Mobile Weka

Matthew Swartwout

James Zhang

September 30, 2015

1 Introduction of Algorithms

- 1.1 J48
- 1.2 SVM

1.3 Naive Bayes

Naive Bayes is an classification algorithm based off applying Bayes' theorem and assuming independence between all of the labels. Bayes' theorem says that P(A-B) = P(A)P(B-A)/P(B). The input to Naive Bayes' is our data, which is represented as a vector of n features (x), and we are trying to calculate the probability that these features will result in a given class (C), e.g. P(C-x). This can be rewritten with Bayes' Theorem as P(C)P(x-C)/p(x). Each of these three probabilities can be easily calculated with the provided data set. Doing this over each of the n features included in x and we can obtain the probability that a certain set of features.

1.4 RBF Network

2 Data Preprocessing

3 Experimental Results

3.1 Experiment 1

Algorithm	Recall	Precision	Correctly Classified	Incorrectly Classified
J48	1.0	0.9375	428	10
SVM	0.0133	1.0	290	148
Naive Bayes	1.0	0.9375	428	10
RBF Network	1.0	0.9554	431	7

3.2 Experiment 2

Algorithm	Recall	Precision	Correctly Classified	Incorrectly Classified
J48	1.0	1.0	1355	0
SVM	0.0	0.0	456	899
Naive Bayes	0.9652	0.7296	1234	121
RBF Network	0.9340	0.8432	1239	116

3.3 Experiment 3

- 4 Simple Results Analysis
- 5 Project Contributions