

Ciência da Computação

Circuitos Lógicos Digitais

Prof. Me. Athos Denis

Roteiro da aula

- Conversão de número reais;
- Operações Aritméticas no Sistema de Numeração binário (Adição e Subtração);
- Subtração com complemento de 2

Atividade 01: Converta os números representados abaixo para os sistemas indicados:

- a) 130 decimal -> Binário = 10000010
- b) 85 decimal-> Binário = 1010101
- c) 227 decimal -> Binário = 11100011
- d) 184 decimal -> Binário=10111000
- e) 322 decimal -> Binário=101000010
- f) 97 decimal -> Binário=1100001
- g) 130decimal ->Hexadecimal =82
- h) 85decimal ->Hexadecimal =55
- i) 227decimal ->Hexadecimal =E3
- j) 184decimal ->Hexadecimal =B8
- k) 322decimal ->Hexadecimal =142
- I) 97 decimal -> Hexadecimal = 61

- m) 130decimal →Octal =202
- n) 85decimal →Octal =125
- o) 228decimal →Octal=343
- p) 184decimal →Octal=270
- q) 322decimal →Octal=502
- r) 97decimal ->Octal=141

Atividade 02: Converta os números representados abaixo para os sistemas indicados:

- a) 1011101 binario->DECIMAL = 93
- b) 10111 binario->DECIMAL = 23
- c) 111001 binario->DECIMAL=57
- d) 101011 binario->DECIMAL= 43
- e) 110011 binario->DECIMAL= 51
- f) 100010 binario→DECIMAL=34
- g) 1F9 hexadecimal->DECIMAL=505
- h) 222 hexadecimal->DECIMAL= 546
- i) E35 hexadecimal->DECIMAL= 3637
- j) 108 hexadecimal -> DECIMAL= 264
- k) 175 hexadecimal -> DECIMAL= 373
- I) 21A hexadecimal -> DECIMAL= 538

- m) 123 octal -> DECIMAL=83
- n) 326 octal -> DECIMAL=214
- o) 116 octal ->DECIMAL=78
- p) 77 octal ->DECIMAL=63
- q) 420 octal -> DECIMAL= 272
- r) 67 octal -> DECIMAL= 55

Para converter um número real não inteiro do sistema decimal para os demais sistemas, a conversão é feita em duas partes:

- 1. A parte fracionária do número é convertida multiplicando-a pelo valor da base, sucessivamente, até chegar em um número cuja parte fracionária seja zero. A parte fracionária do número convertido corresponderá às partes inteiras dos resultados das multiplicações, na ordem em que forem obtidas.
- 2. Apenas a parte fracionária do produto anterior é multiplicada, novamente pela base.

Exemplo 1: Converter **0,6875**₁₀, para os sistemas binário, octal e hexadecimal.

1. Binário:
$$0,6875 * 2 = 1,375 \rightarrow 1 + 0,375$$

 $0,375 * 2 = 1,5 \rightarrow 1 + 0,5$
 $0,5 * 2 = 1,0 \rightarrow 1 + 0,0$
Binário: $(0,6857)_{10} = (0,111)_{2}$

2. Octal:
$$0.6875 * 8 = 5.5 \rightarrow 5 + 0.5$$

 $0.5 * 8 = 4.0 \rightarrow 4 + 0.0$

Octal:
$$(0,6857)_{10} = (0,54)_{8}$$

3. Hexa:
$$0.6875 * 16 = 11.0 \rightarrow 11 + 0.0$$
 Hexa: $(0.6857)_{10} = (0.8)_{16}$

Exemplo 2: Converter **8,7**₁₀, para os sistema binário.

$$\begin{array}{c}
8,7 \longrightarrow 8 | 2 \\
0 \ 4 \ | 2 \\
0 \ 2 \ | 2 \\
0 \ 1
\end{array}$$

$$\begin{array}{c}
1000,???
\end{array}$$

Exemplo 3: Converter **1000,1011**₂, para os sistema decimal.

Exemplo 4: Converter **D3,2E**₁₆, para os sistema decimal.

$$D3,2E = \underline{D} *16^1 + 3 * 16^0 \rightarrow \underline{13} * 16 + 3 * 1 \rightarrow 208 + 3 = 211$$

D3,2E = 2 * 16⁻¹ +
$$\underline{E}$$
 * 16⁻² → 2 * 1/16 + $\underline{14}$ * 1/256 → 2 * 0,125 + 14 * 0,00390652 → 0,0625 + 0,0546875 = $\underline{0,1171875}$

$$D3,2E = 211 + 0,1171875 \rightarrow 211,1171875_{10}$$

Como 10, que é a base do sistema decimal, não é uma potência de 2, muitos números ao serem convertidos para outros sistemas numéricos se tornam dizimas periódicas. Por exemplo, ao converter $0,7_{10}$ para o sistema binário, é obtido uma dízima:

$$0.7 \cdot 2 = 1.4 = 1 + 0.4$$

 $0.4 \cdot 2 = 0.8 = 0 + 0.8$
 $0.8 \cdot 2 = 1.6 = 1 + 0.6$
 $0.6 \cdot 2 = 1.2 = 1 + 0.2$
 $0.2 \cdot 2 = 0.2 = 0 + 0.4$
 $0.4 \cdot 2 = 0.8 = 0 + 0.8$
 $0.8 \cdot 2 = 1.6 = 1 + 0.6$
 $0.6 \cdot 2 = 1.2 = 1 + 0.2$
 $0.2 \cdot 2 = 0.2 = 0 + 0.4$

Atividade 01: Converta os números representados abaixo para os sistemas indicados:

- a) 36,125 decimal -> Binário
- b) 266,75 decimal-> Binário
- c) 10,5 decimal -> Binário
- d) 4,8 decimal -> Binário
- e) 234,435 decimal -> Binário

Atividade 02: Converta os números representados abaixo para os sistemas indicados:

- a)111,001 binário → Decimal
- b)1011010,1010 binário → Decimal
- c)11,001 binário → Decimal
- d)111,111 binário → Decimal
- e)0,0111 binário → Decimal

Adição: Realizada da mesma forma que no sistema decimal.

Observar as regras:

DECIMAL	BINÁRIO
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111

Adição - Exemplo 01: Realizada da mesma forma que no sistema decimal. Somar os números binários 1001 e 0010:

1	0	0	1	9
0	0	1	0	2
1	0	1	1	11

Vai "1"

Adição - Exemplo 02: Realizada da mesma forma que no sistema decimal. Somar os números binários 1011 e 1010:

DECIMAL	BINÁRIO
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111

	1		
1	0	1	1
1	0	1	0
0	1	0	1

11

10

Overflow

Adição - Exemplo 03: Realizada da mesma forma que no sistema decimal. Somar os números binários 111101 e 110111:

		Vai "1"	' Vai "1"	' Vai "1'	" Vai "1"	Vai "1"	Vai "1	"
		1	1	1	1	1	1	
61	ı		1	1	1	1	0	1
55			1	1	0	1	1	1
116		1	1	1	0	1	0	0

Subtração: Realizada da mesma forma que no sistema decimal. Observar as regras:

Subtração Exemplo 1: Realizada da mesma forma que no sistema decimal. Subtrair os números binários 101 - 11

Empresta "1"

5	-1 0	10	1
3		1	1
2	0	1	0

Subtração Exemplo 2: Realizada da mesma forma que no sistema decimal. Subtrair os números binários 1001 - 0010

Empresta "1" Empresta "1"

9	1 0	1 ₀₁	10	1
2	0	0	1	0
7	0	1	1	1

- Representação em sinal-módulo
- Complemento de 1
- Complemento de 2
- Resultado de subtração através de <u>adição</u>

Subtração com complemento de 2 : Sinal-módulo

- Em sinal-módulo o primeiro dígito (da esquerda para direita) representa o sinal do número (positivo ou negativo)
- Igualar o número de dígitos
- Representar todos os números em quantidade iguais (Ex: 8bits, 16bits, 32bits, etc)

```
0 = positivo1 = negativo
```

Ex: Representação sinal-módulo de 8 bits: 21₁₀ positivo e negativo

```
21_{10} = 10101_{2} \stackrel{?}{=} 00010101 (bit de sinal)
-21_{10} = 10101_{2} \stackrel{?}{=} 10010101 (bit de sinal)
```

Subtração com complemento de 2 : Complemento de 1

 Complemento de 1 de um número binário é a inversão dos dígitos

$$0 = 1$$
 $1 = 0$

• Ex de complemento de 1 do número 10001110

Subtração com complemento de 2 : Complemento de 2

- Complemento de 2 de um número consiste na utilização do complemento de 1, somando mais 1 a este complemento
- Ex de complemento de 2 do número 10001110

0	1	1	1	0	0	0	1
							1
0	1	1	1	0	0	1	0

• Exemplo: Representar em sinal-módulo de 8 bits a operação:

$$21_{10} = 10101_{2}$$
 00010101 Sinal módulo de 8 bits $14_{10} = 1110_{2}$ 00001110

1	1	1	1	0	0	0	1
							1
1	1	1	1	0	0	1	0

Complemento de 2

Resultado

$$(-9) + 6$$

Atividade 03: Efetue as operações aritméticas dos números representados abaixo

- a) 10101000 + 1001100
- b) 10111001 + 00111001
- c) 00011001 + 1111110
- d) 1101100 1101
- e) 001100111 1100001

Respostas: Atividade 01: Converta os números representados abaixo para os sistemas indicados:

- a) 36,125 decimal -> Binário = 100100,001
- b) 266,75 decimal -> Binário = 100001010,11
- c) 10,5 decimal -> Binário = 1010,1
- d) 4,8 decimal -> Binário = 100,1100...
- e) 234,435 decimal -> Binário = 11101010,01101...

Respostas: Atividade 02: Converta os números representados abaixo para os sistemas indicados:

- a)111,001 binário \rightarrow Decimal = 7,125
- b)1011010,1010 binário \rightarrow Decimal = 90,625
- c)11,001 binário \rightarrow Decimal = 3,125
- d)111,111 binário \rightarrow Decimal = 7,875
- e)0,0111 binário \rightarrow Decimal = 0,4375

Atividade 03: Efetue as operações aritméticas dos números representados abaixo

- a) 10101000 + 1001100 = 11110100 (244)
- b) 10111001 + 00111001 = 11110010 (242)
- c) 00011001 + 11111110 = 10010111 (151)
- d) 1101100 1101 = 1011111 (95)
- e) 001100111 1100001 = 110 (6)