Álgebra Lineal - UNCuyo - 2024

Trabajo Práctico 5

Autovalores y autovectores

1. Compruebe que λ es un autovalor de A y x es un autovector correspondiente y grafique.

$$a) \quad A=\begin{pmatrix}1&0\\0&-1\end{pmatrix} \quad \lambda=-1,\ x=(0,1) \qquad b) \quad A=\begin{pmatrix}4&-5\\2&-3\end{pmatrix} \quad \lambda=2,\ x=(5,2)$$

2. Determine si x es un autovector de A.

$$A = \begin{pmatrix} -1 & -1 & 1 \\ -2 & 0 & -2 \\ 3 & -3 & 1 \end{pmatrix} \quad x = (2, -4, 6), \ x = (2, 0, 6), \ x = (2, 2, 0), \ x = (-1, 0, 1)$$

- 3. Para las siguientes matrices
 - a) Encuentre la ecuación característica.
 - b) Encuentre los autovalores y autovectores.
 - c) Encuentre los autoespacios y una base.

$$A = \begin{pmatrix} 8 & -1 \\ 3 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 4 \\ 3 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 3 & 0 & -5 \\ \frac{1}{5} & -1 & 0 \\ 1 & 1 & -2 \end{pmatrix} \quad C = \begin{pmatrix} 10 & -9 & 0 & 0 \\ 4 & -2 & 0 & 0 \\ 0 & 0 & -2 & -7 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

- 4. a) Demuestre que para una matriz A con λ como un autovalor de A con autovector correspondiente x y k=2, se cumple que λ^k es un autovalor de A^k y x es un autovector correspondiente.
 - b) Encuentre autovalores de A^{12} para

$$A = \begin{pmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$

- c) Para la misma matriz A, encuentre autovalores de A^{-1}
- d) Para la misma matriz A, encuentre autovalores de A^{-8} (Ver ejercicio 13).
- 5. Si los autovalores de $A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ son $\lambda_1 = 0$ y $\lambda_2 = 1$. Razonar sobre los posibles valores de a y d.

1

6. Determine los autovalores de $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Diagonalización

7. Compruebe que P diagonaliza a A.

a)
$$A = \begin{pmatrix} -2 & 4 \\ 1 & 1 \end{pmatrix}$$
 y $P = \begin{pmatrix} 1 & -4 \\ 1 & 1 \end{pmatrix}$
b) $A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ y $P = \begin{pmatrix} 1 & 1 & 5 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

1

8. Compruebe que la matriz dada no es diagonalizable.

a)
$$A = \begin{pmatrix} 1 & 1/2 \\ -2 & -1 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$

9. Encuentre, si existe, la matriz P que diagonaliza a A.

a)
$$A = \begin{pmatrix} 6 & -3 \\ -2 & 1 \end{pmatrix}$$

b) $A = \begin{pmatrix} 1 & -4 \\ -2 & 8 \end{pmatrix}$
c) $A = \begin{pmatrix} 3 & 2 & -3 \\ -3 & -4 & 9 \\ -1 & -2 & 5 \end{pmatrix}$
d) $A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$

10. Halle las potencias indicadas.

a)
$$A = \begin{pmatrix} 6 & -3 \\ -2 & 1 \end{pmatrix}$$
, A^5 .
b) $A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$, A^8 .

- 11. Sea $P(\lambda) = \lambda^2(\lambda 3)^3(\lambda 0, 3)$ el polinomio característico de la matriz A. Complete las siguientes proposiciones para que resulten verdaderas
 - a) El orden de la matriz A es
 - b) $\det(A-3I) = \dots$

 - $e) \det(A^T) = \dots$

 - i) Los valores característicos de A^4 son

Demostraciones

- 12. Demuestre que la ecuación característica de la matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ se puede expresar como $\lambda^2 tr(A)\lambda + \det(A) = 0$, donde tr(A) = a + d es la traza de A. Dar una expresión para los autovalores de A.
- 13. a) (*) Demuestre, utilizando inducción, que para una matriz A con λ como un autovalor de A con autovector correspondiente x y k, entero positivo, se cumple que λ^k es un autovalor de A^k y x es un autovector correspondiente.
 - b) Demuestre que si λ es un autovalor de una matriz inversible A y x es un autovector correspondiente, entonces $\frac{1}{\lambda}$ es un autovalor de A^{-1} y x es un autovector correspondiente.
 - c) (*) Demuestre que si λ es un autovalor de una matriz inversible A y x es un autovector correspondiente, entonces $\frac{1}{\lambda^k}$ es un autovalor de A^{-k} y x es un autovector correspondiente.

 $\mathbf{2}$

 $\mathbf{2}$

- 14. Sea P una matriz que diagonaliza a A, de tamaño $n \times n$, de manera que $P^{-1}AP = D$. Demuestre que para un entero positivo k, se tiene
 - $a) D^k = P^{-1}A^kP$
 - $b) A^k = PD^k P^{-1}$

3