SRH Categorical and Dichotomized

Christine Lucille Kuryla

2025-01-09

```
data_gss <- read_csv(here("data/extracted_gss_variables.csv")) %>%
  filter(cohort != 9999) %>%
 filter(!(is.na(health))) %>%
# mutate(south = if_else(region %in% c(4, 5, 6, 7, 8), "South", "Not South")) %>%
# mutate(south = as_factor(south)) %>%
# mutate(region = as_factor(region)) %>%
 # mutate(wrkstat = as_factor(wrkstat)) %>%
# mutate(hispanic = as_factor(hispanic)) %>%
 # mutate(marital = as_factor(marital)) %>%
# mutate(partyid = as_factor(partyid)) %>%
 mutate(health = 5 - health) %% # reverse the coding so it's more intuitive (higher number for exce
 mutate(happy = 4 - happy) %>% # same
 mutate(life = 4 - life) %>% # reverse again, these variables tend to be unintuitively ordered!!!
 mutate(satfin = 4 - satfin) %>% # same again! %>%
mutate(
   age_group = cut(
      age,
     breaks = c(17, 29, 39, 49, 59, 69, Inf),
     labels = c("18-29", "30-39", "40-49", "50-59", "60-69", "70+"),
     right = TRUE
   )
## Rows: 72390 Columns: 13
## -- Column specification -----
## Delimiter: ","
## dbl (13): year, cohort, age, health, sex, happy, life, educ, polviews, class...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
table(data_gss$age_group)
##
## 18-29 30-39 40-49 50-59 60-69
                                   70+
## 10922 11263 9743 8435 7206
                                  6892
# more categories
data_gss <- data_gss %>%
   mutate(
   health_cat = factor(health,
                        levels = 1:4,
                        labels = c("Poor", "Fair", "Good", "Excellent")),
```

```
period_cut_6 = as.factor(cut(data_gss$year, 6)),
period_cut_10 = as.factor(cut(data_gss$year, 10)),
period_cut_12 = as.factor(cut(data_gss$year, 12)),
period_groups = as.factor(cut(data_gss$year, 12)),
period_10yr = as.factor(
                        cut(
                        year,
                        breaks = c(1971, 1982, 1990, 1998, 2006, 2014, Inf),
                        labels = c("1972-1982", "1982-1990", "1990-1998",
                                    "1998-2006", "2006-2014", "2014-2022"),
                        right = TRUE
                        )
                      ),
period_decade = as.factor(
                        cut(
                        year,
                        breaks = c(1971, 1979, 1989, 1999, 2009, 2019, Inf),
                        labels = c("1972-1979", "1980-1989", "1990-1999",
                                    "2000-2009", "2010-2019", "2020-2024"),
                        right = TRUE
                      ),
age_group = as.factor(
                        cut(
                        age,
                        breaks = c(17, 29, 39, 49, 59, 69, Inf),
                        labels = c("18-29", "30-39", "40-49", "50-59", "60-69", "70+"),
                        right = TRUE
                      )),
age_groups = as.factor(
                        cut(
                        age,
                        breaks = c(17, 29, 39, 49, 59, 69, Inf),
                        labels = c("18-29", "30-39", "40-49", "50-59", "60-69", "70+"),
                        right = TRUE
                      )),
age_group_small = as.factor(
                        cut(
                          breaks = c(seq(15, 75, by = 5), Inf), # Define breaks up to 75 and inclu
                          labels = c("16-20", "21-25", "26-30", "31-35", "36-40", "41-45", "46-50",
                          right = FALSE # Makes intervals left-closed, i.e., [x, y)
                        )
                      )
generation = factor(
  case_when(
    cohort >= 1901 & cohort <= 1927 ~ "Greatest (1901-1927)",</pre>
    cohort >= 1928 & cohort <= 1945 ~ "Silent (1928-1945)",
    cohort >= 1946 & cohort <= 1964 ~ "Boomers (1946-1964)",
    cohort >= 1965 & cohort <= 1980 ~ "Gen X (1965-1980)",
    cohort >= 1981 & cohort <= 1996 ~ "Millennials (1981-1996)",</pre>
    cohort >= 1997 & cohort <= 2012 ~ "Gen Z (1997-2012)",
```

```
TRUE ~ "Other"
  ),
  levels = c(
    "Greatest (1901-1927)",
    "Silent (1928-1945)",
    "Boomers (1946-1964)",
    "Gen X (1965-1980)",
    "Millennials (1981-1996)",
    "Gen Z (1997-2012)"#,
    "Other"
),
generation_two_sections = factor(
  case_when(
    generation == "Greatest (1901-1927)" & cohort <= 1914 ~ "Greatest Early (1901-1914)",
    generation == "Greatest (1901-1927)" & cohort > 1914 ~ "Greatest Late (1915-1927)",
    generation == "Silent (1928-1945)" & cohort <= 1936 ~ "Silent Early (1928-1936)",
    generation == "Silent (1928-1945)" & cohort > 1936 ~ "Silent Late (1937-1945)",
    generation == "Boomers (1946-1964)" & cohort <= 1955 ~ "Boomers Early (1946-1955)",
    generation == "Boomers (1946-1964)" & cohort > 1955 ~ "Boomers Late (1956-1964)",
    generation == "Gen X (1965-1980)" & cohort <= 1972 ~ "Gen X Early (1965-1972)",
    generation == "Gen X (1965-1980)" & cohort > 1972 ~ "Gen X Late (1973-1980)",
    generation == "Millennials (1981-1996)" & cohort <= 1988 ~ "Millennials Early (1981-1988)",
    generation == "Millennials (1981-1996)" & cohort > 1988 ~ "Millennials Late (1989-1996)",
    generation == "Gen Z (1997-2012)" & cohort <= 2004 ~ "Gen Z Early (1997-2004)",
    generation == "Gen Z (1997-2012)" & cohort > 2004 ~ "Gen Z Late (2005-2012)",
   TRUE ~ "Other"
  ),
  levels = c(
    "Greatest Early (1901-1914)", "Greatest Late (1915-1927)",
    "Silent Early (1928-1936)", "Silent Late (1937-1945)",
    "Boomers Early (1946-1955)", "Boomers Late (1956-1964)",
    "Gen X Early (1965-1972)", "Gen X Late (1973-1980)",
    "Millennials Early (1981-1988)", "Millennials Late (1989-1996)",
    "Gen Z Early (1997-2004)", "Gen Z Late (2005-2012)"#,
     "Other"
  )
),
generation_three_sections = factor(
  case_when(
    generation == "Greatest (1901-1927)" & cohort <= 1910 ~ "Greatest Early (1901-1910)",
    generation == "Greatest (1901-1927)" & cohort > 1910 & cohort <= 1918 ~ "Greatest Mid (1911-191
    generation == "Greatest (1901-1927)" & cohort > 1918 ~ "Greatest Late (1919-1927)",
    generation == "Silent (1928-1945)" & cohort <= 1934 ~ "Silent Early (1928-1934)",
    generation == "Silent (1928-1945)" & cohort > 1934 & cohort <= 1940 ~ "Silent Mid (1935-1940)",
    generation == "Silent (1928-1945)" & cohort > 1940 ~ "Silent Late (1941-1945)",
    generation == "Boomers (1946-1964)" & cohort <= 1951 ~ "Boomers Early (1946-1951)",
    generation == "Boomers (1946-1964)" & cohort > 1951 & cohort <= 1958 ~ "Boomers Mid (1952-1958)
    generation == "Boomers (1946-1964)" & cohort > 1958 ~ "Boomers Late (1959-1964)",
    generation == "Gen X (1965-1980)" & cohort <= 1970 ~ "Gen X Early (1965-1970)",
    generation == "Gen X (1965-1980)" & cohort > 1970 & cohort <= 1976 ~ "Gen X Mid (1971-1976)",
    generation == "Gen X (1965-1980)" & cohort > 1976 ~ "Gen X Late (1977-1980)",
    generation == "Millennials (1981-1996)" & cohort <= 1986 ~ "Millennials Early (1981-1986)",
```

```
generation == "Millennials (1981-1996)" & cohort > 1986 & cohort <= 1992 ~ "Millennials Mid (19
      generation == "Millennials (1981-1996)" & cohort > 1992 ~ "Millennials Late / Gen Z (1993-2004)
      qeneration == "Gen Z (1997-2012)" & cohort <= 2002 ~ "Gen Z Early (1997-2002)",</pre>
      generation == "Gen Z (1997-2012)" & cohort > 2002 & cohort <= 2008 ~ "Gen Z Mid (2003-2008)",
      qeneration == "Gen Z (1997-2012)" & cohort > 2008 ~ "Gen Z Late (2009-2012)",
      TRUE ~ "Other"
    ),
    levels = c(
      "Greatest Early (1901-1910)", "Greatest Mid (1911-1918)", "Greatest Late (1919-1927)",
      "Silent Early (1928-1934)", "Silent Mid (1935-1940)", "Silent Late (1941-1945)",
      "Boomers Early (1946-1951)", "Boomers Mid (1952-1958)", "Boomers Late (1959-1964)",
      "Gen X Early (1965-1970)", "Gen X Mid (1971-1976)", "Gen X Late (1977-1980)",
      "Millennials Early (1981-1986)", "Millennials Mid (1987-1992)",
      "Millennials Late / Gen Z (1993-2004)"
      #"Millennials Late (1993-1996)",
    # "Gen Z Early (1997-2002)", "Gen Z Mid (2003-2008)", "Gen Z Late (2009-2012)" #,
    # "Other"
    )
  )
) %>%
mutate(age_group = as_factor(age_group))
```

Dichotomize

```
# Define the full set of categories
all_levels <- c("Excellent", "Good", "Fair", "Poor")</pre>
# Use the combinatorial 'combn' function to get all subsets
all_subsets <- map(1:length(all_levels), ~combn(all_levels, m = .x, simplify = FALSE)) %>%
  # Flatten the list of lists
 flatten()
# Filter out the empty set (already not returned by combn) and the full set
# Keep everything else: these are the potential "Group 1"s
valid_subsets <- all_subsets %>%
 discard(~length(.x) == 4) # remove subset with all 4 categories
# delete the weird ones
valid_subsets <- valid_subsets[c(1:5, 11)]</pre>
# Create dichotomized variables
# A helper function to turn a subset (S) into a meaningful column name
make dicho name <- function(S) {</pre>
  # Example name: "Ex Go" vs "Fa Po" for c("Excellent", "Good"), etc.
  # We'll join group names with underscores and separate them with "v".
  group1_name <- str_c(S, collapse = "_")</pre>
  # We find the complement
 group2 <- setdiff(all levels, S)</pre>
 group2_name <- str_c(group2, collapse = "_")</pre>
 # Combine them
```

```
out_name <- str_c("health_dicho_", group1_name, "_v_", group2_name)</pre>
  # For cleanliness, ensure no weird characters/spaces:
  out_name <- str_replace_all(out_name, "\\s+", "")</pre>
  out name
data_gss_dichotomized <- data_gss</pre>
for (subset_i in valid_subsets) {
 new_col_name <- make_dicho_name(subset_i)</pre>
  # Dichotomize: if health cat is in 'subset i', call it "Group1", else "Group2"
  data_gss_dichotomized <- data_gss_dichotomized %>%
    mutate(
      !!sym(new_col_name) := if_else(health_cat %in% subset_i,
                                       1, 0) #"Group1",
                                       #"Group2")
    )
}
data_gss <- data_gss_dichotomized
dichotomized_var <- colnames(data_gss[(length(data_gss) - length(valid_subsets)+1):(length(data_gss))])</pre>
important_dichotomized_var <- dichotomized_var[c(1, 5, 6)]</pre>
```

Survey object

```
# Create a survey design object using wtssall for multi-year analysis
gss_svy <- data_gss %>%
as_survey_design(
   ids = 1,  # PSU identifiers (use 1 if not available)
   weights = wtsscomp  # wtssall pre 2018, wtsscomp combined //Use 'wtss' for single-year analysis
)
```

Functions for the analyses

Function to create the first figure

```
library(survey)
library(dplyr)
library(ggplot2)

#' Plot Weighted Proportion of a Dichotomous Variable

#'

#' @param data A srvyr survey object (e.g., as returned by as_survey()).

#' @param outcome A O/1 variable representing the dichotomous outcome.

#' @param group_var The variable to group by (e.g., age group).

#' @param year_var The variable representing time (e.g., year).

#' @param title Plot title.
```

```
#' Oparam subtitle Plot subtitle.
# '
#' @return A ggplot object.
#'
#' @examples
#' plot_weighted_proportion(gss_svy, outcome = health_binary,
# '
                             group_var = age_group, year_var = year,
# '
                             title = "Weighted Proportion by Age Group and Year")
plot_weighted_proportion <- function(data,</pre>
                                      outcome,
                                      group_var,
                                      year_var,
                                      title = "Weighted Proportion Over Time",
                                      subtitle = "Survey Data") {
  # Convert unquoted input to symbols for tidy evaluation
  outcome_sym <- rlang::ensym(outcome)</pre>
  group_var_sym <- rlang::ensym(group_var)</pre>
  year_var_sym <- rlang::ensym(year_var)</pre>
  # Compute weighted proportion by group and year
  df_summary <- data %>%
    group_by(!!group_var_sym, !!year_var_sym) %>%
    summarise(
      # The mean of a 0/1 variable is the proportion = 1
      prop = survey_mean(!!outcome_sym, na.rm = TRUE),
      .groups = "drop" # drop last grouping for a cleaner final dataset
    )
  # Create the plot
  p <- df_summary %>%
    ggplot(aes(x = !!year_var_sym, y = prop, color = !!group_var_sym)) +
    geom_line() +
    geom_point() +
    labs(
     title = title,
     subtitle = subtitle,
    \# x = rlang::as\_label(year\_var\_sym),
     x = "Year",
     y = "Proportion",
    # y = pasteO("Proportion of ", rlang::as_label(outcome_sym), " = 1"),
     color = rlang::as_label(group_var_sym)
    ) +
    theme_minimal()
  return(p)
}
# "health_dicho_Excellent_v_Good_Fair_Poor"
# "health dicho Excellent Good v Fair Poor"
# "health_dicho_Excellent_Good_Fair_v_Poor"
p_prop_gss_e_vs_gfp <- plot_weighted_proportion(</pre>
  data = gss_svy,
  outcome = health_dicho_Excellent_v_Good_Fair_Poor,
```

```
group_var = age_group,
  year_var = year,
  title = "Proportion Reporting Excellent Health by Age Group Over Years",
  subtitle = "GSS Dataset with Survey Weights"
)

p_prop_gss_e_vs_gfp
```

Proportion Reporting Excellent Health by Age Group Over Years GSS Dataset with Survey Weights


```
p_prop_gss_eg_vs_fp <- plot_weighted_proportion(
   data = gss_svy,
   outcome = health_dicho_Excellent_Good_v_Fair_Poor,
   group_var = age_group,
   year_var = year,
   title = "Proportion Reporting Excellent or Good Health by Age Group Over Years",
   subtitle = "GSS Dataset with Survey Weights"
)
p_prop_gss_eg_vs_fp</pre>
```

Proportion Reporting Excellent or Good Health by Age Group Over Years GSS Dataset with Survey Weights


```
p_prop_gss_egf_vs_p <- plot_weighted_proportion(
  data = gss_svy,
  outcome = health_dicho_Excellent_Good_Fair_v_Poor,
  group_var = age_group,
  year_var = year,
  title = "Proportion Reporting Excellent, Good, or Fair Health by Age Group Over Years",
  subtitle = "GSS Dataset with Survey Weights"
)

p_prop_gss_egf_vs_p</pre>
```

Proportion Reporting Excellent, Good, or Fair Health by Age Group Over Y GSS Dataset with Survey Weights

Analyzing Coefficients

```
library(survey)
library(srvyr)
library(dplyr)
library(ggplot2)
library(broom)
                     # for tidy()
library(knitr)
                     # for kable() if desired
library(purrr)
#' Weighted Regression of Outcome on a Predictor by Year
#' @param survey_data A srvyr survey design object (e.g., gss_svy).
#' @param outcome The dependent (outcome) variable (e.g., 'health').
#' Oparam predictor The predictor variable (e.g., 'age').
#' @param year_var The variable that indicates the year (e.g., 'year').
#' @param extra_covars An optional character vector of additional covariates
#'
                       (default = NULL).
#' @param alpha The confidence level for conf. intervals (e.g., 0.05 for 95%).
#'
#' @return A list containing:
#'
     \item{coefficient_df}{data frame of the regression coefficient for each year.}
#'
     \item{coef plot}{qqplot object of coefficient estimates over time.}
#'
     \item{coef_trend_plot}{ggplot object of coefficient estimates with linear fit over time.}
     \item{lm_over_time_summary}{lm() summary of how the coefficient changes over time.}
#'
```

```
#' @details
#' 1. Groups the data by year,
#' 2. Fits a survey-weighted GLM for each group using `svyqlm`,
#' 3. Extracts the coefficient of the `predictor` variable,
#' 4. Creates two plots: (1) coefficient vs. year with CIs; (2) the same plus a linear fit over time.
# '
#' @examples
#' # Suppose gss_svy is your survey design object
#' # Weighted regression of health on age for each year:
#' # result list <- weighted regressions by year(
#' # survey_data = gss_svy,
#' # outcome = "health",
#' # predictor = "age",
#' # year_var = "year"
#' #)
#'#
#' # result_list$coefficient_df
#' # result_list$coef_plot
#' # result_list$coef_trend_plot
#' # result_list$lm_over_time_summary
weighted_regressions_by_year <- function(survey_data,</pre>
                                          outcome,
                                          predictor,
                                          year_var,
                                          extra_covars = NULL,
                                          alpha = 0.05) {
  # --- 1. Build formula for the model ---
  # outcome ~ predictor (+ optional covariates)
  if (!is.null(extra_covars)) {
   rhs <- paste(c(predictor, extra_covars), collapse = " + ")</pre>
  } else {
   rhs <- predictor
  formula_str <- paste(outcome, "~", rhs)</pre>
  model_formula <- as.formula(formula_str)</pre>
  # --- 2. Group by 'year' and fit the models ---
  # Using group_map_dfr to run one model per 'year'
  coefficient_df <- survey_data %>%
   group_by(.data[[year_var]]) %>%
   group_map_dfr(~ {
      # Fit the weighted linear model
      model <- survey::svyglm(model_formula, design = .x)</pre>
      # Tidy up, with conf.int = TRUE for CIs
      # conf.level = 1 - alpha (e.g., 95%)
      model_tidy <- broom::tidy(model, conf.int = TRUE, conf.level = 1 - alpha)</pre>
      # Filter for the term == predictor (or if predictor has multiple terms, adjust accordingly)
      filter(model_tidy, term == predictor) %>%
        mutate(
          year = unique(.x[[year_var]]) # store the year for clarity
```

```
}) %>%
 ungroup() %>%
  # Select/rename columns for clarity
  select(year,
         term,
         estimate,
         std.error,
         statistic,
         p.value,
         conf.low,
         conf.high)
# --- 3. Plot the coefficients over time ---
coef_plot <- ggplot(coefficient_df, aes(x = year, y = estimate)) +</pre>
 geom_point() +
  geom_errorbar(aes(ymin = conf.low, ymax = conf.high),
                width = 0.2, position = position_dodge(0.05)) +
 labs(
   title = paste("Weighted Coefficients of", predictor, "on", outcome, "by Year"),
   subtitle = paste("Survey data, ~", predictor, if (!is.null(extra_covars)) paste("+", paste(extra_
   x = "Year",
   y = paste0("Coefficient (", predictor, ")")
 ) +
 geom hline(yintercept = 0,
 color = "maroon", linetype = "dashed", size = 1,  # thickness of the line
 alpha = 0.9 # transparency (light red)
 ) +
 theme_minimal()
# --- 4. Fit a linear model of coefficient ~ year (trend over time) ---
# Convert 'year' to numeric if it's not already
coefficient_df$year <- as.numeric(as.character(coefficient_df$year))</pre>
coef_trend_lm <- lm(estimate ~ year, data = coefficient_df)</pre>
lm_over_time_summary <- summary(coef_trend_lm)</pre>
# Build a second plot with a regression line over time
coef_trend_plot <- ggplot(coefficient_df, aes(x = year, y = estimate)) +</pre>
  geom_point() +
  geom_errorbar(aes(ymin = conf.low, ymax = conf.high),
                width = 0.2, position = position_dodge(0.05)) +
 geom_smooth(method = "lm", se = TRUE, alpha = 0.3, color = "blue") +
 labs(
   title = paste("Trend Over Time for Coefficient of", predictor),
   subtitle = "With linear fit of the coefficient ~ year",
   x = "Year",
   y = paste0("Coefficient (", predictor, ")")
  geom_hline(yintercept = 0,
 color = "maroon", linetype = "dashed", size = 1, # thickness of the line
 alpha = 0.9
               # transparency (light red)
 ) +
 theme_minimal()
```

```
# --- 5. Return a list of outputs ---
return(list(
    coefficient_df = coefficient_df,
    coef_plot = coef_plot,
    coef_trend_plot = coef_trend_plot,
    lm_over_time_summary = lm_over_time_summary
))
}
```

Apply function

```
\#\ health\_dicho\_Excellent\_v\_Good\_Fair\_Poor
# 1. Run Weighted Regressions by Year
result_list <- weighted_regressions_by_year(</pre>
  survey_data = gss_svy, # your srvyr design object
  outcome = "health_dicho_Excellent_v_Good_Fair_Poor", # outcome variable
  predictor = "age", # main predictor
             = "year"
 year_var
                           # group by year
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
# 2. Check the extracted coefficient estimates
knitr::kable(result_list$coefficient_df, title = "Excellent v Good/Fair/Poor (GSS)")
```

year	term	estimate	std.error	statistic	p.value	conf.low	conf.high
1972	age	-0.0059152	0.0007009	-8.4392093	0.0000000	-0.0072900	-0.0045404
1973	age	-0.0067870	0.0007117	-9.5370297	0.0000000	-0.0081830	-0.0053911
1974	age	-0.0055727	0.0007021	-7.9372130	0.0000000	-0.0069499	-0.0041955
1975	age	-0.0056857	0.0006915	-8.2225120	0.0000000	-0.0070421	-0.0043294
1976	age	-0.0059778	0.0006890	-8.6759722	0.0000000	-0.0073294	-0.0046263
1977	age	-0.0053805	0.0007091	-7.5877666	0.0000000	-0.0067715	-0.0039896
1980	age	-0.0048587	0.0007367	-6.5951401	0.0000000	-0.0063039	-0.0034136
1982	age	-0.0046588	0.0006353	-7.3337964	0.0000000	-0.0059047	-0.0034129
1984	age	-0.0035438	0.0006875	-5.1542921	0.0000003	-0.0048925	-0.0021951
1985	age	-0.0048332	0.0006958	-6.9462653	0.0000000	-0.0061980	-0.0034684
1987	age	-0.0047988	0.0006798	-7.0591772	0.0000000	-0.0061321	-0.0034655
1988	age	-0.0038551	0.0008323	-4.6315594	0.0000041	-0.0054885	-0.0022217
1989	age	-0.0049680	0.0008752	-5.6766043	0.0000000	-0.0066853	-0.0032506
1990	age	-0.0047555	0.0008701	-5.4655709	0.0000001	-0.0064631	-0.0030479
1991	age	-0.0050161	0.0009172	-5.4688538	0.0000001	-0.0068161	-0.0032162
1993	age	-0.0028843	0.0009301	-3.1009484	0.0019797	-0.0047094	-0.0010592
1994	age	-0.0041504	0.0007014	-5.9171433	0.0000000	-0.0055260	-0.0027748
1996	age	-0.0034518	0.0005957	-5.7946037	0.0000000	-0.0046200	-0.0022837
1998	age	-0.0046966	0.0005358	-8.7659329	0.0000000	-0.0057471	-0.0036460
2000	age	-0.0037616	0.0005797	-6.4892222	0.0000000	-0.0048983	-0.0026248
2002	age	-0.0030932	0.0006653	-4.6493036	0.0000036	-0.0043980	-0.0017884
2004	age	-0.0026003	0.0007936	-3.2764069	0.0010781	-0.0041572	-0.0010434

year	term	estimate	std.error	statistic	p.value	conf.low	conf.high
2006	age	-0.0039273	0.0005257	-7.4710325	0.0000000	-0.0049579	-0.0028966
2008	age	-0.0037310	0.0007491	-4.9806788	0.0000007	-0.0052005	-0.0022615
2010	age	-0.0028967	0.0008911	-3.2507397	0.0011812	-0.0046449	-0.0011485
2012	age	-0.0035547	0.0009170	-3.8763341	0.0001113	-0.0053538	-0.0017557
2014	age	-0.0020437	0.0007230	-2.8268373	0.0047560	-0.0034617	-0.0006257
2016	age	-0.0016403	0.0007154	-2.2927658	0.0219718	-0.0030434	-0.0002372
2018	age	-0.0003045	0.0007498	-0.4061688	0.6846741	-0.0017753	0.0011662
2021	age	-0.0013629	0.0004894	-2.7848274	0.0053829	-0.0023223	-0.0004034
2022	age	-0.0018348	0.0006733	-2.7250236	0.0064633	-0.0031549	-0.0005146

```
##
## Call:
## lm(formula = estimate ~ year, data = coefficient_df)
##
## Residuals:
         Min
##
                     1Q
                            Median
                                           3Q
                                                    Max
## -1.125e-03 -3.774e-04 9.530e-06 3.927e-04 1.596e-03
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.800e-01 1.646e-02 -10.94 8.35e-12 ***
              8.826e-05 8.251e-06 10.70 1.40e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0006929 on 29 degrees of freedom
## Multiple R-squared: 0.7978, Adjusted R-squared: 0.7908
## F-statistic: 114.4 on 1 and 29 DF, p-value: 1.404e-11
# 4. Plot the coefficient estimates across years
print(result_list$coef_plot + labs(subtitle = "Excellent v Good/Fair/Poor (GSS)"))
```

Weighted Coefficients of age on health_dicho_Excellent_v_Good_Fair_P
Excellent v Good/Fair/Poor (GSS)

5. Plot the coefficient estimates with a linear trend line
print(result_list\$coef_trend_plot + labs(subtitle = "Excellent v Good/Fair/Poor (GSS)"))

`geom_smooth()` using formula = 'y ~ x'

Trend Over Time for Coefficient of age

p_coeff_gss_e_vs_gfp <- result_list\$coef_trend_plot + labs(subtitle = "Excellent v Good/Fair/Poor (GSS)</pre>

year	term	estimate	std.error	statistic	p.value	conf.low	conf.high
1972	age	-0.0081234	0.0006432	-12.6286559	0.0000000	-0.0093851	-0.0068617
1973	age	-0.0063250	0.0007348	-8.6075414	0.0000000	-0.0077664	-0.0048836
1974	age	-0.0081079	0.0006755	-12.0019248	0.0000000	-0.0094330	-0.0067828
1975	age	-0.0064208	0.0007066	-9.0873413	0.0000000	-0.0078068	-0.0050348
1976	age	-0.0075585	0.0006635	-11.3919870	0.0000000	-0.0088600	-0.0062570
1977	age	-0.0077872	0.0007299	-10.6685081	0.0000000	-0.0092190	-0.0063554
1980	age	-0.0066315	0.0006620	-10.0170698	0.0000000	-0.0079301	-0.0053328
1982	age	-0.0062002	0.0006173	-10.0438452	0.0000000	-0.0074109	-0.0049895
1984	age	-0.0060359	0.0006573	-9.1821576	0.0000000	-0.0073253	-0.0047464
1985	age	-0.0068734	0.0006707	-10.2479467	0.0000000	-0.0081890	-0.0055578
1987	age	-0.0078861	0.0006390	-12.3417539	0.0000000	-0.0091394	-0.0066329

year	term	estimate	std.error	statistic	p.value	conf.low	conf.high
1988	age	-0.0065912	0.0008527	-7.7299382	0.0000000	-0.0082645	-0.0049178
1989	age	-0.0066643	0.0008344	-7.9870391	0.0000000	-0.0083016	-0.0050270
1990	age	-0.0059443	0.0009130	-6.5108831	0.0000000	-0.0077361	-0.0041525
1991	age	-0.0056925	0.0009200	-6.1877437	0.0000000	-0.0074978	-0.0038872
1993	age	-0.0057204	0.0008482	-6.7439673	0.0000000	-0.0073848	-0.0040560
1994	age	-0.0053519	0.0006383	-8.3849188	0.0000000	-0.0066036	-0.0041001
1996	age	-0.0040271	0.0005916	-6.8072215	0.0000000	-0.0051872	-0.0028671
1998	age	-0.0049476	0.0005281	-9.3687692	0.0000000	-0.0059831	-0.0039121
2000	age	-0.0053332	0.0005672	-9.4031432	0.0000000	-0.0064455	-0.0042210
2002	age	-0.0035877	0.0006760	-5.3071435	0.0000001	-0.0049135	-0.0022619
2004	age	-0.0041318	0.0008801	-4.6947245	0.0000029	-0.0058583	-0.0024053
2006	age	-0.0050242	0.0005193	-9.6749292	0.0000000	-0.0060423	-0.0040060
2008	age	-0.0040884	0.0008214	-4.9772345	0.0000007	-0.0056998	-0.0024770
2010	age	-0.0038865	0.0009251	-4.2012706	0.0000284	-0.0057013	-0.0020717
2012	age	-0.0041935	0.0008689	-4.8262142	0.0000016	-0.0058982	-0.0024889
2014	age	-0.0027108	0.0007174	-3.7786330	0.0001631	-0.0041179	-0.0013037
2016	age	-0.0017321	0.0007614	-2.2748107	0.0230298	-0.0032254	-0.0002388
2018	age	-0.0008360	0.0007684	-1.0880361	0.2767467	-0.0023432	0.0006711
2021	age	-0.0005161	0.0005343	-0.9660199	0.3340974	-0.0015636	0.0005314
2022	age	-0.0023139	0.0006501	-3.5593263	0.0003770	-0.0035886	-0.0010393

```
##
## Call:
## lm(formula = estimate ~ year, data = coefficient_df)
##
## Residuals:
##
         Min
                     1Q
                            Median
                                           3Q
                                                    Max
## -0.0017277 -0.0005039 -0.0001108 0.0005348 0.0015640
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -2.518e-01 1.969e-02 -12.78 1.92e-13 ***
## year
              1.236e-04 9.873e-06 12.52 3.21e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.0008291 on 29 degrees of freedom
## Multiple R-squared: 0.8439, Adjusted R-squared: 0.8385
## F-statistic: 156.8 on 1 and 29 DF, p-value: 3.208e-13
# 4. Plot the coefficient estimates across years
print(result_list$coef_plot + labs(subtitle = "Excellent/Good v Fair/Poor (GSS)"))
```

Weighted Coefficients of age on health_dicho_Excellent_Good_v_Fair_l Excellent/Good v Fair/Poor (GSS)


```
# 5. Plot the coefficient estimates with a linear trend line
print(result_list$coef_trend_plot + labs(subtitle = "Excellent/Good v Fair/Poor (GSS)"))
```

`geom_smooth()` using formula = 'y ~ x'

Trend Over Time for Coefficient of age Excellent/Good v Fair/Poor (GSS)

p_coeff_gss_eg_vs_fp <- result_list\$coef_trend_plot + labs(subtitle = "Excellent/Good vs Fair/Poor (GSS)</pre>

year	term	estimate	std.error	statistic	p.value	conf.low	conf.high
1972	age	-0.0024897	0.0003520	-7.0735014	0.0000000	-0.0031801	-0.0017993
1973	age	-0.0024512	0.0004278	-5.7300324	0.0000000	-0.0032904	-0.0016121
1974	age	-0.0032951	0.0004515	-7.2986887	0.0000000	-0.0041807	-0.0024095
1975	age	-0.0028570	0.0004363	-6.5480968	0.0000000	-0.0037129	-0.0020011
1976	age	-0.0028226	0.0004182	-6.7496429	0.0000000	-0.0036429	-0.0020023
1977	age	-0.0028646	0.0004751	-6.0295161	0.0000000	-0.0037965	-0.0019327
1980	age	-0.0031401	0.0004254	-7.3816285	0.0000000	-0.0039746	-0.0023057
1982	age	-0.0032358	0.0003993	-8.1043475	0.0000000	-0.0040189	-0.0024527
1984	age	-0.0024204	0.0003655	-6.6219240	0.0000000	-0.0031374	-0.0017034
1985	age	-0.0027809	0.0004013	-6.9295418	0.0000000	-0.0035681	-0.0019937
1987	age	-0.0025764	0.0003822	-6.7419470	0.0000000	-0.0033259	-0.0018269

year	term	estimate	std.error	statistic	p.value	conf.low	conf.high
1988	age	-0.0028452	0.0004801	-5.9266558	0.0000000	-0.0037873	-0.0019031
1989	age	-0.0018263	0.0004559	-4.0057685	0.0000663	-0.0027209	-0.0009317
1990	age	-0.0027714	0.0005718	-4.8467231	0.0000015	-0.0038937	-0.0016492
1991	age	-0.0022706	0.0004382	-5.1809948	0.0000003	-0.0031306	-0.0014105
1993	age	-0.0019620	0.0004826	-4.0658464	0.0000514	-0.0029088	-0.0010151
1994	age	-0.0023339	0.0003458	-6.7502027	0.0000000	-0.0030120	-0.0016558
1996	age	-0.0017100	0.0002892	-5.9133480	0.0000000	-0.0022771	-0.0011430
1998	age	-0.0022243	0.0002951	-7.5370767	0.0000000	-0.0028029	-0.0016456
2000	age	-0.0024999	0.0003306	-7.5609521	0.0000000	-0.0031482	-0.0018515
2002	age	-0.0022139	0.0004216	-5.2514697	0.0000002	-0.0030407	-0.0013871
2004	age	-0.0016745	0.0003630	-4.6132340	0.0000043	-0.0023866	-0.0009625
2006	age	-0.0017142	0.0002815	-6.0899286	0.0000000	-0.0022661	-0.0011623
2008	age	-0.0020746	0.0004272	-4.8557521	0.0000013	-0.0029127	-0.0012365
2010	age	-0.0015772	0.0003878	-4.0671954	0.0000505	-0.0023380	-0.0008164
2012	age	-0.0020851	0.0005615	-3.7133614	0.0002132	-0.0031866	-0.0009835
2014	age	-0.0020109	0.0003976	-5.0572452	0.0000005	-0.0027908	-0.0012310
2016	age	-0.0003422	0.0003502	-0.9773832	0.3285056	-0.0010290	0.0003445
2018	age	-0.0009756	0.0004371	-2.2321156	0.0257484	-0.0018330	-0.0001183
2021	age	-0.0000991	0.0002129	-0.4656059	0.6415250	-0.0005166	0.0003183
2022	age	-0.0010454	0.0002629	-3.9767151	0.0000714	-0.0015608	-0.0005300

```
##
## Call:
## lm(formula = estimate ~ year, data = coefficient_df)
##
## Residuals:
##
         Min
                     1Q
                            Median
                                           3Q
                                                    Max
## -6.481e-04 -3.532e-04 -1.715e-05 2.079e-04 9.712e-04
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -8.551e-02 1.053e-02 -8.118 5.95e-09 ***
## year
               4.178e-05 5.281e-06 7.913 1.00e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.0004434 on 29 degrees of freedom
## Multiple R-squared: 0.6834, Adjusted R-squared: 0.6725
## F-statistic: 62.61 on 1 and 29 DF, p-value: 1e-08
# 4. Plot the coefficient estimates across years
print(result_list$coef_plot + labs(subtitle = "Excellent/Good/Fair v Poor (GSS)"))
```

Weighted Coefficients of age on health_dicho_Excellent_Good_Fair_v_F Excellent/Good/Fair v Poor (GSS)

5. Plot the coefficient estimates with a linear trend line
print(result_list\$coef_trend_plot + labs(subtitle = "Excellent/Good/Fair v Poor (GSS)"))

`geom_smooth()` using formula = 'y ~ x'

Trend Over Time for Coefficient of age Excellent/Good/Fair v Poor (GSS)

p_coeff_gss_egf_vs_p <- result_list\$coef_trend_plot + labs(subtitle = "Excellent/Good/Fair vs Poor (GSS)</pre>

NHANES

Load and Wrangle Data

```
# Load and wrangle nhanes data
data_nh <- read_csv(here("code_examples/kamaryn_nhanes/nhanes_1999-2018_2023-11-29.csv"))</pre>
## New names:
## Rows: 96241 Columns: 226
## -- Column specification
                                    ----- Delimiter: "," chr
## (1): sex dbl (223): ...1, X, BaseID, visit, id, age_visit, race, whas_1_2,
## age_exam, ... lgl (2): date_visit, date_last
## i Use `spec()` to retrieve the full column specification for this data. i
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## * `` -> `...1`
dim(data_nh)
## [1] 96241
               226
sum(is.na(data_nh$health)) # note there are 38579 NA's for health out of 96241 subj
## [1] 38578
```

```
year_to_wave <- read_csv(here("big_data/NHANES/nhanes_4/nh4_year_to_wave.csv")) %>%
 mutate(release_nb = wave)
## Rows: 10 Columns: 2
## -- Column specification -----
## Delimiter: ","
## dbl (2): year, wave
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
data_nhanes <- data_nh %>%
  filter(visit == 1) %>%
  filter(age visit >= 18) %>%
 filter(!(is.na(health))) %>% # remove subjects without our primary variable of interest
 # left_join(year_to_wave, by = "release_nb") %>% # year of survey (***note each survey is two years, t
 mutate(srh = 6 - health) %% # recode SRH to be more intuitive (Excellent = 5 to Poor = 1)
  mutate(age = age visit) # more intuitive naming for APC analyses
# variables of interest:
# self-rated health: "health" originally, reverse recoded to "srh"
# age at survey: "age_visit"
# age at follow-up (censored/deceased): "age_last"
# vital status at follow-up (alive/decesased): "deceased"
# year/wave: "release_nb"
# SEQN: "BaseID"
# "ddem_wghts" Full Sample 2 Year MEC Exam Weight WTMEC2YR
# "dem_wghts_4yr" Full Sample 4 Year MEC Exam Weight WTMEC4YR
# Adding gloria's for weight variable: SDDSRVYR and other clock and APC things if needed
data_nhanes_gloria <- read.csv(here("big_data/NHANES/Gloria_preprocessed/Data-3/Core_Dataset_Aim2.csv")
data nhanes <- data nhanes %>%
  mutate(SEQN = as.character(BaseID)) %>%
  left_join(data_nhanes_gloria %>%
              rename(race_decoded = race) %>%
              mutate(age = as.numeric(age)),
            by = c("SEQN", "age")) %>%
  mutate(age = as.numeric(age))
# add more
data_nhanes <- data_nhanes %>%
  mutate(age_group = as.factor(
                            breaks = c(17, 29, 39, 49, 59, 69, Inf),
                            labels = c("18-29", "30-39", "40-49", "50-59", "60-69", "70+"),
                            levels = c("18-29", "30-39", "40-49", "50-59", "60-69", "70+"),
                            right = TRUE
                          )).
         health_cat = factor(srh,
```

```
levels = 1:5.
                        labels = c("Poor", "Fair", "Good", "Very Good", "Excellent")))
# more new columns to enable APC
data_nhanes <- data_nhanes %>%
  mutate(period_cut_6 = as.factor(cut(data_nhanes$year, 6)),
   period cut 10 = as.factor(cut(data nhanes$year, 10)),
   period_cut_12 = as.factor(cut(data_nhanes$year, 12)),
   period_groups = as.factor(cut(data_nhanes$year, 12)),
   period_10yr = as.factor(
                            cut(
                            year,
                            breaks = c(1973, 1982, 1990, 1998, 2006, 2014, Inf),
                            labels = c("1974-1982", "1982-1990", "1990-1998",
                                       "1998-2006", "2006-2014", "2014-2022"),
                            right = TRUE
                          ),
   period decade = as.factor(
                            year,
                            breaks = c(1973, 1979, 1989, 1999, 2009, 2019, Inf),
                            labels = c("1974-1979", "1980-1989", "1990-1999",
                                       "2000-2009", "2010-2019", "2020-2024"),
                            right = TRUE
                            )
                          ),
    age_group = as.factor(
                            cut(
                            age,
                            breaks = c(17, 29, 39, 49, 59, 69, Inf),
                            labels = c("18-29", "30-39", "40-49", "50-59", "60-69", "70+"),
                            right = TRUE
                          )),
    age_groups = as.factor(
                            cut(
                            breaks = c(17, 29, 39, 49, 59, 69, Inf),
                            labels = c("18-29", "30-39", "40-49", "50-59", "60-69", "70+"),
                            right = TRUE
                          )),
   age_group_small = as.factor(
                              age,
                              breaks = c(seq(15, 75, by = 5), Inf), # Define breaks up to 75 and inclu
                              labels = c("16-20", "21-25", "26-30", "31-35", "36-40", "41-45", "46-50",
                              right = FALSE # Makes intervals left-closed, i.e., [x, y)
                            )
                          )
   generation = factor(
      case_when(
        cohort >= 1901 & cohort <= 1927 ~ "Greatest (1901-1927)",
        cohort >= 1928 & cohort <= 1945 ~ "Silent (1928-1945)",
```

```
cohort >= 1946 & cohort <= 1964 ~ "Boomers (1946-1964)",
    cohort >= 1965 & cohort <= 1980 ~ "Gen X (1965-1980)",
    cohort >= 1981 & cohort <= 1996 ~ "Millennials (1981-1996)",
    cohort >= 1997 & cohort <= 2012 ~ "Gen Z (1997-2012)",
    TRUE ~ "Other"
  ),
  levels = c(
    "Greatest (1901-1927)",
    "Silent (1928-1945)",
    "Boomers (1946-1964)",
    "Gen X (1965-1980)",
    "Millennials (1981-1996)",
    "Gen Z (1997-2012)"#,
    "Other"
 )
),
generation_two_sections = factor(
  case_when(
    generation == "Greatest (1901-1927)" & cohort <= 1914 ~ "Greatest Early (1901-1914)",
    generation == "Greatest (1901-1927)" & cohort > 1914 ~ "Greatest Late (1915-1927)",
    generation == "Silent (1928-1945)" & cohort <= 1936 ~ "Silent Early (1928-1936)",
    generation == "Silent (1928-1945)" & cohort > 1936 ~ "Silent Late (1937-1945)",
    generation == "Boomers (1946-1964)" & cohort <= 1955 ~ "Boomers Early (1946-1955)",
    generation == "Boomers (1946-1964)" & cohort > 1955 ~ "Boomers Late (1956-1964)",
    generation == "Gen X (1965-1980)" & cohort <= 1972 ~ "Gen X Early (1965-1972)",
    generation == "Gen X (1965-1980)" & cohort > 1972 ~ "Gen X Late (1973-1980)",
    generation == "Millennials (1981-1996)" & cohort <= 1988 ~ "Millennials Early (1981-1988)",
    generation == "Millennials (1981-1996)" & cohort > 1988 ~ "Millennials Late (1989-1996)",
    generation == "Gen Z (1997-2012)" & cohort <= 2004 ~ "Gen Z Early (1997-2004)",
    generation == "Gen Z (1997-2012)" & cohort > 2004 ~ "Gen Z Late (2005-2012)",
   TRUE ~ "Other"
  ),
  levels = c(
    "Greatest Early (1901-1914)", "Greatest Late (1915-1927)",
    "Silent Early (1928-1936)", "Silent Late (1937-1945)",
    "Boomers Early (1946-1955)", "Boomers Late (1956-1964)",
    "Gen X Early (1965-1972)", "Gen X Late (1973-1980)",
    "Millennials Early (1981-1988)", "Millennials Late (1989-1996)",
    "Gen Z Early (1997-2004)", "Gen Z Late (2005-2012)"#,
 #
    "Other"
 )
),
generation three sections = factor(
  case when(
    generation == "Greatest (1901-1927)" & cohort <= 1910 ~ "Greatest Early (1901-1910)",
    generation == "Greatest (1901-1927)" & cohort > 1910 & cohort <= 1918 ~ "Greatest Mid (1911-191
    generation == "Greatest (1901-1927)" & cohort > 1918 ~ "Greatest Late (1919-1927)",
    generation == "Silent (1928-1945)" & cohort <= 1934 ~ "Silent Early (1928-1934)",
    generation == "Silent (1928-1945)" & cohort > 1934 & cohort <= 1940 ~ "Silent Mid (1935-1940)",
    generation == "Silent (1928-1945)" & cohort > 1940 ~ "Silent Late (1941-1945)",
    generation == "Boomers (1946-1964)" & cohort <= 1951 ~ "Boomers Early (1946-1951)",
    generation == "Boomers (1946-1964)" & cohort > 1951 & cohort <= 1958 ~ "Boomers Mid (1952-1958)
    generation == "Boomers (1946-1964)" & cohort > 1958 ~ "Boomers Late (1959-1964)",
```

```
generation == "Gen X (1965-1980)" & cohort <= 1970 ~ "Gen X Early (1965-1970)",
    generation == "Gen X (1965-1980)" & cohort > 1970 & cohort <= 1976 ~ "Gen X Mid (1971-1976)",
    generation == "Gen X (1965-1980)" & cohort > 1976 ~ "Gen X Late (1977-1980)",
    generation == "Millennials (1981-1996)" & cohort <= 1986 ~ "Millennials Early (1981-1986)",
    generation == "Millennials (1981-1996)" & cohort > 1986 & cohort <= 1992 ~ "Millennials Mid (19
    generation == "Millennials (1981-1996)" & cohort > 1992 ~ "Millennials Late / Gen Z (1993-2004)
   generation == "Gen Z (1997-2012)" & cohort <= 2002 ~ "Gen Z Early (1997-2002)",
    generation == "Gen Z (1997-2012)" & cohort > 2002 & cohort <= 2008 ~ "Gen Z Mid (2003-2008)",
     generation == "Gen Z (1997-2012)" & cohort > 2008 ~ "Gen Z Late (2009-2012)",
    TRUE ~ "Other"
  ),
  levels = c(
    "Greatest Early (1901-1910)", "Greatest Mid (1911-1918)", "Greatest Late (1919-1927)",
    "Silent Early (1928-1934)", "Silent Mid (1935-1940)", "Silent Late (1941-1945)",
    "Boomers Early (1946-1951)", "Boomers Mid (1952-1958)", "Boomers Late (1959-1964)",
    "Gen X Early (1965-1970)", "Gen X Mid (1971-1976)", "Gen X Late (1977-1980)",
    "Millennials Early (1981-1986)", "Millennials Mid (1987-1992)",
    "Millennials Late / Gen Z (1993-2004)"
    #"Millennials Late (1993-1996)",
  # "Gen Z Early (1997-2002)", "Gen Z Mid (2003-2008)", "Gen Z Late (2009-2012)" #,
    "Other"
))
```

Dichotomize

```
# Define the full set of categories
all levels <- c("Excellent", "Very Good", "Good", "Fair", "Poor")</pre>
# Use the combinatorial 'combn' function to get all subsets
all_subsets <- map(1:length(all_levels), ~combn(all_levels, m = .x, simplify = FALSE)) %>%
  # Flatten the list of lists
 flatten()
# # Filter out the empty set (already not returned by combn) and the full set
# # Keep everything else: these are the potential "Group 1"s
# valid_subsets <- all_subsets %>%
  discard(\sim length(.x) == 5) # remove subset with all 4 categories
# delete the weird ones
valid_subsets <- all_subsets[c(1:6, 16, 26)]</pre>
# Create dichotomized variables
# A helper function to turn a subset (S) into a meaningful column name
make dicho name <- function(S) {</pre>
  # Example name: "Ex_Go" vs "Fa_Po" for c("Excellent", "Good"), etc.
  # We'll join group names with underscores and separate them with "v".
 group1_name <- str_c(S, collapse = "_")</pre>
  # We find the complement
  group2 <- setdiff(all_levels, S)</pre>
```

```
group2_name <- str_c(group2, collapse = "_")</pre>
  # Combine them
  out_name <- str_c("health_dicho_", group1_name, "_v_", group2_name)</pre>
  # For cleanliness, ensure no weird characters/spaces:
  out_name <- str_replace_all(out_name, "\\s+", "")</pre>
  out name
data_nhanes_dichotomized <- data_nhanes</pre>
for (subset_i in valid_subsets) {
 new_col_name <- make_dicho_name(subset_i)</pre>
  # Dichotomize: if health_cat is in 'subset_i', call it "Group1", else "Group2"
  data_nhanes_dichotomized <- data_nhanes_dichotomized %>%
    mutate(
      !!sym(new_col_name) := if_else(health_cat %in% subset_i,
                                       1, 0) #"Group1",
                                       #"Group2")
    )
}
data_nhanes <- data_nhanes_dichotomized</pre>
dichotomized_var <- colnames(data_nhanes[(length(data_nhanes) - length(valid_subsets)):(length(data_nhanes)
important_dichotomized_var_5levels <- c("health_dicho_Excellent_v_VeryGood_Good_Fair_Poor",</pre>
            "health_dicho_Excellent_VeryGood_v_Good_Fair_Poor",
            "health_dicho_Excellent_VeryGood_Good_v_Fair_Poor",
            "health_dicho_Excellent_VeryGood_Good_Fair_v_Poor"
```

Survey object

```
library(survey)
library(srvyr)

svy_nhanes <- data_nhanes %>%
  filter(!(is.na(SDMVPSU))) %>%
  as_survey_design(
  # ids = 1,
   ids = SDMVPSU,  # PSU identifiers (use 1 if not available)

  # weights = WTINT2YR,  # original -- interview weights -- larger sample size but fewer covariates
  weights = WTMEC2YR,  # Gloria's -- enable more covariates
  strata = SDMVSTRA,
  nest = TRUE
  )
```

First figure

Excellent Health by Age Group Over Years NHANES Dataset with Survey Weights


```
p_prop_nhanes_ev_vs_gfp <- plot_weighted_proportion(
  data = svy_nhanes,
  outcome = health_dicho_Excellent_VeryGood_v_Good_Fair_Poor,
  group_var = age_group,
  year_var = year,
  title = "Excellent or Very Good Health by Age Group Over Years",
  subtitle = "NHANES Dataset with Survey Weights"
)
p_prop_nhanes_ev_vs_gfp</pre>
```

Excellent or Very Good Health by Age Group Over Years NHANES Dataset with Survey Weights


```
p_prop_nhanes_evg_vs_fp <- plot_weighted_proportion(
    data = svy_nhanes,
    outcome = health_dicho_Excellent_VeryGood_Good_v_Fair_Poor,
    group_var = age_group,
    year_var = year,
    title = "Excellent, Very Good, or Good Health by Age Group Over Years",
    subtitle = "NHANES Dataset with Survey Weights"
)
p_prop_nhanes_evg_vs_fp</pre>
```

Excellent, Very Good, or Good Health by Age Group Over Years NHANES Dataset with Survey Weights


```
p_prop_nhanes_evgf_vs_p <- plot_weighted_proportion(
  data = svy_nhanes,
  outcome = health_dicho_Excellent_VeryGood_Good_Fair_v_Poor,
  group_var = age_group,
  year_var = year,
  title = "Excellent, Very Good, Good, or Fair Health by Age Group Over Years",
  subtitle = "NHANES Dataset with Survey Weights")

p_prop_nhanes_evgf_vs_p</pre>
```

Excellent, Very Good, Good, or Fair Health by Age Group Over Years NHANES Dataset with Survey Weights

Age Coeff

```
\#"health\_dicho\_Excellent\_v\_VeryGood\_Good\_Fair\_Poor",
             "health_dicho_Excellent_VeryGood_v_Good_Fair_Poor",
#
             "health_dicho_Excellent_VeryGood_Good_v_Fair_Poor",
#
             "health dicho Excellent VeryGood Good Fair v Poor"
# 1. Run Weighted Regressions by Year
result_list <- weighted_regressions_by_year(</pre>
  survey_data = svy_nhanes, # your srvyr design object
          = "health_dicho_Excellent_v_VeryGood_Good_Fair_Poor", # outcome variable
  outcome
  predictor = "age",
                        # main predictor
  year_var
            = "year"
                           # group by year
# 2. Check the extracted coefficient estimates
knitr::kable(result_list$coefficient_df, title = "Excellent v VG/Good/Fair/Poor (NHANES)")
```

year	term	estimate	std.error	statistic	p.value	conf.low	conf.high
2001	age	-0.0009303	0.0002281	-4.0791971	0.0011270	-0.0014195	-0.0004412
2003	age	-0.0012950	0.0003647	-3.5507405	0.0031962	-0.0020772	-0.0005128
2005	age	-0.0008961	0.0003711	-2.4146394	0.0300149	-0.0016920	-0.0001001
2007	age	-0.0017415	0.0003276	-5.3152524	0.0000865	-0.0024398	-0.0010431
2009	age	-0.0002545	0.0003219	-0.7905600	0.4415213	-0.0009405	0.0004316
2011	age	-0.0009739	0.0004399	-2.2141195	0.0416880	-0.0019064	-0.0000414

year	term	estimate	std.error	statistic	p.value	conf.low	conf.high
2013 2015	age age	-0.0004286 -0.0002797	0.0003224 0.0003963	-1.3291870 -0.7057642	0.2050417 0.4919125	-0.0011201 -0.0011295	0.0002630 0.0005702
2017	age	-0.0007921	0.0004818	-1.6441224	0.1224105	-0.0018255	0.0002412

```
##
## Call:
## lm(formula = estimate ~ year, data = coefficient_df)
## Residuals:
##
                          Median
                                                 Max
                    1Q
                                        3Q
  ##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.960e-02 5.818e-02 -1.540
                                            0.167
## year
              4.418e-05 2.896e-05
                                    1.526
                                            0.171
## Residual standard error: 0.0004486 on 7 degrees of freedom
## Multiple R-squared: 0.2495, Adjusted R-squared: 0.1423
## F-statistic: 2.327 on 1 and 7 DF, p-value: 0.171
# 4. Plot the coefficient estimates across years
print(result_list$coef_plot + labs(subtitle = "Excellent v VG/Good/Fair/Poor (NHANES)"))
```

Weighted Coefficients of age on health_dicho_Excellent_v_VeryGood_G Excellent v VG/Good/Fair/Poor (NHANES)


```
# 5. Plot the coefficient estimates with a linear trend line
print(result_list$coef_trend_plot + labs(subtitle = "Excellent v VG/Good/Fair/Poor (NHANES)"))
```

`geom_smooth()` using formula = 'y ~ x'

Trend Over Time for Coefficient of age

p_coeff_nhanes_e_vs_vgfp <- result_list\$coef_trend_plot + labs(subtitle = "Excellent v VG/Good/Fair/Poor</pre>

#########

```
# 1. Run Weighted Regressions by Year
result_list <- weighted_regressions_by_year(
   survey_data = svy_nhanes,  # your srvyr design object
   outcome = "health_dicho_Excellent_VeryGood_v_Good_Fair_Poor",  # outcome variable
   predictor = "age",  # main predictor
   year_var = "year"  # group by year
)</pre>
```

2. Check the extracted coefficient estimates

knitr::kable(result_list\$coefficient_df, title = "Excellent/VG v Good/Fair/Poor (NHANES)")

year	term	estimate	std.error	statistic	p.value	conf.low	conf.high
2001	age	-0.0029153	0.0005427	-5.3715136	0.0000985	-0.0040793	-0.0017512
2003	age	-0.0038089	0.0005533	-6.8838369	0.0000075	-0.0049956	-0.0026222
2005	age	-0.0027186	0.0005525	-4.9203536	0.0002256	-0.0039036	-0.0015335
2007	age	-0.0024949	0.0005021	-4.9691170	0.0001681	-0.0035651	-0.0014248

year	term	estimate	std.error	statistic	p.value	conf.low	conf.high
2009	age	-0.0009030	0.0007579	-1.1914134	0.2520023	-0.0025184	0.0007125
2011	age	-0.0026222	0.0005314	-4.9340482	0.0001495	-0.0037488	-0.0014956
2013	age	-0.0012164	0.0006472	-1.8796073	0.0811363	-0.0026044	0.0001716
2015	age	-0.0009722	0.0006181	-1.5729121	0.1380603	-0.0022979	0.0003535
2017	age	-0.0006715	0.0008601	-0.7807662	0.4479414	-0.0025162	0.0011731

```
##
## Call:
## lm(formula = estimate ~ year, data = coefficient_df)
##
## Residuals:
         Min
                     1Q
                            Median
                                           3Q
## -0.0009257 -0.0001197 0.0000069 0.0001407 0.0011329
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -3.429e-01 8.454e-02 -4.056 0.00483 **
## year
              1.697e-04 4.208e-05
                                      4.032 0.00498 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0006519 on 7 degrees of freedom
## Multiple R-squared: 0.699, Adjusted R-squared: 0.656
## F-statistic: 16.26 on 1 and 7 DF, p-value: 0.004982
# 4. Plot the coefficient estimates across years
print(result_list$coef_plot + labs(subtitle = "Excellent/VG v Good/Fair/Poor (NHANES)"))
```

Weighted Coefficients of age on health_dicho_Excellent_VeryGood_v_G Excellent/VG v Good/Fair/Poor (NHANES)


```
# 5. Plot the coefficient estimates with a linear trend line
print(result_list$coef_trend_plot + labs(subtitle = "Excellent/VG v Good/Fair/Poor (NHANES)"))
```

`geom_smooth()` using formula = 'y ~ x'

Trend Over Time for Coefficient of age Excellent/VG v Good/Fair/Poor (NHANES)

p_coeff_nhanes_ev_vs_gfp <- result_list\$coef_trend_plot + labs(subtitle = "Excellent/VG v Good/Fair/Poot)

```
# 1 Day Waight ad Dagman in N
```

########

```
# 1. Run Weighted Regressions by Year
result_list <- weighted_regressions_by_year(
   survey_data = svy_nhanes,  # your srvyr design object
   outcome = "health_dicho_Excellent_VeryGood_Good_v_Fair_Poor",  # outcome variable
   predictor = "age",  # main predictor
   year_var = "year"  # group by year
)</pre>
```

2. Check the extracted coefficient estimates

knitr::kable(result_list\$coefficient_df, title = "Excellent/VG/Good v Fair/Poor (NHANES)")

year	term	estimate	$\operatorname{std.error}$	statistic	p.value	conf.low	conf.high
2001	age	-0.0025169	0.0003374	-7.460385	0.0000031	-0.0032405	-0.0017933
2003	age	-0.0034406	0.0004475	-7.688264	0.0000022	-0.0044005	-0.0024808
2005	age	-0.0023879	0.0003758	-6.353560	0.0000179	-0.0031940	-0.0015818
2007	age	-0.0032945	0.0003753	-8.778581	0.0000003	-0.0040944	-0.0024946
2009	age	-0.0016224	0.0004046	-4.010146	0.0011356	-0.0024848	-0.0007601
2011	age	-0.0024506	0.0002201	-11.132665	0.0000000	-0.0029173	-0.0019840
2013	age	-0.0020824	0.0005062	-4.113449	0.0010541	-0.0031682	-0.0009966
2015	age	-0.0014365	0.0005531	-2.597350	0.0210858	-0.0026227	-0.0002503
2017	age	-0.0007932	0.0006306	-1.257796	0.2290411	-0.0021458	0.0005594

```
##
## Call:
## lm(formula = estimate ~ year, data = coefficient_df)
## Residuals:
##
                     1Q
                            Median
                                           3Q
                                                     Max
## -8.301e-04 -4.650e-04 7.042e-05 4.743e-04 6.656e-04
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.427e-01 7.596e-02 -3.195
                                              0.0152 *
               1.197e-04 3.781e-05
## year
                                      3.165
                                              0.0158 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.0005857 on 7 degrees of freedom
## Multiple R-squared: 0.5887, Adjusted R-squared:
## F-statistic: 10.02 on 1 and 7 DF, p-value: 0.01581
# 4. Plot the coefficient estimates across years
print(result_list$coef_plot + labs(subtitle = "Excellent/VG/Good v Fair/Poor (NHANES)"))
```

Weighted Coefficients of age on health_dicho_Excellent_VeryGood_Goo Excellent/VG/Good v Fair/Poor (NHANES)

5. Plot the coefficient estimates with a linear trend line
print(result_list\$coef_trend_plot + labs(subtitle = "Excellent/VG/Good v Fair/Poor (NHANES)"))

`geom_smooth()` using formula = 'y ~ x'

Trend Over Time for Coefficient of age

Excellent/VG/Good v Fair/Poor (NHANES)

p_coeff_nhanes_evg_vs_fp <- result_list\$coef_trend_plot + labs(subtitle = "Excellent/VG/Good v Fair/Pool</pre>

```
######
```

knitr::kable(result_list\$coefficient_df, title = "Excellent/VG/Good/Fair v Poor (NHANES)")

year	term	estimate	$\operatorname{std.error}$	statistic	p.value	conf.low	conf.high
2001	age	-0.0007891	0.0002208	-3.572987	0.0030581	-0.0012628	-0.0003154
2003	age	-0.0012558	0.0001976	-6.355449	0.0000178	-0.0016796	-0.0008320
2005	age	-0.0006714	0.0001767	-3.799957	0.0019510	-0.0010503	-0.0002924
2007	age	-0.0009212	0.0001494	-6.164681	0.0000181	-0.0012397	-0.0006027
2009	age	-0.0005831	0.0001594	-3.657243	0.0023349	-0.0009229	-0.0002432
2011	age	-0.0006740	0.0001145	-5.888141	0.0000229	-0.0009167	-0.0004313
2013	age	-0.0007388	0.0001370	-5.392964	0.0000948	-0.0010327	-0.0004450
2015	age	-0.0003823	0.0001312	-2.913986	0.0113246	-0.0006636	-0.0001009

year	term	estimate	std.error	statistic	p.value	conf.low	conf.high
2017	age	-0.0002586	0.0001832	-1.411105	0.1800484	-0.0006516	0.0001344

3. View the summary of how the coefficient changes over time result_list\$lm_over_time_summary

```
##
## Call:
## lm(formula = estimate ~ year, data = coefficient_df)
## Residuals:
                            Median
                     1Q
                                           3Q
                                                     Max
## -3.159e-04 -1.432e-04 7.212e-05 1.149e-04 2.317e-04
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.198e-02 2.618e-02 -3.131
               4.046e-05 1.303e-05
                                      3.104
                                              0.0172 *
## year
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.0002019 on 7 degrees of freedom
## Multiple R-squared: 0.5792, Adjusted R-squared: 0.5191
## F-statistic: 9.636 on 1 and 7 DF, p-value: 0.01722
# 4. Plot the coefficient estimates across years
print(result_list$coef_plot + labs(subtitle = "Excellent/VG/Good/Fair v Poor (NHANES)"))
```

Weighted Coefficients of age on health_dicho_Excellent_VeryGood_Go Excellent/VG/Good/Fair v Poor (NHANES)

5. Plot the coefficient estimates with a linear trend line print(result_list\$coef_trend_plot + labs(subtitle = "Excellent/VG/Good/Fair v Poor (NHANES)"))

`geom_smooth()` using formula = 'y ~ x'

Trend Over Time for Coefficient of age

Excellent/VG/Good/Fair v Poor (NHANES)

p_coeff_nhanes_evgf_vs_p <- result_list\$coef_trend_plot + labs(subtitle = "Excellent/VG/Good/Fair v Pool</pre>

View it all together

GSS

p_prop_gss_e_vs_gfp

Proportion Reporting Excellent Health by Age Group Over Years GSS Dataset with Survey Weights

p_prop_gss_eg_vs_fp

Proportion Reporting Excellent or Good Health by Age Group Over Years GSS Dataset with Survey Weights

p_prop_gss_egf_vs_p

Proportion Reporting Excellent, Good, or Fair Health by Age Group Over Y GSS Dataset with Survey Weights

p_coeff_gss_e_vs_gfp

Trend Over Time for Coefficient of age

Year

p_coeff_gss_eg_vs_fp

Trend Over Time for Coefficient of age

p_coeff_gss_egf_vs_p

Trend Over Time for Coefficient of age Excellent/Good/Fair vs Poor (GSS)

NHANES

p_prop_nhanes_e_vs_vgfp

Excellent Health by Age Group Over Years NHANES Dataset with Survey Weights

p_prop_nhanes_ev_vs_gfp

Excellent or Very Good Health by Age Group Over Years NHANES Dataset with Survey Weights

p_prop_nhanes_evg_vs_fp

Excellent, Very Good, or Good Health by Age Group Over Years NHANES Dataset with Survey Weights

p_prop_nhanes_evgf_vs_p

Excellent, Very Good, Good, or Fair Health by Age Group Over Years NHANES Dataset with Survey Weights

p_coeff_nhanes_e_vs_vgfp

Trend Over Time for Coefficient of age

Excellent v VG/Good/Fair/Poor (NHANES)

p_coeff_nhanes_ev_vs_gfp

Trend Over Time for Coefficient of age Excellent/VG v Good/Fair/Poor (NHANES)

p_coeff_nhanes_evg_vs_fp

Trend Over Time for Coefficient of age Excellent/VG/Good v Fair/Poor (NHANES)

p_coeff_nhanes_evgf_vs_p

Trend Over Time for Coefficient of age Excellent/VG/Good/Fair v Poor (NHANES)

Combined figure

```
library(patchwork)

# Combine them into a 2x2 grid

# combined_plot <- (p1 + p2) / (p3 + p4)

# or equivalently:
# combined_plot <- p1 + p2 + p3 + p4 +

# plot_layout(ncol = 2, nrow = 2)

# Print or save the final combined figure
# combined_plot

# GSS

p_prop_gss_e_vs_gfp + theme(legend.position = "none") + labs(title = "Excellent SRH", subtitle = "GSS")

p_prop_gss_eg_vs_fp + theme(legend.position = "none") + labs(title = "Excellent/Good SRH", subtitle = p_prop_gss_egf_vs_p + labs(title = "Excellent/Good/Fair SRH", subtitle = "GSS") +

plot_layout(nrow = 1) + plot_annotation("SRH Proportion Over Time (GSS)")</pre>
```

SRH Proportion Over Time (GSS)


```
p_coeff_gss_e_vs_gfp + theme(legend.position = "none") + labs(title = "Excellent SRH", subtitle = "GSS"
p_coeff_gss_eg_vs_fp + theme(legend.position = "none") + labs(title = "Excellent/Good SRH", subtitle =
p_coeff_gss_egf_vs_p + labs(title = "Excellent/Good/Fair SRH", subtitle = "GSS") +
plot_layout(nrow = 1) + plot_annotation("Age Coefficients Over Time (GSS)")
```

```
## `geom_smooth()` using formula = 'y ~ x'
## `seem_smooth()` using formula = 'y ~ x'
```

^{## `}geom_smooth()` using formula = 'y ~ x'

^{## `}geom_smooth()` using formula = 'y ~ x'

Age Coefficients Over Time (GSS)

SRH Proportion Over Time (NHANES)

Excellent Health by Age Group Over Yearscellent or Very Good Health by

Excellent, Very Good, or Good Health by Rogellent, we sy Web Web Sood, or Fa NHANES Dataset with Survey Weights NHANES Dataset with Survey Weights


```
p_coeff_nhanes_e_vs_vgfp + theme(legend.position = "none") +
p_coeff_nhanes_ev_vs_gfp + theme(legend.position = "none") +
p_coeff_nhanes_evg_vs_fp + theme(legend.position = "none") +
p_coeff_nhanes_evg_vs_fp + theme(legend.position = "none") +
p_coeff_nhanes_evgf_vs_p + theme(legend.position = "bottom") +
plot_layout(nrow = 2) + plot_annotation("Age Coefficient Over Time (NHANES)")
```

age_group

```
## `geom_smooth()` using formula = 'y ~ x'
```

Age Coefficient Over Time (NHANES)

Year

Year