

_

1ª Lei de Newton ou Lei da Inércia

Uma partícula **livre move-se com velocidade constante:** movimento em linha recta com velocidade constante ou repouso.

2ª Lei de Newton - Lei fundamental

$$\sum \vec{F} = \frac{d\vec{p}}{dt} \qquad \sum \vec{F} = \frac{d\vec{p}}{dt} = m\frac{d\vec{v}}{dt} + \vec{v}\frac{dm}{dt}$$

$$se\ m\ for\ constante$$

$$\sum \vec{F} = m\vec{a}$$

Mec_IM - 2021/22

3 ª Lei de Newton – Lei da Acção-Reacção

As forças surgem aos pares

Para cada acção há uma reacção de igual intensidade mas de sentido oposto.

A força exercida no corpo 1 pelo corpo 2 é simétrica da força exercida no corpo 2 pelo corpo 1

$$\vec{F}_{12} = -\vec{F}_{21}$$
 Par acção-reacção

Os pares acção-reacção actuam SEMPRE em corpos **DIFERENTES**

Forças a distância

distance between

Mec_IM - 2021/22

Lei da Gravitação de Newton

F_{1,2} - Força exercida na massa m₁ pela massa m₂

F_{2.1} - Força exercida na massa m₂ pela massa m₁

Forças atractivas!

 $|\vec{F}_{1,2}| = |\vec{F}_{2,1}| = G \frac{m_1 m_2}{r^2}$

G - Constante de Gravitação Universal

G= 6,67 x 10⁻¹¹ N.m².kg⁻²

Balança de Cavendish - esquema e dispositivo laboratorial

Campo Gravítico

$$F_{1,2} = \frac{Gm_1m_2}{r^2}$$
 O efeito de m_2 em Então podemos escrever

O efeito de m_2 em m_1 é acelerar m_1

$$F_{1,2} = \frac{Gm_1m_2}{r^2} = m_1a_1$$

$$\Rightarrow a_1 = \frac{Gm_2}{r^2}$$

$$F_{1,2} = m_1 \frac{Gm_2}{r^2}$$
 $F_{1,2} = m_1 g$

g é o CAMPO GRAVÍTICO

É a $\underline{\text{força por unidade de massa}}$ em $\mathbf{m_1}$ devido à massa $\mathbf{m_2}$.

Todas as massas criam um campo gravítico g(r) no espaço

$$g(r) = G\frac{M}{r^2}$$

Vector dirigido para M

g é também a aceleração sofrida por uma massa colocada nesse ponto

Mec_IM - 2020/21

Campo gravítico da terra (linhas de campo)

$$g_0 = G \frac{M_T}{r_T^2}$$
 Na superfície terrestre

$$g_0 = G \frac{M_T}{r_T^2}$$
 Na superfície terrestre $g = G \frac{M_T}{(r_T + h)^2} \Leftrightarrow g = G \frac{M_T}{r_T^2 (1 + \frac{h}{r_T})^2} \Leftrightarrow$

$$g = \frac{g_0}{(1 + \frac{h}{r_r})^2}$$

linhas de campo

h - altura acima da superfície terrestre

se h = 6 km ... g diminui 2/1000 !!

Mec IM - 2020/21

Três massas de 5 kg estão colocadas nos vértices de um triângulo equilátero, cujo lado mede 0.25 m.

Determine a intensidade, direcção e sentido da força gravitacional resultante sobre uma das massas, devido à presença das outras duas.

Mec_IM - 2020/21

-

7

Problemas de Dinâmica

2 - Calcule a aceleração dos corpos da figura e a tensão nas cordas. Aplique ao caso em que $m_1 = 50 \text{ g}, m_2 = 80 \text{ g} \text{ e} \text{ F} = 1 \text{N}.$

NB: As roldanas fixas servem para mudar a direcção e sentido das forças aplicadas; não diminuem a intensidade das forças aplicadas Sugestão: Fazer o diagrama de forças em cada corpo e depois aplicar a 2ª lei de Newton a cada um deles

Mec_IM - 2020/21

3 - Determine a aceleração com que os corpos na figura se movem e as tensões nas cordas.

NB: Considerem os valores anteriormente disponibilizados para o problema 4

Mec_IM - 2020/21

PÊNDULO SIMPLES (movimento no plano vertical)

Trajectória circular

 \overrightarrow{P} e \overrightarrow{T} Forças:

Em qualquer posição:

$$\vec{T} + \vec{P} = m\vec{a}$$

$$\vec{a} = \vec{a}_t + \vec{a}_n$$

http://www.phy.ntnu.edu.tw/java/Pendulum/Pendulum.html

Mec IM - 2021/22

PÊNDULO SIMPLES

Posição extrema (v=0)

$$\vec{T} + \vec{P} = m\vec{a} \qquad \vec{a} = \vec{a}_t + \vec{a}_n$$

$$\vec{a} = \vec{a}_t + \vec{a}_n$$

$$\begin{cases} |\vec{T}| - |\vec{P}| \cos \theta = m |\vec{a}| \\ |\vec{P}| \sin \theta = m |\vec{a}| \end{cases}$$

$$\begin{cases} |\vec{T}| - |\vec{P}|\cos\theta = m|\vec{a}_n| & |\vec{T}| - |\vec{P}|\cos\theta = m\frac{v^2}{L} = 0 \\ |\vec{P}|\sin\theta = m|\vec{a}_t| & |\vec{P}|\sin\theta = m|\vec{a}_t| \end{cases}$$

Posição de equilíbrio $(\theta=0)$

$$\left| \vec{T} \right| - \left| \vec{P} \right| = m \frac{v^2}{L}$$
 Valor máximo da tensão!

tensão!

Mec_IM - 2021/22

11

PÊNDULO CÓNICO (movimento circular no plano horizontal)

 $\int_{0}^{y} |\vec{T}| \cos \theta = |\vec{P}|$ $|\vec{T}| \sin \theta = m|\vec{a}_{n}|$

Quanto vale a aceleração tangencial?

Mec_IM - 2021/22

12

10 - Um corpo D cuja massa é de 6 kg esta sobre uma superfície cónica A B C e está rodando em torno do eixo EE' com uma velocidade angular de 10 rev/min. Calcule:

r = L sen 60

- a) a velocidade linear do corpo
- b) a reacção da superfície do corpo
- c) a tensão no fio
- d) a velocidade angular necessária para reduzir a reacção do plano a zero.

NB: o pêndulo move-se sobre o cone, descrevendo uma trajectória circular. Identificar as forças que actuam <u>sobre</u> o pêndulo e não esquecer que há aceleração centrípeta. Sendo a velocidade angular <u>constante</u>, também a velocidade linear é.

Reacção do plano zero significa que o pêndulo deixa de estar apoiado

4m

13

Mec_IM - 2020/21

13

FORÇA DE ATRITO (sólido)

Superfícies de dois materiais em contacto

A força de atrito f tende a impedir o movimento relativo das superfícies

Microscopicamente a força tem origem eléctrica
Lubrificação separa as superfícies

Mec_IM - 2021/22

14

FORÇA DE ATRITO (estático)

Na situação limite, em que **a força de atrito estático atinge o valor máximo**, verifica-se que:

a força de atrito estático máxima é proporcional à normal exercida entre as superfícies

$$f_{a.e.max} = \mu_E N$$

 μ_{E} é o coeficiente de atrito estático, para as duas superfícies

Em geral, temos:

$$f_{a.e.} \leq \mu_E N$$

Normalmente, a força de atrito não depende da área de contacto

Mec_IM - 2021/22

15

FORÇA DE ATRITO (cinético)

Quando o corpo entra em movimento, temos uma situação com atrito cinético e verifica-se que:

a força de atrito cinético é proporcional à normal exercida entre as superfícies

$$f_{a.c.} = \mu_C N$$
 $\mu_{\rm C}$ é o coeficiente de atrito cinético, para as duas superfícies

Normalmente, a força de atrito não depende da área de contacto

Mec IM - 2021/22 16

COMO VARIA A FORÇA DE ATRITO com a força aplicada?

	$\mu_{\rm e}$	μ_{c}
Aço sobre aço	0,74	0,57
Cobre sobre aço	0,53	0,36
Borracha sobre	1,0	0,8
cimento		
Madeira sobre	0,25-0,5	0,2
madeira		
Gelo sobre aço	0,1	0,03
Teflon sobre teflon	0,04	0,04

Atrito Cinético < Atrito Estático

Mec_IM - 2021/22

17

18

17

Como medir o coeficiente de atrito µ?

Um corpo é colocado num plano inclinado, ficando em repouso. A inclinação θ é aumentada até atingir um valor máximo (crítico) θ _{crit} que se relaciona com μ_E .

Em repouso $\theta \leq \theta_{\text{crit}}$

$$mg \sin\theta - f_{ae} = 0$$

$$N - mg \cos\theta = 0$$

$$f_{ae} = N tg\theta$$

No limite, quando a força de atrito é máxima $\,\theta = \theta_{crit}\,$

$$f_{aemax} = \mu_E N = N t g \theta_{crit}$$

$$\mu_E = t g \theta_{crit}$$

 $\mu_E = 0.36 \Longrightarrow \theta_{crit} = 20^{\circ}$

Mec IM - 2021/22

- 1. Determine a força de atrito exercida pelo ar sobre um corpo cuja massa é de 0,4 kg se ele cair com uma aceleração de 9,0 m/s².
- **2.** Um bloco de madeira está sobre um plano inclinado cuja inclinação se pode variar. Aumenta-se gradualmente a inclinação até que o bloco comece a deslizar, para uma inclinação de 30°. Determine o coeficiente de atrito estático entre o bloco e o plano.

Mec_IM - 2021/22 1

19

Que força empurra o carro?

Mec IM - 2021/22 20

Força elástica

Força elástica ou força restauradora, F

F = -kx

k = constante da mola

MCE_IM_2022-2023

Problemas de Dinâmica

19 - Considere o esquema da figura. A mola tem uma constante de força k = 400N/m. Estando o sistema em repouso, e na iminência de se movimentar, qual o elongamento da mola (o ângulo mantém-se constante):

- a) Se não houver atrito.
- b) Se o coeficiente de atrito entre m_1 e a mesa for 0,4.

Mec IM - 2020/21

22