

Transfer Learning with Informative Priors: Simple Baselines Better than Previously Reported

Ethan Harvey^{1*}

Mikhail Petrov^{2*}

Michael C. Hughes¹

¹Department of Computer Science, Tufts University

²Department of Mechanical Engineering, Tufts University

Findings

- Standard transfer learning better than reported in Shwartz-Ziv et al. (2022).
- Relative gains of informed priors over standard transfer learning vary across datasets.
- Large variability in quality of alignment between training and test loss landscapes.

Background

Bayesian transfer learning. Recent work by Shwartz-Ziv et al. (2022) proposed Bayesian transfer learning, where a re-scaled posterior from the source task is used as the prior for the target task. This work is motivated by sequential Bayesian updating, where some source data \mathcal{D}_S is acquired, a posterior $p(w|\mathcal{D}_S)$ over weights w is formed, and this posterior is used as an informed prior for a target dataset \mathcal{D}_T

$$p(w|\mathcal{D}_S) \propto p(\mathcal{D}_S|w)p(w)$$

 $p(w|\mathcal{D}_T, \mathcal{D}_S) \propto p(\mathcal{D}_T|w)p(w|\mathcal{D}_S).$

Common framework for MAP transfer learning Probabilistic model for target task.

$$p(w) = \mathcal{N}(w \mid \mathbf{m}, \lambda \mathbf{S}) \qquad \text{source-informed prior on backbone}$$

$$p(V) = \mathcal{N}(\text{vec}(V) \mid 0, \tau I), \qquad \text{prior on clf. head}$$

$$p(y_{1:n}|x_{1:n}, w, V) = \prod_{i=1}^{n} \text{Cat}(y_i|\text{softmax}(Vf_w(x_i))) \qquad \text{likelihood}$$

Target task MAP estimation. We can fit the above model to the target dataset via a MAP point estimation strategy, finding values of weights w, V that minimize the objective

$$L(w, V) := -\frac{1}{n} \left[\sum_{i=1}^{n} \log p(y_i | x_i, w, V) + \log p(w) + \log p(V) \right].$$

Table 1: Possible methods for point estimation of neural network weights for a target task.

Method	also known as	Prior	Init.	Shwartz-Ziv et al. (2022)		ours
StdPrior fromScratch	SGD Non-Learned Prior	$\mathcal{N}(0,\lambda I)$	random	✓	✓	X
StdPrior fromImgNet	in Shwartz-Ziv et al. SGD Transfer Init	$\mathcal{N}(0,\lambda I)$	μ	✓	×	✓
${\bf Learned Prior Iso\ from ImgNet}$	in Shwartz-Ziv et al. MAP adaptation	$\mathcal{N}(\mu,\lambda I)$	μ	×	X	✓
$Learned Prior LR\ from ImgNet$	in Chelba & Acero SGD Learned Prior	$\mathcal{N}(\mu,\lambda\Sigma)$	μ	√	✓	✓
	in Shwartz-Ziv et al.					

Experimental Procedures

Fixes to Shwartz-Ziv et al. (2022)'s code. Shwartz-Ziv et al. (2022)'s released code performs inconsistent scaling by λ of the low-rank and diagonal components of the covariance matrix of their informed prior.

Figure 1: Example scaling the low-rank and diagonal components of a 2D covariance matrix with Shwartz-Ziv et al. (2022)'s code (top row) and our code (bottom row).

Results

Finding 1: Standard transfer learning better than reported in Shwartz-Ziv et al. (2022).

Figure 2: Error rate (lower is better) vs. target train set size on CIFAR-10, for various MAP estimation methods for transfer learning from ImageNet. Left: Our results. Right: Results copied from Shwartz-Ziv et al. (2022) (their Tab. 10). Takeaway: In our experiments, standard transfer learning (StdPrior) does better than previously reported.

Finding 2: Relative gains of informed priors over standard transfer learning vary across datasets.

Table 2: CIFAR-10 heldout accuracy (higher is better) as target train set size *n* increases.

Method	$n = 10 \ (1/\text{cl.})$	100 (10/cl.)	$1000~(100/{ m cl.})$	10000 (1k/cl.)	$50000~(5 { m k/cl.})$
StdPrior fromImgNet	22.0 (13.2-26.7)	56.2 (53.0-59.9)	80.9 (78.2-82.8)	93.4 (93.3-93.7)	96.8 (96.7-96.9)
LearnedPriorIso fromImgNet	20.7 (17.7-23.4)	56.7 (54.8-59.8)	81.9 (81.6-82.1)	94.3 (94.1-94.5)	97.3 (97.2-97.4)
$Learned Prior LR\ from ImgNet$	15.7 (11.3-18.8)	58.7 (56.4-60.6)	83.5 (83.3-83.9)	93.8 (93.4-94.1)	96.9 (96.7-97.0)

Table 3: Oxford Flowers heldout accuracy (higher is better) as target train set size *n* increases.

Method	n = 102 (1/cl.)	510 (5/cl.)	$1020~(10/{ m cl.})$
StdPrior fromImgNet	31.1 (12.6-40.6)	78.9 (78.4-79.3)	87.9 (87.4-88.1)
LearnedPriorIso fromImgNet	19.2 (9.0-34.8)	79.1 (78.5-79.4)	88.6 (88.2-89.1)
LearnedPriorLR fromImgNet	28.8 (10.6-39.2)	77.9 (74.8-79.4)	88.4 (88.2-88.7)

Table 4: Oxford-IIIT Pets heldout accuracy (higher is better) as target train set size *n* increases.

Method	n = 37 (1/cl.)	370 (10/cl.)	$3441(93/{ m cl.})$
StdPrior fromImgNet	17.3 (14.5-20.0)	54.8 (53.2-57.5)	86.4 (86.0-86.6)
LearnedPriorIso fromImgNet	7.0 (5.4- 8.5)	55.5 (53.3-57.7)	86.4 (85.4-87.0)
LearnedPriorLR fromImgNet	6.6 (6.2- 7.3)	57.4 (56.2-58.2)	86.7 (85.0-87.8)

Table 5: FGVC-Aircraft heldout accuracy (higher is better) as target train set size *n* increases.

Method	n = 100 (1/cl.)	$500~(5/{ m cl.})$	1000 (10/cl.)	$5000~(50/{ m cl.})$
StdPrior fromImgNet	2.6 (1.3-4.6)	22.5 (21.4-24.4)	40.6 (39.8-41.8)	85.7 (85.4-86.0)
LearnedPriorIso fromImgNet	3.5(2.8-4.5)	25.9 (24.0-27.3)	51.3 (50.0-52.6)	85.9 (85.8-86.0)
LearnedPriorLR fromImgNet	3.8 (3.5-4.2)	24.5 (23.7-25.3)	50.9 (50.4-51.9)	84.2 (83.5-85.3)

Table 6: HAM10000 heldout AUROC (higher is better, macroaveraged across classes) as target train set size n increases.

Method	n = 100	1000
	78.1 (75.0-82.8)	
LearnedPriorIso fromImgNet	78.0 (75.0-82.8)	86.5 (85.5-87.4)
${\it Learned Prior LR from Img Net}$	78.7 (74.9-82.7)	86.6 (85.0-87.5)

Discussion and Conclusion

What transfer learning method is recommended? Based off our experiments, when point estimating neural network weights we recommend both StdPrior and LearnedPriorIso for their simplicity and performance.

References

Gal Kaplun, Andrey Gurevich, Tal Swisa, Mazor David, Shai Shalev-Shwartz, and Eran Malach. SubTuning: Efficient Finetuning for Multi-Task Learning. arXiv preprint arXiv:2302.06354, 2023.

Ravid Shwartz-Ziv, Micah Goldblum, Hossein Souri, Sanyam Kapoor, Chen Zhu, Yann LeCun, and Andrew G. Wilson. Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors. In Advances in Neural Information Processing Systems (NeurIPS), 2022.