# boston\_housing

May 26, 2016

# 1 Machine Learning Engineer Nanodegree

#### 1.1 Model Evaluation & Validation

# 1.2 Project 1: Predicting Boston Housing Prices

Welcome to the first project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been written. You will need to implement additional functionality to successfully answer all of the questions for this project. Unless it is requested, do not modify any of the code that has already been included. In this template code, there are four sections which you must complete to successfully produce a prediction with your model. Each section where you will write code is preceded by a **STEP** X header with comments describing what must be done. Please read the instructions carefully!

In addition to implementing code, there will be questions that you must answer that relate to the project and your implementation. Each section where you will answer a question is preceded by a **QUESTION X** header. Be sure that you have carefully read each question and provide thorough answers in the text boxes that begin with "**Answer:**". Your project submission will be evaluated based on your answers to each of the questions.

A description of the dataset can be found here, which is provided by the **UCI Machine Learning** Repository.

# 2 Getting Started

To familiarize yourself with an iPython Notebook, **try double clicking on this cell**. You will notice that the text changes so that all the formatting is removed. This allows you to make edits to the block of text you see here. This block of text (and mostly anything that's not code) is written using Markdown, which is a way to format text using headers, links, italics, and many other options! Whether you're editing a Markdown text block or a code block (like the one below), you can use the keyboard shortcut **Shift + Enter** or **Shift + Return** to execute the code or text block. In this case, it will show the formatted text.

Let's start by setting up some code we will need to get the rest of the project up and running. Use the keyboard shortcut mentioned above on the following code block to execute it. Alternatively, depending on your iPython Notebook program, you can press the **Play** button in the hotbar. You'll know the code block executes successfully if the message "Boston Housing dataset loaded successfully!" is printed.

```
In [47]: # Importing a few necessary libraries
    import numpy as np
    import matplotlib.pyplot as pl
    from sklearn import datasets
    from sklearn.tree import DecisionTreeRegressor

# Make matplotlib show our plots inline (nicely formatted in the notebook)
    %matplotlib inline

# Create our client's feature set for which we will be predicting a selling price
```

```
# Load the Boston Housing dataset into the city_data variable
city_data = datasets.load_boston()

# Initialize the housing prices and housing features
housing_prices = city_data.target
housing_features = city_data.data

print "Boston Housing dataset loaded successfully!"
```

CLIENT\_FEATURES = [[11.95, 0.00, 18.100, 0, 0.6590, 5.6090, 90.00, 1.385, 24, 680.0, 20.20, 33

Boston Housing dataset loaded successfully!

# 3 Statistical Analysis and Data Exploration

In this first section of the project, you will quickly investigate a few basic statistics about the dataset you are working with. In addition, you'll look at the client's feature set in CLIENT\_FEATURES and see how this particular sample relates to the features of the dataset. Familiarizing yourself with the data through an explorative process is a fundamental practice to help you better understand your results.

# 3.1 Step 1

In the code block below, use the imported numpy library to calculate the requested statistics. You will need to replace each None you find with the appropriate numpy coding for the proper statistic to be printed. Be sure to execute the code block each time to test if your implementation is working successfully. The print statements will show the statistics you calculate!

```
In [73]: import numpy
         # Number of houses in the dataset
         total_houses = housing_prices.shape[0]
         # Number of features in the dataset
         total_features = housing_features.shape[1]
         # Minimum housing value in the dataset
         minimum_price = numpy.min(housing_prices)
         # Maximum housing value in the dataset
         maximum_price = numpy.max(housing_prices)
         # Mean house value of the dataset
         mean_price = numpy.mean(housing_prices)
         # Median house value of the dataset
         median_price = numpy.median(housing_prices)
         # Standard deviation of housing values of the dataset
         std_dev = numpy.std(housing_prices)
         # Show the calculated statistics
         print "Boston Housing dataset statistics (in $1000's):\n"
         print "Total number of houses:", total_houses
         print "Total number of features:", total_features
         print "Minimum house price:", minimum_price
```

```
print "Maximum house price:", maximum_price
print "Mean house price: {0:.3f}".format(mean_price)
print "Median house price:", median_price
print "Standard deviation of house price: {0:.3f}".format(std_dev)

Boston Housing dataset statistics (in $1000's):

Total number of houses: 506

Total number of features: 13
Minimum house price: 5.0

Maximum house price: 50.0

Mean house price: 22.533

Median house price: 21.2

Standard deviation of house price: 9.188
```

## 3.2 Question 1

As a reminder, you can view a description of the Boston Housing dataset here, where you can find the different features under **Attribute Information**. The MEDV attribute relates to the values stored in our housing\_prices variable, so we do not consider that a feature of the data.

Of the features available for each data point, choose three that you feel are significant and give a brief description for each of what they measure.

Remember, you can double click the text box below to add your answer!

Answer:

CRIM is per capita crime rate by town.

RM is average number of rooms per dwelling.

CHAS is whether house near Charles River . If CHAS is 1, the house tract bounds river.

### 3.3 Question 2

Using your client's feature set CLIENT\_FEATURES, which values correspond with the features you've chosen above?

Hint: Run the code block below to see the client's data.

**Answer: CRIM** is 11.95. **RM** is 5.609. **CHAS** is 0.

# 4 Evaluating Model Performance

In this second section of the project, you will begin to develop the tools necessary for a model to make a prediction. Being able to accurately evaluate each model's performance through the use of these tools helps to greatly reinforce the confidence in your predictions.

## 4.1 Step 2

In the code block below, you will need to implement code so that the <code>shuffle\_split\_data</code> function does the following: - Randomly shuffle the input data <code>X</code> and target labels (housing values) <code>y. - Split</code> the data into training and testing subsets, holding 30% of the data for testing.

If you use any functions not already accessible from the imported libraries above, remember to include your import statement below as well!

Ensure that you have executed the code block once you are done. You'll know the shuffle\_split\_data function is working if the statement "Successfully shuffled and split the data!" is printed.

Successfully shuffled and split the data!

#### 4.2 Question 3

Why do we split the data into training and testing subsets for our model?

**Answer:** If we only have training data, we can fit training data very well by increasing degrees of freedom. But in fact we will find it is bad in practice. If we split the data into taining and testing subsets, it can overcome the shortcoming of overfitting. We will choose the degree of freedom that fit training data and test data all well. If a model fit to the training set also fits the test set well, minimal overfitting has taken place.

#### 4.3 Step 3

In the code block below, you will need to implement code so that the performance\_metric function does the following: - Perform a total error calculation between the true values of the y labels y\_true and the predicted values of the y labels y\_predict.

You will need to first choose an appropriate performance metric for this problem. See the sklearn metrics documentation to view a list of available metric functions. **Hint:** Look at the question below to see a list of the metrics that were covered in the supporting course for this project.

Once you have determined which metric you will use, remember to include the necessary import statement as well!

Ensure that you have executed the code block once you are done. You'll know the performance\_metric function is working if the statement "Successfully performed a metric calculation!" is printed.

Successfully performed a metric calculation!

#### 4.4 Question 4

Which performance metric below did you find was most appropriate for predicting housing prices and analyzing the total error. Why? -  $\frac{\text{Accuracy}}{\text{Mean Absolute Error (MAE)}}$  -  $\frac{\text{Precision}}{\text{Mean Absolute Error (MAE)}}$ 

**Answer:** I think it maybe <u>Mean Squared Error(MSE)</u>. The <u>MSE</u> will be small if the predicted responses are very close to the true responses, and will be large if for some of the observations, the predicted and true responses differ substantially. <u>Mean Absolute Error (MAE)</u> is also good. But <u>Mean Squared Error(MSE)</u> is most commonly\_used measure.

Accuracy, Precision, Recall and F1 Score is fitting classify problems. In my opinions, this problem is regression problem.

## 4.5 Step 4 (Final Step)

In the code block below, you will need to implement code so that the fit\_model function does the following:
- Create a scoring function using the same performance metric as in Step 3. See the sklearn make\_scorer documentation. - Build a GridSearchCV object using regressor, parameters, and scoring\_function. See the sklearn documentation on GridSearchCV.

When building the scoring function and GridSearchCV object, be sure that you read the parameters documentation thoroughly. It is not always the case that a default parameter for a function is the appropriate setting for the problem you are working on.

Since you are using sklearn functions, remember to include the necessary import statements below as well!

Ensure that you have executed the code block once you are done. You'll know the fit\_model function is working if the statement "Successfully fit a model to the data!" is printed.

```
regressor = DecisionTreeRegressor()
    # Set up the parameters we wish to tune
   parameters = {'max_depth':(1,2,3,4,5,6,7,8,9,10)}
    # Make an appropriate scoring function
   scoring_function = make_scorer(performance_metric, greater_is_better=False)
    # Make the GridSearchCV object
   reg = grid_search.GridSearchCV(regressor, parameters, scoring = scoring_function)
    # Fit the learner to the data to obtain the optimal model with tuned parameters
   reg.fit(X,y)
    # Return the optimal model
   return reg.best_estimator_
    #Test fit_model on entire dataset
try:
   reg = fit_model(housing_features, housing_prices)
   print "Successfully fit a model!"
except:
   print "Something went wrong with fitting a model."
```

#### 4.6 Question 5

Successfully fit a model!

What is the grid search algorithm and when is it applicable?

Answer: Parameters that are not directly learnt within estimators can be set by searching a parameter space for the best Cross-validation: evaluating estimator performance score. Some models allow for specialized, efficient parameter search strategies, outlined below. For given values, <u>Grid search algorithm</u> exhaustively conside all parameter combinations and find when it is applicable.

when the score is the largest or the loss is the lowest, it is applicable.

#### 4.7 Question 6

What is cross-validation, and how is it performed on a model? Why would cross-validation be helpful when using grid search?

**Answer:** The goal of cross validation is to define a dataset to "test" the model in the training phase (i.e., the validation dataset), in order to limit problems like overfitting, give an insight on how the model will generalize to an independent dataset (i.e., an unknown dataset, for instance from a real problem), etc.

Partitioning a sample of data into complementary subsets, performing the analysis on one subset (called the training set), and validating the analysis on the other subset (called the validation set or testing set). There is also a usually way named k-fold CV. The data set is divided into k subsets, and the holdout method is repeated k times. Each time, one of the k subsets is used as the test set and the other k-1 subsets are put together to form a training set. Then the average error across all k trials is computed. The advantage of this method is that it matters less how the data gets divided. Every data point gets to be in a test set exactly once, and gets to be in a training set k-1 times.

In fact when using grid search, we give estimators lots of parameters to get a estimator very well, it is easily to overfitting. But if we using cross-validation, we will using testing data to find which estimator is better. The testing data is not analysised by estimator, if its perform is good, it maybe perform well in other practice data.

# 5 Checkpoint!

You have now successfully completed your last code implementation section. Pat yourself on the back! All of your functions written above will be executed in the remaining sections below, and questions will be asked about various results for you to analyze. To prepare the **Analysis** and **Prediction** sections, you will need to intialize the two functions below. Remember, there's no need to implement any more code, so sit back and execute the code blocks! Some code comments are provided if you find yourself interested in the functionality.

```
In [59]: def learning_curves(X_train, y_train, X_test, y_test):
             """ Calculates the performance of several models with varying sizes of training data.
                 The learning and testing error rates for each model are then plotted. """
             print "Creating learning curve graphs for max_depths of 1, 3, 6, and 10. . ."
             # Create the figure window
             fig = pl.figure(figsize=(10,8))
             # We will vary the training set size so that we have 50 different sizes
             sizes = np.rint(np.linspace(1, len(X_train), 50)).astype(int)
             train_err = np.zeros(len(sizes))
             test_err = np.zeros(len(sizes))
             # Create four different models based on max_depth
             for k, depth in enumerate([1,3,6,10]):
                 for i, s in enumerate(sizes):
                     # Setup a decision tree regressor so that it learns a tree with max_depth = depth
                     regressor = DecisionTreeRegressor(max_depth = depth)
                     # Fit the learner to the training data
                     regressor.fit(X_train[:s], y_train[:s])
                     # Find the performance on the training set
                     train_err[i] = performance_metric(y_train[:s], regressor.predict(X_train[:s]))
                     # Find the performance on the testing set
                     test_err[i] = performance_metric(y_test, regressor.predict(X_test))
                 # Subplot the learning curve graph
                 ax = fig.add_subplot(2, 2, k+1)
                 ax.plot(sizes, test_err, lw = 2, label = 'Testing Error')
                 ax.plot(sizes, train_err, lw = 2, label = 'Training Error')
                 ax.legend()
                 ax.set_title('max_depth = %s'%(depth))
                 ax.set_xlabel('Number of Data Points in Training Set')
                 ax.set_ylabel('Total Error')
                 ax.set_xlim([0, len(X_train)])
             # Visual aesthetics
             fig.suptitle('Decision Tree Regressor Learning Performances', fontsize=18, y=1.03)
             fig.tight_layout()
             fig.show()
```

```
In [60]: def model_complexity(X_train, y_train, X_test, y_test):
             """ Calculates the performance of the model as model complexity increases.
                 The learning and testing errors rates are then plotted. """
             print "Creating a model complexity graph. . . "
             # We will vary the max_depth of a decision tree model from 1 to 14
             max_depth = np.arange(1, 14)
             train_err = np.zeros(len(max_depth))
             test_err = np.zeros(len(max_depth))
             for i, d in enumerate(max_depth):
                 # Setup a Decision Tree Regressor so that it learns a tree with depth d
                 regressor = DecisionTreeRegressor(max_depth = d)
                 # Fit the learner to the training data
                 regressor.fit(X_train, y_train)
                 # Find the performance on the training set
                 train_err[i] = performance_metric(y_train, regressor.predict(X_train))
                 # Find the performance on the testing set
                 test_err[i] = performance_metric(y_test, regressor.predict(X_test))
             # Plot the model complexity graph
             pl.figure(figsize=(7, 5))
             pl.title('Decision Tree Regressor Complexity Performance')
             pl.plot(max_depth, test_err, lw=2, label = 'Testing Error')
             pl.plot(max_depth, train_err, lw=2, label = 'Training Error')
             pl.legend()
             pl.xlabel('Maximum Depth')
             pl.ylabel('Total Error')
             pl.show()
```

# 6 Analyzing Model Performance

In this third section of the project, you'll take a look at several models' learning and testing error rates on various subsets of training data. Additionally, you'll investigate one particular algorithm with an increasing max\_depth parameter on the full training set to observe how model complexity affects learning and testing errors. Graphing your model's performance based on varying criteria can be beneficial in the analysis process, such as visualizing behavior that may not have been apparent from the results alone.

```
In [61]: learning_curves(X_train, y_train, X_test, y_test)
Creating learning curve graphs for max_depths of 1, 3, 6, and 10. . .
/home/bit_hammer/anaconda2/lib/python2.7/site-packages/matplotlib/figure.py:397: UserWarning: matplotlib is currently using a non-GUI backend, "
```





#### 6.1 Question 7

Choose one of the learning curve graphs that are created above. What is the max depth for the chosen model? As the size of the training set increases, what happens to the training error? What happens to the testing error?

**Answer:** The max depth 3 is for the chosen model.

As the size of the training set increases, the testing error is downward from 140 until the number of data points up to 50, then it is volatility about 25.

The training error is in the opposite away. It is upward from 0 to 15 as the number of data points increasing.

#### 6.2 Question 8

Look at the learning curve graphs for the model with a max depth of 1 and a max depth of 10. When the model is using the full training set, does it suffer from high bias or high variance when the max depth is 1? What about when the max depth is 10?

**Answer:** When the max depth is 1, it suffers from high bias. Bacause we can find the training data error and the testing data error is all very large.

When the max depth is 10, it suffers from high variance. Bacause the traing data error is 0, but testing data error is volatility from 20 to 40.

In [62]: model\_complexity(X\_train, y\_train, X\_test, y\_test)

Creating a model complexity graph. . .



## 6.3 Question 9

From the model complexity graph above, describe the training and testing errors as the max depth increases. Based on your interpretation of the graph, which max depth results in a model that best generalizes the dataset? Why?

**Answer:** The training error is downward, as the maximum depth increases. And the testing error is downward firstly, then slightly uppward as the maximum depth increases. So I think the max depth 6 is the best generalizes the dataset. Because when the max depth is 6, the testing error is min.

## 7 Model Prediction

In this final section of the project, you will make a prediction on the client's feature set using an optimized model from fit\_model. When applying grid search along with cross-validation to optimize your model, it would typically be performed and validated on a training set and subsequently evaluated on a dedicated test set. In this project, the optimization below is performed on the entire dataset (as opposed to the training set you made above) due to the many outliers in the data. Using the entire dataset for training provides for a less volatile prediction at the expense of not testing your model's performance.

To answer the following questions, it is recommended that you run the code blocks several times and use the median or mean value of the results.

### 7.1 Question 10

Using grid search on the entire dataset, what is the optimal max\_depth parameter for your model? How does this result compare to your intial intuition?

**Hint:** Run the code block below to see the max depth produced by your optimized model.

```
In [70]: print "Final model has an optimal max_depth parameter of", reg.get_params()['max_depth']
Final model has an optimal max_depth parameter of 4
```

**Answer:** By my optimized model the max depth is 4. In the last question, I think the max depth 6 is the best. I found the max depth 4 and 6 are both well in the testing data error. And the grid search is using MSE to find which the max depth is best, it should the max depth 4 is better the max depth 6.

### **7.2** Question 11

With your parameter-tuned model, what is the best selling price for your client's home? How does this selling price compare to the basic statistics you calculated on the dataset?

**Hint:** Run the code block below to have your parameter-tuned model make a prediction on the client's home.

**Answer:** The bset selling price for my client's home is 21.630. It is very near median house price 21.2.

# 7.3 Question 12 (Final Question):

In a few sentences, discuss whether you would use this model or not to predict the selling price of future clients' homes in the Greater Boston area.

**Answer:** I would use this model.

Because I using the grid search algorithm and cross-validation to find the best of model. I think the performing of grid search on the entire dataset increase my confidence. I think this model will predict the selling price of future clients' homes in the Greater Bosotn area.

But I also think there are lots of way to improve the algorithm such as using other form of algorithm like random forests, svm, the other resample method such as k-Fold Cross-Validation, bootstrap. And we also can use studentized residual to deal with the outliers.

At last, thanks to last reviewer. He or she give me lots of advice, and I learn a lot.