## Review ST3233: Applied time series analysis

- Overview of material:
  - ► Time series processes, stationarity, (sample) ACF and PACF.
  - (Seasonal) ARIMA processes, parameter estimation, forecasting, model building.
  - ► Cross-correlation/dynamic regression modeling, GARCH.
- Review is focused on material after midterm (Ch. 10-12): Seasonal models, Model building, Cross-correlation/dynamic regression modeling, GARCH.
  And (on property) a province of "property of the property of the pro
  - And (on request) a review of "mean" parameters.

## Review of ARIMA "mean" parameters

Motivating example for review on mean parameters:

- ▶ Suppose  $Y_t$  follows an ARIMA(p, 1, q) model, and  $W_t = Y_t Y_{t-1}$ .
- ▶ If  $E(W_t) = \mu \neq 0$ , what does that imply for  $Y_t$ ?
- ► To discuss:
  - ▶ Review: How to formulate/interpret/simulate/estimate/forecast ARMA(p, q) models with non-zero mean  $\mu$ ,
  - ▶ How to formulate/interpret/simulate/estimate/forecast ARIMA(p, 1, q) models with non-zero mean  $\mu$  for  $(Y_t Y_{t-1})$ .

## ARMA(p,q) models constant term $\theta_0$

▶ A stationary ARMA(p, q) model can be written compactly as

$$\phi(B)Y_t = \theta_0 + \theta(B)e_t,$$

with constant term  $\theta_0$  and AR and MA characteristic polynomials

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p,$$
  

$$\theta(x) = 1 - \theta_1 x - \theta_2 x^2 - \dots - \theta_q x^q.$$

Or equivalently

$$Y_{t} = \theta_{0} + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q}.$$

▶ With  $E(e_t) = 0$ , it follows that

$$E(Y_t) = E(\theta_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p})$$

and because  $Y_t$  is stationary,  $E(Y_t) = \mu$ , a constant given by:

$$\mu = \theta_0/(1 - \phi_1 - \ldots - \phi_p).$$

# Rewriting ARMA(p,q) models with constant term $\theta_0$

Instead of

$$Y_{t} = \theta_{0} + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} \\ -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q},$$

we can also write the ARMA model as

$$Y_{t} - \mu = \phi_{1}(Y_{t-1} - \mu) + \phi_{2}(Y_{t-2} - \mu) + \dots + \phi_{p}(Y_{t-p} - \mu) + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q}.$$

- ► Two ways to verify that this expression is correct:
  - Just plug in  $\theta_0 = \mu(1 \phi_1 \dots \phi_p)$  in the first expression
  - ▶ Start with  $X_t \sim ARMA(p,q)$  with  $E(X_t) = 0$ :

$$\phi(B)X_t = \theta(B)e_t,$$

and define  $Y_t = X_t + \mu$ :

$$\phi(B)(Y_t - \mu) = \theta(B)e_t.$$

▶ How to estimate  $\mu$  for a given time series?

## Estimating $\mu$ and forecasting $Y_t$ for the ARMA(p,q) model

- ▶ If  $E(Y_t) = \mu \neq 0$ ,  $\mu$  is included in the likelihood function, and we can obtain the MLE for  $\mu$  (see Ch.7).
- ▶ The MLE for  $\mu$  is used for forecasting  $Y_{t+g}$  (see Ch.9).
- ► A note on reading R output:

▶ Does "intercept" refer to  $\mu$  or  $\theta_0$ ? > theta0 <- mu\*(1-sum(phis)); theta0 [1] 1.5 > mu [1] 3

## ARIMA(p, d, q) models constant term $\theta_0$

▶ An ARIMA(p, d, q) model can be written compactly as

$$\phi(B)(1-B)^d Y_t = \theta_0 + \theta(B)e_t,$$

with constant term  $\theta_0$  and AR and MA characteristic polynomials

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p, \theta(x) = 1 - \theta_1 x - \theta_2 x^2 - \dots - \theta_q x^q.$$

• Or equivalently, for  $W_t = (1 - B)^d Y_t$ 

$$W_{t} = \theta_{0} + \phi_{1}W_{t-1} + \phi_{2}W_{t-2} + \dots + \phi_{p}W_{t-p} + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q},$$

It follows that

$$E(W_t) = E(\theta_0 + \phi_1 W_{t-1} + \phi_2 W_{t-2} + \ldots + \phi_p W_{t-p})$$

and because  $W_t$  is stationary,  $E(W_t) = \mu = \theta_0/(1 - \phi_1 - \ldots - \phi_p)$ .

• What is  $E(Y_t)$  if  $E(W_t) = \mu$ ?

## Example: $E(Y_t)$ for IMA(1,1) model with $\theta_0 \neq 0$

▶ For the IMA(1,1) model, if  $E(W_t) = E(Y_t - Y_{t-1}) = \mu$ 

$$(1-B)Y_{t} = \theta_{0} + e_{t} - \theta e_{t-1},$$

$$Y_{t} - Y_{t-1} = \mu + e_{t} - \theta e_{t-1},$$

$$Y_{t} = \mu + e_{t} - \theta e_{t-1} + Y_{t-1}.$$

▶ Substituting the expression for  $Y_{t-1}$ ,  $Y_{t-2}$ , etc we find

$$Y_{t} = \mu + e_{t} - \theta e_{t-1} + Y_{t-1},$$

$$= \mu + e_{t} - \theta e_{t-1} + (\mu + e_{t-1} - \theta e_{t-2} + Y_{t-2}),$$

$$= 2\mu + e_{t} + (1 - \theta)e_{t-1} - \theta e_{t-2} + Y_{t-2},$$

$$\dots$$

$$= t\mu + e_{t} + (1 - \theta)e_{t-1} + \dots + (1 - \theta)e_{1} - \theta e_{0} + Y_{0}.$$

▶ Suppose  $Y_0 = 0$ , then  $E(Y_t) = t \cdot \mu$ .

# $E(Y_t)$ in an ARIMA(p, 1, q) model with $\theta_0 \neq 0$

More generally, for an ARIMA(p,1,q) with  $W_t=Y_t-Y_{t-1}$ , with  $Y_0=0$ , we find that if  $E(W_t)=\mu$  then:

$$E(Y_{t}) = E(W_{t} + Y_{t-1}),$$

$$= \mu + E(Y_{t-1}),$$

$$= \mu + \mu + E(Y_{t-2}),$$
...
$$= t \cdot \mu + E(Y_{0}),$$

$$= t \cdot \mu.$$

Even more generally (Ch. 5),  $\theta_0 \neq 0$  in an ARIMA(p, d, q) model results in a mean function for  $Y_t$  which is a deterministic polynomial of degree d.

# Estimating $\mu$ and forecasting $Y_t$ for the ARIMA(p, 1, q) model

- Maximum likelihood estimates for all ARIMA model parameters, including  $\mu$  can be obtained as usual, based on the likelihood function for  $W_t$ .
- ▶ The MLE for  $\mu$  is used for forecasting  $Y_{t+g}$  (see Ch.9).
  - ► E.g., for IMA(1,1) use

$$Y_t = Y_{t-1} + \mu + e_t - \theta e_{t-1}.$$

You can obtain an estimate for  $\mu$  in an ARIMA(p,1,q) model using the "arima" function in R but it is less straightforward than doing so using the "Arima" function from the "forecast" package... so let's check that one out!

# Example simulation/estimation/forecast for ARIMA(1,1,1) process

- ▶ How to simulate an ARIMA(1,1,1) process with  $\theta_0 \neq 0$ ?
- Steps:
  - ▶ Get  $X_t \sim ARMA(1,1)$  with mean zero.
  - Get  $W_t = X_t + \mu = Y_t Y_{t-1}$ .
  - Fix  $Y_0 = 0$  and get  $Y_t = W_t + Y_{t-1}$ .

#### R-code for simu and estimation

```
library(forecast)
mu < -0.5
phis \leftarrow -0.8
Wzeromean <- arima.sim(mode = list(ma = -0.5, ar = phis,
 order = c(1,0,1), n=200)
W.t. <- Wzeromean + mil
Y.t <- diffinv(W.t, xi = 0) # xi is starting value Y_0
mod <- Arima(Y.t, order = c(1,1,1), include.drift = TRUE,
method="MI.")
> summary(mod)
          ar1 ma1 drift
      -0.7809 -0.4860 0.4844
```

▶ The drift term refers to  $\mu$  (NOT  $\theta_0$ ).

Forecasting in R using "forecast"

```
Nice plots with 80% and 95% Pls!
R-code (main points)
                                         r.t (observed and fore 0 40 80
mod <- Arima(Y.t.
 order = c(1,1,1),
 include.drift = TRUE,
 method="ML")
fcast <- forecast(mod, h=50)</pre>
                                                 50
                                                              200
plot(fcast)
                                                       Time
plot(fcast, include = 20)
                                         and foreca
> fcast$mean[50]-fcast$mean[49]
[1] 0.4843754
> coef(mod)['drift']
   drift
0.484378
                                                  200
                                                               240
```

### Summary

- ▶ Suppose  $Y_t$  follows an ARIMA(p, 1, q) model, and  $W_t = Y_t Y_{t-1}$ .
- ▶ If  $E(W_t) = \mu \neq 0$ ,  $E(Y_t)$  is a linear function of  $\mu$ , which we can estimate using ML estimation, and incorporate in the forecast.
- ► However, do note the implication of including  $\mu \neq 0$ : decide whether a time trend should be included in the forecast or not!



#### Seasonal models

- Some time series Y<sub>t</sub> have a season associated with them. For example
  - Monthly CO2 data: year (12 months)
  - ▶ Monthly airline passenger data: year (12 months)

#### Exhibit 10.2 Carbon Dioxide Levels with Monthly Symbols



#### Seasonal models

- Seasonal time series may show seasonal autocorrelation.
  - Example:  $Y_t = 0.8 Y_{t-12} + e_t$ ,
  - ▶ there is seasonal autocorrelation in  $Y_t$  because if  $Y_t$  was "relatively low" 12 months ago, it's expected to be low this month too.
- Multiplicative seasonal ARIMA models allow for modeling such seasonal autocorrelation:
  - seasonal autocorrelations are modeled using autoregressive and moving average terms with seasonal lags,
  - non-seasonal autoregressive and moving average terms can be added to capture non-seasonal autocorrelations.
    - This is done in a parsimonious way by multiplying characteristics polynomials, explained on the next slide.
- Seasonal differencing can be applied if the time series is not seasonally stationary (has a seasonal deterministic trend), to obtain a stationary time series.

#### Differenced multiplicative seasonal models

 $Y_t$  is a multiplicative ARIMA(p, d, q)x $(P, D, Q)_s$  process with

- ightharpoonup constant term  $\theta_0$ ,
- seasonal period s,
- $\triangleright$  non-seasonal orders p, q and seasonal orders P, Q,
- ▶ AR characteristic polynomial  $\phi(x)\Phi(x)$  with

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p,$$
  

$$\Phi(x) = 1 - \Phi_1 x^s - \Phi_2 x^{2 \cdot s} - \dots - \Phi_p x^{P \cdot s},$$

▶ MA characteristic polynomial  $\theta(x)\Theta(x)$  with

$$\begin{array}{rcl} \theta(x) & = & 1 - \theta_1 x - \theta_2 x^2 - \ldots - \theta_q x^q, \\ \Theta(x) & = & 1 - \Theta_1 x^s - \Theta_2 x^{2 \cdot s} - \ldots - \Theta_Q x^{Q \cdot s}, \end{array}$$

if  $Y_t$  is defined as follows:

$$\phi(B)\Phi(B)(1-B^s)^D(1-B)^dY_t=\theta_0+\theta(B)\Theta(B)e_t.$$
 or equivalently  $\phi(B)\Phi(B)W_t=\theta_0+\theta(B)\Theta(B)e_t,$  for 
$$W_t=\nabla_s^D\nabla^dY_t=(1-B^s)^D(1-B)^dY_t.$$

## Example: ARMA $(0,1)x(0,1)_{12}$

▶ The multiplicative Seasonal ARMA(0,1)x(0,1)<sub>12</sub> model is given by:

$$Y_{t} = \theta(B) \cdot \Theta(B)e_{t},$$

$$= (1 - \theta B)(1 - \Theta B^{12})e_{t},$$

$$= (1 - \theta B - \Theta B^{12} + \theta \Theta B^{13})e_{t},$$

$$= e_{t} - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}.$$

- ► This is also an ARMA(0,13) model with  $\theta_1 = \theta$ ,  $\theta_{12} = \Theta$  and  $\theta_{13} = -\theta\Theta$ , and all other  $\theta_i$ 's are fixed at zero.
- ► (P)ACFs, parameter estimation and forecasting: follow approach taken for non-seasonal ARIMA processes.
  - ▶ E.g., for process above, derive autocorrelation function as usual and find that  $\rho_k = 0$  for  $k \neq 0, 1, 11, 12, 13$ .
- How to do model selection?

## Time series model building

What are the tasks involved in selecting candidate ARIMA(p, d, q)×(P, D, Q)<sub>s</sub> models for a time series?

- ▶ Step 1: Select the order *d* of non-seasonal and *D* of seasonal differencing.
  - ▶ Informally: does ACF decay on seasonal and non-seasonal lags?
  - Based on tests: Unit root tests (not tested on final exam).
- ▶ Step 2: Select the orders p, q, P, Q and decide whether the constant term  $\theta_0$  and/or "in-between" predictors (lagged Y's or past white noise terms) should be removed.
  - ▶ Informally: Select p, q, P, Q with ACF, PACF (and EACF).
  - Based on information criteria: AICc, BIC.
    - They combine a negative measure of model fit with a penalty for the number of parameters, thus models with lower values are preferred.
    - Models up to +2 of the minimum value are usually considered as candidate models.
- ▶ Steps 1 and 2 may result in a set of candidate models. If so, we need to compare models (diagnostics and differences in forecasts).

## Cross-correlation and dynamic regression models

- Suppose we have a time series of interest  $Y_1, Y_2, \ldots, Y_t$  (e.g. changes in the unemployment rate), here denoted by Y, and we want to explore whether/how another time series  $X_1, X_2, \ldots, X_t$ , here denoted by X (e.g. depression measured in employment-related social media output), relates to Y.
  - E.g. does depression increase before or after unemployment increases? Or is there no relation at all?
  - Other examples: price and sales of an item, weather/climate and dengue outbreaks, ...
- ► Topics discussed:
  - Summarizing the correlation between X and Y using the (sample) cross-correlation function
  - ▶ Modeling *Y* using *X* while accounting for autocorrelation in *Y*: dynamic regression models

## Cross-correlation function $\rho_k(X, Y)$

- For jointly stationary X and Y, we define the cross-correlation function  $\rho_k(X,Y) = Corr(X_{t+k},Y_t) = Corr(X_t,Y_{t-k})$ .
- ▶ The sample ccf, based on pairs  $(X_1, Y_1), \dots, (X_n, Y_n)$ , is given by:

$$r_k(X,Y) = \frac{\sum_{t=k+1}^n (X_t - \bar{X})(Y_{t-k} - \bar{Y})}{\sqrt{\sum_{t=1}^n (X_t - \bar{X})^2} \sqrt{\sum_{t=1}^n (Y_t - \bar{Y})^2}}.$$

▶ If X and Y are stationary processes with ACFs  $\rho_k(X)$  and  $\rho_k(Y)$ , with X independent of Y, then approximately for large n,

$$r_k(X,Y) \sim N(0,V),$$

for all k, where  $V = 1/n(1+2\sum_{k=1}^{\infty}\rho_k(X)\rho_k(Y))$ .

▶ What is *V* when *X* and *Y* are independent white noise processes?

#### Cross-correlation function: Example

- $Y_t = \beta_0 + \beta_1 X_{t-m} + e_t$ , where the  $X_t$ 's are white noise with  $Var(X_t) = \sigma_X^2$ , independent of  $e_t$ .
  - ightharpoonup m > 0 is referred to as X leading Y.

$$\rho_{-m}(X,Y) = \frac{Cov(X_{t-m}, Y_t)}{\sqrt{Var(X_t)Var(Y_t)}},$$

$$= \frac{Cov(X_{t-m}, \beta_0 + \beta_1 X_{t-m} + e_t)}{\sqrt{\sigma_X^2} \sqrt{\beta_1^2 \sigma_X^2 + \sigma_e^2}},$$

$$= \frac{\beta_1 \sigma_X^2}{\sigma_X \sqrt{\beta_1^2 \sigma_X^2 + \sigma_e^2}},$$

$$= \frac{\beta_1 \sigma_X}{\sqrt{\beta_1^2 \sigma_X^2 + \sigma_e^2}},$$

and  $\rho_k(X, Y) = 0$  for  $k \neq -m$ .

Example: m = 4



# The CCF $\rho_k(X, Y)$ when $X_t$ 's are autocorrelated

▶ Do we still find that  $\rho_k(X,Y) = 0$  for  $k \neq -m$  in the model

$$Y_t = \beta_0 + \beta_1 X_{t-m} + Z_t,$$

where  $X_t$  and  $Z_t$  are independent from each other, but where  $X_t$  is not necessarily white noise?

Let's check:

$$\rho_k(X,Y) = \frac{Cov(X_{t+k},Y_t)}{\sqrt{Var(X_t)Var(Y_t)}} = \frac{Cov(X_{t+k},\beta_0 + \beta_1 X_{t-m} + Z_t)}{\sigma_X \sigma_Y}$$

 $\rho_k(X,Y)$  can be non-zero for  $k \neq -m$  if the  $X_t$ 's are autocorrelated!

▶ So how to figure out which lag *m* is important?

# Another issue when trying to figure out what lag(s) to focus on...

Simulation example for the sample CCF when  $Y_t = Z_t \sim AR(1)$ ,  $X_t \sim AR(1)$  (independent of  $Z_t$ ) and n = 200.





- ▶ What's going on?
- Remember: If X and Y are stationary processes with ACFs  $\rho_k(X)$  and  $\rho_k(Y)$ , with X independent of Y, then approx. for large n,  $r_k(X,Y) \sim N(0,V)$  for all k, where  $V = 1/n(1+2\sum_{k=1}^{\infty}\rho_k(X)\rho_k(Y))$  can get larger than 1/n!

# How to figure out whether some $X_{t-m}$ 's are related to $Y_t$ ?

▶ Suppose we want to decide if any  $X_{t-m}$  are related to  $Y_t$  in a model in the form of

$$Y_t = \sum_{k=-\infty}^{\infty} \beta_k X_{t+k} + Z_t,$$

where  $X_t$  and  $Z_t$  are time series processes, how can we find out which  $\beta_k$ 's are non-zero?

- Approach:
  - 1. Find filter  $\pi(B)$  for  $X_t$  such that  $\tilde{X}_t = \pi(B)X_t$  is approximately white noise.
    - ▶ E.g., if X is an AR(p) process, then  $e_t = X_t \sum_{k=1}^p \phi_k X_{t-k}$ .
    - ► The filter for X is given by  $\pi(B) = 1 \sum_{k=1}^{p} \overline{\phi_k} B^k$ .
  - 2. Examine  $r_k(\tilde{X}, \tilde{Y})$  where  $\tilde{Y}_t = \pi(B)Y_t$  (assumed to be stationary):
    - ▶  $Var(r_k(\tilde{X}, \tilde{Y})) = V = 1/n(1 + 2\sum_{k=1}^{\infty} \rho_k(\tilde{X})\rho_k(\tilde{Y})) = 1/n$ , thus if there is no relation between X and Y ( $\beta_k = 0 \forall k$ ), then we expect to find mostly 'insignificant  $r_k$ ' with  $|r_k(\tilde{X}, \tilde{Y})| < 1.96\sqrt{1/n}$ .
    - ▶ However, if there is a  $\beta_m \neq 0$ , then  $\rho_m(\tilde{X}, \tilde{Y}) \propto \beta_m$ , thus we expect to find that  $r_m$  is significant.

### Example: Q2 in tut 8

 $Y_t = \log(\text{weekly sales})$  and  $X_t = \text{sales price}$ , for Bluebird Lite potato chips.

Let's find out if the sales price is related to weekly sales!



First step? Get CCF for prewhitened series!

### CCF prewhitened series

▶ To obtain the sample CCF for prewhitened series  $\tilde{X}_t$  and  $\tilde{Y}_t$ , the following approach was used in R (to find an ARIMA(p,d,0) model):

```
> auto.arima(X.t, ic = "aicc", approximation = FALSE,
stepwise = FALSE, max.q = 0)
Series: X.t
ARIMA(4,1,0)
m1=arima(X.t,order=c(4,1,0), include.mean = FALSE)
prewhiten(x=(X.t),y=(as.vector(Y.t)), x.model=m1)
```

Note that differencing doesn't change the relation between  $X_t$  and  $Y_t$  because

$$Y_t = \beta_0 + \beta_1 X_t + Z_t,$$
  
$$\nabla Y_t = \beta_1 \nabla X_t + \nabla Z_t.$$

#### CCF for whitened series



m1=arima(X.t,order=c(4,1,0), include.mean = FALSE)
prewhiten(x=(X.t),y=(as.vector(Y.t)), x.model=m1)

- ▶ Conclusion? Suggested model:  $Y_t = \beta_0 + \beta_1 X_t + Z_t$ .
- ▶ Can we fit a model  $Y_t = \beta_0 + \beta_1 X_t + Z_t$  to try to predict  $Y_t$ , or obtain the relation between  $Y_t$  and  $X_t$ ?

# Modeling $Y_t$ using $X_t$

A model of the form

$$Y_t = \beta_0 + \beta_1 X_{t-m} + Z_t$$

is called a transfer-function model/distributed-lag model/dynamic regression model.

- These models may include the covariate at several lags but we discussed only the example with just one lagged covariate.
- ▶ After identifying which  $X_{t-m}$  to include, how to specify  $Z_t$  in the model  $Y_t = \beta_0 + \beta_1 X_{t-m} + Z_t$ ?
- ▶ In order to explore the model specification for  $Z_t$ , the following approach is used:
  - (A) Regress  $Y_t$  on  $X_{t-m}$  (assume temporarily that  $Y_t = \beta_0 + \beta_1 X_{t-m} + e_t$ ) and obtain residuals  $\hat{Z}_t = Y_t \hat{Y}_t$ .
  - (B) Explore  $\hat{Z}_t$  to specify a candidate model for  $Z_t$
  - (C) Fit the complete model  $Y_t = \beta_0 + \beta_1 X_{t-m} + Z_t$ , where  $Z_t$  is specified by the candidate model and check model diagnostics.

## Sales example continued

- ▶ Step A: Regress  $Y_t$  on  $X_t$  and obtain residuals.
- ▶ Step B: Analyze the residuals to find a candidate model for  $Z_t$ .
- ▶ Step C: Fit the complete model, here ARIMA(0,1,1) for  $Z_t$ :

- Conclusion:
  - $Y_t = \beta_1 X_t + Z_t$  where  $\hat{\beta}_1 \approx -1.9$  and  $\nabla Z_t = e_t \theta e_{t-1}$  where  $\hat{\theta} \approx 0.7$ .
  - Every one unit increase in X at time t is associated with an decrease in Y (log(sales)) at time t of appr. -1.9.
  - Interpretation for relation between X and sales, given by  $\exp(Y)$ ?
    - Every one unit increase in X at time t is associated with a relative change of (multiplying Y by)  $\exp(-1.9) \approx 0.15$  in Y.

## Summary Ch. 11

- ▶ Suppose we have a time series of interest  $Y_1, Y_2, ..., Y_t$  (e.g. changes in log-transformed sales), here denoted by Y, and we want to explore whether/how another time series  $X_1, X_2, ..., X_t$ , here denoted by X (e.g. sales price), relates to  $Y_t$ .
- ▶ We discussed:
  - ► How to summarize the correlation between *X* and *Y* using the (sample) cross-correlation function (CCF),
  - ▶ and that the sample CCF can show spurious correlation if

$$Y_t = \beta_0 + \beta_1 X_{t-m} + Z_t,$$

if X and Z are both autocorrelated time series.

- ► How to prewhiten X, and use the same procedure for Y, to obtain a new sample CCF which is informative of the relation between Y and X.
- ▶ How to fit a dynamic regression model to model Y using X while accounting for autocorrelation in Y.

#### Ch. 12: GARCH models

▶ The class of GARCH(p,q) models is used for estimating and forecasting volatility, which refers to the conditional variance or standard deviation  $SD(r_t|r_{t-1},r_{t-2},\ldots)$  for some time series  $r_t$  (e.g. returns).





#### **GARCH**

- We can consider using a GARCH model for non-autocorrelated time series
  - with autocorrelation in squared or absolute values,
  - where normality does not hold true.







#### **GARCH** models

▶ The generalized autoregressive conditional heteroskedasticity model, GARCH(p, q), for  $r_t$  is given by:

$$r_{t} = \sigma_{t|t-1}\varepsilon_{t},$$

$$\sigma_{t|t-1}^{2} = \omega + \beta_{1}\sigma_{t-1|t-2}^{2} + \ldots + \beta_{p}\sigma_{t-p|t-p-1}^{2} + \alpha_{1}r_{t-1}^{2} + \alpha_{2}r_{t-2}^{2} + \ldots + \alpha_{q}r_{t-q}^{2}$$

where the innovations  $\varepsilon_t$  are iid and independent of the past returns, with  $E(\varepsilon_t) = 0$  and constant variance.

- Examples:
  - ▶ For the ARCH(1) model:

$$\sigma_{t|t-1}^2 = \omega + \alpha r_{t-1}^2.$$

▶ For the GARCH(1,1) model:

$$\sigma_{t|t-1}^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1|t-2}^2.$$

#### Properties and forecasts

- We discussed how to evaluate (conditional) expectations and the variance of  $r_t$ , that  $r_t^2$  satisfies an ARMA model, as well as how to forecast  $\sigma_{t+h|t}^2$ .
- ▶ For these derivations, the following notation was useful:
  - $ightharpoonup R_t$  refers to the return as a random variable and  $r_t$  to its realization,
  - ▶  $V_{t|t-1}$  refers to the conditional variance  $\sigma^2_{t|t-1}$  as a random variable and  $v_{t|t-1}$  to its realization.
- ▶ Example for GARCH(1,1) forecast

$$\hat{v}_{t+g|t} = E(R_{t+g}^2|R_j = r_j, j = 1, 2, \dots t),$$

$$= E(V_{t+g|t+g-1}\varepsilon_{t+g}^2|R_j = r_j, \text{ for } j = 1, \dots, t),$$

$$= E(\varepsilon_{t+g}^2)E(V_{t+g|t+g-1}|R_j = r_j, \text{ for } j = 1, \dots, t),$$

$$= E(V_{t+g|t+g-1}|R_j = r_j, \text{ for } j = 1, \dots, t),$$

$$= E(V_{t+g|t+g-1}|R_j = r_j, \text{ for } j = 1, \dots, t),$$

$$= E(\omega + \alpha_1 R_{t+g-1}^2 + \beta_1 V_{t+g-1|t+g-2}|R_j = r_j, \text{ for } j = \dots),$$

$$= \omega + \alpha_1 r_t^2 + \beta_1 \hat{v}_{t|t-1}, \text{ for } g = 1,$$

$$\omega + (\alpha_1 + \beta_1) \hat{v}_{t+g-1|t}, \text{ for } g > 1.$$

# Example of GARCH(1,1) forecast: Conditional SD and returns





- If  $r_t = \sigma_{t|t-1}\varepsilon_t$  with  $\varepsilon_t \sim N(0,1)$ , the forecast intervals for  $r_{t+h}$  are given by  $\hat{r}_{t+h} \pm 1.96\sigma_{t+h|t}$ , where  $\hat{r}_{t+h} = E(r_{t+h}|r_1, \dots, r_t) = 0$ .
- ▶ The conditional SD  $\sigma_{t+h|t}$  converges to the unconditional SD for  $r_t$ , this follows from the (stationary) ARMA(1,1) representation for  $r_t$ ... really?

#### **GARCH** forecasts

- ▶ The conditional SD  $\sigma_{t+h|t}$  converges to the unconditional SD for  $r_t$ , this follows from the (stationary) ARMA(1,1) representation for  $R_t$ :
  - ► E.g., for GARCH(1,1):

$$R_t^2 = \omega + (\beta_1 + \alpha_1)R_{t-1}^2 + \eta_t - \beta_1\eta_{t-1},$$

where the  $\eta_t$ 's have mean zero and not autocorrelated and not correlated with the squared returns.

- ▶ Thus for forecasting:  $\hat{R}_t^2(g) \rightarrow E(R_t^2)$ ,
- where  $\hat{R}_t^2(g) = E(R_{t+g}^2 | R_j = r_j, j = 1, 2, ... t) = \hat{v}_{t+g|t}$  and  $E(R_t^2) = var(R_t)$ .

## Review ST3233: Applied time series analysis

- Overview of material:
  - ► Time series processes, stationarity, (sample) ACF and PACF.
  - (Seasonal) ARIMA processes, parameter estimation, forecasting, model building.
  - Cross-correlation/dynamic regression modeling, GARCH.
- ► The End!