Transitive Closure

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 11

■ Let $R \subseteq S \times S$ be a relation on a set S

- Let $R \subseteq S \times S$ be a relation on a set S
- For instance, S is a set of people, and $(p,q) \in R$ if p is a parent of q

- Let $R \subseteq S \times S$ be a relation on a set S
- For instance, S is a set of people, and $(p,q) \in R$ if p is a parent of q
- Can compute the ancestor relation from the parent relation

- Let $R \subseteq S \times S$ be a relation on a set S
- For instance, S is a set of people, and $(p,q) \in R$ if p is a parent of q
- Can compute the ancestor relation from the parent relation
- $lackbox{\textbf{p}}$ is an ancestor of q if we can find a sequence of people r_0, r_1, \ldots, r_n such that
 - $p = r_0$
 - For each $i \in \{0, 1, ..., n-1\}$, $(r_i, r_{i+1}) \in R$
 - $q = r_n$

- Let $R \subseteq S \times S$ be a relation on a set S
- For instance, S is a set of people, and $(p,q) \in R$ if p is a parent of q
- Can compute the ancestor relation from the parent relation
- $lackbox{\textbf{p}}$ is an ancestor of q if we can find a sequence of people r_0, r_1, \ldots, r_n such that
 - $p = r_0$
 - For each $i \in \{0, 1, ..., n-1\}$, $(r_i, r_{i+1}) \in R$
 - $q = r_n$
- This is called the transitive closure of R, written R^+
 - \blacksquare $R^+ \subseteq S \times S$ is also a relation
 - R^+ is derived from $R \subseteq S \times S$

- Represent $R \subseteq S \times S$ as a (directed) graph G = (V, E)
 - V = S
 - $(u, v) \in E$ if and only if $(u, v) \in R$

- Represent $R \subseteq S \times S$ as a (directed) graph G = (V, E)
 - V = S
 - $(u, v) \in E$ if and only if $(u, v) \in R$
- $(u, v) \in R^+$ if and only if there is a path from u to v in the graph

- Represent $R \subseteq S \times S$ as a (directed) graph G = (V, E)
 - V = S
 - $(u, v) \in E$ if and only if $(u, v) \in R$
- $(u, v) \in R^+$ if and only if there is a path from u to v in the graph
- We know how to compute reachability in graphs
 - BFS, DFS

- Represent $R \subseteq S \times S$ as a (directed) graph G = (V, E)
 - V = S
 - $(u, v) \in E$ if and only if $(u, v) \in R$
- $(u, v) \in R^+$ if and only if there is a path from u to v in the graph
- We know how to compute reachability in graphs
 - BFS, DFS
- Perform BFS/DFS from all verties to compute R+

Another strategy

- Another strategy
- Consider the adjacency matrix A for G

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

- Another strategy
- Consider the adjacency matrix A for G

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

■ A[i,j] = 1 — path of length 1 from i to j

- Another strategy
- Consider the adjacency matrix A for G

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

- A[i,j] = 1 path of length 1 from i to j
- Want $A^+[i,j] = 1$ path of length ≥ 1 from i to j

■ Path of length 2 from i to j passes through intermediate k

- Path of length 2 from i to j passes through intermediate k
- $A^2[i,j] = 1$ if there is some k such that A[i,k] = 1 and A[k,j] = 1

A

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

	0	1	2	3	4	5	6	7	8	9
0	1	0	1	1	0	0	0	1	0	0
1										
2										
3										
4										
5										
6										
7										
8										
9										

- Path of length 2 from i to j passes through intermediate k
- $A^2[i,j] = 1$ if there is some k such that A[i,k] = 1 and A[k,j] = 1

A

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

	0	1	2	3	4	5	6	7	8	9
0	1	0	1	1	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	0	0
2										
3										
4										
5										
6										
7										
8										
9										

- Path of length 2 from i to j passes through intermediate k
- $A^2[i,j] = 1$ if there is some k such that A[i,k] = 1 and A[k,j] = 1

A

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

	0	1	2	3	4	5	6	7	8	9
0	1	0	1	1	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	0	0
2	0	1	0	1	0	0	0	0	0	0
3										
4										
5										
6										
7										
8										
9										

- Path of length 2 from i to j passes through intermediate k
- $A^2[i,j] = 1$ if there is some k such that A[i,k] = 1 and A[k,j] = 1

A

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

	0	1	2	3	4	5	6	7	8	9
0	1	0	1	1	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	0	0
2	0	1	0	1	0	0	0	0	0	0
3										
4										
5										
6										
7										
8										
9										

- Path of length 2 from *i* to *j* passes through intermediate *k*
- $A^2[i,j] = 1$ if there is some k such that A[i,k] = 1 and A[k,j] = 1

A

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

	0	1	2	3	4	5	6	7	8	9
0	1	0	1	1	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	0	0
2	0	1	0	1	0	0	0	0	0	0
3	1	0	0	0	0	1	0	1	0	0
4	0	1	0	0	0	0	1	0	1	0
5	0	0	0	0	1	0	1	0	1	0
6	0	0	0	1	0	0	0	1	0	0
7	0	0	0	0	0	1	0	0	0	1
8	0	0	1	0	0	0	0	1	0	0
9	0	0	0	0	0	1	0	0	0	0

- **Extend** path of length 2 from i to k by path of length 1 from k to j
- $A^3[i,j] = 1$ if there is some k such that $A^2[i,k] = 1$ and A[k,j] = 1

- **Extend** path of length 2 from i to k by path of length 1 from k to j
- $A^3[i,j] = 1$ if there is some k such that $A^2[i,k] = 1$ and A[k,j] = 1
- **Extend** path of length 3 from i to k by path of length 1 from k to j
- $A^4[i,j] = 1$ if there is some k such that $A^3[i,k] = 1$ and A[k,j] = 1

- **Extend path** of length 2 from i to k by path of length 1 from k to j
- $A^3[i,j] = 1$ if there is some k such that $A^2[i,k] = 1$ and A[k,j] = 1
- **Extend** path of length 3 from i to k by path of length 1 from k to j
- $A^4[i,j] = 1$ if there is some k such that $A^3[i,k] = 1$ and A[k,j] = 1
-
- Extend path of length ℓ from i to k by path of length 1 from k to j
- $lacksquare A^{\ell+1}[i,j]=1$ if there is some k such that $A^{\ell}[i,k]=1$ and A[k,j]=1

- **Extend path** of length 2 from i to k by path of length 1 from k to j
- $A^3[i,j] = 1$ if there is some k such that $A^2[i,k] = 1$ and A[k,j] = 1
- **Extend** path of length 3 from i to k by path of length 1 from k to j
- $A^4[i,j] = 1$ if there is some k such that $A^3[i,k] = 1$ and A[k,j] = 1
-
- Extend path of length ℓ from i to k by path of length 1 from k to j
- $lacksquare A^{\ell+1}[i,j]=1$ if there is some k such that $A^{\ell}[i,k]=1$ and A[k,j]=1
- How long do we go on?

- **Extend path** of length 2 from i to k by path of length 1 from k to j
- $A^3[i,j] = 1$ if there is some k such that $A^2[i,k] = 1$ and A[k,j] = 1
- **Extend** path of length 3 from i to k by path of length 1 from k to j
- $A^4[i,j] = 1$ if there is some k such that $A^3[i,k] = 1$ and A[k,j] = 1
-
- Extend path of length ℓ from i to k by path of length 1 from k to j
- $lacksquare A^{\ell+1}[i,j]=1$ if there is some k such that $A^{\ell}[i,k]=1$ and A[k,j]=1
- How long do we go on?
- Sufficient to check paths upto length n-1

• $(i,j) \in R^+$ if there is a path from i to j in G

- $(i,j) \in R^+$ if there is a path from i to j in G
- Length of path is bounded by n-1

- $(i,j) \in R^+$ if there is a path from i to j in G
- Length of path is bounded by n-1
- Combine information in $A = A^1, A^2, \dots, A^{n-1}$ about paths of length 1 to n-1

- $(i,j) \in R^+$ if there is a path from i to j in G
- Length of path is bounded by n-1
- Combine information in $A = A^1, A^2, \dots, A^{n-1}$ about paths of length 1 to n-1
- $lacksquare A^+[i,j] = \max\{A^\ell[i,j] \mid 1 \le \ell < n\}$

- \bullet $(i,j) \in R^+$ if there is a path from i to j in G
- Length of path is bounded by n-1
- Combine information in $A = A^1, A^2, \dots, A^{n-1}$ about paths of length 1 to n-1
- $lacksquare A^+[i,j] = \max\{A^\ell[i,j] \mid 1 \le \ell < n\}$
 - Each $A^{\ell}[i,j]$ is either 0 or 1

- $(i,j) \in R^+$ if there is a path from i to j in G
- Length of path is bounded by n-1
- Combine information in $A = A^1, A^2, \dots, A^{n-1}$ about paths of length 1 to n-1
- $A^+[i,j] = \max\{A^\ell[i,j] \mid 1 \le \ell < n\}$
 - Each $A^{\ell}[i,j]$ is either 0 or 1
 - lacksquare max $\{A^{\ell}[i,j] \mid 1 \leq \ell < n\}$ is 1 if and only if $A^{\ell}[i,j] = 1$ for some $1 \leq \ell < n$

- $(i,j) \in R^+$ if there is a path from i to j in G
- Length of path is bounded by n-1
- Combine information in $A = A^1, A^2, \dots, A^{n-1}$ about paths of length 1 to n-1
- $A^+[i,j] = \max\{A^\ell[i,j] \mid 1 \le \ell < n\}$
 - Each $A^{\ell}[i,j]$ is either 0 or 1
 - lacksquare max $\{A^{\ell}[i,j] \mid 1 \leq \ell < n\}$ is 1 if and only if $A^{\ell}[i,j] = 1$ for some $1 \leq \ell < n$
 - $A^+[i,j]$ is 1 if and only if there is a path from i to j

- $(i,j) \in R^+$ if there is a path from i to j in G
- Length of path is bounded by n-1
- Combine information in $A = A^1, A^2, \dots, A^{n-1}$ about paths of length 1 to n-1
- $A^+[i,j] = \max\{A^\ell[i,j] \mid 1 \le \ell < n\}$
 - Each $A^{\ell}[i,j]$ is either 0 or 1
 - lacksquare max $\{A^{\ell}[i,j] \mid 1 \leq \ell < n\}$ is 1 if and only if $A^{\ell}[i,j] = 1$ for some $1 \leq \ell < n$
 - $A^+[i,j]$ is 1 if and only if there is a path from i to j
- This calculation can be described directly using matrix multiplication

- $(i,j) \in R^+$ if there is a path from i to j in G
- Length of path is bounded by n-1
- Combine information in $A = A^1, A^2, \dots, A^{n-1}$ about paths of length 1 to n-1
- $A^+[i,j] = \max\{A^\ell[i,j] \mid 1 \le \ell < n\}$
 - Each $A^{\ell}[i,j]$ is either 0 or 1
 - lacksquare max $\{A^{\ell}[i,j] \mid 1 \leq \ell < n\}$ is 1 if and only if $A^{\ell}[i,j] = 1$ for some $1 \leq \ell < n$
 - $A^+[i,j]$ is 1 if and only if there is a path from i to j
- This calculation can be described directly using matrix multiplication
- $A^2 = A \times A, A^3 = A^2 \times A, ..., A^{\ell+1} = A^{\ell} \times A$

■ The transitive closure R+ of a relation R connects pairs of elements related by a sequence of intermediate elements

- The transitive closure R+ of a relation R connects pairs of elements related by a sequence of intermediate elements
- A typical example is the ancestor relation derived from the parent relation

- The transitive closure R+ of a relation R connects pairs of elements related by a sequence of intermediate elements
- A typical example is the ancestor relation derived from the parent relation
- If we represent a relation as a graph, transitive closure corresponds to reachability

8/8

- The transitive closure R+ of a relation R connects pairs of elements related by a sequence of intermediate elements
- A typical example is the ancestor relation derived from the parent relation
- If we represent a relation as a graph, transitive closure corresponds to reachability
- Reachability between all pairs of vertices can be checked using repeated BFS/DFS starting from each vertex

- The transitive closure R+ of a relation R connects pairs of elements related by a sequence of intermediate elements
- A typical example is the ancestor relation derived from the parent relation
- If we represent a relation as a graph, transitive closure corresponds to reachability
- Reachability between all pairs of vertices can be checked using repeated BFS/DFS starting from each vertex
- Alternatively, we can perform repeated matrix multiplication on the adjacency matrix A, observing that the length of a path is at most n-1