Substrate	pKa H ₂ O (DMSO)	Substrate pKa	H ₂ O (DMSO)	Substrate	pKa H ₂ O (DMSO)	Substrate p	Ka H ₂ O (DMSO)
INORGA	ANIC ACIDS	CARBOXYLIC	ACIDS	ALC	OHOLS	PROTONAT	ED SPECIES
H ₂ O H ₃ O ⁺	15.7 (32) -1.7	х он		HOH MeOH	15.7 (31.2) 15.5 (27.9)	O II N [†] OH	-12.4
H ₂ S HBr	7.00 -9.00 (0.9)	$X = CH_3$ CH_2NO_2 CH_2F	4.76 (12.3) 1.68 2.66	<i>i</i> -PrOH <i>t</i> -BuOH	16.5 (29.3) 17.0 (29.4)	†OH Ph OH	-7.8
HCI	-8.0 (1.8)	CH₂CI CH₂Br	2.86 2.86	c-hex₃COH	24.0	[†] OH CH₃	-6.2
HF HOCI	3.17 (15) 7.5	CH ₂ I CHCl ₂	3.12 1.29	CF ₃ CH ₂ OH (CF ₃) ₂ CHOH C ₆ H ₅ OH	12.5 (23.5) 9.3 (18.2) 9.95 (18.0)	H I .O.*	-6.5
HCIO ₄ HCN	-10 9.4 (12.9)	CCl ₃ CF ₃ H	0.65 -0.25 3.77	m-O ₂ NC ₆ H ₄ C p-O ₂ NC ₆ H ₄ O	DH 8.4	Ph Me H Ne Me Me	-3.8
HN ₃ HSCN	4.72 (7.9) 4.00	HO C ₆ H ₅	3.6, 10.3 4.2 (11.1)	p-OMeC ₆ H ₄ OI 2-napthol	H 10.2 (19.1) (17.1)	о+-н Н	-2.05
H ₂ SO ₃	1.9, 7.21	o-O₂NC ₆ H₄ <i>m</i> -O₂NC ₆ H₄	2.17 2.45	OXIMES & HYD	DROXAMIC ACIDS	Me H	-2.2
H ₂ SO ₄	-3.0, 1.99	<i>p</i> -O ₂ NC ₆ H ₄ <i>o</i> -CIC ₆ H ₄	3.44 2.94	N OH	11.3 (20.1)	II S Me	-1.8
H ₃ PO₄ HNO ₃	2.12, 7.21, 12.32 -1.3	<i>m</i> -ClC ₆ H₄ <i>p</i> -ClC ₆ H₄	3.83 3.99	Ph OPh OH	8.88 (13.7) (NH)	N+-OH	0.79 (+1.63)
HNO_2 H_2CrO_4	3.29 -0.98, 6.50	<i>o</i> -(СН ₃) ₃ N ⁺ С ₆ Н <i>p</i> -(СН ₃) ₃ N ⁺ С ₆ Н		O H Ph N OH	(18.5)	Me ⊕ I Me—N—OH I Me	(+5.55)
CH ₃ SO ₃ H	-2.6 (1.6)	<i>p</i> -OMeC ₆ H₄ ○	4.47	Me PERC	DXIDES	-	ULFONIC ACIDS
CF₃SO₃H NH₄Cl	-14 (0.3) 9.24	R= H	4.25	-	11.5	O O Me S OH	-2.6
B(OH)₃ HOOH	9.23 11.6	trans-CO ₂ H cis-CO ₂ H	3.02, 4.38 1.92, 6.23	MeOOH CH ₃ CO ₃ H	8.2	O II S OH	2.1

*Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

For a comprehensive compilation of Bordwell pKa data see: http://www.chem.wisc.edu/areas/reich/pkatable/index.htm

D.H. Ripin, D.A. Evans pKa's of Nitrogen Acids Chem 206

*Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

For a comprehensive compilation of Bordwell pKa data see: http://www.chem.wisc.edu/areas/reich/pkatable/index.htm pKa Table.2 11/4/05 1:43 PM

Substrate	pKa H ₂ O	(DMSO)	Substrate	рКа	H ₂ O (DMSO)	Substrate	рКа	H ₂ O (DMSO)	Substrate	рКа	H ₂ O	(DMSO)
HYDROCARBONS			ESTERS		KETONES			.]				
(Me) ₃ CH	53		0		24.5 (30.3)	0					Me		
$(Me)_2CH_2$	51		t-BuO O Me			Me			(26.5)	x 🔨			
CH ₂ =CH ₂	50		t-BuO	Ph	(23.6)	X= H Ph			(19.8)	X= H			(24.7)
CH ₄	48	(56)			(22.2)	SPh COCH ₃		9	(18.7) (13.3)	OMe NMe ₂			(25.7) (27.5)
\triangle	46		EtO N	+Me ₃	(20.0)	SO ₂ Ph		9	(12.5)	Br ¯			(23.8) (22.0)
CH ₂ =CHCH ₃	43	(44)		\	11 (14.2)	EtEt		19-20	(27.1)	CN O			(22.0)
PhH	43		EtO O	`Me D	((28.3)				
PhCH ₃	41	(43)	MeO	OMe	13 (15.7)	<i>i</i> -Pr O <i>i</i> -Pr				n			
Ph ₂ CH ₂	33.5	(32.2))	2	(22.2)	t-Bu O Me			(27.7)	n= 4			(25.1)
Ph ₃ CH	31.5	(30.6)	MeO	Ì	(20.9)	DI C Du			(26.3)	5 6			(25.8) (26.4)
HCCH	24		g ^S ~	/	[00 0 (TUE)]	Ph ∕ <i>i-</i> Pr O				7			(27.7)
PhCCH	23	(28.8)	LiO Pr	า	[30.2 (THF)]	Ph X				8			(27.4)
XC ₆ H ₄ CH ₃				AMIDE	S	X= H			(24.7)	1			(00.4)
X = p-CN		(30.8)	<u> </u>		(26.6)	CH₃ Ph			(24.4) (17.7)				(28.1)
p-NO ₂		(20.4)	Me ₂ N	.Ph	(20.0)	COCH ₃			(14.2)	٨			
<i>p</i> -COPh		(26.9)	' 0	.SPh	(25.9)	COPh CN			(13.3) (10.2)				(29.0)
Me	<i>М</i> е		Me ₂ N O	.01 11		F			(21.6)	٨			
Me		(26.1)		N+Me ₃	(24.9)	OMe			(22.85)				(25.5)
Me Me			Et ₂ N O			OPh SPh			(21.1) (16.9)	V V			
	20	(20.1)	N_{N}	_CN	(17.2)	SePh			(18.6)	Λ .			
~ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `				0	(10.0)	NPh ₂			(20.3)				(32.4)
	15	(18.0)	Me ₂ N	Ŭ Me	(18.2)	N ⁺ Me ₃ NO ₂			(14.6) (7.7)	Me			. ,
H_2	~36				(25.7)	SO ₂ Ph			(11.4)	0			
			Me ₂ N Me										

^{*}Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

For a comprehensive compilation of Bordwell pKa data see: http://www.chem.wisc.edu/areas/reich/pkatable/index.htm

Substrate	рКа	H ₂ O	(DMSO)	Substrate	рКа	H ₂ O	(DMSO)	Substrate	рКа	H ₂ O	(DMSO)	Substrate	рКа	H ₂ O	(DMSO)
N	NITRILE	ES			SULFID	ES		SU	LFOXI	DES		SI	JLFON	IES	
X= H CH ₃ Ph COPh CONR ₂ CO ₂ Et CN OPh N+Me ₃ SPh SO ₂ Ph		11	(31.3) (32.5) (21.9) (10.2) (17.1) (13.1) (11.1) (28.1) (20.6) (20.8) (12.0)	PhSCH ₂ X X= Ph CN COC COP NO ₂ SPh SO ₂ C POPI MeSCH ₂ SC PhSCHPh ₂ (PhS) ₃ CH	h CF ₃ 1 ₂ D ₂ Ph		(30.8) (20.8) (18.7) (16.9) (11.8) (30.8) (20.5) (11.0) (24.9) (23.4) (26.7) (22.8)		LFONI	IUM	(35.1) (29.0) (29.0) (33) (27.2) (18.2) (24.5)	X X X X X X = H CH ₃ t-Bu Ph CH=CH CCH CCPh COPh COMe OPh N+Me ₃ CN			(29.0) (31.0) (31.2) (23.4) (22.5) (20.2) (22.1) (17.8) (11.4) (12.5) (27.9) (19.4) (12.0)
HETER	O-ARC	MATI		(PrS) ₃ CH			(31.3)	Me ₃ S+=O Me I			(18.2) (16.3)	NO ₂ SMe SPh			(7.1) (23.5) (20.5)
Ph			(28.2)	SH SPACE	Ph		(30.5)	SULFIMIDES NTs	S & SU	ILFOXII		SO ₂ Ph PPh ₂ O O Ph S CHPh ₂			(12.2) (20.2) (22.3)
Ph			(30.1)	$\left\langle \begin{array}{c} s \\ s \end{array} \right\rangle = x$				II S R R= Me			(27.6) (30.7)	O O Me			(31.1)
Ph			(26.7)	X= Ph CO ₂ N CN	Лe		(30.7) (20.8) (19.1)	i-Pr O NTs V// Ph Me			(30.7)	O O CF ₃ S Me			(18.8)
Ph			(25.2)	RSCH ₂ CN R= Me			(24.3) (24.0)	O NMe S Me			(33)	CF ₃			(21.8)
Ó· Ph			(30.2)	Et <i>i-</i> Pr <i>t</i> -Bu			(23.6) (22.9)	O N+Me ₂ S Me O NTs			(14.4)	CF ₃ S			(26.6)
Ph			(30.0)	PhSCH=Cl BuSH PhSH	HCH ₂ SF	Ph 10-1 ≈7	(26.3) 1 (17.0) (10.3)	Ph S CH₂CI			(20.7)	Et ^{/S} Et (PhSO ₂) ₂ CF	l ₂ Me		(14.3)

*Values <0 for H_2O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

Substrate pKa	H ₂ O (DMS	O) Substrate pKa	H ₂ O (DMSO)	Substrate pKa	H ₂ O	(DMSO)	REFERENCES		
ETHERS		РНОЅРН	ONIUM	NITRO			DMSO:		
CH ₃ OPh MeOCH ₂ SO ₂ Ph PhOCH ₂ SO ₂ Ph PhOCH ₂ CN MeO Ph	(49) (30.7 (27.9 (28.1 (22.8	Et ₃ P ⁺ H Ph ₃ P ⁺ CH ₃ Ph ₃ P ⁺ <i>i</i> -Pr	-14 2.7 9.1 (22.4) (21.2) (6.2) (7.0)	RNO ₂ R= CH ₃ CH ₂ Me CHMe ₂ CH ₂ Ph CH ₂ Bn CH ₂ SPh CH ₂ SO ₂ Ph	≈10	(17.2) (16.7) (16.9) (12.2) (16.2) (11.8) (7.1)	JACS <u>97</u> , 7007 (1975) JACS <u>97</u> , 7160 (1975) JACS <u>97</u> , 442 (1975) JACS <u>105</u> , 6188 (1983) JOC <u>41</u> , 1883 (1976) JOC <u>41</u> , 1885 (1976) JOC <u>41</u> , 2786 (1976) JOC <u>41</u> , 2508 (1976) JOC <u>42</u> , 1817 (1977) JOC <u>42</u> , 321 (1977)		
SELENIDI	SELENIDES		PHOSPONATES & PHOSPHINE OXIDES			(7.7)	JOC <u>42,</u> 326 (1977) JOC <u>43,</u> 3113 (1978) JOC <u>43,</u> 3095 (1978)		
PhSe	(18.6	O II (EtO) ₂ P X		O ₂ N			JOC <u>43</u> , 1764 (1978) JOC <u>45</u> , 3325 (1980) JOC <u>45</u> , 3305 (1980)		
PhSeCHPh ₂	(27.5	X= Ph	(27.6)	n= 3		(26.9)	JOC <u>45,</u> 3884 (1980) JOC <u>46,</u> 4327 (1981)		
(PhSe) ₂ CH ₂	(31.3	CN CO ₂ Et	(16.4) (18.6)	4		(17.8)	JOC <u>46</u> , 632 (1981) JOC <u>47</u> , 3224 (1982)		
PhSeCH ₂ Ph	(31.0	-	(26.2)	5 6		(16.0) (17.9)	JOC <u>47</u> , 2504 (1982) Acc. Chem. Res. <u>21</u> , 456 (1988)		
PhSeCH=CHCH ₂ SeF	Ph (27.2	SiMe ₃	(28.8)	7		(15.8)	Unpublished results of F. Bordwell		
AMMONIL Me ₃ N+CH ₂ X	JM	Ph ₂ P X X= SPh CN	(24.9) (16.9)	IMINE	S	(24.2)	Water: Advanced Org. Chem., 3rd Ed. J. March (1985)		
X= CN	(20.6			Ph Ph		(24.3)	Unpublished results of W. P. Jencks		
SO₂Ph COPh	(19.4 (14.6			Oxime ethers are ~ 1 acidic than their keto Streitwieser, JOC 19	ne coun	iterparts	THF: JACS <u>110,</u> 5705 (1988)		
CO ₂ Et CONEt ₂	(20.0 (24.9		(29.9) (20.2)	,	, ,		See cited website below for additional data		

*Values <0 for H_2O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

DMSO Acidities of Common Heterocycles

Bordwell, ACR, **1988**, *21*, 456 Bordwell http://www.chem.wisc.edu/areas/reich/pkatable/index.htm

23.0	19.8	N N H 18.6	16.4	N N N N N N N N N N N N N N N N N N N	11.9	18.0
24.0	O N H 20.8	1	5.0	0 N H	26.4	24.0
13.3	0 N H	S N H	S H	S H N+ Me	Me N+ Me 18.4	$\begin{array}{c} \text{Me} \\ \text{Me} \\ \text{N} \\ \text{Me} \\ \text{N} + \end{array}$