In [36]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from keras.models import Sequential
from keras.layers import Dense, Flatten,Conv2D
from keras.datasets import mnist
import tensorflow as tf
```

In [18]:

```
import os
!pip install opencv-python
import cv2
```

In [8]:

```
!pip install tensorflow
!pip install keras
Collecting tensorflow
 Using cached tensorflow-2.13.0-cp310-cp310-win_amd64.whl (1.9 kB)
Collecting tensorflow-intel==2.13.0
  Downloading tensorflow intel-2.13.0-cp310-cp310-win amd64.whl (276.5 M
B)
                                           117.6/276.5 MB 41.0 kB/s eta
1:04:41
ERROR: Exception:
Traceback (most recent call last):
  File "C:\Users\shahzad\anaconda3\Lib\New folder\lib\site-packages\pip
\_vendor\urllib3\response.py", line 437, in _error_catcher
  File "C:\Users\shahzad\anaconda3\Lib\New folder\lib\site-packages\pip
\_vendor\urllib3\response.py", line 560, in read
    data = self._fp_read(amt) if not fp_closed else b""
  File "C:\Users\shahzad\anaconda3\Lib\New folder\lib\site-packages\pip
\_vendor\urllib3\response.py", line 526, in _fp_read
    return self. fp.read(amt) if amt is not None else self. fp.read()
  File "C.\IIcarc\chahzad\anaconda?\Iih\Now folder\lih\cite_nackagec\nin
```

In [13]:

```
folder_path = ['C:\\Users\\shahzad\\Desktop\\train\\female','C:\\Users\\shahzad\\Desktop\
```

In [20]:

dataset=[]

In [28]:

```
# Iterate over the folder paths
for i in folder_path:
    folder_name = os.path.basename(i)
# Iterate over the images in the subdirectory
    for file_name in os.listdir(i):
        image_path = os.path.join(i, file_name)
        if os.path.isfile(image_path): # Only consider files
            # Load the image using OpenCV
            image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
            # If the image was successfully loaded
            if image is not None:
                 # Resize the grayscale image to 100X100 pixels
                resized_image = cv2.resize(image, (100, 100))
                # Flatten the image and append each pixel as a separate feature along wit
                flattened_image = resized_image.flatten().tolist()
                label = 'female' if 'female' in file_name else 'male' # Adjust Label ass
            dataset.append(flattened_image + [label])
        else:
            print(f"Error loading image: {image_path}")
image size = 100
num_pixels = image_size * image_size
column_names = [f'pixel_{i+1}' for i in range(num_pixels)] + ['label']
df = pd.DataFrame(dataset, columns=column_names)
print(df.head())
   pixel_1 pixel_2 pixel_3 pixel_4 pixel_5 pixel_6 pixel_7 pixel_8
\
0
        42
                  37
                           32
                                     32
                                              35
                                                        29
                                                                 22
                                                                           17
1
        53
                  57
                           55
                                     51
                                              58
                                                        64
                                                                 64
                                                                           64
2
                            9
        12
                  11
                                      8
                                               9
                                                        13
                                                                 15
                                                                           17
                                             178
3
       140
                 148
                          150
                                    159
                                                                          174
                                                       191
                                                                188
4
        32
                  20
                           12
                                                                 18
                                                                           20
                                     11
                                               1
                                                         8
   pixel_9
                      ...
            pixel_10
                            pixel_9992
                                         pixel_9993
                                                      pixel_9994
                                                                  pixel 9995
\
                   20
0
        17
                                      2
                                                  1
                                                               0
                                                                            1
        68
                   67
                                    109
                                                109
                                                                          106
1
                                                             108
2
        19
                   20
                                     19
                                                 23
                                                              30
                                                                           46
                       . . .
3
       166
                  172
                                     39
                                                 28
                                                              25
                                                                           25
                       . . .
4
        17
                   26
                                    108
                                                103
                                                             112
                                                                          108
                       . . .
                                                      pixel_10000
   pixel_9996
               pixel 9997
                            pixel 9998
                                         pixel 9999
                                                                    label
0
            7
                                     21
                                                 21
                                                                   female
                        15
                                                               17
                                                 89
                                                                   female
1
          103
                        99
                                     94
                                                               85
2
           59
                        48
                                     47
                                                 48
                                                               41
                                                                   female
3
           29
                        36
                                     39
                                                 38
                                                               35 female
4
           90
                        94
                                    104
                                                 96
                                                              101 female
```

[5 rows x 10001 columns]

```
In [45]:
```

```
df=pd.DataFrame(dataset)
df
```

Out[45]:

	0	1	2	3	4	5	6	7	8	9	 9991	9992	9993	9994	9995
0	42	37	32	32	35	29	22	17	17	20	 2	1	0	1	7
1	53	57	55	51	58	64	64	64	68	67	 109	109	108	106	103
2	12	11	9	8	9	13	15	17	19	20	 19	23	30	46	59
3	140	148	150	159	178	191	188	174	166	172	 39	28	25	25	29
4	32	20	12	11	1	8	18	20	17	26	 108	103	112	108	90
6977	34	30	33	42	52	57	42	36	36	45	 230	235	229	220	208
6978	56	58	52	49	49	51	53	58	65	70	 153	186	211	222	228
6979	51	38	46	60	66	73	78	84	88	91	 85	78	69	65	71
6980	204	148	86	46	35	39	39	38	49	57	 134	137	140	140	139
6981	56	52	47	43	43	46	49	53	56	55	 20	17	12	28	39

6982 rows × 10001 columns

In [61]:

```
images = []
labels = []
```

In [73]:

```
images=np.array(images)
labels=np.array(labels)
```

In [76]:

```
images=images/255
```

In [29]:

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
df['label_encoded'] = label_encoder.fit_transform(df['label'])
```

In []:

```
In [30]:
label = 'female' if 'female' in file_name.lower() else 'male'
In [31]:
unique_labels = df['label'].unique()
print(unique_labels)
['female' 'male']
In [33]:
!pip install tensorflow
\_vendor\resolvelib\resolvers.py", line 481, in resolve
    state = resolution.resolve(requirements, max_rounds=max_rounds)
  File "C:\Users\shahzad\anaconda3\Lib\New folder\lib\site-packages\pip
\_vendor\resolvelib\resolvers.py", line 373, in resolve
    failure_causes = self._attempt_to_pin_criterion(name)
  File "C:\Users\shahzad\anaconda3\Lib\New folder\lib\site-packages\pip
\_vendor\resolvelib\resolvers.py", line 213, in _attempt_to_pin_criterio
    criteria = self._get_updated_criteria(candidate)
  File "C:\Users\shahzad\anaconda3\Lib\New folder\lib\site-packages\pip
\_vendor\resolvelib\resolvers.py", line 204, in _get_updated_criteria
    self._add_to_criteria(criteria, requirement, parent=candidate)
  File "C:\Users\shahzad\anaconda3\Lib\New folder\lib\site-packages\pip
\_vendor\resolvelib\resolvers.py", line 172, in _add_to_criteria
    if not criterion.candidates:
  File "C:\Users\shahzad\anaconda3\Lib\New folder\lib\site-packages\pip
\_vendor\resolvelib\structs.py", line 151, in __bool__
    return bool(self._sequence)
  File "C:\Users\shahzad\anaconda3\Lib\New folder\lib\site-packages\pip
 internal \ necelution \ necelualit \ found condidates nu" line 1EE
In [38]:
label_counts = df['label'].value_counts()
print(label_counts)
female
          3491
          3491
male
Name: label, dtype: int64
In [81]:
# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(df.drop(columns=[0]),df[0],test_size=
# Print the shapes of the resulting sets
print("X_train shape:", X_train.shape)
print("X_test shape:", X_test.shape)
print("y_train shape:", y_train.shape)
print("y_test shape:", y_test.shape
X_train shape: (5585, 10000)
X_test shape: (1397, 10000)
y train shape: (5585,)
y_test shape: (1397,)
```

In []	:		
In []	:		

In [37]:

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
# Create a sequential model
model = Sequential()
# Add convolutional layers
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
# Flatten the output from convolutional layers
model.add(Flatten())
# Add dense Layers
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid')) # Output layer for binary classification (0 fd
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Print model summary
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 126, 126, 32)	896
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 63, 63, 32)	0
conv2d_1 (Conv2D)	(None, 61, 61, 64)	18496
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 30, 30, 64)	0
conv2d_2 (Conv2D)	(None, 28, 28, 128)	73856
<pre>max_pooling2d_2 (MaxPoolin g2D)</pre>	(None, 14, 14, 128)	0
flatten (Flatten)	(None, 25088)	0
dense (Dense)	(None, 128)	3211392
dropout (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 64)	8256
dense_2 (Dense)	(None, 1)	65

Total params: 3312961 (12.64 MB) Trainable params: 3312961 (12.64 MB) Non-trainable params: 0 (0.00 Byte)

In [94]:

```
from sklearn.preprocessing import LabelEncoder
# Initialize label encoder
label_encoder = LabelEncoder()
# Encode labels
y_train_encoded = label_encoder.fit_transform(y_train)
```

In [106]:

```
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
# Path to the directory containing male and female subdirectories
data_dir = 'C:\\Users\\shahzad\\Desktop\\train'
# Define data preprocessing and augmentation
image_size = (128, 128)
batch_size = 32
datagen = ImageDataGenerator(
    rescale=1.0 / 255,
    validation_split=0.2
)
train_generator = datagen.flow_from_directory(
    data_dir,
    target_size=image_size,
    batch_size=batch_size,
    class_mode='binary',
    subset='training'
)
validation_generator = datagen.flow_from_directory(
    data_dir,
    target_size=image_size,
    batch_size=batch_size,
    class_mode='binary',
    subset='validation'
)
# Train the model
epochs = 10
history = model.fit(
    train_generator,
    steps_per_epoch=len(train_generator),
    epochs=epochs,
    validation_data=validation_generator,
    validation_steps=len(validation_generator)
)
# Evaluate the model
loss, accuracy = model.evaluate(validation generator)
print(f"Validation Loss: {loss:.4f}")
print(f"Validation Accuracy: {accuracy:.4f}")
# Plot training history
plt.plot(history.history['loss'], label='train_loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.legend()
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Training and Validation Loss')
plt.show()
plt.plot(history.history['accuracy'], label='train_accuracy')
plt.plot(history.history['val accuracy'], label='val accuracy')
plt.legend()
plt.xlabel('Epochs')
```

```
plt.ylabel('Accuracy')
plt.title('Training and Validation Accuracy')
plt.show()
Found 2794 images belonging to 2 classes.
Found 697 images belonging to 2 classes.
Epoch 1/10
88/88 [========== ] - 219s 2s/step - loss: 0.6712 - acc
uracy: 0.5616 - val_loss: 0.6525 - val_accuracy: 0.6126
Epoch 2/10
uracy: 0.7888 - val_loss: 0.4296 - val_accuracy: 0.8077
Epoch 3/10
88/88 [========== ] - 240s 3s/step - loss: 0.3342 - acc
uracy: 0.8694 - val_loss: 0.3715 - val_accuracy: 0.8264
Epoch 4/10
88/88 [============== ] - 200s 2s/step - loss: 0.2711 - acc
uracy: 0.8916 - val_loss: 0.2932 - val_accuracy: 0.8737
Epoch 5/10
88/88 [=============== ] - 226s 3s/step - loss: 0.2205 - acc
uracy: 0.9141 - val_loss: 0.2859 - val_accuracy: 0.8953
Epoch 6/10
88/88 [=============== ] - 210s 2s/step - loss: 0.1999 - acc
uracy: 0.9177 - val_loss: 0.2580 - val_accuracy: 0.9039
Epoch 7/10
88/88 [========== ] - 201s 2s/step - loss: 0.1683 - acc
uracy: 0.9374 - val_loss: 0.2485 - val_accuracy: 0.9024
Epoch 8/10
88/88 [============ ] - 209s 2s/step - loss: 0.1317 - acc
uracy: 0.9510 - val_loss: 0.2550 - val_accuracy: 0.9254
88/88 [========== ] - 209s 2s/step - loss: 0.1171 - acc
uracy: 0.9567 - val_loss: 0.2858 - val_accuracy: 0.9225
Epoch 10/10
88/88 [============ ] - 204s 2s/step - loss: 0.1100 - acc
uracy: 0.9606 - val_loss: 0.2994 - val_accuracy: 0.8996
ccuracy: 0.8996
Validation Loss: 0.2994
```

Validation Accuracy: 0.8996

Training and Validation Accuracy

In []:		
In []:		
In []:		
In []:		
In []:		