

Базы данных для разработчиков.

Цель занятия:

Ознакомиться с основными понятиями связанными с базами данных. Научиться их проектировать и использовать.

PAБOTA C POSTGRESQL, CO3ДАНИЕ БД

План занятия:

- 1. Работа через консоль
- 2. Создание ролей и БД (DCL)
- 3. DDL запросы

Повторение

Какие есть типы БД?

Реляционные – это БД, в которых информация строго структурирована и связана с другой информацией жесткими правилами.

Пример:

- Microsoft Access
- SQLite
- PostgreSQL
- MySQL
- Microsoft SQL

Нереляционные (NoSQL) – это БД, в которых нет жестких ограничений ни на структуру, ни на связь между информацией.

Пример:

- Redis
- MongoDB
- Cassandra

PostgreSQL

Установка

PostgreSQL

Работа через консоль

Работа через консоль

```
psql # запустить консольное приложение
     #для управления БД от текущего пользователя
psql -U <user> # запустить консольное приложение для
                   # управления БД от пользователя <user>
                    # например, postgres
psql -d <database> # запустить консольное приложение для
                   # управления конкретной БД - <database>
psql -U <user> -d <database> # запустить консольное
                              # приложение для управления
                              # конкретной БД, <database>,
                              # от пользователя <user>
# Если БД не указана явно, то будет попытка подключиться к БД
# с таким же названием, как и имя пользователя
# Пользователь должен иметь права для управления БД
```

Создание ролей и БД. Консоль

```
psql -U postgres # входим в режим управления от
                   # пользователя postgres (БД тоже postgres)
create database <name>; # создаем БД с именем <name>
drop database <name>; # удаляем БД с именем <name>
# создаем пользователя с именем <name> и паролем <pass>
create user <name> with password '<pass>';
drop user <name>; # удаляем пользователя с именем <name>
# указываем, что владельцем БД <db name>
# является пользователь <user name>
alter database <db_name> owner to <user_name>;
```

- 1. Правой клавишей мыши по разделу Login/Group Roles
- Create
- Login/Group Role

На вкладке General заполняем поле Name – это имя пользователя.

На вкладке Definition заполняем поле Password – это пароль для пользователя.

На вкладке Privileges отмечаем пункт Can login? и нажимаем Save.

- 1. Правой клавишей мыши по разделу Databases
- Create
- Database

- 1. На вкладке General заполняем поле Database это название БД.
- 2. В поле Owner пользователя, которого только что создали это будет владелец БД.
- Нажимаем кнопку Save.

Какие есть типы SQL запросов?

DDL (Data Definition Language). CREATE

Синтаксис:

```
create table [if not exists] <name> (
     <col_name_1> <col_type_1> [constraints],
     <col_name_N> <col_type_N> [constraints],
     [constraints]
);
Пример:
create table if not exists Student (
     Id serial primary key,
     Name varchar(40) not null,
     GPA real.
     check(GPA > 0)
);
```

Создание таблицы: https://www.postgresql.org/docs/12/sql-createtable.html

DDL (Data Definition Language). Типы полей

Столбцы могут хранить только записи одного типа. Основные типы:

Тип	Пояснение	Пример
integer	целые числа	id integer
serial	целые числа с автоинкрементом	id serial
numeric	десятичные числа	gpa numeric(3, 2)
character varying	строки ограниченной длины	name varchar(40)
text	строки произвольной длины	message text
date	дата (без времени)	birthday date
timestamp	дата + время	created_at timestamp
boolean	булевые значений	active boolean
jsonb	JSON-поля	data jsonb

Типы полей: https://www.postgresql.org/docs/12/datatype.html

DDL (Data Definition Language). CONSTRAINTS

Ограничение	Описание	Пример
primary key	первичный ключ, обязывает поле быть уникальным и не пустым	id serial primary key
not null	значение не может быть пустым (не может отсутствовать)	name varchar(40) not null
unique	все значения в этом поле должны быть уникальным	tag varchar(80) unique
check	добавить проверку значения на описанное условие	<pre>price numeric check(price > 0)</pre>
foreign key	внешний ключ, обязывает значение соответствовать значению из другой таблицы	<pre>product_id integer references products(id)</pre>

Напоминание: ограничения можно описывать не только в конце описания атрибута, но и после описания всех атрибутов.

Ограничения: https://www.postgresql.org/docs/current/ddl-constraints.html

Практика

Создадим таблицы с прошлой лекции и установим связи между ними.

Напомню постановку задачи:

Есть категории интернет-магазина и есть товары. Каждый товар принадлежит строго одной категории. К товарам могут написать отзывы (к одному товару можно написать множество отзывов). Необходимо хранить информацию о категориях, товарах и отзывах.

DDL (Data Definition Language). ALTER и DROP

```
alter table <name> ...
     # добавить атрибут
     add column <col_name> <col_type> [constraints];
     # переименовать таблицу
     rename to <new_table_name>;
     # переименовать атрибут
     rename <col name> to <new col name>;
     # изменить тип атрибута
     alter column <col_name> set data type <col_type>;
     # добавить ограничение
     add constraint <constraint_name> <constraint>;
     # удалить ограничение
     drop constraint <constraint name>;
     # удалить атрибут
     drop column <col_name>;
# удалить таблицу
drop table <name>;
```

Итоги

- 1. создали БД, пользователя и назначили владельца БД,
- 2. создали таблицы и связали их между собой,
- 3. изучили команды DDL.

INSERT INTO

Инструкция INSERT INTO используется для вставки новых записей в таблицу.

Если необходимо вставить значения только для части полей, то используется следующий синтаксис:

```
INSERT INTO rental(rental_date, inventory_id, customer_id, staff_id)
    VALUES(NOW(), 1, 3, 2);
```

Если необходимо вставить значения для всех полей, то нужно убедиться, что они все перечислены и их порядок соответствуют порядку полей:

```
INSERT INTO inventory
   VALUES(999, 999, 999);
```

Дополнительные материалы к занятию

Создание таблиц

Типы полей

Ограничения