CS211 ALGORITHMS & DATA STRUCTURES II

LAB 10

Dr. Phil Maguire

STRING SEARCHING ALGORITHMS

Pen and Paper Exercise

The goal is to find the pattern ABRACADABRA in the string ABRACABABRACABRACADABRA.

Show step-by-step how the Knuth-Morris-Pratt algorithm and how the Boyer-Moore algorithm would find the pattern. Find how many comparisons are carried out by each.

For the Knuth-Morris-Pratt algorithm you should first write out the Partial Match Table and then show clearly the progress of the algorithm through the string.

For the Boyer-Moore algorithm you should first write out the Bad Character Shift Table and the Good Suffix Shift Table and then show clearly the progress of the algorithm through the string.

1. Knuth-Morris-Pratt Algorithm

Partial Match Table

Α	В	R	Α	С	Α	D	Α	В	R	Α
-1	0	0	0	1	0	1	0	1	2	3

Comparison Table - 30 comparisons in total

Programming Exercise

```
}
                vertices[minvertex].visited=true;  //we have now
visited it
                visited++;
                for(int j=0;j<size;j++) {      //update distances from</pre>
this new point
if(array[j][minvertex]>0&&vertices[j].visited==false){    //if vertex is
connected and not visited
if (vertices[j].distance>vertices[minvertex].distance+array[j][minverte
x]){
vertices[j].distance=vertices[minvertex].distance+array[j][minvertex];
//update if a new shorter route to this vertex has been found
                            vertices[j].route=minvertex; //track the
path taken
                         }
                    }
            }
```