## Lecture No. 27

## 27.1 The Inner Product

If **u** and **v** are vectors in  $\mathbb{R}^n$ , then we regard **u** and **u** as  $n \times 1$  matrices.

The transpose  $\mathbf{u}^T$  is a  $1 \times n$  matrix, and the matrix product  $\mathbf{u}^T \mathbf{v}$  is a  $1 \times 1$  matrix, which we write as a single real number (a scalar) without brackets.

The number  $\mathbf{u}^T \mathbf{v}$  is called the inner product of  $\mathbf{u}$  and  $\mathbf{v}$ , and often it is written as  $\mathbf{u}.\mathbf{v}$ .

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ \vdots \\ v_n \end{bmatrix}$$

then the inner product of  $\mathbf{u}$  and  $\mathbf{v}$  is

$$\mathbf{u}.\mathbf{v} = u_1v_1 + u_2v_2 + \dots + u_nv_n.$$

**Example**: Compute  $\mathbf{u}.\mathbf{v}$  and  $\mathbf{v}.\mathbf{u}$  for  $\mathbf{u}$  and  $\mathbf{v}$  for  $\mathbf{u} = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$  and  $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}$ .

**Theorem**: Let  $\mathbf{u}$ ,  $\mathbf{v}$ , and  $\mathbf{w}$  be vectors in  $\mathbb{R}^n$ , and let  $\mathbf{c}$  be a scalar. Then

- 1.  $\mathbf{v}.\mathbf{u} = \mathbf{u}.\mathbf{v}$
- 2.  $(\mathbf{v} + \mathbf{u}).\mathbf{w} = \mathbf{v}.\mathbf{w} + \mathbf{u}.\mathbf{w}$
- 3.  $(c\mathbf{u}).\mathbf{v} = \mathbf{u}.(c\mathbf{v}) = c(\mathbf{v}.\mathbf{u})$
- 4.  $\mathbf{u} \cdot \mathbf{u} \geq 0$ , and  $\mathbf{u} \cdot \mathbf{u} = 0$  if and only if  $\mathbf{u} = 0$

The Length of a Vector: The length (or norm) of  $\mathbf{v}$  is the nonnegative scalar  $\mathbf{v}$  defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} = \mathbf{v} \cdot \mathbf{v}, \text{ and } \|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$$

**Example**: Let  $\mathbf{v} = (1, -2, 2, 0)$ . Find a unit vector  $\mathbf{u}$  in the direction of  $\mathbf{v}$ .

**Solution**: the unit vector is  $\frac{\mathbf{v}}{\sqrt{\mathbf{v} \cdot \mathbf{v}}}$ .

**Example**: Let W be the subspace of  $\mathbb{R}^2$  spanned by  $\mathbf{x} = (2/3, 1)$ . Find a unit vector  $\mathbf{z}$  that is a basis for W.

**Distance in**  $\mathbb{R}^n$ : For **u** and **v** in  $\mathbb{R}^n$ , the distance between **u** and **v**,written as  $\operatorname{dist}(\mathbf{u}, \mathbf{v})$ , is the length of the vector  $\mathbf{u} - \mathbf{v}$ . That is

$$dist(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$



**Example**: Compute the distance between the vectors  $\mathbf{u}=(2,-1,2,1), \mathbf{v}=(1,-2,2,0).$ 

**Example**: Compute the distance between the vectors  $\mathbf{u} = (u_1, u_2, u_3)$ ,  $\mathbf{v} = (v_1, v_2, v_3)$ .

## 27.2 Orthogonal Vectors

Two vectors  $\mathbf{u}$  and  $\mathbf{v}$  are orthogonal (to each other) if  $\mathbf{u}.\mathbf{v} = 0$ .



Figure 27.1: Orthogonal vectors

**Theorem**: Two vectors  $\mathbf{u}$  and  $\mathbf{v}$  are orthogonal if and only if  $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ .



Figure 27.2: Orthogonal vectors

**Orthogonal Complements**: If a vector  $\mathbf{z}$  is orthogonal to every vector in a subspace W of  $\mathbb{R}^n$ , then  $\mathbf{z}$  is said to be orthogonal to W. The set of all vectors  $\mathbf{z}$  that

are orthogonal to W is called the orthogonal complement of W and is denoted by  $W^{\perp}$ .

**Example**: Let W be a plane through the origin in  $\mathbb{R}^3$ , and let L be the line through the origin and perpendicular to W. If  $\mathbf{z}$  and  $\mathbf{w}$  are nonzero,  $\mathbf{z}$  is on L, and  $\mathbf{w}$  is in W then the line segment from  $\mathbf{0}$  to  $\mathbf{z}$  is perpendicular to the line segment from  $\mathbf{0}$  to  $\mathbf{w}$ ; that is,  $\mathbf{z}.\mathbf{w} = \mathbf{0}$ .



So each vector on L is orthogonal to every w in W.

In fact, L consists of all vectors that are orthogonal to the w's in W, and W consists of all vectors orthogonal to the z's in L. That is,

$$L = W \perp$$
 and  $W = L^{\perp}$ .

### **Orthogonal Complements:**

- 1. A vector  $\mathbf{x}$  is in  $W^{\perp}$  if and only if  $\mathbf{x}$  is orthogonal to every vector in a set that spans W.
- 2. W is a subspace of  $\mathbb{R}^n$ .

**Theorem**: Let A be an  $m \times n$  matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of  $A^T$ :

$$(\operatorname{Row} \ A)^{\perp} = \operatorname{Nul} \ A \quad \text{and} \quad (\operatorname{Col} \ A)^{\perp} = \operatorname{Nul} \ A^{T}.$$

**Orthogonal Sets**: A set of vectors  $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$  in  $\mathbb{R}^n$  is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if  $\mathbf{u}_i \cdot \mathbf{u}_j = 0$  whenever  $i \neq j$ .

**Example**: Show that  $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$  is an orthogonal set, where

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}$$

**Theorem**: If  $S = \{\mathbf{u}_1, ..., \mathbf{u}_p\}$  is an orthogonal set of nonzero vectors in  $\mathbb{R}^n$ , then S is linearly independent and hence is a basis for the subspace spanned by S.

**Orthogonal Basis**: An orthogonal basis for a subspace W of  $\mathbb{R}^n$  is a basis for W that is also an orthogonal set.

**Theorem**: If  $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$  be an orthogonal basis for a subspace W of  $\mathbb{R}^n$ , For each  $\mathbf{y}$  in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$

are given by

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}, \quad (j = 1, ..., p).$$

**Example**: The set  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$  is an orthogonal basis for  $\mathbb{R}^3$  where

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}.$$

Express the vector  $\mathbf{y} = \begin{bmatrix} 6 \\ 1 \\ -8 \end{bmatrix}$  as a linear combination of the vectors in S.

An Orthogonal Projection: Given a nonzero vector  $\mathbf{u}$  in  $\mathbb{R}^n$ , consider the problem of decomposing a vector  $\mathbf{y}$  in  $\mathbb{R}^n$  into the sum of two vectors, one a multiple of  $\mathbf{u}$  and the other orthogonal to  $\mathbf{u}$ . We wish to write

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where  $\hat{\mathbf{y}} = \alpha \mathbf{u}$  for some scalar  $\alpha$  and  $\mathbf{z}$  is some vector orthogonal to  $\mathbf{u}$ .

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}.$$



**Example**: Let  $\mathbf{y} = \begin{bmatrix} 7 \\ 2 \end{bmatrix}$  and  $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ . Find the orthogonal projection of  $\mathbf{y}$  onto  $\mathbf{u}$ . Then write  $\mathbf{y}$  as the sum of two orthogonal vectors, one in Span  $\{\mathbf{u}\}$  and one orthogonal to  $\mathbf{u}$ .

Solution: Compute

$$\mathbf{y}.\mathbf{u} = \left[ \begin{array}{c} 7 \\ 6 \end{array} \right]. \left[ \begin{array}{c} 4 \\ 2 \end{array} \right] = 40, \quad \mathbf{u}.\mathbf{u} = \left[ \begin{array}{c} 4 \\ 2 \end{array} \right]. \left[ \begin{array}{c} 4 \\ 2 \end{array} \right] = 20.$$

The orthogonal projection is

$$\hat{\mathbf{y}} = \frac{\mathbf{y}.\mathbf{u}}{\mathbf{u}.\mathbf{u}}\mathbf{u} = \frac{40}{20}\mathbf{u} = \begin{bmatrix} 8\\4 \end{bmatrix}.$$

### 27.3 Orthonormal Sets

A set of vectors  $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$  in  $\mathbb{R}^n$  is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if  $\mathbf{u}_i.\mathbf{u}_j = 0$  whenever  $i \neq j$  and  $\mathbf{u}_i.\mathbf{u}_i = 1$ .

**Example**: Show that  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$  is an orthonormal basis in  $\mathbb{R}^3$ , where

$$\mathbf{v}_1 = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix}.$$

**Theorem**: An  $m \times n$  matrix U has orthonormal columns if and only if  $U^T U = I$ . **Theorem**: Let U be an  $m \times n$  matrix with orthonormal columns, and let  $\mathbf{x}$  and  $\mathbf{y}$  be in  $\mathbb{R}^n$ . Then

- 1.  $||U\mathbf{x}|| = ||\mathbf{x}||$
- 2.  $(U\mathbf{x}).(U\mathbf{y}) = \mathbf{x}.\mathbf{y}$
- 3.  $(U\mathbf{x}).(U\mathbf{y}) = 0$  if and only if  $\mathbf{x}.\mathbf{y} = 0$ .

**Example**: Let  $U = \begin{bmatrix} 1/\sqrt{2} & 2/3 \\ 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \end{bmatrix}$ , and  $\mathbf{x} = \begin{bmatrix} \sqrt{2} \\ 3 \end{bmatrix}$ . Show that U has or-

thonormal columns and verify that  $||U\mathbf{x}|| = ||\mathbf{x}||$ .

The matrix

$$U = \begin{bmatrix} 3/\sqrt{11} & -1/\sqrt{6} & -1/\sqrt{66} \\ 1/\sqrt{11} & 2/\sqrt{6} & -4/\sqrt{66} \\ 1/\sqrt{11} & 1/\sqrt{6} & 7/\sqrt{66} \end{bmatrix}$$

is an orthogonal matrix because it is square and because its columns are orthonormal. Verify that the rows are orthonormal, too.

## 27.4 Some Practice Problems

Question: Determine which set of vectors are orthogonal

$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -5 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ -2 \\ 6 \end{bmatrix}.$$

**Question**: Compute orthogonal projection of  $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$  onto the line passing through

$$\begin{bmatrix} -4 \\ 2 \end{bmatrix}$$
 and the origin.

**Question**: Suppose W is a subspace of  $\mathbb{R}^n$  spanned by n nonzero orthogonal vectors. Explain why  $W = \mathbb{R}^n$ .

 ${\bf Question} \colon {\rm Let} \ U$  be a square matrix with orthonormal columns. Explain why U is invertible.

**Question**: Let U be an  $n \times n$  orthogonal matrix. how that the rows of U form an orthonormal basis of  $\mathbb{R}^n$ .

## Lecture No. 28

**Question**: Suppose W is a subspace of  $\mathbb{R}^n$  spanned by n nonzero orthogonal vectors. Explain why  $W = \mathbb{R}^n$ .

**Solution**: We know that an orthogonal set of vectors is linearly independent. Hence form a basis for the space W. Consequently, dimension of W is n and  $W = \mathbb{R}^n$ .

## 28.1 Orthogonal Projections

The orthogonal projection of a point in  $\mathbb{R}^2$  onto a line through the origin has an important analogue in  $\mathbb{R}^n$ .

Given a vector  $\mathbf{y}$  and a subspace W in  $\mathbb{R}^n$ , there is a vector  $\hat{\mathbf{y}}$  in W such that

- (1)  $\hat{\mathbf{y}}$  is the unique vector in W for which  $\mathbf{y} \hat{\mathbf{y}}$  is orthogonal to W, and
- (2)  $\hat{\mathbf{y}}$  is the unique vector in W closest to  $\mathbf{y}$ .



Figure 28.1: Shortest distance

These two properties of  $\hat{\mathbf{y}}$  provide the key to finding least-squares solutions of linear systems

**Example**: Let  $\{u_1,...,u_5\}$  be an orthonormal basis for  $\mathbb{R}^5$  and let

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_5 \mathbf{u}_5.$$

Consider the subspace  $W = Span\{\mathbf{u}_1, \mathbf{u}_2\}$ , and write  $\mathbf{y}$  as the sum of a vector  $\mathbf{z}_1$  in W and a vector  $\mathbf{z}_2$  in  $W^{\perp}$ .

**Solution**: Write  $y = c_1 u_1 + c_2 u_2 + ... + c_5 u_5$ 

where  $\mathbf{z}_1 = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2$  is in Span $\{\mathbf{u}_1, \mathbf{u}_2\}$  and  $\mathbf{z}_2 = c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 + c_5 \mathbf{u}_5$  is in Span $\{\mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$ .

**Theorem**: The Orthogonal Decomposition Theorem

Let W be a subspace of  $\mathbb{R}^n$ . Then each y in  $\mathbb{R}^n$  can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where  $\hat{\mathbf{y}}$  is in W and  $\mathbf{z}$  is in  $W^{\perp}$ .

In fact, if  $\{\mathbf{u}_1,...,\mathbf{u}_p\}$  is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y}.\mathbf{u}_1}{\mathbf{u}_1.\mathbf{u}_1}\mathbf{u}_1 + ... + \frac{\mathbf{y}.\mathbf{u}_p}{\mathbf{u}_p.\mathbf{u}_p}\mathbf{u}_p.$$



The vector  $\hat{\mathbf{y}}$  is called the orthogonal projection of  $\mathbf{y}$  onto W and is often is written  $proj_W$ .

**Example**: Let 
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
,  $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$ , and  $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ . Observe that

 $\{\mathbf{u}_1, \mathbf{u}_2\}$  is an orthogonal basis for  $W = Span\{\mathbf{u}_1, \mathbf{u}_2\}$ . Write  $\mathbf{y}$  as the sum of a vector in W and a vector orthogonal to W.

**Solution**: The orthogonal projection of y onto W is

$$\begin{split} \hat{\mathbf{y}} &= \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 \\ &= \frac{9}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \frac{9}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + \frac{15}{30} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix}. \end{split}$$

Also

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} = \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}.$$

# 28.2 A Geometric Interpretation of the Orthogonal Projection

When W is a subspace of  $\mathbb{R}^3$  spanned by  $\mathbf{u}_1$  and  $\mathbf{u}_2$ . Here  $\hat{\mathbf{y}}_1$  and  $\hat{\mathbf{y}}_2$  denote the projections of  $\mathbf{y}$  onto the lines spanned by  $\mathbf{u}_1$  and  $\mathbf{u}_2$ , respectively.

The orthogonal projection  $\hat{\mathbf{y}}$  of  $\mathbf{y}$  onto W is the sum of the projections of  $\mathbf{y}$  onto one-dimensional subspaces that are orthogonal to each other.



Figure 28.2: Geometric interpretation of orthogonal projection

### Properties of Orthogonal Projections:

If y is in 
$$W = Span\{\mathbf{u}_1, ..., \mathbf{u}_p\}$$
, then  $proj_W \mathbf{y} = \mathbf{y}$ .

#### 28.3 The Best Approximation Theorem

Let W be a subspace of  $\mathbb{R}^n$ , let y be any vector in  $\mathbb{R}^n$ , and let  $\hat{\mathbf{b}}$  be the orthogonal projection of y onto W. Then  $\hat{\mathbf{b}}$  is the closest point in W to y, in the sense that

$$\|\mathbf{y} - \hat{\mathbf{b}}\| < \|\mathbf{y} - \mathbf{v}\|$$

for all  $\mathbf{v}$  in W distinct from  $\hat{\mathbf{b}}$ .



**Remark**: The vector 
$$\hat{\mathbf{b}}$$
 is called the best approximation to  $\mathbf{y}$  by elements of  $W$ . **Example**: If  $\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$ ,  $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$ , and  $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ , and  $W = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ 

 $Span\{\mathbf{u}_1,\mathbf{u}_2\}$  then the closest point in W to y is

$$\hat{\mathbf{y}} = \frac{\mathbf{y}.\mathbf{u}_1}{\mathbf{u}_1.\mathbf{u}_1}\mathbf{u}_1 + \frac{\mathbf{y}.\mathbf{u}_2}{\mathbf{u}_2.\mathbf{u}_2}\mathbf{u}_2 = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix}.$$

**Example**: The distance from a point y in  $\mathbb{R}^n$  to a subspace W is defined as the distance from y to the nearest point in W. Find the distance from y to W =

$$Span\{\mathbf{u}_1, \mathbf{u}_2\}, \text{ where } \mathbf{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \text{ and } \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.$$

**Solution**: By the Best Approximation Theorem, the distance from  $\mathbf{y}$  to W is  $\|\mathbf{y} - \hat{\mathbf{y}}\|$ , where  $\hat{\mathbf{y}} = proj_W \mathbf{y}$ . Since  $\{\mathbf{u}_1, \mathbf{u}_2\}$  is an orthogonal basis for W,

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \frac{15}{30} \mathbf{u}_1 + \frac{-21}{6} \mathbf{u}_2$$

$$= \frac{1}{2} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} - \frac{7}{2} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix}.$$

$$\|\mathbf{y} - \hat{\mathbf{y}}\|^2 = 0^2 + 3^2 + -^2 = 45.$$

**Theorem**: If  $\{\mathbf{u}_1,...,\mathbf{u}_p\}$  is an orthonormal basis for a subspace W of  $\mathbb{R}^n$ , then

$$proj_W \mathbf{y} = (\mathbf{y}.\mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y}.\mathbf{u}_2)\mathbf{u}_2 + \dots + (\mathbf{y}.\mathbf{u}_p)\mathbf{u}_p.$$

If  $U = [\mathbf{u}_1 \ \mathbf{u}_1 \dots \mathbf{u}_p]$  then

$$proj_W \mathbf{y} = UU^T \mathbf{y}$$
 for all  $\mathbf{y} \in \mathbb{R}^n$ .

**Example**: Let 
$$\mathbf{y} = \begin{bmatrix} -9 \\ 1 \\ 6 \end{bmatrix}$$
,  $\mathbf{u}_1 = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$ , and  $\mathbf{u}_2 = \begin{bmatrix} -9 \\ 1 \\ 6 \end{bmatrix}$ , and  $W = \begin{bmatrix} -9 \\ 1 \\ 6 \end{bmatrix}$ 

 $Span\{\mathbf{u}_1,\mathbf{u}_2\}$ . Use this fact that  $\mathbf{u}_1$  and  $\mathbf{u}_2$  are orthogonal to compute  $proj_W \mathbf{y}$ .

## 28.4 Some Practice Problems

Question: Let 
$$\mathbf{x} = \begin{bmatrix} 4 \\ 5 \\ -3 \\ 3 \end{bmatrix}$$
,  $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}$ ,  $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ -1 \\ 1 \end{bmatrix}$ ,  $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \\ -1 \end{bmatrix}$ ,  $\mathbf{u}_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 

$$\begin{bmatrix} -1 \\ 1 \\ 1 \\ -2 \end{bmatrix}$$
. Write  ${\bf x}$  as the sum of two vectors, one in Span $\{{\bf u}_1,{\bf u}_2,{\bf u}_3\}$  and the other

in Span $\{\mathbf{u}_4\}$ .

**Question**: Find the closed point to y in the subspace W spanned by  $v_1$  and  $v_2$ 

$$\mathbf{y} = \begin{bmatrix} 3 \\ 1 \\ 5 \\ 1 \end{bmatrix}, \ \mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}.$$

**Question**: Find find the best approximation to  $\mathbf{x}$  by vectors of the form  $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$  as the vectors in previous example.

## CHAPTER 29

## Lecture No. 29

## 29.1 The Gram-Schmidt process

The Gram-Schmidt process is a simple algorithm for producing an orthogonal or orthonormal basis for any nonzero subspace of  $\mathbb{R}^n$ .



**Example**: Let  $W = Span\{\mathbf{x}_1, \mathbf{x}_2\}$ , where  $\mathbf{x}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$  and  $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ . Construct an orthogonal basis  $\{\mathbf{v}_1, \mathbf{v}_2\}$  for W.

**Solution**: Let  $\mathbf{v}_1 = \mathbf{x}_1$  and

$$\mathbf{v}_2 = \mathbf{x}_2 - \mathbf{p} = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{x}_1}{\mathbf{x}_1 \cdot \mathbf{x}_1} \mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \frac{15}{45} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}.$$

**Example**: Let  $W = Span\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ , where  $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ , and  $\mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 

 $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ . Construct an orthogonal basis  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$  for W which is subspace of  $\mathbb{R}^4$ .

Solution: Step I: Let  $\mathbf{v}_1 = \mathbf{x}_1$  and  $W_1 = Span\{\mathbf{x}_1\} = Span\{\mathbf{v}_1\}$ .

**Step II**: Let  $\mathbf{v}_2$  be the vector produced by subtracting from  $\mathbf{x}_2$  its projection onto

the subspace  $W_1$ . That is, let

$$\mathbf{v}_{2} = \mathbf{x}_{2} - proj_{W_{1}}\mathbf{x}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\mathbf{v}_{1} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \end{bmatrix}.$$

 $\mathbf{v}_2$  is the component of  $\mathbf{x}_2$  orthogonal to  $\mathbf{x}_1$  and  $\{\mathbf{v}_1, \mathbf{v}_2\}$  is an orthogonal basis for the subspace  $W_2$  Spanned by  $\mathbf{x}_1$  and  $\mathbf{x}_2$ .

Step II' Optional: Scale  $\mathbf{v}_2$ , we get  $\mathbf{v}_2' = \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ .



**Step III**: Let  $\mathbf{v}_3$  be the vector produced by subtracting from  $\mathbf{x}_3$  its projection onto the subspace  $W_2$ . Use the orthogonal basis  $\{\mathbf{v}_1, \mathbf{v}_2'\}$  to compute this projection onto  $W_2$ :

$$proj_{W_2}\mathbf{x}_3 = \frac{\mathbf{x}_3.\mathbf{v}_1}{\mathbf{v}_1.\mathbf{v}_1}\mathbf{v}_1 + \frac{\mathbf{x}_3.\mathbf{v}_2'}{\mathbf{v}_2'.\mathbf{v}_2'}\mathbf{v}_2' = \frac{2}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\2/3\\2/3\\2/3 \end{bmatrix}$$

Then  $\mathbf{v}_3$  is the component of  $\mathbf{x}_3$  orthogonal to  $W_2$ , namely,

$$\mathbf{v}_3 = \mathbf{x}_3 - proj_{W_2} \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}.$$

**Theorem**: The Gram-Schmidt Process

Given a basis  $\{\mathbf{x}_1,...,\mathbf{x}_p\}$  for a nonzero subspace W of  $\mathbb{R}^n$ , define

$$\begin{array}{rcl} \mathbf{v}_1 & = & \mathbf{x}_1 \\ \mathbf{v}_2 & = & \mathbf{x}_2 - \frac{\mathbf{x}_2.\mathbf{v}_1}{\mathbf{v}_1.\mathbf{v}_1} \mathbf{v}_1 \\ \\ \mathbf{v}_3 & = & \mathbf{x}_3 - \frac{\mathbf{x}_3.\mathbf{v}_1}{\mathbf{v}_1.\mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3.\mathbf{v}_2}{\mathbf{v}_2.\mathbf{v}_2} \mathbf{v}_2 \\ \\ & \cdot \\ \\ & \cdot \\ \\ \mathbf{v}_p & = & \mathbf{x}_p - \frac{\mathbf{x}_p.\mathbf{v}_1}{\mathbf{v}_1.\mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_p.\mathbf{v}_2}{\mathbf{v}_2.\mathbf{v}_2} \mathbf{v}_2 - \dots - \frac{\mathbf{x}_p.\mathbf{v}_{p-1}}{\mathbf{v}_{p-1}.\mathbf{v}_{p-1}} \mathbf{v}_{p-1}. \end{array}$$

Then  $\{\mathbf{v}_1,...,\mathbf{v}_p\}$  is an orthogonal basis for W. In addition, we have

$$Span\{\mathbf{v}_1,...,\mathbf{v}_k\} = Span\{\mathbf{x}_1,...,\mathbf{x}_k\}$$
 for  $1 \le k \le p$ .

**Example**: Let  $W = Span\{\mathbf{x}_1, \mathbf{x}_2\}$ , where

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 1/3 \\ 1/3 \\ -2/3 \end{bmatrix}.$$

Construct an orthonormal basis for W.

**Orthonormal Basis**: Construct an orthonormal basis for the subspace spanned by the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}.$$

**Example**: Find an orthogonal basis for the column space and null space of the matrix

$$\begin{bmatrix} 1 & 3 & 5 \\ -1 & -3 & 1 \\ 0 & 2 & 3 \\ 1 & 5 & 2 \\ 1 & 5 & 8 \end{bmatrix}.$$

## 29.2 Some Practice Problems

**Question**: Find an orthogonal basis for the column space and null space of each matrix

$$\begin{bmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 5 & 0 \\ -1 & -3 & 1 & 1 \\ 0 & 2 & 3 & 1 \\ 1 & 5 & 2 & 2 \end{bmatrix}.$$

Question: Mark each statement as true or false

- 1. If  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$  is an orthogonal basis for W , then multiplying  $\mathbf{v}_3$  by a scalar c gives a new orthogonal basis  $\{\mathbf{v}_1, \mathbf{v}_2, c\mathbf{v}_3\}$ .
- 2. If  $W = Span\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$  with  $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$  linearly independent, and if If  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$  is an orthogonal set in W, then If  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$  is a basis for W.
- 3. If **x** is not in a subspace W, then  $\mathbf{x} proj_W \mathbf{x}$  is not zero.

**Question**: Construct an orthogonal basis using Gram-Schmidt process for  $\mathbf{v}_1 =$ 

$$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix}, \qquad \mathbf{x}_1 = \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}.$$

## CHAPTER 30

## Lecture No. 30

## 30.1 Least Squares Solutions

If A is  $m \times n$  and **b** is in  $\mathbb{R}^m$ , a least-squares solution of  $A\mathbf{x} = \mathbf{b}$  is an  $\hat{\mathbf{x}}$  in  $\mathbb{R}^n$  such that

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$

for all  $\mathbf{x}$  in  $\mathbb{R}^n$ .



**Remark**: The most important aspect of the least-squares problem is that no matter what  $\mathbf{x}$  we select, the vector  $A\mathbf{x}$  will necessarily be in the column space, Col A. So we seek an  $\mathbf{x}$  that makes  $A\mathbf{x}$  the closest point in Col A to  $\mathbf{b}$ .

Solution of the General Least-Squares Problem: Given A and b, apply the Best Approximation Theorem to the subspace Col A. Let

$$\hat{\mathbf{b}} = proj_{Col\ A}\mathbf{b}$$

Because  $\hat{\mathbf{b}}$  is in the column space of A, the equation  $A\mathbf{x} = \hat{\mathbf{b}}$  is consistent, and there is an  $\hat{\mathbf{x}}$  in  $\mathbb{R}^n$  such that

$$A\hat{\mathbf{x}} = \hat{\mathbf{b}}$$
.



Since  $\hat{\mathbf{x}}$  is the closest point in Col A to  $\mathbf{b}$ , a vector  $\hat{\mathbf{x}}$  is a least-squares solution of  $A\mathbf{x} = \mathbf{b}$  if and only if  $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$ . Suppose  $\hat{\mathbf{x}}$  satisfies  $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$ . By the Orthogonal Decomposition Theorem the projection  $\hat{\mathbf{b}}$  has the property that  $\mathbf{b} - \hat{\mathbf{b}}$  is orthogonal to Col A, so  $\mathbf{b} - A\hat{\mathbf{x}}$  is orthogonal to each column of A.