ANÁLISIS MATEMÁTICO (AMA)

UT6 - Problemas propuestos: SERIES DÉ POTENCIAS

1. Analiza la convergencia y calcula la suma (donde convergen) de las series de potencias:

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{3^{n+1}}$$

b)
$$\sum_{n=1}^{n-1} \frac{x^{3n+2}}{2^n}$$

c)
$$\sum_{n=1}^{\infty} (-1)^n x^{2n}$$

2. Deriva e integra las series de potencias:

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{3^{n+1}}$$

b)
$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
. En este caso calcula también $f'(x)$, explícitamente, así como $\int_0^1 f$.

3. A partir de la igualdad, que es cierta para $x \in]-1,1[, \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ obtén expresiones explícitas para:

a)
$$\sum_{n=1}^{\infty} (-1)^n nx^n$$

b)
$$\sum_{n=1}^{\infty} n^2 x^n$$

c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$$

- 4. Considera la serie de potencias $f(x) = \sum_{n \geq 1} \frac{x^n}{n2^n}$
 - a) Obtén la serie de potencias que corresponde a f'(x) y súmala donde converja
 - b) Halla f(x) explícitamente, sabiendo que $f(x) = f(0) + \int_0^x f'(t) dt$.

5. Considera la serie
$$f(x) = \sum_{n>0} (n+1)x^n$$

- a) Integra término a término para obtener $\int_0^x f(t)dt$ y deriva para hallar f(x) explícitamente
- b) Deduce el valor de la suma de las series: $\sum_{n\geq 1} \frac{n+1}{3^n}$ y $\sum_{n\geq 0} \frac{(-1)^n(n+1)}{3^n}$

6. Sabiendo que
$$\sum_{n\geq 0} x^n = \frac{1}{1-x}$$
, para $x\in]-1,1[$:

- a) Integra término a término y obtén una serie de potencias para $\log(1-x)$
- b) Considera $x = -\frac{1}{2}$ y encuentra una serie numérica de suma $\log\left(\frac{3}{2}\right)$.
- c) Acota el error cometido al aproximar este valor sumando los seis primeros términos de tal serie.

7. Sabiendo que
$$e^x = \sum_{n \ge 0} \frac{x^n}{n!}$$
:

- a) Analiza la convergencia y calcula la suma (donde converja) de la serie de potencias $\sum_{n=1}^{\infty} \frac{x^n}{(n+3)!}$
- b) Dada la serie de potencias $f(x) = \sum_{n \geq 0} \frac{n+1}{n!} x^n$, obtén f(x) explícitamente.
- c) Deriva la serie de potencias $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{n!}$ y obtén f'(x) explícitamente
- 8. Escribe los desarrollos en serie de potencias de las funciones:

a)
$$f(x) = \frac{d}{dx} \left(sen(x) - x \right)$$

b) $g(x) = \frac{1-x}{1+x}$

b)
$$g(x) = \frac{1-x}{1+x}$$

y deduce el valor de $g^{(15)}(0)$.

- a) Halla el coeficiente de x^{10} en la serie de McLaurin de sen(x).
 - b) Si $h(x)=x^6e^{x+1}$ y $p(x)=\frac{x}{1+x^2}$, halla los valores de $h^{(10)}(0)$ y de $p^{(12)}(0)$.

ANÁLISIS MATEMÁTICO (AMA)

UT6 - Ejercicios adicionaless: SERIES DÉ POTENCIAS

- 1. Considera la serie de potencias $f(x) = \sum_{n \ge 1} (-1)^n \frac{(x+1)^n}{n5^n}$.
 - a) Considera la serie numérica (alternada) f(0) y halla el valor de n necesario para aproximar, con tres decimales exactos, la suma de la serie mediante la suma parcial s_n . Obtén tal aproximación
 - b) Desarrolla f'(x) en serie de potencias. Observa que es geométrica y súmala donde converja. Integra la expresión obtenida para obtener f(x), añadiendo una constante C de integración. Encuentra la constante sabiendo que $\sum_{n>1} \frac{(-1)^{n+1}}{n} = \log(2)$
 - c) A la vista de b), ¿cuál es la suma exacta de la serie que define f(0)? ¿Se obtiene en a) la precisión esperada?
- 2. Obtén la serie de potencias correspondiente a la función atan(x) y usa el valor de atan(1) para aproximar dos cifras decimales exactas del número π .
- 3. Desarrolla en serie de potencias $f(x) = \frac{x+1}{x^2-4x+3}$, previa descomposición en fracciones simples. ¿Cuál es su intervalo de convergencia?
- 4. Obtén series de potencias para las funciones $\cosh(x)$ y senh(x), y úsalas para comprobar que

$$\cosh(x)' = senh(x)$$
 , $senh'(x) = \cosh(x)$.

- * 5. Integrando dos veces $f(x) = \sum_{n \geq 0} \frac{(n+1)(n+2)}{n!} x^n$, obtén explicitamente f(x) y, como aplicación, calcula $\sum_{n \geq 0} \frac{(n+1)(n+2)}{n!}$.
 - 6. Sabiendo que $e^x = \sum_{n \ge 0} \frac{x^n}{n!}$ calcula en forma explícita $f(x) = \sum_{n \ge 2} \frac{3n^2 1}{(n+1)!} x^n$ descomponiendo el numerador en la forma a + b(n+1) + cn(n+1).
 - 7. Utilizando la serie de potencias para $\cos(x)$ hallada en clase, aproxima $\cos(0.05)$ con siete decimales exactos, al menos. Deberás tener en cuenta la cota de error que te proporciona el criterio de Leibniz para series alternadas. Verifica, con DERIVE o mediante calculadora, que el resultado que obtengas es correcto.
 - 8. A partir de la serie de potencias hallada en clase para la exponencial e^x y sustituyendo x por $-x^2$, encuentra el desarrollo en serie de e^{-x^2} . Integra entre 0 y 1 y aplica la cota de error de Leibniz para series alternadas para aproximar $\int_0^1 e^{-x^2} dx$ con dos decimals exactos, al menos. Comprueba el resultado calculando la integral con DERIVE en modo aproximado.
 - 9. Escribe el desarrollo en serie de potencias de la función $f(x) = \frac{d}{dx} \left(\cos(x^2) \right)$
- * 10. Determina el coeficiente de x^6 en la serie de McLaurin de $f(x) = \frac{sen^3(x)}{x}$.
 - 11. Resuelve la ecuación diferencial y'=3y con valor inicial y(0)=2, suponiendo que $y=\sum_{n\geq 0}a_nx^n$.