

IIT/NIT | NEET / AIIMS | NTSE / IJSO / OLYMPIADS

कोटा का रिपिटर्स (12th पास) का सर्वश्रेष्ठ रिजल्ट देने वाला संस्थान

AIR 82 Sarthak Behera

AIR 120 Pankaj

AIR 146 Varun Goyal

AIR 148 Mukul Kumar

Total Selection 709/2084 = **34.02%**

JEE MAIN 2019 RESULT

AIR 85 Anuj Chaudhary

AIR 96 Shubham Kumar

AIR 120 Eeshaan Jain

Students Qualified for JEE ADVANCED 2288/3316 = 68.99%

MOTION

Nurturing potential through education

Toll Free: 1800-212-1799

H.O.: 394, Rajeev Gandhi Nagar, Kota

 $www.motion.ac.in \hspace{0.1cm} | \hspace{0.1cm} \boxtimes : info@motion.ac.in$

CRITERIA FOR DIRECT ADMISSION IN STAR BATCHES

V STAR BATCH XII Pass (JEE M+A)

ELIGIBILITY

JEE Main'19 %tile > 98%tile

JEE Advanced'19 Rank (Gen.) < 15,000

P STAR BATCH XI Moving (JEE M+A)

NTSE Stage-1 Qualified or NTSE Score > 160

ELIGIBILITY

100 marks in Science or Maths in Board Exam J STAR BATCH XII Pass (NEET/AIIMS)

ELIGIBILITY

NEET'19 Score > 450 Marks

AIIMS'19 %tile > 98%tile

H STAR BATCH
XI Moving (NEET/AIIMS)

NTSE Stage-1 Qualified or NTSE Score > 160

100 marks in Science or Maths in Board Exam

Scholarship Criteria

JEE Main Percentile	SCHOLARSHIP+ Stipend	JEE Advanced Rank	SCHOLARSHIP+ Stipend	
98 - 99	100%	10000-20000	100%	
Above 99	100% + ₹ 5000/ month	Under 10000	100% + ₹ 5000/ month	
NEET 2019 Marks	SCHOLARSHIP+ STIPEND	NTSE STAGE-1 2019 Marks	SCHOLARSHIP+ STIPEND	
450	100%	160-170	100% + ₹ 2000/ month	
530-550	100% + ₹ 2000/ month	171-180	100% + ₹ 4000/month	
550-560	100% + ₹ 4000/month	171-100	100/0 1 \ 4000/111011111	
560	100% + ₹ 5000/month	180+	100% + ₹ 5000/month	

FEATURES:

- Batch will be taught by NV Sir & HOD's Only.
- Weekly Quizes apart from regular test.
- Under direct guidance of NV Sir.
- Residential campus facility available.
- 20 CBT (Computer Based Test) for better practice.
- Permanent academic coordinator for personal academic requirement.
- Small batch with only selected student.
- All the top brands material will be discussed.

MATHS [JEE ADVANCED - 2019] PAPER - 1

SECTION -1 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options **ONLY ONE** of these four options is correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme.

: +3 If ONLY the correct option is chosen.

: 0 If none of the options is choosen (i.e. the question is unanswered) Zero Marks

Negative marks : -1 In all other cases

1. A line y = mx + 1 intersects the circle $(x - 3)^2 + (y + 2)^2 = 25$ at the points P and Q. If the midpoint of the line segment PQ has x - coordinate $\frac{-3}{5}$, then which one of the following options is correct? $(1) - 3 \le mv < -1$ $(2) 6 \le m < 8$ $(3) 4 \le m < 6$ $(4) 2 \le m < 4$

Sol.

Let $M = \begin{bmatrix} \sin^4 \theta & -1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} = \alpha I + \beta M^{-1}$ 2.

> where $\alpha = \alpha(\theta)$ and $\beta = \beta(\theta)$ are real numbers, and I is the 2 × 2 identity matrix. If α^* is the minimum of set $\{\alpha(\theta): \theta \in [0,2\pi)\}$ and β^* is the minimum of the set $\{\beta(\theta): \theta \in [0,2\pi)\}$ then the value of $\alpha^* + \beta^*$ is

 $(1) \frac{-29}{16} \qquad (2) -\frac{37}{16} \qquad (3) -\frac{17}{16} \qquad (4) -\frac{31}{16}$

Sol.

let S be the set of all complex numbers z satsfying $|z-2+i| \geq \sqrt{5}$. If the complex number z_0 is 3. such that $\frac{1}{|z_n-1|}$ is the maximum of the set $\left\{\frac{1}{|z-1|}:z\in S\right\}$, then the principal argument of $\frac{4-z_{0}-\bar{z}_{0}}{z_{0}-\bar{z}_{0}+2i}$ is

(1) $\frac{\pi}{2}$

(2) $\frac{3\pi}{4}$ (3) $\frac{\pi}{4}$ (4) $-\frac{\pi}{2}$

Sol.

4. The area of region $\{(x,y): xy \le 8, 1 \le y \le x^2\}$ is

(1) $16\log_e 2 - \frac{14}{3}$ (2) $8\log_e 2 - \frac{7}{3}$ (3) $8\log_e 2 - \frac{14}{3}$ (4) $16\log_e 2 - 6$

Sol.

SECTION -2 (Maximum Marks: 12)

- This section contains EIGHT (08) questions.
- Each question has **FOUR** options ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

Full marks : +4 If only (all) the correct option(s) is (are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are

chosen and both of which are correct

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct ention

and it is a correct option.

Zero Marks : 0 If two or more options is chosen (i.e. the question is unanswered)

Negative Marks : -1 in all other cases

 For example, in a question, if (A),(B) and (D) are the ONLY three options corresponding to correct answer, then

choosing ONLY (A), (B) and (D) will get +4 marks

choosing ONLY (A) and (B) will get +2 marks

choosing ONLY (A) and (D) will get +2 marks

choosing ONLY (B) and (D) will get +2 marks

choosing ONLY (A) will get +1 mark

choosing ONLY (B) will get +1 mark

choosing ONLY (D) will get +1 mark

choosing no option (i.e., the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -1 mark

Let \lceil denotes a curve y = y(x) which is in the first quadrant and let the point (1,0) lie on it. Let the tangent to \lceil at a point P intersect the y - axis at Y_p . If PY_p has length 1 for each point P on \lceil , then Which of the following options is/are correct?

(1)
$$xy' - \sqrt{1-x^2} = 0$$

(2)
$$y = -\log_e \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) + \sqrt{1 - x^2}$$

(3)
$$xy' + \sqrt{1-x^2} = 0$$

(4)
$$y = log_e \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) - \sqrt{1 - x^2}$$

Sol. 1,2,3,4

2. Define the collections $\{E_1, E_2, E_3, \ldots \}$ of ellipse and $\{R_1, R_2, R_3, \ldots \}$ of rectangles as follows :

$$E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$$
;

 R_1 : rectangle of largest area, with sides parallel to the axes, inscribed in E_1 ;

$$E_n$$
: ellipse $\frac{x^2}{a_n^2} + \frac{y^2}{b_n^2} = 1$ of largest area inscribed in R_{n-1} , $n > 1$;

 R_n : rectangle of largest area, with sides parallel to the axes, inscribed in E_n , n > 1.

Then which of the following options is/are correct? (1)The eccentricities of E_{18} and E_{19} are NOT equal

(2) The distance of a focus from the centre in E_9 is $\frac{\sqrt{5}}{32}$

- (3) $\sum_{n=1}^{N}$ (area of R_n) < 24, for each positive integer N
- (4) The length of latus rectum of E_9 is $\frac{1}{6}$

Sol.

3. Let
$$M = \begin{bmatrix} 0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1 \end{bmatrix}$$
 and adj $M = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$ where a and b are real numbers. Which of the

following options is/are correct?

(1)
$$\det(adjM^2) = 81$$

$$(2) a + b = 3$$

(3)
$$(adj M)^{-1} + adj M^{-1} = -M$$

(4) if
$$M\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, then $\alpha - \beta + \gamma = 3$

Sol. 2,3,4

Let α and β be the roots of $x^2 - x - 1 = 0$, with $\alpha > \beta$. For all positive integer n, define 4.

$$a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
, $n \ge 1$

 $\begin{array}{l} b_1=1 \text{ and } b_n=a_{n-1}+a_{n+1} \text{ , } n \geq 2 \\ \text{Then which of the following options is/are correct ?} \\ (1) \ a_1+a_2+a_3+\ldots +a_n=a_{n+2}-1 \text{ for all } n \geq 1 \\ (2) \ b_n=\alpha^n+\beta^n \text{ for all } n \geq 1 \end{array}$

(1)
$$a + a + a + \dots + a = a - 1$$
 for all $n > 1$

(2)
$$b_n = \alpha^n + \beta^n$$
 for all $n \ge 1$

(3)
$$\sum_{n=1}^{\infty} \frac{b_n}{10^n} = \frac{8}{89}$$

(4)
$$\sum_{n=1}^{\infty} \frac{a_n}{10^n} = \frac{10}{89}$$

Sol. 1,2,4

5. Let $f: R \to R$ be given by

$$f(x) = \begin{cases} x^5 + 5x^4 + 10x^3 + 10x^2 + 3x + 1, & x < 0 \\ x^2 - x + 1, & 0 \le x < 1; \\ \frac{2}{3}x^3 - 4x^2 + 7x - \frac{8}{3}, & 1 \le x < 3 \\ (x - 2)log_e(x - 2) - x + \frac{10}{3}, & x \ge 3 \end{cases}$$

Then which of the following options is /are correct?

- (1) f is increasing on $(-\infty,0)$
- (2) f is onto
- (3) f' has a local maximum at x = 1

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

(4) f' is NOT differentiable at x = 1

Sol. 2,3,4

H.O.: 394, Rajeev Gandhi Nagar, Kota Toll Free: 1800-212-1799

JEE Advanced Rank Predictor: motioniitjee.com/jee-advanced-2019-rankpredictor/

www.motion.ac.in | info@motion.ac.in

There are three bags B_1 , B_2 and B_3 . The bag B_1 contains 5 red and 5 green balls, B_2 contains 3 red and 5 green balls, and B_3 contains 5 red and 3 green balls. Bags B_1 , B_2 and B_3 have 6. probabilities $\frac{3}{10}$, $\frac{3}{10}$ and $\frac{4}{10}$ respectively of being chosen. A bag is selected at random and a ball is chosen at random from the bag. Then which of the following options is/are correct?

(1) Probability that the chosen ball is green, given that the selected bag is B_3 , equals $\frac{3}{8}$

(2) Probability that the selected bag is B_3 and the chosen ball is green equals $\frac{3}{10}$

(3) Probability that the selected bag is B_3 , given that chosen ball is green, equals $\frac{5}{13}$

(4) Probability that the chosen ball is green equals $\frac{39}{90}$

Sol.

7. In a non-right angled triangle ΔPQR , let p,q,r denote the lengths of the sides opposite to the angles at P,Q,R respectively. The median from R meets the side PQ at S, the perpendicular from P meets the side QR at E, and RS and PE intersect at O. If $p = \sqrt{3}$, q=1, and the radius of the circumcircle of the $\triangle PQR$ equals 1, then which of the following options is/ are correct?

(1) Length of RS = $\frac{\sqrt{7}}{2}$

(2) Length of OE = $\frac{1}{6}$

(3) Radius of incircle $\triangle PQR = \frac{\sqrt{3}}{2}(2-\sqrt{3})$ (4) Area of $\triangle SOE = \frac{\sqrt{3}}{12}$

Sol. 1,2,3

Let L_1 and L_2 denote the lines 8.

$$\vec{r} = \hat{i} + \lambda \big(-\hat{i} + + 2\hat{j} + 2\hat{k} \big), \lambda \in R \quad \text{and} \quad$$

$$\vec{r} = \mu(2\hat{i} - \hat{j} + 2\hat{k}), \mu \in R$$

respectively, If L_3 is a line which is perpendicular to both L_1 and L_2 and cuts both of them, then which of the following options describe(s) L₃?

(1)
$$\vec{r} = \frac{2}{9}(2\hat{i} - \hat{j} + 2\hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$
 (2) $\vec{r} = \frac{2}{9}(4\hat{i} + \hat{j} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$

(2)
$$\vec{r} = \frac{2}{9}(4\hat{i} + \hat{j} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$

(3)
$$\vec{r} = \frac{1}{3}(2\hat{i} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$
 (4) $\vec{r} = t(2\hat{i} + 2\hat{j} - \hat{k}) t \in \mathbb{R}$

(4)
$$\vec{r} = t(2\hat{i} + 2\hat{j} - \hat{k}) t \in R$$

Sol.

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota Toll Free: 1800-212-1799 www.motion.ac.in | info@motion.ac.in

JEE Advanced Rank Predictor: motioniitjee.com/jee-advanced-2019-rankpredictor/

Section - 3

- This section contains SIX (06) quustions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the
 on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/roundoff the value to TWO decimal
 places.
- Answer to each question will be evaluated according to the following marking scheme;
 Full Marks : +3 If ONLY the correct numerical value is entered
 Zero Marks : 0 in all other cases.
- 1. Three lines are given by

$$\vec{r} = \lambda \hat{i}, \lambda \in R$$

$$\vec{r} = \mu(\hat{i} + \hat{j}), \mu \in R$$

$$\vec{r} = v(\hat{i} + \hat{j} + \hat{k}), v \in R$$

Let the lines cut the plane x + y + z = 1 at the points A, B and C respectively. If the area of the triangle ABC is Δ then value of $(6\Delta)^2$ equals _____.

Sol. 0.75

2. Let S be the sample space of all 3 \times 3 matrices with entries from the set {0,1}, Let the events E_1 and E_2 be given by

$$E_1 = \{A \in S : det A = 0\}$$
 and $E_2 = \{A \in S : sum of entries of A is 7\}$

If a matrix is chosen at random from S, then the conditional probability $P(E_1|E_2)$ equals

Sol. 0.5

3. Let $\omega \neq 1$ be a cube root of unit. Then the minimum of the set $\{|a + b\omega = c\omega^2|^2 : a, b, c \text{ distinct non-zero integers}\}$ equals ______.

Sol. 3

4. Let AP(a; d) denote the set of all the terms of an infinite arithmetic progression with first term α and common difference d > 0, If

 $AP(1;3) \cap AP(2;5) \cap AP(3;7) = AP(a;d)$ then a + d equals _____.

Sol. 157

5. If $I = \frac{2}{\pi} \int_{-\pi/4}^{\pi/4} \frac{dx}{(1 + e^{\sin x})(2 - \cos 2x)}$ then $27I^2$ equals ______.

JEE Advanced Rank Predictor: motioniitjee.com/jee-advanced-2019-rankpredictor/

Sol. 4

6. Let the point B be the relfection of the point A(2,3) with respect to the line 8x - 6y - 23 = 0. Let Γ_A and Γ_B be circles of radii 2 and 1 with centres A and B resepectively.Let T be a common tangent to the circles Γ_A and Γ_B such that both the circles are on the same side of T. If C is the point of intersection of T and the line passing through A and B, then the length of the line segment AC is

Sol. 10

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota
Toll Free: 1800-212-1799
www.motion.ac.in : info@motion.ac.in

Based on JEE Advanced'19

MARKS	FEE (After Scholarship)
140 above	Drona Residential Program Free
120 to 139	₹0
100 to 120	₹ 14,500
90 to 99	₹ 29,000
80 to 89	₹ 43,500
69 to 79	₹ 58,000
40 to 69	₹ 87,000

^{*}Scholarship Applicable at Kota Center Only

Based on JEE Main'19

JEE Main Percentile	English	Hindi	
JEE Maill Percentile	Fees (After Scholarship)		
99 & Above	Drona Residential Program Free		
97.5 To 99	₹0	₹0	
97 To 97.5	₹ 14,500	₹ 14,500	
96.5 To 97	₹ 29,000	₹ 29,000	
96 To 96.5	₹ 58,000	₹ 58,000	
95.5 To 96	₹ 65,250	₹ 65,250	
95 To 95.5	₹ 72,500	₹ 72,500	
93 To 95	₹ 87,000	₹ 87,000	
90 To 93	₹ 1,01,500	₹ 94,250	
85 To 90	₹ 1,08,750	₹ 1,01,500	
80 To 85	₹ 1,16,000	₹ 1,08,750	
75 To 80	₹ 1,30,500	₹ 1,23,250	

JEE MAIN Special Batch for Class 14th Repeaters

Flat 50% Scholarship

(Fee after Scholarship) **Only** ₹ **46,750**