

Advanced Transportation System Studies

Technical Area 3

Alternate Propulsion Subsystem Concepts

NAS8-39210

DCN 1-1-PP-02147

Tripropellant Comparison Study

Task Final Report

DR-4

October 1995

ROCKETDYNE

Rockwell International
Rocketdyne Division

Advanced Transportation System Studies

Technical Area 3

Alternate Propulsion Subsystem Concepts

NAS8-39210

DCN 1-1-PP-02147

**Tripropellant Comparison Study
Task Final Report**

DR-4

October 1995

MSFC/Rocketdyne

Contents

- **Introduction**
- **Summary**
- **Engine Technical Groundrules**
- **Weight Estimating Procedure**
- **Weight Estimate Example**
- **Choice of Weight Baseline**
- **Cycle Options and Turbopump Arrangements**
- **Configuration Choices**
- **Operating Parameter Determination**
- **Engine Weights and Vehicle Performance**
- **Engine Cycle Margins**
- **Conclusions**

Introduction

Alternate Propulsion Subsystem Concepts NRA

Option 2 Status

- September 1994 — December 1995
 - Task 1 — Tripropellant Comparison Study
 - \$200K
 - Final Briefing October 1995
 - Task Final Report Available
 - Final Briefing Plus Additional Backup
 - Gary Johnson (205) 544-0636
 - Task 2 — Reliability, Maintainability, and Operability Assessment
 - \$50K
 - Performed by Rockwell/SSD
 - NASA/MSFC Point-of-Contact
 - Jack Lehner (205) 544-4253
 - Task 3 — Parametric Rocket Engine Cost Modeling
 - \$90K
 - RLV Operations Cost Model
 - Parametric Engine Cost Model – Extended Version
 - Due December 1995

Alternate Propulsion Subsystem Concepts NRA

Tripropellant Comparison Study

Study Objective

- Unbiased, Consistent Data to Draw Out the Inherent Performance Oriented Differences, Benefits and Issues
 - Bipropellant and Tripropellant
 - Engine Implementations

Summary

Tripropellant Comparison Study

Conclusions

- For Newly Designed Engines, Using the Same Groundrules and Technology
- No Significant Differences in Vehicle Dry Weight Performance Between Tripropellant and Bipropellant Engines
 - < 3 % Across Chamber Pressure Range 2,000-5,000 psi
 - Bipropellant Engine Slightly Better
 - Single Chamber and Bell Annular Tripropellant Configurations Similar in Vehicle Performance (< 1 %)
- Much Larger Vehicle Performances Differences Within Any One Engine Configuration Due to Operating Point and Design Choices
 - Mixture Ratio
 - Chamber Pressure
 - Nozzle Exit Pressure
 - Power Cycle
 - Coated versus Uncoated Materials
 - Welded versus Cast
- FFSCC Has Significantly Higher Available Margins Than Staged Combustion Cycle (SCC)
 - For Both Bipropellant and Tripropellant Engines
 - Differences More Pronounced for Tripropellant Engines
 - Inherent Engine Weight Difference ~ 2.5%
 - Favors SCC
 - Applies if Coated Ox Side Or Improved Ox Resistant Materials
 - Strongly Supports the Value of Ox Resistant Material Technology Programs

Engine Technical Groundrules

Tripropellant Comparison Study

Study Objectives

- Produce an “Apples-to-Apples” Comparison of Tripropellant versus Bipropellant Engines for the SSTO Application
 - Option 3 Vehicle
- Isolate the Effects of Tripropellant versus Bipropellant from the Inciditals of Design Implementation
 - Use the Same Design Groundrules
 - Use the Same Design Practices
 - Include the Same Technologies
- Produce Consistent Bipropellant and Tripropellant Databases Usable for Future Efforts
 - Other Evaluations
 - Other Vehicles
 - Other Applications
 - Support – Other Design Factors
 - Mission Evaluations

Tripropellant Configurations

Single Chamber

Annular

Tripropellant Comparison Study

Engine Groundrules

- Sea Level Thrust – 421,000 lb_f
- Fixed Bell Nozzle
- η_{cstar}
 - O₂/H₂ – 0.995 (@ MR = 6.0)
 - O₂/RP – 0.97 (@ MR = 2.6)
 - O₂/H₂/RP – 0.993 (@ MR = 4.4)
 - At 6% H₂
- Step Loss
 - O₂/H₂ as Inner Chamber
 - 1 percent
 - O₂/H₂ as Outer Chamber
 - 1 percent
- Mixing Loss for Separate O₂/H₂ and O₂/RP Streams
 - O₂/H₂ as Inner Chamber
 - 1 percent
 - O₂/H₂ as Outer Chamber
 - 1 percent
- Individual Thruster Interaction (Annular)
 - 0.985
- Engine Life
 - Number of Missions 60
 - Missions Between Overhauls 20

LOX/RP-1 Turbine Nozzle Area Change Characteristics

Tripropellant Comparison Study

Material Groundrules

- Pumps
 - Al for H₂
 - Inco 718 for O₂ and RP
- Turbines
 - RIM-D1 or Astroloy (Rotor), Thermo-Span (Housing) for H₂ Rich Gases
 - Haynes 214 or Inco 718 for O₂ Rich Gases
 - Inco 718 for RP Rich Gases
 - Astroloy for Rotor if Needed for AN2 Capability
- Most H₂ Side Components – Thermo-Span
- Most O₂ Side Components – Haynes 214
- Most RP Side Components – Al or Ti
- Injector and MCC Liner – NARloy
- MCC Closeout – Ni/Co
- Nozzles
 - A286 Tubes
 - Ti Honeycomb Jacket
- Silicon Carbide Reinforced Al
 - Thrust Cone and Gimbal Bearing
 - H₂ Valve Bodies
- Composite with Steel Bushings
 - Gimbal Actuator Attach Bracket, Support Struts for Turbomachinery

Tripropellant Comparison Study

Lessons Learned from Previous Tasks

- From Previous Bipropellant and Tripropellant Efforts
- Competitive Chamber Pressure $\geq 2,000$ psi
- Very High Pressures Possible for Some Closed Cycles but No Vehicle Improvement Above $\sim 5,000 - 6,000$ psi
- Performance Penalty for Open Cycles in Mode 2 is Excessive
- There is an Optimum P_e for a Fixed Nozzle
 - May Differ With Chamber Type
- Minimal or No Engine Weight Penalty for Lower Turbine Inlet Temperatures
- Most Important Performance Parameters
 - Sea Level Thrust/Weight
 - Mode 2 Vacuum I_{sp}
 - Mode 1 Vacuum I_{sp}

Advanced Low-Cost Engines SSTO Performance

Advanced Low Cost Engines

SSTO Performance

Effect of Fuel Turbine Inlet Temperature

FFSCC

TA3-0910a

Effect of Turbine Temperature on SSTO Performance

- Current Task Results
 - New CONSIZ Version
 - New, More Detailed Engine Weight Codes
- Same Shapes and Relationships as Previous Task Results

TA3-0995g

Effect of Sea Level Engine T/W on SSTO Performance

TA3-0940

SSTO Performance Specific Impulse Sensitivities

TA3-0944

Tripropellant Comparison Study

Implications of Lessons Learned

- Chamber Pressures to be Examined
 - $2,000 \leq P_C \leq 6,000$ psi
 - Need Not Examine Low P_C 's Nor The Ultimate Power Limit P_C
- Use Minimum Turbine Inlet Temperatures That Are Necessary
 - Consider Exit Gas Properties
 - Consider Pump Discharge Pressures

Tripropellant Comparison Study

Operating Parameters

	Single Chamber Tripropellant	Bell Annular Tripropellant	O ₂ /H ₂ Bipropellant
MR (T/C), O₂/H₂; O₂/RP	5.0-7.5; 2.6-3.0	5.0-7.5; 2.6-3.0	5-12
Thrust Split	—	Optimize	—
H₂ Flow (Mode 1/Mode 2)	Optimize	—	Optimize
Mode Switch	Optimize	Optimize	Optimize
P_C, psi	2,000 – 6,000	2,000 – 6,000	2,000 – 6,000
Nozzle	Single Fixed	Single Fixed	Single Fixed
P_{exit}	Optimize One Point Then Fix	Optimize One Point Then Fix	Optimize One Point Then Fix
Sea Level Thrust, lb_f	421,000	421,000	421,000
Turbine (Closed Cycles)	Lowest That Works	Lowest That Works	Lowest That Works
Turbine (GG)	1900 °R	1900 °R	1900 °R

Tripropellant Comparison Study

Weight Estimating Procedure

Alternate Propulsion Subsystem Concepts Weight Estimating Procedure

- Engines Reflect a Modest Set of New Technologies
 - All Mid-Term or Nearer
 - Not Very Aggressive in Terms of Materials for Weight Reduction
- New Technologies Used in Engines Resulting From Trade Studies
 - Jet Pump Low Pressure Pumps
 - SLIC™ Turbopumps Where Possible
 - Propellant Duct Gimbal Accommodation on Vehicle Side
 - Laser Igniter
 - EMA Valves
 - Materials
 - Al for H₂ Pump
 - Silicon Carbide Reinforced Al
 - Thrust Cone and Gimbal Bearing
 - H₂ Valve Bodies
 - Composite with Steel Bushings
 - Gimbal Actuator Attach Bracket, Support Struts for Turbomachinery
 - Ti Honeycomb Nozzle Jacket
 - Ni/Co Main Combustion Chamber Closeout

Alternate Propulsion Subsystem Concepts

Weight Groundrules

Materials

- All Material Properties Used are Guaranteed Minimums (Except Al for H₂ Pump)
- 1.2 Limit Load on Pressure then 1.25 on Yield at Operating Temperature
 - More Conservative Than 1.5 on Ultimate
 - Usually More Conservative Than 1.2 Limit Load Followed by 1.5 on Ultimate
 - Most Conservative Method for Materials Used in This Design
- Nozzle Tubes
 - Single Up-pass
 - Nozzle Entrance Mass Flux = 3.0 lbm/(sec-in²)
 - Material – Annealed A286
 - 1.2 on Yield
 - More Conservative than 1.2 Limit Load Followed by 1.5 on Ultimate
 - 51 ksi versus 68 ksi
- Ducts
 - Struts to Jet Pumps and Bottom of Turbopumps to Minimize Moments and Other Loads Carried Through Ducts
 - Varying Minimum Duct and Cast Wall Thicknesses
 - Ducts
 - 0-2 in ID 0.030 in
 - 2-3 in ID 0.045 in
 - 3-6 in ID 0.060 in
 - > 6 in ID 0.072 in
 - Castings
 - Calculated Wall Thickness ≤ 0.125 in
 - Calculated Wall Thickness 0.125 in to 0.250 in
 - Use Calculated Wall Thicknesses Above 0.250 in

Structural

- Struts to Jet Pumps and Bottom of Turbopumps to Minimize Moments and Other Loads Carried Through Ducts
- Varying Minimum Duct and Cast Wall Thicknesses
 - Ducts
 - 0-2 in ID 0.030 in
 - 2-3 in ID 0.045 in
 - 3-6 in ID 0.060 in
 - > 6 in ID 0.072 in
 - Castings
 - Calculated Wall Thickness ≤ 0.125 in
 - Calculated Wall Thickness 0.125 in to 0.250 in
 - Use Calculated Wall Thicknesses Above 0.250 in

Alternate Propulsion Subsystem Concepts Weight Groundrules (Cont'd)

Sizing

- 0.5 in ID Minimum for Any Duct, Line, or Valve
- Liquid Lines Sized for 1.5% Velocity Head Based on Local Pressure
- Gas Lines Sized for 0.14 Mach
 - Except for Manifolds Which are Sized for 0.10 Mach
- Factor of 1.5 Applied to Wall Thickness on Hot Gas Manifolds for Dynamic Loading
- Factors on Ducts and Lines to Match SSME Experience
 - Factor on Calculated Wall Thickness
 - 1.33 for H₂
 - 1.66 for O₂ and RP
 - Factor on Calculated Weight – 1.4 for All Fluids

Misc

- Turbine Bypass Lines on All Turbines (Sized for 20% Preburner Flow)
- Ducts Insulated and Then Covered with Metal Sheath Up to Pumps
- Weight for Purge System (from SSME) for Ground Ops
- Include
 - FASCOS
 - POGO
 - Engine Mounted Controller
 - Line and Nozzle Insulation
 - Nozzle Attachment for Heat Shield
 - Drain Lines with Valves

Tripropellant Comparison Study

Weight Estimate Example

Alternate Propulsion Subsystem Concepts

Weight Estimating Procedure

- Overall Procedure
 - Various Individual Design Procedures Combined at CATIA Assembly Level for Packaging and in Spreadsheet for Weights
- Two Direct Design Procedures are Used
 - CATIA Solid Model (e.g., Hot Gas Manifold)
 - Designed as Individual Component
 - Wall Thickness Calculated
 - Minimums Applied in Model
 - 1.5 Factor for Dynamic Loads Applied to Wall Thickness if Appropriate
 - Solid Volume Returned to Spreadsheet for Weights
 - In Spreadsheet
 - Density used on Solid Volume for Weight
 - 1.02 Factor and 1.05 Factor Applied to Weight
 - CATIA Assembly Model (e.g., Duct)
 - Designed at Assembly Level for Dimensions, Clearances, and Packaging
 - Dimensions Returned to Spreadsheet for Weights
 - In Spreadsheet
 - Wall Thickness Calculated and Minimums Applied
 - Other Subcomponents Calculated (Flanges, Insulation, Insulation Shields, etc.)
 - Weights Calculated from Material Choices and Dimensions
 - Lines and Ducts Corrected to Match SSME Design Practice
- Other Procedures are Used For Some Components and the Procedures May be Combined
 - Scaled (e.g., Valves)
 - Outside Reference (e.g., SSME-100 for Controller)
 - Outside Model or Correlation (e.g., SLIC™ Turbomachinery)
 - Directly from SSME (e.g., Static Seals)

Alternate Propulsion Subsystem Concepts Weight Calculations

<u>Component (on SSME) (% of SSME Weight)</u>	<u>Procedure</u>	<u>Materials</u>
<u>Turbomachinery (24.7%)</u>		
<u>Fuel Turbopump</u>	<u>Outside Correlation from Adv Rotating Machinery (ARMD93-65)</u>	(H ₂) Pump — Al Turbine — RIM-D1 (Rotor) Thermo-Span (Housing) (RP) Pump — Inco 718 Turbine — Inco 718
<u>Fuel Jet Pump</u>	<u>CATIA Solid Model</u>	(H ₂) Inco 903 (RP) Ti-6Al-4V
<u>Ox Turbopump</u>	<u>Outside Correlation from Adv Rotating Machinery (ARMD93-65)</u>	Pump — Inco 718 Turbine — Haynes 214 Inco 718
<u>Ox Jet Pump</u>	<u>CATIA Solid Model</u>	Tubes — A286 Jacket — Ti Honeycomb Manifolds and Flanges — Thermo-Span Insulation — Nextel Ceramic Fiber Blanket (0.5 area)
<u>Nozzle (18.7%)</u>	<u>CATIA Solid Model for Manifolds, Mass flux and Spreadsheet for Tubes, Jacket, and Insulation</u>	
<u>Hot Gas Manifolds/in/Thrust Cone (13.6%)</u>		
<u>Hot Gas Manifolds</u>	<u>CATIA Solid Model</u>	(H ₂) Thermo-Span (RP) Inco 718
<u>Fuel</u>		Transfer Tube, inlet, Ox Injector Dome — Haynes 214 NARloy
<u>Ox</u>	<u>CATIA Solid Model</u>	
<u>Injector</u>	<u>CATIA Solid Model</u>	
<u>Thrust Cone</u>	<u>Scaled from Previous CATIA Solid Model</u>	<u>Silicon Carbide Reinforced Al</u>

Alternate Propulsion Subsystem Concepts Weight Calculations (Cont'd)

<u>Component (on SSME) (% of SSME Weight)</u> <u>(Listed in Order of SSME Weight)</u>	<u>Procedure</u>	<u>Materials</u>
<u>Propellant Ducts (11.8%)</u>		
Fuel (Ducts and Flanges)	CATIA Assembly Model	(H ₂) Inco 903 (RP) Ti-6Al-4V
Ox (Ducts and Flanges)	CATIA Assembly Model	Inco 718
<u>MCC (6.3%)</u>	CATIA Solid Model (Liquid Interface Diffusion Bonding of Cast Manifolds to Liner)	Liner — NARloy Manifolds and Flanges — Thermo-Span Jacket — E.D. Ni/Co
<u>Valves (5.9%)</u>	Scaled from one Existing EMA Valve and Actuator	
<u>Avionics (5.4%)</u>	From STME-100 (22 June 93)	Same as STME
Controller with FASCOs		
<u>Sensors</u>	From Sensor Suite of STME-100 (22 June 93) Minus ASI Sensor and Three Interpropellant Seal Leak Sensors	Same as STME
<u>Harness</u>	Scaled from STME-100 (22 June 93). Scaled on Physical Size Approximated by $(\Gamma_{vac})^{0.5}$	Same as STME
<u>Misc (4.1%)</u>	Scaled as Fraction of System Weight (3.6%). Baseline Percent Determined from SSME	

Alternate Propulsion Subsystem Concepts Weight Calculations (Cont'd)

Component (on SSME) (% of SSME Weight) (Listed In Order of SSME Weight)	Procedure	Materials
<u>Preburners (2.8%)</u> <u>Fuel Body</u>	CATIA Solid Model (Sizes from External Model)	(H ₂) Thermo-Span (RP) Inco 718 NARloy Fuel — Thermo-Span (H ₂) Inco 718 (RP) Ox — Inco 718
<u>Injector Inlets and Flanges</u>	CATIA Solid Model CATIA Assembly Model	
<u>Ox</u>	Body Injector Inlets and Flanges	CATIA Solid Model (Sizes from External Model) CATIA Solid Model CATIA Assembly Model
<u>Gimbals/Bearing (1.5%)</u>	Scaled from SSME on Material Density	Silicon Carbide Reinforced Al
<u>Lines (Interface; Drain, Repress., and Bleed) (1.4%)</u> <u>Fuel</u>	CATIA Assembly Model	(H ₂) Inco 903 (RP) Ti-6Al-4V Inco 718
<u>Ox</u>	CATIA Assembly Model	
<u>Pneumatics (1.1%)</u>	Not Used	Same as SSME
<u>POGO (1.1%)</u>	Scaled from SSME (0.25 of Gas)	
<u>Hydraulics (0.4%)</u>	Not Used	
<u>Heat Exchanger (0.4%)</u>	Autogenous Pressurization Using SSME Single Coil Design	Redundant Laser Igniters
<u>Igniters (0.4%)</u>	Estimate from Combustion Devices	Same as SSME
<u>Purge (0.3%)</u>	Direct from SSME	
<u>Bleed Recirc Pumps (0.1%)</u>	Twice the SSME Weight	Same as SSME
<u>Static Seals (0.1%)</u>	Direct from SSME	Same as SSME

Alternate Propulsion Subsystem Concepts Weight Estimate Example and Comparison

- Bipropellant and Single Chamber Tripropellant
- FFSCC
- Design Point
 - Chamber Pressure – 4,000 psi
 - Sea Level Thrust – 421,000 lbf
- Characteristics
 - Fuel Rich Fuel Turbopump
 - LOX Rich LOX Turbopump
 - Jet Pump Low Pressure Pumps
 - Propellant Duct Gimbal Accommodation on Vehicle Side
 - SLIC™ Turbomachinery
 - Uncooled Powerhead
 - EMA Valves
 - Preburner Injectors Gas/Liq Impinging Jet
 - MCC Injectors Gas/Gas Co-Ax
 - Redundant Laser Igniters
 - Autogenous Pressurization on Both Sides
 - Pump Conditioning Fluid Recirculated to Tank on Both Sides

Tripropellant Comparison Study

Bipropellant/Tripropellant Engine Parameters

	Bipropellant	Tripropellant (Single Chamber)
Cycle Area Ratio	FFSCC	FFSCC
MR – Mode 1	70	64
MR – Mode 2	6.9	4.4
Chamber Pressure, psi	6.9	6.2
Sea Level Thrust	4,000	4,000
Vacuum Thrust	421,000	421,000
Specific Impulse, sec	484,585	477,630
Mode 1 Vac	451.43	406.26
Mode 1 Sea Level	392.19	358.09
Mode 2 Vac	451.43	450.69
Mode 2 Sea Level	392.19	339.18
Mass Flow Fractions, percent		
O2	81.3	81.5
H2	12.7	6.0
RP	—	12.5
Flowrate, lbm/sec		
O2	937.57	957.95
H2	135.88	70.53
RP	—	147.19
Total	1073.45	1175.67
Volume Flowrate, ft ³ /sec		
O2	12.7	13.0
H2	25.1	13.0
RP	—	2.9
Throat Diameter, inches	8.88	8.78
Turbine Temperature, °R		
O2	1,100	1,100
H2	1,150	1,150
RP	—	1,410

Tripropellant Comparison Study

Bipropellant/Tripropellant Engine Weights

	Bipropellant	Component Weights, lbm	Tripropellant (Single Chamber)	Tripropellant (Single Chamber)	Difference (Biprop-Triprop)
Combustion Chamber			485	485	-11
Nozzle	496		565	565	-60
Turbopumps	625		872	872	-189
O2	(562)		(563)	(563)	
H2	(499)		(222)	(222)	
RP	—		(87)	(87)	
Preburners	374		(320)	364	-10
O2	(344)		(24)	(24)	
H2	(40)		(19)	(19)	
RP	—		349	349	-12
Valves			665	665	+42
Ducts	361				
O2	623				
H2	(358)		(358)	(358)	
RP	(265)		(240)	(240)	
Manifolds	460		(67)	597	+137
O2	(198)		(189)	(189)	
H2	(262)		(228)	(228)	
RP	—		(180)		
Controller, Harness, Sensors, Ignition	150		168	168	+18
Structure				258	+6
Misc				168	+3
				<u>4,492</u>	<u>-75</u>
				<u>4,567</u>	

Tripropellant Comparison Study

Observations on Bipropellant/Tripropellant Engine Weights

- Single Chamber Tripropellant Engine is Not a LOX/RP Engine With a Little H₂
- It Is a High Mixture Ratio LOX/H₂ Engine with Some RP
 - Observe the Volumetric Flows
- Both Engines Have Essentially the Same Throat Area
 - Same Pressure
 - Slightly Higher Flowrate of Tripropellant Burned Gases Offset by Slightly Higher Molecular Weight
 - Effect is That the Chamber and the Nozzle (at the Same Area Ratio) Must Weigh About the Same
- Those Components Most Associated with Volumetric Flows Slightly Favor the Tripropellant
 - Chamber, Preburners, Valves (Main H₂ Valve), and Most Especially the Turbopumps
- Those Components Most Associated with Numbers of Different Flows Slightly Favor the Bipropellant
 - Ducts, Manifolds, Sensors
- Overall, It Should Not be Surprising That the Bipropellant and the Single Chamber Tripropellant Weigh About the Same for the Same Thrust and Chamber Pressure

Tripropellant Comparison Study

Effect of Engine Weight Changes

- Changes to Design Practices, Groundrules, or Technology Levels
- Impact Absolute Value, Not Relative Value
 - Engine Weight
 - Vehicle Dry Weight
- Because Engine Weights and Relative Component Group Weights are Similar

Consequently Such Changes Do Not Impact
Tripropellant/Bipropellant Comparisons

92.18 Ts/W
106.10 Tvac/W**4,567 lbs****TOTAL**

Bolts & Misc. parts	165
Structure	252
Controller, Harnesses, Sensors, & Ignition	150
Fuel Hot Gas Manifold	262
Thermo-Span	198
Haynes 214	262
includes repress., pump recir., drain, pogo systems, & O2 hrs	262
OXID	623
Thermo-Span	623
INCO 718	623
includes repress., pump recir., drain, & cryo purge	623
FUEL	265
INCO 903	265
includes repress., pump recir., drain, & cryo purge	265
Propellant Ducts	361
Valves	361
Pre-Burners	374
Thermo-Span	374
Haynes 214	374
FPP	40
Thermo-Span	40
Haynes 214	40
HPP	499
SLC	499
INCO 718	499
Thermo-Span	499
RIM-D1, A286 TMP	499
TurboPumps	562
SLC	562
INCO 718	562
Thermo-Span	562
RIM-D1, A286 TMP	562
HPOP	1061
SLC	1061
INCO 718	1061
Thermo-Span	1061
RIM-D1, A286 TMP	1061

Main Combustion Chamber	496
with injector and liner	496
CR = 2.92	496
NICO	496
NARloy	496
A-286	496
Titanium	496
Regenerative Cooled Nozzle	625
NICO	625
A-286	625
Thermal insulation	625
TurboPumps	1061
SLC	1061
INCO 718	1061
Thermo-Span	1061
RIM-D1, A286 TMP	1061

DUAL MIXED PRE-BURNERS
-H2/O2 Core PC = 4000 **Nozzle exp. ratio 70**

- Sea Level Thrust** **421,000**

- Vacuum Thrust** **484,585**

Weight Breakdown

Advanced Booster Engine 4K PC O2/H2

Alternate Propulsion Subsystem Concepts

Weight Estimate Example

Weight Comparison to SSME

Component Area	SSME Weights, lbm	Adv Low Cost Eng Weights, lbm	Difference lbm	Rationale
Turbomachinery	1,725.00	1,218.67	(506.33)	SLIC™, Jet Pumps, mixture ratio
Nozzle	1,310.54	625.30	(685.24)	Essentially same weight on equal surface area basis (1.371), Ti honeycomb jacket, lower hydrogen flowrate
Hot Gas Manifolds/Inj/Thrust Cone	953.00	689.76	(263.24)	
Propellant Ducts	822.91	351.12	(471.79)	Gimbal flex accommodation on vehicle side, Jet Pump, shorter lines and routing, mixture ratio
MCC	438.54	399.71	(38.83)	
Valves	410.62	361.35	(49.27)	Uses EMA Valves. Includes Valves and Actuators
Avionics	375.00	143.64	(231.36)	Controller with FASCOs
Misc	289.30	158.71	(130.59)	Proportional to weight (3.6%)
Preburners	195.75	373.99	178.24	Ox rich operation, both flows as gas
Gimbal Bearing	105.00	65.32	(39.68)	From Ti to Si carbide reinforced Al
Lines (Interface)	95.32	56.75	(38.57)	Simplified routing, combined recirc and repressurization, less drain
Pneumatics	76.90	0	(76.90)	EMA valves
POGO	75.13	40.65	(34.48)	Stiffer System, 25% SSME gas
Hydraulics	30.32	0	(30.32)	EMA Valves
Heat Exchanger	26.00	26.00	0	Part of LOX rich preburner
Igniters	26.00	6.00	(20.00)	Laser Igniters
Purge	24.39	24.39	0	Left in for ground Ops
Bleed Recirc Pumps	10.00	20.00	10.00	Add to LOX side
Static Seals	6.00	6.00	0	
	6,995.72	4,567.36	(2,428.36)	

Weight Comparison by Component Area

Components

Tripropellant Comparison Study

Choice of Weight Baseline

Alternate Propulsion Subsystem Concepts

Choice of Weight Baseline Approaches

- Approaches to Manufacturing and Operations Can Significantly Affect Engine Weight
- Current State-of-the-Practice
 - Coatings for Turbines
 - Welded Construction
- Approaches
 - Minimize Welds – Use Castings
 - Lower Strength Material Properties – Increased Weight
 - Use Materials Which Do Not Need Coatings
 - Poorer Material Properties
 - Lower AN2 Limit – Lower T/P RPM, Increased Weight
 - Lower Strength – Increased Weight
 - RIM-D1 for H₂ Rich Turbine Rotor
 - Thermo-Span for H₂ Rich Turbine Housing, Hot Gas Manifold, Preburner Body
 - Welded
 - Haynes 214 or Inco X-750 for O₂ Rich Turbine Rotor, Housing, Hot Gas Manifold, Preburner Body
 - Cast or Welded

Tripropellant Comparison Study

Sample Case for Design Practice Study

- Bipropellant
- FFSCC
- $MR = 6.0$
- Nozzle Exit Pressure = 4.0
- Turbine Temperatures
 - Fuel — 1100°R
 - Oxidizer — 1100°R

Weight Baseline – Design Choice Effects

No Coatings (Haynes 214)	5,184 lbm	No Coatings (Inco X-750)	5,065 lbm	Coated*	• Max Cast***
No Coatings (Haynes 214)	4,781 lbm	Some Coatings	4,662 lbm	Chosen Baseline	<ul style="list-style-type: none"> • Ox Turbine Rotor • LOX Pump Housing • Fuel Preburner • Some Welded: Fuel T/P
No Coatings (Inco X-750)	4,662 lbm	Some Coatings	4,552 lbm	Fuel Side Not Coated	<ul style="list-style-type: none"> • Ox Turbine Rotor • LOX Pump Housing • Fuel Preburner • Fuel Hot Gas Manifold • Coolant Manifolds • Fuel Hot Gas Manifold • Coolant Manifolds • LOX Pump Housing • Fuel Preburner • Some Welded: Fuel T/P
No Coatings (Inco X-750)	4,660 lbm	No Coatings (Si ₃ N ₄)	4,660 lbm	Coated*, Welded	<ul style="list-style-type: none"> • Max Cast***
No Coatings (Si ₃ N ₄)	4,391 lbm	Coated*, Welded	4,256 lbm	Note:	1,523 lbm Weight Delta (+18.1%, -16.6%)
No Coatings (Si ₃ N ₄)	4,090 lbm	Baseline Engine: Full Flow Mixed Preburner	4,000 psi, Cycle, Bipropellant O ₂ /H ₂ , P _C = 4,000 psi	Represents a ~17% Dry Vehicle Weight Band	Represents a ~17% Dry Vehicle Weight Band
No Coatings (Si ₃ N ₄)	3,661 lbm	No Coatings (Si ₃ N ₄)	3,661 lbm	Coated Components	<ul style="list-style-type: none"> • Max Cast*** • Si₃N₄ Used for Fuel and Preburners
No Coatings (Si ₃ N ₄)	** Fuel Turbopump Not Cast	Turbine Housing	Hot Gas Manifold	Preburner	Preburner

Weight Baseline – Design Choice Effects

No Coatings (Haynes 214)	5,184 lbm	No Coatings (Inco X-750)	5,065 lbm	Coated*, Welded	4,662 lbm	Some Coatings	4,662 lbm	No Coatings (Inco X-750)	4,662 lbm	Coated*, Welded	4,391 lbm	No Coatings (Si ₃ N ₄)	4,256 lbm	Some Coatings	4,552 lbm	No Coatings (Si ₃ N ₄)	4,461 lbm	Fuel Side Not Coated	4,391 lbm	No Coatings (Si ₃ N ₄)	4,090 lbm	Baseline Engine: Full Flow Mixed Preburner	4,000 psi, Cycle, Bipropellant O ₂ /H ₂ , P _c = 4,000 psi,	Nozzle Exit Pressure = 4 psi, MR = 6.0	* Coated Components	Turbine Rotor	Hot Gas Manifold	Preburner	** Fuel Turbopump Not Cast								
No Coatings (Haynes 214)	4,781 lbm	No Coatings (Inco X-750)	4,662 lbm	Some Coatings	4,662 lbm	No Coatings (Inco X-750)	4,660 lbm	No Coatings (Si ₃ N ₄)	4,660 lbm	Some Coatings	4,552 lbm	No Coatings (Si ₃ N ₄)	4,391 lbm	Coated*	4,391 lbm	No Coatings (Si ₃ N ₄)	4,090 lbm	Baseline Engine: Full Flow Mixed Preburner	4,000 psi, Cycle, Bipropellant O ₂ /H ₂ , P _c = 4,000 psi,	Nozzle Exit Pressure = 4 psi, MR = 6.0	* Coated Components	Turbine Rotor	Hot Gas Manifold	Preburner	** Fuel Turbopump Not Cast												
No Coatings (Haynes 214)	5,054 lbm	No Coatings (Inco X-750)	5,065 lbm	Coated*	5,184 lbm	No Coatings (Haynes 214)	5,184 lbm	No Coatings (Inco X-750)	5,184 lbm	No Coatings (Haynes 214)	5,054 lbm	No Coatings (Si ₃ N ₄)	4,660 lbm	Some Coatings	4,662 lbm	No Coatings (Inco X-750)	4,662 lbm	Some Coatings	4,662 lbm	No Coatings (Inco X-750)	4,662 lbm	Some Coatings	4,662 lbm	No Coatings (Si ₃ N ₄)	4,391 lbm	Coated*	4,391 lbm	No Coatings (Si ₃ N ₄)	4,090 lbm	Baseline Engine: Full Flow Mixed Preburner	4,000 psi, Cycle, Bipropellant O ₂ /H ₂ , P _c = 4,000 psi,	Nozzle Exit Pressure = 4 psi, MR = 6.0	* Coated Components	Turbine Rotor	Hot Gas Manifold	Preburner	** Fuel Turbopump Not Cast
No Coatings (Haynes 214)	4,662 lbm	No Coatings (Inco X-750)	4,662 lbm	Some Coatings	4,662 lbm	No Coatings (Inco X-750)	4,662 lbm	No Coatings (Si ₃ N ₄)	4,662 lbm	No Coatings (Si ₃ N ₄)	4,662 lbm	No Coatings (Si ₃ N ₄)	4,391 lbm	Coated*	4,391 lbm	No Coatings (Si ₃ N ₄)	4,090 lbm	Baseline Engine: Full Flow Mixed Preburner	4,000 psi, Cycle, Bipropellant O ₂ /H ₂ , P _c = 4,000 psi,	Nozzle Exit Pressure = 4 psi, MR = 6.0	* Coated Components	Turbine Rotor	Hot Gas Manifold	Preburner	** Fuel Turbopump Not Cast												
No Coatings (Haynes 214)	4,391 lbm	No Coatings (Si ₃ N ₄)	4,391 lbm	Coated*	4,391 lbm	No Coatings (Si ₃ N ₄)	4,391 lbm	No Coatings (Si ₃ N ₄)	4,391 lbm	No Coatings (Si ₃ N ₄)	4,391 lbm	No Coatings (Si ₃ N ₄)	4,090 lbm	Coated*	4,090 lbm	No Coatings (Si ₃ N ₄)	4,090 lbm	Baseline Engine: Full Flow Mixed Preburner	4,000 psi, Cycle, Bipropellant O ₂ /H ₂ , P _c = 4,000 psi,	Nozzle Exit Pressure = 4 psi, MR = 6.0	* Coated Components	Turbine Rotor	Hot Gas Manifold	Preburner	** Fuel Turbopump Not Cast												

Weight Baseline – Design Choice Effects

Alternate Propulsion Subsystem Concepts Engine Weight – Design Choice Effects

		Weight	Delta Weight
	Current Practice (Welded, Coated)	4,391 lbm	
	No Fuel Coatings, Welded	4,461 lbm	+ 70 lbm
Cast,	No Fuel Coatings	5,054 lbm	+ 663 lbm
	No Fuel or Ox Coatings – Haynes 214	5,184 lbm	+ 793 lbm
	No Fuel or Ox Coatings – Inco X-750	5,065 lbm	+ 674 lbm
Welded,	No Fuel or Ox Coatings – Haynes 214	4,781 lbm	+ 390 lbm
	No Fuel or Ox Coatings – Inco X-750	4,662 lbm	+ 271 lbm

	Weight Penalty
Welded	
Fuel Uncoated	70 lbm
Ox Uncoated – Haynes 214	314 lbm
Ox Uncoated – Inco X-750	195 lbm
Fuel and Ox Uncoated – Haynes 214	390 lbm
Fuel and Ox Uncoated – Inco X-750	271 lbm
Maximum Use of Castings	
Coated	638 lbm
Fuel Uncoated	663 lbm
Ox Uncoated – Haynes 214	768 lbm
Ox Uncoated – Inco X-750	649 lbm
Fuel and Ox Uncoated – Haynes 214	793 lbm
Fuel and Ox Uncoated – Inco X-750	674 lbm

Bipropellant, FFSCC, 4000 psi Chamber Pressure, MR = 6, P_e = 4 psi

Bipropellant O₂/H₂ Engines

Engine Weights – FFSCC

421,000 lbf Sea Level Thrust
MR = 6.0
P_e = 4.0 psi

Case 4 — Current State-of-the-Practice
 Coated GOX Components, Welded

Case 2 — No Coatings, Some Welds:
 Fuel T/P
 Fuel Preburner
 Fuel Hot Gas Manifold
 Coolant Manifolds
 LOX Pump Housing

Case 1 — No Coatings, Mostly Cast
 (Fuel T/P not Cast)

- FFSCC (1100/1100R)-Case 4
- FFSCC (1100/1100R)-Case 2
- ▲ FFSCC (1100/1100R)-Case 1

TA3-0950a

Alternate Propulsion Subsystem Concepts

Choice of Weight Baseline

Conclusions

- Use Materials Which Do Not Need Coatings for H₂ Rich Gases
 - Major Operations Gain, Minimal Weight Penalty
- Use Materials Which Do Not Need Coatings for O₂ Rich Gases
 - Operations Improvement Too Important to Not Use
 - Significant Weight Penalty
- Use Welded Construction for Many Parts
 - Only Way to Recover Part of the No Coating Weight Penalty
- Si₃N₄ as Structural Material for Ducts and Housings
 - Not Used in Current Baseline
 - Too Far in Future
- Pursue Technology Programs to Increase the Strength of Oxygen Resistant Materials
 - Appears Very Feasible

Cycle Options and Turbopump Arrangements

Tripropellant Comparison Study

Currently Proposed Engines

- No Currently Proposed Tripropellant Engine Represents an Optimized Clean Sheet of Paper Tripropellant Engine Design
- All Attempt to Use Some Existing Hardware or Are Derived From, and Thus Constrained by, Existing Engines
 - RS-2000
 - RD-704
 - RD-0120TP
- A Clean Sheet Design Will Not Necessarily Resemble Any of Them

Alternate Propulsion Subsystem Concepts

Closed Cycle Thermodynamic Capabilities

<u>Cycle</u>	<u>Added Energy (Combustion)</u>	<u>Flows Used</u>	<u>Propulsion Weight</u>
<u>Fuel Side</u>	<u>Oxidizer Side</u>	<u>Fuel</u>	<u>Oxidizer</u>
Dual, Mixed Preburners	✓	✓	✓
Dual, Fuel (or Ox) Rich Preburners	✓	✓	Part
Single Preburner/ Expander	—	—	Part
Single Preburner Expander	—	✓	Part
Expander	—	—	None

Highest → Lowest

Bipropellant Engine Cycles

FFSCC Mixed Preburner Engine
Regen Cooled MCC and Nozzle

SCC Dual Fuel-Rich Preburner Engine
Regen Cooled MCC and Nozzle

Hybrid Cycle Engine
(Fuel Side Preburner, On Side Expander)
Regen Cooled MCC and Nozzle

Inverse Hybrid Cycle Engine
(On Side Preburner, Fuel Side Expander)
Regen Cooled MCC and Nozzle

Gas Generator Cycle
Regen Cooled MCC and Nozzle

Fan Expander Cycle Engine
Regen Cooled MCC and Nozzle

Tripropellant Comparison Study

Potential Engine Cycles

- **Closed Cycles**

- **FFSCC**
 - Uses Both Fuel Rich and Ox Rich Preburners
- **SCC**
 - Uses Either Fuel Rich Or Ox Rich Preburners, Not Both
- **Hybrid Cycle**
 - Uses Fuel Rich Preburner for Fuel Side and Expander for Ox Side
- **Inverse Hybrid**
 - Uses Ox Rich Preburner for Ox Side and Expander for Fuel Side
- **Expander**
 - Uses Expander for Both Fuel and Ox Sides

- **Open Cycles**

- **GG**
 - Uses a Gas Generator for Both Fuel and Ox Sides

Tripropellant Comparison Study

Potential Engine Cycles

- **For a Tripropellant Engine These Cycles can be Mixed**
 - Different Cycles Can be Used for the O₂/RP System than for the O₂/H₂ System
 - Additionally Various Turbopumps and Preburners/GGs Can be Shared Between the O₂/RP and the O₂/H₂ Systems
- **Consequently the Number of Potential “Cycles” is Very Large**
- **Since the Study Objective is to Compare the Best Potential Tripropellant Implementations to the Best Potential Bipropellant Implementations**
- **The Study Will be Limited to Only Those Cycles with the Best Expected Combination of Specific Impulse and Engine Weight**

Tripropellant Comparison Study

Basic Cycle Choices

- From the Separately Reported Bipropellant Study Completed Earlier in the Contract
 - Without Engine Margin Considerations
 - Three Cycles Competitive
 - FFSCC
 - SCC
 - Hybrid
 - Two Cycles Maximum Chamber Pressure ~2,000 psi
 - Inverse Hybrid
 - Expander
 - Common Thread
 - Cycles with the Highest Horsepower Pumps Driven by Expander Cycle Cannot Reach Competitive Chamber Pressures
 - Power Limited at Too Low a P_c
- With Engine Margin Considerations
 - FFSCC Very Robust
 - Fuel Rich SCC Turbine Temperatures Become High
 - Hybrid Cycle Turbine Temperatures Marginal Even Before Margins
- Conclusion
 - Examine Only FFSCC, SCC, and Hybrid
 - Hybrid Only With H_2 Driven RP Pump

Tripropellant Comparison Study

Cycle Considerations

- Primary Performance Parameters
 - Engine Sea Level Thrust/Weight
 - Mode 2 Vacuum Specific Impulse
 - Mode 1 Vacuum Specific Impulse
- All Cycle Selection Choices Should be Based on Their Impact on These Parameters
- One Simplifying Limitation
 - No RP in Mode 2
 - I_{sp} Loss in Mode 2
 - No Sea Level Weight Improvement Except in Single Preburner Case
 - Then Probably Offset by Additional Ducting and Hot Gas Valves

SSTO Performance Impact of RP in Mode 2

Mode 2 Vacuum Specific Impulse Loss, sec

TA3-0943

Tripropellant Comparison Study

Numbers of Preburners

- All Staged Combustion Cycles Can Have Up to Four Preburners
- FSSCC Must Have at Least Two Preburners
- SCC Can Have as Few as One Preburner for the Whole Engine

Preburner Configuration	Pros	Cons
One Per Turbine	<ul style="list-style-type: none">Less Hot Gas DuctingMore Flexible PackagingAvoid Hot Gas ValvesBetter ControlAvoids Additional Complexity of Tripropellant Preburner While Minimizing Turbine TempsPossibly Least Weight	<ul style="list-style-type: none">More PreburnersMore, Smaller Feed ValvesMore Complex Start
One per Engine	<ul style="list-style-type: none">Less PreburnersLess Feed ValvesLess Complex Start	<ul style="list-style-type: none">More Hot Gas DuctingLess Flexible PackagingHot Gas ValvesMore Difficult Control For Fuel Rich-Forces Either Higher Turbine Temps or More Complex Tripropellant PreburnerPossibly Most Weight
One for O ₂ /H ₂ One for O ₂ /RP	<ul style="list-style-type: none">Mix of Both of the Above	

- Baseline
 - Make No Specific Attempt to Minimize Number of Preburners
- Argument Does Not Apply to GGs

Tripropellant Comparison Study

Cooling Circuits

- Potential Options
 - H₂, RP, O₂ in Any Combination
- However
 - H₂ is the Most Efficient Coolant and Will Always be Used for Some of the Cooling
 - Each Fluid Used as a Coolant Must be Pumped to a Higher Pressure
 - Fuel and Oxidizer Coolants Used Together Pose Potential Operability Problems
- Consequently
 - Baseline H₂ as Only Coolant Used
 - Use Additional Coolants If, and Only If, Advantageous

Alternate Propulsion Subsystem Concepts

Tripropellant Configuration Study

Combined Mode 1/Mode 2 Oxygen Pump

- Single Chamber
 - Weight Impact
 - Single Versus Two Pumps +35 lbm
 - Extra Manifolding 0 lbm
 - Hot Gas Valve 0 lbm
 - Some Constraints on Pump Operating Map
 - Mode 2 Head -52%
 - Mode 2 Flow -56%
- Bell Annular
 - Weight Impact
 - Single Versus Two Pumps +35 lbm
 - Extra Manifolding +11 lbm
 - Hot Gas Valve +177 lbm
 - Major Constraints on Pump Operating Map
 - Mode 2 Head ~ Equal
 - Mode 2 Flow -72%
- Conclusions
 - Single Chamber
 - Use Combined Mode 1/Mode 2 Oxygen Pump Whenever Possible
 - Bell Annular
 - Do Not Use Combined Mode 1/Mode 2 Oxygen Pump at All

Tripropellant Comparison Study

Resulting Baseline Cycle Groundrules

- **Closed Cycles Limited to FFSCC, SCC, and Hybrid Cycle Variants**
 - **Hybrid Cycle Limited to H₂ Driven RP Pump**
- **No RP in Mode 2**
- **H₂ Used as Primary Coolant**
- **Preburners**
 - **No Attempt to Minimize Number of Preburners**
 - **One Preburner per Turbine May be Ideal**
 - **Use H₂ for Ox Rich Preburners Where Available**
 - **For Fuel Rich Preburners**
 - **Use H₂, Then RP, Then Tripropellant**

Tripropellant Comparison Study

Cycle Classes Included

- FFSCC (cf. RS-2000)
 - Fuel Rich SCC (cf. RD-0120TP)
 - Ox Rich SCC (cf. RD-704)
 - Hybrid Cycle
 - Limited - H₂ Driven RP Pump
 - GG
 - Bipropellant Only
 - Within Each Cycle Class
 - Many Turbomachinery and Preburner Options

Tripropellant Comparison Study

Selected Engine Cycles

Tripropellant Comparison Study

Configuration Choices

Alternate Propulsion Subsystem Concepts

Tripropellant Configuration Study

Weight Baseline Used

- No Coatings
 - H₂ Rich
 - RIM-D1 Turbine Rotor
 - Thermo-Span Turbine Housing, Hot Gas Manifold, Preburner Body
 - RP Rich
 - Inco 718 Turbine Rotor, Housing, Hot Gas Manifold, Preburner Body
 - O2 Rich
 - Haynes 214 Turbine Rotor, Housing, Hot Gas Manifold, Preburner Body
 - Welded
 - Fuel Turbopumps, Hot Gas Manifolds, Preburner Bodies
 - Coolant Manifolds
 - LOX Pump
 - Hydrogen and Oxygen Ducting
 - Cast
 - Ox Rich Turbine, Hot Gas Manifold, Preburner Body
 - RP Ducts

Tripropellant Comparison Study

FFSCC Cases

	H_2	RP	Mode 1	O_2	Mode 2	SC	Annular
FFSCC-1	H_2 Rich	RP Rich	O_2 Rich	O_2 Rich	—	—	✓ G/G G/G
FFSCC-2	H_2 Rich	RP Rich	—	O_2 Rich	Combined O_2 Pump	✓ G/G/G G/G	—
FFSCC-3	H_2 Rich	—	O_2 Rich	—	O_2 Rich	✓ G/L/G G/G	✓ L/G G/G
FFSCC-4	H_2 Rich	—	—	O_2 Rich	Single Shaft Combined O_2 Pump	✓ G/L/G G/G	—
FFSCC-5	H_2 Rich	—	H_2 Rich	O_2 Rich	—	—	✓ L/G G/G
FFSCC-6	H_2 Rich	—	H_2 Rich	—	O_2 Rich	Combined O_2 Pump	✓ G/L/G G/G

✓ Applicable
 — Not Applicable
 SC Single Chamber

$H_2/RP/O_2$
 X/X/X Mode 1
 X/X/X Mode 2

Tripropellant Configuration Study FFSCC-1(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-25-84

TA3-0801

Tripropellant Configuration Study FFSCC-2(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-24-94

TA3-0802

Tripropellant Configuration Study FFSCC-3(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-24-94

TA3-0804

Tripropellant Configuration Study FFSCC-3(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-24-94

TA3-0805

Tripropellant Configuration Study

FFSCC-4(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-24-84

TA3-0866

Tripropellant Configuration Study FFSCC-5(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

Tripropellant Configuration Study FFSCC-6(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-25-94

TA3-0809

Tripropellant Comparison Study

FFSCC Cases

Cycle (Relative Weight) (SC/Annular)	H ₂ (Tur Temp, °R)	RP (Tur Temp, °R)	Mode 1 (Tur Temp, °R)	O ₂ Mode 2 (Tur Temp, °R)	SC	Annular
✓ FFSCC-1 (— / 1.000)	H ₂ Rich 1,100	RP Rich 1,394	O ₂ Rich 1,100	O ₂ Rich 1,100	—	✓ G/G G/G
✓ FFSCC-2 (1.000 / —)	H ₂ Rich 1,100	RP Rich 1,400	→ O ₂ Rich Combined O ₂ Pump 1,100	→ O ₂ Rich 1,100	✓ G/G/G G/G	—
FFSCC-3 (1.040 / 1.050)	H ₂ Rich 1,100/1,100	→ O ₂ Rich Single Shaft 1,100/1,185	→ O ₂ Rich 1,100/1,100	→ O ₂ Rich 1,100	✓ G/L/G G/G	✓ L/G G/G
FFSCC-4 (1.061 / —)	H ₂ Rich 1,100	→ O ₂ Rich Single Shaft Combined O ₂ Pump 1,100	→ O ₂ Rich 1,100	→ O ₂ Rich 1,100	✓ G/L/G G/G	—
FFSCC-5 (— / 1.024)	H ₂ Rich 1,555	H ₂ Rich 1,100	O ₂ Rich 1,100	O ₂ Rich 1,100	—	✓ L/G G/G
FFSCC-6 (1.010 / —)	H ₂ Rich 1,172	H ₂ Rich 1,100	→ O ₂ Rich Combined O ₂ Pump 1,100	→ O ₂ Rich 1,100	✓ G/L/G G/G	—
	✓ — SC	Applicable Not Applicable Single Chamber	MCC Injection G Gas L Liquid	H ₂ /RP/O ₂ X/X/X X/X/X	Mode 1 Mode 2	TAS-0746e

Alternate Propulsion Subsystem Concepts FFSCC Cases

- Baseline Turbomachinery/Preburner Arrangement Selection
- Single Chamber
 - FFSCC-2
 - Lightest Weight
 - Only Single Chamber System With No Vehicle He Flow
- Bell Annular
 - FFSCC-1
 - Lightest Weight
 - Only Bell Annular System With No Vehicle He Flow

Tripropellant Comparison Study

Ox Rich SCC Cases

	H ₂	RP	O ₂	Mode 1	Mode 2	SC	Annular
ORSCC-1	O ₂ Rich	O ₂ Rich	O ₂ Rich	O ₂ Rich	—	—	✓ L/G G/G
ORSCC-2	O ₂ Rich	O ₂ Rich	O ₂ Rich	→ O ₂ Rich Combined O ₂ Pump	→ O ₂ Rich Combined O ₂ Pump	—	✓ G/L/G G/G
ORSCC-3	O ₂ Rich	O ₂ Rich	O ₂ Rich	→ O ₂ Rich Single Shaft	→ O ₂ Rich	—	✓ L/G G/G
ORSCC-4	O ₂ Rich	O ₂ Rich	O ₂ Rich	→ O ₂ Rich Single Shaft Combined O ₂ Pump	→ O ₂ Rich Single Shaft Combined O ₂ Pump	—	✓ G/L/G G/G

✓ Applicable
 — Not Applicable
 SC Single Chamber

H ₂ /RP/O ₂	X/X/X	Mode 1
MCC Injection	G Gas	X/X/X
L Liquid	L	Mode 2

Tripropellant Configuration Study

ORSCC-1(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-27-94

TA3-0822

Tripropellant Configuration Study ORSSCC-2(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-27-04

TA3-0823

Tripropellant Configuration Study ORSCC-3(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-27-94

TA3-0824

Tripropellant Configuration Study ORSCC-4(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

TA3-0825

Tripropellant Comparison Study

Ox Rich SCC Cases

Cycle (Relative Weight) (SC/Annular)	H ₂ (Tur Temp, °R)	RP (Tur Temp, °R)	O ₂		SC	Annular
			Mode 1 (Tur Temp, °R)	Mode 2 (Tur Temp, °R)		
ORSCC-1 (— / *)	O ₂ Rich	O ₂ Rich	O ₂ Rich	O ₂ Rich	—	✓ L/G G/G
ORSCC-2 (1.000 / —)	O ₂ Rich 1,633	O ₂ Rich 1,511	→	O ₂ Rich Combined O ₂ Pump 1,519	✓ G/L/G G/G	—
ORSCC-3 (— / *)	O ₂ Rich	→	O ₂ Rich Single Shaft	→	O ₂ Rich	— L/G G/G
ORSCC-4 (1.054 / —)	O ₂ Rich 1,616	→	→	O ₂ Rich Single Shaft Combined O ₂ Pump 1,612	✓ G/L/G G/G	—

* Turbine Temperatures Excessive
 Pri Ox – 2,284°R
 Pri Fuel – 2,287°R

H₂/RP/O₂
 Mode 1
 X/X/X
 Mode 2
 X/X/X

MCC Injection
 Not Applicable
 Single Chamber
 SC

G Gas
 L Liquid

Alternate Propulsion Subsystem Concepts

ORSCC Cases

- Baseline Turbomachinery/Preburner Arrangement Selection
- H₂ Pump's Turbine is Coated
 - Haynes 214 AN² Capability Much Too Low at Temperature Needed
- Single Chamber
- ORSCC-2
 - Lightest Weight
 - Other Option Also Has He Usage
- Bell Annular
- No Viable Configuration for Ox-Rich Cycle
 - Primary Ox and Fuel Turbine Temperatures Too High
 - ~2,280°R
 - No Way to Use Secondary Ox for Primary Power Requirements

Tripropellant Comparison Study

Fuel Rich SCC Cases

	H_2	RP	Mode 1	Mode 2	SC	Annular
FRSCC-1	H_2 Rich	H_2 Rich	H_2 Rich	H_2 Rich	—	✓ L/L G/L
FRSCC-2	H_2 Rich	H_2 Rich	→ H_2 Rich Combined O ₂ Pump	→ H_2 Rich Combined O ₂ Pump	✓ G/L/L G/L	✓ L/L G/L
FRSCC-3	H_2 Rich	→ H_2 Rich Single Shaft	→ H_2 Rich	→ H_2 Rich	✓ G/L/L G/L	✓ L/L G/L
FRSCC-4	H_2 Rich	→ H_2 Rich Single Shaft Combined O ₂ Pump	→ H_2 Rich Single Shaft Combined O ₂ Pump	→ H_2 Rich Single Shaft Combined O ₂ Pump	✓ G/L/L G/L	✓ L/L G/L
FRSCC-5	H_2 Rich	RP Rich	RP Rich	H_2 Rich	✓ G/G/L G/L	✓ G/L G/L
FRSCC-6	H_2 Rich	→ RP Rich Combined O ₂ Pump	→ RP Rich Combined O ₂ Pump	H_2 Rich	✓ G/G/L G/L	✓ G/L G/L
FRSCC-7	Tripropellant	Tripropellant	→ Tripropellant Combined O ₂ Pump	→ Tripropellant Combined O ₂ Pump	✓ G/G/L G/L	—
	✓ — sc	Applicable Not Applicable Single Chamber	MCC Injection Gas Liquid	H ₂ /RP/O ₂ X/X X/X	Mode 1 Mode 2 Mode 1 Mode 2	

Tripropellant Configuration Study

FRS-CC-1(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-27-94

TA3-0811

Tripropellant Configuration Study FRSCC-2(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-27-94

TA3-0812

Tripropellant Configuration Study

FRSCC-2(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-27-04

Tripropellant Configuration Study

FRSCC-3(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-27-94

TA3-0814

Tripropellant Configuration Study

FRS3C-3(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-27-04

TA3-0815

Tripropellant Configuration Study

FRSCC-4(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-27-94

TA3-0816

Tripropellant Configuration Study

FRSCC-4(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-27-94

TA3-0817

Tripropellant Configuration Study FRSSCC-5(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-27-94

TA3-0818

Tripropellant Configuration Study

FRSCC-5(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-27-84

TA3-0619

Tripropellant Configuration Study

FRSCC-6(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-27-94

TA3-0820

Tripropellant Configuration Study

FRS-CC-6(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-27-94

TA3-0821

Tripropellant Configuration Study

FRSCC-7(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

Tripropellant Comparison Study

Fuel Rich SCC Cases

Cycle (Relative Weight) (SC/Annular)	H ₂ (Tur Temp, °R)	RP	Mode 1 (Tur Temp, °R)	O ₂ Mode 2 (Tur Temp, °R)	SC		Annular
					—	—	
FRSCC-1 (— / *)	H ₂ Rich 1,825	H ₂ Rich 1,550	H ₂ Rich 1,750	H ₂ Rich 1,760	—	—	✓ L/L G/L
FRSCC-2 (1.020 / *)	H ₂ Rich 1,804/1,852	H ₂ Rich 1,447/1,450	H ₂ Rich 1,857/1,876	H ₂ Rich 1,857/1,876	✓ G/L/L G/L	✓ L/L G/L	✓ L/L G/L
FRSCC-3 (1.040 / *)	H ₂ Rich 1,800/1,848	H ₂ Rich 1,850/1,860	H ₂ Rich 1,800/1,835	H ₂ Rich 1,800/1,835	✓ G/L/L G/L	✓ L/L G/L	✓ L/L G/L
FRSCC-4 (1.000 / *)	H ₂ Rich 1,827/1,840	H ₂ Rich 1,860/1,850	H ₂ Rich 1,860/1,850	H ₂ Rich 1,860/1,850	✓ G/L/L G/L	✓ L/L G/L	✓ L/L G/L
FRSCC-5 (1.101 / 1.007)	H ₂ Rich 1,453/1,447	RP Rich 1,852/1,693	RP Rich 1,897/1,897	H ₂ Rich 1,120/1,748	✓ G/G/L G/L	✓ G/L G/L	✓ G/L G/L
FRSCC-6 (1.103 / 1.000)	H ₂ Rich 1,453/1,600	RP Rich 1,899/1,900	H ₂ Rich 1,127/1,400	H ₂ Rich 1,127/1,400	✓ G/G/L G/L	✓ G/L G/L	—
FRSCC-7 (1.029 / —)	Tripropellant 1,700	Tripropellant 1,700	Tripropellant 1,700	Tripropellant 1,700	✓ G/G/L G/L	—	—

* Excessive turbine temperature
due to thrust split

Applicable	MCC Injection	H ₂ /RP/O ₂
—	Not Applicable	X/X/X
SC	Single Chamber	Mode 1
	L	X/X/X
	Liquid	Mode 2

Alternate Propulsion Subsystem Concepts

FRS^{CC} Cases

- Baseline Turbomachinery/Preburner Arrangement Selection

- Single Chamber
 - FRS^{CC}-7
 - Lowest Average Turbine Temperatures, Although Not Lowest Minimum Turbine Temperature
 - Tripropellant Preburner Allows Best Movement of Energy Among Turbines
 - Likely to Have Best Design Margins
 - Small Weight Penalty Over Lowest Weight Case
 - Bell Annular
 - FF^{SSCC}-6
 - Lightest Weight

Tripropellant Comparison Study

Hybrid Cycle Cases

	H_2	RP	O_2 Mode 1	O_2 Mode 2	SC	Annular
Hybrid-1	H_2 Rich	H_2 Exp	O_2 Rich	O_2 Rich	—	✓ L/G G/G
Hybrid-2	H_2 Rich	H_2 Exp	—	O_2 Rich Combined O_2 Pump	✓ G/L/G G/G	—
Hybrid-3	H_2 Rich	—	H_2 Exp Single Shaft	O_2 Rich	✓ G/L/G G/G	✓ L/L G/G
Hybrid-4	H_2 Rich	—	H_2 Exp Single Shaft Combined O_2 Pump	—	✓ G/L/G G/G	✓ L/L G/G

✓ Applicable
 — Not Applicable
 SC Single Chamber

$H_2/ RP/O_2$	$H_2/ RP/O_2$
X/X/X	X/X/X
Mode 1	Mode 2

Tripropellant Configuration Study Hybrid-1(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-25-84

TA3-0834

Tripropellant Configuration Study

Hybrid-2(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-24-94

TA3-0835

Tripropellant Configuration Study Hybrid-3(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-24-94

TA3-0836

Tripropellant Configuration Study Hybrid-3(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-24-94

TA3-0837

Tripropellant Configuration Study

Hybrid-4(SC) LOX/RP/H₂ Engine Schematic

Single Chamber

10-24-84

Tripropellant Configuration Study Hybrid-4(A) LOX/RP/H₂ Engine Schematic

Annular Chamber

10-24-94

TA3-0839

Tripropellant Comparison Study

Hybrid Cycle Cases

Cycle (Relative Weight) (SC/Annular)	H ₂ (Tur Temp, °R)	RP (Tur Temp, °R)	Mode 1 (Tur Temp, °R)	Mode 2 (Tur Temp, °R)	SC	Annular
Hybrid-1 (— / 1.000)	H ₂ Rich 1,700	H ₂ Exp 1,000	O ₂ Rich 1,100	O ₂ Rich 1,100	—	✓ L/G G/G
Hybrid-2 (1.090 / —)	H ₂ Rich 1,243	H ₂ Exp 997		O ₂ Rich 1,100	✓ G/L/G G/G	—
Hybrid-3 (1.000 / ***)	H ₂ Rich 1,700		H ₂ Exp Single Shaft 1,000	O ₂ Rich 1,100	✓ G/L/G G/G	L/L G/G
Hybrid-4 (* / *)	H ₂ Rich		H ₂ Exp Single Shaft Combined O ₂ Pump		✓ G/L/G G/G	L/L G/G
				H ₂ /RP/O ₂ X/X/X X/X/X	Mode 1 Mode 2	
				Applicable Not Applicable Single Chamber	G Gas Liquid	
	—	SC				

* Balance only to ≤ 3,000 psi.
** Excessive H₂ turbine temperature due to expander H₂ drawdown for horsepower of O₂ pump.

Alternate Propulsion Subsystem Concepts

Hybrid Cycle Cases

- **Baseline Turbomachinery/Preburner Arrangement Selection**
- **Single Chamber**
- **Hybrid-3**
 - Lightest Weight
 - Hybrid-2 Has Considerably Lower Temperatures But the Weight Penalty is Too High
- **Bell Annular**
- **Hybrid-1**
 - Lightest Weight
 - Only Viable Bell Annular System

Tripropellant Comparison Study

Bipropellant Cycles

Tripropellant Comparison Study

Bipropellant Cycle Cases

	H_2	RP	O ₂ Mode 1	O ₂ Mode 2	SC	Annular	H ₂ /RP/O ₂ X/X/X Mode 1	H ₂ /RP/O ₂ X/X/X Mode 2
FFSCC	H_2 Rich	—	—	O_2 Rich	✓	—	—	—
SCC (FR)	H_2 Rich	—	—	H_2 Rich	✓	—	G/G	G/L
Hybrid	H_2 Rich	—	—	H_2 Exp	✓	—	—	G/L
GG	H_2 Rich	—	—	H_2 Rich	✓	—	—	G/L
	SC	—	Applicable Single Chamber	MCC Injection G Gas L Liquid	—	—	—	—

Alternate Propulsion Subsystem Concepts Bipropellant Cycles

FFSCC Mixed Preburner Engine Regen Cooled MCC and Nozzle

Alternate Propulsion Subsystem Concepts

Bipropellant Cycles

SCC Dual Fuel-Rich Preburner Engine

Regen Cooled MCC and Nozzle

TA3-0518a

Alternate Propulsion Subsystem Concepts

Bipropellant Cycles

Hybrid Cycle Engine (Fuel Side Preburner, Ox Side Expander) Regen Cooled MCC and Nozzle

Alternate Propulsion Subsystem Concepts

Bipropellant Cycles

Gas Generator Cycle Regen Cooled MCC and Nozzle

TAA3-0509a

Tripropellant Comparison Study

Bipropellant Cycle Cases

	H ₂	RP	O ₂ Mode 1	O ₂ Mode 2	SC	Annular
FFSSCC	H ₂ Rich 1,150	—	—	O ₂ Rich 1,100	✓ — G/G	—
SCC (FR)	H ₂ Rich 1,400	—	—	H ₂ Rich 1,100	✓ — G/L	—
Hybrid	H ₂ Rich 1,700	—	—	H ₂ Exp 614	✓ — G/L	—
GG	H ₂ Rich 1,900	—	—	H ₂ Rich 1,357	✓ — G/L	—
					H ₂ /RP/O ₂ X/X/X X/X/X	Mode 1 Mode 2
			G L	L	Gas Liquid	
	✓	Applicable	MCC Injection			
—	Not Applicable					
SC	Single Chamber					

Tripropellant Comparison Study Operating Parameter Determination

Alternate Propulsion Subsystem Concepts

Tripropellant Configuration Study

Operating Parameter Choices

- Nozzle Exit Pressure
 - Bipropellant
 - Bell Annular
 - Single Chamber
- Bipropellant Mixture Ratio
- Bell Annular Thrust Split
- Bell Annular Mode 2 Mixture Ratio
- Bell Annular Mode 1 Mixture Ratio
- Single Chamber Percent Hydrogen
- Single Chamber Mode 1 Mixture Ratio
- Single Chamber Mode 2 Mixture Ratio

Nozzle Exit Pressure

Engine Weights – Bipropellant FFSCC Nozzle Exit Pressure Variation

TA3-0974

Engine Performance – Bipropellant FFSCC Nozzle Exit Pressure Variation

TA3-0965a

SSTO Performance – Bipropellant FFSCC Nozzle Exit Pressure Variation

TA3-0966

Engine Weights – FFSCC Nozzle Exit Pressure Variation

TA3-0953

Engine Performance – FFSCC Tripellant

TA3-0968

SSTO Performance – Tripropellant – FFSCC Nozzle Exit Pressure Variation

Relative Vehicle Dry Weight

Bell Annular - MR
(O₂/H₂) = 6.0

TA3-0959

SSTO Performance – Tripropellant – FFSCC Nozzle Exit Pressure Variation

• Single Chamber - MR
(Mode 2) = 6.0

TA3-0961

SSTO Performance Nozzle Exit Pressure Variation

TA3-0966a

Bipropellant Mixture Ratio

C-Star Efficiency Bipropellant O₂/H₂

TA3-0945

Engine Weights – FFSCC Bipropellant

TA3-0969

Engine Performance – FFSCC Bipropellant

SSTO Performance – Bipropellant FFSCC Engine Mixture Ratio Variation

Engine Weights – FFSCC Bipropellant - Dual Mixture Ratio

Engine Performance – FFSCC Bipropellant - Dual Mixture Ratio Operation

TA3-0947c

SSTO Performance – Bipropellant FFSCC Dual Mixture Ratio Operation

TA3-0947a

SSTO Performance – Bipropellant FFSCC Dual Mixture Ratio Operation

TA3-0947

Engine Weights – GG Cycle Bipropellant

TA3-0991a

Engine Performance – GG Cycle Bipropellant

TA3-0992

SSTO Performance – Bipropellant GG Cycle Engine Mixture Ratio Variation

SSTO Performance – Bipropellant GG Cycle Optimum Engine Mixture Ratio

Bell Annular Thrust Split

Engine Weights – FFSCC Bell Annular Configuration

Exit Pressure = 5 psi

Mode 1 RP Thrust Percentage, $(O_2/RP\;Thrust)/Total\;Thrust$

TA3-0954a

Specific Impulse – FFSCC Bell Annular Configuration

TA3-0987

Coolant Temperature – Tripropellant – FFSCC Bell Annular Configuration

SSTO Performance – Tripropellant – FFSCC Bell Annular Configuration

Relative Vehicle Dry Weight

Mode 1 RP Thrust Percentage, (O₂/RP Thrust)/Total Thrust

TA3-0962

Thrust Split Vs Chamber Pressure Bell Annular Configuration

TA3-0954b

Bell Annular Mode 2 Mixture Ratio

SSTO Performance – Tripropellant – FFSCC Bell Annular Configuration

TA3-0962a

Bell Annular Mode 1 Mixture Ratio

Engine Weights – FFSCC Bell Annular Configuration

Specific Impulse – FFSCC Bell Annular Configuration

TA3-0986

SSTO Performance – FFSCC Bell Annular Configuration

Single Chamber Percent Hydrogen

O2/H₂/RP ODK Performance

PC=4000 ,EPS=88,Hf=0.55,Rt=4.47

2-9-95

Energy Release Efficiency

- Chart From MSFC

**Eta C* Range for Rocketdyne Study
Dual Mode Tripropellant Injectors**

Engine Weights – FFSCC Tripellant – Single Chamber

Exit Pressure = 4 psi
MR (Mode 2) = 6.0

TA3-0955

Engine Performance – FFSCC Tripellant Single Chamber

SSTO Performance – FFSCC Tripropellant Single Chamber

TA3-0960

Single Chamber Mode 1 Mixture Ratio

Engine Weights – FFSCC Tripellant Single Chamber

TA3-0956

Engine Performance – FFSCC Tripellant Single Chamber

TA3-0956a

SSTO Performance Tripropellant Single Chamber – FFSCC

Exit Pressure = 4 psi
MR (Mode 2) = 6.0

- Overall MR (MR O₂/H₂ = 6.0)

TA3-0963

Single Chamber Mode 2 Mixture Ratio

Engine Weights – FFSCC Tripropellant Single Chamber

TA3-0976

Engine Performance – FFSCC Tripropellant Single Chamber

Specific Impulse, sec

Mode 2 Mixture Ratio, O₂/H₂

TA3-0977

SSTO Performance

Tripropellant Single Chamber – FFSCC

Relative Vehicle Dry Weight

Exit Pressure = 5 psi
Overall Mode 1 MR = 4.4

● Mode 2 MR

TA3-0978

SSTO Performance Engine O₂/H₂ Mixture Ratio Variation

TA3-0971a

Alternate Propulsion Subsystem Concepts

Baseline Parameter Selections

	Single Chamber Tripropellant	Annular Tripropellant	Bipropellant
Nozzle Exit Pressure, psi	6.0	5.5	4.5
Mode 1 Mixture Ratio	4.4	—	—
Mode 2 Mixture Ratio	6.2	—	—
O ₂ /RP Mixture Ratio	—	2.8	—
O ₂ /H ₂ Mixture Ratio	—	6.8	6.9
Percent Hydrogen, %	6	—	—
Mode 1 O ₂ /RP to O ₂ /H ₂ Thrust Split	—	H ₂ Cooling Limit	—

Resulting Nominal Engines

	Single Chamber Tripellant	Bell Annular Tripellant	Closed Cycles	Bipropellant Gas Generator
Thrust, Sea Level, lbf	421,000	421,000	421,000	421,000
Thrust, Vacuum, lbf	477,630	478,701	484,585	486,706
Specific Impulse, sec				
Mode 2 Vacuum	450.69	461.13	451.43	445.28
Mode 2 Sea Level	339.18	267.33	392.19	385.16
Mode 1 Vacuum	406.26	369.33	451.43	445.28
Mode 1 Sea Level	358.09	324.81	392.19	385.16
Chamber Pressure, psi				
Mode 1	4,000	4,000	4,000	4,000
Mode 2	1,966	4,000	4,000	4,000
Area Ratio				
Mode 1	63.56	59.60/64.54*	69.77	69.84
Mode 2	63.56	226.73	69.77	69.84
Engine Weight, lbm (Uncoated/Coated)				
FFSCC	4,492 / 4,176	4,473 / 4,201	4,567 / 4,242	—
ORSCC	4,610 / 4,295	—	—	—
FRSCC	4,040 / —	4,189 / —	4,049 / —	—
Hybrid Cycle	4,161 / 4,026	4,528 / 4,227	4,058 / —	—
Gas Generator Cycle	—	—	—	— / 3,629

* $(O_2/H_2)/(O_2/RP)$

Tripropellant Comparison Study

Engine Weights and Vehicle Performance

Tripropellant Comparison Study

Mission Groundrules

- Consistent With Option 1 Evaluation

- RLV Application

- SSTO
- 25K Payload
- 220 NMi, 51.6°

- Option 3 Winged Vehicle

- CONSIZE and POST

- Choose a Version of CONSIZE with LaRC
 - Bipropellant
 - Tripropellant
- Freeze the Choice for Remainder of Task
 - April/May 1994 Version Used
 - Consistent Tripropellant and Bipropellant Models

Engine Performance Specific Impulse Performance

TA3-0989b

Tripropellant Comparison Study

Helium Usage

- Engine Requirements
- SSME
 - Start and Shutdown Purges
 - Majority of Usage
 - Turbomachinery Interpropellant Seal Purges During Operations
- Only for Turbopumps with Dissimilar Working Fluids
 - e.g., Fuel Rich Preburner Powering Oxygen Pump
- Solid Seal
- Future Engines
 - Turbomachinery Interpropellant Seal Purges During Operations
 - Segmented Seals
 - Much Lower He Requirements

Tripropellant Comparison Study

Helium Usage

- All Future Engines are Expected to Need Very Little He Compared to SSME

- Use
$$\text{Flowrate (lbm/sec)} = 0.0000264 * D * P$$
D = shaft diameter (inches)
P = purge pressure (psi)
100 psi is reasonable pressure
 - Once for Each Turbopump with Dissimilar Working Fluids
- CONSIZ He Constant of ~ 4.5E-5, of Which 3.83E-5 is Vehicle Usage, is Typical of Cycles Needing Interpropellant Seals
- Effect on Vehicle Dry Weight is Small with Future Engines
 - ~ 500 lbm
- Not a Cycle Discriminator with Future Engines

Effect of Turbine Temperature on Engine Weights

TA3-0983f

Effect of Turbine Temperature on SSTO Performance

TA3-0995e

Effect of Turbine Temperature on SSTO Performance

TA3-0995f

Tripropellant Comparison Study

Effects of Turbine Temperature

- Turbine Temperatures Can Extend Chamber Pressure Capabilities
 - Effect on Vehicle Dry Weight Decreasing Significantly Above ~ 4,000 psi
 - 4,000 psi About Limit of Consideration for Next Generation Engines
- Turbine Temperatures Have No Appreciable Effect on Engine Weight
 - Except Just Before the Power Limit for That Temperature
- Lower Turbine Temperatures Will Reduce the Thermal Environment and Improve Engine Margins, Life and Operations
- Net Effect
 - All Design Points Will Use Those Turbine Temperatures That Will Produce a Power Limit of Around 4,500 psi Chamber Pressure
 - Lowest That Will Not Effect Engine Weight Below ~ 4,000 psi Chamber Pressure

Engine Weights

TA3-0996

SSTO Performance

TA3-0996a

SSTO Performance

TA3-0996b

Engine Weights

TA3-0997

SSTO Performance

TA3-0997a

SSTO Performance

TA3-0997b

Engine Weights

TA3-0995

SSTO Performance

TA3-0995a

SSTO Performance

TA3-0995b

Tripropellant Comparison Study

Cycle Observations

- GG Cycle Not Competitive for This Application
- FRSCC Always the Lightest Engine Weight
 - Temperatures at Cooled/Uncooled Powerhead Interface
 - Limited Temperature Margins
- All Cycles With Hot Ox Rich Gases
 - Greatly Benefit From Improved Strength Oxygen Resistant Materials
 - Technology Programs to Achieve Such Strength Materials is Feasible
 - Their Weights and Vehicle Dry Weight Performance Results Would Then Equal Their Coated Counterparts
- Use of Higher Strength Oxygen Resistant Materials or Use of Coatings Makes All Closed Cycles Approximately the Same
 - Allows Cycle Choice on Basis of Margins, Life, Operations

Engine Weights

TA3-0979b

SSTO Performance

TA3-0975c

SSTO Performance

TA3-0975d

Engine Weights

TA3-0994

SSTO Performance

TA3-0994a

SSTO Performance

TA3-0994b

Engine Weights

TA3-0994c

SSTO Performance

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

● Bipropellant - Uncoated
 $P_e = 4.5$ psi, MR = 6.9
 $T_{HT} = 1700^{\circ}\text{R}$, $T_{OT} = \sim 600^{\circ}\text{R}$

Tripellant Single Chamber
 $P_e = 6.0$ psi, %H2 = 6
MR, O2/(H2+RP) = 4.4
MR, Mode 2 = 6.2
 $T_{HT} = 1700^{\circ}\text{R}$, $T_{OT} = 1100^{\circ}\text{R}$
 $T_{RPT} = 1000^{\circ}\text{R}$

▲ Uncoated
△ Coated

Tripellant Bell Annular
 $P_e = 5.5$ psi
MR, O2/H2 = 6.8
MR, O2/RP = 2.8
Thrust Split = Cooling Limit
 $T_{HT} = 1700^{\circ}\text{R}$, $T_{OT} = 1100^{\circ}\text{R}$
 $T_{RPT} = 1000^{\circ}\text{R}$, $T_{O2T} = 1100^{\circ}\text{R}$

◆ Uncoated
◇ Coated

TA3-0994d

SSTO Performance

TA3-0994e

Tripropellant Comparison Study

Propellant Choice Observations

- Bipropellant and Tripropellant Vehicle Dry Weight Results Within 3% at All Chamber Pressures and All Cycles
 - Single Chamber Very Slightly Better Than Bell Annular (<3%)
 - Bipropellant Slightly Better Than Either Tripropellant
- Tripropellant Has No Vehicle Performance Advantage Over Bipropellant

Reconciliation Between This Study and the Access-to-Space Results

From the Access-to-Space Report

WEIGHT GROWTH MARGIN GAINS (by technologies)

Chart shows how much the dry vehicle weight produced by the use of each technology could grow before reaching the baseline value of 233k

$$\begin{aligned}
 \omega T_{Baseline} (SSME) &= 233k = \omega T_{SL} \\
 \omega T_{Tripropellant} &= \omega T_{TP} \\
 \omega T_P @ (1+0.3) &= \omega T_{SL} \\
 \omega T_P = \omega T_{SL} / 1.31 & \\
 &= 178k
 \end{aligned}$$

Chart shows how much the dry vehicle weight produced by the use of each technology could grow before reaching the baseline value of 233k

4200 lb/in² propellant

25% weight reduction

2800 lb/in² propellant

25% weight reduction

FIGURE 32.—Weight growth margin available.

Access to Space Study

Baseline Engines

- Bipropellant Engine
 - Modified SSME
 - Large Throat
 - Chopped Nozzle
 - Area Ratio = 50
 - MR = 6
 - Chamber Pressure = 2,800 psi
 - Conditions Far Off-Optimum for SSTO Mission
 - Essentially Existing Engine With Weights Known
 - 25 Year Old Design
 - Produced Dry Vehicle Weight of 233,000 lbm
- Tripropellant Single Chamber Engine
 - Chamber Pressure = 4,200 psi
 - Mode 1 MR = 4.4
 - Mode 2 MR = 6
 - Propellant Percentages = 81.5 O₂/ 6 H₂/ 12.5 RP
 - All At or Near Optimum for SSTO Mission
 - New Paper Engine - Weights Malleable
 - New Design
- Produced Dry Vehicle Weight of 178,000 lbm
 - 23.6 % Lighter than Baseline Bipropellant Engine

Access to Space Study

Bipropellant/Tripropellant Engine Reconciliation

- Effect of Bringing Both Engines to Comparable Conditions

- Same Chamber Pressure, Optimum MR's and Area Ratios, Same Design Groundrules and Practices and Technology Use

	Change in Dry Vehicle Weight From Baseline of 233,000 lbm, Percent		
	Trip propellant	Bipropellant	Change
Access to Space Study	—	—	—
Mode 2 MR (Tri – 6.2; Bi – 6.9)	-0.1	-3.7	-3.6
Chamber Pressure (4,000 psi)	+0.5	-5.2	-5.7
Both as New Engines Common Design Practices, Same Technologies	-6.9	-21.0	-14.1
He Usage	-0.0	-1.4	-1.4
			-1.2

- Essentially the Same — Excellent Agreement with Current Study

Tripropellant Comparison Study

Engine Cycle Margins

Alternate Propulsion Subsystem Concepts

Tripropellant Comparison Study

Margin Study

- Margins Studied
 - +5% Thrust
 - Chamber Pressure Increased
 - Nozzle Area Ratio Increased for Optimum Exit Pressure
 - 5:1 Throttling
 - LOX Cooled Nozzle
 - Kick Pump and RP Pump Fluids
 - 50% Preburner Injector Pressure Drop at Full Thrust
 - -5% All Turbopump Efficiencies
 - +10% Pump Discharge Pressures
 - All Margins Together

Alternate Propulsion Subsystem Concepts

Tripropellant Comparison Study

Margin Study – Bipropellant Engines

	Baseline	+5% Thrust	5:1 Throttling	-5% TP Eff	+10% Pd's	All Margins
FFSCC-Bipropellant						
Engine Weight, lbm	4,567	4,809	4,688	4,738	4,796	5,308
Vehicle Dry Weight, lbm	181,105	180,264	183,492	184,494	185,670	189,843
Chamber Pressure, psi	4,000	4,187	4,000	4,000	4,000	4,187
Pump Discharge Pressure, psi						
Fuel	10,839	11,255	10,839	10,839	11,923	12,339
Oxidizer	9,889	10,304	10,356	9,889	10,878	11,760
Turbine Inlet Temperature, R						
Fuel	1,150	1,176	1,150	1,310	1,273	1,460
Oxidizer	1,100	1,100	1,100	1,100	1,104	1,385
SCC-Bipropellant						
Engine Weight, lbm	4,049	4,235	4,157	4,194	4,204	4,645
Vehicle Dry Weight, lbm	171,739	170,474	173,689	174,367	174,547	177,598
Chamber Pressure, psi	4,000	4,187	4,000	4,000	4,000	4,187
Pump Discharge Pressure, psi						
Fuel	11,673	12,128	11,673	11,673	12,840	13,295
Oxidizer	11,276	11,761	15,564	11,276	12,403	17,375
Turbine Inlet Temperature, R						
Fuel	1,400	1,400	1,400	1,540	1,498	1,800
Oxidizer	1,100	1,100	1,100	1,100	1,100	1,335

Alternate Propulsion Subsystem Concepts

Tripropellant Comparison Study

Margin Study – Tripropellant Single Chamber Engines

	Baseline	+5% Thrust	5:1 Throttling	-5% TP Eff	+10% Pd's	All Margins
FFS&CC-Tripropellant						
Engine Weight, lbm	4,492	4,735	4,660	4,614	4,667	5,253
Vehicle Dry Weight, lbm	184,144	183,188	187,853	186,824	188,011	194,352
Chamber Pressure, psi	4,000	4,187	4,000	4,000	4,000	4,187
Pump Discharge Pressure, psi						
Hydrogen	10,468	10,876	10,468	10,468	11,515	11,923
RP	9,023	9,417	12,529	9,023	9,925	13,988
Oxidizer	9,830	10,262	10,247	9,830	10,814	11,662
Turbine Inlet Temperature, R						
Hydrogen	1,150	1,150	1,150	1,254	1,217	1,447
RP	1,410	1,423	1,567	1,450	1,447	1,694
Oxidizer	1,100	1,100	1,100	1,100	1,100	1,303
FRS&CC-Tripropellant						
Engine Weight, lbm	4,040	4,247	4,173	4,207	4,247	4,759
Vehicle Dry Weight, lbm	175,067	173,990	177,759	178,459	179,288	184,085
Chamber Pressure, psi	4,000	4,187	4,000	4,000	4,000	3,451
Pump Discharge Pressure, psi						
Hydrogen	10,822	11,247	10,822	10,822	11,904	10,657
RP	10,186	10,637	14,176	10,189	11,208	13,337
Oxidizer	10,200	10,648	14,187	10,200	11,221	13,350
Turbine Inlet Temperature, R						
Hydrogen	1,700	1,800	1,900	2,008	1,950	2,200
RP	1,700	1,800	1,900	2,008	1,950	2,200
Oxidizer	1,700	1,800	1,900	2,008	1,950	2,200

Vehicle Dry Weight Sensitivity to Margin Requirements
P_c = 4,000 psi
Bipropellant Engines

TA3-0907f

Vehicle Dry Weight Sensitivity to Margin Requirements
 $P_c = 4,000 \text{ psi}$
Single Chamber Tripropellant Engines

Turbine Operating Temperature as a Measure of Cycle Design Margin

- Margin can be Expressed in Terms of Turbine Inlet Temperature
 - Can be Increased to Increase Margin Where Desired or to Change Component Design Point Relationships
 - Thrust (Chamber Pressure)
 - Turbopump Parameters (Tip Speeds, Pitch-Line Velocities, Discharge Pressures, etc.)
 - Combustion Device Parameters (Throttling, Pressure Drops)
 - System Routing Pressure Drops
 - Weights (Line Pressure Drops, Nozzle Coolant Pressure Drops)
- Full Flow Staged Combustion Cycle Turbine Inlet Temperature is More Robust than any Other Cycle
 - Max Power Possible
 - All Flow is Available for Power
 - Both Sides Add Chemical Energy

Fuel Turbine Temperature Sensitivity to Margin Requirements
 $P_c = 4,000 \text{ psi}$
Bipropellant Engines

* Ox Turbine Temperature
(Nominally 1100°R) Also Raised to;
FFSCC – 1385°R
SCC – 1335°R

Hydrogen Turbine Temperature Sensitivity to Margin Requirements
P_c = 4,000 psi
Single Chamber Tripropellant Engines

Alternate Propulsion Subsystem Concepts

Tripropellant Comparison Study

Margin Study Observations

- Without Margin Considerations

- FFSCC, SCC, and Hybrid Cycles are Comparable
 - At 4,000 psi and Below
 - All Cycles Except FFSCC At Least Marginal on Turbine Temperature to Avoid Cooled Powerhead

- With Margin Considerations

- FFSCC is the Most Robust Cycle
 - Little Impact Except With All Margins
 - Still Uncooled Powerhead Even With All Margins

Tripropellant Comparison Study

Conclusions

Cycle Choice Affects Life and Weight

- Reduced turbine temperatures provide capability to accommodate engine / vehicle design uncertainties
- Fuel rich engine cycles operate near strength limits of available materials

Engine Cycle Choice Can Provide Increased Design Margins and Opportunity for Future Growth

POWER LEVEL, PERCENT

TA3-0946

Tripropellant Comparison Study

Technology Implications

Technology Areas	Bipropellant	Tripropellant	Impact	Increase in Vehicle Dry Weight if Not Used
Increased P_c	X	X	Significant Weight Reductions Up to ~ 4,000 psi	
Improved Strength Oxygen Resistant Materials	X	X	Significant Weight Reductions in Cycles with Best Operating Margins	+3.0%
High Confidence, Long Life Coatings on the Ox Side	X	X	Significant Weight Reductions in Cycles with Best Operating Margins	+3.0%
Lower Turbine Operating Temperatures	X	X	Margin, Ops Costs	
LOX Rich LOX Turbopumps	X	X	Margin, Ops Costs Thru Lower Turbine Temperatures by Allowing Cycles Which are Less Sensitive in Turbine Operating Temperature versus ΔP , Throttling, and P_c	
LOX Rich Preburners	X	X	Significant Weight Reductions, Better Ops	+7.5%
SLIC™ Turbomachinery	X	X	Significant Weight Reductions, Better Ops, Lower Costs	+5.8%
Jet Pumps	X	X	Significant Weight Reductions on Engine	+1.9%
Vehicle Side Gimbal Flex Accommodation	X	X	Lower Turbomachinery Weights	+1.2%
AI Fuel Pump	X	X	Easier Development, Better Ops	
Laser Ignition	X	X	Margin for Deep Throttling (e.g., 5:1)	
Gasify LOX	X	X	Reliability, Ops Costs	
Health Monitoring/Life Prediction	X	X		

Tripropellant Comparison Study

Conclusions

- For Newly Designed Engines, Using the Same Groundrules and Technology
- No Significant Differences in Vehicle Dry Weight Performance Between Tripropellant and Bipropellant Engines
 - < 3 % Across Chamber Pressure Range 2,000-5,000 psi
 - Bipropellant Engine Slightly Better
 - Single Chamber and Bell Annular Trip propellant Configurations Similar in Vehicle Performance (< 1 %)
- Much Larger Vehicle Performances Differences Within Any One Engine Configuration Due to Operating Point and Design Choices
 - Mixture Ratio
 - Chamber Pressure
 - Nozzle Exit Pressure
 - Power Cycle
 - Coated versus Uncoated Materials
 - Welded versus Cast
- FFSCC Has Significantly Higher Available Margins Than Staged Combustion Cycle (SCC)
 - For Both Bipropellant and Trip propellant Engines
 - Differences More Pronounced for Trip propellant Engines
 - Inherent Engine Weight Difference ~ 2-5%
 - Favors SCC
 - Applies if Coated Ox Side Or Improved Ox Resistant Materials
 - Strongly Supports the Value of Ox Resistant Material Technology Programs

