

Week 3: Common Pricing Metrics: Elasticities

Video 1: Intro to Common Pricing Metrics: Elasticities

Common Pricing Metrics: Elasticities

- Regressions
- Common elasticities
 - Price
 - Cross-price
 - Income
- Drivers of price elasticity
 - Market share
 - Competitors' prices
- Price optimization

By the end of this module you'll be able to...

- Estimate regression models
- Describe and calculate three types of elasticities
 - Price
 - Cross-price
 - Income
- Explain the drivers of price elasticity and their impact
- Perform a price optimization based on demand models

Price Elasticities

Why Measure Price Elasticity?

- Provides a standard way to predict quantity reactions to price.
- Can enable us to better understand the competitive structure of the marketplace.
- Price elasticity is defined as %ΔQ/%ΔP
 - The percent change in quantity divided by the percent change in price.
- Cross-price elasticity is the percent change in *my quantity* divided by the change in *some other price*.

Why Measure Price Elasticity?

• Income elasticity is the percent change in quantity divided by the percent change in per capita disposable income.

Our Scanner Data

- Monthly sales and price data on different cuts of beef and chicken.
- Data is a national sample collected by the U.S. Department of Agriculture (2001-2007).
- Also contains monthly data on per capita disposable income (Economagic)

*Data and initial modeling information obtained from Hayes, Fred H. and Stephen A. DeLurgio, "Where's The Beef: Statistical Demand Estimation Using Supermarket Scanner Data," Journal of Case Research in Business and Economics.

Linear Model

$$Q_x = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e_i$$

 Q_x = an index of beef quantities (base year = 2001)

 α = constant (equals quantity of X when all other variables =0)

 $X_1 = Px_1$, the "own" price of a given type of beef $[B_1 = \Delta Q_x/\Delta Px_1]$

 $X_2 = Px_2$, the price of a related good, chicken $[B_2 = \Delta Q_X/\Delta Px_2]$

 X_3 = measure of disposable (after-tax) income (Inc) $B_3 = \Delta Q_X/\Delta {\rm Inc}$

 X_4 = trend variable (1, 2, 3 ... n)

 e_i = error term

Linear Model

- Initial analysis uses quantities and prices per pound for chuck roast.
- Same for chicken.

Estimated Model

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

$$Q_x = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e_i$$

What can we do with this?

- Calculate price elasticity, cross price elasticity and income elasticity.
- Use the estimated model as a demand function.
- Compute the optimal price of this cut of beef under different scenarios.

Let's do that!

- Price elasticity is defined as %ΔQ/%ΔP
 - $\bullet (\Delta Q \div Q)/(\Delta P \div P)$
 - Rearranging: $\Delta Q/\Delta P * P/Q$
 - This is a nice formulation because you know $\Delta Q/\Delta P$.

Estimated Model

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

$$Q_x = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e_i$$

Price Elasticity

- Price elasticity is defined as %ΔQ/%ΔP
 - $\bullet (\Delta Q \div Q)/(\Delta P \div P)$
 - Rearranging: $\Delta Q/\Delta P * P/Q$
 - This is a nice formulation because you know $\Delta Q/\Delta P$.
- So E = -50.16 * P/Q (use the means)

Estimated Model

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

107.5455 Means 2.47 ChuckQ ChuckP

 $Q_x = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e_i$

Let's do that!

- Price elasticity is defined as %ΔQ/%ΔP
 - $(\Delta Q \div Q)/(\Delta P \div P)$
 - Rearranging: $\Delta Q/\Delta P * P/Q$
 - This is a nice formulation because you know $\Delta Q/\Delta P$.
- So E = -50.16 * P/Q (use the means)
- E = -50.16 * 2.47/107.55 = -1.15
- A 10% change in price will be associated with an 11.5% change in quantity.

Cross-Price Elasticity

Cross-Price Elasticity

- Cross-price elasticity is defined as %ΔQ/%ΔP
- $E_c = \Delta Q / \Delta P_{\circ} * P_{\circ} / Q$

Estimated Model

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

$$Q_x = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e_i$$

Cross-Price Elasticity

- Cross-price elasticity is defined as %ΔQ/%ΔP
- $E_c = \Delta Q / \Delta P_{\circ} * P_{\circ} / Q$
- So $E_c = -53.63 * P_c/Q$ (use the means)
- E = -53.63 * (1.695/107.55) = -.84
- The negative sign indicates that these products are complements [not substitutes].
- A 10% increase in the price of chicken will decrease our demand by about 8.4%

Understanding Competitive Structure

Cross-Elasticity of Row Brand with Respect to Column Brand

	Aquafresh	Colgate	Crest	Mentadent
Aquafresh	-4.2	1.0	0.8	2.0
Colgate	1.2	-3.5	1.5	1.5
Crest	1.0	2.5	-3.2	1.8
Mentadent	1.8	1.2	1.3	-4.0

Cross-Price Elasticities in Practice

	Aquafresh	Colgate	Crest	Mentadent
Aquafresh	-4.2	1.0	0.8	2.0
Colgate	1.2	-3.5	1.5	1.5
Crest	1.0	2.5	-3.2	1.8
Mentadent	1.8	1.2	1.3	-4.0

- Which brand is most sensitive to its own price?
- Who is Crest's main competitor?
- Can underlying preferences be detected?
 - We would expect asymmetric cross-price elasticities between Audi and VW.

Income Elasticity

Income Elasticity

- Income elasticity is defined as %ΔQ/%ΔI
- $E_I = \Delta Q / \Delta I * I / Q$

Estimated Model

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

$$Q_x = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e_i$$

Income Elasticity

- Income elasticity is defined as %ΔQ/%ΔI
- $E_I = \Delta Q / \Delta I * I / Q$
- So $E_i = -0.54 * I/Q$
- $E_i = -0.054 * 9252.85/107.55 = -4.646$
- The negative sign indicates that this product is an inferior good.
- A 10% increase in disposable income will decrease our demand by about 46%.

Interpreting Income Elasticity

Range of Income Elasticity	Interpretation
E < 0	Inferior good
E = 0	Sticky good
0 < E < 1	Necessity
E > 1	Luxury

Drivers of Price Elasticity

Drivers of Price Elasticity: Market Share

Key takeaways

Established, large players are less elastic

- · Tend to price at a premium
- Select the price umbrella

Small competitors have higher elasticities

- · Tend to undercut market leaders
- Have opportunity to gain share

Small channels tend to be more elastic

Online channel often has lower prices...

Drivers of Price Elasticity: Competitors' Prices

Taking a Derivative

- When there's a constant and a variable, the derivative is the constant.
- Derivative of a constant equals zero.
- Derivative of an exponent = exponent * constant -
- Partial derivatives (with more than one variable) take the derivative of z with respect to x. Then take the derivative again, but this time, take it with respect to y, and hold the x constant.

Price Optimization Considering Demand

Using Demand Information

$$\pi = (P - MC)Q$$

P = price, MC is marginal cost, and Q is quantity sold.

$$\pi = (P - MC)(10 - 2P)$$

$$\pi = 10P - 2P^2 - 10MC + 2MCP$$

Calculus

Nobody freak out!

Using Demand Information

$$\pi = 10P - 2P^2 - 10MC + 2MCP$$

$$\frac{\partial \pi}{\partial P} = \mathbf{0} \Rightarrow \text{Maximization!}$$

$$10 - 4P + 2MC = 0$$

Solve for P* -> The profit maximizing price.

Using Demand Information

$$P^* = \frac{10}{4} + \frac{MC}{2} \Rightarrow 2.5 + \frac{1}{2} = 3$$

$$Q^* = 10 - 2(3) = 4$$

Profit =
$$4*(3-1)=$8$$

Why is this harder in the real world?

- No one gives you demand.
- You might sell through someone who has their own incentives.
- Some things are illegal.

How do we get demand?

- Surveys (Zero Junk Mail)
- Conjoint Analysis (Portland Trailblazers)
- Purchase Data
 - Scanner data (Beef Sales)
 - Panel data
- Almost all CPG firm subscribe to scanner data services

Estimated Model

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

$$Q_x = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e_i$$

Estimated Model

$$Q_x = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e_i$$

Q = dependent variable of quantity sold

a = constant (equals quantity of X when all other variables equal 0)

 X_1 = my own price

 X_2 = price of a related good

 X_3 = measure of disposable income

 X_4 = trend variable

 e_1 = error term

Building the Demand Function

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

$$Q_x = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e_i$$

$$Q = 779.4 - 50.2 * P - 53.6 * P_C - .05 * Income + 1.67 * Trend$$

Price Optimization Example

Price Optimization

- The scenario:
 - You are the retailer.
 - You are setting the price for month 56, which is the month that occurs next after the end of our data.
 - You are going to price chicken at \$1.75/pound.
 - The wholesale price of chuck is \$1.50/pound.
 - Disposable income is stable around \$10,000.

Estimated Model

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

$$Q_x = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e_i$$

Building the Demand Function

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

$$Q = 779.4 - 50.2 * P - 53.6 * 1.75 - .05 * 10,000 + 1.67 * 56$$

Building the Demand Function

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

$$Q = 779.4 - 50.2 * P - 93.8 - 500 + 93.52$$

University Virginia

Building the Demand Function

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

$$Q = 279.12 - 50.2 * P$$

$$\pi = (P - C) * Q$$

$$\pi = (P - \$1.50) * (279.12 - 50.2 * P)$$

$$\pi = 279.12 * P - 50.2 * P^2 - 418.68 + 75.3 * P$$

$$\pi = -418.68 + 354.42 * P - 50.2 * P^2$$

Building the Demand Function

	Coefficients	Standard Error	t Stat
Intercept	779.4412709	234.3797806	3.325548
Chuck Price	-50.1604464	16.51476771	-3.03731
Chicken Price	-53.6349433	46.5686921	-1.15174
Income	-0.05444669	0.022800774	-2.38793
Trend	1.6709003	0.67842569	2.462908

$$\pi = -418.68 + 354.42 * P - 50.2 * P^{2}$$

$$\frac{\partial \pi}{\partial P} = 354.42 - 100.4P = 0$$

$$354.42 = 100.4P$$

$$P = $3.53$$

Module Takeaways

Price Elasticity Key Points

- Regressions
- Common elasticities
 - Price
 - Cross-price
 - Income
- Drivers of price elasticity
 - Market share
 - Competitors' prices
- Price optimization