Generalized Linear Bandits

julian.zimmert

July 2016

1 Generalized Linear Model

The arms are denoted as $x_i \in \mathbb{R}^d$, whose features are specific to each arm and known to the agent.

There exists a known link function $\mu : \mathbb{R} \to \mathbb{R}$. μ is monotonously increasing and satisfies for any x < y: $c_{\mu}(y - x) \le \mu(y) - \mu(x) \le \kappa_{\mu}(y - x)$. For some unknown parameter vector $\theta_* \in \mathbb{R}^d$ the payoffs received at time t are

$$R_t = \mu(x_t^T \theta_*) + \eta_t, \tag{1}$$

where η_t is conditionally R-subgaussian for a fixed R > 0. This implies that

$$\mathbb{E}[R_t|X_t = x_t] = \mu(x_t^T \theta_*). \tag{2}$$

2 c_{μ} independent lower bound

We are interested in the case where the link function is Lipschitz, but might have a very small slope. For any finite time horizon T and monotonously increasing function μ , we can construct an infinitesimally larger function μ' , that is strictly increasing and indistinguishable from μ w.h.p. in the given horizon. Therefore for a c_{μ} independent lower bound, it is sufficient to show a lower bound for a μ that is only restricted by $\dot{\mu} \geq 0$.

Theorem 1. For any finite time horizon $T>4^5$ there exists a generalized linear bandit problem with finitely many arms, a 1-Lipschitz link function μ , such that the regret of any algorithm will be at least of the order $\Omega(T^{\frac{1}{2}+\frac{1}{10}})$.

Corollary 1.1. It is impossible to derive a c_{μ} independent upper bound for the generalized linear bandit of the order $\tilde{\mathcal{O}}(\sqrt{T})$.

Proof. Define the GLB Problem P(T) as follows: We chose the link function

$$\mu(x) := \max\{0, x + \epsilon - 1\} \tag{3}$$

with $\epsilon = T^{-\frac{1}{2} + \frac{1}{10}}$. We have $T^{\frac{1}{5}}$ many arms that are distributed uniformly on the 2d unit ball.

 θ_* is one arm chosen at random.

Lemma 2. For the problem P(T), $T > 4^5$ it holds: $\forall x_i \neq \theta_*$: $\mathbb{E}[R_i | X_i = x_i] = 0$.

Proof. For any arm $x_i \neq \theta_*$, uniform distribution of the arms implies

$$x_i^T \theta_* \leq \cos(2\pi T^{-\frac{1}{5}})$$

For any $|x| \leq \frac{\pi}{2}$, simple analysis shows that $\cos(x) \leq 1 - (\frac{2x}{\pi})^2$. That implies that for $T \geq 4^5$, we have

$$1 - x_i^T \theta_* \ge (4T^{-\frac{1}{5}})^2 = 16T^{-\frac{2}{5}} > \epsilon$$

Therefore $x_i^T \theta_* + \epsilon - 1 < 0$ and $\mu(x_i^T \theta_*) = 0$.

Assume an oracle tells the agent that the set of possible values for θ_* is restricted to the set of arms. Then this problem is equivalent to a k-armed bandit problem, where each arm has expected reward 0, but one good arm has expected reward ϵ . Given $\epsilon = \sqrt{\frac{k}{T}}$, the lower bound for k-armed bandits shows in this case that any algorithm will at least observe a regret of the order $\Omega(\sqrt{\frac{k}{T}})$. For any $T \geq 4^5$, we can construct a problem of this kind with $k = T^{\frac{1}{5}}$. As oracle information cannot make an algorithm perform worse, so we obtain a lower bound of $\Omega(T^{\frac{1}{2} + \frac{1}{10}})$

3 μ independent upper bound for Explore then Commit with least square estimator

3.1 Problem assumptions

The following assumptions are currently made,

- the arms consist of the surface of the unit ball \mathcal{B}_1 (scaling can be absorbed in κ).
- we are playing the arms for a total of T time-steps and this value is known beforehand.
- the norm of $||\theta_*||$ is fixed to 1. (scaling can be absorbed in κ). We can further use this value in our exploration budget. should be generalized to $||\theta_*|| \le 1$ later.
- $0 \le \dot{\mu} \le \kappa$ RHS will be eventually replaced by $\mu(x) \ge \mu(||\theta_*||) \kappa(1 x)||\theta_*||$
- $\dot{\mu}(x) = \dot{\mu}(-x)$ shouldn't be required, but also doesn't hurt much and makes the analysis much easier
- the noise is σ -subgaussian

We are further defining the following functions

$$L(\theta) = \mathbb{E}\left[(\mu(x^T \theta) - R)^2 \right]$$

= $\mathbb{E}\left[(\mu(x^T \theta) - \mu(x^T \theta_*) - \eta)^2 \right] = \mathbb{E}\left[(\mu(x^T \theta) - \mu(x^T \theta_*))^2 \right] + \sigma^2$ (4)

$$L_n(\theta) = \frac{1}{n} \sum_{k=1}^n (\mu(x_k^T \theta) - R_k)^2 = \frac{1}{n} \sum_{k=1}^n (\mu(x_k^T \theta) - \mu(x_k^T \theta_*) - \eta_k)^2$$
 (5)

Obviously θ_* is the minimum of L.

The least square estimator is

$$\hat{\theta} := \arg\min_{\theta} L_n(\theta) \tag{6}$$

Our algorithm is Explore-then-Commit:

Explore the arms uniformly until a stopping time \mathcal{T} currently this is a fixed value because we know the length of $||\theta_*||$. After this commit to playing $\hat{\theta}$ for the remaining time-steps.

3.2 Results

This is what we aim for, the proof still has gaps though

Theorem 3. For any time T and any μ under the given constraints, with probability at least $1 - \delta$, the regret of the given algorithm will be bounded by

$$\operatorname{Reg}(T) \le cT^{\wedge} \left(\frac{1}{2} + \frac{d-1}{2d+6}\right) \cdot \left(\kappa\sigma^2 \left(\log(T)^2 + \log(\delta^{-1})\right)\right)^{\mathbf{p}} \tag{7}$$

The proof will require the following lemmas:

Lemma 4. With probability at least $1 - \delta$, is holds that

$$L(\hat{\theta}) - L(\theta_*) \le \frac{8}{n} \sigma^2 (c_1 \log(2n) + c_2 \log \delta^{-1}) + ?$$
 (8)

Proof. As $\hat{\theta}$ is the minimizer of L_n , it holds that

$$\begin{split} \frac{1}{n} \sum_{k=1}^{n} (\mu(x_{k}^{T}\hat{\theta}) - \mu(x_{k}^{T}\theta_{*}))^{2} &\leq \frac{1}{n} \sum_{k=1}^{n} (\mu(x_{k}^{T}\hat{\theta}) - \mu(x_{k}^{T}\theta_{*}))^{2} + L_{n}(\theta_{*}) - L_{n}(\hat{\theta}) \\ &= \frac{2}{n} \sum_{k=1}^{n} (\mu(x_{k}^{T}\hat{\theta}) - \mu(x_{k}^{T}\theta_{*})) \eta_{k} \\ &= \frac{2}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{k=1}^{n} (\mu(x_{k}^{T}\hat{\theta}) - \mu(x_{k}^{T}\theta_{*}))^{2}} \sum_{k=1}^{n} \frac{(\mu(x_{k}^{T}\hat{\theta}) - \mu(x_{k}^{T}\theta_{*}))}{\sqrt{\sum_{l=1}^{n} (\mu(x_{l}^{T}\hat{\theta}) - \mu(x_{l}^{T}\theta_{*}))^{2}}} \eta_{k} \\ & w.h.p. \leq \frac{2}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{k=1}^{n} (\mu(x_{k}^{T}\hat{\theta}) - \mu(x_{k}^{T}\theta_{*}))^{2}} \sigma(c_{1}\sqrt{\log(2n)} + c_{2}\sqrt{\log\delta^{-1}}) \\ &= \frac{1}{n} \sum_{k=1}^{n} (\mu(x_{k}^{T}\hat{\theta}) - \mu(x_{k}^{T}\theta_{*}))^{2} \leq \frac{8}{n} \sigma^{2}(c_{1}\log(2n) + c_{2}\log\delta^{-1}) \end{split}$$

TODO: bound $\mathbb{E}\left[(\mu(x^T\theta) - \mu(x^T\theta_*))^2\right] - \frac{1}{n}\sum_{k=1}^n(\mu(x_k^T\hat{\theta}) - \mu(x_k^T\theta_*))^2$ for bound on $L(\hat{\theta}) - L(\theta_*)$. Write down the constants c_1, c_2 explicitly.

Lemma 5. Let $\tilde{\theta}$ be the vector $\hat{\theta}$ rescaled such that it matches the length of θ_* . Then $L(\hat{\theta}) - L(\theta_*) \geq \frac{1}{2}(L(\tilde{\theta}) - L(\theta_*))$

Proof. Let θ_1 and θ_2 be the two orthogonal vectors such that $\theta_* = \theta_1 - \theta_2$ and $\tilde{\theta} = \theta_1 + \theta_2$.

Define the two sets

$$\mathcal{B}_1 = \left\{ x | \operatorname{sign}(x^T \theta_1) = \operatorname{sign}(x^T \theta_2) \right\}$$

$$\mathcal{B}_2 = \left\{ x | \operatorname{sign}(x^T \theta_1) = -\operatorname{sign}(x^T \theta_2) \right\}.$$

Due to Symmetry it holds that

$$\mathbb{E}\left[(\mu(x^T\tilde{\theta}) - \mu(x^T\theta_*))^2 | x \in \mathcal{B}_1\right] = \mathbb{E}\left[(\mu(x^T\tilde{\theta}) - \mu(x^T\theta_*))^2 | x \in \mathcal{B}_2\right]$$

If $||\hat{\theta}||_2 > ||\tilde{\theta}||_2$, then $(\mu(x^T\hat{\theta}) - \mu(x^T\theta_*))^2 \ge (\mu(x^T\tilde{\theta}) - \mu(x^T\theta_*))^2$ for all $x \in \mathcal{B}_1$. If $||\hat{\theta}||_2 < ||\tilde{\theta}||_2$, then $(\mu(x^T\hat{\theta}) - \mu(x^T\theta_*))^2 \ge (\mu(x^T\tilde{\theta}) - \mu(x^T\theta_*))^2$ for all $x \in \mathcal{B}_2$. Finally we get

$$L(\hat{\theta}) - L(\theta_*) = \mathbb{E}\left[(\mu(x^T \hat{\theta}) - \mu(x^T \theta_*))^2 \right]$$

$$= \frac{1}{2} \left(\mathbb{E}\left[(\mu(x^T \hat{\theta}) - \mu(x^T \theta_*))^2 | x \in \mathcal{B}_1 \right] + \mathbb{E}\left[(\mu(x^T \hat{\theta}) - \mu(x^T \theta_*))^2 \right] | x \in \mathcal{B}_2 \right)$$

$$\geq \frac{1}{2} \mathbb{E}\left[(\mu(x^T \hat{\theta}) - \mu(x^T \theta_*))^2 \right] = \frac{1}{2} (L(\tilde{\theta}) - L(\theta_*))$$

3.2.1 d = 2

This is the most important gap. It holds for $\mu = (x - 1 + \epsilon)_+$, but I haven't succeeded in a general proof.

Proposition 6. Let d = 2. Then for any valid $\mu \in M$, it holds that

$$L(\tilde{\theta}) - L(\theta_*) \ge \kappa^{-\frac{1}{2}} (\mu(x_*^T \theta_*) - \mu(\hat{x}^T \theta_*)) (\mu(1) - \mu(-1))^{\frac{3}{2}}$$

The proof follows from the following Lemma

Lemma 7. For any $\mu \in M_1$ and $z \in [0,1]$, it holds that

$$\begin{split} \int_{-1}^{1} \left(\mu \left(zx + \sqrt{1 - z^2} \sqrt{1 - x^2} \right) - \mu \left(zx - \sqrt{1 - z^2} \sqrt{1 - x^2} \right) \right)^2 \frac{1}{\sqrt{1 - x^2}} \, dx \\ & \geq c \left(\mu(1) - \mu(z^2) \right) \left(\mu(1) - \mu(-1) \right)^{\frac{3}{2}} \\ \Leftrightarrow \\ \int_{-1}^{1} (1 - z^2) \left(\int_{-1}^{1} \dot{\mu} \left(zx + \sqrt{1 - z^2} \sqrt{1 - x^2} y \right) \, dy \right)^2 \sqrt{1 - x^2} \, dx \\ & \geq c \left(\int_{z^2}^{1} \dot{\mu}(x) \, dx \right) \left(\int_{-1}^{1} \dot{\mu}(x) \, dx \right)^{\frac{3}{2}} \end{split}$$

Proof of Theorem 6.

$$\begin{split} L(\tilde{\theta}) - L(\theta_*) &= \mathbb{E}\left[(\mu(x^T \theta_1 - x^T \theta_2) - \mu(x^T \theta_1 + x^T \theta_2))^2 \right] \\ &= \int_0^{2\pi} \left(\mu(\cos(x)|\theta_1| - \sin(x)|\theta_2|) - \mu(\cos(x)|\theta_1| + \sin(x)|\theta_2|) \right)^2 \, dx \\ &= 2 \int_0^{\pi} \left(\int_{-\sin(x)|\theta_2|}^{\sin(x)|\theta_2|} \dot{\mu}(\cos(x)|\theta_1| + y) \, dy \right)^2 \, dx \\ &= 2|\theta_2|^2 \int_0^{\pi} \left(\int_{-1}^1 \dot{\mu}(\cos(x)|\theta_1| + \sin(x)|\theta_2|y) \, dy \right)^2 \sin(x)^2 \, dx \\ &= 2|\theta_2|^2 \int_{-1}^1 \left(\int_{-1}^1 \dot{\mu}(x|\theta_1| + \sqrt{1 - x^2}|\theta_2|y) \, dy \right)^2 \sqrt{1 - x^2} \, dx \end{split}$$

3.3 $d \ge 3$

We express the Expectation in terms of integrals

$$\begin{split} & L(\tilde{\theta}) - L(\theta_*) \\ &= \mathbb{E}\left[\left(\mu(x^T \theta_1 - x^T \theta_2) - \mu(x^T \theta_1 + x^T \theta_2) \right)^2 \right] \\ &= \frac{1}{|S_d|} \int_{S_d} \left(\mu(x^T \theta_1 - x^T \theta_2) - \mu(x^T \theta_1 + x^T \theta_2) \right)^2 d\mathcal{L}_{d-1}(x) \\ &= \frac{2|S_{d-2}|}{|S_d|} \int_0^{\frac{\pi}{2}} \cos(\alpha)^{d-2} \\ & \int_0^{2\pi} \left(\mu(\sin(\alpha)(\cos(x)|\theta_1| - \sin(x)|\theta_2|)) - \mu(\sin(\alpha)(\cos(x)|\theta_1| + \sin(x)|\theta_2|)) \right)^2 dx \, d\alpha \\ &\geq \frac{4|S_{d-2}|}{|S_d|} \int_0^{\frac{\pi}{2}} \cos(\alpha)^{d-2} J(\mu, \sin(\alpha)||\theta_*||) \, d\alpha \\ &= \frac{4|S_{d-2}||\theta_2|^2}{|S_d|} \int_0^1 \frac{\alpha^{d-2}}{\sqrt{1-\alpha^2}} J(\mu, \sqrt{1-\alpha^2})||\theta_*||) \, d\alpha \end{split}$$