

Amortized Rejection Sampling in Universal Probabilistic Programming

Saeid Naderiparizi, Adam Ścibior, Andreas Munk, Mehrdad Ghadiri, Atılım Güneş Baydin, Bradley Gram-Hansen, Christian Schroeder de Witt, Robert Zinkov, Philip Torr, Tom Rainforth, Yee Whye Teh, Frank Wood

TL;DR

- Rejection sampling is widely used in implementing complex generative models.
- Inference in probabilistic programs including unbounded loops (e.g. rejection sampling) is hard.
- We address the problem of efficient amortized importance-sampling-based inference, in particular Inference Compilation (IC) [4], in such models.
- We show naive application of IC can produce importance weights with unbounded variance.
- We propose Amortized Rejection Sampling (ARS), an importance sampling procedure that produces finite variance weights and unbiased expectations for programs that include rejection sampling loops.
- We implement ARS in pyprob [1; 2] in a way that requires minimal modifications to user code.

1: $x \sim p(x)$ 2: 3: $\mathbf{for} \ k \in \mathbb{N}^+ \ \mathbf{do}$ 4: $\mathbf{z}^k \sim p(\mathbf{z} x)$ 5: 6: 7: $\mathbf{if} \ c(x, \mathbf{z}^k) \ \mathbf{then}$ 8: $\mathbf{z} = \mathbf{z}^k$ 9: \mathbf{break} 10: $\mathbf{observe}(y, p(y \mathbf{z}, x))$ (a) Original program	$x \sim q(x y)$ $w \leftarrow \frac{p(x)}{q(x y)}$ for $k \in \mathbb{N}^+$ do $z^k \sim q(z x,y)$ $w^k \leftarrow \frac{p(z^k x)}{q(z^k x,y)}$ $w \leftarrow w w^k$ if $c(x,z^k)$ then $z = z^k$ break $w_{IC} \leftarrow wp(y z,x)$ (b) Inference compilation
1: $x \sim p(x)$ 2: 3: $\boldsymbol{z} \sim p(\boldsymbol{z} x, c(x, z))$ 4: 5: observe $(y, p(y \boldsymbol{z}, x))$ (c) Equivalent to above	$x \sim q(x y)$ $w \leftarrow \frac{p(x)}{q(x y)}$ $z \sim q(z x, y, c(x, z))$ $w \leftarrow w \frac{p(z x, c(x, z))}{q(z x, y, c(x, z))}$ $w_{C} \leftarrow w p(y z, x)$ (d) ARS

IC weights

$$w_{IC} = \frac{p(x)}{q(x|y)} p(y|x,z) \prod_{k=1}^{L} w^k$$

Theorem: Under some mild conditions if the following holds then the variance of w_{IC} is infinite.

$$\mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y})} \left[\frac{p(\boldsymbol{z}|\boldsymbol{x})^2}{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y})^2} (1 - p(\boldsymbol{A}|\boldsymbol{x},\boldsymbol{z})) \right] \geq 1$$

where A is the event of c(x, z) being satisfied.

Collapsed weights

$$\frac{\mathbf{w}_{C}}{\mathbf{q}(x|y)} \frac{p(\mathbf{z}|x,A)}{q(\mathbf{z}|x,y,A)} p(y|x,\mathbf{z})$$

- $\mathbb{E}[w_{IC}] = \mathbb{E}[w_{C}]$ but these weights do not cause infinite variance importance sampling estimates.
- ullet Unfortunately, we cannot directly compute w_C

Amortized Rejection Sampling (ARS)

$$\mathbf{w}_{C} = \frac{p(x)}{q(x|y)} \frac{p(\mathbf{z}|x)}{q(\mathbf{z}|x,y)} p(y|x,\mathbf{z}) \frac{q(A|x,y)}{p(A|x)}$$

- q(A|x,y) is the probability of exiting the rejection sampling loop under the proposal.
- p(A|x) is the probability of exiting the rejection sampling loop in the original probabilistic program.
- We use Monte Carlo to get unbiased estimates of q(A|x,y) and $\frac{1}{p(A|x)}$.

Marsaglia [5; 6]

Mini-SHERPA

Mini-SHERPA is a simplified model of high-energy reactions of particles [3]. It uses rejection sampling extensively to simulate a particle decay event and the energy deposited by the resulting particles in a simplified detector.

Algorithm

1: $x \sim q(x y)$	13: for $j \in 1, M$ do
$2: \ w \leftarrow \frac{p(x)}{q(x y)}$	14: for $l \in \mathbb{N}^+$ do
3: $\mathbf{for}\ k \in \mathbb{N}^+ \mathbf{do}$	15: $\boldsymbol{z}_{j,l}'' \leftarrow q(\boldsymbol{z} x,y)$
4: $\boldsymbol{z}^k \sim q(\boldsymbol{z} x,y)$	16: if $c(x, \boldsymbol{z}_{j,l}'')$ then
5: if $c(x, \mathbf{z}^k)$ then	17: $T_j \leftarrow l$
1	1 1
6: $\boldsymbol{z} = \boldsymbol{z}^k$	18: break
7: break	19: $T \leftarrow \frac{1}{M} \sum_{j=1}^{M} T_j$
7: break	4 3.5
	19: $T \leftarrow \frac{1}{M} \sum_{j=1}^{M} T_j$
7: break	19: $T \leftarrow \frac{1}{M} \sum_{j=1}^{M} T_j$ 20: $w \leftarrow w \frac{KT}{N}$

Implementation

We introduce two new functions to tag the beginning and end of rejection sampling loops.

Original	Annotated
$x = sample(P_x)$	$x = sample(P_x)$
while True:	while True:
	rs_start()
$z = sample(P_z(x))$	$z = sample(P_z(x))$
if $c(x, z)$:	if $c(x, z)$:
	rs_end ()
break	break
observe($P_y(x,z), y$)	observe($P_y(x,z)$, y)
return x, z	return x, z

References

 $K \leftarrow K + c(\boldsymbol{z}, x)$

- [1] A. G. Baydin, L. Heinrich, W. Bhimji, B. Gram-Hansen, G. Louppe, L. Shao, K. Cranmer, F. Wood, et al. Efficient probabilistic inference in the quest for physics beyond the standard model. In *Thirty-second Conference on Neural Information Processing Systems (NeurIPS)*, 2019.
- [2] A. G. Baydin, L. Shao, W. Bhimji, L. Heinrich, L. Meadows, J. Liu, A. Munk, S. Naderiparizi, B. Gram-Hansen, G. Louppe, et al. Etalumis: Bringing probabilistic programming to scientific simulators at scale. In the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '19), 2019.
- [3] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter. Event generation with sherpa 1.1. Journal of High Energy Physics, 2009(02):007, 2009.
- [4] T. A. Le, A. G. Baydin, and F. Wood. Inference compilation and universal probabilistic programming. In *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, volume 54 of *Proceedings of Machine Learning Research*, pages 1338–1348, Fort Lauderdale, FL, USA, 2017. PMLR.
- [5] G. Marsaglia and T. A. Bray. A convenient method for generating normal variables. SIAM review, 6(3):260–264, 1964.
- [6] F. Wood, J. W. Meent, and V. Mansinghka. A new approach to probabilistic programming inference. In Artificial Intelligence and Statistics, pages 1024–1032, 2014.