Aeronautics & Mechanics AENG11301

Lecture 9
Climb and Glide

8/3/16

Dr Ben Woods

Department of Aerospace Engineering
University of Bristol

Outline for today

- Gliding flight
 - Force balance
 - Glide angle
 - Sink rate

- Climbing flight
 - Force balance
 - Climb angle
 - Climb rate

Aims for today

- Be able to calculate force balance in gliding flight
- Be able to calculate speed for minimum glide angle and speed for minimum sink rate
- Be able to calculate force balance in climbing flight
- Be able to relate maximum climb angle and maximum rate of climb with engine properties

Gliding Flight

- thrust T = 0 but drag $D \neq 0$
 - cannot maintain equilibrium in straight & level flight
 - aircraft descends at glide angle θ
 - component of weight along flight path replaces thrust

Force Balance in a Glide

- resolve forces
 - perpendicular to flight path $L = W \cos \theta$
 - parallel to flight path
- hence

$$\tan \theta = \frac{1}{L/D} = \frac{1}{C_L/C_D}$$

- glide angle depends solely on the aerodynamic characteristics
 - weight only affects the speed at which a particular $C_L\!/C_D$ is achieved
- best (shallowest) glide angle occurs at maximum L/D
 - minimum glide angle occurs at minimum drag speed

Glide ratios

	Glide ratio (L/D ratio)
Modern Sailplane	40-60
Lockheed U-2	28
Albatross	20
Boeing 747	17
Herring gull	10
Cessna 150	7
Space Shuttle	4.5
House sparrow	4
Flying squirrel	2

Speed for Minimum Glide Angle

- minimum glide angle occurs at minimum drag condition
 - gives maximum distance from a given start height
 - but corresponding speed depends on glide angle ...

$$V = \sqrt{\frac{L}{\frac{1}{2}\rho SC_L}} = \sqrt{\frac{W\cos\theta}{\frac{1}{2}\rho SC_L}} = \sqrt{\frac{W}{\frac{1}{2}\rho SC_L}}\sqrt{\cos\theta}$$

- for a given C_I , speed is less than for level flight by the factor √cosθ
- for glide angle < 10° error is < 1%
 - applies for all normal glide performance ... but must check!
- make small angle assumption $\rightarrow cos\theta = 1$, $sin\theta = \theta$

$$\square \rangle L \approx W \square \rangle$$

$$L \approx W \qquad V_{\min \theta} \approx V_{MD} = \left(\frac{2W}{\rho S}\right)^{\frac{1}{2}} \left(\frac{K}{C_{D0}}\right)^{\frac{1}{4}}$$

Speed for Minimum Sink Rate

- sinking speed (rate of sink) v is vertical component of flight speed V
- $v = V \sin \theta$ from force balance and velocity equation
 - making small angle assumption, so that $L \approx W$

$$v = V \frac{D}{W} \approx V \frac{D}{L} = V \frac{C_D}{C_L}$$
 $v = \sqrt{\frac{2L}{\rho S C_L}} \frac{C_D}{C_L} \approx \sqrt{\frac{2W}{\rho S}} \frac{C_D}{C_L^{3/2}}$

- minimum sink occurs at minimum $C_D/C_L^{3/2}$
- same as the minimum power condition!

$$V_{min \, sink} \approx V_{MP} = \left(\frac{2W}{\rho S}\right)^{\frac{1}{2}} \left(\frac{K}{3C_{D0}}\right)^{\frac{1}{4}}$$

Glider Polar Diagram

- glider performance usually represented by its 'polar'
 - plot of sink speed v vs forward speed V
 - indicates variation of D/L with speed
 - readily determined in flight test

$$\frac{v}{V} = \sin \theta = \frac{D}{W} \approx \frac{D}{L}$$

Climbing Flight

- thrust T > drag D
 - cannot maintain equilibrium in straight & level flight
 - aircraft ascends at climb angle θ
 - horizontal component of weight opposes thrust

Force Balance in a Climb

- resolve forces
 - perpendicular to flight path

$$L = W \cos \theta$$

W

parallel to flight path

$$T - D = W \sin \theta$$

hence **climb angle** is

$$\sin\theta = \frac{T - D}{W}$$

Climb Performance

• maximum angle of climb requires maximum excess thrust (T-D)

$$\sin\theta = \frac{T - D}{W}$$

• maximum rate of climb requires maximum excess power (TV - DV)

$$v = V \sin \theta = \frac{V(T-D)}{W}$$

- do not occur together
 - depend on propulsion thrust/power characteristics
 - cannot make small angle assumptions calculate numerically

Gross simplification

but useful for preliminary performance work

Jet aircraft

 \rightarrow **thrust** T remains constant with speed

$$\rightarrow$$
 power $P = TV$ increases with speed

Propeller aircraft

 \rightarrow **power** output P remains constant with speed

$$\rightarrow$$
 thrust $T = P/V$ reduces with speed

Propulsion type

Jet

Climb Angle - Jet

Climb Angle - Propeller

Rate of Climb - Jet

Rate of Climb - Propeller

Climb Performance Summary

- maximum excess power = maximum rate of climb
- maximum excess thrust = maximum climb angle

	Propeller Aircraft	Jet Aircraft
Max Rate of Climb	at minimum power speed V _{MP}	> V _{MP}
Max Climb Angle	< V _{MD}	at minimum drag speed V _{MD}

Example – Glider

Mass = 350 kg Wing area, $S = 11 \text{ m}^2$ Max lift to drag, $(L/D)_{max} = 42$ Aspect ratio, AR = 21Oswald efficiency, e = 0.95Altitude, h = 5000 m(where $\rho \approx 0.74 \text{ kg/m}^3$)

Calculate:

- 1) the minimum glide angle
- horizontal distance glider will cover in still air
- 3) C_L at minimum glide angle
- minimum glide angle airspeed
- 5) how this changes if add 150 kg of water ballast

Summary

$$L = W \cos \theta$$

$$L = W \cos \theta$$
 $D = W \sin \theta$

$$\tan\theta = \frac{1}{L/D} = \frac{1}{C_L/C_D}$$

- Minimum glide angle occurs at minimum drag speed
- Minimum sink rate occurs at minimum power required speed

Climbing

$$L = W \cos \theta$$

$$L = W \cos \theta$$
 $T - D = W \sin \theta$

- Maximum climb rate is at maximum excess Power
- Maximum climb angle is at maximum excess Thrust

	Propeller Aircraft	Jet Aircraft
Max Rate of Climb	at minimum power speed V _{MP}	> V _{MP}
Max Climb Angle	< V _{MD}	at minimum drag speed V _{MD}

Follow-up materials

To help with exam:

Introduction to Flight – 6.8, 6.9

To aid in understanding:

Introduction to Flight – 6.4, 6.6

For interest:

How to use glide polars as a glider pilot

http://avia.tion.ca/documentation/polar/