$10_{46} \ (K10a_{81})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{16} + u^{15} + \dots + b + u, -u^{16} - u^{15} + \dots + a + 1, u^{17} + 2u^{16} + \dots - u - 1 \rangle$$

 $I_2^u = \langle b + 1, a, u^2 + u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 19 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{16} + u^{15} + \dots + b + u, -u^{16} - u^{15} + \dots + a + 1, u^{17} + 2u^{16} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u\\-u^{3}+u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{16}+u^{15}+\cdots-5u-1\\-u^{16}-u^{15}+\cdots-8u^{2}-u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2}+1\\-u^{4}+2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{10}+7u^{8}-16u^{6}-2u^{5}+13u^{4}+8u^{3}-3u^{2}-6u-1\\-u^{16}-u^{15}+\cdots-8u^{2}-u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{16}-u^{15}+\cdots-8u^{2}-5u\\-u^{16}-u^{15}+\cdots-8u^{2}-2u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3}-2u\\u^{5}-3u^{3}+u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4}+3u^{2}-1\\-u^{6}+4u^{4}-3u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{16} + 7u^{15} 39u^{14} 68u^{13} + 147u^{12} + 260u^{11} 262u^{10} 506u^9 + 183u^8 + 536u^7 + 82u^6 286u^5 192u^4 + 52u^3 + 74u^2 + 6u 9$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7 c_8, c_{10}	$u^{17} + 2u^{16} + \dots - u - 1$
c_2, c_3, c_5	$u^{17} - 3u^{16} + \dots - 2u + 1$
c_4, c_9	$u^{17} + u^{16} + \dots + 8u + 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_7 c_8, c_{10}	$y^{17} - 24y^{16} + \dots + 15y - 1$
c_2, c_3, c_5	$y^{17} - 19y^{16} + \dots + 26y - 1$
c_4, c_9	$y^{17} + 15y^{16} + \dots + 72y - 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.061550 + 0.132627I		
a = -0.032032 + 1.057310I	-4.50346 - 2.40856I	-13.38977 + 3.98608I
b = -0.560836 - 0.704658I		
u = 1.061550 - 0.132627I		
a = -0.032032 - 1.057310I	-4.50346 + 2.40856I	-13.38977 - 3.98608I
b = -0.560836 + 0.704658I		
u = -1.10417		
a = -1.02988	-6.53818	-13.8720
b = -1.38948		
u = 1.160740 + 0.369892I		
a = -0.033674 - 1.270360I	-11.54310 - 5.69036I	-14.9028 + 4.0871I
b = 1.55782 + 0.20538I		
u = 1.160740 - 0.369892I		
a = -0.033674 + 1.270360I	-11.54310 + 5.69036I	-14.9028 - 4.0871I
b = 1.55782 - 0.20538I		
u = -0.389835 + 0.662254I		
a = -1.45018 + 1.06769I	-6.67400 + 2.15086I	-12.06720 - 3.08735I
b = 1.50356 - 0.06755I		
u = -0.389835 - 0.662254I		
a = -1.45018 - 1.06769I	-6.67400 - 2.15086I	-12.06720 + 3.08735I
b = 1.50356 + 0.06755I		
u = -0.726749		
a = 0.648394	-1.27609	-7.02090
b = 0.235031		
u = -0.245709 + 0.306515I		
a = 1.04586 - 1.37638I	-0.413031 + 0.944940I	-7.13539 - 7.21571I
b = -0.353541 + 0.303071I		
u = -0.245709 - 0.306515I		
a = 1.04586 + 1.37638I	-0.413031 - 0.944940I	-7.13539 + 7.21571I
b = -0.353541 - 0.303071I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.64837		
a = 0.374676	-9.71406	-6.33030
b = 0.532039		
u = 0.288922		
a = -1.61818	-2.06625	-1.61000
b = -1.09525		
u = -1.74789 + 0.03164I		
a = -0.112337 - 0.821992I	-14.6712 + 3.0771I	-13.60428 - 2.54829I
b = -0.626661 + 0.929444I		
u = -1.74789 - 0.03164I		
a = -0.112337 + 0.821992I	-14.6712 - 3.0771I	-13.60428 + 2.54829I
b = -0.626661 - 0.929444I		
u = 1.75801		
a = -0.853301	-16.9433	-14.4070
b = -1.56221		
u = -1.77104 + 0.09789I	1-11-0	
a = 0.321515 + 0.925880I	17.4178 + 7.7170I	-15.2806 - 3.2820I
b = 1.61959 - 0.31356I		
u = -1.77104 - 0.09789I	12.112	
a = 0.321515 - 0.925880I	17.4178 - 7.7170I	-15.2806 + 3.2820I
b = 1.61959 + 0.31356I		

II. $I_2^u = \langle b+1, \ a, \ u^2+u-1 \rangle$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -17

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^2 - u - 1$
c_{2}, c_{3}	$(u-1)^2$
c_4, c_9	u^2
<i>C</i> ₅	$(u+1)^2$
c_6, c_7, c_8	$u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_7 c_8, c_{10}	$y^2 - 3y + 1$
c_2, c_3, c_5	$(y-1)^2$
c_4, c_9	y^2

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 0	-2.63189	-17.0000
b = -1.00000		
u = -1.61803		
a = 0	-10.5276	-17.0000
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$(u^2 - u - 1)(u^{17} + 2u^{16} + \dots - u - 1)$
c_2,c_3	$((u-1)^2)(u^{17}-3u^{16}+\cdots-2u+1)$
c_4, c_9	$u^2(u^{17} + u^{16} + \dots + 8u + 4)$
<i>C</i> ₅	$((u+1)^2)(u^{17}-3u^{16}+\cdots-2u+1)$
c_6, c_7, c_8	$(u^2 + u - 1)(u^{17} + 2u^{16} + \dots - u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_7 c_8, c_{10}	$(y^2 - 3y + 1)(y^{17} - 24y^{16} + \dots + 15y - 1)$
c_2,c_3,c_5	$((y-1)^2)(y^{17}-19y^{16}+\cdots+26y-1)$
c_4, c_9	$y^2(y^{17} + 15y^{16} + \dots + 72y - 16)$