Universidade Federal de Juiz de Fora $Instituto\ de\ Ci\tilde{A}^ancias\ Exatas$ Departamento de Ci \tilde{A}^a ncia da Computa \tilde{A} § \tilde{A} £o

DCC001 ANÃLISE E PROJETO DE ALGORITMOS Trabalho Prático

Nome do Aluno da Silva

Professor - StÃ^anio Soares

Juiz de Fora - MG 17 de abril de 2017

Sumário

Lista de Figuras

Lista de Programas

Lista de Tabelas

1 Introdução

Escrever aqui a introdução do trabalho...

1.1 Considera $\tilde{\mathbf{A}}$ § $\tilde{\mathbf{A}}\mu esiniciais$

- Ambiente de desenvolvimento do c \tilde{A}^3 digo fonte : Code Blocks(porexemplo). Linguage mutilizada Linguage mC.
- Ambiente de desenvolvimento da documentação: TeXnicCenter 1 BETA 7.50-Editor de LATeX.

1.2 Especificação do problema

Voc \tilde{A}^a dever \hat{A} · implementar um tipo abstrato de dados TVetor para representar vetores no espa \tilde{A} §o R^n . Esse tipo abstrato dever \hat{A} · armazenar a dimens \tilde{A} £o do vetor e suas respectivas componentes. Considere que a dimens \tilde{A} £o dos vetores \tilde{A} © determinada em tempo de execu \tilde{A} § \tilde{A} £o

2 Algoritmo e estruturas de dados

Em [?], s \tilde{A} £o apresentadas estruturas de dados... O c \tilde{A} 3digoresultantedesseprocesso(\hat{c})apresentadonoPrograma??.

```
/Inicializa a contagem
   void tStartTimer(stopWatch *timer)
     QueryPerformanceCounter(&timer->start);
  //Para a contagem
   void tStopTimer(stopWatch *timer)
     QueryPerformanceCounter(&timer->stop);
   //Converte o tempo computado pelo stopWatch para segundos
  double tLIToSecs(LARGE INTEGER *L)
    LARGE INTEGER frequency;
15
     QueryPerformanceFrequency(&frequency);
     return ((double)L->QuadPart /(double)frequency.QuadPart);
   //Retorna o numero de segundos passados na contagem
  double tGetElapsedTime(stopWatch *timer)
    LARGE INTEGER time;
     time.QuadPart = (timer->stop).QuadPart - (timer->start).QuadPart;
     return tLIToSecs(&time) ;
```

Programa 1: Timer

Tabela 1: Dados referentes aos experimentos

Algoritmo	Tempo 1	Tempo 2	Tempo 3
Quicksort	10	20	30
${\it HeapSort}$	10	60	530
$\operatorname{BublleSort}$	100	100	1000

3 Anáise de complexidade dos algoritmos

 $A\;equa\tilde{A}\S\tilde{A}\pounds o\;resultante\;da\;an\tilde{A};\\ lise\;de\;complexidade\;pode\;ser\;vista\;na\;Equa\tilde{A}\S\tilde{A}\pounds o\;\ref{algarante}.$

$$O(n) = \sum_{i=1}^{n} i^2 + 1 \tag{1}$$

Os dados coletados podem ser vistos na Tabela??

4 Testes

Estas estruturas são apresentadas na Figura ??.

Figura 1: Estrutura da Pilha

5 Conclusão

Neste trabalho foram revistos conceitos sobre...[?]. Muito dos algoritmos são extraÃdos de [?].