

CSCI 4380/6380 DATA MINING

Fei Dou

Assistant Professor School of Computing University of Georgia

August 22, 2023

Data Representation

Data Mining

Motivating Challenges

- Scalability
- High Dimensionality
- Heterogeneous and Complex Data
- Data Ownership and Distribution
- Non-traditional Analysis
 - hypothesis generation and evaluation

Data Mining Process

What is Data?

- Collection of data objects and their attributes
- An *attribute* is a property or characteristic of an object
 - Examples: eye color of a person, etc.
 - Attribute is also known as variable, field, characteristic, dimension, or feature
- A collection of attributes describe an *object*
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

	1)
-	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute for a particular object
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute can be different than the properties of the values used to represent the attribute

Types of Attributes

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, counts, elapsed time (e.g., time to run a race)

Properties of Attribute Values

 The type of an attribute depends on which of the following properties/operations it possesses:

```
Distinctness: =, ≠
Order: <, >
Differences are meaningful: +, -
Ratios are meaningful: *,
```

- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & meaningful differences
- Ratio attribute: all 4 properties/operations

Discrete and Continuous Attributes

• Discrete Attribute, $x \in N$

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

• Continuous Attribute, $x \in R$

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Important Characteristics of Data

- Dimensionality (number of attributes)
 - High dimensional data brings a number of challenges
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Size
 - Type of analysis may depend on size of data

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data and spatiotemporal data
 - Text databases
 - The World-Wide Web

Vector/Tabular Data

	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	M	1	70	50	1	12	1.73
R1002	M	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	M	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	M	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	M	1	69	67	1	12	3.25

Vector/Tabular Data Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such a data set can be represented by an m by n matrix

Set Data

- Each transaction involves a set of items.
- Can represent transaction data as vector data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Text Data

"Text mining, also referred to as text data mining, roughly equivalent to text analytics, refers to the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities)." –from wiki

Text Data – Topic Modeling

Text Data – Word Embedding

$$king - man + woman = queen$$

Sequence Data

SYNTENIC ASSEMBLIES FOR CG15386

MD106	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
NEWC	ATGCTTAGTAATCCTTACTTTAAATCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
W501	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD199	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
C1674	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
SIM4	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD106	CTACGGCCTAATGGTGCTAACAGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
NEWC	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
W501	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD199	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
C1674	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
SIM4	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD106	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
NEWC	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
W501	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
MD199	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
C1674	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
SIM4	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
MD106	CTGCAGGAGGCGTCCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
NEWC	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG
W501	CTGCAGGAGGCGTCCACCACCACTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG
MD199	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
C1674	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
SIM4	CTGCAGGAGGCGTCCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG

Sequence Data – Seq2Seq

Time Series

Weekly U.S. Retail Gasoline Prices, Regular Grade

Time Series

22

Graph / What Kind of Data Can be Mined?

Graph / Network

Graph / Network – Community Detection

Image Data

Image Data – Neural Style Transfer

Image Data – Image Captioning

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"girl in pink dress is jumping in air."

"black and white dog jumps over bar."

"young girl in pink shirt is swinging on swing."