

Durmuş YILMAZ

Tez Danışmanı: Yrd. Doç. Dr. İpek ŞAHİN Arş. Gör. Dr. Nasuf SÖNMEZ

Bitirme Tezi

Sabitler

 $\begin{array}{cccc} \text{Planck Sabiti:} & \hbar & = 1.05457 \times 10^{-34} Js \\ & = 6.58212 \times 10^{-22} MeVs \\ \text{Işık Hızı:} & \text{c} & = 2.99792 \times 10^8 m/s \\ \text{Elektron Kütlesi:} & m_e & = 9.01938 \times 10^{-31} kg \end{array}$

devamı gelecek

$\dot{\mathbf{I}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{i}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{c}}} \mathbf{\hat{\mathbf{$

1	Giriş	1		
2	QCD(Kuantum Renk Dinamiği)			
	2.1 Dört Kuvvet	2		
	2.2 QCD Lagranjyeni	3		
	2.3 p p çarpışması	4		
	2.4 QCD için Feynman kuralları	5		
	2.5 Asimtotik Özgürlük	6		
	2.6 QCD'deki Asimptotik Özgürlükten Kaynaklanan Zorluklar	7		
3	CMS (Compact Muon Solenoid)	8		
	3.1 CMS Dedektörü Şeması	8		
	3.2 CMS Teorik Bilgi	9		
	3.2.1 Kinematik Değişkenler	10		
4	Monte Carlo Simülasyonu ve Data Üretimi	11		
	4.1 MG5 ve Pythia Programında Olay Üretimi	11		
	4.2 Pythia8'de Hadronizasyon ve Parton Duşu	12		
	4.3 Jet'lerin Yeniden Yapılandırılması	13		
	4.4 Jet Algoritmaları (k_t) ve $(anti k_t)$	14		
5	Datanın Doğrulanması	15		
6	Sonuçlar 1			

1 Giriş

Bu kısımda bu tezi okuyacak kişilere neler vereceğimiz hangi konular, problem nedir sonuçlar neden önemli. (En son yazılacak)

$$e = m \cdot c^2 ,$$
 (1.0.1)

¹dipnot metni

2 QCD(Kuantum Renk Dinamiği)

2.1 Dört Kuvvet

Kuvvet	Şiddeti	Kuram	Aracı
Güçlü	10	Renk Dinamiği	Gluon
Elektromanyetik	10^{-2}	Elektrodinamik	Foton
Zayıf	10^{-13}	Çeşni Dinamiği	W ve Z
Kütleçekim	10^{-42}	Geometrodinamik	Graviton

2.2 QCD Lagranjyeni

2.3 p p çarpışması

2.4 QCD için Feynman kuralları

2.5 Asimtotik Özgürlük

2.6 QCD'deki Asimptotik Özgürlükten Kaynaklanan Zorluklar

3 CMS (Compact Muon Solenoid)

3.1 CMS Dedektörü Şeması

3.2 CMS Teorik Bilgi

$$desdsdasdb = sdabs \hspace{1.5cm} (3.2.1)$$

$$\eta = -ln(\cos\theta/2) \tag{3.2.2}$$

3.2.1 Kinematik Değişkenler

Kayıp Enerji (Missing E_t)

Muon

Elektron

 P_t

 η

 ϕ

- 4 Monte Carlo Simülasyonu ve Data Üretimi
- $4.1 \quad \text{MG5}$ ve Pythia Programında Olay Üretimi

4.2 Pythia8'de Hadronizasyon ve Parton Duşu

4.3 Jet'lerin Yeniden Yapılandırılması

4.4 Jet Algoritmaları (k_t) ve $(anti k_t)$

5 Datanın Doğrulanması

6 Sonuçlar

Kaynaklar

- [1] parçacık fiziğine giriş
- $[2]\,$ denemdeddds , dcskj
ncjsncds, msdkmk