RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFTEN DEUTSCHE POST LEHRSTUHL FÜR OPTIMIERUNG VON DISTRIBUTIONSNETZWERKEN Universitätsprofessor Dr.rer.nat.habil. Hans-Jürgen Sebastian

Klausurnummer:
Name:
Vorname:
Matrikelnummer:
Studiengang / Fachrichtung:
Hinweise:
• Füllen Sie die Felder oben vollständig aus bzw. korrigieren Sie ggf. die entsprechenden Einträge und unterschreiben Sie die Klausur.
• Sämtliche Einträge in dem Klausurexemplar sind mit dokumentenechten Schreibutensilien (Kein Bleistift!) und in leserlicher Schrift vorzunehmen.
• Die Antworten sind in diesem Klausurexemplar einzutragen. Bei Bedarf erhalten Sie weitere leere Blätter.
\bullet Es sind keine Hilfsmittel außer Stift und Lineal zugelassen. Insbesondere ist die Benutzung von Taschenrechnern und Vorlesungs-/Übungsunterlagen unzulässig!
\bullet Handys dürfen nicht zur Klausur mitgebracht werden bzw. sind auszuschalten.
\bullet Die Höchstpunktzahl beträgt 90 Punkte; die Bearbeitungszeit beträgt 90 Minuten.
• Beantworten Sie die Aufgaben möglichst stichpunktartig.
• Überprüfen Sie die Klausur auf Vollständigkeit (Seiten 1 bis 10)!
Mit meiner Unterschrift bestätige ich, die obigen Hinweise zur Kenntnis genommen zu haben und diese zu akzeptieren.
Unterschrift:

Aufgabe	Fragen	A1	A2	A3	A4	A5	\sum	Note
erreichbare Punkte	30	13	12	10	12	13	90	
erreichte Punkte								

Aufgabenteil (60 Punkte)

Aufgabe 1: Schnittebenenverfahren von Gomory (13 Punkte)

Gegeben ist das folgende ganzzahlige lineare Optimierungsproblem:

max
$$z = x_1 + 2x_2$$

s.d.
$$2x_1 - x_2 \le 4$$
$$-x_1 + x_2 \le 2$$
$$x_1 + x_2 \le 7$$
$$x_1, x_2 \in \mathbb{N}_0$$

Die Anwendung des Simplex-Algorithmus auf dessen LP-Relaxation führt zu folgendem optimalen Endtableau:

	x_1	x_2	s_1	s_2	s_3	b_i^*
s_1	0	0	1	3/2	-1/2	7/2
x_2	0	1	0	1/2	1/2	9/2
x_1	1	0	0	-1/2	1/2	5/2
Δz_j	0	0	0	1/2	3/2	23/2

Da die optimale Lösung der LP-Relaxation für das ursprüngliche Problem nicht zulässig ist, soll diese mit Hilfe des Schnittebenenverfahrens von Gomory bestimmt werden.

(a) Stellen Sie die dafür notwendige Gomory-Restriktion für die Basisvariable x_2 auf. (3 Punkte)

(b) Erweitern Sie obiges Endtableau des primalen Simplex-Algorithmus um die in (a) aufgestellte Gomory-Restriktion und führen Sie einen dualen Simplex-Schritt durch. (6 Punkte)

	b_i^*
Δz_j	

Name:

	b_i^*
Δz_j	

(c) Ist die in Aufgabenteil (b) bestimmte Lösung zulässig für das ursprüngliche Problem? Begründen Sie Ihre Antwort! (1 Punkt)

(d) Bestimmen Sie für die in Aufgabenteil (a) aufgestellte Gomory-Restriktion die Gleichung der entsprechenden Schnittebene und geben Sie diese explizit an. (3 Punkte)

Aufgabe 2: FiFo-Algorithmus (12 Punkte)

Gegeben ist der folgende Digraph mit 5 Knoten:

Führen Sie für obigen Digraphen den Fi
Fo-Algorithmus zur Bestimmung der kürzesten Wege von Knoten
 S zu den Knoten 1, 2, 3, 4 und 5 durch.

Hinweis: Falls während einer Iteration mehrere Knoten in die Warteschlange Q eingefügt werden, so fügen Sie sie aufsteigend nach Knotennummer sortiert ein.

(a) Tragen Sie hierfür in der untenstehenden Tabelle für jede Iteration des FiFo-Algorithmus den ausgewählten Knoten, die Warteschlange Q, sowie die Labels $d(1), \ldots, d(5)$ ein. (10 Punkte)

Iteration	Ausgewählter Knoten i	Q	d(1)	d(2)	d(3)	d(4)	d(5)
Initialisierung	-	S	∞	∞	∞	∞	∞

(b) Geben Sie die in (a) ermittelten Wege von Knoten S zu den Knoten 1, 2, 3, 4 und 5 sowie deren Länge explizit an. (2 Punkte)

Aufgabe 3: Implizite Enumeration / Ersatznebenbedingung (10 Punkte)

Gegeben ist das folgende binäre lineare Optimierungsproblem B:

$$\max z = -4x_1 - 2x_2 - 8x_3 - 6x_4 - 2x_5$$
 s.d.
$$2x_1 - 5x_2 - x_3 - 3x_4 + 3x_5 \le -3$$
$$-4x_1 - 2x_2 + 3x_3 - 2x_5 \le -2$$
$$-4x_1 + 6x_2 + 3x_3 - 4x_4 + x_5 \le -5$$
$$x_1, \dots, x_5 \in \{0; 1\}$$

Die optimale Lösung der LP-Relaxation von B kann dem folgenden optimalen Simplex-Tableau entnommen werden:

	x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	b_i^*
x_2	0	1	-1/4	0	-7/4	-1/2	0	-1/4	0	0	0	-5/2	0	1/4
x_1	1	0	-9/8	0	-23/8	-3/4	0	-5/8	0	0	0	-19/4	0	5/8
s_2	0	0	-2	0	-17	-4	1	-3	0	0	0	-24	0	1
s_4	0	0	9/8	0	23/8	3/4	0	5/8	1	0	0	19/4	0	3/8
s_5	0	0	1/4	0	7/4	1/2	0	1/4	0	1	0	5/2	0	3/4
s_6	0	0	1	0	0	0	0	0	0	0	1	0	0	1
x_4	0	0	0	1	0	0	0	0	0	0	0	1	0	1
s_8	0	0	0	0	1	0	0	0	0	0	0	0	1	1
Δz_j	0	0	13	0	17	4	0	3	0	0	0	18	0	-9

(a) Zeigen Sie, dass die Nebenbedingung

$$-4x_1 - 2x_2 + 5x_3 - 24x_4 + 15x_5 \le -27$$

beste Ersatznebenbedingung für obiges binäres Problem B ist. (6 Punkte)

(b) Überprüfen Sie, welche Variablen anhand der in Aufgabenteil (a) aufgestellten bzw. gegebenen Ersatznebenbedingung fixiert werden können und geben Sie deren Werte explizit an. (4 Punkte)

Aufgabe 4: Nichtlineare Optimierung (12 Punkte)

Gegeben ist das folgende nichtlineare Optimierungsproblem:

min
$$f(x)$$
 = $(x_1 - 1)^2 + (x_2 - 2)^2$
s.d.
$$(x_1 - 2)^2 + (x_2 - 3)^2 - 4 \le 0$$

$$-2x_1 - x_2 + 9 \le 0$$

$$x_1 - 3 \le 0$$

$$x_1, x_2 \in \mathbb{R}$$

(a) Geben Sie für obiges Problem die Kuhn-Tucker-Bedingungen KTB' an. Verwenden Sie dabei die Standardform, d.h. nicht die Formulierung als Sattelpunkt der Lagrange-Funktion. (6 Punkte)

- (b) Welche der drei folgenden Punkte erfüllen die Kuhn-Tucker-Bedingungen für obiges Problem? (6 Punkte)
 - $P_1(2; 5)$
- $P_2(3; 2)$
- $P_3(3; 3)$

weiter Aufgabe 4:

Aufgabe 5: Dynamische Optimierung (13 Punkte)

Der Inhaber einer Computerhandlung hat für die nächsten sieben Perioden die folgenden Nachfragemengen für Laptops ermittelt:

Periode	1	2	3	4	5	6	7
Nachfrage [Stück]	10	55	40	55	40	30	70

Bei der Bestellung beziehungsweise der Lagerung der Laptops fallen folgende Kosten an:

- Bestellfixe Kosten K in Höhe von $250 \in /$ Bestellung
- Lagerkosten h in Höhe von $2 \in /(\text{Stück-Periode})$
- (a) Bestimmen Sie mit Hilfe des Verfahrens von Wagner-Whitin eine optimale Bestellpolitik und geben Sie diese zusammen mit den optimalen Lagerbeständen explizit an. (11 Punkte)

j	z_{j}	C_j^*	κ_i^*	1	2	3	4	5	6	7
		<i>J</i>	J							

Optimale Bestellpolitik:

Optimale Lagerbestände:

(b) Ab welchem Wert für die bestellfixen Kosten K wird die Menge für Periode 4 ebenfalls in Periode 1 bestellt? (2 Punkte)