ГКП3 \diamond **5.** Пусть $\omega = 2dx + xdy$ — дифференциальная 1-форма на \mathbb{R}^2 , A = (0,0), B = (1,1). Проинтегрируйте ω вдоль ориентированных отрезков AB и BA. Как соотносятся эти два значения?

ГКП3 \diamond **6.** Пусть ω — дискретная дифференциальная 0-форма на треугольной сетке. Вычислите $d^2\omega$.

Сетки и дискретные формы

12.03.2018

ГКП4 \diamond **1.** Пусть {*V*, *E*, *F*} — сетка на поверхности *M* рода g=0. Докажите, что

- (1) $E + 6 \le 3V$,
- (2) $E + 6 \le 3F$,
- (3) $V + 4 \le 2F$,
- (4) сетка имеет хотя бы одну треугольную, четырехугольную или пятиугольную грань.

ГКП4 \diamond **2.** Пусть V — сетка с вершинами A=(0,1), B=(1,1), C=(1,0), D=(0,0), а $f\colon V\to\mathbb{R}$ — функция на вершинах, то есть **0**-форма, как на рисунке:

- (1) Какой формой является df, каковы её области определения и значений? Здесь d- дискретный внешний дифференциал.
- (2) Вычислите df и d(df).

ГКП4 \diamond **3.** Для тех же V и f, что в предыдущей задаче, рассмотрим $h\colon V\to\mathbb{R}$ со значениями $h(A)=-3,\,h(B)=0,\,h(C)=2,\,h(D)=3.$ Вычислите

- (1) $f \wedge_{0,0} h$,
- (2) $w = (df) \wedge_{1.0} h$,
- (3) $(dw) \wedge_{2,0} h$,
- (4) $(df) \wedge_{1,1} (dh)$.

ГКП4 \diamond **4.** Обозначим углы напротив ребра (v_i, v_i) так, как показано на рисунке.

Используя общую формулу оператора Лапласа $\Delta\omega=(\star d\star d+d\star d\star)\omega$, выведите дискретную формулу Лапласиана:

$$(\Delta f)_i = \frac{1}{2 \cdot \operatorname{Area}(v_i^*)} \cdot \sum_j (\operatorname{ctg} \alpha_{ij} + \operatorname{ctg} \beta_{ij}) (f(v_i) - f(v_j)),$$

где f — функция на сетке.