AttritionAssignmentSolution

Step1 - Launching import pandas as pd

```
import numpy as np
import matplotlib.pyplot as plt
dataset1=pd.read csv('l.csv')
dataset1.head()
Out[41]:
Age Attrition ... YearsSinceLastPromotion
YearsWithCurrManager
0 51 No ... 0 0
1 31 Yes ... 1 4
2 32 No ... 0 3
3 38 No ... 7 5
4 32 No ... 0 4
[5 rows x 24 columns]
dataset1.columns
Out[7]:
Index(['Age', 'Attrition', 'BusinessTravel',
'Department', 'DistanceFromHome',
       'Education', 'EducationField',
'EmployeeCount', 'EmployeeID', 'Gender',
       'JobLevel', 'JobRole', 'MaritalStatus',
'MonthlyIncome',
```

```
'NumCompaniesWorked', 'Over18',
'PercentSalaryHike', 'StandardHours',
       'StockOptionLevel', 'TotalWorkingYears',
'TrainingTimesLastYear',
       'YearsAtCompany', 'YearsSinceLastPromotion',
'YearsWithCurrManager'],
      dtype='object')
Step 2 - Data Treatment:
dataset1.isnull()
Out[47]:
Age Attrition ... YearsSinceLastPromotion
YearsWithCurrManager
0 False False ... False False
1 False False ... False False
2 False False ... False False
3 False False ... False False
4 False False ... False False
 4405 False False ... False False
4406 False False ... False False
4407 False False ... False False
4408 False False ... False False
4409 False False ... False False
[4410 rows x 24 columns]
dataset1.duplicated()
Out[50]:
```

```
0 False
1 False
2 False
3 False
4 False
4405 True
4406 True
4407 True
4408 True
4409 False
Length: 4410, dtype: bool
dataset1.drop_duplicates()
Out[53]:
Age Attrition ... YearsSinceLastPromotion
YearsWithCurrManager
0 51 No ... 0 0
1 31 Yes ... 1 4
2 32 No ... 0 3
3 38 No ... 7 5
4 32 No ... 0 4
3818 28 Yes ... 0 0
3910 41 No ... 1 2
4226 36 No ... 0 0
4395 40 No ... 4 7
```

```
4409 40 No ... 3 9
[4410 rows x 24 columns]
Step 3 - Univariate Analysis:
dataset3=dataset1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked',
'PercentSalaryHike','TotalWorkingYears',
'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion',
'YearsWithCurrManager']].describe()
```

Dataset3

Index	Age	DistanceFromHome	Education	Monthlylncome	NumCompaniesWorked	PercentSalaryHike	TotalWorkingYears	TrainingTimesLastYear	YearsAtCompany	YearsSinceLastPromotion	YearsWithCurrManager
count	4410	4410	4410	4410	4391	4410	4401	4410	4410	4410	4410
mean	36	9.19252	2.91293	65029.3	2.69483	15.2095	11.2799	2.79932	7.00816	2.18776	4.12313
std	9.1	8.10503	1.02393	47068.9	2.49889	3.65911	7.78222	1.28898	6.12514	3.2217	3.56733
min	18	1	1	10090	0	11	0	0	0	0	0
25%	30	2	2	29110	1	12	6	2	3	0	2
50%	36		3	49190	2	14	10		5	1	3
75%	43	14	4	83800	4	18	15		9		
max	60	29	5	199990	9	25	40		40	15	17

```
dataset3=dataset1[['Age','DistanceFromHome','Educat
ion','MonthlyIncome', 'NumCompaniesWorked',
'PercentSalaryHike','TotalWorkingYears',
'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion',
'YearsWithCurrManager']].median()
Dataset3
Out[67]:
Age 36.0
```

Education 3.0

MonthlyIncome 49190.0

DistanceFromHome 7.0

```
NumCompaniesWorked 2.0
PercentSalaryHike 14.0
TotalWorkingYears 10.0
TrainingTimesLastYear 3.0
YearsAtCompany 5.0
YearsSinceLastPromotion 1.0
YearsWithCurrManager 3.0
dtype: float64
dataset3=dataset1[['Age','DistanceFromHome','Educat
ion','MonthlyIncome', 'NumCompaniesWorked',
'PercentSalaryHike', 'TotalWorkingYears',
'TrainingTimesLastYear',
'YearsAtCompany', 'YearsSinceLastPromotion',
'YearsWithCurrManager']].mode()
dataset3
Out[69]:
Age 35
DistanceFromHome 2
Education 3
MonthlyIncome 23420
NumCompaniesWorked 1
PercentSalaryHike 11
TotalWorkingYears 10
TrainingTimesLastYear 2
YearsAtCompany 5.0
YearsSinceLastPromotion 0
```

YearsWithCurrManager 2

dtype: float64

dataset3=dataset1[['Age','DistanceFromHome','Educat ion','MonthlyIncome', 'NumCompaniesWorked',

- 'PercentSalaryHike','TotalWorkingYears',
- 'TrainingTimesLastYear',
- 'YearsAtCompany', 'YearsSinceLastPromotion',
- 'YearsWithCurrManager']].var()

dataset3

dataset3=dataset1[['Age','DistanceFromHome','Educat ion','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',

'YearsAtCompany','YearsSinceLastPromotion',

'YearsWithCurrManager']].skew()

Dataset3


```
dataset3=dataset1[['Age','DistanceFromHome','Educat
ion','MonthlyIncome', 'NumCompaniesWorked',
'PercentSalaryHike','TotalWorkingYears',
'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion',
'YearsWithCurrManager']].kurt()
```

Dataset3

	Mean	Median	Mode	Variance	Std Deviation	IQR	Skewness	Kurtosis
Mean Age (Yrs)	36	36	35	83.14	9.1	13	0.418	-0.4
Mean Distance from Home (Kms)	9	7	2	65.69	8.1	2	0.957	-0.22
Mean Monthly Income (Rs)	65000	49190	23420	2215480000	47068	54000	1.36	1
Mean Work Experience (Yrs)	11.29	10	10	60	7.72	9	1.11	0.91
Mean Years at Company (Yrs)	7	5	5	37.51	6.12	6	1.76	3.92
Mean Years since last promotion (Yrs)	2	1	0	10.37	3.22	3	1.98	3.6
Mean Years with Current Manager (Yrs)	4	3	2	12.72	3.56	5	0.83	0.16

Inference from the analysis:

② All the above variables show positive skewness;
while Age & Mean_distance_from_home are leptokurtic
and all other variables are platykurtic.

- ☑ The Mean_Monthly_Income's IQR is at 54K suggesting company wide attrition across all income bands

Outliers:

There's no regression found while plotting Age, MonthlyIncome, TotalWorkingYears, YearsAtCompany, etc., on a scatter plot

box_plot=dataset1.Age

plt.boxplot(box_plot)

Out[23]:

Age is normally distributed without any outliers box_plot=dataset1.MonthlyIncome plt.boxplot(box_plot)

Monthly Income is Right skewed with several outliers

box_plot=dataset1.YearsAtCompany
plt.boxplot(box_plot)

Years at company is also Right Skewed with several outliers observed.