Figure 1: Nucleotide (SEQ ID NO: 1) and deduced amino acid sequence of human ChemerinR (AC075748)

5		M ATG		D GAT	e gaa		Y TAC		T ACT		I ATC	_	Y TAC	G GGT	D GAT	E GAA	15 219
	16 220	Y TAC	P CCT	D GAT	Y TAT	L TTA	D GAC	S TCC	I ATT	V GTG	V GTT	L TTG	E GAG	D GAC	L TTA	S TCC	30 264
10		P CCC		E GAA	A GCC	R AGG	V GTG		R AGG	I ATC	F TTC	L CTG	V GTG	V GTG	V GTC	Y TAC	45 309
15	46 310	S .AGC	I ATC	V GTC	-	F TTC	L CTC	G GGG	I ATT		G GGC	N AAT	G GGT	L CTG	V GTG	I ATC	60 354
13	61 355	I ATC	I ATT	A GCC	T	F TTC	K AAG	M ATG	K AAG	K AAG	T ACA	V GTG	N AAC	M ATG	V GTC	W TGG	75 399
20	76 400	F TTC	L CTC	n aac	L CTG	A GCA	V GTG	A GCA	D GAT	F TTC	L CTG	F TTC	N AAC	V GTC	F TTC	L CTC	90 444
	91 445	P CCA	I ATC	H CAT	I ATC	T ACC	Y TAT	A GCC	A GCC	M ATG	D GAC	Y TAC	H CAC	W TGG	V GTT	F TTC	105 489
25	106 490	G GGG		A GCC	M ATG	C TGC	K AAG	I ATC	S AGC	N AAC	F TTC	L CTT	L CTC	I ATC	H CAC	N AAC	120 534
30	121 535	M ATG	F TTC	T ACC	S AGC	V GTC	F TTC	L CTG	L CTG	T ACC	I ATC	I ATC	S AGC	S TCT	D GAC	R CGC	135 579
	136 580	C TGC	I ATC	S TCT	V GTG	L CTC	L CTC	P	V GTC	W TGG	S TCC	Q CAG	N AAC	H CAC	R CGC	S AGC	150 624
35	151 625	V GTT	_	L CTG	A GCT	Y TAC	M ATG	A GCC	C TGC	M ATG	V GTC	I ATC	Ņ TGG	V GTC	L CTG	A GCT	165 669
	166 670	F TTC	F TTC	L TTG	S AGT	S TCC	P CCA	S TCT	L CTC	V GTC	F TTC	R CGG	D GAC	T ACA	A GCC	N AAC	180 714
40	181 715		H CAT	G GGG	K AAA	I ATA	S TCC	-	F TTC	N AAC	N AAC	F TTC	S AGC	L CTG	S TCC	T ACA	195 759
45		P CCT	_	_	_	-	• • •	•	-		_	×	• •	_	-	V GTG	210 804
43		G GGG									V GTC					C TGT	225 849
50		G GGC														T ACC	240 894
		I ATC															255 939
55	256	P	F	ĸ	I	I	v	T	I	I	I	T	F	F	L	С	270

Figure 1 Continued

	940	CCC	TTC	AAG	ATT	ATT	GTG	ACC	ATC	ATC	ATT	ACC	TTC	TTC	CTC	TGC	984
5	271	W	С	P	Y	н	Т	L	N	L	L	E	L	н	Н	T	285
	985	TGG	TGC	CCC	TAC	CAC	ACA	CTC	AAC	CTC	CTA	GAG	CTC	CAC	CAC	ACT	1029
	286	A	M	P	G	s	v	F	s	L	G	L	P	L	A	T	300
10	1030	GCC	ATG	CCT	GGC	TCT	GTC	TTC	AGC	CTG	GGT	TTG	CCC	CTG	GCC	ACT	1074
10	301	A	L	A	I	A	N	s	С	M	N	P	I	L	Y	v	315
	1075	GCC	CTT	GCC	ATT	GCC	AAC	AGC	TGC	ATG	AAC	CCC	ATT	CTG	TAT	GTT	1119
	316	F	M	G	Q	D	F	K	ĸ	F	ĸ	v	A	L	F	s	330
15	1120	TTC	ATG	GGT	CAG	GAC	TTC	AAG	AAG	TTC	AAG	GTG	GCC	CTC	TTC	TCT	1164
	331	R	L	v	N	A	L	s	E	D	т	G	H	s	s	Y	345
	1165	CGC	CTG	GTC	AAT	GCT	CTA	AGT	GAA	GAT	ACA	GGC	CAC	TCT	TCC	TAC	1209
20	346	P	s	H	R	s	F	T	K	M	s	s	M	N	E	R	360
	1210	CCC	AGC	CAT	AGA	AGC	TTT	ACC	AAG	ATG	TCA	TCA	ATG	AAT	GAG	AGG	1254
	361	т	s	M	N	E	R	E	т	G	M	L	*				372
25	1255	ACT	TCT	ATG	AAT	GAG	AGG	GAG	ACC	GGC	ATG	CTT	TGA				1290

Figure 2: Amino acid sequence of human ChemerinR (371 amino acids) (SEQ ID NO 2). The seven predicted transmembrane domaines are underlined. The consensus sequence for *N*-linked glycosylation (N-X-S/T) in the N terminus is bold and the potential site of phosphorylation by PKC (S/T-X-R/K) in the C terminus is in italic.

MEDEDYNTSISYGDEYPDYLDSIVVLEDLSPLEARVTRIFLVVVYSIVCFLGILGNGLVIIIAT

10 FKMKKTVNMVWFLNLAVADFLFNVFLPIHITYAAMDYHWVFGTAMCKISNFLLIHNMFTSVFLL

TIISSDRCISVLLPVWSQNHRSVRLAYMACMVIWVLAFFLSSPSLVFRDTANLHGKISCFNNFS
LSTPGSSSWPTHSQMDPVGYSRHMVVTVTRFLCGFLVPVLIITACYLTIVCKLQRNRLAKTKKP

FKIIVTIIITFFLCWCPYHTLNLLELHHTAMPGSVFSLGLPLATALAIANSCMNPILYVFMGQD

FKKFKVALFSRLVNALSEDTGHSSYPSHRSFTKMSSMNERTSMNERETGML

Figure 3: Nucleotide and deduced amino acid sequence of mouse dez (AC u79525 – SEQ ID NOs:3 and 4, respectively)

5		M ATG		Y TAC	D GAC	A GCT		N AAC		s TCC			Y TAT	D GAT	D GAT	E GAG	15 309
		Y TAC	S TCT	D GAT	G GGC	F TTT	G GGC		F TTT	V GTG	D GAC	L TTG	E GAG	E GAG	A GCG	S AGT	30 354
10	31 355		W TGG	E GAG	A GCC	K AAG	V GTG	A GCC	P CCG	V GTC	F TTC	L CTG	V GTG	V GTG	I ATC	Y TAC	45 399
15		S AGC		V GTG	C TGC	F TTC	L CTC		L CTC	L CTA	G GGC	N AAC	G GGC	L CTG	V GTG	I ATT	60 444
		V GTC	I ATC	A GCC	T ACC	F TTC	K AAG	M ATG	K AAG	K AAG	T ACC	V GTG	N AAC	T ACT	V GTG	W TGG	75 489
20	76 490	F TTT	-	N AAC	L CTG	A GCT	V GTG	A GCC	D GAC	F TTC	L CTG	F TTC	N AAC	I ATC	F TTT	L TTG	90 534
	91	P	M	H	I	T	Y	A	A	M	D	Y	H	W	V	F	105
	535	CCG	ATG	CAC	ATC	ACC	TAC	GCG	GCC	ATG	GAC	TAC	CAC	TGG	GTG	TTC	579
25	106	G	K	A	M	C	K	I	S	N	F	L	L	S	H	N	120
	580	GGG	AAG	GCC	ATG	TGC	AAG	ATC	AGC	AAC	TTC	TTG	CTC	AGC	CAC	AAC	624
30	121	M	Y	T	S	V	F	L	L	T	V	I	S	F	D	R	135
	625	ATG	TAC	ACC	AGC	GTC	TTC	CTG	CTG	ACT	GTC	ATC	AGC	TTT	GAC	CGC	669
30	136	C	I	S	V	L	L	P	V	W	S	Q	N	H	R	S	150
	670	TGC	ATC	TCC	GTG	CTG	CTC	CCC	GTC	TGG	TCC	CAG	AAC	CAC	CGC	AGC	714
35	151	I	R	L	A	Y	M	T	C	S	A	V	W	V	L	A	165
	715	ATC	CGC	CTG	GCC	TAC	ATG	ACC	TGC	TCG	GCC	GTC	TGG	GTC	CTG	GCT	759
•	166	F	F	L	S	S	P	S	L	V	F	R	D	T	A	N	180
	760	TTC	TTC	TTG	AGC	TCC	CCG	TCC	CTT	GTC	TTC	CGG	GAC	ACC	GCC	AAC	804
40	181	I	H	G	K	I	T	C	F	N	N	F	S	L	A	A	195
	805	ATT	CAT	GGG	AAG	ATA	ACC	TGC	TTC	AAC	AAC	TTC	AGC	TTG	GCC	GCG	849
45	196	P	E	S	S	P	H	P	A	H	S	Q	V	V	s	T	210
	850	CCT	GAG	TCC	TCC	CCA	CAT	CCC	GCC	CAC	TCG	CAA	GTA	GTT	TCC	ACA	894
73	211 895	G GGG	Y TAC	S AGC	R AGA	H CAC	V GTG	A GCG	V GTC		V GTC	T ACC	R CGC	F TTC	L CTT	C TGC	225 939
50	226 940	G GGC	F TTC	L CTG	I ATC	P	V GTC	F TTC	I ATC	I ATC	T ACG	A GCC	C TGC	Y TAC	L CTT	T ACC	240 984
	241	I	V	F	K	L	Q	R	N	R	L	A	K	N	K	K	255
	985	ATC	GTC	TTC	AAG	CTG	CAG	CGC	AAC	CGC	CTG	GCC	AAG	AAC	AAG	AAG	1029
55	256 1030	P	F TTC	K AAG	I ATC	I ATC	I ATC	T ACC	I ATC	I ATC	I ATC		F TTC			C TGC	270 1074
60	271	W	C	P	Y	H	T	L	Y	L	L	E	L	H	H	T	285
	1075	TGG	TGC	CCC	TAC	CAC	ACC	CTC	TAC	CTG	CTG	GAG	CTC	CAC	CAC	ACA	1119
,	286 1120										G GGG		P CCC				

Figure 3 Continued

1165 GCC GTC GCC ATC GCC AAC AGC TGC ATG AAC CCC ATT CTG TAC GTC 5 316 F M G H D F R K F K V A L F S	1209
5 316 F M G H D F P K F K V A T. F S	
316 F M C H D F P K F K V A T. F S	
	330
1210 TTC ATG GGC CAC GAC TTC AGA AAA TTC AAG GTG GCC CTC TTC TCC	1254
331 R L A N A L S E D T G P S S Y	345
10 1255 CGC CTG GCC AAC GCC CTG AGT GAG GAC ACA GGC CCC TCC TCC TAC	1299
346 P S H R S F T K M S S L N E K	360
1300 CCC AGT CAC AGG AGC TTC ACC AAG ATG TCG TCT TTG AAT GAG AAG	1344
15 361 A S V N E K E T S T L *	372
1345 GCT TCG GTG AAT GAG AAG GAG ACC AGT ACC CTC TGA	1380

Figure 4: Nucleotide and deduced amino acid sequence of rat G-protein coupled chemoattractant-1 (AC NM_022218 - SEQ ID Nos: 5 and 6, respectively).

5		M ATG		Y TAC		G GGT		n aac		S TCC	S AGC	I ATC	Y TAC	G GGT	E GAG	E GAG	15 45
10		Y TAT	S TCT	D GAC	G GGC	S TCG	D GAC	Y TAC	I ATC	V GTG	D GAC	L TTG	E GAG	E GAG	A GCG	G GGT	30 90
	31 91		L CTG	E GAG	A GCC	K AAG	V GTG	A GCC	E GAG	V GTC	F TTC	L CTG	V GTG	V GTA	I	Y TAC	45 135
15	46 136	-	L TTG	V GTG	C TGC	F TTC	L CTC	G GGG	I ATC	L CTA	G GGC	N AAT	G GGC	L CTG	V GTG	I ATT	60 180
		V GTC	I ATC		T ACC	F TTC	K AAG	M ATG	K AAG	K AAG	T ACG	V GTG	n aac	T ACC	V GTG	W TGG	75 225
20	76 226	F TTT	V GTC	N AAC	_	A GCC	V GTG	A GCT	D GAC	F TTC	L CTG	F TTC	N AAC	I ATC	F TTC	L TTG	90 270
25		CCC	I ATC	H CAC	I ATC	T ACC	Y TAT	A GCC	A GCT	M ATG	D GAC	Y TAC	H CAC	W TGG	V GTG	F TTC	105 315
	106 316	G GGG		A GCC	M ATG	C TGC	K AAG	I ATT	S AGT	S AGC	F TTT	L CTG	L CTA	S AGC	H CAC	N AAC	120 360
30	121 361	M ATG	Y TAC	T ACC	S AGC	V GTC	F TTC	L CTG	L CTC	T ACT	V GTC	I ATC	S AGC	F TTC	D GAC	R CGC	135 405
	136 406	C TGC	I ATC	S TCC	V GTG	L CTC	L CTC	P CCC	V GTC	W TGG	S TCC	Q CAG	N AAC	H CAC	R CGC	S AGC	150 450
35	151 451	V GTG	R CGT	L CTG	A GCC	Y TAC	M ATG	T ACC		V GTG	V GTT	V GTC	W TGG	V GTC	W TGG	L CTT	165 495
40	166 496	S TCT	S TCT	E GAG	S TCT	P CCC	P CCG	S TCC	L CTC	V GTC	F TTC	G GGA	H CAC	V GTC	S AGC	T ACC	180 540
	181 541	S AGC	H CAC	G GGG	K AAG	I ATA	T ACC	C TGC	F TTC	N AAC	N AAC	F TTC	S AGC	L CTG	A GCG	A GCG	195 585
45	196 586	P CCC	E GAG	P CCT	F TTC	S TCT	H CAT	S TCC	T ACC	H CAC	P CCG	R CGA	T ACA	D GAC	P CCG	V GTA	210 630
	211 631	G GGG	Y TAC	S AGC	R AGA	H CAT	V GTG	A GCG	V GTC	T ACC	V GTC	T ACC	R CGC	F TTC	L CTC	C TGT	225 675
50	226 676	G GGC	F TTC	L CTG	I ATC	P CCC	V GTC	F TTC	I ATC	I ATC	T ACG	A GCC	C TGT	Y TAC	L CTC	T ACC	240 720
55	241 721	I ATC	V GTC	F TTC	K AAG	L TTG	Q CAG	R CGC	N AAC	R CGC	Q CAG	A GCC	K AAG	T ACC	K AAG	K AAG	255 765
		P CCC				I ATC		T ACC			I ATC	T ACC	F TTC	F TTC	L CTC	C TGC	270 810
60	271 811	W TGG	C TGC	P CCC	Y TAC	H CAC	T ACA	L CTC	Y TAC	L CTG	L CTG	E GAG	L CTC	H CAC	H CAC	T ACG	285 855
	286	A	v	P	A	s	v	F	s	L	G	L	P	L	A	T	300

Figure 4 Continued

	856	GCT	GTG	CCA	GCC	TCT	GTC	TTC	AGC	CTG	GGA	CTG	CCC	CTG	GCC	ACA	900
5		A					N		_		N	_	_		_	v	315
	901	GCC	GTC	GCC	ATC	GCC	AAC	AGC	TGT	ATG	AAC	CCC	ATC	CTG	TAC	GTC	945
	316	F	M	G	H	D	F	K	K	F	K	V	A	L	F	S	330
10	946	TTC	ATG	GGC	CAC	GAC	TTC	AAA	AAA	TTC	AAG	GTG	GCC	CTT	TTC	TCC	990
	331	R	L	V	N	A	L	S	E	D	T	G	P	S	S	Y	345
	991	CGC	CTG	GTG	AAT	GCC	CTG	AGC	GAG	GAC	ACA	GGA	CCC	TCC	TCC	TAC	1035
	346	P	S	H	R	S	F	T	K	M	S	S	L	I	E	K	360
15	1036	CCC	AGT	CAC	AGG	AGC	TTC	ACC	AAG	ATG	TCC	TCA	TTG	ATT	GAG	AAG	1080
	361	A	s	v	N	E	K	E	T	s	T	L	*				372
	1081	GCT	TCA	GTG	AAT	GAG	AAA	GAG	ACC	AGC	ACC	CTC	TGA				1116

Figure 5: Alignment of ChemerinR

Alignment of the amino acid sequence of ChemerinR (ChemeR23) with AT2 receptors, C3a, C5a and fMLP receptor and other chemoattractants related sequences were performed using ClustalX algorithm. Then, the dendrogram was constucted using TreeView algorithm.

Figure 6: Nucleotide and deduced amino acid sequence of human Preprochemerin (AC Q99969 - SEQ ID Nos: 7 and 8, respectively)

5		M ATG														V GTG	
		G GGC			V GTC								R CGC				30 186
10		~	V GTG			E GAG										W TGG	
15		A GCC		Q CAG	E GAG	T ACC				S AGC		V GTG	_	T ACG	P CCC	F TTC	60 276
15		P CCA		-			V GTG			E GAA	F TTT		L CTG	Q CAG	Q CAG	T ACA	75 321
20	76 322		C TGC	R CGG	K AAG	R AGG		W TGG		K AAA	P CCC	E GAG	C TGC		-	R AGG	
					R AGG							C TGC	I ATC	K AAA	L CTG	G GGC	105 411
25		S TCT			K AAA		L CTG	-		L TTG	V GTC		C TGC	P	I ATA	E GAG	120 456
30					L CTG									T ACC	Q CAG	C TGC	135 501
30	136 502		R AGG	-	Q CAG	R CGG	A GCT	G GGT	E GAG	D GAC	P	H CAC	S AGC	F TTC	Y TAC	F TTC	150 546
35					F TTC			-			_	_		S AGC			164 588

Figure 7: Nucleotide and deduced amino acid sequence of mouse Preprochemerin (SEQ ID Nos: 9 and 10, respectively)

5	1 102	M ATG	K AAG	C TGC	L TTG	L CTG	I ATC	S TCC	L CTA	A GCC	L CTA	W TGG	L CTG	G GGC	T ACA	V GTG	15 146
	16 147	G GGC	T ACA	R CGT	G GGG	T ACA	E GAG	P	E GAA	L CTC	S AGC	E GAG	T ACC	Q CAG	R CGC	R AGG	30 191
10		S AGC	L CTA	_												V GTG	45 236
15	46 237	Q CAG	L TTG	A GCC	F TTC	Q CAA	E GAG	I ATC	G GGT	V GTG	D GAC	R AGA	A GCT	E GAA	E GAA	V GTG	60 281
																Q CAG	
20																T ACA	
								R AGG				L CTG		C TGC		K AAA	
25	106 417	M ATG	D GAC	P CCC	K AAG	G GGT	K AAA	I ATT	L CTA	G GGC	R CGG	I ATA	V GTC	H CAC	C TGC	P CCA	120 461
30		I ATT			_	G GGG	P CCT	Q CAG	D GAT	P CCT	Q CAG	E GAG	L TTG	Q CAA		I ATT	
30		K AAG				A GCT	G GGC	E GAA	D GAC	P CCC	H CAC	G GGC	Y TAC	F TTC	L CTA	P CCT	150 551
35								R AGG	A GCC		R AGA	T ACC	K AAA	* TAA			163 590

Figure 8: Nucleotide and deduced amino acid sequence of human Prochemerin (SEQ ID Nos: 11 and 12 respectively)

5		E GAG	L CTC	T ACG	E GAA	A GCC	Q CAG	R CGC	R CGG	G GGC	L CTG	Q CAG	V GTG	A GCC	L CTG	E GAG	15 45
	16 46	E GAA	F TTT	H CAC	K AAG	H CAC	P CCG	P	V GTG	Q CAG			F TTC		E GAG		30 90
10		S AGT	V GTG											G GGA			45 135
15	46 136	V GTG	R AGG	L CTG	E GAA	F TTT	K AAG	L CTG	Q CAG	Q CAG	T ACA	S AGC	C TGC	R CGG	K AAG	R AGG	60 180
	61 181	D GAC	W TGG	K AAG	K AAA	P CCC	E GAG	C TGC	K AAA	V GTC	R AGG	P CCC	N AAT	G GGG	R AGG	K AAA	75 225
20			K AAA							L CTG	G GGC	S TCT	E GAG	D GAC		V GTT	90 270
	91 271	L CTG	G GGC	R CGG	L TTG	V GTC	H CAC	C TGC	P	I ATA	E GAG	T ACC	Q CAA	V GTT	L CTG	R CGG	105 315
25	106 316	E GAG	A GCT	E GAG	E GAG	H CAC	Q CAG	E GAG	T ACC	Q CAG	C TGC	L CTC	R AGG	V GTG	Q CAG	R CGG	120 360
30	121 361	A GCT	G GGT	E GAG	D GAC	P	H CAC	S AGC	F TTC	Y TAC	F TTC	P CCT	G GGA	Q CAG	F TTC	A GCC	135 405
			S TCC						S AGC								143 429

Figure 9:	Nucleotide and deduced	amino acid	sequence of	human	Chemerin	(SEO
ID Nos 13	and 14 respectively)		-			,

5	1	E GAG	L CTC	T ACG	E GAA	A GCC	Q CAG	R CGC	R CGG	G GGC	L CTG	Q CAG	V GTG	A GCC	L CTG	E GAG	15 45
	16	E	F	H	K	H	P	P	V	Q	W	A	F	Q	E	T	30
	46	GAA	TTT	CAC	AAG	CAC	CCG	CCC	GTG	CAG	TGG	GCC	TTC	CAG	GAG	ACC	90
10	31	S	V	E	S	A	V	D	T	P	F	P	A	G	I	F	45
	91	AGT	GTG	GAG	AGC	GCC	GTG	GAC	ACG	CCC	TTC	CCA	GCT	GGA	ATA	TTT	135
15	46	V	R	L	E	F	K	L	Q	Q	T	S	C	R	K	R	60
	136	GTG	AGG	CTG	GAA	TTT	AAG	CTG	CAG	CAG	ACA	AGC	TGC	CGG	·AAG	AGG	180
	61 181	D GAC	W TGG	K AAG	K AAA	P	E GAG	C TGC	K AAA	V GTC	R AGG	P CCC	N AAT	G GGG	R AGG	K AAA	75 225
20	76	R	K	C	L	A	C	I	K	L	G	S	E	D	K	V	90
	226	CGG	AAA	TGC	CTG	GCC	TGC	ATC	AAA	CTG	GGC	TCT	GAG	GAC	AAA	GTT	270
	91 271	L CTG	G GGC	R CGG	L TTG	V GTC	H CAC	C TGC	P	I ATA	E GAG	T ACC	Q CAA	V GTT	L CTG	R CGG	105 315
25	106	E	A	E	E	H	Q	E	T	Q	C	L	R	V	Q	R	120
	316	GAG	GCT	GAG	GAG	CAC	CAG	GAG	ACC	CAG	TGC	CTC	AGG	GTG	CAG	CGG	360
30	121 361	A GCT	G GGT	E GAG	D GAC	P CCC	H	S AGC	F TTC	Y TAC	F TTC	P CCT	G GGA	Q CAG	F TTC	A GCC	135 405
		F TTC															137 411

Figure 10: Amino acid sequence alignment of human (SEQ ID NO: 8) and mouse Preprochemerin (SEQ ID NO: 10). Identical and similar residues

HUMAN: MERCLIPLALWLGAVGVG--VAELTEAQREGLQVALEEFHKHPPVCWAFQETSWE: 53

MOUSE: MKCLLISLALWLGTVGTRGTEPELSETQRESLQVALEEFHKHPPVCLAFQEIGWD: 55

60 * 80 * 100 * 108

HUMAN: SAVDTPEPAGIFVRLEFKLQQTSCRKRDWKKPECKVRPWGRKRKCLACIKLGSED: 108

MOUSE: RAEEVLESAGTFVRLEFKLQQTNCPKKDWKKPECTIKPWGRRRKCLACIKMDPKG: 110

120 * 140 * 160

HUMAN: KVLGRLVHCPIETCVLREAEEHQETQCLRVQRAGEDPHSFYFPGQFAFSKALPRS: 163

MOUSE: KILGRIVHCPILKQ---GPQDPQELQCIKIAQAGEDPHGYFLPGQFAFSKALPRS: 163

are shaded.

mus MKCLLISLAL WLGTVGTRGT EPELSETQRR SLQVALEEFH KHPPVQLAFQ
rat MKCLLISLAL WLGTADIHGT ELELSETQRR GLQVALEEFH RHPPVQWAFQ
human MRRLLIPLAL WLGAVGV..G VAELTEAQRR GLQVALEEFH KHPPVQWAFQ
sus MWQLLLPLAL WLGTMGL..G RAELTAAQLR GLQVALEEFH KHPPVQWAFR
bos MWQLLLPLAL GLGTMGL..G RAELTTAQHR GLQVALEEFH KHPPVLWAFQ
gallus ~RAVGMKLLL GIAVVVLALA DAGQSPLQRR VVKDVLDYFH SRSNVQFLFR

10 51

mus EIGVDRAEEV LFSAGTFVRL EFKLQQTNCP KKDWKKPECT IKPNGRRRKC
rat EIGVDSADDL FFSAGTFVRL EFKLQQTSCL KKDWKKPECT IKPNGRKRKC
human ETSVESAVDT PFPAGIFVRL EFKLQQTSCR KRDWKKPECK VRPNGRKRKC
sus ETGVNSAMDT PFPAGTFVRL EFKLQQTSCR KRDWKKAECK VKPNGRKRKC
bos VTSVDNAADT LFPAGQFVRL EFKLQQTSCR KKDWRKEDCK VKPNGRKRKC
gallus EQSVEGAVER VDSSGTFVQL HLNLAQTACR KQAQRKQNCR IMENRRKPVC

mus LACIKMDPKG ..KILGRIVH C.PILKQGP. Q..DPQELQC IKIAQAGEDP
rat LACIKLDPKG ..KVLGRMVH C.PILKQGPQ Q..EPQESQC SKIAQAGEDS
human LACIKLGSED ..KVLGRLVH C.PIETQVLR EAEEHQETQC LRVQRAGEDP
sus LACIKLNSED ..KVLGRMVH C.PIETQVQR EPEERQEAQC SRVERAGEDP
bos LACIKLDSKD ..QVLGRMVH C.PIQTQVQR ELDDAQDAQC SRVERAGEDP
gallus LACYKFDSSD VPKVLDKYYN CGPSHHLAMK DIKHRDEAEC RAVEEAGKTS

Figure 11 Continued

151

168

mus HGYFLPGQFA FSRALRTK (SEQ ID NO: 10)

rat RIYFFPGQFA FSRAL (SEQ ID NO: 76)

5 human HSFYFPGQFA FSKALPRS (SEQ ID NO: 8)

sus HSYYFPGQFA FFKALPPS (SEQ ID NO: 77)

bos HSYYLPGQFA FIKAL (SEQ ID NO: 78)

gallus DVLYLPGMFA FSKGLP (SEQ ID NO: 79)

10 Identities:

		bos.pep	mus.pep	sus.pep	gallus	rat.pep
	human.pep	83.750	56.250	86.503	30.675	61.392
	bos.pep		54.375	87.500	31.875	56.329
15	mus.pep			54.375	31.677	73.125
	sus.pep				31.288	58.228
	gallus.pep					30.818

45%. The activity was eluted at 40% CH3CN (indicated by the black horizontal line).

Figure 13: Primary screening of HPLC fractions obtained from the fractionation of human ovary ascites.

The different fractions obtained following fractionation of human ovary ascites were diluted fivefold in the buffer assay and tested in aequorin assay using a cell line expressing ChemerinR (open circles) or cell lines expressing not related receptors (closed triangles and squares). The response obtained for each fraction was normalized using the ATP response of each cell line.

Figure 14: Activation of ChemerinR by cells transfected with Preprochemerin (TIG 2)

293 T cells were transiently transfected with pCDNA3- Preprochemerin (TIG2) or with pCDNA3 alone (mock transfected). Increasing volumes of the supernatant collected 4 days following transfection were analysed in a aequorin-based assay with CHO cells expressing ChemerinR. A representative experiment is shown. Assay was performed in triplicate and SD are indicated.

Figure 15: Characterization of antibodies directed against ChemerinR

10

A mixture of recombinant cells made up of 2/3 recombinant ChemerinR CHO cells and 1/3 recombinant HCR CHO cells (negative control) was subject to react with either a supernatant of the anti ChemerinR 5C 1H2 monoclonal antibody (thick line) or a supernatant with no known antibody activity (thin line, grey filling). After staining with FITC labeled anti mouse Ig these preparations were analysed by flow cytofluorometry. Results are displayed as a histogram of the number of cells (Events axis) expressing a given fluorescence (FL1-H axis). Monoclonal 5C 1H2 allowed to discriminate the ChemerinR recombinant sub-population of cells from the negative control cells as evidenced by the relative proportions of both type of cells. The background fluorescence of the assay is given by the second staining (grey filling).

Figure 16.

Nucleotide (SEQ ID NO: 72) and deduced amino acid sequence (SEQ ID NO: 73) of a human truncated form of Proprechemerin

5																	
		M ATG					I ATC				L CTG					V GTG	
10		G GGC	V GTG	-	V GTC			L CTC	T ACG	E GAA	A GCC	Q CAG	R CGC	R CGG	_	L CTG	30 90
		-														W TGG	
15			F TTC	Q CAG	_		S AGT		_		A GCC	V GTG	D GAC	T ACG	P CCC	F TTC	
		P CCA	À GCT	G GGA	I ATA	F TTT			L CTG	E GAA	_	K AAG	L CTG	Q CAG	Q CAG	T ACA	
20																R AGG	
25		P CCC					R CGG				A GCC	C TGC	I ATC	K AAA	_	G GGC	105 315
		S TCT		_		V GTT	L CTG	_			V GTC	H CAC	C TGC	P CCC		E GAG	120 360
30	121 361	_	_	V GTT		R CGG	E GAG	A GCT	E GAG		H CAC	Q CAG	E GAG	T ACC	_	C TGC	135 405
		L CTC			Q CAG	R CGG	A GCT	G GGT	E GAG	D GAC	P CCC	H CAC	S AGC	F TTC	Y TAC	F TTC	
35	151 451	P CCT		-	F TTC												157 471

Figure 16 Continued

PURIFIED TRUNCATED hTIG2 ACTIVITY ON CHEMR23 CHO-AEQUORIN CELLS

Figure 18.

TIG2 LOCALIZATION

HCHEMR23 LOCALIZATION

Figure 20a Human Chemerin peptides

Human prochemerin-25 QRAGEDPHSFYFPGQFAFSKALPRS

Human prochemerin-6 KALPRS

Human Chemerin-19 QRAGEDPHSFYFPGQFAFS

5 Human [Lys-20]Chemerin-19 QRAGEDPHSFYFPGQFAFSK

Human [ΔSer19]Chemerin-19 QRAGEDPHSFYFPGQFAF

Human [ΔPhe18Ser19]Chemerin-19 QRAGEDPHSFYFPGQFA

Human Chemerin-17 AGEDPHSFYFPGQFAFS

Human Chemerin-15 EDPHSFYFPGQFAFS

10 Human Chemerin-13 PHSFYFPGQFAFS

Human Chemerin-12 HSFYFPGQFAFS

Human Chemerin-11 SFYFPGQFAFS

Human Chemerin-10 FYFPGQFAFS

Human Chemerin-9 YFPGQFAFS

15 Human Chemerin-8 FPGQFAFS

Human Chemerin-7 PGQFAFS

Human Chemerin-6 GQFAFS

Human Chemerin-5 QFAFS

Human [Ala-1]Chemerin-9 AFPGQFAFS

20 Human [Ala-2]Chemerin-9 YAPGQFAFS

Human [Ala-3]Chemerin-9 YFAGQFAFS

Human [Ala-4] Chemerin-9 YFPAQFAFS

Human [Ala-5] Chemerin-9 YFPGAFAFS

Human [Ala-6] Chemerin-9 YFPGQAAFS

25 Human [Ala-8]Chemerin-9 YFPGQFAAS

Human [Ala-9]Chemerin-9 YFPGQFAFA

Figure 20b Mouse Chemerin polypeptides

Mouse Chemerin-19 AQAGEDPHGYFLPGQFAFS (SEQ ID NO: 43)

Mouse Chemerin-12 HGYFLPGQFAFS (SEQ ID NO: 44)

5 Mouse Chemerin-11 GYFLPGQFAFS (SEQ ID NO: 45)

Mouse Chemerin-10 YFLPGQFAFS (SEQ ID NO: 46)

Mouse Chemerin-9 FLPGQFAFS (SEQ ID NO: 47)

Mouse Chemerin-8 LPGQFAFS (SEQ ID NO: 48)

Mouse prochemerin-26 IAQAGEDPHGYFLPGQFAFSRALRTK (SEQ ID

10 NO: 49)

Mouse [Arg-21] Chemerin-20 IAQAGEDPHGYFLPGQFAFSR (SEQ ID NO: 50)

Figure 21. Purification of the natural ligand of the ChemR23 receptor from human inflammatory fluid. A, First step HPLC fractionation (Poros column) of human ascitic fluid. The absorbance (AU) and biological activity on ChemR23 (luminescence in an aequorin-based assay, normalized to the ATP response, black bars) are shown. B, Third step (cation-exchange column). C, Fourth step (C18 column). D, Last step purification of the active compound (C18 column). The X axis is zoomed to focus on the region of interest.

A

B

#	a.a.	Sequence	M+H
1	72-78	(K) LQQTSCR (K)	835.41
2	81-88	(R) DWKKPECK (V)	1033.51
3*	29-39	(R) GLQVALEEFHK (H)	1270.68
4	98-109	(K) CLACIKLGSEDK (V)	1279.64
5*	114-125	(R) LVHCPIETQVLR (E)	1407.78
6	28-39	(R) RGLQVALEEFHK (H)	1426.78
7*	126-137	(R) EAEEHQETQCLR (V)	1472.64
8*	141-157	(R) AGEDPHSFYFPGQFAFS (K)	1904.02

Figure 22. Identification of Chemerin as the natural ligand of ChemR23, the Chemerin receptor. A, Monoisotopic peptide mass fingerprinting of the active fraction on a Maldi Q-TOF mass spectrometer following trypsin digestion. B, Sequences corresponding to selected major peaks of the Maldi Q-TOF mass spectrometer spectrum following trypsin digestion. Peptides 1-7 correspond to tryptic peptides derived from the TIG-2 gene product (prochemerin), while peptide 8 is not tryptic and corresponds to the C-terminal end of the purified protein. The position of the peptides within this sequence is given. The sequence of peptides in peaks 3, 5, 7 and 8 was confirmed by microsequencing. C, Amino acid sequence alignment of human (SEQ ID NO: 8) and mouse (accession number: AK002298, SEQ ID NO: 10) preprochemerin, and human cathelicidin FALL39 (SEQ ID NO: 51) precursor. Aminoacid identities as compared to human preprochemerin are boxed. The signal peptides (predicted for mouse preprochemerin) are in bold lowercase characters, cysteines are in bold. Cleaved C-terminal peptides are in bold italics and underlined (predicted by analogy for mouse prochemerin). The location of introns (that interrupt the gene coding sequences between codons) are indicated by arrowheads.

Figure 23. Pharmacology of the Chemerin receptor. A, SDS/PAGE of humanrecombinant Chemerin, expressed in CHO-K1 cells and purified by HPLC. The gel was silver stained and the major band corresponds to a protein of 18 kDa. Mass spectrometry analysis demonstrated the cleavage of the six C-terminal amino acids in this biologically active protein. B, Biological

Figure 23 Continued

5

activity on ChemerinR of human recombinant Chemerin (filled circles) and prochemerin (open circles), using the aequorin assay. C, Competition binding assay using as tracer an iodinated peptide derived from the Chemerin C-terminus. Competition was performed with the unlabeled peptide (open squares) or human recombinant Chemerin (filled circles). D, Concentration-action curve of human Chemerin in a GTP [35S]-binding assay, using membranes of CHO/ChemerinR cells. E, Immunodetection of phosphorylated ERK1/2 in CHO/ChemerinR cells, following stimulation by human recombinant Chemerin for 2 min. F, Kinetics of ERK1/ERK2 activation following stimulation by 10 nM human Chemerin. Each experiment was repeated at least three times.

Figure 24. Expression of human Chemerin and its receptor. A, Conversion of human recombinant prochemerin (100 nM) in conditioned medium from hamster CHO-K1 cells. Conversion rate was estimated by comparing the biological activity with that of the same molar

Figure 24 Continued

5

amount of purified processed Chemerin. **B** and **C**, Transcripts encoding human ChemerinR (**B**) and prochemerin (**C**) were amplified by quantitative RT-PCR in a set of human tissues and cell populations. PBMC: peripheral blood mononuclear cells, iDC: immature dendritic cells. **D** and **E**, The expression of ChemerinR was analyzed by FACS in immature (solid line) and mature dendritic cells (gray area), following stimulation by LPS (**D**) or CD40L (**E**), using the 1H2 monoclonal antibody (IgG2A). Control labeling (dotted line) was made with an antibody of the same isotype. **F**, ChemerinR expression on macrophages was monitored using the 1H2 (thick solid line) and 4C7 (thin solid line) monoclonal antibodies. Control labeling (dotted line) was made with an antibody of the same isotype.

Figure 25A. Biological activity of Chemerin and C-terminal peptides on ChemR23. The biological activity of human recombinant prochemerin, human recombinant processed Chemerin, a 25 amino-acid C-terminal peptide of prochemerin, the corresponding 19 amino-acid C-terminal peptide of processed Chemerin, on human ChemR23 expressed in a CHO-K1 cell line, using the aequorin-based intracellular Ca²⁺ release assay (aequorin assay).

Figure 25B. Effect of C-terminal truncation on Chemerin biological activity. Biological activity of peptid5s C-terminally extended or truncated as compared to the C-terminus of processed Chemerin. (human Chemerin-19) on human ChemR23 expressed in a CHO-K1 cell line, using the aequorin-based intracellular Ca²⁺ release assay (aequorin assay)

Figure 25C. Effect of N-terminal truncation on the biological activity of Chemerin-derived peptides. Biological activity of peptides N-terminally truncated as compared to human Chemerin-19 on human ChemR23 expressed in a CHO-K1 cell line, using the aequorin-based intracellular Ca²⁺ release assay (aequorin assay).

FIGURE 4

Figuré 25D. Alanine scan of the Chemerin-9 peptide. Biological activity of peptides representing an alascan of the shorter C-terminal peptide (Chemerin-9) displaying an almost full activity on human ChemR23 expressed in a CHO-K1 cell line, using the aequorin-based intracellular Ca²⁺ release assay (aequorin assay).

Figure 26. Biological activity of Chemerin on primary cells. A, Inhibition of the functional response of CHO-K1 cells expressing the ChemerinR (aequorin assay) by the 4C7 anti-ChemerinR monoclonal antibody. The cells were preincubated for 30 min at room temperature with various amounts of the 4C7 antibody before stimulation by 10 nM recombinant Chemerin. The data were normalized according to the response in the absence of antibody (100%) and in the absence of agonist (0%). B, Chemotaxis of human immature dendritic cells by recombinant Chemerin. Results are expressed as the mean \pm s.d. (n = 3), and are representative of three donors. C, Chemerin-induced (10 pM) dendritic cell migration was inhibited by pertussis toxin (3 µg/ml) pretreatment of the cells, as well as by preincubation of the cells with the 4C7 monddonal antibody (10 µg/ml). Checkerboard analysis investigates chemotactic versus chemokinetic effects of Chemerin on dendritic cells. Human Chemerin (10 pM) was added to the lower and/or upper chamber of the chemotaxis device. The chemokine RANTES (10 nM) was used as a positive control in the experiments. D, Ca2+ flux in monocyte-derived dendritic cells in response to recombinant Chemerin (30 nM, arrow). E, The same experiment after 30 min preincubation of the cells with the 4C7 monoclonal antibody (10 µg/ml). F, Chemerin-induced macrophage migration (10 and 100 pM) and its inhibition by Pertussis toxin (3 µg/ml) pretreatment and 4C7 monoclonal antibody (10 µg/ml). Checkerboard analysis investigates chemotactic versus chemokinetic effects of Chemerin on macrophages. G, Ca2+ flux in macrophages in response to recombinant Chemerin (30 nM, arrow). H, The same experiment after 30 min preincubation of the cells with the 4C7 monoclonal antibody (10 µg/ml).

Figure 27. Anti-tumor activity of mouse Chemerin in vivo. A-C, Estimation of the proportion of cell population in G1, G2 and S phase following BrdU incorporation and propidium iodide staining. FACS analysis of control (A) and prochemerin-expressing B16/F0 (B) cells, and percentage of cells in S phase (C). D, Estimation size of tumors in mice, following the graft of B16/F0 cells expressing (filled circles) or not (open squares) mouse Chemerin. The data represent the mean ± s.e.m. for n=11 in each group, and are representative of three experiments performed independently with similar results. :p<0.05,*: p<0.01, unpaired non parametric Mann-Whitney test. E and F, Hematoxylineosin staining of cryosections through control (E) and prochemerin-expressing (F) tumors, 18 days after the graft.