Algorytm

Jego wygląd zależny jest od:

- Stopnia
- Początkowej długości linii

Jego wygląd zależny jest od:

- Stopnia
- Początkowej długości linii

Jest to fraktal, więc ma powtarzalną strukturę

• **O**- stopień = 3

- **O** stopień = 3
- **O** stopień = 2

- **O** stopień = 3
- **O** stopień = 2
- **O** stopień = 1

- **O** stopień = 3
- **O** stopień = 2
- **O** stopień = 1
- **O** stopień = 0

Drzewo binarne składa się z linii (gałęzi) i dwóch drzew binarnych o stopniu o jeden mniejszym i dwa razy krótszej linii

Konstrukcja algorytmu

• Projektujemy działanie funkcji rysującej Drzewo Binarne:

drzewo_binarne(stopien, dlugosc)

- Funkcja będzie rysować Drzewo Binarne dla danego stopnia i zadanej początkowej długości linii
- Skoro Drzewo Binarne składa się z dwóch Drzew Binarnych o stopniu o jeden mniejszym, to będziemy używać wywołań rekurencyjnych

drzewo_binarne(stopien-1, dlugosc/2)

Konstrukcja algorytmu c.d.

- Jeśli wiemy już jak będziemy korzystać z rekurencji możemy przystąpić do konstrukcji funkcji rekurencyjnej.
- Szczególnie zadbać musimy o to, aby:
 - 1. Rekurencja zatrzymała się w odpowiednim momencie warunek stopu
 - 2. Wywołania rekurencyjne miały odpowiednie wartości parametrów

Ogólny przykład funkcji rekurencyjnej

FREK (parametry)

- 1. [Operacje wstępne]
- 2. Jeżeli (warunek stopu spełniony), to: **STOP**
- 3. Wywołanie rekurencyjne **FREK**(*odpowiednio zmodyfikowane parametry*)
- 4. [Operacje końcowe]

1. Jakie będą parametry funkcji?

- 1. Jakie będą parametry funkcji?
 - Stopień struktury
 - Długość gałęzi

- 1. Jakie będą parametry funkcji?
 - Stopień struktury
 - Długość gałęzi
- 2. Jaki będzie warunek stopu?

- 1. Jakie będą parametry funkcji?
 - Stopień struktury
 - **Długość** gałęzi
- 2. Jaki będzie warunek stopu?
 - stopień = 0
 - Wtedy zaprzestajemy kolejnych wywołań rekurencyjnych

- 1. Jakie będą parametry funkcji?
 - Stopień struktury
 - **Długość** gałęzi
- 2. Jaki będzie warunek stopu?
 - stopień = 0
 - Wtedy zaprzestajemy kolejnych wywołań rekurencyjnych
- 3. Jak będziemy modyfikować parametry w wywołaniu rekurencyjnym?

- 1. Jakie będą parametry funkcji?
 - Stopień struktury
 - **Długość** gałęzi
- 2. Jaki będzie warunek stopu?
 - stopień = 0
 - Wtedy zaprzestajemy kolejnych wywołań rekurencyjnych
- 3. Jak będziemy modyfikować parametry w wywołaniu rekurencyjnym?
 - stopień 1
 - długość / 2

Drzewo Binarne - spostrzeżenia

- Zauważmy, że Drzewo Binarne składa się z linii (gałęzi) oraz dwóch drzew binarnych o stopniu o jeden mniejszym i połowie długości linii
- W takim razie najpierw musimy narysować linię idąc do przodu
- Następnie rysujemy lewe Drzewo Binarne obracamy się w lewo i wykonujemy wywołanie rekurencyjne
- Teraz należy narysować prawe Drzewo Binarne obracamy się więc w prawo i wykonujemy wywołanie rekurencyjne
- Zauważmy, że aby móc narysować lewe i prawe drzewo, musimy po jego narysowaniu wrócić na początek gałęzi – tak więc obracamy się do początkowego ustawienia i wracamy

Drzewo Binarne - algorytm

drzewo_binarne (stopień, długość)

- 1. Idź **do przodu** o długość
- 2. Jeżeli **stopień > 0**, to:
 - 1. Obróć się w **lewo**
 - 2. Wywołaj drzewo_binarne(stopień-1, długość/2)
 - 3. Obróć się w **prawo**
 - 4. Wywołaj drzewo_binarne(stopień-1, długość/2)
 - 5. Obróć się w **lewo** (do początkowego ustawienia)
- 3. Idź **do tyłu** o długość