1. Se requiere calcular el tamaño de muestra para estimar M n= 2xh 02 confianza:

$$n = \frac{2^2}{2^2} \frac{1}{2^2} \frac{1}{2^2$$

$$N = \frac{2.58^2 \times -26^2}{5^2} = 179.98 \times 180_{11}$$
 P se deben en evertar 180 bénerej

Tambien requiere estimar el tamaño de muestra para estimar una proporción

$$N \neq \frac{2}{2} \frac{1}{2} \frac{1}{2}$$

$$N = \frac{2.58^2 \times 0.25}{0.05^2} = 665.6 \approx 666$$
 Joveney encuestar

2 se requiere estimar ICui-un en gropes independientes

$$(\bar{x}_1 - \bar{x}_2) \pm t$$

$$V = M + n_2 - 2$$

$$V_1 = V_1^2 + V_2^2$$

$$V_2 = V_1^2$$

$$V_3 = V_1^2$$

$$V_4 = V_1^2 + V_2^2$$

$$V_4 = V_1^2$$

$$V_5 = V_2^2$$

$$V_7 = V_7^2$$

$$(\tilde{\chi}_1 - \tilde{\chi}_2) \pm t_{v} \sqrt{\frac{S_1^2}{n_1/4}} \frac{S_2^2}{n_2}$$

Supuetos ! XVVX (MV, D;) > XVVX (MV, D;) . D; # D;

Ho:
$$\nabla_1^2 = \nabla_2^2$$
Ha: $\nabla_1^2 + \nabla_2^2$

Edup $F = \frac{25^2}{100} = 0.7972$

Como el Edep cae en la Rae NOR, no se rechaza Ho, Numo que Ho es V

NSUMO que
$$\nabla_1^2 = \nabla_2^2 \rightarrow (2)$$

TC Mr-M (
$$X - X_2$$
) $\pm t_{v=n_1+n_2-2}$ $S_p \sqrt{n_1 + n_2}$ α_p

$$S_{p}^{2} = \frac{(n_{1}-1) S_{1}^{2} + (n_{2}-1) S_{2}^{2}}{n_{1}+n_{2}-2} = \frac{399 \times 25^{2} + 399 \times 25^{2}}{798} = 704.5$$

$$(73-:3)\pm1.9629\times\sqrt{704.5}\times\sqrt{\frac{1}{400}}\pm\frac{1}{400}=$$

 $10\pm3.68=(6,322;13,672)$

2/

Se puede afirmar que se ha reducido el promedio de carne entre 6,3 y 13,7 lbs con ma confianza del 95%

(+,+)

 $M_1 > M_2$

GRUPD EXPERIMENTAL	GRUPD CONTROL
2 Xa	γ.α. 5
TINTERVENTION	3
DETPUES GRUPD EXPERIMENTAL.	GRUPD CONTROL
T) Ho: Mxa = Mya grupo	$\frac{1}{2}$
2 Ho: Mxa = Mxd	7,44 Xa=2,89 V=7,44
3 Ho: Mya = Myd 9 Ho: Mxd = Myd	rupos independientes Sxa=5,11 Sya=15,78 nx=9 ny=9 ny=9

.

.

. .

. .

. .

. . .

Je requiere validar que los grupos son comparables Ho Mxa = Mya Har Mxa & Mva Horry F Tra Harozat Ora $T = \left(\underbrace{\overline{X_1} - \overline{X_2}}_{-} \right) - \underline{\Delta_0}$ Ede P $\frac{S_{xx}^{2}}{S_{yx}^{2}} = \frac{4.10^{2}}{3.94^{2}} = 1.14$ V=N1412-2 Splint in T = (8.56 - 9.00) $3.97 \times \sqrt{\frac{1}{9} + \frac{1}{9}}$ Ldr 2 he NO R T UAS Sp= (m-1) St+ (m-1) St 9+(0,025, 9,3) 91(0,975, 8,8) = 8×16,79 + 8×14.75 15,745 4.433 0,225 Klumo que 2 de P tal | PNO se rechara Ho se

2/19

-2/119

NUME gie / Uxa = / 14a /

Pale R

Ho: Mxa = Mxo grapos pareados Ha: Mxa = Mxo

 $t = \frac{J - \Delta_0}{S_0 | J_n} v t_{v=n-1}$

T= 5.67-0 = 4.10 4.15 | 19 di= Xa - Xa

14

6

3=5,57

4

2

3=4,10

Pde P

Pde NOP

Rde NOP

Technology

Pde NOP

Pd

Mxa + Mxd

Ho: Mxa Mxa
Ha: Mxa Mxa

Edel
T= 410
Pde

fechazatus) Ho ta U=8 Uxa> Uxa

$$T = \frac{1.56 = 0}{1.33 \sqrt{9}} = 3.52$$

Pder Pde No P Pale 2

-2,31

taans

v=9

Recharamos Ho Mra + Mra

Hai MYa > MYA

Eder 7=3,52

- Pde 180 P Pde P

Recharamo Ho, Mya) Myd

Pall Pallon Paul

in Mxa + Mya

Ho Mxd > Ma Palt
Ha Mxa < Mya monthshir

Ede PT= -2,92

grupos independientes

Ho $\sigma_{xd}^2 = \sigma_{yd}^2$ Ha $\sigma_{xd}^2 = \sigma_{yd}^2$

Edy? F= 7.44 15,78 0.47

7f(0,025,8,8) 7f(0,975,8,8)

9f(0,025,3,9) 9f(0,975,3,8) 0,225 4,433 Romo 02 = 02

Mxd< Myd

Ho. 02 - 02 Ha, 52 + 52 F57,05 Pder 9f(0,205,8,8) 9f(0,975,8,8) 0,225 72 + 72 Jy

Max > May

como Max > May podemos concluir que el tratumiento realizado al grupo experimental fue efectivo