Nassau County Interscholastic Mathematics League

Solutions Contest # 2

2003-2004

7. Solve the equation $2x^2 - 7x - 15 = 0$, (2x + 3)(x - 5) = 0, $x = -\frac{3}{2}$ or x = 5 The integers which satisfy the inequality are the ones between $-\frac{3}{2}$ and 5, including 5. There are 7 of them.

Alternate solution: graph the parabola $y = 2x^2 - 7x - 15$ and find the integers for which the graph is below or on the x-axis. They are -1, 0, 1, 2, 3, 4, or 5. So there are 7.

- 8. The radius of the circle is 8, so each side is $8\sqrt{2}$ and the area is the square of the side, which is 128. Alternate solution. The diameter is 16. The area of a quadrilateral with perpendicular diagonals is half the product of the diagonals. $\frac{1}{2} \cdot 16 \cdot 16 = 128$.
- 9. One way to tell if a function is even is to look at the graph and see if it's symmetric over the y-axis. Another test would be to try some opposite inputs and see if the same result occurs. For example, $\log_2(-5)$ is not the same as $\log_2(5)$ so \log_2 is not even. Of the functions given, the even ones are $\cos(x)$, 5, $x^2 + 3$, and |x|. There are 4.
- 10. Let the base be b. So $(2b^2 + 5b + 7)(9) = b^3 + 6b^2 + 4b + 3$. The only real solution is b = 15. Alternate solution: multiplying the units digits (9)(7) ends in 3, so the remainder when 63 is divided by the base is 3. So the base is a multiple of 5. Also it must be greater than 9, since 9 is one digit. Try 10, 15, etc. until one works. Here 15 works.
- 11. The probability the first box is acceptable is 1 since it can be anything. The next must be different, so the probability is $\frac{5}{6}$. The third must be again different, probability $\frac{4}{6}$, etc. So the probability they are all different

is
$$\left(\frac{6}{6}\right)\left(\frac{5}{6}\right)\left(\frac{4}{6}\right)\left(\frac{3}{6}\right)\left(\frac{2}{6}\right)\left(\frac{1}{6}\right) = \frac{5}{324} \approx 0.0154$$
.

12. First note that the triangle is a right triangle since $18^2 + 80^2 = 82^2$. Compute the area two ways; either half the product of the legs or half the product of the hypotenuse and the altitude to the hypotenuse (the shortest). So (18)(80) = (82)(alt), and the altitude $= \frac{720}{41} \approx 17.561$.