Support Vector Machines

Master parcours SSD - UE Apprentissage Statistique II

Pierre Mahé - bioMérieux & Université de Grenoble-Alpes

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

n pratique

Conclusion

SVM et

Python

Ce cours

Outline

Apprentissage Statistique II

Support Vector Machines - Machines à Vecteur de Support 1:

- un algorithme
 - de classification binaire
 - basé sur des séparateurs linéaires
- qui se généralise :
 - à la régression
 - à la classification multi-classe
 - au cadre non-linéaire grâce aux fonctions noyaux
- très performant sur de nombreux problèmes réels
 - haute dimension
 - données structurées
- relativement simple à paramétrer

Plan

Outline

Apprentissage Statistique II

éparateurs néaires

VMs linéaires as séparable

SVMs linéaires & non-séparable

Noyaux et SVMs

in protinuo

Conclusion

Conclusion

VM et

Python

éférences

1. Séparateurs linéaires

2. SVMs linéaires & données séparables

3. SVMs linéaires & données non-séparables

4. SVMs non-linéaires & fonctions noyaux

5. SVMs en pratique

6. Mise en oeuvre avec Scikit-Learn

Outline

Apprentissage Statistique II

Séparateurs linéaires

cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

ython

Références

Séparateurs linéaires

Cadre général

Cadre général : classification binaire

- \Rightarrow couples $(x_i, y_i) \in \mathbb{R}^p \times \{-1, 1\}$, pour i = 1, ..., n.
 - on prendra p = 2 pour les illustrations

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

VM et enalisation

Python

Séparateur linéaire

Si p = 2: séparateur linéaire = droite

Une droite D est définie par un couple $(w, b) \in \mathbb{R}^2 \times \mathbb{R}$:

$$D_{w,b} = \{x \in \mathbb{R}^2 : \langle w, x \rangle + b = 0\}$$

 \Rightarrow w est un vecteur normal de $D_{w,b}$.

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En praciqu

Conclusion

VM et énalisation

Python

Séparateur linéaire - illustration vecteur normal

Illustration : $x = [x_1 \ x_2] \in \mathbb{R}^2$ et la droite $x_2 = 2x_1$.

On a donc $2x_1 - x_2 = 0$, soit $\langle w, x \rangle + b = 0$ avec :

•
$$w = [2 - 1]$$

$$b = 0$$

 \Rightarrow w est \perp à la droite.

- ▶ les vecteurs \bot à w définissent les points de la droite
- ▶ les vecteurs "pointant" dans la direction de w ont un score positif : $\langle w, . \rangle + b > 0$ (angle $\in [-\pi/2, \pi/2]$)
- les vecteurs "pointant" dans la direction inverse ont un score négatif : $\langle w, . \rangle + b < 0$ (angle $\in [\pi/2, 3\pi/2]$)

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusio

SVM et pénalisation

ython

Séparateur linéaire

Plus généralement, on parle d'hyperplan :

$$H_{w,b} = \{x \in \mathbb{R}^p : \langle w, x \rangle + b = 0\}$$

avec $(w, b) \in \mathbb{R}^p \times \mathbb{R}$ et $p \geq 2$.

 \Rightarrow une surface en 3D².

2. image tirée de http://fouryears.eu/2009/02/26/

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclus

SVM et

Python

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

Références

Soit le jeu d'apprentissage $\mathcal{T} = \{(x_1, y_1), ..., (x_n, y_n)\}.$

▶ $(x_i, y_i) \in \mathbb{R}^p \times \{-1, 1\}.$

 $\mathcal T$ est linéairement séparable si il existe un hyperplan $H_{w,b}$ permettant de discriminer correctement les données :

$$\begin{cases} \langle w, x_i \rangle + b > 0 & \text{si } y_i = 1, \\ \langle w, x_i \rangle + b < 0 & \text{si } y_i = -1. \end{cases}$$

Soit de manière équivalente :

$$y_i(\langle w, x_i \rangle + b) > 0, \ \forall i = 1, ..., n.$$

$$\Rightarrow$$
 le signe de $f(x) = \langle w, x \rangle + b$ donne la classe $+1/-1$.

Séparateur linéaire

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs

Lii pratique

Conclusion

SVM et pénalisation

Python

Références

Illustration : un jeu de données linéairement séparable

Séparateur linéaire

Illustration : un jeu de données linéairement séparable

⇒ problème : une infinité d'hyperplans séparant les données!

⇒ lequel choisir?

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

C l

SVM et

Python

Outline

Apprentissage Statistique II

Séparateur linéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

vthon

Références

SVMs linéaires - cadre séparable

Séparateurs linéaires et marges

Hyperplans & données séparables : une infinité de solutions

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusi

SVM et pénalisation

Python

Séparateurs linéaires et marges

Hyperplans & données séparables : une infinité de solutions

 \Rightarrow solution SVM : prendre celui avec la plus grande marge γ

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

. . .

SVM et

ython

Distances et marge

La distance du point x_i à $H_{w,b}$ vaut :

$$\frac{|(\langle w, x_i \rangle + b)|}{||w||}$$

soit:

$$\frac{y_i(\langle w, x_i \rangle + b)}{||w||}$$

pour un hyperplan séparateur.

- $\langle w, x_i \rangle + b > 0 \text{ si } y_i = 1$
- $\blacktriangleright \langle w, x_i \rangle + b < 0 \text{ si } y_i = -1$

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

Python

Distances et marge

La distance du point x_i à $H_{w,b}$ vaut :

$$\frac{|(\langle w, x_i \rangle + b)|}{||w||}$$

soit:

$$\frac{y_i(\langle w, x_i \rangle + b)}{||w||}$$

pour un hyperplan séparateur.

- $\langle w, x_i \rangle + b > 0$ si $v_i = 1$
- \triangleright $\langle w, x_i \rangle + b < 0$ si $y_i = -1$

$$\Rightarrow$$
 la marge γ vaut donc : $\gamma = \min_{i=1,\dots,n} \frac{y_i(\langle w, x_i \rangle + b)}{||w||}$

Outline

Apprentissage Statistique II

SVMs linéaires cas séparable

Hyperplan canonique

Un hyperplan est défini à un facteur multiplicatif près :

$$\langle w, x \rangle + b = 0 \Leftrightarrow \langle \alpha w, x \rangle + \alpha b = 0 \quad \forall \alpha \in \mathbb{R}$$

 $\Rightarrow H_{w,b}$ et $H_{\alpha w,\alpha b}$ définissent le même hyperplan.

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

Lii pratique

Conclusion

SVM et enalisation

Python

Hyperplan canonique

Un hyperplan est défini à un facteur multiplicatif près :

$$\langle w, x \rangle + b = 0 \Leftrightarrow \langle \alpha w, x \rangle + \alpha b = 0 \quad \forall \alpha \in \mathbb{R}$$

 $\Rightarrow H_{w,b}$ et $H_{\alpha w,\alpha b}$ définissent le même hyperplan.

On définit un hyperplan (séparateur) canonique avec la contrainte :

$$\min_{i=1,\ldots,n} y_i(\langle w, x_i \rangle + b) = 1$$

 \Rightarrow sa marge vaut donc :

$$\gamma = \min_{i=1,\dots,n} \frac{y_i(\langle w, x_i \rangle + b)}{||w||} \Rightarrow \boxed{\gamma = \frac{1}{||w||}}$$

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

Python

SVM linéaire & séparable - formalisation

Le problème est donc de trouver $(w,b) \in \mathbb{R}^p \times \mathbb{R}$ tels que :

- 1. la marge $\frac{1}{||w||}$ soit maximale
- 2. I'hyperplan soit canonique : $\min_{i=1,\dots,n} y_i(\langle w,x_i\rangle+b)=1$

Outline

Apprentissage Statistique II

Séparateurs

SVMs linéaires - cas séparable

SVMs linéaires &

Noyaux et SVMs non-linéaires

____pracique

Conclusion

VM et énalisation

Python

Outline

Apprentissage Statistique II

Séparateurs

SVMs linéaires - cas séparable

SVMs linéaires &

Noyaux et SVMs non-linéaires

Lii pratique

Conclusion

SVM et pénalisation

Python

Références

Le problème est donc de trouver $(w, b) \in \mathbb{R}^p \times \mathbb{R}$ tels que :

- 1. la marge $\frac{1}{||w||}$ soit maximale
- 2. I'hyperplan soit canonique : $\min_{i=1,\dots,n} y_i(\langle w,x_i\rangle+b)=1$

⇒ se formalise comme un problème d'optimisation :

$$(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} ||w||^2$$

s.t. $y_i(\langle w, x_i \rangle + b) \ge 1, i = 1, \dots, n.$

- ▶ un problème convexe avec une solution unique
- $(||w|| \rightarrow 1/2||w||^2$ pour simplifier sa résolution)

SVM : problème primal

$$(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \frac{1}{2} ||w||^2$$
s.t. $y_i(\langle w, x_i \rangle + b) \ge 1, i = 1, \dots, n.$

On peut le résoudre avec une formulation Lagrangienne :

- 1. introduire un paramètre $\alpha_i \geq 0$ pour chaque contrainte
 - \blacktriangleright i.e., pour chaque instance (x_i, y_i)
 - $\sim \alpha_i = \text{multiplicateur de Lagrange}$
- 2. ajouter les contraintes à la fonction objective :

$$L(w,b,\alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^n \alpha_i (y_i(\langle w,x_i\rangle + b) - 1).$$

Outline

Apprentissage Statistique II

Séparateurs

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

Python

Formulation Lagrangienne:

$$L(w,b,\alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^n \alpha_i (y_i(\langle w,x_i\rangle + b) - 1)$$

- 1. à minimiser selon (w, b)
 - minimisation de la fonction objective
- 2. à maximiser selon α
 - ► respect des contraintes :

$$\alpha_i(y_i(\langle w, x_i \rangle + b) - 1) \geq 0$$

si la contrainte est satisfaite.

Outline

Apprentissage Statistique II

Séparateurs

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

ython

Formulation Lagrangienne:

$$L(w,b,\alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^n \alpha_i (y_i(\langle w,x_i\rangle + b) - 1)$$

 \Rightarrow minimiser selon (w, b):

$$\frac{\partial L(w, b, \alpha)}{\partial w} = 0 \qquad \frac{\partial L(w, b, \alpha)}{\partial b} = 0$$

soit:

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i \qquad \sum_{i=1}^{n} \alpha_i y_i = 0$$

Outline

Apprentissage Statistique II

Séparateurs

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

Python

On remplace w par $\sum_{i=1}^{n} \alpha_i y_i x_i$ dans $L(w, b, \alpha)$:

$$L(w, b, \alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

 \Rightarrow à maximiser selon $\alpha \in \mathbb{R}^n$.

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

zii piatique

Conclusion

SVM et

Python

On remplace w par $\sum_{i=1}^{n} \alpha_i y_i x_i$ dans $L(w, b, \alpha)$:

$$L(w, b, \alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

 \Rightarrow à maximiser selon $\alpha \in \mathbb{R}^n$.

SVM : problème dual

$$\alpha^* = \underset{\alpha \in \mathbb{R}^n}{\operatorname{argmax}} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

s.t.
$$\alpha_i \geq 0, \quad i = 1, \dots, n$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0.$$

⇒ un problème quadratique (QP)

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

SVM: 2 problèmes d'optimisation équivalents ³:

- ▶ problème primal : défini selon $(w,b) \in \mathbb{R}^p \times \mathbb{R}$
- ▶ problème dual : défini selon $\alpha \in \mathbb{R}^n$

liés par la relation
$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$
.

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs

Lii pratique

Conclusion

VM et énalisation

Python

SVM: 2 problèmes d'optimisation équivalents 3:

- ▶ problème primal : défini selon $(w,b) \in \mathbb{R}^p \times \mathbb{R}$
- ▶ problème dual : défini selon $\alpha \in \mathbb{R}^n$

liés par la relation
$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$
.

A l'optimum on a :

$$\boxed{\alpha_i^*(y_i(\langle w^*,x_i\rangle+b^*)-1)=0},\quad \forall i=1,\ldots,n.$$

 \Rightarrow deux cas de figure pour le point (x_i, y_i) :

- $y_i(\langle w^*, x_i \rangle + b^*) > 1 \Rightarrow \alpha_i^* = 0$
- $y_i(\langle w^*, x_i \rangle + b^*) = 1 \Rightarrow \alpha_i^* > 0$

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

VM et énalisation

Python

^{3.} équivalence car dualité forte du problème convexe

Vecteurs support

Outline

Apprentissage Statistique II

Sáparateurs

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

non-linéaires

En pratique

Conclusion

SVM et

ython

Références

Deux cas de figure pour (x_i, y_i) :

- ▶ $y_i(\langle w^*, x_i \rangle + b^*) > 1 \Rightarrow \alpha_i^* = 0$ ⇒ en dehors de la marge
- ▶ $y_i(\langle w^*, x_i \rangle + b^*) = 1 \Rightarrow \frac{\alpha_i^*}{i} > 0$ ⇒ sur la frontière de la marge

Vecteurs support

- \Rightarrow les points (x_i, y_i) tels que $\alpha_i^* > 0$
- \Rightarrow les seuls qui définissent l'hyperplan : $w = \sum_{i=1}^{n} \alpha_i y_i x_i$

En pratique

1. Calcul de w:

- lacktriangle résoudre le problème dual à partir de $\mathcal{T} = \big\{ (x_i, y_i) \big\}$
- $\bullet \text{ on obtient } \{\alpha_i^*\}_{i=1,\dots,n} \text{ et } \mathbf{w}^* = \sum_{i=1}^n \alpha_i^* y_i x_i$

2. Calcul de *b* :

- ▶ pour les vecteurs supports on a $y_i(\langle w^*, x_i \rangle + b^*) = 1$
- ▶ on en déduit $b^* = y_i \langle w^*, x_i \rangle$ pour un VS (x_i, y_i) .

On obtient la fonction de décision :

$$f(x) = \langle w^*, x \rangle + b^* = \sum_{i=1}^n \alpha_i^* y_i \langle x_i, x \rangle + b^*$$

 \Rightarrow prédiction +1/-1 à partir du signe de f(x).

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusio

SVM et

ython

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVM non-linéaires

En pratique

Conclusion

SVM et sénalisation

ython

Références

SVMs linéaires - cadre non-séparable

Cadre non séparable

 \Rightarrow impossible de satisfaire toutes les contraintes :

$$\begin{cases} \langle w, x_i \rangle + b > 0 & \text{si } y_i = 1, \\ \langle w, x_i \rangle + b < 0 & \text{si } y_i = -1. \end{cases}$$

⇒ pas de solution avec la procédure précédente

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

Conclusion

VM et énalisation

ython

SVM linéaire & non-séparable - formalisation

SVM linéaire pour données non séparables :

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires -

SVMs linéaires & non-séparable

Noyaux et SVMs

En pratique

Conclusion

SVM et énalisation

Python

1. relâcher les contraintes :

$$y_i(\langle w, x_i \rangle + b) \ge 1$$
 \Rightarrow $y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i$

- \Rightarrow la variable $\xi_i \ge 0$ (pour i = 1, ..., n):
 - quantifie l'erreur faite au point (x_i, y_i)
 - est une variable "ressort" ("slack" variable)

Outline

Apprentissage Statistique II

éparateurs néaires

SVMs linéaires -

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

ython

SVMs linéaires & non-séparable

SVM linéaire pour données non séparables :

1. relâcher les contraintes :

 $\left|y_i(\langle w, x_i \rangle + b) \ge 1\right| \Rightarrow \left|y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i\right|$

- \Rightarrow la variable $\xi_i \geq 0$ (pour i = 1, ..., n):
 - quantifie l'erreur faite au point (x_i, y_i)
 - est une variable "ressort" ("slack" variable)
- 2. inclure l'erreur globale $\sum \xi_i$ dans la fonction objective

SVM linéaire & non-séparable - formalisation

SVM linéaire pour données non séparables :

1. relâcher les contraintes :

$$y_i(\langle w, x_i \rangle + b) \ge 1$$
 \Rightarrow $y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i$

- \Rightarrow la variable $\xi_i \geq 0$ (pour i = 1, ..., n):
 - quantifie l'erreur faite au point (x_i, y_i)
 - est une variable "ressort" ("slack" variable)
- 2. inclure l'erreur globale $\sum_{i=1}^{n} \xi_i$ dans la fonction objective

⇒ "soft-margin" SVM

▶ formulation précédente = "hard-margin" SVM

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs

En pratique

Conclusi

SVM et

ython

SVM linéaire & non-séparable - formalisation

Soft-margin SVM: problème primal

$$(w^*, b^*) = \underset{\substack{w \in \mathbb{R}^p, b \in \mathbb{R}, \\ \xi \in \mathbb{R}^n}}{\operatorname{argmin}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$
s.t.
$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i, \quad i = 1, \dots, n,$$

 $\xi_i > 0.$ $i = 1, \dots, n.$

 $l \geq 0,$ $l = 1, \ldots, n$

(hyper) Paramètre C

- compromis marge / erreur d'apprentissage
- ▶ à fixer / optimiser par l'utilisateur
- ▶ importance critique

⇒ hyperparamètre de régularisation

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Camaluatan

SVM et

ython

Illustration - slack-variables

- \triangleright $\xi_i = 0$: point (x_i, y_i) bien classé en dehors de la marge
- ▶ $0 < \xi_i < 1$: point (x_i, y_i) bien classé mais dans la marge
- $\triangleright \xi_i > 1$: point (x_i, y_i) mal classé

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires -

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

c . .

VM et

ython

Illustration - slack-variables

- $\triangleright \xi_i = 0$: point (x_i, y_i) bien classé en dehors de la marge
- ▶ $0 < \xi_i < 1$: point (x_i, y_i) bien classé mais dans la marge
- $\xi_i > 1$: point (x_i, y_i) mal classé

$$\Rightarrow \sum_{i=1}^{n} \xi_i > \#$$
 d'erreurs de classification

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires -

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusio

SVM et

ython

Soft-margin SVM: problème primal

$$(w^*, b^*) = \underset{\substack{w \in \mathbb{R}^p, b \in \mathbb{R}, \\ \xi \in \mathbb{R}^n}}{\operatorname{argmin}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$
s.t.
$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i, \quad i = 1, \dots, n,$$

$$\xi_i \ge 0, \qquad i = 1, \dots, n.$$

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

c . .

SVM et

Python

Soft-margin SVM: problème primal

$$(w^*, b^*) = \underset{\substack{w \in \mathbb{R}^p, b \in \mathbb{R}, \\ \xi \in \mathbb{R}^n}}{\operatorname{argmin}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$
s.t.
$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i, \quad i = 1, \dots, n,$$

$$\xi_i \geq 0$$
,

$$i > 0$$
.

$$L(w, b, \xi, \alpha, \nu) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$
$$- \sum_{i=1}^n \alpha_i (y_i (\langle w, x_i \rangle + b) - 1 + \xi_i) - \sum_{i=1}^n \nu_i \xi_i,$$

avec $\alpha_i > 0$ et $\nu_i > 0$ pour i = 1, ..., n.

Outline

Apprentissage Statistique II

SVMs linéaires & non-séparable

 $i=1,\ldots,n$.

Même procédure pour résoudre le problème :

- ▶ minimiser $L(w, b, \xi, \alpha, \nu)$ par rapport à w, b et ξ .
- ▶ maximiser $L(w, b, \xi, \alpha, \nu)$ par rapport à α , ν .

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires -

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

VM et

ython

Même procédure pour résoudre le problème :

- ▶ minimiser $L(w, b, \xi, \alpha, \nu)$ par rapport à w, b et ξ .
- ▶ maximiser $L(w, b, \xi, \alpha, \nu)$ par rapport à α , ν .

Soft-margin SVM : problème dual

$$\alpha^* = \underset{\alpha \in \mathbb{R}^n}{\operatorname{argmax}} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$
s.t.
$$0 \le \alpha_i \le C, \quad i = 1, \dots, n$$

$$\sum_{i=1}^n \alpha_i y_i = 0.$$

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires -

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

Python

 $[\]Rightarrow$ soft-margin = re-définition des contraintes sur les α_i .

 $[\]Rightarrow$ pas d'impact sur l'algorithme d'optimisation.

Illustration - paramètre C

Illustration : impact du paramètre C

- \Rightarrow C faible :
 - marge importante
 - beaucoup de points dans la marge / mal classés
- \Rightarrow *C* élevé :
 - peu de points dans la marge / mal classés
 - marge faible

Outline

Apprentissage Statistique II

Séparateurs inépires

SVMs linéaires -

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

Illustration - paramètre C

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

ython

Références

Illustration : SVM soft-margin & données séparables

- ⇒ même si séparable, SVM "hard-margin" pas forcément la meilleure solution!
- \Rightarrow soft-margin = robustesse aux bruit / points aberrants
- \Rightarrow toujours optimiser le paramètre C

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs

non-linéaires

En pratique

Conclusion

SVM et

ython

Références

32/67

SVMs non-linéaires et noyaux

Motivation...

Modèle linéaire : parfois fondamentalement inadapté

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

Lii pratique

Conclusion

SVM et

Python

SVM non-linéaire

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

ython

Références

Comment faire?

- 1. considérer une transformation non linéaire $\phi: \mathcal{X} \to \mathcal{F}$
 - $\mathcal{X} = \text{input space (e.g., } \mathbb{R}^p)$
 - ▶ \mathcal{F} = feature space (e.g., \mathbb{R}^d , d >> p)
- 2. apprendre une SVM linéaire dans ${\cal F}$
- \Rightarrow le modèle obtenu par ϕ^{-1} est non-linéaire dans \mathcal{X} .

Exemple

Exemple: projection polynomiale

Pour
$$x = (x_1, x_2) \in \mathbb{R}^2 \Rightarrow \Phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$$

expansion polynomiale d'ordre 2

\Rightarrow un cercle / une ellipse dans $\mathcal{X}=$ un hyperplan dans \mathcal{F}

• e.g., equation du cercle : $x_1^2 + x_2^2 = R^2$

Apprentissage Statistique II

Séparateur inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

ython

cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

VM et

ython

Références

1. Résoudre le problème dual dans ${\mathcal F}$:

$$\alpha^* = \underset{\alpha \in \mathbb{R}^n}{\operatorname{argmax}} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle \Phi(x_i), \Phi(x_j) \rangle$$
s.t.
$$0 \le \alpha_i \le C, \quad i = 1, \dots, n$$

$$\sum_{i=1}^n \alpha_i y_i = 0.$$

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

Références

1. Résoudre le problème dual dans \mathcal{F} :

$$\alpha^* = \underset{\alpha \in \mathbb{R}^n}{\operatorname{argmax}} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle \Phi(x_i), \Phi(x_j) \rangle$$
s.t.
$$0 \le \alpha_i \le C, \quad i = 1, \dots, n$$

$$\sum_{i=1}^n \alpha_i y_i = 0.$$

2. La fonction de décision est alors donnée par (le signe de) :

$$f(x) = \sum_{i=1}^{n} \alpha_i^* y_i \langle \Phi(x_i), \Phi(x) \rangle + b^*$$

L'astuce noyau - "the kernel trick"

Remarque clé :

les données n'apparaissent que via des opérations de produit-scalaire $\langle \Phi(.), \Phi(.) \rangle$

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

. . .

VM et

ython

L'astuce noyau - "the kernel trick"

Remarque clé:

les données n'apparaissent que via des opérations de produit-scalaire $\langle \Phi(.), \Phi(.) \rangle$

⇒ le kernel-trick :

- ne pas calculer Φ explicitement
- ▶ calculer directement le noyau $K(.,.) = \langle \Phi(.), \Phi(.) \rangle$

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

_

Canaluaian

SVM et

Python

L'astuce noyau - "the kernel trick"

Remarque clé:

les données n'apparaissent que via des opérations de produit-scalaire $\langle \Phi(.), \Phi(.) \rangle$

⇒ le kernel-trick :

- ne pas calculer Φ explicitement
- ▶ calculer directement le noyau $K(.,.) = \langle \Phi(.), \Phi(.) \rangle$

Conséquences:

- parfois plus simple / efficace de calculer le noyau
- ▶ permet de considérer des projections non-explicites
- extension aux données structurées

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires : cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

ython

SVM "kernelisée" : implémentation

1. Résoudre le problème dual dans ${\mathcal F}$:

$$\alpha^* = \underset{\alpha \in \mathbb{R}^n}{\operatorname{argmax}} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$
s.t.
$$0 \le \alpha_i \le C, \quad i = 1, \dots, n$$

$$\sum_{i=1}^n \alpha_i y_i = 0.$$

2. La fonction de décision est alors donnée par (le signe de) :

$$f(x) = \sum_{i=1}^{n} \alpha_i^* y_i \mathcal{K}(x_i, x) + b^*$$

 \Rightarrow le produit scalaire original $\langle x_i, x_j \rangle$ est le noyau linéaire

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

zii pratique

SVM et

- 1

Noyau polynomial

Revenons à la projection polynomiale d'ordre 2 :

pour
$$x = (x_1, x_2) \in \mathbb{R}^2 \Rightarrow \Phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$$
.

Outline

Apprentissage Statistique II

Séparateurs inéaires

cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

VM et

ython

Noyau polynomial

Revenons à la projection polynomiale d'ordre 2 :

pour
$$x = (x_1, x_2) \in \mathbb{R}^2 \Rightarrow \Phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$$
.

Produit scalaire :
$$\langle \Phi(x), \Phi(x') \rangle = x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2$$

$$= (x_1 x_1' + x_2 x_2')^2$$

$$= \langle x, x' \rangle^2$$

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

Noyau polynomial

Revenons à la projection polynomiale d'ordre 2 :

pour
$$x = (x_1, x_2) \in \mathbb{R}^2 \Rightarrow \Phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$$
.

Produit scalaire :
$$\langle \Phi(x), \Phi(x') \rangle = x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2$$

$$= (x_1 x_1' + x_2 x_2')^2$$

$$= \langle x, x' \rangle^2$$

$$\Rightarrow$$
 Noyau polynomial : $\left| K(x,x') = \left(\gamma \langle x,x' \rangle + r \right)^d \right|$

- plus simple et efficace à calculer
- ► (gain exponentiel quand *p* et/ou *d* augmentent)

Outline

Apprentissage Statistique II

séparateurs inéaires

cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs

non-linéaires

Conclusion

SVM et

ython

Fonctions noyaux

A chaque fonction de projection $\Phi:\mathcal{X}\to\mathcal{F}$ correspond une fonction noyau $\mathcal{K}:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$:

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle$$

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

VM et

ython

Fonctions noyaux

A chaque fonction de projection $\Phi: \mathcal{X} \to \mathcal{F}$ correspond une fonction noyau $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$:

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle$$

Inversement : à chaque fonction symmétrique et définie positive $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ correspond une projection $\phi: \mathcal{X} \to \mathcal{F}$:

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle$$

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

c . .

SVM et

Python

Fonctions noyaux

A chaque fonction de projection $\Phi: \mathcal{X} \to \mathcal{F}$ correspond une fonction noyau $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$:

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle$$

Inversement : à chaque fonction symmétrique et définie positive $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ correspond une projection $\phi: \mathcal{X} \to \mathcal{F}$:

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle$$

⇒ toute fonction définie positive peut être utilisée comme noyau pour les SVMs :

- ightharpoonup sans forcément connaître explicitement Φ (ni \mathcal{F})
- sans forcément savoir la calculer

Outline

Apprentissage Statistique II

éparateurs néaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

ython

Noyaux définis positifs

Définition :

▶ pour tout $n \in \mathbb{N}$, $x_1, ..., x_n \in \mathcal{X}$ and $\alpha_1, ..., \alpha_n \in \mathbb{R}$:

$$\sum_{i}\sum_{j}\alpha_{i}\alpha_{j}K(x_{i},x_{j})\geq0$$

▶ pour tout $n \in \mathbb{N}$, and $x_1, ..., x_n \in \mathcal{X}$ la matrice de Gram :

$$\mathbf{G}[i,j] = K(x_i,x_j)$$

est définie positive (toutes ses valeurs propres sont ≥ 0)

Outline

Apprentissage Statistique II

éparateurs néaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

ython

Noyaux définis positifs

Définition :

▶ pour tout $n \in \mathbb{N}$, $x_1, ..., x_n \in \mathcal{X}$ and $\alpha_1, ..., \alpha_n \in \mathbb{R}$:

$$\sum_{i}\sum_{j}\alpha_{i}\alpha_{j}K(x_{i},x_{j})\geq0$$

▶ pour tout $n \in \mathbb{N}$, and $x_1, ..., x_n \in \mathcal{X}$ la matrice de Gram :

$$\mathbf{G}[i,j] = K(x_i,x_j)$$

est définie positive (toutes ses valeurs propres sont ≥ 0)

Illustration : le produit scalaire est défini-positif :

$$\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \langle \phi(x_{i}), \phi(x_{j}) \rangle = \langle \sum_{i} \alpha_{i} \phi(x_{i}), \sum_{j} \alpha_{j} \phi(x_{j}) \rangle$$
$$= \left| \left| \sum_{i} \alpha_{i} \phi(x_{i}) \right| \right|^{2} \geq 0.$$

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires as séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

SVM et

ython

léférences

Fonctions noyaux & mesures de similarité

Un noyau peut être vu comme une mesure de similarité

▶ analogie avec le produit-scalaire / la corrélation

 \Rightarrow il est parfois plus naturel de raisonner en terme de similarité qu'en terme de représentation en descripteurs.

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires as séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Camalinatan

VM et

Python

Fonctions novaux & mesures de similarité

Un noyau peut être vu comme une mesure de similarité

- ▶ analogie avec le produit-scalaire / la corrélation
- \Rightarrow il est parfois plus naturel de raisonner en terme de similarité qu'en terme de représentation en descripteurs.

Exemple: le noyau RBF (Radial Basis Function)

$$K(x, x') = \exp(-\gamma ||x - x'||^2)$$

est un noyau valide entre vecteurs x et x'.

- ▶ i.e., il est symmétrique et défini-positif
- ⇒ la dimension du feature space correspondant est infinie
- \Rightarrow on sait expliciter Φ mais pas le calculer

Outline

Apprentissage Statistique II

Séparateurs linéaires

VMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

Lii piatiqu

Conclusion

VM et énalisation

ython

- polynomial : linéaire après expansion polynomiale
- ▶ RBF : une Gaussienne sur chaque point d'apprentissage :

$$f(x) = \sum_{i=1}^{n} \alpha_{i} y_{i} K(x_{i}, x) + b = \sum_{i=1}^{n} \alpha_{i} y_{i} \exp(-\gamma ||x_{i} - x||^{2}) + b$$

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

SVM et

. 1

ython

Illustration - noyau RBF : influence de γ

Largeur de bande $\gamma \sim 1/\sigma^2$ pour une gaussienne

- γ élevé : modèle local / γ faible : modèle global

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

Outline

Apprentissage Statistique II

Séparateurs linéaires

cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

Python

léférences

45/67

SVMs en pratique

SVM en pratique

SVM "stricto sensu" : algorithme de classification binaire

Quelques extensions / adaptations :

- régression
- classification multiclasse
- ▶ jeux de données déséquilibrés
- critère de confiance dans la prédiction
- mise en oeuvre sur de gands jeux de données

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

Python

SVM pour la régression

Extension aux problèmes de régression :

1. remplacer les contraintes :

$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i \implies [y_i - (\langle w, x_i \rangle + b)] \le \epsilon + \xi_i$$

2. garder le même algorithme d'optimisation :

$$(w^*,b^*) = \operatorname*{argmin}_{w \in \mathbb{R}^p, b \in \mathbb{R}, \ \xi \in \mathbb{R}^n} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \text{ sous les contraintes}$$

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Camaluatan

VM et énalisation

ython

Références

 $\Rightarrow \epsilon$ -insensitive loss function :

SVM pour la régression

Ilustration : exemple tiré de Géron (2017)

- avec noyaux : méthode de régression non-linéaire
 - ► ici, noyau polynomial
- ightharpoonup deux paramètres à optimiser : ϵ et C
 - ▶ (plus ceux du noyau)

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

Python

SVM pour la classification multiclasse

Classification multi-classe : $y_i \in \{1, ..., K\}$

En général : par combinaison de classifieurs binaires

- stratégie One-vs-All ou One-vs-Rest
 - construire K classifieurs
 - classifieur #k : classe k contre tout le reste
 - prédiction : classe donnant le score $f_k(x)$ le plus élevé
- stratégie One-vs-One
 - construire K(K-1)/2 classifieurs
 - chaque classifieur compare deux classes
 - prédiction : classe obtenant le plus de votes
 - \blacktriangleright un nombre entre 0 et K-1

Remarque: autre statégies "nativement" multiclasses

proche du formalisme des SVMs "structurées"

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs

En pratique

Conclusion

VM et

ython

SVM & jeux de données déséquilibrés

Fonction objective des SVMs :
$$\frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i$$

- "compte" globalement le nombre d'erreurs
- sensible au déséquilibre des classes

Outline

Apprentissage Statistique II

En pratique

SVM & jeux de données déséquilibrés

Fonction objective des SVMs :
$$\frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i$$

- "compte" globalement le nombre d'erreurs
- sensible au déséquilibre des classes

SVM à coûts asymétriques :

$$\boxed{\frac{1}{2}||w||^2 + C_+ \sum_{i:y_i = +1} \xi_i + C_- \sum_{j:y_j = -1} \xi_j}$$

- ► C₊ : coût des erreurs de la classe +1
- C_: coût des erreurs de la classe -1

⇒ ✓ le coût de la classe minoritaire compense le déséquilibre

Outline

Apprentissage Statistique II

En pratique

SVM & critère de confiance dans la prédiction

La fonction
$$f(x) = \langle w, x \rangle + b \propto \text{la distance à l'hyperplan}$$

Elle permet notamment :

- 1. de définir une courbe ROC :
 - seuil de décision par défaut = 0 (le signe de f(x))
 - ▶ ajuster le seuil \leftrightarrow modifier $b \leftrightarrow$ translater l'hyperplan
- 2. de définir un critère de confiance :
 - ▶ valeur élevée : loin de la frontière ⇒ bonne confiance
 - ▶ valeur faible : proche de la frontière ⇒ confiance faible
- \Rightarrow le score f(x) peut être transformé en critère probabiliste
 - ▶ typiquement : par une fonction sigmoïdale
 - paramètres à optimiser sur le jeu d'apprentissage

Outline

Apprentissage Statistique II

éparateurs néaires

SVMs linéaires as séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

ython

SVM pour les grands jeux de données

SVM : 2 problèmes d'optimisation équivalents

- ▶ problème primal : défini selon $(w, b) \in \mathbb{R}^p \times \mathbb{R}$
- **problème dual** : défini selon $\alpha \in \mathbb{R}^n$

liés par la relation $w = \sum_{i=1}^{n} \alpha_i y_i x_i$.

Outline

Apprentissage Statistique II

Séparateur inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs

En pratique

Conclusion

VM et

ython

SVM pour les grands jeux de données

SVM: 2 problèmes d'optimisation équivalents

- ▶ problème primal : défini selon $(w, b) \in \mathbb{R}^p \times \mathbb{R}$
- **problème dual** : défini selon $\alpha \in \mathbb{R}^n$

liés par la relation $w = \sum_{i=1}^{n} \alpha_i y_i x_i$.

Pour utiliser des noyaux : travailler dans le dual

- ▶ librairies "dual" classiques : LibSVM, SVMlight
- ⇒ coût calculatoire : limitant quand beaucoup d'instances

Outline

Apprentissage Statistique II

Séparateur inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

VM et

ython

SVM pour les grands jeux de données

SVM : 2 problèmes d'optimisation équivalents

- ▶ problème primal : défini selon $(w, b) \in \mathbb{R}^p \times \mathbb{R}$
- **problème dual** : défini selon $\alpha \in \mathbb{R}^n$

liés par la relation $w = \sum_{i=1}^{n} \alpha_i y_i x_i$.

Pour utiliser des noyaux : travailler dans le dual

- ▶ librairies "dual" classiques : LibSVM, SVMlight
- ⇒ coût calculatoire : limitant quand beaucoup d'instances

Pour un modèle linéaire : travailler dans le primal ou le dual

- ▶ choix dicté par min(n, p)
- ▶ librairie "primal" classique : LibLinear
- \Rightarrow souvent la seule alternative pour les gros jeux de données
- ⇒ linéaire : souvent suffisant quand beaucoup de features

Outline

Apprentissage Statistique II

Séparateur inéaires

VMs linéaires as séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et enalisation

ython

Outline

Apprentissage Statistique II

séparateurs inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVM non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

Références

Conclusion

SVM: un algorithme incontournable

- solides bases théoriques
- très performant sur de nombreux problèmes

Outline

Apprentissage Statistique II

Séparateur inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

non-linéaires

En pratique

Conclusion

VM et

Python

SVM: un algorithme incontournable

- solides bases théoriques
- très performant sur de nombreux problèmes

Différentes versions :

- hard-margin : données strictement séparables/ées
- soft-margin : tolère des erreurs de classification
- ▶ non-linéaire avec l'utilisation de noyaux

Outline

Apprentissage Statistique II

Séparateur inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

non-linéaires

En pratique

Conclusion

SVM et

Python

SVM: un algorithme incontournable

- solides bases théoriques
- très performant sur de nombreux problèmes

Différentes versions :

- hard-margin : données strictement séparables/ées
- soft-margin : tolère des erreurs de classification
- non-linéaire avec l'utilisation de noyaux

Soft-margin SVM:

- ▶ paramètre C : paramètre clé (régularisation)
- à optimiser par validation croisée
- considérer une grille logarithmique
 - e.g., 10^{-3} , 10^{-2} , ..., 10^{2} , 10^{3}

Outline

Apprentissage Statistique II

éparateur néaires

as séparable

SVMs linéaires & ion-séparable

non-linéaires

En pratique

Conclusion

VM et

ython

Fonctions noyaux:

- extension non-linéaire des SVMs
- "kernel trick" : projection implicite
- noyau : fonction symmetrique et définie positive
- exemples incontournables : RBF et polynomial
- extensions aux données structurées

Outline

Apprentissage Statistique II

éparateurs néaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs

E- -----

--- |-----

Conclusion

VM et

vthon

Outline

Apprentissage Statistique II

éparateurs néaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVI non-linéaires

En protique

--- |-----|---

Conclusion

SVM et

vthon

Références

Fonctions noyaux:

- extension non-linéaire des SVMs
- "kernel trick" : projection implicite
- noyau : fonction symmetrique et définie positive
- exemples incontournables : RBF et polynomial
- extensions aux données structurées

En pratique:

- extension pour la régression
- adaptation au cadre multiclasse (OVR,OVO)
- implémentation primale pour gros volumes de données
 - restriction au cadre linéaire

Outline

Apprentissage Statistique II

Séparateurs linéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

Références

SVMs & risque empirique pénalisé

SVM et pénalisation

SVMs : une formulation de risque empirique pénalisé :

$$(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \sum_{i=1}^n h(y_i, f(x_i)) + \lambda ||w||^2$$

où
$$f(x) = \langle w, x \rangle + b$$
.

- risque empirique : erreur faite sur le jeu d'apprentissage
 - selon la fonction de coût h(y, f(x))
- penalisation : pour contrôler le sur-apprentissage
 - ▶ risque empirique seul = risque de sur-apprentissage
 - e.g., haute dimension ou classes de fonctions complexes
 - pénalisation = régularisation
 - pour les SVMs : liée directement à la notion de marge

Fonctions de perte classiques

Régression:

▶ perte quadratique : $L(y, f(x)) = (y - f(x))^2$

Classification:

▶ perte hinge : $L(y, f(x)) = (1 - yf(x))_+$

▶ perte logistique : $L(y, f(x)) = \log (1 + e^{-yf(x)})$

(la quantité yf(x) est parfois appelée la marge de (x, y))

Outline

Apprentissage Statistique II

Séparateurs linéaires

> SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

Fonctions de pénalisation incontournables

Pénalité Ridge (ou
$$L_2$$
) : $\left|\Omega_{\mathsf{Ridge}}(w) = \left|\left|w\right|\right|_2^2 = \sum_{j=1}^p w_j^2\right|$

Pénalité Lasso (ou
$$L_1$$
): $\left|\Omega_{\mathsf{Lasso}}(w) = \left|\left|w\right|\right|_1 = \sum_{j=1}^p \left|w_j\right|$

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

Lii pratique

Conclusion

SVM et pénalisation

ython

Fonctions de pénalisation incontournables

Pénalité Ridge (ou
$$L_2$$
) : $\left|\Omega_{\mathsf{Ridge}}(w) = \left|\left|w\right|\right|_2^2 = \sum_{j=1}^p w_j^2\right|$

Pénalité Lasso (ou
$$L_1$$
) : $\left|\Omega_{\mathsf{Lasso}}(w) = \left|\left|w\right|\right|_1 = \sum_{j=1}^p |w_j|$

Même effet : pénaliser les valeur élevées \Rightarrow régularisation

▶ intuition : pente élevée → y varie + vite quand x varie mais avec une géométrie différente :

- ▶ lasso : des coefficients w_j exactement = 0
- ► ridge : coefficients w_j petits mais jamais nuls

⇒ Lasso = méthode parcimonieuse, sélection de variables

Outline

Apprentissage Statistique II

Séparateurs inéaires

VMs linéaires

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

Pertes & régularisation

Outline

Apprentissage Statistique II

SVM et pénalisation

Combinaisons pertes / pénalités :

	Quadratique	Hinge	Logistique
Ridge	ridge regression	SVM	ridge logistic-regression
Lasso	Lasso	L1-SVM	L1 logistic-regression

⇒ à suivre dans le cours statistique en haute dimension!

Outline

Apprentissage Statistique II

Séparateurs linéaires

cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et

Python

Références

61/67

Mise en oeuvre Scikit-Learn

Classes Scikit-Learn

Outline

Apprentissage Statistique II

Séparateurs inéaires

SVMs linéaires

SVMs linéaires & on-séparable

Noyaux et SVM:

n pratique

Conclusion

Lonclusion

SVM et pénalisation

Python

Références

62/67

4 classes du module svm:

- SVC et SVR : classification et régression dans le dual
- ► LinearSVC et LinearSVC : idem dans le primal

Implémentation duale : basée sur LibSVM

► https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Implémentation primale : basée sur LibLinear

► https://www.csie.ntu.edu.tw/~cjlin/liblinear/

Autres classes / variantes non-couvertes dans ce cours :

- ▶ "nu"-SVC/SVR : autre manière de paramétrer les SVMs
- ► SVM "One Class"

Classe SVC (1/2)

Paramètres principaux :

- **)**
- kernel : 'linear', 'poly', 'rbf'
 - ▶ + paramètres associés : gamma, degree, coef0
 - également 'precomputed'
- lacktriangle probability (booléen) : transformation score ightarrow proba
- class_weight : coûts asymétriques
 - valeurs à utiliser ou 'balanced'
- decision_function_shape : 'ovo', 'ovr' (mutliclasse)

Outline

Apprentissage Statistique II

Séparateur: inéaires

SVMs linéaires - cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs

En protique

Conclusion

SVM et

Python

Classe SVC (1/2)

Paramètres principaux :

- **>** (
- kernel : 'linear', 'poly', 'rbf'
 - ▶ + paramètres associés : gamma, degree, coef0
 - également 'precomputed'
- lacktriangle probability (booléen) : transformation score ightarrow proba
- class_weight : coûts asymétriques
 - valeurs à utiliser ou 'balanced'
- decision_function_shape : 'ovo', 'ovr' (mutliclasse)

Méthodes principales :

- ▶ fit
- ▶ predict : prédiction = $sign(\langle w, x \rangle + b)$
- ▶ decision_function : $\langle w, x \rangle + b$
- predict_proba : probabilité associée à la prédiction

Outline

Apprentissage Statistique II

éparateurs néaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

VM et énalisation

Python

References

Classe SVC (2/2)

Attributs principaux (calculés par l'appel à fit) :

- support_: indices des vecteurs support
- support_vectors_: vecteurs support
- dual_coef_: coefficients α; (restreints aux VS)
- coef_: vecteur w (si kernel = 'linear')
- ▶ intercept_ : coefficient b.

Outline

Apprentissage Statistique II

éparateurs néaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVMs

En pratique

Conclusion

VM et

Python

Classe SVC (2/2)

Attributs principaux (calculés par l'appel à fit) :

- support_: indices des vecteurs support
- support_vectors_: vecteurs support
- ▶ dual_coef_: coefficients α; (restreints aux VS)
- coef_: vecteur w (si kernel = 'linear')
- ▶ intercept_ : coefficient b.

Classe SVR: fonctionnement similaire

- ► Paramètre supplémentaire : epsilon
 - ightharpoonup ϵ -insensitive loss-function
- Méthodes : essentiellement fit et predict.
- Attributs : les mêmes.

Outline

Apprentissage Statistique II

Séparateur inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

Noyaux et SVM non-linéaires

En pratique

Conclusion

VM et énalisation

Python

Classes LinearSVC et LinearSVR

Paramètres / méthode / attributs similaires à SVC.

Néanmoins :

- pas de paramètres liés aux noyaux (que linéaire)
- ▶ + de fléxibilité pour contrôler perte & régularisation
 - penalty: 'l1' ou 'l2'
 - ► loss: 'hinge' ou 'squared_hinge'
- paramètre dual (booléen) : implémentation duale?
 - attention, True par défaut!
- lacktriangledown option decision_function_shape ightarrow multiclass
 - 'ovr' ou 'crammer_singer'
- plus d'attributs liés au mode dual (coefficients α_i et VS)
- ▶ plus d'option probability

Classe LinearSVR: idem (avec option epsilon)

Outline

Apprentissage Statistique II

Séparateurs linéaires

> VMs linéaires as séparable

VMs linéaires & on-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

Définition / paramétrisation des noyaux

Outline

Apprentissage Statistique II

Séparateurs inéaires

cas séparable

non-séparable

Noyaux et SVMs non-linéaires

En pratique

Conclusion

SVM et pénalisation

Python

Références

Noyaux disponibles pour SVC/SVR (option kernel):

- ▶ linear : $K(x,x') = \langle x,x' \rangle$
- ▶ poly : $K(x,x') = (\gamma \langle x,x' \rangle + r)^d$
- rbf : $K(x,x') = \exp(-\gamma||x-x'||^2)$
- sigmoid : $K(x,x') = \tanh(\gamma\langle x,x'\rangle + r)$
- $\Rightarrow \gamma = \text{argument gamma (par défaut} = 1/p)$
- $\Rightarrow r = \text{argument coef0} \text{ (par défaut } = 0\text{)}$
- \Rightarrow d = argument degree (par défaut = 3)

Par défaut : kernel = 'rbf'

Références

A. Géron. Hands-On Machine Learning with Scikit-Learn & TensorFlow. O'Reilly, 2017.

Outline

Apprentissage Statistique II

Séparateur inéaires

SVMs linéaires cas séparable

SVMs linéaires & non-séparable

non-linéaires

En pratique

SVM et

VM et énalisation

ython