## جــــامـــعـــــة الملكسعود **King Saud University** King Saud University **College of Computer and Information Sciences** College of Computer & Information Sciences **Computer Science Department** Computer Science Department **Course Code** CSC 329 **Course Title** Computer Networks Section No. S2 – Spring 21 Semester **Exam** End semester exam Date April, 20th 2021 **Duration** 120 min Student Name **Student ID**

| Course Lea | arning Outcomes                                                                                                                                                   | Relevant<br>question | Full<br>mark | Student<br>mark |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-----------------|
| CLO 1      | The ability to describe major networking terms, topologies, types, protocols, devices, and components.                                                            | NA                   |              |                 |
| CLO2       | The ability to explain the main services, type of addressing, and protocols associated with each layer of the OSI model.                                          | NA                   |              |                 |
| CLO 3      | The ability to recognize signal types, characteristics, impairments, encoding methods, transmission media.                                                        | Q2 & Q4              |              |                 |
| CLO 4      | The ability to recognize the functions and protocols of the data link layer (framing, error control, flow control, medium access control.)                        | Q1, Q3 &<br>Q4       |              |                 |
| CLO 5      | The ability to explain the functions and protocols of the network layer and to describe the different routing approaches: ( datagram , VC , addressing, Routing). | Q2, Q3               |              |                 |
| CLO 6      | The ability to compare the features of network components and to measure and analyze the time performances of a network.                                          | Q2, Q4               |              |                 |

## **Feedback/Comments:**

| <u>Q1.</u> | (6 marks)                                                                |
|------------|--------------------------------------------------------------------------|
| 1.         | Represent and briefly describe the algorithm of CSMA/CA for MAC sublayer |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |
| The fig    | gure below shows three wireless nodes and their transmission ranges.     |
|            |                                                                          |
|            |                                                                          |
|            |                                                                          |

2. Use this figure to explain the concept of "hidden node" problem in wireless communication.

| • • • • • • |      |      |      |      |      |      |      |      |      |
|-------------|------|------|------|------|------|------|------|------|------|
|             |      |      |      |      |      |      |      |      |      |
|             |      |      |      |      |      |      |      |      |      |
|             |      |      |      |      |      |      |      |      |      |
|             |      |      |      |      |      |      |      |      |      |
|             |      |      |      |      |      |      |      |      |      |
|             |      |      |      |      |      |      |      |      |      |
|             |      |      |      |      |      |      |      |      |      |
|             | <br> |

3. Use an exchange diagram (as represented below) to explain how CSMA/CA protocol can resolve this problem with the use of RTS/CTS and NAV. For your explanation, assume that the source wants to send a frame to the destination.



| 4.                                      | The exchange of RTS/CTS in the CSMA/CA reduces the efficient throughput     |
|-----------------------------------------|-----------------------------------------------------------------------------|
|                                         | the wireless network. Explain how?                                          |
|                                         |                                                                             |
|                                         |                                                                             |
|                                         |                                                                             |
|                                         |                                                                             |
|                                         |                                                                             |
| 5.                                      | Explain with a diagram how CSMA/CA uses different inter-frame spaces to avo |
|                                         | collusion?                                                                  |
|                                         |                                                                             |
|                                         |                                                                             |
|                                         |                                                                             |
| •••••                                   |                                                                             |
| •••••                                   |                                                                             |
| • • • • • • •                           |                                                                             |
| •••••                                   |                                                                             |
| •••••                                   |                                                                             |
| •••••                                   |                                                                             |
|                                         |                                                                             |
|                                         |                                                                             |
| 6.                                      | Explain the main difference between FDMA and TDMA                           |
|                                         |                                                                             |
|                                         |                                                                             |
|                                         |                                                                             |
|                                         |                                                                             |
|                                         |                                                                             |
|                                         |                                                                             |
| •••••                                   |                                                                             |
| •••••                                   |                                                                             |
| • • • • • • • • • • • • • • • • • • • • |                                                                             |
|                                         |                                                                             |

**Q2.** (4 marks )

|       | 1.        | Explain the difference between routing and forwarding processes of packets.                                       |
|-------|-----------|-------------------------------------------------------------------------------------------------------------------|
|       |           |                                                                                                                   |
|       |           |                                                                                                                   |
|       |           |                                                                                                                   |
|       |           |                                                                                                                   |
|       |           |                                                                                                                   |
| •••   | • • • • • |                                                                                                                   |
|       | 2.        | Explain how the packet at the input of the router are forwarded to the adequate output using the forwarding table |
|       |           |                                                                                                                   |
|       |           |                                                                                                                   |
|       |           |                                                                                                                   |
|       |           |                                                                                                                   |
| •••   |           |                                                                                                                   |
|       |           |                                                                                                                   |
| • • • |           |                                                                                                                   |
|       |           |                                                                                                                   |

**Q3.** (4 marks )

| Consider a machine that has the IP address 192.168.92.10                              |
|---------------------------------------------------------------------------------------|
| 1. Suppose that we are using class-based addressing. To which class of addres         |
| belongs this IP address?                                                              |
|                                                                                       |
| 2. If the network is not divided into subnets. What is the network mask in this case? |
|                                                                                       |
| 3. If the network administrator had decided to break the network into 8 differen      |
| subnets, what would the network mask?                                                 |
|                                                                                       |
|                                                                                       |
|                                                                                       |
| 4. How many machines can be connected for every subnet?                               |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |

| <u>Q4.</u>                                                                                              | (6 marks)         |
|---------------------------------------------------------------------------------------------------------|-------------------|
| <u>A.</u>                                                                                               |                   |
| Consider a wireless network using the CSMA/CA with RTS/CTS mechanis                                     | m. We suppose     |
| that the propagation delay is $\alpha$ , SIFS is $\alpha$ , DIFS is $4\alpha$ , and RTS and CTS are $6$ | δα respectively   |
| $\alpha$ is a constant that is expressed in second.                                                     |                   |
| 1. Express using $\alpha$ , the earliest time for the receiver to send the CT                           | ΓS message?       |
|                                                                                                         |                   |
|                                                                                                         |                   |
|                                                                                                         | •••••             |
|                                                                                                         | •••••             |
|                                                                                                         |                   |
|                                                                                                         |                   |
| 2. If the data packet needs $100\alpha$ to be transmitted, what is the short                            | est time for the  |
| receiver to send the ACK signal?                                                                        |                   |
|                                                                                                         |                   |
|                                                                                                         |                   |
|                                                                                                         |                   |
|                                                                                                         |                   |
|                                                                                                         |                   |
|                                                                                                         |                   |
| 3. A TDMA system uses 320 kbps data rate to support 8 users. V                                          | What is the data  |
| rate provided for each user?                                                                            | viiat is the data |
|                                                                                                         |                   |
|                                                                                                         |                   |
|                                                                                                         |                   |
| <u>B.</u>                                                                                               |                   |
| Assume we send a file with a sliding window protocol from Riyadh to a                                   | host in Ieddah    |
| We do not know exactly all the details of the sliding protocol, but we                                  |                   |
| following:                                                                                              |                   |

• The file is composed of n = 10 packets each one of a size L = 104 bits.

| •  | The bit rate available for transmission is $R = 10^6$ bps.                       |
|----|----------------------------------------------------------------------------------|
| •  | Assume that the propagation time is equal to T <sub>pr</sub> sec                 |
| 1. | Assume that the sender uses a window size $W=1$ packet. The destination sends    |
|    | one ack for every packet received. What is the minimum time it takes to transmit |
|    | the file and receive all necessary acknowledgements? ( give the expression using |
|    | $T_{pr}$ )                                                                       |
|    |                                                                                  |
|    |                                                                                  |
|    |                                                                                  |
|    |                                                                                  |
|    |                                                                                  |
|    |                                                                                  |
| 2. | Suppose now that the window size $W \geq n$ packets. What is the minimum time it |
|    | takes to transmit the file and receive all necessary acknowledgements?           |
|    |                                                                                  |

.....