OSI MODELI

OSI Modeli

- Farklı bilgisayarların ve standartların gelişmesi ile sorunların ortaya çıkması nedeniyle
- ISO (International Organization for Standardization), OSI (Open Systems Interconnection) modelini 1984'te geliştirdi.
- 7 Katmandan oluşmakta ve karmaşıklığı azaltmak ve standartlar geliştirmek amacıyla geliştirilmiştir.

OSI Modelinin Katmanları

Terminal A

7	Uygulama
6	Sunum
5	Oturum
4	Taşıma
3	Ağ
2	Veri iletim
1	Fiziksel

7	Uygulama
6	Sunum
5	Oturum
4	Taşıma
3	Ağ
2	Veri iletim
1	Fiziksel

7. Uygulama (Application) Katmanı

- Kullanıcı tarafından çalıştırılan tüm uygulamalar burada tanımlıdır. Örnegin;
 - HTTP
 - WWW
 - FTP
 - SMTP E-mail (Simple Mail Transfer Protocol)

6. Sunum (Presentation) Katmanı

- Bu katman verileri, uygulama katmanına sunarken veri üzerinde kodlama ve dönüştürme işlemlerini yapar.
- Ayrıca bu katmanda;
 - veriyi sıkıştırma/açma,
 - sifreleme/şifre çözme,
 - EBCDIC'den ASCII'ye veya tam tersi yönde bir dönüşüm işlemlerini de yerine getirir.
- Bu katmanda tanımlanan bazı standartlar;
 - □ PICT ,TIFF ,JPEG ,MIDI ,MPEG, HTML.

EBCDIC (Extended Binary Coded Decimal Interchange Code = Genişletilmiş İkilik Kodlu Ondalık Değişim Kodu

IBM tarafından kullanılan bir karakter kümesidir.

ASCII (American Standard Code for Information Interchange)

- ANSI tarafından sunulan, standartlaşmış karakter kümesidir.
 - 33 tane basılmayan kontrol karakteri (ekranda basılmayan) ve 95 tane ekrana basılan karakter bulunur

	0	1	2	3	4	5	6	7
0	NUL	DLE	SP	0	@	P	`	р
1	SOH	DC1	!	1	A	Q	а	q
2	STX	DC2	"	2	В	R	b	r
3	ETX	DC3	#	3	С	S	υ	s
4	EOT	DC4	\$	4	D	Т	đ	ħ
5	ENQ	NAK	ор	5	E	Ū	Φ	u
6	ACK	SYN	&	6	F	V	f	۶
7	BEL	ETB	,	7	G	W	ф	W
8	BS	CAN	(8	Н	Х	h	x
9	HT	EM)	9	I	Y	i	У
A	LF	SUB	*	:	J	Z	j	z
В	VT	ESC	+	;	K	[k	-{
C	FF	FS	,	٧	L	\	1	_
D	CR	GS	-	=	М]	m	}
E	so	RS		^	N	^	n	ı
F	SI	US	/	¢.	0	_	0	DEL

5. Oturum (Session) Katmanı

- Oturumun kurulması, yönetilmesi ve sonlandırılmasını sağlar.
- Haberleşmenin organize ve senkronize edilmesini sağlar.
- Eğer veri iletiminde hata oluşmuş ise tekrar gönderilmesine karar verir.

5. Oturum (Session) Katmanı

- Verinin güvenliğini sağlar.
- Bu katmanda çalışan protokollere örnek;
 - NFS (Network File System),
 - SQL (Structured Query Language)
 - ASP (AppleTalk Session Protocol)
 - Telnet

5. Oturum (Session) Katmanı İletişim Türleri

Tek yönlü (Simplex)

Yarı çift yönlü (Half-Duplex)

Çift yönlü (Full-Duplex)

4. Taşıma (Transport) Katmanı

- Bu katman 5-7 ve 1-3 arası katmanlar arası bağlantıyı sağlar.
 - Üst katmandan aldığı verileri bölümlere (segment) ayırarak bir alt katmana iletir,
 - Bir üst katmana bu bölümleri birleştirerek sunar.

 İki düğüm arasında mantıksal bir bağlantının kurulmasını sağlar.

4. Taşıma (Transport) Katmanı

- Aynı zamanda akış kontrolü (flow control) kullanarak karşı tarafa gönderilen verinin yerine ulaşıp ulaşmadığını kontrol eder.
- Karşı tarafa gönderilen bölümlerin gönderilen sırayla birleştirilmesini sağlar.
- Örnek; TCP, UDP (User Datagram Protocol), SPX

3. Ağ (Network) Katmanı

- Bu katmanda iletilen veri blokları paket olarak adlandırılır.
- Bu katman, veri paketlerinin ağ adreslerini kullanarak bu paketleri uygun ağlara yönlendirme işini yapar.

3. Ağ (Network) Katmanı

- Adresleme işlemlerini (Mantıksal adres ve fiziksel adres çevrimleri) yürütür.
- Yönlendiriciler (Router) bu katmanda tanımlıdırlar.
- □ Örnek; IP ve IPX.

2. Veri İletim/Bağı (Data Link) Katmanı

- Ağ katmanından aldığı veri paketlerine hata kontrol bitlerini ekleyerek çerçeve (frame) halinde fiziksel katmana iletme işinden sorumludur.
- İletilen çerçevenin doğru mu yoksa yanlış mı iletildiğini kontrol eder, eğer çerçeve hatalı iletilmişse çerçevenin yeniden gönderilmesini sağlar.

2. Veri İletim (Data Link) Katmanı

- Ayrıca ağ üzerindeki diğer bilgisayarları tanımlama, kablonun o anda kimin tarafından kullanıldığının tespitini yapar.
- Örn: Ethernet, Frame Relay, ISDN, Switch ve Bridge

Veri İletim Katmanı İki Alt Katmandan Oluşur;

Media Access Control (MAC)

- MAC alt katmanı veriyi hata kontrol kodu (CRC), alıcı ve gönderenin MAC adresleri ile beraber paketler ve fiziksel katmana aktarır.
- Alıcı tarafta da bu işlemleri tersine yapıp veriyi veri bağlantısı içindeki ikinci alt katman olan LLC'ye aktarmak görevi yine MAC alt katmanına aittir.

- Logical Link Control (LLC)
 - LLC alt katmanı bir üst katman olan ağ katmanı için geçiş görevi görür.
 - Protokole özel mantıksal portlar oluşturur (Service Access Points, SAP).
 - Böylece kaynak makinada ve hedef makinada aynı protokoller iletişime geçebilir (örneğin TCP/IP).

- Logical Link Control (LLC)
 - LLC ayrıca veri paketlerinden bozuk gidenlerin (veya karşı taraf için alınanların) tekrar gönderilmesinden sorumludur.
 - Flow Control yani alıcının işleyebileğinden fazla veri paketi gönderilerek boğulmasının engellenmesi de LLC'nin görevidir.

1. Fiziksel (Physical) Katmanı

- Verilerin fiziksel olarak gönderilmesi ve alınmasından sorumludur.
- Bu katmanda tanımlanan standartlar taşınan verinin içeriğiyle ilgilenmezler.
 Daha çok işaretin şekli,fiziksel katmanda kullanılacak konnektör türü, kablo türü gibi elektriksel ve mekanik özelliklerle ilgilenir.
- Hub'lar fiziksel katmanda tanımlıdır.
- 10BaseT, 100BaseT, UTP, RJ-45, IEEE802.5 (Token Ring) vb. standartlar

Katman	Görevi
7.) Uygulama	Kullanıcının uygulamaları
6.) Sunum	Aynı dilin konuşulması; veri formatlama, şifreleme
5.) Oturum	Bağlantının kurulması ve yönetilmesi
4.) Taşıma	Verinin bölümlere ayrılarak karşı tarafa gitmesinin kontrol edilmesi
3.) Ağ	Veri bölümlerinin paketlere ayrılması, ağ adreslerinin fiziksel adreslere çevrimi
2.) Veri İletim	Ağ paketlerinin çerçevelere ayrılması
1.) Fiziksel	Fiziksel veri aktarımı

Katman	PDU (Protocol Data Unit) Adı
7.) Uygulama	HTTP, FTP, SMTP
6.) Sunum	ASCII, JPEG, PGP
5.) Oturum	NetBIOS, DHCP
4.) Taşıma	TCP, UDP, SPX
3.) Ağ	IP, IPX
2.) Veri İletim	Ethernet, Frame Relay, ISDN
1.) Fiziksel	Bit, Kablo, Konnektör

OSI'de Verilerin Adı

Katman	Kullanılan Veri Adı
7.) Uygulama	Data (Veri)
6.) Sunum	Data
5.) Oturum	Data
4.) Taşıma	Segment (Bölüm)
3.) Ağ	Packet (Paket)
2.) Veri İletim	Frame (Çerçeve)
1.) Fiziksel	Bits (Bit)

Sarma (encapsulation)

OSI Katmanları Arasında Veri Aktarımı

Fiziksel veri aktarımı; Kablolar vb...