MIPS R-format Instructions

ор	rs	rt	rd	shamt	funct
 6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

Instruction fields

- op: operation code (opcode)
- rs: first source register number
- rt: second source register number
- rd: destination register number
- shamt: shift amount (00000 for now)
- funct: function code (extends opcode)

R-format Example

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

add \$t0, \$s1, \$s2

special	\$s1	\$s2	\$tO	0	add
0	17	18	8	0	32
000000	10001	10010	01000	00000	100000

 $00000010001100100100000000100000_2 = 02324020_{16}$

MIPS I-format Instructions

ор	rs	rt	constant or address
6 bits	5 bits	5 bits	16 bits

- Immediate arithmetic and load/store instructions
 - rt: destination or source register number
 - Constant: -2^{15} to $+2^{15} 1$
 - Address: offset added to base address in rs
- Design Principle 4: Good design demands good compromises
 - Different formats complicate decoding, but allow 32-bit instructions uniformly
 - Keep formats as similar as possible

Branch Addressing

- Branch instructions specify
 - Opcode, two registers, target address
- Most branch targets are near branch
 - Forward or backward

ор	rs	rt	constant or address
6 bits	5 bits	5 bits	16 bits

- PC-relative addressing
 - Target address = PC + offset × 4
 - PC already incremented by 4 by this time

Jump Addressing

- Jump (j and jal) targets could be anywhere in text segment
 - Encode full address in instruction

	ор	address
6 bits		26 bits

- (Pseudo)Direct jump addressing
 - Target address = PC_{31...28}: (address × 4)

Addressing Mode Summary

Synchronization

- Two processors sharing an area of memory
 - P1 writes, then P2 reads
 - Data race if P1 and P2 don't synchronize
 - Result depends of order of accesses
- Hardware support required
 - Atomic read/write memory operation
 - No other access to the location allowed between the read and write
- Could be a single instruction
 - E.g., atomic swap of register

 memory
 - Or an atomic pair of instructions

Synchronization in MIPS

- Load linked: 11 rt, offset(rs)
- Store conditional: sc rt, offset(rs)
 - Succeeds if location not changed since the 11
 - Returns 1 in rt
 - Fails if location is changed
 - Returns 0 in rt
- Example: atomic swap (to test/set lock variable)

ARM & MIPS Similarities

- ARM: the most popular embedded core
- Similar basic set of instructions to MIPS

	ARM	MIPS
Date announced	1985	1985
Instruction size	32 bits	32 bits
Address space	32-bit flat	32-bit flat
Data alignment	Aligned	Aligned
Data addressing modes	9	3
Registers	15 × 32-bit	31 × 32-bit
Input/output	Memory mapped	Memory mapped

Compare and Branch in ARM

- Uses condition codes for result of an arithmetic/logical instruction
 - Negative, zero, carry, overflow
 - Compare instructions to set condition codes without keeping the result
- Each instruction can be conditional
 - Top 4 bits of instruction word: condition value
 - Can avoid branches over single instructions

Instruction Encoding

The Intel x86 ISA

- Evolution with backward compatibility
 - 8080 (1974): 8-bit microprocessor
 - Accumulator, plus 3 index-register pairs
 - 8086 (1978): 16-bit extension to 8080
 - Complex instruction set (CISC)
 - 8087 (1980): floating-point coprocessor
 - Adds FP instructions and register stack
 - 80286 (1982): 24-bit addresses, MMU
 - Segmented memory mapping and protection
 - 80386 (1985): 32-bit extension (now IA-32)
 - Additional addressing modes and operations
 - Paged memory mapping as well as segments

The Intel x86 ISA

- Further evolution...
 - i486 (1989): pipelined, on-chip caches and FPU
 - Compatible competitors: AMD, Cyrix, ...
 - Pentium (1993): superscalar, 64-bit datapath
 - Later versions added MMX (Multi-Media eXtension) instructions
 - The infamous FDIV bug
 - Pentium Pro (1995), Pentium II (1997)
 - New microarchitecture (see Colwell, The Pentium Chronicles)
 - Pentium III (1999)
 - Added SSE (Streaming SIMD Extensions) and associated registers
 - Pentium 4 (2001)
 - New microarchitecture
 - Added SSE2 instructions

The Intel x86 ISA

- And further...
 - AMD64 (2003): extended architecture to 64 bits
 - EM64T Extended Memory 64 Technology (2004)
 - AMD64 adopted by Intel (with refinements)
 - Added SSE3 instructions
 - Intel Core (2006)
 - Added SSE4 instructions, virtual machine support
 - AMD64 (announced 2007): SSE5 instructions
 - Intel declined to follow, instead...
 - Advanced Vector Extension (announced 2008)
 - Longer SSE registers, more instructions
- If Intel didn't extend with compatibility, its competitors would!
 - Technical elegance ≠ market success

x86 Instruction Encoding

- Variable length encoding
 - Postfix bytes specify addressing mode
 - Prefix bytes modify operation
 - Operand length, repetition, locking, ...

Fallacies

- Powerful instruction ⇒ higher performance
 - Fewer instructions required
 - But complex instructions are hard to implement
 - May slow down all instructions, including simple ones
 - Compilers are good at making fast code from simple instructions
- Use assembly code for high performance
 - But modern compilers are better at dealing with modern processors
 - More lines of code ⇒ more errors and less productivity

Fallacies

- Backward compatibility ⇒ instruction set doesn't change
 - But they do accrete more instructions

Concluding Remarks

- Measure MIPS instruction executions in benchmark programs
 - Consider making the common case fast
 - Consider compromises

Instruction class	MIPS examples	SPEC2006 Int	SPEC2006 FP
Arithmetic	add, sub, addi	16%	48%
Data transfer	lw, sw, lb, lbu, lh, lhu, sb, lui	35%	36%
Logical	and, or, nor, andi, ori, sll, srl	12%	4%
Cond. Branch	beq, bne, slt, slti, sltiu	34%	8%
Jump	j, jr, jal	2%	0%

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111
```

- +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Other Adders

- BASICS of ADDING LOGIC
 - Carry-out
 - Sum Generation

- Ripple Add
- Carry Bypass
- Carry Select
- Carry Lookahead

The Ripple-Carry Adder

Worst case delay linear with the number of bits

$$t_d = O(N)$$

$$t_{adder} = (N-1)t_{carry} + t_{sum}$$

Goal: Make the fastest possible carry path circuit

Carry-Bypass Adder

Idea: If (P0 and P1 and P2 and P3 = 1) then $C_{03} = C_0$, else "kill" or "generate".

Linear Carry Select

$$t_{add} = t_{setup} + \left(\frac{N}{M}\right) t_{carry} + M t_{mux} + t_{sum}$$

LookAhead - Basic Idea

$$C_{0, k} = f(A_k, B_k, C_{0, k-1}) = G_k + P_k C_{0, k-1}$$

Look-Ahead: Topology

Expanding Lookahead equations:

$$C_{0, k} = G_k + P_k (G_{k-1} + P_{k-1} C_{0, k-2})$$

All the way:

$$C_{0, k} = G_k + P_k (G_{k-1} + P_{k-1} (\dots + P_1 (G_0 + P_0 C_{i, 0})))$$

Carry Lookahead Trees

$$C_{0,0} = G_0 + P_0C_{i,0}$$

$$C_{0,1} = G_1 + P_1G_0 + P_1P_0C_{i,0}$$

$$C_{0,2} = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_{i,0}$$

$$= (G_2 + P_2G_1) + (P_2P_1)(G_0 + P_0C_{i,0}) = G_{2:1} + P_{2:1}C_{0,0}$$

Can continue building the tree hierarchically.

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Optimized Multiplier (ignore)

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product —> rd

Division (IGNORE THIS)

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - \bullet ±1. $xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

Denormal Numbers

■ Exponent = 000...0 ⇒ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition (IGNORE)

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - \bullet 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹
- 3. Normalize result & check for over/underflow
 - 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002×10^{2}

FP Adder Hardware (ignore)

Floating-Point Multiplication (ignore)

- Consider a 4-digit decimal example
 - \bullet 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021 × 10⁶
- 5. Determine sign of result from signs of operands
 - +1.021 × 10⁶

FP Arithmetic Hardware (ignore)

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ⇔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, 1t, 1e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1  $f16, const5($gp)
    lwc2  $f18, const9($gp)
    div.s  $f16, $f16, $f18
    lwc1  $f18, const32($gp)
    sub.s  $f18, $f12, $f18
    mul.s  $f0, $f16, $f18
    jr  $ra
```


Accurate Arithmetic

IEEE Std 754 specifies additional rounding control

- Extra bits of precision (guard, round, sticky)
- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

x86 FP Architecture (ignore)

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions (ignore)

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

