Numerical Relativity Cheat Sheet

Equations I should remember, but I don't

Gabriele Bozzola

Contents

1	Conventions	1
2	ADM Decomposition 2.1 Constraints 2.2 BSSN	1 2 2
3	Matter and Equations of State 3.1 Velocity definitions	3
4	Global quantities	3
5	Useful identities	3
6	Numerical values	4
_		

1 Conventions

We denote the 4-dimensional metric as $g_{\alpha\beta}$ and the 3-dimensional one as $\gamma_{\alpha\beta}$.

2 ADM Decomposition

The line element ds^2 is

$$ds^{2} = g_{\alpha\beta} dx^{\alpha} dx^{\beta} = -\alpha^{2} dt^{2} + \gamma_{ij} (dx^{i} + \beta^{i} dt) (dx^{j} + \beta^{j} dt)$$
(1)

$$\gamma_{\alpha\beta} = g_{\alpha\beta} + n_{\alpha}n_{\beta} \tag{2}$$

$$\gamma^{a\beta} = g^{\alpha\beta} + n^{\alpha}n^{\beta} \tag{3}$$

$$n^{\alpha}\gamma_{\alpha\beta} = 0 \tag{4}$$

$$t^{\alpha} = \alpha n^{\alpha} + \beta^{\alpha} \tag{5}$$

$$n^{\alpha} = \frac{1}{\alpha} (1, -\beta^i) \tag{6}$$

$$n_{\alpha} = (-\alpha, 0, 0, 0) \tag{7}$$

2.1 Constraints

Hamiltonian constraint

$$\mathcal{E} = n^{\alpha} n^{\beta} T_{\alpha\beta} \,. \tag{8}$$

Momentum constraint

$$S_i = -\gamma_{i\alpha} n_{\beta} T^{\alpha\beta} \,. \tag{9}$$

2.2 BSSN

Conformal metric

$$\bar{\gamma}_{ij} = e^{-4\phi} \gamma_{ij} \,, \tag{10}$$

with

$$\phi = \frac{1}{12} \ln \gamma \,. \tag{11}$$

We can also define χ ,

$$\chi = e^{-4\phi}, \qquad (12)$$

so that

$$\bar{\gamma}_{ij} = \chi \gamma_{ij} \,. \tag{13}$$

Often ψ is defined:

$$\psi = e^{\phi} = \gamma^{1/12} \tag{14}$$

3 Matter and Equations of State

Let ρ_0 be the rest-mass density, and ϵ the specific internal energy density, the total mass-energy ρ measured by an observer comoving with the fluid is

$$\rho = \rho_0 (1 + \epsilon) = \rho_0 + \rho_0 \epsilon = \rho_0 + \varepsilon_{\text{int}}, \tag{15}$$

with $\varepsilon_{\rm int}$ internal energy density.

The specific enthalpy is $h = (1 + \epsilon + P/\rho_0)$, or $\rho_0 h = \rho + P$.

The Gamma-law equation of state is $P = (\Gamma - 1)\rho_0\epsilon$, or $P = (\Gamma - 1)\varepsilon_{\text{int}}$.

3.1 Velocity definitions

$$u_{\alpha}u^{\alpha} = -1\tag{16}$$

Let u^{α} be the four-velocity of the fluid.

$$W = -n_{\alpha}u^{\alpha} \tag{17}$$

$$u^t = \frac{W}{\alpha} \,. \tag{18}$$

IllinoisGRMHD:

$$v_{\rm IL}^i = \frac{u^i}{u^t} \tag{19}$$

Valencia:

$$v_{\text{VA}}^{i} = \frac{1}{\alpha} \left(\frac{u^{i}}{u^{t}} + \beta^{i} \right) \tag{20}$$

Conversion:

$$v_{\text{VA}}^{i} = \frac{1}{\alpha} \left(v_{\text{IL}}^{i} + \beta^{i} \right) \tag{21}$$

$$v_{\rm IL}^i = \alpha \left(\alpha v_{\rm IL}^i - \beta^i \right) \tag{22}$$

$$W = \frac{1}{\sqrt{1 - v_{\text{VA}}^i v_{i,\text{VA}}}} \tag{23}$$

Stress-energy tensor of a perfect fluid

$$T^{\alpha\beta} = \rho_0 h u^{\alpha} u^{\beta} + P g^{\alpha\beta}, \qquad (24)$$

4 Global quantities

Rest-mass

$$M_0 = \int d^3x \sqrt{\gamma} W \rho_0 \tag{25}$$

5 Useful identities

$$\sqrt{-g} = \alpha \sqrt{\gamma} \tag{26}$$

6 Numerical values

Length-scale associated to $1 M_{\odot}$:

$$[L] = \frac{GM_{\odot}}{c^2} = 1.477 \,\mathrm{km}$$
 (27)

Time-scale associated to $1\,M_\odot$:

$$[T] = \frac{GM_{\odot}}{c^3} = 4.93 \,\mu\text{s} \approx 5 \,\mu\text{s}$$
 (28)

Frequency-scale associated to $1\,M_\odot$:

$$[f] = \frac{1}{[T]} = \frac{c^3}{GM_{\odot}} = 203 \,\text{kHz} \approx 200 \,\text{kHz}$$
 (29)