

REGISTERS

The smallest and fastest memory

It is used solely for storing and shifting data (1s and 0s)

A register can consist of one or more flip-flops used to store and shift data.

REGISTERS

The storage capacity of a register is the total number of bits (1s and 0s) of digital data it can retain.

Each stage (flip-flop) in a shift register represents one bit of storage capacity; therefore, the number of stages in a register determines its storage capacity.

FIGURE 8-1 The flip-flop as a storage element.

SHIFT REGISTERS

FIGURE 8-2 Basic data movement in shift registers. (Four bits are used for illustration. The bits move in the direction of the arrows.)

FIGURE 8-5 Logic symbol for an 8-bit serial in/serial out shift register.

4-bit Register implemented with 4 D flip-flops.

With four stages, this register can store up to four bits of data.

FIGURE 8-3 Serial in/serial out shift register.

For serial data, one bit at a time is transferred.

TABLE 8-1

Shifting a 4-bit code into the shift register in Figure 8–3. Data bits are indicated by a beige screen.

CLK	FF0 (Q_0)	FF1 (Q_1)	FF2 (Q_2)	FF3 (Q ₃)
Initial	0	0	0	0
1	0	0	0	0
2	1	0	0	0
3	0	1	0	0
4	1	0	1	0

For serial data, one bit at a time is transferred.

TABLE 8-2

Shifting a 4-bit code out of the shift register in Figure 8–3. Data bits are indicated by a beige screen.

CLK	FF0 (Q_0)	FF1 (Q_1)	FF2 (Q_2)	FF3 (Q ₃)
Initial	1	0	1	0
5	0	1	0	1
6	0	0	1	0
7	0	0	0	1
8	0	0	0	0

SERIAL IN/PARALLEL OUT SHIFT REGISTERS

Data bits are entered serially least-significant bit first

FIGURE 8-6 A serial in/parallel out shift register.

SERIAL IN/PARALLEL OUT SHIFT REGISTERS

EXAMPLE 8-2

Show the states of the 4-bit register (SRG 4) for the data input and clock waveforms in Figure 8–7(a). The register initially contains all 1s.

PARALLEL IN/SERIAL OUT SHIFT REGISTERS

For parallel data, multiple bits are transfe (b) Logics time

(a) Logic diagram

PARALLEL IN/SERIAL OUT SHIFT REGISTERS

EXAMPLE 8-3

Show the data-output waveform for a 4-bit register with the parallel input data and the clock and $SHIFT/\overline{LOAD}$ waveforms given in Figure 8–11(a). Refer to Figure 8–10(a) for the logic diagram.

FIGURE 8-11

PARALLEL IN/PARALLEL OUT SHIFT REGISTERS

FIGURE 8-14 A parallel in/parallel out register.

HOME TASKS

- 1. Develop the logic diagram for the shift registers using J-K flip-flops to replace the D flip-flops.
- 2. How many clock pulses are required to enter a byte of data serially into an 8-bit shift register?
- 3. The bit sequence 1101 is serially entered (least-significant bit first) into a 4-bit parallel out shift register that is initially clear. What are the Q outputs after two clock pulses?
- 4. How can a serial in/parallel out register be used as a serial in/serial out register?
- 5. Explain the function of the SHIFT/LOAD input.
- 6. Is the parallel load operation in Parallel in Serial Out shift

TBR

```
Bidirectional Shift Registers,
Shift Register Counters,
Shift Register Applications
```