Modulbegleitende Aufgabe II

Florian Starke, Shanshan Huang

4. Dezember 2015

Gegeben seien $N \in \mathbb{N}$, eine Zerlegung Δ_N des Intervalls [-1,1] durch die Stützstellen $-1 \le x_0 \le x_1 \le \cdots \le x_N \le 1$, und die Funktionen $f_R, f_1 \colon \mathbb{R} \to \mathbb{R}$ mit

$$f_R(x) := \frac{1}{1 + 25x^2},$$

$$f_1(x) := (1 + \cos(\frac{3\pi}{2}x))^{2/3}.$$

1 Polynominterpolation

1.1 Gleichverteilte Stützstellen

Die N+1 Stützstellen sind äquidistant verteilt. Es folgt $x_i := -1 + 2i/N$ für $i = 0, \dots, N$.

In Abbildung 1 ist f_R und das interpolierte Polynom g_{12} auf dem Intervall I abgebildet. Wie erwartet ist bei einer Gleichverteilung der Stützstellen der Fehler am Rand sehr groß.

In den Abbildungen 3 und 4 sieht man die Funktion f_1 zusammen mit entsprechendem g_{12} bzw. F_{12} .

Begründung des Fehlerverhaltens:

Wenn wir mehr Stützstellen hinzufügen, kann es sein, dass die Polynomfunktion im Allgemeinen die zu interpolierenden Funktion nicht besser approximiert. Da der Interpolationsfehler wie folgt abgeschätzt werden kann.

$$||f(x) - g_N(x)|| \le \frac{||f^{(n+1)}||}{(n+1)!} ||\omega||$$

Je höher der Grad ist, desto größer ist der Fehler, da bei der Runge Funktion die Ableitungen sehr groß werden. Der Fehler ist an den Intervallgrenzen am größten, da hier $|\omega|$ maximal ist.

1.2 Tschebyschow-Stützstellen

Als Stützstellen werden die Nullstellen des Tschebyschow-Polynoms T_{N+1} gewählt. Also definieren wir $x_i:=\cos(\frac{2i+1}{2N+2}\pi)$ für $i=0,\ldots,N$.

Die Runge Funktion und g_{12} :

Wie erwartet ist der Fehler an den Intervallgrenzen wesentlich geringer als bei äquidistanten Stützstellen.

Die Funktion f_1 :

Begründung des Fehlerverhaltens:

Bei Tschebyschow Stützstellen ist ω am Rand kleiner, dafür aber in der Intervallmittel größer, als bei äquidistanten Stützstellen. Dementsprechend auch der Fehler.

2 Spline-Interpolation

Ziel ist es jetzt nicht mehr die Funktion f durch ein Polynom zu interpolieren sondern nur noch durch eine stückweise polynomielle Funktion (Spline). In diesem Fall geht es um Splines vom Grad 3 mit Glattheit 1. Wir kennen sowohl die Funktion als auch die erste Ableitung der Funktion.

Sei s die gesuchte Spline Funktion. Dann ist $s_k := s|_{[x_k, x_{k+1}]}$ (für $k = 0, \dots, N-1$) ein Polynom dritten Grades mit $s_k = a_k(x-x_k)^3 + b_k(x-x_k)^2 + c_k(x-x_k) + d_k$. Wobei die Koeffizienten aus den gegebenen Funktions- und Ableitungswerten wie folgt berechnet werden können.

$$a_k = \frac{-2}{h_k^3} \cdot (f(x_{k+1}) - f(x_k)) + \frac{1}{h_k^2} \cdot (f'(x_k) + f'(x_{k+1}))$$

$$b_k = \frac{3}{h_k^2} \cdot (f(x_{k+1}) - f(x_k)) - \frac{1}{h_k} \cdot (2f'(x_k) + f'(x_{k+1}))$$

$$c_k = f'(x_k)$$

$$d_k = f(x_k)$$

Mit $h_k := x_{k+1} - x_k$. Für Herleitung siehe Vorlesung. Die erste Ableitung der Runge Funktion ist:

$$f_R'(x) = \frac{-50x}{(25x^2 + 1)^2}$$

Wie man sieht ist die Spline Interpolation wesentlich genauer als die Polynominterpolation.

Fehler für $N_1 = 2$, $N_2 = 4$, und $N_3 = 8$.

Abbildung 11

k	$E(h_{N_k})$	$EOC(h_{N_k}, h_{N_{k+1}})$
1	$4,8928 \times 10^{-1}$	1,1572
2	$2,1938 \times 10^{-1}$	2,6272
3	$3,5509 \times 10^{-2}$	4,3901
4	$1,6935 \times 10^{-3}$	2,1237
5	$3,8860 \times 10^{-4}$	3,5334
6	$3,3560 \times 10^{-5}$	3,8869
7	$2,2686 \times 10^{-6}$	3,9719
8	$1,4458 \times 10^{-7}$	3,9930
9	$9,0802 \times 10^{-9}$	3,9982
10	$5,6820 \times 10^{-10}$	3,9996
11	$3,5523 \times 10^{-11}$	3,9999
12	$2,2204 \times 10^{-12}$	_

Die erste Ableitung für f_1 ist:

$$f_1'(x) = -\frac{\pi \sin(\frac{3\pi}{2}x)}{(\cos(\frac{3\pi}{2}x) + 1)^{1/3}}$$

Fehler für $N_1 = 2$, $N_2 = 4$, und $N_3 = 8$.

Abbildung 14

k	$E(h_{N_k})$	$EOC(h_{N_k}, h_{N_{k+1}})$
1	$6,2057 \times 10^{-1}$	1,6644
2	$1,9577 \times 10^{-1}$	1,4686
3	7.0736×10^{-2}	1,3727
4	$2,7316 \times 10^{-2}$	1,3436
5	$1,0764 \times 10^{-2}$	1,3359
6	$4,2640 \times 10^{-3}$	1,3340
7	$1,6914 \times 10^{-3}$	1,3335
8	$6,7116 \times 10^{-4}$	1,3334
9	$2,6634 \times 10^{-4}$	1,3333
10	$1,0570 \times 10^{-4}$	1,3333
11	$4,1946 \times 10^{-5}$	1,3333
12	$1,6646 \times 10^{-5}$	_

Von den Tabellen sieht man, dass der Fehler sich bei der Runge Funktion schneller verkleinert als bei f_1 . Entsprechend ist auch die experimentelle Konvergenzordnung (EOC) bei der Runge Funktion größer als bei f_1 .