MAT334 Lecture

Jenci Wei Winter 2023

Contents

1	Basic Operations of Complex Numbers	3
2	Polar Coordinates	4
3	Geometry of Complex Numbers	5
4	Topology	6
5	Riemann Sphere	7
6	Function	8
7	Curves and Integrals	10
8	Holomorphic Functions	12
9	Power Series	13
10	Cauchy's Integral Formula	14
11	Singularity	19
12	Residue	21
13	Maximum Modulus and Mean Value	26
14	Linear Fractional Transformations	27
15	Conformal Mapping	29
16	Schwarz Christoffel Formula	31

1 Basic Operations of Complex Numbers

Def. A complex number is an expression of the form

$$z \triangleq x + iy$$

where $x, y \in \mathbb{R}$

- x is called the **real** part of z, i.e. Re $z \triangleq x$
- y is called the **imaginary** part of z, i.e. Im $z \triangleq y$
- Can be geometrically understood

Notation: $\mathbb{C} = \{\text{complex numbers}\}\$

Def. Let z = x + iy and w = a + ib be complex numbers. Then

- $z + w \triangleq (x + a) + i(y + b)$
- $z w \triangleq (x a) + i(y b)$
- $z \cdot w \triangleq (x + iy) \cdot (a + ib) = (xa yb) + i(ya + xb)$

Def. Let $z = x + iy \in \mathbb{C}$. The **complex conjugate** \overline{z} of z is the complex number x - iy

• Geometrically flipping around the real axis

by this definition

$$z \cdot \overline{z} = (x + iy) \cdot (x - iy) = x^2 + y^2 \triangleq |z|^2$$

where |z| is the **absolute value** of z. Hence

$$(z \cdot \overline{z}) \cdot \frac{1}{x^2 + y^2} = 1$$

and so the multiplicative inverse of z is

$$\frac{1}{z} \triangleq \overline{z} \cdot \frac{1}{x^2 + y^2} = (x - iy) \cdot \frac{1}{x^2 + y^2} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}$$

Therefore if z = x + iy and w = a + ib, then

$$\frac{z}{w} \triangleq z \cdot \frac{1}{w} = (x+iy) \cdot \left(\frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}\right) = \left(\frac{xa+yb}{a^2+b^2}\right) + i\left(\frac{ya-xb}{a^2+b^2}\right)$$

Lemma 1.1. Let $z, w \in \mathbb{C}$. Then

$$\begin{split} \overline{z+w} &= \overline{z} + \overline{w} \\ \overline{z-w} &= \overline{z} - \overline{w} \\ \overline{z\cdot w} &= \overline{z} \cdot \overline{w} \\ \overline{\frac{z}{w}} &= \overline{\frac{z}{w}} \quad For \ w \neq 0 \\ |z\cdot w| &= |z| \cdot |w| \end{split}$$

Proof. Follows from the above definitions.

2 Polar Coordinates

Let $z \in \mathbb{C}$ be geometrically represented. Then in the notion of polar coordinates, we have the length as |z| and the angle as θ (from the positive real axis). Define the **argument** of z as

$$\arg z \triangleq \theta$$

- The argument of a nonzero complex number is only well-defined up to integral multiples of 2π
- The argument is not unique (can add/subtract 2π)

The polar coordinates of z is the pair

$$(|z|, \arg z)$$

Let $z, w \in \mathbb{C}$ where z = x + iy and w = a + ib with polar coordinates $z = (r_1, \theta_1)$ and $w = (r_2, \theta_2)$, we have

$$x = r_1 \cos \theta_1$$
 $y = r_1 \sin \theta_1$
 $a = r_2 \cos \theta_2$ $b = r_2 \sin \theta_2$

Then

$$z \cdot w = (r_1 \cos \theta_1 + ir_1 \sin \theta_1) \cdot (r_2 \cos \theta_2 + ir_2 \sin \theta_2) = r_1 r_2 \cos(\theta_1 + \theta_2) + ir_1 r_2 \sin(\theta_1 + \theta_2)$$

Hence

$$|zw| = \sqrt{(r_1 r_2 \cos(\theta_1 + \theta_2))^2 + (r_1 r_2 \sin(\theta_1 + \theta_2))^2} = r_1 r_2 = |z| \cdot |w|$$

This implies that

$$arg(zw) = arg z + arg w$$

up to multiples of 2π .

3 Geometry of Complex Numbers

Line

Equation of a line:

$$y = ax + b$$

where a is the slope and b is the y-intercept.

For the expression (a+i)z + b:

$$Re((a+i)z + b) = Re((a+i)(x+iy) + b) = ax - y + b$$

Then

$$y = ax + b \iff \operatorname{Re}((a+i)z + b) = 0$$

Generalizing,

$$Re(Az + B) = 0,$$
 $A, B \in \mathbb{C}$

defines a line in the complex plane.

Circle

Equation of a circle:

$$(x-a)^2 + (y-b)^2 = r^2$$

where (a, b) is the center and r is the radius.

Let z = x + iy and $z_0 = a + ib$. Then

$$|z - z_0| = |(x - a) + i(y - b)| = \sqrt{(x - a)^2 + (y - b)^2}$$

Hence

$$(x-a)^2 + (y-b)^2 = r^2 \iff |z-z_0| = r$$

4 Topology

Def. An **open disk** is a set of the form

$$\{z \in \mathbb{C} : |z - z_0| < r\}$$

where $z_0 \in \mathbb{C}, r \in \mathbb{R}^{>0}$.

Def. Let $S \subseteq \mathbb{C}$. A point z_0 of S is an **interior point** of S if there exists an open disk centered at z_0 which is contained in S.

Def. Let $S \subseteq \mathbb{C}$. The interior of S is the set of all interior points of S, denoted S^o .

• S is **open** if all points of S are interior

Def. Let $S \subseteq \mathbb{C}$. A point $z_0 \in \mathbb{C}$ is a **boundary point** of S if every open disk centered at z_0 contains both points of S and points of $\mathbb{C} \setminus S$.

• A boundary point of S may or may not be in S

Def. Let $S \subseteq \mathbb{C}$. The **boundary** of S is the set of all boundary points of S, denoted ∂S .

• S is closed if $S \supseteq \partial S$

Theorem 4.1. Let $S \subseteq \mathbb{C}$. Then S is open iff $\mathbb{C} - S$ is closed. Moreover, S is open iff $S \cap \partial S = \emptyset$.

Def. A polygonal curve in a subset S of $\mathbb C$ is a union of finitely many line segments in S of the form

$$\overline{z_0z_1} \cup \overline{z_1z_2} \cup \cdots \cup \overline{z_{n-1}z_n}$$

Def. Let $S \subseteq \mathbb{C}$. We say that S is **connected** if $\forall p, q \in S, \exists$ polygonal curve $\overline{z_0 z_1} \cup \overline{z_1 z_2} \cup \cdots \cup \overline{z_{n-1} z_n}$ such that $p = z_0$ and $q = z_n$.

• Not the actual definition of connectedness, but instead a stronger and simpler definition

Def. An open connected subset of \mathbb{C} is called a **domain**.

5 Riemann Sphere

Def. The Riemann sphere is the set $\mathbb{C} \cup \{\infty\}$

- \bullet This provides a map from $\mathbb C$ to the unit sphere in $\mathbb R^3$
- This map is injective
- The image of the map is the unit sphere without the north pole
- By including ∞ , we get a bijection

6 Function

Def. A **function** of a complex variable is a rule that assigns to each complex number within same subset S of \mathbb{C} a complex number.

- \bullet S is called the **domain** of this function
- The collection of all possible values of the function is called its range

Def. Let $\{z_n\}$ be a sequence of complex numbers. L is a **limit** of $\{z_n\}$ if

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n > N, |z_n - L| < \epsilon$$

• Notation:

$$\lim_{n\to\infty} z_n = L$$

• If $\{z_n\}$ has a limit, then it is **convergent**; otherwise, it is **divergent**

Theorem 6.1. Let $z_n = x_n + iy_n$ where $x_n, y_n \in \mathbb{R}$. Then $\{z_n\}$ converges iff $\{x_n\}$, $\{y_n\}$ converge. Moreover, if $\{x_n\}$ and $\{y_n\}$ converge, then

$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} x_n + i \lim_{n \to \infty} y_n$$

Theorem 6.2. Let $\{z_n\}$, $\{w_n\}$ be convergent sequences. Then

$$\lim_{n \to \infty} (z_n + w_n) = \lim_{n \to \infty} z_n + \lim_{n \to \infty} w_n$$

$$\lim_{n \to \infty} (z_n - w_n) = \lim_{n \to \infty} z_n - \lim_{n \to \infty} w_n$$

$$\lim_{n \to \infty} (z_n w_n) = \left(\lim_{n \to \infty} z_n\right) \left(\lim_{n \to \infty} w_n\right)$$

$$\lim_{n \to \infty} \frac{z_n}{w_n} = \frac{\lim_{n \to \infty} z_n}{\lim_{n \to \infty} w_n} \quad \text{if } w_n \neq 0 \ \forall n \land \lim_{n \to \infty} w_n \neq 0$$

Def. Let $f: S \to \mathbb{C}$. Let $z_0 \in S \cup \partial S$. f has **limit** L as z approaches to z_0 if

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } \forall z \in S, |z - z_0| < \delta \implies |f(z) - L| < \epsilon$$

• Notation:

$$\lim_{z \to z_0} f(z) = L$$

Theorem 6.3. Let $f,g:S\to\mathbb{C}$. Let $z_0\in S\cup\partial S$ such that $\lim_{z\to z_0}=L$ and $\lim_{z\to z_0}g(z)=M$. Then

$$\lim_{z \to z_0} (f+g)(z) = L + M$$

$$\lim_{z \to z_0} (f-g)(z) = L - M$$

$$\lim_{z \to z_0} (fg)(z) = LM$$

$$\lim_{z \to z_0} \frac{f}{g}(z) = \frac{L}{M} \quad \text{if } g(z) \neq 0 \ \forall z \in S \land M \neq 0$$

Def. Let f be a function. f has **limit** L a z approaches ∞ if

$$\forall \epsilon > 0, \exists R > 0 \text{ such that } \forall z \in \mathbb{C}, |z| > R \implies |f(z) - L| < \epsilon$$

Def. Let $f: S \to \mathbb{C}$. f is **continuous at** $z_0 \in S$ if $\lim_{z \to z_0} f(z)$ exists and $\lim_{z \to z_0} f(z) = f(z_0)$.

• f is **continuous** if it is continuous at every $z_0 \in S$

Def. An **infinite series** is an expression of the form

$$\sum_{n=1}^{\infty} z_n$$

The nth partial sum is

$$S_n \triangleq z_1 + \dots + z_n$$

The infinite series **converges** (diverges) if the sequence $\{S_n\}$ converges (diverges).

Exponential Function

$$e^z \triangleq e^x(\cos y + i\sin y)$$
 where $z = x + iy$

- $e^z \cdot e^w = e^{z+w}$
- $\bullet |e^z| = e^x = e^{\operatorname{Re} z}$
- $|e^{iy}| = 1$
- $\bullet \ e^{z+2\pi i} = e^z$
- $\arg e^z = y + 2k\pi$ for some $k \in \mathbb{Z}$
- e^z in polar coordinates: $(e^{\operatorname{Re} z}, \operatorname{Im} z)$
- $e^z \cdot e^w$ in polar coordinates: $(e^{\operatorname{Re} z + \operatorname{Re} w}, \operatorname{Im} z + \operatorname{Im} w)$
- $e^z \neq 0$ for all $z \in \mathbb{C}$

Logarithm Function

- Inverse of the exponential function, i.e. find z satisfying $e^z = w$
- Solution: $z = \log |w| + i \arg w$
- \bullet The above definition is *not* well-defined
- Can define

$$\text{Log}: \mathbb{C} - \{x \in \mathbb{R}: x \leq 0\} \to \mathbb{C} \quad \text{by} \quad \text{Log } w = \log|w| + i \operatorname{Arg} w$$

where

$$Arg: \mathbb{C} \to \{x \in \mathbb{R} : x \le 0\} \to (-\pi, \pi)$$

- The property $\text{Log}(z_1 z_2) = \text{Log } z_1 + \text{Log } z_2$ is **not** satisfied
 - E.g. let $z_1 = z_2 = -1 + i$. Then $\text{Log}(z_1 z_2) = \text{Log}(-2i) = \log|-2i| + i \operatorname{Arg}(-2i) = \log 2 + -\frac{\pi}{2}i$; however, $\text{Log } z_1 + \text{Log } z_2 = 2\operatorname{Log}(-1+i) = 2(\log|-1+i| + i\operatorname{Arg}(-1+i)) = 2\log\sqrt{2} + \frac{3\pi}{2}i$

Def. Let $a \in \mathbb{C} - \{x \in \mathbb{R} : x = 0\}$ and $z \in \mathbb{C}$. Define

$$a^z \triangleq e^{\text{Log } a^z} = e^{z \text{ Log } a}$$

Def.

$$\cos z \triangleq \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
$$\sin z \triangleq \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$

7 Curves and Integrals

Def. A curve is a continuous function $\gamma:[a,b]\to\mathbb{C}$

Def. A curve $\gamma:[a,b]\to\mathbb{C}$ is

- Closed if $\gamma(a) = \gamma(b)$
- Simple if $\gamma(t_1) \neq \gamma(t_2)$ for all $a \leq t_1 < t_2 \leq b$

Theorem 7.1 (Jordan Curve Theorem). Let $\gamma : [a,b] \to \mathbb{C}$ be a simple closed curve. Then the complement of the range of γ is the disjoint union of two open connected subsets of \mathbb{C} . Moreover, one of the two subsets is bounded (called the inside of γ) and the other is unbounded (called the outside of γ).

Def. Let $\gamma:[a,b]\to\mathbb{C}$. Let $\gamma(t)=x(t)=+iy(t)$ for all $t\in[a,b]$ where $x,y:[a,b]\to\mathbb{R}$. Then γ is

- **Differentiable** if both x and y are differentiable
- Smooth if x and y are differentiable and x' and y' are continuous
- **Piecewise smooth** if γ is composed of finite number of smooth curves, the ending point is coinciding with the starting point of the next

Def. A curve $\gamma:[a,b]\to\mathbb{C}$ is **oriented** by increasing t. We say that γ starts at $\gamma(a)$ and ends at $\gamma(b)$.

• The reverse orientation is given to γ by starting at $\gamma(b)$ and ending at $\gamma(a)$. Notation:

$$-\gamma: [a,b] \to \mathbb{C}$$
 where $-\gamma(t) = \gamma(a+b-t)$

Def. Let $\gamma:[a,b]\to\mathbb{C}$ be a simple closed curve (so the Jordan curve theorem applies). The **positive** orientation is if $\forall p\in$ inside of γ , the argument of $\gamma(t)-p$ increases by 2π as t increases from a to b.

Def. Let $f:[a,b]\to\mathbb{C}$ be continuous. Define

$$\int_{a}^{b} f(t)dt \triangleq \int_{a}^{b} \operatorname{Re} f(t)dt + i \int_{a}^{b} \operatorname{Im} f(t)dt$$

Def. Let $\gamma:[a,b]\to\mathbb{C}$ be a smooth curve. Let f be a continuous function defined on the range of γ . Then the **integral** of f along γ is

$$\int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

- $f(\gamma(t))\gamma'(t)$ is a complex function, so the meaning of the integral is as in the previous definition
- γ is smooth implies that γ' is continuous, so the integral is well-defined

Lemma 7.2. Let $\gamma:[a,b]\to\mathbb{C}$ be a smooth curve. Let $g:[c,d]\to[a,b]$ be a bijection such that g and g^{-1} are C^1 . Then $\gamma\circ g:[c,d]\to\mathbb{C}$ is also a smooth curve. Moreover, range $(\gamma)=\mathrm{range}(\gamma\circ g)$. We can compute

$$\int_{c}^{d} f(\gamma \circ g(t))(\gamma \circ g)'(t)dt = \int_{c}^{d} f(\gamma(g(t)))\gamma'(g(t))g'(t)dt$$

by Chain Rule.

Lemma 7.3. Let u = g(t) so that du = g'(t)dt. Then

$$\int_{a}^{b} f(\gamma(u))\gamma'(t)du = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

Therefore the integral of f along γ depends only on the range of γ . We use the notation

$$\int_{\gamma} f(z)dz$$

Lemma 7.4. Let $\gamma:[a,b]\to\mathbb{C}$ be a continuous curve. Let f_1,f_2 be continuous functions on the range of γ and $c_1,c_2\in\mathbb{C}$. Then

$$\int_{\gamma} (c_1 f_1 + c_2 f_2) dz = c_1 \int_{\gamma} f_1 dz + c_2 \int_{\gamma} f_2 dz$$

Def. Let $\gamma:[a,b]\to\mathbb{C}$ be a smooth curve. Then $-\gamma:[a,b]\to\mathbb{C}$ is the reverse orientation satisfying

$$(-\gamma)(t) \triangleq \gamma(a+b-t)$$

Def. Let $\gamma_1:[a_1,b_1]\to\mathbb{C}$ and $\gamma_2:[a_2,b_2]\to\mathbb{C}$ be smooth curves so that $\gamma_1(b_1)=\gamma_2(a_2)$. Then

$$(\gamma_1 + \gamma_2)(t) \triangleq \begin{cases} \gamma_1(t), & \text{if } t \in [a_1, b_1] \\ \gamma_2(t + b_1 - a_2), & \text{if } t \in [b_1, b_1 + b_2 - a_2] \end{cases}$$

Lemma 7.5. Let γ_1, γ_2 be defined as above. Then

$$\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$$
$$\int_{\gamma_1 + \gamma_2} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz$$

Lemma 7.6. Let γ be a smooth curve. Then

$$\left\| \int_{\gamma} f(z) dz \right\| \le \int_{\gamma} \|f(z)\| \, dz$$

Def. The length $l(\gamma)$ of a smooth curve γ is

$$\int_a^b \|\gamma'(t)\| dt$$

Lemma 7.7.

$$\left\| \int_{\gamma} f(z) dz \right\| \le l(\gamma) \max_{z \in \text{range}(\gamma)} \|f(z)\|$$

• Intuition: recall the integral definition of the average from single-variable calculus

Lemma 7.8. Let $f: D(z_0; r) \to \mathbb{C}$ be continuous and $0 < \epsilon < r$. Then

$$\lim_{\epsilon \to 0} \int_{\partial D(z_0, \epsilon)} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

Def. Let f(z) = f(x+iy) = p(x+iy) + iq(x+iy). Then

$$\frac{\partial f}{\partial x} \triangleq \frac{\partial p}{\partial x} + i \frac{\partial q}{\partial x}$$
$$\frac{\partial f}{\partial y} \triangleq \frac{\partial f}{\partial y} + i \frac{\partial q}{\partial y}$$

Theorem 7.9 (Green's Theorem). Let Ω be a domain and let $\Gamma = \partial \Omega = \gamma_1 \cup \cdots \cup \gamma_n$ where $\gamma_1, \ldots, \gamma_n$ are piecewise smooth simple closed curves. Let $f: \Omega \to \mathbb{C}$ be C^1 . Then

$$\int_{\Gamma} f(z)dz = i \iint_{\Omega} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) dxdy$$

8 Holomorphic Functions

Def. Let D be a domain and let $f: D \to \mathbb{C}$. Let $z_0 \in D$. f is analytic/holomorphic at z_0 if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists.

- f is **analytic** if it is analytic at all $z_0 \in D$.
- An analytic function defined on all of $\mathbb C$ is called **entire**
- f is analytic at z_0 implies that f is continuous at z_0
- f being analytic at z_0 is stronger than the existence of partial derivatives of Re f, Im f at z_0

Lemma 8.1 (Cauchy-Riemann Equations). Let f = u + iv be analytic. Then

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Lemma 8.2 (Harmonic Functions). Let f = u + iv be analytic. Then

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Def. If u and v are harmonic and they satisfy the Cauchy-Riemann equations, then they are called **harmonic** conjugates.

Lemma 8.3. Let $f: D \to \mathbb{C}$ be analytic and denote f = u + iv. If u is a constant or $u^2 + v^2$ is a constant, then f is a constant.

Theorem 8.4. Let $f:D\to\mathbb{C}$ and denote f=u+iv. Assume that $u,v,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}$ are continuous. Then

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \wedge \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

implies that f is analytic.

9 Power Series

Def. A power series is a formal expression of the form

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$

where $z_0, a_0, a_1, a_2, \ldots$ are complex numbers.

Theorem 9.1. Suppose that we have $z_1 \in \mathbb{C}$ such that $z_1 \neq z_0$ and

$$\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$$

converges, then for any $z \in \mathbb{C}$ such that $||z - z_0|| < ||z_1 - z_0||$,

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

absolutely converges.

Radius of Convergence

- Within the radius, the power series absolutely converges
- On the boundary, we cannot conclude whether the power series converges
- Outside the radius, the power series diverges

Lemma 9.2. Suppose $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ has radius of convergence R $(R \neq 0)$. Then

- If $\lim_{n \to \infty} \left\| \frac{a_{n+1}}{a_n} \right\|$ exists, then $\lim_{n \to \infty} \left\| \frac{a_{n+1}}{a_n} \right\| = \frac{1}{R}$
- If $\lim_{n\to\infty} \sqrt[n]{\|a_n\|}$ exists, then $\lim_{n\to\infty} \sqrt[n]{\|a_n\|} = \frac{1}{R}$

Lemma 9.3. Suppose $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ has radius of convergence $R \neq 0$. Then $f: D(z_0; R) \to \mathbb{C}$ is analytic. Moreover $f'(z) = \sum_{n=0}^{\infty} n a_n (z-z_0)^{n-1}$

- $\sum_{n=0}^{\infty} na_n(z-z_0)^{n-1}$ also converges on $D(z_0;R)$, so can again apply the lemma to this power series
- Can differentiate infinitely many times

10 Cauchy's Integral Formula

Theorem 10.1 (Cauchy's integral formula). Let D be a domain. Let $f: D \to \mathbb{C}$ be analytic. Let γ be a piecewise smooth simple closed curve in D. Assume that the inside Ω of γ is also in D. Then

$$\int_{\gamma} f(z)dz = 0$$

- Assume that f' is continuous
- Green's Theorem states that $\int_{\gamma} f(z)dz = i \iint_{\Omega} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) dxdy$
- Cauchy-Riemann equation states that for f(z) = f(x+iy) = u(x,y) + iv(x,y), we have $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
- Hence

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = \frac{\partial}{\partial x} (u + iv) + i \frac{\partial}{\partial y} (u + iv)$$
$$= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} + i \frac{\partial u}{\partial y} - \frac{\partial v}{\partial y}$$
$$= 0$$

Def. A domain D is **simply connected** if for any piecewise smooth simple closed curve γ in D, the inside Ω of γ is also in D.

Lemma 10.2. Let D be simply connected, $f: D \to \mathbb{C}$ be analytic, γ be a piecewise smooth simple closed curve, in D. Then

$$\int_{\gamma} f(z)dz = 0$$

Theorem 10.3. Let D be simply connected, $f: D \to \mathbb{C}$ be analytic. Then there exists $F: D \to \mathbb{C}$ such that

$$F'(z) = f(z) \quad \forall z \in D$$

Def. Define

$$F(z) \triangleq \int_{z_0}^{z} f(w)dw$$

This is well-defined (independent of the curve from z_0 to z) since for two curves γ_1, γ_2 from z_0 to z,

$$\int_{\gamma_1} f(w)dw - \int_{\gamma_2} f(w)dw = \int_{\gamma_1} f(w)dw + \int_{-\gamma_2} f(w)dw = \int_{\gamma} f(w)dw = 0$$

by Cauchy's integral formula.

Theorem 10.4 (Cauchy's theorem). Let D be a domain, $f: D \to \mathbb{C}$ be analytic, γ be a piecewise smooth simple closed curve in D whose inside Ω is also in D. Then $\forall z \in \Omega$, we have

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

- The integral is not defined at $\zeta = z$
- Let $g(\zeta) = \frac{f(\zeta)}{\zeta z}$. Then g is defined on $D \overline{D(z; \epsilon)}$ for some small ϵ
- We have that

$$\int_{\gamma} g(\zeta)d\zeta = \int_{\partial D(z;\epsilon)} g(\zeta)d\zeta$$

• Recall that

$$\lim_{\epsilon \to 0} \int_{\partial D(z;\epsilon)} \frac{f(\zeta)}{\zeta - z} d\zeta = 2\pi i f(z)$$

• Plug in the terms to obtain Cauchy's theorem

Theorem 10.5. Let D be a domain, $f: D \to \mathbb{C}$ an analytic function. Suppose that $D(z_0; R) \subseteq D$, then f has a power series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

valid on $D(z_0; R)$. Moreover, $\forall 0 < r < R$,

$$a_n = \frac{1}{2\pi i} \int_{\partial D(z_0; r)} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

Corollary 10.5.1. Let D be a domain and $f: D \to \mathbb{C}$ an analytic function. Then f' is also analytic on D. In particular, f is differentiable infinitely many times.

Def.

$$\sinh(z) \triangleq \frac{e^z - e^{-z}}{2}$$
$$\cosh(z) \triangleq \frac{e^z + e^{-z}}{2}$$

Property:

$$\sinh^2 z - \cosh^2 z = \frac{e^{2z} - 2 + e^{-2z}}{4} - \frac{e^{2z} + 2 + e^{-2z}}{4} = -1$$

Corollary 10.5.2. Let $f: D \to \mathbb{C}$ be analytic. Let $z_0 \in D$ such that $f^{(n)}(z_0) = 0$ for all n. Then f = 0 on D.

Order of Zero

- Let D be a domain and $f: D \to \mathbb{C}$ be analytic
- Suppose that $z_0 \in D$ such that $f(z_0) = 0$
- Choose r > 0 such that $D(z_0; r) \subseteq D$ and expand f(z) on $D(z_0; r)$, i.e.

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

• Let m be the smallest natural number such that $a_m \neq 0$, then

$$f(z) = a_m (z - z_0)^m + a_{m+1} (z - z_0)^{m+1} + \cdots$$

$$= (z - z_0)^m \underbrace{(a_m + a_{m+1} (z - z_0) + \cdots)}_{g(z)}$$

• We have

$$f(z) = (z - z_0)^m g(z)$$
$$g(z_0) = a_m \neq 0$$

• Therefore g is also analytic

Def. We call m the **order of zero** of f at z_0

Theorem 10.6 (Morera). Assume $f: D \to \mathbb{C}$ is continuous. If

$$\int_{\gamma} f(z)dz = 0$$

for all triangles γ that lies together with its inside in D, then f is analytic.

Proof. Fix $z_0 \in D$, WTS f is analytic at z_0 . Choose r > 0 such that $D(z_0; r) \subseteq D$. Define $F : D(z_0; r) \to \mathbb{C}$ by $F(z) = \int_{z_0}^z f(\zeta) d\zeta$ (i.e. integrtion along the radial curve from z_0 to z). We claim that F is analytic and F' = f, and we will show that

$$\lim_{h \to 0} \frac{F(z+h) - F(z)}{(z+h) - z}$$

exists and is equal to f(z). By definition,

$$F(z+h) - F(z) = \int_{z_0}^{z+h} f(\zeta)d\zeta - \int_{z_0}^{z} f(\zeta)d\zeta$$

Notice that $z_0, z, z + h$ form a triangle on the complex plane. Let γ be such triangle. By assumption,

$$0 = \int_{\gamma} f(\zeta)d\zeta = \int_{z_0}^{z} f(\zeta)d\zeta + \int_{z}^{z+h} f(\zeta)d\zeta + \int_{z+h}^{z_0} f(\zeta)d\zeta$$

Hence,

$$F(z+h) - F(z) = \int_{z}^{z+h} f(\zeta)d\zeta$$

Since f is continuous at z, $\forall \epsilon > 0, \exists \delta > 0$ such that $||f(\zeta) - f(z)|| < \epsilon$ satisfying $||\zeta - z|| < \delta$. For $||h|| < \epsilon$, we have

$$||F(z+h) - F(z) - hf(z)|| = \left\| \int_{z}^{z+h} f(\zeta)d\zeta - hf(z) \right\|$$

$$= \left\| \int_{z}^{z+h} f(\zeta)d\zeta - \int_{z}^{z+h} f(z)d\zeta \right\|$$

$$= \left\| \int_{z}^{z+h} [f(\zeta) - f(z)]d\zeta \right\|$$

$$\leq \epsilon \cdot ||h||$$

Which implies that

$$\left\| \frac{F(z+h) - F(z)}{h} - f(z) \right\| \le \epsilon$$

Therefore

$$\lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = f(z)$$

Theorem 10.7 (Liouville). Let f be an entire function. Assume that $\exists M$ such that $||f(z)|| \leq M$ for all $z \in \mathbb{C}$. Then f is a constant.

Proof. Consider $\tilde{f}(z) = f(z) - f(0)$. \tilde{f} is an entire function such that $\tilde{f}(0) = 0$. Hence \tilde{f} has order of zero at least 1 at $z_0 = 0$. So we can factorize $\tilde{f}(z) = (z - 0)^1 g(z)$ for some entire function g. Then

$$g(z) = \frac{\tilde{f}(z)}{z} = \frac{f(z) - f(0)}{z}$$

By Cauchy's:

$$g(z) = \frac{1}{2\pi i} \int_{\partial D(0:R)} \frac{g(\zeta)}{\zeta - z} d\zeta$$

for any R > ||z||. Then

$$\|g(\zeta)\| = \left\|\frac{f(\zeta) - f(0)}{\zeta}\right\| = \frac{\|f(\zeta) - f(0)\|}{\|\zeta\|} \le \frac{\|f(\zeta)\| + \|f(0)\|}{R} \le \frac{2M}{R}$$

Which implies that

$$\left\|\frac{1}{2\pi i}\int_{\partial D(0;R)}\frac{g(\zeta)}{\zeta-z}d\zeta\right\|\leq \frac{1}{2\pi}\cdot 2\pi R\cdot \max_{\zeta\in\partial D(0;R)}\left\|\frac{g(\zeta)}{\zeta-z}\right\|\leq R\cdot \frac{2M/R}{R-\|z\|}=\frac{2M}{R-\|z\|}$$

Therefore, $\forall R > ||z||$,

$$||g(z)|| \le \frac{2M}{R - ||z||}$$

Which means that ||g(z)|| = 0 and so g(z) = 0. This implies that f(z) = f(0), and so f is a constant.

Log

• Let *D* be a simply connected domain

• Let $h:D\to\mathbb{C}$ be analytic and nowhere zero

• Then

$$\frac{h'}{h}:D\to\mathbb{C}$$

is analytic

• Define $\text{Log } h: D \to \mathbb{C}$ by

$$(\operatorname{Log} h)(z) \triangleq \int_{z_0}^{z} \frac{h'}{h}(\zeta)d\zeta$$

where z_0 is some fixed point in D

- \bullet By Cauchy's, Log h is a well-defined, analytic function on D
- To compare $e^{\text{Log }h}$ and h, observe that

$$(e^{-\operatorname{Log} h} \cdot h)' = (e^{-\operatorname{Log} h})' \cdot h + (e^{-\operatorname{Log} h}) \cdot h'$$

$$= e^{-\operatorname{Log} h} (-\operatorname{Log} h)' \cdot h + (e^{-\operatorname{Log} h}) \cdot h'$$

$$= e^{-\operatorname{Log} h} \cdot \frac{h'}{h} \cdot h + (e^{-\operatorname{Log} h}) \cdot h'$$

$$= 0$$

Theorem 10.8 (Fundamental Theorem of Algebra). Let $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ be a polynomial of degree $n \ge 1$. Then p has a root in $\mathbb C$

Proof. (by contradiction) Assume that p has no roots. Then $\frac{1}{p}$ is an analytic function defined on \mathbb{C} (i.e. 1/p is entire). Observe that for all z, we have

$$\begin{aligned} \|p(z)\| &= \left\| a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 \right\| \\ &= ||a_n|| \cdot ||z||^n \cdot \left\| 1 + \frac{a_{n-1}}{a_n} \frac{1}{z} + \dots + \frac{a_0}{a_n} \left(\frac{1}{z} \right)^n \right\| \\ &\geq ||a_n|| \cdot ||z||^n \cdot \left(1 - \left\| \frac{a_{n-1}}{a_n} \right\| \cdot \frac{1}{||z||} - \dots - \left\| \frac{a_0}{a_n} \right\| \cdot \left(\frac{1}{||z||} \right)^n \right) \end{aligned}$$
 By Triangular Inequality

Since

$$\lim_{||z|| \to \infty} \left(1 - \left\| \frac{a_{n-1}}{a_n} \right\| \cdot \frac{1}{||z||} - \dots - \left\| \frac{a_0}{a_n} \right\| \cdot \left(\frac{1}{||z||} \right)^n \right) = 1$$

by the $\epsilon - \delta$ definition of limit, $\exists M > 0$ such that

$$1 - \left\| \frac{a_{n-1}}{a_n} \right\| \cdot \frac{1}{||z||} - \dots - \left\| \frac{a_0}{a_n} \right\| \cdot \left(\frac{1}{||z||} \right)^n > \frac{1}{2}$$

whenever ||z|| > M. Therefore, for ||z|| > M, we have

$$||p(z)|| \ge ||a_n|| \cdot ||z||^n \cdot \left(1 - \left\| \frac{a_{n-1}}{a_n} \right\| \cdot \frac{1}{||z||} - \dots - \left\| \frac{a_0}{a_n} \right\| \cdot \left(\frac{1}{||z||} \right)^n \right)$$

$$\ge ||a_n|| \cdot ||z||^n \cdot \frac{1}{2}$$

$$> \frac{1}{2} ||a_n|| \cdot M^n$$

$$\iff \left\| \frac{1}{p(z)} \right\| < \frac{1}{\frac{1}{2} ||a_n|| \cdot M^n}$$

Notice that $\overline{D(0;M)}$ is compact and that $z\mapsto \left\|\frac{1}{p(z)}\right\|$ is continuous. Hence $\left\|\frac{1}{p(z)}\right\|$ is bounded on $\overline{D(0;M)}$. Therefore, $\left\|\frac{1}{p(z)}\right\|$ is bounded on \mathbb{C} . By Liouville, $\frac{1}{p(z)}$ is a constant function. Hence p(z) is a constant function. However, we know that p(z) is a polynomial of degree ≥ 1 , which is a contradiction.

11 Singularity

Def. Let f be an analytic function defined on $D(z_0;r) - \{z_0\}$. Then f has an **isolated singularity** at z_0

- The function needs to be defined around the isolated singularity
- To create an isolated singularity:
 - Multiply by $\frac{1}{z-z_0}$
 - Multiply by $e^{\frac{1}{z-z_0}}$
- Def. z_0 is **removable** if ||f(z)|| is bounded on $D(z_0; r) \{z_0\}$
- Def. z_0 is a **pole** if $\lim_{z \to z_0} ||f(z)|| = \infty$
- Def. z_0 is **essential** if it is neither removable nor a pole

Example: Let f be an analytic function on $D(z_0; r)$ and have a removable singularity on z_0 . Let $g: D(z_0; r) \to \mathbb{C}$ defined by

$$z \longmapsto \begin{cases} (z - z_0)^2 f(z), & \text{if } z \neq z_0 \\ 0, & \text{if } z = z_0 \end{cases}$$

- g is analytic on $D(z_0; r) \{z_0\}$
- g is analytic at z_0 , since

$$\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{(z - z_0)^2 f(z) - 0}{z - z_0} = \lim_{z \to z_0} (z - z_0) f(z) = 0$$

and f(z) is bounded on $D(z_0; r) - \{z_0\}$

• Power series expansion:

$$g(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$$

$$-a_0 = g(z_0) = 0$$

$$-a = \frac{1}{11}g'(z_0) = 0$$
 since the first derivative was computed to be zero

- So g has a zero of order at least 2, i.e. $g(z) = (z z_0)^2 \hat{g}(z)$ for some analytic function \hat{g} defined on $D(z_0; r)$
- Hence, on $D(z_0; r) \{z_0\}$, we have $\hat{g}(z) = f(z)$
- Therefore, f can be extended to an analytic function on $D(z_0; r)$

Example: Let f be an analytic function on $D(z_0; r)$ and have a pole on z_0 . Then $\lim_{z \to z_0} ||f(z)|| = \infty$. Fix M > 0, by the $\epsilon - \delta$ definition of limit, $\exists \delta > 0$ such that ||f(z)|| > M for all $z \in D(z_0; \delta)$. So

$$\left\| \frac{1}{f(z)} \right\| < \frac{1}{M}$$

for all $z \in D(z_0; \delta) - \{z_0\}$. Define $\tilde{f} = \frac{1}{f}$, then \tilde{f} is

- Analytic on $D(z_0; \delta) \{z_0\}$
- $||\tilde{f}(z)||$ is bounded on $D(z_0; \delta) \{z_0\}$
- Hence \tilde{f} has an removable singularity at z_0

• Can extend \tilde{f} to an analytic function $\tilde{\tilde{f}}$ on $D(z_0;r)$

Let $m \geq 0$ be the order of zero of $\tilde{\tilde{f}}$ at z_0 . Then $\tilde{\tilde{f}}(z) = (z - z_0)^m \tilde{\tilde{f}}(z)$ for some analytic function $\tilde{\tilde{f}}$ on $D(z_0; \delta)$ such that $\tilde{\tilde{f}} \neq 0$. Therefore $\frac{1}{f(z)} = \tilde{f}(z) = (z - z_0)^m \tilde{\tilde{f}}(z)$ on $D(z_0; \delta) - \{z_0\}$. Hence

$$f(z) = \frac{1}{(z - z_0)^m} \cdot \frac{1}{\tilde{\tilde{f}}(z)}$$

on $D(z_0; \delta) - \{z_0\}$. Since $\tilde{\tilde{f}}(z_0) \neq 0$, then $\exists \delta' > 0$ such that $\forall z \in D(z_0; \delta')$, $\tilde{\tilde{f}}(z) \neq 0$. So $\frac{1}{\tilde{\tilde{f}}(z)}$ is analytic on $D(z_0; \delta') \cap D(z_0; \delta)$. Therefore, $\exists \delta'' > 0$ such that

$$f(z) = \frac{1}{(z - z_0)^m} \cdot h(z)$$

on $D(z_0; \delta'')$ for some analytic function h defined on $D(z_0; \delta'')$ such tat $h(z_0) \neq 0$.

Def. From the above, m is the **order** of the pole of f at z_0 .

12 Residue

Def. Let $f: D(z_0; r) - \{z_0\} \to \mathbb{C}$ be analytic. The **residue** Res $(f; z_0)$ of f at z_0 is

$$\operatorname{Res}(f; z_0) = \frac{1}{2\pi i} \int_{\partial D(z_0; s)} f(z) dz \quad \forall 0 < s < r$$

• Notice that if $0 < s_1, s_2 < r$, then

$$\int_{\partial D(z_0;s_1)} f(z)dz = \int_{\partial D(z_0;s_2)} f(z)dz$$

Proof. (Well-definedness of residue) Consider an annulus $A(z_0; s_2, s_1) = \{z \in \mathbb{C} : s_2 < |z - z_0| < s_1\}$. The function f is analytic on $A(z_0; s_2, s_1)$. Let the annulus be parameterized by γ on the inside (with clockwise orientation) and Γ on the outside (with counterclockwise orientation). Then by Cauchy's Theorem, we have

$$0 = \int_{\Gamma \cup \gamma} f(z)dz = \int_{\Gamma} f(z)dz + \int_{\gamma} f(z)dz = \int_{\partial D(z_0; s_1)} f(z)dz - \int_{\partial D(z_0; s_2)} f(z)dz$$

Hence, the residue of f at z_0 is well-defined.

Assume that z_0 is a removable singularity or a pole of f. Then

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \frac{a_{-m+1}}{(z - z_0)^{m-1}} + \dots + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

Define

$$g(z) = a_0 + a_1(z - z_0) + \cdots$$

Then g is analytic on $D(z_0;r)$. By Cauchy, $\int_{\partial D(z_0;s)}g(z)dz=0$. Observe that

$$\int_{\partial D(z_0;s)} \frac{1}{z - z_0} dz = \int_0^{2\pi} \frac{1}{e^{it}} \cdot i e^{it} dt = 2\pi i$$

Then for any $2 \le k \le m$,

$$\int_{\partial D(z_0;s)} \frac{1}{(z-z_0)^k} dz = \int_0^{2\pi} \frac{1}{(e^{it})^k} \cdot ie^{it} dt = \int_0^{2\pi} \frac{i}{(e^{it})^{k-1}} dt = \int_0^{2\pi} ie^{i(1-k)t} dt$$

Using Euler's formula, the above becomes

$$\int_0^{2\pi} i \left(\cos((1-k)t) + i \sin((1-k)t)\right) dt = -\int_0^{2\pi} \sin((1-k)t) dt + i \int_0^{2\pi} \cos((1-k)t) dt = 0$$

Therefore,

$$\operatorname{Res}(f; z_0) = \frac{1}{2\pi i} \left(\int_{\partial D(z_0; s)} \frac{a_{-m}}{(z - z_0)^m} dz + \int_{\partial D(z_0; s)} \frac{a_{-m+1}}{(z - z_0)^{m-1}} dz + \dots + \int_{\partial D(z_0; s)} \frac{a_{-1}}{(z - z_0)} dz + \int_{\partial D(z_0; s)} g(z) dz \right)$$

$$= a_{-1}$$

Let 0 < r < R. Let $f : A(z_0; r, R) \to \mathbb{C}$ be analytic. Let r < r' < R' < R. Let γ parameterize the boundary of $D(z_0; r')$ with clockwise orientation and Γ parameterize the boundary of $D(z_0; R')$ with counterclockwise orientation. Then by Cauchy's Theorem, we have

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma \cup \gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\partial D(z_0; R')} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\partial D(z_0; r')} \frac{f(\zeta)}{\zeta - z} d\zeta$$

For the first term in the difference:

$$\begin{split} \frac{1}{2\pi i} \int_{\partial D(z_0;R')} \frac{f(\zeta)}{\zeta - z} d\zeta &= \frac{1}{2\pi i} \int_{\partial D(z_0;R')} \frac{f(\zeta)}{(\zeta - z_0) - (z - z_0)} d\zeta \\ &= \frac{1}{2\pi i} \int_{\partial D(z_0;R')} \frac{f(\zeta)}{(\zeta - z_0)} \left(1 - \frac{z - z_0}{\zeta - z_0}\right) d\zeta \\ &= \frac{1}{2\pi i} \int_{\partial D(z_0;R')} \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} d\zeta \\ &= \frac{1}{2\pi i} \int_{\partial D(z_0;R')} \frac{f(\zeta)}{\zeta - z_0} \sum_{k=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^k d\zeta \\ &= \frac{1}{2\pi i} \int_{\partial D(z_0;R')} \sum_{k=0}^{\infty} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} \cdot (z - z_0)^k d\zeta \\ &= \frac{1}{2\pi i} \sum_{k=0}^{\infty} \int_{\partial D(z_0;R')} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} (z - z_0)^k d\zeta \\ &= \sum_{k=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial D(z_0;R')} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} d\zeta\right) (z - z_0)^k d\zeta \end{split}$$

Doing the same for the second term:

$$\frac{1}{2\pi i} \int_{\partial D(z_0;r')} \frac{f(w)}{w - z} dw = \frac{1}{2\pi i} \int_{\partial D(z_0;r')} \frac{f(w)}{(w - z_0) - (z - z_0)} dw$$

$$= \frac{1}{2\pi i} \int_{\partial D(z_0;r')} \frac{f(w)}{(z - z_0)} \left(\frac{w - z_0}{z - z_0} - 1 \right) dw \quad \text{Notice the difference from above}$$

$$= -\frac{1}{2\pi i} \int_{\partial D(z_0;r')} \frac{f(w)}{z - z_0} \cdot \frac{1}{1 - \frac{w - z_0}{z - z_0}} dw$$

$$= -\frac{1}{2\pi i} \int_{\partial D(z_0;r')} \frac{f(w)}{z - z_0} \sum_{k=0}^{\infty} \left(\frac{w - z_0}{z - z_0} \right)^k dw$$

$$= -\frac{1}{2\pi i} \int_{\partial D(z_0;r')} \sum_{k=0}^{\infty} f(w)(w - z_0)^k \cdot \frac{1}{(z - z_0)^{k+1}} dw$$

$$= -\frac{1}{2\pi i} \sum_{k=0}^{\infty} \left(\int_{\partial D(z_0;r')} f(w)(w - z_0)^k dw \right) \frac{1}{(z - z_0)} \int_{-1}^{k+1} dw$$

$$= -\frac{1}{2\pi i} \sum_{j=1}^{\infty} \left(\int_{\partial D(z_0;r')} f(w)(w - z_0)^{j-1} dw \right) (z - z_0)^{-j}$$

$$= -\frac{1}{2\pi i} \sum_{j=-1}^{\infty} \left(\int_{\partial D(z_0;r')} f(w)(w - z_0)^{j-1} dw \right) (z - z_0)^{j}$$

$$= \sum_{k=-1}^{\infty} \left(-\frac{1}{2\pi i} \int_{\partial D(z_0;r')} \frac{f(w)}{(w - z_0)^{j+1}} dw \right) (z - z_0)^{j}$$

Therefore

$$f(z) = \sum_{k=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial D(z_0; R')} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} d\zeta \right) (z - z_0)^k + \sum_{j=-1}^{-\infty} \left(\frac{1}{2\pi i} \int_{\partial D(z_0; r')} \frac{f(w)}{(w - z_0)^{j+1}} dw \right) (z - z_0)^j$$

Special case: r = 0, i.e. $f: D(z_0; R) - \{z_0\} \to \mathbb{C}$ is analytic, i.e. z_0 is an isolated singularity. Then

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k + \sum_{j=-1}^{-\infty} a_j (z - z_0)^j$$

is called the **Laurent series** of f

- In the case of a removable singularity, the Laurent series has no negative powers
- In the case of a pole (of order m), the Laurent series has finitely many negative powers
- In the case of an essential singularity, the Laurent series has infinitely many negative powers

Theorem 12.1 (Residue). Let D be a simply-connected domain and $z_1, \ldots, z_n \in D$. Let $f: D \setminus \{z_1, \ldots, z_n\} \to \mathbb{C}$ be analytic. Let γ be a positively oriented piecewise smooth simple closed curve in D which does not pass through z_1, \ldots, z_n . Then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{z_j \in inside \ of \ \gamma} \operatorname{Res}(f; z_j)$$

Example. Let p,q be polynomials of degrees m,n resp. Assume $m \leq n-2$ and $q(x) \neq 0$ for every $x \in \mathbb{R}$. Want to compute

$$\int_{-\infty}^{\infty} \frac{p(z)}{q(z)} dz$$

Visualize a semicircle centered at origin with radius $R \gg 0$ (upper half). By the Residue Theorem, we have

$$\frac{1}{2\pi i} \int_{\gamma} \frac{p(z)}{q(z)} dz = \sum_{q(w)=0, \text{ Re } w>0} \text{Res}\left(\frac{p}{q}; w\right)$$

Can compute RHS using Laurent series. LHS is equal to

$$\frac{1}{2\pi i} \int_{\gamma} \frac{p(z)}{q(z)} dz = \frac{1}{2\pi i} \int_{-R}^{R} \frac{p(z)}{q(z)} dz + \frac{1}{2\pi i} \int_{\gamma_R} \frac{p(z)}{q(z)} dz$$

where γ_R is the arc of the semicircle. Observe that

$$\lim_{R \to +\infty} \int_{-R}^{R} \frac{p(z)}{q(z)} dz = \int_{-\infty}^{\infty} \frac{p(z)}{q(z)} dz$$

Hence, sum of residues is equal to

$$\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{p(z)}{q(z)} dz + \frac{1}{2\pi i} \lim_{R \to \infty} \int_{\gamma_R} \frac{p(z)}{q(z)} dz$$

Write $p(z) = a_m z^m + a_{m-1} z^{m-1} + \dots + a_0$ and $q(z) = b_n z^n + b_{n-1} z^{n-1} + \dots + b_0$. For $z \in \gamma_R$, we have that

$$||p(z)|| = ||a_n z^n + (a_{n-1} z^{n-1} + \dots + a_0)|| \le 2 ||a_n|| \cdot R^n$$

$$||q(z)|| = ||b_n z^n + (b_{n-1} z^{n-1} + \dots + b_0)|| \ge \frac{1}{2} ||b_n|| \cdot R^n$$

Therefore

$$\left\| \frac{p(z)}{q(z)} \right\| \le \frac{2||a_m||R^m}{\frac{1}{2}||b_n||R^n} = \frac{4||a_m||}{||b_n||} \cdot \frac{1}{R^{n-m}} \le \frac{4||a_m||}{||b_n||} \cdot \frac{1}{R^2}$$

Hence

$$\left\| \int_{\gamma_R} \frac{p(z)}{q(z)} dz \right\| \le \left(\max_{z \in \gamma_R} \left\| \frac{p(z)}{q(z)} \right\| \right) \cdot \operatorname{len}(\gamma_R) \le \frac{4||a_m||}{||b_n||} \cdot \frac{1}{R^2} \cdot \pi R = \frac{4||a_m||\pi}{||b_n||} \frac{1}{R}$$

which tends to 0 as $R \to \infty$. Therefore

$$\lim_{R \to \infty} \int_{\gamma_R} \frac{p(z)}{q(z)} dz = 0$$

Lemma 12.2. Let $f: D \to \mathbb{C}$ be analytic. Let $z_1, z_2, \ldots \in D$ such that $f(z_1) = f(z_2) = \cdots = 0$. Let $z_0 = \lim_{n \to \infty} z_n \in D$. Then f = 0.

Proof. Taylor expand f around z_0 so that $f(z) = a_0 + a_1(z - z_0) + \cdots$. Then

$$a_0 = f(z_0) = f\left(\lim_{n \to \infty} z_n\right) = \lim_{n \to \infty} f(z_n) = \lim_{n \to \infty} 0 = 0$$

Now claim that $a_{n-1} = 0 \implies a_n = 0$. Assuming the claim proves the lemma.

To prove the claim, define

$$g(z) = \begin{cases} \frac{f(z)}{(z-z_0)^n}, & \text{if } z \neq z_0\\ a_n, & \text{if } z = z_0 \end{cases}$$

g is analytic on $D \setminus \{z_0\}$. Moreover,

$$g(z) = \frac{f(z)}{(z - z_0)^n} = \frac{1}{(z - z_0)^n} \left(a_n (z - z_0)^n + a_{n+1} (z - z_0)^{n+1} + \cdots \right) = a_n + a_{n+1} (z - z_0) + \cdots$$

This implies that

$$\lim_{z \to z_0} g(z) = a_n = g(z_0)$$

which means that g is continuous, and so g is bounded in a neighbourhood of z_0 , which means that g has a removable singularity at z_0 . Therefore for all $k \in \mathbb{N}$, $g(z_k) = 0$.

Example: Let $f: D \to \mathbb{C}$ and $f(z_0) = 0$. Want to compute

$$\frac{1}{2\pi i} \int_{\partial D(z_0;r)} \frac{f'(z)}{f(z)} dz$$

Suppose z_0 is a zero of order n of f. Then $f(z) = (z - z_0)^n g(z)$, where g is analytic and that $g(z_0) \neq 0$. Hence,

$$\frac{f'(z)}{f(z)} = \frac{n(z-z_0)^{n-1}g(z) + (z-z_0)^n g'(z)}{(z-z_0)^n g(z)} = \frac{n}{z-z_0} + \frac{g'(z)}{g(z)}$$

Where the fraction involving g is analytic near z_0 . Therefore

$$\operatorname{Res}\left(\frac{f'}{f}; z_0\right) = \operatorname{Res}\left(\frac{n}{z - z_0}; z_0\right) = n$$

Therefore

$$\frac{1}{2\pi i} \int_{\partial D(z_0;r)} \frac{f'(z)}{f(z)} dz = n$$

Now suppose z_0 is a pole of order n of f, then by a similar argument the integral evaluates to -n.

Theorem 12.3. Let $f: D \to \mathbb{C}$ be analytic except at poles z_1, \ldots, z_n . Let γ be a positively oriented, smooth, simple closed curve which together with its inside is contained in D. Assume that γ does not pass through any zero or pole of f. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \# zeros \ in \ the \ inside \ of \ \gamma - \# poles \ in \ the \ inside \ of \ \gamma$$

• Potential user case:

$$(\log(f(z)))' = \frac{f'(z)}{f(z)}$$

Corollary 12.3.1 (Argument Principle).

$$\frac{1}{2\pi} \times (change \ in \ Arg \ f(z) \ as \ z \ traverse \ \gamma)$$

$$= \# \ zeros \ of \ f \ in \ the \ inside \ of \ \gamma - \# \ poles \ of \ f \ in \ the \ inside \ of \ \gamma$$

Theorem 12.4 (Rouché). Let $f, g: D \to \mathbb{C}$ be analytic. Let γ be piecewise smooth, simple closed curve contained in D where the inside of γ is also contained in D. Suppose that

$$\forall z \in \gamma, ||f(z) + g(z)|| < ||f(z)||$$

Then f and g have the same number of zeros in the inside of γ .

Proof. Define h(z) = g(z)/f(z). For every $z \in \gamma$, we have that

$$||1 + h(z)|| = \left||1 + \frac{g(z)}{f(z)}\right|| = \frac{1}{||f(z)||} \cdot ||f(z) + g(z)|| < \frac{1}{||f(z)||} \cdot ||f(z)|| = 1$$

Hence, $h(z) \in D(-1;1)$ for every $z \in \gamma$ (which does not cross the origin). Therefore $\operatorname{Arg} h(z)$ does not change as z traverses γ . By the Argument Principle, h has the same number of zeros and poles enclosed by γ .

13 Maximum Modulus and Mean Value

Theorem 13.1 (Open Mapping). Suppose that f is a nonconstant analytic function on a domain D. Then the range of f is an open set.

Proof. Let $f: D \to \mathbb{C}$ be analytic. Suppose that f is not constant. Let $w_0 = f(z_0)$ be an arbitrary point in the range of f. Then $f(z) - w_0$ has a zero of order $m \ge 1$ at z_0 . Choose a small enough r so that $f(z) - w_0$ has no zero in the region $0 < |z - z_0| \le r$, which is possible since zeros of a nonconstant analytic function are isolated. Let

$$\delta = \min_{z} \{ f(z) - w_0 : |z - z_0| = r \}$$

Let w be any point with $|w - w_0| < \delta$. Then on the circle $|z - z_0| = r$:

$$|[f(z) - w] - [f(z) - w_0]| = |w - w_0| < \delta \le |f(z) - w_0|$$

By Rouche's Theorem, f - w and $f - w_0$ have an equal number of zeros within the circle $|z - z_0| = r$. This shows that each point w_0 in the range of f lies at the center of a small disc, which is also within the range of f. Therefore the range of f is open.

Corollary 13.1.1 (Maximum Modulus Principle). If f is a nonconstant analytic function on a domain D, then |f| can have no local maximum on D.

Proof. Suppose for a contradiction that $|f(z_0)| \ge |f(z)|$ for all z with $|z - z_0| < r$, then $f(z_0)$ lies on the boundary of the open set $W = \{f(z) : |z - z_0| < r\}$, which is a contradiction.

- If f is analytic and nonconstant on a domain D, then Re f has no local maxima and no local minima on D.
- If f is analytic and on a bounded domain D and continuous on $D \cup \partial D$. Then each of |f|, Re f, Re f attains its maximum value on ∂D .

Lemma 13.2 (Schwarz). Suppose that f is analytic in the disc |z| < 1, that f(0) = 0, and that $|f(z)| \le 1$ for all z in the disc. Then

$$|f(z)| \le |z|, \quad |z| < 1$$

• Equality can hold for some $z \leq 0$ only if $f(z) = \lambda z$, where λ is a constant of absolute value 1

Proof. Since f(0) = 0, we know that g(z) = f(z)/z is also analytic on |z| < 1. For |z| = r,

$$|g(z)| = \frac{|f(z)|}{r} \le \frac{1}{r}$$

By the maximum modulus principle, the inequality above is true for |z| < r as well. Since r can be arbitrarily close to 1, we must have that $|g(z)| \le 1$ if |z| < 1.

Furthermore, if $|f(z_0)| = |z_0|$ for some $z_0 \neq 0$, then $1 = |g(z_0)|$; consequently, |g(z)| has an interior maximum. This implies that g is a constant λ where $|\lambda| = 1$. This gives the conclusion that $f(z) = \lambda z$.

Theorem 13.3 (Mean Value). Let f be analytic and z_0 in the domain of f. Then

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$

Proof. Cauchy's Formula gives

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z_0} d\zeta$$

where γ is a circle and z_0 is the inside of γ . Taking z_0 to be the center of the circle, then $\zeta = z_0 + re^{it}$, $0 \le t \le 2\pi$, $d\zeta = ire^{it}dt$. Plugging those values gives the result.

14 Linear Fractional Transformations

Def. A linear fractional transformation T is a rational function of the special form

$$T(z) = \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$

• The restriction $ad - bc \neq 0$ is essential, since otherwise

$$T'(z) = \frac{ad - bc}{(cz+d)^2} = 0$$

for all z, so T is identically constant

- \bullet T is a one-to-one function
- T has a pole of order 1 at -d/c
- $\bullet \lim_{|z| \to \infty} T(z) = a/c$
- There is a function T^{-1} that is the inverse of T such that $T^{-1}(T(z)) = z$, where

$$T^{-1}(w) = z = \frac{-dw + b}{cw - a}$$

- T^{-1} is also a linear fractional transformation
- A linear fractional transformation is a one-to-one mmapping of the complex plane plus the point at ∞ onto itself
- ullet A one-to-one analytic mapping of the complex plane plus ∞ onto itself is a linear fractional transformation

Def. A linear fractional transformation that is not identically equal to z has at most two distinct **fixed** points, i.e. points z for which T(z) = z

• z is the solution of the equation T(z) = z when z is a root of the quadratic equation

$$cz^2 + (d-a)z - b = 0$$

Lemma 14.1. If T and S are two linear fractional transformations that are equal at 3 distinct points, then T = S

Proof. The linear fractional transformation $S^{-1}(T(z))$ has three distinct fixed points, so it must be a constant.

Lemma 14.2. Given three distinct complex numbers z_1, z_2, z_3 , and three other distinct complex numbers w_1, w_2, w_3 , then there is a unique linear fractional transformation L with $L(z_j) = w_j$, j = 1, 2, 3.

Proof. Set

$$T(z) = \frac{z - z_1}{z - z_3} \cdot \frac{z_2 - z_3}{z_2 - z_1}$$

Then $T(z_1) = 0, T(z_2) = 1, T(z_3) = \infty$. Let

$$S(w) = \frac{w - w_1}{w - w_3} \cdot \frac{w_2 - w_3}{w_2 - w_1}$$

so that $S(w_1) = 0$, $S(w_2) = 1$, $S(w_3) = \infty$. Then L is given by

$$L(z) = S^{-1}(T(z))$$

• Can use this to find the linear fractional transformation that sends three points to three other points

Lemma 14.3. A linear fractional transformation maps

- A circle onto another circle or a straight line
- A straight line onto another straight line or a circle

Proof. If $T(z) = az + b, a \neq 0$, then T maps circles and straight lines to the same type

- The circle $\{Z: |z-z_0|=r\}$ is transformed to the circle $\{w: |w-(az_0+b)|=|a|r\}$
- The straight line $\{z: \operatorname{Re}(Az+B)=0\}$ is transformed to the straight line $\{w: \operatorname{Re}[(A/a)w+B-b(A/a)]=0\}$

Let $T(z) = \frac{az+b}{cz+d}$ where $c \neq 0$. Now

$$T(z) = \frac{az+b}{cz+d} = \frac{1}{c} \left(\frac{bc-ad}{cz+d} + a \right)$$

and so T is the composition of the linear fractional transformations

$$T(z) = W(V(U(z)))$$

where

$$U(z) = cz + d$$
 $V(w) = \frac{1}{w}$ $W(\zeta) = \frac{1}{c}[(bc - ad)\zeta + a]$

Knowing that U and W send circles to circles and lines to lines, we need to show that V sends circles to circles and lines to lines. Define the equation

$$\alpha(x^2 + y^2) + \beta x + \gamma y = \delta$$

where $\alpha, \beta, \gamma, \delta$ are real and not all of α, β, γ are zero, represents either a circle (iff $\alpha \neq 0$ and $\beta^2 + \gamma^2 + 4\alpha\delta > 0$) or a straight line (iff $\alpha = 0$). Notice that

$$\frac{1}{z} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2} = u + iv$$

replacing z by $\frac{1}{z}$ yields

$$\delta(u^2 + v^2) - \beta u + \gamma v = \alpha$$

which is a line or a circle, completing this proof.

15 Conformal Mapping

Let $f: \mathbb{C} \to \mathbb{C}$ be analytic. Let $z_0 \in \mathbb{C}$ and $w_0 = f(z_0)$. Let $\gamma: [a, b] \to \mathbb{C}$ such that $\exists t \in (a, b)$ such that $\gamma(t) = z_0$. Then $f \circ \gamma: [a, b] \to \mathbb{C}$ such that $f \circ \gamma(t) = w_0$. Assume that γ is smooth, then

$$(f \circ \gamma)'(t_0) = f'(\gamma(t_0))\gamma'(t_0) = f'(z_0)\gamma'(t_0)$$

In particular,

$$\arg(f \circ \gamma)'(t_0) = \arg(f'(z_0)) + \arg(\gamma'(t_0))$$

Now suppose there are two curves (with direction) $\gamma_1:[a,b]\to\mathbb{C}$ and $\gamma_2:[c,d]\to\mathbb{C}$ such that $\exists t_1\in(a,b), \exists t_2\in(c,d)$ such that $\gamma_1(t_1)=\gamma_2(t_2)=z_0$ (i.e. the two curves intersect at z_0). We are interested in the angle between the two tangent lines (in the direction of the curves) at z_0 .

Def. The angle from γ_1 to γ_2 is the angle θ , measured counterclockwise, from $\gamma'_1(t_1)$ to $\gamma'_2(t_2)$

Let $f: \mathbb{C} \to \mathbb{C}$ be analytic and assume $f'(z_0) \neq 0$. Let $w_0 \triangleq f(z_0)$. Want to know that angle from $f \circ \gamma_1$ to $f \circ \gamma_2$ at w_0 . We have the following:

$$\arg(f \circ \gamma_1)'(t_1) = \arg f'(z_0) + \arg \gamma_1'(t_1)$$

$$\arg(f \circ \gamma_2)'(t_2) = \arg f'(z_0) + \arg \gamma_2'(t_2)$$

Hence,

$$\arg(f \circ \gamma_2)'(t_2) - \arg(f \circ \gamma_1)'(t_1) = \arg \gamma_2'(t_2) - \arg \gamma_1'(t_1)$$

Def. Let $\varphi: D(z_0; \epsilon) \to \mathbb{C}$ be a function. φ is **conformal** at z_0 if for any curves γ_1, γ_2 intersecting at z_0 , the angle from γ_1 to γ_2 is equal to the angle from $\varphi \circ \gamma_1$ to $\varphi \circ \gamma_2$ at $\varphi(z_0)$.

Theorem 15.1. Let $f: D(z_0; \epsilon) \to \mathbb{C}$ be analytic. If $f'(z_0) \neq 0$, then f is conformal at z_0 .

Corollary 15.1.1. If f is analytic and injective on some domain D, then f is conformal on D.

Examples of Conformal Mapping

- f(z) = z is conformal on C
- $f(z) = \frac{az+b}{cz+d}$ where $ad-bc \neq 0$ is conformal on its domain of definition
- The Cayley Transform $C(z) = -\frac{z-i}{z+i}$ is conformal
 - The upper complex plane is mapped to the unit disc
 - Under the Cayley Transform, an imaginary number is mapped to the real number

$$C(iy) = -\frac{iy - i}{iy + i} = -\frac{i(y - 1)}{i(y + 1)} = -\frac{y - 1}{y + 1} = -\left(1 - \frac{2}{y + 1}\right)$$

Def. Let $p:D\to\mathbb{R}$ where $D\subseteq\mathbb{C}$ is a domain. The **level curve** of p at level c is the set

$$\{(x,y) \in D : p(x,y) = c\}$$

Let $f: D \to \mathbb{C}, z_0 \in D, f'(z_0) \neq 0$. Denote f(z) = u(z) + iv(z) = u(x,y) + iv(x,y). Assume for simplicity that f is injective on D. Let $\Omega = f(D)$. Notice that Ω is an open subset of \mathbb{C} . Let $g: \Omega \to \mathbb{C}$ be the (analytic) inverse function of f. Denote $g(z) = \sigma(z) + i\tau(z) = \sigma(x,y) + i\tau(x,y)$. Let

$$\gamma_1 = \{ z \in D : u(z) = u(z_0) \}$$

$$\gamma_2 = \{ z \in D : v(z) = v(z_0) \}$$

- γ_1 is the level curve of u at level $u(z_0)$
- γ_2 is the level curve of v at level $v(z_0)$

Then

$$\gamma_{1} = \{z \in D : u(z) = u(z_{0})\}
= \{z \in D : \operatorname{Re} f(z) = u(z_{0})\}
= \{g(w) : \operatorname{Re} w = u(z_{0})\}$$
 Since $w = f(z)$

$$= g(\{w \in \Omega : \operatorname{Re} w = u(z_{0})\})$$
 (15.1)

and

$$\gamma_{2} = \{z \in D : v(z) = v(z_{0})\}
= \{z \in D : \operatorname{Im} f(z) = v(z_{0})\}
= \{g(w) : \operatorname{Im} w = v(z_{0})\}$$
 Since $w = f(z)$

$$= g(\{w \in \Omega : \operatorname{Im} w = v(z_{0})\})$$
 (15.2)

Notice that the set in (15.1) is a vertical line, and the set in (15.2) is a horizontal line. Therefore g maps orthogonal curves to orthogonal lines (which forms a grid). We can get "coordinate axes" by setting u(z) and v(z) to be constant.

16 Schwarz Christoffel Formula

Want to map the upper half plane to a polygon. Consider

$$f(z) = A(z - x_0)^{\beta} + B$$

where $A, B \in \mathbb{C}$, $x_0, \beta \in \mathbb{R}$, $\beta \in (0,2)$. Choose arg such that $arg(z - x_0) \in (\frac{\pi}{2}, \frac{3\pi}{2})$. Let $x \in \mathbb{R}$. Want to compute

$$f'(x) = A\beta(x - x_0)^{\beta - 1}$$

In the case of $x > x_0$,

$$\arg f'(x) = \arg \left(A\beta(x - x_0)^{\beta - 1} \right)$$

$$= \arg A + \arg \beta + (\beta - 1) \arg(x - x_0)$$

$$= \arg A + 0 + 0$$

$$= \arg A$$

In the case of $x < x_0$,

$$\arg f'(x) = \arg \left(A\beta(x - x_0)^{\beta - 1} \right)$$

$$= \arg A + \arg \beta + (\beta - 1) \arg(x - x_0)$$

$$= \arg A + 0 + (\beta - 1)\pi$$

$$= \arg A + (\beta - 1)\pi$$

Supose that $x_1 < x_2 < \cdots < x_N \in \mathbb{R}$. Let f be a function whose derivative is

$$A(z-x_1)^{\alpha_1}(z-x_2)^{\alpha_2}\cdots(z-x_N)^{\alpha_N}$$

where $A \in \mathbb{C}$ and $\alpha_1, \ldots, \alpha_N \in (-1, 1)$.

In the case of $x < x_1$,

$$\arg f'(x) = \arg (A(x - x_1)^{\alpha_1} \cdots (x - x_N)^{\alpha_N})$$

$$= \arg A + \alpha_1 \arg(x - x_1) + \cdots + \alpha_N \arg(x - x_N)$$

$$= \arg A + \alpha_1 \pi + \cdots + \alpha_N \pi$$

In the case of $x_1 < x < x_2$,

$$\arg f'(x) = \arg (A(x - x_1)^{\alpha_1} \cdots (x - x_N)^{\alpha_N})$$

$$= \arg A + \alpha_1 \arg(x - x_1) + \cdots + \alpha_N \arg(x - x_N)$$

$$= \arg A + 0 + \alpha_2 \pi + \cdots + \alpha_N \pi$$

In the general case of $x_j < x < x_{j+1}$ for j = 1, ..., N-1,

$$\arg f'(x) = \arg A + \alpha_{i+1}\pi + \dots + \alpha_N\pi$$

In the case of $x > x_N$,

$$\arg f'(x) = \arg A$$

Let P be the polygon with vertices w_0, w_1, \ldots, w_N . The exterior angles at w_1, w_1, \ldots, w_N are $\theta_0, \theta_1, \ldots, \theta_N$. Write $\theta_i = \alpha_i \pi$, $\alpha_i \in (-1, 1)$. Note that $\alpha_0 + \alpha_1 + \cdots + \alpha_N = 2$.

Theorem 16.1 (Schwarz-Christoffel). $\exists x_1 < \cdots < x_N \in \mathbb{R}, A \in \mathbb{C}$ such that a function f whose derivative is $A(z-x_1)^{\alpha_1} \cdots (z-x_N)^{\alpha_N}$ gives a bijection from the upper half plane to P. Moreover, f maps x_1, \ldots, x_N to w_1, \ldots, w_N , $\lim_{x \to \infty} f(x) = w_0$.