

Auteur : Sébastien Inion

https://github.com/SebInfo/AlgoStudi02

UN EXEMPLE COMPLET

- Pour un réel x et un entier $n \ge 1$, on veut calculer x^n
- Pour cela on va
 - proposer plusieurs algorithmes et les analyser :
 - démontrer leur validité,
 - estimer leur complexité
 (= temps et espace mémoire nécessaires au déroulement du programme)
 - voir une implémentation possible

UNE POSSIBILITÉ

- On peut faire des multiplications successives dans un tableau.
- Voici une proposition d'Algorithme

UNE POSSIBILITÉ

```
ALGOTABLEAU (x, n)

T un tableau de taille n;

T[0] \longleftarrow x;

pour tous les i de 1 a n-1 faire
```

$$T[i] \longleftarrow x * T[i-1];$$

retourner T[n-1];

SI ON EXÉCUTE CET ALGO AVEC LES VALEURS 3 ET 5

Un petit exemple:

On effectue l'appel AlgoTableau (3,5):

- Initialisation de	T	:	T=	3				
---------------------	---	---	----	---	--	--	--	--

- Étape
$$i = 1$$
: $T = \boxed{3 \mid 9 \mid}$

- Étape
$$i = 2$$
: $T = \begin{bmatrix} 3 & 9 & 27 \end{bmatrix}$

- Étape
$$i = 3$$
: $T = \boxed{3 \mid 9 \mid 27 \mid 81}$

- Étape
$$i = 4$$
: $T = \begin{bmatrix} 3 & 9 & 27 & 81 & 243 \end{bmatrix}$

- L'algo retourne 243

IMPLEMENTATION EN PYTHON DE L'ALGO

```
def AlgoTableau(x,n):
    tab = []
    tab.append(x);
    for i in range(1,n):
        tab.append(x*tab[i-1])
    return tab[n-1]
print (AlgoTableau(2,3))
```

LE PROBLÈME DE LA TERMINAISON

- Avant de passer à l'implémentation (passage au code pour nous Python) on doit **prouver** que l'algorithme s'arrête!
- On peut parfois avoir des boucles non bornées (tant que (while en Python) ou de la récursivité non bornée. Cela provoque des boucles infinies.
- La terminaison n'est pas synonyme de validité!
- Ici on a une boucle Pour donc la terminaison est évidente: i est automatiquement incrémenté de
 1.

Donc i va converger vers n-1. On rappelle que $n \ge 1$.

Dans le cas ou n=1 on a une boucle de 1 à 0 et donc on ne rentre pas dans le Pour -> l'algo retourne T[n-1]. En effet ici n indique le nombre de fois qu'on doit le faire donc si c'est 0 -> on ne fait pas.

- Quand on a une boucle Pour la preuve n'est pas nécessaire!
- C'est pour les boucle while qu'il faudra prouver qu'un moment la condition passe à FALSE.

LE PROBLÈME DE LA COMPLEXITÉ EN ESPACE

- La complexité peut se mesurer en terme d'espace : combien de variables ? quel place ? (en octets)
- lci on simplifie ne parlant de case mémoire. La complexité sert à comparer les algorithmes entre eux et non pas à obtenir des informations précises. On veut donc un ordre de grandeur.
 - ▶ Récupération des paramètres : x et n -> 2 cases mémoire
 - Déclaration de T (tableau) -> n cases mémoire
 - Déclaration de i -> 1 case mémoire
- On a donc n + 3 cases mémoires -> O(n) (de l'ordre de n)

LE PROBLÈME DE LA COMPLEXITÉ EN TEMPS

- Don parle de complexité en temps mais comme les machines calculent avec des vitesses différentes on va s'intéresser au nombre d'opérations élémentaires.
- En dehors du Pour on a : 5 opérations
 - Récupération des paramètres -> 2 opérations
 - Déclaration de T -> 1 opération
 - Affectation T[0] 1 opération
 - retourner T[n-1] 1 opération
- Dans le Pour on a : 4 opérations mais fait n-1 fois donc (n-1)*4=4n-4 opérations
 - récupération de T[i-1] -> 1 opération
 - incrémentation de i (fait automatiquement par le Pour) -> 1 opération
 - multiplication -> 1 opération
 - Affectation à T[i] -> 1 opération
- Total 5 + 4n 4 = 4n + 1 -> O(n) (De l'ordre de n)

TRI A BULLES...

PRINCIPE

- Le tri à bulles est un algorithme qui consiste à comparer répétitivement les éléments consécutifs d'un tableau, et à les permuter lorsqu'ils sont mal triés.
- Il doit son nom au fait qu'il déplace les plus grands éléments en fin de tableau, comme des bulles d'air qui remonteraient rapidement à la surface d'un liquide.
- Voir demo: http://lwh.free.fr/pages/algo/tri/tri_bulle.html

CODE PYTHON

ETUDE DE LA COMPLEXITÉ

- Si l'on veut étudier la complexité de notre tri à bulles (on suppose ici en nbr d'opérations). On voit rapidement qu'on a deux boucles qui parcourent le tableau donc intuitivement n²
- Dans le meilleur des cas l'algorithme fera n-1 comparaisons et aucune permutation. On a une complexité de O(n)
- ▶ Donc dans la pire des cas le tableau est trié dans le sens inverse on $\Theta(n^2)$
 - ▶ En effet deux boucle (n x n n) / 2 = $(n^2$ -n)/2
- ▶ Dans un cas moyen on a $(n^2$ -n) / 4 (on considère la moitié trié) on a aussi $\Theta(n^2)$.

ETUDE DE LA COMPLEXITÉ

ETUDE DE LA COMPLEXITÉ

Il s'agit d'une grandeur asymptotique.

EXERCICES

- Calculer la complexité des trois algorithmes de tri :
 - Tri à bulles
 - Tri par sélections
 - Tri par insertions
- Modifier le code des trois fonctions pour que ça retourne le nombre d'opérations (comparaisons et permutations)
- Vérifiez que la pratique rejoint la théorie ;)

MERCI POUR VOTRE ATTENTION