$\rm Figure~1:~$ Final fermion effective mass distribution from KK~MC at 500GeV. Sharp Z ratiative return peak is seen. Included are muons, taus and all quarks except top. Properly normalized in nanobs.

 ${\it Figure~2:}~$ Dependence of cross section on cut $v_{\rm max}$, obtained from $K\!K$ MC. It is divided by the Born cross-section.

 ${\rm Figure}$ 3: This is KF code distribution from $K\!K$ MC at 500GeV. Properly normalized in nanobs.

Table 1: Total cross sections for various final fermions. Center of mass energy $\sqrt{s}=500GeV$. Not calculated cross sections are set to zero.

ns are set to zero.			
	KF	σ_{KF}	σ^{C}_{KF}
KK at 500GeV		500GeV	
	1.	0.017558 ± 0.001747	0.017558 ± 0.001746
	2.	0.018427 ± 0.001790	0.035986 ± 0.002497
	3.	0.020340 ± 0.001880	0.056325 ± 0.003121
	4.	0.020340 ± 0.001880	0.076665 ± 0.003637
	5.	0.015994 ± 0.001667	0.092659 ± 0.003996
	6.	0.000000 ± 0.000000	0.092659 ± 0.003996
	7.	0.000000 ± 0.000000	0.092659 ± 0.003996
	8.	0.000000 ± 0.000000	0.092659 ± 0.003996
	9.	0.0000000 ± 0.0000000	0.092659 ± 0.003996
	10.	0.0000000 ± 0.0000000	0.092659 ± 0.003996
	11.	0.000000 ± 0.000000	0.092659 ± 0.003996
	12.	0.049719 ± 0.002940	0.142378 ± 0.004941
	13.	0.009214 ± 0.001266	0.151592 ± 0.005096
	14.	0.006606 ± 0.001072	0.158198 ± 0.005205
	15.	0.009561 ± 0.001289	0.167759 ± 0.005357
	16.	0.006085 ± 0.001028	0.173844 ± 0.005452