Lung Cancer

Jaewoong Lee

Ulsan National Institute of Science and Technology jwlee230@unist.ac.kr

2021-02-22

Overview

- Introduction
- 2 Materials
- Methods
- 4 ResusIts
- 5 Proceedings

Introduction

Objectives

- Find different mutations
 - between WES
 - between WTS
 - from cancer
 - from pre-cancer
- Pathway examine from the mutations
 - of WES
 - of RNA-seq
- Ultra-deep sequencing to find an infinitesimal quantity of Non-Circulating Tumor DNA
 - from blood
 - from urine
 - frrom bronchus
- Diagnostic performace

Materials

Lung Cancer Data

- WES + WTS
- ullet Normal + {Primary, CIS AIS, AAH, Dysplasia, MIA}
- Total 112 samples

Methods

Data pre-processing for variant discovery

Figure: Data pre-processing for variant discovery (Van der Auwera et al., 2013; DePristo et al., 2011)

Somatic short variant discovery

Figure: Somatic short variant (SNVs + Indels) discovery workflow (Van der Auwera et al., 2013; DePristo et al., 2011)

RNA-seq short variant discovery

Figure: RNA-seq short variant (SNVs + Indels) discovery workflow (Van der Auwera et al., 2013; DePristo et al., 2011)

ResusIts

FastQC I

Figure: FastQC with WES data

- ... Only 33P1 has more than 3 failures: 6 FAILs.
- ∴ 33P1 is excluded at further analysis.

FastQC II

Figure: FastQC with WTS data

- ... No sample has more than 5 failures.
- :. All sample are good to analysis.

Proceedings

To-do Lists I

- Alignment WES with BWA
- Alignment WES with Bowtie2

References I

- DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., . . . others (2011). A framework for variation discovery and genotyping using next-generation dna sequencing data. *Nature genetics*, 43(5), 491.
- Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A., . . . others (2013). From fastq data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. *Current protocols in bioinformatics*, 43(1), 11–10.