Notes
Notes
 .
Notes

z-Transform

Two z-transforms are common in digital signal processing. The one-sided or unilateral z-transform:

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

and the bilateral z-transform:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}.$$

The one-sided transform is considered here only.

z-Transform *Example*

Q. Find the z-Transform of a step function:

$$x[n] = \left\{ \begin{array}{ll} 1 & \text{for} & n \geq 0 \\ 0 & \text{elsewhere} \end{array} \right.$$

Α.

$$\begin{split} X(z) &= \sum_{n=0}^{\infty} x[n] z^{-n} = \sum_{n=0}^{\infty} z^{-n} \\ &= &(z^0 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + \ldots) \\ &= \left(1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \ldots\right) \end{split}$$

This is a geometric series of the form:

$$s = \sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$$

where a=1 and $r=z^{-1}$ so that

$$X(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}.$$

z-Transform Example Q. Find the z-Transform of a square pulse:

$$x[n] = \left\{ \begin{array}{ccc} 0.2 & \text{ for } & 0 \leq n < 5 \\ 0 & & \text{ elsewhere} \end{array} \right.$$

Α.

$$\begin{split} X(z) &= \sum_{n=0}^{\infty} x[n] z^{-n} = 0.2 \sum_{n=0}^{4} z^{-n} \\ &= 0.2 (z^0 + z^{-1} + z^{-2} + z^{-3} + z^{-4}) \\ &= 0.2 \left(1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} \right) \end{split}$$

This is a geometric series of the form:

$$s = \sum_{k=0}^{n-1} ar^k = a \frac{1 - r^n}{1 - r}$$

where a=0.2, n=5 and $r=z^{-1}$ so that

$$X(z) = 0.2 \frac{1 - z^{-5}}{1 - z^{-1}} = 0.2 \frac{z^{5} - 1}{z^{5} - z^{4}} = 0.2 \frac{z^{5} - 1}{z^{4}(z - 1)}$$

Notes

Notes

Time delays in z-Transform Representations

Each \mathbf{z}^{-1} in a z-Transform can be considered as a single time delay. Consider the time-shifted or delayed unit impulse:

$$x[n] = \delta[n - \tau]$$

then the z-Transform is given by:

$$X(z) = \sum_{n=0}^{\infty} \delta[n-\tau]z^n = z^{-\tau}$$

indicating a delay of $\boldsymbol{\tau}$ samples.

Time Delay Example

Q. Find the signal corresponding to the z-Transform:

$$X(z) = \frac{z}{z - 0.5}.$$

A. Remember the geometric series formula: $s=\sum\limits_{k=0}^{\infty}ar^k=\frac{a}{1-r}.$ Need to find the form of X(z) to easily find r and a... Dividing by

z gives

$$X(z) = \frac{1}{1 - 0.5z^{-1}}.$$

So that $r=0.5z^{-1}$ and a=1 then $% \left\vert z\right\vert =1$

$$\begin{split} X(z) &= \sum_{k=0}^{\infty} \left(0.5z^{-1}\right)^k = 1 + 0.5z^{-1} + (0.5z^{-1})^2 + (0.5z^{-1})^3 + (0.5z^{-1})^4 + \dots \\ &= 1 + 0.5z^{-1} + 0.25z^{-2} + 0.125z^{-1} + 0.0625z^{-4} + \dots \end{split}$$

Remembering z^{-1} is a delay of 1 time instance, the signal x[n] is then given by the coefficients, i.e. x[0] = 1, x[1] = 0.5, $x[2] = 0.25, \, x[3] = 0.125, \, x[4] = 0.0625 \, \, {\rm etc.}$

Notes

Notes

Time Delay Example 2

Q. Find the signal corresponding to the z-Transform:

$$X(z) = \frac{z^2 - 0.2}{z(z - 0.2)}$$

A. Remember geometric series formula: $s=\sum\limits_{k=0}^{n-1}ar^k=a\frac{1-r^n}{1-r}.$ Need to find form of X(z) to easily find r, a and n... Dividing

through by \boldsymbol{z}^2

$$X(z) = \frac{1 - 0.2z^{-2}}{1 - 0.2z^{-1}}.$$

So that $r=0.2z^{-1}$, a=1 and n=2 resulting in:

$$X(z) = \sum_{k=0}^{n-1} ar^k = \sum_{k=0}^{1} (0.2z^{-1})^k = 1 + 0.2z^{-1}.$$

Therefore the original signal, $\boldsymbol{x}[n]$ is given by $\boldsymbol{x}[0] = 1$ and x[1] = 0.2.

The Inverse z-Transform

The inverse z-Transform $\mathcal{Z}^{-1}(X(z))$ is given by

$$x[n] = \mathcal{Z}^{-1}(X(z)) = \frac{1}{2\pi i} \int X(z)z^{n-1} dz$$

- The inverse z-Transform is **not usually computed directly**.
- Instead the z-Transform is split into parts using partial fractions
- And then the inverse z-Transform of the parts are found using a table of z-Transform pairs.

(Unilateral) z-Transform Pairs

Lynn and Fuerst give the following table of z-Transform pairs:

Signal $x[n]$	$ \ \ \hbox{ z-Transform } X(z)$
$\delta[n]$	1
$u[n] = \begin{cases} 1 & \text{for } n \ge 0 \\ 0 & \text{elsewhere} \end{cases}$	$\frac{z}{z-1}$
$r[n] = \begin{cases} n & \text{for } n \geq 0 \\ 0 & \text{elsewhere} \end{cases}$	$\frac{z}{(z-1)^2}$
$a^n u[n]$	$\frac{z}{z-a}$
$(1-a^n)u[n]$	$ \frac{z(1-a)}{(z-a)(z-1)} $
$\cos(n\Omega_0)u[n]$	$\begin{array}{c} \frac{z}{z-a} \\ \frac{z}{z-a} \\ (z-a)(z-1) \\ \frac{z(z-\cos(\Omega_0)}{z^2-2z\cos(\Omega_0)+1} \\ z\sin(\Omega_0) \end{array}$
$\sin(n\Omega_0)u[n]$	$\overline{z^2-2z\cos(\Omega_0)+1}$
$a^n \sin(n\Omega_0)u[n]$	$\frac{az\sin(\Omega_0)}{z^2 - 2az\cos(\Omega_0) + a^2}$

Need to separate z-domain function using partial fractions into parts, in the form of the expressions on the right hand side of the above.

Partial Fractions *Example*

Q. Decompose the following function into partial fractions:

$$\frac{1}{(z+3)(z-2)}.$$

A. Let

$$\frac{1}{(z+3)(z-2)} = \frac{A}{z+3} + \frac{B}{z-2}.$$

Then A(z-2) + B(z+3) = 1. So that

$$Az - 2A + Bz + 3B = 1$$

$$z(A+B) - 2A + 3B = 1$$

Therefore $z(A+B)=0\Rightarrow A=-B$ and -2A+3B=1 so that -2A-3A=1 giving $A=-\frac{1}{5}$ and $B=\frac{1}{5}$.

Check

$$\frac{A}{z+3} + \frac{B}{z-2} = \frac{-\frac{1}{5}}{z+3} + \frac{\frac{1}{5}}{z-2} = \frac{\frac{1}{5}(5)}{(z+3)(z+2)} = \frac{1}{(z+3)(z+2)}$$

Note	20

Notes

Cover up method Example

Q. Decompose the following function into partial fractions:

$$\frac{z}{(z+3)(z-2)}.$$

A. Let $\frac{z}{(z+3)(z-2)}=\frac{A}{z+3}+\frac{B}{z-2}.$ To find $A\Rightarrow z+3=0\Rightarrow z=-3.$

$$A = \frac{z}{(z+3)(z-2)}\Big|_{z=-3} = \frac{-3}{-3-2} = \frac{3}{5}.$$

To find $B \Rightarrow z - 2 = 0 \Rightarrow z = 2$.

$$B = \frac{z}{(z+3)(z-2)} \bigg|_{z=2} = \frac{2}{2+3} = \frac{2}{5}.$$

Hence

$$\frac{z}{(z+3)(z-2)} = \frac{\frac{3}{5}}{z+3} + \frac{\frac{2}{5}}{z-2}.$$

Check:

$$\frac{\frac{3}{5}}{z+3} + \frac{\frac{2}{5}}{z-2} = \frac{\frac{3}{5}(z-2) + \frac{2}{5}(z+3)}{(z+3)(z-2)} = \frac{\frac{3}{5}z - \frac{6}{5} + \frac{2}{5}z + \frac{6}{5}}{(z+3)(z-2)} = \frac{z}{(z+3)(z-2)}.$$

Inverse z-Transform *Example*

Q. Find the inverse z-Transform of:

$$X(z) = \frac{1}{(z+3)(z-2)} = \frac{1}{5} \left(\frac{1}{z-2} - \frac{1}{z+3} \right). \tag{1}$$

A. Re-writing (1) to

$$X(z) = \frac{z^{-1}}{5} \left(\frac{z}{z-2} - \frac{z}{z+3} \right). \tag{2}$$

Enables us to find inverse z-Transforms for the two terms inside the brackets:

$$\mathcal{Z}^{-1}\left(\frac{z}{z-2}\right) = 2^n u[n]$$

and

$$Z^{-1}\left(-\frac{z}{z+3}\right) = -((-3)^n)u[n].$$

The two terms are multiplied by z^{-1} which is equivalent to a time delay hence the final signal is given by:

$$x[n] = \mathcal{Z}^{-1}(X(z)) = \frac{1}{5} \left(2^{(n-1)}u[n-1] - ((-3)^{(n-1)})u[n-1] \right).$$

Notes

Notes

Inverse z-Transform *Example*

 ${\bf Q}.$ Find the inverse z-Transform of:

$$X(z) = \frac{z}{(z+3)(z-2)}.$$

A. From earlier the partial fraction expansion is given by: $\frac{z}{(z+3)(z-2)} = \frac{\frac{3}{5}}{z+3} + \frac{\frac{2}{5}}{z-2}$.

(i) However it is more convenient if we divide both sides by z first. Hence

(ii) We saw earlier:

$$\frac{X(z)}{z} = \frac{1}{(z+3)(z-2)}.$$

$$\mathcal{Z}^{-1}\left(\frac{z}{z-2}\right) = 2^n u[n]$$

The Right Hand Side (RHS) has partial fractions (see earlier slide):

 $\frac{X(z)}{z} = \frac{-\frac{1}{5}}{z+3} + \frac{\frac{1}{5}}{z-2}.$

$$\mathcal{Z}^{-1}\left(-\frac{z}{z+3}\right) = -((-3)^n)u[n]$$

Multiplying both sides by z then gives:

$$x[n] = \mathcal{Z}^{-1}(X(z))$$

 $X(z) = \frac{1}{5} \left(\frac{-z}{z+3} + \frac{z}{z-2} \right).$

$$= \frac{1}{5} \left(2^{(n)} u[n] - ((-3)^{(n)}) u[n] \right).$$

Inv. z-Transform: Long Division

The numerator and the denominator of the z-Transform can be divided using algebraic long division to find coefficients that correspond to the original signal.

Example

Example Q. Given $H(z)=\frac{z}{(z-1)(z+2)}=\frac{z}{z^2+z-2}$, determine the coefficients.

A. Via algebraic or polynomial long division:

$$z^{-1}-z^{-2}+3z^{-3}-5z^{-4}\dots$$

$$z^{2}+z-2\lceil\overline{z}\\ \underline{z+1-2z^{-1}}\\ -1+2z^{-1}\\ \underline{-1-z^{-1}+2z^{-2}}\\ 3z^{-1}-2z^{-2}\\ \underline{3z^{-1}+3z^{-2}-5z^{-3}}\\ -5z^{-2}+5z^{-3}$$

So the coefficients of the original signal are given by: $x[0] = 0, \ x[1] = 1, \ x[2] = -1, \ x[3] = 3, \ x[4] = -5, \text{ etc.}$ This can be checked by performing the inverse z-Transform on H(z). Expansion with partial fractions gives: $H(z) = \frac{1}{3} \left(\frac{z}{z-1} - \frac{z}{z+2}\right)$ Inverse z-Transform: $x[n] = \frac{z}{z-1}H(z) = \frac{1}{3} (u[n] - (-2)^n u[n])$ Then $x[0] = \frac{1}{3} (1-1) = 0,$ $x[1] = \frac{1}{3} (1+2) = 1,$ $x[2] = \frac{1}{3} (1+4) = -1,$ $x[3] = \frac{1}{3} (1+8) = 3,$ $x[4] = \frac{1}{3} (1-15) = -5, \text{ etc.}$ This confirms the long division result.

Notes			

Inverse z-Transform *Example*

 ${\bf Q}.$ Find the inverse z-Transform of:

$$X(z) = \frac{0.5z}{z^2 - z + 0.5} \tag{3}$$

A. The table of z-Transform pairs has the following definition:

$$\mathcal{Z}^{-1}\left(\frac{az\sin(\Omega_0)}{(z^2-2az\cos(\Omega_0)+a^2)}\right)=a^n\sin(n\Omega_0)u[n]. \tag{4}$$

Therefore we can try to equate the terms inside (4) and (3).

In the numerator: $a\sin(\Omega_0)=0.5$, and in the denominator $a^2=0.5$

$$\Rightarrow a = \sqrt{0.5}$$
, then $\sin(\Omega_0) = 0.5/\sqrt{0.5}$, $\Rightarrow \Omega_0 = \sin^{-1}(0.5/\sqrt{0.5}) = \frac{\pi}{4}$.

We can therefore plug these values into the result of (4) to find the inverse z-Transform of (3):

$$x[n] = \mathcal{Z}^{-1}\left(\frac{0.5z}{z^2 - z + 0.5}\right) = (\sqrt{0.5})^n \sin(n\pi/4)u[n].$$

Notes

BIBO Stability

- A linear system is said to be stable if it has:
 - A Bounded Output for A Bounded Input
- Bounded means signal does not exceed a particular value.
- \blacksquare A system is not usually very useful if it goes to $\pm infinity.$
- System stability is expressed using a function of the impulse response h[n] of the system:

$$\sum_{-\infty}^{\infty} |h[n]| < \infty \tag{5}$$

where |-h[n]| = |h[n]|.

- This ensures that the system is bounded and will not be larger than infinity for some input
- If equation (5) is true then the system can be described as being BIBO stable.

Notes			

z-Transform and Stability

- The z-Transform can be used to determine if a system is stable.
- The z-Transform results in a rational function consisting of a numerator $N(\boldsymbol{z})$ and a denominator $D(\boldsymbol{z})$

$$X(z) = \frac{N(z)}{D(z)}$$

- lacksquare X(z) can be
 - A system input

 - A system outputA system transfer function
- lacksquare The stability of X(z) can be found by the roots of N(z) and D(z):

$$X(z) = \frac{N(z)}{D(z)} = \frac{K(z - z_1)(z - z_2)(z - z_3)...}{(z - p_1)(z - p_2)(z - p_3)...}$$

Notes			

z-Transform and Stability

$$X(z) = \frac{N(z)}{D(z)} = \frac{K(z-z_1)(z-z_2)(z-z_3)...}{(z-p_1)(z-p_2)(z-p_3)...}$$

- \blacksquare The roots of the numerator are $z_1,\,z_2,\,z_3...$ known as ${\bf zeros}$
- lacksquare The roots of the denominator are p_1 , p_2 , p_3 ... known as **poles**

Notes			

z-Transform and Stability

- \blacksquare The **zeros** are values of z that make $X(z) \to 0$
 - lacksquare e.g. if $z=z_1$ then

$$\begin{split} X(z=z_1) = & \frac{N(z=z_1)}{D(z=z_1)} = \frac{K(z_1-z_1)(z_1-z_2)(z_1-z_3)...}{(z_1-p_1)(z_1-p_2)(z_1-p_3)...} \\ = & \frac{K\times 0\times (z_1-z_2)(z_1-z_3)...}{(z_1-p_1)(z_1-p_2)(z_1-p_3)...} = 0 \end{split}$$

- The **poles** are values of z that make $X(z) \to \infty$
 - \blacksquare e.g. if $z=p_1$ then

$$\begin{split} X(z=p_1) = & \frac{N_1}{D_1} = \frac{K(p_1-z_1)(p_1-z_2)(p_1-z_3)...}{(p_1-p_1)(p_1-p_2)(p_1-p_3)...} \\ = & \frac{K(p_1-z_1)(p_1-z_2)(p_1-z_3)...}{0 \times (p_1-p_2)(p_1-p_3)...} = \frac{K...}{0} = \infty \end{split}$$

Notes			

Stability: z-Plane

A z-Transform can be represented graphically with the z-Plane.

- $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} \begin{tabular}{ll}$
- \blacksquare The vertical axis (†) is imaginary (b)
- \blacksquare The horizontal axis (\to) is real
- The z-Plane is also known as an Argand diagram

		oper / secondarion	1.0		
-1.5	-1.0	-0.5	-0.6j 000 -0.5j 	0.5	1.0 1.0 Reallaxis
			-1.0j		

Notes

Stability: z-Plane

$$X(z) = \frac{N(z)}{D(z)} = \frac{K(z-z_1)(z-z_2)(z-z_3)...}{(z-p_1)(z-p_2)(z-p_3)...}$$

- Each **zero**: z_1 , z_2 , z_3 , ... is represented by a **circle**: **O**
- Each **pole**: p_1 , p_2 , p_3 , ... is represented by a **cross**: **X**
- \blacksquare e.g. $X(z)=\frac{z-1}{(z+0.5)(z-0.4)}$ then
 - $z_1 = 1 + 0j$ $p_1 = -0.5 + 0j$ $p_2 = 0.4 + 0j$

Notes

Stability: z-Plane

Stability is determined by the location of the **poles** in the z-plane. Example

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{(z-a)}$$

- From the table of z-Transform pairs:
- $:: let H(z) = z^{-1} \left(\frac{z}{z-a} \right)$
- \mathbf{z}^{-1} is a unit delay hence:
- $x[n] = a^{n-1}u[n-1]$
- $\begin{tabular}{l} \blacksquare \begin{tabular}{l} \textbf{So that} \ x[0] = 0, \ x[1] = 1, \ x[2] = a, \ x[3] = a^2, \ x[4] = a^3 \ \text{etc.} \end{tabular}$

Stability: z-Plane

- $x[n] = a^{n-1}u[n-1]$
- x[0] = 0, x[1] = 1, x[2] = a, $x[3] = a^2$, $x[4] = a^3$ etc.
- If a = 0.99 a = 1.01
- \blacksquare Decreasing and tending to zero $(x[n]\to 0)$ when a<1 Increasing and tending to infinity $(x[n]\to \infty)$ when a>1

Notes

Stability: z-Plane

For a system with $x[n] = a^{n-1}u[n-1]$

- \blacksquare Decreasing and tending to zero (x[n] \rightarrow 0) when a < 1
- \blacksquare Increasing and tending to infinity $\big(x[n]\to\infty\big)$ when a>1

These observations are true more generally:

$$X(z) = \frac{N(z)}{D(z)} = \frac{K(z - z_1)(z - z_2)(z - z_3)...}{(z - p_1)(z - p_2)(z - p_3)...}$$

If magnitude of any pole (p_i) is greater than 1 then it will tend to

- A unit circle is drawn on the z-plane.
- If any pole is outside of the unit circle then the system is **not stable**.

Notes

Stability: Magnitude Example

If magnitude of any pole (p_i) is greater than 1 then it will tend to infinity. Q. Determine whether the following system is stable:

$$H(z) = \frac{1}{(z - 0.7 + 0.8j)(z - 0.7 - 0.8j)}$$

A. The system has two poles:

$$p_1 = 0.7 - 0.8j$$
 and $p_2 = 0.7 + 0.8j$.

Distance from the origin given by the magnitude:

$$r = \sqrt{0.7^2 + 0.8^2} = 1.063 > 1.$$

These poles are beyond the unit circle, therefore this system is **not stable**.

Stability: Magnitude Example

Q. Determine whether the following system is stable:

$$H(z) = \frac{1}{(z - 0.5 - 0.5j)(z - 0.5 + 0.5j)}$$

A. System has two poles:

$$p_1 = 0.5{+}0.5j \ \mathrm{and} \ p_2 = 0.5{-}0.5j$$

Distance from origin of poles given by:

$$r = \sqrt{0.5^2 + 0.5^2} = 0.707 < 1.$$

These poles are inside unit circle, : system is **stable**.

Notes

z-Plane and The Zeros

The z-Plane zeros:

- Do **not** determine stability:
 - They can be located anywhere in the z-Plane without directly affecting stability
- If a **zero** is located at the origin then there is a time advance of a signal
- \blacksquare If there are more zeros than poles then the system starts before n=0 and is therefore ${\bf not}$ causal
- It is usually desirable to have the same number of poles and zeros in a system to:
 - Ensure minimum delay or time lag
 - Ensure the system is causal

Notes			

z-Plane and The Zeros Example

The inverse z-Transform of:

$$H(z) = \frac{1}{z - 0.4} = z^{-1} \left(\frac{z}{z - 0.4} \right)$$

is given by (using the table of z-Transform pairs):

$$x[n] = 0.4^{n-1}u[n-1],$$

which has a delay of 1 time interval. If we provide H(z) with a zero at the origin (i.e. $z_1=0$) so that:

$$H(z) = \frac{z - z_1}{z - 0.4} = \frac{z}{z - 0.4}$$

then the inverse z-Transform is given by:

$$x[n] = 0.4^n u[n],$$

which has no time delay.

Notes			

Summary

What we have covered:

- The z-Transform
- The inverse z-Transform
- \blacksquare Stability analysis using the z-plane
- Partial fractions
- \blacksquare The z-Transform and time delays

Notes			
Notes			
	 		<u> </u>