

Universidade Federal de Santa Catarina Centro Tecnológico – CTC Departamento de Engenharia Elétrica

"EEL7020 – Sistemas Digitais"

Prof. Eduardo Augusto Bezerra

Eduardo.Bezerra@eel.ufsc.br

Florianópolis, agosto de 2011.

Sistemas Digitais

Prática: Projeto de decodificador

Arquivo: lab1_VHDL.pdf parte IV (parte V e parte VI, opcional)

Tarefa I

Projeto de decodificador 7-seg

- Projetar em VHDL o <u>decodificador</u> da figura a seguir.
- Os 3 bits de entrada são *decodificados*, e a palavra de 7 bits gerada é enviada para o display de 7 segmentos.
- O circuito a ser projetado deverá gerar os 7 bits (sinais) de acordo com os códigos listados na tabela ao lado.
- Usar expressões booleanas para implementar cada função lógica.

			<i>I</i> DILS	_
<u>C2</u>	C1	C0	<i>6543210</i>	Letra
0	0	0	0001001	Н
0	0	1	0000110	E
0	1	0	1000111	L
0	1	1	1000000	0

7 hita

Dicas:

- Os displays estão definidos em DE2_pin_assignments.csv (HEX0, HEX1, ...)
- O display menos significativo é o HEX0 usar apenas um display.
- Na entity, declarar "HEX0: out std_logic_vector(7 downto 0);"

Simulação funcional do decodificador

Tarefa II

Projeto de decodificador BCD para 7-seg

- Completar a tabela a seguir e projetar em VHDL o decodificador BCD para 7 segmentos.
- Os 4 bits de entrada ($SW_{3..0}$) são *decodificados*, e a palavra de 7 bits gerada é enviada para o display de 7 segmentos.

				7 bits	_
SW3	SW2	SW1	SW0	6543210	Valor
0	0	0	0	1000000	0
0	0	0	1		1
0	0	1	0		2
0	0	1	1		3
0	1	0	0		4
0	1	0	1		5
0	1	1	0		6
0	1	1	1		7
1	0	0	0	0000000	8
1	0	0	1		9

Simulação com *ModelSim*

Simulação do projeto com ModelSim

- 1. Criar uma nova pasta dentro da pasta do projeto.
- 2. Copiar os scripts de simulação disponíveis na página da disciplina para dentro da nova pasta.
- 3. Entrar na <u>nova pasta</u>, editar o arquivo "*compila.do*", e alterar <u>decod_7seg.vhd</u> para o nome do seu arquivo VHDL a ser simulado.
- 4. Copiar APENAS o seu arquivo VHDL (*decodificador*) a ser simulado para a <u>nova pasta</u>, que já deve possuir os *scripts* de simulação copiados da página da disciplina.
- 5. Executar o *ModelSim-Altera*, que se encontra no menu *Iniciar* do Windows, pasta "*Altera*".
- 6. No menu "*File*" do *ModelSim*, definir a pasta do projeto (opção "*Change Directory*"), selecionando a <u>nova pasta</u>.

Simulação do projeto com ModelSim (cont.)

- 7. Execução da simulação (arquivo *compila.do*)
 - a) No menu "Tools" do ModelSim, selecionar "*Tcl*" -> "*Execute Macro*".
 - b) Selecionar o arquivo "compila.do", e "Open".
- 8. O *ModelSim* irá compilar os arquivos VHDL e iniciar a simulação.
- 9. A janela com as formas de onda irá abrir, apresentando o resultado da simulação.

Obs. Se desejar, editar o arquivo tb.vhd para alterar a simulação a ser realizada, e repetir o passo 7.

Simulação do projeto com ModelSim (cont.)

Obs. Se o resultado da simulação não estiver de acordo com o esperado, alterar o seu VHDL, salvar, e executar novamente a simulação (arquivo compila.do).

Obs. A simulação só irá funcionar se o seu projeto possuir **EXATAMENTE** a seguinte *entity*:

Simulação do projeto com ModelSim (cont.)

- Obs. O arquivo "compila.do" contém os comandos do *ModelSim* necessários para realizar a simulação, incluindo:
 - a) Criação da biblioteca de trabalho comando vlib.
 - b) Compilação dos arquivos VHDL para a biblioteca de trabalho - comando vcom.
 - c) Inicialização do simulador com o arquivo *testbench* comando *vsim*.
 - d) Execução da janela de formas de onda (waveform) comando wave.
 - e) Adição dos sinais na janela de formas de onda comando *wave*.
 - f) Execução da simulação comando run.