Digital Signal Processing

Lecture-1

Presented By: Dr Kiran Khurshid

Course Information	
Course Number and Title:	EC-313 Digital Signal Processing
Credits:	4 (3+1)
Instructor(s)-in-charge:	Dr Kiran Khurshid / LE Sundas Ashraf
Course type:	Lecture + Lab
Required or Elective:	Required
Course pre-requisites	EE-231 Signal and Systems
Degree and Semester	DCE-44
Month and Year	Spring 2025

Course Assessment	

Exam:	1 Mid Term and 1 Fir	nal						
Lab reports:	12 reports (minimun	n)						
Design reports:	1 Design report base	ed on Semester Project						
Quizzes:	6 Quizzes							
Assignments:	3-4 Assignments							
Grading Tentative:	Lecture 75%	Quizzes: 10%						
		Assignments: 10%						
		Mid Term: 30%						
		Final Exam: 50%						
		Semester Project: 10%						
	Lab 25%	Lab Work: 40%						
		Lab Mid: 25%						
	Lab Final: 25%							
Plagiarism Policy	Any work (Assignment, Projects, labs etc.) if for copied, will have strict penalties							

Introduction to DSP	
Representation of Discrete Signals	Week 1
Standard Signals	
_	
Complex Exponential Signals	
Even and Odd Signals	
 Periodic and Aperiodic Signals 	Week 2
 Bounded Signals 	
 Delta and Unit Step Function 	
• Linearity	Week 3
 Scale property 	
 Shift in time 	
Additive Property	
• Stability	Week 4
• Causality	
 Convolution 	Week 5
Linear and Circular Convolution	
Recursive and non-recursive	
Static and Dynamic Systems	
Fourier Transform	Week 6
Properties of Fourier Transform	

•	DFT	Week 7
•	FFT DITFFT Z-Transform	Week 8
•	RHSeq and LHSeq ROC Pole Zero plot All pole and All zeros signals	Week 9
•	Sampling Down sampling	Week 10
•	Up-sampling Multi-rate Signal Processing	Week 11
•	Mag Response Filter implementation DF-I, DF-II, TDF-I, TDF-II	Week 12
•	Filter Design Impulse invariance Bilinear Transform	Week 13
•	Filter Design Butter worth	Week 14

Course book and Related Co	urse Material
Textbooks:	 A. V. Oppenheim and R. W. Schafer: Discrete-time Signal Processing, 3rd Edition Pearson Education Limited, 2013 J. G. Proakis, C. M. Rader, F. Ling, & L. Nikias Advanced Digital Signal Processing A. Nagoor kani, Digital Signal Processing, 2nd Edition., McGraw-Hill, 2012
Reference Books:	1. James H. McClellan, Ronald W. Schafer, Mark A. Yoder DSP First: A multimedia approach Prentice Hall 2. S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, McGraw-Hill, 1998.

The data or information about an underlying physical phenomenon expressed as a function of an independent variable (eg. time) is called "Signal".

A signal is a mathematical function between an independent variable and a dependent variable

Image is a 2-Dimensional Signal

187	153	174	168	160	160	129	151	172	161	765	156
186	162	163	24	75	42	33	17	119	210	180	154
180	180		14	54		10			100	100	181
304	104	٠	124	335	211.	120	204	166	15	-	180
194		197	261	297	238	239	228	217	10		207
173		207	210	298	214	220	230	228		28	204
188		179	304	186	276	211	168	139			140
188	87	166		16	368	134	11			22	14
199	168	191	198	164	227	178	143	182		*	190
204	174	155	242	256	231	149	170	234		*	254
190	214	116	146	234	187		198			218	14
196	224	147	136	227	210	127		*		263	116
196	214	173		128	143	M		1		249	231
187	100	278	W					٠	217	754	211
188	202	207		٠		12		200	136	243	236
195	296	123	267	177	121	122	200	175	13	.96	211

187	160	1,74	168	160	142	129	141	1,72	141	166	1 64
166	182	143	74	74	42	32	17	110	1,4	180	194
180	180	100	14	м	4	14	20	-	104	100	101
306	106	-	124	H.C	111	120	204	166	16	14	1 #0
194		137	261	197	210	239	228	227	87	23	201
172	106	207	210	230	214	220	216	228	*	34	204
186	**	179	279	185	215	211	158	139	N	M	148
ien	47	166	14	10	168	134	1/8	н	42	12	140
199	168	191	750	168	231	178	143	182	104	×	196
204	174	166	292	236	231	149	170	228	45	*	214
190	214	114	149	234	147	*	160	79	×	24	24
180	224	147	1100	247	216	NP	HW	B	150	266	224
190	214	179	-	109	143	*	H	1	106	249	238
187	18	235	[3]	110		47	1	18	215	295	211
143	202	237	145	4	4	12	ite	200	100	24.5	214
w	204	129	205	172	125	129	200	17K	TYN.	W	214

Voltage Across the Capacitor

Chemical Concentration - Earth Surface

Biomedical Engineering: All about Signals!

Systems are Essential to Process the Signals!

The system is described by the way it transforms the input signal into the output signal.

Personal Assistants: Software Systems

LDR Circuit: Hardware Systems

The system is described by the way it transforms the input signal into the output signal.

Examples of systems: analysis

Spectral analysis of speech

Cascading systems

We use different representations of the information (the signal) according to whatever is easiest for our task

Introduction to Digital Signal Processing

Signal:

Function that is dependant on some variable.

Signal Types: (Synthetic, Natural)

Discrete Signal:

A discrete signal is one that is defined or measured at distinct points or intervals.

Digital Signal:

A digital signal is a specific type of discrete signal that is represented using discrete symbols or levels

Introduction to Digital Signal Processing

Why Signals?

Because signals carry information.

Why Processing?

To obtain them in a more desirable form.

Example: MUX, DeMUX, Noise Filtering (ECG, EMG Signals)

Ways to Process?

Analog, Digital, Mixed

Convenient and accurate?

Vacuum tubes..transistors, Ics.....

Advantages

- Less sensitivity to components tolerance
- Fully integrated. More accurate.
- Same processor can do Time Multiplexing (by utilizing space).
- Different parts can work at different rates. Multirate Sampling.
- Data can be stored easily.
- Easy adjustment of processor characteristics.

Disadvantages

- 555
- Increased Complexity
- A to D conversion- Speed is limited.
- Power dissipations

Evolution of Communication

What is Comminucation in Today's World?

Digital Signal

$$x(n) = \{ 1, 2, -2, 1, 5 \}$$

N=5

n= 0: N-1

Right Sided Sequence? Left Sided Sequence?

$$x(n) = \{1, -2, 3, -2, 1\}$$

Even Signal

3

2

1

2

1

2

1

2

1

2

1

2

$$x(n) = \{1, -2, 3, 2, -1\}$$

Even (Symmetric) and Odd (Antisymmetric) Signals

The discrete time signal may exhibit symmetry or antisymmetry nature with respect to n=0.

Even Signal (Symmetric): There is symmetry with respect n=0. $\chi(n) = \chi(-n)$

Odd Signal (Antisymmetric): There is an isymmetry with respect n=0. x(n) = -x(-n)

Signal can be separated into even part and odd part.

Even Signal =
$$\frac{x(n) + x(-n)}{2}$$
 Odd Signal = $\frac{x(n) - x(-n)}{2}$

Find even and odd components of the given discrete time signal

$$x(n) = \{1, 2, 3, 4, 1, 2, 2\}$$

 \uparrow
 $x(-n) = \{2, 2, 1, 4, 3, 2, 1\}$

n	x(n)
-3	1
-2	2
-1	3
0	4
1	1
2	2
3	2

n	x(n)		
-3	1		
-2	2		
-1	3		
0	4		
1	1		
2	2		
3	2		

- Even part?
- Odd part?

n	x(n)	x(-n)	
-3	1	2	
-2	2	2	
-1	3	1	
0	4	4	
1	1	3	
2	2	2	
3	2	1	

- Even part?
- Odd part?

Representation of discrete time signals

- Graphical Representation
- Functional Representation
- Tabular Representation
- Sequence Representation

Graphical Representation

Consider a discrete time signal x(n) with the values,

$$x(-3)=-2,$$

$$x(-2) = 3$$
,

$$x(-1)=0,$$

$$x(0) = -1$$
,

$$x(1) = 2$$
,

$$x(2) = 3$$
,

$$x(3) = 1$$

This discrete time signal can be represented graphically as shown in the figure below.

Functional Representation

In the functional representation of discrete time signals, the magnitude of the signal is written against the values of n.

$$x(n) = \begin{cases} 1, & for \ n = 1, 3 \\ 4, & for \ n = 2 \\ 0, & elsewhe \end{cases}$$

Tabular Representation

In the tabular representation of discrete time signals, the sampling instant n and the magnitude of the discrete time signal at the corresponding sampling instant are represented in the form of a table. The discrete time signal x(n) can be represented in the tabular form as given below.

n	-3	-2	-1	0	1	2	3
x(n)	-2	3	0	-1	2	3	1

Sequence Representation

• The discrete time signal x(n) can be represented in the sequence representation as follows:

The arrow mark (\uparrow) denotes the term corresponding to n = 0. When no arrow is indicated in the sequence representation of a discrete time signal, then the first term of the sequence corresponds to n = 0.

To record the voice signal use following MATLAB function:

By default, value of Fs=8000Hz, nBits=8 and nChannels=1.

recordblocking(recorder, time in second)

To play the audio file use MATLAB play function:

play(recorder)

Store data in double-precision array to plot.

myRecording = getaudiodata(recorder)

To read the image use following MATLAB function:

A = imread(image_name);

To read the video and frames use following MATLAB function:

V = VideoReader(video_name) frame = read(V,index)

Section A- Enrollment Code: 612073849

Section B- 749563021