Thursday, November 29, 2018

9:43 AM

https://filestore2.aqa.org.uk/resources/computing/AQA-7516-7517-TG-BA.PDF

https://photos.google.com/share/AF1QipP3_VO6_GMJWDf4Olk23QlgznYzsN_5jNuDYNeyOAu3YFaohjFw-7rsPmcZo1JdxA? key=enFlQjNtckRwRjhvemNNM3h5S0JPRUJUV2dpTE9B

Remember from test that its safest to just put the dot in for multiplication anyway.

boolean_al gebra_laws

Boolean Algebra Laws

Joe Iddon

January 21, 2019

In the following summary of the laws of boolean algebra $x,y,z\in\{true,false\};$ the conjunction or is denoted as +; the disjunction and is denoted as \cdot and the negation not as \overline{x} .

Name of Law	OR Operation (+)	AND Operation (\cdot)
Identity	x + 0 = x	$x \cdot 1 = x$
Complementation	$x+\overline{x}=1^{\dagger}$	$x\cdot \overline{x}=0^{\dagger}$
Associativity	x + (y + z) = (x + y) + z	$x\cdot (y\cdot z)=(x\cdot y)\cdot z$
Commutativity	x + y = y + x	$x\cdot y=y\cdot x$
Distributivity	$x + (y \cdot z) = (x + y) \cdot (x + z)^{\dagger}$	$x\cdot (y+z)=(x\cdot y)+(x\cdot z)$
Annihilator	$x+1=1^\dagger$	$x \cdot 0 = 0$
Idempotence	$x+x=x^\dagger$	$x\cdot x=x^\dagger$
Absorption	$x+(x\cdot y)=x^\dagger$	$x\cdot(x+y)^\dagger=x$
De Morgan's	$\overline{x+y}=\overline{x}\cdot\overline{y}$	$\overline{x\cdot y} = \overline{x} + \overline{y}$

Note that laws with † do not hold in ordinary algebra.

We also have the Double Negation Law, seen below.

$$\overline{(\overline{x})} = x$$


```
Question en bodean Algebra page 250 bond book
0
     1) (A+B) · (A+B) = A·A+A·B+B·A+B·8
                        = A . B + B . A . /
       very:
                           A+B A+B (A+B) · (A+B) A·B B-A A·B+ B·A.
        AB
                  1
                          1
                                 0
                                        0
             1
                  0
                       0
                                                             1
              1
         A(\bar{A}+B)(\bar{B}+c) = (A\bar{A}+AB)(\bar{B}+c)
                           AB(B+c)
                        = ABB+ ABC
                        = ABC.
                    A B A+B 5+0 A(A+B)(B+c)
                                                  ABL
                (
                               91
                                                  0
               1 1
        0
                                                  0
                               01
                1
                          6
                0 0
                                     RI
                                                  1
     3) see above.
       A+A.B = A(1+B) = A
        A + A . B = (A + A) . (A + B) = A + B -: x + (x =) = (x + Y) . (x + Z)
     6) A+A·B+B+C = (A+A). (A+B)+C = A+B+C
     7) A+A+C+B+D(BC+AZ)
        = A + C + B+ BCD+ACD
        = A+C+B+ c(BD+AD)
        = A + B + C + B D + AD
        = A + B + C+D + (A+A). (A+D)
        = A + B + C + D + A + P
        - A + B+ C+p
```

5	B) AEC + AE		
	= A B (c+c)	The sales and the sales are	
	= AB /		
) A . (A+8) +		
1. 1.1.	= A · (A+B-	+8)	
	= A /		
1) /A · B + A · B) · A · B + A · B	
		A.A.B.B+ A.D	
	/	B . 4 + 0 +	
	= A.ō/		
1) (A+B) · (A		
	= A · A + B · A		
	= 0 + B. A		
	$= B \cdot A + \overline{A} \cdot \overline{8}$	as required.	
	28.4	Gillohaarb	
	Summary	of Laws:	
	,	AND	OR
	Identity	A.1 = A	A + 0 = A
desit	Null	A.0 =0	A+1=1
chaye nexult -	Idempterce	A. A = A	A + A = A
commute.	loverse	A.A = 0	A + A = 1
to have aroug -	"> Corrubative	A · B = 6 · A	A + B = B + A
assiciale Lygroup	Associative	(A.B). C = A. (B.C)	(A+B)+c=A+(B+c)
	Distributive	A+B. C = (A+B). (A+C)	A.(B+c) = A.B + A.C
	Absorption	A . (A+B) = A	A+ A . B = A
(8)	De Morgan's	$\overline{(A \cdot B)} = \overline{A} + \overline{B}$	$(\overline{A}+B) = \overline{A} \cdot \overline{B}$
	Pouble Complere	$at \bar{A} = A$	SALES ALL SELA
-			
		A + B-1	

1) A·A+B·1 (idenpotone+
= A+B (identity) 2) A. (A+B) (distributive) = AA+AB = AB 3) (A+B) (A+B) (3xdistributive) = AA+AB+BA+BB : AB+BA =(B+A).(B+B) (distribution) = B+A = A+B 5) A + AB = A (absorption) 6) A.B.+ A.B (De Morgon's) = (A+B) + (A+B)

```
Band book port 2 questions page 250 -
 1) (A+B). (A+B)
 = AA + RA + AB + BB
 = AB + BM
 2) A(A+B)(B+c)
  = (A A + AB)(B+c)
  = AB(B+c)
  = ABB+ABC
  : ABC
                         (A+8) - (A+8)
                  A+B
                                        AB + BA
           Ã+B
                            0
           0
             M+B
                    8+6
                           A ( + B) ( B+ c)
                                            ABL
     0
   0
                                             0
     0)
                    0
             0
4) A+A.B
 = A
                     A + A . B = A+B
5) A + A - B
= (A+A) . (A+B)
= A+8
6) A+ A. B+ B+C
= (A + A). (A+B) + ++++
= A + B+ Buckc
= A + (8+B) - (B+1)
= A + B + c
                                  A+AC+B+D(BZ+AZ)
7) A+A.C+B+O. (BC+AC)
                                = A + C + B + DB = + 40 =
= A.C+B+ OBC+ DAC
                                = ++c+B+2(0B+AD)
= A(+(B+0)(8+2)+0AC
                                 = A + L + B + OB + AD
= + (+(B+D)(B+c)+DAC
= AC+B+BE+BO+OC+ DAE
                                 = A + ( +8+0+AD
= A+13+c (adsorption lews)
                                = A+C+8+D
8) ABC + ABC
 = AB(C+2)
= AB
9) A (A+B)+AB
= AA+AB+ AB
= AB+ AB
= A
```

```
Bond book part 2 questions page 250 onwards
10) (AB+AB) AB +AB
 AB AB + ABAB+AB
= AB
11) (A+B) (A+B)
= AA + AB + BA + BB
= AB+BM
12) AB+AB = A+B+ A+B
17) A+B+ A+B
= AB+AB
 = (A+B)(A+B)
 = AA + A E + 8A + B B
 = AB+BA
14) AB+A
 = A+B+A
15) AB AB
=(A+B)(A+B)
 = AA + AB + BA +8B
 = B
16) a) A+B+AR
   = AB(A+B)
   = ABA + ABB
   = AB
 6) A(A+B)
 = A AB
 =0
 () ABC + AB
 = AB (absorption)
d) A+AB
 = AB
ed) AB+ AB
 = A+ B+ A+B
IF) WX+ WYZ
```