5 Superfícies i isometries

Exercici 5.1. Determineu quins dels següents subconjunts de \mathbb{R}^3 són superfícies regulars:

a)
$$S = \{(x, y, z) \in \mathbb{R}^3 \mid xyz = 1\}$$

b)
$$S = \{(x, y, z) \in \mathbb{R}^3 \mid z^2 + x^2y^2 - 2xyz = 0\}$$

c)
$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = \lambda \} \text{ on } \lambda \in \mathbb{R}$$

d)
$$S = \{(x, y, z) \in \mathbb{R}^3 \mid xy = 0\}$$

e)
$$C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - \cosh^2 z = 0\}$$

f)
$$H = \{(x, y, z) \in \mathbb{R}^3 \mid y \cos z = x \sin z\}.$$

Exercici 5.2. Sigui $\alpha(t)$ una corba parametritzada per l'arc amb curvatura i torsió no nul·les en tot punt. Considerem $\Phi(t,s) = \alpha(t) + s \alpha'(t)$.

- a) Donat t_0 , sigui $\pi \colon \mathbb{R}^3 \to P$ és la projecció ortogonal sobre el pla osculador P de $\alpha(t)$ en $t = t_0$. Proveu que existeix $\varepsilon > 0$ tal que $\pi \circ \Phi$ és injectiva en $U = (t_0, t_0 + \varepsilon) \times (0, \infty)$. Deduïu que Φ és injectiva en U.
- b) Proveu que per tot t_0 existeix $\varepsilon > 0$ tal que $\Phi : (t_0, t_0 + \varepsilon) \times (0, \infty) \to \mathbb{R}^3$ és una parametrització local d'una superfície.
- c) Proveu que els coeficients de la primera forma fonamental d'aquesta superfície no depenen de la torsió de α .
- d) Considerant una corba plana amb la mateixa curvatura que α , deduïu que hi ha una isometria entre un obert de la superfície anterior i un obert del pla.
- e) Calculeu els límits quan $h \to 0$ de

$$\frac{\Phi(t,h) - \Phi(t,0)}{|\Phi(t,h) - \Phi(t,0)|}, \quad \frac{\Phi(t-h,h) - \Phi(t,0)}{|(\Phi(t-h,h) - \Phi(t,0))|}, \quad \frac{\Phi(t+h,-h) - \Phi(t-h,h)}{|(\Phi(t+h,-h) - \Phi(t-h,h))|}$$

f) Donades dues successions $p_n, q_n \in S$ amb $p_n \neq q_n$ en una superfície regular S, proveu que si $p = \lim p_n = \lim q_n$, aleshores la successió $v_n = (p_n - q_n)/|p_n - q_n|$ admet una parcial convergent a un vector de T_pS . Deduïu que $\Phi((t_0, t_1) \times (-\epsilon, \epsilon))$ no és superfície regular per a cap t_0, t_1, ϵ .

Exercici 5.3. Decidiu entre quines de les següents superfícies de \mathbb{R}^3 existeix una isometria local:

a)
$$S = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}$$

b)
$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$$

c)
$$S = \{(x, y, z) \in \mathbb{R}^3 \mid z = \sin y\}$$

Exercici 5.4. Sigui S^2 l'esfera unitat de \mathbb{R}^3 . Volem demostrar que S^2 no és localment isomètrica a un pla.

- a) Sigui $D_r = \{p \in \mathbb{R}^2 : |p| \le r\}$ el disc pla de radi r i sigui $\overline{D}_r = \{(x, y, z) \in S^2 : z \ge \cos r\}$ el casquet format pels punts de colatitud $\le r$. Proveu que D_r (respectivament \overline{D}_r) està format pels punts de \mathbb{R}^2 (resp. S^2) que es poden unir a l'origen (0,0) (resp. al pol nord (0,0,1)) amb un arc de corba continguda a \mathbb{R}^2 (resp. a S^2) de longitud menor o igual que r.
- b) Calculeu l'àrea de D_r i de \overline{D}_r .
- c) Demostreu que no hi ha cap isometria entre un obert de \mathbb{R}^2 i un obert de S^2 .

Exercici 5.5. Es consideren les parametritzacions respectives ψ i φ de la catenoide C i de l'helicoide H donades per

$$\psi(u,v) = (\cosh v \cos u, \cosh v \sin u, v) \qquad \text{on} \quad u \in (0,2\pi), \ v \in \mathbb{R},$$

$$\varphi(z,w) = (w \cos z, w \sin z, z) \qquad \text{on} \quad z \in (0,2\pi), \ w \in \mathbb{R}$$

Comproveu que l'aplicació F determinada per $F(\psi(u,v)) = \varphi(u,\sinh v)$ és una isometria de la imatge de ψ en la catenoide C sobre un obert de l'helicoide H. Aquesta aplicació, es pot estendre a tot C? Es possible definir una isometria de H en C?