МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №1.3.3

Измерение вязкости воздуха по течению в тонких трубках

Пилюгин Л. С. Б02-212 22 марта 2023 г.

1 Аннотация

Цель работы: Экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуассона и с его помощью определить коэффициент вязкости воздуха.

Оборудование: система подачи воздуха (компрессор, подводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для присоединения микроманометра; секундомер.

2 Теоритические сведения

Сила вязкого трения описывается законом Ньютона:

$$\tau_{xy} = -\eta \frac{\partial u_x}{\partial y}$$

 η — коэффициент вязкости.

Объемный расход Q — объем газа, протекающий через сечение трубы в единицу времени. Q зависит от перепада давления ΔP , плотности ρ и вязкости η газа, радиуса R и длины L трубы.

Движение газа может быть ламинарным (поле скоростей образует набор непрерывных линий тока) и турбулентным (образуются вихри, слои жидкости перемешиваются, появляются существенные флуктуации скорости течения и давления).

Характер движения определяется числом Рейнольдса

$$Re = \frac{\rho ua}{\eta}$$

 ρ — плотность среды, u — характерная скорость потока, η — коэффициент вязкости, a — размер, на котором существенно меняется скорость течения.

При малых Re доминируют силы вязкости и течение ламинарно, при больших — турбулентно. Переход к турбулентному течению происходит при Re ≈ 1000 .

При малых перепадах давления и скорсотях много меньше скорости звука газ можно считать несжимаемым. В работе это выполняется.

Расход газа при ламине=арном течении описывается формулой Пуазейля:

$$Q = \frac{\pi R^4 \Delta P}{8\eta l}$$

При этом распределение скоростей неоднородно. Пуазейлевский профиль устанавливается на расстоянии

$$l_0 \approx 0.2R \cdot \text{Re}$$

Если длина трубки меньше l_0 , то действием сил трения можно пренебречь и движение газа описывается уравнением Бернулли.

Расход в турбулентном течении примерно описывается формулой

$$Q = R^{5/2} \sqrt{\frac{\Delta P}{\rho l}}$$

3 Оборудование

Схема установки приведена на рисунке. Поток воздуха под давлением, немного превышающем атмосферное, поступает через газовый счетчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съемными заглушками на концах и рядом миллеметровых отверстий, к которым можно подключать манометр. В рабочем состоянии открыта заглушка на одной трубке, микроманометр подключен к двум ее выводам, а все остальные отверстия плотно закрыты пробками.

Перед входом в газовый счетчик установлен водяной манометр. Он служит для измерения давления газа на входе, а также предохраняет счетчик от выхода из строя.

В работе используются газовый счетчик, основанный на принципе вытеснения и микроманометр. Разность давлений на входах манометра измеряется по высоте подъема рабочей жидкости. Регулировка наклона позволяет измерить давление в различных диапазонах.

4 Результаты измерений

Расстояния между местами подсоединения микроманометра указаны на рисунке. Диаметры трубок:

1.
$$d_1 = 5.1 \pm 0.05 \,\mathrm{mm}$$

2.
$$d_2 = 3.0 \pm 0.1 \,\mathrm{mm}$$

3. $d_3 = 3.95 \pm 0.05 \,\mathrm{mm}$

Параметры окружающей среды:

$$t = 23.1 \,^{\circ} \text{C} \tag{1}$$

$$\varphi = 30.4\% \tag{2}$$

$$p_{\text{atm}} = 98,54 \,\text{K}\Pi\text{a} \tag{3}$$

Определим случайную погрешность измерения времени. Для этого установим некоторый расход воздуха и будем измерять время, за которое счетчик изменит показания на 5 л:

$$\Delta t \approx 0.02 \,\mathrm{c}$$
 $\varepsilon_t \approx 3 \cdot 10^{-4}$

Погрешность измерения объема составляет 0.01, поэтому при измерении расхода на 5 л можно пренебречь погрешностью измернеия времени.

$$Q_{
m kp}pprox 5\cdot 10^{-2}\,{
m m/c}$$
 $\Delta p_{
m kp}pprox 800\,{
m \Pia}$ $l_{
m ycr}pprox 20\,{
m cm}$

Q_1 , л/с	$h_1 \pm 0.5$	a_1	Q_2 , л/с	$h_2 \pm 0.5$	a_2	Q_3 , л/с	$h_3 \pm 0.5$	a_3
0.2064	80	0.2	0.0279	25	0.3	0.0194	15	0.2
0.19175	70	0.2	0.04778	50	0.3	0.03877	31	0.2
0.17727	60	0.2	0.6552	75	0.3	0.054466	44	0.2
0.162	50	0.2	0.809	100	0.3	0.073877	60	0.2
0.145	40	0.2	0.055	60	0.3	0.0833	75	0.2
0.12934	29	0.2	0.0407	40	0.3	0.1	90	0.2
0.2225	91	0.2	0.06785	80	0.3	0.06134	50	0.2
						0.04862	40	0.2

$$\Delta p = K \cdot h \cdot a$$

$$K=9.80665\,\Pi \text{a},\, \varepsilon_a\approx 1\,\%$$

Из графиков

$$η_1 = (5,4 \pm 0,4) \cdot 10^{-5} \,\Pi \mathbf{a} \cdot \mathbf{c}$$

$$η_2 = (2,8 \pm 0,5) \cdot 10^{-5} \,\Pi \mathbf{a} \cdot \mathbf{c}$$

$$η_3 = (2,1 \pm 0,2) \cdot 10^{-5} \,\Pi \mathbf{a} \cdot \mathbf{c}$$

Табличное значение вязкости $1.8 \cdot 10^{-5} \, \Pi a \cdot c$

Как видно из графиков, сильное отклонение от линейной зависимости происходит на расстояниях меньше 30–40 см, т.е. формула $l_{\rm vcr}\approx 0.2\cdot R\cdot {\rm Re}$ верна.

Наклон графика ламинарного течения $k=4.2\pm0.2$, турбулентного $k=2.36\pm0.15$, что согласуется с теорией.

l_1 , см	$h_1 \pm 0.5$	a_1	l_2 , cm	$h_2 \pm 0.5$	a_2	l_3 , cm	$h_3 \pm 0.5$	a_3
50	116	0.2	30	100	0.3	50	80	0.2
40	91	0.2	20	76	0.3	40	87	0.2
30	85	0.2	11	112	0.3	30	60	0.2
10.7	102	0.2				10.9	54	0.2

Таблица 1. Данные для ламинарного течения $(dp/dl \approx 98\,\Pi \mathrm{a/m})$

Q л.с	l, cm	d MM	Δd mm
0.09683	50	5.25	0.05
0.02875	20	3	0.1
0.03186	50	3.9	0.05
0.10504	50	5.05	0.05
0.105	20	5.1	0.05
0.01108	15	3	0.1
0.0295	25	3.95	0.05

Таблица 2. Данные для турбулентного течения $(dp/dl \approx 490\,\Pi \mathrm{a/m})$

<i>Q</i> л.с	l, cm	d мм	Δd mm
0.21975	50	5.25	0.005
0.09994	20	3	0.1
0.10633	50	3.9	0.05
0.22222	50	5.05	0.05
0.23126	125	5.1	0.05
0.06552	75	3	0.1
0.11366	125	3.95	0.05

5 Вывод

Был измерен коэффициент вязкости воздуха и проверены зависимости расхода от радиуса для ламинарного и турбулентного течений.

Результат для первой трубки получился сильно завышенным. Возможно, что связано с неисправностью трубки. Для остальных значение вязкости получилось немного завышенным. Возможно, учет сжимаемости воздуха исправил бы эту ситуацию.