Amendments to the Claims

- 1. (Currently Amended) A compressible, flexible, polymer fiber blanket comprising a plurality of polymeric fibrous pieces bonded together, wherein said plurality of polymeric fibrous pieces are produced from a thermally bonded, uniform layer of flexible, polymeric fibrous material.
- 2. (Currently Amended) The compressible, flexible, polymer fiber blanket of claim 1, wherein said compressible, flexible, polymer fiber blanket thermally bonded polymer blanket product comprises staple fibers and bicomponent fibers.
- 3. (Original) The compressible, flexible, polymer fiber blanket of claim 2, staple fibers comprise glass fibers and said and bicomponent fibers comprise thermoplastic fibers.
- 4. (Previously Presented) The compressible, flexible, polymer fiber blanket of claim 1, wherein said polymeric fibrous pieces are made of scrap material.
- 5. (Previously Presented) The compressible, flexible, polymer fiber blanket of claim 1, wherein said polymeric fibrous pieces are randomly oriented.
- 6. (Previously Presented) The compressible, flexible polymer fiber blanket of claim 1, wherein said polymeric fibrous pieces are arranged in a controlled pattern.
- 7. (Previously Presented) The compressible, flexible polymer fiber blanket of claim 1, wherein said polymeric fibrous pieces are geometric in shape.
- 8. (Previously Presented) The compressible, flexible polymer fiber blanket of claim 1, wherein said polymeric fibrous pieces comprise a lofty, acoustically insulating

portion having a density of between substantially 8.0 - 80.0 kg/m³ and a relatively higher density skin along at least one face thereof, said skin having a thickness of between substantially 0.25 - 10.0 mm and a density of between substantially 32.0 - 80.0 kg/m³.

- 9. (Original) The compressible, flexible polymer fiber blanket of claim 1, wherein said blanket is an automotive undercarpet.
- 10. (Original) The compressible, flexible polymer fiber blanket of claim 1, wherein said blanket is a nonlaminate.
- 11. (Original) The compressible, flexible polymer fiber blanket of claim 1, wherein said polymer fiber blanket has a percent wet compression of between about 15 to about 18 percent.
- 12. (Original) The compressible, flexible polymer fiber blanket of claim 1, wherein said polymer fiber blanket has a percent dry compression of between about 16 to about 21 percent.
- 13. (Original) The compressible, flexible polymer fiber blanket of claim 1, wherein said polymer fiber blanket has a percent dry wet recovery of between about 85 to about 87.5 percent.
- 14. (Original) The compressible, flexible polymer fiber blanket of claim 1, wherein said polymer blanket is thermally bonded to at least one uniform layer of flexible, polymeric fibrous material.
- 15. (Previously Presented) The compressible, flexible polymer fiber blanket of claim 13 further comprising a secondary layer comprising a plurality of polymeric fibrous

pieces bonded together in a pattern, wherein said secondary layer of polymeric fibrous pieces is produced from a thermally bonded polymer blanket product.

- 16. (Original) The compressible, flexible polymer fiber blanket of claim 13, wherein said polymeric fibrous material has a lofty, acoustically insulating portion having a density of between substantially 8.0 80.0 kg/m³ and a relatively higher density skin along a first face thereof, said skin having a thickness of between substantially 0.25 10.0 mm and a density of between substantially 32.0 800.0 kg/m³, said fibrous material being selected from a group consisting of (a) thermoplastic polymer staple fibers and thermoplastic bicomponent fibers,(b) glass staple fibers and thermoplastic bicomponent fibers and (c) a combination of (a) and (b).
- 17. (Original) The compressible, flexible polymer fiber blanket of claim 14, wherein said fibrous material is selected from a group of materials consisting of polyester, polyethylene, polypropylene, nylon, glass fibers, natural fibers and any mixtures thereof.
- 18. (Original) The compressible, flexible polymer fiber blanket of claim 14, wherein said polymeric fibrous material includes said relatively higher density skin along a second face thereof.
- 19. (Original) The compressible, flexible polymer fiber blanket of claim 1, wherein said blanket further comprises at least one facing layer.
- 20. (Original) The compressible, flexible polymer fiber blanket of claim 17, wherein said facing layer comprises metallic foil, glass mats, polymer mats and blends thereof.

- 21. (Original) The compressible, flexible polymer fiber blanket of claim 1, wherein said blanket further comprises at least one water barrier layer.
- 22. (Withdrawn) A method of producing a compressible, flexible polymer fiber blanket comprising the steps of:
 - a) providing a plurality of individual pieces of polymer fiber blanket;
 - b) laying said plurality of pieces of polymer fiber blanket in a randomly oriented pattern;
 - c) applying sufficient heat and pressure to said plurality of individual pieces of polymer fiber blanket to form said compressible, flexible polymer fiber blanket.
- 23. (Withdrawn) The method of claim 20, wherein said wherein said individual pieces of polymer fiber blanket are made of scrap polymer fiber blanket.
- 24. (Withdrawn) The method of claim 20, wherein said individual pieces of polymer fiber blanket are geometric in shape.
- 25. (Withdrawn) The method of claim 20, wherein said individual pieces of polymer fiber blanket comprise a lofty, acoustically insulating portion having a density of between substantially 8.0 80.0 kg/m³ and a relatively higher density skin along at least one face thereof, said skin having a thickness of between substantially 0.25 10.0 mm and a density of between substantially 32.0 800.0 kg/m³.
- 26. (Withdrawn) The method of claim 20, wherein said blanket is an automotive undercarpet.
 - 27. (Withdrawn) The method of claim 20, wherein said pad is a nonlaminate.

- 28. (Withdrawn) The method of claim 20, wherein said polymer fiber blanket has a percent wet compression of between about 15 to about 18 percent.
- 29. (Withdrawn) The method of claim 20, wherein said polymer fiber blanket has a percent dry compression of between about 16 to about 21 percent.
- 30. (Withdrawn) The method of claim 20, wherein said polymer fiber blanket has a percent dry wet recovery of between about 85 to about 87.5 percent.
- 31. (Withdrawn) The method of claim 20, wherein said polymer fiber blanket has a compressive strength value of
- 32. (Withdrawn) The method of claim 20, wherein said polymer blanket is thermally bonded to at least one layer of flexible, polymeric fibrous material.
- 33. (Withdrawn) The method of claim 26, wherein said polymeric fibrous material has a lofty, acoustically insulating portion having a density of between substantially 8.0 80.0 kg/m³ and a relatively higher density skin along a first face thereof, said skin having a thickness of between substantially 0.25 10.0 mm and a density of between substantially 32.0 800.0 kg/m³, said fibrous material being selected from a group consisting of (a) thermoplastic polymer staple fibers and thermoplastic bicomponent fibers,(b) glass staple fibers and thermoplastic bicomponent fibers and (c) a combination of (a) and (b).
- 34. (Withdrawn) The method of claim 31, wherein said fibrous material is selected from a group of materials consisting of polyester, polyethylene, polypropylene, nylon, glass fibers, natural fibers and any mixtures thereof.

- 35. (Withdrawn) The method of claim 31, wherein said polymeric fibrous material includes said relatively higher density skin along a second face thereof.
- 36. (Withdrawn) The method of claim 20, wherein said blanket further comprises at least one water barrier layer.
- 37. (Previously Presented) A compressible, flexible, polymer fiber blanket comprising a plurality of polymeric fibrous pieces thermally bonded together wherein said polymeric fibrous pieces comprise fibrous material having a lofty, acoustically insulating portion having a density of between substantially 8.0 80.0 kg/m³ and a relatively higher density skin along a first face thereof, said skin having a thickness of between substantially 0.25 10.0 mm and a density of between substantially 32.0 800.0 kg/m³, said fibrous material being selected from a group consisting of (a) thermoplastic polymer staple fibers and thermoplastic bicomponent fibers,(b) glass staple fibers and thermoplastic bicomponent fibers and (c) a combination of (a) and (b).