

INTERNAL POSITION ERROR CORRECTION

Fábio Demo da Rosa

Universidade Federal de Santa Maria Pós-Graduação em Ciência da Computação Disciplina de Robótica Móvel

faberdemo@gmail.com

19 de outubro de 2023

Visão Geral

- 1 Introdução
- 2 Correção de Erros Translacionais
- 3 Experimentos
- 4 Conclusões

Introdução I

- INTERNAL POSITION ERROR CORRECTION (IPEC)
- Contexto de robôs móveis e desafios de dead-reckoning
 - Relevância de robôs em processos de automação industrial ou tarefas repetitivas, elevando a eficiência e precisão;
 - Dificuldades de navegação dos robôs, como deslizamento das rodas e erros acumulativos na estimativa de posição.
- Objetivo do método IPEC
 - Como o IPEC visa corrigir erros na estimativa da posição do robô;
 - Aborda o aprimoramento na estimativa da direção que o robô está apontando.
- Apresentação do veículo CLAPPER como caso de estudo
- O método IPEC realiza os seguintes cálculos uma vez durante cada intervalo de amostragem intervalo de amostragem: Primeiro, os caminhões A e B calculam sua posição e orientação momentâneas com base em no dead-reckoning, conforme figura abaixo:

Introdução II

$$x_{A,i} = x_{A,i-1} + U_{A,i}\cos\theta_{A,i} \tag{1}$$

$$y_{A,i} = y_{A,i-1} + U_{A,i} \sin \theta_{A,i} \tag{2}$$

$$x_{B,i} = x_{B,i-1} + U_{B,i}\cos\theta_{B,i} \tag{3}$$

$$y_{B,i} = y_{B,i-1} + U_{B,i} \sin \theta_{B,i}$$
 (4)

Onde:

- $x_{A,i}, y_{A,i}$ Posição do ponto central do caminhão A no instante i.
- $x_{B,i}, y_{B,i}$ Posição do ponto central do caminhão B no instante i.
- $U_{A,i}$, $U_{B,i}$ Deslocamentos incrementais dos pontos centrais dos caminhões A e B durante o último intervalo de amostragem.
- $\theta_{A,i}$, $\theta_{B,i}$ Orientações dos caminhões A e B, respectivamente, calculadas a partir do dead-reckoning.

Introdução III

Figure 6: Kinematic definitions for the CLAPPER.

Fonte: (BORENSTEIN, 1995)

Figura 1: Definições cinemáticas para o CLAPPER.

Correção de Erros Translacionais I

- O método IPEC pode detectar apenas erros rotacionais e não erros translacionais. No entanto, erros rotacionais são mais graves do que erros translacionais, já que erros de orientação causam crescimento ilimitado de erros de posição lateral.
- Existem dois tipos de erros translacionais:
 - Erros puros ocorrem quando ambas as rodas passam por obstáculos de altura similar, e são raros.
 - Erros compostos acontecem quando apenas uma roda passa por um obstáculo, causando um erro translacional e um rotacional.
- O erro de orientação em dead-reckoning normalmente é causado por um encoder reportando uma distância horizontal maior do que a distância real percorrida pela roda,
 - permitindo assim a correção através da rotação corretiva em torno do ponto de contato da roda esquerda.

Correção de Erros Translacionais II

Figure 7: Correcting composite translational errors.

Fonte: (BORENSTEIN, 1995)

Figura 2: Correção de erros translacionais compostos.

Correção de Erros Translacionais III

 A posição acumulada do caminhão B é sempre calculada em relação a A, usando os três codificadores internos. A única desvantagem é a necessidade de medir com precisão a distância entre os caminhões para evitar erros sistemáticos durante as curvas.

O Experimento da Linha Reta

- Configurações de testes com e sem IPEC
 - A velocidade é um fator nos experimentos.
 - O tipo de superfície em que o robô se move.
- Efeitos de "bumps" na trajetória
 - Impacto nas medidas, já que obstáculos afetam as medidas de posição e orientação.
 - Correções são necessárias para compensar esses efeitos.
- Resultados de erros de posição e orientação
 - Comparação estatística
 - Gráficos de desempenho

O Experimento do Caminho Retangular

- Desafios em trajetórias fechadas
 - Problemas de acumulação de erros
 - Correções em tempo real
- Importância de testar em ambas as direções
 - Impacto na simetria da trajetória
 - Coleta de dados
- Resultados e comparação com e sem IPEC
 - Métricas de erro
 - Validade das correções

Conclusões

- Resumo das contribuições do método IPEC.
 - Eficácia na correção de erros sistemáticos e não-sistemáticos em tempo real;
 - Versatilidade de aplicação em veículos com diferentes graus de liberdade.
- Importância da correção imediata dos erros.
 - Redução significativa do retrabalho;
 - Melhoria considerável na confiabilidade do sistema de navegação.
- Validade do método em diferentes cenários.
 - Aplicação em ambientes industriais sem a necessidade de fios-guia;
 - Utilidade em ambientes com irregularidades no solo, como na construção e na agricultura.
- Aplicabilidade Futura do Método IPEC.
 - Extensão para outros tipos de configurações de veículos, como a adição de um reboque codificador não motorizado;
 - Possibilidade de uso em robôs móveis colaborativos mas fisicamente desconectados, equipados com sensores de posição precisos.

BORENSTEIN, Johann. Internal correction of dead-reckoning errors with a dual-drive compliant linkage mobil robot. **Journal of Robotic systems**, Wiley Online Library, v. 12, n. 4, p. 257–273, 1995.

INTERNAL POSITION ERROR CORRECTION

Fábio Demo da Rosa

Universidade Federal de Santa Maria Pós-Graduação em Ciência da Computação Disciplina de Robótica Móvel

faberdemo@gmail.com

19 de outubro de 2023

