

Model Selection Process

- ➤ Selection of the appropriate model is a critical process to any data analysis problem. Below are a few simple steps you can use to help with this process.
 - 1. Objective of the Model
 - 2. Model Structure
 - 3. Model Assumptions
 - 4. Parameter Estimates and Assumptions
 - 5. Model Fit (goodness of fit tests)
 - 6. Model Selection

Example for Simple Linear Regression

- 1. Objective of the Model Model the expected (predication) value of a continuous variable *y*
- 2. Model Structure : $\hat{y} = b_0 + b_1 x + \dots$
- 3. Model Assumptions
 - *y* is normal distributed
 - Linear relationship between dep and independent
 - Homoscedasticity (errors normal)
 - Multicollinearity (Independent variables not correlated)
- 4. Parameter Estimates and Interpretation b_0 estimate of the intercept and b_1 is the estimate of the slope
- 5. Model Fit: R², residual, goodness of fit, F Statistics
- 6. Model Selection: From Model Fit, which variables to include?

Machine Learning Algorithms (sample)

Continuous

Categorical

<u>Unsupervised</u>

- Clustering & Dimensionality Reduction
 - SVD
 - PCA
 - K-means
- Association Analysis
 - Apriori
 - FP-Growth
- Hidden Markov Model

Supervised

- Regression
 - Linear
 - Polynomial
- Decision Trees
- Random Forests
- Classification
 - KNN
 - Trees
 - Logistic Regression
 - Naive-Bayes
 - SVM

General Linear model-GLM vs Generalized Linear model-GLiM

- ➤ We've focused largely on General Linear Models (GLM)
 - □ Ordinary Least Squares (OLS) with fairly strict assumptions
 - ☐ Residuals are normally distributed with mean 0
 - □ GLM, uses built-in function lm() in R
 - $\Box \hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$
- ➤ Generalized Linear Models GLiM (or GLzM) less restrictive
 - \Box includes a "link" function f that connects the linear predictor βX to the mean of distribution of the response Y
 - ☐ Use maximum likelihood estimation (MLE) to determine parameters
 - □ GLiM, uses built-in function glm() in R
 - \Box $f(\hat{y}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$, where f is the link function
- ➤ Different variable types → different models

Generalized Linear Model (GLiM) Assumptions

- ➤ Dependent variable does not need to be normally distributed, but assumes a distribution exponential family such as binomial or Poisson
- ➤ Does not assume a linear relationship between dependent and independent but between the transformed response, i.e. link function and the explanatory variables
- ➤ Homogeneity of variance does not need to be satisfied
- ➤ It uses maximum likelihood estimation (MLE) rather than ordinary least squares (OLS) to estimate parameters, and thus relies on large scale approximations
- ➤ Goodness of fit relies on sufficiently large samples

Examples of When to Use Certain GLiM

Model	Random (Y)	Link function	Systematic (X)
Linear Regression	Normal	Identity	Mixed
ANOVA	Normal	Identity	Categorical
ANCOVA	Normal	Identity	Mixed
Logistic Regression	Binomial	Logit	Mixed
Log-linear	Poisson	Log	Categorical
Poisson Regression	Poisson	Log	Mixed
Multinomial response	Multinomial	Generalized Logit	Mixed

- Random: Is the probability dist. of the response variable Y
- ➤ Systematic: Explanatory variables in the model
- ➤ Link Function: Connects the random to the systematic

Logistic Regression: Intro

- ➤ Definition: A type of generalized linear model (GLiM) that uses statistical analysis to predict an event based on known factors when using a **dichotomous** dependent variable.
- ➤ Classification algorithm used to predict a binary outcome (1/0 or Yes/No or True/False), predicts the probability of a event occurring by fitting data to a logit fit function.
- What Can We Use Logit Regression to Answer?
 - □ make predictions about whether a customer will buy a product based on age, gender, geography, and other demographics. Also to assess likelihood of loan defaults, or political success/failure, ...

Logistic Regression : Intro

By Qef (talk) - Created from scratch with gnuplot, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4310325

Logistic Regression: Calculus approach

➤ A lot of systems can be argued the growth rate (or decay rate) of a population should be proportional to population itself. Hence we set up the population (differential) equation:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \lambda N(t) \implies N(t) = N_0 e^{\lambda t}$$

Logistic Regression: Calculus approach

 \triangleright More realistic models will have a limit on the growth, by a "carrying capacity" N_c (dropping the explicit t on the LHS):

$$\frac{dN}{dt} = \lambda N(1 - \frac{N}{N_c}) \Rightarrow N(t) = N_c \frac{1}{1 + \left(\frac{N_c}{N_0} - 1\right)e^{-\lambda t}}$$

$$\frac{1}{N(t)} = \frac{1}{N(t)} \frac{1}{N(t)} = \frac{1}{N(t)} = \frac{1}{N(t)} \frac{1$$

Logistic Regression: Data approach

- The probability of success p (between 0 and 1) should NOT be linearly dependent on x_i .
 - \Box Typically, x_i can be unbounded. It is almost impossible to restrict a linear fit to have a range of 0 and 1.
 - ☐ Residuals are normally distributed with mean 0
- \triangleright Try to model ln(p)? [natural log ln() as link function?]
 - Say as $x \to -\infty$, we want p = 0, or $\ln(0) = -\infty$.
 - And as $x \to +\infty$, we want p = 1, or $\ln(1) = 0$.
 - Doesn't work

Logistic Regression: Odds Ratio

Before we actually introduce what "logit" means, we need to learn about "odds ratio".

Simple Example:

	Show A	Show B
Male	200	100
Female	50	150

- ➤ Odds of Males watching show A are 200/100 or 2 to 1
- > Odds Female watching show A is 50/150 or 1 to 3
- ➤ Divide results by each other to get the ratio of odds for gender of show A = (2/1)/(1/3) = 6
- ➤ So males are 6 times more likely to be watching Show A than females

Logistic Regression: Odds Ratio

- The odds ratio success-to-failure (or win-to-lose) is p/q = p/(1-p)
- \triangleright The odds ratio ranges from 0 (p = 0) to $+\infty$ (p = 1).
- ➤ The ratio equals 1 means 50-50 chance.
- ightharpoonup Now let's model $\ln(p/q) = \ln(p/(1-p))$.
- We call this the logit function logit(p) = ln(p/(1-p)).

Logistic Regression

- ightharpoonup Now logit(p) = ln(p/(1-p)). [logit() as link function]
 - when p = 0, or $\ln(0/1) = -\infty$.
 - when p = 1, or $ln(1/0) = ln(\infty) = \infty$.
 - □ In general, logit(p) > 0 means p > q and vice versa.
 - \square Positive slope: odds (and odds-ratio) increases with x.

Logistic Regression

- Note that there is no obvious reason why logit(p) would be linear to x_i . It could very well be x_i^2 , x_i^3 , $x_i^{1/2}$, $\sin(x_i)$, or interaction terms, etc. The same is true for ordinary linear regression. We can use other info to decide what transformed variable(s) should we include in our model.
- \triangleright Remember that logit regression does not give us directly p, nor ln(p). It gives us logit(p) instead.

$$\begin{aligned} & \geqslant \operatorname{logit}(\hat{p}) = \operatorname{ln}\left(\frac{\hat{p}}{1-\hat{p}}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots \\ & \frac{\hat{p}}{1-\hat{p}} = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots} = e^{\beta_0} e^{\beta_1 x_1} e^{\beta_2 x_2} \dots = e^{\beta_0} (e^{\beta_1})^{x_1} (e^{\beta_2})^{x_2} \dots \\ & \hat{p} = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \beta_2 x_2 - \cdots}} = \frac{1}{1 + e^{-\beta_0} (e^{-\beta_1})^{x_1} (e^{-\beta_2})^{x_2} \dots} \end{aligned}$$

Logistic Regression: useful results

 \triangleright Another way to express the probability p is

$$\hat{p} = \frac{1}{1 + e^{-\beta_0} (e^{-\beta_1})^{x_1} (e^{-\beta_2})^{x_2} \dots} = \frac{\text{odds-ratio}}{\text{odds-ratio} + 1}$$

- When p is small (less than 0.1), $p \approx p/q$. In other words, calculating the odds and the odds-ratio are about the same
- > When the coefficient is small (| β | < 1), the growth/decay factor $e^β ≈ 1 + β$

Logistic Regression: Interpret Results

```
call:
glm(formula = admit ~ gre + gpa + rank, family = binomial(link = "logit"),
    data = data
                                                        Gives us the log odds-ratio
Deviance Residuals:
                                                          For every one unit gain
    Min
                  Median
              10
                                3Q
                                        Max
                                                           in GRE, ln(odds-ratio)
-1.6268 -0.8662 -0.6388
                            1.1490
                                     2.0790
                                                           of admit gain by .0023
Coefficients:
                                                          Similar for GPA
             Estimate Std. Error z value Pr(>|z|)
                        1,139951 -3.500 0.000465 ***
(Intercept) -3.989979
                                                          For rank: use rank1 as
                        0.001094 2.070 0.038465 *
            0.002264
gre
                                                           baseline, ln(odds-ratio)
                        0.331819 2.423 0.015388 *
            0.804038
gpa
rank2
         -0.675443 <del>0.3164</del>90 -2.134 0.032829 *
                                                           deceases by .67 when
rank3
         -1.340204 0.345306 -3.881 0.000104
                                                           changing from 1 to 2
rank4
            -1.551464 0.417832
                                  -3.713 0.000205
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 499.98 on 399 degrees of freedom
Residual deviance: 458.52 on 394
                                  degrees of freedom
AIC: 470.52
```

Number of Fisher Scoring iterations: 4

Logistic Regression: Interpret Results

```
> exp(coef(admitlogit))
(Intercept) gre gpa rank2 rank3 rank4
  0.0185001 1.0022670 2.2345448 0.5089310 0.2617923 0.2119375
> |
```

- ➤ Produces Log(odds-ratio) usually needs to be converted to be useful (unless the numerical value is close to zero)
- ➤ We converted our coefficients to be more usable so what we can now say is that for every unit increase in GPA the <u>odds-ratio</u> of being admitted is multiplied by 2.23. Or we conclude the <u>odds-ratio</u> is 123% higher (subtract 1, then times 100).

Model Evaluation

- > For regular Linear Regression models, we use:
 - ✓ Coefficients' p-values
 - ✓ F-statistics for overall model significance
 - \checkmark R² for percentage explained
 - ✓ Feature Selection / Model comparison: Adj R², BIC, Cp
- ➤ For Logit Regression models, we use:
 - ✓ Coefficients' p-values
 - ✓ Hosmer and Lemeshow Goodness of Fit (GOF) test (c.f. χ^2)
 - ✓ Receiver Operating Characteristic/Area-Under-Curve, value > 0.8
 - ✓ McFadden (c.f. R²)
 - ✓ Feature Selection / Model comparison: Akaike Info Criterion (AIC), lower is better

Model Evaluation: Goodness of Fit

➤ Hosmer Lemeshow goodness of fit test: Above .05 better

```
> hoslem.test(data$admit, fitted(admitlogit))

Hosmer and Lemeshow goodness of fit (GOF) test
data: data$admit, fitted(admitlogit)
X-squared = 11.085, df = 8, p-value = 0.1969
```

- > p-value > 0.05, fail to reject the null
- > no significant difference between the model and the observed data
- ➤ Similar to comparing the actual frequency distribution to the model predicted frequency distribution.

χ^2 : Goodness of Fit (refresher)

We use Goodness of Fit to test hypotheses for the distribution of a variable (usually categorical).

Example: National crime distribution vs Local data

Type of violent crime	Relative frequency
Murder	0.011
Forcible rape Robbery	0.063 0.286
Agg. assault	0.640

Type of violent crime	Frequency	
Murder	3	
Forcible rape	37	
Robbery	154	
Agg. assault	306	
	500	

- ➤ Use library "pROC" for logit regressions
- ➤ Receiver Operating Characteristic: Measure of the model Sensitivity (true positive rate) vs Specificity (false positive)
- ➤ <u>Area Under Curve</u> is a byproduct of ROC:
 - ✓ Range from 0.5 1.0, higher better
 - ✓ Measure Discrimination
 - ✓ Criteria is used to accept / decline model (AUC = 0.8)

```
> prob=predict(admitlogit, type = c("response"))
> data$prob=prob
> library(pROC)
> h <- roc(admit~prob, data=data)
> plot(h)

call:
roc.formula(formula = admit ~ prob, data = data)
```

```
Data: prob in 273 controls (admit 0) < 127 cases (admit 1)

Area under the curve: 0.6928 ← ♥ Not so great, want this output to be closer to 0.8
```


➤ Good Indicator / good model

➤ Bad Indicator / bad model

Truth of H ₀	Negative, fail reject H ₀	Positive, reject H ₀
H ₀ is true	True negative: $1 - \alpha$	False positive: α
H ₀ is false	False negative: β	True positive: $1 - \beta$

 \triangleright Recall that $\alpha \uparrow \Rightarrow \beta \downarrow$ (and vice versa) except to increase sample size n.

Truth of H_0	Negative, fail reject H ₀	Positive, reject H ₀
H ₀ is true	True negative: $1 - \alpha$	False positive: α
$ m H_0$ is false	False negative: β	True positive: $1 - \beta$

Model Evaluation: McFadden

- Calculate McFadden directly, compared to null model
 mcFadden = 1 logLik(admitLogit)/logLik(nullModel)
 'log Lik.' 0.08292194 (df=6)
- ➤ Calculate the Pseudo R² values via the "pscl" library (pscl political science computational lab).
- ➤ Use pR2() function

```
> pR2(admitlogit)
11h 11hNull G2 McFadden r2ML r2CU
-229.25874624 -249.98825878 41.45902508 0.08292194 0.09845702 0.13799580
```

➤ Not so great with only 8% of variation explained

Model Comparison: AIC

(Dispersion parameter for binomial family taken to be 1)

```
Null deviance: 499.98 on 399 degrees of freedom
Residual deviance: 458.52 on 394 degrees of freedom
AIC: 470.52
```

- ➤ AIC: Akaike information criterion Compare between models, lower AIC is better
- ➤ Function AIC() is also in the R core base library
 ✓ > AIC(admitlogit)
- Residual Deviance: From 499.98 to 458.52, not great

Feature Selections on Logit Models

- ➤ Leaps package (regsubsets) does not work with logistic regression model
- ➤ Bestglm is a package that will handle logistic regression feature selection, but with some limitations.
- Explore different packages that you might find useful.

