Package 'meaca'

July 2, 2020

•
Type Package
Title Mixed-effects Enrichment Analysis with Correlation Adjusted
Version 0.2.1
Author Bin Zhuo
Maintainer Bin Zhuo <rickyb.zh@gmail.com>, Duo Jiang</rickyb.zh@gmail.com>
<pre><jiangd@stat.oregonstate.edu></jiangd@stat.oregonstate.edu></pre>
Description This package produces all results needed in the paper Use four spaces when indenting paragraphs within the Description.
Depends R (>= $3.2.1$)
License MIT + file LICENSE
imports dplyr, ggplot2
LazyData true
Encoding UTF-8
RoxygenNote 5.0.1
R topics documented:
btw_gene_corr
estimate_sigma
meaca_multiple
meaca_single
simulate_expression_data
standardize_expression_data
Index
btw_gene_corr Calculate sample (Pearson) correlations among gene clusters

Description

Calculate sample (Pearson) correlations among gene clusters

2 estimate_sigma

Usage

```
btw_gene_corr(expression_data, trt, go_term, standardize = T)
```

Arguments

expression_data

the expressoin matrix.

trt treatment indicators, 1 for treatment, 0 for control group go_term an indicator vector. 1 for genes in the test set, 0 otherwise

standardize whether the data should be standaridzed

Value

a \$1 \times 3\\$ data frame containing values for \$\rho_1\\$, \$\rho_3\\$ and \$\rho_2\\$ respectively.

testSetCor Average correlation for genes in the test set

interCor Average correlation between genes in the test set and those not in the test set

backSetCor Average correlations for genes not in the test set.

Description

Estimate sample covariance and calculate the gene-level statistics

Usage

```
estimate_sigma(expression_data, trt)
```

Arguments

expression_data

the expression matrix.

trt sample labels. 0 for control and 1 for treatment

Value

a list

sigma a covariance matrix

t_val a vector of gene level test statistics

meaca_multiple 3

|--|--|--|

Description

meaca for testing multiple gene sets.

Usage

```
meaca_multiple(expression_data, trt, geneset, standardize = T,
    min_set_size = 5, fdr_method = "BH")
```

Arguments

expression_data

the expressoin matrix.

trt treatment labels.

geneset gene sets to be tested, an object from read_gene_set.

standardize whether the data should be standaridzed.

min_set_size the minimum number of genes contained for a gene set to be considered.

fdr_method which method is ued to adjust the p values. see arguments in function p.adjust.

Value

a data frame

meaca_single	meaca-single.	

Description

meaca for single gene set test.

Usage

```
meaca_single(expression_data, trt, go_term, standardize = F)
```

Arguments

expression_data

the expressoin matrix.

trt treatment indicators, 1 for treatment, 0 for control group.
go_term an indicator vector. 1 for genes in the test set, 0 otherwise.

standardize whether the data should be standaridzed.

Value

a list

stat the test statistic

p1 chi-square test p value

status "up" or "down", the direction of differential expression

p2 two-sided test p-value using normal distribution

Examples

simulate_expression_data

Simulate expression data.

Description

simulate normally distributed expression data with desired DE probabilities for genes in the test set and for those not in the test set..

Usage

```
simulate_expression_data(size, n_gene, n_test, prop, de_mu, de_sd, rho1, rho2,
  rho3, data_gen_method = "chol", seed = 123)
```

Arguments

size number of samples to be simulatedn_gene total number of genes to be simulatedn_test number of genes in the test set.

prop a vector of length 2, proportion of DE genes within go term and outside go_term,

corresponding to \$p_t\$ and \$p_b\$.

de_mu, de_sd if the gene is DE, delta $\sim N(de_mu, de_sd)$

rho1 a scalar, correlation between two test genes (i.e., ρ_1 in the paper)

rho2 a scalar, correlation between two background genes (i.e., ρ_2 in the paper) rho3 correlation between a test gene and a background gene (i.e., ρ_3 in the paper)

 ${\tt data_gen_method}$

data generation method; if 'data_gen_method = MASS', then mvrnorm is used,

otherwise see function rmvnorm

seed the seed used for simulation (for reproducibility purpose)

Value

a list

data a expression matrix of $m \times n$ where m is the number of genes and n is the

number of samples.

trt sample labels of length n, 1 for treatment and 0 for control.
go_term gene labels of length m, 1 for go_term genes and 0 otherwise.

sigma true covariance matrix upon which data is simulated.

Examples

standardize_expression_data

standardize expression data, with method described in the paper.

Description

Standardize the expression data.

Usage

```
standardize_expression_data(expression_data, trt)
```

Arguments

expression_data

the expression matrix.

trt sample labels. 0 for control and 1 for treatment

Value

a matrix of the same dimension as input data.

Index

```
btw_gene_corr, 1
estimate_sigma, 2
meaca_multiple, 3
meaca_single, 3
mvrnorm, 4
rmvnorm, 4
simulate_expression_data, 4
standardize_expression_data, 5
```