

The circuit of Fig. P2.2 uses an op amp that is ideal except for having a finite gain A. Measurements indicate $v_o = 4.0 \text{ V}$ when $v_I = 1.0 \text{ V}$. What is the op-amp gain A?

Figure P2.2

$$v_o = Av_+$$

$$v_+ = v_I \frac{1k}{1k + 1M} = \frac{v_I}{1001}$$

$$\frac{v_o}{v_I} = \frac{4V}{1V} = \frac{A}{1001}$$

$$A = 4004V/V$$

Assuming ideal op amps, find the voltage gain v_0/v_I and input resistance R_{in} of each of the circuits in Fig. P2.8.

$$\frac{v_o}{v_I} = -\frac{100k}{20k} = -5\text{V/V}, R_{in} = 20\text{k}\Omega$$
 $\frac{v_o}{v_I} = -5\text{V/V}, R_{in} = 20\text{k}\Omega$

$$\frac{v_o}{v_I} = -5\text{V/V}, R_{in}^{(c)} = 20\text{k}\Omega$$
 Figure P2.8 $\frac{v_o}{v_I} = -5\text{V/V}, R_{in} = 20\text{k}\Omega$

 $100 \text{ k}\Omega$ $20~k\Omega$ $20 \text{ k}\Omega$

$$\frac{v_o}{v_I} = -5\text{V/V}, R_{in} = 20\text{k}\Omega$$

$$\frac{v_o}{v_I} = -5\text{V/V}, R_{in} = 20\text{k}\Omega$$

Homework Solutions

R. Martin

You are provided with an ideal op amp and three $10\text{-k}\Omega$ resistors. Using series and parallel resistor combinations, how many different inverting-amplifier circuit topologies are possible? What is the largest (noninfinite) available voltage gain? What is the smallest (nonzero) available gain? What are the input resistances in these two cases?

$$\frac{v_o}{v_I} = -\frac{R_2}{R_1}$$

R_{I}	R_2	v_o/v_i	R_{in}
10k Ω	20k Ω	-2 V/V	10k Ω
10k Ω	5k Ω	-0.5 V/V	10k Ω
20k Ω	10k Ω	-0.5 V/V	20k Ω
5k Ω	10k Ω	-2 V/V	5k Ω

Given an ideal op amp to implement designs for the following closed-loop gains, what values of resistors (R_1 , R_2) should be used? Where possible, use at least one 10-k Ω resistor as the smallest resistor in your design.

(a)
$$+1 \text{ V/V}$$

$$R_2 = 0 \text{ k}\Omega$$
, $R_1 = 10 \text{ k}\Omega$ or $\infty \Omega$

(b)
$$+2 \text{ V/V}$$

$$R_2 = 10 \text{ k}\Omega, R_1 = 10 \text{ k}\Omega$$

$$(c) +21 V/V$$

$$R_2 = 200 \text{ k}\Omega$$
, $R_1 = 10 \text{ k}\Omega$

$$(d) +100 \text{ V/V}$$

$$R_2 = 990 \text{ k}\Omega, R_1 = 10 \text{ k}\Omega$$

Derive an expression for the voltage gain, v_O/v_I , of the circuit in Fig. P2.49.

Figure P2.49

$$v_{+} = v_{I} \frac{R_{4}}{R_{4} + R_{3}} = v$$

$$v_{-} = v_{o} \frac{R_{1}}{R_{1} + R_{2}} = v$$

$$v_{I} \frac{R_{4}}{R_{4} + R_{3}} = v_{o} \frac{R_{1}}{R_{1} + R_{2}}$$

$$\frac{v_{o}}{v_{I}} = \left(\frac{R_{1} + R_{2}}{R_{1}}\right) \frac{R_{4}}{R_{4} + R_{3}}$$

$$\frac{v_{o}}{v_{I}} = \frac{1 + R_{2}/R_{1}}{1 + R_{3}/R_{4}}$$