

Mathematical Statistics and Data Analysis

Lecture 1: Basic definitions, notations and ideas

Lyu Ni

DaSE@ECNU (Ini@dase.ecnu.edu.cn)

September 2, 2019

Outline

1 Introduction

2 Definition & Notations

Introduction

- Population is a distribution.
- Sample space: the set of all possible outcomes. The sample space is denoted by Ω , and an element of Ω is denoted by ω .
 - Number of people in a queue, $\Omega = \{0, 1, 2, \cdots\}$
 - The time until the event is of interest, $\Omega=\{t|t\geq0\}.$
 - Measure error, $\Omega = (-\infty, \infty)$.
- One-dimension, two-dimension and multi-dimension.
- Low dimension and high dimension.

The model of measure error:

$$X = \mu + \varepsilon,$$

where X is measured, μ is a quantity of interest and ε is error.

- Parameter: μ is a sure but unknown quantity;
- The assumption of ε :
 - The most frequent assumption: $\varepsilon \sim N(0, \sigma^2)$. Thus,

$$X \sim N(\mu, \sigma^2),$$

where μ and σ^2 are two unknown parameters.

- Suppose we know the population variance. Assume that $\varepsilon \sim N(0, \sigma_0^2)$, where σ_0^2 is a known constant.
- Assume that ε has a symmetric distribution with zero.

The model of measure error:

$$X = \mu + \varepsilon$$
,

where X is measured, μ is a quantity of interest and ε is error.

- Parameter: μ is a sure but unknown quantity;
- The assumption of ε :
 - The most frequent assumption: $\varepsilon \sim N(0, \sigma^2)$. Thus,

$$X \sim N(\mu, \sigma^2),$$

where μ and σ^2 are two unknown parameters.

- Suppose we know the population variance. Assume that $\varepsilon \sim N(0, \sigma_0^2)$, where σ_0^2 is a known constant.
- Assume that ε has a symmetric distribution with zero.

- We extract n individuals from a population, denoted as x_1, x_2, \cdots, x_n .
- x_1, x_2, \dots, x_n : sample.
- n: sample size.
- Simple Random Sampling:
 - Randomization:
 - Independence;
- x_1, x_2, \cdots, x_n are independently and identically distributed (i.i.d) variables from a common distribution, F.
- The joint cumulative distribution function (c.d.f) is

$$F(x_1, x_2, \cdots, x_n) = \prod_{i=1}^n F(x_i)$$

Example

- There is a batch of N products. We would like to investigate product defect rate p.
- We randomly pick up n products (x_1, x_2, \dots, x_n) to verify whether each product is qualified or not.
- The qualified product is denoted as 0; otherwise, it is denoted as 1.
- The population is a Bernoulli distribution, that is

$$P(x_i = 1) = p, P(x_i = 0) = 1 - p, i = 1, 2, \dots, n$$

- Sample with replacement: x_1, x_2, \dots, x_n are i.i.d.
- Sample without replacement.

Example

- There is a batch of N products. We would like to investigate product defect rate p.
- We randomly pick up n products (x_1, x_2, \dots, x_n) to verify whether each product is qualified or not.
- The qualified product is denoted as 0; otherwise, it is denoted as 1.
- The population is a Bernoulli distribution, that is

$$P(x_i = 1) = p, P(x_i = 0) = 1 - p, i = 1, 2, \dots, n$$

- Sample with replacement: x_1, x_2, \dots, x_n are i.i.d.
- Sample without replacement.