# ARQUITECTURA DE AGENTES REACTIVOS

(PARTE 2)

Luís Morgado

# MECANISMOS DE REACÇÃO



UMA PERCEPÇÃO PODE POTENCIALMENTE ACTIVAR MÚLTIPLAS REACÇÕES

# MECANISMOS DE REACÇÃO SELECÇÃO DE ACÇÃO

- Como seleccionar as acções a realizar?
- Mecanismos de combinação e selecção de acções
  - Execução paralela de acções
  - Combinação de acções
  - Precedência de acções

# SELECÇÃO DE ACÇÃO

#### Parallel actions

Actions which don't interfere with each other are executed in parallel (within the limitations of the architecture).



# SELECÇÃO DE ACÇÃO

### Prioritised actions

Actions interfere with each other, and the most important action takes precedence.



# SELECÇÃO DE ACÇÃO

### Combined actions

Distinct actions triggered by different percepts are combined into a single composite action.





#### SELECÇÃO DE ACÇÃO

#### **HIERARQUIA**

 Os comportamentos estão organizados numa hierarquia fixa de supressão

#### **PRIORIDADE**

 As respostas são seleccionadas de acordo com uma prioridade associada que varia ao longo da execução

#### **FUSÃO**

 As respostas são combinadas numa única resposta por composição (e.g. soma vectorial)

## SELECÇÃO DE ACÇÃO

#### **HIERARQUIA**

 Os comportamentos estão organizados numa hierarquia fixa de subsunção (supressão e substituição)



S Subsunção (suprime e substitui)

## SELECÇÃO DE ACÇÃO

#### **PRIORIDADE**

 As acções são seleccionadas de acordo com uma prioridade associada que varia ao longo da execução



Selecção por prioridade

## SELECÇÃO DE ACÇÃO

#### **FUSÃO**

 As respostas são combinadas numa única resposta por composição (e.g. soma vectorial)



## **AGENTE COM CONTROLO REACTIVO**



# MODELAÇÃO DE COMPORTAMENTOS ANÁLISE DO DOMÍNIO DO PROBLEMA

- OBJECTIVOS
  - Definem a finalidade do agente
  - COMPORTAMENTOS
    - Definem formas de concretizar os objectivos
      - -SUB-OJECTIVOS

### PROJECTO: AGENTE PROSPECTOR

**Objectivo**: Realização de um sistema autónomo inteligente capaz de navegar num espaço de dimensões discretas, com obstáculos e um alvo, desviando-se dos obstáculos e recolhendo os alvos.



#### Direcções de movimento e de percepção do sistema:

- Norte
- Sul
- Este
- Oeste

- OBJECTIVOS
  - Recolher alvos
    - SUB-OBJECTIVOS
      - -Aproximar alvo
      - -Evitar obstáculos
      - -Explorar



#### **COMPORTAMENTO RECOLHER**



- Recolher alvos
  - Aproximar alvo
    - Aproximar alvo (direcção = NORTE)
    - Aproximar alvo (direcção = SUL)
    - Aproximar alvo (direcção = ESTE)
    - Aproximar alvo (direcção = OESTE)
  - Evitar obstáculos
    - Evitar direccional nas 4 direcções
  - Explorar

**EXEMPLO:** Comportamento AproximarAlvo



#### **BIBLIOGRAFIA**

[Russel & Norvig, 2003]

S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd Edition, Prentice Hall, 2003

[Murphy, 2000]

R. Murphy, An Introduction to Al Robotics, MIT Press, 2000

[Wooldridge, 2002]

M. Wooldridge, An Introduction to Multi-Agent Systems, John Wiley & Sons, 2002

[Pfeifer & Scheier, 2002]

R. Pfeifer, C. Scheier, *Understanding Intelligence*, MIT Press, 2000

[Brooks, 1985]

R. Brooks, A Robust Layered Control System for a Mobile Robot, A. I. Memo 864, MIT AI-Lab, 1985

[Hoagland et al., 2001]

M. Hoagland, B. Dodson, J. Hauck, *Exploring The Way Life Works: The Science of Biology*, Jones & Bartlett Learning, 2001

[J. Staddon, 2001]

J. Staddon, Adaptive Dynamics: The Theoretical Analysis of Behavior, MIT Press, 2001

[Logan, 2001]

B. Logan, Designing Intelligent Agents, School of Computer Science, University of Nottingham, 2001