Exercise 12. (Q4): Assume (x_n) is a Cauchy sequence that satisfies $2 < x_n < 3$ for all $n \in \mathbb{N}$. By directly using the definition of a Cauchy sequence, show that

 $\left(\frac{x_n^2}{x_n-1}\right)$

is also a Cauchy sequence.

Proof: We assume directly that (x_n) is a Cauchy sequence that satisfies $2 < x_n < 3$ for all $n \in \mathbb{N}$, then given an $\epsilon > 0$, there exists an $N \in \mathbb{N}$, such that whenever n, m > N,

$$(x_n - x_m) < \frac{\epsilon}{15}.$$

We next examine the term $\left(\frac{x_n^2}{x_n-1}\right)$, and begin to manipulate it.

$$\left| \frac{x_n^2}{x_n - 1} - \frac{x_m^2}{x_m - 1} \right| = \left| \frac{x_n^2 (x_m - 1) - x_m^2 (x_n - 1)}{(x_n - 1) (x_m - 1)} \right|.$$

Using the fact that $2 < x_n < 3$ for all $n \in \mathbb{N}$, we know that

$$\left| \frac{x_n^2 (x_m - 1) - x_m^2 (x_n - 1)}{(x_n - 1) (x_m - 1)} \right| \le \left| \frac{x_n^2 (x_m - 1) - x_m^2 (x_n - 1)}{(2 - 1) (2 - 1)} \right|$$

$$= \left| x_n^2 (x_m - 1) - x_m^2 (x_n - 1) \right|$$

$$= \left| x_n^2 x_m - x_n^2 - x_m^2 x_n + x_m^2 \right|$$

$$= \left| x_n x_m (x_n - x_m) - x_n^2 + x_m^2 \right|$$

$$= \left| x_n x_m (x_n - x_m) - x_n^2 + x_m^2 - x_n x_m + x_n x_m \right|$$

$$= \left| x_n x_m (x_n - x_m) - x_n (x_n - x_m) - x_m (x_n - x_m) \right|$$

$$\le \left| x_n x_m (x_n - x_m) + \left| x_n (x_n - x_m) + \left| x_m (x_n - x_m) \right| \right|$$

$$\le 3 \cdot 3 \cdot \left| x_n - x_m \right| + 3 \cdot \left| x_n - x_m \right| + 3 \cdot \left| x_n - x_m \right|$$

$$= 15 \left| x_n - x_m \right|$$

$$< 15 \frac{\epsilon}{15}$$

$$= \epsilon;$$

therefore, $\left(\frac{x_n^2}{x_n-1}\right)$ is a Cauchy sequence.