William Stallings Komunikasi Data dan Komputer

Bab 3 Transmisi Data

Terminologi (1)

- **X**Transmitter
- **#** Receiver
- **#** Medium

Terminologi (2)

- **\(\)**Link langsung (Direct link)
- **#**Point-to-point
 - □ Direct link
- **#**Multi-point
 - Lebih dari dua peralatan yang berbagi link

Terminologi (3)

#Simplex

☑Misalnya televisi

#Half duplex

#Full duplex

□ Dua arah dalam satu waktu

⊠Misalnya telepon

Frekuensi, Spektrum dan Bandwidth

★ Konsep domain waktu

- - ■Beragam tingkatan dengan perubahan yang halus sepanjang waktu
- □Sinyal diskrit (Discrete signal)
- □Sinyal aperiodik (Aperiodic signal)
 - ☑Pola yang tidak berulang sepanjang waktu

Sinyal-sinyal Kontinu & Diskrit

(a) Sine wave

Gelombang Sinus

```
**Amplitudo puncak 'Peak Amplitude (A)'
   Kekuatan maksimum sinyal

✓ volts

#Frekuensi (f)
   Nilai dari perubahan sinyal

△Hertz (Hz) atau siklus per detik

    □ Periode = waktu untuk satu perulangan (T)

   \triangle T = 1/f
\#Fase (\phi)
```

Keragaman Gelombang Sinus

Panjang Gelombang (Wavelength)

- **#**Jarak Distance occupied by one cycle
- #Distance between two points of corresponding phase in two consecutive cycles
- $\Re \lambda$
- *****Assuming signal velocity ν

$$\triangle \lambda = \nu T$$

$$\triangle \lambda f = V$$

 $\triangle c = 3*10^8 \text{ ms}^{-1}$ (speed of light in free space)

Frequency Domain Concepts

- **#**Signal usually made up of many frequencies
- **#**Components are sine waves
- ******Can be shown (Fourier analysis) that any signal is made up of component sine waves
- **#**Can plot frequency domain functions

Spectrum & Bandwidth

- **#**Spectrum
 - range of frequencies contained in signal
- **X** Absolute bandwidth
 - width of spectrum
- **#**Effective bandwidth
 - Often just bandwidth
 - Narrow band of frequencies containing most of the energy
- **#DC** Component
 - Component of zero frequency

Signal with DC Component

Data Rate and Bandwidth

- ******Any transmission system has a limited band of frequencies
- #This limits the data rate that can be carried

Analog and Digital Data Transmission

- **X** Data
 - Entities that convey meaning
- **#**Signals
 - □ Electric or electromagnetic representations of data
- **X**Transmission
 - Communication of data by propagation and processing of signals

Data

#Analog

- Continuous values within some interval
- e.g. sound, video

#Digital

- □ Discrete values
- △e.g. text, integers

Acoustic Spectrum (Analog)

Signals

- **Means by which data are propagated
 **Analog
 - Continuously variable

 - Speech bandwidth 100Hz to 7kHz
 - □ Telephone bandwidth 300Hz to 3400Hz
 - ✓ Video bandwidth 4MHz

Digital

□ Use two DC components

Data and Signals

- **#**Usually use digital signals for digital data and analog signals for analog data

Analog Signals Carrying Analog and Digital Data

Digital Signals Carrying Analog and Digital Data

Analog Transmission

- ******Analog signal transmitted without regard to content
- ******May be analog or digital data
- *****Attenuated over distance
- **#**Use amplifiers to boost signal
- **#**Also amplifies noise

Digital Transmission

- **#**Concerned with content
- **#** Integrity endangered by noise, attenuation etc.
- *****Repeaters used
- *****Repeater receives signal
- **#**Extracts bit pattern
- *****Retransmits
- *****Attenuation is overcome
- **X** Noise is not amplified

Advantages of Digital Transmission

- **#** Digital technology
- **#** Data integrity
- **#**Capacity utilization
- **#**Security & Privacy
 - Encryption
- **#** Integration
 - Can treat analog and digital data similarly

Transmission Impairments

- ******Signal received may differ from signal transmitted
- **#**Analog degradation of signal quality
- ★ Digital bit errors
- **#**Caused by
 - Attenuation and attenuation distortion
 - □ Delay distortion
 - **△**Noise

Attenuation

- **#**Signal strength falls off with distance
- #Depends on medium
- ****** Received signal strength:
 - must be enough to be detected
 - must be sufficiently higher than noise to be received without error
- **#**Attenuation is an increasing function of frequency

Delay Distortion

- **#**Only in guided media
- **#**Propagation velocity varies with frequency

Noise (1)

- ******Additional signals inserted between transmitter and receiver
- **#**Thermal
 - □ Due to thermal agitation of electrons
 - Uniformly distributed
- **#** Intermodulation
 - Signals that are the sum and difference of original frequencies sharing a medium

Noise (2)

#Crosstalk

△A signal from one line is picked up by another

Impulse

Channel Capacity

- **♯** Data rate

 - Rate at which data can be communicated
- **#**Bandwidth

 - Constrained by transmitter and medium

Required Reading

Stallings chapter 3