Maximální chyba

- není to chyba v pravém slova smyslu
- použití:
 1. hrubý řádový odhad nejistoty měření
 - 2. zavedení třídy přesnosti měřicích přístrojů
- neúplná čísla: $a=\hat{\mu}_a\pm \varepsilon_a \qquad b=\hat{\mu}_b\pm \varepsilon_b$
- součet $S = a + b = (\hat{\mu}_a + \hat{\mu}_b) \pm (\varepsilon_a + \varepsilon_b)$
 - absolutní maximální chyba: $\varepsilon_S = \varepsilon_a + \varepsilon_b$
 - relativní absolutní chyba: $\eta_S = rac{arepsilon_a + arepsilon_b}{\hat{\mu}_a + \hat{\mu}_b}$
- rozdíl $R = a b = (\hat{\mu}_a \hat{\mu}_b) \pm (\varepsilon_a + \varepsilon_b)$
 - absolutní maximální chyba: $\varepsilon_R = \varepsilon_a + \varepsilon_b$
 - relativní absolutní chyba:

 $\eta_R = \frac{\varepsilon_a + \varepsilon_b}{\hat{\mu}_a - \hat{\mu}_b}$ Enormní zvýšení relativní chyby při odčítání velmi blízkých hodnot!

Maximální chyba

součin

$$N = ab = (\hat{\mu}_a \hat{\mu}_b) \pm (\varepsilon_a \hat{\mu}_b + \varepsilon_b \hat{\mu}_a)$$

$$\varepsilon_N = \varepsilon_a \hat{\mu}_b + \varepsilon_b \hat{\mu}_a$$

podíl

$$P = \frac{a}{b} = \left(\frac{\widehat{\mu}_a}{\widehat{\mu}_b}\right) \pm \left(\frac{\varepsilon_a}{\widehat{\mu}_b} + \varepsilon_b \frac{\widehat{\mu}_a}{\widehat{\mu}_b^2}\right)$$

$$\varepsilon_P = \frac{\varepsilon_a}{\hat{\mu}_b} + \varepsilon_b \frac{\hat{\mu}_a}{\hat{\mu}_b^2}$$

- absolutní maximální chyba:
$$\varepsilon_P = \frac{\varepsilon_a}{\hat{\mu}_b} + \varepsilon_b \frac{\hat{\mu}_a}{\hat{\mu}_b^2}$$
 - relativní absolutní chyba:
$$\eta_P = \left(\frac{\varepsilon_a}{\hat{\mu}_b} + \varepsilon_b \frac{\hat{\mu}_a}{\hat{\mu}_b^2}\right) \frac{\hat{\mu}_b}{\hat{\mu}_a} = \eta_a + \eta_b$$

Maximální chyba

mocnina

$$M = a^n = \hat{\mu}_a^n \pm n\hat{\mu}_a^{n-1}\varepsilon_a$$

- absolutní maximální chyba: $\varepsilon_M = n\hat{\mu}_a^{n-1}\varepsilon_a$

$$\varepsilon_M = n\hat{\mu}_a^{n-1}\varepsilon_a$$

- relativní absolutní chyba:

$$\eta_M = n \cdot \eta_a$$

poznámka (pomůcka)

pravidla o derivování

$$(f+g)' = f' + g'$$

$$(f-g)' = f' - g'$$

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$$

$$(f^n)' = nf^{n-1}f'$$

Třída přesnosti

- statistické šetření na sérii vyrobených měřicích přístrojů
 - X_0 nominální hodnota získaná měřením přístrojem s podstatně vyšší přesností
- $\Delta_i = |X_i X_0|$ odchylka měření *i*-tého přístroje
- třída přesnosti

$$P = \frac{\Delta_{i,\text{max}}}{R} \times 100\%$$

rozsah:
$$R = x_{\text{max}} - x_{\text{min}}$$

řada:
$$P = 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2.5, 5$$

• rovnoměrné rozdělení* v intervalu (-a, a):

$$\sigma_B^2 = \frac{(2a)^2}{12} = \frac{a^2}{3} = \frac{\Delta_{i,\text{max}}^2}{3}$$

→ chyba naměřené veličiny

$$\sigma_B = \frac{PR}{\sqrt{3}} 10^{-2}$$

• normální rozdělení*: v intervalu $\pm \sigma_B$ kolem střední hodnoty měřené veličiny se skutečná (správná) hodnota nachází s pravděpodobností p = 0.68

Třída přesnosti

třída přesnosti

$$P = \frac{\Delta_{i,\text{max}}}{R} \times 100\%$$

rozsah stupnice R

Příklad:

Rozsah ampérmetru je R=3 A, třída přesnosti P=1.5. Absolutní chyba (nejistota) měření proudu na tomto rozsahu je:

$$\sigma_B = \frac{PR}{\sqrt{3}} 10^{-2} = \frac{1.5 \times 3}{\sqrt{3}} 10^{-2} \text{ A} = 0.026 \text{ A}$$

Poznámka:

Z důvodů minimalizace relativní chyby (nejistoty) měření je nutno měřit v horní polovině stupnice ručkového měřicího přístroje

dělení měřicích přístrojů podle třídy přesnosti:

Р	kategorie
0.1	etalony, normály
0.2	cejchovní
0.5	laboratorní
1	laboratorní
1.5	provozní
2.5	provozní

Značení elektrických přístrojů

 J. Brož a kol.: Základy fyzikálních měření I, SPN Praha 1967, tab. 1.2, str. 208

třída přesnosti

Zobecnění třídy přesnosti i na další měřicí přístroje

třída přesnosti
$$P = \frac{\Delta_{i,\text{max}}}{R} \times 100\%$$
 rozsah stupnice R

odhad absolutní chyby z dělení stupnice

předpokládáme rovnoměrné dělení stupnice v intervalu (-a, a)

volíme $a = \Delta$ = nejjemnější dílek stupnice

$$\sigma_B = \frac{\Delta}{\sqrt{3}} \cong 0.58\Delta$$

"polovina nejmenšího dílku"

Zobecnění třídy přesnosti i na další měřicí přístroje

• Příklad Při měření posuvným měřidlem je $\Delta = 0.05 \text{ mm}$.

Chybu měření pak odhadneme jako: $\sigma_B = \frac{\Delta}{\sqrt{3}} = \frac{0.05}{\sqrt{3}} \text{ mm} \cong 0.03 \text{ mm}$

Zobecnění třídy přesnosti i na další měřicí přístroje

nonius (Vernier)

$$\delta + m \cdot a = m$$

$$\delta = \frac{m}{10}$$

$$\delta = \frac{m}{20}$$

Digitální měřicí přístroje

maximální chyba se vyjadřuje
 v procentech l naměřené hodnoty μ (nelinearita A-D převodníku)

+ násobek d řádu r_d poslední platné číslice zobrazené na displeji (konečná šířka binu)

$$\sigma_B = \frac{1}{\sqrt{3}} \left(\frac{l}{100} \mu + d \cdot r_d \right)$$

Základní funkce	Rozsah	Přesnost
Měření DC napětí	600mV / 6V / 60V / 600V /1000V	+/- (0,3% + 2)
Měření AC napětí	600mV / 6V / 60V / 600V /1000V	+/- (0,6% + 5)
Měření DC proudu	600μA / 6000μA / 60mA / 600mA / 10A	+/- (0,5% + 3)
Měření AC proudu	600μA / 6000μA / 60mA / 600mA / 10A	+/- (1% + 5)
Měření odporu	$600\Omega / 6k\Omega / 60k\Omega / 600k\Omega / 6M\Omega / 60M\Omega$	+/- (0,5% + 2)
Měření kapacity	6nF / 60nF / 600nF / 6mF / 60mF / 600mF / 6mF	+/- (2% + 5)
Měření teploty ve °C	- 40°C až do + 1000°C	+/- (1% + 3)
Měření teploty ve °F	- 40°F až do + 1832°F	+/- (1,5% + 5)
Měření kmitočtu	60Hz / 60kHz / 600kHz / 6MHz / 60MHz	+/- (0,1% + 3)

Digitální měřicí přístroje

• Příklad: Na přístroji **Metex 3850** naměříme hodnotu stejnosměrného napětí U = 3.512 V na rozsahu 4 V.

8 — 2. Special Characteristics.

MODEL	FUNCTION	RANGE	ACCURACY	RESOLUTION
	DC	400 mV 4 V 40 V	±0.3% of rdg +1 dgt	100 μV 1 mV 10 mV
	VOLTAGE	400 V	li l	100 mV
M-3850	1000 V	±0.5% of rdg +1 dgt	1 V	
		400 mV		100 μV
M-3830		4 V	±0.8% of rdg	1 mV
	AC	40 V	+3dgt	10 mV
	VOLTAGE	400 V		100 mV
		750 V	±1.0% of rdg +3 dgt	1 V

Přístroj má 4-místný displej. Podle údajů výrobce je chyba 0.3% naměřené hodnoty plus 0.001 V.

$$\Delta = 0.003 \times 3.512 \text{ V} + 0.001 \text{ V} = 0.012 \text{ V} \Rightarrow \sigma_B = \frac{\Delta}{\sqrt{3}} = 0.007 \text{ V}$$

Výsledek měření je tedy: $U = (3.512 \pm 0.007) \text{ V}$