1,



2、

$$\frac{Y(s)}{R(s)} = T(s) = \frac{K_1 K_2}{s^2 + (K_1 + K_2 K_3 + K_1 K_2) s + K_1 K_2 K_3} \; .$$

3、

(a) If

$$G(s) = \frac{1}{s^2 + 15s + 50}$$
 and  $H(s) = 2s + 15$ ,

then the closed-loop transfer function of Figure E2.28(a) and (b) (in Dorf & Bishop) are equivalent.

(b) The closed-loop transfer function is

$$T(s) = \frac{1}{s^2 + 17s + 65} \ .$$

4、

The equations of motion for the two mass model of the robot are

$$M\ddot{x} + b(\dot{x} - \dot{y}) + k(x - y) = F(t)$$
  
 $m\ddot{y} + b(\dot{y} - \dot{x}) + k(y - x) = 0$ .

Taking the Laplace transform and writing the result in matrix form yields

$$\left[\begin{array}{cc} Ms^2+bs+k & -(bs+k) \\ -(bs+k) & ms^2+bs+k \end{array}\right] \left[\begin{array}{c} X(s) \\ Y(s) \end{array}\right] = \left[\begin{array}{c} F(s) \\ 0 \end{array}\right] \; .$$

Solving for Y(s) we find that

$$\frac{Y(s)}{F(s)} = \frac{\frac{1}{mM}(bs+k)}{s^2[s^2 + (1 + \frac{m}{M})(\frac{b}{m}s + \frac{k}{m})]}.$$

$$m_1 \frac{d^2x}{dt^2} = -(k_1 + k_2)x + k_2y$$
 and  $m_2 \frac{d^2y}{dt^2} = k_2(x - y) + u$ .

When  $m_1 = m_2 = 1$  and  $k_1 = k_2 = 1$ , we have

$$\frac{d^2x}{dt^2} = -2x + y \quad \text{and} \quad \frac{d^2y}{dt^2} = x - y + u \ .$$

6

$$\dot{x}_1 = -x_1 + \frac{1}{2}x_2 + r$$

$$\dot{x}_2 = x_1 - \frac{3}{2}x_2 - r$$

$$y = x_1 - \frac{3}{2}x_2 - r.$$

In state-variable form we have

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & \frac{1}{2} \\ 1 & -\frac{3}{2} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} r , \quad y = \begin{bmatrix} 1 & -\frac{3}{2} \end{bmatrix} \mathbf{x} + \begin{bmatrix} -1 \end{bmatrix} r .$$

7、

$$Ri_1 + L_1 \frac{di_1}{dt} + v = v_a$$

$$L_2 \frac{di_2}{dt} + v = v_b$$

$$i_L = i_1 + i_2 = C \frac{dv}{dt} .$$

Let  $x_1 = i_1, x_2 = i_2, x_3 = v, u_1 = v_a$  and  $u_2 = v_b$ . Then,

$$\dot{\mathbf{x}} = \begin{bmatrix} -\frac{R}{L_1} & 0 & -\frac{1}{L_1} \\ 0 & 0 & -\frac{1}{L_2} \\ \frac{1}{C} & \frac{1}{C} & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} \frac{1}{L_1} & 0 \\ 0 & \frac{1}{L_2} \\ 0 & 0 \end{bmatrix} \mathbf{u}$$
$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \mathbf{x} + [0] \mathbf{u} .$$

$$KG(s) \cdot \frac{1}{s} = \frac{(s+1)^2}{s(s^2+1)}$$
.

We then compute the closed-loop transfer function as

$$T(s) = \frac{s^2 + 2s + 1}{3s^3 + 5s^2 + 5s + 1} = \frac{s^{-1} + 2s^{-2} + s^{-3}}{3 + 5s^{-1} + 5s^{-2} + s^{-3}}.$$

(a) The state variable model is

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1/3 & -5/3 & -5/3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1/3 \end{bmatrix} r$$

$$y = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \mathbf{x}.$$

9、

$$\dot{\mathbf{x}} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} d.$$

When  $u_1 = 0$  and  $u_2 = d = 1$ , we have

$$\dot{x}_1 = 3x_1 + u_2 
\dot{x}_2 = 2x_2 + 2u_2$$

So we see that we have two independent equations for  $x_1$  and  $x_2$ . With  $U_2(s) = 1/s$  and zero initial conditions, the solution for  $x_1$  is found to be

$$x_1(t) = \mathcal{L}^{-1} \left\{ X_1(s) \right\} = \mathcal{L}^{-1} \left\{ \frac{1}{s(s-3)} \right\}$$
$$= \mathcal{L}^{-1} \left\{ -\frac{1}{3s} + \frac{1}{3} \frac{1}{s-3} \right\} = -\frac{1}{3} \left( 1 - e^{3t} \right)$$

and the solution for  $x_2$  is

$$x_2(t) = \mathcal{L}^{-1}\left\{X_2(s)\right\} = \mathcal{L}^{-1}\left\{\frac{2}{s(s-2)}\right\} = \mathcal{L}^{-1}\left\{-\frac{1}{s} + \frac{1}{s-2}\right\} = -1 + e^{2t}$$
.