ROBOT VISION

TERM PROJECT FINAL REPORT

AUTOMATIC HARVESTING GRIPPER

Group Number: 7

Member: 李岳軒 R13522831

白峻維 R13522848

簡子恒 R13631001

Outline

- Introduction
- Objective
- Methods
- Results
- **■** Conclusion
- References

Introduction

Due to a significant decline in the agricultural labor force:

- The yield of agricultural products has become insufficient.
- The agricultural labor force is largely composed of older individuals.

→ Apply <u>automation</u> to improve production efficiency!!

Introduction

Challenge of Smart Agriculture:

■ Complex growth environment - irregular layout / obstacles / light variation

Objectives

Tomato Ripeness and Defected Classification

- Implement machine learning models
- Determine the ripeness stage of tomatoes

Precisely Localization

- Adjust the robot arm according to the position of tomato
- Using stereo vision for size estimation

Integration with Robotic Gripper System

Methods - Tomato Gripper Algorithm

Launch Detection Model

Object Tracking

Return the <u>angle matrix</u> when the tomato is at the center of image

$$Angle_{Position}^{1} = [\theta_1, 158, 0, \theta_4^1, 90, 90]$$

$$Angle_{Position}^2 = [\theta_1, 105, 30, \theta_4^2, 90, 90]$$

Use <u>triangulation</u> to locate the tomato in the world coordinate system

Positioning in 2D System

Use **pinhole camera model** to estimate the size of tomato

Grip the Tomato

Methods - System Environment

YAHBOM DOFBOT AI Vision Robotic Arm

- Ubuntu18.04 (JetPack 4.4)
- Python 3.6.9
- Pytorch 1.10.0 / torchvision 0.11.0

Restrict the version of the deep learning model used.

Methods - Tomato Detection Model

YOLO v5

Version 4(2020): SiLu + AutoAnchor

Version 5(2021): CSPDarknet + SPPF --- Pytorch ≥ 1.7

Version 6(2022): TensorRT --- Python \geq 3.7

Tomato Dataset:

Label: Green / Turning / Harvest

Amount: 1073

Ratio:8:2

Methods - Tomato Detection Model

YOLO v5

Version 4(2020): SiLu + AutoAnchor

Version 5(2021): CSPDarknet + SPPF --- Pytorch ≥ 1.7

Version 6(2022): TensorRT — Python ≥ 3.7

Tomato Dataset:

Label: Green / Turning / Harvest

Amount : 1073

Ratio: 8:2

Model	mAP50	Sped CPU	Params	FLOPs	FPS
YOLOv5n	45.7	45	1.9	4.5	8.654
YOLOv5s	56.8	98	7.2	16.5	4.735
YOLOv5m	64.1	224	21.2	49.0	-
YOLOv51	67.3	430	46.5	109.1	-
YOLOv5x	68.9	766	86.7	205.7	

Methods - Tomato Tracking & Positioning

Triangulation:

Methods - Tomato Tracking & Positioning

Forward Kinematics:

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} L_1 & 0 \\ 0 & L_1 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta_1 \\ \sin \theta_1 \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} L_2 & 0 \\ 0 & L_2 \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta_1 + (\theta_2 - 90^\circ)) \\ \sin(\theta_1 + (\theta_2 - 90^\circ)) \end{bmatrix}$$

$$\begin{bmatrix} x_3 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} + \begin{bmatrix} L_3 & 0 \\ 0 & L_3 \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta_1 + (\theta_2 - 90^\circ) + (\theta_3 - 90^\circ)) \\ \sin(\theta_1 + (\theta_2 - 90^\circ) + (\theta_3 - 90^\circ)) \end{bmatrix}$$

Hand-eye Calibration:

$$\begin{bmatrix} x_c \\ y_c \end{bmatrix} = \begin{bmatrix} x_3 \\ y_3 \end{bmatrix} - \begin{bmatrix} L_c & 0 \\ 0 & L_c \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta_1 + (\theta_2 - 90^\circ) + (\theta_3 - 90^\circ) - \theta_c) \\ \sin(\theta_1 + (\theta_2 - 90^\circ) + (\theta_3 - 90^\circ) - \theta_c) \end{bmatrix}$$

Tomato Positioning $[x_1 \ y_1 \ \theta_1 \ x_2 \ y_2 \ \theta_2]$

$$\tan \theta_1 (x_{Tomato} - x_1) + y_1 = \tan \theta_2 (x_{Tomato} - x_2) + y_2$$

$$x_{Tomato} = \frac{\mathbf{y_2} - \mathbf{y_1} + \tan \theta_1 \, x_1 - x_2 \tan \theta_2 \, x_2}{\tan \theta_1 - \tan \theta_2}$$

Methods - Tomato Size Estimation

(張正友標定法)

Utilize **Zhang's calibration method** provided by OpenCV to estimate the camera's **intrinsic parameters** and **distortion coefficients**.

- A. Capturing multiple images of a known-size checkerboard pattern.
- B. Detecting 2D image coordinates of the corner points.
- C. Matching to the corresponding 3D world coordinates.
- D. Using nonlinear optimization to compute inintrinsics parameters (K) and distortion parameters (D).

The Relationship Between Gripper Opening Width And Servo Motor Rotation Angle

Methods - Tomato Size Estimation

$$\mathbf{K} = \begin{bmatrix} \mathbf{f}_{x} \\ 976 \end{bmatrix} & 0 & 282 \\ 0 & 978 & 235 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} -0.589 & 3.93 & 1.04 \times 10^{-3} & 3.72 \times 10^{-3} & -24.5 \end{bmatrix}$$

$$w_{real} = \frac{w_{pixel}}{f_x} \times Distance$$

The Relationship Between Gripper Opening Width And Servo Motor Rotation Angle

Methods - Inverse Kinematics

Pre-defined the desired grasping angle ϕ

- The angle φ is influenced by the picking task (fruit occlusion / gripper working range).
- To increase the robustness, φ is controlled within the range of 10° to 20°.

Inverse Kinematics

- (1) The desired grasping angle φ is set as a reasonable angle in advance.
- (2) Obtain equations ① and ② from coordinate point transform and end effector.
- (3) Based on the geometric information, we can compute θ_3 by the equation ③.

$$\begin{cases} L2 \times cos(\theta_1 - \theta_2) + L1 \times cos(\theta_1) = x_2 = tomato_x - L3 \times cos\varphi & ----- \\ L2 \times sin(\theta_1 - \theta_2) + L1 \times sin(\theta_1) = y_2 = tomato_y + L3 \times sin\varphi & ----- \\ \end{cases}$$

$$\theta_1 - \theta_2 - \frac{\theta_3}{3} = -\varphi \quad \dots \quad 3$$

Results - Tomato Detection Model

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Precision

0.868 0.873

Recall

0.833 0.877 15

Results - Positioning & Size Estimation

Positioning

True		Prediction		Error	
X	Y	X	Y	(Euclidean Distance)	
22.8	10.5	21.86	10.91	1.03	
19.0	10.6	15.87	11.43	3.24	
19.9	11.5	20.22	11.54	0.32	
22.7	6.8	21.10	7.50	1.73	
19.5	13.2	21.54	13.86	2.14	
19.4	12.8	18.40	12.57	1.03	
28.6	6.2	26.30	7.34	2.57	
29.3	6.8	29.10	6.32	0.52	
24.7	6.5	25.45	6.41	0.76	
25.0	6.5	26.98	6.10	2.02	

Size Estimation

True	Prediction	Error
	2.73	0.21
	2.82	0.30
2.52	2.61	0.09
	2.41	0.11
	2.44	0.08
	2.38	0.05
	2.14	0.19
2.33	2.54	0.21
	2.34	0.01
	2.28	0.05

Average: 1.53

Average : <u>0.13</u>

Results - Tracking & Gripping

Fruit cracking caused by mechanical impact

System Limitations

- The small difference in observation angles (15°~17°) leads to positioning error.
- Capturing images from a distance that is too close may lead to lose focus.

Conclusion

Development of an Automated Tomato Harvesting Gripper

- Tomato ripeness recognition model: Precision <u>0.86</u>, Recall <u>0.88</u>
- Stereo vision positioning accuracy: <u>1.53</u> cm
- Tomato size estimation accuracy: **0.13** cm

Future Works

- Reduce size estimation errors to lower the chance of cracks during the process
- Identifying cracks and related defects
- Shorten overall recognition time

References

- Yahboom DOFBOT AI Vision Robotic Arm with ROS for Jetson NANO 4GB B01 and Raspberry Pi 4B 8GB/4GB
- Strawberry Harvesting Robot BERRY
- 飆機器人-DOFBOT NVIDIA AI ROS 機械手臂
- Ge, Y., Xiong, Y., & From, P. J. (2019). "Instance segmentation and localization of strawberries in farm conditions for automatic fruit harvesting," IFAC-PapersOnLine, 52(30), 294-299.
- 農業部農業藥物試驗所-作物病蟲害診斷系統(診斷編號1070620005)
- Yi-Hsuan Huang, Ta-Te Lin, "Development of a High-Throughput Phenotyping system for greenhouse tomato fruits based on deep learning", Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 2019.
- GitHub-ZJU-lishuang / yolov5-v4
- GitHub-ultralytics / yolov5
- YOLO v5 Explained and Demystified(Object Detection)
- Camera Calibration 相機校正
- OpenCV Camera Calibration and 3D Reconstruction

The End

李岳軒	白峻維	簡子恒
研究動機發想	文獻探討	夾爪演算法設計與系統建立
相機校正參數提取	研究動機發想	番茄辨識模型訓練
逆向運動學算法與程式	逆向運動學算法	前向運動學程式
結果分析與討論	結果分析與討論	番茄尺寸預估程式
		逆向運動學算法與程式
		夾爪開度線性關係式建立
		結果分析與討論
		簡報架構製作