Module code	SM-1203			
Module Title	Discrete Mathematics			
Degree/Diploma	Bachelor of Science (Mathematics)			
Type of Module	Major Core			
Modular Credits	4	Total student Workload	10 hours / week	
		Contact hours	4 hours / week	
Pre-requisite	A-level Mathematics or equivalent			
Anti-requisite	None			

Aims

To introduce concepts and techniques of mathematics (mostly discrete) needed for various areas of Mathematics and Computer Science. On completing this module, the student should be able to use the concepts and techniques of discrete mathematics to prove programme correctness, investigate algorithm complexity, set up economical computer networks and model computation.

Learning Outcomes					
On successful completion of this module, a student will be expected to be able to:					
Lower order:	30%	- describe the logic statements and write formal proof			
		- describe sets, multi-sets and set of natural numbers			
Middle order:	60%	- understand counting techniques for counting permutations,			
		combinations, bit strings and subsets			
Higher order:	10%	- describe minimum-weight spanning trees and minimum-distance			
		trees			

Module Contents

- Logic statements, connectives, canonical forms (CNF, DNF), inference, formal proof, predicates.
- Sets, multi-sets; set of natural numbers, basic properties; countable sets.
- Counting techniques for counting permutations, combinations, bit strings and subsets.
- Relations: representations and manipulation through Boolean matrices, digraphs; Posets, Hasse diagrams.
- Functions and their growth.
- Algorithms: proof of correctness; computational complexity.
- Graphs: vertex, edge; incidence, adjacency matrices, vertex degree; complete bipartite graphs; subgraphs, graph isomorphism; paths, cycles, connected graphs; Euler circuits, Hamilton cycles.
- Trees: minimum-weight spanning trees, minimum-distance trees.
- Modelling computation: languages, grammars; finite-state machines; Turing machines.

Assessment	Formative	Weekly feedback, tutorial and discussion	
	assessment		
	Summative	Examination: 60%	
	assessment	Coursework: 40%	
		- 2 Class tests (40%)	

Senate28June2023