Computation in Finite Fields

Udaya Parampalli

Department of Computing and Information Systems University of Melbourne

August, 2016

Multiplication in GF

Multiplication of two polynomials is simple:

$$\alpha^{m} \cdot \alpha^{n} = \alpha^{m+n}$$

For example,

$$x^4 \cdot x^6 = x^{10}$$
$$= x^3$$

We can verify this equation,

$$x^{4} \cdot x^{6} = (x + x^{2})(1 + x^{2})$$

$$= x + x^{2} + x^{3} + x^{4}$$

$$= x + x^{2} + (1 + x) + (x + x^{2})$$

$$= 1 + x \text{ which is equal to } x^{3}$$

Multiplication in the form of powers of x is easy to calculate. On the contrary, multiplying two polynomials is more complicated (complexity is $O(n^2)$).

Addition in GF

Addition is the opposite – it is not simple to calculate addition of two powers of x without knowing their polynomial forms.

We can use Zech's logarithm to quickly solve the addition of two polynomials:

$$\alpha^{m} + \alpha^{n} = \alpha^{m} \cdot (1 + \alpha^{n-m})$$
$$= \alpha^{m} \cdot \alpha^{Z(n-m)}$$
$$= \alpha^{m+Z(n-m)}$$

The values of Z(n) are typically precomputed and stored in a look-up table.

n	x ⁿ	x ⁿ as poly	$1+x^n$	Z(n)
0	1	1	0	$-\infty$
1	X	X	1+x	3
2	x^2	x^2	$1 + x^2$	6
3	<i>x</i> ³	1+x	X	1
4	x ⁴	$x + x^2$	$1 + x + x^2$	5
5	x ⁵	$ 1 + x + x^2 $	$x + x^2$	4
6	<i>x</i> ⁶	$1 + x^2$	x^2	2
7	x ⁷	1	0	$-\infty$

Table: Zech's logarithm for $GF(2^3)$.

For example, suppose we would like to add x^4 to x^6 in GF(2³):

$$x^{4} + x^{6} = x^{4} \cdot (1 + x^{2})$$

= $x^{4} \cdot x^{6}$
= $x^{10} = x^{3}$

Or, with the help of a look-up table:

$$x^{4} + x^{6} = x^{4+Z(2)}$$

$$= x^{4+6}$$

$$= x^{10} = x^{3}$$