

Elektrik-Elektronik Mühendisliği Dijital Sinyal İşleme Deney-3

Yakup Demiryürek 180711049

(Güz 2021)

Amaç

Bu deneyde sürekli zamanlı sinyallerin Fourier dönüşümlerinin matlab'da hesaplanarak çizilmesini daha sonra da sürekli zamanlı sinyallerin örneklenmesi ile elde edilen dijital sinyallerin Fourier dönüşümlerinin matlab ortamında hesaplanarak çizilmesi amaçlanmıştır.

DÇ1

Periyodu ½ olan kosinüs sinyali ((x(t)) $0 \le t \le 2$) aralığında çizdirilmiştir (**Şekil 1**) ve Fourier dönüşümü gösterilmiştir (**Şekil 2**). Sonrasında zaman aralığını $0 \le t \le 20$ yaparak Fourier dönüşümü tekrar elde edilmiştir (**Şekil 3**).

Kod;

```
clc
clear
close all
f=2;
t=0:0.002:2;
xt=cos(2*pi*f*t);
plot(t,xt)
w=linspace(-8*pi,8*pi,size(t,2));
for i=1:size(t,2)
        xc(i)=trapz(t,xt.*exp(-j.*w(i).*t));
end
plot(w,xc)
```


DÇ2

Frekansı 2 Hz olan kosinüs sinyalini Ts = 1/16 örnekleme periyodu ile örnekleyip sürekli zaman sinyalinin (**Şekil 4**) ve örnekli sinyalin (**Şekil 5**) Fourier dönüşümleri çizdirilmiştir.

Kod;

```
clc
clear
close all
f=2;
t=0:0.001:2;
xt = cos(2*pi*f*t);
%plot(t,xt)
Ts=1/16;
ts=0:Ts:2;
xr = cos(2*pi*f*ts);
%hold on
%stem(ts,xr)
w=linspace(-8*pi,8*pi,size(t,2));
n=ts/Ts;
for i=1:size(t,2)
    xc(i) = trapz(t, xt.*exp(-j.*w(i).*t));
    xnf(i) = sum(xr.*exp(-j.*w(i).*n));
end
plot(w,xc)
figure
plot(w,xnf)
```


Şekil 4.Sürekli Sinyalin Fourier Dönüşümü

Şekil 5.Örneklenmiş Sinyalin Fourier Dönüşümü

DÇ3

Frekansı 1 Hz olan kosinüs sinyalini $0 \le t \le 2$ aralığında Ts = 1/8, Ts = 1/16 ve Ts = 1/32 örnekleme periyodu ile örnekleyip Fourier dönüşümlerini çizdirilmiştir.

Kod;

```
clc
clear
close all
f=1;
t=0:0.001:2;
xt = cos(2*pi*f*t);
%plot(t,xt)
Ts=1/8;
ts=0:Ts:2;
xr = cos(2*pi*f*ts);
%hold on
%stem(ts,xr)
w=linspace(-8*pi,8*pi,size(t,2));
n=ts/Ts;
for i=1:size(t,2)
    xc(i) = trapz(t, xt.*exp(-j.*w(i).*t));
    xnf(i) = sum(xr.*exp(-j.*w(i).*n));
end
plot(w,xnf)
```


Şekil 6. Ts = 1/8

Şekil 7. Ts = 1/16

Şekil 8. Ts = 1/32