

IS4242 INTELLIGENT SYSTEMS & TECHNIQUES

L4 – Finding New Customers Aditya Karanam

Announcements

- ▶ Programming Assignment 1, Due: September 12, 11:59 PM
 - Any issues with the submission?
- Quizzes: Test your conceptual understanding of business problems and ML techniques
 - You will not be asked to derive
- Correction in the formula for Precision in the previous class
 - Please use the updated slide deck

In this Class ...

Consumer Acquisition

- Unsupervised Learning
 - K-Means
 - Agglomerative Clustering
- Dimensionality Reduction
 - Principal Component Analysis

Finding New Customers

- ▶ More than half of US startups were unable to survive beyond three years from 2001-2010
- ▶ Harder to scale the company beyond certain levels of sale
 - ► E.g., Among 40K companies founded and listed in S&P Capital IQ database, <6% achieved >\$10M by 2010 and <2% grew >\$50M
- Complexity greatly increases once a venture reaches a critical stage
 - Lot of interdependent and moving parts, making it difficult to manage
 - ► SG&A (selling, general and administrative) expenses accelerate faster than revenues
- ▶ Promising ventures *cannot afford* to burn through working capital
 - Either go out of business or operate in small niches

Finding New Customers: Example

▶ Pets.com: online retail store to buy pet supplies

- ▶ Spent an acquisition cost of \$400 per customer
 - Heavily invested into advertising: tv, radio, newspaper, etc.
- ▶ Profit potential of acquiring a pet food customer is too low!
 - Consider that average customer spends \$100 per purchase and the incremental profit margin is \$20
 - Assuming no retention costs, 20 purchases before customer breaks even
- During its first fiscal year (February to September 1999), Pets.com earned \$619,000 in revenue, and spent \$11.8 million on advertising.
 - Eventually, the biggest disaster of the dot-com era!

Finding New Customers

- ▶ Belief among companies:
 - Acquisition costs would drop significantly, and earn profits from retained customers
- ► Reality:
 - Almost none of them can drive down their acquisition costs to a level that made it feasible to make a profit.
- ▶ Between 2000 2010, the cost of goods sold at the average S&P 500 company reduced by 250% while SG&A as a percentage of revenue didn't change
- ► Cost of customer acquisition can sink a business, especially in this digital world!

Customer Equity

- Customer 'equity' to the firm is made up of two factors:
 - ► Initial benefits of customer acquisition
 - Profits from customer retention
- ▶ Benefits of customer acquisition can be formulated as:

$$N_t \alpha_t (S_t - C_t) - N_t B_t$$

- N_t : Number of customers targeted, B_t : cost of reaching out to a customer, α_t : acquisition rate, $S_t C_t$: profit margin of the sales
- ▶ We can devise several strategies for consumer acquisition

Several Strategies for Customer Acquisition

- ▶ Initial Benefits of Customer Acquisition: $N_t \alpha_t (S_t C_t) N_t B_t$
 - Increasing market size or potential customers of the product (N_t)
 - Increasing Acquisition Expenditures: B_t
 - Increasing Acquisition Pricing and Promotions: $S_t C_t$

Increasing Market Size

- ▶ Number of potential customers in the market can be increased in several ways
- Suggest or develop new usage occasions
 - Arm & Hammer Baking Soda being used as a deodorizer and not just for baking
 - American Express allows customers to withdraw cash while they are traveling
- ► Target New customer segments
 - Costco started off by focusing on *small businesses*, later opened its warehouse club to *individuals* who were willing to pay an annual fee
 - Whole Foods began as an *organic, natural grocery store* but has expanded to "*foodies*" who enjoy higher quality products and perceive the organic benefit as positive.

Increasing Market Size: Disadvantages

- ▶ The consumer becomes *confused* about the *positioning* of the brand
 - As BMW expands the reach of its brand with *lower-end offerings* (1 series in Europe), it risks lack of *exclusivity* and damaging its image.
 - ► The ultimate example is Cadillac, which created the Cimarron, a "juiced-up" version of the Chevrolet Cavalier in early 1980s
 - It hurt the brand image of Cadillac because consumers started perceiving Cadillac as non-luxury vehicle

Increasing Market Size: Summary

► Significant risks are associated with expanding the market through reaching new segments

- Market expansion can risk reducing the acquisition rate (α)
 - ► The broader the market is, the lower the acquisition rate

► Lower acquisition rate implies less returns on the invested capital, in turn leads to negative profits

Increasing Acquisition Expenditures

▶ Increasing acquisition expenditures helps in increasing costumer acquisition in two ways:

► Investing to generate awareness

► Investing in *lead products* to draw consumers to the company

Increasing Acquisition Expenditures: Awareness

- ▶ By investing in *advertising*: TV, Radio, Google AdWords, Social Media, etc.
 - Clicks lead to website visits and ultimately sales
- ▶ By generating positive *word-of-mouth*
 - Positive word-of-mouth generates awareness and impacts the consumer's intention to purchase
 - E.g.: Restaurants, movies and other entertainment services use word-of-mouth as a key source
 - Influencer Marketing: Marketing companies pay influencers in social media (Instagram, YouTube, etc.) to generate credible word-of mouth

Increasing Acquisition Expenditures: Lead products

- ▶ Use lead products to acquire customers, and sell other products/services after acquisition to obtain benefits
 - Insurance companies attracted customers with accidental death and dismemberment insurance policy
 - Grocery stores use Coke and Pepsi to bring customers into the store with the goal of selling related products and building the size of the basket

Increasing Acquisition Expenditures: Challenges

- ► *Acquisition* increases with higher expenditures, but the problem is *pay out!*
- Firms acquire customers at a loss, and *generally* make up the loss on future purchases
- ► Accounting *Distortion*:
 - The cost is recorded in the acquisition period
 - Revenue are obtained from future purchases: recorded in the retention period
 - Making the acquisition period's profits look worse
- ▶ Short-term loss from customer acquisition period leads to under-investment

Acquisition Pricing and Promotions

- ▶ As the price *decreases*, acquisition rates almost always *increase*
 - Same with promotions, they can increase the acquisition rate
- ► However, this strategy can impact future purchases
 - Customers develop *expectations* about the firm's pricing and then evaluate future prices
 - More aggressive the introductory promotion, the lower will be the renewal rate unless the firm again offers an aggressive discount.
- ▶ Pricing and promotion also influence which segments of customers are acquired
 - Lower prices likely attract price sensitive consumers

Customer Segmentation

► Interwoven in all these strategies is the identification of potentially viable segments to target

• Greater the firm's *ability* in identifying relevant segments, higher the acquisition response rate

- ► More important, recognize reasonably *finer* segments to target
 - ► If the segments are broadly defined (e.g., men 18—49), better to mass market than target

Customer Segmentation Methods for Acquisition: Profiling

- ▶ Profile existing customer base and use their characteristics to target potentially new customers.
 - Cluster current customers based on various characteristics like demographics
 - ► Target new customers with similar characteristics as the current customers
- Clusters should answer two basic questions:
 - ► 'Who' the potential new customers are and 'where' to reach them
 - Economic interpretability along with statistical validation is the key

Disadvantages of Profiling

- Profiling is 'self-fulfilling'
 - Firm only targets customers similar to its current customers
 - Current customers were acquired using similar methods and advertising vehicles
- ▶ By targeting customers with similar profiles, the firm never learns if it can attract other types of customers
- ► How to overcome this problem?
 - Use different data for profiling likely identifies different segments
 - Social media, traveling information along with demographics
 - ► Different vehicles for targeting influencer marketing, mobile apps, etc.

Techniques for Segmenting Current Customers for Acquiring New Customers

Application: Marketing Campaign

- ▶ Data on 29 attributes of 2240 existing customers
- ► Demographics: Birth year, Education, Marital Status, Income, Children(kids, teens), etc.
- ▶ *Products:* Amount spent on different products in the last 2 years
 - Fruits, Meat, Fish, Sweet, Wine, Gold, etc.
- ▶ *Place:* Web visits, purchases on web, store, etc.
- Response: responses to various campaigns

Data Mining

Variable Selection

- ▶ We need to know *who* they are and *where* to reach them
 - Demographic and place (media habits) features
- ▶ Response variables distort the explanation of clusters
 - We use them to evaluate the segments
 - You can use response variables to identify input variables

- Selecting variables is quite subjective
 - Interpretability or explainability of your results is the key factor

Unsupervised Learning

- ▶ With the existing consumer data, we cannot verify how the new customer would respond to the targeted marketing campaigns
 - ► We do not have information on the *Y* variable (or label)
 - Unsupervised learning task
- ▶ Aim: Group or Cluster consumers based on their similarities
 - Customers in the same group are more 'similar' than the customers across groups
 - K-Means Clustering
 - Agglomerative Clustering

K-Means Clustering

► Find *K* clusters in data (*K*: input)

► Each cluster associated with a "cluster center" called centroid

- ▶ Relies on distance function between feature vectors
 - ► Distance function is application-dependent
 - Euclidean distance commonly used for continuous-valued vectors
 - ightharpoonup Each observation is a vector in p-dimensional space

Lloyd's Algorithm

- ► Input: Data Matrics, K
- ► Initialization: choose K (random) centroids
 - Note: Results can vary with different choices
- ► Repeat steps 1 & 2 until convergence:
 - 1. Find closest centroid to each data point
 - Each data point belongs to the cluster corresponding to the closest centroid
 - 2. Update centroid
 - In each (current) cluster, the mean of the data points is made the new centroid
- ▶ Convergence: None of the data points change their cluster membership
- Output: K clusters of the data
 - Centroids may not be one of the data points

Agglomerative Clustering

- ▶ Bottom-up approach
 - Each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
- ▶ Relies on the distance and the linkage criterion
 - Distance: Euclidean distance for continuous data points
 - Determines which observations are most similar
 - Linkage criterion: influences the distance between clusters or sets of observations

Agglomerative Clustering: Linkage

- ► Single linkage: Distance between clusters is the minimum distance among members of different clusters
- ► Complete linkage: Distance between clusters is the maximum distance
- Average Linkage: Distance between clusters is the average distance between members'
- Centroid Linkage: Distance between the cluster centers

Agglomerative Clustering: Example

Evaluation

- ► No ground truth or true labels
 - Cannot measure accuracy-based metrics
- Many different evaluation metrics
 - ► E.g. : Distortion score: average of the squared distances from the cluster centers of the respective clusters to each data point
 - Should not use them like we do in case of classification or regression
- Visualization is important
 - Application-dependent 'Meaning' is important

Finding Optimal K

- ► Application dependent and trial and error
- ► Check clustering metrics for a range of
 - E.g.: K = 2, 3, 4, 5, ..., 10

- ► Elbow method
 - ► Choose a K such that adding another cluster doesn't lead to much better modeling of the data or the evaluation score
- ▶ Some models include finding K within the optimization procedure

Clustering: Challenges

- ► Correlated features
 - Demographic features such as family size and children at home may be correlated
 - Distance is calculated across more or less similar things

- High dimensionality of features
 - Distances' behave counter-intuitively in higher dimensions
 - Statistical learning in general not just clustering is difficult in higher dimensions
 - Let's get an intuitive understanding how clustering breaks down

Curse of Dimensionality

- ▶ The clustering algorithms relies on the distance between two points
 - ► Makes the assumption that similar points share similar labels.

▶ In high dimensional spaces, points that are drawn from a probability distribution, tend to never be close together.

Curse of Dimensionality: Illustration

ightharpoonup Pair-wise distances between data point sampled *uniformly* in the d dimensional

space

▶ At higher dimensions, all pairwise distances are concentrated at a higher value

Dimensionality Reduction

- ► Is it hopeless?
- ► Do all techniques break down?
 - ▶ No! Data often lies in a lower dimension than the total #variables (features)
- ► Dimensionality Reduction techniques
 - Principal Component Analysis
 - Reduces correlation
 - Transforms data into lower dimensional space

Principal Component Analysis

► Input: Data Matrix (rows: observations, columns: features)

- 1. *Center* each column
 - Subtract the column mean from each value in the column

- 2. Compute the *covariance matrix* among the features
 - Captures the collinearity among the features

Principal Component Analysis

- 3. Compute eigenvectors and eigen values of the covariance matrix: why?
 - Eigen vectors are oriented along the variance of the data
 - Eigen-values represent the magnitude
 - Covariance matrix is symmetric and its eigen vectors are always perpendicular to each other, so they have less correlation

Principal Component Analysis

- 4.1 Order the eigenvectors based on the value of their corresponding eigenvalues to obtain principal components
 - For p you will have p eigen vectors
 - You may ignore less significant eigen vectors
- 4.2 Create a feature vector with selected eigen vectors and multiply it with the mean-adjusted data matrix to obtain transformed data
 - Note: You may need to transpose for multiplying matrices

Feataure vector: $[eig_1 \ eig_2 \ eig_3]$

 $Final\ Data = Feataure\ vector \times Mean\ Adjusted\ Data$

PCA: Disadvantages

- Difficult to interpret
 - Which is the key if you have to use it for targeting
- ▶ Visualization of the sample in reduced dimension:

Profiling

► Create clusters using PCA which represents the data in uncorrelated and low dimensional space

- ▶ Use raw variables to define the clusters
 - Summary statistics: mean, median, std. deviation, etc.
 - Visualization: Box plots or bar graphs

Devise targeting strategies based on cluster characteristics

Profiling: Example

- ▶ Who are your your potential customers?
- Summary Statistics:

	Is_Parent	Family_Size	NumWebVisitsMonth	NumStorePurchases	Income	Teenhome	Kidhome	Total_Promos
Clusters								
0	1.000000	3.389262	5.817450	4.893960	47931.897987	1.012081	0.659060	0.136913
1	0.016162	1.595960	2.749495	8.305051	75251.709091	0.006061	0.010101	0.739394
2	0.769854	2.395462	6.818476	3.233387	30680.213938	0.056726	0.721232	0.092382
3	0.991549	2.656338	5.264789	8.709859	64913.625352	0.921127	0.101408	0.380282

Cluster 0: All parents with at least one teenager at home

Cluster 1: Single Households with high income

Cluster 2: Single parents with a kid

Cluster 3: Mostly parents with teenagers

Profiling: Example

- ▶ Where do you reach your potential customers?
- Summary Statistics:

	Is_Parent	Family_Size	NumWebVisitsMonth	NumStorePurchases	Income	Teenhome	Kidhome	Total_Promos
Clusters								
0	1.000000	3.389262	5.817450	4.893960	47931.897987	1.012081	0.659060	0.136913
1	0.016162	1.595960	2.749495	8.305051	75251.709091	0.006061	0.010101	0.739394
2	0.769854	2.395462	6.818476	3.233387	30680.213938	0.056726	0.721232	0.092382
3	0.991549	2.656338	5.264789	8.709859	64913.625352	0.921127	0.101408	0.380282

- ► For families with children, target them with online ads or online promotional campaigns
- ▶ For single households, provide deals at the store

Profiling: Example

- ▶ What products can you use to target your potential customers?
- Summary Statistics:

	Recency	Wines	Fruits	Meat	Fish	Sweets	Gold
Clusters							
0	48.284564	178.567785	8.524832	54.503356	11.604027	8.863087	25.641611
1	49.624242	607.402020	64.288889	464.844444	94.593939	65.014141	75.066667
2	48.320908	41.529984	6.662885	28.019449	10.077796	6.944895	19.380875
3	50.932394	608.380282	44.946479	229.518310	60.822535	47.202817	81.535211

- ▶ For single households (cluster 1), provide deals on wine products
 - One issue: data represents amount spent, if we can see quantity, it would be more useful

References

► Ch. 20 in Robert C. Blattberg, Byung-Do Kim and Scott A. Neslin, Database Marketing: Analyzing and Managing Customers

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.
pdf

Thank You