Rafikul Alam
Department of Mathematics
Indian Institute of Technology Guwahati
Guwahati - 781039, INDIA

Outline

• Singular Value Decomposition (SVD)

Spectral Theorem

Spectral theorem: Let $A \in \mathbb{C}^{n \times n}$. Then A is Hermitian if and only if

$$A = V \operatorname{diag}(\lambda_1, \ldots, \lambda_n) V^*,$$

where $V \in \mathbb{C}^{n \times n}$ is unitary and $\lambda_j \in \mathbb{R}$ for j = 1 : n.

If $V = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$ then $Av_j = \lambda_j v_j$ for j = 1 : n. Hence v_j is an eigenvector of A corresponding to the eigenvalue λ_j for j = 1 : n.

Spectral Theorem

Spectral theorem: Let $A \in \mathbb{C}^{n \times n}$. Then A is Hermitian if and only if

$$A = V \operatorname{diag}(\lambda_1, \ldots, \lambda_n) V^*,$$

where $V \in \mathbb{C}^{n \times n}$ is unitary and $\lambda_j \in \mathbb{R}$ for j = 1:n.

If $V = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$ then $Av_j = \lambda_j v_j$ for j = 1 : n. Hence v_j is an eigenvector of A corresponding to the eigenvalue λ_j for j = 1 : n.

Example:

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^*. \blacksquare$$

In a sense, SVD generalizes spectral theorem for Hermitian matrices to the case of arbitrary $m \times n$ matrices.

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Then there exist unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ such that $A = U \Sigma V^*$,

In a sense, SVD generalizes spectral theorem for Hermitian matrices to the case of arbitrary $m \times n$ matrices.

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Then there exist unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ such that $A = U \Sigma V^*$, where

$$\Sigma = \left[egin{array}{c|ccc} \sigma_1 & & & 0 \ & \ddots & & 0 \ \hline & \sigma_r & & \end{array}
ight] = \left[egin{array}{c|ccc} \Sigma_r & 0 \ \hline 0 & 0 \end{array}
ight] \in \mathbb{R}^{m imes n},$$

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$
 , $\Sigma_r = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$ and $r = \operatorname{rank}(A)$.

In a sense, SVD generalizes spectral theorem for Hermitian matrices to the case of arbitrary $m \times n$ matrices.

Theorem: Let $A \in \mathbb{C}^{m \times n}$. Then there exist unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ such that $A = U \Sigma V^*$, where

$$\Sigma = \left[egin{array}{c|ccc} \sigma_1 & & & & 0 \ & \ddots & & 0 \ & & \sigma_r & & \end{array}
ight] = \left[egin{array}{c|ccc} \Sigma_r & 0 \ \hline 0 & 0 \end{array}
ight] \in \mathbb{R}^{m imes n},$$

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$
 , $\Sigma_r = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$ and $r = \operatorname{rank}(A)$.

Trimmed SVD: Let U and V be given by $U=egin{bmatrix} u_1 & \cdots & u_m \end{bmatrix}$ and $V=egin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$. Then

$$A = U_r \Sigma_r V_r^* = \sigma_1 u_1 v_1^* + \cdots + \sigma_r u_r v_r^*,$$

where $U_r := \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix}$ and $V_r := \begin{bmatrix} v_1 & \cdots & v_r \end{bmatrix}$.

Eexample

The MATLAB commands [U, S, V] = svd(A) and [U, S, V] = svd(A,0) compute full and trimmed SVD of an $m \times n$ matrix A, respectively.

Eexample

The MATLAB commands [U, S, V] = svd(A) and [U, S, V] = svd(A,0) compute full and trimmed SVD of an $m \times n$ matrix A, respectively.

The SVD of the 2-by-2 Hermitian matrix is given by

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^*,$$

whereas the spectral decomposition is given by

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^*. \blacksquare$$

Assume for the moment that the SVD $A = U\Sigma V^*$ exists. Then $AV = U\Sigma$ yields

$$Av_j = \sigma_j u_j, \ j = 1: r \Rightarrow R(A) = \operatorname{span}(u_1, \dots, u_r)$$

 $Av_j = 0, \ j = r + 1: n \Rightarrow N(A) = \operatorname{span}(v_{r+1}, \dots, v_n)$

and $A^*U = V\Sigma^*$ yields

$$A^*u_j = \sigma_j v_j, \ j = 1 : r,$$
 $R(A^*) = \operatorname{span}(v_1, \dots, v_r)$
 $A^*u_j = 0, \ j = r + 1 : m$ $N(A^*) = \operatorname{span}(u_{r+1}, \dots, u_m)$

Assume for the moment that the SVD $A = U\Sigma V^*$ exists. Then $AV = U\Sigma$ yields

$$Av_j = \sigma_j u_j, \ j = 1: r \Rightarrow R(A) = \operatorname{span}(u_1, \dots, u_r)$$

 $Av_j = 0, \ j = r + 1: n \Rightarrow N(A) = \operatorname{span}(v_{r+1}, \dots, v_n)$

and $A^*U = V\Sigma^*$ yields

$$A^*u_j = \sigma_j v_j, \ j = 1:r,$$
 $R(A^*) = \operatorname{span}(v_1, \dots, v_r)$
 $A^*u_j = 0, \ j = r+1:m$ $N(A^*) = \operatorname{span}(u_{r+1}, \dots, u_m)$

• $\sigma_1, \ldots, \sigma_r$ are called nonzero singular values of A

Assume for the moment that the SVD $A = U\Sigma V^*$ exists. Then $AV = U\Sigma$ yields

$$Av_j = \sigma_j u_j, \ j = 1: r \Rightarrow R(A) = \operatorname{span}(u_1, \dots, u_r)$$

 $Av_j = 0, \ j = r + 1: n \Rightarrow N(A) = \operatorname{span}(v_{r+1}, \dots, v_n)$

and $A^*U = V\Sigma^*$ yields

$$A^*u_j = \sigma_j v_j, \ j = 1:r,$$
 $R(A^*) = \operatorname{span}(v_1, \dots, v_r)$
 $A^*u_j = 0, \ j = r+1:m$ $N(A^*) = \operatorname{span}(u_{r+1}, \dots, u_m)$

- $\sigma_1, \ldots, \sigma_r$ are called nonzero singular values of A
- v_1, \ldots, v_n are called right singular vectors of A

Assume for the moment that the SVD $A = U\Sigma V^*$ exists. Then $AV = U\Sigma$ yields

$$Av_j = \sigma_j u_j, \ j = 1 : r \quad \Rightarrow \quad R(A) = \operatorname{span}(u_1, \dots, u_r)$$

$$Av_j = 0, \ j = r + 1 : n \quad \Rightarrow \quad N(A) = \operatorname{span}(v_{r+1}, \dots, v_n)$$

and $A^*U = V\Sigma^*$ yields

$$A^*u_j = \sigma_j v_j, \ j = 1:r,$$
 $R(A^*) = \operatorname{span}(v_1, \dots, v_r)$
 $A^*u_j = 0, \ j = r+1:m$ $N(A^*) = \operatorname{span}(u_{r+1}, \dots, u_m)$

- $\sigma_1, \ldots, \sigma_r$ are called nonzero singular values of A
- v_1, \ldots, v_n are called right singular vectors of A
- u_1, \ldots, u_m are called left singular vectors of A

We have

$$A^*A = V \begin{bmatrix} \Sigma_r^2 & 0 \\ 0 & 0 \end{bmatrix} V^* \implies A^*Av_j = \sigma_j^2 v_j, \ j = 1 : r$$
$$A^*Av_j = 0, \ j = r+1 : n$$

We have

$$A^*A = V \begin{bmatrix} \Sigma_r^2 & 0 \\ 0 & 0 \end{bmatrix} V^* \implies A^*Av_j = \sigma_j^2 v_j, \ j = 1 : r \\ A^*Av_j = 0, \ j = r + 1 : n \\ AA^* = U \begin{bmatrix} \Sigma_r^2 & 0 \\ 0 & 0 \end{bmatrix} U^* \implies AA^*u_j = \sigma_j^2 u_j, \ j = 1 : r \\ AA^*u_j = 0, \ j = r + 1 : m \end{bmatrix}$$

We have

$$A^*A = V \begin{bmatrix} \Sigma_r^2 & 0 \\ 0 & 0 \end{bmatrix} V^* \implies A^*Av_j = \sigma_j^2 v_j, \ j = 1 : r \\ A^*Av_j = 0, \ j = r + 1 : n \\ AA^* = U \begin{bmatrix} \Sigma_r^2 & 0 \\ 0 & 0 \end{bmatrix} U^* \implies AA^*u_j = \sigma_j^2 u_j, \ j = 1 : r \\ AA^*u_j = 0, \ j = r + 1 : m \end{bmatrix}$$

This shows that

• the right singular vectors v_1, \ldots, v_n are orthonormal eigenvectors of the positive semi-definite matrix A^*A

We have

$$A^*A = V \begin{bmatrix} \Sigma_r^2 & 0 \\ 0 & 0 \end{bmatrix} V^* \implies A^*Av_j = \sigma_j^2 v_j, \ j = 1 : r \\ A^*Av_j = 0, \ j = r + 1 : n \\ AA^* = U \begin{bmatrix} \Sigma_r^2 & 0 \\ 0 & 0 \end{bmatrix} U^* \implies AA^*u_j = \sigma_j^2 u_j, \ j = 1 : r \\ AA^*u_j = 0, \ j = r + 1 : m \end{bmatrix}$$

This shows that

- the right singular vectors v_1, \ldots, v_n are orthonormal eigenvectors of the positive semi-definite matrix A^*A
- the left singular vectors u_1, \ldots, u_m are orthonormal eigenvectors of the positive semi-definite matrix AA^*

We have

$$A^*A = V \begin{bmatrix} \Sigma_r^2 & 0 \\ 0 & 0 \end{bmatrix} V^* \implies A^*Av_j = \sigma_j^2 v_j, \ j = 1 : r \\ A^*Av_j = 0, \ j = r + 1 : n \\ AA^* = U \begin{bmatrix} \Sigma_r^2 & 0 \\ 0 & 0 \end{bmatrix} U^* \implies AA^*u_j = \sigma_j^2 u_j, \ j = 1 : r \\ AA^*u_j = 0, \ j = r + 1 : m \end{bmatrix}$$

This shows that

- the right singular vectors v_1, \ldots, v_n are orthonormal eigenvectors of the positive semi-definite matrix A^*A
- the left singular vectors u_1, \ldots, u_m are orthonormal eigenvectors of the positive semi-definite matrix AA^*
- and the nonzero singular values $\sigma_1, \ldots, \sigma_r$ are the square roots of the nonzero eigenvalues of A^*A (or equivalently of AA^*).

Consider the special case when $A \in \mathbb{C}^{n \times n}$ is nonsingular. Then A^*A is positive definite and by spectral theorem A^*A has positive eigenvalues:

$$A^*A = V \operatorname{diag}(\lambda_1, \cdots, \lambda_n) V^*,$$

where $\lambda_1 \geq \ldots \geq \lambda_n > 0$.

Consider the special case when $A \in \mathbb{C}^{n \times n}$ is nonsingular. Then A^*A is positive definite and by spectral theorem A^*A has positive eigenvalues:

$$A^*A = V \operatorname{diag}(\lambda_1, \cdots, \lambda_n) V^*,$$

where $\lambda_1 \geq \ldots \geq \lambda_n > 0$. Indeed, $A^*Av_j = \lambda_j v_j \Longrightarrow \lambda_j = v_j^*A^*Av_j > 0$ for j = 1 : n.

Consider the special case when $A \in \mathbb{C}^{n \times n}$ is nonsingular. Then A^*A is positive definite and by spectral theorem A^*A has positive eigenvalues:

$$A^*A = V \operatorname{diag}(\lambda_1, \cdots, \lambda_n) V^*,$$

where
$$\lambda_1 \geq \ldots \geq \lambda_n > 0$$
. Indeed, $A^*Av_j = \lambda_j v_j \Longrightarrow \lambda_j = v_j^*A^*Av_j > 0$ for $j = 1:n$.

Define
$$\Sigma := \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$$
 and $U := AV\Sigma^{-1}$. Then $A = U\Sigma V^*$.

Consider the special case when $A \in \mathbb{C}^{n \times n}$ is nonsingular. Then A^*A is positive definite and by spectral theorem A^*A has positive eigenvalues:

$$A^*A = V \operatorname{diag}(\lambda_1, \cdots, \lambda_n) V^*,$$

where
$$\lambda_1 \geq \ldots \geq \lambda_n > 0$$
. Indeed, $A^*Av_j = \lambda_j v_j \Longrightarrow \lambda_j = v_j^*A^*Av_j > 0$ for $j = 1 : n$.

Define
$$\Sigma := \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$$
 and $U := AV\Sigma^{-1}$. Then $A = U\Sigma V^*$. Now $U^*U = \Sigma^{-1}V^*A^*AV\Sigma^{-1} = I \Longrightarrow U$ is unitary. Thus $A = U\Sigma V^*$ is an SVD.

Consider the special case when $A \in \mathbb{C}^{n \times n}$ is nonsingular. Then A^*A is positive definite and by spectral theorem A^*A has positive eigenvalues:

$$A^*A = V \mathrm{diag}(\lambda_1, \cdots, \lambda_n) V^*,$$

$$(\forall j^*)(\forall j) = 1, \text{ as } \forall j' \text{s are orthonormal where } \lambda_1 \geq \ldots \geq \lambda_n > 0. \text{ Indeed, } A^*Av_j = \lambda_j v_j \Longrightarrow \lambda_j = v_j^*A^*Av_j > 0 \text{ for } j = 1:n.$$

Define
$$\Sigma := \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$$
 and $U := AV\Sigma^{-1}$. Then $A = U\Sigma V^*$. Now $U^*U = \Sigma^{-1}V^*A^*AV\Sigma^{-1} = I \Longrightarrow U$ is unitary. Thus $A = U\Sigma V^*$ is an SVD.

METHOD 1. SVD of an $n \times n$ nonsingular matrix A

- **1** Compute spectral decomposition $A^*A = V \operatorname{diag}(\lambda_1, \dots, \lambda_n) V^*$.
- **2** Define $\Sigma := \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$.
- **3** Compute $U := AV\Sigma^{-1}$. Then $A = U\Sigma V^*$ is an SVD of A.

The SVD of an m-by-n matrix A exists and can be computed from spectral decompositions of A^*A and AA^* in four steps:

- **1** Compute $A^*A = V \operatorname{diag}(\sigma_1^2, \dots, \sigma_r^2, 0, \dots, 0) V^*$. Set $\Sigma_r := \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ and let V_r denote the first r columns of V.
- **2** Compute $U_r := AV_r\Sigma_r^{-1}$, that is, $U_r := [Av_1/\sigma_1, \dots, Av_r/\sigma_r]$, where $v_j := Ve_j$, j = 1 : r.

The SVD of an m-by-n matrix A exists and can be computed from spectral decompositions of A^*A and AA^* in four steps:

- **1** Compute $A^*A = V \operatorname{diag}(\sigma_1^2, \dots, \sigma_r^2, 0, \dots, 0) V^*$. Set $\Sigma_r := \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ and let V_r denote the first r columns of V.
- **2** Compute $U_r := AV_r\Sigma_r^{-1}$, that is, $U_r := [Av_1/\sigma_1, \ldots, Av_r/\sigma_r]$, where $v_j := Ve_j$, j = 1:r. Then $U_r^*U_r = \Sigma_r^{-1}V_r^*A^*AV_r\Sigma_r^{-1} = \Sigma_r^{-1}\Sigma_r^2\Sigma_r^{-1} = I_r$. Hence U_r is an isometry.

The SVD of an m-by-n matrix A exists and can be computed from spectral decompositions of A^*A and AA^* in four steps:

- **1** Compute $A^*A = V \operatorname{diag}(\sigma_1^2, \dots, \sigma_r^2, 0, \dots, 0) V^*$. Set $\Sigma_r := \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ and let V_r denote the first r columns of V.
- **2** Compute $U_r := AV_r\Sigma_r^{-1}$, that is, $U_r := [Av_1/\sigma_1, \ldots, Av_r/\sigma_r]$, where $v_j := Ve_j$, j = 1 : r. Then $U_r^*U_r = \Sigma_r^{-1}V_r^*A^*AV_r\Sigma_r^{-1} = \Sigma_r^{-1}\Sigma_r^2\Sigma_r^{-1} = I_r$. Hence U_r is an isometry.
- **3** Compute $AA^* = Z \operatorname{diag}(\sigma_1^2, \dots, \sigma_r^2, 0, \dots, 0) Z^*$. Let U_{m-r} denote the last m-r columns of Z. Then $R(U_{m-r}) = N(A^*)$.

The SVD of an m-by-n matrix A exists and can be computed from spectral decompositions of A^*A and AA^* in four steps:

- ① Compute $A^*A = V \operatorname{diag}(\sigma_1^2, \dots, \sigma_r^2, 0, \dots, 0) V^*$. Set $\Sigma_r := \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ and let V_r denote the first r columns of V.
- ② Compute $U_r := AV_r\Sigma_r^{-1}$, that is, $U_r := [Av_1/\sigma_1, \dots, Av_r/\sigma_r]$, where $v_j := Ve_j$, j = 1 : r. Then $U_r^*U_r = \Sigma_r^{-1}V_r^*A^*AV_r\Sigma_r^{-1} = \Sigma_r^{-1}\Sigma_r^2\Sigma_r^{-1} = I_r$. Hence U_r is an isometry.
- **3** Compute $AA^* = Z \operatorname{diag}(\sigma_1^2, \dots, \sigma_r^2, 0, \dots, 0)Z^*$. Let U_{m-r} denote the last m-r columns of Z. Then $R(U_{m-r}) = N(A^*)$. As R(U(m-r)) = L.C. of ui's, for i = r+1,...m, which equals $N(A^*)$ which is span(u(r+1), u(r+2), u(r+3), ..., u(m))

 4 Set $U := \begin{bmatrix} U_r & U_{m-r} \end{bmatrix}$ and $\Sigma := \begin{bmatrix} \sum_r & 0 \\ 0 & 0 \end{bmatrix}$. Then U is unitary and $A = U\Sigma V^*$ is an SVD
- of A.

Example

Let
$$A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. Then $A^*A = [2]$ and

$$AA^* = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}^*.$$

Example

Let
$$A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. Then $A^*A = [2]$ and

$$AA^* = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}^*.$$

Thus
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} [1]^*$$
 is an SVD of A .

Example

Let
$$A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. Then $A^*A = [2]$ and

$$AA^* = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}^*.$$

Thus
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} [1]^*$$
 is an SVD of A .

Similarly,

$$B := \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}^*$$

is an SVD of B.

SVD in action

The image of a unit circle in \mathbb{R}^2 under the action of a 2×2 nonsingular matrix A. It follows that the image of a unit circle is an ellipse with semi-major axis $\sigma_1 u_1$ and semi-minor axis $\sigma_2 u_2$.

SVD in action

Let $\mathbb T$ denote the unit circle in $\mathbb R^2$. Then $V^*(\mathbb T)$ is again a unit circle. Now Σ maps the unit circle $V^*(\mathbb T)$ to the ellipse $\mathbb E:=\Sigma V^*(\mathbb T)$. Finally, U maps the ellipse $\mathbb E$ to the ellipse $U(\mathbb E)$.