Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Высшая школа прикладной математики и вычислительной физики

Отчёт по курсовой работе по дисциплине «Математическая статистика»

Выполнил студент:

Кондратьев Д. А. группа: 3630102/70301

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1.	Постановка задачи	2			
2.	Теория 2.1. Используемые параметры	3 3			
3.	Реализация	4			
4.	Результаты	5			
5.	Обсуждение	6			
6.	Литература				
7.	Приложение	6			
\mathbf{C}	писок таблиц				
	1 Таблица интенсивностей	3			
\mathbf{C}	писок иллюстраций				
	1 Обработанный файл с выделенными областями				
	2 Двумерные поля Африки и севера России	5			
	3 Совместное двумерное поле Африки и севера России	5			

1. Постановка задачи

Есть набор 2D данных в текстовом формате – следы жизни в геологических объектах. Образцы взяты с двух разных регионов:

- русского севера;
- центральной Африки.

На объект подавалось излучение от ближнего ультрафиолетового до видимого. Длина волны — первая переменная x_1 .

Когда свет с заданной x_1 попадал в объект, его поглощали молекулы и в свою очередь, излучали свет с длинами волны x_2 примерно в том же диапазоне.

То, что они излучали записывается в виде графика $I(x_1 = const, x_2)$. Далее, x_1 варьируются, и формируется $I(x_1, x_2)$. Функция 2-х переменных.

Пики на графике I можно идентифицировать с излучением протеиногенных аминокислот, т.е. это остатки органической жизни.

Известна область для каждой аминокислоты в координатах (x_1, x_2) .

Для классификации двух типов данных ранее был предложен параметр K (на основании C, A, B, T), который позволяет достаточно уверенно проводить разделение этих типов. При этом не использовались данные по переменной M.

Необходимо:

- построить двумерное поле (M, K) для Африки и Арктики;
- проанализировать полученный результат.

2. Теория

2.1. Используемые параметры

Буквенное обозначение	Тип компонента	$E_{x_{max}}(nm)$	$E_{m_{max}}(nm)$
C	Humic-like	320 - 350	420 - 480
A	Humic-like	250 - 260	380 - 480
M	Mariane Humic-like	310 - 320	380 - 420
В	Tysone-like,	270 - 280	300 - 320
	Protein-like		
T	Tryptophane-like,	270 - 280	320 - 350
	Protein-like or		
	phenol-like		

Таблица 1. Таблица интенсивностей

Параметр K, ранее использовавшийся для сравнения данных, выражет отношение сложной и простой органики и вычисляется по формуле:

$$K = \frac{C+A}{B+T} \tag{1}$$

2.2. Подготовка данных

По полученным данным были получены изображения, далее были обрезаны релеевские облучения и выделены области в соответствии с таблицей интенсивностей [1]. После были посчитаны суммарные интенсивности каждых областей, по которым в дальнейшем будет вестить исследование.

Рис. 1. Обработанный файл с выделенными областями

3. Реализация

Курсовая работа выполнена на программном языке Python~3.8 в среде разработки Jupyter~Notebook~6.0.3. В работе использовались следующие пакеты языка Python:

- numpy для обработки исходных данных и работы с массивами;
- matplotlib для визуализации результатов.

Ссылка на исходный код курсовой работы приведена в приложении.

4. Результаты

Исходя из полученных данных (M,K) были построены следующие двумерные поля:

Рис. 2. Двумерные поля Африки и севера России

Рис. 3. Совместное двумерное поле Африки и севера России

5. Обсуждение

Исходя из полученных результатов можно сделать следующие выводы:

- Для севера России характерен больший разброс точек по сравнению с Африкой, где они расположены более кучно.
- Для почти всех координат севера России справедливо утверждение, что при увеличении M K возрастает.
- Для определения области лучше опираться на параметр K, так как он дает более четкую картину поведения аминокислот, характерную для конкретную область.
- Также, используя данные поля, можно поставить задачу классификации и построить алгоритм, определяющий область по координатам (M, K).

6. Литература

- 1) Документация numpy. URL: https://numpy.org/doc/stable/reference/
- 2) Документация matplotlib. URL: https://matplotlib.org/3.2.1/contents. html

7. Приложение

- 1) Код лабораторной. URL: https://github.com/DmitriiKondratev/MatStat/blob/master/Course_work/Course_work.ipynb
- 2) Код отчёта. URL: https://github.com/DmitriiKondratev/MatStat/blob/master/Course_work/Course_work_report.tex