Choice axioms and Postnikov completeness ¹

M. Anel ² (jww R. Barton)

HoTT-UF, Leuven April 2, 2024

¹https://arxiv.org/abs/2403.19772

The talk is going to be in the language of category theory, not HoTT.

By a category I mean an $(\infty, 1)$ -category.

By a *n*-topos I mean an *n*-topos in the sense of Lurie.

By a surjection in an n-topos, I mean an effective epimorphisms in the sense of Lurie

 $(\Leftrightarrow$ a map left orthogonal to monomorphisms

 \Leftrightarrow a map which is the quotient of its associated equivalence relation).

An object X in an *n*-topos is inhabited if the map $X \to 1$ is a surjection.

Choice axioms

In a 1-topos, the axiom of countable choice (CC) can be stated as a countable product of inhabited objects is inhabited.

Choice axioms

Examples

- 1. Set.
- 2. $Set_{/I} = Set^{I}$ for a set I.
- 3. Set^G for a group G.
- 4. Sh(Cantor).
- 5. Sh(Alexandrov) (opens are closed under arbitrary intersections).
- any 1-topos where IN is projective (the axiom is in fact equivalent to IN being projective).

Counterexamples : Sh([0,1])

Choose a cover by open sets $U_{k,n}$ of diameter less than 1/n, then each $A_n = \coprod_k U_{k,n} \to [0,1]$ is inhabited, but $\prod A_n = \emptyset$ since it has no local sections.

n-topoi

The same axiom makes sense in an *n*-topos for $1 \le n \le \infty$.

But in this context, it is natural to introduce some homotopical variations of CC.

Need recollections/notations on *m*-connected maps.

Truncation modalities

The diagonal of a map $f: A \to B$ is $\Delta(f): A \to A \times_B A$ (family of identity types of B indexed by A).

We put $\Delta^0(f) \coloneqq f$ and $\Delta^{k+1}(f) \coloneqq \Delta(\Delta^k(f))$.

A map $f: A \to B$ is *m*-truncated (T_m) if $\Delta^{m+2}(f)$ is an isomorphism.

(-1)-truncated = monomorphism.

The subcategory of *m*-truncated objects is $E^{\leq m} \subset E$.

It is reflective.

It is an (m+1)-topos.

Truncation modalities

A map $f: A \to B$ is *m*-connected (C_m) if $\Delta^k(f)$ is a surjection for every $0 \le k \le m+1$.

(-1)-connected = surjection.

The pair (C_m, T_m) form a modality (a factorization system stable under base change)

∞-Truncation modality

A map is ∞ -connected (C_{∞}) if it is m-connected for every m.

A map is ∞ -truncated (T_∞) if it is right orthogonal to ∞ -connected maps. (Lurie: hypercomplete)

In an ∞ -topos E, the (C_{∞}, T_{∞}) form a modality.

The subcategory of ∞ -truncated objects is $E^{\leq \infty} \subset E$.

It is reflective, and the reflection is the hypercompletion of $E \to E^{\leq \infty}$.

It is an ∞ -topos.

Homotopical choice axioms

Definition

For $-1 \le d \le \infty$, the axiom of countable choice of dimension $\le d$ (CC_d) holds in an *n*-topos E if

a countable product of (d-1)-connected objects is inhabited.

Lemma

TFAE

- 1. CC_d.
- 2. For every $-1 \le n \le \infty$, a countable product of (n + d)-connected objects is an n-connected.
- 3. Countable products of d-connected maps are surjections.
- 4. For every $-1 \le m \le \infty$, countable products of (m + d)-connected maps are m-connected.

$$CC_{-1} \Rightarrow CC_0 \Rightarrow CC_1 \Rightarrow ... \Rightarrow CC_{\infty}$$

Logical interpretation

Surjection = semantics for existential conditions \exists .

Isomorphism = semantics for unique-existential conditions \exists !.

n-connected maps = semantics for intermediate existential conditions \exists_n (= unicity up to n-truncation = iterated existential condition on all identity types of level $\leq n$).

 ∞ -connected maps = semantics for iterated existential conditions on all identity types \exists_{∞} (notice that $\exists_{\infty} \neq \exists !$).

Operations sending (n + d)-connected maps to n-connected maps = operations weakening the 'unicity level' of existential conditions.

Homotopical choice axioms

Examples

- 1. Only the trivial *n*-topos E = 1 has CC_{-1} .
- 2. $S^{\leq n}$ has CC_0 (in fact, any discrete product of inh. obj. is inh.).
- 3. $[C, S^{\leq n}]$ for any category (or space) C has CC_0 .
- 4. In a 1-topos CC_1 is always true (0-connected maps are iso).
- 5. In an n-topos CC_n is always true (n-connected maps are iso).
- Not every ∞-topos has CC_∞ (see counterexample below).
 But every hypercomplete ∞-topos has (trivially) CC_∞.
- 7. If CC_d holds in E it holds in $E^{\leq n}$ for $0 \leq n \leq \infty$ (in particular in the hypercompletion). The converse is false.

An ∞ -topos without CC_{∞}

The notion of ∞ -connected objects is geometric.

$$X: C_{\infty} \iff \forall n, \ \Delta^n X: Surj.$$

The ∞-topos classifying ∞-connected objects is

$$S[X^{(\infty)}] = [Fin, S]^{\text{atomic top.}}$$
.

The universal ∞ -connected object $X^{(\infty)}$ is the sheafification of the canonical inclusion $Fin \to S$.

Evaluation at $X^{(\infty)}$ induces an equivalence of categories

$$[S[X^{(\infty)}], E]_{CC}^{lex} = \{X \in E \mid X \text{ is } \infty\text{-connected}\} \subset E.$$

Fact:

There exists ∞ -connected objects with no global sections (next slide). Thus $X^{(\infty)}: Fin \to S$ must verify

$$X^{(\infty)}(\varnothing) = \varnothing$$
.

An ∞ -topos without CC_{∞}

How to get an ∞ -connected objects with no global sections.

Take an ∞ -connected X in E which is not contractible.

There exists Z such that $Map(Z, X) \neq 1$ in S.

One the π_n s of Map (Z,X) must be have two different elements.

There exists n, such that Map $(Z \times S^n, X)$ has 2-connected components.

In $E' := E_{/Z \times S^n}$, the ∞ -connected object $X' := (X \times Z \to Z)$ has two different global sections a and b.

The path object $\Omega_{a,b}X$ is ∞ -connected in E' but with no global sections.

An ∞-topos without CC∞

Consider the ∞ -topos classifiying a countable number of ∞ -connected objects

$$S[X_1^{(\infty)},X_2^{(\infty)},\dots] = \left[\mathit{Fin}^{(\mathbb{N})},S\right]^{\mathsf{at. top. in each var.}}$$

where $Fin^{(\mathbb{N})}$ is the free cocompletion of the set \mathbb{N} (= $\mathbb{N} \to Fin$ whose values are almost all \emptyset).

Then

$$\prod_{n} X_{n}^{(\infty)} = \emptyset.$$

Proof:

$$X_n^{(\infty)} = Fin^{(\mathbb{N})} \xrightarrow{p_n} Fin \xrightarrow{X^{(\infty)}} S.$$

For $A \in Fin^{(\mathbb{N})}$, we have

$$\prod_{n} X_n^{(\infty)}(A) = X^{(\infty)}(A_1) \times X^{(\infty)}(A_2) \times \cdots \times X^{(\infty)}(A_k = \emptyset) \times \cdots = \emptyset.$$

Homotopical dimension

An object $X \in E$ is of homotopy dimension $\leq d$ if $\Gamma: E_{/X} \to S$ sends (n+d)-connected objects to n-connected objects.

An *n*-topos has enough objects of homotopy dimension $\leq d$ (EOHD_d) if every object can be covered by objects of homotopy dimension $\leq d$.

Examples

- 1. objects of covering dimension $\leq 0 = \text{externally projective objects}$
- 2. Any space of covering dimension $\leq d$ has EOHD_d
 - $[0,1]^d$ has EOHD_d
 - 2.2 any d-manifold has EOHD_d
- 3. the ∞ -topos envelope of a 1-topos with EOHD₀ has EOHD₀ (don't know for d > 0)

Proposition (AB)

Any n-topos with enough objects of homotopy dimension $\leq d$ has CC_d .

Homotopical choice axioms

More examples:

- 4. $Sh_{\infty}([0,1])$ has CC_1 but not CC_0 .
- 5. $Sh_{\infty}([0,1]^d)$ has CC_d but not CC_{d-1} .
- 6. $Sh_{\infty}(\coprod_{d}[0,1]^{d})$ has CC_{∞} but not CC_{d} for $d < \infty$.

Proof that Sh([0,1]) has CC_1

 $A_k \to [0,1]$ family of 0-connected sheaves, need to show that: for every $x \in [0,1]$, there exists a neighborhood $x \in U$ such that every A_k has a section on U.

Gonna prove stronger result that every A_k has a global section.

 A_k has local sections on a cover U_i of [0,1].

Can refine U_i such that on U_{ij} the two local sections are connected by a homotopy.

Use these homotopies to build a section of A_k on [0,1].

No need of coherence because can chose U_i without triple intersections (= [0,1] is of covering dimension ≤ 1).

This shows each A_k has a global section.

This shows $\prod_k A_k$ has a global section and is therefore inhabited.

Similar for $[0,1]^d$ using that is of covering dimension $\leq d$.

Application

Theorem (AB)

If CC_d holds for $-1 \le d < \infty$, then every formal Postnikov tower of E is the Postnikov tower of some object in E.

Will make things more precise.

Postnikov towers

 $P_n: E \to E^{\leq n}$ reflection onto *n*-truncated objects

We have a tower of categories

$$E \ \to \ E^{\leq \infty} \ \to \ \dots \ \stackrel{P_1}{\to} \ E^{\leq 2} \ \stackrel{P_0}{\to} \ E^{\leq 0} \ \stackrel{P_{-1}}{\to} \ E^{\leq -1} \,.$$

The category Post $(E) = \lim_n E^{\leq n}$ is an ∞ -topos.

The objects of Post(E) are formal Postnikov towers

$$\ldots \ \to \ X_2 \ \xrightarrow{\ C_1 \ } \ X_1 \ \xrightarrow{\ C_0 \ } \ X_0 \ \xrightarrow{\ Surj \ } \ X_{-1} \, .$$

 $P_{\bullet}: E \to \text{Post}(E)$ sends an object X to its Postnikov tower

$$\ldots \ \rightarrow \ P_2 X \ \xrightarrow{C_1} \ P_1 X \ \xrightarrow{C_0} \ P_0 X \ \xrightarrow{Surj} \ P_{-1} X \, .$$

Postnikov towers

The functor P_{\bullet} preserves colimits and finite limits. Its right adjoint is the limit of towers.

$$E \xrightarrow[\lim]{P_{\bullet}} Post(E)$$

- 1. E is Postnikov complete if $\lim : Post(E) \to E$ is an equivalence.
- E is Postnikov effective if E → Post (E) is a localization
 ⇔ lim: Post (E) → E is fully faithful
 ⇔ every FPT is the PT of its limit

$$P_k\big(\lim X_n\big)=X_k.$$

E is Postnikov convergent if E → Post (E) is fully faithful.
 ⇔ limit of PT of X is X

$$X = \lim_{n} P_n X$$
.

Application

Theorem (AB)

If CC_d holds in E for $-1 \le d < \infty$, then E is Postnikov effective: every FPT is the PT of its limit

$$P_k\big(\operatorname{lim} X_n\big) = X_k.$$

Maps inverted by $E \to \mathsf{Post}(E)$ are exactly the ∞ -connected maps. Get a localization/conservative factorization

$$E \rightarrow E^{\leq \infty} \rightarrow Post(E)$$
.

Corollary (AB)

If CC_d holds in E for $-1 \le d < \infty$, then $E^{\le \infty}$ is Postnikov complete.

The theorem is false for $d = \infty$ because there exists hypercomplete topoi $(\Rightarrow CC_{\infty})$ which are not Postnikov complete.

The converse of the theorem is false because the CC_{∞} counter-example has S for his hypercompletion.

Proof

Let X_n be a FPT. We put $X = \lim X_n$

We want to prove that the projection $p_k: X \to X_k$ is k-connected. We have

$$\begin{array}{cccc}
X & & \dots & \longrightarrow X_{k+2} & \longrightarrow X_{k+1} & \longrightarrow X_k \\
\downarrow c_k & & \downarrow c_k & \downarrow c_k & \downarrow c_k \\
X_k & & \dots & \longrightarrow X_k & \longrightarrow X_k & \longrightarrow X_k.
\end{array}$$

$$\begin{array}{cccc}
& & & & \downarrow C_k & \downarrow C_k & \downarrow C_k & \downarrow C_k \\
& & & & \downarrow C_k & \downarrow C_k & \downarrow C_k & \downarrow C_k \\
& & & & & \downarrow C_k & \downarrow C_k & \downarrow C_k
\end{array}$$

$$\begin{array}{cccc}
& & & \downarrow C_k & \downarrow$$

Proof

We have a countable product of k-connected maps

$$\prod_{n} X_{k+n}
\downarrow \prod_{n} C_k \subset C_{k-d}
\prod_{n} X_k$$

which is an (k-d)-connected map by CC_d .

Thus the equalizer of

is an (k - d - 1)-connected map.

Proof

The map $p_k: X = \lim X_n \to X_k$ is (k - d - 1)-connected.

The map $X_k \to X_{k-d-1}$ is (k-d-1)-connected.

The map $X \to X_{k-d-1}$ is the (k-d-1)-truncation of X.

Using that d is finite and chosing k = d + 1 + n,

we get that $X \to X_n$ is the *n*-truncation of X for every n.

Thank you!

Bonus

In Blass' Cohomology detects failures of the axiom of choice, he considers the following statement:

If, for every set X and every group G, $\prod_X BG$ is connected, then, for every family of inhabited sets Y_x , $\prod_{x \in X} Y_x$ is inhabited

This suggest to consider the axiom $CC_d^{\geq b}$

Countable products of (d + b)-connected objects are b-connected.

For b = -1, we have $CC_d^{\geq -1} = CC_d$.

For b = 0, Blass' theorem essentially says that

$$CC_0^{\geq 0} \Rightarrow CC_0$$

but the assumptions of his proof are not clear to me (in which 1-topoi is this true?).

This raises the question to find conditions implying

$$\operatorname{CC}^b_d \Rightarrow \operatorname{CC}^{b-1}_d$$
.