Algebra liniară Model lucrare

- 1. a) Să se definească subspațiul unui spațiu vectorial și să se dea un exemplu de subspațiu al \mathbb{R} -spațiului vectorial \mathbb{R}^2 .
- b) Fie V un K-spațiu vectorial și fie $U_1, U_2 \leq_K V$ două subspații. Să se arate că $U_1 \cap U_2 \leq_K V$.
- c) Fie $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 3x_1 x_2 + x_3 = 0 = x_1 x_2 x_3\}$. Să se arate că $S \leq \mathbb{R}^3$ și să se găsească o bază pentru S.
- 2. a) Să se definească dependenta liniară și să se dea un exemplu de 3 vectori liniar dependenți în \mathbb{R}^3 .
- b) Fie V un K-spațiu vectorial și $\mathbf{b} = [b_1, b_2]^t \in V^{2 \times 1}$, cu $b_1 \neq 0$. Să se arate că \mathbf{b} este liniar dependentă dacă și numai dacă $b_2 \in \langle b_1 \rangle$.
- c) Să se arate că

$$\mathbf{b} = (b_1 = (1, 2, -1), b_2 = (3, 2, 2), b_3 = (-1, -3, 2))^t$$

este o bază pentru \mathbb{R}^3 și să se determine $[x]_{\mathbf{b}}$, unde x=(5,7,-1).

- 3. a) Fie V un K-spaţiu vectorial şi fie $v_1, v_2, v_3 \in V$ astfel încât $V = \langle v_1, v_2, v_3 \rangle$. Să se arate că dacă $f, g: V \to W$ sunt aplicații liniare cu proprietatea că $f(v_i) = g(v_i)$, pentru i = 1, 2, 3 atunci f = g.
- b) Se consideră subspațiile lui \mathbb{R}^4 :

$$S = \langle s_1 = (1, -1, 2, 2), s_2 = (2, 0, 3, 7), s_3 = (1, 1, 2, 4), s_4 = (2, 0, 5, 5) \rangle$$

şi

$$T = \langle t_1 = (-2, 4, 7, -3), t_2 = (1, -1, -4, 2), t_3 = (-1, 3, 3, -1) \rangle.$$

Să se determine câte o bază și dimensiunea pentru S, T S + T și $S \cap T$.

- 4. Fie $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x_1, x_2, x_3) = (2x_1 x_2 + x_3, -x_1 + 3x_3, x_1 2x_2 + 11x_3)$.
- a) Să se arate că f este liniară.
- b) Să se determine matricile $[f]_{\mathbf{e},\mathbf{e}}$ şi $[f]_{\mathbf{b},\mathbf{b}}$ unde \mathbf{e} este baza canonică a lui \mathbb{R}^3 iar \mathbf{b} este baza de la exercitiul 2 c.
- c) Să se determine câte o bază și dimensiunea pentru $\operatorname{Ker} f$ și $\operatorname{Im} f$.