1) IMPORT THE REQUIRED LIBRARIES

In [3]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

2) LOAD THE DATASET INTO THE TOOL

In [4]:

df = pd.read_csv('abalone.csv')
df.head()

Out[4]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

3) PERFORM VISUALIZATIONS UNIVARIATE ANALYSIS

In [5]:

sns.distplot(df.Rings)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog rams).

warnings.warn(msg, FutureWarning)

Out[5]:

sns.lineplot(df.Diameter, df.Rings)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

Out[6]:

In [6]:

In [7]:

plt.pie(df.Sex.value_counts(),[0.05,0.05,0.05],colors=['red','green','blue'],
labels=['Male','Female','Infant'],autopct='%1.1f%%')
plt.title('Sex')
plt.show()

In [8]:

sns.barplot(df.Rings.value_counts().index,df.Rings.value_counts())

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[8]:

BI-VARIATE ANALYSIS

MULTIVARIATE ANALYSIS

In [13]:
sns.pairplot(df)

Out[13]:

Out[14]: Shucked weight Shell weight Whole weight Viscera weight Rings Length Diameter Height 1.000000 0.986812 0.8275540.925261 0.897914 0.903018 0.897706 0.556720 Length

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660
Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467
Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390
Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884
Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819
Shell weight	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574
Rings	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000

In [15]:

plt.figure(figsize=(12,10))
sns.heatmap(df.corr(),annot=True)
plt.show()

4) PERFORM DESCRIPTIVE STATISTICS ON THE DATASET

In [16]:

df.describe()

Out[16]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

In [17]:

df.info()

RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

5) CHECK FOR MISSING VALUES AND DEAL WITH THEM

In [18]:

Out[18]:

Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
Rings 0
dtype: int64

6) FIND THE OUTLIERS AND REPLACE THE OUTLIERS

In [19]:

```
for i in df.columns.drop('Sex'):
    sns.boxplot(df[i])
    plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.


```
In [23]:
for i in df.columns.drop('Sex'):
    Q1 = df[i].quantile(0.25)
    Q3 = df[i].quantile(0.75)
    IQR = Q3-Q1
    upper_limit = Q3 + (1.5*IQR)
    lower_limit = Q1 - (1.5*IQR)
    df[i] = np.where(df[i]>=upper_limit,Q3 + (1.5*IQR),df[i])
    df[i] = np.where(df[i]<=lower_limit,Q1 - (1.5*IQR),df[i])</pre>
In [24]:
```

for i in df.columns.drop('Sex'):
 sns.boxplot(df[i])
 plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

7) CHECK FOR CATEGORICAL COLUMNS AND PERFORM ENCODING

In [25]:

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

df.Sex = le.fit_transform(df.Sex)

In [26]:

df.head()

df.head()

Out[26]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15.0
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7.0
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9.0
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10.0
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7.0

Out[26]:

8) SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

In [27]:

X = df.drop(columns=['Rings'])
X.head()

Out[27]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	
<pre>Y = df.Rings Y.head()</pre>									
0 1 2 3		.0						Out[/	28 <u>]</u> :

9) SCALE THE INDEPENDENT VARIABLES

7.0

Name: Rings, dtype: float64

In [29]:

from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)
X scaled.head()

Out[29]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	1.0	0.412245	0.424242	0.275	0.230813	0.229231	0.204372	0.237220
1	1.0	0.240816	0.222222	0.250	0.100755	0.101026	0.097611	0.109425
2	0.0	0.534694	0.535354	0.475	0.304294	0.262051	0.286731	0.333067
3	1.0	0.387755	0.424242	0.425	0.231714	0.220000	0.230808	0.245208

4	0.5	0.208	163	0.202020	0.200	0.091514	0.090769	0.079309	0.085463
	10) SPLIT THE DATA INTO TRAINING AND TESTING DATA								
x_t	rain	, x_	tes	t , y_tr	ain , y		_test_split ,random_stat	e=0)	In [31]:
11	.)]	BU	II	D T	HE I	MODE	\mathbf{L}		
				near_mod egressio		rt LinearRed	gression		In [33]:
12) TRAIN THE MODEL									
mod	el.f	it(x_	_tra	in,y_tra	in)				In [34]:
Lin	earR	egres.	ssio	n()					Out[34]:
13	3) '	ГЕ	S	ΓТН	EM	ODEL	4		
v p	redi	ct =	mod	el.predi	ct(x te	st)			In [38]:
_					_		:y_predict.r	ound(0)})	In [39]:
	A	ctual	Pred	licted					Out[39]:
66	8	13.0		13.0					
158	0	8.0		9.0					

Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight

Sex

	Actual	Predicted
3784	11.0	10.0
463	5.0	5.0
2615	12.0	10.0
•••		
575	11.0	10.0
3231	12.0	9.0
1084	7.0	9.0
290	15.5	12.0
2713	4.0	6.0

 $836 \text{ rows} \times 2 \text{ columns}$

14) MEASURE THE PERFORMANCE USING METRICS

In [45]:

from sklearn import metrics
metrics.r2_score(y_test,y_predict)

Out[45]:

0.58432381444787