Data Mining and Machine Learning

Assignment Project Exam Help

https://powcoder.com

Vector Representation of Documents

Peter Jančovič

Objectives

To explain vector representation of documents

Assignment Project Exam Help
To understand cosine distance between vector representatiohstps://powgoder.com

Add WeChat powcoder

Vector Notation for Documents

Suppose that we have a set of documents

$$D = \{d_1, d_2, \dots, d_N\}$$
Assignment Project Exam Help think of this as the corpus for IR

- Suppose that the number of different words in the whole corpusated weekly weekly bry sizer
- Now suppose a document d in D contains M different terms: $\{t_{i(1)}, t_{i(2)}, \dots, t_{i(M)}\}$
- Finally, suppose term $t_{i(\mathbf{m})}$ occurs $f_{i(\mathbf{m})}$ times

Vector Notation

The vector representation vec(d) of d is the V dimensional vector: Assignment Project Exam Help

Notice that this is the <u>weighting</u> – i.e. the <u>term</u> <u>frequency</u> times the <u>inverse document frequency</u> $w_{i(1),d} = f_{i(1),d} \times IDF(i(1))$ from text IR

Uniqueness

- Is the mapping between documents and vectors oneto-one?
- In other Words:
 Assignment Project Exam Help
 - if d_1 , d_2 art procupation only if $d_1 = d_2$?
- If λ is a scalar and $vec(d_1) = \lambda vec(d_2)$ what does this tell you about d_1 and d_2 ?

Example

- d_1 = the cat sat on the cat's mat \rightarrow cat sat cat mat
- d₂ = the dog chased the cat → dog chase cat Assignment Project Exam Help
 d₃ = the mouse stayed at home → mouse stay home
- Vocabulary: https://powcoder.com
 - cat, chase, daglatine Chatt mouse oster stay
- To calculate the vector representations of these documents first calculate the TF-IDF weights

Example (continued)

	d1	d2	d3	Nd	IDF	w(t,d1)	w(t,d2)	w(t,d3)
cat	2	1		2	0.41	0.81	0.41	
chase	As	sig	nm	ent	Proj	ect Exa	m <mark>H</mark> elp)
dog		1	-4-10 C	1,	1.1		1.1	
home		n	ups 1	1.//p	1.1	oder.co	III	1.1
mat	1	A	dd	We	Gha	t powc	oder	
mouse			1	1	1.1	•		1.1
sat	1			1	1.1	1.1		
stay			1	1	1.1			1.1
= 3 ,								

Example (continued)

$$vec(d_1) = \begin{bmatrix} 0.81 \\ Assignment Project Exam Help \\ 0 \\ 1.1 \\ 0 \\ 1.1 \\ 0 \end{bmatrix}$$

$$https://powcoder.com vec(d_3) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1.1 \\ 0 \\ 1.1 \\ 0 \\ 1.1 \end{bmatrix}$$

$$Add WeChat powcoder \\ 0$$

Document length revisited

Recall that the length of a vector

is given by: https://powcoder.com

$$||x|| = \sqrt{\frac{\text{Add} \cdot \text{WeChat powcoder}}{x_1^2 + x_2^2 + \dots + x_N}}$$

Document length

• In the case of a 'document vector'

$$vec(d) = (0.580g \text{ minerial Projector Examples of the Mark Projector Examples of the Mark$$

$$||vec(d)|| = \sqrt{\frac{2}{\text{Mdd}}} ||vec(d)|| = \sqrt$$

Document Similarity

- Suppose d is a document and q is a query
 - If d and q contain the same words in the same proportions, then vec(d) and vec(q) will point in the same direction
 - If d and q contain: different directions will point in different directions Add WeChat powcoder
 - Intuitively, the greater the angle between vec(d) and vec(q) the less similar the document d is with the query q

Cosine similarity

Define the Cosine Similarity between document d and query q by:

 $CSim(q, d) = COS\theta$ Project Exam Help

where θ is that the properties of the propert

• Similarly, defined W Colsin p Similarly between documents d_1 and d_2 by:

$$CSim(d_1,d_2) = \cos\theta$$

where θ is the <u>angle</u> between $vec(d_1)$ and $vec(d_2)$

Cosine Similarity & Similarity

• Let $u=(x_1,y_1)$ and $v=(x_2,y_2)$ be vectors in 2 dimensions, then

• In fact, this result holds for vectors in any *N* dimensional space

Cosine Similarity & Similarity

• Hence, if q is a query, d is a document, and θ is the angle between vec(q) and vec(d), then:

Assignment Project Exam Help

Cosine similarity

https://powcoder.com

$$CSim(q,d) = \cos(\theta) = \frac{\sum_{t \in q \cap d} w_{tq} \cdot w_{td}}{\|q\| \|d\|} = \frac{\sum_{t \in q \cap d} w_{tq} \cdot w_{td}}{\|q\| \|d\|}$$

$$= Sim(q,d)$$
Similarity

Summary

Vector space representation of documents

Assignment Project Exam Help
 Cosine distance between vector representations of documents
 https://powcoder.com

Add WeChat powcoder