Machine Learning in Biomedical Sciences and Bioengineering

Lecture 2 Regression

2025 version 1.00

James Choi

Supervised learning

- Regression
 - Predicts a range of values
 - Continuous range of possible outputs
 - Predict the concentration of drugs in the liver for a given systemic dose.

- Classification
 - Predicts categories
 - Discrete number of possible outputs
 - Predict whether the imaged mass is a cyst or malignant tumour

General machine learning process

1. Determine the objective

What do we want to achieve?

2. Prepare the data

What kind of data do we need to inform the model?

3. Design an architecture

How should we construct the ML model?

4. Create a loss function

How do we inform the model that its performance is good or bad?

5. Optimise the architecture

How do we adjust the model parameters to become better?

Determine the objective

What do we want to achieve?

• **Example:** Predict the concentration of drugs that enters the brain from the amount of drugs that are administered in the bloodstream.

Prepare the data

x: input variable (feature)

y: output variable (targets, true values)

i: sample number

m: total number of training samples

(x, y) = a training sample

 $(x^{(i)}, y^{(i)}) =$ the i^{th} training example

i	\mathcal{X}	y
Sample Number	Mass of drugs injected (mg)	Mass of drugs in brain (µg)
1	0.5	174.7
2	1.0	375.3
3	1.5	611.1
4	2.0	243.9
5	2.5	956.7
6	3.0	844.3
7	3.5	1165.6
8	4.0	885.9
9	4.5	1059.5
10	5.0	865.7
11	5.5	1057.8
12	6.0	1522.1
13	6.5	1373.1
14	7.0	1898.9
15	7.5	1413.6
16	8.0	2166.3
17	8.5	1930
18	9.0	2155.2
19	9.5	2474.6
20	10.0	2040.9

Prepare the data

x: input variable (feature)

y: output variable (targets, true values)

i: sample number

m: total number of training samples

(x, y) = a training sample

 $(x^{(i)}, y^{(i)}) =$ the i^{th} training example

 $(x^{(3)}, y^{(3)}) = (1.5, 611.1)$

i	$\boldsymbol{\mathcal{X}}$	\mathcal{Y}
Sample Number	Mass of drugs injected (mg)	Mass of drugs in brain (µg)
1	0.5	174.7
2	1.0	375.3
3	1.5	611.1
4	2.0	243.9
5	2.5	956.7
6	3.0	844.3
7	3.5	1165.6
8	4.0	885.9
9	4.5	1059.5
10	5.0	865.7
11	5.5	1057.8
12	6.0	1522.1
13	6.5	1373.1
14	7.0	1898.9
15	7.5	1413.6
16	8.0	2166.3
17	8.5	1930
18	9.0	2155.2
19	9.5	2474.6
20	10.0	2040.9

Prepare the data

x: input variable (feature)

y: output variable (targets, true values)

i: sample number

m: total number of training samples

(x, y) = a training sample

 $(x^{(i)}, y^{(i)}) =$ the i^{th} training example

$$(x^{(3)}, y^{(3)}) = (1.5, 611.1)$$

i	$\boldsymbol{\mathcal{X}}$	y
Sample Number	Mass of drugs injected (mg)	Mass of drugs in brain (µg)
1	0.5	174.7
2	1.0	375.3
3	1.5	611.1
4	2.0	243.9
5	2.5	956.7
6	3.0	844.3
7	3.5	1165.6
8	4.0	885.9
9	4.5	1059.5
10	5.0	865.7
11	5.5	1057.8
12	6.0	1522.1
13	6.5	1373.1
14	7.0	1898.9
15	7.5	1413.6
16	8.0	2166.3
17	8.5	1930
18	9.0	2155.2
19	9.5	2474.6
20	10.0	2040.9

Design the architecture

 What model architecture would work best for predicting the output based on the input available?

Consider the following candidate models:

$$y = wx + b$$

$$y = w_1x + w_2x^2 + b$$

$$y = w_1x + w_2x^2 + w_3x^2 + b$$

$$y = wlog_{10}(x) + b$$

Design the architecture

Training data:

$$y = wx + b$$

w is the weight b is the bias

$$f_{w,b}(x) = wx + b$$
$$f(x) = wx + b$$

$$f(x) = wx + b$$

Training data:

$$\hat{y}^{(i)} = f_{w,b}(x^{(i)})$$
$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

$$y = wx + b$$

$$y = w_1x + w_2x^2 + w_3x^2 + b$$

$$y = w_1x_1 + w_2x_2 + w_3x_3 + b$$

$$y = wlog_{10}(x) + b$$

Find w, b:

$$\hat{y}^{(i)}$$
 is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$

How can we measure how well our guesses for w and b are?

$$error = \hat{y}^{(i)} - y^{(i)}$$

or... =
$$(\hat{y}^{(i)} - y^{(i)})^2$$

Training data:

$$f_{w,b}(x) = wx + b$$
 error = $\hat{y}^{(i)} - y^{(i)}$
or... = $(\hat{y}^{(i)} - y^{(i)})^2$

 $f_{w,b}(x) = wx + b$ error $= \hat{y}^{(i)} - y^{(i)}$ or... $= (\hat{y}^{(i)} - y^{(i)})^2$

Training data:

Need to account for all sample errors

Training data:

Squared error cost function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(wx^{(i)} + b - y^{(i)} \right)^{2}$$

 $\min_{w,b} J(w,b)$ adjust w and b so that the cost function is minimal.

minimize
$$J(w_1, w_2, ... w_n, b)$$

Overview

Model: $f_{w,b}(x) = wx + b$

Parameters: w, b

Cost function: $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$

Optimisation goal: $\min_{w,b} \operatorname{minimize} J(w,b)$

Optimise the architecture

minimize
$$J(w,b)$$
 $w_{i+1} = w_i$ - something $b_{i+1} = b_i$ - something
$$w_{i+1} = w_i - \alpha \frac{\partial}{\partial w} J(w_i, b_i) \qquad b_{i+1} = b_i - \alpha \frac{\partial}{\partial b} J(w_i, b_i)$$

$$\frac{\partial}{\partial w} J(w,b) = \frac{\partial}{\partial w} \left(\frac{1}{2m} \sum_{i=1}^m \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^2 \right) \qquad \frac{\partial}{\partial b} J(w,b) = \frac{\partial}{\partial b} \left(\frac{1}{2m} \sum_{i=1}^m \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^2 \right)$$

$$= \frac{\partial}{\partial w} \left(\frac{1}{2m} \sum_{i=1}^m \left(wx^{(i)} + b - y^{(i)} \right)^2 \right) \qquad = \frac{\partial}{\partial b} \left(\frac{1}{2m} \sum_{i=1}^m \left(wx^{(i)} + b - y^{(i)} \right)^2 \right)$$

$$= \frac{1}{2m} \sum_{i=1}^m \left(wx^{(i)} + b - y^{(i)} \right) 2x^{(i)} \qquad = \frac{1}{2m} \sum_{i=1}^m \left(wx^{(i)} + b - y^{(i)} \right) 2$$

$$= \frac{1}{m} \sum_{i=1}^m \left(wx^{(i)} + b - y^{(i)} \right)$$

$$= \frac{1}{m} \sum_{i=1}^m \left(wx^{(i)} + b - y^{(i)} \right)$$

Optimise the architecture

Gradient descent

$$\underset{w,b}{\text{minimize}} J(w,b)$$

$$w_{i+1} = w_i - \alpha \frac{\partial}{\partial w} J(w_i, b_i)$$

$$b_{i+1} = b_i - \alpha \frac{\partial}{\partial b} J(w_i, b_i)$$

$$\frac{\partial}{\partial w} J(w, b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

$$\frac{\partial}{\partial b} J(w, b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)$$

 α is the **learning rate**.

How does the value of α influence the optimisation algorithm?

- Small α may lead to very long computation times
- Large α may **overshoot** the minimum
- Potential for the optimisation to NOT converge.

Live coding session