

Bruce M. Boghosian

Revisiting Benford's Lav

Review and example of GoF from last

GoF tests wit

Summar

Goodness of Fit Tests

Parameters Unknown

Bruce M. Boghosian

Department of Mathematics

Tufts University

- Revisiting Benford's Law
- 2 Review and example of GoF from last time
- 3 GoF tests with parameters unknown
- Summary

Revisiting Benford's Law

Bruce M. Boghosian

Revisiting Benford's Law

Review and example of GoF from last time

parameters unknown

- First digits of mantissas of data in scientific notation
- First digits can be 1,...,9
- From an argument worked out last time, mantissa pdf is

$$P(x) = \frac{c}{x} \quad \text{for} \quad 1 \le x < 10.$$

- By normalization, $c = (\ln 10 \ln 1)^{-1} = (\ln 10)^{-1}$
- Probability that mantissa first digit is *d* is then

$$p_d^{(1)} = \frac{1}{\ln 10} \int_d^{d+1} \frac{dx}{x} = \frac{\ln(d+1)}{\ln 10} - \frac{\ln d}{\ln 10}$$
$$= \log_{10}(d+1) - \log_{10} d = \log_{10} \left(1 + \frac{1}{d}\right).$$

Mantissa first-digit probabilities

Bruce M. Boghosian

Revisiting Benford's Law

example of GoF from last time

GoF tests wife parameters unknown

Summary

- If mantissas were uniformly distributed, first-digit probabilities $p_d^{(1)}$ would all be equal to 1/9
- Instead $p_d^{(1)} = \log_{10} (1 + 1/d)$ for d = 1, ..., 9, yielding

(1)

d	$p_d^{(1)}$
1	0.30103
2	0.176091
3	0.124939
4	0.09691
5	0.0791812
6	0.0669468
7	0.0579919
8	0.0511525
9	0.0457575

What about second-digit probabilities?

Bruce M. Boghosian

Revisiting Benford's Law

Review and example of GoF from last

GoF tests with parameters unknown

- Note that second digits can be 0,...,9
- If mantissas were uniformly distributed, second-digit probabilities $p_d^{(2)}$ would all be equal to $^{1/10}$
- Actual 2nd digit probability is $p_d^{(2)} = \sum_{j=1}^9 \log_{10} \left(\frac{j + \frac{d+1}{10}}{j + \frac{d}{10}} \right)$

d	$p_d^{(2)}$
0	0.119679
1	0.11389
2	0.108821
3	0.10433
4	0.100308
5	0.0966772
6	0.0933747
7	0.090352
8	0.0875701
Ω	0.0840074

And third-digit probabilities?

Bruce M. Boghosian

Revisiting Benford's Law

example of GoF from last time

GoF tests with parameters unknown

- Note that third digits can be 0,...,9
- If mantissas were uniformly distributed, third-digit probabilities $p_d^{(3)}$ would all be equal to 1/10
- 3nd digit probs.: $p_d^{(3)} = \sum_{j=1}^9 \sum_{k=0}^9 \log_{10} \left(\frac{j + \frac{k}{10} + \frac{d+1}{100}}{j + \frac{k}{10} + \frac{d}{100}} \right)$

$$\begin{array}{c|cccc} d & p_d^{(3)} \\ \hline 0 & 0.101784 \\ 1 & 0.101376 \\ 2 & 0.100972 \\ 3 & 0.100573 \\ 4 & 0.100178 \\ 5 & 0.0997876 \\ 6 & 0.0994013 \\ 7 & 0.0990192 \\ 8 & 0.0982672 \\ \end{array}$$

Generalized Benford's Law

Bruce M. Boghosian

Revisiting Benford's Law

Review and example of GoF from last time

GoF tests with parameters unknown

Summar

- Note that $p_d^{(n)} o 1/$ 10 as n increases
- Results below are for n = 4 are given below

$$p_d^{(4)} = \sum_{j=1}^9 \sum_{k=0}^9 \sum_{l=0}^9 \log_{10} \left(\frac{j + \frac{k}{10} + \frac{l}{100} + \frac{d+1}{1000}}{j + \frac{k}{10} + \frac{l}{100} + \frac{d}{1000}} \right)$$

d	$p_d^{(4)}$
0	0.100176
1	0.100137
2	0.100098
3	0.100059
4	0.100019
5	0.0999803
6	0.0999412
7	0.0999022
8	0.0998633
9	0.0998244

(1)

Pearson's Goodness of Fit Test

Bruce M. Boghosian

Revisiting Benford's Law

Review and example of GoF from last time

parameters unknown

Summary

- **Key idea:** Bin your possible outcomes into *t* categories.
- **Thm.:** Let r_1, \ldots, r_t be the set of possible outcomes associated with each of n independent trials, where $P(r_i) = p_i$ for $i = 1, \ldots, t$. Let the r.v. X_i be the number of times r_i occurs for $i = 1, \ldots, t$.
 - The statistic

$$D = \sum_{i=1}^{t} \frac{(X_i - np_i)^2}{np_i}$$

has approximately a χ^2 distribution with t-1 df.

For the approximation to be adequate, the t classes should be defined so that $np_i \ge 5$, for all i.

Pearson's Goodness of Fit Test

Bruce M. Boghosian

Revisiting Benford's La

Review and example of GoF from last time

GoF tests with parameters unknown

Summary

- **Thm.** (continued): Let k_1, \ldots, k_t be the observed frequencies for outcomes r_1, \ldots, r_t , respectively, and let $np_{1_0}, \ldots, np_{t_0}$ be the corresponding expected frequencies, based on the null hypothesis.
- At the α level of significance, H_0 : $f_Y(y) = f_0(y)$ (or similar discrete version of H_0) is rejected if

$$d = \sum_{i=1}^{t} \frac{(k_i - np_{i_0})^2}{np_{i_0}} \ge \chi^2_{1-\alpha,t-1},$$

where, again, $np_{i_0} \geq 5$ for all $i = 1, \ldots, t$.

Example 1

Bruce M. Boghosian

Revisiting Benford's La

Review and example of GoF from last time

parameters unknown

Summary

 Over a number of years, the distribution of prison sentences for people convicted of grand theft has been approximately

$$f_{Y_0}(y) = \frac{y^2}{9}$$
 for $0 < y \le 3$

- Recent review of sentences of 50 individuals showed
 - Eight served less than one year in jail.
 - Sixteen served between one and two years.
 - Twenty-six served between two and three years.
- Are these data consistent with $f_Y(y)$ using the $\alpha = 0.05$ level of significance?

<u>Exam</u>ple 1 (continued)

Review and example of GoF from last

Note that t = 3 and all parameters are known.

Theoretical bin probabilities

$$p_{1_0} = \int_0^1 dy \ f_Y(y) = \int_0^1 dy \ \frac{y^2}{0} = \frac{1}{27}$$

$$p_{2_0} = \int_1^2 dy \ f_Y(y) = \int_1^2 dy \ \frac{y^2}{9} = \frac{7}{27}$$

$$p_{3_0} = \int_3^3 dy \ f_Y(y) = \int_3^3 dy \ \frac{y^2}{9} = \frac{19}{27}$$

Pearson statistic

$$d = \frac{\left(8 - 50 \cdot \frac{1}{27}\right)^2}{50 \cdot \frac{1}{27}} + \frac{\left(16 - 50 \cdot \frac{7}{27}\right)^2}{50 \cdot \frac{7}{27}} + \frac{\left(26 - 50 \cdot \frac{19}{27}\right)^2}{50 \cdot \frac{19}{27}} = 23.5212$$

- We have $\chi^2_{1-\alpha,t-1} = \chi^2_{0.95,2} = 5.991$.
- Since $d > \chi^2_{1-\alpha, t-1}$, we reject null hypothesis $H_0: f_{Y_0}(y) = f_{Y_0}(y).$

Tufts Example 1 (continued)

Review and example of GoF from last

- In the way of explanation, note that
 - \bullet 50 $\left(\frac{1}{27}\right) = 1.85 < 8$
 - \bullet 50 $\left(\frac{7}{27}\right) = 12.96 < 16$
 - \bullet 50 $(\frac{19}{27}) = 35.19 > 26$
- There are more shorter sentences and fewer longer ones than the pdf would suggest.
- This is possibly due to recent judicial reforms that aim to correct the excesses of the Sentencing Reform Act of 1984, including ¹
 - US has 5% of world's population, but 25% of its prisoners.
 - US has 33% of world's female prisoners.
 - Federal prison population increased 800% since 1980.
 - Spending on federal prisons increased 1700% since 1980.
 - Federal prisons operating at 131% capacity.
 - Half of federal prisoners serving for nonviolent drug crimes.

¹Statistics from ABA web page.

Example 2

Bruce M. Boghosian

Revisiting Benford's Lav

Review and example of GoF from last time

parameters unknown

- According to the M&M/Mars Company, the frequencies associated with M&M colors are
 - 30% brown
 - 20% each yellow and red
 - 10% each orange, blue and green
- $lue{}$ Observed numbers in three pounds (n=1527) of M&Ms

Color	k_i
Brown	455
Yellow	343
Red	318
Orange	152
Blue	130
Green	129

- Note t = 6 and all parameters known.
- **Examine** H_0 at confidence level $\alpha = 0.05$.

Tufts Example 2 (continued)

Review and example of GoF from last

Pearson statistic is

$$d = \frac{(455 - 1527 \cdot 0.30)^2}{1527 \cdot 0.30} + \frac{(343 - 1527 \cdot 0.20)^2}{1527 \cdot 0.20} + \frac{(318 - 1527 \cdot 0.20)^2}{1527 \cdot 0.20} + \frac{(152 - 1527 \cdot 0.10)^2}{1527 \cdot 0.10} + \frac{(130 - 1527 \cdot 0.10)^2}{1527 \cdot 0.10} + \frac{(129 - 1527 \cdot 0.10)^2}{1527 \cdot 0.10}$$

$$= 12.2262$$

- We have $\chi^2_{1-\alpha,t-1} = \chi^2_{0.95.4} = 11.070$
- Since $d > \chi^2_{1-\alpha,t-1}$, we reject null hypothesis H_0 .

What happens if you don't know the parameters?

Bruce M. Boghosian

Revisiting Benford's La

example of GoF from last time

GoF tests with parameters unknown

- Suppose that you have s distribution parameters.
- If you don't know the *s* distribution parameters, use, e.g., MIF to estimate them.
- Substitute the MLE parameters into the distribution, and analyze as though the parameters are known.
- In this way, obtain \hat{p}_i for i = 1, ..., t for each of the t bins.
- Form the analog of Pearson's statistic

$$D_1 = \sum_{i=1}^t \frac{(X_i - n\hat{p}_i)^2}{n\hat{p}_i}$$

- This has approximate χ^2 distribution with t-1-s df.
- Note one df lost for each parameter estimated.

Theorem on GoF with unknown parameters

Bruce M. Boghosiar

Revisiting Benford's Lav

example of GoF from last time

GoF tests with parameters unknown

- **Thm.:** Suppose n observations taken from the s-parameter distribution $f_Y(y)$ (or $p_X(k)$).
- Let r_1, \ldots, r_t be mutually exclusive outcomes (bins, ranges) for each of the n observations.
- Let \hat{p}_i be the estimated $\operatorname{Prob}(Y \in r_i)$, as calculated from $f_Y(y)$ (or $p_X(k)$) after the parameters have been replaced by the MLE parameters.
- Let X_i denote the number of times that $Y \in r_i$ for i = 1, ..., t.
- Form the statistic

$$D_1 = \sum_{i=1}^t \frac{(X_i - n\hat{p}_i)^2}{n\hat{p}_i}$$

Tufts Theorem (continued)

GoF tests with

Thm. (continued): Then

$$D_1 = \sum_{i=1}^t \frac{(X_i - n\hat{p}_i)^2}{n\hat{p}_i}$$

is approximately distributed as a χ^2 distribution with t-1-s degrees of freedom.

- Define the r_i so that $n\hat{p}_{i_0} \geq 5$ for all i.
- To test H_0 : $f_Y(y) = f_0(y)$ (or H_0 : $p_X(k) = p_0(k)$) at the α level of significance, calculate

$$d_1 = \sum_{i=1}^{t} \frac{\left(k_i - n\hat{p}_{i_0}\right)^2}{n\hat{p}_{i_0}}$$

where k_1, \ldots, k_t are observed results, and $n\hat{p}_{i_0}$ are expected estimated frequencies based on H_0 .

■ Reject H_0 if $d_1 \ge \chi^2_{1-\alpha,t-1-s}$.

Example 1: Mortality for women over 80 yrs. old

Bruce M. Boghosian

Revisiting Benford's Lav

example of GoF from last time

GoF tests with parameters unknown

- Data from the *Times of London* over three year period
- \blacksquare H_0 asserts this can be modeled by a Poisson distribution.
- See data below with t = 11 bins.

Number deaths (i)	Observed frequency (f_i)
0	162
1	267
2	271
3	185
4	111
5	61
6	27
7	8
8	3
9	1
10+	0

- Total days = $\sum_{j=1}^{11} f_j = 1096$
- Total deaths = $\sum_{i=1}^{11} j f_i = 2364$

Example 1 (continued)

Bruce M. Boghosian

Revisiting Benford's Lav

example of GoF from last time

GoF tests with parameters unknown

Summar

■ Poisson distribution is the one-parameter distribution

$$\hat{p}_{j_0} = \text{Prob}\left(j \text{ deaths in a day}\right) = \frac{\lambda^j}{i!} e^{-\lambda}.$$

Estimate for λ is

$$\lambda_e = \frac{\text{Total deaths}}{\text{Total days}} = \frac{2364}{1096} = 2.15693$$

■ With this estimate, estimated expected bin population is

$$n\hat{p}_{j_0}=n\frac{\lambda_e^J}{j!}e^{-\lambda_e}.$$

Example 1 (continued)

Bruce M. Boghosian

Revisiting Benford's Lav

example of GoF from las time

GoF tests with parameters unknown

- Revised table, showing est. exp. Poisson distribution
- Note that we have less than five observations in bins 9-11.
- Fix this by creating a "7+" bin (next slide).

Number deaths (i)	Obs. freq. (f_i)	Est. exp. freq. $(n\hat{p}_{j_0})$
0	162	126.8
1	267	273.5
2	271	294.9
3	185	212.1
4	111	114.3
5	61	49.3
6	27	17.8
7	8	5.5
8	3	1.4
9	1	0.3
10+	0	0.1

Tufts Example 1 (continued)

GoF tests with

- Merging bins to create a "7+" bin yields new table.
- Hence we now have t = 8.

Number deaths (i)	Obs. freq. (f_i)	Est. exp. freq. $(n\hat{p}_{j_0})$
0	162	126.8
1	267	273.5
2	271	294.9
3	185	212.1
4	111	114.3
5	61	49.3
6	27	17.8
7+	12	7.3

■ The d_1 statistic is then

$$d_1 = \frac{(162 - 126.8)^2}{126.8} + \frac{(267 - 273.5)^2}{273.5} + \dots + \frac{(12 - 7.3)^2}{7.3} = 25.98$$

Tufts Example 1 (continued)

GoF tests with

■ The d_1 statistic is then

$$d_1 = \frac{(162 - 126.8)^2}{126.8} + \frac{(267 - 273.5)^2}{273.5} + \dots + \frac{(12 - 7.3)^2}{7.3} = 25.98$$

Since we have t = 8 classes and s = 1 estimated parameter, we examine

$$\chi^2_{1-\alpha,t-1-s} = \chi^2_{1-0.05,8-1-1} = \chi^2_{0.95,6} = 12.592$$

- Since $d_1 > \chi^2_{1-\alpha.t-1-s}$, we reject null hypothesis that data is Poisson distributed.
- Note that there is particular discrepancy in the i=0 case. It may be that deaths occur in clusters, such as flu epidemics, invalidating the Poisson assumption (effectively making λ depend on time).

Tufts Summary

- We have generalized Benford's Law to include less significant digits, finding that less significant digits are more uniformly distributed.
- We have reviewed GoF tests with all parameters known and given two examples.
- We have described GoF tests with unknown parameters and given an example.