i341 - LAN Interconnection

OSI Model Compared to Various Device Functions and Protocols

OSI Layers

Gateway	7	Application				
	6	Presentation				
	5	Session				
	4	Transport				
Router	3	Network				
Bridge	2	Data Link	(B) MAC	n	_	-
Repeater	1	Physical	0	805	902.11	Other
		Medium	(1)			

- (a) Logical Link Control Sublayer
- Media Access Control Sublayer
- Signal Encoding and Interface to Medium
- (d) Medium (Cable and Connectors)

LAN Repeater LAN Repeater

LAN Repeater (Ethernet hub to hub)

LAN Repeater Scenario - Fiber LAN Extension

Fiber is connected through a patch panel.

LAN Repeater Scenario - Fiber LAN Extension

Ethernet LAN Hub/Switch Repeater.

LAN Bridges

Three basic functions a bridge has to perform:

Build a table listing all layer 2 address and source port

Make forwarding decisions based on destination address

Filter is source and destination are on the same port

Forward if source and destination are on different ports

Break loops (Spanning Tree)

Pair Ethernet Remote Bridges

Ethernet Transparent (Learning) Bridge

Ethernet LAN Redundancy & Load Balancing (Transparent Bridge)

Ethernet LAN Redundancy & Load Balancing (Transparent Bridge)

Ethernet LAN Redundancy & Load Balancing (Transparent Bridge)

What Is a Bridging Loop?

Bridging loops occur any time there is a redundant path or loop in the bridge network

Spanning Tree Protocol (Transparent Bridging)

LAN Interconnection – Layer 2 WAN (STP)

LAN Interconnection – Layer 2 WAN (STP)

Routers Forward Traffic

Routing protocols maintain neighbor relationships with adjacent (connected) routers

Neighboring routers and routing protocols exchange frames containing either:

Hello packets

Routing update packets

Routing tables contain routes learned from neighboring routers

Routers forward traffic to the destination network by passing packets to the next-hop logical device (router) in the delivery path

Benefits of Routing

- Broadcast control
- Multicast control
- Optimal path determination
- Traffic management
- Logical addressing

LAN Interconnection – Routing

LAN Interconnection – Routing

Low-End/Mid-Range Architecture

Multiprotocol Router topology

Sample Multiprotocol Router Configuration (to support the : (how the magic works!)

Ethernet 1

IP address 172.25.1.1 255.255.255.0 IP Broadcast-Add 172.25.1.255

Novell Network E0101010

Appletalk Network 12.654

Ethernet 2

IP address 192.168.1.1 255.255.255.0

IP Broadcast-Add 192.168.1.255

Novell Network E0202020

Appletalk Network 12.323

DECNet Routing

Ethernet 3

IP address 192.168.21.1 255.255.255.0

IP Broadcast-Add 192.168.21.255

Novell Network E0303030

Appletalk Network 12.412

DECNet Routing

Layer 2 Switching & VLAN Slides

Layer 2 Switching

- Hardware-based bridging
- Wire-speed performance
- High-speed scalability
- Low latency
- MAC address
- Low cost

Impact of Layer 2 Switching

 Layer 2 switched networks have the same characteristics as bridged networks

Layer 2 LAN Switches

Three basic functions a Switch has to perform:

Build a table listing all layer 2 address and source port

Make forwarding decisions based on destination address

Filter is source and destination are on the same port

Forward if source and destination are on different ports

Break loops (Spanning Tree)

Switching Modes

- Three switching modes supported
 - FastForward (cut-through)
 - FragmentFree (modified cut-through)
 - Store-and-Forward

Layer 3 Switching

- Hardware-based packet forwarding
- High-performance packet switching
- High-speed scalability
- Low latency
- Lower per-port cost
- Flow accounting
- Security
- QoS

VLAN Frame Identification

- Specifically developed for multi-VLAN, inter-switch communications
- Places a unique identifier in header of each frame
- Functions at Layer 2

VLAN Identification Using IEEE 802.1Q

Initial MAC 2-Byte TPID Address 2-Byte TCI	Initial Type/Data	New CRC
--	-------------------	---------

2-byte tag protocol identifier (TPID)

A fixed value of 0x8100. This TPID value indicates that the frame carries the 802.1Q/802.1p tag information.

2-byte tag control information (TCI)