Machine Learning Course - CS-433

Expectation-Maximization Algorithm

Nov 7 and 12, 2019

changes by Martin Jaggi 2019, changes by Rüdiger Urbanke 2018, changes by Martin Jaggi 2016, 2017 © Mohammad Emtiyaz Khan 2015

Last updated on: November 12, 2019

Motivation

Computing maximum likelihood for Gaussian mixture model is difficult due to the log outside the sum.

$$\max_{\boldsymbol{\theta}} \ \mathcal{L}(\boldsymbol{\theta}) := \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n \,|\, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Expectation-Maximization (EM) algorithm provides an elegant and general method to optimize such optimization problems. It uses an iterative two-step procedure where individual steps usually involve problems that are easy to optimize.

EM algorithm: Summary

Start with $\boldsymbol{\theta}^{(1)}$ and iterate:

1. Expectation step: Compute a lower bound to the cost such that it is tight at the previous $\boldsymbol{\theta}^{(t)}$:

$$\mathcal{L}(\boldsymbol{\theta}) \ge \underline{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})$$
 and $\mathcal{L}(\boldsymbol{\theta}^{(t)}) = \underline{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}^{(t)}).$

2. Maximization step: Update $\boldsymbol{\theta}$:

$$\boldsymbol{\theta}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} \underline{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}).$$

Concavity of log

Given non-negative weights q s.t. $\sum_{k} q_{k} = 1$, the following holds for any $r_{k} > 0$:

$$\log\left(\sum_{k=1}^{K} q_k r_k\right) \ge \sum_{k=1}^{K} q_k \log r_k$$

The expectation step

$$\log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \ge \sum_{k=1}^{K} q_{kn} \log \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{q_{kn}}$$

with equality when,

$$q_{kn} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

This is not a coincidence.

The maximization step

Maximize the lower bound w.r.t. $\boldsymbol{\theta}$.

$$\max_{\boldsymbol{\theta}} \sum_{n=1}^{N} \sum_{k=1}^{K} q_{kn}^{(t)} \left[\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]$$

Differentiating w.r.t. μ_k, Σ_k^{-1} , we can get the updates for μ_k and Σ_k .

$$\begin{split} \boldsymbol{\mu}_k^{(t+1)} &:= \frac{\sum_n q_{kn}^{(t)} \mathbf{x}_n}{\sum_n q_{kn}^{(t)}} \\ \boldsymbol{\Sigma}_k^{(t+1)} &:= \frac{\sum_n q_{kn}^{(t)} (\mathbf{x}_n - \boldsymbol{\mu}_k^{(t+1)}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{(t+1)})^\top}{\sum_n q_{kn}^{(t)}} \end{split}$$

For π_k , we use the fact that they sum to 1. Therefore, we add a Lagrangian term, differentiate w.r.t. π_k and set to 0, to get the following update:

$$\pi_k^{(t+1)} := \frac{1}{N} \sum_{n=1}^N q_{kn}^{(t)}$$

Summary of EM for GMM

Initialize $\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}^{(1)}, \boldsymbol{\pi}^{(1)}$ and iterate between the E and M step, until $\mathcal{L}(\boldsymbol{\theta})$ stabilizes.

1. E-step: Compute assignments $q_{kn}^{(t)}$:

$$q_{kn}^{(t)} := rac{\pi_k^{(t)} \mathcal{N}(\mathbf{x}_n \mid oldsymbol{\mu}_k^{(t)}, oldsymbol{\Sigma}_k^{(t)})}{\sum_{k=1}^K \pi_k^{(t)} \mathcal{N}(\mathbf{x}_n \mid oldsymbol{\mu}_k^{(t)}, oldsymbol{\Sigma}_k^{(t)})}$$

2. Compute the marginal likelihood (cost).

$$\mathcal{L}(\boldsymbol{\theta}^{(t)}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k^{(t)} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})$$

3. M-step: Update $\mu_k^{(t+1)}, \Sigma_k^{(t+1)}, \pi_k^{(t+1)}$.

$$\begin{aligned} \boldsymbol{\mu}_{k}^{(t+1)} &:= \frac{\sum_{n} q_{kn}^{(t)} \mathbf{x}_{n}}{\sum_{n} q_{kn}^{(t)}} \\ \boldsymbol{\Sigma}_{k}^{(t+1)} &:= \frac{\sum_{n} q_{kn}^{(t)} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t+1)}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t+1)})^{\top}}{\sum_{n} q_{kn}^{(t)}} \\ \boldsymbol{\pi}_{k}^{(t+1)} &:= \frac{1}{N} \sum_{n} q_{kn}^{(t)} \end{aligned}$$

If we let the covariance be diagonal i.e. $\Sigma_k := \sigma^2 \mathbf{I}$, then EM algorithm is same as K-means as $\sigma^2 \to 0$.

Figure 1: EM algorithm for GMM

Posterior distribution

We now show that $q_{kn}^{(t)}$ is the posterior distribution of the latent variable, i.e. $q_{kn}^{(t)} = p(z_n = k \mid \mathbf{x}_n, \boldsymbol{\theta}^{(t)})$

$$p(\mathbf{x}_n, z_n | \boldsymbol{\theta}) = p(\mathbf{x}_n | z_n, \boldsymbol{\theta}) p(z_n | \boldsymbol{\theta}) = p(z_n | \mathbf{x}_n, \boldsymbol{\theta}) p(\mathbf{x}_n | \boldsymbol{\theta})$$

EM in general

Given a general joint distribution $p(\mathbf{x}_n, z_n | \boldsymbol{\theta})$, the marginal likelihood can be lower bounded similarly:

The EM algorithm can be compactly written as follows:

$$\boldsymbol{\theta}^{(t+1)} := \arg\max_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{p(z_n|\mathbf{x}_n,\boldsymbol{\theta}^{(t)})} [\log p(\mathbf{x}_n, z_n|\boldsymbol{\theta})]$$

Another interpretation is that part of the data is missing, i.e. (\mathbf{x}_n, z_n) is the "complete" data and z_n is missing. The EM algorithm averages over the "unobserved" part of the data.