Optimization in Machine Learning

CMA-ES Algorithm

Learning goals

- CMA-ES strategy
- Estimation of distribution
- Step size control

CMA-ES

General algorithmic template with initial parameter setting $\theta^{[0]}$ of parameterized density $p(\mathbf{x}|\theta)$, such that each iteration $t \in \{0,1,\ldots,T\}$ consist of:

- **1** Draw λ samples, $\mathbf{x}^{(k)}$ from $p(\mathbf{x}|\boldsymbol{\theta}^{[t]})$
- ② Evaluate W(f(x^(k))), where W(⋅) gives weights for each x^(k), typically 0 or 1 (order-preserving fitness transformation)
- § Find a $\theta^{[t+1]}$ that uses weighted samples and corresponding function evaluations to move $p(\mathbf{x}|\theta)$ towards regions $\mathcal S$ that have large function values.

Estimation of distribution algorithm. For each iteration i, a far random draw is performed for a population P in a distribution PDu. The distribution parameters PDe are then estimated using the selected points PS. The illustrated example optimize a continuous objective function (R) with a unique optimum O. The sampling (following a normal distribution N) concentrates around the optimum as one goes along unwinding aborothm.

CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is

- A state-of-the-art tool in evolutionary computation
- A stochastic/randomized method
- For usage in continuous domain
- For non-linear, non-convex optimization problems
- Useful in case "classical" search methods like quasi-Newton methods (BFGS) or conjugate gradient methods fail due to a non-convex or rugged search landscape (e.g. outliers, noise, local optima, sharp bends).

Detailed information on CMA-ES can be found in

- Nikolaus Hansen. The CMA Evolution Strategy. 2005
- A. Auger, N. Hansen: Tutorial CMA-ES: Evolution Strategies and Covariance Matrix Adaptation. 2012.

CMA-ES: STRATEGY

A population of new search points (individuals, offspring) is generated by sampling a multivariate normal distribution. A repeated update of the mean vector and covariance matrix with the respectively best ranked individuals moves the distributions towards the optimum.

Search points for generation number t = 0, 1, ..., T:

$$\mathbf{x}^{[t+1](k)} \sim \mathbf{m}^{[t]} + \sigma^{[t]} \mathcal{N}(\mathbf{0}, \mathbf{C}^{[t]})$$
 for $k=1,\ldots,\lambda$.

CMA-ES: STRATEGY

$$\mathbf{x}^{[t+1](k)} \sim \boldsymbol{m}^{[t]} + \sigma^{[t]} \mathcal{N}(\mathbf{0}, \boldsymbol{C}^{[t]}) \quad \text{for } k = 1, \dots, \lambda$$

- $\mathbf{x}^{[t+1](k)} \in \mathbb{R}^d$ is the k-th offspring (search point, individual) from generation t+1.
- $\lambda \geq 2$ is the population/sample size, number of offsprings.

At generation t:

- $\mathcal{N}(\mathbf{0}, \mathbf{C}^{[t]})$ is multivariate normal distribution with zero mean, covariance matrix $\mathbf{C}^{[t]}$. *Note*: $\mathbf{m}^{[t]} + \sigma^{[t]} \mathcal{N}(\mathbf{0}, \mathbf{C}^{[t]}) \sim \mathcal{N}(\mathbf{m}^{[t]}, (\sigma^{[t]})^2 \mathbf{C}^{[t]})$.
- $\mathbf{m}^{[t]} \in \mathbb{R}^d$ is the mean value of the search distribution.
- ullet $\sigma^{[t]} \in \mathbb{R}_+$ is the "overall" standard deviation/step size.
- $\mathbf{C}^{[t]} \in \mathbb{R}^{d \times d}$ is the covariance matrix.
- \rightarrow How to calculate $\mathbf{m}^{[t+1]}$, $\mathbf{C}^{[t+1]}$, $\sigma^{[t+1]}$ for next generation t+1?

Sample from distribution

$$\mathbf{x}^{[1](k)} = \mathbf{m}^{[0]} + \sigma^{[0]} \mathcal{N}(\mathbf{0}, \mathbf{C}^{[0]})$$
 multivariate normal distribution.

Initial distribution $\mathcal{N}^{[0]} \sim (\mathbf{0}, \mathbb{I}_2)$ of generation t = 0.

Sample from distribution

$$\mathbf{x}^{[1](k)} = \mathbf{m}^{[0]} + \sigma^{[0]} \mathcal{N}(\mathbf{0}, \mathbf{C}^{[0]})$$
 multivariate normal distribution.

Initial distribution $\mathcal{N}^{[0]} \sim (\mathbf{0}, \mathbb{I}_2)$ of generation t = 0, $\lambda = 6$.

2 Ranking solutions according to their fitness (*Selection* of μ best) $\mathbf{x}_{i:\lambda}$ as i-th ranked solution point, such that $f(\mathbf{x}_{1:\lambda}) \leq \cdots \leq f(\mathbf{x}_{\lambda:\lambda})$.

Calculation of auxiliary variable $\mathbf{y}_w := \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda}$, using $\mu = 3$ selected points (high fitness \rightarrow high weights)

Update covariance matrix (Recombination), improving "expected fitness" and likelihood for good steps.

Blue circle as a mixture of \boldsymbol{C} and step \boldsymbol{y}_w (simplified): $\boldsymbol{C}^{[1]} = 0.8 \boldsymbol{C}^{[0]} + 0.2 \boldsymbol{y}_w^{[0]} (\boldsymbol{y}_w^{[0]})^{\top}$ (Rank 1 update).

Update mean

Movement towards the new distribution with mean ${\it m}^{[1]} = {\it m}^{[0]} + \sigma^{[0]} {\it y}_w^{[0]}.$

Sample from distribution for new generation

2 Ranking solutions according to their fitness (*Selection* of μ best)

1 Update mean and covariance matrix (Recombination)

Update step-size based on non-local information, exploit correlations in the history of steps.

UPDATING C: CMA - RANK-ONE UPDATE

Initialize $\mathbf{m} \in \mathbb{R}^d$ and $\mathbf{C} = \mathbb{I}$, set $\sigma = 1$, learning rate $c_{cov} \approx 2/d^2$. While not terminate

$$\begin{split} & \boldsymbol{x}^{(k)} = \boldsymbol{m} + \sigma \mathcal{N}_i(\boldsymbol{0}, \boldsymbol{C}) \\ & \boldsymbol{m} \leftarrow \boldsymbol{m} + \sigma \boldsymbol{y}_w, \quad \text{where } \boldsymbol{y}_w = \sum_{i=1}^{\mu} \boldsymbol{w}_i \boldsymbol{x}_{i:\lambda} \\ & \boldsymbol{C} \leftarrow (1 - c_{cov}) \boldsymbol{C} + c_{cov} \mu_w \underbrace{\boldsymbol{y}_w \boldsymbol{y}_w^\top}_{\text{rank-one}}, \quad \text{where } \mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \end{split}$$

The rank-one update was developed in several domains independently, conducting a **principle component analysis** (PCA) of steps y_w sequentially in time and space.

UPDATING σ **: METHODS STEP-SIZE CONTROL**

- 1/5-th success rule: increases the step-size if more than 20 % of the new solutions are successful, decrease otherwise
- σ -self-adaptation: mutation is applied to the step-size and the better according to the objective function value is selected
- Path length control via cumulative step-size adaptation (CSA): self-adaptation derandomized and non-localized
- Alternative step-size adaptation mechanism: two-point step-size adaptation, median success rule, population success rule.

UPDATING σ **: PATH LENGTH CONTROL (CSA)**

$$f(x) = \sum_{i=1}^{n} x_i^2$$

in $[-0.2, 0.8]^n$
for $n = 30$

CSA effective and robust for $\lambda < N$.