COMP 445 Data Communications & Computer networks Winter 2022

Network Layer – Data plane

- ✓ Network layer: services and overview
- ✓ Routers
- ✓ Internet protocol
- ✓ Generalized forwarding and SDN

Learning objectives

- To explain the principles behind the services provided by the network layer
- To differentiate the traditional networking approach from the software defined networking paradigm
- To explain the Internet Protocol v4 and v6
- To design efficient addressing schemes according to the organization/entity demands

Network Layer – Data plane

- ✓ Network layer: services and overview
- ✓ Routers
- ✓ Internet protocol
- ✓ Generalized forwarding and SDN

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Two key network-layer functions

dets-Plane

network-layer functions:

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to destination
 - routing algorithms

analogy: taking a trip

- forwarding: process of getting through single interchange
- routing: process of planning trip from source to destination

control-plane

Network layer: data plane, control plane

Data plane

- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port
- forwarding function

Control plane

- network-wide logic
- determines how datagram is routed among routers along end-end path from source host to destination host
- two control-plane approaches:
 - traditional routing algorithms: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Per-router control plane

Individual routing algorithm components in each and every router interact in the control plane

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs)

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

· security - encrypt

example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network service model

 Network service model with virtual circuits

Network layer service models:

N	Network itecture	Service Model	Guarantees ?				Congestion
Arch			Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
•	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes —	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

MPLS + 1P

Network Layer – Data plane

- ✓ Network layer: services and overview
- ✓ Routers
- ✓ Internet protocol
- ✓ Generalized forwarding and SDN

Router architecture overview

high-level view of generic router architecture:

Network Layer: Data Plane 4-14

Input port functions

data link layer:

e.g., Ethernet see chapter 5

decentralizéd switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port functions

data link layer: e.g., Ethernet see chapter 5

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
 - destination-based forwarding: forward based only on destination IP address (traditional)
- generalized forwarding: forward based on any set of header field values

Destination-based forwarding

forwarding table					
Destination Address Range	Link Interface				
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111	0				
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1				
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111	2				
otherwise	3				

Q: but what happens if ranges don't divide up so nicely?

Longest prefix matching

longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 *******	1
11001000 00010111 00011*** *****	2
otherwise	3

examples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

which interface? which interface?

Network Layer: Data Plane 4-18

Longest prefix matching

- we'll see why longest prefix matching is used shortly, when we study addressing
- longest prefix matching: often performed using ternary content addressable memories (TCAMs)
 - content addressable: present address to TCAM: retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: can up ~IM routing table entries in TCAM

Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfer from inputs to outputs
 - · often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

Switching via memory

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

bus

Switching via interconnection network

- overcome bus bandwidth limitations
- banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco I 2000: switches 60 Gbps through the interconnection network

Input port queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention:
only one red datagram can be
transferred.
lower red packet is blocked

one packet time later:
green packet
experiences HOL
blocking

Output ports

This slide in HUGELY important!

 buffering required from fabric faster rate

Datagram (packets) can be lost due to congestion, lack of buffers

scheduling datagrams

Priority scheduling – who gets best performance, network neutrality

Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gpbs link: 2.5 Gbit buffer
- recent recommendation: with N flows, buffering equal to

$$\frac{\mathsf{RTT} \cdot \mathsf{C}}{\sqrt{\mathsf{N}}}$$

Scheduling mechanisms

- scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue
 - real-world example?
 - discard policy: if packet arrives to full queue: who to discard?
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
 - random: drop/remove randomly

Scheduling policies: priority

priority scheduling: send
 highest priority
 queued packet

- multiple classes, with different priorities
 - class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.
 - real world example?

Scheduling policies: still more

Round Robin (RR) scheduling:

- multiple classes
- cyclically scan class queues, sending one complete packet from each class (if available)
- real world example?

Network Layer: Data Plane 4-30

Scheduling policies: still more

Weighted Fair Queuing (WFQ):

- generalized Round Robin
- each class gets weighted amount of service in each cycle
- real-world example?

References

Figures and slides are taken/adapted from:

 Jim Kurose, Keith Ross, "Computer Networking: A Top-Down Approach", 7th ed. Addison-Wesley, 2012. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved