

Programmazione Lineare: Algoritmo del Simplesso

Daniele Vigo

D.E.I. – Università di Bologna

daniele.vigo@unibo.it

rev. 1.1 - 2023

Algoritmo del Simplesso

- Metodo algebrico per la soluzione di problemi LP (G.B. Dantzig, 1947)
- Se esiste una soluzione ottima, essa coincide con un vertice
- I vertici ammissibili sono in un numero finito,

proporzionali a
$$\binom{n}{m}$$
 n = numero variabili m = numero vincoli

- Per LP l'intorno Euclideo è esatto ∀ε > 0
 - È esatto anche l'intorno
 - N_A(x) :={vertici ammissibili adiacenti ad x}

Intorni ed LP

 Dato x vertice corrente ed i suoi vertici adiacenti, sia P l'insieme dei punti comb.

conv. di tali punti

 $\exists \ \varepsilon'$: i punti ammissibili dell' intorno $N_{\varepsilon'}(x)$, appartengono a P

per verificare l'ottimalità e sufficiente farlo rispetto a $N_A(x)$

- 1. Inizializzazione: parti da un vertice ammissibile
- Ottimalità: esamina i vertici ammissibili e non esplorati adiacenti al corrente: se non esiste vertice migliore STOP
- 3. Iterazione: muovi verso un vertice ammissibile migliore e vai al passo 2

$$\max z = 3x_1 + 5x_2$$
$$\nabla = (3,5)$$

 Per rendere l'algoritmo del simplesso utilizzabile (ad es su computer) è necessario trasformarlo

da metodo geometrico

(basato su concetti di vertice ed intorno)

a metodo algebrico

(basato sulla soluzione di sistemi di equazioni)

Definizione di una procedura algebrica:

disequazioni equazioni forma standard

Esempio

(P)
$$\max z = 3x_1 + 5x_2$$

s.t. $x_1 \le 4$
 $x_2 \le 6$
 $3x_1 + 2x_2 \le 18$
 $x_1, x_2 \ge 0$

si passa da:
 R^t (f. canonica)
 a:
 Rⁿ (f. standard)
 con n=t+m

(P')
$$\min -z = -3x_1 - 5x_2$$

s.t. $x_1 + x_3 = 4$
 $x_2 + x_4 = 6$
 $3x_1 + 2x_2 + x_5 = 18$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Soluzione aumentata

Def.: Soluzione aumentata: soluzione di (P') corrispondente ad una soluzione di (P)

Si ottiene sostituendo in (P') i valori delle t variabili originarie e ricavando i valori delle m rimanenti

Es. (3,2)
$$\rightarrow x_1=3, x_2=2 \rightarrow (3,2,1,4,5)$$

Assunzioni

n > m
 (più variabili di vincoli)

A è di rango m
 (sottomatrici m x m non singolari)

Caratterizzazione dei vertici (1)

(P')
$$\min -z = -3x_1 - 5x_2$$

 $s.t.$ x_1 $+ x_3$ $= 4$
 x_2 $+ x_4$ $= 6$
 $3x_1 + 2x_2$ $+ x_5$ $= 18$
 x_1 $, x_2$ $, x_3$ $, x_4$ $, x_5$ ≥ 0

 Soluzione generica di (P'): valori arbitrari a t variabili e si ricavano le rimanenti m

• Es.
$$x_4 = 4$$
, $x_5 = 5 \rightarrow (3,2,1,4,5)$
 $x_3 = 0$, $x_4 = 0 \rightarrow (4,6,0,0,-6)$

Caratterizzazione dei vertici (2)

Si vuole lavorare su (P')
 ed individuare le soluzioni
 corrispondenti ai vertici di
 (P):

 le variabili di P' sono slack di vincoli di P

Caratterizzazione dei vertici (3)

- Si vuole lavorare su (P') ed individuare le soluzioni corrispondenti ai vertici di (P):
 - porre uguali a zero t variabili (⇒ sistema di m equazioni in m incognite : Bx_B= d)
 - ricavare le altre m in modo univoco dal sistema $B^{-1}Bx_B = B^{-1}d$
 - Si può dimostrare che in questo modo si costruiscono tutte le soluzioni aumentate corrispondenti ai vertici di P

Soluzioni Base (1)

 Una base di A è una collezione di m colonne linearmente indipendenti:

$$\mathcal{B} = \{ A_{\beta(1)}, \dots, A_{\beta(m)} \}$$

Soluzioni Base (2)

• E' possibile permutare le colonne di A in modo che le $A_j \in \mathcal{B}$ siano le prime m:

$$A = [A_1, ..., A_m | A_{m+1}, ..., A_n] = [B | F]$$

$$in base fuori base$$

con B matrice m x m non singolare, da cui

$$Ax = d \Rightarrow \begin{bmatrix} B|F \end{bmatrix} \begin{bmatrix} x_B \\ x_F \end{bmatrix} = \begin{bmatrix} d \end{bmatrix} \Rightarrow Bx_B + Fx_F = d$$

Soluzioni Base (3)

• È quindi possibile ricavare le x_B a partire dalle x_F (arbitrarie)

$$x_B = B^{-1}d - B^{-1}F x_F$$

• Una soluzione base (SB), x', si ottiene ponendo $[x_F]=[0]$

Esempio (1)

$$\mathcal{B} = \{ A_1, A_2, A_4 \}$$

$$b_{ij}^{-1} = \frac{(-1)^{i+j} |B_{ji}|}{|B|}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 2 & 0 \end{bmatrix} \quad F = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \quad d = \begin{bmatrix} 4 \\ 6 \\ 18 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -3/2 & 0 & 1/2 \\ 3/2 & 1 & -1/2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_4 \end{bmatrix} = B^{-1}d - B^{-1}Fx_F = \begin{bmatrix} 4 \\ 3 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ -3/2 & 1/2 \\ 3/2 & -1/2 \end{bmatrix} \begin{bmatrix} x_3 \\ x_5 \end{bmatrix}$$

Esempio (2)

min
$$-z = -3x_1 - 5x_2$$

s.t. $x_1 + x_3 = 4$
 $x_2 + x_4 = 6$
 $3x_1 + 2x_2 + x_5 = 18$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Manualmente si poteva procedere anche partendo dal sistema originario:

- 1. ricavando $x_1 = 4 x_3$ dalla 1^a equazione
- 2. sostituendo nella $3^a \Rightarrow x_2 = 3 + (3/2)x_3 (1/2)x_5$
- 3. sostituendo nella $2^a \Rightarrow x_4 = 3 3/2 x_3 + 1/2 x_5$

Soluzioni Base Ammissibili

- Una SB, x', soddisfa Ax = d, ma non necessariamente x ≥ 0
 - SB Ammissibile (SBA) se $x' \ge 0$
 - SB non Ammissibile se $\exists x_i' < 0$

Th.:

x è un vertice del politopo

$$F = \{ x \in \mathbb{R}^n : Ax = d, x \ge 0 \}$$

se e solo se x è SBA del sistema Ax = d

Algoritmo del Simplesso (1ª versione)

- 1. Scegli la base $\mathcal{B} = \{A_{\beta(1)}, ..., A_{\beta(m)}\}$ iniziale (corrispondente ad una SBA)
- 2. Calcola la SBA, x^* , corrispondente a \mathcal{B}
- 3. Se x* è ottima STOP (test di ottimalità)
- 4. Aggiorna \mathcal{B} in modo che individui una SBA adiacente e di costo migliore (inferiore)
- 5. Vai al passo 2

Dobbiamo vedere come realizzare i passi 1,3 e 4

Condizione di Ottimalità (1)

si ricavano le x_1,x_2,x_4 in funzione di x_3,x_5

$$x_1 = 4$$
 $-x_3$
 $x_2 = 3 + (3/2) x_3 - (1/2) x_5$
 $x_4 = 3 - 3/2 x_3 + 1/2 x_5$

$$-z = -c^{T}x = -3x_{1} - 5x_{2}$$

$$= -3(4-x_{3})-5(3+(3/2) x_{3}-(1/2) x_{5})$$

$$= -27 - (9/2) x_{3} + (5/2) x_{5}$$

Condizione di Ottimalità (2)

- attualmente $x_3=x_5=0$ (fuori base) e z=27
- aumentando x_5 (muovendosi verso D) –z aumenta
- aumentando x₃ (muovendosi verso B) –*z diminuisce*

$$-z = -c^{T}x = -3x_{1} - 5x_{2}$$

$$= -3(4-x_{3})-5(3+(3/2) x_{3}-(1/2) x_{5})$$

$$= -27 - (9/2) x_{3} + (5/2) x_{5}$$

Condizione di Ottimalità (3)

Pivoting = ingresso in base di una variabile

Analiticamente (problema di minimo)

• Si sa che $x_B = B^{-1}d - B^{-1}Fx_F$ da cui

$$c^{T}x = \begin{bmatrix} c_{B}^{T} & c_{F}^{T} \end{bmatrix} \begin{bmatrix} x_{B} \\ x_{F} \end{bmatrix} = c_{B}^{T}x_{B} + c_{F}^{T}x_{F} =$$

$$= c_{B}^{T}B^{-1}d - c_{B}^{T}B^{-1}Fx_{F} + c_{F}^{T}x_{F} =$$

$$= c_{B}^{T}B^{-1}d + (c_{F}^{T} - c_{B}^{T}B^{-1}F) x_{F}$$

$$= c_{B}^{T}A^{-1}d + (c_{F}^{T} - c_{B}^{T}B^{-1}F) x_{F}$$

Condizione di Ottimalità (4)

Quindi

$$c^T x = c_0^* + c^{\prime T} x_F$$

dove

$$c'^{T} = \begin{bmatrix} c_{B}^{T} - c_{B}^{T} B^{-1} B / c_{F}^{T} - c_{B}^{T} B^{-1} F \end{bmatrix}$$

$$c'^{T} = c^{T} - c_{B}^{T} B^{-1} A$$

$$c'^{T} = c^{T} - c_{B}^{T} B^{-1} A$$

è il vettore dei costi ridotti (o residui)

Condizione di Ottimalità (5)

• Se esiste un $c'_j < 0$

facendo entrare in base x_j , con $x_j = 9 > 0$

- \Rightarrow il costo diminuisce di \mathcal{G} c'_{j}
- c'_j è la variazione di z conseguente all' ingresso di un' unità di x_j in base
- derivata direzionale di z rispetto alla direzione associata all' ingresso di x_i

Condizione di Ottimalità (6)

Condizione di ottimalità

$$x^* = (x^*_B|0)$$
 è ottimo se $c' \ge 0$

Infatti

$$c^T x = c_0^* + c_F^{'T} x_F \ge c_0^* = c_B^T x_B^*$$

Per le variabili in base $c'_{i} = 0$

 \Rightarrow Se esiste più di una colonna con c'_j < 0, quale fare entrare in base?

Spostamento da SBA a SBA (1)

- Se esiste $A_h \notin \mathcal{B}$ tale che $c'_h < 0$ bisogna farla entrare in base
- Basi adiacenti: differiscono per una colonna Es. $\{A_1, A_2, A_4\}$ e $\{A_1, A_2, A_3\}$
- Una base adiacente si ottiene dalla attuale:
 - mantenendo $x_j = 0$ ogni $A_j \notin \mathcal{B}$, $j \neq h$
 - aumentando x_h il più possibile mantenendo la soluzione ammissibile

- Nello spostamento tra basi adiacenti si hanno 2 gradi di libertà:
 - 1. scelta della variabile che entra in base
 - 2. scelta della variabile che lascia la base

Se due scelte arbitrarie

possibilità di SB non ammissibili

Vertice C corrispondente a

$$\mathcal{B} = \{A_1, A_2, A_4\}$$

Se entra A_3 ho 3 Basi Adiacenti:

$$\mathcal{B}_1 = \{A_1, A_2, A_3\}$$
 Vertice B

$$\mathcal{B}_2 = \{A_1, A_3, A_4\}$$
 Punto F

$$\mathcal{B}_3 = \{A_3, A_2, A_4\}$$
 Punto G

Algoritmo del Simplesso

• Entra in base una delle variabili che possono migliorare z $(c'_j < 0)$

 La variabile che esce viene determinata in modo che si ottenga una SBA

Esempio (1)

$$x_{1} = 4 -x_{3}$$

$$x_{2} = 3 + (3/2) x_{3} - (1/2) x_{5}$$

$$x_{4} = 3 - 3/2 x_{3} + x_{5}$$

$$-z = -c^{T}x = -3x_{1} - 5x_{2}$$

$$= -27 - (9/2) x_{3} + (5/2) x_{5}$$

- Conviene far entrare in base x_3 (mantenendo $x_5 = 0$)
- Affinchè la soluzione rimanga ammissibile:

$$x_1 = 4$$
 $-x_3 \ge 0 \Rightarrow x_3 \le 4$
 $x_2 = 3 + (3/2) x_3 \ge 0 \Rightarrow x_3 \ge -2$
 $x_4 = 3 - 3/2 x_3 \ge 0 \Rightarrow x_3 \le 2$

Il massimo aumento ammissibile di x_3 è 2

Esempio (2)

$$x_1 = 4$$
 $-x_3 = 4 - 2 = 2$
 $x_2 = 3 + (3/2) x_3 = 3 + 3 = 6$
 $x_4 = 3 - 3/2 x_3 = 3 - 3 = 0$

 x_4 esce dalla base! x = (2,6,2,0,0)

Esempio (3)

$$x_1 = 2 + (1/3) x_4 - (1/3) x_5$$

 $x_2 = 6 - (1/2) x_4$
 $x_3 = 2 - (1/3) x_4 + (1/3) x_5$

$$-z = -c^{T}x = -3x_1 - 5x_2$$

= -36 + (3/2) x₄ + x₅

OTTIMA!!!

Spostamento da SBA a SBA (2)

• Effetto dell' ingresso in base di x_h :

$$x_B = B^{-1}d - B^{-1}Fx_F \Rightarrow [x_B] = [B^{-1}d] - [B^{-1}][...A_h...] \begin{vmatrix} \vdots \\ x_h \\ \vdots \end{vmatrix}$$

Tra le x_F solo x_h è diversa da 0

$$\begin{bmatrix} x_B \end{bmatrix} = \begin{bmatrix} B^{-1}d \end{bmatrix} - \begin{bmatrix} B^{-1}A_h \end{bmatrix} x_h = \begin{bmatrix} d' \end{bmatrix} - \begin{bmatrix} A'_h \end{bmatrix} x_h$$

La formula di aggiornamento è:

$$x_{\beta(i)} = d'_i - a'_{ih}x_h$$
 $i = 1,..., m$

Spostamento da SBA a SBA (3)

$$x_{\beta(i)} = d'_{i} - a'_{ih}x_{h}$$
 $i = 1,..., m$

Si deve mantenere l'ammissibilità

$$\Rightarrow x_{\beta(i)} \geq 0 \quad \forall i = 1, ..., m$$

$$x_{\beta(i)} = d'_i - a'_{ih}x_h \ge 0$$
 $i = 1,..., m$

- Dato che $x_h > 0$ e $d'_i \ge 0$ si hanno 2 possibilità:
 - $a'_{ih} \le 0 \implies x_{b(i)} \ge 0$ qualunque sia $x_h > 0$
 - $a'_{ih} > 0 \implies x_{b(i)} \ge 0$ solo per $x_h \le d'_i / a'_{ih}$

Spostamento da SBA a SBA (4)

• x_h può crescere di

$$\theta = \min \left\{ \frac{d'_i}{a'_{ih}}, i = 1, ..., m : a'_{ih} > 0 \right\} = \frac{d'_l}{a'_{lh}}$$

 x_h entra in base a livello ϑ , ed $x_{\beta(l)}$ esce dalla base (pivoting)

Se
$$a'_{ih} \le 0 \quad \forall i$$

 $x_h \to +\infty$
problema ILLIMITATO

SBA degeneri (1)

• Una base ${\mathcal B}$ determina univocamente una SBA , per cui

$$SBA' \neq SBA'' \Rightarrow \mathcal{B}' \neq \mathcal{B}''$$

Invece:

$$\mathcal{B}' \neq \mathcal{B}'' \Rightarrow \mathsf{SBA}' \neq \mathsf{SBA}''$$

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & 3 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad d = \begin{bmatrix} 0 \\ 6 \\ 5 \end{bmatrix}$$

$$d = \begin{vmatrix} 0 \\ 6 \\ 5 \end{vmatrix}$$

$$\mathcal{B}' = \{A_1, A_4, A_5\} : (B')^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \quad x' = (0, 0, 0, 6, 5)$$

$$\mathcal{B}'' = \{A_3, A_4, A_5\} : (B'')^{-1} = I$$
 $x'' = (0,0,0,6,5)$ $\uparrow \uparrow \uparrow$ più di $n-m$ zeri

SBA degeneri (2)

 Una SBA si dice degenere se contiene più di n–m zeri

Th. Se 2 basi distinte \mathcal{B}' e \mathcal{B}'' corrispondono alla stessa SBA x, questa è degenere

DIM.

x ha n-m zeri nelle colonne che non sono in \mathcal{B}' ed altri zeri nelle colonne di $\mathcal{B}' \setminus \mathcal{B}''$ ($\neq \emptyset$)

- Non è detto che cambiando base si cambi anche SBA (vertice) ⇒ cicli nell' algoritmo
- La degenerazione si ha quando si verificano parità nella scelta della variabile che esce dalla base (si azzera più di una variabile)

- 1. Scegli la base $\mathcal{B} = \{A_{\beta(1)}, \dots, A_{\beta(m)}\}$ iniziale (corrispondente ad una SBA)
- 2. Calcola la SBA, x^* , corrispondente a \mathcal{B}
- 3. Se x* è ottima STOP (test di ottimalità)
- 4. Aggiorna \mathcal{B} in modo che individui una SBA adiacente e di costo migliore (inferiore)
- 5. Vai al passo 2

Dobbiamo vedere come realizzare i passi 1,3 e 4

1)Inizializzazione

Sia $\mathcal{B} = \{A_{\beta(1)}, \dots, A_{\beta(m)}\}$ una base iniziale (corrispondente ad una SBA)

2) Definisci
$$B = [A_{\beta(1)}, \dots, A_{\beta(m)}]$$
 e calcola la SBA
$$x^* = \begin{bmatrix} x_B^* \\ x^* \end{bmatrix} = \begin{bmatrix} B^{-1}d \\ 0 \end{bmatrix} = \begin{bmatrix} d' \\ 0 \end{bmatrix} \quad \text{con } d' \ge 0$$

3)Test di ottimalità

Calcola i costi ridotti delle variabili fuori base

$$c'_{F}^{T} = c_{F}^{T} - c_{B}^{T} B^{-1} F$$

ovvero

$$c'_h^T = c_h^T - c_B^T B^{-1} A_h \quad \forall A_h \notin \mathcal{B}$$

Se
$$c'_h \ge 0 \quad \forall A_h \notin \mathcal{B}$$
 STOP $(x^* \text{ soluzione ottima})$

4) Pivoting

Scegli $A_h \notin \mathcal{B}$ tale che $c'_h < 0$ e calcola

$$A'_{h} = B^{-1}A_{h}$$

Se
$$a'_{hi} \leq 0 \ \forall i$$

STOP

(problema illimitato)

altrimenti calcola

$$l = \arg\min_{i=1,...,m} \left\{ \frac{d'_{i}}{a'_{ih}} : a'_{ih} > 0 \right\}$$

ed inserisci x_h in base al posto di $x_{\beta(l)}$

5) Vai al passo 2

In <u>assenza di degenerazione</u> ad ogni iterazione z decresce:

⇒ l'algoritmo converge in un numero <u>finito</u> di passi (nel caso peggiore dopo aver esaminato tutti i vertici)

Esempio

$$\max z = x_1 + x_2$$
s.t. $6x_1 + 4x_2 \le 24$
 $3x_1 - 2x_2 \le 6$
 $x_1, x_2 \ge 0$

$$-\min -z = -x_1 - x_2$$
s.t. $6x_1 + 4x_2 + x_3 = 24$
 $3x_1 - 2x_2 + x_4 = 6$
 $x_1, x_2, x_2, x_3, x_4 \ge 0$

Inizializzazione

$$\max z = x_1 + x_2 s.t. \qquad 6x_1 + 4x_2 \le 24 3x_1 - 2x_2 \le 6 x_1, x_2 \ge 0$$

-
$$\min -z = -x_1 - x_2$$

s.t. $6x_1 + 4x_2 + x_3 = 24$
 $3x_1 - 2x_2 + x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

base iniziale $\mathcal{B} = \{A_3, A_4\}$

$$\beta = \{3, 4\}$$

 $x^* = (0,0,24,6)$ punto A

$$\max z = x_1 + x_2 s.t. \qquad 6x_1 + 4x_2 \le 24 3x_1 - 2x_2 \le 6 x_1, x_2 \ge 0$$

$$-\min - z = -x_1 - x_2$$
s.t.
$$6x_1 + 4x_2 + x_3 = 24$$

$$3x_1 - 2x_2 + x_4 = 6$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$\mathcal{B} = \{A_3, A_4\}$$

$$\begin{cases} -z = c_0^* + c'_F x_F \\ x_B = B^{-1}d - B^{-1}Fx_F \end{cases}$$

$$\begin{cases}
-z = 0 & -x_1 & -x_2 \\
x_3 = 24 & -6x_1 & -4x_2 \\
x_4 = 6 & -3x_1 & +2x_2
\end{cases}$$

(2,0)

(0,0)

 x_1

$$\begin{cases}
-z = 0 & -x_1 & -x_2 \\
x_3 = 24 & -6x_1 & -4x_2 \\
x_4 = 6 & -3x_1 & +2x_2
\end{cases}$$

Pivot su x_1

$$x_3 = 24 - 6 x_1 \ge 0 \Rightarrow x_1 \le 4$$

 $x_4 = 6 - 3 x_1 \ge 0 \Rightarrow x_1 \le 2$

 x_1 entra in base a livello 2, esce x_4

$$\begin{cases}
-z = 0 & -x_1 & -x_2 \\
x_3 = 24 & -6x_1 & -4x_2 \\
x_4 = 6 & -3x_1 & +2x_2
\end{cases}$$

in forma canonica rispetto alla nuova base:

$$\begin{cases}
-z = -2 - (5/3) x_2 + (1/3) x_4 \\
x_3 = 12 - 8 x_2 + 2 x_4 \\
x_1 = 2 + (2/3) x_2 - (1/3) x_4
\end{cases}$$

$$x^* = (2,0,12,0) punto B$$

$$\begin{cases}
-z = -2 - (5/3) x_2 + (1/3) x_4 \\
x_3 = 12 - 8 x_2 + 2 x_4 \\
x_1 = 2 + (2/3) x_2 - (1/3) x_4
\end{cases}$$

Pivot su x_2

$$x_1 = 2 + (2/3) x_2 \ge 0 \Rightarrow x_2 \ge -3$$

 $x_3 = 12 - 8 x_2 \ge 0 \Rightarrow x_2 \le 3/2$

 x_2 entra in base a livello 3/2, esce x_3

$$\begin{cases}
-z = -2 - (5/3) x_2 + (1/3) x_4 \\
x_3 = 12 - 8 x_2 + 2 x_4 \\
x_1 = 2 + (2/3) x_2 - (1/3) x_4
\end{cases}$$

in forma canonica rispetto alla nuova base:

$$\begin{cases}
-z = -(9/2) + (5/24) x_3 - (1/12) x_4 \\
x_2 = (3/2) - (1/8) x_3 + (1/4) x_4 \\
x_1 = 3 - (1/12) x_3 - (1/6) x_4
\end{cases}$$

$$x^* = (3,3/2,0,0)$$
 punto C

(2,0)

(0,0)

 x_1

$$\begin{cases}
-z = -(9/2) + (5/24) x_3 - (1/12) x_4 & (0,6) \\
x_2 = (3/2) - (1/8) x_3 + (1/4) x_4 \\
x_1 = 3 - (1/12) x_3 - (1/6) x_4
\end{cases}$$

Pivot su x_4

$$x_2 = 3/2 + (1/4) x_4 \ge 0 \Rightarrow x_4 \ge -6$$

 $x_1 = 3 - (1/6) x_4 \ge 0 \Rightarrow x_4 \le 18$

 x_4 entra in base a livello 18 ed esce x_1

$$\max z = x_1 + x_2 s.t. \qquad 6x_1 + 4x_2 \le 24 3x_1 - 2x_2 \le 6 x_1, x_2 \ge 0$$

$$\begin{cases}
-z = -(9/2) + (5/24) x_3 - (1/12) x_4 \\
x_2 = (3/2) - (1/8) x_3 + (1/4) x_4 \\
x_1 = 3 - (1/12) x_3 - (1/6) x_4
\end{cases}$$

in forma canonica rispetto alla nuova base:

$$\begin{cases}
-z = -6 + (1/2) x_1 + (1/4) x_3 \\
x_2 = 6 - (3/2) x_1 - (1/4) x_3 \\
x_4 = 18 - 6 x_1 - (1/2) x_3
\end{cases}$$

$$x^* = (0,6,0,18) \ punto \ D$$

OTTIMO!!!

- 2) Calcola la SBA, x*
- 3) Test di ottimalità
- 4) Pivoting
- 5) Vai al passo 2

 χ_2

STUD ORUM

Inizializzazione

$$\max z = x_1 + x_2$$
s.t. $6x_1 + 4x_2 \le 24$
 $3x_1 - 2x_2 \le 6$
 $x_1, x_2 \ge 0$

$$\min -z = -x_1 - x_2$$
s.t. $6x_1 + 4x_2 + x_3 = 24$
 $3x_1 - 2x_2 + x_4 = 6$
 $x_1, x_2, x_2, x_3, x_4 \ge 0$

base iniziale $\mathcal{B} = \{A_3, A_4\}$

$$x^* = \begin{bmatrix} x_B^* \\ x_F^* \end{bmatrix} = \begin{bmatrix} B^{-1}d \\ 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = B^{-1}$$

$$x^* = (0,0,24,6)$$
 punto A

 χ_2

(0,6)

- 3) Test di ottimalità
- 4) Pivoting
- 5) Vai al passo 2

$$\beta = \{3, 4\}$$

C
(3,3/2)

B
(2,0)

 x_1

$$\max z = x_1 + x_2 s.t. \qquad 6x_1 + 4x_2 \le 24 3x_1 - 2x_2 \le 6 x_1, x_2 \ge 0$$

 χ_2

(0,6)

(0,0)

$$c_F^{\prime T} = c_F^{T} - c_B^{T} B^{-1} F$$

$$= \begin{bmatrix} -1 & -1 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix} \cdot B^{-1} F = \begin{bmatrix} -1 & -1 \end{bmatrix}$$

- 2) Calcola la SBA, x*
- 3) Test di ottimalità
- 4) Pivoting
- 5) Vai al passo 2

$$\beta = \{3, 4\}$$
(3,3/2)

(2,0)

$$\max z = x_1 + x_2$$
s.t. $6x_1 + 4x_2 \le 24$
 $3x_1 - 2x_2 \le 6$
 $x_1, x_2 \ge 0$

$$\min -z = -x_1 - x_2$$
s.t. $6x_1 + 4x_2 + x_3 = 24$
 $3x_1 - 2x_2 + x_4 = 6$
 $x_1, x_2, x_2, x_3, x_4 \ge 0$

Pivot su x_1

$$A_1' = B^{-1}A_1 = A_1$$

 $l=arg min \{ (24/6), (6/3) \} = 2$

$$9 = 2$$

esce
$$\beta(2) = 4$$

$$\max z = x_1 + x_2 s.t. \qquad 6x_1 + 4x_2 \le 24 3x_1 - 2x_2 \le 6 x_1, x_2 \ge 0$$

$$x^* = \begin{bmatrix} x_B^* \\ x_F^* \end{bmatrix} = \begin{bmatrix} B^{-1}d \\ 0 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 0 & 1/3 \\ 1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} 6 & 1 \\ 3 & 0 \end{bmatrix}$$

$$x^* = (2,0,12,0) punto B$$

- 1) Inizializzazione
- 2) Calcola la SBA, x*
- 3) Test di ottimalità
- 4) Pivoting
- 5) Vai al passo 2

$$\max z = x_1 + x_2 s.t. \qquad 6x_1 + 4x_2 \le 24 3x_1 - 2x_2 \le 6 x_1, x_2 \ge 0$$

$$B^{-1} = \begin{bmatrix} 0 & 1/3 \\ 1 & -2 \end{bmatrix}$$

 χ_2

(0,6)

$$c_F^{\prime T} = \begin{bmatrix} -1 & 0 \end{bmatrix} - \begin{bmatrix} -1 \\ \end{bmatrix}$$
$$= \begin{bmatrix} -5/2 & 1/3 \end{bmatrix}$$

 $c_F^{\prime T} = c_F^T - c_B^T B^{-1} F$

- 4) Pivoting
- 5) Vai al passo 2

$$\beta = \{1, 3\}$$

$$\max z = x_1 + x_2$$
s.t. $6x_1 + 4x_2 \le 24$
 $3x_1 - 2x_2 \le 6$
 $x_1, x_2 \ge 0$

$$\min -z = -x_1 - x_2$$
s.t. $6x_1 + 4x_2 + x_3 = 24$
 $3x_1 - 2x_2 + x_4 = 6$
 $x_1, x_2, x_2, x_3, x_4 \ge 0$

Pivot su x_2

$$A'_{2} = B^{-1}A_{2} = \begin{bmatrix} -2/3 \\ 8 \end{bmatrix}$$

 $l=arg min \{ (12/8) \} = 2$

$$\mathcal{G} = 3/2$$

esce
$$\beta(2) = 3$$

$$\max z = x_1 + x_2 s.t. \qquad 6x_1 + 4x_2 \le 24 3x_1 - 2x_2 \le 6 x_1, x_2 \ge 0$$

$$x^* = \begin{bmatrix} x_B^* \\ x_F^* \end{bmatrix} = \begin{bmatrix} B^{-1}d \\ 0 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 1/12 & 1/6 \\ 1/8 & -1/4 \end{bmatrix}$$

$$B = \begin{bmatrix} 6 & 4 \\ 3 & -2 \end{bmatrix}$$

 χ_2

(0,6)

$$x^* = (3,3/2,0,0)$$
 punto C

- 2) Calcola la SBA, x*
- 3) Test di ottimalità
- 4) Pivoting
- 5) Vai al passo 2

$$\beta = \{1, 2\}$$

$$\max z = x_1 + x_2 s.t. \qquad 6x_1 + 4x_2 \le 24 3x_1 - 2x_2 \le 6 x_1, x_2 \ge 0$$

$$B^{-1} = \begin{bmatrix} 1/12 & 1/6 \\ 1/8 & -1/4 \end{bmatrix}$$

$$c_F^{\prime T} = \begin{bmatrix} 0 & 0 \end{bmatrix} - \begin{bmatrix} -1 & -1 \\ & & \end{bmatrix}$$
$$= \begin{bmatrix} 5/24 & -1/12 \end{bmatrix}$$

 $c_F^{\prime T} = c_F^{T} - c_R^{T} B^{-1} F$

 χ_2

(0,6)

- 1) Inizializzazione
- 2) Calcola la SBA, x*
- 3) Test di ottimalità
- 4) Pivoting
- 5) Vai al passo 2

$$\beta = \{1, 2\}$$

61

(3,3/2)

$$\max z = x_1 + x_2$$
s.t. $6x_1 + 4x_2 \le 24$
 $3x_1 - 2x_2 \le 6$
 $x_1, x_2 \ge 0$

$$\min -z = -x_1 - x_2$$
s.t. $6x_1 + 4x_2 + x_3 = 24$
 $3x_1 - 2x_2 + x_4 = 6$
 $x_1, x_2, x_2, x_3, x_4 \ge 0$

Pivot su
$$x_4$$

$$A'_4 = B^{-1}A_4 = \begin{bmatrix} 1/6 \\ -1/4 \end{bmatrix}$$

$$l = \arg \min \{ 3 \cdot 6 \} = 1$$

$$\mathcal{G} = 18$$

$$\operatorname{esce} \beta(1) = 1$$

$$\max z = x_1 + x_2 s.t. \qquad 6x_1 + 4x_2 \le 24 3x_1 - 2x_2 \le 6 x_1, x_2 \ge 0$$

$$x^* = \begin{bmatrix} x_B^* \\ x_F^* \end{bmatrix} = \begin{bmatrix} B^{-1}d \\ 0 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 1/4 & 0 \\ 1/2 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & 0 \\ -2 & 1 \end{bmatrix}$$

$$x^* = (0,6,0,18)$$
 punto D

$$\max z = x_1 + x_2 s.t. \qquad 6x_1 + 4x_2 \le 24 3x_1 - 2x_2 \le 6 x_1, x_2 \ge 0$$

$$C_F^{\prime T} = C_F^{T} - C_B^{T} B^{-1} F$$

$$B^{-1} = \begin{bmatrix} 1/4 & 0 \\ 1/2 & 1 \end{bmatrix}$$

$$c_F^{\prime T} = \begin{bmatrix} -1 & 0 \end{bmatrix} - \begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} 1/4 & 0 \\ 1/2 & 1 \end{bmatrix} \begin{bmatrix} 6 & 1 \\ 3 & 0 \end{bmatrix}$$

$$= [1/2 \ 1/4] \ OTTIMO!!!$$

3) Test di ottimalità

Regole di Pivoting (3)

- Ad una generica iterazione:
 quale tra le x_i con c'_i < 0 far entrare in base ?
 - la prima con c' i negativo

 $\leq n - m$

• quella con c'_j più negativo

= *n* −*m*

• quella con $| g_i c'_i |$ massimo

= (n-m) m

- •
- Se SBA corrente degenere

$$\mathcal{G} = \min_{i=1,\dots,m} \left\{ \frac{d'_i}{a'_{ih}} : a'_{ih} > 0 \right\} = 0$$

- \Rightarrow z non diminuisce
- ⇒ rischio di cicli (degenerazione ciclante)

Regola di Bland

Consente di evitare la degenerazione ciclante

a)Entra la colonna favorevole di indice minimo

$$j = \min \left\{ j : c'_j < 0 \right\}$$

b)In caso di parità nella determinazione di \mathcal{G} , esce la colonna di indice minimo

$$\beta(i) = \min \left\{ \beta(i) : a'_{ij} > 0 \ e \ \frac{d'_{i}}{a'_{ij}} \le \frac{d'_{k}}{a'_{kj}} \quad \forall k : a'_{kj} > 0 \right\}$$

Determinazione SBA iniziale (1)

- Se la base iniziale non è data occorre un metodo per determinarla
- Assumiamo che $d_i \ge 0 \quad \forall i$
- Si vuole determinare una soluzione ammissibile per

$$\begin{cases} Ax = d \\ x \ge 0 \end{cases}$$

Determinazione SBA iniziale (2)

 Il problema equivale a trovare una soluzione ammissibile di

$$\begin{cases} Ax + Iy = d \\ x, y \ge 0 \end{cases}$$

(x, y) in cui y = 0 (y variabili artificiali)

Il secondo problema ha una SBA iniziale ovvia

$$(x=0,y=d)$$

Metodo delle due fasi (1)

Si determina la SBA iniziale risolvendo il problema

$$\begin{cases} \min w = \mathbf{1}^{T}y \\ Ax + Iy = d \\ x, y \ge 0 \end{cases}$$

- se alla fine w > 0 STOP (problema inammissibile)
- se w = 0 normalmente tutte le y sono fuori base e sono in base alcune x (⇒ SBA iniziale)

Metodo delle due fasi (2)

2)Si eliminano le variabili artificiali y

si ripristina la funzione obiettivo originaria min $z = c^T x$

e si prosegue con il simplesso partendo dalla SBA corrente

Casi "patologici"

- se w = 0 ma esiste y_h in base (ad es. sulla riga i)
- la soluzione deve essere degenere $y_h=0$
- 1. se esiste almeno un $a'_{ij} \neq 0$ in corrispondenza di una variabile originale
 - si può fare una operazione di pivot su tale a '_{ij} per portare in base x_j al posto di y_h
- 2. se tutti gli $a'_{ij} = 0$ (la riga è tutta di 0)
 - è comb. lineare di altre righe della matrice A
 - A non è di rango massimo e la riga può essere rimossa (rimuovendo in tal modo anche la y_h)