CS 220 – COMPUTER ARCHITECTURE

WEEK #2: BOOLEAN LOGIC (PART II)

CANONICAL REPRESENTATION

Whodunit story: Each suspect may or may not have an alibi (a), a motivation to commit the crime (m), and a relationship to the weapon found in the scene of the crime (w). The police decides to focus attention only on suspects for whom the proposition Not(a) And $(m \ Or \ w)$ is true.

Truth table of the "suspect" function $s(a, m, w) = \overline{a} \cdot (m + w)$

а	m	พ	minterm	suspect(a,m,w)= not(a) and (m or w)
0	0	0	$m_0 = \overline{a} \overline{m} \overline{w}$	0
0	0	1	$m_1 = \overline{a} \overline{m} w$	1
0	1	0	$m_2 = \overline{a}m\overline{w}$	1
0	1	1	$m_3 = \overline{a}mw$	1
1	0	0	$m_4 = a \overline{m} \overline{w}$	0
1	0	1	$m_5 = a\overline{m}w$	0
1	1	0	$m_6 = am\overline{w}$	0
1	1	1	$m_7 = a m w$	0

Canonical form: $s(a, m, w) = \overline{a} \overline{m} w + \overline{a} m \overline{w} + \overline{a} m w$

CANONICAL REPRESENTATION

$$S(a, m, w) = \overline{a} \cdot (m + w)$$

<--Efficient Solution

May not be the most efficient solution, but Canonical Representation at least gets you one!

$$s(a, m, w) = \overline{a}\overline{m}w + \overline{a}m\overline{w} + \overline{a}mw$$

Note: This is what we would call And3Way, as it has 3 data pins

XOR EXAMPLE

Minterms: $xor(a,b) = \overline{a}b + a\overline{b}$

а	b	out	minterms
0	0	0	-
0	1	1	$\overline{a}b$
1	0	1	$a\overline{b}$
1	1	0	-

Implementation

Xor(a,b) = Or(And(a,Not(b)),And(Not(a),b)))

Interface

CANONICAL REPRESENTATION

- Solutions may be inefficient
- Can we simplify?
 - Need to know Discrete Math
 - Karnaugh Maps (K-Maps) [Pronounced: Car-no]
 - Help simplify complicated expressions
 - using AND, OR, NOT only
 - 5 steps!

- 1) Start with your Truth Table (example: XOR)
- **2)** Draw a K-Map based on the number of input pins:
 - Each input gets a (set of) column/row
 - Each possibility gets its own column/row
 - Example: Xor has inputs a and b, each can be 0 or 1
- **3)** Fill in K-Map according to Truth Table

а	b	out
0	0	0
0	1	1
1	0	1
1	1	0

		а		
		0 1		
b	0			
	1			

Fill K-Map!

		а		
		0	1	
	0	0	1	
b	1	1	0	

- K-Map is filled, now to simplify!
- \$ 4) Find minimum # of groups (of 1's only) that cover all 1's
- Only groups allowed (check in this order):
 - 4x2
 - 2x2
 - 2x1
 - 1x1
- 5) Write minterms of groups: $xor(a,b) = \overline{a}b + a\overline{b}$

		(a c
		0	1
	0	0	1
b	1	1	0

- This is the most simplified solution!
 - Not much different from what we came up with...
 - * Remember, only does AND, NOT, OR*

- Boring example!
- Something more interesting:
- Write f(a,b,c,d) canonical representation:

• How many chips will it take to make?

K-Map time!

а	b	С	d	out
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1
	96.7		74/	/

- 1) Start with the truth table:
- **2)** Draw the K-Map:

			ab				
		00	01	11	10		
	00	1			1		
С	01		1				
d	11	1	1	1	1		
	10	1	1	1	1		

Notice the way they double up and are numbered!

Remember the order:

4x2 2x2

2x1

1x1

- 3) Fill it in
- 4) Find min # of groups to cover all 1's
 - You can do that?!
- **5)** Write the simplified canonical representation

а	b	С	d	out
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1
			111	

- Writing simplified canonical form:
 - Each group becomes a minterm
 - Write term if unpaired
 - OR each of the groups together
 - For 1x1 this was easy...
- Group #1 (2x1): $\overline{a}bd$
- Group #2 (2x2): $\overline{b}\overline{d}$
- Group #3 (4x2):
- Simplified Canonical Form:

		ab				
		$\overline{a}\overline{b}$ $\overline{a}b$ ab a				
	$\overline{c}\overline{d}$	1			1	
С	$\overline{c}d$		1			
d	cd	1	1	1	1	
	$c\overline{d}$	1	1	1	1	

How many chips for this one? How does it compare to the first one?

$$F(a,b,c,d) = \overline{bd} + \overline{a}bd + c$$

• Canonical Representation:

$$F(a,b) = \overline{a}\overline{b}\overline{c}\overline{d} + \overline{a}\overline{b}c\overline{d} + \overline{a}\overline{b}c\overline{d} + \overline{a}b\overline{c}d + \overline{a}b\overline{c}d + \overline{a}b\overline{c}d + \overline{a}b\overline{c}d + a\overline{b}c\overline{d} + a\overline{b}c\overline{d} + a\overline{b}c\overline{d} + a\overline{b}c\overline{d} + ab\overline{c}d + ab\overline{c}d + ab\overline{c}d$$

- 33 AND's
- 10 OR's
- 21 NOT's

TOTAL = 64 gates

*think

- 24 AND's //why 24?
- 10 OR's
- 4 NOT's

TOTAL = gates

Simplified Canonical Form:

$$F(a,b,c,d) = \overline{b}\overline{d} + \overline{a}bd + c$$

- 3 AND's
- 2 OR's
- 3 NOT's

TOTAL = 8 gates

*think = critically, creatively. This is usually difficult!

But this is how XOR can be done in 3 chips (hint: NAND)