

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA AGRÍCOLA DE JUNDIAÍ ESTRUTURA DA DADOS

PROFESSOR: TANIRO RODRIGUES ALUNO: PIERRE CARLOS DE BRITO

Lista de Exercícios 5

QUESTÃO 1: Indique se as afirmativas a seguir são verdadeiras ou falsas. Justifique sua resposta.

I. $f(n) = 2^{2n}$, $f(n) = O(2^n)$

Falsa. A função $f(n) = 2^{2n}$ pode ser reescrita como 4^N . Para ser $O(2^n)$, precisaria existir uma constante c onde $4^n \le c \cdot 2^n$ para valores grandes de n. Simplificando, teríamos $2^n \le c$, o que é impossível pois 2^n cresce indefinidamente com n, não podendo ser limitado por qualquer constante fixa.

II. $f(n) = 2^{n+1}$, $f(n) = O(2^n)$ Verdadeira. A função $f(n) = 2^{n+1}$ equivale a $2 \cdot 2^n$. Escolhendo c = 2, temos $2 \cdot 2^n \le 2 \cdot 2^n$ para todo $n \ge 0$, satisfazendo perfeitamente a definição de $O(2^n)$.

QUESTÃO 2: Dadas as funções de custo de tempo T pelas expressões abaixo para um tamanho n considerando valores muito grandes de n. Escreva o termo dominante e especifique o menor limite assintótico superior O(n) possível para cada algoritmo.

T(n)	Termo dominante	Menor limite assintótico superior
5 + 0,001n ³ + 0,025n	n³	O(n³)
500n + 100n ^{3/2} + 50nlog10(n)	nlog ₂ (n)	O(nlog n)
$0.3n + 5n^{3/2} + 2.5n^{7/4}$	n³/²	O(n ^{3/2})
n²log2(n) + n(log2(n)) ²	n²log₂(n)	O(n²log n)
nlog3(n) + nlog2(n)	nlog ₂ (n)	O(nlog n)
$3\log 8(n) + \log_2(\log_2(\log_2(n)))$	log ₃ (n)	O(log n)
100n + 0.01n ²	n²	O(n²)
0,01n + 100n ²	n²	O(n²)
$2n + n^{1/2} + 0.5n^{5/4}$	N	O(n)
100nlog3(n) + n ³ + 100n	n³	O(n³)

QUESTÃO 3: Explique por que a declaração: "O tempo de execução no algoritmo A é no mínimo O(n²)" não tem sentido.

A notação "O tempo de execução no algoritmo A é no mínimo $O(n^2)$ " não tem sentido porque $O(n^2)$ indica limite assintótico inferior, ou seja, o comportamento no melhor caso, não no mínimo. A declaração correta seria "O tempo de execução no algoritmo A é $O(n^2)$ ", significando que o algoritmo leva pelo menos tempo proporcional a n^2 para valores suficientemente grandes de n.

QUESTÃO 4: Sejam g (n) = $(n + 1)^2$ e f (n) = n^2 , prove que as funções g (n) e f (n) dominam assintoticamente uma à outra.

- $g(n) = (n + 1)^2 = n^2 + 2n + 1$
- $\lim_{n\to\infty} g(n)/f(n) = \lim_{n\to\infty} (n^2 + 2n + 1)/n^2 = \lim_{n\to\infty} (1 + 2/n + 1/n^2) = 1$

Como o limite é uma constante finita (1), nem g(n) domina assintoticamente f(n), nem

f(n) domina g(n). Ambas as funções são assintoticamente equivalentes, ou seja, $g(n) = \Theta(f(n))$.