CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 5 SETTEMBRE 2013

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Fornire la definizione di applicazione *iniettiva* e di applicazione *suriettiva*. Di ciascuna delle due applicazioni

$$f: A \in \mathcal{P}(\mathbb{Z}) \mapsto \mathbb{N} \setminus A \in \mathcal{P}(\mathbb{Z})$$
 e $g: A \in \mathcal{P}(\mathbb{N}) \mapsto \mathbb{N} \setminus A \in \mathcal{P}(\mathbb{Z})$.

dire se è iniettiva e se è suriettiva.

Esercizio 2. In \mathbb{Z}_{10} si definisca l'operazione * ponendo, per ogni $a, b \in \mathbb{Z}_{10}$, $a*b = \bar{3}ab + \bar{2}a - \bar{3}b + \bar{4}$.

- (i) *è commutativa? *è associativa?
- (ii) Siano $P = \{[n]_{10} \mid n \text{ è un intero pari}\}\ e\ D = \{[n]_{10} \mid n \text{ è un intero dispari}\}\$. P è una parte chiusa in $(\mathbb{Z}_{10}, *)$? D è una parte chiusa in $(\mathbb{Z}_{10}, *)$?
- (iii) Si trovino, se esistono, tutti e soli gli $a \in \mathbb{Z}_{10}$ tali che $a * \bar{0} = \bar{0}$ ed i $b \in \mathbb{Z}_{10}$ tali che $\bar{0} * b = \bar{0}$.
- (iv) Usando il risultato di (iii), stabilire se esiste in $(\mathbb{Z}_{10}, *)$ elemento neutro.

Esercizio 3.

- (i) Dato un monoide (M, \cdot) , è sempre vero che l'insieme U degli elementi invertibili di M ne costituisce una parte chiusa? E, nel caso lo sia, U, munito dell'operazione indotta, è necessariamente un gruppo?
- (ii) Si elenchino gli elementi di $\mathcal{U}(\mathbb{Z}_9)$, l'insieme degli invertibili di (\mathbb{Z}_9,\cdot) .

Si definisca in \mathbb{Z}_9 la relazione binaria ρ ponendo, per ogni $a, b \in \mathbb{Z}_9$,

$$a \rho b \iff (\exists u \in \mathcal{U}(\mathbb{Z}_9))(ua = b).$$

- (iii) Stabilire se ρ è una relazione di equivalenza.
- (iv) Nel caso in cui ρ sia di equivalenza, elencare gli elementi di $[\bar{0}]_{\rho}$, $[\bar{1}]_{\rho}$, $[\bar{2}]_{\rho}$, $[\bar{3}]_{\rho}$; elencare poi gli elementi di \mathbb{Z}_{9}/ρ e dire quanto vale $|\mathbb{Z}_{9}/\rho|$.

Esercizio 4. Si verifichi che la relazione \mathcal{R} , definita in $\mathcal{P}(\mathbb{N})$ ponendo, per ogni $X,Y\in\mathcal{P}(\mathbb{N})$,

$$X \mathcal{R} Y \iff X \subseteq Y \land |Y \setminus X| \neq 1$$
,

è una relazione d'ordine.

- (i) \Re è di ordine totale?
- (ii) Determinare in $(\mathcal{P}(\mathbb{N}), \mathcal{R})$ gli eventuali minimo, massimo, elementi minimali, elementi massimali
- (iii) Posto $X = \{0, 1, 2\}$, disegnare il diagramma di Hasse di $(\mathcal{P}(X), \mathcal{R})$.
- (iv) $(\mathcal{P}(X), \mathcal{R})$ è un reticolo? Se lo è, è distributivo? È complementato?
- (v) Indicare, se possibile, una parte P di $\mathcal{P}(\mathbb{N})$ tale che |P|=4 e (P,\mathcal{R}) sia un reticolo booleano.

Esercizio 5. Si determini un primo p tale che il polinomio $f = \overline{10}x^4 + \overline{6}x^3 + \overline{3}x - \overline{6} \in \mathbb{Z}_p[x]$ sia monico di terzo grado.

- (i) Tale p è univocamente determinato?
- (ii) Decomporre f in prodotto di polinomi monici irriducibili in $\mathbb{Z}_p[x]$?
- (iii) Esiste in $\mathbb{Z}_p[x]$ un polinomio irriducibile di secondo grado che divida f?