Machine Learning

(Học máy – IT3190E)

Khoat Than

School of Information and Communication Technology
Hanoi University of Science and Technology

Contents

- Introduction to Machine Learning
- Supervised learning
 - K-nearest neighbors
- Unsupervised learning
- Reinforcement learning
- Practical advice

Classification problem

- Supervised learning: learn a function y = f(x) from a given training set $\{\{x_1, x_2, ..., x_N\}; \{y_1, y_2, ..., y_N\}\}$ so that $y_i \cong f(x_i)$ for every i.
 - Each training instance has a label/response.
- Multiclass classification/categorization: output y is only one from a pre-defined set of labels
 - y in {normal, spam}
 - y in {fake, real}

Which class does the object belong to?

Class a

Class b

Class a

?

Class b

Class a

Neighbor-based learning (1)

- K-nearest neighbors (KNN) is one of the most simple methods in ML. Some other names:
 - Instance-based learning
 - Lazy learning
 - Memory-based learning

Main ideas:

- There is no specific assumption on the function to be learned.
- Learning phase just stores all the training data.
- Prediction for a new instance is based on its nearest neighbors in the training data.
- Thus KNN is called a non-parametric method. (no specific assumption on the classifier/regressor)

Neighbor-based learning (2)

- Two main ingredients:
 - The similarity measure (distance) between instances/objects.
 - The neighbors to be taken in prediction.
- Under some conditions, KNN can achieve the Bayesoptimal error which is the performance limit of any methods. [Gyuader and Hengartner, JMLR 2013]
 - Even 1-NN (with some simple modifications) can reach this performance. [Kontorovich & Weiss, AISTATS 2015]
- KNN is close to Manifold learning.

KNN: example

- Take 1 nearest neighbor?
 - Assign z to class 2.
- Take 3 nearest neighbors?
 - Assign z to class 1.
- Take 5 nearest neighbors?
 - Assign z to class 1.

KNN for classification

- Data representation:
 - Each observation is represented by a vector in an n-dimensional space, e.g., $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{in})^T$. Each dimension represents an attribute/feature/variate.
 - There is a set C of predefined labels.
- Learning phase:
 - Simply save all the training data D, with their labels.
- Prediction: for a new instance z.
 - For each instance x in D, compute the distance/similarity between x and z.
 - Determine a set NB(z) of the nearest neighbors of z.
 - \Box Using majority of the labels in NB(z) to predict the label for z.

KNN for regression

- Data representation:
 - Each observation is represented by a vector in an n-dimensional space, e.g., $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{in})^T$. Each dimension represents an attribute/feature/variate.
 - The output y is a real number.
- Learning phase:
 - Simply save all the training data **D**, with their labels.
- Prediction: for a new instance z.
 - For each instance x in D, compute the distance/similarity between x and z.
 - Determine a set NB(\mathbf{z}) of the nearest neighbors of \mathbf{z} , with $|NB(\mathbf{z})| = k$.
 - $_{ extstyle }$ Predict the label for **z** by $\ y_z = rac{1}{k} \sum_{x \in NB(z)} y_x$

KNN: two key ingredients (1)

Different thoughts,

Different views

Different measures

KNN: two key ingredients (2)

- The distance/similarity measure
 - Each measure implies a view on data
 - Infinite many measures !!!
 - What measure should be?

KNN: two key ingredients (3)

- The set NB(z) of nearest neighbors.
 - How many neighbors are enough?
 - How can we select NB(z)?
 (by choosing k or restricting the area?)

KNN: 1 or more neighbors?

- In theory, 1-NN can be among the best methods under some conditions. [Kontorovich & Weiss, AISTATS 2015]
- KNN is Bayes optimal under some conditions: Y bounded, large training size M, and the true regression function being continuous, and

$$k \to \infty, (k/M) \to 0, (k/\log M) \to +\infty$$

- In practice, we should use more neighbors for prediction (k>1), but not too many:
 - To avoid noises/errors in only one nearest neighbor.
 - Too many neighbors migh break the inherent structure of the data manifold, and thus prediction might be bad.

Distance/similarity measure (1)

- The distance measure:
 - Plays a very important role in KNN.
 - Indicates how we assume/suppose the distribution of our data.
 - Be determined once, and does not change in all prediction later.
- Some common distance measures:
 - Geometric distance: usable for problems with real inputs
 - Hamming distance: usable for problems with binary inputs, such as x in {0; 1}

Distance/similarity measure (2)

Some geometric distances:

□ Minkowski (L_p-norm):

$$d(x,z) = \left(\sum_{i=1}^{n} \left|x_{i} - z_{i}\right|^{p}\right)^{n p}$$

□ Manhattan (L₁-norm):

$$d(x,z) = \sum_{i=1}^{n} |x_i - z_i|$$

□ Euclid (L₂-norm):

$$d(x,z) = \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2}$$

Chebyshev (max norm):

$$d(x,z) = \lim_{p \to \infty} \left(\sum_{i=1}^{n} |x_i - z_i|^p \right)^{1/p}$$
$$= \max_{i} |x_i - z_i|$$

Distance/similarity measure (3)

- Hamming distance:
 - for problems with binary inputs
 - \Box such as $\mathbf{x} = (1,0,0,1,1)$

$$d(x,z) = \sum_{i=1}^{n} Difference(x_{i}, z_{i})$$

$$Difference(a,b) = \begin{cases} 1, if (a \neq b) \\ 0, if (a = b) \end{cases}$$

- Cosine measure:
 - Suitable for some problems with textual inputs.

$$d(x,z) = \frac{x^{T}z}{\|x\|.\|z\|}$$

KNN: attribute normalization

- Normalizing the attributes is sometimes important to get good predictiveness in KNN.
 - No normalization implies that the magnitude of an attribute might play a heavy role, and artificially overwhelms the other attributes. Ex.:

$$d(x,z) = \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2}$$

- x = (Age=20, Income=12000, Height=1.68)
- z = (Age=40, Income=1300, Height=1.75)
- $d(x, z) = [(20-40)^2 + (12000-1300)^2 + (1.68-1.75)^2]^{0.5}$
- This is unrealistic and unexpected in some applications.
- Some common normalizations:
 - Make all values of x_j in [-1; 1];
 - \square Make all values of x_j to have empirical mean 0 and variance 1.

KNN: attribute weighting

- Weighting the attributes is sometimes important for KNN.
 - No weight implies that the attributes play an equal role, e.g., due to the use of the Euclidean distance:

$$d(x,z) = \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2}$$
 \rightarrow $d(x,z) = \sqrt{\sum_{i=1}^{n} w_i (x_i - z_i)^2}$

- This is unrealistic in some applications, where an attribute might be more important than the others in prediction.
- Some weights (w_i) on the attributes might be more suitable.
- How to decide the weights?
 - Base on the knowledge domain about your problem.
 - Learn the weights automatically from the training data.

KNN: weighting neighbors (1)

$$y_z = \frac{1}{k} \sum_{x \in NB(z)} y_x$$

- Prediction of labels miss some information about neighbors.
 - The neighbors in NB(z) play the same role with respect to the different distances to the new instance.
 - This is unrealistic in some applications, where closer neighbors should play more important role than the others.
- Using the distance as weights in prediction might help.
 - Closer neighbors should have more effects.
 - Farther points should have less effects.

KNN: weighting neighbors (2)

- Let v be the weights to be used.
 - $\neg \lor (\mathbf{x}, \mathbf{z})$ can be chosen as the inverse of the distance from \mathbf{x} to \mathbf{z} , $d(\mathbf{x}, \mathbf{z})$.
 - Some examples:

$$v(x,z) = \frac{1}{\alpha + d(x,z)} \qquad v(x,z) = \frac{1}{\alpha + [d(x,z)]^2} \qquad v(x,z) = e^{-\frac{d(x,z)^2}{\sigma^2}}$$

For classification:

$$c_z = \underset{c_j \in C}{\operatorname{arg\,max}} \sum_{x \in NB(z)} v(x, z).Identical(c_j, c_x) \qquad Identical(a, b) = \begin{cases} 1, if(a = b) \\ 0, if(a \neq b) \end{cases}$$

□ For regression:

$$y_z = \frac{\sum_{x \in NB(z)} v(x, z).y_x}{\sum_{x \in NB(z)} v(x, z)}$$

KNN: limitations/advantages

Advantages:

- Low cost for the training phase.
- Very flexible in choosing the distance/similarity measure: we can use many other measures, such as Kullback-Leibler divergence, Bregman divergence,...
- \square KNN is able to reduce some bad effects from noises when k > 1.
- In theory, KNN can reach the best performance among all regression methods, under some conditions.
 (this might not be true for other methods)

Limitations:

- Have to find a suitable distance/similarity measure for your problem.
- Prediction requires intensive computation.

References

- A. Kontorovich and Weiss. A Bayes consistent 1-NN classifier.
 Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS). JMLR: W&CP volume 38, 2015.
- A. Guyader, N. Hengartner. On the Mutual Nearest Neighbors Estimate in Regression. Journal of Machine Learning Research 14 (2013) 2361-2376.
- L. Gottlieb, A. Kontorovich, and P. Nisnevitch. Near-optimal sample compression for nearest neighbors. Advances in Neural Information Processing Systems, 2014.

Exercises

- What is the different between KNN and OLS?
- Is KNN prone to overfitting?
- How to make KNN work with sequence data? (each instance is a sequence)