

National Forensic Sciences University

Gandhinagar Campus Sector – 9, Gandhinagar, Gujarat - 382007

School of Cyber Security and Digital Forensics

M. Sc. Cyber Security (Syllabus, Teaching & Examination Scheme)

(Academic Year 2021 - 22)

Teaching Scheme

		Semester I					
Sr. No.	Subject Code	Subject Name	L	Т	P	C	ТСН
1	CTMSCS SI P1	Essentials of Cyber Security and Cyber Warfare	3	0	0	3	3
2	CTMSCS SI P2	Cyber Security Audit and Compliance	3	1	0	4	4
3	CTMSCS SI P3	Web Application Security	3	0	0	3	3
4	CTMSCS SI P4	Artificial Intelligence	3	0	0	3	3
5	CTMSCS SI P5	Introduction to Forensic Science and Law	4	0	0	4	4
6	CTMSCS SI L1	Essentials of Cyber Security and Cyber Warfare	0	0	1	1	2
7	CTMSCS SI L3	Web Application Security	0	0	1	1	2
8	CTMSCS SI L4	Artificial Intelligence	0	0	1	1	2
		Total Credit & Total Cre	edit [Hou	rs	20	24
		Semester II					
Sr. No.	Subject Code	Subject Name	L	Т	P	C	тсн

1	CTMSCS SII P1	Network Security	3	0	0	3	3
2	CTMSCS SII P2	Malware Analysis	3	0	0	3	3
3	CTMSCS SII P3	Mobile Security	3	0	0	3	3
4	CTMSCS SII P4	Incident Response and Digital Forensics	3	0	0	3	3
5	CTMSCS SII P5	Minor Project	0	2	2	4	6
6	CTMSCS SII L1	Network Security	0	0	1	1	2
7	CTMSCS SII L2	Malware Analysis	0	0	1	1	2
8	CTMSCS SII L3	Mobile Security	0	0	1	1	2
9	CTMSCS SII L4	Incident Response and Digital Forensics	0	0	1	1	2
		Total Credit & Total Cre	edit	Hou	irs	20	26
		Semester III					
Sr. No.	Subject Code	Subject Name	L	T	P	C	ТСН
1	CTMSCS SIII P1	Blockchain and Cryptocurrencies	3	0	0	3	3
2	CTMSCS SIII P2	IoT Security and Forensics	3	0	0	3	3
3	CTMSCS SIII P3	Cloud Security and Forensics	3	0	0	3	3

4	CTMSCS SIII P4 EL1	Program Elective Sub	ject 1	3	0	0	3	3
5	CTMSCS SIII P5 EL2	Program Elective Sub	ject 2	3	0	0	3	3
6	CTMSCS SIII L1	Blockchain and Cryptocurrencies		0	0	1	1	2
7	CTMSCS SIII L2	IoT Security and Fore	ensics	0	0	1	1	2
8	CTMSCS SIII L3	Cloud Security and For	rensics	0	0	1	1	2
9	CTMSCS SIII L4	Program Elective Sub	ject 1	0	0	1	1	2
10	CTMSCS SIII L5	Program Elective Sub	ject 2	0	0	1	1	2
		Total Credit &	Total Cro	edit	Hou	ırs	20	25
		Semester IV		ı		ı	ī	
Sr. No.	Subject Code	Subject Name	L	7	Γ	P	C	ТСН
1	CTMSCS SIV P1	Major Project	0	1	0	1 0	20	30
		Total Credit &	Total Cro	edit	Hot	ırs	20	30

	List of	Program Elective 1
Sr. No.	Subject Code	Subject Name
1	CTMSCS SIII P4 EL1 Option 1	Advanced Computer Forensics
2	CTMSCS SIII P4 EL1 Option 2	Reverse Engineering and Exploit Writing
3	CTMSCS SIII P4 EL1 Option 3	Critical Infrastructure Security
4	CTMSCS SIII P4 EL1 Option 4	Database Security

	List of Pr	rogram Elective 2
Sr. No.	Subject Code	Subject Name
1	CTMSCS SIII P5 EL2 Option 1	Social Network Analysis
2	CTMSCS SIII P5 EL2 Option 2	Network Forensics
3	CTMSCS SIII P5 EL2 Option 3	Mobile Forensics
4	CTMSCS SIII P5 EL2 Option 4	Research Methodology

SEMESTER-I

Subject Name: Essentials of Cyber Security and Cyber Warfare

Subject Code: CTMSCS SI P1

Teaching and Evaluation Scheme

	Teac	hing S	cheme		Evaluation Scheme								
							Theor	у			Practi	cal	
Th	Th Tu Pr C		C	с тсн	Internal Exams				Univer Exan		Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MSI	MSE		Hrs	Marks	Hrs	
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	Marks	пгѕ	
3	0	0	3	3	25	45 min	50	1.5	100	3	-	-	200

^{*} Note: TA-2 will be in form of assignments or workshops.

Objectives:

- 1. To learn the concept of windows and Linux Security Features
- 2. Learn various Security Practices for Linux and Windows Servers
- 3. Learn to Implement Security Features for Hardening
- 4. To learn about Cyber Warfare in this Digital Era.
- 5. Learn about Information Operations.

UNIT-I

Windows Security

- The Windows Security Infrastructure: Three classes of operating system: Client, Server, Embedded, Practical related to Process Hacker, Service Packs, Hotfixes, and Backups: Service packs Email security bulletins, Patch installation, Automatic updates, Windows server update services, Windows backup, System restore, Device driver rollback. Windows Access Controls, NTFS Permissions, Shared Folder Permissions, Registry Key Permissions, Active Directory Permissions, Privileges, BitLocker Drive Encryption, practical related to Microsoft Baseline Security Analyzer. Enforcing

UNIT – II Windows Security Policy

- Applying security templates Employing the Security Configuration and Analysis snap-in, Understanding Local Group Policy Objects, Understanding Domain Group Policy Objects, Administrative Users, AppLocker, User Account Control. Checking Recommended GPO settings, including: Password Policy, Account Lockout Policy, Security Options, Internet Explorer Security, Miscellaneous Administrative Templates, Other Settings, practical related to Secedit. Securing Windows Network Services

Unit –III Linux Security Hardening

- Hardening and Securing Linux Services: Starting services at boot time, Package control, Kernel security, Port control and port restriction, Monitoring and Attack Detection: Configuring and monitoring logs, logging with syslog and alternatives, parsing and filtering

logs with grep, sed, awk, and cut and monitoring and accounting with uditd. Log Aggregation and SIEM, Log Files, Log Parsing, Security Utilities: security-enhancement utilities, capabilities, and patchmanagement applications. Using built-in commands and security features, configuring integrity, checkers, integrating host-based firewalls and managing them to provide security, Using hardening scripts, Deploying package management strategies, Understanding other tools for increasing security.

UNIT-IV

Introduction to Cyber Warfare

- Introduction to Cyber Warfare, Definition for Cyber Warfare, Tactical and Operational Reasons for Cyber War, Cyber Strategy and Power, Cyber Arms Control

UNIT-V

Information Warfare and Information Operations

- Information Assurance, Information Operations, Information Superiority, Information Warfare, Network Centric Operations, Psychological Operations, Psychological Warfare.

Books Referenced:

- 1. Mastering Linux Security and Hardening: Secure your Linux server and protect it from intruders, malware attacks, and other external threats by Donald A. Tevault
- 2. Hardening Linux 1st ed. Edition by James Turnbull
- 3. Microsoft Windows Security Essentials 1st Edition by Darril Gibson
- 4. Cyber Warfare: Techniques, Tactics and Tools for Security Practitioners Book by Jason Andress and Steve Winterfeld.
- 5. Cybersecurity and Cyberwar: What Everyone Needs to Know Book by Allan Friedman and P. W. Singer.

Subject Name: Essentials of Cyber Security and Cyber Warfare Laboratory Subject Code: CTMSCS SI L1

	Teac	hing S	cheme					Evalua	ation Sche	me			
						Theory					Practi	cal	
Th	Tu	Pr	C	тсн]	Internal	Exams		Univer Exan		Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MSI	E	Maula	TT	Made	TT	
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	Hrs	
0	0	1	1	2	-	-	=.	-	=	-	100	3	100

Syllabus:

FSMSDFIS SI P2: CYBER SECURITY AUDIT AND COMPLIANCE

Teaching and Evaluation Scheme:

	Teac	hing S	cheme					Evalua	ation Sche	me			
							Theor	у			Practi	ical	
Th	Tu	Pr	C	тсн		Internal Exam			Univer Exan		Univer Exan (LPV	ns	Total
					TA-1/			MSE		Manles II-s		Hrs	
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	пгѕ	
3	1	0	4	4	25	45 min	50	1.5	100	3	-	-	200

^{*} Note: TA-2 will be in the form of assignments or workshops.

Objectives:

- 1. To learn Security Audit and Compliance
- 2. To understand the process of security audit
- 3. To understand the industry standard practices for auditing
- 4. To learn various security standards
- 5. To learn the policy making and organizational structure
- 6. To understand the Risk and Continuity planning

UNIT-I

The need for information system security compliance

- What is IT security assessment? What is an IT security audit? What is compliance? How does an audit differ from an assessment? Why are governance and compliance important? What if an organization does not comply with compliance laws? What is the scope of an IT compliance audit? What does your organization do to be in compliance? What are you auditing within the IT infrastructure? Maintaining IT compliance.

UNIT - II Planning and implementation of an IT Infrastructure Audit for compliance:

- Defining the scope for audit, Identifying critical requirements for the audit, assessing IT security, Obtaining Information, Documentation and Resources, Mapping the IT security policy framework definition to the seven domains of typical IT infrastructure, Identifying and Testing Monitoring Requirements What Are Controls and Why Are They Important?: Goal- Based Security Controls, Implementation-Based Security Controls, The Security Control Formulation and Development Process, Setting the Stage for Control Implementation through Security Architecture Design, Implementing a Multitiered Governance and Control Framework in a Business The IT Audit Process: Audit Plan, Audit Process, Types of IT Audits, Computer-Assisted Audit Techniques (CAATs), CAATs for Sampling, CAATs for Application Reviews, CAATs for Auditing Application Controls.

UNIT - III

Conducting an IT Infrastructure Audit for Compliance:

Identifying the Minimum Acceptable Level of Risk and Appropriate Security Baseline Definitions, Seven Domains of a Typical IT Infrastructure, Writing the IT Infrastructure Audit Report Compliance within User Domain: Compliance law requirements and business drivers, Items Commonly Found in the User Domain, Compliance within the workstation domain: Compliance law requirements and business drivers, devices and components commonly found in the workstation domain, Maximizing C-I-A, Compliance within the LAN Domain: Compliance law requirements and business drivers, devices and components commonly found in the LAN domain, Maximizing C-I-A, Compliance within LAN and WAN Domain: Devices and Components Commonly Found in the Domain , Penetration Testing and Validating Configurations, Compliance within Remote Access and Application Domain: Devices and Components Commonly Found in the Domain, Application Server Vulnerability Management, Application Patch Management.

UNIT - IV

Risk Assessment and BCP, DR Planning:

- Introduction to Risk Analysis, Risk Identification, Risk Assessment, Risk Response and Mitigation, Risk Reporting, Introduction to Business Continuity Planning (BCP), Overview of BCP Life Cycle, Need for BCP, Identifying and Selecting Business Continuity Strategies, Introduction to Disaster Recovery (DR) planning, Identification of potential disaster status, DR Strategies, Plans for Business Resumption.

UNIT-V

Cyber Law and Auditing Standards/Frameworks:

- Indian IT ACT with Amendments, Adjudication under Indian IT ACT, Auditing Standards and Frameworks: ISO/IEC 27001/2, COBIT, SOC Compliance, HIPAA, GDPR and PCIDSS.

Reference Books: -

- 1. Auditing IT Infrastructures for Compliance By Martin M. Weiss, Michael G.Solomon, Jones & Bartlet Learning, 2015
- 2. The IT Regulatory and Standards Compliance Handbook By Craig S. Wright, Syngress, 2015
- 3. Information Technology Control and Audit 5th Edition By Angel R. Otero, 2019
- 4. (Internal Audit and IT Audit Series) The Complete Guide to Cyber Security Risks and Controls By Anne Kohnke, Dan Shoemaker, Ken Sigler, 2016

- 5. PCI DSS An Integrated Data Security Standard Guide- APress By Jim Seaman, 2020
- 6. AICPA Guide_ SOC 2 Reporting on an Examination of Controls at a Service Organization Relevant to Security, Availability, Processing Integrity, Confidentiality, or Privacy-Wiley, 2018
- 7. The EU General Data Protection Regulation (GDPR) A Practical Guide by Paul Voigt and Axel von dem Bussche, 2017
- 8. Bob Hayes, Kathleen Kotwica, "Business Continuity 2nd Edition", Elsevier Pub.2013.
- 9. Governance, risk, and compliance by Microsoft, 2019.

Subject Name: Web Application Security

Subject Code: CTMSCS SI P3

Teaching and Evaluation Scheme:

	Teac	ching S	Schem	e					valuation Scheme				
					Theory				Prac	tical			
Th	Tu	Pr	C	тсн		Internal Exams			Univer y Exar		Unive Exams		Tot al
					TA-1/	TA-2	MS	€	3.7 1	-	3.6	TT	
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	Hrs	
3	0	0	3	3	25	45 Mins	50	1.5	100	3	1	-	200

^{*}Note: TA-2 will be in the form of assignments or workshops.

Objectives:

- 1. To learn the concept of web application technology
- 2. Learn various aspects of web application security
- 3. Learn to vulnerability assessment of web application security
- 4. Exploitation of potential web vulnerability
- 5. Learn industry standard techniques to exploit advanced vulnerability

UNIT-I

Introduction to web technology and information Gathering

- TCP, HTTP/S Protocol Basics, Encoding, Origin, Cookies, Sessions, Fingerprinting the web server, Subdomains enumeration, Finding virtual hosts, Fingerprinting custom applications, Enumerating resources, Relevant information through misconfigurations, Google hacking.

UNIT-II

Web Application Security Vulnerability Terminology

- Introduction to Vulnerability Assessment, Life cycle of Vulnerability Assessment, Vulnerability Scanners, Unknown Vulnerability, False Positive, CVE, CWE, Common Vulnerability Scoring System (CVSS), STRIDE, DREAD, Secure Source Code Review.

UNIT-III

Proxy and Interception

- Burp Suite / OWASP Zed Attack Proxy (ZAP): Logging and monitoring, Learning tools to spider a website, Analyzing website content, Brute forcing unlinked files and directories via ZAP and ffuf, Web authentication mechanisms, Fuzzing with Burp Intruder, Username harvesting and password guessing, Burp sequencer, Session

management and attacks, Authentication and authorization bypass

UNIT-IV:

Attack Landscape - Web Application Security

OWAP 10 Ten – Injection, Broken Authentication, Sensitive Data Exposure, XML External Entities, Broken Access Control, Security Misconfiguration, Cross Site Scripting, Insecure Deserialization, Using Components with Known Vulnerabilities, Insufficient Logging & Monitoring, Cross Site Request Forgery, File Inclusion, Click Jacking, File Inclusion, File Upload, Insecure Captcha, SSRF/XSPA.

UNIT-V

Advanced Web Security Pen-Testing

- Web Service concepts, REST concepts, SQL Injection - Vulnerable code, Sensitive data in GET, Weak Auth tokens & IDOR, Leaky APIs and Insecure Data Storage, Automated Scanning with FuzzAPI / Astra / other industry standard tools, Introduction to CMS and Docker containers security.

Reference Books

- 1. Web Application Security, A Beginner's Guide by Bryan Sullivan, Vincent Liu, McGraw-Hill Education Publication (2011).
- 2. Hands-On Bug Hunting for Penetration Testers A Practical Guide to Help Ethical Hackers Discover Web Application Security Flaws By Joseph Marshall, Packt Publication (2018).
- 3. The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws by Dafydd Stuttard, Marcus Pinto, 2nd Edition, Wiley Publication (2007).
- 4. The Penetration Tester's Guide to Web Applications By Serge Borso, Artech House Publication (2019).
- 5. Web Application Security Exploitation and Countermeasures for Modern Web Applications by By Andrew Hoffman,O'Reilly Media Publication (2020)

Subject Name: Web Application Security Laboratory Subject Code: CTMSCS SI L3

	Teac	hing S	cheme					Evalua	ation Sche	me			
						T					Practi	ical	
						Internal Exams			University		Univer	sity	
Th	Tu	Pr	C	тсн					Exan		Exar	Total	
111	1 u	11		icn					Exam	115	(LPV	V)	Iotai
					TA-1/	ГА-2	-2 MSE		Manles II.		Marks	Hrs	
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	пгѕ	
0	0	1	1	2	-	-	-	-	-	-	100	3	100

Syllabus:

Subject Name: Artificial Intelligence Subject Code: CTMSCS SI P4

Teaching and Evaluation Scheme:

	Tea	ching S	Schem	e					Evaluatio Scheme				
							Theo	ry			Pra	ectical	
Th	Tu	Pr	C	тсн		Internal Exams				rsity ns	Uni Exam (LPW		Total
					-	TA-1/TA-2 MSE				Hrs	Mark	Hrs	
					Marks	Marks Hrs Marks Hrs			Marks	шз	Mark S	шз	
3	0	0	3	3	25	25 45 50 1.5				3	i	i	200

^{*} Note: TA-2 will be in form of assignments or workshops.

Objectives:

- 1. To understand concept of Artificial Intelligence, Machine Learning and Deep Learning
- 2. To learn various Machine Learning and Deep Learning techniques
- 3. To create models to understand applications of AI
- 4. To learn role of ML/DL in Cyber Security

UNIT-I

Introduction to Mathematics for ML and Python

- Python: Setting up Environment, Basic Python Commands, Creating Python Scripts, Conditions, Loops, List, Dictionary, User Defined Functions, Introduction to Anaconda, Working with NumPy, Pandas and Matplotlib.
- Mathematics for ML: Vectors, Matrices, Linear Equations, Mean, Median, Mod, Standard Deviation and Variance, Probability, Correlation, Regression, Handling and Representing Data.

UNIT-II

Machine Learning (ML)

- Definition and History of AI, Defining Machine Learning, Applications of ML, Issues and Challenges in ML, Types of ML.
- Basics of Supervised Learning, Prediction, Classification, Understanding Datasets, Feature Selection, Feature Normalization, Data Cleaning, Training, Testing & Validation Sets, Different Models of Supervised Learning, Hyperparameters, Measuring Performance, Accuracy and Loss, Underfitting & Overfitting, Basics of Unsupervised Learning, Different Models of Unsupervised Learning.

UNIT-III

Neural Network

- Understanding Biological Brain, Defining Artificial Neural Network (ANN), Applications of ANN & DL.
- Defining & Building a Perceptron, Feed Forward, Back propagation, Single-layer & Multi-layer ANNs, Building an ANN Model, Activation & Loss Functions, Compiling & Evaluating a Model.
- Convolutional Neural Networks (CNN): Understanding Convolutions, Pooling, Building & Fitting CNN Models, Evaluating Model Performance.
- Recurrent Neural Networks (RNN): Basic RNN Architecture, Applications of RNN, Building & Fitting RNN Models, Evaluating Model Performance.
- Long Short-Term Memory Networks (LSTM): LSTM Network Architecture, Understanding LSTM, Building LSTMs.

UNIT-IV

Computer Vision and Natural Language Processing

- Computer Vision: Introduction, Object Detection and Image Segmentation, Detecting and Recognizing Faces, Tracking Objects, Pattern Recognition.
- Natural Language Processing (NLP): Introduction, Language as Data, Building Custom Corpus, Text Vectorization & Transformation, Classification for Text Analysis, Clustering for text Similarity, Context- Aware Text Analysis, Text Visualization.

UNIT-V

ML/DL for Cyber Security

- Introduction to Role of ML in Cyber Security, Malware Detection & Classification, Anomaly Detection, Pen Testing using ML, Social Engineering, ML based Intrusion Detection and other Applications of ML in Cyber Security.

Reference book

- 1. Mathematics for Machine Learning 1st Edition by Marc Peter Deisenroth
- 2. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 2nd Edition by AurélienGéron
- 3. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition by Sebastian Raschka and Vahid Mirjalili
- 4. Hands-On Neural Networks with Keras: Design and create neural networks using deep learning and artificial intelligence principles 1st Editionby NiloyPurkait
- 5. Deep Learning with Keras: Implementing deep learning models and neural networks with the power of Python by Antonio Gulli, Sujit Pal
- 6. Practical Machine Learning for Computer Vision 1st Editionby Valliappa Lakshmanan, Martin Görner and Ryan Gillard
- 7. Learning OpenCV 4 Computer Vision with Python 3: Get to grips with tools,

- techniques, and algorithms for computer vision and machine learning, 3rd Edition by Joseph Howseand Joe Minichino
- 8. Natural Language Processing in Action: Understanding, analyzing, and generating text with Python 1st Editionby Hobson Lane, Hannes Hapke and Cole Howard.
- 9. Machine Learning for Cybersecurity Cookbook: Over 80 recipes on how to implement machine learning algorithms for building security systems using Pythonby Emmanuel Tsukerman.
- 10. Hands-On Machine Learning for Cybersecurity: Safeguard your system by making your machines intelligent using the Python ecosystemby Soma Halder (Author), Sinan Ozdemir

Subject Name: <u>Artificial Intelligence Laboratory</u> Subject Code: <u>CTMSCS SI L4</u>

	Teac	hing S	cheme			Evaluation				me			
							Theor	y			Practi	cal	
Th	Tu	Pr	C	тсн		Internal Exams		Univer Exan	•	Univer Exan (LPV	ns	Total	
					TA-1/	ГА-2	MSI	E	Marks	Hrs	Marks		
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	Marks	Hrs	
0	0	1	1	2	-	-	-	-	-	-	100	3	100

Syllabus:

MSCS SI P5: Introduction to Forensic Science and Law

Teaching and Evaluation Scheme:

	Teac	hing S	cheme		Evaluation Scheme								
							Theor	y			Practi	cal	
Th	Tu	Pr	C	тсн	Internal Exams				Univer Exan	•	Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MSE		Marks Hrs		Marks	Hrs	
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	Marks	пгѕ	
3	1	0	4	4	25 45 min 50 1.5			1.5	100	3	-	-	200

^{*} Note: TA-2 will be in form of assignments or workshops.

Objectives:

- 1. About the significance of forensic science to human society and criminal investigation.
- 2. The fundamental principles of forensic science.
- 3. The divisions in a forensic science laboratory.
- 4. The working of the forensic establishments in India and abroad
- 5. Legal aspects of forensic investigations

Module 1:

History of Development of Forensic Science in India. Functions of forensic science. Historical aspects of forensic science. Definitions and concepts in forensic sciences. Scope of forensic science. Various contemporary disciplines of forensic sciences and their applications in different approaches with theoretical concepts Need of forensic science. Basic principles of forensic science.

Module 2:

Contemporary development in the academic and practices in forensic sciences-advantage of scientific investigations- Tools and Techniques in Forensic Science- Branches of forensic science. Forensic science in international perspectives, including set up of INTERPOL, and FBI. Duties of forensic scientists. Code of conduct for forensic scientists. Qualifications of forensic scientists. Data depiction. Report writing.

Module 3:

Academic institutions involvement -Organizational set up of Forensic Science Laboratories in India Hierarchical set up of Central Forensic Science Laboratories, State Forensic Science Laboratories, Government Examiners of Questioned Documents, Fingerprint Bureaus, National Crime Records Bureau, Police & Detective Training Schools, NIA, CCNTS, Bureau of Police Research & Development, Directorate of Forensic Science and Mobile Crime Laboratories. Police Academies. National investigation agency and other agencies involved in the criminal investigations- agencies referred for the additional information and requisite examinations

Module 4:

Definition of Law, Court, Judge, Basic Terminology in Law, Introduction to Criminal Procedure Code, FIR, Difference between civil and Criminal Justice, Object of Punishment, Kinds of Punishment, Primary and Sanctioning Rights Primary and Secondary functions of Court of Law. Law to Combat Crime-Classification – civil, criminal cases. Essential elements of criminal law. Constitution and hierarchy of criminal courts.

Criminal Procedure Code. Cognizable and non-cognizable offences. Bailable and nonbailable offences. Sentences which the court of Chief Judicial Magistrate may pass.

Laws specific to Forensic Science: Indian Penal Code pertaining to offences against persons – Section 121A, 299, 300, 302, 304A, 304B, 307, 309, 319, 320, 324, 326, 351, 354, 359, 362. Sections 375 & 377 and their amendments.

Indian Evidence Act – Evidence and rules of relevancy in brief. Expert witness. Cross examination and re-examination of witnesses. Sections 32, 45, 46, 47, 57, 58, 60, 73, 135, 136, 137, 138, 141. CrPC – Sections 291,291A, 292 & 293 in the code of criminal procedure.

Module 5:

Introduction to Computer and its components, different types of storage media, Category to Cyber crime, Cyber Law, IT Act 2000 and its amendments, International Cyber Laws, Cyber Ethics, Child Sexual Abuse Material related to cyber domain, various acts related to social media, privacy and security on cyber domain, case studies.

References and Suggested Readings:

- 1. B.B. Nanda and R.K. Tiwari, Forensic Science in India: A Vision for the Twenty First Century, Select Publishers, New Delhi (2001).
- 2. M.K. Bhasin and S. Nath, Role of Forensic Science in the New Millennium, University of Delhi, Delhi (2002).
- 3. S.H. James and J.J. Nordby, Forensic Science: An Introduction to Scientific and Investigative Techniques, 2nd Edition, CRC Press, Boca Raton (2005).
- 4. W.G. Eckert and R.K. Wright in Introduction to Forensic Sciences, 2nd Edition, W.G. Eckert (ED.), CRC Press, Boca Raton (1997).
- 5. R. Saferstein, Criminalistics, 8th Edition, Prentice Hall, New Jersey (2004).
- 6. W.J. Tilstone, M.L. Hastrup and C. Hald, Fisher's Techniques of Crime Scene Investigation, CRC Press, Boca Raton (2013)
- 7. Tallinn Manual On The International Law Applicable To Cyber Warfare, International Group of Experts and NATO by Michael N. Schmitt
- 8. IT Act 2000 and 2008 bare acts documents
- 9. Cyber Law in India, Satish Chandra (2017)

SEMESTER-II

Subject Name: Network Security Subject Code: CTMSCS SII P1

Teaching and Evaluation Scheme:

	Teac	ching S	cheme		Evaluation Scheme								
						Theory					Practi	cal	
Th	Tu	Pr	C	тсн	Internal Exams				Univer Exan	•	Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MSE		Marks Hrs		Marks	Hrs	
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	Hrs	
3	0	0	3	3	25 45 50 min			1.5	100	3	-	-	200

^{*} Note: TA-2 will be in form of assignments or workshops.

Objective:

- 1. To learn about the essentials of network security.
- 2. To learn about the network devices, its functioning and security.
- 3. To understand the basics of network vulnerability assessment and penetration testing methodology.
- 4. To understand the important network communication protocols.
- 5. To understand the concept of encryption, Public key cryptography, message authentication and hash functions.
- 6. To understand the basics of wireless network protocols and its security concepts.
- 7. To understand the basics of network forensics.

UNIT – I

Basics of Networking

- ISO/OSI, TCP-IP, Networking devices: Host, Hub, Bridge, Switch, Router and its functioning, Perimeter devices: IDS, IPS, Firewall and its functioning. NOC, SOC, SIEM, Servers: DNS, DHCP, Proxy, Mail and Application servers. Threat, vulnerability, attack surface, attack vector, exploit. Common attacks and countermeasures: Phishing attack, ARP poising, MAC flooding, DoS and DDoS.

UNIT – II

Penetration Testing

- Penetration testing life cycle: Scope, SOW, Reconnaissance, target enumeration, vulnerability identification, assessment, exploitation, and reporting. Information gathering starting at sourcescrutinizing key employees, Dumpster diving, War driving, analyzing the web, exploring domain ownership- whois, Regional internet registries, server location, Scanning: active and passive, ICMP (Ping), OS and server

fingerprinting, scanning tools and port status, TCP and UDP scan. SNMP services, enumeration, and countermeasures. Routing devices enumeration and countermeasures. Advanced enumeration: Password cracking, sniffing password hashes and password protection. Vulnerability exploitation, Buffer overflow, vulnerability assessment tools, source code assessment tools, application assessment tools, system assessment tools, exploit tools

UNIT – III

Cryptography

- Introduction to Security: need for security, principle of security, security approaches. Encryption Techniques: plaintext, cipher text, substitution & transposition techniques, encryption & decryption, key range & size. Symmetric and Asymmetric encryption. Public Key Cryptography and Message Authentication: Public key cryptographic principles, digital signatures, key management, hash function and message digest. Types of attacks and countermeasures.

UNIT – IV Wireless Network Security

- 802.11 Protocols, WAP and inherent security issues, promiscuous and monitor mode, Sniffing wireless packets, management, control, and data frames, WLAN authentication and encryption, WEP, WPA and WPA 2. WLAN authentication and security flaws. WLAN based attacks and countermeasures. WLAN Pen testing tools

UNIT – V Network Forensics

- Digital evidence, Network based digital evidence, Network Forensic investigation methodology, Sources of network-based evidence, Evidence acquisition, Network traffic capture and analysis, Traffic capture and analysis tools, Event log aggregation, correlation, and analysis. Data in motion investigation

Reference Books

- 1. Stallings, W., Network Security Essentials: applications and standards. 3rd ed. Pearson Education India, 2007.
- 2. Stallings, W., Cryptography and Network Security: Principles and Practice. 6th ed. Pearson, 2004.

- 3. Forouzan, B.A., Cryptography & Network Security. Tata McGraw-Hill Education, 2010
- 4. Kahate, A. Cryptography and Network Security. McGraw-Hill Higher Ed., 2009.
- 5. Michael Gregg, Build Your Own Security Lab: A Field Guide for Networking Testing.
- 6. Sherri Davidoff and Jonathan Ham, Network Forensics Tracking Hackers through Cyberspace.
- 7. Mastering Wireless Penetration Testing for Highly Secured Environments by Aaron Johns
- 8. Chris McNab, Network Security Assessment: Know Your Network
- 9. Cameron Buchanan and Vivek Ramachandran, Kali Linux Wireless Penetration Testing Beginner's Guide

Subject Name: Network Security Laboratory Subject Code: CTMSCS SII L1

	Teac	hing S	cheme			Evalua				me				
							Theor	у			Practi	cal		
Th	Tu	Pr	C	тсн]	Internal	Exams		Univer Exan		Univer Exan (LPV	Total		
					TA-1/	ГА-2	MSI	MSE		Шис	Maulia	IIma		
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	Hrs		
0	0	1	1	2	-	-	-	-	-	100	3	100		

Syllabus:

Subject Name: Malware Analysis Subject Code: CTMSCS SII P2

Teaching and Evaluation Scheme:

	Teac	hing S	cheme		Evaluation Scheme								
							Theor	y			Practi	cal	
Th	Tu	Pr	C	тсн	Internal Exams				Univer Exan	•	University Exams (LPW)		Total
					TA-1/	ГА-2	MSI	MSE		Marks Hrs		TT	
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	Hrs	
3	0	0	3	3	25	45 min	50	1.5	100	3	-	-	200

^{*} Note: TA-2 will be in form of assignments or workshops.

Objectives:

- 1. To learn the various malware types
- 2. To learn the internals of executable files
- 3. To learn various malware analysis techniques
- 4. To learn the signature creation for malware detection
- 5. To learn the reverse engineering of malware
- 6. To learn about the malware for various platform such as linux, android, iot.

UNIT – I

Introduction to Malware and Basic Malware Analysis

- Malware Definition and Types, Malware Analysis, Forensic Importance of Malware Analysis, Introduction to different analysis techniques, Malware Behavior, Setting up malware analysis laboratory. Static Analysis: Hashing, Finding Strings, Decoding Obfuscated Strings Using FLOSS, PE Files Headers and Sections, PE View, Linked Libraries and Functions, Dependency Walker, CFF Explorer, Resource Hacker, Malware signature and Clam AV Virus Signature, YARA Signatures, Dynamic Analysis: Sandboxes, Running and Monitoring a Malware, Process Monitor, Process Explorer, RegShot, Faking a network, Using Wireshark for Packet Analysis.

UNIT - II

Assembly and Reverse Engineering

- Introduction to x86 Assembly and CPU registers, Overview of the Stack, IDA Pro with its functions and features, Understanding of C code construct in Assembly, Analyzing Malicious Windows Programs, Live Memory Analysis using Volatility.

UNIT - III

Debugging

- Difference between Source level v/s Assembly level debugger, Kernal mode v/s User mode debugger, Debugger common features, Breakpoints, Exceptions, Modification

of Program Execution, Working with OllyDbg and Immunity Debugger, Kernel Debugging with WinDBG

UNIT – IV

Behaviours of Malware

- Common behavior of the malwares, Process Injection, Process Replacement, Hook Injection, Data Encoding, Anti- Disassembly, Anti-Debugging, Anti-Virtual Machine Techniques, Packers and Unpacking.

UNIT- V

Other Platform Malware

- Introduction to Linux Malwares, Linux Binary architecture, Analysis of Linux Malware, Android Architecture, Android Permissions, Types of Android Malware, Analysis and Reverse Engineering of android malware.

Reference Books

- 1. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software by Michael Sikorski and Andrew Honig.
- 2. Learning Malware Analysis: Explore the Concepts, Tools, and Techniques to Analyze and Investigate Windows Malware by Monappa K A (2018)
- 3. Mastering Malware Analysis: The Complete Malware Analyst's Guide to Combating Malicious Software, APT, Cybercrime, and IoT Attacks by Alexey Kleymenov, Amr Thabet (2019)
- 4. Malware Analysis Cookbook: Tools and Techniques for Fighting Malicious Code by Matthew Richard, Blake Hartstein, Michael Hale Ligh, Steven Adair.
- 5. Practical Reverse Engineering: X86, X64, ARM, Windows Kernel, Reversing Tools, and Obfuscation by Alexandre Gazet, Bruce Dang, and Elias Bachaalany
- 6. The IDA Pro Book: The unofficial guide to the world's most popular disassembler by Chris Eagle
- 7. Android Malware and Analysis by Tim Strazzere, Manu Quintans, Jose Andre Morales, Shane Hartman, Ken Dunham
- 8. The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac Memory by Michael Hale Ligh, Andrew Case, Jamie Levy and Aaron Walters
- 9. Malware Forensics: Investigating and Analyzing Malicious Code by James M. Aquilina, Eoghan Casey, Cameron H. Malin
- 10. Sockets, Shellcode, Porting and Coding: Reverse Engineering Exploit and Tool Coding for Security Professionals by James C. Foster and Mike Morgan Price

Subject Name: Malware Analysis Laboratory Subject Code: CTMSCS SII L2

	Teac	hing S	cheme			Evaluation Scheme							
							Theor	·y			Practi	ical	
Th	Tu	Pr	C	тсн	Internal Exams			Univer Exan	•	Univer Exan (LPV	ns	Total	
					TA-1/	ГА-2	MSI	E	Maula	TT	Made	11	
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	Hrs	
0	0	1	1	2	-	-	-	-	-	-	100	3	100

Syllabus:

Subject Name: Mobile Security Subject Code: CTMSCS SII P3

Teaching and Evaluation Scheme:

	Teac	hing S	cheme		Evaluation Scheme								
							Theor	у			Practi	cal	
Th	Th Tu Pr C				Internal Exams				Univer Exan	•	University Exams (LPW)		Total
					TA-1/	ГА-2	MSE		Marks Hrs		Marks	Hrs	
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	Marks	пгѕ	
3	0	0	3	3	25 45 50 1.5				100	3	-	-	200

^{*} Note: TA-2 will be in form of assignments or workshops.

UNIT-I

Introduction Android Security

- Introduction to Android, Android's Architecture, Android Run Time, Android Application Framework, Introduction to Android Application component, Sandboxing, Android application inter-process communication, Application permission, Android boot process, Android partitions, File systems.

UNIT-II

Android Application Pen-Testing

- Configuration of lab using Santoku or Kali Linux or Mobexler or Android Studio or Genymotion, ADB commands, Configuration vulnerable application, Open GApps Project, need of ARM Translator, Mobile application security pen-testing strategy, Android application vulnerability exploitation: Insecure login, hard core issues, insecure data storage issue, input validation issues, access control issues, content provider leakage, path traversal Client-side injection attacks or other latest vulnerability or latest OWASP top 10 vulnerabilities.

UNIT-III

Reverse Engineering and Secure Source Code Review

- Reverse engineering using Apktool, JADX, JD-GUI, Hex Dump, Dex Dump, Reversing and Auditing Android Apps: Android application teardown and secure source code review

UNIT-IV

Android Application Security Auditing and Pen-Testing

- Security auditing using Drozer, MobSF (Mobile Security Framework): Static and Dynamic Analysis, Android application security vulnerability assessment using QARK, Android dynamic instrumentation using Frida and Objection framework. Introduction to Xposed is a framework.

UNIT-V

Request Interception and traffic analysis

- Traffic Analysis for Android Devices, Android traffic interception, Ways to analyse Android traffic, Passive analysis, Active analysis, HTTPS Proxy interception, Other ways to intercept SSL traffic

Reference Books

- 1. Android Security Internals: An In-Depth Guide to Android's Security Architecture by Nikolay Elenkov, No Starch Press Publication (2015).
- 2. Android Hacker's Handbook by Joshua J. Drake, Zach Lanier, Georg Wicherski, Pau Oliva Fora, Stephen A. Ridley, Collin Mulliner, Wiley Publication (2014).
- 3. Learning Pentesting for Android Devices by Aditya Gupta, Packt Publication (2014).
- 4. Android Apps Security Mitigate Hacking Attacks and Security Breaches by Sheran Gunasekera, Apress Publication (2020).
- 5. The Mobile Application Hacker's Handbook by Dominic Chell, Tyrone Erasmus, Shaun Colley, Ollie Whitehouse, Wiley Publication (2015).

Subject Name: Mobile Security Laboratory Subject Code: CTMSCS SII L3

	Teac	hing S	cheme			Evaluation Scheme							
							Theor	у			Practi	ical	
Th	Tu	Pr	C	тсн	Internal Exams				Univer Exan		Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MS	E	Marilan II.		Marks	Hrs	
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	пгѕ	
0	0	1	1	2					-	-	100	3	100

Syllabus:

Subject Name: Incident Response and Digital Forensics Subject Code: CTMSCS SII P4

Teaching and Evaluation Scheme:

	Teac	hing S	cheme		Evaluation Scheme								
							Theor	у			Practi	cal	
Th	Tu	Pr	C	тсн	Internal Exams				Univer Exan	•	University Exams (LPW)		Total
					TA-1/	ГА-2	MSE		Manles Has		Manla	II	
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	Hrs	
3	0	0	3	3	25	45 min	50	1.5	100	3	-	-	200

^{*} Note: TA-2will be in form of assignments or workshops.

Objectives:

- 1. To understand concept of Incident Response Management
- 2. To learn various Incident Response Management Techniques
- 3. To understand fundamental of Digital Forensics
- 4. To learn various Digital Forensics Techniques

UNIT-I

Introduction to Incident Response

 Cyber Incident Statistics, Computer Security Incident, Information Warfare, Key Concepts of Information Security, Types of Computer Security Incidents, Examples of Computer Security Incidents, How to Identify an Incident, Need for Incident Response, Goals and Purpose of Incident Response, Signs of an Incident, Incident Categories

UNIT-II

Incident Management

 Incident Prioritization, Use of Disaster Recovery Technologies, Impact of Virtualization on Incident Response and Handling, Estimating Cost of an Incident, Incident Reporting, Incident Reporting Organizations, Vulnerability Resources, Incident Management, Incident Response Team Roles, Incident Response Team Responsibilities, Dependencies

UNIT-III

Incident Handling

- Incident Handling Process, Real-time log capture and analysis, Botnet identification and counteraction, Enterprise Solutions for Incident Response and Recovery, Timeline Analysis, Malware Handling: Safety; Documentation; Distribution, Report Writing: Reporting Standards; Report Style and formatting; Report Content, Quality Assurance

UNIT-IV

Introduction to Computer Forensics Investigations and Electronic Evidence

- Digital Forensics: Definition, Process, Locard's Principle of Exchange, Branches of Digital Forensics, Handling Digital Crime Scene, Important documents and Electronic Evidence
- Introduction to Evidence Acquisition: Identification, Acquisition, Labeling and Packaging, Transportation, Chain-of-Custody, Importance of Document and Preservation
- Acquisition Process; Write-Blockers, Imaging Techniques, Evidence Integrity, Standard Operating Procedures for Acquisitions and Preservation of Evidences.
- Introduction to Data Recovery and Carving: Importance of Data Recovery in Forensic Investigation, Carving Methods, Difference between Data Recovery and Carving.

UNIT-V

Forensic Analysis

- Windows OS Architecture, Linux OS Architecture, MAC OS Architecture
- File System Analysis: Understanding and Analyzing FAT and NTFS File Systems, Recreating FAT and NTFS Partitions, Analysing Unallocated Partitions.
- Registry Analysis: Understanding Windows Registry, Analyzing Windows Registry,
 Finding Important Artefacts Related to user Activities, User/Application
 Configurations and Preferences; Attached Devices, Shared Locations, Recently
 Accessed Documents, Programs and Locations; Installed Applications and Others
 from Windows Registry
- Event and Log Analysis: Introduction to Windows Events, Understanding Windows Events (Evt and Evtx Files). Analysing Logs of Third-Party Applications.

Reference Books

- 1. Computer Incident Response and Forensics Team Management: Conducting a Successful Incident Response by Leighton Johnson
- 2. Incident Handling and Response: A Holistic approach for an efficient security incident management by Jithin Aby Alex
- 3. Blue Team Handbook: Incident Response Edition by Don Murdoch
- 4. The Computer Incident Response Planning Handbook: Executable Plans for Protecting Information at Risk by N. K. McCarthy
- 5. Critical Incident Management: A Complete Response Guide, Second Edition by John McNall, Thomas T. Gillespie, Vincent F. Faggiano
- 6. Applied Incident Response by Steve Anson
- 7. Security Operations Center SIEM Use Cases and Cyber Threat Intelligence by Arun E Thomas
- 8. Incident Response & Computer Forensics by Jason T. Luttgens, Kevin Mandia and Matthew Pepe
- 9. Incident Management for Operations by Chris Hawley, Rob Schnepp and Ron Vidal
- 10. Digital Forensics and Incident Response: Incident Response Techniques and Procedures to Respond to Modern Cyber Threats, 2nd Edition by Gerard Johansen

Subject Name: Incident Response and Digital Forensics Laboratory Subject Code: CTMSCS SII L4

	Teac	hing S	cheme			Evalua				me				
							Theor	y			Practi	cal		
Th	Tu	Pr	C	тсн]	Internal	Exams		Univer Exan		Univer Exan (LPV	Total		
					TA-1/	ГА-2	MSI	MSE		Шис	Maulia	IIma		
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	Hrs		
0	0	1	1	2	-	-	-	-	-	100	3	100		

Syllabus:

Subject Name: Minor Project Subject Code: CTMSCS SII P5

Students will need to work on a minor project under guidance of an internal faculty member. The students will need to submit a regular progress report for internal evaluation. A project report will need to be submitted and presented at the end of the semester for final evaluation.

SEMESTER-III

Subject Name: Blockchain and Cryptocurrencies Subject Code: CTMSCS SIII P1

Teaching and Evaluation Scheme:

	Teac	hing S	cheme					Evalua	ation Sche	me			
							Theor	y			Practi	ical	
Th	Tu	Pr	C	тсн]	Internal Exam			Univer Exan		Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MSI	E	Maula	II	Made	II	
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	Hrs	
3	0	0	3	3	25	45 min	50	1.5	100	3	-	-	200

^{*} Note: TA-2will be in form of assignments or workshops.

Objectives:

- 1. To understand concept of Blockchain
- 2. To learn various Use-Cases of Blockchain
- 3. To understand fundamental of Blockchain Security
- 4. To learn various Blockchain Security Techniques

UNIT-I

Introduction to Cryptography and Cryptocurrencies

- Introduction, Cryptography, Hash Function, Hash Pointers and One-Way Functions, Data Structures, Digital Signatures – ECDSA, Memory Hard Algorithm, Zero Knowledge Proof, Distributed Database, Two General Problem, Byzantine General Problem and Fault Tolerance, Memory Hard Algorithm – Hashcash Implementation, Direct Acyclic Graph, Introduction to Quantum Computing and How it will break existing methods

UNIT-II

Blockchain

- Introduction, Advantages over Conventional distributed database, Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Blockchain Application, Soft & Hard Fork, Private and Public Blockchain

UNIT-III

Distributed Consensus and Cryptocurrency

- Nakamoto Consensus, Proof of Work, Proof of Stake, Proof of Burn, Difficulty Level, Sybil Attack, Energy Utilization, Alternate Smart Contract Construction
- History, Distributed Ledger, Bitcoin Protocols Mining Strategy and Rewards, Ethereum Construction, Gas Limit, DAO, Smart Contract, GHOST, Vulnerabilities, Attacks, Sidechain, Name coin, Case Study related to Naïve Blockchain Construction, Play with Go-Ethereum, Toy Application using Blockchain

UNIT-IV

Cryptocurrency Regulation

- Stakeholders, Roots of Bitcoin, Legal Aspects-Cryptocurrency Exchange, Black Market and Global Economy, Applications: Internet of Things, Medical Record Management System, Domain Name Service and Future of Blockchain, Case study related to Mining Puzzles

- 1. Bitcoin and Cryptocurrency Technologies: A comprehensive Introduction, Princeton University Press, 2016 by Arvind Marayan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder.
- 2. Bitcoin and Blockchain Security by Elli Androulaki and Ghassan Karame
- 3. Blockchain Cybersecurity, Trust and Privacy by Ali Dehghantanha, Reza M. Parizi, Kim-Kwang Raymond Choo
- 4. Blockchain for Cyber Security and Privacy: Architectures, Challenges and Applications by Mamoun Alazab, Yassine Maleh, Mohammad Shojafar, Imed Romdhani
- 5. The Truth Machine: The Blockchain and the Future of Everything by Michael Casey and Paul Vigna
- 6. Blockchain for Distributed Systems Security by Laurent L. Njilla, Charles Kamhoua and Sachin Shetty
- 7. Bitcoin: A Peer-to-Peer Electronic Cash System by Satoshi Nakamoto
- 8. The Age of Cryptocurrency by Paul Vigna and Michael Casey
- 9. The Basics of Bitcoins and Blockchains by Antony Lewis
- 10. Blockchain Basics: A Non-Technical Introduction in 25 Steps by Daniel Drescher

Subject Name: Blockchain and Cryptocurrencies Laboratory Subject Code: CTMSCS SIII L1

	Teac	hing S	cheme					Evalua	ation Sche	me			
							Theor	у			Practi	cal	
					Internal Exams				Univer		Univer	sity	
Th	Tu	Pr	C	тсн		Internal Exams			Exan		Exan		Total
111	1 u	11		1011					LAGI		(LPV	V)	Iotai
					TA-1/	ГА-2	MSI	E	Marks	Hrs	Marks	Hrs	
					TA-1/TA-2 Marks Hrs		Marks	Hrs	Marks	пгѕ	Marks	пгѕ	
0	0	1	1	2	-	-	-	-	-	-	100	3	100

Syllabus:

Experiments to support the associated theory course.

Subject Name: IoT Security and Forensics Subject Code: CTMSCS SIII P2

Teaching and Evaluation Scheme:

	Teac	hing S	cheme					Evalua	ation Sche	me			
							Theor	у			Practi	cal	
Th	Tu	Pr	C	тсн		Internal Exams			Univer Exan		Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MSI	E	Manla	TT	Manla	TT	
					Marks	Hrs	Marks	Hrs	Marks	Hrs	Marks	Hrs	
3	0	0	3	3	25	45 min	50	1.5	100	3	-	-	200

^{*} Note: TA-2will be in form of assignments or workshops.

Objectives:

- 1. To understand the basic concept and architecture of IoT.
- 2. To understand the IoT communication and messaging protocols.
- 3. To understand the IoT enabling technologies.
- 4. To understand the Iot security aspects.
- 5. To understand the basics of IoT security

UNIT – I

Introduction to IoT

- Definition & Characteristics of IoT; Evolution of IoT; Physical Design of IoT–IoT Components; Logical Design of IoT; IoT Levels and Deployment Techniques; IoT Applications & Domains; IoT Enabling Technologies; Challenges in IoT.

UNIT – II

M2M & System Management

- M2M; Difference between IoT and M2M; Software Defined Networking (SDN); Network Function Virtualization (NFV); Simple Network Management Protocol (SNMP); Limitation of SNMP, Network Operator Requirements; H/W and S/W Communications in IoT (UART, SPI, I2C, JTAG).

UNIT – III

IoT Communication and Messaging Protocols

 IoT Protocol Design – Protocol Stack for IoT; IoT Communication Protocol – HTTP Basics, HTTP Architecture; MQTT Basics, MQTT Architecture; XMPP Basics, XMPP Architecture; COAP Basics, COAP Architecture.

UNIT- IV

IoT Security

- IoT Interoperability; Need for IoT Security; Privacy & Threat to Data in IoT, IoT Attack Vectors & IoT Attack Surfaces; IoT Pen testing Approaches; Understanding OWASP Top 10 for IoT; Threat Modeling in IoT; IoT Cloud Security Architecture; Case Study

UNIT-V

IoT Forensics, Standards & Guidelines

- Introduction to IoT Forensics; Forensic Investigation of IoT Devices & Components; IoT Forensic Tools & Techniques; IoT Standards and Guidelines; Case Study

- 1. Internet of Things_ A Hands-On Approach by Arshdeep Bahga, Vijay Madisetti Universities Press (India) Private Limited (2015)
- 2. A Beginner's Guide to Internet of Things Security-Attacks, Applications, Authentication, and Fundamentals by B. B. Gupta (Author)_ Aakanksha Tewari (Author) CRC Press (2020).
- 3. IoT Penetration Testing Cookbook_ Identify vulnerabilities and secure your smart devices by Aaron Guzman, Aditya Gupta Packt Publishing (2017)
- 4. Practical IoT Hacking_ The Definitive Guide to Attacking the Internet of Things by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, Beau Woods No Starch Press (2021)
- 5. Practical Internet of Things Security, by Brian Russell and Drew Van Duren, 2016.
- 6. From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence, by Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, 1st Edition, Academic Press, 2014.
- 7. Securing the Internet of Things, by Shancang Li and Li Da Xu, Elsevier, 2017
- 8. IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, by David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, Cisco Press, 2017.
- 9. Digital Forensic Investigation of Internet of Thing Devices, Reza Montasari, Hamid Jahankhani, Richard Hill, Simon Parkinson, Springer; 1st ed. 2021 edition

Subject Name: IoT Security and Forensics Laboratory Subject Code: CTMSCS SIII L2

	Teac	hing S	cheme					Evalua	ation Sche	me			
							Theor	у			Practi	cal	
Th	Tu	Pr	C	ТСН]	Internal	Exams		Univer Exan		Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MS	E	Maula	TT	Manla	TT	
					Marks	TA-1/TA-2 Marks Hrs		Hrs	Marks	Hrs	Marks	Hrs	
0	0	1	1	2	-	-	-	-	-	-	100	3	100

Syllabus:

Experiments to support the associated theory course.

Subject Name: Cloud Security and Forensics

Subject Code: CTMSCS SIII P3

Teaching and Evaluation Scheme:

	Teac	hing S	cheme					Evalua	ation Sche	me			
							Theor	y			Practi	cal	
Th	Tu	Pr	C	тсн	Internal Exams			Univer Exan		Univer Exan (LPV	ns	Total	
					TA-1/	MSI	E	Marks	Hrs	Marks	Hrs		
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	Marks	пгѕ	
3	0	0	3	3	25	45 min	50	1.5	100	3	-	-	200

^{*}Note: TA-2 will be in the form of assignments or workshops.

Objectives:

- 1. Understand key terms and concepts in cloud security and forensics.
- 2. Understand the underlying principles in how a cloud is built and operated.
- 3. Ability to understand the available cloud infrastructure.
- 4. Ability to identify, analyze and remediate cloud security breaches by learning and implementing real-world scenarios.
- 5. Develop policies to strengthen the security of the cloud and carry out forensic analysis.

UNIT-I

Introduction to Cloud Computing

- Introduction to cloud computing, characteristic of cloud computing, cloud computing models: Service model and deployment model, cloud services and technologies, research challenges, cloud computing reference architecture, network recruitment for cloud computing. Cloud Computing Security Baseline: Overview of computer security, vulnerabilities and attacks, privacy and security in cloud storage services, privacy and security in multiclouds, cloud accountability, Understanding the Threats, Classification and countermeasures: Infrastructure and host threats, service provider threats, generic threats, threat assessment.

UNIT– II

Security Challenges in Cloud Computing

- Creating a Safe Environment, Access control, The CIA model :Confidentiality, Integrity, Availability, A real-world example, The principles of security: Insecurity, The Principle of Least Privilege, The Principle of Separation of Duties, The Principle of Internal Security, Data center security, Server security: The importance of logs and its analysis. Brief overview of OSI Model. The importance of firewall, IDS, and IPS, Firewall, Intrusion detection system (IDS), Intrusion prevention system (IPS).

UNIT - III

Securing Cloud Communications and API

- Encryption security, Symmetric encryption, Stream cipher, Block cipher, Asymmetric encryption, Diffie-Hellman, RSA algorithm, Elliptic Curve Cryptography, Symmetric/asymmetric comparison and synergies, Hashing, MD5, SHA, Public key, infrastructure, Signed certificates versus self-signed certificates, Cipher security, Designing a redundant environment for your APIs. Identification and Authentication System and Its Dashboard dentification versus authentication versus authorization, Identification, Authentication: , Something you know, Something you have, Something you are, The multifactor authentication, Authorization: Mandatory Access Control, Discretionary Access Control, Rolebased Access Control, Lattice-based Access Control, Session management, Federated identity.

UNIT-IV

Securing Cloud Storage and Cloud Forensics

Different storage types,: Object storage, Block storage, File storage, Securing the Hypervisor: Various types of virtualization, Full virtualization, Paravirtualization, Partial virtualization, Comparison of virtualization levels, Hypervisors: Kernel-based Virtual Machine, Xen, VMware ESXi, Hyper-V, Baremetal, Containers, Docker, Linux Containers, Criteria for choosing a hypervisor: Team expertise, Product or project maturity, Certifications and attestations, Features and performance, Hardware concerns, Hypervisor memory optimization, Additional security features, Hardening the hardware management: Physical hardware — PCI passthrough, Virtual hardware with Quick Emulator, virtualization, Hardening the host operating system, Cloud Forensics, Cloud Forensic Frameworks, Digital Forensic Investigation and Cloud Computing, Dimensions of cloud forensics, cloud crime, challenges in cloud forensics, usages of cloud forensics, Cloud forensics tools.

- 1. Practical Cloud Security: A Guide for Secure Design and Deployment by Chris Doston
- 2. CCSP (ISC)2 Certified Cloud Security Professional Official Study Guide by Brian T O'Hara
- 3. OpenStack Cloud Security Paperback by Alessandro Locati Fabio, PacktPub
- 4. Cloud Computing Security: Foundations and Challenges edited by John R. Vacca, CRC Press
- 5. Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell Dean Vines, John Wiley & Sons

Subject Name: Cloud Security and Forensics Subject Code: CTMSCS SIII L3

	Teac	hing S	cheme					Evalua	ation Sche	me			
							Theor	y			Practi	cal	
						Internal Exams			Univer	city	Univer	sity	
Th	Tu	Pr	C	тсн]				Exan		Exan		Total
1	14			1011					Batti		(LPV	V)	10001
					TA-1/7	ГА-2	MSI	E	Marks	Hrs	Marks	Hrs	
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	Marks	пгѕ	
0	0	1	1	2	-	-	-	-	-	-	100	3	100

Syllabus:

Experiments to support the associated theory course.

Subject Name: Advanced Computer Forensics Subject Code: CTMS CS SIII P5 EL1 Option 1

Subject Teaching and Evaluation Scheme:

	Teac	hing S	cheme					Evalua	ation Sche	me			
							Theor	у			Practi	cal	
Th	Tu	Pr	C	тсн		Internal	Exams		Univer Exan	•	Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MSI	E	Marks	Hrs	Marks	Шма	
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	Marks	Hrs	
3	0	0	3	3	25	45 min	50	1.5	100	3	-	-	200

^{*} Note: TA-2 will be in form of assignments or workshops.

Objectives:

- 1. To Learn about Various Artefacts of Memory.
- 2. To Understand Windows and Linux Memory Analysis.
- 3. To Understand various Anti-Forensics Techniques.
- 4. To get Acquainted with the Emerging Domains of Computer Forensics.

UNIT - I

Introduction to Memory Forensics

- Introduction to Primary Storage, Understanding Random Access Memory (RAM) and It's Working, Memory Management, Hibernation. Direct Memory Access (DMA).
- Address Space, Registers, Segmentation, Paging, Address Translation, Physical Address Extension, Virtual Memory, Demand Paging, Shared Memory, Stacks and Heaps, Privilege Separation, System Calls. Important Artefacts in Memory, Challenges involved in Memory Forensics, Live v/s Dead Forensics.

UNIT – II

Windows Memory Forensics

- Acquiring RAM Dump from Windows Machines, Analyzing Windows RAM dump using Open-Source Tools. Understanding Windows Objects and Pool Allocation.
- Analyzing Processes, Handles, DLLs, Registry, Event Logs, Network Communications Disk Artefacts and Other Important Artefacts. Understanding Event Reconstruction and Timeline
- Introduction to Analysis of Memory to Investigate Windows Malware

UNIT – III

Linux Memory Forensics

- Understanding ELF Files, Shared Library, Global Offset Table, Procedure Linkage Table, Linux Address Translation.
- Acquiring RAM Dump from Linux Machines, Analyzing Linux RAM dump using Open-Source Tools.
- Analyzing Processes, Command-line Arguments, Handles, Bash History, Network Communications, Disk / Filesystem Artefacts and Other Important Artefacts. Understanding Event Reconstruction and Timeline.
- Introduction to Analysis of Memory to Investigate Linux Malware

UNIT - IV

Handling Anti-Forensic Techniques

- Introduction to Cryptography, Encryption Types, Handling Encrypted Evidences, Introduction to Steganography, Handling Stego Content, Detecting Log and Timestamp Manipulations, Analyzing Anonymous Browsers and Communications, Investigating Pluggable Devices and Applications, Detecting Wiping Tools, Identifying Important Artefacts to Support use of Anti-Forensic Techniques / Tools.

UNIT - V

Emerging Domains of Computer Forensics

- Introduction to Chip-Off and JTAG.
- Investigating Containers and Virtual Machines
- Investigating Cryptocurrencies and Dark web Related Cases using Computer Forensics.
- Using Artificial Intelligence based Solutions for Effective Forensic Investigation of Computers.
- Other Emerging Challenges and Domains Related to Computer Forensics.

- 1. The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac Memory by Michael Hale Ligh, Andrew Case, et al.
- 2. The little handbook of Windows Memory Analysis: Just some thoughts about Memory, Forensics and Volatility! by Andrea Fortuna
- 3. Introduction to Modern Cryptography: Third Edition by Jonathan Katz and Yehuda Lindell
- 4. Applied Cryptography: Protocols, Algorithms and Source Code in C 20th Edition by Bruce Schneier
- 5. Codes, Ciphers, Steganography & Secret Messages by Sunil Tanna
- 6. Digital Watermarking and Steganography: Fundamentals and Techniques, Second Edition by Frank Y. Shih
- 7. Virtualization and Forensics: A Digital Forensic Investigator's Guide to Virtual Environments 1st Edition by Diane Barrett and Greg Kipper
- 8. Data Hiding Techniques in Windows OS: A Practical Approach to Investigation and Defense 1st Edition by Nihad Ahmad Hassan, Rami Hijazi
- 9. Data Hiding: Exposing Concealed Data in Multimedia, Operating Systems, Mobile Devices and Network Protocols 1st Edition by Michael T. Raggo and Chet Hosmer
- 10. Tor Darknet Master the Art of Invisibility

Subject Name: Reverse Engineering and Exploit Writing Subject Code: CTMSCS SIII P4 EL1 Option 2

Teaching and Evaluation Scheme:

	Teac	hing S	cheme					Evalua	ation Sche	me			
							Theor	y			Practi	cal	
Th	Tu	Pr	C	тсн]	Internal Exa			Univer Exan	•	Univer Exan (LPV	ns	Total
					TA-1/TA-2		MSI	Ε	Marks	Hrs	Marks	Hrs	
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	Marks	пгѕ	
3	0	0	3	3	25	45 min	50	1.5	100	3	ı	-	200

^{*}Note: TA-2 will be in the form of assignments or workshops.

Objectives:

- 1. To understand the fundamentals of reverse engineering
- 2. To understand the Assembly Language and CPU Registers
- 3. To learn various disassemblers
- 4. To learn about user mode and kernal mode debugging
- 5. To understand the fundamentals of exploit
- 6. To learn exploit writing

UNIT-I

Introduction to Reverse Engineering, Software Reverse Engineering: Reversing. Reversing Applications, Low-Level Software: Assembly Language, Compilers, Byte Codes, Operating Systems, The Reversing Process: System-Level Reversing, Code-Level Reversing, the tools: System-Monitoring Tools, Disassembles, Debuggers, Decompilers, Learning about APIs, Ethics in Reverse Engineering: Interoperability, Competition, Copyright Law, Trade Secrets and Patents, DMCA Cases, License Agreement Considerations.

UNIT-II

Different Reversing Approaches: Offline Code Analysis (Dead-Listing), Live Code Analysis, Disassembles: IDA Pro, ILDasm, Debuggers: User-Mode Debuggers - OllyDbg, User Debugging in WinDbg, PEBrowse Professional Interactive, Kernel Mode Debuggers - Kernel Debugging in WinDbg, Kernel Debugging on Virtual Machines, Miscellaneous Reversing Tools - DUMPBIN, PEView, PEBrowse Professional. Reverse Engineering in Linux Platform, Reverse Engineering in Windows Platform.

UNIT-III

- Anti-reversing techniques, Basic Approaches to Anti-reversing, Eliminating Symbolic Information, Code Encryption, Active Anti debugger Techniques, Confusing Disassembles, Code Obfuscation, Control Flow Transformations, Data Transformations

UNIT-IV

- Introduction to exploits, Challenges of Software Security, Increase in Exploits via Vulnerabilities, Exploits vs. Buffer Overflows, Intel x86 Architecture, Exploits: Stack, Heap, Format Strings, Challenges for Exploit Writing.

UNIT-V

- Implementing System Calls, Targeting Vulnerabilities, Remote and Local Exploits, Format String Attacks, Race Conditions, Coding Sockets: Client Side Socket Programming, Server Side Socket Programming, Memory Organization, NASL: Goals and Script Writing, Exploit Development using Metasploit, Stack Overflow Exploits, Heap Corruption Exploits, Integer Bug Exploits.

- 1. Mastering Reverse Engineering by Reginald Wong, Packt Publications
- 2. Reversing Secrets of Reverse Engineering by Eldad Eilam.
- 3. Hacking The art of exploitation by Jon Erickson
- 4. Writing Security Tools and Exploits by James C. Foster and Vincent T. Liu.
- 5. The IDA Pro Book: The unofficial guide to the world's most popular disassembler by Chris Eagle
- 6. The Shellcoder's Handbook: Discovering and Exploiting Security Holes by Chris Anley, Felix Lindner, and John Heasman
- 7. Sockets, Shellcode, Porting and Coding: Reverse Engineering Exploit and Tool Coding for Security Professionals by James C. Foster and Mike Morgan Price

Subject Name: Critical Infrastructure Security Subject Code: CTMSCS SIII P4 EL1 Option 3

Teaching and Evaluation Scheme:

	Teac	hing S	cheme					Evalua	ation Sche	me			
							Theor	y			Practi	cal	
Th	Tu	Pr	C	тсн]	Internal	Exams		Univer Exan		Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MSI	E	Manla	II	Manla	TT	
					Marks	TA-1/TA-2 Marks Hrs		Hrs	Marks	Hrs	Marks	Hrs	
3	0	0	3	3	25	45 min	50	1.5	100	3	1	-	200

^{*}Note: TA-2 will be in form of assignments or workshops.

Objectives:

- 1. To understand the concept of ICS/SCADA and Critical Infrastructure.
- 2. To learn the difference between IT and OT.
- 3. To learn various protocols of ICS/SCADA.
- 4. To learn the Programming of PLC.
- 5. To understand the vulnerabilities of OT verticals.
- 6. To learn various security standards of ICS/SCADA

UNIT-I

Introduction to ICS/SCADA system

 History of ICS/SCADA, SCADA System Evolution (Industry 1.0 to Industry 4.0), SCADA System Architecture (The Purdue model), Components of ICS/SCADA Systems (Field Devices, Control Devices and Network Devices), Applications of SCADA Systems, IT v/s OT systems, Threats and Attacks in ICS/SCADA systems, Challenges and issues in ICS/SCADA Security, Case Studies.

UNIT-II

ICS/SCADA Protocols & Programming

- Evolution of SCADA Protocols, SCADA Communication Protocols, Protocols in Depth (Modbus, DNP3, PROFIBUS), PLC Programming with Ladder Logic.

UNIT-III

ICS / SCADA Protocol Penetration Testing

- IT Security v/s OT Security, the need of a Penetration Testing in ICS/SCADA, Asset Identifications, Vulnerabilities of ICS/SCADA, ICS Penetration-Testing Strategies, ICS/SCADA Penetration Testing Tools and Technologies, Hacking ICS Protocols.

UNIT-IV

Hacking ICS Devices and Applications: Exploiting Vulnerabilities

- Buffer Overflows, Integer Bugs, Pointer Manipulation, Exploiting Format Strings, Directory Traversal, DLL Hijacking, Cross-Site Scripting, Cross-Site Request

Forgery (CSRF), Exploiting Hard-Coded Values, Brute-Force and their relevance in ICS/SCADA.

UNIT-V

Security Standards, Risk and Mitigation:

- CIA Triad for ICS/SCADA, Common ICS Cybersecurity Standards: NIST System Protection Profile for Industrial Control Systems (SPP ICS), NIST SP 800-82, ISA/IEC 62443 (formerly ISA-99), etc., General ICS Risk Mitigation Considerations: ICS Network Considerations, ICS Host-Based Considerations ICS Physical Access Considerations. The Risk Mitigation Process: Integrating the Risk Assessment Steps, Integrating the Risk Scenarios, performing a Cost-Benefit Analysis, Establishing the Risk Mitigation Strategy.

- 1. Industrial Automation with SCADA: Concepts, Communications and Security by K S Manoj Notion Press; 1st edition 2019.
- 2. Handbook of SCADA/Control Systems Security by Robert Radvanovsky, Jacob Brodsky CRC Press, 2016
- 3. Securing SCADA Systems by Ronald L. Krutz, Wiley Publication, Inc. 2005
- 4. Hacking Exposed: Industrial Control Systems by Aaron Shbeeb, Clint Bodungen, Bryan Singer, Stephen Hilt, Kyle Wilhoit, Tata McGraw Hill, 2017.
- 5. Industrial Cybersecurity Efficiently secure critical infrastructure systems by Pascal Ackerman, Packt Publication, 2017.
- 6. Cybersecurity for Industrial Control Systems_ SCADA, DCS, PLC, HMI, and SIS (2011, Auerbach Publications, CRC Press)
- 7. Cyber-security of SCADA and Other Industrial Control Systems (2016, Springer International Publishing)
- 8. Cybersecurity of Industrial Systems by Jean-Marie Flaus (2019, ISTE, John Wiley & Sons)
- 9. An Architecture for SCADA Network Forensics By Tim Kilpatrick M.S., Jesus Gonzalez Ph.D., Rodrigo Chandia Ph.D., Mauricio Papa, SujeetShenoi

Subject Name: Database Security Subject Code: CTMSCS SIII P4 EL1 Option 4

Teaching and Evaluation Scheme

		hing S	cheme					Evalua	ation Sche	me			
							Theor	y			Practi	cal	
Th	Tu	Pr	C	тсн		Internal	Exams		Univer Exan	•	Univer Exan (LPV	ns	Total
					TA-1/TA-2		MSI	E	Marks	Hrs	Marks	Hrs	
					Marks	Hrs	Marks	Hrs	Marks	111.2	wiarks	111.2	
3	0	0	3	3	25	45 min	50	1.5	100	3	1	-	200

^{*}Note: TA-2 will be in form of assignments or workshops.

Objectives:

- 1. To understand the fundamentals of security, and how it relates to information systems
- 2. To identify assets in your organization and their values
- 3. To identify risks and vulnerabilities in operating systems from a database perspective
- 4. To learn good password policies, and techniques to secure passwords in your organization
- 5. To learn and implement administration policies for users
- 6. To understand the various database security models and their advantages or disadvantages
- 7. To learn how to implement a Virtual Private Database using views, roles, and application context
- 8. To learn the purpose and use of data dictionaries, encryption and SQL injection.

UNIT-I

Security and Information Technology

- Introduction to Database and Database Management Systems; Role of Database in Information Systems; Objectives & Need for Database Security; Attackers and their motives; Security Architecture, Global Policies for Database Environment.

UNIT-II

Database Review:

- Structural Components of Database (Tuples, Keys, Queries); Models of Database; Types of Database; Database System Architecture – Three Levels of the Architecture; Client/Server Architecture; Introduction to Relational Database; Introduction to Virtual Private Database; Roles and Applications; Importance of Cryptography in Database.

UNIT-III

Database Architecture:

- Introduction to Oracle Architecture – Physical & Memory Structure; Introduction to MySQL Architecture – Query & Storage Engine, Database Connection Manager,

Transaction & Storage Manager, Introduction to Microsoft SQL Server Architecture Physical & Memory Structure, Buffer Management, Threads and Processes

UNIT-IV

Database Security Assessment – 1:

- Authentication: OS Authentication, Database Authentication – Access Control, Roles and Responsibilities; Password Policies; SQL Statements for access control; Database monitoring tools; Database Security Flaws; Threats/Attack Vectors on Database Systems; Scanning for Database Servers – Common Ports; Understanding SQL Injections; Identifying Vulnerabilities – Through Errors, Direct testing, Source Code Analysis, String Based Matching

UNIT-V

Database Security Assessment – 2:

Database Information Gathering; Statement Exploitation; PL/SQL Injection –
Injecting into SELECT, DELETE, INSERT, UPDATE statements, Executing
User-Supplied Queries with DBMS_SQL; Database Auditing; Preventive
Measures

- 1. Database Security by Alfred Basta, Melissa Zgola, Dana Bullaboy, Thomas L. Whitlock Sr. (Published by Course Technology, Cengage Learning)
- 2. Database Security and Auditing: Protecting Data Integrity and Accessibility, by Hassan A. Afyouni (Published by Cengage Learning)
- 3. The Database Hacker's Handbook: Defending Database Servers by David Litchfield, Chris Anley, John Heasman, and Bill Grindlay (Published by Wiley Publishing)
- 4. Effective Oracle Database 10g Security by Design by David C. Knox (Published by Oracle Press)
- 5. SQL Injection Attacks and Defense by Justin Clarke (Published by Elsevier, Inc)

Subject Name: Program Elective Subject 1 Laboratory Subject Code: CTMSCS SIII L4

	Teac	hing S	cheme					Evalua	ation Sche	me			
							Theor	у			Practi	cal	
Th	Tu	Pr	C	тсн]	Internal	Exams		Univer Exan		Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MSI	E	Marks	Hrs	Marks	Hrs	
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	Marks	пгѕ	
0	0	1	1	2	-	-	-	-	-	-	100	3	100

Syllabus:

Experiments to support the associated theory course.

Subject Name: Social Network Analysis Subject Code: CTMSCS SIII P5 EL2 Option 1

Teaching and Evaluation Scheme:

		hing S	cheme					Evalua	ation Sche	me			
							Theor	у			Practi	cal	
Th	Tu	Pr	C	тсн		Internal	Exams		Univer Exan		Univer Exan (LPV	ns	Total
					TA-1/	ГА-2	MSI	E	Maulia	Hrs	Marks	Hrs	
					Marks	TA-1/TA-2 Marks Hrs		Hrs	Marks	пгѕ	Marks	пгѕ	
3	0	0	3	3	25	45 min	50	1.5	100	3	-	-	200

^{*}Note: TA-2will be in form of assignments or workshops

UNIT-I

Social Networking

- Fundamentals of Social Networking, Social Networking viral, why social networking is popular, Psychology & Sociology for Online Media, Concepts of Geospatial Information System, How Facebook works?

UNIT-II

Social Media & Legal Implication

- Graph Theory and Social Networks, Markets and Strategic Interactions in Networks, Information Networks and the World Wide Web, Network Dynamics: Population and Structural Models, Legal aspects of Privacy in India, Institutions and Aggregate Behavior, social media and its impact on Business, Politics, Law and Revolutions, Legal Responsibilities for Social Networking.

UNIT-III

Information Gathering from Resources

- Intelligence gathering, People searching, OSINT, Deep Web, Defamatory content analysis, Multimedia forensics over Social Networking, Emerging Trends in Social Networks

UNIT-IV

Social Networking exploitation and hacking

- Introduction: hacking on Twitter data Micro formats: semantic Markup and common sense collide, Twitter: friends, followers, and set wise operations, Twitter: the tweet, LinkedIn: clustering your professional network for fun (and profit?), cosine similarity, and collocations, Facebook: the hacker's outlook

UNIT-V

Social Networking Forensics

- Twitter GPS & Account Data, Hidden Social Network Content, Cell Phone Owner Information, Hidden, Photo GPS & Metadata, Deleted Websites & Posts, Website Owner Information, Alias Social Network Profiles, Additional User Accounts,

Sensitive Documents & Photos, Live Streaming Social Content, Videos Uploaded by Location, Newspaper Archives & Scans, Social Content by Location, Text Transcripts of Videos, Historical Satellite Imagery, Duplicate Copies of Photos, Public Government Records, Document Metadata, Voter Registration Records, Facebook Wall Posts

- 1. Social Network Analysis: Methods and Applications by Katherine Faust and Stanley Wasserman
- 2. Social network analysis by John Scott
- 3. Models and Methods in Social Network Analysis by Stanley Wasserman, Peter J. Carrington, John Scott
- 4. The SAGE Handbook of Social Network Analysis by John Scott, Peter J. Carrington
- 5. Analyzing Social Networks by Jeffrey C. Johnson, Martin G Everett, and Stephen Borgatti
- 6. Social Network Analysis: Methods and Examples by Franziska B. Keller, Lu Zheng, and Song Yang
- 7. Social Network Analysis by David Knoke and Song Yang
- 8. The Development of Social Network Analysis by Linton Freeman
- 9. Advances in Social Network Analysis: Research in the Social and Behavioral Sciences by Joseph Galaskiewicz, Stanley Wasserman
- 10. Understanding Social Networks: Theories, Concepts, and Findings by Charles Kadushin

Subject Name: Network Forensics Subject Code: CTMSCS SIII P5 EL2 Option 2

Teaching and Evaluation Scheme:

	Teaching Scheme					Evaluation Scheme							
Th					Theory						Practi	cal	
	Tu	Pr	C	ТСН	Internal Exams			Univer Exan		Univer Exan (LPV	ns	Total	
					TA-1/TA-2		MSI	E	Marks	Hrs	Marks Hrs		
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	Marks	пгѕ	
3	0	0	3	3	25	45 min	50	1.5	100	3	-	-	200

^{*}Note: TA-2 will be in the form of assignments or workshops

Objectives:

- 1) To learn about the essentials of network security.
- 2) To learn about the network devices, its functioning and security.
- 3) To understand the basics of network vulnerability assessment and penetration testing methodology.
- 4) To understand the important network communication protocols.
- 5) To understand the concept of encryption, Public key cryptography, message authentication and hash functions.
- 6) To understand the basics of wireless network protocols and its security concepts.
- 7) To understand the basics of network forensics.

UNIT-I

Basics of Networking

ISO/OSI, TCP-IP, Networking devices: Host, Hub, Bridge, Switch, Router and its functioning, Perimeter devices: IDS, IPS, Firewall and its functioning. NOC, SOC, SIEM, Servers: DNS, DHCP, Proxy, Mail and Application servers. Threat, vulnerability, attack surface, attack vector, exploit. Common attacks and countermeasures: Phishing attack, ARP poisoning, MAC flooding, DoS and DDoS.

UNIT-II

Penetration Testing

Penetration testing life cycle: Scope, SOW, Reconnaissance, target enumeration, vulnerability identification, assessment, exploitation, and reporting. Information gathering starting at source scrutinizing key employees, Dumpster diving, War driving, analyzing the web, exploring domain ownership- whois, Regional internet registries, server location, Scanning: active and passive, ICMP (Ping), OS and server fingerprinting, scanning tools and port status, TCP and UDP scan. SNMP services, enumeration, and countermeasures. Routing devices

enumeration and countermeasures. Advanced enumeration: Password cracking, sniffing password hashes and password protection. Vulnerability exploitation, Buffer overflow, vulnerability assessment tools, source code assessment tools, application assessment tools, system assessment tools, exploit tools

UNIT-III

Cryptography

Introduction to Security: need for security, principle of security, security approaches. Encryption Techniques: plaintext, cipher text, substitution & transposition techniques, encryption & decryption, key range & size. Symmetric and Asymmetric encryption. Public Key Cryptography and Message Authentication: Public key cryptographic principles, digital signatures, key management, hash function and message digest. Types of attacks and countermeasures.

UNIT-IV

Wireless Network Security

802.11 Protocols, WAP and inherent security issues, promiscuous and monitor mode, Sniffing wireless packets, management, control, and data frames, WLAN authentication and encryption, WEP, WPA and WPA 2. WLAN authentication and security flaws. WLAN based attacks and countermeasures. WLAN Pen testing tools.

UNIT-V

Network Forensics

Digital evidence, Network based digital evidence, Network Forensic investigation methodology, Sources of network-based evidence, Evidence acquisition, Network traffic capture and analysis, Traffic capture and analysis tools, Event log aggregation, correlation, and analysis. Data in motion investigation

- 1. Stallings, W., Network Security Essentials: applications and standards. 3rd ed. Pearson Education India, 2007.
- 2. Stallings, W., Cryptography and Network Security: Principles and Practice. 6th ed. Pearson, 2004.
- 3. Forouzan, B.A., Cryptography & Network Security. Tata McGraw-Hill Education, 2010 2.
- 4. Kahate, A. Cryptography and Network Security. McGraw-Hill Higher Ed., 2009.
- 5. Michael Gregg, Build Your Own Security Lab: A Field Guide for Networking Testing.

- 6. Sherri Davidoff and Jonathan Ham, Network Forensics Tracking Hackers through Cyberspace.
- 7. Mastering Wireless Penetration Testing for Highly Secured Environments by Aaron Johns
- 8. Chris McNab, Network Security Assessment: Know Your Network
- 9. Cameron Buchanan and Vivek Ramachandran, Kali Linux Wireless Penetration Testing Beginner's Guide

Subject Name: Mobile Forensics Subject Code: CTMSCS SIII P5 EL2 Option 3

Teaching and Evaluation Scheme:

Teaching Scheme						Evaluation Scheme								
						Practi	cal							
Th	Tu	Pr	C	тсн	Internal Exams			Univer Exan	•	University Exams (LPW)		Total		
					TA-1/TA-2	MSE		Marks Hrs		Marks H	Hrs			
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	IVIALKS	nrs		
3	0	0	3	3	25	45 min	50	1.5	100	3	ı	-	200	

^{*} Note: TA-2 will be in the form of assignments or workshops.

UNIT-I

Introduction to Android

- The Android architecture: The Linux kernel, Libraries, Dalvik virtual machine, the application framework, the applications layer, Android security, Security at OS level through Linux Kernel: Permission model, Application sandboxing, SELinux in Android, Application Signing. Secure interprocess communication, Android hardware components, Core components: Central processing unit, Baseband processor, Memory, SD Card, Display, Battery; Android boot process: Boot ROM code execution, The boot loader, The Linux kernel, The init process, Zygote and Dalvik, System server. Setting Up an Android Forensic Environment: The Android forensic setup with Android Virtual Device, Connecting and accessing an Android device from the workstation, Identifying the device cable, installing device drivers, Accessing the device,

UNIT-II

Android OS internals

- Android Debug Bridge, Using adb to access the device, Detecting a connected device, Directing commands to a specific device, Issuing shell commands, Basic Linux commands, Installing an application, Pulling data from the device, Pushing data to the device, Restarting the adb server, Viewing log data, Rooting Android, What is rooting? Why to root? Recovery and fastboot, Recovery mode, Accessing the recovery mode, Custom recovery, Fastboot mode, Locked and unlocked boot loaders, How to root, Rooting an unlocked bootloader, Rooting a locked bootloader, ADB on a rooted device. Understanding Data Storage on Android DAndroid partition layout, Common partitions in Android, boot loader, boot, recovery, userdata, system cache, radio, Identifying partition layout, Android file hierarchy, An overview of directories, acct, cache, d, data, dalvik-cache, data, dev, init, mnt, sbin, misc, sdcard, system, build.prop, framework, proc, app, ueventd.goldfish.rc and ueventd.rc, Application data storage on the device, Shared preferences, Internal storage, External storage, SQLite database, Network, Android filesystem overview, Viewing filesystems on an Android device, Common Android

filesystems, Flash memory filesystems, Media-based filesystems, Pseudo filesystems.

UNIT-III

Data Extraction in Android Device

Introducing Android Forensics: Mobile forensics, The mobile forensics approach: Investigation Preparation, Seizure and Isolation, Acquisition, Examination and Analysis, Reporting; Challenges in mobile forensics, Extracting Data Logically from Android Devices, Logical extraction overview, What data can be recovered logically?, Root access, Manual ADB data extraction, USB debugging, Using ADB shell to determine if a device is root, ADB pull, Recovery mode, Fastboot mode, Determining bootloader status, Booting to a custom recovery image, ADB backup extractions, Extracting a backup over ADB, Parsing ADB backups, Data locations within ADB backups, ADB Dumpsys, Dumpsys batterystats, Dumpsys procstats, Dumpsys user, Dumpsys App Ops, Dumpsys Wi-Fi, Dumpsys notification, Dumpsys conclusions, Android SIM card extractions, Acquiring SIM card data, SIM security, SIM cloning, Issues and opportunities with Android Lollipop. Extracting Data Physically from Android Devices.

UNIT-IV

Logical and Physical extraction

- Physical extraction overview, What data can be acquired physically?, Root access, Extracting data physically with dd, Determining what to image, Writing to an SD card, Writing directly to an examiner's computer with netcat, Installing netcat on the device, Using netcat, Extracting data physically with nanddump, Verifying a full physical image, Analyzing a full physical image, Autopsy, Issues with analyzing physical dumps, Imaging and analyzing Android RAM, What can be found in RAM?, Imaging RAM with LiME, Imaging RAM with mem, Output from mem, Acquiring Android SD cards, What can be found on an SD card?, SD card security, Advanced forensic methods, An overview of data recovery, How can deleted files be recovered?, Recovering data deleted from an SD card, Recovering data deleted from internal memory, Recovering deleted data by parsing SQLite files, Recovering deleted data through file carving techniques, Analyzing backups.

UNIT-V

Android Application Forensics

- Forensic Analysis of Android Applications, Application analysis, Why do app analysis?, The layout of this chapter, Determining what apps are installed, Understanding Linux epoch time, Wi-Fi analysis, Contacts/call analysis, SMS/MMS analysis, User dictionary analysis, Gmail analysis, Google Chrome analysis, Decoding the WebKit time format, Google Maps analysis, Google Hangouts analysis, Google Keep analysis, Converting a Julian date, Facebook analysis, Facebook Messenger analysis, Skype analysis, Recovering video messages from Skype, Snapchat analysis, Viber analysis, Tango analysis, WhatsApp analysis, Decrypting WhatsApp backups.

- 1. Mastering Mobile Forensics Book by Soufiane Tahiri, Packt Publication
- 2. Practical Mobile Forensics, by Rohit Tamma, Oleg Skulkin, Heather Mahalik, Satish Bommisetty, Packt Publication
- 3. Learning Android Forensics by Rohit Tamma, Donnie Tindall, Packt Publication

Subject Name: Research Methodology Subject Code: CTMSCS SIII P5 EL2 Option 4

Teaching and Evaluation Scheme:

	Teaching Scheme					Evaluation Scheme								
	Tu			тсн		Practi	cal							
Th		Pr	C		Internal Exams			Univer Exan	•	University Exams (LPW)		Total		
					TA-1/TA-2		MSI	E	Marks	Hrs	Marks Hrs			
					Marks	Hrs	Marks	Hrs	Marks	пгѕ	wiarks	пгѕ		
3	0	0	3	3	25	45 min	50	1.5	100	3	-	-	200	

UNIT - I

Objectives and types of research: Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical. Research Formulation, Literature review and Development of hypothesis

UNIT - II

Research design and methods, Developing a research plan - Exploration, Description, Diagnosis, Experimentation. Determining experimental and sample designs

UNIT – III

Data Collection and analysis: Methods of data collection – Sampling Methods and Data Processing. Data Analysis: Types of data, Basic concept of frequency distribution, measure of central values – Mean, median and mode, measure of dispersion, range, mean deviation and standard deviation, probability, theory and classical definition of probability, Bayes theorem of probability, conditional probability and coincidence probability, Chi-square test, ANOVA, SPSS. Types of Errors and Interpretation of Findings.

UNIT – IV

Reporting and thesis writing: Structure and components of scientific reports and thesis, Significance and Different steps in the preparation, Illustrations, Bibliography. Presentations: Oral and Poster, Importance of effective communication in scientific research.

UNIT - V

Basics of Ethical issues, Intellectual property rights, Copy right, Reproduction of published material: Plagiarism in scientific research and communications.

Reference books

1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers.

Subject Name: Program Elective Subject 2 Laboratory Subject Code: CTMSCS SIII L5 EL2

	Teac	hing S	cheme		Evaluation Scheme								
			•		Theory						Practical		
Th	Tu	Pr	C	тсн	Internal Exams			Univer Exan		University Exams (LPW)		Total	
					TA-1/	ГА-2	MSI	E	Marks	Hrs	Marks	Hrs	
					Marks	Hrs	Marks	Hrs	WIALKS	пгѕ	Marks	пгѕ	
0	0	1	1	2	-	-	-	-	-	-	100	3	100

Syllabus:

Experiments to support the associated theory course.

SEMESTER-IV

Subject Name: Major Project Subject Code: CTMSCS SIV P1

Students will need to work on a major project under guidance of an internal faculty member. The students will need to submit a regular progress report for internal evaluation. A project report will need to be submitted and presented at the end of the semester for final evaluation.