

Concurso Nacional

Virtual, septiembre 21-24, 2023

Examen Individual Nivel III

Estado:	
Nombre:	

Instrucciones:

- El examen consta de dos partes:
 - Parte A
 - * Consta de 12 problemas con un valor de 5 puntos cada una.
 - * En estos problemas, sólo se toma en cuenta la respuesta final, que debe ser claramente escrita en el espacio correspondiente en cada problema y en la hoja de respuestas.
 - * No se darán puntos parciales y no hay penalizaciones por respuestas incorrectas.
 - * Para las preguntas con varias respuestas, se darán los 5 puntos sólo si todas las respuestas correctas están escritas y sólo ellas.
 - Parte B
 - * Consta de 3 problemas de redacción libre y con un valor de 20 puntos cada uno.
 - * En estos problemas es posible acumular puntos parciales.
- En caso de que las respuestas a los problemas no sean enteras, estas deben ser aproximadas a dos decimales tomando en cuenta los siguientes valores:

$$\pi = 3.14, \quad \sqrt{2} = 1.41, \quad \sqrt{3} = 1.73, \quad \sqrt{5} = 2.23.$$

- Las figuras mostradas, podrían no estar a escala.
- No está permitido el uso de calculadoras, transportadores y aparatos electrónicos.
- La duración del examen es 2 horas.

5.

6.

Examen Individual

Hoja de Respuestas

Nivel III

Nombre:			
	1.	7.	
	2.	8.	
	3.	9.	
	4.	10.	

11.

12.

PARTE A

Problema 1. ¿Cuántos enteros positivos de cuatro dígitos \overline{abcd} , cumplen que el número \overline{cd} es múltiplo del número \overline{ab} ?

R:

Problema 2. Una tira de papel rectangular ABCD se ha dividido en 2024 triángulos. El primer triángulo tiene área 1 cm², el segundo tiene área 2 cm², el tercero tiene área 3 cm² y, así sucesivamente, como se muestra en la figura. Determina el área, en cm², del triángulo EBC.

R:

Problema 3. Usando exactamente una vez cada uno de los dígitos del 1 al 6, se forman números de seis dígitos \overline{abcdef} . ¿Cuántos de estos números son múltiplos de 6 y cumplen que los números de 3 dígitos \overline{abc} y \overline{def} son múltiplos de 3?

R:

Problema 4. Sean p, q, r y s enteros positivos, con p, r y s números primos y r < s. Si p + q = 11r y 7p - q = 11s, determina el valor de p + q + r + s.

R:

Problema 5. Un entero positivo n es sumativo si n es igual al producto de sus dígitos más la suma de sus dígitos. Por ejemplo, 39 es sumativo, porque $39 = 3 \times 9 + 3 + 9$. ¿Cuántos números sumativos menores que 1000 hay?

R:

Problema 6. Un cuadrado está inscrito en un triángulo rectángulo, de manera que dos de los vértices del cuadrado están sobre la hipotenusa del triángulo y los otros dos vértices están cada uno en cada cateto. Si los catetos miden 3 cm y 4 cm, determina la longitud, en cm, del lado del cuadrado.

R:

Problema 7. Decimos que un número entero positivo es *antipar* si todos sus dígitos son impares. Determina el número de divisores positivos del producto de los dígitos de todos los números antipares menores que 100.

R:

Problema 8. Una familia tiene 5 niños de distintas edades enteras y positivas, tales que las sumas de las edades de cada par de niños son distintas. ¿Cuál es la edad mínima posible del niño que tiene la mayor edad?

R:

Problema 9. En la siguiente figura, ABCD y DEFG son cuadrados. Si los puntos B, E y F son colineales, esto es, están en la misma recta y, $\angle ABE = 15^{\circ}$, determina la medida, en grados, del ángulo $\angle BFC$.

R:

Problema 10. Determina el valor de la suma

$$\frac{1}{\left(\frac{1}{2024}\right)^2+1}+\frac{1}{\left(\frac{2}{2023}\right)^2+1}+\frac{1}{\left(\frac{3}{2022}\right)^2+1}+\dots+\frac{1}{\left(\frac{2023}{2}\right)^2+1}+\frac{1}{\left(\frac{2024}{1}\right)^2+1}.$$

R:

Problema 11. Sea ABC un triángulo con $\angle BAC = 75^{\circ}$, $\angle ABC = 60^{\circ}$ y $\angle ACB = 45^{\circ}$. Sea D el pie de la bisectriz desde B y sea M el punto medio de BC. Si BM = 1, determina el valor de DM^2 .

R:

Problema 12. En un examen de matemáticas participaron 12 estudiantes, donde cada problema fue resuelto por exactamente 10 estudiantes. Si 11 estudiantes resolvieron exactamente 6 problemas, ¿cuántos problemas resolvió el doceavo estudiante?

R:

PARTE B

Estado:	
Nombre:	
Problema 13.	Sean $x \geq 1$ y $y \geq 1$ números reales positivos tales que
	$x^{2}(y+1) + y^{2}(x+1) = 4xy.$

Determina el valor de x + y.

Estado:	
Nombre:	

Problema 14. Sea ABCDE un pentágono tal que $\angle ABC = 90^\circ$, $\angle BCD = 150^\circ$, $\angle CDE = 60^\circ$, $\angle DEA = 120^\circ$, $\angle EAB = 120^\circ$, AB = CD y DE = AB + AE. Demuestra que

$$\label{eq:ABCDE} \text{Area}(ABCDE) = \frac{(DE^2 + 2AB \cdot AE)\sqrt{3}}{4}.$$

Estado:	
Nombre:	

Problema 15. Alrededor de una mesa redonda se sientan 10 niños. Después del descanso, se vuelven a sentar alrededor de la mesa y descubren que cada uno está sentado en su lugar original o en uno de los dos lugares junto a su lugar original. ¿De cuántas formas puede suceder esto?