

1 / 19

Fig. 1

2/19

Fig.2

16E 18

(A)

18 34a 18

(B)

34a 36a 34a 18

(C)

34a 36a 34a 22

(D)

(E)

3/19

Fig.3

25 23 36S 36P 36E

(B)

34P 34 34 β 34E

(C)

34P 34 34 β 34E

34E

10/551439

OBLON ET AL (703) 413-3000
DOCKET # 278942WS SHEET 4 OF 19

4 / 19

Fig. 4
(A)

(B)

(C)

10/551439

OBLON ET AL (703) 413-3000
DOCKET # 278942US SHEET 5 OF 19

5/19
Fig.5
(A)

(B)

(C)

(D)

6/19

Fig.6

(A)

(B)

(C)

(D)

10/551 439

OBLON ET AL (703) 413-3000
DOCKET # 27894US SHEET 7 OF 19

7/19

Fig. 7

(A)

(B)

(C)

(D)

101551439

Fig.8

9/19

Fig.9

10/551439

OBLON ET AL (703) 413-3000
DOCKET # 278942US SHEET 10 OF 19

10/19
Fig. 10

10/551439

OBLON ET AL (703) 413-3000
DOCKET # 278942US SHEET 11 OF 19

11/19
Fig. 11

12/19

Fig. 12

10/551439

13 / 19

Fig. 13

14 / 19

Fig.14

15/19

Fig. 15

Fig. 16

THROUGH HOLE PITCH (μm)	THROUGH HOLE DIAMETER (μm)	STAGGERED FORMATION (THICK COPPER)	GRID FORMATION	RANDOM FORMATION	FOURTH REFERENCE EXAMPLE
		THICKNESS OF CORE SUBSTRATE (μm)	LOOP INDUCTANCE (μH)	LOOP INDUCTANCE (μH)	LOOP INDUCTANCE (μH)
650	450	600	93	84	115
600	400	600	87	75	109
550	350	600	73	59	100
500	300	600	73	56	95
475	275	600	63	57	90
450	250	600	59	55	85
425	225	600	58	55	85
400	200	600	59	55	-
80	50	600	55	50	90
50	25	600	63	60	-

NOTE: A DIFFERENCE BETWEEN FOURTH REFERENCE EXAMPLE AND GRID FORMATION (THICK COPPER) IS JUST A SUM OF THICKNESSES OF CONDUCTIVE LAYERS IN MULTI-LAYER CORE SUBSTRATE.

10/551439

OBLON ET AL (703) 413-3000
DOCKET # 27894215 SHEET 17 OF 19

17/19
Fig. 17
(A)

THROUGH HOEL PITCH (μm)	STAGGERED FORMATION (THICK COPPER)		GRID FORMATION (THICK COPPER)	
	CRACK IN INSULATING LAYER	RESULT OF CONDUCTIVITY TEST	CRACK IN INSULATING LAYER	RESULT OF CONDUCTIVITY TEST
650	○	○	○	○
600	○	○	○	○
500	○	○	○	○
400	○	○	○	○
80	○	○	○	○
50	×	×	×	×

CRACK IN INSULATING LAYER : ○ NO CRACK × CRACK

RESULT OF CONDUCTIVITY TEST : ○ NO ABNORMALITY IN RESISTANCE
× ABNORMALITY IN RESISTANCE

(B)

THROUGH HOEL PITCH (μm)	STAGGERED FORMATION	GRID FORMATION
	LOOP INDUCTANCE (pH)	LOOP INDUCTANCE (pH)
650	93	84
600	87	75
550	73	60
500	63	56
475	63	57
450	59	55
425	58	54
400	55	52
350	54	50
300	54	50
200	53	50
100	54	49
75	54	49
60	55	50
50	63	60

10/551439

OBLON ET AL (703) 413-3000
DOCKET # 278942115 SHEET 18 OF 19

Fig. 18

19 / 19

Fig. 19
RATIO OF CORE POWER LAYER

