STAT 5385: Lab 7

William Ofosu Agyapong

07/04/2022

1 Question: How are the variables associated and how do they uniquely contribute information about brand preference?

Below are the variables of interest from the brand preference data set:

- X_1 : Moisture content
- X_2 : Sweetness
- Y: Degree of brand liking

Henceforth, we shall use $X_1,\,X_2,\,$ and Y throughout without any ambiguity.

1.1 Data read-in

```
brand <- read.table("../Data Sets/Chapter 6 Data Sets/CH06PR05.txt")
colnames(brand)=c("Y","X1","X2")
kable(head(brand))</pre>
```

Y	X1	X2
64	4	2
73	4	4
61	4	2
76	4	4
72	6	2
80	6	4

1.2 Exploration of the association among variables

Scatter plot diagram
pairs(brand, main="Scatter plot diagram")

Scatter plot diagram

The above diagrams give us a sense of the direction and the strength of pairwise association existing among the underlying variables. For instance, it is clear that, with correlation coefficient of 0.8924 and by visual inspection of the correlation plot and scatter plots, there is a strong positive linear relationship between X_1 and Y. On the

STAT 5385 - Lab 7 William O. Agyapong

other hand, X_2 is weakly linearly related to Y, with a slight upward trend. The predictors X_1 and X_2 are not related or associated so multicollinearity would not be an issue here. In fact, the correlation coefficient between X_1 and X_2 is zero.

1.3 Relative contributions of X_1 and X_2 on Y

```
# muiltiple linear regression model
brand mod \leftarrow lm(Y \sim ..., data = brand)
summary(brand_mod)
## Call:
## lm(formula = Y ~ ., data = brand)
## Residuals:
     Min
              1Q Median
## -4.400 -1.763 0.025 1.588
                               4.200
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                 37.650
                             2.996
                                      12.6 1.2e-08 ***
## (Intercept)
                  4.425
                             0.301
                                      14.7
                                            1.8e-09 ***
## X1
## X2
                  4.375
                                       6.5 2.0e-05 ***
                             0.673
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.69 on 13 degrees of freedom
## Multiple R-squared: 0.952, Adjusted R-squared: 0.945
## F-statistic:
               129 on 2 and 13 DF, p-value: 2.66e-09
library(relaimpo)
calc.relimp(brand_mod,type=c("lmg", "last", "first", "betasq", "pratt", "genizi", "car"),rela=TRUE)
## Response variable: Y
## Total response variance: 131.1
## Analysis based on 16 observations
##
## 2 Regressors:
## X1 X2
## Proportion of variance explained by model: 95.21%
## Metrics are normalized to sum to 100% (rela=TRUE).
## Relative importance metrics:
##
              last first betasq pratt genizi
## X1 0.8365 0.8365 0.8365 0.8365 0.8365 0.8365
## X2 0.1635 0.1635 0.1635 0.1635 0.1635 0.1635
##
## Average coefficients for different model sizes:
##
         1X
              2Xs
## X1 4.425 4.425
## X2 4.375 4.375
```

- $r_{Y_1|2}^2 = 0.8365$: This suggests that approximately 83.7% of the variation in Y is explained by X_1 if X_2 is already in the model.
- $r_{Y2|1}^2 = 0.1635$: Approximately 16.4% of the variation in Y is explained by X_2 if X_1 is already in the model.

STAT 5385 - Lab 7 William O. Agyapong

This tells us that the moisture content (X_1) uniquely contributes so much more in explaining the variation in the the brand preference (Y) than the sweetness (X_2) does.

Interestingly, all the relative importance metrics are the same. For example, as seen from the "last" and "first" columns, the contribution of X_1 on the brand preference remains the same (0.8365) whether only X_1 is included in the model or both X_1 and X_2 are included in the model. The same can be said of X_2 . A most likely reason is the fact that the two predictors, X_1 and X_2 , are uncorrelated as we already observed.

Solution to problem 7.4 is included only because I had already worked on it before the new instruction was given in today's class.

2 Problem 7.4

2.1 Data Read-in

```
# Reading in required data
grocery <- read.table("../Data Sets/Chapter 6 Data Sets/CH06PR09.txt")
# Y: Total labor hours
# X1: number of cases shipped
# X2: the indirect costs of the total labor hours as a percentage
# X3: holiday, coded 1 if the week has a holiday and 0 otherwise
colnames(grocery) <- c("Y","X1", "X2", "X3")
kable(head(grocery, 6), caption = "Grocery Retailer data set")</pre>
```

Table 2: Grocery Retailer data set

Y	X1	X2	X3
4264	305657	7.17	0
4496	328476	6.20	0
4317	317164	4.61	0
4292	366745	7.02	0
4945	265518	8.61	1
4325	301995	6.88	0

2.2 Part (a): ANOVA Table for Extra Sums of Squares

```
full_mod <- lm(Y ~ X1 + X3 + X2, data = grocery)
# summary(mod_full)

# Obtain Type I sum of squares
kable(anova(full_mod), caption = "ANOVA Table with extra sums of squares")</pre>
```

Table 3: ANOVA Table with extra sums of squares

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
X1	1	136366	136366	6.6417	0.0131
X3	1	2033565	2033565	99.0443	0.0000
X2	1	6675	6675	0.3251	0.5712
Residuals	48	985530	20532	NA	NA

2.3 Part (b):

```
kable(drop1(full_mod, ~ X2, test = "F"), caption = "Resulting Partial F-test ANOVA Table")
```

STAT 5385 - Lab 7 William O. Agyapong

Table 4: Resulting Partial F-test ANOVA Table

	Df	Sum of Sq	RSS	AIC	F value	Pr(>F)
	NA	NA	985530	520.2	NA	NA
X2	1	6675	992204	518.5	0.3251	0.5712

The F test statistic is 0.33 and the corresponding p-value is 0.57. Since the p-value is greater than 0.05 we fail to reject H_0 and conclude that X_2 can be dropped from the regression model given that X_1 and X_3 are retained.

2.4 Part (c): Comparing extra sums of squares

```
mod_X1X2 <- lm(Y ~ X1 + X2, data = grocery)
mod_X2X1 <- lm(Y ~ X2 + X1, data = grocery)
kable(anova(mod_X1X2), caption = "ANOVA Table: Extra sums of squares with X1 and with X2 given X1")</pre>
```

Table 5: ANOVA Table: Extra sums of squares with X1 and with X2 given X1

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
X1	1	136366	136366	2.2125	0.1433
X2	1	5726	5726	0.0929	0.7618
Residuals	49	3020044	61634	NA	NA

136366 + 5726

kable(anova(mod_X2X1), caption = "ANOVA Table: Extra sums of squares with X2 and with X1 given X2")

Table 6: ANOVA Table: Extra sums of squares with X2 and with X1 given X2

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
X2	1	11395	11395	0.1849	0.6691
X1	1	130697	130697	2.1206	0.1517
Residuals	49	3020044	61634	NA	NA

11395 + 130697

From Tables 4 and 5 we have:

$$SSR(X_1) + SSR(X_2|X_1) = 136366 + 5726 = 142092$$

, and

$$SSR(X_2) + SSR(X_1|X_2) = 11395 + 130697 = 142092.$$

Hence,
$$SSR(X_1) + SSR(X_2|X_1) = SSR(X_2) + SSR(X_1|X_2). \label{eq:ssr}$$

And yes, we expect this to always be the case.