Семинар 34

Самосопряженные операторы

Пусть V — евклидово пространство и пусть $\phi \colon V \to V$ — линейный оператор. Тогда сопряженный к нему линейный оператор ϕ^* — это такой оператор, что $(\phi(v),u)=(v,\phi^*(u))$ для всех $v,u\in V$. Оператор называется самосопряженным, если $\phi^*=\phi$.

Теперь разберемся, что происходит в ортонормированном базисе. В этом случае $V = \mathbb{R}^n$, $(x,y) = x^t y$, а $\phi(x) = Ax$, а $\phi^*(x) = Bx$. Тогда условие (Ax,y) = (x,By) означает $x^t A^t y = x^t By$. То есть $B = A^t$. То есть матрица для ϕ^* это A^t . Значит самосопряженный оператор в ортонормированном базисе задается симметричной матрицей.

В случае произвольного базиса скалярное произведение задается $(x,y)=x^tBy$, где B – симметричная невырожденная положительно определенная матрица. Тогда если $\phi x=Ax$ и $\phi^*x=A'x$, то условие (Ax,y)=(x,A'y) расписывается так: $(Ax)^tBy=x^tBA'y$. То есть $x^tA^tBy=x^tBA'y$ для всех $x,y\in\mathbb{R}^n$. Последнее значит, что $A^tB=BA'$. Значит $A'=B^{-1}A^tB$ – это формула связывает матрицу ϕ и ϕ^* в произвольных базисах.

Утверждение. Пусть $\phi\colon V\to V$ – самосопряженный оператор в евклидовом пространстве. Тогда

- 1. Все его комплексные собственные значения вещественны.
- 2. Собственные вектора с разными собственными значениями ортогональны друг другу.
- $\it 3. \, \, Cyществует \, opтонормированный \, fasuc \, npocmpaнства \, V \, cocтоящий \, us \, coбственных \, векторов \, \phi.$
- 4. B некотором ортонормированном базисе матрица ϕ имеет диагональный вид, c вещественными числами на диагонали.

Переформулируем это утверждение на языке матриц.

Утверждение. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – симметрическая матрица. Тогда

- $1. \ \, Bce \,\, комплексные \,\, coбственные \,\, значения \,\, A \,\, вещественные.$
- 2. Все собственные вектора с разными собственными значениями ортогональны.
- 3. Существует ортогональная матрица $C \in M_n(\mathbb{R})$ такая, что $C^{-1}AC$ является диагональной вещественной матрицей.

Связь самосопряженных операторов с симметричными билинейными формами

Пусть V – евклидово пространство и $\phi: V \to V$ – некоторый оператор. Тогда по нему можно построить билинейную форму $\beta_{\phi}(v,u) = (v,\phi(u))$. Давайте поймем, когда такая форма будет симметрична:

$$\beta_{\phi}(v, u) = (v, \phi(u))$$

$$\beta_{\phi}(u, v) = (u, \phi(v)) = (\phi(v), u)$$

То есть форма симметрична тогда и только тогда, когда оператор ϕ самосопряжен. Кроме того, отображение $\phi \mapsto \beta_{\phi}$ является биекцией между операторами на V и билинейными формами на V. При этом соответствии самосопряженные операторы соответствуют симметричным билинейным формам. Эти чудеса возможны лишь благодаря наличию скалярного произведения. Полученное соответствие является изоморфизмом векторных пространств. Этот изоморфизм — это частный случай отображения поднятия и опускания индексов, которое очень часто используется в дифференциальной геометрии.

Давайте посмотрим, что происходит при этом соответствии в базисе на матричном языке. Пусть $e_1, \ldots, e_n \in V$ – некоторый базис. Тогда V превращается в \mathbb{R}^n . Оператор ϕ превращается в оператор умножения на матрицу $A \in \mathrm{M}_n(\mathbb{R})$, то есть $\phi(x) = Ax$, а скалярное произведение будет $(x,y) = x^t By$. Тогда $\beta_{\phi}(x,y) = x^t BAy$. Кроме того, если базис e_1, \ldots, e_n был ортонормированным, то скалярное произведение будет стандартным $(x,y) = x^t y$, а $\beta_{\phi}(x,y) = x^t Ay$. Таким образом, это отображение в ортонормированном базисе по оператору с матрицей A ставит билинейную форму с матрицей A. Теперь важное замечание, если мы смогли диагонализовать оператор ϕ в ортонормированном базисе, то это означает, что мы смогли диагонализовать β_{ϕ} .

 $^{^{1}}$ Обратите внимание, чтот тут нет разницы между $C^{-1}AC$ и $C^{t}AC$, так как C ортогональная.

Последнее замечание дает способ диагонализации симметричной билинейной формы в ортонормированном базисе, который называется приведением к главным осям. А именно, пусть задана форма $\beta\colon\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ по правилу $\beta(x,y)=x^tGy$ в ортонормированном базисе, то есть скалярное произведение будет выглядеть $(x,y)=x^ty$. Теперь матрица G будет симметричной. Посмотрим на G как на матрицу линейного оператора и диагонализуем ее в ортонормированном базисе по соответствующему алгоритму через собственные векторы. Получим $C^{-1}GC=D$ — диагональная, где $C^tC=E$, то есть C ортогональная. Но это значит, что $C^tGC=D$. То есть если мы сделаем замену базиса с помощью матрицы C, то билинейная форма β в новом базисе будет иметь матрицу $C^tGC=C^{-1}GC=D$.