho$ es puramente imaginario. $\tilde{\rho} = i\rho$ en donde $\rho \in \mathfrak{R}$ pero su signo no está definido.

Además se define la siquiente corriente de función de onda

$$j = \Psi \partial_x \Psi^* - \Psi^* \partial_x \Psi \tag{1.94}$$

La cual corresponde a una corriente de la función de onda, la cual denotará, en un flujo, cuánta de la función de onda se escapa de la frontera del volumen en la cual está definida. Así, similarmente al caso electromagnético, pero con ondas, podemos escribir una ecuación de continuidad para ondas, la cual está dada por la siguiente expresión:

$$\frac{d}{dt}\left(\int_{V} dV \rho\right) + \int_{\partial V} \vec{j} \cdot d\vec{S} = 0 \tag{1.95}$$

La cual es la ecuación de continuidad de la función de onda, y en la cual, mientras la función no se . escape" del volumen, la densidad de probabilidad $\rho_{SSHR} = \Psi^*\Psi > 0$ será conservada.

a- signo relativo entre Ψ^* y Ψ . En ρ , viene de la segud
na derivada temporal ¿ Existe una ecuación de primer orden con respecto al tiempo y primer orden en el espacio relativista? Propongamos tal ecuación

$$\alpha \partial_t \Psi + \beta \partial_x \Psi = 0, \quad / \quad (\alpha \partial_t \Psi + \beta \partial_x \Psi)$$
$$\alpha^2 \partial_t^2 \Psi + \alpha \beta \partial_t \partial_x \Psi + \beta \alpha \partial_x \partial_t + \beta^2 \partial_x^2 \Psi = 0$$

versus la forma funcionald de $E = h\omega$ h barra, t $\lambda = \frac{h}{mv}$,

$$\frac{1}{c^2}\partial_t^2\Psi - \partial_x^2\Psi = 0$$

Por lo tanto, $\alpha^2 = 1$ y $\beta^2 = -1$ así

$$\alpha \partial_t \Psi + \vec{\beta} \cdot \vec{\nabla} \Psi = 0$$

$$\vec{\beta} = \{\beta_1, \beta_2, \beta_3 m\} = \beta_i$$

$$\alpha^2 = 1, \quad \beta_i \beta_j = -\delta_{ij}$$

$$\alpha \beta_i + \beta_i \alpha = 0 \quad , \quad \forall i = 1, 2, 3$$

Así, $\alpha, \beta_1, \beta_2, \beta_3$ serán matrices, pero ¿ De cuánto por cuánto ?

Básicamente las beta pegarán como operador matricial a las funciones de onda las cuales serán vectores así saldrán cuatro fuciones de onda.

Existe un teorema que implica de las cuatro componentes de matrices son al menos de 4x4, las cuales son llamadas matrices de Dirac.

$$\Psi = e^{-i\frac{E}{\hbar}t}\phi(\vec{x}) \tag{1.96}$$

Ecuación de Dirac, permite hacer una máquina de movimiento perpertuo, pero Dirac hizo un parche en vez de decir que los niveles de energía estuvieran disponibles, se asume que todos están ocupados. lo que nos permite predecir una partícula con la misma masa del electrón pero con carga opuesta, o sea, lo positrones. Pero toda esta interpretación es inesesaria, ya que el E no es la energía, directamente, ya que la energía es el autoestado del Hamintoniano, lo que no debe ir directamente o no siempre en la función de onda. ¿ Donde está el mar de Dirac?, lo otro que puede ocurrir es que si estas partículas fueran neutrinos, lo neutrinos no tienen carga eléctrica, donde están los anti-neutrinos, jaja xd

1.5. Sexta clase

Volvemos a relatividad especial

$$\begin{split} \tilde{t} &= \frac{t - V/c^2 x}{\sqrt{1 - V^2/c^2}} \\ \tilde{x} &= \frac{x - Vt}{\sqrt{1 - V^2/c^2}} \\ V &= c \tanh \mathcal{E} \end{split}$$

Ahora, si definimos V así

$$1 - \frac{V^2}{c^2} = 1 - \tanh^2 \xi \qquad = \frac{1}{\cosh^2 \xi}$$

Con lo cual recordemos las propiedades que cumplen las funciones trigonométricas hiperbólicas

$$\cosh^2 \xi - \sinh^2 \xi = 1 \tag{1.97}$$

$$1 - \tanh^2 \xi = \frac{1}{\cosh^2 \xi} \tag{1.98}$$

Por lo tanto, podemos escribir nuestras transformaciones como lo siguiente

$$\tilde{t} = \frac{t - \frac{\tanh \xi}{c} x}{\frac{1}{\cosh \xi}}$$

$$c\tilde{t} = \cosh \xi ct - \sinh \xi x$$

$$\tilde{x} = \cosh \xi x - \sinh \xi ct$$

$$\tilde{z} = z$$

$$\tilde{y} = y$$

En lo cual, $\sinh \xi$ será la rapidity.

Ahora, escribamos esto en notación tensorial de la siguiente forma

$$x^{\mu} = \{x^{0}, x^{1}, x^{2}, x^{3}\} = \{xt, x, y, z\}$$
(1.99)

Lo cual representa las coordenadas de un evento en el espacio tiempo plano (Minkowsky).

(Escribió la transformación en matrices, revisar como escribir las matrices)

Aplicamos las transformaciones en forma matricial

$$\tilde{x}^{\mu} = \{\tilde{x}^0, \tilde{x}^1, \tilde{x}^2, \tilde{x}^3\} = \{c\tilde{t}, \tilde{x}, \tilde{y}, \tilde{z}\}$$
(1.100)

Ahora, la matriz de transformación se representa como un tensor Λ^{μ}_{ν} de transformacion para el tensor de posiciones x^{μ} tal que, la regla de transformación para la posición dentro del espacio tiempo plano de Minkowsky, es bajo la siguiente regla

$$\tilde{x}^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu} \tag{1.101}$$

en lo cual los índices ν están contraidos y por tanto, sumados.

Pensamos ahora, en una transformación más general y preguntémonos ξ Qué nos dice la invariancia del intervalo con respecto de Λ^{μ}_{ν} ?

$$\tilde{\vec{x}} = \Theta \vec{x}$$

$$||\tilde{\vec{x}}||^2 = ||\vec{x}||^2$$

$$\tilde{\vec{x}}^T \tilde{\vec{x}} = \vec{x}^T \vec{x}$$

$$(\Theta \vec{x})^T (\Theta \vec{x}) = \vec{x}^T \vec{x}$$

$$\vec{x}^T \Theta^T \Theta \vec{x} = \vec{x}^T \vec{x}$$

En lo cual, las matrices Θ se definen como ortogonales, o sea que, $\Theta^T\Theta = I$

$$ds^{2} = c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2}$$
$$= c^{2}d\tilde{t}^{2} - d\tilde{x}^{2} - d\tilde{x}^{2} - d\tilde{z}^{2}$$

Para lo cual

$$ds^{2} = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

Donde $\eta_{\mu\nu} = diag(1, -1, -1, -1)$ la cual corresponde a la métrica de Minkowsky, ahora, expandamos la suma de la métrica ds^2 , primero sumamos la suma, valga la redundancia, en el índice ν .

$$ds^{2} = \sum_{\nu=0}^{3} \left(\eta_{\mu 0} dx^{\mu} dx^{0} + \eta_{\mu 1} dx^{\mu} dx^{1} + \eta_{\mu 2} dx^{\mu} dx^{2} + \eta_{\mu 3} dx^{\mu} dx^{3} \right)$$
$$= \eta_{00} (dx^{0})^{2} + \eta_{11} (dx^{1})^{2} + \eta_{22} (dx^{2})^{2} + \eta_{33} (dx^{3})^{2}$$
$$= c^{2} dt^{2} - dx^{2} - dy^{2} - dz^{2}$$

Por tanto

$$ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = \eta_{\mu\nu} d\tilde{x}^{\mu} d\tilde{x}^{\nu}$$

Pero queremos que

$$\begin{split} \tilde{x}^{\mu} &= \Lambda^{\mu}_{\alpha} x^{\alpha} \rightarrow d\tilde{x}^{\mu} = \Lambda^{\mu}_{\alpha} dx^{\alpha} \\ \tilde{x}^{\nu} &= \Lambda^{\nu}_{\beta} x^{\beta} \rightarrow d\tilde{x}^{\nu} = \Lambda^{\nu}_{\beta} dx^{\beta} \end{split}$$

Con lo cual, obtenemos que

$$\eta_{\mu \mu_{\alpha} \nu_{\alpha}} dx^{\mu^{\alpha}} dx^{\nu^{\beta}} = \eta_{\mu \nu} \left(\Lambda_{\alpha}^{\nu} dx^{\alpha} \right) \left(\Lambda_{\beta}^{\nu} dx^{\beta} \right) \left(\eta_{\mu \nu} \Lambda_{\alpha}^{\nu} \Lambda_{\beta}^{\nu} - \eta_{\alpha \beta} \right) dx^{\alpha} dx^{\beta} = 0$$

Por tanto, tenemos que

$$\eta_{\mu\nu}\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta} = \eta_{\alpha\beta} \tag{1.102}$$

tenemos que Λ será una transformación de Lorenz si ocurre lo anterior

$$\Lambda^{\mu}_{\alpha}\eta_{\mu\nu}\Lambda^{\nu}_{\beta} = \eta_{\alpha\beta}$$
$$\Lambda^{T}\eta\Lambda = \eta$$

versus

$$\Theta^T I \Theta = I$$

En lo cual se usa la siguiente propiedad

$$\xi^T C \xi = C$$

Siendo c una matriz antisimétrica con respecto a la diagonal y además diagonal nula.

Definición: Diremos que un arreglo denotado por A^{α} es un vector contravariante de Lorentz si bajo una transoformación de Lorentz:

$$\tilde{A}^{\alpha} = \Lambda^{\alpha}_{\beta} A^{\beta} \tag{1.103}$$

Las coordenadas x^{μ} definen un vector contravariante, ahora, un vector contravariante sería el 4-momenta. Ahora, se tiene un observador \tilde{K} el cual se mueve a una velocidad constante V con respecto a un observador K, ambos observadores son inerciales.

¿ Dados E y P, cómo encontramos \tilde{E} y \tilde{P} ?

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 , $P = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}$

versus sus tildas

$$\tilde{E} = \frac{mc^2}{\sqrt{1 - \frac{\tilde{v}^2}{c^2}}} \quad , \quad \tilde{P} = \frac{m\tilde{v}}{\sqrt{1 - \frac{\tilde{v}^2}{c^2}}}$$

Ahora, aplicamos la transformación para la velocidad \tilde{v} tal que

$$\begin{split} \tilde{E} &= \frac{mc^2}{\sqrt{1 - \frac{1}{c^2} \left(\frac{v - V}{1 - \frac{vV}{c^2}}\right)^2}} \\ &= \frac{c \left(1 - \frac{vV}{c^2}\right) mc^2}{\sqrt{c^2 \left(1 - \frac{vV}{c^2}\right)^2 - (v - V)^2}} \\ &= \frac{c(1 - \frac{vV}{c^2}) mc^2}{\sqrt{1 - \frac{V^2}{c^2} + \frac{v^2V^2}{c^2} - \frac{v^2}{c^2}}} \\ &= \frac{mc^2}{\sqrt{1 - \frac{V^2}{c^2} + \frac{v^2V^2}{c^2} - \frac{v^2}{c^2}}} - \frac{mvV}{\sqrt{1 - \frac{V^2}{c^2} + \frac{v^2V^2}{c^2} - \frac{v^2}{c^2}}} \\ &= \frac{\frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}}{\sqrt{1 - \frac{V^2}{c^2}}} - \frac{V \frac{mv}{\sqrt{1 - \frac{V^2}{c^2}}}}{\sqrt{1 - \frac{V^2}{c^2}}} \\ \frac{\tilde{E}}{c} &= \frac{\frac{E}{c} - \frac{V}{c}P}{\sqrt{1 - \frac{V^2}{c^2}}} \end{split}$$

Versus

$$c\tilde{t} = \frac{ct - \frac{V}{c}x}{\sqrt{1 - \frac{V^2}{c^2}}}$$

Tarea,

$$\tilde{p} = \frac{m\tilde{v}}{\sqrt{1 - \frac{\tilde{v}^2}{c^2}}} = \frac{p - \frac{V}{c}\left(\frac{E}{c}\right)}{\sqrt{1 - \frac{V^2}{c^2}}}$$

versus

$$\tilde{x} = \frac{x - \frac{V}{c}(c\tilde{t})}{\sqrt{1 - \frac{V^2}{c^2}}}$$

Definición: 4-momenta o cuadrivector de momentum , de define como

$$p^{\mu} = \left(\frac{E}{c}, \vec{p}\right) \quad , \quad \tilde{p}^{\mu} = \left(\frac{\tilde{E}}{c}, \tilde{\vec{p}}\right)$$
 (1.104)

y además

$$\tilde{p}^{\mu} = \Lambda^{\mu}_{\nu} p^{\nu} \tag{1.105}$$

El cuadrimoemento es un vector contravariante de Lorentz.

1.6. Septima clase

La energía relativista está dada por lo siguiente

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{1.106}$$

y a su vez el cuadrimomento

$$p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{1.107}$$

lo cual, junto a transformaciones de Lorentz, dadas por

$$\tilde{t} = \frac{t - \frac{V}{c^2}x}{\sqrt{1 - \frac{V^2}{c^2}}}$$

$$\tilde{x} = \frac{x - Vt}{\sqrt{1 - \frac{V^2}{c^2}}}$$

$$\tilde{v} = \frac{v - V}{\sqrt{1 - \frac{vV}{c^2}}}$$

En lo cual, $\frac{E}{c}$ y p transforman como los componentes de un cuadri-vector

$$p^{\mu} = (p^0, \vec{p})$$
$$p^{\mu} = \left(\frac{E}{c}, \vec{p}\right)$$

Con lo cual tenemos que, el cadrimomento transforma siguiendo la siguiente regla de transformación

$$\tilde{p}^{\mu} = \Lambda^{\mu}_{\nu} p^{\nu} \tag{1.108}$$

Además, siguiendo la convención de la métrica (1, -1, -1, -1) tenemos lo siguiente

$$\eta_{\mu\nu}p^{\mu}p^{\nu} = \eta_{00}p^{0}p^{0} + \eta_{11}p^{1}p^{1}$$

$$= 1\left(\frac{mc}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}\right)^{2} - \left(\frac{mc}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}\right)^{2}$$

$$= \frac{m^{2}c^{2} - m^{2}v^{2}}{1 - \frac{v^{2}}{c^{2}}}$$

$$= m^{2}c^{2}$$

De la misma forma:

$$\eta_{\mu\nu}\tilde{p}^{\mu}\tilde{p}^{\nu} = m^2c^2$$

Por lo tanto, como la constracción da como resultado un escalar, entonces se puede concluir que el cuadrimomento corresponde a un invariante de Lorentz, esto significa que todos los observadores inverciales observarán la misma cantidad a lo largo de la transformación entre ellos, siendo su valor el dicho $\eta_{\mu\nu}p^{\mu}p^{\nu}=m^2c^2$. En el caso de partículas sin masa, como lo fotones y gluones, esta relación sigue la siguiente regla

$$\eta_{\mu\nu}p^{\mu}p^{\nu}=0$$

Inserte dibujo de Julio del efecto compton.

$$\ll \ll \ll HEAD\lambda' = \lambda + \lambda_c(1-\cos\theta) = = = = = \lambda' = \lambda + \lambda_c(1-\cos\theta) \gg \gg refs/remotes/origin/main$$

 λ_c es constante?

Pero ahora, en qué dirección sale disparado el fotón?, no lo sabemos ya que θ es una variable aleatoria. En las variables aleatorias continuas no tiene sentido preguntarse cuál es la probabilidad en que la variable tome un valor en particular, sin embargo, si es correcto el preguntarse la probabilidad en un invervalo.

$$\theta = \int p(\theta) d\theta$$

Ahora vamos a demostrar que la conservación de el cuadri-momentum lleva justo a compton. Al choque, vaya. Pensemos en este proceso como un choque.

Entonces, inicialmente hay un electrón y un fotón y asumamos que el electrón está quieto: Digamos que el fotón incide en el eje z con cierta energía, pensemos en este proceso como uno en el cual se conserva el cuadri-monento.

Notese que si tengo un sistema invariante ante transformaciones espaciales, entonces los cuadri-momentos pueden ser sumados.

$$p_{TI}^{\mu} = p_{EI}^{\mu} + p_{\gamma}^{\mu} \tag{1.109}$$

El del electrón es facil ya que

$$p_{EI}^{\mu}=\left(\frac{mc^2}{c},\vec{0}\right)$$

Si tengo un fotón de color λ , y de frecuencia ω , entonces

$$p\mu_{\gamma} = \left(\frac{E_{\gamma}}{c}, 0, 0, \#\right)$$

Ahora necesito un número tal que se cumpla la relación para las partículas sin masa, como lo es el fotón, por lo tanto,

 $p_{\gamma}^{\mu} = \left(\frac{E_{\gamma}}{c}, 0, 0, \frac{E_{\gamma}}{c}\right)$

recuerden entonces que $E_{\gamma} = \hbar \omega$, ¿de dónde sale?, pues, de experinmentos. Entonces podemos escribir que, el cadri-momentum inicial es lo siguiente

$$p_{TI}^{\mu} = \left(mc + \frac{E_{\gamma}}{c}, 0, 0 \frac{E_{\gamma}}{c}\right)$$

En lo cual se han sumado los momenta.

Al final, luego del choque, pasará lo siguiente. (inserte dibujo de Julio posterior al choque en el cual se observa la dirección aleatoria en la cual el fotón sale volando, ángulo de dispersión).

EL fotón sadrá en una direción con ángulo α y el fotón saldrá en un ángulo θ , el cual daremos como conocido, ahora la pregunta es, dado un θ conocido, cuál es el color del fotón?

$$p_{FT}^{\mu} = p_{EF}^{\mu} + p_{gamma'}^{\mu} \tag{1.110}$$

La velocidad de un electrón es una variable aleatoria como también lo es su energía, pero estas están relacionadas con el ángulo.

$$p_{\gamma'}^{\mu} = \left(\frac{E_{\gamma'}}{c}, 0, \frac{E_{\gamma'}}{c} \sin \theta, \frac{E_{\gamma'}}{c} \cos \theta\right)$$

Lo cual se cumple ya que, cumpliendo con la relación, se tiene que

$$\left(\frac{E_{\gamma'}}{c}\right)^2 - |\vec{p}_{\gamma}|^2 = 0$$

Ahora para la energía final del electrón, tendremos que

$$p_{EF}^{\mu} = \left(\frac{E_{ef}}{c}, \vec{p}_{ef}\right)$$

Ahora, usando la relación de dispersión tenemos que

$$p_{ef}^{\mu} = \frac{1}{c} \sqrt{m^2 c^4 + |\vec{p}_{ef}|^2 c^2}, \vec{p}_{ef}$$

Con lo cual ahora nos queda sumar los momenta para obtener el momentum final

$$p_{TF}^{\mu} = \left(\frac{E_{\gamma'}}{c} + \frac{1}{c}\sqrt{m^2c^4 + |\vec{p}_{ef}|^2c^2}, (p)_{ef}^x, (p)_{ef}^y + \frac{E_{\gamma'}}{c}\sin\theta, (p)_{ef}^z + \frac{E_{\gamma'}}{c}\right)$$

Este scattering es completamente elástico, lo cual nos indica que el electrón no tiene energía interna, ya que si tuviera energína interna estaría cuantizada y dicha energía debería ser considerada en el choque ya que parte de la energía del choque iría hacia la estructura interna del elctrón, lo que, por ahora se ha probado que no, aunque no sabemos.

$$p_{TI}^{\mu}=p_{TF}^{\mu}$$

Haremos esto índice por índice del cuadri-momento

$$\begin{split} p_{TI}^0 &= p_{TF}^0 \to mc + \frac{E_{\gamma}}{c} \\ p_{TI}^1 &= p_{TF}^1 \to 0 \\ p_{TI}^2 &= p_{TF}^2 \to 0 \\ p_{TI}^3 &= p_{TF}^3 \to (p^z)_{ef} + \frac{E_{\gamma'}}{c} \cos \theta \end{split}$$

$$= \frac{E_{\gamma'}}{c} + \frac{1}{c} \sqrt{m^2c^2 + |\vec{p_{ef}}|^2c^2} \\ &= (p)_{ef}^x \\ = (p^y)_{eff} + \frac{E_{\gamma'}}{c} \sin \theta \end{split}$$

Ahora, podemos notar inmediatamente que $(p^x)_{ef} = 0$, con lo cual nos queda el siguiente sistema de ecuaciones.

$$mc + \frac{E_{\gamma}}{c} = \frac{E_{\gamma'}}{c} + \frac{1}{c} \sqrt{m^2 c^4 + c^2 \left(\left(-\frac{E_{\gamma'}}{c} \sin \theta \right)^2 + \left(\frac{E_{\gamma}}{c} - \frac{E_{\gamma}}{c} \cos \theta \right)^2 \right)}$$

$$mc^2 + E_{\gamma} = E_{\gamma'} + \sqrt{m^2 c^4 + c^2 \left(\frac{E_{\gamma'}^2}{c^2} \sin \theta^2 + \frac{E_{\gamma}^2}{c} + \frac{E_{\gamma'}^2}{c^2} \cos \theta *^2 - \frac{2E_{\gamma} E_{\gamma'}}{c^2} \cos \theta \right)}$$

$$mc^2 + E_{\gamma} = E_{\gamma'} + \sqrt{m^2 c^4 + E_{\gamma'}^2 + E_{\gamma}^2 - 2E_{\gamma} E_{\gamma'} \cos \theta}$$

Al profe le aburrió el álgebra, con lo cual, la energía inicial del fotón es

$$E_{\gamma} = \hbar\omega = \frac{\hbar c 2\pi}{\lambda} = \frac{hc}{\lambda}$$

y luego, la energía final estaría dada por

$$E_{\gamma'} = \hbar \omega' = \frac{\hbar c 2\pi}{\lambda'} = \frac{hc}{\lambda'}$$

Con lo cual, de todo esto concluimos lo siguiente

$$\lambda' = \lambda + \frac{h}{mc}(1 - \cos\theta) \tag{1.111}$$

A lo cual, podemos llamar $\lambda_c = \frac{h}{mc}$, lo cual es llamada la longitud de compton del electrón.

1.7. Clase 8 (Inicios del grupo de lorentz)

Al estudiar las transformaciones de Lorentz, se podrá considerar simplemente un boost a lo largo del eje x. Tal que esta transformación afecta a las etiquetas espacio tiempo de la forma:

$$\tilde{x}^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu} \tag{1.112}$$

«"'¡HEAD Ahora usaremos que $\boxed{c=1}$, un boost a lo largo del eje x sería

$$\Lambda = \begin{pmatrix}
\gamma & -\beta\gamma & 0 & 0 \\
-\beta\gamma & \gamma & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(1.113)

Lo cual se traduce con

$$\gamma := \left(1 - \frac{V^2}{c^2}\right)^{-1/2}$$
$$\beta := \frac{V}{c}$$

Lo cual, con c=1 queda como

$$\tilde{t} = \frac{t - Vx}{\sqrt{1 - V^2}}$$

$$\tilde{x} = \frac{x - Vt}{\sqrt{1 - V^2}}$$

$$\tilde{y} = y$$

$$\tilde{z} = z$$

La transformación del tipo

$$\tilde{x}^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$$

que dejan invariante el intervalo ======

»"'Tal que dejan invariante el intervalo ""»; refs/remotes/origin/main

$$\eta_{\mu\nu}dx^{\mu}dx^{\nu} = \eta_{\mu\nu}d\tilde{x}^{\mu}d\tilde{x}^{\nu}$$

Y cumplirán

$$\eta_{\mu\nu} = \Lambda^{\alpha}_{\mu} \Lambda^{\beta}_{\nu} \eta_{\alpha\beta}$$

¿Cuál es la forma más general que puede tomar Λ^{μ}_{ν} tal que deje invariante el intervalo? La matriz Lambda puede tener 6 familias de transformaciones diferentes, las cuales son:

- '• $\Lambda^{\mu}_{\nu} \to \Lambda_{\mu}_{\text{boost a lo largo del eie } \mathbf{x}\nu}(v)$
- '■ $\Lambda_{\text{boost a lo largo del eje v}}(v)$
- '■ $\Lambda_{\text{boost a lo largo del eje z}}(v) =======$
- '• $\Lambda^{\mu}_{\nu} \to \Lambda_{\text{boost a lo largo del eje x}}(v)$
- '• $\Lambda^{\mu}_{\nu} \to \Lambda_{\text{boost a lo largo del eje y}}(v)$
- '• $\Lambda^{\mu}_{\nu} \to \Lambda_{\text{boost a lo largo del eje z}}(v)$ ""»;refs/remotes/origin/main
- \blacksquare $\Lambda^{\nu}_{\mu} \rightarrow$ Rotación en el plano (x,y) (θ)
- $\Lambda^{\mu}_{\nu} \to \text{Rotación en el plano (y,z) } (\theta)$
- $\Lambda^{\mu}_{\nu} \to \text{Rotación en el plano } (z,x) (\theta)$

Tal que cada uno de estos Λ esta asociado a diferentes parámetros. Veamos cada uno de ellos:

1.7.1. Inversión temporal:

Definiendo la transformación a lo largo del eje temporal como:

$$\tilde{t} = -t$$
 , $\tilde{x} = +x$, $\tilde{y} = y$, $\tilde{y} = y$, $\tilde{z} = z$

Tal que la matriz asociada a la transformación tiene la forma:

$$\Lambda_{\mu}^{\nu} = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
(1.114)

Y dejará al intervalo invariante.

$$d\tilde{t}^{2} - d\tilde{x}^{2} - d\tilde{y}^{2} - d\tilde{z}^{2} = dt^{2} - dx^{2} - dy^{2} - dz^{2}$$

1.7.2. Transformaciones de paridad:

Definiendo la transformación de paridad como:

$$\tilde{t} = t$$
 , $\tilde{x} = -x$, $\tilde{y} = -y$, $\tilde{z} = -z$

Tal que la matriz asociada a la transformación tiene la forma:

$$\Lambda^{\mu}_{\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Es interesante preguntarse "¿Qué sentido físico tienen este tipo de transformaciones?z "¿Con que otras nociones físicas puedo conectar esta transformación?".

Tal y como dice su nombre, veremos que esta transformación tendrá que ver con la paridad a lo largo de los ejes espaciales. Así, será como si dibujasemos un espejo transversalmente a lo largo de los ejes temporales tal y como en [referencia a dibujo oliva].

Vemos que la interacción electromagnética si será invariante bajo transformaciones de inversión temporal y transformación de paridad. En cambio la interacción débil **no será invariante bajo transformaciones de paridad**, pero si lo será bajo boosts y rotaciones.

Esto se ve reflejado cuando analizamos el caso del decaimiento de ^{60}Co , el cual será mediado por la interacción débil, especificamente por el bosón Z.

Ejemplo: (insertar dibujo de Julio)

Observamos acá que en el lado izquierdo la dirección del spin \vec{s} coincide con la que se dirigen las partículas ejectadas. En cambio, en el lado derecho, el spin va hacía el otro lado. Esto último no se ha observado en la naturaleza, pues solo se ha visto que la dirección del spin coincida con la que se dirigen las partículas ejectadas. Por tanto, la interacción débil rompe la símetria CPT.

1.7.3. Campo escalar bajo transformaciones de Lorentz

El campo relativista más simple posible será el campo escalar. Pues teniendo a dos observadores inerciales tales que la velocidad de \tilde{K} con respecto a K es V. En un punto p, tal que su posición respecto a K y \tilde{K} sea x^{μ} y \tilde{x}^{μ} respectivamente. Vemos que ϕ será un campo escalar si al evaluarlo con cada observador se cumple:

$$\tilde{\phi}(\tilde{x}^{\mu}) = \phi(x)$$

Lo que significa que independiente del observado desde el que se mida, el campo escalar debe ser el mismo. Ahora, si consideramos las interacciones entre partículas y los campos que las median notamos que el campo de Higgs será un campo escalar de Lorentz. En cambio el potencial eléctrico, que es un campo escalar usual, no lo será.

Podremos reescribir ?? como:

$$(\hat{\phi})(x^{\mu}) = 1\phi(x^{\mu})$$
$$= e^{\frac{1}{2}\omega^{\alpha\beta}J_{\alpha\beta}}\phi^{x^{\mu}}$$

Con $J_{\alpha\beta} = 0$.

Por otro lado, se tiene que para la posición $\tilde{x}^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$ la derivada con respecto al observador K y \tilde{K} están dadas por:

 $<\!<\!<< HEAD\partial_\mu\phi = \{\partial_t\phi,\partial_x\phi,\partial_y\phi,\partial_z\phi\} = = = = = = \partial_\mu\phi = \{\partial_t\phi,\partial_x\phi,\partial_y\phi,\partial_z\phi\} \gg \gg > refs/remotes/origin/main$

$$\partial_{\tilde{\mu}}\tilde{\phi} = \left\{\partial_{\tilde{t}\tilde{\phi}}, \partial_{\tilde{x}}\tilde{\phi}, \partial_{\tilde{y}}\tilde{\phi}, \partial_{\tilde{y}}\tilde{\phi}, \partial_{\tilde{z}}\tilde{\phi}\right\}$$

Comparando a $\partial_{\mu}\phi$ y $\partial_{\tilde{\mu}}\tilde{\phi}$ considerando $\tilde{t}=\tilde{t}(t,x)$, continuamos desarrollando las expresiones:

$$\begin{split} \partial_{\tilde{t}} \tilde{\phi}(\tilde{t}, \tilde{x}) &= \partial_{\tilde{t}} t \partial_{t} \tilde{\phi}(\tilde{t}(t, x), \tilde{x})(t, x) + \partial_{\tilde{t}} x \partial_{x} \tilde{\phi}(\tilde{t}(t, x), \tilde{x}(t, x)) \\ &= \partial_{\tilde{t}} t \partial_{t} \phi + \partial_{\tilde{t}} x \partial_{x} \phi \end{split}$$

Ahora, considerando la dependencia de $\tilde{x}^{\mu} = \tilde{x}^{\mu}(x^{\alpha})$

$$\begin{split} \partial_{\tilde{\mu}} \tilde{\phi}(\tilde{x}) &= \partial_{\tilde{\mu}} x^{\alpha} \partial_{\alpha} \tilde{\phi}(\tilde{x}) \\ &= \partial_{\tilde{\mu}} \tilde{\phi}(\tilde{x}^{\mu}) \\ &= \partial_{\tilde{\mu}} x^{\alpha} \partial_{\alpha} \phi(x) \end{split}$$

Por otro lado si consideramos a $\tilde{x}^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$ y multiplicamos por $(\Lambda^{-1})^{\gamma}_{\mu}$

$$(\Lambda^{-1})^{\gamma}_{\mu} \tilde{x}^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$$
$$= \delta^{\gamma}_{\nu} x^{\nu}$$
$$= x^{\gamma}$$

Por lo tanto $x^{\gamma} = \left(\Lambda^{-1}\right)_{\mu}^{\gamma} \tilde{x}^{\mu}$ con lo cual, ahora si podemos encontrar como transforma el cuadri-gradiente

$$\begin{split} \partial_{\tilde{\xi}} x^{\gamma} &= \left(\Lambda^{-1}\right)^{\gamma}_{\mu} \partial_{\tilde{\xi}} \tilde{x}^{\mu} \\ \left(\Lambda^{-1}\right)^{\gamma}_{\mu} \delta^{\mu}_{\xi} \end{split}$$

Por lo tanto

$$\partial_{\tilde{x}i}x^{\gamma} = \left(\Lambda^{-1}\right)_{\varepsilon}^{\gamma} \tag{1.115}$$

Ahora si, $\tilde{x}^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$ e introducimos ?? en ?? obtenemos:

$$\partial_{\tilde{\mu}}\tilde{\phi} = \left(\Lambda^{-1}\right)^{\alpha}_{\nu}\partial_{\alpha}\phi$$

Que será como transforma el cuadri-gradiente de un escalar de Lorentz. Este será un conjunto de cuatro números qué transforman entre ellos de manera lineal homogénea, pero no definen un cuadri-vector contravariante ni covariante. Estos se definen como:

Cuadri-vector contravariante:

$$\tilde{A}^{\alpha} = \Lambda^{\alpha}_{\beta} A^{\beta} \tag{1.116}$$

Cuadri-vector covariante:

$$\ll \ll \ll HEAD\tilde{B}_{\alpha} = \left(\Lambda^{-1}\right)_{\alpha}^{\beta} B_{\beta} = = = = = = \tilde{B}_{\alpha} = \left(\alpha^{-1}\right)_{\alpha}^{\beta} B_{\beta} \gg \gg refs/remotes/origin/main$$
(1.117)

1.8. Nociones de Grupos

$$G = \{a, b, \dots\}$$

$$\star : G \times G \to G$$

El cual cumplirá con las siguientes propiedades

- $g_1 \star (g_2 \star g_3) = (g_1 \star g_2) \star g_3$
- \blacksquare Existe una identidad e perteneciente a G tal que $e\star g_i=g_i\star e=g_i\forall g_i\in G$
- $\bullet \ \forall g \in G$ existe un $g^{-1} \in G$ tal que $g \star g^{-1} = g^{-1} \star g = e$

Tomemos por ejemplo el grupo G = U(1) Multiplicación $g(\xi) = e^{i\xi}$ números $\xi \in [0, 2\pi)$

El otro grupo será el grupo SO(2), con $0 \le \theta \le 2\pi$ el cual es el grupo de rotaciones y corresponde a una multiplicación matricial

$$g(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \tag{1.118}$$

Grupos ortogonales: los cuales se denotan por G = O(N) las cuales son matrices ortogonales de $N \times N$ tal que:

$$O^T O = I (1.119)$$

$$g_1 \in O(N) \quad y \quad g_2 \in O(N) \quad g_3 = g_1 g_2 \in O(N)$$

$$g_3 = g_1 g_2 \in O(N)$$

$$g_3^T g_3 = (g_1 g_2)^T (g_1 g_2)$$

$$= g_2^T g_1^T g_1 g_2$$

$$= g_2^T I g_2$$

Tarea, mostrar si $g \in O(N)$ tal que $g^{-1} \in O(N)$ Será que la 2 esfera será un grupo manifold? no, pero sera que una 3 esfera será un grupo? si

Grupos unitarios:

Se define el grupo ver videos de curvas elípticas

1.9. novena clase

$$q = \{q_1, q_2, \dots\}$$

grupo infinito numerable, el cual cumple con las siguiente propiedades

los grupos también pueden ser continos, como por ejemplo $z^{\dagger}z=1$ al cual se le llama el grupo u(1)=g, que se define por $z=e^{i\alpha}$ con $\alpha\in\mathfrak{r}$, con la multiplicación de números complejos.

otro ejemplo sería el grupo o(n)=g tal que, el grupo de define con matrices de $n\times n$

$$g \in o/o^t o = i$$

	g_1	g_2	g_3
g_1			
g_2			
g_3			

grupo el cual se define sobre la multiplicación matricial

$$\tilde{\theta}_{2n \times 2n} = \begin{pmatrix} \theta_{n \times n} & \theta_{n \times n} \\ \theta_{n \times n} & \theta_{n \times n} \end{pmatrix}$$

los grupos están definidos por como se hablan sus elementos, lo cual se escribe mediante una tabla de multiplicación

representación trivial unidimensional

$$g_1 = 1$$
, $g_2 = 1$, $g_3 = 1$, ...

es infiel, representación trivial 2d

$$g_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad g_2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

representación de un grupo:

matriz de algún tama $\tilde{n}om(g_i) \leftarrow g_i \in g$

tal que

$$m(g_1)m(g_2) = m(g_1 \cdot g_2)$$

representación proyectiva de un grupo:

matriz den
$$\times nm(g_i) \leftarrow g_i \in g$$

 $m(g_i)m(g_j) = \omega(g_1, g_j)m(g_i \cdot g_j)$

en lo cual, $\omega(g_i, g_j)$ corresponde a una fase, número complejo de módulo 1.

$$m(g_i) \leftarrow g \in g$$

$$m(g_i)) = \begin{pmatrix} m(g_i) & 0\\ 0 & 1 \end{pmatrix}$$

con $m(g_i)$ una matriz no nueva. ahora

matrices den
$$\times$$
 n $m(g_i) \leftarrow g_i \in g$
 $\tilde{m}(g_i) = a \ m(g_i) \ a$

con ca cualquier matriz invertible de $n\times n$

$$\tilde{m}(g_i)\tilde{m}(g_j) = (a \ m(g_i) \ a^{-1})(a \ m(g_j) \ a^{-1})$$

$$= a \ m(g_i)m(g_j) \ a^{-1}$$

$$= a \ m(g_i \cdot g_j) \ a^{-1}$$

$$= \tilde{m}(g_i \cdot g_j)$$

cuando esto pasa decimos que las matrices $m(g_i)$ forman una representación que es conjugada a la representación formada por las matrices $\tilde{m}(g_i)$ y en consecuencia las identificamos como

$$m(g_i) \ \tilde{m}(g_i)$$

volvamos que o(3)

$$o^{t}o = i$$
$$det(o^{t}o) = 1 \rightarrow det(o)^{1} = 1$$
$$det(o) = \pm 1$$

este subconjunto de matrices tabién forman un grupo, al cual se le denota como so(3). ahora, el grupo u(2)

$$u^{\dagger}u = i$$

$$det(u^{\dagger}u) = 1$$

$$det(u^{\dagger})det(u) = 1$$

$$det(u)^*det(u) = 1$$

$$|det(u)|^2 = 1 \rightarrow det(u) = e^{i\beta} \quad , \beta \in \mathfrak{r}$$

si fijamos $det\{u\} = 1 \quad (\beta = 0)$ todas las matrices unitarias también forman un subconjunto de u(2), el cual es llamado su(2).

más acerca de su(2).

 $\mathrm{su}(2)$ es una tres esfera , pero, qué significa esto? tres esfera (s^3)

$$s^{3} = \{(x, y, z, w) \in \mathfrak{r}^{4}/x^{2} + y^{2} + z^{2} + w^{2} = 1\}$$

es un mapeo 1 a 1 entre elementos de su(2) y puntos arriba de la tres esfera.

la matriz unitaria de 2×2 más general puede esribirse en términos de 4 números reales tal que $x^2 + y^2 + z^2 + w^2 = 1$, donde

$$g(x, y, z, w) = \begin{pmatrix} x + y & z + iw \\ -z + iw & x - iy \end{pmatrix}$$

en lo cual

$$det(g) = x^{2} + y^{2} - (-z + iw)(z + iw)$$
$$= x^{2} + y^{2} + z^{2} + w^{2}$$
$$= 1$$

ahora, veamos cuánto es $g \cdot g^{\dagger}$,

$$g \cdot g^{\dagger} = \begin{pmatrix} x - iy & -z - iw \\ z - iw & x + iw \end{pmatrix} \begin{pmatrix} x + iy & z + iw \\ -z + iw & x - iy \end{pmatrix}$$

$$= \begin{pmatrix} x^2 + y^2 + z^2 + w^2 & (x - iy)(z + iw) + (-z - iw)(x - iy) \\ (z - iw)(x + iy) + (x + iy)(-z + iw) & z^2 + w^2 + x^2 + y^2 \end{pmatrix}$$

$$= I$$

una forma de parametrizar la s^3 es:

$$x^{2} + y^{2} = \sin^{2} \theta$$

$$z^{2} + w^{2} = \cos^{2} \theta$$

$$x = \cos \phi \sin \theta$$

$$y = \sin \phi \sin \theta$$

$$z = \cos \psi \cos \theta$$

$$w = \sin \psi \cos \theta$$

- s^3 es un grupo manifold
- es el grupo manifold de su(2)
- los grupos que son supfericies, se llaman grupos de lie

todo esto no es posible hacerlo con la 2-esfera

ejemplo de grupo contínuo que tiene dos partes "desconectadas"

$$\mathfrak{c} = \{(x,y) \in \mathfrak{r}^2/y^2 = x^3 + bx^2 + cx + d\}$$

todos los elementos de su(2) pueden escribirse de la siguiente manera

$$q = e^{i\lambda_a t_a} = e^{i\lambda_1 t_1 + i\lambda_2 t_2 + i\lambda_3 t_3}$$

donde los t_a son 3 matrices de 2×2 hermíticas y de traza nula y los $\lambda_a = \{\lambda_1, \lambda_2, \lambda_3\}$ son 3 parámatros reales, para calcular el determinante de la exponencial de una matriz es

$$det(g) = det(e^{i\lambda_a t_a})$$

$$= e^{tr(i\lambda_a t_a)}$$

$$= e^{i\lambda_a tr(t_a)}$$

$$= 1$$

$$g^{\dagger} \cdot g = \left(e^{i\lambda_a t_a}\right)^{\dagger} \left(e^{i\lambda_b t_b}\right)$$

$$= e^{-\lambda_a t_a^+} e^{i\lambda_b t_b}$$

$$= e^{-i\lambda_a t_a^+ + i\lambda_b^{\dagger} a^t} b^a$$

$$= e^{-i\lambda_a (t_a^+ - t_a^+)}$$

$$= 1$$

la regla de multiplicación de grupo implica que los generadores satisfacen lo siguiente

$$[t_a, t_b] = f_{abc}t_c$$

para su(2) es posible elegir una base tal que

$$[t_1, t_2] = it_3$$
 , $[t_2, t_3] = it_1$
 $[t_3, t_1] = it_2$

las matrices t_a definen la base de un espacio vectorial, que junto a la operaci´on de conmutación definen un álgebra, tal álgebra es llamado álgebra de lie.

1.10. Décima clase

Los grupos de Lie son superficies quee pueden tener componentes desconectados. El elemento identidad corresponderá a un punto en alguna de las piezas. Tal pieza define un subgrupo del grupo completo. En los grupos los elementos conectados a al identidad pueden ser escritos de la forma:

Me puedo imaginar que la primera superfice tiene curvas coordenadas, lo cual en una superfice bidimensionar tiene dos familias de curvas coordenadas, entonces a cada punto le doy dos números. Para lo cual podemos dividir el espacio en parámetros α lo cual podrá describir un punto en la superficie y por tanto, un punto en el espacio. Como lo puede ser, por ejemplo, el punto

$$g = g(\alpha_A)$$

Pensando en grupo clásicos, los g serán matrices de algún tamaño, tal que el elemento g puede ser escrito de la siguiente manera

$$\gg \gg refs/remotes/origin/main = e^{i\lambda_A T_A}$$

 $\ll \ll \ll HEADq(\alpha_A) = e^{i(\lambda_1 T_1 + \lambda_2 T_2 + \lambda_n T_n)} = = = = = = = q(\alpha_A)$

Notemos que, esta forma exponencial solo es válida para lo elementos de la superficie del grupo conectada a la identidad.

Para lo cual

- Λ_A , números reales, (los alpha que llamó el profe)
- \blacksquare T_A matrices generadoras del álgrebra

Yo puedo tomar un elemento del grupo y multiplicarlo con otro, lo cual por la propiedad de clausura, debe dar otro elemento del grupo

$$g(\lambda_A)g(\beta_B) = g(\gamma_C = \gamma_C(\lambda_A, \beta_B))$$

Lo cual será según la tabla de multiplicación del grupo de Lie, lo cual, a diferencia de los grupos discretos, corresponde a un conjunto de funciones γ y el como se relacionan con los parámetros reales α_A y β_B , a las cuales les llamaremos constantes de estructura.

$$[T_A, T_B] = f_{ABC}T_C$$

Lo cual se denote como, álgebra de LIe asociada al grupo de Lie.

¿ Qué forma toma $[T_A, T_B] = f_{ABC}T_C$ para el grupo de Lorentz?

Dada una representación del álgebra, es decir un conjunto de N matrices T_A con $A=1,\ldots,N$ tal que $[T_A,T_B]=f_{ABC}T_C$, podremos encontrar una representación del grupo, exponiendo tales matrices. Si los λ_A so infinitesimales, entonces expando a primer orden la exponencial

$$g(\lambda_A) = I + i\lambda_A T_A + O\lambda^2 \tag{1.120}$$

Para hacer teoría de campos, nos basta saber la estructura del álgebra del grupo de Lorentz.

Vamos al grupo de Lorentz entonces.

Los grupos en física actúan sobre objetos físicos. Voy a definir un objeto físicos transformado, como la acción del elemento del grupo, actuando sobre el objeto físico no transformado

$$\tilde{\Phi}^I = g^I_{\ J}(\lambda_A)\Phi^I$$

en donde los índices I y J van desde 1 hasta la dimensión de la representación, por ejemplo en caso que sean matrices de 2×2 entonces toma dos valores, y así.

En caso que los parámetros λ_A estén conectados en el espacio que tenga la identidad, entonces. Una transformación infinitesimal actuará:

$$\begin{split} \tilde{\Phi}^{I} &= \left(I + i\lambda_{A}T_{A}\right)_{K}^{I}\Phi^{J} \\ &= I_{J}^{I}\Phi^{I} + i\lambda_{A}\left(T_{A}\right)_{J}^{I}\Phi^{I} \\ &= \Phi^{I} + i\lambda_{A}\left(T_{A}\right)_{J}^{I}\Phi^{J} \end{split}$$

Lo cual, si restamos el transformado con el elemento original, tenemos

$$\delta \Phi^{I} := \tilde{\Phi}^{i} - \Phi^{I} = i \lambda_{A} (T_{A})^{I}_{I} \Phi^{I}$$

Con lo cual, la manera en la cual todo lo elemetos cercanos a la identidad actúan sobre el resto del grupo

$$\delta \Phi^{I} = i\lambda_{A} \left(T_{A} \right)^{I}_{J} \Phi^{J}$$
(1.121)

El grupo SU(2) ya lo definios,

$$U \in SU(2)$$
, if $U^{\dagger}U = I \& det(U) = 1$

Lo cual,

$$\begin{split} [T_A,T_B] &= i\epsilon_{ABC}T_C \\ [T_1,T_2] &= iT_3 \\ [T_2,T_3] &= iT_1 \\ [T_2,T_3] &= iT_1 \\ [T_3,T_1] &= iT_2 \end{split}$$

Ahora tenemos las representación.

Representación trivial: La cual se usar para representar a los objetos sin rotación

$$(T_1) = 0, \quad (T_2) = 0, \quad (T_3) = 0$$

Representación de spin 1/2: Representación fundamental de su(2)

$$T_1 = 1/2 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$T_2 = 1/2 \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$T_3 = 1/2 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Representación de spin 1

$$T_{1} = 1/\sqrt{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$T_{2} = 1/\sqrt{2} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & i \\ 0 & i & 0 \end{pmatrix}$$

$$T_{3} = 1/\sqrt{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Lo cual

$$T_{1}T_{2} - T_{2}T_{2} = 1/2 \begin{bmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix} - \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \end{bmatrix}$$

$$= 1/2 \begin{bmatrix} \begin{pmatrix} i & 0 - i \\ 0 & 0 & 0 \\ i & 0 & -i \end{pmatrix} - \begin{pmatrix} -i & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & i \end{pmatrix} \end{bmatrix}$$

$$= 1/2 \begin{pmatrix} 2i & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2i \end{pmatrix}$$

$$iT_{3}$$

Lie algebra in particle physics A. Georgi. Ahora, otra representación de matrices de 3×3

$$T_{1} = \begin{pmatrix} T_{1}^{\text{spin } 1/2} & 0 \\ 0 & 0 \end{pmatrix}$$

$$T_{2} = \begin{pmatrix} T_{2}^{\text{spin } 1/2} & 0 \\ 0 & 0 \end{pmatrix}$$

$$T_{3} = \begin{pmatrix} T_{3}^{\text{spin } 1/2} & 0 \\ 0 & 0 \end{pmatrix}$$

Las irreps de su(2) están clasificadas y están etiquetadas por un semi entero, $s=0,\frac{1}{2},1,\frac{3}{2},\ldots$ y son matrices de $(2s+1)\times(2s+1)$. Para cada valor de s hay una única irrep.

Representación conjugada:

$$(T_A T_B - T_B T_A)^* = (i\epsilon_{ABC} T_C)^*$$

$$T_A^* T_B^* - T_B^* T_A^* = -i\epsilon_{ABC} T_C^*$$

$$(-T_A^*)(-T_B^*) - (T_B^*)(T_A^*) = \epsilon_{ABC}(-T_C^*)$$

Por tanto, las matrices

$$\tilde{T_A} = -T_A^*$$

Y por tanto

$$\left[\tilde{T_A}, \tilde{T_B} = i\epsilon_{ABC}\tilde{T_C}\right]$$

La representación de spin 1/2 se le llama 2, la cual está relacionada con la representación conjugada, de forma que ambas son equivalentes, la cual está dada por

Representación conjugada (antifundamental)

$$\tilde{T}_1 = 1/2 \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

$$\tilde{T}_2 = 1/2 \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\tilde{T}_3 = 1/2 \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Representación la cual se denota por $tex\bar{t}bf2$. Ahora, si bien las representaciones son equivalentes via conjugación, estas no describen la misma física.

$$\bar{2}=2$$

TAREA, encontrar la siguiente matriz A.

$$\tilde{T}_1 = A^{-1}T_1A$$

$$\tilde{T}_2 = A^{-1}T_2A$$

$$\tilde{T}_3 = A^{-1}T_3A$$

Volvamos al grupo de Lorentz.

$$\begin{split} \tilde{X}^{\mu} &= \Lambda^{\mu}_{\ \nu} X^{\nu} \\ \eta_{\mu\nu} \Lambda^{\mu}_{\ \alpha} \Lambda^{\nu}_{\ \beta} &= \eta_{\alpha\beta} \end{split}$$

Para transformaciones de Lorentz infinitesimales

$$\Lambda^{\alpha}_{\beta} = \delta^{\alpha}_{\beta} + \omega^{\alpha}_{\beta}$$

Con lo cual, tenemos lo siguiente

$$\begin{split} \eta_{\mu\nu} \left(\delta^{\nu}_{\ \alpha} + \omega^{\mu}_{\ \alpha} \right) \left(\delta^{\nu}_{\ \beta} + \omega^{\nu}_{\ \beta} \right) &= \eta_{\alpha\beta} \\ \eta_{\mu\nu} \delta^{\mu}_{\ \alpha} \delta^{\nu}_{\ \beta} + \eta_{\mu\nu} \omega^{\mu}_{\ \alpha} \delta^{\alpha}_{\ \beta} + \eta_{\mu\nu} \delta \ \alpha^{\mu} \omega^{\nu}_{\ \beta} + O(\omega^2) &= \eta_{\alpha\beta} \\ \eta_{\mu\beta} \omega^{\mu}_{\ \alpha} + \eta \alpha \nu \omega^{\nu}_{\ \beta} &= 0 \text{Definición} \quad \omega_{\beta\alpha} + \omega_{\alpha\beta} &= 0 \\ \boxed{\omega_{\alpha\beta} = -\omega_{\beta\alpha}} \end{split}$$

Con lo cual

$$\begin{split} \tilde{X}^{\mu} &= \left(\delta^{\mu}_{\ \nu} + \omega^{\mu}_{\ \nu}\right) X^{\nu} \\ &= \delta^{\mu}_{\ \nu} X^{\nu} + \omega^{\mu}_{\ \nu} X^{\nu} \\ &= X^{\mu} + \omega^{\mu}_{\ \nu} X^{\nu} \end{split}$$

Y asi se obtiene que

$$\delta X^{\mu} := \tilde{X}^{\mu} - X^{\mu} = \omega^{\mu}_{\nu} X^{\nu}$$

Desarollamos esta definición

$$\gg \gg refs/remotes/origin/main = \frac{i}{2}\omega_{\alpha\beta} \left(T^{\alpha\beta}\right)^{\mu}_{\nu} X^{\nu}$$

$$= i\frac{1}{2}\omega_{\alpha\beta} \left(T^{\alpha\beta}\right)^{\mu}_{\nu} X^{\nu} \left(T^{\alpha\beta}\right)^{\mu}_{\nu} = \# \left(\delta^{\mu}_{\nu} - \delta^{\beta}_{\nu} \eta^{\alpha\mu}\right) = i\frac{\#}{2}\omega_{\alpha\beta} \left(\delta^{\mu}_{\nu} - \delta^{\mu}_{\nu} \eta^{\alpha\mu}\right) = i\frac{\#}{2}\omega_{\alpha\beta} \left(\delta^{\mu}$$

Donde

$$(T^{\alpha\beta})^{\nu}_{\ \nu} = i \left(\delta^{\alpha}_{\nu} \eta^{\beta\mu} - \delta^{\beta}_{\ \nu} \eta^{\alpha\nu} \right)$$