hp 9s Calculatrice scientifique

Fonctionnement général

Alimentation

Allumage et extinction

Pour allumer la calculatrice, appuyez sur [ON/C].

Pour éteindre la calculatrice, appuyez sur [2ndF] [OFF].

Fonction d'extinction automatique

La calculatrice s'éteint automatiquement si elle n'est pas utilisée pendant environ 9 minutes. Pour la rallumer, appuyez à nouveau sur la touche [ON/C]. Le contenu de la mémoire et les réglages de mode (STAT, DEG, CPLX, Base-n,...) sont conservés à l'extinction manuelle ou automatique de la calculatrice.

Remplacement des piles

La calculatrice est alimentée par deux piles bouton alcalines (GP76A ou LR44). Si l'affichage devient sombre ou difficile à lire, remplacez les piles dès que possible.

Pour remplacer les piles

- 1. Retirez le couvercle et les vieilles piles.
- 2. Insérez les piles neuves, côté plus vers l'extérieur.
- 3. Reposez les vis et appuyez sur la touche [ON/C] pour allumer la calculatrice

La plupart des touches ont deux fonctions.

2 ^{ème} fonction ———	sin ⁻¹
1 ^{ère} fonction ——	sin
1 ^{ère} fonction	<u>-</u> -

Ces fonctions sont obtenues en appuyant sur la touche sans appuyer d'abord sur [2ndF]. La fonction est indiquée par l'étiquette sur la touche.

Fonction obtenue en appuyant sur la touche après avoir appuyé sur [2ndF]. La fonction est indiquée par l'étiquette au-dessus ou à droite

Une pression sur [2ndF], active l'indicateur 2ndF sur l'écran pour indiquer que la touche suivante sélectionnera la deuxième fonction. Si vous appuyez par erreur sur [2ndF], rappuyez simplement sur la touche [2ndF] pour éteindre l'indicateur **2ndF**.

 $Remarque: \hbox{\tt [A], [B], [C], [D], [E], [F] sont des 1^{ere} fonctions en}$

	HEX.	, [–], [.	Toolik doo i Tollokolio oli
•	boles à l'écran ymboles ci-dessous indique	ent à l'éci	ran l'état de la calculatrice.
DEG	ou RAD ou GRAD : unité d	l'angle de	egrés, radians ou grades
M	Valeur en mémoire	CPLX	Mode nombres complexes
E	Dépassement ou erreur	STAT	Mode statistique
-	Moins	2ndF	Touche [2ndF] enfoncée
()	Calcul de parenthèses	CP	Capacité de précision
BIN	Mode binaire	CPK	Capacité de traitement
OCT	Mode octal	σ	Ecart
HEX	Mode hexadécimal	USL	Définition limite supérieure
ED	Mode édition	LSL	Définition limite inférieure
HYP	Mode hyperbolique		
La ca	nats d'affichage Iculatrice peut afficher les r		sous quatre formats : virgule

Format virgule flottante

Le format virgule flottante affiche les nombres sous forme décimale jusqu'à 10 chiffres. Les zéros de fin sont supprimés.

Si le résultat d'un calcul est trop grand pour être représenté par 10 chiffres, l'affichage passe automatiquement en format scientifique. Si le résultat d'un calcul ultérieur peut être affiché sur moins de 10 chiffres, la calculatrice revient au format virgule flottante.

Pour choisir le format d'affichage en virgule flottante

 Appuyez sur [2ndF] [FIX] [*] 	DEG	0.
Format virgule fixe		

Les formats virgule fixe, scientifique et ingénieur utilisent un nombre fixe de décimales pour l'affichage des nombres. Si vous entrez plus de décimales que le nombre indiqué, l'entrée est arrondie au nombre de Ex. 1 : Définissez l'affichage à 2 décimales fixes, puis entrez 3.256

0.00

1. Appuyez sur [2ndF] [FIX] 2

2. Entrez 3.256 [ENTER]	DEG	3.26
Si vous entrez moins de décimales que le no complétée par des zéros de fin.	mbre ind	iqué, l'entrée es
Ex. 2 : Définissez l'affichage à 4 décimales fix	kes, puis	s entrez 4.23
1. Appuyez sur [2ndF] [FIX]4	DEG	0.0000

2. Entrez 4.23 [ENTER] Format scientifique

En format scientifique, le nombre 891500 est affiché sous la forme 8.915 × 10 05 , où 8.915 est la mantisse et 5 l'exposant de 10.

Ex. 3 : Pour afficher 7132 x 125 au format scientifique

	0 . 1 0 d. d	oquo .		
1.	Tapez 7132 [×] 125 [ENTER]	DEG	891500.	
2.	Appuyez sur [F←→E]	DEG	8.915	05
	us pouvez convertir une entrée en notation	scientifiqu	e en appuy	/ant

sur [EXP] après entrée de la mantisse

Ex 4 · Entrez le nombre 4 82296 x 10 5 1. Entrez 4.82296 [EXP] 5 4.82296

Format ingénieur

Le format ingénieur est comparable au format scientifique, mais la mantisse peut avoir jusqu'à trois chiffres à gauche du séparateur décimal et l'exposant est toujours un multiple de trois. C'est utile po

5011	vertir des diffics basees sur des manipies	uc io .	
Ex.	5 : Conversion de 15 V en 15000 mV (V	= Volt)	
1.	Entrez 15	DEG	15.
2.	Appuyez deux fois sur [ENG].	DEG	15000. ⁻⁰³
Ex.	6 : Conversion de 15 V en 0.015 kV (V =	Volt)	
1.	Entrez 15	DEG	15.
2.	Appuyez deux fois sur [2ndF] [←]	DEG	0.015 03
_			

Ordre des opérations

Chaque calcul est effectué en tenant compte de l'ordre de priorité

- 1. Opérations entre parenthèses
- 2. Fonctions nécessitant l'appel d'une touche de fonction avant l'entrée d'une valeur, par exemple [DATA] en mode statistique et
- 3. Fonctions nécessitant l'entrée d'une valeur avant l'appui sur la touche de fonction, par exemple, cos, sin, tan, cos $^{-1}$, sin $^{-1}$, tan log, ln, x 2 , x $^{-1}$, $\sqrt{}$, π , $\sqrt[3]{}$, x!, %, RND, ENG, \rightarrow 017, 017 \rightarrow et les fonctions de conversion d'unités.
- 4. Fractions
- 6. x ^y, ^x√
- 7. nPr, nCr
- 8. ×, ÷

Corrections

En cas d'erreur lors de l'entrée d'un nombre, si vous n'avez pas encore appuyé sur la touche de l'opérateur arithmétique, appuyez simplement sur [CE] pour effacer la dernière entrée. Vous pouvez ensuite recommencer l'entrée du nombre. Vous pouvez aussi supprimer des chiffres un par un en appuyant sur la touche de retour arrière : $[00\to 0]$.

Ex. 7: Modification de 12385 en 789

1. 12395

2. Appuyez sur [CE] 789

Ex. 8 : Modification de 12385 en 123

Appuyez deux fois sur [00→0].

123.

Dans une série de calculs, vous pouvez corriger les erreurs dans les résultats intermédiaires en appuyant sur [ON/C]. Cette touche efface le calcul sans effacer la mémoire

En cas d'erreur sur la touche d'opération arithmétique, il suffit d'appuyer sur la touche [CE] avant toute autre entrée

Touche d'échange

L'appui sur [2ndF] [X←→Y] échange la valeur affichée avec la valeur

	123 [+] 456 [ENTER]	DEG	579.00
123 + 456 = ?	[2ndF] [X←→Y]	DEG	456.00
	[2ndF] [X↔Y]	DEG	579.00

Précision et capacité

Précision: ±1 unité du 10ème chiffre.

Capacité : En général, les calculs peuvent être affichés sous forme d'une mantisse pouvant comporter jusqu'à 10 chiffres, une mantisse de 10 chiffres avec un exposant à 2 chiffres jusqu'à 10 450, ou un entier entre -9999999999 et 999999999

Les nombres utilisés en entrée d'une fonction doivent être dans la plage autorisée pour cette fonction (définie dans le tableau

	Plage d'entrée autorisée
sin x, cos x, tan x	Deg: x < 4.5 x 10 ¹⁰ deg
	Rad: $ x < 2.5 \times 10^{-8} \pi \text{ rad}$
	Grad : x < 5 x 10 10 grad Idem pour tan x:
	Deg : x ≠ 90 (2n +1)
	Rad: $ x \neq \frac{\pi}{2}$ (2n +1)
	Grad : x ≠ 100 (2n +1)
	où n est un entier.
$\sin^{-1} x$, $\cos^{-1} x$	x ≤ 1
tan ⁻¹ x	x < 1 x 10 ¹⁰⁰
sinh x, cosh x	x ≤ 230.2585092
	x < 1 x 10 ¹⁰⁰
tanh x	
sinh ⁻¹ x	x < 5 x 10 ⁹⁹
cosh ⁻¹ x	$1 \le x < 5 \times 10^{99}$
tanh ⁻¹ x	x < 1
log x, ln x	$1 \times 10^{-99} \le x < 1 \times 10^{100}$
10 ^x	$-1 \times 10^{-100} < x < 100$
e ^x	$-1 \times 10^{-100} < x < 100$ $-1 \times 10^{-100} < x \le 230.2585092$
<u>e</u>	$0 \le x < 1 \times 10^{-100}$
√X x ²	$ x < 1 \times 10^{-50}$
x ⁻¹	$ x < 1 \times 10^{-100}, X \neq 0$
∛x	x < 1 x 10 ¹⁰⁰
X!	$0 \le x \le 69$, où x est un entier.
R→P	$\sqrt{x^2 + y^2} < 1 \times 10^{100}$
P→R	$0 \le r < 1 \times 10^{-100}$
	Deg : $ \theta < 4.5 \text{ x } 10^{-10} \text{ deg}$ Rad : $ \theta < 2.5 \text{ x } 10^{-8} \pi \text{ rad}$
	Grad : $ \theta < 5 \times 10^{-10}$ grad
	Idem pour tan x:
	Deg : $\mid \theta \mid \neq$ 90 (2n+1)
	Rad : $\mid \theta \mid \neq \frac{\pi}{2}$ (2n+1)
	Grad: $\mid \theta \mid \neq 100 \text{ (2n+1)}$
	où n est un entier.
→ 01111	\mid DD \mid , MM, SS.SS $<$ 1 x 10 100 ,
	$0 \leq MM$, SS.SS
0:"→	x < 1 x 10 ¹⁰⁰
x ^y	$x > 0$: $-1 \times 10^{100} < y \log x < 100$
	x = 0 : y > 0
	1 0 1/0 11 3 1 1
	x < 0 : y = n, 1/(2n+1), où n est un entier
<u></u> ₹√ y	but $-1 \times 10^{100} < \frac{1}{V} \log x 100$
∛γ	
∜Ÿ	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \ne 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ y = 0 : x > 0
∜Ÿ	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ y = 0 : x > 0 y < 0 : x = 2n + 1, 1/n, où n est un entier
∜Ÿ	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \ne 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ y = 0 : x > 0 y < 0 : x = 2n + 1, /n, où n est un entier différent de 0
	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x = 2n + 1, /n, où n \text{ est un entier}$ différent de 0 mais $-1 \times 10^{100} < \frac{1}{x} \log y 100$
∛√	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x = 2n + 1, l/n, où n est un entier différent de 0 mais -1 \times 10^{100} < \frac{1}{x} \log y 100 Entrée : La partie entière, le numérateur, le$
	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x = 2n + 1, /n, où n \text{ est un entier}$ différent de 0 mais $-1 \times 10^{100} < \frac{1}{x} \log y 100$ Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres.
	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x = 2n + 1, /n, où n \text{ est un entier}$ différent de 0 mais $-1 \times 10^{100} < \frac{1}{x} \log y 100$ Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction
	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x = 2n + 1, /n, où n est un entier$ différent de 0 mais $-1 \times 10^{100} < \frac{1}{x} \log y 100$ Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 x
	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x = 2n + 1, /n, où n \text{ est un entier}$ différent de 0 mais $-1 \times 10^{100} < \frac{1}{x} \log y 100$ Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 x 10^{10} .
	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x = 2n + 1, x , où n est un entier différent de 0 mais -1 \times 10^{100} < \frac{1}{x} \log y 100 Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 x$
a ^b /c	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x = 2n + 1, x , où n est un entier différent de 0 mais -1 \times 10^{100} < \frac{1}{x} \log y 100 Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 \times 10^{10}. 0 \le r \le n, n \le 9999999999; n, r sont des entiers.$
a ^b /c nPr, nCr	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x = 2n + 1, /n, où n \text{ est un entier}$ différent de 0 mais $-1 \times 10^{100} < \frac{1}{x} \log y 100$ Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 x 10^{10} . $0 \le r \le n, \ n \le 9999999999; \ n, \ r \text{ sont des entiers.}$ $ x < 1 \times 10^{50}, \ \Sigma x < 1 \times 10^{100}$ $0 \le \Sigma x^2 < 1 \times 10^{100}; \ n, \ r \text{ sont des}$
a ^b /c nPr, nCr	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x \neq 2n + 1, l/n, où n est un entier différent de 0 mais -1 \times 10^{100} < \frac{1}{x} \log y 100 Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 \times 10^{10}. 0 \le r \le n, n \le 99999999999; n, r sont des entiers. x < 1 \times 10^{50}, \Sigma x < 1 \times 10^{100} 0 \le \Sigma x^2 < 1 \times 10^{100}; n, r sont des entiers \overline{y} : n \ne 0, S : n > 1, \sigma : n > 0$
a ^b /c nPr, nCr	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x = 2n + 1, /n, où n \text{ est un entier}$ différent de 0 mais $-1 \times 10^{100} < \frac{1}{x} \log y 100$ Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 x 10^{10} . $0 \le r \le n, \ n \le 9999999999; \ n, \ r \text{ sont des entiers.}$ $ x < 1 \times 10^{50}, \ \Sigma x < 1 \times 10^{100}$ $0 \le \Sigma x^2 < 1 \times 10^{100}; \ n, \ r \text{ sont des}$
a ^b /c nPr, nCr	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x \neq 2n + 1, l/n, où n est un entier différent de 0 mais -1 \times 10^{100} < \frac{1}{x} \log y 100 Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 \times 10^{10}. 0 \le r \le n, n \le 99999999999; n, r sont des entiers. x < 1 \times 10^{50}, \Sigma x < 1 \times 10^{100} 0 \le \Sigma x^2 < 1 \times 10^{100}; n, r sont des entiers \overline{y} : n \ne 0, S : n > 1, \sigma : n > 0$
a ^b /c nPr, nCr STAT	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0: x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0: x > 0$ $y < 0: x = 2n + 1, l/n, où n est un entier différent de 0 mais -1 \times 10^{100} < \frac{1}{x} \log y 100 Entrée: La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat: Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 x 10^{10}. 0 \le r \le n, \ n \le 999999999999999999999999999999999$
a ^b /c nPr, nCr STAT	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x \neq 2n + 1, l/n, où n est un entier différent de 0 mais -1 \times 10^{100} < \frac{1}{x} \log y 100 Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 \times 10^{10}. 0 \le r \le n, \ n \le 9999999999; \ n, \ r \ sont des entiers. x < 1 \times 10^{50}, \Sigma x < 1 \times 10^{100} 0 \le \Sigma x^2 < 1 \times 10^{100}; n, \ r \ sont des entiers x : n \ne 0, \ S : n > 1, \ \sigma : n > 0 y = 1 \le n, \ n \le 10 y = 1 \le $
a ^b /c nPr, nCr STAT →DEC	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x = 2n + 1, /n, où n est un entier différent de 0 mais -1 \times 10^{100} < \frac{1}{x} \log y 100 Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 x 10^{10}. 0 \le r \le n, \ n \le 9999999999; \ n, \ r \ sont des entiers. x < 1 \times 10^{50}, \Sigma x < 1 \times 10^{100} 0 \le \Sigma x^2 < 1 \times 10^{100}; \ n, \ r \ sont des entiers \overline{x} : n \ne 0, \ S : n > 1, \ \sigma : n > 0 Plage = 1 \sim r, \ 1 \le n \le r, \ 80 \le r \le 20400 0 \le X \le 9999999999 \ (pour zéro ou positif) -9999999999 \le X \le -1 \ (pour négatif) 0 \le X \le 01111111111 \ (pour zéro ou positif) 10000000000 \le X \le 11111111111$
a ^b /c nPr, nCr STAT →DEC →BIN	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x \neq 2n + 1, l/n, où n est un entier différent de 0 mais -1 \times 10^{100} < \frac{1}{x} \log y 100 Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 \times 10^{10}. 0 \le r \le n, \ n \le 9999999999; \ n, \ r \ sont des entiers. x < 1 \times 10^{50}, \Sigma x < 1 \times 10^{100} 0 \le \Sigma x^2 < 1 \times 10^{100}; n, \ r \ sont des entiers x : n \ne 0, \ S : n > 1, \ \sigma : n > 0 y = 1 \le n, \ n \le 10 y = 1 \le $
a ^b /c nPr, nCr STAT →DEC	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0 : x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0 : x > 0$ $y < 0 : x \neq 2n + 1, l/n, où n est un entier différent de 0 mais -1 \times 10^{100} < \frac{1}{x} \log y 100 Entrée : La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat : Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 \times 10^{10}. 0 \le r \le n, \ n \le 99999999999; \ n, \ r \ sont des entiers. x < 1 \times 10^{50}, \Sigma x < 1 \times 10^{100} 0 \le \Sigma x^2 < 1 \times 10^{100}; n, \ r \ sont des entiers x : n \ne 0, \ S : n > 1, \ \sigma : n > 0 Plage = 1 \sim r, \ 1 \le n \le r, \ 80 \le r \le 20400 0 \le X \le 9999999999 (pour zéro ou positif) -9999999999 \le X \le -1 (pour négatif) 0 \le X \le 01111111111 (pour zéro ou positif) 10000000000 \le X \le 1111111111 (pour négatif) 0 \le X \le 37777777777 (pour zéro ou positif) 4000000000 \le X \le 7777777777 (pour zéro ou positif)$
a ^b /c nPr, nCr STAT →DEC →BIN	but $-1 \times 10^{100} < \frac{1}{y} \log x 100$ $y > 0: x \neq 0, -1 \times 10^{100} < \frac{1}{x} \log y < 100$ $y = 0: x > 0$ $y < 0: x = 2n + 1, l/n, où n est un entier différent de 0 mais -1 \times 10^{100} < \frac{1}{x} \log y 100 Entrée: La partie entière, le numérateur, le dénominateur et le symbole de fraction ne doivent pas dépasser 10 chiffres. Résultat: Affiché sous forme de fraction quand la partie entière, le numérateur et le dénominateur sont chacun inférieur à 1 \times 10^{10}. 0 \le r \le n, \ n \le 999999999999999999999999999999999$

Erreur et dépassement de capacité

Le symbole E apparaît dans un des cas suivants. Appuyez sur [ON/C] pour supprimer l'affichage d'erreur ou de dépassement de capaci

- · Quand vous tentez d'effectuer un calcul de fonction avec un nombre en dehors de la plage d'entrées autorisée
- Quand vous tentez de diviser un nombre par 0.
- Quand vous avez appuyé plus de 15 fois sur la touche [(] dans une
- Quand un résultat (intermédiaire ou final) ou le total cumulé en mémoire est en dehors de la plage ±9.99999999 x 10 ⁹⁹
- · Quand il y a plus de six opérations en attente.

Si la calculatrice est verrouillée et que les actions sur les touches n'ont plus d'effet, appuyez en même temps sur [M+] et [ENG]. Cette manœuvre déverrouille la calculatrice et ramène tous les réglages à leurs valeurs par défaut

Calculs de base

Les exemples de calcul de base ci-dessous supposent que votre calculatrice est en base décimale et en affichage virgule flottante.

Calculs arithmétiques divers

1 + 2 × 3 = ?	1 [+] 2 [×] 3 [ENTER]	DEG	7.
$-3.5 + 8 \div 2 = ?$	3.5 [+/-] [+] 8 [÷] 2 [ENTER]	DEG	0.5

Calculs avec parenthèses

Les opérations entre parenthèses sont toujours exécutées en premier. Vous pouvez utiliser jusqu'à 15 niveaux de parenthèses dans un même calcul. A l'entrée de la première parenthèse, l'indicateur () apparaît à l'affichage et y subsiste jusqu'à ce que chaque parenthèse ouvrante comporte une parenthèse fermante correspondante.

	[(]5[-]2[×]1.5[)][×]3 [+]0.8[×]4[+/-][ENTER]	DEG	2.8
2 × {7+6 × (5+4)} = ?	2[×][(]7[+]6[×][(]5 [+]4[ENTER]	DEG	122.

Remarque : Il n'est pas nécessaire d'appuyer sur [)] avant [ENTER].

Répétition d'un calcul

 $3 \times 3 = ?$

 $3 \times 3 \times 3 = ?$

Vous pouvez répéter le dernier nombre entré ou la dernière opération exécutée en appuyant sur [ENTER].

27.

15.

3 [×] [ENTER]

Répétition du dernier nombre

3 × 3 × 3 × 3 = ? [ENTER]

 $(1.2 \times 10^2) \div 8 = ?$ 1.2 [EXP] 2 [ENTER]

	[ENTERN]		01.
Répétition de la de	rnière opération arithmétiq	ue	
321 + 357 = ?	321 [+] 357 [ENTER]	DEG	678.
654 + 357 = ?	654 [ENTER]	DEG	1011.
579 – 159 = ?	579 [-] 159 [ENTER]	DEG	420.
456 – 159 = ?	456 [ENTER]	DEG	297.
18 × 45 = ?	3 [x] 6 [×] 45 [ENTER]	DEG	810.
18 × 23 = ?	23 [ENTER]	DEG	414.
$18 \times (0.5 \times 10^2) = ?$	0.5 [EXP] 2 [ENTER]	DEG	900.
96 ÷ 8 = ?	96 [÷] 8 [ENTER]	DEG	12.
75 ÷ 8 = ?	75 [ENTER]	DEG	9.375

Calculs de pourcentage			
30% de 120 = ?	120 [x] 30 [2ndF] [%] [ENTER]	DEG	36.
70% de 120 = ?	70 [2ndF] [%] [ENTER]	DEG	84.
88 représente 55% de ?	88 [÷] 55 [2ndF] [%] [ENTER]	DEG	160.
30% de plus sur 120 = ?	120 [+] 30 [2ndF] [%] [ENTER]	DEG	156.
30% de remise sur 120 = ?	120 [–] 30 [2ndF] [%] [ENTER]	DEG	84.

Calculs en mémoire

- L'indicateur M apparaît quand un nombre est enregistré dans la
- Le rappel depuis la mémoire n'efface pas le contenu de la mémoire.
- La mémoire n'est pas disponible en mode Statistiques.
- Pour copier le nombre affiché vers la mémoire, appuvez sur
- Pour effacer la mémoire, appuyez sur [0] [$X \rightarrow M$] ou [CE] [X -> M] dans cet ordre.

3×5	[CE][X→M]		DEG	0.
	3[×]5[M+]	М	DEG	15.
+ 56 ÷ 7	56 [÷] 7 [M+]	М	DEG	8.
$+74 - 8 \times 7$ Total = ?	74 [-] 8 [x] 7 [M+]	М	DEG	18.
	[MR]	М	DEG	41.
	0 [X→M]		DEG	0.

Calculs mathématiques courants

Les exemples de calcul ci-dessous supposent que l'affichage est en mode fixe à 2 décimales.

Inverse, Factorielle

$\frac{1}{1.25}$ = ?	1.25 [2ndF] [x ⁻¹] [ENTER]	DEG	0.80		
5! = ?	5 [2ndF] [x!] [ENTER]	DEG	120.00		
Carré, racine carrée, racine cubique, puissance, autres racines					
$2^2 + 3^4 = ?$	2 [x ²] [+] 3 [x ^y] 4 [ENTER]	DEG	85.00		
$5 \times \sqrt[3]{27} + \sqrt{34} = ?$	$5[\times]27[2ndF][^3\sqrt][+]34$ [\sqrt][ENTER]	DEG	20.83		
 ⁹ √72 = ?	72 [2ndF] [^X √] 9 [ENTER]	DEG	1.61		
Logarithmes et exponentielles					
In7 + log100 = ?	7 [In] [+] 100 [log] [ENTER]	DEG	3.95		
10 ² = ?	2 [2ndF] [10 *] [ENTER]	DEG	100.00		

Calculs de fraction

Remarque : L'affichage est tronqué si la partie entière, le numérateur, le dénominateur et le symbole de fraction dépassent le total de 10 Appuyez sur [2ndF] [→d/c] pour convertir la valeur affichée en fraction

$\frac{2}{3} + 7\frac{3}{5}$ $= 8\frac{4}{3}$	2[a ^b /c]3[+]7[a ^b /c]3 [a ^b /c]5[ENTER]	DEG	8∪4 」15
$=\frac{15}{15}$	[2ndF] [→d/c]	DEG	124 」15
	[a b/c] après avoir appuyé sur		

forme de nombre décimal.

$5\frac{4}{9} + 3\frac{3}{4}$	5 [a ^b /c] 4 [a ^b /c] 9 [+] 3 [a b/c] 3 [a b/c] 4 [ENTER]	DEG	9 U 7 J 36		
$=9\frac{7}{36}=9.19$	[a b/c]	DEG	9.19		
$8\frac{4}{9} + 3.75 = 12.19$	8 [a b/c] 4 [a b/c] 9 [+] 3.75 [ENTER]	DEG	12.19		
Chaque fois que c'est possible, une fraction est réduite après appui sur la touche [+], [-], [×] ou [÷] ou [ENTER].					

Le résultat est affiché sous forme décimale si la partie entière, le numérateur, le dénominateur et le symbole de fraction dépassent le

3 [a b/c] 119 [a b/c] 21

$12345\frac{5}{16}+5\frac{6}{13} = \begin{vmatrix} 12345 \left[a b/c \right] 5 \left[a b/c \right] 16 \\ \left[+ \left[5 \left[a b/c \right] 6 \left[a b/c \right] 13 \right] \\ \left[ENTER \right] \end{vmatrix}$	DEG	12350.77
--	-----	----------

Conversion d'unités d'angle

Vous pouvez spécifier l'unité d'angle : degrés (DEG), radians (RAD), ou grades (GRAD). Il est aussi possible de convertir une vale exprimée dans une unité d'angle en la valeur correspondante dans une autre unité.

La relation entre les unités d'angle est la suivante :

 $180^{\circ} = \pi$ radians = 200 grades

- Pour changer le réglage d'unité d'angle, appuyez sur [DRG] jusqu'à faire indiquer l'unité d'angle voulue sur l'écran.
- Après entrée de la valeur d'un angle, appuyez sur [2ndF] [DRG→] plusieurs fois pour faire convertir la valeur dans l'unité

voulue.			
90° (deg)	90	DEG	90.
= ? (rad)	[2ndF] [DRG→]	RAD	1.57
= ? (grad)	[2ndF] [DRG→]	GRAD	100.00

100.00.			
90° (deg)	90	DEG	90.
= ? (rad)	[2ndF] [DRG→]	RAD	1.57
= ? (grad)	[2ndF] [DRG→]	GRAD	100.00

Fonctions trigonométriques et trigonométriques

Avant d'effectuer un calcul trigonométrique ou trigonométrique inverse, vérifiez que vous avez spécifié l'unité d'angle appropriée.

3 sin 85° = ?	3 [×] 85 [sin] [ENTER]	DEG	2.99
$\cos\left(\frac{\pi}{4}\mathrm{rad}\right) = ?$	[2ndF] [π] [\div] 4 [ENTER] [cos]	RAD	0.71
tan 150 grad = ?	150 [tan]	GRAD	-1.00
	0.5 [2ndF] [sin ⁻¹]	DEG	30.00
$\cos^{-1}(\frac{1}{\sqrt{2}})=? \text{ rad}$	$2[\sqrt{\]}[2ndF][x^{-1}][2ndF]$ $[\cos^{-1}]$	RAD	0.79
tan ⁻¹ 1 = ? grad	1 [2ndF] [tan ⁻¹]	GRAD	50.00
-			

Fonctions hyperboliques et hyperboliques inverses

cosh1.5 + sinh1.5 = ?	1.5 [HYP] [cos] [+] 1.5 [HYP] [sin] [ENTER]	DEG 4.4	18
sinh ⁻¹ 7 = ?	7 [HYP] [2ndF] [sin ⁻¹]	DEG 2.6	34
tanh 1 = ?	1 [HYP] [tan]	DEG 0.7	6

Coordonnées rectangulaires et polaires

Remarque : Avant d'entreprendre un calcul de conversion de coordonnées, vérifiez que vous avez spécifié l'unité d'angle

Conversion de coordonnées rectangulaires en polaires

	5 a 0 0 2110F R → P	DEG	7.81		
combien valent r et θ ?	[b]	DEG	50.19		
Conversion de coordonnées polaires en rectangulaires					
Conversion de coo	rdonnées polaires en rectang	ulaires			

[b] Permutations et combinaisons

$$nPr = \frac{n!}{(n-r)!} \qquad nCr = \frac{n!}{r!(n-r)!}$$

valent a et b?

Combien de permutations de 4 objets parmi 7 ?	7 [2ndF] [nPr] 4 [ENTER]	DEG	840.00
Combien de combinaisons de 4 objets parmi 7 ?	7 [2ndF] [nCr] 4 [ENTER]	DEG	35.00

Conversions de sexagésimal \leftrightarrow décimal

Il est possible de convertir une valeur sexagésimale (degrés, minutes et secondes) en valeur décimale en appuyant sur [0117 →] et de convertir un nombre décimal en valeur sexagésimale en appuyant sur

Les valeurs sexagésimales sont affichées comme suit :

12 45 30 5 = 12 degrés, 45 minutes, 30,5 secondes Remarque : Si le nombre total de chiffres d'une valeur DD, MM et SS.SS dépasse 8, la valeur est tronquée.

Conversion de sexagésimal en décimal					
12 deg., 45 min., 30.5 sec.=?	12 [o;n→] 45 [o;n→] 30.5 [o;n→]	DEG	12.76		
Conversion de décimal en sexagésimal					
2.12345 = ?	2.12345 [2ndF] [→0;"]	DEG	2 7 ¹ 24 ¹¹ 42		

2.12345 = ? 2.12345 [2ndF] [→011] Calculs en base-n

Conversion entre bases

Il est possible d'ajouter, soustraire, multiplier et diviser des nombres binaires, octaux et hexadécimaux en plus des nombres décimaux. Sélectionnez la base voulue en appuyant sur [→BIN], [→OCT], [→ HEX], ou [\rightarrow DEC]. Les indicateurs **BIN**, **OCT** et **HEX** indiquent la base utilisée (si aucun des indicateurs n'est affiché, vous utilisez la base

décimale).

Les touches actives dans une base sont : Base binaire : [0] et [1]

Base octale : [0] à [7] Base décimale : [0] à [9]

148.28

8 ∪ 2 」 3

Base hexadécimale : [0] à [9] et [A] à [F] [2ndF] [→DEC] 31 31 (base 10) DEG BIN = ? (base 2) [2ndF] [→BIN] 11111 = ? (base 8) DEG OCT [2ndF][→OCT] = ? (base 16) [2ndF] [→HEX] 1F. [2ndF] [→HEX] 4 [x] 1B DEG HEX 6C ENTER1 = ? (base 2) 2ndF] [→BIN] 1101100 = ? (base 10) [2ndF] [→DEC = ? (base 8) EG OCT [2ndF] [→OCT] 154.

Nombres négatifs et compléments

Dans les bases binaire, octale et hexadécimale, les nombres négatifs sont exprimés sous forme de compléments. Le complément est le résultat de la soustraction du nombre de 1000000000 dans la base considérée. Pour cela, appuyez sur [+/–] dans une base non décimale

Calculer le	I	
complément du	[2ndF] [→BIN] 11011 [+/–]	DEG BIN
nombre binaire	[2ndF][→BIN] 11011 [+/–]	1111100101.

Calculs sur les nombres complexes

Appuyez sur [CPLX] pour entrer en mode nombres complexes L'indicateur CPLX apparaît à l'écran. Vous pouvez ajouter, soustraire, multiplier et diviser des nombres complexes

Les nombres complexes sont généralement représentés sous la forme a + b i, où a et b i sont les parties réelle et imaginaire. [2ndF1[CPLX17[a19

(7 – 9 i) + (15 + 10 i) = ?		[+/-][b][+]15[a]10[b] [ENTER]							2	22.00		
		[b]						DEG	CPLX		1.00	
			,			91.1						

Remarque : Le calcul en mémoire est possible en mode complexe Nombres pseudo-aléatoires

Appuyez sur [2ndF] [RND] pour générer un nombre pseudo-aléatoire compris entre 0.000 et 0.999

Conversions d'unités Les touches de conversion d'unité sont [${}^{\circ}F \longleftrightarrow {}^{\circ}C$], [$mmHg \longleftrightarrow Kpa$],

procédure générale de conversion de valeur d'une unité en une autre

[gal \longleftrightarrow l], [lb \longleftrightarrow kg], [oz \longleftrightarrow g]. L'exemple ci-dessous illustre la

12 in = ? cm	12 [A→B] [2ndF] [in←→cm]	DEG 30.48
	98 [2ndF] [A←B] [2ndF] [in ←→cm]	DEG 38.58

Statistiques

Appuyez sur [2ndF] [STAT] pour entrer en mode statistiques L'indicateur STAT apparaît sur l'écran. En mode statistiques, vous pouvez calculer les statistiques suivantes sur une variable :

- nombre de valeurs de données
- Σχ somme des valeurs de données
- Σx somme des carrés
- X valeur moyenne écart type d'échantillon $\sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n-1}}$ écart type de population $\sqrt{\frac{\sum x^2 - (\sum x)^2/n}{}}$
- capacité de précision USL-LSL CP
- CPK capacité de traitement Min(CPU, CPL) où CPU = $\frac{USL - \bar{x}}{2\bar{x}}$ CPL = $\frac{\bar{x} - LSL}{2\bar{x}}$ 3σ

Remarque : En mode statistiques, toutes les touches de fonction sont disponibles sauf celles utilisées pour les calculs en base-n.

Ex. 9 : Entrez les données suivantes {2, 5, 5, 5, 5, 9, 9, et 9} et

calculez Σx , Σx^2 , n. LSL = 2.	x, S, CP, et CPK, où	valeur USL = 1	12 et valeur
En mode STAT	[2ndF][STAT]	DEG STAT	0.00
	[DATA]2	DEG STAT	2.
	[DATA] 5	DEG STAT	5.
	[DATA] 5	DEG STAT	5.
Entres toutes les	[DATA] 5	DEG STAT	5.
Entrez toutes les données	[DATA] 5	DEG STAT	5.
	[DATA] 9	DEG STAT	9.
	[DATA] 9	DEG STAT	9.
	[DATA] 9	DEG STAT	9.
	[ENTER]	DEG STAT	0.00
_x=?	[x]	DEG STAT	6.13
n = ?	[n]	DEG STAT	8.00
S = ?	[S]	DEG STAT	2.59
$\Sigma x = ?$	[2ndF] [Σx]	DEG STAT	49.00
$\Sigma x^2 = ?$	[2ndF] [Σx^2]	DEG STAT	347.00
σ= ?	[2ndF] [σ]	DEG STAT	2.42 σ
CP = ?	[2ndF] [CP] 12	DEG STAT	12. CP
	[ENTER] 2	DEG STAT	2. CP LSL
	[ENTER]	DEG STAT	0.69 ^{CP}
CPK = ?	[2ndF] [CPK]	DEG STAT	12.00 CPK USL
	[ENTER]	DEG STAT	2.00 CPK LSL
	[ENTER]	DEG STAT	0.57 ^{CPK}
Remarque : La calo	culatrice mémorise les d	données entrée	es jusqu'à la

sortie du mode Statistiques. Les données sont conservées même en

Affichage des données de statistiques

Appuyez sur [DATA] ou [ENTER] en mode édition (ED) pour afficher les données statistiques entrées. (Si vous appuyez sur [DATA], le numéro de données apparaît rapidement avant la valeur).

Ex.10 : Consultez les données entrées dans l'Ex. 9.

- 1. Appuyez sur [2ndF] [EDIT] pour passer en mode édition.
- 2. Appuyez une fois sur [DATA] pour afficher la première valeur de données.

DEG ED STAT 1.5 secondes → dAtA 1

2.00

3. Continuez d'appuyez sur [DATA] pour afficher chaque valeur de données. Vous voyez successivement apparaître data 2, 5.00, data 3, 5.00, data 4, 5.00, data 5, 5.00, data 6, 9.00, data 7, 9.00,

Méthode 2

Appuyez une fois sur [ENTER] pour afficher la première valeur de données.

2.00

2. Continuez à appuyer sur [ENTER] pour afficher chaque valeur de données. Vous verrez apparaître successivement 5.00, 5.00, 5.00, 5.00, 9.00, 9.00, 9.00.

Ajout d'une valeur de données ex. 11 : Pour ajouter une $9^{\text{ème}}$ valeur de données égale à 10 au jeu de données de l'Ex. 9.

1. Appuyez sur [DATA] 10

DEG ED STAT

10. La calculatrice met à jour les statistiques dès l'entrée des données. Vous pouvez alors rappeler les statistiques pour obtenir : $\bar{\chi}$ = 6.56, n = 9.00, S = 2.74, Σx = 59.00, Σx 2 = 447.00, σ = 2.59.

Modification de données statistiques

Méthode 1

1. Appuyez sur 2 [2ndF] [DEL] 3

Méthode 2

(égale à 2).

1. Appuyez sur [2ndF] [EDIT]

0.00 Appuyez sur 2 en appuyant sur [DATA] ou [ENTER] 2.00

3. Entrez 3 pour effacer 2.

3.

4. Appuyez sur [ENTER] pour valider la modification.

5. Appuyez sur [2ndF] [EDIT] pour quitter le mode Edition. Ex.13 : A partir de l'Ex.9, supprimez la première valeur de données

Méthode 1 1. Appuyez sur 2 [2ndF] [DEL] pour supprimer 2.

Méthode 2

1. Appuyez sur [2ndF] [EDIT] 0.00 2. Appuyez sur 2 en appuyant sur [DATA] DEG ED STAT 2.00 ou [ENTER]. DEG ED STAT 3. Appuyez sur [2ndF] [DEL] 5.00

4. Appuyez sur [2ndF] [EDIT] pour quitter le mode édition.

Erreur de suppression

message.

Si vous tentez de supprimer une valeur qui n'existe pas dans le jeu de données, **dEL Error** apparaît. (Les données existantes ne sont pas Ex.14 : Supprimez 7 du jeu de données de l'Ex.9.

DEG STAT 1. Appuyez sur 7 [2ndF] [DEL]

Méthode d'entrée de données pondérées

Plutôt que d'entrer individuellement chacune des données, vous pouvez entrer la valeur et le nombre d'occurrences de cette valeu (jusqu'à 255), Les données de l'Ex.9 peuvent être entrées comme suit :

Valeur	Nombre d'occurrences	Autre méthode	
2	1	[DATA]2	
5	4	[DATA]5[×]4	
9	3	[DATA]9[×]3	
Où vale	ur 1 = 2, valeurs 2 à 5 = 5,	et valeurs 6 à 8 = 9.	

Conditions d'erreur

L'indicateur FULL apparaît dans une des conditions suivantes L'entrée ultérieure de données n'est plus possible. Appuyez sur une touche pour effacer l'indicateur. A condition de rester en mode statistiques, les données entrées précédemment ne sont pas

- Vous tentez d'entrer plus de 80 valeurs de données.
- Le nombre d'occurrences d'une valeur de données est supérieur à
- Le produit du nombre de valeurs de données et du nombre d'occurrences est supérieur à 20400.

© Copyright 2002 Hewlett-Packard Development Company, L.P. Toute reproduction, adaptation ou traduction sans accord préalable et écrit est strictement interdite, sous couvert des lois sur la protection de la propriété intellectuelle.

Imprimé en Chine.

HDPMR178F26 MWB

Référence HP: F2212-90005