UNIVERSIDAD DE GRANADA.

ESCUELA TECNICA SUPERIOR DE INGENIERIAS INFORMATICA Y DE TELECOMUNICACIÓN.

Departamento de Arquitectura y Tecnología de Computadores.

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES.

PRÁCTICA 6.
IMPLEMENTACIÓN Y FUNCIONAMIENTO DE CONTADORES Y GENERADORES DE SECUENCIAS.

1º GRADO EN INGENIERÍA INFORMÁTICA.

PRÁCTICA 6. INSTRUCCIONES.

IMPLEMENTACIÓN Y FUNCIONAMIENTO DE CONTADORES Y GENERADORES DE SECUENCIAS.

Objetivos:

- Diseñar contadores y generadores de secuencias.
- Comprobar el funcionamiento de contadores y generadores de secuencias.

Material necesario para el desarrollo de la práctica:

- Guión de prácticas disponible en SWAD en el apartado ARCHIVOS>DOCUMENTOS>04.-PRACTICAS>PRACTICA_6
 >PRACTICA_6_TOC-INSTRUCCIONES.PDF.
- Material del Tema 4º disponible en SWAD en el apartado ARCHIVOS>DOCUMENTOS>01.-TEORIA y PROBLEMAS>TEMA_4> 04.TEMA_4_TOC_ANALISIS_DISENO_SISTEMAS_SECUENCIALES.P DF. Apartado 4.3. Componentes secuenciales estándar.
- Material del Tema 4º disponible en SWAD en el apartado ARCHIVOS>DOCUMENTOS>01.-TEORIA y PROBLEMAS>TEMA_4> 04.TEMA_4_TOC_ANALISIS_DISENO_SISTEMAS_SECUENCIALES_ GUIA_TRABAJO_AUTONOMO.PDF.
- Videoclase del Tema 4. Clase 2 (minutos 1 a 25) ubicada en: https://drive.google.com/file/d/1irmJKANHb45wfdguGJnftXSIXF_ByWmU /view
- Seminario 5. Guía de Trabajo Autónomo. PARTE 1: INTRODUCCIÓN AL MANEJO DE UN SIMULADOR LÓGICO, páginas 1-3 a 1-10 (ambas inclusive) disponible en SWAD en el apartado ARCHIVOS>DOCUMENTOS>02.-SEMINARIOS>SEMINARIO_5>05.-SEMINARIO_5_TOC_SIMULADOR_ENTRENADOR_LOGICO_GUIA.
- Videoclases de Simulador Lógico disponibles en las direcciones siguientes:
 - https://drive.google.com/open?id=1OsHIQ51fdcfGDe0p 6b7LtTTbwpovXop https://drive.google.com/open?id=1gvQIrsORnpHDrqPwKSyvEi2vprk6pulhttps://drive.google.com/open?id=16hp2vr4GTzM4j0 wm1KFXIB0FjWfnmFn https://drive.google.com/open?id=1tlFeDH0nthSq09fc75XL1NSP22aDifh5
- Software Simulador Lógico LogicWorks.

6.1. Contador Síncrono de módulo 10:

Diseñe un contador síncrono descendente módulo 10 que genere cíclicamente la cuenta (en binario) **9, 8, 7, 6, 5, 4, 3, 2, 1, 0,** 9, 8, Simule el circuito utilizando LogicWorks y compruebe su funcionamiento mediante un cronograma como el de la Figura 6.1.

Según lo indicado en la Guía de Trabajo Autónomo del Tema 4º sobre el diseño de contadores:

- a) Deducción del número de salidas del sistema (m). Como $Z_{max} = 9)_{10} = 1001)_2$ se requiere un número m = 4 salidas $Z_3Z_2Z_1Z_0$.
- b) Deducción del número de biestables del sistema (p). Como es de módulo 10, para implementar 10 estados se requieren p = 4 biestables con salidas $Q_3Q_2Q_1Q_0$, procedentes de 4 biestables tipo $D_3D_2D_1D_0$ ó $T_3T_2T_1T_0$
- c) Como el número de salidas (m) es igual que el número de biestables (p), m = p = 4, se puede simplificar mucho el diseño, pues eligiendo adecuadamente los códigos asignados a los estados se puede hacer que $Z_i = Q_i$.

La tabla de transición del contador y las tablas de excitación de los biestables, serían las expresadas en la Tabla 6.1.

$Q_3Q_2Q_1Q_0$	$Q_3^+Q_2^+Q_1^+Q_0^+$	D ₃ D ₂ D ₁ D ₀	$T_3T_2T_1T_0$
0 0 0 0	1 0 0 1	1 0 0 1	1 0 0 1
0 0 0 1	0000	0000	0001
0 0 1 0	0001	0001	0 0 1 1
0 0 1 1	0 0 1 0	0 0 1 0	0001
0 1 0 0	0 0 1 1	0 0 1 1	0 1 1 1
0 1 0 1	0 1 0 0	0 1 0 0	0001
0 1 1 0	0 1 0 1	0 1 0 1	0 0 1 1
0 1 1 1	0 1 1 0	0 1 1 0	0 0 0 1
1000	0 1 1 1	0 1 1 1	1 1 1 1
1 0 0 1	1000	1000	0 0 0 1
1 0 1 0			
1 0 1 1			
1 1 0 0			
1 1 0 1			
1 1 1 0			
1 1 1 1			

Tabla 6.1

$$D_{i} = Q_{i}^{+}$$
 $T_{i} = 0 \text{ si } Q_{i} = Q_{i}^{+}; T_{i} = 1 \text{ si } Q_{i} \neq Q_{i}^{+}$

Quedaría expresar $D_3D_2D_1D_0$ ó $T_3T_2T_1T_0$ como funciones de $Q_3Q_2Q_1Q_0$, minimizadas convenientemente (trabajo para el estudiante). Realice el diseño utilizando biestables de tipo D ó de tipo T a su elección.

Del apartado 6.1 de la práctica el estudiante deberá remitir al profesor, subiendo a la plataforma docente cuando se le indique, el siguiente material:

- Diseño completo del circuito con sus ecuaciones. Denomínelo "PRACTICA 6-1.PDF".
- Circuito diseñado implementado con el Simulador. Denomínelo "PRACTICA_6-1.CCT".
- Fotografía del cronograma generado. Denomínelo "PRACTICA_6-1.JPG"

Para poder visualizar en la ventana *Timing Window* del simulador las señales del cronograma de la figura 6.1, etiquete convenientemente las mismas con las etiquetas CK, Q_3 , Q_2 , Q_1 y Q_0 ,

6.2. Generador de secuencia síncrono:

Diseñe un generador de secuencia o secuenciador síncrono que produzca, de forma cíclica (en binario) la siguiente secuencia de salidas: **0**, **1**, **3**, **0**, **2**, 0, 1, 3, 0, 2, Simule el circuito utilizando LogicWorks y extraiga un cronograma que refleje su buen funcionamiento. Para ello, implemente un circuito como el de la Figura 6.2.1 utilizando un generador de reloj (CLK) y un componente HEX_DISPLAY para visualizar las salidas.

Figura 6.2.1.

Según lo indicado en la Guía de Trabajo Autónomo del Tema 4º sobre el diseño de Generadores de Secuencias:

- a) Deducción del número de salidas del sistema (m). Como $Z_{max} = 3)_{10} = 11)_2$ se requiere un número m = 2 salidas Z_1Z_0 .
- b) Deducción del número de biestables del sistema (p). Como es de módulo 5, para implementar 5 estados se requieren p = 3 biestables con salidas $Q_2Q_1Q_0$, procedentes de 3 biestables tipo $D_2D_1D_0$ ó $T_2T_1T_0$.
- c) Como el número de salidas (m = 2) NO es igual que el número de biestables (p = 3), a priori, ya no se puede hacer un diseño en el que $Z_i = Q_i$ o sea que $Z_i = f_i$ ($Q_2Q_1Q_0$).

El diseño de este Generador de Secuencias sería como el realizado en el problema 4.8.1 de la Guía de Trabajo Autónomo del Tema 4° en el que se implementa el Generador de Secuencias partiendo de un núcleo formado por un contador ascendente de módulo 5, al que se le añaden las salidas Z_1Z_0 . La codificación en binario de los 5 estados del Generador de Secuencias puede ser en principio la que el diseñador desee ya que hay muchas combinaciones

posibles de asignar los códigos de los 5 estados entre las 8 posibilidades de combinaciones de $Q_2Q_1Q_0$. Una asignación posible se muestra en la Figura 6.2.2.

Figura 6.2.2. Izquierda: diagrama de estados. Centro: tabla de asignación de estados. Derecha: diagrama de estados ya asignado en binario.

Con esta asignación de estados la tabla de transición del Generador de Secuencias y las tablas de excitación de los biestables serían las expresadas en la Tabla 6.2.

	Estado	Estado	Salidas	Tabla	Tabla
	actual	siguiente		excitación	excitación
Estado	$Q_2Q_1Q_0$	$Q_{2}^{+}Q_{1}^{+}Q_{0}^{+}$	Z_1Z_0	$D_2D_1D_0$	$T_2T_1T_0$
A0	000	0 0 1	0 0	0 0 1	0 0 1
A1	0 0 1	010	0 1	010	0 1 1
A2	010	0 1 1	1 1	0 1 1	0 0 1
А3	011	100	0 0	100	111
A4	100	000	1 0	000	100
	101				
	110				
	111				

Tabla 6.2. Tabla de transición, de salidas y de excitación de biestables Di y Ti.

$$D_{i} = Q_{i}^{+}$$
 $T_{i} = 0 \text{ si } Q_{i} = Q_{i}^{+}; T_{i} = 1 \text{ si } Q_{i} \neq Q_{i}^{+}$

Quedaría expresar $D_2D_1D_0$ ó $T_2T_1T_0$ y Z_1Z_0 como funciones de $Q_2Q_1Q_0$, minimizadas convenientemente (trabajo para el estudiante). Realice el diseño utilizando biestables de tipo D o de tipo T a su elección.

Simule el circuito utilizando LogicWorks y compruebe su funcionamiento mediante un cronograma como el de la Figura 6.2.3.

Figura 6.2.3.

Para poder visualizar en la ventana *Timing Window* del simulador las señales del cronograma de la Figura 6.2.3, etiquete convenientemente las mismas con las etiquetas CLR, CLK, Z_1 , Z_0 , Q_2 , Q_1 y Q_0 ,

Del apartado 6.2 de la práctica el estudiante deberá remitir al profesor, subiendo a la plataforma docente cuando se le indique, el siguiente material:

- Diseño completo del circuito con sus ecuaciones. Denomínelo "PRACTICA_6-2.PDF".
- Circuito diseñado implementado con el Simulador. Denomínelo "PRACTICA_6-2.CCT".
- Fotografía del cronograma generado. Denomínelo "PRACTICA_6-2.JPG"