Fondamenta degli Integrali Generalizzati -Sommario

Tutto sugli integrali generalizzati.

1. Funzioni Localmente Integrabili

Funzioni Localmente Integrabili

Scopo degli integrali generalizzati. Definizione di funzioni localmente integrabili.

0. Preambolo

#Osservazione

Osservazione (lo scopo degli integrali generalizzati (o impropri)).

Sappiamo che gli integrali di Riemann (Definizione 1 (integrabilità di una funzione secondo Riemann)) sono solitamente definite su funzioni limitate e su insiemi compatti. Noi vogliamo quindi estendere questi integrali ad una classe di funzioni più ampia: definiamo quindi le funzioni localmente integrabili su un intervallo e alla fine studieremo gli integrali indefiniti.

1. Definizione di funzione localmente integrabile

#Definizione

Definizione (funzione localmente integrabile su un intervallo).

Sia $J \subseteq \mathbb{R}$ un intervallo arbitrario (ovvero può essere chiuso, aperto, semichiuso o semiaperto).

Una funzione $f: J \longrightarrow \mathbb{R}$ si dice localmente integrabile su J se f è integrabile su ogni intervallo compatto $\forall K \subseteq J$.

#Esempio

Esempio (esempio immediato).

Un esempio immediato è quello delle funzioni continue e monotone su J.

#Osservazione

Osservazione (le funzioni localmente integrabili sono continue).

Osserviamo che ponendo $f:J\longrightarrow \mathbb{R}$ e $c\in J$ e definendo l'Integralfunktion (Funzione Integrale > 4 a5cb4) come

$$F(x) = \int_{c}^{x} f(t) \, \mathrm{d}t$$

vediamo che F(x) è una funzione continua su J. Per una dimostrazione di questa proposizione, basta considerare che una qualsiasi integral-funzione è lipschitziana, dunque continua (Teorema 4 (die Integralfunktion ist lipschitzstetig)). Di conseguenza vale il seguente:

$$orall d \in J, \lim_{x o d} \int_c^x f(t) \; \mathrm{d}t = \lim_{x o d} F(x) = F(d) = \int_c^d f(t) \; \mathrm{d}t$$

Con le funzioni integrabili in senso generalizzato vedremo di estendere questa nozione anche ai punti non appartenenti all'intervallo J, purché questi punti siano punti di accumulazione per <math>J (Funzione Integrabile in Senso Generalizzato)).

2. Funzioni Integrabili in Senso Generalizzato

Funzione Integrabile in Senso Generalizzato

Definizione caso-per-caso di funzione integrabile in senso generalizzato su un intervallo. Esempi notevoli di funzioni integrabili in senso generalizzato. Definizione

1. Definizione di Integrale Improprio

#Definizione

Definizione (funzione integrabile in senso generalizzato).

Per definire una funzione integrabile in senso generalizzato distinguiamo tre casi diversi per tipologie diverse dell'intervallo J.

A. Intervallo aperto a destra

Sia J=[a,b) dove $b\in\mathbb{R}\cup\{+\infty\}$. Sia $f:J\longrightarrow\mathbb{R}$. Si dice che f è integrabile in senso generalizzato su J se esiste il limite

$$\lim_{x o b^-}\int_a^x f(t)\;\mathrm{d}t:=\int_a^b f(t)\;\mathrm{d}t$$

B. Intervallo aperto a sinistra

Sia J=(a,b] dove $a\in\mathbb{R}\cup\{-\infty\}$. Sia $f:J\longrightarrow\mathbb{R}$. Si dice che f è integrabile in senso generalizzato su J se esiste il limite

$$\lim_{x o a^+}\int_x^b f(t)\;\mathrm{d}t:=\int_a^b f(t)\;\mathrm{d}t$$

C. Intervallo aperto

Sia J=]a,b[dove $a,b\in \mathbb{R}.$ Sia $f:J\longrightarrow \mathbb{R}$ localmente integrabile su J. Si dice che f è integrabile in senso generalizzato su J se esiste un numero $c\in J$ tale che f sia integrabile in senso generalizzato su (a,c] e su [c,a). Inoltre si pone

$$\int_a^b f(t) \; \mathrm{d}t := \int_a^c f(t) \; \mathrm{d}t + \int_c^b f(t) \; \mathrm{d}t$$

#Definizione

Definizione (integrale improprio divergente e convergente).

Riprendendo le definizioni A e B della funzione integrabile in senso improprio (Definizione 1 (funzione integrabile in senso generalizzato)), se il limite esiste

ma *non* è *finito*, allora l'integrale si dice *"divergente"*. Altrimenti se il limite esiste allora si dice che è *"convergente"*.

#Osservazione

Osservazione (la definizione di integrale improprio su un insieme aperto la stessa).

Riprendendo la definizione C della funzione integrabile in senso improprio (Definizione 1 (funzione integrabile in senso generalizzato)), la definizione dell'integrale improprio rimane uguale, indipendentemente dal valore c scelto.

2. Esempi di integrali impropri

#Esempio

Esempio (esempio dell'integrale improprio semiaperto).

Vogliamo calcolare l'integrale improprio

$$\int_0^1 \frac{1}{\sqrt{1-x}} \, \mathrm{d}x$$

Prima di tutto prendiamo l'intervallo di definizione come J=[0,1), dal momento che per x=1 la funzione integranda non è più definita. Adesso calcoliamo la primitiva della funzione integranda.

$$\int \frac{1}{\sqrt{1-x}} \, \mathrm{d}x = -2 \int \frac{1}{2u} \, \mathrm{d}u \ni -2\sqrt{u} = -2\sqrt{1-x}$$

Infine calcoliamo il limite

$$\lim_{x o 1^-} (-2\sqrt{1-x})igg|_0^x = -2(\sqrt{1-x}-1) = 2$$

Allora

$$\int_0^1 \frac{1}{\sqrt{1-x}} \, \mathrm{d}x = 2$$

Esempio (esempio dell'integrale improprio su una semiretta).

Vogliamo valutare l'integrale

$$\int_{-\infty}^{0} e^x \, \mathrm{d}x$$

Prima di tutto poniamo $J=(-\infty,0]$.

Il calcolo della primitiva è banale, dal momento che $(e^x)'=e^x$, andiamo quindi a calcolare il limite

$$\lim_{t o -\infty}\int_t^0 e^x \;\mathrm{d}t = \lim_{t o -\infty} e^xigg|_t^0 = e^0 - e^t = 1 - e^t = 1$$

Allora

$$\int_{-\infty}^{0} e^x \, \mathrm{d}x = 1$$

#Esempio

Esempio (integrale improprio sulla retta reale).

Vogliamo valutare l'integrale

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, \mathrm{d}x$$

Preliminarmente osserviamo che la primitiva della funzione integranda è l'arcotangente. Adesso scegliamo c=0, dato che disegnando il grafico notiamo una simmetria in x=0.

Ora basta valutare i limiti

$$\lim_{t o +\infty} \int_{-t}^0 f(x) \; \mathrm{d}x + \int_0^t f(x) \; \mathrm{d}x = \pi$$

3. Integrali Impropri delle Funzioni Campioni

Integrali Impropri Notevoli

Alcuni integrali impropri notevoli, sotto forma di teoremi. Integrali impropri su intervalli illimitati e limitati.

1. Integrali Impropri delle Funzioni Campione

#Osservazione

Osservazione (l'idea di studiare il comportamento delle "funzioni campione").

L'idea di questa sezione è quella di trovare alcune *funzioni campione*, che diventeranno dei *strumenti di confronto* per stimare alcuni *integrali* che potrebbero risultare difficili da *calcolare*. Infatti, si vedrà di usare questi integrali impropri notevoli con dei *teoremi di confronto*.

#Teorema

Teorema (integrali impropri su semirette).

A. Semiretta verso destra

Sia $J = [a, +\infty)$ con a > 0.

Si ha l'equivalenza

$$\int_a^{+\infty} rac{1}{x^{lpha}} \, \mathrm{d}x ext{ esiste finito } \iff lpha > 1$$

B. Semiretta verso sinistra

Sia $J=(-\infty,b]$ con b<0.

Si ha l'equivalenza

$$\int_{-\infty}^{b} \frac{1}{|x|^{\alpha}} \, \mathrm{d}x \text{ esiste finito } \iff \alpha > 1$$

#Dimostrazione

DIMOSTRAZIONE del Teorema 2 (integrali impropri su semirette).

Per la dimostrazione di questo teorema è sufficiente considerare le primitive delle funzioni

$$rac{1}{x^{lpha}}$$

considerando per $\alpha=1$ e $\alpha\neq 1$.

#Teorema

Teorema (integrali impropri su intervalli limitati).

A. Aperto a destra

Sia J = [a, b) con $0 \le a < b < +\infty$.

Si ha l'equivalenza

$$\int_a^b rac{1}{(b-x)^{lpha}} \, \mathrm{d}x ext{ esiste finito } \iff lpha < 1$$

B. Aperto a sinistra

Sia J = (a, b] con $0 \le a < b < +\infty$.

Si ha l'equivalenza

$$\int_a^b \frac{1}{(x-a)^{\alpha}} \, \mathrm{d}x \text{ esiste finito } \iff \alpha < 1$$

2. Applicazione alla Probabilità

#Osservazione

Osservazione (applicazione degli integrali impropri nella probabilità).

Nella probabilità, si ha che le *funzioni* rappresentano la *densità di probabilità* per un certo evento.

Ad esempio si ha la distribuzione normale

$$\phi = \left(\int_{-\infty}^{+\infty} e^{rac{1}{2}t^2} \; \mathrm{d}t
ight) rac{1}{\sqrt{2\pi}}$$

(figura 2.1.). Per calcolare la probabilità di uno o più eventi si prende semplicemente l'integrale di un pezzo sotto la curva.

FIGURA 2.1. (la distribuzione normale)

4. Teoremi sugli Integrali Impropri

Teoremi sugli Integrali Impropri

Teoremi sugli integrali impropri: teorema Aut-Aut per gli integrali generalizzati; criterio del confronto; criterio del confronto asintotico. Esempi di applicazioni dei teoremi.

1. Teorema Aut-Aut per gli integrali impropri

#Teorema

Teorema (Aut-Aut per gli integrali generalizzati).

Se $f: J \longrightarrow \mathbb{R}$, dove J = [a,b) (o anche J = (a,b]) e f è localmente integrabile e positiva su J, allora l'integrale improprio

$$\int_{[a,b]} f$$

deve o esistere finito o divergere all'infinito ($+\infty$ nel primo caso). In particolare nel primo caso il limite (se finito) corrisponde a

$$\lim_{x o b^-}\int_a^x f(t)\;\mathrm{d}t = \sup_{x\in J}\int_a^x f(t)\;\mathrm{d}t$$

#Dimostrazione

DIMOSTRAZIONE del Teorema 1 (Aut-Aut per gli integrali generalizzati).

Il teorema segue dall'osservazione che la funzione integrale

$$F(x) = \int_a^x f(t) \, \mathrm{d}t$$

è crescente. Utilizzando quindi i teoremi sulle funzioni monotone (Teorema 16 (della funzione monotona)) abbiamo la tesi. ■

#Osservazione

Osservazione (la positività della funzione è una condizione necessaria).

Si vede che l'ipotesi $f(x) \ge 0$ è un'ipotesi chiave.

Come controesempio prendiamo l'integrale improprio

$$\int_0^1 -\cos\left(\frac{1}{x}\right) \cdot x^{-2} \, \mathrm{d}x$$

Prima di tutto si osserva che

$$\left(\sin\left(\frac{1}{x}\right)\right)' = -\cos\left(\frac{1}{x}\right) \cdot x^{-2}$$

dunque il membro a destra è proprio la *primitiva* della funzione integranda. Adesso calcoliamo (o tentiamo di farlo) il limite

$$\lim_{x o 0^+}\int_t^1 f(t) \;\mathrm{d}t = \lim_{x o 0^+} \sin\left(rac{1}{t}
ight)igg|_t^1 = \lim_{x o 0^+} \sin(1) - \sin\left(rac{1}{t}
ight) =
ot
ot$$

Infatti il problema consiste nel fatto che la funzione integranda non è positiva per tutti i valori dell'intervallo (0,1]; in particolare il cos ci fa "oscillare velocemente" tra -1 e 1.

2. Criterio del confronto

#Teorema

Teorema (criterio del confronto).

Siano $f,g:J=[a,b)\longrightarrow \mathbb{R}$ (o anche J=(a,b]) delle funzioni localmente integrabili e tali che

$$0 \leq f(x) \leq g(x), orall x \in J$$

allora segue che se g è integrabile in senso generale su J, allora lo è anche f e vale che

$$\int_{[a,b]} f \leq \int_{[a,b]} g$$

Oppure se f non è integrabile in senso generale su J, allora non lo è neanche g.

#Dimostrazione

DIMOSTRAZIONE del Teorema 3 (criterio del confronto)

Innanzitutto definiamo le funzioni integrali

$$F(x) = \int_a^x f(t) dt; G(x) = \int_a^x f(t) dt$$

Poiché $f(x) \leq g(x)$, si ha anche $F(x) \leq G(x)$.

Per il teorema di Aut-Aut per gli integrali impropri (Teorema 1 (Aut-Aut per gli integrali generalizzati)), si ha

$$\lim_{x o b^-} F(x) = \sup_{x\in J} F(x) \leq \sup_{x\in J} G(x) = \lim_{x o b^-} G(x) \leq +\infty$$
 per ipotesi

Allora segue che anche f è integrabile nel senso generale e vale che

$$\lim_{x o b^-}\int_a^x f(t)\;\mathrm{d}t \leq \lim_{x o b^-}\int_a^x g(t)\;\mathrm{d}t$$

Per la tesi secondaria basta prendere la contronominale della tesi.

#Corollario

Corollario (teorema del confronto asintotico).

Siano $f,g:J\longrightarrow \mathbb{R}$ localmente integrabili sul dominio e tali che

$$f(x),g(x)>0, orall x\in J$$

ed esiste il limite

$$\lim_{x o b^-}rac{f(x)}{g(x)}=L\in(0,+\infty)$$

Allora f(x), g(x) hanno lo "stesso carattere", nel senso che o sono entrambe convergenti o entrambi divergenti.

#Dimostrazione

DIMOSTRAZIONE del Corollario 4 (teorema del confronto asintotico)

Si tratta di esplicitare la definizione "alla Cauchy" del limite dell'ipotesi (Definizione 2 (formulazione generale e rigorosa del limite di una funzione che tende ad un punto di accumulazione)).

$$egin{aligned} orall arepsilon > 0 : orall x \in J, \ x \in (b-\delta,b) \Longrightarrow \left| rac{f(x)}{g(x)} - L
ight| < arepsilon \ \Longrightarrow \left| -arepsilon + L < rac{f(x)}{g(x)} < arepsilon + L \ f,g > 0 \Longrightarrow (-arepsilon + L)g(x) < f(x) < (arepsilon + L)g(x) \end{aligned}$$

dall'ultimo passaggio possiamo applicare il *teorema del confronto* (Teorema 3 (criterio del confronto)) per ricavare la tesi. ■

3. Esempi di esercizi

Ora applichiamo i teoremi appena enunciati con i seguenti esercizi.

#Esercizio

Esercizio.

Dire il carattere dell'integrale improprio

$$\int_0^1 \frac{1 + \sqrt[3]{x}}{x^2 + \sqrt{x}} \, \mathrm{d}x$$

Svolgimento. Prima di tutto prendiamo J=(0,1]. Adesso osserviamo il denominatore; vediamo che x^2 si "avvicina a 0 più velocemente di \sqrt{x} ; quindi cerco una funzione-campione di confronto g(x) con cui applicare il criterio del confronto asintotico.

Scegliamo $g(x) = \frac{1}{\sqrt{x}}$; infatti calcolando il limite

$$\lim_{x o 0^+}rac{1+\sqrt[3]{x}}{x^2+\sqrt{x}}\cdot\sqrt{x}=1$$

Abbiamo proprio il risultato voluto, ovvero che la funzione integranda si comporta come $\frac{1}{\sqrt{x}}$, che è convergente. Di conseguenza l'integrale iniziale è integrabile in senso improprio su J.

5. Assoluta e Semplice Integrabilità

Assoluta e Semplice Integrabilità

Definizione di assoluta e semplice integrabilità in senso generalizzato. Teorema dell'assoluta integrabilità in senso improprio.

1. Definizione di Assoluta e Semplice Integrabilità

#Definizione

Definizione (assoluta e semplice integrabilità in senso generalizzato).

Sia $f: J \longrightarrow \mathbb{R}$ localmente integrabile sul dominio.

Si dice che f è "assolutamente integrabile in senso generalizzato" se |f| è integrabile in senso generalizzato.

Altrimenti si dice che f è "semplicemente integrabile in senso generalizzato" se f è integrabile in senso generalizzato ma |f| non lo è.

#Osservazione

Osservazione (il senso delle definizioni).

Vediamo che abbiamo dato due definizioni di *integrabilità in senso* generalizzato: una assoluta e l'altra semplice. Esiste un legame tra le funzioni assolutamente integrabili e le funzioni integrabili (ovviamente sempre in senso improprio!)? Sono equivalenti? Oppure solo una implica l'altra? Ma

allora la nozione di funzione semplicemente integrabile ha senso? Ora vedremo col teorema dell'assoluta integrabilità.

2. Teorema dell'Assoluta Integrabilità

#Teorema

Teorema (dell'assoluta integrabilità).

Sia $f:J\longrightarrow \mathbb{R}$ una funzione assolutamente integrabile in senso generalizzato sul dominio.

Allora anche f è integrabile in senso generalizzato sul dominio e vale la relazione

$$\left|\int_{J}f
ight|\leq\int_{J}\left|f
ight|$$

#Dimostrazione

DIMOSTRAZIONE del Teorema 3 (dell'assoluta integrabilità)

Si considera la relazione

$$0 \le |f(x)| - f(x) \le 2|f(x)|$$

Applico il criterio del confronto per gli integrali generalizzati (Teorema 3 (criterio del confronto)): se 2|f(x)| è integrabile in senso improprio, allora lo sarà pure |f(x)| - f(x). Da ciò discende che lo è pure f(x); infatti, definendo per costruzione f(x) := |f(x)| - [|f(x)| - f(x)], si ottiene questo risultato. Inoltre per ottenere la relazione enunciata dalla tesi, si considera la seguente disuguaglianza.

$$egin{aligned} -|f(x)| & \leq |f(x)| \Longrightarrow & -\int_J |f| \leq \int_J f \leq \int_J f \ \Longrightarrow & \left| \int_J f
ight| \leq \int_J |f| \end{aligned}$$

che è proprio l'enunciato della tesi.

3. Esempi di Assoluta e Semplice Integrabilità

#Esempio

Esempio (funzione assolutamente integrabile).

La funzione

$$f(x) = \frac{\sin x}{x^2}$$

è assolutamente integrabile sull'intervallo $J=[1,+\infty)$. Infatti basta usare il teorema del confronto con $g(x)=x^{-2}$. Considerando il suo valore assoluto si ha infatti

$$\left| rac{\sin x}{x^2}
ight| \leq rac{|\sin x|}{x^2} \leq rac{1}{x^2}$$

Dato che il membro destro della disuguaglianza è proprio una funzione campione (Teorema 2 (integrali impropri su semirette)), sappiamo che questa è integrabile in senso generalizzato, dunque il valore assoluto |f(x)| è integrabile in senso generalizzato, ovvero f(x) è assolutamente integrabile in senso generalizzato.

#Esempio

Esempio (funzione semplicemente integrabile).

La funzione

$$f(x) = \frac{\sin x}{x}$$

è invece semplicemente integrabile su $[1, +\infty)$.

Per dimostrarlo bene, bisogna dimostrare che il suo valore assoluto non è integrabile, confrontandola con una funzione g(x) per cui $|f(x)| \geq g(x)$. In questo caso basta scegliere

$$g(x) = rac{\sin^2 x}{x}$$

Ora basta provare che g(x) non è integrabile, da cui per il teorema del confronto |f(x)| non è integrabile. Per farlo, bisogna usare l'identità trigonometrica

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

Invece per motivi analoghi al motivo precedente, la funzione f(x) senza il valore assoluto è integrabile.

6. Criteri per l'Assoluta Integrabilità

Criteri per l'Assoluta Convergenza in senso Generalizzato

Criteri (teoremi) per determinare l'assoluta convergenza in senso generalizzato per una funzione: criterio dell'ordine di infinitesimo su un dominio illimitato, criterio dell'ordine di infinito su un dominio limitato. Esempi.

1. Criterio dell'ordine di infinitesimo e dell'infinito

#Teorema

Teorema (criterio dell'ordine di infinitesimo su un insieme illimitato).

Sia $f:J\longrightarrow \mathbb{R}$ localmente integrabile, dove J è una semiretta. Si ha:

1. Se esiste $\alpha > 1$ tale che

$$\lim_{x o +\infty} |f(x)|\cdot x^lpha = L \in [0,+\infty)$$

Allora f è assolutamente integrabile in senso generalizzato su J.

2. Se invece esiste $\alpha < 1$ tale che

$$\lim_{x o +\infty} |f(x)|\cdot x^lpha = L \in (0,+\infty) \cup \{+\infty\}$$

Allora f non è assolutamente integrabile in senso generalizzato su J.

#Osservazione

Osservazione (il senso di questo teorema).

Per leggere bene le ipotesi del teorema, si deve leggere il prodotto

$$|f(x)| \cdot x^{\alpha}$$

come

$$\frac{|f(x)|}{\frac{1}{r^{\alpha}}}$$

e utilizzare il teorema del confronto asintotico (Corollario 4 (teorema del confronto asintotico)). Infatti, se il limite è 0, allora semplicemente |f(x)| si annulla. Altrimenti, se è un numero positivo |f(x)| si avvicina a 0 "come o più velocemente" di $\frac{1}{x^{\alpha}}$, che è una funzione notevole per l'integrale improprio (Teorema 2 (integrali impropri su semirette)).

#Teorema

Teorema (criterio dell'ordine di infinito su intervalli limitati).

Sia $f:J=[a,b)\longrightarrow \mathbb{R}$ con $b\in \mathbb{R}$.

Si hanno le seguenti.

A. Se si verifica che

$$\exists lpha < 1: \lim_{x o b^-} |f(x)| \cdot (b-x)^lpha = L \in [0,+\infty)$$

Allora f è assolutamente integrabile in senso generalizzato su J.

B. Se si verifica invece

$$\exists lpha \geq 1: \lim_{x o b^-} |f(x)| \cdot (b-x)^lpha = L \in (0,+\infty) \cup \{+\infty\}$$

Allora f non $\grave{\mathbf{e}}$ assolutamente integrabile in senso generalizzato su J.

2. Esempi di applicazione

#Esempio

Esempio (la distribuzione gaussiana).

Si considera la distribuzione gaussiana

$$f(x) = e^{-x^2}$$

Posso dire se questa è integrabile in senso generalizzato su $[0,+\infty)$? Sì, usando i teoremi appena enunciati con $\alpha=2$, si ha

$$\lim_{x o +\infty} e^{-x^2}\cdot x^2 \in [0,+\infty)$$

Quindi sicuramente si sa che

$$\int_0^{+\infty} e^{-x^2} \, \mathrm{d}x$$

esiste ed è finito.

#Esercizio

Esercizio.

Stabilire se la funzione f è integrabile su J=(0,3].

$$f(x) = \frac{1}{\sqrt{x + x^3}}$$

Prima di tutto si osserva che posso "scartare" x^3 , dato che x va più velocemente a 0 di x^3 . Allora scelgo $\alpha=\frac{1}{2}$ e uso il criterio dell'ordine dell'infinito.

$$\lim_{x o 0^+}rac{\sqrt{x}}{\sqrt{x}\sqrt{1+x^2}}=1\in (0,+\infty)\cup\{+\infty\}$$

Allora la funzione è integrabile in senso generalizzato, dato che lo è pure $\frac{1}{\sqrt{x}}$.