GNSS INTRODUCTION

and Location Technology overview

GNSS Group: Zhicheng Li

2014-8-4

Shanghai Beijing Shenzhen San Diego Korea India

Agenda

ØSection1: Understanding GNSS

ØSection2: GNSS Augmentation

ØSection3: GNSS Aiding

Ø Section4: Location Based Service(LBS)

ØSection5: Indoor Positioning

Understanding GNSS

Shanghai Beijing Shenzhen San Diego Korea India

Section1: Understanding GNSS

- GPS
- GLONASS (Russia)
- BDS (China)
- GALILEO (E.U)
- QZSS (Japan, regional)
- Navigation Conception

GPS System Segment

GPS Navigation Conception

System Segments:

- Ø Control Segment
 Master Control Station and Backup
 Monitoring and Uplink Stations
- Ø Space Segment27 to 32 Satellites
- Ø User Segment
 No Organization Consists of all receivers
 User Segment is Passive Receive Only

GPS Control Segment

Control Segment

Master Control Station: Schreiver AFB, Colorado Springs, Colorado

Backup: Moffet AFB, Sunnyvale, California

Monitor sites: Ascension Island*, Diego Garcia*, Kwajalein*, Hawaii

* These sites can upload data to the satellites

GPS Control Segment

GPS Space Segment

- Altitude 20,200 km
- Six orbital planes
- 24 satellites + 3
 to 8 active spares
- Worldwide coverage

GPS User Segment

Anyone or Anything Requiring Location or Timing Information

Other GNSS Systems

GLONASS

- Ø 24 SVs (full constellation), set healthy on December 8, 2011
- Ø 3 orbital planes, spaced 120° apart, inclined 64.8° with up to 8 SVs per plane
- Ø Orbital period ~11 hours, 15 minutes
- Ø Like original GPS, GLONASS is considered a first generation GNSS

Ø FDMA

- L1 Center frequency = 1602 MHz L2 Center frequency = 1246 MHz
- Frequencies are 562.5 kHz offset in L1, 437.5 kHz in L2

Constellation Status

Total satellites in constellation	29 SC
Operational	24 SC
In commissioning phase	1 SC
In maintenance	-
Under check by the Satellite Prime Contractor	1 SC
Spares	2 SC
In flight tests phase	1 SC

GLONASS constellation

GLONASS Availability

Current values of position geometry factor PDOP on the Earth surface (angle $\geq 5^{\circ}$) Current constellation: 24 SC in operation (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24) Moscow Time (UTC+3 hours): 04:47:02 31.07.2014

GLONASS Accuracy

BDS

Ø 35 SVs (full constellation, 2020), currently 5 GEO, 5 IGSO and 4 MEO

Ø Nominal frequency of B1I signal is 1561.098MHz

BDS Development Roadmap

^{*}BeiDou-Demonstration ——BeiDou Navigation Demonstration System BeiDou ——BeiDou Navigation Satellite System

Services and Performance

The system can provide four types of services, including authorized service, open service, wide range differential service and position report service.

BDS Coverage

BeiDou will gradually extend from China to the Asia-Pacific region, and further extend to all over the world by 2020.

Galileo

- Contains a total of 30 satellites; 27 are operational
- 3 spare satellites
- Satellites are in 3 different planes, equally spaced around the plane.
- Altitude = 23, 600 km
- Satellites are in Medium Earth Orbit (MEO)

Galileo Constellation

Galileo Implementation Plan

2013

In-Orbit Validation
4 IOV satellites plus
ground segment
2010

0

Galileo System Testbed v22 initial test satellites

2005

Galileo System Testbed v1Validation of critical algorithms

2003

8/5/2014

Galileo Services

Open Service	Free to air; Mass market; Simple positioning	
Commercial Service	Encrypted; High accuracy; Guaranteed service	***
Safety of Life Service	Open Service + Integrity and Authentication of signal	+
Public Regulated Service	Encrypted; Integrity; Continuous availability	

Search and Rescue Service

Near real-time; Precise; Return link feasible

Galileo Performance Requirements (Dual Frequency)

Service	Horizontal Accuracy (95%) (incl. system margins)	Vertical Accuracy (95%) (incl. system margins)	Availability for global coverage	Integrity
Open Service	4 m	8 m	> 99.5%	NO
Commercial Service	Detailed performance requirements under elaboration			
Safety of Life Service	4 m	8 m	> 99.5%	YES (LPV200)
Public Regulated Service	4 m	8 m	> 99.5%	YES

- Regional navigation service broadcast from high-elevation angle by three satellites on the inclined geosynchronous (quasi-zenith) orbit;
- Broadcast GPS-compatible supplemental signals on three frequencies and two augmentation signals, L1-SAIF and LEX;
- The first QZS satellite successfully launched on Sept. 11, 2010.

QZSS Concept

- Footprint of QZS orbit;
- Centered 137E;
- Eccentricity 0.1, Inclination 45deg.

- Broadcast signal from high elevation angle;
- Applicable to navigation services for mountain area and urban canyon;
- Augmentation signal from the zenith could help users to acquire other GPS satellites all the time.

Combining Multiple GNSS - Advantages

- **Ø** Number of Satellites Available Increases
- Ø Improves DOP
- Ø Increases likelihood of finding a signal with partial blockages
- Ø Increases Integrity
- Ø Less likely to be affected by 1 bad SV
- Ø Systems are no longer subject to one control system
- Ø Shorten TTFF

Navigation Conception

- To make a fix, a receiver must:
 - -Find satellite signals and lock onto them
 - -Get the ephemeris for each satellite
 - –Measure the pseudorange to each satellite
 - –Determine the precise time
 - Solve the navigation equations
- The time this takes, called Time To First Fix (TTFF) depends on how long each step takes

GPS Positioning Methodology

Ø Navigation Message
Contains SV Position With
Respect to Time
Ø Receiver Computes
Relative Time of Receipt of
Signals
Ø Solving 4 Simultaneous

Equations Gives
Receiver's Position and tR,
the Time Offset

$$\begin{split} &(X-x_1)^2+(Y-y_1)^2+(Z-z_1)^2=[(\rho_1+CB)\cdot c]^2\\ &(X-x_2)^2+(Y-y_2)^2+(Z-z_2)^2=[(\rho_2+CB)\cdot c]^2\\ &(X-x_3)^2+(Y-y_3)^2+(Z-z_3)^2=[(\rho_3+CB)\cdot c]^2\\ &(X-x_4)^2+(Y-y_4)^2+(Z-z_4)^2=[(\rho_4+CB)\cdot c]^2 \end{split}$$

Where: (XYZ) = receiver's position
 (x_iy_iz_i) = position of SV_i calculated from ephemeris
 ρ_i = pseudorange measurement to SV_i
 CB = Clock Bias (t_R - t₀, error in Rcvr Clk)
 c = speed of light, 299,792,458 m/s

GPS Frame Structure

Pseudorange Measurements

Pseudorange

GPS Error Source

- **Ø** Satellite Clock Error
- Ø SV Ephemeris Error
- Ø Ionospheric Refraction
- **Ø** Tropospheric Refraction
- **Ø** Receiver Noise
- Ø Multipath
- Ø Dilution Precision

Note: Earth Rotation Effect should be take into consideration

Satellite Geometry and Dilution of Precision (DOP)

Acronym	Туре	Position Component(s)
GDOP	Geometrical	3D Position and Time
PDOP	Position	3D Position
TDOP	Time	Time
HDOP	Horizontal	2D Horizontal Position
VDOP	Vertical	1D Height

Well spaced satellites- low uncertainty of position

Poorly spaced satellites – high uncertainty of position

Geometry in 2-D (GPS Basics, 2000)

Accuracy Estimation

Dimension	Measure	% Probability	Typical Usage	Definition
1	RMS	68	Vertical	Square root of the average of the squared errors
2	CEP	50	Horizontal	Radius of a circle centered at the true location which encloses 50 % of the measured points
2	RMS	63 – 68	Horizontal	Square root of the average of the squared errors
2	2dRMS	95 – 98	Horizontal	Twice the RMS of the horizontal errors
3	SEP	50	3-D	Radius of a sphere centered at the true location which encloses 50 % of the measured points
3	RMS	61 – 68	3-D	Square root of the average of the squared errors

Ø TTFF Ø Accuracy

Agenda

ØSection1: Understanding GNSS

ØSection2: GNSS Augmentation

ØSection3: GNSS Aiding

Ø Section4: Location Based Service(LBS)

ØSection5: Indoor Positioning

GNSS Augmentation

Shanghai· Beijing· Shenzhen· San Diego· Korea· India

GNSS Augmentation

- GPS needs "augment" to remove errors and add availability and integrity
- Two basic concepts –
 Space based Augmentation System (SBAS)
 Ground based Augmentation System (GBAS)

SBAS

- -Designed to identify and correct for specific errors, *valid over wide area*:
 - Satellite Clock
 - Satellite Ephemeris
 - lonosphere

Operational Overview

SBAS

GBAS

 Ground-Based Augmentation System (GBAS) is a system that provides differential corrections and integrity monitoring of Global Navigation Satellite Systems (GNSS). -DGPS

GBAS Architecture

Agenda

ØSection1: Understanding GNSS

ØSection2: GNSS Augmentation

ØSection3: GNSS Aiding

Ø Section4: Location Based Service(LBS)

ØSection5: Indoor Positioning

GNSS Aiding

Shanghai Beijing Shenzhen San Diego Korea India

Aiding Source

ØAGPS

ØPredicted Ephemeris

Ø DR

AGPS

What is AGPS?

Assisted GPS (abbreviated generally as A-GPS and less commonly as aGPS) is a system that can:

- Ø Improve the startup performance or time-to-first-fix (TTFF)
- Ø Improve the Sensitivity
- Ø It is used extensively with GPS-capable <u>cellular phones</u>, as its development was accelerated by the U.S. <u>FCC</u>'s <u>911</u> requirement to make the location of a cell phone available to emergency call dispatchers

AGPS System

How AGPS shorten the TTFF performance

Ø Ephemeris

ü No need ephemeris download, saving 18s+ at lest.

- Ø Almanac
- Ø Coarse position
- Ø Time
- Ø Doppler

From the above information, we could:

üKnow which satellite in view

üNarrow satellite search range (frequency and Doppler)

AGPS Assistance Type

- Mobile Station Based (MSB): Information used to acquire satellites more quickly
- Mobile Station Assisted (MSA): Calculation of position by the server using information from the GPS receiver
 - -The device captures a snapshot of the GPS signal, with approximate time, for the server to later process into a position.
 - Iono Correction

AGPS Standards

Control Plane

- **ü** RRLP 3gpp defined RRLP or Radio resource location protocol to support positioning protocol on GSM networks.
- **ü** TIA 801 <u>CDMA2000</u> family defined this protocol for CDMA 2000 networks.
- **ü** RRC position protocol 3gpp defined this protocol as part of the RRC standard for <u>UMTS</u> network.
- **ü** LPP 3gpp defined LPP or LTE positioning protocol for <u>LTE</u> Networks.

User Plane Protocol

SUPL V1.0

SUPL V2.0

Predicted Ephemeris

Components of TTFF

GPS TTFF (warm and cold starts) consist of:

- 1. Acquisition time: Time required to acquire individual satellites
- 2. Navigation data (Ephemeris) download time: Time required to download navigation data from at least 3-4 satellites
 - Decoding of the navigation data from the satellite data stream

Benefit of Predicted Ephemeris

Predicted Ephemeris eliminates the need for the ephemeris download to achieve a fix:

The receiver is able to acquire a fix much more quickly

Typical Results

improved start-up times are possible in urban conyons where downloading ephamerts is easily

TTFF Performance

Predicted Ephemeris Types

p Client Based

Download broadcast ephemeris:

ü Received from GPS signal or

ü Received from aiding

Typically 3~7 days prediction

p Server Based

Download precise ephemeris from JPL (Jet Propulsion Laboratory)

ü More accurate

ü Typically 7~14 days prediction

Dead Reckoning(DR)

- Dead Reckoning Navigation involved knowing where you are by:
 - 1. Start from a know position
 - 2. Then keeping track of direction travelled, speed, and time elapsed
 - 3. As direction or speed changed, plots were made on a chart and the current estimated position

Vehicle DR

- Ø In Vehicle DR, position fixes come from GPS
- Ø In between GPS fixes, Sensor inputs help smooth out GPS "noise"
- When GPS is lost (tunnels, parking garages, etc.) sensors fill in the gaps

Pedestrian dead reckoning

Increased sensor in Smartphone:

- Ø Built-in accelerometers can be used as a pedometer
- Ø Built-in magnetometer as a compass heading provider.

Pedestrian dead reckoning can be used to supplement other navigation methods in a similar way to automotive navigation, or to extend navigation into areas where other navigation systems are unavailable

Tightly Coupled DR

- All inputs to the Position Fix go into the same Kalman Filter
- The Kf assesses the quality and weights each input in accordance with the quality
- Based on quality of inputs, output quality is computed and used to rate its weight on next solution

DR Test Results-01

GPS only

(Image courtesy of u-blox)

GPS & Dead Reckoni

DR Test Results-02

Agenda

ØSection1: Understanding GNSS

ØSection2: GNSS Augmentation

ØSection3: GNSS Aiding

Section4: Location Based Service(LBS)

ØSection5: Indoor Positioning

Location Based Service (LBS)

Shanghai Beijing Shenzhen San Diego Korea India

What is location-based service?

 Location services, wireless location services, mobile location-based services

 Allow that mobile users (MUs) use services based in their position or geographic location

Location Technologies

- Network-based
 - -Technologies that exploit the cellular infrastructure to obtain geo-location information.
- Handset-based
 - Location intelligence is stored within terminal
- Each of these groups may be divided into:
 - -The MU uses signal transmitted by the base stations to calculate its own position
 - —The base stations measure the signals transmitted by the MU and relay them to a central site for processing.

Location Technologies: network-based

• CGI+TA (Cell Global Identity + Timing Advance)

Location Technologies: network-based

UL-TOA (Uplink Time of Arrival)

Location Technologies: network-based

AOA (Angle of Arrival)

Location Technologies: handset-based

- GPS (Global Positioning System)
- AGPS (Network Assisted GPS)

Location Technologies: handset-based

• EOTD (Enhanced Observed Time Difference)

8/5/2014

www.spreadtrum.com

Spatial Data

- Essential component of LBS architecture
 - -Storing and analysing spatial data
- Geographical Information System (GIS)
 - —Refers to the computer-based capability to manipulate geographic data
- Maps or images can be stored in vector or raster format.
- A spatial object must have:
 - –Location: a known point
 - -Form: a geometric representation
 - -Attribute: the nature of the object
 - –Spatial relationship: the boundary of an area

LBS is a Daily Experience

LBS used for search, maps, navigation, check-in, fitness, tracking, etc.

But... LBS is Not Indoors

Consumers...

- Ø Have come to rely on their favorite LBS applications
- **Ø** Expect functionality anywhere anytime
- Ø Indoors a very high percentage of the time
- Ø Require indoor LBS that works in smartphones to provide maps, search, directions, check-in and much more

GNSS helps improve some outdoor scenarios, but does not help indoors.

Additional solutions are needed.

Agenda

ØSection1: Understanding GNSS

ØSection2: GNSS Augmentation

ØSection3: GNSS Aiding

Ø Section4: Location Based Service(LBS)

ØSection5: Indoor Positioning

Indoor Positioning

Shanghai· Beijing· Shenzhen· San Diego· Korea· India

Why is this important?

n Smart phones require an excellent location experience, even indoors
 n Location is key to delivering useful, relevant content

Challenge for Indoor-Positioning

ØDynamic Resource Allocation – allocate best resources to calculate position

ØContinuous Positioning—ability to keep system hot and ready to deliver instantaneous position information for minimum power

ØMeasurement Fusing– ability to dynamically choose, combine and predict the best sources of positioning information

Indoor Positioning Sources

- RSSI based Wi-Fi
 - -Self-learning
 - -RSSI method
 - -Update DB with more accurate Wi-Fi learning data
- Cellular data
 - -Solution reliability
 - -Reduce GNSS uncertainty
- MEMS
 - -Navigation enhancements for vehicle and pedestrian mode
 - –Power saving with motion detection
 - Optimizations through understanding platform dynamics
- Others
 - -Pseudolite
 - -Blue tooth

Some Results in SiRFusion: Wifi-Only

- Illustrative example in Encore hotel, casino, and meeting rooms
- Once GPS is lost indoors, the locations of Wi-Fi access points are used to determine approximate position once every 20s
- The uncertainty illustrated by the size of the ellipses makes most indoor use cases impractical
- Once outdoors, a more accurate GPS position is obtained and the uncertainty shrinks

Some Results in SiRFusion: PDR-Only

- Once GPS is lost indoors, the PDR is used to keep track of position
- The MEMS sensors drift and the error accumulates at a growth rate of 5% of distance travelled
- Soon the position track is not representative of the actual path
- The uncertainty illustrated by the size of the ellipses makes most indoor use cases impractical

85

Some Results in SiRFusion: Fusion of Wifi and PDR

- Once GPS is lost indoors, the MEMS sensor output is used for dead reckoning as the user moves
- PDR is very accurate short term, so the user path is clearly shown
- The error grows about 5% of distance traveled, so in 200m, the error grows only 10m
- Wi-Fi positioning keeps the error from growing too large
- Learning: the better accuracy allows the indoor Wi-Fi access point locations to be determined more precisely

dtrum.com

86

"Indoor location-based navigation nears reality"

-- USA Today

Shanghai Beijing Shenzhen San Diego Korea India

