Markov Networks in Computer Vision

Sargur Srihari srihari@cedar.buffalo.edu

Markov Networks for Computer Vision

- Some applications:
 - 1. Image segmentation
 - 2. Removal of blur/noise
 - 3. Stereo reconstruction
 - 4. Object recognition
- Typically called MRFs in vision community

1. Image Segmentation Task

- Partition the image pixels into regions corresponding to distinct parts of scene
- Different variants of segmentation task
 - Many formulated as a Markov network
- Multiclass segmentation
 - Each variable X_i has a domain $\{1,...,K\}$ pixels
 - Value of X_i represents region assignment for pixel i , e.g., grass, water, sky, car
 - Classifying each pixel is expensive
 - Oversegment image into superpixels (coherent regions) and classify each superpixels
 - All pixels within region are assigned same value

Variables in Computer Vision

- X_i: Pixels or Super-pixels
- Joint probability distribution over an image
- Log-linear model:

$$P(X_1,..X_n;\theta) = \frac{1}{Z(\theta)} \exp\left\{\sum_{i=1}^k \theta_i f_i(D_i)\right\} \left[\ln Z(\theta) = \ln \sum_{\xi} \exp\left\{\sum_i \theta_i f_i(\xi)\right\} \right]$$

$$\ln Z(\theta) = \ln \sum_{\xi} \exp \left\{ \sum_{i} \theta_{i} f_{i}(\xi) \right\}$$

 $\mathcal{F}=\{f_i\}$: Features between variables $A,B \in D_i$:

$$f_{a^0b^0}(a,b) = I\{a=a^0\}I\{b=b^0\}$$

Network Structure

- In most applications structure is pairwise
 - Variables correspond to pixels
 - Edges (factors) correspond to
 - interactions between adjacent pixels in grid on image
 - Each interior pixel has exactly four neighbors
 - Value space of variables and exact form of factors depend on task

- Usually formulated:
 - Factors in terms of energies
 - Negative log potentials
 - Values represent penalties:
 - » lower value = higher probability

Three Examples from Computer Vision

- Image Segmentation
 Partition image pixels into regions
- Image Denoising Restore "true" value of all pixels
- 3. Stereo Reconstruction

 Reconstruct depth disparity of each pixel

Model

- Edge potential between every pair of superpixels X_i , X_j
 - Encodes a contiguity preference
 - With a penalty λ whenever $X_i \neq X_j$
 - Model can be im[roved by making penalty depend on presence of an image gradient between pixels
 - Even better model:
 - Non default values for class pairs
 - Tigers adjacent to vegetation, water below vegetation

Graph from Superpixels

- A node for each superpixel
- Edge between nodes if regions are adjacent
- This defines a distribution in terms of this graph

Features for Image Segmentation

- Features extracted for each superpixel
 - Statistics over color, texture, location
 - Features either clustered or input to local classifiers to reduce dimensionality
 - Node potential is a function of these features
 - Factors depend upon pixels in image
 - Each image defines a different probability distribution over segment labels for pixels or superpixels
- Model in effect is a Conditional Random Field

Importance of Modeling Correlations between superpixels

Original image

Oversegmented image-superpixels Each superpixel is alone-each

Classification using node potentials a random variable superpixel classified independently

Segmentation using pairwise Markov Network encoding interactions between adjacent superpixels

Metric MRFs

- Class of MRFs used for labeling
- Graph of nodes X₁,...X_n related by set of edges E
- Wish to assign to each X_i a label in space $V = \{v_1, \dots v_k\}$
- Each node, taken in isolation, has its preference among possible labels
- Also need to impose a soft"smoothness" constraint that neighboring nodes should take similar values

Encoding preferences

- Node preferences are node potentials in pairwise MRF
- Smoothness preferences are edge potentials
- Traditional to encode these models in negative log-space— using energy functions
- With MAP objective we can ignore the partition function

Energy Function

Energy function

$$E(x_1,..x_n) = \sum_{i} \varepsilon_i(x_i) + \sum_{\{i,j\}} \varepsilon_{ij}(x_i x_j)$$

Goal is to minimize the energy

$$\arg_{\min_{x_1,...x_n}} E(x_1,...x_n)$$

Smoothness definition

Slight variant of Ising model

$$\varepsilon_{ij}(x_1, x_j) = \begin{cases} 0 & x_i = x_j \\ \lambda_{i,j} & x_i \neq x_j \end{cases}$$

 Obtain lowest possible pairwise energy (0) when neighboring nodes X_i, X_i take the same value and a higher energy $\lambda_{i,i}$ when they do not

Generalizations

- Potts model extends it to more than two labels
- Distance function on labels
 - Prefer neighboring nodes to have labels smaller distance apart

Metric definition

- A function μ : $V \times V \rightarrow [0,\infty)$ is a metric if it satisfies
 - Reflexivity: $\mu(v_k, v_l) = 0$ if and only if k=l
 - Symmetry: $\mu(v_k, v_l) = \mu(v_l, v_k)$;
 - Triangle Inequality: $\mu(v_l, v_l) + \mu(v_l, v_m) \ge \mu(v_k, v_m)$
- μ is a semi-metric if it satisfies first two
- Metric MRF is defined by defining

$$\varepsilon_{i,j}(v_k, v_j) = \mu(v_k, v_l)$$

• A common metric: $\varepsilon(x_i,x_j) = \min(c||x_i-x_j||_dist_{max})_{16}$

2. Image denoising

- Task: Restore true value given noisy pixel values
- Node potential $\phi(X_i)$ for each pixel X_i
 - penalize large discrepancies from observed pixel value y_i
- Edge potential
 - Encode continuity between adjacent pixel values
 - Penalize cases where inferred value of X_i is too far from inferred value of neighbor X_i
 - Important not to over-penalize true edge disparities (edges between objects or regions)
 - Leads to oversmoothing of image
 - Solution: Bound the penalty using a truncated norm

$$-\varepsilon(x_i,x_j) = \min(c||x_i-x_j||_{p_i} \operatorname{dist}_{max}) \text{ for } p \in \{1,2\}$$

Binary Image de-noising

- Noise removal from binary image
- Observed noisy image
 - Binary pixel values $y_i \in \{-1,+1\}, i=1,...,D$

- Binary pixel values $x_i \in \{-1,+1\}, i=1,...,D$
- Noisy image assumed to randomly flip sign of pixels with small probability

Markov Random Field Model

 x_i = unknown noise-free pixel y_i = known noisy pixel

Known

- Strong correlation between x_i and y_i
- Neighbor pixels x_i and x_j are strongly correlated
- Prior knowledge captured using MRF

Energy Functions

- Graph has two types of cliques
 - $-\{x_i,y_i\}$ expresses correlation between variables
 - Choose simple energy function $-\eta \ x_i y_i$
 - Lower energy (higher probability) when x_i and y_i have same sign
 - $-\{x_i,x_i\}$ which are neighboring pixels
 - Choose $\beta x_i x_j$

Potential Function

Complete energy function of model

$$E(x, y) = h \sum_{i} x_{i} - \beta \sum_{\{i, j\}} x_{i} x_{j} - \eta \sum_{i} x_{i} y_{i}$$

- The hx_i term biases towards pixel values that have one particular sign
- Which defines a joint distribution over x and y given by

$$p(x,y) = \frac{1}{Z} \exp\{-E(x,y)\}\$$

De-noising problem statement

- We fix y to observed pixels in the noisy image
- p(x|y) is a conditional distribution over all noise-free images
 - Called *Ising* model in statistical physics
- We wish to find an image x that has a high probability

De-noising algorithm

- Gradient ascent
 - Set $x_i = y_i$ for all i
 - Take one node x_i at a time
 - evaluate total energy for states $x_i = +1$ and $x_i = -1$
 - keeping all other node variable fixed
 - Set x_j to value for which energy is lower
 - This is a local computation
 - which can be done efficiently
 - Repeat for all pixels until
 - a stopping criterion is met
 - Nodes updated systematically
 - by raster scan or randomly
- Finds a local maximum (which need not be global)
- Algorithm is called Iterated Conditional Modes (ICM)

Image Restoration Results

Parameters

$$\beta = 1.0, \ \eta = 2.1, \\ h = 0$$

Noise Free image

Noisy image where 10% of pixels are corrupted

Result of ICM

Global maximum obtained by Graph Cut algorithm

3. Stereo Reconstruction

- Reconstruct depth disparity of each pixel in the image
- Variables represent discretized version of depth dimension (more finely for discretized for close to camera and coarse when away)
- Node potential: a computer vision technique to estimate depth disparity
- Edge potential: a truncated metric
 - Inversely proportional to image gradient between pixels
 - Smaller penalty to large gradient suggesting occlusion