Лекция 13

Несобственные интегралы с бесконечными пределами

При рассмотрении определённых интегралов мы предполагали, что 1) область интегрирования конечна (более конкретно, является отрезком [a,b]); 2) подынтегральная функция f(x) определена и непрерывна на отрезке [a,b]. Будем называть определённые интегралы, для которых выполняются оба эти условия (ограниченность и области интегрирования, и подынтегральной функции) собственными; интегралы, для которых нарушаются эти требования (т.е. не ограничена либо подынтегральная функция, либо область интегрирования, либо и то и другое вместе) несобственными.

Несобственные интегралы с бесконечными пределами

Определение (несобственного интеграла с бесконечным верхним пределом). Пусть функция f(x) определена на полуоси $[a,+\infty)$ и интегрируема по любому отрезку [a,b], принадлежащему этой полуоси. Предел интеграла $\int_a^b f(x) dx$ при $b \to +\infty$ называется несобственным интегралом функции f(x) от a до $+\infty$ и обозначается $\int_a^{+\infty} f(x) dx$.

Итак, по определению,

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$

Если этот предел существует и конечен, интеграл $\int_{a}^{+\infty} f(x)dx$ называется сходящимся; если предел не существует или бесконечен, интеграл называется расходящимся.

Аналогично интегралу с бесконечным верхним пределом интегрирования определяется интеграл в пределах от $-\infty$ до b.

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx.$$

Если этот предел существует и конечен, интеграл $\int_{-\infty}^{b} f(x)dx$ называется сходящимся; если предел не существует или бесконечен, интеграл называется расходящимся.

Определение (несобственного интеграла с бесконечными верхним и нижним пределами). Пусть функция f(x) определена на всей числовой оси и интегрируема по любому отрезку [a,b]; c - произвольная (конечная) точка числовой оси. Тогда

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{c} f(x)dx + \lim_{b \to +\infty} \int_{c}^{b} f(x)dx.$$

Интеграл называется сходящимся, если существуют и конечны оба входящих в определение предела.

Замечание. Пользуясь свойством аддитивности определённого интеграла, можно показать, что существование конечных пределов и их сумма не зависят от выбора точки c.

Другими словами,

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx,$$

если оба интеграла справа сходятся.

1.
$$\int_{0}^{+\infty} \cos x dx = \lim_{b \to +\infty} \int_{0}^{b} \cos x dx = \lim_{b \to +\infty} \sin x \Big|_{0}^{b} = \lim_{b \to +\infty} \left(\sin b - \sin 0 \right) = \lim_{b \to +\infty} \sin b;$$

этот предел не существует; следовательно, исследуемый интеграл расходится.

$$2. \int_{a}^{+\infty} \frac{1}{x^2 + 1} dx = \lim_{b \to +\infty} \int_{0}^{b} \frac{1}{x^2 + 1} dx = \lim_{b \to +\infty} \arctan x \Big|_{0}^{b} = \lim_{b \to +\infty} \left(\arctan b - \arctan 0 \right) = \pi/2.$$

Следовательно, интеграл сходится и равен $\pi/2$.

3.
$$\int_{-\infty}^{0} e^{x} dx = \lim_{a \to -\infty} \int_{a}^{0} e^{x} dx = \lim_{a \to -\infty} e^{x} \Big|_{a}^{0} = \lim_{a \to -\infty} \left(1 - e^{a}\right) = 1$$
. Интеграл сходится и равен 1.

Теорема (признак сравнения). Пусть функции f(x) и g(x) интегрируемы по любому отрезку [a,b] и при $x \ge a$ удовлетворяют неравенствам $0 \le f(x) \le g(x)$. Если сходится интеграл $\int_a^{+\infty} g(x) dx$, то сходится и интеграл $\int_a^{+\infty} f(x) dx$; если расходится интеграл $\int_a^{+\infty} f(x) dx$, то расходится и интеграл $\int_a^{+\infty} g(x) dx$.

Замечание. Эти утверждения имеют простой смысл: если сходится интеграл от большей функции, то сходится интеграл от меньшей функции; если расходится интеграл от меньшей функции, то расходится интеграл от большей функции; в случаях, когда сходится интеграл от меньшей функции или расходится интеграл от большей функции, никаких выводов о сходимости второго интеграла сделать нельзя.

1. Исследовать на сходимость интеграл $\int_{0}^{+\infty} e^{-x^2} dx$.

Функция e^{-x^2} не имеет первообразной, выражающейся через элементарные функции, поэтому исследовать сходимость с помощью предельного перехода невозможно. При $x \ge 1$ имеют место неравенства $-x^2 \le -x$, $e^{-x^2} \le e^{-x}$ и интеграл $\int\limits_{1}^{+\infty} e^{-x} dx = -e^{-x} \Big|_{1}^{+\infty} = e^{-1}$ сходится. Следовательно, интеграл $\int\limits_{0}^{+\infty} e^{-x^2} dx$ также сходится.

- В качестве "стандартного" интеграла, с которым сравнивается данный, обычно берётся интеграл типа $\int_{1}^{+\infty} \frac{1}{x^{p}} dx$, часто называемый интегралом Дирихле.
- **Лемма.** Интеграл $\int_{1}^{+\infty} \frac{1}{x^{p}} dx \ cxo \partial umcя, \ ecли \ p > 1, \ u \ pacxo \partial umcя, \ ecли \ p \leq 1.$
 - **◄**Доказательство. Пусть p ≠ 1:

$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx = \frac{x^{1-p}}{1-p} \bigg|_{1}^{+\infty} = \begin{cases} \frac{1}{p-1}, & p > 1, \\ +\infty, & p < 1. \end{cases}$$

В случае p = 1

$$\int_{1}^{+\infty} \frac{1}{x} dx = \ln x \Big|_{1}^{+\infty} = +\infty. \blacktriangleright$$

1. Исследовать на сходимость интеграл $\int_{1}^{+\infty} \frac{1}{x^7 + 1} dx$.

На всём промежутке интегрирования $\frac{1}{x^7+1} < \frac{1}{x^7}$; интеграл $\int\limits_{1}^{+\infty} \frac{1}{x^7} dx$ сходится, так как p=7>1. Поэтому исходный интеграл сходится.

- **2.** Исследовать на сходимость интеграл $\int_{2}^{+\infty} \frac{\ln x}{\sqrt{x}} dx$.
- При $x \ge 3$ выполняется неравенство $\frac{\ln x}{\sqrt{x}} \ge \frac{1}{\sqrt{x}}$; интеграл $\int_{3}^{+\infty} \frac{1}{\sqrt{x}} dx$ расходится.

Следовательно, $\int_{3}^{+\infty} \frac{\ln x}{\sqrt{x}} dx$ расходится и $\int_{2}^{+\infty} \frac{\ln x}{\sqrt{x}} dx$ также расходится.

Абсолютная сходимость несобственных интегралов по бесконечному промежутку.

Теорема . Если сходится интеграл $\int_{-\infty}^{\infty} |f(x)| dx$, то обязательно сходится интеграл $\int_{0}^{\infty} f(x)dx$.

Замечание. Обратное утверждение неверно, т.е. при сходимости интеграла $\int_{0}^{+\infty} f(x)dx$ интеграл $\int_{0}^{+\infty} |f(x)|dx$ может расходиться.

Введём важное понятие абсолютной сходимости.

Введем важное понятие ассолютно. Следности от $\int_{a}^{+\infty} |f(x)| dx$, то интеграл $\int_{a}^{+\infty} f(x) dx$ называется сходящимся абсолютно. Если сходится интеграл $\int_{a}^{+\infty} f(x) dx$, а интеграл $\int_{a}^{+\infty} |f(x)| dx$ расходится, то интеграл $\int_{a}^{+\infty} f(x) dx$ называется сходящимся условно.

Пример. Исследовать на абсолютную сходимость интеграл $\int_{1}^{+\infty} \frac{\sin x}{x^2} dx$.

Выполняется неравенство $\left| \frac{\sin x}{x^2} \right| \le \frac{1}{x^2}$. Интеграл $\int_{1}^{+\infty} \frac{1}{x^2} dx$ сходится, следовательно, $\int_{1}^{+\infty} \left| \frac{\sin x}{x^2} \right| dx$ сходится по признаку сравнения, исходный интеграл сходится абсолютно.

Несобственные интегралы от неограниченных функций

Определение (особенность на левом конце промежутка интегрирования). Пусть функция f(x) определена на полуинтервале (a,b], интегрируема по любому отрезку $[a+\varepsilon,b]$, $0<\varepsilon< b-a$, и функция f(x) не ограничена на (a,b]. Несобственным интегралом $\int_a^b f(x) dx$ от функции f(x) по полуинтервалу (a,b] называется

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to +0} \int_{a+\varepsilon}^{b} f(x)dx.$$

Если предел справа конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, то говорят, что интеграл расходится.

Примером функции, неограниченной на промежутке (a,b], может служить функция f(x), непрерывная на (a,b] и такая, что $\lim_{x\to a+0} f(x) = \infty$.

1.
$$\int_{0}^{2} \frac{1}{x\sqrt{x}} dx = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{2} \frac{1}{x\sqrt{x}} dx = \lim_{\varepsilon \to +0} \left(-\frac{2}{\sqrt{x}} \Big|_{\varepsilon}^{2} \right) = \infty$$
- Интеграл расходится.

2. $\int_{-1}^{0} \frac{1}{\sqrt{1-x^{2}}} dx = \lim_{\varepsilon \to 0} \int_{-1+\varepsilon}^{0} \frac{1}{\sqrt{1-x^{2}}} dx = \lim_{\varepsilon \to +0} \arcsin x \Big|_{-1+\varepsilon}^{0} = \frac{\pi}{2}$. Интеграл сходится.

2.
$$\int_{-1}^{0} \frac{1}{\sqrt{1-x^2}} dx = \lim_{\varepsilon \to 0} \int_{-1+\varepsilon}^{0} \frac{1}{\sqrt{1-x^2}} dx = \lim_{\varepsilon \to +0} \arcsin x \Big|_{-1+\varepsilon}^{0} = \frac{\pi}{2}$$
. Интеграл сходится

Определение (особенность на правом конце промежутка интегрирования). Пусть функция f(x) определена на полуинтервале [a,b), интегрируема по любому отрезку $[a,b-\varepsilon]$, $0<\varepsilon< b-a$, и функция f(x) не ограничена на [a,b). Несобственным интегралом $\int\limits_a^b f(x) dx$ от функции f(x) по полуинтервалу [a,b)

называется

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to +0} \int_{a}^{b-\varepsilon} f(x)dx.$$

Если предел справа конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, то говорят, что интеграл расходится.

Определение (особенность во внутренней точке промежутка интегрирования). Пусть функция f(x) определена на полуинтервалах [a,c) и (c,b] где c — внутренняя точка этого отрезка. Пусть функция f(x) не ограничена на [a,c) и функция f(x) не ограничена на (c,b]. Пусть функция f(x)интегрируема на каждом отрезке $[a,c-\varepsilon]$ и на каждом отрезке $[c+\delta,b]$, $\delta>0$. Несобственным интегралом $\int_{a}^{b} f(x) dx$ от функции f(x) по отрезку [a,b] называется

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to +0} \int_{a}^{c-\varepsilon} f(x)dx + \lim_{\delta \to +0} \int_{c+\delta}^{b} f(x)dx.$$

Интеграл сходится, если оба предела справа существуют и конечны, в противном случае интеграл расходится.

Примером функции, удовлетворяющей условиям определения 3, служит такая функция f(x), что $\lim_{x \to \infty} f(x) = \infty$.

Признаки сходимости для интегралов от неограниченных функций. Как и для несобственных интегралов с бесконечными пределами интегрирования, для интегралов от неограниченных функций справедливы признаки сходимости, понятие абсолютной и условной сходимости, а также рассматриваются аналогичные признаки сравнения для таких интегралов.