Discrete Mathematics and Its Applications

Lecture 6: Discrete Probability: Closures and Equivalence of Relations

MING GAO

DaSE@ECNU (for course related communications) mgao@dase.ecnu.edu.cn

Dec. 18, 2018

Outline

- Closures of Relations
- Transitive Closures
- Equivalence Relations
 - Equivalence Classes
 - Equivalence Classes and Partitions
- Partial Orderings
 - Lexicographic Order
 - Hasse Diagrams
 - Maximal and Minimal Elements
 - Lattices
 - Topological Sorting
- Take-aways

Closures of relations

Definition

If there is a relation S with property P (such as reflexivity, symmetry, or transitivity) containing R such that S is a subset of every relation with property P containing R, then S is called the closure of R with respect to P.

Reflexive closure

Question:

What is the reflexive closure of the relation $R = \{(a, b) | a < b\}$ on the set of integers?

Closures of relations

Definition

If there is a relation S with property P (such as reflexivity, symmetry, or transitivity) containing R such that S is a subset of every relation with property P containing R, then S is called the closure of R with respect to P.

Reflexive closure

Question:

What is the reflexive closure of the relation $R = \{(a, b) | a < b\}$ on the set of integers?

Solution:

The reflexive closure of R is

$$R \cup \Delta = \{(a,b)|a < b\} \cup \{(a,a)|a \in Z\} = \{(a,b)|a \le b\}.$$

< □ > < @ > < 돌 > < 돌 > _ 돌 _ 쒸익<

Closures of relations Cont'd

Symmetric closure

Question:

What is the symmetric closure of the relation $R = \{(a, b) | a < b\}$ on the set of integers?

Closures of relations Cont'd

Symmetric closure

Question:

What is the symmetric closure of the relation $R = \{(a, b) | a < b\}$ on the set of integers?

Solution:

The symmetric closure of R is

$$R \cup \Delta = \{(a, b) | a < b\} \cup \{(a, b) | a > b\} = \{(a, b) | a \neq b\}.$$

Paths in digraphs

Definition

A **path** from a to b in the directed graph G is a sequence of edges $(x_0, x_1), (x_1, x_2), (x_2, x_3), \cdots, (x_{n-1}, x_n)$ in G, where n is a nonnegative integer, and $x_0 = a$ and $x_n = b$. This path is denoted by $a, x_1, x_2, \cdots, x_{n-1}, b$ and has length n.

A path of length $n \ge 1$ that begins and ends at the same vertex is called a **circuit or cycle**.

 We view the empty set of edges as a path of length zero from a to a.

Paths in digraphs

Definition

A **path** from a to b in the directed graph G is a sequence of edges $(x_0, x_1), (x_1, x_2), (x_2, x_3), \cdots, (x_{n-1}, x_n)$ in G, where n is a nonnegative integer, and $x_0 = a$ and $x_n = b$. This path is denoted by $a, x_1, x_2, \cdots, x_{n-1}, b$ and has length n.

A path of length $n \ge 1$ that begins and ends at the same vertex is called a **circuit or cycle**.

- We view the empty set of edges as a path of length zero from a to a.
- A path in a directed graph can pass through a vertex more than once. Moreover, an edge in a directed graph can occur more than once in a path.

Paths in digraphs

Definition

A **path** from a to b in the directed graph G is a sequence of edges $(x_0, x_1), (x_1, x_2), (x_2, x_3), \dots, (x_{n-1}, x_n)$ in G, where n is a nonnegative integer, and $x_0 = a$ and $x_n = b$. This path is denoted by $a, x_1, x_2, \dots, x_{n-1}, b$ and has length n.

A path of length $n \ge 1$ that begins and ends at the same vertex is called a **circuit or cycle**.

- We view the empty set of edges as a path of length zero from a to a.
- A path in a directed graph can pass through a vertex more than once. Moreover, an edge in a directed graph can occur more than once in a path.
- A path in a directed graph is obtained by traversing along edges (in the same direction as indicated by the arrow on the edge).

Example of path

Question:

Which of the following are paths in the directed graph shown in the figure:

- a, b, e, d;
- a, e, d, c, b;
- b, a, c, b, a, a, b;
- d, c;
- c, b, a;
- e, b, a, b, a, b, e?

What are the lengths of those that are paths?

Which of the paths in this list are circuits?

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in R^n$.

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in R^n$.

Proof: (Mathematical induction:)

By definition, there is a path from a to b of length one if and only if $(a,b) \in R$, so the theorem is true when n=1.

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in R^n$.

Proof: (Mathematical induction:)

By definition, there is a path from a to b of length one if and only if $(a,b) \in R$, so the theorem is true when n=1.

Assume that the theorem is true for the positive integer n.

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a,b) \in R^n$.

Proof: (Mathematical induction:)

By definition, there is a path from a to b of length one if and only if $(a,b) \in R$, so the theorem is true when n=1.

Assume that the theorem is true for the positive integer n. There is a path of length n+1 from a to b if and only if there is an element $c \in A$ such that there is a path of length one from a to c, so $(a, c) \in R$, and a path of length n from c to b, that is, $(c, b) \in R^n$.

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a,b) \in R^n$.

Proof: (Mathematical induction:)

By definition, there is a path from a to b of length one if and only if $(a,b) \in R$, so the theorem is true when n=1.

Assume that the theorem is true for the positive integer n. There is a path of length n+1 from a to b if and only if there is an element $c \in A$ such that there is a path of length one from a to c, so $(a,c) \in R$, and a path of length n from c to b, that is, $(c,b) \in R^n$. Consequently, by the inductive hypothesis, there is a path of length n+1 from a to b if and only if there is an element c with $(a,c) \in R$ and $(c,b) \in R^n$. But there is such an element if and only if $(a,b) \in R^{n+1}$.

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in R^n$.

Proof: (Mathematical induction:)

By definition, there is a path from a to b of length one if and only if $(a,b) \in R$, so the theorem is true when n=1.

Assume that the theorem is true for the positive integer n. There is a path of length n+1 from a to b if and only if there is an element $c \in A$ such that there is a path of length one from a to c, so $(a,c) \in R$, and a path of length n from c to b, that is, $(c,b) \in R^n$. Consequently, by the inductive hypothesis, there is a path of length n+1 from a to b if and only if there is an element c with $(a,c) \in R$ and $(c,b) \in R^n$. But there is such an element if and only if $(a,b) \in R^{n+1}$.

Therefore, there is a path of length n+1 from a to b if and only if $(a,b) \in \mathbb{R}^{n+1}$. This completes the proof.

Connectivity relation

Definition

Let R be a relation on a set A. The *connectivity relation* R^* consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.

•
$$R^* = \bigcup_{n=1}^{\infty} R^n$$
;

Connectivity relation

Definition

Let R be a relation on a set A. The *connectivity relation* R^* consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.

- $R^* = \bigcup_{n=1}^{\infty} R^n$;
- Let R be the relation on the set of all people in the world that contains (a, b) if a has met b.
 - What is R^n , where n is a positive integer greater than one?
 - What is R*?

The transitive closure of a relation R equals the connectivity relation R^* .

The transitive closure of a relation R equals the connectivity relation R^* .

Proof.

Note that $R \subset R^*$. To show that R^* is the transitive closure of R we must also show that R^* is transitive and that $R^* \subset S$ whenever S is a transitive relation that contains R.

The transitive closure of a relation R equals the connectivity relation R^* .

Proof.

Note that $R \subset R^*$. To show that R^* is the transitive closure of R we must also show that R^* is transitive and that $R^* \subset S$ whenever S is a transitive relation that contains R.

First, if $(a, b) \in R^*$ and $(b, c) \in R^*$, then $\exists m, n \text{ s.t. } (a, b) \in R^n$ and $(b, c) \in R^m$. Thus $(a, c) \in R^{m+n} \subset R^*$.

The transitive closure of a relation R equals the connectivity relation R^* .

Proof.

Note that $R \subset R^*$. To show that R^* is the transitive closure of R we must also show that R^* is transitive and that $R^* \subset S$ whenever S is a transitive relation that contains R.

First, if $(a, b) \in R^*$ and $(b, c) \in R^*$, then $\exists m, n \text{ s.t. } (a, b) \in R^n$ and $(b, c) \in R^m$. Thus $(a, c) \in R^{m+n} \subset R^*$.

Now suppose that S is a transitive relation containing R. Because S is transitive, $S^n \subset S$ (by Theorem 1 of previous slides) and S^n also is transitive (why?). Furthermore, because $S^* = \bigcup_{n=1}^{\infty} S^n$ and and $S^k \subset S$, it follows that $S^* \subset S$. Now note that if $R \subset S$, then $R^* \subset S^*$, because any path in R is also a path in S. Consequently, $R^* \subset S^* \subset S$. Thus, any transitive relation that contains R must also contain R^* . Therefore, R^* is the transitive closure of R.

Let R be a relation on set A of n elements. If there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n. Moreover, when $a \neq b$, if there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n-1.

Let R be a relation on set A of n elements. If there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n. Moreover, when $a \neq b$, if there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n-1.

Proof: Let m be the length of the shortest path from a to b in R, namely, $x_0 = a, x_1, x_2, \dots, x_m = b$.

Let R be a relation on set A of n elements. If there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n. Moreover, when $a \neq b$, if there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n-1.

Proof: Let m be the length of the shortest path from a to b in R, namely, $x_0 = a, x_1, x_2, \dots, x_m = b$.

If a=b and m>n, i.e., $m\geq n+1$. By the pigeonhole principle, because there are n vertices in A, among the m vertices at least two are equal. Suppose that $x_i=x_j$ with $0\leq i< j\leq m-1$. Then the path contains a circuit from x_i to itself. This circuit can be deleted from the path from a to b, leaving a path, namely, $x_0, x_1, \cdots, x_i, x_{j+1}, \cdots, x_m$, from a to b of shorter length. Hence, the length of shortest path must have length less than or equal to n.

Let R be a relation on set A of n elements. If there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n. Moreover, when $a \neq b$, if there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n-1.

Proof: Let m be the length of the shortest path from a to b in R, namely, $x_0 = a, x_1, x_2, \dots, x_m = b$.

If a=b and m>n, i.e., $m\geq n+1$. By the pigeonhole principle, because there are n vertices in A, among the m vertices at least two are equal. Suppose that $x_i=x_j$ with $0\leq i< j\leq m-1$. Then the path contains a circuit from x_i to itself. This circuit can be deleted from the path from a to b, leaving a path, namely, $x_0, x_1, \cdots, x_i, x_{j+1}, \cdots, x_m$, from a to b of shorter length. Hence, the length of shortest path must have length less than or equal to n. The case where $a\neq b$ is left as an exercise.

From the above lemma, we have

$$R^* = \bigcup_{k=1}^n R^k$$

Theorem

Let M_R be the zero-one matrix of the relation R on a set with n elements. Then the zero-one matrix of the transitive closure R^* is

$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]} \vee \cdots \vee M_R^{[n]}.$$

Example

Question:

Find the zero-one matrix of the transitive closure of the relation ${\it R}$ where

$$M_R = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array} \right).$$

Example

Question:

Find the zero-one matrix of the transitive closure of the relation R where

$$M_R = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array} \right).$$

Solution:

The zero-one matrix of the transitive closure of R is

$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]}.$$

Example

Question:

Find the zero-one matrix of the transitive closure of the relation R where

$$M_R = \left(egin{array}{ccc} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 1 & 0 \end{array}
ight).$$

Solution:

The zero-one matrix of the transitive closure of R is

$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]}.$$

We have,

$$M_R^{[2]} = M_R^{[3]} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, M_R^* = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Algorithm

${\bf ALGORITHM\,1\ \ A\ Procedure\ for\ Computing\ the\ Transitive\ Closure.}$

procedure transitive closure (M_R : zero-one $n \times n$ matrix)

 $\mathbf{A} := \mathbf{M}_R$

B := A

for i := 2 to n

 $\mathbf{A} := \mathbf{A} \odot \mathbf{M}_R$

 $B\mathrel{\mathop:}= B\vee A$

return B{B is the zero–one matrix for R^* }

Algorithm

ALGORITHM 1 A Procedure for Computing the Transitive Closure.

```
procedure transitive closure (\mathbf{M}_R: zero–one n \times n matrix)

\mathbf{A} := \mathbf{M}_R

\mathbf{B} := \mathbf{A}

for i := 2 to n

\mathbf{A} := \mathbf{A} \odot \mathbf{M}_R

\mathbf{B} := \mathbf{B} \vee \mathbf{A}

return \mathbf{B} \{ \mathbf{B} \text{ is the zero–one matrix for } R^* \}
```

- A Boolean products can be found in $n^2(2n-1)$ bit operations;
- $M_R^{[n]}$ requires that n-1 Boolean products of $n \times n$ zeroCone matrices be found:
- Computing M_{R^*} needs $(n-1)n^2$ bit operations.
- Overall, the algorithms is $O(n^4)$ bit operations.

Interior vertices

Interior vertices

If $a, x_1, x_2, \dots, x_{m-1}, b$ is a path, vertices x_1, x_2, \dots, x_{m-1} are interior vertices of (a, b).

Interior vertices

Interior vertices

If $a, x_1, x_2, \dots, x_{m-1}, b$ is a path, vertices x_1, x_2, \dots, x_{m-1} are interior vertices of (a, b).

We define a sequence of zero-one matrices, namely $W_0 = M_R$ and $W_k = [w_{ii}^k]$, where

$$w_{ij}^{k} = \begin{cases} 1, & \text{all interior vertices of } (v_i, v_j) \text{ are in } \{v_1, v_2, \cdots, v_k\}; \\ 0, & \text{otherwise.} \end{cases}$$

Note that $W_n = M_{R^*}$, because the (i,j)—th entry of M_{R^*} is 1 if and only if there is a path from v_i to v_j , with all interior vertices in $\{v_1, v_2, \dots, v_n\}$.

Example of W_k

Question: Find the matrices W_0 , W_1 , W_2 , W_3 , and W_4 for the relation R with the digraph in the figure.

$$W_0 = M_R =$$

$$v_1 \quad a \quad \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ v_3 & c & 0 & 1 \\ v_4 & d & 0 & 0 & 1 \end{pmatrix}$$

Example of W_k

Question: Find the matrices W_0 , W_1 , W_2 , W_3 , and W_4 for the relation R with the digraph in the figure.

$$W_0 = M_R =$$

$$v_1 \quad a \\ v_2 \quad b \\ v_3 \quad c \\ v_4 \quad d$$

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$W_1 = \left(egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight), W_2 = \left(egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight).$$

Example of W_k Cont'd

$$W_3 = \left(egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \end{array}
ight), W_4 = \left(egin{array}{cccc} 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \end{array}
ight).$$

Thus, we have

$$M_{R^*} = \left(egin{array}{cccc} 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \end{array}
ight).$$

Lemma

Let $W_k = [w_{ij}^{[k]}]$ be the zero-one matrix that has a 1 in its (i,j)th position if and only if there is a path from v_i to v_j with interior vertices from the set $\{v_1, v_2, \cdots, v_k\}$. Then

$$w_{ij}^{[k]} = w_{ij}^{[k-1]} \vee (w_{ik}^{[k-1]} \wedge w_{kj}^{[k-1]}),$$

whenever i, j, and k are positive integers not exceeding n.

Lemma

Let $W_k = [w_{ii}^{[k]}]$ be the zero-one matrix that has a 1 in its (i,j)th position if and only if there is a path from v_i to v_i with interior vertices from the set $\{v_1, v_2, \cdots, v_k\}$. Then

$$w_{ij}^{[k]} = w_{ij}^{[k-1]} \vee (w_{ik}^{[k-1]} \wedge w_{kj}^{[k-1]}),$$

whenever i, j, and k are positive integers not exceeding n.

Proof.

Either a path from v_i to v_i already existed before v_k was permitted as an interior vertex, or allowing vk as an interior vertex produces a path that goes from v_i to v_k and then from v_k to v_i . These two cases are shown in the figure.

Warshall's Algorithm

ALGORITHM 2 Warshall Algorithm.

```
\begin{aligned} & \textbf{procedure } \textit{Warshall } (\mathbf{M}_R: n \times n \text{ zero-one matrix}) \\ & \mathbf{W} := \mathbf{M}_R \\ & \textbf{for } k := 1 \textbf{ to } n \\ & \textbf{for } i := 1 \textbf{ to } n \\ & \textbf{for } j := 1 \textbf{ to } n \\ & w_{ij} := w_{ij} \vee (w_{ik} \wedge w_{kj}) \\ & \textbf{return } \mathbf{W}\{\mathbf{W} = [w_{ij}] \text{ is } \mathbf{M}_{R^*}\} \end{aligned}
```

Warshall's Algorithm

ALGORITHM 2 Warshall Algorithm.

```
\begin{aligned} & \mathbf{procedure} \ Warshall \ (\mathbf{M}_R: n \times n \ \mathsf{zero-one} \ \mathsf{matrix}) \\ & \mathbf{W} := \mathbf{M}_R \\ & \mathbf{for} \ k := 1 \ \mathbf{to} \ n \\ & \mathbf{for} \ i := 1 \ \mathbf{to} \ n \\ & \mathbf{for} \ j := 1 \ \mathbf{to} \ n \\ & w_{ij} := w_{ij} \vee (w_{ik} \wedge w_{kj}) \\ & \mathbf{return} \ \mathbf{W} \{\mathbf{W} = [w_{ij}] \ \mathsf{is} \ \mathbf{M}_{R^*} \} \end{aligned}
```

- To find all n^2 entries of W_k from those of W_{k-1} requires $2n^2$ bit operations.;
- The algorithm computes the sequence of n zero-one matrices $W_1, W_2, \cdots, W_n = M_{R^*}$, the total number of bit operations used is $n \cdot 2n^2 = 2n^3$.

Equivalence relations

Definition

A relation on a set A is called an **equivalence relation** if it is reflexive, symmetric, and transitive.

Two elements a and b that are related by an equivalence relation are called **equivalent**. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.

- Every element should be equivalent to itself;
- a is related to b, and b is related to a by the symmetric property;
- If a and b are equivalent and b and c are equivalent, it follows that a and c are equivalent.

Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. Is R an equivalence relation?

Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. Is R an equivalence relation?

Let R be the relation on the set of real numbers such that aRb if and only if a-b is an integer. Is R an equivalence relation?

Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. Is R an equivalence relation?

Let R be the relation on the set of real numbers such that aRb if and only if a-b is an integer. Is R an equivalence relation?

Let m be an integer with m > 1. Show that the relation

$$R = \{(a, b) | a \equiv b \pmod{m}\}$$

is an equivalence relation on the set of integers.

Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. Is R an equivalence relation?

Let R be the relation on the set of real numbers such that aRb if and only if a-b is an integer. Is R an equivalence relation?

Let m be an integer with m > 1. Show that the relation

$$R = \{(a, b) | a \equiv b \pmod{m}\}$$

is an equivalence relation on the set of integers.

Let R be the relation on the set of real numbers such that xRy if and only if x and y are real numbers that differ by less than 1, that is |x-y| < 1. Show that R is not an equivalence relation.

Equivalence Classes

Definition

Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the **equivalence class** of a. The equivalence class of a with respect to R is denoted by $[a]_R$. When only one relation is under consideration, we can delete the subscript R and write [a] for this equivalence class.

•

$$[a]_R = \{s | (a, s) \in R\};$$

- If $b \in [a]_R$, then b is called a **representative** of this equivalence class;
- Any element of a class can be used as a representative of this class.

40149141111 1 000

Question: What is the equivalence class of an integer for R such

that aRb if and only if a = b or a = -b?

Solution: $[a] = \{a, -a\}.$

Question: What is the equivalence class of an integer for R such

that aRb if and only if a = b or a = -b?

Solution: $[a] = \{a, -a\}.$

Question: What are the equivalence classes of 0 and 1 for congruence modulo 4?

Solution: $[0] = \{\cdots, -8, -4, 0, 4, 8, \cdots\},$

 $[1] = \{\cdots, -7, -3, 1, 5, 9, \cdots\}.$

Question: What is the equivalence class of an integer for R such that aRb if and only if a = b or a = -b?

Solution: $[a] = \{a, -a\}.$

Question: What are the equivalence classes of 0 and 1 for congruence modulo 4?

Solution: $[0] = \{\cdots, -8, -4, 0, 4, 8, \cdots\},$ $[1] = \{\cdots, -7, -3, 1, 5, 9, \cdots\}.$

Let m be an integer with m > 1. Show that the relation

$$R = \{(a, b) | a \equiv b \pmod{m}\}$$

is an equivalence relation on the set of integers.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ◆900

Let R be an equivalence relation on a set A. These statements for elements a and b of A are equivalent:

- (i) aRb;
- (ii) [a] = [b];
- (iii) $[a] \cap [b] \neq \emptyset$.

Let R be an equivalence relation on a set A. These statements for elements a and b of A are equivalent:

- (i) aRb;
- (ii) [a] = [b];
- (iii) $[a] \cap [b] \neq \emptyset$.

Proof.

 $(i) \Rightarrow (ii)$:

Assume that aRb and $c \in [a]$.

Let R be an equivalence relation on a set A. These statements for elements a and b of A are equivalent:

- (i) aRb;
- (ii) [a] = [b];
- (iii) $[a] \cap [b] \neq \emptyset$.

Proof.

(i)⇒ (ii):

Assume that aRb and $c \in [a]$.

Because R is symmetric and transitive, we know bRa and aRc, it further follows that bRc. Hence, $c \in [b]$, i.e., $[a] \subset [b]$.

Similarly, we can know that $[b] \subset [a]$.

Thus, we have [a] = [b], completing the proof of this statement.

Proof.

Assume that [a] = [b].

Proof.

$$(ii) \Rightarrow (iii)$$
:

Assume that [a] = [b]. First [a] is nonempty because $a \in [a]$ (because R is reflexive).

Proof.

```
(ii)⇒ (iii):
```

Assume that [a] = [b]. First [a] is nonempty because $a \in [a]$ (because R is reflexive).

Thus $[a] \cap [b] \neq \emptyset$.

$$(iii) \Rightarrow (i)$$
:

Suppose that $[a] \cap [b] \neq \emptyset$. Then there is an element c with $c \in [a]$ and $c \in [b]$.

Proof.

Assume that [a] = [b]. First [a] is nonempty because $a \in [a]$ (because R is reflexive).

Thus $[a] \cap [b] \neq \emptyset$.

Suppose that $[a] \cap [b] \neq \emptyset$. Then there is an element c with $c \in [a]$ and $c \in [b]$.

In other words, aRc and bRc. By the symmetric property, cRb.

Proof.

Assume that [a] = [b]. First [a] is nonempty because $a \in [a]$ (because R is reflexive).

Thus $[a] \cap [b] \neq \emptyset$.

$$(iii) \Rightarrow (i)$$
:

Suppose that $[a] \cap [b] \neq \emptyset$. Then there is an element c with $c \in [a]$ and $c \in [b]$.

In other words, aRc and bRc. By the symmetric property, cRb.

Then by transitivity, because aRc and cRb, we have aRb.

Note that

$$\bullet \bigcup_{a \in A} [a]_R = A;$$

•
$$[a] = [b]$$
 or $[a] \cap [b] = \emptyset$.

Definition

A *partition* of a set S is a collection of disjoint nonempty subsets of S that have S as their union.

Definition

A *partition* of a set S is a collection of disjoint nonempty subsets of S that have S as their union.

Definition

A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union.

That is, the collection of subsets A_i , $i \in I$ (where I is an index set) forms a partition of S if and only if

- $A_i \neq \emptyset$ for $i \in I$;
- $A_i \cap A_j = \emptyset$ when $i \neq j$;
- $\bullet \bigcup_{i\in I} A_i = S.$

Definition

A *partition* of a set S is a collection of disjoint nonempty subsets of S that have S as their union.

That is, the collection of subsets A_i , $i \in I$ (where I is an index set) forms a partition of S if and only if

- $A_i \neq \emptyset$ for $i \in I$;
- $A_i \cap A_j = \emptyset$ when $i \neq j$;
- $\bullet \bigcup_{i\in I} A_i = S.$
- The equivalence classes of an equivalence relation on a set form a partition of the set.
- Conversely, every partition of a set can be used to form an equivalence relation?

Dec. 18, 2018

Let R be an equivalence relation on S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\{A_i|i\in I\}$ of S, there is an equivalence relation R that has $A_i, i\in I$, as its equivalence classes.

Let R be an equivalence relation on S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\{A_i|i\in I\}$ of S, there is an equivalence relation R that has $A_i, i\in I$, as its equivalence classes.

Proof: \Rightarrow : (Obvious)

Let R be an equivalence relation on S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\{A_i|i\in I\}$ of S, there is an equivalence relation R that has $A_i, i\in I$, as its equivalence classes.

Proof: \Rightarrow : (Obvious)

 \Leftarrow : Assume that $\{A_i|i\in I\}$ is a partition on S and R is the relation on S consisting of the pairs $(x,y)\in A_i$.

Let R be an equivalence relation on S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\{A_i|i\in I\}$ of S, there is an equivalence relation R that has $A_i, i\in I$, as its equivalence classes.

Proof: \Rightarrow : (Obvious)

 \Leftarrow : Assume that $\{A_i|i\in I\}$ is a partition on S and R is the relation on S consisting of the pairs $(x,y)\in A_i$.

- Since $(a, a) \in R$ for every $a \in S$, because a is in the same subset as itself. Hence, R is reflexive;
- If $(a, b) \in R$, then b and a are in the same subset of the partition, so that $(b, a) \in R$ as well. Hence, R is symmetric.
- If $(a, b) \in R$ and $(b, c) \in R$, then a and b are in the same subset X in the partition, and b and c are in the same subset X of the partition. Consequently, a and c belong to the same subset of the partition, so $(a, c) \in R$. Thus, R is transitive.

Example I

What are the sets in the partition of the integers arising from congruence modulo 4?

Example I

What are the sets in the partition of the integers arising from congruence modulo 4?

$$[0]_4 = \{\cdots, -8, -4, 0, 4, 8, \cdots\},$$

$$[1]_4 = \{\cdots, -7, -3, 1, 5, 9, \cdots\},$$

$$[2]_4 = \{\cdots, -6, -2, 2, 6, 10, \cdots\},$$

$$[3]_4 = \{\cdots, -5, -1, 3, 7, 11, \cdots\},$$

Example I

What are the sets in the partition of the integers arising from congruence modulo 4?

$$[0]_4 = \{\cdots, -8, -4, 0, 4, 8, \cdots\},$$

$$[1]_4 = \{\cdots, -7, -3, 1, 5, 9, \cdots\},$$

$$[2]_4 = \{\cdots, -6, -2, 2, 6, 10, \cdots\},$$

$$[3]_4 = \{\cdots, -5, -1, 3, 7, 11, \cdots\},$$

The congruence classes modulo m provide a useful illustration of Theorem 2. There are m different congruence classes modulo m, corresponding to the m different remainders possible when an integer is divided by m. These m congruence classes are denoted by $[0]_m, [1]_m, \cdots, [m-1]_m$. They form a partition of the set of integers.

Example II

Let n be a positive integer and S a set of strings. Suppose that R_n is the relation on S such that sR_nt if and only if s=t, or both s and t have at least n characters and the first n characters of s and t are the same. What are the sets in the partition given by R_3 ?

Example II

Let n be a positive integer and S a set of strings. Suppose that R_n is the relation on S such that sR_nt if and only if s=t, or both s and t have at least n characters and the first n characters of s and t are the same. What are the sets in the partition given by R_3 ? **Solution:** Note that every bit string of length less than three is equivalent to itself. Hence $[\lambda]_{R_3} = \{\lambda\}$, $[0]_{R_3} = \{0\}$, $[1]_{R_3} = \{1\}$, $[00]_{R_3} = \{00\}$, $[01]_{R_3} = \{01\}$, $[10]_{R_3} = \{10\}$, and $[11]_{R_3} = \{11\}$.

Example II

Let n be a positive integer and S a set of strings. Suppose that R_n is the relation on S such that sR_nt if and only if s=t, or both s and t have at least n characters and the first n characters of s and t are the same. What are the sets in the partition given by R_3 ? **Solution:** Note that every bit string of length less than three is equivalent to itself. Hence $[\lambda]_{R_2} = {\lambda}$, $[0]_{R_2} = {0}$, $[1]_{R_2} = {1}$, $[00]_{R_2} = {00}$, $[01]_{R_3} = \{01\}, [10]_{R_3} = \{10\}, \text{ and } [11]_{R_3} = \{11\}.$ $[000]_{R_2} = \{000, 0000, 0001, 00000, 00001, 00010, 00011, \cdots\},\$ $[001]_{R_2} = \{001, 0010, 0011, 00100, 00101, 00110, 00111, \cdots\},\$ $[010]_{R_3} = \{010, 0100, 0101, 01000, 01001, 01010, 01011, \cdots\},\$ $[011]_{R_3} = \{011, 0110, 0111, 01100, 01101, 01110, 01111, \cdots\},\$ $[100]_{R_3} = \{100, 1000, 1001, 10000, 10001, 10010, 10011, \cdots\},\$ $[101]_{R_3} = \{101, 1010, 1011, 10100, 10101, 10110, 10111, \cdots\},\$ $[110]_{R_3} = \{110, 1100, 1101, 11000, 11001, 11010, 11011, \cdots\},\$ $[111]_{R_3} = \{111, 1110, 1111, 11100, 11101, 11110, 11111, \dots\}.$

Partial orderings

Definition

A relation R on a set S is called a **partial ordering** or **partial order** if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a **partially ordered set**, or poset, and is denoted by (S,R). Members of S are called elements of the poset.

Partial orderings

Definition

A relation R on a set S is called a **partial ordering** or **partial order** if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a **partially ordered set**, or poset, and is denoted by (S,R). Members of S are called elements of the poset.

- We often use relations to order some or all of the elements of sets:
- $(a,b) \in R \to (b,a) \notin R$, otherwise a = b;
- $\forall a \in S, (a, a) \in R$;
- $\forall a \forall b \forall c ((a, b) \in R, (b, c) \in R \rightarrow (a, c) \in R).$

Show that the "greater than or equal" relation (\geq) is a partial ordering on the set of integers.

Show that the "greater than or equal" relation (\geq) is a partial ordering on the set of integers.

Show that the divisibility relation | is a partial ordering on the set of positive integers.

Show that the "greater than or equal" relation (\geq) is a partial ordering on the set of integers.

Show that the divisibility relation \mid is a partial ordering on the set of positive integers.

Show that the inclusion relation \subseteq is a partial ordering on the power set of a set S.

Show that the "greater than or equal" relation (\geq) is a partial ordering on the set of integers.

Show that the divisibility relation \mid is a partial ordering on the set of positive integers.

Show that the inclusion relation \subseteq is a partial ordering on the power set of a set S.

Let R be the relation on the set of people such that xRy if x and y are people and x is older than y. Show that R is not a partial ordering.

Customarily, the notation $a \leq b$ is used to denote that $(a, b) \in R$ in an arbitrary poset (S, R). $(a \prec b \text{ denotes } a \leq b, \text{ but } a \neq b)$

Definition

The elements a and b of a poset (S, \preceq) are called **comparable** if either $a \preceq b$ or $b \preceq a$. When a and b are elements of S such that neither $a \preceq b$ nor $b \preceq a$, a and b are called **incomparable**.

Definition

The elements a and b of a poset (S, \preceq) are called **comparable** if either $a \preceq b$ or $b \preceq a$. When a and b are elements of S such that neither $a \preceq b$ nor $b \preceq a$, a and b are called **incomparable**.

• In the poset $(Z^+, |)$, are the integers 3 and 9 comparable? Are 5 and 7 comparable?

Definition

The elements a and b of a poset (S, \preceq) are called **comparable** if either $a \preceq b$ or $b \preceq a$. When a and b are elements of S such that neither $a \preceq b$ nor $b \preceq a$, a and b are called **incomparable**.

- In the poset $(Z^+, |)$, are the integers 3 and 9 comparable? Are 5 and 7 comparable?
- The poset $(Z^+, |)$ is not totally ordered because it contains elements that are incomparable, such as 5 and 7.

Definition

The elements a and b of a poset (S, \preceq) are called **comparable** if either $a \preceq b$ or $b \preceq a$. When a and b are elements of S such that neither $a \preceq b$ nor $b \preceq a$, a and b are called **incomparable**.

- In the poset $(Z^+, |)$, are the integers 3 and 9 comparable? Are 5 and 7 comparable?
- The poset $(Z^+, |)$ is not totally ordered because it contains elements that are incomparable, such as 5 and 7.
- The set of ordered pairs $Z^+ \times Z^+$ with $(a_1, a_2) \leq (b_1, b_2)$ if $a_1 < b_1$, or if $a_1 = b_1$ and $a_2 \leq b_2$ (the lexicographic ordering), is a well-ordered set. How about $Z \times Z$?

Definition

If (S, \leq) is a poset and every two elements of S are comparable, S is called a **totally ordered** or **linearly ordered set**, and \leq is called a total order or a linear order. A totally ordered set is also called a **chain**.

Definition

If (S, \preceq) is a poset and every two elements of S are comparable, S is called a **totally ordered** or **linearly ordered set**, and \preceq is called a total order or a linear order. A totally ordered set is also called a **chain**.

• The poset (Z, \leq) is totally ordered, because $a \leq b$ or $b \leq a$ whenever a and b are integers.

Definition

If (S, \preceq) is a poset and every two elements of S are comparable, S is called a **totally ordered** or **linearly ordered set**, and \preceq is called a total order or a linear order. A totally ordered set is also called a **chain**.

- The poset (Z, \leq) is totally ordered, because $a \leq b$ or $b \leq a$ whenever a and b are integers.
- The adjective "partial" is used to describe partial orderings because pairs of elements may be incomparable.

Definition

If (S, \preceq) is a poset and every two elements of S are comparable, S is called a **totally ordered** or **linearly ordered set**, and \preceq is called a total order or a linear order. A totally ordered set is also called a **chain**.

- The poset (Z, \leq) is totally ordered, because $a \leq b$ or $b \leq a$ whenever a and b are integers.
- The adjective "partial" is used to describe partial orderings because pairs of elements may be incomparable.
- When every two elements in the set are comparable, the relation is called a total ordering.

Definition

If (S, \preceq) is a poset and every two elements of S are comparable, S is called a **totally ordered** or **linearly ordered set**, and \preceq is called a total order or a linear order. A totally ordered set is also called a **chain**.

- The poset (Z, \leq) is totally ordered, because $a \leq b$ or $b \leq a$ whenever a and b are integers.
- The adjective "partial" is used to describe partial orderings because pairs of elements may be incomparable.
- When every two elements in the set are comparable, the relation is called a total ordering.
- (S, \preceq) is a **well-ordered set** if it is a poset such that \preceq is a total ordering and every nonempty subset of S has a least element.

Theorem

Suppose that S is a well-ordered set. Then P(x) is true for all $x \in S$, if

INDUCTIVE STEP: For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is true.

Theorem

Suppose that S is a well-ordered set. Then P(x) is true for all $x \in S$, if

INDUCTIVE STEP: For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is true.

Proof.

Suppose it is not the case that P(x) is true for all $x \in S$, i.e., there is an element $y \in S$ such that P(y) is false.

Theorem

Suppose that S is a well-ordered set. Then P(x) is true for all $x \in S$, if

INDUCTIVE STEP: For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is true.

Proof.

Suppose it is not the case that P(x) is true for all $x \in S$, i.e., there is an element $y \in S$ such that P(y) is false.

Consequently, the set $A = \{x \in S | P(x) \text{ is false} \}$ is nonempty.

Theorem

Suppose that S is a well-ordered set. Then P(x) is true for all $x \in S$, if

INDUCTIVE STEP: For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is true.

Proof.

Suppose it is not the case that P(x) is true for all $x \in S$, i.e., there is an element $y \in S$ such that P(y) is false.

Consequently, the set $A = \{x \in S | P(x) \text{ is false} \}$ is nonempty. Because S is well ordered, A has a least element a. By the choice of a as a least element of A, we know that P(x) is true for all $x \in S$ with $x \prec a$. This implies by the inductive step P(a) is true.

Theorem

Suppose that S is a well-ordered set. Then P(x) is true for all $x \in S$, if

INDUCTIVE STEP: For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is true.

Proof.

Suppose it is not the case that P(x) is true for all $x \in S$, i.e., there is an element $y \in S$ such that P(y) is false.

Consequently, the set $A = \{x \in S | P(x) \text{ is false} \}$ is nonempty.

Because S is well ordered, A has a least element a. By the choice of a as a least element of A, we know that P(x) is true for all $x \in S$ with $x \prec a$. This implies by the inductive step P(a) is true.

This contradiction shows that P(x) must be true for all $x \in S$.

Lexicographic ordering

Definition

A **lexicographic ordering** can be defined on the cartesian product of n posets (A_i, \leq_i) for $i=1,2,\cdots,n$. Define the partial ordering \leq on $A_1 \times A_2 \times \cdots A_n$ by $(a_1,a_2,\cdots,a_n) \prec (b_1,b_2,\cdots,b_n)$ if $a_1 \prec_1 b_1$, or if there is an integer i>0 such that $a_1=b_1,\cdots,a_i=b_i$, and $a_{i+1} \prec_{i+1} b_{i+1}$.

Lexicographic ordering

Definition

A **lexicographic ordering** can be defined on the cartesian product of n posets (A_i, \leq_i) for $i = 1, 2, \cdots, n$. Define the partial ordering \leq on $A_1 \times A_2 \times \cdots \times A_n$ by $(a_1, a_2, \cdots, a_n) \times (b_1, b_2, \cdots, b_n)$ if $a_1 \prec_1 b_1$, or if there is an integer i > 0 such that $a_1 = b_1, \cdots, a_i = b_i$, and $a_{i+1} \prec_{i+1} b_{i+1}$.

• Let (A_1, \preceq_1) and (A_2, \preceq_2) be two posets. The **lexicographic** ordering \preceq on $A_1 \times A_2$ is defined by $(a1, a2) \prec (b1, b2)$, either if $a_1 \prec_1 b_1$ or if both $a_1 = b_1$ and $a_2 \prec_2 b_2$.

Lexicographic ordering

Definition

A **lexicographic ordering** can be defined on the cartesian product of n posets (A_i, \leq_i) for $i = 1, 2, \cdots, n$. Define the partial ordering \leq on $A_1 \times A_2 \times \cdots \times A_n$ by $(a_1, a_2, \cdots, a_n) \times (b_1, b_2, \cdots, b_n)$ if $a_1 \prec_1 b_1$, or if there is an integer i > 0 such that $a_1 = b_1, \cdots, a_i = b_i$, and $a_{i+1} \prec_{i+1} b_{i+1}$.

- Let (A_1, \preceq_1) and (A_2, \preceq_2) be two posets. The **lexicographic** ordering \preceq on $A_1 \times A_2$ is defined by $(a1, a2) \prec (b1, b2)$, either if $a_1 \prec_1 b_1$ or if both $a_1 = b_1$ and $a_2 \prec_2 b_2$.
- Determine whether $(3,5) \prec (4,8)$, whether $(3,8) \prec (4,5)$, and whether $(4,9) \prec (4,11)$ in the poset $(Z \times Z, \preceq)$, where \preceq is the lexicographic ordering constructed from the usual \leq relation on Z.

Hasse diagrams

Many edges in the directed graph for a finite poset do not have to be shown because they must be present.

In general, we can represent a finite poset (S, \preceq) using this procedure:

- Remove these loops;
- Remove all edges (x, y) if $\exists z \in S$ such that $x \prec z$ and $z \prec y$;
- Arrange each edge so that its initial vertex is below its terminal vertex;
- Remove all the arrows on the directed edges.

The resulting diagram is called the **Hasse diagram** of (S, \preceq) .

Draw the Hasse diagram representing the partial ordering $\{(a,b)|a \text{ divides } b\}$ on $\{1,2,3,4,6,8,12\}$.

Maximal and minimal elements

Definition

Element a is maximal in the poset (S, \preceq) if there is no $b \in S$ such that $a \prec b$. Element a is **minimal** if there is no element $b \in S$ such that $b \prec a$.

Maximal and minimal elements

Definition

Element a is **maximal** in the poset (S, \preceq) if there is no $b \in S$ such that $a \prec b$. Element a is **minimal** if there is no element $b \in S$ such that $b \prec a$.

Which elements of the poset $(\{2,4,5,10,12,20,25\},|)$ are maximal, and which are minimal?

Maximal and minimal elements

Definition

Element a is maximal in the poset (S, \preceq) if there is no $b \in S$ such that $a \prec b$. Element a is minimal if there is no element $b \in S$ such that $b \prec a$.

Which elements of the poset $(\{2,4,5,10,12,20,25\},|)$ are maximal, and which are minimal? The Hasse diagram in the figure for this poset shows that the maximal elements are 12, 20, and 25, and the minimal elements are 2 and 5.

Greatest and least elements

Definition

Element a is **greatest element** of (S, \preceq) if $b \preceq a$ for all $b \in S$. Element a is **least element** of (S, \preceq) if $a \preceq b$ for all $b \in S$.

Greatest and least elements

Definition

Element a is **greatest element** of (S, \preceq) if $b \preceq a$ for all $b \in S$. Element a is **least element** of (S, \preceq) if $a \preceq b$ for all $b \in S$.

Greatest and least elements

Definition

Element a is **greatest element** of (S, \preceq) if $b \preceq a$ for all $b \in S$. Element a is **least element** of (S, \preceq) if $a \preceq b$ for all $b \in S$.

Determine whether the posets represented by each of the Hasse diagrams in the figure have a greatest element and a least element.

Upper and lower bounds

Definition

If u is an element of S such that $a \leq u$ for all elements $a \in A$, then u is called an **upper bound** of A. Likewise, if I is an element of S such that $I \leq a$ for all elements $a \in A$, then I is called a **lower bound** of A.

Upper and lower bounds

Definition

If u is an element of S such that $a \leq u$ for all elements $a \in A$, then u is called an **upper bound** of A. Likewise, if I is an element of S such that $I \leq a$ for all elements $a \in A$, then I is called a **lower bound** of A.

Question: Find the lower and upper bounds of the subsets $\{a, b, c\}$, $\{j, h\}$, and $\{a, c, d, f\}$ in the poset with the Hasse diagram shown in the figure.

Upper and lower bounds

Definition

If u is an element of S such that $a \leq u$ for all elements $a \in A$, then u is called an **upper bound** of A. Likewise, if I is an element of S such that $I \leq a$ for all elements $a \in A$, then I is called a **lower bound** of A.

Question: Find the lower and upper bounds of the subsets $\{a, b, c\}$, $\{j, h\}$, and $\{a, c, d, f\}$ in the poset with the Hasse diagram shown in the figure.

Solution: The upper bounds of $\{a, b, c\}$ are e, f, j, and h, and its only lower bound is a. There are no upper bounds of $\{j, h\}$, and its lower bounds are a, b, c, d, e, and f. The upper bounds of $\{a, c, d, f\}$ are f, h, and f, and its lower bound is a.

Least upper and greatest lower bounds

Definition

Element x is called the **least upper bound** of the subset A if x is an upper bound that is less than every other upper bound of A. Similarly, element y is called the **greatest lower bound** of A if y is a lower bound of A and $z \leq y$ whenever z is a lower bound of A.

Least upper and greatest lower bounds

Definition

Element x is called the **least upper bound** of the subset A if x is an upper bound that is less than every other upper bound of A. Similarly, element y is called the **greatest lower bound** of A if y is a lower bound of A and $z \leq y$ whenever z is a lower bound of A.

Question: Find the greatest lower and the least upper bounds of $\{b, d, g\}$ in the figure.

Least upper and greatest lower bounds

Definition

Element x is called the **least upper bound** of the subset A if x is an upper bound that is less than every other upper bound of A. Similarly, element y is called the **greatest lower bound** of A if y is a lower bound of A and $z \leq y$ whenever z is a lower bound of A.

Question: Find the greatest lower and the least upper bounds of $\{b, d, g\}$ in the figure. **Solution:** The upper bounds of $\{b, d, g\}$ are g and h. Because $g \prec h$, g is the least upper bound. The lower bounds of $\{b, d, g\}$ are a and b. Because $a \prec b$, b is the greatest lower bound.

The least upper and greatest lower bounds of A are unique if they exist. The greatest lower bound and least upper bound of a subset A are denoted by glb(A) and lub(A), respectively.

Lattices

Definition

A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a **lattice**.

Lattices

Definition

A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a **lattice**.

Question: Determine whether the posets represented by each of the Hasse diagrams in the figure are lattices.

Lattices

Definition

A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a **lattice**.

Question: Determine whether the posets represented by each of the Hasse diagrams in the figure are lattices.

Solution: The posets represented by the Hasse diagrams in (a) and (c) are both lattices. On the other hand, the poset with the Hasse diagram shown in (b) is not a lattice, because the elements b and c have no least upper bound.

Examples

Question: Is the poset $(Z^+, |)$ a lattice?

Solution:

Yes.

Examples

Question: Is the poset $(Z^+, |)$ a lattice?

Solution:

Yes.

Question: Determine whether the posets $(\{1,2,3,4,5\},|)$ and $(\{1,2,4,8,16\},|)$ are lattices.

Solution:

 $(\{1, 2, 3, 4, 5\}, |)$ is a lattice, but $(\{1, 2, 4, 8, 16\}, |)$ is not.

Examples

Question: Is the poset $(Z^+, |)$ a lattice?

Solution:

Yes.

Question: Determine whether the posets $(\{1,2,3,4,5\},|)$ and $(\{1,2,4,8,16\},|)$ are lattices.

Solution:

 $(\{1,2,3,4,5\},|)$ is a lattice, but $(\{1,2,4,8,16\},|)$ is not.

Question: Determine whether $(P(S), \subseteq)$ is a lattice where S is a set.

Solution:

Yes.

4 D > 4 A > 4 B > 4 B > B = 900

Definition

A total ordering \prec is said to be **compatible** with the partial ordering R if $a \prec b$ whenever aRb. Constructing a compatible total ordering from a partial ordering is called **topological sorting**.

Lemma

Every finite nonempty poset (S, \preceq) has at least one minimal element.

Proof.

Choose an element a_0 of S. If a_0 is not minimal, then there is an element a_1 with $a_1 \prec a_0$.

Definition

A total ordering \leq is said to be **compatible** with the partial ordering R if $a \leq b$ whenever aRb. Constructing a compatible total ordering from a partial ordering is called **topological sorting**.

Lemma

Every finite nonempty poset (S, \preceq) has at least one minimal element.

Proof.

Choose an element a_0 of S. If a_0 is not minimal, then there is an element a_1 with $a_1 \prec a_0$. If a_1 is not minimal, there is an element a_2 with $a_2 \prec a_1$.

Definition

A total ordering \leq is said to be **compatible** with the partial ordering R if $a \leq b$ whenever aRb. Constructing a compatible total ordering from a partial ordering is called **topological sorting**.

Lemma

Every finite nonempty poset (S, \preceq) has at least one minimal element.

Proof.

Choose an element a_0 of S. If a_0 is not minimal, then there is an element a_1 with $a_1 \prec a_0$. If a_1 is not minimal, there is an element a_2 with $a_2 \prec a_1$. Continue this process, so that if a_n is not minimal, there is an element a_{n+1} with $a_{n+1} \prec a_n$.

Definition

A total ordering \leq is said to be **compatible** with the partial ordering R if $a \leq b$ whenever aRb. Constructing a compatible total ordering from a partial ordering is called **topological sorting**.

Lemma

Every finite nonempty poset (S, \leq) has at least one minimal element.

Proof.

Choose an element a_0 of S. If a_0 is not minimal, then there is an element a_1 with $a_1 \prec a_0$. If a_1 is not minimal, there is an element a_2 with $a_2 \prec a_1$. Continue this process, so that if a_n is not minimal, there is an element a_{n+1} with $a_{n+1} \prec a_n$.

Because there are only a finite number of elements in the poset, this process must end with a minimal element a_n .

Least upper and greatest lower bounds

Definition

ALGORITHM 1 Topological Sorting.

procedure *topological sort* $((S, \preceq)$: finite poset)

k := 1

while $S \neq \emptyset$

 $a_k :=$ a minimal element of S {such an element exists by Lemma 1}

 $S:=S-\{a_k\}$

k := k + 1

return $a_1, a_2, \ldots, a_n \{a_1, a_2, \ldots, a_n \text{ is a compatible total ordering of } S\}$

Find a compatible total ordering for the poset $(\{1, 2, 4, 5, 12, 20\}, |)$.

Take-aways

Conclusions

- Closure of Relations
- Transitive Closures
- Equivalence Relations
 - Equivalence Classes
 - Equivalence Classes and Partitions
- Partial Orderings
 - Lexicographic Order
 - Hasse Diagrams
 - Maximal and Minimal Elements
 - Lattices
 - Topological Sorting

