Épreuve: MATHÉMATIQUES II

Filière MP

Les calculatrices sont autorisées

Notations

n et m sont des entiers naturels vérifiant $1 \leq m \leq n$.

E et F désignent les espaces vectoriels \mathbb{R}^n et \mathbb{R}^m munis de leur structure euclidienne canonique. On note I_E l'application identité de E. Le produit scalaire est noté (.|.) aussi bien dans E que dans F et la norme euclidienne est notée ||.||. $S^+(E)$ désigne l'ensemble des endomorphismes autoadjoints (ou symétriques) positifs de E, $S^{++}(E)$ le sous-ensemble constitué des endomorphismes autoadjoints définis positifs. On rappelle que, si $u \in S^{++}(E)$, alors $\phi_u : (x,y) \mapsto (u(x)|y)$ est un produit scalaire sur E.

Partie I - Produit de deux endomorphismes autoadjoints positifs

On se propose dans cette partie de montrer, en plus de quelques généralités, que si u et v sont des éléments de $S^+(E)$, alors $u \circ v$ est diagonalisable et son spectre est inclus dans \mathbb{R}^+ .

I.A - Généralités

- I.A.1) Montrer qu'un endomorphisme symétrique de E est dans $S^+(E)$ (resp. $S^{++}(E)$) si et seulement si son spectre est inclus dans \mathbb{R}^+ (resp. \mathbb{R}^{+*}).
- I.A.2) Montrer que si $u \in S^{++}(E)$, alors $u^{-1} \in S^{++}(E)$.
- I.A.3) Soit $u \in S^+(E)$.
- a) Montrer qu'il existe un élément s de $S^+(E)$ tel que $u=s^2$.
- b) En déduire que :

$$\forall x \in E, (u(x)|x) = 0 \Rightarrow u(x) = 0. \tag{1}$$

I.B - Preuve du résultat

u et v désignent des éléments de $S^+(E)$.

I.B.1) On note u_1 et w les endomorphismes de Im(u) induits par u et $u \circ v$ respectivement.

- a) Montrer que u_1 est un élément de $S^{++}(Im(u))$.
- b) Montrer que w est autoadjoint positif relativement à $\phi_{u_1^{-1}}$ où $\phi_{u_1^{-1}}$ est le produit scalaire sur Im(u) défini dans les notations.
- I.B.2) Déduire de la question précédente que l'endomorphisme de $Im(u \circ v)$ induit par $u \circ v$ est diagonalisable et que son spectre est inclus dans \mathbb{R}^+ .
- I.B.3) Montrer, à l'aide de (1), que :

$$E = Im(u \circ v) \oplus Ker(u \circ v).$$

I.B.4) Conclure.

I.C - Cas particulier

a désigne un élément de $S^{++}(E)$ et f un élément de $\mathcal{L}(E,F)$.

I.C.1

a) Montrer qu'il existe un unique élément g de $\mathcal{L}(F,E)$ tel que, pour tout couple (x,y) de $E\times F,$ (f(x)|y)=(x|g(y)).

L'application g est notée f^* .

- b) Montrer que : $Ker(f^*) = [Im(f)]^{\perp}$.
- c) En déduire que si une suite $(z_k)_k$ d'éléments de Im(f) est telle que la suite $(f^*(z_k))_k$ converge vers 0, alors la suite $(z_k)_k$ converge vers 0.
- d) Montrer que :

$$f^* \circ f \in S^+(E)$$
.

I.C.2) Montrer que $a^{-1} \circ f^* \circ f$ est un endomorphismes diagonalisable de E et que son spectre est inclus dans \mathbb{R}^+ .

On note ρ sa plus grande valeur propre.

I.C.3) Montrer que :

$$\forall x \in E, ||f(x)||^2 \le \rho(a(x)|x).$$

$Partie~II~-~Minimisation~d'une~fonctionnelle\\quadratique$

Désormais a désigne un élément de $S^{++}(E)$, b est un élément fixé de E et f est un élément non nul de $\mathcal{L}(E,F)$.

J est l'application de E dans $\mathbb R$ définie par :

$$\forall x \in E, J(x) = \frac{1}{2}(a(x)|x) - (b|x).$$

II.A - Minimisation théorique

On considère un sous-espace vectoriel V de E et on s'intéresse à la minimisation de la restriction de J à V.

- II.A.1) Montrer que si ||x|| tend vers $+\infty$ et $x \in V$, alors J(x) tend vers $+\infty$.
- II.A.2) Déduire de la question précédente l'existence d'un minimum de la restriction de J à V.
- II.A.3) Soit (x, y) un élément de V^2 tel que $x \neq y$.
- a) Montrer que :

$$J(\frac{x+y}{2}) < \frac{J(x) + J(y)}{2}.$$

- b) En déduire que la restriction de J à V atteint son minimum en un seul point.
- II.A.4) Soit $x \in V$ et $(t, h) \in \mathbb{R} \times V$.
- a) Calculer J(x+th) J(x).
- b) En déduire que la restriction de J à V est minimale en x si et seulement si

$$a(x) - b \in V^{\perp}. \tag{2}$$

- II.A.5) Ici n=3 et ω est l'élément de E en lequel J est minimale. Pour tout réel $k>J(\omega)$, on note \mathcal{E}_k la surface d'équation J(x)=k et on considère un plan vectoriel Π inclus dans E auquel ω n'appartient pas.
- a) Déterminer la nature de la surface \mathcal{E}_k et donner son centre.
- b) Montrer qu'il existe une unique valeur de k pour laquelle Π est tangent à la surface \mathcal{E}_k .
- c) Déterminer cette valeur de k si \mathcal{E}_k et Π sont d'équations respectives :
- $x^2 + 2y^2 + 3z^2 2x = k$ et x + y + z = 0 relativement à la base canonique de E.

II.B - Lagrangien augmenté

Soit r un réel positif et L_r est l'application de $E \times F$ dans \mathbb{R} définie par

$$L_r(x,p) = J(x) + \frac{r}{2}||f(x)||^2 + (p|f(x)).$$

On dit que (x,p) est un point selle de L_r si, pour tout couple (y,q) dans $E \times F$, $L_r(x,q) \leq L_r(x,p) \leq L_r(y,p)$ ou encore $(L_r(x,.))$ est maximale en p et $L_r(.,p)$ est minimale en x).

II.B.1) Montrer que les propriétés suivantes sont équivalentes :

- $L_r(x,.)$ admet un maximum,
- $x \in Ker(f)$,
- $L_r(x,.)$ est constante.

II.B.2) Montrer que:

 $L_r(.,p)$ est minimale en x si et seulement si $(a+rf^*\circ f)(x)+f^*(p)=b.$ (3)

II.B.3)

a) Montrer que (x, p) est un point selle de L_r si et seulement si

$$(x \in Ker(f) \quad \text{et} \quad a(x) + f^*(p) = b).$$
 (4)

- b) En déduire que la restriction de J à Ker(f) est minimale en x si et seulement si il existe un élément p de F tel que (x,p) est un point selle de L_r .
- II.B.4) Soit (x, p) un point selle de L_r .
- a) Montrer que (x, p') est encore un point selle de L_r si et seulement si p' p est un élément de $[Im(f)]^{\perp}$.
- b) Montrer que, parmi les points selle de L_r du type (x, p'), il en existe un et un seul pour lequel ||p'|| est minimale et le caractériser.

Partie III - Algorithmes d'Uzawa et d'Arrow-Hurwicz

On reprend les notations de la partie précédente et on note x l'élément de Ker(f) en lequel la restriction de J à Ker(f) est minimale. On note également p un élément de F tel que (x,p) est un point selle de L_r .

 ρ désigne la plus grande valeur propre de $a^{-1} \circ f^* \circ f$, p_0 est fixé dans F et $(\gamma_k)_k$ désigne une suite de réels à valeurs dans $[\alpha, \beta]$, où $0 < \alpha < \beta < 2(r + \frac{1}{\rho})$.

On considère la suite $(x_k)_k$ d'éléments de E et la suite $(p_k)_k$ d'éléments de F définies de la façon suivante :

$$\forall k \in \mathbb{N}, L_r(., p_k) \text{ est minimale en } x_k \text{ et } p_{k+1} = p_k + \gamma_k f(x_k).$$

III.A -

III.A.1) On pose, pour tout k de \mathbb{N} , $y_k = x_k - x$ et $r_k = p_k - p$.

a) Montrer que :

$$r_{k+1} = r_k + \gamma_k f(y_k)$$
 et $(a + rf^* \circ f)(y_k) + f^*(r_k) = 0$.

b) Montrer que:

$$||r_k||^2 - ||r_{k+1}||^2 = \gamma_k \left[2(a(y_k)|y_k) + (2r - \gamma_k)||f(y_k)||^2 \right] \ge \alpha \left[2(r + \frac{1}{\rho}) - \beta \right] ||f(y_k)||^2.$$

c) En déduire la convergence de la suite $(||r_k||)_k$ puis celle de la suite $(x_k)_k$ vers x.

III.B -

III.B.1) On pose, pour tout entier k, $p_k = \overline{p_k} + \overline{q_k}$ où $(\overline{p_k}, \overline{q_k}) \in Im(f) \times [Im(f)]^{\perp}$ et, de même, $p = \overline{p} + \overline{q}$ où $p = (\overline{p}, \overline{q}) \in Im(f) \times [Im(f)]^{\perp}$.

- a) Montrer que la suite $(\overline{q_k})_k$ est constante.
- b) Montrer que :

$$f^*(\overline{p_k} - \overline{p}) \xrightarrow[k \to \infty]{} 0.$$

c) En déduire que la suite $(p_k)_k$ converge vers $\overline{p} + \overline{q_0}$.

Désormais, on choisit $p_0 = 0$ et la suite $(\gamma_k)_k$ constante égale à γ . Dans ces conditions, la suite $((x_k, p_k))_k$ converge vers $(\overline{x}, \overline{p})$ point selle de L_r avec $||\overline{p}||$ minimale.

III.B.2) Montrer que :

$$\forall k \in \mathbb{N}, x_k = \left(\left[I_E - \gamma (a + rf^* \circ f)^{-1} \circ f^* \circ f \right]^k \circ (a + rf^* \circ f)^{-1} \right) (b).$$

III.B.3) On suppose que, relativement à la base canonique de E, la matrice de a est diagonale, soit $\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$ avec $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0$ et que celle de f, relativement aux bases canoniques de E et F, admet pour coefficient générique

$$f_{i,j} = \begin{cases} 1 & \text{si } i = j \text{ et } i \le m \\ 0 & \text{sinon} \end{cases}$$
.

a) Montrer que $I_E - \gamma (a + rf^* \circ f)^{-1} \circ f^* \circ f$ est un endomorphisme autoadjoint de E qui laisse stables Ker(f) et $[Ker(f)]^{\perp}$. On note ψ l'endomorphisme induit sur $[Ker(f)]^{\perp}$.

- b) Déterminer la norme de ψ subordonnée à ||.||; on la note ϵ .
- c) r est supposé fixé. Comment choisir γ pour que ϵ soit minimal? Quelle est alors sa valeur?
- d) Quelle est alors l'influence de r sur la rapidité de convergence de la suite $(x_k)_k$? III.B.4) On se place toujours dans les bases canoniques de E et F et on se donne les matrices A, B et F de a, b et f par leur coefficient générique :

$$a_{i,j} = \begin{cases} i & \text{si } i = j \\ 1 & \text{sinon} \end{cases}, \quad b_i = 1, \quad f_{i,j} = \begin{cases} 1 & \text{si } i + j = m + 1 \\ 0 & \text{sinon} \end{cases}.$$

- a) Montrer que a est effectivement un endomorphisme de E défini positif.
- b) Écrire une procédure effectuant lorsqu'on choisit $\gamma = 2r$, le calcul de X_k , matrice de x_k relativement à la base canonique de E (on supposera n, m et r définis numériquement mais on définira les matrices A, B et F).

• • • FIN • • •