$C\Delta LCULUS$

Ethan Soh

September 2024

Presentation 3

Contents

Polar coordinates

Complex numbers

Checking your solution in annoying FM problems

Theorem of Pappus

Weekly Problems

Minimal surfaces

Hyperbolic functions and Conic sections

u-substitution

Integrals

MIT Integration Bee Qualifying 2025 Q5

Welcome Back!

As we delve into deeper and more complicated concepts, it would be beneficial to:

- Try to (somewhat) pay attention
- Attempt the examples
- Make notes?
- ASK questions if there is anything that you do not quite understand!

Link to docs:

- 1. https://docs.google.com/document/d/1QooSTfNWN7uFu0g9hI0kyp6EAMFBn0lUIsuqLFKnkkg/edit
- 2. https://drive.google.com/drive/folders/1hhO1l8HUrkutdXbvT_XPetFJoRa5Hqlk?usp=sharing

Please also feel free to suggest any topics to cover in the future on the docs!

Also:

Follow Calulus Society on IG for interesting problems and math content!

Formal definition of limits

Theorem 1 (Epsilon delta definition): $\forall \varepsilon > 0, \exists \delta > 0$ such that:

$$0<|x-a|<\delta\Rightarrow|f(x)-L|<\varepsilon$$

Formal definition of limits

Theorem 2 (Epsilon delta definition): $\forall \varepsilon > 0, \exists \delta > 0$ such that:

$$0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon$$

Example 2:

- 1. Prove that $\lim_{x\to 1} (3x-1) = 2$
- 2. Prove that $\lim_{x\to 1} (2x+1) = 3$

Polar coordinates

Theorem 3 (Area of curve in polar coordinates): The area fo a curve $r(\theta)$ is given by:

$$\frac{1}{2} \int_{\theta_i}^{\theta_f} r^2 d\theta$$

Calcworkshop.com

Polar coordinates

Example 3: Find the area outside the cardioid $r = 2 + 2\sin\theta$ and inside the circle $r = 6\sin\theta$.

Polar coordinates

Example 4: Find the area outside the cardioid $r = 2 + 2\sin\theta$ and inside the circle $r = 6\sin\theta$.

Ans: 4π

Complex numbers

Definition 1 (Imaginary number):

$$i = \sqrt{-1}$$

Theorem 4 (Euler's formula):

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Theorem 5 (Euler's formula):

$$e^{i\theta} = \cos\theta + i\sin\theta$$

The famous Euler's identity:

$$e^{i\pi} = -1$$

Theorem 6 (Euler's formula):

$$e^{i\theta} = \cos\theta + i\sin\theta$$

The famous Euler's identity:

$$e^{i\pi} = -1$$

Definition 2 (Complex number): A complex number z can be expressed in the form:

$$z = x + iy$$

where x and y are real constants.

Definition 3 (Complex number): A complex number z can be expressed in the form:

$$z = x + iy$$

where x and y are real constants.

How can we represent complex numbers?

Definition 4 (Complex number): A complex number z can be expressed in the form:

$$z = x + iy$$

where x and y are real constants.

How can we represent complex numbers?

Argand diagrams can be used to represent complex numbers, in a way similar to polar coordinates.

Theorem 7 (Argand Diagram): For a complex number z = x + iy,

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

Argand diagrams can be used to represent complex numbers, in a way similar to polar coordinates.

Theorem 8 (Argand Diagram): For a complex number z = x + iy,

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

If we are given r and θ instead, how can we determine the real and imaginary components (i.e. x and y)?

Mod-arg form

Theorem 9: A complex number z = x + iy can also be expressed in the following way:

$$z = re^{i\theta}$$

where r = |z| is called the *modulus* and θ is called the *argument* of z.

Mod-arg form

Theorem 10: A complex number z = x + iy can also be expressed in the following way:

$$z = re^{i\theta}$$

where r = |z| is called the *modulus* and θ is called the *argument* of z.

Why might this be of any use?

De Moivre's theorem

Consider a complex number z = x + iy. How can we determine the values of the powers of z (i.e, z^n)?

Theorem 11: (De Moivre's theorem) For a complex number $z = re^{i\theta}$,

$$z^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

De Moivre's theorem

Consider a complex number z = x + iy. How can we determine the values of the powers of z (i.e, z^n)?

Theorem 12: (De Moivre's theorem) For a complex number
$$z=re^{i\theta},$$

$$z^n=r^n(\cos(n\theta)+i\sin(n\theta))$$

<u>Proof:</u>

Checking your solution in annoying FM problems

Example 5: The quadratic equation

$$x^2 + 2x + 3 = 0$$

has roots α and β . Find the value of:

- 1. $\alpha^3 + \beta^3$
- 2. $\alpha^5 + \beta^5$

Checking your solution in annoying FM problems

Example 6: The quadratic equation

$$x^2 + 2x + 3 = 0$$

has roots α and β . Find the value of:

- 1. $\alpha^3 + \beta^3$
- $2. \ \alpha^5 + \beta^5$

How can you check your answer to (1)?

Checking your solution in annoying FM problems

Example 7: The quadratic equation

$$x^2 + 2x + 3 = 0$$

has roots α and β . Find the value of:

- 1. $\alpha^3 + \beta^3$
- $2. \ \alpha^5 + \beta^5$

How can you check your answer to (1)?

How could you do (2)?

Theorem of Pappus

Theorem 13 (Theorem of Pappus): If a plane area is rotated about an axis in its plane, which does not cross the area, the volume swept out equals the area times the distance moved by the centroid.

Theorem of Pappus

Theorem 14 (Theorem of Pappus): If a plane area is rotated about an axis in its plane, which does not cross the area, the volume swept out equals the area times the distance moved by the centroid.

Torus:

Theorem of Pappus

Theorem 15 (Theorem of Pappus): If a plane area is rotated about an axis in its plane, which does not cross the area, the volume swept out equals the area times the distance moved by the centroid.

Torus:

$$V = \left(\pi R^2\right)(2\pi r)$$

Arc length

Theorem 16 (Arc length of curve):

$$s = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

Arc length

Theorem 17 (Arc length of curve):

$$s = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

Theorem 18:

$$A = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

Theorem 19:

$$A = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

Can you use this to determine the surface area of a sphere?

Theorem 20:

$$A = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

Can you use this to determine the surface area of a sphere?

Example 10: Find the surface area of the solid obtained by revolving the curve $y = \sqrt{x}$, $1 \le x \le 4$, 360° around the x-axis.

Theorem 21:

$$A = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

Can you use this to determine the surface area of a sphere?

Example 11: Find the surface area of the solid obtained by revolving the curve $y = \sqrt{x}$, $1 \le x \le 4$, 360° around the x-axis.

Answer: 30.846 units^2

Weekly Problems

Find the volume of the solid obtained by revolving the following curve about the y-axis 360°:

$$(x-1)^2 + (y-1)^2 = \frac{1}{4}$$

u-substitution

$$\int_{-1}^{1} \sqrt{1 - x^2} dx$$

1. Define a dummy variable u to be an expression in terms of the integrating variable (or vice versa), for example,

$$x = \sin u$$

2. Find dx in terms of du:

$$\frac{dx}{du} = \cos u$$

$$\Rightarrow dx = (\cos u)du$$

3. Change the integration bounds:

When
$$x = 1$$
, $u = \frac{\pi}{2}$

When
$$x = -1, u = -\frac{\pi}{2}$$

4. Substitute everything in:

$$\int_{-1}^{1} \sqrt{1 - x^2} dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1 - \sin^2 u} (\cos u) du$$

Integrals

Example 12 (MIT Integration Bee Qualifying 2023 Q1):

$$\int x^{rac{1}{\ln(x)}} dx$$

Integrals

Example 14 (MIT Integration Bee Qualifying 2023 Q1):

$$\int x^{rac{1}{\ln(x)}} dx$$

Answer: ex + C

Integrals

Example 16 (MIT Integration Bee Qualifying 2023 Q1):

$$\int x^{rac{1}{\ln(x)}} dx$$

Answer: ex + C

Example 17 (MIT Integration Bee Qualifying 2024 Q5):

$$\int_0^{2\pi} \cos^{-1}(\sin x) dx$$

Integrals

Example 18 (MIT Integration Bee Qualifying 2023 Q1):

$$\int x^{rac{1}{\ln(x)}} dx$$

Answer: ex + C

Example 19 (MIT Integration Bee Qualifying 2024 Q5):

$$\int_0^{2\pi} \cos^{-1}(\sin x) dx$$

Answer: π^2

Example 20:

$$\int \frac{e^{\tan(x)}}{\cos^2(x)} dx$$

Example 22:

$$\int \frac{e^{\tan(x)}}{\cos^2(x)} dx$$

 $\underline{\mathit{Answer:}}\ e^{\tan(x)} + C$

Example 24:

$$\int \frac{e^{\tan(x)}}{\cos^2(x)} dx$$

 $\underline{\mathit{Answer:}}\; e^{\tan(x)} + C$

Example 25:

$$\int_{-e^{\sqrt{\pi}+1}}^{e^{\sqrt{\pi}+1}} x^3 \sin(x) \tan(x) dx$$

Example 26:

$$\int \frac{e^{\tan(x)}}{\cos^2(x)} dx$$

 $\underline{\mathit{Answer:}}\ e^{\tan(x)} + C$

Example 27:

$$\int_{-e^{\sqrt{\pi}+1}}^{e^{\sqrt{\pi}+1}} x^3 \sin(x) \tan(x) dx$$

<u>Answer:</u> 0 (You can thank Edward for thinking of this)

Example 28 (MIT Integration Bee Qualifying 2024 Q2):

$$\int \frac{(x-1)^{\ln(x+1)}}{(x+1)^{\ln(x-1)}} dx$$

Example 30 (MIT Integration Bee Qualifying 2024 Q2):

$$\int \frac{(x-1)^{\ln(x+1)}}{(x+1)^{\ln(x-1)}} dx$$

Answer: x + C

Example 32 (MIT Integration Bee Qualifying 2024 Q2):

$$\int \frac{(x-1)^{\ln(x+1)}}{(x+1)^{\ln(x-1)}} dx$$

Answer: x + C

Example 33 (MIT Integration Bee Qualifying 2025 Q1):

$$\int \frac{x + \sqrt{x}}{1 + \sqrt{x}} dx$$

Example 34 (MIT Integration Bee Qualifying 2024 Q2):

$$\int \frac{(x-1)^{\ln(x+1)}}{(x+1)^{\ln(x-1)}} dx$$

Answer: x + C

Example 35 (MIT Integration Bee Qualifying 2025 Q1):

$$\int \frac{x + \sqrt{x}}{1 + \sqrt{x}} dx$$

Answer: $\frac{2}{3}x^{\frac{3}{2}} + C$

Example 36 (MIT Integration Bee Qualifying 2025 Q5):

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(20x) \sin(25x) dx$$

Example 38 (MIT Integration Bee Qualifying 2025 Q5):

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(20x) \sin(25x) dx$$

$\underline{Answer:} 0$

Example 39:

$$\int \cos^4 x - \sin^4 x dx$$

Example 40 (MIT Integration Bee Qualifying 2025 Q5):

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(20x) \sin(25x) dx$$

$\underline{Answer:} 0$

Example 41:

$$\int \cos^4 x - \sin^4 x dx$$

 $\underline{Answer:} \ \frac{1}{2}\sin 2x + C$

Example 42 (MIT Integration Bee Qualifying 2025 Q14):

$$\int \sec^4 x - \tan^4 x dx$$

Example 44 (MIT Integration Bee Qualifying 2025 Q14):

$$\int \sec^4 x - \tan^4 x dx$$

Answer: $2 \tan x - x + C$

Example 45 (Gamma function):

$$\Gamma(z) = \int_0^\infty e^t t^{z-1} dt$$

Express $\Gamma(z+1)$ in terms of $\Gamma(z)$. Hint: Integrate by parts to reveal a special property!

$$\int \sin^5 x dx$$

Answer:
$$-\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + C$$

$$\int \frac{e^x}{(1+e^x)\ln(1+e^x)} dx$$

$$\int \frac{e^x}{(1+e^x)\ln(1+e^x)} dx$$

Answer: $\ln(\ln(1+e^x)) + C$

$$\int \csc^2 x \tan^{2024} x dx$$

$$\int \csc^2 x \tan^{2024} x dx$$

Answer:
$$\frac{\tan^{2023} x}{2023} + C$$

$$\int \sin^5 x dx$$

$$\int \sin^5 x dx$$

Answer:
$$-\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + C$$

$$\int_{\frac{1}{e}}^{e} \left(1 - \frac{1}{x^2}\right) e^{e^{x + \frac{1}{x}}} dx$$

$$\int_{\frac{1}{e}}^{e} \left(1 - \frac{1}{x^2}\right) e^{e^{x + \frac{1}{x}}} dx$$

Answer: 0

$$\int x \ln x dx$$

Answer:
$$\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C$$

$$\int \cos^x x (\ln(\cos x) - x \tan x) dx$$

$$\int \cos^x x (\ln(\cos x) - x \tan x) dx$$

Answer: $\cos^x x + C$

$$\int_1^{e^e} rac{\ln(x^{\ln(x^x)})}{x^2} dx$$

$$\int_1^{e^e}rac{\ln\left(x^{\ln(x^x)}
ight)}{x^2}dx$$

Answer: $\frac{e^3}{3}$

<u>Answer:</u> 5050

$$\int_0^1 \left(\sum_{k=1}^\infty (-1)^k x^{2k} \right) dx$$

$$\int_0^1 \left(\sum_{k=1}^\infty (-1)^k x^{2k} \right) dx$$

Answer: $\frac{\pi}{4} - 1$

$$\int_{1}^{3} \frac{x + \frac{x + \dots}{1 + \dots}}{1 + \frac{x + \dots}{1 + \dots}} dx$$

$$\int_{1}^{3} \frac{x + \frac{x + \dots}{1 + \dots}}{1 + \frac{x + \dots}{1 + \dots}} dx$$

Answer:
$$2\sqrt{3} - \frac{2}{3}$$

MIT Integration Bee Qualifying 2025 Q5

https://openstax.org/books/calculus-volume-2/pages/3-3-trigonometric-substitution

$$\int \tan x dx = \int \frac{\sin x}{\cos x} dx$$
Let $u = \cos x \Rightarrow \frac{du}{dx} = -(\sin x) \Rightarrow dx = -\frac{1}{\sin x} du$

$$\therefore \int \frac{\sin x}{\cos x} dx = \int \frac{\sin x}{u} \left(-\frac{1}{\sin x} \right) du$$

$$= -\int \frac{1}{u} du$$

$$= -\ln|u| + C$$

$$= -\ln|\cos x| + C$$