Banc Balafre ★

C2-08

Pas de corrigé pour cet exercice.

Données et hypohèses

- ► On note $\overrightarrow{BM} = z\overrightarrow{z_0} + R_I\overrightarrow{u}(\theta)$ où R_I est le rayon du joint avec $R_I = 175$ mm;
- ▶ la longueur du joint est $L_J = 150$ mm. La position du point B, centre du joint est $\overrightarrow{OB} = z_B \overrightarrow{z_0}$ avec $z_B = 425$ mm;
- ► Le coeur de butée a une masse $M_{CB} = 40 \text{ kg}$ et la position de son centre d'inertie G_{CB} est paramétrée par $\overrightarrow{OG_{CB}} = L_{CB} \overrightarrow{z_0}$ avec $L_{CB} = 193 \text{ mm}$;
- L'ensemble $JR = \{\text{Joint(rotor)} + \text{Butée double}\}\$ a une masse $M_{JR} = 100 \, \text{kg}$ et la position de son centre d'inertie G_{JR} est paramétrée par $\overrightarrow{OG_{JR}} = L_{JR} \overrightarrow{z_0}$ avec $L_{JR} = 390 \, \text{mm}$. On notera $I_{G_{JR}}(JR) = \begin{pmatrix} A_{JR} & -F_{JR} & -E_{JR} \\ -F_{JR} & B_{JR} & -D_{JR} \\ -E_{JR} & -D_{JR} & C_{JR} \end{pmatrix}$ la matrice d'inertie de \mathcal{G}_{JR}

l'ensemble JR au point G_{JR} exprimée dans une base $\mathfrak{B}_{JR} = \left(\overrightarrow{x_{JR}}, \overrightarrow{y_{JR}}, \overrightarrow{z_0}\right)$ liée à IR:

Les positions des points A_4 et A_8 sont paramétrées par $\overrightarrow{OA_4} = z_4 \overrightarrow{z_0} - R_{CB} \overrightarrow{y_0}$ et $\overrightarrow{OA_8} = -R_{CB} \overrightarrow{y_0}$ avec $z_4 = 280$ mm et $R_{CB} = 150$ mm.

Pour simplifier l'étude, on s'intéresse au mouvement généré uniquement dans le plan $(y_0, \overline{z_0})$, lorsque les actionneurs 4 et 8 sont commandés en phase, et en opposition de phase avec les actionneurs 2 et 6. Pendant ce mouvement, les actionneurs 1, 3, 5 et 7 sont laissés libres. On considérera donc qu'ils n'ont aucune action sur le coeur de butée.

Question 1 Décrire la nature du mouvement obtenu pour le coeur de butée CB par rapport au bâti 0 dans ces conditions.

Les actionneurs sont utilisés uniquement pendant les phases de mesure. L'ensemble JR a donc un mouvement de rotation uniforme par rapport au coeur de butée. On donne les torseurs cinématiques (exprimés dans le repère lié au bâti $(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$):

$$\{\mathcal{V}(JR/CB)\} = \left\{\begin{array}{c} \overrightarrow{\Omega(JR/CB)} = \Omega \overrightarrow{z_0} \\ \overrightarrow{0} \end{array}\right\}_{G_{JR}} \text{avec}\,\Omega\,\text{constante.}\, \{\mathcal{V}(CB/0)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ v(t)\overrightarrow{y_0} \end{array}\right\}_{G_{CB}}.$$

La fonction v(t) représente la vitesse de translation du coeur de butée par rapport au bâti. On peut donc relier v(t) aux déplacements $y(t) = y_4(t) = y_8(t)$ provoqués en A_4 et A_8 par les actionneurs 4 et 8. On isole l'ensemble $S=\{JR+CB\}$ afin de quantifier les efforts dans les actionneurs.

On considérera l'expression suivante pour le torseur dynamique de S par rapport à 0:

$$\{\mathfrak{D}(S/0)\} = \left\{\begin{array}{c} M \dot{v} \overrightarrow{y_0} \\ \overrightarrow{0} \end{array}\right\} \text{ où } M = 140 \text{ kg.}$$

Question 2 Exprimer le torseur $\{T_{V \to CB}\}$ (actionneurs 2 et 4 sur CB) au point A_4 en fonction de FV et le torseur $\{T_{R \to CB}\}$ (actionneurs 6 et 8 sur CB) au point A_8 en fonction de F_R .

$$\begin{aligned} \textbf{Question 3} & \text{ En expliquant clairement chaque \'etape de la d\'emarche utilis\'ee, montrer} \\ \text{que} : \left\{ \begin{array}{l} F_V = M \frac{z_G}{z_4} \dot{v}(t) + 2p(t) R_J L_J \frac{z_B}{z_4} \\ F_R = M \left(1 - \frac{z_G}{z_4}\right) \dot{v}(t) + 2p(t) R_J L_J \left(1 - \frac{z_B}{z_4}\right) \end{array} \right. \end{aligned}$$

Question 4 En utilisant le résultat de la question précédente, déterminer les acctionneurs les plus sollicités par le mouvement en phase : actionneurs du plan avant (2 et 4) ou du plan arrière (6 et 8).

