EECS 376: Foundations of Computer Science

Lecture 10 - Diagonalization and Undecidability

5/22/24

Today's Agenda

- Recap: Turing Machines, Church-Turing thesis
- Deciders (vs "loopers") and decidability
- Diagonalization and an undecidable language

Turing Machines: Essential Features

- 1. Finite alphabets: input & tape
- 2. Finite "brain"/logic/"code": state machine
- 3. Infinite **storage:** "tape"
- 4. Sequence of *local* computations, specified by the code:
 - Read a single symbol
 - Write a single symbol
 - Move a single cell
 - Update active state
- Runs until it enters a terminal state—if ever!

Decision Programs

- **Q:** Suppose we run a TM on string. What are the possible outcomes?
 - either: (i) accepts, (ii) rejects, or (iii) "loops" (forever)
- Definition: A TM M decides language L if:
 - 1. M accepts every string $x \in L$ ("accepts"), and
 - 2. M rejects every string $x \notin L$ ("rejects").

We say that M is a **decider** (for L), and L is **decidable**.

Note: By definition, M does not loop on any input!

Code vs TMs

- Claim: Given any TM, we can simulate it using a Boolean function on string written in C++ code.
- **Q:** Given any Boolean function on strings written in C++ code, can we simulate it using a TM?
- **A:** Yes. It is tedious to prove.
- Church-Turing thesis:
 - TM can simulate any model of computation.

```
bool simulateM(string x):

// - hard-coded transition function of TM M

// - copy x into array representing a tape

// - repeatedly read/write/move according M

return accept/reject according to M
```

Take away: $TM \equiv \text{``bool } M(\text{string } x)$ ''

Summary So Far

- General: Any finite object (integer, graph, PDF, C++ code) can be encoded as a finite string. A TM takes a finite string as input.
- Church–Turing thesis:
 - "Anything that is computable by some physical device (a 'computer') is computable by some **Turing machine**."
- In short: Turing Machines = computer programs.
- Implication: If a problem <u>is not</u> decidable by a TM, it <u>cannot</u> be solved by <u>any</u> computer! (including future/alien technology)

Proving Decidability

Proving Decidability

- Q To prove that a language L is decidable, must we design an actual TM?
- A: No! Simulation lets us write an algorithm in C++ or pseudocode.
- Example:
 - $L = \{(n, m) \mid n \text{ and } m \text{ are coprime}\}.$

```
CoPrime(n, m):

If n < m, swap n and m.

If Euclid(n, m) = 1, return "accept"

Else return "reject".
```

```
Euclid(x, y): // for x \ge y > 0
if(x \mod y = 0), return y.
else return Euclid(y, x \mod y)
```

- Analysis (Correctness):
 - By definition, $gcd(n, m) = 1 \Leftrightarrow n$ and m are coprime.
 - Euclid(x, y) always halts and returns gcd(x, y).
 - There exists a TM that <u>simulates</u> CoPrime, Euclid and therefore decides *L*.

Undecidable Languages?

- Question: Do there exist <u>undecidable</u> languages?
 i.e., are there problems that no computer can solve?
- The goal of today's lecture: There <u>exists</u> an undecidable language L.
- The key idea of today's lecture:
- Let \mathcal{L} be the set of all languages and \mathcal{M} be the set of all TMs, say both over the alphabet $\Sigma = \{0,1\}$.
- If we could show that $|\mathcal{M}| < |\mathcal{L}|$, we would be done!
- Why: Each TM *M* decides at most 1 language.
- Problem: Both $|\mathcal{L}|$ and $|\mathcal{M}|$ are infinite! Can we do anything about it?

Before Proving Undecidability:

Introduction to Countable and Uncountable Sets

How can we compare the "size" of infinite sets?

5/22/24

203 Review: Countability

The attributes "equal,"
"greater," and "less," are
not applicable to infinite,
but only to finite,
quantities.

Galileo (1638)

Georg Cantor (1895)

- * **Definition:** A set S is **countable** if it is "no larger than" the naturals $\mathbb{N} = \{0,1,2,...\}$, i.e. $|S| \leq |\mathbb{N}|$.
- * Equivalently: S is countable if there exists a 1-to-1 (injective) function $f: S \to \mathbb{N}$.
- * We can also show S is countable by demonstrating how to list all the elements in S such that each element $S \in S$ appears <u>somewhere</u> on the list. Why?

Transfinite Cardinal Numbers

- Cardinality of a *finite* set is simply the number of elements in the set.
- Cardinalities of infinite sets are not natural numbers, but are special objects called transfinite cardinal numbers.
- ℵ₀:≡|N|, is the *first transfinite cardinal* number.
- continuum hypothesis claims that $|\mathbf{R}| = \aleph_1$, the second transfinite cardinal.

Ordinals (con.)

- The least ordinal is (vacuously) = Ø. We take:
- O= Ø
- •1= $\{\emptyset\}$ = $\{0\}$
- •2 = $\{\emptyset, \{\emptyset\}\}$ = $\{0,1\}$
- $3 = {\emptyset, {\emptyset}, {\emptyset, {\emptyset}}} = {0,1,2}$
- •4 = ... = (0,1,2,3)and so on. In general, we have

$$n = \{0,1,2, ..., n-1\}$$

Ordinals (con.)

- •So, every natural number is an ordinal.
- •But the ordinals continue after the natural numbers leave off. If ω denotes the smallest ordinal which is not a natural number, then ω is the set of natural numbers.
- •Then the next ordinal after ω is $\omega \cup \{\omega\} = \omega + 1$, and so on .

5/22/24

Functions and Set Cardinality

- A function $f: A \to B$ maps each element $x \in A$ to an element $f(x) \in B$.
- A function f is **injective** (1-to-1) if no two elements in A are mapped to the same element of B.
 - Formally: f injective means $\not\exists a, a' . a \neq a' \land f(a) = f(a')$.

- If an injective $f: A \to B$ exists, then $|A| \le |B|$.
- If injective $f: A \to B$ and $g: B \to A$ exist, then |A| = |B|.
- This is the <u>definition</u> of "≤" and "=" for set cardinality.

Warning:

properties of
"≤" for finite
values do not
necessarily
apply to
infinite values

Countable Sets

- **Def:** A set S is countable if it is "no larger than" the naturals $\mathbb{N} = \{0,1,2,...\}$, i.e., $|S| \leq |\mathbb{N}|$.
- **Equivalently:** S is countable if \exists an injective function $f: S \to \mathbb{N}$.
- Claim: Any finite set is countable.
- Proof:
 - Let $S = \{s_1, ..., s_n\}$ be a set with n elements.
 - Then $f: S \to \mathbb{N}$, $f(s_i) = i$ is an injection from S to \mathbb{N} .
- Q: Which <u>infinite</u> sets are countable ("countably infinite")?

Proving Countability

- **Recall:** S is countable if there is an injective $f: S \to \mathbb{N}$.
- We can prove that a set is countable by explicitly defining such a function.
- Or, we can show how to <u>list</u> elements of *S* (possibly with duplicates) so that each element must appear <u>at some finite position</u> in the list.
 - This is enough. It implicitly defines an injective $f: S \to \mathbb{N}$.

List including all elements in *S*:

Countably Infinite Sets

- By Definition: $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$.
- Is \mathbb{Z} countable (listable)?
 - First try: $\mathbb{Z} = \{0,1,2,3,4...,-1,-2,-3,-4,...\}$.
 - Does not work! (What is the exact position of "-1" in the list?)
 - 2nd Try: List $\mathbb{Z} = \{0,1,-1,2,-2,3,-3,4,-4,5,-5,...\}$.
- Is \mathbb{Q}^+ countable (listable)?
 - How to list \mathbb{Q}^+ : First list all x/y with x+y=1, then x+y=2, etc.

	1	2	3	4	
1	1/1	1/2	1/3	1/4	:
2	2/1	2/2	2/3	2/4	:
3	3/1	3/2	3/3	3/4	:
4	4/1	4/2	4/3	4/4	

More Countably Infinite Sets: Finite Binary Strings

- Let $S = \{0,1\}^*$ be the set of all <u>finite</u> binary strings.
- Claim: S is countable.
- **Proof:** List the elements of in *lexicographic order:*
 - by length, and then
 - in sorted order among strings with equal length. $S: \epsilon, 0, 1, 00, 01, 10, 11, 000, ...$
- Every element of S appears in the list.

Diagonalization:

Showing |Countable set| < |Uncountable set|

5/22/24

Proving Uncountability via Diagonalization

- Q: How do we show that a set S is <u>uncountable</u>?
- A: Prove that <u>no</u> injective $f: S \to \mathbb{N}$ exists.
- How? Proof by contradiction! Template:
 - 1. Assume there exists a list of elements of S such that <u>every</u> element $x \in S$ appears <u>somewhere</u> in the list.
 - 2. Use it to 'construct' some $x^* \notin S$ that is <u>not</u> in the list.
 - 3. Contradiction! So, no such list can exist.
- Diagonalization is the usual technique for step 2

First Example:

Set of <u>infinite-length</u> binary sequences is uncountable

- Now let *S* be the set of <u>infinite-length</u> binary sequences.
- Suppose there is some list $(s_1, s_2, s_3, ...)$ of all elements of S.
- Let $s_i[j]$ be the jth bit of s_i .
- Take the 'diagonal' bits and flip them:

$$\bullet \ x^*[j] = \overline{s_j[j]} = 1 - s_j[j].$$

s_1	0	1	1	0	1	0	
s_2	1	0	0	0	0	0	:
s_3	0	1	1	1	0	1	•••
S_4	0	0	0	0	0	0	
S_5	1	1	1	1	1	1	:
•••		•	•••				
		·		·			·

First Example:

Set of <u>infinite-length</u> binary sequences is uncountable

- Claim: x^* is not in the list!
- Proof: If it were in the list, then for some $i, s_i = x^*$.
- By construction, $x^*[i] = 1 s_i[i] \neq s_i[i]$, so $x^* \neq s_i$.
- This contradicts the original assumption that it was **possible** to list the elements of *S*. Hence *S* is not countable.

s_1	0	1	1	0	1	0	
s_2	1	0	0	0	0	0	:
s_3	0	1	1	1	0	1	
S_4	0	0	0	0	0	0	:
S_5	1	1	1	1	1	1	
•••							

x^*	1	1	0	1	0	
	_	_	_	_	_	

First Example:

Set of <u>infinite-length</u> binary sequences is uncountable

- Conclusion: The set of all infinite binary sequences is uncountable.
- Diagonalization Summary: For any candidate list of such sequences, there is a sequence <u>not</u> in that list.

Cantor's Theorem

Cantor's Theorem:

For any set X, |X| < |P(X)|.

Proving Undecidability via Diagonalization

Plan: How to show the existence of undecidable language

- Recall:
- Let \mathcal{L} be the set of all languages.
- Let \mathcal{M} be the set of all TMs.
- Will show that $|\mathcal{M}| < |\mathcal{L}|$.
- Q1: Is \mathcal{M} countable?
- \ A: Yes. (We'll see.)
- Ω 2: Is \mathcal{L} countable?
- **\A:** No! (We'll see.)

The set of TMs is countable

- Claim: The set of Turing Machines is countable.
- Idea: Use lexicographical ordering on <u>source code</u>.
 (Every TM has an encoding as a finite-length string!)

To (all binony strings) = (0,1)* to a countable to) M ctb

The set of Languages is uncountable

- Claim: Any language L can be represented by an <u>infinite</u> binary sequence.
- Idea: List all input strings $\Sigma^* = \{s_1, s_2, s_3, ...\}$
 - Then $L: x_1x_2x_3 \cdots$, where $x_i = 1$ if $s_i \in L$ and 0 otherwise.
- Example: Suppose $\Sigma = \{0,1\}$.
 - $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, ...\}$ Language L decided by "bool M(string x): return (|x| is even)"
 - L: 100111111000... "bool M(string x): return (|x| is even)"

Conclude:

There exists an undecidable language

- The set \mathcal{M} of all TMs is countable, $|\mathcal{M}| \leq |\mathbb{N}|$
- The set \mathcal{L} of all languages is uncountable, $|\mathcal{L}| > |\mathbb{N}|$.
- So $|\mathcal{M}| < |\mathcal{L}|$.
- Each TM decides at most one decidable language.
- So there exists an undeciable language.
- Next: Can also prove this directly using a diagonalization argument too.

Another way to show: There exists an undecidable language \

- Construct a table *T* representing <u>all</u> decidable languages.
 - Columns: list all input strings $\Sigma^* = \{s_1, s_2, s_3, ...\}$
 - Rows: list all TMs $\{M_1, M_2, M_3, ...\}$
 - T[i,j] = 1 iff machine M_i accepts string s_i , o otherwise.
- Claim: No TM decides the language represented by L^* .

$$L^*[j] = 1 - T[j,j]$$

	s_1	s_2	s_3	s ₄	s ₅	<i>s</i> ₆	
$L(M_1)$	1	0	0	1	1	0	
$L(M_2)$	0	1	1	0	0	0	:
$L(M_3)$	1	1	1	1	1	1	
$L(M_4)$	0	0	0	0	0	0	
$L(M_5)$	1	0	1	0	0	0	

• **Proof.** If L^* is decidable then $L^* = L(M_i)$ for some i. But $s_i \in L(M_i) \Leftrightarrow s_i \notin L^*$, so $L^* \neq L(M_i)$. Contradiction.

L^*	0	0	0	1	1	:	

Conclusion

- Theorem: There <u>exists</u> an undecidable language L^* .
- Interpretation: There is a "problem" that no computer program can solve correctly (on all inputs).
- Question: What problem does L^* represent? Do we care about it? Would it be useful to solve?
- **Answer:** We do not know, since the proof is 'non-constructive': only shows existence of L^* !
- Next time: Some explicit undecidable languages.