NSYS®

Lecture 03: Post-processing for Rotating Machinery

ANSYS CFX Rotating Machinery Modeling

Release 2019 R3

Outline

- Quantitative results
- Qualitative results
- Post-processing guidelines
- Turbo-specific post-processing in CFD-Post
 - Turbo topology
 - Turbo coordinates
 - Turbo post-processing tools
 - Reports

Rotating Machinery Post-Processing

Quantitative Results

- Efficiency
- Pressure loads
- Mass flow rates
- Torque and power
- Head rise
- Total pressure, Total Temperature ratios

Qualitative Results

- Contour plots
- Velocity vector plots
- Pathline plots
- Animations

Machine Performance

ANSYS®

Quantitative Results

CFD-Post Function Calculator

- Compute averages, fluxes, min, max, and integral sums for any variable on location using Function Calculator
 - Select desired function
 - ➤ Integrals, averages, mass-flows, forces, torques, etc.
 - Select Location
 - Any physics or mesh 2-d locator (inlets, outlets, walls, etc.)
 - Any locator created in CFD-Post (lines, planes, isosurfaces, etc.)
- Click Calculate

Averaging Concepts

- Often it is desirable to calculate averaged quantities:
 - Ex. Average Total Pressure at the inlet and outlet for calculating Pressure ratio
- Most common types of averaging are mass weighted or area weighted
- Mass Weighted Average
 - Used at inlets outlets and internal 2D regions
 - > For most quantities
 - ➤ Not used for Static pressure
- Area Average
 - Used to average
 - > Pressure at any boundary
 - > Any quantity on walls

$$\overline{\phi}_{m} = \frac{\int_{A} \phi \, d\dot{m}}{\dot{m}}$$

$$\overline{\phi}_A = \frac{\int_A \phi \, dA}{A}$$

Function Calculator Averaging Example

- In the example to the right:
 - The mass weighted average of Pressure is calculated at the outlet
 - The CEL expression is shown first (enable by checkbox at bottom)
 - The value is shown second (475.385[Pa] [Pa])

CEL for Other Quantities

- CEL expressions created in the Expressions Tab can be used to calculate different quantities
 - Example: Shaft power is the product of the rotor torque and the rotational speed

```
power=(torque_z()@R1 Blade + torque_z()@R1 Hub)

*myRotationSpeed /1[rad]*nRotor

torque_z → a built-in function

myRotationSpeed=2880[rev/min] → user defined CEL

nRotor=30 → user defined CEL for the number of rotor blades
```


ANSYS®

Qualitative Results

Qualitative Results: Contour Plots

- Contour plots can provide qualitative information for flow field analysis
- Many turbo-specific field functions, including:
 - Relative frame velocities (including components), velocity angle, vorticity, total pressure, total temperature, Mach number
 - Rothalpy
- Can create custom variables for problem-specific quantities (e.g. pressure coefficient, loss factor, etc.)

Qualitative Results: Velocity Vector Plots

Velocity vector plotting

- Useful for displaying flow patterns in CFD domain
 - Show velocity vectors in relative or absolute frame of reference
 - Relative makes more sense
- You can also create custom vector fields (e.g. pressure gradient)
- There are separate field variables for relative, rotating, and absolute frame quantities

Qualitative Results: Streamlines, Particle Paths and Oil Flow Lines

- Streamlines, particle paths and oil flow lines are calculated using <u>relative velocities</u> by default
- You can disable this in the GUI if desired
 - NOTE: Absolute velocities may cause pathlines to collide with walls since the grid is fixed

Instance Transform (1)

Instance Transform can be used to illustrate the entire wheel (or any number of desired blades) by rotating a single blade passage

- Insert an Instance Transform in the Outline (RMB on User Locations and Plots)
- 2. Set the number of Passages and the number of Graphical Instances

Instance Transform (2)

Activate Instance
 Transform in the View tab
 of any graphical object

In the example shown, Instance Transform 1 was activated for the rotor blade and the rotor hub.

NNSYS®

CFD-Post Turbo Post-processing

CFD Post Turbo Post-processing

- In addition to a complete set of general plotting and analysis tools, CFD Post has built-in turbo post-processing tools that can provide a wealth of plotting features
 - Blade-to-blade plots
 - Meridional "throughflow" plots
 - Turbo specific charts, such as Blade Loading charts

Topology

- Turbo Post takes advantage of the fact that all turbomachinery is topologically consistent
 - Just variations on a theme
 - Lends perfectly to design systems and parametric models
- Machines differ by changing
 - Hub/shroud shape
 - Blade leading and trailing edge shape and location
 - Blade wrap or angle
 - Number of blades
 - Rate of rotation

Terminology and conventions

Meridional Passage

CFD Post Turbo Post-processing

- CFD Post provides for the setup of a turbo topology for each fluid zone
 - Axis of rotation
 - Hub, shroud, inlet, outlet, blade, periodic surfaces
- After specification of turbo topology, turbo post-processing is initialized and the plotting becomes available in the interface
- Turbo topology is set up automatically if you use Turbo-Pre

CFD Post Turbo Interface: Initialization

NOTE: Multiple blade Rows can be defined

- CFD Post will automatically try to find the regions defining the hub, shroud, inlet, outlet, blade, and periodics
- If CFD Post does not find the correct regions, the user can define the correct regions as shown

Turbo Specific Qualitative Post-Processing

- Turbo specific qualitative post-processing provides visual insight into the flow field and guidance to help make design improvements
- Twisting nature of blade geometry often makes result visualization difficult in 3-D space
- Results are easier to visualize in 2-D transformed space
 - Meridional view
 - Blade-to-Blade view

Turbo Specific Views

- Meridional view
 - Plot in axial-radial space (r-z)
 - Circumferential averaging reduces 3D data to single meridional plane
- Blade-to-Blade view
 - Unrolled into meridional distance m' and angular (θ) coordinates
 - \rightarrow (m'- θ) transformation is angle preserving with less distortion

$$m' = \int \frac{dm}{r} \qquad m = \int \sqrt{dr^2 + da^2}$$

Turbo Surface Locations

- Create surface locations based on the turbo topology
 - Constant Span
 - Constant Streamwise Location
 - Constant Blade Aligned
 - Constant Blade Aligned Linear
 - Constant Theta
 - Cone
- Can plot contours, vectors, etc. on these surfaces

Turbo Blade-to-Blade Plot

- Creates a contour map by defining a turbo surface at a constant spanwise location and "unrolling" the surface on a plane in M'-Theta space
 - Angle preserving view
- Contours, Vectors,
 Steamlines can be plotted
- Allows the flow variations around a blade to more easily be analyzed versus a 3D surface rendering

Turbo Meridional Contour Plot

- Creates a map by defining an theta-averaged (r,z) solution and displaying it as a side view map
- Shows circumferentially averaged flow variations in the streamwise direction through the flow passage

Turbo Charts

- Create plots of turbo quantities
 - Blade Loading
 - Circumferential
 - Hub to Shroud
 - Inlet to Outlet
- Show average flow variations at specific flowpath positions with streamwise, spanwise, or periodic orientations

Turbo Reports

- Turbo Reports
 - The turbo reports are designed for single and multiple blade row fluid analyses
- Turbo reports attempt to auto-initialize Turbo mode
 - If auto-initialization fails, user must initialize Turbo mode manually and re-run the turbo report
- Pump report shown as an example in following slides

Automatic Reports in CFD-Post ...

with Performance Tables, ...

with Blade Loading Charts, ...

with Meridional Plots, ...

with Blade-to-Blade plots, etc.

ANSYS®

Rotating Machinery Post-processing Guidelines

Guidelines

Suggestions on key parameters to examine qualitatively:

- Rotating frame total pressure (Pt,r) is a useful quantity to identify losses
 - Invariant in the rotating frame for isentropic flow
 - locations of low Pt,r indicate loss
 - Be careful near stationary walls
 - stationary walls perform work on the flow in the rotating frame and increase apparent Pt,r

Rotating Frame Total
Pressure reduces in wakes
and separation regions

Guidelines

- Closely examine velocity vectors and contours for:
 - Areas of flow recirculation and separation (revise geometry to remove, if possible)
 - Areas of uneven or unnecessary acceleration and deceleration
 - Jet-wake flow in radial compressors and pumps
 - reduce and/or redistribute the wake to lower diffuser loss

Summary

- Wide range of Turbo-specific Post-processing tools available in CFD-Post
 - Function Calculator
 - CEL
 - Contour plots
 - Vector plots
 - Streamlines and surface pathlines
 - Turbo surfaces
 - Turbo Blade-to-Blade Plot
 - Turbo Meridional Plot
 - Turbo Charts
- Many other tools available in CFD Post
 - Templates
 - Tables
 - Custom variables and expressions
 - Automated reports

