Solutions to Topology by Conover

niceguy

August 9, 2022

1 Topological Spaces and Concepts in General

1.1 Exercise 2.6

1. Let X be a set. Verify that the indiscrete topology, the discrete topology and the finite-complement topology are in fact topologies on X.

Solution:

Indiscrete Topology:

 \emptyset and X are open sets, and any intersection/union of open sets are obviously either empty of X. Discrete Topology:

 \emptyset and X are open sets. Since any subset is open, any intersection/union of open sets must be a subset, and hence is open.

Finite-complement Topology:

set and X are open sets. Let A_i denote open sets. Then $X - \bigcup_i A_i \subseteq X - A_i$, where $X - A_i$ has a finite cardinality by definition. Therefore, $X - \bigcup_i A_i$ also has a finite cardinality, so $\bigcup_i A_i$ is open. Now let B_i denote finitely many open sets. $X - B_i$ is finite, and so is $\bigcup_i (X - B_i)$ (finite union of finite sets is finite). Since $\bigcup_i (X - B_i) = X - \bigcap_i B_i$ which is finite, $\bigcap_i B_i$ is an open set.

2. (a) Verify that Sierpinski space is a topological space.

Solution: It contains \emptyset and X. Since there are only 3 open sets, brute forcing through all possible unions/intersections show that they are also open sets.

(b) We said that there are only three different topologies that can be assigned to the 2 point set $\{0,1\}$. Is the collection of $\{\emptyset,\{1\},\{0,1\}\}$ one of those three topologies on $\{0,1\}$?

Solution: Yes. The same approach for (a) can be used here, since this is essentially the Sierpinski space with 0 and 1 reversed.

(c) What is $\{0,1\}$ with the finite-complement topology?

```
Solution: \{\emptyset, \{0\}, \{1,\}, \{0,1\}\}
```

3. List all topologies that can be assigned to a 3 point set.

```
Solution:  \{\emptyset, \{0, 1, 2\}\}   \{\emptyset, \{0\}, \{0, 1, 2\}\}   \{\emptyset, \{1\}, \{0, 1, 2\}\}   \{\emptyset, \{2\}, \{0, 1, 2\}\}   \{\emptyset, \{0, 1\}, \{0, 1, 2\}\}   \{\emptyset, \{0, 2\}, \{0, 1, 2\}\}   \{\emptyset, \{1, 2\}, \{0, 1, 2\}\}   \{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}\}   \{\emptyset, \{0\}, \{0, 2\}, \{0, 1, 2\}\}   \{\emptyset, \{1\}, \{0, 1\}, \{0, 1, 2\}\}   \{\emptyset, \{1\}, \{0, 1\}, \{0, 1, 2\}\}
```

```
 \{\emptyset, \{2\}, \{0, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{2\}, \{1, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}\} \\ \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{0\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{0\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{0\}, \{2\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{0\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{1\}, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{1\}, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{1\}, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\} \\ \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}
```

4. Verify that the Sorgenfrey topology defined on the real line is in fact a topology. Is the interval (0,1) open in this topology? How about (0,1]? Is [0,1] closed?

Solution:

The Sorgenfrey topology obviously contains \emptyset and \mathbb{R} . Let A_i denote open sets. Then

$$\forall x \in \bigcup_i A_i, x \in A_i \Rightarrow x \in [a, b) \subseteq A_i \subseteq \bigcup_i A_i$$

so any union of open sets is open. Now let B_i denote finitely many open sets. Now if $x \in B_i$, we let $\{p_i, q_i\} \subset \mathbb{R}$ such that $x \in [p_i, q_i) \subseteq B_i$. Let $P = \{p_i\}$ and $Q = \{q_i\}$. Since both P and Q are finite, P has a maximum P and Q has a minimum Q. Now

$$x \in \bigcap_{i} B_{i} \Rightarrow x \in [p, q) \subseteq [p_{i}, q_{i}) \subseteq B_{i} \forall i$$

Since [p,q) is a subset of $B_i \forall i$, it is a subset of $\bigcap_i B_i$, hence any finite intersection of open sets is open. This shows that the Sorgenfrey topology is a topology.

(0,1) is open, because

$$\forall x \in (0,1), x \in [x,1) \subset (0,1)$$

(0,1] is not open, because $1 \in (0,1]$, but if $1 \in [a,b)$, then $\frac{1+b}{2}$ is an element of [a,b) but not (0,1], so $1 \in [a,b) \subseteq (0,1]$ cannot be true.

Consider $A = \mathbb{R} - [0, 1]$ and let $x \in A$. Either x < 0, and $x \in [x, \frac{x}{2}) \subset A$, or x > 1, and $x \in [x, x+1)$. Therefore, A is open, so [0, 1] is closed.

- 5. Consider the topological spaces $(\mathbb{R}, \mathcal{I}), (\mathbb{R}, \mathcal{D}), (\mathbb{R}, \mathcal{U}), (\mathbb{R}, \mathcal{S})$ and with the finite-complement topology (where \mathcal{U} denotes the usual topology on \mathbb{R} s in Chapter 3).
 - (a) If $p \in \mathbb{R}$, is $\{p\}$ open in any of these spaces? Which ones?

Solution: $(\mathbb{R}, \mathcal{D})$.

(b) If $p \in \mathbb{R}$, is $\{p\}$ closed in any of these spaces? Which ones?

Solution: $(\mathbb{R}, \mathcal{D}), (\mathbb{R}, \mathcal{U}), (\mathbb{R}, \mathcal{S}),$ and the finite-complement topology.

(c) In which of these spaces is (a, b) open? [a, b)? (a, b]? [a, b]?

```
Solution:
(a,b):
(\mathbb{R},\mathcal{D}), (\mathbb{R},\mathcal{U}), (\mathbb{R},\mathcal{S})
[a,b):
(\mathbb{R},\mathcal{D}), (\mathbb{R},\mathcal{S})
(a,b]:
(\mathbb{R},\mathcal{D})
[a,b]:
(\mathbb{R},\mathcal{D})
[a,b]:
(\mathbb{R},\mathcal{D})
```

(d) Is the set $\{x \in \mathbb{R} : x \neq \frac{1}{n}\}$ open in any of the spaces? Is it closed in any of them?

```
Solution:
Open:
(\mathbb{R}, \mathcal{D})
Closed:
(\mathbb{R}, \mathcal{D})
```

(e) Is the set $\{x \in \mathbb{R} : x \neq \frac{1}{n} \text{ and } x \neq 0\}$ open in any of the spaces? Is it closed in any of them?

```
Solution:
Open:
(\mathbb{R}, \mathcal{D})
Closed:
(\mathbb{R}, \mathcal{D}), (\mathbb{R}, \mathcal{U}), (\mathbb{R}, \mathcal{S})
```

- 6. Consider the spaces of Problem 5 above again, together with the three spaces that can be defined on $\{0,1\}$.
 - (a) In which of these spaces are true: If x and y are two distinct points in the space then either there exists an open set U such that $x \in U$ and $y \notin U$, or there exists an open set V such that $y \in V$ and $x \notin V$. (A space for which this statement holds is called a T_0 -space.)

```
Solution: (\mathbb{R}, \mathcal{D}), (\mathbb{R}, \mathcal{U}), (\mathbb{R}, \mathcal{S}), the finite-complement topology, and the Sierpinski space.
```

(b) In which of these spaces is the following statement true: If x and Y are two distinct points in the space, then there exists an open set U such that $x \in U$ and $y \notin U$, and there exists an open set v such that $y \in V$ and $x \notin V$. (A space for which this statement holds is called a T_1 -space.)

```
Solution: (\mathbb{R}, \mathcal{D}), (\mathbb{R}, \mathcal{U}), (\mathbb{R}, \mathcal{S}), and the finite-complement topology.
```

(c) In which of these spaces is the following statement true: If x and y are two distinct points in the space, the there exist open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. (A space for which this statement holds is called a T_2 -space or a Hausdorff space.)

Solution: $(\mathbb{R}, \mathcal{D}), (\mathbb{R}, \mathcal{U}), (\mathbb{R}, \mathcal{S})$

7. Show that every T_2 -space is a T_1 -space, and that every T_1 -space is a T_0 -space, and give an example of a T_0 -space that is not a T_2 -space, and an example of a T_1 -space that is not a T_2 -space.

Solution:

 T_2 -space $\Rightarrow T_1$ -space: Since $U \cap V \neq \emptyset$, $x \notin V$ and $y \notin U$, so V and U are open sets that make the space a T_1 -space.

 T_1 -space $\Rightarrow T_0$ -space: either one of U and V make the space a T_0 -space.

T₀-space that is not a T₁-space: the Sierpinski space

 T_1 -space that is not a T_2 -space: the finite-complement topology

- 8. A topological space X is said to be **metrizable** if a metric can be defined on X so that a set is open in the metric topology induced by this metric if and only if it is open in the topology that is already on the space.
 - (a) Let X be a set with more than one point. Prove that (X, \mathcal{I}) is not metrizable. Thus the indiscrete topology on a set with more than one point is an example of a topological space that is not a metric space.

Solution:

If X has more than one point, it has 2 distinct points x and y, where we let r = d(x, y) > 0 by the definition of a metric. $S_{\frac{r}{2}}(x)$ is an open space according to the metric. However, it is neither empty (contains x) nor the universe (does not contain y). This forms a contradiction.

(b) Let X be a set. Define a function from $X \times X = \{(x,y) : x,y \in X\}$ to \mathbb{R} by

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

Prove that d is a metric on X. What is the metric topology induced by d?

Solution:

Obviously, d(x,y) = 0 if and only if x = y, $d(x,y) \ge 0$, d(x,y) = d(y,x). For the triangle inequality $d(x,y) \le d(x,z) + d(y,z)$, note that it is trivial if x = y. If not, at least one of d(x,z) and d(y,z) must be nonzero, so the inequality holds. Therefore, d(x,y) is a metric.

 $\forall x \in X, S_{0.5}(x) = \{x\}$. Since all singleton sets are open, the metric topology induced by d is the discrete topology.

1.2 Theorem 3.2

1. Let (X, d_1) and (Y, d_2) be metric spaces and let $f: X \to Y$. Then f is continuous at $x_0 \in X$ if and only if whenever V is an open subset of Y with $f(x_0) \in V$, then there exists an open subset U of X such that $x_0 \in U$ and $f(U) \subseteq V$.

 \Rightarrow

Let V be open. Since V is open, $\forall v = f(x_0) \in V$, $\exists \epsilon > 0$ where $S_{\epsilon}(v) \subseteq V$. Since continuity is implied, $\exists \delta > 0$ where $f(S_{\delta}(x_0)) \subseteq S_{\epsilon}(v)$. Therefore $S_{\delta}(x_0)$ is the desired open U.

Let $f(x_0) = v$. $\forall \epsilon > 0$, $V = S_{\epsilon}(v)$ is open. Then an open U exists where $x_0 \in U$. By definition, U is open, so $\exists \delta > 0$ such that $S_{\delta}(x_0) \in U$. Then

$$f(S_{\delta}(x_0)) \subseteq f(U) \subseteq V = S_{\epsilon}(v)$$

This demonstrates that f is continuous by the $\epsilon - \delta$ definition.

1.3 Theorem 3.4

1. Let X and Y be topological spaces and let $f: X \to Y$. Then f is continuous on X if and only if whenever V is an open subset of Y, then $f^{-1}(V)$ is open in X.

Solution:

⇒:

Based on Theorem 3.2, we have an open $U_x \forall f(x) \in V$ such that $f(U_x) \subseteq V$. Therefore, $U_x \subseteq f^{-1}(V)$. Then

$$f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$$

Since $f^{-1}(V)$ is a union of open sets, it is open.

=:

Similar to the second part of Theorem 3.2, let $f(x_0) = v$. $\forall \epsilon > 0$, $V = S_{\epsilon}(v)$ is open. Then $f^{-1}(V)$ is open (and contains x_0), so $\exists \delta > 0$ such that $S_{\delta}(x_0) \in f^{-1}(V)$. Then

$$f(S_{\delta}(x_0)) \subseteq V = S_{\epsilon}(v)$$

This demonstrates that f is continuous by the $\epsilon - \delta$ definition.

1.4 Exercise 3.5

1. Consider $(\mathbb{R}, \mathcal{I})$, $(\mathbb{R}, \mathcal{D})$, $(\mathbb{R}, \mathcal{U})$, $(\mathbb{R}, \mathcal{S})$ and $(\mathbb{R}, \mathcal{F})$, the real line with the indiscrete topology, the discrete topology, the usual metric topology, the Sorgenfrey topology and the finite-complement topology, respectively. Let $f: \mathbb{R} \to \mathbb{R}$ be the identity function defined by f(r) = r for all real numbers r. Determine all possible choices for \mathcal{J}_1 and \mathcal{J}_2 from $\mathcal{I}, \mathcal{D}, \mathcal{U}, \mathcal{S}, \mathcal{F}$ so that $f: (\mathbb{R}, \mathcal{J}_1) \to (\mathbb{R}, \mathcal{J}_2)$ is continuous.

Solution:

	\mathcal{I}	\mathcal{D}	\mathcal{U}	\mathcal{S}	\mathcal{F}
\mathcal{I}	1	Х	X	Х	Х
\mathcal{D}	1	1	1	1	1
\mathcal{U}	1	X	1	X	1
\mathcal{S}	1	X	1	1	1
\mathcal{F}	1	Х	Х	Х	1

Where the rows denote \mathcal{J}_1 and the columns denote \mathcal{J}_2 .

2. Let x be a set and let \mathcal{J} be any topology on X. There is a topology \mathcal{J} that can be assigned to X so that the identity function from (X, \mathcal{J}') to $(X\mathcal{J})$ is always continuous no matter what \mathcal{J} s. What is it?

Solution: The discrete topology \mathcal{D} .

3. Let X be any set and let \mathcal{J} be any topology on X. There is a topology \mathcal{J}' that can be given to X so that the identity function from (X, \mathcal{J}) to (X, \mathcal{J}') is always continuous no matter what \mathcal{J} is. What is it?

Solution: The indiscrete topology \mathcal{I} .

- 4. A function that preserves open sets is called an **open function**. More precisely, a function $f: X \to Y$ is an open function if whenever U is open in X, then f(U) is open in Y.
 - (a) Give an example of a continuous function that is not open.

Solution: f(r) = r where X is the real line with the discrete topology and Y is the real line with the indiscrete topology.

(b) Give an example of an open function that is not continuous.

Solution: f(r) = r where X is the real line with the indiscrete topology and Y is the real line with the discrete topology.

1.5 Exercise 4.2

- 1. Consider the spaces $(\mathbb{R}, \mathcal{I}), (\mathbb{R}, \mathcal{D}), (\mathbb{R}, \mathcal{U}), (\mathbb{R}, \mathcal{S})$ and $(\mathbb{R}, \mathcal{F})$. In which of these spaces is:
 - (a) (0,2) a neighbourhood of 1?
 - (b) [0, 2] a neighbourhood of 1?
 - (c) [0,2] a neighbourhood of 0?
 - (d) {0} a neighbourhood of 0?

Solution:

- (a): $\mathcal{D}, \mathcal{U}, \mathcal{S}$
- (b): $\mathcal{D}, \mathcal{U}, \mathcal{S}$
- (c): \mathcal{D}, \mathcal{S}
- (d): \mathcal{D}
- 2. In the plane with its usual topology, is the unit square

$$\{(x,y): 0 \le x \le 1, 0 \le y \le 1\}$$

a neighbourhood of any point in it? Which points?

Any point that is not the boundary, or more explicitly,

$$\{(x,y): 0 < x < 1, 0 < y < 1\}$$

1.6 Theorem 4.3

1. Let X be a topological space. Then $U \subseteq X$ is open if and only if U is a neighbourhood of each point $x \in U$.

Solution:

 \Rightarrow :

Since U is open, $x \in U$ implies $x \in O \subseteq U$ for some open set O. Since U is a superset of an open O that contains x, U is a neighbourhood of x by definition.

 \Leftarrow

Since U is a neighbourhood, $x \in U$ implies $x \in O \subseteq U$ where O is some open set. This means U is open by definition.

1.7 Exercise 4.5

1. Let X be the real line with the indiscrete topology and consider the sequence $\{\frac{1}{n} : n \in \mathbb{Z}^+\}$. Prove that if r is any point of X, then this sequence converges to r.

Solution:

Let O be an open set containing r. Since this is the indiscrete topology, O = X is the only possibility. Then $\forall n > 0, f(n) \in O$, so the sequence converges to r.

2. Let $X = \mathbb{R}$ with the finite-complement topology. Prove that $\{\frac{1}{n} : n \in \mathbb{Z}^+\}$ converges to every point in the space.

Solution:

Let O be an open set containing r. Since this is the finite-complement topology, X-O is finite. Let $A=\{a\in X-O|a>0\}$. If A is empty, let N=0. Or else, A must have a minimum m that is a positive number. Since $\frac{1}{n}$ tends to 0, $\exists N\in\mathbb{N}$ such that $\frac{1}{n}< m\forall n>N$. Now $\forall n>N$, $f(n)\in O$, so the sequence tends to r.

- 3. Recall that a topological space X is a Hausdorff space if distinct points of X are contained in disjoint open sets.
 - (a) Prove that a space is a Hausdorff space if and only if distinct points are contained in disjoint neighbourhoods.

 \Rightarrow :

Open sets are also neighbourhoods, so distinct points in the space are contained in disjoint neighbourhoods.

⇐:

Let the distinct points be x and y, and the disjoint neighbourhoods N_x and N_y . Since N_x is a neighbourhoods of x, $x \in O_x \subseteq N_x$, and the same holds for y. Then x and y are in disjoint open sets O_x and O_y , so the space is a Hausdorff space.

(b) Prove that every metric space is a Hausdorff space.

Solution:

Let x and y be two distinct points, and let $R = d(x, y), r = \frac{R}{2}$. Consider a point $p \in S_r(x)$. Rearranging the triangle inequality,

$$d(p,y) \ge R - d(p,x) > R - r = r$$

so p cannot be in $S_r(y)$. The same holds if $p \in S_r(y)$. This means for all distinct x, y, there exists disjoint open sets $S_r(x)$ and $S_r(y)$ which contain x and y respectively, making it a Hausdorff space.

(c) Prove that in a Hausdorff space, if a sequence converges, then it converges to exactly one point. Deduced that the real line with the finite complement topology is not a Hausdorff space.

Solution:

Proof by contradiction. Let the sequence converge to distinct points x and y. Let O_x and O_y be a pair of disjoint open sets that contain x and y respectively. Since the sequence converges to x, $\exists N_x \in N$ such that $n > N \Rightarrow f(n) \in O_x$. There exists a similar N_y . Letting $N = \max\{N_x, N_y\}$, then $\forall n > N, x_n$ is in both O_x and O_y at the same time, which is a contradiction as both sets are disjoint.

- 4. Consider $X = [0, \Omega]$ with the order topology as defined in Section 4 of Chapter 3. We proved that in a metric space, a set S is closed if and only if whenever a sequence of points of S converges to a point x in the space, then $x \in S$.
 - (a) Prove, usig the definition of closed set, that $S = [0, \Omega)$ is not a closed subset of $X = [0, \Omega]$ with the order topology.

Solution:

If it is a closed set, then $\{\Omega\}$ must be open in the order topology, so

$$\exists a \in X : \Omega \in (a, \Omega] \subseteq {\Omega}$$

For the interval to make sense, $a < \Omega$. Noting that Ω is a limit ordinal,

$$a < \Omega \Rightarrow a + 1 < \Omega$$

so $a+1 \neq \Omega$ is an element of $(a,\Omega]$, which is a contradiction, since its superset $\{\Omega\}$ does not contain a+1.

(b) Prove that if a sequence of points of $S = [0, \Omega)$ converges to a point $x \in [0, \Omega]$, then $x \in S$.

The sequence x_n cannot tend to Ω if it has a finite length, since it then as a maximum m, and $x_n \notin (m, \Omega) \forall n \in \mathbb{N}$. and If not, consider

$$l = \bigcap_{n \in \mathbb{N}} (x_n, \Omega]$$

Obviously $\Omega \in l$, but if $y \neq \Omega \in l$, then

$$y > x_n \forall n \in N \Rightarrow x_n \notin [y, \Omega] \forall n \in N$$

Loosely speaking, x_n can never reach y, so it can never "enter" the open set $[y, \Omega]$. However, such a y always exists by this.

(c) Deduce that $X = [0, \Omega]$ with the order topology is not a metric space, but

Solution:

If it is a metric space, then consider

$$A = \bigcap_{n \in \mathbb{N}} S_{\frac{1}{n}}(\Omega)$$

By this, $\exists a \in A : a \neq \Omega$. Let $d(a, \Omega) = r$. Since $\frac{1}{n}$ tends to 0, we know that $r > \frac{1}{i}$ for some $i \in \mathbb{N}$. Then $a \notin S_{\frac{1}{i}}(\Omega)$, so $a \notin A$, which is a contradiction.

(d) Prove that $X = [0, \Omega]$ with the order topology is a Hausdorff space.

Solution: Let a < b be two distinct points. Then [0, a] and $(a, \Omega]$ are disjoint open sets that contain a and b respectively.

1.8 Theorem 4.6

1. Let X and Y be topological spaces and let $f: X \to Y$. Then the funtion f is continuous at a point $x_0 \in X$ if and only if for every neighbourhood N_2 of $f(x_0)$ in Y, there is a neighbourhood N_1 of x_0 in X such that $f(N_1) \subseteq N_2$.

Solution:

⇒:

If N_2 is a neighbourhood, then \exists an open $O_2 \subseteq N_2$ which contains $f(x_0)$. Since f is continuous, $f^{-1}(O_2)$ is open, and acts as the desired N_1 .

(=:

Let O_2 be an open set containing $f(x_0)$. Then there exists a N_1 , and $x_0 \in O_1 \subseteq N_1$ for some open O_1 by the definition of a neighbourhood. Since

$$f(O_1) \subseteq O_2$$

f is continuous by definition.

2 Closed Sets and Closure

2.1 Theorem 5.2

- 1. Let X be a topological space. Then
 - 1. X and \emptyset are closed.
 - 2. The intersection of an arbitrary collection of closed sets is closed.
 - 3. The union of a finite collection of closed sets is closed.

Solution:

Since the complements of X and \emptyset are each other (which are open), they are also closed. Let A be a set where $a \in A$ is closed. Then

$$X - \bigcap A = \bigcup_{a \in A} X - a$$

which is open. So the intersection of closed sets is closed. Now let B be a finite set where $b \in B$ is closed. Similarly,

$$X - \bigcup B = \bigcap_{b \in B} X - b$$

which is open, so a finite union of closed subsets is closed.

2.2 Exercise 5.3

- 1. Consider again the spaces $(\mathbb{R}, \mathbb{I}), (\mathbb{R}, \mathbb{D}), (\mathbb{R}, \mathbb{U}), (\mathbb{R}, \mathbb{S}), (\mathbb{R}, \mathbb{F})$. In which of these spaces is:
 - (a) [0,1] closed?
 - (b) (0,1) closed?
 - (c) [0,1) closed?
 - (d) (0,1] closed?
 - (e) {0} closed?

Solution:

- a: $\mathbb{D}, \mathbb{U}, \mathbb{S}$
- b: D
- $c: \mathbb{D}, \mathbb{S}$
- $d \colon \mathbb{D}$
- e: $\mathbb{D}, \mathbb{U}, \mathbb{S}, \mathbb{F}$
- 2. Recall that a space is a T_1 -space if for every pair of distinct points x and y in the space, there is an open set U such that $x \in V$ and $y \notin U$, and there is an open set V such that $y \in V$ and $x \notin V$.

(a) Restate the definition of a T₁-space in terms of neighbourhoods.

Solution: A space is a T_1 -space if and only if for every distinct x, y pair, there exists a neighbourhood of x that does not contain y, and there exists a neighbourhood of y that does not contain x.

(b) Prove that a space is a T_1 -space if and only if for each point p in the space, the singleton set $\{p\}$ is a closed set.

Solution:

⇒:

Let the space be X. $\forall q \neq p$, let O_q be an open set that contains q but not p. Such a set always exists because the space is T_1 . Therefore $\bigcup_{q\neq p\in X} O_q = X - \{p\}$ is open, so the singleton set $\{p\}$ is closed.

 \Leftarrow :

Let the space be X, and x, y be a pair of distinct points. Then $X - \{x\}$ and $X - \{y\}$ are open sets which contain exactly one of x, y respectively.

2.3 Theorem 5.4

1. Let X and Y be topological spaces and let $f: X \to Y$. Then f is continuous (on X) if whenever F is a closed set in Y, then $f^{-1}(F)$ is closed in X.

Solution:

Since open sets and closed sets are complements, f^{-1} preserving closed sets it equivalent to it preserving open sets.

 \Rightarrow :

Let F be an closed set in Y. Let G = Y - F, where G is open. Since f is continuous, $f^{-1}(G)$ is also open. Then $f^{-1}(F) = X - f^{-1}(G)$ is closed.

(=:

Let G be an open set in Y. Let F = Y - G, where F is closed. Since $f^{-1}(F)$ is closed, $f^{-1}(G) = X - f^{-1}(F)$ is open.

2.4 Exercise 5.5

A function $f: X \to Y$ is a closed function if whenever F is closed in X then f(F) is closed in Y.

1. Give an example of a closed function that is not continuous.

Solution: f(r) = r from (\mathbb{R}, \mathbb{U}) to (\mathbb{R}, \mathbb{D}) is a closed function that is not continuous.

2. Give an example of a continuous function that is not closed.

Solution: f(r) = r from (\mathbb{R}, \mathbb{U}) to (\mathbb{R}, \mathbb{I}) is a continuous function that is not closed.

2.5 Theorem 5.7

The closure of a set A is defined as

$$\bar{A} = \bigcap \{F: F \text{ is closed in } X \text{ and } A \subseteq F\}$$

- 1. Let X be a topological space and let $A \subseteq X$. Then
 - (a) \bar{A} is a closed set.

Solution: \bar{A} is an intersection of closed sets, so it too is closed.

(b) $A \subseteq \bar{A}$

Solution: $x \in A \Rightarrow x \in F \forall F \iff x \in \bar{A}$

(c) \bar{A} is the smallest closed set that contains A in the sense than if S is closed and $A \subseteq S$, then $\bar{A} \subseteq S$ also.

Solution: Such an S corresponds to F as stated above, so $x \in S \Rightarrow x \in S$ by definition.