

goodreads

books

the dataset provided in .csv format from kaggle, it contains 11123 rows and 12 column (feature)

process

data

- EDA
- changing name of the feature
- add extra feature
- changing names of the rows

visualization

most language written by:

highly rated authors:

correlation

visualization

Modeling

modeling ▶ from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score ▶ # take the useful features only that help me with predict # splitting the dataset into dependent & independent variables X=books[['average_rating', 'ratings_count' , 'num_pages']] y=books[['text_reviews_count']] X_train , X_test , y_train , y_test = train_test_split(X,y, test_size=0.2 , random_state=0) Training the Model # train the Linear Regression on the training set lm = LinearRegression() lm.fit(X_train,y_train) 0]: LinearRegression() # Print out the coefficients of the model print(lm.coef_)

[[19.12329322 0.02084927 0.06269206]]

