Signal and System MATLAB Homework #3

B02901178 江誠敏

June 7, 2015

1 Problem 1

(a) Find the inverse z-transform of (2). Please state the ROC.

By using residuez command in Octave, we obtain

$$\begin{split} H(z) &\approx \frac{0.00682 + 0.40930\mathrm{i}}{1 - (0.35750 - 0.58890\mathrm{i})z^{-1}} + \frac{0.00682 - 0.40930\mathrm{i}}{1 - (0.35750 + 0.58890\mathrm{i})z^{-1}} \\ &+ \frac{-0.10445 - 0.15963\mathrm{i}}{1 - (0.76860 - 0.33380\mathrm{i})z^{-1}} + \frac{-0.10445 + 0.15963\mathrm{i}}{1 - (0.76860 + 0.33380\mathrm{i})z^{-1}} + 0.29287 \end{split}$$

SO

$$\begin{split} \mathcal{Z}^{-1}\{H(z)\} &= (0.00682 + 0.40930\mathrm{i})(0.35750 - 0.58890\mathrm{i})^n \\ &\quad + (0.00682 - 0.40930\mathrm{i})(0.35750 + 0.58890\mathrm{i})^n \\ &\quad + (-0.10445 - 0.15963\mathrm{i})(0.76860 + 0.33380\mathrm{i})^n \\ &\quad + (-0.10445 + 0.15963\mathrm{i})(0.76860 - 0.33380\mathrm{i})^n + 0.29287\delta[n] \end{split}$$

The maximum absolute value of the poles is about 0.83795. Since the system is causal, the ROC is |z| > 0.83795

(b) Find and plot the locations of poles and zeros.

Figure 1: Plot of the poles and zeros.

(c) Evaluate and plot the magnitude and phase response.

The frequency response is simply $H(e^{\mathrm{i}\omega})$. Use freqz to plot the frequency response.

Figure 2: Frequency response.

(d) Find a representation of this transfer function as a cascade of two second-order sections with real coefficients.

By using the zp2sos command, we obtain

$$\begin{split} H(z) &= 0.0976 \left(\frac{1 + 2z^{-1} + 1z^{-2}}{1 - 0.71500z^{-1} + 0.47461z^{-2}} \right) \left(\frac{1 - 2z^{-1} + 1z^{-2}}{1 - 1.53720z^{-1} + 0.70217z^{-2}} \right) \\ &= 0.0976 H_1(z) H_2(z) \end{split}$$

(e) Evaluate and plot the magnitude response of each section in 4.

Their magnitude response is simply $H_1(e^{\mathrm{i}\omega})$ and $H_2(e^{\mathrm{i}\omega})$

- (a) Magnitude response of H_1
- (b) Magnitude response of ${\cal H}_2$
- (f) Determine the impulse response of the system by obtaining the output for an input $x[n] = \delta[n]$ and compare it with the result of 1.

Figure 4: Impulse response of H

They are identical.