CS4215: Programming Language Implementation 2018/9, Sem 2

Introduction

Lecture 1

Synopsis

- 1. Brief introduction to the course
- 2. Administrative matters
- 3. Introductory concepts
 - a. Language processing
 - b. Inductive definitions

Staff

- Razvan Voicu, adjunct instructor, staff engineer at Indeed.com
 - Course lecturer, will be grading your exams
 - o <u>razvan@comp.nus.edu.sq</u>, <u>rvoicu@indeed.com</u>
- Assoc Prof Wei Ngan Chin
 - Kindly provides help with co-ordindinating the labs
 - Matters related to homework, homework submissions, homework marking
 - o chinwn@comp.nus.edu.sg
- Lab TAs will be introduced later

IVLE

- Main medium for interaction and homework submission
- All materials will be there
- Lectures will have screencast recorded

What this course is about

- Implementation of major programming language concepts
- Distilled, focus on the gist, keep things as simple as possible
- Practical approach, we will be looking at code
- We will also focus on high-level abstract concepts such as semantics
 - Strive to keep a balance
 - Provide an understanding of how high-level solutions/concepts make their way to practice
 - Abstract as they may be, high level concepts are often subtle; understanding them well provides deep insights that can be crucial in finding good practical solutions.

Learn by Coding

- Nothing beats running your own interpreter or compiler
- Implement a sequence of toy language, each adding a new layer of complexity
 - Expressions
 - Statements
 - Types
 - Procedural/functional abstractions
 - Objects and Exceptions
 - Virtual machines
 - Write toy programs in your toy programming language
- Course revamp: everything will be based on Scala
 - Extensive software support provided

Incremental and Exploratory

Incremental

- Sequence of programming language, each adding a new layer.
- Platform: start with interpreter and progress to virtual machines

Exploratory

- Code given out to experiment with
- Miniproject on domain specific languages

Overview of Module Content

- Programming language processing tools and inductive definitions
- Scala as an implementation language
- ePL: An expression language
- simPL: A simple functional language
- polyPL: Polymorphism and exceptions
- dPL: Algebraic data types
- imPL: A simple imperative language
- oPL: A simple object-oriented language
- Domain-specific languages

Housekeeping

- Use IVLE
 - Discussions in the forum
 - Announcements
 - Assignments and assignment submission
- Notes and slides, no textbook
 - Web-based, links will be added to IVLE
- Tutorial cum lab sessions to focus on practical aspects

Assessment

- Labs and assignments: 30%
- Paper reading and presentations: 10%
- Mini-project on DSL: 15%
- Exam: 45%

Language Processing

- T-Diagrams
- Translators
- Interpreters
- Combinations (virtual machines)

T-Diagrams

Translators

- Translate from one language (source) to another language (object)
- Compiler: translates from high(er)-level to a low(er) level language.
- De-compiler: low-level ⇒ high level

T-Diagram of Translator

Basic-to-C compiler implemented in x86 machine code

Compilation

Two-Stage Compilation

Compiling "C&C" from Basic to C to x86 machine code

Compiling a Compiler

Compiling a Basic-to-x86 compiler from C to x86 machine code

Bootstrapping a Compiler Chicken and Egg Problem

Compiling a OCaml-to-x86 compiler implemented in OCaml to run natively on x86 machine code

Interpreter

- A program that executes another program
- The interpreter runs throughout the entire execution
- The target program is interpreted, and appears as running to the user.

T-Diagram for Basic Interpreter

Basic

x86

Interpreter for Basic, implemented in x86 machine code

Interpreting a Program

Hardware Emulation

"C&C" x86 executable running on a PowerPC using hardware emulation

Typical Execution of Java Programs

Excursion: Making Slides

Compiling these slides from LATEX to DVI to PostScript to PDF on x86 (PC)

Excursion: Viewing Slides

Summary: Language Processing

- Components: programs, translators, interpreters, machines
- T-diagrams
- Combination of interpretation and compilation is common
- Interpretation and compilation are ubiquitous in computing

Inductive Definitions

- Definition
- Extremal clause
- Proofs by induction

Inductive Definitions

- Set of rules that un-equivocally define mathematical objects
 - o Example: the set of programs for a particular programming language

Example: Numerals

Numerals, in unary (base-1) notation

- Zero is a numeral;
- if n is a numeral, then so is Succ(n).

Examples

- Zero
- Succ(Succ(Succ(Zero)))

Binary Trees

Binary trees (w/o data at nodes)

- Empty is a binary tree;
- if I and r are binary trees, then so is Node(I, r).

Examples

- Empty
- Node(Node(Empty, Empty), Node(Empty, Empty))

More formally

• Numerals: The set *Num* is defined by the rules

$$n \in Num$$
 $n \in Num$ $Succ(n) \in Num$

• Binary trees: The set *Tree* is defined by the rules

$$t_l \in \mathit{Tree} \qquad t_r \in \mathit{Tree}$$

 $Empty \in Tree$

 $Node(t_l, t_r) \in Tree$

Examples

• Numerals: The set *Num* is defined by the rules

Zero
$$n$$
Succ(n)

• Binary trees: The set *Tree* is defined by the rules

$$\frac{t_{l} \quad t_{r}}{Empty} \qquad \frac{Node(t_{l}, t_{r})}{}$$

Defining a Set By Rules

- Given a collection of rules, what set does it define?
 - What is the set of Numerals?
 - O What is the set of Trees?
- Do the rules pick out a unique set

Defining a Set by Rules

- There can be many sets that satisfy a given collection of rules.
 - $Num = \{Zero, Succ(Zero), \ldots\}$
 - $StrangeNum = Num \cup \{\infty, Succ(\infty), ...\}$, where ∞ is an arbitrary symbol
- Both Num and StrangeNum satisfy the rules defining numerals (i.e., the rules are true for these sets). Really?

Num Satisfies the Rules

	n ∈ Num
Zero ∈ Num	Succ(n) ∈ Num

 $Num = \{Zero, Succ(Zero), Succ(Succ(Zero)), ...\}$ Does Num satisfy the rules?

- Zero ∈ Num.
 √
- If $n \in Num$, then $Succ(n) \in Num$. \checkmark

StrangeNum Satisfies the Rules

$$Zero \in Num \qquad Succ(n) \in Num$$

$$StrangeNum = \{Zero, Succ(Zero), Succ(Succ(Zero)), \ldots\} \cup \{\infty, Succ(\infty), \ldots\}$$
 Does $StrangeNum$ satisfy the rules?
• $Zero \in StrangeNum$. \checkmark
• If $n \in StrangeNum$, then $Succ(n) \in StrangeNum$. \checkmark
This is despite the fact that $\infty \notin StrangeNum$.

Defining Sets by Rules

- Both *Num* and *StrangeNum* satisfy all rules.
- It is not enough that a set satisfies all rules
- Extremal clause:
 - "And nothing else"
 - "The least set that satisfies these rules"

Inductive Definitions

- An inductively defined set is the least set that satisfies a given set of rules.
- Example: *Num* is the least set that satisfies these rules:
 - Zero ∈ Num
 - if $n \in Num$, then $Succ(n) \in Num$.

Inductive Definitions

- Question: What do we mean by "least"?
- Answer: The smallest with respect to the subset ordering on sets.
 - Contains no "junk", only what is required by the rules.
 - Since StrangeNum ⊋ Num, StrangeNum is ruled out by the extremal clause.
 - Num is "ruled in" because it has no "junk".

What is the Big Deal?

- Inductively defined sets "come with" an induction principle.
- Suppose I is inductively defined by rules R.
- To show that every $x \in I$ has property P, it is enough to show that P satisfies the rules of R.
- Sometimes called structural induction or rule induction.

Parity of Numerals

- The numeral Zero has parity **0**.
- Any numeral Succ(n) has parity 1-p if p is the parity of n
- Let *P* be the following property:

Every numeral has either parity 0 or parity 1.

Induction Principle

- To show that every $n \in Num$ has property P, it is enough to show:
 - Zero has property P.
 - if n has property P, then Succ(n) has property P.
- This is just ordinary mathematical induction!

Induction Principle

- To show that every tree has property P, it is enough to show that
 - Empty has property P.
 - if I and r have property P, then so does Node(I, r).
- We call this structural induction on trees.

Example: Height of a Tree

- To show: Every tree has a height, defined as follows:
 - The height of *Empty* is 0.
 - If I has height h_I and the tree r has height h_r , then the tree Node(I, r) has height $1 + max(h_I, h_r)$.
- Clearly, every tree has at most one height, but does it have a height at all?

Example: height

- It may seem obvious that every tree has a height
- Justification is based on structural induction
 - An infinite tree does not have height
 - But the extremal clause rules out the infinite tree!

Example: height

- Formally, we prove that for every tree t, there exists a number h
 satisfying the specification of height
- Proceed by induction on the rules defining trees, showing that the property "there exists a height h for t" satisfies these rules

Example: height

- Rule 1: Empty is a tree.
 - Does there exist *h* such that *h* is the height of *Empty*?
 - Yes: take h=0
- Rule 2: Node(I, r) is a tree if I and r are trees.
 - Suppose that there exists h_i and h_r , the heights of l and r, respectively.
 - Does there exist h such that h is the height of Node(I,r)?
 - **Yes:** Take $h=1+max(h_r,h_r)$.

Summary

- An inductively defined set is the least set that satisfies a collection of rules.
- Rules have the form:

"If
$$x_1 \in X$$
 and ... and $x_n \in X$, then $x \in X$."

Notation:

$$x_1 \in X \qquad \cdots \qquad x_n \in X$$

 $x \in X$

Summary

- Inductively defined sets admit proofs by rule induction.
- For each set, with rules of the form:

$$x_1 \in X$$
 \cdots $x_n \in X$

We can proof this property inductively using:

$$P(x_1)$$
 \cdots $P(x_n)$

$$P(x)$$

Conclude that every element of the set satisfies P.