Equivalence, minimal automata, non-regular languages: Problems for Week 2

Exercise 1 Check which of the following automata over the alphabet $\Sigma = \{a, b\}$ are equivalent. If they are not equivalent, you should give a word that's accepted by one but not by another.

2.

3.

Exercise 2 *Minimize the following automaton:*

Exercise 3 The alphabet is $\{a,b\}$. Give a DFA for words with at least one a, and one for words with at least two characters. By combining these using pairs of states, obtain a DFA for words with at least one a and at least two characters.

Exercise 4 Consider the following language over the alphabet $\Sigma = \{a, b\}$:

$$L = \{w | w \text{ contains the same number of } a \text{ 's and } b \text{ 's} \}$$

Show that L is non-regular.

Exercise 5 Are the following languages over $\Sigma = \{a, b\}$ regular? Why (not)?

- 1. $L = \{a^m b^n | m > n\}$
- 2. $L = \{a^m b^n | m < n\}$
- 3. $L = \{w | length(w) \text{ is a square number}\}$

Exercise 6 For any string $w = w_1 w_2 \dots w_n$, the **reverse of** w, written w^R , is the string w in reverse order, $w_n \dots w_2 w_1$. For any language L, let $L^R = \{w^R | w \in L\}$. Show that if L is regular, so is L^R .

Exercise 7 Let $\Sigma = \{a, b\}$.

- 1. Let $L_1 = \{a^k u a^k | k \ge 1 \text{ and } u \in \Sigma^* \}$. Show that L_1 is regular.
- 2. Let $L_2 = \{a^k bua^k | k \ge 1 \text{ and } u \in \Sigma^* \}$. Show that L_2 is not regular.