Nearest Neighbor Methods

Lecture series "Machine Learning"

Niels Landwehr

Research Group "Data Science" Institute of Computer Science University of Hildesheim

Agenda for Lecture

- Overflow from last lecture: Bayesian linear regression
- Distance measures
- K-Nearest Neighbor

Agenda for Lecture

- Overflow from last lecture: Bayesian linear regression
- Distance measures
- K-Nearest Neighbor

Bayes Rule for Probabilistic Linear Regression

• We use Bayes rule to compute the posterior probability:

- We need to
 - compute likelihood
 - define prior distribution
 - derive posterior distribution

Likelihood for Probabilistic Linear Regression

• Likelihood for probabilistic regression model:

$$p(\mathbf{y} \mid \mathbf{X}, \mathbf{\theta}) = p(y_1, ..., y_N \mid \mathbf{x}_1, ..., \mathbf{x}_N, \mathbf{\theta})$$

$$= \prod_{n=1}^{N} p(y_n \mid \mathbf{x}_n, \mathbf{\theta})$$
 Independent training instances
$$= \prod_{n=1}^{N} \mathcal{N}(y_n \mid \mathbf{x}_n^{\mathrm{T}} \mathbf{\theta}, \sigma^2)$$
 Plugging in model
$$= \mathcal{N}(\mathbf{y} \mid \mathbf{X} \mathbf{\theta}, \sigma^2 \mathbf{I})$$

Product of univariate normal distributions can be written as multivariate normal distribution:

• Mean vector is vector of predictions:

$$\mathbf{X}\boldsymbol{\Theta} = \begin{pmatrix} \mathbf{x}_1^T \boldsymbol{\Theta} \\ \dots \\ \mathbf{x}_n^T \boldsymbol{\Theta} \end{pmatrix}$$

• Covariance matrix is a diagonal matrix $\,\sigma^2{
m I}\,$

Prior for Probabilistic Linear Regression

- Prior for probabilistic regression model:
 - We need to define a prior over parameter vectors $\mathbf{\theta} \in \mathbb{R}^M$
 - Similar idea as for regularization/shrinkage: we prefer parameter values that are not too large (in absolute value)
- As prior distribution, choose a multivariate normal distribution with mean zero and a diagonal covariance matrix:

$$p(\mathbf{\theta}) = \mathcal{N}(\mathbf{\theta} \,|\, \mathbf{0}, \sigma_{_{p}}^{_{2}} \mathbf{I})$$

- Hyperparameter σ_p^2 controls variance of prior distribution and thereby strength of preference for small parameters
 - small $\sigma_{_{p}}^{^{2}}$: low variance, very "peaked" distribution, strong regularization
 - large σ_n^2 : high variance, flat distribution, less regularization

Posterior for Probabilistic Linear Regression

 The prior distribution is a conjugate prior for the likelihood computed above: the product of prior and likelihood is again a multivariate normal distribution

$$p(\mathbf{\theta} \mid \mathbf{y}, \mathbf{X}) = \frac{1}{Z} p(\mathbf{y} \mid \mathbf{\theta}, \mathbf{X}) p(\mathbf{\theta})$$
 Bayes rule

$$= \frac{1}{Z} \mathcal{N}(\mathbf{y} \mid \mathbf{X}\mathbf{\theta}, \sigma^2 \mathbf{I}) \cdot \mathcal{N}(\mathbf{\theta} \mid \mathbf{0}, \sigma_p^2 \mathbf{I})$$
 plugging in likelihood and prior

$$= \mathcal{N}(\mathbf{\theta} \mid \overline{\mathbf{\theta}}, \mathbf{A}^{-1})$$
 compute product of normal terms - no details here
where $\mathbf{A} = \sigma^{-2} \mathbf{X}^{\mathrm{T}} \mathbf{X} + \sigma_p^{-2} \mathbf{I}$ and $\overline{\mathbf{\theta}} = \sigma^{-2} \mathbf{A}^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$

• Posterior is again normally distributed, with a new mean vector given by $\overline{\pmb{\theta}}$ and a new covariance matrix \mathbf{A}^{-1}

Visualization: Posterior as Sequential Update

The posterior distribution is given by

• We can visualize the computation of the posterior as a sequential update: take the prior distribution, and successively multiply it with the likelihood terms of the individual training instances, yielding distributions $p_1(\mathbf{\theta}),...,p_N(\mathbf{\theta})$

$$p(\mathbf{\theta} \mid \mathbf{y}, \mathbf{X}) \propto \underbrace{p(\mathbf{\theta}) p(y_1 \mid \mathbf{x}_1, \mathbf{\theta})}_{p_1(\mathbf{\theta})} p(y_2 \mid \mathbf{x}_2, \mathbf{\theta}) p(y_3 \mid \mathbf{x}_3, \mathbf{\theta}) \cdot \dots \cdot p(y_N \mid \mathbf{x}_N, \mathbf{\theta})}_{p_2(\mathbf{\theta})}$$

- Example: sequential update of the posterior for a Bayesian linear regression model
- One-dimensional linear regression model:

$$f_{\mathbf{\theta}}(x) = \theta_0 + \theta_1 x = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}$$

$$\mathbf{\theta} = (\theta_0, \theta_1)^{\mathrm{T}}$$

• Start: prior distribution (,, $p_0(\theta)$ ")

- Example: sequential update of the posterior for a Bayesian linear regression model
- One-dimensional linear regression model:

$$f_{\mathbf{\theta}}(x) = \theta_0 + \theta_1 x = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}$$

$$\mathbf{\theta} = (\theta_0, \theta_1)^{\mathrm{T}}$$

• Likelihood of first training instance (x_1, y_1)

- Example: sequential update of the posterior for a Bayesian linear regression model
- One-dimensional linear regression model:

$$f_{\mathbf{\theta}}(x) = \theta_0 + \theta_1 x = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}$$

$$\mathbf{\theta} = (\theta_0, \theta_1)^{\mathrm{T}}$$

• Posterior after seeing first training instance (x_1, y_1)

Samples from posterior all pass (approximately) through the first training instance (x_1, y_1)

- Example: sequential update of the posterior for a Bayesian linear regression model
- One-dimensional linear regression model:

$$f_{\mathbf{\theta}}(x) = \theta_0 + \theta_1 x = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}$$

$$\mathbf{\theta} = (\theta_0, \theta_1)^{\mathrm{T}}$$

• Posterior after seeing second training instance (x_2, y_2)

Samples from posterior all pass (approximately) through both training instances

Tildeshein

- Example: sequential update of the posterior for a Bayesian linear regression model
- One-dimensional linear regression model:

$$f_{\mathbf{\theta}}(x) = \theta_0 + \theta_1 x = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}$$

$$\mathbf{\theta} = (\theta_0, \theta_1)^{\mathrm{T}}$$

• Posterior after seeing second training instance (x_N, y_N)

Variance of posterior is reduced as more training instances have been seen

Bayesian Linear Regression: Predictive Distribution

- Can also compute Bayesian prediction for probabilistic linear regression
- Recap: Bayesian prediction is

$$\hat{y} = \arg\max_{y} p(y \mid \mathbf{x}_{new}, \mathbf{X}, \mathbf{y})$$

$$= \arg\max_{y} \int p(y \mid \mathbf{x}_{new}, \mathbf{\theta}) p(\mathbf{\theta} \mid \mathbf{X}, \mathbf{y}) d\mathbf{\theta}$$
Average over all models $\mathbf{\theta}$
Prediction of model $\mathbf{\theta}$

• For probabilistic linear regression:

$$p(y \mid \mathbf{x}_{new}, \mathbf{X}, \mathbf{y}) = \int p(y \mid \mathbf{x}_{new}, \mathbf{\theta}) p(\mathbf{\theta} \mid \mathbf{X}, \mathbf{y}) \, \mathrm{d}\mathbf{\theta}$$

$$= \int \mathcal{N}(y \mid \mathbf{x}_{new}^T \mathbf{\theta}, \sigma^2) \mathcal{N}(\mathbf{\theta} \mid \overline{\mathbf{\theta}}, A^{-1}) \, \mathrm{d}\mathbf{\theta}$$
Plug in model definition and posterior from above
$$= \int \mathcal{N}(y \mid \mathbf{x}_{new}^T \mathbf{\theta}, \sigma^2) \mathcal{N}(\mathbf{\theta} \mid \overline{\mathbf{\theta}}, A^{-1}) \, \mathrm{d}\mathbf{\theta}$$
For Bayesian linear regression, the Bayesian prediction is the same as the prediction of MAP model $\overline{\mathbf{\theta}}$

where as before $\mathbf{A} = \boldsymbol{\sigma}^{-2} \mathbf{X}^{\mathrm{T}} \mathbf{X} + \boldsymbol{\sigma}_{p}^{-2} \mathbf{I}$ and $\overline{\mathbf{\theta}} = \boldsymbol{\sigma}^{-2} \mathbf{A}^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$

Bayesian Linear Regression: Predictive Distribution

- For probabilistic linear regression model, Bayesian prediction is the same as prediction of MAP model
- However, the Bayesian prediction gives us an uncertainty estimate that takes into account the remaining uncertainty after having seen the data

Bayesian Regression With Nonlinear Feature Map

- Of course, Bayesian linear regression can also directly be applied with non-linear (for example: polynomial) feature maps
- E.g. one-dimensional feature map:

$$x \mapsto (\underbrace{1, x, x^2, ..., x^d})^{\mathrm{T}} \in \mathbb{R}^{d+1}$$

$$f_{\theta}(\mathbf{x}) = \theta_0 \cdot 1 + \theta_1 x + \theta_2 x^2 + ... + \theta_d x^d$$

- Running Bayesian linear regression on the transformed features \mathbf{x} gives us a probabilistic nonlinear regression model
- Example: toy sine data set
 - generate data points by

$$y = \sin(2\pi x) + \varepsilon$$

$$\varepsilon \sim \mathcal{N}(\varepsilon \mid 0, \sigma^2), \qquad x \in [0, 1]$$

fit a linear regression on polynomial feature map

Example: Polynomial Bayesian Regression

• Example: Polynomial regression on toy sine data set, prediction with confidence

Example: Polynomial Bayesian Regression

• Example: Polynomial regression on toy sine data set, samples from posterior

Summary: Bayesian Learning

- Bayesian learning takes a probabilistic approach and treats data and models as random variables
 - prior distribution over models
 - likelihood of data given models
 - posterior distribution over models
 - Bayesian prediction (average over models weighted by posterior)
- Conjugate priors are preferred for computational convenience: posterior distribution is in closed form and of the same family as prior distribution
- Bayesian linear regression is a simple and tractable Bayesian model: all distributions involved are normal distributions (prior, likelihood, posterior, Bayesian predictive distribution)
- Reference for further reading: C. M. Bishop, "Pattern recognition and Machine learning", Chapter 3.

Agenda for Lecture

- Overflow from last lecture: Bayesian linear regression
- Distance measures
- K-Nearest Neighbor

Slides in this section adapted from ISMLL group (Prof. Schmidt-Thieme)

Limits of Feature Representations

 A central part of the machine learning approaches we discussed so far were feature representations: we have always assumed an object can be described by a feature vector

$$\mathbf{x} = (x_1, ..., x_M)^{\mathrm{T}} \in \mathbb{R}^M$$

- Which kind of attributes for objects can be described by such a numerical vector?
 - Continuous attributes: straightforward, $x_i \in \mathbb{R}$
 - − Binary attributes: also easily encoded as $x_i \in \{0,1\} \subset \mathbb{R}$
 - Categorical (also called nominal or multi-valued) attributes, e.g. color $x_i \in \{red, green, blue\}$: use a so-called **one-hot encoding**:

Assume a categorical attribute x_i with $x_i \in \{c_1,...,c_T\}$

Transform
$$x_i \mapsto \overline{\mathbf{x}}_i$$
 with $\overline{\mathbf{x}}_i = \begin{pmatrix} I(x_i = c_1) \\ I(x_i = c_2) \\ \dots \\ I(x_i = c_T) \end{pmatrix} \in \mathbb{R}^T$
$$I(x = c_t) = \begin{cases} 1 : x_i = c_t \\ 0 : x_i \neq c_t \end{cases}$$
 (binary indicator)

The whole vector $\overline{\mathbf{x}}_i$ is included in the feature representation \mathbf{x} . That is, the original feature \mathbf{x}_i transforms into T new features in \mathbf{x}

Structured Variables

- Sometimes we are also interested in more complex types of attributes
 - set-valued attributes,
 - sequence-valued attributes (e.g. strings)
 - trees, graphs, ...
- Two possible approaches for dealing with such complex variables

1. Feature extraction:

- 1. Manually (or potentially automatically) derive informative numerical, binary, or categorical attributes that can be encoded as a feature vector $\mathbf{x} \in \mathbb{R}^{M}$ as discussed above
- 2. Run a machine learning algorithm using the resulting feature vector

2. Kernel or distance-based methods:

- 1. Manually (or potentially automatically) derive an informative distance metric that can be used to measure the distance between two instances
- 2. Then use machine learning methods that only need distances between objects, without an explicit feature representation $\mathbf{x} \in \mathbb{R}^{M}$

Distance Measure and Metric

• A **distance measure** on a space \mathcal{X} is a function

$$d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

that quantifies the distance $d(\mathbf{x}, \mathbf{x}')$ between two instances $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$

- The distance measure is called a **metric** if the following three conditions are satisfied:
 - d is **positive definite**: $d(\mathbf{x}, \mathbf{x}') \ge 0$ and $d(\mathbf{x}, \mathbf{x}') = 0 \Leftrightarrow \mathbf{x} = \mathbf{x}'$
 - d is symmetric: $d(\mathbf{x}, \mathbf{x}') = d(\mathbf{x}', \mathbf{x})$
 - d is **subadditive** (or fulfils the **triangle inequality**): $d(\mathbf{x}, \mathbf{x}'') \le d(\mathbf{x}, \mathbf{x}'') + d(\mathbf{x}', \mathbf{x}'')$ for all $\mathbf{x}, \mathbf{x}', \mathbf{x}'' \in \mathcal{X}$
- Example: Euclidian metric on $\mathcal{X} = \mathbb{R}^M$:

$$d(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_{2} = \sqrt{\sum_{m=1}^{M} (x_{m} - x'_{m})^{2}}$$

$$\mathbf{x} = (x_1, ..., x_M)^T$$
 $\mathbf{x'} = (x'_1, ..., x'_M)^T$

Minkowski Metric

• A widely used family of metric for the space $\mathcal{X} = \mathbb{R}^M$ is the Minkowski metric or Minkowski distance, also called the L_p metric

$$d(\mathbf{x}, \mathbf{x}') = \left\|\mathbf{x} - \mathbf{x}'\right\|_{p} = \left(\sum_{m=1}^{M} |x_{m} - x'_{m}|^{p}\right)^{\frac{1}{p}}$$

- Examples:
 - p=1 (taxicab distance, Manhattan metric)

$$d(\mathbf{x}, \mathbf{x}') = ||\mathbf{x} - \mathbf{x}'||_1 = \sum_{m=1}^{M} |x_m - x'_m|$$

- p = 2 (Euclidian distance)

$$d(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_{2} = \sqrt{\sum_{m=1}^{M} (x_{m} - x'_{m})^{2}}$$

- p = ∞ (maximum distance, Chebyshev distance)

$$d(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_{\infty} = \max_{m \in \{1, \dots, M\}} |x_m - x'_m|$$

Example: Minkowski Metric

Example: Minkowski metric

$$\mathbf{x} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} \qquad \qquad \mathbf{x'} = \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$$

• Let's compute the distance between x and x', using different p

$$\|\mathbf{x} - \mathbf{x}'\|_{1} = \|1 - 2\| + \|3 - 4\| + \|4 - 1\| = 1 + 1 + 3 = 5$$

$$\|\mathbf{x} - \mathbf{x}'\|_{2} = \sqrt{(1-2)^{2} + (3-4)^{2} + (4-1)^{2}} = \sqrt{1+1+9} = \sqrt{11} \approx 3.32$$

$$\|\mathbf{x} - \mathbf{x}'\|_{\infty} = \max\{|1 - 2|, |3 - 4|, |4 - 1|\} = 3$$

Different Metrics, Different Decisions

- Depending on the metric that we choose, a machine learning algorithm using that metric will get different results
- Consider the following three data points:

$$\mathbf{x}_1 = \begin{pmatrix} 0.1 \\ 2.8 \end{pmatrix} \qquad \mathbf{x}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \mathbf{x}_3 = \begin{pmatrix} 1.9 \\ 1.9 \end{pmatrix}$$

• Question: which of the three points is closest to the origin $\mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$?

Metric	$d(\mathbf{x}_0,\mathbf{x}_1)$	$d(\mathbf{x}_0,\mathbf{x}_2)$	$d(\mathbf{x}_0,\mathbf{x}_3)$	
$\left\ \ldots \right\ _1$	2.9	3	3.8	
$\left\ \right\ _2$	≈ 2.801	≈ 2.236	≈ 2.687	
$\ \ _{\infty}$	2.8	2	1.9	

Similarity Measures

Instead of a distance measure (metric) sometimes similarity measures are used,

$$s: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

- For a similarity measures we typically assume that it is symmetric: $s(\mathbf{x}, \mathbf{x}') = s(\mathbf{x}', \mathbf{x})$
- An example for a similarity measure would be cosine similarity: For instances $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^{M}$, their cosine similarity is defined as

$$S(\mathbf{x}, \mathbf{x'}) = \frac{\langle \mathbf{x}, \mathbf{x'} \rangle}{\|\mathbf{x}\|_2 \|\mathbf{x'}\|_2} \in [-1, 1]$$

• The cosine similarity is the cosine of the angle between the vectors \mathbf{x}, \mathbf{x}' :

$$\cos(\operatorname{angle}(\mathbf{x}, \mathbf{x}')) = \frac{\langle \mathbf{x}, \mathbf{x}' \rangle}{\|\mathbf{x}\|_2 \|\mathbf{x}'\|_2}$$

Distance for Set-valued Features

- Distances can also be defined for feature spaces $\mathcal X$ that are not simply vector spaces
- For example, for set-valued features, possible values of a feature are subsets of a set of elements \mathcal{A} , for example, $x_i = \{a, c, d, f\}$ for the set $\mathcal{A} = \{a, b, c, d, e, f, g\}$
- A possible distance measure for set-valued features is the Hamming distance: the number of elements contained in only one of the sets

$$d(x,x') = |x \setminus x'| \cup |x' \setminus x|$$
Distance for single feature, would have to combine with distance over other features in instance

$$d(\{a,c,d,f\},\{a,b,c,f,g\}) = |\{d\} \cup \{b,g\}| = 3$$

• A possible similarity measure for set-valued features is the **Jaccard coefficient**: the ratio of common elements over the union of elements

$$s(x,x') = \frac{|x \cap x'|}{|x \cup x'|} \qquad s(\{a,c,d,f\},\{a,b,c,f,g\}) = \frac{|\{a,c,f\}|}{|\{a,b,c,d,f,g\}|} = \frac{3}{6}$$

Levenshtein Distance for Sequences

- A natural distance measure for sequences is the so-called edit distance or Levenshtein distance
- Let $x_1,...,x_L$ and $y_1,...,y_K$ denote sequences over a fixed alphabet \mathcal{A} , that is $x_i,y_j\in\mathcal{A}$
- The edit distance $d((x_1,...,x_L),(y_1,...,y_K))$ is the minimum number of insertions, deletions, or substitutions needed to transform $x_1,...,x_L$ into $y_1,...,y_K$

Examples:

d(room,door)=2 two substitutions:
$$r \rightarrow d$$
, $m \rightarrow r$
d(house,spouse)=2 $h \rightarrow p$, insert s
d(man,women)=3 $a \rightarrow e$, insert w, insert o

 Note that due to the symmetry of the allowed operations, Levenshtein distance is symmetric

Definition: Levenshtein Distance

More formally, the Levenshtein distance can be defined as follows:

Computing the Levenshtein Distance

- The Levenshtein distance can be computed by filling a $L \times K$ matrix D
- The entry in position i, j in the matrix holds $d(x_1,...,x_i,y_1,...,y_j)$: the Levenshtein distances between prefixes $x_1,...,x_i$ and $y_1,...,y_j$
- Initialization:
 - transforming an empty string into a string of length j has cost j:

$$D(0, j) = j$$
 for $j \in \{0, ...K\}$

transforming a string of length i into an empty string has cost i

$$D(i,0) = i$$
 for $i \in \{0,...,L\}$

• **Recursion**: for i > 0, j > 0 can compute

$$D(i,j) = \begin{cases} D(i-1,j-1): & \text{if } x_i = y_j \\ 1 + \min \begin{cases} D(i-1,j) \\ D(i,j-1) \\ D(i-1,j-1) \end{cases} & \text{otherwise} \end{cases}$$

"Flood filling" the matrix: earlier values needed for recursion are already computed

• Final result $d(x_1,...,x_L,y_1,...,y_K)$ is in bottom-right cell

Example: Levenshtein Distance

• Example: compute the distance between strings "man" and "women"

Initialization:

		W	0	m	е	n
	0	1	2	3	4	5
m	1					
a	2					
n	3					

Recursion:

		W	0	m	e	n	
	0	1	2	3	4	5	
m	1	1	2	2	<mark>3</mark>	<mark>4</mark>	
а	2	<mark>2</mark>	<mark>2</mark>	3	<mark>3</mark>	<mark>4</mark>	
n	3	<mark>3</mark>	<mark>3</mark>	<mark>3</mark>	<mark>4</mark>	3	

Characters different: set current cell to minimum of cells above, left, and above-left plus 1

Characters the same: set current cell equal to cell above-left

$$d("man","women") = 3$$

• This dynamic programming algorithm is also called the Wagner-Fischer Algorithm

Agenda for Lecture

- Overflow from last lecture: Bayesian linear regression
- Distance measures
- K-Nearest Neighbor

Slides in this section adapted from ISMLL group (Prof. Schmidt-Thieme)

Neighborhoods Based On Distances

- For discussing K-nearest neighbor methods, we first need a definition of neighborhood
- Assume a supervised learning problem, and let

$$\mathcal{D} = \{ (\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N) \} \qquad \mathbf{x}_n \in \mathcal{X}, y_n \in \mathcal{Y}$$

denote a labeled data set

- Let $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ denote a distance measure
- For an instance $\mathbf{x} \in \mathcal{X}$, let $\pi_{\mathbf{x}} : \{1,...,N\} \to \{1,...,N\}$ denote a permutation that sorts instances in \mathcal{D} according to distance from \mathbf{x} (ties broken arbitrarily). That is,

$$d(\mathbf{x}, \mathbf{x}_{\pi_{\mathbf{x}}(n)}) \le d(\mathbf{x}, \mathbf{x}_{\pi_{\mathbf{x}}(n+1)}) \qquad 1 \le n \le N-1$$

• The **K-neighborhood** of x in \mathcal{D} is the set of the K points in \mathcal{D} closest to x:

$$C_{K,\mathcal{D}}(\mathbf{x}) = \{ (\mathbf{x}_{\pi_{\mathbf{x}}(1)}, y_{\pi_{\mathbf{x}}(1)}), \dots, (\mathbf{x}_{\pi_{\mathbf{x}}(K)}, y_{\pi_{\mathbf{x}}(K)}) \}$$

Neighborhoods Based on Similarities

- Equivalently, we can define a *K*-neighborhood based on a similarity function rather than a distance function as follows
- Let $s: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ denote a similarity measure
- For an instance $\mathbf{x} \in \mathcal{X}$, let $\pi_{\mathbf{x}} : \{1,...,N\} \to \{1,...,N\}$ denote a permutation that sorts instances in \mathcal{D} according to similarity from \mathbf{x} (ties broken arbitrarily). That is,

$$s(\mathbf{x}, \mathbf{x}_{\pi_{\mathbf{x}}(n)}) \ge s(\mathbf{x}, \mathbf{x}_{\pi_{\mathbf{x}}(n+1)}) \qquad 1 \le n \le N-1$$

• The *K*-neighborhood of x in \mathcal{D} is the set of the *K* points in \mathcal{D} most similar to x:

$$C_{K,\mathcal{D}}(\mathbf{x}) = \{(\mathbf{x}_{\pi_{\mathbf{x}}(1)}, y_{\pi_{\mathbf{x}}(1)}), ..., (\mathbf{x}_{\pi_{\mathbf{x}}(K)}, y_{\pi_{\mathbf{x}}(K)})\}$$

K-Nearest Neighbor Regressor

- Assume a regression problem, that is, the label space is $\mathcal{Y} = \mathbb{R}$
- The **K-nearest neighbor regressor** is a function $f_{\mathcal{D}}: \mathcal{X} \to \mathcal{Y}$ given by

$$f_{\mathcal{D}}(\mathbf{x}) = \frac{1}{K} \sum_{(\overline{\mathbf{x}}, \overline{y}) \in C_{K, \mathcal{D}}(\mathbf{x})} \overline{y}$$
 Average over targets seen in *K*-neighborhood

- The parameter *K* (size of the neighborhood) is a hyperparameter of the algorithm
- Note that for this regression model, there is no training stage:
 - "Training" consists of storing the training data $\mathcal D$, this is computationally inexpensive but can require a lot of memory
 - For prediction, we need to find the neighborhood $C_{K,\mathcal{D}}$, which can be computationally expensive (naive implementation: linear in size of training data)

K-Nearest Neighbor Classifier

- Assume a classification problem, that is, the label space is $\mathcal{Y} = \{0,1\}$ (binary classification) or $\mathcal{Y} = \{1,...,T\}$ (multiclass classification)
- The K-nearest neighbor classifier is a function $f_{\mathcal{D}}: \mathcal{X} \to \mathcal{Y}$ given by

$$p(y \mid \mathbf{x}, f_{\mathcal{D}}) = \frac{1}{K} \sum_{(\overline{\mathbf{x}}, \overline{y}) \in C_{K, \mathcal{D}}(\mathbf{x})} I(y = \overline{y})$$

$$f_{\mathcal{D}}(\mathbf{x}) = \arg\max_{y} p(y \mid \mathbf{x}, f_{\mathcal{D}})$$
Estimate class probabilities for instance \mathbf{x} as fractions of class labels observed in the K-neighborhood

Return the class with highest probability (ties broken arbitrarily)

- Again, K is a hyperparameter of the algorithm
- As for nearest neighbor regression, there is no explicit training stage, but finding the K-neighborhood for predictions can be computationally expensive

K-Nearest Neighbor Regression Algorithm

• The *K*-nearest neighbor regression algorithm can be given in pseudocode as follows:

Algorithm predict-knn-regression

Input: new instance $\mathbf{x} \in \mathcal{X}$, training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$

Output: predicted target $\hat{y} \in \mathbb{R}$

1. Allocate array A of size N

2. For $n \in \{1,...,N\}$:

Can also use similarity instead of distance. In this case, arg-min-K(A) is replaced by arg-max-K(A)

4. $C := \operatorname{arg-min-K}(A)$

5. $\hat{y} := \frac{1}{K} \sum_{k=1}^{K} y_{C[k]}$ Return indices of the *K* smallest elements in the array *A*

- The key step is the computation of the distances A and the K-neighborhood:
 - The function $\operatorname{arg-min-}K(A)$ returns the indices of the K smallest elements in the array A, that is, the indices of the K closest training samples
 - A naive implementation would have to go through all training examples to find the K closest ones

K-Nearest Neighbor Classification Algorithm

• The K-nearest neighbor classification algorithm can be given in pseudocode as follows:

Algorithm predict-knn-classification

Input: new instance $\mathbf{x} \in \mathcal{X}$, training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$

Output: predicted class probabilities for instance x

- 1. Allocate array A of size N
- 2. For $n \in \{1,...,N\}$:
- 3. $A[n] := d(\mathbf{x}, \mathbf{x}_n)$

Return indices of the ${\it K}$ smallest

- 4. $C := \operatorname{arg-min-K}(A)$ elements in the array A
- 5. Allocate array P of size $|\mathcal{Y}|$ an initialize to zero
- 6. For $k \in \{1,...,K\}$:
- 7. $P[y_{C[k]}] = P[y_{C[k]}] + \frac{1}{K}$ Increment probability of the class corresponding to label of instance k in neighborhood
- 8. Return P
- Again, the key step is the computation of A and the K-neighborhood

K-Nearest Neighbor Classification Algorithm

- For a naive implementation the computational complexity of K-Nearest Neighbor is relatively high. For example, the following naive implementation has complexity O(MN+KN), assuming $\mathcal{X}=\mathbb{R}^M$ and that a distance computation can be done in time O(M):
 - Compute the array A by looping through training data, takes time O(MN)
 - The smallest K elements in array A can be found by looping throught the array K times and each time picking the smallest element, in time O(KN)
- Better computational complexity can be obtained (in some cases) using data structures that represent the training data in such a way that for any $x \in \mathcal{X}$, training data points that are close to x can be found quickly
- Generally challenging for high-dimensional data (high M), sometimes only approximate solutions possible

Decision Boundaries in K-Nearest Neighbor

- For 1-Nearest Neighbor classification, the predictions can be visualized by looking at regions within $\mathcal X$ that each contain all points closest to a particular training point
- All instances in that cell will be predicted to have the same label as that training point

Decision Boundaries in K-Nearest Neighbor

- This leads to a partitioning of the instance space into regions (or "cells") for which a
 particular class is predicted
- The partitioning is also called a Voronoi tesselation

Summary: Nearest Neighbor Methods

- Instead of directly relying on a vector-based feature representation such as linear models, machine learning models can also be based on distance or similarity functions between instances
- Distances or similarities can also be defined for complex instance representations such as sets or sequences
- K-nearest neighbor methods predict classification or regression targets based on the K nearest training instances (defined by a distance or similarity function)
- K-nearest neighbor methods do not require a training phase, but are computationally expensive at prediction time