

Universidade Estadual de Campinas Faculdade de Engenharia Mecânica IM381 – Elementos Finitos I

Tarefa Computacional IV

Precipitação com Elementos Isoparamétricos

Leonardo Silveira Leite RA: 291646

Campinas - SP 2 de dezembro de 2024

1 RESUMO

O presente estudo tem como objetivo a determinação das características de precipitação e área de uma sub-região dentro de uma espaço maior, utilizando elementos finitos isoparamétricos. A região A foi discretizada em cinco elementos quadrilaterais com 10 nós de coordenadas conhecidas, e as medições de precipitação nos nós foram utilizadas para calcular a precipitação total, a área total e a precipitação média. A análise foi estendida a uma sub-região, onde foi aplicada uma interpolação baseada em pesos inversos à distância para estimar os valores de precipitação nos nós desconhecidos.

2 INTRODUÇÃO

As coordenadas da região A é dada pela Tabela 1, sendo dez nós e divididos em cinco elementos quadrilaterais, definidos pela Tabela 2.

Nó	x_i [km]	y_i [km]
1	0	33,3
2	13,2	62,3
3	39,3	84,5
4	22,2	30,1
5	49,9	57,6
6	78,8	78,2
7	39,3	10,0
8	59,7	34,3
9	73,9	36,2
10	69,8	5,1

Elemento	Nós			
	i	j	k	l
1	1	4	5	2
2	2	5	6	3
3	4	7	8	5
4	5	8	9	6
5	7	10	9	8

Tabela 2 – Tabela de incidência da região A.

Tabela 1 – Coordenadas dos nós da região A.

Os pluviômetros instalados nos nós da região A mediram a precipitação em cada ponto. A quantidade de água acumulada em cada local é dada por:

$$\left\{ u_n \right\}^T = \left\{ 4,62 \quad 3,81 \quad 4,76 \quad 5,45 \quad 4,90 \quad 10,35 \quad 4,96 \quad 4,26 \quad 18,36 \quad 15,69 \right\}$$
 (1)

Para o problema da quantidade total de chuva em uma região A a partir da medida de alguns pontos, um sub-espaço da região considerada é definido pelos pontos descritos na Tabela 3.

Nó	x_i [km]	y_i [km]	
1	45	50	
2	55	50	
3	65	60	
4	60	70	

Tabela 3 - Coordenadas do sub-espaço da região A.

Na Figura 1 é plotado a região A em azul e a sub-região em vermelho. É também plotado o ponto com coordenadas x = 50 e y = 50, em verde.

Figura 1 – Região A e sua sub-região.

Para a sub-região, pede-se:

- A área total;
- A quantidade total de chuva na área Q^{abcd} ;
- A precipitação u registrada no ponto com coordenadas x = 50 e y = 50.

3 RESOLUÇÃO DO EXERCÍCIO

Tendo em vista a discretização:

$$Q = \sum_{i=1}^{nel} \int_{A_e} u(x, y) dA$$
 (2)

Escreve-se a aproximação deste problema da seguinte forma:

$$Q = \sum_{i=1}^{nel} \int_{-1}^{1} \int_{-1}^{1} u(\xi, \eta) det(J) d\xi d\eta$$
 (3)

A aproximação no referencial (ξ, η) é dada por:

$$u(\xi,\eta) = \left\{ 1 \quad \xi \quad \eta \quad \xi \eta \right\} \left\{ \begin{array}{l} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{array} \right\} \tag{4}$$

Substituindo as condições de contorno, tem-se:

Ainda:

$$u(\xi,\eta) = \left\{ N_1(\xi,\eta) \quad N_2(\xi,\eta) \quad N_3(\xi,\eta) \quad N_4(\xi,\eta) \right\} \begin{cases} u_i \\ u_j \\ u_k \\ u_l \end{cases}$$
 (6)

Na qual as funções de interpolação são dadas por:

$$N_1(\xi,\eta) = \frac{1}{4} (1-\xi) (1-\eta)$$
 $N_2(\xi,\eta) = \frac{1}{4} (1+\xi) (1-\eta)$

$$N_3(\xi,\eta) = \frac{1}{4} (1+\xi) (1+\eta)$$
 $N_4(\xi,\eta) = \frac{1}{4} (1-\xi) (1+\eta)$

Sendo a matriz Jacobiana $\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} \frac{dx}{d\xi} & \frac{dy}{d\xi} \\ \frac{dx}{d\eta} & \frac{dy}{d\eta} \end{bmatrix}$, calcula-se a determinante da matriz Jacobiana:

$$\begin{bmatrix} J \end{bmatrix} = \frac{1}{4} \begin{bmatrix} (-x_i + x_j + x_k - x_l) + \eta(x_i - x_j + x_k - x_l) & (-y_i + y_j + y_k - y_l) + \eta(y_i - y_j + y_k - y_l) \\ (-x_i - x_j + x_k + x_l) + \xi(x_i - x_j + x_k - x_l) & (-y_i - y_j + y_k + y_l) + \xi(y_i - y_j + y_k - y_l) \end{bmatrix}$$
(7)

$$det(J) = A_0 + A_1 \xi + A_2 \eta \tag{8}$$

Os coeficientes A_0 , A_1 e A_2 são dados por:

$$A_{0} = \frac{1}{8} \left[(y_{l} - y_{j})(x_{k} - x_{i}) - (y_{k} - y_{i})(x_{l} - x_{j}) \right]$$

$$A_{1} = \frac{1}{8} \left[(y_{k} - y_{l})(x_{j} - x_{i}) - (y_{j} - y_{i})(x_{k} - x_{l}) \right]$$

$$A_{2} = \frac{1}{8} \left[(y_{l} - y_{i})(x_{k} - x_{j}) - (y_{k} - y_{j})(x_{l} - x_{i}) \right]$$
(9)

Assim:

$$Q = \sum_{i=1}^{nel} \int_{-1}^{1} \int_{-1}^{1} (N_i u_i + N_j u_j + N_k u_k + N_l u_l) (A_0 + A_1 \xi + A_2 \eta) d\xi d\eta$$
 (10)

Integrando a Equação 10, tem-se:

$$Q^{e} = \left\{ A_{0} \quad \frac{A_{1}}{3} \quad \frac{A_{2}}{3} \right\} \begin{bmatrix} u_{i} + u_{j} + u_{k} + u_{l} \\ -u_{i} + u_{j} + u_{k} - u_{l} \\ -u_{i} - u_{j} + u_{k} + u_{l} \end{bmatrix}$$
(11)

Onde os coeficientes A_0 , A_1 e A_2 são funções das coordenadas dos nós, e u_i , u_j , u_k e u_l são os valores de precipitação nos quatro nós do elemento, extraídos de $\{u_n\}$.

Para o problema inicial de precipitação para a região A, as áreas e a quantidade de chuva na região são apresentadas na Tabela 4.

Elemento	A_0 (km ²)	A_1	A_2	$Q^e \text{ (cm} \cdot km^2)$
1	228,18	1,64	55,04	4.261,41
2	241,65	-5,70	12,99	5.771,07
3	217,56	-25,18	-14,01	4.272,97
4	182,79	-65,72	29,70	6.954,45
5	159,37	15,94	-66,85	6.983,87

Tabela 4 – Resultados de área e de precipitação da região original A.

A precipitação total, área total aproximada e a precipitação média são dadas por, respectivamente:

$$Q = \sum Q^e = 28.243,78cm \cdot km^2 \qquad A = 4\sum A_0 = 4.118,21km^2 \qquad u_m = \frac{Q}{A} = 6,86cm$$

A interpolação dos valores de precipitação nos nós da sub-região foi realizada utilizando o método de pesos inversos à distância. Para um nó i da sub-região, a precipitação u_i foi determinada pela seguinte formulação:

$$u_{i} = \frac{\sum_{j=1}^{N} \frac{u_{j}}{d_{ij}}}{\sum_{j=1}^{N} \frac{1}{d_{ij}}}$$

Onde u_j é o valor de precipitação conhecido no nó j da região principal, d_{ij} é a distância euclidiana entre o nó i da sub-região e o nó j da região principal, e N é o número de nós conhecidos na região principal.

A distância d_{ij} é dada por:

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

A precipitação total no elemento P_e foi determinada pela soma ponderada dos valores de precipitação nos nós do elemento, ajustada pelos coeficientes A_1 e A_2 :

$$P_e = 4 \cdot A_0 \left(\frac{u_1 + u_2 + u_3 + u_4}{4} \right) - \frac{4 \cdot A_1 \left(\frac{u_1 - u_2 - u_3 + u_4}{4} \right)}{3} - \frac{4 \cdot A_2 \left(\frac{u_1 + u_2 - u_3 - u_4}{4} \right)}{3}$$
(12)

A área total e a precipitação total da sub-região foram calculadas somando-se os valores de A_e e P_e de todos os elementos da sub-região:

$$A^{\text{abcd}} = \sum_{i=1}^{N_{el}} A_{e,i} \qquad Q^{\text{abcd}} = \sum_{i=1}^{N_{el}} P_{e,i}$$
 (13)

Utilizando as coordenadas da Tabela 3 nas Equações 9 a 13, obtém-se os seguintes resultados para a sub-região:

Elemento	A_0 (km ²)	A_1	A_2	Q^{abcd} (cm· km^2)
Sub-região	43,75	-12,5	6,25	1291,2855

Tabela 5 – Resultados de área e de precipitação.

A área total desta sub-região é dada por:

$$A = 4\sum A_0 = 175km^2$$

A precipitação no ponto específico (x_p, y_p) foi calculada de forma semelhante à interpolação, considerando as distâncias d_{pj} entre o ponto (x_p, y_p) e os nós da região principal, ou seja:

$$Q_p^e = \frac{\sum_{j=1}^N \frac{u_j}{d_{pj}}}{\sum_{j=1}^N \frac{1}{d_{pj}}} \tag{14}$$

Portanto, a precipitação no ponto x = 50 e y = 50 equivale a:

$$Q_p^e = 6,9061cm$$

4 CONCLUSÃO

A análise realizada neste trabalho demonstrou a aplicabilidade dos elementos finitos isoparamétricos para determinar com precisão as características de precipitação em uma sub-região dentro de uma área maior. A interpolação dos valores de precipitação, utilizando pesos inversos à distância, foi fundamental para estimar os dados de precipitação nos nós desconhecidos da sub-região, cujas coordenadas foram fornecidas. Com base nos cálculos realizados, a área total da sub-região foi determinada como 175km², e a precipitação acumulada foi de 1.291,2855 cm·km². A precipitação no ponto específico com coordenadas (50, 50) foi estimada em 6,9061cm.

5 REFERÊNCIAS BIBLIOGRÁFICAS

COOK, R. D.; MALKUS, D. S.; PLESHA, M. E. Concepts and Applications of Finite Element Analysis. [S.l.]: Wiley, 1989.

DHATT, G.; TOUZOT, G.; LEFRANÇOIS, E. *Finite Element Method*. Great Britain and the United States: ISTE Ltd and John Wiley & Sons, Inc., 2012.

PAVANELLO, R. Caderno de Elementos Finitos. [S.1.], 2020.