Sistemi Multimodali

Parte XII

Indice

1	Sist	emi Multimodali	2
	1.1	Svantaggi dei sistemi monomodali	2
	1.2		2
	1.3	Cosa si può unire?	3
		1.3.1 Quali tratti unire?	3
	1.4	Applicazioni target	3
	1.5	Terminologia usata in letteratura	3
2	Tecniche di datafusion biometrica		
	2.1	Normalizzazione degli score	4
3	Tecniche avanzate di datafusion		
	3.1	Sistemi multimodali gerarchici	6
	3.2	Fusione a livello di feature	6
	3.3	Parametrizzazione specifica per	
		il singolo utente	7
	3.4	Integrazione della soft biometrics	7
4	Esempi di sistemi multimodali		
	4.1	Sistemi multimodali per il volto	8
	4.2		
	4.3		

Sistemi Multimodali

1.1 Svantaggi dei sistemi monomodali

- Rumore dei dati in ingresso (illuminazione, umidità per le impronte, ...)
- Variabilità intraclasse (posa nel volto, ferite su dita, raffreddore per la voce ...)
- $\bullet\,$ Limitata distintività del tratto biometrico (forma della mano, firma online, $\ldots)$
- Non universalità del tratto
- Attacchi sul sensore

1.2 Vantaggi e Svantaggi sei sistemi multimodali

• Vantaggi

- usare N tratti biometrici al posto di uno solo permette di aumentare le performance di matching; sono più accurati
- si aumenta la copertura della popolazione riducendo il Failure to Enroll
 - \rightarrow gli utenti che non possono registrarsi usando un tratto, possono usare gli altri
- sono un efficace metodo anti-spoofing; è molto più difficile ingannare contemporaneamente più sensori

• Svantaggi

- sono più costosi essendo composti da più unità biometriche
- sono più lenti in acquisizione, dato che occorre acquisire più tratti

1.3 Cosa si può unire?

Multi-biometrico può signficare:

- Multiple biometrics: volto e impronta digitale
- Multiple units: indice destro e dito medio
- Multiple snapshots: due template dell'indice destro
- Multiple matchers: matching basato su minutiae e non-minutiae (metodi diversi)
- Multiple sensors: sensori diversi

1.3.1 Quali tratti unire?

Alcuni tratti sono spazialmente vicini (per esempio iride e volto) per **praticità** di acquisizione; altri sono distanti per garantire la assoluta indipendenza dei tratti biometrici.

1.4 Applicazioni target

Interesse potenziale per sistemi multimodali:

- Alto
 - accesso fisico
 - identificazione (documenti di identità elettronici)
 - * civile
 - * criminale
- Moderato
 - accesso a rete informatica o a terminale
 - chioschi informatizzati, sportelli ATM
- Basso
 - sorveglianza
 - telefonia
 - ...

1.5 Terminologia usata in letteratura

- Multimodale: usa tratti biometrici scorrelati
- Multiobiometrico: cappello generale che comprende multimodale e sistemi con tratti biometrici debolmente correlati, scorrelati, sensori diversi, software diversi, . . .

Tecniche di datafusion biometrica

Fusione a livello di matchscore di feature Feature Extraction 1 Feature Extraction 2 Feature Extraction 2

2.1 Normalizzazione degli score

Per confrontare fra loro correttamente i valori di diversi matcher fra loro (valori di distanza tra template) è necessario eseguire prima una operazione di normalizzazione, per:

• omogeneizzare il significato (ad esempio s_1 è una similarità ed invece s_2 è una distanza)

- riportare alla stessa scala le uscite s_1, s_2, \dots, s_n
- uniformare le distribuzioni dei valori

È sempre meglio tenere conto della:

- robustezza (un valore molto diverso, magari provocato da un errore, non deve stravolgere la normalizzazione)
- efficienza (occorre normalizzare avedo dei parametri stimati, vicini però a quelli reali)

Tecniche avanzate di datafusion

3.1 Sistemi multimodali gerarchici

Nei sistemi multimodali gerarchici avvengono acquisizioni biometriche in cascata a seconda del risultato dell'identificazione precedente.

- in verification riducono il tempo di verifica
- in **identificazione** permettono mediante il *pruning* di ridurre le porzioni da analizzaree del DB (indexing)
- Per ridurre il tempo medio di verifica, occorre acquisire per primi i tratti biometrici più accurati
- In certe applicazioni è l'utente che sceglie quale tratto mostrare

3.2 Fusione a livello di feature

Non è sempre facile riuscire a realizzare una efficace fusione delle informazioni a livello di feature.

La principale causa è la eccessiva eterogeneità fra le features; di solito è possibile quando si estraggono da tutti i tratti biometrici delle feature numeriche.

3.3 Parametrizzazione specifica per il singolo utente

Esistono due approcci per aumentare ancora le prestazioni se viene tenuto conto delle carattersitche singolari di ogni utente:

- ogni utente ha una distanza dagli impostori personalizzata
 - ogni utente può quindi avere la sua soglia di decisione personalizzata per ogni tratto biometrico
- ogni utente produce delle acquisizioni biometriche dei tratti con qualità diversa; si possono pesare diversamente i tratti biometrici tenendo conto:
 - della qualità di acquisizione in enrollment per ogni utente
 - dell'errore di quel tratto biometrico (ad esempio, facciamo pesare di più le impronte rispetto al volto nella decisione finale)
- \rightarrow in altre parole, si hanno **due set di parametri** di progettazione in un sistema biometrico multimodale: **le soglie dei matching e i loro pesi**

3.4 Integrazione della soft biometrics

Alcuni tratti chiamati soft biometrics possono essere usati in aggiunta:

- genere
- colore della pelle
- colore dei capelli
- colore degli occhi
- peso
- altezza
- . . .

L'integrazione corretta di un sistema di soft-biometrics è a valle del modulo biometrico primario.

Esempi di sistemi multimodali

4.1 Sistemi multimodali per il volto

I sistemi innovativi per il riconoscimento del volto basati su *multiple images* o su 2.5D faces sono di fatto dei sistemi multibiometrici.

Grazie alla fusione delle informazioni sono riusciti a compiere un grosso passo in avanti.

4.2 Sistema BioID (parlato + volto)

È un sistema che controlla:

- riconoscimento del volto
- sincronia fra il parlato e i movimenti delle labbra

Aumenta la robustezza del sistema contro gli attacchi.

4.3 Sistema iride + retina

Questo sistema implementa due delle più accurate e resistenti agli attacchi tecnologie presenti sul mercato. Ad oggi, è impossibile falsificare allo stesso tempo i due tratti.

