Probabilities and Statistics refresher

★ Star 2,633

Introduction to Probability and Combinatorics

Sample space — The set of all possible outcomes of an experiment is known as the sample space of the experiment and is denoted by S.

Event — Any subset E of the sample space is known as an event. That is, an event is a set consisting of possible outcomes of the experiment. If the outcome of the experiment is contained in E, then we say that E has occurred.

Axioms of probability For each event E, we denote P(E) as the probability of event E occurring.

Axiom 1 — Every probability is between 0 and 1 included, i.e.

$$0 \leqslant P(E) \leqslant 1$$

Axiom 2 — The probability that at least one of the elementary events in the entire sample space will occur is 1, i.e:

$$P(S) = 1$$

Axiom 3 — For any sequence of mutually exclusive events E_1, \ldots, E_n , we have:

$$oxed{P\left(igcup_{i=1}^n E_i
ight) = \sum_{i=1}^n P(E_i)}$$

Permutation — A permutation is an arrangement of r objects from a pool of n objects, in a given order. The number of such arrangements is given by P(n,r), defined as:

$$P(n,r) = rac{n!}{(n-r)!}$$

Combination — A combination is an arrangement of r objects from a pool of n objects, where the order does not matter. The number of such arrangements is given by C(n,r), defined as:

$$C(n,r) = rac{P(n,r)}{r!} = rac{n!}{r!(n-r)!}$$

Remark: we note that for $0\leqslant r\leqslant n$, we have $P(n,r)\geqslant C(n,r).$

Conditional Probability

Bayes' rule — For events A and B such that P(B) > 0, we have:

$$\left| P(A|B) = rac{P(B|A)P(A)}{P(B)}
ight|$$

Remark: we have $P(A \cap B) = P(A)P(B|A) = P(A|B)P(B)$.

Partition — Let $\{A_i, i \in [\![1,n]\!]\}$ be such that for all i, $A_i \neq \emptyset$. We say that $\{A_i\}$ is a partition if we have:

$$oxed{ orall i
eq j, A_i \cap A_j = \emptyset \quad ext{ and } \quad igcup_{i=1}^n A_i = S }$$

Remark: for any event B in the sample space, we have $P(B) = \sum_{i=1}^n P(B|A_i)P(A_i).$

Extended form of Bayes' rule — Let $\{A_i, i \in [\![1,n]\!]\}$ be a partition of the sample space. We have:

$$P(A_k|B) = rac{P(B|A_k)P(A_k)}{\displaystyle\sum_{i=1}^n P(B|A_i)P(A_i)}$$

Independence — Two events A and B are independent if and only if we have:

$$P(A \cap B) = P(A)P(B)$$

Random Variables

Definitions

Random variable — A random variable, often noted X, is a function that maps every element in a sample space to a real line.

Cumulative distribution function (CDF) — The cumulative distribution function F, which is monotonically non-decreasing and is such that $\lim_{x\to -\infty} F(x)=0$ and $\lim_{x\to +\infty} F(x)=1$, is defined as:

$$oxed{F(x) = P(X \leqslant x)}$$

Remark: we have $P(a < X \leqslant B) = F(b) - F(a)$.

Probability density function (PDF) — The probability density function f is the probability that X takes on values between two adjacent realizations of the random variable.

Relationships involving the PDF and CDF — Here are the important properties to know in the discrete (D) and the continuous (C) cases.

Case	$\operatorname{CDF} F$	PDFf	Properties of PDF
(D)	$F(x) = \sum_{x_i \leqslant x} P(X = x_i)$	$f(x_j) = P(X=x_j)$	$0\leqslant f(x_j)\leqslant 1 ext{ and } \sum_j f(x_j)$
(C)	$F(x) = \int_{-\infty}^x f(y) dy$	$f(x) = \frac{dF}{dx}$	$f(x)\geqslant 0 ext{ and } \int_{-\infty}^{+\infty}f(x)dx$ =

Expectation and Moments of the Distribution — Here are the expressions of the expected value E[X], generalized expected value E[g(X)], k^{th} moment $E[X^k]$ and characteristic function $\psi(\omega)$ for the discrete and continuous cases:

Case	E[X]	E[g(X)]	$E[X^k]$	$\psi(\omega)$
(D)	$\sum_{i=1}^n x_i f(x_i)$	$\sum_{i=1}^n g(x_i) f(x_i)$	$\sum_{i=1}^n x_i^k f(x_i)$	$\sum_{i=1}^n f(x_i) e^{i\omega x_i}$
(C)	$\int_{-\infty}^{+\infty} x f(x) dx$	$\int_{-\infty}^{+\infty}g(x)f(x)dx$	$\int_{-\infty}^{+\infty} x^k f(x) dx$	$\int_{-\infty}^{+\infty}f(x)e^{i\omega x}dx$

Variance — The variance of a random variable, often noted Var(X) or σ^2 , is a measure of the spread of its distribution function. It is determined as follows:

$$\overline{ {
m Var}(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2 }$$

Standard deviation — The standard deviation of a random variable, often noted σ , is a measure of the spread of its distribution function which is compatible with the units of the actual random variable. It is determined as follows:

$$\sigma = \sqrt{\mathrm{Var}(X)}$$

Transformation of random variables — Let the variables X and Y be linked by some function. By noting f_X and f_Y the distribution function of X and Y respectively, we have:

$$oxed{f_Y(y) = f_X(x) \left| rac{dx}{dy}
ight|}$$

Leibniz integral rule — Let g be a function of x and potentially c, and a,b boundaries that may depend on c. We have:

$$oxed{rac{\partial}{\partial c} \left(\int_a^b g(x) dx
ight) = rac{\partial b}{\partial c} \cdot g(b) - rac{\partial a}{\partial c} \cdot g(a) + \int_a^b rac{\partial g}{\partial c}(x) dx}$$

Probability Distributions

Chebyshev's inequality — Let X be a random variable with expected value μ . For $k, \sigma > 0$, we have the following inequality:

$$oxed{P(|X-\mu|\geqslant k\sigma)\leqslant rac{1}{k^2}}$$

Main distributions — Here are the main distributions to have in mind:

Туре	Distribution	PDF	$\psi(\omega)$	E[X]	$\operatorname{Var}(X)$
(D)	$X \sim \mathcal{B}(n,p)$	$P(X=x)=inom{n}{x}p^xq^{n-x}$	$(pe^{i\omega}+q)^n$	np	npq
(D)	$X \sim ext{Po}(\mu)$	$P(X=x)=rac{\mu^x}{x!}e^{-\mu}$	$e^{\mu(e^{i\omega}-1)}$	μ	μ
(C)	$X \sim \mathcal{U}(a,b)$	$f(x) = \frac{1}{b-a}$	$\frac{e^{i\omega b}-e^{i\omega a}}{(b-a)i\omega}$	$rac{a+b}{2}$	$\frac{(b-a)^2}{12}$
(C)	$X \sim \mathcal{N}(\mu, \sigma)$	$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma} ight)^2}$	$e^{i\omega\mu-rac{1}{2}\omega^2\sigma^2}$	μ	σ^2
(C)	$X \sim ext{Exp}(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$rac{1}{1-rac{i\omega}{\lambda}}$	$\frac{1}{\lambda}$	$rac{1}{\lambda^2}$

Jointly Distributed Random Variables

Marginal density and cumulative distribution — From the joint density probability function f_{XY} , we have

Case	Marginal density	Cumulative function
(D)	$f_X(x_i) = \sum_j f_{XY}(x_i,y_j)$	$F_{XY}(x,y) = \sum_{x_i \leqslant x} \sum_{y_j \leqslant y} f_{XY}(x_i,y_j)$

(C)
$$f_X(x)=\int_{-\infty}^{+\infty}f_{XY}(x,y)dy$$
 $F_{XY}(x,y)=\int_{-\infty}^x\int_{-\infty}^yf_{XY}(x',y')dx'dy'$

Conditional density — The conditional density of X with respect to Y, often noted $f_{X\mid Y}$, is defined as follows:

$$oxed{f_{X|Y}(x) = rac{f_{XY}(x,y)}{f_{Y}(y)}}$$

Independence — Two random variables X and Y are said to be independent if we have:

$$\boxed{f_{XY}(x,y) = f_X(x) f_Y(y)}$$

Covariance — We define the covariance of two random variables X and Y, that we note σ_{XY}^2 or more commonly $\mathrm{Cov}(X,Y)$, as follows:

$$oxed{\operatorname{Cov}(X,Y) riangleq\sigma^2_{XY}=E[(X-\mu_X)(Y-\mu_Y)]=E[XY]-\mu_X\mu_Y}$$

Correlation — By noting σ_X , σ_Y the standard deviations of X and Y, we define the correlation between the random variables X and Y, noted ρ_{XY} , as follows:

$$ho_{XY} = rac{\sigma_{XY}^2}{\sigma_X \sigma_Y}$$

Remark 1: we note that for any random variables X,Y, we have $ho_{XY}\in [-1,1].$

Remark 2: If X and Y are independent, then $ho_{XY}=0$.

Parameter estimation

Definitions

Random sample — A random sample is a collection of n random variables X_1, \ldots, X_n that are independent and identically distributed with X.

Estimator — An estimator is a function of the data that is used to infer the value of an unknown parameter in a statistical model.

Bias — The bias of an estimator $\hat{\theta}$ is defined as being the difference between the expected value of the distribution of $\hat{\theta}$ and the true value, i.e.:

$$oxed{ ext{Bias}(\hat{ heta}) = E[\hat{ heta}] - heta }$$

Remark: an estimator is said to be unbiased when we have $E[\hat{ heta}] = heta.$

Estimating the mean

Sample mean — The sample mean of a random sample is used to estimate the true mean μ of a distribution, is often noted \overline{X} and is defined as follows:

$$\overline{X} = rac{1}{n} \sum_{i=1}^n X_i$$

Remark: the sample mean is unbiased, i.e $E[\overline{X}] = \mu$.

Central Limit Theorem — Let us have a random sample X_1, \ldots, X_n following a given distribution with mean μ and variance σ^2 , then we have:

$$oxed{X} \mathop{\sim}\limits_{n o +\infty} \mathcal{N}\left(\mu, rac{\sigma}{\sqrt{n}}
ight)$$

Estimating the variance

Sample variance — The sample variance of a random sample is used to estimate the true variance σ^2 of a distribution, is often noted s^2 or $\hat{\sigma}^2$ and is defined as follows:

$$s^2 = \hat{\sigma}^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

Remark: the sample variance is unbiased, i.e $E[s^2] = \sigma^2.$

Chi-Squared relation with sample variance — Let s^2 be the sample variance of a random sample. We have:

$$oxed{rac{s^2(n-1)}{\sigma^2}} \sim \chi^2_{n-1}$$

(https://twitter.com/shervinea) (https://linkedin.com/in/shervineamidi)

(https://scholar.google.com/citations?user=nMnMTm8AAAAJ)

