Билет 36

Aвтор1, ..., AвторN

21 июня 2020 г.

Содержание

0.1	Билет 36: Путь. Носитель пути. Простой путь. Гладкий путь. Эквивалентные пути.
	Определение кривой

Билет 36 СОДЕРЖАНИЕ

0.1. Билет 36: Путь. Носитель пути. Простой путь. Гладкий путь. Эквивалентные пути. Определение кривой.

Определение 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространство. $\gamma: [a,b] \mapsto X$ - непрерывная функция.

Тогда γ называется путём.

Начало пути - $\gamma(a)$

Конец пути - $\gamma(b)$

Носитель пути - $\gamma([a,b]) \iff \operatorname{Im} \gamma$.

Путь называется замкнутым если $\gamma(a) = \gamma(b)$.

Путь называется простым если $\nexists t \neq s \in (a,b)$ $\gamma(t) = \gamma(s)$ (путь простой если γ - инъекция на (a,b), но может быть $\gamma(a) = \gamma(b)$).

Противоположный путь: $\tilde{\gamma}(t) = \gamma(a+b-t), \ \tilde{\gamma}: [a,b] \mapsto X.$

Пути $\gamma:[a,b]\mapsto X$ и $\gamma':[c,d]\mapsto X$ называются эквивалентными (обозначается $\gamma\sim\gamma'$), если $\exists \tau:[a,b]\mapsto [c,d]$, непрерывное строго монотонное отображение, такое, что $\tau(a)=c$ и $\tau(b)=d$, такое, что $\gamma=\gamma'\circ\tau$.

Замечание.

Эквивалетность путей - отношение эквивалентности.

Доказательство.

Рефлексивность очевидно.

Симметричность: подойёдт τ^{-1} , все нужные свойства когда-то доказывались отдельной теоремой. see Annt^-1 - +, +t^-1 (c) = a, t^-1 (d) = b ~gamma = gamma o t^-1

Транзитивность: подойдёт композиция нужных отображений.

see Ann for details, but that's c

Определение 0.2.

Кривая - класс эквивалентности путей.

Конкретный представитель класса - параметризация кривой.

Носитель кривой - носитель путей этого класса.