

20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
Expanded uncertainty (confidence interval of 95 %)		ı	$u_e = 2u_c$					21.4	21.1	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

	3 Measurement U		1	l				T -	I			
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree		
			value	Distribution		1g	10g	Unc.	Unc.	of		
								(1g)	(10g)	freedo		
										m		
Mea	Measurement system											
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	8		
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞		
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞		
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8		
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8		
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8		
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8		
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8		
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8		
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8		
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8		
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8		
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8		
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8		
Test sample related												
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71		
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5		
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8		

	Phantom and set-up										
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞	
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43	
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞	
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521	
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257	
Expanded uncertainty (confidence interval of 95 %)		ı	$u_e = 2u_c$					20.8	20.6		

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree					
			value	Distribution		1g	10g	Unc.	Unc.	of					
								(1g)	(10g)	freedo					
										m					
Meas	Measurement system														
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞					
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8					
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8					
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞					
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞					
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8					
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8					
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8					
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8					
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8					
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8					
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8					
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8					
14	Fast SAR z-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8					
			Test	sample related	l	Test sample related									

15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phant	tom and set-uj	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
Expanded uncertainty (confidence interval of 95 %)		ı	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period		
01	Network analyzer	E5071C	MY46110673	January 26, 2016	One year		
02	Power meter	NRVD	102196	March 02, 2016	One year		
03	Power sensor	NRV-Z5	100596	March 03, 2016	One year		
04	Signal Generator	E4438C	MY49071430	February 01, 2016	One Year		
05	Amplifier	60S1G4	0331848	No Calibration Requested			
06	BTS	E5515C	MY50263375	January 30, 2016	One year		
07	BTS	CMW500	129942	March 03, 2016	One year		
80	E-field Probe	SPEAG EX3DV4	3617	August 26, 2015	One year		
09	DAE	SPEAG DAE4	777	August 26, 2015	One year		
10	Dipole Validation Kit	SPEAG D750V3	1017	July 23, 2015	One year		
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 23, 2015	One year		
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 16, 2015	One year		
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 23, 2015	One year		
14	Dipole Validation Kit	SPEAG D2450V2	853	July 24, 2015	One year		

END OF REPORT BODY

ANNEX A Graph Results

850 Right Cheek Low

Date: 2016-5-4

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.923$ mho/m; $\epsilon r = 41.252$; $\rho = 0.923$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.4 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.170 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.376 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.188 W/kg

SAR(1 g) = 0.151 W/kg; SAR(10 g) = 0.116 W/kg

Maximum value of SAR (measured) = 0.164 W/kg

Fig.1 850MHz

Fig. 1-1 Z-Scan at power reference point (850 MHz)

850 Body Rear High

Date: 2016-5-4

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.053$ mho/m; $\epsilon r = 56.125$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 - SN3617 ConvF(9.71, 9.71, 9.71)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.322 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.18 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.545 W/kg

SAR(1 g) = 0.275 W/kg; SAR(10 g) = 0.134 W/kg

Maximum value of SAR (measured) = 0.361 W/kg

Fig.2 850 MHz

Fig. 2-1 Z-Scan at power reference point (850 MHz)

1900 Right Cheek Low

Date: 2016-5-6

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.256 \text{ mho/m}$; $\epsilon r = 39.943$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.247 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.919 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.331 W/kg

SAR(1 g) = 0.222 W/kg; SAR(10 g) = 0.139 W/kgMaximum value of SAR (measured) = 0.261 W/kg

Fig.3 1900 MHz

Fig. 3-1 Z-Scan at power reference point (1900 MHz)

1900 Body Bottom Middle

Date: 2016-5-6

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.426 \text{ mho/m}$; $\epsilon r = 54.174$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.677 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.82 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.948 W/kg

SAR(1 g) = 0.553 W/kg; SAR(10 g) = 0.320 W/kgMaximum value of SAR (measured) = 0.674 W/kg

Fig.4 1900 MHz

Fig. 4-1 Z-Scan at power reference point (1900 MHz)

WCDMA 850 Right Cheek High

Date: 2016-5-4

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.948$ mho/m; $\epsilon r = 41.089$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.170 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.528 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.193 W/kg

SAR(1 g) = 0.154 W/kg; SAR(10 g) = 0.118 W/kg

Maximum value of SAR (measured) = 0.167 W/kg

Fig.5 WCDMA 850

Fig. 5-1 Z-Scan at power reference point (850 MHz)

WCDMA 850 Body Rear Low

Date: 2016-5-4

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.973$ mho/m; $\epsilon r = 56.353$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.71, 9.71, 9.71)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.325 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.79 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.374 W/kg

SAR(1 g) = 0.301 W/kg; SAR(10 g) = 0.233 W/kg

Maximum value of SAR (measured) = 0.329 W/kg

Fig.6 WCDMA 850

Fig. 6-1 Z-Scan at power reference point (WCDMA850)

WCDMA 1700 Right Cheek Middle

Date: 2016-5-5

Electronics: DAE4 Sn777 Medium: Head 1750 MHz

Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.531$ mho/m; $\epsilon r = 39.864$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1732.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.304 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.235 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.351 W/kg

SAR(1 g) = 0.242 W/kg; SAR(10 g) = 0.156 W/kg

Maximum value of SAR (measured) = 0.298 W/kg

Fig.7 WCDMA1700

Fig. 7-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1700 Body Bottom High -AP ON

Date: 2016-5-5

Electronics: DAE4 Sn777 Medium: Body 1750 MHz

Medium parameters used: f = 1752.6 MHz; $\sigma = 1.421 \text{ mho/m}$; $\epsilon r = 54.474$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.27 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.62 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.556 W/kg

Maximum value of SAR (measured) = 1.17 W/kg

Fig.8 WCDMA1700

Fig. 8-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1700 Body Rear Middle -AP OFF

Date: 2016-5-5

Electronics: DAE4 Sn777 Medium: Body 1750 MHz

Medium parameters used: f = 1752.6 MHz; $\sigma = 1.421 \text{ mho/m}$; $\epsilon r = 54.474$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.558 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.07 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.775 W/kg

SAR(1 g) = 0.501 W/kg; SAR(10 g) = 0.313 W/kg

Maximum value of SAR (measured) = 0.545 W/kg

Fig.9 WCDMA1700

Fig. 9-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1900 Right Cheek Low

Date: 2016-5-6

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.423$ mho/m; $\epsilon r = 39.976$; $\rho = 1.423$ mho/m; $\epsilon r = 39.976$; $\epsilon r = 39.976$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.373 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.070 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.501 W/kg

SAR(1 g) = 0.338 W/kg; SAR(10 g) = 0.213 W/kg

Maximum value of SAR (measured) = 0.395 W/kg

Fig.10 WCDMA1900

Fig. 10-1 Z-Scan at power reference point (WCDMA1900)