HOMEWORK #2 – Week 2

This homework is worth 10% of your course grade.

Read each problem carefully. Failure to follow the instructions for a problem will result in a zero score for that problem.

Submit the completed Homework via Assignment in LEO.

1. Construct a truth table for the Boolean equation:

$$M = A'BC' + A'BC + AB'C + ABC$$

A' B	' C'	A	В	С	M
1 1		0	0	0	0
1	0	0	0	-	Ö
1 6	0	0		6	1
6	1	0		1	1
0 1	D		0	0	0
6.0	i	l	0	American	1
0 0	0	Michiganet		6	0
0 0	0	1	1	1	l

2. Draw a simple **NOT**, **AND**, **OR** circuit in sum of products (SOP) form that represents the equation above.

3. The truth table for a Boolean expression is shown below. Write the Boolean expression on SOP form

X	у	Z	F
. 0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Find the truth table that describes the following circuit: 4.

5. a. Describe the function of a decoder circuit;

b identify the types and quantity of gates needed to implement a 3-to-8 decoder;

C either create (or give the location in the text) of a logic diagram of a decoder circuit

a. A decoder circuit takes bivary input (multiple input highs) and outputs a single selection. Some common applications include a BCD to Digital Decoder and 7-segment displays, such as found in digital clacks, 6. To implement a 3-to-8 decoder, 3 NOT gates and 8 AND Gates are required.

