Decision Trees: Next Level

Measuring Success

Gini Index and Cost Complexity

Recall: Our simplest cannabis tree

- Which of the final nodes (or leaves) is most pure?

Which is least pure?

- Could we split a node further for better purity?
- unused variable have exactly the same prevalance across almost certainly, yes! It's highly unlikely that all of the categories.

Should we do it, or is that overfitting?

Cost Complexity revisted

What is the classification error of each leaf?

rpart.plot(tree_fitted\$fit)

(Left to right)

 The Gini Index for a particular node is the average of errors in each class:

$$(0.35*0.65) + (0.21*0.79) + (0.14*0.86) = 0.5138$$

+ small values if the classification errors are close to 0, i.e., high node purity + large values (near 1) if the errors are high + this is related to the *variance* of the node

Gini Index

To calculate the Gini Index average across all leaves:

```
cann %>%
bind_cols(
    predict(tree_fitted, cann, type = "prob")
) %>%
gain_capture(truth = Type,
    pred_indica, .pred_sativa)
                                                                                                             ## .metric .estim
## <chr> <chr> ## 1 gain_capture macro
                                                                                                  ## # A tibble: 1 \times 3
```

Cost Complexity revisited

So, when should we split the tree further?

Only if the new splits improve the Gini Index by a certain amount.

This is the cost_complexity parameter!

1

But wait! This is a penalized metric, using an arbitrary penalty lpha to avoid overfitting.

Don't we like cross-validation better?

Well... yes

But imagine fitting every possible tree and cross-validating.... yikes.

We have to limit our options and cut our losses somehow!

Suppose I took two random subsamples of my cannabis dataset:

```
set.seed(9374534)
splits <- cann %>%
initial_split(0.5, strata = Type)
                                                           cann_1 <- splits %>% training()
cann_2 <- splits %>% testing()
                                                                                                                                      ## [1] 1154
                                                                                                      dim(cann_1)
                                                                                                                                                                                                                   ## [1] 1151
                                                                                                                                                                             dim(cann_2)
```

Then I fit a decision tree to each:

```
tree_1 <- tree_wflow %>%
  fit(cann_1)
tree_2 <- tree_wflow %>%
  fit(cann_2)
```

How similar will the results be?

```
tree_1 %>%
pull_workflow_fit() %$%
fit %>%
rpart.plot()
```

```
tree_2 %>%
  pull_workflow_fit() %$%
  fit %>%
  rpart.plot()
```

So... which should we believe?

Let's take several subsamples of the data, and make trees from each.

Then, to classify a new observation, we run it through all the trees and let them vote!

(It's a bit like a KNN for trees!)

This is called bagging

```
library(baguette)
bag_tree_spec <- bag_tree() %>%
set_engine("rpart", times = 5) %>%
set_mode("classification")
```

```
bag_tree_wflow <- workflow() %>%
  add_recipe(cann_recipe) %>%
  add_model(bag_tree_spec)
bag_tree_fit <- bag_tree_wflow %>%
  fit(cann)
```

(this code may take a while!)

What variables were most important to the trees?

bag_tree_fit %>% pull_workflow_fit()

What if some important variables are being masked by more important variables?

Remember, we have 65 predictors - yikes!

Let's give some of the other predictors a chance to shine.

Randomly choose a few of the predictors to include in the data:

```
Dry Honey Ammonia Giggly Apple Relaxed Flowery Grape dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
                                                                                                                                                                                                                                                                 ... with 2,295 more rows, and 21 more variables: Tea <dbl>, Blueberry <dbl>,
                                                                                                                                                                                                                                                                                Creative <dbl>, Menthol <dbl>, Tropical <dbl>, Woody <dbl>, Earthy <dbl>,
                                                                                                                                                                                                                                                                                              Skunk <dbl>, Citrus <dbl>, Mouth <dbl>, Berry <dbl>, Pungent <dbl>,
Chestnut <dbl>, Blue <dbl>, Happy <dbl>, Vanilla <dbl>, Focused <dbl>,
                                                                                                       <lqp> <lqp><</pre>
                                                                                         Tobacco
              select(1,2, sample(5:65,
                                                                         2,305 \times 32
cann_reduced <- cann %>%
                                                                                                                                                                                                          hybr~
                                                                                                                                                                             hybr~
                                                                                                                    hybr~
                                                                                                                                   hybr~
                                                                                                                                                              hybr~
                                                                                                                                                                                                                        indi~
                                                                                                                                                                                                                                                    3X-Crazy indi∼
                                                                                                        <fct>
                                                                                                                                                  sati~
                                                                                                                                                                                            indi~
                                                                                                                                                                                                                                      sati~
                                                                                                                                                              13-Dawgs
                                                                                                                                                                                            3-Bears~
                                                                                                                                                                             24K-Gold
                                                                                                                                   98-Whit∼
                                                                          # A tibble:
                                                                                                                                                                                                        3-Kings
                                         cann_reduced
                                                                                                                                                                                                                       303-0g
3D-Cbd
                                                                                                                  100-0g
                                                                                         Strain
                                                                                                                                                1024
                                                                                                        <chr>
                                                                                                                                                                                           9
                                                                                                                                                                                                          #########
                                                                                                                                                               ###
```

001000001

After making many random reduced trees, we then bag the results to end up with a random forest.

The advantage of this is that more unique variables are involved in the process.

This way, we don't accidentally overfit to a variable that happens to be extremely relevant to our particular dataset.

Model spec: rand_forest()

Your turn

Open the activity file

Find the best bagged model for the cannabis data

Find the best *random forest* model for the cannabis data

Report some metrics on your models