

ohýbání / stříhání

Tato publikace se zabývá volným ohýbáním a stříháním konstrukčních ocelí WELDOX® a otěruvzdorných ocelí HARDOX®. V těchto typech oceli jsme spojili vysokou pevnost s vysokou čistotou a udržujeme přesné tolerance tloušťky. Díky tomu je ocel vhodná pro ohýbání za studena.

Dále následují naše doporučení pro zajištění optimálních výsledků při ohýbání a stříhání našich konstrukčních a otěruvzdorných ocelí.

Ohýbání

V této kapitole se budeme věnovat volnému ohýbání, i když lze samozřejmě použít i zakružování. Výsledky ohýbání závisí na řadě činitelů, které jsme rozdělili do tří dílčích kapitol: plech, nástroje a postup. Problematika jednotlivých činitelů je popsána na straně 3 a 4. Na těchto stranách uvádíme i několik zpracovaných příkladů. V tabulce 4 na poslední straně jsou uvedeny mechanické vlastnosti materiálů.

Na výsledky ohýbání má vliv plech, použité nástroje a postup:

PLECH

- Jakost oceli

Všimněte si, že se zvyšující se pevností plechu se zvyšuje síla ohnutí a odpružení plechu (Běžné hodnoty pevnosti v tahu jsou uvedeny v tab. 4).

Takže čím je plech pevnější a tvrdší,

- tím vyšší je síla nutná k ohnutí plechu
- tím větší bude odpružení plechu
- tím větší je razící úhel, který je pro ohnutí plechu zapotřebí
- tím větší je šířka otvoru raznice potřebná k ohnutí plechu

- Povrch plechu

Naše doporučení platí pro tryskaný plech s antikorozním nátěrem. Netryskané plechy lze ohybat na poněkud menší poloměry. Na ohýbatelnost plechu mohou mít značný nepříznivý vliv vady povrchu a rez na té straně plechu, která bude během ohýbání vystavena tahu. V kritických případech je nutné tyto vady obrousit.

- Hrany plechu

Pálené, nebo stříhané hrany je nutné zbavit otřepů a obrousit.

- Tloušťka plechu (t)

Zpravidla lze tenčí plech ohnout na menší poloměry. Viz tab. 1.

Směr válcování plechu

Plech lze ohýbat na menší poloměry spíše kolmo ke směru válcování než ve směru válcování. Viz obr. 1 a tab. 1.

- Délka ohýbání (b)

Pokud je délka plechu (viz obr. 1) menší než desetinásobek tloušťky plechu, lze plech často ohnout na menší průměr, než jsou hodnoty uvedené v tabulce 1.

NÁSTROJE

- Razící úhel (R)

Při ohýbání plechů HARDOX a WELDOX je nejdůležitějším činitelem správný razící poloměr. (Viz obr. 1).

V případě měkčích ocelí (až do plechu WELDOX 500 včetně) doporučujeme ohýbat plech při razícím poloměru rovném nebo trochu menším, než je požadovany poloměr ohybu.

U tvrdších ocelí doporučujeme ohýbat plech při razícím poloměru rovném nebo trochu větším než je požadovaný poloměr ohybu.

V tab. 1 je uveden doporučený minimální razící poloměr, při kterém plech ohýbaný na 90° nepraskne.

Pokračování >

Tab. 1. Minimální doporučený razící poloměr (R) šířka otvoru (W) pro plech s tloušťkou (t) v případě ohýbání plechu na 90° ve směru válcování a kolmo na směr válcování, i s příslušnou hodnotou odpružení plechu

	Tloušťka [mm]	Kolmo R/t	Ve směru R/t	Kolmo W/t	Ve směru W/t	Odpružení [°]
S355 gem. EN10025		2,5	3,0	7,5	8,5	3-5
WELDOX 700	t < 8 8 t < 20 t 20	1,5 2,0 3,0	2,0 3,0 4,0	7,0 7,0 8,5	8,5 8,5 10,0	6-10
WELDOX 900/960	t < 8 8 t < 20 t 20	2,5 3,0 4,0	3,0 4,0 5,0	8,5 8,5 10,0	10,0 10.0 12,0	8-12
WELDOX 1030	t < 8 8 t < 20 t 20	3,0 3,5 4,5	3,5 4,5 5,5	9,0 9,0 11,0	10,0 11.0 13,0	10-32
WELDOX 1100	t < 8 8 t < 20 t 20	3,5 4,0 5,0	4,0 5,0 6,0	10.0 10,0 12,0	10,0 12,0 14,0	11-18
WELDOX 1300	t < 6 6 ≤ t < 10	3,5 4,0	4,0 5,0	10,0 12,0	12,0 14,0	12-45
HARDOX 400	t < 8 8 t < 20 t 20	2,5 3,0 4,5	3,0 4,0 5,0	8,5 10,0 12,0	10,0 10,0 12,0	9-13
HARDOX 450	t < 8 8 t < 20 t 20	3,5 4,0 5,0	4,0 5,0 6,0	10,0 10,0 12,0	10,0 12,0 14,0	11-18
HARDOX 500	t < 8 8 t < 20 t 20	4,0 5,0 7,0	5,0 6,0 8,0	10,0 12,0 16,0	12,0 14,0 18,0	12-20

NÁSTROJE (pokračování)

– Šířka otvoru raznice (W)

V tab. 1 je uveden doporučeny minimální otvor raznice pro minimální odpružení. Pokud se tato šířka zvýší, sníží se značně i ohýbací síla a otlačení, ovšem na úkor většího odpružení plechu.

Všimněte si, že úhel otevření musí být natolik malý, aby umožnil dostatečné přehnutí. (Viz obr. 1 a tab. 1).V případě zakružování odpružení bude mnohem větší, než jsou hodnoty uvedené v tabulkách.

POSTUP OHÝBÁNÍ

- Tření

Hrany raznice musí být čisté a nepoškozené. Potřebnou sílu ohybu lze snížit tak, že se jako hrany raznice použijí rotující kulaté tyče, případně se hrany raznice namažou. Takto se sniží riziko prasknutí.

- Úhel ohybu

Doporučené hodnoty v tab. 1 platí pro ohýbání na úhel 90°. Pokud úhel ohybu je menší, lze použít razící trn s menším poloměrem, než je uvedeno v tabulce.

Všimněte si, že úhel ohybu má na potřebnou sílu a odpružení plechu menší vliv než, například, šířka otvoru raznice a jakost oceli.

Odpružení plechu lze kompenzovat přehnutím o stejný počet stupňů.

- Síla ohybu (P)

Potřebnou sílu ohybu lze odhadnout podle tohoto vzorce. Síla vychází v tunách (1 tuna odpovídá 10 kN) s přesností $\pm 20\,\%$, a to za předpokladu, že všechny rozměry jsou v mm. Použité symboly jsou uvedeny na obr. 1. Hodnotu pevnosti plechu v tahu R_m zjistíte z tab.4.

$$P = \frac{1.6 \times b \times t^2 \times R_m}{10000 \times W}$$

Jestliže poloměr razícího trhu pro ohýbání plechu je mnohem větší než poloměr uvedený v tab. 1, potřebná síla může být vyšší než hodnota, která vychází z tohoto vzorce, pokud ovšem nezvýšíte přiměřeně šířku otvoru raznice.

Příklad 1:

Ohýbací lis dokáže ohnout pouze 20 mm silný ocelový plech EN 10025 (S 355), (11 523 podle ČSN) v raznici s otvorem širokým 150 mm.

Pokud se použije stejná raznice a pokud je délka ohybu stejná, jak silný bude plech HARDOX 400, který lis dokáže ohnout?

Síla ohybu by měla být stejná. Bude se lišit pouze tloušťka plechu (t) a pevnost v tahu (R_m). Když do vzorce dosadíme hodnoty a rovnici zjednodušíme, dostaneme:

$$20^2 \times 550 = t^2 \times 1250$$

Tloušťka (t) plechu HARDOX bude 13.3 mm.

Poměr W/t pro plech HARDOX bude tedy 150/13.3 = 11.3, což podle tab.1 stačí.

Příklad 2:

Je třeba ohnout plech a vyrobit tak 2000 mm dlouhou konzolu. Jsou dvě možnosti:

- **a)** 10 mm silný plech EN 10025 (S355), (11 523 podle ČSN) s běžnou pevností v tahu 550 N/mm², nebo
- **b)** 7 mm silný plech WELDOX 700 s běžnou pevností v tahu 860 N/mm²

V obou případech se použije dostupná raznice s šířkou otvoru 100 mm. Jaká síla lisu je zapotřebí pro obě jakosti ocelí?

Pro 11 523:

$$P = \frac{1.6 \times 2000 \times 10 \times 10 \times 550}{10000 \times 100} = 176 \text{ tun}$$

Pro WELDOX 700:

$$P = \frac{1,6 \times 2000 \times 7 \times 7 \times 860}{10000 \times 100} = 135 \text{ tun}$$

Jelikož tloušť ka plechu má větší vliv než pevnost, pak síla potřebná pro ohnutí plechu WELDOX bude v tomto konkrétním případě menší.

	Tloušť ka plechu, mm			
S 355	10	20	30	60
WELDOX 700	8	16	24	48
WELDOX 900 / 960	7	14	21	42
HARDOX 400	6	13	19	38
	+	+	+	+
Síla ohybu na metr [tuny]	120	240	330	660
při šířce otvoru raznice (W) [mm]	75	150	240	490

Tab. 2 V tabulce jsou uvedeny tloušťky plechu, pro které je zapotřebí stejná síla ohybu na metr délky ohybu s šířkou otvoru raznice (W) podle tabulky.

Stříhání strojními nůžkami

Oceli s vysokou pevností lze i stříhat. Zpravidla, čím je vyšší pevnost v tahu, tím vyšší síla je pro stříhání zapotřebí. Se zvyšující se pevnosti v tahu se zvyšuje i opotřebování nástrojů. Proto nedoporučujeme stříhat WELDOX 1100, HARDOX 450 a oceli s vyšší pevností.

Předpokladem pro úspěšné stříhání plechů s vysokou pevností jsou vhodné nástroje a správné nastavení parametrů pro stříhání. Nezapomeňte, že námi navrhované parametry jsou pouze obecné doporučené hodnoty. V praxi má na volbu parametrů vliv stabilita stroje a stav nožů.

Nože

Nože by měly byt tvrdé a ostré. Hrany nožů by měly být mírně zaoblené.

Vůle ∆

Vůle je nejdůležitější parametr nutný pro dosažení správných výsledků. Se zvyšující se pevnosti v tahu by se měla zvyšovat i vůle mezi pohyblivou a pevnou čepelí (viz obr. 3). Pokud není vůle nastavená správně, plochy budou špatně ostřižené a při následném ohýbání nebo svařování může plech prasknout.

Úhel čela nože λ

Čím je úhel čela nože větší, tím je menší střižná síla, a to přesto, že se zvyší nebezpečí, že plech po straně sklouzne nebo že se odstřižený plech deformuje (zkroutí). Zpravidla, při stříhání plechu s vysokou pevností by se úhel čela nože měl zvýšit. Viz dále obr. 2 a tab. 3.

Střižná síla P

Pro daný úhel čela čepele střižná síla lineárně roste se zvyšující se pevností plechu. Viz obr. 3 a tab. 4.

Obr. 3. Střižná síla jako funkce tloušťky a úhlu čela nože λ

	Vůle ∆ v % tun	Úhel čela čepele λ [°]
S 355	8-10	1-5
WELDOX 700	12-15	3-5
WELDOX 900	14-16	3-5
WELDOX 960	14-16	3-5
HARDOX 400	16-18	3-5

Tab. 3. Hodnoty vůle a úhlu čela nože pro různé typy plechů

Tab. 4. Mechanické vlastnosti

	Pevnost v tahu R _m [N/mm²]	Prodloužení A₅ [%]	Tvrdost [HBW]
S355 – EN10025	550	28	~ 180
WELDOX 700	860	17	~ 260
WELDOX 900	1030	15	~ 315
WELDOX 960	1050	15	~ 325
WELDOX 1030	1340	11	~ 430
WELDOX 1100	1440	11	~ 460
WELDOX 1300	1540	10	~ 490
HARDOX 400	1250	10	~ 400
HARDOX 450	1440	9	~ 450
HARDOX 500	1550	8	~ 500

Pokud potřebujete další informace, kontaktujte, prosím, naše Technické oddělení služeb zákazníkům.

Tato publikace o Ohýbání a stříhání plechů patří do sady publikací, které obsahují informace a doporučení k použití plechů HARDOX a WELDOX. K dispozici jsou také brožury Svařování a Obrábění. Tyto publikace si můžete vyžádat u našeho oddělení pro komunikaci se zákazníky.

