РГПУ им. А.И. Герцена

Отчет по лабораторной работе №1 «Определение коэффициента вязкости жидкости методом Стокса»

•

Бережной Михаил

Факультет	ИИТиТО	-
Группа	ИВТ1	_

- **1. Цель работы**: экспериментально определить коэффициент вязкости жидкости (глицерина), используя метод Стонкса (метод падающего шарика в вязкой среде).
- **2. Принадлежности:** компьютер, «Виртуальная лаборатория Физики для студентов» (демоверсия), раздел Механика, Работа 1.2, Лабораторная установка №1, секундомер.

3. Результаты измерений:

һ=88 см ± 0,5 см

	11-00 CM ± 0,3 CM					
Nº	<i>r</i> , cм	t, c	v, cm/c	η, Пз	$\Delta\eta_i$	
шарика						
1	0,114	28,59	3,08	0,0926	0,000	
2	0,189	9,89	8,9	0,0881	-0,0045	
3	0,1415	18,96	4,64	0,0947	0,0021	
4	0,165	13,64	6,45	0,0927	0,0001	
5	0,169	12,87	6,84	0,0916	-0,0010	
6	0,217	7,47	11,78	0,0877	-0,0049	
7	0,244	6,83	12,88	0,1014	0,0088	
Среднее				0,0926	0,0031	
Округлённое среднее				0,093		

4. Определение скорости движения шарика: v = h/t

$$v1 = h/t1 = 88,0/28,59 = 3,08 (cm/c)$$

$$v2 = h/t2 = 88,0/9,89 = 8,9 (cm/c)$$

$$v3 = h/t3 = 88,0/18,96 = 4,64 (cm/c)$$

$$v4 = h/t4 = 88,0/13,64 = 6,45 (cm/c)$$

$$v5 = h/t5 = 88.0/12.87 = 6.84 (cm/c)$$

$$v6 = h/t6 = 88.0/7.47 = 11.78 (cm/c)$$

$$v7 = h/t7 = 88,0/6,83 = 12,88 (cm/c)$$

5. Определение коэффициента вязкости: $\eta = (\rho_1 - \rho_2) \frac{g r^2}{V}$

$$\eta_1 = (11,3400-1,2720) * \frac{9,8100*0,114^2}{3,08} = 0,0926 (\Pi_3)$$

$$\eta_2$$
=(11,3400-1,2720)* $\frac{9,8100*0,189^2}{8,9}$ = 0,0881 (Пз)

$$\eta_3 = (11,3400-1,2720) * \frac{9,8100*0,1415^2}{4,64} = 0,0947 (\Pi_3)$$

$$\eta_4$$
=(11,3400-1,2720)* $\frac{9,8100*0,165^2}{6,45}$ = 0,0927 (Пз)

$$\eta_5 = (11,3400-1,2720) * \frac{9,8100*0,169^2}{6,84} = 0,0916 (\Pi_3)$$
 $\eta_6 = (11,3400-1,2720) * \frac{9,8100*0,217^2}{11,78} = 0,0877 (\Pi_3)$
 $\eta_7 = (11,3400-1,2720) * \frac{9,8100*0,244^2}{12.88} = 0,1014 (\Pi_3)$

6. Определение **η**_{средн}:

$$\eta_{\text{средн}} = \frac{0,0926 + 0,0881 + 0,0947 + 0,0927 + 0,0916 + 0,0877 + 0,1014}{7} = 0,0926$$

7. Определение $\Delta \eta_i$:

$$\Delta \eta_i = \eta_{\text{средн}} - \eta_i$$
 $\Delta \eta_1 = 0.0926 - 0.0926 = 0$
 $\Delta \eta_2 = 0.0881 - 0.0926 = -0.0045$
 $\Delta \eta_3 = 0.0947 - 0.0926 = 0.0021$
 $\Delta \eta_4 = 0.0927 - 0.0926 = 0.0001$
 $\Delta \eta_5 = 0.0916 - 0.0926 = -0.0010$
 $\Delta \eta_6 = 0.0877 - 0.0926 = -0.0049$
 $\Delta \eta_7 = 0.1014 - 0.0926 = 0.0088$

8. Получение погрешности Δη в определении коэффициента вязкости глицерина:

$$\Delta \eta = \frac{|0| + |-0.0045| + |0.0021| + |0.0001| + |-0.0010| + |-0.0049| + |0.0088|}{7} = 0.0031$$

9. Округление значения $\eta_{\text{средн}}$ в соответствии со значением $\Delta\eta$

 $\eta_{\text{средн}} = 0.0926 \pm 0.0031 (\Pi_3)$

10. Сравнение с табличным значением

 $\eta_{\text{средн}}$ = (0,0926 ± 0.0031) Пз не соответствует табличному значению $\eta_{\text{табл}}$ = 10 ± 2 Пз.

вывод:

В ходе лабораторной работы экспериментально был определен коэффициент вязкости глицерина. Путем постановки опытов со свинцовыми шариками, удалось установить, что скорость шарика, движущегося в сосуде с жидкостью, зависит от размеров шарика, т.е. его массы. В результате получили среднее значение вязкости жидкости $\eta_{\text{средн}}$ =0,0926±0,0031 Пз. Полученный результат не соответствует табличному значению $\eta_{\text{табл}}$ =10±2Пз. Из этого следует, что в ходе лабораторной работы были допущены измерительные или вычислительные ошибки, из-за которых результат не сошёлся с табличным.