Mrs. Christine Deeb

# **Chapter 1: Starting with MATLAB**

## 1.1 Starting MATLAB, MATLAB Windows

Open MATLAB on your computer. The MATLAB desktop will pop-up in its default layout.



### Let's do the following!

- **1.** Change the layout so that the command window is the only visible window:
  - In the "Environment" tab, click "Layout"  $\rightarrow$  click "Command Window Only"
- **2.** Change the view to the two-column layout:
  - In the "Environment" tab, click "Layout"  $\rightarrow$  click "Two Column"
- 3. Change the layout so that the command window is the only visible window.

### Table 1: MATLAB Windows and their Purpose

| Window                 | Purpose                                                   |
|------------------------|-----------------------------------------------------------|
| Command Window         | Main window, enters variables, runs programs.             |
| Figure Window          | Contains output from graphic commands.                    |
| Editor Window          | Creates and debugs script and function files.             |
| Help Window            | Provides help information.                                |
| Command History Window | Logs commands entered in the Command Window.              |
| Workspace Window       | Provides information about the variables that are stored. |
| Current Folder Window  | Shows the files in the current folder.                    |

# 1.2 Working in the Command Window

The **Command Window** is MATLAB's main window. We can use it to:

- Execute commands.
- Open other windows.
- Run programs written by the user.
- Manage the MATLAB software.

#### Table 2: How to use the Command Window:

- **1.** At prompt (>>), type in MATLAB command.
- 2. Press ENTER key.
- 3. MATLAB displays the result in the Command Window followed by a prompt on the next line.

**Example 1:** In the command window, type: 2 + 6 / 2 then hit enter. What is the exact output?

# Table 3: Notes about Working in the Command Window

- Once you press ENTER, MATLAB will execute only the last command.
- You can type several commands in the same line by putting commas between the commands.
- If a command is too long to fit on one line, you can continue to the next line by typing ellipsis (...) and pressing ENTER.
- The  $\leftarrow$  and  $\rightarrow$  keys move the cursor left and right, respectively.
- The ↑ and ↓ recall preceding commands.
- A semicolon (;) at the end of a command suppresses the output.
- A percent sign (%) at the beginning of a line causes the command to be treated as a comment.
- clc clears the command window display.

**Example 2:** Let's say we were trying to calculate (2+6) / 2, but we forgot the parentheses the first time. Place your cursor a new line.

- Click the up arrow on your keyboard (↑).
- Locate the command you want to edit by clicking the up arrow as many times as necessary.
  - If you hit enter, it will re-execute the command instantly, not giving you a chance to edit.
  - $\circ$  If you hit the " $\leftarrow$ " or " $\rightarrow$ " key on your keyboard, the command will be there for you to edit.
- Add the parentheses around the 2 + 6, then hit enter. Did the output change? What is it now?

### **Example 3:** Let's see what the following commands do!

- Type: clc then hit enter. What happens?
- Type: %2 + 3 then hit enter. What happens?
- Type: 2+3, 2\*3; 2^3. What is the output? Which commands were displayed, if any?
- Type: 2+3, 2\*3,  $2^3$ , ... (hit enter)  $2^4$  then hit enter. Notice that the "..." allows you to continue your command on the next line.

**Note:** We rarely work directly in the command window because it is not a file that you can save and come back to edit later.

# 1.3 Arithmetic Operations with Scalars

The simplest way to use MATLAB is as a calculator.

Table 4: Symbols of Arithmetic Operation

| Operation      | Symbol | Example           |
|----------------|--------|-------------------|
| Addition       | +      | 5 + 3             |
| Subtraction    | _      | 5 – 3             |
| Multiplication | *      | 5 * 3             |
| Right Division | /      | 5/3               |
| Left Division  | \      | 5\3 = 3/5         |
| Exponentiation | ۸      | $5^3$ means $5^3$ |

### Table 5: MATLAB Order of Operations (PEMDAS)

| Precedence | Operation                                                            |
|------------|----------------------------------------------------------------------|
| First      | Parentheses are executed (innermost first).                          |
| Second     | Exponents are executed.                                              |
| Third      | Multiplication and division are executed in order from left to right |
| Fourth     | Addition and subtraction are executed in order from left to right.   |

**Example 4:** Write one line in the command window to calculate  $\left(5 - \frac{19}{7} + 2.5^3\right)^2$ :

## 1.4 Display Formats

We can control the display of numbers using the format command.

Table 6: Display Formats

| Command         | Description                                                                                       | Example                 |
|-----------------|---------------------------------------------------------------------------------------------------|-------------------------|
| format short    | Fixed-decimal format with 4 digits after the decimal point.                                       | 31.4286                 |
| format long     | Fixed-decimal format with 15 digits after the decimal point.                                      | 31.428571428571427      |
| format short e  | Scientific notation with 4 digits after the decimal point.                                        | 3.1429e+01              |
| format long e   | Scientific notation with 15 digits after the decimal point.                                       | 3.142857142857143e+01   |
| format short g  | Fixed-decimal or scientific notation, whichever is more compact, with a <i>total of</i> 5 digits  | 31.429                  |
| format long g   | Fixed-decimal or scientific notation, whichever is more compact, with a <i>total of</i> 15 digits | 31.4285714285714        |
| format bank     | 2 digits after the decimal point.                                                                 | 31.43                   |
| format rational | Ratio of small integers.                                                                          | 220/7                   |
| format compact  | Suppress excess blank lines to show more output on a single screen.                               | >> 220/7<br>ans = 220/7 |
| format loose    | Add blank lines to make output more readable.                                                     | >> 220/7 ans = 220/7    |

#### Table 7: Additional Notes about Format

- The default format for numerical values is "short." The default format for the space is "loose."
- The format only affects display of numbers. MATALB always computes and saves numbers in full precision.
- Once you enter a format command, the format stays the same until another format command.
- To go back to the default, you may use the command format default.

## 1.5 Elementary Math Built-In Functions

In addition to basic arithmetic, MATLAB includes built-in functions. A built-in function has a name, one or more arguments (i.e., inputs) in parentheses, and produces one or more outputs. For example,

$$y = sqrt(x)$$

- sqrt is the name of the function.
- x is the argument of the function.
  - The argument can be a number; variable (explained in next section); or an expression involving numbers, variables, or functions.
- y is the output of the function.

## **Table 8: Elementary Math Functions**

| Function     | Description                                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------|
| sqrt(x)      | Calculates the square root of a real number $x$ : $\sqrt{x}$                                                         |
| nthroot(x,n) | Calculates the real $n$ th root of a real number $x$ : $\sqrt[n]{x}$ If $x$ is negative, $n$ must be an odd integer. |
| exp(x)       | Calculates the exponential function: $e^x$ .                                                                         |
| abs(x)       | Calculates the absolute value: $ x $ .                                                                               |
| log(x)       | Calculates the natural logarithm of the input: $\ln(x)$ .                                                            |
| log10(x)     | Calculates common logarithm (i.e., log base 10): $\log(x)$ .                                                         |
| factorial(x) | Calculates the factorial of a positive integer $x$ : $x$ !                                                           |

**Note:** Use pi for  $\pi$ .

**Example 5:** Calculate  $\sqrt{87}$  in the command window.

```
>> sqrt(87)
ans =
9.3274
```

**Example 6:** Calculate  $\sqrt{87}$  to 15 decimal places in the command window.

```
>> format long, sqrt(87)
ans =
9.327379053088816
```

**Example 7:** Calculate  $(36.1 - 2.25\pi)(e^{2.3} + \sqrt[3]{20})$  in the command window.

```
>> (36.1-2.25*pi)*(exp(2.3)+nthroot(20,3))
ans =
368.3680
```

**Table 9: Trigonometric Math Functions** 

| Function          | Description                                                                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| sin(x)<br>sind(x) | Calculates the sine of an angle $x$ in radians. Calculates the sine of an angle $x$ in degrees.                                     |
| cos(x)<br>cosd(x) | Calculates the cosine of an angle $x$ in radians. Calculates the cosine of an angle $x$ in degrees.                                 |
| tan(x) tand(x)    | Calculates the tangent of an angle $x$ in radians. Calculates the tangent of an angle $x$ in degrees.                               |
| cot(x) cotd(x)    | Calculates the cotangent of an angle $\boldsymbol{x}$ in radians. Calculates the cotangent of an angle $\boldsymbol{x}$ in degrees. |

Table 10: Additional Trigonometric Functions

| Function                                   | Description                                                                                                                                         |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| asin(x) asind(x)                           | Calculates the inverse sine of an angle $x$ in radians. Calculates the inverse sine of an angle $x$ in degrees.                                     |
| acos(x)<br>acosd(x)                        | Calculates the inverse cosine of an angle $x$ in radians. Calculates the inverse cosine of an angle $x$ in degrees.                                 |
| atan(x) atand(x)                           | Calculates the inverse tangent of an angle $x$ in radians. Calculates the inverse tangent of an angle $x$ in degrees.                               |
| acot(x)<br>acotd(x)                        | Calculates the inverse cotangent of an angle $\boldsymbol{x}$ in radians. Calculates the inverse cotangent of an angle $\boldsymbol{x}$ in degrees. |
| sinh(x), $cosh(x)$ , $tanh(x)$ , $coth(x)$ | Hyperbolic trig functions.                                                                                                                          |

**Example 8:** Calculate  $\frac{\sin{(0.2\pi)}}{\cos{(\pi/6)}}$  + tan (72°) in the command window.

```
>> \sin(0.2*pi)/\cos(pi/6) + \tan(72)
ans = 3.7564
```

**Example 9:** Given  $\int x^2 \cos x \, dx = 2x \cos x + (x^2 - 2) \sin x$ , use MATLAB to calculate the definite integral:

```
\int_{\pi/6}^{\pi/3} x^2 \cos x \, dx
>> (2*(pi/3)*\cos(pi/3)+((pi/3)^2-2)*\sin(pi/3))...
-(2*(pi/6)*\cos(pi/6)+((pi/6)^2-2)*\sin(pi/6))
ans =
0.2209
```

**Table 11: Rounding Functions** 

| Function   | Description                                                 | Example                               |
|------------|-------------------------------------------------------------|---------------------------------------|
| round(x)   | Round to the nearest integer.                               | >> round(-20/7) ans = -3              |
| round(x,n) | Rounds to $n$ digits.                                       | >> round(-20/7,2)<br>ans =<br>-2.8600 |
| fix(x)     | Round towards zero.                                         | >> fix(-20/7) ans =     -2            |
| ceil(x)    | Round toward infinity.                                      | >> ceil(-20/7)<br>ans =<br>-2         |
| floor(x)   | Round towards minus infinity.                               | >> floor(-20/7) ans =     -3          |
| rem(x,y)   | Returns the remainder after $x$ is divided by $y$ .         | >> rem(-20,7)<br>ans = -6             |
| sign(x)    | Returns 1 if $x > 0$ ; $-1$ if $x < 0$ ; and 0 if $x = 0$ . | >> sign(-20/7) ans = -1               |

# 1.6 Defining Scalar Variables

A variable is a name made of a letter or a combination of several letters (and digits) that is assigned a numerical value. Once a variable is defined, it can be used in mathematical expressions, functions, and commands.

We use the equals sign (=) as "assign to" or "store in".

```
Variable_name = A numerical value, or a computable expression \Rightarrow x=5 creates the variable "x" and stores the value 5 in it x=5 MATLAB acknowledges that it has created "x" and set it to 5 \Rightarrow x+2 ans = 7
```

In MATLAB, variables must be defined before we can use them in subsequent commands.

```
>> x=5;
>> x+y
Unrecognized function or variable 'y'.
```

**Example 10:** Define the variables x and y as x=6.5 and y=3.8, then evaluate  $(x^2+y^2)^{2/3}+\frac{xy}{y-x}$ .

#### Solution:

```
>> x=6.5; y=3.8;
>> Z=(x^2+y^2)^(2/3)+(x*y/(y-x))
Z = 5.6091
```

#### Table 12: Rules about Variable Names in MATLAB

#### A variable name

- Must begin with a letter.
- Can be up to 63 characters long.
- Can contain letters, digits, and the underscore ( \_ ) character.
- Cannot contain punctuation characters, such as period, comma, semicolon, etc.
- Cannot contain spaces.
- Cannot be the name of a built-in function, such as sqrt, cos, round, exp, etc.
- Cannot be the name of a keyword, such as pi, clear, clc, for, else, etc. See page 19 of the textbook for a full list!
- Is case sensitive, meaning abc, Abc, ABC are all different.

# 1.7 Managing Variables

The following are commands that can be used to eliminate variables or to obtain information about variables that have been created.

Table 13: Commands for Managing Variables

| Command     | Outcome                                                                                                                                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| clear       | Removes all variables from the memory.                                                                                                            |
| clear x y z | Removes only variables $x$ , $y$ , $z$                                                                                                            |
| who         | Displays a list of the variables currently in the memory.                                                                                         |
| whos        | Displays a list of the variables currently in the memory and their sizes together with information about their bytes and class (see section 4.1). |

**Note:** For the remainder of the semester, we will make a habit of starting most files with clear, clc.

- clear removes all variables from memory.
- clc clears the command window display.

### **Example 11:** Let's try the following commands!

```
>> clear,clc
>> y=sqrt(x)
Unrecognized function or variable 'x'.
>> x=121
x =
   121
>> y=sqrt(x)
y =
     11
>> y=y*2
y =
     22 Note that this command has redefined the variable y rather than solving the equation y = y * 2.
        This is what we mean when we say the "=" means "assign to" as opposed to "equal to".
>> who
Your variables are:
Χ
   У
>> whos
                                  Bytes Class Attributes
  Name
              Size
                                       8
                                           double
              1x1
  Х
                                       8
                                           double
              1x1
  У
```

To figure out the variable's value from the command window, type the variable name and hit enter.

**Example 12:** Use MATLAB to calculate the area of a triangle with a base of 5 inches and a height of 12 inches by first defining the variables b and h then using them to find the area A.

#### Solution:

```
>> clear,clc
>> b=5; h=12; A=0.5*b*h
A =
     30
```

## 1.8 Script Files

So far all the commands were typed in the Command Window. A better way of executing a series of MATLAB commands is to first create a file with a list of commands (a program), save it, and then run (or execute) the file.

- A script file, also called a program, is a sequence of MATLAB commands.
- When a script file runs (is executed), MATLAB executes the commands in the order they are written, just as if they were typed in the Command Window.
- When a script file has a command that generates an output, the output is displayed in the Command Window upon executing the program.
  - Commands in a script file follow the same rules as in the Command Window.
  - To suppress the output of a command, you must end the line with a semi-colon (;).
  - To write comment(s), you must put a percent (%) in the beginning of the line.
  - Using double percents (%%) will allow you to split your file into sections.
- Using a script file is convenient because it can be edited (corrected and/or changed) and executed many times
- Script files are also called M-files because the extension .m is used when they are saved.

# Script file = M-file = Program = Code

# **Getting Started with Script Files**

• Open a new script file by clicking on the New Script icon or typing edit in the command window.



- Execute your script file by clicking the green "Run" button in the Toolstrip.
- You must save your file before MATLAB can run the commands.
- Save your script file by clicking on the Save icon. Naming your script file follows many of the same rules as variable names. It must start with a letter, it cannot contain spaces, etc.

- MATLAB will only execute M-files within the current folder or within the current "search path." If you try to execute the script and a MATLAB editor screen pops up, you may need to change the current folder.
- We are going to work with the script file and command window side-by-side like in the figure below. When we run our script file, the output will display in the command window. When you open an M-file on your computer, it will automatically open the MATLAB program.

