Report No: C150227R01

FCC ID: 2ACS5-ST10P Date of Issue :April 8, 2015

RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i) and §15.407(f), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b) of this chapter.

EUT Specification

EUT	ST10******				
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.15GHz ~ 5.25GHz WLAN: 5.25GHz ~ 5.35GHz WLAN: 5.47GHz ~ 5.725GHz WLAN: 5.725GHz ~ 5.85GHz Zigbee:2.405GHz ~ 2.48GHz Others 				
Device category	☐ Portable (<20cm separation)☐ Mobile (>20cm separation)☐ Others				
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)				
Antenna diversity	☐ Single antenna ☐ Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity				
Max. output power	Worst case: 2.4GHz 17.78dBm 5.745GHz 18.57dBm				
Antenna gain (Max)	Dipole antennas for 2.4GHz Gain 0 dBi Dipole antennas for 5GHz Gain 5.0 dBi				
Evaluation applied					

Remark:

- 1. The maximum output power is 17.78dBm (59.98mW) at 2440MHz (with 1 numeric antenna gain.) and 15.56dBm (71.94mW) at 5745MHz (with 3.16 numeric antenna gain.)
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.
- 4. All two antennas are completely uncorrelated with each other.

TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = *Distance in meters*

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where

d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Compliance Certification Services Inc. Report No: C150227R01 FCC ID: 2ACS5-ST10P Date of Issue :April 8, 2015

Channel	Frequency band (MHz)	Max. tune up power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
8	2440	17.78	0	20	0.0119	1
165	5745	18.57	5	20	0.0718	1

Note:

Both of the WLAN 2.4G&5.0G can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Zigbee 2.4G+ WLAN 5G=0.0119+0.0718=0.0837< 1

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)