

れ、実質的に平面状の第1の表面と、この第1の表面の反対側にある実質的に平面状の第2の表面と、前記第1の表面の反対側の前記第2の表面の周縁部で垂直方向に前記第1の表面および前記第2の表面の間にある実質的に平面状の第3の表面とを有する金属のダイバットと、前記フレームから前記ダイバットに向かってそのダイバットと接触することなくそれそれ延び、実質的に平面状の第1の表面と、この第1の表面の反対側にある実質的に平面状の第2の表面と、前記第1の表面の反対側にあり垂直方向には前記第1の表面および第2の表面の間にある実質的に平面状の第3の表面とを含む複数の金属リードとを含む金属リートフレーム。
 【請求項2-3】エンキャブレーションを施した複数の半導体集積回路パッケージを同時に並行に製造するためのバターニングすみの金属条片であって、複数の相互接続した切り替て可能なマトリクス状の複数の金属フレームと、前記フレームの各々の内側に配置されてそのフレームに接続され、各々が実質的に平面状の第1の表面と、この第1の表面の反対側にある実質的に平面状の第2の表面と、前記第1の表面の反対側の前記第2の表面の周縁部で垂直方向に前記第1の表面および前記第2の表面の間にある実質的に平面状の第3の表面とを有する金属のグアイバットと、前記フレームの各々から前記ダイバットに向かってそのフレームの中でそのダイバットと接触することなくそれそれ延び、実質的に平面状の第1の表面と、この第1の表面の反対側にある実質的に平面状の第2の表面と、前記第1の表面の反対側にあり垂直方向には前記第1の表面および第2の表面の間にある実質的に平面状の第3の表面とを含む複数の金属リードとを含むバターニングすみの金属条片。
 【請求項2-4】半導体集積回路デバイスのためのパッケージを製造する方法であって、リードフレーム、すなわち切り捨て可能な金属のフレームと、そのフレームの内側にあってそのフレームに接続された金属のダイバットであって実質的に平面状の第1の表面と、この第1の表面の反対側にある実質的に平面状の第2の表面と、前記第1の表面の反対側の前記第2の表面の周縁部で垂直方向に前記第1の表面および前記第2の表面の間にある第3の表面とを含むグアイバットとを有するリートフレームであって、前記フレームから前記ダイバットに向かって前記ダイバットに接触することなくそれそれ延び、実質的に平面状の第1の表面と、この第1の表面の反対側にある実質的に平面状の第2の表面と、前記第1の表面の反対側の前記第2の表面の周縁部で垂直方向に前記第1の表面および第2の表面の間にある実質的に平面状の第3の表面とを含む複数の金属のリードとを含むリートフレームを準備する過程と

半導体集積回路デバイスを前記ダイバットの前記第1の表面に設置する過程と、前記半導体集積回路デバイス上の複数のポンティックバットの一つを前記リートの各々の前記第1の表面に電気的に接続する過程と、前記半導体集積回路デバイス、前記ダイバットおよび前記リートの前記第1の表面および前記ダイバットおよび前記リートの前記第3の表面を覆い、前記リートの前記第3の表面を露出させるようにエンキャブレーションを行う過程と、前記エンキャブレーション材を硬化させる過程と、前記ダイバットおよび前記リートを前記フレームから切り離し、パッケージ完成品を前記リートフレームから切り離し、前記リートの前記第1の表面を前記ダイバットの前記第1の表面と同じ水平面またはその水平面よりも低い平面内に位置づける過程とを含む方法。
 【請求項2-5】前記エンキャブレーション材が前記ダイバットの前記第2の表面を露出させるように、また前記ダイバットの前記第1の表面を前記パッケージの前記リートの前記第1の表面と同じ水平面内に位置づけるように述べられる請求項2-4記載の方法。
 【請求項2-6】前記ダイバットおよび前記リートの露出した前記第2の表面を前記エンキャブレーション材の吐布後で前記切離しの前に金属でメッキする過程をさらに含む請求項2-5記載の方法。
 【請求項2-7】前記リートの切断を、切断後の前記リートの各々の第1の部分が前記エンキャブレーション材の外側に延びるように行う請求項2-5記載の方法。
 【請求項2-8】前記リートの前記第1の部分を前記パッケージ本体の前記第1の表面に対して上向きに曲げる過程をさらに含む請求項2-7記載の方法。
 【請求項2-9】複数の半導体集積回路デバイスパッケージを同時に並行に製造する方法であって、バターニングすみの金属条片、すなわち複数の使い捨て可能な相互接続すみのマトリクス配列の金属フレームを含むバターニングすみの金属条片であって、前記フレームの各々の内側にあってそのフレームに接続され、実質的に平面状の第1の表面と、この第1の表面の反対側にある実質的に平面状の第2の表面と、前記第1の表面の反対側の前記第2の表面の周縁部で垂直方向に前記第1の表面および前記第2の表面の間にある第3の表面とを含む金属のダイバットとを有するリートフレームと、前記フレームから前記ダイバットに向かって前記ダイバットに接觸することなくそれそれ延び、実質的に平面状の第1の表面と、この第1の表面の反対側にある実質的に平面状の第2の表面と、前記第1の表面の反対側の前記第2の表面の周縁部で垂直方向に前記第1の表面および前記第2の表面の間にある実質的に平面状の第3の表面とを含む複数の金属のリードとを含むリートフレームを準備する過程と、前記リートフレームの各々からそのフレームの前記ダイバットに向かって前記ダイバットに接觸することなくそれそれ延び、実質的に平面状の第1の表面と、この第1の表面の反対側にある実質的に平面状の第2の表面と、前記第1の表面の反対側の前記第2の表面の周縁部で垂直方向に前記第1の表面および前記第2の表面の間にある実質的に平面状の第3の表面とを含む複数の金属のリードとを有するリートフレームを準備する過程と

板の所望の部分を除去する過程とを含む請求項3-1記載の方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は半導体集積回路チップすなわち半導体集積回路チップのための改良型プラスチックパッケージ、およびこの種のパッケージを製造するための方針およびリードフレームに関する。

【0002】

【発明が解決しようとする課題】半導体集積回路チップは有害な環境からの保護および集積回路・印刷配線回路基板間の電気的相互接続のためにプラスチックパッケージに通常密封する。この種のパッケージの構成要素としては、金属リードフレーム、半導体集積回路チップ、その半導体集積回路チップをリードフレームに付着させる結合材、半導体集積回路チップ上のコンタクトパットをリードフレームの個々のリートに電気的に接続するポンディングワイヤおよびこれら素子を覆ってパッケージ外被を形成する硬質プラスチックのエンキャップレーション材などがある。

【0003】リードフレームはこの種のパッケージの中心的な支持構成物である。リードフレームの一部はパッケージの内側にあり、プラスチックのエンキャップレーション材に完全に取り囲まれている。リードフレームのリードの一部はパッケージから外部に延びてパッケージの外部端縁に用いられる。

【0004】慣用のプラスチック集積回路パッケージおよびリードフレームに関するさらに詳しい背景情報はニューヨーク州ニューヨーク市フィフスアベニュー-114所在のVan Nostrand Reinhold社1989年発行のR. TunnnellおよびE. Rymaszewski共編の専門書「Microelectronic Packaging Handbook」の第8章に記載されている。

【0005】従来のプラスチックパッケージの問題点は内部のリードフレームのためにパッケージの小型化が制限されることである。Rocheほか名義の米国特許第4,530,142号およびCastroら名義の米国特許第5,172,213号に記載されるとおり、当業者はリードフレーム除去によるパッケージ小型化を試みたが、それらパッケージは多数の欠点を有する。上記米国特許第4,530,142号記載のパッケージのコンタクトは直交の側面を有する。したがって、コンタクトからエンキャップレーション材から容易に引きはがされ、パッケージの信頼性が低下する。上記米国特許第5,172,213号記載のパッケージは集積回路チップ上のパットから上方に垂直に延びる曲げリードを備える。このようなリードをパッケージ内に含むので製造コストが上がり、パッケージの小型化が阻害される。したがって、より小さくより信頼性の高いプラスチックパッ

前記半導体集積回路チップの各々の上の複数のポンティングパットの一つをその半導体集積回路チップと同一のフレーム内の一つのリートの前記第1の表面に電気的に接続する過程と。

前記半導体集積回路チップ、前記タイバットおよび前記リードの前記第1の表面および前記ダイバットおよび前記リートの前記第3の表面を覆い、前記リートの前記第2の表面を露出させるようにエンキャップレーション材を塗布する過程と。

前記エンキャップレーション材を硬化させる過程と。
前記ダイバットおよび前記リートを前記フレームからそれそれ切り離し、複数のパッケージ充成品を前記金属箔片から切り離し、前記パッケージの各々の前記リードの前記第1の表面を前記ダイバットの前記第1の表面と同じ水平面内またはその水平面よりも低い平面内に位置づける過程とを含む方法。

【請求項3-0】前記エンキャップレーション材か前記タイバットの前記第2の表面を露出させるように、また前記ダイバットの前記第1の表面を前記パッケージの前記リートの前記第1の表面と同じ水平面内に位置づけるよう塗布される請求項2-9記載の方法。

【請求項3-1】半導体集積回路パッケージを製造するための金属リードフレームを製造する方法であつて、金属薄板を準備する過程と。

前記金属薄板の所定部分を除去して、フレームとそのフレーム内にあってそのフレームに接続されているダイバット、すなわち実質的に平面状の第1の表面とその反対側の実質的に平面状の第2の表面とを含むダイバットと、前記フレームから前記第2の表面に向かってそのダイバットに接触することなくそれそれ延び各々が実質的に平面状の第1の表面およびその反対側の実質的に平面状の第2の表面を含む複数のリートとを含むリードフレームを形成する過程と。

前記リードフレームの前記タイバットおよびリートの一方の側の所定の部分にバーニングすみのフィトレジストマスクを塗布する過程と。

前記ダイバットおよびリートの一部を化学的にエッチングして前記ダイバットおよびリートのマスクなしの部分を除去し前記タイバットおよび前記リートの各々に実質的に平面状の第3の表面、すなわち前記タイバットの前記第1の表面の反対側にあり前記タイバットの前記第2の周縁で垂直方向に前記タイバットの前記第1の表面と前記第2の表面との間にある前記タイバットの第3の表面、および前記リードの各々の前記第1の表面の反対側にあって垂直方向に前記リートの前記第1の表面と前記リードの前記第2の表面との間にある前記リートの第3の表面を形成する過程とを含む方法。

【請求項3-2】前記除去する過程がバーニングすみのフォトレジストマスクを前記金属薄板に塗布する過程と、前記金属薄板を化学的にエッチングして前記金属薄

ケージが必要である。

【0006】

【課題を解決するための手段】この発明は半導体集積回路チップを収容する改良型プラスチックパッケージ、およびそのパッケージの製造のためのリートフレームおよび方法にある。この発明の一つの実施例による相立て方法における工程1では金属リードフレームを準備する。そのリードフレームは切り捨て式の長方形のフレームを含む。ダイバットをそのフレームの中に設けてあり、そのフレームに接続してある。フレームから横方向に複数のリードがダイバットとの接触なしにダイバット方向に延びている。

【0007】リードフレームのダイバットは長方形の周辺を有する。ダイバットは水平な第1の表面を有し、パッケージ組立ての際にその上にダイを設せる。この第1の表面の反対側には実質的に平面状の中央部の第2の表面があり、周辺部の第3の表面がある。この第3の表面は第2の表面の周縁にあり、第2の表面から垂直方向に凹んでいて、ダイバットの下側表面が階段状のプロフィールを示すようにしてある。パッケージ完成品ではエンキャップスレーション材がダイバットの上記の凹んだ第3の表面の下側を満たしているがダイバットの第2の表面は覆っていない。ダイバットの第3の表面の下のエンキャップスレーション材はダイバットがパッケージから垂直方向に引っ張られるのを防止する。

【0008】各リードは第1の表面と、この第1の表面の反対側の第2の表面と、同様に第1の表面の反対側で第2の表面の近傍の第3の表面とを備える。第2の表面は長方形または円形の周縁を有する。第3の表面は階段状プロフィールのリードの下側表面に至る第2の表面から垂直に凹んでいる。パッケージ完成品ではリードの第3の表面の下をエンキャップスレーション材が満たしているが、リードの第2の表面を覆ってはいない。リードの第2の表面はLCCパッケージの場合と同様にパッケージの外部接続のためのコンタクトとして、または半田球の接続のためのランドとして作用する。リードの第3の表面の下のエンキャップスレーション材はリードがパッケージから垂直に引っ張られるのを防止する。

【0009】リードフレームは巻いた金属条片から2工種混式エッチングにより形成する。第1のエッチング工程は金属条片をエッチングで貫通する片面または両面エッチングであって、それによって、リードフレームの所望の全体パターンを金属条片に転写する。第2のエッチング工程はダイの周邊およびリードの所定部分をエッチングする工程である。第2のエッチング工程はダイバットおよびリードの厚さの一部をエッチングし、それによって上述の垂直方向に凹んだ平面状または実質的に平面状の第3の表面をダイバットおよびリードに形成する。

【0010】工程1ではダイバットの上側の第1平面以上に半導体集積回路を設せる。用法に応じて、ダイの面

積はダイバットの第1の表面の面積よりも小さくするか、またはダイバットの周縁部からダイがはみ出るよう大きさしても差し支えない。

【0011】工程3はダイのポンティングバットの各々とリードの第1の表面との間をポンティングワイヤまたは同等の導体で電気的に接続する。ポンティングワイヤの接続を受けるリード部分は、例えば銀、全その他の金属でメッキしておく。

【0012】工程4はダイおよびリードフレームの上向きの第1の表面に高粘性の粘着性エンキャップスレーション材を供給する。この工程のあとエンキャップスレーション材は硬化する。このエンキャップスレーション材は、ダイポンティングワイヤ、リードの第1の表面、ダイバットおよびリードの第3の表面、およびダイおよびリードの側面を覆う。ダイバットおよびリードの第2の表面はエンキャップスレーション材には覆われず、パッケージ下側外表面で露出している。

【0013】工程5においては、ダイバットおよびリードの露出した第2の表面などのリードフレーム露出表面を、銅、金、鉛-亜鉛半田、錫、ニッケル、パラジウムほか半田付け可能な金属で半田付けする。用法およびリードフレーム材料によっては、工程5は省略できる。

【0014】工程6において、パッケージ完成品をエンキャップスレーション材のみのリードフレームから切り離す。より詳細に述べると、工程6はリードフレームの切り捨て可能部分を除去する。すなわち、長方形リードフレームなどのリードフレーム切り捨て可能部分をダイバットおよびリードなどリードフレームの部品構成部分から切り離す。工程4におけるエンキャップスレーションの方法によっては、工程6でエンキャップスレーション材を切ってパッケージの周辺を形成する。

【0015】工程6はリードフレームからリードを切断する。この切断はダムバーの内側で行う。切断の場所に応じて、切断するリードの端部がパッケージの側面から横方向に延びる。工程6またはその後続の工程に、パッケージ側部で上記切断リードの突出端部を上に曲げてリード端部がパッケージ下側外面上およびリードのエンキャップスレーション材部分に傾斜角を成すようにする曲げ工程を含めることもできる。パッケージを印刷配線基板に半田付けする際に、パッケージ下側外面上に露出したりード水平部だけなく切断リードの上向き曲げ端部にも半田を付けて、半田接続を務めるのである。パッケージの下側表面は、パッケージ下面中心にあるダイバットの第2の表面、リードの第2の表面およびパッケージの下面の残余部分を形成しダイバットおよびリードを互いに分離する硬化するエンキャップスレーション材を含む。

【0016】この発明のパッケージは多數の利点を備え、大電力チップやアラロクチップなど多勢の用途に有用である。このパッケージは小型化できる。例えば、パッケージをチップと同号の大きさにすることもで

きる。また、パッケージをごく薄くすることもできる。この発明によると、厚さ0.1ミリメートル以下のパッケージも製造できる。さらに、リードをダイのごく近傍に配置してポンティングワイヤの長さを最小にすることができる。ダイハットの露出した第2の表面をパッケージ冷却に備えて半田で印刷配線基板に結合することもできる。

【0017】上述のリードフレーム・パッケージおよび組立方法の多數の変形をこの明細書に記載するが、これらはいずれもこの発明の一部を構成するものである。10 例えは、一つの代替的組立て方法では複数のパッケージの同時並行的製造を可能にするリードフレームを用いる。

【0018】

【発明の実施の形態】図1はこの発明による半導体集積回路デバイスパッケージ組立て方法の流れ図である。図5は図1の方法で製造可能なこの発明によるパッケージの実施例を示す。

【0019】図1の工程1において金属フレームを準備する。図2はこの発明によるリードフレーム20の平面図である。リードフレーム20の金属部分をそれら金属部分以外の空間から区別するように図2(ほかの図も同じ)では陰影を付けて見やすくしてある。

【0020】図2のリードフレーム20は、用途に応じて、銅、銅台金、メッキ銅、メッキ銅台金、台金37%(ニッケル37%、銀5.5%の台金)、銅メッキ銅など幅用のリードフレーム台金で構成する。

【0021】図2のリードフレーム20は周辺部の長方形タイバー21と中心寄りの長方形のダムバー29とを備える(「長方形」が「方形」を含むことは当業者には明らかであろう)。複数のリードフレーム20を金属条片にエッチングで形成したもの(例えは図16参照)など代替的実施例(図示しない)ではタイバー21を省略してリードフレーム周辺部を隣接リードフレーム間の金属条片の一端で形成することもできる。もう一つの代替的実施例(図示しない)ではタイバー21とタイバー21・ダムバー29間リード部分とを省略してリードフレーム外側フレームをダムバー29で構成することもできる。

【0022】長方形周縁を有するタイバット22をタイバー21に接着してある。タイバット22はタムバー29の内側にある。二つの接続線28がタイバット22をダムバー29およびタイバー21に接続している。図1の工程6において接続線30をタムバー29の内側でリードフレーム20から切り離す。

【0023】タイバー21からダムバー29経由でタイバット22の側面に向かって18本のリード30がタイバット22との接触なしに横方向に延びている。各リード30の第1の端部34はタイバット22の近傍に位置する。図1の工程6において、各リードはタイバー21

とリード30の第1の端部34との間に切り離される。代替的実施例(図示しない)では、リード30をタイバー21起点でなくダムバー29起点で設けることもでき、またダムバー29およびケイバー21を複数の対称配置条片で接続することもできる。

【0024】図2に示したリードフレーム20のリード30の位置および横方向経路は例示にすぎない。これらリードの数、位置および横方向経路は用途によって変わる。この発明の利点は特定の半導体集積回路ダイの寸寸テシングパットの数および位置に柔軟に対応するように設計できることである。

【0025】図2の18本のリード30のうち14本は直線状である。これらリードのうち4本はダムバー29とダイバット22との間に横方向曲げ部を含む。直線状リード30の各々は、そのリード30の横側面から垂直方向に突出したアンカー耳部36を有する。アンカー耳部はほぼ長方形であり、隣接リードどうしの間に配置を少しずらしてある。パッケージ完成品ではこれらアンカーメンバー36はパッケージのエンキャップレーション材と一緒に組み合って、パッケージ本体からリード30が水平方向に引き抜かれることがないようにする。アンカー耳部の代わりにリード30中の貫通孔または凹みをエンキャップレーション材と一緒に用いることもできる。

【0026】図3は図2の線3-3で見たダムバー29の平行部材内のリードフレーム20の断面図である。タイバット22および二つの互いに相対するリード30が示してある。図示したリード30の各部分はタムバー29のすぐ内側から始まっている。ダイバット22およびリード30の両方の下側表面は垂直方向に凹んだオフまたは実質的に水平の表面を含む。

【0027】図3のダイバット22は平面状の上側の第1の表面23、平面状の反対側の第2の表面24および平面状の同じく反対側の第3の表面25を含む。これら表面と直交する第1の側面表面27か第3の表面25と第2の表面24との間にある。第3の表面25は第2の表面24から深さ「H1」だけ垂直方向に凹んでいる。すなわち、第3の表面25は垂直方向には第1の表面23と第2の表面24との間に位置する。タイバット22の中央部分は第1の表面23と第3の表面25との間の高さ「H」を有する。タイバット22の第3の表面25は第2の表面24の頂部部であり、一つの実施例ではこの第2の表面24を取り囲んでいる。

【0028】図3のリード30の各々は平面状の第1の表面31を含む。第1の表面31の反対側には平面状の第2の表面32および平面状の第3の表面33がある。第2の表面32はタムバー29から始まりタムバー29の内側でタイバット22に向かって少し延びる。この実施例では、第2の表面32は長方形の周縁を有する。第2の表面の長さは用途によって変わるが、パッケージ外部接続いため十分な大きさにする。第3の表面33は

11
第2の表面32とリート30のタイバット22近傍終端34との間に延びる。第3の表面33は第2の表面32から深さ「H1」だけ垂直方向に凹んでいる。すなわち、第3の表面33は垂直方向には第1の表面31と第2の表面32との間に位置する。アンカー耳部36(図示していない)がリート30の第3の面33近傍の横方向側部から垂直に延びている。

[0029] 図1の工程6では、リートフレーム20のエンキャブレーションのあと、リート30をダムバー29の内側で図2の直線A-A、B-B、C-CおよびD-D沿いに切り離す。この切断はリート30の第2の表面32を含む部分で垂直方向に行う。パッケージ完成品では、切断されたリート30の各々の第2の表面32がパッケージを直接的または間接的に外部の印刷配線基板に接続するパッケージコントクトとして作用する。パッケージ完成品ではリート30の第3の表面33はエンキャブレーション材で覆われ、したがってパッケージ本体の内側にある(図5)。

[0030] 図3のリートフレーム20のダイバット22およびリート30の高さ「H」の数値例としては、約0.15乃至0.50ミリメートル、深さ「H1」の数値例としては約0.075乃至0.25ミリメートルが挙げられる。ダイバット22の水平方向インテント「W」の数値例としては約0.025乃至0.25ミリメートルが挙げられる(これらの数値は図中「H」「H1」「W」で示した部分にも適合する)。百分比でいうと、「H1」の値は「H」の値、すなわち第1の表面23および31と第2の表面24および32との間の距離「H」の33%乃至75%の範囲または約50%である。実際の数値は用途によって変動する。

[0031] 図2のリートフレーム20は巻取り金属片から湿式エッチングによって形成する。周知の通り、化学的エッチング(化学的ミリング)は、フィトリックラフィ、フィトレジストおよび金属溶解状化物質を用いて金属条片にパターンをエッチングで形成するプロセスである。通常は、まずフィトレジスト層をその金属条片の片面または両面に付着させる。次に、そのフィトレジスト層を所望のパターンのマスクを通して露光する。そのフィトレジスト層を現像して硬化させ、パターンングしたフィトレジストマスクを形成する。次に、このマスク形成済みの条片の片面または両面に化物質を吹き付けその他の方法で作用させる。金属条片の露出部分はエッチングで除去され、金属条片には所望のパターンが残る。

[0032] 図2および図3(図9、図13、図15および図16も同様)のリートフレーム20を形成するのに二段階エッチング処理を用いる。第1のエッチング工程では、金属条片の平面状表面の片面または両面に付着させたフィトレジストパターンにしたがってその条片の片面または両面からエッチングを進める。この第1のエ

12
ッチング工程で、金属条片の諸部分を完全に除去し、図2に示したとおり、リートフレームの全体的なバケーションを形成する。次に、ダイバットの周縁部およびリードの所望部分を第2のフィトレジストパターンで覆わないまま露出させ、エッチング除去に追した状態にする。第2のエッチング工程ではこの第2のフィトレジストパターンにしたがって一方の側からリートフレームの厚さ方向一部を除去する。この第2のエッチング工程で、図2および図3のリートフレーム凹み面、すなわちタイバット22の第3の表面25およびリート30のダムバー29内側の第3の表面を形成する。ダムバー29の内側では、通常は接続線28もこの第2のエッチング工程にかかる。ダイバットおよびリードの所望部分の厚みがエッチングで除去されると、この第2のエッチング工程を止める。すなわち、この第2のエッチング工程はダイバットおよびリードの所望の部分を厚さ方向に部分的にエッチング除去する。第2のエッチング工程によるエッチングの深さは、ダイバット22およびリート30をパッケージ本体に留めるに十分な量のエンキャブレーション材がダイバット22の第3の表面25およびリート30の第3の表面33の下を流れるようにする必要を満たす値とする。通常は第2のエッチング工程でダイバットおよびリードの厚みの約50%を除去するが、この値はダイバットおよびリードの厚みの約33%乃至75%の範囲で定められる。エッチング処理のはらつきのために、第3の表面25および33は平面状でなくほぼ平面状になるに留まり、ダイバット22およびリート30のエッチングした側壁は90°でなく丸みを帯びた角部を伴うものもある。

[0033] リートフレーム20の形成を、磨き面打抜きにより全体的バターンを形成する工程と、打抜きすみリートフレームのダイバットおよびリートを上述の化学的エッチングにより厚み方向に部分的に凹み表面を形成するように除去する工程とによって行うこともできる。

[0034] 図1の工程2において半導体基板回路タイ52をダイバット22の第1の表面23の中央に設せる。バット22へのタイ52の設置および付着は慣用のタイ付着マシンおよび慣用のダイ付着エポキシによって行うことができる。この工程2およびそれ以後の組立て工程の期間中は、図2のリートフレーム20を静電放電に対するダイ保護のために接地しておく。

[0035] 図1の工程3では、半導体基板回路タイ52(図5)上の図2のオシティングバットと個々のリート30の第1の表面31との間を導電性金属オシティンクワイヤ4またはその同等物で電気的に接続する。第1の表面31は金、銀、ニッケル、パラジウム、銅その他の金属でメッキすることもできる。図2のリートフレーム20は、静電放電による半導体基板回路タイ52の損傷を防ぐためにこのオシティンクワイヤ接続工程の期間中は接地しておく。

[0036] 図1の工程4では、図2のリートフレーム20に高粘性の粘着エンキャップスレーション材を入れる。エンキャップスレーション材は半導体基板回路ダイ52、ポンディングワイヤ54、ダイパッド22の側面表面26および27、ダイパット22の第1の表面23およびダイ3の表面25、リード30の第1の表面31、第3の表面33および側面表面を覆う(図5)。ダイパッド22の第2の表面およびリード30の第2の表面32はエンキャップスレーション材には覆われてなく露出したままである。代替的実施例では、ダイパット22をエンキャップスレーション工程のあいだ裏返しにして、ダイパット22の第2の表面24の下にエンキャップスレーション材の薄い層が形成されるようにする。その実施例では、ダイパット22はパッケージ本体の内部に全体が入る。最後にエンキャップスレーション材を硬化させる。

[0037] 図1の工程4を行なうには用途に応じていくつかの方法がある。例えば、図1の工程4は慣用のプラスチックモールド手法を用いて行なうこともできる。その手法では、図2のリードフレーム20を型の中におき、図4に示すとおり、リードフレーム20の上に固体成形エンキャップスレーション材ブロックを形成する。このエンキャップスレーション材は慣用の手法を用いて導入した慣用のプラスチックモールド材料である。このモールド材料としては、日本の日東電工から市販されているモールド料日東MP-8000ANおよび住友から市販されているモールド料EME7351UTなどが挙げられる。モールド処理の円滑化のため、リードフレーム20に慣用のゲートを設けることもできる。型の側面は完成品取出しを容易にするためにテーパー状にする。

[0038] 工程4のモールド処理の代わりに工程4を液状エンキャップスレーション材の利用によって行なうこともできる。例えば、図2のリートフレーム20をまず水平表面上におく。第2のステップとして、カリフォルニア州インダストリー所在のDexter-Hysol社市販のHYSOL4451エポキシなど慣用の硬化可能な高粘性粘着材の互いに隣接するピースをリードフレーム20に塗布して、ダイ52の周囲およびリード30の少なくともダムバー29内側部分に閉じた長方形のダムを形成する。第3のステップとして、140°Cで1時間加熱してそのピースを硬化させる。第4のステップとして、HYSOL4451液状エンキャップスレーション材などパッケージのエンキャップスレーションに適した慣用の硬化可能な高粘性粘着材をピースの内側に塗布してダム内部の不完全なパッケージをエンキャップスレーション材で覆うようとする。最後のステップとして、140°Cで1時間加熱してエンキャップスレーション材を硬化させ、リードフレーム20上にエンキャップスレーション材の一つの固体ブロックを形成する。この手法を工程4に用いた場合は、工程6は底を用いてエンキャップスレーション材を切削し、直交パッケージ側面を形成するととも

にリートフレームからパッケージ完成品を切り離す。同様のモールド処理およびそれに続く底によるリートフレーム・パッケージ切断工程は1998年6月24日提出の米国特許出願第09/103,760号に記載されており、ここに参照してその記載内容をこの明細書に組み入れる。

[0039] 図1の工程5では、図2のリートフレーム20の諸部分のうち、ダイパット22の第2の表面24、リード30の第2の表面32などエンキャップスレーション材で覆われない部分を、印刷配線基板と両立性ある慣用のメッキ金属でメッキする。このメッキ金属の例としては、用途に応じて金、ニッケル、パラジウム、イシコネル、鉛錫半田、タンタルなどが挙げられる。リートフレーム20の形成に用いた金属がメッキを要しない金属またはメッキしづらい金属である場合は工程5は省略できる。例えば、リードフレーム20形成用板片がニッケルパラジウムメッキを施した鋼である場合は、工程5は省略する。

[0040] 図4は図1の工程1～工程5終了後の図2のリードフレーム20の断続図である。この例では、工程4にモールド処理を用いている。硬化したエンキャップスレーション材のブロックがパッケージ本体51を形成する。パッケージ本体51のテーパー付き側面55はダムバー29の内側にある。したがって、リード30の露出部分はパッケージ本体51の側面51とダムバー29との間で延びている。

[0041] 図1の工程6はエンキャップスレーションずみのリードフレーム20(図4)を図2の線A-A、B-B、C-CおよびD-Dで切断する。図2を参照すると、工程6はダムバー29の内側でリード30を切り離す(図3)。工程2も接続線30をダムバー29の内側で切り離す。最後に、工程6はパッケージ完成品をリートフレーム20の切り捨て可能部分から切り離すことによってパッケージ形成を完了する。

[0042] 工程6はパンチ、鋸または同等の切断装置を用いて行なう。例えば、パッケージ本体51が図5に示すようなモールド体である場合はパンチまたは底を用いる。パンチを用いる場合は、パッケージ完成品を单一のパンチ動作でリードフレーム20から切断する。パッケージを反転させて、ダムバー29の内側でリード30をパンチで切断する。切断の位置は、パッケージ側面55から延びるリード30の切断部分が長さ零ミリメートルから例えば0.5ミリメートルの範囲に入るよう変えることができる。

[0043] 図5はこの発明によるパッケージ完成品50の断面図である。パッケージ完成品50は図2のリートフレーム20で製造し、図4の状態からパンチで切り離したものである。パッケージ50のパッケージ本体51はモールドで形成してある。パッケージ50は平面状の下側の第1の表面55とテーパー付き側面55とを有す

る。

【0044】図2のリートフレーム20から製造したパッケージ50の構造と整合して、図5のパッケージ50のダイバット22はほぼ平面状の上側の第1の表面23を有する。ダイバット22のこの第1の表面23の反対側には、ほぼ平面状の第2の表面24と同様にはほぼ平面状の周縁部の第3の表面25がある。第3の表面25は第2の表面22を取り囲んでおりその第2の表面22から垂直方向に深さ「H1」だけ凹んでいる。第3の表面25は垂直方向には第1の表面23と第2の表面24との間に位置し、パッケージ本体51形成用のエンキャップスレーション材で覆われている。第3の表面25の下のエンキャップスレーション材はダイバット22がパッケージから垂直方向に引っ張られるのを防ぐ。第2の表面22はパッケージ50の下側表面56で露出し、したがってパッケージ50の下側の第2の表面56の一部を形成する。代替的実施例では、ダイバット22はパッケージ本体の内部に完全に含まれる。

【0045】図5において、半導体集積回路ダイ52はダイバット22の第1の表面23に付着させてある。ダイ52のポンディングバット53の各々とリート30の第1の表面との間にポンティングワイヤ54で接続する。

【0046】図5のパッケージ50は複数のリート30を含み、これらリートの各々は図2のリートフレーム20から第2の表面32のダムバー29の内側の点で切り離したものである。切り離されたリート30の配置と形状はパッケージ製造に用いたリードフレームおよび用途に応じて変わる。例えば、図2の場合のようにリート30には直線状のものも曲げ部を含むものもある。

【0047】図2の場合と同様に、切り離しづみのリート30の各々はほぼ平面状の第1の表面31と、その反対側のはほぼ平面状の第2の表面32と、同様に反対側のはほぼ平面状の第3の表面33とを含む。第3の表面33はエンキャップスレーション材による被覆を受けるように第2の表面32から深さ「H1」だけ垂直方向に凹んでいる。すなわち、第3の表面33は垂直方向には第1の表面31と第2の表面32との間に位置する。リート30の第2の表面32はエンキャップスレーション材には覆われず、パッケージ50の下側表面56で露出する。

【0048】図5において、リート30の第1の表面31のうちパッケージ本体51の内部にある部分はダイバット22の第1の表面23と同じ水平面内になる。ダイバット22をモールト内で上に上げた構造の実施例(図示していない)では、リート30の第1の表面31のうちパッケージ本体51の内部にある部分は上がったダイバット22の第1の表面23よりも低い水平面内にある。

【0049】図5の切り離しづみのリート30の各々はパッケージ側面55から横に延びる切離部35を有

する。リート30の第2の表面32の残余の水平部分および下側パッケージ表面56に対し傾斜角θを成すように曲げてある。角度θは約15°乃至70°の範囲に設定できる。図示のとおり、リート30の第2の表面32の上向き曲げ終端部35は露出している。リート30のこの曲げ終端部35の長さはパッケージ側面55から例えば0.15ミリメートルであるが、用途に応じてこの数値は変えることができる。その数値範囲は各ミリメートルから約0.50ミリメートルである。

【0050】図5のリート30の曲げ終端部35の上向きの曲げ部は工程6においてパッケージ50をリートフレーム20からパンチ操作で切り離すスタンピングマシンで形成できる。代替的実施例(図示していない)では、リート30の終端部35をパッケージ側面55に接触するように、すなわち角度θを水平面とデーター付きパッケージ側面55との成す角度と等しくするように曲げる。さらにもう一つの代替実施例(図示していない)では、図1の工程6で、リート30の切断端がパッケージ側面55から横方向にはみ出さないようにパッケージ側面55でリート30を切断する。

【0051】代替的実施例(図示していない)では、リート30の切断しづみ端部35をパッケージ側面55から水平面内で横方向にはみ出させる。すなわち、切断しづみの端部35を図5の場合のように曲げるのではなく、角度θが角度θに等しくなるようリート30の残余の部分と同じ水平面内で横方向に延ばすのである。上記工程6で鋸を用いた場合にそのようなパッケージが得られる。工程6に鋸を用いた場合は、必要に応じて曲げ工程を別に追加して図5の形状の上向き曲げを形成する。

【0052】図6において、半田パンプ57をパッケージ50と印刷配線基板(図示していない)との間に付着させる。半田パンプ57はリート30の第2の表面32に接触し、リート30の曲げ端部35を覆っている。

【0053】代替的実施例(図示していない)では、ダイバット22の露出した第2の表面24を半田ペーストなどで印刷配線基板に適切に接着してパッケージ冷却に備える。この冷却は熱伝導により行われる。

【0054】図7は図5のパッケージ50の下側表面56を示す。パッケージ50の第2の表面56はダイバット22の第2の表面24と、切離しづみのリート30の第2の表面32と、硬化しづみのエンキャップスレーション材11とから成る。リート30の第2の表面36は長方形の周縁部を有する。リート30の切離しづみ終端部35は下側表面56の端からわずかに延びている。第2の表面32は用途によって円形その他の多様な形状と寸法にすることができる。ダイバット22の第2の表面24は長方形の周縁部を有するが、それ以外の形状にすることもできる。

【0055】図7では、リート30の第2の表面32をパッケージ50の下側表面56に端末方に整列配置して

ある。リート30の切離しすみの終端部35は下側表面56の周縁から少し延びている。図8は代替的パッケージ60の下側表面61を示す。図8では、切離しすみリート63の露出した長方形の第2の表面64(図9)をパッケージ60の下側表面61の端の少し内側で一列に並べてある。これら第2の表面64はパッケージ60の下側表面の周縁から例えば約0.05ミリメートルの位置に配置するが、この数値は用途によって変わる。代替的実施例(図示していない)では、第2の表面64は長方形でなく円形の周縁を有し、相互接続用半田球ラントを形成する。

【0056】図9は図8のパッケージ60を製造するためのリートフレーム62のダイバット22およびリート63のダムバー29の内側で見た断面図である。図9のリートフレーム62は図2および図3のリートフレーム20とはほぼ同じであり、リート63の垂直方向に凹ませた下側表面の配列、故および位置を除いてリートフレーム20と同じ方法で製造する。したがって、重複説明は省略する。

【0057】図2のリート30の場合と同様に、図9のリート63はほぼ平面状の第1の表面31と同様にはほぼ平面状の反対側の第2の表面64とを含む。第2の表面64はパッケージの外部コンタクトとして作用する。しかし、図2および図3のリートフレーム20の第2の表面の場合と異なり、図9のリート63の第2の表面64はダムバー29(図2)のすぐ内側またはすぐ外側には位置せず、リート63の第3の表面66および第4の表面65の間でダイバット24により近く位置している。第3の表面66と第4の表面65は第1の表面31と反対側にあり、ほぼ平面状であり、同一平面内にあり、リート63の第2の表面64から深さ「H1」だけ垂直方向に凹んでいる(すなわち、垂直方向には第2の表面31と第2の表面64との間にある)。第4の表面65は横方向にはダムバー29(図示していない)が図2の場合と同じ)と第2の表面64との間にあり、第3の表面66は第2の表面64とダイバット22との間にある。

【0058】図8および図9のリート63の第2の表面64の周縁は多様なパッケージ外部接続を容易にするよう多く多様な形状にすることができる。例えば、この第2の表面64は図8の場合のように長方形の周縁を備える形状にできることができる、また円形の周縁を備える形状にすることもできる。

【0059】図10は図8のパッケージ60の断面図である。図10のパッケージは図1の処理に従い、図9のリートフレームを用いて製造する。図示のとおり、第4の表面65はパッケージ側面55に隣接し、第2の表面64はパッケージ60の下側表面61の周縁端から所定距離だけ内側にある。

【0060】図8および図10において、パッケージ本体を形成するエンキャップレーション材がリート63を

その第2の表面64を除き全部覆っている。すなわち、リート63の第3の表面66および第4の表面65はエンキャップレーション材で覆われておりしたがってパッケージ内部にある。リードの切断端部がパッケージ側面から延びている代替的実施例(例えば図5)では、エンキャップレーション材はパッケージ側面から延びたリード切断部を覆っていない。

【0061】図11は図1の方法で製造可能なこの発明によるもう一つのパッケージの断面図である。図11は図12の様11-11で見た断面を示す。ダイ52を慣用のエポキシダイ接合剤87によりダイバット72の上側の第1の表面82に付着させてある。ダイ52はダイバット72の周縁部を越え、またパッケージ70のリード72の上側の第1の表面76を越えて延びている。したがって、パッケージ70の大きさはチップの大きさとほぼ同じにある。ダイ52の側面52Aとパッケージ側面77との間の距離はポンティングワイヤのある側では約0.6ミリメートルほどにすぎない。代替的実施例(図示していない)では、ダイ53はダイバット72の周縁を越えて延びるが、リート73を越えて延びることはない。もう一つの代替的実施例(図示していない)すなわちポンティングワイヤがダイの4辺全部ではなく2辺だけにある実施例では、ポンティングワイヤの接続のないダイ側面52Aとパッケージ辺との間の距離はごく小さく0.1ミリメートルほどである。

【0062】図11には四つのリート73が示してある。二つの内側のリート73の長さの一部だけがこの図には示してある。これら内側のリートが図13のリートフレーム71で示すとおり横方向曲げを含み、それらが二つの外側リート73の後方にあるからである。

【0063】図1において、短いポンティングワイヤ77がダイ52の上のポンティングバット53の各々とリート73の上側の第1の平面76との間に接続してある。ポンティングワイヤ77の第1の表面76への接続はリート73の第1の端86でパッケージ側面79に隣接して行う。

【0064】図11のパッケージ70はホールグリットアレーパッケージであるが、ラントグリップアレー(LGA)パッケージも可能である。図12に示すとおり相互接続用半田球78のアレーをパッケージ70の下側外面80に形成する。したがって、互いに異なるリート37の第2の表面74とパッケージ側面79との間の距離は変わり得る(図12参照)。

【0065】図11のパッケージ本体81はモールドしたエンキャップレーション材で形成するが、これ以外のエンキャップレーション方法も可能である。図1の工程4の期間中に、ダイ52の下側表面89とリート73の第1の表面との間をエンキャップレーション材が満たす。非導電性(すなわち絕縁性)の粘着材エナキンをダイ52の下側表面89とダイバット72の第1の表面82

2との間に、ダイ52をダイバット72に付着させ、ダイ52をリート73の第1の表面76の上に間隔を隔てて保持する。また、ダイ52がリート73を越えて延びている場合は、追加の絶縁性エポキシ87をダイ55の下側表面89とリート73の第1の表面76との間に、ダイ55とリート73との間に隙間を設ける。

[0066] 図11のリート73の各々にはほぼ平面状の第1の表面76を有する。第1の表面76の反対側には同様にはほぼ平面状の第2の表面74および第3の表面75がある。第2の表面74は各リート73の第1の端86と反対の第2の端85にある。これと対称的に、図6のパッケージ50のリート30の第2の表面32の位置および図8のパッケージ60のリート63の第2の表面64の位置はそれぞれのパッケージのT側外面の周線上またはその近傍にある。

[0067] 図11において、各リート73の第3の表面75はリート73の第2の表面74に隣接しその第2の表面74から深さ「H1」だけ垂直方向に凹んでいる。この第3の表面75は垂直方向には第1の表面76と第2の表面74との間にあり、上述のとおり図3および図5のリート30の第3の表面33と同じ部分エッチング処理で形成する。図示のとおり、エンキャブレーション材が第3の表面75を覆い、リート73がパッケージ本体81から垂直方向に引っ張られるのを防いでいる。エンキャブレーション材はリート73の第2の表面を覆っていない。

[0068] 図11のパッケージ70の第バット72はほぼ平面状の第1の表面82を有する。第1の表面82の反対側には、同様にはほぼ平面状の第2の表面83と同様のはほぼ平面状の第3の表面84とかある。第3の表面84は第2の表面83を取り囲みその表面83から深さ「H1」だけ垂直方向に凹んでいる。ダイバット72の第1の表面82はリート73の第1の表面76と同じ水平面内にある。

[0069] 図11のダイバット72の第3の表面84は垂直方向には第1の表面82と第2の表面83との間にあり、図3および図5のダイバット22の第3の表面23と同じ部分エッチング処理で形成する。図11に示すとおり、エンキャブレーション材がダイバット72の第3の表面84を覆い、ダイバット72が垂直方向にパッケージ本体81から引っ張られるのを防いでいる。エンキャブレーション材はダイバット72の第2の表面を覆っていない。パッケージ冷却を容易にするために、ダイバット72の第2の表面83を半田跡または同等の導体で外部の印刷配線基板に接続することもできる。代替的に、ダイバット72を図1の工程4で上側に設けて、ダイバット72をエンキャブレーション材で覆いパッケージ本体81の内部に取り込むこともできる。その場合は、リート73の第1の表面76はダイバ

ット72の第1の表面82の下に位置づけられる。

[0070] 図12は図11のパッケージ70のT側外面80をリート73の第2の表面74に半田跡を配置する前の状態で示した平面図である。図示のとおり、第2の表面74は円形でありアレー状に配置されている。リート73の第3の表面75はこの図では見えない。すなわち、第3の表面75はエンキャブレーション材で覆われたがってパッケージ本体81の内部にあるからである。金属の角板88をT側表面80の四つの角の各々に配置する。

[0071] 図13は図11および図12のパッケージ70の製造に適したリートフレーム71の平面図である。図2の長方形のダイバット22と異なり、図13のダイバット72はダムバー29の互いに平行な二つの辺に接続された分割型条片である。ダイバット72は四つの長方形部分72を含み、これら四つの部分をパッケージ冷却のために印刷配線基板に半田まで接続する。

[0072] 図13のリート73は用途に応じて多様な形状および長さにできる。より詳細にいうと、リート73のいくつかはダムバー29から第2のリート端85

(図11)における円形の第2の表面74に至る延伸部で横方向に真っ直ぐである。またそれらリート73の他のいくつかはダムバー29と第2のリート端85(図11)における第2の表面74との間に一つ以上の横方向曲げ部を有する。リートフレーム71の各角部における二つのリート73は同一のリート端86に接続してあるが、これは必須ではない。代替の実施例(図示していない)では、リート73にエンキャブレーション材との絡み合せのためのアンカー耳部を設ける。図1の工程6において、各リート73を図13のダムバー29の内側でリートフレーム71から切り離す。この切断はダムバー29の内側で、リートフレーム71の図13の線A-A、B-B、C-CおよびD-Dにおける全周脱角部1188の端の外側で行う。

[0073] 上述のパッケージ、リートフレーム、組立て方法などには、この明細書に基づき多種の変形が可能であることは当業者に明らかであろう。例えば、図14は複数のパッケージを図5、図10または図11に従って同時に並行に製造する代替組立て方法の流れ図である。図14の基本的工程は図1の場合と同じであり、したがって、各工程の詳細な説明は不要であろう。図1の処理と図14の処理との差は複数パッケージの同時並行製造を可能にするようとする工程が変更されていることだけである。図14の処理は工程1においてリートフレーム20、62、71などの複数のリートフレームを一つの金属条片シート上にマトリクスの形でエッチングにより近接形成することによって可能になる。

[0074] 図15は金属条片90上の12個のリートフレーム71のマトリクスを示す。条片90にエッチングされて形成するリートフレーム71の数は変更できる。例

21

えは 条片91に36個または64個のリートフレーム91をエッティングで形成できる。リートフレーム91は、上述の2段階エッティング手法または2段階噴送りスタンピングおよび化学エッティング手法を用いて、条片90に同時に並行にエッティングで形成したものである。図15の形状については、図14の工程4を上述のとおり慣用のモールト手法を用いて行い、条片90の各リートフレーム71上の個々のパッケージ本体は81を形成できる。すなわち型は各ダイに対して個々の型空洞を備え、図4の場合と同様に個々の不完全なパッケージのアレーを形成する。工程6はパンチまたは鋸を用いて個々のパッケージを条片90から切断する。

【0075】図16は8個のリートフレーム20(図21)の二つのマトリクスをエッティングにより形成する代替の条片93を示す。図14の工程4の期間中に個々のパッケージをモールトする代わりに、二つのマトリクスの各々のリートフレーム20全体にわたってエンキャップスレーション材の1ブロックを塗布する。これらエンキャップスレーション材のブロックは、図16のリートフレーム20の各マトリクスの周囲にHYSOL4451接着剤ビーズをまず塗布することによって行う。ビーズ硬化のうち、HYSOL4450液状エンキャップスレーション材またはその同等品をビーズ内に逆流し、各ダイ52およびダム内側の加工中のパッケージ50をエンキャップスレーション材で覆うようにする。次に、エンキャップスレーション材を加熱などにより硬化させ、リートフレーム20の二つのマトリクスの各々の上にエンキャップスレーション材の塗装したブロックを形成する。図14の工程6では、8個の個々のパッケージ50を二つの条片93の各々から切り離すのに鋸を用いる。工程6はリードフレーム20とダイパット22とリード30との間を切断する。また、工程6は直交バッケージ側面を形成するようにエンキャップスレーション材を切断する。

【0076】この発明の実施例の上述の説明は例示のためのものであって限定を意図するものではない。この明細書から、上記以外の実施例が当業者には自明であろう。

【図面の簡単な説明】

【図1】パッケージ製造方法の流れ図。

【図2】パッケージ製造に用いるリートフレームの平面図。

【図3】図2の線3-3でダムバーの内側を見たタイバ

ットおよびリートの断面図。

【図4】図2のリートフレームのモールトしたエンキャップスレーション材によるダイ付着およびエンキャップスレーション後の断面図。

【図5】パッケージ完成品。すなわちパッケージ本体をモールドしてパンチによりリートフレームから分離したパッケージ完成品の断面図。

【図6】リートの露出部分に半田バンプを付着させたものの図5のパッケージの断面図。

【図7】図5のパッケージ下側表面の平面図。

【図8】代替パッケージの下側表面の平面図。

【図9】図8のパッケージの製造のためのダイパットおよびリートのダムバーの内側で見た断面図。

【図10】図8のパッケージの断面図。

【図11】ダイがダイパット周辺から横方向にリートの長さの一部を越えてはみ出している代替的パッケージの断面図。

【図12】相互接続用半田球を備えない図12のパッケージの下側表面の平面図。

【図13】図11および図12のパッケージの製造のためのリートフレームの平面図。

【図14】複数のパッケージを同時に並行に製造する方法の流れ図。

【図15】金属条片のエッティングで形成した6個のリートフレームの二つのマトリクスの平面図。

【図16】金属条片のエッティングで形成した8個のリートフレームの二つのマトリクスの平面図。

【符号の説明】

20	リートフレーム	21	タイバー
22	ダイパット	23	第1の表面
24	第2の表面	25	第3の表面
26	第1の直交側面	27	第2の直交側面
28	接続部	29	ダムバー
30	リート	31	第1の表面
32	第2の表面	33	第3の表面
34	リート先端	35	曲げ端部
36	アンカー耳部	50, 60, 70	パッケージ
51	パッケージ本体	52	タイ
53	ポンティングパット	54	ポンティングワイヤ
55	側面56	56	下側表面
76	半田球		

[図1]

[図7]

[図3]

[図15]

(14)

特開2000-150765

(図2)

(図4)

(図8)

(15)

特開2000-150765

(25)

(图6)

{ 29 }

(图10)

{E} 1 1)

[图 12]

[图 16]

(17)

特開2000-150765

〔図13〕

[図14]

フロントページの焼き

(72)発明者 トーマス ビー、グレン
アメリカ合衆国 アリゾナ州 85233 キ
ルハート、サウス クラウン キー コー
ト 1001

(72)発明者 スコット ジェイ、ショウラー
アメリカ合衆国 アリゾナ州 85296 キ
ルバート、イースト アラビアン コート

1436

(72)発明者 ティエラード ロマン
アメリカ合衆国 アリゾナ州 85284 キ
ンブル、ウェスト バロミー、トライア
428

(72)発明者 シェイ、エッチ、イー
韓国 ソウル、カンドンーク、アムサート
ン、マントンアパートメント 7-202

(19)

特開2000-150765

(72)発明者 ティー、エッチ、ムン
韓国 ソウル、クァンジン-ク、クンジャ
-ドン 465-7