Fourier-space Form of the Biot-Savart Law

Mykhailo Flaks

October 4, 2023

Introduction

Magnetostatics deals with magnetic fields in the presence of steady currents or magnetization. The magnetic field due to such sources can be determined using the Biot-Savart law. We limit considerations to the case of steady currents.

Biot-Savart Law in Real Space

The Biot-Savart law for a steady current distribution J(r) in real space is:

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}') \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} d^3 \mathbf{r}'$$

where μ_0 is the permeability of free space. The integration is over the entire space where the current distribution is non-zero, \mathbf{r} is the position vector of the point where the magnetic field $\mathbf{B}(\mathbf{r})$ is to be determined, and \mathbf{r}' is the position vector of the current element.

Fourier Transformation

The convention for the physical Fourier transform used is:

$$g(k) = \int G(x) \exp(-ikx) dx$$
$$G(x) = \frac{1}{2\pi} \int g(k) \exp(ikx) dk$$

where k is the wave-vector. In DFT, the cyclic frequency f is used and is related to the wave-vector as:

$$k = 2\pi f$$

Biot-Savart Law in Fourier Space

In Fourier space, the Biot-Savart law becomes:

$$\hat{\mathbf{B}}(k) = i\mu_0 k \times \hat{\mathbf{J}}(k)$$

To find the magnetic field in real space, one can take the inverse Fourier transform:

$$\mathbf{B}(\mathbf{r}) = \frac{1}{2\pi} \int e^{ik\mathbf{r}} \hat{\mathbf{B}}(k) \, dk$$

Two-dimensional Fourier Transform

When dealing with planar distributions, it is convenient to use twodimensional Fourier transform. Assuming distributions in the x-yplane, the Fourier transform is:

$$\hat{g}(k_x, k_y) = \int \int G(x, y) \exp(-i(k_x x + k_y y)) dx dy$$
 (1)

Conclusion

By using the Fourier-space representation of the Biot-Savart law and the specific conventions for the Fourier transform, we can efficiently compute the magnetic field from a given current distribution. The approach is extended for two-dimensional distributions and can be adapted for various physical situations.