Лекция 9 Сети векторного квантования (LVQ). Современные модели и методы вычислений

Дисциплина: «Разработка алгоритмов для реализации методов машинного обучения(лек)» гр:М094-6112-21-ауд:404 Кинтонова А.Ж.

Векторное квантование

В предыдущих разделах мы рассмотрели квантование выходного сигнала непрерывного источника для случая, когда квантование выполняется последовательно по отдельным отсчётам, т.е. скалярное квантование. В этом разделе мы рассмотрим совместное квантование блока символьных отсчётов или блока сигнальных параметров. Этот вид квантования называется блоковым или векторным квантованием. Оно широко используется при кодировании речи в цифровых сотовых системах связи.

Фундаментальный результат теории искажения заключается в том, что лучшую характеристику можно достичь векторным, а не скалярным квантованием, даже если непрерывный источник без памяти. Если, кроме того, отсчёты сигнала или параметры сигнала статистически зависимы, мы можем использовать зависимость посредством совместного квантования блоков отсчётов или параметров и таким образом достичь большей эффективности (более низкой битовой скорости) по сравнению с той, которая достигается скалярным квантованием.

Проблему векторного квантования можно сформулировать так. Имеем n-мерный вектор $X = \{x_1, x_2 \dots x_n\}$ с n вещественными, непрерывными амплитудами компонент $\{x_k, 1 \le k \le n\}$, которые описываются СФПВ $P(x_1, x_2 \dots x_n)$. Путём квантования вектор X превращается в другой n-мерный вектор X с компонентами $\{\tilde{x}_k, 1 \le k \le n\}$. Выразим операции квантования оператором $Q(\cdot)$, так что

$$\tilde{X} = \mathcal{Q}(X), \tag{3.4.31}$$

где $ilde{X}$ - выход квантователя, когда на вход поступает вектор X .

В принципе векторное квантование блоков данных можно рассматривать как проблему распознавания образов, включающую в себя классификацию блоков

данных через дискретное количество категорий или ячеек в соответствии с некоторым критерием точности, таким, например, как среднеквадратическая погрешность. Для примера рассмотрим квантование двумерных

векторов $X = [x_1, x_2]$. Двумерное пространство разделяют на ячейки, как показано на рис. 3.4.3, где мы имеем произвольно выбранные шестиугольные ячейки C_k . Все входные векторы, которые попадают в ячейку C_k , квантуются в вектор X_k , который на рис. 3.4.3 отмечен как центр шестиугольника. В нашем примере иллюстрируются $X_k = 37$ векторов, один для каждой из 37 ячеек, на которые разбито двумерное пространство. Обозначим ряд возможных выходных векторов как $X_k = X_k \le L$.

Рис. 3.4.3. Пример квантания в двухмерном пространстве

В общем, квантование n-мерного вектора X в n-мерный вектор \hat{X} ведёт к ошибке квантования или искажению $d(X,\hat{X})$. Среднее искажение по ряду входных векторов X равно

$$D = \sum_{k=1}^{L} P(X \in C_k) E\left[d(X, \tilde{X}_k) \mid X \in C_k\right] = \sum_{k=1}^{L} P(X \in C_k) \int_{X \in C_k} d(X, \tilde{X}_k) p(X) dX$$
, (3.4.32)

где $^{P(X \in C_k)}$ - вероятность того, что вектор X попадёт в ячейку C_k , а $^{p(X)}$ - СФПВ n случайных величин. Как и в случае скалярного квантования, мы можем минимизировать D путём выбора ячеек $^{\{C_k, 1 < k \leq L\}}$ при заданной

ФПВ p(X). Обычно используемая мера искажений - среднеквадратическая ошибка (l_2 - норма) определяется как

$$d_2(X, \tilde{X}) = \frac{1}{n} (X - \tilde{X})^T (X - \tilde{X}) = \frac{1}{n} \sum_{k=1}^n (x_k - \tilde{x}_k)^2$$
(3.4.33)

или, в более общем виде, взвешенная среднеквадратическая ошибка

$$d_{2W}(X, \tilde{X}) = (X - \tilde{X})^{T} W(X - \tilde{X}), \qquad (3.4.34)$$

где W - положительно определённая взвешивающая матрица. Обычно мера W выбирается как обратная по отношению к матрице ковариаций входных данных X .

Другая мера искажений, которая иногда используется, является частным случаем l_p нормы и определяется как

$$d_{p}(X, \tilde{X}) = \frac{1}{n} \sum_{k=1}^{n} \left| x_{k} - \tilde{x}_{k} \right|^{p}$$
(3.4.35)

Частный случай, когда p=1, часто используется как альтернатива случаю p=2.

Векторное квантование не ограничивается квантованием блока сигнальных отсчётов источника сигнала. Его можно использовать для квантования ряда параметров, извлечённых из данных. Например, при линейном кодировании с предсказанием (ЛКП), описанном в разделе 3.5.3, параметры, извлечённые из сигнала, являются коэффициентами предсказания, которые являются коэффициентами для всеполюсной фильтровой модели источника, который генерирует наблюдаемые данные. Эти параметры можно рассматривать как блок и квантовать как блок символов, используя некоторую подходящую меру искажений. В случае кодирования речи подходящей мерой искажений, которую предложили Итакура и Саити (1986, 1975), является взвешенная среднеквадратическая ошибка, где взвешивающая матрица ^W выбрана как нормированная матрица автоковариации Ф наблюдаемых данных.

При кодировании речи альтернативным рядом параметров, которые могут быть квантованы как блок и переданы к приёмнику, могут быть коэффициенты отражения (см. ниже) $\left\{a_{ij}, 1 \leq i \leq m\right\}$.

Еще один ряд параметров, которые иногда используются для векторного квантования при линейном кодировании с предсказанием речи, содержит логарифмические отношения $\binom{r_k}{k}$, которые выражаются через коэффициенты отражения

$$r_k = \log \frac{1 + a_{kk}}{1 - a_{kk}}, \ 1 \le k \le m.$$
 (3.4.36)

Теперь вернемся к математической формулировке векторного квантования и рассмотрим разбиение n-мерного пространства на L ячеек $C_k, 1 < k \le L$ с точки зрения минимизации среднего искажения по всем L-уровневым квантователям. Имеется два условия для минимизации. Первое заключается в том, что оптимальный квантователь использует селекцию по правилу ближайшего соседа, которое можно выразить математически как

$$Q(X) = \tilde{X}_k$$

если, и только если

$$D(X, \tilde{X}_k) \le D(X, \tilde{X}_j), \quad k \ne j, \ 1 \le j \le L.$$
 (3.4.37)

Второе условие, необходимое для оптимизации, заключается в том, что каждый выходной вектор \tilde{X}_k выбирается так, чтобы минимизировать среднее искажение в ячейке C_k . Другими словами, \tilde{X}_k - это вектор в C_k , который минимизирует

$$D_k = E\left[d(X, \tilde{X}) \mid X \in C_k\right] = \int_{X \in C_k} d(X, \tilde{X}) p(X) dX$$
(3.4.38)

Вектор \tilde{X}_k , который минимизирует D_k , назван **центроидом** ячейки.

Таким образом, эти условия оптимизации определяют разбиение n -мерного пространства на ячейки ${C_k, 1 \le k \le L}$, когда СФПВ $^{p(X)}$ известна. Ясно, что указанные два условия обобщают задачу оптимального квантования скалярной величины оптимизации на случай квантования n -мерного вектора. В общем, мы ожидаем, что кодовые векторы более тесно группируются в областях, где СФПВ $^{p(X)}$ велика, и, наоборот, разрежены в областях, где $^{p(X)}$ мала.

В качестве верхней границы искажений векторного квантования мы можем использовать величину искажений оптимального скалярного квантователя, и эту границу можно применить для каждой компоненты вектора, как было описано в предыдущем разделе. С другой стороны, наилучшие характеристики, которые могут быть достигнуты оптимальным векторным квантователем, определяются функцией скорость-искажение или, что эквивалентно, функцией искажение-скорость. Функция искажение-скорость, которая была введена в предыдущем разделе, может быть определена в контексте векторного квантования следующим образом. Предположим, мы

формируем вектор X размерности n из n последовательных отсчётов $\{x_k\}$. Вектор X квантуется в форму $\tilde{X} = \mathcal{Q}(X)$, где \tilde{X} - образованный

рядом ${\tilde{X}_m, 1 < m \le L}$. Как было описано выше, среднее искажение D, получаемое при представлении X через \tilde{X} , равно $E[d(X, \tilde{X})]$, где $d(X, \tilde{X})$ - это искажение на одно измерение. Например,

$$d(X, \tilde{X}) = \frac{1}{n} \sum_{k=1}^{n} (x_k - \tilde{x}_k)^2$$

Минимально достижимая средняя битовая скорость, с которой могут быть переданы векторы $\left\{\tilde{X}_m, 1 < m \leq L\right\}$, равна

$$R = \frac{H(\tilde{X})}{n}$$
 бит/отсчет, (3.4.39)

где $H(\tilde{X})$ - энтропия квантованного выхода источника, определяемая как

$$H(\tilde{X}) = -\sum_{k=1}^{L} p(\tilde{X}_i) \log_2 P(\tilde{X}_i)$$
(3.4.40)

Для данной средней скорости R минимально достижимое искажение

$$D_n(R) = \min_{\mathcal{Q}(X)} E\left[d(X, \tilde{X})\right], \tag{3.4.41}$$

где $\mathbb{R}^{N} \geq H(\hat{X})^{N}/n$ и минимум в (3.4.41) берётся по всем возможным отображениям $\mathbb{Q}(X)$. В пределе, когда размерность \mathbb{R}^{n} стремится к бесконечности, получаем

$$D(R) = \lim_{n \to \infty} D_n(R), \tag{3.4.42}$$

где $\mathcal{D}(R)$ - это функция искажение-скорость, которая была введена в предыдущем разделе. Из этого изложения очевидно, что функция искажение-скорость может быть как угодно приближена к пределу путём увеличения размерности n векторов.

Изложенный выше подход приемлем в предположении, что СФПВ $^{p(X)}$ вектора данных известна. Однако на практике СФПВ $^{p(X)}$ данных может быть неизвестна. В этом случае, возможно адаптивно выбрать квантованные выходные векторы с использованием ряда обучающих векторов $^{X(m)}$. Конкретнее, предположим, что мы имеем ряд из M векторов, причём M намного больше, чем L $^{(M) \gg L)}$. Итеративный групповой алгоритм, названный **алгоритмом** K **средних**, где в нашем случае $^{K=L}$, может быть применён к обучающим векторам. Этот алгоритм итеративно

делит M обучающих векторов на L групп так, что два необходимых условия оптимальности выполняются. Алгоритм K средних может быть описан так, как дано ниже [Макхоул и др. (1985)].

Алгоритм К средних

Шаг 1. Инициализируется начальный номер итерации i=0 . Выбирается ряд выходных векторов $\tilde{X}_k(0)$, $1 \le x \le L$.

Шаг **2.** Обучающие векторы ${X(m),1 < m \le M}$ классифицируются в группы ${C_k}$ посредством правила ближайшего соседа:

$$X \in C_k(i)$$
 если $D(X, \tilde{X}_k(i)) \leq D(X, \tilde{X}_j(i))$ для всех $k \neq j$.

Шаг 3. Пересчитываются (для $^{(i+1)}$ -го шага) выходные векторы каждой группы путём вычисления центроида

$$\tilde{X}_{k}\left(i\right) = \frac{1}{M_{k}} \sum_{X \in C_{k}} X(m) \ , \qquad 1 \leq k \leq L \ ,$$

для обучающих векторов, которые попадают в каждую группу.

Кроме того, рассчитывается результирующее искажение D(i) на i -й итерации.

Шаг 4. Заканчивается тестирование, если D(i-1)-D(i) относительно мало. В противном случае следует идти к шагу 2.

Алгоритм K средних приводит к локальному минимуму (см. Андерберг, 1973; Линде и др., 1980). Начиная этот алгоритм различными рядами начальных выходных векторов $\{X_k(0)\}$ и каждый раз выполняя оптимизацию, описанную алгоритмом K средних, можно найти глобальный оптимум. Однако вычислительные затраты этой поисковой процедуры могут ограничить поиск немногими инициализациями.

Если мы один раз выбрали выходные векторы ${\{\tilde{X}_k,1< k\leq L\}}$, каждый сигнальный вектор $X^{(m)}$ квантуется в выходной вектор, который является ближайшим к нему с точки зрения выбранной меры искажения. Если вычисление включает в себя оценку расстояния между $X^{(m)}$ и каждым

из L возможных выходных векторов $\{\hat{X}_k\}$, процедура образует полный поиск. Если предположим, что каждое вычисление требует n умножений и сложений, то общее требуемое число вычислений для полного поиска равно

$$\wp = nL \tag{3.4.43}$$

умножений и сложений на входной вектор.

Если мы выбрали L как степень 2, то $\log_2 L$ определяет число бит, требуемых для представления каждого вектора. Теперь, если R обозначает битовую скорость на отсчёт [на компоненту или на измерение K(m)], имеем $K^{R} = \log_2 L$ и, следовательно, вычислительные затраты

$$\wp = n2^{nR} \tag{3.4.44}$$

Заметим, что число вычислений растёт экспоненциально с параметром размерности п и битовой скорости \mathbb{R} на измерение. Вследствие этого экспоненциального роста вычислительных затрат векторное квантование применяется в низкобитовых кодерах источника, таких как кодирование коэффициентов отражения или логарифмических отношений в линейном кодировании речи с предсказанием.

Вычислительные затраты, связанные с полным поиском, можно уменьшить при помощи изящного субоптимального алгоритма (см. Чанг и др., 1984; Гершо, 1982).

Чтобы продемонстрировать пользу векторного квантования по сравнению со скалярным квантованием, мы представим следующий пример, взятый у Макхоула и др. (1985).

Пример 3.4.1. Пусть X_1 и X_2 являются двумя случайными величинами с равномерной СФПВ:

$$p(x_1, x_2) = p(X) = \begin{cases} \frac{1}{ab} & (X \in C), \\ 0 & (\text{для других } X), \end{cases}$$
 (3.4.45)

где C - прямоугольная область, показанная на рис. 3.4.4. Заметим, что прямоугольник повёрнут на 45° относительно горизонтальной оси. На рис. 3.4.4 показаны также собственные плотности вероятности $^{p(x_1)}$ и $^{p(x_2)}$.

Рис. 3.4.4. Равномерная ФПВ в двух измерениях (Макхоул и др., 1985)

Если мы квантуем x_1 и x_2 раздельно, используя одинаковые интервалы квантования длины Δ , то требуемое число уровней квантования

$$L_1 = L_2 = \frac{a+b}{\sqrt{2}\Delta}$$
 (3.4.46)

Следовательно, для кодирования вектора $X = [x_1 x_2]$ потребуется число бит

$$R_x = R_1 + R_2 = \log_2 L_1 + \log_2 L_2$$

$$R_{x} = \log_{2} \frac{(a+b)^{2}}{2\Delta^{2}}.$$
 (3.4.47)

Таким образом, скалярное квантование каждой компоненты эквивалентно векторному квантованию с общим числом уровней

$$L_{x} = L_{1}L_{2} = \frac{(a+b)^{2}}{2\Delta^{2}}.$$
 (3.4.48)

Видим, что это приближение эквивалентно покрытию большой площади, которая охватывает прямоугольник посредством квадратных ячеек, причём каждая ячейка представляет одну из $\frac{L_x}{L_x}$ областей квантования.

Поскольку p(X) = 0, за исключением $X \in \mathbb{C}$, такое кодирование является расточительным и приводит к увеличению битовой скорости.

Если же мы покроем только область, где $p(X) \neq 0$, квадратиками, имеющими площадь Δ^2 , то общее число уровней, которые образуются, определяется площадью прямоугольника, делённой на Δ^2 , т.е.

$$L_x' = \frac{ab}{\Delta^2} \tag{3.4.49}$$

Следовательно, разница в битовой скорости при скалярном и векторном методах квантования равна

$$R_x - R_x' = \log_2 \frac{(a+b)^2}{2ab}$$
 (3.4.50)

Для случая, когда a = 4b, разница в битовой скорости

$$R_x - R'_x = 1,64$$
 бит/вектор.

Следовательно, векторное квантование на 0,82 бит/отсчёт лучше, чем скалярное, при тех же искажениях.

Интересно заметить, что линейное преобразование (поворот на 45°) декоррелирует X_1 и X_2 и делает две случайные величины статистически независимыми. Тогда скалярное квантование и векторное квантование достигают одинаковой эффективности. Хотя линейное преобразование может декоррелировать вектор случайных величин, оно не приводит к статистически независимым случайным величинам в общем случае. Следовательно, Векторное квантование будет всегда равняться или превосходить по характеристикам скалярный квантователь (см. задачу 3.40).

Векторное квантование применяется при различных методах кодирования речи, включая сигнальные методы и методы базовых моделей, которые рассматриваются в разд. 3.5. В методах, основанных на базовых моделях, таких как линейное кодирование с предсказанием, векторное квантование делает возможным кодирование речи на скоростях ниже 1000 бит/с (см. Бузо и др., 1980; Роукос и др., 1982; Пауль, 1983). Если использовать методы кодирования сигналов, возможно получить хорошее качество речи на скоростях передачи 16 000 бит/с, что эквивалентно скорости кодирования R=2 бит/отсчёт. За счёт дополнительных вычислительных усложнений в будущем станет возможным использовать сигнальные кодеры, обеспечивающие хорошее качество речи при скорости кодирования R=1 бит/отсчёт.