AMENDMENTS TO THE CLAIMS

This listing of claim will replace all prior versions and listings of claim in the application.

1. (previously presented) A memory system including a control path to a host device,

the host device supplying a host voltage, comprising:

a voltage regulator including a host voltage input, an output and a bypass shorting the host

voltage at the input to the output;

a voltage detector communicating with the regulator;

a bypass enable signal operable responsive to a signal generated by the host device indicating

that the power up of the host is complete.

2. (previously presented) The memory system of claim 1 wherein the voltage detector

outputs a signal indicative of the host supply voltage responsive to said signal generated by the host

device indicating that the power up of the hose is complete.

3. (original) The memory system of claim 1 wherein the bypass is at least one transistor.

(original) The memory system of claim 3 wherein the bypass comprises a plurality of

transistors.

4.

5. (original) The memory system of claim 3 wherein the bypass enable signal is

provided by the controller to a gate of the transistor.

6. (original) The memory system of claim 1 wherein the signal generated by the host

device is a command signal to the memory system.

7. (original) The memory system of claim 1 wherein the memory system is a

multimedia card.

- 2 -

8. (original) The memory system of claim 1 wherein the memory system is a

multimedia card and the signal generated by the host device is a command signal.

9. (original) The memory system of claim 8 wherein the command signal is CMD0 or

CMD1.

10. (Previously presented) The memory system of claim 2 wherein the voltage detector

outputs a bypass enable signal shorting the input voltage to the output when the host supply voltage

is below a threshold. .

11. (original) The memory system of claim 1 wherein the memory system is a pc card.

(original) The memory system of claim 1 wherein the memory system is a compact

flash card.

12.

13. (original) The memory system of claim 1 wherein the memory system is a secure

digital card.

14. (original) The memory system of claim 1 wherein the memory system is a smart

media card.

15. (original) The memory system of claim 1 wherein the memory system is a memory

stick.

16. (previously presented) A method for operating a voltage regulator in a memory

system, comprising:

providing a voltage regulator having a host voltage input and an output, and including a

- 3 -

regulator bypass shorting the host voltage at the input to the output responsive to an enable signal;

setting the bypass to off prior to power up of a host device;

responsive to a power up completion signal from a host device, determining the power

supplied by the host; and

if the power is below a threshold operating voltage, enabling the bypass.

17. (original) The method of claim 16 wherein the bypass is a transistor and the step of

setting the bypass to off includes providing a signal to a gate of the transistor.

18. (original) The method of claim 17 wherein the bypass comprises a plurality of

transistors and the step of enabling the bypass comprises applying an enable signal to each gate of

said plurality of transistors.

19. (original) The method of claim 17 wherein the power up completion signal is a

command signal from the host.

20. (original) The method of claim 19 wherein command signal is CMD0 or CMD1 for a

multimedia card.

21. (original) The method of claim 17 wherein the threshold voltage is below 2.7 volts.

22. (original) The method of claim 17 wherein the threshold voltage is below 2.0 volts.

23. (original) The method of claim 17 wherein the threshold voltage is below 1.65 volts.

24. (original) The method of claim 17 wherein the threshold voltage is below 1.3 volts.

25. (previously presented) A peripheral device for a host system supplying a host voltage,

- 4 -

the peripheral device including a voltage regulator circuit, comprising:

a voltage regulator having a host voltage input and an output;

a bypass element coupled to selectively short the host voltage at the input to the output;

a bypass control signal coupled to the bypass element and responsive to a host system power

up completed signal which enables the bypass element when the host voltage is below a threshold

level.

26. (original) The peripheral device of claim 25 wherein the regulator includes a detector

responsive to the power up completed signal.

27. (previously presented) The peripheral device of claim 26 wherein the detector outputs

a first signal when the voltage provided by the host is above the threshold level and a second signal

when the host is below the threshold level.

28. (original) The peripheral device of claim 25 wherein the bypass element includes at

least one p-type transistor.

29. (original) The peripheral device of claim 27 wherein the bypass control signal is

applied to the gate of the at least one transistor.

30. (original) The peripheral device of claim 27 wherein the bypass element is disabled

during power up of the host device.

31. (original) The peripheral device of claim 25 wherein the bypass control signal is

provided by a controller.

32. (previously presented) A method for operating a voltage regulator in a multimedia

card memory device, comprising:

- 5 -

providing a voltage regulator having a host voltage input and an output, and including a

regulator bypass shorting a host voltage at the input to the output;

setting the bypass to off prior to power up of a host device;

responsive to a command signal from the host device, determining the power supplied by the

host; and

if the power is below a threshold operating voltage, enabling the bypass.

33. (previously presented) The method of claim 32 wherein command signal is CMD0

or CMD1 in for a multimedia card.

34. (previously presented) A memory system, comprising:

a controller;

a memory array; and

a voltage regulator having a shorting element between a host voltage input and an output, the

shorting element being responsive to a bypass control signal, the bypass control signal provided by

the controller responsive to a host system power up complete signal which enables the shorting

element when the host supply voltage provided by the host is below a threshold level.

35. (original) The memory system of claim 34 wherein the regulator outputs a voltage

less than the host supply voltage when said supply voltage is above said threshold.

36. (original) The memory system of claim 35 wherein the regulator outputs at least a

first or a second output voltage when said host supply voltage is above said threshold.

-6-