Academy of Innovative Semiconductor and Sustainable Manufacturing

ANALOG INTEGRATED CIRCUIT DESIGN AND LAYOUT LAB

MOSFET CHARACTERISTIC CURVE

Student: Pham Lo Hoang Khang

Student ID: XZ4138222

Group: B1

LAB2-1-4. INVERTER TRANSIENT WAVEFORM

Parameter:

.subckt INV in out vdd gnd MM1 in out vdd vdd P_18 W=6.8u L=0.18u m=2 MM2 in out gnd gnd N_18 W=2u L=0.18u m=2 .ends

Figure 1. Spec

Comment:

- Fall Time (tfall): 94.2 ps
 - * Increase tfall by:
- Decreasing the W/L ratio of the NMOS transistor. This reduces its drive strength, slowing down the discharge rate of the output capacitance.
- Rise Time (trise): 94.7 ps
 - * Increase trise by:
- Decreasing the W/L ratio of the PMOS transistor. This reduces its drive strength, slowing down the charge rate of the output capacitance.
- High-to-Low Propagation Delay (tphl): 68.8 ps
- * Time for the output to switch from high to low after the input changes. Influenced by the NMOS transistor's drive strength and load conditions.
- Low-to-High Propagation Delay (tplh): 55.2 ps
- * Time for the output to switch from low to high after the input changes. Influenced by the PMOS transistor's drive strength and load conditions.
- Rise to Fall Time Difference (trise_tfall_diff%): 0.542%
 - * Decrease trise_tfall_diff% by:

- Balancing the W/L ratios of the PMOS and NMOS transistors to ensure symmetrical drive strengths. Fine-tuning the W/L ratios so that the drive strengths of both transistors match, resulting in similar rise and fall times.

Figure 2. Output Waveform

Comment:

- When Vi = 0, the NMOS is off, the PMOS is on, Vout is up to 1.8V.
- When $0 < Vi < V_{TH}$: the NMOS is off, the PMOS is on, Vout is pulled up close to Vdd, but may drop slightly due to voltage drop across the PMOS.
- When Vi is approximately V_{TH} , the NMOS is on, the PMOS is off, Vout starts converting from V_{dd} to GND.
- When $V_{TH} < Vi < (V_{dd} V_{TH})$, the NMOS is on, the PMOS is off, Vout is pulled down close to GND, but there may be a slight positive voltage due to the voltage drop across the NMOS.
- When Vi is approximately $V_{\text{dd}},$ the NMOS is on, the PMOS is off, Vout is 0 (GND).
- With H Cursor, the intersection position between Vin and Vout is at Vin = 910mV. We want that intersection point to be located exactly at the position Vdd/2 = 900mV.