Softversko inženjerstvo i informacione tehnologije
Diskretna matematika - II deo
Loznica, 4. jul 2014.

PREZIME I IME:	
	BROJ INDEKSA:

TEORIJA

1.	Nacrtati	48-regularni	graf sa	777	grana.
----	----------	--------------	---------	-----	--------

- 2. Da li postoji turnir sa više grana nego čvorova? Ako postoji, nacrtati ga.
- 3. Da li su tri boje dovoljne da se pravilno po čvorovima oboji proizvoljni prazan graf?
- 4. Nacrtati minimalno pokrivajuće stablo za težinski graf sa slike.

- 5. Da li put može da ima jaku orjentaciju?
- 6. Nacrtati proizvoljan turnir jake orjentacije.
- 7. Da li moze graf da bude istovremeno 3-regularan, Hamiltonov i Ojlerov?
- 8. Koliko iznosi hromatski broj bipartitnog grafa kome klase imaju m i n čvorova?
- 9. Šta je osnovni preduslov da bi neki graf imao savršeni mečing?
- 10. Da li dijametar grafa može biti veći od maksimalnog stepena nekog od čvorova? Nacrtati graf u kome je tako, ako može.

Z A D A C I

- 1. G je graf sa n čvorova i e grana. Dokazati da važi $\delta(G) \leq \frac{2e}{n} \leq \Delta(G)$.
- 2. Dekodirati Priferov kod (5,8,2,6,4,3,2)
- 3. Dokazati da bipartitan graf čije klase nisu iste kardinalnosti ne može biti Hamiltonov.
- 4. Dokazati da se šahovska tabla 8×8 iz koje su uklonjena dva dijagonalna ugaona polja ne može "parketirati" dominama 1×2 . Šta ako se uklone bilo koja dva polja iste boje? A ako su uklonjena polja različitih boja?
- 5. Pravilno po granama obojiti prethodno nacrtani graf sa 13 grana i minimalnim brojem čvorova, tako da je minimalni stepen nekog od čvorova grafa 4.

$T \to O R I J A$
1. Koliko ima petocifrenih brojeva zapisanih različitim ciframa, kojima je suma cifara parna?
2. Da li potpun kvadrat može imati paran broj delilaca? Ako može, napisati jedan.
3. Na koliko načina se od 7 čaša mogu izabrati tri?
4. Da li je u razvoju $(1-x-x^2)^{2015}$ veći koeficijent uz član najvećeg stepena, ili uz slobodan član?
5. Da li je (bez obzira na k) veće $n!$ ili $\binom{n}{k}$?
6. Izračunati $S(200, 199)$.
7. Koliko ima rešenja jednačina $x+y+z=3$ u skupu parnih prirodnih brojeva?
8. Da li je D_n deljiv sa $n!$, ako je n paran, iz sedme desetine prve stotine osmocifrenih brojeva, i nije potpun kvadra
9. Napisati karakterističnu jednačinu za rekurentnu relaciju $a_{n+1}=2a_{n-3}-a_{n-2}$. Nije potrebno rešavati je.
10. Koliko negativnih elemenata ima niz d_n , zadat rekurektnom relacijom $d_n=d_{n-1}-d_{n-2}$, gde je $d_0=0$ i $d_1=1$?

- 1. Dokazati: $\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}.$
- 2. Parovi četvrtfinala Svetskog Prvenstva u fudbalu su Brazil-Kolumbija, Nemačka-Francuska, Holandija-Kostarika i Argentina-Belgija. Prva dva para ukrštaju se međusobno u prvom polufinalu, a druga dva u drugom. Koliko različitih mogućnosti postoji za parove polufinala?
- 3. Koliko ima nizova dužine n, sačinjenih samo od brojeva iz skupa $\{0,1,2\}$ u kojima nikoje dve nule nisu susedne?
- 4. Koliko ima brojeva do hiljadu, koji su deljivi sa 7, a nisu sa 11, niti sa 13?
- 5. Odrediti broj celobrojnih rešenja jednačine x+y+z=14, ako je pritom $2\leq x\leq 5,\ 3\leq y\leq 4$ i $1\leq z\leq 4$.