Chun-Ju Lai

Max Planck Institute for Mathematics in Bonn cjlai@mpim-bonn.mpg.de

Dec 8, 2016

Outline

- 1 Schur-Weyl duality
- Quantization
- **3** *q*-Schur duality
- 4 BLM construction
- 5 Quantum symmetric pairs

Background

Schur-Weyl duality •00000

- $\mathbf{GL}_n := \mathbf{GL}_n(\mathbb{C}) = \text{general linear group of } \mathbb{C}^n$
- Schur's 1901 dissertation on the polynomial representations of GL_n:
 - Each polynomial representation V is semi-simple (i.e. $V = \bigoplus$ irreducible modules)
 - Each polynomial representation is homogeneous for some degree $d \in \mathbb{N}$
 - There is a correspondence

$$\left\{ \begin{array}{c} \text{polynomial representation} \\ \text{of } \mathbf{GL}_n \text{ of degree } d \\ \text{ {irreducibles}} \end{array} \right\} \stackrel{1:1}{\longleftrightarrow} \left\{ \begin{array}{c} \text{representation of} \\ \text{symmetric group } \mathfrak{S}_d \end{array} \right\} \\ \leftarrow \left\{ \text{irreducibles} \right\} \\ \left\{ \text{partitions } \lambda = (\lambda_1, \dots, \lambda_n) \vdash d \right\} \end{array}$$

Background

- Weyl's 1926 research on representation of semi-simple Lie group
 - based on repn theory of Lie algebra, integration over compact form
 - has no counterpart to \mathfrak{S}_d in Schur's method
- In 1927, Schur re-derived his 1901 dissertation by showing the double centralizer property for $(\mathbf{GL}_n,\mathfrak{S}_d)$, which was publicized by Weyl in his 1939 book "The Classic Groups".
- The methods used in the classical Schur-Weyl are still important in representation theory today

Dual actions

• $\mathfrak{gl}_n := \mathfrak{gl}_n(\mathbb{C})$: general linear Lie algebra $V := \mathbb{C}^n$ natural representation of \mathfrak{gl}_n \Rightarrow action on $V^{\otimes d}$ by the Leibniz rule, e.g.,

$$g \cdot (v_1 \otimes v_2) = (g \cdot v_1) \otimes v_2 + v_1 \otimes (g \cdot v_2)$$

so that its exponential e^{tg} acts group-like –

$$e^{tg} \cdot (v_1 \otimes v_2) = e^{tg} \cdot v_1 \otimes e^{tg} \cdot v_2$$

ullet \mathfrak{S}_d has a (right) action on $V^{\otimes d}$ by permuting tensor factors, e.g.,

$$(v_1 \otimes v_2) \cdot (12) = v_2 \otimes v_1$$

 $\mathfrak{gl}_n \qquad \stackrel{\psi}{\curvearrowright} \qquad V^{\otimes d} \qquad \stackrel{\varphi}{\backsim} \qquad \mathfrak{S}_d$ general linear Lie algebra $\qquad \text{tensor space} \qquad \text{symmetric group}$

Schur-Weyl duality

Example: commutivity

Here's an example showing $(g(v_1 \otimes v_2))(12) = g((v_1 \otimes v_2)(12))$

Double Centralizer Property

• We have $\psi: \mathfrak{gl}_n \to \operatorname{End}(V^{\otimes d}), \quad \varphi: \mathfrak{S}_d \to \operatorname{End}(V^{\otimes d})$ and

$$\mathfrak{gl}_n \qquad \stackrel{\psi}{\curvearrowright} \qquad V^{\otimes d} \qquad \stackrel{\varphi}{\backsim} \qquad \mathfrak{S}_d$$
 general linear Lie algebra
$$\qquad \text{tensor space} \qquad \text{symmetric group}$$

Schur-Weyl duality (1927)

- 1 The actions of \mathfrak{gl}_n and \mathfrak{S}_d on the tensor space $V^{\otimes d}$ commute
- 2 The algebras generated by the actions of \mathfrak{gl}_n and \mathfrak{S}_d in $\operatorname{End}(V^{\otimes d})$ are centralizing algebras of each other, i.e.,

$$\operatorname{End}_{\varphi(A)}(V^{\otimes d}) = \psi(B), \quad \operatorname{End}_{\psi(B)}(V^{\otimes d}) = \varphi(A),$$

where $A = \mathbb{C}[\mathfrak{S}_d] = \text{group algebra}, B = U(\mathfrak{gl}_n) = \text{univ env algebra}$

Double centralizer property

• The double centralizer property leads to

Corollary

There is a decomposition

$$V^{\otimes d} = \bigoplus_{\lambda \vdash d} V_{\lambda} \otimes L_{\lambda},$$

where $\{V_{\lambda}\} = \operatorname{Irrep}(\mathfrak{S}_d);$ $\{L_{\lambda}\}$ are distinct irreducibles of \mathfrak{gl}_n or 0.

$$U(\mathfrak{gl}_n) \curvearrowright (\mathbb{C}^n)^{\otimes d} \backsim \mathbb{C}[\mathfrak{S}_d]$$
 univ env algebra
$$(\mathbb{C}^n)^{\otimes d} \backsim \mathbb{C}[\mathfrak{S}_d]$$
 group algebra of sym group
$$\mathbb{U}_q(\mathfrak{gl}_n) \curvearrowright (\mathbb{Q}(v)^n)^{\otimes d} \backsim \mathbb{H}(\mathfrak{S}_d)$$
 quantum group
$$\mathbb{H}(\mathfrak{S}_d)$$
 Hecke algebra

Here the quantized algebras are over $\mathbb{Q}(v)$ with $v=q^{1/2}$: indeterminate

Hecke algebra

• Recall that the symmetric group \mathfrak{S}_d is generated by simple reflections

$$s_1, s_2, \ldots, s_{d-1}$$

subject to the braid relations and $s_i^2 = 1$.

• Hecke algebra $\mathbf{H}(\mathfrak{S}_d)$ is a $\mathbb{Q}(v)$ -algebra generated by

$$T_1, T_2, \ldots, T_{d-1}$$

subject to braid relations and the Hecke relations

$$(T_i + 1)(T_i - q) = 0. (1)$$

• Specializing $q \to 1$, (1) recovers $s_i^2 = 1$

Hecke algebra

• $\mathbf{H}(\mathfrak{S}_d)$ has a linear basis (called standard basis)

$$\{T_w \mid w \in \mathfrak{S}_d\}$$

• $\mathbf{H}(\mathfrak{S}_d)$ has a involution $\bar{}: \mathbf{H}(\mathfrak{S}_d) o \mathbf{H}(\mathfrak{S}_d)$ sending

$$v \mapsto v^{-1}, \quad T_w \mapsto T_{w^{-1}}^{-1}$$

- $\mathbf{H}(\mathfrak{S}_d)$ has a bar-invariant basis $\{C_w\}_{w\in\mathfrak{S}_d}$ called the Kazhdan-Lusztig(KL) basis
- The famous Kazhdan-Lusztig theory ('79) offered a solution the the difficult problem of determining irreducible character problem for category $\mathcal O$ of semisimple Lie algebras using the KL basis

• Recall that the universal enveloping algebra $U(\mathfrak{gl}_n)$ is an associative algebra generated by

$$\{e_i, f_i, d_j, d_j^{-1}\},$$
 subject to

Chevalley/Serre relations (e.g. $e_1^2e_2 + e_2e_1^2 = 2e_1e_2e_1$)

• Around 1985, Drinfeld and Jimbo introduced the quantum group $\mathbf{U} = \mathbf{U}_q(\mathfrak{gl}_n)$ as a $\mathbb{Q}(v)$ -algebra generated by

$$\{E_i, F_i, D_j, D_j^{-1}\},$$
 subject to

q-Chevellay/Serre relations (e.g. $E_1^2 E_2 + E_2 E_1^2 = (v + v^{-1}) E_1 E_2 E_1$)

Quantum groups

- ullet U provides solutions to the Yang-Baxter equation
- $\bullet~U$ is a Hopf algebra. Particularly it has a comultiplication $\Delta:U\to U\otimes U$
- ullet There is a triangular decomposition ${f U}={f U}^-{f U}^0{f U}^+$
- ullet There is a modified (i.e. idempotented) quantum group $\dot{\mathbf{U}}$:

$$\begin{array}{c} \mathbf{U}_{\text{quantum group}} & \underbrace{\mathbf{\dot{U}}_{\text{group}} & \underbrace{\dot{\mathbf{U}}_{\text{take certain infinite sum}}^{\text{group}} & \mathbf{\dot{U}}_{\text{modified quantum group}}^{\text{group}} \\ & \{\dot{\mathbf{U}}\text{-modules}\} \overset{1:1}{\leftrightarrow} \{\text{weight modules of } \mathbf{U}\} \end{array}$$

 $f \dot{U}$ is viewed as a preadditive category in categorification

Canonical basis

- U has a sheaf theoretic interpretation
- \Rightarrow bar involution $\bar{}$: $\mathbf{U} \to \mathbf{U}$ from the Verdier duality
 - ${\bf U}^-$ admits canonical basis, i.e., ${\bf U}^-$ has a standard basis $\{a_i\}_{i\in I}$ that is "unitriangular" and "integral":

$$\overline{a}_i \in a_i + \sum_{j < i} \mathbb{Z}[v, v^{-1}] a_j,$$

and a (unique) canonical basis $\{b_i\}_{i\in I}$ that is "bar-invariant" and "positive":

$$\overline{b}_i = b_i \in a_i + \sum_{j < i} v^{-1} \mathbb{N}[v^{-1}] a_j$$

• This is analogous to (dual) Kazhdan-Lusztig basis for Hecke algebra

Canonical basis

- Canonical basis = Kashiwara's global crystal basis, i.e., for any weight λ , $\{b_i v_{\lambda}\}\$ is a basis of irreducible integrable U-module $L(\lambda) := \mathbf{U}^- v_{\lambda}$
- Canonical basis $\{b_i\}$ has positivity, i.e.

$$b_i b_j \in \sum_k \mathbb{N}[v, v^{-1}] b_k$$

- U does not admit canonical basis, while U does
- Existence of canonical basis has connection/application in
 - Categorification
 - Algebraic combinatorics
 - Category O
 - Cluster algebra
 - Geometric representation theory

Outline

- 1 Schur-Weyl duality
- Quantization
- **3** *q*-Schur duality
- 4 BLM construction
- 6 Quantum symmetric pairs

q-Schur duality of type A

Our goal here is to describe the quantized Schur-Weyl duality below in examples:

We start with describing first a tensor space $\mathbb{V}^{\otimes d}$ admitting natural actions from both sides

• $\mathbb{V}:=\sum\limits_{i=1}^{n}\mathbb{Q}(v)v_{i}$: natural representation of $\mathbf{U}_{q}(\mathfrak{gl}_{n})$, e.g. n=3

• $\mathbf{U}_q(\mathfrak{gl}_n)$ acts on $\mathbb{V}^{\otimes d}$ via comultiplication, e.g.

$$\Delta(F_2) = D_2^{-1} D_3 \otimes F_2 + F_2 \otimes 1$$

Hence

$$F_2(v_3 \otimes v_2) = D_2^{-1} D_3 v_3 \otimes F_2 v_2 + F_2 v_3 \otimes v_2 = q v_3 \otimes v_3$$
$$F_2(v_2 \otimes v_3) = D_2^{-1} D_3 v_2 \otimes F_2 v_3 + F_2 v_2 \otimes v_3 = v_3 \otimes v_3$$

Hecke algebra action

• For $\mathbf{H}(\mathfrak{S}_2)$, we have the following equalities in one-line notation $(1 = [12], s_1 = [21])$

$$\begin{array}{ll} T_{[12]}T_1 &= T_{[21]} \\ T_{[21]}T_1 &= qT_{[12]} + (q-1)T_{[21]} \end{array}$$

• This leads to a natural Hecke algebra action on $\mathbb{V}^{\otimes 2}$ respecting the multiplication rule, e.g.

$$(v_a \otimes v_b)T_1 = \begin{cases} v_b \otimes v_a & \text{if } b > a \\ qv_b \otimes v_a + (q-1)v_a \otimes v_b & \text{if } b < a \\ qv_a \otimes v_a & \text{if } b = a \end{cases}$$

Example: commutivity

Here's an example showing $\Big(F_2(v_3\otimes v_2)\Big)T_1=F_2\Big((v_3\otimes v_2)T_1\Big)$

$$\mathbb{V} \otimes \mathbb{V} \xrightarrow{T_1} \mathbb{V} \otimes \mathbb{V}$$

$$\downarrow v_3 \otimes v_2 \longmapsto (q-1)v_3 \otimes v_2 + qv_2 \otimes v_3$$

$$\downarrow \downarrow v_3 \otimes v_3 \longmapsto q^2v_3 \otimes v_3 = (q^2 - q)v_3 \otimes v_3 + qv_3 \otimes v_3$$

$$\mathbb{V} \otimes \mathbb{V} \xrightarrow{T_1} \mathbb{V} \otimes \mathbb{V}$$

q-Schur duality

q-Schur duality of type A (Jimbo'86)

The algebras $\mathbf{U}_q(\mathfrak{gl}_n)$ and $\mathbf{H}(\mathfrak{S}_d)$ satisfy the double centralizer property:

$$\operatorname{End}_{\varphi(A)}(\mathbb{V}^{\otimes d}) = \psi(B), \quad \operatorname{End}_{\psi(B)}(\mathbb{V}^{\otimes d}) = \varphi(A),$$

where
$$A = \mathbf{H}(\mathfrak{S}_d)$$
, $B = \mathbf{U}_q(\mathfrak{gl}_n)$

q-Schur algebra

• In other words, there is a surjection, for each d, from $\mathbf{U}_q(\mathfrak{gl}_n)$ to the q-Schur algebra

$$\mathbf{S}_{n,d} = \mathsf{End}_{\mathbf{H}(\mathfrak{S}_d)}(\mathbb{V}^{\otimes d}),$$

and hence we have

$$\begin{array}{c} \mathbf{U}(\mathfrak{gl}_n) \\ \text{quantum group} \\ \downarrow \\ \mathbf{S}_{n,d} \\ \text{q-Schur algebra} \end{array} \curvearrowright \begin{array}{c} \mathbb{V}^{\otimes d} \\ \text{tensor space} \end{array} \not\sim \begin{array}{c} \mathbf{H}(\mathfrak{S}_d) \\ \text{Hecke algebr} \end{array}$$

q-Schur duality for other types

• It is known that $U_q(\mathfrak{gl}_n)$ is a type A quantum group. There are (q-)Schur duality for other types, e.g.,

orthogonal group
$$\begin{array}{c} \mathbf{O}_n \\ \mathbf{S}_{n,d}^{\mathbf{o}} \\ \mathbf{O}_{n,d} \\ \mathbf{O}_{n,d} \\ \mathbf{O}_{n,d} \\ \mathbf{V}^{(\mathfrak{SO}_n)} \\ \mathbf{Q}_{n,d} \\ \mathbf{S}_{n,d}^{\mathbf{o}} \\ \mathbf{O}_{n,d} \\ \mathbf{O}$$

In these pictures the "types" are associated to the classical/quantum groups

q-Schur duality for other types

• If we associate the "types" to the Hecke algebra instead, we obtain another family of (q-)Schur duality:

$$\begin{array}{lll} \mathbf{S}_{n,d}^{\mathsf{X}} := \mathsf{End}_{\mathbf{H}_d^{\mathsf{X}}}(\mathbb{V}^{\otimes d}) & \curvearrowright & \mathbb{V}^{\otimes d} & \curvearrowleft & \mathbf{H}_d^{\mathsf{X}} \\ \textit{q-Schur algebra of type X} & & \mathsf{type X Hecke algebra} \end{array}$$

 Question: Is there a bottom-top construction that recovers the quantum group from the Schur algebras?

BLM construction

 The answer is Yes, the construction for type A is provided in 1990 by Beilinson-Lusztig-MacPherson (BLM) geometrically using partial flags and a so-called stabilization procedure. We can paraphrase it algebraically as below:

$$\begin{array}{c} \dot{\mathbf{K}}_{n}^{\mathsf{A}} \\ \text{stabilization algebra of type A} \\ & & \uparrow \\ \mathbf{S}_{n,d}^{\mathsf{A}} := \mathsf{End}_{\mathbf{H}_{d}^{\mathsf{A}}}(\mathbb{V}^{\otimes d}) \quad \curvearrowright \quad \mathbb{V}^{\otimes d} \quad \curvearrowleft \quad \mathbf{H}_{d}^{\mathsf{A}} := \mathbf{H}(\mathfrak{S}_{d}) \\ q\text{-Schur algebra of type A} \end{array}$$

• Stabilization algebra $\dot{\mathbf{K}}_n^{\mathsf{A}} pprox$ inverse limit $\varprojlim_{d \in \mathbb{N}} \mathbf{S}_{n,d}^{\mathsf{A}}$

$\begin{array}{c} \dot{\mathbf{K}}_{n}^{\mathsf{A}} \\ \text{stabilization algebra of type A} \\ & & \uparrow \\ \mathbf{S}_{n,d}^{\mathsf{A}} := \mathsf{End}_{\mathbf{H}_{d}^{\mathsf{A}}}(\mathbb{V}^{\otimes d}) \quad \curvearrowright \quad \mathbb{V}^{\otimes d} \quad \curvearrowleft \quad \mathbf{H}_{d}^{\mathsf{A}} := \mathbf{H}(\mathfrak{S}_{d}) \\ \text{$a\text{-Schur algebra of type A}} \end{array}$

- \bullet Canonical bases for $\mathbf{S}_{n,d}^{\mathsf{A}}(d\in\mathbb{N})$ lift "compatibly" to canonical basis of $\dot{\mathbf{K}}_n^{\mathsf{A}}$
- $\bullet \ \dot{\mathbf{K}}_n^{\mathsf{A}} \simeq \dot{\mathbf{U}}(\mathfrak{gl}_n)$
- \Rightarrow A concrete realization of canonical basis of $\dot{\mathbf{U}}(\mathfrak{gl}_n)$

BLM construction

• A BLM construction (for type X) produces from a family of q-Schur algebra $\{\mathbf{S}_{n,d}^\mathsf{X}\mid d\in\mathbb{N}\}$ an $\mathbb{Q}(v)$ -algebra $\dot{\mathbf{K}}_n^\mathsf{X}$ that enjoys similar properties

$$\begin{array}{c} \dot{\mathbf{K}}_{n}^{\mathsf{X}} \\ \text{stabilization algebra of type X} \\ & \uparrow \\ \mathbf{S}_{n,d}^{\mathsf{X}} := \mathsf{End}_{\mathbf{H}_{d}^{\mathsf{X}}}(\mathbb{V}^{\otimes d}) \quad \curvearrowright \quad \mathbb{V}^{\otimes d} \quad \curvearrowleft \quad \mathbf{H}_{d}^{\mathsf{X}} \\ & {}_{q\text{-Schur algebra of type X}} \end{array}$$

• In type B/C, there are two types of BLM constructions due to Bao-Kujawa-Li-Wang ('14) associated to involutions (type i, j) of the Dynkin diagram of type A

type i:n odd

 $\dot{\mathbf{K}}_n^{\mathrm{BC}}$ is NOT the modified Drinfeld quantum group of type B/C; it is a modified quantization of certain product $\mathfrak{gl}_{\bullet} \times \mathfrak{sl}_{\bullet}$

Applications of new "quantum groups"

- Depending on parity of n, $\mathbf{K}_n^{\mathsf{BC}}$ is isomorphic to involutive quantum groups \mathbf{U}_n^i or \mathbf{U}_n^j introduced by Bao-Wang ('13). The canonical basis theory for $\mathbf{U}_n^i, \mathbf{U}_n^j$
 - gives a new formulation of KL theory for Lie algebra of type B/C
 - establishes for the first time KL theory for Lie superalgebra $\mathfrak{osp}(2m+1|2n)$ (i.e. super type B/C)
- \Rightarrow reformulation of KL theory for Lie algebra of type D and for Li superalgebra $\mathfrak{osp}(2m|2n)$ (i.e. super type D) by Bao ('16)
 - We expect similar applications for other types (e.g. affine classical)

BLM-type constructions

• Here's a summary on what are known

BLM construction	Geometric	Algebraic
(method)	(dimension counting on flags)	(combinatorics)
Affine A	Ginzburg-Vasserot ('93)	Du-Fu ('14)
	Lusztig ('99)	
Finite B/C	BKLW ('14)	
Finite D	Fan-Li ('14)	
Affine C	Fan-Lai-Li-Luo-Wang1 ('16)	FLLLW2 ('16)

Coideal subalgebras

• It is worth mentioning that U_n^i, U_n^j are coideal subalgebras of $U(\mathfrak{gl}_n)$, i.e., the comultiplication $\Delta: \mathbf{U}(\mathfrak{gl}_n) \to \mathbf{U}(\mathfrak{gl}_n) \otimes \mathbf{U}(\mathfrak{gl}_n)$ satisfies that

$$\Delta(\mathbf{U}_n^{\imath}) \subset \mathbf{U}_n^{\imath} \otimes \mathbf{U}(\mathfrak{gl}_n)$$

$$\Delta(\mathbf{U}_n^{\jmath}) \subset \mathbf{U}_n^{\jmath} \otimes \mathbf{U}(\mathfrak{gl}_n)$$

A coideal subalgebra is different from a Hopf subalgebra ${\bf B}$ of ${\bf U}$ s.t. $\Delta(\mathbf{B}) \subset \mathbf{B} \otimes \mathbf{B}$

Outline

- 1 Schur-Weyl duality
- Quantization
- **3** *q*-Schur duality
- 4 BLM construction
- 5 Quantum symmetric pairs

Symmetric pairs

• A symmetric pair $(\mathfrak{g}, \mathfrak{g}^{\theta})$ consists of a Lie algebra \mathfrak{g} and its fixed-point subalgebra \mathfrak{g}^{θ} with respect to an involution

$$\theta:\mathfrak{g}\to\mathfrak{g}$$

- It plays an important role in the study of real reductive groups
- Classification of symmetric pairs of finite type
 - = Classification of real simple Lie algebras
 - ⇔ Satake diagrams (of finite type)

Quantum symmetric pairs

- The quantum symmetric pair(QSP) is introduced by Letzter ('02) for finite type; and by Kolb ('14) for symmetrizable Kac-Moody as a quantization of the symmetric pair $(\mathfrak{g},\mathfrak{g}^{\theta})$
- The pair (\mathbf{U}, \mathbf{B}) is a QSP if $\mathbf{U} = \mathbf{U}(\mathfrak{g})$ and $\mathbf{B} = \mathbf{B}(\theta)$ is certain coideal subalgebra of \mathbf{U} , i.e., the comultiplication $\Delta : \mathbf{U} \to \mathbf{U} \otimes \mathbf{U}$ satisfies that

$$\Delta(\mathbf{B}) \subset \mathbf{B} \otimes \mathbf{U}$$

Examples

The following are examples of QSP:

- $(\mathbf{U}_q(\widehat{\mathfrak{gl}}_n), \text{twisted Yangian})$ from Yang-Baxter equation
- $(\mathbf{U}_q(\mathfrak{g}), \mathbf{B})$ where \mathfrak{g} is of classical type, and \mathbf{B} is constructed based on solutions of the reflection equation

$$RKRK = KRKR$$

- ullet $(\mathbf{U}_q(\widehat{\mathfrak{sl}}_2), q ext{-}\mathsf{Onsager algebra})$ from Ising model
- Quantum algebras from BLM construction. In other words, quantum algebras arising from Schur-Weyl duality

Recall that

$$\{\mathbf{S}_{n,d}^{\mathsf{X}} \mid d \in \mathbb{N}\} \xrightarrow{\mathsf{stabilization}} \dot{\mathbf{K}}_n^{\mathsf{X}} \xrightarrow{\mathsf{take inf sum}} \mathbf{K}_n^{\mathsf{X}}$$

The resulting quantum algebras are:

type	quantum algebra \mathbf{K}_n^{X}	
Finite A	$egin{align} \mathbf{U}_q(\mathfrak{gl}_n) \ \mathbf{K}_n^{BC} &\simeq \mathbf{U}_n^i, \mathbf{U}_n^j \ \end{array}$	
Finite B/C	$\mathbf{K}_n^{BC} \simeq \mathbf{U}_n^{\imath}, \mathbf{U}_n^{\jmath}$	
Affine A	$\mathbf{U}_q(\widehat{\mathfrak{gl}}_n)$	
Affine C	$\mathbf{K}_n^{\widehat{C}}$ (four variants)	

Proposition

The pairs $(\mathbf{U}(\mathfrak{gl}_n), \mathbf{U}_n^i), (\mathbf{U}(\mathfrak{gl}_n), \mathbf{U}_n^j)$ and all four variants of $(\mathbf{U}(\widehat{\mathfrak{gl}}_n), \mathbf{K}_n^{\widehat{\mathsf{C}}})$ are quantum symmetric pairs.

Applications and future work

- A canonical basis theory for QSP of Satake diagrams finite type is developed recently by Bao-Wang ('16). It may lead to similar application as in $(\mathbf{U}(\mathfrak{gl}_n), \mathbf{K}_n^{\mathsf{X}})$ with further study
- ? canonical basis theory for affine QSP
- ? BLM construction from $\{\mathbf{S}_{n,d}^{\mathsf{X}}\}$ when X is of affine B/D, finite and affine exceptional type
- ? BLM-type construction for other Schur-type dualities (e.g., for Brauer algebras, partition algebras)
- ? BLM-type construction for Howe duality

Thank you for your attention