Algorytmy i struktury danych

Sprawozdanie – projekt 3.

Zadanie

Graf skierowany reprezentowany przy pomocy listy krawędzi

1. Wstęp

1.1. Temat

Treść zadania jest następująca:

Napisz program, który dla zadanego grafu skierowanego reprezentowanego przy pomocy listy krawędzi wyznaczy i wypisze następujące informacje:

- 1) wszystkich sąsiadów dla każdego wierzchołka grafu (sąsiad danego w; to ten wierzchołek, do którego prowadzi krawędź z w;)
- 2) wszystkie wierzchołki, które są sąsiadami danego wierzchołka
- 3) stopnie wychodzące wszystkich wierzchołków
- 4) stopnie wchodzące wszystkich wierzchołków
- 5) wszystkie wierzchołki izolowane
- 6) wszystkie pętle
- 7) wszystkie krawędzie dwukierunkowe

Każdy z powyższych podpunktów powinien być realizowany jako oddzielna funkcja. W funkcji main() należy przedstawić działanie napisanej przez siebie biblioteki na reprezentatywnym przykładzie. Kod powinien być opatrzony stosownymi komentarzami.

1.2.0pis problemu

Powyższe zadanie polega na zdefiniowaniu grafu, następnie utworzenia tablicy list, a ostatecznie wyznaczeniu i wypisaniu do pliku tekstowego informacji o tym grafie. Informacje, które program ma przeanalizować znajdują się w podpunktach zadania.

2. Analiza i projektowanie

2.1.Opis podstaw teoretycznych zagadnienia

Rozwiązanie zadania polegało przede wszystkim na wprowadzeniu definicji grafu, zaimplementowaniu tablicy list, a następnie w poszczególnych funkcjach na przeglądaniu jej za pomocą pętli for w celu wyznaczenia poszczególnych informacji. O czym tak naprawdę mowa?

Graf – jest strukturą danych składającą się z dwóch zbiorów: zbioru wierzchołków i zbioru krawędzi, co matematycznie zapisujemy w postaci uporządkowanej pary (tzn. takiej, gdzie istotna jest kolejność elementów tworzących tę parę)

Sąsiad wierzchołka grafu – sąsiad wierzchołka w_i, to wierzchołek, do którego prowadzi krawędź z wierzchołka w_i

Stopień wychodzący wierzchołka – liczba krawędzi wychodzących z wierzchołka.

Stopień wchodzący wierzchołka – liczba krawędzi wchodzących do wierzchołka.

Wierzchołek izolowany – wierzchołek nie połączony krawędzią z żadnym innym wierzchołkiem grafu

Pętla – pętlę otrzymujemy wtedy, gdy wierzchołek jest połączony krawędzią ze samym sobą

Krawędź dwukierunkowa – występuje wtedy, gdy prowadzi jednocześnie z wierzchołka "i" do wierzchołka "j" i na odwrót.

2.2. Opis szczegółów implementacji problemu

2.2.1. Biblioteki

iostream	Biblioteka we-wyjścia. Deklaruje obiekty, które kontrolują odczytywanie ze strumieni standardowych i zapisywanie ich w tych strumieniach. Jest to często jedyny nagłówek potrzebny do wprowadzania danych i danych wyjściowych.	
fstream	Dostarcza funkcji pozwalających nam zarówno zapisywać pliki jak i je odczytywać.	
opracujgraf.h	Własna biblioteka, w której zawarte są zapowiedzi funkcji znajdujących się w pliku opracujgraf.cpp	

2.2.2.Zmienne

A[n]	Tablica list posiadająca rozmiar równy ilości wierzchołków (każdy wierzchołek posiada swoją listę)
р	zmienna pomocnicza, która pełni rolę listy; za pomocą tej zmiennej możemy poruszać się po liście analizując poszczególne, a także na początku pomaga wpisać definicję grafu do list;
n	zmienna typu int; odpowiada ilości wierzchołków
m	zmienna typu int; odpowiada ilości krawędzi
v1	zmienna typu int; za jej pomocą wprowadzamy do grafu wierzchołki startowe;
v2	zmienna typu int; za jej pomocą wprowadzamy do grafu wierzchołki końcowe;
plik	zmienna globalna, plikowa typu ofstream. Służy do zapisywania danych do pliku
i,j	iteratory pętli for
istnieje,	zmienne typu bool;
izolowany,	
warunek1,	
warunek2	

2.2.3. Funkcje

main	główna funkcja programu, zawiera inicjalizacje i deklaracje zmiennych; w niej wywoływane są pozostałe funkcje
sasiedzi	za pomocą pętli for wyświetla kolejne elementy poszczególnych list, odpowiadających odpowiednim wierzchołkom; wszystkie elementy, które są wywołane dla tablicy A[i], są sąsiadami wierzchołka "i"; wyświetla wynik
sasiedziKazdego Wierzcholka	za pomocą zagnieżdżonej pętli for, funkcja zlicza w ilu listach znajduję się i-ty element; jeśli ten licznik jest równy ilości wierzchołków to znaczy, że i-ty wierzchołek jest sąsiadem każdego wierzchołka
stopnieWychodzace	za pomocą pętli zlicza ile istnieje krawędzi wychodzących od i-tego wierzchołka; licznik ten oznacza stopień wychodzący wierzchołka; ostatecznie wypisuje wierzchołki i ich stopnie wychodzące
stopnieWchodzace	za pomocą zagnieżdżonej pętli for zlicza ile istnieje krawędzi (we wszystkich listach) wchodzących do i-tego wierzchołka; licznik ten oznacza stopień wchodzący wierzchołka; ostatecznie wypisuje wierzchołki i ich stopnie wychodzące
wierzcholkilzolowane	za pomocą pętli for i zmiennych typu bool funkcja sprawdza czy istnieje jakakolwiek krawędź między i-tym wierzchołkiem; najpierw sprawdza ilość elementów na liście wierzchołka i; jeśli ilość ta jest równa zero, funkcja sprawdza czy wierzchołek i znajduje się na innych listach; jeśli nie – jest wierzchołkiem izolowanym; wypisuje wierzchołki izolowane
petle	za pomocą pętli i zmiennych bool sprawdza, czy istnieją takie krawędzie, które przechodzą od i-tego wierzchołka do tego samego wierzchołka (czy na liście i-tego wierzchołka istnieje i-ty element); ostatecznie wypisuje wierzchołek, który ma pętle
krawedz Dwukierunkowa	za pomocą pętli i zmiennych bool sprawdza, czy istnieją takie krawędzie, które przechodzą zarówno od i-tego do j- tego wierzchołka, jak i w drugą stronę (czy na liście i-tego wierzchołka jest j-ty element i odwrotnie); wypisuje między jakimi wierzchołkami istnieje krawędź dwukierunkowe
struct lista	zawiera definicje listy o nazwie "lista" oraz określa typ danych "v" w niej zawarty jako int

2.3. Schematy blokowe i pseudokody

2.3.1. Sąsiedzi dla każdego wierzchołka grafu

2.3.2.Wierzchołki, które są sąsiadami każdego wierzchołka

```
START
i,j <- 0
dla i<-0 do n wykonuj
licznik=0
                                                                           i = 0
       dla j<-0 do n wykonuj
                                                                           j = 0
       p<-A[ j ]
       istnieje=false
                                                                    NIE
                                                         STOP
              dopoki p wykonuj
                                                                           i<n
                                                                                        licznik=0
                     if (p->v==i) wykonuj
                     istnieje=true;
                                                                    j++
                                                   licznik++
              p= p->next
                                                                         p = A[j]
       if(istnieje==true)wykonuj
                                                        stnieje==true NIE
                                                                        istnieje=false
       licznik++
                                                      TAK
                                                                                            NIE
if(licznik==n)
                                                                          while p
wypisz i
                                                         p = p->next
                                                                                      (licznik==n)
                                                                             TAK
i++
                                                                         (p->v == i
                                                                                        wypisz i
                                                                             TAK
                                                                        istnieje=true
```

2.3.3. Stopnie wychodzące wierzchołków

2.3.4. Stopnie wchodzące wierzchołków

2.3.5. Wierzchołki izolowane

```
i, j <- 0
dla i<-0 do n wykonuj
licznik<-0
p <- A[ i ]
     dopóki p wykonuj
           if(p->v)>=0 &&(p->v)<=n
           wykonuj
           licznik++
     p=p->next
if licznik==0
izolowany<- true
     dla j<-0 do n wykonuj
     p<-A[ j ]</pre>
           dopoki p wykonuj
                 if(p->v == i)
wykonuj
                 izolowany=false
           p=p->next
           j++
if izolowany
     wypisz i
i++
```


2.3.6.Petle

2.3.7. Krawędzie dwukierunkowe

```
i,j <- 0
dla i<-0 do n wykonuj
warunek1,warunek2 <- false
     dla j<-0 do n wykonuj
     p<- A[ i ]
     dopoki p wykonuj
           if(p->v==j \&\& p->v!=i)
           wykonuj
           warunek1<-true
           else warunek1<-false
           p=p->next
     p<-A[ j ]
     dopoki p wykonuj
           if(p->v==i \&\& p->v!=j)
           wykonuj
           warunek2<-true
           else warunek2<-false
           p=p->next
     if(warunek1&&warunek2)wykonuj
     wypisz i,j
     j++
i++
```


3. Wyniki

3.1. Przykłady działania programu

Poniżej przedstawione przykłady zostały skopiowane z pliku "wyniki.txt", do którego program zapisuje rezultaty swoich działań.

3.1.1. Pierwszy graf

Wejście:

Podaj liczbe wierzcholkow

10

Podaj liczbe krawedzi

9

Wprowadz graf za pomoca listy krawedzi (wierzcholek startowy, wierzcholek koncowy)

57

Wyjście:

1. Sasiedzi kazdego wierzcholka grafu:

W0 - sasiedzi: W4

W1 - sasiedzi:

W2 - sasiedzi: W0 W1 W3 - sasiedzi: W3 W4 - sasiedzi: W1 W0 W5 - sasiedzi: W8 W7

W6 - sasiedzi: W7 - sasiedzi: W8 - sasiedzi: W6 W9 - sasiedzi:

2. Wierzcholki, ktore sa sasiadami kazdego wierzcholka

3. Stopnie wychodzace wierzcholkow

W0 - stopien wychodzacy: 1

W1 - stopien wychodzacy: 0

W2 - stopien wychodzacy: 2

W3 - stopien wychodzacy: 1

W4 - stopien wychodzacy: 2

W5 - stopien wychodzacy: 2

W5 - Stoplen Wychouzacy. 2

W6 - stopien wychodzacy: 0

```
W7 - stopien wychodzacy: 0
```

W8 - stopien wychodzacy: 1

W9 - stopien wychodzacy:

4. Stopnie wchodzace wierzcholkow

W0 - stopien wchodzacy: 2

W1 - stopien wchodzacy: 2

W2 - stopien wchodzacy: 0

W3 - stopien wchodzacy: 1

W4 - stopien wchodzacy: 1

W5 - stopien wchodzacy: 0

W6 - stopien wchodzacy: 1

W7 - stopien wchodzacy: 1

W8 - stopien wchodzacy: 1

W9 - stopien wchodzacy: 0

5. Wierzcholki izolowane

W9 - jest wierzcholkiem izolowanym

6. Petle

W3 - posiada petle

7. Krawedzie dwukierunkowe

Krawedz dwukierunkowa laczy wierzcholek W0 z wierzcholkiem W4 Krawedz dwukierunkowa laczy wierzcholek W4 z wierzcholkiem W0

3.1.2. Drugi graf

Wejście:

Podaj liczbe wierzcholkow

Q

Podaj liczbe krawedzi

10

Wprowadz graf za pomoca listy krawedzi (wierzcholek startowy, wierzcholek koncowy)

10 50

6 0

00

20

30

40

7 0

2 2

8 0

Wyjście:

1. Sasiedzi kazdego wierzcholka grafu:

W0 - sasiedzi: W0 W1 - sasiedzi: W0 W2 - sasiedzi: W2 W0

W3 - sasiedzi: W0

W4 - sasiedzi: W0 W5 - sasiedzi: W0

W6 - sasiedzi: W0

W7 - sasiedzi: W0

```
W8 - sasiedzi: W0
```

2. Wierzcholki, ktore sa sasiadami kazdego wierzcholka

W0 - jest sasiadem kazdego wierzcholka

3. Stopnie wychodzace wierzcholkow

W0 - stopien wychodzacy: 1

W1 - stopien wychodzacy: 1

W2 - stopien wychodzacy: 2

W3 - stopien wychodzacy: 1

W4 - stopien wychodzacy: 1

W5 - stopien wychodzacy: 1

W6 - stopien wychodzacy: 1

W7 - stopien wychodzacy: 1

W8 - stopien wychodzacy: 1

4. Stopnie wchodzace wierzcholkow

W0 - stopien wchodzacy: 9

W1 - stopien wchodzacy: 0

W2 - stopien wchodzacy: 1

W3 - stopien wchodzacy: 0

W4 - stopien wchodzacy: 0

W5 - stopien wchodzacy: 0

W6 - stopien wchodzacy: 0

W7 - stopien wchodzacy: 0

W8 - stopien wchodzacy: 0

5. Wierzcholki izolowane

6. Petle

W0 - posiada petle

W2 - posiada petle

7. Krawedzie dwukierunkowe

3.1.3. Trzeci graf

Wejście:

Podaj liczbe wierzcholkow

Podaj liczbe krawedzi

Wprowadz graf za pomoca listy krawedzi (wierzcholek startowy, wierzcholek koncowy)

50

62

17

8 9

10 3

10 2

3 1

98

17

03

3 6

0 0

Wyjście:

1. Sasiedzi kazdego wierzcholka grafu:

W0 - sasiedzi: W0 W3 W1 - sasiedzi: W7 W7

W2 - sasiedzi:

W3 - sasiedzi: W6 W1

W4 - sasiedzi: W5 - sasiedzi: W0 W6 - sasiedzi: W2 W7 - sasiedzi: W8 - sasiedzi: W9 W9 - sasiedzi: W8

W10 - sasiedzi: W2 W3

2. Wierzcholki, ktore sa sasiadami kazdego wierzcholka

3. Stopnie wychodzace wierzcholkow

W0 - stopien wychodzacy: 2 W1 - stopien wychodzacy: 2 W2 - stopien wychodzacy: 0 W3 - stopien wychodzacy: 2 W4 - stopien wychodzacy: 0

W5 - stopien wychodzacy: 1 W6 - stopien wychodzacy: 1

W7 - stopien wychodzacy: 0

W8 - stopien wychodzacy: 1

W9 - stopien wychodzacy: 1

W10 - stopien wychodzacy: 2

4. Stopnie wchodzace wierzcholkow

W0 - stopien wchodzacy: 2

W1 - stopien wchodzacy: 1

W2 - stopien wchodzacy: 2

W3 - stopien wchodzacy: 2

W4 - stopien wchodzacy: 0

W5 - stopien wchodzacy: 0

W6 - stopien wchodzacy: 1

W7 - stopien wchodzacy: 2

W8 - stopien wchodzacy: 1

W9 - stopien wchodzacy: 1

W10 - stopien wchodzacy: 0

5. Wierzcholki izolowane

W4 - jest wierzcholkiem izolowanym

6. Petle

W0 - posiada petle

7. Krawedzie dwukierunkowe

Krawedz dwukierunkowa laczy wierzcholek W8 z wierzcholkiem W9 Krawedz dwukierunkowa laczy wierzcholek W9 z wierzcholkiem W8

4. Podsumowanie

4.1. Wnioski

Podsumowując, można stwierdzić, że program poprawnie spełnia swoją funkcję. Nie jest żadną tajemnicą, że istnieje bardziej optymalna wersja tego programu, jednak brak obycia w owym temacie i wiedzy z zakresu programowania nie pozwoliły mi, abym napisał program w bardziej optymalnej wersji.

4.2. Źródła i pomoce

- dokładne opisy i definicje bibliotek https://cpp0x.pl/kursy/Kurs-C++/Dodatkowe-materialy/Obsluga-plikow/305
- tworzenie definicji grafów, grafy przedstawiane graficznie http://www.algorytm.org/narzedzia/edytor-grafow.html
- tworzenie schematów blokowych https://app.diagrams.net
- początkowy zarys kodu programu, implementacja grafu https://eduinf.waw.pl/inf/alg/001_search/0124.php
- definicje dotyczące grafów i informacji na ich temat https://eduinf.waw.pl/inf/alg/001_search/0123.php
- informacje dotyczące list https://eduinf.waw.pl/inf/alg/001_search/0085.php