Number Bases

- 1) All numbers represent a value
- 2) Base (or Radix) defines range of digit values
- 3) Each position carries a weight which is a power of the base

What value is represented by the following number?

10

Base (or Radix) defines range of digit values

Base	Values	
Base 10 (decimal)	0,1,2,3,4,5,6,7,8,9	
Base 2 (binary)	0,1	
Base 8 (octal)	0,1,2,3,4,5,6,7	
Base 16 (hexadecimal)	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F	

```
549_{10}
= 5 \times 10^{2} + 4 \times 10^{1} + 9 \times 10^{0}
= 500 + 40 + 9
= 549_{10}
```

$$10102$$
= 1 x2³ + 0 x2² + 1 x2¹ + 0 x2⁰
= 8 + 0 + 2 + 0
= 1010

$$34_8$$
= $3 \times 8^1 + 4 \times 8^0$
= $24 + 4$
= 28_{10}

```
13_{16}
= 1 x16<sup>1</sup> + 3 x16<sup>0</sup>
= 16 + 3
= 19<sub>10</sub>
```

Exercise: Convert each number to a DECIMAL

value:

11111₂

0101₂

132₈

123₁₆

Powers of 2

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024...

Exercise: Convert each number to a DECIMAL

value:

1010101₂

101101₂

Fractions

$$1111.111_{2}$$
= $1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} \times 1 \times 2^{-3}$

Exercise: What value is represented by the following number?

10101.01₂

Decimal to any Number Base

Divide by Number Base

Example:

35 to Binary 35 to Octal

Binary Octal 000 0 001 1 010 2 011 3 100 4

5

6

7

101

110

111

Octal

BINARY TO OCTAL

- form groups of 3 bits starting from the right.
- Pad on left with zeroes (if needed)
- convert each group to an actual digit

Examples: 110101011011₂

OCTAL TO BINARY

- convert each digit to 3 bit binary
- concatenate

Examples: 735₈

EXERCISES:

Convert to Binary: 45132₈

Convert to Octal: 101110110₂

10110110₂

Hexadecimal

Binary	HexaDecimal	
0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7	
1000	8	
1001	9	
1010	A (10)	
1011	B (11)	
1100	C (12)	
1101	D (13)	
1110	E (14)	
1111	F (15)	

BINARY TO HEXADECIMAL

- form groups of 4 bits starting from the right.
- Pad on left with zeroes (if needed)
- convert each group to an actual digit

Examples: 110101011011₂

HEXADECIMAL TO BINARY

- convert each digit to 4 bit binary
- concatenate

Examples: 735₁₆

EXERCISES:

Convert to Binary: 45132₁₆

Convert to Hexadecimal: 101110110₂

10110110₂

Generalizations

- **n bits** 2ⁿ combinations of 0's and 1's
- number our bits 0 to n-1 from right to left
- Range of n bits = $0 \text{ to } 2^n 1$

Binary N bits	Binary	Decimal
4 bits	00002	0 ₁₀
	1111 ₂	15 ₁₀
8 bits	000000002	0 ₁₀
	11111111 ₂	255 ₁₀