PKU SESS 离散数学

二位二进制最简加法器电路设计

五组 籍乘艳 黄如许 卢伟杰 于曦彤 张浩源 赵宸兴宇

加法器电路设计

数理逻辑作业

命题逻辑和现代计算机的原理有非常密切的关系,如:2位加法器

V1

每个端子取值0或1

• 输入二进制数x1x2, y1y2

输出二进制和f1f2

以及输出进位标志f3

例如: 输入10,11,输出01,进位标志1

其中x1=1,x2=0,y1=1,y2=1,f1(x1,x2,y1,y2)=0

一个2位加法器可以看作3个4元真值函数

· 请你写出2位加法器所有真值函数的主析取范 式

进位标志 f3

1、从等值演算的角度出发

主析取范式

 $f_1=m_2\lor m_3\lor m_5\lor m_6\lor m_8\lor m_9\lor m_{12}\lor m_{15}$ $f_2=m_1\lor m_3\lor m_4\lor m_6\lor m_9\lor m_{11}\lor m_{12}\lor m_{14}$ $f_3=m_7\lor m_{10}\lor m_{11}\lor m_{13}\lor m_{14}\lor m_{15}$

减少逻辑门个数=减少运算符个数 f1,f2,f3 共用的逻辑门电路尽量多

奎因一莫克拉斯基方法

主析取范式

最简展开式 (最简析取范式)

1、从等值演算的角度出发

主析取范式 最简展开式 (最简析取范式)

奎因一莫克拉斯基方法

 $f_1=m_2\vee m_3\vee m_5\vee m_6\vee m_8\vee m_9\vee m_{12}\vee m_{15}$ $f_2=m_1\vee m_3\vee m_4\vee m_6\vee m_9\vee m_{11}\vee m_{12}\vee m_{14}$ $f_3=m_7\vee m_{10}\vee m_{11}\vee m_{13}\vee m_{14}\vee m_{15}$

以f3为例

极小项	角码	x1x2y1y2
m7		0111
m10		1010
m11		1011
m13		1101
m14		1110
m15		1111

极小项	角码 x1x2y1y2
(m7, m15)	-111
(m10, m11)	101-
(m10, m14)	1-10
(m11, m15)	1-11
(m13, m15)	11-1
(m14, m15)	111-

极小项	角码 x1x2y1y2
(m10, m11, m14, m15)	1-1-
(m10, m14, m11, m15)	1-1-

 $(m10,m11,m14,m15) v (m7,m15) v (m13,m15) = (x1 \land y1) \lor (x2 \land y1 \land y2) \lor (x1 \land x2 \land y2)$

 $f3 = (x1 \wedge y1) \vee (x2 \wedge y2) \wedge (x1 \vee y1)$

一位二进制加法

计算进位计算和

计算进位 和"与门"完全一致

输入A	输入B	输出Y
0	0	0
0	1	0
1	0	0
1	1	1

计算和

A输入	B输入	或门输出	与非门输出	与输出
0	0	0	1	0
0	http1//bl	log, csdn.	net/mote07	14 1
1	0	1	1	1
1	1	1	0	0

计算和

A输入	B输入	或门输出	与非门输出	与输出
0	0	0	1	0
0	http1//b	log, cpdn.	net/mote07	14 1
1	0	1	1	1
1	1	1	0	0

计算和 + 计算进位 半加器

半加器 + 处理上一位的进位 = 全加器

二位加法器 = 一个全加器 + 一个半加器

x1x2 +y1y2 f1 f2 进位标志 f3

二位加法器 = 一个全加器 + 一个半加器 一个全加器 = 两个半加器 + 一个或门

二位加法器 = 三个半加器 + 一个或门 一个半加器 = 五个门

3*5 + 1 = 16 > 14

半加器的改进

改进: 进位输出的"与门"共用异或电路中"与非门"的与门

16 - 3 = 13

PKU SESS 离散数学

谢谢观看!

五组 籍乘艳 黄如许 卢伟杰 于曦彤 张浩源 赵宸兴宇