ÜBUNG 14

Aufgabe 1

enthält.

Stimmen die folgenden Aussagen? Begründen Sie.

a) Wenn $\Gamma \models \psi$ und ψ eine Tautologie ist, dann ist Γ auch allgemeingültig.

Gegenbeispiel: "aus Falschem folgt Beliebiges"

b) Eine Formel φ ist eine Hornformel, wenn sie in NNF ist und aus Konjunktionen innerhalb von Disjunktionen von Literalen besteht, von denen jede höchstens ein positives Literal

Horn-Formel ... KNF von Horn-Klauseln ~~ K, a... a Kn Horn-Klausel... höchstens ein nicht negiertes Literal ~~ p. v ¬p. v ··· v ¬p. m

"Konjunktionen innerhalb von Disjunktionen" ~ DNF ~ Aussage falsch

c) Für $K_1 = \{a, b, c\}$ und $K_2 = \{\neg a, \neg b\}$ ist $\{c\}$ keine Resolvente.

über a: {b,c,7b} } Aussage stimmt über b: {a,c,7a}

d) Aus $\models \varphi$ folgt, dass φ allgemeingültig ist.

ja. siehe VL22 Folie 17

Aufgabe 2

Welche der folgenden Formeln sind erfüllbar? Welche der Formeln gehören zu dem Formeltyp, für den Erfüllbarkeit in polynomieller Zeit lösbar ist?

$$\left(\left(\left(\left((p_1 \wedge p_2) \vee p_3\right) \wedge p_4\right) \wedge (\neg p_1 \vee \neg p_3)\right) \vee (\neg p_2 \wedge \neg p_4\right)\right) \tag{1}$$

erfullbar, E.B. via Transformation in DNF und Entscheidung ob Monome

gegensätzliche Literale enthalten

To exfollende Wertzuweisung w(p,) = beliebig, w(pz) = 0, w(pz) = bel., w(px) = 0

· keine Horn-Formel, daher night in P

 $(\neg(\neg p_1 \land \neg(p_2 \land (\neg p_1 \to p_2))) \land \neg p_2)$

(2)

- · analog 24 (1), erföllende Wertzuweisung: w(p) = 1 , wlp2) = 0
- · keine Itorn-Formel

```
((\neg p_1 \lor \neg p_2 \lor \neg p_3 \lor p_4) \land
                                                       (\neg p_5 \lor \neg p_6) \land
                                                  (\neg p_7 \lor \neg p_2 \lor p_6) \land
                                                        (\neg p_6 \lor \neg p_2) \land
                                                                                                               (3)
                                                  (\neg p_6 \lor \neg p_3 \lor p_2) \land
                                                  (\neg p_3 \lor \neg p_4 \lor p_5) \land
                                                         (\neg p_1 \lor p_7) \land
                                                  (\neg p_1 \lor \neg p_7 \lor p_4) \land
                                                               p_3 \wedge p_1
 · KNF mit max. einem nicht-negierten Literal pro Klausel
                                                                                        → Horn - Formel
                                                                                        → Lösung in P
Menge der Hornklauseln:
                                                         Hyperresolution:
η = { p, ^ p2 ^ p3 → p4
                                                          Vo = + P3, P1}
                 V1 = V0 0 } P2}
                                                         V2 = V1 0 } p4}
                                                          V3 = Y20 } p5}
                                                          V4 = V3 0 & = 1 p1, p3, p4, p5, p7 }
                                                       Es gibt keine Regel mit q1 1 1 9 1 1 und
                                                             91, .... 9n @ V4
                          T \rightarrow p_1
                                                             Formel exfollbar
                         ((p_1 \vee \neg p_2) \wedge (p_2 \vee \neg p_3) \wedge (p_3 \vee \neg p_1) \wedge (\neg p_2 \vee \neg p_3) \wedge p_1)
                                                                                                                (4)
   Co Horn-Formel
   Horn-Regeln:
                                        Hyperresolution:
   Vo = } p, }
                                        V, = Vo v { p3 }
                                        V_2 = V_1 \cup \frac{1}{2} p_2  \\
V_3 = V_2 \cup 9 = Var(\Gamma)
                                        C> Da (p2 p3 → 1) ∈ \ und p2, p3 ∈ V3 ist die Formel
                                              uner frellbar.
```

Aufgabe 3

Begründen Sie die Semientscheidbarkeit des folgenden Problems:

- Gegeben ist eine Zahlenfolge $s = s_1 s_2 \dots s_n \in \{0, 1, \dots, 9\}^n, n \ge 1$.
- Gefragt: Kommt in dem Nachkommateil der Dezimaldarstellung von π die Sequenz s vor?

Hinweis: Sie dürfen als bekannt voraussetzen, daß es beliebig genaue Näherungsverfahren für π gibt. Skizzieren Sie die Arbeitsweise eines Semientscheidungsverfahrens für das genannte Problem unter Verwendung eines Algorithmus

$$Pi$$
- $N\ddot{a}herungsverfahren(k)$,

das als Eingabe eine natürliche Zahl $k \ge 1$ hat und als Ausgabe die k ersten Ziffern des Nachkommateils der Dezimaldarstellung von π zurückgibt.

Aufgabe 4

Gegeben sei eine endliche Menge E von Elementen und eine Menge V von Variablen. Ein Mengen-Constraintsystem C über E und V ist eine endliche Menge von Constraints der Form:

$$a \in X, a \notin X, a \in X \cup Y$$
, oder $X \subseteq Y \cup Z$

für $a \in E$ und $X, Y, Z \in V$. Eine Lösung L eines Mengen-Constraintsystems C über E und V ist eine Abbildung $L: V \to 2^E$, so dass

für alle Ausdrücke der Form $(a \in X) \in C$ gilt: $a \in L(X)$, für alle Ausdrücke der Form $(a \notin X) \in C$ gilt: $a \notin L(X)$, für alle Ausdrücke der Form $(a \in X \cup Y) \in C$ gilt: $a \in L(X) \cup L(Y)$, für alle Ausdrücke der Form $(X \subseteq Y \cup Z) \in C$ gilt: $L(X) \subseteq L(Y) \cup L(Z)$.

a) Hat das folgende Mengen-Constraintsystem eine Lösung?

$$\begin{split} V &= \{M_1, M_2, M_3, M_4\} \\ E &= \{a, b, c, d\} \\ C &= \{M_2 \subseteq M_1 \cup M_3, M_4 \subseteq M_3 \cup M_2, \\ a &\in M_1, a \not\in M_3, b \in M_4, b \in M_1, b \not\in M_3, \\ c &\in M_4, c \not\in M_1, c \not\in M_3, d \in M_4, d \not\in M_1, d \not\in M_2\} \end{split}$$

17.				che Menge von Ho	ornformeln – entsc	cheidend ist die	
Ko	dierung	der Mengenz	zugehörigkeit von	Elementen.			
Ide	e: F	Reduziere	das Probl	em out Itor	n-SAT ∈ P		
	<i>©</i> :=	1 Paex:	(a & X)	€ C }			
		•		: (a&x) e C }		
				: (a e X)			
		•			(a ∈ X ∨	y) ∈ C }	
							1
		aeE	C Paer P	945) , ba	. 4 ×)	(X = Y 0 Z) E C	-
_				0(
→					enn Perf		
	Die	Erfüllbo	rrkeit der	Horn-Klau	selmenge k	eann in polynom	sieller Zeit
	gete	stet wer	iden.				