ЛИСТОК V. НЕПРЕРЫВНЫЕ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ И ХАРАКТЕРИСТИЧЕСКИЕ ФУНКЦИИ

 $X a p a \kappa m e p u c m u ч e c \kappa o u функцие u случайно u величины <math>X$ с функцие u плотности вероятности $p_X(x)$ называется

$$\varphi_X(s) = \mathsf{E}\mathrm{e}^{\mathrm{i}sX} = \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i}sx} p(x) \,\mathrm{d}x.$$

Пусть X, Y — две независимых случайных величины, принимающих значения на числовой прямой, $p_X(\cdot)$ и $p_Y(\cdot)$ — их функции плотности вероятности, а $\varphi_X(s)$ и $\varphi_Y(s)$ — характеристические функции распределения. Функция плотности вероятности и характеристическая функция распределения суммы X+Y имеют вид

$$p_{X+Y}(x) = \int_{\mathbb{R}} p_X(t) p_Y(x-t) dt, \qquad \varphi_{X+Y}(s) = \varphi_X(s) \varphi_Y(s).$$

Зоопарк распределений. Равномерное распределение на отрезке $[\mu - \Gamma, \mu + \Gamma]$ характеризуется функцией плотности вероятности $p(x) = 1/2\Gamma$ при $|x - \mu| \leqslant \Gamma$.

Треугольное распределение на отрезке $[\mu - \Gamma, \mu + \Gamma]$ характеризуется функцией плотности $p(x) = \max(1/\Gamma - |x - \mu|/\Gamma^2, 0)$.

Экспоненциальное распределение с параметром $\mu>0$ характеризуется функцией плотности вероятности $p(x)=\frac{1}{\mu}{\rm e}^{-x/\mu}$ при x>0.

 $Pacnpe de nehue\ Kouu\ c$ параметрами (μ,Γ) характеризуется функцией плотности вероятности $p(x)=rac{\Gamma}{\pi}rac{1}{\Gamma^2+(x-\mu)^2}.$

Hopмальное pacnpeделение с параметрами (μ, σ) характеризуется функцией плотности вероятности

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}.$$

- **V.1.** По какому закону распределена сумма двух независимых величин X и Y, распределенных экспоненциально с параметрами λ и μ соответственно?
- **V.2.** Найдите функцию плотности вероятности случайной величины Y=1/X, если случайная величина X распределена по Коши с центром при x=0.
- **V.3.** Случайные величины X и Y независимы и одинаково распределены по нормальному закону с $\mu=0$. Найдите функцию плотности вероятности их отношения X/Y.
- **V.4.** Найдите характеристическую функцию, математическое ожидание и дисперсию суммы двух независимых случайных величин, распределенных равномерно на $[\mu \Gamma, \mu + \Gamma]$.
- **V.5.** Характеристическая функция имеет вид $\varphi(s) = e^{-\Gamma|s|}$, где $\Gamma > 0$. Найдите соответствующую функцию плотности вероятности.
- **V.6.** (a) Пусть $\varphi(s) = \max(1 |s|/\Gamma, 0)$. Покажите, что это характеристическая функция некоторого распределения вероятности, и вычислите соответствующую функцию плотности распределения. (б) Нарисуйте график функции

$$\varphi(s) = \frac{1}{2} \max(1 - |x|, 0) + \frac{1}{2} \max\left(1 - \frac{|x|}{2}, 0\right)$$

и докажите, что она является характеристической для некоторого распределения вероятности. Чему равна его плотность?

- **V.7.** Случайное испытание совершается следующим образом: сначала разыгрывается целочисленная случайная величина N, распределенная по Пуассону с параметром λ ($p_n = \mathrm{e}^{-n} \lambda^n / n!$), а затем находят сумму N независимых одинаково распределенных случайных величин с характеристической функцией φ . Найти характеристическую функцию полученной суммы.
- ${f V.8.}$ Что можно сказать о распределении вероятности, характеристическая функция которого периодична с периодом a?