Information Theory Condensed Notes

Kexing Ying

January 6, 2023

Basic Definitions and Properties

We always work in logarithmic base 2 unless explicitly stated otherwise (e.g. log_e denotes the natural logarithm).

Definition (Entropy). Given a random variable X on some finite space \mathcal{A} , denoting P the probability mass function of X, X has entropy

$$H(X) = H(P) := -\sum_{x \in \mathcal{A}} P(x) \log P(x) = \mathbb{E}[-\log P(X)].$$

By convention we take $0 \log 0 := 0$

Proposition (Bernoulli entropy). If $X \sim \text{Bern}(p)$ then $H(X) = -p \log p - (1-p) \log (1-p)$.

Definition (Fixed-rate code). A fixed-rate lossless compression code for a source (X_n) (always iid.) on \mathscr{A} is a sequence of codebooks $B_n \subseteq \mathscr{A}^n$.

The idea of a compression using a fixed-rate code is to index the codebooks using $\lceil \log |B_n| \rceil$ bits. Then to transmit $x_1^n \in \mathcal{A}^n$, if $x_1^n \in B_n$, we transmit 1 postfixed with the index corresponding to x_1^n in B_n . This costs $1 + \lceil \log |B_n| \rceil$ bits. On the other hand if $x_1^n \notin B_n$, we transmit 0 and the entire string x_1^n . This costs $1 + \lceil \log |\mathcal{A}^n| \rceil 1 + \lceil n \log |\mathcal{A}| \rceil$ bits.

Definition (Rate and error probability). Given a fixed-rate code B_n for the source (X_n) , the rate of the code is defined as

$$R_n = \frac{1}{n} (1 + \lceil \log |B_n| \rceil),$$

and its probability of error is

$$P_{\varrho}^{(n)} = \mathbb{P}(X_1^n \notin B_n).$$

Definition (Relative entropy). The relative entropy of the pmfs P,Q on \mathcal{A} is

$$D(P||Q) = \sum_{x \in \mathcal{A}} P(x) \log \frac{P(x)}{Q(x)} = \mathbb{E}\left[\log \frac{P(X)}{Q(X)}\right],$$

for some random variable $X \sim P$. Again we introduce the convention $0 \log 0 = 0$, $0 \log \frac{0}{0} = 0$.

Theorem 1 (Log-sum inequality). For non-negative constants a_1, \dots, a_n and b_1, \dots, b_n ,

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{n} a_i\right) \log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}.$$

Equality is achieved if and only if a_i/b_i is some fixed constant.

Proposition. Let P,Q be two pmfs on \mathcal{A} , then

- $0 \le H(P) \le \log |\mathcal{A}|$ and H(P) = 0 if and only if P is a Dirac measure and $H(P) = \log |\mathcal{A}|$ if and only if P is uniform.
- $D(P||Q) \ge 0$ with equality if and only if P = Q.

Definition (Conditional entropy). Given X, Y random variables on \mathscr{A} with joint pmf P_{XY} , the conditional entropy of X given Y is

$$H(Y \mid X) = -\sum_{x,y \in \mathcal{A}} P_{XY}(x,y) \log P_{Y|X(y|x)} = \mathbb{E}[-\log P_{Y|X}(Y \mid X)]$$

where $P_{Y|X}(y \mid x) = \frac{P_{XY}(x,y)}{P_{X}(x)}$.

Proposition. Given X, Y, Z random variables and (X_n) , (Y_n) sequences of random variables (not necessary independent) on \mathcal{A} ,

- H(X,Y) = H(X) + H(Y | X);
- $H(Y | X) \le H(Y)$ with equality if and only if X and Y are independent;
- $H(f(X)) \le H(X)$ with equality if and only if f is bijective;
- H(f(X)|X) = 0;
- H(X,Z | Y) = H(X | Y) + H(Z | X,Y);
- $H(X, Z \mid Y) \le H(X \mid Y) + H(Z \mid Y)$ with equality if and only if X and Z are conditionally independent given Y;
- $H(X \mid Y, Z) \le H(X \mid Y)$ with equality if and only if X and Z are conditionally independent given Y;
- $H(X_1^n) = \sum_{i=1}^n H(X_i \mid X_1^{i-1}) = H(X_1) + H(X_2 \mid X_1) + \dots + H(X_n \mid X_1^{n-1});$
- $H(X_1^n) \le \sum_{i=1}^n H(X_i)$ with equality if and only if (X_n) is independent;
- if $f: \mathcal{A} \to \mathcal{B}$ be some function, $D(P_{f(X)} || P_{f(Y)}) \le D(P_X || P_Y)$;

Definition (Total variation). The total variation of two pmfs P,Q on \mathcal{A} is

$$||P - Q||_{\text{TV}} := \sum_{x \in \mathcal{A}} |P(x) - Q(x)|.$$

Proposition. D(P||Q) is jointly convex in P,Q, i.e. for pmfs $P_i,Q_i,i=1,2$ and $\lambda \in (0,1)$,

$$D(\lambda P_1 + (1 - \lambda)P_2 || \lambda Q_1 + (1 - \lambda)Q_2) \le \lambda D(P_1 || Q_1) + (1 - \lambda)D(P_2 || Q_2).$$

Proposition. H(P) is concave in P, i.e. for pmfs P_i , i = 1, 2 and $\lambda \in (0, 1)$,

$$H(\lambda P_1 + (1 - \lambda)P_2) \ge \lambda H(P_1) + (1 - \lambda)H(P_2).$$

Named theorems

Proposition (Asymptotic equipartition property (AEP)). Given (X_n) a iid. sequence of random variables on \mathcal{A} finite with pmf P and entropy $H = H(X_i)$, then

• for all $\epsilon > 0$, defining the set of typical strings

$$B_n^* := \{2^{-n(H+\epsilon)} \le P^n(x_1^n) \le 2^{-n(H-\epsilon)}\} \subseteq \mathcal{A}^n,$$

 B_n^* satisfies $|B_n^*| \le 2^{n(H+\epsilon)}$ and $\mathbb{P}(X_1^n \in B_n^*) = P^n(B_n^*) \to 1$.

• for all sequences of sets $B_n \subseteq \mathcal{A}^n$ satisfying $\mathbb{P}(X_1^n \in B_n) \to 1$, given $\epsilon > 0$, we have $|B_n| \ge (1 - \epsilon)2^{n(H - \epsilon)}$ eventually.

Proposition (Fixed-rate coding). Given the source (X_n) on \mathcal{A} with pmf P and entropy H,

• for all $\epsilon > 0$, there exists a fixed-rate code (B_n^*) with $P_{\epsilon}^{(n)} \to 0$ and

$$R_n \le H + \epsilon + \frac{2}{n}$$
.

• for all fixed-rate code (B_n) with $P_e^{(n)} \to 0$, for any ϵ , B_n has rate eventually satisfying

$$R_n > H - \epsilon$$
.

Proposition (Stein's lemma). Suppose (X_n) is a sequence of iid. random variables on \mathscr{A} and P,Q are two pmfs on \mathscr{A} . Then, given a sequence of sets $B_n \subseteq \mathscr{A}^n$ of decision regions, we denote the probability of errors

$$e_1^{(n)} = \mathbb{P}(X_1^n \in B_n \mid X_i \sim Q), \text{ and } e_2^{(n)} = \mathbb{P}(X_1^n \notin B_n \mid X_i \sim P).$$

Then.

• for all $\epsilon > 0$, there exists decision regions (B_n^*) such that for all n

$$e_1^{(n)} \le 2^{-n(D(P||Q)-\epsilon)}$$
 and $\lim_{n \to \infty} e_2^{(n)} = 0$.

• if (B_n) are decision regions such that $e_2^{(n)} \to 0$ as $n \to \infty$, then for all $\epsilon > 0$,

$$e_1^{(n)} \ge 2^{-n(D+\epsilon+n^{-1})}$$
.

Proposition (Neyman-Pearson lemma). For P,Q pmfs on \mathscr{A} and $x_1^n \in \mathscr{A}^n$ we define the Neyman-Pearson decision region

$$B_{\rm NP} := \left\{ \frac{P^n(x_1^n)}{Q^n(x_1^n)} \ge T \right\}$$

for some threshold T > 0 with probability of error $e_{1,\mathrm{NP}}^{(n)} = Q^n(B_{\mathrm{NP}})$ and $e_{2,\mathrm{NP}}^{(n)} = P^n(B_{\mathrm{NP}^c})$. Then, for any other decision region $B_n \subseteq \mathcal{A}^n$, such that $e_2^{(n)} \le e_{2,\mathrm{NP}}^{(n)}$, we have $e_1^{(n)} \ge e_{1,\mathrm{NP}}^{(n)}$.

Proposition. The Neyman-Pearson decision region $B_{\rm NP}$ can also be expressed in terms of relative entropy as

$$B_{\rm NP} = \{ D(\hat{P}_n || Q) \ge D(\hat{P}_n || P) + T' \}$$

where $T' = \frac{1}{n} \log T$.

Proposition (Fano's inequality). Given X,Y random variables taking value in $\mathscr A$ and $\mathscr B$ respectively, and $f:\mathscr B\to\mathscr A$ is som function, we have

$$H(X \mid Y) \le h(P_e) + P_e \log(|\mathcal{A}| - 1),$$

where *h* is the Bernoulli entropy and $P_e := \mathbb{P}(f(Y) \neq X)$.

Proposition (Pinsker's inequality). Given two pmfs P,Q on \mathcal{A} ,

$$||P - Q||_{\text{TV}}^2 \le (2\log_e 2)D(P||Q).$$