Аналитическая механика

Муницина Валерия Александровна

28 сентября 2017 г.

 $\it Ha \it Gop: A$ лександр $\it Ba$ лентинов $\it O \it Good out$ ошибках $\it nucam \it b: vk.com/valentiay$

Содержание

Кинематика точки	1
Векторное описание движения	1
Декартовы координаты	1
Движение по окружности	1
Естественное описание движения	2
Ортогональные векторные координаты	3
Геометрический смысл	4
Кинематика твердого тела	4
Формулы Пуассона	6
Формула распределения скоростей точек твердого тела	7
Геометрический смысл	8
Классификация движения твердого тела	8
Поступательное	8
Вращательное движение (вращение вокруг неподвижной оси)	8
Плоскопараллельное движение	9
Тело с неподвижной точкой (вращение вокруг точки)	10
Винтовое движение	10
Общий случай	10
Кинематика сложного движения	11
Сложное движение материальной точки	12
Сложное движение твердого тела	13
Кинематические формулы Эйлера	14
Алгебра кватернионов	14

Кинематика точки

Определение. Материальная точка - точка, размером которой можно пренебречь.

Мы будем полагать, что время меняется равномерно и непрерывно.

Векторное описание движения

Зависимость координат от времени назовем законом движения.

$$\vec{r} = \vec{r}(t) \in C^2$$

Определение. $\gamma = \{ \vec{r}(t), \ t \in (0, +\infty) \}$ - траектория

$$\vec{v} = \frac{d\vec{r}}{dt}$$

$$\vec{w} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

Декартовы координаты

$$\vec{r}(t) = x(t)\vec{e_x} + y(t)\vec{e_y} + z(t)\vec{e_z}$$

$$\vec{v}(t) = \dot{x}(t)\vec{e_x} + \dot{y}(t)\vec{e_y} + \dot{z}(t)\vec{e_z}$$

$$\vec{w}(t) = \ddot{x}(t)\vec{e_x} + \ddot{y}(t)\vec{e_y} + \ddot{z}(t)\vec{e_z}$$

Движение по окружности

$$\begin{cases} x = R\cos\varphi \\ y = R\sin\varphi \end{cases}$$

$$\begin{cases} \dot{x} = -R\sin\varphi \cdot \dot{\varphi} \\ \dot{y} = R\cos\varphi \cdot \dot{\varphi} \end{cases}$$

$$\begin{cases} \ddot{x} = -R\cos\varphi \cdot \dot{\varphi}^2 - R\sin\varphi \cdot \ddot{\varphi} \\ \ddot{y} = -R\sin\varphi \cdot \dot{\varphi}^2 + R\cos\varphi \cdot \ddot{\varphi} \end{cases}$$

$$\vec{v} = R\dot{\varphi}(-\sin\varphi \cdot \vec{e_x} + \cos\varphi \cdot \vec{e_y}) = R\dot{\varphi}\vec{r}$$

$$\vec{w} = R\ddot{\varphi}(-\sin\varphi \cdot \vec{e_x} + \cos\varphi \cdot \vec{e_y}) + R\dot{\varphi}^2(-\cos\varphi \cdot \vec{e_x} - \sin\varphi \cdot \vec{e_y}) = R\ddot{\varphi}\vec{\tau} + R\dot{\varphi}^2\vec{n}$$

$$\vec{v} = R\dot{\varphi}\vec{\tau} = v\vec{\tau}$$

$$\vec{w} = R\ddot{\varphi}\vec{\tau} + R\dot{\varphi}^2\vec{n} = \dot{v}\vec{\tau} + \frac{v^2}{R}\vec{n}$$

Естественное описание движения

Кривая задана параметрически естественным параметром $s.\ ds = |\vec{dr}| \neq 0$

Определение.

$$\vec{\tau} = \frac{d\vec{r}}{ds} = \dot{\vec{r}}$$
 - касательный вектор (1)

$$\vec{n} = \frac{\dot{\vec{r}}}{|\dot{\vec{\tau}}|}$$
 - вектор главной нормали (2)

$$\vec{b} = [\vec{t}; \vec{n}]$$
 - вектор бинормали (3)

Утверждение 1. $\{\vec{\tau}, \vec{n}, \vec{b}\}$ - тройка ортогональных единичных векторов.

Доказательство.

$$|\vec{\tau}| = \frac{|d\vec{r}|}{|ds|} = 1 \tag{4}$$

$$|\vec{n}| = \frac{|\dot{\vec{r}}|}{|\dot{\vec{r}}|} = 1 \tag{5}$$

$$|\vec{\tau}| = 1 \Rightarrow (\tau, \tau) = 1 \tag{6}$$

$$(\dot{\vec{\tau}}, \vec{\tau}) + (\vec{\tau}, \dot{\vec{\tau}}) = 0 \tag{7}$$

$$2(\dot{\vec{\tau}}, \vec{\tau}) = 0 \Rightarrow \dot{\vec{\tau}} \perp \vec{\tau} \Rightarrow \vec{n} \perp \vec{\tau} \tag{8}$$

Этот трехгранник называют репер Ферне. (Дарбу, сопровождающий трехгранник).

Теорема 1. $\vec{v} = v\vec{\tau}$, $\vec{w} = \dot{v}\vec{\tau} + \frac{v^2}{\rho}\vec{n}$, $\epsilon\partial e \ v = \dot{s}$.

Доказательство.

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds}\frac{ds}{dt} = v\vec{\tau} \tag{9}$$

$$\dot{\vec{\tau}} = \frac{d\vec{\tau}}{ds}\frac{ds}{dt} = \vec{n}kv$$
, по формуле (2)

$$\vec{w} = \dot{\vec{v}} = \dot{v}\vec{\tau} + v\dot{\vec{\tau}} = \dot{v}\vec{\tau} + v^2k\vec{n} = \dot{v}\vec{\tau} + \frac{v^2}{\rho}\vec{n}$$
 (11)

 $\dot{v}\vec{\tau}$ - касательное ускорение

$$\frac{v^2}{\rho} \vec{n}$$
 - нормальное ускорение

$$ho = rac{1}{|\dot{r}|}$$
 - радиус кривизны

$$k=|\vec{\ddot{r}}|$$
 - кривизна

 $\vec{\ddot{r}}$ - вектор кривизны

Формулы Френеля:

$$\begin{cases} \vec{\tau}' = k\vec{n} \\ \vec{n}' = -k\vec{\tau} + \varkappa \vec{b} \\ \vec{b}' = -\varkappa \vec{n} \end{cases}$$

где и - коэффициент кручения.

Доказательство.

$$\begin{split} |\vec{n}| &= 1 \Rightarrow (\vec{n}, \vec{n}) = 0 \\ \vec{n} \perp \vec{\tau} &\Rightarrow (\vec{n}', \vec{\tau}) + (\vec{n}, \vec{\tau}') = 0 \Rightarrow (\vec{n}', \vec{\tau}) + k = 0 \end{split}$$

$$\vec{b}' = [\vec{\tau}', \vec{n}] + [\vec{\tau}, \vec{n}'] = [k\vec{n}, \vec{n}] + [\vec{\tau}, -k\vec{\tau} + \varkappa \vec{b}] = 0 + \varkappa [\vec{r}, \vec{b}] = -\varkappa \vec{n}$$

Ортогональные векторные координаты

$$\vec{r} = \vec{r}(q_1(t), q_2(t), q_3(t))$$
 (12)

$$\vec{v} = \dot{\vec{\tau}} = \sum_{i=1}^{3} \frac{\partial \vec{r}}{\partial q_i} \dot{q}_i \tag{13}$$

$$\vec{H_i} = \frac{\partial \vec{r}}{\partial q_i} = H_i \vec{e_i}$$
, где H_i - коэффициенты Ламе. (14)

(15)

Геометрический смысл

$$ds_i = H_i dq_i$$

 s_i - длина дуги i-й к-ой линии.

$$H_{i} = \frac{\partial \vec{r}}{\partial q_{i}} = \sqrt{\left(\frac{\partial x}{\partial q_{i}}\right)^{2} + \left(\frac{\partial y}{\partial q_{i}}\right)^{2} + \left(\frac{\partial z}{\partial q_{i}}\right)^{2}}$$
$$\vec{v} = \sum_{i=1}^{3} H_{i} \dot{q}_{i} \vec{e}_{i}, \quad v^{2} = (\vec{v}, \vec{v}) = \sum_{i=1}^{3} H_{i}^{2} \dot{q}_{i}^{2}$$

Теорема 2. Копоненты вектора ускорения в ортогональном криволинейном базисе определяются равенством:

$$w_i = \frac{1}{H_i} \left(\frac{d}{dt} \frac{\partial}{\partial \dot{q}_i} \left(\frac{v^2}{2} \right) - \frac{\partial}{\partial q_i} \left(\frac{v^2}{2} \right) \right)$$

Доказательство.

$$(\vec{w}, \vec{H_i}) = \left(\frac{d\vec{v}}{dt}, \frac{\partial \vec{r}}{\partial q_i}\right) = \frac{d}{dt} \left(\vec{v}, \frac{\vec{r}}{\partial q_i}\right) - \left(\vec{v}, \frac{d}{dt} \frac{\partial \vec{r}}{\partial q_i}\right) \triangleq$$
(16)

$$1) \frac{\partial \vec{r}}{\partial q_i} = \frac{\partial \vec{v}}{\partial q_i'} - \text{из определения скорости}$$
 (17)

2)
$$\frac{d}{dt} \left(\frac{\partial \vec{r}}{\partial q_i} \right) = \sum_{j=1}^3 \frac{\partial^2 \vec{r}}{\partial q_j \partial q_i} \dot{q}_j = \sum_{j=1}^3 \frac{\partial^2 \vec{r}}{\partial q_i \partial q_j} \dot{q}_j =$$
 (18)

$$= \frac{\partial}{\partial q_i} \left(\frac{d\vec{r}}{dt} \right) = \frac{\partial \dot{\vec{r}}}{\partial q_i} = \frac{\partial \vec{v}}{\partial q_i}$$
 (19)

$$\triangleq \frac{d}{dt} \left(\vec{v}, \frac{\partial \vec{v}}{\partial q_i} \right) - \left(\vec{v}, \frac{\partial \vec{v}}{\partial q_i} \right) = \frac{d}{dt} \frac{1}{2} \frac{\partial}{\partial q_i} (\vec{v}, \vec{v}) - \frac{1}{2} \frac{\partial}{\partial q_i} (\vec{v}, \vec{v}) = \tag{20}$$

$$=\frac{d}{dt}\frac{\partial}{\partial \dot{q}_i}\left(\frac{v^2}{2}\right) - \frac{\partial}{\partial q_i}\left(\frac{v^2}{2}\right) \tag{21}$$

$$w_i = (\vec{w}, \vec{e_i}) = \frac{1}{H_i} (\vec{w}, \vec{H_i})$$
 (22)

Кинематика твердого тела

Определение. Абсолютно твердым телом называется множество точек, расстояние между которыми не меняется со временем.

$$\{\vec{r_i}, i = \overline{1 \dots n} : |\vec{r_i} - \vec{r_j}| = C_{ij} = const, n \geqslant 3\}$$

OXYZ - неподвижная система отсчета. $S\xi\eta\zeta$ - связаны с телом (движется).

$$X = \begin{pmatrix} (\vec{e_{\xi}}, \vec{e_{x}}) & (\vec{e_{\xi}}, \vec{e_{y}}) & (\vec{e_{\xi}}, \vec{e_{z}}) \\ (\vec{e_{\eta}}, \vec{e_{x}}) & (\vec{e_{\eta}}, \vec{e_{y}}) & (\vec{e_{\eta}}, \vec{e_{z}}) \\ (\vec{e_{\zeta}}, \vec{e_{x}}) & (\vec{e_{\zeta}}, \vec{e_{y}}) & (\vec{e_{\xi}}, \vec{e_{\zeta}}) \end{pmatrix}$$
 - матрица направляющих косинусов.

$$\vec{AB} = x\vec{e_x} + y\vec{e_y} + z\vec{e_z}$$

$$\vec{AB} = \xi\vec{e_\xi} + \eta\vec{e_\eta} + \zeta\vec{e_\zeta}$$

$$X \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (\vec{e_{\xi}}, x\vec{e_x} + y\vec{e_y} + z\vec{e_z}) \\ (\vec{e_{\eta}}, x\vec{e_x} + y\vec{e_y} + z\vec{e_z}) \\ (\vec{e_{\zeta}}, x\vec{e_x} + y\vec{e_y} + z\vec{e_z}) \end{pmatrix} = \begin{pmatrix} (\vec{e_{\xi}}, \vec{AB}) \\ (\vec{e_{\eta}}, \vec{AB}) \\ (\vec{e_{\zeta}}, \vec{AB}) \end{pmatrix} = \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = \vec{\rho}$$

$$\vec{\rho} = X\vec{r}$$

Утверждение 2. X - ортогональная матрица.

Доказательство.

$$XX^{T} = X^{T}X = \begin{pmatrix} (\vec{e_{\xi}}, \vec{\xi}) & (\vec{e_{\xi}}, \vec{\eta}) & (\vec{e_{\xi}}, \vec{\zeta}) \\ \vdots & \ddots & \vdots \\ & \ddots & & \vdots \end{pmatrix} = 0$$

Т.к. базис ортогональный.

$$\begin{pmatrix} \vec{e}_{\xi} \\ \vec{e}_{\eta} \\ \vec{e}_{\zeta} \end{pmatrix} = X \begin{pmatrix} \vec{e}_{x} \\ \vec{e}_{y} \\ \vec{e}_{z} \end{pmatrix}$$

$$\begin{pmatrix} \dot{e}_{\xi} \\ \dot{e}_{\eta} \\ \dot{e}_{\zeta} \end{pmatrix} = \dot{X} \begin{pmatrix} \vec{e}_{x} \\ \vec{e}_{y} \\ \vec{e}_{z} \end{pmatrix} = \underbrace{\dot{X}X^{T}}_{\Omega} \begin{pmatrix} \vec{e}_{\xi} \\ \vec{e}_{\eta} \\ \vec{e}_{\zeta} \end{pmatrix} = \Omega \begin{pmatrix} \vec{e}_{\xi} \\ \vec{e}_{\eta} \\ \vec{e}_{\zeta} \end{pmatrix}$$

$$\Omega = \dot{X}X^{T}$$

Утверждение 3. Ω - *кососимметрична*.

$$\Omega\Omega^2 = \dot{X}X^T + (\dot{X}X^T)T = \dot{X}X^T + X\dot{X}^T = \frac{d}{dt}(XX^T) = \frac{d}{dt}(E) = 0$$

Следствие.

$$\Omega = \begin{pmatrix} 0 & \omega_{\zeta} & -\omega_{\eta} \\ -\omega_{\zeta} & 0 & \omega_{\xi} \\ \omega_{\eta} & -\omega_{\xi} & 0 \end{pmatrix} \text{- } \Phi \text{акт, который может быть законспектирован неправильно}$$

Определение. $\vec{\omega} = \omega_\xi \vec{e_\xi} + \omega_\eta \vec{e_\eta} + \omega_\zeta \vec{e_\zeta}$ - угловая скорость подвижного репера.

Формулы Пуассона

Утверждение 4.

$$\dot{\vec{e_i}} = [\vec{\omega}, \vec{e_i}], \quad i = \overline{1 \dots 3}$$

Доказательство.

$$\dot{\vec{e_\xi}} = \omega_\zeta \vec{e_\eta} - \omega_\eta \vec{e_\zeta} = \begin{vmatrix} \vec{e_\xi} & \vec{e_\eta} & \vec{e_\zeta} \\ \omega_\xi & \omega_\eta & \omega_\zeta \\ 1 & 0 & 0 \end{vmatrix} = [\vec{\omega}, \vec{e_\xi}]$$

Утверждение 5. $\vec{\omega}=\vec{e_{\xi}}(\dot{\vec{e_{\eta}}},\vec{e_{\zeta}})+\vec{e_{\eta}}(\dot{\vec{e_{\zeta}}},\vec{e_{\xi}})+\vec{e_{\zeta}}(\dot{\vec{e_{\xi}}},\vec{e_{\eta}})$

Доказательство.

$$\begin{split} &(\dot{e_{\xi}},\vec{e_{\eta}}) = \omega_{\zeta} \\ &(\dot{e_{\eta}},\vec{e_{\zeta}}) = \omega_{\xi} \\ &(\dot{e_{\zeta}},\vec{e_{\xi}}) = \omega_{\eta} \end{split}$$

Утверждение 6. $\vec{\omega} = \frac{1}{2}([\vec{e_{\xi}},\dot{e_{\xi}}] + [\vec{e_{\eta}},\dot{e_{\eta}}] + [\vec{e_{\zeta}},\dot{e_{\zeta}}])$

Доказательство.

$$\begin{split} \vec{\omega} &= \frac{1}{2}([\vec{e_{\xi}}, \dot{\vec{e_{\xi}}}] + [\vec{e_{\eta}}, \dot{\vec{e_{\eta}}}] + [\vec{e_{\zeta}}, \dot{\vec{e_{\zeta}}}]) = \frac{1}{2}([\vec{e_{\xi}}, [\vec{\omega}, \vec{e_{\xi}}]] + [\vec{e_{\eta}}, [\vec{\omega}, \vec{e_{\eta}}]] + [\vec{e_{\zeta}}, [\vec{\omega}, \vec{e_{\zeta}}]]) = \\ &= \frac{1}{2}\left(\vec{\omega}(\vec{e_{\xi}}, \vec{e_{\xi}}) - \vec{e_{\xi}}(\vec{\omega}, \vec{e_{\xi}}) + \vec{\omega}(\vec{e_{\eta}}, \vec{e_{\eta}}) - \vec{e_{\eta}}(\vec{\omega}, \vec{e_{\eta}}) + \vec{\omega}(\vec{e_{\zeta}}, \vec{e_{\zeta}}) - \vec{e_{\zeta}}(\vec{\omega}, \vec{e_{\zeta}})\right) = \\ &= \frac{1}{2}(3\vec{\omega} - \vec{\omega}) = \vec{\omega} \end{split}$$

Пример. Угловая скорость репера Френеля.

$$\begin{cases} \vec{\tau}' = k\vec{n} \\ \vec{n}' = -k\vec{\tau} + \varkappa \vec{b} \\ \vec{b}' = -\varkappa \vec{n} \end{cases}$$

$$\begin{cases} \dot{\vec{\tau}} = \frac{d\vec{\tau}}{ds}\dot{s} \\ \dot{\vec{n}} = \frac{d\vec{n}}{ds}\dot{s} \\ \dot{\vec{b}} = \frac{d\vec{b}}{ds}\dot{s} \end{cases}$$

$$\vec{\omega} = \vec{\tau}(\dot{s}(-k\vec{\tau} + \varkappa \vec{b}), \vec{b}) + \vec{n}(\dot{s}(-\varkappa \vec{n}, \vec{\tau}) + \vec{b}(\dot{s}(k\vec{n}), \vec{n}) = \dot{s}(\varkappa \vec{\tau} + k\vec{b})$$

Определение. Угловой скоростью твердого тела называется угловая скорость подвижного репера, с ним свзязанного.

Формула распределения скоростей точек твердого тела

$$\vec{v_B} = \vec{v_A} + [\vec{\omega}, \vec{AB}]$$

Доказательство.

$$\vec{AB} = \xi \vec{e_{\xi}} + \eta \vec{e_{\eta}} + \zeta \vec{e_{\zeta}}$$

$$\vec{AB} = \xi \vec{e_{\xi}} + \eta \vec{e_{\eta}} + \zeta \vec{e_{\zeta}}, \quad \dot{\xi} = \dot{\eta} = \dot{\zeta} = 0$$

$$(\vec{r_B} - \vec{r_A}) = \xi [\vec{\omega}, \vec{e_{\xi}}] + \eta [\vec{\omega}, \vec{e_{\eta}}] + \zeta [\vec{\omega}, \vec{e_{\zeta}}]$$

$$\dot{\vec{r_1}} - \dot{\vec{r_2}} = [\vec{\omega}, \xi \vec{e_{\xi}} + \eta \vec{e_{\eta}} + \zeta \vec{e_{\zeta}}]$$

$$\vec{v_B} = \vec{v_A} + [\vec{\omega}, \vec{AB}]$$

Следствие. $S\xi\eta\zeta\to\vec{\omega},\ S'\xi'\eta'\zeta'\to\vec{\omega}'$

 $ec{v_B} = ec{v_A} + [ec{\omega}, ec{AB}] \ \left| [ec{\omega} - ec{\omega}', ec{AB}] = 0; \ orall A, B \ в абсолютно твердом теле <math>\Rightarrow$

$$\Rightarrow \vec{\omega} - \vec{\omega}' = 0 \Rightarrow \vec{\omega} = \vec{\omega}'$$

Утверждение 7. $(\Phi$ ормула Ривальса) $\vec{w_B} = \vec{w_A} + [\vec{\varepsilon}, \vec{AB}] + [\vec{\omega}, [\omega, \vec{AB}]].$

Доказательство.

$$\begin{split} \vec{v_B} &= \vec{v_A} + [\vec{\omega}, \vec{AB}] \\ \dot{\vec{v_B}} &= \dot{\vec{v_A}} + [\dot{\vec{\omega}}, \vec{AB}] + [\vec{\omega}, \vec{r_B} - \vec{r_A}] \\ \vec{w_B} &= \vec{w_A} + [\vec{\varepsilon}, \vec{AB}] + [\vec{\omega}, [\vec{\omega}, \vec{AB}]] \end{split}$$

 $[ec{arepsilon}, ec{AB}]$ - вращательное ускорение, $[ec{\omega}, [ec{\omega}, ec{AB}]]$ - осестремительное ускорение

7

Геометрический смысл

$$\vec{w} = [\vec{\omega}, [\vec{\omega}, \vec{AB}]] = \vec{\omega}(\vec{\omega}, \vec{AB}) - \vec{AB}\omega^2 = \omega^2(\vec{e_{\omega}}(\vec{AB}, \vec{e_{\omega}}) - \vec{AB}) \\ |\vec{w_{\mathbf{oc}}}| = \omega^2\rho(B, l)$$

Утверждение 8. Проекции скоростей двух точек твердого тела на прямую, их соединяющую, равны.

Доказательство.

$$\vec{v_B} = \vec{v_A} + [\vec{\omega}, \vec{AB}]$$
$$(\vec{v_B}, \vec{AB}) = (\vec{v_A}, \vec{AB}) + ([\vec{\omega}, \vec{AB}], \vec{AB})$$
$$v_B \cos \beta = v_A \cos \alpha$$

Замечание. Аналогичная теорема для ускорений не верна.

Классификация движения твердого тела

Поступательное

Определение. Такое движение твердого тела, при котором угловая скорость равна нулю.

$$\vec{v_B} \equiv \vec{v_A}$$

 $\vec{w_B} \equiv \vec{v_A}$

Мгновенное поступательное движение: $\exists t : \vec{\omega}(t) = 0, \ \vec{\varepsilon}(t) \neq 0$

Вращательное движение (вращение вокруг неподвижной оси)

$$\begin{split} &\exists A,B: \vec{v_A} = \vec{v_B} = 0 \\ &\vec{v_B} = \vec{v_A} + [\vec{\omega},\vec{AB}], \vec{v_A} = \vec{v_B} = 0 \Rightarrow [\omega,\vec{AB}] = 0 \Rightarrow \omega \parallel \vec{AB} \\ &\forall M \in l: \vec{v_M} = 0, \ l \text{- ось вращения} \\ &\vec{e_\xi} = \dot{\varphi} \vec{e_\eta}, \ \dot{\vec{e_\eta}} = -\dot{\varphi} \vec{e_\xi}, \ \dot{\vec{e_\zeta}} = 0 \\ &\vec{\omega} = \vec{e_\xi} (-\dot{\varphi} \vec{e_\xi}, \vec{e_\zeta}) + \vec{e_\eta} (0, \vec{e_\xi}) + \vec{e_\zeta} (\dot{\varphi} \vec{e_\eta}, \vec{e_\eta}) = \dot{\varphi} \vec{e_\zeta} = \dot{\varphi} \vec{e_z} \\ &\vec{e_\beta} = \dot{\vec{\omega}} = \ddot{\varphi} \vec{e_z} \\ &\vec{v_p} = \vec{v_{p'}} + [\vec{\omega}, \vec{pp'}] = 0 + [\dot{\varphi} \vec{e_z}, \xi \vec{e_\xi} + \eta \vec{e_\eta}] = \dot{\varphi} (\vec{x} \vec{e_\eta} - \vec{y} \vec{e_\xi}) \\ &|\vec{v_p}| = |\vec{\omega}| \cdot |\vec{p'p}| \\ &\vec{w_p} = \vec{w_{p'}} + [\vec{e_\zeta}, \vec{p'p}] + [\vec{\omega}, [\vec{\omega}, \vec{p'p}]] = 0 + [\vec{e_\zeta}, \vec{p'p}] - \omega^2 \vec{p'p} \end{split}$$

Плоскопараллельное движение

Определение. Движение твердого тела называется плоскопараллельным, если скорости всех точек тела параллельны некоторой неподвижной плоскости:

$$\vec{v}_{p_i} \parallel \pi, \ \forall p_i \in ATT$$

$$\begin{split} \vec{v}_{p_i} &= \vec{v}_{p_j} + [\vec{\omega}, p_j \vec{p}_i] \\ (\vec{p}_i - \vec{v}_{p_i}) &= 0 \Leftrightarrow \begin{bmatrix} \vec{\omega} = 0 \\ \vec{v}_{p_i} &= \vec{v}_{p_j}, \ \forall p_i, p_j \in \text{ATT} \\ \vec{\omega} \perp \vec{p}_i - \vec{v}_{p_i} \parallel \pi \\ \\ \vec{v}_{M_i} &= \vec{v}_{M_j} + \omega[\vec{\omega}, \overrightarrow{M_j M_i}] = \vec{v}_{M_j}, \ \forall M_i, M_j : \overrightarrow{M_i M_j} \perp \pi \Rightarrow \vec{w}_{M_i} = \vec{w}_{M_j} \end{split}$$

Качение:

$$\begin{split} \vec{r}_S &= x_S \vec{e}_x + y_S \vec{e}_y \\ \dot{\vec{e}}_\xi &= \dot{\varphi} \vec{e}_\eta, \quad \dot{\vec{e}}_\eta = \dot{\varphi} \vec{e}_\zeta, \quad \dot{\vec{e}}_\zeta = 0 \\ \vec{\omega} &= \dot{\varphi} \vec{e}_z, \quad \vec{\varepsilon} = \ddot{\varphi} \vec{e}_z \parallel \vec{\omega} \\ \vec{v}_M &= \vec{v}_S + [\vec{\omega}, \overrightarrow{SM}] \\ \vec{w}_M &= \vec{w}_S + [\vec{\varepsilon}, \overrightarrow{SM}] + [\vec{\omega}, [\vec{\omega}, \overrightarrow{SM}]] = \vec{w}_s + [\vec{\varepsilon}, \overrightarrow{SM}] - \omega^2 \overrightarrow{SM} \end{split}$$

Теорема 3. Если при плоскопараллельном движении угловая скорость твердого тела отлична от нуля, то существует точка, скорость которой равна нулю в данный момент времени.

Доказательство.

$$\begin{cases} \vec{v}_c = \vec{v}_s + [\vec{\omega}, \vec{SC}] \\ \vec{v}_c = 0 \end{cases} \Rightarrow [\vec{\omega}, \vec{v}_s] + [\vec{\omega}, [\vec{\omega}, \vec{SC}]] = 0$$
$$[\vec{\omega}, \vec{v}_s] + \vec{\omega}(\vec{\omega}, \vec{SC}) - \omega^2 \vec{SC} = 0$$
$$\vec{SC} = \frac{[\vec{\omega}, \vec{v}_s]}{\omega^2}$$

Следствие. Любое плоскопараллельное движение является либо мгновеннопоступательным, либо мгновенно-вращательным

Доказательство. $\vec{\omega}=0$ - м
гновенно-поступательное. $\vec{\omega}(t)\neq 0$ - вращение вокруг
 l.

Определение. C - мгновенный центр скоростей

Замечание. Положение C меняется со временем.

Пример. Качение без проскальзывания

Тело с неподвижной точкой (вращение вокруг точки)

$$\exists \vec{v}_0 \equiv 0$$

$$l \parallel \vec{\omega}, O \in l$$

$$\vec{v}_M = \vec{v}_0 + [\vec{\omega}, \vec{OM}] = 0 + 0, \ \forall M \in l$$

Определение. l - мгновенная ось вращения

$$\vec{v}_p = [\vec{\omega}, \vec{OP}], \ \vec{w_p} = [\vec{\varepsilon}, \vec{OP}] + \underbrace{[\vec{\omega}, [\vec{\omega}, \overrightarrow{OP}]]}_{\vec{v}_{OC}}$$

Винтовое движение

Определение. Движение твердого тела называется винтовым, если тело равномерно вращается вокруг неподвижной оси, а скорости всех точек, лежащий на этой оси, равны между собой, постоянны и сонаправленны с осью.

Общий случай

Теорема 4. $\vec{\omega} \neq 0 \Rightarrow \exists l: \ \vec{\omega} \parallel l, \ \vec{v}_{k_i} \parallel l, \ \forall k_i \in l$

$$\vec{\alpha} \perp \vec{\omega}, \ S \in \alpha$$

$$\begin{cases} \vec{v}_c = \vec{v}_c = \vec{v}_s + [\vec{\omega}, \vec{SC}] \\ \vec{v}_c = \lambda \vec{\omega} \end{cases} \Rightarrow 0 = [\vec{\omega}, \vec{v}_s] + [\vec{\omega}, [\vec{\omega}, \vec{SC}]]$$

$$[\vec{\omega}, \vec{v}_s] + \vec{\omega}(\vec{\omega}, \vec{SC}) - \omega^2 \vec{SC} = 0$$

$$\vec{SC} = \frac{[\vec{\omega}, \vec{v}_c]}{\omega^2}$$

$$\exists l : C \in l, l \parallel \vec{\omega}$$

$$\vec{v}_{C_1} = \vec{v}_C + [\vec{\omega}, \vec{CC}_1] = \vec{v}_C, \ \forall C_1 \in l$$

$$\vec{v}_C = \vec{v}_S + \left[\vec{\omega}, \frac{[\vec{\omega}, \vec{v}_C]}{\omega^2}\right] = \vec{v}_S + \frac{1}{\omega^2} \left(\vec{\omega}(\vec{\omega}, \vec{v}_S) - \omega^2 \vec{v}_S\right) = \underbrace{\frac{(\vec{\omega}, \vec{v}_S)}{\omega^2}}_{\lambda} \vec{\omega}$$
$$\lambda = \frac{(\vec{\omega}, \vec{v}_S)}{\omega^2} - \text{параметр (шаг винта)}.$$

Следствие. Любое движение твердого тела является в каждый момент времени либо мгновенно-поступательным ($\omega = 0, \lambda \to +\infty$), либо мгновенно-вращательным ($\omega \neq 0, \lambda = 0$), либо мгновенно-витовым ($\omega \neq 0, \lambda \neq 0$).

Определение. $\{l, \vec{\omega}, \vec{v}\}$ - кинематический винт.

$$\begin{split} \vec{v}_S &= v_x \vec{e}_x + v_y \vec{e}_y + v_z \vec{e}_z \\ \vec{r}_S &= x_S \vec{e}_x + y_S \vec{e}_y + z_S \vec{e}_z \\ \vec{\omega} &= \omega_x \vec{e}_x + \omega_y \vec{e}_y + z_Z \vec{e}_z \\ \vec{r}_C &= x \vec{e}_x + y \vec{e}_y + z \vec{e}_z \\ \vec{v}_S + [\vec{\omega}, \vec{SC}] &= \lambda \vec{\omega} \Rightarrow \lambda = \frac{v_x + \omega_y (z - z_S) - \omega_z (y - y_S)}{\omega_x} = \\ &= \frac{v_y + \omega_z (x - x_S) - \omega_x (z - z_S)}{\omega_y} = \frac{v_z + \omega_x (y - y_S) - \omega_y (x - x_S)}{\omega_z} \end{split}$$

Кинематика сложного движения

OXYZ - неподвижная система отсчета $(\vec{r}), O_1\xi\eta\zeta$ - подвижная система отсчета $(\vec{\rho})$.

$$\vec{u}=u_x\vec{e}_x+u_y\vec{e}_y+u_z\vec{e}_z$$

$$\vec{u}=u_\xi\vec{e}_\xi+u_\eta\vec{e}_\eta+u_\zeta\vec{e}_\zeta$$

$$\frac{d\vec{u}}{dt}=\dot{u}_x\vec{e}_x+\dot{u}_y\vec{e}_y+\dot{u}_z\vec{e}_z\text{ - абсолютная производная}$$

$$\dot{\vec{u}}=\dot{u}_\xi\vec{e}_\xi+\dot{u}_\eta\vec{e}_\eta+\dot{u}_\zeta\vec{e}_\zeta\text{ - относительная производная}$$

Теорема 5. (Связь абсолютной и относительной производной) $\frac{d\vec{u}}{dt} = \dot{\vec{u}} + [\vec{\omega}, \vec{u}], \ \textit{где} \ \vec{\omega} \ - \ \textit{угловая скорость} \ O_1 \xi \eta \zeta \ \textit{относительно} \ OXYZ$

$$\begin{split} \frac{du}{dt} &= \dot{u}_{\xi}\vec{e}_{\xi} + \dot{u}_{\eta}\vec{e}_{\eta} + \dot{u}_{\zeta}\vec{e}_{\zeta} + u_{\xi}\frac{d\vec{e}_{\xi}}{dt} + u_{\eta}\frac{d\vec{e}_{\eta}}{dt} + u_{\zeta}\frac{d\vec{e}_{\zeta}}{dt} = \\ &= \dot{\vec{u}} + u_{\xi}[\vec{\omega}, \vec{e}_{\xi}] + u_{\eta}[\vec{\omega}, \vec{e}_{\eta}] + u_{\zeta}[\vec{\omega}, \vec{e}_{\zeta}] = \dot{\vec{u}} + [\vec{\omega}, \vec{u}] \\ &\left(\frac{d\vec{e}_{i}}{dt} = [\vec{\omega}, \vec{e}_{i}] - - \text{формула Пуассона}, \ \dot{\vec{e}}_{i} = 0\right) \end{split}$$

Сложное движение материальной точки

Определение. Абсолютной скоростью материальной точки называется ее скорость относительно неподвижной системы отсчета. $\vec{v}_{abc} = \frac{d}{dt}\vec{r}$

Определение. Относительной скоростью материальной точки называется ее скорость относительно подвижной системы отсчета. $\vec{v}_{omn} = \dot{\vec{\rho}}$

Определение. Переносной скоростью материальной точки называется абсолютная скорость той точки подвижной системы отсчета, в которой находится движующаяся точка в данный момент времени.

Теорема 6 (Формула сложения скоростей). $\vec{v}_{abc} = \vec{v}_{omn} + \vec{v}_{nep}$

Доказательство.

$$\begin{split} \vec{v}_{\rm a6c} &= \frac{d}{dt}(\vec{R} + \vec{\rho}) = \frac{dR}{dt} + \dot{\vec{\rho}} + [\vec{\omega}, \vec{\rho}] = \\ &= \vec{v}_{O_1} + \vec{v}_{\rm oth} + [\vec{\omega}, \vec{\rho}] = \vec{v}_{\rm oth} + \vec{v}_{\rm nep} \end{split}$$

Определение. Абсолютным ускорением материальной точки называется ее ускорение относительно неподвижной системы отсчета. $\vec{w}_{abc} = \frac{d}{dt} \vec{v}_{abc}$

Определение. Относительным ускорением материальной точки называется ее ускорение относительно подвижной системы отсчета. $\vec{w}_{omh} = \vec{v}_{omh}$

Определение. $\vec{\omega}_{nep} = \vec{\omega}_{O_1} + [\vec{\varepsilon}, \vec{\rho}] + [\vec{\omega}, [\vec{\omega}, \vec{\rho}]]$

Определение. $\vec{\omega}_{\kappa op} = 2[\vec{\omega}, \vec{v}_{omn}]$

Теорема 7 (Формула сложения ускорений). $\vec{w}_{abc} = \vec{w}_{omn} + \vec{w}_{nep} + \vec{w}_{\kappa op}$

$$\begin{split} \vec{w}_{\mathrm{a6c}} &= \frac{d}{dt}(\vec{v}_{\mathrm{отh}} + \vec{v}_{\mathrm{пер}}) = \frac{d}{dt}(\vec{v}_{\mathrm{отh}} + \vec{v}_{O_{1}} + [\vec{\omega}, \vec{\rho}]) = \\ &= \dot{\vec{v}}_{\mathrm{отh}} + [\vec{\omega}, \vec{v}_{\mathrm{отh}}] + \frac{d}{dt}\vec{v}_{O_{1}} + \left[\frac{d\vec{\omega}}{dt}, \vec{\rho}\right] + [\vec{\omega}, \vec{\rho} + [\vec{\omega}, \vec{\rho}]] = \\ &= \dot{\vec{v}}_{\mathrm{отh}} + \dot{\vec{v}}_{O_{1}} + [\vec{\varepsilon}, \vec{\rho}] + 2[\vec{\omega}, \vec{v}_{\mathrm{отh}}] + [\vec{\omega}, [\vec{\omega}, \vec{\rho}]] \end{split}$$

Сложное движение твердого тела

Рассмотрим неподвижную систему отсчета OXYZ, подвижную O_1xyz , и систему, связанную с телом $S\xi\eta\zeta$.

Определение. Абсолютная угловая скорость - угловая скорость $S\xi\eta\zeta$ относительно OXYZ

Определение. Относительная угловая скорость - угловая скорость $S\xi\eta\zeta$ относительно O_1xyz

Определение. Переносная угловая скорость - угловая скорость Oxyz относительно OXYZ

Теорема 8 (О сложении угловых скоростей). $\vec{\omega}_{abc} = \vec{\omega}_{omn} + \vec{\omega}_{nep}$

Доказательство.

$$\begin{split} \vec{v}_A^{\text{a6c}} &= \vec{v}_A^{\text{oth}} + \vec{v}_A^{\text{nep}} \\ \vec{v}_B^{\text{a6c}} &= \vec{v}_B^{\text{oth}} + \vec{v}_B^{\text{nep}} \\ \vec{v}_B^{\text{a6c}} &= \vec{v}_B^{\text{oth}} + \vec{v}_B^{\text{nep}} \\ \vec{v}_B^{\text{a6c}} &= \vec{v}_A^{\text{a6c}} + [\vec{\omega}_{\text{a6c}}, \overrightarrow{AB}] \\ \\ \vec{v}_B^{\text{oth}} &= \vec{v}_A^{\text{oth}} + [\vec{\omega}_{\text{oth}}, \overrightarrow{AB}] \\ \\ \vec{v}_B^{\text{nep}} &= \vec{v}_A^{\text{nep}} + [\vec{\omega}_{\text{nep}}, \overrightarrow{AB}] \\ \\ \Rightarrow 0 = 0 + [\vec{\omega}_{\text{a6c}} - \vec{\omega}_{\text{oth}} - \vec{\omega}_{\text{nep}}, \overrightarrow{AB}] = 0, \quad \forall \overrightarrow{AB} \Leftrightarrow \vec{\omega}_{\text{a6c}} = \vec{\omega}_{\text{oth}} + \vec{\omega}_{\text{nep}} \end{split}$$

Замечание. $rac{dec{\omega}_{nep}}{dt}=\dot{ec{\omega}}_{nep}+[ec{\omega}_{nep},ec{\omega}_{nep}]=\dot{ec{\omega}}_{nep}$

Теорема 9 (О сложении угловых ускорений). $\vec{\varepsilon}_{abc} = \vec{\varepsilon}_{omn} + \vec{\varepsilon}_{nep} + [\vec{\omega}_{nep}, \vec{\omega}_{omn}],$ $\varepsilon de \ \vec{\varepsilon}_{abc} = \frac{d}{dt} \vec{\omega}_{abc}, \ \vec{\varepsilon}_{omn} = \dot{\vec{\omega}}_{omn}, \ \vec{\varepsilon}_{nep} = \frac{d}{dt} \vec{\omega}_{nep} = \dot{\vec{\omega}}_{nep}$

Доказательство.

$$\begin{split} \vec{\varepsilon}_{\rm a6c} &= \frac{d}{dt}(\vec{\omega}_{\rm oth} + \vec{\omega}_{\rm nep}) = \\ &= \dot{\vec{\omega}}_{\rm oth} + [\vec{\omega}_{\rm nep}, \vec{\omega}_{\rm oth}] + \frac{d}{dt}\vec{\omega}_{\rm nep} = \vec{\varepsilon}_{\rm oth} + [\vec{\omega}_{\rm nep}, \vec{\omega}_{\rm oth}] + \vec{\varepsilon}_{\rm nep} \end{split}$$

Несколько подвижных сисем отсчета

ОХҮ - неподвижная СО

 $Ox_1y_1z_1, Ox_2y_2z_2, \dots Ox_ny_nz_n$ - подвижные CO

 $S\xi\eta\zeta$ - связана с телом

 $\vec{\omega}$ - угловая скорость $S\xi\eta\zeta$ относительно OXYZ

Тогда:
$$\vec{\omega} = \sum_{i=1}^{n} \vec{\omega_i}$$

Кинематические формулы Эйлера

Определение. $Ox = (OXY) \cap (O\xi\eta)$ - линия узлов

Определение. $\psi = \angle(Ox, OX)$ - угол прецессии

Определение. $\Theta = \angle(O\zeta, OZ)$ - угол нутации

Определение. $\varphi = \angle(Ox, O\xi)$ - угол нутации

Определение. $\{\psi, \Theta, \varphi\}$ - углы Эйлера

Повороты:
$$OXYZ \xrightarrow{\psi,OZ} OxyZ \xrightarrow{\Theta,Ox} Oxy\zeta \xrightarrow{\varphi,O\zeta} O\xi\eta\zeta$$

$$\vec{\omega} = \dot{\psi}\vec{e}_z + \dot{\Theta}\vec{e}_x + \dot{\varphi}\vec{e}_\zeta$$

$$\vec{e}_x = \cos\varphi\vec{e}_\xi + \sin\varphi\vec{e}_\eta$$

$$\vec{e}_z = \cos\Theta\vec{e}_\zeta + \sin\Theta(\sin\varphi\vec{e}_\xi + \cos\varphi\vec{e}_\eta)$$

$$\vec{\omega} = \dot{\psi}(\sin\Theta\sin\varphi\vec{e}_\xi + \sin\Theta\cos\varphi\vec{e}_\eta + \cos\Theta\vec{e}_\zeta)$$

$$+ \dot{\Theta}(\cos\varphi\vec{e}_\xi - \sin\vec{e}_\eta)$$

$$+ \dot{\varphi}\vec{e}_\zeta = \omega_\xi\vec{e}_\xi + \omega_\eta\vec{e}_\eta + \omega_\zeta\vec{e}_\zeta$$

$$\begin{cases} \vec{\omega}_{\xi} = \dot{\psi}\sin\Theta\sin\varphi + \dot{\Theta}\cos\varphi \\ \vec{\omega}_{\eta} = \dot{\psi}\sin\Theta\cos\varphi + \dot{\Theta}\sin\varphi \end{cases}$$
 - кинематические формулы Эйлера
$$\vec{\omega}_{\zeta} = \dot{\psi}\cos\Theta + \dot{\varphi}$$

Определение. Движение твердого тела называется прецессией, если некоторая ось, неподвижная в теле, в абсолютном пространстве движется по поверхности неподвижного кругового конуса. $\dot{\Theta}=0$. Если $\dot{\psi}=const$, $\dot{\varphi}=const$, то прецессия называется регулярной.

Алгебра кватернионов

Определение. Алгеброй над полем называется векторное пространство над этим полем, снабженное билинейной операцией умножения.

Пример. $\underline{n=2}$ (Комплексные числа). $z_1=a+bi, z_2=c+di$

$$z_1 z_2 = (ac - bd) + (ad + bc)i$$

n = 4(Алгебра кватернионов)

$$\begin{split} \Lambda &= \lambda_0 \vec{i_0} + \lambda_1 \vec{i_1} + \lambda_2 \vec{i_2} + \lambda_3 \vec{i_3} \in \mathbb{H} \\ & \{ \vec{i_0}, \vec{i_1}, \vec{i_2}, \vec{i_3} \} \text{ - базис} \\ & \Lambda = \lambda_0 + \overline{\lambda} \\ & i_0 \circ i_k = i_k k = \overline{1, 3}, \ i_0 \circ i_0 = 1 \\ & i_k \circ i_m = -(i_k, i_m) + [i_k, i_m] k, m \in \{1, 2, 3\} \\ \overline{\lambda} \circ \overline{\mu} &= (\lambda_1 \vec{i_1} + \lambda_2 \vec{i_2} + \lambda_3 \vec{i_3}) \circ (\mu_1 \vec{i_1} + \mu_2 \vec{i_2} + \mu_3 \vec{i_3}) = -(\overline{\lambda}, \overline{\mu}) + [\overline{\lambda}, \overline{\mu}] \\ & \Lambda \circ M = (\lambda + \overline{\lambda}) \circ (\mu + \overline{\mu}) = \lambda_0 \mu_0 + \lambda \overline{\mu} + \overline{\lambda} \mu - (\overline{\lambda}, \overline{\mu}) + [\overline{\lambda}, \overline{\mu}] \end{split}$$

Свойства:

- 1. $(\Lambda \circ M) \circ N = \Lambda \circ (M \circ N)$
- 2. $(\Lambda + M) \circ N = \Lambda \circ N + M \circ N$
- 3. $\Lambda \circ M \neq M \circ \Lambda$