Journal Report 10 11/18/19-11/22/19 Sohom Paul Computer Systems Research Lab Period 1, White

Daily Log

Monday November 18

I switched from trying to divide my model into two parts to directly setting the weights of the learned model; coefficient transfer was successful.

Tuesday November 19

Successfully tested calculation of cross-task transfer coefficients. Wrote program to start training and saving single-task models.

Thursday November 21

Started writing code for demonstration using Psi4 DFT calculations.

Continued trying to train and save single-task models.

Encountered some difficulties in getting Keras to load models using custom Spektral classes.

Timeline

Date	Goal	Met
Nov 11	Implement neural clustering (CMTL)	Partial; I've yet to compute the full
	and compare with non-clustered re-	19x19 table of coefficients.
	sults	
Nov 18	Finish performing neural clustering.	Postponed, due to errors in last
	Start implementing deep relationship	week's work.
	networks.	
Nov 25	Finish performing neural clustering.	Successful builds of DFT, partial com-
	Generate 19x19 table of task related-	pletion of code to cluster tasks.
	ness. Start building demonstration	
	program with DFT and single-task re-	
	sults.	
Dec 2	Continue building demonstration	
	with preliminary multitask results.	
Dec 9	Finish building demonstration with	
	multitask and DFT methods; start in-	
	tegrating with GCN demonstration.	
Winter Goal	Have a program capable of taking	
	an input molecule and predicting the	
	relevant molecular properties, using	
	a choice of density functional theory	
	or multitask-learned networks. The	
	demo will let the use see firsthand the	
	relative accuracies and speeds of the	
	methods.	

Reflection

This week, I finally realized the much cleaner method of dividing my model into an transferred encoder and learned classifier can be much more easily be done by simply setting the weights of the models directly rather than interface with the finnicky Keras functional API. I have been able to successfully run an example of cross-task coefficient calculation by transferring the encoder for a model trained on zero-point vibrational energy onto a model trained on atomization enthalpy at 298K, yielding a loss of 0.894. However, this number is meaningless without having context to see the losses for all the other transferred tasks, which I haven't yet been able to compute. The issue that I've run into is that when I save and load the Spektral models (which is necessary, considering it will likely take dozens of hours to learn all of the networks), I am not capable of having Keras deal with the custom classes Spektral defines. However, I think this can be quickly fixed by just (again) directly accessing the weights to save and load. I plan to keep my machine running over the long weekend and finish filling out that matrix so I have the neural clustering ready.

Otherwise, I am currently working on making sure that my parser can extract all the relevant properties from Psi4 as we are learning using our neural networks. I am currently missing a couple (α, r^2) , which I hope to rectify soon.