Regression Final Project

Joe DeMaro

April 4, 2019

Executive Summary

You work for Motor Trend, a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:

"Is an automatic or manual transmission better for MPG"

"Quantify the MPG difference between automatic and manual transmissions"

To investigate the first question, a comparison of the raw data is used to drive a linear regression comparsion between the two variables within the inquire. The inital analysis shows a 7.25 mpg difference between manual and automatic transmissson. The p-value for the comparison is 0.0014 indicating the difference is significant. The regression data indicates this comparison only account for $\sim 35\%$ of the differences. The initial pass does not help determine if any other measurement affects mpg. To determine if other factors might affect MPG, a regression model is executed with all variables considered. The information from this model (mod1) led to significant differences being seen between mpg and wgt, cyl, and disp. These 3 variables were modeled with am to identify other variables affecting mpg. wgt and cyl significantly affect mpg and the data show the 4 variables account for over 80% of the differences in mpg Residual analysis plot show that the data are non problematic and linear regression modeling is appropriate.

Appendix

Exploratory Data Visualization

```
head(mtcars)
##
                     mpg cyl disp hp drat
                                             wt qsec vs am gear carb
## Mazda RX4
                    21.0
                           6 160 110 3.90 2.620 16.46 0
                                                                   4
## Mazda RX4 Wag
                    21.0
                           6 160 110 3.90 2.875 17.02 0 1
                                                                   4
                          4 108 93 3.85 2.320 18.61 1
                                                         1
                                                                   1
## Datsun 710
                    22.8
                                                              4
## Hornet 4 Drive
                    21.4
                           6 258 110 3.08 3.215 19.44 1
                                                              3
                                                                   1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0
                                                              3
                                                                   2
                                                          0
## Valiant
                    18.1
                           6 225 105 2.76 3.460 20.22 1
                                                                   1
str(mtcars)
```

```
32 obs. of 11 variables:
## 'data.frame':
   $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
   $ cyl : num 6646868446 ...
##
   $ disp: num 160 160 108 258 360 ...
   $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
##
   $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
   $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
               16.5 17 18.6 19.4 17 ...
   $ qsec: num
               0011010111...
   $ vs
         : num
  $ am
        : num
                1110000000...
  $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
data.subset <- subset(mtcars, select=c(mpg,am))</pre>
mt.auto <- mtcars[(mtcars$am==0),]</pre>
mt.manual <- mtcars[(mtcars$am==1),]</pre>
boxplot(mpg ~ am, data=mtcars, xlab="Transmission", ylab="MPG", main="MPG v
Transmission Type")
```

MPG v Transmission Type

Transmission

```
summary(mtcars)
##
                        cyl
                                       disp
                                                        hp
        mpg
## Min.
                          :4.000
                                                  Min. : 52.0
         :10.40
                   Min.
                                  Min. : 71.1
   1st Qu.:15.43
                   1st Qu.:4.000
                                  1st Qu.:120.8
                                                  1st Qu.: 96.5
                   Median :6.000
                                  Median :196.3
##
   Median :19.20
                                                  Median :123.0
## Mean :20.09
                   Mean :6.188
                                  Mean :230.7
                                                  Mean :146.7
```

```
3rd Ou.:22.80
                  3rd Ou.:8.000
                                 3rd Ou.:326.0
                                               3rd Ou.:180.0
##
   Max.
        :33.90
                  Max. :8.000
                                 Max.
                                       :472.0
                                                Max.
                                                    :335.0
##
        drat
                       wt
                                     qsec
                                                     ٧S
                                                      :0.0000
## Min.
                         :1.513
                                 Min.
                                       :14.50
          :2.760
                  Min.
                                               Min.
## 1st Qu.:3.080
                  1st Qu.:2.581
                                 1st Qu.:16.89
                                               1st Qu.:0.0000
                  Median :3.325
                                 Median :17.71
## Median :3.695
                                               Median :0.0000
## Mean
        :3.597
                  Mean
                        :3.217
                                 Mean :17.85
                                               Mean
                                                     :0.4375
## 3rd Qu.:3.920
                  3rd Qu.:3.610
                                 3rd Qu.:18.90
                                               3rd Qu.:1.0000
## Max.
         :4.930
                        :5.424
                                       :22.90
                                               Max. :1.0000
##
                                      carb
         am
                       gear
## Min.
         :0.0000
                   Min.
                         :3.000
                                  Min.
                                        :1.000
## 1st Qu.:0.0000
                   1st Qu.:3.000
                                  1st Qu.:2.000
## Median :0.0000
                   Median :4.000
                                  Median :2.000
## Mean
         :0.4062
                   Mean :3.688
                                 Mean :2.812
## 3rd Qu.:1.0000
                   3rd Qu.:4.000
                                  3rd Qu.:4.000
## Max. :1.0000
                   Max. :5.000
                                  Max. :8.000
```

Compare Auto vs. Manual Transmission

```
aggregate(data.subset[,1:2], list(data.subset$am), mean)
##
    Group.1
                  mpg am
## 1
          0 17.14737 0
## 2
          1 24.39231 1
mod0 <- lm(mpg ~ am, mtcars)
summary(mod0)
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
                1Q Median
      Min
                                30
                                       Max
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             1.125 15.247 1.13e-15 ***
                 17.147
## am
                  7.245
                             1.764
                                     4.106 0.000285 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
t.test(mt.auto$mpg, mt.manual$mpg)
##
## Welch Two Sample t-test
##
```

```
## data: mt.auto$mpg and mt.manual$mpg
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.280194 -3.209684
## sample estimates:
## mean of x mean of y
## 17.14737 24.39231

diffTrans <- mean(mt.manual$mpg) - mean(mt.auto$mpg)
### Difference between manual and automatic transmission
diffTrans
## [1] 7.244939</pre>
```

Effect of Multiple Variables

Initial comparison driven by the questions of interest provide limited insight into the mtcars data. With additional data available and the linear regression results of mod0 indicating only 35% of the difference in mpg can be explained by am, a more complete analysis will be gleaned by looking at a broad comparison of all the variables and then determining a more filtered view based on the additional information.

```
mod1 \leftarrow lm(mpg\sim cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb,
data=mtcars)
summary(mod1)$coef
               Estimate Std. Error
                                   t value
                                            Pr(>|t|)
## (Intercept) 12.30337416 18.71788443 0.6573058 0.51812440
## cyl
             -0.11144048 1.04502336 -0.1066392 0.91608738
## disp
             0.01333524 0.01785750 0.7467585 0.46348865
             ## hp
## drat
             0.78711097 1.63537307 0.4813036 0.63527790
## wt
             -3.71530393 1.89441430 -1.9611887 0.06325215
## qsec
             ## VS
             0.31776281 2.10450861 0.1509915 0.88142347
## am
             2.52022689 2.05665055
                                  1.2254035 0.23398971
## gear
             0.65541302 1.49325996 0.4389142 0.66520643
             ## carb
summary(aov(mod1))
            Df Sum Sq Mean Sq F value
##
                                    Pr(>F)
## cyl
             1 817.7
                       817.7 116.425 5.03e-10 ***
## disp
             1
                 37.6
                       37.6
                              5.353 0.03091 *
             1
                 9.4
                        9.4
                             1.334
## hp
                                   0.26103
## drat
             1
                 16.5
                       16.5
                             2.345
                                   0.14064
             1
                77.5
                       77.5
                            11.031
                                   0.00324 **
## wt
## qsec
             1
                 3.9 3.9 0.562 0.46166
```

```
## vs
                    0.1
                            0.1
                                 0.018
                                        0.89317
               1
                   14.5
## am
                           14.5
                                  2.061
                                        0.16586
               1
                    1.0
                            1.0
## gear
                                  0.138
                                        0.71365
## carb
               1
                    0.4
                            0.4
                                 0.058 0.81218
## Residuals
              21 147.5
                            7.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Deeper Analysis

The analysis of variance from the regression model (mod1) shows 3 significantly different factors. A new model (mod2) below will limit x variables to the 3 discovered variables plus am, part of the original question. The results show that transmission type plus number of cylinders and weight have a significant impact on MPG

```
mod2 <- lm(mpg ~ factor(am) + cyl + disp + wt, mtcars)</pre>
summary(mod2)
##
## Call:
## lm(formula = mpg ~ factor(am) + cyl + disp + wt, data = mtcars)
## Residuals:
##
     Min
             1Q Median
                            3Q
                                 Max
## -4.318 -1.362 -0.479 1.354 6.059
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 40.898313
                          3.601540 11.356 8.68e-12 ***
## factor(am)1 0.129066
                          1.321512
                                     0.098
                                            0.92292
## cyl
               -1.784173
                           0.618192 -2.886 0.00758 **
## disp
               0.007404
                          0.012081
                                     0.613
                                            0.54509
## wt
               -3.583425
                          1.186504 -3.020 0.00547 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.642 on 27 degrees of freedom
## Multiple R-squared: 0.8327, Adjusted R-squared: 0.8079
## F-statistic: 33.59 on 4 and 27 DF, p-value: 4.038e-10
summary(aov(mod2))
##
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
                          405.2 58.055 3.40e-08 ***
## factor(am)
               1 405.2
## cyl
               1 449.5
                           449.5 64.415 1.26e-08 ***
               1
                  19.3
                           19.3
                                  2.763 0.10805
## disp
                   63.7
                            63.7
                                   9.121
                                         0.00547 **
## wt
               1
## Residuals 27 188.4
                            7.0
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod0, mod2)
## Analysis of Variance Table
## Model 1: mpg ~ am
## Model 2: mpg ~ factor(am) + cyl + disp + wt
              RSS Df Sum of Sq
     Res.Df
                                          Pr(>F)
         30 720.90
## 1
## 2
         27 188.43
                   3
                         532.47 25.433 5.034e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual Analysis

```
par(mfrow=c(2,2))
plot(mod2)
```

