Well, learning R had at least two major benefits for me: 1.) I could improve my statistical knowledge a lot, simply by using formulas, asking why certain R commands do not automatically give the same results like SPSS, reading R resources and papers etc. and 2.) the possibilities of data visualization are way better in R than in SPSS (though SPSS can do well as well...). Of course, there are even many more reasons to use R.

Still, one thing I often miss in R is a beautiful output of simple statistics or maybe even advanced statistics. Not always as plot or graph, but neither as "cryptic" console output. I'd like to have a simple table view, just like the SPSS output window (though the SPSS output is not "beautiful"). That's why I started writing functions that put the results of certain statistics in HTML tables. These tables can be saved to disk or, even better for quick inspection, shown in a web browser or viewer pane (like in RStudio viewer pane).

All of the following functions are available in my sjPlot-package on CRAN.

(Generalized) Linear Models

The first two functions, which I already published last year, can be used to display (generalized) linear models and <u>have been described here</u>. Yet I want to give another short example for quickly viewing at linear models:

```
require(sjPlot) # load package
     # Fit "dummy" models. Note that both models
 2
 3
     # and only differ in their dependent variabl
 4
     data(efc)
 5
     # fit first model
 6
     fit1 <- lm(barthtot ~ c160age + c12hour + c1
 7
     # fit second model
 8
     fit2 <- lm(neg_c_7 \sim c160age + c12hour + c16)
9
     # Print HTML-table to viewer pane
10
     sjt.lm(fit1, fit2,
            labelDependentVariables=c("Barthel-In
11
12
            labelPredictors=c("Carer's Age", "Hou
13
            showStdBeta=TRUE, pvaluesAsNumbers=TR
```

This is the output in the RStudio viewer pane:

Frequency Tables

Another (new) function is sjt.frq which prints frequency tables (the next example uses value and variable labels, but the simplest function call is just sjt.frq(variable)).

```
require(sjPlot) # load package
     # load sample data
 2
 3
     data(efc)
     # retrieve value and variable labels
 4
 5
     variables <- sji.getVariableLabels(efc)</pre>
 6
     values <- sji.getValueLabels(efc)</pre>
 7
     # simple frequency table
     sjt.frq(efc$e42dep
 8
             variableLabels=variables['e42dep'],
 9
10
             valueLabels=values[['e42dep']])
```

And again, this is the output in the RStudio viewer pane:

You can print frequency tables of several variables at once:

```
sjt.frq(as.data.frame(cbind(efc$e42dep, efc$e
variableLabels=list(variables['e42dep
valueLabels=list(values[['e42dep']],
```

The output:

When applying SPSS frequency tables, especially for variable with many unique values (e.g. age or income), this often results in very long, unreadable tables. The $\mathtt{sjt.frq}$ function, however, can automatically group variables with many unique values:

```
1 sjt.frq(efc$c160age,
2 variableLabels=list("Carer's Age"),
3 autoGroupAt=10)
```

This results in a frequency table with max. 10 groups:

You can also specify whether the row with median value and both upper and lower quartile are highlighted. Furthermore, the complete HTML-code is returned for further use, separated into style sheet and table content. In case you have multiple frequency tables, the function returns a list with HTML-tables.

Contingency Tables

The second new function in the $\underline{sjPlot\text{-package}}$ (while I'm writing this posting, source code and windows binaries of version 1.1 are available, Mac binaries will follow soon...) is $\mathtt{sjt.xtab}$ for printing contingency tables.

The simple function call prints observed values and cell percentages:

Observed values are obligatory, while cell, row and column percentages as well as expected values can be added via parameters. An example with all possible information:

```
sjt.xtab(efc$e16sex, efc$e42dep,
variableLabels=c("Elder's gender", "
valueLabels=list(efc.labels[['e16sex showRowPerc=TRUE, showColPerc=TRUE,
```


And a simple one, w/o horizontal lines:

All colors can be specified via parameters, as well as the constant string values. See <code>?sjt.frq</code> resp. <code>?sjt.xtab</code> for detailed information.

If you have more ideas on which "quick" statistics are suitable for printing the results in the viewer pane, let me know. I will try to include them into my package...

Tagged: data visualization, R, rstats, SPSS, Statistik

To leave a comment for the author, please follow the link and comment on his blog: Strenge Jacke! » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SOL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site?			
Choose your flavor: e-mail, twitter, RSS, or facebook			
Like	Share {504	Tweet 29	8+1 10

Comments are closed.

Top 3 Posts from the past 2 days

- ggplot2: Cheatsheet for Visualizing <u>Distributions</u>
- Books and lessons about ggplot2
- R and (Software) Relatives

Search & Hit Enter

Top 9 articles of the week

- 1. R skills attract the highest salaries
- 2. ggplot2: Cheatsheet for Visualizing <u>Distributions</u>
- 3. Installing R packages
- 4. Using apply, sapply, lapply in R
- 5. Books and lessons about ggplot2
- 6. Reproducible research, training wheels, and knitr
- 7. Basics of Histograms
- 8. Box-plot with R Tutorial
- 9. A million ways to connect R and Excel

Sponsors

R Consulting, Training, Support and Application Development

mango-solutions.com

Quantide: statistical consulting and training

Plotly: collaborative, publication-quality graphing.