Microprocessors & Interfacing

Analog Input/Output

Lecturer: Annie Guo

COMP9032 Week9

1

Lecture Overview

- Analog output
 - PWM
 - Digital-to-Analog (D/A) Conversion
- Analog input
 - Analog-to-Digital (A/D) Conversion

COMP9032 Week9 2

PWM Analog Output

- PWM (Pulse Width Modulation) is a way of digitally encoding analog signal levels.
 - By using high-resolution counters, the duty cycle (pulse width/period) of a pulse wave is modulated to encode a specific analog signal level.
- The PWM signal is still digital
 - Its value is either full high or full low.
 - Given a sufficient bandwidth, any analog value can be encoded with PWM.
- PWM is a powerful technique for controlling analog circuits with a processor's digital output.
- It is used in a wide variety of applications
 - E.g. motor speed control

PWM Analog Output (cont.)

- A low-pass filter is required to smooth the input signal and eliminate the inherent noise components in PWM signal.
- The output voltage is directly proportional to the pulse width.
 - By changing the pulse width of the PWM waveform, we can control the output value.

wiki

PWM Signal Examples

PWM Generation in AVR

• PWM can be obtained through the provided timers.

COMP9032 Week9

5

Recall: Timer0

Configuration for PWM

COMP9032 Week9

6

Mode	WGM2	WGM1	WGMO	Timer/Counter Mode of Operation	ТОР	Update of OCRx at	TOV Flag Set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, Phase Correct	0xFF	TOP	воттом
2	0	1	0	CTC	OCRA	Immediate	MAX
3	0	1	1	Fast PWM	0xFF	TOP	MAX
4	1	0	0	Reserved	_	-	-
5	1	0	1	PWM, Phase Correct	OCRA	TOP	воттом
6	1	1	0	Reserved	-	-	-
7	1	1	1	Fast PWM	OCRA	воттом	TOP

Phase Correct PWM

Fast PWM

CTC

• Clear Timer on Compare Match

Example

• Generate a PWM waveform.

COMP9032 Week9 11 COMP9032 Week9 12

Example (solution)

- Use Timer5
 - Set OC5A as output
 - Set the Timer5 operation mode as Phase Correct PWM mode
 - Set the timer clock

COMP9032 Week9

13

Example Code

```
.include "m2560def.inc"
.def temp=r16
        ldi temp, 0b00001000
        sts DDRL, temp
                                 ; Bit 3 will function as OC5A.
       ldi temp, 0x4A
                                 ; the value controls the PWM duty cycle
        sts OCR5AL, temp
        clr temp
        sts OCR5AH, temp
                                 : Set Timer5 to Phase Correct PWM mode.
        ldi temp, (1 << CS50)
        sts TCCR5B, temp
       ldi temp, (1<< WGM50)|(1<<COM5A1)
        sts TCCR5A, temp
```

COMP9032 Week9

14

Digital-to-Analog Conversion

Digital-to-Analog Conversion (cont.)

- A parallel output interface connects the D/A to the CPU.
- The latches may be part of the D/A converter or the output interface.
- Digital value is converted into continuous value.
- · A signal conditioning block may be used as a filter to smooth the quantized nature of the output.
 - The signal conditioning block also provides isolation, buffering and voltage amplification if needed.

COMP9032 Week9 15 COMP9032 Week9 16

Quantized D/A Output

COMP9032 Week9

17

Binary-weighted D/A Converter

- As a switch for a bit is closed, a weighted current is supplied to the summing junction of the amplifier.
- For high-resolution D/A converters, the binaryweighted type must have a wide range of resistors. This may lead to temperature stability and switching problems.

18

R-2R Ladder D/A Converter

- As a switch changes from the grounded position to the reference position, a binary-weighted current is supplied to the summing junction.
- For high-resolution D/A converters, a wide range of resistors are not required.

BO B1 B2 B3 2R 2R 2R Analog Output

D/A Converter Specifications

Resolution and linearity

- The resolution is determined by the number of bits and is given as the output voltage corresponding to the smallest digital step, i.e. 1 LSB.
- The linearity shows how closely the output voltage to the idea values (a straight line drawn through zero and full-scale).

• Settling Time

– The time taken for the output voltage to settle to within a specified error band, usually $\pm \frac{1}{2}$ LSB.

COMP9032 Week9 19 COMP9032 Week9 20

D/A Converter Specifications (cont.)

Glitches

- A glitch is caused by asymmetrical switching in the D/A switches. If a switch changes from 1 to 0 faster than from 0 to 1, a glitch may occur.
 - Consider changing the output code of a 8-bit D/A from 10000000 to 011111111 in the next slide.
- D/A converter glitch can be eliminated by using a sample-and-hold.

COMP9032 Week9 21

Deglitched D/A

D/A Output Glitch

COMP9032 Week9

22

A/D Conversion

COMP9032 Week9 23 COMP9032 Week9 24

Data Acquisition and Conversion

Procedure of data acquisition and conversion:

- A transducer converts physical values to electrical signals, either voltages or currents.
- Signal conditioner performs the following tasks:
 - Isolation and buffering: The input to ADC may need to be protected from dangerous voltages such as static charges or reversed polarity voltages.
 - Amplification: transducer produces the voltage or current needed by ADC. The amplifier is designed so that the fullscale signal from the analog results in a full-scale signal to ADC.
 - Bandwidth limiting: The signal conditioning provides a lowpass filter to limit the range of frequencies that can be digitized.

COMP9032 Week9

25

Data Acquisition and Conversion (Cont.)

- In applications where several analog inputs must be digitized, an analog multiplexer is used. It allows multiple analog inputs, each with its own signal conditioning for different transducers.
- The sample-and-hold circuit samples the signal and holds it steady while the ADC converts it.
- The ADC converts the sampled signal to digital values.
- The three state gates hold the digital values generated by the ADC.

COMP9032 Week9 26

Data Acquisition System

Shannon's Sampling Theorem

Claude Shannon's Theorem:

 When a signal is to be sampled (digitized), the minimum sampling frequency must be twice the signal frequency.

COMP9032 Week9 28

Sample Examples

• Sampled at twice of the signal frequency.

29

0.6 0.4 0.2 0 -0.2 -0.4

1.0

-0.6

8.0-

-1.0

than twice of the signal frequency

COMP9032 Week9

Sample Examples

• Under-sampled, with sample frequency less

 $f(t)=Y \sin(2\pi g_{sig} t)$

30

Shannon's Sampling Theorem and Aliasing

- To preserve the full information in the signal, it is necessary to sample at twice the maximum frequency of the signal. This is known as the *Nyquist rate*.
- A signal can be exactly reproduced if it is sampled at a frequency F, where F is greater than or equal to the Nyquist rate.
- If the sampling frequency is less than Nyquist rate, the waveform is said to be undersampled.

Shannon's Sampling Theorem and Aliasing (Cont.)

- Undersampled signal, when converted back into a continuous time signal, will exhibit a phenomenon called *aliasing*.
 - Aliasing is the presence of unwanted components in the reconstructed signal. These components were not present when the original signal was sampled.

COMP9032 Week9 31 COMP9032 Week9 3

Successive Approximation Converter

COMP9032 Week9

33

Successive Approximation A/D Converter

- Each bit in the successive approximation register is tested, starting at the most significant bit and working toward the least significant bit.
- As each bit is set, the output of the D/A converter is compared with the input.
- If the D/A output is lower than the input signal, the bit remains set and the next bit is tried.
- N times are required to set and test each bit in the successive approximation register for an N-bit output.

COMP9032 Week9 34

Parallel A/D Converter

Parallel A/D Converter

- An array of 2^N-1 comparators and produces an output code in the propagation time of the comparators and the output decoder.
- Fast but more costly in comparison to other designs.
- Also called flash A/D converter.

COMP9032 Week9 35 COMP9032 Week9 36

Two-Stage Parallel A/D Converter

A/D Converter Specifications

Conversion time

- The time required to complete a conversion of the input
- Establishes the upper signal frequency limit that can be sampled without aliasing.

$$f_{MAX} = 1/(2*conversion time)$$
 (1)

Resolution

- The number of bits in the converter gives the resolution and thus the smallest analog input signal for which the converter will produce a digital code.
- It may be given in terms of the full-scale input signal:

Resolution=full-scale signal/2n

- It is often given as the number of bits, n; or stated as one part in 2ⁿ.

Two-Stage Parallel A/D Converter

- The input signal is converted in two steps.
 - First, a coarse estimate is found by the first parallel A/D converter. This digital value is sent to the D/A and adder. where it is subtracted from original signal.
 - The difference is then converted by the second parallel converter and the result combined with the first A/D to give the digitized value.
- It has nearly the performance of the parallel converter but without the complexity of 2^N -1 comparators.
- It offers high resolution and high-speed conversion for applications like video signal processing.

COMP9032 Week9

38

A/D Converter Specifications (Cont.)

Accuracy

- Relates to the smallest signal (or noise) to the measured signal.
- Given as a percent and describes how close the measurement is to the actual value.

Linearity

- The derivation in output codes from the real value (a straight line drawn through zero and full-scale).
- The best that can be achieved is + ½ of the least significant bit

(± 1/2 LSB).

COMP9032 Week9 39 COMP9032 Week9

A/D Converter Specifications (Cont.)

- Aperture time
 - The time that the A/D converter is "looking" at the input signal.
 - It is usually equal to the conversion time.

COMP9032 Week9

41

A/D Errors (cont.)

- Aperture
 - A significant error in a digitizing system is due to signal variation during the aperture time.
 - A good design will attempt to have the uncertainty, ΔV , be less than one least significant bit.

A/D Errors

- Three sources of errors in A/D conversion:
- Noise
 - All signals have noise.
 - Need to reduce noise or choose the converter resolution appropriately to control the peak-to-peak noise.
- Aliasing
 - The errors due to aliasing is difficult to quantify.
 - They depend on the relative amplitude of the signals at frequencies below and above the Nyquist frequency.
 - The system design should include a low-pass filter to attenuate frequencies above the Nyquist frequency.

COMP9032 Week9 42

A/D Errors (Cont.)

Aperture time error

COMP9032 Week9 43 COMP9032 Week9 44

Reading Material

- Chapter 13: Analog Input and Output.
 Microcontrollers and Microcomputers by Fredrick M. Cady.
- Timers/Counters. AVR Mega2560 Data Sheet.

- PWM

COMP9032 Week9

45

Homework

1. With the AVR lab board, connect PL3 to a LED and run the following code. What can you observe?

Homework

2. An A/D converter has the conversion time 100 us. What is the maximum frequency of a signal that can be digitalized without aliasing occurring?

Homework

3. A transducer is to be used to find the temperature over a range of -100 to 100°C. We are required to read and display the temperature to a resolution of +/- 1°C. The transducer produces a voltage from -5 to +5 volts over this temperature range with 5 millivolts of noise. Specify the number of bits in the A/D converter (a) based on the (display) dynamic range and (b) based on the required resolution (ADC).

COMP9032 Week9 47 COMP9032 Week9 48