Programme de colle n°20

Dénombrement

- 1) Cardinal d'un ensemble fini E. Notations : Card(E) ou |E|.
- 2) Formules usuelles: $\operatorname{Card}(A \cup B)$, $\operatorname{Card}(\overline{A})$, $\operatorname{Card}(A \setminus B)$, $\operatorname{Card}(E \times F)$, $\operatorname{Card}(F^E)$ et $\operatorname{Card}(\mathcal{P}(E))$.
- 3) p-listes de $E:(x_1,\ldots,x_p)\in E^p$.
- 4) p-arrangements de $E:(x_1,\ldots,x_p)\in E^p$ tel que $x_i\neq x_j$ pour $i\neq j$. Permutations de E.
- 5) p-combinaisons de $E: (x_1, \ldots, x_p) \in E^p$ tel que $x_1 < x_2 < \cdots < x_p$.

Géométrie plane

- 1) Base orthonormée directe.
- 2) Coordonnées cartésiennes, coordonnées polaires.
- 3) Produit scalaire.
- 4) Produit mixte ou déterminant.
- 5) Équation de droites, représentation paramétrique, vecteur directeur, normal.
- 6) Distance d'une droite à un point.
- 7) Équation de cercles
- 8) Intersection de droites, de cercles.

Questions de cours

On commencera la colle par un petit calcul de développement limité.

- 1) Nombre d'applications injectives de E dans F (avec E et F des ensembles finis).
- 2) Nombre d'anagrammes du mot : ANAGRAMME.
- 3) Pour $n \in \mathbb{N}^*$ et $k \in [1, n]$, montrer que $k \binom{n}{k} = n \binom{n-1}{k-1}$ sans utiliser la formule avec les factorielles.
- 4) Pour \vec{u} et \vec{v} deux vecteurs du plan, montrer que : $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2$. En déduire l'identité du parallélogramme et celle de polarisation.
- 5) Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs du plan dont les coordonnées sont prises dans un repère orthonormé. Montrer que $\vec{u} \cdot \vec{v} = xx' + yy'$.
- 6) Soit \mathcal{D} : 2x y + 4 = 0 et M(1,1). Déterminer les coordonnées du projeté orthogonal de M sur \mathcal{D} .
- 7) Dans un repère orthonormal (O, \vec{i}, \vec{j}) , on considère le point $\Omega(1, -1)$ ainsi que les vecteurs $\vec{u} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$.
 - (a) Montrer que $(\Omega, \vec{u}, \vec{v})$ est un repère. Est-il direct? Est-il orthogonal?
 - (b) Dans le reprère (O, \vec{i}, \vec{j}) , on considère le vecteur $\vec{w} \begin{pmatrix} -3 \\ -3 \end{pmatrix}$ et le point A(5,6). Calculer leurs coordonnées dans $(\Omega, \vec{u}, \vec{v})$.
- 8) Soit \mathcal{D} la droite qui passe par les points A(1,1) et B(2,-1). Déterminer : un vecteur directeur, un vecteur normal, un paramétrage et une équation cartésienne de \mathcal{D} .

C. Darreye PTSI Lycée Dorian