	$\sigma_{1}^{\#1}$	$\sigma_1^{\#2}$	$ au_1^{\#1}$ $ au_1^{\#2}$	$\sigma_{1^{ ext{-}}lpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{lpha}$	$ au_{1}^{\#1}$	$r_1^{\#2}$	_
$\frac{2}{3t_1t_2+2k^2}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2)}$	$\frac{\sqrt{2(t_1-2t_2)}}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$\frac{i \sqrt{2} k (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 (2r_1 + r_5) (t_1 + t_2))}$	0	0	0	0	
$\frac{\sqrt{2}}{(1+k^2)(3t_1t_2+$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 (2r_1 + r_5) (t_1 + t_2))}$	$\frac{6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	$\frac{i k (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	0	0	0	0	
$\frac{i}{(1+k^2)(3t_1t_2^4)}$	$i \sqrt{2} k(t_1 - 2t_2) $ $t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))} \left\frac{ik(6k^2(2r_1+r_5)+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))} \right \frac{k^2(6k^2(2r_1+r_5)+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$\frac{k^2 (6k^2 (2r_1 + r_5) + t_1 + 4t_2)}{(1+k^2)^2 (3t_1t_2 + 2k^2 (2r_1 + r_5)(t_1 + t_2))}$	0	0	0	0	
	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$	
	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2k^2(r_1+r_5)+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	
	0	0	0	0	0	0	0	
	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 (r_1 + r_5) + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$	

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	$\sigma_{0}^{\sharp 1}$	$ au_0^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{1}{t_2}$

Source constraints	
SO(3) irreps	#
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\frac{\tau_{1+}^{\#1}\alpha\beta}{\tau_{1+}^{\#1}\alpha\beta} + i k \sigma_{1+}^{\#2}\alpha\beta = 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	16

Lagrangian density	
$-t_1 \omega_i^{\alpha i} \omega_{\kappa \alpha}^{\kappa} - \frac{1}{3} t_1 \omega_i^{\kappa \lambda} \omega_{\kappa \lambda}^{i} + \frac{2}{3} t_2 \omega_i^{\kappa \lambda} \omega_{\kappa \lambda}^{i} + \frac{1}{3} t_1 \omega_{\kappa \lambda}^{i}$	$\omega^{\kappa\lambda}_{\prime}$ +
$\frac{1}{3} t_2 \omega_{\kappa\lambda}{}' \omega^{\kappa\lambda}{}_{,} - r_5 \partial_i \omega^{\kappa\lambda}{}_{\kappa} \partial^i \omega_{\lambda}{}^{\alpha}{}_{\alpha} - \frac{2}{3} r_1 \partial^{\beta} \omega^{\theta\alpha}{}_{\kappa} \partial_{\theta} \omega_{\alpha\beta}{}^{\kappa} -$	
$\frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} - r_5 \partial_{\alpha} \omega_{\lambda}^{ \alpha}_{ \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda}$	+
$r_5 \partial_\theta \omega_{\lambda \alpha}^{\alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \partial_\alpha \omega_{\lambda \theta}^{\alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + 2 r_5 \partial_\theta \omega_{\lambda \alpha}^{\alpha} \partial_\kappa \omega^{\kappa \lambda \theta} -$	
$\frac{1}{3} t_1 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} + \frac{1}{6} t_2 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{2}{3} t_1 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} -$	
$\frac{1}{6} t_2 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{3} t_1 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha \lambda} + \frac{1}{6} t_2 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha \lambda} + t_1 \omega_{\kappa}$	$\alpha \alpha \partial^{\kappa} f$

 $\frac{1}{6}t_{2}\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} - \frac{1}{3}t_{1}\partial^{\alpha}f_{\kappa}^{\lambda}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{6}t_{2}\partial^{\alpha}f_{\kappa}^{\lambda}\partial^{\kappa}f_{\alpha\lambda} + t_{1}\omega_{\kappa\alpha}^{\ \alpha}\partial^{\kappa}f_{\beta}^{\prime} + t_{1}\omega_{\kappa\alpha}^{\ \alpha}\partial^{\kappa}f_{\alpha}^{\prime} + t_{1}\omega_{\kappa\alpha}^{\prime}\partial^{\kappa}f_{\alpha}^{\prime} + t_{1}\omega_{\kappa\alpha}^{\prime}\partial^{\kappa}f_{\alpha}^{\prime}\partial^{\kappa}f_{\alpha}^{\prime} + t_{1}\omega_{\kappa\alpha}^{\prime}\partial^{\kappa}f_{\alpha}^{\prime}\partial^{\kappa}f_{\alpha}^{\prime}\partial^{\kappa}f_{\alpha}^{\prime} + t_{1}\omega_{\kappa\alpha}^{\prime}\partial^{\kappa}f_{\alpha}^{\prime}\partial^{\kappa}f_{\alpha}^{\prime}\partial^{\kappa}f_{\alpha}^{\prime}\partial^{\kappa}f_{\alpha}^{\prime} + t_{1}\omega_{\kappa\alpha}^{\prime}\partial^{$

 $\frac{\frac{8}{3} r_1 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{I} + r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa}}{\text{Added source term:}} f^{\alpha \beta} \tau_{\alpha \beta} + \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi}$

	:	:	:				
	$\omega_1^{\#1}$	$\omega_1^{\#2}{}_+\alpha\beta$	$f_{1}^{\#1}$	$\omega_{1^{^{-}}\alpha}^{\#1}$	$\omega_{1^{-}\alpha}^{\#2}$	$\omega_{1^{-}}^{\#2}{}_{lpha}f_{1^{-}}^{\#1}{}_{lpha}f_{1^{-}}^{\#2}{}_{lpha}$	$f_{1}^{\#2}$
$\omega_{1}^{\#1} + \alpha^{eta}$	$\omega_{1}^{\#1} + \alpha^{\beta} \begin{bmatrix} \frac{1}{6} (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2) \\ \frac{1}{6} (6 k^2 (2 r_1 + r_2) + t_1 + 4 t_2) \end{bmatrix}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
$\omega_1^{\#2} + \alpha^{\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}$ \bar{l} k $(t_1 + t_2)$	0	0	0	0
$f_{1+}^{#1} + \alpha \beta$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_1^{\#1} +^\alpha$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$i k t_1$
$\omega_1^{\#2} +^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} + \alpha$	0	0	0	$-ar{\imath} k t_1$	0	0	0

Massive particle

Massive partic	
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+6r_1(t_1^2+2t_2^2)+3r_5(t_1^2+2t_2^2)}{(2r_1+r_5)(t_1+t_2)(-3t_1t_2+4r_1(t_1+t_2)+2r_5(t_1+t_2))}>0$
Polarisations:	3
Square mass:	$-\frac{3t_1t_2}{2(2r_1+r_5)(t_1+t_2)} > 0$
Spin:	1
Parity:	Even

Unitarity conditions $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0 \&\& -t_1 < t_2 < 0$

(No massless particles)