CS 581

Advanced Artificial Intelligence

March 04, 2024

Announcements / Reminders

Please follow the Week 08 To Do List instructions (if you haven't already)

Next week: Spring Break! No office hours.

Programming Assignment #01: due on Sunday 03/03
 Tuesday 03/05 at 11:59 PM CST

Plan for Today

- Decision Networks
- Inference in Probabilistic Networks

Factoring / Decomposition

Bayes' Rule

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Prior vs. Posterior Probabilities

Prior Probability

Posterior Probability

P(A)

P(A | parents(A))

Use Chain Rule To Decompose

N Random Variables				Joint		
\mathbf{P}_{1}	\mathbf{P}_2	\mathbf{P}_3	***	P_{N-1}	$\mathbf{P}_{\mathbb{N}}$	Probability
true	true	true		true	true	false
true	true	true		true	false	true
true	true	false		false	true	false
					A.c.	
	•••		····	•••		•••
false	false	true		true	false	true
false	false	true		false	true	true
false	false	false		false	false	false
			•			

Conditional Independence

Causal Chain:

Burglary and MaryCalls are CONDITIONALLY independent given Alarm.

If Alarm is given, what "happened before" Alarm does not directly influence MaryCalls.

Chain Rule

Conditional probabilities can be used to decompose conjunctions using the chain rule. For any propositions (random variables) f_1, f_2, \ldots, f_n :

$$P(f_1 \wedge f_2 \wedge \ldots \wedge f_n) = \prod_{i=1}^n P(f_i \mid f_1 \wedge f_2 \wedge \ldots \wedge f_{i-1})$$

However, it can be rewritten as:

$$P(f_1 \wedge f_2 \wedge ... \wedge f_n) = \prod_{i=1}^n P(f_i \mid parents(f_i))$$

because with conditional independence(s) considered:

$$\prod_{i=1}^{n} P(f_i \mid f_1 \land f_2 \land \dots \land f_{i-1}) = \prod_{i=1}^{n} P(f_i \mid parents(f_i))$$

Chain Rule

Conditional probabilities can be used to decompose conjunctions using the chain rule. For any propositions (random variables) f_1, f_2, \ldots, f_n :

$$P(f_1) *$$

$$P(f_2 | f_1) *$$

$$P(f_3 | f_1 \wedge f_2) *$$
...
$$P(f_n | f_1 \wedge f_2 \wedge ... \wedge f_{n-1}) =$$

$$= \prod_{i=1}^n P(f_i | Parents(f_i)) \leftarrow \text{Enabled by conditional independence}$$

 $P(f_1 \wedge f_2 \wedge \ldots \wedge f_n) =$

Parents of Random Variable f_i

Parents of random variable f_i (parents(f_i)) is a minimal set of predecessors of f_i in the total ordering such that the other predecessors of f_i are conditionally independent of f_i given $parents(f_i)$.

A set of all predecessors of f_i : $A = \{f_1, f_2, \dots, f_{i-1}\}$

A set of all parents of $f_i : B$

A set of all non-parents (predecessors NOT in B) of f_i : C

$$A = \{f_1, f_2, \dots, f_{i-1}\} = B \cup C \text{ where } B \cap C = \emptyset$$

when $parents(f_i)$ are given (all their values are known).

Parents of Random Variable f_i

Parents of random variable f_i (parents(f_i)) is a minimal set of predecessors of f_i in the total ordering such that the other predecessors of f_i are conditionally independent of f_i given $parents(f_i)$.

So: when $parents(f_i)$ are given, f_i probabilistically depends on each of its parents ($parents(f_i)$), but is independent of its other predecessors. That is

$$parents(f_i) \subseteq \{f_1, f_2, \dots, f_{i-1}\}$$

such that:

$$P(f_i \mid f_1 \land f_2 \land \dots \land f_{i-1}) = P(f_i \mid parents(f_i))$$

Bayes Network: Factorization

Chain rule AND definition of $parents(f_i)$ gives us:

$$P(f_1 \wedge f_2 \wedge ... \wedge f_n) = \prod_{i=1}^n P(f_i \mid parents(f_i))$$

Joint probability distribution

Product of conditional probabilities after factorization of joint probability distribution

	Joint				
\mathbf{P}_{1}	\mathbf{P}_2	\mathbf{P}_3	 $P_{\overline{N}\text{-}1}$	$\mathbf{P}_{\mathbf{N}}$	Probability
true	true	true	 true	true	0.0011
true	true	true	 true	false	0.0451
true	true	false	 false	true	0.1011
false	false	true	 true	false	0.0909
false	false	true	 false	true	0.0651
false	false	false	 false	false	0.2021

Joint probability distribution

Bayes Network: graph representation of joint probability distribution factorization

Bayesian (Belief) Network

A Bayesian belief network describes the joint probability distribution for a set of variables.

A Bayesian network is an acyclic, directed graph (DAG), where the nodes are random variables (propositions). There is an edge (arc) from each elements of $parents(X_i)$ into X_i . Associated with the Bayesian network is a set of conditional probability distributions - the conditional probability of each variable given its parents (which includes the prior probabilities of those variables with no parents).

Consists of:

- a graph (DAG) with nodes corresponding to random variables
- a domain for each random variable
- a set of conditional probability distributions $P(X_i | parents(X_i))$

Bayesian (Belief) Network: Example

Random Variables (Propositions):

- Tampering: true if the alarm is tampered with
- Fire: true if there is a fire
- Alarm: true if the alarm sounds
- Smoke: true if there is smoke
- Leaving: true if people leaving the building at once
- Report: true if someone who left the building reports fire

Domain for all variables: {true, false}

NOTE: RVs don't have to be Boolean

Building Bayesian (Belief) Network

- 1. Order Random Variables (ordering matters!)
- 2. Create network nodes for each Random Variable
- 3. Add edges between parent nodes and children nodes
 - For every node node X_i:
 - choose a minimal set S of parents for X_i
 - for each parent node Y in S add an edge from Y to X_i
- 4. Add Conditional Probability Tables

Make it compact / sparse: choose your Random Variable ordering wisely.

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Query rewritten:

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Query rewritten:

$$P(b \mid j,m)$$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

We can now calculate:

$$P(b \mid j, m) = \alpha * 0.00059224$$

And through similar process (not shown):

$$P(\neg b \mid j, m) = \alpha * 0.0014919$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A
t	0.90	t	0.70
f	0.05	f	0.01

Query (now we can get joint distribution):

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

We can now calculate:

$$P(B \mid j, m) = \alpha * < 0.00059224, 0.0014919 >$$

And after normalization:

$$P(B \mid j, m) \approx < 0.284, 0.716 >$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A
t	0.90	t	0.70
f	0.05	f	0.01

More On Conditional Independence

Node \boldsymbol{X} is conditionally independent of ALL other nodes in the network its given its

Markov blanket.

Why do we care?

An unconstrained joint probability distribution with N binary variables involves 2^N probabilities. Bayesian network with at most k parents per each node (N) involves $N * 2^k$ probabilities (k < N).

Decision Networks

Decision Theory

- Decisions: every plan (actions) leads to an outcome (state)
- Agents have preferences (preferred outcomes)
- Preferences → outcome utilities
- Agents have degrees of belief (probabilities) for actions

Decision theory = probability theory + utility theory

Decision Theory

- Decisions: every plan (actions) leads to an outcome (state)
- Agents have preferences (preferred outcomes)
- Preferences → outcome utilities
- Agents have degrees of belief (probabilities) for actions

Decision theory = probability theory + utility theory

BELIEFS

DESIRES

Maximum Expected (Average) Utility

MEU(M) = P(S10) * U(S10) + P(S15) * U(S15) + P(S55) * U(S55)

$$MEU(N) = P(S20) * U(S20) + P(S15) * U(S15) + P(S12) * U(S12)$$

Agents Decisions

Recall that agent **ACTIONS** change the state:

- if we are in state s
- action a is expected to
- lead to another state s' (outcome)

Given uncertainty about the current state s and action outcome s' we need to define the following:

- probability (belief) of being in state s: P(s)
- probability (belief) of action a leading to outcome s': P(s' | s, a)

Now:

$$P(s' \mid s, a) = P(RESULT(a) = s') = \sum_{s} P(s) * P(s' \mid s, a)$$

Expected Action Utility

The expected utility of an action a given the evidence is the average utility value of all possible outcomes s' of action a, weighted by their probability (belief) of occurence:

$$EU(a) = \sum_{s'} \sum_{s} P(s) * P(s' \mid s, a) * U(s') = \sum_{s'} P(Result(a) = s') * U(s')$$

Rational agent should choose an action that maximizes the expected utility:

chosen action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a)

State Utility Function

Agent's preferences (desires) are captured by the Utility function $U(\mathbf{s})$.

Utility function assigns a value to each state s to express how desirable this state is to the agent.

How Did We Get Here?

Let's start with relationships (and related notation) between agent's preferences:

agent prefers A over B:

agent is indifferent between A and B:

$$A \sim B$$

 agent prefers A over B or is indifferent between A and B (weak preference):

$$A \geq B$$

The Concept of Lottery

Let's assume the following:

- an action a is a lottery <u>ticket</u>
- the set of outcomes (resulting states) is a lottery

A lottery L with possible outcomes S_1 , ..., S_n that occur with probabilities p_1 , ..., p_n is written as:

$$L = [p_1, S_1; p_2, S_2; ...; p_n, S_n]$$

Lottery outcome S_i : atomic state or another lottery.

Lottery Constraints: Orderability

Given two lotteries A and B, a rational agent must either prefer one or else rate them as equally preferable:

Exactly one of (A > B), (B > A), or $(A \sim B)$ holds

Lottery Constraints: Transitivity

Given three lotteries A, B, and C, if an agent prefers A to B AND prefers B to C, then the agent must prefer A to C:

$$(A > B) \land (B > C) \Rightarrow (A > C)$$

Lottery Constraints: Continuity

If some lottery B is between A and C in preference, then there is some probability p for which the rational agent will be indifferent between getting B for sure or some other lottery that yields A with probability p and C with probability p and p and p with probability p and p with p with p with p and p with p and p with p

$$(A > B > C) \Rightarrow \exists p [p, A; 1-p, C] \sim B$$

Lottery Constraints: Substitutability

If an agent is indifferent between two lotteries A and B, then the agent is indifferent between two more complex lotteries that are the same, except that B is subsituted for A in one of them:

$$(A \sim B) \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$$

Lottery Constraints: Monotonicity

Suppose two lotteries have the same two possible outcomes, A and B. If an agent prefers A to B, then the agent must prefer the lottery that has a higher probability for A:

$$(A > B) \Rightarrow (p > q \Leftrightarrow [p, A; 1-p, B] > [q, A; 1-q, B])$$

Lottery Constraints: Decomposability

Compound lotteries can be reduced to smaller ones using the laws of probability:

$$[p, A; 1-p, [q, B; 1-q, C]] \sim [p, A; (1-p)*q, B; (1-p)*(1-q), C]$$

Preferences and Utility Function

An agent whose preferences between lotteries follow the set of axioms (of utility theory) below:

- Orderability
- Transitivity
- Continuity
- Subsitutability
- Monotonicity
- Decomposability

can be described as possesing a utility function and maximize it.

Preferences and Utility Function

If an agent's preferences obey the axioms of utility theory, then there exist a function U such that:

$$U(A) = U(B)$$
 if and only if $(A \sim B)$

and

$$U(A) > U(B)$$
 if and only if $(A > B)$

Multiattribute Outcomes

Outcomes can be characterized by more than one attribute. Decisions in such cases are handled by Multiattribute Utility Theory.

Attributes: $X = X_1, ..., X_n$

Assigned values: $\mathbf{x} = \langle \mathbf{x}_1, ..., \mathbf{x}_n \rangle$

Strict Dominance: Deterministic

Strict Dominance: Deterministic

Strict Dominance: Uncertain

Decision Network (Influence Diagram)

Decision networks (also called influence diagrams) are structures / mechanisms for making rational decisions.

Decision networks are based on Bayesian networks, but include <u>additional nodes</u> that represent actions and utilities.

Decision Networks

The most basic decision network needs to include:

- information about current state s
- possible actions
- resulting state s' (after applying chosen action a)
- utility of the resulting state U(s')

Decision Network Nodes

Decision networks are built using the following nodes:

chance nodes:

decision nodes:

utility (or value) nodes

Decision Network: Evaluation

The algorithm for decision network evaluation is as follows:

- 1. Set the evidence variables for the current state
- 2. For each possible value a of decision node:
 - a. Set the decision node to that value
 - Calculate the posterior probabilities for the parent nodes of the utility node
 - c. Calculate the utility for the action / value a
- 3. Return the action with highest utility

Decision Network: Simplified Form

(Single-Stage) Decision Networks

General Structure

Decision Network

Simplified Structure

Decision Network

(Single-Stage) Decision Networks

General Structure

Utility Table

S	low	low	low	low	high	high	high	high
Q	low	low	high	high	low	low	high	high
F	low	high	low	high	low	high	low	high
U	10	20	5	50	70	150	100	200

Simplified Structure

Action-Utility Table (not all columns shown)

AT	low	low	low	 	high	high	high
L	low	low	high	 	low	high	high
С	low	high	low	 	high	low	high
AS	A	A	A	 	В	В	В
U	10	20	5	 	150	100	200

Decision Network: Evaluation

The algorithm for decision network evaluation is as follows:

- 1. Set the evidence variables for the current state
- 2. For each possible value a of decision node:
 - a. Set the decision node to that value
 - Calculate the posterior probabilities for the parent nodes of the utility node
 - c. Calculate the utility for the action / value a
- 3. Return the action with highest utility

Agent's Decisions

Recall that agent **ACTIONS** change the state:

- if we are in state s
- action a is expected to
- lead to another state s' (outcome)

Given uncertainty about the current state s and action outcome s' we need to define the following:

- probability (belief) of being in state s: P(s)
- probability (belief) of action a leading to outcome s': P(s' | s, a)

Now:

$$P(s' \mid s, a) = P(RESULT(a) = s') = \sum_{s} P(s) * P(s' \mid s, a)$$

Expected Action Utility

The expected utility of an action a given the evidence is the average utility value of all possible outcomes s' of action a, weighted by their probability (belief) of occurence:

$$EU(a) = \sum_{s'} \sum_{s} P(s) * P(s' \mid s, a) * U(s') = \sum_{s'} P(Result(a) = s') * U(s')$$

Rational agent should choose an action that maximizes the expected utility:

chosen action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a)

Decision: take umbrella

Decision: leave umbrella

take

take

20

70

sun

rain

Decision: take umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	
take	rain	70

$$EU(take) = ???$$

Decision: leave umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$EU(leave) = ???$$

Decision: take umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	
take	rain	70

$$EU(take) = 35$$

Decision: leave umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$EU(leave) = 70$$

Which action to choose: take or leave Umbrella?

W	U
sun	100
rain	0
sun	20
rain	70
	rain sun

action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a) | max(EU(take), EU(leave)) = max(35, **70**) \rightarrow leave

Decision: take umbrella

Decision: leave umbrella

Decision:take umbrella given e

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decision: leave umbrella given e

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s') \mid EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decision:take umbrella given e

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Conditional probabilities Assume that we are given:

F	W	P(F W)
sun	sun	0.80
rain	sun	0.20
sun	rain	0.10
rain	rain	0.90

By Bayes' Theorem:

$$P(W = \text{sun} \mid F = \text{sun}) = \frac{P(F = \text{sun} \mid W = \text{sun}) * P(W = \text{sun})}{P(F = \text{sun})} = \frac{0.80 * 0.70}{0.59} = 0.95$$

$$P(W = \text{sun} \mid F = \text{rain}) = \frac{P(F = \text{rain} \mid W = \text{sun}) * P(W = \text{sun})}{P(F = \text{rain})} = \frac{0.20 * 0.70}{0.41} = 0.34$$

$$P(W = rain \mid F = sun) = \frac{P(F = sun \mid W = rain) * P(W = rain)}{P(F = sun)} = \frac{0.10 * 0.30}{0.59} = 0.05$$

$$P(W = rain \mid F = rain) = \frac{P(F = rain \mid W = rain) * P(W = rain)}{P(F = rain)} = \frac{0.90 * 0.30}{0.41} = 0.66$$

70

Decision:take umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

EU(take given sun forecast) = ???

take

rain

Decision: leave umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

take

take

20

70

sun

rain

Decision:take umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

W

sun

rain

sun

rain

100

70

EU(take	given	sun	forecast) =	22.5
,		\mathcal{O}			/	

Decision: leave umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

EU(leave given sun forecast) = 95

70

Decision:take umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

EU(take given rain forecast) = ???

take

rain

Decision: leave umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

EU(leave given rain forecast) = ???

take

rain

70

Decision:take umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

W

sun

rain

sun

rain

100

70

EU(take given rain forecast) = 53	EU	(take	given	rain	forecast	=	53
-----------------------------------	----	-------	-------	------	----------	---	----

Decision: leave umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	
leave	rain	0
take	sun	20
take	rain	70

EU(leave given rain forecast) = 34

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given rain

EU(leave given rain forecast) = 34

Decision:take umbrella given sun

EU(take given sun forecast) = 22.5

Decision:leave umbrella given sun

EU(leave given sun forecast) = 95

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given rain

EU(leave given rain forecast) = 34

Decision:take umbrella given sun

EU(take given sun forecast) = 22.5

Decision: leave umbrella given sun

EU(leave given sun forecast) = 95

Value of Perfect Information

The value/utility of best action α without additional evidence (information) is :

$$MEU(\alpha) = \frac{max}{a} \sum_{s'} P(Result(a) = s') * U(s')$$

If we include new evidence/information ($E_j = e_j$) given by some variable E_j , value/utility of best action α becomes:

$$MEU(a_{e_j} \mid e_j) = \max_{a} \sum_{s'} P(Result(a) = s' \mid e_j) * U(s')$$

The value of additional evidence/information from Ej is:

$$VPI(E_j) = \left(\sum_{e_j} P(E_j = e_j) * MEU(a_{e_j} \mid E_j = e_j)\right) - MEU(a)$$

using our current beliefs about the world.

Decision network

The value of best action α without additional evidence

$$MEU(\alpha) = MEU(leave) = 70$$

With evidence information ($E_i = e_i$) given by Forecast:

$$MEU(a_{e_1} | e_1) = MEU(take | F = rain) = 53$$

 $MEU(a_{e_2} | e_2) = MEU(leave | F = sun) = 95$

The value of additional evidence / information from F is:

$$\begin{aligned} \text{VPI}(E_j) = & \left(\sum_{e_j} \text{P}(E_j = e_j) * \text{MEU}(a_{e_j} \mid E_j = e_j) \right) - \text{MEU}(a) \\ \text{VPI}(F) = & \left(\text{P}(F = rain) * \text{MEU}(take \mid F = rain) + \text{P}(F = sun) * \right. \\ \text{MEU}(\text{leave} \mid F = sun)) - \text{MEU}(\text{leave}) = \\ & \left(0.41 * 53 + 0.59 * 95 \right) - 70 = 7.78 \end{aligned}$$

Outcome tree

Decision:leave umbrella

$$EU(leave) = 70$$

The value of best action α without additional evidence

$$MEU(\alpha) = MEU(leave) = 70$$

With evidence information ($E_i = e_i$) given by Forecast:

$$MEU(a_{e_1} | e_1) = MEU(take | F = rain) = 53$$

 $MEU(a_{e_2} | e_2) = MEU(leave | F = sun) = 95$

The value of additional evidence / information from F is:

$$\begin{aligned} \text{VPI}(E_j) = & \left(\sum_{e_j} \text{P}(E_j = e_j) * \text{MEU}(a_{e_j} \mid E_j = e_j) \right) - \text{MEU}(a) \\ \text{VPI}(F) = & \left(\text{P}(F = rain) * \text{MEU}(take \mid F = rain) + \text{P}(F = sun) * \right. \\ \text{MEU}(\text{leave} \mid F = sun)) - \text{MEU}(\text{leave}) = \\ & \left(0.41 * 53 + 0.59 * 95 \right) - 70 = 7.78 \end{aligned}$$

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given sun

EU(leave given sun forecast) = 95

Utility & Value of Perfect Information

New information will not help here.

New information may help a lot here.

New information may help a bit here.

VPI Properties

Given a decision network with possible observations \mathbf{E}_{j} (sources of new information / evidence):

The expected value of information is nonnegative:

$$\forall_{i} \text{VPI}(E_{j}) \geq 0$$

VPI is not additive:

$$VPI(E_j, E_k) \neq VPI(E_j) + VPI(E_k)$$

VPI is order-independent:

$$VPI(E_i, E_k) = VPI(E_i) + VPI(E_k \mid E_i) = VPI(E_k) + VPI(E_i \mid E_k) = VPI(E_k, E_i)$$

Information Gathering Agent

function Information-Gathering-Agent(percept) returns an action persistent: D, a decision network

```
integrate percept into D
j \leftarrow the value that maximizes VPI(E_j) / C(E_j)
if VPI(E_j) > C(E_j)
then return Request(E_j)
else return the best action from D
```