ggplot2

Exemplo

Para que estudar visualização de dados?

Quarteto de Anscombe

×1	y1	x2	y2	x3	у3	x4	y4
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

Para que estudar visualização de dados?

Quarteto de Anscombe

Mas antes...

O gráfico é um meio de comunicação e, como tal, deve estar atento ao seu público. É diferente preparar um **gráfico de apresentação** para o portal do ministério ou fazer um **gráfico exploratório** para você mesmo. Ambos diferem em público e também em objetivo.

Tenha isso em mente quando for preparar os gráficos.

Concepção do ggplot2

O ggplot2 é mais do que um pacote para fazer gráficos; ele é uma tentativa (muito bem sucedida) trazer para o dia-a-dia dos técnicos uma gramática dos gráficos em camadas.

Por que uma gramática dos gráficos?

Através dela podemos definir **sistematicamente** quais são os componentes de um gráficos e como eles se interelacionam.

Veja mais informações em http://docs.ggplot2.org/.

A gramática dos gráficos

Figure 1

A gramática dos gráficos

elemento	exemplos	
dados (informação)*	produção, fiscalizações	
(a)estética*	cor, formato	
geom etrias*	barra, ponto	
e stat ísticas	mediana, máximo	
facet as	facetas	
coord enadas	polar, cartesiana	
t(h)emas	eixos, título	

^{&#}x27;* aspéctos estéticos impressindíveis para criar um gráfico no ggplot2

Sintaxe do ggplot2

Note que cada função cria uma (ou mais) camadas e que usamos o + para ir adicionando camadas.

A camada de dados

A primeira etapa da construção de um gráfico é ter os dados que serão representados graficamente.

Vamos carregar os dados da Pesquisa Agrícola Municipal (PAM) agregados no nível de grandes regiões para os anos entre 1990 e 2015.

```
# importa dados
dados <- readRDS('amostra-PAM.RDS')</pre>
```

Ainda os dados

Ainda precisamos melhorar um pouco a forma como os dados chegaram. O arquivo "amostra-PAM.RDS" traz dados de 67 culturas diferentes e é difícil visualizar tantas variáveis categóricas.

Para faciliar as coisas vamos reduzir nossos dados apenas para as culturas de **arroz**, **feijão**, **milho** e **soja** (grãos) com o código abaixo.

Aspectos Estéticos

Os principais aspectos estéticos são:

Estética	Descrição
x	Eixo horizontal
y	Eixo vertical
colour	Cor dos pontos ou das linhas das formas
fill	Cor de preencimento
size	Diametro dos pontos e espessura das linhas
alpha	Transparência
linetype	Tipo (padrão) da linhas
labels	Texto no gráfico ou nos eixos
shape	Forma

Representando dados

```
ggplot(feijao , aes(x = area_plantada, y = quantidade)) +
  geom_point()
```


Representando dados

Imagine que você fosse desenhar um gráfico. Como você decidiria até onde deve ir a barra ou onde ficariam os pontos? O computador também precisa de critérios para decidir como representar os dados, como o Valor Bruto da Produção agropecuária (VBP) de uma região, em um gráfico.

Assim, o VBP pode ser representado no eixo vertical ou os faixas de valores podem aparecer como cores ou formas (até R\$ 50 milhões: triângulos; entre 50 e 100: quadrados; e maiores que 100: circulos).

Aspectos Estéticos

É diferente mapear uma estética e atribuir um valor a um aspecto estético. Mapear uma variável em uma estética é dizer que a cor vermelha representa o Centro-Oeste e a cor azul o Sudeste. Isto é diferente de definir a cor de pontos ou barras como verde.

Atributos Estéticos

Atribuir cor à elemento estético

```
ggplot(feijao , aes(x = area_plantada, y = quantidade)) +
geom_point(col = "indianred")
```


Aspectos Estéticos

Mapear a cultura na cor

```
ggplot(feijao , aes(x = area_plantada, y = quantidade, col
  geom_point()
```


Aspectos Estéticos Mapear VBP no tamanho

```
ggplot(feijao , aes(x = area_plantada, y = quantidade)) +
geom_point(aes(size = VBP), col = "darkgreen", alpha = 0
```


Aspectos Estéticos - Variáveis contínuas

LStellca	Descrição
x	Eixo horizontal
y	Eixo vertical
colour	Cor dos pontos ou das linhas das formas
fill	Cor de preencimento
size	Diametro dos pontos e espessura das linhas
alpha	Transparência

Aspectos Estéticos - Variáveis contínuas

Figure 2

Fonte: www.datacamp.com

Aspectos Estéticos - Variáveis contínuas

Aspectos Estéticos - Variáveis categóricas

Estética	Descrição
colour fill	Cor dos pontos ou das linhas das formas Cor de preencimento
size	Diametro dos pontos e espessura das linhas
alpha	Transparência
linetype	Tipo (padrão) da linhas
labels	Texto no gráfico ou nos eixos
shape	Forma

Atributos Estéticos - Variáveis categóricas

Figure 3

Aspectos Estéticos - Variáveis categóricas

Aspectos Estéticos - Variáveis categóricas

Aspectos Geométricos

Além de ter dados e mapeá-los em atributos estéticos, você deve escolher com que geometrias quer aprensentar seus dados.

As geometrias mais comuns são:

- ► Pontos (diagrama de dispersão)
- Barras
- Linhas

Vamos ver como usar estas geometrias no ggplot2.

geom_point()

Ajudam compreender relação entre variáveis e suas distribuições.

```
ggplot(feijao, aes(x = area_plantada, y = produtividade)) -
geom_point()
```


geom_smooth()

Realiza calculos de regressão e desenha a curva ou reta de regressão. O método da regressão pode ser escolhido com o parâmetro method.

```
ggplot(feijao , aes(x = area_plantada, y = quantidade)) +
  geom_point() +
  geom_smooth(aes(col = regiao), se = FALSE, method = "lm")
```


geom_col() ou geom_bar()

Gráficos de barras são geralmente usados em estatísticas sumarizadas.

```
medias <- dados %>% group_by(cultura) %>%
   summarise(area_media = mean(area_plantada))
```

geom_col() ou geom_bar()

```
ggplot(medias, aes(x = cultura, y = area_media)) +
  geom_col() # ou geom_bar(stat = "identity")
```


geom_line()

Utilizadas para relacionar observações, dar ideia de evolução

```
ggplot(CO, aes(Ano, area_plantada)) +
  geom_line(aes(col = cultura, group = cultura), size = 2)
```


geom_histogram()

```
ggplot(dados, aes(x = produtividade)) +
  geom_histogram(fill = "indianred") # definir intervalos(
```

`stat_bin()` using `bins = 30`. Pick better value with

Ou então geom_density()

```
ggplot(dados, aes(x = produtividade, fill = cultura)) +
  geom_density(alpha= 0.7)
```


geom_boxplot()

```
ggplot(CO, aes(x = cultura, y = produtividade)) +
  geom_boxplot(aes(fill = cultura))
```


...ou geom_violin()

ggplot(CO, aes(x = cultura, y = produtividade, fill = culture
geom_violin(draw_quantiles = 0.5)

Exercícios

- Desenhe um gráfico de violino da produtividade com o conjunto de dados a sua escolha. Adicione uma camada representando as observações com pontos. Dê uma olhada em ?geom_fitter, pode ser útil.
- Há grande diferença entre a relação área colhida / área plantada entre as regiões? E Entre as culturas? Responda construindo gráficos. Utilize o conjunto dados para esta questão.
- 3. Desenhe um gráfico de dispersão com a produtividade em um eixo e a área plantada em outro. Utilize os dados de produção do feijão. Adicione uma reta de regressão para todo o conjunto de dados. Adicione nova camada com uma regressão para região (utilize a cor para diferenciar os grupos). A regressão geral representa bem a relação entre área e produtividade para os subconjuntos?

Extra: Parta do mesmo gráfico de dispersão anterior (produtividade \times área). Tente adiconar mais informações no mesmo gráfico