



# **CONTEÚDO**

- Métodos de partição
  - 1. k-means
  - 2. k-medoids
- 2. Density-based clustering
- 3. Métodos hierárquicos
  - 1. Métodos grelha

## **Problema**



### Clustering

#### Organizar os dados em grupos tais que:

- A semelhança intra grupo é elevada
- A semelhança inter grupo é reduzida

#### Clustering ≠ classificação

- Classificação: descobrir o label (de entre um conjunto de valores possíveis) de cada instância
- Clustering: descobrir o conjunto de valores possíveis para os labels e atribuir um a cada instância

#### Resultados:

- Exclusive clusters: cada item só pode pertencer a um cluster
- Overlapping clusters: cada item pode pertencer a mais do que um cluster
- Probabilistic clusters: cada item tem uma certa probabilidade de pertencer a um cluster

## Aplicações de clustering

- Biologia e ciência:
  - Agrupamento do animais / plantas
- Mercado
  - Grupos de clientes semelhantes para publicidade direcionada
  - Identificação de fraude
- Web
  - Classificação de documentos
  - Descoberta de grupos de semelhantes padrões de acesso em logs
  - Sistemas de recomendação

### Tipos de clustering

- Partição / Hierárquicos
  - Partição: Constrói diversas partições dos objetos e avalia cada uma usando um critério
    - Ex: k-means, k-medoids
  - Hierárquicos: Cria uma decomposição hierárquica dos objetos baseada num critério
- Density-based / Model-based
  - Density-based
    - Usa a noção de densidade (nº de objetos num cluster)
    - Permite clusters não esféricos (ao contrário dos métodos que usam medidas de distância)
    - · Robusto a outliers
    - Ex: DBSCAN
  - Model-based
    - · Define um modelo para cada cluster
    - Procura o melhor ajuste de dados para cada modelo
    - Nº ótimo de clusters definido usando métodos estatísticos

### Cálculo da semelhança

#### **Euclidean**

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$



#### Manhattan

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$





### Hamming (distância entre strings)

Número de carateres diferentes entre as strings

#### Minkowski

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}$$



Medidas de distância: https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

## K-means



### Algoritmo k-means

#### Input:

- O: Conjunto de *n* objetos
- K: número de clusters a criar

#### Passos:

- 1. Escolher aleatoriamente K centroides
- 2. Repetir até deixar de haver alterações
  - 1. Atribuir cada objeto ao cluster a que é mais semelhante
  - 2. Calcular o novo centroide do cluster

#### **Output:**

• Conjunto de K clusters

# K-means: exemplo





# Exemplo: passo 1



Escolher aleatoriamente k centroides



# Exemplo: passo 2.1 (iteração 1)



Atribuir cada objeto ao cluster a que é mais semelhante



# Exemplo: passo 2.2 (iteração 1)



Calcular o novo centroide do cluster



# Exemplo: passo 2.1 (iteração 2)



Atribuir cada objeto ao cluster a que é mais semelhante



# Exemplo: passo 2.2 (iteração 2)



Calcular o novo centroide do cluster



### **Funcionamento do K-means**



https://upload.wikimedia.org/wikipedia/commons/e/ea/K-means\_convergence.gif



# Vantagens e desvantagens do K-means

| Vantagens                                                                                                                                                                                                                                                                          | Desvantagens                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Disponível na maioria das ferramentas de análise de dados</li> <li>Simples de utilizar (requer apenas um parâmetro, k)</li> <li>Eficiente (rápido e converge garantidamente)</li> <li>Facilmente interpretável (os centroides representam o perfil do cluster)</li> </ul> | <ul> <li>Parametrização (é necessário estabelecer k)</li> <li>Estocástico (são obtidas soluções diferentes com diferentes inicializações)</li> <li>Pode ficar "preso" num ótimo local</li> <li>Clusters são mutuamente exclusivos (cada item apenas pode pertencer a um cluster)</li> <li>Apenas permite variáveis numéricas</li> <li>Dificuldades ao lidar com ruído e <i>outliers</i></li> <li>Identifica clusters esféricos</li> </ul> |

## Determinação de K

Dado um determinado dataset:



#### Quantos clusters usar?

• 1?



• 2?



• 3?



### "Método do cotovelo / joelho"

- Correr o algoritmo para vários k (1, 2, 3, ...)
- Para cada k, calcular o valor da função objetivo
  - Ex: No k-means, a distância dos pontos aos centroides
- · Visualizar graficamente o resultado
- Escolher o k que representa uma mudança abrupta



## K-medoids

## Diferenças em relação ao k-means

K-means é muito sensível a outliers

### Exemplo:

$$m\acute{e}dia(1,3,5,7,9) = 5$$
  
 $m\acute{e}dia(1,3,5,7,9,1009) = 172$ 

K-medoids utiliza como "centroide" (aqui, chama-se medoide) o ponto central do cluster (mediana) em vez da média

$$mediana(1,3,5,7,9) = 5$$
  
 $mediana(1,3,5,7,9,1009) = 6$ 

### Algoritmo k-medoids

#### Input:

- O: Conjunto de *n* objetos
- · K: número de clusters a criar

#### Passos:

- 1. Escolher aleatoriamente K medoids  $m_k$
- 2. Repetir até deixar de haver alterações:
  - 1. Atribuir cada objeto ao medoid  $m_k$  mais perto
  - 2. Calcular a distorção *D* (soma das "*dissimilarities*" de todos os pontos aos medoids mais próximos)
  - 3. Para cada ponto não-medoide *x*:
    - 1. Trocar  $m_k$  com x e calcular a função objetivo
    - 2. Selecionar a configuração com o custo mais baixo

#### **Output:**

• Conjunto de K clusters

### **Funcionamento do K-means**



https://commons.wikimedia.org/wiki/File:K-Medoids Clustering.gif



# **Density based clustering**

## **Density based clustering**

Clusters podem ser definidos com base em pontos density-connected

Permite descobrir clusters com formas arbitrárias

Lida melhor com ruído

Necessita de parâmetros de densidade como condição terminal

### Exemplos:

- DBSCAN
- OPTICS
- DENCLUE
- CLIQUE



### **Conceitos**

A <u>vizinhança</u> de raio ε de um objeto chama-se ε-vizinhança. Se contiver pelo menos MinPts objetos, o objeto é um core object

- Eps: raio máximo da vizinhança
- MinPts: número mínimo de pontos na Eps-vizinhança desse ponto



$$MinPts = 5$$
  
 $Eps = 1 cm$ 

Um objeto *p* é diretamente density-reachable a partir de um objeto *q* se *p* está dentro da ε-vizinhança de *q* e *q* é um core object



$$MinPts = 5$$
  
 $Eps = 1 cm$ 

Um objeto p é <u>density-reachable</u> a partir de um objeto q em relação a (*Eps*, *MinPts*) se existe uma cadeia de pontos  $p_1, \dots, p_n$ , com  $p_1 = q$  e  $p_n = p$  tal que  $p_{i+1}$  é diretamente *density-reachable* a partir de  $p_i$ 

Um objeto p é <u>density-connected</u> a objeto q em relação a (*Eps*, *MinPts*) se existe um objeto o tal que p e q são abos density-reachable a partir de o em relação a (*Eps*, *MinPts*)



## **DBSCAN**



### **DBSCAN**

Extrai clusters como um conjunto de objetos density-connected

#### **Conceitos:**

- Density-based cluster: conjunto de objetos densityconnected que é máximo (não pode ser expandido)
- Border point: tem menos MinPts com Eps, mas encontra-se na vizinhança de um core point
- Noise point: qualquer ponto que n\u00e3o \u00e9 core point nem border point





### **Algoritmo DBSCAN**

#### Input:

- O: Conjunto de *n* objetos
- Eps: raio máximo da vizinhança
- MinPts: número mínimo de pontos na Eps-vizinhança

#### Passos:

- 1. Classificar todos os pontos como core, border, ou noise:
  - 1. Repetir, até todos os pontos estarem classificados:
    - 1. Selecionar aleatoriamente um ponto p
    - 2. Obter todos os pontos density reachable a partir de p dados Eps e MinPts
      - 1. Se *p* é um core point, forma-se um cluster
      - 2. Se p é um border point, não há pontos density reachable a partir de p, visitar próximo ponto
- 2. Eliminar noise points
- 3. Colocar uma "fronteira" (edge) entre todos os core points que estão a distância inferior a Eps
- 4. Transformar num cluster cada grupo de core points ligados
- 5. Atribuir cada border point a um dos clusters dos seus core points

#### **Output:**

Conjunto de clusters



# **DBSCAN:** exemplo







Dados originais

Pontos:

Core (verde)

Border (azul)

Noise (vermelho)

Clusters



### Escolha de Eps e MinPts

#### MinPts escolhe-se:

- · Por regra, com base no conhecimento do domínio
- Se não existir conhecimento de domínio, a regra prática é que  $MinPts \ge D$ , D é o número de dimensões dos dados
  - 2D → MinPts = 4
  - \*D  $\rightarrow$  MinPts = 2  $\times$  D

**Eps** escolhe-se com base no comportamento da distância dos k vizinhos mais próximos, k = MinPts:

- Selecionar MinPts = k
- Calcular as distâncias de cada ponto ao seu  $k^{\varrho}$  vizinho mais próximo
- Ordenar as distâncias e visualizá-las graficamente
- Seguir a "regra do cotovelo/joelho"

A mudança de comportamento vê-se em, aproximadamente, y=2:

Escolhe-se Eps = 2



# Vantagens e desvantagens do DBSCAN

| Vantagens                                                                                                           | Desvantagens                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Gera clusters de formas arbitrárias</li> <li>(Quase) determinístico</li> <li>Robusto a outliers</li> </ul> | <ul> <li>Complexidade computacional</li> <li>Necessário estabelecer parâmetros</li> <li>Dificuldades na interpretação</li> </ul> |

# Clustering hierárquico

# Clustering hierárquico

Objetivo: criar uma decomposição dos objetos de acordo com um certo critério

Cria um dendograma:

árvore binária para avaliar/discriminar exemplos de um dataset



## Tipos de métodos de clustering hierárquicos

Número de diferentes dendogramas possíveis com n itens: (2n -3)!/[(2(n -2)) (n -2)!]

| n  | Dendrogramas |
|----|--------------|
| 2  | 1            |
| 3  | 3            |
| 4  | 15           |
|    |              |
| 10 | 34,459,425   |

Problema: Não é possível testar todas as alternativas.



- 1. Começa com n clusters (1 item em cada cluster)
- 2. Encontra o melhor par de objetos para serem agrupados
- 3. Repete até todos os objetos estarem agrupados

- . Começa com todos os itens num cluster
- 2. Considera todas as partições que dividem o cluster em 2
- 3. Escolhe a melhor
- 4. Aplica o mesmo processo recursivamente às duas partições



### Algoritmo clustering hierárquico bottom-up

#### Input:

• O: Conjunto de *n* objetos

#### Passos:

- 1. Começar com n itens e uma métrica (ex: distância euclidiana) de todos os pares  $\binom{n}{2} = \frac{n(n-1)}{2}$ . Tratar cada item como um cluster
- 2. Repetir para i = n, n 1, n 2, ..., 2:
  - 1. Examinar todas as distâncias entre pares de itens inter-cluster nos *i* clusters e identificar o par de clusters que são menos diferentes (mais semelhantes). Fundir os dois clusters. A diferença entre os clusters indica, no dendograma, a altura a que a fusão deve ser colocada.
  - 2. Calcular novamente as distâncias entre os i-1 restantes clusters

#### **Output:**

Conjunto de clusters

### Cálculo da diferença (dissimilarity)

#### Single linkage:

Minimal intercluster dissimilarity

Calcular as distâncias entre os itens nos clusters A e B (pairwise) e guardar a menor distância

### Complete linkage:

Maximal intercluster dissimilarity

Calcular as distâncias entre os itens nos clusters A e B (pairwise) e guardar a maior distância

#### Average linkage:

Mean intercluster dissimilarity

Calcular as distâncias entre os itens nos clusters A e B (pairwise) e guardar a média das distâncias

### Centroid linkage:

Diferença entre o centroide do cluster A e o centroide do cluster B

# Single linkage (passo 1)

### Minimal intercluster dissimilarity



|    | BA  | FI  | MI  | NA  | RM  | TO  |
|----|-----|-----|-----|-----|-----|-----|
| BA | 0   | 662 | 877 | 255 | 412 | 996 |
| FI | 662 | 0   | 295 | 468 | 268 | 400 |
| MI | 877 | 295 | 0   | 754 | 564 | 138 |
| NA | 255 | 468 | 754 | 0   | 219 | 869 |
| RM | 412 | 268 | 564 | 219 | 0   | 669 |
| TO | 996 | 400 | 138 | 869 | 669 | 0   |



## Single linkage (passo 2)

### Minimal intercluster dissimilarity



|       | BA  | FI  | MI/TO | NA  | RM  |
|-------|-----|-----|-------|-----|-----|
| BA    | 0   | 662 | 877   | 255 | 412 |
| FI    | 662 | 0   | 295   | 468 | 268 |
| MI/TO | 877 | 295 | 0     | 754 | 564 |
| NA    | 255 | 468 | 754   | 0   | 219 |
| RM    | 412 | 268 | 564   | 219 | 0   |



# Single linkage (passo 3)

### Minimal intercluster dissimilarity



|       | BA  | FI  | MI/TO | NA/RM |
|-------|-----|-----|-------|-------|
| BA    | 0   | 662 | 877   | 255   |
| FI    | 662 | 0   | 295   | 268   |
| MI/TO | 877 | 295 | 0     | 564   |
| NA/RM | 255 | 268 | 564   | 0     |





# Single linkage (passo 4)

### Minimal intercluster dissimilarity



|          | BA/NA/RM | FI  | MI/TO |
|----------|----------|-----|-------|
| BA/NA/RM | 0        | 268 | 564   |
| FI       | 268      | 0   | 295   |
| MI/TO    | 564      | 295 | 0     |



## Single linkage (passo 5)

### Minimal intercluster dissimilarity



|             | BA/FI/NA/RM | MI/TO |
|-------------|-------------|-------|
| BA/FI/NA/RM | 0           | 295   |
| MI/TO       | 295         | 0     |



## Vantagens e desvantagens de single e complete linkage

|                  | Vantagens                                | Desvantagens                                                                       |
|------------------|------------------------------------------|------------------------------------------------------------------------------------|
| Single Linkage   | Consegue lidar com clusters não elíticos | Sensível a ruído e outliers                                                        |
| Complete Linkage | Robusto a ruído e <i>outliers</i>        | <ul><li>Parte clusters grandes</li><li>Enviesado para clusters esféricos</li></ul> |

## Determinação do número de clusters

O número "ideal" de clusters é determinado com base no dendograma

Exemplo: duas sub-árvores muito separadas sugerem a existência de dois clusters







# Vantagens e desvantagens dos métodos hierárquicos

| Vantagens                                                                                                | Desvantagens                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Não é necessário estabelecer k</li> <li>Simplicidade de interpretação de hierarquias</li> </ul> | <ul> <li>Complexidade computacional (tempo de execução aumenta muito com o aumento do número de itens)</li> <li>Pode ficar "preso" num ótimo local</li> <li>Interpretação pode ser subjetiva</li> </ul> |

# **Grid clustering**

### Algoritmo grid clustering

#### Input:

• O: Conjunto de *n* objetos dispersos no espaço

#### Passos:

- 1. Criar a estrutura da grelha: particionar o espaço num conjunto finito de células
- 2. Calcular a densidade de cada célula
- 3. Ordenar as células de acordo com as densidades
- 4. Identificar centros dos clusters
- 5. Considerar a vizinhança dos centros como os pontos do cluster

#### **Output:**

Conjunto de clusters

# **Outras questões**

## Seleção de algoritmo

#### Dado um determinado dataset:



#### Que algoritmo usar?

- Partição
  - K-means
  - K-medoids
  - ...
- Hierárquicos
  - Aggregation + single linkage
  - Aggregation + complete linkage
  - ...
- Density-based
  - ...
- Model-based
  - ...

#### Critérios de seleção de algoritmo de clustering

- Escalabilidade
- Capacidade para lidar com diferentes tipos de dados
- Usabilidade
- Capacidade para lidar com ruído e outliers
- · Sensibilidade à ordem de representação dos itens
- Possibilidade de incorporação de restrições definidas pelo utilizador
- Interpretabilidade do resultado
- · Disponibilidade na ferramenta utilizada



## Avaliação de clustering

- Analisar homogeneidade intra cluster
- Analisar homogeneidade inter cluster
- Analisar a sensibilidade dos clusters
  - Ex: executar várias vezes k-means com diferentes inicializações e verificar o resultado
  - Ex: executar várias vezes k-means com amostras ligeiramente diferentes e verificar o resultado
- Avaliar a "qualidade" dos clusters resultantes:
  - Para determinar a tendência de um conjunto de dados (distinguir se existem nos dados estruturas não aleatórias)
  - Para comparar os resultados do clustering com resultados externos conhecidos
  - Para avaliar quão bem os resultados do clustering se ajustam aos dados sem referência a informação externa
  - Para comparar os resultados de dois clusterings diferentes
  - Para determinar o número "correto" de clusters

## Avaliação de clustering: métodos

- Calcular a correlação entre a **Similarity Matrix** e a **Incidence Matrix** (1, se os pontos pertencem ao mesmo cluster; 0, caso contrário)
  - Alta correlação quando pontos que pertencem ao mesmo cluster estão perto
  - Não é uma métrica muito boa para clusters density-based
- **Dunn's index**:  $DI = \frac{\min(inter-cluster\ distance)}{\max(cluster\ size)}$ 
  - *DI* alto (melhor clustering) quando:
    - Inter-cluster distances são altas (melhor separação)
    - Clusters pequenos (mais compactos)

## Avaliação de clustering: métricas

- Internal Indexes: usadas para medir a qualidade de um determinado cluster, sem informação externa
- External Indexes: usadas para medir até que ponto os labels determinados pelo clustering se assemelham a labels fornecidos
- Relative Indexes: usadas para comparar dois algoritmos de clustering

### **Internal Indexes**

- Sum of Squared Errors (em relação ao centroide)
  - Bom para comparar dois clusterings, ou dois clusters (average SSE)
  - Pode ser usado para o "método do cotovelo"
- Cohesion: mede a afinidade entre objetos do mesmo cluster
  - Within cluster SSE (WSS)

$$WSS = \sum_{k} \sum_{x_n \in c_k} (x_n - c_k)^2$$

- Separation: mede quão bem separado um cluster está dos outros
  - Between cluster SSE (BSS), em que  $|c_k|$  é o tamanho do cluster k e  $\bar{c}$  é a média de todos os centroides

$$BSS = \sum_{k} |c_k| (\bar{c} - c_k)^2$$

- Silhouette coefficient (de cada item):  $s = \frac{b-a}{\max(a,b)}$ ,
  - a: distância média do item aos outros itens do mesmo cluster
  - b: distância média do item aos itens do cluster mais próximo
  - Valores entre 0 e 1. Quanto mais próximo de 1, melhor
  - · Pode calcular-se average silhouette de um algoritmo

### External Indexes (sabendo classes) (1)

Para cada cluster k, relativamente à classe j e tendo

- N é o número total de elementos a serem agrupados
- $N_k$  é o número de elementos do cluster k
- N<sub>i</sub> é o número de elementos da classe j
- $N_{kj}$  é o número de elementos do cluster k que pertencem à classe j

$$precision(k,j) = p_{kj} = \frac{N_{kj}}{N_k}$$

$$recall(k,j) = r_{kj} = \frac{N_{kj}}{j}$$

$$F = \frac{2}{\frac{1}{p} + \frac{1}{r}} = \frac{2pr}{p+r}$$

$$purity, p_k = \max_j p_{kj}$$

purity, 
$$p = \sum_{k=1}^{K} \frac{N_k}{N} p_k$$

## External Indexes (sabendo classes) (2)

Entropia: mede até que ponto um cluster contém elementos da mesma classe

- Seja  $p_{kj} = \frac{N_{kj}}{N_k}$  a probabilidade de um membro do cluster k pertencer à classe j
- Seja L o número de classes

Entropia de um cluster:

$$e_k = -\sum_{j=1}^L p_{kj} \log_2 p_{kj}$$

Entropia total do clustering é a soma ponderada pelo tamanho dos clusters

$$e = \sum_{k=1}^{K} \frac{N_k}{N} e_k$$

### External Indexes (sabendo classes) (3)

#### **Jaccard Similarity**

A *cluster similarity matrix* ideal tem entradas com valor 1 se dois objetos pertencerem ao mesmo cluster e 0 caso contrario A *class similarity matrix* ideal tem entradas com valor 1 se dois objetos pertencem à mesma classe e 0 caso contrário

Podemos usar a semelhança entre vetores binários

- $f_{00}$ : número de pares com classe diferente e cluster diferente
- $f_{01}$ : número de pares com classe diferente e cluster igual
- $f_{10}$ : número de pares com classe igual e cluster diferente
- $f_{11}$ : número de pares com classe igual e cluster igual

$$Jaccard = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$



Do conhecimento à prática.