Applied Math 2

Exam 2 (2 Pages, 110 points)

Formulas:

 $J_p(Kx)$ is the solution of $x(xy')' + (K^2x^2 - p^2)y = 0$, $\frac{d}{dx}[x^pJ_p(x)] = x^pJ_{p-1}(x)$, and

$$\int_{0}^{a} r J_{p}(\alpha r/a) J_{p}(\beta r/a) dr = \begin{cases} 0 & \alpha \neq \beta \\ \frac{\alpha^{2}}{2} J_{p+1}^{2}(\alpha) & \alpha = \beta \end{cases}$$
lace transform)

Problem 1: (Inverse Laplace transform)

• [10%] (a) Find the function f(t) whose Lapalce transform is

palce transform is
$$F(z) = \frac{z}{z^2 - k^2}$$

$$\overline{Z(z^2)}^2$$

by performing the Bromwich integral

the legral
$$f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(z)e^{zt}dz, \ t > 0, \quad \text{if } t = 1$$
we integrate along a vertical line $x = c$ in the z plane and c is large the left of $x = c$

where the notation means that we integrate along a vertical line x = c in the z plane and c is large $\frac{1}{1-x} = 1 + x + x^{2} + \dots$ $\frac{1}{z(z-2)^{3}} \cdot \qquad \qquad 2 = 0 \Rightarrow -8A = 1$ $\Rightarrow A = \frac{1}{z}$ $\Rightarrow A = \frac{1}{z}$ enough so that all poles lie to the left of x = c.

Problem 2: (Laurent series and residues)

Consider the complex function $f(z) = \frac{1}{z(z-2)^3}.$

• [4%] (a) Identify all the poles and the order of the poles.

• [8%] (b) Find the first four terms in the Laurent series about each pole.

• [4%] (c) Find the residue at each pole.

Problem 3: (The point at infinity)

Problem 3: (The point at infinity) Consider the function

$$f(z) = \frac{z}{z^2 + 1}.$$

$$\frac{1}{2-2} = \frac{-1}{2-2} = \frac{-1}{1-\frac{3}{2}}$$
ingularity or a pole (and if a pole)

- [5%] (a) Find out whether infinity is a regular point, an essential singularity, or a pole (and if a pole, of what order).
- [5%] (b) Find the residue at infinity.

Problem 4: (Definite integral) [6%] Find the definite integral

$$I = \int_0^{2\pi} \frac{d\theta}{13 + 5\sin\theta}.$$

Problem 5: (Laplace's equation in rectangle coordinates)

$$= \frac{1}{2i} \left(\frac{2^2 - 1}{2} \right) = \left(\frac{2^2 - 1}{2i^2} \times 5 + 13 \right) \times 12$$

• [10%] (b) Find the solution of 2D Lapalce's equation $\nabla^2 u = 0$ inside the finite plate $(0 \le y \le 10, 0 \le x \le 10)$, if the boundary conditions are: u(0, y) = y, and u(10, y) = u(x, 0) = u(x, 10) = 0.

Problem 6: (Laplace's equation in cylindrical coordinates)

In this problem we want to solve the Laplace's equation in cylindrical coordinates

$$\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} = 0,$$

in a semi-infinite solid cylinder with the boundary conditions: $u(r=a,\theta,z>0)=0$ and $u(r,\theta,z=0)=100$. If the following, we assume a solution of the form $u=R(r)\Theta(\theta)Z(z)$. By using separation of variables,

- [4%] (a) Derive the the differential equation of Z(z) and its solution.
- [4%] (b) Derive the the differential equation of $\Theta(\theta)$ and its solution.
- [4%] (c) Derive the the differential equation of R(r) and show that the solution is $J_n(Kr)$ where J_n is the Bessel function of first kind, K is the separation constant associated with Z, and n is the separation constant associated with Θ .
- [4%] (d) Show that for this problem the solution has the form

$$u = \sum_{m=1}^{\infty} c_m J_0(k_m r/a) e^{-k_m z/a},$$

where k_m , $m = 1, 2, 3, \cdots$ are the zeros of J_0 .

• [4%] (e) Use boundary conditions to determine c_m .

Problem 7: (Quotient Rule)

• [8%] (a) If A is any arbitrary tensor and B is a non-zero tensor, show that X is a tensor if the components of X satisfy $X_i A_{ij} = B_j$.

Problem 8: (Isotropic Tensors)

Express following expressions in terms of Kronecker deltas δ s and constants. (Do not need to distinguish upper and lower index for this problem.)

• [4%] (a) $\epsilon_{ijk}\epsilon_{imn}$.

(1

• [4%] (b) $\epsilon_{ijk}\epsilon_{ijn}$.

Problem 9: (General coordinate transformations and tensors)

Consider general transformations from one coordinate system, u^1, u^2, u^3 , to another, u'^1, u'^2, u'^3 . Assume coordinate transform can be written as $u'^i = u'^i(u^1, u^2, u^3)$ and inverse as $u^i = u^i(u'^1, u'^2, u'^3)$ for i = 1, 2, 3. Define

$$\mathbf{e}_i = \frac{\partial \mathbf{r}}{\partial u^i}$$
 and $\mathbf{e}^i = \nabla u^i$,

and similarly for the primed system. Here \mathbf{r} is the position vector.

- [6%] (a) By writing any arbitrary vector **a** as $\mathbf{a} = a'^i \mathbf{e}'_i = a^j \mathbf{e}_j = a'_i \mathbf{e}'^i = a_j \mathbf{e}^j$, find the transformation law of a_i and a^i .
- [6%] (b) Let $u^1, u^2, u^3 = x, y, z$ and $u'^1, u'^2, u'^3 = r, \theta, \phi$. Find g'_{ij} where $g'_{ij} = \mathbf{e}'_i \cdot \mathbf{e}'_j$. Write your answer as a matrix [G'] whose components are g'_{ij} .