1

Assignment 3

Taha Adeel Mohammed - CS20BTECH11052

Download all python codes from

https://github.com/Taha-Adeel/AI1103/blob/main/ Assignment_3/codes/assignment3.py

and latex-tikz codes from

https://github.com/Taha-Adeel/AI1103/tree/main/ Assignment_3

1 Problem (GATE 2008 (CS), Q.27)

Aishwarya studies either computer science or mathematics everyday. If she studies computer science on a day, then the probability she studies mathematics the next day is 0.6. If she studies mathematics on a day, then the probability she studies computer science the next day is 0.4. Given that Aishwarya studies computer science on Monday, what is the probablity she studies computer science on Wednesday?

2 Solution

Consider the state space $S = \{1, 2\}$, where 1 represents her studying CS and 2 represents her studying maths on a particular day.

Let $\{X_0, X_1, \dots\}$ be a series of random variables. So we have the Markov chain

$$\{X_n \mid X_n \in S, n \ge 0\},$$
 (2.0.1)

with initial distribution $\alpha = (\alpha_1, \alpha_2) = (1, 0)$ (: $\alpha_i = \Pr(X_0 = i)$).

The state transition matrix $P = (p_{ij})$ for the markov chain (where $p_{ij} = \Pr(X_{n+1} = j | X_n = i)$) is :-

$$P = x_n \begin{cases} 1 & 2 \\ 2 & 0.6 \\ 0.4 & y \end{cases}$$
 (2.0.2)

As $X_n = 0$ and $X_n = 1$ are mutually exclusive, we can easily calculate x and y.

$$x = \Pr(X_{n+1} = 0 | X_n = 0) = 1 - \Pr(X_{n+1} = 1 | X_n = 0)$$

= 0.4 (2.0.3)

$$y = \Pr(X_{n+1} = 1 | X_n = 1) = 1 - \Pr(X_{n+1} = 0 | X_n = 1)$$

= 0.6 (2.0.4)

Markov Diagram

The Pr $(X_{n+t} = j|X_n = i)$ is the (i, j)th position of P^t . Therefore Pr $(X_2 = 1|X_0 = 1)$ (As n = 2 for Wednesday and n = 0 for Monday) is the (1, 1)th position of P^2 .

$$P^{2} = \begin{bmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \end{bmatrix} \times \begin{bmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \end{bmatrix}$$
 (2.0.5)

 \therefore The probability she studies computer science on Wednesday is $P_{11}^2 = 0.4$.

(Ans: Option (C))