Multi-channel Communications Fall 2022

Lecture 19
The Performance of OFDM with
Timing/Frequency Error &
Multipath

Dr. R. M. Buehrer

Introduction

- Impact of Synchronization Errors
 - o Timing
 - o Frequency
 - o ICI
- o Static Multipath
 - o Zero-padding
 - O Cyclic Prefix
- o Time-Varying Multipath
 - o Introduction of ICI
 - o Receiver Structures
 - o Matched Filter
 - o Zero-Forcing
 - o MMSE
 - o MMSE/ZF SIC

Performance of OFDM

- AWGN channel
 - OFDM has the same BER performance as singlecarrier approaches
- o Flat Rayleigh fading
 - OFDM has the same performance as single-carrier approaches
- o Frequency selective Rayleigh fading
 - OFDM has an advantage over single-carrier, especially in coded systems
- These statements assume
 - o Perfect synchronization
 - Delay spread < T_{cp}
 - o Channel is fixed over OFDM symbol period

Impact of Timing Error

o Go to the board...

Performance- Timing Error

- o AWGN, N=64, No ISI
- Uncompensated Phase rotation (with pilots, this phase rotation would be assumed to be part of the channel and removed)

Performance- Timing Error

- o AWGN, N = 64, No ISI
- Uncompensated Phase rotation (with pilots, this phase rotation would be assumed to be part of the channel and removed)

Impact of Frequency Shift

o Go to the board...

Impact of Frequency Shift

 Frequency offset causes sampling away from peak Sampling point in frequency (FFT locations)

OFDM

Example Performance

- o AWGN
- 0 N = 64
- o No Compensation

Example Performance

- O AWGN
- 0 N = 64
- No compensation

Multipath

- O When two versions of the signal (i.e., multipath) arrive at the receiver with different delays, the two paths will not be orthogonal.
- Symbol changes in consecutive intervals will destroy the orthogonality between subcarriers
- o This can be remedied by extending the length of the symbol using a cyclic prefix
- o The cyclic prefix is disregarded at the receiver maintaining orthogonality at the expense of slight time inefficiency

Impact of delay on orthogonality

Subcarriers 4 and 8 out of 256 with 20 sample delay difference

Frequency Domain

Multipath

o Time Domain

ISI – Loss in desired energy

ICI – Leakage in other subcarriers

Multi-Channel Communications ECE 6634 Fall 2022

Guard Time – Zero Padding

 One solution is to simply add guard time between symbols by zero-padding

= guard time

Cyclic Prefix in OFDM

- o By dividing the input data stream into N subcarriers, the symbol duration is made N times larger, which reduces the multipath delay spread relative to the symbol time, by the same factor.
- However, ISI can still occur if delay spread is large.
- To remove ISI completely, a guard time is inserted in each OFDM symbol. This guard time is always chosen to be larger than the maximum delay spread due to the channel.
- The OFDM symbol is cyclically extended in the guard time.
 This ensures that the delayed replicas always have an integer number of cycles during the FFT interval
- o The guard time T_g should be always greater than the worst case delay spread (τ_{max}) of the channel.

Cyclic Prefix – Contd.

During the FFT interval, the OFDM receiver sees a sum of pure sine waves which does not destroy the orthogonality between the subcarriers.

Cyclic Prefix

Benefit of Cyclic Prefix

- OFDM makes a frequency selective channel a flat fading channel on each subcarrier
- Insertion of Cyclic Prefix eliminates the inter-carrier interference

Multi-Channel Communications ECE 6634 Fall 2022

Degradation due to CP

 In order to eliminate effects of multipath we must transmit

$$\frac{T_{cp}}{T_{eff}}$$

more energy than necessary

- o This can be thought of as a loss in energy by same amount
 - o 20% increase ($T_{cp} = T_{eff}/5$) results in less than 1dB loss
 - o Small price to pay compared to benefit

Time-Varying Multipath (Doppler Spread)

- The subcarriers only remain orthogonal provided that the channel is constant over the duration of the OFDM symbol
- This becomes more unlikely since the OFDM symbol is N times longer than the original symbol
- Doppler effects cause the signal to change in time and possibly over a symbol duration causing inter-carrier interference (symbols are no longer orthogonal)
- In the frequency domain we can envision a frequency shift or frequency smearing

Impact of Doppler Spread

Impact of Doppler Spread

Impact of Doppler Spread

The effect of Doppler

Correlation between channel outputs

- Ideally the correlation matrix is a diagonal matrix
- At a Doppler rate of 0.01 times the symbol rate this is nearly accomplished
- At a Doppler rate of 0.1 times the symbol rate, significant inter-carrier interference occurs

 Multi-Channel Communications
 ECE 6634

Fall 2022

Effect of Doppler-induced ICI

- Time varying channels disrupt the orthogonality between subcarriers (spread in frequency) resulting in Inter-Carrier Interference (ICI)
- Note: BW is fixed
- ICI increases with the number of subcarriers
- ICI can be reduced by proper detection technique like MMSE instead of a simple FFT

Multi-Channel Communications ECE 6634 Fall 2022

Detection Techniques

FFT Detection
$$egin{array}{lll} \eta &=& \mathbf{D}_N ilde{\mathbf{r}} \ &=& \Gamma \mathbf{s} +
u \ \mathbf{z} &=& \Gamma^H \eta \end{array}$$

LS Detection

$$\mathbf{z} = (\Gamma^H \Gamma)^{-1} \Gamma^H \eta$$

MMSE Detection

$$\mathbf{z} = \begin{bmatrix} \text{Go to the Board} \\ \\ = \left(\Gamma^H \Gamma + \frac{1}{SNR} \mathbf{I}_N \right)^{-1} \Gamma^H \Gamma \mathbf{s} + \left(\Gamma^H \Gamma + \frac{1}{SNR} \mathbf{I}_N \right)^{-1} \Gamma^H \nu \end{bmatrix}$$

 $\mathbf{s} + (\Gamma^H \Gamma)^{-1} \Gamma^H \nu$

MMSE with Successive Detection

Detection techniques vs. Doppler Spread

- Performance of FFT detection the worst Matched filter
- MMSE and LS
 performance is better
 than simple FFT
 detection
- performs the best with the performance improving with increase in normalized Doppler. SD exploits time diversity provided by the channel.

Performance using 16PSK modulation for varying f_dT_o . SNR= 30dB

Multi-Channel Communications ECE 6634 Fall 2022

Detection techniques- contd.

Performance of different detection techniques_ $f_dT_o = 0.1$, N = 1024

Performance of different detection techniques_ $f_dT_o = 0.01$, N = 1024

Conclusions

- In this lecture we have examined the performance of OFDM
 - o With timing error
 - o With frequency error
 - o In the presence of multipath
- These results show the limitations of OFDM as it requires good frequency synchronization and relatively low Doppler spreads (unless more sophisticated receivers are used)