Studying Annihilation Distributions

Adriano Del Vincio, Germano Bonomi, Simone Stracka

University of Brescia, INFN Pisa

13/11/2023

MIXING

Mixing dataset represents almost pure data of anti-hydrogen annihilation on the walls. The radius distribution is fitted with a Gaussian.

Residual Gas

The microwave losses represent an almost pure anti-hydrogen sample of annihilation events due to residual gas inside the trap. The data are fitted with Rayleigh distribution $r_0 = \frac{r_0^2}{2r_0^2}$

Cosmic

The cosmic distribution is obtained from a dataset without particles in the trap. A liner model $m \cdot x$ is assumed.

r [cm]

0.01

0.5

2

2.5

3

3.5

1.5

1

Radial Density

The histogram in r variable doesn't account for the different area of the bin which is $2\pi r \cdot dr$. So it is useful to divide per $2\pi r$ to obtain the radial density of the events.

Monte Carlo Simulation Toy

To study the accuracy of the algorithm to reconstruct the various parameter, we have developed a "toy" simulation tool. The model to generate the data is:

$$F_{gen}(r) = N_{sample} \cdot (a \cdot PDF_{mix} + b \cdot PDF_{gas} + c \cdot PDF_{cosmic})$$
 (1)

where a, b, c represent the "weights" of the various contributions to the PDF used to generate the data. The number of annihilation is indicated as N_{sample} . Once the data are generated, they are fitted with the model:

$$Nfit_{mix} \cdot PDF_{mix} + Nfit_{gas} \cdot PDF_{gas} + Nfit_{cosmic} \cdot PDF_{cosmic}$$
 (2)

The parameters of the fit are $Nfit_{mix}$, $Nfit_{gas}$ and $Nfit_{cosmic}$. The "true value" are defined as:

- $Ngen_{mix} = a \cdot N_{sample}$
- $Ngen_{gas} = b \cdot N_{sample}$
- $Ngen_{cosmic} = c \cdot N_{sample}$

In generation $Ngen_{mix}$, $Ngen_{gas}$, $Ngen_{cosmic}$ are varied according to a Poissonian distribution.

Example of fit, Toy: $N_{sample} = 1000$, a = 33%, b = 33%, c = 33%Toy Model Fit

Toy: $N_{sample} = 1000$, a = 33%, b = 33%, c = 33%

In this plot we have fixed the weight of each distribution to 33%, with $N_{sample}=1000$ and $N_{trials}=1000$, to ensure that the algorithm is able to reconstruct the parameters, and check the presence of a bias. The variable of the histograms are: $\frac{Nfit-Ngen}{\sigma_{fit}}$. The distributions are normal and the fit procedure is behaving as expected.

$N_{sample} = 165$, $N_{trials} = 100$

Now we study how the coefficients of the fit $Nfit_{mix}$, $Nfit_{gas}$ and $Nfit_{cosmic}$ vary with the increase of the weight a. Nsample is fixed at 165, to reproduce a typical amount of events in real data (such as for a frequency of run 68465, after applying cut1). The value of c is fixed to reproduce the number of expected events from background (c = 6%, $Ngen_{cosmic} \simeq 10$).

