SVT_1V8 Models (NSVT18, PSVT18)

1. CONDITIONS OF EXTRACTION

- Maturity: Tentative
- Model parameters extraction based on lot : -
- Geometrical extraction domain:
 - Drawn gate length : $10.0 \ge L \ge 0.2 \,\mu\text{m}$
 - Drawn transistor width : 10 \geq W \geq 0.4 μ m
- Temperature extraction domain: -40 °C to 150 °C
- Bias extraction domain:
 - Gate bias: 0 ≤ |VGS| ≤ 1.98 V (VDD + 10%)
 - Drain bias: $0 \le |VDS| \le 1.98 \ V \ (VDD + 10\%)$
 - Bulk bias: $0 \le |VBS| \le 1.98 V (VDD + 10\%)$

2. CONDITIONS OF SIMULATION

- Temperature: 25 °C
- Currents:

$$ION = Ids$$
 at $Vgs = 1.8 V$, $Vds = 1.8 V$ and $Vbs = 0 V$

Threshold voltage in linear and saturation regime

VTLIN is Vgs value at Vds = 100 mV, Vbs = 0 V and Ids=100 *W/L nA.

VTSAT is Vgs value at Vds = 1.8 V, Vbs = 0 V and Ids=100*W/L nA.

Current derivatives:

$$Gm = \frac{\partial}{\partial V_{qs}} Ids$$
 at Vgs = VTLIN + 0.2 V, Vds = 0.9 V and Vbs = 0 V

$$Gd = \frac{\partial}{\partial V_{ds}} Ids$$
 at Vgs = VTLIN + 0.2 V, Vds = 0.9 V and Vbs = 0 V

Analog gain = Gm/Gd

Gate Capacitances:

CGGINV = CGG at Vgs = 1.8 V, Vds = 0 V and Vbs = 0 V
$$CGD_0V = CGD$$
 at Vgs = 0 V, Vds = 0 V and Vbs = 0 V

$$CGGMEAN = \frac{1}{VDD} \cdot \int_{0}^{VDD} CGG \times dVgs \text{ with VDD} = 1.8 \text{ V and Vbs} = 0 \text{ V}$$

TAU = CGGMEAN*VDD/ION

• Diode Capacitances:

Note: the area and perimiters of source/drain junction diodes used for simulation are defined with the minimum poly-to-active distance specified in the DRM.

Transition frequency:

FT = frequency for which the small signal current gain H₂₁ is 0 dB (i.e. $\left| \frac{I_d}{I_g} \right| = 0$ dB).

3. MAIN ELECTRICAL CHARACTERISTICS OF NMOS SVT_1V8 TRANSISTORS

PARAMETERS	SVT18_TT	SVT18_SSA	SVT18_FFA	units		
N-channel transistors (nsvt18)						
VTLIN W=10/L=10.0	295	359	231	mV		
IDLIN W=10/L=10.0	3.43e-05	3.04e-05	3.85e-05	Α		
VTSAT W=10/L=10.0	288	352	225	mV		
ION W=10/L=10.0	2.44e-04	2.06e-04	2.87e-04	Α		
VTLIN W=10/L=0.2	424	499	349	mV		
IDLIN W=10/L=0.2	1.60e-03	1.31e-03	1.96e-03	А		
VTSAT W=10/L=0.2	388	462	312	mV		
ION W=10/L=0.2	6.79e-03	5.45e-03	8.43e-03	Α		
IOFF W=10/L=0.2	2.80e-10	1.99e-11	3.40e-09	Α		
IG_ON W=10/L=0.2	0.00e+00	0.00e+00	0.00e+00	Α		
IG_OFF W=10/L=0.2	0.00e+00	0.00e+00	0.00e+00	А		
FT W=10/L=0.2	8.39e+10	7.31e+10	9.66e+10	Hz		
CGGinv W=10/L=0.2	1.51e-14	1.53e-14	1.50e-14	F		
CGGmean W=10/L=0.2	1.38e-14	1.36e-14	1.39e-14	F		
CGD 0V W=10/L=0.2	3.75e-15	3.57e-15	4.05e-15	F		
CBD OFF ^a W=10/L=0.2	6.15e-15	6.93e-15	5.35e-15	F		
Tau W=10/L=0.2	3.7	4.5	3.0	ps		
Gm W=10/L=0.2	1.80e-03	1.49e-03	2.24e-03	S		
Gd W=10/L=0.2	5.39e-05	4.60e-05	5.90e-05	S		
Gain W=10/L=0.2	3.34e+01	3.25e+01	3.80e+01			
VTLIN W=0.4/L=0.2	482	554	410	mV		
IDLIN W=0.4/L=0.2	5.81e-05	4.66e-05	7.21e-05	Α		
VTSAT W=0.4/L=0.2	445	516	373	mV		
ION W=0.4/L=0.2	2.45e-04	1.90e-04	3.13e-04	Α		
IOFF W=0.4/L=0.2	2.54e-12	1.82e-13	3.20e-11	А		
FT W=0.4/L=0.2	6.24e+10	5.40e+10	7.23e+10	Hz		

Table 1: Main electrical characteristics for NMOS

a. Value coresponding to the minimum poly-to-acvtive distance specified in the DRM

4. MAIN ELECTRICAL CHARACTERISTICS OF PMOS SVT_1V8 TRANSISTORS

PARAMETERS	SVT18_TT	SVT18_SSA	SVT18_FFA	units			
P-channel transistors (psvt18)							
VTLIN W=10/L=10.0	366	430	304	mV			
IDLIN W=10/L=10.0	7.39e-06	6.61e-06	8.22e-06	А			
VTSAT W=10/L=10.0	348	411	286	mV			
ION W=10/L=10.0	5.58e-05	4.82e-05	6.40e-05	А			
VTLIN W=10/L=0.2	421	499	344	mV			
IDLIN W=10/L=0.2	4.72e-04	3.92e-04	5.70e-04	А			
VTSAT W=10/L=0.2	348	431	261	mV			
ION W=10/L=0.2	3.00e-03	2.40e-03	3.78e-03	А			
IOFF W=10/L=0.2	2.78e-10	2.05e-11	4.12e-09	Α			
IG_ON W=10/L=0.2	0.00e+00	0.00e+00	0.00e+00	А			
IG_OFF W=10/L=0.2	0.00e+00	0.00e+00	0.00e+00	А			
FT W=10/L=0.2	3.19e+10	2.79e+10	3.70e+10	Hz			
CGGinv W=10/L=0.2	1.65e-14	1.66e-14	1.65e-14	F			
CGGmean W=10/L=0.2	1.47e-14	1.44e-14	1.49e-14	F			
CGD 0V W=10/L=0.2	4.09e-15	3.91e-15	4.32e-15	F			
CBD OFF ^a W=10/L=0.2	6.13e-15	6.99e-15	5.25e-15	F			
Tau W=10/L=0.2	8.8	10.8	7.1	ps			
Gm W=10/L=0.2	9.47e-04	8.11e-04	1.14e-03	S			
Gd W=10/L=0.2	3.41e-05	2.68e-05	4.69e-05	S			
Gain W=10/L=0.2	2.78e+01	3.02e+01	2.43e+01				
VTLIN W=0.4/L=0.2	415	501	325	mV			
IDLIN W=0.4/L=0.2	2.02e-05	1.60e-05	2.57e-05	А			
VTSAT W=0.4/L=0.2	342	434	243	mV			
ION W=0.4/L=0.2	1.28e-04	9.70e-05	1.69e-04	А			
IOFF W=0.4/L=0.2	1.31e-11	7.59e-13	2.69e-10	А			
FT W=0.4/L=0.2	2.78e+10	2.41e+10	3.26e+10	Hz			

Table 2: Main electrical characteristics for PMOS

a. Value coresponding to the minimum poly-to-acvtive distance specified in the DRM

5. ELECTRICAL BEHAVIOR VERSUS GATE LENGTH AND CHANNEL WIDTH FOR NMOS SVT_1V8 TRANSISTORS

Figure 1: ION/\(\subseteq = ION*L/W\) versus drawn gate length for NMOS SVT_1V8 transistors (W = 10 μm)

Figure 2 : IOFF versus drawn gate length for NMOS SVT_1V8 transistors (W = 10 μ m)

Figure 3 : Threshold voltage VTLIN versus drawn gate length for NMOS SVT_1V8 transistors (W = 10 μ m)

Figure 4 : DIBL= VTLIN-VTSAT versus drawn gate length for NMOS SVT_1V8 transistors (W = 10 μ m)

Figure 5 : GM*Ld versus drawn gate length for NMOS SVT_1V8 transistors (W = 10 μ m)

Figure 6 : GD*Ld versus drawn gate length for NMOS SVT_1V8 transistors (W = 10 μ m)

Figure 7 : GAIN versus drawn gate length for NMOS SVT_1V8 transistors (W = 10 μ m)

Figure 8 : ION versus drawn channel width for NMOS SVT_1V8 transistors (L = 0.2 μ m)

Figure 9 : IOFF versus drawn channel width for NMOS SVT_1V8 transistors (L = 0.2 μ m)

Figure 10 : Threshold voltage VTLIN versus drawn channel width for NMOS SVT_1V8 transistors (L = 0.2 μ m)

6. ELECTRICAL BEHAVIOR VERSUS GATE LENGTH AND CHANNEL WIDTH FOR PMOS SVT_1V8 TRANSISTORS

Figure 11 : ION versus drawn gate length for PMOS SVT_1V8 transistors (W = 10 μ m)

Figure 12 : IOFF versus drawn gate length for PMOS SVT_1V8 transistors (W = 10 μ m)

Figure 13 : Threshold voltage VTLIN versus drawn gate length for PMOS SVT_1V8 transistors (W = 10 μ m)

Figure 14 : DIBL= VTLIN-VTSAT versus drawn gate length for PMOS SVT_1V8 transistors (W = 10 μ m)

Figure 15 : GM*Ld versus drawn gate length for PMOS SVT_1V8 transistors (W = 10 μ m)

Figure 16 : GD*Ld versus drawn gate length for PMOS SVT_1V8 transistors (W = 10 μ m)

Figure 17 : GAIN versus drawn gate length for PMOS SVT_1V8 transistors (W = 10 μ m)

Figure 18 : ION versus drawn channel width for PMOS SVT_1V8 transistors (L = 0.2 μ m)

Figure 19 : IOFF versus drawn channel width for PMOS SVT_1V8 transistors (L = 0.2 μ m)

Figure 20 : Threshold voltage VTLIN versus drawn channel width for PMOS SVT_1V8 transistors (L = 0.2 μ m)