▼ Teste Ciência de Dados Smarkio - Análise ML

Esse projeto foi publicado em: https://github.com/rafaelrlima/smarkio_test_data_science

Teste realizado por: Rafael Ribeiro de Lima

Status: Em execução

Etapas executadas nesse arquivo:

- Análise exploratória dos dados utilizando estatística descritiva e inferencial, considerando uma, duas e/ou mais variáveis;
- 2. Calcule o desempenho do modelo de classificação utilizando pelo menos três métricas;
- 3. Crie um classificador que tenha como output se os dados com status igual a revision estão corretos ou não (Sugestão : Técnica de cross-validation K-fold);
- 4. Compare três métricas de avaliação aplicadas ao modelo e descreva sobre a diferença;

Imports

```
import pandas as pd
import numpy as np
from pandas import DataFrame
from sklearn.preprocessing import LabelEncoder #pré-processamento
from sklearn.preprocessing import MinMaxScaler #padronização
from sklearn.neighbors import KNeighborsClassifier #classificador
from sklearn.model_selection import train_test_split #separando em dados teste e treinamento
from sklearn.metrics import classification report # metricas de validação
from sklearn.metrics import accuracy_score #acuracia
from sklearn.metrics import precision score #precision
from sklearn.metrics import recall score #recall
from sklearn.metrics import f1 score #f1-score
from sklearn.metrics import roc auc score #area sob curva roc
from sklearn.metrics import roc_curve #curva roc
from sklearn.metrics import confusion matrix #matriz de confusão
import matplotlib.pyplot as plt
plt.style.use('classic')
%matplotlib inline
import seaborn as sns
sns.set()
```

Carregando Dataset

```
column_names = ["Pred_class", "probabilidade" , "status", "True_class"]
xls = '/content/drive/MyDrive/Colab Notebooks/teste_smarkio_lbs.xls'
data = pd.read_excel(xls, sheet_name='Análise_ML')
```

▼ Explorando os Dados

data.head

```
<bound method NDFrame.head of</pre>
                                    Pred class
                                                                  status True class
                                                probabilidade
              2
                      0.079892
                                 approved
                                                  0.0
1
              2
                                                 74.0
                      0.379377
                                 approved
2
              2
                      0.379377
                                 approved
                                                 74.0
3
              2
                      0.420930
                                                 74.0
                                 approved
4
              2
                      0.607437
                                 approved
                                                  NaN
                                                   . . .
638
             60
                      0.543772
                                 revision
                                                  NaN
639
             60
                      0.553846
                                 revision
                                                  NaN
             77
640
                      0.606065 revision
                                                  NaN
641
             84
                      0.561842
                                 revision
                                                  NaN
642
             96
                      0.340740
                                revision
                                                  NaN
[643 rows x 4 columns]>
```

```
data.info()
```

```
RangeIndex: 643 entries, 0 to 642
Data columns (total 4 columns):
                  Non-Null Count Dtype
    Column
    -----
                                   ____
    Pred_class 643 non-null
 0
                                   int64
 1
     probabilidade 643 non-null
                                   float64
     status
                   643 non-null
                                   object
     True class
                   181 non-null
                                   float64
dtypes: float64(2), int64(1), object(1)
memory usage: 20.2+ KB
```

<class 'pandas.core.frame.DataFrame'>

data.describe()

	Pred_class	probabilidade	True_class
count	643.000000	643.000000	181.000000
mean	52.712286	0.622436	38.574586
std	37.602068	0.266811	39.581017
min	2.000000	0.043858	0.000000
25%	12.000000	0.408017	0.000000
50%	59.000000	0.616809	24.000000
75%	81.000000	0.870083	74.000000

data.mode()

	Pred_class	probabilidade	status	True_class	
0	3	1.0	approved	0.0	

print(data)

	Pred_class	probabilidade	status	True_class
0	2	0.079892	approved	0.0
1	2	0.379377	approved	74.0
2	2	0.379377	approved	74.0
3	2	0.420930	approved	74.0
4	2	0.607437	approved	NaN
• •	• • •	• • •	• • •	• • •
638	60	0.543772	revision	NaN
639	60	0.553846	revision	NaN
640	77	0.606065	revision	NaN
641	84	0.561842	revision	NaN
642	96	0.340740	revision	NaN

[643 rows x 4 columns]

Criando Um classificador para preencher a coluna True_class gerando a coluna True_class_new

```
df = pd.DataFrame(data, columns = ['Pred_class' , 'probabilidade' , 'status' , 'True_class'])
df.columns = ['Pred_class' , 'probabilidade' , 'status' , 'True_class']
df['True_class_new'] = 0
print(df)
```

Pred_class probabilidade status True_class True_class_new

```
2
                                 approved
                                                   0.0
0
                       0.079892
                                                                      0
              2
1
                       0.379377
                                 approved
                                                  74.0
                                                                      0
2
              2
                       0.379377
                                                  74.0
                                                                      0
                                 approved
3
              2
                                                                      0
                       0.420930
                                 approved
                                                  74.0
4
              2
                       0.607437
                                 approved
                                                   NaN
                                                                      0
                                                    . . .
                       0.543772
638
             60
                                 revision
                                                   NaN
                                                                      0
639
             60
                       0.553846 revision
                                                   NaN
                                                                      0
640
             77
                       0.606065
                                                                      0
                                 revision
                                                   NaN
641
             84
                       0.561842
                                 revision
                                                   NaN
                                                                      0
642
             96
                       0.340740 revision
                                                   NaN
```

[643 rows x 5 columns]

```
import warnings
warnings.filterwarnings('ignore')

for b in df.itertuples():
    if (b.True_class >= 0):
        df.True_class_new[b.Index] = b.True_class
    else:
        df.True_class_new[b.Index] = b.Pred_class
```

print(df)

0	Pred_class 2	probabilidade 0.079892	status approved	True_class 0.0	True_class_new 0
1	2	0.379377	approved	74.0	74
2	2	0.379377	approved	74.0	74
3	2	0.420930	approved	74.0	74
4	2	0.607437	approved	NaN	2
	• • •	• • •			• • •
638	60	0.543772	revision	NaN	60
639	60	0.553846	revision	NaN	60
640	77	0.606065	revision	NaN	77
641	84	0.561842	revision	NaN	84
642	96	0.340740	revision	NaN	96

[643 rows x 5 columns]

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 643 entries, 0 to 642
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Pred_class	643 non-null	int64
1	probabilidade	643 non-null	float64
2	status	643 non-null	object
3	True class	181 non-null	float64

```
4 True_class_new 643 non-null int64 dtypes: float64(2), int64(2), object(1) memory usage: 25.2+ KB
```

boxplot = df.boxplot(column=['Pred_class', 'True_class_new'])


```
plt.scatter(df['Pred_class'], df['True_class_new'])
plt.title('Scatterplot da correlação Classe Identidade e Classe Verdadeira')
plt.xlabel('Pred_class')
plt.ylabel('True_class_new')
plt.show()
```


Calcule o desempenho do modelo de classificação utilizando pelo menos três métricas

```
#utilizaremos apenas as variáveis numéricas
```

```
y = df['Pred_class']
X = df.iloc[ :, [1,4]].values

#Pré-Processamento Básico Padronizando as Variáveis Contínuas
X = MinMaxScaler().fit_transform(X)

#Separando o dados em Treino e Teste
x_treino, x_teste, y_treino,y_teste = train_test_split(X, y, test_size = 0.25,random_state =

#Ajustando o KNN nos dados de Treino
knn = KNeighborsClassifier()
knn.fit(x_treino, y_treino)
```

#Calculando a Matriz de Confusão nos dados de Teste
resultado_knn = knn.predict(x_teste)
print (pd.crosstab(y_teste,resultado_knn, rownames=['Real'], colnames=['Predito'], margins=Tr

Predito	2	3	4	11	12	15	21	22		85	87	96	99	103	108	110	All
Real																	
2	9	3	3	0	0	0	1	0		0	0	0	0	0	0	0	17
3	6	12	1	0	0	0	0	0		0	0	0	0	0	0	0	20
4	0	0	1	0	0	0	0	0		0	0	0	0	0	0	0	2
11	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
12	0	0	2	0	0	0	0	0		0	0	0	0	0	0	0	2
17	0	0	0	1	0	1	0	0		0	0	0	0	0	0	0	2
22	0	0	0	0	0	0	0	2		0	0	0	0	0	0	0	2
24	0	1	0	0	0	0	0	0		0	0	0	0	0	0	0	3
25	1	1	0	0	0	0	0	1		0	0	0	0	0	0	0	3
26	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
29	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
30	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
31	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
32	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
48	0	0	0	0	0	0	1	0		0	0	0	0	0	0	0	1
49	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
50	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
52	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	8
54	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
55	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
59	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
60	1	0	0	0	0	0	0	0		0	0	0	0	0	0	0	8
62	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
63	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
69	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
74	2	1	0	0	0	0	0	0		0	0	0	0	0	0	0	22
76	0	0	0	0	0	0	0	0	• • •	0	0	0	0	0	1	0	3

77	1	0	0	0	0	0	1	0	 0	0	0	0	0	0	0	11
78	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	1
79	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	3
81	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	1
82	1	2	0	0	0	0	0	0	 0	0	0	0	0	0	0	3
85	1	0	1	0	1	0	0	1	 0	0	0	0	0	0	2	7
86	0	0	0	0	0	0	0	0	 1	0	0	0	0	0	0	3
87	0	0	0	0	0	0	0	0	 0	1	0	0	0	0	0	1
90	0	0	0	0	0	0	0	0	 0	0	1	0	0	0	0	1
92	0	0	0	0	0	0	0	0	 0	1	0	0	0	0	0	1
96	0	0	0	0	0	0	0	0	 0	0	4	0	0	0	0	4
98	0	0	0	0	0	0	0	0	 0	0	1	0	0	0	0	1
99	2	0	0	0	0	0	0	0	 0	0	2	0	0	0	0	5
103	0	0	0	0	0	0	0	0	 0	0	0	0	2	0	0	2
104	1	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	1
106	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	2
108	0	0	0	0	0	0	0	0	 0	0	0	1	0	0	0	1
109	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	1
110	0	0	0	0	0	0	0	0	 1	0	1	0	0	2	0	4
118	0	0	1	0	0	0	0	0	 0	0	0	0	0	0	0	1
All	25	20	9	1	1	1	3	4	 2	2	9	1	2	3	2	161

[48 rows x 32 columns]

▼ Calculando as métricas de validação

print(classification_report(y_teste, resultado_knn))

	precision	recall	f1-score	support
2	0.36	0.53	0.43	17
3	0.60	0.60	0.60	20
4	0.11	0.50	0.18	2
11	0.00	0.00	0.00	1
12	0.00	0.00	0.00	2
15	0.00	0.00	0.00	0
17	0.00	0.00	0.00	2
21	0.00	0.00	0.00	0
22	0.50	1.00	0.67	2
24	0.00	0.00	0.00	3
25	0.00	0.00	0.00	3
26	0.00	0.00	0.00	1
29	0.00	0.00	0.00	1
30	0.00	0.00	0.00	1
31	0.00	0.00	0.00	1
32	0.50	1.00	0.67	1
33	0.00	0.00	0.00	0
48	0.00	0.00	0.00	1
49	0.00	0.00	0.00	1
50	0.00	0.00	0.00	1
52	0.73	1.00	0.84	8
54	0.00	0.00	0.00	1
55	0.14	1.00	0.25	1
56	0.00	0.00	0.00	0

			omanio_	_ananoo_m.ipynib	Colabolatol
	59	0.00	0.00	0.00	1
	60	0.56	0.62	0.59	8
	62	0.00	0.00	0.00	1
	63	0.00	0.00	0.00	1
	68	0.00	0.00	0.00	0
	69	0.00	0.00	0.00	1
	74	0.58	0.64	0.61	22
	76	0.50	0.33	0.40	3
	77	0.44	0.36	0.40	11
	78	0.00	0.00	0.00	1
	79	0.00	0.00	0.00	3
	81	0.00	0.00	0.00	1
	82	0.00	0.00	0.00	3
	85	0.00	0.00	0.00	7
	86	0.00	0.00	0.00	3
	87	0.50	1.00	0.67	1
	90	0.00	0.00	0.00	1
	92	0.00	0.00	0.00	1
	96	0.44	1.00	0.62	4
	98	0.00	0.00	0.00	1
	99	0.00	0.00	0.00	5
1	.03	1.00	1.00	1.00	2
1	.04	0.00	0.00	0.00	1
1	.06	0.00	0.00	0.00	2
1	.08	0.00	0.00	0.00	1
1	.09	0.00	0.00	0.00	1
1	.10	0.00	0.00	0.00	4
1	.18	0.00	0.00	0.00	1
accura	су			0.40	161
macro a	vg	0.13	0.20	0.15	161
weighted a	vg	0.33	0.40	0.36	161

Crie um classificador que tenha como output se os dados com

▼ status igual a revision estão corretos ou não (Sugestão : Técnica de cross-validation K-fold);

```
2
     3
                            0.420930
                                                   74
                    2
                            0.607437
                                                    2
     638
                  60
                            0.543772
                                                   60
     639
                            0.553846
                  60
                                                   60
     640
                  77
                            0.606065
                                                   77
     641
                  84
                                                   84
                            0.561842
     642
                  96
                            0.340740
                                                   96
     [643 rows x 3 columns]
print(target)
     0
            approved
     1
            approved
     2
            approved
     3
            approved
            approved
     638
            revision
     639
            revision
     640
            revision
     641
            revision
     642
            revision
     Name: status, Length: 643, dtype: object
# KNN classifier model
knn = KNeighborsClassifier()
# K-fold (k=5)
scores = cross_val_score(knn, dados, target, cv=5, scoring='accuracy')
# Results
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
     Accuracy: 0.92 (+/- 0.04)
```

Compare três métricas de avaliação aplicadas ao modelo e descreva sobre a diferença