Properties of \mathbb{Z}^+

(i)

$$m, n \in \mathbb{Z}^+ \Rightarrow m + n \in \mathbb{Z}^+, \ m \cdot n \in \mathbb{Z}^+$$

Since $0 \le_a m$ and $0 \le_a n$, it must be the case that $0 \le_a m + n$, as n cannot be less than zero. Similarly, $m \cdot n = \underbrace{m + m + \dots + m}_{n \text{ times}}$, meaning $0 \le_a m \cdot n$, so $m \cdot n$

and m+n are both in \mathbb{Z}^+

(ii)

$$m \in \mathbb{Z} \Rightarrow m \in \mathbb{Z}^+ \text{ or } -m \in \mathbb{Z}^+$$

Let $m \in \mathbb{Z}$. Then, $0 \leq_a m$ or $m \leq_a 0$. In the first case, $m \in \mathbb{Z}^+$, and in the second case, we know that $-m_a \geq 0$, so $-m \in \mathbb{Z}^+$.

(iii)

$$m,-m\in Z^+\Rightarrow m=0$$

If $m \in \mathbb{Z}^+$, then $0 \le_a m$, and if $-m \in \mathbb{Z}^+$, $0 \le_a -m$, or $m \le_a 0$. Therefore, m = 0.

(iv)

$$m \leq_a n \Leftrightarrow n - m \in \mathbb{Z}^+$$

- (\Rightarrow) Let $m \leq_a n$. Then, $m m \leq_a n m$, so $0 \leq_a n m$, so $n m \in \mathbb{Z}^+$.
- (\Leftarrow) Let $n-m \in \mathbb{Z}^+$. Then, $0 \leq_a n-m$, so $m \leq_a n$.