PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-174527

(43)Date of publication of application: 23.06.2000

(51)Int.CI.

H01Q 1/24 G06F 1/16 G06F 3/00 H01Q 3/24 H04B 7/26

(21)Application number: 10-348619

(71)Applicant: TOSHIBA CORP

(22) Date of filing:

08.12.1998

(72)Inventor: MIYASAKA TOSHIKI

(54) PORTABLE ELECTRONIC DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a portable electronic device having a radio telephone function where usability is enhanced through the factory-equipped radiotelephone function and highly reliable transmission and reception can be ensured at all times.

SOLUTION: An impedance matching board 17 fitted with a whip antenna (main antenna) 14 is fixed to an extension part of a shield frame 16. Thus, a GND of n impedance matching circuit formed on the impedance matching board 17 is directly coupled with the shield frame 16. Since the GND of the impedance matching circuit has a same potential with that of the shield frame with a wide ground area in terms of high frequencies, the ground characteristics of the antenna is made stable and the highly reliable and stable transmission reception can be maintained.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2000-174527

(P2000-174527A) (43)公開日 平成12年6月23日(2000.6.23)

(51) Int. C1. 7	識別記号	FI 产マコート'(参考)
H01Q 1/24		H01Q 1/24 Z 5J021
G06F 1/16	,	G06F 3/00 C 5J047
3/00		H01Q 3/24 5K067
H01Q 3/24		G06F 1/00 312 L
H04B 7/26		HO4B 7/26 D
		審査請求 未請求 請求項の数21 OL (全11頁)
(21)出願番号	特願平10-348619	(71)出願人 000003078
		株式会社東芝
(22) 出願日	平成10年12月8日(1998.12.8)	神奈川県川崎市幸区堀川町72番地
		(72)発明者 宮坂 敏樹
		東京都青梅市末広町2丁目9番地 株式会
		社東芝青梅工場内
		(74)代理人 100058479
		弁理士 鈴江 武彦 (外6名)
		Fターム(参考) 5J021 AA02 AA06 AA13 AB02 DA02
		HA06 HA10 JA07 JA08
		5J047 AA01 AA02 AA05 AB00 AB06
	•	AB10 BF10 FD01
		5K067 AA33 BB04 BB21 CC24 GG01
		KK03 KK17

(54) 【発明の名称】携帯型電子機器

(57)【要約】

【課題】本発明は、無線電話機能を標準装備することで使い勝手が向上でき、かつ常に安定した信頼性の高い送受信動作を確保することのできる、無線電話機能を備えた携帯型電子機器を提供することを課題とする。

【解決手段】ホイップアンテナ(主アンテナ)14を取り付けたインピーダンス整合基板17がシールドフレーム16の延出部に固定される。これによりインピーダンス整合国路のGNDが直接シールドフレーム16に回路結合される。このためインピーダンス整合回路のGNDが接地面積の広いシールドフレームと高周波的に同電位となることから、アンテナのグランド特性が安定し、信頼性の高い安定した送受信動作を維持することができる。

【特許請求の範囲】

【請求項1】 表示パネルを設けた表示部筐体を有して なる、無線通話機能をもつ携帯型電子機器であって、 前記表示部筐体に複数のアンテナを設け、当該アンテナ を用いてダイバシチ受信回路を構成してなることを特徴 とした携帯型電子機器。

【請求項2】 表示パネルを設けた表示部筐体を有して なる携帯型電子機器に於いて、前記表示部筐体に、 アンテナと、

前記アンテナのグランド回路をなし、前記表示パネルを 10 電気的にシールドするシールド部材とを設けてなること を特徴とした携帯型電子機器。

【請求項3】 表示パネルを設けた表示部筐体を有して なる携帯型電子機器に於いて、前記表示部筐体に、 アンテナと、

前記アンテナのグランド回路をなし、前記表示パネルを 電気的にシールドするシールド部材と、

前記アンテナに回路接続される高周波モジュールとを設 けてなることを特徴とした携帯型電子機器。

【請求項4】 表示パネルを設けた表示部筐体を有して 20 なる携帯型電子機器に於いて、前記表示部筐体に、 主アンテナ、及び補助アンテナと、

前記主アンテナのグランド回路をなし、前記表示パネル を電気的にシールドするシールド部材と、

前記各アンテナに回路接続され、前記各アンテナによる ダイバシチ受信回路を備えた髙周波モジュールとを設け てなることを特徴とした携帯型電子機器。

【請求項5】 表示パネルを設けた表示部筐体を有して なる携帯型電子機器に於いて、前記表示部筐体に、当該 筺体より突出可能な棒状の主アンテナを設け、前記表示 30 部筺体の内部に、前記表示部筺体の上面に沿って配置さ れたアンテナエレメントとなる第1の導体、及び前記上 面に接する側面に沿って配置されたグランド部となる第 2の導体でなる内蔵アンテナを設けてなることを特徴と した携帯型電子機器。

【請求項6】 表示パネルを設けた表示部筐体を有して なる携帯型電子機器に於いて、前記表示部筐体の上面一 方角部に、当該筐体より突出可能な棒状の主アンテナを 設け、前記表示部筺体の上面他方角部に、上面に沿って 配置されたアンテナエレメントとなる第1の導体、及び 40 側面に沿って配置されたグランド部となる第2の導体か らなる内蔵アンテナを設けてなることを特徴とした携帯 型電子機器。

【請求項7】 表示パネルを設けた表示部筐体を有して なる携帯型電子機器に於いて、

前記表示部筐体の上面一方角部に設けられた棒状のアン

前記表示部筐体の上面他方角部に内装され、アンテナエ レメントとなる第1の導体を上面に沿って配置し、グラ 蔵アンテナと、

前記各アンテナの信号路に設けられたダイバシチ受信回

2

前記ダイバシチ受信回路を介して受信された受信情報を 信号処理し、受信した通話情報を出力する音声出力手段

音声入力手段と、

前記音声入力手段により入力された音声信号を少なくと も前記各アンテナのいずれかより送信する送信手段とを 具備してなることを特徴とする携帯型電子機器。

【請求項8】 機器本体にヒンジ機構を介して表示部筐 体が回動可能に設けられた携帯型電子機器に於いて、 前記表示部筐体の自由端に設けられたアンテナと、 前記表示部筐体に設けられた表示パネル、及び当該表示 パネルを電気的にシールドするシールド部材と、 前記アンテナを回路接続するためのインピーダンス整合 回路と、前記インピーダンス整合回路の接地側接続端を 前記シールド部材と髙周波的に同電位に回路接続する回 路接続手段とを具備してなることを特徴とする携帯型電

【請求項9】 機器本体にヒンジ機構を介して表示部筐 体が回動可能に設けられた携帯型電子機器に於いて、 前記表示部筐体の自由端に設けられたアンテナと、 前記表示部筐体に設けられた表示パネル、及び当該表示 パネルを電気的にシールドするシールド部材と、 前記表示部筐体内に設けられて、前記アンテナを支持す るとともに、前記アンテナの軸方向と略直角な回路パタ ーン形成面を有し、当該面部にインピーダンス整合回路 を形成してなるインピーダンス整合基板と、

前記インピーダンス整合基板の接地回路を前記シールド 部材と高周波的に同電位にする回路手段とを具備してな ることを特徴とする携帯型電子機器。

【請求項10】 機器本体にヒンジ機構を介して表示部 筺体が回動可能に設けられた携帯型電子機器に於いて、 前記表示部筐体の自由端に設けられたアンテナと、 前記表示部筐体に設けられた表示パネル、及び当該表示 パネルを電気的にシールドするシールド部材と、 前記表示部筐体に設けられ、前記表示パネルに対して略 直角な回路パターン面を有し、当該面部にインピーダン ス整合回路を形成してなるインピーダンス整合基板と、 前記インピーダンス整合基板の接地回路を前記シールド 部材と高周波的に同電位にする回路手段とを具備してな ることを特徴とする携帯型電子機器。

【請求項11】 前記表示筐体に、スペースダイバーシ ティ効果を最大限に引き出すように、アンテナを配置し た請求項1又は請求項4又は請求項5又は請求項6又は 請求項7記載の携帯型電子機器。

【請求項12】 前記表示部筐体に、金属片又はフレキ シブルケーブル又はプリント配線でなる、逆Fタイプ、 ンド部となる第2の導体を側面に沿って配置してなる内 50 又は耐ノイズ性の強いバランタイプの補助アンテナを内

30

40

蔵し、当該アンテナを用いてスペースダイバシチイを構成してなる請求項1又は2又は3又は4又は8又は9又は10記載の携帯型電子機器。

【請求項13】 前記表示部筐体に、高周波モジュールを実装してなる請求項1又は2又は3又は5又は7又は8又は9又は10記載の携帯型電子機器。

【請求項14】 前記高周波モジュールに、ダイバシチ 受信機能を有してなる送受信回路を設けてなる請求項1 3記載の携帯型電子機器。

【請求項15】 前記内蔵アンテナは、第2の導体を第 10 1の導体より長くした請求項5又は6又は7記載の携帯 型電子機器。

【請求項16】 請求項1記載のアンテナ、請求項2記載のアンテナ、請求項3記載のアンテナ、請求項4記載の主アンテナ、請求項5記載の主アンテナ、請求項6記載の主アンテナ、請求項7記載のアンテナ、請求項8記載のアンテナ、請求項9記載のアンテナ、請求項10記載のアンテナのいずれかに、伸縮可能なホイップアンテナ、又は全方位回動可能な棒状アンテナを用いたことを特徴とする携帯型電子機器。

【請求項17】 請求項1記載のアンテナ、又は請求項2記載のアンテナ、又は請求項3記載のアンテナ、又は請求項4記載の主アンテナ、又は請求項5記載の主アンテナ、又は請求項6記載の主アンテナ、又は請求項7記載のアンテナ、又は請求項8記載のアンテナ、又は請求項9記載のアンテナ、又は請求項9記載のアンテナ、又は請求項10記載のアンテナを、機器使用時に、当該機器筐体に設けられた操作部及び主制御回路より最も離間するように表示部筐体に配置したことを特徴とする携帯型電子機器。

【請求項18】 前記インピーダンス整合回路の接地側接続端を前記シールド部材に直付けした請求項8又は9 又は10記載の携帯型電子機器。

【請求項19】 前記装置本体に、二次電池と、当該二次電池により動作可能なCPU及びクロック出力回路を含むコンピュータ主要回路を設けたメインボードと、キーボードとが実装される請求項7又は8又は9又は10記載の携帯型電子機器。

【請求項20】 前記装置本体に、ディジタルセルラー アダプタと、電話機能保守用コネクタとが実装される請 求項7又は8又は9又は10記載の携帯型電子機器。

【請求項21】 前記装置本体の筐体面に、チェック用アンテナ端子を有してなる保守用の16芯コネクタを設けてなる請求項1又は2又は3又は4又は5又は6又は7又は8又は9又は10又は記載の携帯型電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、表示パネルを設けた表示部筐体を有してなる、無線通話機能をもつ携帯型電子機器に関する。

【0002】更に本発明は、機器本体にヒンジ機構を介 50

して表示部筺体が回動可能に設けられた、例えばノート 形パーソナルコンピュータ、パームトップ形パーソナル コンピュータ等のコンピュータ機器に無線通話機能を一 体に設けた携帯型電子機器に関する。

【0003】更に本発明は、携帯電話機能をもつポータブルコンピュータ等の携帯型電子機器に於いて、特にアンテナ特性並びにアンテナ配置に特徴をもつ携帯型電子機器に関する。

[0004]

【従来の技術】近年、携行が容易なモバイルPC等の携帯型電子機器が種々開発され普及してきた。この種の携帯型電子機器、例えばモデム機能等の通信インタフェースをもつポータブルコンピュータに於いては、機器の通信ポートに、専用の接続ケーブルを介して、PHS又は携帯電話器を接続することにより、当該コンピュータで処理した情報を公衆無線網を介して他装置に送信したり、他装置で処理した情報を公衆無線網を介して受信する等の所謂モバイル系PC(パーソナルコンピュータ)の情報交換が可能となる。

20 【0005】上記したようなモバイル系PCにより情報 交換を行う際、従来では、ユーザが、機器に携帯電話 (又はPHS)をケーブル接続してデータ通信できるよ うにするためのデータ通信用のカードを購入し、そのカ ード使用に従う予め定められた設定を行なわなければな らず、更に上記したようなPCと携帯電話間を専用のケ ーブルで接続する作業等が介在することから、操作が面 倒で、使い勝手が悪いという問題があった。

【0006】そこで、上記した使い勝手の改善を図るべく、無線電話機能をPCに内蔵し標準装備することが考えられるが、この種PC機器に於いては、機器本体内に、CPUをはじめ各種のドライバ等、高周波ノイズを発生する多数の回路が実装され、これらのノイズ源が無線電話機能部の送受信動作に不安定要因として悪影響を及ぼすことから、信頼性の高い安定した送受信動作が期待できないという問題が生じ、従って無線電話機能を同一箇体内に組み込んだPCの実現が困難であった。

【0007】特に、この際は、上記したノイズ源となる PCの回路部と無線電話機能部が共に同一筐体内に収納 され、ノイズ源となる回路部と無線電話機能部が極めて 近い配置構造となることから、無線電話機能部の無線ア ンテナが外来ノイズ以上に上記ノイズ源の放射ノイズを 拾い易く、この入射ノイズが送受信動作に影響を及ぼす ことから、アンテナの感度、特性、並びに使用時に於け る電波環境等が本来の送受信動作(無線通信動作)に大 きく影響し、このため、アンテナの構造、配置等には細 心かつ高度の技術が必要となるが、従来では、この際の 有効な技術が確立されておらず、従って携行の容易性が 要求されるコンピュータ機器に於いて、無線電話機能部 を同一筐体内に組み込み、信頼性の高い安定した送受信 動作を確保することが困難であった。

[0008]

【発明が解決しようとする課題】上記したように、従来では、携行の容易性が要求されるコンピュータ機器に於いて、無線電話機能部を同一筐体内に組み込み、信頼性の高い安定した送受信動作を確保することが困難であり、従って、従来では、機器の通信ポートに、専用の接続ケーブルを介して、PHS又は携帯電話器を接続し、所定の手続きを経た後、情報交換を行わなければならず、操作が面倒で、使い勝手が悪いという問題があった。

【0009】本発明は上記実情に鑑みなされたもので、 無線電話機能を標準装備することで使い勝手が向上で き、かつ常に安定した信頼性の高い送受信動作を確保す ることのできる、無線電話機能を備えた携帯型電子機器 を提供することを目的とする。

【0010】更に本発明は、表示パネルを設けた表示部 筺体を有してなる携帯型電子機器に於いて、無線電話機 能を標準装備することで使い勝手が向上でき、かつアン テナの性能を最大限に発揮できるとともに、ノイズの影 響を最小限に抑えて、使用場所、使用状態、周囲の環境 20 等に左右されることなく、常に安定した信頼性の高い送 受信動作を維持できる、無線通話機能を備えた携帯型電 子機器を提供することを目的とする。

[0011]

【課題を解決するための手段】本発明は、表示パネルを設けた表示部筐体を有してなる携帯型電子機器に、無線電話機能を標準装備するための機器構成に係るもので、上記表示部筐体に複数のアンテナを設け、当該アンテナを用いてダイバシチ受信回路を構成することを特徴とする。これにより、無線電話機能に於けるアンテナの性能 30を最大限に発揮し、かつノイズの影響を最小限に抑えて、使用場所、使用状態、周囲の環境等に左右されることなく、常に安定した信頼性の高い送受信動作を維持できる、無線通話機能を備えた携帯型電子機器が提供できる。

【0012】更に、本発明は、表示パネルを設けた表示部筐体を有してなる携帯型電子機器に於いて、上記目的を達成するために、上記表示部筐体に、アンテナと、上記アンテナのグランド回路をなし、上記表示パネルを電気的にシールドするシールド部材とを設けてなる構成と 40 したことを特徴とする。これにより、アンテナのグランド特性(特にアンテナの高周波的な電位)を安定化させ、より安定した信頼性の高い送受信動作を維持できる。

【0013】更に、本発明は、表示パネルを設けた表示 部筐体を有してなる携帯型電子機器に於いて、上記目的 を達成するために、上記表示部筐体に、アンテナと、上 記アンテナのグランド回路をなし、上記表示パネルを電 気的にシールドするシールド部材と、上記アンテナに回 路接続される髙周波モジュールとを設けてなる構成とし 50 たことを特徴とする。これにより、アンテナのグランド 特性を安定化させ、より安定した信頼性の高い送受信動 作を維持できる。

【0014】更に、本発明は、表示パネルを設けた表示 部筐体を有してなる携帯型電子機器に於いて、上記目的 を達成するために、上記表示部筐体に、主アンテナ、及 び補助アンテナと、上記主アンテナのグランド回路をなし、上記表示パネルを電気的にシールドするシールド部 材と、上記各アンテナに回路接続され、上記各アンテナ10 によるダイバシチ受信回路を備えた高周波モジュールと を設けてなることを特徴とする。これにより、アンテナの受信特性を大幅に向上して、より安定した信頼性の高い送受信動作を維持できる。

【0015】更に、本発明は、表示パネルを設けた表示部筐体を有してなる携帯型電子機器に於いて、上記目的を達成するために、上記表示部筐体に、当該筐体より突出可能な棒状の主アンテナを設け、上記表示部筐体の内部に、上記表示部筐体の上面に沿って配置されたアンテナエレメントとなる第1の導体、及び上記上面に接する側面に沿って配置されたグランド部となる第2の導体でなる内蔵アンテナを設けて、これらのアンテナによりダイバシチ受信を行うことにより、より効果の高いダイバシチ受信が期待でき、アンテナの受信特性を大幅に向上して、より安定した信頼性の高い送受信動作を維持できる

【0016】更に、本発明は、表示パネルを設けた表示部筐体を有してなる携帯型電子機器に於いて、上記目的を達成するために、上記表示部筐体の上面一方角部に、当該筐体より突出可能な棒状の主アンテナを設け、上記表示部筐体の上面他方角部に、上面に沿って配置されたアンテナエレメントとなる第1の導体、及び側面に沿って配置されたグランド部となる第2の導体からなる内蔵アンテナを設けて、これらのアンテナによりダイバシチ受信を行うことにより、より効果の高いダイバシチ受信が期待でき、アンテナの受信特性を大幅に向上して、より安定した信頼性の高い送受信動作を維持できる。

【0017】更に、本発明は、表示パネルを設けた表示 部筐体を有してなる携帯型電子機器に於いて、上記目的 を達成するために、上記表示部筐体の上面一方角部に設 けられた棒状のアンテナと、上記表示部筐体の上面他方 角部に内装され、アンテナエレメントとなる第1の導体 を上面に沿って配置し、グランド部となる第2の導体を 側面に沿って配置してなる内蔵アンテナと、上記各アン テナの信号路に設けられたダイバシチ受信回路と、上記 ダイバシチ受信回路を介して受信された受信情報を信号 処理し、受信した通話情報を出力する音声出力手段と、 音声入力手段と、上記音声入力手段により入力された音 声信号を少なくとも上記各アンテナのいずれかより送信 する送信手段とを具備してなることを特徴とする。

【0018】更に、本発明は、機器本体にヒンジ機構を

介して表示部筐体が回動可能に設けられた携帯型電子機 器に於いて、上記目的を達成するために、上記表示部筐・ 体の自由端に設けられたアンテナと、上記表示部筐体に 設けられた表示パネル、及び当該表示パネルを電気的に シールドするシールド部材と、上記アンテナを回路接続 するためのインピーダンス整合回路と、上記インピーダ ンス整合回路の接地側接続端を上記シールド部材と髙周 波的に同電位に回路接続する回路接続手段とを具備して なることを特徴とする。

【0019】更に、本発明は、機器本体にヒンジ機構を 10 介して表示部筐体が回動可能に設けられた携帯型電子機 器に於いて、上記目的を達成するために、上記表示部筐 体の自由端に設けられたアンテナと、上記表示部筐体に 設けられた表示パネル、及び当該表示パネルを電気的に シールドするシールド部材と、上記表示部筐体内に設け られて、上記アンテナを支持するとともに、上記アンテ ナの軸方向と略直角な回路パターン形成面を有し、当該 面部にインピーダンス整合回路を形成してなるインピー ダンス整合基板と、上記インピーダンス整合基板の接地 回路を上記シールド部材と高周波的に同電位にする回路 20 手段とを具備してなることを特徴とする。

【0020】更に、本発明は、機器本体にヒンジ機構を 介して表示部筐体が回動可能に設けられた携帯型電子機 器に於いて、上記目的を達成するために、上記表示部筐 体の自由端に設けられたアンテナと、上記表示部筐体に 設けられた表示パネル、及び当該表示パネルを電気的に シールドするシールド部材と、上記表示部筺体に設けら れ、上記表示パネルに対して略直角な回路パターン面を 有し、当該面部にインピーダンス整合回路を形成してな るインピーダンス整合基板と、上記インピーダンス整合 30 切り欠いた外観図である。 基板の接地回路を上記シールド部材と高周波的に同電位 にする回路手段とを具備してなることを特徴とする。

【0021】上記したような本発明の構成により、無線 電話機能を標準装備することで使い勝手が向上でき、か つアンテナの性能を最大限に発揮できるとともに、ノイ ズの影響を最小限に抑えて、使用場所、使用状態、周囲 の環境等に左右されることなく、常に安定した信頼性の 高い送受信動作を維持できる。

【0022】ここで本発明の実施形態に従う具体的な構 成について要部の概要を例示する。

【0023】本発明は、例えば携帯電話内蔵型モバイル ノートPCに於いて、データや音声の送受信を行う主ア ンテナとは別に、受信時に主アンテナとともにダイバー シティ動作を行なう内蔵補助アンテナをPC筐体内部に 組み込む。

【0024】主アンテナも内蔵補助アンテナもともに、 PCの液晶表示画面の周辺部に配置する。主アンテナ は、PC未使用時で液晶表示画面(表示部筐体)が閉じ た状態時に、筐体内部に収納された状態となっていて、 アンテナエレメントが極力外部のものに接触しないよう 50 源ボタンである。

な配慮がなされている。

【OO25】一方、PC使用時に液晶画面が開いた状態 では、主アンテナが引き出されて、PCの置かれた机の 面(キーボード面)に対して垂直方向に立った状態にな る。

【0026】主アンテナは、一旦、インピーダンス整合 基板で携帯電話の高周波ユニットの入力インピーダンス に整合をとった後、同軸ケーブルを介し高周波ユニット に接続される。

【0027】この際、インピーダンス整合基板のGND (グランド; アース) 端子は、液晶パネルのシールドケ ースに最短距離で電気的機構的に接続することにより、 アンテナの高周波的な電位が安定化する。

【0028】内蔵の補助アンテナもPCの液晶画面の周 辺部に配置されるが、材質は金属片またはフレキシブル ケーブル等からなる、例えば逆Fタイプ、または耐ノイ ズ性の強いバランタイプのアンテナ等で構成され、液晶 表示画面の開閉状態に拘わらず、表示部筐体内部に固定 されたままの状態である。

【0029】上記したようなアンテナ構造とするによ り、PCに組み込んだ2本のアンテナが、安定したスペ ースダイバーシティの効果を発揮し、受信性能の劣化を 最小限に抑えて、安定した感度特性の良好な受信性能が 得られる。

[0030]

【発明の実施の形態】以下図面を参照して本発明の実施 形態を説明する。

【0031】図1は本発明の実施形態を示すモバイルP Cの外観図、図2は同じくモバイルPCの一部パネルを

【0032】図に於いて、1はノートタイプPCの本体 側筐体で有り、ここでは単にPC本体と称す。 2 は上記 PC本体1にヒンジ機構3を介して回動自在に設けられ た表示部筐体である。

【0033】11及び12と21及び22はそれぞれP C本体1に設けられたPCの構成要素であり、11は筐 体上面部に設けられたキーボード、12は筐体内部に収 納されたメインボードである。21はメインボード12 に実装されたCPU、22は同じくメインボード12に 実装されたデータ通信処理部であり、DCA Digital Cellular Adapter) 23により構成される。

【0034】13乃至19はそれぞれ表示部筐体2に設 けられた P C の構成要素であり、このうち、13は液晶 表示パネル、14は主アンテナとなるホイップアンテナ (アンテナ素子)、15は補助アンテナとなる内蔵アン テナ(ハーネスアンテナ)、16は液晶表示パネル13 のシールドフレーム (シールドケース)、17はホイッ プアンテナ(主アンテナ)14のインピーダンス整合基 板、18はカーソル移動用のアキュポイント、19は電 【0035】ここで、上記ホイップアンテナ(主アンテナ)14のインピーダンス整合基板17には、アンテナインピーダンスと携帯電話機能をもつRFモジュール(PDC)24との入力インピーダンスの整合を取るためのインピーダンス整合回路が形成され、当該回路のGND(グランド;アース)が、液晶表示パネル13のシールドフレーム16を接地コモンとするように、シールドフレーム16の延出部に、ラグ端子を介して直接ねじ止めされ回路接続されるもので、その具体的な回路結合

【0036】図3は上記ホイップアンテナ(主アンテナ)14の単体構造を示す側面図であり、図4は上記内蔵アンテナ(補助アンテナ)15の単体構造を示す側面図である。図4に於いて、15aはアンテナエレメント、15bはGNDエレメントであり、具体的な構造については後述する。15at,15btは上記各エレメントに設けられた、同軸ケーブル40の接続端子である。

手段は図5を参照して後述する。

【0037】図5は上記インピーダンス整合基板17の 構造、及び当該インピーダンス整合基板17にホイップ 20 アンテナ(主アンテナ)14を取付けるための構造と、 当該インピーダンス整合基板17のGND (グランド) を上記液晶表示パネル13のシールドフレーム16に回 路結合するラグ端子部分の構造を示す分解斜視図であ る。図中、17aはインピーダンス整合基板17にパタ ーン形成されたインピーダンス整合回路、17bはイン ピーダンス整合基板17をシールドフレーム16に固定 しGND (グランド) を回路結合するためのグランドパ ターンに上に設けられた導電ラグ端子、Naはホイップ アンテナ (主アンテナ) 14をインピーダンス整合基板 30 17に固定するためのナット、50はホイップアンテナ (主アンテナ) 14の送受信信号を携帯電話機能をもつ RFモジュール (PDC) 24に入出力するための同軸 ケーブルである。

【0038】図6は上記ホイップアンテナ(主アンテナ)14に代えて、全方位に回動自在なロッドアンテナを主アンテナとして用いた場合のインピーダンス整合基板17への取り付け構造を示す分解斜視図である。図中、14aは全方位に回動可能なアンテナ素子部、14bはアンテナ基部、14cは回転機構部、14dは回動40機構部である。

【0039】図7は上記実施形態に於ける要部の回路構成を示すプロック図である。図中、21,22、及び72乃至75はそれぞれメインボード12に実装されるもので、21はシステム全体の制御を司るCPU、22はDCA (Digital Cellular Adapter) 23を用いて構成されるデータ通信処理部 (DCU)、72はCPU21の制御プログラムを格納したROM、73はCPU21が実行するプログラム等を格納したRAM、74はキーボード11の入力制御を行うキーボードコントローラ

(KBC)、75は液晶表示パネル13を表示ドライブ 制御する表示コントローラ (DISP-CONT)であ り、それぞれの動作については後述する。

10

【0040】76乃至83はそれぞれ携帯電話機能をもつRFモジュール(PDC)24の構成要素及び入出力機器類をなすもので、76は電波の強弱に応じてホイップアンテナ(主アンテナ)14と内蔵アンテナ(補助アンテナ)15を切り替える高周波スイッチ(ANT-SW)、77は携帯電話の無線ユニット(T/R-CU)、78はRFモジュール全体の信号入出力制御を司る制御回路(COU)、79はディジタル信号をアナログ変換するためのDSP回路、80はアナログ音声信号を増幅するオーディオ回路(AUDIO)である。81は通話用のマイクロフォン(MIC)、82はスピーカ(SP)、83はサウンダであり、それぞれの動作については後述する。

【0041】71はPC本体1の筐体面に設けられる保守用の16芯コネクタ(CON)であり、チェック用アンテナ端子(EXT-ANT)を有し、電話番号の設定、動作チェック等に供される。

【0042】図8及び図9は本発明の実施形態に於けるインピーダンス整合基板17の配置状態とアンテナ放射特性との関係を説明するための図であり、図8は上記インピーダンス整合基板17の回路パターン面を上記液晶表示パネル13の表示面に対して直角に(回路パターン面をホイップアンテナ(主アンテナ)14の軸方向に直交させて)配置した際のアンテナ放射パターンを示す特性図、図9は上記インピーダンス整合基板17の回路パターン面を上記ホイップアンテナ(主アンテナ)14の軸方向に平行して配置した際のアンテナ放射パターンを示す特性図である。上記図8及び図9に於いて、(a)は(d)に示す2方向(筺体上方)からみたYーX面の放射特性、(b)は(d)に示すX方向(パネル前方)からみた2-Y面の放射特性、(c)は(d)に示すY方向(筐体側方)からみた2-X面の放射特性を示している。

【0043】図10は内蔵アンテナ(補助アンテナ)の他の構成例を示す図であり、ここでは逆Fアンテナを例に示している。

【0044】ここで、上記各図を参照して本発明の実施 形態に於ける構成並びに作用を説明する。先ず上記図7 に示すブロック図を参照して、本発明の実施形態による 携帯電話機能内蔵のモバイルPCに於ける全体の処理動 作を説明する。

【0045】PC本体1のキーボード11の操作等により液晶表示パネル13上で作成したデータ(文字、ピクチャー等)を携帯電話の回線経由で任意の装置に送信する際、上記データをDCA23を用いて構成されるデータ通信処理部(DCU)22、及びCPU21等で処理50 した後、携帯電話機能をもつRFモジュール(PDC)

11

24を経由して送受信アンテナであるホイップアンテナ (主アンテナ) 14から送信し、携帯無線電話回線で基 地局を経由して外部に送信する。

【0046】また、外部から基地局経由で到来した無線データは、受信アンテナとして機能するホイップアンテナ(主アンテナ)14、及び内蔵アンテナ(補助アンテナ)15からなるダイバーシティ受信系で受信され、携帯電話機能をもつRFモジュール(PDC)24で周波数変換され、データ通信処理部(DCU)22に設けられたDCA23、CPU21等で処理された後、表示コ10ントローラ(DISP-CONT)75を介して液晶表示パネル13に表示される。

【0047】この際に問題となるのが、DCA23やCPU21から放射されるクロックノイズを、受信アンテナであるホイップアンテナ(主アンテナ)14、及び内蔵アンテナ(補助アンテナ)15が拾ってしまい正しいデータを再現できないことである。特に、この現象は弱電界地域で顕著に表れ、大幅な受信性能の劣化に至ってしまう。

【0048】本発明は、この問題を解決するもので、ア 20 ンテナの構造と配置を工夫することにより弱電界地域に 於けるデータ受信性能の改善を図っている。

【0049】送受信アンテナとなるホイップアンテナ(主アンテナ)14は、図5に示すように、携帯電話の周波数に対応した波長に対して、1/2の長さをもち、ナットNaによりインピーダンス整合基板17に固定される。この際、インピーダンス整合基板17に形成されたインピーダンス整合回路17aのパターン面がホイップアンテナ(主アンテナ)14の軸方向に対して直角をなすように、インピーダンス整合基板17にホイップア30ンテナ(主アンテナ)14が固定される。インピーダンス整合基板17に導電パターンで形成されるインピーダンス整合回路17aは、ホイップアンテナ(主アンテナ)14のインピーダンスと、携帯電話機能をもつRFモジュール(PDC)24の入力インピーダンスの整合を取るもので、同軸ケーブル50を介してRFモジュール(PDC)24に接続される。

【0050】インピーダンス整合基板17には、アンテナ取付孔と直角をなすネジ止め孔を有してなる導電ラグ端子17bが設けられ、インピーダンス整合回路17a 40のGNDに半田付け等により回路接続される。この導電ラグ端子17bのネジ止め孔を用いて図示しない固定用ビスにより、ホイップアンテナ(主アンテナ)14を取り付けたインピーダンス整合基板17がシールドフレーム16の延出部に固定される。これにより、インピーダンス整合基板17に形成されたインピーダンス整合回路17aのGNDがラグ端子17bを介して直接シールドフレーム16に回路結合される。このためインピーダンス整合回路17aのGNDが接地面積の広いシールドフレーム16と高周波的に同電位となることから、アンテ 50

ナのグランド特性が安定し、信頼性の高い安定した送受 信動作を維持することができる。

【0051】また、内蔵アンテナ(補助アンテナ)15 は、図4に示すように、フレキシブルケーブルで構成された、アンテナエレメント15aと、GNDエレメント 15bをそれぞれ1本ずつを直交して(直角に)配置 し、同軸ケーブル40を介してRFモジュール(PDC)24に接続される。

【0052】ここで、アンテナエレメント15aとGN Dエレメント15bの長さは、筐体の大きさに対応した 筐体のインピーダンスに対して合わせ込まれる。ここでは、実際に最適値を選んでいった結果、図3のように、アンテナエレメント15aよりもGNDエレメント15bの方が長い寸法となった。具体的には、アンテナエレメント15aの長さを59mm、GNDエレメント15bの長さを76mmとしている。このような寸法とすることにより、顕著な受信利得の向上が認められた。この具体的な比較例を以下に示す。

【0053】ここでは、上記実施形態による寸法(アンテナエレメント15a=59mm、GNDエレメント15b=76mm)の内蔵アンテナ(補助アンテナ)15を[A]、アンテナエレメントとGNDエレメントの長さを共に83.5mm($\lambda/4$)とした比較用ハーネスアンテナを[B]、アンテナエレメントとGNDエレメントの長さを共に83.5mm($\lambda/4$)とした比較用針金アンテナを[C]とし、平均受信利得をGR、感度(誤り率1%となるRSSI表示)をSRで表したとき、以下の通りであった。

[A]:GR=(基準;0dB)、SR= 5 (dB μ)

[B]: GR = -4.6 dB, SR = 13 (dB)

[C]: GR = -8.5 dB、SR = (GR 悪過ぎ のため測定せず)

この測定結果により上記した本発明の実施形態による寸法(アンテナエレメント15a=59mm、GNDエレメント15b=76mm)の内蔵アンテナ(補助アンテナ)15に於ける受信利得が他のアンテナに比して著しく高いことが認められた。

【0054】次に、携帯電話機能をもつRFモジュール (PDC) 24の構成および作用を説明する。ここでは 受信時を例に動作を説明する。

【0055】ホイップアンテナ(主アンテナ)14、及び内蔵アンテナ(補助アンテナ)15に入射された携帯無線電話の到来電波は、電波の強弱に応じて、高周波スイッチ(ANT-SW)76で切り替え制御された後、無線ユニット(T/R-CU)77で復調され、制御回路(COU)78に入力される。

ス整合回路17aのGNDが接地面積の広いシールドフ 【0056】ここで、入力された信号が音声の場合は、 レーム16と高周波的に同電位となることから、アンテ 50 DSP回路79で信号処理された後、オーディオ回路

(AUDIO) 80で音声増幅され、スピーカ (SP) 82から出力される。また、入力された信号がデータの 場合は、当該受信データがDCA23、及びCPU21 で処理された後、表示コントローラ (DISP-CON T) 75を介して液晶表示パネル13に表示される。

【0057】この一連の動作に於いて、受信性能を上げ るには、ホイップアンテナ(主アンテナ)14と内蔵ア ンテナ(補助アンテナ)15を使用してスペースダイバ ーシティ効果を最大限に引き出すことと、アンテナのイ ンピーダンスを安定したGNDの上で正確に携帯電話機 10 能をもつRFモジュール(PDC)24の入力インピー ダンスに合わせ込むことが非常に有効である。

【0058】本発明の実施形態では、まず、ホイップア ンテナ(主アンテナ)14と内蔵アンテナ(補助アンテ ナ) 15の基準 (コモン) GNDを液晶ディスプレイ管 体2の中で最も面積的に大きく安定している液晶表示パ ネル13のシールドフレーム (シールドケース) 16と 共通化することで、PC本体1に内蔵されたCPU21 やDCA23等のクロックノイズの高周波によって放射 されるノイズの影響を受け難くしている。更にホイップ 20 アンテナ(主アンテナ)14の長さを携帯電話の波長に 対して1/2に選んでいることもこの効果を高めてい

【0059】また、ホイップアンテナ(主アンテナ)1 4のインピーダンス整合基板17は、上述したように、 液晶表示パネル13の表示面に対してもホイップアンテ ナ(主アンテナ)14の軸方向に対しても直交して(直 角に)配置することで、外部の構成要素であるアンテナ エレメントのばらつきや液晶表示パネル13のシールド フレーム16の寸法ばらつき等に起因するインピーダン 30 ス的な変化に対しても常に安定したマッチング回路とし て機能する。

【0060】更にこのようなアンテナ構造とすることに より、最上の放射特性が得られる。即ち、上記インピー ダンス整合基板17の回路パターン面を上記ホイップア ンテナ(主アンテナ)14の軸方向に平行して配置した 際のアンテナ放射パターンの測定結果が図9に示すよう な放射特性であるのに対し、上記インピーダンス整合基 板17の回路パターン面を上記液晶表示パネル13の表 示面に対して直角に(回路パターン面をホイップアンテ 40 ナ(主アンテナ)14の軸方向に直交させて)配置した 際のアンテナ放射パターンを測定すると図8に示すよう な放射特性となり、この特性比較から明らかなように、 上記実施形態に示したアンテナ構造が最も良好な放射特 性となることが分かる。

【0061】さらに、スペースダイバーシティという観 点からは、ホイップアンテナ(主アンテナ)14と内蔵 アンテナ (補助アンテナ) 15との距離が、液晶ディス プレイ 筐体 2 の長手方向で最も距離が離れる両端に配置 という特徴を有する。この効果は、実際に測定してみた ところ、内蔵アンテナ (補助アンテナ) 15の劣化度は ホイップアンテナ(主アンテナ)14に対して約3dB であった。

14

【0062】更に、アンテナの感度は、基地局からの見 通しという点から考えると、高い場所に設置される程、 見かけ上改善されてくるので、アンテナが高所に位置す る程、理想的である。この点からみても本発明の実施形 態によるアンテナは、ホイップアンテナ(主アンテナ) 14、内蔵アンテナ(補助アンテナ)15ともに、ノー トPCの一番高い場所 (液晶ディスプレイ筺体2の自由 端)に置かれているので感度アップに寄与できる。

【0063】また、図6に示すように、ホイップアンテ ナ(主アンテナ)14に代えて、全方位に回動自在なロ ッドアンテナを主アンテナとして用いることにより、主 アンテナの角度をPCに対して自由に設定できる。この 場合も主アンテナ長は携帯電話の波長に対して 2/2 と なっている。

【0064】以上述べてきたように、本発明の実施形態 によるアンテナ構造を用いることにより、携帯電話機能 を内蔵したノート形PCにおいて、スペースダイバーシ ティの効果が十分に確保できるようになり、アンテナの 性能劣化を最小限(3 d B)に抑えることができること から、データ通信や音声通話が不可能となる状況を回避 することができる。

[0065]

【発明の効果】以上詳記したように本発明によれば、無 線電話機能を標準装備することで使い勝手が向上でき、 かつ常に安定した信頼性の高い送受信動作を確保するこ とのできる、無線電話機能を備えた携帯型電子機器が提 供できる。

【0066】更に本発明によれば、表示パネルを設けた 表示部筺体を有してなる携帯型電子機器に於いて、無線 電話機能を標準装備することで使い勝手が向上でき、か つアンテナの性能を最大限に発揮できるとともに、ノイ ズの影響を最小限に抑えて、使用場所、使用状態、周囲 の環境等に左右されることなく、常に安定した信頼性の 高い送受信動作を維持できる、無線通話機能を備えた携 帯型電子機器が提供できる。

【図面の簡単な説明】

【図1】本発明の実施形態を示すモバイルPCの外観

【図2】上記図1に示すモバイルPCの一部パネルを切 り欠いた外観図。

【図3】上記実施形態に於けるホイップアンテナ (主ア ンテナ) の単体構造を示す側面図。

【図4】上記実施形態に於ける内蔵アンテナ(補助アン テナ)の単体構造を示す側面図。

【図5】上記実施形態に於けるインピーダンス整合基板 されているため、ダイバーシティ効果が有効に機能する 50 の構造、及び当該インピーダンス整合基板にホイップア

16

ンテナ (主アンテナ) を取付けるための構造と、当該インピーダンス整合基板のGND (グランド) を上記液晶表示パネルのシールドフレームに回路結合するラグ端子部分の構造を示す分解斜視図。

【図6】主アンテナの他の構成例を示す斜視図。

【図7】上記実施形態に於ける要部の回路構成を示すブ ・ロック図。

【図8】上記実施形態に於けるインピーダンス整合基板の回路パターン面を上記液晶表示パネルの表示面に対して直角に配置した際のアンテナ放射パターンを示す特性 10 図。

【図9】上記実施形態に於けるアンテナ放射パターンと 対比するための、インピーダンス整合基板の回路パター ン面を主アンテナの軸方向に平行して配置した際のアン テナ放射パターンを示す特性図。

【図10】内蔵アンテナ(補助アンテナ)の他の構成例を示す斜視図。

【符号の説明】

- 1…ノートタイプPCの本体側筐体 (PC本体)、
- 2…表示部筐体、
- 3…ヒンジ機構、
- 11…キーボード、
- 12…メインボード、
- 13…液晶表示パネル、
- 14…ホイップアンテナ(主アンテナ)、
- 15…内蔵アンテナ(補助アンテナ)、

- 16…液晶表示パネル13のシールドフレーム (シールドケース)、
- 17…ホイップアンテナ (主アンテナ) 14のインピー ダンス整合基板、
- 18…カーソル移動用のアキュポイント、
- 19…電源ボタン、
- 21 ··· CPU、
- 22…データ通信処理部、
- 23 ... DCA (Digital Cellular Adapter) ,
- 0 24…電話機能をもつRFモジュール (PDC)、
 - 40…同軸ケーブル、
 - 50…同軸ケーブル。
 - 71…保守用の16芯コネクタ (CON)、
 - 7 2 ··· R OM,
 - 73 ··· RAM、
 - 74…キーボードコントローラ (KBC)、
 - 75…表示コントローラ (DISP-CONT)、
 - 76…高周波スイッチ (ANT-SW)、
 - 77…携帯電話の無線ユニット (T/R-CU)、
- 20 78…制御回路(COU)、
 - 79…DSP回路、
 - 80…オーディオ回路(AUDIO)、
 - 81…マイクロフォン (MIC)、
 - 82…スピーカ (SP)、
 - 83…サウンダ。

【図1】

【図2】

【図3】

【図5】

【図6】

【図10】

【図7】

【図8】

【図9】

