LONTIUM SEMICONDUCTOR **CORPORATION**

ClearEdgeTM Technology

HDMI1.4 to Dual-port MIPI DSI/CSI with Audio

Datasheet

1. Features

HDMI1.4 Receiver

- Compliant with the HDMI 1.4 specification with TMDS data rates up to 3.4Gbps per channel
- Support HDCP 1.4
- Adaptive receiver Equalization for PCB, cable and connector losses

● Single/Dual-Port MIPI® DSI/CSI Transmitter

- Compliant with DCS1.02, D-PHY1.2& DSI1.02 &CSI-2 1.0
- 1 Clock Lane, and 1~4 Configurable Data Lanes per port
- 1/2 configurable port
- 80Mb/s~1.5Gb/s per Data Lane
- Data Lane and Polarity Swapping
- Maximum 64Pixels overlap for each half
- Burst Mode and Command ModeSupported
- Support RGB666, Loosely RGB666, RGB888, RGB565, 16-bit YCbCr4:2:2,20-bit YCbCr4:2:2,24-bit YCbCr 4:2:2, 12-bit YCbCr4:2:0Video Format
- Video stream copy mode for each single/dual-port
- Side-by-side 3D support
- Port swap

Miscellaneous

- 3.3V/1.2VSupply Power
- Internal CSC support conversions between YCbCr 4:4:4
 and RGB, and between YCbCr 4:2:2 and YCbCr 4:4:4
- Support SPDIF and 2-channel IIS audio output

- Support 100KHz and 400KHz I2C slave
- Power from phone or adapter mode selection
- Integrated Microprocessor
- Embedded EDID shadow.
- Temperature Range: -40°C ~ +85°C
- ESD 4kV HBM

2. Description

The LT6911C is a high performance HDMI1.4 to MIPI®DSI/CSI chip for VR/Smart phone/Display application. For MIPI®DSI/CSI output, LT6911C features configurable single-port or dual-port MIPI®DSI/CSI with 1 high-speed clock lane and 1~4 high-speed data lanes operating at maximum 1.5Gb/s/lane, which can support a total bandwidth of up to 12Gbps. LT6911C supports Burst mode DSI video data transferring, also support flexible video data mapping path.

For 2D video stream, the same video stream can be mapped to two separated panel, for 3D video format, left side data can be sent to one panel, and right side data can be sent to another panel.

3. Applications

- Mobile system
- Display
- VR

Figure 3.1 Application Diagram

4. Ordering Information

Table 4.1 Ordering Information

Part Number	Operating Temperature Range	e Package Packing N	
LT6911C	-40°C to+85°C	QFN64 (7.5*7.5)	Tray

Table of Contents

1. Features	
2. Description	
3. Applications	
4. Ordering Information	
5. Revision History	
3. Applications	
6.1 Pin Configuration	6
6.2 Pin Description	\sim 7
7. Function Description	<u> </u>
7.1 Function Block Diagram	(
8. Specification	10
8.1 Absolute Maximum Conditions	10
8.2 Normal Operating Conditions	10
8.3 DC Characteristics	10
8.4 AC Characteristics	1′
8.5 Power Consumption	12
8.6 Power-up and Reset Sequence	12
9. Package Information	13
5. Revision History 6. Pinning Information 6.1 Pin Configuration 6.2 Pin Description 7. Function Description 7.1 Function Block Diagram 8. Specification 8.1 Absolute Maximum Conditions 8.2 Normal Operating Conditions 8.3 DC Characteristics 8.4 AC Characteristics 8.5 Power Consumption 8.6 Power-up and Reset Sequence 9. Package Information	

5. Revision History

Version	Owner	Content	Date
R1.0	XF CH	Initial datasheet creation	03/09/2017
R1.1	R1.1 Terry Update pin and package information		05/22/2017
R1.2	Terry	Update pin and package information	06/22/2017

Jones Confidential for the Hills I have been a second and the seco

6. Pinning Information

6.1 Pin Configuration

To improve signal integrity, all differential pairs should be routed with $100\Omega\pm10\%$ differential impedance. Maximum trace length mismatch should be less than 5mil and keep total trace length to a minimum for all differential traces. Routing differential pairs on the top or bottom layer with no vias as on signal path is highly recommended.

Figure 6.1.1 LT6911C Pin Assignment (Top View)

To minimize the power supply noise floor, at least one 0.1µF and one 0.01µF decoupling capacitors recommended to be installed near all the LT6911C power pins. To avoid large current loops and trace inductance, thetrace length between decoupling capacitor and device power inputs pins must be minimized.

6.2 Pin Description

Table 6.2.1 Pin Description

Pin#	Pin Name	I/O Type	I/O Dir	Description
65	VSS	PG	I/O	Ground(EPAD)
14,25,32	VCC33_IO	PG	I/O	3.3V IO Power
62	VCC33_BG	PG	I/O	3.3V Power for BG
7	VCC33_RX	PG	I/O	3.3V Power for RX
45	VCC33_TX2	PG	I/O	3.3V Power for MIPI TX Port2
33	VCC33_TX3	PG	I/O	3.3V Power for MIPI TX Port3
47	VCC33_TXPLL	PG	I/O	3.3V Power for TXPLL
24,30,60	VDD	PG	I/O	1.2V Core Power
10	VCC12_PI	PG	I/O	1.2V Power for PI
13	VCC12_RXPLL	PG	I/O	1.2V Power for RXPLL
4	VCC12A_RX	PG	I/O	1.2V Power for RX Analog Part
1	VCC12D_RX	PG	I/O	1.2V Power for RX Digital Part
59	VCC12_TX0	PG	I/O	1.2V Power for MIPI TX Port0
48	VCC12_TX1	PG	I/O	1.2V Power for MIPI TX Port1
46	VCC12_TX2	PG	1/0	1.2V Power for MIPI TX Port2
34	VCC12_TX3	PG	1/0	1.2V Power for MIPI TX Port3
11	D2N	Analog	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	RX Data Channel Lane-2 Negative Input Maximum data rate is 3.4Gbps.
12	D2P	Analog	_	RX Data Channel Lane-2 Positive Input Maximum data rate is 3.4Gbps.
8	D1N	Analog	-	RX Data Channel Lane-1 Negative Input Maximum data rate is 3.4Gbps.
9	D1P	Analog	I	RX Data Channel Lane-1 Positive Input Maximum data rate is 3.4Gbps.
5	DON	Analog	I	RX Data Channel Lane-0 Negative Input Maximum data rate is 3.4Gbps.
6	DOP	Analog	I	RX Data Channel Lane-0 Positive Input Maximum data rate is 3.4Gbps.
2	CKN	Analog	1	RX Clock Channel Negative Input Maximum clock rate is 340MHz.
3	CKP	Analog	I	RX Clock Channel Positive Input Maximum clock rate is 340MHz.
17	NC	Analog	1/0	Connect 100k Ohm to GND
18	NC	Analog	I/P	Connect 100k Ohm to GND
64	XTALI	Analog	I/O	XTAI for Debug
63	XTALO	Analog	1/0	XTAO for Debug
57	M3_P1	Analog	0	MIPI TX Port1/Lane3 Channel Positive Input Maximum data rate is 1.5Gbps.
58	M3_N1	Analog	0	MIPI TX Port1/Lane3 Channel Negative Input Maximum data rate is 1.5Gbps.
55	M2_P1	Analog	0	MIPI TX Port1/Lane2 Channel Positive Input Maximum data rate is 1.5Gbps.
56	M2_N1	Analog	0	MIPI TX Port1/Lane2 Channel Negative Input Maximum data rate is 1.5Gbps.
53	MCK_P1	Analog	0	MIPI TX Port1/Clock Channel Positive Input Maximum Frequency is 750MHz.

Pin#	Pin Name	I/O Type	I/O Dir	Description
54	MCK_N1	Analog	0	MIPI TX Port1/Clock Channel Negative Input Maximum Frequency is 750MHz.
51	M1_P1	Analog	0	MIPI TX Port1/Lane1 Channel Positive Input Maximum data rate is 1.5Gbps.
52	M1_N1	Analog	0	MIPI TX Port1/Lane1 Channel Negative Input Maximum data rate is 1.5Gbps.
49	M0_P1	Analog	0	MIPI TX Port1/Lane0 Channel Positive Input Maximum data rate is 1.5Gbps.
50	M0_N1	Analog	0	MIPI TX Port1/Lane0 Channel Negative Input Maximum data rate is 1.5Gbps.
43	M3_P3	Analog	0	MIPI TX Port3/Lane3 Channel Positive Input Maximum data rate is 1.5Gbps.
44	M3_N3	Analog	0	MIPI TX Port3/Lane3 Channel Negative Input Maximum data rate is 1.5Gbps.
41	M2_P3	Analog	0	MIPI TX Port3/Lane2 Channel Positive Input Maximum data rate is 1.5Gbps.
42	M2_N3	Analog	0	MIPI TX Port3/Lane2 Channel Negative Input Maximum data rate is 1.5Gbps.
39	MCK_P3	Analog	0	MIPI TX Port3/Clock Channel Positive Input Maximum Frequency is 750MHz.
40	MCK_N3	Analog	0	MIPI TX Port3/Clock Channel Negative Input Maximum Frequency is 750MHz.
37	M1_P3	Analog	O	MIPI TX Port3/Lane1 Channel Positive Input Maximum data rate is 1.5Gbps.
38	M1_N3	Analog	O	MIPI TX Port3/Lane1 Channel Negative Input Maximum data rate is 1.5Gbps.
35	M0_P3	Analog	o	MIPI TX Port3/Lane0 Channel Positive Input Maximum data rate is 1.5Gbps.
36	M0_N3	Analog	0	MIPI TX Port3/Lane0 Channel Negative Input Maximum data rate is 1.5Gbps.
15	DSDA	Schmitt, OD	I/O	Slave I2C SDA Signal For EDID
16	DSCL	Schmitt, OD	ı	Slave I2C SCL Signal For EDID
23	RX_HPD	OD	0	Hot Plug Signal
28	IIS SCLK	LVTTL	1/0	SCLK of IIS
31	JIS DO/SPDIF	LVTTL	I/O	D0/SPDIF of IIS
26	GPIO5	LVTTL	I/O	GPIO
27	IIS_WS	LVTTL	I/O	WS of IIS
20	RSTN	Schmitt	I	External Reset Signal, Low is Reset.
29	IIS_MCLK	LVTTL	I/O	MCLK of IIS
19	SLEEP_33	Schmitt	I	External Sleep Mode Control Signal
¥ 122	CSDA	Schmitt, OD	I/O	Slave I2C SDA Signal For Program Register
21	CSCL	Schmitt, OD	ı	Slave I2C SCL Signal For Program Register
61	REXT	Analog	0	External 7.68Kohm Resistor For BG
L.	1		ı	

7. Function Description

7.1 Function Block Diagram

Figure 7.1.1 Function Block Diagram

8. Specification

8.1 Absolute Maximum Conditions

Table 8.1.1 Absolute Maximum Conditions

Symbol	Description	Min	Тур	Max	Unit
VCC33_IO, VCC33_TX2,VCC33_TX3,VC C33_BG, VCC33_TXPLL VCC33_RX	3.3V Power Supply Voltage	-0.3		3.63	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
VDD,VCC12_TX0,VCC12_TX 1, VCC12_TX2,VCC12_TX3, VCC12A_RX,VCC12D_RX,VC C12_PI,VCC12_RXPLL	1 2V Dower Supply Voltage	-0.3		1.32	V
Vı	CMOS Terminal Input Voltage Range	-0.3		3.63	V
Vo	CMOS Terminal Output Voltage Range	-0.3		3.63	V
Ts	Storage Temperature	-40		125	℃
ESD	HBM Elastrostatic Discharge Level		4000		V

8.2 Normal Operating Conditions

Table 8.2.1 Normal Operating Conditions

Symbol	Description	Min	Тур	Max	Unit
VCC33_IO, VCC33_TX2,VCC33_TX3,VC C33_BG, VCC33_TXPLL, VCC33_RX	3.3V. Power Supply Voltage	2.97	3.3	3.63	V
VDD,VCC12_TX0,VCC12_TX 1, VCC12_TX2,VCC12_TX3, VCC12A_RX,VCC12D_RX,VC C12_PI,VCC12_RXPLL		1.08		1.32	V
VCC	Power Supply Voltage Noise			50	mV
TA	Operating Free-air Temperature	-40	27	85	$^{\circ}$

8.3 DC Characteristics

Table 8.3.1 DC Characteristics

TMDS RX DC Specifications					
Symbol	Parameter	Min	Тур	Max	Unit
Vidiff	Differential input voltage level	150		1200	mV
Vicm	Input common mode voltage	AVCC-		AVCC-	mV

Permanent device damage may occur if absolute maximum conditions are exceeded.
 Function operation should be restricted to the conditions described under Normal Operating Conditions.

			400		37.5	
Rterm	Single-ended termination resistance		45	50	55	Ω
MIPI HS Line Tr	MIPI HS Line Transmitter DC Specifications					
Symbol	Parameter		Min	Тур	Max	Unit
VIDTH	Differential input high voltage threshold				70	mV_
VIDTL	Differential input low voltage threshold		-70			mV
VIHHS	Single ended input high voltage				460	mV
VILHS	Single ended input low voltage		-40		0	mV
VCMRXDC	Input common mode voltage		70	~	? 330	mV
	Differential input impedance		80		125	Ω
MIPI LP Line Tra	ansmitter DC Specifications					
Symbol	Parameter	\triangle	Min	Тур	Max	Unit
VIL-ULPS	Logic 0 input voltage, in ULP State				300	mV
VIL	Logic 0 input voltage, not in ULP State	X.			550	mV
VIH	Input high voltage		880			mV
VHYST	Input hysteresis	TAX TAX	25			mV

8.4 AC Characteristics

Table 8.4.1 AC Characteristics

TMDS RX AC Sp	ecifications				
Symbol	Parameter	Min	Тур	Max	Unit
Vs	Minimum differential sensitivity(peak to peak) after the reference cable equalizer	150			mV
T_intra_skew	Intra-pair skew at sink connector			0.15T+ 112	ps
T_inter_skew	Inter-pair skew at sink connector			0.2Tch aractor +1.78	ns
Tjitter	TMDS clock jitter			0.3Tbit	ps
MIPI HS Line Transmitter AC Specifications					
Symbol	Parameter	Min	Тур	Max	Unit
ΔVCMRX(HF)	Common mode interference beyond 450MHz			200	mVpp
ΔVCMRX(LF)	Common mode interference between 50MHz and 450MHz.	-50		50	mVpp
Ccm	Common mode termination			60	pF
Rterm	Termination Resister	80	100	125	Ω
MIPI LP Line Tra	nsmitter AC Specifications				
Symbol	Parameter	Min	Тур	Max	Unit
eSPIKE	Input pulse rejection			300	V.ps
TMIN	Minimum pulse response	20			ns
VINT	Peak interference voltage			200	mV
fINT	Interference frequency	450			MHz

8.5 Power Consumption

Table 8.5.1 Power Consumption

Condition	Supply Current(3.3V)	Supply Current(1.2V)	Unit
4Kx2K@30Hz	80	350	mA
1080P	TBD	TBD	mA
			D.

8.6 Power-up and Reset Sequence

Note: 1.2V power should be ready before 3.3V power or maximum 1ms later than 3.3V, the reset signal should be released after 1.2V power is ready.

Figure 8.6.1 Power-up and Reset Sequence

9. Package Information

The LT6911C is packaged in a 64-lead QFN package with ePad.

The ePad needs to be soldered to the PCB. The information in the following paragraphs is provided for applications which solder the ePad to the PCB.

The ePad must not be electrically connected to any other voltage level except ground (GND). A clearance of at least 0.25mm should be designed on the PCB between the edge of the ePad and the inner edges of the lead pads to avoid any electrical

Figure 9.1 Package Dimensions

Copyright © 2017 Lontium Semiconductor Corporation, All rights reserved.

Lontium Semiconductor Proprietary & Confidential

This document and the information it contains belong to Lontium Semiconductor. Any review, use, dissemination, distribution or copying of this document or its information outside the scope of a signed agreement with Lontium is strictly prohibited.

LONTIUM DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THOSE OF NONINFRINGEMENT, MERCHANTABILITY, TITLE AND FITNESS FOR A PARTICULAR PURPOSE. CUSTOMERS EXPRESSLY ASSUME THEIR OWN RISH IN RELYING ON THIS DOCUMENT.

LONTIUM PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN LIFE SUPPORT APPLIANCES, DEVICES OR SYSTEMS WHERE A MALFUNCTION OF A CONTIUM DEVICE COULD RESULT IN A PERSONAL INJURY OR LOSS OF LIFE.

Lontium assumes no responsibility for any errors in this document, and makes no commitment to update the information contained herein. Lontium reserves the right to change or discontinue this document and the products it describes at any time, without notice. Other than as set forth in a separate, signed, written agreement, Lontium grants the user of this document no right, title or interest in the document, the information it contains or the intellectual property in embodies.

Trademarks

Lontium™ 龙迅™ and ClearEdge™ is a registered trademark of Lontium Semiconductor. All Other brand names, product names, trademarks, and registered trademarks contained herein are the property of their respective owners.

Visit our corporate web page at: www.lontiumsemi.com

Technical support: support@lontium.com

Sales: sales@lontium.com