High throughput sequencing

Functional genomic data analysis: transcriptomics

Stéphane Le Crom @sorbonne-universite.fr

First generation sequencing methods

Sanger sequencing by synthesis

Method discovered in 1977 by Frédérick Sanger (nobel price 1980).

DNA polymerisation using a **complementary primer**. Elongation using **thermostable DNA polymerase** (PCR).

Addition of 4 **deoxynucleotides** (dATP, dCTP, dGTP, dTTP) and low concentrations of one of four **dideoxynucleotides** (ddATP, ddCTP, ddGTP ou ddTTP).

These ddNTP once incorporated in the newly synthesized DNA strand, block elongation. Synthesis termination is done by a statistical manner on each possible positions.

Sequence reading

We a get a **mix of DNA fragments** terminating at each position of the sequence.

These fragments are then separated on a DNA polyacrylamide gel electrophoresis.

Detection of synthesize fragments is done by the **incorporation of labelling beacon** in the DNA.

At the origin this label was radioactive, attached either on the primer or on the dideoxynucleotide.

Around 1 kb of DNA by run during 2 days.

One read by sample.

Capillary sequencers

First version in the 90's thanks to the **modification of the** radioactive label by a fluorescent one.

Using glass capillary of few micron diameters, on 30 to 50 cm long.

The four nucleotides migrate in the same tube thanks to **four different fluorescent dyes**.

300 kb of DNA by run during **3 hours**. Several hundred sample at a time.

ABI 3730xI DNA Analyzer

96 parallel capillary (up to 50 cm) array. **768 samples**, **690 kb** DNA, **3 hours** run.

At the Broad Institute (Cambridge, Massachusetts) **126 devices** were able to sequence **1 human genome** in **12 days**.

From The Scientist

Second generation sequencing: high throughput sequencing

The first technologies on the market Goal: to obtain a huge number of short reads

1 Mb / day

Illumina / Solexa Genome Analyzer 2,000 Mb (2 Gb) / run

Applied Biosystems SOLiD 3,000 Mb (3 Gb) / run

Illumina Genome Analyzer January 2007

From: Clive Brown <clive.Brown@solexa.com>

Date: Sun, 20 Feb 2005 16:34:46 +0100

To: Nick McCooke <Nick.McCooke@solexa.com>, Tony Smith <Tony Swerdlow <Harold.Swerdlow@solexa.com>, John Milton <JM.Milton <Kevin.Hall@solexa.com>, Colin Barnes <Colin.Barnes@solexa.com <Vincent.Smith@solexa.com>, Klaus Maisinger <Klaus.Maisinger

Conversation: WE'VE DONE IT !!!!

Subject: WE'VE DONE IT !!!!

Tony Cox, Peta and I now agree - having looked at all of the PhiX174 data.

We have re-sequenced our first genome !!!!!!

DNA library preparation

Random DNA fragmentation and size selection.

Ligation of adaptors.

DNA denaturation.

Hybridization of fragments onto the "flowcell" surface.

Solid phase bridge PCR.

Reversible terminator sequencing

The four **reversible terminators** are added simultaneously.

Laser scanning of the flowcell surface.

Release of the blocking terminator.

Sequencing cycles are repeated one base at a time.

http://www.illumina.com/

Sequence analysis

Scanning at each position for all sequences (reads) in parallel.

Most of the errors (99%) are sequencing errors (misincorporation).

http://www.illumina.com/

Illumina sequencing by synthesis

https://www.youtube.com/watch?v=fCd6B5HRaZ8

Specifications of the latest Illumina sequencers

	MiniSeq	MiSeq	NextSeq 550	NextSeq 2000	NovaSeq 6000	NovaSeq X
Run Time	24 hours	56 hours	29 hours	48 hours	44 hours	48 hours
Read length (bp)	2x 150	2x 300	2x 150	2x 150	2x 150	2x 150
Read number	50 10 ⁶	50 10 ⁶	800 10 ⁶	2.4 10 ⁹	20 10 ⁹	52 10 ⁹
Ouput	7.5 Gb	15 Gb	120 Gb	360 Gb	3.000 Gb	8.000 Gb
Throughput	7 Gb/day	7 Gb/day	100 Gb/day	150 Gb/day	1.500 Gb/day	4.500 Gb/day

The third generation

Real time sequencing

Real time sequencing on single molecule thanks to RNA polymerase immobilisation in wells.

Each base incorporation is measure in real time with a CCD camera under the bottom of the plate.

Eid (2009) Science

Revio specifications

25 10⁶ reads / SMRT cell 4 SMRT Cells in parallel;

From 15 to 20 kb read length;

Throughput: 90 Gb/SMRT cell, 360 Gb/day;

Run duration: 24 hours.

THE THIRD GENERATION

Nanopore technology

Single molecule detection system by passing single strand nucleic acids through a **nanometric pore**.

Base to base analysis in real time using **electric properties** of the nanopore.

DNA size sequencing of kilobases.

No limitation on the acid nucleic type to be detected (**DNA or RNA** even amino acids) including modifications (epigenetics).

No amplification.

Greenwood (2013) Popular Science

Oxford nanopore technologies

https://www.youtube.com/watch?v=RcP85JHLmnI

The MiniON flow cell

1 flow cell = 1 membrane with 512 nanopores.

Single molecule sequencing up to 4 Mb during up to 72 hours.

Field genomics: portable sequencer tracks infectious disease outbreaks

Nick Loman using a MinION to sequence the Zika virus in Brazil

Applications

They cover a lot of previous existing techniques

Kahvejian et al. (2008) Nat. Biotech.

De novo sequencing

Quicker and cheaper sequencing than Sanger.

But reads are smaller.

Combination of different methods allow to obtain better quality sequencing drafts.

=> Combining 454 and Illumina.

Low error rate and **homogenous coverage** due to no cloning biases compared to the Sanger method.

Errors are not same with the two high throughput sequencing methods.

Aury et al. (2008) BMC Genomics

Resequencing applications

Goal: to analyze various genomes compared to a reference one.

Search for polymorphisms and structural variants in populations, mutation identification in biotechnology, organism evolution analyses, cell differentiation along time, ancient DNA discovery...

Metagenomics: genome characterisation in samples.

A wide range of applications: characterise pathogen micro-organisms in patient tissues, definition of the species found in environment samples, understand species evolution...

From JGI DOE

Functional genomic applications

Wold et al. (2008) Nat. Methods

ORBONNE

Perspectives

Shendure & Aiden (2012) Nat. Biotech.

From bulk to localised single-cell

2012 2019 Single cell **Spatial** Bulk High throughput sequencing Single cell genomics Spatially-resolved transcriptomics Method of the year 2009 Method of the year 2013 Method of the year 2020 Martins et al. (2020) Han Chen D. (2019) Jorgensens M. (2021)

