ESE 271 Second Exam Name:

Fall, 2003 ID Number:

Do not place your answers on this front page.

Prob. 2:

Prob. 1:

Prob. 3:

Prob. 4:

. Prob. 1. (30 points):

Using Cramer's rule, find the phasor current I_1 as a determinant over a determinant. Do a mesh analysis using the two mesh currents I_1 and I_2 shown with their indicated directions. (The entries of the determinants should be complex numbers. Write neatly—or else points will be deducted.)

KVL FOR
$$I_2$$
 LOOP: $-2(I_1+I_2) + 4I_2 - jS(I_1+I_2) = a$

Thus:
$$-jI_{1} - jSI_{2} = 2$$

$$(-2-jS)I_{1} + (2-jS)I_{1} = 0$$

$$So: \begin{vmatrix} 2 & -jS \\ 0 & 2-jS \end{vmatrix}$$

$$I_{1} = \begin{vmatrix} 0 & 2-jS \\ -j & -jS \\ -2-jS & 2-jS \end{vmatrix}$$
Another
$$I_{2} = \begin{vmatrix} 2 & jS \\ 0 & -2+jS \\ -2+jS & -2+jS \end{vmatrix}$$

$$I_{3} = \begin{vmatrix} 2 & jS \\ 0 & -2+jS \\ 2+jS & -2+jS \end{vmatrix}$$

(THERE ARE STILL OTHER COPREST ANSWERS.)

Prob. 2. (30 points)

Find the power P dissipated in the 12 Ω resistor.

Since THERE DIFFERENT W'S, WE MUST USE SUPERPOSITION;

FOR THE 3 cm 4t SOURCE ALONE:

Prob. 3. (30 points

In this circuit, the load is either a resistor R_L in series with an inductor L_L or a resistor R_L is series with a capacitor C_L . Find the values of R_L and of $(L_L \text{ or } C_L)$ for which the power P_L dissipated in that load is a maximum. Also, find the value of that maximum dissipated

THE MAXIMUM PIWER DISSIPATED IS OBTAINED AS FOLLOWS

$$I = \frac{2}{3+\sqrt{3}+3-\sqrt{3}} = \frac{2}{6} = \frac{1}{3}$$
MAX. POWER IN $R_L = \frac{1}{2} = \frac{\left(\frac{1}{3}\right)^2 3}{2} = \frac{1}{6} W$.

Prob. 4. (10 points)

This circuit is in the DC steady state at t=0- with the switch closed. The switch is opened at t=0. For t=0+, find the current $i_3(0+)$ flowing to the right through the 3 Ω resistor, and also find the current $i_4(0+)$ flowing downward through the 4 Ω resistor.

i4 (0+) = 1 A