Introduction to Scheduling

ICS632: Principles of High-Performance Computing

Henri Casanova (henric@hawaii.edu)

Fall 2015

Foreword

- This set of lecture notes will be a bit theoretical-ish
- We'll refer to simple computational complexity concepts
- We'll have a few hand-wavy proofs
- We could have a whole semester on scheduling, this will only scratch the surface

Outline

- 1 Scheduling Independent Tasks
- 2 Divisible Loads and OpenMP Scheduling
- 3 Scheduling Task Graphs
- 4 The Great Scheduling Zoo
- 5 Pragmatic, Dynamic Scheduling

What is scheduling?

- Broad definition: the temporal allocation of activities to resources to achieve some desirable objective
- Examples:
 - Assign workers to machines in an factory to increase productivity
 - Pick classrooms for classes at a university to maximize the number of free classrooms on Fridays
 - Assign users to a pay-per-hour telescope to maximize profit
 - Assign computation to processors and communications to network links so as to minimize application execution time

A simple scheduling problem

- A Scheduling Problem is defined by three components:
 - 1 A description of a set of resources
 - A description of a set of tasks
 - 3 A description of a desired objective
- Let us get started with a simple problem: INDEP(2)
 - 1 Two identical processors, P_1 and P_2
 - Each processor can run only one task at a time
 - 2 n compute tasks
 - Each task can run on either processor in *a* seconds
 - Tasks are independent: can be computed in any order
 - 3 Objective: minimize $max(M_1, M_2)$ (makespan)
 - \blacksquare M_i is the time at which processor P_i finishes computing

The easy case

- If all tasks are *identical*, i.e., take the same amount of compute time, then the solution is obvious: Assign $\lceil n/2 \rceil$ tasks to P1 and $\lceil n/2 \rceil$ tasks to P_2
 - Rule of thumb: try to have both processors finish at the same time
- We have a trivial linear-time algorithm
 - For each task pick one of the two processors by comparing the index of the task with n/2
- In fact was have already seen an optimal algorithms for a more complex situation in which we have p heterogeneous processors

Gantt chart for INDEP(2) with 7 identical tasks

Non-identical tasks

- Task T_i , i = 1, ..., n takes time $a_i \ge 0$
- There is no p-time algorithm to solve INDEP(2) (unless $\mathcal{P} = \mathcal{NP}$)
- INDEP(2) (decision version) is in \mathcal{NP}
 - Certificate: for each a_i whether it is scheduled on P_1 or P_2
 - In linear time, compute the makespan on both processors, and compare to makespan bound to answer "Yes"
- Consider an instance of 2-PARTITION (\mathcal{NP} -complete):
 - Given n integers x_i , is there a subset I of $\{1, ..., n\}$ such that $\sum_{i \in I} x_i = \sum_{i \notin I} x_i$?
- Let us construct an instance of INDEP(2):
 - Let $k = \frac{1}{2} \sum x_i$, let $a_i = x_i$
- The proof is trivial
 - If k is non-integer, neither instance has a solution
 - Otherwise, each processor corresponds to one subset
- INDEP(2) is identical to 2-PARTITION

So what?

- \blacksquare This $\mathcal{NP}\text{-completeness}$ proof is probably the most trivial in the world \circledcirc
- But now we are thus pretty sure that there is no p-time algorithm to solve INDEP(2)
- What we look for now are approximation algorithms...

- Consider an optimization problem
- A p-time algorithm is a λ -approximation algorithm if it returns a solution that's at most a factor λ from the optimal solution (the closer λ to 1, the better)
 - lacksquare λ is called the *approximation ratio*
- Polynomial Time Approximation Scheme (PTAS): for any ϵ there exists a $(1+\epsilon)$ -approximation algorithm (may be non-polynomial is $1/\epsilon$)
- Fully Polynomial Time Approximation Scheme (FPTAS): for any ϵ there exists a $(1+\epsilon)$ -approximation algorithm polynomial in $1/\epsilon$
- Typical goal: find a FPTAS, if not find a PTAS, if not find a λ -approximation for a low value of λ

- Consider an optimization problem
- A p-time algorithm is a λ -approximation algorithm if it returns a solution that's at most a factor λ from the optimal solution (the closer λ to 1, the better)
 - lacksquare λ is called the *approximation ratio*
- Polynomial Time Approximation Scheme (PTAS): for any ϵ there exists a $(1 + \epsilon)$ -approximation algorithm (may be non-polynomial is $1/\epsilon$)
- Fully Polynomial Time Approximation Scheme (FPTAS): for any ϵ there exists a $(1+\epsilon)$ -approximation algorithm polynomial in $1/\epsilon$
- Typical goal: find a FPTAS, if not find a PTAS, if not find a λ -approximation for a low value of λ

- Consider an optimization problem
- A p-time algorithm is a λ -approximation algorithm if it returns a solution that's at most a factor λ from the optimal solution (the closer λ to 1, the better)
 - lacksquare λ is called the *approximation ratio*
- Polynomial Time Approximation Scheme (PTAS): for any ϵ there exists a $(1+\epsilon)$ -approximation algorithm (may be non-polynomial is $1/\epsilon$)
- Fully Polynomial Time Approximation Scheme (FPTAS): for any ϵ there exists a $(1+\epsilon)$ -approximation algorithm polynomial in $1/\epsilon$
- Typical goal: find a FPTAS, if not find a PTAS, if not find a λ-approximation for a low value of λ

- Consider an optimization problem
- A p-time algorithm is a λ -approximation algorithm if it returns a solution that's at most a factor λ from the optimal solution (the closer λ to 1, the better)
 - lacksquare λ is called the *approximation ratio*
- Polynomial Time Approximation Scheme (PTAS): for any ϵ there exists a $(1+\epsilon)$ -approximation algorithm (may be non-polynomial is $1/\epsilon$)
- Fully Polynomial Time Approximation Scheme (FPTAS): for any ϵ there exists a $(1+\epsilon)$ -approximation algorithm polynomial in $1/\epsilon$
- Typical goal: find a FPTAS, if not find a PTAS, if not find a λ -approximation for a low value of λ

Greedy algorithms

- A greedy algorithm is one that builds a solution step-by-step, via local incremental decisions
- It turns out that several greedy scheduling algorithms are approximation algorithms
 - Informally, they're not as "bad" as one may think
- Two natural greedy algorithms for INDEP(2):
 - greedy-online: take the tasks in arbitrary order and assign each task to the least loaded processor
 - As if we don't know which tasks are coming
 - greedy-offline: sort the tasks by decreasing a_i, and assign each task in that order to the least loaded processor
 - We know all the tasks ahead of time

Greedy algorithms

- A greedy algorithm is one that builds a solution step-by-step, via local incremental decisions
- It turns out that several greedy scheduling algorithms are approximation algorithms
 - Informally, they're not as "bad" as one may think
- Two natural greedy algorithms for INDEP(2):
 - greedy-online: take the tasks in arbitrary order and assign each task to the least loaded processor
 - As if we don't know which tasks are coming
 - greedy-offline: sort the tasks by decreasing a_i, and assign each task in that order to the least loaded processor
 - We know all the tasks ahead of time

Greedy-online for INDEP(2)

Theorem

Greedy-online is a $\frac{3}{2}$ -approximation

Proof:

- \blacksquare P_i finishes computing at time M_i (M stands for makespan)
- Let us assume $M_1 \ge M_2$ ($M_{greedy} = M_1$)
- Let T_i the last task to execute on P₁
- Since the greedy algorithm put T_i on P_1 , then $M_1 a_i \le M_2$
- We have $M_1 + M_2 = \sum_i a_i = S$
- $M_{greedy} = M_1 = \frac{1}{2}(M_1 + (M_1 a_j) + a_j) \le \frac{1}{2}(M_1 + M_2 + a_j) = \frac{1}{2}(S + a_j)$
- but $M_{opt} \ge S/2$ (ideal lower bound on optimal)
- and $M_{opt} \ge a_j$ (at least one task is executed)
- Therefore: $M_{greedy} \leq \frac{1}{2}(2M_{opt} + M_{opt}) = \frac{3}{2}M_{opt}$

Greedy-online for INDEP(2)

Theorem

Greedy-online is a $\frac{3}{2}$ -approximation

Proof:

- \blacksquare P_i finishes computing at time M_i (M stands for makespan)
- Let us assume $M_1 \ge M_2$ ($M_{greedy} = M_1$)
- Let *T_i* the last task to execute on *P*₁
- Since the greedy algorithm put T_j on P_1 , then $M_1 a_j \le M_2$
- We have $M_1 + M_2 = \sum_i a_i = S$
- $M_{greedy} = M_1 = \frac{1}{2}(M_1 + (M_1 a_j) + a_j) \le \frac{1}{2}(M_1 + M_2 + a_j) = \frac{1}{2}(S + a_j)$
- but $M_{opt} \ge S/2$ (ideal lower bound on optimal)
- and $M_{opt} \ge a_i$ (at least one task is executed)
- Therefore: $M_{greedy} \leq \frac{1}{2}(2M_{opt} + M_{opt}) = \frac{3}{2}M_{opt}$

Greedy-online for INDEP(2)

Theorem

Greedy-online is a $\frac{3}{2}$ -approximation

Proof:

- \blacksquare P_i finishes computing at time M_i (M stands for makespan)
- Let us assume $M_1 \ge M_2$ ($M_{greedy} = M_1$)
- Let T_i the last task to execute on P_1
- Since the greedy algorithm put T_j on P_1 , then $M_1 a_j \le M_2$
- We have $M_1 + M_2 = \sum_i a_i = S$
- $M_{greedy} = M_1 = \frac{1}{2}(M_1 + (M_1 a_j) + a_j) \le \frac{1}{2}(M_1 + M_2 + a_j) = \frac{1}{2}(S + a_j)$
- but $M_{opt} \ge S/2$ (ideal lower bound on optimal)
- and $M_{opt} \ge a_j$ (at least one task is executed)
- Therefore: $M_{greedy} \leq \frac{1}{2}(2M_{opt} + M_{opt}) = \frac{3}{2}M_{opt}$

Greedy-offline for INDEP(2)

Theorem

Greedy-offline is a $\frac{7}{6}$ -approximation

- Proof:
 - If $a_i \leq \frac{1}{3}M_{opt}$, the previous proof can be used

■
$$M_{greedy} \le \frac{1}{2}(2M_{opt} + \frac{1}{3}M_{opt}) = \frac{7}{6}M_{opt}$$

- If $a_j > \frac{1}{3}M_{opt}$, then $j \leq 4$
 - if T_j was the 5th task, then, due to the task ordering, there would be 5 tasks with $a_i > \frac{1}{2} M_{out}$
 - There would be at least 3 tasks on the same processor in the optimal schedule
 - Therefore $M_{opt} > 3 \times \frac{1}{3} M_{opt}$, a contradiction
- One can check all possible scenarios for 4 tasks and show optimality

Greedy-offline for INDEP(2)

Theorem

Greedy-offline is a $\frac{7}{6}$ -approximation

- Proof:
 - If $a_j \leq \frac{1}{3} M_{opt}$, the previous proof can be used
 - $M_{greedy} \le \frac{1}{2}(2M_{opt} + \frac{1}{3}M_{opt}) = \frac{7}{6}M_{opt}$
 - If $a_j > \frac{1}{3}M_{opt}$, then $j \leq 4$
 - if T_j was the 5th task, then, due to the task ordering, there would be 5 tasks with $a_i > \frac{1}{3}M_{opt}$
 - There would be at least 3 tasks on the same processor in the optimal schedule
 - Therefore $M_{opt} > 3 \times \frac{1}{3} M_{opt}$, a contradiction
 - One can check all possible scenarios for 4 tasks and show optimality

Bounds are tight

Greedy-online:

- a_i 's = {1,1,2}
- $M_{greedy} = 3$; $M_{opt} = 2$
- \blacksquare ratio = $\frac{3}{2}$

Greedy-offline:

- a_i 's = {3, 3, 2, 2, 2}
- $M_{greedy} = 7; M_{opt} = 6$
- \blacksquare ratio = $\frac{7}{6}$

PTAS and FPTAS for INDEP(2)

Theorem

There is a PTAS ($(1 + \epsilon)$ -approximation) for INDEP(2)

- Proof Sketch:
 - Classify tasks as either "small" or "large"
 - Very common technique
 - Replace all small tasks by same-size tasks
 - Compute an optimal schedule of the modified problem in p-time (not polynomial in $1/\epsilon$)
 - Show that the cost is $\leq 1 + \epsilon$ away from the optimal cost
 - The proof is a couple of pages, but not terribly difficult

Theorem

There is a FPTAS $((1 + \epsilon)$ -approx pol. in $1/\epsilon)$ for INDEP(2)

We know a lot about INDEP(2)

- INDEP(2) is NP-complete
- We have simple greedy algorithms with guarantees on result quality
- We have a simple PTAS
- We even have a (less simple) FPTAS
- INDEP(2) is basically "solved"
- Sadly, not many scheduling problems are this well-understood...

INDEP(P) is much harder

- INDEP(P) is \mathcal{NP} -complete by trivial reduction to 3-PARTITION:
 - Give 3n integers a_1, \ldots, a_{3n} and an integer B, can we partition the 3n integers into n sets, each of sum B? (assuming that $\sum_i a_i = nB$)
- 3-PARTITION is \mathcal{NP} -complete "in the strong sense", unlike 2-PARTITION
 - Even when encoding the input in unary (i.e., no logarithmic numbers of bits), one cannot find and algorithm polynomial in the size of the input!
 - Informally, a problem is \mathcal{NP} -complete "in the weak sense" if it is hard only if the numbers in the input are unbounded
- INDEP(P) is thus fundamentally harder than INDEP(2)

Approximation algorithm for INDEP(P)

Theorem

Greedy-online is a $(2-\frac{1}{p})$ -approximation

- Proof (usual reasoning):
 - Let $M_{greedy} = \max_{1 \le i \le p} M_i$, and j be such that $M_j = M_{greedy}$
 - Let T_k be the last task assigned to processor P_j
 - $\forall i, M_i \geq M_j a_k$ (greedy algorithm)
 - $S = \sum_{i=1}^{p} M_{i} = M_{j} + \sum_{i \neq j} M_{i} \ge M_{j} + (p-1)(M_{j} a_{k}) = pM_{j} + (p-1)a_{k}$
 - Therefore, $M_{greedy} = M_j \leq \frac{S}{p} + (1 \frac{1}{p})a_k$
 - But $M_{opt} \ge a_k$ and $M_{opt} \ge S/p$
 - So $M_{greedy} \le M_{opt} + (1 \frac{1}{p}M_{opt})$ \square
- This ratio is "tight" (e.g., an instance with p(p-1) tasks of size 1 and one task of size p has this ratio)

Approximation algorithm for INDEP(P)

Theorem

Greedy-offline is a $(\frac{4}{3} - \frac{1}{3p})$ -approximation

- The proof is more involved, but follows the spirit of the proof for INDEP(2)
- This ratio is tight
- There is a PTAS for INDEP(P), a $(1 + \epsilon)$ -approximation (massively exponential in $1/\epsilon$)
- There is no known FPTAS, unlike for INDEP(2)

Approximation algorithm for INDEP(P)

Theorem

Greedy-offline is a $(\frac{4}{3} - \frac{1}{3p})$ -approximation

- The proof is more involved, but follows the spirit of the proof for INDEP(2)
- This ratio is tight
- There is a PTAS for INDEP(P), a $(1 + \epsilon)$ -approximation (massively exponential in $1/\epsilon$)
- There is no known FPTAS, unlike for INDEP(2)

Outline

- Scheduling Independent Tasks
- 2 Divisible Loads and OpenMP Scheduling
- 3 Scheduling Task Graphs
- 4 The Great Scheduling Zoo
- 5 Pragmatic, Dynamic Scheduling

Why are many scheduling problems hard?

- Many scheduling problems are \mathcal{NP} -complete
- One contributing reason is that they involve integer constraints
 - The same reason why bin packing is difficult: you can't cut boxes into pieces!
- Let's see this on an example...

$$\sum a_i = 21$$
; makespan = 8

Let's modify the schedule using preemption/migration

$$\sum a_i = 21$$
; makespan = 7 (optimal: no idle time)

Cutting tasks

- By "cutting" a task in two, we're able to have all processors finish at the same time
 - Zero idle time means the schedule is optimal
- If we were able to cut all tasks into tiny bits, then we would always be able to achieve zero idle time
 - Again, if you have a knife, binpacking is easy
 - Of course, there'd be "cutting overhead"...
- Question: Can this be done for real-world applications?

Divisible Load applications

- It turns out that many useful applications consist of very large numbers of small, independent, and identical tasks
 - task execution time << application execution time</p>
 - tasks can be completed in any order
 - tasks all do the same thing, but on different data
- Example applications:
 - Ray tracing (1 task = 1 photon)
 - MPEG encoding of a movie (1 task = 1 frame)
 - Seismic event processing (1 task = 1 event)
 - High-Energy Physics (1 task = 1 particle)
- These applications are termed *Divisible Loads* (DLs)
 - So fine-grain that a continuous load assumption is valid
- This should make scheduling trivial (INDEP(P) with same-size tasks)

OpenMP Loops

- OpenMP is used primarily to parallelize loops in which all iterations are independent
- If the number of iterations is large, a loop is a divisible load!
- Simple divisible load assumption: If n iterations on p cores, then each core performs $\sim n/p$ iterations
- Easy, right?
- But:
 - Not all iterations are always equal
 - So we want to create a lot of chunks to avoid idle time!
 - 2 Creating a chunk of iterations incurs overhead
 - So we want to create few chunks to avoid overhead!

OpenMP: chunk size $\sim n/p$

OpenMP

```
#pragma omp parallel for schedule(static) for (i=0; i < N; i++) { "compute something} }
```

- Each thread performs $\sim n/p$ iterations
- Low overhead: "assign" work to each thread once
- High potential idle time if iterations are non-identical

OpenMP: chunk size = constant

OpenMP

- Each thread performs *chunksize* iterations (default = 1)
- High overhead (if *chunksize* << N): "assign" work to each thread many times
 - Implemented via a critical section to increment an index
- Low idle time (if *chunksize* << N): if iterations are wildly different then using *chunksize* = 1 corresponds to the on-line optimal algorithm for solving INDEP(P), but with overhead added to each task

OpenMP: chunk size = variable

OpenMP^l

```
#pragma omp parallel for schedule(guided, min_chunksize) for (i=0; i < N; i++) { // compute something }
```

- Chunk sizes are created as follows and executed in an greedy fashion in this order
 - \blacksquare N/2 iterations partitioned into p chunks
 - N/4 iterations partitioned into p chunks
 - ...
 - until a minimal chunksize is reached (default=1)
- Goal:
 - Low overhead at the beginning, no idle time anyway
 - High overhead at the end but low idle time

Outline

- Scheduling Independent Tasks
- 2 Divisible Loads and OpenMP Scheduling
- 3 Scheduling Task Graphs
- 4 The Great Scheduling Zoo
- 5 Pragmatic, Dynamic Scheduling

Task dependencies

- In practice tasks often have dependencies
- A general model of computation is the Acyclic Directed Graph (DAG), G = (V, E)
- Each task has a weight (i.e., execution time in seconds), a parent, and children
- The first task is the *source*, the last task the *sink*
- Topological (partial) order of the tasks

Where do DAGs come from?

- Consider a (lower) triangular linear system solve
 - What you would need to do after an LU factorization

Simple Algorithm

```
for (i = 0; i < n; i++) {
    x[i] = b[i] / a[i,i];
    for (j=i+1; i<n; i++) {
        b[j] = b[i] - a[j,i] * x[i];
    }
}</pre>
```


Where do DAGs come from?

- Consider a (lower) triangular linear system solve
 - What you would need to do after an LU factorization

Simple Algorithm

```
for (i = 0; i < n; i++) {
    T<sub>i,i</sub>: x[i] = b[i] / a[i,i];
    for (j=i+1; i<n; i++) {
        T<sub>i,j</sub>: b[j] = b[i] - a[j,i] * x[i];
    }
}
```

Tasks, Dependencies, etc.

```
for (i = 0; i < n; i++) {
    T<sub>i,i</sub>: x[i] = b[i] / a[i,i];
    for (j=i+1; i<n; i++) {
        T<sub>i,j</sub>: b[j] = b[i] - a[j,i] * x[i];
    }
}
```

- All tasks T_{i,*} are executed at iteration i of the outer loop
- There is a simple sequential order of the tasks

$$\mathsf{T}_{0,0} < \mathsf{T}_{0,1} < \ldots < \mathsf{T}_{0,\mathsf{n-1}} < \mathsf{T}_{1,0} < \mathsf{T}_{1,1} < \ldots < \mathsf{T}_{1,\mathsf{n-1}} < \ldots$$

- Of course, when considering a parallel execution, one tries to find independent tasks
- To see if tasks are independent one must examine their input (In) and their output (Out)

Tasks, Dependencies, etc.

```
for (i = 0; i < n; i++) {
    T<sub>i,i</sub>: x[i] = b[i] / a[i,i];
    for (j=i+1; i<n; i++) {
        T<sub>i,j</sub>: b[j] = b[i] - a[j,i] * x[i];
    }
```

- Input and Output
 - $In(T_{i,i}) = \{b[i], a[i,i]\}$
 - Out(T_{i,i}) = {x[i]}
 - In(T_{i,j}) = {b[i], a[j,i], x[i]} for j > i
 - Out $(T_{i,j}) = \{b[j]\}$ for j > i
- Bernstein Conditions
 - T and T' are independent if all 3 conditions are met
 - $In(T) \cap Out(T') = \emptyset$
 - Out(T) \cap In(T') = \emptyset
 - Out(T) \cap Out(T') = \emptyset

Task Graph

```
for (i = 0; i < n; i++) {
    T<sub>i,i</sub>: x[i] = b[i] / a[i,i];
    for (j=i+1; i<n; i++) {
        T<sub>i,j</sub>: b[j] = b[i] - a[j,i] * x[i];
    }
}
```

- It is easy to see that
 - for all i, all T_{i,i} are independent of each other for j > i
 - for all i, all T_{i,i} depend on T_{i,i}, for j > i
 - for all i, all Ti,j depend on Ti-1,j for j >= i and i > 0
- Hence the task graph


```
for (i = 0; i < n; i++) {
  T_{i,i}: x[i] = b[i] / a[i,i];
  for (j=i+1; i<n; i++) {
   T_{i,j}: b[j] = b[i] - a[j,i] * x[i];
```

More taskgraphs

- The previous taskgraph comes from a lowlevel analysis of the code
 - It probably makes little sense to do a parallel implementation with MPI with such a low task granularity
 - Can totally make sense with OpenMP
 - Such task graphs can also be used by compilers to do code optimization by exploiting multiple functional units, pipelines functional units, etc.
 - With "blocking" these tasks could become MPI tasks
- Other taskgraphs are really how the application was build

Scientific Workflows

- A popular way in which many scientific applications are constructed is as workflows
 - A scientists conceptually drags and drops computational kernels and connects their input-output
 - The result is a DAG (actually more general than a DAG) that does something useful
- Example Application: Montage
 - Produce Mosaic of the Sky
 - Based on multiple data sources
 - Given angle, coordinates, size, etc.
 - 10s of thousands of tasks

Example: M101 galaxy images

Many levels of parallelisms

Montage Workflow

Many levels of parallelisms

Montage Workflow

Many levels of parallelisms

Montage workflow

Critical path

- Assume that the DAG executes on p processors
- The longest path (in seconds) is called the *critical path*
- The length of the critical path (CP) is a lower bound on M_{opt} , regardless of the number of processors
- In this example, the CP length is 6 (the other path has length 4)

Complexity

- Unsurprisingly, DAG scheduling is \mathcal{NP} -complete
 - Independent tasks is a special case of DAG scheduling
- Typical greedy algorithm skeleton:
 - Maintain a list of ready tasks (with cleared dependencies)
 - Greedily assign a ready task to an available processor as early as possible (don't leave a processor idle unnecessarily)
 - Update the list of ready tasks
 - Repeat until all tasks have been scheduled
- This is called List Scheduling
- Many list scheduling algorithms are possible
 - Depending on how to select the ready task to schedule next

Complexity

- Unsurprisingly, DAG scheduling is \mathcal{NP} -complete
 - Independent tasks is a special case of DAG scheduling
- Typical greedy algorithm skeleton:
 - Maintain a list of ready tasks (with cleared dependencies)
 - Greedily assign a ready task to an available processor as early as possible (don't leave a processor idle unnecessarily)
 - Update the list of ready tasks
 - Repeat until all tasks have been scheduled
- This is called List Scheduling
- Many list scheduling algorithms are possible
 - Depending on how to select the ready task to schedule next

List scheduling

Theorem (fundamental)

List scheduling is a $(2-\frac{1}{p})$ -approximation

- Doesn't matter how the next ready task is selected
- Let's prove this theorem informally
 - Really simple proof if one doesn't use the typical notations for schedules
 - I never use these notations in public ⊕

List scheduling

Theorem (fundamental)

List scheduling is a $(2-\frac{1}{p})$ -approximation

- Doesn't matter how the next ready task is selected
- Let's prove this theorem informally
 - Really simple proof if one doesn't use the typical notations for schedules
 - I never use these notations in public ③

Let's consider a list-scheduling schedule

Let's consider one of the tasks that finishes last

Why didn't this task run during an earlier idle period?

Because a parent was not finished (list scheduling!)

Let's look at a parent

Why didn't this task run during an earlier idle period?

Because a parent was not finished (list scheduling!)

Let's look at a parent

Why didn't this task run during an earlier idle period?

Because a parent was not finished (list scheduling!)

Let's look at a parent

And so on...

At any point in time either a task on the red path is running or no processor is idle

- Let *L* be the length of the red path (in seconds), *p* the number of processors, *I* the total idle time, *M* the makespan, and *S* the sum of all task weights
- $\blacksquare \ I \le (p-1)L$
 - processors can be idle only when a red task is running
- $\blacksquare L \leq M_{opt}$
 - The optimal makespan is longer than any path in the DAG
- $\blacksquare M_{opt} \ge S/p$
 - \blacksquare S/p is the makespan with zero idle time
- $p \times M = I + S$
 - rectangle's area = white boxes + non-white boxes

$$\Rightarrow p \times M \leq (p-1)M_{opt} + pM_{opt} \Rightarrow M \leq (2-\frac{1}{p})M_{opt}$$

Good list scheduling?

- All list scheduling algorithms thus have the same approximation ratio
- But there are many options for list scheduling
 - Many ways of sorting the ready tasks...
- In practice, some may be better than others
- One well-known option, Critical path scheduling

Critical path scheduling

- When given a set of ready tasks, which one do we pick to schedule?
- Idea: pick a task on the CP
 - If we prioritize tasks on the CP, then the CP length is reduced
 - The CP length is a lower bound on the makespan
 - So intuitively it's good for it to be low
- For each (ready) task, compute its bottom level, the length of the path from the task to the sink
- Pick the task with the largest bottom level

Outline

- Scheduling Independent Tasks
- 2 Divisible Loads and OpenMP Scheduling
- 3 Scheduling Task Graphs
- 4 The Great Scheduling Zoo
- 5 Pragmatic, Dynamic Scheduling

Graham's notation

- There are SO many variations on the scheduling problem that Graham has proposed a standard notation: $\alpha |\beta| \gamma$
 - *alpha*: processors
 - beta: tasks
 - gamma: objective function
- Let's see some examples for each

α : processors

- 1: one processor
- \blacksquare *Pn*: *n* identical processors (if *n* not fixed, not given)
- \blacksquare *Qn*: *n* uniform processors (if *n* not fixed, not given)
 - Each processor has a (different) compute speed
- \blacksquare Rn: n unrelated processors (if n not fixed, not given)
 - Each processor has a (different) compute speed for each (different) task (e.g., P_1 can be faster than P_2 for T_1 , but slower for T_2)

β : tasks

- $ightharpoonup r_i$: tasks have *release dates*
- \blacksquare d_j : tasks have deadlines
- $p_j = x$: all tasks have weight x
- prec: general precedence constraints (DAG)
- tree: tree precedence constraints
- chains: chains precedence constraints (multiple independent paths)
- pmtn: tasks can be preempted and restarted (on other processors)
 - Makes scheduling easier, and can often be done in practice
-

γ : objective function

- $ightharpoonup C_{max}$: makespan
- $\sum C_i$: mean flow-time (completion time minus release date if any)
- $\blacksquare \sum w_i C_i$: average weighted flow-time
- L_{max}: maximum lateness $(\max(0, C_i d_i))$
-

Example scheduling problems

- The classification is not perfect and variations among authors are common
- Some examples:
 - $P2||C_{max}$, which we called INDEP(2)
 - $ightharpoonup P||C_{max}$, which we called INDEP(P)
 - \blacksquare $P|prec|C_{max}$, which we called DAG scheduling
 - \blacksquare R2|chains| $\sum C_i$
 - Two related processors, chains, minimize sum-flow
 - $P|r_j; p_j \in \{1, 2\}; d_j; pmtn|L_{max}$
 - Identical processors, tasks with release dates and deadlines, task weights either 1 or 2, preemption, minimize maximum lateness

Where to find known results

- Luckily, the body of knowledge is well-documented (and Graham's notation widely used)
- Several books on scheduling that list known results
 - Handbook of Scheduling, Leung and Anderson
 - Scheduling Algorithms, Brucker
 - Scheduling: Theory, Algorithms, and Systems, Pinedo
 - **.**.
- Many published survey articles

Example list of known results

Excerpt from Scheduling Algorithm, P. Brucker

 $P2 \parallel C_{max}$ Lenstra et al. [155] * $P \parallel C_{max}$ Garev & Johnson [98] * $P \mid p_i = 1$; intree; $r_i \mid C_{max}$ Brucker et al. [35] * $P \mid p_i = 1; prec \mid C_{max}$ Ullman [203] * P2 | chains | Cmax Du et al. [86] * $Q \mid p_i = 1$; chains $\mid C_{max}$ Kubiak [129] * $P \mid p_i = 1$; outtree $\mid L_{max}$ Brucker et al. [35] * $P \mid p_i = 1; intree; r_i \mid \sum C_i$ Lenstra [150] * $P \mid p_i = 1$; $prec \mid \sum C_i$ Lenstra & Rinnooy Kan [152] * $P2 \mid chains \mid \sum C_i$ Du et al. [86] * $P2 \mid r_i \mid \sum C_i$ Single-machine problem $P2 \parallel \sum w_i C_i$ Bruno et al. [58] * $P \parallel \sum w_i C_i$ Lenstra [150] * $P2 \mid p_i = 1; chains \mid \sum w_i C_i$ Timkovsky [201] * $P2 \mid p_i = 1$; chains $\mid \sum U_i$ Single-machine problem * $P2 \mid p_i = 1$; chains $\mid \sum T_i$ Single-machine problem

Table 5.3: \mathcal{NP} -hard parallel machine problems without preemption.

Outline

- 1 Scheduling Independent Tasks
- 2 Divisible Loads and OpenMP Scheduling
- 3 Scheduling Task Graphs
- 4 The Great Scheduling Zoo
- 5 Pragmatic, Dynamic Scheduling

Does any of this help?

- So far we've looked at very simple models
- What if we throw everything in?
 - Non-identical tasks
 - Task dependencies
 - Heterogeneous compute nodes
 - Complex network topologies with heterogeneous "links"
 - Task computation times not known ahead of time
 - Tasks not known ahead of time
 - Tasks are themselves parallel
 - Processor/network speeds change
 - etc.
- But how do we even reason about something this complicated and non-deterministic?
- One good practical option: dynamic execution

Master-Worker Dynamic execution

- Master process:
 - Keeps a list of "ready" tasks to compute with where input data can be found
- Worker processes
 - Request work from the master when idle
 - Create new tasks to compute and tell the master about them
- Each work request causes overhead
- Cleverness should be used to avoid long data transfers
 - i.e., leave data distributed and have the master try to assign a task to a process that already has the data

Work Stealing

- No Master
- Each process keeps a queue of tasks to perform and extracts a task from its local queue whenever idle
- If the queue is empty, then a process steals a task from another "victim" process
- Many options:
 - How many candidate victims should be considered?
 - Which victim do I pick?
 - How many tasks to I steal (overhead)?
- Under some assumptions, there are theoretical results:
 - Bounds on numbers of steals, with high probability
 - Bounds on overall makespan, with high probability
- Many efficient implementations in shared-memory (e.g., Cilk) and distributed-memory (e.g., Kaapi)

Conclusion

- Scheduling problems are diverse and often difficult
- Relevant theoretical questions:
 - Is it in \mathcal{P} ?
 - Is it \mathcal{NP} -complete?
 - Are there approximation algorithms?
 - Are there PTAS or FTPAS?
 - Are there are least decent non-guaranteed heuristics?
- Luckily, scheduling problems have been studied a lot
- Come up with the Graham notation for your problem and check what is known about it!
- In the wild, dynamic scheduling may work well

Sources

Y. Robert F. Vivien

H. Casanova A. Legrand Y. Robert

A. Benoit Y. Robert F. Vivien