A compound of formula

$$N = \frac{1}{1}$$
 $N = \frac{1}{1}$
 $C = CO = NH$
 $C = \frac{1}{1}$
 $N = \frac{1}{1}$

wherein

R₁ denotes hydrogen, acyl, carboxyl, or alkyl;

R₂ and R₃ are the same or different and independently of each other denote hydrogen, cycloalkyl, alkyl, alkenyl or alkinyl;

Ra denotes hydrogen or a group of formula

$$-c < z$$

wherein R₆ denotes amino, hydrazino aminoalkylamino, alkoxy, aryl, cycloalkyl, arvloxy, heterocyclyl, alkyl, alkenyl, alkinyl;

Z denotes O, S or NR₇, wherein R₇ is as defined as R₂;

R₅ denotes hydrogen or an ester moiety;

W denotes CH or N;

V denotes CH or N-O;

with the proviso that compounds of formula I wherein

- a) V is N-O, W is CH, R₁ is CH₃, R₂ is H, R₃ is CH₃ and R₄ is H;
- b) V is N-O, W is CH, R₁ is CH₃, R₂ is H, R₃ is H and R₄ is H;
- c) V is N-O, W is CH, R₁ is CH₃, R₂ is CH₃, R₃ is H and R₄ is H;
- d) V is N-O, W is CH, R₁ is H, R₂ is H, R₃ is H and R₄ is H;
- e) V is N-O, W is CH, R₁ is H, R₂ is CH₃, R₃ is H and R₄ is H; and
- f) V is N-O, W is N, R₁ is CH₂F, R₂ is H, R₃ is H and R₄ is H; are excluded.

2. A compound of formula

wherein W and R5 are as defined in claim 1,

R'1 denotes hydrogen or alkyl,

R'₂ and R'₃ are the same or different and independently of each other denote hydrogen; alkenyl, or alkyl, and

R' denotes hydrogen or a group of formula

$$-c < \sum_{E_i}$$

wherein

Z' denotes O or NR'7, wherein R'7 denotes hydrogen or alkyl; and

R'6 denotes amino; aminoalkylamino; hydrazino; alkoxy; unsubstituted aryl or substituted aryl; cycloalkyl; a 5 to 6 membered, heterocycle containing 1 to 3 nitrogen and/or sulphur- and/or oxygen atoms; unsubstituted alkyl, or substituted alkyl, e.g. one or several-fold; by unsubstituted aryl, or substituted aryl by hydroxy, alkoxy, phenoxy; aryloxy; amino; hydroxy; carboxy; guanidino or nitroguanidino; or a heterocyclyl-carboximino group,

with the proviso that compounds of formula la wherein

- a) W is CH, R'1 is CH3, R'2 is H, R'3 is CH3 and R'2 is H;
- b) W is CH, R'₁ is CH₃, R'₂ is H, R'₃ is H and R'₄ is H;
- c) W is CH, R'₁ is CH₃, R'₂ is CH₃, R'₃ is H and R'₂ is H;
- d) W is CH, R'1 is H, R'2 is H, R'3 is H and R'4 is H;
- e) W is CH, R'1 is H, R'2 is CH3, R'3 is H and R'4 is H; and
- f) W is N, R'₁ is CH₂F, R'₂ is H, R'₃ is H and R'₄ is H; are excluded.
- 3. A compound of formula

$$\begin{array}{c|c}
N - OCH_2F \\
\downarrow \\
C - CO - NH \\
\downarrow \\
C -$$

wherein

R5 is as claimed in claim1;

R_{2s} and R_{3s} independently of each other denote alkyl, aralkyl, alkenyl, or alkinyl; and R_{3s} additionally denotes hydrogen,

with the proviso that a compound of formula ls wherein

R_{2s} is H and R_{3s} is H

are excluded.

4. A compound of formula

wherein R₅ is as defined in claim 1.

5. A compound of formula

$$\begin{array}{c|c}
 & V - R_1 \\
 & V - R_2 \\
 & V - R_3 \\
 & V - R_4 \\
 & V - R_5 \\
 & V - R_5 \\
 & V - R_6 \\
 & V - R_$$

wherein R₁, R₅, W and V are as defined in claim 1,

 R_{2p} and R_{3p} are the same or different and independently of each other denote hydrogen, cycloalkyl, or alkyl substituted by halogen or hydroxy,

R_{6p} denotes amino, unsubstituted or substituted alkylamino or dialkylamino, alkoxy, aryl, cycloalkyl, aryloxy, an unsubstituted 5- or 6-membered, saturated, partially saturated or unsaturated heterocycle which may be condensed containing 1 to 5 nitrogen and/or 1 to 3 sulphur- and/or oxygen atoms, a substituted 5- or 6-membered, saturated, partially saturated or

unsaturated heterocycle which may be condensed containing 1 to 5 nitrogen and/or 1 to 3 sulphur- and/or oxygen atoms by amino, hydroxy, alkoxy, acyloxy, carboxy or mercapto, cycloalkyl or unsubstituted straight chain or branched (C₁₋₂₀)alkyl,

(C₁₋₂₀)alkenyl or (C₁₋₂₀)alkinyl, which may be interrupted by N, S and/or O; once or several times substituted straight chain or branched (C₁₋₂₀)alkyl, (C₁₋₂₀)alkenyl or (C₁₋₂₀)alkinyl which may be interrupted by N, S and/or O, by hydroxy, alkoxy, aryloxy, acyloxy, carbamoyloxy, amino, alkylamino, dialkylamino, trialkylammonium, acylamino, ureido, oximino, imino, carboxy, oxo, halogen, nitro, a carboxylic acid derivative, a sulphonic acid derivative, an unsubstituted 5- or 6-membered, saturated, partially saturated or unsaturated heterocycle which may be condensed containing 1 to 5 nitrogen and/or 1 to 3 sulphur- and/or oxygen atoms; or a substituted 5- or 6-membered, saturated, partially saturated or unsaturated heterocycle which may be condensed containing 1 to 5 nitrogen and/or 1 to 3 sulphur- and/or oxygen atoms by amino, hydroxy, alkoxy, acyloxy, carboxy or mercapto; and Z_p denotes oxygen or NR_{7p}, wherein R_{7p} is as defined R_{2p}.

6. A compound of formula

wherein W and R5 are as defined in claim 1,

R₁₀ denotes hydrogen or CH₂F, and

R'_{6p} denotes hydrogen, $(C_{1\cdot 20})$ alkyl, one or two fold substituted $(C_{1\cdot 20})$ alkyl by phenyl, phenoxy, amino, hydroxyphenyl, hydroxy, carboxyl, guanidino or nitroguanidino, unsubstituted phenyl or substituted phenyl by acetoxy, pyrrolidinyl; or a compound of formula

$$-c''$$
 $N = NH_2$

7. A compound of any preceding claim in the form of a salt and/or in the form of a solvate.

- 8. 7-(((5-Amino-1,2,4-thiadiazol-3-yl)-(Z)-(fluormethoxyimino)acetyl)amino)-3(E)-((imino-1-piperazinylmethyl)methylhydrazono)methyl-3-cephem-4-carboxylic acid in the form of a hydrochloride.
- 9. 7-(((5-Amino-1,2,4-thiadiazol-3-yl)-(Z)-(fluormethoxyimino)acetyl)amino)-3(E)-((imino-1-piperazinylmethyl)methylhydrazono)methyl-3-cephem-4-carboxylic acid in the form of a trihydrochloride.

10. A compound selected from

- 1-[(1-Methylhydrazino)iminomethyl]piperazine
- 1-[(1-Ethylhydrazino)iminomethyl]piperazine
- 1-[(1-Allylhydrazino)iminomethyl]piperazine
- 1-[(1-(4-Methoxybenzyl)hydrazino]iminomethyl]piperazine
- 1-[(1-(3,4,5-Trimethoxybenzyl)hydrazino]iminomethyl]piperazine
- 1-[(1-Methylhydrazino)(methylimino)methyl]piperazine
- 1-[(1-Methylhydrazino)(ethylimino)methyl]piperazine

Glycin-(4-hydrazinoiminomethyl)piperazide

- 1-(R)-(Amino(4-hydroxyphenyl)acetyl)4-(hydrazinoiminomethyl)piperazine
- 1.4-bis-(Hydrazinoiminomethyl)piperazine, or
- 1-(Hvdrazinoiminomethyl)-4-[ethylimino)[3-dimethylaminopropyl)amino]methyl]-piperazine.

11. A compound of formula

wherein R5 is as defined in claim 1, and Rim denotes a group

which is formed by a bond of the terminal amine group of the hydrazino group of a compound of claim 10 and wherein the -N- group is substituted according to a compound of claim 10.

- 12. A process for the production of a compound of formula l, as defined in claim 1, comprising
 - a) Reacting a compound of formula

wherein W, V and R1 are as defined in claim1 with the proviso of claim 1, and wherein

- α) R_b denotes hydroxy and R_c and R_d together denote a bond, or
- $\beta)$ R_d denotes hydrogen, a cation, an ester moiety or a silyl group and R_b and R_c denote the oxo group

with a compound of formula

$$H_{\xi}N - N - C$$
 NE_{ξ}
 NE_{ξ}
 NE_{ξ}

wherein R2, R3 and R2 are as defined in claim1 with the proviso of claim 1,

b) for the production of a compound of formula

$$\begin{array}{c|c}
 & V - R_1 \\
 & V - R_2 \\
 & V - R_3 \\
 & V - R_4 \\
 & V - R_5 \\
 & V - R_$$

wherein W, V, Z, R_1 , R_2 , R_3 , R_5 and R_6 are as defined in claim 1, acylating a compound of formula

$$N_2H$$
 $CH = N - N - C$
 NR_2
 $N - C$
 R_2
 $N - C$
 R_6

wherein Z, R2, R3, R5 and R6 are as defined in claim 1, with a compound of formula

wherein V, W and R₁ are as defined above and X denotes a leaving group; or reacting a compound of formula

$$\begin{array}{c|c}
 & V - R. \\
 & V - R.$$

wherein R₁, R₂, R₃, R₅, V and W are as defined in claim 1, with a compound of formula

$$X-C = \begin{bmatrix} Z & & \\ & & \\ & & \end{bmatrix}$$
 Va

wherein R₆ and Z are as defined in claim 1 and X denotes a leaving group.

- 13. A pharmaceutical composition comprising a compound of formula I according to claim 1 with the proviso of claim 1 in the form of a pharmaceutically acceptable salt or in free form in association with at least one pharmaceutical carrier or diluent.
- 14. A compound of claim 1 or a composition of claim 13 for use as a pharmaceutical.
- 15. A method of treatment of microbial diseases which comprises administering to a subject in need of such treatment an effective amount of a compound of formula I with the proviso of claim 1.