Prerequisites

- general(abbreviations[w.l.o.g.])
- sets(notation, operations)
- strings(notation)

Proof: Equivalence of positive and negative grammars

This section defines both negative and positive versions of *n*-gram grammars and shows that they are expressively equivalent. Like in the section on the equivalence of mixed and fixed *n*-gram grammars, this is accomplished by a **constructive** proof. A proof is constructive if it doesn't just derive the existence of some object, but gives a concrete procedure for constructing this object. In the case at hand, the proof shows how to construct a positive grammar from a negative one, and the other way around.

Definition 1. Let Σ be some alphabet, and $\Sigma_{\$}$ its extension with a distinguished edge marker symbol \$. An n-gram over $\Sigma_{\$}$ is an element of $\Sigma_{\n ($n \ge 1$). An n-gram grammar G over alphabet Σ is a finite set of n-grams over $\Sigma_{\$}$. Every n-gram grammar has a **polarity**:

- 1. If *G* is negative (^-G), then a string *s* over Σ is well-formed with respect to ^-G iff there are no u, v over $\Sigma_{\$}$ and no $g \in ^-G$ such that $\$^{n-1} \cdot s \cdot \$^{n-1} = u \cdot g \cdot v$.
- 2. If *G* is positive (^+G), then a string *s* over Σ is well-formed with respect to ^+G iff for all u, v over $\Sigma_{\$}$ and $g \in \Sigma_{\n such that $\$^{n-1} \cdot s \cdot \$^{n-1} = u \cdot g \cdot v$, it holds that $g \in ^+G$.

The **language of** G, denoted L(G), contains all strings that are well-formed with respect to G, and only those.

Theorem 2. For every *n*-gram grammar *G* there exists a grammar G' of opposite polarity such that L(G) = L(G').

Proof. We assume w.l.o.g. that G is a positive grammar and denote it by ${}^+G$. We define a negative counterpart ${}^-G'$ as $\Sigma^n_{\$} - {}^+G$ and show that $L({}^+G) = L({}^-G')$.

First, every $s \in L(^+G)$ is also a member of $L(^-G')$. Assume towards a contradiction that $s \notin L(^-G')$. Then there must be some $g \in ^-G'$ such that $s^{n-1}s = u \cdot g \cdot v \ (u,v,\in \Sigma_{\$}^*)$. But since $s^n = \Sigma_{\$}^n - ^+G$, it must hold that $s^n \in S$, wherefore $s \notin L(^+G)$. As this contradicts our initial assumption that $s \in L(^+G)$, it cannot be the case that $s \notin L(^-G')$. So $s \in L(^-G')$ after all.

In the other direction, suppose that $s \notin L(^+G)$. Then by definition there are $u, v \in \Sigma_{\* and $\Sigma_{\$}^n \ni g \notin^+ G$ such that $\$^{n-1}s\$^{n-1} = u \cdot g \cdot v$. But then $g \in^- G'$, which entails $s \notin L(^-G')$.

This shows that $s \in L(^+G)$ iff $s \in L(^-G')$. As s was arbitrary, this holds for all strings and establishes $L(^+G) = L(^-G')$, which concludes our proof.