corrected 70235USPCT.ST25 SEQUENCE LISTING

<110>	Brown, Devon Campos, Manuel Dalmia, Bipin Demarest, Stephen Hansen, Genevieve Heifetz, Peter B.	
<120>	Expression in plants of antibodies against enterotoxigenic Escherichia coli	
<130>	70235USPCT	
<140> <141>	10/544,284 2005-08-02	
<150> <151>	PCT/EP2004/001427 2004-02-16	
<150> <151>	us 60/448,429 2003-02-18	
<160>	80	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	DNA	
<220> <223>	codon optimised	
<400> actagt	1 gagg tgcagctcgt ggagtccggc ggcggcttcg tgaagccggg cggctccctc	60
aagctc	tcct gcgccgcctc cggcttcacc ttctccgact acttcatgtc ctggattcgc	120
cagacc	ccgg agaagcgcct ggagtgggtc gccaccatca acaacggcgg ctcccacacc	180
tactgo	tccg acaacgtgaa gggccgcttc accaccttcc gcgacaacgt gaagaacacc	240
ctctac	ctcc agatgtcctc cctcaacttc gaggacaccg ccatgtacta ctgcgcccgc	300
gcctac	tacc gcttcgacgt gcgcgcctgg ttctcctact ggggccaggg caccctcgtg	360
accgtg	tcca cggccaagac caccccgccg tccgtctac	399
<210> <211> <212> <213>	2 582 DNA artificial sequence	
<220> <223>	codon optimised	
<400> agtgac	2 catcc tcctcaccca gtccccggcc atcctctcca tgatcccgcg ccagcgcgtg	60
tccttc	tcct gccgcgcctc ccagatcatc ggcaccacca tccactggtc ccagcagcgc Page 1	120

accgacggct	ccccgcgcct	cctcatccag	tgcgcctccg	agtccatctc	cggcatcccg	180
tcccgcttct	ccggcaccgg	ctccggcacc	gacttcaccc	tcaacttcaa	ctccgtggag	240
tccgagtaca	tcaccgacta	ctactgccag	cagtccaaca	cctggccgac	ctacccgttc	300
ggcggcggca	ccaagctcga	gatcaagcgc	gccgacgccg	ccccgaccgt	gtccatcttc	360
ccgccgtcct	ccgagcagct	cacctccggc	ggcgcgtccg	tggtgtgctt	cctcaacaac	420
ttctacccga	aggacatcaa	cgtgaagtgg	aagatcgacg	gctccgagcg	ccagaacggc	480
gtgctcaact	cctggaccga	ccaggactcc	aaggactcca	cctactccat	gtcctccacc	540
ctcaccctca	ccaaggacga	gtacgagcgc	cacaactcct	ac		582
<210> 3 <211> 399 <212> DNA <213> mous	se					
<400> 3	tgcaactggt	agaatctaga	agaagcttca	tgaagcctgg	agggtccctg	60
	gtgcagcctc					120
	aaaagaggct		•			180
	acaatgtgaa					240
	aaatgagcag					300
	ggttcgacgt					360
	cagccaaaac			333333	J	399
y	y	9	3			
<210> 4 <211> 330 <212> DNA <213> mous	se					
<400> 4 actagtgaca	tcttgctgac	tcagtctcca	gccatcctgt	ctatgattcc	aagacaaaga	60
gtcagtttct	cctgcagggc	cagtcagatc	attggcacaa	ccatacactg	gtctcagcaa	120
agaacagatg	gttctcctag	gcttctcata	cagtgtgctt	ctgagtctat	ctctgggatc	180
ccttccaggt	ttagtggcac	tggatcaggg	acagatttta	ctcttaactt	caacagtgtg	240
gagtctgaat	atattacaga	ttattactgt	caacaaagta	atacctggcc	aacgtacccg	300
ttcggagggg	ggaccaagct	cgagataaaa				330
-210s 5						

<210> 5 <211> 396 <212> DNA <213> artificial sequence

corrected 70235USPCT.ST25						
<220> <223> codon optimised						
<400> 5 actagtgacg tgcagctcgt ggagtccggc ggcggcctcg tgcagccggg cggctcccgc	60					
aagctctcct gcgccgcctc cggcttcacc ttctcctcct tcgccatgca ctgggtgcgc 1	20					
caggccccag agaagggcct ggagtgggtg gcctacatct cctccggctc catcaccatc 1	80					
tactacgccg acaccgtgaa gggccgcttc accgtgtccc gcgacaaccc gaagtccacc 2	40					
ctcttcctcc agatgacctc cctccgcagc gaggacaccg ccatgtacta ctgcgcccgc 3	00					
gacgactacg gctcctccgg ctggtacttc gacgtctggg gcgctggcac cacggtgacc 3	60					
gtgtcctcgg ccaagaccac cccgccgtcc gtctac 3	96					
<210> 6 <211> 336 <212> DNA <213> artificial sequence <220>						
<223> codon optimised						
<400> 6 actagtgaca tcgtgatgtc ccagtccccg tcctccctcg ccgtgtccgc tggcgagaag	60					
gtcaccatgt cctgcaagtc ctcccagtcc ctcctcaact cccgcacccg caagaactac 1	.20					
ctcgcctggt atcagcagaa gccgggccag tccccgaagc tcctcatcta ctgggcctcc 1	.80					
acccgcgagt ccggcgtgcc ggaccgcttc accggctccg gctccggcac cgacttcacc 2	40					
ctcaccatct cctccgtgca ggcggaggac ctcgccgtgt actactgcac ccagtcctac 3	00					
aacctcctca ccttcggcgc cggtaccaag ctcgag 3	36					
<210> 7 <211> 393 <212> DNA <213> artificial sequence						
<220> <223> antiOk88 codon optimised VH from 36-41						
<400> 7 actagtgagg tccagctgca gcagtctgga cctgaactag tgaagactgg ggcttcagtg	60					
aagatatcct gcaaggcttc tgattactca ctcactgatt actacatgca ctgggtcaag 1	L20					
cagagccatg gagagagcct tgagtggatt ggatatatta atttttacaa tggtgctact 1	L80					
aactacaacc agaagttcaa gggcaaggcc acatttactg tagacacatc ctccagcaca 2	240					
gtctacatgc agttcaacag cctgacatct gaagactctg cggtctatta ttgtgtaaga 3	300					
gaagcattac tacggaacta tgctatggac tactggggtc aaggaacctc agtcaccgtc 3	860					
tcctcagcca aaacgacacc cccatctgtc tac Page 3	393					

<210> <211> <212> <213>	8 324 DNA arti	ificia	l sequ	ience				
<220> <223>	anti	i 0K88	codon	optimised \	/L from 36-4	! 1		
<400> actagto	8 Jaaa	atgtg	ctcac	ccagtctcca	gcaatcatgt	ctgcatctcc	aggggaaaag	60
gtcacca	atga	cctgc	agggc	cagctcaagt	gtaagttccc	gttacttgca	ctggtaccag	120
cagaagt	cag	gtgcc	tcccc	caaactctgg	atttatagca	catccaactt	ggcttctgga	180
gtccctg	gctc	gcttc	agtgg	cagtgggtct	gggacctctt	actctctcac	aatcagcagt	240
gtggagg	gctg	aagat	gctgc	cacttattac	tgccagcaat	acagtggtta	cccgtggacg	300
ttcggtg	ggag	gcacc	aagct	cgag				324
<210> <211> <212> <213>	9 408 DNA arti	ificia	1 sequ	ience				
<220> <223>	anti	i 0K88	codon	optimised \	/H from 7-46	5		
<400> actagto	9 gaag	tgaag	cttga	ggagtctgga	ggaggcttgg	tgcaacctgg	aggatccatg	60
agactc	tcct	gtgtt	gcctc	tggattcact	ttcagtaact	actggatgaa	ctgggtccgc	120
cagtct	ccag	agaag	gggct	tgagtgggtt	gctgaaatta	gattgacatc	taataatttt	180
gcaaca	catt	atgcg	gagtc	tgtgaaaggg	aggttcacca	tctcaagaga	tgattccaaa	240
agtagt	gtct	acctg	caaat	gaacaactta	agagctgaag	acactggcat	ttattactgt	300
accaggo	cctt	actac	ggtgg	taggttcttc	tactggtact	tcgatgtctg	gggcgcaggg	360
accacg	gtca	ccgtc	tcctc	aaccaaaacg	acacccccat	ctgtctac		408
<210> <211> <212> <213>	10 324 DNA arti	ificia	l sequ	ience				
<220> <223>	anti	i -K88	codon	optimised \	/L from 7-40	5		
<400> actagto	10 gaaa	ttgtg	ctcac	ccagtctcca	accaccatgg	ctgcatctcc	cggggagaag	60
atcacta	atca	cctgc	agtgc	cagctcaagt	ataagttcca	attacttgca	ttggtatcag	120
canaan	can	natto	tccc	taaactctto	atttatanna	catccaatct	gacttctaga	. 180

ntcccanttc	acttcaataa		rected 7023	SUSPCT.ST25 actctcac	aattoocacc	240
						300
			cyccaycayy	gtaatagtat	accattcacy	
ttcggctcgg	ggacaaagct	cgag				324
<210> 11 <211> 363 <212> DNA <213> mous	;e					
<400> 11 gatgtgcagc	tggtggagtc	tgggggaggc	ttagtgcagc	ctggagggtc	ccggaaactc	60
tcctgtgcag	cctctggatt	cactttcagt	agctttgcaa	tgcactgggt	tcgtcaggct	120
ccagagaagg	ggctggagtg	ggtcgcatat	attagtagtg	gcagtattac	catctactat	180
gcagacacag	tgaagggccg	attcaccgtc	tccagagaca	atcccaagag	caccctgttc	240
ctgcaaatga	ccagtctaag	gtctgaggac	acggccatgt	attactgtgc	aagagacgac	300
tacggtagta	gcgggtggta	cttcgatgtc	tggggcgcag	ggaccacggt	caccgtctcc	360
tca						363
<210> 12 <211> 350 <212> DNA <213> mous	se	·				
<400> 12 gacattgtga	tgtcacagtc	tccatcctcc	ctggctgtgt	cagcaggaga	gaaggtcact	60
atgagctgca	aatccagtca	gagtctgctc	aacagtagaa	cccgaaagaa	ctacttggct	120
tggtaccagc	agaaaccagg	gcagtctcct	aaactgctga	tctactgggc	atccactagg	180
gaatctgggg	tccctgatcg	cttcacaggc	agtggatctg	ggacagattt	cacyctcacc	240
atcagcagtg	tgcaggctga	agacctggca	gtttattact	gcacgcaatc	ttataatctg	300
ctcacgttcg	gtgctgggac	caagctggaa	ctgaatcggg	ctgatgctgc		350
<210> 13 <211> 410 <212> DNA <213> mous	se					
<400> 13 gaggtccagc	tgcagcagtc	tggacctgaa	ctagtgaaga	ctggggcttc	agtgaagata	60
tcctgcaagg	cttctgatta	ctcactcact	gattactaca	tgcactgggt	caagcagagc	120
catggagaga	gccttgagtg	gattggatat	attaatttt	acaatggtgc	tactaactac	180
				catcctccag		240
				attattgtgt		300
					3-33	

2000 and 70225USDST 6725	
corrected 70235USPCT.ST25 ttactacgga actatgctat ggactactgg ggtcaaggaa cctcagtcac cgtctcctca	360
gccaaaacga caccccatc tgtctatcca ctggccccta ctagtgctgc	410
<210> 14 <211> 317 <212> DNA <213> mouse	
<400> 14 gaaaatgtgc tcacccagtc tccagcaatc atgtctgcat ctccagggga aaaggtcacc	60
atgacctgca gggccagctc aagtgtaagt tcccgttact tgcactggta ccagcagaag	120
tcaggtgcct cccccaaact ctggatttat agcacatcca acttggcttc tggagtccct	180
gctcgcttca gtggcagtgg gtctgggacc tcttactctc tcacaatcag cagtgtggag	240
gctgaagatg ctgccactta ttactgccag caatacagtg gttacccgtg gacgttcggt	300
ggaggcacca agctgga	317
<210> 15 <211> 374 <212> DNA <213> mouse	
<400> 15 gaagtgaagc ttgaggagtc tggaggaggc ttggtgcaac ctggaggatc catgagactc	60
tcctgtgttg cctctggatt cactttcagt aactactgga tgaactgggt ccgccagtct	120
ccagagaagg ggcttgagtg ggttgctgaa attagattga catctaataa ttttgcaaca	180
cattatgcgg agtctgtgaa agggaggttc accatctcaa gagatgattc caaaagtagt	240
gtctacctgc aaatgaacaa cttaagagct gaagacactg gcatttatta ctgtaccagg	300
ccttactacg gtggtaggtt cttctactgg tacttcgatg tctggggcgc agggaccacg	360
gtcaccgtct cctc	374
<210> 16 <211> 318 <212> DNA <213> mouse	
<400> 16 gaaattgtgc tcacccagtc tccaaccacc atggctgcat ctcccgggga gaagatcact	60
atcacctgca gtgccagctc aagtataagt tccaattact tgcattggta tcagcagaag	120
ccaggattct cccctaaact cttgatttat aggacatcca atctggcttc tggagtccca	180
gttcgcttca gtggcagtgg gtctgggacc tcttactctc tcacaattgg caccatggag	240
gctgaagatg ttgccactta ctactgccag cagggtaata gtataccatt cacgttcggc	300
tcggggacaa agctcgag	318

<210> 17 <211> 134 <212> **PRT** <213> artificial sequence <220> <223> anti-K99 heavy chain variable region <400> 17 Ala Thr Ser Glu Val Gln Leu Val Glu Ser Gly Gly Phe Val Lys
1 10 15 Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 20 25 30 Ser Asp Tyr Phe Met Ser Trp Ile Arg Gln Thr Pro Glu Lys Arg Leu 35 40 45 Glu Trp Val Ala Thr Ile Asn Asn Gly Gly Ser His Thr Tyr Cys Ser 50 60Asp Asn Val Lys Gly Arg Phe Thr Thr Phe Arg Asp Asn Val Lys Asn 65 70 75 80 Thr Leu Tyr Leu Gln Met Ser Ser Leu Asn Phe Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg Ala Tyr Tyr Arg Phe Asp Val Arg Ala Trp Phe 100 105 110 Ser Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Thr Ala Lys Thr 115 120 125 Thr Pro Pro Ser Val Tyr 130 <210> 18 229 <211> <212> PRT <213> artificial sequence <220> <223> antiOk99 light chain <220> misc_feature <221> <222> (1)..(229)X at positions 225 and 226 designates an unknown amino acid <400> 18

corrected 70235USPCT.ST25
Ala Thr Ser Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Met
1 5 10 15 Ile Pro Arg Gln Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Ile Ile 20 25 30 Gly Thr Thr Ile His Trp Ser Gln Gln Arg Thr Asp Gly Ser Pro Arg
35 40 45 Leu Leu Ile Gln Cys Ala Ser Glu Ser Ile Ser Gly Ile Pro Ser Arg 50 60 Phe Ser Gly Thr Gly Ser Gly Thr Asp Phe Thr Leu Asn Phe Asn Ser 65 70 75 80 Val Glu Ser Glu Tyr Ile Thr Asp Tyr Tyr Cys Gln Gln Ser Asn Thr 85 90 95 Trp Pro Thr Tyr Pro Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg 100 105 110 Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln 115 120 125 Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr 130 135 140 Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln 145 150 155 160 Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr 165 170 175 Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg 180 185 190

His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro 195 200 205

Ile Val Lys Ser Phe Asn Arg Asn Glu Cys Ser Glu Lys Asp Glu Leu 210 215 220

Xaa Xaa Thr Gly Phe 225

<210> 19 <211> 29 <212> DNA

corrected 70235USPCT.ST25 <213> artificial sequence <220> <223> primer <400> 19 accatggatt ttcaagtgca gattttcag 29 <210> 20 <211> 31 <212> DNA <213> artificial sequence <220> <223> Pirmer MLALT3 <400> 20 caccatggag wcacakwctc agtgtctttr t 31 <210> 21 <211> 27 <212> DNA <213> artificial sequence <220> <223> Primer MLALT4 <400> 21 caccatgkcc ccwrctcagy tyctkgt 27 <210> <211> 28 <212> DNA <213> artificial sequence <220> <223> Primer MLALT5 <400> 22 caccatgaag ttgcctgtta ggctgttg 28 <210> 23 35 <211> <212> DNA <213> artificial sequence <220> <223> Primer MH1 <400> 23 atatccacca tggratgsag ctgkgtmats ctctt 35 <210> 24 <211> 35 <212> DNA artificial sequence <213> <220>

Page 9

corrected 70235USPCT.ST25 <223> Primer MH2 <400> 24 35 atatccacca tgracttcgg gytgagctkg gtttt <210> <211> 30 <212> DNA <213> artificial sequence <220> <223> primer 33615 <400> 25 30 gaagatctag acttactatg cagcatcagc <210> 26 <211> 27 <212> DNA <213> artificial sequence <220> <223> primer MVG1R <400> 26 27 ggcagcacta gtaggggcca gtggata <210> 27 <211> 35 <212> DNA <213> artificial sequence <220> <223> Primer MVG2R <400> 27 35 gaggarccac tagtatctcc acacmcaggg gccag <210> 28 19 <211> <212> PRT <213> artificial sequence <220> <223> ER transit peptide <400> 28 Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser Ala Thr Ser

<210> 29 <211> 24 <212> DNA

corrected 70235USPCT.ST25 <213> artificial sequence <220> <223> primer <400> 29 24 acgcgtcgat catccaggtg caac <210> 30 <211> 22 <212> DNA <213> artificial sequence <220> <223> primer <400> 30 22 actagtggcg ctcgcagcga ga <210> 31 <211> 25 <212> DNA <213> artificial sequence <220> <223> primer <400> 31 25 accggttctg ttctgcacaa agtgt 32 21 <210> <211> <212> DNA <213> artificial sequence <220> <223> primer <400> 32 21 acgcgtttgt acccctggat t <210> 33 <211> 22 <212> DNA <213> artificial sequence <220> <223> Primer <400> 33 acgcgtttgc atgcctgcag tg 22 <210> 34 <211> 22 <212> DNA <213> artificial sequence <220>

```
<223> PRIMER
<400> 34
                                                                        22
agtccaacgg tggagcggaa ct
<210> 35
<211> 6
<212> PRT
<213> artificial sequence
<220>
<223> ER retention signal
<400> 35
Ser Glu Lys Asp Glu Leu
1 5
<210>
       36
<211>
      30
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide
<400> 36
                                                                        30
agcttggatc cactagtacc ggtacgcgtg
<210>
       37
<211>
<212>
       30
       DNA
<213>
      artificial sequence
<220>
<223>
      oligonucleotide
<400> 37
                                                                        30
aattcacgcg taccggtact agtggatcca
      38
72
<210>
<211>
<212>
      DNA
<213> artificial sequence
<220>
<223> oligonucleotide
catgtgaggc cacccacaag acctccacct ccccaatcgt gaagagcttc aaccgcaacg
                                                                        60
                                                                        72
agtgctgata ga
<210>
       39
       72
<211>
<212>
       DNA
       artificial sequence
<213>
```

Page 12

<220> <223>	oligonucleotide	
<400> ccggtc	39 tatc agcactcgtt gcggttgaag ctcttcacga ttggggaggt ggaggtcttg	60
tgggtg	gcct ca	72
<210> <211> <212> <213>	40 36 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> agctta	40 cgcg tggatccact agtgagctcg gtaccg	36
<210> <211> <212> <213>	41 36 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> aattcg	41 gtac cgagctcact agtggatcca cgcgta	36
<210> <211> <212> <213>	42 54 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> ccgggc	42 aagt ccgagaagga cgagctgtga taggagctca aggtaccgaa ttca	54
<210> <211> <212> <213>		
<220> <223>	oligonucleotide	
<400> agcttg	43 aatt cggtaccttg agctcctatc acagctcgtc cttctcggac ttgc	54
<210> <211> <212> <213>	DNA	
√220 N		

<223>	primer	COTT CCCCC 7 0253031 CT. 3123	
<400> aagcag	44 tggt atcaacgcag agt		23
<210> <211> <212> <213>	45 30 DNA artificial sequence		
<220> <223>	primer SMART IIA		
<400> aagcag	45 tggt atcaacgcag agtacgc	ggg	30
<210> <211> <212> <213>	46 22 DNA artificial sequence		
<220> <223>	Primer K99HC-3'		
<400> aagtag	46 acag atgggggtgt cg		22
<210> <211> <212> <213>	47 27 DNA artificial sequence		
<220> <223>	Primer K88_746_VAR-H5'		
<400> gccact	47 agtg aagtgaagct tgaggag	·	27
<210> <211> <212> <213>	48 26 DNA artificial sequence		
<220> <223>	Primer K88_1744_VAR_H5	•	
<400> gccact	48 agtg atgtgcagct ggtgga		26
<210> <211> <212> <213>	49 27 DNA artificial sequence		
<220> <223>	Primer K88_3641_VAR_H5	•	
<400×	49		

gccacta	corrected 70235USPCT.ST25 agtg aggtccagct gcagcag	27
<210> <211> <212> <213>	50 26 DNA artificial sequence	
<220> <223>	Primer K88_746_VAR_L5	
<400> ccacta	50 gtga aattgtgctc acccag	26
<210> <211> <212> <213>	51 28 DNA artificial sequence	
<220> <223>	primer K88_746_VAR_L3	
<400> ttatct	51 cgag ctttgtcccc gagccgaa	28
<210> <211> <212> <213>	52 27 DNA artificial sequence	
<220> <223>	Primer K88_3641_VAR_L5	
<400> gccacta	52 agtg aaaatgtgct cacccag	27
<210> <211> <212> <213>	53 28 DNA artificial sequence	
<220> <223>	Primer K88_3641_VAR_L3	
<400> ttatct	53 cgag cttggtgcct ccaccgaa	28
<210> <211> <212> <213>		
<220> <223>	Primer K88_1744_VAR_L5	
<400> gccact	54 agtg acattgtgat gtcacag	27

```
<210>
       55
       30
<211>
<212>
      DNA
<213>
      artificial sequence
<220>
<223>
      Primer K88_1744_VAR_L3
<400>
                                                                        30
ttatctcgag cttggtccca gcaccgaacg
<210>
       56
<211>
       5
<212>
       PRT
       artificial sequence
<213>
<220>
<223>
      Light Chain Variable Domain Motif
<400>
       56
Lys Leu Glu Ile Lys
<210>
       57
<211>
       972
<212>
      DNA
       artificial sequence
<213>
<220>
<223>
      Consensus nucleotide sequence of murine IgG1 heavy chain
<400>
gccaaaacga cacccccatc tgtctatcca ctggcccctg gatctgctgc ccaaactaac
                                                                        60
tccatggtga ccctgggatg cctggtcaag ggctatttcc ctgagccagt gacagtgacc
                                                                       120
tggaactctg gatccctgtc cagcggtgtg cacaccttcc cagctgtcct gcagtctgac
                                                                       180
ctctacactc tgagcagctc agtgactgtc ccctccagca cctggcccag cgagaccgtc
                                                                       240
                                                                       300
acctgcaacg ttgcccaccc ggccagcagc accaaggtgg acaagaaaat tgtgcccagg
                                                                       360
gattgtggtt gtaagccttg catatgtaca gtcccagaag tatcatctgt cttcatcttc
cccccaaagc ccaaggatgt gctcaccatt actctgactc ctaaggtcac gtgtgttgtg
                                                                       420
gtagacatca gcaaggatga tcccgaggtc cagttcagct ggtttgtaga tgatgtggag
                                                                       480
gtgcacacag ctcagacgca accccgggag gagcagttca acagcacttt ccgctcagtc
                                                                       540
agtgaacttc ccatcatgca ccaggactgg ctcaatggca aggagttcaa atgcagggta
                                                                       600
                                                                       660
aacagtgcag ctttccctgc ccccatcgag aaaaccatct ccaaaaccaa aggcagaccg
aaggctccac aggtgtacac cattccacct cccaaggagc agatggccaa ggataaagtc
                                                                       720
                                                                       780
agtctgacct gcatgataac agacttcttc cctgaagaca ttactgtgga gtggcagtgg
aatgggcagc cagcggagaa ctacaagaac actcagccca tcatggacac agatggctct
                                                                       840
```

tacttc	corr gtct acagcaagct caatgtgcag		gggaggcagg	aaatactttc	900
acctgct	tctg tgttacatga gggcctgcac	aaccaccata	ctgagaagag	cctctcccac	960
tctcctg	ggta aa				972
<210> <211> <212> <213>	58 39 DNA artificial sequence				
<220> <223>	Primer for Human CH3				
<400> gaattaa	58 agga tccaaagcca aaggccagcc	ccgcgaacc			39
<210> <211> <212> <213>	59 38 DNA artificial sequence				
<220> <223>	Primer for Human CH3				
<400> tttatte	59 gatt attgctcgag tttacccgga	gacaggga			38
<210> <211> <212> <213>	60 42 DNA artificial sequence				
<220> <223>	primer for Murine CH3				
<400> aattaa	60 tgaa ttaaggatcc aagaccaagg	gccgcccgaa	gg		42
<210> <211> <212> <213>					
<220> <223>	Primer for Murine CH3				
<400> tttatte	61 gatt attgctcgag cttgcccggg	gagtgagaga	gg		42
<210> <211> <212> <213>	62 38 DNA artificial sequence				
<220> <223>	Primer for Bovine CH3				

<pre><400> 62 aattaatgaa ttaaggatcc cgcaccaaag gccctgcc 38</pre>	}
<210> 63 <211> 40 <212> DNA <213> artificial sequence	
<220> <223> Primer for Bovine CH3	
<400> 63 tttattgatt attgctcgag cttgccggcg gacttggagg 40)
<210> 64 <211> 42 <212> DNA <213> artificial sequence	
<220> <223> Primer for Bovine CH2CH3	
<400> 64 ttaatgaatt aaggatccgg cggcccatct gtgttcatct tc 42	2
<210> 65 <211> 40 <212> DNA <213> artificial sequence	
<220> <223> primer for Bovine CH2CH3	
<400> 65 tttattgatt attgctcgag cttgccggcg gacttggagg 40	C
<210> 66 <211> 230 <212> PRT <213> artificial sequence	
<220> <223> Consensus amino acid sequence of IgG Fc sequences	
<400> 66	
His Cys Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 1 5 10 15	
Ile Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 20 25 30	
Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val 35 40 45	
Gln Pro Val Phe Ser Trp Tyr Val Asp Gly Val Glu Val His Thr Ala	

Lys Met Leu Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg 65 70 75 80

55

Val Val Ser Val Leu Pro Ile Gln His Gln Asp Trp Leu Asn Gly Lys 85 90 95

Glu Phe Lys Cys Lys Val Asn Asn Lys Ala Leu Pro Ala Pro Ile Glu 100 105 110

Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Glu Pro Gln Val 115 120 125

Tyr Val Leu Pro Pro Pro Arg Glu Glu Leu Ser Lys Asn Asp Thr Val 130 135 140

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Pro Asp Ile Ala Val 145 150 155 160

Glu Trp Gln Ser Asn Gly Gln Pro Glu Pro Glu Asn Lys Tyr Lys Thr 165 170 175

Thr Pro Pro Gln Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys 180 185 190

Leu Ser Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Thr Cys 200 205

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 210 215 220

Ser Lys Ser Pro Gly Lys 225 230

<210> 67

<211> 471

<212> PRT

<213> mouse

<400> 67

Thr Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala 1 10 15

Ser Ala Thr Ser Asp Val Gln Leu Val Glu Ser Gly Gly Leu Val 20 25 30

Gln Pro Gly Gly Ser Arg Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Page 19 Phe Ser Ser Phe Ala Met His Trp Val Arg Gln Ala Pro Glu Lys Gly 50 60 Leu Glu Trp Val Ala Tyr Ile Ser Ser Gly Ser Ile Thr Ile Tyr Tyr 65 70 75 80 Ala Asp Thr Val Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Pro Lys 85 90 95 Ser Thr Leu Phe Leu Gln Met Thr Ser Leu Arg Ser Glu Asp Thr Ala $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$ Met Tyr Tyr Cys Ala Arg Asp Asp Tyr Gly Ser Ser Gly Trp Tyr Phe 115 120 125Asp Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser Ala Lys Thr 130 135 140 Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr 145 150 155 160 Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu 165 170 175 Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His 180 185 190 Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser 195 Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro 225 230 235 240 Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val Pro Glu Val Ser 245 250 255 Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr 260 265 270 Leu Thr Pro Lys Val Thr Cys Val Val Val Asp Ile Ser Lys Asp Asp 275 280 285

corrected 70235USPCT.ST25 Pro Glu Val Gln Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr 290 295 300 Ala Gln Thr Gln Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser 305 310 315 320 Val Ser Glu Leu Pro Ile Met His Gln Asp Trp Leu Asn Gly Lys Glu 325 330 335 Phe Lys Cys Arg Val Asn Ser Ala Ala Phe Pro Ala Pro Ile Glu Lys 340 345 350 Thr Ile Ser Lys Thr Lys Gly Arg Pro Lys Ala Pro Gln Val Tyr Thr 355 360 365 Ile Pro Pro Pro Lys Glu Gln Met Ala Lys Asp Lys Val Ser Leu Thr 370 375 380 Cys Met Ile Thr Asp Phe Phe Pro Glu Asp Ile Thr Val Glu Trp Gln 385 395 400 390 Trp Asn Gly Gln Pro Ala Glu Asn Tyr Lys Asn Thr Gln Pro Ile Met
405 410 415 Asp Thr Asp Gly Ser Tyr Phe Val Tyr Ser Lys Leu Asn Val Gln Lys 420 425 430 Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys Ser Glu Lys Asp Glu Leu <210> 68 <211> 244 <212> PRT <213> mouse <400> 68 Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser 1 5 10 15 Ala Thr Ser Asp Ile Val Met Ser Gln Ser Pro Ser Ser Leu Ala Val 20 25 30 corrected 70235USPCT.ST25
Ser Ala Gly Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu
35 40 45

Leu Asn Ser Arg Thr Arg Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys 50 60

Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu 65 70 75 80

Ser Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe 85 90 95

Thr Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr 100 105 110

Cys Thr Gln Ser Tyr Asn Leu Leu Thr Phe Gly Ala Gly Thr Lys Leu 115 120 125

Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro 130 135 140

Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu 145 150 155 160

Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly 165 170 175

Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser 180 185 190

Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp 195 200 205

Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr 210 215 220

Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys Ser Glu 225 230 235 240

Lys Asp Glu Leu

<210> 69

<211> 469

<212> PRT

<213> mouse

<400> 69

corrected 70235USPCT.ST25 Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser 1 5 10 15 Ala Thr Ser Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys
20 25 30 Thr Gly Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Asp Tyr Ser Leu 35 40 45 Thr Asp Tyr Tyr Met His Trp Val Lys Gln Ser His Gly Glu Ser Leu 50 60Glu Trp Ile Gly Tyr Ile Asn Phe Tyr Asn Gly Ala Thr Asn Tyr Asn 65 70 75 80 Gln Lys Phe Lys Gly Lys Ala Thr Phe Thr Val Asp Thr Ser Ser Ser 90 95 Thr Val Tyr Met Gln Phe Asn Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110Tyr Tyr Cys Val Arg Glu Ala Leu Leu Arg Asn Tyr Ala Met Asp Tyr 115 120 125 Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro 130 135 140 Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser 145 150 155 160 Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val 165 170 175 Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe 180 185 190 Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr 195 200 205 Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala 210 215 220 His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp 225 230 235 240 Cys Gly Cys Lys Pro Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val 245 250 255

Phe Ile Phe Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr 260 265 270

Pro Lys Val Thr Cys Val Val Val Asp Ile Ser Lys Asp Asp Pro Glu 275 280 285

Val Gln Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln 290 295 300

Thr Gln Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser 305 310 315 320

Glu Leu Pro Ile Met His Gln Asp Trp Leu Asn Gly Lys Glu Phe Lys 325 330 335

Cys Arg Val Asn Ser Ala Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile 340 345 350

Ser Lys Thr Lys Gly Arg Pro Lys Ala Pro Gln Val Tyr Thr Ile Pro 355 360 365

Pro Pro Lys Glu Gln Met Ala Lys Asp Lys Val Ser Leu Thr Cys Met 370 375 380

Ile Thr Asp Phe Phe Pro Glu Asp Ile Thr Val Glu Trp Gln Trp Asn 385 390 395 400

Gly Gln Pro Ala Glu Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr 405 410 415

Asp Gly Ser Tyr Phe Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn 420 425 430

Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu
435 440 445

His Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys Ser 450 455 460

Glu Lys Asp Glu Leu 465

<210> 70

<211> 240

<212> PRT

<213> mouse

<400> 70

Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser 1 10 15

Ala Thr Ser Glu Asn Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala 20 25 30

Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val 35 40 45

Ser Ser Arg Tyr Leu His Trp Tyr Gln Gln Lys Ser Gly Ala Ser Pro 50 60

Lys Leu Trp Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val Pro Ala 65 70 75 80

Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser 85 90 95

Ser Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser 100 105 110

Gly Tyr Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg 115 120 125

Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln 130 140

Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr 145 150 155 160

Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln
165 170 175

Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr 180 185 190

Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg 195 200 205

His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro 210 215 220

Ile Val Lys Ser Phe Asn Arg Asn Glu Cys Ser Glu Lys Asp Glu Leu 225 230 235 240

<210> 71 <211> 474

<212> PRT <213> mouse

<400> 71

Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser 1 5 10 15

Ala Thr Ser Glu Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln
20 25 30

Pro Gly Gly Ser Met Arg Leu Ser Cys Val Ala Ser Gly Phe Thr Phe 35 40 45

Ser Asn Tyr Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu 50 60

Glu Trp Val Ala Glu Ile Arg Leu Thr Ser Asn Asn Phe Ala Thr His 70 75 80

Tyr Ala Glu Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser 85 90 95

Lys Ser Ser Val Tyr Leu Gln Met Asn Asn Leu Arg Ala Glu Asp Thr 100 105 110

Gly Ile Tyr Tyr Cys Thr Arg Pro Tyr Tyr Gly Gly Arg Phe Phe Tyr 115 120 125

Trp Tyr Phe Asp Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser 130 135 140

Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala 145 150 155 160

Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr 165 170 175

Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser 180 185 190

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu 195 200 205

Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val 210 215 220

Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys 225 230 235 240 Page 26

Ile Val Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val Pro 245 250 255

Glu Val Ser Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Val Leu 260 265 270

Thr Ile Thr Leu Thr Pro Lys Val Thr Cys Val Val Asp Ile Ser 275 280 285

Lys Asp Asp Pro Glu Val Gln Phe Ser Trp Phe Val Asp Asp Val Glu 290 295 300

Val His Thr Ala Gln Thr Gln Pro Arg Glu Glu Gln Phe Asn Ser Thr 305 310 315 320

Phe Arg Ser Val Ser Glu Leu Pro Ile Met His Gln Asp Trp Leu Asn 325 330 335

Gly Lys Glu Phe Lys Cys Arg Val Asn Ser Ala Ala Phe Pro Ala Pro 340 345 350

Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Arg Pro Lys Ala Pro Gln 365 360

Val Tyr Thr Ile Pro Pro Pro Lys Glu Gln Met Ala Lys Asp Lys Val 370 375 380

Ser Leu Thr Cys Met Ile Thr Asp Phe Phe Pro Glu Asp Ile Thr Val 385 390 395 400

Glu Trp Gln Trp Asn Gly Gln Pro Ala Glu Asn Tyr Lys Asn Thr Gln 405 410 415

Pro Ile Met Asp Thr Asp Gly Ser Tyr Phe Val Tyr Ser Lys Leu Asn 420 425 430

Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser Val 435 440 445

Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His 450 455 460

Ser Pro Gly Lys Ser Glu Lys Asp Glu Leu 465 470

<210> 72

<211> 268

<212> PRT <213> mouse

<400> 72

Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser 1 5 10 15

Ala Thr Ser Glu Ile Val Leu Thr Gln Ser Pro Thr Thr Met Ala Ala 20 25 30

Ser Pro Gly Leu Tyr Glu Lys Ile Thr Ile Thr Cys Ser Ala Ser Ser 35 40 45

Ser Ile Ser Ser Asn Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Leu 50 60

Tyr Phe Ser Pro Lys Leu Leu Ile Tyr Arg Thr Ser Asn Leu Ala Ser 65 70 75 80

Gly Leu Tyr Val Pro Val Arg Phe Ser Gly Leu Tyr Ser Gly Leu Tyr 85 90 95

Ser Gly Leu Tyr Thr Ser Tyr Ser Leu Thr Ile Gly Leu Tyr Thr Met $100 \hspace{1cm} 105 \hspace{1cm} 110$

Glu Ala Glu Asp Val Ala Thr Tyr Tyr Cys Gln Gln Gly Leu Tyr Asn 115 120 125

Ser Ile Pro Phe Thr Phe Gly Leu Tyr Ser Gly Leu Tyr Thr Lys Leu 130 140

Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro 145 150 155 160

Ser Ser Glu Gln Leu Thr Ser Gly Leu Tyr Gly Leu Tyr Ala Ser Val 165 170 175

Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp 180 185 190

Lys Ile Asp Gly Leu Tyr Ser Glu Arg Gln Asn Gly Leu Tyr Val Leu 195 200 205

Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser 210 215 220

Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Page 28 230

Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser 245 250 255

Phe Asn Arg Asn Glu Cys Ser Glu Lys Asp Glu Leu 260 265

<210> 73

<211> 10

<212> PRT

<213> artificial sequence

<220>

<223> Predicted N-terminal Sequence of 36/41 VL

<400> 73

Glu Asn Val Leu Thr Gln Ser Pro Ala Ile 1 5 10

<210> 74

<211> 9

<212> PRT

<213> artificial sequence

<220>

<223> Obtained N-terminal of 36/41 VL

<400> 74

Val Arg Leu Thr Gln Ser Pro Ala Ile 1 5

<210> 75

<211> 10

<212> PRT

<213> artificial sequence

<220>

<223> Predicted N-terminal sequence of 36/41 VH

<400> 75

Glu Val Gln Leu Gln Gln Ser Gly Pro Glu 1 5 10

<210> 76

<211> 10

<212> PRT

<213> artificial sequence

<220>

<223> Obtained N-terminal sequence of 36/41 VH

<400> 76

```
corrected 70235USPCT.ST25
Glu Val Gln Leu Gln Gln Ser Gly Pro Glu
<210>
       77
       10
<211>
<212>
       PRT
<213>
       artificial sequence
<220>
<223>
       Predicted N-terminal sequence of 36/41 derived VL produced in Cor
      77
<400>
Glu Asn Val Leu <u>T</u>hr Gln Ser Pro Ala <u>I</u>le
<210>
       78
<211>
      9
<212> PRT
      artificial sequence
<213>
<220>
       Obtained N-terminal sequence of 36/41 derived VL prod. in Corn
<223>
       78
<400>
Leu Val Leu Thr Gln Ser Pro Ala Ile
<210>
       79
<211>
       10
<212>
       PRT
       artificial sequence
<213>
<220>
<223>
       Predicted N-terminal sequence of 36/41 derived VH in corn
<400>
       79
Glu Val Gln Leu Gln Gln Ser Gly Pro Glu
<210>
       80
<211>
       10
<212>
       PRT
<213>
       artificial sequence
<220>
<223>
       obtained N-terminal sequence of 36/41 derived VH in corn
<220>
       misc_feature
<221>
<222>
       (2)..(2)
<223>
       Xaa can be any naturally occurring amino acid
<400>
Glu Xaa Gln Leu Gln Gln Ser Gly Pro Glu
                                         Page 30
```

1

5