

Lecture 7: Analyzing Experiments

Eran Toch

Agenda

- 1. Statistical Tests and the t-Test
- 2. Running the t-Test
- 3. t-Test assumptions
- 4. Analyzing Inferential Statistics
- 5. Find the test that works for you
- 6. Non-Parametric Mean Comparison
- 7. Categorical Tests

(1) Statistical Tests and the t-Test

Experiment data

Graphical representation

Statistical Tests

- How do we know that a statistical statement is correct with regard to the population?
- Is it significance or due to mere chance?
- The "chance" is the null hypothesis (H_0) and the non-chance hypothesis the alternate hypothesis (H_A)

Hypothesis testing

There are two types of errors one can make in statistical hypothesis testing:

Test statistics

- To create a statistical test, we first need some test statistics
- It tells us the ration between signal to noise in a given statistics

William S. Gosset

Α

 \exists

Sampling

How can we infer a different in the yield of two fields from the samples alone?

T-value

10

T-value

T-Value: Intuition

- The larger the t-value, the more difference there is between groups
- The smaller the t-value, the more similarity there is between groups
- A t-value of 3 means that the groups are three times as different from each other as they are within each other
- The significance test relies on the t-value and the number of samples

Statistical tests

- After calculating a test statistic (t-value), we can use it to test whether we can reject the null hypothesis
- By comparing its value to a critical value (α)Measure of how likely the test statistic value is under the null hypothesis
 - t-value $\leq \alpha \Rightarrow \text{Reject H}_0$ at level α
 - t-value > $\alpha \Rightarrow$ Do not reject H₀ at level α
- In a different phrasing, we generate a p-value according to the level of t-value

Calculating the t-Value

				Area t	to the ri	ight (a)			
df	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
1	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.3	636.6
2	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.33	31.60
3	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.21	12.92
4	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781

- In many domains, 5% probability is an arbitrary (and problematic) cut-off for rejecting the null hypothesis
- Calculating the p-Value is based on the degrees of freedom:
 - the minimum amount of data necessary to calculate the statistics
 - Df = $n_A + n_B 2$

Summary

- Inferential statistics
- Test statistics
- t-value
- Critical value and p-value

(2) Running t-Tests

Test of difference – T-Test

- •t-test
 - Compares means
 - Interval or ratio variable
 - Assumes normal frequency distribution
- •Types of t-tests:
 - one sample t-test: comparing a sample to a hypothetical mean
 - two independent sample t-test
 - paired t-test

1 Sided T-Test

- •In a 1 sided t-test, we want to compare a value we observed to a known mean.
- We want to see if we have a new phenomenon worth reporting.

Calculating t statistics

$$t = \frac{sample \ mean - population \ mean}{standard \ error}$$

Let us assume we want to check whether our sample of gas-permile for various cars is different than a 23 mpg average

$$t = \frac{\bar{X} - \mu}{SD/\sqrt{n}} = \frac{20.09 - 23}{6.023/\sqrt{32}} = -2.73$$

If our t-value is higher than the critical value? This is actually the ttest

Two Sample t-test

Hypothesis test: 'Alcohol' vs 'No alcohol' condition

Hypothesis true (reaction time slower in 'alcohol' condition)

Hypothesis false (reaction time faster in 'alcohol' condition)

Code Example

```
df = pd.read_csv("https://raw.githubusercontent.com/Opensourcefordatascience/
Data-sets/master//Iris_Data.csv")
setosa = df[(df['species'] == 'Iris-setosa')]
setosa.reset_index(inplace= True)

versicolor = df[(df['species'] == 'Iris-versicolor')]
versicolor.reset_index(inplace= True)

stats.ttest_ind(setosa['sepal_width'], versicolor['sepal_width'])
Ttest_indResult(statistic=9.2827725555581111, pvalue=4.3622390160102143e-15)
```

Descriptive Statistics

rp.summary_cont(df.groupby("species")['sepal_width'])

N	Mean	SD	SE	95% Conf.	Interval	
species						
Iris-setosa	50	3.418	0.381024	0.053885	3.311313	3.524687
Iris-versicolor	50	2.770	0.313798	0.044378	2.682136	2.857864

Boxplots

t-Test results

descriptives, results =
rp.ttest(setosa['sepal_width'],
versicolor['sepal_width'])

results

Independent t- test	results	
0	Difference (sepal_width - sepal_width) =	0.6480
1	Degrees of freedom =	98.0000
2	t =	9.2828
3	Two side test p value =	0.0000
4	Mean of sepal_width > mean of sepal_width p va	1.0000
5	Mean of sepal_width < mean of sepal_width p va	0.0000
6	Cohen's d =	1.8566
7	Hedge's g =	1.8423
8	Glass's delta =	1.7007
9	r =	0.6840

Paired vs. Unpaired

- Unpaired means that you simply compare the two groups. So, you will build a model for each group (calculate the mean and variance), and see whether there is a difference.
- Paired means that you will look at the differences between the two groups.
- In which study design paired t-test should be used?

Paired vs. Unpaired

S	Subject	Before	After		Subject	Weight
		diet	diet			Change
<u> </u>	4	100	70	Diet 1	Α	-30
Diet 1	3	90	89		В	-1
	3	89	70		С	-19
)	100	101		D	+1
Diet 2		100	98	Diet 2	E	-2
F	Ξ	90	87		F	-3

Paired

Unpaired

(3) t-Test Assumptions

Assumptions

- Independence
- Homogeneity of variance
- t-tests works only with data that distributes normally
- t-tests works best with smaller datasets
 - For larger datasets, Z-statistics is often used

Homogeneity of variance

- The independent t-test assumes the variances of the two groups measured are equal in the population
- The assumption of homogeneity of variance can be tested using Levene's Test of Equality of Variances
- The Levene's F Test for Equality of Variances is the most commonly used statistic to test the assumption of homogeneity of variance

Levene Test

- This test for homogeneity provides a statistic and a significance value (p-value)
- If the p-value is greater than 0.05 (i.e., p > .05), the group variances can be treated as equal
- However, if p < 0.05, we have unequal variances and we have violated the assumption of homogeneity of variances

```
stats.levene(setosa['sepal_width'], versicolor['sepal_width'])
LeveneResult(statistic=0.66354593329432332, pvalue=0.41728596812962038)
```

Normality Assumption

- T-tests require that the residuals needs to be normally distributed
- To calculate the residuals between the groups, subtract the values of one group from the values of the other group

```
diff = setosa['sepal_width'] - versicolor['sepal_width']
```

 Checking for normality is done with a visual comparison and with a statistical test

Q-Q (quantile-quantile)

- a Q-Q (quantile-quantile) plot is a probability plot, which is a graphical method for comparing two probability distributions by plotting their quantiles against each other
- Normal data in a q-q plot will show the dots should fall on the red line. If the dots are not on the red line then it's an indication that there is deviation from normality
- Some deviations from normality is fine, as long as it's not severe

Q-Q Plot

```
import pylab
stats.probplot(diff,
dist="norm", plot=pylab)
pylab.show()
```


Histogram

```
diff.plot(kind= "hist", title=
"Sepal Width Residuals")
plt.xlabel("Length (cm)")
plt.savefig("Residuals Plot of
Sepal Width.png")
```


The Shapiro-Wilk Test

• The Shapiro–Wilk test tests the null hypothesis that a sample $x_1, ..., x_n$ came from a normally distributed population

```
stats.shapiro(diff)
(0.9859335422515869, 0.8108891248703003)
```

- The first value is the W test statistic and the second value is the p-value
- Since the test statistic does not produce a significant p-value, the data is indicated to be normally distributed

(4) Analyzing Inferential Statistics

Effect Size

- Effect size: a measure of the size to the effect observed in the statistics
- There are many ways to determine the effect size, dependent on the assumptions about the data
- In t-tests, Cohen's d is often used
- It is determined by calculating the mean difference between your two groups, and then dividing the result by the pooled standard deviation

$$d=rac{ar{x}_1-ar{x}_2}{s}$$

$$s = \sqrt{rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}}$$

Confidence interval

An interval that contains the estimated population parameter (e.g., mean), within a certain degree of confidence (e.g., 95%)

Example

- "The results from the poll stated that the confidence level was 95% +/-3, which means that if the pool would be repeated over and over, using the same techniques, 95% of the time the results would fall within the published results."
- The 95% is the confidence level and the +/-3 is called a margin of error

Calculating CI for a given test statistics

• t - the t-value, taken according to the critical value table (if we look for 95% confidence, we should pick the 0.05 critical value)

$$\overline{X} \pm t \frac{s}{\sqrt{n}}$$

- s the standard deviation
- n the sample size

Limitations of Inferential Statistics

- Criticisms against threshold-based tests:
 - A critical value of 0.05 for a pvalue is totally arbitrary
 - Statistical significance is very problematic in large data sets
 - And can lead to p-Hacking

p-Hacking

- 1. Stop collecting data when you hit p < 0.05
- 2. Analyze many measures, but report only those with p<.05. 3.
- 3. Collect and analyze many conditions, but only report those with p<.05.
- 4. Use covariates to reach p < 0.05
- 5. Exclude participants to reach p < 0.05
- 6. Transform the data to get p<.05.

Leif D. Nelson, False-Positives, p-Hacking, Statistical Power, and Evidential Value

How to think about statistics

- "when a measure become a target, it is no longer a measure" Goodhart's law.
- Report everything to provide a better overview of the results
- Use train/test paradigm

(5) Find the test that works for you

Types of Tests

- Parametric vs. Non-Parametric
- Difference vs.
 Correlation
- Categorical vs.
 Differential
- Number of samples

Parametric vs. Non-Parametric

Parametric tests for data

- Continuous, and
- normal distribution, and
- independent

E.g., time to complete task, number of errors

Non-parametric

- Discrete, or
- non normal, or
- dependent

E.g., whether users found the system useful or not

Categorical vs. Differential

- Differences compares two groups in terms of a 'score'
- Frequency compares frequency of membership of one category with another (nominal or ordinal)

```
4 6 8
0 3 4 12
1 8 3 2
```

```
mpg cyl disp hp drat
                                       wt gsec vs am gear
                      6 160 110 3.90 2.620 16.46 0
Mazda RX4
                21.0 6 160 110 3.90 2.875 17.02 0 1
Mazda RX4 Waa
Datsun 710
                22.8
                      4 108 93 3.85 2.320 18.61 1 1
Hornet 4 Drive
                21.4 6 258 110 3.08 3.215 19.44 1 0
Hornet Sportabout 18.7
                      8 360 175 3.15 3.440 17.02
Valiant
                      6 225 105 2.76 3.460 20.22 1
                18.1
```

Difference vs. Correlation

Difference

- Finding differences between variables
- Using tests for differences between means, variance, distribution

Correlation

- Finding relations between variables
- Using tests for correlation & regressions

(6) Non-Parametric Mean Comparison

Mann-Whitney *U* test

- The Mann–Whitney U test (aka Wilcoxon Rank-Sum test) relaxes many of the t-test assumptions
- Used to compare one or two samples of non-parametric independent values
 - All the observations from both groups are independent of each other
 - The responses are ordinal (i.e., one can at least say, of any two observations, which is the greater)
 - Under the null hypothesis H0, the distributions of both populations are equal
 - The alternative hypothesis H1 is that the distributions are not equal
- A similar nonparametric test used on dependent samples is the Wilcoxon signed-rank test

Calculating the U value

- For each observation in one set, U is the the number of times this first value wins over any observations in the other set
- Count 0.5 for any ties
- The sum of wins and ties is U for the first set
- U for the other set is the converse
- It's a little more complicated for larger sets

Classic example

- Suppose we want to see if tortoises win over hares
- This is the in which they reach the finishing post (their rank order, from first to last crossing the finish line) is as follows, writing T for a tortoise and H for a hare:
 - THHHHHTTTTTH
- Tortoises win at: 6, 1, 1, 1, 1, 1, so $U_T = 11$
- For Hares, the wins are: 5, 5, 5, 5, 5, 0, so $U_H = 25$
- Is U_H > U_T? That depends on the statistical test...

THE TORTOISE AND THE HARE

Why shouldn't we compare medians?

- H H H H H H H H H T T T T T T T T T H H H H H H H H H H T T T T T T T T T T T
- The median tortoise is faster than the median hare
- But $U_H = 19*9 + 10*9 = 261$ and $U_T = 100$
- The U value reflects skewness and not just variance

Running Mann-Whitney U test

```
import scipy.stats

# u : Mann-Whitney test statistic

# p : p-value
u, p = scipy.stats.mannwhitneyu(x, y)
```


(7) Categorical Tests

Categorical Tests

These tests are for summaries of categorical (nominal) data:

		Behaviour:			
	_	No	Yes	Total:	
Gender:	Male	60	120	180	
	Female	70	20	90	
	Total:	130	140	270	
	$\chi^2 = 0$	6.5, p=	-0.011		

χ² Test

- The Chi-square test is intended to test how likely it is that an observed distribution is due to chance
- It is also called a "goodness of fit" statistic, because it measures how well the observed distribution of data fits with the distribution that is expected if the variables are independent
- Thus, if we have 40 observations and four categories or groups, we expect 10 observations in each group

The χ^2 Value

- Where:
 - Oi Observed Data
 - Ei Expected Values
- The null hypothesis is that there is no statistical significance between the observed and the expected

$$X^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

Example

	Vegan	Vegitatian	Total
Male	20 (25)	30 (25)	50
Female	30 (25)	20 (25)	50
Total	50	50	100

$$\chi^2 = ((20-25)^2/25) + ((30-25)^2/25) + ((30-25)^2/25) + ((20-25)^2/25) = (25/25) + (25/25) + (25/25) + (25/25) = 4$$

DF = (r-1)(c-1)
Where
DF = Degree of freedom
r = number of rows
c = number of columns

Critical values of the Chi-square distribution with d degrees of freedom

	Probability of exceeding the critical value								
d	0.05	0.01	0.001	d	0.05	0.01	0.001		
1	3.841	6.635	10.828	11	19.675	24.725	31.264		
2	5.991	9.210	13.816	12	21.026	26.217	32.910		
3	7.815	11.345	16.266	13	22.362	27.688	34.528		
4	9.488	13.277	18.467	14	23.685	29.141	36.123		
5	11.070	15.086	20.515	15	24.996	30.578	37.697		
6	12.592	16.812	22.458	16	26.296	32.000	39.252		
7	14.067	18.475	24.322	17	27.587	33.409	40.790		
8	15.507	20.090	26.125	18	28.869	34.805	42.312		
9	16.919	21.666	27.877	19	30.144	36.191	43.820		
10	18.307	23.209	29.588	20	31.410	37.566	45.315		

INTRODUCTION TO POPULATION GENETICS, Table D.1

© 2013 Sinauer Associates, Inc.

When to use χ^2

- The samples are taken independently or are unpaired
 - If not, use McNemar's test.
- If the sample is really small (<50), use Fisher's exact test

Summary

- Inferential Statistics
- T-tests
- Statistical tests zoo:
 - Parametric vs. Non Parametric
 - Categorical vs. Nominal
 - Pairs vs. Unpaired

