

Analog Integrated Systems Design

Lecture 04 Data Converters Specifications (1)

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

ADC and DAC

☐ ADC

DAC

Unipolar vs Bipolar

Static (DC) Specifications

- ☐ Offset Error
- Gain Error
- Monotonicity
- Linearity
 - Differential Non-Linearity (DNL)
 - Integral Non-Linearity (INL)

Ideal DAC Transfer Function

DAC Offset Error

DAC Gain Error

Offset and Gain Errors

- Can be calibrated by two points.
- First, trim offset error. Next, trim gain error.

DAC Non-monotonicity

☐ Non-monotonicity can be catastrophic in control loops (why?).

DAC Differential Nonlinearity (DNL)

 \square DNL = deviation of an output step from 1 LSB (= Δ = $V_{FS}/2^N$)

$$DNL_{i} = \frac{i^{th} Step Size - \Delta}{\Delta}$$

☐ What does DNL < -1 mean?

DAC DNL Example

04: Specifications (1) [W. Kester, 2005]

11

DAC Integral Nonlinearity (INL)

- ☐ INL = deviation of the output from the ideal transfer curve
- ☐ It can be shown that INL = cumulative sum of DNL

$$INL_i = \sum_{j=0}^{i} DNL_j$$

INL Measurement Methods

- INL can be measured relative to:
 - A line joining the ideal end points → More accurate
 - A best fit straight line → May be misleading
- ☐ The peak-to-peak INL remains the same

Unipolar ADC Transfer Function

- ☐ The first transition is at LSB/2 (mid-tread quantizer)
- The transfer ccs is the line joining the code centers (black dots)
- \square Code centers are difficult to measure \rightarrow use code transitions

Ideal ADC Transfer Characteristic

- ☐ Using floor/ceiling yields systematic offset error
- ☐ Offset and gain errors are usually not critical for ADCs
 - Can be trimmed (corrected) easily in the digital domain

ADC DNL and Missing Codes

- ☐ DNL and INL always measured on the analog axis
- \square DNL = deviation of code width from 1 LSB (= $V_{ES}/2^N = \Delta$)
 - Wide code \rightarrow +ve DNL, narrow code \rightarrow -ve DNL
- What does DNL = -1 mean? Can it be < -1?</p>
- Can we have missing codes in DAC?

$$DNL_{i} = \frac{i^{th} Step Size - \Delta}{\Delta}$$

ADC DNL and Non-monotonicity

- \square DNL = deviation of code width from 1 LSB (= $V_{FS}/2^N = \Delta$)
 - Wide code → +ve DNL, narrow code → -ve DNL
- Can we characterize ADC non-monotonicity using DNL?

$$DNL_{i} = \frac{i^{th} Step Size - \Delta}{\Delta}$$

ADC DNL Example

ANALOG INPUT

18

ADC DNL Example

ANALOG INPO

INL Types: 2nd Order Distortion

Using "best-fit" straight line will center the INL curve around zero.

04: Specifications (1) [M. Pelgrom, 2017]

INL Types: 3rd Order Distortion

21

04: Specifications (1) [M. Pelgrom, 2017]

ADC DNL/INL Example

- ☐ DNL/INL plotted against digital code not analog input
 - More about this next lecture

References

- ☐ M. Pelgrom, Analog-to-Digital Conversion, Springer, 3rd ed., 2017.
- W. Kester, The Data Conversion Handbook, ADI, Newnes, 2005.
- ☐ B. Boser and H. Khorramabadi, EECS 247 (previously EECS 240), Berkeley.
- B. Murmann, EE 315, Stanford.
- ☐ Y. Chiu, EECT 7327, UTD.

Thank you!

Unipolar DAC Transfer Function

Unipolar Code Example

BASE 10 NUMBER	SCALE	+10V FS	BINARY	GRAY
+15	+FS - 1LSB = +15/16 FS	9.375	1111	1000
+14	+7/8 FS	8.750	1110	1001
+13	+13/16 FS	8.125	1101	1011
+12	+3/4 FS	7.500	1100	1010
+11	+11/16 FS	6.875	1011	1110
+10	+5/8 FS	6.250	1010	1111
+9	+9/16 FS	5.625	1001	1101
+8	+1/2 FS	5.000	1000	1100
+7	+7/16 FS	4.375	0111	0100
+6	+3/8 FS	3.750	0110	0101
+5	+5/16 FS	3.125	0101	0111
+4	+1/4 FS	2.500	0100	0110
+3	+3/16 FS	1.875	0011	0010
+2	+1/8 FS	1.250	0010	0011
+1	1LSB = +1/16 FS	0.625	0001	0001
0	0	0.000	0000	0000

Bipolar DAC Transfer Function

Bipolar ADC Transfer Function

- Mid-tread quantizer: The stair-case is flat around zero input
- Mid-rise quantizer: The stair-case rises at zero.

Bipolar Code Example

BASE 10 NUMBER	SCALE	±5V FS	OFFSET BINARY	TWOS COMP.	ONES COMP.	SIGN MAG.
+7	+FS - 1LSB = +7/8 FS	+4.375	1111	0111	0111	0111
+6	+3/4 FS	+3.750	1110	0110	0110	0110
+5	+5/8 FS	+3.125	1101	0101	0101	0101
+4	+1/2 FS	+2.500	1100	0100	0100	0100
+3	+3/8 FS	+1.875	1011	0011	0011	0011
+2	+1/4 FS	+1.250	1010	0010	0010	0010
+1	+1/8 FS	+0.625	1001	0001	0001	0001
0	0	0.000	1000	0000	*0 0 0 0	*1000
-1	– 1/8 FS	-0.625	0111	1111	1110	1001
-2	– 1/4 FS	-1.250	0110	1110	1101	1010
-3	– 3/8 FS	-1.875	0101	1101	1100	1011
-4	–1/2 FS	-2.500	0100	1100	1011	1100
-5	−5/8 FS	-3.125	0011	1011	1010	1101
-6	−3/4 FS	-3.750	0010	1010	1001	1110
-7	– FS + 1LSB = –7/8 FS	-4.375	0001	1001	1000	1111

DNL vs INL Errors

- \square DNL measures the uniformity of quantization steps, or incremental (local) nonlinearity
 - Small input signals are sensitive to DNL.
- INL measures the overall, or cumulative (global) nonlinearity
 - Large input signals are often sensitive to both INL and DNL.

