УДК 512.54

D.I. Morozov, researcher working on habilitation.

Centralizers of layer-transitive elements in the group of finite-state automorphisms of binary rooted tree

In this work the centralizer of layer-transitive finite-state automorphisms investigated.

 $\begin{tabular}{ll} Key & Words: & rooted & tree, & automorphism \\ group, & state, & centralizer. \end{tabular}$

E-mail: denis.morozov178@gmail.com Статтю представив доктор фіз.-мат. наук

1 Вступ

У даній статті будемо використовувати наступні означення:

Означення 1.1. T_2 - бінарне кореневе дерево,

 $AutT_2$ - група автоморфізмів T_2 ,

x*a - дія автоморфізму a на кінець x дерева $T_2,$

 $a \circ b$ - суперпозиція автоморфізів a та b дерева T_2

Автоморфізм $a \in AutT_2$ індукує дію на піддеревах T_2 . Назвемо a скінчено-становим, якщо він індукує скінченну кількість дій на піддеревах.

Oзначення 1.2. $FAutT_2$ - група скінченостанових автоморфізмів T_2

 Z_2 - кільце цілих 2-адичних чисел,

Ребрам дерева T_2 можна приписати мітки — 0.1 для лівого та правого ребра, що йдуть униз. При цьому кожному нескінченному шляху на дереві, що починається з кореня, буде відповідати нескінченна послідовність нулів та одиниць, яку можна зіставити з цілим 2-адичним числом. Після цього автоморфізми дерева T_2 можуть бути ототожнені з ізометріями кільця цілих 2-адичних чисел Z_2 .

Означення 1.3. Ототожнімо автоморфізм a дерева T_2 з функцією $f_a:Z_2\to Z_2$ наступним чином:

$$x * a = f_a(x)$$

Д.І. Морозов, докторант.

Централізатори шарово-транзитивних елементів в групі скінчено-станових автоморфізмів бінарного кореневого дерева

B роботі досліджено централізатори шарово-транзитивних скінчено-станових автоморфізмів.

Ключові слова: кореневе дерево, група автоморфізмів, стан, централізатор.

Наприклад, нижченаведений 2-становий автоморфізм ε можна визначити рекурентно:

$$\varepsilon = (id, \varepsilon) \circ \sigma$$

$$id = (id, id)$$

тут вказано, що автоморфізм ε діє на лівому піддереві тотожно, на правому самоподібно, а σ переставляє ці піддерева. З іншого боку, автоморфізм ε може бути визначений як функція $f_{\varepsilon}(x) = x + 1$, і тому має назву "додавальна машина" (adding machine).

Означення 1.4. Будемо казати, що автоморфізм $\chi_0 \in 0$ -розв'язком рівняння $a^{\chi_0} = b$, якщо

$$0 * \chi_0 = 0$$

В роботі [1] автором було доведено наступну теорему:

Теорема 1.1. $Hexa \c u$ - uaposo- $mpaнзитивни \c u$ $asmomop \c pism.$ $To \c di$

$$C_{AutT_2}(x) = \{x^p | p \in Z_2\}$$

Метою даної роботи є дослідження централізаторів шарово-транзитивних елементів в $FAutT_2$, оскільки результату, аналогічного теоремі 1.1 для $FAutT_2$ немає.

2 Централізатори шарово-транзитивних елементів в $FAutT_2$

Далі у роботі будемо використовувати наступні означення.

Нехай ε - двостановий автоморфізм adding machine, що задається співвідношеннями:

$$\varepsilon = (id, \varepsilon) \circ \sigma$$

$$id = (id, id)$$

Нехай ε - adding machine, тобто $x*\varepsilon=x+1$. Тоді має місце наступна лема:

Лема 1. Для $p \in Z_2$ мае місце рівність:

$$0 * \varepsilon^p = p$$

Доведення. Оскільки $t*\varepsilon^p=t+p,\ mo\ 0*\varepsilon^p=0+p=p.$

Теорема 2.1. Нехай χ_x - 0-розв'язок рівняння спряженості $\varepsilon^t = x$ відносно автоморфізма t. Тоді має місце рівність:

$$0 * x^p = p * \chi_x$$

Доведення. Оскільки $\varepsilon^{\chi_x} = x$, то має місце співвідношення:

$$x^p = (\chi_x^{-1} \circ \varepsilon \circ \chi_x)^p = \chi_x^{-1} \circ \varepsilon^p \circ \chi_x$$

Отэке за лемою 1 та рівністю $0 * \chi_x = 0$ отримуємо:

$$0 * x^p = 0 * (\chi_x^{-1} \circ \varepsilon^p \circ \chi_x) =$$

$$= ((0 * \chi_x^{-1}) * \varepsilon^p) * \chi_x) = (0 * \varepsilon^p) * \chi_x = p * \chi_x$$

w. m. d.

Має місце наступна лема:

Лема 2. $Hexa \ \ x$ - $wapo \ so-mpa \ \ sum \ u \ bu \ \ a \ smo \ \ mo \ \ pi \ \ sm.$ $To \ di$

$$0 * C_{AutT_2}(x) = Z_2$$

Доведення. За теоремою 1.1

$$C_{AutT_2}(x) = \{x^p | p \in Z_2\}$$

Далі, скориставшись теоремою 2.1, маємо:

$$0 * x^{Z_2} = Z_2 * \chi_x$$

де χ_x - θ -розв'язок рівняння спряженості $\varepsilon^t = x$ відносно автоморфізма t.

 $Оскільки \chi_x$ - автоморфізм, то

$$Z_2 * \chi_x = Z_2$$

ид.m. ∂ .

Означення 2.1. Означимо множину $F_p(p \in Z_2)$ наступним чином:

$$p \in F_p$$
,

якщо
$$2t+1 \in F_p$$
, то $t \in F_p, t+1 \in F_p$,

якщо
$$2t \in F_p$$
, то $t \in F_p$.

Будемо казати, що t_k належить k-му рівню в F_p , якщо отримано з p за k кроків.

Означення 2.2. Означимо множину $P_{m,n}(m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0)$ наступним чином:

$$m \in P_{m,n}$$

якщо $2t+1\in P_{m,n},$ то $t-n\in P_{m,n},\ t+n+1\in P_{m,n},$

якщо
$$2t \in P_{m,n}$$
, то $t \in P_{m,n}$.

Будемо казати, що t_k належить k-му рівню в $P_{m,n}$, якщо отримано з m за k кроків.

Лема 3. Нехай 2-адичне квазіперіодичне число p дорівнює $\frac{m}{2n+1}$, де $m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0$. Тоді множини $P_{m,n}$ та F_p скінчені або нескінчені одночасно.

Доведення. Оскільки мають місце рівності:

$$\frac{2m+1}{2n+1} = 2\frac{m-n}{2n+1} + 1$$

$$\frac{2m}{2n+1} = 2\frac{m}{2n+1}$$

то в F_p $\frac{2m+1}{2n+1}$ породжуе $\frac{m-n}{2n+1}$ та $\frac{m+n+1}{2n+1}$, а $\frac{2m}{2n+1}$ породжуе $\frac{m}{2n+1}$.

Отже, якщо t_k належить k-му рівню в F_p , то $t_k(2n+1)$ належить k-му рівню в $P_{m,n}$, і навпаки, якщо t_k' належить k-му рівню в $P_{m,n}$, то $\frac{t_k'}{2n+1}$ належить k-му рівню в F_p . Тому має місце рівність:

$$|P_{m,n}| = |F_p|$$

 $u_i.m.\partial.$

Лема 4. Множина $P_{m,n}(m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0)$ ϵ скінченою.

Доведення. Згідно з означенням, якщо $t \in Z_2 \cap \mathbb{Q}$ }, тобто квазіперіодичне. За лемою $P_{m,n}$, то або $\frac{t}{2}$ або $\frac{t-1}{2}-n$ та $\frac{t-1}{2}+n+1$. Нехай 5 множина F_p - скінчена. 3 іншої сторони, t_k відноситься до k-го рівня в $P_{m,n}$, тоді має місце рівність:

$$t_k = \frac{t_{k-1} + a * (2n+1)}{2}, a = 0, 1, -1$$

Використавши ию рівність kpasie, отримаємо:

$$t_k = \frac{m}{2^k} + (2n+1)(\frac{a_0}{2^k} + \dots + \frac{a_{k-1}}{2})$$

Оскільки $|a_i| \leq 1$, то маємо наступну оцінку:

$$|t_k| = \left| \frac{m}{2^k} + (2n+1)(\frac{a_0}{2^k} + \dots + \frac{a_{k-1}}{2}) \right| \le$$

$$\le \left| \frac{m}{2^k} \right| + |2n+1| \le |m| + 2n + 1$$

Отже кількість елеметів в множині $P_{m,n}$ обмежено нерівністю:

$$|P_{m,n}| \le 2(|m| + 2n + 1)$$

тому множина $P_{m,n}$ є скінченою, щ.т.д.

Лема 5. Множина F_p скінчена тоді, і тільки тоді, коли р - квазіперіодичне число.

Доведення. \Rightarrow Для 2t+1 ma 2t число tотримується відкиданням останьої цифри y двійковому запису, отже F_p містить всі числа, що отримуються з р відкиданням декількох останніх цифр. Якшо р квазіперіодичне, mo $Ma \in MO$ нескінчену кількість таких чисел, mомy F_p скінченою.

 $\Leftarrow p$ - квазіперіодичне число тоді і лише $mo\partial i$, коли $p=rac{m}{2n+1}(m\in\mathbb{Z},n\in\mathbb{Z}^+\cup 0)$. Отже за лемами 3 та 4 множина F_p ϵ скінченою.

Теорема 2.2. Hexaй ε - adding machine. Todi

$$C_{FAutT_2}(\varepsilon) = \{ \varepsilon^p | p \in Z_2 \cap \mathbb{Q} \}$$

Доведення. Оскільки має місце рівність

$$C_{FAutT_2}(\varepsilon) = C_{AutT_2}(\varepsilon) \cap FAutT_2$$

то, за теоремою 1.1, елементи централізатора $C_{FAutT_2}(arepsilon)$ мають вигляд $\{arepsilon^p | arepsilon^p \in FAutT_2\}.$ число, то ε^p - нескінчено-становий, оскільки nереводить квазinepioduчне число θ в не квазіперіодичне число p. Далі, нехай $p \in$

мають місце рівності:

$$\varepsilon^{2t+1} = (\varepsilon^t, \varepsilon^{t+1}) \circ \sigma$$
$$\varepsilon^{2t} = (\varepsilon^t, \varepsilon^t)$$

Отже стани автоморфізму ε^p вичерпуються автоморфізмами вигляду

$$\varepsilon^t, t \in F_p$$

Oскільки F_p - скінчена, то ε^p - скінченостановий автоморфізм, щ.т.д.

Теорема 2.3. Hexaй ε - adding machine. Todi

$$0 * C_{FAutT_2}(\varepsilon) = (Z_2 \cap \mathbb{Q})$$

Доведення. За теоремою 2.2

$$C_{FAutT_2}(\varepsilon) = \{ \varepsilon^p | p \in Z_2 \cap \mathbb{Q} \}$$

Далі, скориставшись лемою 1, маємо:

$$0 * \varepsilon^{Z_2 \cap \mathbb{Q}} = Z_2 \cap \mathbb{Q}$$

 $u_{l}.m.\partial.$

Теореми 2.2 та 2.3 можна застосувати для дослідження скінчено-станової спряженності з автоморфізмом arepsilon - adding machine. Це показує наступна теорема:

Теорема 2.4. Якщо 0-розв'язок t_0 рівняння спряженності відносно t

$$\varepsilon^t = a$$

не ϵ скінчено-становим, то це рівняння не ма ϵ скінчено-станових розв'язків.

Доведення. Припустимо, що t_0 - нескінченостановий, а рівняння $\varepsilon^t = a$ ма ϵ скінчено-квазіперіодичне число. Оскільки кожен розв'язок единим чином можна представити у вигляді

$$t' = x \circ t_0, x \in C_{FAutT_2}(\varepsilon)$$

 $ma p * \varepsilon^{-p} = 0$, то за теоремою 2.2 t' = $\varepsilon^{-p} \circ t_0$. Оскільки t_0 - нескінчено-становий, $a \, \varepsilon^{-p}$ - скінчено-становий, то t' - нескінченостановий. Отже маємо протиріччя.

Теорема 2.5. *Нехай а - шарово-транзитивний автоморфізм. Тоді*

$$C_{FAutT_2}(a) \subseteq \{a^{(p*\chi_a^{-1})}|p \in Z_2 \cap \mathbb{Q}\}$$

де χ_a - θ -розв'язок рівняння спряженності $\varepsilon^t = a$ відносно t.

Доведення. Має місце наступна рівність:

$$0 * a^{(p*\chi_a^{-1})} = p$$

Дійсно, за теоремою 2.1 отримаємо:

$$0*a^{(p*\chi_a^{-1})} = (p*\chi_a^{-1})*\chi_a = p*(\chi_a^{-1} \circ \chi_a) = p$$

Отже $a^{(p*\chi_a^{-1})}$ може бути скінчено-становим тільки тоді, коли $p \in Z_2 \cap \mathbb{Q}$. З іншої сторони за теоремою 1.1 усі елементи централізатора $C_{AutT_2}(a)$ мають вигляд $a^{(p*\chi_a^{-1})}$, оскільки χ_a^{-1} - автоморфізм Z_2 . Приймаючи до уваги, що

$$C_{FAutT_2}(a) = C_{AutT_2}(a) \cap FAutT_2$$

отримуємо включення

$$C_{FAutT_2}(a) \subseteq \{a^{(p*\chi_a^{-1})}|p \in Z_2 \cap \mathbb{Q}\}$$

uц.m. ∂

Теорема 2.6. Нехай x - шаровотранзитивний скінчено-становий автоморфізм. Тоді

$$0 * C_{FAutT_2}(x) \subseteq (Z_2 \cap \mathbb{Q})$$

Доведення. Згідно з теоремою 2.5 маємо включення:

$$0*C_{FAutT_2}(x) \subseteq \{0*a^{(p*\chi_a^{-1})}|p \in Z_2 \cap \mathbb{Q}\} = Z_2 \cap \mathbb{Q}$$

References

1. *Морозов Д.І.* Централізатори шаровооднорідних автоморфізмів однорідного дерева валентності р./ Д.І. Морозов// Вісник Київського ун-ту. Серія: фізикоматематичні науки. - 2007.— вип.№4 — С.52-54.

Надійшла до редколегії 13.10.2012