ISyE 7203: Logistics and System Engineering

Rui Gong

August 21, 2025

Acknowledgements

These notes are based on the ISyE 7203 lectures given by Professor *Alejandro Toriello* in Fall 2025 at Georgia Institute of Technology.

Contents

1 Network Flows 4

1 Network Flows

Definition 1.1

A network (graph) is made of the following:

- (N) nodes (vertices): a finite set.
- For undirected network: (E) edges: $\{i, j\}, i, j \in N$ drawn as i j.
- For directed network: (A) arcs $(i, j), i, j \in N$ drawn as $i \to j$, where we call i the tail and j the head of the arc.

For this course, we focus on the directed networks and the following definitions are all on directed networks.

Definition 1.2

- path: a sequence of arcs where the head of the first is the tail of the second and so forth, and no nodes repeat.
- walk: a sequence of arcs where the head of the first is the tail of the second and so forth, and nodes may repeat.
- cycle: a path except that the first and the last nodes are the same. If a cycles has repeated nodes in between, it is a closed walk instead.

Definition 1.3: Connectedness

A directed network is:

- strongly connected: for any $i, j \in N$, there exists an i-j (directed) path and a j-i directed path.
- weakly connected: for any $i, j \in N$, there exists an (undirected) i j path if we ignore orientations.

Example 1.1. Consider the following network:

It is weakly but not strongly connected.

Definition 1.4: network flow

Given the network by (N, A), $b \in \mathbb{R}^N$, $c \in \mathbb{R}^A$, $u \in (\mathbb{R} \cup \{\infty\})^A$. b represents the net supply where i is a supplier, consumer, trans-shipment respectively if $b_i > 0$, $b_i < 0$, $b_i = 0$ respectively; c represents the cost, and u represent the capacity.

For modeling, X_{ij} is used to represent the amount of flow on $(i,j) \in A$. Then the network flow problem is:

$$\min \sum_{a \in A} c_a x_a$$

$$s.t. \sum_{a \in \delta^+(i)} -\sum_{a \in \delta^-(i)} x_i = b_i, i \in N$$

$$0 \le x_a \le u_a, \ \forall a \in A$$
(NF)

where $\delta^+(i)$ is the set of arcs having i as the tail and $\delta^-(i)$ is the set of arcs having i as the head. The equality constraints are called the flow balance constraint.

Remark. Aggregate the flow balance constraints, we get

$$\sum_{i} \left(\sum_{a \in \delta^{+}(i)} - \sum_{a \in \delta^{-}(i)} x_i \right) = \sum_{a \in A} x_a - x_a = 0 = \sum_{i} b_i.$$

Thus, $\sum_{i=1}^{N} b_i = 0$ is a needed assumption.

Example 1.2. The following is an instance of a network flow problem:

Theorem 1.5

The constraint matrix of (NF) is always TU (totally unimodular). Thus, if b, u are integral, all extreme points are integral.

Example 1.3. Assignment Problem Considering assigning n workers to n tasks, one for each. Let c_{ij} be the cost of assigning worker i to task j. In this way, we can consider $1, \ldots, n$ nodes as workers and $n+1, \ldots, 2n$ as tasks. For each node representing a worker, it has arcs from it to all task nodes. The supply of each worker and task are 1 and -1 respectively. Then the problem can be written as:

min
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t. $\sum_{j=n+1}^{2n} x_{ij} = 1, i = 1, \dots, n$
 $\sum_{i=1}^{n} -x_{ij} = -1$
 $0 \le x_{ij}$.

Notice that there is no need to have $x_{ij} \leq 1$, it is implied by the balance flow constraints and nonnegative constraints.