Лабораторна робота №5.

Розв'язати задачу безумовної оптимізації для квадратичної функції:

$$f(x) = ax_1^2 + bx_1x_2 + cx_2^2 + dx_1 + ex_2 \rightarrow min$$
,

методом Ньютона. Коефіцієнти a,b,c,d,e задані в таблиці 1, $\varepsilon = 0.001$

	а	b	c	d	e
1	5	4	1	-16	-12
2.	8	2	1	-3	-6
3.	3	2	3	-2	-3
4.	9	5	1	6	2
5.	2	1	6	-5	-13
6.	7	-1	1	7	-4
7.	3	1	1	1	5
8.	7	5	1	6	3
9.	4	2	3	-2	-3
10.	9	1	1	2	-1
11.	5	4	1	6	4
12.	1	2	4	-2	-3
13.	3	3	1	6	5
14.	6	-1	1	-3	5
15.	1	1	4	2	1

	a	b	c	d	e
16.	2	2	2	-2	-3
17.	1	-4	1	2	2
18.	4	2	4	-2	-3
19.	5	2	1	-2	-10
20.	5	2	2	-4	-2
21.	6	2	1	-2	-3
22.	2	2	1	-2	-3
23.	5	4	6	-2	-6
24.	6	2	3	-2	-6
25.	5	-6	4	-2	-3
26.	6	2	4	-2	15
27.	6	4	5	-2	-3
28.	5	2	3	-6	-4
29.	2	2	3	-2	-3
30.	5	-2	1	-2	3

Метод Ньютона

Постановка задачі: $f(x) \to \min$, $x \in E^n$, та функція $f(x) \in C^2(E^n)$.

Метод Ньютона є методом ІІ-го порядку, тобто використовує обчислення других похідних функції f(x), яка мінімізується. У методі Ньютона мінімізуюча послідовність $\left\{x^{(k)}\right\}_{k=0}^{\infty}$ генерується виходячи з квадратичної апроксимації цільової функції.

Згідно з визначенням функції $f \in C^2$ для чергової точки $x^{(k)}$ маємо

$$f(x) - f(x^{(k)}) = \left(f'(x^{(k)}), x - x^{(k)}\right) + \frac{1}{2}\left(f''(x^{(k)})\cdot(x - x^{(k)}), x - x^{(k)}\right) + o\left(\left\|x - x^{(k)}\right\|^2\right).$$

Для визначення наступної точки $x^{(k+1)}$ мінімізується функція $f_k(x)$ яка є квадратичною частиною приросту $f(x) - f\left(x^{(k)}\right)$, тобто розв'язується задача

$$\left(f'\left(x^{(k)}\right), x - x^{(k)}\right) + \frac{1}{2}\left(f''\left(x^{(k)}\right) \cdot \left(x - x^{(k)}\right), x - x^{(k)}\right) \to \min, x \in E^n. \tag{1}$$

Виходячи із диференціальних умов оптимальності маємо, що в точці мінімуму функції $f_k(x)$ її градієнт $f_k^{'}(x)$ перетворюється на нуль, тобто

$$f_k'(x) = f_k'(x^{(k)}) + f_k''(x^{(k)})(x - x^{(k)}) = 0.$$
 (2)

Якщо матриця Гессе $f_k''(x^{(k)})$ системи лінійних алгебраїчних рівнянь (2) невироджена, тоді отримаємо розрахункову формулу

$$x^{(k+1)} = x^{(k)} - \left[f''(x^{(k)}) \right]^{-1} \cdot f'(x^{(k)}), k = 0, 1, 2, \dots$$
або $x^{(k+1)} = x^{(k)} + p^{(k)}, k = 0, 1, 2, \dots$, де $p^{(k)} = -\left[f''(x^{(k)}) \right]^{-1} \cdot f'(x^{(k)}).$

В якості критерію зупинки візьмемо умову $\|f'(x^{(k)})\| < \varepsilon$. Зауважимо, що збіжність метода Ньютона доведено лише для достатньо близького до точки мінімуму початкового наближення $x^{(0)}$.

Приклад. Розв'язати задачу

$$f(x) = (x_1 - 2)^4 + (x_1 - 2x_2)^2 \rightarrow \min, x = (x_1, x_2) \in E^2$$
.

Pозв'язання. Покладемо $x^{(0)} = (0.00; 3.00)$. Нехай $\varepsilon = 0.01$. Тоді

$$f(x^{(0)}) = (0-2)^4 + (0-2\cdot3)^2 = 16+36=52$$
.

Знаходимо градієнт
$$f'(x) = \begin{pmatrix} 4(x_1-2)^3 + 2(x_1-2x_2) \\ -4(x_1-2x_2) \end{pmatrix}$$
. Тоді $f'(x)|_{(0,3)} = \begin{pmatrix} -44 \\ 24 \end{pmatrix}$.

Знаходимо матрицю Гессе

$$f''(x) = \begin{pmatrix} 12(x_1 - 2)^2 + 2 & -4 \\ -4 & 8 \end{pmatrix} \Rightarrow f''(x)|_{(0,3)} = \begin{pmatrix} 50 & -4 \\ -4 & 8 \end{pmatrix}.$$

Нам необхідно знайти обернену матрицю $[f''(x)]^{-1}$. В даному випадку ми можемо виписати шукану матрицю у загальному вигляді. Нагадаємо, що обернена матриця A^{-1} до матриці A обчислюється за формулою: $A^{-1} = \frac{1}{|A|} (A^*)^T$. Елементи матри-

ці \boldsymbol{A}^* являються алгебраїчними доповненнями елементів матриці \boldsymbol{A} . Тоді

$$[f''(x)]^{-1} = \frac{1}{96(x_1 - 2)^2} \begin{pmatrix} 8 & 4 \\ 4 & 12(x_1 - 2)^2 + 2 \end{pmatrix} \text{ Ta } [f''(0, 3)]^{-1} = \frac{1}{192} \begin{pmatrix} 4 & 2 \\ 2 & 25 \end{pmatrix}.$$

Знаходимо напрямок

$$p^{(k)}\Big|_{(0,3)} = -\left[f''(x^{(k)})\right]^{-1}\Big|_{(0,3)} \cdot f'(x^{(k)})\Big|_{(0,3)} = -\frac{1}{192} \begin{pmatrix} 4 & 2 \\ 2 & 25 \end{pmatrix} \begin{pmatrix} -44 \\ 24 \end{pmatrix} = \begin{pmatrix} 0.667 \\ -2.667 \end{pmatrix}$$

Тоді
$$x^{(1)} = x^{(0)} + p^{(0)} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} + \begin{pmatrix} 0.667 \\ -2.667 \end{pmatrix} = \begin{pmatrix} 0.667 \\ 0.333 \end{pmatrix}$$
. Наступні обчислення в таблиці.

k	$x^{(k)}$	$f(x^{(k)})$	$f'(x^{(k)})$	$f''(x^{(k)})$	$p^{(k)}$	<i>x</i> ^(k+1)
0	$\begin{pmatrix} 0.00 \\ 3.00 \end{pmatrix}$	52.0	$\begin{pmatrix} -44.0 \\ 24.0 \end{pmatrix}$	$\begin{pmatrix} 50.0 & -4.0 \\ -4.0 & 8.0 \end{pmatrix}$	$\begin{pmatrix} 0.667 \\ -2.667 \end{pmatrix}$	$\begin{pmatrix} 0.667 \\ 0.333 \end{pmatrix}$
1	$\begin{pmatrix} 0.667 \\ 0.333 \end{pmatrix}$	3.157	$\begin{pmatrix} -9.472 \\ -0.004 \end{pmatrix}$	$\begin{pmatrix} 23.323 & -4.0 \\ -4.0 & 8.0 \end{pmatrix}$	$\begin{pmatrix} 0.444 \\ 0.223 \end{pmatrix}$	$\begin{pmatrix} 1.111 \\ 0.556 \end{pmatrix}$
2	$\begin{pmatrix} 1.111 \\ 0.556 \end{pmatrix}$	0.625	$\begin{pmatrix} -2.812\\ 0.004 \end{pmatrix}$	$\begin{pmatrix} 11.484 & -4.0 \\ -4.0 & 8.0 \end{pmatrix}$	$\begin{pmatrix} 0.296 \\ 0.148 \end{pmatrix}$	$\begin{pmatrix} 1.407 \\ 0.704 \end{pmatrix}$
3	$\begin{pmatrix} 1.407 \\ 0.704 \end{pmatrix}$	0.124	$\begin{pmatrix} -0.836\\ 0.004 \end{pmatrix}$	$\begin{pmatrix} 6.22 & -4.0 \\ -4.0 & 8.0 \end{pmatrix}$	$\begin{pmatrix} 0.198 \\ 0.098 \end{pmatrix}$	$\begin{pmatrix} 1.605 \\ 0.802 \end{pmatrix}$
4	$\begin{pmatrix} 1.605 \\ 0.802 \end{pmatrix}$	0.024	$\begin{pmatrix} -0.244 \\ -0.004 \end{pmatrix}$	$\begin{pmatrix} 3.872 & -4.0 \\ -4.0 & 8.0 \end{pmatrix}$	$\begin{pmatrix} 0.132 \\ 0.066 \end{pmatrix}$	$\begin{pmatrix} 1.737 \\ 0.868 \end{pmatrix}$
5	$\begin{pmatrix} 1.737 \\ 0.868 \end{pmatrix}$	0.0048	$\begin{pmatrix} -0.0708 \\ -0.004 \end{pmatrix}$	$\begin{pmatrix} 2.83 & -4.0 \\ -4.0 & 8.0 \end{pmatrix}$	$\begin{pmatrix} 0.088 \\ 0.044 \end{pmatrix}$	$\begin{pmatrix} 1.825 \\ 0.912 \end{pmatrix}$
6	$\begin{pmatrix} 1.825 \\ 0.912 \end{pmatrix}$	0.0009	$\begin{pmatrix} -0.0194 \\ -0.004 \end{pmatrix}$	$\begin{pmatrix} 2.368 & -4.0 \\ -4.0 & 8.0 \end{pmatrix}$	$\begin{pmatrix} 0.058 \\ 0.03 \end{pmatrix}$	$\begin{pmatrix} 1.883 \\ 0.942 \end{pmatrix}$
7	$\begin{pmatrix} 1.883 \\ 0.942 \end{pmatrix}$	0.0002	$\begin{pmatrix} -0.0084 \\ 0.004 \end{pmatrix}$			

Процедура біла зупинена при виконанні умови $\|f'(x^{(7)})\| = 0.009 < \varepsilon = 0.01$. Оптимальний розв'язок (2.00; 1.00), $f_{\min} = 0$.