

October 15, 2021

Variable Fixing for Max-Cut

Overview

1 The Max-Cut Problem

2 Reduced Cost Fixing in Linear Programming

3 Variable Fixing for Semidefinite Programming

Given: undirected graph G = (V, E) with edge weights $w \in \mathbb{R}^E$

Given: undirected graph G = (V, E) with edge weights $w \in \mathbb{R}^E$

Goal: find a maximum cut in G, i.e., an optimal solution of

$$\max_{S \subseteq V} \sum_{i \in S, \ j \in V \setminus S} w_{ij} \tag{MC}$$

Given: undirected graph G = (V, E) with edge weights $w \in \mathbb{R}^E$

Goal: find a maximum cut in G, i.e., an optimal solution of

$$\max_{S \subseteq V} \sum_{i \in S, \ j \in V \setminus S} w_{ij} \tag{MC}$$

Given: undirected graph G = (V, E) with edge weights $w \in \mathbb{R}^E$

Goal: find a maximum cut in G, i.e., an optimal solution of

$$\max_{S \subseteq V} \sum_{i \in S, \ j \in V \setminus S} w_{ij} \tag{MC}$$

 \bullet (MC) is \mathcal{NP} -hard

Jan Schwiddessen

Given: undirected graph G = (V, E) with edge weights $w \in \mathbb{R}^E$

Goal: find a maximum cut in G, i.e., an optimal solution of

$$\max_{S \subseteq V} \sum_{i \in S, \ j \in V \setminus S} w_{ij} \tag{MC}$$

- (MC) is \mathcal{NP} -hard
- for $C = \frac{1}{4}L(G)$, (MC) is a special case of

$$\max \quad x^{\top} Cx$$
s. t. $x \in \{-1, 1\}^n$

$$\max x^{\top} Cx \quad \text{s. t.} \quad x \in \{0, 1\}^n$$
 (QP)

$$\max x^{\top} Cx \quad \text{s. t.} \quad x \in \{0, 1\}^n$$
 (QP)

- standard linear relaxation of (QP):
 - variables y_{ij} representing linearizations of products $x_i \cdot x_i$
 - bound constraints $0 \le y_{ij} \le 1$

$$\max x^{\top} Cx \quad \text{s. t.} \quad x \in \{0, 1\}^n$$
 (QP)

- standard linear relaxation of (QP):
 - variables y_{ij} representing linearizations of products $x_i \cdot x_i$
 - bound constraints $0 \le y_{ij} \le 1$

• weak duality: $c^{\top}y \leq b^{\top}u$ for all feasible (y, u)

$$\max x^{\top} Cx \quad \text{s. t.} \quad x \in \{0, 1\}^n$$
 (QP)

- standard linear relaxation of (QP):
 - variables y_{ij} representing linearizations of products $x_i \cdot x_j$
 - bound constraints $0 \le y_{ij} \le 1$

- weak duality: $c^{\top}y \leq b^{\top}u$ for all feasible (y, u)
- (\hat{y}, \hat{u}) : optimal solution of primal-dual pair
- \bar{c} : known lower bound for (QP)

$$\max x^{\top} Cx \quad \text{s. t.} \quad x \in \{0, 1\}^n$$
 (QP)

- standard linear relaxation of (QP):
 - variables y_{ij} representing linearizations of products $x_i \cdot x_i$
 - bound constraints $0 \le y_{ij} \le 1$

- weak duality: $c^{\top}y \leq b^{\top}u$ for all feasible (y, u)
- (\hat{y}, \hat{u}) : optimal solution of primal-dual pair
- \bar{c} : known lower bound for (QP)

Assume that $\hat{y}_{ij} = 1$

$$\max x^{\top} Cx \quad \text{s. t.} \quad x \in \{0, 1\}^n$$
 (QP)

- standard linear relaxation of (QP):
 - variables y_{ij} representing linearizations of products $x_i \cdot x_j$
 - bound constraints $0 \le y_{ij} \le 1$

- weak duality: $c^{\top}y \leq b^{\top}u$ for all feasible (y, u)
- (\hat{y}, \hat{u}) : optimal solution of primal-dual pair
- \bar{c} : known lower bound for (QP)

$$\max x^{\top} Cx \quad \text{s. t.} \quad x \in \{0, 1\}^n$$
 (QP)

- standard linear relaxation of (QP):
 - variables y_{ij} representing linearizations of products $x_i \cdot x_j$
 - bound constraints $0 \le y_{ij} \le 1$

- weak duality: $c^{\top}y \leq b^{\top}u$ for all feasible (y, u)
- (\hat{y}, \hat{u}) : optimal solution of primal-dual pair
- \bar{c} : known lower bound for (QP)

Assume that $\hat{y}_{ij} = 1$ and add the constraint $y_{ij} = 0$ to (P):

• $y_{ij} \leq 1$ with dual variable u_{ij} changes to $y_{ij} \leq 0$ in (P)

$$\max x^{\top} Cx \quad \text{s. t.} \quad x \in \{0, 1\}^n$$
 (QP)

- standard linear relaxation of (QP):
 - variables y_{ij} representing linearizations of products $x_i \cdot x_j$
 - bound constraints $0 \le y_{ij} \le 1$

- weak duality: $c^{\top}y \leq b^{\top}u$ for all feasible (y, u)
- (\hat{y}, \hat{u}) : optimal solution of primal-dual pair
- \bar{c} : known lower bound for (QP)

- $y_{ij} \le 1$ with dual variable u_{ij} changes to $y_{ij} \le 0$ in (P)
- \hat{u} still feasible with dual objective value $b^{\top}\hat{u} \hat{u}_{ij}$

$$\max x^{\top} Cx \quad \text{s. t.} \quad x \in \{0, 1\}^n$$
 (QP)

- standard linear relaxation of (QP):
 - variables y_{ij} representing linearizations of products $x_i \cdot x_j$
 - bound constraints $0 \le y_{ij} \le 1$

- weak duality: $c^{\top}y \leq b^{\top}u$ for all feasible (y, u)
- (\hat{y}, \hat{u}) : optimal solution of primal-dual pair
- \bar{c} : known lower bound for (QP)

- $y_{ij} \le 1$ with dual variable u_{ij} changes to $y_{ij} \le 0$ in (P)
- \hat{u} still feasible with dual objective value $b^{\top}\hat{u} \hat{u}_{ij}$
- $b^{\top}\hat{u} \hat{u}_{ii} < \bar{c} \Rightarrow$

$$\max x^{\top} Cx \quad \text{s. t.} \quad x \in \{0, 1\}^n$$
 (QP)

- standard linear relaxation of (QP):
 - variables y_{ij} representing linearizations of products $x_i \cdot x_j$
 - bound constraints $0 \le y_{ij} \le 1$

- weak duality: $c^{\top}y \leq b^{\top}u$ for all feasible (y, u)
- (\hat{y}, \hat{u}) : optimal solution of primal-dual pair
- \bar{c} : known lower bound for (QP)

- $y_{ij} \le 1$ with dual variable u_{ij} changes to $y_{ij} \le 0$ in (P)
- \hat{u} still feasible with dual objective value $b^{\top}\hat{u} \hat{u}_{ij}$
- $b^{\top}\hat{u} \hat{u}_{ij} \leq \bar{c} \quad \Rightarrow \quad \text{we can fix } y_{ij} = 1!$

$$\max x^{\top} Cx \quad \text{s.t.} \quad x \in \{-1, 1\}^n \tag{MC}$$

By introducing $X = xx^{\top}$, we have $x^{\top}Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle$, where $\langle A, B \rangle := \text{tr}(B^{\top}A)$.

$$\max \ \boldsymbol{x}^{\top} \boldsymbol{C} \boldsymbol{x} \quad \text{s. t.} \quad \boldsymbol{x} \in \{-1,1\}^n \tag{MC} \label{eq:max_def}$$

By introducing $X = xx^{\top}$, we have $x^{\top}Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle$, where $\langle A, B \rangle := \operatorname{tr}(B^{\top}A)$.

$$(\mathsf{PMC}) \ \ \mathsf{s.t.} \ \ \ \mathsf{diag}(X) = e$$

$$X \succeq 0$$

$$\max x^{\top} Cx \quad \text{s. t.} \quad x \in \{-1, 1\}^n$$
 (MC)

By introducing $X = xx^{\top}$, we have $x^{\top}Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle$, where $\langle A, B \rangle := \operatorname{tr}(B^{\top}A)$.

Semidefinite relaxation:

• weak duality: $\langle C, X \rangle \leq e^{\top}u$ for all feasible (X, u, Z)

$$\max \ \boldsymbol{x}^{\top} \boldsymbol{C} \boldsymbol{x} \quad \text{s. t.} \quad \boldsymbol{x} \in \{-1,1\}^n \tag{MC} \label{eq:max_max_def}$$

By introducing $X = xx^{\top}$, we have $x^{\top}Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle$, where $\langle A, B \rangle := \operatorname{tr}(B^{\top}A)$.

- weak duality: $\langle C, X \rangle \leq e^{\top}u$ for all feasible (X, u, Z)
- bound constraints $-1 \le X_{ij} \le 1$ not included explicitly

$$\max \ \boldsymbol{x}^{\top} \boldsymbol{C} \boldsymbol{x} \quad \text{s. t.} \quad \boldsymbol{x} \in \{-1,1\}^n \tag{MC} \label{eq:max_max_def}$$

By introducing $X = xx^{\top}$, we have $x^{\top}Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle$, where $\langle A, B \rangle := \operatorname{tr}(B^{\top}A)$.

- weak duality: $\langle C, X \rangle \leq e^{\top} u$ for all feasible (X, u, Z)
- bound constraints $-1 \le X_{ij} \le 1$ not included explicitly
- dual variables for bound constraints not available

$$\max \ \boldsymbol{x}^{\top} \boldsymbol{C} \boldsymbol{x} \quad \text{s. t.} \quad \boldsymbol{x} \in \{-1,1\}^n \tag{MC} \label{eq:max_max_def}$$

By introducing $X = xx^{\top}$, we have $x^{\top}Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle$, where $\langle A, B \rangle := \text{tr}(B^{\top}A)$.

- weak duality: $\langle C, X \rangle \leq e^{\top} u$ for all feasible (X, u, Z)
- bound constraints $-1 \le X_{ij} \le 1$ not included explicitly
- dual variables for bound constraints not available
- \Rightarrow dual variables have to be computed/constructed if needed

- ullet let $(\hat{X},\hat{u},\hat{Z})$ be a feasible, optimal primal-dual solution
- let \bar{c} be a lower bound on the optimal value of (MC)

- ullet let $(\hat{X},\hat{u},\hat{Z})$ be a feasible, optimal primal-dual solution
- let \bar{c} be a lower bound on the optimal value of (MC)

We add a constraint $\langle A_0, X \rangle = b_0 > 0$ with dual variable u_0 :

- ullet let $(\hat{X},\hat{u},\hat{Z})$ be a feasible, optimal primal-dual solution
- let \bar{c} be a lower bound on the optimal value of (MC)

We add a constraint $\langle A_0, X \rangle = b_0 > 0$ with dual variable u_0 :

min
$$e^{\top}u + b_0u_0$$

s. t. $Diag(u) - C + u_0A_0 = Z$ (DMC₀)
 $Z \succeq 0, \ u, u_0 \text{ free}$

- ullet let $(\hat{X},\hat{u},\hat{Z})$ be a feasible, optimal primal-dual solution
- let \bar{c} be a lower bound on the optimal value of (MC)

We add a constraint $\langle A_0, X \rangle = b_0 > 0$ with dual variable u_0 :

min
$$e^{\top}u + b_0u_0$$

s.t. $Diag(u) - C + u_0A_0 = Z$ (DMC₀)
 $Z \succeq 0$, u , u_0 free

Goal: try to find a feasible solution for (DMC₀) such that $e^{T}u + b_{0}u_{0} \leq \bar{c}$ without solving (DMC₀) from scratch!

- ullet let $(\hat{X},\hat{u},\hat{Z})$ be a feasible, optimal primal-dual solution
- let \bar{c} be a lower bound on the optimal value of (MC)

We add a constraint $\langle A_0, X \rangle = b_0 > 0$ with dual variable u_0 :

min
$$e^{\top}u + b_0u_0$$

s.t. $Diag(u) - C + u_0A_0 = Z$ (DMC₀)
 $Z \succeq 0$, u , u_0 free

Goal: try to find a feasible solution for (DMC₀) such that $e^{T}u + b_{0}u_{0} \le \bar{c}$ without solving (DMC₀) from scratch!

Easy case: $e^{\top}\hat{u} + b_0u_0 \leq \bar{c}$ and $\hat{Z} + u_0A_0 \succeq 0$ for some $u_0 \in \mathbb{R}$

min
$$e^{\top}u + b_0u_0$$

s. t. $Diag(u) - C + u_0A_0 = Z$ (DMC₀)
 $Z \succeq 0$, u, u_0 free

Dual feasibility can be restored for every choice of u_0 :

$$\begin{array}{ll} \min & e^\top u + b_0 u_0 \\ \text{s.t.} & \mathsf{Diag}(u) - C + u_0 A_0 = Z \\ & Z \succeq 0, \ u, u_0 \ \mathsf{free} \end{array} \tag{DMC}_0)$$

Dual feasibility can be restored for every choice of u_0 :

$$ullet$$
 add $-\lambda_{\min}(\hat{Z}+u_0A_0)e$ to \hat{u} : $u=\hat{u}-\lambda_{\min}(\hat{Z}+u_0A_0)e$

$$\begin{array}{ll} \min & e^\top u + b_0 u_0 \\ \text{s.t.} & \mathsf{Diag}(u) - C + u_0 A_0 = Z \\ & Z \succeq 0, \ u, u_0 \ \mathsf{free} \end{array} \tag{DMC}_0)$$

Dual feasibility can be restored for every choice of u_0 :

$$ullet$$
 add $-\lambda_{\min}(\hat{Z}+u_0A_0)e$ to \hat{u} : $u=\hat{u}-\lambda_{\min}(\hat{Z}+u_0A_0)e$

• new dual variable Z feasible, but dual bound worsened by $-n\lambda_{\min}(\hat{Z}+u_0A_0)e$

$$\begin{array}{ll} \min & e^\top u + b_0 u_0 \\ \text{s.t.} & \mathsf{Diag}(u) - C + u_0 A_0 = Z \\ & Z \succeq 0, \ u, u_0 \ \mathsf{free} \end{array} \tag{DMC}_0)$$

Dual feasibility can be restored for every choice of u_0 :

- add $-\lambda_{\min}(\hat{Z} + u_0 A_0)e$ to \hat{u} : $u = \hat{u} - \lambda_{\min}(\hat{Z} + u_0 A_0)e$
- new dual variable Z feasible, but dual bound worsened by $-n\lambda_{\min}(\hat{Z} + u_0A_0)e$
- \bullet optimal u_0 is solution of the convex optimization problem

$$\min_{u_0 \in \mathbb{R}} b_0 u_0 - n \lambda_{\min} (u_0 A_0 + \hat{Z})$$

$$\begin{array}{ll} \min & e^\top u + b_0 u_0 \\ \text{s.t.} & \mathsf{Diag}(u) - C + u_0 A_0 = Z \\ & Z \succeq 0, \ u, u_0 \ \mathsf{free} \end{array} \tag{DMC}_0)$$

Dual feasibility can be restored for every choice of u_0 :

• add $-\lambda_{\min}(\hat{Z} + u_0A_0)e$ to \hat{u} :

$$u = \hat{u} - \lambda_{\min}(\hat{Z} + u_0 A_0)e$$

- new dual variable Z feasible, but dual bound worsened by $-n\lambda_{\min}(\hat{Z} + u_0A_0)e$
- \bullet optimal u_0 is solution of the convex optimization problem

$$\min_{u_0 \in \mathbb{R}} b_0 u_0 - n \lambda_{\min} (u_0 A_0 + \hat{Z})$$

- gradient-based algorithm
- line search in some parameter

variable fixing for semidefinite programming challenging

- variable fixing for semidefinite programming challenging
- numerical methods unavoidable

- variable fixing for semidefinite programming challenging
- numerical methods unavoidable
- crucial: heuristics to decide when there is no hope for success

- variable fixing for semidefinite programming challenging
- numerical methods unavoidable
- crucial: heuristics to decide when there is no hope for success
- good news: many new iterative solvers for (MC) in recent years

- variable fixing for semidefinite programming challenging
- numerical methods unavoidable
- crucial: heuristics to decide when there is no hope for success
- good news: many new iterative solvers for (MC) in recent years

Thank you!