

Optimisation et parallelisation OpenMP d'addition et produit de deux matrices denses

Rapport de Burreau d'étude

Luc-Christelle Nguyen et Alicia Perrin

Institut National des Sciences Appliquées de Toulouse

24 octobre 2025

Résumé Dans ce rapport, nous allons tester plusieurs méthodes différentes afin d'optimiser des calculs matriciels
(somme, produit scalaire, produit matricielle). A COMPLETER

Table des matières

1	Modifier l'accès à la mémoire pour additionner deux matrices	2
2	Compilation reliant les librairies OpenMP et BLAS	3
3	Parallelisation OpenMP CHANGER	4
4	Nombre de threads utilisé pour BLAS3	5
5	Utiliser les blocs du cache	6

Modifier l'accès à la mémoire pour additionner deux matrices

Figure 1.1 – Différences de performances en fonction de l'ordre d'accès à la mémoire

Modification de l'ordre d'accès à la mémoire : On lit d'abord les lignes pour une meilleure utilisation du cache. L'efficassité est doublée en moyenne.

Compilation reliant les librairies OpenMP et BLAS

ECRIRE EN FRANCAIS CE QUE FONT LES BLAS

Figure 2.1 – Performances BLAS 1, 2, 3 sans optimisation Openblas

FIGURE 2.2 - Performances BLAS 1, 2, 3 avec optimisation Openblas

On peut voir une nete amélioration des performances lorsque on utilise la librairie openblas qui \dots mettre ce qu'elle fait \dots . Pour BLAS3 5Gflops -> 400Gflops.

Parallelisation OpenMP CHANGER

Figure 3.1 - Trouver titre

FIGURE 3.2 - Trouver titre

Comparer les option de parallelisation Static et Dynamique avec des nombres de Thread différents. On peut remarquer que cchanger ses options n'a pas une réelle influence.

Nombre de threads utilisé pour BLAS3

Figure 4.1 - Trouver titre

FIGURE 4.2 – Trouver titre

Fait des tests de 1 à 12. Le nombre optimal c'est 6 parce que plus on parrallelise, plus on doit partager des données entre les différents threads.

Expliquer que 6 threads qui ravail en permanence mais ce ne sont pas tout le temps les même.

Utiliser les blocs du cache

Expliquer la technique du block.

FIGURE 5.1 – Trouver titre

FIGURE 5.2 - Trouver titre

On a commencé par une rechercher de la taille de block optimale en fonction de différentes tailles de matrices. On a choisi 32 (mieux que 64).

Puis on a comparé cette technique avec openblas et la parralelisation.

On peut observer que la librairie openblas est la meilleure solution pour optimiser les performances de calcul en partageant efficassemet les thread.

Bibliographie

