Tên: Lê Anh Thư MSSV: 20521985

MÔN HỌC: HỆ ĐIỀU HÀNH CÂU HỎI VÀ BÀI TẬP CHƯƠNG 4

Câu 1: Tại sao phải định thời? Có những loại bộ định thời nào?

Mục tiêu của việc lập trình đa luồng là hướng đến việc luôn luôn phải có tiến trình sử dụng CPU, hay nói cách khác, là tối đa hoá việc sử dụng CPU. Ngoài ra, mục tiêu của các hệ thống time sharing (chia sẻ thời gian – tức các hệ thống HĐH hiện nay) là việc mang đến cho người dùng cảm giác chiếc máy tính của mình có thể làm được nhiều công việc cùng một lúc. Việc đó chỉ có thể đạt được thông qua việc chuyển quyền sử dụng CPU thật nhanh qua lại giữa các tiến trình.

Và để đạt được các mục tiêu nêu trên, **trình định thời** (**Scheduler**) sẽ lựa chọn trong các tiến trình hiện có để thực thi trên CPU. Nguyên nhân là do, trong một thời điểm nhất định, chỉ duy nhất có một tiến trình được quyền ở trạng thái running mà thôi.

Có 3 bộ định thời:

- Short-Term Scheduling (hay còn gọi là Dispatcher) : Dùng để định thời cho CPU.
 - o Xác định process nào trong ready queue sẽ được chiếm CPU để thực thi kế tiếp.
 - Bộ định thời Short-Term sẽ được gọi mỗi khi có một trong các sự kiện/interrupt sau xảy ra :
 - Ngắt thời gian (clock interrupt).
 - Ngắt ngoại vi (I/O interrupt).
 - Lòi gọi hệ thống (Operating System Call).
 - Signal.
- Medium-Term Scheduling: Dùng để định thời Swaping.
 - Process nào được đưa vào (swap-in), đưa ra khỏi (swap-out) bộ nhớ chính.
 - Được thực hiện bởi phần quản lý bộ nhớ và được thảo luận ở phần quản lý bộ nhớ.

- Long-Term Scheduling (hay còn gọi là Job Scheduler) :
 - o Xác định chương trình nào được chấp nhận nạp vào hệ thống để thực thi.
 - Điều khiển mức độ multiprogramming của hệ thống.
 - Long-Term Scheduling thường cố gắng duy trì xen lẫn CPU-Bound và I/O Bound Process.

Câu 2: Định thời CPU là gì? Bộ định thời nào chịu trách nhiệm thực hiện việc này?

Định thời CPU là

Chọn một process (từ ready queue) thực thi

Với một multithreaded kernel, việc định thời CPU là do OS chọn kernel thread được chiếm CPU

Bộ định thời chịu trách nhiệm thực hiện việc này: Short-term scheduling (hay còn gọi là Dispatcher)

Câu 3: Phí tổn gây ra khi định thời là gì?

- Bộ định thời sẽ chuyển quyền điều khiển CPU về cho process được chọn.
- Bao gồm:

Chuyển ngữ cảnh (sử dụng thông tin ngữ cảnh trong PCB)

Chuyển chế độ người dùng

Nhảy đến vị trí thích hợp trong chương trình ứng dụng để khởi động lại chương trình (chính là program counter trong PCB)

• Công việc này gây ra phí tổn

Dispatch latency: thời gian mà bộ định thời dừng một process và khởi động một process khác

Câu 4: Trình bày các tiêu chuẩn định thời CPU?

• Hướng người dùng (User-oriented)

Thời gian đáp ứng (Response time): khoảng thời gian process nhận yêu cầu đến khi yêu cầu đầu tiên được đáp ứng (time-sharing, interactive system) → cực tiểu

Thời gian quay vòng (hoàn thành) (Turnaround time): khoảng thời gian từ lúc một process được nạp vào hệ thống đến khi process đó kết thúc → cực tiểu

Thời gian chờ (Waiting time): tổng thời gian một process đợi trong ready queue → cực tiểu

Hướng hệ thống (System-oriented)

Sử dụng CPU (processor utilization): định thời sao cho CPU càng bận càng tốt \rightarrow cực đại

Công bằng (fairness): tất cả process phải được đối xử như nhau

Thông lượng (throughput): số process hoàn tất công việc trong một đơn vị thời gian → cực đai

Câu 5: Kể tên các giải thuật định thời CPU?

First-Come, First-Served (FCFS).

Shortest-Job-First Scheduling (SJF).

Preemptive SJF (hay Shortest-Remaining-Time First – SRTF).

Priority Scheduling.

Round-Robin (RR).

Highest Response Ratio Next (HRRN).

Multilevel Queue.

Multilevel Feedback Queue.

Câu 6: Mô tả và nêu ưu điểm, nhược điểm của từng giải thuật định thời sau: FCFS, SJF, SRTF, RR, Priority Scheduling, HRRN, MQ, MFQ.

Giải thuật	Mô tả	Ưu điểm	Nhược điểm
1. First-	Cơ chế thực thi:	Sẽ không bị	Thời gian chờ trung bình
Come,	Come, - Tiến trình nào yêu cầu CPU		của FCFS thường khá dài
First-	trước sẽ được cấp phát trước.		(VD : Một process có

Correct	Tiến 400-1- 22 41 41: 46 11:	Thuật tạ ś	byest time and dai do.	
Served	- Tiến trình sẽ thực thi đến khi	Thuật toán	burst-time rất dài đến	
(FCFS)	kết thúc hoặc bị blocked do	này dễ cài đặt. Code	trước, khi đó các process	
	I/O.		có burst-time nhỏ sẽ phải	
	Chế độ quyết định : Non-	đơn giản.	chờ 1 khoảng thời gian rất	
			lâu mới đến lượt thực thi).	
	Preemptive. Hiện thực: Sử dụng hàng đợi FIFO. - Tiến trình đi vào được thêm vào cuối hàng đợi. - Tiến trình được lựa chọn để xử lý được lấy từ đầu của queue.		Lãng phí thời gian do thời gian phần cứng trống khá nhiều (convoy effect). Non-preemptive. Sẽ không hoạt động tốt trong các hệ thống chia sẻ thời gian (time-sharing system) khi các user đều mong muốn được sử dụng CPU trong một khoảng thời gian và không muốn đelay quá lâu.	
2. Shortest	Cơ chế thực thi:	Tối ưu.	Cần phải ước lượng thời	
Job	- Định thời công việc ngắn	Cho thời	gian cần CPU tiếp theo	
First	nhất trước (Burst-time nhỏ	gian chờ	của process (Burst time).	
(SJF)	nhất).	đợi trung	cua process (Burst time).	
(531)	- Khi CPU được tự do, nó sẽ	bình tối	Có thể xảy ra starvation	
	cấp phát cho tiến trình nào	thiểu với	nếu số lượng process có	
	yêu cầu ít thời gian nhất để	một tập tiến	burst time nhỏ cần được	
	kết thúc (burst-time nhỏ	trình cho	thực thi quá nhiều.	
	nhất).			
	Burst-time có được từ việc	trước.		
	dự đoán, dựa vào các lần			
	chạy trước của tiến trình.			
	- Nếu có 2 tiến trình cùng			
	Burst-time, tiến trình nào vào			
	Duist-time, tien trinn nao vao			

	hàng đợi trước sẽ được chạy		
	trước (không xét độ ưu tiên).		
	Chế độ quyết định : Non-		
	Preemptive.		
3. Shortest	Cơ chế thực thi:	Preemptive	(Các nhược điểm của
Remaini	- Tương tự SJF).	. Thời gian	SJF).
ng Time	- Nếu một tiến trình mới được	đáp ứng	Tăng thời gian hoàn thành
First	đưa vào danh sách với chiều	nhanh cho	trung bình.
(SRTF)	dài sử dụng CPU cho lần tiếp	các tác vụ	
	theo nhỏ hơn (lưu ý, chỉ nhỏ hơn, nếu burst-time bằng thì	nhỏ.	
	không preempt) thời gian còn lại của tiến trình đang xử lý, nó sẽ dừng hoạt động tiến trình hiện hành (preempt).	Tránh việc một tác vụ lớn độc chiếm CPU.	
	Chế độ quyết định : Preemptive.	Thời gian chờ đợi trung bình thường sẽ nhỏ hơn SJF.	
4. Priority	Cơ chế hoạt động:	Các tác vụ	Có thể xảy ra starvation:
Scheduli	 Mỗi tiến trình sẽ được gán 1 	quan trọng	Các process có độ ưu tiên
ng	độ ưu tiên.	sẽ được	thấp có thể không bao giờ
	- CPU sẽ được cấp cho tiến	thực thi trước.	được thực thi (giải pháp:
	•		aging – Độ ưu tiên của
	 Định thời sử dụng độ ưu tiên có thể là : 		process sẽ tăng theo thời
	Preemptive : Khi một		gian).
	tiến trình mới xuất		
	hiện có độ ưu tiên cao		

	T	Γ	
	hơn, nó sẽ preempt		
	tiến trình đang chạy.		
	Non-Preemptive: Tiến trình đang chạy sẽ tiếp tục chạy.		
	 Nếu có 2 tiến trình cùng độ ưu tiên, thì tiến trình nào đến trước sẽ được chạy trước. Burst-time không được áp dụng để so sánh ở đây. 		
	Chế độ quyết định : Non-		
	Preemptive hoặc Preemptive.		
5. Round-	Cơ chế hoạt động:	Thời gian	Thời gian chờ đợi trung
Robin	- Mỗi tiến trình nhận được một	đáp ứng	bình thường khá lớn.
(RR)	đơn vị nhỏ thời gian CPU	trung bình	
()	(time-slice, quantum time), thông thường từ 10-100msec để thực thi.	thường thấp -> Thích hợp	Chuyển ngữ cảnh nhiều -> Hao phí cao. Hiệu suất thuật toán phụ
	- CPU Schedulers sẽ chọn 1 tiến trình từ ready queue và	cho các hệ thống time-	thuộc nhiều vào việc chọn quantum time.
	"lên dây cót" một quantum	sharing.	Không thể sử dụng thuật
	cho tiến trình, sau đó cho tiến trình chạy. Lúc này, sẽ có 2 khả năng có thể xảy ra: Thời gian chạy > Quantum: Khi đó, tiến trình sẽ bị interrupt và CPU Schedulers sẽ chọn tiếp tiến trình	Không xảy ra tình trạng starvation.	toán nếu muốn các ứng dụng có độ ưu tiên khác nhau.
	tiếp theo.		
	Thời gian chạy <		
	Quantum : Tiến trình		

tiếp theo sẽ ngay lập tức được thực thi tiếp (không cần chờ hết quantum time của tiến trình trước), và tiến trình tiếp theo đó cũng được gán 1 quantum time.

Phụ thuộc nhiều vào quantum time :

Quantum time ngắn thì đáp ứng nhanh, tuy nhiên overhead lớn do chuyển ngữ cảnh nhiều. Quantum time phải > thời gian chuyển ngữ cảnh (context switch).

Quantum time dài thì đáp ứng chậm, tuy nhiên thông lượng (throughput) sẽ cao. Và khi quantum time quá lớn RR->FCFS (Quantum time lớn -> Không bao giờ bị ngắt -> Ai vào trước làm trước -> FCFS).

- Khi cả tiến trình vừa thực thi xong và tiến trình mới cũng arrive vào cùng một thời điểm, thì tiến trình mới sẽ

	vào hàng đợi trước rồi mới đến tiến trình cũ Các tiến trình đều có độ ưu tiên giống nhau. Chế độ quyết định: Preemptive.		
6. Highest Respons e Ratio Next (HRRN)	Cơ chế hoạt động: - Chọn process tiếp có giá trị RR (Response Ratio) lớn nhất. - Các process ngắn được ưu tiên hơn vì service time (hay burst time) nhỏ. Công thức: response ratio = waiting time + estimated run time estimated run time estimated run time	Không xảy ra starvation. Tự động cân bằng giữa việc ưu tiên một tiến trình có thời gian thực thi nhỏ và một tiến trình đã ở quá lâu trong hệ thống (aging).	Phải biết trước brust time của process. Non-Preemptive.
7. Multilev el Queue	 Cơ chế hoạt động: Hàng đợi ready được chia thành nhiều hàng đợi riêng biệt theo một số tiêu chuẩn như: Đặc điểm và yêu cầu định thời của process. Foreground (interactive) và background process. 	Áp dụng nhiều giải thuật định thời cho nhiều loại tiến trình có độ ưu tiên khác nhau.	Các hàng đợi đa cấp này cần được giám sát -> Hao phí tài nguyên hệ thống. Process không thể di chuyển từ hàng đợi này sang hàng đợi khác -> Không linh động.

 Process được gán cố định vào một hàng đợi, mỗi hàng đợi sẽ sử dụng một giải thuật riêng.

Có 2TH hệ điều hành định thời cho các hàng đợi:

- Có một độ ưu tiên cổ định cho từng hàng đợi (fixed priority scheduling).
- Hàng đợi có độ ưu tiên cao hơn phải được chạy xong (empty) trước khi hàng đợi có độ ưu tiên thấp hơn được phép chạy.

Nếu có 1 tiến trình đi vào hàng đợi có độ ưu tiên cao hơn trong khi hàng đợi có độ ưu tiên thấp hơn đang được thực thi, hàng đợi có độ ưu tiên thấp hơn đó sẽ bị preempt.

Time-slice: Mỗi hàng đợi nhận được một khoảng thời gian chiếm CPU và phân phối cho các process trong hàng đợi khoảng thời gian đó.

Chế độ quyết định : Non-Preemptive hoặc Preemptive. Cho phép các CPU-Bound process được ưu tiên hơn trong việc thực thi -> Thời gian hệ thống thực thi tác vụ được cải thiện.

Có thể hoạt động trong cả 2 chế độ

Preemptive và Non-Preemptive

	có độ ưu tiên cao hơn.	
	Thuật toán chung nhất, có thể được thiết kế để phù hợp với các hệ thống khác biệt.	

Câu 7: Đặc điểm của định thời trên hệ thống có nhiều bộ xử lý? Khi nào cần phải thực hiện cân bằng tải?

- Đặc điểm của định thời trên hệ thống có nhiều bộ xử lý:
 Định thời CPU trở nên phức tạp hơn khi hệ thống có nhiều bộ xử lý.
 Khái niệm đa bộ xử lý có thể là một trong các dạng sau:
 - o CPU có nhiều lõi vật lý (Multicore CPUs)
 - o CPU có nhiều luồng xử lý trên một lõi (Multithreaded cores)
 - o Hệ thống NUMA (non-uniform memory access)
 - Da xử lý không đồng nhất (Heterogeneous multiprocessing)

Có hai cách tiếp cận phổ biến: đa xử lý bất đối xứng (asymmetric multiprocessing) và đa xử lý đối xứng (symmetric multiprocessing - SMP).

• Cần phải thực hiện cân bằng tải khi:

Một bộ xử lý có quá nhiều tải, trong khi các bộ xử lý khác rỗi. Cần phải đảm bảo các bộ xử lý đều được sử dụng hiệu quả.

Mục tiêu của cân bằng tải là phân phối khối lượng công việc (workload) đều nhau cho các CPU.

Câu 8: Đặc điểm định thời theo thời gian thực?

Đặc điểm định thời theo thời gian thực:

Có nhiều thách thức do yêu cầu về tính chất thời gian thực.

Có 2 dạng hệ thống thời gian thực:

Soft real-time systems: Các tác vụ quan trọng sẽ được cấp độ ưu tiên lớn nhất, nhưng không đảm bảo bất cứ điều gì khác.

Hard real-time systems: Tác vụ phải hoàn thành trong deadline của nó

Câu 9: Mô tả các đặc điểm cơ bản của bộ định thời CFS trên Linux?

Nhân Linux từ 2.6.23 sử dụng bộ định thời CFS (Completely Fair Scheduler)

Định thời theo lớp:

Mỗi lớp được gán một độ ưu tiên cụ thể.

Bộ định thời chọn tác vụ có độ ưu tiên cao nhất trong lớp có độ ưu tiên cao nhất.

Thời gian sử dụng CPU của mỗi tác vụ không dựa trên quantum time cố định mà dựa trên tỷ lệ giờ CPU.

Nhân Linux cài đặt sẵn 2 lớp: default và real-time. Các lớp khác có thể được thêm vào.

o Thời gian sử dụng CPU:

Được tính dựa trên giá trị nice được gán cho mỗi tác vụ, có giá trị từ -20 đến 19.

Giá trị thấp hơn có độ ưu tiên cao hơn.

Target latency – khoảng thời gian mà một tiến trình cần được chạy ít nhất một lần.

Target latency có thể tăng lên nếu số lượng tiến trình tăng lên.

o CFS xác định tác vụ được thực thi kế tiếp qua virtual run time:

Mỗi tác vụ có giá trị virtual run time riêng, được kết hợp với một hệ số đặc biệt dựa trên độ ưu tiên.

Các tiến trình có độ ưu tiên bình thường có virtual run time tương đương với thời gian chạy thực tế.

Chọn tiến trình có virtual run time nhỏ nhất để thực thi tiếp.

Câu 10: Mô tả các đặc điểm cơ bản của định thời trên Windows?

- Định thời theo độ ưu tiên với chế độ trưng dụng.
- Tác vụ có độ ưu tiên cao nhất luôn được chạy tiếp.
- Tiến trình sẽ được thực thi cho đến khi (1) block bởi system call, (2) hết quantum time, (3) bị thay thế bởi một tiến trình khác có độ ưu tiên cao hơn.
- Sử dụng 32 độ ưu tiên, được chia thành 2 lớp: variable (1-15) và real-time (16-31). Độ ưu tiên 0 dành cho quản lý bộ nhớ.
- Mỗi độ ưu tiên có hàng đợi riêng.
- Idle thread được chạy nếu không có bất cứ tác vụ nào trong hàng đợi.
- Các hàm thư viện Windows API cung cấp cho tiến trình các lớp ưu tiên sau:
 - REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,
 ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,
 BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS.
- Tiến trình có thể có các độ ưu tiên tương đối sau:
 - TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, LOWEST, IDLE
- Lớp ưu tiên và độ ưu tiên tương đối có thể kết hợp để xác định giá trị ưu tiên.
- Độ ưu tiên cơ sở (lúc khởi tạo) là NORMAL bên trong lớp.
- Khi hết quantum, độ ưu tiên có thể giảm nhưng không nhỏ hơn độ ưu tiên cơ sở.
- Các độ ưu tiên trên Windows

	real- time	high	above normal	normal	below normal	idle priority
time-critical	31	15	15	15	15	15
highest	26	15	12	10	8	6
above normal	25	14	11	9	7	5
normal	24	13	10	8	6	4
below normal	23	12	9	7	5	3
lowest	22	11	8	6	4	2
idle	16	1	1	1	1	1

- Windows 7 có thêm user-mode scheduling (UMS):

- o Úng dụng tạo và quản lý tiểu trình độc lập với nhân.
- O Hiệu quả hơn trong trường hợp có nhiều tiểu trình.
- Định thời UMS được thực hiện với sự hỗ trợ của các thư viện như C++ Concurrent Runtime (ConcRT).

Câu 11: (Bài tập mẫu) Cho các tiến trình với thông tin ở bảng bên dưới. Biết rằng tất cả các tiến trình đều đến ở thời điểm 0 theo thứ tự từ P1 đến P5. Vẽ giản đồ Gantt, tính thời gian đợi trung bình và thời gian lưu lại trong hệ thống (turnaround time) trung bình cho các giải thuật sau:

- a. FCFS
- b. SJF
- c. RR với quantum time = 10

Process	Burst Time
P1	10
P2	29
Р3	3
P4	7
P5	12

FCFS:

Thời gian đợi trung bình: (0 + 10 + 39 + 42 + 49)/5 = 28

Thời gian lưu lại trong hệ thống trung bình: (10 + 39 + 42 + 49 + 61)/5 = 40.2

SJF

Thời gian đợi trung bình: (10 + 32 + 0 + 3 + 20)/5 = 13

Thời gian lưu lại trong hệ thống trung bình: (20 + 61 + 3 + 10 + 32)/5 = 25.2

RR với quantum time = 10

Thời gian đợi trung bình: (0 + (10 + 20 + 2) + 20 + 23 + (30 + 10))/5 = 23

Thời gian lưu lại trong hệ thống trung bình: (10 + 61 + 23 + 30 + 52)/5 = 35.2

Câu 12: Cho 5 tiến trình P1, P2, P3, P4, P5 với thời gian vào hàng đợi ready và thời gian cần CPU tương ứng như bảng sau:

Process	Arrival Time	CPU Burst Time
P1	0	8
P2	2	19
Р3	4	3
P4	5	6
P5	7	10

Vẽ sơ đồ Gantt và tính thời gian chờ trung bình, thời gian đáp ứng trung bình, thời gian lưu lại trong hệ thống (turnaround time) trung bình cho các giải thuật sau:

- a. FCFS
- b. SJF preemptive
- c. RR với quantum time = 6.
 - FCFS:

Sơ đồ Gantt

Thời gian chờ:

P1: 0

P2: 6

P3: 23

P4: 25

P5: 29

Thời gian chờ trung bình: (0 + 6 + 23 + 25 + 29)/5 = 16,6

Thời gian đáp ứng:

P1: 0

P2: 6

P3: 23

P4: 25

P5: 29

Thời gian đáp ứng trung bình: (0 + 6 + 23 + 25 + 29)/5 = 16,6

Thời gian hoàn thành:

P1: 8

P2: 25

P3: 26

P4: 31

P5: 39

Thời gian hoàn thành trung bình: (8 + 25 + 26 + 31 + 39)/5 = 25,8

• SJF preemptive:

Gantt

	P1	P3	P1	P4	P5	P2
C) 4	7	1		7 2	7 46

Thời gian chờ:

P1: 0 + 3 = 3

P2: 25

P3: 0

P4: 6

P5: 10

Thời gian chờ trung bình: (3 + 25 + 0 + 6 + 10)/5 = 8.8

Thời gian đáp ứng:

P1: 0

P2: 25

P3: 0

P4: 6

P5: 10

Thời gian đáp ứng trung bình: (0 + 25 + 0 + 6 + 10)/5 = 8,2

Thời gian hoàn thành:

P1: 11

P2: 44

P3: 3

P4: 12

P5: 20

Thời gian hoàn thành trung bình: (11 + 44 + 3 + 12 + 20)/5 = 18

Gantt

Ī	P1	P2	P3	P4	P5	P1	P2	P5	P2
C) 6	12) 1	5 2	1 2	7 2	9 3	<u> 3</u> 0	3 46

Thời gian chờ:

P1:
$$0 + 21 = 21$$

P2:
$$4 + 17 + 4 = 25$$

P3: 8

P4: 10

P5;
$$14 + 8 = 22$$

Thời gian chờ trung bình: (21 + 25 + 8 + 10 + 22)/5 = 17,2

Thời gian đáp ứng:

P1: 0

P2: 4

P3: 8

P4: 10

P5; 14

Thời gian đáp ứng trung bình: (0 + 4 + 8 + 10 + 14)/5 = 7,2

Thời gian hoàn thành:

P1: 29

P2: 44

P3: 11

P4: 16

P5: 22

Thời gian chờ trung bình: (29 + 44 + 11 + 16 + 22)/5 = 24,4

Câu 13: (Bài tập mẫu) Cho 5 tiến trình P1, P2, P3, P4, P5 với thời gian vào hàng đợi ready và thời gian cần CPU tương ứng như bảng sau:

Process	Arrival Time	Burst Time
P1	0	13
P2	4	9
P3	6	4
P4	7	20
P5	12	10

Vẽ giản đồ Gantt và tính thời gian đợi trung bình, thời gian đáp ứng trung bình, thời gian lưu lại trong hệ thống (turnaround time - thời gian hoàn thành) trung bình khi thực hiện các giải thuật định thời sau:

- a) Round Robin với quantum time = 5
- b) SRTF

Có nhận xét gì về tính hiệu quả của hai giải thuật trên?

a. Round Robin với quantum time = 5

Giản đồ Gantt:

	P1	P2	P1	P3	P4	P2	P5	P1	P4	P5	P4
1											

0 5 10 15 19 24 28 33 36 41 46 56

Thời gian đáp ứng trung bình: (0 + 1 + 9 + 12 + 16)/5 = 7.6

Thời gian đợi trung bình: ((5+18)+(1+14)+9+(12+12+5)+(16+8))/5=20

Thời gian hoàn thành trung bình: (36 + 24 + 13 + 49 + 34)/5 = 31.2

b. SRTF

Giản đồ Gantt:

	P1	Р3	P1	P2	P5	P4
0		6 1	0 1	.7	26	36 50

Thời gian đáp ứng trung bình: (0 + 13 + 0 + 29 + 14)/5 = 11.2

Thời gian đợi trung bình: (4 + 13 + 0 + 29 + 14)/5 = 12

Thời gian hoàn thành trung bình: (17 + 22 + 4 + 49 + 24)/5 = 23.2

Nhận xét về hai giải thuật trên:

- SRTF hiệu quả hơn (tốt hơn) Round Robin nếu xét trên các tiêu chuẩn thời gian đợi (trung bình) và thời gian hoàn thành (trung bình).
- Round Robin cho thời gian đáp ứng (trung bình) tốt hơn SRTF.

Câu 14: (Bài tập mẫu) Cho 5 tiến trình P1, P2, P3, P4, P5 với thời gian vào hàng đợi ready và thời gian cần CPU tương ứng như bảng sau:

Process	Arrival Time	Burst Time	Priority
P1	0	13	4
P2	4	9	3
P3	6	4	1
P4	7	17	2
P5	12	9	5

Vẽ giản đồ Gantt và tính thời gian đợi trung bình, thời gian đáp ứng trung bình, thời gian lưu lại trong hệ thống (turnaround time - thời gian hoàn thành) trung bình khi thực hiện giải thuật định thời Preemptive Priority (độ ưu tiên $1 > 2 > 3 \dots$)

Giản đồ Gantt:

P1	P2	Р3	P4	P2	P1	P5	
0 4	4	6 1	10 2	27 3	34	43	52

Thời gian đáp ứng trung bình: (0 + 0 + 0 + 3 + 31)/5 = 6.8

Thời gian đợi trung bình: (30 + 21 + 0 + 3 + 31)/5 = 17

Thời gian hoàn thành trung bình: (43 + 30 + 4 + 20 + 40)/5 = 27.4

Câu 15: Sử dụng các giải thuật FCFS, SJF, SRTF, Priority -Pre, RR (10) để tính các giá trị thời gian đợi, thời gian đáp ứng, thời gian hoàn thành trung bình và vẽ giản đồ Gantt cho các tiến trình sau:

Process	Arrival Time	Burst Time	Priority
P1	0	20	20
P2	25	25	30
P3	20	25	15
P4	35	15	35
P5	10	35	5
P6	15	50	10

Mon Tue Wed Thurs Fri Sat Sun					
8AI 15)					
FERS					
P1 P 5 P 6 93 P2 P27					
0 20 55 105 130 155 170					
- That gian this trung but (0+10+40+85+105+					
105 120) 15 = 60 U					
- The gian tap ing tung binh 10+10+40+85+					
105 + 180) (6 = 60					
- That gian hoan thanh trung birth:					
(20+25+90+110+120+135)/6=88,3					
- SIF					
BLA PASCINA WASA COLOR A TABLE OF IN CASC AND					
PA P3 P4 P2 P5 P6					
0 20 cho 045 60 85 120 170					
_ That gian trung birth.					
(0+20 P-20 + 45+85 + 60-25 +85-10+120-15)/6					
= 37,5					
- That gian dap ving thing both: (OTRO-20 +45 - 35 + 60 - 25 + 85 - 10 + 20 - 15)/1					
120-821 +45-33 +60-96 + 65-40 + 48 (6)					
31.5					

Câu 16: Xét tập các tiến trình sau (với thời gian yêu cầu CPU và độ ưu tiên kèm theo). Vẽ giản đồ Gantt và tính thời gian đợi trung bình và thời gian lưu lại trong hệ thống trung bình (turnaround time) cho các giải thuật sau:

- a. SJF Preemptive
- b. RR với quantum time = 2
- c. Preemptive Priority (độ ưu tiên 1 > 2 > ...)

Process	Arrival Time	Burst Time	Priority
P1	0	10	3
P2	1	3	2
P3	2	2	1
P4	3	1	2

|--|

Câu 17: Cho 5 tiến trình với thời gian vào hàng đợi ready và thời gian cần CPU tương ứng như bảng sau:

Process	Arrival Time	Burst Time
P1	0	10
P2	2	29
P3	4	3
P4	5	7
P5	7	12

Vẽ giản đồ Gantt và tính thời gian đợi trung bình, thời gian đáp ứng trung bình và thời gian lưu lại trong hệ thống (turnaround time) trung bình cho các giải thuật sau:

- a. FCFS
- b. SJF preemptive
- c. RR với quantum time = 10

