

Scripts Execution

⇒ For this capstone project final submission, I have submitted below artifacts:

Task 5: Create a streaming data processing framework that ingests real-time POS transaction data from Kafka. The transaction data is then validated based on the three rules' parameters (stored in the NoSQL database) discussed previously.

Task 6: Update the transactions data along with the status (fraud/genuine) in the card_transactions table.

Task 7: Store the 'postcode' and 'transaction_dt' of the current transaction in the look-up table in the NoSQL database if the transaction was classified as genuine.

Python scripts - driver.py, rules.py, dao.py, geo_map.py

⇒ Explanation of the solution to the streaming layer problem

To read the data from Kafka topic following steps were taken:

- Connect to EMR
- Card_transactions and look_up_table data should be present in Hbase (completed in mid-submission)
- Ensure thrift server is up and running.
- Create a directory names as *python* and *src* in EMR cluster. Within *src* directory place the *driver.py* file and create 2 other directories names as *db* & *rules*.
- Create a src.zip file within src directory.

```
[___init___p] db driver.py rules surjectives.
[[hadoop@ip-172-31-46-227 src]$ zip src.zip __init__.py rules/* db/*
   adding: __init__.py (stored 0%)
   adding: rules/__init__.py (stored 0%)
   adding: rules/rules.py (deflated 41%)
   adding: db/dao.py (deflated 61%)
   adding: db/geo_map.py (deflated 56%)
   adding: db/__init__.py (stored 0%)
[[hadoop@ip-172-31-46-227 src]$ ls
__init__.py db driver.py rules src.zip uszipsv.csv
```

- Run below commands to execute the kafka streaming:
 - export SPARK KAFKA VERSION=0.10
 - spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.3.1 -files uszipsv.csv driver.py

```
[[hadoop@ip-172-31-46-227 python]$ cd src/
[[hadoop@ip-172-31-46-227 src]$ export SPARK_KAFKA_VERSION=0.10
```

[[hadoop@ip-172-31-46-227 src]\$ spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.5 --py-files src.zip --files uszipsv.csv driver.py
Ivy Default Cache set to: /home/hadoop/.ivy2/cache

- The program is executed and the desired output is displayed in the console with coulumns card_id, member_id, amount, pos_id, postcode, transaction_dt_ts and status.
- Card_transactions table in Hbase is also updated with the Genuine/Fraud records
- ⇒ Stepwise approach with screenshots:
- <u>driver.py script</u> Various user defined functions will be called within this program, which will contact given dao.py and geo_map.py scripts to call the look up table for required reasons.
 - All the necessary libraries and functions have been imported.

```
# Streaming Application to read from Kafka
# This should be the driver file for your project

# Importing required function and libraries
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *
from datetime import datetime
```

Spark Session and Spark Context is created for Credit card fraud detection application

Required python files (dao.py, geo_map.py & rules.py) are added into the driver program

```
# Adding the required python files
sc.addPyFile('db/dao.py')
sc.addPyFile('db/geo_map.py')
sc.addFile('rules/rules.py')
# Importing all the required modules
import dao
import geo_map
import rules
```


Reading data stream from given Kafka topic.

Bootstrap-server: 18.211.252.152

Port Number: 9092

Topic: transactions-topic-verified

Data frame schema is defined and data is parsed into the df_parsed

UDF for calculating credit score from the look_up_table using card_id

```
# Adding Time stamp column
df_parsed = df_parsed.withColumn('transaction_dt_ts',unix_timestamp(df_parsed.transaction_dt, 'dd-MM-YYYY HH:mm:ss').cast(TimestampType()))

# Function for Credit Score
def score_data(a):
    hdao = dao.HBaseDao.get_instance()
    data_fetch = hdao.get_data(key=a,table='look_up_table')
    return data_fetch('info:score')

# Defining UDF for Credit Score
Score_udf = udf(score_data,StringType())

#Adding score column
df_parsed = df_parsed.withColumn("score",Score_udf(df_parsed.card_id))
```

UDF for calculating postal code from the look_up_table using card_id


```
# Function for Postal Code
def postcode_data(a):
    hdao = dao.HBaseDao.get_instance()
    data_fetch = hdao.get_data(key=a,table='look_up_table')
    return data_fetch['info:postcode']

# Defining UDF for Postal Code
postcode_udf = udf(postcode_data,StringType())

# Adding Postal Code Column
df_parsed = df_parsed.withColumn("last_postcode",postcode_udf(df_parsed.card_id))
```

UDF for calculating UCL (upper control limit)

```
# Function for UCL
def ucl_data(a):
    hdao = dao.HBaseDao.get_instance()
    data_fetch = hdao.get_data(key=a,table='look_up_table')
    return data_fetch['info:UCL']

# Defining UDF for UCL
UCL_udf = udf(ucl_data,StringType())

# Adding UCL Column
df_parsed = df_parsed.withColumn("UCL",UCL_udf(df_parsed.card_id))
```

 UDF for distance calculation between previous and current transaction postal codes from the look up tables and kafka stream (this function will use geo_map.py script)

```
#Function for Distance calculation
def distance_calc(last_postcode);
    gmap = geo_map.GeD_Map.get_instance()
    last_lat = gmap.get_lat(last_postcode)
    last_lon = gmap.get_long(last_postcode)
    lat = gmap.get_lat(postcode)
    lon = gmap.get_long(postcode)
    final_dist = gmap.distance(last_lat.values[0],last_lon.values[0],lat.values[0],lon.values[0])
    return final_dist

# Defining UDF for Distance
distance_udf = udf(distance_calc,DoubleType())

# Adding Distance Column
df_parsed = df_parsed.withColumn("distance",distance_udf(df_parsed.last_postcode,df_parsed.postcode))
```

 UDF for date and time calculation. Further time_diff is calculated using last transaction date and current transaction date. Time_diff acts as one of the rules in identifying genuine/fraud transactions.

```
# Function for Time calculation

def time_cal(last_date, curr_date):
    diff= curr_date-last_date
        return (diff.total_seconds())/3600

# Function for Transaction Date

def lTransD_data(a):
    hdao = dao.HBaseDao.get_instance()
    data_fetch = hdao.get_data(key=a, table='look_up_table')
    return data_fetchl'info:transaction_date']

# Defining UDF for Transaction Date
lTransD_udf = udf(lTransD_data_StringType())

# Adding Transaction Date Column

df_parsed = df_parsed.withColumn("last_transaction_date",lTransD_udf(df_parsed.card_id))

# Defining UDF for Calculating Time

time_udf = udf(time_cal,DoubleType())

# Adding Time stamp column

df_parsed = df_parsed.withColumn('transaction_date_ts',unix_timestamp(df_parsed.transaction_dt, 'dd-MM-YYYY HH:mm:ss').cast(TimestampType()))

df_parsed = df_parsed.withColumn('tast_transaction_date_ts',unix_timestamp(df_parsed.last_transaction_date, 'YYYY-MM-dd HH:mm:ss').cast(TimestampType()))

# Adding Time diff column

df_parsed = df_parsed.withColumn('time_diff',time_udf(df_parsed.last_transaction_date_ts,df_parsed.transaction_dt_ts))
```


The function to define the status of transaction is fraudulent or genuine

 Selecting the required columns from the parsed streaming data frame and writing output to the console.

- rules.py script This program will check whether incoming transaction is a genuine or fraud. Follwing rules are defined in the script:
 - 1. Transaction amount < UCL (Amount of transaction should be less than UCL)
 - 2. Time difference in sec < 4 times the distance (*Time difference between current transaction timestamp*)
 - 3. Credit Score < 200

```
# List all the functions to check for the rules

# Function to define rules

def rules_check(UCL,score,distance,time_diff,amount):
    if amount < UCL:
        if time_diff < (distance*4):
            if score > 200:
                return True

return False
```


3. Console Output

card_id	member_id	amount	pos_id	postcode	transaction_dt_ts	status
348702330256514	+ 37495066290	4380912	248063406800722	96774	2017-12-31 08:24:29	GENUINE
348702330256514	37495066290	16703385	786562777140812	84758	2017-12-31 04:15:03	FRAUD
348702330256514	37495066290	17454328	466952571393508	93645	2017-12-31 09:56:42	GENUINE
348702330256514	37495066290	14013428	45845320330319	15868	2017-12-31 05:38:54	GENUINE
348702330256514	37495066290	15495353	545499621965697	79033	2017-12-31 21:51:54	GENUINE
348702330256514	37495066290	3966214	369266342272501	22832	2017-12-31 03:52:51	GENUINE
348702330256514	37495066290	11753644	9475029292671	17923	2017-12-31 00:11:30	FRAUD
348702330256514	37495066290	11692115	27647525195860	55708	2017-12-31 17:02:39	GENUINE
5189563368503974	1117826301530	19222134	525701337355194	64002	2017-12-31 20:22:10	GENUINE
5189563368503974	1117826301530	4133848	182031383443115	26346	2017-12-31 01:52:32	FRAUD
5189563368503974	1117826301530	18938921	799748246411019	76934	2017-12-31 05:20:53	FRAUD
5189563368503974	1117826301530	11786366	131276818071265	63431	2017-12-31 14:29:38	GENUINE
5189563368503974	117826301530	19142237	564240259678903	50635	2017-12-31 19:37:19	GENUINE
5407073344486464	11147922084344	16885448	887913906711117	59031	2017-12-31 07:53:53	FRAUD
5407073344486464	11147922084344	14028209	1116266051118182	80118	2017-12-31 01:06:50	FRAUD
5407073344486464	11147922084344	13858369	896105817613325	53820	2017-12-31 17:37:26	GENUINE
5407073344486464	11147922084344	19307733	729374116016479	14898	2017-12-31 04:50:16	FRAUD
5407073344486464	11147922084344	4011296	543373367319647	44028	2017-12-31 13:09:34	GENUINE
5407073344486464	11147922084344	19492531	211980095659371	49453	2017-12-31 14:12:26	GENUINE
5407073344486464	11147922084344	17550074	345533088112099	15030	2017-12-31 02:34:52	FRAUD

4. Navigate to Hbase Shell, check *card_transactions* table scan 'card_transactions'

Total count of rows in card_transactions table in HBase is 59367


```
Lurent count: 2000, row: 20990
Lurent count: 21000, row: 2899
Lurent count: 21000, row: 2899
Lurent count: 24000, row: 2899
Lurent count: 24000, row: 31590
Lurent count: 25000, row: 31590
Lurent count: 25000, row: 31590
Lurent count: 27000, row: 31590
Lurent count: 27000, row: 31590
Lurent count: 27000, row: 34172464458947.210778177559185.12-06-2018152638.2021-01-04171328.358477
Lurent count: 27000, row: 34164
Lurent count: 32000, row: 36564
Lurent count: 31000, row: 36564
Lurent count: 31000, row: 370582035866789.433646648625434.08-07-2018035259.2021-01-04171349.489635
Lurent count: 31000, row: 370582035866789.433646648625469.26-08-2018130045.2021-01-04171349.489635
Lurent count: 31000, row: 38176
Lurent count: 33000, row: 38176
Lurent count: 33000, row: 38176
Lurent count: 34000, row: 38176
Lurent count: 34000, row: 38176
Lurent count: 35000, row: 38176
Lurent count: 35000, row: 38176
Lurent count: 35000, row: 40768
Lurent count: 35000, row: 40768
Lurent count: 37000, row: 40768
Lurent count: 37000, row: 43185
Lurent count: 38000, row: 43185
Lurent count: 4000, row: 43186
Lurent count: 4000, r
```