Branch: CSE/IT

Batch: Hinglish

Discrete Mathematics Set Theory

DPP-07

[MCQ]

- Which of the following pairs of elements are comparable in the poset (N, |) where N is set of all integers.
 - (a) 6, 7
- (b) 3, 5
- (c) 5, 15
- (d) 4, 6

[MCQ]

Which of the following pairs of sets are not comparable in the poset $[P(A), \subseteq]$ where

$$A = \{0, 1, 2\}$$

- (a) $\{0\}, \{0, 1\}$
- (b) ϕ , {0, 1, 2}
- (c) $\{1, 2\} \{0, 1, 2\}$ (d) $\{0\}, \{1\}$

[NAT]

Let $U = \{1, 2, 3, 4, 5, 6, 7\}$, with A = P(U), and let Rbe the subset relation on A. For

 $B = \big\{ \big\{ 1 \big\}, \big\{ 2 \big\}, \big\{ 2, 3 \big\} \big\} \subseteq A$, then the number of upper

bounds that exist for B is X and the number of lower bounds that exist for B is Y, then value of X + Y is?

[MCQ]

- **4.** Let $(A, R_1), (B, R_2)$ be two posets. On $A \times B$, define relation R by (a,b)R(x,y) if $a R_1x$ and $b R_2y$. Consider the following statement:
 - R is a partial order.
 - **II.** *R* is not a partial order.
 - (a) Only I is true.
 - (b) Only II is true.
 - (c) Both I and II are true.
 - (d) Neither I nor II is true.

[NAT]

- Define the relation R on the set Z by a Rb if a-b is a nonnegative even integer. Then consider the following statement regarding relation R:
 - R is a partial order.
 - II. R is a total order.

The number of correct statements for R is/are?

Answer Key

1. (c)

2. **(d)**

3. **(17)**

4. (a) 5. (1)

Hints and Solutions

1. (c)

Two elements an and b are said to be comparable with respect to R, if (aRb) or (bRa).

.. Only 5 and 15 are comparable

2. (d)

The sets {0} and {1} are not comparable because neither of the two is a subset of the other.

3. (17)

The number of upper bounds that exist for B

$$\binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 2^4 = 16$$

$$X = 16$$

The number of lower bounds that exist for B

One – namely ϕ

Y = 1, therefore X + Y = 16 + 1 = 17.

4. (a)

For all $a \in A, b \in B, aR_1a$ and bR_2b so (a,b)R(a,b), and R is reflexive. Next $(a,b)R(c,d),(c,d)R(a,b) \Rightarrow aR_1c,cR_1a$ and $bR_2d,dR_2b \Rightarrow a=c,b=d \Rightarrow (a,b)=(c,d)$, so R is antisymmetric. Finally,

 $(a,b)R(c,d),(c,d)R(e,f) \Rightarrow aR_1c,cR_1e$ and

 bR_2d , $dR_2f \Rightarrow aR_1e$, $bR_2f \Rightarrow (a,b)R(e,f)$, and R is transitive. Consequently, R is a partial order.

5. (1)

For each $a \in Z$ it follows that aRa because a - a = 0, an even nonnegative integer. Hence R is reflexive. If $a, b, c, \in Z$ with aRb and bRc then

$$a-b=2m$$
, for some $m \in N$
 $b-c=2n$, for some $n \in N$,

and
$$a-c=(a-b)+(b-c)=2(m+n)$$
, where $m+n\in N$. Therefore, aRc and R is transitive. Finally, suppose that aRb and bRa for some $a,b\in Z$. Then $a-b$ and $b-a$ are both nonnegative integers. Since this can only occur for $a-b=b-a$, we find that $[aRb\wedge bRa]\Rightarrow a=b$, so R is antisymmetric.

Consequently, the relation R is a partial order for Z. But it is not a total order. For example, $2, 3 \in \mathbb{Z}$ and we have neither 2R3 nor 3R2, because neither -1 not 1, respectively, is a non-negative even integer.

Any issue with DPP, please report by clicking here:- https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

