Project Planning Phase

Date	18 October 2022
Team ID	PNT2022TMID17614
Project Name	Project - Smart Farmer - IoT Enabled Smart Farming Application
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional	User Story	User Story / Task	Story Points	Priority	Team
	Requirement (Epic)	Number				Members
Sprint-1	Simulation	USN-1	Connect sensors, Arduino andesp8266	10	High	Arunprasanth E Jaikrishnan V
Sprint-1	Software	USN-2	Develop an application with MIT App inventor (Login page)	10	High	Jayendra S Kamalesh P
Sprint-2	Software and Hardware	USN-3	Connect the hardware with IBM 10 Cloud and API Integration		Medium	Arunprasanth E Jaikrishnan V
Sprint-2	Software	USN-4	Application development for project	10	High	Jayendra S Kamalesh P
Sprint-3	Software	USN-5	Establishing Node-Red connection 10		Medium	Arunprasanth E Jaikrishnan V
Sprint-3	Software	USN-6	Connecting application with Node Red and further application development	10	High	Jayendra S Kamalesh P
Sprint-4	Hardware	USN-7	Testing developed application and working model of hardware	20	High	Arunprasanth E Jaikrishnan V Jayendra S Kamalesh P

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	10 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Total Sprint Points = 80

Total Sprints = 4

Average velocity = 80/4 = 20

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

