Abstract Algebra

- Will only be looking at a very small subset of what this subject has to offer.
- Three main ideas here that need to be grasped:
 - 1. Group $\{G,\cdot\}$
 - 2. Ring $\{R_q, +, \times\}$
 - 3. Field $\{F, +, \times\}$
- Basically three different types of sets along with some operation(s).
- The classification of each set is determined by the axioms which it satisfies.

Group

- A **Group** $\{G, \cdot\}$ is a set under some operation (\cdot) if it satisfies the following 4 axioms:
 - 1. Closure (A_1) : For any two elements $a, b \in G, c = a \cdot b \in G$
 - 2. **Associativity** (A_2) : For any three elements $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - 3. **Identity** (A_3) : There exists an **Identity** element $e \in G$ such that $\forall_{a \in G}, a \cdot e = e \cdot a = a$.
 - 4. **Inverse** (A_4) : Each element in G has an inverse i.e. $\forall_{a \in G} \exists_{a^{-1} \in G}, \ a \cdot a^{-1} = a^{-1} \cdot a = e.$

• However it is said to be an **Abelian group** if in addition to the above the set follows the axiom:

5. Commutativity (A_5) : For any $a, b \in G$, $a \cdot b = b \cdot a$.

Cyclic group

- **Exponentiation** is repeated application of the group operator.
- We might have a^3 and this would equal $a \cdot a \cdot a$.
- So if the operation was addition then a^3 would in fact be a + a + a.
- Also we have $a^0 = e$ which for an additive group is 0.
- Also $a^{-n} = (a^{-1})^n$.
- A group is said to be **cyclic** if every element of the group G is a power a^k (where k is an integer) of a fixed element $a \in G$.

- The element a is said to generate G or be a **generator** of G.
- A cyclic group is always abelian and may be finite or infinite.
- If a group has a finite number of elements it is referred to as a **finite group**.
- The **order** of the group is equal to the number of elements in the group. Otherwise, the group is an **infinite group**.

Ring

- A binary operation is a mapping of two elements into one element under some operation. For a set S we have $f: S \times S \to S$.
- A **Ring** $\{R_g, +, \times\}$ is a set with two binary operations addition and multiplication that satisfies the following axioms:
 - 1. Abelian Group under addition $(A_1 \rightarrow A_5)$: It satisfies all of the axioms for an abelian group (all of the above) with the operation of addition. The identity element is 0 and the inverse is denoted -a.

- 2. Closure under multiplication (M_1) : For any two elements $a, b \in R_q$, $c = ab \in R_q$.
- 3. Associativity of multiplication (M_2) : For any elements $a, b, c \in R_q$, (ab)c = a(bc).
- 4. **Distributive** (M_3) : For any elements $a, b, c \in R_q$, a(b+c) = ab + ac.
- It is then said to be a **commutative ring** if in addition the ring follows the axiom:
 - 5. Commutativity (M_4) : For any $a, b \in R_q$, ab = ba.

- It is an **Integral domain** if in addition the commutative ring follows the axioms:
 - 6. Multiplicative Identity (M_5) : There is an element 1 in R_g such that, a1 = 1a = a for all a in R_g .
 - 7. No Zero Divisors (M_6) : If $a, b \in R_g$ and ab = 0 then either a = 0 or b = 0.

- A **Field** $\{F, +, \times\}$ is a set with two binary operations addition and multiplication that satisfies the following axioms:
 - 1. **Integral Domain** $(A_1 M_6)$: It satisfies all of the axioms for an Integral domain (all of the above).
 - 2. **Multiplicative Inverse** (M_7) : Each element in F (except 0) has an inverse i.e., $\forall_{a\neq 0 \in F} \exists_{a^{-1} \in F}, \ aa^{-1} = a^{-1}a = 1.$
- In ordinary arithmetic it is possible to multiply both sides of an equation by the same value and still have the equality intact.

- Not necessarily true in finite arithmetic
- In this particular type of arithmetic we are dealing with a set containing a finite number of values.
- The set of real numbers is an infinite set and is not really useful for working with on computer systems due to the limited amount of memory and processing power.
- Much easier if every operation the computer performed resulted in a finite value that was easily handled. This is where finite fields come into play.

- Closure is the property that causes the result of a binary operation on an ordered pair of a set to be a part of that set also.
- The term *ordered pair* is important as it is not generally the case that $a \cdot b = b \cdot a$.

Figure 2: Group, Ring and Field