Nanophotonic Computational Design

Jesse Lu

February 25, 2013

Takeaway: Taught a computer to design nanophotonic devices

- full 3D
- multi-mode
- manufacturable (mostly)

Part 1: Motivation

- As information grows, optical networks needed
 - across continents
 - within a datacenter
 - between chips and on-chip

• An on-chip optical network is a fundamentally new optical communications technology: the integrated optical circuit

- Miniaturization drives
 - component price down
 - functionality up
 - design complexity (way) up

- Increasing design complexity requires additional degrees of freedom
- Fortunately, we have a virtually unlimited amount

 $\bullet\,$ Include/exclude per pixel gives us $2^{(15^2)}=2^{225}$ possibilities, uncountable

• Only feasible solution: Humans describe, Computers design

```
device mux2
   in: {freq1, freq2}
   out1 <= freq1
   out2 <= freq2</pre>
```


Part 2: Theory

• First, cast electromagnetic wave equation into linear algebra terms

$$(\nabla \times \mu_0^{-1} \nabla \times -\omega^2 \epsilon) E + i\omega J = 0 \longrightarrow A(z) x - b = 0$$

where

$$E \to x$$

$$\epsilon \to z$$

$$\nabla \times \mu_0^{-1} \nabla \times -\omega^2 \epsilon \to A(z)$$

$$-i\omega J \to b$$

• A(z)x - b is called the *physics residual*

Secondly, formulate our optimization objective

$$f(x) = (\alpha - |c^{\dagger}x|)^2$$

- ullet $c^{\dagger}x$ is equivalent to overlap integral $\int E_t^*E$
- To design linear devices, objective chosen to be overlap integral with target field at output port
- f(x) is called the *field design objective*

• Typically,

$$\begin{array}{ll} \mbox{minimize} & (\alpha - |c^\dagger x|)^2 \\ \mbox{subject to} & A(z)x - b = 0 \end{array}$$

• Efficient algorithm known as the adjoint method

• Our alternative formulation, known as *objective-first*

minimize
$$\|A(z)x-b\|^2$$
 subject to $|c^{\dagger}x|=\alpha$

 Perfect performance always enforced, even at the expense of breaking physical laws • Results in *soft-physics* solves

• Key insight: soft-physics solution suggests optimal structure

minimize
$$\|A(z)x - b\|^2$$
 subject to $|c^{\dagger}x| = \alpha$

- ullet Could be solved by iteratively solving for x and z
 - Known as alternating directions
 - Takes advantage of bi-linearity of the physics residual,

$$A(z)x - b = B(x)z - d(x)$$

- Alternating directions method of multipliers (ADMM)¹ gives much faster convergence
 - Due to introduction of dual variable

¹S. Boyd et al, Foundations and Trends in Machine Learning (2011)

- Full problem is multi-mode and multi-output
- Objective-first formulation:

minimize
$$\sum_i^M \|A_i(z)x_i-b_i\|^2$$
 subject to $\alpha_{ij}\leq |c_{ij}^\dagger x_i|\leq \beta_{ij},$ for $i=1,\ldots,M$ and $j=1,\ldots,N_i$

Adjoint method formulation:

minimize
$$\sum_{ij}^{M,N_i} \max\{\alpha_{ij} - |c_{ij}^\dagger x_i|, |c_{ij}^\dagger x_i| - \beta_{ij}, 0\}$$
 subject to $A_i(z)x_i - b_i = 0$, for $i = 1, \dots, M$

Part 3: Implementation

- Both objective-first and adjoint methods implemented in Matlab: github.com/JesseLu/lumos
- ullet In both cases, solving for $A_i(z) \in \mathbf{C}^{\mathrm{millions} imes \mathrm{millions}}$ dominates computation
 - $A_i(z)^{-1}$ solved iteratively²
 - Accelerated on GPUs and brought to scale in the cloud (EC2)
 - Allows for arbitrarily large number of modes without sacrificing runtime (in theory)

²W. Shin, J. of Computational Physics, (2012)

• Design phase I: Objective-first method with density parameterization

• Design phase II: Adjoint method with boundary parameterization

• Verification with larger simulation

Part 4: Results