第一章 普通函数理论

- 1.1 函数序列
- 1.2 特殊函数
- 1.3 多元函数

1.3.1 微分法

定义 1.3.1. 设 $E \in \mathbb{R}^n$ 中的开集, f 将 E 映入 \mathbb{R}^m , $\mathbf{x} \in E$ 。若存在将 \mathbb{R}^n 映入 \mathbb{R}^m 的线性变换 A, 使得

$$\lim_{\mathbf{h}\to 0} \frac{|\mathbf{f}(\mathbf{x}+\mathbf{h})| - \mathbf{f}(\mathbf{x}) - A\mathbf{h}}{|\mathbf{h}|} = 0,$$

则称f在x处可微。记作

$$\mathbf{f}'(x) = A.$$

定理 1.3.1. 上述定义的 A 是唯一的。

证明. 设 $B = A_1 - A_2$, 则

$$|B\mathbf{h}| \le |\mathbf{f}(\mathbf{x} + \mathbf{h}) - \mathbf{f}(\mathbf{x}) - A_1\mathbf{h}| + |\mathbf{f}(\mathbf{x} + \mathbf{h}) - \mathbf{f}(\mathbf{x}) - A_2\mathbf{h}|.$$

故 $|B\mathbf{h}|/|\mathbf{h}| \to 0$ 。 因此 B=0。

例如线性变换的导数显然是其自身。

定理 1.3.2. 若 $\mathbf{F}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(x))$, 且 \mathbf{f} 与 \mathbf{g} 在对应点可微, 则

$$\mathbf{F}'(\mathbf{x}_0) = \mathbf{g}'(\mathbf{f}(\mathbf{x}_0)) \mathbf{f}'(\mathbf{x}_0)$$
.

证明. 设 \mathbf{x}_0 的增量为 \mathbf{h} , $\mathbf{f}(\mathbf{x}_0)$ 的增量为 \mathbf{k} 。

$$\mathbf{F} (\mathbf{x}_0 + \mathbf{h}) - \mathbf{F} (\mathbf{x}_0) - BA\mathbf{h} = \mathbf{g} (\mathbf{y}_0 + \mathbf{k}) - \mathbf{g} (\mathbf{y}_0) - BA\mathbf{h}$$
$$= B (\mathbf{k} - A\mathbf{h}) + o (\mathbf{k})$$
$$= Bo (\mathbf{h}) + o (\mathbf{k}).$$

再注意 $\mathbf{k} = A\mathbf{h} + o(\mathbf{h})$ 便知其趋向零。

定义 1.3.2. 设 $E \in \mathbb{R}^n$ 中的开集, **f** 将 E 映入 \mathbb{R}^m 。 $\{e_n\}$ 是定义域的标准基, $\{u_m\}$ 是值域的标准基, 以此定义 **f** 的分量。若极限

$$\left(\mathbf{D}_{j}f_{i}\right)\left(\mathbf{x}\right)=\lim_{t\to0}\frac{f_{i}\left(\mathbf{x}+t\mathbf{e}_{j}\right)-f_{i}\left(\mathbf{x}\right)}{t}$$

存在,则称之为偏导数。

定理 1.3.3. 若 f 在 x 处可微,则各偏导数存在,且

$$A_{ii} = \mathbf{D}_i f_i$$
.

证明. 注意到方向导数的存在为可导所蕴含即可。

注意 ij 的顺序, 曲线的 A 为列矩阵, 即切向量。

定义 1.3.3. 若 $f \in \mathbb{R}^n$ 上的标量函数,则 A 为行矩阵,称为 f 的梯度,记作 ∇f 。

设 γ 为一曲线,f 标量函数, $g = f \circ \gamma$,于是 $g'(t) = (\nabla f)\gamma'$ 。若 γ 为指向 \mathbf{u} 的直线,则 $g'(t) = \mathbf{u} \cdot \nabla f$,称为f 的方向导数。当 \mathbf{u} 与 ∇f 同向时¹,其具有最大值。

定理 1.3.4. 若在凸集上 $\|\mathbf{f}'\| \le M$, 则 $\|\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a})\| \le M \|\mathbf{b} - \mathbf{a}\|$ 。

证明. 设 $\gamma(t) = (1-t)\mathbf{a} + t\mathbf{b}$, $\mathbf{g} = \mathbf{f} \circ \gamma$, 因此 $\mathbf{g}' = \mathbf{f}' \circ (\mathbf{b} - \mathbf{a})$, 再注意 \mathbf{f}' 的上界并调用定理??。

推论 1.3.1. 若 f' = 0, 则 f = const.

定义 1.3.4. 若 f 可微且 f' 连续,则称 f 连续可微。

定理 1.3.5. 当且仅当 $\mathbf{f}: E \subset \mathbb{R}^n \to \mathbb{R}^m$ 偏导数存在且连续时, \mathbf{f} 连续可微。

 $^{^1}$ 此处将行向量与列向量等同,或者说协变矢量与逆变矢量等同。

证明. 若 f 连续可微,则借助定理??,并注意

$$|\left(\mathbf{D}_{j}f_{i}\right)\left(\mathbf{y}\right)-\left(\mathbf{D}_{j}f_{i}\right)\left(\mathbf{x}\right)|\leq|\left[\mathbf{f}'\left(\mathbf{y}\right)-\mathbf{f}'\left(\mathbf{x}\right)\right]\mathbf{e}_{j}|$$

即可。

若 \mathbf{f} 在 \mathbf{x} 的各偏导数存在,则可以仅考虑 \mathbf{f} 的一个分量 f。将 \mathbf{x} 的无穷 小位移 \mathbf{h} 分解为各个方向的和,借助中值定理将增量转化为"稍微偏离" \mathbf{x} 处的偏导。再借助连续性,从而 \mathbf{f}' 可以写为 $\mathbf{D}_j f$ 的列向量,且各分量由题 设连续。

1.3.2 反函数定理

定理 1.3.6. 若连续可微的 f 将开集 $E \subset \mathbb{R}^n$ 映入 \mathbb{R}^n , 且对于某个 a, f'(a) 可逆, f(a) = b。则存在 a 和 b 的邻域 U 和 V, 使 f 为双射。

证明. 为了求出 f 的反函数,采用 Newton 法,令

$$\varphi_{\mathbf{y}}\left(\mathbf{x}\right) = \mathbf{x} + A^{-1}\left(\mathbf{y} - \mathbf{f}(\mathbf{x})\right).$$

注意 $\varphi' = A^{-1}(A - \mathbf{f}')$,因此可以选择足够小的邻域使 $\|\varphi'\|$ 足够小。由定理??,其存在不动点,故 **f** 可逆。

 \mathbf{f} 的一一性已证,下证其为开映射。设 $\mathbf{f}(\mathbf{x}_0) = \mathbf{y}_0$ 确凿,对于足够接近 \mathbf{y}_0 的 \mathbf{y} ,从任何 \mathbf{x}_0 附近的 \mathbf{x} 出发试图寻找其原像,皆有

$$|\varphi(\mathbf{x}) - \mathbf{x}_0| \le |\varphi(\mathbf{x}) - \varphi(\mathbf{x}_0)| + |\varphi(\mathbf{x}_0) - \mathbf{x}_0|.$$

前一绝对值的大小由 $\|\varphi'\|$ 限制,后一绝对值的大小由 \mathbf{y} 的偏移量限制。因此迭代后的不动点仍在 \mathbf{x} 附近,故仍在 U 内,所以 \mathbf{y} 仍在 V 内。

定理 1.3.7. 前开定理的局域反函数 g 亦连续可微。

证明. 由前证以及定理??,可以选取足够小的邻域 U 使得 \mathbf{f}' 在此邻域内与 $\mathbf{f}'(\mathbf{a})$ 足够接近故可逆。还可以使得在此邻域内, $\mathbf{h} = O(\mathbf{k})$ 。注意

$$\mathbf{g}(\mathbf{y} + \mathbf{k}) - \mathbf{g}(\mathbf{y}) - T\mathbf{k} = -T[\mathbf{f}(\mathbf{x} + \mathbf{h}) - \mathbf{f}(\mathbf{x}) - \mathbf{f}'(\mathbf{x})\mathbf{h}],$$

其中 $T = \mathbf{f}'^{-1}$ 。因此余项 $\mathbf{v} = O(\mathbf{u})$ 。再注意到求逆是连续映射即可。

定理 1.3.8. 若连续可微的 \mathbf{f} 将开集 $E \subset \mathbb{R}^n$ 映入 \mathbb{R}^n , \mathbf{f}' 逐点可逆, 则 \mathbf{f} 为 开映射。

1.3.3 隐函数定理

定义 1.3.5. (x,y) 为

$$(x_1, \cdots, x_n, y_1, \cdots, y_m) \in \mathbb{R}^{n+m}$$
.

每个线性变换 $A: \mathbb{R}^{n+m} \to \mathbb{R}^n$ 都可以分解成 A_x 和 A_y 两部分。

定理 1.3.9. 对于上述 A, 若 A_x 可逆,则对于每个 $\mathbf{k} \in \mathbb{R}^m$,有唯一的 $\mathbf{h} \in \mathbb{R}^n$ 满足 $A(\mathbf{h}, \mathbf{k}) = 0$ 。

证明.

$$\mathbf{h} = -\left(A_x\right)^{-1} A_y \mathbf{k}.$$

定理 1.3.10. 设 $\mathbf{f}: (X,Y) \to Z$ 是开集 $E \subset \mathbb{R}^{n+m}$ 到 \mathbb{R}^n 内的连续可微映射,且在某点 (\mathbf{a},\mathbf{b}) 为零。令 $A = \mathbf{f}'(\mathbf{a},\mathbf{b})$ 且 A_x 可逆,则存在 (\mathbf{a},\mathbf{b}) 的邻域 U 和 \mathbf{b} 的邻域 W ,W 内的任意 \mathbf{y} 有唯一 \mathbf{x} 使 $\mathbf{f} = 0$ 。

证明. \diamondsuit $\mathbf{F}(\mathbf{x}, \mathbf{y}) = (\mathbf{f}(\mathbf{x}, \mathbf{y}), \mathbf{y})$ 。因此

$$\mathbf{F}(\mathbf{x} + \mathbf{h}, \mathbf{y} + \mathbf{k}) - \mathbf{F}(\mathbf{x}, \mathbf{y}) = (A(\mathbf{h}, \mathbf{k}), \mathbf{k}) + o(\mathbf{h}, \mathbf{k}).$$

若右侧为零,则 $\mathbf{k} = 0$, $\mathbf{h} = 0$ 。因此 \mathbf{F}' 可逆,故反函数定理可用于 \mathbf{F} 。因此,存在 $(0, \mathbf{b})$ 的邻域 V 和 (\mathbf{a}, \mathbf{b}) 的邻域 U,使得 \mathbf{F} 是一一的。在 V 中投影出 $(0, \mathbf{y})$,注意其为开集即可。

定理 1.3.11. 在前开命题中设 $\mathbf{x} = \mathbf{g}(\mathbf{y})$, 有 \mathbf{g} 为连续可微映射且 $\mathbf{g}'(\mathbf{b}) = -(A_x)^{-1}A_y$ 。

证明. 令 \mathbf{G} 为 \mathbf{F} 的局域反函数,则 \mathbf{G} 连续可微,故作为其限制的 \mathbf{g} 亦然。 欲求 $\mathbf{g}'(\mathbf{b})$,注意到

$$\mathbf{f}(\mathbf{g}(\mathbf{b}), \mathbf{b})' = 0,$$

$$\mathbb{P} A(\mathbf{g}'(\mathbf{b}), I) = 0, \ A_x \mathbf{g}'(\mathbf{b}) + A_y = 0.$$

1.3.4 秩定理

定理 1.3.12. 设 $\mathbf{F}: E \subset \mathbb{R}^n \to \mathbb{R}^m$ 将开集 E 映入 \mathbb{R}^m ,对于任意 \mathbf{x} 有 \mathbf{F}' 的秩为 r。对于 $\mathbf{a} \in E$, $A = \mathbf{F}'$ 的像空间为 Y_1 ,P 是到其上的投影, Y_2 是 Y_1 的正交空间。

存在 ${\bf a}$ 的邻域 U 和 \mathbb{R}^n 中的开集 V,存在连续可微双射 ${\bf H}:V\to U$ 满足

$$\mathbf{F}\left(\mathbf{H}\left(\mathbf{x}\right)\right) = A\mathbf{x} + \varphi\left(A\mathbf{x}\right),\,$$

且 H 的逆亦连续可微。式中 φ 映入 Y_2 。

证明. 若 r=0 (这里并没有使用归纳法的打算),存在 ${\bf a}$ 的邻域使得 ${\bf F}$ 为常量且 Y_1 为零空间。故可以取 ${\bf H}=I,\ V=U,\ \varphi(0)={\bf F}({\bf a})$ 。

对于 r > 0, 设 S 为 A 在 Y_1 上的逆, 定义

$$\mathbf{G}: E \to U \subset \mathbb{R}^n = \mathbf{x} + SP\left[\mathbf{F}\left(\mathbf{x}\right) - A\mathbf{x}\right].$$

由 G' = I 知存在邻域使其可逆,设其逆为 H。将 G 经 A 映射,即

$$A\mathbf{G} = ASP\mathbf{F} = P\mathbf{F}.$$

这是因为 ASPA = A。如果 $\mathbf{x} = \mathbf{H}(\mathbf{v})$,则有 $P\mathbf{F} \circ \mathbf{H} = A$ 。因此,

$$\Phi\left(\mathbf{v}\right) = \mathbf{FH}\left(\mathbf{v}\right) - A\mathbf{v}$$

是到 Y_2 的连续可微映射。下尚需证存在连续可微的映射 $\varphi(A\mathbf{v}) = \Phi(\mathbf{v})$ 。

先证 Φ 的值仅仅取决于 $A\mathbf{v}$ 。考虑两 \mathbf{v} 的差 \mathbf{h} ,只需证明当 $A\mathbf{h} = 0$,有 $(\mathbf{F}\mathbf{H})'\mathbf{h} = 0$ 。由构造, $(\mathbf{F}\mathbf{H})'\mathbf{h}$ 到 Y_1 上投影仍为 $A\mathbf{h}$,且二算子像空间皆 r 维,知 $A\mathbf{h}$ 可决定 $(\mathbf{F}\mathbf{H})'$ 。当前者为零,后者亦然。

再证 φ 连续可微。注意 φ 的定义域是诸 $A\mathbf{v}$,故对于 $\varphi(\mathbf{u})$,相应的 $\mathbf{v} = S\mathbf{u} + \mathbf{a}$,其中 \mathbf{a} 是 A 的零空间中任意元素。对于任意 \mathbf{u} ,可以寻找其 邻域使得存在 \mathbf{a} 让 \mathbf{v} 留在 V 内。于是 $\varphi(\mathbf{u}) = \Phi(\mathbf{a} + S\mathbf{u})$ 连续可微。 \square

注意 $A\mathbf{x}$ 映射到 Y_1 ,因此 \mathbf{F} 在此点的值仅仅取决于其射影,因而可将其视为 r 维曲面,而其水平集可以视为 X 中的 n-r 维曲面。例如将汤勺映为棒棒糖的映射,勺柄的二维平面被映射为糖棒的一维线段,其 \mathbf{F}' 的秩固然为 1。而其水平集,即糖棒上一点对应的原像则是 2-1=1 维的垂直于汤勺柄的线段。