Την Τρίτη μάθημα 8:30 χωρίς διάλειμμα

Σήμα - σύστημα

$$g = f(t)$$
εξαρτημένη ανεξάρτητη

$$g = f(\vec{r},t) \qquad \vec{E}(\vec{r},t)$$

Αναλογικό

Aν t συνεχής $\in \mathbb{R}$ και y συνεχής $\in \mathbb{R}$

Διακριτού χρόνου / Διακριτό (discrete)

t διακριτό $\to \mathbb{Z}, \; n \in \mathbb{Z}$ g συνεχής $\in \mathbb{R}$

Κβαντισμένο

 $n \in \mathbb{Z}$ g διακριτή

Στοχαστικό Περιέχει και τις τρεις κατηγορίες

0.1 Σύστημα

0.2 Περιοδικά σήματα

Aν $\exists T \in \mathbb{R}: \forall t \in \mathbb{R} \quad x(t) = x(t+T)$ τότε x(t) περιοδικό σήμα με περίοδο T. Η θα είναι 0, ή θα συνεχιστεί για πάντα.

$$\int_{-T/2}^{T/2} x(t) \, \mathrm{d}t = \int_{t_0 - T/2}^{t_0 + T/2} x(t) \, \mathrm{d}t \, \forall t$$

Η σύνθεση μιας συνάρτησης με μια περιοδική συνάρτηση είναι περιοδική;

Απόδ. Έστω *g* μία περιοδική συνάρτηση:

$$(f \circ g)(x) = f(g(x)) = f(g(x+T)) =$$
$$= (f \circ g)(x+T)$$

0.3 Συμμετρίες

- Av $x(t) = x(-t) \ \forall t$ τότε η x(t) λέγεται άρτια συνάρτηση (even function).
- Αν $x(t) = -x(t) \, \forall t$ τότε η x(t) λέγεται περιττή συνάρτηση (odd function).

$$\forall x(t) \quad \exists x_0(t), x_e(t) : x(t) = x_e(t) + x_0(t)$$

Απόδ.

$$x_e(t) = \frac{x(t) + x(-t)}{2}$$

 $x_o(t) = \frac{x(t) - x(-t)}{2}$

$$x \underbrace{e}_{\text{άρτια}} y_e = z_e$$

$$x_o y_o = z_e$$

$$x_e y_0 = z_0$$

$$\int_{-A}^A x_0(t) \, \mathrm{d}t = 0$$

$$\int_{-\infty}^\infty x_0(t) \, \mathrm{d}t = ? \left(\epsilon \xi \alpha \rho \tau \alpha \tau \alpha \right)$$

$$\lim_{A \to \infty} \int_{-A}^A x_0(t) \, \mathrm{d}t = 0 \quad \text{(principal Cauchy value)}$$

Χαρακτηριστικά σήματα

1) Εκθετικό σήμα

$$x(t) = ce^{at} \quad a \in \mathbb{R} \quad c > 0$$

$$x(t) = ce^{(\sigma t + j\omega)t} = ce^{\sigma t}e^{j\omega t} = ce^{\sigma t}\left[\cos(\omega t) + j\sin(\omega t)\right]$$

2) (Συν)ημιτονοειδή σήματα

$$x(t) = A\cos(\omega t \pm \phi) = a\operatorname{Re}\left\{e^{j(\omega t + \phi)}\right\} = A\frac{e^{j(\omega t \pm \phi)} + e^{-j(\omega t \pm \phi)}}{2}$$

3) Δέλτα Dirac $\delta(t)$

Ορ.

$$\int_{-\infty}^{\infty} f(t)\delta(t) dt = f(0) \forall f(t)$$

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

$$\int_{-\infty}^{\infty} f(t)\delta(t - \tau) dt = f(\tau)$$

$$\int_{-\infty}^{\infty} f(\tau)\delta(t - \tau) d\tau = f(t)$$

$$\int_{-\infty}^{\infty} f(t)\delta(t - \tau) d\tau = f(t)$$

Ιδιότητες της $\delta(t)$

1. Κλιμάκωση

$$a \in \mathbb{R} : \delta(at) = \frac{1}{|a|} \delta(t)$$

Aπόδ.
$$\underbrace{\int_{-\infty}^{\infty} \phi(t) \boxed{\delta(at)} dt}_{at = \xi} = \int_{-\infty_{(a)}}^{\infty_{(a)}} \phi\left(\frac{\xi}{a}\right) \delta(\xi) \frac{d\xi}{a} = \frac{1}{|a|} \int_{-\infty}^{\infty} \frac{\phi\left(\frac{\xi}{a}\right)}{|a|} \delta(\xi) d\xi = \frac{\phi(0)}{|a|} = \int_{-\infty}^{\infty} \phi(t) \boxed{\frac{\delta(t)}{|a|}} dt$$

$$\underbrace{at = \xi}_{dt = \frac{d\xi}{a}}$$

2.
$$f(t)\delta(t) = f(0)\delta(t)$$

3.
$$f(t)\delta(t-\xi) = f(g)\delta(t-\xi)$$

$$y(t) = \mathcal{L}\left\{x(t)\right\}$$

$$\forall x_1(t) \ x_n(t)$$

$$y_1(t) = \mathcal{L}\left\{x_1(t)\right\}$$

$$y_2(t) = \mathcal{L}\left\{x_2(t)\right\}$$

Για const $a_1, a_2 \in \mathbb{R}$

$$x(t) = a_1 x_1(t) + a_2 x_2(t)$$

$$y(t) = \mathcal{L} \{x(t)\}$$

ανν

$$y(t) = a_1 y_1(t) + a_2 y_2(t)$$

τότε

 \mathscr{L} : γραμμικό σύστημα

•
$$g(t) = \mathcal{L}\left\{x(t)\right\}$$

 $x'(t) = x(t-\tau)$
 $\text{and } y'(t) = \mathcal{L}\left\{x'(t)\right\} = \mathcal{L}\left\{x(t-\tau)^2\right\} = y(t-\tau)$

τότε το σύστημα \mathscr{L} είναι αμετάβλητο κατά τη μετατόπιση.

Υποστηρίζω ότι ένα γραμμικό & ΑΚΜ σύστημα περιγράφεται πλήρως από την κρουστική απόκριση h(t).

Απόδ. Από παραπάνω, γνωρίζουμε ότι $x(t) = \int_{-\infty}^{\infty} x(t) \delta(t-\tau) \, \mathrm{d}t$

$$\begin{split} y(t) &= \mathcal{L} \left\{ y(t) \right\} = \mathcal{L} \left\{ \int_{-\infty}^{\infty} x(t) \delta(t-\tau) \, \mathrm{d}\tau \right\} \\ &\stackrel{\text{linearity}}{=} \int_{-\infty}^{\infty} \mathcal{L} \left\{ x(\tau) \delta(t-\tau) \right\} \\ &= \int_{-\infty}^{\infty} x(\tau) \mathcal{L} \left\{ \delta(t-\tau) \right\} \, \mathrm{d}\tau \\ &\stackrel{\text{AKM}}{=} \int_{-\infty}^{\infty} x(\tau) h(t-\tau) \, \mathrm{d}\tau \\ y(t) &= \int_{-\infty}^{\infty} x(\tau) \underbrace{h(t-\tau)}_{\text{linear time-shift invariant}} \end{split}$$

-
$$\delta(t) = \delta(-t)$$
 άρτια συνάρτηση

-
$$\delta^{(n)}(t) = \frac{\mathrm{d}^n}{\mathrm{d}t^n} \delta(t)$$
, για την οποία αποδεικνύεται ότι:

$$\int_{-\infty}^{\infty} \delta^{(n)}(t)\phi(t) dt = (-1)^n \left. \phi^{(n)}(t) \right|_{t=0}$$

0.3.1 Βηματική Συνάρτηση (Unit Step Function)

$$\mathbf{u}(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$$
$$\int_{-\infty}^{\infty} \mathbf{u}(t)\phi(t) \, \mathrm{d}t = \mathcal{N}_{\mathbf{u}} \left\{ \phi(t) \right\} = \int_{0}^{\infty} \underbrace{\phi(t)}_{\text{number}} \, \mathrm{d}t$$

$$\delta(t) = \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{u}(t)$$
$$\mathbf{u}(t) = \int_{-\infty}^{t} \delta(\tau) \, \mathrm{d}\tau = \int_{0}^{\infty} \delta(t - \xi) \, \mathrm{d}\xi$$

0.3.2 Ράμπα

$$\mathbf{r}(t) = \int_{-\infty}^{t} \mathbf{u}(\tau) \, \mathrm{d}\tau = \begin{cases} t & t \ge 0 \\ 0 & \text{else} \end{cases} = t \mathbf{u}(t)$$

$$\mathbf{u}(t) = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{r}(t)$$

0.3.3 Ορθογωνικός παλμός (Rectangular Pulse function)

$$p_a(t) = \begin{cases} 1 & |t| < a \\ 0 & |t| > a \end{cases}$$

$$p_a(t) = u(t+a) - u(t-a)$$
$$\frac{d}{dt}p_a(t) = \delta(t+a) - \delta(t-a)$$

0.3.4 Τριγωνικός Παλμός (Triangular Pulse function)

$$\mathbf{p}_{\mathrm{tr},a} = \begin{cases} 1 - \frac{|t|}{a} & |t| < a \\ 0 & |t| > a \end{cases}$$

$$p_{\mathrm{tr},a}(t) = \frac{1}{a} \left[\mathbf{r}(t+a) + \mathbf{r}(t-a) - 2\mathbf{r}(t) \right]$$

0.4 Χαρακτηριστικά Μεγέθη

1) Μέση τιμή (Mean Value)

$$\overline{x(t)} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} x(t) dt$$

Αν περιοδική τότε

$$\bar{x}(t) = \frac{1}{T} = \int_0^T x(t) dt$$
$$= \frac{1}{T} \int_{t_0}^{t_0+T} x(t) dt$$

2) Ενεργός τιμή (Root Mean Square Value)

$$\overline{\overline{x(t)}} = \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} x^2(t) dt \right]^{1/2}$$

Αν ημιτονοειδές σήμα $\bar{\bar{x}}(t) = \frac{x_{\text{max}}}{\sqrt{2}}$

- 3) Ενέργεια Ισχύς
 - Στιγμιαία ισχύς (Instant power)

$$p(t) = x^2(t)$$

• Μέση ισχύς (Mean power)

$$\overline{p(t)} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} x^2(t) dt = \left(\overline{\overline{x(t)}}\right)^2$$

• Ενέργεια (Energy)

$$W = \int_{t_1}^{t_2} p(t) dt = \int_{t_1}^{t_2} x^2(t) dt = (t_2 - t_1) \left(\overline{\overline{x(t)}} \right)^2$$

 $\label{eq:continuous} \mathbf{\Sigma}$ ήματα $\begin{cases} \mathbf{\Sigma}$ ήμα ενέργειας αν $\lim_{T \to \infty} W < \infty \\ \\ \mathbf{\Sigma}$ ήμα ισχύος αν $\lim_{T \to \infty} \overline{p(t)} > 0 \\ \\ \mathbf{Y}$ πάρχουν και σήματα που δεν είναι ούτε ενέργειας, ούτε ισχύος.

0.5 Συνέλιξη

$$x(t) = \int_{-\infty}^{\infty} x(t)\delta(t - \tau)d\tau$$

$$h(t) = \mathcal{L}\left\{\delta(t)\right\}$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)\,\mathrm{d}\tau = \underbrace{x(t)}_{\mathrm{είσοδος}} \underbrace{*}_{\mathrm{curbolithen}} \underbrace{h(t)}_{\mathrm{απόκριση}}$$

Συνέλιξη - Convolution

$$z(t) = x(t) * y(t) = \int_{-\infty}^{\infty} x(\tau)y(t - \tau) d\tau$$

•
$$x(t) * y(t) = y(t) * x(t)$$
 Αντιμεταθετική

$$\int_{-\infty}^{\infty} x(\tau)y(t-\tau) d\tau = \int_{-\infty}^{\infty} x(t-\lambda)y(\lambda)[-d\lambda] = \int_{-\infty}^{\infty} y(\lambda)x(t-\lambda) d\lambda = y(t) * x(t)$$

•
$$x_1(t)*[x_2(t)*x_3(t)]=[x_1(t)*x_2(t)]*x_3(t)$$
 Пробетаірібтік $\mathbf{\hat{q}}$

Παρ.

$$f_1(t) = 2(1-t) [u(t) - u(t-1)]$$

 $f_2(t) = u(t) - u(t-\tau)$

Γραφική μέθοδος υπολογισμού συνέλιξης

$$f(t) = \frac{(t-1)\cdot 2\cdot (1-(t-2))}{2} = (t-1)(3-t)$$

Αναλυτική μέθοδος Παρατηρώ ότι:

$$\int_{-\infty}^{\infty} f(t,\tau) \mathbf{u}(t-\xi) \mathbf{u}(\phi-\tau) \,d\tau = \int_{\xi}^{\phi} f(t,\tau) \,d\tau \mathbf{u}(\phi-\xi)$$

$$\begin{split} f(t) &= \int_{-\infty}^{\infty} \underbrace{2(1-\tau)}_{x(\tau)} \left[\mathbf{u}(\tau) - \mathbf{u}(\tau+1) \right] \left[\mathbf{u}(t-\tau) - \mathbf{u}(t-\tau-2) \right] \mathrm{d}\tau \\ &= \int_{-\infty}^{\infty} x(\tau) \left[\mathbf{u}(\tau) \mathbf{u}(t-\tau) - \mathbf{u}(\tau-1) \mathbf{u}(t-\tau) - \mathbf{u}(\tau) \mathbf{u}(t-\tau-2) + \mathbf{u}(\tau-1) \mathbf{u}(t-\tau-2) \right] \mathrm{d}\tau \\ &= \int_{0}^{t} x(\tau) \, \mathrm{d}\tau \mathbf{u}(t) - \int_{1}^{x} x(\tau) \, \mathrm{d}\tau \mathbf{u}(t-1) - \int_{0}^{t-2} x(\tau) \, \mathrm{d}\tau \mathbf{u}(t-2) + \int_{1}^{t-2} x(\tau) \, \mathrm{d}\tau \mathbf{u}(t-3) \\ &= (2t-t^2) \mathbf{u}(t) - \left[2t-t^2-1 \right] \mathbf{u}(t-1) - \left[2(t-2)-(t-2)^2 \right] \mathbf{u}(t-2) + \left[2(t-2)-(t-2)^2-1 \right] \mathbf{u}(t-3) \end{split}$$

f(t) = 0

Ex

$$f_1(t) = e^t u(-t)$$

 $f_2(t) = u(t+2) - u(t+1)$
 $f = f_1 * f_2$

$$f = \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(-\tau) \mathbf{u} \left(-(t-\tau)+2\right) d\tau$$

$$= \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(-\tau) \mathbf{u}(\tau-t+2) d\tau$$

$$= \int_{t-2}^{0} e^{\tau} d\tau \mathbf{u}(t-2)$$

$$= e^{\tau} \Big|_{t-2}^{0} \mathbf{u}(2-t)$$

$$= \left[1 - e^{t-2}\right] \mathbf{u}(2-t)$$

$$\int_{-\infty}^{\infty} f(t,\tau) \mathbf{u}(\tau - \xi) \mathbf{u}(\phi - \tau) d\tau = \int_{\xi}^{\phi} f(t,\tau) d\tau \mathbf{u}(\phi - \xi)$$

Ex.

$$\begin{split} x(t) &= e^{t} \mathbf{u}(-t) \\ y(t) &= \mathbf{u}(t+2) \\ z(t) &= x(t) * y(t) = \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(-\tau) \mathbf{u} \left[(t-\tau) + 2 \right] d\tau = \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(-\tau) \mathbf{u}(t+2-\tau) d\tau \\ &= \int_{-\infty}^{\infty} e^{\tau} \left[1 - \mathbf{u}(t) \right] \mathbf{u}(t+2-\tau) d\tau \\ &= \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(t+2-\tau) d\tau - \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(\tau) u(t+2-\tau) d\tau \\ &= \int_{-\infty}^{t+2} e^{\tau} d\tau \mathbf{u} \left(t + 2 - \tau \right) d\tau - \int_{0}^{t+2} e^{\tau} d\tau \mathbf{u}(t+2) \\ &= e^{t+2} - \left[e^{t+2} - 1 \right] \mathbf{u}(t+2) \end{split}$$

Ex.

$$\begin{split} x(t) &= e^{t} \mathbf{u}(-t) \\ y(t) &= \mathbf{u}(t+2) - \mathbf{u}(t+1) \\ z(t) &= x(t) * y(t) = \int_{-\infty}^{\infty} x(\tau) y(t-\tau) \, \mathrm{d}\tau = \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(-\tau) \left[\mathbf{u}(t-\tau+2) - \mathbf{u}(t-\tau+1) \right] \mathrm{d}\tau \\ &= \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(-\tau) \mathbf{u}(t-\tau+2) \, \mathrm{d}\tau - \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(-\tau) \mathbf{u}(t-\tau+1) \, \mathrm{d}\tau \\ &= \int_{-\infty}^{\infty} e^{\tau} \left[1 - \mathbf{u}(\tau) \right] \mathbf{u}(t-\tau+2) \, \mathrm{d}\tau - \int_{-\infty}^{\infty} e^{\tau} \left[1 - \mathbf{u}(\tau) \right] \mathbf{u}(t-\tau+1) \, \mathrm{d}\tau \\ &= \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(t-\tau+2) \, \mathrm{d}\tau - \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(\tau) \mathbf{u}(t-\tau+2) \, \mathrm{d}\tau - \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(t-\tau+1) \, \mathrm{d}\tau + \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(\tau) \mathbf{u}(\tau+1) \, \mathrm{d}\tau + \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(\tau) \mathbf{u}(\tau+1) \, \mathrm{d}\tau + \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(\tau) \mathbf{u}(\tau+1) \, \mathrm{d}\tau + \int_{-\infty}^{\infty} e^{\tau} \mathbf{u}(\tau) \, \mathrm{d}\tau + \int_{-\infty}^{\infty} e^{$$

 $\exists h(t)$ ann LTI

$$y(t) = x(t) * h(t)$$

$$= \int_{-\infty}^{\infty} x(\tau)h(t - \tau) d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau$$

Έστω ότι η $x(t) = e^{j\omega t}$

$$y(t) = \int_{-\infty}^{\infty} h(t)e^{j\omega(t-\tau)} d\tau = e^{j\omega t} \int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau} d\tau$$
$$= x(t) \underbrace{\int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau} d\tau}_{h(t) \xrightarrow{FT} H(\omega)}$$

$$x(t) = A_1 e^{j\omega_1 t} + A_2 e^{j\omega_2 t}$$

$$y(t) = A_1 e^{j\omega_1 t} H(\omega_1) + A_2 e^{j\omega_2 t} H(\omega_2)$$

Κεφάλαιο 1 Συναρτηστιακοί χώροι

Διανυσματικός χώρος S

$$\bar{x}, \quad \bar{y} \quad S$$

Εσωτερικό γινόμενο

$$\langle \bar{x}, \bar{y} \rangle \in \mathbb{C}$$

1)
$$\langle \bar{x}, \bar{y} \rangle = \langle \bar{y}, \bar{x} \rangle^*$$

2)
$$c\langle \bar{x}, \bar{y} \rangle = \langle c\bar{x}, \bar{y} \rangle$$

3)
$$\langle \bar{x} + \bar{y}, \bar{z} \rangle = \langle \bar{x}, \bar{z} \rangle + \langle \bar{y}, \bar{z} \rangle$$

4)
$$\langle \bar{x}, \bar{x} \rangle \geq 0$$
 me $\langle \bar{x}, \bar{x} \rangle = 0$ and $\bar{x} = \bar{0}$

Νόρμα

$$\bar{x} \in S$$

$$||\bar{x}|| \ge 0$$

1)
$$||\bar{x}|| = 0$$
 and $\bar{x} = \bar{0}$

2)
$$||a\bar{x}|| = |a|||\bar{x}|| \quad x \in \mathbb{C}$$

3)
$$||\bar{x} + \bar{y}|| \le ||\bar{x}|| + ||\bar{y}||$$

Μέτρο: Απόσταση μεταξύ $\bar{x}, \bar{y} \in S$

1)
$$d(\bar{x}, \bar{y}) \ge 0$$
 $d(\bar{x}, \bar{y}) = 0$ and $\bar{x} = \bar{y}$

2)
$$d(\bar{x}, \bar{y}) = d(\bar{y}, \bar{x})$$

3)
$$d(\bar{x}, \bar{y}) \le d(\bar{x}, \bar{z}) + d(\bar{y}, \bar{z}) \quad \bar{z} \in S$$

Συναρτησιακός χώρος

$$x(t), y(t) \in S = \{x(t)/x(t) : [t_1, t_2] \to \mathbb{R} \}$$

$$\langle x(t), y(t) \rangle = \int_{t_1}^{t_2} x(t)y(t) dt$$

$$||x(t)|| = \left[\int_{t_1}^{t_2} x^2(t) dt \right]^{1/2}$$

$$d(x(t), y(t)) = \left[\int_{t_1}^{t_2} [x(t) - y(t)]^2 dt \right]^{1/2}$$

Αν
$$\langle \phi_1(t), \phi_2(t) \rangle = 0$$
 $\phi_1(t) \perp \phi_2(t)$ $\langle \phi_1(t), \phi_1(t) \rangle = 1$ $\phi_1(t)$ κανονική

 \tilde{a} και $d(\vec{a}, \tilde{a})$

$$\begin{split} \tilde{a} &= k\hat{x} \\ \vec{a} &= a_x\hat{x} + a + y\hat{y} \\ \vec{a} - \tilde{a} &= (a_x - k)\hat{x} - a_y\hat{y} \\ d(\vec{a}, \tilde{a}) &= \sqrt{(a_x - k)^2 + a_y^2} \\ \frac{\mathrm{d}}{\mathrm{d}k} \left(d(\vec{a}, \tilde{a}) \right) &= \frac{a_x - k}{\dots} = 0 \implies k = a_k = \tilde{a} \cdot \hat{x} \\ \vec{a} \cdot \hat{x} &= a_x \end{split}$$

Μη κάθετα διανύσματα

$$\vec{a} = a_x \hat{x} + a_y \hat{y}$$

$$\vec{a} \cdot \vec{a} = (a_x - k)\hat{x} + a_y \hat{y}$$

$$\left(\left[(a_x - k)\hat{x} + a_y \hat{y} \right] \cdot \left[(a_x - k)\hat{x} + a_y \hat{y} \right] \right)^{1/2}$$

$$\left[(a_x - k)^2 + a_y^2 + 2(a_x - k)a_y \hat{x} \cdot \hat{y} \right]^{1/2}$$

$$\tilde{a} = (\vec{a} \cdot \hat{x})\hat{x} \neq a_x$$

$$f(t) = \sum_{n=0}^{\infty} a_n \phi_n(t) \quad t \in \Delta$$

$$\hat{f}(t) = \sum_{n=0}^{M} \hat{a}_n \phi_n(t)$$
 βέλτιστη, ώστε η απόσταση με την f να είναι ελάχιστη

$$ec{?} = \int_{\Delta} \left[f(t) \right]$$

$$\vec{i}^{2} = \int_{\Delta} f^{2}(t) dt + \int_{\Delta} \sum_{i=1}^{?} \left[\hat{a}_{n} \phi_{n}(t) \right]^{2} + \int_{\Delta} \left[\sum_{?}^{?} \sum_{?}^{?} \hat{a}_{?} \hat{a}_{?} \phi_{n}(t) \phi_{?}(t) \right] dt - 2 \int_{\Delta} \sum_{?=0}^{M} \hat{a}_{n} f(t) \phi_{n}(t) dt$$

$$= \int_{\Delta} f^{2}(t) dt + \sum_{n=0}^{\infty} \tilde{a} \int \phi_{n}^{2}(t) dt + 2 \sum_{n=0}^{\infty} n = n^{N} \sum_{???}^{M} \hat{a}_{i} \hat{a}_{m} \int_{\Delta} \phi_{2}(t) \phi_{m}(t) dt - 2 \sum_{h=0}^{M} \hat{a}_{n} \int_{\Delta} f(t) \phi_{n}(t) dt$$

$$\frac{d\vec{i}}{da_{i}} = 2\hat{a} \int_{\Delta} \phi(t) dt + 2 \sum_{n=0}^{\infty} \phi_{i}(t) \phi_{n}(t) dt - 2 \int_{\Delta} f(t) \phi_{n}(t) dt$$

Έστω ϕ_i μοναδιαία $\iff \int_\Delta \phi^2(t)\,\mathrm{d}t=1$ και ϕ_i ορθογώνια $\iff \int_\Delta \phi_1\phi_2(t)=0$ Αν η $\big\{\phi(t)\big\}$ ορθοκανονική

$$2\vec{a}_i - 2\int_{\Delta} f(t)\phi(t) dt = 0 \implies \hat{a}_i = \int_{\Delta} f(t)\phi(t) dt$$

$$2a \langle \phi, \phi \rangle + \sum_{n=0}^{\infty} \hat{a}_n \langle \phi_i, \phi_n \rangle - 2 \langle f, \phi \rangle = 0$$

$$f(t) = \sum_{n=0}^{\infty} a_n \phi_n(t)$$

$$\int_{\Delta} f(t)\phi(t) dt = a_i$$

$$\langle f, \phi_i \rangle = \left\langle \sum_{n=0}^{\infty} a_i \phi_n, \phi_i \right\rangle = \sum_{n=0}^{\infty} a_n \langle \phi_n, \phi_i \rangle$$

Ex. $f(t) = e^{-3t} \mathbf{u}(t)$ $\phi_1(t) = e^t \mathbf{u}(t) \& \phi_2(t) = e^{-2t} \mathbf{u}(t)$

Ηθικό δίδαγμα: Αν η βάση του χώρου είναι ορθοκανονική και μας ζητηθεί να υπολογίσουμε μία προσέγγιση της συνάρτησης σε έναν υποχώρο, μπορούμε άμεσα να υπολογίσουμε την προβολή της συνάρτησης πάνω στη βάση.

$$\hat{f}(t) = a_1 e^{-t} \mathbf{u}(t) + a_2 e^{-2t} \mathbf{u}(t)$$

$$\int [a_1 \phi_1 + a_2 \phi_2 - f] \, \phi_1 \, dt = 0$$

$$\int_0^\infty \left[a_1 e^{-t} + a_2 e^{-2t} - e^{-3t} \right] e^{-t} \, dt = 0 \implies$$

$$a_1 \int_0^\infty e^{-2t} \, dt + a_2 \int_0^\infty e^{-3t} \, dt - \int_0^\infty e^{-4t} \, dt = 0 \implies \boxed{\frac{a_1}{2} + \frac{a_2}{3} - \frac{1}{4} = 0}$$

 $\int \left[a_1 e^{-t} + a_2 e^{-2t} - e^{-3t} \right] e^{-2t} dt = 0 \implies \left| \frac{a_1}{2} + \frac{a_2}{4} - \frac{1}{5} \right| = 0$

$$a_1 = 3/10, \ a_2 = 6/5$$