Física Computacional I Aula de Revisão 2

Josiel Mendonça Soares de Souza

Universidade Federal do Rio Grande do Norte Departamento de Física Teórica e Experimental

12 de Agosto de 2021

Tópicos da Aula de Hoje

- Resolução de Sistemas de Equações Não Lineares
 - Método da Relaxação
 - Método da Bissecção
 - Método de Newton
- 2 Máximos e Mínimos de Funções
 - Método da Seção Áurea
 - Método de Gauss-Newton
- Resolução de Sistemas de Equações Lineares
 - Eliminação Gaussiana
 - Pivotamento

1.) Resolução de Sistemas de Equações Não Lineares

Começamos com a seguinte equação:

$$x - 2 + e^{-x} = 0$$

Raíz: $x^* = 1.8414$

Começamos com a seguinte equação:

$$x - 2 + e^{-x} = 0$$

Podemos expressar essa equação de duas formas ao isolar x:

$$x = -ln(2-x)$$
 e $x = 2 - e^{-x}$

Raíz: $x^* = 1.8414$

Começamos com a seguinte equação:

$$x-2+e^{-x}=0$$

Podemos expressar essa equação de duas formas ao isolar x:

$$x = -ln(2-x)$$
 e $x = 2 - e^{-x}$

Temos, assim duas funções diferentes dos quais queremos igualar a x para encontrar a raíz:

$$f_1(x) \equiv -\ln(2-x)$$
 , $f_2(x) = 2 - e^{-x}$
 $f(x^*) - x^* = 0 \Rightarrow x^* = f(x^*)$

Raíz: $x^* = 1.8414$

Começamos com a seguinte equação:

$$x-2+e^{-x}=0$$

Podemos expressar essa equação de duas formas ao isolar x:

$$x = -ln(2-x)$$
 e $x = 2 - e^{-x}$

Temos, assim duas funções diferentes dos quais queremos igualar a x para encontrar a raíz:

$$f_1(x) \equiv -ln(2-x)$$
 , $f_2(x) = 2 - e^{-x}$
 $f(x^*) - x^* = 0 \Rightarrow x^* = f(x^*)$

$$x_{i+1} = f(x_i) \tag{1}$$

Raíz: $x^* = 1.8414$

Testando outra equação:

$$ln(x) + x^2 - 1 = 0$$

Raíz:
$$x^* = 1$$

Testando outra equação:

$$ln(x) + x^2 - 1 = 0$$

Podemos expressar essa equação de duas formas ao isolar x:

$$x = \sqrt{1 + \ln(x)} \qquad e \qquad x = e^{1 + x^2}$$

Raíz: $x^* = 1$

Testando outra equação:

$$ln(x) + x^2 - 1 = 0$$

Podemos expressar essa equação de duas formas ao isolar x:

$$x = \sqrt{1 + \ln(x)} \qquad e \qquad x = e^{1 + x^2}$$

Temos, assim duas funções diferentes dos quais queremos igualar a x para encontrar a raíz:

$$f_1(x) \equiv \sqrt{1 - \ln(x)}$$
 , $f_2(x) = e^{1 - x^2}$
 $f(x^*) - x^* = 0 \Rightarrow x^* = f(x^*)$

Raíz: $x^* = 1$

Testando outra equação:

$$ln(x) + x^2 - 1 = 0$$

Podemos expressar essa equação de duas formas ao isolar x:

$$x = \sqrt{1 + \ln(x)} \qquad e \qquad x = e^{1 + x^2}$$

Temos, assim duas funções diferentes dos quais queremos igualar a x para encontrar a raíz:

$$f_1(x) \equiv \sqrt{1 - \ln(x)}$$
 , $f_2(x) = e^{1 - x^2}$
 $f(x^*) - x^* = 0 \Rightarrow x^* = f(x^*)$

$$x_{i+1} = f(x_i)$$

Raíz: $x^* = 1$

Critério de Convergência [Série de Taylor]

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f}{dx^n} \Big|_{x=x_0} (x - x_0)^n$$

Critério de Convergência [Série de Taylor]

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f}{dx^n} \Big|_{x=x_0} (x - x_0)^n$$

$$\underbrace{f(x_n)}_{=x_{n+1}} = \underbrace{f(x^*)}_{=x^*} + f'(x^*) \cdot (x_n - x^*) + \dots$$

Critério de Convergência [Série de Taylor]

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f}{dx^n} \Big|_{x=x_0} (x - x_0)^n$$

$$\underbrace{f(x_n)}_{=x_{n+1}} = \underbrace{f(x^*)}_{=x^*} + f'(x^*) \cdot (x_n - x^*) + \dots$$

$$(x_{n+1} - x^*) \approx f'(x^*) \cdot (x_n - x^*)$$

Critério de Convergência [Série de Taylor]

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f}{dx^n} \Big|_{x=x_0} (x - x_0)^n$$

$$\underbrace{f(x_n)}_{=x_{n+1}} = \underbrace{f(x^*)}_{=x^*} + f'(x^*) \cdot (x_n - x^*) + \dots$$

$$(x_{n+1} - x^*) \approx f'(x^*) \cdot (x_n - x^*)$$

Para nosso método convergir para a raiz precisamos que:

$$(x_{n+1} - x^*) < (x_n - x^*) \Rightarrow x_{n+1} < x_n$$

Critério de Convergência [Série de Taylor]

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f}{dx^n} \Big|_{x=x_0} (x - x_0)^n$$

$$\underbrace{f(x_n)}_{=x_{n+1}} = \underbrace{f(x^*)}_{=x^*} + f'(x^*) \cdot (x_n - x^*) + \dots$$

$$(x_{n+1} - x^*) \approx f'(x^*) \cdot (x_n - x^*)$$

Para nosso método convergir para a raiz precisamos que:

$$(x_{n+1} - x^*) < (x_n - x^*) \Rightarrow x_{n+1} < x_n$$

$$f'(x^*) < 1$$

Encontrando a raíz da seguinte função:

$$f(x) = x - 2 + e^{-x}$$

Encontrando a raíz da seguinte função:

$$f(x) = x - 2 + e^{-x}$$

Algorítmo:

1) Faça: C = (a + b)/2

Encontrando a raíz da seguinte função:

$$f(x) = x - 2 + e^{-x}$$

- 1) Faça: C = (a + b)/2
- 2) Se $f(C) \cdot f(a) > 0$: a = C

Encontrando a raíz da seguinte função:

$$f(x) = x - 2 + e^{-x}$$

- 1) Faça: C = (a + b)/2
- 2) Se $f(C) \cdot f(a) > 0$: a = C
- 3) Senão: b = C

Encontrando a raíz da seguinte função:

$$f(x) = x - 2 + e^{-x}$$

- 1) Faça: C = (a + b)/2
- 2) Se $f(C) \cdot f(a) > 0$: a = C
- 3) Senão: b = C
- 4) Calcule: $\Delta x \equiv |b a|$

Encontrando a raíz da seguinte função:

$$f(x) = x - 2 + e^{-x}$$

- 1) Faça: C = (a + b)/2
- 2) Se $f(C) \cdot f(a) > 0$: a = C
- 3) Senão: b = C
- 4) Calcule: $\Delta x \equiv |b a|$
- 5) Se $\Delta x > Eps$: repita os passos anteriors

Encontrando a raíz da seguinte função:

$$f(x) = x - 2 + e^{-x}$$

- 1) Faça: C = (a+b)/2
- 2) Se $f(C) \cdot f(a) > 0$: a = C
- 3) Senão: b = C
- 4) Calcule: $\Delta x \equiv |b a|$
- 5) Se $\Delta x > Eps$: repita os passos anteriors
- 6) Senão: Obtermos $C \approx x^*$

Newton-Raphson Method

$$f'(x) = \frac{f(x)}{x^* - x} \Rightarrow \qquad x^* = x - \frac{f(x)}{f'(x)}$$

Newton-Raphson Method

$$f'(x) = \frac{f(x)}{x^* - x} \Rightarrow \boxed{x^* = x - \frac{f(x)}{f'(x)}}$$
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
(2)

Newton-Raphson Method

$$f'(x) = \frac{f(x)}{x^* - x} \Rightarrow \boxed{ x^* = x - \frac{f(x)}{f'(x)} }$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 (2)

Série de Taylor

$$\underbrace{f(x^*)}_{=0} = f(x) + f'(x) \cdot (x^* - x) + O(2)$$

Newton-Raphson Method

$$f'(x) = \frac{f(x)}{x^* - x}$$
 \Rightarrow $x^* = x - \frac{f(x)}{f'(x)}$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 (2)

Série de Taylor

$$\underbrace{f(x^*)}_{=0} = f(x) + f'(x) \cdot (x^* - x) + O(2)$$

$$f(x) + f'(x) \cdot (x^* - x) = 0$$

Newton-Raphson Method

$$f'(x) = \frac{f(x)}{x^* - x} \Rightarrow \boxed{x^* = x - \frac{f(x)}{f'(x)}}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 (2)

Série de Taylor

$$\underbrace{f(x^*)}_{0} = f(x) + f'(x) \cdot (x^* - x) + O(2)$$

$$f(x) + f'(x) \cdot (x^* - x) = 0$$

$$x^* = x - \frac{f(x)}{f'(x)}$$

Métodos I

- Relaxação: $x_{n+1} = f(x_n)$
- Bisseção: c=(a+b)/2 ; Se $(f(c)\cdot f(a)>0)$: a=c ; Senão: b=c ; Se $(\Delta x>Eps)$: Repita ; Senão: $x^*\approx c$
- Newton: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$; Se $(|x_n x_{n+1}| > Eps)$: Repita; Senão $x^* \approx x_{n+1}$

2.) Máximos e Mínimos de Uma Função

Critério 1

$$(x_4 - x_2) = (x_3 - x_1) (3)$$

Critério 1

$$(x_4 - x_2) = (x_3 - x_1) \tag{3}$$

$$z = \frac{x_4 - x_1}{x_3 - x_1} = \frac{x_3 - x_1}{x_2 - x_1} \tag{4}$$

Critério 1

$$(x_4 - x_2) = (x_3 - x_1) (3)$$

$$z = \frac{(x_3 + x_2 - x_1) - x_1}{x_3 - x_1} = 1 - \frac{x_2 - x_1}{x_3 - x_1}$$

$$z = \frac{x_4 - x_1}{x_3 - x_1} = \frac{x_3 - x_1}{x_2 - x_1} \tag{4}$$

Critério 1

$$(x_4 - x_2) = (x_3 - x_1) (3)$$

$$z = \frac{x_4 - x_1}{x_3 - x_1} = \frac{x_3 - x_1}{x_2 - x_1} \tag{4}$$

$$z = \frac{(x_3 + x_2 - x_1) - x_1}{x_3 - x_1} = 1 - \frac{x_2 - x_1}{x_3 - x_1}$$
$$z = 1 - \frac{1}{z} \Rightarrow z^2 - z - 1 = 0$$

Critério 1

$$(x_4 - x_2) = (x_3 - x_1) (3)$$

$$z = \frac{x_4 - x_1}{x_3 - x_1} = \frac{x_3 - x_1}{x_2 - x_1} \tag{4}$$

$$z = \frac{(x_3 + x_2 - x_1) - x_1}{x_3 - x_1} = 1 - \frac{x_2 - x_1}{x_3 - x_1}$$

$$z = 1 - \frac{1}{z} \Rightarrow z^2 - z - 1 = 0$$

$$z = \frac{1 + \sqrt{5}}{2}$$
(5)

Critério 1

$$(x_4 - x_2) = (x_3 - x_1) (3)$$

$$z = \frac{x_4 - x_1}{x_3 - x_1} = \frac{x_3 - x_1}{x_2 - x_1} \tag{4}$$

$$x_3 = x_1 + \frac{x_4 - x_1}{z}$$

$$z = \frac{(x_3 + x_2 - x_1) - x_1}{x_3 - x_1} = 1 - \frac{x_2 - x_1}{x_3 - x_1}$$

$$z = 1 - \frac{1}{z} \Rightarrow z^2 - z - 1 = 0$$

$$z = \frac{1 + \sqrt{5}}{2}$$
(5)

$$x_2 = x_4 - x_3 + x_1$$

Algorítmo

1) Definimos os extremos $(x_1 = a, x_4 = b)$

Algorítmo

- Definimos os extremos $(x_1 = a, x_4 = b)$
- Adicionamos um ponto no interior do intervalo $(x_1 < x_3 < x_4)$

$$x_3 = x_1 + \frac{x_4 - x_1}{z}$$
 , $z = \frac{1 + \sqrt{5}}{2}$

Algorítmo

- Definimos os extremos $(x_1 = a, x_4 = b)$
- Adicionamos um ponto no interior do intervalo $(x_1 < x_3 < x_4)$

$$x_3 = x_1 + \frac{x_4 - x_1}{z}$$
 , $z = \frac{1 + \sqrt{5}}{2}$

Adicionamos mais um ponto x_2 :

$$x_2 = x_4 - x_3 + x_1$$

$$x^* \approx (x_4 + x_1)/2$$

Algorítmo

- 1) Definimos os extremos $(x_1 = a, x_4 = b)$
- 2) Adicionamos um ponto no interior do intervalo $(x_1 < x_3 < x_4)$

$$x_3 = x_1 + \frac{x_4 - x_1}{z}$$
 , $z = \frac{1 + \sqrt{5}}{2}$

3) Adicionamos mais um ponto x_2 :

$$x_2 = x_4 - x_3 + x_1$$

4) Verificamos, Se $f(x_2) < f(x_3)$ então: $x_4 = x_3, x_3 = x_2$ e $x_2 = x_4 - x_3 + x_1$;

Algorítmo

- Definimos os extremos $(x_1 = a, x_4 = b)$
- Adicionamos um ponto no interior do intervalo $(x_1 < x_3 < x_4)$

$$x_3 = x_1 + \frac{x_4 - x_1}{z}$$
 , $z = \frac{1 + \sqrt{5}}{2}$

Adicionamos mais um ponto x_2 :

$$x_2 = x_4 - x_3 + x_1$$

- 4) Verificamos, Se $f(x_2) < f(x_3)$ então: $x_4 = x_3, x_3 = x_2 e x_2 = x_4 - x_3 + x_1;$
- 5) Senão: $x_1 = x_2, x_2 = x_3$ e $x_3 = x_1 + (x_4 - x_1)/z$

$$x^* \approx (x_4 + x_1)/2$$

Algorítmo

- Definimos os extremos $(x_1 = a, x_4 = b)$
- Adicionamos um ponto no interior do intervalo $(x_1 < x_3 < x_4)$

$$x_3 = x_1 + \frac{x_4 - x_1}{z}$$
 , $z = \frac{1 + \sqrt{5}}{2}$

Adicionamos mais um ponto x_2 :

$$x_2 = x_4 - x_3 + x_1$$

- 4) Verificamos, Se $f(x_2) < f(x_3)$ então: $x_4 = x_3, x_3 = x_2 e x_2 = x_4 - x_3 + x_1$:
- 5) Senão: $x_1 = x_2, x_2 = x_3$ e $x_3 = x_1 + (x_4 - x_1)/z$

6) Calculamos: $\Delta x = |x_4 - x_1|$

Algorítmo

- 1) Definimos os extremos $(x_1 = a, x_4 = b)$
- 2) Adicionamos um ponto no interior do intervalo $(x_1 < x_3 < x_4)$

$$x_3 = x_1 + \frac{x_4 - x_1}{z}$$
 , $z = \frac{1 + \sqrt{5}}{2}$

3) Adicionamos mais um ponto x_2 :

$$x_2 = x_4 - x_3 + x_1$$

- 4) Verificamos, Se $f(x_2) < f(x_3)$ então: $x_4 = x_3, x_3 = x_2$ e $x_2 = x_4 - x_3 + x_1$;
- 5) Senão: $x_1 = x_2$, $x_2 = x_3$ e $x_3 = x_1 + (x_4 x_1)/z$

- 6) Calculamos: $\Delta x = |x_4 x_1|$
- 7) Se $\Delta x > Eps$ repita os passos anteriores

$$x^* \approx (x_4 + x_1)/2$$

Método de Gauss-Newton

Basicamente queremos encontrar a raiz da derivada de uma função, ou seja, estamos encontrando um máximo ou um mínimo.

$$f'(x^*) = 0$$

Método de Gauss-Newton

Basicamente queremos encontrar a raiz da derivada de uma função, ou seja, estamos encontrando um máximo ou um mínimo.

$$f'(x^*) = 0$$

Definindo $g(x) \equiv f'(x)$ podemos usar o método de Newton-Raphson de modo que:

Método de Gauss-Newton

Basicamente queremos encontrar a raiz da derivada de uma função, ou seja, estamos encontrando um máximo ou um mínimo.

$$f'(x^*) = 0$$

Definindo $g(x) \equiv f'(x)$ podemos usar o método de Newton-Raphson de modo que:

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)} = x_n - \frac{f'(x_n)}{f''(x_n)}$$
 (6)

Métodos II

• Seção Áurea:

$$x_1 = a, x_4 = b, x_3 = x_1 + \frac{x_4 - x_1}{z}, x_2 = x_4 - x_3 + x_1;$$

Se $(f(x_2) < f(x_3))$: $x_4 = x_3, x_3 = x_2, x_2 = x_4 - x_3 + x_1;$
Senão: $x_1 = x_2, x_2 = x_3, x_3 = x_1 + \frac{x_4 - x_1}{z};$
Se $(|x_4 - x_1| > Eps)$: Repita; Senão $x^* \approx (x_4 + x_1)/2$

• Gauss-Newton:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$
; Se $(|x_n - x_{n+1}| > Eps)$: Repita; Senão: $x^* \approx x_{n+1}$

3.) Resolução de Sistemas de Equações Lineares

Eliminação de Gauss-Jordan

$$\begin{bmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ -11 \\ -3 \end{bmatrix}$$

Eliminação de Gauss-Jordan

$$\begin{bmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ -11 \\ -3 \end{bmatrix}$$

Podemos expressar nosso sistema como uma única matrix:

$$\begin{bmatrix} 2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix}$$

Eliminação de Gauss-Jordan

$$\begin{bmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ -11 \\ -3 \end{bmatrix}$$

Podemos expressar nosso sistema como uma única matrix:

$$\begin{bmatrix} 2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix}$$

Procedemos manipular essa matrix de modo a tornar a parte esquerda igual a uma matrix identidade.

$$\begin{bmatrix} 2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix} \xrightarrow[L_1/2]{} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix} \xrightarrow[L_2+3L_1]{} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 0.5 & 0.5 & 1 \\ -2 & 1 & 2 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix} \xrightarrow{L_1/2} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix} \xrightarrow{L_2+3L_1} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 0.5 & 0.5 & 1 \\ -2 & 1 & 2 & -3 \end{bmatrix}$$

$$\xrightarrow{L_3+2L_1} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 0.5 & 0.5 & 1 \\ 0 & 2 & 1 & 5 \end{bmatrix} \xrightarrow{L_2/0.5} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 1 & 5 \end{bmatrix} \xrightarrow{L_1-0.5L_2} \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 1 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix} \xrightarrow{L_1/2} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix} \xrightarrow{L_2+3L_1} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 0.5 & 0.5 & 1 \\ -2 & 1 & 2 & -3 \end{bmatrix}$$

$$\xrightarrow{L_3+2L_1} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 0.5 & 0.5 & 1 \\ 0 & 2 & 1 & 5 \end{bmatrix} \xrightarrow{L_2/0.5} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 1 & 5 \end{bmatrix} \xrightarrow{L_1-0.5L_2} \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 1 & 5 \end{bmatrix}$$

$$\xrightarrow{L_3-2L_2} \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & -1 & 1 \end{bmatrix} \xrightarrow{-1 L_3} \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{L_1+L_3} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix} \xrightarrow{L_1/2} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix} \xrightarrow{L_2+3L_1} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 0.5 & 0.5 & 1 \\ -2 & 1 & 2 & -3 \end{bmatrix}$$

$$\xrightarrow{L_3+2L_1} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 0.5 & 0.5 & 1 \\ 0 & 2 & 1 & 5 \end{bmatrix} \xrightarrow{L_2/0.5} \begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 1 & 5 \end{bmatrix} \xrightarrow{L_1-0.5L_2} \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 1 & 5 \end{bmatrix}$$

$$\xrightarrow{L_3-2L_2} \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & -1 & 1 \end{bmatrix} \xrightarrow{-1 \cdot L_3} \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{L_1+L_3} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\xrightarrow{L_2-L_3} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Logo, x = 2, y = 3, z = -1

Em problemas de encontrar a solução de sistemas lineares onde aparecem termos nulos na diagonal da matrix em questão não podemos seguir completamente o método anterior. Precisamos fazer acrescentar um passo a mais envolvendo troca de linhas de matrizes.

Em problemas de encontrar a solução de sistemas lineares onde aparecem termos nulos na diagonal da matrix em questão não podemos seguir completamente o método anterior. Precisamos fazer acrescentar um passo a mais envolvendo troca de linhas de matrizes.

$$\begin{bmatrix} 0 & 1 & 4 & 1 \\ 3 & 4 & -1 & -1 \\ 1 & -4 & 1 & 5 \\ 2 & -2 & 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \\ 9 \\ 7 \end{bmatrix}$$

Em problemas de encontrar a solução de sistemas lineares onde aparecem termos nulos na diagonal da matrix em questão não podemos seguir completamente o método anterior. Precisamos fazer acrescentar um passo a mais envolvendo troca de linhas de matrizes.

$$\begin{bmatrix} 0 & 1 & 4 & 1 \\ 3 & 4 & -1 & -1 \\ 1 & -4 & 1 & 5 \\ 2 & -2 & 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \\ 9 \\ 7 \end{bmatrix}$$

Mais uma vez podemos expressar esse sitema como uma única matriz:

$$\begin{bmatrix} 0 & 1 & 4 & 1 & -4 \\ 3 & 4 & -1 & -1 & 3 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 4 & 1 & -4 \\ 3 & 4 & -1 & -1 & 3 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix} \xrightarrow{L_1 \rightleftharpoons L_2} \begin{bmatrix} 3 & 4 & -1 & -1 & 3 \\ 0 & 1 & 4 & 1 & -4 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix} \xrightarrow{L_1/3} \begin{bmatrix} 1 & 4/3 & -1/3 & -1/3 & 1 \\ 0 & 1 & 4 & 1 & -4 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 4 & 1 & -4 \\ 3 & 4 & -1 & -1 & 3 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix} \xrightarrow{L_1 = L_2} \begin{bmatrix} 3 & 4 & -1 & -1 & 3 \\ 0 & 1 & 4 & 1 & -4 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix} \xrightarrow{L_1/3} \begin{bmatrix} 1 & 4/3 & -1/3 & -1/3 & 1 \\ 0 & 1 & 4 & 1 & -4 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix}$$

$$\xrightarrow{L_3-L_1} \begin{bmatrix} 1 & 4/3 & -1/3 & -1/3 & 1 \\ 0 & 1 & 4 & 1 & -4 \\ 0 & -16/3 & 4/3 & 16/3 & 8 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix} \xrightarrow{L_4-2L_1} \begin{bmatrix} 1 & 4/3 & -1/3 & -1/3 & 1 \\ 0 & 1 & 4 & 1 & -4 \\ 0 & -16/3 & 4/3 & 16/3 & 8 \\ 0 & -14/3 & 5/3 & 11/3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 4 & 1 & -4 \\ 3 & 4 & -1 & -1 & 3 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix} \xrightarrow{L_1 = L_2} \begin{bmatrix} 3 & 4 & -1 & -1 & 3 \\ 0 & 1 & 4 & 1 & -4 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix} \xrightarrow{L_1/3} \begin{bmatrix} 1 & 4/3 & -1/3 & -1/3 & 1 \\ 0 & 1 & 4 & 1 & -4 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix}$$

$$\xrightarrow{L_3-L_1} \begin{bmatrix} 1 & 4/3 & -1/3 & -1/3 & 1 \\ 0 & 1 & 4 & 1 & -4 \\ 0 & -16/3 & 4/3 & 16/3 & 8 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix} \xrightarrow{L_4-2L_1} \begin{bmatrix} 1 & 4/3 & -1/3 & -1/3 & 1 \\ 0 & 1 & 4 & 1 & -4 \\ 0 & -16/3 & 4/3 & 16/3 & 8 \\ 0 & -14/3 & 5/3 & 11/3 & 5 \end{bmatrix}$$

$$\xrightarrow[L_1 - \frac{4}{3}L_2]{} \begin{bmatrix} 1 & 0 & -17/3 & -5/3 & 19/3 \\ 0 & 1 & 4 & 1 & -4 \\ 0 & -16/3 & 4/3 & 16/3 & 8 \\ 0 & -14/3 & 5/3 & 11/3 & 5 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & \mathbf{1.62} \\ 0 & 1 & 0 & 0 & \mathbf{-0.43} \\ 0 & 0 & 1 & 0 & \mathbf{-1.24} \\ 0 & 0 & 0 & 1 & \mathbf{1.38} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 4 & 1 & -4 \\ 3 & 4 & -1 & -1 & 3 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix} \xrightarrow{L_1 = L_2} \begin{bmatrix} 3 & 4 & -1 & -1 & 3 \\ 0 & 1 & 4 & 1 & -4 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix} \xrightarrow{L_1/3} \begin{bmatrix} 1 & 4/3 & -1/3 & -1/3 & 1 \\ 0 & 1 & 4 & 1 & -4 \\ 1 & -4 & 1 & 5 & 9 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix}$$

$$\xrightarrow{L_3-L_1} \begin{bmatrix} 1 & 4/3 & -1/3 & -1/3 & 1 \\ 0 & 1 & 4 & 1 & -4 \\ 0 & -16/3 & 4/3 & 16/3 & 8 \\ 2 & -2 & 1 & 3 & 7 \end{bmatrix} \xrightarrow{L_4-2L_1} \begin{bmatrix} 1 & 4/3 & -1/3 & -1/3 & 1 \\ 0 & 1 & 4 & 1 & -4 \\ 0 & -16/3 & 4/3 & 16/3 & 8 \\ 0 & -14/3 & 5/3 & 11/3 & 5 \end{bmatrix}$$

Solução: w = 1.62, x = -0.43, y = -1.24, z = 1.38.