Innateness Explanations Handout

- 1. A gene g for metric phenotype p is a map from environments to values of p.
- 2. If o's metric phenotypes are p_1, \ldots, p_n , its genotype G maps an environment e to $\langle p_1(e), \ldots, p_n(e) \rangle$. $\pi_i \bullet G$ maps environments to values of p_i , where $\pi_i(x_1, \ldots, x_i) = x_i$ projects ith coordinates. $\pi_i \bullet G$ is a gene g_i for phenotype p_i .
- 3. p is ontogenetically fixed if each genotype $g_i(e)$ for p is constant over the environments in which the organism o can reach maturity: $dg_i(e)/de = 0$ at all e.
- 4. p is strongly ontogenetically fixed iff there is only one g for p, and dg(e)/de = 0.
- 5. p is almost fixed if $dg(e)/de \approx 0$.
- 6. "p is innate in the ensemble of environments E" iff "p is [strongly] fixed in E."
- 7. p is "genetic" (also) means: environment causally explains little or none of the difference Δp in phenotypic expressions of p.
- 8. A difference $\Delta p(A, B)$ between A and B is attributable to their genes iff $\sim [\Delta p(A, B) = g(e_A) g(e_B)]$.
- 9. Calling a difference genetic often means: $\Delta p(A, B) = g_A(e) g_B(e)$, e the environment shared by A and B.
- 10. Partitioning of individual phenotypes into genetic and environmental components: A man is obese "because of my genes" when he outweighs members of the reference group who eat as much and exercise no more than he does.
- 11. Δp is wholly genetic in origin, without reference to environments or individuals, may mean: Δp is due to genes in all environments: for all A, B and e, $p(A) p(B) = g_A(e) g_B(e)$, although $g_A(e)$ and $g_B(e)$ may vary with e
- 12. $\Delta p(A, B)$ is due entirely to genes may mean A and B would differ by Δp in any common environment; or that $\Delta p(A, B)$ would have the same sign in any shared environment; or that $\Delta p(A, B)$ would be non-null in any shared environment.
- 13. That $\Delta p(A, B)$ is due entirely to genes might mean that $\Delta p(A, B)$ would be constant, have the same sign, or exist in any pair of environments;
- 14. The paradigm innateness explanation is the explanation of a difference $\Delta p(A, B)$ in an ontogenetically fixed trait p as the expression of distinct genotypes g_A and g_B for p in a common environment e.

- 15. Let the expressions of g_A and g_B vary with e; A and B differ with respect of p because of a genetic difference without reference to that variation. Explaining $\Delta p(A, B)$ as $g_A(e) g_B(e)$ is consistent with there being e' in which $g_A(e') < g_B(e')$, and environments e' and e'' with respect which $g_A(e')$ and $g_B(e'')$ stand in numerical relation whatever.
- 16. Let g_A and g_B fix their expressions at p_A and p_B throughout E_A and E_B . Let A be in an environment in E_A and B in one an environments in E_B . Phenotypic values p_A and p_B , and thus $p_A p_B$ may be genetic in origin despite ignorance about the values of g_A and g_B elsewhere. g_A and g_B may vary in unknown ways over environments, but $\Delta p(A, B)$ be explainable as $g_A(e) g_B(e)$