Homework 3

DSE 210

Guidelines for Homework Submission

- 1. Each HW is released on the day of the lecture. Students are expected to submit their solutions for the respective HW until 11:59 PM, the day before the next lecture.
- 2. Each HW is divided into multiple worksheets based on the concepts discussed in the class. Students are expected to attempt all the worksheets in a given HW.
- 3. HW has to be done individually. NO group work is allowed.
- 4. The solutions for the HW can be handwritten or typed. (Note: If the handwriting is illegible or if the pages are not scanned properly then the student shall receive 0 points for the respective question)
- 5. The solutions have to be uploaded to Gradescope in PDF format only. (Note: Do not forget to map question numbers and the pages containing the respective answers while uploading on Gradescope)
- 6. Some questions in the HW have the tag "<u>Programming Question</u>". Students are expected to implement the solution for the respective question in Python. PDF version of the source code has to be uploaded to Gradescope. (Note: Students should combine the theoretical solutions and Python source codes into one PDF file and then upload it to Gradescope)

DSE 210: Probability and statistics

Winter 2020

Worksheet 7 — Linear algebra primer

- 1. (2 points) Find the unit vector in the same direction as x = (1, 2, 3).
- 2. (2 points) Find all unit vectors in \mathbb{R}^2 that are orthogonal to (1,1).
- 3. (2 points) How would you describe the set of all points $x \in \mathbb{R}^d$ with $x \cdot x = 25$?
- 4. (2 points) The function $f(x) = 2x_1 x_2 + 6x_3$ can be written as $w \cdot x$ for $x \in \mathbb{R}^3$. What is w?
- 5. (2 points) For a certain pair of matrices A, B, the product AB has dimension 10×20 . If A has 30 columns, what are the dimensions of A and B?
- 6. (3 points, 1 each) We have n data points $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^d$ and we store them in a matrix X, one point per row.
 - (a) What is the dimension of X?
 - (b) What is the dimension of XX^T ?
 - (c) What is the (i, j) entry of XX^T , simply?
- 7. (2 points) Vector x has length 10. What is $x^T x x^T x x^T x$?
- 8. (2 points) For x = (1, 3, 5) compute $x^T x$ and xx^T .
- 9. (2 points) Vectors $x, y \in \mathbb{R}^d$ both have length 2. If $x^T y = 2$, what is the angle between x and y?
- 10. (2 points) The quadratic function $f: \mathbb{R}^3 \to \mathbb{R}$ given by

$$f(x) = 3x_1^2 + 2x_1x_2 - 4x_1x_3 + 6x_3^2$$

can be written in the form $x^T M x$ for some **symmetric** matrix M. What is M?

- 11. (4 points, 1 each) Which of the following matrices is necessarily symmetric?
 - (a) AA^T for arbitrary matrix A.
 - (b) $A^T A$ for arbitrary matrix A.
 - (c) $A + A^T$ for arbitrary square matrix A.
 - (d) $A A^T$ for arbitrary square matrix A.
- 12. (4 points, 2 each) Let A = diag(1, 2, 3, 4, 5, 6, 7, 8).
 - (a) What is |A|?
 - (b) What is A^{-1} ?
- 13. (4 points, 2 each) Vectors $u_1, \ldots, u_d \in \mathbb{R}^d$ all have unit length and are orthogonal to each other. Let U be the $d \times d$ matrix whose rows are the u_i .

- (a) What is UU^T ?
- (b) What is U^{-1} ?
- 14. (2 points) Matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & z \end{pmatrix}$ is singular. What is z?
- 15. *Programming Question:* (10 points) Code following matrix operations in Python:
 - (a) Find the vector matrix product of A and M (where A is a vector and M is a matrix). where, A = [1, -1, 0] M = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
 - (b) Find the matrix product of 3 matrices A, B and C (i.e. A_dot_B_dot_C). where, A = [[1, 2]] B = [[2, 3, 4],[5, 6, 7]] C = [[-1, 1, -1, 1], [0, 0, 0, 0], [1, 1, 1, 1]]

DSE 210: Probability and statistics

Winter 2020

Worksheet 5 — Classification with Generative models 1

16. (5 points) A man has two possible moods: happy and sad. The prior probabilities of these are:

$$\pi(\mathtt{happy}) = rac{3}{4}, \quad \pi(\mathtt{sad}) = rac{1}{4}.$$

His wife can usually judge his mood by how talkative he is. After much observation, she has noticed that:

• When he is happy,

$$\Pr(\text{talks a lot}) = \frac{2}{3}, \quad \Pr(\text{talks a little}) = \frac{1}{6}, \quad \Pr(\text{completely silent}) = \frac{1}{6}$$

• When he is sad,

$$Pr(talks \ a \ lot) = \frac{1}{6}, \quad Pr(talks \ a \ little) = \frac{1}{6}, \quad Pr(completely \ silent) = \frac{2}{3}$$

- (a) Tonight, the man is just talking a little. What is his most likely mood?
- (b) What is the probability of the prediction in part (a) being incorrect?

17. (5 points) Suppose $\mathcal{X} = [-1, 1]$ and $\mathcal{Y} = \{1, 2, 3\}$, and that the individual classes have weights

$$\pi_1 = \frac{1}{3}, \quad \pi_2 = \frac{1}{6}, \quad \pi_3 = \frac{1}{2}$$

and densities P_1, P_2, P_3 as shown below.

What is the optimal classifier h^* ? Specify it exactly, as a function from \mathcal{X} to \mathcal{Y} .

18. **Programming Question:** (15 points total, 3 points each)

- (1) Create a classification problem with 3 classes, 15 features and 5000 rows.
- (2) Take the last 1000 rows to be the test set.
- (3) Run Gaussian naive bayes on this problem and report test accuracy.
- (4) Calculate class prior probabilities for each class in training data (first 4k rows).
- (5) Calculate the probability of the samples for each class in the test set.