Fibre ottiche

A. Bordin, G. Cappelli

20-24 Novembre 2017

Sommario

- 1 Teoria
- 2 Apparato sperimentale
- 3 Apertura numerica
- 3.1 Teoria
- 3.2 Presa dati
- 2 tabelle

3.3 Analisi dati

2 plot con interpolazione quadratica o al massimo cubica

- 4 Attenuazione albe
- 4.1 Teoria
- 4.2 Presa dati
- 4.3 Analisi dati
- 4 plot: 1 normale e 1 loglog per 2 volte
- 5 Propagazione modo LP_{01} in una fibra SM
- 5.1 Teoria
- 5.2 Presa dati
- 1 tabella
- 5.3 Analisi dati
- 1 plot

6 Propagazione modi superiori

- 6.1 Teoria
- 6.2 Presa dati
- 6.3 Analisi dati

7 Fibra a conservazione di polarizzazione

- 7.1 Teoria
- 7.2 Presa dati
- 7.3 Analisi dati
- 1 figura

8 Lente di GRIN

8.1 Teoria

Una lente GRIN è un cilindro fatto di un materiale rifrangente con indice di rifrazione variabile a seconda della distanza dall'asse.

Una lente GRIN tagliata a $\lambda/4$ focalizza assi parassiali sulla superficie e viceversa. La lente GRIN a nostra disposizione è tagliata a 0.29λ quindi focalizza onde sferiche ad una certa distanza dalla superficie.

8.2 Coefficiente di accoppiamento

L'idea è usare la lente GRIN per lanciare luce in fibra. Misuriamo quindi il coefficiente di accoppiamento di una sorgente laser o LED a una fibra ottica multimodo attraverso una lente GRIN. Il coefficiente di accoppiamento si ottiene con la formula

$$\Gamma = 10 \log \left| \frac{P_{in}}{P_{out}} \right|$$

dove P_{in} è la potenza in ingresso, misurata con il power meter a diretto contatto con la sorgente, e P_{out} è la potenza in uscita, misurata, con lo stesso power meter, all'uscita della fibra ottica.

	I_{in} [mA]	P_{in} [mW]	P_{out} [mW]	$\Gamma[dB]$
laser	78.0(1)	6.19(6)	3.50(1)	2.48(4)
LED	81.1(2)	8.21(10)	0.00491(2)	32.23(6)

8.3 Trasmissione di un segnale