Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

GitHub проекта Автор в ВК

Содержание

1	Топологические пространства. Примеры	3
2	Определение топологического пространства через замкнутые множества	3
3	Метрические пространства. Примеры	3
4	Метрическая топология	4
5	База топологии. Примеры	5
6	Признак базы	5
7	Индуцированная топология	5
8	Внутренность	6
9	Замыкание и граница	6
10	Непрерывные отображения. Примеры	7
11	Признак и свойства непрерывных отображений	7
12	Гомеоморфизмы. Примеры	7
13	Отношение гомеоморфности и топологические свойства	8
14	Связность	8
15	Связность отрезка	8
16	Разложение топологического пространства на компоненты связности	9
17	Линейная связность	9
18	Связность и линейная связность	10
19	Аксиомы отделимости	10
20	Первая аксиома отделимости и хаусдорфовость	11
21	Нормальность метрического пространства	11
22	Вторая аксиома счетности	12
23	Теорема Линделёфа	12
24	Сепарабельность	12
25	Сепарабельные метрические пространства	12
26	Компактность. Примеры	13
27	Свойства компактных пространств	13

28 Компактные подмножества хаусдорфова пространства 13
29 Вложение компактного пространства в хаусдорфово 14
30 Признак компактности в \mathbb{R}^n
14

1 Топологические пространства. Примеры

Определение. Топологическое пространство — пара (X,Ω) , где X — множество, Ω — топологическая структура на нем.

Определение. Топологическая структура на множестве X — набор его подмножеств, такой, что:

- 1) $X, \emptyset \in \Omega$;
- $2) \cup_{i=1}^{\infty} U_i \in \Omega \ (U_i \in \Omega);$
- $3) \cap_{i=1}^{\infty} U_i \in \Omega;$

Определение. Множества из Ω называются открытыми.

Примеры:

- 1) Ω состоит из всех подмножеств множества X, тогда (X,Ω) называется дискретным пространством.
- 2) Ω состоит из X и \varnothing , пространство называется антидискретным.
- 3) \mathbb{R} , $\Omega = \{ \bigcup_{i=k}^n (a_i, b_i) | a_i, b_i \in \mathbb{R} \}.$
- 4) \mathbb{R}^n , Ω множество открытых шаров (или кубов).
- 5) Стрелка $X = [0, +\infty), \ \Omega = \{(a, +\infty) | a \ge 0\} \cup \{x\} \cup \{\emptyset\}.$

2 Определение топологического пространства через замкнутые множества

Определение. (X,Ω) — топологическое пространство, подмножество $F\subset X$ — замкнуто, если $X\backslash F\in \Omega$.

В дискретном и антидискретном пространстве не открытые множества замкнуты. В стрелке замкнуты множества [0,a].

- 1) F_i замкнуто $\forall i.$ $\bigcap_{i=1}^{\infty} F_i$ замкнуто: $X \setminus (\bigcap_{i=1}^{\infty} F_i) = \bigcup_{i=1}^{\infty} X \setminus F_i \in \Omega$.
- 2) F_i замкнуто $\forall i. \ \cup_{i=1}^{\infty} F_i$ замкнуто: $X \setminus (\cup_{i=1}^{\infty} F_i) = \cap_{i=1}^{\infty} X \setminus F_i \in \Omega$.

Определение. X — множество. F — совокупность подмножеств X, если:

- 1) $X_i, \varnothing \in F$;
- $2) \cap_{i=1}^{\infty} F_i \in F;$
- $3) \cup_{i=1}^{\infty} F_i \in F;$

то есть $\Omega = \{X \backslash F_i | F_i \in F\}$ — топологическая структура на X.

Например, таким образом определена топология Зарисского: $X=\mathbb{R},\ F'\subset F\Leftrightarrow F'$ конечно.

3 Метрические пространства. Примеры

Определение. Метрическое пространство — пара (X, ρ) , где X — множество, ρ — заданная на X метрика.

Определение. Метрика, заданная на X — функция $\rho: X \times X \to \mathbb{R}$, такая, что:

- 1) $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2) $\rho(x,y) \geq 0 \ \forall x,y;$
- 3) $\rho(x,y) = \rho(y,x);$
- 4) $\rho(x, y) \le \rho(x, z) + \rho(y, z)$.

Примеры:

- 1) $X = \mathbb{R}, \ \rho = |a b|;$
- 2) $X = \mathbb{R}, \ x, y \in \mathbb{R}^n, \ x_1 = (x_1, ..., x_n), \ y = (y_1, ..., y_n). \ \rho(x, y) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}.$
- 3) $X \in \mathbb{R}^n$, $\rho(x, y) = \max_{i=1,\dots,n} |x_i y_i|$;
- 4) $\rho(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$; 5) $X = C([a,b]). \ \rho(f,g) = \sup_{x \in [a,b]} |f(x) g(x)|$; 6) $x = C([a,b]). \ \rho(f,g) = \int_a^b |f(x) g(x)| dx$;

Определение. Если (X, ρ) — метрическое пространство, $a \in X, r \in \mathbb{R}_{>0}$, то:

- 1) $B_r(a) = \{x \in X | \rho(x, a) < r\}$ открытый шар.
- 2) $D_r(a) = \{x \in X | \rho(x, a) \le r\}$ закрытый шар.
- 3) $S_r(a) = \{x \in X | \rho(x, a) = r\}$ coepa.

Определение. Метрическое пространство $A \subset X$; $(A, \rho|_{A \times A})$;

 $D_1(0), S_1(0)$ пространства \mathbb{R}^n будут обозначаться D^n и $S^{n-1}-n$ -мерный шар и n-1-мерная сфера. Одномерный шар: [-1, 1]. 0-мерная сфера: $\{-1, 1\}$.

Метрическая топология 4

Определение. (X, ρ) — метрическое пространство.

Метрическая топология (топология, порожденная метрикой ρ) — множество Ω_{ρ} , состоящее из $U \subset X$, таких, что $\forall u \in U \; \exists r > 0$, такое, что $B_r(u) \subset U$.

Докажем, что Ω_{ρ} является топологической структурой:

- 1) $X, \emptyset \in \Omega_o$.
- В \varnothing нет точек, следовательно, $\varnothing \in \Omega_{\rho}$.

 $\forall x \in X, \ \forall r > 0$ верно, что $B_r(x) \subset X \Rightarrow X \in \Omega_{\varrho}$.

- 2) $U_i \in \Omega_\rho$; $U = \bigcup_{i=1}^{\infty} U_i \in \Omega_\rho$.
- $u \in U \Rightarrow \exists i : u \in U_i \Rightarrow \exists B_r(u) \subset U_i \subset U.$
- 3) $U_i \in \Omega_{\rho}$; $U = \bigcap_{i=1}^{N} U_i \in \Omega_{\rho}$;

 $u \in U \Rightarrow \forall i \ u \in U_i \Rightarrow \forall i \ \exists r_i : B_{r_i}(u) \subset U_i; \text{ пусть } r = \min_{i=1,\dots,n}(r_i). B_r(u) \subset B_{r_i}(u) \Rightarrow B_r(u) \subset U;$

Предложение.

- 1) Открытый шар $\in \Omega_o$;
- 2) Закрытый шар замкнутое множество;
- 3) $\forall U \in \Omega_{\rho} \ U = \bigcup B_{r_i}(a_i)$

Доказательство.

1) $B_r(a) = \{x \in X | \rho(x,a) < r\}$. $x' \in B_r(a) \Leftrightarrow \rho(x',a) < r \Rightarrow \exists \delta$, такая, что $\rho(x',a) < \delta < r$. Пусть $r' = \delta - \rho(x', a) > 0.$

Докажем, что $B_{r'}(x') \subset B_r(a)$: $\forall u \in B_{r'}(x')$ верно, что $\rho(u,x') < r' = \delta - \rho(x',a) \Rightarrow \rho(u,a) \leq$ $\rho(u, x') + \rho(x', a) < \delta < r \Rightarrow u \in B_r(a) \Rightarrow \exists r' > 0 \ B_{r'}(x') \subset B_r(a) \ \forall x' \in B_r(a) \Rightarrow B_r(a) \in \Omega_o$

2) $B_r(a)$. Докажем, что $U = X \setminus D_r(a) = \{x \in X | \rho(x, a) > r\}$ — открыто.

$$\forall x \in U \ \rho(x,a) > r \Rightarrow \exists r': \ \rho(x,a) > r' > r.$$
 Пусть $R = \rho(x,a) - r'.$ Докажем, что $B_R(x) \subset U:$ $\forall x' \in B_R(x): \ \rho(x',x) < R = \rho(x,a) - r' \Rightarrow r < r' < \rho(x,a) - \rho(x'x) \Rightarrow \rho(x',a) > r \Rightarrow B_R(x) \subset U$ $r < r' < \rho(x,a) - \rho(x;,x).$ $\rho(x,a) < \rho(x',x) + \rho(x',a) \Rightarrow \rho(x',a) > \rho(x,a) - \rho(x',x).$ $\exists x \in \Omega_\rho \Rightarrow \forall x \in U \ \exists x > 0: \ B_r(x) \subset U.$ Тогда $U = \bigcup_{u \in U} B_{r_u}(u).$

5 База топологии. Примеры

Определение. (X,Ω) — топологическое пространство. База топологии Ω — такое $\Omega'\subset\Omega$, что $\forall U\in\Omega$: $U=\cup U_i$, где $U_i\in\Omega'$.

Примеры:

- 1) База дискретного пространства: $(X, \Omega) = \{x | x \in X\}.$
- 2) База антидискретного пространства: $\{X\}$.
- 3) База стрелки: $[0, +\infty) \cup \{(r, +\infty) | r \in \mathbb{Q}_+\}.$
- 4) База метрического пространства: множество открытых шаров.

6 Признак базы

Теорема. $\Sigma - \delta a \exists a \ \Omega \Leftrightarrow \forall U \in \Omega, \ \forall x \in U \ \exists V \in \Sigma, \ makas, \ umo \ x \in V \subset U.$

Доказательство. Σ — база. $U \in \Omega \Rightarrow U = \cup U_i', \ U_i' \in \Sigma. \ \forall x \in U \ \exists i: \ x \in U_i' = V. \ V \in \Sigma, \ x \in V, \ V \subset U.$ Обратно: $\forall x \in U \ \exists V_x \in \Sigma: \ V_x \subset U \Rightarrow U = \cup_{x \in U} V_x \Rightarrow \forall U \in \Omega$ верно $U = \cup_i U_i', \ U_i' \in \Sigma \Rightarrow \Sigma$ — база.

Теорема. Σ (подмножества X) — база некоторой топологии $\Leftrightarrow X = \cup_i U_i, \ U_i \in \Sigma \ u \ \forall U, V \in \Sigma \ верно,$ что $U \cap V = \cup U_i, \ U_i \in \Sigma$, где U_i — некоторые множества из базы.

Доказательство. Σ — база, следовательно, $X = \cup_i U_i$ (Так как X — открытое множество). $U \cap V \in \Omega$ (так как конечное пересечение открытых множеств открыто), следовательно, $(U \cap V) = \cup_i U_i$.

Обратно. Пусть Ω — все возможные объединения множеств из Σ . $X_i, \varnothing \in \Omega$. Докажем, что Ω удовлетворяет аксиомам топологической структуры:

 $A_i \in \Omega$; $\forall i$ верно, что $A_i = \cup_j U_j, \ U_j \in \Sigma. \cup_i^{\infty} A_i = \cup_i^{\infty} (\cup_j U_j) = \cup_k^{\infty} U_k \in \Omega.$ $\cap_{i=1}^N A_i = \cap_{i=1}^N (\cup_j U_j). \ A_1 \cap A_2 = (\cup_j U_j) \cap (\cup_k U_k) = \cup (U_k \cap (\cup U_j)) = \cup_k (\cup_j (U_k \cap U_j)) = \cup_n U_n \in \Omega.$ Дальше по индукции. \square

7 Индуцированная топология

Определение. (X,Ω) — топологическое пространство, $A\subset X$. Положим $\Omega_A=\{A\cap V\mid V\in\Omega\}$. Совокупность множеств Ω_A называется топологией, индуцированной топологией Ω .

 $Утверждение. \ \Omega_A$ является топологической структурой в A:

Доказательство. 1) $\varnothing, A \in \Omega_A;$

2)
$$\bigcup_i (A \cap U_i) = A \cap (\bigcup_i U_i) \in \Omega.$$

3) $\bigcap_i^N (A \cap U_i) = A \cap (\bigcap_i^N U_i) \in \Omega.$

Определение. Топологическое пространство (A, Ω_A) называется подпространством (X, Ω) .

 $Утверждение.\ \Sigma$ — база. Тогда $\Sigma_A = \{A \cap U' | U' \in \Sigma\}$ — база Ω_A .

Доказательство. $U_A \in \Omega \Rightarrow \exists U : A \cap U = U_A, U \in \Omega. U = \cup_i U_i', U_i' \in \Sigma. U_A = A \cap (\cup_i U_i') = \cup_i (A \cap U_i') \in \Sigma_A.$

Определение. Относительно открытое/замкнутое множество — множество, открытое/замкнутое в $A \subset X$.

comment: $X \supset A \supset B$. Есть топологии $\Omega_X, \Omega_A, \Omega_B^A, \Omega_B^X$.

8 Внутренность

 (X,Ω) — топологическое пространство, $x \in X$.

Определение. Окрестностью точки x называется любое открытое множество, которое её содержит.

Определение. $A \subset X$, обозначения: Int(A), \mathring{A} — внутренность A, Cl(A), \overline{A} — замыкание A, Fr(A), ∂A — граница A.

Определение. Точка множества A называется его внутренней точкой, если она содержится в A вместе с некоторой своей окрестностью $(x \in A, x \in U \subset A)$.

Определение. Int(A) — множество внутренних точек множества A.

Утверждение. Int(A) — всегда открытое множество.

Доказательство. $\forall x \in Int(A) \; \exists U_x \in \Omega : \; x \in U_x \subset A \Rightarrow \text{все точки из } U_x - \text{внутренние. При этом}$ $Int(A) = \cup_{x \in Int(A)} U_x$

Утверждение. Int(A) — максимальное по включению открытое подмножество A.

Доказательство. Пусть $A\supset V,\ V$ открыто. V — окрестность для любой точки, следовательно, все точки в V внутренние, следовательно, $V \subset Int(A)$.

Утверждение. Int(A) — объединение всех открытых подмножеств A.

Доказательство. Пусть $A\supset V$. $\cup V$ — открытое множество, содержащее все открытые множества A, следовательно, $\cup V = Int(A)$

9 Замыкание и граница

Предложение. (X,Ω) — топологическое пространство, $x \in X$.

Определение. $Cl(A) = X \setminus Int(X \setminus A)$.

Утверждение. $A \subset Cl(A)$ — замкнуто.

Доказательство. Cl(A) — дополнение $X \setminus A$, а оно открыто: $Int(X \setminus A) \subset (X \setminus A) \Rightarrow Cl(A) \supset X \setminus (X \setminus A) =$ A.

 $Утверждение. \ Cl(A)$ — наименьшее по включению замкнутое множество, содержащее A.

Утвержоение. Стал польмение. Стал поможение. Стал поможение.

$$Int(X \backslash A). \ Cl(A) = X \backslash Int(X \backslash A) \subset X \backslash (X \backslash F) = F \Rightarrow Cl(A) = F.$$

Утверждение. А замкнуто $\Leftrightarrow A = Cl(A)$.

Определение. Граница множества $A = X \setminus (Int(A) \cup Int(X \setminus A)) = (X \setminus Int(X \setminus A)) \setminus Int(A) = Cl(A) \setminus Int(A) = Cl(A) \setminus Int(A)$ $Cl(A) \cap (X \setminus Int(A)).$

Из определения ясно, что граница множества — замкнутое множество.

Определение. $x \in X$. Если любая окрестность x содержится в A, то x — внутренняя точка. Если же у точки x нет такой окрестности, которая целиком содержится в A и любая окрестность имеет непустое пересечение с A, то x — граничная точка. Иначе x — внешняя точка.

10 Непрерывные отображения. Примеры

Определение. $f: X \to Y, (X, \Omega_X), (Y, \Omega_Y)$ — топологические пространства.

f непрерывна в точке $x_0 \in X \Leftrightarrow \forall$ окрестности $f(x_0)$ (обозначим эту окрестность $V(x_0)$) $\exists U(x_0)$ — окрестность x_0 , такая, что $\forall x \in U(x_0)$ верно, что $f(x) \in V(f(x_0))$.

f непрерывна на X, если она непрерывна в любом $x \in X$.

Утверждение. $f: X \to Y$, f непрерывна в $x_0 \in X$; $g: Y \to Z$, g непрерывна в $f(x_0) \in Y$. Тогда $h = g \circ f$ непрерывна в x_0 .

Доказательство. $\forall U(g(y_0)) \; \exists V(y_0) : \; \forall y \in V(y_0) \; \text{верно, что } g(y) \in U(g(y_0)). \; V(y_0) = V(f(x_0)) \Rightarrow \exists W(x_0) : \; \forall x \in W(x_0) \; \text{верно, что } f(x) \in V(f(x_0)) \Rightarrow \forall x \in W(x_0), \; g \circ f(x) \in U(g \circ f(x)).$

Примеры:

- 1) Непрерывные функции на \mathbb{R} .
- 2) Постоянное отображение непрерывно.

Предложение. Если $f: X \to Y$ непрерывно, $A \subset X$, то непрерывно $f|_A$.

Доказательство. $\forall a \in A, \ \forall V(f(a)) \ \exists U(a): \ \forall x \in U(a) \ \text{верно} \ f(x) \in V(f(a)). \ U'(a) = A \cap U(a) \neq \varnothing, \ \text{так}$ как $a \in A \cap U(a)$.

11 Признак и свойства непрерывных отображений

Теорема. $(X, \Omega_X), (Y, \Omega_Y)$ — топологические пространства. $f: X \to Y$ непрерывна $\Leftrightarrow \forall U \in \Omega_Y$ верно $f^{-1}(U) \in \Omega_X$.

Доказательство. $U \in \Omega_Y$. Если $f^{-1}(U) = \emptyset$, то теорема верна. Иначе: $\exists x \in X$, такое, что $f(x) = y \in U_i$. U — окрестность $y \Rightarrow \exists V(x)$: $\forall x' \in V(x)$ верно $f(x') \in U_i$. $f^{-1}(U) \supset V(x)$. $f^{-1}(U) = \bigcup V(x_i)$, таких, что $f(x_i) \in U \Rightarrow f^{-1}(U)$ открыто.

Обратно: $V(f(x_0)) \in \Omega_Y \Rightarrow f^{-1}(V(f(x_0))) \in \Omega_X; x_0 \in f^{-1}(V(f(x_0))) \Rightarrow f^{-1}(V(f(x_0))) = U(x_0).$

Теорема. (следствие): прообраз замкнутого множества замкнут.

Доказательство.

- 1) Докажем, что $\forall f: X \to Y$ верно $f^{-1}(Y \backslash A) = X \backslash f^{-1}(A)$, где $A \subset Y$. $\forall x \in f^{-1}(Y \backslash A)$, $f(x) \in Y \backslash A \Rightarrow f(x) \notin A \Rightarrow x \notin f^{-1}(A) \Rightarrow f^{-1}(Y \backslash A) \subset X \backslash f^{-1}(A)$. $\forall x \in X \backslash f^{-1}(A)$ верно, что $f(x) \notin A \Rightarrow f(x) \in Y \backslash A \Rightarrow X \backslash f^{-1}(A) \subset f^{-1}(Y \backslash A) \Rightarrow X \backslash f^{-1}(A) = f^{-1}(Y \backslash A)$. (т.к. имеется двойное включение).
- 2) Пусть $U\subset Y,\ U$ замкнуто, тогда $Y\backslash U$ открыто. Следовательно, открыто и $f^{-1}(Y\backslash U)=X\backslash f^{-1}(U)\Rightarrow f^{-1}(U)$ замкнуто.

Лемма. $f:(X,\Omega_1)\to (X,\Omega_2)$ (f(x)=x) непрерывна $\Leftrightarrow \Omega_2\subset\Omega_1.$

Доказательство. f — непрерывна, следовательно, $\forall U \in \Omega_2$ верно, что $f^{-1}(U) \subset \Omega_1$. Так как f(x) = x, $f^{-1}(U) = U \Rightarrow \forall U \in \Omega_2, U \in \Omega_1 \Rightarrow \Omega_2 \subset \Omega_1$.

Обратно: аналогично $f^{-1}(U) = U \in \Omega_1 \Rightarrow f^{-1}(U)$ — открыто.

12 Гомеоморфизмы. Примеры

Определение. $f:X \to Y$ — гомеоморфизм, если:

- 1) f непрерывно;
- 2) f биекция;
- $3) f^{-1}$ непрерывно.

He все непрерывные биективные отображения являются гомеоморфизмами! Обязательным условием является обратная непрерывность отображения.

13 Отношение гомеоморфности и топологические свойства

Определение. Пространства, между которыми существует гомеоморфизм, называются гомеоморфными.

Гомеоморфизм устанавливает взаимно однозначное соответствие между Ω_X и Ω_Y .

Если $f: X \to Y$ гомеоморфизм, $U \subset X$ — открыто $\Leftrightarrow f(U)$ открыто.

Свойства гомеоморфизма:

- 1) A замкнуто в $X \Leftrightarrow f(A)$ замкнуто в Y.
- $f^{-1}: Y \to X$ непрерывно, $A \in X$. Если f(A) замкнуто в Y, то, по следствию выше, A замкнуто как образ f(A).
 - 2) f(Cl(A)) = Cl(f(A)). (По свойству 1)
 - 3) f(Int(A)) = Int(f(A))
 - 4) f(Fr(A)) = Fr(f(A))
 - 5) A окрестность $x \Leftrightarrow f(A)$ окрестность f(x).

Определение. Топологические свойства — свойства, не меняющиеся при гомеоморфизме.

14 Связность

Определение. (X,Ω) — топологическое пространство, X связно, если $\forall A \subset X$, такого, что Cl(A) = Int(A) = A верно A = X или $A = \varnothing$.

Лемма. X связно \Leftrightarrow его нельзя разбить на 2 открытых непустых непересекающихся подмножества.

Доказательство. Пусть $U_1, U_2 \in \Omega$. $U_1 \cup U_2 = X$, $U_1 \cap U_2 = \varnothing$. По определению, $Int(U_1) = U_1$, тогда $U_1 = X \setminus U_2$ — замкнутое множество. $Cl(U_1) = Cl(X \setminus U_2) = X \setminus U_2 = U_1 \Rightarrow Cl(U_1) = Int(U_1) = U_1$. Тогда $U_1 \neq X$, $U_1 \neq \varnothing \Rightarrow X$ несвязно.

Обратно: $\exists U_1: Cl(U_1) = Int(U_1) = U_1 \Rightarrow U_1$ открыто. $U_2 = X \setminus U_1$ — открыто как дополнение к замкнутому, $U_1 \cup U_2 = X$; $U_1 \cap U_2 = U_1 \cap (X \setminus U_1) = \varnothing$ — противоречие.

Аналогично, X связно \Leftrightarrow его нельзя разбить на 2 замкнутых непустых непересекающихся подмножества.

Утверждение. $A \subset X$. A связно, если оно связно в топологии, индуцированной Ω на A.

Теорема. $f: X \to Y$, f непрерывно, X — связно. Тогда f(x) тоже связно.

Доказательство. Пусть f(X) несвязно, тогда $\exists U \subset f(X): Int(U) = Cl(U) = U.$ U открыто, следовательно, $f^{-1}(U)$ открыто, аналогично за замкнутость. Таким образом, $f^{-1}(U) = V = Int(V) = Cl(V), \ V \subset X \Rightarrow X$ несвязно.

15 Связность отрезка

Теорема. Пространство X несвязно $\Leftrightarrow \exists f: X \to \{-1,1\}, \ f$ — непрерывная сюрьекция.

Доказательство. Пусть $U_1, U_2 \in X$ — открыты, не пусты, при этом $U_1 \cap U_2 = \emptyset$, $U_1 \cup U_2 = X$. Пусть $f(U_1) = -1$, $f(U_2) = 1$. f непрерывна, так как -1, 1 открыто в $\{-1,1\}$ (дискретная топология). Тогда, $f^{-1}(-1) = U_1$ — открыто, аналогично U_2 .

Обратно: $\{-1,1\}$ — несвязно, $f(X) = \{-1,1\}$. Если бы X являлось связным множеством, то f(X) также было бы связным.

Теорема. Отрезок в стандартной топологии связен.

Доказательство. Пусть [0,1] несвязен, тогда $\exists f:[0,1] \to \{-1,1\}$. f непрерывна на отрезке, тогда, по теореме Больцано-Коши о промежуточном значении $\forall -1 < c < 1 \ \exists C: \ f(c) = C$, противоречие.

16 Разложение топологического пространства на компоненты связности

Определение. Компонента связности X — всякое его связное подмножество, не содержащееся ни в каком другом строго большем подмножестве X.

Лемма. Объединение двух связных множеств, имеющих по крайней мере одну общую точку, связно.

Доказательство. Пусть A, B — связные подмножества $X, A \cap B \neq \emptyset$. Пусть $C = A \cup B$ несвязно. Тогда C можно разбить на два непустых открытых подмножества, не имеющих общих точек, то есть $C \subset U \cup V$, где U, V — открыты (все правильно, мы взяли большие множества), при этом $U \cap C \neq \emptyset$, $V \cap C \neq \emptyset$, $U \cap V \cap C = \emptyset$. Тогда из связности A, B следует, что оба они содержатся в одном из множеств U или V. Но тогда второе множество пусто, противоречие.

Лемма. Объединение семейства связных множеств, имеющих общую точку, само связно.

Доказательство. Пусть $\{A_{\alpha}\}_{{\alpha}\in I}$ — произвольное семейство связных множеств в топологическом пространстве X, точка x_0 — общая для всех множеств. Тогда, по предыдущей лемме, объединение связных множеств, содержащих общую точку, связно.

Теорема. $\forall x \in X \ \exists ! A \in X$, где A — компонента связности, такая, что $x \in A$. (При этом $A = \cup B_i$, таких, что B_i связны $u \ x \in B_i$).

Доказательство. Заметим, что среди всех пересекающихся связных множеств, содержащих эту точку, существует наибольшее, являющееся объединением их. Оно связно в силу предыдущей леммы. □

Следствие: две компоненты связности не пересекаются или совпадают.

Лемма. Замыкание связного множества связно.

Доказательство. Пусть A связно, а Cl(A) — нет. Тогда $\exists U_1, U_2 \subset Cl(A)$ — замкнутые, непустые, такие, что $U_1 \cap U_2 = \varnothing$, $U_1 \cup U_2 = Cl(A)$. A — связно, следовательно, $A \cap U_{1,2} = A$ или \varnothing . Пусть $A \subset U_1$. $U_1 = Cl(A) \setminus U_2 \subset Cl(A)$; Но Cl(A) — наименьшее по включению множество, содержащее $A \Rightarrow Cl(A)$ связно.

Теорема. Компоненты связности замкнуты.

Доказательство. $A \subset X$, A — компонента связности. $A \subseteq Cl(A)$ — связно, A не содержится на в каком строго большем связном множестве, следовательно, A = Cl(A).

17 Линейная связность

Определение. (X,Ω) — топологическое пространство. Непрерывное отображение $f:[0,1]\to X$ называется путем; f(0) — начало пути и f(1) — конец пути.

Определение. Топологическое пространство линейно связно, если любые точки в нем можно соединить путём.

Определение. Обратный к s путь: s' = s(1-t), где $t \in [0,1]$.

Определение. Произведение путей s_1, s_2 : $s_1 \circ s_2$: $I \to X$, $s_1 \circ s_2 = \begin{cases} s_1(2t) & t \in [0, 1/2] \\ s_2(2t-1) & t \in [1/2, 1] \end{cases}$, причем $s_1(1) = s_2(0)$.

Утверждение. Любое евклидово пространство \mathbb{R}^n линейно связно.

Предложение. A, B — топологические пространства, $A \cap B \neq \emptyset$. Если A и B линейно связны, то $A \cup B$ — линейно связно.

Доказательство.

- 1) $x, y \in A$ или $x, y \in B$ доказательство очевидно.
- 2) $x \in A$, $y \in B$. $\exists z \in A \cap B$. Пусть s_1 путь между $x, z; s_2$ между z, y. Тогда путь между $x, y = s_1 \circ s_2$.

Определение. Компонента линейной связности X — линейно связное подмножество X, которое не содержится ни в каком другом строго большем линейно связном подмножестве.

Теорема. Каждая точка $m \in X$ содержится в некоторой компоненте линейной связности (равной объединению всех линейно связных подмножеств её содержащих)

Утверждение. Две компоненты линейной связности не пересекаются или совпадают.

Компоненты линейной связности не обязательно замкнуты.

Теорема. X — линейно связное топологическое пространство. $f: X \to Y$, f непрерывно $\Rightarrow f(X)$ — линейно связно.

Доказательство. Пусть $y_1, y_2 \in f(X) \Rightarrow \exists x_1, x_2 \in X: f(x_1) = y_1, f(x_2) = y_2. \exists s: [0,1] \to X$, такое, что $s(0) = x_1, \ s(1) = x_2.$ Пусть $u = f \circ s: \ u: [0,1] \to f(X); \ u(0) = f(s(0)) = y_1, \ u(1) = f(s(1)) = y_2,$ следовательно, f(x) — линейно связно.

18 Связность и линейная связность

Теорема. Если X линейно связно, то X- связно.

Доказательство. Пусть X не связно, тогда $\exists f: X \to \{-1,1\} \ (U_1,U_2: U_1 \cap U_2 = \varnothing, \ U_1 \cup U_2 = X, \ U_1,U_2 - \text{открыты})$. Пусть $u_1,u_2 \in U_1,U_2$ соответственно. s([0,1]) — путь между u_1,u_2 . $f(u_1) = -1, \ f(u_2) = 1$. Тогда $f \circ s: [0,1] \to \{-1,1\}, \ f \circ s$ — композиция непрерывных отображений, следовательно, непрерывно, отрезок связен $\Rightarrow f \circ s([0,1])$ — связно, противоречие.

Однако связное множество не всегда линейно связно.

Теорема. (X,Ω) — топологическое пространство. Если $\forall x \in X \; \exists V_x \subset X$ — окрестность и V_x линейно связно, то $A \subset X$ — линейно связно $\Leftrightarrow A$ связно.

Доказательство. следование вправо следует из теоремы выше.

Обратно: $\forall x \in A \ \exists V_x \subset A$, такое, что V_x — линейно связно. $A = \bigcup_{x \in A} V_x$. Если $\bigcup_{x \in A} V_x$ нельзя разбить на непересекающиеся множества, то $\bigcup_{x \in A} V_x$ — линейно связно, так как два пересекающихся множества образуют линейно связное множество. Пусть $\bigcup_{x \in A} V_x = U_1 \cup U_2, \ U_1 \cap U_2 = \varnothing, \ U_1 \cup U_2 = A.$ $U_1 = \bigcup V_{x_i}, \ U_2 = \bigcup V_{x_i} \Rightarrow U_1, U_2$ открыты, A не связно, противоречие.

19 Аксиомы отделимости

Т0) (Аксиома Колмогорова): $\forall x, y \in X, \ x \neq y$ хотя бы у одной из точек (допустим, x), $\exists V_x$, такое, что $y \notin V_x$.

- Т1) $\forall x, y \in X, \ x \neq y, \ \exists V_x, V_y, \ \text{такие, что } x \notin V_y, y \notin V_x.$
- Т2) (Аксиома Хаусдорфа): $\forall x, y \in X, \ x \neq y, \ \exists V_x, V_y, \ \text{такие, что } V_x \cap V_y = \varnothing.$
- Т3) $\forall x \in X, \ F \subset X, \ F$ замкнуто и $x \notin F \exists U, V$ открытые, такие, что $F \subset U, \ x \in V, \ U \cap V = \varnothing$.

Т4) $\forall F_1, F_2 \subset X, \ F_1, F_2$ — замкнуты, $F_1 \cap F_2 = \emptyset$, $\exists V_1, V_2$ — открытые, такие, что $F_1 \subset V_1, \ F_2 \subset V_2$. $V_1 \cap V_2 = \emptyset$.

Классификация пространств:

- Если пространство удовлетворяет Т1 и Т3, то оно регулярно. Регулярное пространство хаусдорфово.
- Если пространство удовлетворяет Т1 и Т4, то оно нормально. Нормальное пространство регулярно, следовательно, хаусдорфово.
- Метрическое и дискретное пространства удовлетворяют всем аксиомам. Антидискретное пространство, содержащее не менее двух точек не удовлетворяет ни одной аксиоме.

20 Первая аксиома отделимости и хаусдорфовость

Теорема. X удовлетворяет $T1) \Leftrightarrow$ все одноточечные множества в X замкнуты.

Доказательство. $x \in X$, рассмотрим $X \setminus x$. $\forall y \in X \setminus x \; \exists U_y$, такая, что $x \notin U_y$, то есть $U_y \subset X \setminus x$, то есть $\forall y \in X \setminus x$, y — внутренняя точка, следовательно, дополнение $\{x\}$ открыто, следовательно, $\{x\}$ замкнуто.

Обратно: $x, y \in X, x \neq y$. Множество $X \setminus x$ открыто, не содержит x и содержит $y \Rightarrow X \setminus x$ — искомая окрестность y.

Определение. Пространство хаусдорфово, если любые две не равные точки имеют две непересекающиеся окрестности.

Предложение. Если пространство хаусдорфово, то оно удовлетворяет Т1).

Доказательство.
$$\forall x,y \in X \; \exists V_x,V_y: \; V_x \cap V_y = \varnothing \Rightarrow x \notin V_y, \; y \notin V_x.$$

Любое подмножество хаусдорфова пространства тоже хаусдорфово.

21 Нормальность метрического пространства

Теорема. В метрическом пространстве выполняются все аксиомы отделимости.

Доказательство. 1) Проверим хаусдорфовость: $x, y \in X$, $x \neq y \Rightarrow \rho(x, y) = r > 0$. $B_{r/2}(x) = \{a \in X \mid \rho(a, x) < r/2\}$, $B_{r/2}(y) = \{b \in X \mid \rho(b, y) < r/2\}$. Пусть $a \in B_{r/2}(x)$, тогда $\rho(x, y) \leq \rho(a, y) + \rho(x, a) \Rightarrow \rho(a, y) \geq \rho(x, y) - \rho(x, a) > r - \frac{r}{2} = \frac{r}{2} \Rightarrow a \notin B_{r/2}(x)$; аналогично для $b \in B_{r/2}$, $\rho(b, x) > \frac{r}{2} \Rightarrow B_{r/2}(x) \cap B_{r/2}(y) = \emptyset$. Из T2 следуют T1 и T0.

2) Проверим Т4, так как из Т4 и Т2 следует Т3:

 F_1, F_2 — замкнутые, следовательно, $X \backslash F_1, X \backslash F_2$ — открытые, $\Rightarrow \forall x \in X \backslash F_1 \ \exists r_x > 0 : \ B_{r_x}(x) \subset X \backslash F_1$. Пусть $U_1 = \bigcup_{x \in F_1} B_{r_x/2}(x) : \ U_2 = \bigcup_{x \in F_2} B_{r_x/2}(x)$. $F_1 \subset U_1, F_2 \subset U_2$. Докажем, что $U_1 \cap U_2 = \varnothing$. Пусть $x \in U_1 \cap U_2 \Rightarrow \exists x \in F_1, y \in F_2$, такие, что $z \in B_{r_x/2}(x), \ z \in B_{r_y/2}(x)$. $\rho(x,y) \leq \rho(x,z) + \rho(y,z) < \frac{r_x}{2} + \frac{r_y}{2} \leq \frac{r_y}{2} + \frac{r_y}{2} = r_y$ (НУО будем считать, что $r_x \leq r_y$), следовательно, $x \in B_{r_y}(y)$. Но по построению $B_{r_y}(y) \subset X \backslash F_1; \ x \in F_1$ — противоречие.

22 Вторая аксиома счетности

Определение. Множества равномощны, если между ними существует биекция. Множество, равномощное $\mathbb N$ называется счетным.

Топологическое пространство удовлетворяет второй аксиоме счетности, если у него есть счетная база. Вторая аксиома счетности наследственна, то есть если X удовлетворяет второй аксиоме, то $A\subset X$ также удовлетворяет ей.

Примеры:

- 1) Стрелка (счетная база: $\{(x, +\infty) | x \in \mathbb{Q}\}, \mathbb{Q}$ счетно).
- 2) Евклидовы пространства.
- 3) Антидискретное пространство.
- 4) Если X счетно, то дискретное пространство тоже счетно (база множество точек).

23 Теорема Линделёфа

Определение. Покрытие — множества, чье объединение содержит в себе все заданное множество.

Теорема. Если пространство X удовлетворяет второй аксиоме счетности, то $\forall \cup U_i$ — покрытия X существует счетный набор U_i , тоже являющихся покрытием.

Доказательство. \exists база (V_n) , такая, что $\forall i \ U_i = \cup_k V_k$. Тогда $X = \cup_k V_k$, где V_k — подмножества из базы, входящие во множества U_i (Выделили счетное подпокрытие).

$$(V_k)\subseteq (V_n):\;(V_n)$$
 — счетно, следовательно, (V_k) счетно.

24 Сепарабельность

Определение. X — топологическое пространство, $A, B \in X$. A всюду плотно в B, если $B \subset Cl(A)$; A всюду плотно в X, если Cl(A) = X.

Определение. Если пространство содержит всюду плотное счетное множество, то оно называется сепарабельным (\mathbb{R} сепарабельно).

Теорема. Если пространство удовлетворяет второй аксиоме счетности, то оно сепарабельно.

Доказательство. Σ — база Ω , Σ счетно. Рассмотрим $A \subset X$ (оно счетно, так как его мощность не превосходит мощности Σ), такое, что $\forall V_n \in \Sigma$, $A \cap V_n = \{a_n\}$ (одноточечное множество). Докажем, что Cl(A) = X.

Пусть $X \setminus Cl(A)$ — открытое множество, следовательно, $\exists V_x \subset X \setminus Cl(A)$. V_x — открыто $\Rightarrow \exists V_n' \in \Sigma$, такое, что $V_x = \cup_n V_n'$, но $\forall n \ V_n \cap A \neq \varnothing$; $A \subset Cl(A) \Rightarrow V_n' \cap Cl(A) \neq \varnothing$, противоречие, так как $V_x \not\subset Cl(A) \Rightarrow X \setminus Cl(A) = \varnothing$.

25 Сепарабельные метрические пространства

Теорема. Метрическое сепарабельное пространство удовлетворяет второй аксиоме счетности.

Доказательство. Пусть $A \subset X$, A — счетно, $A = \{x_n\}_{n=1}^{\infty}$. База $X = \{B_r(x)|x \in A, r \in \mathbb{Q}, r > 0\} = \Sigma$. Σ — счетна: $\forall x$ множество $B_r(x)$ счетно, так как равномощно \mathbb{Q} . Значит, Σ состоит из счетного объединения счетных множеств, следовательно, оно счетно. Проверим, что Σ — база Ω : пусть U — открыто, $x \in U_i \Rightarrow \exists B_r(x) \subset U$, $\exists a_i \in A$, такое, что $\rho(x, a_i) < r_i < r/2$. Тогда $x \in B_{r_i}(a_i) \subset B_r(x) \subset U$

Теорема. (следствие): Евклидовы пространства сепарабельны и удовлетворяют второй аксиоме счетности.

Доказательство. Множество $\mathbb{Q}^n \subset \mathbb{R}^n$, $\mathbb{Q}^n = \{(x_1, ..., x_n | x_i \in \mathbb{Q})\}$ всюду плотно в \mathbb{R}^n , следовательно, \mathbb{R}^n сепарабельно. \mathbb{R}^n метрическое, следовательно, удовлетворяет второй аксиоме.

26 Компактность. Примеры

 (X,Ω) — топологическое пространство, компактно $\Leftrightarrow \forall \{U_{\omega}\}_{\omega}^{\infty}\ U_{\omega} \in \Omega$ и $X=\cup_{\omega}U_{\omega}\ \exists \omega_i,\ i=1,...,N,$ такое, что $X=\cup_{i=1}^N U_{\omega_i}$.

Примеры:

- 1) \mathbb{R} не компактно (покрытие $(-n, n), n \in \mathbb{N}$).
- 2) Стрелка компактна ($\{0\}$ не содержится ни в одном множестве вида $(a; +\infty) \Rightarrow$ в любом покрытии должно быть множество $[0, +\infty)$.
 - 3) Отрезок компактен.

Доказательство. Допустим, существует Γ_0 — набор открытых множеств, покрывающих I=[0,1], такой, что в нем не существует конечного подпокрытия. Разделим I пополам. Пусть I_1 — та часть I, для которого также нет конечного подпокрытия, тогда I_n — последовательность вложенных промежутков, чья длина стремится к нулю. $\exists x_0 \in I_n \ \forall n$. Пусть $U_0 \in \Gamma_0$, U_0 — окрестность точки x_0 . При достаточно больших n $I_n \subset U_0$, по построению для I_n не существует конечного подпокрытия множествами из Γ_0 , противоречие.

Теорема. X компактно, $f: X \to Y$, f непрерывно, следовательно, f(X) компактно.

Доказательство. Пусть Γ_0 — покрытие f(x), $\Gamma_0 = \cup_i U_i$. $X = f^{-1}(\cup U_i) = \cup(f^{-1}(U_i))$ (открыто) — покрытие $X \Rightarrow \exists i_1, ..., i_N$, такие, что $\cup_i f^{-1}(U_i) = \cup_{k=1}^N f^{-1}(U_{i_k}) \Rightarrow \cup_i U_i = \cup_{k=1}^N U_{i_k}$.

27 Свойства компактных пространств

Теорема. Замкнутое подмножество компактного пространства компактно.

Доказательство. $A \subset X$, A замкнуто. Пусть $A = \cup_i U_i$. $X \setminus A$ — открыто, тогда $\{X \setminus A\} \cup (\cup_i U_i)$ — покрытие $X \Rightarrow$ можно выделить конечное подпокрытие $\{X \setminus A, (U_i)_{i=1}^n\}$, при этом $(U_i)_{i=1}^n$ — покрытие A.

Теорема. Компактное подмножество метрического пространства ограничено.

Доказательство. $A \subset X$, A компактно. Пусть $x \in X$, $B_n(x)$, $n \in \mathbb{N}$, такое, что $B_1(x) \subset B_2(x) \subset ...$; $\cup_n B_n(x)$ — покрытие $X \Rightarrow$ покрытие A. A компактно, следовательно, $\exists k_1, ..., k_N : A = \cup_{i=1}^N B_{k_i}(X) \Rightarrow A$ ограничено.

28 Компактные подмножества хаусдорфова пространства

Теорема. Компактное подмножество хаусдорфова пространства замкнуто.

Доказательство. $A\subset X,\ X$ — хаусдорфово, A — компактно. Докажем, что $X\backslash A$ — открыто.

 $y \in X \backslash A \Rightarrow \forall x \in A \ y \neq x$. Рассмотрим покрытие A множествами V_{x_i} — окрестностями точек x, такими, что $\exists U_y^i : U_y^i \cap V_{x_i} = \varnothing$. \exists конечное подпокрытие $\cup_{i=1}^n V_{x_i}$. Тогда $\cap_{i=1}^n U_y^i$ не пересекаются ни с одним множеством из покрытия, следовательно, не пересекаются с $A \Rightarrow$ лежат в $X \backslash A$. $\cap_{i=1}^n U_y^i$ — открыто, следовательно, окрестность y, то есть $\cap_{i=1}^n U_y^i$.

29 Вложение компактного пространства в хаусдорфово

Теорема. X — компактное пространство, Y — хаусдорфово. $\forall f: X \to Y, \ f$ — непрерывно, $f(X)$ — замкнуто.
Доказательство. Непрерывный образ компактного пространства компактен, следовательно, $f(X)$ компактно. Компактное подмножество хаусдорфова пространства замкнуто, следовательно, $f(X)$ замкнуто (теорема верна $\forall A \subset X, \ A$ — замкнуто).
Определение. $(X,\Omega),\ (Y,\Omega')$ — топологические пространства. Отображение $f:X\to Y$ называется топологическим вложением X в $Y,$ если $f':X\to f(X)\subset Y$ — гомеоморфизм.
Теорема. (следствие 1): X — компактное пространство, Y — хаусдорфово. Если $f: X \to Y$ — непрерывная биекция, то f — гомеоморфизм.
Доказательство. f — биекция, следовательно, $\exists f^{-1}$. Докажем, что f^{-1} непрерывно: $\forall A \subset X$, такого, что A замкнут, $f(A)$ — замкнуто по теореме о замкнутости компактного подмножества хаусдорфова пространства, следовательно, f — гомеоморфизм.
Теорема. (следствие 2): X компактно, Y хаусдорфово, $f: X \to Y$, f непрерывная инъекция $\Rightarrow f$ топологическое вложение.
Доказательство. $f': X \to f(X)$ инъективно и сюрьективно, то есть биективно, следовательно, по следствию 1 f' — гомеоморфизм.

30 Признак компактности в \mathbb{R}^n

Теорема. $A \subset \mathbb{R}^n$, A компактно $\Leftrightarrow A$ замкнуто и ограничено.

 \mathcal{A} оказательство. \mathbb{R}^n хаусдорфово, A компактно, следовательно, A замкнуто. \mathbb{R}^n — метрическое, следовательно, A — ограничено.

Обратно: Возьмем куб I^n . Куб компактен: Γ_0 — покрытие куба открытыми множествами. Разобьем куб на 2^n кубов. Сторона каждого куба будет $\frac{1}{2}$. Дальнейшее доказательство аналогично доказательству 26.

2) A — ограничено, следовательно, существует куб, в котором A содержится. Куб компактен, A — замкнутое подмножество компактного подпространства, следовательно, A компактно.