

Centro Federal de Educação Tecnológica de Minas Gerais Departamento de Engenharia Mecatrônica Engenharia Mecatrônica

Projeto de Controladores e Análise das Características de Malha Fechada:

Sistema Fan Plate

Kleber Rodrigo da Silva Junior Robson Resende Teixeira Junior Divinópolis Novembro/2022

Resumo

O processo de modelagem pode ser divido em três classificações: caixa branca, caixa preta e caixa cinza. No presente estudo, é utilizado o processo de modelagem caixa preta via curva de resposta ao degrau para descrever o sistema Fan Plate. Assim, foi possível aproximar um sistema de segunda ordem superamortecido por um sistema de primeira ordem e, com os resultados obtidos, projetou-se controladores do tipo proporcional (P) e proporcional integral (PI) a partir dos métodos de Ziegler-Nichols e CHR. Ademais, foi avaliada a performance da resposta temporal do sistema em malha fechada. Além disso, foi utilizada a aproximação de Padé para obter funções aproximadas de ordem 1, 3, 5 e 9 e compará-las entre si. É válido destacar a relação entre a amplitude do degrau e a divergência dos valores de resposta do modelo de segunda ordem e resposta do sistema real, que mostrou ser diretamente proporcional. Por fim, ponderou-se a superioridade dos controladores PI, verificada através dos índices de performance IAE, ITAE e RMSE.

Para caracterizar o desempenho da malha fechada de controle do sistema, analisa-se os sinais de erro do mesmo. Sendo assim, estuda-se diferentes tópicos referentes ao sistema, sendo eles a redução da sensibilidade da malha de controle a variações de parâmetros, capacidade de rejeição à perturbação, além de erros em regime permanente. Perante isso, o erro de rastreamento, determinado através do $Teorema\ do\ Valor\ Final$, é usado para detalhar o desempenho do sistema quando envolve os tópicos mencionados, além de ser usado para realimentar negativamente a malha de controle. Pelo método de $Ziegler\ -Nichols$, foi determina-se os parâmetros necessários para obter a função de transferência que rege o sistema. Após isso, insere-se um atraso de transporte de quatro segundos e projeta-se, de maneira detalhada e com o auxilio do método CHR, os controladores P e PI, afim de avaliar suas diferentes aplicações. Para que todos os gráficos e valores utilizados no estudo fossem obtidos de maneira precisa, utilizou-se a linguagem de programação Python, com o auxilio da biblioteca Control System.

Palavras-chaves: Fan plate; Caixa preta; Sistema superamortecido; Controladores; Malha fechada; Atraso de transporte; Realimentação; Sensibilidade; Erro de rastreamento; Rejeição à perturbação.

Sumário

1	Intr	Introdução					
	1.1	Objetivos	1				
2	Prel	liminares	2				
	2.1	Sistema de Primeira Ordem	2				
	2.2	Sistema Superamortecido	2				
	2.3	Método dos 3 Parâmetros e da Curva de Reação do Processos de Ziegler-Nichols	3				
	2.4	Sintonia pelo Método CHR	Ş				
	2.5	Aproximação por Padé	4				
	2.6	Análise do Sinal de Erro					
	2.7	Sensibilidade do Sistema a Variação de Parâmetros	6				
3	Sist	ema Fan Plate	7				
	3.1	Descrição	7				
	3.2	Condições iniciais	8				
	3.3	Resultados e Discussão	8				
4	Con	clusão	16				
Re	eferêr	ncias	17				

1 Introdução

Um mesmo sistema pode ser descrito por vários modelos matemáticos distintos, devido a grande liberdade de interpretações e hipóteses que são aceitas sobre os mesmos. Por esse motivo, os sistemas são separados em diferentes modelos, sendo eles caixa branca, caixa preta e caixa cinza. Para o estudo aqui apresentado é utilizado somente o segundo modelo, em que é necessário conhecer apenas seus sinais de entrada e saída. Com isso, não possuindo preocupação com o funcionamento interno do sistema, os parâmetros da modelagem não possuem relação direta com as características do sistema real (BUNGE, 2008).

Um processo, seja qual for sua natureza, está sujeito a mudanças nas condições ambientais, envelhecimento, desconhecimento dos valores exatos dos parâmetros, números de processo, entre outros. Em um sistema de malha aberta, os erros resultam em alterações e imprecisões na saída. Já um sistema de malha fechada detecta alterações de saída devido a alterações no meio de execução do processo e tenta corrigir a saída. Vale destacar a importância da sensibilidade do sistema de controle a alterações de seus parâmetros (DORF; BISHOP, 2009).

No presente relatório, busca-se analisar e avaliar o papel dos sinais de erro para caracterizar o comportamento e desempenho da malha fechada de controle. Para obter o sinal de controle que melhor se adéque ao processo em um instante pré definido, utiliza-se informações que ilustram a evolução da saída. Logo, para aumentar a precisão do sistema e fazer com que ele reaja à perturbações externas, realiza-se uma comparação entre o sinal de saída e um sinal de referência e, o erro entre os dois sinais é o ponto que determina o sinal de controle que deverá ser aplicado ao processo trabalhado.

Nesse sentido, o estudo apresentado visa analisar e modelar um sistema Fan Plate, através da modelagem caixa preta, de acordo com sua dinâmica e parâmetros iniciais. Esse sistema é composto por uma ventoinha, que produz fluxo de ar e gera uma rotação na placa, o que forma um ângulo entre a mesma e a vertical.

1.1 Objetivos

Para este estudo tem-se como objetivo trabalhar com sistemas superamortecidos com atraso e analisar a dinâmica da malha fechada com controladores do tipo proporcional (P) e proporcional-integral (PI) para: sinal de erro de rastreamento, sensibilidade a variação de parâmetros e capacidade de rejeição à perturbação.

2 Preliminares

Nesse capítulo faz-se uma revisão da bibliografia utilizada no desenvolvimento do estudo proposto.

2.1 Sistema de Primeira Ordem

Para que um modelo possa ser descrito por uma ou mais constantes de tempo, deve-se considerar um sistema em malha aberta como de ajuste automático. Sendo assim, para que a aplicação da modelagem caixa preta via curva de resposta a entrada de degrau seja possível, a dinâmica do sistema pode ser aproximada por um modelo de primeira ordem (ASTROM; HAGGLUND, 1995), descrita como:

$$G(s) = \frac{Ke^{-\theta s}}{\tau s + 1},\tag{2.1}$$

em que, K é o ganho estático do sistema, θ é o atraso ou tempo morto e τ é a constante de tempo do sistema. É possível obter o ganho estático por meio das variações da saída e da entrada do sistema, conforme:

$$K = \left| \frac{\Delta y}{\Delta u} \right|,\tag{2.2}$$

em que, Δy é a diferença entre a temperatura quando se aplica o degrau positivo de 15% e a temperatura inicial. Já Δu é a diferença do sinal de controle quando se aplica um degrau positivo de 15% e o valor inicial.

2.2 Sistema Superamortecido

Visando aplicar a modelagem caixa preta via curva de reação a uma entrada degrau, pode-se aproximar, também, a dinâmica do sistema por um modelo de segunda ordem superamortecido, dado por:

$$G(s) = \frac{Ke^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)},$$
(2.3)

em que, K é o ganho estático do sistema, θ é o atraso ou tempo morto, τ_1 e τ_2 são a constante de tempo do sistema.

2.3 Método dos 3 Parâmetros e da Curva de Reação do Processos de Ziegler-Nichols

Para a determinação de valores de ganho estático K, constante de tempo τ e tempo morto θ , Ziegler e Nichols propuseram regras baseadas nas características resposta transitória de dada planta. O valor de τ pode ser encontrado através da distância entre os pontos AC (ASTROM; HAGGLUND, 1995). Já K e $\theta = L$ podem ser encontrados a partir do gráfico da Figura 1. A aplicação do método de Ziegler Nichols tem como objetivo obter parâmetros a partir da reta tangente ao ponto de inflexão de um sistema sujeito a entrada de um degrau.

Figura 1 – Gráfico do método de Ziegler-Nichols.

Além disso, o método de Ziegler-Nichols é utilizado para sintonizar controladores do tipo P, PI e PID, conforme a Tabela 1, em que K_c é o ganho do controlador, T_I o tempo integrativo e T_D o tempo derivativo.

Tabela 1 – Parâmetros de sintonia pelo método da Curva de Reação do Processo de Ziegler-Nichols

Tipos de Controladores	K_c	T_I	T_D
P	$\tau/K\theta$	_	_
PI	$0.9\tau/K\theta$	$10\theta/3$	_
PID	$1,2\tau/K\theta$	2θ	$\theta/2$

2.4 Sintonia pelo Método CHR

O método CHR é baseado no trabalho de (CHIEN et al., 1952). O método CHR é baseado em dois critérios: a resposta mais rápida sem sobressinal; e a resposta mais rápida possível com 20% de sobressinal. O método em questão considera tanto a sintonia para o problema regulador como para o problema servo. Em todos os casos, considera-se o sistema se comportando como um sistema de primeira ordem com atraso, com ganho estático K, constante de tempo τ e tempo morto θ . Para o critério de desempenho da resposta mais

rápida possível sem sobressinal, a Tabela 2 apresenta a sintonia para o problema regulatório.

Tipos de Controladores	K_c	T_I	T_D
P	$0.3\tau/K\theta$	_	
PI	$0.6\tau/K\theta$	4θ	_
PID	$0.95\tau/K\theta$	$2,375\theta$	0.421θ

Tabela 2 – Parâmetros de sintonia pelo método CHR.

2.5 Aproximação por Padé

Dada uma expansão do tipo:

$$\sum_{n=0}^{N} f_n x^n, \tag{2.4}$$

em que, N não é necessariamente finito. Tais expansões surgem quando desenvolve-se uma função em serie de Taylor, por exemplo. Outra situação em que surgem expansões como (2.4) é encontrada em cálculos perturbativos, comuns, por exemplo, no tratamento de equações diferenciais. Nesse tipo de cálculo, os coeficientes f_n são encontrados individualmente através de processos, geralmente bastante elaborados. Em geral, os coeficientes f_n são chamados de peças de informação. Há um maior interesse em se extrair desses coeficientes informações que descrevem f(x) com confiança.

Os aproximantes de Padé associados com a expansão (2.4) é a funções racionais, ou seja, quocientes de dois polinômios, que representam a expansão. Esses aproximantes são caracterizados por dois inteiros positivos L e M, graus do numerador e denominador, respectivamente, da função racional, e são representados pela notação $[L/M]_{f(x)}$. Frequentemente, em benefício da notação, o índice f(x) é omitido quando o contexto é bem definido, eliminando qualquer possibilidade de confusão (CECILIA et al., 1999). Explicitamente, o aproximante de Padé [L/M] é definido por:

$$\frac{L}{M} = \frac{P_L(x)}{Q_M(x)} \quad L, M > 0,$$
 (2.5)

em que:

$$P_L(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_L x^L,$$

$$Q_M(x) = 1 + q_1 x + q_2 x^2 + \dots + q_M x^M.$$
(2.6)

Os coeficientes $P_L(x)$ e $Q_M(x)$ são determinados a partir das peças de informações f_n contidas na Expressão (2.4) através da condição:

$$f(x) = \frac{P_L(x)}{Q_M(x)} = O(x^{L+M+1}). \tag{2.7}$$

2.6 Análise do Sinal de Erro

Considere o sistema em malha fechada apresentado no diagrama da Figura 2.

Figura 2 – Diagrama de blocos para um sistema em malha fechada.

Nesse sistema têm-se que a referência para a malha fechada é dada pela função R(s), enquanto a saída da malha de controle é definida pela função Y(s). Por sua vez as funções $G_c(s)$ é a função do controlador, G(s) a função do sistema, e $T_d(s)$ um sinal de pertubação na entrada do sistema. A partir da análise do diagrama de blocos, defini-se a dinâmica da função do erro de rastreamento, E(s), tal que (DORF; BISHOP, 2009):

$$\mathbf{E}(\mathbf{s}) = \mathbf{R}(\mathbf{s}) - \mathbf{Y}(\mathbf{s}). \tag{2.8}$$

O qual após alguma manipulação do diagrama de blocos, pode ser expressa como:

$$\mathbf{E(s)} = \frac{1}{1 + G_c(s)G(s)}\mathbf{R(s)} - \frac{G(s)}{1 + G_c(s)G(s)}T_d(s). \tag{2.9}$$

O produto entre as funções do controlador e do sistema presente no denominador da Equação (2.9), resulta na função do **ganho de malha**, L(s), definida por: $L(s) = G_c(s)G(s)$, a qual desempenha papel fundamental na análise de sistemas de controle. A partir da função do ganho de malha, pode-se estabelecer a **função sensitividade**, dada por:

$$S(s) = \frac{1}{1 + L(s)}. (2.10)$$

De modo similar, pode-se definir a **função sensitividade complementar** como:

$$C(s) = \frac{L(s)}{1 + L(s)}. (2.11)$$

Desse modo, ao considerar (2.10) e (2.11) e a presença de ruído de medição, N(s), a função do erro de rastreamento (2.9), pode ser reescrita como:

$$\mathbf{E(s)} = S(s)\mathbf{R(s)} - S(s)G(s)T_d(s) + C(s)N(s). \tag{2.12}$$

A partir da análise da Equação (2.12), verifica-se que o erro de rastreamento é reduzido quando as funções S(s) e C(s) são pequenas. Uma vez que, ambas funções estão diretamente diretamente relacionadas a dinâmica do controlador, via função $G_c(s)$, cabe ao responsável técnico privilegiar a demanda do sistema ser controlado. Toda operação resulta em um custo de operação, e para o caso em estudo, relaciona-se pela seguinte expressão de compromisso:

$$S(s) + C(s) = 1. (2.13)$$

2.7 Sensibilidade do Sistema a Variação de Parâmetros

Retornando a Equação (2.9), pode-se verificar quando $T_d(s) = 0$ que o erro de rastreamento tende a zero, uma vez que se tenha a seguinte relação, $G_c(s)G(s) \gg 1$, o que resulta em:

$$\mathbf{Y}(\mathbf{s}) \cong \mathbf{R}(\mathbf{s}). \tag{2.14}$$

Contudo, sabe-se que a condição $G_c(s)G(s) \gg 1$, pode tornar a resposta do sistema altamente oscilatória ou mesmo levá-lo a instabilidade. No entanto, tal condição é notoriamente importante, visto que pequenas variações na função G(s) pouco afetam a saída do sistema controlado. Ou seja, uma maior magnitude de L(s) se traduz em menores variações no erro de rastreamento, isto é, uma menor sensibilidade da malha de controle a variações em G(s) (DORF; BISHOP, 2009).

Nesse sentido, a **sensibilidade do sistema** é definida como a razão entre a variação percentual da função de transferência dos sistema e a variação percentual da função de transferência do sistema, ou seja:

$$S = \frac{\Delta T(s)G(s)}{\Delta G(s)T(s)},\tag{2.15}$$

em que T(s) é a função de transferência do sistema.

No limite, para pequenas variações pode-se reescrever (2.15) como:

$$S = \frac{\partial T/T}{\partial G/G}. (2.16)$$

Desse modo, têm-se que a sensibilidade do sistema em malha aberta é igual a 1, enquanto para o sistema em malha fechada determinado por (2.16).

3 Sistema Fan Plate

Nesse capítulo são descritos o funcionamento do sistema, as condições iniciais aplicadas e os resultados obtidos.

3.1 Descrição

O sistema em estudo é conhecido como Fan Plate e tem como objetivo controlar a posição angular da placa a partir do controle do fluxo de ar gerado pelo ventilador. O sistema mecânico é composto por uma placa de alumínio cuja posição angular é mensurada por um encoder, um cooler de alta velocidade, um raspberry pi para programação e controle do sistema.

O fluxo de ar é produzido pelo *cooler* de alta velocidade, esse ao se deparar com a placa exerce sobre a mesma uma força de arrasto, fazendo com que essa rotacione-se. Assim, a área de saída do fluxo de ar depende da posição angular da placa. Com isso, faz-se a análise desse fluxo com o intuito de controlar a posição angular da placa. A Figura 3 evidencia um esquema simplificado do sistema.

Figura 3 – Diagrama esquemático simplificado do sistema Fan plate.

O sistema pode ser descrito a partir das relações abaixo que fornecem a equação diferencial do mesmo:

$$\dot{x_1} = x_2,$$

$$\dot{x_2} = K_1 \cos^2 x_1 u - (K_2 \sin x_1 + K_3 x_2),$$

$$y = x_1,$$
(3.1)

em que $\dot{x_2}$ corresponde à aceleração angular, x_1 é a posição angular da placa, x_2 é a velocidade angular, y é a saída do sistema, u é entrada do sistema. K_1 , K_2 e K_3 são constantes descritas por:

$$K_{1} = \frac{d_{cm}\rho_{ar}C_{\alpha}L_{\alpha}L_{1}}{2m_{t}\left(\frac{L_{t}^{2}}{12} + d_{cm}^{2}\right)},$$
(3.2)

em que, d_{cm} é a distância do centro de massa da placa, ρ_{ar} densidade do ar, C_{α} coeficiente de arrasto, L_{α} largura da placa móvel, L_1 é o comprimento da placa abaixo do eixo de rotação, m_t massa total da placa e L_t é o comprimento da placa.

$$K_2 = \frac{gd_{cm}}{\left(\frac{L_t^2}{12} + d_{cm}^2\right)},\tag{3.3}$$

em que g é a aceleração da gravidade.

$$K_3 = \frac{\mu d_{cm}^2}{m_t \left(\frac{L_t^2}{12} + d_{cm}^2\right)},\tag{3.4}$$

em que μ é o coeficiente de atrito viscoso.

3.2 Condições iniciais

A Tabela 3 fornece os dados necessários para calcular os valores das constantes K e também o sinal de controle necessário para manter o sistema no ponto de operação desejado, que no caso desse estudo é 43° ou 0,750 rad. Utilizando os valores da Tabela 3 , tem-se que $K_1=18,5910,\ K_2=30,3011$ e $K_3=61,7761$.

Tabela 3 – Parâmetros e Constantes Físicas do Sistema

Variáveis	L_{α}	L_1	L_t	d_{cm}	m_t	$ ho_{ar}$	C_{α}	μ	g
Valores	$154 \ mm$	$155 \ mm$	$270 \ mm$	$20 \ mm$	$0,005 \ Kg$	$1,23 \ Kg/m^3$	2,05	5	$9,81 \ m/s^2$

3.3 Resultados e Discussão

Para calcular o valor do sinal de controle (u_0) , pode-se manipular a Equação (3.1) da seguinte maneira:

$$u_0 = \frac{\dot{x}_2 + K_2 \sin x_1 + K_3 x_2}{K_1 \cos^2 x_1}. (3.5)$$

Substituindo os dados calculados e considerando as condições de velocidade e aceleração angulares da placa nulas na posição angular de operação, tem-se que o sinal de controle necessário para manter o sistema na posição 0,873 rad é definido por:

$$u_0 = \frac{K_2 sin x_1}{K_1 cos^2 x_1} = \frac{30,3011 sin(0,750)}{18,5910 cos^2(0,750)} = 2,0782 \ m^2/s^2.$$
 (3.6)

A Figura 4 representa o comportamento do sistema:

Figura 4 – Resposta temporal do sistema malha aberta sem degrau

Para obter um modelo de primeira ordem do sistema, plotou-se uma sequência de degraus positivos e negativos para, posteriormente, aplicar o Método de 3 Parâmetros de Ziegler-Nichols, descrito na Seção 2.3, conforme a Figura 5 evidencia.

Figura 5 – Resposta temporal do sistema malha aberta com degrau

Para aplicar Ziegler-Nichols, faz-se necessário traçar a reta tangente a curva de resposta no degrau positivo escolhido. Essa reta, representa pela cor verde da Figura 6, foi plotada a partir da análise gráfica da curva, em que foi retirado o coeficiente angular da mesma e a amplitude do degrau positivo. Após encontrar a reta tangente, obteve-se o ganho estático K, conforme a Equação (2.2), em que, $\Delta y = 0.0609$ e $\Delta u = 0.4156$. Dessa forma, tem-se que o valor de K = 0.1466. A Figura 6 representa a curva de resposta do sistema após aplicação do método.

Com todos os dados reunidos e com base no Sistema (2.1) é possível escrever a equação geral para o modelo de primeira ordem da seguinte maneira:

$$G(s) = \frac{0.1466}{1.01s + 1}. (3.7)$$

Figura 6 – Método Ziegler – Nichols- Degrau positivo

Ao aplicar o atraso de 0,15 segundos, a Equação (3.7) é adaptada para:

$$G(s) = \frac{0.1466e^{-0.15s}}{1.01s + 1}. (3.8)$$

Para aproximar o atraso do sistema por uma função linear, utilizou-se a aproximação por Padé, referenciado na Seção 2.5. Dessa maneira, têm-se o gráfico das aproximações de ordem 1, 3, 5 e 9, descritas na Figura (7):

Figura 7 – Aproximação do atraso do sistema através do método de Padé

Conforme a Figura (7), pode-se afirmar que a melhor resposta é a de nona ordem, pois possui melhor aproximação ao atraso de 0,15 segundos e oscila menos no princípio do degrau, enquanto a aproximação de primeira ordem sequer atingiu o atraso desejado e oscilou de maneira expressiva no inicio do degrau. Com isso, pode-se dizer que a ordem é diretamente proporcional à qualidade da aproximação que se espera.

Com o objetivo de comparar a resposta temporal dos modelos com e sem atraso para a entrada degrau, utilizou-se a aproximação de quinta ordem.

Como observado na Figura 8, as respostas diferem-se em razão do atraso aplicado. É possível inferir também que o modelo aproximado de quinta ordem é mais eficiente, pelo fato

Figura 8 – Aproximação do atraso do sistema através do método de Padé

de gastar um tempo menor para atingir o ponto de operação.

Considerando a inclusão do atraso de 0,15 segundos, foram projetados controladores do tipo P e PI utilizando os métodos da Curva de Reação de Processo de Ziegler - Nichols, conforme a Seção 2.3 e utilizando o método de CHR, evidenciado na Seção 2.4. Aplicando as fórmulas definidas nas Tabelas 1 e 2, encontrou-se a função de transferência para os controladores P e PI:

$$G_{P-ZN}(s) = \frac{45,94}{1},\tag{3.9}$$

$$G_{PI-ZN}(s) = \frac{20,67s + 41,35}{0,5s},\tag{3.10}$$

$$G_{P-CHR}(s) = \frac{13.78}{1},$$
 (3.11)

$$G_{PI-CHR}(s) = \frac{16,54s + 27,57}{0,6s}. (3.12)$$

Para o sistema em questão, tem-se o diagrama de controle, conforme Figura 9, no qual ref é a entrada de referência, u_0 o sinal de controle e um é uma entrada utilizada para denotar uma variação paramétrica da massa.

Figura 9 – Diagrama de Controle

A partir das funções de transferência calculadas (3.9), (3.10), (3.11) e (3.12), simulando os diferentes tipos de controlador. Realizou-se a programação para simular a resposta do sistema em malha fechada, utilizando da biblioteca *Control* para realizar tal atividade, para

isso utiliza-se uma sequencia de degraus definida pelo vetor $r = [0.75 \quad 0.9 \quad 0.75 \quad 0.6 \quad 0.825 \quad 0.9 \quad 0.675 \quad 0.75]$, a Figura 10 evidencia os resultados de cada controlador para os diferentes degraus.

Figura 10 – Controladores projetados

Em que para controladores do tipo P e PI pelo método de Ziegler-Nichols têm-se como legenda "c1" e "c2" respectivamente. E para o método CHR, c3 representa o controlador tipo P e "c4" refere-se ao tipo "PI".

É possível notar através da Figura 10 que os controladores PI (c2 e c4), acompanham melhor a variação da referência do sistema e apresentam um erro estacionário nulo quando comparados aos controladores do tipo P (c1 e c3). Além disso, é possível observar que os controladores obtidos através do método de Ziegler-Nichols (c1 e c2) aplicam valores de entrada mais altos do que os controladores 3 e 4. É importante ressaltar que dentre os controladores P, o obtido através de Zieghler-Nichols (c1) é mais adequado por possuir menor erro estacionário. Já entre os controladores PI, o obtido pelo método CHR (c4) apresenta melhor desempenho qualitativo, por possuir menor oscilação e overshoot.

Para avaliar a rejeição a pertubação, considera-se o sistema em um processo de regulação em que a massa da placa seja alterada, sendo assim simulou-se com essa pertubação, os resultados está apresentado na Figura 11, que evidencia a importância da malha fechada, pois ela elimina a pertubação existente, é evidente também que o controlador PI em ambos os métodos, apresentou melhor desempenho em relação ao proporcional.

Figura 11 – Rejeição a pertubação - alteração paramétrica da massa

Para a avaliação dos controladores foram normalizadas as curvas, evidencia-se que o controlador proporcional pelo Ziegler-Nichols "c1" tem uma oscilação em torno da referência, idem ao controlador PI "c2" por Ziegler-Nichols. Entretanto pelo método de CHR, pelo controlador proporcional "c3", que não houve oscilação e que apresentou uma estabilização mais rápida aos demais, o último controlador apresentou uma oscilação grande no início, porém depois dessa oscilação foi com baixa amplitude em torno da referência como pode ser verificado na Figura 12.

Figura 12 – Avaliação da resposta da malha fechada

Com vista a avaliar qualitativamente a performance do sistema em malha fechada para cada controlador, utilizou-se os índices de desempenho IAE, ITAE e RMSE. Para

isso, aplicou-se os índices à duas condições: seguimento de referência conforme desenvolvido na Figura 10 e rejeição a pertubação explícita na Figura (11). A Tabela 4 representa os valores obtidos para ambas as condições.

Modo	Índice	Método	Controlador	Valor do Índice
Seguimento de Referência	IAE	ZN	Proporcional	0.7151470390845565
Seguimento de Referência	IAE	ZN	Proporcional Integral	0.5293173647379694
Seguimento de Referência	IAE	CHR	Proporcional	1.2824223605638672
Seguimento de Referência	IAE	CHR	Proporcional Integral	0.26245641615354975
Rejeição a Pertubação	IAE	ZN	Proporcional	0.15255441178678614
Rejeição a Pertubação	IAE	CHR	Proporcional Integral	2.046094174304471
Rejeição a Pertubação	IAE	CHR	Proporcional	0.09544240426340797
Seguimento de Referência	ITAE	ZN	Proporcional	0.7310928855170901
Seguimento de Referência	ITAE	ZN	Proporcional Integral	0.4472767311469229
Seguimento de Referência	ITAE	CHR	Proporcional	1.5034527673070506
Seguimento de Referência	ITAE	CHR	Proporcional Integral	0.19403222817030685
Rejeição a Pertubação	ITAE	ZN	Proporcional	0.9861164127017815
Rejeição a Pertubação	ITAE	ZN	Proporcional Integral	0.018330879912086397
Rejeição a Pertubação	ITAE	CHR	Proporcional	2.491634031819336
Rejeição a Pertubação	ITAE	CHR	Proporcional Integral	0.005651043330854467
Seguimento de Referência	RMSE	ZN	Proporcional	0.010729375574054135
Seguimento de Referência	RMSE	ZN	Proporcional Integral	0.012738179275005234
Seguimento de Referência	RMSE	CHR	Proporcional	0.013912203535094035
Seguimento de Referência	RMSE	CHR	Proporcional Integral	0.009844388014292153
Rejeição a Pertubação	RMSE	ZN	Proporcional	0.009203227915843161
Rejeição a Pertubação	RMSE	ZN	Proporcional Integral	0.008460130017953338
Rejeição a Pertubação	RMSE	CHR	Proporcional	0.016947691010421848
Rejeição a Pertubação	RMSE	CHR	Proporcional Integral	0.00684275666684943

Tabela 4 – Tabela de índices de performance.

Dos resultados obtidos através dos índices de performance da resposta do sistema para seguimento de referência, infere-se que os controladores PI (c2 e c4) apresentam, em sua maioria, melhor desempenho, com exceção do controlador 2 no método RMSE, em que o controlador 1 foi superior a ele. Além disso, é possível notar o controlador Proporcional-Integral obtido pelo método CHR (c4) apresenta melhor desempenho em todos os índices. Já quando se analisa os índices de performance da resposta do sistema para rejeição a pertubação, observa-se que os controladores PI (c2 e c4) também apresentam melhor desempenho e o controlador 4 continua possuindo os melhores índices. Em uma análise geral, pode-se dizer que o controlador 4 é uma boa opção, por possuir os menores índices em ambas as situações

analisadas, e que o controlador 3 pode ser considerado o pior entre os quatro, já que não apresentou superioridade em nenhum caso.

Para a analise das características da malha fechada, considerou-se o sistema já abordado no relatório, o sistema de fanplate, com um atraso de 4 segundos, com isso foi projetado um controlador proporcional e outro proporcional integral, os resultados do proporcional estão abordado na Figura 13 e o proporcional integral está na Figura 14.

2.75 2.20 2.20 400 600 800 1000 1200 1400 1600 1.75 0 200 400 600 800 1000 1200 1400 1600

Figura 13 – Controlador P

Figura 14 – Controlador PI

Sabe-se que muitos sistemas de controle na prática estão sujeito a perturbações. Um sinal de perturbação é um sinal de entrada indesejado que afeta a saída do sistema. Com isso, é desejável que uma malha fechada de controle consiga rejeitar pertubações. Diante dessa situação, foi desenvolvido dois controladores para rejeitar as pertubações, foi utilizado a linguagem de programação python para o programa, os resultados da simulação do controlador proporcional está descrito na Figura 15 e os resultados do controlador proporcional integral estão descrito na Figura 16.

Figura 15 – Rejeição a Perturbação Controlador Proporcional

Figura 16 – Rejeição a Perturbação Controlador Proporcional Integral

4 Conclusão

Com o trabalho finalizado, pode-se concluir que foi possível obter modelos a partir da modelagem caixa preta do sistema Fan Plate. Após essa modelagem, encontrou-se as respostas temporais em malha aberta juntamente com a dinâmica real do sistema, com o objetivo de realizar comparações analíticas. Além disso, foi possível analisar a influência da massa da placa no sistema, através de uma alteração no seu valor de 0.1Kg para 0.005Kg. Essa mudança fez com que o sistema que antes tinha um comportamento subamortecido passasse a comportar-se de maneira superamortecida. Nesse último modelo foi possível explorar a aplicação de atraso no sistema e as aproximação por Padé de diferentes ordens.

Após isso, fez análise da resposta temporal do sistema em malha fechada através da construção de controladores do tipo P e PI utilizando dos métodos de Ziegler-Nichols e CHR, com o objetivo de descrever seus comportamentos, através dos métodos IAE, ITAE e RMSE, em duas situações diferentes: seguimento de referência e rejeição a pertubação. Para ambas situações os controladores PI demostraram ser superiores, com destaque ao controlador 4, que foi melhor em todas as situações. Em contra-partida, o controlador 3 não é indicado, visto que seu desempenho foi o pior entre os quatro em todas as circunstâncias e métodos de análise.

Em um segundo momento, visando projetar controladores do tipo proporcional e outro proporcional-integral para o sistema, pelo método CHR, foi necessário adicionar um atraso de transporte de 4 segundos. Esse atraso foi inserido através da aproximação de Padé. Logo após, definiu-se importantes funções para os mesmos, sendo elas: função de ganho de malha, função de sensitividade e função de sensitividade complementar. Ao analisar tais funções, encontrou-se o erro de rastreamento, conclui-se que para processos sem ruídos ou perturbações, o controlador PI mostrou-se com um melhor desempenho.

Para que a malha fechada rejeite sinais de perturbação, é necessário que o erro de regime permanente seja nulo, sendo assim o controlador PI atende todas as situações a que foi exposto. De modo contrário, o controlador P atende apenas para o caso de resposta a um impulso unitário, já que para resposta a um degrau o erro de regime permanente é diferente de zero.

Referências

ASTROM, K. J.; HAGGLUND, T. *PID Controllers: Theory, Desing, and Tuning.* 2. ed. [S.l.]: Automatic tunig of PID controllers, 1995. Citado 2 vezes nas páginas 2 e 3.

BUNGE, M. Teoria e realidade [Tradução Gita K. Guisburg]. [S.l.]: São Paulo: Perspectiva, 2008. Citado na página 1.

CECILIA, K. A.-N. M.; VALDIR, C. A.-N.; RICARDO, C. F.; TERAMON, N. Os apriximantes de padé. Matemática Universitária, p. 49–66, 1999. Citado na página 4.

CHIEN, K. L.; HRONES, J. A.; RESWICK, J. B. On the automatic control of generalized passive systems. Transactions ASME, v. 74, p. 175–185, 1952. Citado na página 3.

DORF, R. C.; BISHOP, R. H. *Modern Control Systems*. 8. ed. [S.l.]: LTC, 2009. Citado 3 vezes nas páginas 1, 5 e 6.