p8106 - Final Project - NBA Players Salary Prediction

Mingkuan Xu, Mengfan Luo, Yiqun Jin

5/6/2022

Introduction

Describe your data set. Provide proper motivation for your work.

What questions are you trying to answer? How did you prepare and clean the data?

Data Preprocessing

Part 0 - Data Preprocessing

Part 1 - Exploratory Analysis

Since minute stands for minutes played per game, we will divided variables stands for counts by minute to get a rate. These variables includes field_goal, fg_attempt x3p, x3p_attempt, x2p, x2p_attempt, free_throw, ft_attempt, offensive_rb defenssive_rb, total_rb, assistance, steal, block, turnover, personal_foul and point.

Univariate Analysis

Distributions of the two categorical variables, team and position.

Distributions of other numeric variables.

Histograms of Predictive Variables (Group A)

Histograms of Predictive Variables (Group B)

Histograms of Predictive Variables (Group C)

Correlation Analysis

Analyzing trends in data

From numeric variables, we found that stl,x3p, age,gs seem to have some non-linear trends.

From categorical variable position, extremely high values in salary show in all positions and some teams.

Models

Part 1 Linear regression

- (a) Standard Least-Squared
- (b) Elastic Net (including lasso/ridge)

###(c) Principle Component Regression

Part 2 Generalized Linear Regression

(a) GAM

```
## Family: gaussian
## Link function: identity
##
## Formula:
## salary ~ s(age) + s(game) + s(game_starting) + s(free_throw) +
##
       s(ft_attempt) + s(defenssive_rb) + s(assistance) + s(block) +
##
       s(personal_foul) + s(point)
##
## Parametric coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  8.151
                            0.301
                                     27.08
                                            <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Approximate significance of smooth terms:
##
                     edf Ref.df
                                      F p-value
## s(age)
                    4.722 5.775 14.002 < 2e-16 ***
                   1.000 1.000 4.324 0.038422 *
## s(game)
## s(game_starting) 1.532 1.883 23.181 < 2e-16 ***
## s(free_throw)
                  7.542 8.452 2.095 0.022370 *
```

```
## s(ft_attempt) 2.098 2.759 0.603 0.485917
## s(defenssive_rb) 1.330 1.585 2.465 0.065744 .
## s(assistance) 1.114 1.217 17.575 2.90e-05 ***
## s(block) 1.000 1.000 0.009 0.923298
## s(personal_foul) 7.693 8.529 3.699 0.000214 ***
## s(point) 3.351 4.242 6.044 7.88e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.652 Deviance explained = 68.5%
## GCV = 33.514 Scale est. = 30.265 n = 334
```

(b) MARS

nprune degree ## 12 6 2

[1] 40.30051

Table 1: RMSE of Different Models

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
LeastSquare	4.92	5.92	6.41	6.44	6.89	9.04	0

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
ElasticNet	4.36	5.44	5.88	6.02	6.59	8.22	0
PCR	4.07	6.10	6.78	6.70	7.41	8.80	0
MARS	4.04	5.38	5.82	5.84	6.45	8.25	0

Table 2: RMSE of Different Models on Test Set

	Linear	ElasticNet	PCR	GAM	MARS
RMSE	7.25	7.21	7.34	7.19	6.35