Lecture: Advanced Bioinformatics SoSe 2022

Exercise Sheet 7 – Computational mass spectrometry Introduction to mass spectrometry

1. Mass spectrometry (5.0 points)

a) Name the core components of a mass spectrometer and describe their function briefly (max 4 sentences). (3 points)

Ion source: ionizes and vapourizes the analytes into the vacuum of the mass spectrometer (e.g. electrospray or MALD)

Mass analyzer: induces differences in flight path of the ion dependent on their m/z ratio by e.g. deflecting them in a magnetic field or trapping them (orbitrap).

Detector: detects the current induced by the deflected ions or counts them.

Can be e.g. a Faraday cup, a microchannel plate or (for orbitraps) metal strips for ion current detection a) Explain concisely (in 2 sentences) what a mass spectrum is and what information it depicts. Use the following terms: m/z, intensity, peak(s). (2 point)

A mass spectrum is a plot of m/z vs intensity that plots the intensity of the signal detected by the mass spectrometer for each m/z value (often as a count of detected particles).

Peaks in the spectrum correspond to fragments of a certain mass at a given ionization level; depending on the resolution, peaks may be resolved into multiple subpeaks for each isotopic composition of the fragment.

2. Peptides, fragmentation, peaks and masses (10.0 points)

a) Write a small program/script/function (language of your choice) which calculates and returns all possible tryptic peptides for any protein sequence. The function may look similar to "String[] getTrypticPeptides(String proteinSequence)". Provide your source code and its output (as PDF at the end) and the number of peptides generated (fill in here) for the protein P00533-1. Download the protein sequence from UniProt.org. (4.0 points) You will re-use the source code in the next exercise.

Number	of try	ntic n	entides:	
INGILIDE	01 (1)	Duic D	cpuacs.	

b) Write a small program/script/function (language of your choice) which calculates and returns the monoisotopic masses of all possible singly charged y- and b-fragment peaks with at least 7 significant figures for any given input peptide. The function may look similar to "double[] getFragmentMasses (String sequence)". Provide your source code and its output (as PDF at the end) and the output for the peptide "MAINHTGEK" (fill in table). (4.0 points) You will re-use the source code in the next exercise.

b+	m/z	AAS	m/z	y+
1		M		9
2		Α		8
3		I		7
4		N		6
5		Н		5
6		Т		4
7		G		3
8		E		2
9		К		1

b) The first isotope (peak) of ethanol ($C_2H_5O_1H_1$) contains 1 additional neutron. Let's assume that the neutron is either incorporated in form of a heavy H (2 H) or heavy C (13 C). Assume you pick two molecules from the first isotope, one containing a single heavy H ($C_2H_5O_1^2H_1$) and the other containing

a single heavy C ($^{13}C_1C_1H_5O_1H_1$). The difference between the two molecules is which atom contains the additional neutron. With the information at hand, what do you expect the mass of $^{13}C_1C_1H_5O_1H_1$ to be in relation of $C_2H_5O_1^2H_1$? Smaller, equal or bigger? Explain your reasoning (1 sentence). (2.0 points)
\square $^{13}C_1C_1H_5O_1H_1$ is lighter (smaller m/z) than $C_2H_5O_1{}^2H_1$
\Box $^{13}C_1C_1H_5O_1H_1$ is equal (same m/z) than $C_2H_5O_1{}^2H_1$
\square $^{13}C_1C_1H_5O_1H_1$ is heavier (bigger m/z) than $C_2H_5O_1{}^2H_1$
Explanation: