AUDITORIEØVING NR. 1 TEP 4105 FLUIDMEKANIKK 2015

(Besvarelsen kan leveres på dette arket.)

Utført av: (alle i gruppa)

Oppgave 1

Hva er disse størrelsene, hvordan er de definert, og hvilken benevning har de (i SI-enheter)?

Q \dot{m} SG γ γ γ γ γ

Oppgave 2

Er uttrykkene vektorer eller skalarer?

 \vec{v} (hastighet) p (trykk) $\nabla \cdot \vec{v}$ ∇p

 $\mathbf{v} \times \mathbf{v}$

Oppgave 3

Hvilke forutsetninger/antagelser må være oppfylt for at disse to variantene av fluidstatikkens grunnlikning er gyldig?

- $0 = -\nabla p + \rho \vec{g}$
- $\bullet \quad \frac{\mathrm{dp}}{\mathrm{dz}} = -\rho g$

Oppgave 4

Hvilke størrelser inngår i :

Ideell gasslov:

Newtons friksjonslov:

Oppgave 5

I deloppgave a) til f) skal dere vurdere hvordan vannstanden h i en liten dam vil endre seg ved forskjellige hendelser. Fire utfall er mulige:

- 1: Vannstanden øker litt.
- 2: Vannstanden synker litt.
- 3: Vannstanden forblir nøyaktig den samme.4: Umulig å si uten mer informasjon.

Diskuter i grupper hvilken at tilfellene 1-4 vil forekomme. Begrunn svarene med resonnement eller utregning.

d) Et glass vann veltes av boksen. Glasset synker til bunns.

e) En stein faller av boksen og synker.

I tillegg kaster en passerende bums en støvel i dammen.

f) En polarbjørn og en sportsbil flyter på et isberg. Isberget smalter, bilen synker og isbjørnen svømmer munter på overflaten, lykkelig uvitende om global oppvarming.

Oppgave 6

En sugekopp med diameter $D \approx 10 \, \mathrm{cm}$ festes i taket. Klarer den å holde en student ($m < 100 \, \mathrm{kg}$) oppe?

Oppgave 7

Vi skal løfte en 5 tonn tung elefant med en hydraulisk plattform på $10~\mathrm{m}^2$. Hvor stor må vannhøyden H være?

Oppgave 8

To bobler med diameter D_1 og D_2 går sammen til en boble med diameter D_3 . Anta en isotermisk prosess og finn en funksjon for D_3 uttrykt ved hjelp av D_1 , D_2 , p_{atm} og Υ . (Hint: Start med massebevarelse)