Math3303 Assignment 3

Dominic Scocchera

March 2023

$\mathbf{Q}\mathbf{1}$

a)

We want to show G^{ab} is abelian.

Proof. In the previous assignment we showed that [G,G] is a normal subgroup, so $G/[G,G]=\{g[G,G]:g\in G\}$. Hence we now get, $(g_1[G,G])(g_2[G,G])=(g_1g_2)[G,G]=([g_1,g_2]g_2g_1)[G,G]=g_2g_1[G,G]=(g_2[G,G])(g_1[G,G])$ where $g_1,g_2\in G$.

b)

First we want to prove the fundamental homomorphism theorem.

Theorem 1. Let G, H be groups, $f: G \to H$ a homomorphism, and let N be a normal subgroup of G such that $N \subseteq \ker f$. Then there exists a unique homomorphism $f': G/N \to H$ so that $f' \circ \pi = f$, where π denotes the obvious homomorphism from G to G/N, $\pi(g) = gN$.

Proof. We first show the uniqueness of the mapping. Let $f'_1, f'_2: G/N \to H$ be functions such that $f'_1 \circ \pi = f'_2 \circ \pi$. For $y \in G/N$ there exists $x \in G$ such that $\pi(x) = y$, so we have $f'_1(y) = (f'_1 \circ \pi)(x) = (f'_2 \circ \pi)(x) = f'_2(y)$ for all $y \in G/N$, thus $f'_1 = f'_2$. Now we define $f': G/N \to H$, $f'(gN) = f(g) \forall g \in G$. Now let gN = kN, or $k \in gN$. Since $N \subseteq \text{Ker } f$, $g^{-1}k \in N$ implies $g^{-1}k \in \text{Ker } f$, hence f(g) = f(k). Clearly $f' \circ \pi = f$.

Now we want to show that if we have the homomorphisms $\pi:G\to G^{ab}$, $f:G\to A$, with A abelian then there exists a homomorphism $f':G^{ab}\to A$ such that $f=f'\circ\pi$.

Proof. This is almost a direct consequence of the above theorem. As f is map-

ping to an abelian group A we have for $[a, b] \in [G, G]$:

$$\begin{split} f([a,b]) &= f(aba^{-1}b^{-1}) \\ &= f(a)f(b)f(a^{-1})f(b^{-1}) \\ &= f(a)f(a^{-1})f(b)f(b^{-1}) \\ &= f(aa^{-1}bb^{-1}) \\ &= f(e) \\ &= e \end{split}$$

So we have $[G,G] \subseteq \text{Ker } f$. Plugging our values into the fundamental homomorphism theorem we get the desired result (note here that N = [G,G] and H = A).

c)

Now we want to prove $G^{\vee} \cong (G^{ab})^{\vee}$.

Proof. Plugging the groups into the result from b) we get:

We note that we can do this as [G,G] is a normal subgroup and \mathbb{C}^{\times} is an abelian group. We also note that from b) we get $\phi = \varphi \circ \pi$ and that the homomorphisms are $\pi(g) = g[G,G]$ and $\varphi(\pi(g)) = \phi(g)$ (From b)). Now consider $\theta: G^{\vee} \to (G^{ab})^{\vee}$, where $\theta(\phi(g)) = \varphi(\pi(g))$. This is a homomorphism as:

$$\theta(\phi_1(g_1)\phi_2(g_2)) = \varphi(\pi(g_1g_2))$$

$$= \varphi(\pi(g_1)\pi(g_2))$$

$$= \varphi(\pi(g_1))\varphi(\pi(g_2))$$

$$= \theta(\phi_1(g_1))\theta(\phi_1(g_2))$$

Noting lines 2 and 3 are possible as ϕ and π are homomorphisms. It is also bijective as $\phi(g) = \varphi(\pi(g)), \forall g \in G$, hence the result $G^{\vee} \cong (G^{ab})^{\vee}$.

$\mathbf{Q2}$

We want to prove that S_n can be generated by (12) and (12...n).

Proof. First we have:

$$(12...n)(1,2)(12...n)^{-1} = (2,3)$$

$$(12...n)(2,3)(12...n)^{-1} = (3,4)$$

$$\vdots$$

$$(12...n)(n-2,n-1)(12...n)^{-1} = (n-1,n)$$

Hence $(i, i+1) \in \langle (1, 2), (12...n) \rangle$, for all $1 \le i \le n-1$. Next we have:

$$(2,3)(1,2)(2,3)^{-1} = (1,3)$$
$$(3,4)(2,3)(3,4)^{-1} = (1,4)$$
$$\vdots$$
$$(n-1,n)(1,n-1)(n-1,n)^{-1} = (1,n)$$

From this we now have $(1,i) \in \langle (1,2), (12...n) \rangle$ for all $1 \le i \le n$. Now for any $1 \le i < j \le n$ we get the following:

$$(i,j) = (1,i)(1,j)(1,j)^{-1} \in \langle (1,2), (12...n) \rangle$$

Hence all transpositions are contained in $\langle (1,2), (12...n) \rangle$ and hence $\langle (1,2), (12...n) \rangle = S_n$

Q3

We want to show that $Z(S_n) = \{e\}$. We will first assume that $n \geq 3$ as this trivially holds for n = 1 and n = 2.

Proof. By definition of identity in a group $(\forall g \in G, g \cdot e = e \cdot g)$ we have that $e \in Z(S_n)$. Also by the definition of center we have $Z(S_n) = \{\tau \in S_n : \forall \sigma \in S_n : \tau \sigma = \sigma \tau\}$. Let $\pi, \rho \in S_n$ be permutations of $\{1, ..., n\}$. Suppose we have $\pi \in S_n$ such that $\pi \neq e, \pi(i) = j, i \neq j$. Since $n \geq 3$, we can find $\rho \in S_n$ which interchanges j and k (where $k \neq i, j$) and fixes everything else. It follows that $\rho - 1$ does the same thing, and in particular both ρ and $\rho - 1$ fix i. So:

$$\rho \pi \rho^{-1}(i) = \rho \pi(i)$$
$$= \rho(j)$$
$$= k$$

So:

$$\rho \pi \rho^{-1}(i) = k \neq j = \pi(i)$$

Now we notice that if ρ and π were to commute, $\rho\pi\rho^{-1}=\pi$, but in S_n this isn't the case. So for any $\pi\in S_n$ we can always find a ρ such that $\rho\pi\rho^{-1}\neq\pi$. So no we have that no elements other than the identity of S_n commute with all elements of S_n . Hence the result, $Z(S_n)=\{e\}$.