## Effective Pest Treament That Protects Pollinators

https://github.com/shivanikuckreja/CitrolaKuckrejaSaltman\_ENV872\_E DA\_FinalProject/tree/main/Project

Sam Saltman, Shivani Kuckreja, Jessica Citrola

## Contents

| 1 | Rationale and Research Questions                                                                      |                |
|---|-------------------------------------------------------------------------------------------------------|----------------|
| 2 | Dataset Information                                                                                   | 6              |
| 3 | Exploratory Analysis                                                                                  | 7              |
| 4 | Analysis 4.1 Question 1: Is there an exposure type that has less impact on bees than non-bee insects? | 12<br>12<br>12 |
| 5 | Summary and Conclusions                                                                               | 13             |
| 6 | References                                                                                            | 14             |

| T | ict | $\alpha$ f | $T_{2}$ | $\mathbf{h}$ | les |
|---|-----|------------|---------|--------------|-----|
|   | ロラし | OT.        |         |              |     |

| 9 | Species List | r |
|---|--------------|---|
| _ | Species List |   |

# List of Figures

| 1 | Bee Mortality     | 1 |
|---|-------------------|---|
| 2 | Non-bee Mortality | 1 |

### 1 Rationale and Research Questions

Pollination is a critical component of agriculture. Honeybees are important pollinators. Our research looks to see if there are exposure methods and chemicals that do not cause significant harm to honeybees while eliminating pests. The goal of our research is to determine potential treatment methods that reduce pests while having little to no impact on pollinators.

#### Questions:

- 1. Is there an exposure type that has less impact on bees than non-bee insects?
- 2. Are there chemicals that have a high mortality rate for non-bee insects and low rate for bees?

### 2 Dataset Information

Data Source: The dataset was pulled from a repository created for Environmental Data Analytics at Duke University in 2020. The data collected is from several EPA studies on neonicotinoids and their effects on insects. The data we will be analyzing is the type of chemical administered, how it was administered, and how both of these variables affected insects.

In the wrangling process, we selected the relevant information to our topic. This includes the chemical type, insect species, lifestage and age of the species, exposure type and the effect of the exposure.

| Detail         | Description                                                                                                           |
|----------------|-----------------------------------------------------------------------------------------------------------------------|
| Data Source    | EPA ECOTOX Knowledgebase                                                                                              |
| Retrieved From | https://cfpub.epa.gov/ecotox/help.cfm                                                                                 |
| Variables Used | Chemical Name, Species Common Name,<br>Organism Lifestage, Organism Age, Exposure<br>Type, Effect, Effect Measurement |
| Date Range     | 1982-2019                                                                                                             |

## 3 Exploratory Analysis

```
Mortality <- Processed1_Filter %>%
  filter(Effect == "Mortality")

kable(summary(Mortality$Species.Common.Name), caption = "Species List")
```

Table 2: Species List

|                              | X   |
|------------------------------|-----|
| Honey Bee                    | 203 |
| Parasitic Wasp               | 165 |
| Italian Honeybee             | 91  |
| Asian Lady Beetle            | 59  |
| Minute Pirate Bug            | 52  |
| Buff Tailed Bumblebee        | 47  |
| Parastic Wasp                | 41  |
| Carniolan Honey Bee          | 29  |
| Braconid Wasp                | 26  |
| Sevenspotted Lady Beetle     | 25  |
| Bumble Bee                   | 23  |
| European Dark Bee            | 23  |
| Mosquito                     | 22  |
| Parasitoid                   | 22  |
| Chalcid Wasp                 | 20  |
| Stingless Bee                | 20  |
| Parasitoid Wasp              | 19  |
| Fairyfly Parasitoid          | 18  |
| Mulberry Pyralid             | 18  |
| Spring Tiphia                | 18  |
| Codling Moth                 | 17  |
| House Fly                    | 14  |
| Ox Beetle                    | 14  |
| Japanese Beetle              | 13  |
| Predatory Bug                | 13  |
| Wireworm                     | 13  |
| Silkworm                     | 12  |
| Predatory Mite               | 11  |
| Spined Soldier Bug           | 11  |
| Vedalia Beetle               | 11  |
| Yellow Fever Mosquito        | 11  |
| Braconid Parasitoid          | 10  |
| Calico Scale                 | 10  |
| Eastern Subterranean Termite | 10  |

|                                    | X  |
|------------------------------------|----|
| Glasshouse Potato Wasp             | 10 |
| Southern House Mosquito            | 10 |
| Two Spotted Lady Beetle            | 10 |
| Western Flower Thrips              | 10 |
| Convergent Lady Beetle             | 9  |
| Mealybug Destroyer                 | 9  |
| Black-spotted Lady Beetle          | 8  |
| Corn Earworm                       | 8  |
| Dwarf Honey Bee                    | 8  |
| Eulophid Parasitoid                | 8  |
| Mirid Bug                          | 8  |
| Chilean Predatory Mite             | 7  |
| Egg Parasitoid                     | 7  |
| Eulophid Wasp                      | 7  |
| Pea Aphid                          | 7  |
| Tooth-necked Fungus Beetle         | 7  |
| Coconut Leaf Beetle                | 6  |
| Elevenspotted Ladybird Beetle      | 6  |
| Hemlock Woolly Adelgid Lady Beetle | 6  |
| Mite                               | 6  |
| Pistachio Psyllid                  | 6  |
| Spotless Ladybird Beetle           | 6  |
| Subterranean Termite               | 6  |
| Alfalfa Leafcutter Bee             | 5  |
| Buff-tailed Bumblebee              | 5  |
| Diamondback Moth                   | 5  |
| Encyrtid Wasp                      | 5  |
| Hornfaced Bee                      | 5  |
| Ladybird Beetle                    | 5  |
| Mason Bee                          | 5  |
| Oystershell Scale Parasitoid       | 5  |
| Red Scale Parasite                 | 5  |
| Scelionid Wasp                     | 5  |
| Argentine Ant                      | 4  |
| Bee                                | 4  |
| Colorado Potato Beetle             | 4  |
| European Honey Bee                 | 4  |
| Monarch Butterfly                  | 4  |
| Moth                               | 4  |
| Oriental Beetle                    | 4  |
| Potato Tuberworm                   | 4  |
| Sweetpotato Whitefly               | 4  |
| Two-Spotted Spider Mite            | 4  |

|                               | X  |
|-------------------------------|----|
| Yellow-faced Bumblebee        | 4  |
| Armoured Scale Family         | 3  |
| Beetle                        | 3  |
| Citrus Leafminer              | 3  |
| Delphacid Planthopper         | 3  |
| Egyptian Cotton Leafworm      | 3  |
| Encyrtid Parasitoid           | 3  |
| Formosan Subterranean Termite | 3  |
| Ichneumonid Wasp              | 3  |
| Ladybird Beetle Family        | 3  |
| Leaf Cutting Ant              | 3  |
| Pond Wolf Spider              | 3  |
| Rove Beetle                   | 3  |
| Soldier Beetle                | 3  |
| Speckled Cutworm Moth         | 3  |
| Spider                        | 3  |
| Sugarcane Grub                | 3  |
| Tenebrionid Beetle            | 3  |
| Wasp                          | 3  |
| Alfalfa Plant Bug             | 2  |
| Alkali Bee                    | 2  |
| Aphid Wasp                    | 2  |
| (Other)                       | 53 |

```
HoneyBeeMortalityExposureType <- Mortality %>%
 filter(Species.Common.Name == "Honey Bee" | Species.Common.Name == "Buff Tailed Bumble
GGPlot_HoneyBee_Mortality_Exposure <- ggplot(HoneyBeeMortalityExposureType) +</pre>
  aes(x = Exposure.Type) +
  geom_bar() +
  labs("Bee Mortality") +
  ylab("Mortality Count") +
  theme(axis.text.x = element_text(angle = 90))
print(GGPlot_HoneyBee_Mortality_Exposure)
NonBeeMortalityExposure <- Mortality %>%
 filter(Species.Common.Name != "Honey Bee" | Species.Common.Name != "Buff Tailed Bumble
GGPlot_NonBee_Mortality_Exposure <- ggplot(NonBeeMortalityExposure) +</pre>
  aes(x = Exposure.Type) +
  geom_bar() +
  ylab("Mortality Count") +
  xlab("Exposure Type") +
```



Figure 1: Bee Mortality



Figure 2: Non-bee Mortality

### 4 Analysis

- 4.1 Question 1: Is there an exposure type that has less impact on bees than non-bee insects?
- 4.2 Question 2: Are there chemicals that have a high mortality rate for non-bee insects and low rate for bees?

5 Summary and Conclusions

## 6 References

< add references here if relevant, otherwise delete this section>