CHAPITRE 2

LOGIQUE ET ENSEMBLES

Certaines solutions sont données sans justification, la lectrice studieuse est donc encouragée à chercher ces justifications manquantes.

Exercice 2.1

On calcule la table de vérité de chaque proposition

	\mathcal{P}	Q	\mathcal{P} ou non \mathcal{Q}
	V	V	V
1.	V	F	V
	F	V	F
	F	F	V

Ainsi, la proposition n'est pas une tautologie.

	\mathcal{P}	Q	$\mathcal{P}\Rightarrow\mathcal{Q}$	$non(\mathcal{P}\ et\ non\ \mathcal{Q})$	$(\mathcal{P} \Rightarrow \mathcal{Q}) \Leftrightarrow \operatorname{non}(\mathcal{P} \text{ et non } \mathcal{Q})$
	V	V	V	V	V
2.	V	F	F	F	V
	F	V	V	V	V
	F	F	V	V	V

Ainsi, la proposition est une tautologie.

	\mathcal{P}	Q	\mathcal{R}	$\mathcal{P}\Rightarrow\mathcal{Q}$	$\mathcal{Q}\Rightarrow\mathcal{R}$	$(\mathcal{P} \Rightarrow \mathcal{Q}) \text{ et } (\mathcal{Q} \Rightarrow \mathcal{R})$	$\mathcal{P}\Rightarrow\mathcal{R}$	$((\mathcal{P} \Rightarrow \mathcal{Q}) \text{ et } (\mathcal{Q} \Rightarrow \mathcal{R})) \Rightarrow (\mathcal{P} \Rightarrow \mathcal{R})$
	V	V	V	V	V	V	V	V
	V	V	F	V	F	F	F	V
	V	F	V	F	V	F	V	V
3.	V	F	F	F	V	F	F	V
	F	V	V	V	V	V	V	V
	F	V	F	V	F	F	V	V
	F	F	V	F	V	F	V	V
	F	F	F	F	V	F	V	V

Ainsi, la proposition est une tautologie ¹.

	\mathcal{P}	Q	$non\mathcal{P} \Rightarrow non\mathcal{Q}$	$\mathcal{P}\Rightarrow\mathcal{Q}$	$(non\mathcal{P}\Rightarrow non\mathcal{Q})\Leftrightarrow (\mathcal{P}\Rightarrow\mathcal{Q})$
	V	V	V	V	V
4.	V	F	V	F	F
	F	V	F	V	F
	F	F	V	V	V

Ainsi, la proposition n'est pas une tautologie.

Exercice 2.2

La négation de « $\mathcal{P} \Rightarrow \mathcal{Q}$ » est « \mathcal{P} et non \mathcal{Q} ».

^{1.} C'est ce qu'on appelle la transitivité de l'implication logique.

Exercice 2.3

- 1. Un entier est strictement plus grand que 10 si il est plus grand que 15, mais ce n'est pas nécessaire.
- 2. Un entier est divisible par 6 seulement si il est divisible par 3, mais ce n'est pas suffisant.

Exercice 2.4

La contraposée de « f croissante $\Rightarrow f(3) \ge f(2)$ » est « $f(3) < f(2) \Rightarrow f$ pas croissante ».

Exercice 2.5

- 1. La proposition $\forall x \in \mathbb{R}, \ x > 1 \Rightarrow x^2 > 1$ est vraie.
- 2. La proposition $2 > 1 \Rightarrow 2^2 > 1$ est vraie.
- 3. La proposition $0 > 1 \Rightarrow 0^2 > 1$ est vraie.
- 4. La proposition $(-2) > 1 \Rightarrow (-2)^2 > 1$ est vraie.

Exercice 2.6

- 1. La négation de « $\exists n \in \mathbb{N}$, $\forall m \in \mathbb{N}$, $m \le n$ » est « $\forall n \in \mathbb{N}$, $\exists m \in \mathbb{N}$, m > n ». Cette négation est vraie (car tout entier naturel admet un successeur).
- 2. La négation de « $\forall n \in \mathbb{N}$, $\exists m \in \mathbb{N}$, $m \le n$ » est « $\exists n \in \mathbb{N}$, $\forall m \in \mathbb{N}$, m > n ». Cette négation est fausse (car 0 n'est plus grand qu'aucun entier naturel).
- 3. La négation de « $\exists x \in \mathbb{R}$, x + y > 0 » est « $\forall x \in \mathbb{R}$, $x + y \leq 0$ ». Ces deux propositions n'ont pas de sens, car y n'est pas défini.
- 4. La négation de « $\forall x \in \mathbb{R}$, x + y > 0 » est « $\exists x \in \mathbb{R}$, $x + y \leq 0$ ». Ces deux propositions n'ont pas de sens, car y n'est pas défini.
- 5. La négation de « $\exists x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, x + y > 0 » est « $\forall x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, $x + y \le 0$ ». Cette négation est vraie (il suffit de prendre y = -x 1).
- 6. La négation de « $\forall x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, x + y > 0 » est « $\exists x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $x + y \leq 0$ ». Cette négation est fausse (il suffit de prendre y = -x + 1).
- 7. La négation de « $\exists x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, x + y > 0 » est « $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $x + y \le 0$ ». Cette négation est fausse (car 1 + 1 = 2 > 0).
- 8. La négation de « $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, x + y > 0 » est « $\exists x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, $x + y \leq 0$ ». Cette négation est vraie (car $(-1) + (-1) = -2 \leq 0$).

Exercice 2.7

- La proposition se traduit par « ∀x ∈ ℝ, f(x) ≥ 0 ».
 Sa négation est « ∃x ∈ ℝ, f(x) < 0 ».
 Les fonctions f(x) = |x| et f(x) = x² vérifient la première proposition.
 Les fonctions f(x) = x et f(x) = -1 vérifient sa négation.
- 2. La proposition se traduit par « $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $y \ge x \Rightarrow f(y) \ge f(x)$ ». Sa négation est « $\exists x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, $y \ge x$ et f(y) < f(x) ». Les fonctions f(x) = x et f(x) = 1 vérifient la première proposition. Les fonctions $f(x) = x^2$ et f(x) = -x vérifient sa négation.

- 3. La proposition se traduit par « $\forall x \in \mathbb{R}$, $f(x) \ge 0$ et $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $y \ge x \Rightarrow f(y) \ge f(x)$ ». Sa négation est « $\exists x \in \mathbb{R}$, f(x) < 0 ou $\exists x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, $y \ge x$ et f(y) < f(x) ». Les fonctions $f(x) = \arctan(x) + \pi$ et $f(x) = e^x$ vérifient la première proposition. Les fonctions $f(x) = x^2$ et $f(x) = x^3$ vérifient sa négation.
- 4. La proposition se traduit par « ∃x ∈ ℝ, f(x) ≥ 0 ».
 Sa négation est « ∀x ∈ ℝ, f(x) < 0 ».
 Les fonctions f(x) = cos(x) et f(x) = x vérifient la première proposition.
 Les fonctions f(x) = -1 et f(x) = -e^{-x} vérifient sa négation.
- 5. La proposition se traduit par « $\forall x \in \mathbb{R}$, f(x) > 0 ». Sa négation est « $\exists x \in \mathbb{R}$, $f(x) \le 0$ ». Les fonctions $f(x) = e^x$ et $f(x) = \sin(x) + 2$ vérifient la première proposition. Les fonctions $f(x) = \cos(x) + 1$ et f(x) = |x| vérifient sa négation.
- 6. La proposition se traduit par « $\forall x \in \mathbb{R}$, f(-x) = f(x) ». Sa négation est « $\exists x \in \mathbb{R}$, $f(-x) \neq f(x)$ ». Les fonctions $f(x) = \cos(x)$ et $f(x) = x^2$ vérifient la première proposition. Les fonctions $f(x) = \sin(x)$ et $f(x) = x^2 + x$ vérifient sa négation.

Exercice 2.8

- 1. La contraposée de « Un entier naturel dont le carré est pair est automatiquement pair » est « Un entier naturel impair est de carré impair ». Et en effet, pour 2n + 1 un entier naturel impair, $(2n + 1)^2 = 4n^2 + 2n + 1$ est impair.
- 2. La contraposée de « Un nombre réel dont le carré vaut deux est toujours strictement inférieur à deux » est « Un nombre réel supérieur ou égal à deux est de carré différent de deux ». Et en effet, pour $x \in \mathbb{R}$ plus grand que 2, $x^2 \ge 4$, donc en particulier, $x^2 \ne 2$.

Exercice 2.9

- 1. La négation de « zéro est le seul réel positif inférieur à tout réel strictement positif » est « il existe un réel positif non nul inférieur à tout réel strictement positif ».
 - Supposons que tel soit le cas et notons x un tel nombre. Alors x est positif, non nul, et inférieur à tout réel strictement positif.
 - Cependant, $\frac{x}{2}$ est positif, non nul, et inférieur à x, ceci est une contradiction avec notre hypothèse, qui doit être fausse. Ainsi, la proposition initiale est vraie.
- 2. La négation de « la racine carrée de deux n'est pas un nombre entier » est « la racine carrée de deux est un nombre entier ». Supposons que tel soit le cas, et notons n un tel nombre entier. Alors $n^2 = 2$. Donc n < 2, ainsi, soit n = 0, soit n = 1. Cependant, $0^2 = 0$ et $1^2 = 1$, donc 2 = 0 ou 2 = 1, ce qui est absurde. Ainsi, la proposition initiale est vraie.

Exercice 2.10

1. Soit $n \ge 3$, on suppose $2^n > n^2$. Alors

$$2^{n+1} = 2 \times 2^n \ge 2 \times n^2 \ge n^2 + 2n + 1 = (n+1)^2$$

3

Ainsi, pour $n \ge 3$, $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$.

2. Le plus petit entier naturel n tel que $2^n > n^2$ est n = 5, par la première question, pour tout entier $n \ge 5$, $2^n > n^2$.

Exercice 2.11

1. Soit n un entier tel que $4^n + 5$ est multiple de 3. Alors

$$4^n + 5 = 3k$$

Donc

$$4^{n+1} + 5 = 4 \times 4^n + 5 = 4 \times (4^n + 5) - 15$$

est multiple de 3 (par hypothèse de récurrence et car 15 est multiple de 3).

- 2. Pour n = 0, $4^n + 5 = 6$. Comme 6 est multiple de 3, $4^n + 5$ est toujours multiple de 3.
- 3. Soit n un entier tel que $10^n + 7$ est multiple de 9. Alors

$$10^n + 7 = 9k$$

Donc

$$10^{n+1} + 7 = 10 \times 10^n + 7 = 10 \times (10^n + 7) - 63$$

est multiple de 9 (par hypothèse de récurrence et car 63 est multiple de 9).

4. $10^n + 7$ n'est jamais multiple de 9 (car il n'est pas multiple de 3).

Exercice 2.12

Initialisation: n = 0.

$$(1+x)^n = 1 = 1 + 0 \times x$$

Donc la propriété est vraie au rang n = 0.

Hérédité: Supposons, pour **un** entier naturel n, que $(1+x)^n \ge 1 + nx$. Alors

$$(1+x)^{n+1} = (1+x)(1+x)^n$$

$$\ge (1+x)(1+nx)$$

$$= 1+x+nx+nx^2$$

$$\ge 1+(n+1)x$$

La propriété est donc vraie au rang n + 1.

Conclusion : La propriété est initialisée et héréditaire, elle est donc vraie pour tout entier naturel *n*.

Exercice 2.13

1. Initialisation : n = 0.

$$\sum_{k=0}^{0} (2k+1) = 1 = (0+1)^2$$

Donc la propriété est initialisée.

Hérédité: Supposons, pour **un** entier naturel n, que $\sum_{k=0}^{n} (2k+1) = (n+1)^2$. Alors

$$\sum_{k=0}^{n+1} (2k+1) = \sum_{k=0}^{n} (2k+1) + 2(n+1) + 1$$

$$= (n+1)^{2} + 2n + 3$$

$$= n^{2} + 2n + 1 + 2n + 3$$

$$= n^{2} + 4n + 4$$

$$= (n+2)^{2}$$

Donc la propriété est vrai au rang n + 1.

Conclusion: La propriété est initialisée et héréditaire, elle est donc vraie pour tout entier naturel.

2. Initialisation : n = 0.

$$\sum_{k=0}^{0} k = 0 = \frac{0(0+1)}{2}$$

Donc la propriété est initialisée.

Hérédité : Supposons, pour **un** entier naturel n, que $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$. Alors

$$\sum_{k=0}^{n+1} k = \sum_{k=0}^{n} k + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

Ainsi, la propriété est vraie au rang n + 1.

Conclusion : la propriété est initialisée et héréditaire, elle est donc vrai pour tout entier naturel.

3. **Initialisation**: n = 0.

$$\sum_{k=0}^{0} k^2 = 0 = \frac{0(0+1)(2\times 0 + 1)}{6}$$

Donc la propriété est initialisée.

Hérédité : Supposons, pour **un** entier naturel n, que $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$. Alors

$$\sum_{k=0}^{n+1} k^2 = \sum_{k=0}^{n} k^2 + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{2n^3 + 3n^2 + n + 6n^2 + 12n + 6}{6}$$

$$= \frac{2n^3 + 9n^2 + 13n + 6}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}$$

Donc la propriété est vraie au rang n + 1.

Conclusion : La propriété est initialisée et héréditaire, donc elle est vraie pour tout entier naturel.

4. Initialisation : n = 0.

$$\sum_{k=0}^{0} (-1)^k k^2 = 0 = (-1)^0 \frac{0(0+1)}{2}$$

Donc la propriété est initialisée.

Hérédité : Supposons, pour **un** entier naturel n, que $\sum_{k=0}^{n} (-1)^k k^2 = (-1)^n \frac{n(n+1)}{2}$. Alors

$$\sum_{k=0}^{n+1} (-1)^k k^2 = \sum_{k=0}^n (-1)^k k^2 + (-1)^{n+1} (n+1)^2$$

$$= (-1)^n \frac{n(n+1)}{2} + (-1)^{n+1} (n+1)^2$$

$$= (-1)^n \left(\frac{n(n+1)}{2} - (n+1)^2 \right)$$

$$= (-1)^n \frac{n^2 + n - 2n^2 - 4n - 2}{2}$$

$$= (-1)^n \frac{-n^2 - 3n - 2}{2}$$

$$= (-1)^{n+1} \frac{(n+1)(n+2)}{2}$$

La propriété est donc vraie au rang n + 1.

Conclusion: La propriété est initialisée et héréditaire, elle est donc vraie pour tout entier naturel.

5. Initialisation : n = 1.

$$\sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{2} = \frac{1}{1+1}$$

Donc la propriété est initialisée.

Hérédité: On suppose, pour **un** entier naturel non nul n, que $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$. Alors

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)} + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n(n+2)}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n^2 + 2n + 1}{(n+1)(n+2)}$$

$$= \frac{(n+1)^2}{(n+1)(n+2)}$$

$$= \frac{n+1}{n+2}$$

Donc la propriété est vraie au rang n + 1.

Conclusion: La propriété est initialisée et héréditaire, elle est donc vraie pour tout entier naturel non nul.

Exercice 2.14

- 1. Non. Par contre-exemple : E = [0,3], F = [0,2] et G = [1,4].
- 2. Non. Par contre-exemple : E = [0, 1], F = [1, 2] et $G = \{1\}$

Exercice 2.15

- 1. Non. Par contre-exemple : $A = \{1, 2, 3\}$ et $B = \{0, 2, 4\}$.
- 2. Oui. Supposons par l'absurde qu'il existe $x \in A \cup B$ plus petit que le plus petit élément de A ou de B. Si $x \in A$, alors x est plus petit que le plus petit élément de A, ce qui est contradictoire. De même, si $x \in B$, alors x est plus petit que le plus petit élément de B, ce qui est contradictoire. Un tel x ne peut ainsi pas exister.

Exercice 2.16

- 1. Une condition nécessaire et suffisante est $A \subset B$, on peut alors prendre $X = B \cap A^{\complement}$ ou X = B.
- 2. Une condition nécessaire et suffisante est $B \subset A$, on peut alors prendre $X = B \cup Y$, où Y est n'importe quelle partie de $A^{\mathbb{C}}$.

Exercice 2.17

- 1. Par contraposée, supposons qu'il existe $x \in A$ tel que $x \notin B$. Alors $x \in A \cup B$ et $x \notin A \cap B$, donc $A \cup B \not\subset A \cap B$.
- 2. Par contraposée, supposons que $A \subset B$, alors pour tout $x \in A$, $x \in B$, donc $x \notin B^{\complement}$, donc $A \cap B^{\complement} = \emptyset$.
- 3. Les deux implications sont symétriques, on n'en démontre qu'une seule. Par contraposée, supposons que $B \setminus A \neq B$, alors $B \cap A \neq \emptyset$, donc $A \setminus B \neq A$ (car il existe alors $x \in A$ et $x \notin A \setminus B$).

Exercice 2.18

- 1. Par contraposée et absurde, supposons qu'il existe $x \in B \setminus C$. Alors $x \in A \cup B \subset A \cup C$ et $x \notin C$, donc $x \in A$, donc $x \in A \cap B \subset A \cap C$, donc $x \in C$, ce qui est une contradiction. Donc la proposition initiale est vraie.
- 2. Les rôles de B et C dans la question précédente sont symétriques. On obtient donc $B \subset C$ et $C \subset B$, d'où leur égalité.

Exercice 2.19

Sens direct : Supposons $A \cup B = B \cap C$. Alors $A \cup B \subset B$ donc $A \subset B$ et $A \cup B \subset C$ donc $B \subset C$. Ainsi $A \subset B \subset C$. **Sens réciproque :** Supposons $A \subset B \subset C$. Alors $A \cup B = B = B \cap C$.

Exercice 2.20

- 1. Oui, il suffit de prendre $A = X \cap E$ et $B = X \cap F$.
- 2. Non, par contre-exemple : $E = \{1, 2\}$, $F = \{a, b\}$ et $X = \{(1, a), (2, b)\}$.

Exercice 2.21

Supposons que le disque unité $\mathbb{D} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ soit le produit de deux parties de \mathbb{R} , notées A et B. Alors, comme $(1,0) \in \mathbb{D}$, $1 \in A$. De même, comme $(0,1) \in \mathbb{D}$, $1 \in B$, donc $(1,1) \in A \times B$, mais $(1,1) \notin \mathbb{D}$.

Exercice 2.22

1. Injective.

3. Bijective.

5. Surjective.

2. Bijective.

4. Rien.

6. Surjective.

Exercice 2.23

- 1. Non. Par contre-exemple : $\mathbb{Z} \xrightarrow{x \mapsto x} \mathbb{R} \xrightarrow{x \mapsto \lfloor x \rfloor} \mathbb{Z}$. La composée est bijective, mais f n'est pas surjective.
- 2. Oui. Soit $z \in G$. Alors il existe $x \in E$ tel que g(f(x)) = z. Ainsi f(x) est un antécédent de z par g. Donc g est surjective.
- 3. Oui. Soient $x, x' \in E$ tels que f(x) = f(x'). Alors

$$g(f(x)) = g(f(x'))$$

donc x = x' (car $g \circ f$ est injective). Donc f est injective.

4. Non. Par contre-exemple : $\mathbb{Z} \xrightarrow{x \mapsto x} \mathbb{R} \xrightarrow{x \mapsto \lfloor x \rfloor} \mathbb{Z}$. La composée est bijective, mais g n'est pas injective.

Exercice 2.24

1. La fonction f doit être surjective ². En effet, si elle ne l'est pas, alors pour $x \in F$ sans antécédent par f, il suffit alors de poser

$$g_1(x) \neq g_2(x)$$

pour obtenir $g_1 \circ f = g_2 \circ f$ mais $g_1 \neq g_2$.

2. La fonction g doit être injective g. En effet, si elle ne l'est pas, alors il existe $g \neq g' \in F$ tels que g(g) = g(g'). Il suffit alors de poser, pour un certain $g \in F$, $g \in F$, $g \in F$, pour obtenir $g \circ f_1 = g \circ f_2$ mais $g \in F$.

Exercice 2.25

On a, pour $n \in \mathbb{N}$,

$$g \circ f(n) = g(2n)$$
$$= n$$

$$f \circ g(n) = \begin{vmatrix} f(n/2) & \text{si } n \text{ est pair} \\ f((n-1)/2) & \text{si } n \text{ est impair} \end{vmatrix}$$
$$= \begin{vmatrix} n & \text{si } n \text{ est pair} \\ n-1 & \text{si } n \text{ est impair} \end{vmatrix}$$

Exercice 2.26

1. **Initialisation**: n = 0. On a bien $f^1 = \mathrm{id}_E \circ f = f^0 \circ f$. La propriété est initialisée.

Hérédité : On suppose, pour **un** entier naturel n, que $f^{n+1} = f^n \circ f$. Alors

$$f^{n+2} = f \circ f^{n+1} = f \circ (f^n \circ f) = f \circ f^n \circ f = (f \circ f^n) \circ f = f^{n+1} \circ f$$

La propriété est héréditaire.

Conclusion : La propriété est initialisée et héréditaire, elle est donc vraie pour tout entier naturel.

2. **Initialisation**: n = 0. On constate bien que $f^0 = \mathrm{id}_E$ une bijection. La propriété est initialisée.

Hérédité: On suppose, pour **un** entier naturel n, que f^n est une bijection, et que $(f^n)^{-1} = (f^{-1})^n$. Alors

$$(f^{-1})^{n+1} \circ f^{n+1} = (f^{-1})^n \circ f^{-1} \circ (f^{-1})^n \circ f^n \circ f = f^{-1} \circ id_E \circ f = f^{-1} \circ f = id_E$$

Ainsi, f^{n+1} est une bijection, d'inverse $(f^{-1})^{n+1}$. La propriété est héréditaire.

Conclusion : La propriété est initialisée et héréditaire, elle est donc vraie pour tout entier naturel.

Exercice 2.27

- 1. La fonction f(n) = n + 1 réalise une bijection entre $\mathbb{Z}_{\geq 1}$ et $\mathbb{Z}_{\geq 2}$.
- 2. La fonction $g(x) = \frac{1}{f(1/x)}$ réalise une bijjection entre A_1 et A_2 .
- 3. On remarque que $A_1 \setminus A_2 = \{1\}$, donc $[0,1] \setminus A_1 = ([0,1] \setminus A_2) \setminus \{1\} = [0,1[\setminus A_2.$
- 4. La fonction

$$h(x) = \begin{vmatrix} x & \text{si } x \notin A_1 \\ g(x) & \text{si } x \in A_1 \end{vmatrix}$$

réalise une bijection entre [0,1] et [0,1[.

^{2.} On dit que les fonctions surjectives sont des épimorphismes.

^{3.} On dit que les fonctions injectives sont des *monomorphismes*.

Exercice 2.28

1. La fonction

$$f(n) = \begin{vmatrix} \frac{n}{2} & \text{si } n \text{ est pair} \\ -\frac{n+1}{2} & \text{si } n \text{ est impair} \end{vmatrix}$$

réalise une bijection entre \mathbb{N} et \mathbb{Z} .

2. La fonction

$$f(p,q) = \frac{(p+q)(p+q+1)}{2} + p$$

réalise une bijection entre $\mathbb{N} \times \mathbb{N}$ et \mathbb{N} .

3. La fonction $f: \mathbb{N} \to \mathbb{Q}_+$ définie récursivement par

$$f(0) = 0$$

$$f(2n) = \frac{1}{f(n) + 1}$$

$$f(2n + 1) = f(n) + 1$$

réalise une bijection entre \mathbb{N} et \mathbb{Q}_+ .

Bijection entre \mathbb{N} et \mathbb{Q}_+

