

Algorithmics

Divide and Conquer

Vicente García Díaz – garciavicente@uniovi.es

University of Oviedo, 2016

Table of Contents

Divide and Conquer

- 1. Basic concepts
- 2. Examples of use
 - 1. Factorial of a number
 - 2. Fibonacci series
 - 3. Sum of elements
 - 4. Sequential search
 - 5. Binary search
 - 6. Quicksort
 - 7. Mergesort
 - 8. The majoritarian element
 - 9. Mode of a set of numbers
 - 10. Median of a set of numbers
 - 11. Maximun sum of subsequences of elements
 - 12. The Tromino puzzle

Basic concepts

Process to obtain solutions

1. Decompose a problem into $\mathbf n$ problems smaller than the original

- 2. Solve each of the subproblems:
 - □ General case → recursively
 - □ Base case → directly
- 3. Combine the solutions to obtain the solution to the original problem

What do we need?

- 1. Find a recursive scheme that will reduce the original problem to the base case
- 2. Have a simple algorithm, capable of solving the base cases, which is efficient in small cases
- 3. Provide a method to combine the results of the subproblems

Pseudocode

```
SolutionType divideAndConquer(int n) {
  ProblemType[] subproblems;
  SolutionType[] subsolutions;
  if (n is sufficiently small)
    return Solve trivial case;
 else {
      subproblems = decompose(n);
      for (int i=0; i< subproblems.length; i++)</pre>
        subsolutions[i] = divideAndConquer(newSize);
      return combine (subsolutions);
```

Worth noting...

- The number of a subproblems must be small
 - If $a = 1 \rightarrow$ The process is called reduction

- The recursive design is more clear and elegant
 - You can do the same using an iterative loop (especially with reduction)

Divide and conquer by division

- Parameters
 - □ a → number of subproblems
 - □ b → all the subproblems have a size (n / b), being b a constant and n the size of the original problem
 - □ k → assumes that the complexity of the overall scheme excluding recursive calls, i.e. considering only the operations of decomposition and composition is the polynomial type: O(n^k)

Division scheme analysis

Execution time

□
$$T(n) = a * T(n/b) + cn^{k}$$
 if $n > basic case$
□ $T(n) = c * n^{k}$ if $n = basic case$

Complexity

```
    O(n<sup>k</sup>) if a < b<sup>k</sup>
    O(n<sup>k</sup> * log n) if a = b<sup>k</sup>
    O(n<sup>log</sup>b<sup>a</sup>) if a > b<sup>k</sup>
```

Basic concepts

Divide and conquer by subtraction

- Parameters
 - □ a → number of subproblems
 - □ b → all the subproblems have a size (n b),
 being b a constant and n the size of the original problem
 - □ k → assumes that the complexity of the overall scheme excluding recursive calls, i.e. considering only the operations of decomposition and composition is the polynomial type: O(n^k)

Basic concepts

Subtraction scheme analysis

Execution time

□
$$T(n) = a * T(n-b) + cn^{k}$$
 if $n > basic case$
□ $T(n) = c * n^{k}$ if $n = basic case$

Complexity

```
    O(n<sup>k</sup>) if a < 1 (never happens)</li>
    O(n<sup>k+1</sup>) if a = 1
    O(a<sup>n div b</sup>) if a > 1
```


Factorial of a number

Goal

Calculate the factorial of a number

Analysis

- It is divide and conquer by subtraction
 - $a = 1 \rightarrow number of subproblems$
 - b = $1 \rightarrow \text{size of each subproblem}$
 - $k = 0 \rightarrow \text{decomposition into subproblems costs } O(1) \rightarrow O(n^0)$
- □ a == 1
 - Complexity \rightarrow O(n^{k+1}) \rightarrow O(n¹) \rightarrow O(n)

Fibonacci series

Goal

Calculate the Fibonacci function (0,1,1,2,3,5,8,13,21,34,55,89,...)

Scheme

- Looks like a scheme by subtraction
 - $a = 2 \rightarrow number of subproblems$
 - $k = 0 \rightarrow \text{decomposition into subproblems costs } O(1) \rightarrow O(n^0)$
 - b = ??? → It is different in the two subproblems!

Analysis

- If the recursive part would be f = f(n-1) + f(n-1)
 - a = 2, b = 1, k = 0
 - a > 1 ---- (2 > 1)
 - Complexity \rightarrow O($a^{n \text{ div b}}$) \rightarrow O(2^{n})
- If the recursive part would be f = f(n-2) + f(n-2)
 - a = 2, b = 2, k = 0
 - a > 1 ---- (2 > 1)
 - Complexity \rightarrow O($a^{n \text{ div } b}$) \rightarrow O($2^{n \text{ div } 2}$)
- We can conclude:
 - O(2^{n div 2}) <= O(Fibonacci) <= O(2ⁿ)

Sum of elements

 \sum

• The idea is to sum all the elements of a vector

Sequential search

Sequential search

The idea is to sequentially find an element (the position) in a vector

Binary search

Binary search

- The idea is to find an element (the position) in a vector using a binary search
 - The list should be sorted beforehand
 - We divide the list into two parts in each iteration

It does not exist

The Quicksort algorithm

Idea of the algorithm

REPEAT UNTIL ALL THE ELEMENTS ARE SORTED → O(log n) ...O(n)

CHOOSE A PIVOT → Using median-of-3 is O(1) First part

PARTITIONING THE PIVOT THROUGH A PARTITIONING STRATEGY
Typical case O(n) Second part

Mergesort

Goal

- The idea is to sort a collection of integers in ascending order
- Divide the array into to halves (we will take the middle of the collection)
- Recursively sort each half
- Merge two halves to make a sorted whole
 - To combine two halves, we will start at each collection at the beginning, picking the object which is smaller and inserting it into the new collection

Pseudocode (I)

```
void mergesort(int left, int right, int[] elements) {
  if (right > left) {
     //Get the index of the element in the middle
     int center = (right + left) / 2;
     //Sort the left side of the array
     mergesort(left, center);
     //Sort the right side of the array
     mergesort(center+1, right);
     //Combine both parts
     combine(left, center, center+1, right, elements);
}
```

Pseudocode (II)

```
void combine(int x1, int x2, int y1, int y2, int[]
 elements) {
 int sizeX = x2-x1+1;
 int sizeY = y2-y1+1;
 //Copy the elements from left to center into a helper
 for (int i = 0; i < sizeX; i++) {
     x[i] = elements[x1+i];
  //Copy the elements from center+1 to right into a helper
 for (int i = 0; i < sizeY; i++) {
     y[i] = elements[y1+i];
 //Copy the smallest elements from either the left or the
 right side to the elements collection
 //Copy the rest of the elements into the collection
```

Examples of use

Mergesort

Analysis

- It is divide and conquer by division
 - $= 2 \rightarrow Number of subproblems$
 - b = 2 \rightarrow Size of each subproblem (n/2)
 - $k = 1 \rightarrow Decomposition into subproblems costs <math>O(n^1)$

$$a = b^k - (2 = 2^1)$$

□ Complexity \rightarrow O(n^k * log n) \rightarrow O(n * log n)

Examples of use

The majoritarian element

The majoritarian element

• Is there a majoritarian element in n elements?

• To be the majoritarian element, it should be at least n/2+1 times

Mode of a set of numbers

- The mode is the element that is repeated more times
- That is, the predominant element

Median of a set of numbers

Median

 The median of a finite list of numbers can be found by arranging all the observations from lowest value to highest value and picking the middle one

Maximum sum of subsequences

 We need to find the maximum sum of all the continuous subsequences of n elements

The Tromino puzzle

A Tromino is a geometric figure formed by three squares

of size 1x1 L-shaped

- We have a board of size nxn
- The goal is to cover all board positions with Trominoes
- ...except one position that will be an empty (or black) cell
 - http://www3.amherst.edu/~nstarr/trom/puzzle-8by8/

Bibliography

JUAN RAMÓN PÉREZ PÉREZ; (2008) *Introducción al diseño y análisis de algoritmos en Java*. Issue 50. ISBN: 8469105957, 9788469105955 (Spanish)

