Homework 1

Deadline: 29th September, 2022

Thursday 15th September, 2022

- 1. (Properties of Laplace Distribution) Prove that if $Z \sim \text{Lap}(\lambda)$ us a Laplace-distributed random variable, we have
 - $\sqrt{\mathbb{E}(Z^2)} = \sqrt{2}\lambda$
 - For every t > 0: $\mathbb{P}(z > \lambda t) \le \exp(-t)$.
- 2. (Global Sensitivity) For all of the following cases, assume we have a dataset $D = \{x_1, \dots, x_n\} \in \mathcal{X}^n$ and a function $f : \mathcal{X} \mapsto \mathbb{R}^d$. For each of the following function f and data domains \mathcal{S} , give as tight a bound as you can one the global sensitivity of the function f. If the sensitivity is not bounded, answer ∞ .
 - (a) The high dimensional mean $f(D) = \frac{1}{n} \sum_{i=1}^{n} x_i$ where $\mathcal{X} = \{v \in \mathbb{R}^d : ||v||_1 \le 1\}$.
 - (b) The unnormalized covariance matrix when $\mathcal{X} = \{v \in \mathbb{R}^d : ||v||_1 \leq 1\}$. Here $f(D) = \sum_{i=1}^n x_i x_i^T$ is a $d \times d$ symmetric matrix. To measure the sensitivity, we think f(D) as a single vector of length d^2 .
 - (c) The median $f(D) = \text{median}(x_1, \dots, x_n)$ when $\mathcal{X} = [0, 1]$.
 - (d) Suppose we have a fixed set of vertices V (independent of the dataset). Our dataset is a list of edges: each x_i is a pair of vertices (u, v) (so that $\mathcal{X} = V \times V$. Let G_D be the resulting graph, and let f(D) be the number of connected components in G_D (A connected component or simply component of an undirected graph is a subgraph in which each pair of nodes is connected with each other via a path).
- 3. (Gumbel Max Trick) Show that Report Noisy Max algorithm with parameter $\beta = \frac{2\Delta}{\epsilon}$ generates exactly the same distribution as the exponential mechanism.
- 4. (Random Response and Laplacian Mechanism) This is an experimental question. In the class we showed the random response and Laplacian mechanism for answer the query $f(D) = \frac{1}{n} \sum_{i=1}^{n} x_i$ for each $x_i \in \{0,1\}$. Try to implement these two mechanisms and analyze their utilities with different sample size n and ϵ . You can design the data generation process by your self. Write the brief report on your findings.