MATHE C KLAUSURZETTEL

HENRI HEYDEN

stu240825

Analysis

Integrierbarkeit

RIEMANN SUMME

Sei $f:[a,b]\to\mathbb{R}$, seien (x,ξ) Partition und Stützstellen aus [a,b].

Dann nennen wir $R(f, x, \xi) := \sum_{i=1}^{n} (x_i - x_{i-1}) \cdot f(\xi_i)$ Riemann Summe.

INTEGRIERBARKEIT

Wir nennen f integrierbar, wenn

$$\begin{split} &\exists R_0 \in \mathbb{R} \forall \epsilon > 0 \\ &\exists \delta > 0 \\ \forall (x,\xi) \in \mathrm{PS}(a,b,\delta) : |R(f,x,\xi) - R_0| < \epsilon \text{ gilt.} \\ &\text{Das Integral ist eindeutig, schreibe} \int_a^b f \text{ oder } \int f \text{ hierfür.} \end{split}$$

Wir schreiben auch $\int f(x)dx := \int f(x)$

Ist f integrierbar, dann kann man das Integral mit einer Beliebigen Folge an $(x_n, \xi_n)_n$ finden wessen Feinheit den Limes 0 hat, sodass die Riemann-Summe konvergiert. f ist genau dann integrierbar, wenn für alle 2 solcher Folgen ihre Differenz immer zu 0 konvergiert.

STETIG UND KOMPAKT

Eine Funktion *f* :

- ... ist stetig in $x \in \text{dom}(f)$, wenn alle Funktionslimetes zu x gleich sind.
- ...ist beschränkt, wenn ihre Domain eine obere und untere Schranke hat.
- ...ist abgeschlossen, wenn das komplement ihrer Domain offen ist.
- ...ist kompakt, wenn sie beschränkt und abgeschlossen ist.

Ist eine Funktion kompakt stetig, dann ist sie gleichmäßig stetig und somit integrierbar.

ABSCHÄTZUNGEN

Für
$$f \le g$$
 gilt: $\int f \le \int g$.

Es gilt:
$$(b-a) \cdot \inf(f) \le \int_a^b f \le (b-a) \cdot \sup(f)$$

Integrationstechniken

HAUPTSATZ DER DIFFERENZIALRECHNUNG

Schreibe
$$[\phi]_u^v := \phi(v) - \phi(u)$$

Sei
$$f, F : \Omega \to \mathbb{R}$$
 so, dass $F' = f$ gilt.

Dann gilt:
$$\int f = F(\sup(\Omega)) - F(\inf(\Omega)) = F(b) - F(a) = [F]_a^b$$
 für $\Omega = [a, b]$.

STAMMFUNKTIONEN

Domain	f(x)	F(x)	args
\mathbb{R}	c	cx	$c \in \mathbb{R}$
\mathbb{R}	$\sum_{k=0}^{n} a_k x^k$	$\sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1}$	$a_0 \dots a_n \in \mathbb{R}$
$\mathbb{R}_{>0}$	x^{-1}	ln(x)	
\mathbb{R}	b^x	$\frac{b^x}{\ln(b)}$	$b \in \mathbb{R}_{>0} \setminus \{1\}$
$\mathbb{R}_{>0}$	$\log_b(x)$	$\frac{x \ln(x) - x}{\ln(b)}$	$b \in \mathbb{R}_{>0} \setminus \{1\}$
]-1, 1[$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	
\mathbb{R}	$\frac{1}{1+x^2}$	arctan(x)	

PARTIELLE INTEGRATION

Für
$$f,g:[a,b] \to \mathbb{R}$$
 gilt: $\int_a^b fg' = [fg]_a^b - \int_a^b f'g$

SUBSTITUTION

Für f stetig reel und ϕ stetig differenzierbar reel mit $u, v \in \text{dom}(\phi)$, sodass $[u, v] \subseteq \text{dom}(\phi)$ und $\phi^{\rightarrow}([u, v]) \subseteq \text{dom}(f)$ ist, gilt:

$$\int_{\phi(u)}^{\phi(v)} f = \int_{u}^{v} (f \circ \phi) \cdot \phi'$$

Uneigentliche Integrale

INTEGRAL ÜBER $x^{-\alpha}$

1) $\forall \alpha > 1$: $\int_{1}^{+\infty} x^{-\alpha} dx = \frac{1}{\alpha - 1}$. Für $\alpha \in]0, 1]$ divergiert das Integral. 2) $\forall \alpha \in]0, 1[: \int_{0}^{1} x^{-\alpha} dx = \frac{1}{1 - \alpha}$. Für $\alpha \ge 1$ divergiert das Integral.

VERGLEICHSKRITERIUM

Seien $f, g : [a, b] \to \mathbb{R}$ integrierbar über alle Teilintervalle und $|f| \le g$.

Konvergiert das uneigentliche Integral über g, dann konvergiert das uneigentliche Integral über f.

INTEGRALKRITERIUM

Warnung nicht im Skript, trotzdem leichtes Argument.

Sei $p \in \mathbb{Z}$ und $f : [p, \infty[\to \mathbb{R}_{>0} \text{ monoton fallend.}]$

Dann ist f integrierbar genau dann, wenn $\sum_{n=p}^{\infty} f(n)$ konvergiert.

Zur Motivation betrachte $\sum_{n=p}^{\infty} f(n)$ als obere Schranke und Annäherung des Integrals mittels Riemann Summe mit gleichmäßiger Feinheit 1.

Analytische Grundstrukturen

Metrische Räume

METRIK

Eine Metrik ist eine Funktion $d: M^2 \to \mathbb{R}_{>0}$ mit folgenden Eigentschaften:

- 1) $d(x, y) = 0 \iff x = y$ (positive Definitheit)
- 2) d(x, y) = d(y, x) (Symmetrie)
- 3) $d(x, y) \le d(x, z) + d(z, y)$ (Dreiecksungleichung)

EIGENSCHAFTEN DER METRIK

Für Metrische Räume gelten alle analytischen Gesetze und Sätze aus MatheB nur mit jeder Metrik nicht nur der Betragsmetrik. Somit sind Begriffe wir Stetigkeit, Limes, Kompaktheit, Funktionslimes etc. äquivalent.

Normierte Räume

Norm

Sei V Vektorraum, dann ist $||\cdot||$ Norm auf V, wenn folgende Gesetze gelten:

- 1) $||v|| = 0 \iff v = 0$
- $2) ||\lambda|| = |\lambda| \cdot ||v||$
- 3) $||u + v|| \le ||u|| + ||v||$

BEISPIELNORMEN ÜBER \mathbb{R}^n

Sei
$$k \in \mathbb{N}_{>0}$$
, dann ist $||\cdot||_k : \mathbb{R}^n \to \mathbb{R}, v \mapsto \sqrt[k]{\sum_{i=1}^n |v_i|}$ Norm Die Funktion $||\cdot||_{\infty} : \mathbb{R}^n \to \mathbb{R}, v \mapsto \max_{i \in [n]} |v_i|$ ist Norm

EIGENSCHAFTEN DER NORM

Es gilt
$$||-v|| = ||v||$$

Außerdem ist $V^2 \to \mathbb{R}_{\geq 0}$, $(u, v) \mapsto ||u - v||$ Metrik. Somit lassen sich analytische Grundbegriffe für Vektorräume komposieren und alle Eigentschaften der Metrischen Räume für jene Metrik anwenden.

Normen sind stetig. Also $||\cdot||$ ist eine stetige Funktion.

ÄQUIVALENZ VON NORMEN

Seien $(V, ||\cdot||)$ und $(V, ||\cdot||')$ normierte Räume. Wir nennen $||\cdot||$ und $||\cdot||'$ äquivalent, wenn folgendes gilt: $\exists \alpha, \beta > 0 : \forall v \in V : \alpha ||v|| \le ||v||' \le \beta ||v||$ Umgebungen über äquivalente Normen sind äquivalent, genau wie Konvergenz mit den gleichen Limetes, Stetigkeiten und Kompaktheiten.

Auf endlich dimensionalen Vektorräumen sind alle Normen äquivalent.

Differentation im Mehrdimensionalen Stochastik