Министерство образования и науки РФ Новосибирский Государственный Технический Университет Кафедра ПМт

Лабораторная работа №2

«Двойственная процедура планирования»

по курсу «Математические методы планирования эксперимента»

 Φ акультет: ПМИ Γ руппа: ПММ-81

Студенты: Михайлов А.А., Санина А.А.

Преподаватели: Черникова О.С.,

Чубич В.М.

1. Условие задачи

Построить и исследовать метод двойственной процедуры планирования для непрерывного D-оптимального плана.

2. Ход работы:

2.1. Постановка задачи

Пусть ν — возможное количество запусков системы, причём сигнал α_1 подаётся на вход системы k_1 раз, сигнал α_2-k_2 раз и т.д., сигнал α_q-q раз.

Под μ епрерывным μ ермированным μ еловимся понимать совокупность величин

$$\xi = \begin{pmatrix} \alpha_1, & \alpha_2, & \dots, & \alpha_q \\ p_1, & p_2, & \dots, & p_q \end{pmatrix}, \ p_i \ge 0, \ \sum_{i=1}^q p_i = 1, \ \alpha_i \in \Omega_\alpha, \ i = \overline{1, q}.$$
 (1)

В общем случае непрерывный нормированный план ξ соответствует вероятностной мере ξ ($d\alpha$), заданной на области Ω_{α} и удовлетворяющей условиям неотрицательности и нормировки:

$$\int_{\Omega} \xi(d\alpha) = 1, \ \xi(d\alpha) \ge 0, \ \alpha \in \Omega_{\alpha}.$$
 (2)

При этом нормированная информационная матрица плана определяется соотношением

$$M(\xi) = \int_{\Omega_{\alpha}} M(\alpha) \, \xi(d\alpha) \,. \tag{3}$$

Для плана (1) интеграл в (3) переходит в сумму, т.е.

$$M(\xi) = \sum_{i=1}^{q} p_i M(\alpha_i), \qquad (4)$$

где $M(\alpha_i)$ — информационные матрицы точек спектра плана. Планирование оптимальных экспериментов опирается на критерии оптимальности планов.

2.2. Двойственный алгоритм синтеза оптимальных входных сигналов

- 1) Зададим начальный невырожденный план ξ_0 и по формуле (4) вычислим нормированную матрицу $M\left(\xi_0\right)$ плана. Положим l=0.
- 2) Найдём локальный максимум

$$\alpha^{l} = \arg\max_{\alpha \in \Omega_{\alpha}} \mu(\alpha, \xi_{l})$$

методом проектирования градиента. Если окажется, что

$$\left|\mu\left(\alpha^{l},\,\xi_{l}\right)-\eta\right|\leq\delta,$$

закончим процесс.

Если

$$\mu\left(\alpha^{l},\,\xi_{l}\right) > \eta,$$

перейдём к шагу 3. В противном случае будем искать новый локальный максимум.

3) Вычислим τ_l по формуле

$$\tau_{l} = \arg \min_{0 \leq \tau \leq l} X \left[M \left(\xi_{l+1}^{\tau} \right) \right],$$

$$\xi_{l+1}^{\tau} = (1 - \tau) \xi_{l} + \tau_{l} \xi \left(\alpha^{l} \right),$$

где $\xi\left(\alpha^{l}\right)$ одноточечный план, размещённый в точке α^{l} .

4) Составим план

$$\xi_{l+1} = (1 - \tau_l) \, \xi_l + \tau_l \xi \left(\alpha^l \right),$$

произведём его "очистку", положим l=l+1 и перейдём на шаг 2.

Приведённый алгоритм построения оптимальных сигналов требует вычисления градиента $\nabla_{\alpha}\mu(\alpha,\xi)$.

Соответствие значений параметров $X[M(\xi)], \mu(\alpha, \xi), \eta$ прямой процедуры критерию D-оптимальности указано в табл. 1.

Таблица 1. Параметры критерий *D*-оптимального плана

$X\left[M\left(\xi\right)\right]$	$\mu\left(\alpha,\xi\right)$	η
$-\ln\det\left(M\left(\xi\right)\right)$	$Sp\left[M^{-1}\left(\xi\right)M\left(\alpha\right)\right]$	s

2.3. Алгоритм "очистки" плана

Пусть в результате работы алгоритма построен план ξ_l , который может быть сколь угодно близок к оптимальному плану ξ^* , но все же отличаться от него (мы можем сделать большое, но конечное число итераций). Это отличие будет заключаться в том, что

- 1) $\left\|\alpha_{j}^{*}-\alpha_{j}^{l}\right\|^{2}=\mu_{j},\ j=\overline{1,\ q},$ где μ_{j} малые положительные числа, $\|ullet\|$ евклидова норма;
- 2) $\left| p_{j}^{*} p_{j}^{l} \right| = \pi_{j}$, где π малые положительные числа;
- 3) план ξ_l по сравнению с планом ξ^* имеет "посторонние" точки $\alpha_{n+1}^l,\,\alpha_{n+2}^l,\,\ldots,\,\alpha_{n+v}^l$ с малыми весами $\tau \geq p_{n+1}^l \geq p_{n+2}^l \geq \ldots \geq p_{n+v}^l;$
- 4) вместо одной точки α_j^l , близкой к α_j^* , имеется набор точек $\alpha_{j_1}^l$, $\alpha_{j_2}^l$, . . . , $\alpha_{j_l}^l$, каждая из которых близка к α_j^* :

$$\left\|\alpha_{i}^{*}-\alpha_{i_{k}}^{l}\right\|^{2} \leq \mu_{i}, \ k=\overline{1, m},$$

и их суммарный вес близок к p_i^* :

$$\left| p_j^* - \sum_{k=1}^m p_{j_k}^l \right| = \pi_j.$$

Так как планы с большим числом точек нежелательны, то необходимо производить процедуру "очистки" плана, которая состоит из следующих шагов:

- 1) Точки с малыми весами, не тяготеющие ни к одной из групп, указанных в п. 4, выбрасываются. Их веса перераспределяются между оставшимися точками.
- 2) Точки, тяготеющие к одной из групп, объединяются по правилу

$$p_j^l = \sum_{k=1}^m p_{j_k}^l, \quad \alpha_j^l = 1/p_j^l \sum_{k=1}^m x_{j_k}^l p_{j_k}^l.$$

2.4. Алгоритм "округления" непрерывного плана до точного

1) Вычислим числа $\sigma_{i}^{'}$ и $\sigma_{i}^{''}$ по формулам

$$\sigma_{i}^{'} = \left\lceil \left(v-q\right)p_{i}^{*}\right\rceil; \quad \sigma_{i}^{''} = \left\lfloor vp_{i}^{*}\right\rfloor, \ i = \overline{1, \, q}.$$

Здесь

- [z] ближайшее к z целое число, большее z;
- |z| целая часть числа z.
- 2) Вычислим v' и $v^{''}$, воспользовавшись выражениями

$$v^{'} = v - \sum_{i=1}^{q} \sigma_{i}^{'}; \quad v^{''} = v - \sum_{i=1}^{q} \sigma_{i}^{''}.$$

При этом если $v^{'} < v^{''}$, то $\sigma_i = \sigma_i^{'}$ для $i = \overline{1, q}$ и $v_l = v^{'}$. В противном случае $\sigma_i = \sigma_i^{''}$, $v_l = v^{''}$.

- 3) Величины $vp_i^* \sigma_i \ \left(i = \overline{1,\,q}\right)$ расположим в порядке убывания их значений. Положим j=1.
- 4) Если $vp_j^* \sigma_j$ стоит на одном из первых v_l мест в указанном упорядоченном наборе, то положим $s_j = 1$ в противном случае $s_j = 0$.
- 5) Если j < q, увеличим j на единицу перейдём на шаг 4. В противном случае сформируем приближенный дискретный план

$$\xi_v^* = \left(\begin{array}{ccc} \alpha_1^*, & \alpha_2^*, & \dots, & \alpha_q^* \\ \frac{\sigma_1 + s_1}{v}, & \frac{\sigma_2 + s_2}{v}, & \dots, & \frac{\sigma_q + s_q}{v} \end{array}\right).$$

2.5. Текст программы на языке Python

2.6. Результат работы программы

Тут приводили $X\left[M\left(\xi_{0}\right)\right],\ X\left[M\left(\xi_{0}\right)\right],\ l,\ q,$ полученный план ($\alpha_{1},\ \alpha_{2},\ p$).

3. Вывод

В ходе лабораторной работы было проведено исследование двойственной процедуры планирования для непрерывного D-оптимального плана.