Procedure: Creep Test at SNL

Version Date:

August 7, 2015

F	orm Completed By:	TDL	
1	Test Description	1/12/16	

Parameters	Value
Test Name	UNM-WP- HY- 175-08
Salt Provenance (Circle One)	Avery Island /WIPP
Test Type (Circle One)	Hydrostatie / Shear
Salt Can Label	3.3
Water Added to Salt (Circle One)	yes no
Target/Actual Added Water Content	$w = \frac{m_{water-added}}{m_{salt}} =$
Temperature: [°C / ° F]	1752
Pressure [MPa / psi]	Multi Stage 14, 22, 30, 38 MPa
Jacketing Components (Circle All)	Outer Cead Outer Viton - Inner Lead - Inner Coppe
Tested In (Circle One)	Frame 2 / Frame 3
Test Target (permeability / fractional density / etc)	0.45

Table 1: Description of Test

J-chet Faile in PC

2 Pre-Test Measurements

2.1 Height of components:

Components	Count	Component Label	Recorded Height [mm]
Di	1	C1	37. ZB
Platens	2	C 3	37.12
Charles Diag	1	CP2	12-80
Chamfer Discs	2	CP3	8.35
Mark Diago	1	NA	1.10
Mesh Discs	2	NA	1.10
Cumulative Height	of Components		mm

Table 2: Itemized List of Components for Height Measurements (No Salt).

2.2 Jacket Dimensions

2.2.1 Height of Outer Jacket

This value will vary depending on which platens (steel or aluminium) and chamfer pieces are used, in general:

- Outer Jacket: 10.125 inches (257.17 mm) to 10.5 inches (266.7 mm);
- 2. INNER SHELL: 12.0 INCHES (304.8 MM) -> THIS IS FOR BOTH A1 AND A2;
- Specimen Clearance: 1.875 inches (47.62 mm) to 1.5 inches (38.1 mm);

NOTE: the maximum height inside Frame 2 and 3 is 12 inches (304.8 mm)

If the upper internal port of the shell is plugged, the available height is decreased to 11.75 inches (298.45 mm)

Jacket Description	Height	No. of Jackets Used	
Outer Lead Jacket (mm)	220	1	1-5-1
Outer Viton Jacket (mm)			
Inner Lead Jacket (mm)			
Inner Copper Jacket (mm)	134	2	0.1
Height of Total Sample (mm)			

Table 3: Height of Jacketing Components (if jacket not used, write "NA")

2.2.2 Checklist of Jacketing Materials:

Components	Count	Verification Checkmark (and Component Label is Applicable)
Platens	t	# C1 C3
Platen O-rings	4	
Platen Screws (0.25 inch 20 rnd)	2	
Screw-In Nipples	2	
Nipple O-rings	8	
Nipple Adapter (HIP HF4 connection)	24	
Nipple Plugs (HIP HF4 plugs)	2	
Chamfer Discs	2	CPZ +CP3
Mesh Discs	2	New
Inner Copper Jacket (indicate No. used)	2	Thickness of 1 Sheet of Copper (mm): 0.1/
Inner Lead Jacket	_	Jacket Thickness (mm):
Outer Lead Jacket	1	Jacket Thickness (mm): 1,5
External Hose Clamps	4	

Table 4: Itemized List of Components for Mass and Volume Measurements (No Salt).

2.2.3 Volume and Mass of Components (No Salt)

Measured Value	Values	Units	Comments
Prior to Dunk: Water Level Reading on Burette	57.5	mL (burette)	
After Dunk: Water Level Reading on Burette	48.6	mL (burette)	
Volume of Components (No Salt)		mL	
Mass of Components (No Salt)	3.8501	kg	
Approximate Outside Diameter of Sample		mm	
Dunk Tank Volume Factor: 1	114.4978 mL/Buret	te Unit	

+ 13.3144 H

Table 5: Measurements of All Components (No Salt)

MA

2.3 Measured Mass of Salt

2.3.1 Date:

Parameters	Value	
Salt Can Label		
Before Making Sample: Mass of Salt and Can (with Id)	1940.9	kg
After Sample is Made: Remaining Mass of Salt and Can (with lid)	440.6	kg
Bulk Mass of Salt Used for Sample		kg
Cumulative Mass of Components and Salt		kg

Table 6: Mass of Salt Before Preconsolidation

3 Pre-consolidation Measurements

3.0.2 Date:

3.0.3 Data Sample Rate:

Volume Displayed on GUI	Volume [mL]	Pressure [psi]	Time [hh:mm]
Initial Reading: prior to consolidation			
Reading: When at pre-consolidation pressure			
Final Reading: after pre consolidation			

Table 7: Pre-consolidation Details

Parameter	Values	Units
Prior to Dunk: Mass of Specimen (with all components)		kg
Prior to Dunk: Water Level Reading on Burette		mL (burette)
After Dunk: Water Level Reading on Burette		mL (burette)
Preconsolidated Specimen (all components listed above plus salt)		mL
After Dunk: Mass of Specimen (with all components)		kg
Average Height of Specimen		mm
Average Outside Diameter of Specimen		mm
Bulk Salt Volume (Salt and added water):		mL
Dunk Tank Volume Factor: 114.497	78 mL/Burette Unit	

Table 8: Measurements Made After Preconsolidation of Specimen.

Parameter	Values	Units
Salt Only - Volume: $V_{sample}^{salt} = V_{sample}^{bulk} * (1 - w)$		mL
Salt Only - Mass: $m_{sample}^{salt} = m_{sample}^{bulk} * (1 - w)$		kg
Salt Only - Denisty: $\rho_{sample}^{salt} = m_{sample}^{salt}/V_{sample}^{salt}$		kg/m^3
Salt Only - Fractional Density: $\overline{\rho} = \rho_{sample}^{salt}/2160$		_

Table 9: Post-Consolidation Density Calculations

4 Application of Heat to Obtain Test Temperature

4.0.4 Data Sample Rate:

Event	Date	Time	Confining Pressure [psi]	Expelled Silicone Oil Volume (mL)
Start Temperature Increase				, ,
End Temperature Increase				

Table 10: Dates of Details of Temperature Increase

5 Creep Test

5.0.5 Date (Start Test):

5.0.6 Data Sample Rate:

Event	Value	Comment
ISCO Pump Volume (Pre Pressure Increase)		
ISCO Pump Pressure (Pre Pressure Increase)		
Begin Pressure Increase	Time:	
End Pressure Increase	Time:	
ISCO Pump Volume (Post to Pressure Increase)		
ISCO Pump Pressure (Post Pressure Increase)		
ISCO Pump Flow Rate (Post Pressure Increase)		

Table 11: Details of Test Initiation

5.0.7 Date (End Test):

kg
mI (hunstra
mL (burette
mL (burette
mL
mm
mm
$ m kg/m^3$

Table 12: Post Test Measurements

Parameter	Values	Units
Salt Only - Volume: $V_{sample}^{salt} = V_{sample}^{bulk} * (1 - w)$		mL
Salt Only - Mass: $m_{sample}^{salt} = m_{sample}^{bulk} * (1 - w)$		kg
Salt Only - Denisty: $\rho_{sample}^{salt} = m_{sample}^{salt} / V_{sample}^{salt}$		kg/m^3
Salt Only - Fractional Density: $\overline{\rho} = \rho_{sample}^{salt}/2160$		-

Table 13: Post Test Density Calculations