Ausgabe: 6. Mai 2022 _____

Bearbeitung: 9. – 13. Mai 2022

Einführung in die angewandte Stochastik

5. Präsenzübung

Aufgabe P 16

In einem Supermarkt soll mittels eines neu entwickelten Werbeplakats zum Kauf zweier Produkte P_1 und P_2 animiert werden.

Es bezeichnen A bzw. B die Ereignisse, dass ein (beliebig ausgewählter) Kunde Produkt P_1 bzw. P_2 kauft, und P die zugrundeliegende Wahrscheinlichkeitsverteilung. Hierbei seien die folgenden Wahrscheinlichkeiten bekannt:

$$P(A) = \frac{1}{2} , P(B) = \frac{1}{5} , P(A \cap B) = \frac{1}{10} .$$

Berechnen Sie aus diesen Angaben die folgenden Wahrscheinlichkeiten:

(i)
$$P(A \cup B)$$
,

(iii)
$$P(A^c \cap B^c)$$
,

(v)
$$P(A \cap (A^c \cup B))$$
,

(ii)
$$P((A \cap B)^c)$$
,

(iv)
$$P(A \cup B^c)$$
,

(vi)
$$P((A^c \cap B^c) \cup (A \cap B))$$
.

Beschreiben Sie zusätzlich die betrachteten Ereignisse jeweils verbal im Rahmen des gegebenen Zusammenhangs.

Hinweis: Man beachte, dass für einen Ergebnisraum Ω sowie zwei Ereignisse $E_1 \subseteq \Omega$ und $E_2 \subseteq \Omega$ gemäß der Regeln von de Morgan gilt:

$$(E_1 \cup E_2)^c = E_1^c \cap E_2^c$$
 und $(E_1 \cap E_2)^c = E_1^c \cup E_2^c$.

Aufgabe P 17

Die Funktion $f:\mathbb{R}\longrightarrow\mathbb{R}$ sei gegeben durch

$$f(x) = \begin{cases} \frac{c}{\sqrt{x+2}} & , & 2 \le x \le 7 \\ 0 & , & \text{sonst} \end{cases}$$

mit einer Konstanten $c \in \mathbb{R}$.

- (a) Bestimmen Sie c so, dass f eine Riemann-Dichte ist.
- (b) Bestimmen Sie für das in (a) bestimmte c die zu f gehörige Verteilungsfunktion F.
- (c) Berechnen Sie für das in (a) bestimmte c die folgenden Wahrscheinlichkeiten:

(i)
$$P((-\infty, 5])$$
, (ii) $P((3, 5])$, (iii) $P((5, \infty))$.

(Hierbei bezeichnet P die zugrundeliegende Wahrscheinlichkeitsverteilung.)

Aufgabe 18

Herr Planlos trifft zu einem zufälligen Zeitpunkt an einer Bushaltestelle ein, von der aus Busse in die gewünschte Richtung im Zehn-Minuten-Takt abfahren. Seine Wartezeit auf den nächsten Bus kann mit Hilfe der stetigen Gleichverteilung R(0,10) auf dem Intervall [0,10] modelliert werden.

Es bezeichne F die Verteilungsfunktion von R(0,10). Dann gibt F(x) für $x \in \mathbb{R}$ die Wahrscheinlichkeit dafür an, dass Herr Planlos höchstens x Minuten auf den nächsten Bus warten muss.

Berechnen Sie die Wahrscheinlichkeit dafür, dass die Wartezeit von Herrn Planlos auf den nächsten Bus mehr als 7 Minuten beträgt.

Aufgabe P 19

Es seien $\Omega \neq \emptyset$ eine höchstens abzählbare Menge und $\mathfrak{A} \subseteq \mathfrak{Pot}(\Omega)$ eine σ -Algebra über Ω mit $\{\omega\} \in \mathfrak{A}$ für alle $\omega \in \Omega$. Zeigen Sie:

$$\mathfrak{A} = \mathfrak{Pot}(\Omega)$$
.