Cálculo integral

Mario Calvarro Marines

26 de enero de 2022

Medidas

Definición de medida exterior

Sea $Q = [a_1, b_1] \times \ldots \times [a_n, b_n] \subset \mathbb{R}^n$ rectángulo. Definimos como <u>volumen</u> de Q a $v(Q) = (b_n - a_n) \cdots (b_1 - a_1)$

Definición (Medida exterior)

Sea $A \subset \mathbb{R}^n$. Definimos como medida exterior de A a:

$$\mu^* = \inf \sum_{k=1}^{\infty} v(Q_k); \ donde \{Q_k\}_{k=1}^{\infty} \ y \ A \subset \bigcup_{k=1}^{\infty} Q_k.$$

Podemos restringir el ínfimo a $\delta > 0$: diam $Q_k < \delta$. Cambiaríamos los $Q_k \ge \delta$ por divisiones que si lo cumplan.

Observación:

Decimos que A tiene medida 0: $\mu^*(A) = 0 \iff \forall \varepsilon > 0 \ \exists \{Q_k\} \text{ rec. de } A: \sum_{k=1}^{\infty} v(Q_k) < \varepsilon$ Ejemplo:

- 1. $x_0 \in \mathbb{R}^n : \forall \varepsilon > 0, \ v(Q(x_0)) < \frac{\varepsilon}{2k}$
- 2. N numerable: $N = \{x_k\}, x_k \in Q_k(x_k) : v(Q_k(x_k)) < \frac{\varepsilon}{2^k}$

Proposición

Sea
$$A \subset \mathbb{R}^n \ y \ c \in \mathbb{R}^n \implies \mu^* (c+A) = \mu^* (A)$$
.

Proposición

Sea
$$A \subset B \subset \mathbb{R}^n \implies \mu^*(A) \leq \mu^*(B)$$
.

<u>Demostración</u>:

Si $\mu^*(B) = +\infty$ ya está.

Por tanto, sea $\{Q_k\}$ rec. de B. Como $A \subset B \implies \{Q_k\}$ rec. de $A \implies \mu^*(A) \sum_{k=1}^{\infty} v(Q_k) \implies \mu^*(A) \leq \mu^*(B)$.

Proposición

Sean
$$A, B \in \mathbb{R}^n \implies \mu^* (A \cup B) \le \mu^* (A) + \mu^* (B)$$
.

Demostración:

Si $\mu^*(A) = +\infty$ o $\mu^*(B) = +\infty$ ya está.

Sean ambos finitos \implies

Tomando
$$\varepsilon > 0 \implies \begin{cases} \exists \{Q_k\} \text{ rec. de A: } \sum_{k=1}^{\infty} v\left(Q_k\right) < \mu^*\left(A\right) + \frac{\varepsilon}{2} \\ \exists \{R_k\} \text{ rec. de B: } \sum_{k=1}^{\infty} v\left(R_k\right) < \mu^*\left(A\right) + \frac{\varepsilon}{2} \end{cases}$$

$$\begin{aligned} & \text{Consideremos} \; \{Q_k, R_k\} = \{S_j\} \; \text{donde} \; S_j = \begin{cases} Q_{\frac{j}{2}}, \; j \; \text{par} \\ Q_{\frac{j+1}{2}}, \; j \; \text{impar} \end{cases} \\ & \{S_j\} \; \text{rec. de} \; A \cup B \implies \mu^* \left(A \cup B\right) \leq \sum_{j=1}^{\infty} v\left(B_j\right) = \sum_{k=1}^{\infty} v\left(Q_k\right) + \sum_{k=1}^{\infty} v\left(R_k\right) < \mu^* \left(A\right) + \mu^* \left(B\right) + \varepsilon \implies \mu^* \left(A \cup B\right) \leq \mu^* \left(A\right) + \mu^* \left(B\right) \; . \end{aligned}$$

Proposición

Sea $Q \subset \mathbb{R}^n$ rectángulo $\implies v(Q) = \mu^*(Q)$

Demostración:

• $\mu^*(Q) \leq v(Q)$: Tomamos $\varepsilon > 0$ y consideramos $\{Q_k\}$ recubrimiento de $Q: Q_1 = Q$ y para $k \geq 2, Q_k$ será un rectángulo $< \varepsilon/2^k$. Con esto $\{Q_k\}$ es rec. de Q y:

$$\sum_{k=1}^{\infty} v\left(Q_{k}\right) = v\left(Q\right) + \sum_{k=2}^{\infty} v\left(Q_{k}\right) < v\left(Q\right) + \sum_{k=2}^{\infty} \frac{\varepsilon}{2^{k}} < v\left(Q\right) + \varepsilon.$$

Por tanto, tomando ínfimos:

$$\mu^{*}(Q) \leq v(Q) + \varepsilon \implies \mu^{*}(Q) \leq v(Q)$$
.

• $v(Q) \leq \mu^*(Q)$: Observamos que \overline{Q} es la unión de las caras de $Q(C_i)$. Por tanto,

$$v(Q) = v(\overline{Q})$$

$$\mu^*(Q) \le \mu^*(\overline{Q})$$

$$\mu^*(\overline{Q}) = \mu^*(Q \cup (C_1, \dots, C_m)) \le \mu^*(Q) + \mu^*(C_1) + \dots + \mu^*(C_m) = \mu^*(Q)^1$$

Podemos suponer que Q es cerrado ($\Longrightarrow Q$ es compacto). Basta probar que $v\left(Q\right) \leq \sum_{k=1}^{\infty} v\left(Q_{k}\right), \ \forall \{Q_{k}\}.^{2} \ Q \subset \bigcup_{k \in \mathbb{N}} Q_{k}.$ Como Q es compacto \Longrightarrow

$$Q \subset Q_1 \cup \ldots \cup Q_N \implies v(Q) \leq v(Q_1) + \ldots + v(Q_N) \leq \sum_{k=1}^{\infty} v(Q_k).$$

Por último, tomamos ínfimos.

Distancias

Recordemos que diam $A = \sup\{||x - t|| : x \in A, t \in B\}$

Proposición

$$Si d(A, B) > 0 \implies \mu^* (A \cup B) = \mu^* (A) + \mu^* (B)$$

<u>Demostración</u>:

Si $\mu^*(A \cup B) = +\infty \implies \mu^*(A) + \mu^*(B) \le \mu^*(A \cup B)$. Podemos suponer, pues, que es finito. Tenemos

$$\mu^* (A \cup B) \le \mu^* (A) + \mu^* (B).$$

Tomamos $\delta>0$: $\delta<\frac{1}{2}\mathrm{d}\left(A,B\right)$ y $\varepsilon>0$: $\exists\{Q_k\}$ rectángulos : diam $Q_k<\delta$ y $A\cup B\subset\bigcup_{k\in\mathbb{N}}Q_k,\ \sum_{k=1}^\infty v\left(Q_k\right)<\mu^*\left(A\cup B\right)+\varepsilon.$ Además cumplen:

$$\begin{cases} Q_k \cap A = \emptyset \text{ ó} \\ Q_k \cap B = \emptyset \end{cases}.$$

²Abiertos

Si no fuese así $\exists a, b \in Q_k : a \in A, \ a \in B : \delta < d(A, B) \le ||a - b|| < \delta$;! Consideremos pues

 $\begin{cases} \{Q_k : Q_k \cap A \neq \emptyset\} \text{ recubrimiento de } A \\ \{Q_k : Q_k \cap B \neq \emptyset\} \text{ recubrimiento de } B \end{cases}$

Con esto:

$$\sum_{k=1}^{\infty} v\left(Q_{k}\right) \geq \sum_{Q_{k} \cap A \neq \emptyset}^{\infty} v\left(Q_{k}\right) + \sum_{Q_{k} \cap B \neq \emptyset}^{\infty} v\left(Q_{k}\right) \geq \mu^{*}\left(A\right) + \mu^{*}\left(B\right) \implies \mu^{*}\left(A\right) + \mu^{*}\left(B\right) < \mu^{*}\left(A \cup B\right) + \varepsilon \implies \mu^{*}\left(A\right) + \mu^{*}\left(B\right) \leq \mu^{*}\left(A \cup B\right).$$

Teorema

La medida exterior de Lebesque cumple:

1.
$$\mu^*(\phi) = 0$$

2. $A \subset B \implies \mu^*(A) \le \mu^*(B)$
3. $\mu^*(\bigcup_{k \in \mathbb{N}} A_k) \le \sum_{k=1}^{\infty} \mu^*(A_k)$

Demostración:

3. Si $\exists k: \mu^*(A_k)=+\infty$, ya está. Suponemos que $\mu^*(A_k)<+\infty$, $\forall k$. Tomamos $\varepsilon>0$

$$\forall k, \ \exists \{Q_k\} : A_k \subset \bigcup_{j \in \mathbb{N}} Q_j^k :$$

$$\sum_{j=1}^{\infty} v\left(Q_j^k\right) < \mu^*\left(A_k\right) + \frac{\varepsilon}{2^k}$$
 Como:
$$\bigcup_{k \in \mathbb{N}} A_k \subset \bigcup_{k \in \mathbb{N}} \bigcup_{j \in \mathbb{N}} Q_j^k \ y \ \{Q_j^k\} \ \text{es numerable.} \Longrightarrow$$

$$\bigcup_{j,k=1}^{\infty} Q_j^k = \bigcup_{k \in \mathbb{N}} \left(\bigcup_{j \in \mathbb{N}} Q_j^k\right) = \bigcup_{k \in \mathbb{N}} A_k \Longrightarrow$$

$$\mu^*\left(\bigcup_{k \in \mathbb{N}} A_k\right) \leq \sum_{j,k} v\left(Q_j^k\right) = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} v\left(Q_j^k\right) < \sum_{k=1}^{\infty} \left(\mu^*\left(A_k\right) + \frac{\varepsilon}{2^k}\right) =$$

$$= \left(\sum_{k=1}^{\infty} \mu^*\left(A_k\right)\right) + \varepsilon \implies \mu^*\left(\bigcup_{k \in \mathbb{N}} A_k\right) \leq \sum_{k=1}^{\infty} \mu^*\left(A_k\right).$$

Proposición

$$\exists A, B : A \cap B = \emptyset \land \mu^* (A \cup B) < \mu^* (A) + \mu^* (B)$$

Definición

Sea $A \subset \mathbb{R}^n$. Es medible \iff

$$\mu^*(S) = \mu^*(S \cap A) + \mu^*(S \cap A^c), \ \forall S \subset \mathbb{R}^n.$$

Teorema (De Caratheodory)

Los conjuntos medibles forman una σ -algebra y la medida exterior de Lebesgue, μ^* , es σ -aditiva cuando la restringimos a los conjuntos medibles.

Demostración:

En las notas.

Definición

Decimos que la medida exterior es σ -aditiva \iff

$$Si \{A_k\} \subset \mathcal{A} \ disjunt os \ dos \ a \ dos \implies \mu^* \left(\bigcup_{k \in \mathbb{N}} A_k\right) = \sum_{k=1}^{\infty} \mu^* \left(A_k\right).$$

Una vez restringimos a la σ -algebra podemos escribir μ^* como μ y la medida exterior de Lebesgue será la medida de Lebesgue simplemente

Proposición

Todo conjunto A de medida 0 es medible

Demostración:

 $\mu^*(S) \leq \mu^*(S \cap A) + \mu^*(S \cap A^c)$ siempre es cierta. $\mu^*(S \cap A) + \mu^*(S \cap A^c) \leq \mu^*(S)$ porque el primer sumando vale cero $(S \cap A \subset A)$ y $S \cap A^c \subset S$.

Proposición

Todo rectángulo Q es medible.

Demostración:

Siempre se cumple que $\mu^*(S) \le \mu^*(S \cap Q) + \mu^*(S \cap Q^c)$.

Veamos la otra, $\mu^*(S \cap Q) + \mu^*(S \cap Q^c) \leq \mu^*(S)$?

Tomemos un recubrimiento de S:

$$\{Q_j\}:S\subset\bigcup_{j\in\mathbb{N}}Q_j.$$

Observamos que $\{Q_j \cap Q\}$ siempre son rectángulos que recubren a $S \cap Q \implies$

$$\mu^* (S \cap Q) \le \sum_{j=1}^{\infty} v (Q_j \cap Q).$$

A su vez, $\{Q_j \cap Q^c\}$ (no son rectángulos pero sí una unión finita de estos: $Q_j \cap Q^c = R_1 \cup \ldots \cup R_m : R_1 \cup \ldots \cup R_m \cup (Q_j \cap Q) = Q_j \implies v(Q_j) = V(R_1) + \ldots + v(R_m) + v(Q_j \cap Q)$ recubren $S \cap Q^c \subset \{R_i^j\} \implies$

$$\mu^* \left(S \cap Q^c \right) \le \sum_{i=1}^{\infty} v \left(R_i^j \right).$$

Así?,

$$\mu^* \left(S \cap Q \right) + \mu^* \left(S \cap Q^c \right) \le \sum_{j=1}^{\infty} v \left(Q_j \cap Q \right) +$$

$$+ \sum_{j=1}^{\infty} \left(v \left(Q_j \cap Q \right) + v \left(R_1^j \right) + \ldots + v \left(R_m^j \right) \right) = \sum_{j=1}^{\infty} v \left(Q_j \right).$$