Question no 1: PAC

Create a PAC (Program Analysis Chart) for a program that calculates the total cost of a meal including tax (as a percentage) and tip. Display the final cost after tax and tip.

<u>Given Data</u>	Expected Output	
 Cost of ingredients (n) Percentage Tax (T) Percentage Tip (t) 	• Final Cost of meal	
Process Required	Solution Alternatives	
Final Cost = (n) + (n(%T)) + (n(%t))		
For Example:	 Set Tax rate as constant. Set tip as optional. 	

Question no 2: IPO

Draw an IPO (Input-Process-Output) chart for a program that calculates the area of a circle.

Formula: Area = π * radius²

Answer:

<u>Input</u>	<u>Process</u>	Module Reference	<u>Output</u>
• Radius (r)	 Calculate square of the radius. Find Area by using formula: A = π * r² 	 READ: radius CALCULATE: Area = PI * r * r PRINT: Area 	 Area of circle with radius "r"

Question no 3: Algorithm

Write a step-by-step algorithm to calculate the body mass index (BMI) of a person.

Formula: BMI = weight $(kg) / (height (m))^2$.

Answer:

START

- 1. INPUT: Accept two values, Weight (in kilogram) and height (in meters).
- 2. PROCESS: Calculate BMI by dividing weight by square of the height
- 3. OUTPUT: Display/Print BMI on the console.

END

Question no 4: Pseudo Code

Write pseudocode for a program that calculates the distance traveled by a car and display it.

Calculate the distance using the Formula: Distance = Speed * Time.

Answer:

START

INPUT Speed.

INPUT Time.

CALCULATE/SET Distance = Speed*Time

OUTPUT "Distance:" Distance

END

Question no 5: Flow Chart

Draw a flowchart that represents the process of converting a distance from miles to kilometres.

The flowchart should start with receiving the distance in miles as input. It should then process the calculation (kilometres = miles * 1.60934) and finish with displaying the output (the distance in kilometres). Use standard flowchart symbols.

Question no 6: Scratch Program

Create a Scratch program where a sprite introduces itself and changes its appearance.

- 1. When the green flag is clicked, the sprite says "Hello! I am a Scratch sprite!" for 2 seconds.
- 2. The sprite then asks" What is your name?" and waits for the user to type an answer.
- 3. After getting the answer, the sprite says "Nice to meet you, [answer]" for 2 seconds.
- 4. Finally, the sprite changes its costume to a different pre-existing costume and changes its colour effect.

Question 7: Scratch Program

Create a Scratch program where a sprite moves around the stage in a simple pattern. When the green flag is clicked, the sprite goes to the centre of the stage (x:0, y:0).

The sprite then glides to four different positions on the stage one after another:

- First, glide to the top (x:0, y:100)
- Second, glide to the right (x:100, y:0)
- Third, glide to the bottom (x:0, y:-100)
- Fourth, glide to the left (x:-100, y:0)

Each time the sprite reaches a new position, it should say "Hello!" for 1 second. After visiting all four positions, the sprite returns to the center and says "That was fun!".

