Ayudantía Examen (Parte 1)

IIC2343 – Arquitectura de Computadores

Sobre el curso

Algo que se debió decir en la clase 1, en parte son cosas que uno supone sabidas.

- NO ES FÁCIL.
- Es como matemáticas discretas, más que "que corra", importan los fundamentos que hay detrás. Es del área de ciencias de la computación.
- Es cuesta arriba. La dificultad de la materia va en aumento.
- En el equipo docente creamos las preguntas para evaluar los distintos temas, la forma de demostrar que aprendieron es respondiendo correctamente.
- Que en un semestre anterior haya habido una pregunta similar con otro enfoque da lo mismo, puede que nos hayamos querido desmarcar de esa pregunta a propósito cambiando el foco.
- ¿Qué recomiendo para estudiar? Lo que yo hacía era revisar la materia y plantearme situaciones que me interesaran. A otros les basta con leerse los apuntes (aunque tienen errores).

Paréntesis: Una actividad para el miércoles

• Los que mandaron su respuesta para la pregunta de las 3 décimas me pueden mandar un mail dando su consentimiento para mostrarla el miércoles (sin decir nombres) y darles feedback, con la idea de que puedan ver un poco como nos enfrentamos los ayudantes a las respuestas que escriben y puedan usar esa información para mejorar. Además, pueden ver mejor los criterios de corrección y enfrentarse de mejor forma al examen.

Modalidad del examen

- 4 preguntas de dos letras independientes cada una:
 - Computador básico
 - Memoria caché
 - Pipelining
 - Representación de enteros e I/O
- Se revisarán las primeras 3 preguntas que respondan. Si quieren omitir alguna, déjenla en blanco.
- 9 de julio: tentativamente de 9:00 a 13:00 hrs.

Preguntas de representación de enteros

Realiza el cambio de base a los siguientes números

- $12_{10} \rightarrow base 2$
- 1101, \rightarrow base 10
- $312_5 \rightarrow base 6$

Calcula los complementos que se indican para los siguientes números

- Complemento a 1 de 110₂ en base 2, usando 5 cifras.
- Complemento a 2 de 11011₂ en base 2, usando 5 cifras.
- Complemento a 10 de 1234₁₀ en base 10, usando 5 cifras.
- Complemento a 3 de 31_5 en base 5, usando 4 cifras.

Preguntas de circuitos y el computador básico

El camino de los flip flops D

(Es como "El camino del sabio" pero mejor)

• ¿Cuál es el flip flop D que funciona con flanco de subida?

С	D	Q ^{t+1}
0/1/↓	0/1	Qt
1	0	0
1	1	1

Figura 1: Flip-flop D con control.

\mathbf{C}	D	Q
0	x	Q
1	0	0
1	1	1

С	D	Q ^{t+1}
0/1/↓	0/1	Q ^t
1	0	0
↑	1	1

PPT de este semestre

Apuntes

PPT de otro semestre

El camino de los flip flops D

(Es como "El camino del sabio" pero mejor)

• ¿Cuál es el flip flop D que funciona con flanco de subida?

Figura 1: V p-flop L von control.

	D	Q
0	x	Q
1	0	0
1	1	1

С	D	Q ^{t+1}
0/1/↓	0/1	Q ^t
1	0	0
1	1	1

Apuntes
ES UN LATCH D

PPT de este semestre FUNCIONA CON FLANCO DE BAJADA!!!

PPT de otro semestre

El camino de los flip flops D

(Es como "El camino del sabio" pero mejor)

• Explica detalladamente (paso a paso) cómo funciona un flip flop D con flanco de subida.

Recorrido que vamos a hacer:

- 1. Latch RS
- 2. Latch D
- 3. Flip Flop D

Latch RS

R	S	Q ^{t+1}
0	0	-
0	1	1
1	0	0
1	1	Q ^t

Latch D

С	D	Q ^{t+1}
0	0/1	Q ^t
1	0	0
1	1	1

D: dato

C: control

Q: estado

Flip Flop D con flanco de subida

С	D	Q ^{t+1}
0/1/↓	0/1	Q ^t
\uparrow	0	0
\uparrow	1	1

El clock y la sincronización en el computador básico

 ¿Cómo funciona la sincronización de los componentes en el computador básico del curso?

Figura 1: Computador con salto incondicional.

Material extra (ocio)

Intenten no sobreexigirse y descansen de vez en cuando!

- Manga "5 Elementos" (link, lectura de izquierda a derecha).
- Canales de *covers* estilo medieval:
 - https://www.youtube.com/watch?v=cRlfsFefatg
 - https://www.youtube.com/watch?v=R16cVvg2OyY
- Otros *covers* y creaciones originales:
 - https://www.youtube.com/watch?v=buhxqbrY-Do
 - https://www.youtube.com/watch?v=LI5HPxHJfoY
 - https://www.youtube.com/user/rodrigoseptienprod/videos
 - https://www.youtube.com/watch?v=UWrU7EbzA8 → tiene unos covers buenísimos
 - La temporada 7 de Hermitcraft en minecraft (en inglés, recomiendo a Grian y a Mumbo Jumbo).
 - https://www.youtube.com/watch?v=q9Rp_6r7xlk una obra de arte majestuosa
 - https://www.youtube.com/watch?v=g0B_gEBXt7l