浙江工业大学 2012 - 2013 学年第二学期 概率论与数理统计试卷

姓名	:学号:	班级:	任课教师:
一. 填	真空题 (每空 2 分,共 22	分)	
1.	己知 $P(A) = 0.5, P(B) =$	$= 0.6, P(A \cup B) =$	= 0.8,则 $P(B A) =。$
2.		\dot{y} 为 X ,乙的投中	中率分别为 $0.5,0.6$,每人投次数为 Y ,则 $P(X=2,Y=$
3.			从参数为 λ 的泊松分布,若 $X) = $, $P(X = 2 X \le$
4.	设 $X \sim N(2, \sigma^2)$, $P(1 < \sigma^2)$,	(X < 3) = 0.8,	则 $P(X < 1) = $ 。
5.		Var(X+2Y) =	$ar(Y) = 1, \rho(X, Y) = -0.5,$,由切比雪夫不等式,
6.	量,得到样本均值 \bar{x} =	12.33, 样本方法 。(t	
7.		\overline{X} ,则根据中心极	$(\mu, 0.1^2)$,现在进行 100 次独限定理, $P(\mu - 0.01 < \overline{X} < 0.9772)$
二. 道	选择题 (每题 3 分,共 18	分)	
1.	设 A 为 "零件长度合格 或直径不合格"为() $\overline{A} \cap B$ \overline{B} B $)$ $A \cap$	0	径不合格",则 "零件长度 $D) \overline{A} \cup B$

2. 设某电子元件的寿命服从参数为 λ 的指数,则当 λ 增加时,()。 A) $P(X > \frac{1}{\lambda})$ 增加 B) $P(X > \frac{1}{\lambda^2})$ 增加 C) $P(X < \frac{1}{\lambda})$ 增加 D) $P(X < \frac{1}{\lambda^2})$ 增加	
3. 设 $X \sim N(\mu_0, \sigma^2)$, μ_0 已知而 σ^2 未知,则下列哪个不是统计量。() A) $X_1 + X_2 + X_3$ B) $X_1^2 - X_2 X_3$ C) $(X_1 - \mu_0)^2 - \sigma^2$ D) $(X_1 + X_2 - 2\mu_0^2)^2$	
4. 设 $\hat{\theta}_1, \hat{\theta}_2$ 都是 θ 的相互独立的无偏估计, $Var(\hat{\theta}_1) = 3Var(\hat{\theta}_2)$, $U = a\hat{\theta}_1 + b\hat{\theta}_2$,则下面哪组值使得 U 是 θ 的最有效的无偏估计。() A) $a = \frac{1}{3}, b = \frac{2}{3}$ B) $a = \frac{1}{4}, b = \frac{3}{4}$ C) $a = \frac{2}{3}, b = \frac{1}{3}$ D) $a = \frac{3}{4}, b = \frac{1}{4}$	
5. 设 $X \sim P(2)$, X_1, \cdots, X_n, \cdots 是其样本,则根据大数定律,对任意 $\epsilon > 0$, ()。 A) $\lim_{n \to \infty} P(\frac{1}{n}(X_1 + X_2 + \cdots + X_n) - 2 < \epsilon) = 1$ B) $\lim_{n \to \infty} P(\frac{1}{n}(X_1^2 + X_2^2 + \cdots + X_n^2) - 6 < \epsilon) = 0$ C) $\lim_{n \to \infty} P(\frac{1}{n}(X_1 + X_2 + \cdots + X_n) - 3 > \epsilon) = 0$ D) $\lim_{n \to \infty} P(\frac{1}{n}(X_1^2 + X_2^2 + \cdots + X_n^2) - 4 < \epsilon) = 1$	
6. 设总体 $X \sim N(\mu, \sigma_0^2)$, σ_0^2 已知,假设样本容量 n 和置信水平 $1-\alpha$ 保持不变,则对于不同的样本观测值,总体均值 μ 的置信区间的长度 ()。 A) 变长 B) 变短 C) 不变 D) 不能确定	

三. 计算题 (共60分)

- 1. $(12 \, f)$ 已知盒中有 6 个小球,其中 4 个红球,2 个蓝球,现随机地从其中选取两个,其中红球的个数为 X,不放回,再从剩下的球中随机选取两个,其中蓝球的个数为 Y,
 - 1)给出X,Y的联合分布表;
 - 2) 求 X,Y 的边缘分布;
 - 3) 计算 E(X-1)(Y-1)。

2. (16 分)已知连续型随机变量 X 的分布函数为

$$F(x) = \begin{cases} 1, & x > \frac{\pi}{2} \\ A\sin x + B, & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ 0, & x < -\frac{\pi}{2} \end{cases}$$

- 1) 验证常数 $A = \frac{1}{2}, B = \frac{1}{2}$;
- 2) 求 X 的密度函数 f(x);
- 3) $\Re P(-\frac{\pi}{6} < X < \frac{\pi}{6});$
- 4) 求 $E\cos(X)$ 。

3. (12 分) 设两维随机变量 (X,Y) 的联合密度为

$$f(x,y) = \begin{cases} C(y+1), & 0 < y < x < 1 \\ 0, & 其它 \end{cases}$$

- 1) 验证常数 $C = \frac{3}{2}$;
- 2) 求P(X < 2Y);
- 3) 求边缘密度函数 $f_X(x), f_Y(y)$, 并判断独立性

4. (10分)设离散随机变量 X 的概率函数为

$$P(X = k) = e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!}, \quad k = 1, 2, 3, \dots$$

求 $\lambda > 0$ 的矩估计和极大似然估计。

5. (10 分)某纯净水生产厂家用自动灌装机灌装纯净水,该自动灌装机灌装量服从 $N(\mu,0.5^2)$,现测量了 9 个样本的灌装量(单位:升)为: 18.0,17.7,17.6,18.4,18.1,18.5,17.9,18.4,18.3,若标准灌装量为 18 升,取显著性水平 $\alpha=0.05$,问该灌装机是否工作正常? ($Z_{0.025}=1.96,Z_{0.05}=1.65,t_8(0.05)=1.8595,t_8(0.025)=2.3060$)