Teoría de Juegos

Adriana Piazza

Microeconomía I

Otoño 2025

Agenda de las primeras clases

- Definición de juego (por ahora solo juegos estáticos)
- Dos conceptos de solución de los juegos estáticos:
 - Estrategias dominantes
 - Equilibrios de Nash
- Relación entre los dos conceptos de solución
- Estrategias mixtas
- Teorema de Nash (existencia de equilibrio de Nash)

¿Qué es un juego?

Un juego es cualquier situación tal que:

- hay al menos dos jugadores
- cada jugador tiene una lista de movimientos que puede hacer (estrategias)
- hay una regla clara para obtener el resultado final y los pagos a cada jugador a partir de las estrategias

Ingredientes del juego: notación

- $N = \{1, ..., n\}$ conjunto de jugadores.
- i, j denotan jugadores $(i, j \in N)$.
- S_i el conjunto de todas las estrategias del jugador i
- s_i una estrategia particular de i
- $s = (s_1, \ldots, s_n)$ un perfil de estrategias.
- s_{-i} una elección de estrategia para todos los jugadores excepto el jugador i
- $u_i(s_i, s_{-i})$ denota la utilidad/recompensa para el jugador i si los jugadores eligen estrategias (s_i, s_{-i})

Juego con 2 jugadores y 2 estrategias cada uno

Esta es una nueva forma de corregir la Tarea 2:

Todos elijan una estrategia: a o b:

- Su estrategia se comparará con la de otro compañero elegido al azar.
- Si usted eligió a y el oponente elige b, usted obtiene 7 y el otro obtiene 1.
- Si ambos ponen a, ambos obtienen 4.
- Si usted pone b y el otro elige a, usted obtiene 1 y el otro obtiene 7.
- Si ambos ponen b, ambos obtienen 5

Juego con 2 jugadores y 2 estrategias cada uno

La matriz de pagos es entonces:

Observación: Nunca deberías elegir b.

- Si tu oponente elige b, es mejor que elijas a
- Si tu oponente elige a, es mejor que elijas a

Estrategias dominantes y dominadas

Decimos que a domina fuertemente a b.

Definición: Una estrategia domina fuertemente a la otra si la recompensa de una es mayor que la recompensa de la otra, independientemente de las estrategias de los demás.

Matemáticamente: s_i domina a s'_i si y solo si

$$u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$$
 para todo s_{-i} .

Matemáticamente: s_i domina débilmente a s'_i si y solo si

$$u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$$
 para todo s_{-i} , $u_i(s_i, s^*_{-i}) > u_i(s'_i, s^*_{-i})$ para algún s^*_{-i} .

Juego con 2 jugadores y 2 estrategias cada uno

• Observación: Nunca deberías elegir b.

El oponente nunca debería elegir b.

Ambos obtienen 4.

Moraleja: el juego racional puede conducir a malos resultados

Juego: dilema del prisionero, colusión, tragedia de los comunes, ...

Juego (2x2) con otra matriz de pagos

Jugador Altruista (ángel indignado):

- El jugador valora menos sacarse un 7, pues significa que alguien obtuvo 1. (ángel)
- Y también valora menos sacarse un 1, porque significa que alguien en la clase no fue altruista (indignado)
- Entonces cambian sus pagos.

Un ejemplo de una matriz de pagos cuando 2 jugadores altruistas se enfrentan es:

	a	a b	
a	4 , 4	3, -1	
b	-1,3	5,5	

¿Qué debo elegir? No hay estrategias dominantes, este concepto de solución no me permite resolver el juego.

Altruista vs. Egoísta

- ¿Qué pasa si soy altruista (ángel indignado) pero sé que mi oponente es egoísta?
- En este caso la matriz de pago es:

Si no tienes una estrategia que domine a todas las demás, debes ponerte en el lugar de tus oponentes para tratar de predecir lo que harán.

Por ejemplo, en su lugar, no elegirías una estrategia dominada.

Juego: $\frac{2}{3}$ del Promedio

- Todos elijan un número natural entre 1 y 100.
- El jugador cuyo número es más cercano a ²/₃ del promedio gana el juego.
- Pagos:
 - El ganador obtiene \$ 1.000
 - Si hay empate entre k jugadores, cada uno obtiene $\frac{\$1.000}{k}$.
 - Los demás obtienen 0.

¿Hay alguna estrategia dominada?

$Estrategias\ iterativamente\ dominadas$

> 67 dominadas débilmente por 67	racionalidad (R)
$67 \geq s_i > 45$ dominadas débilmente después de eliminar las $s_j > 67$	racionalidad + saber que los otros son racionales (CR)
$45 \geq s_i > 30$ dominadas débilmente después de eliminar las $s_j > 45$	(R) + (CR) + saber que los otros saben que todos son racionales (CCR)
:	:
į	:
1	CONOCIMIENTO COMÚN

Si jugamos de vuelta?

Juguemos a este juego de nuevo

- Escriba un número entre 1 y 100.
- ¿Escribiría un número menor que la última vez?
- ¿Por qué?
- Las estrategias para el juego se hicieron de conocimiento común:
 - Todos conocen las estrategias dominadas.
 - Todo el mundo sabe que todo el mundo conoce las estrategias dominadas.
 - Todo el mundo sabe que todo el mundo sabe que todo el mundo conoce las estrategias dominadas.

. . .

Conocimiento común

Información completa: cada jugador conoce su función de utilidad, la función de utilidad de los otros jugadores y las reglas del juego.

Información incompleta: hay al menos un jugador que no conoce uno o todos los puntos detallados arriba

Conocimiento común: Información completa + conciencia.

(todos los jugadores deben ser conscientes de la conciencia de los otros jugadores en cuanto a las reglas y funciones de utilidad de cada uno. Además, cada jugador debe ser consciente de que cada jugador es consciente que cada jugador es consciente, y así sucesivamente.)

Volvamos al caso de dos jugadores altruistas

Oponente

- La matriz de pagos es:
- El concepto de estrategias dominadas, no me permite resolver el juego.

Yo a 4,4 3,-1 b -1,3 5,5

Necesitamos un nuevo concepto de solución: Equilibrio de Nash (EN)

(este juego tiene 2 EN)

Equilibrio de Nash

Un perfil de estrategia (s_1^*, \ldots, s_n^*) es un equilibrio de Nash (en estrategias puras) si

$$u_i(s_i^*, s_{-i}^*) \geq u_i(s_i, s_{-i}^*) \ \forall s_i \in S_i \ \ \forall i$$

- Si todos los demás jugadores fijan sus estrategias, el equilibrio de Nash es lo mejor que puedes hacer.
- Lo mismo ocurre con los otros jugadores.
- Puede haber otros resultados que sean preferibles y no sean equilibrios (dilema del prisionero)
- Puede no ser único.

Cachipún

	Rock	Paper	Scissors
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	-1,1	1,-1	0,0

- No tiene estrategias dominadas.
- No hay EN... en estrategias puras.
- Sí existe EN en estrategias mixtas

Definición: Una estrategia mixta σ_i es una distribución de probabilidad sobre estrategias puras.

Si
$$\#S_i = I$$
, entonces $\sigma_i = (p_1, \dots, p_I)$ tal que $\sum_{j=1}^I p_j = 1$ y $p_j \ge 0$ para todo j .

Estrategias mixtas

Oponente

a b

	ч	~
а	4 , 4	3, -1
b	-1,3	5,5

Yo

• Yo juego
$$\sigma_1 = (1/4, 3/4)$$

• Mi oponente juega
$$\sigma_2 = (2/3, 1/3)$$

$$\begin{array}{lll} u_{1}(\sigma_{1},\sigma_{2}) & = & \frac{1}{4}\frac{2}{3}u_{1}(a,a) + \frac{1}{4}\frac{1}{3}u_{1}(a,b) + \frac{3}{4}\frac{2}{3}u_{1}(b,a) + \frac{3}{4}\frac{1}{3}u_{1}(b,b) \\ & = & \frac{1}{4}\frac{2}{3}4 + \frac{1}{4}\frac{1}{3}3 + \frac{3}{4}\frac{2}{3}(-1) + \frac{3}{4}\frac{1}{3}5 = \frac{20}{12} = \frac{5}{3} \\ \\ u_{2}(\sigma_{1},\sigma_{2}) & = & \frac{1}{4}\frac{2}{3}u_{2}(a,a) + \frac{1}{4}\frac{1}{3}u_{2}(a,b) + \frac{3}{4}\frac{2}{3}u_{2}(b,a) + \frac{3}{4}\frac{1}{3}u_{2}(b,b) \\ & = & \frac{1}{4}\frac{2}{3}4 + \frac{1}{4}\frac{1}{3}(-1) + \frac{3}{4}\frac{2}{3}3 + \frac{3}{4}\frac{1}{3}5 = \frac{40}{12} = \frac{10}{3} \end{array}$$

Estrategias mixtas: notación

Sea un juego $G = (N, (S_i), u_i)$.

- $\Delta(S_i)$ conjunto de distribución de probabilidades sobre S_i (también se usa Σ_i)
- Cada $\sigma_i \in \Delta(S_i)$ es una estrategia mixta.
- $\Delta = \Delta(S_1) \times \cdots \times \Delta(S_n)$.
- $\sigma \in \Delta$ es un perfil de estrategias mixtas
- $u_i: \Delta \to \mathbb{R}$,
- $u_i(\sigma)$ es la utilidad esperada de la **lotería** definida por las probabilidades σ .

$$u_i(\sigma) = \sum_{s \in S} \left(\prod_{j=1}^n \sigma_j(s_j) \right) u_i(s)$$

donde $\sigma_j(s_j)$ es la probabilidad que el jugador j juegue la estrategia pura s_j (la estrategia pura s_i es la "coordenada" j del perfil de estrategias puras s).

Propiedades: u_i es lineal con respecto a σ_i y continua con respecto a σ

Equilibrio de Nash mixto

Proposición: Sea $G = (N, (S_i), (u_i))$ un juego finito.

 $\sigma^* \in \Delta$ es un EN de G si y solo si para todo jugador $i \in N$, toda estrategia pura con probabilidad positiva en σ_i^* es una mejor respuesta a σ_{-i}^* .

Este resultado permite caracterizar los equilibrios de Nash. Como veremos en el ejemplo que sigue.

Estrategias mixtas

Ejercicio propuesto:

• Encontrar todos los equilibrios de Nash.

Resp: EN= $\{(a, a), (b, b), (\sigma, \sigma)\}\$ donde $\sigma = (2/7, 5/7)$.

Equilibrio de Nash

Teorema de Nash (1950) Todo juego finito tiene al menos un equilibrio en estrategias mixtas.

- Juego finito: # jugadores finito y # estrategias puras finito.
- Se consideran los equilibrios en estrategias puras como casos particulares de estrategias mixtas.
- Pueden existir muchos equilibrios.

Otras definiciones

Correspondencia de mejor respuesta del jugador i

 B_i : correspondencia que entrega las mejores respuestas del jugador i a la estrategia σ_{-i} .

$$\sigma_i^* \in B(\sigma_{-i})$$
 si y solo si $u_i(\sigma_i^*, \sigma_{-i}) \ge u_i(\sigma_i, \sigma_{-i})$ para todo $\sigma_i \in \Delta(S_i)$

Correspondencia de mejor respuesta

$$B(\sigma) = (B_1(\sigma_{-1}), \ldots, B_n(\sigma_{-n}))$$

Observación

 σ^* es equilibrio de Nash si y solamente si $\sigma^* \in B(\sigma^*)$.

Equilibrio de Nash

Teorema de Nash (1950) Todo juego finito tiene un equilibrio en estrategias mixtas.

La demostración se basa en encontrar un **punto fijo de la correspondencia de mejor respuesta** $B: \Delta \to \Delta$ usando el:

Teorema de Punto Fijo de Kakutani

Sea $\Delta \in \mathbb{R}^d$ un subconjunto no vacío, compacto y convexo. $B: \Delta \to \Delta$ es una correspondencia semi-continua superior y tal que $B(\sigma)$ es no-vacío y convexo para todo $\sigma \in \Delta$. Entonces B tiene un punto fijo.

- Δ es no vacío, cerrado, acotado, convexo y es subconjunto de \mathbb{R}^d para algún d finito.
- La correspondencia de mejor respuesta $B(\sigma)$ es no vacía para todo σ
- La correspondencia de mejor respuesta $B(\sigma)$ es convexa para todo σ
- La correspondencia de mejor respuesta $B(\sigma)$ es semi-continua superior (tiene grafo cerrado)

Equilibrio de Nash

Teorema de Nash para juegos con continuo de estrategias:

Dado un juego tal que

- # finito de jugadores,
- conjunto de estrategia S_i no vacío, compacto, convexo subconjunto de \mathbb{R}^{d_i}
- $u_i(s_i, s_{-i})$ continuas en $s = (s_i, s_{-i})$ y cuasi concavas en s_i

existe al menos un EN en estrategias puras.

$Estrategias\ dominadas$

Ahora que conocemos las estrategias mixtas podemos dar la definición más general de estrategias dominadas

 σ_i domina a la estrategia pura s_i si y solo si

$$u_i(\sigma_i, s_{-i}) > u_i(s_i, s_{-i})$$
 para todo s_{-i} .

 σ_i domina débilmente a la estrategia pura s_i si y solo si

$$u_i(\sigma_i, s_{-i}) \ge u_i(s_i, s_{-i})$$
 para todo s_{-i} ,
 $u_i(\sigma_i, s_{-i}^*) > u_i(s_i, s_{-i}^*)$ para algún s_{-i}^* .

Observación: En la definición se caracterizan las estrategias **puras** dominadas... ¿que pasa con las estrategias mixtas?

Estrategias mixtas dominadas

¿Verdadero o falso?

 Una estrategia mixta que asigna probabilidad positiva a una estrategia pura estrictamente dominada es estrictamente dominada.

2. Una estrategia mixta que solo asigna probabilidad positiva a estrategias puras que **no** son estrictamente dominadas, **no** es estrictamente dominada.

Dominancia estricta iterada

Jugador 2

	а	b	С	d	е	f
а	5 5	1 9	2 8	3 7	4 6	5 5
b	9 1	7 7	3 7	4 6	7 5	6 4
С	8 2	9 3	4 4	4 5	6 4	7 3
d	7 3	6 4	5 5	5 4	9 3	8 2
е	6 4	5 7	4 6	3 9	5 5	9 1
f	5 5	4 6	3 7	2 8	1 9	5 5

Adriana Piazza

Dominancia estricta iterada

Algoritmo para eliminar estrategias estrictamente dominadas.

Dado un juego $G = (N, (S_i), (u_i))$

- Paso inicial $S_i^0 = S_i$ para todo i.
- Iteración: Dado S_iⁿ, conservo únicamente las estrategias que no son estrictamente dominadas:

$$S_i^{n+1} = \{s_i \in S_i^n | \text{ no existe } \sigma_i \in \Delta(S_i^n) \text{ tal que } u_i(\sigma_i, s_{-i}) > u_i(s_i, s_{-i}) \forall s_{-i} \in S_{-i}^n \}$$

• El algoritmo para cuando **no** se pueden eliminar estrategias de ningún jugador. S_i^{∞} es el conjunto de las estrategias puras que sobreviven al final.

Obs.: No importa el orden en que hagamos la eliminación. ¿Podemos hacer lo mismo con estrategias débilmente dominadas?

EN vs. Estrategias dominantes y dominadas

- 1. Si cada jugador tiene una estrategia dominante s_i^* , entonces $s^* = (s_1^*, \dots, s_n^*)$ es un EN. Además es el único EN.
- Si existe un único equilibrio de Nash, ¿existe una estrategia dominante para cada jugador? NO
- Si existe un único equilibrio de Nash en estrategias puras, ¿existe una estrategia dominante para cada jugador? NO

	L	C	R
Т	4, 4	2, 0	2, 0
Μ	0, 2	3, 0	0, 3
В	0, 2	0, 3	3, 0

Este juego tiene un único equilibrio de Nash (T,L) pero no tiene estrategias dominadas.

EN vs. Estrategias dominadas

4. Si σ^* es un EN, sólo puede asignar probabilidad positivas a estrategias puras que no son estrictamente dominadas. Estrategias estrictamente dominadas, no pueden ser parte de un EN (pues es irracional que un jugador las juegue).

- 5. Equivalentemente, si σ^* es un EN, todas las estrategias puras con probabilidad positiva en σ^* no son estrictamente dominadas.
- 6. Estrategias débilmente dominadas, sí podrían ser parte de un EN.

	L	C	R	
Т	10, 0	5, 1	4, -200	
В	10, 100	5, 0	0, -100	