

К ВОПРОСУ О ПРИМЕНИМОСТИ ЗАКОНА ВИДЕМАНА-ФРАНЦА ДЛЯ УГЛЕРОДНЫХ МАТЕРИАЛОВ

В.М. Самойлов¹, Е.А. Данилов¹, Б.С. Клеусов¹, В.А. Воронцов¹, А.В. Находнова¹, П.И. Богомолов ²

1- АО «НИИграфит»

2-АО «ЦНИИМ»

Выполнение закона Видемана-Франца для металлов, полупроводников и углеродных материалов

Трансформация структуры прекурсора углеродных волокон

Свойство главных классов УВ

Тип УВ	Плотность, g / cm ³	Предел прочности на растяжение, ГПа	Модуль упругости, ГПа	Теплопроводность, Вт/м·К
УВ на основе вискозы (1500-2400°C)	1,3-1,55	0,5-1,2	35-100	5-10
УВ на основе ПАН высокопрочные (1200 -1500°C)	1,70-1,80	4,5-6,0	200-300	30-70
УВ на основе ПАН высокомодульные (2000- 2500 °C)	1,75 -2,00	2,8-4,2	380-470	60-120
УВ на основе изотропных пеков(1500-2500 °C)	1,75 -2,00	1,3-3,1	55-155	5-150
УВ на основе мезофазных пеков(2500 -3000°C)	1, 9-2,10	2,6-3,8	600-980	500-980

Кристаллическая структура основных классов УВ

Тип УВ	Межплоскост- ное расстояние d ₀₀₂ , нм	Размер кристал- литов	Размер кристал- литов	Угол ориентации, град.
		L _a , HM	L _c , nm	
УВ на основе вискозы (1500-2400°С)	0,360	5-10	3-10	20 - 45
УВ на основе ПАН высокопрочные (1200 -1500°C)	0,350	5-10	5-10	12- 25
УВ на основе ПАН высокомодульные (2000- 2500 °C)	0,344	15-20	10-15	6-12
УВ на основе изотропных пеков(1500-2500 °C)	0,340 -0,344	1,3-3,1	55-155	20-40
УВ на основе мезофазных пеков(2500 -3000°C)	0,335-0,337	20-100	50-100	1-2

Микроструктура филаментов УВ

Низкомодульные УВ на основе вискозы

Высокомодульные УВ на основе ПАН

Высокопрочные УВ на основе ПАН

Ультра-высокомодульные УВ на основе МФП

Микротекстура УВ

Схема расположения и принятые обозначения углов ориентации кристаллитов в филаментных УВ; (б) схема расположения графеновых слоев в углеродных материалах с различной микротекстурой

Микроструктура пирографитов

Микротекстура изотропного и анизотропного УМ:

- (a) идеальный монокристалл графита (ось текстуры совпадает с осью «а»);
- (б) высокотекстурированный УМ; (в) низкотекстурированный УМ; (г) идеальный монокристалл графита (ось текстуры совпадает с осью «с»)

Мелкозернистые графиты

50-150 HM

Стеклоуглерод

Выполнение закона Видемана-Франца для углеродных волокон(ВМ) и пирографитов

Электропроводность, пС/м

Выполнение закона Видемана-Франца для углеродных волокон(НМ) и мелкозернистых

Выполнение закона Видемана-Франца для углеродных волокон(НМ) и мелкозернистых графитов

Материал	λ	б	θ	La
	Βτ/м.Κ	кС/м	град	HM
(монокристалл)	1000-2000	1700-2200	~ 0,3-1,5	> 1000
УВМ углеродные волокна	110-1100	110-850	2- 4	20-50
ВМ углеродные волокна	70-155	110-830	4-12	10-20
ВП углеродные волокна	10-40	40-100	12-25	5-10
НМ углеродные волокна	3-8	25-40	25-35	2- 7
Пирографиты Изотропные поликристаллические искусственные графиты Стеклоуглерод Монокристалл	30 -560	30-350	20-25	> 1000
	70-130	50-110	45±10	80-150
	4-7	20-25	~ 45	7-10
	3-15	0,02-0,05	~ 90	> 100

Спасибо за внимание

Самойлов Владимир Маркович, Проф., д.т.н., 8(916)608-96-49 8(495)278-00-08 ext. 2205 VMSamoylov@rosatom.ru