1.

Proof of a)

Suppose Σ is a set of p, q, and r. Given Σ and $J:\Sigma \to \{T, F\}$. By definition, we need to prove, for any J, if $[[p \vee \neg q]] = [[q \vee \neg r]] = T$, then $[[p \vee \neg r]] = T$.

Case 1. $[[q]]_J = T$, then $p \lor \neg q \equiv p \lor F \equiv p \equiv T$, which means the true value of p is true. Thus the true value of $p \lor \neg r$ is true.

Case 2. $[[q]]_J = F$, then $q \vee \neg r \equiv F \vee \neg r \equiv \neg r \equiv T$, which means the true value of $\neg r$ is true. Thus the true value of $p \vee \neg r$ is true.

Thus by definition, $p \vee \neg r$ is a consequence of $p \vee \neg q$, $q \vee \neg r$. *QED*.

 $Proof\ of\ b)$

In fact, $p \lor \neg p$ is a tautology. If the true value of p is true, the true value of $p \lor \neg p$ is true. Thus by definition, $p \lor \neg p$ is a consequence of p. QED.

2.

Proof of a)

• If $[[\phi]]_J = T$, then $[[\psi]]_J = T$, which is because $\phi \models \psi$. In this case,

$$\phi \wedge \psi \equiv T \wedge T \equiv T \equiv \phi,$$

$$\phi \vee \psi \equiv T \vee T \equiv T \equiv \psi.$$

• If $[[\phi]]_J = F$, then

$$\begin{split} \phi \wedge \psi &\equiv F \wedge \psi \equiv F \equiv \phi, \\ \phi \vee \psi &\equiv F \vee \psi \equiv \psi. \end{split}$$

QED.

Proof of b)

We need to prove $p \lor (p \land q) \equiv p$ (Absorption Laws). Using the conclusion above (if $\phi \models \psi$, then $\phi \lor \psi \equiv \psi$), we need only to prove p is a consequence of $p \land q$. If the true value of $p \land q$ is true, the true value of p is true. Thus by definition, p is a consequence of $p \land q$. QED.

3.

Proof of a)

Using De Morgan's Laws and double negation law, we can find that $\neg(p \land \neg q) \equiv \neg p \lor \neg \neg q \equiv \neg p \lor q$. QED.

Proof of b)

Here is the truth table of $(\neg p) \oplus q$.

p	q	¬р	(¬p) ⊕q
T	T	F	T
T	F	F	F
F	T	T	F
F	F	T	T

Here is the truth table of $\neg(p \oplus q)$.

p	q	$p \oplus q$	$\neg(p \oplus q)$
T	T	F	T
T	F	T	F
F	T	T	F
F	F	F	T

So $\neg(p \oplus q)$ and $(\neg p) \oplus q$ are logically equivalent with each other. *QED*.

Proof of c)

Here is the truth table of $p \oplus (\neg p) \oplus q$.

p	q	$\neg p$	$p \oplus (\neg p)$	$p \oplus (\neg p) \oplus q$
T	T	F	T	F
T	F	F	T	Т
F	Т	T	T	F
F	F	T	T	T

So $p \oplus (\neg p) \oplus q$ and $\neg q$ are logically equivalent with each other. QED.

4.

Here is the truth table of ϕ .

p	q	r	$q \oplus r$	$\neg (q \oplus r)$	$p \land \neg (q \oplus r)$	φ
T	Т	T	F	T	T	F
T	Т	F	T	F	F	Т
T	F	T	T	F	F	T
T	F	F	F	T	T	F
F	T	T	F	T	F	Т
F	T	F	T	F	F	T
F	F	T	T	F	F	Т
F	F	F	F	T	F	T

From the truth table, we can find that $\neg p \lor (q \land \neg r) \lor (\neg q \land r)$ is a disjunctive normal form of ϕ .