Roll No	102 i is a papa				÷		Question Booklet Number
O. M. R. Serial No.							413382
•		• .					·

B. C. A. (Fourth Semester) EXAMINATION, 2022-23

OPTIMIZATION TECHNIQUES

Paper Code						
В	C	A	4	0	0	4

Time : 1:30 Hours]

Questions Booklet Series

R

[Maximum Marks : 75

Instructions to the Examinee:

- Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश:

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी मई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या प्रश्न एक से अधिक बार छप गए हों या उसमें किसी अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(Remaining instructions on the last page)

(रोष निर्देश अन्तिम पृष्ठ पर)

(Only for Rough Work)

A game is said to be fair if: 1. 5. Slack time in PERT analysis: (A) both upper and lower values of the (A) can never be less than zero game are the same and zero **(B)** is minimum for critical events upper and lower values of the game **(B)** (C) can never be less than zero are not equal (C) upper value is more than the lower can never be greater than zero **(D)** value of the game The particular task performance in CPM 6. None of the above is known as: A two-person zero-sum game means that (A) Event the: the sum of losses to one player is (B) Activity equal to the sum of gains to other Dummy the sum of losses to one player is **(D)** Contract not equal to the sum of gains to other 7. An activity is critical if its (C) no any player gains or losses float is zero. None of the above **(D)** (A) total Game theory is the study of: 3. **(B)** free selecting optimal strategies resolving conflict between players independent **(B) (C)** giving equal interference outcome participants In a network diagram activity is denoted 8. None of the above by: CPM is the: node Time oriented technique (A)

Event oriented technique

Activity oriented technique

(C) Target oriented technique

arrow

triangle

None of the above

(C)

(D)

- 9. A transportation problem is said to be balanced if
 - (A) quantity demanded < quantity supplied
 - (B) quantity demanded > quantity supplied
 - (C) quantity demanded ≠ quantity supplied
 - (D) quantity demanded = quantity supplied
- 10. The term total elapsed time is used in:
 - (A) LPP
 - (B) Assignment problem
 - (C) Transportation Problem
 - (D) Sequencing Problem
- 11. If dual has optimal solution, then primal has solution.
 - (A) Unbounded
 - (B) Optimal
 - (C) Infeasible
 - (D) None of the above
- - (A) at least n
 - (B) at most n
 - (C) n-1
 - (D) n+1

- 13. In making assignment which of the following should be preferred:
 - (A) Only that row which have single zero
 - (B) Only that column which have single zero
 - (C) Only that row having more than one zero
 - (D) Only that column having more than one zero
- 14. A feasible solution of a balanced transportation problem is said to be a basic feasible solution if (*m* is the number of warehouses and *n* is the number of markets).
 - (A) at least m + n 1 of the xij's are positive
 - (B) at least m + n 1 of the xij's are negative
 - (C) at most m + n 1 of the xij's are negative
 - (D) at most m + n 1 of the xij's are positive
- 15. In the transportation problem if the current supply of the warehouses exceeds the current demand of the markets then:
 - (A) fictitious warehouse is introduced
 - (B) fictitious market is introduced
 - (C) decrease the supply of existing warehouse
 - (D) the demand of existing market

16	To a decomposition marks and the model of	- 20	If a minut ID within her Cuit
16.	In a transportation problem, the method which finds difference between two least	20.	If a primal LP problem has finite solution, then the dual LP problem
	cost for each row and column		should have:
	is		(A) Finite solution
	(A) Minimum entry method		(B) Infeasible solution
•	(B) Northwest corner method		(C) Unbounded solution
	(C) Northeast corner method		(D) None of the above
	(D) VAM method		
	(D) VAIN metrod	21.	Network models have advantages in
17.	The best use of LPP is to find an optimal		terms of project:
	use of:		(A) planning
	(A) money		(B) scheduling
	(B) man power		(C) controlling
	(C) machine		(D) All of the above
	(D) All of the above	22.	The another term commonly used for
10	An ani-		activity slack time is:
18.	An assignment problem is considered as		(A) total float
	a particular case of a transportation		(B) free float
	problem because:		(C) independent float
	(A) the number of rows equals columns		(D) All of the above
	(B) all $x_{ij} = 0$ or 1	23.	If there are n workers and n jobs, there
	(C) Both (A) and (B)		would be:
	(D) None of the above		(A) n! solutions
9.	The purpose of a dummy row or column		(B) $(n-1)!$ solutions
	in an assignment problem is to:		(C) (n!)" solutions
	(A) Obtain balance between total		(D) n solutions
	activities andtotal resources	24.	A game is said to be fair if the male of
•	(B) Prevent a solution from becoming	. 24.	A game is said to be fair if the value of
	degenerate		the game is
	-		(A) One
			(B) Two
	dummy problem		(C) Three
	(D) None of the above		(D) Zero

25.	5. Which of the following is a characteristic			is the latest time by which an			
	of a	dual problem :		activity can be finished without delaying			
	(A)	Dual of a dual is primal		the completion of the project?			
	(B)	If dual has a finite optimal solution,		(A) LST			
		then the primal also has finite		(B) LFT			
		optimal solution		(C) EFT			
	(C)	If dual has no feasible solution,		(D) EST			
	•	then the primal also has no feasible	29.	The EST + activity duration =			
		solution		(A) Earliest Finish Time			
	(D)	All of the above		(B) Latest Start Time			
26.	Wha	en all the players of the game follow		(C) Latest Finish Time			
20.		optimal strategies, then the expected		(D) None of the above			
		off of the game is called	30.	Activities that cannot be started until one			
	pay	Off Of the game is canet		or more of the other activities are			
		C. C		completed, are called			
	(A)	Gain of the game		(A) Dummy activities			
•	(B)	Loss of the game		(B) Initial activities			
	(C)	Value of the game		(C) Successor activities			
	(D)	None of the above		(D) Predecessor activities			
27.	The	outcome of a game is known	31.	is an event oriented			
	as	***********************		network diagram ?			
	(A)	Profit		(A) CPM			
_	(B)	Loss		(B) PERT			
		Payoff		(C) Histogram			
	(D)			(D) Ogive			
	(-)						

32.	is activity oriented	36.	Before formulating a formal L P model,
	network diagram.		it is better to :
	(A) CPM		(A) Verbally identify decision
	(B) PERT		variables
	(C) Histogram		(B) Express the objective function in
	(D) Ogive		words
33.	A LPP model does not contain:		(C) Express each constraint in words
٠	(A) Decision		(D) All of the above
	(B) Constraints	37.	deals with the concepts such
	(C) Feasible solution		as critical path, float, events, etc.
	(D) Spread sheet		(A) Game theory
34.	For a minimisation transportation		(B) Decision theory
	problem, the objective is to minimise:		(C) Queuing theory
	(A) Profit	•	(D) Network analysis
	(B) Cost		· ·
	(C) Solution	38.	Operations Research does not give
•	(D) None of the above		perfect solution to a problem, but it helps
35.	Which of the followings is an assumption		to improve the of the
	of Linear Programming Technique?		solution.
	(A) Divisibility		(A) Quality
	(B) Additivity	·	(B) Clarity
	(C) Proportionality		(C) Look
	(D) All of the above	•	(D) None of the above
	•		

(7)

39. .	In simplex method, we add	43.				
	in the case of constraints with sign "=".		• •	Machine	Machine	
	(A) Surplus variable		Job	(M1)	(M2)	
	(B) Artificial variable		Α	2	5 .	
	(C) Slack variable		В	9	7	
	(D) None of the above		. C	8	. 12	
•	(2) 11010 01 110 100 10		D	10	3	
40.	A minimisation problem can be		E	4	. 9	
	connected into maximisation problem by	•	F	• 11	· 1	
	changing the signs of coefficients		Using the	Johnson rule	find the right	
	in the		sequence o	f the job:		
-	(A) Constraints	1	(A) AEC	FBD		
	(B) Objectives	•	(B) ABC	DEF		
	(C) Both (A) and (B)		(C) DBF	CEA		
	(D) None of the above		(D) ADB	CEF		
.41.	In models, everything is	44.	If the prin	mal has unhou	nded solution	
	defined and the results are certain.	77.	If the primal has unbounded solution, then the dual has:			
	(A) Probabilistic			nal solution		
	(B) Deterministic					
	(C) Both (A) and (B)		(B) no solution(C) bound solution			
	(D) None of the above	•				
	_		(D) None	e of the above		
42.	Operations Research is a very powerful	45.	The key co	olumn indicates	:	
	tool for	•	·	oing va ri able		
	(A) Operations		, ,			
	(B) Research			ming variable		
	(C) Decision making		(C) inde	pendent variable	e .	
	(D) None of the above		(D) depe	endent variable		
BC/	A-4004 .	(8)			Set-B	

46.	In graphical solution of solving LPP to	50. The group replacement policy is suitable
	convert inequalities into equations, we:	for identical low cost items which are
	(A) use slack variables '	likely to
	(B) use surplus variables	(A) Fail over a period of time
	(C) use artificial variables	(B) Fail suddenly
	(D) simply assume them to equations	(C) Fail completely and suddenly
47.		(D) None of the above
77.	If a machine becomes old then the failure	51. In Sequencing if the smallest time belong
	rate expected will be:	to machine-i then that job has to be
	(A) constant	placed of the sequence.
	(B) increasing	
	(C) decreasing	(A) In the middle
	(D) we cannot say	(B) In the starting
48.	William Carlos	(C) At end
40.	Which of the following is the correct	(D) None of the above
*. •	assumption for replacement policy when	52. The Penalty in VAM represents
	money value does not change with time?	difference between cost of
	(A) No capital cost	respective row/column.
	(B) No scrap value	(A) Two largest
	(C) Constant scrap value	(B) Largest and smallest
1	(D) zero maintenance cost	(C) Smallest two
49. ·	The time name 11	(D) None of the above
	The time required by each job on each	53. The method used for solving assistant
1	machine is:	assignment
((A) Processing time	problem is:
((B) Idle time	(A) MODI method
(C) Elapsed time	(B) Reduced matrix method
. 0	D) None of the above	(C) Hungarian method
, (A STATE OF MIC MODIFY	(D) None of the above
BCA-40	(9)	
	• - •	Set-B

54.	If an activity has zero slack, it implies that:	m	is assumed that maintenance cost nostly depends on:
-	(A) it lies on the critical path	,	A) Calendar age B) Running age
			B) Running age C) Manufacturing date
	(B) it is a dummy activity		D) User's age
	(C) the project is progressing well	,	
	(D) None of the above		n case there is no saddle point in a game hen the game is:
55.	MODI stands for:	,	A) Deterministic game B) Fair game
	(A) Modern distribution		C) Mixed strategy game
	(B) Mendel's distribution method		D) Multiplayer game
	(C) Modified distribution method	60.	Transportation problem is basically a:
	(D) Model index method	•	(A) Maximization problem
	(2) 1.1000	•	(B) Minimization problem
56.	If a job is having minimum processing	•	(C) Iconic model
	time under both the machines, then the		(D) Transshipment problem
	job is placed in:		The row which is introduced in the matrix to balance the rim requirement
	(A) any one position		is:
	(B) available position		(A) key row
	(C) available first position		(B) idle row
	(D) both first and last position	٠.	(C) slack row (D) dummy row
57.	The curve used to interpret machine life	62.	alternative method of solving a Linear
	cycle is:	•	Programming Problem involving
	(A) bath tub curve		artificial variables.
	(B) time curve	•	(A) Simplex Method
		•	(B) Big-M
	(C) product life cycle		(C) Dual simplex
	(D) ogive curve		(D) Graphical
R	CA-4004	(10)	Set-B

- 63. The transportation problem deals with the transportation of
 - (A) a single product from a source to several destinations
 - (B) a single product from several sources to several destinations
 - (C) a single product from several sources to a destination
 - (D) a multi -product from several sources to several destination
- 64. In simplex method slack variables are assigned zero coefficients because:
 - (A) no contribution in objective function
 - (B) high contribution in objective function
 - (C) divisor contribution in objective function
 - (D) base contribution in objective function
- 65. Dual of a dual of dual is:
 - (A) Dual
 - (B) Primal
 - (C) Double dual
 - (D) Single dual
- 66. If primal problem is a maximization problem, then the dual will be:
 - (A) Maximisation problem
 - (B) Mixed problem
 - (C) Minimisation problem
 - (D) None of the above

- 67. When the probability of failure reduces gradually, the failure mode is said to be:
 - (A) Regressive
 - (B) Retrogressive
 - (C) Progressive
 - (D) Recursive
- 68. When the total allocations in a transportation model of m * n size is not equals to m + n 1. This situation is known as:
 - (A) unbalanced situation
 - (B) tie situation
 - (C) degeneracy
 - (D) none of the above
- 69. If $u_i + v_j$ are rows and column numbers respectively, then the implied cost is given by:
 - (A) $u_i + v_j$
 - (B) $u_i v_j$
 - (C) $u_i * v_i$
 - (D) u_i/v_j
- 70. The assignment matrix is always a/an:
 - (A) Rectangular matrix
 - (B) Square matrix
 - (C) Identity matrix
 - (D) None of the above
- 71. Event indicates of activity.
 - (A) starting
 - (B) ending
 - (C) Both (A) and (B)
 - (D) None of the above

- 72. To convert assignment problem into maximization problem:
 - (A) Deduct smallest element in the matrix from all other elements
 - (B) All elements of the matrix are deducted from the highest elements in the matrix.
 - (C) Deduct smallest element in any row from all other elements of the row.
 - (D) Deduct all elements of the row from highest element in that row.
- 73. The assignment will have alternate solutions:
 - (A) when total opportunity cost matrix has at least one zero in each row and column.
 - (B) when all rows have two zeros.
 - (C) when there is a tie between zero opportunity cost cells.
 - (D) if two diagonal elements are zeros.
- 74. This is not allowed in sequencing of n jobs on two machines:
 - (A) Passing
 - (B) Repeating the job
 - (C) Loading
 - (D) One loaded on the machine it should be completed before removing from the machine.

- 75. The objective function of a linear programming problem is:
 - (A) a constraint
 - (B) function to be optimised
 - (C) a relation between the variables
 - (D) None of the above
- 76. The linear inequalities or equations or restrictions on the variables of a linear programming problem are called:
 - (A) a constraint
 - (B) Decision variables
 - (C) Objective function
 - (D) None of the above
- 77. The maximum value of Z = 3x + 4y subjected to constraints $x + y \le 4$, $x \ge 0$ and $y \ge 0$ is:
 - (A) 12
 - (B) 14
 - (C) 16
 - (D) None of the above
- 78. The optimal value of the objective function is attained at the points:
 - (A) on X-axis
 - (B) on Y-axis
 - (C) corner points of the feasible region
 - (D) None of the above

79.	Wh	nich of the following is a type of	f	8 3.	In	case	of an	unbal	anced	pro	blem,
٠	Lin	ear programming problem?			ship	ping	cost	c	efficie	nts	of
	(A)	Manufacturing problem			*****		a	re ass	igned	to	each
	(B)	Diet problem		•	cres	ted du	mmy fa	etory o	e warel	hoise	
	(C)	Transportation problems			CICQ	nea au	illiny 12	ciory c	1 Walti	HORS	.
. •	(D)	All of the above			.(A)	very	high p	ositive	costs		
80.	The	e formula for free float is			(B)	very	high n	egative	costs		
	(A)	Total float - slack of tail event	•		(C)	10					٠
	(B)	Total float - LFT of head event			W)	zero		,			
	(C)	Total float - EFT of head event			(17)	ZCIU	•			,	
•	(D)	Total float – slack of head event.		84 .	Whe	n the	total d	emand	is not	equ	al to
81.	In	LPP the condition to be satisfied	1		supp	ly t	hen, i	t is.	said	to	be
	is:				******	••••••	•••••••••••			-	
	(A)	Constraints have to be linear		•	(A)	balaı	nced		-		
	(B)	Objective function has to be linear			. (-)						
	(C)	None of the above			(B)	unba	lanced		. •		•
-	(D)	Both (A) and (B)			(C)	maxi	mizatio	n			٠
82.	Opti	imal solution of an assignment	:		(D)	mini	nizatio	1	•		
	prob	elem can be obtained only if:		85.	In th	e tran	sportat	ion tah	le em	Mrv. /	cells
	(A)	Each row and column has only one			In the transportation table, empty cell will be called					PC112	
		zero element			WIII	e can	5a		•••	-	
	(B)	Each row and column has at least	•	-	(A)	occup	ied		•		. •
٠.		one zero element	,	•	(B)	unoco	upied	·	•		-
	(C)	The data is arrangement in a square		-	(C)	basic		,			•
•		matrix			(U)	Jasic					
	(D)	None of the above			(D)	non-b	asic				•
CA-4	004		(13)		•	•	٠			0	. B
		•	,							Sel	

86.	The coefficient of slack\surplus variables								
	in th	ne	objective	function	are	always			
	assur	ne	d to be						

- (A) 0
- **(B)** 1
- (C) M
- (D) -M
- 87. Which technique is used in finding a solution for optimizing a given objective, such as profit maximization or cost reduction under certain constraints?
 - (A) Quailing Theory
 - (B) Waiting Line
 - (C) Both (A) and (B)
 - (D) Linear Programming
 - 88. In Degenerate solution value of objective function
 - (A) increases infinitely
 - (B) basic variables are nonzero
 - (C) decreases infinitely '
 - (D) one or more basic variables are zero

- 89. If an artificial variable is present in the basic variable column of optimal simplex table, then the solution is
 - (A) alternative
 - (B) bounded
 - (C) no solution
 - (D) infeasible
- 90. If all paths of a network are critical paths, then the project duration cannot be reduced further.
 - (A) True
 - (B) False
 - (C) Nothing can be said
 - (D) None of the above
 - 91. The formula for calculating expected time in PERT is
 - (A) $(t_0 + 4t_m t_p)/6$
 - (B) $(t_0 + 4t_m + t_p)/6$
 - (C) $(t_0 + 4t_m 2t_p)/6$
 - (D) None of the above
 - 92. What is the basis for PERT analysis?
 - (A) An optimistic time
 - (B) A pessimistic period of time
 - (C) The date that is most likely
 - (D) All options mentioned above

93.	The problem of replacement is felt when	97. The size of the payoff matrix of a game
	job performing units fail	can be reduced by using the principle of:
	(A) suddenly and gradually	(A) game inversion
	(B) gradually	(B) rotation reduction
	(C) suddenly	(C) dominance
•	(D) neither gradually nor suddenly	(D) game transpose
94.	If there exists a saddle point for a given	98. Games which involve more than two players are called?
	problem it, implies that the players are	(A) conflicting game
	using strategies.	(B) negotiable games
	(A) Pure	(C) N-person games
	(B) Mixed	(D) All of the above
	(C) Optimal	99. When the sum of gains of one player is
	(D) Pure and Mixed	equal to the sum of losses to another
95.	What happens when maximin and	player in a game, this situation is known
	minimax values of the game are same?	as?
	(A) No solution exists	(A) biased game
	(B) Solution is mixed	(B) zero-sum game (C) fair game
	(C) Saddle point exists	(D) All of the above
((D) None of the above	100. Linear programming method should be
96.	A mixed strategy can be solved by:	used to determine the value of the game
((A) algebraic method	when the size of the payoff matrix is:
. (B) matrix method .	(A) 2 x 2
(C) graphical method	(B) 3 × 4
(1	D) All of the above	(C) $m \times 2$
		(D) $2 \times n$

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the correct answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

- 0.1 (A) (B) (C) (D) (0.2 (A) (B) (C) (D)
- Q.3 (A) (C) (D)

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- All answers are to be given on OMR Answer
 sheet only. Answers given anywhere other
 than the place specified in the answer sheet
 will not be considered valid.
- Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

ग्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्मावित उत्तर— A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से सही उत्तर छाँटना है। उत्तर को OMR आन्सर-शीट में सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

उदाहरन :

प्रस्न :

प्रश्न 1 (A) (C) (D)
प्रश्न 2 (A) (B) (C) (D)
प्रश्न 3 (A) (C) (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- प्रत्येक प्रश्न के अंक समान है। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को साक्वानीपूर्वक पढ़ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कहा निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण: प्रश्नपुरितका खोलने पर प्रधमतः जाँच कर देख लें कि प्रश्न-पुरितका के सभी पृष्ठ भलीगाँति छपे हुए हैं। यदि प्रश्नपुरितका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुरितका प्राप्त कर लें।