OSI Modell - TCP/IP Modell

Hálózati architektúrák céljai

- Összekapcsolhatóság
- Eltérő hardver, szoftver
- Egységes
- Egyszerű implementálhatóság
- Felhasználó igényeit lefedő általános megoldás

Hálózati architektúrák céljai

- Használhatóság
- Hatékony kiszolgálás
- Valós megoldások elrejtése
- Megbízhatóság, bizonytalan eszközökkel is
- Hibafelismerés, javíthatóság
- Modularitás, bővíthetőség

Rétegszemlélet

- Teljes architektúra komplex feladatot lát el
- Feladatok csoportosítása: function, service
- Interfészek a rétegek között
 - Adott csomópontban szomszédos rétegek között
 - Több csomópont azonos rétegein

Előnyök

- Modularitás
- Eltérő hardver és szoftver alkalmazhatósága

Követelmények

- Minden réteg jól elkülönülő önálló feladatot lát el
- A rétegek egymástól függetlenek
- A rétegek egymásra épülnek:
 - Minden réteg az alsóbb rétegek információt használja
 - Minden réteg a felsőbb rétegek számára nyújt szolgáltatásokat

Követelmények

- A hosztok azonos rétegei egymással kommunikálnak
- A kommunikáció az interfészeken valósul meg
- A kommunikációhoz a protokollokat használják

Szolgáltatások

- Összekötés alapú szolgáltatások
- O Összekötés nélküli szolgáltatások

Összekötés alapú szolgáltatások

- Távbeszélő rendszerek (telefon)
- Először létre kell hozni az összekötést
- A végén bontani kell a kapcsolatot
- A küldött bitek sorrendje megmarad

Összekötés alapú szolgáltatások

- Negotiation
 - Üzenetek maximális hossza
 - Szolgáltatás minőség
- Rögzített sávszélesség

Összekötés nélküli szolgáltatások

- Postás példa
- Minden levél rendelkezik egy címmel
- Minden levél a többitől független útvonalon közlekedik
- Tárol és továbbít
- Átfutó kapcsolás
- Általában küldés sorrendjében érkezik

Összekötés nélküli szolgáltatások

- Postás példa
- Minden levél rendelkezik egy címmel
- Minden levél a többitől független útvonalon közlekedik
- Tárol és továbbít
- Átfutó kapcsolás

Megbízhatóság kérdése

- Sosincs csomagvesztés
- Vevő mindig nyugtázza a megkapott üzenetet
- Plusz idő és késleltetés
- Fájlátvitel: Megbízható összekötés alapú szolgáltatás

Fájlátvitel

- Küldő biztosítása az összes bit elküldéséről
- Helyes sorrend megtartása

Üzenetsorozat és bájtfolyam

- Üzenethatárok kezelése
- Könyv laponkénti küldése
- DVD film küldése

Nyugtázás nélküli összekötés alapú

- Nyugtázásból adódó késleltetés elfogadhatatlan
- Hangátvitel, VolP
- Inkább zaj, mint késleltetés
- Meet, Teams, Zoom
- Hiányzó pixel javítható

Összeköttetés nélküli

- Kéretlen reklámok, spam
- Nem fontos a 100%-os kézbesítési arány
- Nem megbízható (nem nyugtázott)
- Datagramm szolgáltatás, távirat
- Nyugtázott datagramm
- Tértivevényes levél
- Kérdés-válasz

Összeköttetés nélküli

- Megbízható üzenetfolyam
- Megbízható bájtfolyam
- Megbízhatatlan összekötés
- Megbízhatatlan datagram
- Nyugtázott datagram
- Kérés válasz

Könyv

DVD

VolP

SPAM

Messenger

Adatbázis, REST

Miért használunk nyugtázatlan összekötést?

- Adott rétegben nincs másra lehetőség
- Ethernet nem nyugtáz
- Sérült csomag kezelése magasabb szintű protokoll
- Valósidőben nem jó a késleltetés

Szolgáltatási primitívek

Elemi műveletek amivel egy szolgáltatást különböző folyamatok elvégzésére lehet utasítani

Szolgáltatási primitívek

- Lehetnek rendszerhívások (protokoll készlet)
- Kernel mód
- Szolgáltatás határozza meg a primitívek készletét
- Különböző szolgáltatás, különböző primitívek

Szolgáltatási primitívek

- Lehetnek rendszerhívások (protokoll készlet)
- Kernel mód
- Szolgáltatás határozza meg a primitívek készletét
- Különböző szolgáltatás, különböző primitívek

Megbízható bájtfolyam kliens-szerver

- LISTEN (Blokkolt várakozás)
- CONNECT
- ACCEPT
- RECEIVE (Blokkolt várakozás)
- SEND
- DISCONNECT

Nem lenne egyszerűbb összekötés nélül?

- Két csomag: kérés, válasz
- Nagyobb állomány: átviteli hiba
- Valóban megjött minden?
- Következő kérésre jöhetnek az elveszett csomagok

Nem lenne egyszerűbb összekötés nélül?

- Két csomag: kérés, válasz
- Nagyobb állomány: átviteli hiba
- Valóban megjött minden?
- Következő kérésre jöhetnek az elveszett csomagok

OSI Modell

OSI hivatkozási modell

- Open System Interconnection
- Nem hálózati architektúra
- Általános, oktatásra alkalmas modell
- A rétegekhez kapcsolódó feladatok ma is fontosak
- A hozzá kapcsolódó protokollok már jellemzően nem használtak

A rétegekre osztás szempontjai

- A rétegek különböző absztrakciós szinteket képviseljenek
- Minden réteg jól definiált feladatot hajtson végre
- A rétegek feladatait a szabványos protokollokhoz kell igazítani
- A rétegek közötti információcsere minimális legyen
- A rétegek száma úgy legyen kialakítva, hogy:
 - eltérő feladatok ne kerüljenek azonos rétegbe
 - ne jelenjen meg kezelhetetlenül sok réteg

Rétegek

- Alkalmazási
- Megjelenési
- Viszony
- Szállítási
- Hálózati
- Adatkapcsolati
- Fizikai

Fizikai réteg

- Bitek továbbítása a kommunikációs csatornán
- Feszültségszintek:
 - Logikai magas szint
 - Logikai alacsony szint
- Időzítések
- Modulációk, bitek kódolása

Fizikai réteg

- Lehet-e 2 irányú a kapcsolat?
- Kapcsolat létrehozása, bontása
- Tervezési szempontok:
 - Interfész mechanikai, elektromos eljárási rendje
 - Fizikai átviteli közeg
- Csatlakozók

Adatkapcsolati réteg

- A fizikai átviteli hibáinak elfedése a hálózati réteg elől
- Keretezés:
 - Adatfolyam tördelése
 - Küldés sorrendben
 - Nyugtázás
 - Kerethatárok felismerése

Adatkapcsolati réteg

- Forgalom szabályozás
 - Elárasztás elleni védelem (gyors adó, lassú vevő)
 - Adó tájékoztatása vevő szabad pufferjeiről
- Osszeköttetés iránya (Halflex, duplex)
- Osztott csatornához való hozzáférés szabályozása

Hálózati réteg

- Alhálózat működését irányítja
- Milyen útvonalon kell küldeni?
 - Statikus útvonal
 - <u>Dinamikus útvon</u>al (Terhelés)
- Csomóponti torlódás szabályozás
- A szolgáltatás minősége
- Eltérő hálózatok összekapcsolása:
 - Eltérő címzési mód
 - Eltérő csomagméretek

Szállítási réteg

- Adatok fogadása a viszony rétegről
- Darabolás hálózati réteg
- Hibamentes átvitel biztosítása
- Átviteli probléma elrejtése
- Végpontok közötti tényleges kommunikáció

Viszonyréteg

- Két gép közti viszony (session) létrehozására
 - pl. bejelentkezés egy alkalmazásba
- Párbeszédirányítás
- Vezérjel kezelés
- Szinkronizáció

Megjelenítési réteg

- Az átvitt információhoz kapcsolódó szintaktikai kérdések
- Az átvitt információhoz kapcsolódó szemantikai kérdések
- Regionális szempontok
- Karakterkódolások (pl.: ASCII, UniCode)

Alkalmazási réteg

- Célja a felhasználó kiszolgálása
- Protokollok gyűjteménye

TCP/IP Modell

- Az ARPANET problémái
- Műholdas, rádiós hálózatok
- Tervezési szempontok:
 - Különböző hálózatok összekapcsolása
 - Redundáns, hibatűrő hálózat
 - Széles körben alkalmazható, rugalmas hálózat

TCP/IP Modell

- Csomagkapcsolt hálózat
- O Összekötés nélküli rétegen alapul
- Különböző hálózatok között is működőképes

Kapcsolati réteg

- Adatátviteli elemek képességei
- Meg kell felelni az összekötés nélküli internetréteg igényeinek
- Csatlakozási felület a hosztok és az átviteli összeköttetések között
- Nem definiálja az internet réteg alatti réteg pontos feladatait
- IP csomagok továbbítására alkalmas hálózat
- Hosztonként eltérő protokollok lehetnek

Internet réteg

- O Összeköttetés nélküli internetwork réteg
- Az OSI modell hálózati rétegének felel meg
 - IP csomagok kézbesítése
 - Csomagok útvonalának meghatározása
 - Torlódásvédelem

Internet réteg

- Szabványos csomagformátum és protokoll
 - Internet Protocol (IP)
- Képes legyen bármilyen hálózatba csomagot küldeni
- Képes legyen csomagokat továbbítani egy másik hálózatba

Szállítási réteg

- Feladata az OSI szállítási rétegéhez hasonló
- Forrás és cél közti párbeszéd biztosítása
- Szállítási protokollok:
 - Átvitelvezérlő protokoll (TCP)
 - megbízható, összeköttetés alapú protokoll
 - hibamentes bájtos átvitel két gép között
 - oforgalomszabályozás (elárasztás ellen)

Szállítási réteg

- Felhasználói datagram protokoll(TCP)
 - nem megbízható, összeköttetés nélküli protokoll
 - kliens-szerver típusú kérés-válasz (egylövetű)
 - ahol a gyors válasz fontosabb a pontos válasznál

Alkalmazási réteg

- Az OSI alkalmazási rétegéhez hasonló
- Nincs viszony és megjelenítési réteg
- Eredetileg a következő protokollokat tartalmazta:
 - Virtuális terminál (Telnet)
 - Fájltranszfer (FTP)
 - Elektronikus levelezés (SMTP)

Alkalmazási réteg

- Manapság számos további protokollt tartalmaz
 - Domain Name Service (DNS)
 - Hyper Text Transfer Protocol (HTTP)
 - Network News Transfer Protocol (NNTP)

OSI Modell kiértékelése

- Rossz időzítés
- Rossz technológia
- Rossz implementálás
- Rossz üzletpolitika

Rossz időzítés

- Két elefánt apokalipszise
- Ha túl korai a szabvány, akkor keveset lehet tudni az újdonságról, rossz szabvány
- Ha túl kései, akkor mindenki más irányba indul el
- Mire OSI Protokoll megjelent, addigra a TCP/IP vette át a vezetést

Rossz technológia

- Hibás a modell és a protokollok
- A viszony és a megjelenési réteg majdnem üres
- Adatkapcsolási és hálózati túltelített
- Bonyolult protokollok
- Kevésbé hatékony működés

Rossz implementálás

- Modell bonyolultsága miatt nehezen, lassan lehetett implementálni
- TCP/IP egyik első implementációja a Berkeley-féle unix része volt

Rossz Üzletpolitika

- TCP/IP-re a unix részeként tekintettek
- OSI-ra úgy tekintettek, mintha
 - az európai távközlési minisztériumok,
 - az Európai Gazdasági Közösség
 - az amerikai kormány
- alkotása lett volna.

TCP/IP kiértékelése

- Nem tesz egyértelmű különbséget a szolgálat, protokoll és interfész között
- Nem tekinthető általános érvényű modellnek
 - Nem alkalmas új technológiákon alapuló hálózatok tervezéséhez

TCP/IP kiértékelése

- A hoszt és hálózat közötti alréteg nem tekinthető valódi rétegnek
- Nincs adatkapcsolati és fizikai réteg
 - közegek átviteli jellemzői
 - keretezés

TCP/IP kiértékelése

- Jól implementált, átgondolt TCP és IP protokollok
 - ad-hoc jellegű kiegészítő protokollok
- Széles körben elterjed és implementált (ingyenes) protokollok
 - Mélyen a rendszerbe épülve, nehezen változtatható
 - TELNET ...

Összehasonlítás

OSI

Tapasztalatlan tervezők

Modellhez protokollok

Kellően általános modell

Nem befolyásolja a protokoll készleteket

Elemzésre, oktatásra alkalmas

Nem életképes protokollok

TCP/IP

Protokollhoz Modell

Csak az adott protokollokkal életképes

Gyakorlatban nem létező modell

Elterjedt, használható protokollok