MA 360 : Mathématiques appliquées (Partie Probabilités)

Chapitre 3 : Variables aléatoires à densité

Pierre-Alain TOUPANCE pierre-alain.toupance@esisar.grenoble-inp.fr

Grenoble INP - ESISAR $3^{\text{i\`eme}}$ année

24 septembre 2020

Rappel

Définition:

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

On appelle Fonction de répartition de X l'application F_X telle que :

$$F_X : \mathbb{R} \to \mathbb{R}$$
 $x \mapsto \mathbb{P}(X \le x)$

Variable à densité

Définition:

Soit X une variable aléatoire réelle. On dit que X est une variable aléatoire à densité ou que X admet une densité f si sa fonction de répartition F_X est continue et peut s'écrire sous la forme :

$$\forall x \in \mathbb{R}, F_X(x) = \int_{-\infty}^x f(t)dt$$

avec:

- $oldsymbol{2}$ f possède un nombre fini de points de discontinuité,

$$\int_{-\infty}^{+\infty} f(t)dt = 1.$$

La fonction f est appelée densité de X.

Fonction de répartition et densité

Propriété :

En tout point x_0 où f est continue, F_X est dérivable et on a : $F_X'(x_0) = f(x_0)$

Fonction densité

Propriété:

Une fonction f définie sur \mathbb{R} est une densité de probabilité ssi :

- f possède un nombre fini de points de discontinuité,
- $\int_{-\infty}^{+\infty} f(t)dt = 1.$

La densité d'une variable aléatoire permet de définir la loi de cette variable. Connaître f permet de savoir quelles sont les valeurs que peut prendre la variable aléatoire, ainsi que les probabilités associées à ces valeurs.

$$\forall A \subset \mathbb{R}, \ \mathbb{P}(X \in A) = \int_A f(t)dt$$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

Montrer que f est une densité de probabilité.

6/51

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

Montrer que f est une densité de probabilité.

• f est continue sur \mathbb{R} .

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

- f est continue sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \ f(x) \geqslant 0$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

- f est continue sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \ f(x) \geqslant 0$
- On a:

$$\int_{-\infty}^{+\infty} f(t)dt$$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

- f est continue sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \ f(x) \geqslant 0$
- On a:

$$\int_{-\infty}^{+\infty} f(t)dt = \int_{0}^{\pi} \frac{\sin t}{2} dt$$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

- f est continue sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \ f(x) \geqslant 0$
- On a:

$$\int_{-\infty}^{+\infty} f(t)dt = \int_{0}^{\pi} \frac{\sin t}{2} dt = \left[-\frac{\cos t}{2} \right]_{0}^{\pi}$$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

- f est continue sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \ f(x) \geqslant 0$
- On a:

$$\int_{-\infty}^{+\infty} f(t)dt = \int_0^{\pi} \frac{\sin t}{2} dt = \left[-\frac{\cos t}{2} \right]_0^{\pi} = 1$$

Propriétés

 $\forall (a, b) \in \mathbb{R}^2, \ a < b, \text{ on a}$

- $\mathbb{P}(X = b) = 0$
- $\mathbb{P}(X \le b) = \mathbb{P}(X < b) = \int_{-\infty}^{b} f_X(t)dt$
- $\mathbb{P}(a \le X \le b) = \mathbb{P}(a < X < b) = \int_a^b f_X(t)dt$

Espérance

Définition:

Soit X une variable aléatoire de densité f.

On appelle Espérance de X, notée $\mathbb{E}(X)$, le réel :

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} t f(t) dt.$$

Cette quantité est définie sous réserve de convergence absolue de l'intégrale.

Remarque : $\mathbb{E}(X)$ n'est pas toujours définie, par exemple soit

$$X$$
 la VA à densité f_X : $t \mapsto \frac{1}{\pi} \frac{1}{1+t^2}$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{2} \sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

$$\mathbb{E}(X) = \frac{1}{2} \int_0^{\pi} t \sin t dt$$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

$$\mathbb{E}(X) = \frac{1}{2} \int_0^{\pi} t \sin t dt$$

$$\mathbb{E}(X) = \frac{1}{2} \left(\left[-t \cos t \right]_0^{\pi} + \int_0^{\pi} \cos t dt \right) = \frac{\pi}{2}$$

Propriétés de l'espérance

Propriétés:

• Théorème de transfert :

Soit X une v.a. de densité f et $\Phi : \mathbb{R} \to \mathbb{R}$ telle que $|\Phi|f$ soit intégrable sur \mathbb{R} , alors $\Phi(X)$ possède une espérance et :

$$\mathbb{E}(\Phi(X)) = \int_{-\infty}^{+\infty} \Phi(t) f(t) dt$$

• Linéarité de l'espérance :

Soit X et Y deux v.a. à densité admettant une espérance et a et b deux réels, on a alors :

$$\mathbb{E}(aX + Y) = a\mathbb{E}(X) + \mathbb{E}(Y)$$

En particulier $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$

Variance et écart-type

Définitions :

Soit X une variable aléatoire de densité f, sous réserve de convergence des intégrales :

- On appelle moment d'ordre 2 de X, le nombre réel : $m_2(X) = \mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$
- On appelle variance de X, le nombre réel $\mathbb{V}(X) = \mathbb{E}[(X \mathbb{E}(X))^2].$ $\mathbb{V}(X) = \int_{-\infty}^{+\infty} (t \mathbb{E}(X))^2 f(t) dt.$
- On appelle écart-type de X, le nombre réel $\sigma(X) = \sqrt{\mathbb{V}(X)}$

Propriétés de la variance

Propriétés :

Soient X et Y deux v.a. à densité, admettant respectivement des moments d'ordre 2.

- $\mathbb{V}(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$ (Formule de Koenig-Huygens)
- Soit a et b deux réels quelconques, on a alors : $\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$
- Si X et Y sont indépendantes, on a alors : $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y)$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$
$$\mathbb{E}(X^2) = \frac{1}{2} \int_0^{\pi} t^2 \sin t dt$$

Exemple:
$$X$$
 VA a densite f definite par :
$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0;\pi] \\ 0 & \text{sinon} \end{cases}$$

$$\mathbb{E}(X^2) = \frac{1}{2} \int_0^{\pi} t^2 \sin t dt$$

$$\mathbb{E}(X^2) = \frac{1}{2} \left(\left[-t^2 \cos t \right]_0^{\pi} + \int_0^{\pi} 2t \cos t dt \right)$$

$$\mathbb{E}(X^2) = \frac{1}{2} \left(\pi^2 + \left[2t \sin t \right]_0^{\pi} - \int_0^{\pi} 2 \sin t dt \right) = \frac{\pi^2}{2} - 2$$
Ainsi $\mathbb{V}(X) = \frac{\pi^2}{4} - 2$

Loi uniforme

Définition : Loi uniforme sur $[\alpha; \beta]$

On dit que la v.a. X suit une loi uniforme sur $[\alpha; \beta]$ si la densité f de la variable aléatoire X est définie par :

$$f(t) = \begin{cases} \frac{1}{\beta - \alpha} & \text{si } t \in [\alpha; \beta] \\ 0 & \text{si } t \notin [\alpha; \beta] \end{cases}$$

On note $X \sim U([\alpha, \beta])$

Loi uniforme

FIGURE – Densité de $X \sim U([2,5])$.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Loi uniforme

Propriétés:

Si X est une v.a. qui suit une loi uniforme sur $[\alpha; \beta]$ alors X admet des moments d'ordre 1 et 2 et on a :

•
$$\mathbb{E}[X] = \frac{\alpha + \beta}{2}$$
 preuve

•
$$\mathbb{E}[X] = \frac{\alpha + \beta}{2}$$
 preuve
• $\mathbb{V}(X) = \frac{(\beta - \alpha)^2}{12}$ preuve

•
$$F_X(x) = \begin{cases} 0 & \text{si } x < \alpha \\ \frac{x - \alpha}{\beta - \alpha} & \text{si } \alpha \le x \le \beta \\ 1 & \text{si } x > \beta \end{cases}$$

Loi uniforme

FIGURE – Fonction de répartition de $X \sim U([\alpha, \beta])$.

Loi exponentielle

Loi exponentielle

Une v.a. X suit une loi exponentielle de paramètre $\lambda > 0$ lorsque X admet pour densité la fonction f définie par :

$$f(t) = \begin{cases} \lambda e^{-\lambda t} & \text{si } t \ge 0\\ 0 & \text{si } t < 0 \end{cases}$$

On le note $X \sim \mathcal{E}(\lambda)$

Loi exponentielle

FIGURE – Densité de $X \sim \mathcal{E}(\lambda)$.

◆□ > ◆圖 > ◆ 圖 > ◆ 圖 >

Loi exponentielle

Prop<u>riétés</u>

Si X suit une loi exponentielle de paramètre λ alors X admet des moments d'ordre 1 et 2, et on a :

•
$$\mathbb{E}[X] = \frac{1}{\lambda}$$
 preuve

•
$$\mathbb{V}(X) = \frac{1}{\lambda^2}$$
 preuve

•
$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si } x \geqslant 0 \\ 0 & \text{sinon} \end{cases}$$

《四》《圖》《意》《意》。

Loi exponentielle

Figure – Fonction de répartition de $X \sim \mathcal{E}(\lambda)$.

Loi exponentielle

Propriété

Soit X une variable aléatoire de loi exponentielle de paramètre λ , on a :

$$\forall (a,b) \in (\mathbb{R}_+^*)^2, \ \mathbb{P}_{X>b}(X>a+b) = \mathbb{P}(X>a)$$

On dit que la variable aléatoire X est sans mémoire.

Preuve Cette propriété est même une caractérisation de la loi exponentielle

Loi de Laplace-Gauss

Définition:

Une variable aléatoire X suit une loi de Laplace-Gauss, on dit également loi normale centrée réduite, notée $\mathcal{N}(0,1)$, si X admet pour densité la fonction f définie par :

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

On le note $X \sim \mathcal{N}(0,1)$

On vérifie que f est bien une densité de probabilité preuve

←□ → ←□ → ← ≥ →

Loi de Laplace-Gauss

FIGURE – Densité de $X \sim \mathcal{N}(0,1)$.

イロト 不問 ト イヨト イヨト

Loi de Laplace-Gauss

Propriétés:

Si X suit une loi normale $\mathcal{N}(0,1)$ alors

- X admet des moments d'ordre 1 et $\mathbb{E}[X] = 0$ preuve
- X admet des moments d'ordre 2 et $\mathbb{V}(X) = 1$
- Sa fonction de répartition, parfois notée Π ou Φ existe mais on ne peut l'exprimer à l'aide des fonctions usuelles.

Loi de Laplace-Gauss : fonction de répartition

Loi de Laplace-Gauss

Propriétés:

Si $X \sim \mathcal{N}(0,1)$ et si Π est sa fonction de répartition alors on a :

$$\forall x \in \mathbb{R} \qquad \Pi(-x) = 1 - \Pi(x)$$

$$\mathbb{P}(X > x) = \mathbb{P}(X < -x) = \Pi(-x)$$

$$\mathbb{P}(-x < X < x) = 2\Pi(x) - 1$$

Loi de Laplace-Gauss

Pour effectuer des calculs de probabilité avec la loi normale centrée réduite, on utilise sa fonction de répartition, via un logiciel ou une table de probabilité :

τ	0.00	0.01	0.02	0.03	0.04	0.05	0.06	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	NP 1
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	
1.0	0.0410	0.0400	0.0401	0.0405	0 0000	0.0501	O OFF DO	10

Exemple: Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

8

$$P(X\leqslant 1,5) \quad P(X\leqslant -1,8) \quad P(X\geqslant 1) \text{ et } P(1\leqslant X\leqslant 2,3).$$

Exemple : Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

$$P(X \le 1, 5)$$
 $P(X \le -1, 8)$ $P(X \ge 1)$ et $P(1 \le X \le 2, 3)$.

$$P(X \le 1, 5) = 0,9332$$

$$P(X \geqslant 1)$$

3

4

$$P(1 \leqslant X \leqslant 2, 3)$$

4 □ → 4 □ → 4 □ → ...

Exemple: Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

$$P(X \le 1, 5)$$
 $P(X \le -1, 8)$ $P(X \ge 1)$ et $P(1 \le X \le 2, 3)$.

$$P(X \le 1, 5) = 0,9332$$

$$P(X \le -1, 8) = 1 - P(X \le 1, 8)$$

$$P(X \geqslant 1)$$

8

4

$$P(1 \leqslant X \leqslant 2, 3)$$

←□→ ←□→ ←□→ ←□→ −

Exemple: Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

$$P(X\leqslant 1,5) \quad P(X\leqslant -1,8) \quad P(X\geqslant 1) \text{ et } P(1\leqslant X\leqslant 2,3).$$

- $P(X \le 1, 5) = 0,9332$
- ② $P(X \le -1, 8) = 1 P(X \le 1, 8)$ Ainsi $P(X \le -1, 8) = 1 - 0,9641 = 0,0359$ $P(X \ge 1)$
- 8

4

$$P(1 \leqslant X \leqslant 2, 3)$$

Exemple: Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

4

$$P(X \leqslant 1, 5)$$
 $P(X \leqslant -1, 8)$ $P(X \geqslant 1)$ et $P(1 \leqslant X \leqslant 2, 3)$.

$$P(X \le 1, 5) = 0,9332$$

②
$$P(X \le -1, 8) = 1 - P(X \le 1, 8)$$

Ainsi $P(X \le -1, 8) = 1 - 0,9641 = 0,0359$
 $P(X \ge 1) = 1 - P(X < 1)$

$$\begin{array}{rcl}
& = & 1 - 0,8413 \\
& = & 0,1587
\end{array}$$

$$P(1\leqslant X\leqslant 2,3)$$

Exemple : Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

$$P(X \leqslant 1, 5)$$
 $P(X \leqslant -1, 8)$ $P(X \geqslant 1)$ et $P(1 \leqslant X \leqslant 2, 3)$.

$$P(X \le 1, 5) = 0,9332$$

$$P(X \le -1, 8) = 1 - P(X \le 1, 8)$$
Ainsi $P(X \le -1, 8) = 1 - 0,9641 = 0,0359$

$$P(X \ge 1) = 1 - P(X < 1)$$

$$\begin{array}{rcl}
\bullet & = & 1 - 0,8413 \\
& = & 0,1587
\end{array}$$

$$P(1 \leqslant X \leqslant 2, 3) = P(X \leqslant 2, 3) - P(X < 1)$$

$$= 0,9893 - 0,8413$$

$$= 0,148$$

Lois normales

FIGURE – Loi normale et répartition [-1;1], [-2;2] et [-3;3].

Lois normales

Définition:

Une variable aléatoire X suit une loi normale de paramètre (m, σ) , notée $X \sim \mathcal{N}(m, \sigma)$, si X admet pour densité la fonction f définie par :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-1/2((x-m)/\sigma)^2}$$

Lois normales

FIGURE – Densité de lois normales.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Lois normales

Propriété :

$$X \sim \mathcal{N}(m, \sigma) \Leftrightarrow \frac{X - m}{\sigma} \sim \mathcal{N}(0, 1).$$
 On note parfois $X^* = \frac{X - m}{\sigma}$.

Remarque : pour calculer des probabilités d'évènements à partir d'une loi normale, on utilise la table d'une loi normale centrée réduite.

Exemple: Soit $X \rightsquigarrow \mathcal{N}(5,2)$ Calculer P(X < 3) $P(X \ge 2)$ et $P(1 \le X \le 6)$.

《日》《圖》《意》《意》

Exemple: Soit $X \rightsquigarrow \mathcal{N}(5,2)$ Calculer P(X < 3) $P(X \ge 2)$ et $P(1 \le X \le 6)$. On pose $X^* = \frac{X-5}{2} \rightsquigarrow \mathcal{N}(0,1)$

イロト イ刷ト イヨト イヨト

Exemple: Soit $X \leadsto \mathcal{N}(5,2)$ Calculer P(X < 3) $P(X \ge 2)$ et $P(1 \le X \le 6)$. On pose $X^* = \frac{X-5}{2} \leadsto \mathcal{N}(0,1)$ • On a $P(X < 3) = P(X^* < -1)$

4日 > 4周 > 4 目 > 4 目 >

Exemple: Soit $X \leadsto \mathcal{N}(5,2)$ Calculer P(X < 3) $P(X \ge 2)$ et $P(1 \le X \le 6)$. On pose $X^* = \frac{X-5}{2} \leadsto \mathcal{N}(0,1)$

- On a $P(X < 3) = P(X^* < -1)$ Ainsi P(X < 3) = 1 - 0,8413 = 0,1587
- $P(X \ge 2) = P(X^* \ge -3/2) = P(X^* < 1, 5)$ Ainsi $P(X \ge 2) = 0,9332$

Exemple: Soit $X \leadsto \mathcal{N}(5,2)$ Calculer P(X < 3) $P(X \ge 2)$ et $P(1 \le X \le 6)$. On pose $X^* = \frac{X-5}{2} \leadsto \mathcal{N}(0,1)$

- On a $P(X < 3) = P(X^* < -1) = 1 P(X^* < 1)$ Ainsi P(X < 3) = 1 - 0,8413 = 0,1587
- $P(X \ge 2) = P(X^* \ge -3/2) = P(X^* < 1, 5)$ Ainsi $P(X \ge 2) = 0,9332$
- $P(1 \le X \le 6) = P(-2 \le X^* \le 1/2)$ $P(1 \le X \le 6) = P(X^* < 0, 5) - (1 - P(X^* \le 2))$ Ainsi $P(1 \le X \le 6) = 0,6915 - (1 - 0,9772) = 0,6687$

Somme de lois normales

Soit X_1 et X_2 deux variables aléatoires **indépendantes** qui suivent les lois normales $\mathcal{N}(m_1, \sigma_1)$ et $\mathcal{N}(m_2, \sigma_2)$ alors :

$$X_1 + X_2$$
 suit une loi normale $\mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2})$

Si X_1 et X_2 ne sont pas indépendantes on a :

$$X_1 + X_2 \leadsto \mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2 + 2Cov(X_1, X_2)})$$

où
$$Cov(X_1, X_2) = \mathbb{E}(X_1 X_2) - \mathbb{E}(X_1)\mathbb{E}(X_2)$$

Admis pour l'instant.

Exercice

On suppose que la distance en mètres parcourue par un javelot suit une loi normale. Au cours d'un entraînement, on constate que :

- 10% des javelots atteignent plus de 75 mètres.
- 25% des javelots parcourent moins de 50 mètres.

Calculer la longueur moyenne parcourue par un javelot, ainsi que l'écart-type de cette longueur.

(日) (日) (日) (日)

Soit X la VA égale au nombre de mètres d'un lancer, $X \sim \mathcal{N}(m,\sigma),$ on note $X^* = \frac{X-m}{\sigma}$ On a :

$$\begin{cases} \mathbb{P}(X \geqslant 75) = 0, 1 \\ \mathbb{P}(X \leqslant 50) = 0, 25 \end{cases} \Leftrightarrow \begin{cases} \mathbb{P}(X \leqslant 75) = 0, 9 \\ \mathbb{P}(X \leqslant 50) = 0, 25 \end{cases}$$
$$\Leftrightarrow \begin{cases} \mathbb{P}(X^* \leqslant \frac{75 - m}{\sigma}) = 0, 9 \\ \mathbb{P}(X^* \leqslant \frac{50 - m}{\sigma}) = 0, 25 \end{cases}$$
$$\Leftrightarrow \begin{cases} \frac{75 - m}{\sigma} = 1, 29 \\ \frac{50 - m}{\sigma} = -0, 68 \end{cases}$$

Soit X la VA égale au nombre de mètres d'un lancer, $X\sim \mathcal{N}(m,\sigma),$ on note $X^*=\frac{X-m}{\sigma}$ On a :

$$\begin{cases} \mathbb{P}(X \geqslant 75) = 0, 1 \\ \mathbb{P}(X \leqslant 50) = 0, 25 \end{cases} \Leftrightarrow \begin{cases} \mathbb{P}(X \leqslant 75) = 0, 9 \\ \mathbb{P}(X \leqslant 50) = 0, 25 \end{cases}$$
$$\Leftrightarrow \begin{cases} \mathbb{P}(X^* \leqslant \frac{75 - m}{\sigma}) = 0, 9 \\ \mathbb{P}(X^* \leqslant \frac{50 - m}{\sigma}) = 0, 25 \end{cases}$$
$$\Leftrightarrow \begin{cases} \frac{75 - m}{\sigma} = 1, 29 \\ \frac{50 - m}{\sigma} = -0, 68 \end{cases}$$

Soit X la VA égale au nombre de mètres d'un lancer, $X\sim \mathcal{N}(m,\sigma),$ on note $X^*=\frac{X-m}{\sigma}$ On a :

$$\begin{cases} \mathbb{P}(X \geqslant 75) = 0, 1 \\ \mathbb{P}(X \leqslant 50) = 0, 25 \end{cases} \Leftrightarrow \begin{cases} \mathbb{P}(X \leqslant 75) = 0, 9 \\ \mathbb{P}(X \leqslant 50) = 0, 25 \end{cases}$$
$$\Leftrightarrow \begin{cases} \mathbb{P}(X^* \leqslant \frac{75 - m}{\sigma}) = 0, 9 \\ \mathbb{P}(X^* \leqslant \frac{50 - m}{\sigma}) = 0, 25 \end{cases}$$
$$\Leftrightarrow \begin{cases} \frac{75 - m}{\sigma} = 1, 29 \\ \frac{50 - m}{\sigma} = -0, 68 \end{cases}$$

Soit X la VA égale au nombre de mètres d'un lancer, $X \sim \mathcal{N}(m,\sigma),$ on note $X^* = \frac{X-m}{\sigma}$ On a :

$$\begin{cases}
\mathbb{P}(X \geqslant 75) = 0, 1 \\
\mathbb{P}(X \leqslant 50) = 0, 25
\end{cases}
\begin{cases}
\frac{75 - m}{\sigma} = 1, 29 \\
\frac{50 - m}{\sigma} = -0, 68
\end{cases}$$

$$\Leftrightarrow \begin{cases}
m + 1, 29\sigma = 78 \\
m - 0, 68\sigma = 50
\end{cases}$$

$$\Leftrightarrow \begin{cases}
m \approx 58, 63 \\
\sigma = 12, 69
\end{cases}$$

Soit X la VA égale au nombre de mètres d'un lancer, $X \sim \mathcal{N}(m,\sigma),$ on note $X^* = \frac{X-m}{\sigma}$ On a :

$$\begin{cases} \mathbb{P}(X \geqslant 75) = 0, 1 \\ \mathbb{P}(X \leqslant 50) = 0, 25 \end{cases} \begin{cases} \frac{75 - m}{\sigma} = 1, 29 \\ \frac{50 - m}{\sigma} = -0, 68 \end{cases}$$
$$\Leftrightarrow \begin{cases} m + 1, 29\sigma = 75 \\ m - 0, 68\sigma = 50 \end{cases}$$
$$\Leftrightarrow \begin{cases} m \simeq 58, 63 \\ \sigma = 12, 69 \end{cases}$$

Soit X la VA égale au nombre de mètres d'un lancer, $X \sim \mathcal{N}(m,\sigma),$ on note $X^* = \frac{X-m}{\sigma}$ On a :

$$\begin{cases} \mathbb{P}(X \geqslant 75) = 0, 1 \\ \mathbb{P}(X \leqslant 50) = 0, 25 \end{cases} \begin{cases} \frac{75 - m}{\sigma} = 1, 29 \\ \frac{50 - m}{\sigma} = -0, 68 \end{cases}$$
$$\Leftrightarrow \begin{cases} m + 1, 29\sigma = 75 \\ m - 0, 68\sigma = 50 \end{cases}$$
$$\Leftrightarrow \begin{cases} m \simeq 58, 63 \\ \sigma = 12, 69 \end{cases}$$

Démonstrations

On a:

$$\mathbb{E}(X) = \int_{\mathbb{R}} tf(t)dt$$

$$= \int_{\alpha}^{\beta} \frac{t}{\beta - \alpha} dt$$

$$= \frac{1}{\beta - \alpha} \left[\frac{t^2}{2} \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \frac{\beta^2 - \alpha^2}{2}$$

$$= \frac{\beta + \alpha}{2}$$

On a:

$$\mathbb{E}(X) = \int_{\mathbb{R}} t f(t) dt$$

$$= \int_{\alpha}^{\beta} \frac{t}{\beta - \alpha} dt$$

$$= \frac{1}{\beta - \alpha} \left[\frac{t^2}{2} \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \frac{\beta^2 - \alpha^2}{2}$$

$$= \frac{\beta + \alpha}{2}$$

On a:

$$\mathbb{E}(X) = \int_{\mathbb{R}} t f(t) dt$$

$$= \int_{\alpha}^{\beta} \frac{t}{\beta - \alpha} dt$$

$$= \frac{1}{\beta - \alpha} \left[\frac{t^2}{2} \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \frac{\beta^2 - \alpha^2}{2}$$

$$= \frac{\beta + \alpha}{2}$$

《口》《圖》《意》《意》

On a:

$$\mathbb{E}(X) = \int_{\mathbb{R}} t f(t) dt$$

$$= \int_{\alpha}^{\beta} \frac{t}{\beta - \alpha} dt$$

$$= \frac{1}{\beta - \alpha} \left[\frac{t^2}{2} \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \frac{\beta^2 - \alpha^2}{2}$$

$$= \frac{\beta + \alpha}{2}$$

On a:

$$\mathbb{E}(X) = \int_{\mathbb{R}} t f(t) dt$$

$$= \int_{\alpha}^{\beta} \frac{t}{\beta - \alpha} dt$$

$$= \frac{1}{\beta - \alpha} \left[\frac{t^2}{2} \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \frac{\beta^2 - \alpha^2}{2}$$

$$= \frac{\beta + \alpha}{2}$$

On a:

$$\mathbb{E}(X) = \int_{\mathbb{R}} t f(t) dt$$

$$= \int_{\alpha}^{\beta} \frac{t}{\beta - \alpha} dt$$

$$= \frac{1}{\beta - \alpha} \left[\frac{t^2}{2} \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \frac{\beta^2 - \alpha^2}{2}$$

$$= \frac{\beta + \alpha}{2}$$

√ Cours

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$$

$$= \int_{\alpha}^{\beta} \frac{t^2}{\beta - \alpha} dt$$

$$= \frac{1}{\beta - \alpha} \left[\frac{t^3}{3} \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \frac{\beta^3 - \alpha^3}{3}$$

$$= \frac{\beta^2 + \alpha\beta + \alpha^2}{3}$$

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$$

$$= \int_{\alpha}^{\beta} \frac{t^2}{\beta - \alpha} dt$$

$$= \frac{1}{\beta - \alpha} \left[\frac{t^3}{3} \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \frac{\beta^3 - \alpha^3}{3}$$

$$= \frac{\beta^2 + \alpha\beta + \alpha^2}{3}$$

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$$

$$= \int_{\alpha}^{\beta} \frac{t^2}{\beta - \alpha} dt$$

$$= \frac{1}{\beta - \alpha} \left[\frac{t^3}{3} \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \frac{\beta^3 - \alpha^3}{3}$$

$$= \frac{\beta^2 + \alpha\beta + \alpha^2}{3}$$

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$$

$$= \int_{\alpha}^{\beta} \frac{t^2}{\beta - \alpha} dt$$

$$= \frac{1}{\beta - \alpha} \left[\frac{t^3}{3} \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \frac{\beta^3 - \alpha^3}{3}$$

$$= \frac{\beta^2 + \alpha\beta + \alpha^2}{3}$$

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$$

$$= \int_{\alpha}^{\beta} \frac{t^2}{\beta - \alpha} dt$$

$$= \frac{1}{\beta - \alpha} \left[\frac{t^3}{3} \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \frac{\beta^3 - \alpha^3}{3}$$

$$= \frac{\beta^2 + \alpha\beta + \alpha^2}{3}$$

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

$$= \frac{\beta^2 + \alpha\beta + \alpha^2}{3} - \left(\frac{\beta + \alpha}{2}\right)^2$$

$$= \frac{4(\beta^2 + \alpha\beta + \alpha^2) - 3(\beta^2 + 2\alpha\beta + \alpha^2)}{12}$$

$$= \frac{\beta^2 - 2\alpha\beta + \alpha^2}{12}$$

$$= \frac{(\beta - \alpha)^2}{12}$$

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

$$= \frac{\beta^2 + \alpha\beta + \alpha^2}{3} - \left(\frac{\beta + \alpha}{2}\right)^2$$

$$= \frac{4(\beta^2 + \alpha\beta + \alpha^2) - 3(\beta^2 + 2\alpha\beta + \alpha^2)}{12}$$

$$= \frac{\beta^2 - 2\alpha\beta + \alpha^2}{12}$$

$$= \frac{(\beta - \alpha)^2}{12}$$

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

$$= \frac{\beta^2 + \alpha\beta + \alpha^2}{3} - \left(\frac{\beta + \alpha}{2}\right)^2$$

$$= \frac{4(\beta^2 + \alpha\beta + \alpha^2) - 3(\beta^2 + 2\alpha\beta + \alpha^2)}{12}$$

$$= \frac{\beta^2 - 2\alpha\beta + \alpha^2}{12}$$

$$= \frac{(\beta - \alpha)^2}{12}$$

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

$$= \frac{\beta^2 + \alpha\beta + \alpha^2}{3} - \left(\frac{\beta + \alpha}{2}\right)^2$$

$$= \frac{4(\beta^2 + \alpha\beta + \alpha^2) - 3(\beta^2 + 2\alpha\beta + \alpha^2)}{12}$$

$$= \frac{\beta^2 - 2\alpha\beta + \alpha^2}{12}$$

$$= \frac{(\beta - \alpha)^2}{12}$$

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

$$= \frac{\beta^2 + \alpha\beta + \alpha^2}{3} - \left(\frac{\beta + \alpha}{2}\right)^2$$

$$= \frac{4(\beta^2 + \alpha\beta + \alpha^2) - 3(\beta^2 + 2\alpha\beta + \alpha^2)}{12}$$

$$= \frac{\beta^2 - 2\alpha\beta + \alpha^2}{12}$$

$$= \frac{(\beta - \alpha)^2}{12}$$

√ Cours

4日 > 4周 > 4 目 > 4 目 >

$$\forall t \geqslant 0, \ t f(t) = \lambda t e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\mathbb{E}(X) = \int_{\mathbb{R}} tf(t)dt$$

$$= \int_{0}^{+\infty} \lambda t e^{-\lambda t} dt$$

$$= \left[-te^{-\lambda t} \right]_{0}^{t \to +\infty} + \int_{0}^{+\infty} e^{-\lambda t} dt$$

$$= 0 + \left[-\frac{e^{-\lambda t}}{\lambda} \right]_{0}^{t \to +\infty}$$

$$= \frac{1}{\lambda}$$

$$\forall t \geqslant 0, \ t f(t) = \lambda t e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\mathbb{E}(X) = \int_{\mathbb{R}} tf(t)dt$$

$$= \int_{0}^{+\infty} \lambda t e^{-\lambda t} dt$$

$$= \left[-te^{-\lambda t} \right]_{0}^{t \to +\infty} + \int_{0}^{+\infty} e^{-\lambda t} dt$$

$$= 0 + \left[-\frac{e^{-\lambda t}}{\lambda} \right]_{0}^{t \to +\infty}$$

$$= \frac{1}{\lambda}$$

$$\forall t \geqslant 0, \ t f(t) = \lambda t e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\mathbb{E}(X) = \int_{\mathbb{R}} tf(t)dt$$

$$= \int_{0}^{+\infty} \lambda t e^{-\lambda t} dt$$

$$= \left[-te^{-\lambda t} \right]_{0}^{t \to +\infty} + \int_{0}^{+\infty} e^{-\lambda t} dt$$

$$= 0 + \left[-\frac{e^{-\lambda t}}{\lambda} \right]_{0}^{t \to +\infty}$$

$$= \frac{1}{\lambda}$$

$$\forall t \geqslant 0, \ t f(t) = \lambda t e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\mathbb{E}(X) = \int_{\mathbb{R}} tf(t)dt$$

$$= \int_{0}^{+\infty} \lambda t e^{-\lambda t} dt$$

$$= \left[-te^{-\lambda t} \right]_{0}^{t \to +\infty} + \int_{0}^{+\infty} e^{-\lambda t} dt$$

$$= 0 + \left[-\frac{e^{-\lambda t}}{\lambda} \right]_{0}^{t \to +\infty}$$

$$= \frac{1}{\lambda}$$

$$\forall t \ge 0, \ t f(t) = \lambda t e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\mathbb{E}(X) = \int_{\mathbb{R}} t f(t) dt$$

$$= \int_{0}^{+\infty} \lambda t e^{-\lambda t} dt$$

$$= \left[-t e^{-\lambda t} \right]_{0}^{t \to +\infty} + \int_{0}^{+\infty} e^{-\lambda t} dt$$

$$= 0 + \left[-\frac{e^{-\lambda t}}{\lambda} \right]_{0}^{t \to +\infty}$$

$$= \frac{1}{\lambda}$$

$$\forall t \geqslant 0, \ t f(t) = \lambda t e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\mathbb{E}(X) = \int_{\mathbb{R}} t f(t) dt$$

$$= \int_{0}^{+\infty} \lambda t e^{-\lambda t} dt$$

$$= \left[-t e^{-\lambda t} \right]_{0}^{t \to +\infty} + \int_{0}^{+\infty} e^{-\lambda t} dt$$

$$= 0 + \left[-\frac{e^{-\lambda t}}{\lambda} \right]_{0}^{t \to +\infty}$$

$$= \frac{1}{\lambda}$$

$$\forall t \geqslant 0, \ t f(t) = \lambda t e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

Ainsi cette fonction est intégrable sur $[0; \infty[$, par conséquent $\mathbb{E}(X)$ existe, et on a :

$$\mathbb{E}(X) = \int_{\mathbb{R}} t f(t) dt$$

$$= \int_{0}^{+\infty} \lambda t e^{-\lambda t} dt$$

$$= \left[-t e^{-\lambda t} \right]_{0}^{t \to +\infty} + \int_{0}^{+\infty} e^{-\lambda t} dt$$

$$= 0 + \left[-\frac{e^{-\lambda t}}{\lambda} \right]_{0}^{t \to +\infty}$$

$$= \frac{1}{\lambda}$$

Chapitre 3 : VA à densité

$$\forall t \geqslant 0, \ t^2 f(t) = \lambda t^2 e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\begin{split} \mathbb{E}(X^2) &= \int_{\mathbb{R}} t^2 f(t) dt \\ &= \int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt \\ &= \left[-t^2 e^{-\lambda t} \right]_0^{t \to +\infty} + 2 \int_0^{+\infty} t e^{-\lambda t} dt \\ &= 0 + \frac{2}{\lambda} \mathbb{E}(X) \\ &= 0 \end{split}$$

$$\forall t \geqslant 0, \ t^2 f(t) = \lambda t^2 e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$$

$$= \int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt$$

$$= \left[-t^2 e^{-\lambda t} \right]_0^{t \to +\infty} + 2 \int_0^{+\infty} t e^{-\lambda t} dt$$

$$\forall t \geqslant 0, \ t^2 f(t) = \lambda t^2 e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$$

$$= \int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt$$

$$= \left[-t^2 e^{-\lambda t} \right]_0^{t \to +\infty} + 2 \int_0^{+\infty} t e^{-\lambda t} dt$$

$$= 0 + \frac{2}{\lambda} \mathbb{E}(X)$$

$$\forall t \ge 0, \ t^2 f(t) = \lambda t^2 e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$$

$$= \int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt$$

$$= \left[-t^2 e^{-\lambda t} \right]_0^{t \to +\infty} + 2 \int_0^{+\infty} t e^{-\lambda t} dt$$

$$= 0 + \frac{2}{\lambda} \mathbb{E}(X)$$

$$= \frac{2}{\lambda^2}$$

$$\forall t \ge 0, \ t^2 f(t) = \lambda t^2 e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

Ainsi cette fonction est intégrable sur $[0, \infty)$, par conséquent $\mathbb{E}(X^2)$ existe, et on a :

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$$

$$= \int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt$$

$$= \left[-t^2 e^{-\lambda t} \right]_0^{t \to +\infty} + 2 \int_0^{+\infty} t e^{-\lambda t} dt$$

$$= 0 + \frac{2}{\lambda} \mathbb{E}(X)$$

$$= \frac{2}{\lambda^2}$$

PA Toupance

$$\forall t \geqslant 0, \ t^2 f(t) = \lambda t^2 e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

Ainsi cette fonction est intégrable sur $[0; \infty[$, par conséquent $\mathbb{E}(X^2)$ existe, et on a :

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$$

$$= \int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt$$

$$= \left[-t^2 e^{-\lambda t} \right]_0^{t \to +\infty} + 2 \int_0^{+\infty} t e^{-\lambda t} dt$$

$$= 0 + \frac{2}{\lambda} \mathbb{E}(X)$$

$$= \frac{2}{\lambda^2}$$

Ainsi $\mathbb{V}(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$ Cours

$$\forall t \geqslant 0, \ t^2 f(t) = \lambda t^2 e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$$

$$= \int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt$$

$$= \left[-t^2 e^{-\lambda t} \right]_0^{t \to +\infty} + 2 \int_0^{+\infty} t e^{-\lambda t} dt$$

$$= 0 + \frac{2}{\lambda} \mathbb{E}(X)$$

$$= \frac{2}{\lambda^2}$$

Ainsi
$$\mathbb{V}(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$
 Cours

$$\forall t \geqslant 0, \ t^2 f(t) = \lambda t^2 e^{-\lambda t} = o\left(\frac{1}{t^2}\right) \text{ en } +\infty$$

$$\begin{split} \mathbb{E}(X^2) &= \int_{\mathbb{R}} t^2 f(t) dt \\ &= \int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt \\ &= \left[-t^2 e^{-\lambda t} \right]_0^{t \to +\infty} + 2 \int_0^{+\infty} t e^{-\lambda t} dt \\ &= 0 + \frac{2}{\lambda} \mathbb{E}(X) \\ &= \frac{2}{\lambda^2} \end{split}$$

Ainsi
$$\mathbb{V}(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$
 Cours

Pour
$$x < 0$$
, $F_X(x) = \int_{-\infty}^x 0 dt = 0$

Pour
$$x \ge 0$$
 on a : $F_X(x) = \int_0^x \lambda e^{-\lambda t} dt$
$$= \left[-e^{-\lambda t} \right]_0^{t \to +\infty}$$
$$= 1 - e^{-\lambda x}$$

Pour
$$x < 0$$
, $F_X(x) = \int_{-\infty}^{x} 0 dt = 0$

Pour
$$x \ge 0$$
 on a : $F_X(x) = \int_0^x \lambda e^{-\lambda t} dt$
$$= \left[-e^{-\lambda t} \right]_0^{t \to +\infty}$$
$$= 1 - e^{-\lambda x}$$

Pour
$$x < 0$$
, $F_X(x) = \int_{-\infty}^{x} 0 dt = 0$

Pour
$$x \ge 0$$
 on a : $F_X(x) = \int_0^x \lambda e^{-\lambda t} dt$
$$= \left[-e^{-\lambda t} \right]_0^{t \to +\infty}$$
$$= 1 - e^{-\lambda x}$$

イロト イ刷ト イヨト イヨト

Pour
$$x < 0$$
, $F_X(x) = \int_{-\infty}^x 0 dt = 0$

Pour
$$x \ge 0$$
 on a : $F_X(x) = \int_0^x \lambda e^{-\lambda t} dt$
$$= \left[-e^{-\lambda t} \right]_0^{t \to +\infty}$$
$$= 1 - e^{-\lambda x}$$

∢ Cours

Soit $a \in \mathbb{R}_+^*$ et soit $b \in \mathbb{R}_+^*$.

$$\mathbb{P}_{(X>b)}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\}\cap\{X>b\})}{\mathbb{P}(X>b)}$$

$$= \frac{\mathbb{P}(\{X>a+b\})}{\mathbb{P}(X>b)} = \frac{1-F_X(a+b)}{1-F_X(b)}$$

$$= \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

$$= e^{-\lambda a}$$

$$= \mathbb{P}(X>a)$$

Soit $a \in \mathbb{R}_+^*$ et soit $b \in \mathbb{R}_+^*$.

$$\mathbb{P}_{(X>b)}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\}\cap\{X>b\})}{\mathbb{P}(X>b)}$$

$$= \frac{\mathbb{P}(\{X>a+b\})}{\mathbb{P}(X>b)} = \frac{1-F_X(a+b)}{1-F_X(b)}$$

$$= \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

$$= e^{-\lambda a}$$

$$= \mathbb{P}(X>a)$$

Soit $a \in \mathbb{R}_+^*$ et soit $b \in \mathbb{R}_+^*$.

$$\mathbb{P}_{(X>b)}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\} \cap \{X>b\})}{\mathbb{P}(X>b)}$$

$$= \frac{\mathbb{P}(\{X>a+b\})}{\mathbb{P}(X>b)} = \frac{1 - F_X(a+b)}{1 - F_X(b)}$$

$$= \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

$$= e^{-\lambda a}$$

$$= \mathbb{P}(X>a)$$

Soit $a \in \mathbb{R}_+^*$ et soit $b \in \mathbb{R}_+^*$.

$$\mathbb{P}_{(X>b)}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\} \cap \{X>b\})}{\mathbb{P}(X>b)}$$

$$= \frac{\mathbb{P}(\{X>a+b\})}{\mathbb{P}(X>b)} = \frac{1 - F_X(a+b)}{1 - F_X(b)}$$

$$= \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

$$= e^{-\lambda a}$$

$$= \mathbb{P}(X>a)$$

[**∢** Cours

Soit $a \in \mathbb{R}_+^*$ et soit $b \in \mathbb{R}_+^*$.

$$\mathbb{P}_{(X>b)}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\} \cap \{X>b\})}{\mathbb{P}(X>b)}$$

$$= \frac{\mathbb{P}(\{X>a+b\})}{\mathbb{P}(X>b)} = \frac{1 - F_X(a+b)}{1 - F_X(b)}$$

$$= \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

$$= e^{-\lambda a}$$

$$= \mathbb{P}(X>a)$$

∢ Cours

$$f: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 est continue et positive sur \mathbb{R} .

Soit
$$I = \int_{\mathbb{R}} f(x) dx$$
.

Or f est intégrable sur \mathbb{R} car c'est est une fonction paire, et $e^{-x^2/2} = o(\frac{1}{x^2})$ en $+\infty$.

On a:
$$I^2 = \frac{1}{2\pi} \left(2 \int_0^{+\infty} e^{-x^2/2} dx \right)^2$$

$$= \frac{2}{\pi} \left(\int_0^{+\infty} e^{-x^2/2} dx \right) \times \left(\int_0^{+\infty} e^{-y^2/2} dy \right)$$

$$= \frac{2}{\pi} \iint_{\mathcal{D}} e^{-(x^2+y^2)/2} dx dy$$

$$f: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 est continue et positive sur \mathbb{R} .

Soit
$$I = \int_{\mathbb{R}} f(x) dx$$
.

Or f est intégrable sur \mathbb{R} car c'est est une fonction paire, et $e^{-x^2/2} = o(\frac{1}{x^2})$ en $+\infty$.

On a :
$$I^2 = \frac{1}{2\pi} \left(2 \int_0^{+\infty} e^{-x^2/2} dx \right)^2$$

$$= \frac{2}{\pi} \left(\int_0^{+\infty} e^{-x^2/2} dx \right) \times \left(\int_0^{+\infty} e^{-y^2/2} dy \right)$$

$$= \frac{2}{\pi} \iint_{\mathcal{D}} e^{-(x^2+y^2)/2} dx dy$$

$$f: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 est continue et positive sur \mathbb{R} .

Soit
$$I = \int_{\mathbb{R}} f(x) dx$$
.

Or f est intégrable sur \mathbb{R} car c'est est une fonction paire, et $e^{-x^2/2} = o(\frac{1}{x^2})$ en $+\infty$.

On a:
$$I^2 = \frac{1}{2\pi} \left(2 \int_0^{+\infty} e^{-x^2/2} dx \right)^2$$

$$= \frac{2}{\pi} \left(\int_0^{+\infty} e^{-x^2/2} dx \right) \times \left(\int_0^{+\infty} e^{-y^2/2} dy \right)$$

$$= \frac{2}{\pi} \iint_{\mathcal{D}} e^{-(x^2 + y^2)/2} dx dy$$

$$f: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 est continue et positive sur \mathbb{R} .

Soit
$$I = \int_{\mathbb{R}} f(x) dx$$
.

Or f est intégrable sur \mathbb{R} car c'est est une fonction paire, et $e^{-x^2/2} = o(\frac{1}{x^2})$ en $+\infty$.

On a:
$$I^2 = \frac{1}{2\pi} \left(2 \int_0^{+\infty} e^{-x^2/2} dx \right)^2$$

$$= \frac{2}{\pi} \left(\int_0^{+\infty} e^{-x^2/2} dx \right) \times \left(\int_0^{+\infty} e^{-y^2/2} dy \right)$$

$$= \frac{2}{\pi} \iint_{\mathcal{D}} e^{-(x^2 + y^2)/2} dx dy$$

$$f: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 est continue et positive sur \mathbb{R} .

Soit
$$I = \int_{\mathbb{R}} f(x) dx$$
.

Or f est intégrable sur \mathbb{R} car c'est est une fonction paire, et $e^{-x^2/2} = o(\frac{1}{x^2})$ en $+\infty$.

On a:
$$I^2 = \frac{1}{2\pi} \left(2 \int_0^{+\infty} e^{-x^2/2} dx \right)^2$$

$$= \frac{2}{\pi} \left(\int_0^{+\infty} e^{-x^2/2} dx \right) \times \left(\int_0^{+\infty} e^{-y^2/2} dy \right)$$

$$= \frac{2}{\pi} \iint_{\mathcal{D}} e^{-(x^2 + y^2)/2} dx dy$$

$$f: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 est continue et positive sur \mathbb{R} .

Soit
$$I = \int_{\mathbb{R}} f(x) dx$$
.

Or f est intégrable sur \mathbb{R} car c'est est une fonction paire, et $e^{-x^2/2} = o(\frac{1}{x^2})$ en $+\infty$.

On a:
$$I^2 = \frac{1}{2\pi} \left(2 \int_0^{+\infty} e^{-x^2/2} dx \right)^2$$

$$= \frac{2}{\pi} \left(\int_0^{+\infty} e^{-x^2/2} dx \right) \times \left(\int_0^{+\infty} e^{-y^2/2} dy \right)$$

$$= \frac{2}{\pi} \iint_{\mathcal{D}} e^{-(x^2 + y^2)/2} dx dy$$

$$f: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 est continue et positive sur \mathbb{R} .

Soit
$$I = \int_{\mathbb{R}} f(x) dx$$
.

Or f est intégrable sur \mathbb{R} car c'est est une fonction paire, et $e^{-x^2/2} = o(\frac{1}{x^2})$ en $+\infty$.

On a:
$$I^2 = \frac{1}{2\pi} \left(2 \int_0^{+\infty} e^{-x^2/2} dx \right)^2$$

$$= \frac{2}{\pi} \left(\int_0^{+\infty} e^{-x^2/2} dx \right) \times \left(\int_0^{+\infty} e^{-y^2/2} dy \right)$$

$$= \frac{2}{\pi} \iint_{\mathcal{D}} e^{-(x^2 + y^2)/2} dx dy$$

On a :
$$I^2 == \frac{2}{\pi} \iint_{\mathcal{D}} e^{-(x^2+y^2)/2} dx dy$$

On effectue un changement de variable en polaire, on obtient

$$I^2 = \frac{2}{\pi} \iint_{\cdot} e^{-r^2/2} dr d\theta \text{ avec } \Delta = \{(r, \theta) \in \mathbb{R}^2, r \geqslant 0, \ 0 \leqslant \theta \leqslant \frac{\pi}{2}\}$$

ainsi

48/51

$$I^{2} = \frac{2}{\pi} \left(\int_{0}^{\pi/2} d\theta \right) \times \left(\left[-e^{-r^{2}/2} \right]_{0}^{r \to +\infty} \right) = \frac{2}{\pi} \times \frac{\pi}{2} \times 1$$

Par conséquent $\int_{\mathbb{R}} f(x)dx = 1$

On a :
$$I^2 == \frac{2}{\pi} \iint_{\mathcal{D}} e^{-(x^2+y^2)/2} dx dy$$

On effectue un changement de variable en polaire, on obtient

$$I^2 = \frac{2}{\pi} \iint_{\cdot} e^{-r^2/2} dr d\theta \text{ avec } \Delta = \{(r,\theta) \in \mathbb{R}^2, r \geqslant 0, \ 0 \leqslant \theta \leqslant \frac{\pi}{2}\}$$

ainsi

$$I^{2} = \frac{2}{\pi} \left(\int_{0}^{\pi/2} d\theta \right) \times \left(\left[-e^{-r^{2}/2} \right]_{0}^{r \to +\infty} \right) = \frac{2}{\pi} \times \frac{\pi}{2} \times 1$$

Par conséquent $\int_{\mathbb{R}} f(x)dx = 1$ f est bien une densité de probabili

On a :
$$I^2 == \frac{2}{\pi} \iint_{\mathcal{D}} e^{-(x^2+y^2)/2} dx dy$$

On effectue un changement de variable en polaire, on obtient

$$I^2 = \frac{2}{\pi} \iint_{\cdot} e^{-r^2/2} dr d\theta \text{ avec } \Delta = \{(r,\theta) \in \mathbb{R}^2, r \geqslant 0, \ 0 \leqslant \theta \leqslant \frac{\pi}{2}\}$$

ainsi:

$$I^{2} = \frac{2}{\pi} \left(\int_{0}^{\pi/2} d\theta \right) \times \left(\left[-e^{-r^{2}/2} \right]_{0}^{r \to +\infty} \right) = \frac{2}{\pi} \times \frac{\pi}{2} \times 1$$

Par conséquent $\int_{\mathbb{R}} f(x)dx = 1$ f est bien une densité de probabilité

On a :
$$I^2 == \frac{2}{\pi} \iint_{\mathcal{D}} e^{-(x^2+y^2)/2} dx dy$$

On effectue un changement de variable en polaire, on obtient

$$I^2 = \frac{2}{\pi} \iint_{\cdot} e^{-r^2/2} dr d\theta \text{ avec } \Delta = \{(r,\theta) \in \mathbb{R}^2, r \geqslant 0, \ 0 \leqslant \theta \leqslant \frac{\pi}{2}\}$$

ainsi:

$$I^{2} = \frac{2}{\pi} \left(\int_{0}^{\pi/2} d\theta \right) \times \left(\left[-e^{-r^{2}/2} \right]_{0}^{r \to +\infty} \right) = \frac{2}{\pi} \times \frac{\pi}{2} \times 1$$

Par conséquent $\int_{\mathbb{R}} f(x)dx = 1$ f est bien une densité de probabilité.

√ Cours

On a $tf(t) = o(\frac{1}{t^2})$ en $+\infty$ et en $-\infty$, ainsi $t \mapsto tf(t)$ est intégrable sur \mathbb{R} , de plus cette fonction est impaire par conséquent :

$$\mathbb{E}(X) = 0$$

∢ Cours

On a
$$t^2 f(t) = o(\frac{1}{t^2})$$
 en $+\infty$ et en $-\infty$,

ainsi $t \mapsto t^2 f(t)$ est intégrable sur \mathbb{R} , de plus cette fonction est paire par conséquent :

$$\mathbb{E}(X^2) = 2 \int_0^{+\infty} \frac{1}{\sqrt{2\pi}} t^2 e^{-t^2/2} dt$$

$$= \frac{2}{\sqrt{2\pi}} \left[-t e^{-t^2/2} \right]_0^{t \to +\infty} + \frac{2}{\sqrt{2\pi}} \int_0^{+\infty} e^{-t^2/2} dt$$

$$= 0 + 1$$

Ainsi $\mathbb{V}(X)=\mathbb{I}$

On a $t^2 f(t) = o(\frac{1}{t^2})$ en $+\infty$ et en $-\infty$, ainsi $t \mapsto t^2 f(t)$ est intégrable sur \mathbb{R} , de plus cette fonction est paire par conséquent :

$$\mathbb{E}(X^2) = 2 \int_0^{+\infty} \frac{1}{\sqrt{2\pi}} t^2 e^{-t^2/2} dt$$

$$= \frac{2}{\sqrt{2\pi}} \left[-te^{-t^2/2} \right]_0^{t \to +\infty} + \frac{2}{\sqrt{2\pi}} \int_0^{+\infty} e^{-t^2/2} dt$$

$$= 0 + 1$$

Ainsi
$$\mathbb{V}(X) = 1$$

On a $t^2 f(t) = o(\frac{1}{t^2})$ en $+\infty$ et en $-\infty$, ainsi $t \mapsto t^2 f(t)$ est intégrable sur \mathbb{R} , de plus cette fonction est paire par conséquent :

$$\mathbb{E}(X^2) = 2 \int_0^{+\infty} \frac{1}{\sqrt{2\pi}} t^2 e^{-t^2/2} dt$$

$$= \frac{2}{\sqrt{2\pi}} \left[-t e^{-t^2/2} \right]_0^{t \to +\infty} + \frac{2}{\sqrt{2\pi}} \int_0^{+\infty} e^{-t^2/2} dt$$

$$= 0 + 1$$

Ainsi
$$\mathbb{V}(X) = \mathbb{I}$$

On a $t^2 f(t) = o(\frac{1}{t^2})$ en $+\infty$ et en $-\infty$, ainsi $t \mapsto t^2 f(t)$ est intégrable sur \mathbb{R} , de plus cette fonction est paire par conséquent :

$$\mathbb{E}(X^2) = 2 \int_0^{+\infty} \frac{1}{\sqrt{2\pi}} t^2 e^{-t^2/2} dt$$

$$= \frac{2}{\sqrt{2\pi}} \left[-t e^{-t^2/2} \right]_0^{t \to +\infty} + \frac{2}{\sqrt{2\pi}} \int_0^{+\infty} e^{-t^2/2} dt$$

$$= 0 + 1$$

Ainsi
$$\mathbb{V}(X) = 1$$

Espérance et Variance Lois usuelles La loi uniforme La loi exponentielle La loi de Laplace-Gauss Les lois normales

Exemples

