Package 'STOPES'

October 12, 2022

Type Package	
Title Selection Threshold Optimized Empirically via Splitting	
Version 0.2	
Date 2022-05-20	
Author Marinela Capanu [aut, cre], Mihai Giurcanu [aut, ctb], Colin Begg [aut], Mithat Gonen [aut]	
Maintainer Marinela Capanu <capanum@mskcc.org></capanum@mskcc.org>	
Imports MASS, cvTools, glmnet, changepoint	
Description Implements variable selection procedures for low to moderate size generalized linear regressions models. It includes the STOPES functions for linear regression (Capanu M, Giurcanu M, Begg C, Gonen M, Optimized variable selection via repeated data splitting, Statistics in Medicine, 2020, 19(6):2167-2184) as well as subsampling based optimization methods for generalized linear regression models (Marinela Capanu, Mihai Giurcanu, Colin B Begg, Mithat Gonen, Subsampling based variable selection for generalized linear models).	-
License GPL-2	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2022-05-27 08:40:13 UTC	
R topics documented:	
alasso.cv	2 3 4 5
Index	- 7

2 alasso.cv

alasso.cv

ALASSO variable selection via cross-validation regularization parameter selection

Description

alasso.cv computes the ALASSO estimator.

Usage

```
alasso.cv(x, y)
```

Arguments

```
x n x p covariate matrix
y n x 1 response vector
```

Value

```
alasso.cv returns the ALASSO estimate
alasso the ALASSO estimator
```

References

Hui Zou, (2006). "The adaptive LASSO and its oracle properties", JASA, 101 (476), 1418-1429

Examples

```
p <- 5
n <- 100
beta <- c(2, 1, 0.5, rep(0, p - 3))
x <- matrix(nrow = n, ncol = p, rnorm(n * p))
y <- rnorm(n) + crossprod(t(x), beta)
alasso.cv(x, y)</pre>
```

opts 3

opts

Optimization via Subsampling (OPTS)

Description

opts computes the OPTS MLE in low dimensional case.

Usage

```
opts(X, Y, m, crit = "aic", prop_split = 0.5, cutoff = 0.75, ...)
```

Arguments

X n x p covariate matrix (without intercept)

Y n x 1 binary response vector

m number of subsamples

crit information criterion to select the variables: (a) aic = minimum AIC and (b) bic

= minimum BIC

prop_split proportion of subsample size and sample size, default value = 0.5

cutoff cutoff used to select the variables using the stability selection criterion, default

value = 0.75

... other arguments passed to the glm function, e.g., family = "binomial"

Value

opts returns a list:

betahat OPTS MLE of regression parameter vector

Jhat estimated set of active predictors (TRUE/FALSE) corresponding to the OPTS

MLE

SE standard error of OPTS MLE

freqs relative frequency of selection for all variables

Examples

```
require(MASS)
P = 15
N = 100
M = 20
BETA_vector = c(0.5, rep(0.5, 2), rep(0.5, 2), rep(0, P - 5))
MU_vector = numeric(P)
SIGMA_mat = diag(P)

X <- mvrnorm(N, MU_vector, Sigma = SIGMA_mat)
linearPred <- cbind(rep(1, N), X)
Y <- rbinom(N, 1, plogis(linearPred))</pre>
```

opts_th

```
# OPTS-AIC MLE
opts(X, Y, 10, family = "binomial")
```

opts_th

Threshold OPTimization via Subsampling (OPTS_TH)

Description

opts_th computes the threshold OPTS MLE in low dimensional case.

Usage

```
opts_th(X, Y, m, crit = "aic", type = "binseg", prop_split = 0.5,
    prop_trim = 0.2, q_tail = 0.5, ...)
```

Arguments

Χ n x p covariate matrix (without intercept) Υ n x 1 binary response vector number of subsamples m information criterion to select the variables: (a) aic = minimum AIC and (b) bic crit = minimum BIC method used to minimize the trimmed and averaged information criterion: (a) type min = observed minimum subsampling trimmed average information, (b) sd = observed minimum using the 0.25sd rule (corresponding to OPTS-min in the paper), (c) pelt = PELT changepoint algorithm (corresponding to OPTS-PELT in the paper), (d) binseg = binary segmentation changepoint algorithm (corresponding to OPTS-BinSeg in the paper), (e) amoc = AMOC method.

prop_split proportion of subsample size of the sample size; default value is 0.5 prop_trim proportion that defines the trimmed mean; default value = 0.2

q_tail quantiles for the minimum and maximum p-values across the subsample cut-

points used to define the range of cutpoints

... other arguments passed to the glm function, e.g., family = "binomial"

Value

opts_th returns a list:

betahat STOPES MLE of regression parameters

SE SE of STOPES MLE

Jhat set of active predictors (TRUE/FALSE) corresponding to STOPES MLE

cuthat estimated cutpoint for variable selection

stopes 5

pval marginal p-values from univariate fit
cutpoits subsample cutpoints
aic_mean mean subsample AIC
bic_mean mean subsample BIC

Examples

```
require(MASS)
P = 15
N = 100
M = 20
BETA_vector = c(0.5, rep(0.5, 2), rep(0.5, 2), rep(0, P - 5))
MU_vector = numeric(P)
SIGMA_mat = diag(P)

X <- mvrnorm(N, MU_vector, Sigma = SIGMA_mat)
linearPred <- cbind(rep(1, N), X)
Y <- rbinom(N, 1, plogis(linearPred))
# Threshold OPTS-BinSeg MLE
opts_th(X, Y, M, family = "binomial")</pre>
```

stopes

Selection of Threshold OPtimized Empirically via Splitting (STOPES)

Description

stopes computes the STOPES estimator.

Usage

```
stopes(x, y, m = 20, prop_split = 0.50, prop_trim = 0.20, q_tail = 0.90)
```

Arguments

```
x n x p covariate matrix
y n x 1 response vector
m number of split samples, with default value = 20
prop_split proportion of data used for training samples, default value = 0.50
prop_trim proportion of trimming, default prop_trim = 0.20
q_tail proportion of truncation samples across the split samples, default values = 0.90
```

6 stopes

Value

stopes returns a list with the STOPE estimates via data splitting using 0.25 method and the PELT method:

beta_stopes the STOPE estimate via data splitting

J_stopes the set of active predictors corresponding to STOPES via data splitting

final_cutpoints

the final cutpoint for STOPES

beta_pelt the STOPE estimate via PELT

J_pelt the set of active predictors corresponding to STOPES via PELT

final_cutpoints_PELT

the final cutpoint for PELT

quan_NA test if the vector of trimmed cutpoints has length 0, with 1 if TRUE and 0 other-

wise

Author(s)

Marinela Capanu, Mihai Giurcanu, Colin Begg, and Mithat Gonen

Examples

```
p <- 5
n <- 100
beta <- c(2, 1, 0.5, rep(0, p - 3))
x <- matrix(nrow = n, ncol = p, rnorm(n * p))
y <- rnorm(n) + crossprod(t(x), beta)
stopes(x, y)</pre>
```

Index

```
alasso.cv, 2
opts, 3
opts_th, 4
stopes, 5
```