WARM UP PERIOD ELIMINATION USING TSW AND MEAN CROSSING RULE

SETTINGS

QUEUE SETTINGS	
Arrival Rate	2
Departure Rate	1
Queue Length	5
Servers	2
Customers at Start	0
ALGORITHM SETTINGS	
TSW : Window length	10
Crossing of the Mean Limit	4
Mean	0

^{*}Lost customers are not considered as arrivals.

PSEUDOCODE

For every t: (assume t takes 1 step each time)

- a. Compute (arrival rate departure rate) using TSW.
- b. Compute number of crossings of mean using Crossings of the Mean Rule.
- c. Stop if the number in step b) meets certain threshold.

RESULTS

Below plot shows time vs. (arrival rate – departure rate)

If we set the "Crossing of the mean threshold" as 4.0, then the system reaches stationary state around t = 24

Warm up period as per Welch method ~ t20

Warm up period as per Zobel white method ~ t18

Warm up period as per TSW and Crossing mean rule $^{\sim}$ t24

Steps to run code:

- Code written in python.
- Install Numpy and Matplotlib.
- Python TSW_Estimator.py

NEXT STEPS:

Need guidance in terms of configuring the window length and crossing of the mean limit threshold