2700. a)
$$\frac{2l}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin \frac{n\pi x}{l}}{n}$$
; b) $\frac{l}{2} - \frac{4l}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{(2n-1)\pi x}{l}}{(2n-1)^2}$.

2701. a)
$$\sum_{n=1}^{\infty} b_n \sin \frac{nx}{2}$$
, gdje je $b_{2k+1} = \frac{8}{\pi} \left[\frac{\pi^2}{2k+1} - \frac{4}{(2k+1)^3} \right]$, $b_{2k} = -\frac{4\pi}{k}$;

b)
$$\frac{4\pi^2}{3} - 16 \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\cos \frac{nx}{2}}{n^2}$$
.

2702. a)
$$\frac{8}{\pi^2} \sum_{n=0}^{\infty} (-1)^n \frac{\sin \frac{(2n+1)\pi x}{2}}{(2n+1)^2}$$
; b) $\frac{1}{2} - \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{\cos (2n+1)\pi x}{(2n+1)^2}$.

2703.
$$\frac{2}{3} - \frac{9}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos \frac{2n\pi x}{3} + \frac{1}{2\pi^2} \sum_{n=1}^{\infty} \frac{\cos 2n\pi x}{n^2}.$$

GLAVA IX

2704. Da.

2705. Ne.

2706. Da.

2707. Da.

2708. Da.

2709. a) Da; b) ne. 2710. Da.

2717. x dx + y dy = 0.

2718.
$$y' = y$$
.

2715.
$$xy'-2y=0$$
. **2716.** $y-2xy'=0$.

2719.
$$3y^2 - x^2 = 2xyy'$$
. **2720.** $xyy'(xy^2 + 1) = 1$.

2721.
$$y = xy' \ln \frac{x}{y}$$

2714. y - xy' = 0.

2722.
$$2xy'' + y' = 0$$

2721.
$$y = xy' \ln \frac{x}{y}$$
. **2722.** $2xy'' + y' = 0$. **2723.** $y'' - y' - 2y = 0$. **2724.** $y'' + 4y = 0$.

2725.
$$y'''-2y''+y'=0$$
. **2726** $y''=0$. **2727.** $y'''=0$.

2728.
$$(1+y'^2)y'''-3y'y''^2=0.$$

2729.
$$y^2 - x^2 = 25$$
. **2730.** $y = xe^{2x}$.

2731.
$$y = -\cos x$$
.

2731.
$$y = -\cos x$$
. **2732.** $y = \frac{1}{6} (-5e^{-x} + 9e^x - 4e^{2x})$.

2738. 2,593 (točna je vrijednost
$$y = e$$
).

2739. 4,780 [točno,
$$y = 3 (e-1)$$
].

2740. 0,946 (točna je vrijednost
$$y = 1$$
).

2741. 1,826 (točna je vrijednost
$$y = \sqrt{3}$$
).

2742.
$$ctg^2y = tg^2x + C$$
. **2743.** $x = \frac{Cy}{\sqrt{1+y^2}}$; $y = 0$.

2744.
$$x^2 + y^2 = \ln Cx^2$$
.

2745.
$$y = a + \frac{Cx}{1 - Cx}$$
.

2745.
$$y = a + \frac{Cx}{1+ax}$$
. **2746.** $tg y = C(1-e^x)^3$; $x = 0$.

2747.
$$v = C \sin x$$

2748.
$$2e^{\frac{y^2}{2}} = \sqrt{e} (1 + e^x).$$

2749.
$$1+y^2=\frac{2}{1-x^2}$$
. **2750.** $y=1$.

2751.
$$arctg(x+y) = x+C$$
.

2752.
$$8x+2y+1=2$$
 tg $(4x+C)$.

2753.
$$x+2y+3 \ln |2x+3y-7| = C$$
.

2754.
$$5x+10y+C=3 \ln |10x-5y+6|$$
.

2755.
$$\rho = \frac{C}{1-\cos \rho}$$
 ili $y^2 = 2Cx + C^2$.

2756.
$$\ln \rho = \frac{1}{2\cos^2 \varphi} - \ln |\cos \varphi| + C \text{ ili } \ln |x| - \frac{y^2}{2x^2} = C.$$

2757. Pravac y = Cx ili hiperbola $y = \frac{C}{x}$. Uputa. Duljina tangente jednaka je $\sqrt{y^2 + \left(\frac{y}{y'}\right)^2}$.

2758.
$$y^2 - x^2 = C$$
. **2759.** $y = Ce^{\frac{x}{a}}$. **2760.** $y^2 = 2px$.

2761. $y = ax^2$. *Uputa*. Prema uvjetima je $\frac{\int_0^x xy \, dx}{\int_0^x y \, dx} = \frac{3}{4} x$. Derivirajući dvaput po x dobivamo di-

ferencijalnu jednadžbu.

2762.
$$y^2 = \frac{1}{3} x$$
.

2763.
$$y = \sqrt{4 - x^2} + 2 \ln \frac{2 - \sqrt{4 - x^2}}{|x|}$$
.

2764. Pramen pravaca
$$y = kx$$
.

2765. Porodicu sličnih elipsa
$$2x^2 + y^2 = C^2$$
.

2766. Porodicu hiperbola
$$x^2-y^2=C$$
.

2767. Porodicu kružnica
$$x^2 + (y-b)^2 = b^2$$
.

2768.
$$y = x \ln \left| \frac{C}{x} \right|$$
.

2769.
$$y = \frac{C}{x} - \frac{x}{2}$$
. **2770.** $x = Ce^{\frac{x}{y}}$.

2771.
$$(x-C)^2 - y^2 = C^2$$
; $(x-2)^2 - y^2 = 4$; $y = \pm x$.

2772.
$$\sqrt{\frac{x}{y}} + \ln|y| = C.$$

2773.
$$y = \frac{C}{2} x^2 - \frac{1}{2C}$$
; $x = 0$.

2774.
$$(x^2+y^2)^3(x+y)^2=C$$
.

2775.
$$y = x \sqrt{1 - \frac{3}{8} x}$$
.

2776.
$$(x+y-1)^3 = C(x-y+3)$$
.

2777.
$$3x+y+2 \ln |x+y-1| = C$$
.

2778.
$$\ln |4x+8y+5|+8y-4x=C$$

2779.
$$x^2 = 1 - 2v$$
.

2780. Rotacioni paraboloid. Rješenje. Na temelju simetrije traženo zrcalo je rotaciona ploha. Ishodište koordinatnog sustava postavlja se u izvor svjetla; os x je smjer pramena zraka. Ako tangenta u po volji odabranoj točki M(x, y) krivulje presjeka tražene površine i ravnine xOy tvori s osi x kut φ , a odsječak, koji spaja ishodište koordinatnog sustava s točkom M(x, y), kut α , onda je tg $\alpha = \text{tg } 2\varphi = \frac{2 \text{ tg } \varphi}{1 - \text{tg}^2 \varphi}$. Ali tg $\alpha = \frac{y}{x}$, tg $\varphi = y'$. Tražena diferencijalna jednadžba je $y-yy'^2=2xy'$ i njeno je rješenje $y^2=2Cx+C^2$. Ravninski presjek je parabola. Tražena je površina rotacioni paraboloid.

2781.
$$(x-y)^2 - Cy = 0$$
.

2782.
$$x^2 = C(2y + C)$$
.

2783. $(2y^2-x^2)^3 = Cx^2$. *Uputa*. Upotrijebite da je površina jednaka $\int y dx$.

2784.
$$y = Cx - x \ln |x|$$
.

2785.
$$y = Cx + x^2$$
.

2785.
$$y = Cx + x^2$$
. **2786.** $y = \frac{1}{6}x^4 + \frac{C}{x^2}$.

2787. $x\sqrt{1+y^2} + \cos y = C$. Uputa. Jednadžba je linearna s obzirom na x i $\frac{dx}{dy}$.

2788.
$$x = Cy^2 - \frac{1}{y}$$
.

2789.
$$y = \frac{e^x}{x} + \frac{ab - e^a}{x}$$
.

2790.
$$y = \frac{1}{2} (x \sqrt{1-x^2} + \arcsin x) \sqrt{\frac{1+x}{1-x}}$$
. **2791.** $y = \frac{x}{\cos x}$.

2792.
$$y = (x^2 + Cx) = 1$$
.

2793.
$$y = x \ln \frac{C}{r}$$
.

2794.
$$x^2 = \frac{1}{y + Cy^2}$$
.

2795.
$$y^3 (3 + Ce^{\cos x}) = x$$
.

2797.
$$xy = Cy^2 + a^2$$

2798.
$$v^2 + x + av = 0$$
.

2799.
$$x = y \ln \frac{y}{a}$$
.

2800.
$$\frac{a}{x} + \frac{b}{y} = 1.$$

2801.
$$x^2+y^2-Cy+a^2=0$$
.

2802.
$$\frac{x^2}{2} + xy + y^2 = C$$
.

2803.
$$\frac{x^3}{3} + xy^2 + x^2 = C.$$

2804.
$$\frac{x^4}{4} - \frac{3}{2}x^2y^2 + 2x + \frac{y^3}{3} = C.$$

2805.
$$x^2+y^2-2 \arctan \frac{y}{x} = C$$
.

2806.
$$x^2-y^2=Cy^3$$
.

2807.
$$\frac{x^2}{2} + ye^{\frac{x}{y}} = 2.$$

2808.
$$\ln |x| - \frac{y^2}{x} = C.$$

2809.
$$\frac{x}{y} + \frac{x^2}{2} = C$$
.

2810.
$$\frac{1}{y} \ln x + \frac{1}{2} y^2 = C.$$

2811.
$$(x \sin y + y \cos y - \sin y) e^x = C$$
.

2812.
$$(x^2C^2+1-2Cy)(x^2+C^2-2Cy)=0$$
; singularni integral je $x^2-y^2=0$.

2813. Opći integral je $(y+C)^2 = x^3$; singularnog integrala nema.

2814. Opći integral je
$$\left(\frac{x^2}{2} - y + C\right)\left(x - \frac{y^2}{2} + C\right) = 0$$
; singularnog integrala nema.

2815. Opći integral je $y^2 + C^2 = 2Cx$; singularni je integral $x^2 - y^2 = 0$.

2816.
$$y = \frac{1}{2} \cos x \pm \frac{\sqrt{3}}{2} \sin x$$
.

2817.
$$\begin{cases} x = \sin p + \ln p, \\ y = p \sin p + \cos p + p + C. \end{cases}$$

2818.
$$\begin{cases} x = e^{p} + pe^{p} + C, \\ y = p^{2} e^{p}. \end{cases}$$

2819.
$$\begin{cases} x = 2p - \frac{2}{p} + C. \\ y = p^2 + 2 \ln p. \end{cases}$$

Singularno rješenje je y = 0.

2820.
$$4y = x^2 + p^2$$
, $\ln |p-x| = C + \frac{x}{p-x}$.

2821.
$$\ln \sqrt{p^2+y^2} + \arctan \frac{p}{y} = C$$
, $x = \ln \frac{y^2+p^2}{2p}$. Singularno rješenje je $y = e^x$.

2822.
$$y = C + \frac{x^2}{C}$$
; $y = \pm 2x$.

2823.
$$\begin{cases} x = \ln |p| - \arcsin |p| + C, \\ y = |p| + \sqrt{1 - p^2}. \end{cases}$$

2824.
$$\begin{cases} x = Ce^{-p} - 2p + 2, \\ y = C(1+p)e^{-p} - p^2 + 2. \end{cases}$$
 2825.
$$\begin{cases} x = \frac{1}{3} (Cp^{-\frac{1}{2}} - p), \\ y = \frac{1}{6} (2Cp^{\frac{1}{2}} + p^2). \end{cases}$$

Uputa. Diferencijalna jednadžba iz koje određujemo x kao funkciju od p je homogena.

2826.
$$y = Cx + C^2$$
; $y = -\frac{x^2}{4}$.

2827. y = Cx + C; singularnog rješenja nema.

2828.
$$y = Cx + \sqrt{1 + C^2}$$
; $x^2 + y^2 = 1$.

2829. $y = Cx + \frac{1}{C}$; $y^2 = 4x$.

2830.
$$xy = C$$
.

2831. Kružnica i porodica njenih tangenata.

2832. Astroida
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = l^{\frac{2}{3}}$$

2833. a) Homogena; y = xu; b) linearna s obzirom na x; x = uv; c) linearna s obzirom na y; $y = u \cdot v$; d) Bernoullijeva jednadžba; y = uv; e) sa separiranim varijablama; f) Clairautova jednadžba; svedite na oblik $y = xy' \pm \sqrt{y'^3}$; g) Langrangeova jednadžba; derivirajte po x; h) Bernoullijeva jednadžba; y = uv; i) svedite na jednadžbu sa separiranim varijablama; u = x + y; j) Lagrangeova jednadžba; derivirajte po x; k) Bernoullijeva jednadžba s obzirom na x; x = uv; l) jednadžba s totalnim diferencijalima; m) linearna; y = uv; n) Bernoullijeva jednadžba; $y = u \cdot v$.

2834. a)
$$\sin \frac{y}{x} = -\ln |x| + C$$
; b) $x = y \cdot e^{Cy+1}$. **2835.** $x^2 + y^4 = Cy^2$.

2836.
$$y = \frac{x}{x^2 + C}$$

2837.
$$xy\left(C - \frac{1}{2} \ln^2 x\right) = 1.$$

2838. $y = Cx + C \ln C$; singularno rješenje je $y = -e^{-(x+1)}$.

2839.
$$y = Cx + \sqrt{-aC}$$
; singularno rješenje je $y = \frac{a}{4x}$.

2840.
$$3y + \ln \frac{|x^3 - 1|}{(y+1)^6} = C.$$

2841.
$$\frac{1}{2} e^{2x} - e^y - \arctan y - \frac{1}{2} \ln (1 + y^2) = C.$$

2842.
$$v = x^2(1 + Ce^{\frac{1}{x}})$$
.

2843.
$$x = y^2 (C - e^{-y})$$
.

2844.
$$v = Ce^{-\sin x} + \sin x - 1$$
.

2845.
$$y = ax + C\sqrt{|1-x^2|}$$
.

2846.
$$y = \frac{x}{x+1} (x+\ln|x|+C)$$
.

2847.
$$x = Ce^{\sin y} - 2a(1 + \sin y)$$
.

2848.
$$\frac{x^2}{2} + 3x + y + \ln[(x-3)^{10} | y-1|^3] = C$$
. **2849.** 2 arctg $\frac{y-1}{2x} = \ln Cx$.

2849. 2 arctg
$$\frac{y-1}{2x} = \ln Cx$$

2850.
$$x^2 = 1 - \frac{2}{y} + Ce^{-\frac{2}{y}}$$
.

2851.
$$x^3 = Ce^y - y - 2$$
.

2852.
$$\sqrt{\frac{y}{x}} + \ln|x| = C.$$

2853.
$$y = x \arcsin(Cx)$$
.

2854.
$$y^2 = Ce^{-2x} + \frac{2}{5}\sin x + \frac{4}{5}\cos x$$
.

2855.
$$xy = C(y-1)$$
.

2856.
$$x = Ce^y - \frac{1}{2} (\sin y + \cos y).$$

2857.
$$py = C(p-1)$$
.

2858.
$$x^4 = Ce^{4y} - y^3 - \frac{3}{4}y^2 - \frac{3}{8}y - \frac{3}{32}$$
.

2859.
$$(xy+C)(x^2y+C)=0$$
.

2860.
$$\sqrt{x^2+y^2}-\frac{x}{y}=C.$$

2861.
$$xe^y - y^2 = C$$
.

2862.
$$\begin{cases} x = \frac{C}{p^2} - \frac{\sqrt{1+p^2}}{2p} + \frac{1}{2p^2} & \ln(p + \sqrt{1+p^2}), \\ y = 2px + \sqrt{1+p^2}. \end{cases}$$

2864. $2e^x - v^4 = Cv^2$

2869. $y = \frac{C - x^4}{4(x^2 - 1)^{3/2}}$

2866. $y^2 + Ce^{-\frac{y^2}{2}} + \frac{1}{2} - 2 = 0.$

2871. $y = \frac{a^2 \ln(x + \sqrt{a^2 + x^2}) + C}{x + \sqrt{a^2 + x^2}}$

2873. $y = Cx + \frac{1}{C^2}$, $y = \frac{3}{2}\sqrt[3]{2x^2}$.

2881. $y = \frac{1}{4} (2x^2 + 2x + 1).$

2875. $p^2 + 4y^2 = Cy^3$. **2876.** y = x - 1.

2863.
$$y = xe^{Cx}$$
.

2865.
$$\ln |y+2|+2 \arctan \frac{y+2}{x-3} = C.$$

2867.
$$x^2 y = Ce^{\frac{y}{a}}$$
. **2868.** $x + \frac{x}{y} = C$.

2870.
$$y = C \sin x - a$$
.

2872.
$$(y-Cx)(y^2-x^2+C)=0$$
.

2874.
$$x^3 + x^2y - y^2x - y^3 = C$$
.

2877.
$$y = x$$
, **2878.** $y = 2$.

2880.
$$y = \frac{1}{2} (\sin x + \cos x)$$
.

2882.
$$v = e^{-x} + 2x - 2$$
.

2883. a) y = x; b) y = Cx, gdje je C po volji; točka (0, 0) je singularna točka diferencijalne jed-

2879. v = 0.

2884. a) $y^2 = x$; b) $y^2 = 2px$; (0, 0) je singularna točka.

2885. a) $(x-C)^2+y^2=C^2$; b) nema rješenja; c) $x^2+y^2=x$; (0, 0) je singularna točka.

$$v = e^{\frac{x}{y}}$$
.

2887.
$$y = (\sqrt{2a} \pm \sqrt{x})^2$$
. **2888.** $y^2 = 1 - e^{-x}$.

2889. $r = Ce^{a\varphi}$. Uputa. Predite na polarne koordinate.

2890.
$$3y^2 - 2x = 0$$
.

2891.
$$r = k\varphi$$
. **2892.** $x^2 + (y - b)^2 = b^2$. **2893.** $y^2 + 16x = 0$.

2894. Hiperbole $y^2 - x^2 = C$ ili kružnice $x^2 + y^2 = C^2$.

2895. $y = \frac{1}{2} (e^x + e^{-x})$. Uputa. Upotrijebite da je površina $\int_0^x y \, dx$, a dužina luka $\int_0^x \sqrt{1 + y'^2} \, dx$.

2896.
$$x = \frac{a^2}{y} + Cy$$
. **2897.** $y^2 = 4C(C + a - x)$.

2898. *Uputa*. Koristite se time da je rezultanta sile teže i centrifugalne sile normalna na površinu. Uzmemo li os vrtnje za os y i označimo li sa ω kutnu brzinu vrtnje, dobit ćemo za ravninski presjek kroz os tražene plohe diferencijalnu jednadžbu $g \frac{dy}{dx} = \omega^2 x$:

2899. $p = e^{-0,000167}h$. Uputa. Tlak na svakom nivou vertikalnog zračnog stupca možemo smatrati da je uvjetovan samo tlakom gornjih slojeva. Upotrijebite Boyle-Mariotteov zakon prema kojemu je gustoća proporcionalna tlaku. Tražena diferencijalna jednadžba je dp = -kp dh.

2900. $s = \frac{1}{2} klw$. *Uputa*. Jednadžba je d $s = kw \cdot \frac{l-x}{l} dx$.

2901.
$$s = \left(p + \frac{1}{2} w\right)kl$$
.

2902.
$$T = a + (T_0 - a) e^{-kt}$$
.

2904.
$$\omega = 100 \left(\frac{3}{5}\right)^t$$
 o/min.

2905. Za 100 godina raspadne se 4,2% početne količine Q_0 . *Uputa*. Jedandžba je $\frac{dQ}{dt} = kQ$; $Q = Q_0 \left(\frac{1}{2}\right) \frac{t}{1600}$.

2906.
$$t \approx 35,2$$
 s. *Uputa*. Jednadžba je $\pi (h^2 - 2h) dh = \pi \left(\frac{1}{10}\right)^2 v dt$.

2907.
$$\frac{1}{1024}$$
. *Uputa*. Jednadžba je d $Q = -kQ \, dh$; $Q = Q_0 \left(\frac{1}{2}\right)^{\frac{h}{3}}$

2908.
$$v o \sqrt{\frac{gm}{k}}$$
 kada $t \to \infty$ (k je koeficijent proporcionalnosti). *Uputa*. Jednadžba je $m \frac{dv}{dt} = mg - kv^2$; $v = \sqrt{\frac{gm}{k}} th\left(t\sqrt{\frac{gk}{m}}\right)$.

2909. 18,1 kg. *Uputa*. Jednadžba je
$$\frac{\mathrm{d}x}{\mathrm{d}t} = k \left(\frac{1}{3} - \frac{x}{300} \right)$$
.

2910.
$$i = \frac{E}{R^2 + L^2 \omega^2} [(R \sin \omega t - L\omega \cos \omega t) + L\omega e^{-\frac{R}{L}t}]$$
. Uputa. Jednadžba je $R_i + L\frac{di}{dt} = E \sin \omega t$.

2911.
$$y = x \ln |x| + C_1 x + C_2$$
.

2912.
$$1+C_1 y^2 = \left(C_2 + \frac{C_1 x}{\sqrt{2}}\right)^2$$
.

2913.
$$y = \ln |e^{2x} + C_1| - x + C_2$$
.

2914.
$$y = C_1 + C_2 \ln |x|$$
.

2915.
$$y = C_1 e^{C_2 x}$$

2916.
$$y = \pm \sqrt{C_1 x + C_2}$$
.

2917.
$$y = (1 + C_1^2) \ln |x + C_1| - C_1 x + C_2$$
.

2918.
$$(x-C_1)=a \ln \left| \sin \frac{y-C_2}{a} \right|$$
 za $a \neq 0$; $y=C$ za $a=0$.

2919.
$$y = \frac{1}{2} (\ln |x|)^2 + C_1 \ln |x| + C_2$$
.

2920.
$$x = \frac{1}{C_1} \ln \left| \frac{y}{y + C_1} \right| + C_2$$
; $y = C$.

2921.
$$y = C_1 e^{C^2 x} + \frac{1}{C_2}$$
.

2922.
$$y=\pm \frac{1}{2} \left[x \sqrt{C_1^2 - x^2} + C_1^2 \arcsin \frac{x}{C_1} \right] + C_2$$
.

2923.
$$y = (C_1 e^x + 1) x + C_2$$
.

2924.
$$y = (C_1 x - C_1^2) e^{\frac{x}{C_1} + 1} + C_2$$
; $y = \frac{e}{2} x^2 + C$ (singularno rješenje).

2925.
$$y = C_1 x (x - C_1) + C_2$$
; $y = \frac{x^3}{3} + C$ (singularno rješenje).

2926.
$$y = \frac{x^3}{12} + \frac{x^2}{2} + C_1 x \ln |x| + C_2 x + C_3$$
.

2927.
$$y = \sin(C_1 + x) + C_2 x + C_3$$

2928.
$$y = x^3 + 3x$$
.

2928.
$$y = x^3 + 3x$$
. **2929.** $y = \frac{1}{2}(x^2 + 1)$. **2930.** $y = x + 1$.

2930.
$$y = x + 1$$
.

2931.
$$y = Cx^2$$
.

2932.
$$y = C_1 \frac{1 + C_2 e^x}{1 - C_2 e^x}$$
; $y = C$.

2933.
$$x = C_1 + \ln \left| \frac{y - C_2}{y + C_2} \right|$$
.

2834.
$$x = C_1 - \frac{1}{C_1} \ln \left| \frac{y}{y + C_2} \right|$$
.

2935.
$$x = C_1 y^2 + y \ln y + C_2$$
.

2936.
$$2y^2-4x^2=1$$
.

2937.
$$y = x + 1$$

2938.
$$y = \frac{x^2 - 1}{2(e^2 - 1)} - \frac{e^2 - 1}{4} \ln |x|$$
 ili $y = \frac{1 - x^2}{2(e^2 + 1)} + \frac{e^2 + 1}{4} \ln |x|$.

2939.
$$y = \frac{1}{2} x^2$$

2940.
$$y = \frac{1}{2} x^2$$
.

2941.
$$y = 2e^{x}$$

2841.
$$y = 2e^x$$
. **2842.** $x = -\frac{3}{2}(y+2)^{2/3}$.

2943.
$$y = e^x$$
.

2944.
$$y^2 = \frac{e}{e-1} + \frac{e^{-x}}{1-e}$$
.

2943.
$$y = e^x$$
. **2944.** $y^2 = \frac{e}{e-1} + \frac{e^{-x}}{1-e}$. **2945.** $y = \frac{2\sqrt{2}}{3}x^{3/2} - \frac{8}{3}$.

2946.
$$y = \frac{3e^{3x}}{2 + e^{3x}}$$
. **2947.** $y = \sec^2 x$. **2948.** $y = \sin x + 1$. **2949.** $y = \frac{x^2}{4} - \frac{1}{2}$.

2950.
$$x = -\frac{1}{2}e^{-y^2}$$
. **2951.** Rješenja nema. **2952.** $y = e^x$. **2953.** $y = 2 \ln |x| - \frac{2}{x}$.

2954.
$$y = \frac{(x+C_1^2+1)^2}{2} + \frac{4}{3} C_1 (x+1)^{\frac{3}{2}} + C_2$$
. Singularno rješenje je $y = C$.

2955.
$$y = C_1 \frac{x^2}{2} + (C_1 - C_1^2) x + C_2$$
. Singularno rješenje je $y = \frac{(x+1)^3}{12} + C_2$.

2956.
$$y = \frac{1}{12}(C_1 + x)^4 + C_2 x + C_3$$
.

2957.
$$y = C_1 + C_2 e^{C_1 x}$$
; $y = 1 - e^{x}$; $y = -1 + e^{-x}$; singularno rješenje je $y = \frac{4}{C - x}$.

2959.
$$(x-C_1)^2-C_2y^2+kC_2^2=0$$
.

2960. Lančanica
$$y = a \text{ ch } \frac{x - x_0}{2}$$
. Kružnica $(x - x_0)^2 + y^2 = a^2$.

2961. Parabola
$$(x-x_0)^2 = 2ay - a^2$$
. Cikloida $x-x_0 = a (t-\sin t)$, $y = a (1-\cos t)$.

2962.
$$e^{ay} + C_2 = \sec(ax + C_1)$$
.

2964.
$$y = \frac{C_1}{2} \frac{H}{q} e^{\frac{q}{H}x} + \frac{1}{2C_1} \frac{H}{q} e^{-\frac{q}{H}x} + C_2$$
 ili $y = a \operatorname{ch} \frac{x+C}{a} + C_2$, gdje je H konstantno horizontalno naprezanje, a $\frac{H}{a} = a$. $Uputa$. Diferencijalna jednadžba je $\frac{d^2y}{dx^2} = \frac{q}{H} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$.

2965. Jednadžba gibanja je
$$\frac{d^2s}{dt^2} = g (\sin \alpha - \mu \cos \alpha)$$
. Zakon gibanja je $s = \frac{gt^2}{2} (\sin \alpha - \mu \cos \alpha)$.

2966.
$$s = \frac{m}{k} \ln \operatorname{ch} \left(t \sqrt{g \frac{k}{m}} \right)$$
. *Uputa*. Jednadžba gibanja je $m \frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = mg - k \left(\frac{\mathrm{d}s}{\mathrm{d}t} \right)^2$.

2967. Za 6,45 s. *Uputa*. Jednadžba gibanja je
$$\frac{300}{g} \frac{d^2x}{dt^2} = -10v$$
.

2969. a)
$$y'' + y = 0$$
; b) $y'' - 2y' + y = 0$; c) $x^2y'' - 2xy' + 2y = 0$; d) $y''' - 3y'' + 4y' - 2y = 0$.

2970.
$$y = 3x - 5x^2 + 2x^3$$
.

2971.
$$y = \frac{1}{x} (C_1 \sin x + C_2 \cos x)$$
. *Uputa*. Primijenite supstituciju $y = y_1 u$.

2972.
$$y = C_1 x + C_2 \ln x$$
.

2973.
$$y = A + Bx^2 + x^3$$
.

2974.
$$y = \frac{x^2}{3} + Ax + \frac{B}{x}$$
. *Uputa*. Partikularna rješenja homogene jednadžbe su $y_1 = x$, $y_2 = \frac{1}{x}$.

Metodom varijacija konstanti dobivamo $C_1 = \frac{x}{2} + A$; $C_2 = -\frac{x^3}{6} + B$.

2975.
$$y = A + B \sin x + C \cos x + \ln|\sec x + \tan x| + \sin x \ln|\cos x| - x \cos x$$
.

2976.
$$y = C_1 e^{2x} + C_2 e^{3x}$$
. **2977.** $y = C_1 e^{-3x} + C_2 e^{3x}$.

2978.
$$y = C_1 + C_2 e^x$$
.

2979. $y = C_1 \cos x + C_2 \sin x$.

2980.
$$y = e^x (C_1 \cos x + C_2 \sin x).$$

2981. $y = e^{-2x} (C_1 \cos 3x + C_2 \sin 3x).$

2982.
$$y = (C_1 + C_2 x) e^{-x}$$
.

2983.
$$y = e^{2x} (C_1 e^{x\sqrt{2}} + C_2 e^{-x\sqrt{2}}).$$

2984. Kada je
$$k>0$$
, $y=C_1 e^{x\sqrt{k}}+C_2 e^{-x\sqrt{k}}$; kada je $k<0$, $y=C_1\cos\sqrt{-k}x+C_2\sin\sqrt{-k}x$.

2985.
$$y=e^{-\frac{x}{2}}\left(C_1e^{\frac{\sqrt{5}}{2}x}+C_2e^{-\frac{\sqrt{5}}{2}x}\right).$$

2986.
$$y = e^{\frac{x}{6}} \left(C_1 \cos \frac{\sqrt{11}}{6} x + C_2 \sin \frac{\sqrt{11}}{6} x \right).$$

2987.
$$y = 4e^x + e^{4x}$$
.

2988.
$$y = e^{-x}$$
.

2989.
$$y = \sin 2x$$
.

2990.
$$y = 1$$
.

2991.
$$y = a \, \operatorname{ch} \frac{x}{a}$$
.

2992.
$$y = 0$$
.

2993.
$$y = C \sin \pi x$$
.

2994. a)
$$xe^{2x}(Ax^2+Bx+C)$$
; b) $A\cos 2x+B\sin 2x$; c) $A\cos 2x+B\sin 2x+Cx^2e^{2x}$;

d) $e^{x}(A\cos x + B\sin x)$; e) $e^{x}(Ax^{2} + Bx + C) + xe^{2x}(Dx + E)$; f) $xe^{x}[(Ax^{2} + Bx + C)\cos 2x +$ $+(Dx^2+Ex+F)\sin 2x$].

2995.
$$y = (C_1 + C_2 x) e^{2x} + \frac{1}{9} (2x^2 + 4x + 3).$$

2995.
$$y = (C_1 + C_2 x) e^{2x} + \frac{1}{8} (2x^2 + 4x + 3).$$
 2996. $y = e^{\frac{x}{2}} \left(C_1 \cos \frac{x\sqrt{3}}{2} + C_2 \sin \frac{x\sqrt{3}}{2} \right) + x^3 + 3x^2.$

2997.
$$y = (C_1 + C_2 x) e^{-x} + \frac{1}{9} e^{2x}$$
.

2998.
$$y = C_1 e^x + C_2 e^{7x} + 2$$
.

2999.
$$y = C_1 e^x + C_2 e^{-x} + \frac{1}{2} x e^x$$
.

3000.
$$y = C_1 \cos x + C_2 \sin x + \frac{1}{2} x \sin x$$
.

3001.
$$y = C_1 e^x + C_2 e^{-2x} - \frac{2}{5} (3 \sin 2x + \cos 2x)$$
. **3002.** $y = C_1 e^{2x} + C_2 e^{-3x} + x \left(\frac{x}{10} - \frac{1}{25}\right) e^{2x}$.

3003.
$$y = (C_1 + C_2 x) e^x + \frac{1}{2} \cos x + \frac{x^2}{4} e^x - \frac{1}{8} e^{-x}$$
.

3004.
$$y = C_1 + C_2 e^{-x} + \frac{1}{2}x + \frac{1}{20}(2\cos 2x - \sin 2x)$$
.

3005.
$$y = e^x(C_1\cos 2x + C_2\sin 2x) + \frac{x}{4}e^x\sin 2x$$
. **3006.** $y = \cos 2x + \frac{1}{3}(\sin x + \sin 2x)$.

3007. 1)
$$x = C_1 \cos \omega t + C_2 \sin \omega t + \frac{A}{\omega^2 - p^2} \sin pt$$
; 2) $x = C_1 \cos \omega t + C_2 \sin \omega t - \frac{A}{2\omega} t \cos \omega t$.

3008.
$$y = C_1 e^{3x} + C_2 e^{4x} - xe^{4x}$$
.

3009.
$$y = C_1 + C_2 e^{2x} + \frac{x}{4} - \frac{x^2}{4} - \frac{x^3}{6}$$
.

3010.
$$y = e^x (C_1 + C_2 x + x^2).$$

3011.
$$y = C_1 + C_2 e^{2x} + \frac{1}{2} x e^{2x} - \frac{5}{2} x$$
.

3012.
$$y = C_1 e^{-2x} + C_2 e^{4x} - \frac{1}{9} e^x + \frac{1}{5} (3 \cos 2x + \sin 2x).$$

3013.
$$y = C_1 + C_2 e^{-x} + e^x + \frac{5}{2} x^2 - 5x$$
.

3014.
$$y = C_1 + C_2 e^x - 3xe^x - x - x^2$$
.

3015.
$$y = \left(C_1 + C_2 x + \frac{1}{2} x^2\right) e^{-x} + \frac{1}{4} e^x$$
.

3016.
$$y = (C_1 \cos 3x + C_2 \sin 3x) e^x + \frac{1}{37} (\sin 3x + 6 \cos 3x) + \frac{e^x}{9}$$
.

3017.
$$y = (C_1 + C_2 x + x^2) e^{2x} + \frac{x+1}{8}$$
.

3018.
$$y = C_1 + C_2 e^{3x} - \frac{1}{10} (\cos x + 3 \sin x) - \frac{x^2}{6} - \frac{x}{9}$$
.

3019.
$$y = \frac{1}{8} e^{2x} (4x+1) - \frac{x^3}{6} - \frac{x^2}{4} + \frac{x}{4}$$
. **3020.** $y = C_1 e^x + C_2 e^{-x} - x \sin x - \cos x$.

3021.
$$y = C_1 e^{-2x} + C_2 e^{2x} - \frac{e^{2x}}{20} (\sin 2x + 2 \cos 2x).$$

3022.
$$y = C_1 \cos 2x + C_2 \sin 2x - \frac{x}{4} (3 \sin 2x + 2 \cos 2x) + \frac{1}{4}$$
.

3023.
$$y = e^x (C_1 \cos x + C_2 \sin x - 2x \cos x)$$
. **3024.** $y = C_1 e^x + C_2 e^{-x} + \frac{1}{4} (x^2 - x) e^x$.

3025.
$$y = C_1 \cos 3x + C_2 \sin 3x + \frac{1}{4} x \sin x - \frac{1}{16} \cos x + \frac{1}{54} (3x - 1) e^{3x}$$
.

3026.
$$y = C_1 e^{3x} + C_2 e^{-x} + \frac{1}{9} (2-3x) + \frac{1}{16} (2x^2 - x) e^{3x}$$
.

3027.
$$y = C_1 + C_2 e^{2x} - 2xe^x - \frac{3}{4}x - \frac{3}{4}x^2$$
. **3028.** $y = \left(C_1 + C_2 x + \frac{x^3}{6}\right)e^{2x}$.

3029.
$$y = C_1 e^{-3x} + C_2 e^x - \frac{1}{8} (2x^2 + x) e^{-3x} + \frac{1}{16} (2x^2 + 3x) e^x$$
.

3030. $y = C_1 \cos x + C_2 \sin x + \frac{x}{4} \cos x + \frac{x^2}{4} \sin x - \frac{x}{8} \cos 3x + \frac{3}{32} \sin 3x$. Uputa. Produkt kosinusa pretvorite u sumu kosinusa.

3031.
$$y = C_1 e^{-x\sqrt{2}} + C_2 e^{x\sqrt{2}} + xe^x \sin x + e^x \cos x$$
.

3032.
$$y = C_1 \cos x + C_2 \sin x + \cos x \ln \left| \cot \left(\frac{x}{2} + \frac{\pi}{4} \right) \right|$$

3033.
$$y = C_1 \cos x + C_2 \sin x + \sin x \cdot \ln \left| \operatorname{tg} \frac{x}{2} \right|$$
. **3034.** $y = (C_1 + C_2 x) e^x + x e^x \ln |x|$.

3035.
$$y = (C_1 + C_2 x) e^{-x} + xe^{-x} \ln |x|$$
.

3036. $y = C_1 \cos x + C_2 \sin x + x \sin x + \cos x \ln |\cos x|$.

3037.
$$y = C_1 \cos x + C_2 \sin x - x \cos x + \sin x \ln |\sin x|$$
.

3038. a)
$$y = C_1 e^x + C_2 e^{-x} + (e^x + e^{-x}) \operatorname{arctg} e^x$$
; b) $y = C_1 e^{x\sqrt{2}} + C_2 e^{-x\sqrt{2}} + e^{x^2}$

3040. Jednadžba gibanja je
$$\frac{2}{g} \left(\frac{d^2x}{dt^2} \right) = 2 - k (x+2) (k=1); T = 2\pi \sqrt{\frac{2}{g}} s.$$

3041. $x = \frac{2g \sin 30t - 60 \sqrt{g} \sin \sqrt{gt}}{g - 900}$ cm. *Uputa*. Ako x računamo od položaja u kojem teret miruje, onda je $\frac{4}{g} x'' = 4 - k (x_0 + x - y - l)$, gdje je x_0 udaljenost točke mirovanja tereta od početne tačke ovješenja opruge, l je duljina opruge u stanju mirovanja; prema tome je $k (x_0 - l) = 4$ i $\frac{4}{g} \frac{d^2x}{dt^2} = -k (x - y)$, gdje je k = 4, g = 981 cm/s².

3042.
$$m \frac{d^2x}{dt^2} = k (b-x) - k(b+x); x = c \cos\left(t \sqrt{\frac{2k}{m}}\right)$$

3043. 6
$$\frac{d^2s}{dt^2} = gs$$
; $t = \sqrt{\frac{6}{g}} \ln (6 + \sqrt{35})$.

3044. a) $r = \frac{a}{2} (e^{\omega t} + e^{-\omega t})$; b) $r = \frac{v_0}{2c} (e^{\omega t} - e^{-\omega t})$. Uputa. Diferencijalna jednadžba gibanja je $\frac{\mathrm{d}^2 r}{\mathrm{d} s^2} = \omega^2 r$.

3045.
$$y = C_1 + C_2 e^x + C_3 e^{12x}$$
.

3046.
$$y = C_1 + C_2 e^{-x} + C_3 e^x$$
.

3047.
$$y = C_1 e^{-x} + e^{\frac{x}{2}} \left(C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x \right).$$

3048.
$$y = C_1 + C_2 x + C_3 e^{x\sqrt{2}} + C_4 e^{-x\sqrt{2}}$$
.

3049.
$$y = e^x (C_1 + C_2 x + C_3 x^2)$$

3050.
$$y = e^x (C_1 \cos x + C_2 \sin x) + e^{-x} (C_3 \cos x + C_4 \sin x)$$
.

3051.
$$y = (C_1 + C_2 x) \cos 2x + (C_3 + C_4 x) \sin 2x$$
.

3052.
$$y = C_1 + C_2 e^{-x} + e^{\frac{x}{2}} \left(C_3 \cos \frac{\sqrt{3}}{2} x + C_4 \sin \frac{\sqrt{3}}{2} x \right)$$
.

3053.
$$y = (C_1 + C_2 x) e^{-x} + (C_3 + C_4 x) e^{x}$$
.

3054.
$$y = C_1 e^{ax} + C_2 e^{-ax} + C_3 \cos ax + C_4 \sin ax$$
.

3055.
$$y = (C_1 + C_2 x) e^{\sqrt{3x}} + (C_3 + C_4 x) e^{-\sqrt{3x}}$$
.

3056.
$$y = C_1 + C_2 x + C_3 \cos ax + C_4 \sin ax$$
.

3057.
$$y = C_1 + C_2 x + (C_3 + C_4 x) e^{-x}$$
.

3058.
$$y = (C_1 + C_2 x) \cos x + (C_3 + C_4 x) \sin x$$
.

3059.
$$y = e^{-x} (C_1 + C_2 x + \ldots + C_n x^{n-1})$$

3059.
$$y = e^{-x} (C_1 + C_2 x + \ldots + C_n x^{n-1}).$$
 3060. $y = C_1 + C_2 x + \left(C_3 + C_4 x + \frac{x^2}{2}\right) e^{x}.$

3061.
$$y = C_1 + C_2 x + 12x^2 + 3x^3 + \frac{1}{2}x^4 + \frac{1}{20}x^5 + (C_3 + C_4 x)e^x$$
.

3062.
$$y = C_1 e^x + e^{-\frac{x}{2}} \left(C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x \right) - x^3 - 5.$$

3063.
$$y = C_1 + C_2 x + C_3 x^2 + C_4 e^{-x} + \frac{1}{1088} (4 \cos 4x - \sin 4x).$$

3064.
$$y = C_1 e^{-x} + C_2 + C_3 x + \frac{3}{2} x^2 - \frac{1}{3} x^3 + \frac{1}{12} x^4 + e^x \left(\frac{3}{2} x - \frac{15}{4} \right)$$
.

3065.
$$y = C_1 e^{-x} + C_2 \cos x + C_3 \sin x + e^x \left(\frac{x}{4} - \frac{3}{8}\right)$$
.

3066. $y = C_1 + C_2 \cos x + C_3 \sin x + \sec x + \cos x \ln |\cos x| - \lg x \sin x + x \sin x$.

3067.
$$y = e^{-x} + e^{-\frac{x}{2}} \left(\cos \frac{\sqrt{3}}{2} x + \frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{3} x \right) + x - 2.$$

3068.
$$y = (C_1 + C_2 \ln x) \frac{1}{x}$$
.

3069.
$$y = C_1 x^3 + \frac{C_2}{x}$$
.

3070.
$$y = C_1 \cos(2 \ln x) + C_2 \sin(2 \ln x)$$
.

3071.
$$y = C_1 x + C_2 x^2 + C_3 x^3$$
.

3072.
$$v = C_1 + C_2 (3x+2)^{-\frac{4}{3}}$$
.

3073.
$$y = C_1 x^2 + \frac{C_2}{x}$$
.

3074.
$$y = C_1 \cos(\ln x) + C_2 \sin(\ln x)$$
.

3075.
$$y = C_1 x^3 + C_2 x^2 + \frac{1}{2} x$$
.

3076.
$$y = (x+1)^2 [C_1 + C_2 \ln (x+1)] + (x+1)^3$$
. **3077.** $y = x (\ln x + \ln^2 x)$.

3077.
$$y = x (\ln x + \ln^2 x)$$
.

3078.
$$y = C_1 \cos x + C_2 \sin x$$
, $z = C_2 \cos x - C_1 \sin x$.

3079.
$$y=e^{-x}(C_1\cos x+C_2\sin x), z=\frac{1}{5}e^{-x}[(C_2-2C_1)\cos x-(C_1+2C_2)\sin x].$$

3080.
$$y = (C_1 - C_2 - C_1 x) e^{-2x}, z = (C_1 x + C_2) e^{-2x}.$$

3081.
$$x = C_1 e^t + e^{-\frac{t}{2}} \left(C_2 \cos \frac{\sqrt{3}}{2} t + C_3 \sin \frac{\sqrt{3}}{2} t \right),$$

$$y = C_1 e^t + e^{-\frac{t}{2}} \left(\frac{C_3 \sqrt{3} - C_2}{2} \cos \frac{\sqrt{3}}{2} t - \frac{C_2 \sqrt{3} + C_3}{2} \sin \frac{\sqrt{3}}{2} t \right),$$

$$z = C_1 e^t + e^{-\frac{t}{2}} \left(\frac{-C_3 \sqrt{3} - C_2}{2} \cos \frac{\sqrt{3}}{2} t + \frac{C_2 \sqrt{3} - C_3}{2} \sin \frac{\sqrt{3}}{2} t \right).$$

3082.
$$x = C_1 e^{-t} + C_2 e^{2t}$$
, $y = C_3 e^{-t} + C_2 e^{2t}$, $z = -(C_1 + C_3) e^{-t} + C_2 e^{2t}$.

3083.
$$y = C_1 + C_2 e^{2x} - \frac{1}{4} (x^2 + x), z = C_2 e^{2x} - C_1 + \frac{1}{4} (x^2 - x - 1).$$

3084.
$$y = C_1 + C_2 x + 2 \sin x$$
, $z = -2C_1 - C_2 (2x+1) - 3 \sin x - 2 \cos x$.

3085.
$$y = (C_2 - 2 C_1 - 2 C_2 x) e^{-x} - 6x + 14$$
, $z = (C_1 + C_2 x) e^{-x} + 5x - 9$; $C_1 = 9$, $C_2 = 4$, $y = 14 (1 - e^{-x}) - 2x (3 + 4e^{-x})$, $z = -9 (1 - e^{-x}) + x (5 + 4e^{-x})$.

3086.
$$x = 10 e^{2t} - 8e^{3t} - e^{t} + 6t - 1$$
; $y = -20e^{2t} + 8e^{3t} + 3e^{t} + 12t + 10$.

3087.
$$y = \frac{2 C_1}{(C_2 - x)^2}, z = \frac{C_1}{C_2 - x}.$$

3088 . a)
$$\frac{(x^2+y^2)y}{x^2} = C_1$$
, $\frac{z}{y} = C_2$; b) $\ln \sqrt{x^2+y^2} = \operatorname{arctg} \frac{y}{x} + C_1$, $\frac{z}{\sqrt{x^2+y^2}} = C_2$. c) Uputa. Integriranjem homogene jednadžbe $\frac{dx}{x-y} = \frac{dy}{x+y}$, nalazimo prvi integral $\ln \sqrt{x^2+y^2} = \operatorname{arctg} \frac{y}{x} + C_2$

+
$$C_1$$
. Nadalje upotrebom svojstava izvedenih razmjera, imamo $\frac{dz}{z} = \frac{x \, dx}{x \, (x-y)} = \frac{y \, dy}{y \, (x+y)} = \frac{x \, dx + y \, dy}{x^2 + y^2}$. Odatle je $\ln z = \frac{1}{2} \ln (x^2 + y^2) + \ln C_2$ i prema tome, $\frac{z}{\sqrt{y^2 + y^2}} = C_2$; $d)x + y + y + y = 0$

$$+z=0, x^2+y^2+z^2=6.$$
 Uputa. Primjenom svojstava izvedenih razmjera imamo: $\frac{dx}{y-z}=$

$$= \frac{\mathrm{d}y}{z-x} = \frac{\mathrm{d}z}{x-y} = \frac{\mathrm{d}x + \mathrm{d}y + \mathrm{d}z}{0}; \text{ odatle je } \mathrm{d}x + \mathrm{d}y + \mathrm{d}z = 0 \text{ i prema tome } x+y+z=C_1. \text{ Analogno}$$

$$je\frac{x\,dx}{x\,(y-z)} = \frac{y\,dy}{y\,(z-x)} = \frac{z\,dz}{z\,(x-y)} = \frac{x\,dx+y\,dy+z\,dz}{0}; x\,dx+y\,dy+z\,dz = 0 i x^2+y^2+z^2 = C_2.$$

Na taj način integralne krivulje su kružnice $x+y+z=C_1$, $x^2+y^2+z^2=C_2$. Iz početnih uvjeta x=1, y=1, z=-2 dobit čemo $C_1=0$, $C_2=6$.

3089.
$$y = C_1 x^2 + \frac{C_2}{x} - \frac{x^2}{18} (3 \ln^2 x - 2 \ln x), \quad Z = 1 - 2C_1 x + \frac{C_2}{x^2} + \frac{x}{9} (3 \ln^2 x + \ln x - 1).$$

3090.
$$y = C_1 e^{x\sqrt{2}} + C_2 e^{-x\sqrt{2}} + C_3 \cos x + C_4 \sin x + e^x - 2x$$
,
 $Z = -C_1 e^{x\sqrt{2}} - C_2 e^{-x\sqrt{2}} - \frac{C_3}{4} \cos x - \frac{C_4}{4} \sin x - \frac{1}{2} e^x + x$.

3091.
$$x = \frac{v_0 m \cos \alpha}{k} \left(1 - e^{-\frac{k}{m}t}\right)$$
, $y = \frac{m}{k^2} (kv_0 \sin \alpha + mg) \left(1 - e^{-\frac{k}{m}t}\right) - \frac{mgt}{k}$. Rješenje.
$$m \frac{dv_x}{dt} = -kv_x; \ m \frac{dv_y}{dt} = -kv_y - mg \text{ pri početnim uvjetima: } x_0 = y_0 = 0, \ v_{x0} = v_0 \cos \alpha,$$
$$v_{y0} = v_0 \sin \alpha \text{ pri } t = 0. \text{ Integriranjem dobijemo: } v_x = v_0 \cos \alpha e^{-\frac{k}{m}t}, \ kv_y + mg = (kv_0 \sin \alpha + mg) e^{-\frac{k}{m}t}.$$

3092.
$$x = \alpha \cos \frac{k}{\sqrt{m}}t$$
, $y = \frac{v_0 \sqrt{m}}{k} \sin \frac{k}{\sqrt{m}}t$, $\frac{x^2}{a^2} + \frac{k^2 y^2}{mv_0^2} = 1$. Uputa. Diferencijalne jednadžbe gibanja su: $m \frac{d^2 x}{dt^2} = -k^2 x$; $m \frac{d^2 y}{dt^2} = -k^2 y$. **3093.** $y = -2 - 2x - x^2$.

3094.
$$y = \left(y_0 + \frac{1}{4}\right)e^{2(x-1)} - \frac{1}{2}x + \frac{1}{4}$$

3095.
$$y = \frac{1}{2} + \frac{1}{4}x + \frac{1}{8}x^2 + \frac{1}{16}x^3 + \frac{9}{32}x^4 + \frac{21}{320}x^5 + \dots$$

3096.
$$y = \frac{1}{3}x^3 - \frac{1}{7 \cdot 9}x^7 + \frac{2}{7 \cdot 11 \cdot 27}x^{11} - \dots$$

3097.
$$y = x + \frac{x^2}{1 \cdot 2} + \frac{x^3}{2 \cdot 3} + \frac{x^4}{3 \cdot 4} + \dots$$
; red konvergira za $-1 \le x \le 1$.

3098.
$$y=x-\frac{x^2}{(1!)^2\cdot 2}+\frac{x^3}{(2!)^2\cdot 3}-\frac{x^4}{(3!)^2\cdot 4}+\ldots;$$
 red konvergira za $-\infty < x < +\infty$. Uputa. Koristite se metodom neodređenih koeficijenata.

3099.
$$y = 1 - \frac{1}{3!}x^3 + \frac{1 \cdot 4}{6!}x^6 - \frac{1 \cdot 4 \cdot 7}{9!}x^9 + \dots$$
; red konvergira za $-\infty < x < +\infty$.

3100. $y = \frac{\sin x}{x}$. Uputa. Koristite se metodom neodređenih koeficijenata.

3101. $y = 1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2} - \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \dots$; red konvergira za $|x| < +\infty$. Uputa. Koristite se metodom neodređenih koeficijenata.

3102.
$$x = a \left(1 - \frac{1}{2!} t^2 + \frac{2}{4!} t^4 - \frac{9}{6!} t^6 + \frac{55}{8!} t^8 - \dots \right).$$

3103. $u = A \cos \frac{a\pi t}{l} \sin \frac{\pi x}{l}$. Uputa. Koristite se uvjetima: u(0, t) = 0; u(l, t) = 0, $u(x, 0) = A \sin \frac{\pi x}{l}$, $\frac{\partial u(x, 0)}{\partial t} = 0$.

3104.
$$u = \frac{2l}{\pi^2 a} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} \sin \frac{(2k+1)\pi at}{l} \sin \frac{(2k+1)\pi x}{l}$$
. Uputa. Koristite se uvjetima: $u(0, t) = 0, \ u(l, t) = 0, \ u(x, 0) = 0, \frac{\partial u(x, 0)}{\partial t} = 1.$

3105. $u = \frac{8h}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{2} \cos \frac{n\pi at}{l} \sin \frac{n\pi x}{l}$. Uputa. Koristite se ovim uvjetima:

$$\frac{\partial u(x,0)}{\partial t} = 0, \ u(0,t) = 0, \ u(l,t) = 0, \ u(x,0) = \begin{cases} \frac{2hx}{l} \text{ za } 0 < x \leq \frac{l}{2}, \\ 2h\left(1 - \frac{x}{l}\right) \text{ za } \frac{l}{2} < x < l. \end{cases}$$

3106.
$$u = \sum_{n=0}^{\infty} A_n \cos \frac{(2n+1)a\pi t}{2l} \sin \frac{(2n+1)\pi x}{2l}$$
, gdje su koeficijenti

$$A_n = \frac{2}{l} \int_0^l \frac{x}{l} \sin \frac{(2n+1)\pi x}{2l} dx = \frac{8(-1)^n}{(2n+1)^2 \pi^2}.$$
 Uputa. Koristite se ovim uvjetima:

$$u(0, t)=0, \frac{\partial u(l, t)}{\partial x}=0, \quad u(x, 0)=\frac{x}{l}, \frac{\partial u(x, 0)}{\partial t}=0.$$

3107.
$$u = \frac{400}{\pi^3} \sum_{n=1}^{\infty} \frac{1}{n^3} (1 - \cos n\pi) \sin \frac{n\pi x}{100} \cdot e^{-\frac{a^2 n^2 \pi^2 t}{100^2}}$$
. Uputa. Koristite se ovim uvjetima: $u(0, t) = 0$, $u(100, t) = 0$, $u(x, 0) = 0$, 0 , $u(x, 0) = 0$, $u(100 - x)$.

GLAVA X

- **3108.** a) $\leq 1''$; $\leq 0.0023\%$; b) $\leq 1 \text{mm}$; $\leq 0.26\%$; c) $\leq 1 \text{ d}$ $\leq 0.0016\%$.
- **3109.** a) ≤ 0.05 ; $\leq 0.021\%$; b) ≤ 0.0005 ; $\leq 1.45\%$; c) ≤ 0.005 ; $\leq 0.16\%$.
- **3110.** a) 2 znamenke; $48 \cdot 10^3$ ili $49 \cdot 10^3$, jer je broj uključen između 47877 i 48845; b) 2 znamenke; 15; c) 1 znamenka; $6 \cdot 10^2$. Praktički rezultat treba pisati u obliku $(5,9\pm0,1) \cdot 10^2$.
- **3111.** a) 29,5; b) $1,6 \cdot 10^2$; c) 43,2.
- 3112. a) 84,2; b) 18,5 ili 18,47±0,01; c) rezultat izračunavanja nema točnih znamenaka jer je razlika jednaka stotinki pri mogućoj vrijednosti apsolutne pogreške od jedne stotinke.
- 3113 . 1.8 ± 0.3 cm². Uputa. Koristite se formulom za prirast površine kvadrata.
- **3114.** a) 30.0 ± 0.2 ; b) 43.7 ± 0.1 ; c) 0.3 ± 0.1 .
- 3115. 19.9 ± 0.1 m².
- 3116. a) 1,1295±0,0002; b) 0,120±0,006; c) kvocijent može varirati između 48 i 62. Prema tome u kvocijentu nije moguće smatrati pouzdanim niti jednu decimalnu znamenku.
- 3117. 0,480. Posljednja brojka može varirati za 1.
- **3118.** a) 0,1729; b) $277 \cdot 10^3$; c) 2.
- **3119.** $(2,05\pm0,01)\cdot10^3$ cm².
- **3120.** a) 1,648; b) $4,025\pm0,001$; c) $9,006\pm0,003$.
- 3121. 4,01 · 103 cm². Apsolutna pogreška iznosi 6,5 cm. Relativna pogreška iznosi 0,16%.
- **3122.** Kateta je jednaka 13,8 \pm 0,2 cm; $\sin \alpha = 0,44 \pm 0,01$; $\alpha = 26^{\circ}15' \pm 35'$.
- **3123.** 2,7±0,1. **3124.** 0,27 A.
- **3125.** Duljinu njihala treba izmjeriti s točnošću do 0,3 cm; brojeve π i q uzmite s tri znamenke (prema principu istih utjecaja).
- 3126. Polumjere i izvodnicu izmjerite s relativnom pogreškom 1/300. Broj π uzmite s tri znamenke (prema principu istih utjecaja).
- 3127. Veličinu l izmjerite s točnošću 0.2% a s s točnošću od 0.7% (prema principu istih utjecaja).