

Art of Problem Solving 2015 Germany Team Selection Test

1	Find the least positive integer n , such that there is a polynomial
	$P(x) = a_{2n}x^{2n} + a_{2n-1}x^{2n-1} + \dots + a_1x + a_0$
	with real coefficients that satisfies both of the following properties: - For $i=0,1,\ldots,2n$ it is $2014\leq a_i\leq 2015$. - There is a real number ξ with $P(\xi)=0$.
2	A positive integer n is called $naughty$ if it can be written in the form $n = a^b + b$ with integers $a, b \ge 2$. Is there a sequence of 102 consecutive positive integers such that exactly 100 of those numbers are naughty?
3	Let ABC be an acute triangle with $ AB \neq AC $ and the midpoints of segments $[AB]$ and $[AC]$ be D resp. E . The circumcircles of the triangles BCD and BCE intersect the circumcircle of triangle ADE in P resp. Q with $P \neq D$ and $Q \neq E$. Prove $ AP = AQ $.
	[i] (Notation: $ \cdot $ denotes the length of a segment and [·] denotes the line segment.) [/i]
4	Determine all pairs (x, y) of positive integers such that
	$\sqrt[3]{7x^2 - 13xy + 7y^2} = x - y + 1.$
	Proposed by Titu Andreescu, USA
5	Let ABC be an acute triangle with the circumcircle k and incenter I . The perpendicular through I in CI intersects segment $[BC]$ in U and k in V . In particular V and A are on different sides of BC . The parallel line through U to AI intersects AV in X . Prove: If XI and AI are perpendicular to each other, then XI intersects segment $[AC]$ in its midpoint M .
	[i](Notation: [·] denotes the line segment.)[/i]
6	Construct a tetromino by attaching two 2×1 dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them S - and Z -tetrominoes, respectively.

Art of Problem Solving

2015 Germany Team Selection Test

Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove that no matter how we tile P using only S- and Z-tetrominoes, we always use an even number of Z-tetrominoes.

Proposed by Tamas Fleiner and Peter Pal Pach, Hungary

www.artofproblemsolving.com/community/c133020

Contributors: Kezer, hajimbrak