

CENG 535 - Computational Number Theory Basic Properties of the Integers

Hüseyin Hışıl

huseyinhisil.net
huseyin.hisil@yasar.edu.tr

Faculty of Engineering, Computer Engineering Department, Yasar University, Izmir

Fall, 2012-2013

Outline

- 1 Divisibility and primality
- 2 Ideals
- Greatest common divisors
- 4 Unique factorization

Declaration

These slides are heavily dependent on Victor Shoup's freely available book:

A Computational Introduction to Number Theory and Algebra

2nd Edition, New York University, ISBN: 9780521516440

Publication date: December 2008

Declaration

Special thanks goes to **Bünyamin İzzet İnan** for helping the instructor with the preparation of these slides.

Outline

- 1 Divisibility and primality
- 2 Ideals
- Greatest common divisors
- Unique factorization

A central concept in number theory is divisibility.

Consider the integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$.

For $a, b \in \mathbb{Z}$, we say that a divides b if az = b for some $z \in \mathbb{Z}$.

If a divides b, we write $a \mid b$, and we may say that a is a divisor of b, or that b is a multiple of a, or that b is divisible by a.

If a does not divide b, then we write $a \nmid b$.

0/0 is defined and it is called the indeterminate.

6/0 is undefined!

Divisibility and primality

00000000000

Theorem 1 (p1,t1.1)

For all $a, b, c \in \mathbb{Z}$, we have

- \bigcirc 0 | a if and only if a = 0,
- $2 \ a \mid a, 1 \mid a, and a \mid 0,$
- \bullet a | b if and only if -a | b if and only if a | -b,
- \bigcirc a | b and a | c implies a | (b+c),
- a | b and b | c implies a | c.

Theorem 1 (p1,t1.1)

For all $a, b, c \in \mathbb{Z}$, we have

- \bigcirc 0 | a if and only if a = 0,
- a | a, 1 | a, and a | 0,
- \bigcirc a | b if and only if -a | b if and only if a | -b,
- \bigcirc a | b and a | c implies a | (b+c),
- a | b and b | c implies a | c.

These properties can be easily derived from the definition of divisibility, We leave the proof as an easy exercise.

Statement: If $a \mid b$ and $b \neq 0$, then $1 \leq |a| \leq |b|$.

00000000000

Statement: If $a \mid b$ and $b \neq 0$, then $1 \leq |a| \leq |b|$.

Proof: Assume $a \cdot z = b \neq 0$ for some integer z. Then $a \neq 0$ and $z \neq 0$; it follows that $1 \leq |a|$, $1 \leq |z|$, and so $|a| \leq |a| \cdot |z| = |b|$. Q.E.D.

Divisibility and primality

00000000000

Statement: If $a \mid b$ and $b \neq 0$, then $1 \leq |a| \leq |b|$.

Proof: Assume $a \cdot z = b \neq 0$ for some integer z. Then $a \neq 0$ and $z \neq 0$; it follows that $1 \leq |a|$, $1 \leq |z|$, and so $|a| \leq |a| \cdot |z| = |b|$. Q.E.D.

"Q.E.D." = "quod erat demonstrandum"

= "which was to be demonstrated"

00000000000

Theorem 2 (p2,t1.2)

For all $a \neq 0, b \neq 0 \in \mathbb{Z}$,

we have a | b and b | a if and only if $a = \pm b$.

Theorem 2 (p2,t1.2)

For all $a \neq 0, b \neq 0 \in \mathbb{Z}$,

we have a | b and b | a if and only if $a = \pm b$.

Proof: : \leftarrow Assume that a = b then $a = 1 \cdot b$ and $b = 1 \cdot a$. By the definition of divisibility $a \mid b$ and $b \mid a$.

Assume that a = -b then $a = -1 \cdot b$ and $b = -1 \cdot a$. By the definition of divisiblity $a \mid b$ and $b \mid a$.

 \Rightarrow Assume that $a \mid b$ and $b \mid a$. Then, $a \mid b$ implies $|a| \leq |b|$ and $b \mid a$ implies $|b| \le |a|$. Thus, |a| = |b|, and so $a = \pm b$. Q.E.D.

Divisibility and primality

Theorem 2 (p2,t1.2)

For all $a \neq 0, b \neq 0 \in \mathbb{Z}$,

we have a \mid b and b \mid a if and only if $a = \pm b$.

Proof: : \leftarrow Assume that a = b then $a = 1 \cdot b$ and $b = 1 \cdot a$. By the definition of divisibility $a \mid b$ and $b \mid a$.

Assume that a=-b then $a=-1\cdot b$ and $b=-1\cdot a$. By the definition of divisibility $a\mid b$ and $b\mid a$.

 \Rightarrow Assume that $a \mid b$ and $b \mid a$. Then, $a \mid b$ implies $|a| \le |b|$ and $b \mid a$ implies $|b| \le |a|$. Thus, |a| = |b|, and so $a = \pm b$. **Q.E.D.**

Statement: For every $a \in \mathbb{Z}$, we have $a \mid 1$ if and only if $a = \pm 1$.

Unique factorization

Divisibility and primality

Theorem 2 (p2,t1.2)

For all $a \neq 0, b \neq 0 \in \mathbb{Z}$,

we have a \mid b and b \mid a if and only if $a = \pm b$.

Proof: : \leftarrow Assume that a = b then $a = 1 \cdot b$ and $b = 1 \cdot a$. By the definition of divisibility $a \mid b$ and $b \mid a$.

Assume that a=-b then $a=-1\cdot b$ and $b=-1\cdot a$. By the definition of divisibility $a\mid b$ and $b\mid a$.

 \Rightarrow Assume that $a \mid b$ and $b \mid a$. Then, $a \mid b$ implies $|a| \le |b|$ and $b \mid a$ implies $|b| \le |a|$. Thus, |a| = |b|, and so $a = \pm b$. **Q.E.D.**

Statement: For every $a \in \mathbb{Z}$, we have $a \mid 1$ if and only if $a = \pm 1$.

Proof: This follows from the first statement by setting b := 1, and noting that $1 \mid a$. **Q.E.D.**

Fundamental theorem of arithmetic

Theorem 3 (p2,t1.3)

Every non-zero integer n can be expressed as

$$n = \pm p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_r^{e_r}$$

where $p_1, p_2, ..., p_r$ are distinct primes and $e_1, e_2, ..., e_r$ are positive integers. Moreover, this expression is unique, up to a reordering of the primes.

We will prove Theorem 3 at the end of this chapter.

Cancellation Law

Statement: The product of any two non-zero integers is again non-zero.

Proof: Exercise on your own.

The above statement leads to the cancellation law:

Statement: If $a, b, c \in \mathbb{Z}$ with $a \neq 0$ and ab = ac, then b = c.

Cancellation Law

Statement: The product of any two non-zero integers is again non-zero.

Proof: Exercise on your own.

The above statement leads to the cancellation law:

Statement: If $a, b, c \in \mathbb{Z}$ with $a \neq 0$ and ab = ac, then b = c.

Proof: Assume $ab = ac \neq 0$. We have a(b-c) = 0. So, $a \neq 0$ implies b-c=0, and hence b=c. **Q.E.D.**

Unique factorization

Primes and Composites

Let n be a positive integer. Trivially, 1 and n divide n.

If n > 1 and no other positive integers besides 1 and n divide n, then we say n is prime.

If n > 1 but n is not prime, then we say that n is composite.

The number 1 is not considered to be either prime or composite.

Division with remainder property

Theorem 4 (p3,t1.4)

Let $a, b \in \mathbb{Z}$ with b > 0. Then there exist unique $q, r \in \mathbb{Z}$ such that a = bq + r and 0 < r < b.

Proof: Consider the non-empty set S of non-negative integers of the form a-bt with $t\in\mathbb{Z}$. Since every non-empty set of non-negative integers contains a minimum, we define r to be the smallest element of S. By definition, r is of the form r=a-bq for some $q\in\mathbb{Z}$, and $r\geq 0$. Also, we must have r< b, since otherwise, r-b would be an element of S smaller than r, contradicting the minimality of r; indeed, if $r\geq b$, then we would have $0\leq r-b=a-b(q+1)$.

That proves the existence of r and q.

. . .

Division with remainder property

Theorem 4 (p3,t1.4)

Let $a, b \in \mathbb{Z}$ with b > 0. Then there exist unique $q, r \in \mathbb{Z}$ such that a = bq + r and $0 \le r < b$.

Proof: ...

For uniqueness, suppose that a = bq + r and a = bq' + r', where $0 \le r < b$ and $0 \le r' < b$.

Then subtracting these two equations and rearranging terms, we obtain r' - r = b(q - q').

Thus, r' - r is a multiple of b; however, $0 \le r < b$ and $0 \le r' < b$ implies |r' - r| < b; therefore, the only possibility is r' - r = 0. Moreover, 0 = b(q - q') and $b \ne 0$ implies q - q' = 0.

Q.E.D.

Floors and ceilings

Let us briefly define the usual floor and ceiling functions, denoted $\lfloor \cdot \rfloor$ and $\lceil \cdot \rceil$, respectively.

These are functions from \mathbb{R} (the real numbers) to \mathbb{Z} .

For $x \in \mathbb{R}$, $\lfloor x \rfloor$ is the greatest integer $m \leq x$.

Also, $\lceil x \rceil$ is the smallest integer $m \ge x$.

The mod operator

Divisibility and primality

Now let $a, b \in \mathbb{Z}$ with b > 0.

Let q and r be the unique integers that satisfy a = bq + r and $0 \le r < b$ from Theorem 4.

We define

$$a \mod b := r$$

that is, a mod b denotes the remainder in dividing a by b.

Statement: $b \mid a$ if and only if $a \mod b = 0$.

Proof: Exercise on your own.

The mod operator

00000000000

Statement: $(a \mod b) = a - b|a/b|$.

The mod operator

Statement: $(a \mod b) = a - b \lfloor a/b \rfloor$.

Proof: Dividing both sides of the equation a=bq+r by b, we obtain a/b=q+r/b. Since $q\in\mathbb{Z}$ and $r/b\in[0,1)$, we see that $q=\lfloor a/b\rfloor$. Thus, $(a\bmod b)=a-b\lfloor a/b\rfloor$. **Q.E.D.**

Exercises

- Let $a, b, d \in \mathbb{Z}$ with $d \neq 0$. Show that $a \mid b$ if and only if $da \mid db$.
- 2 Let n be a composite integer. Show that there exists a prime p dividing n, with $p \le \sqrt{n}$.
- ③ Let m be a positive integer. Show that for every real number $x \ge 1$, the number of multiples of m in the interval [1,x] is $\lfloor x/m \rfloor$; in particular, for every integer $n \ge 1$, the number of multiples of m among $1, \ldots, n$ is $\lfloor n/m \rfloor$.
- **1** Let $x \in \mathbb{R}$. Show that $2\lfloor x \rfloor \leq \lfloor 2x \rfloor \leq 2\lfloor x \rfloor + 1$.
- **5** Let $x \in \mathbb{R}$ and $n \in \mathbb{Z}$ with n > 0. Show that $\lfloor \lfloor x \rfloor / n \rfloor = \lfloor x / n \rfloor$; in particular, $\lfloor \lfloor a/b \rfloor / c \rfloor = \lfloor a/(bc) \rfloor$ for all positive integers a, b, c.
- **1** Let $a, b \in \mathbb{Z}$ with b < 0. Show that $(a \mod b) \in (b, 0]$.

Outline

- Ideals

Ideals of \mathbb{Z}

Divisibility and primality

We continue by introducing the notion of an ideal of \mathbb{Z} .

An ideal of \mathbb{Z} is a non-empty set of integers that is closed under addition, and closed under multiplication by an arbitrary integer.

In technical terms:

A non-empty set $I \subseteq \mathbb{Z}$ is an ideal of \mathbb{Z}

Greatest common divisors

 $\forall a, b \in I \text{ and } \forall z \in \mathbb{Z}, a+b \in I \text{ and } az \in I.$

Statement: Every ideal *I* contains 0.

Statement: Every ideal *I* contains 0.

Proof: Let *I* be an ideal. By the definition of an ideal, *I* is a non-empty set. Now, let $a \in I$. We have $0 = a \cdot 0 \in I$. **Q.E.D.**

Statement: Every ideal *I* contains 0.

Proof: Let *I* be an ideal. By the definition of an ideal, *I* is a non-empty set. Now, let $a \in I$. We have $0 = a \cdot 0 \in I$. Q.E.D.

Statement: If an ideal *I* contains an integer *a* then it also contains -a.

Divisibility and primality

Statement: Every ideal *I* contains 0.

Proof: Let *I* be an ideal. By the definition of an ideal, *I* is a non-empty set. Now, let $a \in I$. We have $0 = a \cdot 0 \in I$. **Q.E.D.**

Statement: If an ideal I contains an integer a then it also contains -a.

Proof: Let $a \in I$. Now, $-a = a \cdot (-1) \in I$. **Q.E.D.**

Statement: Every ideal *I* contains 0.

Proof: Let I be an ideal. By the definition of an ideal, I is a non-empty

set. Now, let $a \in I$. We have $0 = a \cdot 0 \in I$. Q.E.D.

Statement: If an ideal I contains an integer a then it also contains -a.

Proof: Let $a \in I$. Now, $-a = a \cdot (-1) \in I$. **Q.E.D.**

Statement: If $a, b \in I$ then $a - b \in I$.

Statement: Every ideal *I* contains 0.

Proof: Let I be an ideal. By the definition of an ideal, I is a non-empty

Greatest common divisors

set. Now, let $a \in I$. We have $0 = a \cdot 0 \in I$. Q.E.D.

Statement: If an ideal I contains an integer a then it also contains -a.

Proof: Let $a \in I$. Now, $-a = a \cdot (-1) \in I$. **Q.E.D.**

Statement: If $a, b \in I$ then $a - b \in I$.

Proof: Exercise on your own.

Statement: $\{0\}$ and \mathbb{Z} are ideals of \mathbb{Z} .

Statement: $\{0\}$ and \mathbb{Z} are ideals of \mathbb{Z} .

Proof: Exercise on your own.

Basic Properties of Ideals of $\mathbb Z$

Statement: $\{0\}$ and \mathbb{Z} are ideals of \mathbb{Z} .

Proof: Exercise on your own.

Statement: An ideal *I* is equal to \mathbb{Z} if and only if $1 \in I$.

Basic Properties of Ideals of \mathbb{Z}

Statement: $\{0\}$ and \mathbb{Z} are ideals of \mathbb{Z} .

Proof: Exercise on your own.

Statement: An ideal *I* is equal to \mathbb{Z} if and only if $1 \in I$.

Proof: $1 \in I$ implies that for every $z \in Z$, we have $z = 1 \cdot z \in I$, and

Greatest common divisors

hence $I = \mathbb{Z}$; conversely, if $I = \mathbb{Z}$, then in particular, $1 \in I$.

For $a \in \mathbb{Z}$, define

$$\mathsf{a}\mathbb{Z} := \{\mathsf{a}\mathsf{z} : \mathsf{z} \in \mathbb{Z}\}$$

that is the set of all multiples of a.

Statement: $a\mathbb{Z}$ is an ideal of \mathbb{Z} .

For $a \in \mathbb{Z}$, define

$$\mathsf{a}\mathbb{Z} := \{\mathsf{a}\mathsf{z} : \mathsf{z} \in \mathbb{Z}\}$$

that is the set of all multiples of a.

Statement: $a\mathbb{Z}$ is an ideal of \mathbb{Z} .

Proof: Assume a = 0. Then $a\mathbb{Z} = \{0\}$. Assume $a \neq 0$. Then $a\mathbb{Z}$ consists of the distinct integers

$$\dots, -3a, -2a, -a, 0, a, 2a, 3a, \dots$$

Now, for all $az, az' \in a\mathbb{Z}$ and $z'' \in \mathbb{Z}$, we have $az + az' = a(z + z') \in a\mathbb{Z}$ and $(az)z'' = a(zz'') \in a\mathbb{Z}$. Q.E.D.

Principal Ideals

For $a \in \mathbb{Z}$, define

$$\mathsf{a}\mathbb{Z} := \{\mathsf{a}\mathsf{z} : \mathsf{z} \in \mathbb{Z}\}$$

that is the set of all multiples of a.

Statement: $a\mathbb{Z}$ is an ideal of \mathbb{Z} .

Proof: Assume a = 0. Then $a\mathbb{Z} = \{0\}$. Assume $a \neq 0$. Then $a\mathbb{Z}$ consists of the distinct integers

$$\ldots, -3a, -2a, -a, 0, a, 2a, 3a, \ldots$$

Now, for all $az, az' \in a\mathbb{Z}$ and $z'' \in \mathbb{Z}$, we have $az + az' = a(z + z') \in a\mathbb{Z}$ and $(az)z'' = a(zz'') \in a\mathbb{Z}$. Q.E.D.

The ideal $a\mathbb{Z}$ is called the ideal generated by a, and an ideal of the form $a\mathbb{Z}$ for some $a \in \mathbb{Z}$ is called a principal ideal.

Statement: For all $a, b \in \mathbb{Z}$, we have $b \in a\mathbb{Z}$ if and only if $a \mid b$.

Statement: For all $a, b \in \mathbb{Z}$, we have $b \in a\mathbb{Z}$ if and only if $a \mid b$.

Proof: Exercise on your own.

Statement: For all $a, b \in \mathbb{Z}$, we have $b \in a\mathbb{Z}$ if and only if $a \mid b$.

Proof: Exercise on your own.

Statement: For every ideal *I*, we have $b \in I$ if and only if $b\mathbb{Z} \subseteq I$.

Statement: For all $a, b \in \mathbb{Z}$, we have $b \in a\mathbb{Z}$ if and only if $a \mid b$.

Proof: Exercise on your own.

Statement: For every ideal *I*, we have $b \in I$ if and only if $b\mathbb{Z} \subseteq I$.

Proof: Exercise on your own.

Statement: For all $a, b \in \mathbb{Z}$, we have $b \in a\mathbb{Z}$ if and only if $a \mid b$.

Proof: Exercise on your own.

Statement: For every ideal *I*, we have $b \in I$ if and only if $b\mathbb{Z} \subseteq I$.

Proof: Exercise on your own.

Statement: $b\mathbb{Z} \subseteq a\mathbb{Z}$ if and only if $a \mid b$.

Statement: For all $a, b \in \mathbb{Z}$, we have $b \in a\mathbb{Z}$ if and only if $a \mid b$.

Proof: Exercise on your own.

Statement: For every ideal *I*, we have $b \in I$ if and only if $b\mathbb{Z} \subseteq I$.

Proof: Exercise on your own.

Statement: $b\mathbb{Z} \subseteq a\mathbb{Z}$ if and only if $a \mid b$.

Proof: Exercise on your own.

Let I_1 and I_2 be ideals of \mathbb{Z} .

$$I_1 + I_2 := \{a_1 + a_2 : a_1 \in I_1, a_2 \in I_2\}.$$

Statement: $I_1 + I_2$ is also an ideal of \mathbb{Z} .

Let I_1 and I_2 be ideals of \mathbb{Z} .

$$l_1 + l_2 := \{a_1 + a_2 : a_1 \in l_1, a_2 \in l_2\}.$$

Statement: $I_1 + I_2$ is also an ideal of \mathbb{Z} .

Proof: Assume $a_1 + a_2 \in I_1 + I_2$ and $b_1 + b_2 \in I_1 + I_2$.

Then we have $(a_1 + a_2) + (b_1 + b_2) = (a_1 + b_1) + (a_2 + b_2) \in I_1 + I_2$,

and for every $z \in \mathbb{Z}$, we have $(a_1 + a_2)z = a_1z + a_2z \in I_1 + I_2$.

Examples on Ideals

Example 5

Divisibility and primality

Consider the principal ideal $3\mathbb{Z}$. This consists of all multiples of 3; i.e.

$$3\mathbb{Z} = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}.$$

Example 6

Consider the ideal $3\mathbb{Z} + 5\mathbb{Z}$. Since it contains 1, it contains all integers; i.e. $3\mathbb{Z} + 5\mathbb{Z} = \mathbb{Z}$.

Example 7

Consider the ideal $4\mathbb{Z}+6\mathbb{Z}$. This ideal contains $4\cdot (-1)+6\cdot 1=2$, and therefore, it contains all even integers. It does not contain any odd integers, since the sum of two even integers is again even. Thus, $4\mathbb{Z}+6\mathbb{Z}=2\mathbb{Z}$.

Note: "i.e." = "id est" = "that is".

More on Principle Ideals

In the previous two examples, we defined an ideal that turned out upon closer inspection to be a principal ideal. This was no accident: the following theorem says that all ideals of $\mathbb Z$ are principal.

Theorem 8 (p6,t1.6)

Let I be an ideal of \mathbb{Z} . Then there exists a unique non-negative integer d such that $I = d\mathbb{Z}$.

Proof: We first prove the existence part of the theorem. If $I = \{0\}$, then d = 0 does the job, so let us assume that $I \neq \{0\}$. Since I contains non-zero integers, it must contain positive integers, since if $a \in I$ then so is -a.

. . .

More on Principle Ideals

. . .

Let d be the smallest positive integer in I. We want to show that $I=d\mathbb{Z}$. We first show that $I\subseteq d\mathbb{Z}$. To this end, let a be any element in I. It suffices to show that $d\mid a$. Using the division with remainder property, write a=dq+r, where $0\le r< d$. Then by the closure properties of ideals, one sees that r=a-dq is also an element of I, and by the minimality of the choice of d, we must have r=0. Thus, $d\mid a$. We have shown that $I\subseteq d\mathbb{Z}$. The fact that $d\mathbb{Z}\subseteq I$ follows from the fact that $d\in I$. Thus, $I=d\mathbb{Z}$. That proves the existence part of the theorem.

For uniqueness, note that if $d\mathbb{Z}=e\mathbb{Z}$ for some non-negative integer e, then $d\mid e$ and $e\mid d$, from which it follows that $d=\pm e$; since d and e are non-negative, we must have d=e. **Q.E.D.**

Greatest common divisors

Outline

- Greatest common divisors

Greatest Common Divisor (GCD)

For $a, b \in \mathbb{Z}$, we call $d \in \mathbb{Z}$ a common divisor of a and b if $d \mid a$ and $d \mid b$.

A common divisor *d* of *a* and *b* is called the greatest common divisor of *a* and *b* if

- d is non-negative,
- all other common divisors of a and b divide d.

Greatest Common Divisor (GCD)

Theorem 9 (p6,t1.7)

For all $a, b \in \mathbb{Z}$, there exists a unique greatest common divisor d of a and b, and moreover, $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

Proof: We apply Theorem 8 to the ideal $I := a\mathbb{Z} + b\mathbb{Z}$. Let $d \in \mathbb{Z}$ with $I = d\mathbb{Z}$, as in that theorem. We wish to show that d is a greatest common divisor of a and b. Note that $a, b, d \in I$ and d is non-negative. Since $a \in I = d\mathbb{Z}$, we see that $d \mid a$; similarly, $d \mid b$. So we see that d is a common divisor of a and b.

. . .

. . .

Since $d \in I = a\mathbb{Z} + b\mathbb{Z}$, there exist $s, t \in \mathbb{Z}$ such that as + bt = d.

Now suppose a = a'd' and b = b'd' for some $a', b', d' \in \mathbb{Z}$. Then the equation as + bt = d implies that d'(a's + b't) = d, which says that $d' \mid d$.

Thus, any common divisor d' of a and b divides d. That proves that d is a greatest common divisor of a and b.

For uniqueness, note that if e is a greatest common divisor of a and b, then $d \mid e$ and $e \mid d$, and hence $d = \pm e$; since both d and e are non-negative by definition, we have d = e. **Q.E.D.**

Relatively prime numbers

For $a, b \in \mathbb{Z}$, we write gcd(a, b) for the greatest common divisor of a and b. We say that $a \in \mathbb{Z}$ are relatively prime if gcd(a, b) = 1, which is the same as saying that the only common divisors of a and b are ± 1 .

Divisibility and primality

The following is essentially just a restatement of Theorem 9.

Theorem 10 (p7,t1.8)

Let a, b, $r \in \mathbb{Z}$ and let $d := \gcd(a, b)$. Then there exist s, $t \in \mathbb{Z}$ such that as + bt = r if and only if d | r. In particular, a and b are relatively prime if and only if there exist integers s and t such that as +bt = 1.

Proof: We have

$$as + bt = r \text{ for some } s, t \in \mathbb{Z}$$
 $\iff r \in a\mathbb{Z} + b\mathbb{Z}$
 $\iff r \in d\mathbb{Z} \text{ (by Theorem 9)}$
 $\iff d \mid r.$

That proves the first statement. The second statement follows from the first, setting r := 1. **Q.E.D.**

More on GCD

Divisibility and primality

Theorem 11 (p7,t1.9)

Let $a, b, c \in \mathbb{Z}$ such that $c \mid ab$ and gcd(a, c) = 1. Then $c \mid b$.

Proof: Suppose that $c \mid ab$ and gcd(a, c) = 1.

Then since gcd(a, c) = 1, by Theorem 10 we have as + ct = 1 for some $s, t \in \mathbb{Z}$.

Multiplying this equation by b, we obtain abs + cbt = b.

Since c divides ab by hypothesis, and since $c \mid cbt$, it follows that $c \mid abs + cbt$, and hence that c divides b. **Q.E.D.**

More on GCD

Theorem 12 (p8,t1.10)

Let p be prime, and let $a, b \in \mathbb{Z}$. Then $p \mid ab$ implies that $p \mid a$ or $p \mid b$.

Proof: Assume that $p \mid ab$. If $p \mid a$, we are done, so assume that $p \nmid a$. By the above observation, gcd(a,p) = 1, and so by Theorem 11, we have $p \mid b$. **Q.E.D.**

More on GCD

Corollary: If $a_1, ..., a_k$ are integers, and if p is a prime that divides the product $a_1 \cdots a_k$, then $p \mid a_i$ for some i = 1, ..., k.

Proof: This can be proved by induction on k. For k=1, the statement is trivially true. Now let k>1, and assume that statement holds for k-1. Then by Theorem 12, either $p \mid a_1$ or $p \mid a_2 \cdots a_k$; if $p \mid a_1$, we are done; otherwise, by induction, p divides one of a_2, \ldots, a_k . **Q.E.D.**

Exercise I

- **1** Let *I* be a non-empty set of integers that is closed under addition (i.e., a+b ∈ I for all a, b ∈ I). Show that *I* is an ideal if and only if -a ∈ I for all a ∈ I.
- Show that for all integers a, b, c, we have:

 - **3** gcd(a,0) = gcd(a,a) = |a| and gcd(a,1) = 1;
- Show that for all integers a, b with d := gcd(a, b) = 0, we have gcd(a/d, b/d) = 1.
- Let n be an integer. Show that if a, b are relatively prime integers, each of which divides n, then ab divides n.
- Show that two integers are relatively prime if and only if there is no one prime that divides both of them.

Exercise II

- **1** Let a, b_1, \ldots, b_k be integers. Show that $gcd(a, b_1 \cdots b_k) = 1$ if and only if $gcd(a, b_i) = 1$ for $i = 1, \ldots, k$.
- ② Let p be a prime and k an integer, with 0 < k < p. Show that the binomial coefficient

$$\binom{n}{k} = \frac{p!}{k!(p-k)!}$$

is divisible by p.

- **1** Let $a, b, c \in \mathbb{Z}$ such that $c \mid ab$ and gcd(a, c) = 1. Prove that $c \mid b$.
- **1** Let p be prime, and let $a, b \in \mathbb{Z}$. Then $p \mid ab$ implies that $p \mid a$ or $p \mid b$.
- Let $a_1, ..., a_k$ be integers, and if p is a prime that divides the product $a_1, ..., a_k$, then $p \mid a_i$ for some i = 1, ..., k.

- Divisibility and primality
- 2 Ideals
- Greatest common divisors
- Unique factorization

Theorem 3 revisited: Every non-zero integer *n* can be expressed as

$$n=\pm p_1^{e_1}\cdot p_2^{e_2}\cdots p_r^{e_r}$$

where $p_1, p_2, ..., p_r$ are distinct primes and $e_1, e_2, ..., e_r$ are positive integers. Moreover, this expression is unique, up to a reordering of the primes.

Remark 1: The theorem intuitively says that the primes act as the "building blocks" out of which all non-zero integers can be formed by multiplication (and negation).

Theorem 3 revisited: Every non-zero integer *n* can be expressed as

$$n=\pm p_1^{e_1}\cdot p_2^{e_2}\cdots p_r^{e_r}$$

where $p_1, p_2, ..., p_r$ are distinct primes and $e_1, e_2, ..., e_r$ are positive integers. Moreover, this expression is unique, up to a reordering of the primes.

Remark 2: The reader may be so familiar with this fact that he may feel it is somehow "self evident", requiring no proof; however, this feeling is simply a delusion.

Unique factorization

Theorem 3 revisited: Every non-zero integer *n* can be expressed as

$$n=\pm p_1^{e_1}\cdot p_2^{e_2}\cdots p_r^{e_r}$$

where $p_1, p_2, ..., p_r$ are distinct primes and $e_1, e_2, ..., e_r$ are positive integers. Moreover, this expression is unique, up to a reordering of the primes.

Proof:

- We may clearly assume that n is positive, since otherwise, we
 may multiply n by -1 and reduce to the case where n is positive.
- The proof of the existence: This amounts to showing that every positive integer n can be expressed as a product (possibly empty) of primes.

. . .

If n = 1, the statement is true, as n is the product of zero primes.

Now let n > 1, and assume that every positive integer smaller than n can be expressed as a product of primes.

If n is a prime, then the statement is true, as n is the product of one prime.

Assume, then, that n is composite, so that there exist $a, b \in \mathbb{Z}$ with 1 < a < n, 1 < b < n, and n = ab.

By the induction hypothesis, both *a* and *b* can be expressed as a product of primes, and so the same holds for *n*.

We continue with the uniqueness part of the theorem.

. . .

... We now prove the uniqueness part.

Let $p_1, \ldots, p_r, q_1, \ldots, q_s$ be (not necessarily distinct) primes such that

$$p_1\cdots p_r=q_1\cdots q_s$$
.

If r = 1, we must have s = 1 and we are done.

Now suppose r > 1, and that the statement holds for r - 1.

Since r > 1, we must have s > 1.

Also, as $p_1 \mid p_1 \cdots p_r$, we have $p_1 \mid q_1 \cdots q_s$.

It follows from (the corollary to) Theorem 12 that $p_1 \mid q_j$ for some j = 1, ..., s, and moreover, since q_j is prime, we must have $p_1 = q_j$.

Thus, we may cancel p_1 from the left-hand side of $p_1 \cdots p_r = q_1 \cdots q_s$ and q_j from the right-hand side of $p_1 \cdots p_r = q_1 \cdots q_s$. The statement now follows from the induction hypothesis. **Q.E.D.**

Number of Primes

Theorem 13 (p10,t1.11)

There are infinitely many primes.

Proof: Suppose that there were only finitely many primes; call them p_1, \ldots, p_k . Set $M := p_1 \cdots p_k$ and N := M+1. Consider a prime p that divides N. There must be at least one such prime p, since $N \ge 2$, and every positive integer can be written as a product of primes. Clearly, p cannot equal any of the p_i 's, since if it did, then p would divide M, and hence also divide N - M = 1, which is impossible.

Therefore, the prime p is not among p_1, \ldots, p_k , which contradicts our assumption that these are the only primes. **Q.E.D.**

End of session.