

Um Modelo Multiagente em *Bitstring* em *CUDA* para Simular a Propagação de Hipotéticas Doenças Baseadas em Modelagem Compartimental Tipo *SEIRS*

Wesley Luciano Kaizer

WESLEY LUCIANO KAIZER

UM MODELO MULTIAGENTE EM *BITSTRING* EM *CUDA* PARA SIMULAR A PROPAGAÇÃO DE HIPOTÉTICAS DOENÇAS BASEADAS EM MODELAGEM COMPARTIMENTAL TIPO *SEIRS*

Monografia apresentada como requisito parcial para obtenção do grau de Bacharel em Ciência da Computação, do Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste do Paraná - Campus de Cascavel

Orientador: Prof. Dr. Rogério Luís Rizzi

WESLEY LUCIANO KAIZER

UM MODELO MULTIAGENTE EM *BITSTRING* EM *CUDA* PARA SIMULAR A PROPAGAÇÃO DE HIPOTÉTICAS DOENÇAS BASEADAS EM MODELAGEM COMPARTIMENTAL TIPO *SEIRS*

Monografia apresentada como requisito parcial para obtenção do Título de Bacharel em
Ciência da Computação, pela Universidade Estadual do Oeste do Paraná, Campus de Cascave
aprovada pela Comissão formada pelos professores:

Prof. Dr. Rogério Luís Rizzi (Orientador) Colegiado de Matemática, UNIOESTE

Profa. Dra. Claudia Brandelero Rizzi Colegiado de Ciência da Computação, UNIOESTE

Prof. Dr. Guilherme Galante Colegiado de Ciência da Computação, UNIOESTE

DEDICATÓRIA

AGRADECIMENTOS

Lista de Figuras

Lista de Tabelas

Lista de Abreviaturas e Siglas

CUDA Compute Unified Device Architecture

SEIRS Suscetível, Exposto, Infectado, Recuperado e Suscetível

Lista de Símbolos

- α Alfa
- β Beta

Sumário

Li	sta de	e Figuras	vi		
Li	Lista de Tabelas Lista de Abreviaturas e Siglas				
Li					
Li	Lista de Símbolos Sumário				
Su					
Re	esumo		xii		
1	Intr	odução	1		
	1.1	Justificativas	1		
	1.2	Objetivos	1		
	1.3	Motivação	2		
	1.4	Organização do Trabalho	2		
2	Fun	damentos	3		
	2.1	Introdução a Epidemiologia Computacional e Textos Correlatos	3		
	2.2	Tipos de Modelos, Classificação, entre outros	3		
	2.3	Agentes e Multiagentes	3		
	2.4	Modelagem em Operadores e Bitstring (Compartimental, Operadores, Bitstring)	3		
	2.5	Refinamento do Modelo	3		
3	Met	odologias Computacionais	4		
	3.1	Introdução	4		
	3.2	SIMULA	4		
	3.3	Estruturas de Dados, Linguagens, etc	4		
	3 /	CUDA a OpenMP	1		

4	Soluções				
	4.1	Introdução	5		
	4.2	Normal com CUDA e OpenMP	5		
	4.3	Bitstring com CUDA e OpenMP	5		
	4.4	Discussões Qualitativas, Quantitativas, Eficiência, Acurácia	5		
5	Resu	ultados e Discussões	6		
	5.1	Introdução	6		
	5.2	Cases: Discutir Simulações na 445, 445 + Vizinhas e etc	6		
Gl	Glossário				

Resumo

Palavras-chave:

Introdução

1.1 Justificativas

1.2 Objetivos

O objetivo principal deste trabalho é desenvolver e implementar um modelo multiagente, com formulação em *bitstring*, para simular computacionalmente a propagação de hipotéticas doenças que possam ser modeladas por modelos compartimentais tipo *SEIRS*. A solução computacional do modelo contemplará uma implementação em *Compute Unified Device Architecture* (*CUDA*) para extrair máxima eficiência computacional. Para alcançar este objetivo é necessária a conclusão de objetivos mais específicos que contemplam:

- 1. Revisão bibliográfica nas temáticas pertinentes ao trabalho, incluindo temas como epidemiologia computacional, modelagem compartimental, sistemas multiagentes, formulação *bitstring* ao modelo, estruturas de dados e plataforma computacional paralela *CUDA*.
- 2. Desenvolvimento e implementação de um modelo multiagente em *bitstring*, baseado em formulação compartimental.
- 3. O emprego e o aperfeiçoamento de uma ferramenta computacional para viabilizar e otimizar as fases de pré-processamento, processamento e pós-processamento da simulação, como as etapas de configuração e visualização dos resultados obtidos.
- 4. Realização de experimentos numérico-computacionais visando verificar a acurácia da solução bem como sua eficiência computacional.

1.3 Motivação

Este trabalho tem as seguintes motivações:

- O uso de agentes computacionais em simulações é interessante por permitir a modelagem mais realística das entidades presentes no modelo;
- A técnica de bitstring é relativamente nova e relevante, pois possibilita a modelagem de agentes computacionais de forma sucinta e eficiente, evitando desperdícios de memória e facilitando operações na plataforma CUDA.
- O uso da plataforma CUDA é atrativo por possibilitar a paralelização massiva da implementação realizada, proporcionando ganhos de desempenho desejáveis nos experimentos que serão realizados.

1.4 Organização do Trabalho

Fundamentos

- 2.1 Introdução a Epidemiologia Computacional e Textos Correlatos
- 2.2 Tipos de Modelos, Classificação, entre outros
- 2.3 Agentes e Multiagentes
- 2.4 Modelagem em Operadores e Bitstring (Compartimental, Operadores, Bitstring)
- 2.5 Refinamento do Modelo

Metodologias Computacionais

- 3.1 Introdução
- 3.2 SIMULA
- 3.3 Estruturas de Dados, Linguagens, etc.
- 3.4 CUDA e OpenMP

Soluções

- 4.1 Introdução
- 4.2 Normal com CUDA e OpenMP
- 4.3 Bitstring com CUDA e OpenMP
- 4.4 Discussões Qualitativas, Quantitativas, Eficiência, Acurácia

Resultados e Discussões

- 5.1 Introdução
- 5.2 Cases: Discutir Simulações na 445, 445 + Vizinhas e etc.

Glossário