

Table of contents

1 Problem Definition

2 Exploratory Data Analysis

Machine Learning

New Insights & Conclusion

Diamonds

- Valuable due to unique physical & chemical properties
- Prices range from \$300 to \$20,000
- Consumers feel overwhelmed by the wide range of diamond prices

How can we predict the price of a diamond based on its characteristics?

Setting the Stage

Data Cleaning

Removed an insignificant column named "unnamed"

Capitalised all variable names for ease

Check for missing values in dataset

Numerical Variables(Carat, depth and table)

 Used boxplots, histograms and violin plots to visualise the numerical variables

CARAT 1889 DEPTH 2545 TABLE 605 dtype: int64

 Table - least number of outliers (605)

• Depth - most number of outliers (2545)

CARAT 1.116705 DEPTH -0.082187 TABLE 0.796836 dtype: float64

Depth - minimum skewness (-0.08)

Carat - highly skewed (1.12)

Categorical Variables(Cut, color and clarity)

 Used count plots to visualise the categorical variables

Cut

Color

Clarity

Exploratory Data Analysis(Numerical)

Exploratory Data Analysis(Categorical)

Core Analysis

Regression Model Using different regression models

to predict price

Linear Regression CARAT Train Data

Explained Variance (R^2):
0.8486179377482752
Mean Squared Error (MSE):
2398890.660974258
Root Mean Squared Error (RMSE):
1548.8352594689527

Linear Regression CARAT Test Data

Explained Variance (R^2):
0.8521152579253212
Mean Squared Error (MSE):
2393681.009910226
Root Mean Squared Error (RMSE):
1547.152549010674

Removing Outliers

• Checking if removing outliers will improve results

Removing Outliers

Linear Regression CARAT Train Data

Explained Variance (R^2)

0.852749870478203

Mean Squared Error (MSE)

1117453.6236266212

Root Mean Squared Error (RMSE) :

1057.0967900938026

Linear Regression CARAT Test Data

Explained Variance (R^2) :

0.8474300745340442

Mean Squared Error (MSE) :

1134893.7347619676

Root Mean Squared Error (RMSE) :

1065.313913718378

Linear Regression with outliers

Explained Variance (R^2):

0.8521152579253212

Mean Squared Error (MSE):

2393681.009910226

Root Mean Squared Error (RMSE):

1547.152549010674

Linear Regression without outliers

Explained Variance (R^2)

0.8474300745340442

Mean Squared Error (MSE) :

1134893.7347619676

Root Mean Squared Error (RMSE) :

1065.313913718378

<u>Decision Tree Regression Train Data</u>

Explained Variance (R^2): 0.8697151492326016 Mean Squared Error (MSE): 988707.3041394651 Root Mean Squared Error (RMSE): 994.3376208006339

Decision Tree Regression Test Data

Explained Variance (R^2): 0.8621940177554098

Mean Squared Error (MSE) on Test Set: 1025071.9162670241

Root Mean Squared Error (RMSE) on Test Set: 1012.4583528555751

Random Forest Regression Train Data

Explained Variance (R^2): 0.8696767461579404 Mean Squared Error (MSE): 988998.7378725141 Root Mean Squared Error (RMSE): 994.48415667245

Random Forest Regression Test Data

Explained Variance (R^2): 0.8621856708870331

Mean Squared Error (MSE) on Test Set: 1025134.0045756906

Root Mean Squared Error (RMSE) on Test Set: 1012.4890145456842

Linear Regression CARAT Test Data

Explained Variance (R^2) : 0.8474300745340442

Mean Squared Error (MSE) : 1134893.7347619676

Root Mean Squared Error (RMSE): 1065.313913718378

<u>Decision Tree Regression Test Data</u>

Explained Variance (R^2): 0.8621940177554098

Mean Squared Error (MSE) on Test Set: 1025071.916267024

Root Mean Squared Error (RMSE) on Test Set: 1012.4583528555751

Random Forest Regression Test Data

Explained Variance (R^2): 0.8621856708870331

Mean Squared Error (MSE) on Test Set: 1025134.0045756906

Root Mean Squared Error (RMSE) on Test Set: 1012.4890145456842

0.92 1.00 0.03 0.18 1.00 -0.30 0.03 -025 -0.001.00 -0.30 0.18 --0.25 - -0.50 0.92 0.13 1.00 --0.75 CARAT DEPTH TABLE PRICE

New Insights

- Depth and Table very low correlation with price
- These 2 variable are very insignificant and do not any impact on the prices of diamond

New Insights

- Cut has not much variation with price
- The median prices of each level does increases but not significantly

Conclusion

Carat

- High positive correlation
- Decision Tree Regression Model is the best model to use to predict price.

Color & Clarity

- High variation with prices
- Color J and Clarity SI2 have the highest median

THANK YOU!

