Perceptrons, and Artificial neural networks

Chao Huang

McCulloch-Pitts Neuron and Perceptron

Activation function of the Perceptron

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	-
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	

Regression problems

E.g. linear model fitting

Classification problems

E.g. spam email detection, face detection, auto-driving cars, ...

Perceptron as a linear classifier

Perceptron as a linear classifier

Non-linear problems?

The Universal Approximation Theorem

...artificial neural networks with hidden layers can approximate continuous functions with finite number of neurons, under mild assumptions on the activation function

Task:

Find the appropriate weights **w** so the difference between the model output and the data is minimized

How?

Need a quantitative measure of the difference as a function of the weights:

the loss function

The Loss function(s)

Mean square error (MSE)

$$MSE = \frac{1}{n} \sum \left(y - \widehat{y} \right)^{2}$$
The square of the difference between actual and predicted

The Loss function(s)

Hinge loss

$$\left[rac{1}{n}\sum_{i=1}^n \max\left(0,1-y_i(w\cdot x_i-b)
ight)
ight] + \lambda \|w\|^2.$$

How to find the correct weights w?

How to find the correct weights w?

How to find the correct weights w?

- Start with initial guesses
 - · Start at random value
- 2. Each weight is updated by taking a step into the opposite direction of the gradient $\Delta w_i = -\eta \times \frac{\partial E}{\partial w_i}$
 - Compute the partial derivative of the cost function $\frac{\partial E}{\partial w_i}$ for each weight
- Repeat until you converge to a local minimum