Notizen zur Vorlesung

Mathematik III für Studierende der Computing in Science, Geophysik/ Ozeanographie, Meteorologie und Physik

WiSe 2022/23

Version vom 23. November 2022

Analysis, aber diesmal in 3D!

Grüßt euch, dies sind die Community MfP3-Notizen.

Sissi und ich erstellen sie als Nachbereitung der Vorlesung und sie dienen als eine schnelle Quelle von Definitionen und einfachen Beispielen (um sich einen Überblick zu verschaffen), wichtigen Bemerkungen aus den Übungen, sowohl als Klausurnotizen. Wir bewundern die informellen Notizen zum MfP1- und MfP2-Tutorium von Robin Löwenberg und Fabian Balzer und haben uns entschloßen mit dem gleichen Stil weiterzumachen, da es keine MfP3 und MfP4 Tutoriumnotizen mehr gibt. Die Templates wurden von Fabian erstellt und sind auf seiner Github-Seite verfügbar: https://github.com/Fabian-Balzer/MfP2-Notizen. Zusätzlich benutzen wir das Lehrwerk Mathematik von Tilo Arens als eine Quelle von guten Beispielen. Das Buch können wir jedem empfehlen, der auch Giancoli mag und am besten an Beispielen lernt. Bei Anmerkungen oder Fragen schreibt uns einfach auf Whatsapp, Discord oder GitHub an.

Möge die Macht der endlosen zerbrochenen Kreiden mit euch sein :)

Inhaltsverzeichnis

1	Wiederholung	3
	1.1 Riemann-Integrale	3
	1.2 Topologie und Untermannigfaltigkeiten	3
2	Fourier Reihen	7
	2.1 Fourier-Reihe	7
	2.2 Konvergenz der Fourier Reihe	9
3	Einführung in die Gebietsintegrale	11
	3.1 Theoretisches Baukasten	11
	3.2 Lebesgue-Integral	12
	3.3 Volumina und Nullmengen	

1 Riemann-Integrale und Untermannigfaltigkeiten

1.1 Riemann-Integrale

Definition 1.1: Ober- und Unterintegral

Sei $f:[a,b]\to\mathbb{R}$ eine beschränkte Funktion. Das Oberintegral von f ist die Zahl

$$\int_{a}^{*b} f(x)dx = \inf\{\int_{a}^{b} \varphi(x)dx | \varphi \text{ Treppenfunktion mit } \varphi \ge f\}$$

Das **Unterintegral** von f ist die Zahl

$$\int_{*a}^b f(x) dx = \sup \{ \int_a^b \varphi(x) dx | \varphi \text{ Treppenfunktion mit } \varphi \leq f \}$$

Definition 1.2: Riemann-integrierbare Funktion

Eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ heißt Riemann-integrierbar, wenn

$$\int_{a}^{*b} f(x)dx = \int_{*a}^{b} f(x)dx$$

Ebenso ist es in der Analysis nützlich den Begriff des uneigentlichen Integrals zu verstehen, wenn der Definitionsbereich unbeschränkt ist.

Definition 1.3: Uneigentliches Integral

Sei $f:(a,b]\to\mathbb{R}$ nicht unbedingt beschränkt, aber für jedes Teilinterval $[\alpha,b]\in(a,b]$ integrierbar. Falls dann der Grenzwert

$$\lim_{\epsilon \to a} \int_{\epsilon}^{b} f(x) dx$$

existiert, so nennen wir f über das Intervall (a, b] uneigentlich integrierbar.

Beispiel 1.1: Uneigentliches Integral

Betrachten wir $\int_0^1 \frac{1}{\sqrt{x}} dx$. Dieses Integral kann als uneigentliches integral sinnvoll definiert werden:

$$\lim_{\epsilon \to 0} \int_{\epsilon}^{1} \frac{1}{\sqrt{x}} dx = \lim_{\epsilon \to 0} [2\sqrt{x}]_{\epsilon}^{1} = \lim_{\epsilon \to 0} 2\sqrt{1} - 2\sqrt{\epsilon} = 2$$

Die Gamma-Funktion $\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt$ ist sehr nützlich, denn es gilt $\Gamma(s+1) = s\Gamma(s)$, also ist die Funktion perfekt dazu geeignet, um die Fakultät zu berechnen: $\Gamma(n) = (n-1)!$

1.2 Topologie und Untermannigfaltigkeiten

Gewisse topologische Begriffe sind auch im MfP3 sehr wichtig.

Definition 1.4: Offene Kugel

Die Teilmenge $B_r(\boldsymbol{x}) := \{ \boldsymbol{y} \in X \mid d(\boldsymbol{x}, \boldsymbol{y}) < r \} \subseteq X$ eines metrischen Raumes (X, d) mit Abstandsfunktion d heißt offene Kugel mit Mittelpunkt \boldsymbol{x} und Radius r.

Definition 1.5: Inneres

Für eine Teilmenge $A \subseteq X$ nennen wir die Vereinigung aller offenen Teilmengen das Innere \mathring{A} von A, also $\mathring{A} = \bigcup_{B \subset A} B$.

Definition 1.6: Abschluss

Für eine Teilmenge $A\subseteq X$ nennen wir den Durchschnitt aller abgeschlossenen Mengen, die A enthalten, den **Abschluss** \bar{A} von A, also $\bar{A}=\bigcap_{B\supset A,B \text{ abgeschl.}} B$.

Definition 1.7: Rand

Die Differenz aus diesen beiden Mengen ist dann der **Rand** ∂A von A, also $\partial A = \bar{A} \setminus \mathring{A}$.

Definition 1.8: Kompaktheit

Falls wir zu jeder offenen Überdeckung $(U_i)_{i\in I}$ von $A\subseteq X$ eine endliche Teilüberdeckung, d.h. eine Einschränkung der Indexmenge I auf eine endliche Menge $J\subseteq I$ finden, sodass $(U_i)_{i\in J}$ immer noch eine offene Überdeckung von A ist, so nennen wir $A\subseteq X$ kompakt.

Folgerung 1.1: Kompakte Teilmengen sind abgeschlossen und beschränkt

Jede kompakte Teilmenge $A\subseteq X$ eines metr. Raumes ist <u>abgeschlossen</u>, <u>vollständig</u> und beschränkt.

Jetzt gehen wir über zu Untermannigfaltigkeiten und schließen die Wiederholung mit allgemeinen Mannigfaltigkeiten ab.

Definition 1.9: Immersion

Ist $rg(f) = m \forall p \in U$, d. h. die Abbildung hat den konstanten Rang der Dimension des <u>Urbildraums</u>, so sagen wir, dass f eine <u>Immersion</u> ist.

Das Differential $df: U \to \mathbb{R}^n$ ist dann injektiv.

Definition 1.10: C^k -Diffeomorphismen

 C^k -Abbildungen $f: U \to V$, die bijektiv sind und deren Umkehrabbildungen auch C^k sind, nennen wir C^k -Diffeomorphismen.

Beispiel 1.2: Bekannter Diffeomorphismus

Die Abbildung $f: \mathbb{R} \to \mathbb{R}_+ \setminus \{0\}$, $f(x) = e^x$ ist mit $f^{-1}: \mathbb{R}_+ \setminus \{0\} \to \mathbb{R}$, $f^{-1}(x) = \ln(x)$ ein Diffeomorphismus, denn beide sind stetig differenzierbar, bijektiv und $(f \circ f^{-1} = \operatorname{Id}_{\mathbb{R}_+ \setminus \{0\}}) \wedge (f^{-1} \circ f = \operatorname{Id}_{\mathbb{R}})$.

Eine wichtige Eigenschaft von Diffeomorphisem ist, dass sie homoömorph sind.

Definition 1.11: Untermannigfaltigkeit

Wir nennen eine Teilmenge $M \subseteq \mathbb{R}^n$ eine m-dimensionale Untermannigfaltigkeit, falls für jeden der Punkte $p \in M$ die folgenden Eigenschaften erfüllt sind:

- Es gibt eine offene Umgebung $V \subseteq \mathbb{R}^m$ von \boldsymbol{p} .
- Es gibt eine C^k -Immersion^a $F:U\to\mathbb{R}^n$, die eine offene Teilmenge $U\subseteq\mathbb{R}^m$ homöomorph auf $V\cap M$ abbildet.

Definition 1.12: Flächen und Hyperflächen

Zweidimensionale Untermannigfaltigkeiten des \mathbb{R}^n nennen wir **Flächen**. (n-1)-dimensionale Untermannigfaltigkeiten des \mathbb{R}^n nennen wir **Hyperflächen**.

Satz 1.2: Untermannigfaltigkeiten als Urbilder unter Abbildungen von konstantem Rang

Sei $U \subseteq \mathbb{R}^n$ offen und $f: U \to \mathbb{R}^m$.

- Ist f eine C^k -Abbildung,
- \bullet hat f konstanten Rang r und
- ist $\mathbf{q} \in f(U)$,

so ist das Urbild^a des Punktes q eine C^k -Untermannigfaltigkeit des \mathbb{R}^n der Dimension $\mathbf{m=n-r}$, also

$$M := f^{-1}(\mathbf{q}) \subseteq U. \tag{1.1}$$

Beispiel 1.3: Ein Beispiel von einer Untermannigfaltigkeit

Gegeben sind die beiden Funktionen

$$f_1(x) = x_1^2 + x_1x_2 - x_2 - x_3$$
 $f_2(x) = x_1^2 + 3x_1x_2 - 2x_2 - 3x_3$

und die Menge

$$C := \{x \in \mathbb{R}^3 \mid f_1(x) = f_2(x) = 0\}.$$

Wir behaupten nun, dass C eine eindimensionale C^{∞} -Untermannigfaltigkeit des \mathbb{R}^3 ist.

 $[^]a$ also eine Abbildung von Rang m

 $[^]a$ also alle Punkte, die auf \boldsymbol{q} abgebildet werden

Dazu betrachten wir die Funktion $f: \mathbb{R}^3 \to \mathbb{R}^2$, gegeben durch

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \end{pmatrix}$$

und stellen fest:

- f ist ∞ -oft differenzierbar
- Das Differential ist

$$df = \begin{pmatrix} 2x_1 + x_2 & x_1 - 1 & -1 \\ 4x_1 + 3x_2 & 3x_1 - 2 & -3 \end{pmatrix} \xrightarrow{GauB} \begin{pmatrix} 2x_1 & x_1 - 1 & -1 \\ -2x_1 & -1 & 0 \end{pmatrix}$$
$$\Rightarrow rg(f) = rg(df) = 2 \quad \forall x \in \mathbb{R}^3$$

also ist f eine Abbildung von konstantem Rang..

Die Behauptung folgt dann wieder direkt aus dem Satz über Untermannigfaltigkeiten als Urbilder unter Abbildungen von konstantem Rang. Die Untermannigfaltigkeit hat demnach auch die behauptete Dimension 3-2=1.

Und nun zum krönenden Abschluss die allgemeinen Mannigfaltigkeiten.

Definition 1.13: Allgemeine Mannigfaltigkeiten

Gegeben seien ein metrischer Raum M, eine offene Überdeckung $(v_i)_{i\in I}$ von M mit offenen Mengen $U_i \subseteq \mathbb{R}^m$ und Homöomorphismen

$$F_i: U_i \stackrel{\sim}{\to} V_i.$$

Man spricht dann von einer (abstrakten) m-dimensionalen C^k -Mannigfaltigkeit, wenn für je zwei offene Mengen $V_1, V_2 \subseteq M$ mit Abbildungen F_1 und F_2 die Abbildung

$$F_2^{-1} \circ F_1: F_1^{-1}(V_1 \cap V_2) \to F_2^{-1}(V_1 \cap V_2)$$

ein C^k -Diffeomorphismus ist.

2 Fourier Reihen

Die Fourier-Reihe ist ein wichtiges Instrument in der Physik, das uns ermöglicht (quasi-)periodische Funktionen mit einer Summe von vielen $\sin(x)$ und $\cos(x)$ zu approximieren.

2.1 Fourier-Reihe

Definition 2.1: Fourier-Koeffizient

Sei $f: \mathbb{R} \to \mathbb{C}$ eine 2π -periodische Funktion. Die komplexe Zahl

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-ikx}dx$$

heißt das k-te Fourier-Koeffizient.

Definition 2.2: Fourier-Reihe

Die Reihe

$$F(f) = \sum_{k=-\infty}^{\infty} c_k e^{-ikx}$$

heißt die Fourier-Reihe von f

Beispiel 2.1: Beispiel einer Fourier-Reihe

Gegeben sei die Funktion

$$f(x) = \begin{cases} 1 & \text{wenn } 0 < x \le \pi \\ 0 & \text{wenn } \pi < x \le 2\pi \end{cases}$$

Wir wollen nun die Fourier-Reihe zu der 2π -periodischen f bestimmen, um die Funktion zu approximieren. Wir berechnen zuerst c_0 .

$$c_0 = \frac{1}{2\pi} \int_0^{\pi} 1e^0 dx + \frac{1}{2\pi} \int_{\pi}^{2\pi} 0e^0 dx = \frac{1}{2\pi} \pi - 0 = \frac{1}{2}$$

Nun berechnen wir c_1 , um ein Gefühl zu entwickeln.

$$c_1 = \frac{1}{2\pi} \int_0^{\pi} 1e^{-ix} dx + \frac{1}{2\pi} \int_0^{\pi} 0e^{-ix} dx = \frac{1}{2\pi} \int_0^{\pi} e^{-ix} dx =$$

$$= \frac{1}{2\pi} \int_0^{\pi} \cos(x) - i\sin(x) dx = \frac{1}{2\pi} ([\sin(x)]_0^{\pi} + i[\cos(x)]_0^{\pi}) = \frac{1}{2\pi} (0 - 2i) = -\frac{i}{\pi}$$

Anschließend berechnen wir c_k .

$$c_k = \frac{1}{2\pi} \int_0^{\pi} 1e^{-ikx} dx + \frac{1}{2\pi} \int_0^{\pi} 0e^{-ikx} dx = \frac{1}{2\pi} \int_0^{\pi} 1e^{-ikx} dx =$$

$$= \frac{1}{2\pi} \left[\frac{ie^{-ikx}}{k} \right]_0^{\pi} = \frac{1}{2\pi} \left[\frac{i(\cos(kx) - i\sin(kx))}{k} \right]_0^{\pi} = \begin{cases} -\frac{i}{\pi k} & \text{k ungerade} \\ 0 & \text{k gerade} \end{cases}$$

Die Fourier-Reihe der Funktion f ist dann

$$F(f) = \frac{1}{2} - \frac{i}{\pi}e^{-ix} + \frac{i}{\pi}e^{ix} - \frac{i}{3\pi}e^{-3ix} + \frac{i}{3\pi}e^{3ix} - \frac{i}{5\pi}e^{-5ix} + \frac{i}{5\pi}e^{5ix} \dots$$

Dies könnte man noch umschreiben:

$$F(f) = \frac{1}{2} + \frac{2}{\pi}\sin(x) + \frac{2}{3\pi}\sin(3x) + \frac{2}{5\pi}\sin(5x) + \dots$$

Wie auf dem Bild zu sehen, approximieren wir mit jeden neuen Term die Funktion stückweise besser.

Bemerkung 2.1: Wichtige Fourier-Integrale

Die folgenden Integrale sind sehr wichtig bei der Berechnung von Fourier-Reihen:

- 1. $\int_0^{2\pi} \cos(kx) \sin(lx) dx = 0, \text{ für } \forall k, l$ 2. $\int_0^{2\pi} \cos(kx) \cos(lx) dx = 0 \text{ für } k \neq l$ 3. $\int_0^{2\pi} \sin(kx) \sin(lx) dx = 0 \text{ für } k \neq l$ 4. $\int_0^{2\pi} \sin^2(kx) dx = \pi \text{ für } k \geq 1$ 5. $\int_0^{2\pi} \cos^2(kx) dx = \pi \text{ für } k \geq 1$

Wichtig! Diese Beziehungen gelten nur für $k, l \in \mathbb{N}$.

Bemerkung 2.2: Fourier für un- und gerade Funktionen

Es gilt

$$F_n(f) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx))$$

wobei

$$a_k = c_k + c_{-k} = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(kx) dx$$

$$b_k = i(c_k - c - k) = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(kx) dx$$

Wenn f reellwertig ist, dann ist $c_{-k} = \overline{c_k}$ und $F_n(f)$ auch reellwertig.

Ist f gerade (d.h. f(-x) = f(x)), dann gilt

$$F_n(f) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos(kx)$$

Ist f ungerade (d.h. f(-x) = -f(x)), dann gilt

$$F_n(f) = \sum_{k=1}^n b_k \sin(kx)$$

Eine weitere Anwendung der Fourier-Reihe ist auch das Beweisen von Folgen

Beispiel 2.2: Folgenbeweise mit Fourier

Wir sollen die Formel $\frac{\pi^2}{6} = 1 + \frac{1}{4} + \frac{1}{9} + \dots$ beweisen indem wir die Fourier-Reihe der 2π -periodischen Funktion $f(x) = x^2$ im Intervall $-\pi \le x \le \pi$ bestimmen.

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 e^0 dx = \frac{1}{2\pi} \left[\frac{x^3}{3} \right]_{-\pi}^{\pi} = \frac{1}{2\pi} \left(\frac{\pi^3}{3} + \frac{\pi^3}{3} \right) = \frac{\pi^2}{3}$$

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 e^{-ikx} dx = \begin{cases} \frac{1}{k^2} & \text{wenn } k \text{ gerade} \\ -\frac{1}{k^2} & \text{wenn } k \text{ ungerade} \end{cases}$$

$$F_n(f) = \frac{\pi^2}{3} - 2\cos(x) + \frac{1}{2}\pi\cos(2x) - \frac{2}{9}\cos(3x) + \dots$$

Nun setzen wir für x den Wert $x=\pi$ ein und erhalten:

$$F_n(f(\pi)) = \frac{\pi^2}{3} + 2 + \frac{1}{2} + \frac{2}{9} + \dots$$

Wir wissen, dass $f(\pi) = \pi^2$ und substrahieren $\frac{\pi^2}{3}$ von beiden Seiten

$$\frac{\pi^2}{3} = 2 + \frac{1}{2} + \frac{2}{9} + \dots$$

Nun teilen wir beide Seiten mit 2 und erhalten

$$\frac{\pi^2}{6} = 1 + \frac{1}{4} + \frac{1}{9} + \dots$$

2.2 Konvergenz der Fourier Reihe

Definition 2.3: L^2 -Halbnorm

Sei V der Vektorraum der 2π -periodischen Funktionen $f:\mathbb{R}\to\mathbb{C}$, wobei f Riemannintegrierbar ist. Dann ist die Hermitische Form

$$||f||_2 = \langle f, f \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{f(x)} dx, f \in V$$

die L^2 -Halbnorm von f.

Satz 2.3: Konvergenz der Fourier-Reihe im quadratischen Mittel

Sei V der Vektorraum der 2π -periodische Funktionen $f:\mathbb{R}\to\mathbb{C},$ für die f integrierbar ist.

i) Für $\forall f \in V$ gilt

$$||f||_2^2 = \sum_{k=-\infty}^{\infty} |c_k|^2$$

ii) Die Fourier-Reihe von $f\in V$ konvergiert im quadratischen Mittel gegen f, d.h. $\lim_{n\to\infty}||f-F_n(f)||_2=0.$

Es gibt tatsächlich keine 2π -periodische Funktion im \mathcal{L}^2 , dessen Fourier-Reihe nicht fast überall gegen f konvergieren würde.

3 Mehrdimensionale Integrale

3.1 Theoretisches Baukasten

Um uns mit mehrdimensionalen Integralen zu beschäftigen, müssen wir zuerst gewisse theoretische Begriffe einführen.

Definition 3.1: Charakteristische Funktion

Sei $A \subseteq \mathbb{R}^n$. Die charakteristische Funktion oder auch Indikatorfunktion der Teilmenge A ist die Funktion

$$1_A : \mathbb{R}^n \to \mathbb{R} \text{ mit } x \to \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$$

Definition 3.2: Quader

Ein Quader $Q \subseteq \mathbb{R}^n$ ist das Produkt $I_1 \times \cdots \times I_n$ von n beschränkten, nicht-leeren Intervallen $I_{\mu} \subseteq \mathbb{R}$.

Beispiel 3.1: Quader in \mathbb{R}^1

Quader in \mathbb{R}^1 sind also die Intervale (a, b), [a, b], (a, b] und [a, b).

Definition 3.3: Volumen eines Quaders

Das (n-dimensionale) Volumen eines solchen Quaders ist die nicht-negative reelle Zahl

$$v(Q) = v_n(Q) = \prod_{\mu=1}^n |I_{\mu}| = \prod_{\mu=1}^n (b_{\mu} - a_{\mu})$$

Definition 3.4: Treppenfunktion

Eine Funktion $\varphi : \mathbb{R}^n \to \mathbb{C}$ heißt **Treppenfunktion auf** \mathbb{R}^n , wenn es endlich viele paarweise **disjunkte** Quader gibt, sodass

- 1. die Funktion φ auf jedem Quader Q_k konstant ist,
- 2. $\varphi(x) = 0$ für alle x außerhalb von Quadern.

Außerdem lassen sich Treppenfunktionen als endliche Linearkombination charakteristischer Funktionen von disjunkten Quadern schreiben

$$\varphi = \sum_{k} c_k 1_{Q_k}$$
 mit $c_k \in \mathbb{C}$ und Q_k ist ein Quader

Wir kommen nun zu den sehr wichtigen Begriff der Hüllreihen.

Definition 3.5: Hüllreihe

Gegeben sei $f: \mathbb{R}^n \to \mathbb{C} \cup \{\infty\}$. Eine **Hüllreihe** zu f ist eine Reihe

$$\Phi = \sum_{k=1}^{\infty} c_k 1_{Q_k} \text{ mit } c_k \in \mathbb{R}$$

wobei Q_k offene Quader im \mathbb{R}^n sind und für jedes $x \in \mathbb{R}^n$ gilt

$$|f(x)| \le \Phi(x) = \sum_{k=1}^{\infty} c_k 1_{Q_k}(x)$$

Der Inhalt der Hüllreihe ist definiert als

$$I(\Phi) = \sum_{k=1}^{\infty} c_k v(Q_k)$$

Beispiel 3.2: Folge von Hüllreihen

Seien $a, k \in \mathbb{R}$ und $f : \mathbb{R} \to \mathbb{R}$ definiert als $f(x) = \begin{cases} 0, x \neq a \\ k, x = a \end{cases}$. Wir sollen zu dieser

Funktion eine Folge von Hüllreihen, Φ_n , konstruieren, die gegen Null konvergiert.

Wir wissen, dass $\Phi = \sum_{k=1}^{\infty} c_k 1_{Q_k}$, aber auch, dass $c_k = 0$ für jeden Quader außer für den einen, in dem sich a befindet (da ist $c_k = k$). Achtung! Dieses Beispiel ist noch unvollständig!

Definition 3.6: L^1 -Halbnorm

Unter der L^1 -Halbnorm von $f: \mathbb{R}^n \to \mathbb{C} \cup \{\infty\}$ versteht man das Infimum

$$||f||_1 = \inf\{I(\Phi)| \Phi \text{ H\"{u}llreihe zu } f\} = \int |f| dx$$

Satz 3.1: Eigenschaften einer Halbnorm

Für die Funktionen $f_1, f_2 : \mathbb{R}^n \to \mathbb{C} \cup \{\infty\}$ und ein $c \in \mathbb{C}$ gilt

- 1. $||c \cdot f||_1 = |c| \cdot ||f||_1$ 2. $|f_1| \le |f_2| \Longrightarrow ||f_1||_1 \le ||f_2||_2$ 3. $||\sum_{k=1}^{\infty} |f_k||_1 \le \sum_{k=1}^{\infty} ||f_k||_1$

3.2 Lebesgue-Integral

Mit den obigen theoretischen Werkzeug können wir nun endlich das Lebesgue-Integral definieren.

Definition 3.7: Lebesgue-Integral

Eine Funktion $f: \mathbb{R}^n \to \mathbb{C} \cup \{\infty\}$ heißt Lebesgue-integrierbar über \mathbb{R}^n , wenn es eine Folge von Treppenfunktionen φ_k gibt mit

$$\lim_{k \to \infty} ||f - \varphi_k||_1 = 0$$

In diesem Fall schreiben wir das Lebesgue-Integral

$$\int f dx = \int f(x) d^n x = \int_{\mathbb{R}^n} f(x) dx = \lim_{k \to \infty} \varphi_k(x) dx \in \mathbb{C}$$

Satz 3.2: Bedingte Gleichheit der Riemann und Lebesgue Integrale

Sei A = [a, b] ein kompaktes Intervall und f eine über A Riemann-integrierbare Funktion. Dann ist f über A Lebesgue-integrierbar und das Lebesgue-Integral und das Riemann-Integral sind gleich.

Der folgende zwei Sätze sind sehr wichtig in der Theorie der Gebietsintegrale. Im Skript stehen der kleiner und großer Satz von Fubini, wir schreiben hier aber die allgemeine Version aus T. Arens, also guckt euch auch das Skript nochmal an.

Satz 3.3: Kleiner Satz von Beppo Levi

Sei $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ und sei (φ_k) eine monoton wachsende oder fallende Folge von Treppenfunktionen, so dass

- 1. (φ_k) punktweise gegen f konvergiert
- 2. die Folge $(\int \varphi_k dx)$ der Integrale der Treppenfunktionen beschränkt ist. Dann ist f integrierbar und es gilt

$$\int f dx = \lim_{k \to \infty} \int \varphi_k dx$$

Satz 3.4: Satz von Fubini

Sind $I \subseteq R^p$ und $J \subseteq R^q$ (möglicherweise unbeschränkte) Quader sowie $f \in L(Q)$ eine auf dem Quader $Q = I \times J \subseteq R^{p+q}$ integrierbare (oder mindestens stetig beschränkte) Funktion, so gibt es Funktionen $g \in L(I)$ und $h \in L(J)$ mit

$$g(x) = \int_{J} f(x, y) dy$$
 für fast alle $x \in I$

$$h(y) = \int_I f(x,y) dx$$
 für fast alle $y \in J$

Ferner ist

$$\int_{R} f(x,y)d(x,y) = \int_{I} \int_{J} f(x,y)dydx = \int_{I} g(x)dx$$
$$= \int_{J} \int_{I} f(x,y)dxdy = \int_{J} h(y)dy$$

Beispiel 3.3: Anwendung vom Satz von Fubini

Wir wollen auch für eine kompliziertere Funktion, aber noch stets definiert auf einem Rechteck, die interierten Integrale berechnen. Dazu betrachten wir $R = (0, \frac{\pi}{2}) \times (0, \frac{\pi}{2})$ und die Funktion $f: R \to \mathbb{R}$, die durch

$$f(x) = \sin(x_1 + 2x_2), \ x = (x_1, x_2) \in R$$

gegeben ist.

Zunächst berechnen wir

$$\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin(x_{1} + 2x_{2}) dx_{2} dx_{1}$$

$$= \int_{0}^{\pi/2} \left[-\frac{1}{2} \cos(x_{1} + 2x_{2}) \right]_{x_{2}=0}^{\pi/2} dx_{1}$$

$$= \int_{0}^{\pi/2} \left(\frac{1}{2} \cos(x_{1}) - \frac{1}{2} \cos(x_{1} + \pi) \right) dx_{1}$$

$$= \int_{0}^{\pi/2} \cos(x_{1}) dx_{1}$$

$$= 1.$$

Nun vertauschen wir die Reihenfolge,

$$\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin(x_{1} + 2x_{2}) dx_{1} dx_{2}$$

$$= \int_{0}^{\pi/2} [-\cos(x_{1} + 2x_{2})]_{x_{1}=0}^{\pi/2} dx_{2}$$

$$= \int_{0}^{\pi/2} (\cos(2x_{2}) - \cos(2x_{2} + \frac{\pi}{2})) dx_{2}$$

$$= \left[\frac{1}{2} \sin(2x_{2}) - \frac{1}{2} \sin(2x_{2} + \frac{\pi}{2}) \right]_{0}^{\pi/2}$$

$$= \frac{1}{2} \left(\sin(\pi) - \sin\left(\frac{3\pi}{2}\right) - \sin(0) + \sin\left(\frac{\pi}{2}\right) \right)$$

$$= 1$$

Beispiel 3.4: Fubini ist nicht immer anwendbar

Es sollen die beiden iterierten Integrale

$$\int_{0}^{1} \int_{0}^{1} \frac{x_1 - x_2}{(x_1 + x_2)^3} dx_1 dx_2 \quad \text{und} \quad \int_{0}^{1} \int_{0}^{1} \frac{x_1 - x_2}{(x_1 + x_2)^3} dx_2 dx_1$$

berechnet werden. Darf der Satz von Fubini angewandt werden?

Problemanalyse und Strategie: Man muss nur eines der iterierten Integrale berechnen, da sich der Wert des anderen durch eine Symmetrieüberlegung ergibt. Wir bestimmen zunächst den Wert des inneren Integrals durch partielle Integration. Das äußere Integral kann dann direkt berechnet werden.

Lösung: Wir betrachten zunächst nur das innere Integral für ein festes $x_2 \in (0, 1)$. Mit partieller Integration, wobei wir als Stammfunktion $x_1 - x_2$ und als Ableitung $(x_1 + x_2)^{-3}$ wählen, erhalten wir

$$\int_{0}^{1} \frac{x_1 - x_2}{(x_1 + x_2)^3} dx_1 = \left[-\frac{1}{2} \frac{x_1 - x_2}{(x_1 + x_2)^2} \right]_{x_1 = 0}^{1} + \frac{1}{2} \int_{0}^{1} \frac{1}{(x_1 + x_2)^2} dx_1.$$

Mit

$$\int_{0}^{1} \frac{1}{(x_1 + x_2)^2} dx_1 = \left[-\frac{1}{x_1 + x_2} \right]_{x_1 = 0}^{1},$$

ergibt sich

$$\int_{0}^{1} \frac{x_1 - x_2}{(x_1 + x_2)^3} dx_1 = \left[\frac{-x_1}{(x_1 + x_2)^2} \right]_{x_1 = 0}^{1}$$
$$= \frac{-1}{(1 + x_2)^2}.$$

Den Wert des iterierten Integrals zu bestimmen, ist jetzt nicht mehr schwer,

$$\int_{0}^{1} \int_{0}^{1} \frac{x_1 - x_2}{(x_1 + x_2)^3} dx_1 dx_2 = \int_{0}^{1} \frac{-1}{(1 + x_2)^2} dx_2$$
$$= \left[\frac{1}{1 + x_2} \right]_{0}^{1} = -\frac{1}{2}.$$

Um den Wert des zweiten Integrals zu bestimmen, nutzen wir die Symmetrie aus. Es ist

$$\int_{0}^{1} \int_{0}^{1} \frac{x_1 - x_2}{(x_1 + x_2)^3} \, dx_2 \, dx_1 = -\int_{0}^{1} \int_{0}^{1} \frac{x_2 - x_1}{(x_1 + x_2)^3} \, dx_2 \, dx_1.$$

Nun benennen wir die Integrationsvariablen um und schreiben y_1 für x_2 sowie y_2 für x_1 . Es ergibt sich

$$\int_{0}^{1} \int_{0}^{1} \frac{x_1 - x_2}{(x_1 + x_2)^3} dx_2 dx_1 = -\int_{0}^{1} \int_{0}^{1} \frac{y_1 - y_2}{(y_2 + y_1)^3} dy_1 dy_2.$$

Rechts steht nun aber genau das iterierte Integral, dass wir eben berechnet haben. Also folgt

$$\int_{0}^{1} \int_{0}^{1} \frac{x_1 - x_2}{(x_1 + x_2)^3} \, \mathrm{d}x_2 \, \mathrm{d}x_1 = \frac{1}{2}.$$

In beiden Fällen existiert hier das iterierte Integral, aber der Wert hängt von der Integrationsreihenfolge ab.

Kommentar Im Fall dieses Beispiels kann der Satz von Fubini nicht angewandt werden. Die Singularität der Funktion

$$f(x) = \frac{x_1 - x_2}{(x_1 + x_2)^3}, \quad x \neq 0,$$

für $x \to 0$ ist so stark, dass f keine integrierbare Funktion auf dem Quadrat $(0,1) \times (0,1)$ ist. Die Voraussetzungen des Satzes von Fubini sind hier verletzt.

3.3 Volumina und Nullmengen

Wir beginnen dieses wichtige Thema mit sehr theoretischen Konzepten, die uns dann ermöglichen die Maßtheorie zu verstehen. So manche Begriffe werden in der Funktionalanalysis in MfP4 nochmal vorkommen.