PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-113452

(43) Date of publication of application: 21.04.2000

(51)Int.CI.

G11B 7/004 G11B 7/24 G11B 7/26 G11B 19/04

G11B 20/10

(21)Application number: 10-285516

(71)Applicant: SONY CORP

(22)Date of filing:

07.10.1998

(72)Inventor: KOBAYASHI SEIJI

(54) OPTICAL DISK, ITS MANUFACTURING DEVICE AND METHOD, AND REPRODUCING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an optical disk manufacturing device that prevents a pirated edition from being made regardless of the method either by sending in a reproducing signal directly into a recording device or by making a physical transfer.

SOLUTION: This device is designed to manufacture an optical disk in which recorded digital information can be read out by the irradiation of a laser beam. In this case, the device is provided with an encryption means 22, 23 for ciphering inputted digital information based on plural pieces of key information, means 2 for manufacturing an optical disk substrate 4 in which the ciphered digital information and the key information are recorded as change in the physical shape, means 41 for forming a reflection film on the optical disk substrate 4, and a means 7 for recording the key information on the optical disk substrate on which the reflection film is formed.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-113452 (P2000-113452A)

(43)公開日 平成12年4月21日(2000.4.21)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)	
G11B	7/004		G11B	7/00	6 2 6 Z	5 D O 2 9	
	7/24	5 2 2		7/24	5 2 2 B	5 D 0 4 4	
	7/26	5 2 1		7/26	5 2 1	5 D O 9 O	
	19/04	5 0 1		19/04	501H	5 D 1 2 1	
	20/10			20/10		Н	
			審查請求	未請求	請求項の数10 (OL (全13頁)	
(21)出願番号	}	特顧平10-285516	(71)出願人	0000021	85		
				ソニー	朱式会社		
(22)出願日		平成10年10月7日(1998.10.7)		東京都出	品川区北岛川6丁目	17番35号	
			(72)発明者	小林 計	成司		
				東京都是	品川区北品川6丁目 会社内	目7番35号 ソニ	
			(74)代理人			•	
					松隈 秀盛		
				·			
						最終頁に続く	

(54) 【発明の名称】 光ディスクの製造装置、光ディスクの製造方法、光ディスク及び光ディスクの再生方法

(57)【要約】

【課題】 これまでの海賊版防止の欠点を解決して、再生信号を直接記録装置に送り込む方法及び物理的な転写を行う方法のいずれの方法を用いても、海賊版を作成することが不可能となるような光ディスクの製造装置を得る。

【解決手段】 レーザ光線を照射することにより、記録されたディジタル情報が読み出されるようになされている光ディスクを製造する光ディスクの製造装置において、入力ディジタル情報を複数の鍵情報に基づいて暗号化する暗号化手段22、23と、その暗号化されたディジタル情報及び鍵情報を物理的な形状の変化として記録した光ディスク基板4を製造する光ディスク基板の製造手段2と、その光ディスク基板4上に反射膜を形成する反射膜形成手段41と、その反射膜が形成された光ディスク基板上に鍵情報を記録する鍵情報記録手段7とを有する。

【特許請求の範囲】

【請求項1】 レーザ光線を照射することにより、記録 されたディジタル情報が読み出されるようになされてい。 る光ディスクを製造する光ディスクの製造装置におい

入力ディジタル情報を複数の鍵情報に基づいて暗号化す る暗号化手段と、

前記暗号化されたディジタル情報及び前記鍵情報を物理 的な形状の変化として記録した光ディスク基板を製造す る光ディスク基板の製造手段と、

前記光ディスク基板上に反射膜を形成する反射膜形成手 段と、

前記反射膜が形成された光ディスク基板上に前記鍵情報 を記録する鍵情報記録手段とを有することを特徴とする 光ディスクの製造装置。

【請求項2】 請求項1に記載の光ディスクの製造装置 において

前記光ディスク基板の製造手段は、

前記暗号化されたディジタル情報及び前記鍵情報に従っ てレーザ光線を光ディスク原盤上に集光することによ り、前記光ディスク原盤を露光する露光手段と、

前記露光が行われた光ディスク原盤に化学的処理を施す ことにより物理的形状変化が施されたスタンパーを形成 するスタンパー形成手段と、

前記スタンパー上の物理的形状変化を転写して、複数の 光ディスク基板を生成する複製手段とで構成されること を特徴とする光ディスクの製造装置。

【請求項3】 請求項2に記載の光ディスクの製造装置 において、

前記露光手段は、

前記暗号化されたディジタル情報に従って前記レーザ光 線の強度を変調するレーザ光強度変調手段と、

前記鍵情報に基づいて前記レーザ光線の集光位置を変化 させるレーザ光集光位置変位手段とで構成されることを 特徴とする光ディスクの製造装置。

【請求項4】 請求項3に記載の光ディスクの製造装置 において、

前記レーザ光強度変調手段は、

前記暗号化されたディジタル情報に従って変調信号を作 成する変調手段と、

前記変調信号に従って前記レーザ光線をオン・オフする 光変調手段とで構成されることを特徴とする光ディスク の製造装置。

【請求項5】 請求項1に記載の光ディスクの製造装置 において、

前記鍵情報記録手段は、

レーザ光線を発生するレーザ光線発生手段と、

前記鍵情報に従って前記レーザ光線を変調する光強度変

位置に集光して照射する集光手段とで構成されることを 特徴とする光ディスクの製造装置。

【請求項6】 レーザ光線を照射することにより、記録 されたディジタル情報が読み出されるようになされてい る光ディスクを製造する光ディスクの製造方法におい て、

入力されたディジタル情報を複数の鍵情報に基づいて暗 号化する暗号化のステップと、

前記暗号化されたディジタル情報及び前記鏈情報を物理 的な形状の変化として記録した光ディスク基板を製造す 10 る光ディスク基板製造ステップと、

前記光ディスク基板上に反射膜を形成する反射膜形成ス テップと、

前記反射膜が形成された光ディスク基板上に前記鍵情報 を記録する鍵情報記録ステップとを有することを特徴と する光ディスクの製造方法。

【請求項7】 請求項6に記載の光ディスクの製造方法 において.

前記光ディスク基板生成ステップは、

前記暗号化されたディジタル情報及び前記鍵情報に従っ てレーザ光線を光ディスク原盤上に集光することにより 前記光ディスク原盤を露光する露光ステップと、

前記露光が行われた光ディスク原盤に化学的処理を施す ことにより物理的形状変化が施されたスタンパーを形成 するスタンパー形成ステップと、

前記スタンバー上の物理的形状変化を転写し、複数の光 ディスク基板を生成する複製ステップとで構成されると とを特徴とする光ディスクの製造方法。

【請求項8】 請求項6に記載の光ディスクの製造方法 30 おいて、

前記鍵情報記録ステップは、

レーザ光線を発生するレーザ光線発生ステップと、

前記レーザ光線を前記鍵情報に従って変調する変調ステ

前記光ディスク基板上に前記レーザ光線を集光して照射 するレーザ照射ステップとで構成されることを特徴とす る光ディスクの製造方法。

【請求項9】 物理的な形状の変化としてディジタル情 報が記録され、入射されたレーザ光線を反射膜により反 40 射することにより、前記ディジタル情報を再生するよう になされている光ディスクにおいて、

前記ディジタル情報は複数の鍵情報により暗号化されて おり

前記複数の鍵情報のうちの1つは、前記光ディスク上に 物理的な形状の変化として記録されており、

前記複数の鍵情報のうちの少なくとも一つは、前記光デ ィスク上の反射膜の反射率変化として記録されていると とを特徴とする光ディスク。

【請求項10】 暗号化されたディジタル情報が記録さ 前記変調されたレーザ光線を前記光ディスク上の所定の 50 れている光ディスクを再生する光ディスクの再生方法に 3

おいて、

前記光ディスクに物理的な形状の変化として記録されている第1の鍵情報を再生する第1の再生ステップと、前記光ディスクに反射率の変化として記録されている第2の鍵情報を再生する第2の再生ステップと、

前記光ディスクに記録されているディジタル情報を再生 し、前記第1及び第2の鍵情報を使って、前記再生され たディジタル情報の暗号化を解除する暗号解除ステップ とを有することを特徴とする光ディスクの再生方法。

【発明の詳細な説明】

[00.01]

【発明の属する技術分野】本発明は、光ディスクの製造 装置、光ディスクの製造方法、光ディスク及び光ディス クの再生方法に関する。

[0002]

【従来の技術】従来のコンパクトディスク(CD)には、オーディオ信号および TOC(TableOf Contents)等のユーザによって利用される信号が記録される領域より内側の部分に、IFPI(International Federation of the Phonographic Industry)コードが記録された領域が設けられていた。このコードは、海賊版防止等の目的でメーカー、製造所およびディスク番号等を示す符号が上述の領域に刻印されているものでる。

[0003]

【発明が解決しようとする課題】との方法によって、コンパクトディスクに記録されるメーカー、製造所およびディスク番号等を示す符号は、目視によって認識できるものである。このため、コンパクトディスク等を再生する再生装置では、これらの符号を読取ることができない。このため、これらの符号の内容を再生装置の動作制御に反映させるこどができないという間題があった。

【0004】このような欠点を解決する方法として、例えば、特願平9-67843号では、記録レーザの出力を変化させることにより、ディスク上に記録されたビットの幅を変化させて、ディスクに固有の符号を記録するようにしていた。

【0005】そこで、例えば第1の例として、ディスク上の記録信号を予め暗号化しておき、暗号化を解除するための鍵情報を、上述の特許出願に述べられている方法を使ってピット幅の変化として記録しておくことができる。再生装置においては、このようにして記録された鍵情報を検出し、検出された鍵情報に基づいて暗号を解くように構成する。海賊版のディスクであれば、鍵情報が記録されていないと考えられるので、暗号が解除されず、正常な再生が行えなくなる。従って、以上述べたように再生装置を構成すれば海賊版ディスクの価値が無くなり、海賊版の出現を実質的に防止することができるとものと考えられる。

【0006】ところで、海賊版を作成する方法としては、ディスクからの再生信号をそのまま記録装置に送り

込む方法と、ディスクの物理的な形状をそのまま転写す る方法の2種類があると言われている。上述の第1の例 として述べた方法で作成されたディスクに対して、再生 信号をそのまま記録装置に送り込む方法を用いて海賊版 を作成すると、ピットの「あるなし」として記録された 情報は海賊版ディスクに記録されるが、ピット幅の変化 として記録された鍵情報は海賊版ディスクに記録されな い。従って、第1の例として述べた方法を採用すること により、再生信号をそのまま記録装置に送り込む方法に よる海賊版ディスクの作成を防止することが可能とな る。しかし、この方法で作成されたディスクに対して物 理的な転写を行う方法で海賊版ディスクが作成される と、ピットの幅の変化として記録された鍵情報も、海賊 版ディスクに複写されてしまう。このため、第1の例の 方法では、物理的な転写により作成された海賊版ディス クの複製を防ぐことができないという問題点があった。 【0007】そこで、このような問題を解決する手段と して、第2の例が考えられる。この第2の例では、物理 的な形状によらず、反射率の変化として鍵情報を記録す る。つまり、光ディスクのリードアウトエリアなどの領 域にグルーブ(溝)を形成しておき、この部分の反射膜 に強力なレーザ光線を照射することにより反射特性を変 化させ、ピット列と同様な情報を記録することが可能と

【0008】このように反射率の変化として鍵情報を記録すれば、鍵情報は反射膜の反射特性の変化として記録されている。鍵情報は物理的な形状(ピット)として記録されていないので、物理的な転写による海賊版の生成方法を用いて作られた海賊版ディスクに鍵情報が複写されることはない。従って、第1の例の欠点を補い、物理的な転写による海賊版の作成を防止することが可能となって、第1の例の欠点を補い、物理

【0009】しかし、第2の例においては、今度は逆にディスクからの再生信号をそのまま記録装置に送り込む方法により海賊版が作成されると、リードアウトの領域に記録されている鍵情報が、そのまま複写されてしまうという欠点がある。

【0010】以上述べてきたように、これまで提案されている海賊阪防止の方法は、現在考えられる海賊版ディスクの作成方法のうち、どちらか一方だけによる海賊版の作成を防ぐことが可能なものであった。しかし、対応していない方法を使って海賊版の光ディスクが作成された場合には、全く無力となってしまうものである。

【0011】そとで、本発明の目的は、これまでの海賊
版防止の欠点を解決して、再生信号を直接記録装置に送
り込む方法及び物理的な転写を行う方法のいずれの方法
を用いても、海賊版を作成することが不可能となるよう
な光ディスクの製造装置及び製造方法並びにこのような
海賊版対策が施された光ディスク及びこのような海賊版
対策が施されている光ディスクを再生する再生方法を提

5

案するものである。

[0012]

【課題を解決するための手段】第1の本発明による光ディスクの製造装置は、レーザ光線を照射することにより、記録されたディジタル情報が読み出されるようになされている光ディスクを製造する光ディスクの製造装置において、入力ディジタル情報を複数の鍵情報に基づいて暗号化する暗号化手段と、その暗号化されたディジタル情報及び鍵情報を物理的な形状の変化として記録した光ディスク基板を製造する光ディスク基板の製造手段と、その光ディスク基板上に反射膜を形成する反射膜形成手段と、その反射膜が形成された光ディスク基板上に鍵情報を記録する鍵情報記録手段とを有するものである。

【0013】かかる第1の本発明によれば、暗号化手段が、入力ディジタル情報を複数の鍵情報に基づいて暗号化し、光ディスク基板の製造手段が、暗号化されたディジタル情報及び鍵情報を物理的な形状の変化として記録した光ディスク基板を製造し、反射膜形成手段が、その光ディスク基板上に反射膜を形成し、鍵情報記録手段が、その反射膜が形成された光ディスク基板上に鍵情報を記録する。

[0014]

[発明の実施の形態]第1の本発明は、レーザ光線を照射することにより、記録されたディジタル情報が読み出されるようになされている光ディスクを製造する光ディスクの製造装置において、入力ディジタル情報を複数の鍵情報に基づいて暗号化する暗号化手段と、暗号化されたディジタル情報及び鍵情報を物理的な形状の変化として記録した光ディスク基板を製造する光ディスク基板の 30製造手段と、光ディスク基板上に反射膜を形成する反射膜形成手段と、反射膜が形成された光ディスク基板上に鍵情報を記録する鍵情報記録手段とを有する光ディスクの製造装置である。

【0015】第2の本発明は、第1の本発明の光ディスクの製造装置において、光ディスク基板の製造手段は、暗号化されたディジタル情報及び鍵情報に従ってレーザ光線を光ディスク原盤上に集光することにより、光ディスク原盤を露光する露光手段と、露光が行われた光ディスク原盤に化学的処理を施すことにより物理的形状変化 40 が施されたスタンバーを形成するスタンバー形成手段と、スタンバー上の物理的形状変化を転写して、複数の光ディスク基板を生成する複製手段とで構成される光ディスクの製造装置である。

【0016】第3の本発明は、第2の本発明の光ディスクの製造装置において、露光手段は、暗号化されたディジタル情報に従ってレーザ光線の強度を変調するレーザ光強度変調手段と、鍵情報に基づいてレーザ光線の集光位置を変化させるレーザ光集光位置変位手段とで構成される光ディスクの製造装置である。

【0017】第4の本発明は、第3の本発明の光ディスクの製造装置において、レーザ光強度変調手段は、暗号化されたディジタル情報に従って変調信号を作成する変調手段と、変調信号に従ってレーザ光線をオン・オフする光変調手段とで構成される光ディスクの製造装置である。

【0018】第5の本発明は、第1の本発明の光ディスクの製造装置において、鍵情報記録手段は、レーザ光線を発生するレーザ光線発生手段と、鍵情報に従ってレーザ光線を変調する光強度変調手段と、変調されたレーザ光線を光ディスク上の所定の位置に集光して照射する集光手段とで構成される光ディスクの製造装置である。

【0019】第6の本発明は、レーザ光線を照射することにより、記録されたディジタル情報が読み出されるようになされている光ディスクを製造する光ディスクの製造方法において、入力されたディジタル情報を複数の鍵情報に基づいて暗号化する暗号化のステップと、暗号化されたディジタル情報及び鍵情報を物理的な形状の変化として記録した光ディスク基板を製造する光ディスク基を製造ステップと、光ディスク基板上に反射膜を形成する反射膜形成ステップと、反射膜が形成された光ディスク基板上に鍵情報を記録する鍵情報記録ステップとを有する光ディスクの製造方法である。

【0020】第7の本発明は、第6の本発明の光ディスクの製造方法において、光ディスク基板生成ステップは、暗号化されたディジタル情報及び鍵情報に従ってレーザ光線を光ディスク原盤上に集光することにより光ディスク原盤を露光する露光ステップと、露光が行われた光ディスク原盤に化学的処理を施すことにより物理的形状変化が施されたスタンバーを形成するスタンバー形成ステップと、スタンバー上の物理的形状変化を転写し、複数の光ディスク基板を生成する複製ステップとで構成される光ディスクの製造方法である。

【0021】第8の本発明は、第6の本発明の光ディスクの製造方法おいて、鍵情報記録ステップは、レーザ光線を発生するレーザ光線発生ステップと、レーザ光線を鍵情報に従って変調する変調ステップと、光ディスク基板上にレーザ光線を集光して照射するレーザ照射ステップとで構成される光ディスクの製造方法である。

【0022】第9の本発明は、物理的な形状の変化としてディジタル情報が記録され、入射されたレーザ光線を反射膜により反射することにより、ディジタル情報を再生すうようになされている光ディスクにおいて、ディジタル情報は複数の鍵情報により暗号化されており、複数の鍵情報のうちの1つは、光ディスク上に物理的な形状の変化として記録されており、複数の鍵情報のうちの少なくとも一つは、光ディスク上の反射膜の反射率変化として記録されている光ディスクである。

【0023】第10の本発明は、暗号化されたディジタ 50 ル情報が記録されている光ディスクを再生する光ディス

30

40

クの再生方法において、光ディスクに物理的な形状の変 化として記録されている第1の鍵情報を再生する第1の 再生ステップと、光ディスクに反射率の変化として記録 されている第2の鍵情報を再生する第2の再生ステップ と、光ディスクに記録されているディジタル情報を再生 し、第1及び第2の鍵情報を使って、再生されたディジ タル情報の暗号化を解除する暗号解除ステップとを有す る光ディスクの再生方法である。

[0024]

【発明の実施の形態の具体例】以下に、図面を参照し て、本発明の実施の形態の具体例の光ディスクの製造装 置、光ディスクの製造方法及び光ディスクを詳細に説明 する。先ず、図1を参照して、具体例の光ディスクの製 造装置及び製造方法を説明する。この具体例の光ディス クの製造装置は、ことではコンパクトディスク(CD) の製造装置の場合である。図1において、ディジタルテ ープレコーダ21によって、磁気テープから再生された デジタルオーディオ信号SAが、第1の暗号化回路22 に供給されて、第1の鍵情報発生回路24よりの第1の 鍵情報信号KY1を用いて暗号化される。その第1の暗 20 号化回路22よりの暗号化ディジタルオーディオ信号S Bが、第2の暗号化回路23に供給されて、第2の鍵情 報発生回路25よりの第2の鍵情報信号KY2を用いて 暗号化される。その第2の暗号化回路23から得られた 2重暗号化ディジタルオーディオ信号SC及び第2の鍵 情報発生回路25よりの第2の鍵情報信号KY2が、デ ィスク基板の製造装置2に供給されて、2重暗号化ディ ジタルオーディ信号SC及び第2の鍵情報信号KY2が 凸凹のピットとして記録されたディスク基板4を作成す る.

【0025】ディスク基板の製造装置2のカッティング マシーン3では、第2の暗号化回路23よりの2重暗号 化オーディオ信号SC及び第2の鍵情報発生回路23よ りの第2の鍵情報信号にKY2によって、レーザ光線を 変調し、その変調されたレーザ光線によって、ディスク 原盤26を露光する。

【0026】露光が行われたディスク原盤26は、現像 ・メッキ装置27によって現像処理とメッキ処理が施さ れ、これによってスタンパー28が得られる。更に、こ のスタンパー28が、射出成形機29に装填され、射出 成形機29によって、ポリカーボネイトなどのプラステ ィック材料で形成されたディスク基板4が作成される。 このようにして作成されたディスク基板4の上には、微 少な凸凹(ピット)として、2重暗号化ディジタルオー ディオ信号SC及び鍵情報信号KY2が記録されてい

【0027】次に、反射膜形成装置41によって、ディ スク基板4に反射膜が形成されて半完成ディスク5が得 られる。との半完成ディスク5は、凸凹のピットとして 2重暗号化ディジタルオーディオ信号SC及び第2の鍵 50 シーン3は、上述したように2重暗号化ディジタルオー

情報発生回路25からの第2の鍵情報信号KY2が記録 され、ピットの反対側にはレーザ光線を反射する反射膜 が形成されている。しかし、半完成ディスク5には、第 1の鍵情報発生回路24において生成された第1の鍵情 報信号KY1が記録されていない。従って半完成ディス ク5を光ディスクプレイヤーに挿入しても、そのままで は第1の暗号化回路22による暗号化を解除することが できず、音楽を再生することが不可能である。

【0028】最後に半完成ディスク5は、CD-R記録 10 装置7に挿入される。CD-R記録装置7では、第1の 鍵情報発生回路24からの第1の鍵情報信号KY1がコ ンピュータ6に供給され、そのコンピュータ6からの指 示を受けて、ユーザデータの記録されていない領域(リ ードアウト領域) にアクセスを行い、第1の鍵情報発生 回路24からの第1の鍵情報信号KY1を追加記録す る。ととで、CD-R記録装置7により追加記録される 情報信号は、反射膜形成装置41で形成された反射膜の 反射率変化として記録される。

【0029】以上のようにして完成されたコンパクトデ ィスク(完成ディスク)8は、ディジタルテープレコー ダ21から得られた再生ディジタルオーディオ信号SA の他に、第2の鍵情報発生回路25からの第2の鍵情報 信号KY2及び第1の鍵情報発生回路24からの第1の 鍵情報KY1が記録されている。従って、後述する光デ ィスク再生装置では、コンパクトディスク8の音楽等を 再生する場合には、コンパクトディスク8から第1の鍵 情報信号KY1及び第2の鍵情報信号KY2の情報を得 ることが可能であり、2重の暗号化を解除することがで きるので、従来のコンパクトディスクと同様に音楽を楽 しむことが可能となる。

【0030】第1の暗号化回路22は第1の鍵情報発生 回路24で発生された第1の鍵情報信号KY1を用い て、ディジタルオーディオ信号SAに対してDES符号 による暗号化を行い、暗号化ディジタルオーディオ信号 SBとして出力する。尚、DES符号とは、(Data Enc ryption Standard) の略であり、広く一般的に使われて いる暗号化の手法である。また第2の暗号化回路23も 同様に、第2の鍵情報発生回路25で発生された第2の 鍵情報信号KY2を用いて、暗号化ディジタルオーディ オ信号SBをDES符号により暗号化し2重暗号化ディ ジタルオーディオ信号SCとして出力する。

【0031】第1の鍵情報発生回路24及び第2の鍵情 報発生回路25は、毎回新しいディスクをカッティング する度に、異なる第1の鍵情報信号KY1及び第2の鍵 情報信号KY2を出力する。このような鍵情報信号の発 生回路は、例えば、LFSR(Linear Feedback Shift R eqister)などにより構成されることが知られている。

【0032】次に、図2を参照して、図1におけるカッ ティングマシーン3の構成を説明する。カッティングマ ディオ信号SC及び第2の鍵情報信号KY2をディスク 原盤26に露光する装置である。変調回路31は、2重 暗号化ディジタルオーディオ信号SCにコンパクトデイスクについて規定されたデータ処理を行うことにより、 EFM信号SDを作成して光変調器35に送り込む。即 ち、2重に暗号化が行われたディジタルオーディオ信号 SCに誤り訂正符号を付加した後にインターリーブ処理 し、さらにEFM変調することによってEFM信号SD が生成される。また変調回路31は、図示しないサブコードジェネレータから供給されるTOC (Table Of Con 10 tents)情報等を含むサブコードデータを、EFM信号SDのサブコード領域に挿入する。

9

【0033】変調回路32は、第2の鍵情報信号KY2 にFM変調を施し、アナログ波形の鍵情報変調信号KY Dとして光変調器34に送り込む。このようなFM変調は、光ディスクでは例えばMD(ミニディスク)のアドレス情報を記録するためにも用いられているのと同様の原理であり、詳細な説明は省略する。FM変調では、例えば鍵情報変調信号KYDから鍵情報KY2が復元できるように、クロック信号などが埋め込まれている。

【0034】また、図示しないシステムコントローラにより、変調回路32はカッティングマシーン3がリードインエリアに記録を行っている期間に限り、動作するように設定されている。従ってカッティングマシーン3がデータエリア及びリードアウトエリアをカッティング中の場合には、鍵情報変調信号KYDは一定電圧となり、光変調器34による信号の変調は行われない。

[0035] デイスク原盤26はスピンドルモータ38 によって回転駆動される。スピンドルモータ38は、スピンドルサーボ回路39によって制御される。実際には、スピンドルモータ38の底部に設けられる図示しないFG信号発生器によって、所定の回転角毎に信号レベルが立上がるFG信号が出力される。スピンドルサーボ回路39は、とのFG信号の周波数が所定周波数になるようにスピンドルモータ38を駆動する。このようにして、ディスク原盤26が所定の回転数で回転駆動される

【0036】記録用レーザ光源33は、レーザビームし1を光変調器34及び光変調器35に対して射出する。この記録用レーザ光源33は、例えばガスレーザ等によって構成される。光変調器34及び光変調器35は、電気音響光学素子等によって構成されている。光変調器34は、記録用レーザー光源33から入射するレーザビームし1の進行方向を変調回路32から供給される鍵情報変調信号KYDに従って変化させる。即ち、光変調器34は、鍵情報変調信号KYDのレベルに従って、進行方向の角度が微妙に変化するようなレーザビームし2として出力する。このようなレーザ光線の進行角度の変調はAOD(Acoustic Optical Deflector)として一般に使われている。

【0037】とのようにして、進行方向が鍵情報変調信号KYDによって変化されたレーザビームL2は、光変調器35に入射して、変調回路31から供給されるEFM(Eight to Fourteen Modulation)信号SDに従って、光変調器35によりオン/オフ制御され、レーザビームL3として射出される。

【0038】ミラー36は、レーザービームL3の光路を、例えば、90°折り曲げて、ディスク原盤26に向けて射出する。対物レンズ37は、このミラー36の反射光をディスク原盤26の記録面上に集光する。ミラー36によって反射されることにより、レーザビームL3の進行方向の変化(鍵情報変調信号KYDによる)は、集光されたスポットの位置ずれとしてディスク上に記録される。

【0039】また、ミラー36および対物レンズ37は、図示しないスレッド機構により、ディスク原盤26の回転に同期して半径方向に順次移動するようになされている。このようにして、レーザービームL3の集光位置をデイスク原盤2の例えば内周から外周方向に順次変移させることにより、ディスク原盤26上にうず巻き状にトラックを形成することができる。そして、このトラック上にEFM信号SDに応じてピットが順次形成される。また、先に述べたように光変調器34によりレーザビームL2及びL3の進行方向が変調されるので、リードインエリアに形成されたピット列の中心位置は、鍵情報変調信号KYDに従ってトラックに対して横方向にずらしが与えられている。

【0040】2重暗号化ディジタルオーディオ信号SC 及び第2の鍵情報信号KY2によって変調されたレーザ ビームし3によって、ディスク原盤26が露光される。 【0041】露光されたディスク原盤26は、図1にお いて説明したように、現像及びメッキの処理が行われ、 スタンパー28が作成される。さらにこのスタンパー2 8は、射出成型機29に装填され、射出成型機29によ りポリカーボネイトなどのプラスティック材料で形成さ れたディスク基板4が作成される。ディスク基板4には 反射膜形成装置41により反射膜が形成されて半完成デ ィスク5が得られる。最後に半完成ディスク5は、CD -R記録装置7に挿入される。CD-R記録装置7で は、コンピュータ6からの指示を受けて、ユーザデータ の記録されていない領域(リードアウト領域)にアクセ スを行い、第1の鍵情報発生回路24からの第1の鍵情 報信号KY1を追加記録する。ととで、CD-R記録装 置7により追加記録される情報は、反射膜形成機41で 形成された反射膜の反射率変化として記録される。 【0042】CD-R記録装置7の構成は、リードアウ ト領域にまでアクセスできるように改造が施されている

50 【0043】以上述べたようにして完成したコンパクト

ことを除き、市販されているものと基本構造は同じであ

ディスク(完成ディスク)8を図3Aに模式的に示す。 図3Aに示すように、コンパクトディスク8は3つの領 域に分割されている。即ち、一番内周側はリードインエ リア(リードイン)LIであり、中間部分はデータエリ アDAであり、また最も外側の部分はリードアウトエリ ア (リードアウト) LOとされている。

【0044】リードインエリアLIには、コンパクトデ ィスク8をアクセスするためのTOC情報及び第2の鍵 情報信号KY2が記録されている。従って、リードイン エリアの様子を顕微鏡などで観察すると、例えば図3 B 10 に示すように、TOC情報がピットとして記録されてい ることを観察することができる。また、ビットの中心位 置はトラック中心から微妙にずれていて、このずれによ って第2の鍵情報信号KY2が記録されている。

【0045】データエリアDAは、2重暗号化ディジタ ルオーディオ信号SCが記録された領域である。との部 分を顕微鏡などで観察すると、例えば図30に示すよう に、2重暗号化ディジタルオーディオ信号SC情報がピ ットとして記録されていることが分かる。データエリア DAには第2の鍵情報信号KY2の記録が行われないの 20 で、ピットの中心位置は変動していない。

【0046】リードアウトエリアLOには、CD-R記 録装置7によって鍵情報KY1が記録されている。従っ てこの部分を顕微鏡などで観察すると、例えば図3Dに 示すように、第1の鍵情報信号KY1が反射率の変化と して記録されている。物理的な変化(凸凹など)を使っ て情報は記録されていないことが判る。

【0047】例えば、海賊版作成の業者が、このように して作成されたコンパクトディスク8を入手し、コンパ クトディスク8から得られた再生信号を再びカッティン グマシーンに送り込むことにより海賊版を作成した場合 に関して考える。との結果、リードインLIに記録され たTOCの情報、データエリアの情報、そしてリードア ウトの情報は全てカッティングマシーンに送り込まれ、 海賊版ディスクにも記録される。しかし、リードインし Iにピットの位置ずれとして記録された第2の鍵情報信 号KY2は、再生信号に現れないので海賊版ディスクに 記録されることが無い。従って、このようにして作成さ れた海賊版ディスクでは、第2の鍵情報信号KY2によ る暗号化を解くことできないので、音楽信号等を再生す ることが不可能となる。従って海賊版ディスクの価値が 無くなり、このような方法を用いた海賊版ディスクの作 成を防止することが可能となる。

【0048】次に、海賊版業者が、コンパクトディスク 8を入手して物理的にピットを転写する方法により海賊 版を作成した場合について考える。このような場合に は、リードインにピットの位置ずれとして記録した第2 の鍵情報信号KY2も、海賊版ディスクにそのまま転写 されてしまうと考えられる。しかし、リードアウトLO に記録された第1の鍵情報信号KY1は、反射率の変化 50 解除する。第1の暗号処理回路57により第2の暗号化

により記録されていて、物理的な凸凹を生じていない。 従って、第1の鍵情報信号KY1は海賊版ディスクに転 写されることがない。この結果、作成された海賊版ディ スクでは、第1の鍵情報信号KY1による暗号化を解く ことできないので、再生することが不可能となる。従っ て、海賊版ディスクの価値が無くなり、このような方法 を用いた海賊版ディスクの作成を防止することが可能と なる。

【0049】以上述べてきたように、本発明の実施の形 態の具体例によれば、物理的に転写する方法及び再生信 号を直接カッティングマシーンに送り込む方法の両方に よる海賊版作成を防ぐことが可能となる。

【0050】次に図4を参照して、以上説明したように して作成されたコンパクトディスク8を再生する再生装 置50について説明する。

【0051】図4に示す再生装置50は、システムコン トローラ64により制御されている。コンパクトディス ク8は、スピンドルモータ51によって回転させられ る。スピンドルモータ51および光ピツクアップ53 は、サーボ回路52によって所定の動作をするように制 御される。光ピツクアツブ53が生成する再生RF信号 は2値化回路54に供給される。また光ピックアップ5 3が供給するプッシュプル信号PPはA/D変換器61 に供給される。

【0052】2値化回路54は、供給される再生RF信 号を所定のスライスレベルと比較することにより2値化 を行って、2値化信号を生成する。この2値化信号はE FM復調回路55に供給される。EFM復調回路55 は、2値化信号からEFMの復調を行って8ビット単位 の信号を生成し、生成した8ビット単位の信号を誤り訂 正回路(EСС)回路56に供給する。

【0053】ECC回路56は、記録時の符号化におい て付加されたECC(Error Correcting Code) に基づ いて、EFM復調回路55の出力中の誤りを訂正する。 このような誤りは、例えばコンパクトディスク8上のデ ィフェクト等に起因して生じるものである。

【0054】一方、A/D変換器61ではブッシュブル 信号PPをディジタル化(量子化)して、ディジタル再 生信号DRFとしてDSP62に供給する。ブッシュブ ル信号PPは、ピットのトラック中心からの位置ずれに 比例した信号となっているので、第2の鍵情報信号KY 2として記録された情報を含有している。 DSP62 は、ディジタル信号処理プロセッサーで、内部に記録さ れているプログラムに従ってディジタル再生信号DRF に対して信号処理を行ない、変調回路32で施されたF M変調を復調して第2の鍵情報信号KY2を求める。

【0055】とのようにして求められた第2の鍵情報信 号KY2を使って、第1の暗号処理回路57はECC回 路156からの出力信号に施されている暗号化の処理を (図1の第2の暗号化回路23による)が解除された情報は、引き続き第2の暗号処理回路58に供給される。 同時に、ECC回路156からの信号は、メモリ63にも供給される。システムコントローラ64は、第2の暗号処理回路57からの出力に第1の鍵情報信号KY1が含まれるときは、第1の鍵情報信号KY1をメモリ63に蓄えるようにメモリ63に指示する。この結果、メモリ63に蓄えられている第1の鍵情報信号KY1が常に第2の暗号処理回路58に供給されるようになり、第2の暗号処理回路58は第1の暗号化(図1の第1の暗号10化回路22による)を解除することができる。

13

【0056】以上述べたように暗号化を解く処理が行われることにより、第2の暗号処理回路58の出力側には、ディジタルオーディオ信号SAが復元される。このようにして得られたディジタルオーディオ信号SAは、D/A変換器59によりアナログオーディオ信号に変換されて出力端子60に出力され、スピーカなどに供給されて放音される。

【0057】ところで、以上に説明したような暗号化解除の動作は、システムコントローラ64によって行われ 20る。システムコントローラ64は、新しい光ディスク8が挿入される毎に、図5のフローチャートに示すような定まった動作を再生装置150に行わせることにより、以上に述べた暗号化解除の処理を確実に実現するように構成されている。

【0058】図5に示すシステムコントローラ64の処理では、先ずステップST-1として、システムコントローラ64はサーボ回路52を含むシステム各部に指示を与えて、光ディスク8のリードインエリアLIに光ピックアップ53から出射される光線の焦点位置を移動す 30 るように指示を出す。次に、ステップST-2として、光ピックアップ53から供給されるブッシュプル信号PPを、A/D変換器61により量子化し、DSP62によって処理することにより、第2の鍵情報信号KY2として記録された情報を復号する。次に、ステップST-3として、DSP62の出力端子に復号した第2の鍵情報信号KY2を出力させ、その値を保持させる。

【0059】システムコントローラ64は、引き続きステップST-4において、光ピックアップ53から出射される光線の焦点位置をリードアウトエリアLOに移動40するように指示を出す。次に、ステップST-5において、読み出された第1の鍵情報信号KY1をメモリ63に保持するように指示する。以上述べたようにして、第1の鍵情報KY1及び第2の鍵情報KY2の両方が得られたので、ステップステップST-6において、システムコントローラ64はコンパクトディスク8を再生し、放音するように全体を制御する。

【0060】以上述べたようにシステムコントローラ6 板上に鍵情報を記録する鍵情報記録手段とを有するの4が全体を制御することにより、リードインエリアLI で、以下に述べるような効果の得られる光ディスクの製とリードアウトエリアLOに記録された鍵情報を読み出 50 造装置を得ることができる。即ち、この第1~第5の本

して、正しい暗号化の解除が行われるようになってから 放音がなされるようになる。この結果、暗号化の解除が 行われないままで、大きな雑音がスピーカなどから放音 されてしまう事態を防ぐことが可能となる。

【0061】コンパクトディスク8が正規の(海賊版でない)ディスクであった場合には、第1及び第2の鍵情報信号KY1及びKY2の両方が正しく復号される。この結果、第1及び第2の暗号処理回路57、58は暗号解読に必要な情報を得ることができる。従って、第2の暗号処理回路58の出力をD/A変換器59に送ることにより、D/A変換器59の出力は、例えば、音楽信号となって、コンパクトディスク8に記録された音楽を楽しむことが可能となる。

【0062】例えば本発明の光ディスクの製造装置によって得られたディスクを一度再生し、得られた再生信号を再びカッティングマシーンに送り込む方法により作成された海賊版ディスクにおいては、ピットの位置変位として記録されていた第2の鍵情報信号KY2が欠落している。従って海賊版ディスクを、図4に示すよう光ディスク再生装置で再生しても、このような海賊版ディスクからはユーザが音楽を楽しむことは出来ない。また、先に説明したように、ディスクの物理的な形状を転写した方法による海賊版を作成した場合にも、同様にユーザが音楽を楽しむことができない。

【0063】以上のように、この具体例の光ディスク再生装置によれば、いずれの方法を用いた場合であっても海賊版ディスクの価値を著しく減退させることが可能であり、この結果として海賊版ディスクの普及を妨げることが可能となる。

【0064】なお上述の実施の形態の具体例においては、第2の鍵情報信号KY2をピットの位置変位として記録した場合を説明したが、、本発明はこれに限らず、例えばピット幅の微妙な変化として第2の鍵情報信号KY2を記録することも可能である。この場合には光ディスク再生装置において、プッシュブル信号の検出光学系が必用無くなり、光ディスク再生装置の構造がシンプルになり安価となるという効果が期待される。

[0065]

【発明の効果】第1~第5の本発明によれば、レーザ光線を照射することにより、記録されたディジタル情報が読み出されるようになされている光ディスクを製造する光ディスクの製造装置において、入力ディジタル情報を複数の鍵情報に基づいて暗号化する暗号化手段と、暗号化されたディジタル情報及び鍵情報を物理的な形状の変化として記録した光ディスク基板を製造する光ディスク基板の製造手段と、光ディスク基板上に反射膜を形成する反射膜形成手段と、反射膜が形成された光ディスク基板上に鍵情報を記録する鍵情報記録手段とを有するので、以下に述べるような効果の得られる光ディスクの製造装置を得ることができる。即ち、この第1~第5の本

発明によれば、物理的な形状変化と、反射膜の反射率変化と、2通りの異なる方法により鍵情報が記録されるので、本発明の製造装置によって製造された光ディスクは、物理的な転写によっても海賊版ディスクを作成することはできず、又、本発明の製造装置によって製造された光ディスクから再生した再生信号を直接カッティングマシーンなどに送り込む方法によっても、海賊版ディスクを作成することはできない。従って、第1~第5の本発明の光ディスクの製造装置によれば、正当な著作権者の利益を守ることの可能な光ディスクを製造することが10できる。

【0066】第6~第8の本発明によれば、レーザ光線 を照射することにより、記録されたディジタル情報が読 み出されるようになされている光ディスクを製造する光 ディスクの製造方法において、入力されたディジタル情 報を複数の鍵情報に基づいて暗号化する暗号化のステッ プと、暗号化されたディジタル情報及び鍵情報を物理的 な形状の変化として記録した光ディスク基板を製造する 光ディスク基板製造ステップと、光ディスク基板上に反 射膜を形成する反射膜形成ステップと、反射膜が形成さ れた光ディスク基板上に鍵情報を記録する鍵情報記録ス テップとを有するので、以下に述べるような効果の得ら れる光ディスクの製造方法を得ることができる。即ち、 第6~第8の本発明によれば、本発明の光ディスクの製 造方法によって製造された光ディスクは、物理的な転写 によっても海賊版ディスクを作成することができず、 又、本発明の光ディスクの製造方法によって製造された 光ディスクから再生した再生信号を直接カッティングマ シーンなどに送り込む方法によっても、海賊版ディスク を作成することができない。従って、第6~第8の本発 明の光ディスクの製造方法によれば、正当な著作権者の 利益を守ることの可能な光ディスクを製造することがで きる。

【0067】第9の本発明によれば、物理的な形状の変化としてディジタル情報が記録され、入射されたレーザ光線を反射膜により反射することにより、ディジタル情報を再生するようになされている光ディスクにおいて、ディジタル情報は複数の鍵情報により暗号化されており、複数の鍵情報のうちの1つは、光ディスク上に物理的な形状の変化として記録されており、複数の鍵情報のうちの少なくとも一つは、光ディスク上の反射膜の反射率変化として記録されているので、以下に述べるような効果の得られる光ディスクを得ることができる。即ち、第9の本発明によれば、光ディスクに記録されたディジタル情報は複数の鍵情報により暗号化され、複数の鍵情報のうちの1つは、光ディスク上に物理的な形状の変化として記録され、且つ、複数の鍵情報のうちの少なくと

も一つは、光ディスク上の反射膜の反射率変化として記録されているので、物理的な転写によっても海賊版ディスクを作成することはできず、又、本発明の光ディスクから再生した再生信号を直接カッティングマシーンなどに送り込む方法によっても、海賊版ディスクを作成することはできない。従って、本発明の光ディスクによれば、正当な著作権者の利益を守ることが可能となる。

【0068】第10の本発明によれば、物理的な形状の変化としてディジタル情報が記録され、入射されたレーザ光線を反射膜により反射することにより、ディジタル情報を読み出すようになされている光ディスクにおいて、ディジタル情報は複数の鍵情報により暗号化されており、複数の鍵情報のうちの1つは、光ディスク上に物理的な形状の変化として記録されており、複数の鍵情報のうちの少なくとも一つは、光ディスク上の反射膜の反射率変化として記録されているので、以下に述べるような効果の得られる光ディスクの再生方法を得ることができる。即ち、第10の本発明によれば、暗号化による海賊版対策が施されたディスクであっても、暗号を正しく解除して、その記録情報を再生することのできる光ディスクの再生方法を得ることができる。

【図面の簡単な説明】

【図1】本発明の実施の形態の具体例の光ディスクの製造装置を示すブロック線図である。

【図2】図1の光ディスクの製造装置のカッティングマシーンの構成を示すブロック線図である。

【図3】本発明の実施の形態の具体例の光ディスクを示す線図で、Aは光ディスクの斜視図、Bはリードインエリアを示す線図、Cはデータエリアを示す線図、Dはリードアウトエリアを示す線図である。

[図4]本発明の実施の形態の具体例の光ディスクの再生装置を示すブロック線図である。

【図5】図4の光ディスクの再生装置のシステムコントローラの動作を示すフローチャートである。

【符号の説明】

1…光ディスクの製造装置、2…ディスク基板の製造装置、4…ディスク基板、5…半完成ディスク、6…コンピュータ、7…CD-R記録装置、8…コンパクトディスク、8…完成ディスク、21…ディジタルテープレコーダ、22、23…暗号化回路、24,25…鍵情報発生回路、50…光ディスク再生装置、51…スピンドルモータ、52…サーボ回路、53…光学ピックアップ、54…2値化回路、55…EFM復調回路、56…誤り訂正回路、57,58…暗号処理回路、59…D/A変換器、61…A/D変換器、62…DSP、63…メモリ、64…システムコントローラ

【図1】

具体例の光ディスクの製造装置

【図4】

具体例の光ディスク再生装置

システムコントローラの動作を示すフローチャート

フロントページの続き