

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Realtek Semiconductor Corp.
Applicant Address	No. 2,Innovation Road II, Hsinchu Science Park, Hsinchu 300,Taiwan
FCC ID	TX2RTL8812AENF
Manufacturer's company	Realtek Semiconductor Corp.
Manufacturer Address	No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Product Name	802.11a/b/g/n/ac RTL8812AENF Combo module
Brand Name	REALTEK
Model No.	RTL8812AENF
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5250 ~ 5350MHz / 5470 ~ 5725MHz
Received Date	Mar. 07, 2014
Final Test Date	Nov. 28, 2014
Submission Type	Original Equipment

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E, KDB789033 D01 v01r04, KDB662911 D01 v02r01, KDB644545 D01 v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CER	TIFICATE OF COMPLIANCE	1
2. SUM	IMARY OF THE TEST RESULT	2
	IERAL INFORMATION	
3.1.	Product Details	
3.2.	Accessories	
3.3.	Table for Filed Antenna	
3.4.	Table for Carrier Frequencies	
3.5.	Table for Test Modes	
3.6.	Table for Testing Locations	
3.7.	Table for Supporting Units	
3.8.	Table for Parameters of Test Software Setting	
3.9.	EUT Operation during Test	
3.10.	, ,	
3.11.	. Test Configurations	15
4. TEST	RESULT	19
4.1.	AC Power Line Conducted Emissions Measurement	19
4.2.	26dB Bandwidth and 99% Occupied Bandwidth Measurement	23
4.3.	Maximum Conducted Output Power Measurement	39
4.4.	Power Spectral Density Measurement	43
4.5.	Radiated Emissions Measurement	52
4.6.	Band Edge Emissions Measurement	84
4.7.	Frequency Stability Measurement	95
4.8.	Antenna Requirements	97
5. LIST (OF MEASURING EQUIPMENTS	98
6. MEA	SUREMENT UNCERTAINTY	100
APPENI	DIX A. TEST PHOTOS	A1 ~ A8
APPENI	DIX B. MAXIMUM PERMISSIBLE EXPOSURE	B1 ~ B4
ADDENI	DIV C. DADIATED EMISSION COLLOCATION DEPODT	C1 ~ C5

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR422118AC	Rev. 01	Initial issue of report	Jan. 13, 2015

Certificate No.: CB10312067

1. CERTIFICATE OF COMPLIANCE

Product Name: 802.11a/b/g/n/ac RTL8812AENF Combo module

Brand Name: REALTEK

Model No. : RTL8812AENF

Applicant: Realtek Semiconductor Corp.

Test Rule Part(s): 47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 07, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Report Format Version: Rev. 01 FCC ID: TX2RTL8812AENF

Page No. : 1 of 100 Issued Date : Jan. 13, 2015

Page No.

: 2 of 100

Issued Date : Jan. 13, 2015

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Rule Section	Result	Under Limit				
4.1	15.207	AC Power Line Conducted Emissions	Complies	14.29 dB			
4.2	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied	Complies	-			
4.2	15.407(a)	Bandwidth	Complies				
4.3	15.407(a)	Maximum Conducted Output Power	Complies	1.16 dB			
4.4	15.407(a)	Power Spectral Density	Complies	1.12 dB			
4.5	15.407(b)	Radiated Emissions	Complies	3.15 dB			
4.6	15.407(b)	Band Edge Emissions	Complies	1.51 dB			
4.7	15.407(g)	Frequency Stability	Complies	-			
4.8	15.203	Antenna Requirements	Complies	-			

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n/ac

Items	Description
Product Type	WLAN (1TX/2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From host system
Modulation	see the below table for IEEE 802.11n/ac
Data Modulation	For 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
	For 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n/ac
Frequency Range	5250 ~ 5350MHz / 5470 ~ 5725MHz
Channel Number	12 for 20MHz bandwidth ; 5 for 40MHz bandwidth
	2 for 80MHz bandwidth
Channel Band Width (99%)	Band 2:
	802.11ac MCS0/Nss1 (VHT20): 18.06 MHz ;
	802.11ac MCS0/Nss1 (VHT40): 37.16 MHz ;
	802.11ac MCS0/Nss1 (VHT80): 60.60 MHz
	Band 3:
	802.11ac MCS0/Nss1 (VHT20): 18.10 MHz ;
	802.11ac MCS0/Nss1 (VHT40): 37.42 MHz ;
	802.11ac MCS0/Nss1 (VHT80): 69.98 MHz
Maximum Conducted Output Power	Band 2:
	802.11ac MCS0/Nss1 (VHT20): 20.83 dBm ;
	802.11ac MCS0/Nss1 (VHT40): 20.65 dBm ;
	802.11ac MCS0/Nss1 (VHT80): 18.82 dBm
	Band 3:
	802.11ac MCS0/Nss1 (VHT20): 20.77 dBm ;
	802.11ac MC\$0/Nss1 (VHT40): 20.71 dBm ;
	802.11ac MCS0/Nss1 (VHT80): 16.73 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Report Format Version: Rev. 01 Page No. : 3 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

IEEE 802.11a

Items	Description
Product Type	WLAN (1TX/2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From host system
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5250 ~ 5350MHz / 5470 ~ 5725MHz
Channel Number	12
Channel Band Width (99%)	For 1TX: Bnad 2: 16.97 MHz ; Bnad 3: 17.01 MHz
	For 2TX: Bnad 2: 17.10 MHz ; Bnad 3: 17.10 MHz
Maximum Conducted Output Power	For 1TX: Band 2: 17.78 dBm ; Band 3: 17.88 dBm
	For 2TX: Band 2: 20.76 dBm ; Band 3: 20.67 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description			
Communication Mode		☐ Frame Based		
TPC Function	With TPC	☐ Without TPC		
Weather Band (5600~5650MHz)	☐ With 5600~5650MHz	☑ Without 5600~5650MHz		
Beamforming Function	With beamforming	☐ Without beamforming		

Note: The product has beamforming function for 802.11n in 2.4G and 11n/ac in 5GHz.

Antenna and Band width

Antenna	Single (TX)			Two (TX)		
Band width Mode	20 MHz	40 MHz	80 MHz	20 MHz	40 MHz	80 MHz
IEEE 802.11a	٧	Х	Х	٧	Х	Х
IEEE 802.11n	٧	٧	Х	٧	٧	Х
IEEE 802.11ac	٧	٧	٧	٧	٧	٧

Report Format Version: Rev. 01 Page No. : 4 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	1 / 2	MCS 0-7 / 0-15
802.11n (HT40)	1 / 2	MCS 0-7 / 0-15
802.11ac (VHT20)	1 / 2	MCS 0-8/Nss1 / MCS 0-8/Nss1-2
802.11ac (VHT40)	1/2	MCS 0-9/Nss1 / MCS 0-9/Nss1-2
802.11ac (VHT80)	1 / 2	MCS 0-9/Nss1 / MCS 0-9/Nss1-2

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT support VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

3.2. Accessories

N/A

Page No. : 5 of 100 Issued Date : Jan. 13, 2015

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain	(dBi)
Ani. Diana	braria	Model Name	, uca 1,pc		2.4GHz	5GHz
1	LYNwave	ALA110-222050-300011	PIFA Antenna	IPEX MHF4	3.5	5

<For 2.4GHz Band>

For IEEE 802.11b mode (1TX, 1RX)

Only Chain 1 can be used as transmitting/receiving antenna.

For IEEE 802.11g mode (1TX/2TX, 2RX)

The EUT can support both 1TX and 2TX functions.

For 1TX

Only Chain 1 can be used as transmitting antenna.

Chain 1 and Chain 2 could receive simultaneously.

For 2TX

Both Chain 1 and Chain 2 can be used as transmitting/receiving antenna.

Chain 1 and Chain 2 could both transmit/receive simultaneously.

For IEEE 802.11n mode (1TX/2TX, 2RX)

The EUT can support both 1TX and 2TX functions.

For 1TX

Only Chain 1 can be used as transmitting antenna.

Chain 1 and Chain 2 could receive simultaneously.

For 2TX

Both Chain 1 and Chain 2 can be used as transmitting/receiving antenna.

Chain 1 and Chain 2 could both transmit/receive simultaneously.

Only 2TX function was selected to test and record in the report, the 1TX test results were covered by 2TX test results.

<For 5GHz Band>

For IEEE 802.11a mode (1TX/2TX, 2RX):

The EUT can support both 1TX and 2TX functions.

For 1TX

Only Chain 1 can be used as transmitting antenna.

Chain 1 and Chain 2 could receive simultaneously.

For 2TX

Both Chain 1 and Chain 2 can be used as transmitting/receiving antenna.

Chain 1 and Chain 2 could both transmit/receive simultaneously.

Report Format Version: Rev. 01 Page No. : 6 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

For IEEE 802.11n/ac mode (1TX/2TX, 2RX):

The EUT can support both 1TX and 2TX functions.

For 1TX

Only Chain 1 can be used as transmitting antenna.

Chain 1 and Chain 2 could receive simultaneously.

For 2TX

Both Chain 1 and Chain 2 can be used as transmitting/receiving antenna.

Chain 1 and Chain 2 could both transmit/receive simultaneously.

Only 2TX function was selected to test and record in the report, the 1TX test results were covered by 2TX test results.

Chain 1 (Connect to Ant 1 for WLAN 2.4G / 5G) Chain 2 (Connect to Ant 1 for WLAN 2.4G / 5G / BT)

Report Format Version: Rev. 01 Page No. : 7 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

3.4. Table for Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 52, 56, 60, 64, 100, 104, 108, 112, 116, 132, 136, 140.

For 40MHz bandwidth systems, use Channel 54, 62, 102, 110, 134.

For 80MHz bandwidth systems, use Channel 58, 106.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260 MHz	60	5300 MHz
5250~5350 MHz	54	5270 MHz	62	5310 MHz
Band 2	56	5280 MHz	64	5320 MHz
	58	5290 MHz	-	-
	100	5500 MHz	112	5560 MHz
	102	5510 MHz	116	5580 MHz
5470~5725 MHz	104	5520 MHz	132	5660 MHz
Band 3	106	5530 MHz	134	5670 MHz
	108	5540 MHz	136	5680 MHz
	110	5550 MHz	140	5700 MHz

: 8 of 100

Issued Date : Jan. 13, 2015

Page No.

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mod	le	Data Rate	Channel	Chain			
AC Power Conducted Emission	Normal Link		-	-	-			
Max. Conducted Output Power	For beamforming mode							
	11ac VHT20	Band 2-3	MCS0/Nss1	52/60/64/100/	1+2			
				116/140				
	11ac VHT40	Band 2-3	MCS0/Nss1	54/62/102/110/	1+2			
				134				
	11ac VHT80	Band 2-3	MCS0/Nss1	58/106	1+2			
	For non-beam	forming mo	de	•				
	11a/BPSK	Band 2-3	6Mbps	52/60/64/100/	1			
				116/140	1+2			
Power Spectral Density	For beamform	ing mode		•				
	11ac VHT20	Band 2-3	MCS0/Nss1	52/60/64/100/	1+2			
				116/140				
	11ac VHT40	Band 2-3	MCS0/Nss1	54/62/102/110/	1+2			
				134				
	11ac VHT80	Band 2-3	MCS0/Nss1	58/106	1+2			
	For non-beam	forming mo	de					
	11a/BPSK	Band 2-3	6Mbps	52/60/64/100/	1			
				116/140	1+2			
26dB Spectrum Bandwidth	For beamform	ing mode						
99% Occupied Bandwidth	11ac VHT20	Band 2-3	MCS0/Nss1	52/60/64/100/	1+2			
Measurement				116/140				
	11ac VHT40	Band 2-3	MCS0/Nss1	54/62/102/110/	1+2			
				134				
	11ac VHT80	Band 2-3	MCS0/Nss1	58/106	1+2			
	For non-beamforming mode							
	11a/BPSK	Band 2-3	6Mbps	52/60/64/100/	1			
				116/140	1+2			

Peak Excursion	For beamform	ing mode						
	11ac VHT20	Band 2-3	MCS0/Nss1	52/60/64/100/ 116/140	1+2			
	11ac VHT40	Band 2-3	MCS0/Nss1	54/62/102/110/ 134	1+2			
	11ac VHT80	Band 2-3	MCS0/Nss1	58/106	1+2			
	For non-beam	forming mo	de		•			
	11a/BPSK	Band 2-3	6Mbps	52/60/64/100/ 116/140	1 1+2			
Radiated Emission Below 1GHz	Normal Link	L	-	-	-			
Radiated Emission Above 1GHz	For beamform	ing mode	1		1			
	11ac VHT20	Band 2-3	MCS0/Nss1	52/60/64/100/ 116/140	1+2			
	11ac VHT40	Band 2-3	MCS0/Nss1	54/62/102/110/ 134	1+2			
	11ac VHT80	Band 2-3	MCS0/Nss1	58/106	1+2			
	For non-beamforming mode							
	11a/BPSK	Band 2-3	6Mbps	52/60/64/100/ 116/140	1 1+2			
Band Edge Emission	For beamforming mode							
	11ac VHT20	Band 2-3	MCS0/Nss1	52/60/64/100/ 116/140	1+2			
	11ac VHT40	Band 2-3	MCS0/Nss1	54/62/102/110/ 134	1+2			
	11ac VHT80	Band 2-3	MCS0/Nss1	58/106	1+2			
	For non-beam	forming mo	de	•	•			
	11a/BPSK	Band 2-3	6Mbps	52/60/64/100/	1			
				116/140	1+2			
Frequency Stability	Un-modulation	า	-	60/100	1+2			

Note: VHT20/VHT40 covers HT20/HT40, due to same modulation.

Note: There are two modes of EUT, one is beamforming mode, and the other is non-beamforming mode for n/ac, after evaluating, beamforming mode has been evaluated to be the worst case, so it was selected to test and record in this test report.

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. Normal Link

For Radiated Emission below 1GHz test:

Mode 1. Normal Link

For Radiated Emission above 1GHz test:

Mode 1. CTX

For Radiated Emission Co-location Test:

Mode 1. EUT- 2.4G WLAN + Bluetooth

Mode 2. EUT- 5G WLAN + Bluetooth

For Co-location MPE:

The EUT could be applied with 2.4GHz WLAN+Bluetooth function and 5GHz WLAN+Bluetooth functiontherefore; Co-location Maximum Permissible Exposure (Please refer to Appendix B) and Radiated Emission Co-location (please refer to Appendix C) tests are added for simultaneously transmit among 2.4GHz WLAN+Bluetooth function and 5GHz WLAN+Bluetooth function.

3.6. Table for Testing Locations

Test Site Location						
Address:	No.	8, Lane 724, Bo-a	i St., Jhubei City,	Hsinchu County 3	02, Taiwan, R.O.C	.
TEL:	886	5-3-656-9065				
FAX:	886-3-656-9085					
Test Site N	ο.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH01-0	СВ	SAC	Hsin Chu	262045	IC 4086D	-
CO01-C	В	Conduction	Hsin Chu	262045	IC 4086D	-
TH01-CB	3	OVEN Room	Hsin Chu	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

Report Format Version: Rev. 01 Page No. : 11 of 100
FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

3.7. Table for Supporting Units

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
Notebook*2	DELL	E6430	DoC
AP Router	Planex	GW-AP54SGX	KA220030603014-1
Mouse	Logitech	M-U0026	DoC
Earphone	SHYARO CHI	MIC-04	N/A
Device	REALTEK	RTL8812AENF	TX2RTL8812AENF
Test Fixture*2	Realtek	NGFF Adapter	N/A

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	DoC
Test Fixture	Realtek	NGFF Adapter	N/A

For Test Site No: 03CH01-CB <Below 1GHz test>

Support Unit	Brand	Model	FCC ID
Notebook*2	DELL	E6430	DoC
AP Router	Planex	GW-AP54SGX	KA220030603014-1
Mouse	Logitech	M-U0026	DoC
Earphone	E-BOOKI	E-EPC040	N/A
Device	REALTEK	RTL8812AENF	TX2RTL8812AENF
Test Fixture*2	Realtek	NGFF Adapter	N/A

For Test Site No: 03CH01-CB < Above 1GHz test / For non-beamforming mode>

Support Unit	Brand	Model	FCC ID		
Notebook	DELL	E6430	DoC		
Test Fixture	Realtek	NGFF Adapter	N/A		

For Test Site No: 03CH01-CB < Above 1GHz test / For beamforming mode>

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	DoC
Notebook	DELL	D420	DoC
AP Router	Planex	GW-AP54SGX	KA220030603014-1
Test Fixture	Realtek	NGFF Adapter	N/A

Report Format Version: Rev. 01 Page No. : 12 of 100
FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

3.8. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

<For non-beamforming mode>

Power Parameters of IEEE 802.11a

Test Software Version	Realtek 11ac 8812A PCIE WLAN MP Diagnostic Program 0.0057.02.20140110					
Frequency	5260 MHz	5300 MHz	5320 MHz	5500 MHz	5580 MHz	5700 MHz
802.11a / 1TX	45	45	45	51	50	47
802.11a / 2TX	47/46	47/46	48/45	51/50	52/48	50/45

<For beamforming mode>

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT20

Test Software Version	Realtek 11ac 8812A PCIE WLAN MP Diagnostic Program 0.0057.02.20140110					
Frequency	5260 MHz	5300 MHz	5320 MHz	5500 MHz	5580 MHz	5700 MHz
MCS0/Nss1 VHT20	47/46	47/47	48/47	53/51	53/47	51/45

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT40

Test Software Version	Realtek 11ac 8812A PCIE WLAN MP Diagnostic Program 0.0057.02.20140110				
Frequency	5270 MHz	5310 MHz	5510 MHz	5550 MHz	5670 MHz
MCS0/Nss1 VHT40	49/49	44/42	47/45	54/53	52/48

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT80

Test Software Version	Realtek 11ac 8812A PCIE WLAN MP Diagnostic Program 0.0057.02.20140110			
Frequency	5290 MHz	5530 MHz		
MCS0/Nss1 VHT80	44/43	44/42		

Page No. : 13 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

3.9. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

For Radiated Mode:

During the test, the following programs under WIN XP were executed.

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under DOS.
- 3. Executed "Lantest.exe" to link with the remote workstation to receive and transmit packet by Wireless AP and transmit duty cycle no less 98%

3.10. Duty Cycle

For non-beamforming mode:

Mode	On Time On+Off Time D		Duty Cycle	Duty Factor	1/T Minimum VBW	
Wode	(ms)	(ms)	(%)	(dB)	(kHz)	
802.11a	1.000	1.000	100.00%	0.00	0.01	

For beamforming mode:

Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
Mode	(ms)	(ms)	(%)	(dB)	(kHz)
802.11ac MCS0/Nss1 VHT20	1.930	2.085	92.57%	0.34	0.52
802.11ac MCS0/Nss1 VHT40	0.896	1.032	86.82%	0.61	1.12
802.11ac MCS0/Nss1 VHT80	1.715	1.85	92.70%	0.33	0.58

Report Format Version: Rev. 01 Page No. : 14 of 100
FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

3.11. Test Configurations

3.11.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shielded	Length
1	Power cable	No	2.6m
2	USB cable	Yes	1.8m
3	Audio cable	No	1.5m

3.11.2. Radiation Emissions Test Configuration

Test Configuration: 30MHz~1GHz

Item	Connection	Shielded	Length
1	Power cable	No	2.6m
2	USB cable	Yes	1.8m
3	Audio cable	No	1.5m

Test Configuration: above 1GHz For non-beamforming mode

Item	Connection	Shielded	Length
1	Power cable	No	2.6m

For beamforming mode

Item	Connection	Shielded	Length
1	Power cable	No	2.6m
2	RJ-45 cable	No	1.5m

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: Rev. 01 Page No. : 19 of 100

FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

 Report Format Version: Rev. 01
 Page No.
 : 20 of 100

 FCC ID: TX2RTL8812AENF
 Issued Date
 : Jan. 13, 2015

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	25°C	Humidity	52%
Test Engineer	Parody Lin	Phase	Line
Configuration	Normal Link		

	Freq	Level	Over Limit	Limit Line	LISN Factor	Read Level		Pol/Phase	Remark
	MHz	dBuV	dВ	dBuV	dB	dBuV	dB		
1	0.15080	34.93	-21.03	55.96	0.15	34.60	0.18	LINE	AVERAGE
2	0.15080	47.41	-18.55	65.96	0.15	47.08	0.18	LINE	QP
3 @	0.18443	49.79	-14.49	64.28	0.15	49.45	0.19	LINE	QP
4	0.18443	36.73	-17.55	54.28	0.15	36.39	0.19	LINE	AVERAGE
5 @	0.19242	49.64	-14.29	63.93	0.15	49.29	0.20	LINE	QP
6	0.19242	37.91	-16.02	53.93	0.15	37.56	0.20	LINE	AVERAGE
7	0.25888	32.88	-18.59	51.47	0.15	32.53	0.20	LINE	AVERAGE
8	0.25888	43.47	-18.00	61.47	0.15	43.12	0.20	LINE	QP
9	3.922	29.68	-16.32	46.00	0.28	29.11	0.30	LINE	AVERAGE
10	3.922	37.68	-18.32	56.00	0.28	37.11	0.30	LINE	QP
11	6.056	40.86	-19.14	60.00	0.31	40.22	0.33	LINE	QP
12	6.056	34.40	-15.60	50.00	0.31	33.76	0.33	LINE	AVERAGE
13	18.622	26.57	-23.43	50.00	0.57	25.51	0.49	LINE	AVERAGE
14	18.622	37.44	-22.56	60.00	0.57	36.38	0.49	LINE	OP

Report Format Version: Rev. 01 FCC ID: TX2RTL8812AENF

Page No. : 21 of 100 Issued Date : Jan. 13, 2015

Temperature	25°C	Humidity	52%
Test Engineer	Parody Lin	Phase	Neutral
Configuration	Normal Link		

			over	Limit	TIZM	Kead	Савте		
	Freq	Level	Limit	Line	Factor	Level	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dB	dBuV	dB		
1	0.15080	48.43	-17.53	65.96	0.07	48.18	0.18	NEUTRAL	QP
2	0.15080	36.52	-19.44	55.96	0.07	36.27	0.18	NEUTRAL	AVERAGE
3	0.18152	34.34	-20.07	54.42	0.07	34.08	0.19	NEUTRAL	AVERAGE
4	0.18152	48.39	-16.02	64.42	0.07	48.13	0.19	NEUTRAL	QP
5	0.18739	38.26	-15.90	54.15	0.07	37.99	0.20	NEUTRAL	AVERAGE
6	0.18739	48.98	-15.18	64.15	0.07	48.71	0.20	NEUTRAL	QP
7	0.25211	44.06	-17.63	61.69	0.07	43.79	0.20	NEUTRAL	QP
8	0.25211	33.45	-18.24	51.69	0.07	33.18	0.20	NEUTRAL	AVERAGE
9	4.180	29.73	-16.27	46.00	0.13	29.29	0.30	NEUTRAL	AVERAGE
10	4.180	37.82	-18.18	56.00	0.13	37.38	0.30	NEUTRAL	QP
11	4.952	38.97	-17.03	56.00	0.15	38.50	0.32	NEUTRAL	QP
12 @	4.952	31.34	-14.66	46.00	0.15	30.87	0.32	NEUTRAL	AVERAGE
13	18.039	36.63	-23.37	60.00	0.41	35.73	0.48	NEUTRAL	QP
14	18.039	25.46	-24.54	50.00	0.41	24.56	0.48	NEUTRAL	AVERAGE

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB Bandwidth			
Spectrum Parameters	Setting		
Attenuation	Auto		
Span Frequency	> 26dB Bandwidth		
RBW	Approximately 1% of the emission bandwidth		
VBW	VBW > RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		
	99% Occupied Bandwidth		
Spectrum Parameters	Setting		
Span	1.5 times to 5.0 times the OBW		
RBW	1 % to 5 % of the OBW		
VBW	≥ 3 x RBW		
Detector	Peak		
Trace	Max Hold		

4.2.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.2.4. Test Setup Layout

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 23 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

4.2.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

Temperature	20°C	Humidity	52%
Test Engineer	Lucas Huang	Configurations	IEEE 802.11a

<For non-beamforming mode>

Configuration IEEE 802.11a / Chain 1

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
52	5260 MHz	24.69	16.93
60	5300 MHz	23.88	16.97
64	5320 MHz	24.81	16.97
100	5500 MHz	25.28	16.93
116	5580 MHz	25.50	17.01
140	5700 MHz	25.39	16.97

Configuration IEEE 802.11a / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
52	5260 MHz	22.72	17.10
60	5300 MHz	22.26	16.67
64	5320 MHz	22.72	16.67
100	5500 MHz	22.26	17.10
116	5580 MHz	22.37	17.10
140	5700 MHz	22.60	17.10

Report Format Version: Rev. 01 Page No. : 24 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

Temperature	20°C	Humidity	52%
Test Engineer	Lucas Huang	Configurations	IEEE 802.11ac

<For beamforming mode>

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
52	5260 MHz	23.88	17.93
60	5300 MHz	27.47	18.01
64	5320 MHz	31.88	18.06
100	5500 MHz	25.15	17.93
116	5580 MHz	24.00	18.10
140	5700 MHz	22.26	17.93

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
54	5270 MHz	67.24	37.07
62	5310 MHz	44.98	37.33
102	5510 MHz	44.98	36.90
110	5550 MHz	66.08	37.42
134	5670 MHz	67.24	36.99

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
58	5290 MHz	83.01	60.60
106	5530 MHz	98.32	69.98

 Report Format Version: Rev. 01
 Page No. : 25 of 100

 FCC ID: TX2RTL8812AENF
 Issued Date : Jan. 13, 2015

<For non-beamforming mode>

For 1TX

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5260 MHz

Date: 27 NO V .2014 15:59:38

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5300 MHz

Date: 27 NOV.2014 16:00:07

Report Format Version: Rev. 01 Page No. : 26 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5320 MHz

Date: 27 NO V .2014 16:00:36

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5500 MHz

Date: 27 NO V .2014 16:01:56

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5580 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5700 MHz

Date: 27 NOV.2014 16:03:41

For 2TX 26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5260 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5300 MHz

Date: 27 NO V .2014 16:08:01

Page No. : 29 of 100 Issued Date : Jan. 13, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 \pm Chain 2 / 5320 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 \pm Chain 2 / 5500 MHz

Date: 27 NO V .2014 16:09:15

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 \pm Chain 2 / 5580 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 \pm Chain 2 / 5700 MHz

Date: 27 NO V .2014 16:10:04

Report Format Version: Rev. 01 FCC ID: TX2RTL8812AENF

Page No. : 31 of 100 Issued Date : Jan. 13, 2015

<For beamforming mode>

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 / 5260 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 / 5300 MHz

Date: 26 NO V .2014 16:03:56

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 / 5320 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 / 5500 MHz

Date: 26 NO V .2014 16:05:50

Report Format Version: Rev. 01 FCC ID: TX2RTL8812AENF

Page No. : 33 of 100 Issued Date : Jan. 13, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 / 5580 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 / 5700 MHz

Date: 26 NO V .2014 16:09:24

Page No. : 34 of 100

Issued Date : Jan. 13, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 / 5270 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 / 5310 MHz

Date: 26 NO V .2014 16:12:49

Report Format Version: Rev. 01 FCC ID: TX2RTL8812AENF

Page No. : 35 of 100 Issued Date : Jan. 13, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 / 5510 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 / 5550 MHz

Date: 26 NO V .2014 16:14:27

Page No. : 36 of 100

Issued Date : Jan. 13, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 / 5670 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2 / 5290 MHz

Date: 26 NO V .2014 16:18:17

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2 / 5530 MHz

Date: 26 NOV.2014 16:19:26

Page No. : 38 of 100

Issued Date : Jan. 13, 2015

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

For the 5.25-5.35 GHz and 5.470-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	AVERAGE

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- Test was performed in accordance with KDB789033 D01 v01r04 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3) Measurement using a power meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions
 Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

Report Format Version: Rev. 01 Page No. : 39 of 100

FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 40 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	20 ℃	Humidity	52%
Test Engineer	Lucas Huang	Configurations	IEEE 802.11a
Test Date	Nov. 26, 2014		

<For non-beamforming mode>

Configuration IEEE 802.11a / Chain 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
52	5260 MHz	17.64	24.00	Complies
60	5300 MHz	17.71	24.00	Complies
64	5320 MHz	17.78	24.00	Complies
100	5500 MHz	17.64	24.00	Complies
116	5580 MHz	17.88	24.00	Complies
140	5700 MHz	17.72	24.00	Complies

Configuration IEEE 802.11a / Chain 1 + Chain 2

Channel	nnel Frequency Conducted Power (dBm)		Max. Limit	Result		
Charinei	riequency	Chain 1	Chain 2	Total	(dBm)	Resuli
52	5260 MHz	17.62	17.52	20.58	24.00	Complies
60	5300 MHz	17.88	17.62	20.76	24.00	Complies
64	5320 MHz	17.64	17.64	20.65	24.00	Complies
100	5500 MHz	17.66	17.65	20.67	24.00	Complies
116	5580 MHz	17.56	17.74	20.66	24.00	Complies
140	5700 MHz	17.72	17.54	20.64	24.00	Complies

Report Format Version: Rev. 01 Page No. : 41 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

Temperature	20°C	Humidity	52%
Test Engineer	Lucas Huang	Configurations	IEEE 802.11ac
Test Date	Nov. 26, 2014		

<For beamforming mode>

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2

Channel Frequency		Conducted Power (dBm)			Max. Limit	Result
Charine	Frequency	Chain 1	Chain 2	Total	(dBm)	Kesuli
52	5260 MHz	17.60	17.50	20.56	21.99	Complies
60	5300 MHz	17.56	17.94	20.76	21.99	Complies
64	5320 MHz	17.76	17.88	20.83	21.99	Complies
100	5500 MHz	17.52	17.76	20.65	21.99	Complies
116	5580 MHz	17.86	17.66	20.77	21.99	Complies
140	5700 MHz	17.66	17.60	20.64	21.99	Complies

Note: $\sum_{\text{Directional Gain} = 10.10g} \left[\sum_{n=1}^{\infty} \left\{ \sum_{i=1}^{\infty} g_{i,k} \right\}^{n} \right] = 8.01 \text{dBi} > 6 \text{dBi}, \text{So Power Limit} = 24-(8.01-6) = 21.99 \text{dBm}$

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2

Channel	Conducted Power (dBm)		Max. Limit	Result		
Channel	Frequency	Chain 1	Chain 2	Total	(dBm)	Kesuli
54	5270 MHz	17.52	17.76	20.65	21.99	Complies
62	5310 MHz	16.08	15.62	18.87	21.99	Complies
102	5510 MHz	14.95	14.97	17.97	21.99	Complies
110	5550 MHz	17.77	17.62	20.71	21.99	Complies
134	5670 MHz	17.56	17.52	20.55	21.99	Complies

Note: $\sum_{Directional Gain = 10 \cdot 10s} \left[\sum_{N=1}^{\infty} \left\{ \sum_{i=1}^{\infty} g_{i,k} \right\}^{2} \right] = 8.01 dBi > 6 dBi, So Power Limit = 24-(8.01-6) = 21.99 dBm$

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2

Channel	Eroguopov	Conducted Power (dBm)			Max. Limit	Result
Charine	Frequency	Chain 1	Chain 2	Total	(dBm)	Kesuli
58	5290 MHz	16.02	15.58	18.82	21.99	Complies
106	5530 MHz	13.91	13.52	16.73	21.99	Complies

Note: $\sum_{Directional Gain = 10 \cdot 10s} \left[\sum_{k=1}^{\infty} \frac{1}{2} \frac{1}{2}$

Report Format Version: Rev. 01 Page No. : 42 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

4.4. Power Spectral Density Measurement

4.4.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

Frequency Range	Power Spectral Density limit (dBm/MHz)
5.25-5.35 GHz	11
5.470-5.725 GHz	11

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- Test was performed in accordance with KDB789033 D01 v01r04 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Peak power spectral density (PPSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.

Report Format Version: Rev. 01 Page No. : 43 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Issued Date : Jan. 13, 2015

4.4.7. Test Result of Power Spectral Density

Temperature	20 ℃	Humidity	52%
Test Engineer	Lucas Huang	Configurations	IEEE 802.11a
Test Date	Nov. 26, 2014		

<For non-beamforming mode>

Configuration IEEE 802.11a / Chain 1

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
52	5260 MHz	4.36	11.00	Complies
60	5300 MHz	4.68	11.00	Complies
64	5320 MHz	5.02	11.00	Complies
100	5500 MHz	4.60	11.00	Complies
116	5580 MHz	5.21	11.00	Complies
140	5700 MHz	4.74	11.00	Complies

Configuration IEEE 802.11a / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
52	5260 MHz	7.82	8.99	Complies
60	5300 MHz	7.87	8.99	Complies
64	5320 MHz	7.70	8.99	Complies
100	5500 MHz	7.17	8.99	Complies
116	5580 MHz	7.73	8.99	Complies
140	5700 MHz	7.52	8.99	Complies

Note: Directional Gain = $10 \cdot log \left[\sum_{s=1}^{\infty} \left\{ \sum_{s=1}^{\infty} s_{s,s} \right\}^{s} \right] = 8.01 dBi > 6 dBi, So PSD Limit = 11 - (8.01-6) = 8.99 dBm/MHz$

Report Format Version: Rev. 01 Page No. : 45 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

Temperature	emperature 20°C		52%	
Test Engineer	Lucas Huang	Configurations	IEEE 802.11ac	
Test Date	Nov. 26, 2014			

<For beamforming mode>

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
52	5260 MHz	7.02	8.99	Complies
60	5300 MHz	7.53	8.99	Complies
64	5320 MHz	7.61	8.99	Complies
100	5500 MHz	7.12	8.99	Complies
116	5580 MHz	7.81	8.99	Complies
140	5700 MHz	6.89	8.99	Complies

Note: $\underset{\text{Directional Gain}}{\text{Note:}} \sum_{s=1}^{\infty} \left\{ \sum_{k=1}^{\infty} \frac{s_{s,k}}{s_{s,k}} \right\}^{s} = 8.01 \, \text{dBi} > 6 \, \text{dBi}, \text{So PSD Limit} = 11-(8.01-6) = 8.99 \, \text{dBm/MHz}$

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
54	5270 MHz	4.67	8.99	Complies
62	5310 MHz	2.08	8.99	Complies
102	5510 MHz	0.88	8.99	Complies
110	5550 MHz	4.57	8.99	Complies
134	5670 MHz	4.55	8.99	Complies

Note: $\sum_{Directional Gain = 10 \cdot 10g} \left[\sum_{n=10 \cdot 10g} \left[\sum_{n=$

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2

Channel	Frequency	Total Power Density Max. Limit (dBm/MHz) (dBm/MHz)		Result
58	5290 MHz	1.95	8.99	Complies
106	5530 MHz	-2.15	8.99	Complies

Note: Directional Gain = $10 \cdot log \left[\frac{\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum$

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Report Format Version: Rev. 01 Page No. : 46 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

: 47 of 100

Issued Date : Jan. 13, 2015

Page No.

<For non-beamforming mode>

For 1TX

Power Density Plot on Configuration IEEE 802.11a / Chain 1 / 5320 MHz

Power Density Plot on Configuration IEEE 802.11a / Chain 1 / 5580 MHz

For 2TX

Power Density Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5300 MHz

Power Density Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5580 MHz

<For beamforming mode>

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 / 5320 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 / 5580 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 / 5270 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 / 5550 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2 / 5290 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2 / 5530 MHz

4.5. Radiated Emissions Measurement

4.5.1. Limit

For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.470-5.725 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

Report Format Version: Rev. 01 Page No. : 52 of 100
FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

4.5.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report Format Version: Rev. 01 Page No. : 53 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

: 54 of 100

Issued Date : Jan. 13, 2015

Page No.

4.5.4. Test Setup Layout

For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

For Non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	26°C	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	Normal Link
Test Date	Nov. 28, 2014		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limit_limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

Report Format Version: Rev. 01 Page No. : 56 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	26°C	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	Normal Link

Horizontal

			Limit	0∨er	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
		Jn. a //	Jn. a //		Jn. a r		do /					
	MHZ	aBu√/m	dBu∨/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	98.87	38.76	43.50	-4.74	54.41	1.17	10.79	27.61	Peak	100	ø	HORIZONTAL
2	143.49	39.55	43.50	-3.95	53.34	1.42	12.17	27.38	Peak	100	0	HORIZONTAL
3	166.77	39.33	43.50	-4.17	52.60	1.46	12.54	27.27	Peak	100	0	HORIZONTAL
4	274.44	42.52	46.00	-3.48	54.51	1.90	13.06	26.95	Peak	100	0	HORIZONTAL
5	298.69	41.67	46.00	-4.33	53.19	2.03	13.35	26.90	Peak	100	0	HORIZONTAL
6	531.49	40.14	46.00	-5.86	47.52	2.74	17.98	28.10	Peak	100	0	HORIZONTAL
7	800.18	37.47	46.00	-8.53	42.08	3.22	19.77	27.60	Peak	100	0	HORIZONTAL
8	875.84	37.10	46.00	-8.90	40.74	3.46	20.35	27.45	Peak	100	Ø	HORIZONTAL

Vertical

	Freq	Level	Limit Line	0ver Limit				Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu\∕/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	34.85	36.04	40.00	-3.96	47.06	0.70	16.08	27.80	Peak	400	0	VERTICAL
2	67.83	34.26	40.00	-5.74	54.35	0.97	6.67	27.73	Peak	400	0	VERTICAL
3	77.53	36.33	40.00	-3.67	56.04	0.95	7.03	27.69	Peak	400	0	VERTICAL
4	98.87	39.75	43.50	-3.75	55.40	1.17	10.79	27.61	Peak	400	0	VERTICAL
5	165.80	36.21	43.50	-7.29	49.56	1.45	12.47	27.27	Peak	400	0	VERTICAL
6	275.41	36.90	46.00	-9.10	48.87	1.91	13.07	26.95	QP	298	360	VERTICAL
7	299.66	42.85	46.00	-3.15	54.36	2.03	13.36	26.90	Peak	400	0	VERTICAL
8	375.32	42.00	46.00	-4.00	51.83	2.20	15.40	27.43	QP	159	224	VERTICAL
9	566 41	42 75	46 00	-3 25	49 68	2 79	18 38	28 10	Peak	400	a	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 58 of 100

Issued Date : Jan. 13, 2015

4.5.9. Results for Radiated Emissions (1GHz~40GHz)

<For non-beamforming mode>

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 52 / Chain 1
Test Date	Nov. 27, 2014		

Horizontal

	Freq	Level		Over Limit					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	₫B	dBuV	dB	dB/m	dB	 deg	Cm	
1 2	15778.21 15779.33								156 156		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level			Read Level				Remark	T/Pos		Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBuV	₫B	dB/m	ďВ		deg	Cm	
1 2	15770.04 15787.82									308 308		VERTICAL VERTICAL

Report Format Version: Rev. 01 Page No. : 59 of 100
FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

Temperature	26°C	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 60 / Chain 1
Test Date	Nov. 27, 2014		

Horizontal

	Freq	Level	Limi t Line		Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	dB	dB/m	dВ	deg	Cm	
1 2 3 4	10594.73 10598.12 15892.88 15894.82	52.31 55.10	74.00 74.00	-21.69 -18.90	42.72 44.07	6.21 7.68	38.38 38.38	35.00 35.03	172 172 325 325	155 168	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limi t Line	Over Limit	Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	dB	dB/m	dB	deg	Cm	
1 2 3 4	10591.43 10592.94 15890.51 15897.92	52.37 55.55	74.00 74.00	-21.63 -18.45	42.79 44.52	6.20 7.68	38.38 38.38	35.00 35.03	322 322 183 183	165 168	VERTICAL VERTICAL VERTICAL VERTICAL

Page No. : 60 of 100

Issued Date : Jan. 13, 2015

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 64 / Chain 1
Test Date	Nov. 27, 2014		

Horizontal

	Freq	Level		Over Limit						T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBu∇	dB	dB/m	dB		deg	Cm	
1 2 3 4	10636.27 10638.81 15950.13 15957.34	38.99 41.92	54.00 54.00	-12.08	29.36 30.96	6.23 7.70	38.37 38.34	35.08	Average Average	134 134 267 267	165 160	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	Over Limit	Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBuV	dB	dB/m	dВ	deg	Cm	
1 2 3 4	10636.12 10637.95 15950.51 15955.37	53.04 55.04	74.00 74.00	-15.11 -20.96 -18.96 -12.21	43.41 44.08	6.23 7.70	38.37 38.34	34.97 35.08	355 355 161 161	166 160	VERTICAL VERTICAL VERTICAL VERTICAL

Page No. : 61 of 100 Issued Date : Jan. 13, 2015

Temperature	26°C	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 100 / Chain 1
Test Date	Nov. 27, 2014		

Horizontal

	Freq	Level	Limit Line	Over Limit					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	dB	dB/m	dB	 deg	Cm	
1 2	10997.66 11003.21								128 128		HORIZONTAL HORIZONTAL

	Freq	Level	Limi t Line		Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	dB	dB/m	dB	 deg	Cm	
1 2	10995.75 10996.12								254 254		VERTICAL VERTICAL

Temperature	26°C	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 116 / Chain 1
Test Date	Nov. 27, 2014		

Horizontal

	Freq	Level	Limi t Line	Over Limit					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	ďВ	dBuV	dB	dB/m	dB	 deg	Cm	
1 2	11156.06 11160.06								92 92		HORIZONTAL HORIZONTAL

	Freq	Level	Limi t Line		Read Level				T/Pos		Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB	 deg	Cm	
1 2	11153.17 11164.43								111 111	7.7.7	VERTICAL VERTICAL

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 140 / Chain 1
Test Date	Nov. 27, 2014		

Horizontal

	Freq	Level			Read Level				Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBu∇	₫B	dB/m	dB		deg	Cm	
1 2	11399.94 11403.88									324 324		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBuV	dB	dB/m	ďВ	 deg	Cm	
1 2	11400.12 11403.79								357 357		VERTICAL VERTICAL

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 52/
lesi Engineer	Lucus nuarig / Ariay isai	Cornigulations	Chain 1 + Chain 2
Test Date	Nov. 27, 2014		

Horizontal

Freq	Level		0ver Limit						A/Pos	Remark	Pol/Phase
MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB	deg	cm		
15787.00 15787.28								96 96		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level		0ver Limit						A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu\∕/m	dB	dBu∀	dB	dB/m	dB	deg	cm		
1	15775.84	60.27	74.00	-13.73	44.41	12.57	38.11	34.82	122	155	Peak	VERTICAL
2	15782.80	47.33	54.00	-6.67	31.49	12.57	38.09	34.82	122	155	Average	VERTICAL

Temperature	26°C	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 60 /
Test Engineer	Lucas nualig / Allay isai	Configurations	Chain 1 + Chain 2
Test Date	Nov. 27, 2014		

Horizontal

	Freq	Level						Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	deg	cm		
1 2 3	10592.60 10596.48 15904.76	43.99	54.00	-10.01	29.14	10.16	38.92	34.23	66 66 14	160	Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL
	15909.24								14		Average	HORIZOHTAL

	Freq	Level		0∨er Limit					T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	deg	cm		
1	10600.28	43.85	54.00	-10.15	29.01	10.16	38.92	34.24	172	160	Average	VERTICAL
2	10606.40	56.46	74.00	-17.54	41.60	10.19	38.92	34.25	172	160	Peak	VERTICAL
3	15898.80	60.68	74.00	-13.32	45.04	12.57	37.94	34.87	295	160	Peak	VERTICAL
4	15909.84	47.77	54.00	-6.23	32.16	12.56	37.92	34.87	295	160	Average	VERTICAL

		1	
		F	
SP	ORI	ON	LAB.

Temperature	26℃	Humidity	68%			
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 64/			
Test Engineer	Lucas Huang / Anay Isai	Configurations	Chain 1 + Chain 2			
Test Date	Nov. 27, 2014					

Horizontal

	Freq	Level						Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	deg	cm		
1	10632.80	43.59	54.00	-10.41	28.75	10.21	38.93	34.30	269	160	Average	HORIZONTAL
2	10639.60	56.53	74.00	-17.47	41.70	10.21	38.93	34.31	269	160	Peak	HORIZONTAL
3	15955.96	47.51	54.00	-6.49	31.99	12.56	37.85	34.89	331	160	Average	HORIZOHTAL
4	15959.00	61.19	74.00	-12.81	45.67	12.56	37.85	34.89	331	160	Peak	HORIZONTAL

	Freq	Level		0ver Limit					T/Pos	A/Pos Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	deg	Cm	
1	10638.84	43.67	54.00	-10.33	28.84	10.21	38.93	34.31	85	160 Average	VERTICAL
2	10642.28	56.61	74.00	-17.39	41.79	10.21	38.93	34.32	85	160 Peak	VERTICAL
3	15955.20	47.29	54.00	-6.71	31.77	12.56	37.85	34.89	288	160 Average	VERTICAL
4	15963.76	60.33	74.00	-13.67	44.82	12.56	37.85	34.90	288	160 Peak	VERTICAL

Temperature	26°C	Humidity	68%			
Test Engineer	Lugge Hugna / Andy Tegi	Configurations	IEEE 802.11a CH 100/			
Test Engineer	Lucas Huang / Andy Tsai	Configurations	Chain 1 + Chain 2			
Test Date	Nov. 27, 2014					

Horizontal

Freq	Level		0ver Limit					T/Pos	A/Pos	Remark	Pol/Phase
MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB	deg	cm		
10992.68 11003.08										Average Peak	HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		0ver Limit						A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu∨/m	dB	dBu∀	dB	dB/m	dB	deg	cm		
1	10991.12	43.61	54.00	-10.39	29.05	10.55	39.00	34.99	19	160	Average	VERTICAL
2	10997.28	56.54	74.00	-17.46	41.99	10.55	39.00	35.00	19	160	Peak	VERTICAL

Page No. : 68 of 100 Issued Date : Jan. 13, 2015

Temperature	26°C	Humidity	68%			
Test Engineer	Lucas Huana / Analy Tari	Configurations	IEEE 802.11a CH 116/			
Test Engineer	Lucas Huang / Andy Tsai	Configurations	Chain 1 + Chain 2			
Test Date	Nov. 27, 2014					

Horizontal

Freq	Level						Preamp Factor		A/Pos	Remark	Pol/Phase
MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB	deg	Cm		
11154.96 11155.08										Peak Average	HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line						T/Pos	A/Pos	Remark	Pol/Phase	
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB	deg	cm			
1	11165.32	56.67	74.00	-17.33	41.95	10.61	39.13	35.02	309	160	Peak	VERTICAL	
2	11166.24	43.21	54.00	-10.79	28.49	10.61	39.13	35.02	309	160	Average	VERTICAL	

Page No. : 69 of 100 Issued Date : Jan. 13, 2015

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 140/
lesi Engineei	Lucus nuarig / Ariay isai	Cornigulations	Chain 1 + Chain 2
Test Date	Nov. 27, 2014		

Horizontal

Freq	Level		0ver Limit						A/Pos	Remark	Pol/Phase
MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB	deg	cm		
11393.84 11400.12								62 62		Peak Average	HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line						T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB	deg			
1	11392.24	57.87	74.00	-16.13	42.90	10.69	39.31	35.03	34	168	Peak	VERTICAL
2	11399.56	44.79	54.00	-9.21	29.81	10.69	39.32	35.03	34	168	Average	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 70 of 100 Issued Date : Jan. 13, 2015

<For beamforming mode>

Temperature	26°C	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20
Test Engineer	Lucas Huang / Anay isai	Configurations	CH 52 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level	Limit Line		Read Level				T/Pos		Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dВ	 deg	Cm	
1 2	15779.66 15783.54								214 214		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line		Read Level				T/Pos		Pol/Phase
	МНг	dBuV/m	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB	 deg	Cm	
1 2	15776.74 15779.68								280 280		VERTICAL VERTICAL

Page No. : 71 of 100

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCSO/Nss1 VHT20
lesi Engineei	Lucus Hudrig / Ariay isai	Cornigulations	CH 60 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	dВ	dBuV	dB	dB/m	dB	deg	Cm	
1 2 3 4	10600.16 10600.32 15899.88 15902.32	49.09 55.74	74.00 74.00	-16.98 -24.91 -18.26 -11.38	39.23 44.48	6.60 7.97	38.38 38.38	35.12 35.09	86 86 172 172	100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

	Freq	Level	Limi t Line	Over Limit				Preamp Factor	Remark	T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4	10600.64 10601.66 15897.22 15898.88	50.64 42.56	74.00 54.00	-17.06 -23.36 -11.44 -18.03	40.76 31.30	6.60 7.97	38.38 38.38	35.10	Average	159 159 233 233	100 100	VERTICAL VERTICAL VERTICAL VERTICAL

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20
lesi Engineei	Lucas nualig / Ariay isai	Cornigulations	CH 64 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level	Limit Line	Over Limit				Preamp Factor		T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dВ	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4	10637.02 10639.72 15958.58 15961.50	37.06 53.96	54.00 74.00	-24.09 -16.94 -20.04 -12.41	27.18 42.79	6.59 8.00	38.37 38.33	35.16	Average	224 224 128 128	100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit				Preamp Factor		T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4		52.05 42.89	74.00 54.00	-15.12 -21.95 -11.11 -19.55	42.17 31.72	6.59 8.00	38.37 38.33	35.08	Average	111 111 168 168	100 100	VERTICAL VERTICAL VERTICAL VERTICAL

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20
Test Engineer	Lucus Hudrig / Aridy Isai	Configurations	CH 100 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level		Over Limit					Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBu∀	dB	dB/m	dB		deg	Cm	
1 2	11000.02 11000.48									294 294		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limi t Line			CableA Loss			T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	₫B	dBuV	dB	dB/m	dВ	 deg	Cm	
1 2	10997.60 11000.48								256 256		VERTICAL VERTICAL

Page No. : 74 of 100 Issued Date : Jan. 13, 2015

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20
Test Engineer	Lucus nuarig / Ariay isai	Configurations	CH 116 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBuV	₫B	dB/m	dB	 deg	Cm	
1 2	11157.52 11161.56								299 299		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line		Read Level					T/Pos		Pol/Phase
	МНг	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2	11155.48 11157.84	37.40 49.91	54.00 74.00	-16.60 -24.09	27.36 39.86	6.55 6.56	38.30 38.30	34.81 34.81	Average Peak	180 180		VERTICAL VERTICAL

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20
lesi Engineei	Lucus Hudrig / Ariay isai	Cornigulations	CH 140 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level	Limi t Line	Over Limit	Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{d B u \mathbb{V}/m}$	₫B	dBuV	dB	dB/m	dB		deg	Cm	
1 2	11395.76 11404.10	38.31 50.83	54.00 74.00	-15.69 -23.17	28.14 40.66	6.69 6.69	38.30 38.30	34.82 34.82	Average Peak	181 181		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line		Read Level				T/Pos		Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	dB	dB/m	dB	 deg	Cm	
1 2	11395.68 11399.12								122 122		VERTICAL VERTICAL

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 54 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBuV	dB	dB/m	dB	 deg	Cm	
1 2	15808.22 15810.58								355 355		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line			CableA Loss			T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBuV	dB	dB/m	dB	 deg	Cm	
1 2	15808.22 15814.16					7.95 7.95			74 74		VERTICAL VERTICAL

Page No. : 77 of 100

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40
lesi Engineei	Lucas nuarig / Ariay isai	Cornigulations	CH 62 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level	Limi t Line	Over Limit				Preamp Factor		T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4	10615.36 10623.90 15929.62 15930.68	49.29 42.22	74.00 54.00	-24.71 -11.78	39.41 30.99	6.60 7.99	38.38 38.36	35.10	Average	171 171 120 120	100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit	Read Level					T/Pos		Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4	10615.24 10620.50 15926.68 15932.04	49.93 42.14	74.00 54.00	-16.66 -24.07 -11.86 -18.95	40.05 30.91	6.60 7.99	38.38 38.36	35.10	Average	111 111 198 198	100 100	VERTICAL VERTICAL VERTICAL VERTICAL

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40
Test Engineer	Lucas Huang / Anay isai	Configurations	CH 102 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{d B u V / m}$	dB	dBuV	dB	dB/m	dB	deg	Cm	
1 2	11016.24 11016.76								154 154		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line		Read Level				T/Pos		Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	dB	dB/m	dВ	 deg	Cm	
1 2	11019.34 11019.48								235 235		VERTICAL VERTICAL

Temperature	26°C	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40
lesi Engineei	Lucus Hudrig / Aridy Isai	Cornigulations	CH 110 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dВ	dBuV	dB	dB/m	dB	deg	Cm	
1 2	11098.70 11099.08								311 311		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line		Read Level				T/Pos		Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB	 deg	Cm	
1 2	11096.20 11102.30								154 154		VERTICAL VERTICAL

Page No. : 80 of 100

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40
Test Engineer	Lucas Huarig / Ariay isai	Configurations	CH 134 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level	Limit Line	Over Limit					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	₫B	dB/m	dB	 deg	Cm	
1 2	11337.92 11342.74								265 265		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line		Read Level					T/Pos		Pol/Phase
	МНг	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2	11337.26 11343.70	37.52 50.84	54.00 74.00	-16.48 -23.16	27.39 40.71	6.65 6.65	38.30 38.30	34.82 34.82	Average Peak	207 207		VERTICAL VERTICAL

Temperature	26°C	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 58 / Chain 1 + Chain 2
Test Date	Sep. 11, 2014		

Horizontal

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	deg	Cm	
1 2	15870.00 15871.28								73 73		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line		Read Level				T/Pos		Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	₫B	dB/m	dB	 deg	Cm	
1 2	15870.32 15873.26								214 214		VERTICAL VERTICAL

Page No. : 82 of 100

Temperature	26℃	Humidity	68%				
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80				
	Lucus nuarig / Ariay isai	Configurations	CH 106 / Chain 1 + Chain 2				
Test Date	Sep. 11, 2014						

Horizontal

	Freq	Level	Limi t Line		Read Level			T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	 dB/m	ďВ	 deg	Cm	
1 2	11059.72 11059.80							139 139		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line		Read Level				T/Pos		Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	₫B	dB/m	dB	 deg	Cm	
1 2	11055.48 11064.22								224 224		VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 83 of 100

4.6. Band Edge Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.470-5.725 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance				
(MHz)	(micorvolts/meter)	(meters)				
0.009~0.490	2400/F(kHz)	300				
0.490~1.705	24000/F(kHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.6.3. Test Procedures

 The test procedure is the same as section 4.5.3, only the frequency range investigated is limited to 100MHz around bandedges.

4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

Report Format Version: Rev. 01 Page No. : 84 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

4.6.6. EUT Operation during Test

For Non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

4.6.7. Test Result of Band Edge and Fundamental Emissions

<For non-beamforming mode>

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 52, 60, 64 / Chain 1
Test Date	Nov. 26, 2014		

Channel 52

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Remark	Pol/Phase
			dBu∀/m		dBu∨	dB	dB/m		deg			
1	5119.60	44.93	54.00	-9.07	38.29	6.17	34.06	33.59	89	130	Average	VERTICAL
2	5130.40	57.26	74.00	-16.74	50.59	6.17	34.09	33.59	89	130	Peak	VERTICAL
3	5253.40	109.88			102.83	6.34	34.25	33.54	89	130	Peak	VERTICAL
4	5266.00	100.32			93.25	6.34	34.27	33.54	89	130	Average	VERTICAL
5	5391.40	44.83	54.00	-9.17	37.38	6.50	34.44	33.49	89	130	Average	VERTICAL
6	5397.40	58.47	74.00	-15.53	51.00	6.50	34.46	33.49	89	130	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 5260 MHz.

Channel 60

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	deg			
1	5305.60	103.45			96.25	6.40	34.32	33.52	305	236	Peak	HORIZONTAL
2	5306.40	93.90			86.70	6.40	34.32	33.52	305	236	Average	HORIZONTAL
3	5380.00	44.42	54.00	-9.58	36.98	6.50	34.44	33.50	305	236	Average	HORIZONTAL
4	5381.20	57.83	74.00	-16.17	50.38	6.50	34.44	33.49	305	236	Peak	HORIZONTAL

Item 1, 2 are the fundamental frequency at 5300 MHz.

	Freq	Level						Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	deg	cm		
1	5313.60	108.68			101.46	6.40	34.34	33.52	84	201	Peak	VERTICAL
2	5315.00	98.66			91.44	6.40	34.34	33.52	84	201	Average	VERTICAL
3	5350.00	46.76	54.00	-7.24	39.41	6.47	34.39	33.51	84	201	Average	VERTICAL
4	5350.20	62.13	74.00	-11.87	54.78	6.47	34.39	33.51	84	201	Peak	VERTICAL

Item 1, 2 are the fundamental frequency at 5320 MHz.

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 100, 116, 140 / Chain 1
Test Date	Nov. 26, 2014		

Channel 100

	Freq	Level	Limit Line		Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	deg	cm		
1	5452.00	45.28	54.00	-8.72	37.62	6.60	34.53	33.47	94	273	Average	VERTICAL
2	5459.60	59.04	74.00	-14.96	51.38	6.60	34.53	33.47	94	273	Peak	VERTICAL
3	5466.80	61.37	74.00	-12.63	53.68	6.60	34.55	33.46	94	273	Peak	VERTICAL
4	5470.00	46.55	54.00	-7.45	38.86	6.60	34.55	33.46	94	273	Average	VERTICAL
5	5505.60	110.02			102.22	6.65	34.60	33.45	94	273	Peak	VERTICAL
6	5506.20	100.51			92.71	6.65	34.60	33.45	94	273	Average	VERTICAL

Item 5, 6 are the fundamental frequency at 5500 MHz.

	Freq	Level	Limit Line						T/Pos	A/Pos	Remark	Pol/Phase
,	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	deg	cm		
1	5705.60	103.72			95.59	6.83	34.68	33.38	43	167	Peak	HORIZONTAL
2	5706.20	94.04			85.91	6.83	34.68	33.38	43	167	Average	HORIZONTAL
3	5725.00	46.93	54.00	-7.07	38.78	6.83	34.69	33.37	43	167	Average	HORIZOHTAL
4	5725.00	61.10	74.00	-12.90	52.95	6.83	34.69	33.37	43	167	Peak	HORIZONTAL

Item 1, 2 are the fundamental frequency at 5700 MHz.

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 52, 60, 64/
Test Engineer	Lucas huarig / Ariay isai	Configurations	Chain 1 + Chain 2
Test Date	Nov. 27, 2014		

Channel 52

	-		Limit		Read				T/Pos	A/Pos		p. 1 /pl
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor			Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	deg	cm		
1	5110.00	56.99	74.00	-17.01	50.39	6.14	34.06	33.60	289	147	Peak	VERTICAL
2	5150.00	43.33	54.00	-10.67	36.59	6.21	34.11	33.58	289	147	Average	VERTICAL
3	5267.20	101.81			94.74	6.34	34.27	33.54	289	147	Average	VERTICAL
4	5267.20	111.37			104.30	6.34	34.27	33.54	289	147	Peak	VERTICAL
5	5405.20	44.89	54.00	-9.11	37.39	6.53	34.46	33.49	289	147	Average	VERTICAL
6	5410.00	59.01	74.00	-14.99	51.50	6.53	34.46	33.48	289	147	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 5260 MHz.

Channel 60

			Limit	0ver	Read	Cable	ntenna	Preamp	T/Pos	A/Pos		
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor			Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	deg	cm		
1	5296.80	98.90			91.71	6.40	34.32	33.53	308	237	Average	HORIZOHTAL
2	5296.80	108.61			101.42	6.40	34.32	33.53	308	237	Peak	HORIZONTAL
3	5368.80	57.58	74.00	-16.42	50.20	6.47	34.41	33.50	308	237	Peak	HORIZONTAL
4	5380.00	45.10	54.00	-8.90	37.66	6.50	34.44	33.50	308	237	Average	HORIZOHTAL

Item 1, 2 are the fundamental frequency at 5300 MHz.

	Freq	Level			Read Level				T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	deg	cm		
1	5314.60	110.70			103.48	6.40	34.34	33.52	277	157	Peak	VERTICAL
2	5315.00	101.28			94.06	6.40	34.34	33.52	277	157	Average	VERTICAL
3	5350.00	46.11	54.00	-7.89	38.76	6.47	34.39	33.51	277	157	Average	VERTICAL
4	5355.20	60.93	74.00	-13.07	53.57	6.47	34.39	33.50	277	157	Peak	VERTICAL

Item 1, 2 are the fundamental frequency at 5320 MHz.

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11a CH 100, 116, 140/
lesi Engineer	Lucas Huarig / Ariay isai	Cornigulations	Chain 1 + Chain 2
Test Date	Nov. 27, 2014		

Channel 100

	Freq	Level	Limit Line		Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	deg	cm		
1	5452.00	45.20	54.00	-8.80	37.54	6.60	34.53	33.47	96	270	Average	VERTICAL
2	5452.60	58.58	74.00	-15.42	50.92	6.60	34.53	33.47	96	270	Peak	VERTICAL
3	5466.20	61.28	74.00	-12.72	53.59	6.60	34.55	33.46	96	270	Peak	VERTICAL
4	5467.20	46.08	54.00	-7.92	38.39	6.60	34.55	33.46	96	270	Average	VERTICAL
5	5505.60	112.97			105.17	6.65	34.60	33.45	96	270	Peak	VERTICAL
6	5506.40	103.43			95.63	6.65	34.60	33.45	96	270	Average	VERTICAL

Item 5, 6 are the fundamental frequency at 5500 MHz.

Channel 140

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	deg	cm		
1	5694.60	110.40			102.29	6.81	34.68	33.38	87	100	Peak	VERTICAL
2	5695.00	100.95			92.84	6.81	34.68	33.38	87	100	Average	VERTICAL
3	5725.00	49.95	54.00	-4.05	41.80	6.83	34.69	33.37	87	100	Average	VERTICAL
4	5727.60	64.17	74.00	-9.83	56.02	6.83	34.69	33.37	87	100	Peak	VERTICAL

Item 1, 2 are the fundamental frequency at 5700 MHz.

Note:

Emission level (dBuV/m) = $20 \log \text{ Emission level (uV/m)}$

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 89 of 100

<For beamforming mode>

Temperature	26 ℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20
Test Engineer	Lucas Huarig / Ariay isai	Configurations	CH 52, 60, 64 / Chain 1 + Chain 2
Test Date	Sep. 10, 2014		

Channel 52

	Freq	Level	Limit Line	Over Limit				Preamp Factor		T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBuV/\mathfrak{m}}$	$\overline{dBuV/m}$	dВ	dBuV	dB	dB/m	dВ		deg	Cm	
1 2 3 4 5 6	5119.40 5123.60 5254.60 5255.80 5350.00 5353.00	105.68	74.00 54.00	-9.93	40.48 53.38 102.60 115.85 40.76 53.38	4.33 4.40 4.40	33.11 33.30 33.30 33.46	34.62 34.62 34.62	Average Peak Average	178 178 178 178 178 178	100 100 100 100	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5260 MHz.

Channel 60

	Freq	Level	Limi t Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dВ	dBuV	dB	dB/m	dB	 deg	Cm	
1 2 3 4	5294.00 5294.80 5380.00 5380.00	116.15 57.97			100.31 112.95 54.59 44.66	4.44 4.49	33.38 33.51	34.62 34.62	178 178 178 178	100 100	VERTICAL VERTICAL VERTICAL VERTICAL

Item 1, 2 are the fundamental frequency at 5300 MHz.

	Freq	Level	Limi t Line		Read Level					T/Pos		Pol/Phase
-	MHz	$\overline{d B u V/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∇	dB	dB/m	dB		deg	Cm	
1 2	5314.60 5325.20				97.21 110.16		33.41 33.41		Average Peak	153 153		VERTICAL VERTICAL
3	5350.00 5351.40	52.48 72.40	54.00 74.00	-1.52	49.17 69.09	4.47	33.46		Average Peak	153 153	100	VERTICAL VERTICAL

Item 1, 2 are the fundamental frequency at 5320 MHz.

Temperature	26°C	Humidity	68%
Tost Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH
Test Engineer	Lucas Huang / Anay Isai	Configurations	100, 116, 140 / Chain 1 + Chain 2
Test Date	Jul. 28, 2014		

Channel 100

	Freq	Level	Limit Line		Read Level			Preamp Factor		T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	5459.90	63.29	74.00	-10.71	58.89	6.18	33.75	35.53	100	269	VERTICAL	Peak
2	5460.00	46.68	54.00	-7.32	42.28	6.18	33.75	35.53	100	269	VERTICAL	Average
3	5469.90	71.39	74.00	-2.61	66.94	6.18	33.80	35.53	100	269	VERTICAL	Peak
4	5470.00	52.37	54.00	-1.63	47.92	6.18	33.80	35.53	100	269	VERTICAL	Average
5	5494.50	100.93			96.42	6.20	33.85	35.54	100	269	VERTICAL	Average
6	5506.40	113.14			108.57	6.20	33.90	35.53	100	269	VERTICAL	Peak

Item 5, 6 are the fundamental frequency at 5500 MHz.

Channel 116

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBu√/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1	5414.50	61.22	74.00	-12.78	56.98	6.15	33.60	35.51	100	301	VERTICAL	Peak
2	5460.00	45.22	54.00	-8.78	40.82	6.18	33.75	35.53	100	301	VERTICAL	Average
3	5468.00	58.61	74.00	-15.39	54.16	6.18	33.80	35.53	100	301	VERTICAL	Peak
4	5470.00	44.90	54.00	-9.10	40.45	6.18	33.80	35.53	100	301	VERTICAL	Average
5	5585.00	113.86			109.07	6.26	34.00	35.47	100	301	VERTICAL	Peak
6	5585.50	104.72			99.92	6.26	34.00	35.46	100	301	VERTICAL	Average
7	5725.00	45.69	54.00	-8.31	40.50	6.35	34.18	35.34	100	301	VERTICAL	Average
8	5726.50	59.93	74.00	-14.07	54.74	6.35	34.18	35.34	100	301	VERTICAL	Peak

Item 5, 6 are the fundamental frequency at 5580 MHz.

	Freq	Level			Read Level					T/Pos	Pol/Phase	Remark
	MHZ	dBu√/m	dBu∿/m	dB	dBu∖√	dB	dB/m	——dB	cm	deg		
1	5692.80	112.61			107.51	6.33	34.14	35.37	100	282	VERTICAL	Peak
2	5705.80	100.03			94.89	6.34	34.16	35.36	100	282	VERTICAL	Average
3	5725.00	52.27	54.00	-1.73	47.08	6.35	34.18	35.34	100	282	VERTICAL	Average
4	5731.00	70.90	74.00	-3.10	65.70	6.36	34.18	35.34	100	282	VERTICAL	Peak

Item 1, 2 are the fundamental frequency at 5700 MHz.

Temperature	26℃	Humidity	68%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40
lesi Engineer	Lucus nuarig / Ariay isai	Configurations	CH 54, 62 / Chain 1 + Chain 2
Test Date	Sep. 10, 2014		

Channel 54

	Freq	Level	Limi t Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4	5268.80 5272.40 5350.00 5356.40	100.41 52.08	54.00			4.42	33.33 33.46	34.62	Average Average	181 181 181 181	100 100	VERTICAL VERTICAL VERTICAL VERTICAL

Item 1, 2 are the fundamental frequency at 5270 MHz.

	Freq	Level	Limi t Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{d B u V/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∇	dB	dB/m	dB		deg	Cm	
1 2 3 4	5297.20 5297.20 5350.00 5353.20	94.53 52.17			48.86	4.44	33.38 33.46	34.62	Average Average	177 177 177 177	100 100	VERTICAL VERTICAL VERTICAL VERTICAL

Item 1, 2 are the fundamental frequency at 5310 MHz.

Temperature	26℃	Humidity	68%
Tost Engineer	Lugge Hugna / Andy Trai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40
Test Engineer	Lucas Huang / Andy Tsai	Configurations	CH 102, 110, 134 / Chain 1 + Chain 2
Test Date	Aug. 18, 2014		

Channel 102

	Freq	Level	Limit Line		Read Level					T/Pos	Pol/Phase	Remark
	MHz	dBu∀/m	dBu∀/m	dВ	dBu∀	dB	dB/m	dB	cm	deg		
1	5458.20	62.32	74.00	-11.68	57.91	6.18	33.75	35.52	100	261	VERTICAL	Peak
2	5460.00	49.56	54.00	-4.44	45.16	6.18	33.75	35.53	100	261	VERTICAL	Average
3	5468.80	68.21	74.00	-5.79	63.76	6.18	33.80	35.53	100	261	VERTICAL	Peak
4	5470.00	52.30	54.00	-1.70	47.85	6.18	33.80	35.53	100	261	VERTICAL	Average
5	5508.60	95.89			91.31	6.21	33.90	35.53	100	261	VERTICAL	Average
6	5516.80	105.51			100.91	6.21	33.92	35.53	100	261	VERTICAL	Peak

Item 5, 6 are the fundamental frequency at 5510 MHz.

Channel 110

	Freq	Level	Limit Line					Preamp Factor		T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBu√/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1	5460.00	50.34	54.00	-3.66	45.94	6.18	33.75	35.53	104	82	VERTICAL	Average
2	5460.00	62.65	74.00	-11.35	58.25	6.18	33.75	35.53	104	82	VERTICAL	Peak
3	5470.00	52.27	54.00	-1.73	47.82	6.18	33.80	35.53	104	82	VERTICAL	Average
4	5470.20	68.40	74.00	-5.60	63.95	6.18	33.80	35.53	104	82	VERTICAL	Peak
5	5551.40	102.93			98.22	6.24	33.96	35.49	104	82	VERTICAL	Average
6	5556.80	112.92			108.21	6.24	33.96	35.49	104	82	VERTICAL	Peak

Item 5, 6 are the fundamental frequency at 5550 MHz.

	Freq	Level			Read Level			•	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu\√/m	dBu∀/m	dB	dBu√	dB	dB/m	dB		deg		
1	5662.60	109.62			104.61	6.31	34.10	35.40	100	265	VERTICAL	Peak
2	5668.60	100.89			95.87	6.31	34.10	35.39	100	265	VERTICAL	Average
3	5725.00	52.07	54.00	-1.93	46.88	6.35	34.18	35.34	100	265	VERTICAL	Average
4	5725.00	66.65	74.00	-7.35	61.46	6.35	34.18	35.34	100	265	VERTICAL	Peak

Item 1, 2 are the fundamental frequency at 5670 MHz.

Temperature	26°C	Humidity	68%				
Tost Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80				
Test Engineer	Lucas huarig / Ariay isai	Configurations	CH 58, 106 / Chain 1 + Chain 2				
Test Date	Aug. 19, 2014 ~ Sep. 11, 2014						

Channel 58

	Freq	Level	Limi t Line	Over Limit			Antenna Factor		Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	- dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4 5	5147.00 5150.00 5299.00 5307.00 5350.00 5361.00	55.37 42.45 91.09 103.89 52.45 69.26		-18.63 -11.55 -1.55 -4.74	39.59 87.89 100.69	4.34 4.34 4.44 4.44 4.47	33.14 33.38 33.38 33.46	34.62 34.62 34.62 34.62	Average Average Peak Average	131 131 131 131 131 131	156 156 156 156	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5290 MHz.

Channel 106

	Freq	Level						Preamp Factor		T/Pos	Pol/Phase	Remark
	MHz	dBu\√/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	5663.00	102.60			97.59	6.31	34.10	35.40	100	297	HORIZONTAL	Peak
2	5668.60	94.03			89.01	6.31	34.10	35.39	100	297	HORIZONTAL	Average
3	5725.00	50.26	54.00	-3.74	45.07	6.35	34.18	35.34	100	297	HORIZONTAL	Average
4	5725.60	60.94	74.00	-13.06	55.75	6.35	34.18	35.34	100	297	HORIZONTAL	Peak

Item 1, 2 are the fundamental frequency at 5530 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.7. Frequency Stability Measurement

4.7.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Sweep Time	Auto

4.7.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is -20°C~70°C.

4.7.4. Test Setup Layout

Report Format Version: Rev. 01 Page No. : 95 of 100
FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.7.7. Test Result of Frequency Stability

Temperature	20°C	Humidity	52%
Test Engineer	Lucas Huang	Test Date	Nov. 26, 2014

Voltage vs. Frequency Stability

Voltage	Measurement F	requency (MHz)
(V)	5300 MHz	5500 MHz
126.50	5300.0007	5500.0001
110.00	5300.0008	5500.0001
93.50	5300.0006	5500.0001
Max. Deviation (MHz)	0.000800	0.000120
Max. Deviation (ppm)	0.15	0.02

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)				
(°C)	5300 MHz	5500 MHz			
-30	5300.0002	5500.0004			
-20	5300.0002	5500.0004			
-10	5300.0002	5500.0004			
0	5300.0002	5500.0004			
10	5300.0002	5500.0004			
20	5300.0002	5500.0003			
30	5300.0001	5500.0003			
40	5300.0001	5500.0003			
50	5300.0001	5500.0003			
60	5300.0001	5500.0003			
70	5300.0001	5500.0004			
Max. Deviation (MHz)	0.000240	0.000386			
Max. Deviation (ppm)	0.05	0.07			

Report Format Version: Rev. 01 Page No. : 96 of 100 FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

4.8. Antenna Requirements

4.8.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.8.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: Rev. 01 Page No. : 97 of 100

FCC ID: TX2RTL8812AENF Issued Date : Jan. 13, 2015

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75GHz	Apr. 12, 2013	Conduction (CO01-CB)
MXE EMI Receiver	Agilent	N9038A	MY52260140	9kHz ~ 8GHz	Dec. 25, 2013	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 23, 2013	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Nov. 23, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	Dec. 04, 2013	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	May 26, 2014	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 01, 2013	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Oct. 28, 2014	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Dec. 17, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 15, 2014	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Dec. 16, 2013	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1		26GHz ~ 40GHz	Feb. 17, 2014	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	ПА1840-35-НG	1864479	18GHz ~ 40GHz	Apr. 22, 2014	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100019	9kHz~40GHz	Dec. 02, 2013	Radiation (03CH01-CB)
EMI Test Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8GHz	Dec. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R.	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO 2000	N/A	1 m - 4 m	N.C.R.	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	101026	9kHz~40GHz	Aug. 28, 2014	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 03, 2014	Conducted (TH01-CB)

Page No.

: 98 of 100

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-7		1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted
KF Cable-High	WOKerr	nigii Cable-7	•	1 GHZ = 20.3 GHZ	1100. 13, 2014	(TH01-CB)
DE Cable bigh	Woken	High Cable 9		1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted
RF Cable-high	woken	High Cable-8	•	1 GHZ - 20.5 GHZ	Nov. 15, 2014	(TH01-CB)
DE Cable bigh	Wakan	High Cable 0		1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted
RF Cable-high	Woken	High Cable-9	•	1 GHZ - 20.5 GHZ		(TH01-CB)
DE Cable bigh	Wakan	High Calala 10		1 CU- 24 5 CU-	Nov. 15, 2014	Conducted
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz		(TH01-CB)
DE Calala hiah	Makes			1 011- 04 5 011-	Nov. 15, 0014	Conducted
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 15, 2014	(TH01-CB)
Dawer Camass	A maridae e	MAQ411D	1104002	2000411- 40011-	0-4-04-0014	Conducted
Power Sensor	Anritsu	MA2411B	1126203	300MHz~40GHz	Oct. 06, 2014	(TH01-CB)
Dawer Mater	A villa	N. 10. 40.5. A	1010004	2001411- 40011-	0-4-04-0014	Conducted
Power Meter	Anritsu	ML2495A	1210004	300MHz~40GHz	Oct. 06, 2014	(TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

Page No. : 99 of 100

[&]quot;*" Calibration Interval of instruments listed above is two years.

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz \sim 30MHz)	2.4 dB	Confidence levels of 95%
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%