SCC0502 - ALGORITMOS E ESTRUTURAS DE DADOS I

Árvores

Prof.: Leonardo Tórtoro Pereira <u>leonardop@usp.br</u>

Baseado nos slides do Prof. Rudinei Goularte

lifa Tree - Final Fantasy IX (Square Enix, 2000)

https://pt.wikihow.com/Cuidar-de-uma-%C3%81rvore

Conteúdo

- → Introdução
- → Fundamentos e Terminologia
- → Representações Gráficas
- → Árvores N-árias
- → Exercícios

Introdução

- → Estrutura de listas: organização linear dos dados, onde sua propriedade básica é a relação sequencial mantida entre seus elementos
- → Estrutura de árvores: organização dos dados de forma não-linear mantendo um relacionamento hierárquico entre seus elementos

Listas Lineares

A1	A2	A3	A4	A5	A6	A7		An
----	----	----	----	----	----	----	--	----

- → Complexidade de tempo para os problemas
 - ◆ Listar os alunos do departamento Dx? O(n)
 - ◆ Listar os alunos do curso Cx? O(n)
 - ♦ Idade média dos alunos do curso Cx? O(n)
 - Ordenar por Curso e, dentro de cada Curso, por Nome? ??

Estrutura de árvore: exemplos

- → Algumas situações onde é necessária um representação baseada na relação hierárquica entre os elementos
 - Árvores genealógicas
 - Organização de um livro
 - Representação da estrutura organizacional de uma instituição

Estrutura de árvore: exemplo de árvore genealógica

Estrutura de árvore: exemplo de organização de um livro

```
1. Livro XYZ
1. 1 Cap. 1
1.1.1 Seção 1
1.1.2 Seção 2
...
1.1.n Seção n
1.2 Cap. 2
...
1.m Cap. m
```

- Qual a complexidade?
 - Chegar a seção x do capítulo I...

Justificativas/vantagens

- → Representatividade no relacionamento entre os dados
- → Facilidades na manipulação computacional dos dados
- → Utilizando essa abordagem para representar a Estrutura Organizacional da USP, teríamos maior facilidade na extração de informações como
 - Total de professores de um departamento
 - Total de salário dos funcionários de setor específico
 - Os diretores de cada centro/unidade
 - Entre outras...

Justificativas/vantagens

→ Observe que para extrair informações específicas de uma determinada ramificação da árvore não é necessário o percurso por toda a estrutura de informação, uma vez que o relacionamento entre os dados nos permite uma consulta seletiva em regiões específicas da árvore!

Definição

- → Uma árvore enraizada T é um conjunto finito de elementos denominados nós ou vértices tais que
 - → T = Ø, a árvore é dita vazia
 - ◆ $T = \{r\} \cup \{T_1\} \cup \{T_2\} \cup \{T_3\} \cup ... \cup \{T_n\}$
- → Um nó especial da árvore, r, é chamado de **raiz** da árvore
- → Os restantes constituem um único conjunto vazio ou são divididos em n ≥ 1 conjuntos disjuntos não vazios, T₁, T₂, T₃, . . . , , T_n, as **subárvores** de r, cada qual por sua vez uma árvore

Definição

- → Assim para denotar uma árvore *T* usamos
- → $T = \{T_1, T_2, T_3, \dots, T_n\}$, com r a raiz da árvore e T_v a subárvore T com raiz em v
- → Note que a definição apresentada é recursiva!

Representações gráficas para árvores

- → A estrutura de árvore pode ser representada graficamente de diversas maneiras, dentre elas temos
 - conjuntos aninhados
 - ♦ indentação
 - grafos, sendo esta última a mais utilizada

Representação em conjuntos aninhados

Representação com indentação

D	
Е	
F	
G	
H	
	I
J	
	K
	L
M	

Representação utilizando grafos

Representação Aninhada

- → Exemplo
 - ◆ Ta = {A}
 - ◆ Tb = {B, {C}}
 - ◆ Td = {D, {E, {F}}}, {G, {H, {I}}}, {J, {K}, {L}}, {M}}}

Representação Aninhada

- → Exercícios
 - \bullet T_d = {2, {1}, {3}}
 - ◆ T_e = {4, {2, {1}, {3}}, {6, {5}, {7}}}
 - ◆ T_f = {Joao, {Daniel, {Andres}, {Fernanda}}, {Maria, {Marcos}, {Rafael}}}

- → Considerando a árvore Tc e a definição dada de árvores anteriormente vejamos algumas terminologias básicas
 - O grau de um nó é o número de sub-árvores relacionadas aquele nó. Por exemplo: em Tc o grau do nó D é 2, de G é 3 e dos nós K, L, I, F e M é O (zero)
 - Nós com grau igual a zero não possuem sub-árvores, portanto são chamados nós folhas ou terminais
 - Se cada nó de uma árvore possui um grau máximo e todos os demais nós possuem o mesmo grau máximo, podemos definir este grau como o grau da árvore

- → Para identificar os nós na estrutura, usamos denominações da relação hierárquica existente em uma árvore genealógica
 - Cada raiz ri da sub-árvore Ti é chamada filho de r. O termo neto é usado de forma análoga
 - O nó raiz r da árvore T é o **pai** de todas as raízes r_i das subárvores T_i . O termo **avô** é definido de forma análoga
 - ullet Duas raízes r_i e r_j das sub-árvores T_i e T_j de T são ditas **irmãs**

Definição

- → Outras definições importantes são obtidas a partir da distância de um nó em relação aos outros nós da árvore
 - ◆ Caminho: sequência não vazia de nós,
 - $P = \{r_1, r_2, \dots, r_k\}$, onde o i-ésimo nó r_i da sequência é pai de r_{i+1}
 - ◆ **Comprimento**: tomando a definição de caminho, o comprimento de um caminho P é igual a k 1

Definição

- → Altura de um nó: a altura de um nó r_i é o comprimento do caminho mais longo do nó r_i a uma folha
 - ◆ As folhas têm altura 0 (zero)
- → Altura de uma árvore: é igual a altura da raiz r de T
- ightharpoonup **Profundidade**: a profundidade de um nó r_i de uma árvore T é o comprimento do único caminho em T entre a raiz r e o nó r_i
 - Qual é a maior profundidade entre todos os nós de uma árvore?
- → Nível: um conjunto de nós com a mesma profundidade é denominado nível da árvore
 - ◆ A raiz está no nível 0 (zero)

- → **Ascendência e descendência**: considerando dois nós r_i e r_j , o nó r_i é um ancestral de r_j se existe um caminho em T de r_i a r_j , tal que, o comprimento de P entre r_i e r_j seja diferente de 0 (zero)
 - De forma análoga se define o descendente de um nó

Árvores N-árias

- → Uma árvore N-ária T é um conjunto finito de nós com as seguintes propriedades
 - → T = Ø e a árvore é dita vazia; ou
 - ◆ o conjunto consiste de um nó especial r, que é a raiz de T, e os nós restantes podem ser sempre divididos em n subconjuntos disjuntos, as i-ésimas subárvores de r, tal que 1 ≤ i ≤ n, as quais também são árvores N-árias
- → A i-ésima subárvore de um nó v de T, se existir, é denominada iésimo filho de v

Exercícios

Considere a seguinte árvore:

```
T_e = \{a, \{b, \{c, \{d\}\}, \{e, \{f\}, \{g\}\}\}, \{h, \{i\}\}\}\}
```

- Obtenha as representações por conjunto, indentação e grafos
- Encontre o grau, altura e profundidade de cada nó
- Encontre todos os caminhos possíveis a partir da raiz com seus respectivos comprimentos
- 2. Partindo da definição de árvores n-árias, encontre a definição para árvores binárias

Referências

- → Material baseado nos originais produzidos pelos professores:
 - Rudinei Gularte
 - Gustavo E. de A. P. A. Batista
 - Fernando V. Paulovich
 - Maria das Graças Volpe Nunes
- → Referências (material parcialmente baseado em):
 - SZWARCFITER, J. L.; MARKENZON, L. Estruturas de Dados e seus Algoritmos, Livros Técnicos e Científicos, 1994.
 - ◆ TENEMBAUM, A.M., e outros Data Structures Using C, Prentice-Hall, 1990.
 - ZIVIANI, N. Projeto de Algoritmos, Thomson, 2a. Edição, 2004.