1. **Relation** A relation R from set X to a set Y is defined as a subset of the cartesian product $X \times Y$. We can also write it as $R \subseteq \{(x, y) \in X \times Y : xRy\}$.

NOTE If n(A) = p and n(B) = q from set A to set B, then $n(A \times B) = pq$ and number of relations $= 2^{pq}$.

2. Types of Relation

(i) Empty Relation A relation R in a set X, is called an empty relation, if no element of X is related to any element of X,

 $R = \phi \subset X \times X$

(ii) Universal Relation A relation R in a set X, is called universal relation, if each element of X is related to every element of X,

 $R = X \times X$

(iii) Reflexive Relation A relation R defined on a set A is said to be reflexive, if

$$(x, x) \in R, \forall x \in A$$

or

 $xRx, \forall x \in R$

(iv) Symmetric Relation A relation R defined on a set A is said to be symmetric, if

$$(x, y) \in R \implies (y, x) \in R, \forall x, y \in A$$

or

 $xRy \Rightarrow yRx, \forall x, y \in R.$

- (v) Transitive Relation A relation R defined on a set A is said to be transitive, if $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R$, $\forall x, y, z \in A$ or xRy, $yRz \Rightarrow xRz$, $\forall x, y, z \in R$.
- 3. Equivalence Relation A relation R defined on a set A is said to be an equivalence relation, if R is reflexive, symmetric and transitive.
- Equivalence Classes Given an arbitrary equivalence relation R in an arbitrary set X, R
 divides X into mutually disjoint subsets A_i called partitions or sub-divisions of X
 satisfying
 - (i) all elements of Ai are related to each other, for all i.
 - (ii) no element of A_i is related to any element of A_i , $i \neq j$.
 - (iii) $A_i \cup A_j = X$ and $A_i \cap A_j = \emptyset, i \neq j$. The subsets A_i and A_j are called equivalence classes.
- 5. Function Let X and Y be two non-empty sets. A function or mapping f from X into Y written as $f: X \to Y$ is a rule by which each element $x \in X$ is associated to a unique element $y \in Y$. Then, f is said to be a function from X to Y.

The elements of X are called the domain of f and the elements of Y are called the codomain of f. The image of the element of X is called the range of X which is a subset of Y.

NOTE Every function is a relation but every relation is not a function.

6. Types of Functions

(i) One-one Function or Injective Function A function $f: X \to Y$ is said to be a one-one function, if the images of distinct elements of x under f are distinct, i.e. $f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2, \forall x_1, x_2 \in X$

A function which is not one-one, is known as many-one function.

- (ii) Onto Function or Surjective Function A function f: X → Y is said to be onto function or a surjective function, if every element of Y is image of some element of set X under f, i.e. for every y ∈ y, there exists an element X in x such that f(x) = y. In other words, a function is called an onto function, if its range is equal to codomain.
- (iii) Bijective or One-one and Onto Function A function f: X → Y is said to be a bijective function, if it is both one-one and onto.
- 7. Composition of Functions Let $f: X \to Y$ and $g: Y \to Z$ be two functions. Then, composition of functions f and g is a function from X to Z and is denoted by $f \circ g$ and given by $(f \circ g)(x) = f[g(x)], \forall x \in X$.

NOTE

- (i) In general, $fog(x) \neq gof(x)$.
- (ii) In general, gof is one-one implies that f is one-one and gof is onto implies that g is onto.
- (iii) If $f: X \to Y$, $g: Y \to Z$ and $h: Z \to S$ are functions, then ho(gof) = (hog)of
- 8. Invertible Function A function f: X → Y is said to be invertible, if there exists a function g: Y → X such that gof = I_x and fog = I_y. The function g is called inverse of function f and is denoted by f⁻¹.

NOTE

- (i) To prove a function invertible, one should prove that, it is both one-one or onto, i.e. bijective.
- (ii) If f: X → Y and g: Y → Z are two invertible functions, then gof is also invertible with (gof)⁻¹ = f⁻¹ o g⁻¹.