الدورة الإستثناعية للعام 2009	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة أربع ساعات	عدد المسائل: ست

ارشادات عامة :- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات 0 - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالقزام بترتيب المسائل الوارد في المسابقة) 0

I- (2 points) Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Écrire le numéro de chaque question et donner, en justifiant, la réponse qui lui correspond.

Nº	Questions	Réponses		
		a	b	c
1	Soit f la fonction définie sur $IR - \{0\}$ par $f(x) = \frac{1}{x}$ et g la fonction définie sur $IR - \{1\}$ par $g(x) = \frac{x}{x-1}$. Le domaine de définition de $g \circ f$ est :	<i>IR</i> – {0}	IR - {1}	IR - {0;1}
2		p ∧(¬ q)	(¬p) ∧(¬q)	$(q p) \Rightarrow (q p)$
3	A, M et N sont trois points distincts d'affixes respectives i, z_1 et z_2 . Si $z_2 = iz_1 + 1 + i$, alors le triangle AMN est:	équilatéral	demi- équilatéral	rectangle isocèle
4	Avec 10 points distincts situés sur un cercle on peut déterminer :	720 triangles	120 triangles	150 triangles
5	La fonction f définie sur]0;1] par $f(x) = \sqrt{\frac{1-x}{x}}, \text{ admet une fonction}$ réciproque g définie par :	$g(x) = \sqrt{\frac{x}{1-x}}$	$g(x) = \frac{1}{x^2 - 1}$	$g(x) = \frac{1}{x^2 + 1}$
6	Si $z = -2\left(\sin\left(\frac{\pi}{3}\right) + i\cos\left(\frac{\pi}{3}\right)\right)$, alors $\arg\left(\bar{z}\right) =$	$-\frac{\pi}{6}$	$\frac{5\pi}{6}$	$\frac{7\pi}{6}$

II- (2 points)

L'espace est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$.

On considère le point A(-1; 1; 0), le plan (P) d'équation x - 2y + 2z - 6 = 0 et la droite (D) définie par le système x = 2m - 3; y = 3m - 2; z = 2m - 2 (m est un paramètre réel).

- 1) a- Vérifier que A n'appartient pas à (P) et calculer la distance de A à (P).
 - b- Montrer que (D) passe par A et qu'elle est parallèle à (P).
- 2) a- Déterminer un système d'équations paramétriques de la droite (d) passant par A et perpendiculaire à (P).
 - b-Déterminer les coordonnées du point B intersection de (d) et (P).
 - c- Déterminer un système d'équations paramétriques de la droite (Δ_0) passant par B et parallèle à (D) et montrer que (Δ_0) est une droite du plan (P).
- 3) Soit (Δ) une droite du plan (P), distincte de (Δ_0) et passant par B.
 - a- Montrer que (Δ) et (D) ne sont pas coplanaires.
 - b- Montrer que (AB) est perpendiculaire à (Δ) et à (D).

III- (3 points)

Dans un plan orienté on donne un rectangle ABCD tel que :

$$(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{\pi}{2} (\text{mod } 2\pi)$$
, $AB = 4$ et $AD = 3$.

Soit H le projeté orthogonal de A sur (BD) et h l'homothétie de centre H qui transforme D en B.

- 1) a- Déterminer l'image de la droite (AD) par h.
 - b- En déduire l'image E du point A par h. Placer E.
 - c- Construire le point F image de B par h et le point G image de C par h puis déterminer l'image du rectangle ABCD par h.
- 2) Soit S la similitude directe qui transforme A en B et D en A.
 - a- Déterminer un angle de S.
 - b- Déterminer l'image de la droite (AH) par S et l'image de la droite (BD) par S.
 - c- En déduire que H est le centre de S.
- 3) Montrer que S(B) = E et en déduire que $S \circ S(A) = h(A)$.
- 4) Montrer que $S \circ S = h$.

IV- (3 points)

Une urne contient **trois** boules blanches et **deux** boules noires.

Un joueur tire successivement et au hasard trois boules de l'urne en respectant la règle suivante:

Pour chaque tirage : si la boule tirée est noire, il la remet dans l'urne ;

si elle est blanche, il ne la remet pas dans l'urne.

- 1) a- Calculer la probabilité de tirer dans l'ordre : une boule noire, une boule noire et une boule blanche.
 - b-Montrer que la probabilité qu'il y ait une seule boule blanche parmi les trois boules tirées

est égale à
$$\frac{183}{500}$$
.

2) Lors du tirage des trois boules, le joueur marque trois points pour chaque boule blanche tirée et marque deux points pour chaque boule noire tirée.

On désigne par X la variable aléatoire égale à la somme des points marqués par le joueur.

- a- Montrer que les valeurs possibles de X sont : 6, 7, 8 et 9.
- b- Déterminer la loi de probabilité de X et calculer son espérance mathématique.
- 3) Le joueur tire maintenant **successivement** et **au hasard** n boules de l'urne (n > 3) en respectant la même règle.
 - a- Calculer, en fonction de n, la probabilité de l'événement : « le joueur tire n boules noires ».
 - b- Calculer, en fonction de n, la probabilité P_n de l'événement :
 - « le joueur tire au moins une boule blanche ».
 - c- Quel est le nombre minimal de boules que le joueur doit tirer pour que $P_n \ge 0.99$?

V- (3 points)

Dans un plan, on donne deux droites parallèles (d) et (Δ) distantes de 5 cm et un point A situé entre (d) et (Δ) à une distance de 3 cm de (Δ).

M est un point variable du plan et H son projeté orthogonal sur (Δ) .

1) Montrer que si MA + MH = 5 cm, alors M se déplace sur une parabole (S) de foyer A.

Dans ce qui suit, le plan est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j})$ tel que A(1; 0).

b- Tracer (S).

3) Soit E un point de (S) d'ordonnée a telle que $a \neq 0$.

- Montrer que $4x 2ay + a^2 = 0$ est une équation de la tangente (d_1) à (S) en E.
- 4) Soit G un point de (S) d'ordonnée b tel que $\hat{EOG} = 90^{\circ}$.
 - a- Montrer que ab = -16.
 - b- La tangente (d_2) à (S) en G coupe (d_1) en un point L .

Montrer que , lorsque E et G varient sur (S) tels que $E\hat{O}G = 90^{\circ}$, le point L décrit une droite que l'on déterminera.

VI- (7 points)

A-

On considère la fonction f définie sur IR par $f(x) = e^{2x} - 4e^x + 3$.

On désigne par (C) sa courbe représentative dans un repère orthonormé (O; \vec{i} , \vec{j}).

- 1) a- Déterminer $\lim_{x \to -\infty} f(x)$, $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - b- Résoudre l'équation f(x) = 0.
- 2) Calculer f'(x) et dresser le tableau de variations de f.
- 3) Montrer que O est un point d'inflexion de (C).
- 4) Ecrire une équation de la tangente (T) en O à (C).
- 5) Soit h la fonction définie sur IR par h(x) = f(x) + 2x.
 - a- Montrer que $h'(x) \ge 0$ pour tout réel x.
 - b- En déduire, suivant les valeurs de x, la position relative de (C) et (T).
- 6) Tracer (T) et (C).
- 7) Calculer l'aire du domaine limité par (C), l'axe des abscisses et les deux droites d'équations: x = 0 et $x = \ln 3$.
- 8) a- Montrer que f admet, sur $[\ln 2; +\infty[$, une fonction réciproque f^{-1} .
 - b-Montrer que l'équation $f(x) = f^{-1}(x)$ admet une solution unique α et vérifier que $1,2 < \alpha < 1,3$.

B-

Soit g la fonction donnée par $g(x) = \ln[f(x)]$.

On désigne par (Γ) sa courbe représentative dans un repère orthonormé.

- 1) Justifier que le domaine de définition de g est $]-\infty;0[\,\cup\,]\ln 3;+\infty[\,.$
- 2) Déterminer $\lim_{x\to -\infty} g(x)$. Déduire une asymptote (D) à (Γ) .
- 3) Montrer que la droite (d) d'équation y = 2x est une asymptote à (Γ) en $+\infty$.
- 4) Déterminer les coordonnées des points d'intersection de (Γ) avec (d) et (D).
- 5) Dresser le tableau de variations de g.
- 6) Tracer (Γ) .