

DATA STRUCTURES & ALGORITHMS

Lecture 6: TREES – Part 1

Binary Tree, Binary Search Tree

Lecturer: Dr. Nguyen Hai Minh

CONTENT

- Introduction
 - Trees
 - Binary trees
 - Binary search trees
- Implementing binary trees
- Tree traversal
- Querying, insertion, deletion a binary search tree
- Balancing a tree
- □ Heap Priority queue

Introduction

- Arrays:
 - Static → inflexible
 - Search: O(log₂n) (ordered array)
- ☐ Linked lists:
 - Dynamic → difficult to represent the hierarchical structure of objects.
 - Insert/delete: O(1)
- Stacks, queues:
 - Limited to one dimension
- → Trees

Trees

- Fundamental data storage structures used in programming.
- Combines advantages of an ordered array and a linked list.
- Searching as fast as in ordered array.
- Insertion and deletion as fast as in linked list.

Trees – Example

☐ Species tree:

Trees – Example

☐ Parse tree of a sentence:

Trees – Example

 \square A tree of the expression (a-b)*(c/d):

Trees – Definition

- 1. An empty structure is an empty tree
- 2. If $T_1, ..., T_k$ are disjointed trees, then the structure T whose root has as its children the roots of $T_1, ..., T_k$ is also a tree.
- 3. Only structures generated by 1 and 2 are trees.

Tree ADT – Example

Tree ADT – Example

Tree ADT – Example

Trees characteristics

- ☐ Unlike natural trees, these trees are *upside* down
 - Root at the top
 - Leaves at the bottom
- Consists of nodes connected by edges.
 - Nodes often represent entities (complex objects) such as people, car parts etc.
 - Edges between the nodes represent the way the nodes are *related*.
- No cycle

Trees – Terminology

- 1. Node
- 2. Edge (Branch)
- 3. Parent node
- 4. Child node
- 5. Sibling nodes
- 6. Root node
- 7. Leaf node
- 8. Internal node

- 9. Degree of a node
- 10. Degree of a tree
- 11.Path
- 12.Subtree
- 13.Level/Depth
- 14.Height

Trees – Terminology

- 5. Sibling nodes: nodes that have the same parent.
- 8. Internal nodes: nodes that have both parent and children.
 - Special case: root is also an internal node unless it is a leaf.
- 9. Degree of a node: the number of its children
- 10. Degree of a tree: the max degree of all nodes
- 13. Level (or Depth) of a node *p*:
 - Level (p) = 0 if p = root
 - Level (p) = 1 + Level (Parent (p)) if p! = root
- 14. Height of a tree: the number of edges on the longest path from the root to the farthest leaf.

Trees – Terminology

☐ A tree with height = 2

Root: A

Parents: A, B, F

Children: B, E, F, C, D, G, H, I

Siblings: {B, E, F}, {C, D}, {G, H, I}

Leaves: C, D, G, H, I

Internal nodes: A, B, F

17

Binary trees

- Definition: A binary tree T is a structure defined on a finite set of nodes that either
 - contains no nodes, or
 - is composed of 3 disjoint sets of nodes:
 - a root node
 - ☐ a binary tree called its *left subtree*
 - a binary tree called its right subtree
- What about this definition:
 - T is a binary tree if Degree(T) = 2
 - → not enough since in a binary tree, if a node has just one child, the position of the child (*left* child/*right* child) matters.

Binary trees – Example

18

Types of binary trees

□ Complete binary tree:

- From level 0 to level h-1: the tree is completely full (maximum number of nodes)
- The nodes at the last level are filled from left to right.

19

Types of binary trees

☐ Full binary tree:

Each node is either a leaf or has degree exactly 2.

Types of binary trees

□ Perfect binary tree:

A full binary tree in which all leaf nodes are at the same level.

21

Maximum number of nodes in binary trees

Height	Nodes at one level	Nodes at all levels
0	$2^0 = 1$	$1 = 2^1 - 1$
1	$2^1 = 2$	$3 = 2^2 - 1$
2	$2^2 = 4$	$7 = 2^3 - 1$
3	$2^3 = 8$	$15 = 2^4 - 1$
10	$2^{10} = 1,024$	$2,047 = 2^{11} - 1$
13	$2^{13} = 8,192$	$16,383 = 2^{14} - 1$
h	2^h	$n = 2^{h+1} - 1$

Implement a binary tree

☐ Using an array:

index	Node	Left	Right
0	A	1	2
1	В	-1	3
2	С	4	5
3	D	-1	-1
4	Е	6	-1
5	F	7	8
6	G	-1	-1
7	Н	-1	-1
8	I	-1	-1

Implement a binary tree

☐ Using pointers:

Tree traversal

- □ Tree traversal (or tree walk): allow us to print out all the keys in a tree.
- 3 strategies:
 - In-order traversal (LNR Left Node Right)
 - Pre-order traversal (NLR Node Left Right)
 - Post-order traversal (LRN Left Right Node)

Tree traversal

```
INORDER-TREE-WALK(x)
   if x \neq NIL
       then INORDER-TREE-WALK(x.left)
              print x.key
              INORDER-TREE-WALK(x.right)
PREORDER-TREE-WALK(x)
1. if x \neq NIL
       then print x.key
             PREORDER-TREE-WALK (x.left)
             PREORDER-TREE-WALK (x.right)
POSTORDER-TREE-WALK(x)
1. if x \neq NIL
       then POSTORDER-TREE-WALK (x.left)
             POSTORDER-TREE-WALK (x.right)
             print x.key
```


(fit@hcmus

Tree traversal

Pre-order tree walk NLR

In-order tree walk

Post-order tree walk
LRN 27

BINARY SEARCH TREES phminh@FIT-HCMUS 5/20/24 28

Binary search trees

- Definition: A binary search tree (BST) is a binary tree which storing keys in a way that satisfies the binary-search-tree property:
 - Let x be a node in a BST
 - If y is a node in the left subtree of x, then x.key≥ y.key
 - If y is a node in the right subtree of x, then x.key
 y.key
- Why using a BST?
 - Fast for basic operations: insert, delete, search

Binary search tree – Example

(b)

30

Querying a binary search tree

- Operations:
 - Searching
 - Minimum and maximum
 - Successor and predecessor
 - Insertion and deletion
- □ Theorem. We can implement the dynamic-set operations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR so that each one runs in O(h) time on a BST of height h.

Searching a BST

TREE-SEARCH(x, k)

- 1. if x == NIL or k == x.key
- 2. return x
- 3. if k < x.key
- 4. return Tree-Search(x.left, k)
- 5. else return TREE-SEARCH(x.right, k)

O(h)

Recursive version

Searching a BST

TREE-SEARCH(x, k)

- 1. while $x \neq NIL$ and $k \neq x.key$
- 2. if k < x.key
- 3. x = x.left
- 4. else
- 5. x = x.right
- 6. return x

O(h)

Iterative version

Minimum and maximum

TREE-MINIMUM(x)

- 1. while x.left \neq NIL
- 2. x = x.left
- 3. return x

O(h)

TREE-MAXIMUM(x)

- 1. while $x.right \neq NIL$
- 2. x = x.right
- 3. return x

O(h)

Successor and predecessor

- If all keys are distinct, the successor of a node x is:
 - the node with the smallest key greater than x.key.
 - NIL if x has the largest key in the tree.
- If all keys are distinct, the predecessor of a node x is:
 - the node with the largest key smaller than x.key.
 - NIL if x has the smallest key in the tree.

Successor and predecessor

TREE-SUCCESSOR(x)

- **1. if** *x.right* ≠ NIL
- 2. **return** TREE-MINIMUM(*x.right*)
- 3. y = x.p
- **4.** while $y \neq NIL$ and x == y.right
- $5. \qquad x = y$
- 6. y = y.p
- 7. return y

TREE-PREDECESSOR(x)

. . .

O(h)

Successor – Example

☐ Successor of 5 is: 6

Successor – Example

☐ Successor of 14 is: 15

Predecessor – Example

☐ Predecessor of 15 is 14

Predecessor – Example

☐ Predecessor of 13 is 12

Insertion and deletion

- □ The operation of *insertion* and *deletion* cause the BST to change.
 - The data structure must be modified to reflect this change.
 - The BST property must be continued to hold.
- Insertion: straight-forward.
- □ *Deletion*: more intricate.

Insertion

```
TREE-INSERT(T, z)
1. y = NIL
2. x = T.root
3. while x \neq NIL
4. y = x
5. if z.key < x.key
6. x = x.left
7. else x = x.right
8. z.p = y
9. if y == NIL
10. T.root = z // tree T was empty
11. elseif z.key < y.key
12. y.left = z
13. else y.right = z
```


Insertion – Example

☐ Insert node 13 to the BST

Insertion – Example

□ Insert node 13 to the BST: 13>12 → go to the right

45

Insertion – Example

5/20/24

□ Insert node 13 to the BST: 13<18 → go to the left</p>

46

Insertion – Example

5/20/24

□ Insert node 13 to the BST: 13<15 → go to the left</p>

Insertion – Example

□ Insert node 13 to the BST: left of 15 is NIL → insert 13 as the left child of 15

Deletion

- □ Deleting a node *z*: 3 cases:
 - 1. z has no child (leaf node)
 - → simply remove it
 - 2. z has one child
 - \rightarrow replace z by its child
 - 3. z has two children
 - → find its successor (or predecessor): y must be in z's right (or left) subtree and has no left (right) child. Replace z.key by y.key, then delete y.

Deletion

5/20/24

□ z has no child (leaf node): simply remove it

5/20/24

□ z has no child (leaf node): simply remove it

5/20/24

□ z has 1 child: replace z by its subtree

□ z has 1 child: replace z by its subtree

5/20/24

□ z has 2 children: find z's successor y

□ z has 2 children: replace z.key by y.key, then delete y

5/20/24

□ z has 2 children: find z's predecessor y

5/20/24

□ z has 2 children: replace z.key by y.key, then delete y

BST Analysis

	BST (*)	Ordered array	Linked list
Searching	$O(\log_2 n)$	$O(\log_2 n)$	O(n)
Insertion	O(log ₂ n)	O(n)	0(1)
Deletion	O(log ₂ n)	O(n)	0(1)
Memory to store 1 element	Sizeof(key)+8	Sizeof(key)	Sizeof(key)+4

Balancing a tree

Is searching a BST tree as fast as an ordered

array?

- It depends on what the tree looks like!
 - → Balanced tree is the best!

Balancing a tree

- Definition. A binary tree is height-balanced or simply balanced if the difference in height of both subtrees of any node in the tree is either zero or one.
- □ A tree is *perfectly balanced* if every path from root to leaf has same length.
- Techniques:
 - 1. Reordering data themselves and then building a tree.
 - 2. Constantly restructuring the tree when elements arrive and lead to an unbalanced tree.

Balancing a tree – using sorted array

- ☐ Steps to balance a tree:
 - Store all data in an array.
 - Sort the array
 - The root is in the middle of the array.
 - The left child of the root is in the middle of the first subarray (from first element → root)
 - The right child of the root is in the middle of the second subarray (from the root → the last element)

ী fit@hcmus

- Stream of data:
- Sorted data:

0	1	2	3	4	5	6	7	8	9

- ☐ Stream of data:
- Sorted data:

5	1	9	8	7	0	2	3	4	6
---	---	---	---	---	---	---	---	---	---

- ☐ Stream of data:
- Sorted data:

0	1	2	3	4	5	6	7	8	9
									1

- ☐ Stream of data:
- Sorted data:

5	1	9	8	7	0	2	3	4	6
---	---	---	---	---	---	---	---	---	---

0	1	2	3	4	5	6	7	8	9

- ☐ Stream of data:
- Sorted data:

5	1	9	8	7	0	2	3	4	6

0 1 2 3 4 5 6 7 8 9	0	1	2	3	4	5	6	7	8	9
---------------------	---	---	---	---	---	---	---	---	---	---

■ Stream of data:

■ Sorted data:

5	1	9	8	7	0	2	3	4	6
---	---	---	---	---	---	---	---	---	---

0 1 2 3 4 5 6 7 8	9
-------------------	---

- Stream of data:
- Sorted data:

|--|

0 1 2 3 4 5 6 7 8 9	0	1	2	3	4	5	6	7	8	9
---------------------	---	---	---	---	---	---	---	---	---	---

- Stream of data:
- Sorted data:

5	1	9	8	7	0	2	3	4	6
---	---	---	---	---	---	---	---	---	---

- ☐ Stream of data:
- Sorted data:

0	1	2	3	4	5	6	7	8	9
					1		I		1

■ Stream of data:

■ Sorted data:

5 1 9 8 7	0 2	3 4	6
-----------	-----	-----	---

0	1	2	3	4	5	6	7	8	9

Balancing a tree using sorted array

Drawback:

- All data must be put in an array before the tree can be created.
- Unsuitable when the tree has to be used while the data are still coming.

Balancing a tree – DSW algorithm

- Devised by Colin Day and later improved by Quentin F. Stout and Bette L. Warren.
 - No sorting required
 - Using tree rotation (left/right rotation)

- Devised by Colin Day and later improved by Quentin F. Stout and Bette L. Warren.
 - 1. Transfigure an arbitrary BST into a linked list like tree called *backbone* or *vine*.
 - 2. This tree is transformed into a perfectly balanced tree by repeatedly rotating every second node of the backbone about its parent.

Step 1: Transforming a BST into a backbone

\fit@hcmus

Step 1: Transforming a BST into a backbone

Step 2: Transform the backbone into a perfectly balanced tree

```
createPerfectTree()

n = \text{number of nodes};

m = 2^{\lfloor \log 2(n+1) \rfloor} - 1;

make n-m rotations starting from the top of backbone;

while (m > 1)

m = m/2;

make m rotations starting from the top of backbone;
```

n-m: the number of nodes we expect on the bottommost level.

Rotate a tree

```
LEFT-ROTATE(T, x) //assume that x.right \neq T.nil
1. y = x right
               //set y
2. x.right = y.left //turn y's left subtree to x's right
   subtree
3. if y.left \neq T.nil
4. y.left.p = x
5. y.p = x.p
                    //link x's parent to y
6. if x.p == T.nil
7. T.root = y
8. elseif x == x.p.left
9. x.p.left = y
10.else x.p.right = y
11. y.left = x
                     //put x on y's left
12.x.p = y
```

0(1)

Heap

- A particular kind of binary tree:
 - The value of each node ≥ the values of its children (MAX-HEAP).
 - The tree is perfectly balanced, all leaves in the last level are all in the leftmost positions.
- Characteristics of heaps:
 - Review in Lecture 2 (Heapsort)
- Applications of a heap:
 - Heapsort
 - Priority queue

Priority queue

- In which circumstances the FIFO of a queue is not good?
 - Pregnant women, the elderly, kids, disabled people
 - Emergency
 - Police
 - Fire fight
 - Elevator
 - ...
- ☐ A *priority queue* is necessary!

Implementing a priority queue

- Ordered array:
 - Insert: O(n)
 - Delete-min: O(1)
- Linked list
 - Insert: O(1)
 - Delete-min: O(n)

- Insert: $O(\log_2 n)$
- Delete-min: $O(log_2n)$
- (*): balanced BST
- □ Heap:
 - Insert: O(log₂n)
 - Delete-min: O(log₂n)

□ Binary search tree(*)

Implementing a priority queue using a heap

☐ Insert 14 to the heap:

Implementing a priority queue using a heap

Delete-min:

nhminh@FIT-HCMUS

(c) HEAPIFY

(68)

84

5/20/24

What's next?

□ After today:

- Read textbook 1 Chapter 12 (page 418~)
- Read textbook 2 Chapter 15, 16 (page 452~)
- Do Homework 6

□ Next class:

Individual Assignment 3 (Trees, Binary Trees, BST)

