Differentiate between

1. Analog signals and digital signals

	Analog Signal	Digital Signal
Feature		
Definition	A continuous signal that varies in amplitude and frequency	A discrete signal that represents binary data
Representation	Represented by sine waves	Represented by binary digits (0's and 1's)
Accuracy	Less accurate	More accurate
Noise	Suffers from noise interference	Resistant to noise interference
Bandwidth	More bandwidth required for transmission	Less bandwidth required for transmission
Storage	Cannot be stored without losing quality	Can be stored and reproduced without losing quality
Examples	Sound waves, analog phone lines, old TV transmissions	Digital phone lines, CDs, DVDs, digital TV transmissions

2. LAN vs MAN vs WAN

Feature	LAN	MAN	WAN
Speed	Very high	High	Low to high
Congestion	Low	Moderate to high	Moderate to high
Maintenance	Easy	Moderate to difficult	Difficult
Area Coverage	Small	Medium	Large

3. Unguided transmission and guided transmission

Parameters	Unguided Transmission	Guided Transmission
Physical	Not Required	Required
medium		
Signal	Not an issue	Experiences It
attenuation		
Interference	Less	More
Distance	Longer	Shorter
Security	LESS	More

4. UTP vs STP

Parameters	UTP	STP
Noise	Comparatively	STP cables are better
	weaker at reducing	at reducing noise
	noise	
Ease of	UTP cables are	STP cables are
Handling	generally easier to	Difficult to install
	handle and install	
Cost:	UTP cables are	STP cables are
	generally less	generally more
	expensive than STP	expensive than UTP
Speed and	Lower Attenuation	Higher Attenuation
Attenuation:	and Higher	and lower
	Transmission Speed	Transmission speed

5. Fiber Optic vs Copper Wire

Sr. No.	Basis	Fiber Optic Cable	Copper Wire
1.	Data Carrier	It carries data in the form of light.	It carries data in the form of electric signals.
2.	Bandwidth	It offers higher bandwidth.	It offers lower bandwidth.
3.	Structure	It is thin, lighter in weight, and smaller in size.	It is heavier and thicker.
4.	Environment	It can be laid in different environments because it is more resistant to corrosive materials.	It cannot be laid in a different environment because it is more prone to corrosive materials.
5.	Attenuation	Attenuation is very low.	Attenuation is high.
6.	Interface	As this data travel in the form of light, they are not affected by the electrical and magnetic interfaces.	As in this data travel in the form of electric signals, they are affected by the electrical and magnetic interfaces.
7.	Security	They provide security against the wiretappers, because there is no leakage of light and are difficult to tap.	They do not provide security against the wiretappers, because there is leakage of signals, and are easy to tap.
8.	Cross-talk problem	There is no such kind of problem.	These are prevalent this problem.

6. Token passing and CSMA/CD

	CSMA/CD
Token Passing	
Nodes Grant permission for transmitting the data	Each node listens to network before transmitting data in order to avoid collisions

In Token Passing, the nodes are organized in a logical ring topology, and the token circulates around the ring.	In CSMA/CD, the nodes are connected to a shared communication medium, such as a coaxial cable or a hub.
A node can only transmit data when it holds the token.	In CSMA/CD, a node listens to the network before transmitting data.
Token Passing is a deterministic protocol	CSMA/CD is a probabilistic protocol
Token Passing is more suitable for networks with a low to moderate number of nodes	CSMA/CD is more suitable for networks with a higher number of nodes
Token Passing has a high overhead,	CSMA/CD has a lower overhead
Token Passing is more secure than CSMA/CD,	CSMA/CD is less secure than Token Passing,

7. Hub vs Switch

Factor	Hub	Switch
Layer	Physical layer (Layer 1)	Data link layer (Layer 2)
Ports	Fewer number of ports,	More number of ports, typically 8-
	typically 4-8	48
Device	Passive device	Active device
type		
Speed	Slower speeds due to collisions	Faster speeds due to switching and
	and broadcast nature	dedicated connections

8. Ring Topology vs Bus topology

Feature	Ring Topology	Bus Topology
Transmission	Unidirectional	Bidirectional
Network Length	Limited by the number of nodes	Limited by the signal strength
Network Access	Token passing	CSMA/CD
Failure	One node failure may affect the whole network	Any device can be removed without affecting the rest
Collision	No collision	Collision may occur

Network Cost	Expensive	Inexpensive
Installation	Complex	Easy
Scalability	Difficult	Easy
Performance	Good with few nodes	Good with moderate number of nodes

9. Router and repeater

Features	Router	Repeater
Functionality	Routes data packets between networks based on IP addresses	Regenerates weak signals in a network to extend the range
Network topology	Can be used in any network topology	Typically used in point-to-point or star network topologies
Range	Can cover long distances between networks	Limited to the range of the original signal
Performance	Can prioritize and manage network traffic for optimal performance	Can introduce latency and delay in network traffic
Security	Provides advanced security features such as firewalls and VPNs	Does not provide any security features
Cost	Tends to be more expensive than repeaters	Relatively less expensive than routers
Complexity	Can be complex to set up and configure	Easy to set up and use

10. OSI vs TCP/IP

OSI reference model	TCP/IP network model
1) It has 7 layers	1) It has 4 layers
2) Transport layer guarantees	2) Transport layer does not
delivery of packets	guarantees delivery of packets

3) Horizontal approach	3) Vertical approach
4) Separate presentation layer	4) No session layer, characteristics
	are provided by transport layer
5) Separate session layer	5) No presentation layer,
	characteristics are provided by
	application layer
6) Network layer provides both	6) Network layer provides only
connectionless and connection	connection less services
oriented services	
7) It defines the services,	7) It does not clearly distinguishes
interfaces and protocols very	between service interface and
clearly and makes a clear	protocols
distinction between them	
8) The protocol are better hidden	8) It is not easy to replace the
and can be easily replaced as the	protocols
technology changes	
9) OSI truly is a general model	9) TCP/IP cannot be used for any
	other application
10) It has a problem of protocol	10) The model does not fit any
filtering into a model	protocol stack

11. FDM and TDM

Frequency Division Multiplexing	Time division Multiplexing
FDM divides the channel into two or more frequency ranges that do not overlap	TDM divides and allocates certain time periods to each channel in an alternating manner
Frequency is shared	Times scale is shared
Used with Analog signals	Used with both Digital signals and analog signals
Interference is high	Interference is Low or negligible
Utilization is Ineffective	Efficiently used

12. LRC and CRC

	LRC (Longitudinal Redundancy Check)	CRC (Cyclic Redundancy Check)
Type of technique	Parity-based technique	Mathematical-based technique
Calculation	Adds up all bits in a data packet and checks if total is odd or even	Generates a checksum based on a mathematical calculation performed on the entire data packet
Error detection	Detects errors where an odd number of bits are flipped	Detects errors where multiple bits are flipped
Complexity	Simple	More complex than LRC
Data packet size	Suitable for smaller data packets	Suitable for larger data packets
Efficiency	Less efficient in detecting errors compared to CRC	More efficient in detecting errors compared to LRC

13. Synchronous and Asynchronous communication

Synchronous communication	Asynchronous communication
In Synchronous Transmission, data is sent in form of blocks or frames.	In Asynchronous Transmission, data is sent in form of byte or character.
Sender and Receiver use the same clock signal	Does not need clock signal between the sender and the receiver
It is more efficient and more reliable	In this transmission start bits and
than asynchronous transmission to	stop bits are added with data.
transfer the large amount of data.	
Flow of data	Sender 0110110 1110011010 11101 Receiver Stop bit Data Start bit Asynchronous Transmission
Synchronous transmission is fast.	Asynchronous transmission is slow.
In Synchronous transmission, time	In asynchronous transmission,
interval of transmission is constant.	time interval of transmission is
	not constant, it is random.

14. IPv4 vs IPv6

IPV4	IPv6
Source and destination addresses are 32 bits (4 bytes) in length.	Source and destination addresses are 128Bits (16 bytes) in length.
No. addresses are limited to number of bits (32 bits)	Larger addressing area
Uses broadcast addresses to send traffic to all nodes on a subnet.	There are no IPv6 broadcast addresses. Instead, multicast scoped addresses aroused
Fragmentation is supported at Originating hosts and intermediate routers.	Fragmentation is not supported at routers. It is only supported at the originating host
IP header includes a checksum	IP header does not include a checksum.
IP header includes options	All optional data is moved to IPv6extension headers
IPv4 has classful addressing scheme, includes classes like A,B,C,D and E.	Classless addressing scheme.
Uses decimal dotted notation	Uses hexadecimal notation