# 1.4 Les oscillations acoustiques de baryon

Les BAO sont une empreinte laissée par la physique pré-recombinaison, et détectable aujourd'hui dans la distribution de matière. Cette empreinte correspond à un excès de corrélation de la matière, à une distance comobile d'environ  $100\,h^{-1}\,\mathrm{Mpc}$ . Cette distance, appelée échelle BAO, fournit une règle standard pour la cosmologie : après l'émission du CMB, la taille comobile de l'échelle BAO reste constante avec le temps. Ainsi, en mesurant l'évolution de la taille physique de l'échelle BAO au cours du temps, grâce notamment à la mesure d'angles et de différences de redshift, nous accédons à l'historique de l'expansion de l'univers. Dans cette section, nous décrivons les BAO, comment elles se forment, comment elles sont mesurées et les contraintes qu'elles permettent d'établir sur les modèles cosmologiques.

### 1.4.1 La genèse

Comme expliqué au début de ce manuscrit, l'univers avant la recombinaison est un plasma chaud et dense, qui présente de faibles inhomogénéités. Les baryons et les photons y sont couplés. De fait, la pression de radiation donne une pression non nulle au gaz et des ondes acoustiques peuvent s'y propager. Ainsi, chaque surdensité primordiale crée une surpression, qui produit une onde acoustique. Cette dernière se propage à la vitesse du son dans ce milieu, donnée par

$$c_s = c\sqrt{\frac{1}{3(1+R)}} \,, \tag{1.48}$$

où  $R = 3\rho_b/4\rho_\gamma$ . Étant donné que la densité de photons  $\rho_\gamma$  est très supérieure à la densité de baryons  $\rho_b$ , la vitesse du son  $c_s$  vaut  $c/\sqrt{3}$  en bonne approximation. Ces ondes acoustiques se propagent donc dans le plasma primordial depuis chaque surdensité. La figure 1.11 schématise le mécanisme pour une seule surdensité. A l'instant t=0, nous considérons donc une surdensité en  $R=0\,\mathrm{Mpc}$ . Cette surdensité est composée de matière noire (CDM), de baryons et de photons. Grâce à la pression du milieu, une onde acoustique est initiée. Au fur et à mesure que le temps s'écoule (le redshift diminue), le front d'onde dans le plasma photon-baryon se propage. Puis, à un redshift  $d_{rang} \approx 1090$ , les photons se découplent des baryons. Ils se propagent donc librement. A un redshift  $d_{rang} \approx 1060$ , les baryons se découplent des photons <sup>1</sup>. La pression dans le milieu devient nulle, faisant chuter la vitesse du son à zéro. L'onde est alors gelée. Ainsi la surdensité de baryon ne se propage plus. Il n'y a alors plus que la gravitation qui affecte la distribution de chaque espèce. La surdensité de matière noire à  $d_{rang} \approx 1000$ , qui a continué de croître, attire les baryons par effet gravitationnel. Cependant, la surdensité de baryon à  $d_{rang} \approx 1000$ , les photons  $d_{rang} \approx 1000$ , les photons  $d_{rang} \approx 1000$ , les photons a continué de croître, attire les baryons par effet gravitationnel. Cependant, la surdensité de baryon à  $d_{rang} \approx 1000$ , les photons de la matière noire et des baryons sont quasiment identiques. Cette distance d'environ 150 Mpc est appelée horizon acoustique : c'est la distance que

Mat's comment : à grande échelle

<sup>1.</sup> A cause de la grande asymétrie entre le nombre de baryons et le nombre de photons  $n_b/n_\gamma \sim 10^{-9}$ , les baryons se découplent des photons après que ces derniers se soient découplés des baryons.

déduire la différence de redshift  $\Delta z_{\rm BAO}$  qui existe entre les deux, due à la distance  $r_{\rm d}$  qui les sépare. La différence de redshift est proportionnelle à la différence de vitesse  $\Delta v_{\rm BAO}(z)$ , qui s'exprime grâce à la loi de Hubble comme

$$\Delta z = \frac{\Delta v_{\text{BAO}}(z)}{c} = \frac{H(z)r_{\text{d}}}{c}, \qquad (1.51)$$

et est donc reliée à la distance de Hubble  $D_{\rm H}(z)$  par :

$$\Delta z = \frac{r_{\rm d}}{D_{\rm H}(z)} \,. \tag{1.52}$$

Les deux informations accessibles et pertinentes pour les analyses BAO sont donc les quantités  $D_{\rm M}(z)/r_{\rm d}$  et  $D_{\rm H}(z)/r_{\rm d}$ . Comme dans beaucoup d'analyses cosmologiques, les analyses BAO nécessitent de supposer une cosmologie, afin notamment de transformer les angles et différences de redshift en distance. Ces analyses ne mesurent alors pas directement les rapports  $D_{\rm M}(z)/r_{\rm d}$  et  $D_{\rm H}(z)/r_{\rm d}$  mais leur déviation par rapport à la cosmologie de référence utilisée dans l'analyse, que l'on nomme cosmologie fiducielle. Il est donc coutume de définir les quantités  $\alpha_{\parallel}$  et  $\alpha_{\perp}$  comme

$$\alpha_{\parallel}(z) = \frac{D_{\rm H}(z)/r_{\rm d}}{(D_{\rm H}(z)/r_{\rm d})_{\rm fiducielle}},\tag{1.53}$$

$$\alpha_{\parallel}(z) = \frac{D_{\rm H}(z)/r_{\rm d}}{(D_{\rm H}(z)/r_{\rm d})_{\rm fiducielle}},$$

$$\alpha_{\perp}(z) = \frac{D_{\rm M}(z)/r_{\rm d}}{(D_{\rm M}(z)/r_{\rm d})_{\rm fiducielle}},$$
(1.53)

qui valent 1 si la cosmologie observée est la même que la cosmologie fiducielle.

Les premières observations du premier pic acoustique dans le CMB ont été faites à la fin des années 90. Ces observations ont été menées à l'aide de ballons volant en haute atmosphère (première observation par les expériences QMAP et MAT/TOCO (Miller et al. 2001) et confirmée par les expériences BOOMERanG (Masi et al. 2002) et MAXIMA (Hanany et al. 2000)). Peu de temps après, l'observation des galaxies locales avec le projet SDSS permettait la première détection du pic BAO dans la distribution de matière (D. J. Eisenstein et al. 2005). La mesure des rapports  $D_{\rm M}(z)/r_{\rm d}$  et  $D_{\rm H}(z)/r_{\rm d}$  s'est ensuite poursuivie à des redshifts intermédiaires à l'aide des galaxies distantes et des forêts Lyman $-\alpha$ (voir la description de ce traceur dans la section 1.5.4) toujours avec le projet SDSS. Le chapitre suivant présente ce projet, ainsi qu'une revue des différentes mesures des rapports  $D_{\rm M}(z)/r_{\rm d}$  et  $D_{\rm H}(z)/r_{\rm d}$ (voir notamment la figure 2.9 qui résume les mesures les plus récentes).

### à bas redshift

#### 1.4.3 Contraintes cosmologiques

Indépendamment d'autres sondes cosmologiques, telles le CMB ou les supernovae, les BAO permettent de mesurer les rapports  $D_{\rm M}(z)/r_{\rm d}$  et  $D_{\rm H}(z)/r_{\rm d}$ . Ces rapports sont reliés aux paramètres



FIGURE 1.18 – Schéma illustratif de l'absorption le long de la ligne de visée d'un quasar. L'observateur, à z=0 est représenté par le télescope. Le quasar, à  $z_{\rm QSO}$  est représenté par l'étoile jaune. Les absorbeurs le long de la ligne de visée sont représentés par les nuages, aux redshifts  $z_1$ ,  $z_2$  et  $z_3$ .

Matt: hydrogen is abundant and the cross section high so the Lyman alpha absorption expected to be strong and remains the strongest despite the fact that only about 1 part in 10<sup>4</sup> is neutral excite présent dans ces absorbeurs peut absorber les photons issus du quasar. D'autres absorptions

peuvent avoir lieu. Mais, en première approximation, nous pouvons considérer que ces absorbeurs absorbent uniquement en Ly $\alpha$ . Les photons possédant une longueur d'onde  $\lambda_{\rm Ly}\alpha=1215,67\,{\rm \AA}$  dans le référentiel de l'absorbeur sont donc absorbés par l'hydrogène neutre et l'électron de ce dernier effectue une transition électronique des couches n=1 à n=2. Plus l'absorbeur est dense, plus le nombre de photons absorbés est important. Considérons à présent l'absorbeur 1. L'absorption Ly $\alpha$ s'effectue dans son référentiel à  $\lambda_{\rm RF} = \lambda_{\rm Ly\alpha}$ , ce qui correspond, dans le référentiel de l'observateur, à  $\lambda_{\rm obs} = \lambda_{\rm Ly\alpha} (1+z_1)$ . De plus, la longueur d'onde correspondant à la raie d'émission du Ly $\alpha$  du quasar dans le référentiel de l'observateur est  $\lambda_{\rm obs} = \lambda_{\rm Ly\alpha} (1 + z_{\rm QSO})$ . Ainsi, comme  $z_1 < z_{\rm QSO}$ , l'observateur identifie une raie d'absorption à une longueur d'onde plus faible que la raie d'émission Ly $\alpha$  dans le spectre du quasar. Il en est de même pour les 2ème et 3ème absorbeurs : le spectre observé présente une raie d'absorption à  $\lambda_{\rm obs} = \lambda_{\rm Ly\alpha}(1+z_2)$  et à  $\lambda_{\rm obs} = \lambda_{\rm Ly\alpha}(1+z_3)$ . Le mécanisme se généralise pour tous les absorbeurs présents le long de la ligne de visée. Plus précisément, la distribution de l'hydrogène étant continue, elle produit un profil d'absorption continu le long de la ligne de visée. Cependant, la façon dont sont conçus les spectrographes, et plus précisément les pixels des capteurs CCD, rendent ce profil discret. Ainsi, la région du spectre à gauche de la raie Ly $\alpha$  contient toute une série de raies d'absorption. Cette région s'appelle la forêt Ly $\alpha$ . Elle est visible sur la figure 1.17. Ce même processus est à l'œuvre pour la raie  $Ly\beta$ , et pour toutes les autres raies d'émission présentes dans le spectre. Cependant, il est beaucoup plus marqué pour la forêt Ly $\alpha$ . Ceci vient de l'abondance de l'hydrogène dans le milieu intergalactique, et aussi de la grande section efficace de la transition  $Ly\alpha$ .

L'absorption Ly $\alpha$  peut donc être utilisée afin de tracer la matière à grande échelle. Contrairement aux quasars et aux galaxies, qui sont des objets ponctuels et donc des traceurs booléens, la forêt Ly $\alpha$  est un traceur continu. En effet, chaque absorbeur le long de la ligne de visée produit une raie d'absorption, dont l'intensité dépend de la densité de l'absorbeur. Ainsi, en plus de nous renseigner sur la distribution spatiale de la matière, chaque absorbeur nous renseigne sur la quantité de matière présente en chaque point sondé. Dans les lignes qui suivent, nous décrivons comment relier la densité d'hydrogène neutre le long de la ligne de visée à la quantité de flux absorbé. Nous négligeons ici et dans la suite de ce manuscrit l'élargissement thermique des raies d'absorption Ly $\alpha$ , la source dominante d'élargissement des ces profils d'absorption, car

## CHAPITRE 1. INTRODUCTION À LA COSMOLOGIE

Mat: explain the Lorentzian damping wing seen when absorption is sufficiently strong cet effet est environ cinq fois inferieur a la resolution des données que nous traitons. Considérons un absorbeur très fin, de largeur dl, à un redshift  $z_{\rm abs}$ . Le flux absorbé dF par cet absorbeur est reliée à la densité d'hydrogène neutre  $n_{\rm HI}$  par la relation

$$dF = n_{\rm HI}\sigma_{\rm Lv\alpha}Fdl \,, \tag{1.65}$$

où  $\sigma_{\text{Ly}\alpha}$  est la section efficace de la transition  $\text{Ly}\alpha$ , et F le flux émis par le quasar source. La fraction de flux transmis est alors donnée par

$$\frac{dF}{F} = -n_{\rm HI}\sigma_{\rm Ly\alpha}dl \ . \tag{1.66}$$

En intégrant cette équation, nous obtenons

$$F = exp(-\tau) , \qquad (1.67)$$

οù

$$\tau = \sigma_{\rm Ly\alpha} \int n_{\rm HI} dl \tag{1.68}$$

est la profondeur optique de l'absorbeur. Plus l'absorbeur est dense, plus la profondeur optique  $\tau$  est importante et plus la fraction de flux transmis F est faible. Lorsque tout le flux est absorbé, F=0. A l'inverse, lorsque le flux n'est pas absorbé, F=1.

Fort heureusement, grâce à l'importante ionisation du milieu intergalactique, et donc de la faible proportion d'hydrogène neutre vis à vis de l'hydrogène ionisé (variant entre 1 partie pour 10 000 et 1 partie pour 1000), le flux provenant du quasar n'est pas totalement absorbé  $^1$  et nous pouvons ainsi identifier dans le spectre des quasars les raies d'absorption caractéristiques de la forêt Ly $\alpha$ .

Définie précédemment, la fraction de flux transmis F est notre observable. Nous définissons donc le contraste de densité du Ly $\alpha$  à partir de celle-ci :

$$\delta_{\text{Ly}\alpha}(z) = \frac{F}{\overline{F}(z)} - 1 \,, \tag{1.69}$$

où  $\overline{F}$  est la transmission moyenne au redshift z.

Du fait que le contraste du Ly $\alpha$  est défini en fonction de l'absorption observée (moins il y a de flux, plus il y a de matière), le biais  $b_{\text{Ly}\alpha}$  qui relie  $\delta_{\text{Ly}\alpha}$  à  $\delta_{\text{matière}}$  est négatif. De plus, étant donné que la forêt Ly $\alpha$  sonde l'hydrogène neutre du milieu intergalactique, composé de gaz très peu dense, les fluctuations de densité de matière tracées appartiennent au régime linéaire, par opposition aux traceurs booléens qui sondent des régions effondrées et non linéaires. Le biais de l'hydrogène est donc proche de 1. Cependant, la non-linéarité de l'équation 1.67 compresse les variations de  $\tau$ , le ramenant entre 0 et 1. Ceci a pour effet de réduire drastiquement le biais du Ly $\alpha$ . A un redshift  $z \sim 2,5$ , le biais de F est de l'ordre de 0,15. Il est nettement inférieur à celui des LRG, qui vaut environ 2, et aussi à celui des quasars, qui est de l'ordre de 3,5 à  $z \sim 2,5$ . Ce faible biais est compensé par deux effets.

<sup>1.</sup> L'observation de quasars à des redshifts supérieurs à  $\sim 6$  révèle des régions de l'univers pas encore réionisées : le flux dans une partie ou dans l'entièreté de la forêt Ly $\alpha$  est totalement absorbé (voir par exemple WANG et al. (2018))

formés dans les étoiles, puis sont dispersés via l'explosion des supernovae.

Comme expliqué dans la section précédente, en première approximation, chaque absorption observée dans la forêt Ly $\alpha$  est causée par un absorbeur Ly $\alpha$ . Cependant, certaines absorptions sont causées par des métaux. Étant donné que le champ des métaux est corrélé avec le champ d'hydrogène neutre, les raies d'absorptions des métaux sont corrélés avec celles du Ly $\alpha$ . Supposons la présence d'un métal à un redshift  $z_{\rm met}$ , absorbant dans son référentiel à une longueur d'onde  $\lambda_{\rm met}$ . L'absorption produite est observée à  $\lambda_{\rm obs1} = \lambda_{\rm met}(1+z_{\rm met})$ , mais sera reconstruite à un redshift  $z_{\rm abs} = \lambda_{\rm obs1}/\lambda_{\rm Ly}\alpha - 1 \neq z_{\rm met}$ . De plus, la présence d'hydrogène neutre au redshift du métal  $z_{\rm met}$  produit aussi une absorption, à une longueur d'onde  $\lambda_{\rm obs2} = \lambda_{\rm Ly}\alpha(1+z_{\rm met})$ . Ainsi, à chaque raie d'absorption de métal, interprétée comme de l'absorption Ly $\alpha$ , est associée une autre raie d'absorption Ly $\alpha$ . Ceci produit une fausse corrélation le long de la ligne de visée, à une séparation caractérisée par le rapport  $\lambda_{\rm met}/\lambda_{\rm Ly}\alpha$ . Cet effet est très visible dans la fonction de corrélation à une dimension : lorsque l'on corrèle des pixels d'une même forêt (voir figure 5.19). L'effet est aussi visible dans la fonction de corrélation à trois dimensions le long de la ligne de visée ( $r_{\perp} < 4 \, h^{-1} \, {\rm Mpc}$ ) (voir figure 6.1).

Un autre contaminant présent dans la forêt Ly $\alpha$  sont les HCD (High Column Density). Les HCD sont des absorbeurs possédant une densité de colonne <sup>1</sup>, notée  $\log n_{\rm HI}$ , supérieure à  $1.6 \times 10^{17}$  atome/cm<sup>2</sup> (Ro-GERS et al. 2017). Ces absorbeurs très denses produisent de très fortes absorptions. Ils correspondent à des systèmes effondrés, comme le gaz présent dans ou autour des galaxies. Leur fonction de corrélation est donc beaucoup plus grande que celle du Ly $\alpha$ . De plus, du fait de leur très grande densité, le profil d'absorption des HCD est très élargi<sup>2</sup>, produisant une absorption au delà de la position physique de l'absorbeur. Ce profil d'absorption peut être modélisé par un profil de Voigt. Les DLA (pour Damped  $Ly\alpha \ Absorbeur$ ) sont les HCD pour lesquels la densité de colonne est supérieure à  $2 \times 10^{20}$  atome/cm<sup>2</sup>. La figure 1.20 montre le spectre de deux quasars possédant un DLA, ainsi que les profils de Voigt ajustés. Ces HCD sont tellement denses qu'ils peuvent être identifiés dans les spectres. Dans l'analyse DU MAS DES BOURBOUX et al. 2020, les DLA identifiés sont modélisés par un profil de Voigt, puis, tous les pixels pour lesquels la fraction de flux transmis est inférieure à 0,80 sont masqués, les autres sont corrigés grâce au profil de Voigt. Les HCD pour lesquels la densité de colonne est inférieure à  $2 \times 10^{20}$  atome/cm<sup>2</sup> ne sont pas identifiables. Ils ne peuvent donc pas être masqués. Cependant, leur présence doit être modélisée dans le modèle de la fonction de corrélation. Le traitement des HCD est détaillé dans la section 5.4.1.

# Il faut expliquer que cela vient des Lorentzian damping wing

<sup>1.</sup> La densité de colonne mesure la quantité de matière intégrée le long de la ligne de visée. Elle est mesurée en  $atome/cm^2$ .

<sup>2.</sup> A l'inverse, l'élargissement des profils d'absorption du Ly $\alpha$  est dominé par l'élargissement thermique.

champ par

?

$$\sqrt{\frac{P_s(k, z_{\text{eff}})}{d_{\text{pix}}}}, \tag{4.35}$$

où  $z_{\rm eff}$  est le redshift moyen de la forêt, et  $P_s$  est le spectre de puissance qu'il faut appliquer à  $\delta_{k,s}$  afin que  $\delta_F$  possède le bon  $P^{\text{1D}}$ .  $\delta_{k,s}$  est créé avec une taille supérieure à celle de la forêt, pour éviter les corrélations d'une extrémité à l'autre. La détermination de  $P_s$  est détaillée dans la section 4.4. Puis, nous obtenons  $\delta_s$  à l'aide de la transformation de Fourier inverse de  $\delta_{k,s}$ . Avant d'ajouter  $\delta_s$  à  $\delta_l$ , nous corrigeons la dépendance en z de chacun des  $\delta_s$  de la forêt. En effet,  $\delta_s$  est construit de façon à obtenir le bon spectre de puissance à une dimension au redshift moyen de la forêt. Les pixels situés en bord de forêt n'auront donc pas le bon  $P^{1D}$ . Ainsi, nous corrigeons chaque  $\delta_s$  comme :

$$\delta_s(z) \to \delta_s(z) \frac{\sigma_s(z)}{\sigma_s(z_{\text{eff}})}$$
, (4.36)

où  $\sigma_s$  est l'écart type du champ  $\delta_s$ . Celui-ci est relié au spectre de puissance  $P_s$  par :

$$\sigma_s = \frac{1}{d_{\text{pix}}N} \left( P_s(0) + P_s(k_{\text{Ny}}) + 2\sum_{j=1}^{\frac{N}{2}-1} P_s\left(\frac{2\pi}{d_{\text{pix}}N}j\right) \right), \tag{4.37}$$

où  $k_{\rm Ny} = \pi/d_{\rm pix} \sim 15.7\,h^{-1}\,{\rm Mpc}$  est le mode de Nyquist : c'est le mode maximal accessible pour une taille de pixel donnée.

Mat demande de mentionner les l.o.s. non parallèles plus

tôt et pas juste en passant xpliquer au moment de la creation des los que cest un progres

Une fois les petites échelles ajoutées, nous obtenons un champ d'absorption F qui possède le bon spectre de puissance à trois dimensions, ainsi que le bon spectre de puissance à une dimension. Cependant, le champ d'absorption F ne possède pas de RSD pour l'instant, car il est construit à partir du spectre de puissance  $P_{\text{matière}}(k)$  qui est isotrope. Initialement, nous pensions ajouter les RSD au niveau du spectre de puissance : multiplier le GRF initial  $\delta_k$  par  $(1+\beta\mu^2)P_{\text{matière}}(k,\mu)$ , avec  $\mu = k_z/k$ . Mais cette solution n'est pas envisageable car les lignes de visées ne sont pas parallèles , et nous ne pouvons donc pas confondre l'axe  $k_z$  avec l'axe de la ligne de visée  $k_{\parallel}$ . Une autre solution est d'utiliser le champ de vitesse défini dans l'équation 4.8. Chaque pixel d'absorption est alors déplacé proportionnellement à la vitesse particulière du gaz dans la cellule considérée. Puis l'absorption est modifiée en fonction de la différence des vitesses des pixels voisins. En effet, si cette différence est non nulle, le gaz se retrouve comprimé par endroit, et détendu dans d'autres, modifiant l'absorption dans chaque pixel. Cette méthode pour ajouter les RSD dans les mocks Ly $\alpha$  est la méthode choisie par LE GOFF et al. (2011) et FARR et al. (2019). Ce n'est pas la solution que nous utilisons ici. Afin d'inclure les RSD dans le champ d'absorption F, nous utilisons le champ de gradient de vitesse  $\eta_{\parallel}$ , présenté dans la section 4.2.1. Contrairement à la méthode qui utilise le champ de vitesse, la solution qui ajoute le champ  $\eta_{\parallel}$  au champ  $\delta_l$  permet de prédire les fonctions de corrélation des mocks. Ceci est un atout majeur pour nos simulations, car cela nous permet de prédire la valeur des paramètres que

<sup>1.</sup> Les lignes de visées étaient parallèles dans les mocks développés pour BOSS. Nous avons choisi d'implémenter des lignes de visée non parallèles afin que nos mocks, développés pour eBOSS et DESI, soient plus fidèles aux données.



FIGURE 4.13 – Le graphique de gauche présente le biais  $b_{\nu}$  obtenu pour un seuil  $\nu$ . Le graphique de droite présente le paramètre  $\lambda(z)$ , utilisé pour tirer les HCD.

L'équation 4.51 est donc équivalente à

$$b_{\nu} = \frac{p_g(\nu)}{\int_{\nu}^{\infty} d\delta_q p_q(\delta_q)} \,. \tag{4.53}$$

Afin d'obtenir le seuil pour un biais donné, nous tabulons  $b_{\nu}$  pour une large gamme de seuils  $\nu$ , puis nous interpolons  $\nu$  en fonction de  $b_{\nu}$ . Le graphique de gauche de la figure 4.13 présente le biais  $b_{\nu}$  en fonction du seuil  $\nu$ . Dans notre cas, le champ  $\delta_l$  suit une distribution de probabilité gaussienne. Cependant, sa variance n'est pas égale à 1. De plus, le champ  $\delta_l$  interpolé le long des lignes de visée correspond au champ de matière à z=0. Ainsi, pour obtenir un biais  $b_{\rm HCD}$ , pour chaque redshift nous calculons le seuil  $\nu$  comme si nous visions un biais  $b=b_{\rm HCD}\sigma_lG(z)$ . Le terme  $\sigma_l$  prend en compte la variance du champ  $\delta_l$ , et G(z) le fait que  $\delta_l$  soit construit à z=0. Nous choisissons de tirer les HCD avec un biais  $b_{\rm HCD}=2$ . Une fois les pixels pouvant héberger un HCD identifiées, nous tirons dans chacune d'entre elles les HCD avec une loi de poisson de paramètre

$$\lambda(z) = \frac{N(z)}{cdf(-\nu(z))}, \qquad (4.54)$$

où N(z) donne le nombre moyen de HCD attendu par pixel et  $\nu(z)$  le seuil au redshift z. Le nombre de HCD attendu est donné par la librairie  $\operatorname{pyigm}^1$ . La distribution en redshift des HCD est présentée sur le graphique de gauche de la figure 4.14, et le paramètre  $\lambda(z)$  sur le graphique de droite de la figure 4.13. En pratique, du fait que  $\lambda(z) \ll 1$ , il est très rare d'avoir plus d'un HCD par pixel  $^2$ . Une fois tous les HCD tirés, nous leur assignons une densité de colonne dans la gamme  $17.2 < \log(n_{\rm HI}) < 22.5$ , selon la distribution donnée par  $\operatorname{pyigm}$ . Cette distribution est présentée sur le graphique de droite de la figure 4.14. Enfin, nous ajoutons les RSD aux HCD tirés. Chaque HCD tiré est déplacé le long de la ligne de visée proportionnellement à la vitesse  $v_{\parallel}(z)$ . Comme pour les quasars, la vitesse le long de la footnote pour préciser

rajouter

<sup>1.</sup> https://github.com/pyigm

<sup>2.</sup> Lorsqu'un pixel contient plusieurs HCD, ces HCD sont gardés et une densité de colonne leur est assignée. Ces deux HCD sont alors ajoutés au spectre synthétique par quickquasars (voir section 4.5), ce qui résulte en un seul HCD avec une densité de colonne valant la somme des densités de colonne des deux HCD tirés dans le pixel.