European Control Conference 2020 (ECC'20) May 12-15, 2020

On the controllability of activated sludge plants

Otacílio B. L. Neto¹, Michela Mulas¹ and Francesco Corona^{1,2}

¹ Postgraduate Programme in Teleinformatics Engineering, Federal University of Ceará, Campus do Pici, Fortaleza-CE, Brazil

² School of Chemical Engineering, Department of Chemical and Metallurgical Engineering, Aalto University, Finland

Neto, O., Mulas, M. an Corona, F.

Intro

Activated Sludge Process

Structural controllability

Classical controllability

Observability analys Structural observability Classical observability

Outro

Introduction and motivation

Control and Estimation for Wastewater Treatment Plants (WWTP)

- ▶ Objective: Sustainable reuse of wastewater
 - \rightarrow A treatment-reclamation system for agricultural purposes

Motivation

Is it possible to operate the treatment plant to produce reusable wastewater of a specified quality, on demand?

Neto, O., Mulas, M. and Corona, F.

Intro

Activated Slud

Controllability analys Structural controllability Classical controllability

Observability analy Structural observability Classical observability

. .

Activated Sludge Process, description

For the task, we considered a conventional Activated Sludge Process (ASP)

► The Benchmark Simulation Model no. 1 (BSM1)^[1]

Plant layout

- → 5 sequential bio-reactors (Activated Sludge Model no. 1)
- A non-reactive settler (10-layers double-exponential settling model)

Gernaey, K., Jeppsson, U., Vanrolleghem, P., Copp, J., 2014. Benchmarking of Control Strategies for Wastewater Treatment Plants. IWA.

System-oriented description of the process

Reactor
$$(k = 1, \dots, 5)$$

State variables

$$\rightarrow x^{A(k)} \in \mathbb{R}^{13}$$

Input variables

$$\stackrel{\text{distributes}}{\leadsto} u^{A(k)} = \begin{bmatrix} K_L a^{(k)} & Q_{EC}^{(k)} \end{bmatrix} \quad \stackrel{\text{distributes}}{\leadsto} \begin{bmatrix} Q_A \end{bmatrix}$$

$$\rightarrow$$
 $d^{A(1)} = [Q_{IN} \ x^{A(IN)}]$

Measurement variables

$$\leadsto y^{A(k)} = \left[S_O^{A(k)} \ S_{NO}^{A(k)}\right]$$

$$x^{S(m)} \in \mathbb{R}^8_{\geq 0}$$

Input variables

$$\leadsto [Q_R \ Q_W]$$

Measurement variables

Neto, O., Mulas, M. and Corona, F.

Intro

Activated Sludg Process

Controllability analys Structural controllability Classical controllability

Observability analyst Structural observability Classical observability

Jutro

State-space representation of the process

$$\begin{aligned} & \qquad \qquad x(t) = [x^{A(1)} \cdots x^{A(5)} \ x^{S(1)} \cdots x^{S(10)}]^T \\ & \qquad \qquad u(t) = [Q_A \ Q_R \ Q_W \ u^{A(1)} \cdots u^{A(5)}]^T \\ & \qquad \qquad y(t) = [y^{A(1)} \cdots y^{A(5)} \ y^{S(10)}]^T \\ & \qquad \qquad y(t) = [d^{A(1)}]^T \\ & \qquad \qquad \forall \{\theta_x, \theta_y\} \text{: Model parameters} \end{aligned}$$

- ► An "expansion" of the state-vector compared to common representations
- ▶ All possible control and sensors that do not require changes in the plant layout

$$N_x = 5 \times 13 + 10 \times 8$$
 $N_u = 3 + 5 \times 2$ $N_y = 5 \times 2 + 5$ $N_y = 145 \text{ state variables}$ $N_y = 13 \text{ controls}$ $N_y = 15 \text{ sensors}$

We try to address our initial question by studying two properties of this model

Full-state Controllability

Can we manipulate u(t) to steer the state-vector x(t) to a desired value?

${\bf Full\text{-}state\ Observability}$

Can we reconstruct the state-vector x(t) from measurements y(t)?

Controllability analysis

A system is controllable if there exists a control u(t) transferring initial state $x(0) = x_0$ to any final state $x(t_f) = x_{t_f}$, for $0 < t_f < \infty$.

Kalman's Controllability Test

Given a linear(-ised) system (A, B) and matrix $\mathcal{C} = [B \ AB \ A^2B \cdots A^{N_x-1}B]$

$$\rightarrow$$
 (A,B) is controllable \Leftrightarrow rank $(C) = N_x$

Advantages

- ► A direct test when state-space is low-dimensional
- Allows for a direct definition of
 - → Controllable subspace
 - → Uncontrollable subspace

Disadvantages

- ▶ Becomes ill-posed when state-space is high-dimensional
- Requires a specific linearisation

(We should consider an alternative approach...)

Jutro

Structural controllability, definition

The system $\dot{x}(t) = f(\cdot|\theta_x)$, with $y(t) = g(\cdot|\theta_y)$, from a structural perspective

$$A_{i,j} = \frac{\partial f_i}{\partial x_j} \begin{cases} \neq 0 & (x_j \text{ affects } x_i) \\ = 0 & \text{o/w} \end{cases} \\ B_{i,k} = \frac{\partial f_i}{\partial u_k} \begin{cases} \neq 0 & (u_k \text{ affects } x_i) \\ = 0 & \text{o/w} \end{cases} \\ C_{k,j} = \frac{\partial g_k}{\partial x_j} \begin{cases} \neq 0 & (x_j \text{ affects } y_k) \\ = 0 & \text{o/w} \end{cases}$$

This structural system describes a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

$$\begin{split} \mathcal{V} &= \mathcal{V}_A \cup \mathcal{V}_B \cup \mathcal{V}_C \\ &= \{x_1, \cdots, x_{N_x}\} \cup \{u_1, \cdots, u_{N_u}\} \\ &\quad \cup \{\textbf{y}_1, \cdots, \textbf{y}_{N_y}\} \end{split} \qquad \begin{aligned} \mathcal{E} &= \mathcal{E}_A \cup \mathcal{E}_B \cup \mathcal{E}_C \\ &= \{(x_j, x_i) | A_{i,j} \neq 0\} \cup \{(u_k, x_i) | B_{i,k} \neq 0\} \\ &\quad \cup \{(x_j, \textbf{y}_k) | C_{\textbf{k}, j} \neq 0\} \end{aligned}$$

Structural Controllability

The pair (A, B) with network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is structurally controllable IFF

▶ Any realisation of A and B results in a controllable system (classical sense)

Conditions for Structural Controllability

→ Accessibility

There exists at least one path starting from any $u_k \in \mathcal{V}_B$ to each $x_i \in \mathcal{V}_A$

→ Dilation-free

For every $S \subseteq \mathcal{V}_A$, $|T(S)| \ge |S|$, where T(S) is the neighborhood set of S

Neto, O., Mulas, M. an Corona, F.

Intr

Activated Sludge Process

Structural controllability

Classical controllability

Observability analysis

0...

BSM1 - Structural representation

We analyse the structural controllability of the BSM1 given the network $\mathcal{G}_{\mathcal{C}} = (\mathcal{V}_{\mathcal{C}}, \mathcal{E}_{\mathcal{C}})$

$$\mathcal{V}_{\mathcal{C}} = \mathcal{V}_{A} \cup \mathcal{V}_{B} = \{x_{1}, \cdots, x_{145}\} \cup \{u_{1}, \cdots, u_{13}\}$$

$$\mathcal{E}_{\mathcal{C}} = \mathcal{E}_{A} \cup \mathcal{E}_{B} = \{(x_{j}, x_{i}) | A_{i,j} \neq 0\} \cup \{(u_{k}, x_{i}) | B_{i,k} \neq 0\}$$

$$A = \partial f / \partial x \quad (A \in \mathbb{R}^{145 \times 145})$$

$$B = \partial f / \partial u \quad (B \in \mathbb{R}^{145 \times 13})$$

→ Self-loops are not shown

 \triangleright Structural pair (A, B)

 \leadsto Colored according to $\mathcal{G}_{\mathcal{C}} = (\mathcal{V}_{\mathcal{C}}, \mathcal{E}_{\mathcal{C}})$

Neto, O., Mulas, M. and Corona, F.

Intro

Activated Sludge Process

Controllability analys

Structural controllability

Classical controllability

Observability analy Structural observability

Outro

BSM1 - Structural controllability results

Accessibility:
 All state vertices are reachable from the given set of control vertices

Dilation-free: As all state vertices have self-loops, it always

holds that $|T(\mathcal{S})| \geq |\mathcal{S}|$, for every $\mathcal{S} \subseteq \mathcal{V}_A$

▶ The topology of $\mathcal{G}_{\mathcal{C}} = (\mathcal{V}_{\mathcal{C}}, \mathcal{E}_{\mathcal{C}})$ indicates that (A, B) is structurally controllable

The plant described by $\dot{x}(t) = f(\cdot | \theta_x)$ is controllable for almost all possible realisations of matrices A and B

Classical controllability

Classical analysis

The benchmark suggests a linearisation using steady-state $SS \equiv (x^{SS}, u^{SS}, d^{SS}, v^{SS})$

$$\begin{split} \dot{x}(t) &= A^{SS}x(t) + B^{SS}u(t) + G^{SS}d(t) \\ y(t) &= C^{SS}x(t) \end{split}$$

A realisation of the structural model

$$A^{SS} = \left. \frac{\partial f}{\partial x} \right|_{SS}$$
 $B^{SS} = \left. \frac{\partial f}{\partial u} \right|_{SS}$ $C^{SS} = \left. \frac{\partial g}{\partial x} \right|_{SS}$

Verify if the structural controllability result holds for (A^{SS}, B^{SS})

The computation of controllability matrix
$$[B^{SS} \ A^{SS}B^{SS} \ \cdots \ (A^{SS})^{N_x-1}B^{SS}] \qquad \leadsto \\ \text{suffers from round-off errors}$$

Need for an alternative scalable controllability test

Neto, O., Mulas, M. and Corona, F.

Intro

Activated Sludg

Controllability analysi Structural controllability Classical controllability

Observability analys Structural observability

Classical observability

Outro

Classical analysis, PBH controllability test

Popov-Belevitch-Hautus (PBH) Controllability Tes

The pair (A, B) is controllable IFF

$$ightarrow$$
 rank $(\begin{bmatrix} \lambda I - A & B \end{bmatrix}) = N_x, \, \forall \lambda \in \mathbb{C}$

$$\operatorname{rank}(\begin{bmatrix} \lambda_i I - A & B \end{bmatrix}) = N_x, \ \forall \lambda_i \in \sigma(A) \subset \mathbb{C} \qquad (\sigma(A) = \{\lambda_i\}_{i=1}^{N_x}, \ \operatorname{spectrum of} \ A)$$

Requires a total of N_x rank evaluations for a $N_x \times (N_x + N_u)$ matrix

▶ BSM1: The spectrum $\sigma(A^{SS})$ consists of 69 distinct eigenvalues $\{\lambda_i(A^{SS})\}$

$$\longrightarrow \{\lambda_1, \cdots, \lambda_{31}\} \subset \mathbb{R}$$

$$\rightarrow \{\lambda_{32}, \lambda_{32}^*, \cdots, \lambda_{69}, \lambda_{69}^*\} \subset \mathbb{C}$$

Provides a relationship between eigenvectors $\nu_i(\lambda_i)$ and controllability subspaces

▶ If rank($[\lambda_i I - A \ B]$) < N_x then ν_i lies in the uncontrollable subspace

Neto, O., Mulas, M. and Corona, F.

Intro

Activated Sludge

Controllability analys Structural controllability

Structural controllability

Classical controllability

Observability analy Structural observability

Classical observabili

Outro

BSM1 - PBH controllability test results

The PBH test indicates that (A^{SS}, B^{SS}) is uncontrollable in the classical sense

- \longrightarrow A real eigenvalue failing the test
 - Algebraic multiplicity: 28Geometric multiplicity: 7

The non-zero entries of associated eigenvectors ν_1, \cdots, ν_{28} correspond to soluble matter in the effluent

For linearisation (A^{SS},B^{SS}) , we cannot control the effluent concentrations of soluble matter

Contradiction between classical and structural results

We found a contradiction between the controllability results

- \triangleright (A, B) is controllable in a structural sense
- \blacktriangleright (A^{SS}, B^{SS}) is uncontrollable in a classical sense

Dilation-free condition: A known issue whenever some self-loops weights are identical

Non-reacting matter in reactors: $S_a^{A(k)}$ $(a \in \{I, ALK\})$ and $X_b^{A(k)}$ $(b \in \{I, P\})$

$$\qquad \qquad \frac{\partial \dot{S}_a^{A(k)}}{\partial S_a^{A(k)}} = \frac{\partial \dot{X}_b^{A(k)}}{\partial X_b^{A(k)}} = -\frac{Q_A + Q_R + Q_{IN} + \sum_{j=1}^k Q_{EC}^{(j)}}{V_A^{(k)}}$$

Soluble matter in the settler: $S_c^{S(m)}$ $(c \in \{I, S, O, NO, NH, ND, ALK\})$

For
$$m = 1, \dots, 5$$

$$ightharpoonup$$
 For $m=$

$$For m = 7, \cdots, 10$$

$$\frac{\partial \dot{S}_c^{S(m)}}{\partial S_c^{S(m)}} = \frac{-Q_R - Q_V}{V_S^{(m)}}$$

$$\frac{\partial \dot{S}_{c}^{S(m)}}{\partial S_{c}^{S(m)}} = \frac{-Q_{R} - Q_{W}}{V_{S}^{(m)}} \qquad \qquad \frac{\partial \dot{S}_{c}^{S(m)}}{\partial S_{c}^{S(m)}} = \frac{-Q_{IN} + Q_{R}}{V_{S}^{(m)}} \qquad \qquad \frac{\partial \dot{S}_{c}^{S(m)}}{\partial S_{c}^{S(m)}} = \frac{Q_{W} - Q_{IN}}{V_{S}^{(m)}}$$

$$\frac{\partial \dot{S}_{c}^{S(m)}}{\partial S_{c}^{S(m)}} = \frac{Q_{W} - Q_{IN}}{V_{S}^{(m)}}$$

We can never control the full state-space for the model $\dot{x}(t) = f(\cdot | \theta_x)$, regardless of the linearisation being used

Neto, O., Mulas, M. and Corona, F.

Intro

Activated Sludge

Controllability analysis

Observability analysis

BSM1 - Structural observability results

 \rightsquigarrow Accessibility:

There are no paths from vertices $S_O^{S(7\leadsto 10)}$, $S_{ALK}^{A(1\leadsto 5)}$ and $S_{ALK}^{S(1\leadsto 10)}$ to any output vertex

→ Dilation-free:

As all state vertices have self-loops, it always holds that $|T(S)| \ge |S|$, for every $S \subseteq \mathcal{V}_A$

▶ The topology of $\mathcal{G}_{\mathcal{O}} = (\mathcal{V}_{\mathcal{O}}, \mathcal{E}_{\mathcal{O}})$ indicates that (A, C) is structurally unobservable

The plant $\dot{x}(t) = f(\cdot | \theta_x)$ with measurements $y(t) = g(\cdot | \theta_y)$ is unobservable for all possible realisations of matrices A and C

Neto, O., Mulas, M. and Corona, F.

Intre

Activated Sludge

Controllability analysi Structural controllability Classical controllability

Observability analys

Classical observability

Jutro

BSM1 - PBH observability test results

The PBH test indicates that (A^{SS}, C^{SS}) is unobservable in the classical sense (as expected)

- \leadsto 10 distinct eigenvalues failing the test
 - Including 5 complex pairs and 2 real values with multiplicity larger than 1
- \leadsto Total of 43 eigenvectors $(\nu_1, \cdots, \nu_{43})$
- \leadsto Non-zero entries correspond to
 - ► All non-reacting components
 - Soluble matter in the effluent

For linearisation (A^{SS}, C^{SS}) , we cannot unequivocally determine the state-vector from a sequence of outputs over a finite time interval

Neto, O., Mulas, M. an Corona, F.

Intr

Activated Sludge Process

Structural controllability Classical controllability

Observability analy Structural observability Classical observability

. .

Final Remarks

The controllability and observability of an Activated Sludge Process were studied

Our results show that

- \leadsto Pair (A,B): controllable but unobservable in the structural sense
- \rightarrow Pair (A^{SS}, B^{SS}) : uncontrollable and unobservable in the classical sense
- A large portion of the state-space is still controllable (and observable)

These results will be the backbone to the design of optimal controllers for the treatment-reclamation application we described

