EE2005 Problem Set 4

All the expressions for V_{out}/V_{in} in this problem set can be derived by applying voltage divider rule.

O1 Problem 6.1

For the circuit in Fig P6.1,

a) Determine the frequency response of V_{out}/V_{in} expressed in the form:

$$\frac{\mathbf{v}_{out}}{\mathbf{v}_{in}} = \frac{A}{1 + j\omega/\omega_c}$$

Given that A and ω_c are positive values, find the values of A and ω_c ;

- b) Find $|V_{out}/V_{in}|$ when $\omega = 0$, $\omega = \omega_c$, and $\omega \to \infty$;
- c) Find \angle (V_{out}/V_{in}) when $\omega = 0$, $\omega = \omega_c$, and $\omega \to \infty$;
- d) Hence determine if the circuit is a high pass or low pass filter
- e) Sketch the frequency response of V_{out}/V_{in} (log-log plot for magnitude and semi-log plot for phase)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Q2 Problem 6.2

For the circuit in Fig P6.2,

a) Determine the frequency response of V_{out}/V_{in} expressed in the form:

$$\frac{\mathbf{v}_{out}}{\mathbf{v}_{in}} = \frac{A}{1 + j\omega/\omega_c}$$

Given that A and ω_c are positive values, find the values of A and ω_c ;

- b) Find $|V_{out}/V_{in}|$ when $\omega = 0$, $\omega = \omega_c$, and $\omega \to \infty$;
- c) Find \angle (V_{out}/V_{in}) when $\omega = 0$, $\omega = \omega_c$, and $\omega \to \infty$;
- d) Hence determine if the circuit is a high pass or low pass filter
- e) Sketch the frequency response of V_{out}/V_{in} (log-log plot for magnitude and semi-log plot for phase)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

EE2005 Problem Set 4

Q3 Problem 6.3

For the circuit in Fig P6.3,

a) Determine the frequency response of V_{out}/V_{in} expressed in the form:

$$\frac{V_{out}}{V_{in}} = \frac{A}{1 + j\omega/\omega_c}$$

Given that A and ω_c are positive values, find the values of A and ω_c ;

- b) Find $|V_{out}/V_{in}|$ when $\omega = 0$, $\omega = \omega_c$, and $\omega \to \infty$;
- c) Find \angle (V_{out}/V_{in}) when $\omega = 0$, $\omega = \omega_c$, and $\omega \to \infty$;
- d) Hence determine if the circuit is a high pass or low pass filter
- e) Draw the frequency response of V_{out}/V_{in} (log-log plot for magnitude and semi-log plot for phase)
- f) What is similar and different in the frequency response between the circuit in Fig P6.3 and Fig P.6.2?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

O4 Problem 6.11

For the circuit in Fig P6.11,

a) Determine the frequency response of V₀/V_i expressed in the form:

$$\frac{V_o}{V_i} = \frac{A}{1 + \omega_c / j\omega}$$

Given that A and ω_c are positive, find expressions for A and ω_c in terms of the component symbols given;

- b) Find $|V_0/V_1|$ when $\omega = 0$, $\omega = \omega_c$, and $\omega \to \infty$;
- c) Find \angle (V_o/V_i) when $\omega = 0$, $\omega = \omega_c$, and $\omega \to \infty$;
- d) Hence determine if the circuit is a high pass or low pass filter
- e) Draw the frequency response of V₀/V_i (log-log plot for magnitude and semi-log plot for phase)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Numerical answers

O1 Problem 6.1

a)
$$\frac{V_{out}}{V_{in}} = \frac{1}{1 + j(2.5 \times 10^{-6} \,\omega)}$$

$$A = 1$$
, $\omega_c = 400$ krad/s

b) Magnitudes

At
$$\omega = 0$$
, $|V_{out}/V_{in}| = 1$;

At
$$\omega = \omega_c$$
, $|V_{out}/V_{in}| = 1/\sqrt{2}$;

At
$$\omega \rightarrow \infty$$
, $|V_{out}/V_{in}| = 0$;

c) Phases

At
$$\omega = 0$$
, $\angle(V_{out}/V_{in}) = 0^{\circ}$;

At
$$\omega = \omega_c$$
, $\angle (V_{out}/V_{in}) = -45^\circ$;

At
$$\omega \to \infty$$
, $\angle (V_{out}/V_{in}) = -90^{\circ}$;

d) Low pass filter

Q2 Problem 6.2

a)
$$\frac{v_{out}}{v_{in}} = \frac{0.5}{1 + j(0.05\omega)}$$

$$A = 0.5, \omega_c = 20 \text{ rad/s}$$

b) Magnitudes

At
$$\omega = 0$$
, $|V_{out}/V_{in}| = 0.5$;

At
$$\omega = \omega_c$$
, $|V_{\text{out}}/V_{\text{in}}| = 0.5/\sqrt{2}$;

At
$$\omega \rightarrow \infty$$
, $|V_{out}/V_{in}| = 0$;

c) Phases

At
$$\omega = 0$$
, $\angle (V_{out}/V_{in}) = 0^{\circ}$;

At
$$\omega = \omega_c$$
, $\angle (V_{out}/V_{in}) = -45^\circ$;

At
$$\omega \to \infty$$
, $\angle (V_{out}/V_{in}) = -90^{\circ}$;

d) Low pass filter

Q3 Problem 6.3

a)
$$\frac{v_{out}}{v_{in}} = \frac{0.5}{1 + j(0.02\omega)}$$

$$A = 0.5$$
, $\omega_c = 50 \text{ rad/s}$

b) Magnitudes

At
$$\omega = 0$$
, $|V_{out}/V_{in}| = 0.5$;

At
$$\omega = \omega_c$$
, $|V_{out}/V_{in}| = 0.5/\sqrt{2}$;

At
$$\omega \rightarrow \infty$$
, $|V_{out}/V_{in}| = 0$;

c) Phases

At
$$\omega = 0$$
, $\angle (V_{out}/V_{in}) = 0^{\circ}$;

At
$$\omega = \omega_c$$
, $\angle (V_{out}/V_{in}) = -45^\circ$;

At
$$\omega \to \infty$$
, $\angle (V_{out}/V_{in}) = -90^{\circ}$;

d) Low pass filter

f) Same in all aspects except for the value of the cut off radian frequency

Q4 Problem 6.11

a)
$$\frac{V_o}{V_i} = \left[\frac{R_2}{R_1 + R_2}\right] \left[\frac{1}{1 - j/\omega C(R_1 + R_2)}\right]$$

$$A = R_2/(R_1+R_2)$$
, $\omega_c = 1/[C(R_1+R_2)]$

b) Magnitudes

At
$$\omega = 0$$
, $|V_{out}/V_{in}| = 0$;

At
$$\omega = \omega_c$$
, $|V_{out}/V_{in}| = R_2/[\sqrt{2} (R_1 + R_2)]$;

At
$$\omega \rightarrow \infty$$
, $|V_{out}/V_{in}| = R_2/(R_1+R_2)$;

c) Phases

At
$$\omega = 0$$
, $\angle(V_{out}/V_{in}) = 90^{\circ}$;

At
$$\omega = \omega_c$$
, $\angle (V_{out}/V_{in}) = 45^\circ$;

At
$$\omega \rightarrow \infty$$
, $\angle(V_{\text{out}}/V_{\text{in}}) = 0^{\circ}$;

d) High pass filter