18 Напрямленості

Як добре відомо, в основі усіх основних понять і конструкцій математичного аналізу (неперервності, диференційовністі, інтегрованісті, сумування рядів тощо) лежить концепція збіжності. В основному курсі функціонального аналізу ми показали, що за допомогою цієї концепції в топологічних просторах, що задовольняють першу аксіому зліченості, можна навіть задавати топологію.

Концепція збіжності містить в собі два поняття: послідовність і границю. Спочатку в математиці розглядалися лише послідовності дійсних чисел. Згодом теорію розповсюдили на послідовності точок в метричному просторі, і, нарешті, узагальнили для послідовності точок в довільному топологічному просторі.

Прагнення вийти за межі просторів, що задовольняють першу аксіому зліченості, в 1920-х роках привело до узагальнення поняття границі звичайних послідовностей на узагальнену послідовність (збіжність за Муром—Смітом) і появи теорії напрямленостей. В 1930-х роках французський математик А. Картан розробив загальну теорію збіжності, яка заснована на поняттях фільтра, ультрафільтра та їх границь. Ця теорія є універсальною. Вона заміняє теорію Мура—Сміта і суттєво спрощує загальну теорію збіжності.

Для того щоб глибше зрозуміти зміст цих теорій, доцільно детально їх розглянути та порівняти.

§18.1 Частково упорядковані множини (нагадування)

Нагадаємо деякі означення із теорії множин.

Означення 18.1. Нехай A — довільна множина. Позначимо як $A \times A$ сукупність усіх упорядкованих пар (a,b), де $a,b \in A$. Говорять, що в множині A задано **бінарне відношення** φ , якщо в $A \times A$ виділено довільну підмножину R_{φ} . Елемент a перебуває у відношенні φ з елементом b, якщо пара (a,b), належить R_{φ} .

Приклад 18.1

Бінарним відношенням ϵ , наприклад, тотожність. Множиною R_{φ} у цьому випадку ϵ діагональ $(a,a) \in A \times A$.

Означення 18.2. Бінарне відношення, задане в множині A, називається **відношенням часткового передупорядкування**, якщо воно є рефлексивним і транзитивним, тобто

- 1. $(a, a) \in R_{\varphi}$ рефлексивність;
- 2. $(a,b),(b,c) \in R_{\varphi} \implies (a,c) \in R_{\varphi}$ транзитивність.

Означення 18.3. Бінарне відношення, задане в множині A, називається **відношенням часткового упорядкування**, якщо воно є рефлексивним, транзитивним і антисиметричним, тобто

- 1. $(a,a) \in R_{\varphi}$ рефлексивність;
- 2. $(a,b),(b,c) \in R_{\varphi} \implies (a,c) \in R_{\varphi}$ транзитивність.
- 3. $(a,b),(b,a) \in R_{\varphi} \implies a=b$ антисиметричність.

Означення 18.4. Множина *A* із заданим на ній відношенням часткового упорядкування (передупорядкування) називається **частково упорядкованою** (передупорядкованою) множиною.

Зауваження 18.1 — У частково упорядкованих множинах за традицією відношення xRy позначають як $x \le y$ або $y \ge x$.

§18.2 Напрямленості

Означення 18.5. Частково упорядкована множина S називається фільтрівною вправо, або напрямленням за зростанням, або просто напрямленою множиною, якщо

$$\forall s_1, s_2 \in S \quad \exists s \in S : \quad s \ge s_1, s_2.$$

Приклад 18.2

Множина натуральних чисел із природним упорядкуванням є напрямленою.

Приклад 18.3

Нехай x — фіксована точка топологічного простору X, а Ω_x — сукупність усіх околів цієї точки.

Введемо в множині Ω_x відношення упорядкування за оберненим включенням:

$$V \subset U \iff V > U$$
.

Оскільки

$$\forall U_1, U_2 \in \Omega \quad U_1 \cap U_2 \geq U_1, U_2,$$

то множина Ω_x є *напрямленою* множиною усіх околів точки x в просторі X.

Розглянемо довільну множину X і деяку послідовність її елементів x_n . Послідовність x_n можна трактувати як відображення

$$f: \mathbb{N} \to X$$
,

де
$$f(n) = x_n$$
.

Якщо замінити множину $\mathbb N$ довільною напрямленою множиною S, отримаємо означення узагальненої послідовності, або напрямленості.

Означення 18.6. Будь-яке відображення напрямленої множини називається напрямленістю, або узагальненою послідовністю, або сіттю. До того ж, якщо $f: S \to X$ — напрямленість, то напрямлена множина S називається областю визначеності напрямленості f, а множина f(S) — областю її значень.

Зауваження 18.2 — Будь-яка послідовність елементів простору X є напрямленістю в X з областю визначення \mathbb{N} . Для зручності значення f_s напрямленості $f: S \to X$ на елементі $s \in S$ часто позначають як x_s , а саму напрямленість f подають як множину $\{x_s \mid s \in S\}$.

18 Напрямленості 113

Приклад 18.4

Нехай Ω_x — напрямлена множина усіх околів точки x простору X. Вибираючи по одній точці x_U з кожного околу $U \subset \Omega_x$, ми отримуємо напрямленість $\{x_U \mid U \in \Omega_x\}$.

Означення 18.7. Говорять, що напрямленість $f: S \to X$ починаючи з деякого місця **належить**, або **майже вся лежить** в підмножині $A \subset X$, якщо існує $s_0 \in S$, таке що $\forall s \geq s_0 \ x_s \in A$.

Означення 18.8. Якщо $\forall s \in A \ \exists t \geq s : f_t \in A$, то говорять, що напрямленість $f : S \to X \in \mathbf{vactor}$ в підмножині $A \subset X (\mathbf{vacto} \ \mathbf{буває} \ \mathbf{e} \ A)$.

Зауваження 18.3 — Якщо напрямленість $f:S\to X$ є частою в A, то вона не може майже вся лежати в доповненні $X\setminus A$. І навпаки, якщо напрямленість майже вся лежить в доповненні $X\setminus A$, то вона не може бути частою в A.

Означення 18.9. Точка x^* називається **граничною точкою** напрямленості, якщо ця напрямленість часто буває в будь-якому околі точки x^* .

§18.3 Границі напрямленості

Означення 18.10. Напрямленість $f: S \to X$ в топологічному просторі X називається **збіжною** до точки $x_0 \in X$, якщо вона майже вся лежить в будь-якому околі точки x_0 , тобто якщо для довільного околу U цієї точки знайдеться елементя $s_U \in S$, такий що $\forall s \geq s_U \ f_s \in U$. Точка $x_0 = \lim_S f_s$ називається **границею** напрямленості $f: S \to X$.

Приклад 18.5

Кожна збіжна послідовність в просторі X є збіжною напрямленістю в X, границя якої є границею послідовності.

Приклад 18.6

Нехай $\{x_U \mid U \in \Omega_x\}$ — напрямленість в просторі X. Легко бачити, що ця напрямленість збігається до точки x. Дійсно, нехай U_0 — довільний окіл точки x. Тоді $\forall U \geq U_0$ $x \in U \subset U_0$, тобто ця напрямленість майже вся лежить в довільному околі точки x.

Зауваження 18.4 — Напрямленість, як і послідовність, в загальних топологічних просторах може мати різні границі. В хаусдорфових просторах вона має одну границю.

Означення 18.11. Напрямленість $g: T \to X$ називається **піднапрямленістю** напрямленості $f: S \to X$, якщо існує відображення $h: T \to S$, таке що $g = f \circ h$ і $\forall s_0 \in S \; \exists t_0 \in T : \forall t \geq t_0 \; h(t) \geq s_0$.

Зауваження 18.5 — На відміну від означення звичайної підпослідовності, означення піднапрямленості допускає, щоб область визначення піднапрямленості не була частиною області визначення напрямленості.

Означення 18.12. Частково упорядкована множина $X \in \mathbf{конфінальною}$ своїй підмножині A, якщо в X не існує жодного елемента, що є наступним за усіма елементами множини A.

Приклад 18.7

Інтервал (0,1) є конфінальним множині $\left\{\frac{n}{n+1}\middle|n\in\mathbb{N}\right\}$.

Зауваження 18.6 — Якщо $T \subset S$, а h — відображення вкладення, то друга умова еквівалентна конфінальності T в S. І навпаки, для будь-якої конфінальної частини T з S і будь-якої напрямленості $f: S \to X$ звуження f на T є піднапрямленістю напрямленості f.

Теорема 18.1 (Бірхгофа)

Нехай A — деяка підмножина довільного топологічного простору X. Тоді $x \in \overline{A}$ тоді і лише тоді, коли існує напрямленість в A, що збігається до точки x.

Доведення. **Необхідність.** Нехай $x \in \overline{A}$ і Ω_x — напрямлена множина усіх околів точки x. Оскільки

$$\forall U \in \Omega_x \quad A \cap U \neq \emptyset,$$

то, вибираючи по одній точці $x_U x \in A \cap U$, отримуємо напрямленість $\{x_U \mid U \in \Omega_x\}$ в A, що збігається до точки x.

Достатність. Нехай $\{x_s \mid s \in S\}$ — напрямленість в A, що збігається в X до точки x. Тоді за означенням границі напрямленості

$$\forall U \in \Omega_x \quad \exists s_0 \in S : \quad \forall s \ge s_0 \quad x_s \in U.$$

Отже,

$$A \cap U \neq \emptyset \implies x_0 \in \overline{A}.$$

§18.4 Напрямленості та неперервність

Зауваження 18.7 — Нагадаємо, що в просторах із першою аксіомою зліченності неперервність відображення f в довільній точці x_0 була еквівалентною умові, що з $x_n \to x_0$ випливає $f(x_n) \to f(x_0)$. Перехід від послідовностей до напрямленостей дозволяє відмовитись від цієї умови.

Теорема 18.2 (критерій неперервності)

Відображення $f: X \to Y$ є неперервним в точці x_0 тоді і лише тоді, коли для будь-якої напрямленості $\{x_s \mid s \in S\}$, що збігається до точки $x_0 \in X$ напрямленість $\{f(x_s) \mid s \in S\}$ збігається то точки $f(x_0) \in Y$.

18 Напрямленості 115

Доведення. **Необхідність.** Нехай $f: X \to Y$ є неперервною в точці x_0 і $\{x_s \mid s \in S\}$ — деяка напрямленість в X, що збігається до точки x_0 . Нехай також V_0 — довільний окіл точки $f(x_0)$ в Y. Тоді достатньо пересвідчитись, що напрямленість $\{f(x_s) \mid s \in S\}$ майже вся лежить в V_0 .

Справді, оскільки відображення f є неперервним в точці x_0 , існує окіл U_0 точки x_0 , такий що $f(U_0) \subset V_0$. Оскільки напрямленість $\{x_s \mid s \in S\}$ збігається до x_0 , то знайдеться індекс $s_0 \in S$ такий, що при всіх $s \geq s_0$ $x_s \in U_0$. Отже, для всіх $s \geq s_0$ $f(x_s) \in V_0$, а це значить, що майже вся напрямленість $\{f(x_s) \mid s \in S\}$ лежить в V_0 .

Достатність. Припустимо, що умови теореми виконуються, але відображення f не є неперервним в точці x_0 . Тоді існує такий окіл V_0 точки $f(x_0)$, що в будь-якому околі U точки x_0 знайдеться точка x_U , образ $f(x_U)$ якої належить $Y \setminus V_0$.

Розглянемо напрямленість $\{x_U \mid U \in \Omega_{x_0}\}$, де Ω_{x_0} — напрямлена множина усіх околів точки x_0 . Очевидно, що ця напрямленість збігається до точки x_0 .

Проте напрямленість $\{f(x_U) \mid U \in \Omega_{x_0}\}$ не може збігатися до точки $f(x_0)$, оскільки в такому випадку вона майже вся лежала б в околі V_0 . Отримане протиріччя доводить достатність.

§18.5 Література

- [1] **Колмогоров А. Н.** Элементы теории функций и функционального анализа / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 18–21).
- [2] **Александрян Р. А.,** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 91–98).
- [3] **Келли Дж.** Общая топология / Дж. Келли М.: Наука, 1966 (стр. 91–118).