SAT SOLVER ON

NONOGRAM

PRESENTER 林怡秀

OUTLINE

- Introduction
- 2 Encoding Method
- Experiment

WHAT IS NONOGRAM?

NP-complete problem

									4														1								
								6	1	3		П	2			П	П		2	2	2	\vdash	1	2	2		\vdash				
							6	4	3	2	2	1	2	2		Н	Н	2	1	1	3	\vdash	1	2	1	2	\vdash	2	2		
							6	5	5	4	1	2	1	6	2	2	2	2	4	3	1	2	2	1	1	2	3	2	1	2	
							7	1	3	4	3	4	6	-	12	-	7	8	5	3	2	9	2	2	1	3	3	2	4	2	6
Н						7	H	-	Ť	÷	Ť	÷	Ť	Ť		**		Ť	Ť	Ť	-	٠	-	-	÷	Ť	Ť	-	÷	-	Ť
Н	Н	Н			H	11	Н								\vdash							\vdash			_						-
Н	Н	Н			3	3	Н					_				_	_	_	_	Н							Н				-
Н	Н	Н			3	3	Н				_	Н		-		Н	Н	Н		_	_	Н			-		\vdash				-
Н	Н	Н		_	4	2		Н	\vdash		Н	Н		-		Н	Н	Н				_	_	Н	_	Н	\vdash				-
\vdash					-	-	Н				-			_		\vdash		-	_			-									-
⊢	Н	Н		_	3	2	Н	\vdash		_	Н	H		_		Н	H		H						_		_	H			-
\vdash	H	\vdash		2	1	2	H				-	H		_		\vdash	H														-
⊢	Н	Н	_	3	6	1	Н	Н			Н	H		H		Н		_	_			Н			_	_	Н	H			-
⊢	Н	Н	2	2	1	2	Н				Н	H		H		Н						Н			_		_		Н		_
⊢	Н	Н	1	1	6	1			_		Н	Н				Н		Н				H					H				_
⊢	Ш	Ш	2	2	1	2	_				Ш	H		_													H			_	_
L	Ш		3	2	2	2	Ш					_				Ш					_						<u> </u>	_			_
L		3	2	4	1	1	Н				Ш	H				_	Ш	Ш	_						_	_	<u> </u>				_
2	4	1	1	2	2	1	Ш				_				Ш		_	_		_	_		_				_			Ш	
╙	Ш	Ш	2	12	2	1	Ш			_		_			╙										_			_		Щ	
L	Ш	Ш	1	1	15	1	Ш		_																					Ш	
L	1	2	2	6	2	1		_														_							_	Ш	
L	Ш	Ш	5	5	1	1	L															L					L				
L	Ш			4	5	3	Ш					\sqcup										_					_				
L				3	6	2																									
			3	1	5	1																									
		2	1	2	2	2																									
			1	5	1	2																									
			1	5	1	2																									
				7	1	2																									


```
 \begin{array}{c} (x1 \wedge x2 \wedge \sim x3 \wedge x4 \wedge x5 \wedge x6 \wedge x7 \wedge x8 \wedge x9 \wedge \sim x10 \ ) \ \lor \\ (x1 \wedge x2 \wedge \sim x3 \wedge \sim x4 \wedge x5 \wedge x6 \wedge x7 \wedge x8 \wedge x9 \wedge x10 \ ) \ \lor \\ (\sim x1 \wedge x2 \wedge x3 \wedge \sim x4 \wedge x5 \wedge x6 \wedge x7 \wedge x8 \wedge x9 \wedge x10 \ ) \ \lor \\ \end{array}
```

DNF to CNF

DNF

```
 \begin{array}{c} (\mathsf{x} \mathsf{I} \wedge \mathsf{x} \mathsf{2} \wedge \mathsf{x} \mathsf{3} \wedge \mathsf{x} \mathsf{4} \wedge \mathsf{x} \mathsf{5} \wedge \mathsf{x} \mathsf{6} \wedge \mathsf{x} \mathsf{7} \wedge \mathsf{x} \mathsf{8} \wedge \mathsf{x} \mathsf{9} \wedge \mathsf{x} \mathsf{10}) \vee \\ (\mathsf{x} \mathsf{I} \wedge \mathsf{x} \mathsf{2} \wedge \mathsf{x} \mathsf{3} \wedge \mathsf{x} \mathsf{4} \wedge \mathsf{x} \mathsf{5} \wedge \mathsf{x} \mathsf{6} \wedge \mathsf{x} \mathsf{7} \wedge \mathsf{x} \mathsf{8} \wedge \mathsf{x} \mathsf{9} \wedge \mathsf{x} \mathsf{10}) \vee \\ (\mathsf{x} \mathsf{I} \wedge \mathsf{x} \mathsf{2} \wedge \mathsf{x} \mathsf{3} \wedge \mathsf{x} \mathsf{4} \wedge \mathsf{x} \mathsf{5} \wedge \mathsf{x} \mathsf{6} \wedge \mathsf{x} \mathsf{7} \wedge \mathsf{x} \mathsf{8} \wedge \mathsf{x} \mathsf{9} \wedge \mathsf{x} \mathsf{10}) \vee \\ \end{array}
```

CNF

```
 \begin{array}{c} (\mathsf{yI} \vee \mathsf{y2} \vee \mathsf{y3}) \wedge \\ (\sim \mathsf{yI} \vee \mathsf{xI}) \wedge (\sim \mathsf{yI} \vee \mathsf{x2}) \wedge (\sim \mathsf{yI} \vee \sim \mathsf{x3}) \wedge (\sim \mathsf{yI} \vee \mathsf{x4}) \wedge (\sim \mathsf{yI} \vee \mathsf{x5}) \wedge \\ (\sim \mathsf{yI} \vee \mathsf{x6}) \wedge (\sim \mathsf{yI} \vee \mathsf{x7}) \wedge (\sim \mathsf{yI} \vee \mathsf{x8}) \wedge (\sim \mathsf{yI} \vee \mathsf{x9}) \wedge (\sim \mathsf{yI} \vee \sim \mathsf{x10}) \wedge \\ (\sim \mathsf{y2} \vee \mathsf{xI}) \wedge (\sim \mathsf{y2} \vee \mathsf{x2}) \wedge (\sim \mathsf{y2} \vee \sim \mathsf{x3}) \wedge (\sim \mathsf{y2} \vee \sim \mathsf{x4}) \wedge (\sim \mathsf{y2} \vee \mathsf{x5}) \wedge \\ (\sim \mathsf{y2} \vee \mathsf{x6}) \wedge (\sim \mathsf{y2} \vee \mathsf{x7}) \wedge (\sim \mathsf{y2} \vee \mathsf{x8}) \wedge (\sim \mathsf{y2} \vee \mathsf{x9}) \wedge (\sim \mathsf{y2} \vee \mathsf{x10}) \wedge \\ (\sim \mathsf{y3} \vee \sim \mathsf{xI}) \wedge (\sim \mathsf{y3} \vee \mathsf{x2}) \wedge (\sim \mathsf{y3} \vee \mathsf{x3}) \wedge (\sim \mathsf{y3} \vee \sim \mathsf{x4}) \wedge (\sim \mathsf{y3} \vee \mathsf{x5}) \wedge \\ (\sim \mathsf{y3} \vee \mathsf{x6}) \wedge (\sim \mathsf{y3} \vee \mathsf{x7}) \wedge (\sim \mathsf{y3} \vee \mathsf{x8}) \wedge (\sim \mathsf{y3} \vee \mathsf{x9}) \wedge (\sim \mathsf{y3} \vee \mathsf{x10}) \end{array}
```

• Starting position as variable (e.g. UI=I, U2=5, U3=7)

$$U1 = \langle a_1, a_2, a_3, \dots, a_{10} \rangle$$

 $U2 = \langle b_1, b_2, b_3, \dots, b_{10} \rangle$
 $U3 = \langle c_1, c_2, c_3, \dots, c_{10} \rangle$

If a_i is true, it means U1>=I is True, U2, U3 are the same, e.g. U1=<1,1,1,0,0,0,0,0,0,0,0>represent U1>=1, U1>=2, U1>=3, U1<4, U1<5..., then we know U1=3

- Nonogram's features :
- (I) Every starting position is between I~LENGTH
- (2) In every row and column the second starting position is greater than the first one, and the third one is greater than the second one and so on
- (3) Every block fall between the starting position and segment length should be black
- (4) Every block fall between the first segment length and the next starting position should left empty

- $unary(\langle x_1, ..., x_n \rangle, [a, b]) = \bigwedge_{1}^{n} (x_{i-1} \leftarrow x_i) \wedge x_a \wedge \neg x_{b+1}$
 - E.g. U1 = $\langle x_1, x_2, x_3, x_4, x_5 \rangle$ fall between 2~5
 - $(\neg x_1 \lor x_0) \land (\neg x_2 \lor x_1) \land (\neg x_3 \lor x_2) \land (\neg x_4 \lor x_3) \land (\neg x_5 \lor x_1) \land x_2 \land \neg x_6$
 - (U1<1 or U1>=0) and (U1<2 or U1>=1) and (U1<3 or U1>=2) and ... and U1>=2 and U1<6
- $block(U_1, U_2, < x_1, \dots, x_n >) = \bigwedge_{i=1}^n (\neg U_1(i) \wedge U_2(i)) \rightarrow x_i$
 - Mean if U1< x_i <= U2 then x_i =1
 - E.g. let U_1 = <1,1,1,0,0,0,0>

$$X = \langle 0,0,0,1,1,0,0 \rangle$$

- $leq(< x_1, ..., x_n >, < y_1, ..., y_n >) = \bigwedge_{i=1}^n x_i \to y_i$
 - Mean X<=Y</p>
 - E.g. Let X= <1,1,1,0,0,0,0>

ENCODING METHOD 2 - EXAMPLE

- Constraint number of a row is: <3, 1, 2>
- Let $X = \langle x |, x2, x3, ..., x | 0 \rangle$, $\overline{X} = \langle -x |, -x2, -x3, ..., -x | 0 \rangle$,
- Let UI, U2, U3 as starting position
- 4 features encoding:
- (I) **UI,U2,U3** is between I~I0: unary(UI,[I,I0]), unary(U2,[I,I0]), unary(U3,[I,I0])
- (2) **UI+Length <= U2**: $leq(UI^{+3}, U2), leq(U2^{+1}, U3), leq(U3^{+1}, I0)$
- (3) **X=I** (black) range: block(UI⁻¹, UI⁺², X), block(U2⁻¹, U2⁺⁰, X), block(U3⁻¹, U3⁺¹, X)
- (4) **X=0 (white) range:** block(0,U1, \overline{X}), block(U1⁺³,U2, \overline{X}), block(U2⁺¹,U3, \overline{X}), block(U3⁺²,10, \overline{X})
- UI^{+5} represent UI+5 = <1,1,1,1,1,1,1,1,0,0> = 3+5 = 8 UI^{-2} represent UI-2 = <1,0,0,0,0,0,0,0,0,0> = 3-2 = 1

EXPERIMENT

Method Test case	Method1 run time (second)	Method2 run time (second)					
5*5 puzzle1	0.002	0.014					
10*10 puzzle1	0.104	0.002					
25*25 puzzle1	∞	3.802					
25*25 puzzle2	∞	4.790					
25*25 puzzle3	∞	3.633					
25*25 puzzle4	∞	3.833					
25*25 puzzle5	∞	26.982					

EXPERIMENT

Method Test case	Method1 Variable/Clause	Method2 Variable/Clause
5*5 puzzle1	60/180	116/311
10*10 puzzle1	377/2780	472/1349
25*25 puzzle1	180230/4490150	9508/34234
25*25 puzzle2	245342/6117950	9562/34434
25*25 puzzle3	206815/5154775	9562/34433
25*25 puzzle4	261970/6533650	9373/33686
25*25 puzzle5	209123/5212475	9535/34342

REFERENCE

- [1] Ueda, Nobuhisa; Nagao, Tadaaki (1996), NP-completeness results for NONOGRAM via Parsimonious Reductions, TR96-0008, Technical Report, Department of Computer Science, Tokyo Institute of Technology, CiteSeerX 10.1.1.57.5277
- [2] Amit Metodi, Michael Codish, Vitaly Lagoon, Peter J. Stuckey (2011), Boolean Equipropagation for Optimized SAT Encoding
- [3] Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara, Solving Constraint Satisfaction Problems with SAT Technology

THANK YOU FOR LISTERNING ©