

A Synchronous View of Loosely Time-Triggered Architectures

Guillaume Baudart
Albert Benveniste
Timothy Bourke

Clock synchronization

eg. TTA [Kopetz, Bauer 2003]

Introduces control dependencies between nodes.

Unsynchronized nodes + Middleware = LTTA

[Tripakis et al. 2008] [Caspi, Benveniste 2008]

Less constraining protocols. Limited control dependencies.

Outline

- 1. What is an LTTA?
 - 1. Quasi-Periodic Architecture
 - 2. Synchronous Applications
- 2. General Framework
- 3. The two protocols
 - 1. Back-Pressure LTTA
 - 2. Time-Based LTTA
- 4. What About Clock Synchronisation?

Outline

- 1. What is an LTTA?
 - 1. Quasi-Periodic Architecture
 - 2. Synchronous Applications
- 2. General Framework
- 3. The two protocols
 - 1. Back-Pressure LTTA
 - 2. Time-Based LTTA
- 4. What About Clock Synchronisation?

Quasi-Periodic Architecture

• A set of "quasi-periodic" processes with local clocks and nominal period T^n (jitter ε)

$$0 < T_{\min} \le T^n \le T_{\max}$$
 or $T^n - \varepsilon \le \kappa_i - \kappa_{i-1} \le T^n + \varepsilon$ $(\kappa_i)_{i \in \mathbb{N}}$ clock activations

- Buffered communication without message inversion or loss
- Bounded communication delay

$$\tau_{\min} \le \tau \le \tau_{\max}$$

Quasi-Periodic Architecture

• A set of "quasi-periodic" processes with local clocks and nominal period T^n (jitter ε)

$$0 < T_{\min} \le T^n \le T_{\max}$$
 or $T^n - \varepsilon \le \kappa_i - \kappa_{i-1} \le T^n + \varepsilon$ $(\kappa_i)_{i \in \mathbb{N}}$ clock activations

- Buffered communication without message inversion or loss
- Bounded communication delay

$$\tau_{\min} \le \tau \le \tau_{\max}$$

Quasi-Periodic Architecture

• A set of "quasi-periodic" processes with local clocks and nominal period T^n (jitter ε)

$$0 < T_{\min} \le T^n \le T_{\max}$$
 or $T^n - \varepsilon \le \kappa_i - \kappa_{i-1} \le T^n + \varepsilon$ $(\kappa_i)_{i \in \mathbb{N}}$ clock activations

- Buffered communication without message inversion or loss
- Bounded communication delay

$$\tau_{\min} \le \tau \le \tau_{\max}$$

- Overwriting: Loss of values
- Oversampling: Duplication of values
- Combination of signals

- Overwriting: Loss of values
- Oversampling: Duplication of values
- Combination of signals

- Overwriting: Loss of values
- Oversampling: Duplication of values
- Combination of signals

- Overwriting: Loss of values
- Oversampling: Duplication of values
- Combination of signals

- Overwriting: Loss of values
- Oversampling: Duplication of values
- Combination of signals

Synchronous Applications

Network of Communicating Mealy Machines

- Initial state S_{init} , Inputs I, Output O
- Transition function $F: \mathcal{S} \times \mathcal{V}^I \to \mathcal{S} \times \mathcal{V}^O$

Semantics

Synchronous
$$[m]^S : (\mathcal{V}^{n_i})^{\infty} \to (\mathcal{V}^{n_o})^{\infty}$$

Kahn
$$[m]^K : (\mathcal{V}^{\infty})^{n_i} \to (\mathcal{V}^{\infty})^{n_o}$$

Synchronous Applications

Network of Communicating Mealy Machines

- 'Moore-style' Composition: machines communicate through a unit delay
- No instantaneous dependency between nodes (avoid 'microschedule' and 'causality' issues)
- A composition is also a Mealy machine

Basically, classic synchronous programs 'mono-clock'.

What are LTTAs?

- **Base:** A quasi-periodic architecture
- Goal: Safely deploy a synchronous application
- Idea: Add a layer of middleware

Different Approaches

- Discrete abstractions, e.g., quasi-synchrony [Caspi 2000]
 - Allows verifications
 - State explosion, incomplete model
- Petri nets, [Benveniste et al. 2010]
 - Unify LTTA protocols
 - Complex model, no implementation

Zélus:

- A single language for discrete- and real-time,
- Implementation, simulation using numerical solvers
- But no verification at this point

Outline

- 1. What is an LTTA?
 - 1. Quasi-Periodic Architecture
 - 2. Synchronous Applications
- 2. General Framework
- 3. The two protocols
 - 1. Back-Pressure LTTA
 - 2. Time-Based LTTA
- 4. What About Clock Synchronisation?

What's next?

Design controllers that ensure a synchronous execution of embedded machines

- Back-Pressure LTTA [Tripakis et al. 2008]
- Time-Based LTTA
 [Caspi, Benveniste 2008]

Outline

- 1. What is an LTTA?
 - 1. Quasi-Periodic Architecture
 - 2. Synchronous Applications
- 2. General Framework
- 3. The two protocols
 - 1. Back-Pressure LTTA
 - 2. Time-Based LTTA
- 4. What About Clock Synchronisation?

Back-Pressure Kahn Network

Buffer of Size 1

- Reading from a buffer is acknowledged to the writer
- Nodes alternate between exec and send

Back-Pressure Kahn Network

Buffer of Size 1

- Reading from a buffer is acknowledged to the writer
- Nodes alternate between exec and send

Back-Pressure Kahn Network

Buffer of Size 1

- Reading from a buffer is acknowledged to the writer
- Nodes alternate between exec and send

- **Difference:** nodes are triggered by their local clock
- Idea: adding skipping mechanism

- **Difference:** nodes are triggered by their local clock
- Idea: adding skipping mechanism

- **Difference:** nodes are triggered by their local clock
- Idea: adding skipping mechanism

- **Difference:** nodes are triggered by their local clock
- Idea: adding skipping mechanism

- Difference: nodes are triggered by their local clock
- Idea: adding skipping mechanism

Theorem 1:

Composition of the controller and the embedded machine is always well-defined (no cycle)

Theorem 2:

Back-pressure LTTA preserves the Kahn semantics of the embedded application (forget the skips)

Theorem 3:

The worst case throughput is: $1/\lambda_{\rm BP}=2(T_{\rm max}+ au_{\rm max})$

- Problem: Back-pressure multiplies the number of messages and memories, and blocks if a node crashes
- Idea: Replace back-pressure by waiting, using timing characteristics of the architecture
- First solution: [Caspi, Benveniste 2008]
 Slow down the nodes to mimic a synchronous architecture, global synchronisation
- Our proposal: Relax broadcast assumption, localise synchronisations

- Nodes alternate between exec and send
- Sender sees publication of all receivers
- Idea: At some point, a node can be sure that:
 - the last sent data has been read
 - a fresh value is available in the memory

Sender

Sender

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Theorem 1:

Composition of the controller and the embedded machine is always well-defined (no cycle)

Theorem 2:

Time-based LTTA preserves the Kahn semantics of the embedded application

• Theorem 3:

The worst case throughput is: $1/\lambda_{TB} = (p+q)T_{max}$

Theorem 2: The following initial counter values ensure the preservation of the Kahn semantics

$$p > \frac{2\tau_{max} + T_{max}}{T_{min}}$$

$$q > \frac{\tau_{max} - \tau_{min} + (p+1)T_{max}}{T_{min}} - p$$

Proof sketch

- Worst case reasoning
- Tuning constants p and q (counter initial values)
- Ensure that the receiver always reads the proper data

$$p > \frac{2\tau_{\max}}{T_{\min}} + \frac{T_{\max}}{T_{\min}}$$
 $q > \frac{\tau_{\max} - \tau_{\min}}{T_{\min}} + \frac{T_{\max}}{T_{\min}} + p\left(\frac{T_{\max}}{T_{\min}} - 1\right)$

Property 1:
$$W_{k-1}^a \prec E_k^b$$

$$p > \frac{2 au_{ ext{max}}}{T_{ ext{min}}} + \frac{T_{ ext{max}}}{T_{ ext{min}}}$$
 $q > \frac{ au_{ ext{max}} - au_{ ext{min}}}{T_{ ext{min}}} + \frac{T_{ ext{max}}}{T_{ ext{min}}} + p\left(\frac{T_{ ext{max}}}{T_{ ext{min}}} - 1\right)$

$$W_{k-1}^b$$

$$\begin{array}{lcl} p & > & \frac{2\tau_{\mathrm{max}}}{T_{\mathrm{min}}} + \frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} \\ \\ q & > & \frac{\tau_{\mathrm{max}} - \tau_{\mathrm{min}}}{T_{\mathrm{min}}} + \frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} + p\left(\frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} - 1\right) \end{array}$$

$$\begin{array}{lcl} p & > & \frac{2\tau_{\mathrm{max}}}{T_{\mathrm{min}}} + \frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} \\ q & > & \frac{\tau_{\mathrm{max}} - \tau_{\mathrm{min}}}{T_{\mathrm{min}}} + \frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} + p \left(\frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} - 1 \right) \end{array}$$

$$\begin{array}{lcl} p & > & \frac{2\tau_{\mathrm{max}}}{T_{\mathrm{min}}} + \frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} \\ \\ q & > & \frac{\tau_{\mathrm{max}} - \tau_{\mathrm{min}}}{T_{\mathrm{min}}} + \frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} + p \left(\frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} - 1 \right) \end{array}$$

$$p > \frac{2 au_{ ext{max}}}{T_{ ext{min}}} + \frac{T_{ ext{max}}}{T_{ ext{min}}}$$
 $q > \frac{ au_{ ext{max}} - au_{ ext{min}}}{T_{ ext{min}}} + \frac{T_{ ext{max}}}{T_{ ext{min}}} + p\left(\frac{T_{ ext{max}}}{T_{ ext{min}}} - 1\right)$

Property 1: $W_{k-1}^a \prec E_k^b$

Property 2: $E_k^b \prec W_k^a$

$$\begin{array}{lcl} p & > & \frac{2\tau_{\mathrm{max}}}{T_{\mathrm{min}}} + \frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} \\ \\ q & > & \frac{\tau_{\mathrm{max}} - \tau_{\mathrm{min}}}{T_{\mathrm{min}}} + \frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} + p \left(\frac{T_{\mathrm{max}}}{T_{\mathrm{min}}} - 1 \right) \end{array}$$

Property 1: $W_{k-1}^a \prec E_k^b$

$$W_{k-1}^a$$

$$p > \frac{2 au_{ ext{max}}}{T_{ ext{min}}} + \frac{T_{ ext{max}}}{T_{ ext{min}}}$$
 $q > \frac{ au_{ ext{max}} - au_{ ext{min}}}{T_{ ext{min}}} + \frac{T_{ ext{max}}}{T_{ ext{min}}} + p\left(\frac{T_{ ext{max}}}{T_{ ext{min}}} - 1\right)$

Property 1: $W_{k-1}^a \prec E_k^b$

$$W_{k-1}^a \xrightarrow{pT_{\min}} E_k^a$$

$$p > \frac{2 au_{ ext{max}}}{T_{ ext{min}}} + \frac{T_{ ext{max}}}{T_{ ext{min}}}$$
 $q > \frac{ au_{ ext{max}} - au_{ ext{min}}}{T_{ ext{min}}} + \frac{T_{ ext{max}}}{T_{ ext{min}}} + p\left(\frac{T_{ ext{max}}}{T_{ ext{min}}} - 1\right)$

Property 1: $W_{k-1}^a \prec E_k^b$

$$W_{k-1}^a \xrightarrow{pT_{\min}} E_k^a \xrightarrow{qT_{\min}} W_k^a$$

$$p > \frac{2 au_{ ext{max}}}{T_{ ext{min}}} + \frac{T_{ ext{max}}}{T_{ ext{min}}}$$
 $q > \frac{ au_{ ext{max}} - au_{ ext{min}}}{T_{ ext{min}}} + \frac{T_{ ext{max}}}{T_{ ext{min}}} + p\left(\frac{T_{ ext{max}}}{T_{ ext{min}}} - 1\right)$

Property 1: $W_{k-1}^a \prec E_k^b$

$$W_{k-1}^a \xrightarrow{pT_{\min}} E_k^a \xrightarrow{qT_{\min}} W_k^a$$

$$p > \frac{2\tau_{\max}}{T_{\min}} + \frac{T_{\max}}{T_{\min}}$$
 $q > \frac{\tau_{\max} - \tau_{\min}}{T_{\min}} + \frac{T_{\max}}{T_{\min}} + p\left(\frac{T_{\max}}{T_{\min}} - 1\right)$

Property 1: $W_{k-1}^a \prec E_k^b$

$$p > \frac{2\tau_{\max}}{T_{\min}} + \frac{T_{\max}}{T_{\min}}$$
 $q > \frac{\tau_{\max} - \tau_{\min}}{T_{\min}} + \frac{T_{\max}}{T_{\min}} + p\left(\frac{T_{\max}}{T_{\min}} - 1\right)$

Property 1: $W_{k-1}^a \prec E_k^b$

Corollary: The protocol ensures alternation between **exec** and **send** phases for each pair of communicating nodes

Broadcast communication: ensure clean alternation throughout the entire architecture (idem for back-pressure LTTA)

Comparison

Back-pressure

Time-based

Comparison

	Time-Based	Back-Pressure
Flexibility	Require architecture specifications	Very flexible
Robustness	Can run in a degraded mode	Stuck if a node crash
Fault Tolerance	Can be programmed in the application	Implemented in the Middleware
Communication	Any	Any
Pipelining	Limited	Optimal

Comparison

	Time-Based	Back-Pressure
Flexibility	Require architecture specifications	Very flexible
Robustness	Can run in a degraded mode	Stuck if a node crash
Fault Tolerance	Can be programmed in the application	Implemented in the Middleware
Communication	Any	Any
Pipelining	Limited	Optimal

Outline

- 1. What is an LTTA?
 - 1. Quasi-Periodic Architecture
 - 2. Synchronous Applications
- 2. General Framework
- 3. The two protocols
 - 1. Back-Pressure LTTA
 - 2. Time-Based LTTA
- 4. What About Clock Synchronisation?

Central Master Synchronisation

- Goal: Implement clock synchronisation on a quasiperiodic architecture
- We use the most efficient protocol for comparison purposes
- One node is used as a time reference for all other nodes: the central master clock

The Big Picture

Central Master Synchronisation

Synchronisation interval

R

Offset after resynchronisation

$$\Phi = \tau_{\text{max}} + T_{\text{max}} - \tau_{\text{min}}$$

Drift rate

$$\rho = \frac{T_{\text{max}}}{T_n} - 1 = \frac{T_{\text{max}} - T_{\text{min}}}{T_{\text{max}} + T_{\text{min}}}$$

Maximum divergence

$$\Gamma = 2\rho R$$

Precision

$$\Pi = \Phi + \Gamma$$

Lock-Step Execution

- Given the precision of the synchronisation one can build a global notion of time or macroticks
- Activating nodes on each macrotick imposes a synchronous execution.
- But we need to wait for the transmission delay between execution steps.

Comparative Evaluation

Compared to synchronous execution*

^{*} The smaller, the better.

Conclusion

- Our new model simplifies and clarifies those of previous papers
- A new proposition for the time-based protocol that does not require broadcast communication and does allow pipelining
- Model and Simulation of the protocols in Zélus Discrete model + link with continuous time
- Comparison with clock synchronisation deployed on the same architecture