# A Novel Use of Kernel Discriminant Analysis as a Higher-Order Side-Channel Distinguisher

**Xinping Zhou**<sup>1</sup>, Carolyn Whitnall<sup>2</sup>, Elisabeth Oswald<sup>2</sup>, Degang Sun<sup>1</sup> and Zhu Wang<sup>1</sup>

<sup>1</sup>Chinese Academy of Sciences

<sup>2</sup>University of Bristol

CARDIS 2017, Lugano, Switzerland 14<sup>th</sup> November 2017

# Outline

- 1. Introduction
- 2. Preliminary
- 3. Methodology
- 4. Discussion
- 5. Conclusions and Future Perspectives





#### Introduction



#### Introduction



#### Introduction

#### Logic motivation of this work

- Linear Discriminant Analysis (LDA) was used for fist-order dimensionality reduction. (@ CHES 2008 by Standaert et al.)
- ▶ LDA was used as first order distinguisher. (@ RFIDsec 2016 by Mahmudlu et al.)
- Kernel Discriminant Analysis (KDA) was successfully used for dimensionality reduction (or POI selection) in higher-order implementation. (@ CARDIS 2016 by Cagli et al.)
- KDA is proposed as higher-order distinguisher in this work.

- 1. Standaert, F. X., Archambeau, C. (2008). Using subspace-based template attacks to compare and combine power and electromagnetic information leakages. CHES 2008, 411-425.
- 2. Mahmudlu, R., Banciu, V., Batina, L., Buhan, I. (2016). LDA-Based Clustering as a Side-Channel Distinguisher. RFIDsec 2016, 62-75.
- 3. Cagli, Eleonora, C'¦cile Dumas, and Emmanuel Prouff. Kernel Discriminant Analysis for Information Extraction in the Presence of Masking. CARDIS 2016. 1-22.

# Preliminary

#### Masking countermeasure (boolean masking)

Sensitive value is to split into several shares

$$s = r_0 \otimes r_1 \otimes ... \otimes r_d$$

▶ The whole leakages are  $\mathbf{l} = (l_0, l_1, ..., l_d)$  with

$$l_0 = L_0 \circ (s \oplus r_1 \oplus \ldots \oplus r_d) + \varepsilon_0$$

$$l_i = L_i \circ (r_i) + \varepsilon_i, \qquad \text{for } 1 \leq i \leq d.$$

# Higher-order DPA

$$R^{(d+1)\ell} \xrightarrow{CF} R^{\ell^{d+1}} \xrightarrow{D} k^*$$

#### Preliminary

#### Linear discriminant analysis

- LDA seeks the directions on that the labeled data have max ratio of between-cluster scatter and within-class scatter.
  - LDA is used as reduction tool in profiled-analysis in SCA.
  - Based on the ratio of between-cluster scatter and within-class scatter, it can distinguish the correct key hypothesis and wrong ones.

# Linear discriminant analysis with kernels $R^U \xrightarrow{\Phi} \mathcal{F} \xrightarrow{LDA} R^C$

#### Preliminary

#### Kernel discriminant analysis

- KDA seeks the optimal directions in a non-linear space.
  - KDA is used as dimentionality reduction tool in higher-order profiled-analysis in SCA.
  - ► The eigenvectors with largest eigenvalues are selected in the dimentionality reduction.

#### Natural common ground



#### Basic idea of KDA distinguisher

- If key hypothesis is correct, the partition of the whole traces based on the intermediate value corresponds with the real partition.
- In this case, it is easy to find the max ratio of between-cluster distance and inner-cluster distance.
- ▶ Otherwise, the clusters are difficult to separate.



#### Detailed procedure of KDA distinguisher

- ► For each key hypothesis  $k \in \mathcal{K}$ , do the following:
  - Calculate the intermediate value  $z_i = F_k(x_i)$  for each plaintext.
  - Map  $z_i$  to a power model prediction  $m_i$ , given by  $M(z_i)$ .
  - Compute the between-class scatter matrix M and the within-class scatter matrix N, and regularize N by N = N + μI.
  - Eigen-decompose the matrix  $N^{-1}M$ . Return the largest eigenvalue as the distinguisher score  $\mathcal{D}_k$  for k.
- Rank the pairs (k, Dk) according to Dk.
- Output the key hypothesis k with the largest Dk as the best guess on the true subkey.



#### Theoretical Rationale

- ► The effectiveness of the implicit projection.
- ► The effectiveness of LDA as a distinguisher in the first-order scenario.



# **Experimental Validation**

- Real traces from DPA contest v4 (for second-order analysis).
  - Attack target: XOR result of masked S-box output and masked value of next sub-plaintext in RSM scheme.
- Simulated multivariate leakages (for second-order and third-order analysis).
  - Attack target: XOR result of random shares.
- Kernel function (might not be optimal)
  - The kernel function is  $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y})^{d+1}$ .
  - Regularization factor  $\mu = 100,000$









#### Discussions

### Computation Complexity

- ► Time Complexity:
  - Classical higher-order DPA:  $O(N\ell^{d+1})$ .
  - ► KDA method:  $O(N^2(N + (d + 1)\ell))$ .
- ► Space Complexity:
  - ▶ Classical higher-order DPA:  $N\ell^{d+1}$ .
  - ► KDA method: 2N<sup>2</sup>.

#### Discussions

#### Power Model

- ► Classical higher-order DPA: Standard proportional power models.
- ▶ KDA method: Flexible clustering power models.



#### Discussions

#### Limitations and Possibilities

- Classical higher-order DPA using the 'normalised product' combining function with Hamming weight outperforms the KDA.
- It is interesting to deploy the KDA distinguisher in scenarios where higher order correlation DPA is likely to struggle.



# Conclusions and Future Perspectives

#### Conclusions

- Extended KDA for application as distinguisher in masked implementation.
- ▶ Showed natural common ground between classical higher-order DPA and KDA.
- Reasoned about the soundness of a KDA-based distinguisher from theoretical perspective and empirically.
- Analyzed the substantial advantages of KDA over higher-order DPA on complexity and power model.

# Conclusions and Future Perspectives

#### **Future Perspectives**

- Optimizing the parameters such as regularization factor.
- Exploring other kernel functions besides the polynomial function.
- ▶ Combining clustering power model in CHES 2015 proposed by Whitnall et al.

▶ Whitnall, C., Oswald, E.. Robust profiling for DPA-style attacks. CHES 2015. 3-21.



Questions?

# Thank you for listening!

Full version available at https://eprint.iacr.org/2017/1051