

一款基于面部特征的疲劳驾驶智能检测系统

小组成员: 陈秋羽、林榘驰、杨嘉怡、郭泳童、李文洁、谭沛轩

小组名: 不眠守卫队



# 目录/CONTENTS

01. 项目背景

02. 作品概述

03. 系统设计

04. 系统实现

04. 界面展示

05. 系统测试



# 项目背景

### 家庭汽车普及率 高

在中国, 大约有

45%的家庭至少拥

有一辆汽车,汽车在现如 今民众的日常出行、通勤 中发挥着重要作用。

### 道路交通安全事 故危害大

据统计,每年有130

**多万**人死于道路交通 安全事故,超过

2000万人因道路交通安全事故而受伤。

### 疲劳极易诱发交 通安全事故

保守估计,每年总共有

10万 起车祸是由驾驶员嗜睡直接导致的,这些由疲劳驾驶引起的车祸极大地影响了民众的生命财产安全。

### 驾驶过程中容易 产生疲劳

同时,据报告称,

54%的成年司机在

开车时感到昏昏欲睡,其

中28%的人实际上睡着了。



相比市面上的疲劳驾驶智能检测产品,清醒派不仅具有检测疲劳状态等基本功能, 还具有**停车导航、脑波音乐缓解疲劳以及智能语音助手**等高级功能。

支持**疲劳状态分析、人工智能研判以及基于LLM大模型的智能分析**,自动化程度高,功能集成全,为驾驶员准确判别疲劳状态!

| 工具名称             | 疲劳预警 | 预警方式       | 疲劳判断因素         | 外部因<br>素影响 |
|------------------|------|------------|----------------|------------|
| 清醒派              | 支持   | 语音提醒、音乐缓解  | 驾驶员面部运动信息      | 无影响        |
| Attention Assist | 支持   | 蜂鸣声提醒      | 车辆状态参数、驾驶员行为   | 无影响        |
| BAWS             | 支持   | 警报声提醒      | 驾驶员面部信息        | 有影响        |
| DAC              | 支持   | 警报声、干预车辆运动 | 驾驶员头部位置、车辆运动信息 | 无影响        |
| DMS              | 支持   | 干预车辆运动     | 驾驶员眼部运动信息      | 无影响        |
| DSM              | 支持   | 警报声、干预车辆运动 | 驾驶员面部信息、车辆位置   | 有影响        |







03

清醒派致力于安全实时的防疲劳辅助,提供更加安全可靠的行车环境,时刻 守护您和您所爱的一切

**技术概览—面部识别分析&人工智能** 

综合数据增强技术、YOLOv5、LLMs模型、live2d建模技术构建的先进工具。

02 功能定位—疲劳驾驶智能检测工具

为**个人用户**设计的疲劳驾驶智能检测工具,为驾驶员们分析疲劳状态,为规避疲劳驾驶提供有效帮助。

功能覆盖--多种实用功能

核心优势在于基于FasterYOLOv5s模块构建的疲劳检测模型以及基于LLMs大模型技术实现的智能分析模型。



**实时面部特征采集**:通过摄像头实时**获取用户面部** 

数的采集方式。

02 i

**实时检测疲劳状态**:自动提取用户的面部特征,通过**基于FasterYOLOv5s模块的疲劳检测模型**对用户的疲劳状态进行分类。

智能语音助手:基于live2d建模技术以及语音识别技术开发,实现实时的语音交互和指令响应。

清醒派

疲劳驾驶 智能识别系统 **39驶情况分析**:对用户的**行驶时间、里程、速度**等驾驶情况进行分析并生成用户驾驶习惯的分析报表。

**播放音乐缓解疲劳**:通过分析驾驶员的面部信号, 根据驾驶员的精神状态和需求提供相应的音乐,帮 助驾驶员放松心情或保持专注。

05

01

停车导航:提供实时的导航指引、交通信息和驾驶 建议,寻找附近的停车点,安全地规划路线、避免 拥堵。



## 架构设计





### 架构设计

分为前后端,前端负责用户与界面 进行交互,后端负责处理对应的请 求。



### 客户端设计

- 1. 上传服务请求
- 2. 获取检测结果
- 3. 查看智能分析结果
- 4. 播放脑波音乐
- 5. 定位导航目的地



### 服务器端设计

- 1. 分析疲劳状态
- 2. 计算检测结果
- 3. 生成智能分析结果
- 4. 处理导航请求



| 序号 | 接口名          | 请求方法 | 功能                                                                           |
|----|--------------|------|------------------------------------------------------------------------------|
| 1  | 疲劳驾驶<br>检测接口 | POST | 分析驾驶员的行为和生理指标(如眼睛的闭合情况、<br>头部姿势等),判断驾驶员是否存在疲劳驾驶的风险,<br>并及时提醒驾驶员采取休息或其他必要的措施。 |
| 2  | 停车点导<br>航接口  | GET  | 查找附近的停车点,并获取导航指引以方便找到合适<br>的停车位置。                                            |
| 3  | 安全领航<br>助手接口 | GET  | 提供实时导航指引、交通信息和驾驶建议,并提供其<br>他与安全驾驶相关的辅助功能。                                    |
| 4  | 驾驶报表<br>生成接口 | GET  | 收集和分析驾驶员的行驶数据,并生成相应的报表,<br>以供驾驶员参考和分析自己的驾驶行为和习惯。                             |
| 5  | 脑波音乐<br>获取接口 | GET  | 根据驾驶员的精神状态和需求,提供相应的音乐推荐,<br>帮助驾驶员放松心情或保持专注。                                  |

◎ 前后端通过接口进行交互

接口遵循Restful设计风格

- **]** 接口覆盖各个功能:
- 疲劳检测
- 智能导航
- 语音助手
- 报表分析
  - 脑波音乐

# 系统实现

数据集与 数据增强

01

选择RLDD、WIDERFACE、Mosaic-X数据增强方法,增强模型的鲁棒性。

人脸检测模型

02

基于YOLOv5s改进人脸检测模型Yolov5\_MobileNet\_NAM,精度和数据俱优。

疲劳检测模型

03

基于YOLOv5改进的自训练FasterYOLOv5s模型, 模型准确率高达0.995。 系统交互

04

使用*Back4*App平台提供服务,使用**Flask**框架与内网穿透技术进行模型部署服务。







选用最大的人 脸数据集 WIDER FACE 疲劳数据集 UTA-RLDD

- 1、专门的疲劳数据集
- 2、数据种类丰富
- 3、图像清晰度相对较高



- 1、采用**多场景数据集**提高模型鲁 棒性
- 2、采用**现实困意数据集**,检测早期困意
- 3、采用**Mosaic-X数据增强**去除 光照等图像噪声

- 1、最大的人脸数据集
- 2、收集了超过 **393703**个人 脸样本。
- 3、具有**高度变化性**。 4提高模型的准确性、鲁棒性。



### 特征选择及模型开发

基于YOLOv5改进的自训练 FasterYOLOv5s模型,模型准确率高达 0.995。

| 特征     | 含义         |  |  |
|--------|------------|--|--|
| Class  | 疲劳状态对应的类别  |  |  |
| Eyeh   | 眼睛特征点的水平距离 |  |  |
| Eyev   | 眼睛特征点的垂直距离 |  |  |
| Mouthh | 口腔特征点的水平距离 |  |  |
| Mouthv | 口腔特征点的垂直距离 |  |  |
| MOUTH  | 口腔长宽比      |  |  |

### 模型训练



- 基于YOLOv5改进的自训练FasterYOLOv5s模型
- 模型在平均精度均值上准确率高达0.995。

疲劳状态



非疲劳状态



### glm-4-flash&知识挂载



- GLM-4:智谱AI推出的新一代 基座大模型,整体性能大幅提 升,接近GPT-4。
- 知识库挂载RAG:通过从大规模的知识库中检索相关信息, 并将其与生成模型相结合,生成更准确、更丰富的文本输出。





### LLMs报告智能分析模型开发

文本处理:利用SDK功能对文本 进行分块和预处理,确保数据适 合RAG技术处理。



疲 ②

数据导入:通过智谱SDK导入疲劳驾驶分析相关论文,如文本文

件 PDF等

知识库挂载 (RAG)



← ② 反作APP 収集反作APP





词嵌入: 将文本块通过词嵌入模型转换成向量形式, 为后续检索做准备。

文档检索:利用RAG技术在索引库中检索与查询向量最接近的文档片段。







索引构建:将向量存储在向量数

据库中, 创建索引, 以便快速检

索。



查询处理:用户输入查询或指令。 SDK计算其向量表示。



作为专业的驾驶分析助手,请根据实时驾驶数据判断驾驶员是否疲劳,你的回答不能有"无法确定 XXX 是否疲劳"的说法,也不要回答"结合其他安全工具或平台对驾驶员进行更全面的疲劳驾驶评估。",相信你的判断



## 首页计时界面



- 首页计时界面可以点击"开始"按钮记录驾驶员休息时间。
- 休息时长大于等于20分钟后可以停止计时。

## 首页功能界面



• 在首页功能界面可以通过点击四个按钮跳转到不同的功能页面。



- 在检测页面可以看到疲劳分析的结果和定位信息。
- 包括**脑电波频谱图**、定位信息、行 驶时长等等。
- 点击播放音乐按钮可以播放脑波音 乐缓解疲劳
- 导航按钮可以开启导航



### 报告分析界面



| 序号# | 驾驶图像 | 时间              | 日期         | 纬度                | 经度                |        |
|-----|------|-----------------|------------|-------------------|-------------------|--------|
| 1   |      | 16:04:39.649775 | 2023-07-21 | 33.48725366666666 | 73.09542333333331 | Delete |

- 在报告分析页面可以看到疲劳分析的所有结果。
- 包括**疲劳检测结果**、脑电波频谱图、 驾驶员面部信息、**智能分析文本**等 等。
- 历史报告栏用于查看疲劳检测历史 报告
- 历史报告包含检测持续时间、检测 日期、车辆位置等信息

# 系统测试



### 本次测试环境



(1) 操作系统: Ubuntu x64

(2) CPU: : Intel(R) Xeon(R) CPU E5-2680 v3

@ 2.50GHz

(3) 内存: 512M 及以上

(4) 硬盘空间: 40GB 及以上

(5) 服务器: 阿里云服务器



(1) RAM 512 MB 及以上

(2) 操作系统: Windows7及以上

(3) 浏览器: Chrome 浏览器

- 功能测试:对常规功能进行逐个测试并撰写测试报告。
- 白盒测试:根据代码逻辑编写完善的测试用例并测试。
- 接口测试:使用Postman或任何 支持HTTP请求的工具执行测试用例。

功能测试及接口测试基本通过。

测试覆盖率基本符合测试标准,在基本功能上可以保证测试的有效性和正确性。本次测试的各指标覆盖如图所示。



### 更多测试细节 请在测试文档内查看

# 请各位评审老师批评指正

汇报时间: 2024-



