Der Satz von Smolensky

Seminar Theorie Boole'scher Schaltkreise

Leo Kayser

Sommersemester 2022

Institut für Theoretische Informatik

A modulo mio

Definition 1: (MOD_p, $\mathcal{B}_1(p)$, AC⁰[p])

(i) Zu $p\in\mathbb{N}$ sei $\mathsf{MOD}_p=(\mathsf{mod}_p^n)_{n\in\mathbb{N}}$ die Familie der booleschen Funktionen

$$\operatorname{\mathsf{mod}}_p^n(x_1,\ldots,x_n) \coloneqq \llbracket x_1 + \cdots + x_n \equiv 0 \ \operatorname{\mathsf{mod}} \ p
rbracket$$
 .

(ii) Es sei
$$\mathcal{B}_1(p) \coloneqq \mathcal{B}_1 \cup \{\mathsf{MOD}_p\}$$
 und $\mathrm{AC}^0[p] \coloneqq \mathrm{SIZE\text{-}DEPTH}_{\mathcal{B}_1(p)}(n^{O(1)},1)$.

Beobachtung: Ist *p* prim, dann folgt aus dem kleinen Fermat

$$a^p \equiv a \mod p$$
,

dass man MOD_p durch Polynome über $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ darstellen kann:

$$\operatorname{mod}_p^n(x_1,\ldots,x_n) \equiv 1 - (x_1 + \cdots + x_n)^{p-1} \operatorname{mod} p.$$

Aus Schaltkreis mach' Polynom

Definition 2: (MOD_p- \wedge -Schaltkreis, Ordnung)

Ein MOD_{p} - \land -Schaltkreis der Ordnung $\leq d$ besteht aus drei Ebenen:

- Ausgabegatter ist ein MOD_p-Gatter;
- Vorgänger des MOD_p -Gatters sind \land -Gatter mit fan-in $\leq d$;
- Vorgänger der ∧-Gatter sind Eingabevariablen oder deren Negation.

Satz 3: (MOD_p- \land -Schaltkreis \rightsquigarrow Polynom)

Sei p prim und C ein MOD_{p} - \wedge -Schaltkreis der Ordnung d_0 . Dann gibt es ein $q \in \mathbb{F}_p[X_1,\ldots,X_n]$ vom $\mathsf{Grad}\ (p-1)d_0$, mit

$$f_C(x_1,\ldots,x_n)=q(x_1,\ldots,x_n)\in\{0,1\}\subseteq\mathbb{F}_p\qquad \forall \overline{x}\in\{0,1\}^n.$$

Beweis von Satz 3

Beweis.

- Sei G ein \wedge^d -Gatter in C mit Vorgängern $\{x_{i_1},\ldots,x_{i_j},\neg x_{i_{j+1}},\ldots,\neg x_{i_d}\}$
- Wir dürfen oBdA annehmen, dass $i_k \neq i_{k'}$ für $k \neq k'$
- Folgendes Polynom berechnet den Teilschaltkreis über G:

$$t_G(X_1,\ldots,X_n) \coloneqq X_{i_1}\cdots X_{i_j}\cdot (1-X_{i_{j+1}})\cdots (1-X_{i_d})$$

• Wähle als Polynom

$$q(X_1,\ldots,X_n):=1-\left(\sum_G t_G(X_1,\ldots,X_n)\right)^{p-1}$$

• $\deg q = (p-1)\deg(\sum_G t_G) \le (p-1)d_0$

$\mathrm{AC}^0[ho]$ -Sprachen kann man durch Polynome gut annähern...

Satz 4: (Robin, vor ein paar Minuten)

Sei $A \in AC^0[p]$ und $k \in \mathbb{N}$. Dann gibt es eine MOD_p - \wedge -Schaltkreisfamilie \mathcal{C} der Ordnung $(\log n)^{O(1)}$, sodass

$$\# \{ \overline{x} \in \{0,1\}^n \mid c_A(\overline{x}) = f_C(\overline{x}) \} \ge 2^n (1 - n^{-k}).$$

Korollar 5: (Satz 3 + Satz 4)

Sei $A \in AC^0[p]$, $n, k \in \mathbb{N}$. Es gibt Polynome $q_n \in \mathbb{F}_p[X_1, \ldots, X_n]$ vom Grad $(\log n)^{O(1)}$, sodass für mindestens $2^n(1-n^{-k})$ der Eingaben $\overline{x} \in \{0,1\}^n$ gilt

$$c_A(x_1x_2...x_n) = q_n(x_1,x_2,...,x_n) \in \{0,1\}.$$

...die MOD_r-Funktion hingegen nicht!

Zu $r,i\in\mathbb{N}$ sei $\mathsf{MOD}_{r,i}=(\mathsf{mod}_{r,i}^n)_{n\in\mathbb{N}}$ die Familie der booleschen Funktionen

$$\operatorname{mod}_{r,i}^{n}(x_{1},\ldots,x_{n}) := \llbracket x_{1}+\cdots+x_{n} \equiv i \operatorname{mod} r \rrbracket.$$

Algebrafakt: Ist ggT(r,p)=1, so gibt es ein $k\in\mathbb{N}$ und ein $1\neq\omega\in\mathbb{F}_{p^k}$ mit $\omega^r=1$.

Satz 6: (MOD_{r,i} ist schlecht polynomiell approximierbar)

Sei p prim, r,k wie eben. Dann gibt es ein n_0 , sodass für $n \geq n_0$ gilt: Für beliebige $F_0,\ldots,F_{r-1} \in \mathbb{F}_{p^k}[X_1,\ldots,X_n]$ vom Grad $\leq \sqrt{n}$ gibt es $\geq \frac{2^n}{10}$ Wörter $\overline{x} \in \{0,1\}^n$ mit

$$F_i(\overline{x}) \neq \mathsf{MOD}_{r,i}(\overline{x})$$
 für mind. ein $0 \leq i < r$.

Auf multilineare Polynome kann man zählen

- Ein Monom $X_1^{\alpha_1} \cdots X_n^{\alpha_n}$ ist multilinear, falls stets $\alpha_i \leq 1$
- $\mathsf{MLM}(n, \leq d) = \mathsf{Menge}$ der multilinearen Monome in n Variablen vom $\mathsf{Grad} \leq d$

Lemma 7: Technisches Abzählargument Es gibt ein n_0 , sodass

$$\#\mathsf{MLM}(n, \leq \frac{n+\sqrt{n}}{2}) \leq \frac{9}{10} \cdot 2^n \qquad \forall n \geq n_0.$$

- Multilineare Polynome = Linearkombinationen multilinearer Monome
- Notation MLP/ $\mathbb{F}(n, \leq d)$; erhalten unmittelbar Abschätzung

$$\#\mathsf{MLP}/\mathbb{F}\left(n, \leq \frac{n+\sqrt{n}}{2}\right) \leq |\mathbb{F}|^{\frac{9}{10} \cdot 2^n} \qquad \forall n \geq n_0$$

Beweisidee zu Satz 6 ($\#A \leq \frac{9}{10} \cdot 2^n$)

- "Korrekte" Eingaben $A := \{ \overline{x} \in \{0,1\}^n \mid \forall i : F_i(\overline{x}) = \mathsf{MOD}_{r,i}(\overline{x}) \}$
- Man kann eine Injektion $\mathsf{Abb}(A,\mathbb{F}_{p^k}) \hookrightarrow \mathsf{MLP}/\mathbb{F}_{p^k}(n,\leq d)$ konstruieren:
 - $* A \leftrightarrow \tilde{A} := \{ (\omega^{a_1}, \dots, \omega^{a_n}) \mid \overline{a} \in A \}$
 - * Zu jedem $f: \tilde{A} \to \mathbb{F}_{p^k}$ gibt es ein $q \in \mathsf{MLP}/\mathbb{F}_{p^k} \left(n, \leq \frac{n+\sqrt{n}}{2}\right)$, welches mit f auf \tilde{A} übereinstimmt
- Nach dem Abzählargument: $\#\mathsf{MLP}/\mathbb{F}_{p^k}(n,\leq \frac{n+\sqrt{n}}{2}) \leq \left|\mathbb{F}_{p^k}\right|^{\frac{9}{10}\cdot 2^n} = (p^k)^{\frac{9}{10}\cdot 2^n}$
- Zusammensetzen:

$$(p^k)^{\#A} = \#\mathsf{Abb}(A, \mathbb{F}_{p^k}) \leq \#\mathsf{MLP}/\mathbb{F}_{p^k}(n, \leq \frac{n+\sqrt{n}}{2}) \leq (p^k)^{\frac{9}{10} \cdot 2^n}$$

$$\Rightarrow \#A \leq \frac{9}{10} \cdot 2^n$$

Der große Coup

Roman Smolensky (1960-1995)

Satz 8: (Smolensky [Smo87])

Für r teilerfremd zu p prim ist $MOD_r \notin AC^0[p]$.

Beweis von Satz 8

Beweis. Angenommen $MOD_r \in AC^0[p]$.

- Nach Korollar 5 gibt es zu $k \in \mathbb{N}$ Polynome $q_n \in \mathbb{F}_p[X_1, \dots, X_n]$ vom Grad $(\log n)^{O(1)}$, die modⁿ_r korrekt auf mindestens $(1 n^{-k})2^n$ Eingaben berechnen
- Sei $\deg(q_n) \leq (\log n)^c$, wähle $n_1 \geq n_0$ mit

$$2^{n_1}(1-n_1^{-k}) > \frac{9}{10}2^{n_1-r} + (2^r-1)2^{n_1-r}, \qquad (\log(n_1+r))^c \le \sqrt{n_1}$$

• Definiere für $n \ge n_1$ Polynome $F_0, \ldots, F_{r-1} \in \mathbb{F}_{p^k}[X_1, \ldots, X_n]$ durch

$$F_i = q_{n+r}(X_1, \dots, X_n, \underbrace{0, \dots, 0}_{i \text{ Mal}}, \underbrace{1, \dots, 1}_{r-i \text{ Mal}}), \qquad 0 \leq i < r.$$

- Die F_i haben Grad $\leq \sqrt{n}$ und berechnen $\operatorname{mod}_{r,i}^n$ auf $> \frac{9}{10} 2^n$ Eingaben korrekt

Danke! Fragen?

Literaturquellen

- [All95] Eric Allender. Combinatorial Methods in Complexity Theory. Lectures 8 & 9. 16. Feb. 1995. URL: https://people.cs.rutgers.edu/~allender/papers/notes6.pdf.
- [Smo87] Roman Smolensky. "Algebraic methods in the theory of lower bounds for Boolean circuit complexity". In: *Proceedings of the nineteenth annual ACM symposium on Theory of computing* (1987).
- [Vol99] Heribert Vollmer. "Introduction to Circuit Complexity". In: *Texts in Theoretical Computer Science An EATCS Series.* 1999.

Bildquellen

Allan Borodin. Tribute to Roman Smolensky. Computational Complexity 6, 195–198 (1996). https://doi.org/10.1007/BF01294252