Назначение и текущие тенденции развития ПЛИС

Содержание

- Классификация ПЛИС
- Тенденции развития и применение ПЛИС
- Обзор семейств Altera

ПЛИС

- ПЛИС программируемая логическая интегральная схема
- Содержит набор программируемых функциональных элементов с настраиваемыми соединениями
- Программируется разработчиком
- Современные ПЛИС содержат дополнительные функциональные модули

ПЛИС и заказные СБИС

Заказные специализированные СБИС (ASIC)

- Выше быстродействие
- Ниже энергопотребление
- Ниже стоимость в массовом производстве

■ ПЛИС

- Меньше сроки и стоимость проектирования
- Ниже стоимость при единичном и серийном производстве
- Возможность модификации проекта
- Меньше невозвратные расходы при ошибке в проекте

ПЛИС и заказные СБИС

Освоение новых техпроцессов для производства ПЛИС значительно опережает массовые технологии производства СБИС

ПЛИС и заказные СБИС

- Переход на новые техпроцессы дорог и не оправдан для многих заказных СБИС
- Использование новых техпроцессов приводит к тому, что проекты на ПЛИС имеют хорошие характеристики по быстродействию и энергопотреблению
- Уменьшение сроков разработки, возможность использования готовых IP-ядер и инфраструктуры для верификации проектов
- Интеграция в ПЛИС аппаратных модулей, реализующих стандартные функции
 - Процессорные ядра
 - Контроллеры памяти
 - Контроллеры интерфейсов
 - Поддержка вычислений с плавающей запятой

Классификация ПЛИС

- Логическая емкость
- 2. Архитектура функционального преобразователя
- 3. Дополнительные функциональные модули
- 4. Технология хранения конфигурации

Логическая емкость/степень интеграции

 Традиционная мера емкости цифровых схем – степень интеграции в транзисторах

- вентиль 2И-НЕ

или вентилях

- 4 транзистора в КМОП технологии
- ASIC gate count
- Логические функции в ПЛИС реализуются "программно"
- Ввиду избыточности ПЛИС имеет смысл применять другие меры
 - Можно привести примерное сопоставление с емкостью ASIC (эквивалентные вентили)
 - Можно считать в некоторой типовой архитектуре для ПЛИС (логический элемент)

Логическая емкость семейств Altera

Семейство	Эмкость, ЭВ	Эмкость, ЛЭ		
MAX V	~500 – 25K	40 - 2210		
Cyclone IV	~70K – 2M	6K – 150K		
Cyclone V	~ 300K – 5M	25K - 301K		
Arria V	~ 1M – 8M	75K – 504K		
Stratix V	~3M – 14M	236K – 952K		

Архитектура функционального преобразователя

- Матрица И-ИЛИ (p-term based)
 - MAX3000/7000
- Таблицы перекодировки (LUT-based)
 - Все современные семейства Altera
- Мультиплексорная

Дополнительные функциональные модули

- Встроенная блочная память
- Аппаратные умножители
- Модули ФАПЧ
- Контроллеры памяти
- Контроллеры интерфейсов
 - Физический уровень
 - Уровень доступа к среде
- Процессорные ядра (SoC)

Cyclone V Device Block Diagram

Текущие тенденции развития ПЛИС

Целевые рынки ПЛИС

- Объем рынка ПЛИС в 2014 году \$4.8млрд.
- Возможность роста за счет вытеснения ASIC и ASSP
- Слияния и поглощения (Altera принадлежит Intel)
- Данные по рынкам от Altera за 2014:

		2013	2012	Annual Growth Rate	
	2014			2014	2013
	4407	4407	4.407	•••	(0)0/
Telecom & Wireless	44%	41%	44%	21 %	(9)%
Industrial Automation, Military & Automotive	22%	22%	21%	9 %	4 %
Networking, Computer & Storage	16%	19%	17%	(8)%	6 %
Other	18%	18%	18%	14 %	(3)%
Net Sales	100%	100%	100%	12 %	(3)%

- Xilinx ~50%
- Altera ~40%

- Lattice
- Microsemi

- Achronix
- Tabula

ПЛИС разных производителей

- Специализация Altera и Xilinx в области ПЛИС высокой сложности
 - Пример: отказ Lattice в конце 2012 года от выпуска семейства ЕСР4, которое планировалось как развитие ЕСР3 на 65 нм.
- Специализация других производителей по рыночным нишам:
 - Microsemi: высоконадежные радиационностойкие ПЛИС
 - Lattice: небольшие ПЛИС для применений с низким потреблением

Изменения архитектуры

- Интеграция в ПЛИС аппаратных ядер упрощает проектирование, снижает энергопотребление и обеспечивает более высокое быстродействие
- Семейства разрабатываются для конкретных применений и оптимизируются для них. В рамках семейств появляются подсемейства с различными характеристиками
- Создание систем на кристалле на основе ПЛИС

Процессорные ядра в SoC

Altera

- Интеграция процессорной подсистемы на ARM Cortex-A9 до 1ГГц и развитие в новых семействах (application processor)
- Cortex-A53, 4 ядра в Stratix 10
- Для простых задач и задач реального масштаба времени поддерживается программное ядро Nios II.
- Microsemi
 - Семейство SmartFusion2 на ARM Cortex M3 до 166МГц
- Lattice
 - Программное ядро LatticeMico (8 и 32 бита)

Развитие средств проектирования

- Проектирование с широким применением IP-ядер
- Большее внимание вопросам системной интеграции и верификации
- Развитие средств высокоуровневого описания и синтеза
 - Фирм-производителей ПЛИС
 - Третьих фирм (Mentor, Cadence, Synopsys, Aldec)
- Использование стандартных интерфейсов для связи компонент
- Обеспечение интеграции процессов разработки
 ПО и аппаратуры систем на кристалле

Продукция Altera

CPLDs

Низкая емкость, низкая цена, энергонезависимые

FPGAs

Баланс быстродействия и потребления, низкая цена

FPGAs

Средний класс, трансиверы и SoC

FPGAs

Высокая производительность, трансиверы и SoC

PowerSoCs

Схемы управления питанием

RESOURCES

Embedded Soft and Hard Processors

Nios'II
ARM

Development Kits

Intellectual Property (IP)

- Industrial
- Computing
- Enterprise

