

إدارة شبكات الاتصال وأمنها

الوحدة السابعة

تشفير المفتاح العام والتوقيع الرقمي

Public-key Cryptography & Digital Signature

مبادئ تشفير المفتاح العام Public-Key Encryption Concepts

- يعتمد على مبدأ استخدام مفتاحين
- المفتاح العام Public Key للتشفير
- المفتاح الخاص Private Key لفك التشفير
- بين المفتاحين علاقة رياضية معقدة ليصعب الوصول الأحدهما من خلال الآخر
 - شروط أمن وفعالية استخدام المفتاح العام
 - أن تكون عملية التشفير سهلة حسابياً (اختصار الوقت)
 - أن تكون عملية فك التشفير لمن يملك المفتاح الخاص سهلة أيضا
- أن تكون عملية فك التشفير لمن لا يملك المفتاح الخاص صعبة حسابياً تستلزم وقتاً طويلاً حتى بمعرفة المفتاح العام
 - يتم إصدار شهادة للمستخدم بمفتاحه العام لمواجهة خطر التنكر

استخدامات تشفير المفتاح العام Applications of Public-Key Encryption

- التشفير
- يستخدم المرسل المفتاح العام K الخاص بالمستقبل لتشفير الرسالة
 - يستخدم المستقبل مفتاحه الخاص 'K' لفك التشفير
- تستغرق خوارزمية تشفير المفتاح العام وقتا أطول نسبيا مقارنة بالخوارزميات التماثلية
 - تبادل المفاتيح السرية
 - يتم تشفر المفاتيح التماثلية بالمفتاح العام وترسل مع الرسالة المشفرة-تماثلياً أو قبلها
 - التوقيع الرقمي
 - يمنع خطر التنكر والإنكار

استخدامات تشفير المفتاح العام Applications of Public-Key Encryption

- التوقيع الرقمي ...
- يتم تشفير ملخص للرسالة بدالة الهاش Hash Function ويتم إرسال قيمته مع الرسالة إلى المستقبل
 - إذا حسب المستقبل قيمة مغايرة للقيمة المرسلة ذلك يعني تغير محتوى الرسالة
- يشفرها المرسل بمفتاحه الخاص 'K' ، ويفك تشفيرها المستقبل بمفتاح المرسل العام K
 - بهذا يطمئن المستقبل لعدم تنكر المرسل وأن الرسالة وصلت سليمة
 - عند تسلم المستقبل للرسالة وقيمة الهاش يقوم بـ
 - فك تشفير قيمة الهاش بمفتاح المرسل العام
 - حساب قيمة الهاش بنفس الدالة المتفق عليها
 - ومقارنتها بالقيمة المرسلة

استخدامات تشفير المفتاح العام Applications of Public-Key Encryption

- توقيع الرسالة وتشفيرها معاً استخدام مرحلتي تشفير:
 - 1. تشفير الرسالة بمفتاح المستقبل العام للمحافظة على سرية محتواها
- 2. تشفير قيمة الهاش للرسالة بمفتاح المرسل الخاص كتوقيع رقمى
- لحل بطء مرحلتي التشفير، يتم تشفير قيمة الهاش بالمفتاح
 الخاص، أما الرسالة فتشفر بإحدى خوارزميات التشفير التماثلي

التشفير باستخدام العمليات الحسابية - الجمع

• محاكاة شيفرة قيصر: ولكن يتم استخدام مفتاحين واحد للتشفير K وآخر لفك التشفير 'K بحيث

C = (P + K) mod 26 , P = (C + K') mod 26
P = (((P + K) mod 26 + K') mod 26

K = K mod 26 : 26 من 26 لمن 36 - 4 لقل من 36 - 4 لق

- تعتمد قيمة K' على قيمة K بحيث (K + K') mod 26 = 0 مثال التأكد ص 225

التشفير باستخدام العمليات الحسابية - الضرب

- تشبه التشفير بعملية الجمع ولكن وفقاً للمعادلات:
 - $C = (P*K) \mod 26 -$
 - $P = (C*K') \mod 26 -$
 - تعتمد قيمة 'K على قيمة K بحيث
 - $K*K' \mod 26 = 1$
- الجدول ص 257
- جميع قيم K و 'K وناتج العلاقة بينهما في المدى 0-25
 - مثال ص 256
 - قيم المفاتيح من 0-25 تجعلها عرضة لهجوم القوة الجبارة

التشفير باستخدام العمليات الحسابية – الضرب

- ليست كل القيم 0-25 صالحة لـ K
- يجب أن تكون العلاقة 26 K*P mod قابلة للعكس Reversible
 - الجدول ص 259
- يجب أن تكون قيمة K أولية نسبية لـ 26 (ليس بينهما عوامل أولية مشتركة)
 - الدالة Φ(n) تمثل عدد الأعداد الأولية النسبية للعدد n
 - 25 و 10 و 11و 12 و 19و 11و 12و 12و 12و 12و 25و 19و 11و 12و 23و 25و 26و 11و 11و 12و 25و 25و 26و 26و
 - لتجنب اختيار قيمة غير مناسبة لـ K نختار عدد أولي لمقام باقي القسمة. فتعطينا عدد احتمالات أكثر لـ O:n-1) K (0:n-1)
 - إذا كان n عدد أولي فإن n-1 = Φ(n) = n-1

تشفير أكثر من حرف معاً ككتلة وإحدة

- تعاني عملية الضرب في التشفير من مشكلتين: أحادية الأبجدية (تكرار الأنماط) وتتعرض لهجوم القوة الجبارة
 - لزيادة عدد المفاتيح الممكنة
 - تشفير كتلة من حرفين أو أكثر وتعطى الكتلة كاملة رمزاً رقمياً واحداً.
 - يزيد عدد المفاتيح الممكنة K و 'K كلما ازداد حجم الكتلة الواحدة
 - لتشفير الكتلة : C = P * K mod n
 - حيث n عدد الكتل الممكن تشكيلها
 - يتم تحديد عدد أولي قريب من N كمقام لعملية باقي القسمة
 - مثال جدول ص 261

خوارزمیة RSA

- تستخدم العملية الحسابية الأسية Exponential
 - تتم عملية التشفير وفك التشفير كالتالي

 $C = P^K \mod n$

 $P = C^{K'} \mod n$

• للتحقق من صحة التشفير وفك التشفير على النحو التالي

 $P = (P^K \mod n)^{K'} \mod n$

أي أن

 $P = P^{K*K'} \mod n$

وعليه يجب أن

 $P < n \& K * K' \mod \Phi(n) = 1$

& K is Relatively Prime for Φ(n)

خوارزمیة RSA

- يستخدم للتشفير المفتاح العام للخوارزمية وهو K و n معاً
- يتم فك التشفير باستخدام الفتاح الخاص 'K بالإضافة إلى K من المفتاح العام (للمرسل)
 - الخصم يعلم قيمة المفتاح العام أي K و n كما يعلم أن
 K * K' mod Φ(n) = 1
- يجب أن لا يستطيع الخصم حساب (n) لاستنتاج 'κ' يجب أن الا يستطيع الخصم حساب (n) يحتاج إلى تحليل عوامل جميع الأعداد أقل من n يجب تكبير قيمة n ما أمكن

خوارزمیة RSA

- $K * K' \mod \Phi(n) = 1$ والتحقق من $\Phi(n) = \Phi(n)$
 - نفترض a و b عددان أوليان حيث أن
 - n = a * b •
 - $\Phi(n) = \Phi(a) * \Phi(b)$ فإن $\Phi(n) = \Phi(a) = \Phi(b)$
 - $\Phi(n) = (a-1) * (b-1)$
 - الخطوة الأولى في تحديد المفتاحين العام والخاص
- إختيار قيم العددين a و b كبير جداً وأن على المتراسلين الحفاظ على سريتهما كي لا يسهل حساب Φ(n)
 - كلما زادت قيمة n تصعب عملية التحليل إلى عوامل Factorization Problem

خطوات تشكيل المفتاحين العام والخاص

- 1. اختر رقمین أولیین a و b
- n = a * b : حيث n عيمة 2.
- $\Phi(n) = (a-1) * (b-1) : حیث \Phi(n)$.3
- 4. اختر قيمة أولية لـ K بحيث يكون أقل من Φ(n)
- $K * K' \mod \Phi(n) = 1 : کیمهٔ له 'K' بحیث کیمهٔ له '5.$

مثال

• الكتاب

جوانب عملية

- خوارزمیة RSA تتطلب القیام بالعدید من عملیات رفع القوی xⁿ یتسبب تطبیقها فی مشکلتین
 - تنفيذ التعبير الرياضي xn يأخذ وقتاً طويلا
 - يمكن اختصار عمليات الضرب. كمثال حساب X¹⁷ كالتالي

$$X^{2} = X * X , X^{4} = X^{2} * X^{2} , X^{8} = X^{4} * X^{4} , X^{16} = X^{8} * X^{8}$$

 $X^{17} = X^{16} * X$

- تمثيل الأرقام الكبيرة في الذاكرة حيث أن القيمة PK ذات حجم هائل
 - يمكن استغلال اختصارات باقي القسمة لحل المشكلة
 - $(a * b) \mod n = (a \mod n) * (b \mod n) \mod n$

حیث أننا بحاجة إلى حساب PK mod n بدلاً من حساب PK فتبقى جمیع القیم أصغر من n

اعتداءات تتعرض لخوارزمية RSA

- كمعظم الخوارزميات فهي عرضة لهجوم القوة الجبارة Brute Force Attacks
 - يمكن زيادة حجم المفتاح لحل المشكلة
 - الاعتداءات الرياضية Mathematical Attacks
- التركيز على استنتاج القيم (العوامل) الأولية Factorization Problem a,b
 - كلما زاد حجم n ازداد الوقت اللازم لحسابها
 - ينصح أيضا بتغيير المفتاح من فترة إلى أخرى
 - الاعتداءات التوقيتية
 - تعتمد على تقدير الوقت اللازم لفك التشفير وعلاقته بطول المفتاح
 - لتجنب هذا الخطر يمكن إضافة وقت عشوائي Delay قبل النتيجة

التوقيع الرقمي والتحقق من المصداقية

- يتم تشفير الرسالة بالمفتاح الخاص ويفك تشفيرها المستقبل بالمفتاح العام للمرسل
 - إذا حصل المستقبل على نص سليم المعنى يستنتج
 - المرسل هو صاحب المفتاح بالفعل
 - الرسالة لم تعدل من قبل طرف ثالث
 - لا يستطيع المرسل إنكار رسالته التي وقعها بمفتاحه الخاص
 - · بما أن خوارزمية المفتاح العام ليست سريعة في التشفير وفك التشفير
- يتم حساب قيمة تسمى هاش Hash Value مستخلصة من الرسالة ثم تشفر القيمة وترسل مع الرسالة فتمثل البصمة الرقمية Finger Print
 - n = H(m) يتم حساب قيمة دالة الهاش n كما يلي —
 - يمكن تشفير الرسالة الأصلية بالمفتاح العام أو بالتشفير التماثلي وترسل مع الهاش المشفرة بالمفتاح الخاص

مواصفات دوال الهاش الجيدة

- أن تنتج الدالة عدداً ثابتا من الخانات Bits بغض النظر عن حجم الرسالة
 - إذا علمت n يصعب حساب x حيث n = H(x) أو يصعب حساب n إذا علمت H(x)
 - كي لا يحدد الخصم القيمة (البصمة) ويستبدلها برسالة مساوية
 - صعوبة عمل رسالة أخرى لها نفس البصمة
 - Birthday Attak عيد الميلاد لتجنب اعتداء يدعى عيد
- من أهم دوال الهاش المستخدمة -MD5, SHA-1, RIPEMD

إدارة شبكات الاتصال وأمنها

الوحدة الثامنة أمن البيانات في الحياة العملية

Data Security in Practice

إدارة المفاتيح

- يوزع المفتاح السري في التشفير التماثلي
- يوزع المفتاح العام في التشفير غير التماثلي
 - لا توزيع للمفتاح الخاص
 - توزيع المفاتيح العامة

شهادات المفاتيح العامة Public Key Certificate

- شهادة تضمن ملكية المفتاح العام لصاحبه الأصلي
- يتم تصديق الشهادة بالمفتاح الخاص لجهة إصدار الشهادة
- يتحقق المستقبل من مصداقيتها بفك التشفير باستخدام المفتاح العام لجهة الإصدار
 - تحتوي الشهادة على معلومات منها:
 - رقم الإصدار
 - اسم صاحب المفتاح
 - تاريخ إصدار الشهادة
 - المفتاح العام

- نوع خوارزمية التشفير
 - الممكن استخدامها
 - تاريخ الانتهاء

شهادات المفتاح العام

- نوعان من شهادات المفتاح العام
- 1. شهادات شخصیة Personal Certificate
 - إثبات للأفراد بأنهم أصحاب المفاتيح بالفعل
- يتم التعامل بها مع المواقع الخاصة بمجموعة معينة أو المواقع التي تتطلب التحقق من هوبة المستخدم
 - 2. شهادات مواقع الويب Web Site Certificate
 - إثبات سرية ومصداقية الموقع عند إرسال المعلومات الخاصة لمستخدميه، وسلامة الموقع من أجل عمليات التحميل السليمة
 - جهات اصدار المفاتيح العامة
- بعضها باجر وبعضها مجانية مثل Thawte و Verisign and Comodo
 - تحتوي مستكشفات الإنترنت على المفاتيح العامة لهذه الجهات للتحقق من

الشهادات المصدرة

خطوات الحصول على شهادة المفتاح العام

• ص 290

توزيع المفاتيح السرية

- طريقتين لتوزيع المفاتيح السرية
- -توزيع المفاتيح بواسطة مركز خاص (طرف ثالث)
- تبادل المفاتيح بين المستخدمين (بدون طرف ثالث)

توزيع المفاتيح السرية بواسطة مركز خاص

- تتطلب وجود طرف ثالث موثوق به من قبل طرفي الاتصال Key Distribution Center KDC
 - يمنح كل مستخدم مفتاحاً رئيسياً لغرض تبادل الرسائل مع المركز
 - يطلب المرسل من المركز مفاتيح مؤقتة لجلسة تشفير واحدة
- يرسل المركز المفاتيح المؤقتة مشفرة ليقوم المرسل بفك تشفيرها بمفتاحه الرئيسي.

توزيع المفاتيح السرية بواسطة مركز خاص

- خطوات الحصول على مفتاح سري مؤقت
- 1. طلب المرسل A المفتاح المؤقت Ks من المركز . يحتوي الطلب على:
 - عنوان الطلب request
 - الرقم التسلسلي للطلب N1
- 2. يقوم المركز بإرسال المفتاح المؤقت برسالة مشفرة باستخدام المفتاح الرئيسي للمرسل:
 - E_{Ka} (Ks | N1 | request | E_{Kb} (Ks | IDA))
 - N1 تساعده في تحديد الطلب (اذا أرسل عدة طلبات)
 - Request ليتحقق بأن الطلب نفسه لم يتغير -
- رسالة مشفرة إلى المستقبل B تتضمن نسخة من المفتاح المؤقت ومعلومات معرفة بالمرسل

توزيع المفاتيح السرية بواسطة مركز خاص

• خطوات الحصول على مفتاح سري مؤقت...

- 3. يقوم المرسل بفك التشفير واستخراج رسالة المستقبل (E_{KB} (Ks | ID_A وإرسالها
 - 4. يقوم المستقبل بفك تشفير الرسالة والحصول على المفتاح المؤقت Ks
 - وللتأكد من صحة الرسالة وحداثتها يتم القيام بثلاث خطوات إضافية
 - 5. يقوم المستقبل بتشفير قيمة عددية N2 باستخدام Ks وإرسالها إلى المرسل
- 6. يقوم المرسل بإجراء عملية حسابية (دالة) متفق عليها على القيمية العددية N2 ويرسل النتيجة إلى المستقبل
 - 7. يقوم المستقبل بمقارنة ناتج الدالة مع القيمة المرسلة

تبادل المفاتيح السرية بدون طرف ثالث

- يتبادل أطراف الإرسال المفاتيح السرية بطريقتين:
- توزيع المفاتيح المؤقتة باستخدام مفاتيح رئيسية سرية
- توزيع المفاتيح السرية باستخدام طرق تشفير المفتاح العام

توزيع المفاتيح المؤقتة باستخدام مفاتيح رئيسية سرية

- يشترك كل زوج من المستخدمين بمفتاح سري رئيسي K_{MK} يستخدم في تبادل المفاتيح المؤقتة. وتلخص الخطوات التالية
 - 1. يرسل A طلباً إلى B لمفتاح مؤقت ويرسل معه N1
 - 2. يشكل B المفتاح المؤقت Ks ويرسله مشفراً باستخدام K_{MK} وتحتوي الريالة رد request وقيمة (N1) وقيمة جديدة N2
 - 3. يقوم A بفك التشفير وإرسال (F(N2) مشفرة بـ Ks
- بإرسال N1 و N2 والدوال يطمئن الطرفان أن الرسالة ليست قديمة أعاد إرسالها الخصم
- مشكلة هذه الطريقة أنها تتطلب عدداً كبيراً من المفاتيح 2/(n(n-1)/2 حيث n عدد لمستخدمين

توزيع المفاتيح باستخدام طرق تشفير المفتاح العام

- لا تتصلب قيام الطرفين باختيار مفتاح سري رئيسي بينهما
- يتم اختيار مفتاح سري لتشفير الرسالة تماثلياً ثم تشفير الرسالة والمفتاح السري بالمفتاح العام للمستقبل
 - يمكن أن يشفر المرسل المفتاح السري باستخدام مفتاحة الخاص (كتوقيع رقمي) ثم بالمفتاح العام للمستقبل

المواقع المناسبة للتشفير وفك التشفير في شبكات الحاسوب

- قنوات الاتصال عند استخدام شبكات الحاسوب أثناء التشفير وفك التشفير ذو صلة باعتداءات تحليل الأنماط فهي المكان المناسب لهجوم الخصم
 - تصعب السيطرة على قنوات الاتصال لسببين
 - غالباً ما تكون خطوط الاتصال خارج السيطرة المادية لمستخدمي الشبكة
 - وجوب نقل البيانات في حالة مناسبة لتمريرها من خلال الموجهات
 - قنوات الاتصال وأمنها
 - أسلاك معدنية Coaxial Cables و Twisted Pairs وهي الأكثر عرضة للاعتداءات
 - الموجات القصيرة Microwaves
 - كوابل الألياف الضوئية Fiber Obtic وه الأكثر أماناً

أنواع المواقع المناسبة للتشفير وفك التشفير

1. تشفير النهايات End-to-End Encryption

- تقع مسئولية التشفير وفكه على عاتق المرسل والمستقبل
 - فوائد تشفیر النهایات
 - 1. ان المستقبل فقط من يستطيع فك التشفير
- 2. تعطى المستخدم حرية في استخدام خوارزمية التشفير
 - 3. تمكن المستقبل من التأكد من هوية المرسل
 - مشكلة هذه الآلية
- لا يمكن للمرسل تشفير ترويسة الحزمة Packet لاحتوائها
 على عنوان المستقبل. فيستطيع الخصم تحديد المستقبل
 وتحليل أنماط الاتصال

أنواع المواقع المناسبة للتشفير وفك التشفير

- 2. تشفير طرفي قناة الاتصال
- پشترك كل زوج من الموجهات بمفتاح سري
- تكمن أهمية طريقة تشفير قناة الاتصال في أنها تسمح بتشفير الحزمة كاملة
 - مشاكلها
 - كل عقدة توجيه تستطيع فك تشفير الرسالة لمعرفة عنوان المستقبل
 - لا تعطى المستخدم حرية في اختيار خوارزمية التشفير
 - لا تمكن المستقبل من التحقق من هوية المرسل

يمكن التشفير بالطريقتين: تشفير النهايات ثم خط الاتصال

تحليل حركة المرور وأنماط الاتصال

- تحليل أنماط الاتصال يعطي الخصم القدرة على استنتاج محتوى الرسائل حيث:
- الاتصال المتكرر يعني أن الطرفين يخططان الأمر ما
 - الرسائل القصيرة المتبادلة بسرعة تعنى وجود تفاوض
 - الرسائل القصيرة تحمل الموافقة والعكس صحيح
 - تزداد الخطورة في الشبكات WAN حيث أن قنات الاتصال خارج السيطرة المادية

الإجراءات الوقائية

- من الصعب اكتشاف الاعتداء أو التنصت على شبكة الاتصال. ولكن من السهل إحباطها
 - الإجراءات الوقائية في تشفير النهايات
 - توحید حجم الرسائل
- تتبادل الموجهات رسائل عشوائية طوال الوقت محددة أي الرسائل حقيقية وأيها عشوائية
 - الإجراءات الوقائية في تشفير طرفي قنات الاتصال
 - اشغال الشبكة طوال الوقت بنفس المقدار

أمن الشبكة العنكبوتية Web Security

- يقصد بها الاتصال الآمن بين موقع الويب ومتصفح الإنترنت لدى المستخدم
- المستخدم بحاجة إلى التحقق من هوية الموقع إضافة إلى "Transport Layer Security TLS"
 - يهدف TLS إلى
 - عدم اطلاع الخصوم على المعلومات أو تعديلها - التأكد من هوية الموقع قبل إرسال المعلومات إليه

مراحل عمل سرية طبقة الاتصال TLS

1. مرحلة التفاوض:

- تحدید الخوارزمیات وطرق التحقق من الهویات للخادم والمخدوم
 - تبدأ عندما يقوم المستكشف بطلب عملية اتصال آمنة
- يقدم المستكشف مجموعة من الخوارزميات ودوال الهاش التي يمكن أن
 يتعامل معها ثم يقوم موقع الويب بالاختيار وتبليغ المستكشف
 - 2. مرحلة التحقق من الهوية
 - يقوم الموقع بإرسال شهادة المفتاح العام الخاصة به إلى المستكشف
 - بعض الحالات يطلب الموقع شهادة المفتاح العام من المستكشف
 - 3. مرحلة تبادل المفاتيح السرية
- - 4. مرحلة تبادل الرسائل المشفرة
 - يقوم الطرفان بتبادل الرسائل المشفرة بالمفتاح السري

أمن البريد الإلكتروني

• الكتاب