PLDAC

Buton Nicolas

February 21, 2019

Table des matières

Ι	Intro	1
1	Decription du dataset	1
2	Les diférentes méthodes	2
II	Résultat des différents algorithmes	2
1	Perceptron sur les données brut	2
2	KNN sur les données brut	3
3	Riemann Cov MDM	4
4	Riemann Cov KNN	5
5	Perceptron filtre passe bas	6
6	KNN filtre passe bas	7
7	Perceptron transformée de fourier	8
8	KNN transformée de fourier	9

Part I

Intro

1 Decription du dataset

Fréquence d'échantillonage : 512Hz

Nombre de participant : 20 (7 femmes, 13 hommes)

Age: mean: 25.8 sd: 5.27 median 25.5

18 subjects between 19 and 28 years old.

Two participants with age 33 and 44 were outside this range.

Nombre d'éléctrode : 16

Figure 1: Affichage des données brut

2 Les diférentes méthodes

Cov : Matrice de covariance TF : Transformé de fourier

MDM : Minimum Distance to Mean

Prédiction théorique :

La méthode 6 et 7 ne devrais pas fonctioner car avec une seule données c'est difficile de faire quoi que ce soit.

La méthode 8 et 9 ne devrais pas fonctionner car il n'y aura pas invariance par translation et on ne pourra pas connaitre le debut.

Part II Résultat des différents algorithmes

1 Perceptron sur les données brut

 $clf = SGDClassifier(loss = "perceptron", eta0 = 1e - 4, learning_rate = "constant", penalty = None, tol = 1e - 1, max_iter = 10000, shuffle = True)$ Cross validation avec 5 parties :

F1 Score: 0.5390625

2 KNN sur les données brut

Figure 2: F1 Score(en cross validation) du knn en fonction du pourcentage des données utilisé pour le train

 $neigh = KNeighborsClassifier(n_neighbors = 10)$

3 Riemann Cov MDM

Figure 3: F1 Score(en cross validation) de riemann MDM en fonction du nombre de données par paquet

estimer la matrice de covariance $cov = pyriemann.estimation.Covariances().fit_transform(X)$ validation croisée mdm = pyriemann.classification.MDM()

4 Riemann Cov KNN

Figure 4: F1 Score(en cross validation) du riemann knn en fonction du nombre de données par paquet

estimer la matrice de covariance $cov = pyriemann.estimation.Covariances().fit_transform(X)$ validation croisée $knn = pyriemann.classification.KNearestNeighbor(n_neighbors = 10)$

5 Perceptron filtre passe bas

Figure 5: F1 Score(en cross validation) du perceptron en fonction du pourcentage des données utilisé pour le train

modele:

 $clf = SGDClassifier(loss = "perceptron", eta0 = 1e - 4, learning_rate = "constant", penalty = None, tol = 1e - 1, max_iter = 10000, shuffle = True)$

6 KNN filtre passe bas

Figure 6: F1 Score(en cross validation) du kn
n en fonction du pourcentage des données utilisé pour le train

estimer la matrice de covariance $neigh = KNeighborsClassifier(n_neighbors = 10)y_pred = cross_val_predict(neigh, donnees, labels, cv = k)$

7 Perceptron transformée de fourier

Figure 7: F1 Score(en cross validation) du perceptron en fonction

estimer la matrice de covariance $cov = pyriemann.estimation.Covariances().fit_transform(X)$ validation croisée $knn = pyriemann.classification.KNearestNeighbor(n_neighbors = 10)$

8 KNN transformée de fourier

Figure 8: F1 Score(en cross validation) du knn en fonction

estimer la matrice de covariance $cov = pyriemann.estimation.Covariances().fit_transform(X)$ validation croisée $knn = pyriemann.classification.KNearestNeighbor(n_neighbors = 10)$