Московский государственный технический университет имени Н.Э. Баумана

Факультет «Фундаментальные науки» Кафедра «Высшая математика»

С.К. Соболев, В.Я. Томашпольский

Векторная алгебра

Электронное учебное издание

Методические указания к решению задач по курсу "Аналитическая геометрия"

Москва (С)2010 МГТУ им. Н.Э. Баумана

УДК: 512+514.12

Рецензент: Приказчиков Данила Александрович

Соболев С.К., Томашпольский В.Я. Векторная алгебра. Методические указания к решению задач по курсу "Аналитическая геометрия" – М., МГТУ им. Н.Э. Баумана, илл. 24.

Изложены основы теории по векторной алгебре: линейные операции над векторами, базис и координаты, скалярное, векторное и смешанное произведения, определитель Грама, приложения к геометрии и механике. Разобрано большое количество примеров как стандартных, так и повышенной сложности. Содержит задачи для самостоятельного решения, снабженные ответами и указаниями.

Для студентов, изучающих и применяющих векторную алгебру.

Рекомендовано Учебно-методической комиссией факультета "Фундаментальные науки" МГТУ им. Н.Э. Баумана.

Оглавление

Введение	3
Глава 1. Линейные операции над векторами. Базис и координат	ы 3
Задачи для самостоятельного решения к главе 1	22
Глава 2. Скалярное произведение векторов	28
Задачи для самостоятельного решения к главе 2	36
Глава 3. Векторное и смешанное произведения векторов	42
Задачи для самостоятельного решения к главе 3	53
Литература	59
Ответы и указания	60

Введение-

Векторы имеют широкое применение в различных разделах математики, например, в элементарной, аналитической и дифференциальной геометрии, в теории поля. Векторная алгебра широко используется во многих разделах физики и механики, в кристаллографии, геодезии. Без векторов немыслима и не только классическая математика, но и многие другие науки.

В данном пособии особый акцент делается на применении векторной алгебры, на решении задач как стандартных, так и повышенной сложности. В каждой главе приводится краткие, но исчерпывющие теоретические сведения и разбираются разнообразные примеры (всего более 30). Конец решения каждого примера обозначен черным квадратиком . В пособии рассматриваются и ряд дополнительных тем, например, барицентрические координаты, центр масс, определитель Грама и его связь с векторным и смешанным произведениями. В конце каждой главы дано большое количество задач для самостоятельного решения, к которым имеются ответы и указания. Пособие будет полезно всем студентам, которые хотят углубить свои познания и навыки в векторной алгебре, но в первую очередь — студентам факультета ФН.

1. Линейные операции над векторами. Базис и координаты.

Краткие теоретические сведения. Напомним основные понятия векторной алгебры. *Геометрический вектор* (или просто *вектор*) — это отрезок AB, на котором задано направление, например, от A к B, и обозначаемый \overline{AB} . Точки A и B называются соответственно *началом* и *концом* вектора \overline{AB} называется расстояние между его началом и концом, она обозначается $|\overline{AB}|$. Два вектора называются *равными*, если они одинаково направлены и имеют одинаковые длины.

- **1.1.** Лемма о равенстве двух векторов. Для любых четырех точек пространства $A, B, C u D = \overline{AB} = \overline{CD}$ тогда и только тогда, когда $\overline{AC} = \overline{BD}$.
- **1.2.** Свойство равенства векторов. Отношение равенства векторов обладает свойствами:
- (a) если $\overline{AB} = \overline{CD}$, то и $\overline{CD} = \overline{AB}$ (симметричность);
- (б) если AB = CD, CD = EF, то AB = EF (транзитивность).

Вектор, положение начала которого не имеет значения, обозначается маленькой латинской буквой полужирным курсивом: a, b, c_1 , d_2 и т.д. Определение $\mathit{суммы}$ векторов a и b: от произвольной точки A пространства отложить первый вектор $a = \overline{AB}$, от полученной точки B отложить второй вектор $b = \overline{BC}$, тогда, по определению, $a + b = \overline{AC}$. Это правило называется $\mathit{правилом}$ $\mathit{mpeyгольникa}$ сложения векторов и выражается формулой: $\overline{AB} + \overline{BC} = \overline{AC}$.

1.3 Замечание. Вышеприведенное определение правила сложения векторов *корректно*, т.е. оно *не зависит от выбора точки* A. Это значит, что если вместо точки A взять другую точку A_1 , то результат будет тот же:

$$E$$
сли $\overline{AB} = \overline{A_1B_1}$ и $\overline{BC} = \overline{B_1C_1}$, то и $\overline{AC} = \overline{A_1C_1}$.

(докажите это самостоятельно с помощью леммы 1.1 и свойства 1.2).

1.4. Нулевым вектором называется вектор, начало и конец которого совпадают: $0 = \overline{AA} = \overline{BB} = \overline{CC} = \dots$. Для произвольного вектора $a = \overline{AB}$ вектор \overline{BA} называется противоположеным, он обозначается -a. Разностью векторов a и b называется вектор a + (-b). Можно доказать, что $c = a - b \Leftrightarrow b + c = a$. Правило параллелограмма сложения и вычита-

ния векторов: векторы a и b отложить от одного начала: $a = \overline{AD}$, $b = \overline{AB}$ и достроить до параллелограмма: ABCD (см. рис. 1), тогда $a + b = \overline{AC}$, $a - b = \overline{BD}$.

1.5. Произведение числа (скаляра) $\lambda \in \mathbb{R}$ на вектор a есть вектор $b = \lambda a$, длина которого $|b| = |\lambda| \cdot |a|$, а направление определяется так: если $\lambda = 0$ или a = 0, то и b = 0, а если $a \neq 0$, то вектор b одинаково направлен с вектором a (символически $a \uparrow a$) при $a \uparrow a$ 0, и противоположно направлен (символически $a \uparrow a$ 0) при $a \uparrow a$ 0.

1.6. Свойства операций сложения векторов и умножения их на числа.

Для любых векторов a,b,c и чисел $\lambda,\mu\in\mathbb{R}$:

(a) a + b = b + a (коммутативность);

- (б) (a + b) + c = a + (b + c) (ассоциативность);
- (B) a + 0 = a; $(\Gamma)a + (-a) = 0$;
- (д) $\lambda(a+b) = \lambda a + \lambda b$; (е) $(\lambda + \mu)a = \lambda a + \mu a$ (дистрибутивность);
- (ж) $(\lambda \mu)a = \lambda(\mu a)$; (3) 1a = a.
- **1.7.** Благодаря свойствам (а) и (б) можно складывать любое количество векторов в произвольном порядке. *Правило многоугольника* сложения нескольких векторов $a_1, a_2, ..., a_n$: от произвольной точки A_0 отложим первый вектор $a_1 = \overline{A_0A_1}$, от его конца A_1 отложим второй вектор $a_2 = \overline{A_1A_2}$, и.т.д., и от конца A_{n-1} предпоследнего вектора отложим последний вектор $a_n = \overline{A_{n-1}A_n}$. Тогда $a_1 + a_2 + ... + a_n = \overline{A_0A_n}$ (см. Рис.2). Таким образом, например, не глядя на чертеж, легко найти сумму:

$$\overline{CM} + \overline{AC} + \overline{DE} + \overline{MD} = \overline{AC} + \overline{CM} + \overline{MD} + \overline{DE} = \overline{AE}.$$

- **1.8.** Условимся считать нулевой вектор параллельным любой прямой и любой плоскости. Совокупность векторов называется коллинеарной (компланарной), если все они параллельны некоторой прямой (соответственно плоскости). Это определение равносильно следующему: совокупность векторов является коллинеарной (компланарной) тогда и только тогда, когда все эти векторы, будучи отложенными от общего начала, лежат на одной прямой (соответственно в одной плоскости). Поэтому два вектора всегда компланарны.
- **1.9.** Линейной комбинацией векторов $a_1, a_2, ..., a_n$ называется сумма произведений этих векторов на произвольные числа $\lambda_1, \lambda_2, ... \lambda_n \in \mathbb{R}$; её результат тоже некоторый вектор: $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n = b$. Например $3a + \frac{2}{5}b \sqrt{7}c$ одна из линейных комбинаций векторов a, b и c. Линейная комбинация называется *тривиальной*, если все её коэффициенты нулевые. Понятно, что тривиальная комбинация любых векторов дает нулевой вектор. Совокупность векторов $a_1, a_2, ..., a_n$ называется линейно зависимой (или просто зависимой), если существует их нетривиальная линейная комбинация, дающая нулевой вектор, т.е. когда найдутся числа $\lambda_1, \lambda_2, ... \lambda_n \in \mathbb{R}$, не равные одновременно нулю и такие, что $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n = 0$. Совокуп-

ность векторов $a_1, a_2, ..., a_n$ называется линейно независимой (или просто независимой), если она не является зависимой, т.е. если только тривиальная линейная комбинация этих векторов (и больше никакая!) дает нулевой вектор, иными словами, когда равенство $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n = 0$ обязательно влечет $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$.

Например, для любых трех точек A, B и C векторы \overline{AB} , \overline{AC} , \overline{BC} линейно зависимы, т.к. их линейная комбинация с коэффициентами 1, -1 и 1 равна нулевому вектору: $\overline{AB} - \overline{AC} + \overline{BC} = \overline{AB} + \overline{BC} + \overline{CA} = \overline{AA} = \mathbf{0}$.

1.10. Общий критерий линейной зависимости нескольких векторов: совокупность векторов линейно зависима тогда и только тогда, когда один из них есть линейная комбинация остальных. Следовательно, совокупность векторов линейно независима тогда и только тогда, когда ни один из них не является линейной комбинацией остальных.

Критерии линейной зависимости двух, трех и четырех векторов: Два вектора линейно зависимы тогда и только тогда, когда они коллинеарны. Три вектора линейно зависимы тогда и только тогда, когда они компланарны. Четыре или более геометрических вектора всегда линейно зависимы.

- **1.11.** Упорядоченная совокупность векторов плоскости (или пространства) называется *базисом*, если эти векторы, во-первых, линейно независимы, а, во-вторых, через них можно выразить всякий вектор плоскости (пространства). Коэффициенты разложение вектора по базису определены однозначно, они называются координатами вектора в данном базисе. На плоскости базис образуют любые два неколлинеарных вектора, а в пространстве любые три некомпланарных вектора. Базис, состоящий из трех единичных попарно перпендикулярных векторов i, j и k, называется ортонормированным. Координаты вектора в заданном базисе мы будем указывать в круглых или фигурных скобках, а именно, запись $a\{x; y; z\}$ означает, что a = xi + yj + zk. При сложении векторов и умножении их на числа с их координатами выполняются те же самые операции.
- **1.12.** Пусть некоторая точка O принята за начало отсчета. **Радиусом- вектором** точки A называется вектор \overline{OA} . Если точка C делит отрезок AB в заданном отношении: $AC:CB=\alpha:\beta$, то $\overline{OC}=\frac{\beta}{\alpha+\beta}\overline{OA}+\frac{\alpha}{\alpha+\beta}\overline{OB}$. В частности, радиус-вектор середины отрезка AB есть $\frac{1}{2}(\overline{OA}+\overline{OB})$.
- **1.13.** Декартова система координат на плоскости (в пространстве) состоит из точки O (начала отсчета) и базиса в этой плоскости (пространства) т.е. двух неколлинеарных векторов этой плоскости (соответственно трех некомпланарных векторов). Напомним, что **числовой осью** (или координатной прямой) называется прямая, на которой заданы начало отсчета, направление и масштаб. Каждой точке P координатной прямой однозначно соответствует некоторое вещественное число $x_P \in \mathbb{R}$ и наоборот. Координатные прямые с

 $^{^{1}}$ *Критерий* – это синоним для словосочетания «необходимое и достаточное условие».

началом отсчета в точке O, сонаправленные соответствующим базисным векторам a;b;c и с единицей масштаба, равной длине этих векторов, называются координатными осями OX, OY и OZ, а также осями abcuucc, opduham и annликam соответственно. Koopduhamamu movku M в декартовой системе координат называются координаты её радиус вектора \overline{OM} в базисе $\{a;b;c\}$, т.е. запись $M(x;y;z\}$ означает, что $\overline{OM}=xa+yb+xc$. Если базис ортонормированный $\{i,j,k\}$, то соответствующая декартова система координат называется npamoyzonьhoй. В общем случае любая координата точки M есть проекция точки M на соответствующую координатную ось параллельно плоскости, содержащей две другие координатные оси (см. \mathbf{n} . $\mathbf{1.16}$ далее). В частности, в случае прямоугольной системы координат это прямоугольные (ортогональные) проекции точки M на эти оси.

1.14. Если точки A и B имеют координаты $A(x_A; y_A; z_A)$ и $B(x_B; y_B; z_B)$ то вектор \overline{AB} имеет координаты $\overline{AB}(x_B - x_A; y_B - y_A; z_B - z_A)$.

Координаты точки C, делящей отрезок AB в заданном отношении: $AC:CB=\alpha:\beta$, выражаются через координаты точек A и B формулами:

$$x_C = \frac{\beta}{\alpha + \beta} x_A + \frac{\alpha}{\alpha + \beta} x_B, \quad y_C = \frac{\beta}{\alpha + \beta} y_A + \frac{\alpha}{\alpha + \beta} y_B, \quad z_C = \frac{\beta}{\alpha + \beta} z_A + \frac{\alpha}{\alpha + \beta} z_B.$$

Расстояние между точками A и B в **прямоугольной** системе координат выражается формулой: $|AB| = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2 + (z_A - z_B)^2}$. Далее, по умолчанию, система координат всегда прямоугольная.

1.15. Пусть в пространстве даны прямая ℓ и не параллельная ей плоскость π . Проекцией произвольной точки A на плоскость π параллельно прямой ℓ называется точка A_1 пересечения этой плоскости с прямой ℓ_1 , проходящей через точку A параллельно прямой ℓ . Про-

екцией точки A на прямую ℓ параллельно плоскости π называется точка A_2 пересечения этой прямой с плоскостью π_1 , проходящей через точку A параллельно плоскости π . (см. Рис. 3). Проекция фигуры Φ на плоскость (прямую) состоит из проекций всех точек фигуры Φ на эту плоскость (прямую). На. рис. 4 изображена линия L_1 — проекция кривой L на плоскость π параллельно прямой ℓ . Проекция точки или фигуры на плоскость параллельно прямой, перпендикулярной этой плоскости, называется прямоугольной или ортогональной. Параллельная (в частности, ортогональная) проекция на плоскость

 $^{^{2}}$ В этом и в двух следующих пунктах две совпадающие прямые или плоскости тоже считаются параллельными.

широко используется для изображения пространственных фигур на плоскости. Отметим свойства параллельных (и, в частности, ортогональных) проек-

ций на плоскость, известные их курса школьной геометрии:

(б) проекции параллельных прямых тоже параллельны (или совпадают);

- (в) длины проекций отрезков, расположенных на одной прямой пропорциональны длинам самих отрезков.
- **1.16.** Проекцией вектора \overline{AB} на плоскость *на плоскость \pi параллельно прямой \ell* называется вектор $\overline{A_1B_1}$, где A_1 и B_1 проекции точек A и B соот-

ветственно на плоскость π параллельно прямой ℓ , она обозначается

 $\overline{A_1B_1} = \Pr_{\pi}^{\ell}(\overline{AB})$. Аналогично определяется проекция вектора \overline{AB} на *прямую є параллельно плоскости \pi* — это вектор $\overline{A_2B_2}$, где A_2 и B_2 — проекции точек A и B соответственно

на прямую ℓ параллельно плоскости π , она обозначается $\overline{A_1B_1}=\Pr_\ell^\pi\left(\overline{AB}\right)$. (см. Рис. 5).

Свойства параллельной проекции вектора на плоскость:

- (a) Если $\overline{A_1B_1} = \overline{A_2B_2}$, $\pi_1 \parallel \pi_2$ и $\ell_1 \parallel \ell_2$, то $\Pr_{\pi_1}^{\ell_1} \left(\overline{A_1B_1} \right) = \Pr_{\pi_2}^{\ell_2} \left(\overline{A_2B_2} \right)$;
- (б) свойство **линейности**: для любых векторов a_1, a_2 и чисел $\lambda_1, \lambda_2 \in \mathbb{R}$: $\Pr_{\pi}^{l}(\lambda_1 a_1 + \lambda_2 a_2) = \lambda_1 \cdot \Pr_{\pi}^{l}(a_1) + \lambda_2 \cdot \Pr_{\pi}^{l}(a_2)$.

Аналогичные свойства верны и для проекции вектора на прямую.

(в) Если прямая ℓ и плоскость π не параллельны, то для любого вектора \boldsymbol{a} справедливо представление:

$$\boldsymbol{a} = \Pr_{\ell}^{\pi}(\boldsymbol{a}) + \Pr_{\pi}^{\ell}(\boldsymbol{a}).$$

Это представление называется разложением вектора а по прямой ℓ и плоскости π

Чтобы найти проекцию вектора \boldsymbol{b} на плоскость π параллельно прямой ℓ , или проекцию вектора \boldsymbol{b} на прямую ℓ параллельно плоскости π надо выбрать в плоскости π два неколлинеарных вектора \boldsymbol{a}_1 и \boldsymbol{a}_2 , выбрать на прямой ℓ ненулевой вектор \boldsymbol{a}_3 и разложить вектор \boldsymbol{b} по базису $\{\boldsymbol{a}_1;\boldsymbol{a}_2;\boldsymbol{a}_3\}$: $\boldsymbol{b} = \lambda_1 \boldsymbol{a}_1 + \lambda_2 \boldsymbol{a}_2 + \lambda_3 \boldsymbol{a}_3$. Тогда $\Pr_{\pi}^{\ell}(\boldsymbol{b}) = \lambda_1 \boldsymbol{a}_1 + \lambda_2 \boldsymbol{a}_2$, $\Pr_{\ell}^{\pi}(\boldsymbol{b}) = \lambda_3 \boldsymbol{a}_3$.

1.17. Пусть в пространстве задан ненулевой вектор a и непараллельная ему плоскость π . *Проекцией вектора b на направление вектора a* (параллельно плоскости π) называется **число** $\pm |b_1|$, где вектор $b_1 = \Pr_\ell^\pi(b)$ — проекция вектора b на прямую ℓ параллельно плоскости π (где ℓ — любая прямая, параллельная вектору a), а знак + или — выбирается в зависимости от того, совпадает или нет направление вектора b_1 с направлением вектора a.

Проекция вектора b на направление вектора a (параллельно плоскости π) обозначается $\Pr_a^{\pi}(b)$, она обладает свойствами:

- (а) Если векторы a_1 и a_2 одинаково направлены: $a_1 \uparrow \uparrow a_2$, то $\Pr_{a_1}^{\pi}(\boldsymbol{b}) = \Pr_{a_2}^{\pi}(\boldsymbol{b})$, а если векторы a_1 и a_2 противоположно направлены: $a_1 \uparrow \downarrow a_2$, то $\Pr_{a_1}^{\pi}(\boldsymbol{b}) = -\Pr_{a_2}^{\pi}(\boldsymbol{b})$;
 - (б) свойство **линейности**: для любых векторов b_1, b_2 и чисел $\lambda_1, \lambda_2 \in \mathbb{R}$: $\Pr_a^{\pi}(\lambda_1 b_1 + \lambda_2 b_2) = \lambda_1 \cdot \Pr_a^{\pi}(b_1) + \lambda_2 \cdot \Pr_a^{\pi}(b_2)$.

Чтобы найти проекцию вектора \boldsymbol{b} на направление вектора \boldsymbol{a} параллельно плоскости $\boldsymbol{\pi}$ (не параллельной вектору \boldsymbol{a}), надо в плоскости $\boldsymbol{\pi}$ выбрать два неколлинеарных вектора \boldsymbol{c}_1 и \boldsymbol{c}_2 , разложить вектор \boldsymbol{b} по базису $\{\boldsymbol{a};\boldsymbol{c}_1,\boldsymbol{c}_2\}$: $\boldsymbol{b} = \lambda \boldsymbol{a} + \mu_1 \boldsymbol{c}_1 + \mu_2 \boldsymbol{c}_2$, тогда проекция вектора \boldsymbol{b} на направление вектора \boldsymbol{a} (параллельно плоскости $\boldsymbol{\pi}$) равна:

$$\Pr_{\boldsymbol{a}}^{\pi}(\boldsymbol{b}) = \lambda \cdot |\boldsymbol{a}|.$$

Пример 1. Даны произвольные векторы p и q. Доказать, что векторы a=2p+5q, b=3p-q и c=-4p+q линейно зависимы.

Решение. Построим плоскость π на векторах p и q, отложенных от общего начала. Тогда векторы a, b и c лежат в той же плоскости π и поэтому компланарны, а значит, и линейно зависимы. Можно найти и конкретную линейную комбинацию векторов a и b, дающую вектор c. Пусть

$$\lambda a + \mu b = c \Leftrightarrow \lambda (2p + 5q) + \mu (3p - q) = -4p + q \Leftrightarrow \Leftrightarrow (2\lambda + 3\mu)p + (5\lambda - \mu)q = -4p + q.$$

Для наших целей достаточно найти λ и μ , удовлетворяющих системе: $\begin{cases} 2\lambda + 3\mu = -4, \\ 5\lambda - \mu = 1. \end{cases}$ Решив её, находим: $\lambda = -\frac{1}{17}, \mu = -\frac{22}{17}.$ Итак,

$$c = -\frac{1}{17}a - \frac{22}{17}b$$
, это и значит, что векторы a, b и c линейно зависимы.

Пример 2. Векторы a, b, и c имеют в некотором исходном базисе координаты a(-1;2;3), b(3;1;4), c(5;3;2). Доказать, что эти векторы тоже образуют базис, и разложить по новому базису вектор d(11;16;9).

Решение. Докажем, что векторы a, b, и c линейно независимы. Допустим, что какая-то линейная комбинация этих векторов даёт нулевой вектор: $\alpha \cdot a + \beta \cdot b + \gamma \cdot c = 0$. Записав координаты векторов по столбцам, получим:

$$\alpha \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} + \beta \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} + \gamma \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} -\alpha + 3\beta + 5\gamma = 0, \\ 2\alpha + \beta + 3\gamma = 0, \\ 3\alpha + 4\beta + 2\gamma = 0. \end{cases}$$

Для решения последней системы применим формулы Крамера. Главный определитель равен

$$\Delta = \begin{vmatrix} -1 & 3 & 5 \\ 2 & 1 & 3 \\ 3 & 4 & 2 \end{vmatrix} = -2 + 27 + 40 - 15 - 12 + 12 = 50 \neq 0,$$

а все вспомогательные определители, очевидно, равны нулю (у них один столбец полностью нулевой). Поэтому решение системы $\alpha = \beta = \gamma = 0$. Это и значит, что векторы a, b, и c линейно независимы, и поэтому образуют базис в пространстве. Далее нам надо найти коэффициенты x, y и z разложения $x \cdot a + y \cdot b + z \cdot c = d$:

$$x \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} + y \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} + z \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 11 \\ 16 \\ 9 \end{pmatrix} \Leftrightarrow \begin{cases} -x + 3y + 5z = 11, \\ 2x + y + 3z = 16, \\ 3x + 4y + 2z = 9. \end{cases}$$

Решив последнюю систему, например, методом Крамера, получим:

$$x = 3, y = -2, z = 4$$
. **Othet:** $d = 3a - 2b + 4c$.

Пример 3. Выразить радиус вектор точки M пересечения медиан треугольника ABC через радиус-векторы его вершин.

Решение. Как известно, точка M лежит на медиане AD и делит её в отношении AM: MD = 2:1, и D — середина отрезка BC. Тогда, если O — начало отсчета (не важно, где оно находится!), то $\overline{OD} = \frac{1}{2}(\overline{OB} + \overline{OC})$, и

$$\overline{OM} = \frac{1}{3}\overline{OA} + \frac{2}{3}\overline{OD} = \frac{1}{3}\overline{OA} + \frac{2}{3}\left(\frac{1}{2}\overline{OB} + \frac{1}{2}\overline{OC}\right) = \frac{1}{3}\left(\overline{OA} + \overline{OB} + \overline{OC}\right). \blacksquare$$

Пример 4. Считая известными длины сторон треугольника ABC: BC = a, AC = b, AB = c, выразить радиус-вектор центра P его вписанной окружности через радиус-векторы его вершин.

Решение. Как известно, во-первых, центр вписанной окружности лежит на пересечении биссектрис, а во-вторых, биссектриса треугольника делит его сторону на части, пропорциональные прилежащим сторонам. Пусть P — точка пересечения биссектрис AD и BE треугольника ABC (см. Рис. 6.; треугольник может лежать в плоскости, не параллельной плоскости чертежа, и поэтому вписанная окружность выглядит как эллипс). Тогда

$$BD:DC=AB:AC=c:b$$
. Следовательно, $\overline{OD}=\frac{b}{b+c}\overline{OB}+\frac{c}{b+c}\overline{OB}$. Далее, положим: $\frac{BD}{c}=\frac{CD}{b}=x$, тогда $BD=cx$, $DC=bx$ и $cx+bx=BD+DC=BC=a$, откуда $x=\frac{a}{b+c}\Rightarrow DB=cx=\frac{ac}{b+c}$. Аналогично, в

треугольнике ABD биссектриса BP делит сторо-

ну
$$AD$$
 на части $AP:PD=AB:BD=c:\frac{ac}{b+c}=\frac{b+c}{a}=(b+c):a$. Поэтому
$$\overline{OP}=\frac{a}{a+b+c}\overline{OA}+\frac{b+c}{a+b+c}\overline{OD}=$$

$$=\frac{a}{a+b+c}\overline{OA}+\frac{b+c}{a+b+c}\Big(\frac{b}{b+c}\overline{OB}+\frac{c}{b+c}\overline{OB}\Big)=$$

$$=\frac{a}{a+b+c}\overline{OA}+\frac{b}{a+b+c}\overline{OB}+\frac{c}{a+b+c}\overline{OC}.$$

Пример 5. В треугольнике ABC известны координаты его вершин: A(2;3;-1), B(1;5;1), C(4;7;-5) Найти координаты центра вписанной окружности и длину медианы BD.

Решение. Сначала найдем длины сторон треугольника:

$$a = |BC| = \sqrt{(1-4)^2 + (5-7)^2 + (1+5)^2} = \sqrt{9+4+36} = 7,$$

 $b = |AC| = \sqrt{4+16+16} = 6, c = |AB| = \sqrt{1+4+4} = 3.$

Следовательно, радиус вектор центра вписанной окружности выражается через радиус-векторы вершин треугольника так:

$$\overline{OP} = \frac{a}{a+b+c}\overline{OA} + \frac{b}{a+b+c}\overline{OB} + \frac{c}{a+b+c}\overline{OC} =$$

$$= \frac{7}{16}\overline{OA} + \frac{6}{16}\overline{OB} + \frac{3}{16}\overline{OC}.$$

Аналогичная формула справедлива и для каждой из трёх координат точки P:

$$x_{P} = \frac{1}{16} (7x_{A} + 6x_{B} + 3x_{C}) = \frac{1}{16} (7 \cdot 2 + 6 \cdot 1 + 3 \cdot 4) = \frac{1}{16} \cdot 32 = 2,$$

$$y_{P} = \frac{1}{16} (7y_{A} + 6y_{B} + 3y_{C}) = \frac{1}{16} (7 \cdot 3 + 6 \cdot 5 + 3 \cdot 7) = \frac{1}{16} \cdot 72 = \frac{9}{2},$$

$$z_{P} = \frac{1}{16} (7z_{A} + 6z_{B} + 3z_{C}) = \frac{1}{16} (7 \cdot (-1) + 6 \cdot 1 + 3 \cdot (-5)) = -1.$$

Следовательно, $P(2; \frac{9}{2}; -1)$. Второй конец медианы BD – точка D– является серединой отрезка AC, её координаты:

$$\begin{aligned} x_D &= \frac{1}{2}(x_A + x_C) = \frac{1}{2}(2+4) = 3, \ y_D = \frac{1}{2}(y_A + y_C) = \frac{1}{2}(3+7) = 5, \\ z_D &= \frac{1}{2}(z_A + z_C) = \frac{1}{2}(-1-5) = -3 \Rightarrow D(3;5;-3). \end{aligned}$$

Длина медианы AD равна:

$$|AD| = \sqrt{(2-3)^2 + (3-5)^2 + (-1+3)^2} = \sqrt{1+4+4} = 3.$$

Ответ: $P(2; \frac{9}{2}; -1)$, AD = 3.

Пример 6. Доказать, что отрезки, соединяющие середины противоположных рёбер произвольного тетраэдра³, пересекаются в одной точке и делятся ею пополам (эта точка называется *центроидом*⁴ тетраэдра).

Решение. Пусть в тетраэдре ABCD середины рёбер AB, AC, AD, BC, BD и CD — это точки K, L, M, N, P, и Q соответственно (см. Рис. 7). Далее, пусть E — середина отрезка KQ (соединяющего середины рёбер AB и CD), F — отрезка LP (соединяющего середины рёбер AC и BD), и, наконец, G — середина отрезка MN (соединяющего середины рёбер AD и BC). Нам надо доказать, что точки E, F и G совпадают. Для этого достаточно показать равенство их радиусвекторов \overline{OE} , \overline{OF} и \overline{OG} , где O — произвольная точка отсчета.

Обозначим через a, b, c и d радиус-векторы вершин A, B, C и D соответственно, и выразим через эти четыре вектора радиус-вектор точки E:

$$\overline{OE} = \frac{1}{2} \left(\overline{OK} + \overline{OQ} \right) = \frac{1}{2} \left(\frac{1}{2} \left(\overline{OA} + \overline{OB} \right) + \frac{1}{2} \left(\overline{OC} + \overline{OD} \right) \right) = \frac{1}{4} (a + b + c + d).$$

Аналогично,

$$\begin{split} \overline{OF} &= \tfrac{1}{2} \Big(\, \overline{OL} + \overline{OP} \, \Big) = \tfrac{1}{2} \Big(\, \tfrac{1}{2} \Big(\, \overline{OA} + \overline{OC} \, \Big) + \tfrac{1}{2} \Big(\, \overline{OB} + \overline{OD} \, \Big) \Big) = \tfrac{1}{4} \big(\, \boldsymbol{a} + \boldsymbol{c} + \boldsymbol{b} + \boldsymbol{d} \, \big) \,\, \mathrm{M} \\ \overline{OG} &= \tfrac{1}{2} \Big(\, \overline{OM} + \overline{ON} \, \Big) = \tfrac{1}{2} \Big(\, \tfrac{1}{2} \Big(\, \overline{OA} + \overline{OD} \, \Big) + \tfrac{1}{2} \Big(\, \overline{OB} + \overline{OC} \, \Big) \Big) = \tfrac{1}{4} \big(\, \boldsymbol{a} + \boldsymbol{d} + \boldsymbol{b} + \boldsymbol{c} \, \big) \,. \end{split}$$

Итак, мы получили $\overline{OE}=\overline{OF}=\overline{OG}$, следовательно, точки $E,\,F$ и G совпадают. \blacksquare

Замечание. Если в примерах 3 и 4 точка отсчета O лежит в плоскости треугольника ABC, то найденные выражения радиус-векторов точки пересечения медиан и точки пересечения биссектрис через радиусы векторы вершин треугольника не являются единственными. Например, если точка O совпадает с точкой C, то $\overline{OM} = \frac{1}{3} \left(\overline{OA} + \overline{OB} \right)$, что не противоречит полученному результату, т.к. вектор \overline{OC} в этом случае нулевой. Аналогично, четыре вектора a, b, c и d в примере 4 линейно зависимы (при любом положении точки O), и поэтому выражение вектора \overline{OE} через эти векторы не однозначно. Однако, найденные в примерах 3, 4 и 6 выражения отличаются тем, что они не зависят от положения точки отсчета O.

Теперь решим задачи на использовании единственности разложения вектора по базису.

³ *Тетраэдром* называется многогранник, ограниченный четырьмя треугольными гранями, т.е. это треугольная пирамида.

⁴ Точное определение **центроида** геометрической фигуры см. далее на стр. 18.

Пример 7. В параллелограмме ABCD точки E и L являются серединами сторон AB и BC соответственно, точки K и F расположены на сторонах AD CD и делят их в отношении $AK: KD = 2:1, \ CF: FD = 3:1.$

Отрезки *EF* и *KL* пересекаются

в точке M. Найти отношения EM:MF и KM:ML.

Решение. Возьмем векторы $b = \overline{AB}$ и $d = \overline{AD}$ в качестве базиса на плоскости, и сначала разложим по этому базису векторы \overline{EF} и \overline{KL} :

$$\overline{EF} = \overline{EA} + \overline{AD} + \overline{DF} = -\frac{1}{2}\mathbf{b} + \mathbf{d} + \frac{1}{4}\mathbf{b} = -\frac{1}{4}\mathbf{b} + \mathbf{d};$$

$$\overline{KL} = \overline{KA} + \overline{AB} + \overline{BL} = -\frac{2}{3}\mathbf{d} + \mathbf{b} + \frac{1}{2}\mathbf{d} = \mathbf{b} - \frac{1}{6}\mathbf{d}.$$

Обозначим $x = \frac{EM}{EF}$, $y = \frac{KM}{KL}$ (см. Рис. 8). Понятно, что 0 < x < 1, 0 < y < 1 и искомые отношения равны $EM: MF = x: (1-x), \ KM: ML = y: (1-y)$.

Теперь разложим вектор \overline{AM} по базису $\{b,d\}$ двумя способами:

(1)
$$\overline{AM} = \overline{AE} + \overline{EM} = \frac{1}{2}\mathbf{b} + x\overline{EF} = \frac{1}{2}\mathbf{b} + x\left(-\frac{1}{4}\mathbf{b} + \mathbf{d}\right) = \left(\frac{1}{2} - \frac{1}{4}x\right)\mathbf{b} + x\mathbf{d};$$

(2)
$$\overline{AM} = \overline{AK} + \overline{KM} = \frac{2}{3}d + y\overline{KL} = \frac{2}{3}d + y(b - \frac{1}{6}d) = yb + (\frac{2}{3} - \frac{1}{6}y)d$$
.

В силу единственности разложения вектора по базису, коэффициенты при \boldsymbol{b} и при \boldsymbol{d} в обоих разложения должны быть равны:

$$\begin{cases} \frac{1}{2} - \frac{1}{4}x = y \\ x = \frac{2}{3} - \frac{1}{6}y \end{cases} \Leftrightarrow \begin{cases} x + 4y = 2, \\ 6x + y = 4. \end{cases}$$

Решив эту систему (например, по формулам Крамера), находим

$$\Delta = -23$$
, $\Delta_x = -14$, $\Delta_y = -8 \Rightarrow x = \frac{14}{23}$, $y = \frac{8}{23}$.

Отсюда, получаем искомые отношения:

$$EM: MF = x: (1-x) = \frac{14}{23}: \frac{9}{23} = 14:9;$$

$$KM : ML = y : (1 - y) = \frac{8}{23} : \frac{15}{23} = 8 : 15.$$

Пример 8. В тетраэдре ABCD точка E — середина ребра AD, точки F и K делят ребро CD на три равные части: CF = FK = KD, а точка L делит ребро AB в отношении AL: LB = 1: 3. Отрезок KL пересекает плоскость BEF в точке M. Найти отношение KM: ML.

Решение. Рассмотрим некомпланарные векторы $a = \overline{DA}$, $b = \overline{DB}$ и $c = \overline{DC}$ как базис в пространстве (см. Рис. 9). Разложим вектор \overline{KL} по этому базису:

$$\overline{KL} = \overline{KD} + \overline{DB} + \overline{BL} = -\frac{1}{3}c + b + \frac{3}{4}\overline{BA} = -\frac{1}{3}c + b + \frac{3}{4}(a - b) = \frac{3}{4}a + \frac{1}{4}b - \frac{1}{3}c.$$

Обозначим, как и в предыдущем примере, $x = \frac{KM}{KL}$. Сначала разложим век-

тор \overline{DM} по базису $\{a, b, c\}$:

1)
$$\overline{DM} = \overline{DK} + \overline{KM} = \frac{1}{3}\boldsymbol{c} + x \cdot \overline{KL} = \frac{1}{3}\boldsymbol{c} + x \cdot \left(\frac{3}{4}\boldsymbol{a} + \frac{1}{4}\boldsymbol{b} - \frac{1}{3}\boldsymbol{c}\right) =$$

= $\frac{3}{4}x \cdot \boldsymbol{a} + \frac{1}{4}x \cdot \boldsymbol{b} + \frac{1}{3}(1-x) \cdot \boldsymbol{c}$;

Но если использовать тот же прием, что и в примере 7, то надо будет приравнять коэффициенты разложения вектора, например, \overline{DM} , по данному базису (это три уравнения). Для этого надо иметь еще одно разложение этого вектора и еще две неизвестные. Заметим, что векторы $p = \overline{BE}$ и $q = \overline{BF}$ образуют базис на плоскости ВЕГ, и вектор ВМ лежит в этой плоскости. Пусть у и z – коэффициенты разложения вектора BM по векторам p и $q: \overline{BM} = y \cdot p + z \cdot q$.

Теперь нам надо найти числа x, y и z. Для этого разложим по исходному базису $\{a, b, c\}$ векторы p и q:

$$p = \overline{BE} = \overline{BD} + \overline{DE} = -b + \frac{1}{2}a$$
, $q = \overline{BF} = \overline{BD} + \overline{DF} = -b + \frac{2}{3}c$,

а затем разложим вектор \overline{DM} по базису $\{a, b, c\}$ вторым способом:

2)
$$\overline{DM} = \overline{DB} + \overline{BM} = \mathbf{b} + y\mathbf{p} + z\mathbf{q} = \mathbf{b} + y\left(-\mathbf{b} + \frac{1}{2}\mathbf{a}\right) + z\left(-\mathbf{b} + \frac{2}{3}\mathbf{c}\right) = \frac{1}{2}y \cdot \mathbf{a} + (1 - y - z) \cdot \mathbf{b} + \frac{2}{3}z \cdot \mathbf{c}.$$

В силу единственности разложения вектора по базису, коэффициенты при векторах a, b и c должны быть равны в обоих разложениях. Получим систему трех уравнений с тремя неизвестными, которую решим, выразив y и z через x из первого и третьего уравнений и подставив их во второе уравнение:

$$\begin{cases} \frac{3}{4}x = \frac{1}{2}y, \\ \frac{1}{4}x = 1 - y - z, \iff \begin{cases} y = \frac{3}{2}x, \\ \frac{1}{4}x + \frac{3}{2}x + \frac{1}{2} - \frac{1}{2}x = 1, \implies \begin{cases} x = \frac{2}{5}, \\ y = \frac{3}{5}, \\ z = \frac{1}{2} - \frac{1}{2}x; \end{cases} \\ \text{Итак, } \overline{BM} = \frac{3}{5}\mathbf{p} + \frac{3}{10}\mathbf{q} \text{ M} \end{cases} KM : ML = x : (1 - x) = \frac{2}{5} : \frac{3}{5} = 2 : 3. \blacksquare$$

Пример 9. В параллелепипеде $ABCDA_1B_1C_1D_1$ точки K и M расположены на рёбрах AB и B_1C_1 и делят их в отношении AK:KB=1:2, $B_1M=MC_1$. Найти проекции вектора $\overline{KM}:$ (a) на плоскость A_1BD параллельно прямой

 AC_1 ; (б) на прямую AC_1 параллельно плоскости A_1BD . Ответ представить в виде разложения по векторам $a = \overline{AB}$, $b = \overline{AD}$, $c = \overline{AA_1}$.

Решение. В плоскости A_1BD выберем неколлинеарные векторы $p = \overline{A_1 B}$, $q = \overline{A_1 D}$, и найдем разложение вектора KMпо базису новому $p, q, r = \overline{AC_1}$. (см. Рис. 10). Новые базисные векторы выражаются через исходный $\{a,b,c\}$ следующим образом: $p = \overline{A_1 B} = \overline{A_1 A} + \overline{AB} = a - c ,$

 $q = \overline{A_1D} = \overline{A_1A} + \overline{AD} = b - c$, $r = \overline{AC_1} = \overline{AB} + \overline{BC} + \overline{CC_1} = a + b + c$. Поэтому a = p + c, $b = q + c \Rightarrow r = (p + c) + (q + c) + c = p + q + 3c$. Отсюда получим выражения старых базисных векторов через новые:

$$c = \frac{1}{3}(r - p - q), a = p + c = p + \frac{1}{3}(r - p - q) = \frac{2}{3}p - \frac{1}{3}q + \frac{1}{3}r,$$

 $b = q + c = q + \frac{1}{3}(r - p - q) = -\frac{1}{3}p + \frac{2}{3}q + \frac{1}{3}r$. Теперь разложим вектор \overline{KM} сначала по исходному базису $\{a, b, c\}$, а потом и по новому базису $\{p, q, r\}$:

$$\overline{KM} = \overline{KB} + \overline{BB_1} + \overline{B_1M} = \frac{2}{3}a + c + \frac{1}{2}b =$$

$$= \frac{2}{3} \cdot \left(\frac{2}{3}p - \frac{1}{3}q + \frac{1}{3}r\right) + \frac{1}{3}(r - p - q) + \frac{1}{2}\left(-\frac{1}{3}p + \frac{2}{3}q + \frac{1}{3}r\right) =$$

$$= -\frac{1}{18}p - \frac{2}{9}q + \frac{13}{18}r.$$

Следовательно, проекция вектора KM на плоскость A_1BD параллельно прямой AC_1 равна:

$$\Pr_{A_1BD}^{AC_1}\left(\overline{KM}\right) = -\frac{1}{18}\boldsymbol{p} - \frac{2}{9}\boldsymbol{q} = -\frac{1}{18}(\boldsymbol{a} - \boldsymbol{c}) - \frac{2}{9}(\boldsymbol{b} - \boldsymbol{c}) = -\frac{1}{18}\boldsymbol{a} - \frac{2}{9}\boldsymbol{b} + \frac{5}{18}\boldsymbol{c},$$

а проекция вектора \overline{KM} на прямую AC_1 параллельно плоскости A_1BD есть

$$\Pr_{AC_1}^{A_1BD}\left(\overline{KM}\right) = \frac{13}{18}\boldsymbol{r} = \frac{13}{18} \cdot (\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}) = \frac{13}{18}\boldsymbol{a} + \frac{13}{18}\boldsymbol{b} + \frac{13}{18}\boldsymbol{c}. \blacksquare$$

Пример 10. В пространстве даны пять точек A(-1;4;3), B(1;3;8), C(5;7;-3), D(3;10;1) и M(-1;-6;14). Найти: (а) координаты точки N – проекции точки M на плоскость ABC параллельно прямой AD; (б) координаты точки K – проекции точки M на прямую AD параллельно плоскости ABC; (в) вектор \mathbf{q} – проекцию вектора \mathbf{p} (10; 9; –16) на плоскость ABD параллельно прямой AC, (г) проекцию вектора \mathbf{p} на направление вектора \overline{AC} параллельно плоскости ABD.

Решение. Рассмотрим базис $\boldsymbol{b} = \overline{AB}\{2;-1;5\}$, $\boldsymbol{c} = \overline{AC}\{6;3;-6\}$, $\boldsymbol{d} = \overline{AD}\{4;6;-2\}$ и найдем разложение вектора $\overline{AM}\{0;-10;11\}$ по этому базису:

$$x\boldsymbol{b} + y\boldsymbol{c} + z\boldsymbol{d} = \boldsymbol{b} = \overline{AM} \iff x \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} + y \begin{pmatrix} 6 \\ 3 \\ -6 \end{pmatrix} + z \begin{pmatrix} 4 \\ 6 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -10 \\ 11 \end{pmatrix}.$$

Получится система линейных уравнений $\begin{cases} 2x + 6y + 4z = 0, \\ -x + 3y + 6z = -10, \text{ решение} \\ 5x - 6y - 2z = 11, \end{cases}$

которой (например, методом Крамера): $x=2, y=\frac{1}{3}, z=-\frac{3}{2}$. Следовательно, $\overline{AM}=2\cdot\overline{AB}+\frac{1}{3}\cdot\overline{AC}-\frac{3}{2}\cdot\overline{AD}$, значит, проекция вектора \overline{AM} на плоскость ABC параллельно прямой AD есть вектор $\overline{AN}=2\cdot\overline{AB}+\frac{1}{3}\cdot\overline{AC}=2\cdot\overline{AB}+\frac{1}{3}\cdot\overline{$

Аналогично, проекция вектора \overline{AM} на прямую AD параллельно плоскости ABC есть вектор $\overline{AK}=-\frac{3}{2}\overline{AD}=-\frac{3}{2}\{4;6;-2\}=\{-6;-9;3\}$, поэтому точка K имеет координаты: $x_K=x_A+x_{\overline{AK}}=-1-6=-7$, $y_K=y_A+y_{\overline{AK}}=4-9=-5$, $z_K=z_A+z_{\overline{AK}}=3+3=6$. Итак, $\Pr_{AD}^{ABC}(M)=K(-7;-5;6)$.

Для нахождения проекций вектора p(10; 9; -16) также разложим его по тому же базису:

$$\alpha b + \beta c + \gamma d = b = p \Leftrightarrow \alpha \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} + \beta \begin{pmatrix} 6 \\ 3 \\ -6 \end{pmatrix} + \gamma \begin{pmatrix} 4 \\ 6 \\ -2 \end{pmatrix} = \begin{pmatrix} 10 \\ 9 \\ -16 \end{pmatrix},$$
 получим

систему уравнений

$$\begin{cases} 2\alpha + 6\beta + 4\gamma = 10, \\ -\alpha + 3\beta + 6\gamma = 9, \\ 5\alpha - 6\beta - 2\gamma = -16, \end{cases}$$
 ее решение: $\alpha = -1$, $\beta = \frac{5}{3}$, $\gamma = \frac{1}{2}$, поэтому

проекция вектора \boldsymbol{p} на плоскость ABD есть вектор $\boldsymbol{q} = \Pr_{ABD}^{AC}(\boldsymbol{p}) = \alpha \boldsymbol{b} + \gamma \boldsymbol{d} =$ = $-\{2;-1;5\} + \frac{1}{2}\{4;6;-2\} = \{0;4;-6\}$, а проекция вектора \boldsymbol{p} на направление вектора $\boldsymbol{c} = \overline{AC}$ параллельно плоскости ABD равна $\Pr_{\overline{AC}}^{ABD}(\boldsymbol{p}) =$ = $\boldsymbol{\beta} \cdot |\boldsymbol{c}| = \frac{5}{3} \cdot \sqrt{36+9+36} = 15$.

Ответы: (a)
$$\Pr^{AD}_{ABC}(M) = N(5;3;11);$$
 (б) $\Pr^{ABC}_{AD}(M) = K(-7;-5;6);$ (в) $\Pr^{AC}_{ABD}(\boldsymbol{p}) = \boldsymbol{q}\{0;4;-6\};$ (г) $\Pr^{ABD}_{\overline{AC}}(\boldsymbol{p}) = 15.$

1.19. Барицентрические координаты на плоскости. Пусть заданы три точки A, B и C, не лежащие на одной прямой, еще точка отсчета O. Тогда для любой точки M пространства найдутся три числа α , β и γ такие, что $\overline{OM} = \alpha \cdot \overline{OA} + \beta \cdot \overline{OB} + \gamma \cdot \overline{OC}$. При этом, точка M принадлежит плоскости ABC тогда и только тогда, когда $\alpha + \beta + \gamma = 1$, а числа α , β и γ определены однозначно и не зависят от положения точки O. Числа α , β и

 γ , а также любая тройка чисел, им пропорциональная, называются *барицен- трическими координатами* точки M относительно точек A, B и C. Барицен-трические координаты указываются в фигурных скобках и разделяются двоеточием: $M\{\alpha:\beta:\gamma\}$. Это название связано с тем, что если в точках A, B и C сосредоточены массы α , β и γ соответственно, то центр масс этих трех точек имеет барицентрические координаты $\{\alpha:\beta:\gamma\}$. Барицентрические координаты, сумма которых равна единице, называются *приведёнными*.

Если точка M имеет в плоскости ABC относительно точек A, B и C барицентрические координаты $M\{p:q:r\}$, то это значит, что для любой точки отсчета O справедливо представление:

$$\overline{OM} = \frac{p}{p+q+r}\overline{OA} + \frac{q}{p+q+r}\overline{OB} + \frac{r}{p+q+r}\overline{OC}$$
.

Замечание. Если $\alpha + \beta + \gamma = 1$ и $\overline{OM} = \alpha \cdot \overline{OA} + \beta \cdot \overline{OB} + \gamma \cdot \overline{OC}$, то числа α и β определяются из разложения: $\overline{CM} = \alpha \cdot \overline{CA} + \beta \cdot \overline{CB}$, а $\gamma = 1 - \alpha - \beta$.

Пример 11. В треугольнике ABC известны длины его сторон |BC|=a, |AC|=b |AB|=c. Найти барицентрические координаты относительно его вершин: (а) точки пересечения медиан M; (б) центра P вписанной окружности P.

Решение. (а) В примере 3 мы уже получили искомое разложение радиус-вектора точки пересечения медиан: $\overline{OM} = \frac{1}{3}\overline{OA} + \frac{1}{3}\overline{OB} + \frac{1}{3}\overline{OC}$. В качестве барицентрических координат можно взять любую тройку чисел, пропорциональных этим коэффициентам, например $M\{1:1:1\}$.

- (б) Воспользуемся найденным в примере 4 разложением радиус-вектора точки $P: \overline{OP} = \frac{a}{a+b+c} \overline{OA} + \frac{b}{a+b+c} \overline{OB} + \frac{c}{a+b+c} \overline{OC}$. В качестве барицентрических координат можно взять любую тройку чисел, пропорциональных этим коэффициентам, например $P\{a:b:c\}$.
- **1.20.** Барицентрические координаты на плоскости очень удобны для графического представления смеси трех веществ. А именно, если смесь содержит вещества A, B и C в пропорции α : β : γ , то эта смесь изображается

точкой M треугольника ABC с барицентрическими координатами $M\{\alpha:\beta:\gamma\}$. Как известно, на экранах мониторов и телевизоров каждый цвет заданной яркости есть комбинация трех основных цветов: красного (цвет №1), зелёного (цвет №2) и синего (цвет №3), взятых в определённой пропорции. Следовательно, различные оттенки цветов одной яркости заполняют собой внутренность треугольника, вершины которого соответствуют этим трём основным цветам. Этот треугольник называется *цветовым*. (см. Рис. 11). Цвет, состоящий, например на 50% из красного, на 30% из зеленого и 20% синего цвета, находится в точке этого треугольника с барицентрическими координатами $\{5:3:2\}$.

1.21. Положение точки M относительно сторон треугольника ABC можно определить по знаку её приведенных барицентрических координат $\{\alpha:\beta:\gamma\}$. А именно:

точка M лежит внутри треугольника $ABC \Leftrightarrow (\alpha > 0, \beta > 0, \gamma > 0)$;

точка M лежит на прямой AC $\Leftrightarrow \beta = 0$; точка M лежит вне треугольника ABC, но внутри угла ACB $\Leftrightarrow \alpha > 0, \beta > 0, \gamma < 0$.

Теперь дадим другое решение Примера 8. А именно, ту часть решения примера 8, которая расположена на стр. 13 и 14 внутри красных фигурных скобок, следует заменить следующим текстом:

Возьмем в качестве точки отсчета точку D, и выразим через радиусвекторы вершин E, B и F радиус-вектор точки M: $\overline{DE} = \frac{1}{2} \pmb{a} \Rightarrow \pmb{a} = 2 \cdot \overline{DE}$,

$$\overline{DB} = m{b}, \ \overline{DF} = \frac{2}{3} m{c} \Rightarrow m{c} = \frac{3}{2} \overline{DF}$$
, поэтому
$$\overline{DM} = \frac{3}{4} x \cdot m{a} + \frac{1}{4} x \cdot m{b} + \frac{1}{3} (1 - x) \cdot m{c} = \frac{3}{2} x \cdot \overline{DE} + \frac{1}{4} x \cdot \overline{DB} + \frac{1}{2} (1 - x) \cdot \overline{DF} \ .$$

Но точка M принадлежит плоскости EBF тогда и только тогда, когда сумма коэффициентов последнего разложения равна 1. Следовательно,

$$\frac{3}{2}x + \frac{1}{4}x + \frac{1}{2}(1-x) = 1 \Longrightarrow 6x + x + 2 - 2x = 4 \Longrightarrow x = \frac{2}{5}. \blacksquare$$

Пример 12. Точка M имеет относительно точек A, B и C барицентрические координаты $M\{3;-2;4\}$. Зная декартовы координаты вершин A(-2;1;4), B(3;2;5) и C(1;3;2), найти декартовы координаты точки M.

Решение. Радиус вектор точки M выражается через радиус-векторы точек A, B и C формулой:

$$\overline{OM} = \frac{3}{3 + (-2) + 4} \overline{OA} + \frac{-2}{3 + (-2) + 4} \overline{OB} + \frac{4}{3 + (-2) + 4} \overline{OC} =$$

$$= \frac{3}{5} \overline{OA} - \frac{2}{5} \overline{OB} + \frac{4}{5} \overline{OC}.$$

Поэтому для декартовых координат точки M справедливо аналогичное представление:

$$\begin{split} x_M &= \frac{1}{5} \left(3 x_M - 2 x_B + 4 x_C \right) = \frac{1}{5} (3 \cdot (-2) - 2 \cdot 3 + 4 \cdot 1) = -\frac{8}{5}; \\ y_M &= \frac{1}{5} \left(3 y_M - 2 y_B + 4 y_C \right) = \frac{1}{5} (3 - 4 + 12) = \frac{11}{5}; \\ z_M &= \frac{1}{5} \left(3 z_M - 2 z_B + 4 z_C \right) = \frac{1}{5} (12 - 10 + 8) = 2. \end{split}$$

Итак, точка M имеет декартовы координаты $M\left(-\frac{8}{5};\frac{11}{5};2\right)$.

1.22. Барицентрические координаты в пространстве. Пусть даны четыре точки A, B, C и D, не лежащие в одной плоскости, и произвольная точка отсчета O. Тогда для любой точки M существуют четыре числа α , β , γ и δ такие, что $\alpha + \beta + \gamma + \delta = 1$ и $\overline{OM} = \alpha \cdot \overline{OA} + \beta \cdot \overline{OB} + \gamma \cdot \overline{OC} + \delta \cdot \overline{OD}$. Числа α , β , γ и δ определены однозначно и не зависят от выбора точки O. Числа α , β , γ и δ , а также любая другая четверка чисел, ей пропорциональная, называется барицентрическими координатами точки M относительно точек A, B, C и D. Если вектор $\overline{DM} = \alpha \cdot \overline{DA} + \beta \cdot \overline{DB} + \gamma \cdot \overline{DC}$, точка M имеет приведенные барицентрические координаты $\{\alpha : \beta : \gamma : \delta\}$, где $\delta = 1 - \alpha - \beta - \gamma$. Обратное утверждение тоже справедливо.

Пример 13. В тетраэдре ABCD точки E и F расположены на ребрах AB и CD соответственно и делят их в отношении AE:EB=3:1, CF:FD=2:1. На прямой EF расположена точка M так, что F – середина отрезка EM (см. Рис. 12). Найти барицентрические координаты точки M относительно точек A, B, C и D.

Решение. Разложим по трем некомпланарным векторам $a=\overline{DA}$, $b=\overline{DB}$ и $c=\overline{DC}$ сначала вектор \overline{EF} :

$$\overline{EF} = \overline{EA} + \overline{AD} + \overline{DF} = \frac{3}{4}\overline{BA} - \boldsymbol{a} + \frac{1}{3}\overline{DC} =$$

$$= \frac{3}{4}(\boldsymbol{a} - \boldsymbol{b}) - \boldsymbol{a} + \frac{1}{3}\boldsymbol{c} = -\frac{1}{4}\boldsymbol{a} - \frac{3}{4}\boldsymbol{b} + \frac{1}{3}\boldsymbol{c},$$

а затем вектор \overline{DM} :

$$\overline{DM} = \overline{DA} + \frac{1}{AE} + \overline{EM} = \mathbf{a} + \frac{3}{4}\overline{AB} + 2\overline{EF} = \mathbf{a} + \frac{3}{4}(\mathbf{b} - \mathbf{a}) + 2\left(-\frac{1}{4}\mathbf{a} - \frac{3}{4}\mathbf{b} + \frac{1}{3}\mathbf{c}\right) =$$

$$= -\frac{1}{4}\mathbf{a} - \frac{3}{4}\mathbf{b} + \frac{2}{3}\mathbf{c}.$$

Следовательно,
$$\alpha = -\frac{1}{4}$$
, $\beta = -\frac{3}{4}$, $\gamma = \frac{2}{3} \Rightarrow \delta = 1 - \alpha - \beta - \gamma = \frac{4}{3}$.

Искомые барицентрические координаты точки M – любая четверка чисел, пропорциональная числам α , β , γ и δ , например (если коэффициент пропорциональности взять равным 12), $M\{-3:-9:8:16\}$.

1.23. Центр масс совокупности материальных точек.

Пусть даны n точек $A_1, A_2, ..., A_n$, в которых сосредоточены массы $m_1, m_2, ..., m_n$ соответственно. **Векторным статическим моментом** этой системы точек относительно точки отсчета O называется вектор

 $M_O = m_1 \overline{OA_1} + m_2 \overline{OA_2} + ... + m_n \overline{OA_n}$. Точка C называется **центром масс** системы материальных точек, если относительно точки C векторный момент этой совокупности равен нулю: $M_C = m_1 \overline{CA_1} + m_2 \overline{CA_2} + ... + m_n \overline{CA_n} = \mathbf{0}$.

Центр масс определен не только для конечной совокупности точек, но и для любой сплошной материальной линии, поверхности или тела.

Центроидом совокупности геометрических точек, называется центр масс точек, в которых сосредоточены одинаковые (например, единичные) массы. Центроид определяется и для любой геометрической фигуры — это центр масс этой фигуры, наделенной некоторой (не важно, какой) постоянной плотностью, например, равной единице. И тогда в роли массы линии, поверхности или тела выступает её длина, площадь или объем соответственно⁵.

Центр масс C совокупности точек определен однозначно, и его радиус вектор относительно любой точки отсчета O вычисляется по формуле:

$$\overline{OC} = \frac{1}{m_1 + m_2 + \ldots + m_n} \left(m_1 \overline{OA_1} + m_2 \overline{OA_2} + \ldots + m_n \overline{OA_n} \right).$$

Радиус-вектор центроида C совокупности n точек A_1, A_2, \dots, A_n равен $\overline{OC} = \frac{1}{n} \Big(\overline{OA_1} + \overline{OA_2} + \dots + \overline{OA_n} \Big).$

Если совокупность точек (геометрическая фигура) имеет ось или плоскость симметрии, то и её центроид лежит на этой оси симметрии (соответственно в плоскости симметрии). Если фигура имеет центр симметрии, то этот центр симметрии и является её центроидом.

- **1.24.** Если говорить о центроиде **многоугольника**, то надо иметь в виду, что последний можно рассматривать как:
 - 1) совокупность его вершин;
 - 2) совокупность всех его сторон, т.е. контур этого многоугольника;
- 3) часть плоскости, ограниченной сторонами многоугольника, т.е. *сплошной* многоугольник (как, например, вырезанный из листа картона).

Центры масс этих трёх фигур, вообще говоря, не совпадают.

Аналогично, многогранник можно рассматривать как:

- 1) совокупность всех его вершин;
- 2) как совокупность всех его **рёбер**, т.е. это *каркас* данного многогранника;
- 3) как совокупность всех его **граней**, т.е. это *поверхность* многогранника;
- 4) как часть пространства, ограниченного гранями многогранника, т.е. *сплошной* многогранник (как например, выпиленный из куска дерева).

Центры масс этих четырех фигур, вообще говоря, не совпадают.

1. 25. При нахождении центра масс полезен следующий принцип.

⁵ Для точных определений и вывода формул для центра масс или центроида линии, поверхности или тела требуется понятие интеграла (определенного, двойного, тройного, криволинейного или поверхностного).

Принцип группировки: если первая совокупность материальных точек суммарной массой m_1 имеет центр масс в точке C_1 , вторая группа материальных точек суммарной массой m_2 имеет центр масс в точке C_2 , то центр масс объединённой совокупности точек совпадает с центром масс точек C_1 и C_2 , в которых сосре-

доточены массы m_1 и m_2 соответственно.

Пример 14. Используя принцип группировки, найти положение центроида контура 6 произвольного треугольника.

Решение. Контур треугольника ABC состоит из **линий** (трех его сторон), поэтому роль массы здесь выполняет **длина**. Заменим каждую сторону треугольника её центром масс (т.е её серединой), в котором сосредоточена масса, равная **длине** этой стороны. Получим точки: A_1 (середина BC), B_1 (середина AC) и C_1 (середина AB), в которых сосредоточены массы a, b и c соответственно. Тогда искомый центроид Q контура треугольника — это центр масс данных трех материальных точек, и его радиус-вектор равен $\overline{OQ} = \frac{a}{a+b+c} \overline{OA_1} + \frac{b}{a+b+c} \overline{OB_1} + \frac{c}{a+b+c} \overline{OC_1}$. Заметим, что стороны треугольника $A_1B_1C_1$ вдвое меньше соответствующих сторон треугольника ABC, поэтому эта формула выражает радиус-вектор центра вписанной окружности треугольника $A_1B_1C_1$.

Ответ: центроид контура треугольника находится в центре окружности, вписанной в треугольник, образованного средними линями исходного треугольника. ■

Пример 15. Доказать, что центроид сплошного треугольника расположен в точке пересечения его медиан, т.е. совпадает с центроидом вершин треугольника.

⁶ *Контуром* многоугольника называется совокупность всех его сторон. Сам (сплошной!) многоугольник представляет собой часть плоскости, ограниченной своим контуром.

Решение. Рассмотрим треугольник ABC, пусть — M положение центроида этого (сплошного!) треугольника. Разложим вектор \overline{CM} по базису $a = \overline{CA}$, $b = \overline{CB}$: $\overline{CM} = \lambda a + \mu b$. Разобьем треугольник ABC средними линиями A_1B_1 , A_1C_1 и B_1C_1 на четыре подобных ему треугольника вдвое меньших размеров A_1B_1C , AB_1C_1 , A_1BC_1 и $A_1B_1C_1$ (см. Рис. 13). Обозначим через M_1 , M_2 , M_3 и M_4 соответственно центроиды этих (сплошных!) треугольников. В силу их подобия, радиус-векторы центроидов этих треугольников относительно соответствующих точек имеют то же представление. Выпишем радиус-векторы этих центроидов относительно точки C:

$$\overline{CM_1} = \lambda \overline{CB_1} + \mu \overline{CA_1} = \lambda \cdot \frac{1}{2} \boldsymbol{a} + \mu \cdot \frac{1}{2} \boldsymbol{b};$$

$$\overline{CM_2} = \overline{CB_1} + \overline{B_1 M_2} = \frac{1}{2} \boldsymbol{a} + \lambda \cdot \frac{1}{2} \boldsymbol{a} + \mu \cdot \frac{1}{2} \boldsymbol{b} = \frac{1}{2} (\boldsymbol{a} + \lambda \boldsymbol{a} + \mu \boldsymbol{b});$$

$$\overline{CM_3} = \overline{CA_1} + \overline{A_1 M_3} = \frac{1}{2} \boldsymbol{b} + \lambda \cdot \frac{1}{2} \boldsymbol{a} + \mu \cdot \frac{1}{2} \boldsymbol{b} = \frac{1}{2} (\boldsymbol{b} + \lambda \boldsymbol{a} + \mu \boldsymbol{b});$$

$$\overline{CM_4} = \overline{CC_1} + \overline{C_1 M_4} = \frac{1}{2} \boldsymbol{a} + \frac{1}{2} \boldsymbol{b} - \lambda \cdot \frac{1}{2} \boldsymbol{a} - \mu \cdot \frac{1}{2} \boldsymbol{b} = \frac{1}{2} (\boldsymbol{a} + \boldsymbol{b} - \lambda \boldsymbol{a} - \mu \boldsymbol{b}).$$

Поскольку роль массы здесь выполняет площадь, и площадь каждого из меньших треугольников равна 1/4 от площади исходного треугольника, то, по принципу группировки,

$$\overline{CM} = \frac{1}{4} \left(\overline{CM_1} + \overline{CM_2} + \overline{CM_3} + \overline{CM_4} \right) \Leftrightarrow \lambda a + \mu b =
= \frac{1}{4} \left(\frac{1}{2} (\lambda a + \mu b) + \frac{1}{2} (a + \lambda a + \mu b) + \frac{1}{2} (b + \lambda a + \mu b) + \frac{1}{2} (a + b - \lambda a - \mu b) \right) =
= \frac{1}{4} (a + b + \lambda a + \mu b) \Rightarrow \lambda a + \mu b = \frac{1}{3} (a + b) \Rightarrow \lambda = \mu = \frac{1}{3}.$$

Отсюда радиус-вектор центроида сплошного треугольника относительно произвольной точки отсчета O равен

$$\overline{OM} = \overline{OC} + \overline{CM} = \overline{OC} + \frac{1}{3} \left(\overline{CA} + \overline{CB} \right) = \overline{OC} + \frac{1}{3} \left(\overline{OA} - \overline{OC} + + \overline{OB} - \overline{OC} \right) =$$

$$= \frac{1}{3} \left(\overline{OA} + \overline{OB} + \overline{OC} \right)$$

и совпадает с центроидом трех вершин треугольника ABC.

Задачи для самостоятельного решения к главе 1.

- **1. 1.** В пространстве даны произвольные точки A, B, C, D, E и F. Найти: $\overline{AB} \overline{ED} + \overline{EF} + \overline{BC} \overline{DC}$; (б) $\overline{AC} + \overline{BA} \overline{BF} + \overline{ED} \overline{EC} + \overline{DF}$.
- **1. 2.** Дан треугольник ABC. Построить векторы: (a) $\overline{AB} + \overline{CB}$; (б) $\overline{AB} \overline{BC}$; (в) $2 \cdot \overline{AB} 3 \cdot \overline{AC}$; (г) $\frac{1}{2} \cdot \overline{AC} + 2 \cdot \overline{BC}$; (д) $\overline{AB} \overline{AC} + \overline{BC}$.
- **1. 3.** Дан тетраэдр ABCD. Построить векторы: (a) $\overline{AB} + \overline{CD}$; (б) $\overline{AB} + \overline{CD} \overline{AD}$; (б) $2 \cdot \overline{AD} \frac{2}{3} \cdot \overline{BC}$; (г) $\overline{AC} 2\overline{BC} + \frac{1}{2}\overline{BD}$.
- **1.4.** Пусть a, b и c произвольные векторы. Доказать, что векторы p = 2a 3b 2c, q = a + 2b c и r = a + 9b c компланарны.

- **1.5.** С помощью векторной алгебры доказать следующие теоремы планиметрии:
 - (а) свойство средней линии треугольника; (б) свойство средней линии трапеции;
 - (в) теорему о пересечении медиан треугольника.
 - (г) если медианы одного треугольника параллельны сторонам другого треугольника, то и медианы второго треугольника параллельны сторонам первого.
- **1.6.** С помощью векторной алгебры доказать следующие теоремы стереометрии:
 - (а) Все четыре медианы⁷ любого тетраэдра пересекаются в одной точке, которая делит каждую медиану в отношении 3:1, считая от вершины, и эта точка совпадает с точкой пересечения отрезков, соединяющих середины противоположных рёбер из Примера 5 (эта точка называется **центроидом** вершин тетраэдра).
 - (б) Все четыре диагонали произвольного параллелепипеда пересекаются в одной точке и делятся ею пополам.
- **1.7.** Пусть M точка пересечения медиан треугольника ABC. Доказать, что $\overline{MA} + \overline{MB} + \overline{MC} = \mathbf{0}$.
- **1. 8.** В треугольнике ABC точки D, E и F делят стороны AB, BC и AC соответственно в одинаковом отношении: AD:DB=BE:EC=CF:FA. Доказать, что $\overline{AE}+\overline{BF}+\overline{CD}=\mathbf{0}$.
- **1.9.** Дан правильный шестиугольник ABCDEF, $\overline{AB} = p$, $\overline{BC} = q$. Выразить через p и q векторы: (a) \overline{CD} ; (б) \overline{CE} ; (в) \overline{FD} ; (г) \overline{AE} ; (е) \overline{AD} ; (ж) \overline{BE} .
- **1. 10.** Дан правильный пятиугольник ABCDE, $\overline{AB} = p$, $\overline{AC} = q$. Выразить через p и q векторы: (a) \overline{AD} ; (б) \overline{CD} ; (в) \overline{AE} ; (г) \overline{BD} . $\left(\cos 36^{\circ} = \frac{1+\sqrt{5}}{4}\right)$.
- **1.11.** Точки M и N середины рёбер (сторон) AD и BC тетраэдра (четырехугольника) ABCD. Доказать, что $\overline{MN} = \frac{1}{2} \left(\overline{AB} + \overline{DC} \right)$.
- **1.12.** Даны четыре вектора p, q, r и s. Найти их сумму, если $p+q+r=\lambda s$, $q+r+s=\lambda p$ и векторы p, q и r не компланарны.
- **1. 13.** Даны три некомпланарных вектора p, q и r. Найти значение λ , при котором векторы $a = \lambda p + q + r$, $b = p + \lambda q + r$ и $c = p + q + \lambda r$ компланарны.
- **1.14.** Даны три некомпланарных вектора p, q и r. Найти значения α и β , при которых векторы $\alpha p + \beta q + r$ и $p + 2\alpha q + 3\beta r$ коллинеарны.

 $^{^{7}}$ *Медианой* тетраэдра называется отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани.

- **1.15.** В трапеции ABCD известно отношение длин оснований: $AB/CD = \lambda$. Найти координаты вектора \overline{CB} в базисе из векторов \overline{AB} и \overline{AD} .
- **1. 16.** Две взаимно перпендикулярные хорды AB и CD окружности с центром O пересекаются в точке E . Доказать, что

$$\overline{OE} = \frac{1}{2} \left(\overline{OA} + \overline{OB} + \overline{OC} + \overline{OD} \right)$$

- **1.17.** Пусть точки A_1 , B_1 и C_1 середины сторон BC, AC и AB соответственно треугольника ABC. Доказать, что для любой точки O выполняется равенство $\overline{OA_1} + \overline{OB_1} + \overline{OC_1} = \overline{OA} + \overline{OB} + \overline{OC}$.
- **1. 18.** Пусть M точка пересечения медиан тетраэдра ABCD. Доказать, что

$$\overline{MA} + \overline{MB} + \overline{MC} + \overline{MD} = \mathbf{0}$$
.

1.19. В пространстве даны два параллелограмма (или два тетраэдра) ABCD и $A_1B_1C_1D_1$, у которых E и E_1 — точки пересечения диагоналей (соответственно, медиан). Доказать, что

$$\overline{EE_1} = \frac{1}{4} \left(\overline{AA_1} + \overline{BB_1} + \overline{CC_1} + \overline{DD_1} \right).$$

- **1. 20.** На плоскости даны две точки A и B и точка отсчета O. Доказать, что произвольная точка M лежит на прямой AB тогда и только тогда, когда $\overline{OM} = \alpha \cdot \overline{OA} + \beta \cdot \overline{OB}$ для некоторых α и β таких, что $\alpha + \beta = 1$.
- **1. 21.** Доказать с помощью векторной алгебры, что если M произвольная точка внутри треугольника ABC и прямые AM, BM и CM пересекают стороны этого треугольника в точках A_1 , B_1 и C_1 соответственно, то

(a)
$$\frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} = 1$$
 (теорема Чевы);

(6)
$$\frac{A_1 M}{A A_1} + \frac{B_1 M}{B B_1} + \frac{C_1 M}{C C_1} = 1$$
.

1. 22. Доказать с помощью векторной алгебры **теорему Менелая**: если некоторая прямая пересекает стороны AB и AC треугольника ABC в точках C_1 и B_1 соответственно, а продолжение стороны BC – в точке A_1 , то

$$\frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} = 1$$

- **1. 23.** Пусть точки M и K делят рёбра AD и BC тетраэдра ABCD в одинаковом отношении $AM: MD = BK: KC = \alpha: \beta$. Доказать, что векторы $\overline{AB}, \overline{CD}$ и \overline{MK} компланарны, и разложить последний вектор по первым двум.
- **1. 24.** Основанием призмы $ABCDA_1B_1C_1D_1$ является трапеция ABCD, в которой $AD \parallel BC$. Известно, что векторы $\overline{BA_1}$, $\overline{CB_1}$ и $\overline{DC_1}$ компланарны. Найти отношение длин ребер AD и BC.

- **1. 25.** Дана треугольная призма $ABCA_1B_1C_1$. Разложить вектор $\overline{AA_1}$ по векторам $p = \overline{AC_1}$, $q = \overline{BA_1}$ и $r = \overline{CB_1}$.
- **1. 26.** В тетраэдре ABCD точки M, N и K расположены на рёбрах AB, AC и AD и делят их в отношении AM: MB = 1:1, AN: NC = 1:3 и AK: KD = 2:1. Доказать, что векторы $\mathbf{p} = \overline{BK}, \mathbf{q} = \overline{CM}$ и $\mathbf{r} = \overline{DN}$ не компланарны и разложить по ним вектор \overline{BC} .
- **1. 27.** В треугольнике ABC точки D и E расположен на стороне AB, а точки F и G на сторонах AC и BC соответственно, причем, $AD:DB=1:3,\ AE:EB=3:1,\ AF:FC=1:2,\ BG=GC$. Отрезки DG и EF пересекаются в точке M. Найти отношения DM:MG и EM:MF.
- **1. 28.** В параллелепипеде $ABCDA_1B_1C_1D_1$ точка E середина ребра AD, а точка K делит ребро AA_1 в отношении $AK: KA_1 = 2:1$. Отрезок B_1E пересекает плоскость BC_1K в точке M. Найти отношение $EM: MB_1$ и разложение вектора \overline{BM} по векторам $p = \overline{BK}$ и $q = \overline{BC_1}$.
- **1. 29.** В треугольнике ABC известны координаты его вершин: A(1;5;2), B(3;8;8) и C(5;7;6). Найти: (а) медиану AD; (б) биссектрису BE; (в) координаты точки пересечения медиан M; (г) координаты центра P вписанной окружности треугольника ABC.
- **1. 30.** В трапеции ABCD основание AD вдвое больше основания BC. Зная координаты вершин A(-1;2;5), B(3;1;4) и точки пересечения диагоналей E(5;6;7), найти координаты вершин C и D.
- **1.31.** В треугольнике ABC проведены медиана CD, биссектриса CL и высота CK, точки O и P центры описанной и вписанной окружностей соответственно, M точка пересечения медиан, H ортоцентр треугольника ABC. Разложить по векторам $\mathbf{a} = \overline{CA}$ и $\mathbf{b} = \overline{CB}$ векторы: (a) \overline{CD} ; (б) \overline{CL} ; (в) \overline{CK} ; (г) \overline{CM} ; (д) \overline{CP} ; (е) \overline{CH} ; (ж) \overline{CO} (коэффициенты разложения выразить через углы $\alpha = \angle BAC$ и $\beta = \angle ABC$).
- **1. 32.** На плоскости дан треугольник ABC. (a) Построить точки с барицентрическими координатами (относительно вершин A, B и C): (1°) $\{0:0:1\}$; (2°) $\{3:1:0\}$; (3°) $\{2:3:5\}$; (4°) $\{1:-2:3\}$; (б) Найти барицентрические координаты точки N, лежащей на отрезке AK, где K лежит на стороне BC, KN:NA=1:3, BK:KC=5:2.
- **1. 33.** Точка M имеет относительно треугольника ABC барицентрические координаты $\{x:y:z\}$. Найти $x\cdot\overline{MA}+y\cdot\overline{MB}+z\cdot\overline{MC}$.
- **1. 34.** В тетраэдре ABCD точки E и F расположены на ребрах AB и CD соответственно и делят их в отношении AE:EB=3:1, CF:FD=2:1. Точка M центрально симметрична точке E относительно точки F. Найти барицентрические координаты точки M относительно точек A, B, C и D.

- **1.35.** Пусть прямая ℓ и плоскость π не параллельны, b проекция вектора a на прямую ℓ параллельно плоскости π , c проекция вектора a на плоскость π параллельно прямой ℓ . Найти b+c.
- **1. 36.** Три плоскости π_1 π_2 и π_3 пересекаются по трём разным прямым: $\pi_2 \cap \pi_3 = \ell_1$, $\pi_1 \cap \pi_3 = \ell_2$, $\pi_1 \cap \pi_2 = \ell_3$. Пусть a_k проекция вектора b на прямую ℓ_k параллельно плоскости π_k (k = 1, 2, 3). Найти $a_1 + a_2 + a_3$.
- **1. 37.** Выразить через углы α , β и γ треугольника ABC барицентрические координаты: (а) центра P вписанной окружности; (б) центра Q описанной окружности; (в) точки H пересечения высот (непрямоугольного) треугольника ABC.
- **1.38.** Треугольник ABC с углами $\angle BAC = \alpha$, $\angle ABC = \beta$, $\angle ACB = \gamma$ вписан в окружность с центром O. Доказать, что

$$\overline{OA} \cdot \sin 2\alpha + \overline{OB} \cdot \sin 2\beta + \overline{OC} \cdot \sin 2\gamma = 0$$
.

1. 39. В непрямоугольном треугольнике ABC с углами $\angle BAC = \alpha$, $\angle ABC = \beta$, $\angle ACB = \gamma$ высоты (или их продолжения) пересекаются в точке H. Вычислить

$$\overline{HA} \cdot \operatorname{tg} \alpha + \overline{HB} \cdot \operatorname{tg} \beta + \overline{HC} \cdot \operatorname{tg} \gamma$$
.

- **1. 40.** Внутри треугольника ABC дана точка M. Прямые AM и BM пресекают стороны BC и AC в точках A_1 и B_1 соответственно, причем, $AM: MA_1 = \alpha_1: \alpha_2$, $BM: MB_1 = \beta_1: \beta_2$. Найти барицентрические координаты точки M.
- **1.41.** Высоты треугольника ABC, проведенные из вершин A, B и C равны h_A , h_B и h_C соответственно. Внутри угла ACB находится точка M, удаленная от сторон BC и AC на расстояния d_A и d_B соответственно. Найти расстояние от точки M до стороны AB и барицентрические координаты точки M относительно вершин A, B и C.
- **1. 42.** Из произвольной точки внутри K равностороннего треугольника опущены перпендикуляры KD, KE и KF на его стороны BC, AC и AB соответственно. Доказать, что:

$$\overline{KO} = \frac{2}{3} (\overline{KD} + \overline{KE} + \overline{KF})$$
, где O – центр треугольника.

- **1. 43.** Внутри треугольника ABC дана точка M. Прямые AM и BM пресекают стороны BC и AC в точках A_1 и B_1 соответственно, причем, $BA_1:A_1C=\alpha_1:\alpha_2,\ CB_1:B_1A=\beta_1:\beta_2$. Найти барицентрические координаты точки M относительно вершин A,B и C.
- **1. 44.** На плоскости данный три точки M_1 , M_2 и M_3 , имеющие относительно вершин треугольника A, B и C барицентрические координаты (не обязательно приведенные): $M_1\{\alpha_1:\beta_1:\gamma_1\}$, $M_2\{\alpha_2:\beta_2:\gamma_2\}$ и $M_3\{\alpha_3:\beta_3:\gamma_3\}$. При каком необходимом и достаточном условии эти три точки лежат на одной прямой?
- **1. 45.** В пространстве даны четыре точки M_1 , M_2 , M_3 и M_4 , имеющие относительно вершин тетраэдра A, B, C и D барицентрические координаты

- (не обязательно приведенные): $M_1\{\alpha_1:\beta_1:\gamma_1:\delta_1\}$, $M_2\{\alpha_2:\beta_2:\gamma_2:\delta_2\}$, $M_3\{\alpha_3:\beta_3:\gamma_3:\delta_3\}$ и $M_4\{\alpha_4:\beta_4:\gamma_4:\delta_4\}$. При каком необходимом и достаточном условии эти четыре точки лежат в одной плоскости?
- **1. 46.** Какие барицентрические координаты (относительно точек A, B, C и D) имеет точка Q центр масс системы четырех точек A, B, C и D, в которых сосредоточены массы m_A , m_B , m_C и m_D соответственно?
- **1.47.** Какие барицентрические координаты имеет фиолетовый цвет, отмеченный белой звёздочкой на цветовом треугольнике на Рис. 11?
- **1. 48.** Дано пять точек: A(4;-2;-1), B(1;4;2), C(3;12;8), D(5;0;10) и M(14;-18;15). (а) Доказать, что точки A, B, C и D не лежат в одной плоскости; (б) найти координаты: (1°) точки N проекции точки M на плоскость ABD параллельно прямой BC; (2°) точки K проекции точки M на прямую BC параллельно плоскости ABD; (в) найти проекцию вектора $m\{11;-1;10\}$ (1°) на плоскость BCD параллельно прямой AB; (2°) на прямую AB параллельно плоскости BCD; (3°) на направление вектора \overline{BD} параллельно плоскости ABC.
- **1. 49.** В тетраэдре ABCD точки M и K делят рёбра AD и BC в отношениях AM: MD = 1:2, BK: KC = 3:1, N середина отрезка MK. Пусть P проекция точки N на плоскость BCD параллельно прямой AC, Q проекция точки N на прямую AC параллельно плоскости BCD. Найти: (а) проекцию вектора \overline{MK} на плоскость ACD параллельно прямой BC; (б) проекцию вектора \overline{MK} на прямую BC параллельно плоскости ACD. (ответы разложить по векторам $a = \overline{CA}$, $b = \overline{CB}$, $d = \overline{CD}$); (в) барицентрические координаты точек P и Q относительно вершин тетраэдра.
- **1. 50.** Пусть через точу O проходят три прямые OA, OB и OC, не лежащие в одной плоскости. Доказать, что любой вектор m однозначно представим в виде m = a + b + c, где векторы a, b и c лежат на прямых OA, OB и OC соответственно. Описать векторы a, b и c в терминах проекций.
- **1.51.** Доказать, что векторные статические моменты совокупности материальных точек относительно двух разных точек O и P связаны формулой:

$$\boldsymbol{M}_O = (m_1 + m_2 + \dots + m_n)\overline{OP} + \boldsymbol{M}_P.$$

- **1.52.** Где расположен центроид: (а) отрезка; (б) параллелограмма; (в) круга (окружности); (г) параллелепипеда; (д) призмы.
- **1.53.** Найти барицентрические координаты центроида контура треугольника ABC относительно его вершин, **если** известны его: (а) стороны a, b и c, противолежащие вершинам A, B и C соответственно; (б) углы α , β и γ при вершинах A, B и C соответственно.
- **1. 54.** В треугольнике ABC известны декартовы координаты его вершин: A(3;1;4), B(4;3;2), C(6;7;6). Найти декартовы координаты центроида: (а) сплошного треугольника ABC; (б) контура треугольника ABC.

- **1. 55.** Определить положение центроида **поверхности** произвольного тетраэдра.
- **1. 56.** Найти барицентрические координаты центроида каркаса тетраэдра ABCD относительно его вершин, если известны длины всех рёбер: BC = a, AC = b, AB = c, AD = d, BD = e, CD = f.
- **1.57.** Найти барицентрические координаты центроида каркаса тетраэдра, у которого противоположные рёбра попарно равны.
- **1.58.** В тетраэдре ABCD известны площади его граней S_{ABC} , S_{ABD} , S_{ACD} и S_{BCD} . Найти барицентрические координаты (относительно вершин тетраэдра): (а) точки пересечения медиан тетраэдра; (б) центра его вписанного шара.

Глава 2. Скалярное произведение векторов.

- **2.1.** Напомним, что *углом* между ненулевыми векторами a и b называется угол $\angle ACB$ между равными им векторами, отложенными от одной точки C: $a = \overline{CA}$ $b = \overline{CB}$, этот угол обозначается $(a \land b)$ и может изменяться в пределах от 0° до 180° включительно. *Скалярным произведением* двух векторов a и b называется число (т.е. **скаляр**), обозначаемое (в разных книгах) $ab = a \cdot b = (a, b) = (a \cdot b)$ (в данном пособии принято последнее обозначение), и которое равно нулю, если хотя бы один из векторов a или b нулевой, а если оба вектора ненулевые, то равно произведению длин этих векторов на косинус угла между ними: $(a \cdot b) = |a| \cdot |b| \cdot \cos(a \land b)$.
- **2.2.** Алгебраические свойства скалярного произведения (верные для любых векторов a, b и числа $\lambda \in \mathbb{R}$):
 - (a) $(a \cdot b) = (b \cdot a)$ (коммутативность);
 - (б) $(a \cdot (b + c)) = (a \cdot b) + (a \cdot c)$ (дистрибутивность);
 - (в) $(a \cdot \lambda b) = \lambda (a \cdot b)$ (ассоциативность);
- (г) $(a \cdot a) = |a|^2 \ge 0$, причем точное равенство выполняется, только когда a = 0;
- (д) $(a \cdot b) = 0$ тогда и только тогда, когда один из векторов нулевой или векторы a и b перпендикулярны.
- **2.3.** Векторы a и b называются *ортогональными*, если их скалярное произведение равно нулю.

Скалярным квадратом вектора a называется скалярное произведение этого вектора на себя: $a^2 = (a \cdot a)$. Поэтому свойство (г) можно записать так:

 $a^2 = |a|^2 \ge 0$. Отсюда следует простая, но полезная формула для длины вектора: $|a| = \sqrt{a^2}$. Отметим, что не существует скалярного куба, и подавно, более высоких скалярных степеней вектора.

Из свойств (a) - (в) вытекает справедливость некоторых формул векторной алгебры, аналогичных хорошо известным формулам обычной алгебры:

(д)
$$(a \pm b)^2 = a^2 \pm 2(a \cdot b) + b^2$$
; (e) $((a + b) \cdot (a - b)) = a^2 - b^2$.

2.4. Ортогональная проекция точки A на плоскость π — это точка пересечения этой плоскости с прямой, проходящей через точку A перпендикулярно плоскости π . Ортогональная проекция точки A на прямую ℓ — это точка пересечения этой прямой с плоскостью, проходящей через точку A перпендикулярно прямой ℓ .

Ортогональной проекцией вектора \overline{AB} на плоскость π (на прямую ℓ) — называется вектор $\overline{A_1B_1}$, где точки A_1 и B_1 — ортогональные проекции точек A и B на эту плоскость (прямую). Ортогональная проекция вектора b на плоскость π (прямую ℓ) обозначаются $\Pr^{\perp}_{\pi}(b)$ и $\Pr^{\perp}_{\ell}(b)$ соответственно (символ \perp иногда опускается). Если на прямой задано направление, то она называются осью. Ортогональная проекция вектора \overline{AB} на ось m — это число $\pm |\overline{A_1B_1}|$, где точки A_1 и B_1 — ортогональные точек A и B на эту ось, а знак плюс или минус выбирается в зависимости от того, совпадает ли направление вектора $\overline{A_1B_1}$ с направлением на оси m. Проекция вектора b на ось, направленную по вектору a, или короче, на направление вектора a, обозначается $\Pr^{\perp}_{a}(b)$ или просто $\Pr_{a}(b)$.

Ортогональная проекция вектора ${\pmb b}$ на прямую ℓ находится по формуле $\Pr_\ell^\perp({\pmb b}) = \lambda {\pmb a}$, где ${\pmb a}$ – произвольный ненулевой вектор прямой ℓ , $\lambda = \frac{({\pmb a} \cdot {\pmb b})}{{\pmb a}^2}$. Ортогональная проекция вектора ${\pmb b}$ на направление вектора ${\pmb a}$ находится по формуле: $\Pr_{\pmb a}^\perp({\pmb b}) = |{\pmb b}| \cdot \cos({\pmb a} \wedge {\pmb b}) = \frac{({\pmb a} \cdot {\pmb b})}{|{\pmb a}|}$.

- **2.5.** Физический смысл скалярного произведения. Работа A, совершаемая силой f на перемещение s, равна скалярному произведению этих векторов: $A = (f \cdot s)$.
- **2.6.** *Неравенство Коши Буняковского*: $|(a \cdot b)| \le |a| \cdot |b|$. Косинус угла между двумя ненулевыми векторами a и b вычисляется по формуле:

$$\cos(a \wedge b) = \frac{(a \cdot b)}{|a| \cdot |b|}.$$

2.7. Свойства длины вектора. Для любых векторов a, b и числа $\lambda \in \mathbb{R}$: (a) $|a+b| \le |a| + |b|$; (б) $|a-b| \ge ||a| - |b||$; (в) $|\lambda a| = |\lambda| \cdot |a|$.

Вектор длины 1 называется *единичным* или (почему-то) **ортом**. Из любого ненулевого вектора a можно получить коллинеарный ему единичный вектор, для этого надо умножить его на число $\lambda = \pm \frac{1}{|a|}$, это операция назы-

вается *нормирование*. В результате получатся два единичных взаимно противоположных вектора $e_{1,2} = \pm \frac{1}{|a|} a$.

2. 8. Скалярный квадрат алгебраической суммы нескольких векторов равен сумме скалярных квадратов каждого из этих векторов плюс алгебраическая сумма удвоенных попарных скалярных произведений этих векторов друг на друга, например,

$$(\mathbf{a} - \mathbf{b} + \mathbf{c})^2 = \mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2 - 2(\mathbf{a} \cdot \mathbf{b}) + 2(\mathbf{a} \cdot \mathbf{c}) - 2(\mathbf{b} \cdot \mathbf{c}).$$

2. 9. Полезное векторное тождество:

$$(a+b+c)^2 + b^2 = (a+b)^2 + (b+c)^2 + 2(a \cdot c).$$

2. 10. Следствие (теорема косинусов для тетраэдра или произвольного четырехугольника): Для любых четырех точек пространства A, B, C и D:

$$AD^2 + BC^2 = AB^2 + CD^2 + 2AC \cdot BD \cdot \cos \varphi,$$

где φ – угол между лучами AC и BD.

2. 11. Если известны координаты векторов $a_1\{x_1; y_1; z_1\}$ и $a_2\{x_2; y_2; z_2\}$ в ортонормированном базисе $\{i; j; k\}$, то скалярное произведение этих векторов и длина вектора a_1 вычисляются по формулам:

$$(a_1 \cdot a_2) = x_1 y_1 + x_2 y_2 + x_3 y_3;$$
 $|a_1| = \sqrt{x_1^2 + y_1^2 + z_1^2}.$

2. 12. *Направляющими углами* луча или вектора m называются углы α , β и γ , которые этот луч (вектор) образует с координатными осями OX, OY и OZ (прямоугольной системы координат) соответственно. Косинусы этих углов (их часто тоже называют *направляющими*) являются координатами (в ортонормированном базисе) единичного вектора, одинаково направленному с лучом (вектором) m, и поэтому удовлетворяют равенству:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$

2. 13. Определителем Грама⁹ нескольких векторов $a_1, a_2, ..., a_n$ — это определитель, составленный из попарных скалярных произведений этих векторов друг на друга:

$$\Gamma(\boldsymbol{a}_1,\boldsymbol{a}_2,...,\boldsymbol{a}_n) \stackrel{=}{\underset{def}{=}} \begin{vmatrix} \boldsymbol{a}_1^2 & (\boldsymbol{a}_1 \boldsymbol{\cdot} \boldsymbol{a}_2) & \cdots & (\boldsymbol{a}_1 \boldsymbol{\cdot} \boldsymbol{a}_n) \\ (\boldsymbol{a}_2 \boldsymbol{\cdot} \boldsymbol{a}_1) & \boldsymbol{a}_2^2 & \cdots & (\boldsymbol{a}_2 \boldsymbol{\cdot} \boldsymbol{a}_n) \\ \cdots & \cdots & \cdots & \cdots \\ (\boldsymbol{a}_n \boldsymbol{\cdot} \boldsymbol{a}_1) & (\boldsymbol{a}_n \boldsymbol{\cdot} \boldsymbol{a}_2) & \cdots & \boldsymbol{a}_n^2 \end{vmatrix}.$$

Например, определитель Грама двух векторов \boldsymbol{a} и \boldsymbol{b} равен:

$$\Gamma(\boldsymbol{a},\boldsymbol{b}) = \begin{vmatrix} \boldsymbol{a}^2 & (\boldsymbol{a} \cdot \boldsymbol{b}) \\ (\boldsymbol{b} \cdot \boldsymbol{a}) & \boldsymbol{b}^2 \end{vmatrix} = \boldsymbol{a}^2 \boldsymbol{b}^2 - (\boldsymbol{a} \cdot \boldsymbol{b})^2.$$

⁸ Слово «нормированный» по отношению к вектору означает «равный по длине единице», а «орто» по-гречески означает «прямой», однако почему-то единичный вектор принято называть *ортом*, а вектор, перпендикулярный прямой или плоскости — её *нормалью*, хотя логичней было бы назвать их наоборот.

⁹ Грам Й. П. (одно «м»!) – датский математик (1850–1916).

- **2. 14 Свойство определителя Грама:** Определитель Грама совокупности векторов всегда неотрицателен, и равен нулю тогда и только тогда, когда эти векторы линейно зависимы.
- **2.15.** Для нахождения ортогональной проекции вектора \boldsymbol{b} на плоскость π надо выбрать в плоскости π два неколлинеарных вектора \boldsymbol{a}_1 и \boldsymbol{a}_2 , тогда $\Pr^{\perp}_{\pi}(\boldsymbol{b}) = \lambda_1 \boldsymbol{a}_1 + \lambda_2 \boldsymbol{a}_2$, где λ_1 и λ_2 являются решениями системы уравнений:

$$\begin{cases} a_1^2 \cdot \lambda_1 + (a_1 \cdot a_2) \cdot \lambda_2 = (a_1 \cdot b), \\ (a_2 \cdot a_1) \cdot \lambda_1 + a_2^2 \cdot \lambda_2 = (a_2 \cdot b). \end{cases}$$

Главный определитель Δ этой системы есть определитель Грама векторов a_1 и a_2 : $\Delta = \Gamma(a_1, a_2)$, поэтому он строго положителен, и система имеет единственное решение.

Обоснование. Очевидно, что ортогональная проекция вектора b на плоскость π – это некоторый вектор p этой плоскости, и поэтому он представим в виде $p = \lambda_1 a_1 + \lambda_2 a_2$, причем, вектор c = p - b

перпендикулярен плоскости π (См. Рис. 14). Следовательно, вектор c ортогонален векторам a_1 и a_2 , значит,

$$\begin{cases} (\boldsymbol{a}_{1} \cdot \boldsymbol{c}) = 0, \\ (\boldsymbol{a}_{2} \cdot \boldsymbol{c}) = 0 \end{cases} \Leftrightarrow \begin{cases} (\boldsymbol{a}_{1} \cdot (\lambda_{1} \boldsymbol{a}_{1} + \lambda_{2} \boldsymbol{a}_{2} - \boldsymbol{b})) = 0, \\ (\boldsymbol{a}_{2} \cdot (\lambda_{1} \boldsymbol{a}_{1} + \lambda_{2} \boldsymbol{a}_{2} - \boldsymbol{b})) = 0 \end{cases} \Leftrightarrow \begin{cases} \boldsymbol{a}_{1}^{2} \cdot \lambda_{1} + (\boldsymbol{a}_{1} \cdot \boldsymbol{a}_{2}) \cdot \lambda_{2} - (\boldsymbol{a}_{1} \cdot \boldsymbol{b}) = 0, \\ (\boldsymbol{a}_{2} \cdot \boldsymbol{a}_{1}) \cdot \lambda_{1} + \boldsymbol{a}_{2}^{2} \cdot \lambda_{2} - (\boldsymbol{a}_{2} \cdot \boldsymbol{b}) = 0. \end{cases}$$

Пример 16. Найти координаты вектора m длины 4, образующего с осью OX угол 45°, с осью OY в два раза больший угол, чем с осью OZ.

Решение. Пусть α , β и γ — направляющие углы вектора m. По условию, $\alpha = 45^\circ$, $\beta = 2\gamma$. Сразу можно найти первую координату вектора m: $x = |m|\cos\alpha = 4\cdot\cos45^\circ = 2\sqrt{2}$. Поскольку $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$ и $\cos^2\gamma = \frac{1}{2}(1+\cos2\gamma) = \frac{1}{2}(1+\cos\beta)$, получим $\frac{1}{2}+\cos^2\beta + \frac{1}{2}(1+\cos\beta) = 1 \Rightarrow \cos^2\beta + \frac{1}{2}\cos\beta = 0$, откуда либо $\cos\beta = 0 \Rightarrow \beta = 90^\circ \Rightarrow \gamma = 45^\circ$, либо $\cos\beta = -\frac{1}{2} \Rightarrow \beta = 120^\circ \Rightarrow \gamma = 60^\circ$. В первом случае получаем такие вторую и третью координаты вектора m: $y = |m|\cos\beta = 4\cos90^\circ = 0$, $z = |m|\cos\gamma = \cos45^\circ = 2\sqrt{2}$, а во втором: $y = |m|\cos\beta = 4\cos120^\circ = -2$, $z = |m|\cos\gamma = 4\cos60^\circ = 2$.

Othet: $m_1\{2\sqrt{2}; 0; 2\sqrt{2}\}, m_2\{2\sqrt{2}; -2; 2\}.$

Пример 17. В треугольнике ABC известны координаты его вершин: A(3;-1;2), B(1;4;5), C(4;2;6). Найти косинус угла ABC.

Решение. Угол ABC образован векторами, выходящими из вершины B, т.е. $\overline{BA}(2;-5;-3)$ и $\overline{BC}(3;-2;1)$. Поэтому

$$\cos \angle BAC = \cos(\overline{BA} \wedge \overline{BC}) = \frac{(\overline{BA} \cdot \overline{BC})}{|\overline{BA}| \cdot |\overline{BC}|} =$$

$$= \frac{3 \cdot 2 + (-2) \cdot (-5) + 1 \cdot (-3)}{\sqrt{9 + 4 + 1} \cdot \sqrt{4 + 25 + 9}} = \frac{13}{\sqrt{14}\sqrt{38}} = \frac{13}{2\sqrt{133}}$$

OTBET: $\cos \angle ABC = \frac{13}{2\sqrt{133}}$.

Пример 18. С помощью скалярного произведения доказать следующие теоремы планиметрии:

- (а) **теорему косинусов**: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
- (б) тождество параллелограмма: сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его четырех сторон.

Решение. (a) Пусть в треугольнике ABC угол $\angle ACB = \gamma$, рассмотрим векторы $a = \overline{CA}$ и $b = \overline{CB}$. Тогда $(a \wedge b) = \gamma$ и $\overline{AB} = b - a$. Следовательно, $AB^2 = \overline{AB}^2 = (b - a)^2 = a^2 + b^2 - 2(a \cdot b) = AC^2 + BC^2 - 2 \cdot AC \cdot BC \cdot \cos \gamma$.

(б) Для параллелограмма ABCD рассмотрим векторы $\overline{AD}=\pmb{a}$ и $\overline{AB}=\pmb{b}$. Тогда $\overline{AC}=\pmb{a}+\pmb{b}$ и $\overline{BD}=\pmb{a}-\pmb{b}$ (см. рис. 1), и тогда:

$$AC^{2} + BD^{2} = \overline{AC}^{2} + \overline{BD}^{2} = (a + b)^{2} + (a - b)^{2} =$$

$$= (a^{2} + 2(a \cdot b) + b^{2}) + (a^{2} - 2(a \cdot b) + b^{2}) = 2(a^{2} + b^{2}) = 2(AD^{2} + BC^{2}). \blacksquare$$

Пример 19. Пусть α , β и γ — внутренние углы треугольника. Доказать, что $\cos \alpha + \cos \beta + \cos \gamma \le \frac{3}{2}$. Когда выполняется точное равенство?

Решение. Пусть в треугольнике $ABC \angle BAC = \alpha$, $\angle ABC = \beta$, $\angle BCA = \gamma$, и точка O — центр окружности радиуса r, вписанной в этот треугольник, и пусть M, N и K — точки касания сторон AB, AC и BC соответственно с этой окружностью (см. Рис. 15). Рассмотрим векторы $m = \overline{OM}$, $n = \overline{ON}$ и $k = \overline{OK}$. Очевид-

но, что $|\boldsymbol{m}| = |\boldsymbol{n}| = |\boldsymbol{k}| = r$ и $(\boldsymbol{m} \wedge \boldsymbol{n}) = \angle MON = = 180^{\circ} - \angle MAN = 180^{\circ} - \alpha$. Аналогично, $(\boldsymbol{m} \wedge \boldsymbol{k}) = 180^{\circ} - \beta$, $(\boldsymbol{n} \wedge \boldsymbol{k}) = 180^{\circ} - \gamma$. Поэтому $(\boldsymbol{m} \cdot \boldsymbol{n}) = -r^2 \cos \alpha$, $(\boldsymbol{m} \cdot \boldsymbol{k}) = -r^2 \cos \beta$, $(\boldsymbol{n} \cdot \boldsymbol{k}) = -r^2 \cos \gamma$.

Вспомним, что скалярный квадрат любого вектора, в частности, суммы векторов m, n и k, неотрицателен:

$$(m+n+k)^2 \ge 0 \Leftrightarrow m^2+n^2+k^2+2(m \cdot n)+2(m \cdot k)+2(n \cdot k) \ge 0 \Leftrightarrow$$

 $\Leftrightarrow 3r^2-2r^2\cos\alpha-2r^2\cos\beta-2r^2\cos\gamma \ge 0.$
Сократив на $r^2>0$, немедленно получаем $3-2(\cos\alpha+\cos\beta+\cos\gamma) \ge 0$,

откуда сразу следует требуемое неравенство. Ясно, что точное равенство достигается только когда m+n+k=0. Поскольку векторы m, n и k имеют одинаковую длину, это возможно лишь только когда эти векторы образуют между собой углы по 120°, т.е когда углы α , β и γ равны по 60°. В самом деле:

$$m+n=-k \Rightarrow (m+n)^2 = k^2 \Rightarrow m^2 + n^2 + 2(m \cdot n) = k^2 \Rightarrow$$

 $\Rightarrow 2r^2 - 2r^2 \cos \alpha = r^2 \Rightarrow \cos \alpha = \frac{1}{2} \Rightarrow \alpha = 60^\circ.$

Аналогично показывается, что $\beta = \gamma = 60^{\circ}$.

Пример 20. Доказать, что сумма квадратов всех шести рёбер тетраэдра равна $16(R^2 - \rho^2)$, где R – радиус описанной сферы, а ρ – расстояние от центра этой сферы до центроида тетраэдра.

Решение. Пусть точка O — центр сферы радиуса R, описанной около тетраэдра ABCD, которую мы возьмем за точку отсчета, M — центроид тетраэдра (см. пример 6), тогда $|OM| = \rho$. Обозначим через a, b, c и d радиус-векторы вершин тетраэдра: $a = \overline{OA}$, $b = \overline{OB}$, $c = \overline{OC}$, $d = \overline{OD}$. Заметим, что |a| = |b| = |c| = |d| = R. Как мы уже показали в примере 6, $\overline{OM} = \frac{1}{4}(a+b+c+d)$, следовательно,

$$(a+b+c+d) = 4 \cdot \overline{OM} \Rightarrow (a+b+c+d)^2 = 16 \cdot \overline{OM}^2 = 16\rho^2.$$

Очевидно, что

$$\overline{AB} = b - a$$
, $\overline{AC} = c - a$, $\overline{AD} = d - a$, $\overline{BC} = c - b$, $\overline{BD} = d - b$, $\overline{CD} = d - c$.

Поэтому сумма квадратов всех рёбер равна:

$$\sum_{KB} = AB^{2} + AC^{2} + AD^{2} + BC^{2} + BD^{2} + CD^{2} =$$

$$= (\mathbf{b} - \mathbf{a})^{2} + (\mathbf{c} - \mathbf{a})^{2} + (\mathbf{d} - \mathbf{a})^{2} + (\mathbf{c} - \mathbf{b})^{2} + (\mathbf{d} - \mathbf{b})^{2} + (\mathbf{d} - \mathbf{c})^{2}$$

Прибавим к последнему равенству $16\rho^2 = (a+b+c+d)^2$. Получим

$$\sum_{KB} +16\rho^{2} = (\mathbf{b}-\mathbf{a})^{2} + (\mathbf{c}-\mathbf{a})^{2} + (\mathbf{d}-\mathbf{a})^{2} + (\mathbf{c}-\mathbf{b})^{2} + (\mathbf{d}-\mathbf{b})^{2} + (\mathbf{d}-\mathbf{c})^{2} + (\mathbf{d}+\mathbf{b}+\mathbf{c}+\mathbf{d})^{2} = 4\mathbf{a}^{2} + 4\mathbf{b}^{2} + 4\mathbf{c}^{2} + 4\mathbf{d}^{2} = 4 \cdot 4R^{2} = 16R^{2},$$

поскольку все попарные скалярные произведения взаимно уничтожаются.

Пример 21. В тетраэдре ABCD Известны длины всех рёбер: $AB=5,\ AC=6,\ BC=7,\ AD=8, BD=9$ и CD=10. Найти косинус угла между векторами \overline{AB} и \overline{CD} .

Решение. Рассмотрим векторы $a = \overline{AB}, b = \overline{BC}, c = \overline{CD}$ и тождество **2. 9**:

$$(a+b+c)^2+b^2=(a+b)^2+(b+c)^2+2(a \cdot b)$$
.

3десь $a+b=\overline{AB}+\overline{BC}=\overline{AC}$, $b+c=\overline{BC}+\overline{CD}=\overline{BD}$, $a+b+c=\overline{AB}+\overline{BC}+\overline{CD}=\overline{AD}$. Подставив в это тождество данные выражения, получим:

$$AD^2 + BC^2 = AC^2 + BD^2 + 2(\overline{AB} \cdot \overline{CD}),$$

отсюда

$$(\overline{AB} \bullet \overline{CD}) = \frac{AD^2 + BC^2 - AC^2 - BD^2}{2} = \frac{64 + 49 - 36 - 81}{2} = -2,$$

$$\Pi \text{ОЭТОМУ } \cos\left(\overline{AB} \land \overline{CD}\right) = \frac{(\overline{AB} \bullet \overline{CD})}{|\overline{AB}| \cdot |\overline{CD}|} = \frac{-2}{5 \cdot 10} = -\frac{1}{25}. \blacksquare$$

Пример. 22. В параллелограмме ABCD известны стороны AB = 5, AD = 8 и угол $\angle BAD = 60^{\circ}$. Точки E и F расположены на диагоналях AC и BD и делят их в отношении AE: EC = 3:1, BF: FD = 1:2. Найти длину отрезка EF.

Решение. Возьмем на плоскости базис $\boldsymbol{b} = \overline{AB}$ и $\boldsymbol{d} = \overline{AD}$. Тогда $\boldsymbol{b}^2 = AB^2 = 25$, $\boldsymbol{d}^2 = AD^2 = 64$, $(\boldsymbol{b} \cdot \boldsymbol{d}) = 5 \cdot 8 \cdot \cos 60^\circ = 20$. Теперь разложим по базису вектор \overline{EF} (см. рис. 16). Получим: $\overline{AE} = \frac{3}{4}\overline{AC} = \frac{3}{4}(\boldsymbol{b} + \boldsymbol{d})$, $\overline{AF} = \frac{2}{3}\overline{AB} + \frac{1}{3}\overline{AD} = \frac{2}{3}\boldsymbol{b} + \frac{1}{3}\boldsymbol{d}$. Поэтому $\overline{EF} = \overline{AF} - \overline{AE} = \left(\frac{2}{3}\boldsymbol{b} + \frac{1}{3}\boldsymbol{d}\right) - \frac{3}{4}(\boldsymbol{b} + \boldsymbol{d}) = -\frac{1}{12}\boldsymbol{b} - \frac{5}{12}\boldsymbol{d} = -\frac{1}{12}(\boldsymbol{b} + 5\boldsymbol{d})$. Теперь осталось найти длину этого вектора: $|EF| = |\overline{EF}| = |-\frac{1}{12}(\boldsymbol{b} + 5\boldsymbol{d})| = |-\frac{1}{12}| \cdot |(\boldsymbol{b} + 5\boldsymbol{d})| = \frac{1}{12}\sqrt{(\boldsymbol{b} + 5\boldsymbol{d})^2} = \frac{1}{12}\sqrt{\boldsymbol{b}^2 + 10(\boldsymbol{b} \cdot \boldsymbol{d})} + 25\boldsymbol{d}^2 = \frac{1}{12}\sqrt{25 + 10 \cdot 20 + 25 \cdot 64} = \frac{5}{12}\sqrt{1 + 8 + 64} = \frac{5}{12}\sqrt{73}$. Ответ: $|EF| = \frac{5}{12}\sqrt{73}$. ■

Пример 23. Плоские углы трехгранного угла равны α , β и γ . Доказать, что $1 + 2\cos\alpha\cos\beta\cos\gamma > \cos^2\alpha + \cos^2\beta + \cos^2\gamma$.

Решение. Рассмотрим три единичных вектора a,b,c, выходящих из вершины трехгранного угла и направленных по его рёбрам. Тогда скалярные квадраты этих векторов равны единице, а попарные скалярные произведения этих векторов равны $\cos \alpha$, $\cos \beta$ и $\cos \gamma$. Эти три вектора не компланарны и поэтому линейно независимы, следовательно, их определитель Грама строго положителен:

$$\Gamma(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}) = \begin{vmatrix} 1 & \cos \alpha & \cos \beta \\ \cos \alpha & 1 & \cos \gamma \\ \cos \beta & \cos \gamma & 1 \end{vmatrix} > 0.$$

Вычислив этот определитель, получаем:

 $\Gamma(a,b,c) = 1 + 2\cos\alpha\cos\beta\cos\gamma - \cos^2\alpha - \cos^2\beta - \cos^2\gamma > 0$, откуда немедленно следует требуемое неравенство. ■

Пример. 24. В тетраэдре ABCD известны длины рёбер, выходящих из одной вершины C и углы между ними: CA = 4, CB = 5, CD = 6, $\angle ACB = 60^{\circ}$, $\angle ACD = \arccos \frac{1}{3}$, $\angle BCD = 120^{\circ}$. Найти: (а) угол между прямыми BC и AD; (б) вектор p — ортогональную проекцию вектора \overline{CA} на плоскость BCD (вектор p разложить по векторам \overline{CB} и \overline{CD}).

Решение. Рассмотрим базис, состоящий из векторов $\overline{CA} = a$, $\overline{CB} = b$, $\overline{CD} = d$ (см. Рис. 17) и составим таблицу скалярных произведений эти векторов друг на друга: $a^2 = 16$, $b^2 = 25$, $d^2 = 36$, $(a \cdot b) = 4 \cdot 5 \cdot \cos 60^\circ = 10$, $(a \cdot d) = 4 \cdot 6 \cdot \frac{1}{3} = 8$, $(b \cdot d) = 5 \cdot 6 \cdot \cos 120^\circ = -15$.

(a) косинус угла β между прямыми CB и AD находится стандартным образом:

$$\cos \beta = \cos (CB \wedge AD) = \left| \cos \left(\overline{CB} \wedge \overline{AD} \right) \right| = \frac{\left| \left(\overline{CB} \cdot \overline{AD} \right) \right|}{\left| \overline{CB} \right| \cdot \left| \overline{AD} \right|}.$$

Вычисляем:

$$\left(\overline{CB} \bullet \overline{AD}\right) = (\boldsymbol{b} \bullet (\boldsymbol{d} - \boldsymbol{a})) = (\boldsymbol{b} \bullet \boldsymbol{d}) - (\boldsymbol{b} \bullet \boldsymbol{a}) = -15 - 10 = -25, \ \left|\overline{CB}\right| = |\boldsymbol{b}| = 5,$$

$$\left|\overline{AD}\right| = \sqrt{\overline{AD}^2} = \sqrt{(\boldsymbol{d} - \boldsymbol{a})^2} = \sqrt{\boldsymbol{d}^2 - 2(\boldsymbol{a} \bullet \boldsymbol{d}) + \boldsymbol{a}^2} = \sqrt{36 - 16 + 16} = 6,$$
 поэтому $\cos \beta = \frac{-25}{5 \cdot 6} = -\frac{5}{6}.$

(б) Ортогональная проекция p вектора $\overline{CA} = a$ на плоскость BCD имеет вид $p = \Pr_{BCD}^{\perp}(a) = \lambda \cdot \overline{CB} + \mu \cdot \overline{CD} = \lambda b + \mu d$, где коэффициенты λ и μ являются решениями системы линейных уравнений

$$\begin{cases} \mathbf{b}^2 \lambda + (\mathbf{b} \cdot \mathbf{d}) \mu = (\mathbf{b} \cdot \mathbf{a}), \\ (\mathbf{d} \cdot \mathbf{b}) \lambda + \mathbf{d}^2 \mu = (\mathbf{d} \cdot \mathbf{a}), \end{cases} \Leftrightarrow \begin{cases} 25 \lambda - 15 \mu = 10, \\ -15 \lambda + 36 \mu = 8, \end{cases}$$

Решив эту систему, находим: $\lambda = \frac{32}{45}$, $\mu = \frac{14}{27}$, следовательно,

$$p = \Pr_{BCD}^{\perp} \left(\overline{CA} \right) = \frac{32}{45} \cdot \overline{CB} + \frac{14}{27} \cdot \overline{CD}$$
.

Задачи для самостоятельного решения к главе 2.

- 2. 1. Справедливы ли для векторной алгебры следующие формулы:
 - (a) $(a + b)^3 = a^3 + 3(a^2 \cdot b) + 3(a \cdot b^2) + b^3$;
 - (6) $a^3 b^3 = ((a b) \cdot (a^2 + (a \cdot b) + b^2))$?
- 2. 2. Доказать следующие свойства скалярного произведения:

(a)
$$(a+b)^2 + (a-b)^2 = 2(a^2+b^2)$$
; (6) $(a \cdot b) = \frac{1}{4}((a+b)^2 - (a-b)^2)$;

(B)
$$(a+c)^2 + (b-c)^2 = (a-b+c)^2 + c^2 + 2(a \cdot b)$$
.

$$(\Gamma) (a+b)^2 + (a+c)^2 + (b+c)^2 = a^2 + b^2 + c^2 + (a+b+c)^2.$$

- **2. 3.** Вывести формулу для ортогональной проекции вектора $a\{x; y; z\}$ на ось с направляющими углами α , β и γ .
- **2. 4.** Найти координаты вектора m длины 3, образующего с координатными осями одинаковые: (а) острые углы; (б) тупые углы.
- **2.5.** Найти координаты вектора p длины 6, если он образует с осью OZ угол $\arcsin \frac{2}{3}$, а с осью OX в два раза меньший угол, чем с осью OY.
- **2. 6.** Найти направляющие углы луча, выходящего из начала координат, если известно, что он образует с осью OZ угол в два раза меньший, чем с осью OY, и в три раза меньший, чем с осью OX.
- **2.7.** Первый луч имеет направляющие углы $\alpha_1, \beta_1, \gamma_1$, а второй $\alpha_2, \beta_2, \gamma_2$. Найти косинус угла φ между этими лучами.
- **2. 8.** Введем для земного шара прямоугольную систему координат, поместив её начало O в центр Земли, плоскость OXY совместим с экваториальной плоскостью, положительное направление оси OX проведем через гринвичский меридиан, оси OY через Индийский океан, оси OZ через Северный полюс. Каждая точка земной поверхности имеет географические координаты $(\theta; \varphi)$, где θ широта $(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2})$, положительные значения соответствуют северной широте, отрицательные южной), φ долгота $(-\pi < \varphi \le \pi)$, положительные значения соответствуют восточной долготе, отрицательные западной). (а) Выразить декартовы координаты точки M на земном шаре через её географические координаты $(\theta; \varphi)$ и радиус Земли R; (б) найти направляющие косинусы луча OM, где O центр Земли, а M точка на земном шаре с географическими координатами $(\theta; \varphi)$.
- **2. 9.** Выразить формулой кратчайшее расстояние по земной поверхности между двумя точками M_1 и M_2 на земном шаре радиуса R с географическими координатами $M_1(\theta_1, \varphi_1)$ и $M_2(\theta_2; \varphi_2)$ (неровностями рельефа пренебречь).

- **2. 10.** Даны векторы a{3;-1;5}, b{2;5;-2} и c{5;3;4}. Найти ортогональную проекцию вектора p = a + 2b на направление вектора q = b c.
- **2.11.** Даны векторы a, b и c, причем, |a| = 3, |b| = 5, |c| = 8, $(a \wedge b) = \arccos \frac{1}{3}$, $(a \wedge c) = 60^\circ$, $(b \wedge c) = 120^\circ$. Найти ортогональную проекцию вектора p = a + 2b на направление вектора q = b c.
- **2. 12.** В треугольнике ABC известны координаты его вершин: A(1;4;3), B(3;1;4), C(2;3;5). Найти: (а) косинус угла при вершине C;
 - (б) ортогональную проекцию p вектора $m{3;-2;2}$ на плоскость ABC.
- **2.13.** С помощью скалярного произведения доказать следующие теоремы планиметрии:
 - (а) свойство диагоналей прямоугольника;
 - (б) свойство диагоналей ромба;
 - (в) теорему о пересечении трех высот треугольника (или их продолжений)
 - (г) если α , β , γ внутренние углы плоского треугольника, то $\cos 2\alpha + \cos 2\beta + \cos 2\gamma \ge -\frac{3}{2}$. В каком случае достигается точное равенство?
- **2. 14.** Пусть H ортоцентр (точка пересечения высот или их продолжений) треугольника, вписанного в окружность с центром в точке O. Доказать, что $\overline{OH} = \overline{OA} + \overline{OB} + \overline{OC}$.
- **2. 15.** Около треугольника ABC описана окружность радиуса R, H точка пересечения его высот. Доказать, что $AH^2 + BC^2 = 4R^2$.
- **2. 16.** Пусть H точка пересечения высот треугольника ABC. Доказать, что $(\overline{HA} \bullet \overline{HB}) = (\overline{HB} \bullet \overline{HC}) = (\overline{HC} \bullet \overline{HA})$.
- **2. 17.** Доказать, что точка M пересечения медиан треугольника лежит на отрезке, соединяющим центр описанной окружности O и ортоцентр H, и делит этот отрезок в отношении OM: MH = 1:2.
- **2. 18.** Пусть O центр окружности радиуса R, описанной около треугольника, стороны которого равны a, b, c, H его ортоцентр, M точка пересечения медиан. Доказать, что:

(1°)
$$OH^2 + a^2 + b^2 + c^2 = 9R^2$$
; (2°) $a^2 + b^2 + c^2 = 9(R^2 - OM^2)$.

2. 19. Пусть M – точка пересечения медиан треугольника ABC, O – произвольная точка. Доказать формулу Лейбница:

$$OM^2 = \frac{1}{3} (OA^2 + OB^2 + OC^2) - \frac{1}{9} (AB^2 + BC^2 + AC^2).$$

2. 20. Пусть M — середина отрезка, соединяющего середины рёбер AB и CD тетраэдра ABCD, O — произвольная точка. Доказать, что сумма квадратов всех рёбер тетраэдра равна

$$4 \cdot (OA^2 + OB^2 + OC^2 + OD^2) - 16 \cdot OM^2$$
.

- **2. 21.** Найти вектор r, направленный по биссектрисе угла между векторами p(4;-7;-4) и q(-1;2;2), если $|r|=4\sqrt{6}$.
- **2. 22.** При каком значении λ векторы $a\{1; 2; \lambda\}$ и $b\{-1; 1; 4\}$: (a) ортогональны; (б) образуют угол 45°?
- **2. 23.** Даны векторы a и b такие, что |a|=4, |b|=3, $(a \wedge b)=60^\circ$. При каком значении λ векторы $p=\lambda a+b$ и q=a-2b: (а) ортогональны; (б) образуют угол $\arccos\left(-\frac{1}{2\sqrt{7}}\right)$?
- **2. 24.** Найти угол между векторами a и b, если |a| = 2, |b| = 1 и $(2a b)^2 + (a + 3b)^2 = 28$.
- **2. 25.** Доказать, что сумма квадратов медиан любого треугольника составляет 3/4 от суммы квадратов его сторон.
- **2. 26.** Даны два вектора p и q, причем длина вектора p в k раз больше длины вектора q, |p+q|=m и |p-q|=n. Найти косинус угла между векторами p и q.
- **2. 27.** Найти |5a + 3b|, если |a| = 2, |b| = 3, и |3a b| = 5.
- **2. 28.** Найти угол при вершине A треугольника ABC, если сторона AB в полтора больше стороны AC, а медианы, проведенные к этим сторонам, перпендикулярны.
- **2. 29.** Найти косинус угла, образованный медианами, проведенными из вершин острых углов прямоугольного треугольника, катеты которого относятся как 2:3.
- **2. 30.** Каким условиям должны удовлетворять векторы a и b, чтобы имели место соотношения: (a) |a-b|=|a+b|; (б) |a-b|<|a+b|; (в) |a-b|>|a+b|?
- **2.31.** При каком взаимном расположении ненулевых векторов a, b и c справедливо равенство $(a \cdot b)c = a(b \cdot c)$?
- **2. 32.** Центр окружности на плоскости совпадает с точкой пересечения медиан треугольника, лежащего в этой плоскости. Доказать, что сумма квадратов расстояний от произвольной точки окружности до всех вершин треугольника постоянна.
- **2. 33.** Центр окружности на плоскости совпадает с точкой пересечения диагоналей параллелограмма, лежащего в этой плоскости. Доказать, что сумма квадратов расстояний от произвольной точки окружности до всех вершин параллелограмма постоянна.
- **2. 34.** На плоскости даны треугольник ABC и точка O. Чем для треугольника ABC является точка O, если:
 - (a) $\left| \overline{OA} \right| = \left| \overline{OB} \right| = \left| \overline{OC} \right|$;
 - (6) $\overline{OA} + \overline{OB} + \overline{OC} = \mathbf{0}$;

- (B) $\overline{OA} \cdot \overline{OB} = \overline{OB} \cdot \overline{OC} = \overline{OC} \cdot \overline{OA}$;
- (Γ) $|AB| \cdot \overline{OC} + |BC| \cdot \overline{OA} + |AC| \cdot \overline{OB} = 0$?
- **2. 35.** В параллелограмме ABCD известны стороны AB = 3, BC = 5. На диагоналях AC и BD выбраны точки E и F так, что AE : EC = 3:1, BF : FD = 2:1, а прямые AF и DE перпендикулярны. Найти косинус угла BAD.
- **2. 36.** В треугольнике ABC известны стороны AB = 9, AC = 12. Точка K середина медианы BD, а точка M делит медиану CE в отношении CM: ME = 1: 2. Расстояние между точками M и K равно 4. Найти угол BAC.
- **2. 37.** На плоскости даны векторы a(3; 1) и b(-2; 5). Найти на плоскости вектор x, удовлетворяющий условиям: (a) $(a \cdot x) = 9$, |x| = 5; (б) $(a \cdot x) = 5$, $(b \cdot x) = 8$. (в) $a \perp x$, $(b \cdot x) = 34$; $(r) \cdot b \perp x$, |x| = 4.
- **2. 38.** На плоскости даны неколлинеарные векторы a и b, а также числа p и q. Найти в этой плоскости вектор x такой, что $(a \cdot x) = p$, $(b \cdot x) = q$ (разложить вектор x по векторам a и b).
- **2. 39.** Три ненулевых вектора образуют между собой углы, косинусы которых равны x, y и z. При каком соотношении между x, y и z эти три вектора компланарны?
- **2. 40.** Доказать что для любых трех ненулевых векторов плоскости, a, b и c справедливо неравенство:

$$|a+b|+|a+c|+|b+c| \le |a|+|b|+|c|+|a+b+c|$$
.

2. 41. Доказать, что для любых ненулевых векторов p, q и r пространства имеет место неравенство

$$|p+q|+|p+r|+|q+r| \le |p|+|q|+|r|+|p+q+r|$$
.

- **2. 42.** С помощью скалярного произведения доказать следующие теоремы стереометрии:
 - (а) квадрат любой диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
 - (б) сумма квадратов всех четырех диагоналей параллелепипеда равна сумме квадратов всех его 12 рёбер.
 - (в) если в тетраэдре $ABCD^\top AB \perp CD$ и $AC \perp BD$, то и $AD \perp BC$.
 - (г) сумма квадратов всех шести рёбер произвольного тетраэдра, вписанного в сферу радиуса R, не превосходит $16R^2$. В каком случае достигается точное равенство?
 - (д) сумма косинусов двугранных углов при всех шести рёбрах тетраэдра не превосходит 2. В каком случае достигается точное равенство?
 - (е) два отрезка AB и CD (на плоскости или в пространстве) перпендикулярны тогда и только тогда, когда

$$AC^2 + BD^2 = AD^2 + BC^2.$$

- (ж) центр описанной сферы тетраэдра совпадает с его центроидом тогда и только тогда, когда его противоположные рёбра попарно равны;
- (3) длина медианы тетраэдра, выходящей из некоторой его вершины,

меньше одной трети суммы трех его рёбер, выходящих из этой же вершины;

- (и) отрезок, соединяющий середины двух противоположных рёбер тетраэдра меньше одной четвертой суммы остальных его четырех рёбер.
- **2. 43.** В тетраэдре ABCD известно, что $AB \perp CD$, $AC \perp BD$. Доказать, что: (а) все четыре высоты тетраэдра (или их продолжения) пересекаются в одной точке (ортоцентре H); (б) точка M пересечения медиан тетраэдра является серединой отрезка, соединяющего ортоцентр H и центр описанной сферы O.
- **2. 44.** Доказать, что для любых четырех точек в пространстве A, B, C и D выполняется равенство $\left(\overline{AB} \bullet \overline{CD}\right) + \left(\overline{AC} \bullet \overline{DB}\right) + \left(\overline{AD} \bullet \overline{BC}\right) = 0$.
- **2. 45.** Центр сферы совпадает с точкой пересечения диагоналей параллелепипеда. Доказать, что сумма квадратов расстояний от произвольной точки сферы до всех вершин параллелепипеда постоянна.
- **2. 46.** Центр сферы совпадает с точкой пересечения медиан тетраэдра. Доказать, что сумма квадратов расстояний от произвольной точки сферы до всех вершин тетраэдра постоянна.
- 2. 47. Записать и вычислить определитель Грама совокупности векторов:
 - (a) \boldsymbol{a} и \boldsymbol{b} , где $|\boldsymbol{a}| = 3$, $|\boldsymbol{b}| = 4$, $(\boldsymbol{a} \wedge \boldsymbol{b}) = 60^{\circ}$;
 - (6) $a{2;-5}, b{3;7};$
 - (B) $a{3;-1;4}, b{2;3;-1}$ и $c{2;5;3}$.
 - (г) \pmb{a} , \pmb{b} и \pmb{c} , где $|\pmb{a}|=3$, $|\pmb{b}|=4$, $|\pmb{c}|=5$, $(\pmb{a} \wedge \pmb{b})=60^\circ$, $(\pmb{a} \wedge \pmb{c})=90^\circ$, $(\pmb{b} \wedge \pmb{c})=120^\circ$.
- **2. 48.** Чему равен определитель Грама произвольных *n* геометрических векторов 10 при $n \ge 4$?
- **2. 49.** Как изменится определитель Грама совокупности векторов $a_1, a_2, ..., a_n$, если:
 - (а) переставить местами два вектора;
 - (б) один из векторов умножить на число λ ;
 - (в) один из векторов заменить суммой этого вектора с каким-либо другим вектором этой совокупности;
 - (г) один из векторов заменить суммой этого вектора и линейной комбинации других векторов этой совокупности.
- **2. 50.** Пусть \boldsymbol{a} и \boldsymbol{b} некоторые векторы, λ_1 , λ_2 , λ_3 , μ_1 , μ_2 , μ_3 произвольные числа, $\boldsymbol{p}_1 = \lambda_1 \boldsymbol{a} + \mu_1 \boldsymbol{b}$, $\boldsymbol{p}_2 = \lambda_2 \boldsymbol{a} + \mu_2 \boldsymbol{b}$, $\boldsymbol{p}_3 = \lambda_3 \boldsymbol{a} + \mu_3 \boldsymbol{b}$. Вычислить определитель Грама векторов \boldsymbol{p}_1 , \boldsymbol{p}_2 , \boldsymbol{p}_3 .
- **2.51.** В тетраэдре ABCD известны длины рёбер, выходящие из одной вершины и углы между ними: AB = 2, BC = 3, BD = 4, $\angle ABC = 60^{\circ}$,

¹⁰ В этом пособии все рассматриваемые векторы геометрические. Но в курсе линейной алгебры, которую вы будете изучать в следующем семестре, определитель Грама можно составить не только из геометрических векторов, но и из любых «векторов» (т.е. элементов) Евклидова пространства, и тогда ответ в этой задаче будет другим.

- $\angle ABD = \arccos \frac{1}{4}$, $\angle CBD = \arccos \left(-\frac{1}{3}\right)$. Точки M и N расположены на рёбрах BC и AD соответственно и делят их в отношении BM: MC = 2:1, AN: ND = 1:3. Найти: (а) длину отрезка MN; (б) косинус угла между прямыми AC и BD.
- **2.52.** Векторы p, q и r удовлетворяют условию p+q+r=0, причем $|p|=\alpha$, $|q|=\beta$, $|r|=\gamma$. Вычислить $(p \cdot q) + (q \cdot r) + (r \cdot p)$.
- **2. 53.** В пространстве даны некомпланарные единичные векторы a, b и c, образующие между собой углы $(b \land c) = \alpha$, $(a \land c) = \beta$, $(a \land b) = \gamma$, а также числа m, n и k. Вектор d таков, что $(a \cdot d) = m$, $(b \cdot d) = n$, $(c \cdot d) = k$. Разложить вектор d по векторам a, b и c.
- **2. 54.** В тетраэдре ABCD даны длины всех его ребер: BC = a, AC = b, AB = c, AD = d, BD = e, CD = f. Найти косинус угла φ между векторами \overline{AB} и \overline{CD} .
- **2. 55.** В тетраэдре ABCD ребра AC и BD перпендикулярны, AB = 5, AD = 6, BC = 7. Найти длину ребра CD.
- **2. 56.** В параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер $AB=3,\ AD=5,\ AA_1=2$, диагоналей боковых граней $AC=7,\ AB_1=4,\ AD_1=6$. Найти длину диагонали AC_1 .
- **2.57.** В параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины диагоналей граней $AB_1 = 9$, $A_1D = 5$, диагонали $B_1D = 7$ и ребра $AA_1 = 3$. Найти скалярное произведение $(\overline{AB} \bullet \overline{AD})$.
- **2. 58.** Точки M и N середины рёбер AB и CD тетраэдра ABCD. Доказать, что $4MN^2 = AC^2 + BC^2 + BD^2 + AD^2 AB^2 CD^2$.
- **2.59.** Доказать, что во всяком тетраэдре (или четырехугольнике) ABCD выполняется неравенство:

 $AC^2 + BD^2 \le AB^2 + BC^2 + CD^2 + AD^2$. В каком случае достигается точное равенство?

2. 60. Дан параллелограмм ABCD. Его вершины A, B и C лежат на сфере радиуса R с центром O. Доказать, что

$$|OD|^2 = R^2 + |AB|^2 + |BC|^2 - |AC|^2$$
.

- **2. 61.** Дан трехгранный угол. Доказать, что (а) биссектрисы трех углов, смежных с его плоскими углами, лежат в одной плоскости; (б) если биссектрисы двух плоских углов угла перпендикулярны, то биссектриса третьего плоского угла перпендикулярна каждой из них.
- **2. 62.** Доказать, что если длины трех отрезков, соединяющих середины противоположных ребер тетраэдра, равны, то эти пары противоположных ребер тетраэдра перпендикулярны.
- **2. 63.** Доказать, что если общие перпендикуляры противоположных ребер тетраэдра проходят через середины этих ребер, то противоположные ребра попарно равны.

- **2. 64.** Из точки в пространстве выходят четыре луча. Углы, образованные каждыми двумя лучами, равны φ . Найти угол φ .
- **2. 65.** В тетраэдре *ABCD* плоские углы трехгранного угла с вершиной D- прямые, DH- высота тетраэдра. Разложить вектор \overline{DH} по векторам \overline{DA} , \overline{DB} и \overline{DC} , если известно, что |DA|=a, |DB|=b |DC|=c.
- **2. 66.** Из одной точки в пространстве выходят четыре луча, образующие между собой шесть углов. Доказать, что сумма косинусов этих углов не меньше (–2).
- **2.67.** Дан прямоугольник ABCD. Доказать, что сумма квадратов расстояний от любой точки до пространства до вершин A и C равна сумме квадратов ее расстояний до вершин B и D.
- **2. 68.** Около треугольника ABC описана окружность. Прямая, содержащая медиану CK треугольника, пересекает окружность вторично в точке D. Доказать, что $AC^2 + BC^2 = 2 \cdot CK \cdot CD$.
- **2. 69.** Тетраэдр ABCD вписан в сферу. Прямая, проходящая через вершину D и точку M точку пересечения медиан грани ABC пересекает сферу вторично в точке E. Доказать, что

$$AD^2 + BD^2 + CD^2 = 3 \cdot DM \cdot DE.$$

- **2.70.** К вершине куба приложены три силы, равные по величине 1, 2 и 3 и направленные по диагоналям граней куба, проходящим через эту вершину. Найти величину равнодействующей этих трех сил.
- **2.71.** Противоположные рёбра тетраэдра ABCD попарно равны: AB = CD = 5, AC = BD = 6, AD = BC = 7. К одной из вершин тетраэдра приложены три силы, направленные по рёбрам, выходящим из этой вершины, и равные по величине длинам этих рёбер. Найти величину равнодействующей этих трех сил.
- **2.72.** Противоположные рёбра тетраэдра попарно равны. Доказать, найдется прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$, такой, что данный тетраэдр есть тетраэдр AB_1CD_1 , образованный диагоналями граней параллелепипеда.
- **2.73.** Противоположные рёбра тетраэдра попарно перпендикулярны. Доказать, что найдется ромбоэдр (параллелепипед с равными рёбрами) $ABCDA_1B_1C_1D_1$, такой, что данный тетраэдр есть тетраэдр AB_1CD_1 , образованный диагоналями граней параллелепипеда.

3. Векторное и смешанное произведения векторов

3.1 Геометрическая ориентация упорядоченной тройки некомпланарных векторов. Пусть даны три некомпланарных вектора a, b и c. Говорят, что эти векторы образуют npasyo (nesyo) тройку, если, отложив их от общего начала: $a = \overline{OA}$, $b = \overline{OB}$, $c = \overline{OC}$, и наблюдая за их концами из этого начала, мы обходим их в указанном порядке $A \to B \to C \to A$ по часовой стрелке (соответственно против часовой стрелки).

Геометрическую ориентацию можно также объяснить с помощью винта. Для понимания надо представлять себе, что если вращать головку винта (шурупа, буравчика) со стороны наблюдателя по часовой стрелке с целью ввинтить его куда-либо, то винт (шуруп, буравчик) получит поступательное движение перпендикулярно плоскости вращения в сторону от наблюдателя.

Альтернативное определение. Упорядоченная тройка векторов a, b, c является *правой* (*певой*), если, вращая головку винта в плоскости первых двух векторов в направлении наименьшего угла от вектора a к вектору b, сам винт получит поступательное движение перпендикулярно этой плоскости, образующее острый (соответственно тупой) угол с третьим вектором c.

Из определения следует, что если упорядоченная тройка векторов (a,b,c) – правая, то тройка (b,c,a) – тоже правая, а тройка (b,a,c) – левая. Например, на рис. 18 в тетраэдре ABCD тройка векторов \overline{BA} , \overline{BD} , \overline{BC} (в указанном порядке!) – правая, а тройка \overline{DA} , \overline{DB} , \overline{DC} – левая.

- **3.2.** Векторным произведением двух векторов a и b (в указанном порядке) называется вектор c, обозначаемый (в разных книгах) $c = a \times b = [ab] = [a,b] = [a \times b]$ (в данном пособии принято последнее обозначение) и такой что:
- (a) c = 0, если векторы a и b коллинеарны;
- (б) если векторы a и b не коллинеарны, то вектор c перпендикулярен векторам a и b, его длина равна произведению длин векторов a и b на синус угла между ними: $|c| = |a| \cdot |b| \cdot \sin(a \wedge b)$, и векторы (a,b,c) образуют правую тройку. Последнее означает, что если вращать головку винта в плоскости векторов a и b, по направлению от вектора a к вектору b по наименьшему углу, то винт получит поступательное движение в направлении вектора c.

3.3. Механические приложения векторного произведения.

(а) **вращательное** движение. Напомним, что в механике угловая скорость — это вектор, длина которого равна величине угловой скорости, а направление совпадает с осью вращения. При вращении твердого тела с угловой скоростью ω вокруг оси, проходящей через точку отсчета O, произволь-

ная точка A этого тела будет иметь линейную скорость v, связанную с угловой скоростью соотношением: $v = [\omega \times \overline{OA}]$.

(б) **момент силы.** Если к точке A приложит силу f (которая есть вектор!), то векторный момент m этой силы относительно точки отсчета O равен

$$m = [\overline{OA} \times f].$$

- 3.4. Геометрические приложения.
- (а) **Площадь параллелограмма**, построенного на векторах a и b, равна модулю (т.е. длине) их векторного произведения: $S_{\text{параллелогр}} = |[a \times b]|;$
- (б) Площадь треугольника построенного на векторах a и b, равна половине длины их векторного произведения, в частности, площадь треугольника ABC равна $S_{\Delta ABC} = \frac{1}{2} \left| [\overline{AB} \times \overline{AC}] \right|$.
 - 3.5. Алгебраические свойства векторного произведения

(верные для любых векторов a, b и числа $\lambda \in \mathbb{R}$):

- (a) $[\mathbf{a} \times \mathbf{b}] = -[\mathbf{b} \times \mathbf{a}];$
- (61) $[\mathbf{a} \times (\mathbf{b} + \mathbf{c})] = [\mathbf{a} \times \mathbf{b}] + [\mathbf{a} \times \mathbf{c}];$
- (62) $[(a+b)\times c] = [a\times c] + [b\times c];$
- (B) $[\lambda a \times b] = [a \times \lambda b] = \lambda [a \times b];$
- (Γ) [$a \times a$] = 0.
- **3.6.** Если известны координаты векторов $a_1\{x_1; y_1; z_1\}$ и $a_2\{x_2; y_2; z_2\}$ в ортонормированном базисе $\{i; j; k\}$, то векторное произведение этих векторов вычисляется по формуле:

$$[\mathbf{a}_1 \times \mathbf{a}_2] = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \{ (y_1 z_2 - y_2 z_1); (z_1 x_2 - z_2 x_1); (x_1 y_2 - x_2 y_1) \}.$$

3.7. Формула двойного векторного произведения. Для любых трех векторов a, b и c справедлива формула

$$[a \times [b \times c]] = (a \cdot c)b - (a \cdot b)c.$$

Замечание. Эту формулу иногда записывают в виде $[a \times [b \times c]] = b(a \cdot c) - c(a \cdot b)$ и шутливо называют формулой « БАЦ – ЦАБ».

3.8. Векторное и скалярное произведения двух векторов связаны определителем Грама:

$$\Gamma(a,b) \equiv \begin{vmatrix} a^2 & (a \cdot b) \\ (a \cdot b) & b^2 \end{vmatrix} = [a \times b]^2.$$

3.9. Для любых трех векторов a, b и c справедливо равенство $(a \cdot [b \times c]) = ([a \times b] \cdot c)$.

Смешанным произведением трех векторов a, b и c (в указанном порядке) называется число, обозначаемое abc или (abc) и равное любому из вышеуказанных выражений, т.е.

$$(abc) = (a \cdot [b \times c]) = ([a \times b] \cdot c).$$

3.10. Алгебраические свойства смешанного произведения.

- (a) смешанное произведение не меняется при циклической перестановке векторов: (abc) = (bca) = (cab);
- (б) смешанное произведение меняет знак на противоположный при перестановке местами двух векторов: (abc) = -(bac) = -(cba) = -(acb);
- (в) смешанное произведение **линейно** по каждому из трех своих множителей, это значит, что для любых чисел $\lambda_1, \lambda_2 \in \mathbb{R}$ и векторов $a, a_1, a_2, b, b_1, b_2, c, c_1, c_2$:
 - $(1^{\circ}) ((\lambda_1 a_1 + \lambda_2 a_2)bc) = \lambda_1 (a_1 bc) + \lambda_2 (a_2 bc),$
 - $(2^{\circ}) (a(\lambda_1 b_1 + \lambda_2 b_2)c) = \lambda_1 \cdot (ab_1 c) + \lambda_2 \cdot (ab_2 c),$
 - (3°) $(ab(\lambda_1c_1 + \lambda_2c_2)) = \lambda_1(abc_1) + \lambda_2(abc_2);$
 - (г) (abc) = 0 тогда и только тогда, когда векторы a, b и c компланарны;
- (д) (abc) > 0 ((abc) < 0) тогда и только тогда, когда векторы a, b и c образуют правую (соответственно левую) тройку.

Замечание. Из свойства (г) следует, что смешанное произведение трех векторов, два из которых равны или пропорциональны, равно нулю, например: (abb) = (bab) = (aab) = 0.

3.11. Геометрическое приложение смешанного произведения:

(a) объем параллелепипеда, построенного на трех некомпланарных векторах a, b и c, равен абсолютной величине их смешанного произведения:

$$V_{\text{параллеленин}} = |(abc)|;$$

(б) объем тетраэдра, построенного на трех некомпланарных векторах, равен одной шестой абсолютной величины их смешанного произведения, в частности, объем тетраэдра ABCD равен:

$$V_{ABCD} = \frac{1}{6} \left| \left(\overline{AB} \, \overline{AC} \, \overline{AD} \right) \right|;$$

- (в) четыре точки A, B, C и D лежат в одной плоскости тогда и только тогда, когда $(\overline{AB}\,\overline{AC}\,\overline{AD})=0$.
- **3.12.** Если известны координаты векторов $a_1\{x_1; y_1; z_1\}$, $a_2\{x_2; y_2; z_2\}$ и $a_3\{x_3; y_3; z_3\}$ в ортонормированном базисе $\{i; j; k\}$, то их смешанное произведение вычисляется по формуле:

$$(abc) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

3.13. Смешанное и скалярное произведения трех векторов связаны опре-

делителем Грама:
$$\Gamma(a,b,c) \equiv \begin{vmatrix} a^2 & (a \cdot b) & (a \cdot c) \\ (b \cdot a) & b^2 & (b \cdot c) \\ (c \cdot a) & (c \cdot b) & c^2 \end{vmatrix} = (abc)^2.$$

3.14. Пусть в пространстве даны три точки A, B и C, не лежащие на одной прямой. Тогда расстояние от точки C до прямой AB вычисляется по формуле:

$$\rho(C, AB) = \frac{\left| [\overline{AB} \times \overline{AC}] \right|}{|AB|}$$

Обоснование. Рассмотрим параллелограмм *ABDC*, построенный на векторах *AB* и AC, его площадь равна произведению стороны AB на высоту h опущенной из точки C на прямую AB. (см. Рис. 19). Искомое расстояние как раз и равно высоте h:

$$\rho(C, AB) = h = \frac{S_{ABCD}}{AB} = \frac{\left| [\overline{AB} \times \overline{AC}] \right|}{\left| \overline{AB} \right|}.$$

3.15. Пусть в пространстве даны четыре точки A, B, C и D, не лежащие в одной плоскости. Тогда расстояние между скрещивающимися прямыми АВ и С вычисляется по формулам:

$$\rho(AB, CD) = \frac{\left| \left(\overline{AB} \overline{CD} \overline{AC} \right) \right|}{\left| \left[\overline{AB} \times \overline{CD} \right] \right|}; \tag{a}$$

$$\rho(AB, CD) = \frac{\left| \left(\overline{AB} \, \overline{CD} \, \overline{AC} \, \right) \right|}{\left| \left[\overline{AB} \times \overline{CD} \right] \right|}; \tag{a}$$

$$\rho(AB, CD) = \sqrt{\frac{\Gamma\left(\overline{AB}, \overline{CD}, \overline{AC} \right)}{\Gamma\left(\overline{AB}, \overline{CD} \right)}}. \tag{6}$$

Обоснование. Построим параллелепипед, вершинами которого являют-

ся точки A, B, C, D, E, F, G и H. Этот параллелепипед построен векторах на $a = \overline{AB} = \overline{FE} = \overline{CG} = \overline{DH}$, $\boldsymbol{b} = \overline{AF} = \overline{BE} = \overline{CD} = \overline{GH}$ c = AC = FD = BG = EH. (cm. Рис. 20). Как известно из курса стереометрии, расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной прямой до плоскости, проходящей через другую

прямую параллельно первой прямой. В нашем случае искомое расстояние равно расстоянию от любой точки прямой CD (например, от точки C) до плоскости, проходящей через прямую AB параллельно CD, т.е. плоскости ABEF. Это расстояние равно высоте h параллелепипеда ABEFCGHD, опущенной на плоскость грани АВЕГ, которая, в свою очередь, равна отношению объема этого параллелепипеда, (равного абсолютной величине смешанного произведения векторов, на которых он построен: a = AB, b = CD и $c = \overline{AC}$) к площади параллелограмма ABEF (равного модулю векторного произведения векторов a = AB и b = CD). Следовательно, искомое расстояние равно

$$\rho(AB,CD) = h = \frac{V_{ABCDEFGH}}{S_{ABEF}} = \frac{|(\boldsymbol{abc}\,)|}{|[\boldsymbol{a} \times \boldsymbol{b}\,]|} = \frac{\left|\left(\overline{AB}\,\overline{CD}\,\overline{AC}\,\right)\right|}{\left|[\overline{AB} \times \overline{CD}\,]\right|}.$$

Применяя формулы (3.8) и (3.13), выражающие модуль векторного и смешанного произведений через определитель Грама, получим и вторую формулу 3.15(б).

Замечание. Первую формулу 3.15(а) целесообразно применять, когда векторное и смешанное произведение можно вычислить непосредственно, например, если известны координаты векторов a = AB, b = CD и c = AC в ортонормированном базисе. Вторую формулу 3.15(б) желательно применять тогда, когда векторное и смешанное произведения непосредственно найти затруднительно, например, если известны только длины векторов $a = \overline{AB}$, $\boldsymbol{b} = \overline{CD}$, $\boldsymbol{c} = \overline{AC}$ и углы между ними.

3.16. Пусть в пространстве даны четыре точки A, B, C и D, не лежащие в одной плоскости. Тогда расстояние от точки D до плоскости, проходящей через три другие точки A, B и C, вычисляется по формулам:

$$\rho(D, ABC) = \frac{\left| \left(\overline{AB} \overline{AC} \overline{AD} \right) \right|}{\left| \left[\overline{AB} \times \overline{AC} \right] \right|}; \tag{a}$$

$$\rho(D, ABC) = \frac{\left| \left(\overline{AB} \overline{AC} \overline{AD} \right) \right|}{\left| [\overline{AB} \times \overline{AC}] \right|}; \tag{a}$$

$$\rho(D, ABC) = \sqrt{\frac{\Gamma(\overline{AB}, \overline{AC}, \overline{AD})}{\Gamma(\overline{AB}, \overline{AC})}}. \tag{6}$$

Обоснование. Искомое расстояние равно высоте h_D тетраэдра *ABCD*, опущенной из вершины D на плоскость ABC (см. Рис. 21). Поскольку объем пирамиды, в частности, тетраэдра, равен одной трети произведения площади основания на высоту, то высота h_D , в свою очередь, равна $h_D = \frac{3V_{ABCD}}{S_{ABC}}$.

Подставляя сюда выражения для объема тетраэдра и площади треугольника через смешанное и векторное произведения (3.11) и (3.4), получим первую формулу (3.16(а)):

$$\rho(D, ABC) = h_D = \frac{3V_{ABCD}}{S_{ABC}} = \frac{3 \cdot \frac{1}{6} \left| \left(\overline{AB} \, \overline{AC} \, \overline{AD} \right) \right|}{\frac{1}{2} \left| \left[\overline{AB} \times \overline{AC} \right] \right|} = \frac{\left| \left(\overline{AB} \, \overline{AC} \, \overline{AD} \right) \right|}{\left| \left[\overline{AB} \times \overline{AC} \right] \right|}.$$

Вторая формула получается, если подставить выражения связи векторного и смешанного произведений с определителем Грама.

Замечание. Если
$$a = \overline{AB}$$
, $b = \overline{CD}$ и $c = \overline{AC}$, то $\overline{AD} = \overline{AC} + \overline{CD} = c + b$, и тогда $(\overline{AB} \, \overline{AC} \, \overline{AD}) = (ac(c+b)) = = (acc) + (acb) = 0 - (abc) = = -(\overline{AB} \, \overline{CD} \, \overline{AC})$,

но абсолютные величины этих смешанных произведений равны: $|(\overline{AB}, \overline{AC}, \overline{AC})| = |(\overline{AB}, \overline{CD}, \overline{AC})|$

$$\left|\left(\overline{AB}\,\overline{AC}\,\overline{AD}\,\right)\right| = \left|\left(\overline{AB}\,\overline{CD}\,\overline{AC}\,\right)\right|.$$

Пример 25. В пространстве даны три точки A(-2;2;3), B(2;-1;5) и C(-1;4;1). Найти координаты единичного вектора, перпендикулярного плоскости ABC.

Решение. Вектор $n_{ABC} = [\overline{AB} \times \overline{AC}]$ перпендикулярен векторам \overline{AB} и \overline{AC} , а значит, и плоскости ABC. Находим: $\overline{AB}\{4; -3; 2\}$, $\overline{AC}\{1; 2; -2\}$,

$$n_{ABC} = [\overline{AB} \times \overline{AC}] = \begin{vmatrix} i & j & k \\ 4 & -3 & 2 \\ 1 & 2 & -2 \end{vmatrix} = 2i + 10j + 11k.$$

Однако этот вектор не единичный: $|\mathbf{n}| = \sqrt{4+100+121} = 15$. Нормируем его, разделив на его длину. Искомых векторов два, они противоположны друг другу: $\mathbf{n}_0 = \pm \frac{1}{|\mathbf{n}|} \cdot \mathbf{n} = \pm \frac{1}{15} \{2; 10; 11\} = \pm \{\frac{2}{15}; \frac{2}{3}; \frac{11}{15}\}$.

Ответ:
$$n_{01}\left\{\frac{2}{15}; \frac{2}{3}; \frac{11}{15}\right\}$$
 и $n_{02}\left\{-\frac{2}{15}; -\frac{2}{3}; -\frac{11}{15}\right\}$.

Пример 26. Про векторы p и q известно, что |p|=5, |q|=4, $(p \wedge q)=150^\circ$. Найти площадь треугольника, построенного на векторах a=3p+2q и b=4p-7q.

Решение. Площадь искомого треугольника равна половине модуля векторного произведения векторов a и b: $S_{\Delta} = \frac{1}{2}|[a \times b]|$. Сначала вычислим векторное произведение векторов a и b:

$$[a \times b] = [(3p + 2q) \times (4p - 7q)] =$$

$$= 12[p \times p] + 8[q \times p] - 21[p \times q] - 14[q \times q] =$$

$$= 0 - 8[p \times q] - 21[p \times q] - 0 = -29[p \times q].$$

Следовательно,

$$S_{\Delta} = \frac{1}{2} |[\boldsymbol{a} \times \boldsymbol{b}]| = \frac{1}{2} |-29[\boldsymbol{p} \times \boldsymbol{q}]| = \frac{1}{2} \cdot 29 |[\boldsymbol{p} \times \boldsymbol{q}]| = \frac{1}{2} \cdot 29 |\boldsymbol{p}| \cdot |\boldsymbol{q}| \cdot \sin(\boldsymbol{p} \wedge \boldsymbol{q}) = \frac{1}{2} \cdot 29 \cdot 5 \cdot 4 \cdot \sin 150^{\circ} = 290 \cdot \frac{1}{2} = 145. \blacksquare$$

Пример 27. Даны три вектора $a\{-3; 2; 4\}$, $b\{1; 3; -2\}$ и $c\{5; 4; -1\}$. Найти повторное векторное произведение $p = [a \times [b \times c]]$ двумя способами: (а) непосредственно; (б) по формуле «БАЦ-ЦАБ».

Решение. (а) сначала найдем

$$d = [b \times c] = \begin{vmatrix} i & j & k \\ 1 & 3 & -2 \\ 5 & 4 & -1 \end{vmatrix} = 5i - 9j - 11k \Rightarrow d\{5; -9; -11\};$$

затем вычислим
$$p = [a \times [b \times c]] = [a \times d] = \begin{vmatrix} i & j & k \\ -3 & 2 & 4 \\ 5 & -9 & -11 \end{vmatrix} = 14i - 13j + 17k.$$

(б) Вычислим скалярные произведения:
$$(a \cdot c) = -15 + 8 - 4 = -11$$
, $(a \cdot b) = -3 + 6 - 8 = -5$. Поэтому $p = [a \times [b \times c]] = (a \cdot c)b - (a \cdot b)c = -11b + 5c = = -11\{1; 3; -2\} + 5\{5; 4; -1\} = \{14; -13; 17\}$.

Ответ: $p{14;-13;17}$.

Пример 28. В трапеции ABCD, у которой основание AD втрое больше основания BC, известны координаты вершин A(2;4;1), B(-1;3;5) и точки пересечения диагоналей E(-4;7;10). Найти координаты вершин C, D и площадь трапеции.

Решение. Как известно из курса планиметрии, диагонали AC и BD трапеции ABCD с основаниями BC и AD делят её на четыре треугольника (см. рис. 22), из которых два равновелики (имеют одинаковую площадь): $S_{\Delta ABE} = S_{\Delta CDE}$, а другие два по-

добны: $\Delta ADE \sim \Delta CBE$, поэтому

$$\frac{AE}{EC} = \frac{DE}{EB} = \frac{AD}{BC} = 3$$
. Следовательно, точка E делит отрезок AC в отношении

$$AE:EC=3:1$$
, поэтому, $x_E=\frac{1}{4}(x_A+3x_C)$, откуда

$$x_C = \frac{1}{3}(4x_E - x_A) = \frac{1}{3}(4 \cdot (-4) - 2) = -6$$
. Аналогично,

$$y_C = \frac{1}{3}(4y_E - y_A) = \frac{1}{3}(4 \cdot 7 - 4) = 8$$
 и $z_C = \frac{1}{3}(4z_E - z_A) = \frac{1}{3}(4 \cdot 10 - 1) = 13$, следовательно, точка C имеет координаты $C(-6; 8; 13)$.

Далее, BE:ED=1:3, следовательно, $x_E=\frac{1}{4}(3x_B+x_D)$, поэтому $x_D=4x_E-3x_B=4\cdot(-4)-3\cdot(-1)=-13$. Аналогично, $y_D=4y_E-3y_B=4\cdot7-3\cdot3=19$, $z_D=4z_E-3z_B=4\cdot10-3\cdot5=25$, и точка D имеет координаты D(-13;19;25).

{Площадь трапеции равна произведению полусуммы её оснований на высоту:

$$S_{ABCD} = \frac{1}{2}(AD + BC) \cdot h$$

Сначала найдём основания:

$$BC = |BC| = \sqrt{(x_B - x_E)^2 + (y_B - y_E)^2 + (z_B - z_E)^2} = \sqrt{25 + 25 + 64} = \sqrt{114},$$

$$AD = |AD| = \sqrt{225 + 225 + 576} = \sqrt{1026} = 3\sqrt{114}.$$

Высота h трапеции ABCD равна расстоянию от точки B до прямой AD, и, по формуле (3.14), равна $h=\rho(B,AD)=\frac{|[\overline{AB}\times\overline{AD}\,]|}{|\overline{AD}|}$. Находим:

$$\overline{AB}\{-3;-1;4\}, \overline{AD}\{-15;15;24\};$$

$$[\overline{AB} \times \overline{AD}] = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & -1 & 4 \\ -15 & 15 & 24 \end{vmatrix} = -84\mathbf{i} + 12\mathbf{j} - 60\mathbf{k} = 12\{-7; 1; -5\};$$

$$|[\overline{AB} \times \overline{AD}]| = 12\sqrt{49 + 1 + 25} = 60\sqrt{3}, |\overline{AD}| = 3\sqrt{114}.$$

Следовательно, $h = \frac{60\sqrt{3}}{3\sqrt{114}} = 20\sqrt{\frac{3}{114}}$, и площадь трапеции равна

$$S_{ABCD} = \frac{1}{2}(AD + BC) \cdot h = \frac{1}{2}(\sqrt{114} + 3\sqrt{114}) \cdot 20\sqrt{\frac{3}{114}} = 40\sqrt{3}.$$

Замечание. В данной задаче площадь трапеции можно было бы найти и не находя координат вершин C и D. А именно, вместо части вышеприведенного решения, заключенной в красные фигурные скобки, можно предложить другое решение:

Треугольники ABE и BCE имеют общую высоту (перпендикуляр из точки B на прямую AC), поэтому их площади относятся как $S_{ABE}: S_{\Delta BCE} = AE: EC = 3:1$, аналогично, $S_{\Delta ABE}: S_{\Delta DAE} = BE: ED = 1:3$, и $S_{\Delta BCE}: S_{\Delta CDE} = BE: ED = 1:3$. Обозначим площадь треугольника $S_{\Delta ABE} = S_0$, тогда $S_{\Delta BCE} = \frac{1}{3}S_0$, $S_{\Delta CDE} = S_0$, $S_{\Delta ADE} = 3S_0$ (см. Рис. 20). Площадь всей трапеции равна сумме площадей этих четырех треугольников: $S_{ABCD} = S_0 + \frac{1}{3}S_0 + S_0 + 3S_0 = \frac{16}{3}S_0$. Находим: $\overline{AB}\{-3; -1; 4\}$, $\overline{AE}\{-6; 3; 9\}$;

$$\begin{bmatrix} \overline{AB} \times \overline{AE} \end{bmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & -1 & 4 \\ -6 & 3 & 9 \end{vmatrix} = -21\mathbf{i} + 3\mathbf{j} - 15\mathbf{k};$$

$$\begin{split} |[\overline{AB} \times \overline{AE}]| &= 3\sqrt{49 + 1 + 25} = 15\sqrt{3} \Rightarrow S_0 = \frac{1}{2} |[\overline{AB} \times \overline{AE}]| = \frac{15}{2} \sqrt{3} \Rightarrow \\ S_{ABCD} &= \frac{16}{3} S_0 = \frac{16}{3} \cdot \frac{15}{2} \cdot \sqrt{3} = 40\sqrt{3} \,. \end{split}$$

Ответ:
$$C(-6; 8; 13)$$
, $D(-13; 19; 25)$, $S_{ABCD} = 40\sqrt{3}$.

Пример 29. В ромбе ABCD известны координаты вершин B(2;3;5) и C(9;-1;8), вершина A лежит в плоскости XOZ, а вершина D – в плоскости XOY. Найти координаты вершин A и D и площадь ромба.

Решение. Найдем координаты вектора $\overline{AD} = \overline{BC}\{7; -4; 3\}$. Пусть точка A имеет координаты A(x;0;z). Тогда точка D имеет координаты D(x+7; -4;z+3). Значит, z+3=0, поскольку точка D лежит в плоскости XOY, отсюда находим z=-3. Далее $AB^2=BC^2$, поэтому $(x-2)^2+(0-3)^2+(z-5)^2=49+16+9=74\Rightarrow (x-2)^2=1\Rightarrow x=1$ или x=3. В первом случае $A(1;0;-3),D(8;-4;0), [\overline{AB}\times\overline{AD}]=\begin{bmatrix} i & j & k \\ 1 & 3 & 8 \\ 7 & -4 & 3 \end{bmatrix}=41i+53j-25k$, площадь ромба равна

$$S_{ABCD} = |[\overline{AB} \times \overline{AD}]| = \sqrt{41^2 + 53^2 + 25^2} = \sqrt{5115}$$
. Во втором случае $A(3;0;-3), D(10;-4;0), \qquad [\overline{AB} \times \overline{AD}] = \begin{vmatrix} \pmb{i} & \pmb{j} & \pmb{k} \\ -1 & 3 & 8 \\ 7 & -4 & 3 \end{vmatrix} = 41\pmb{i} + 59\pmb{j} - 17\pmb{k}$,

$$S_{ABCD} = \sqrt{41^2 + 59^2 + 17^2} = \sqrt{5451}$$
.

Ответ:
$$A_1(1;0;-3), D_1(8;-4;0), S_1 = \sqrt{5115};$$
 или $A_2(3;0;-3), D_2(10;-4;0), S_2 = \sqrt{5451}$.

Пример 30. Для трех векторов a, b и c известно их смешанное произведение: $(abc) = \lambda$. Вычислить смешанное произведение (pqr), где p = 2a + 5b, q = 3a - c, r = b + 4c.

Решение. Вычислим это смешанное произведение, применяя свойства (3.10):

$$(pqr) = ((2a+5b)(3a-c)(b+4c)) =$$

$$= 2(a(3a-c)(b+4c)) + 5(b(3a-c)(b+4c)) =$$

$$= 2 \cdot 3(aa(b+4c)) - 2(ac(b+4c)) + 5 \cdot 3(ba(b+4c)) - 5(bc(b+4c)) =$$

$$= 0 - 2(acb) - 8(acc) + 15(bab) + 15 \cdot 4(bac) - 5(bcb) - 20(bcc) =$$

$$= 2(abc) + 0 + 0 - 60(abc) - 0 - 0 = -58(abc) = -58\lambda.$$

Ответ: $(pqr) = -58\lambda$. ■

Пример 31. В тетраэдре ABCD известны координаты его вершин: A(4;-1;3), B(1;2;2), C(3;1;1) и D(2;3;4). Проверить, что точки A, B, C и D не лежат в одной плоскости, и найти: (а) объем тетраэдра ABCD; (б) площадь грани ACD; (в) высоту тетраэдра, опущенную из вершины B; (г) расстояние между прямыми AB и CD; (д) угол между прямой AB и плоскостью ACD.

Решение. Найдем координаты векторов:

$$\overline{AB}$$
{-3; 3; -1}, \overline{AC} {-1; 2; -2}, \overline{AD} {-2; 4; 1}

и вычислим их смешанное произведение:

$$\left(\overline{AB}\,\overline{AC}\,\overline{AD}\right) = \begin{vmatrix} -3 & 3 & -1 \\ -1 & 2 & -2 \\ -2 & 4 & 1 \end{vmatrix} = -6 + 12 + 4 - 4 + 3 - 24 = -15 \neq 0.$$

Следовательно, эти векторы не компланарны, и значит, точки A, B, C и D не лежат в одной плоскости.

- (a) Объём тетраэдра ABCD равен $V_{ABCD} = \frac{1}{6} \left| \left(\overline{AB} \ \overline{AC} \ \overline{AD} \right) \right| = \frac{1}{6} \left| -15 \right| = \frac{5}{2}$.
- (б) Сначала вычислим векторное произведение:

$$\left[\overline{AC} \times \overline{AD}\right] = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & -2 \\ -2 & 4 & 1 \end{vmatrix} = 10\mathbf{i} + 5\mathbf{j} + 0\mathbf{k} = 5\{2;1;0\}.$$

Тогда площадь грани АСО равна

$$S_{ACD} = \frac{1}{2} |[\overline{AC} \times \overline{AD}]| = \frac{1}{2} \cdot 5\sqrt{4+1} = \frac{5}{2}\sqrt{5}$$
.

- (в) Высота h_B тетраэдра, опущенная из вершины B на плоскость противоположной грани ACD, равна $h_B=\frac{3V_{ABCD}}{S_{ACD}}=\frac{15}{2}:\frac{5}{2}\sqrt{5}=\frac{3}{\sqrt{5}}$.
- (г) Расстояние между скрещивающимися прямыми AC и BD вычислим по формуле $\rho(AC,BD) = \frac{\left|\left(\overline{AC}\,\overline{AB}\,\overline{BD}\right)\right|}{\left|\left[\overline{AC}\times\overline{BD}\right]\right|}$. Находим координаты вектора $\overline{BD}\{1;1;2\}$ и вычислим произведения:

$$\left(\overline{AC}\,\overline{AB}\,\overline{BD}\right) = \begin{vmatrix} -1 & 2 & -2 \\ -3 & 3 & -1 \\ 1 & 1 & 2 \end{vmatrix} = -6 - 2 + 6 + 6 + 12 - 1 = 15;$$
$$\left[\overline{AC} \times \overline{BD}\right] = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & -2 \\ 1 & 1 & 2 \end{vmatrix} = 6\mathbf{i} + 0\mathbf{j} - 3\mathbf{k} = 3\{2; 0; -1\}.$$

Поэтому
$$\rho(AC, BD) = \frac{\left|\left(\overline{AC}\,\overline{AB}\,\overline{BD}\right)\right|}{\left|\left[\overline{AC}\times\overline{BD}\,\right]\right|} = \frac{15}{3\sqrt{5}} = \sqrt{5}.$$

(д) Угол α между прямой AB и плоскостью ACD равен $\left|\frac{\pi}{2} - \beta\right|$, где β – угол между вектором \overline{AB} и нормальным вектором n_{ACD} к этой плоскости. Таковым является любой вектор, пропорциональный векторному произведению (уже найденному) векторов \overline{AC} и \overline{AD} , например,

$$egin{aligned} & m{n}_{ACD} = \frac{1}{5} [\overline{AC} imes \overline{AD}] = \{2;1;0\}. \ \Pi ext{ОТОМУ} \ & \sin \left(AB \wedge ACD \right) = \sin \alpha = \left| \cos \beta \right| = \left| \cos \left(\overline{AB} \wedge m{n}_{ACD} \right) \right| = \ & = \frac{\left| \left(\overline{AB} \cdot m{n}_{ACD} \right) \right|}{\left| \overline{AB} \right| \cdot \left| m{n}_{ACD} \right|} = \frac{\left| -6 + 3 + 0 \right|}{\sqrt{9 + 9 + 1} \cdot \sqrt{4 + 1}} = \frac{3}{\sqrt{95}}. \end{aligned}$$

Ответы: (a)
$$V_{ABCD} = \frac{5}{2}$$
; (б) $S_{ACD} = \frac{5}{2}\sqrt{5}$; (в) $h_B = \frac{3}{\sqrt{5}}$; (г) $\rho(AC, BD) = \sqrt{5}$; (д) $(AB \land ACD) = \arcsin\left(\frac{3}{\sqrt{95}}\right)$.

Пример 32. (продолжение примера 24 на стр. 34). В тетраэдре ABCD известны длины рёбер, выходящих из одной вершины C и углы между ними: CA = 4, CB = 5, CD = 6, $\angle ACB = 60^{\circ}$, $\angle ACD = \arccos \frac{1}{3}$, $\angle BCD = 120^{\circ}$. Найти: (а) объем тетраэдра ABCD; (б) площадь грани ABD; (в) расстояние от вершины C до плоскости ABD; (г) расстояние между прямыми AC и BD; (д) угол между прямой AC и плоскостью ABD.

Решение. Рассмотрим базис, состоящий из векторов $\overline{CA} = a$, $\overline{CB} = b$, $\overline{CD} = d$ (см. Рис. 23) и составим таблицу скалярных произведений эти векторов друг на друга:

$$a^2 = 16$$
, $b^2 = 25$, $d^2 = 36$, $(a \cdot b) = 4 \cdot 5 \cdot \cos 60^\circ = 10$, $(a \cdot d) = 4 \cdot 6 \cdot \frac{1}{3} = 8$, $(b \cdot d) = 5 \cdot 6 \cdot \cos 120^\circ = -15$.

(а) Объем тетраэдра равен
$$V_{ABCD} = \frac{1}{6} \left| \left(\overline{CA} \, \overline{CB} \, \overline{CD} \right) \right| = \frac{1}{6} \left| (abd) \right|$$
, где

$$(abd)^2 = \Gamma(a, b, d) = \begin{vmatrix} 16 & 10 & 8 \\ 10 & 25 & -15 \\ 8 & -15 & 36 \end{vmatrix} = 2^2 \cdot 5^2 \cdot \begin{vmatrix} 4 & 1 & 4 \\ 1 & 1 & -3 \\ 4 & -3 & 36 \end{vmatrix} = 3200.$$

Следовательно, $V_{ABCD} = \frac{1}{6}\sqrt{3200} = \frac{20}{3}\sqrt{2}$

(б) площадь грани ABD равна $S_{ABD}=\frac{1}{2}\left|[\overline{AB}\times\overline{AD}]\right|$, где

$$[\overline{AB} \times \overline{AD}]^2 = \Gamma(\overline{AB}, \overline{AD}) = \begin{vmatrix} \overline{AB}^2 & (\overline{AB} \cdot \overline{AD}) \\ (\overline{AB} \cdot \overline{AD}) & \overline{AD}^2 \end{vmatrix}.$$

Находим:
$$\overline{AB} = \overline{AC} + \overline{CB} = \boldsymbol{b} - \boldsymbol{a}$$
, $\overline{AD} = \boldsymbol{d} - \boldsymbol{a}$, далее:

$$\overline{AB}^2 = (\mathbf{b} - \mathbf{a})^2 = \mathbf{b}^2 - 2(\mathbf{a} \cdot \mathbf{b}) + \mathbf{a}^2 = 25 - 20 + 16 = 21,$$

$$\overline{AD}^2 = (d-a)^2 = d^2 - 2(a \cdot d) + a^2 = 36 - 16 + 16 = 36,$$

$$(\overline{AB} \bullet \overline{AD}) = ((b-a) \bullet (d-a)) = (b \bullet d) - (a \bullet d) - (a \bullet b) + a^2 =$$

$$=-15-8-10+16=-17.$$

Поэтому
$$\Gamma(\overline{AB}, \overline{AD}) = \begin{vmatrix} 21 & -17 \\ -17 & 36 \end{vmatrix} = 467 \text{ и } S_{ABD} = \frac{1}{2}\sqrt{467}.$$

(в) Расстояние от вершины C до плоскости ABD равно высоте $CH = h_C$ тетраэдра ABCD, опущенной из вершины C на плоскость грани ABD, она равна

$$\rho(C, ABD) = h_C = \frac{3V_{ABCD}}{S_{ABD}} =$$
$$= 20\sqrt{2} : \frac{1}{2}\sqrt{467} = \frac{40\sqrt{2}}{\sqrt{467}}.$$

(г) По формуле (3.15), расстояние между скрещивающимися прямыми AC и BD

равно
$$\rho(CA, BD) = \frac{\left|\left(\overline{CA}\,\overline{CB}\,\overline{BD}\,\right)\right|}{\left|\left[\overline{CA}\times\overline{BD}\right]\right|}.$$

$$\left|\left(\overline{CA}\,\overline{CB}\,\overline{BD}\right)\right| = \left|\left(ab(d-b)\right)\right| = \left|\left(abd\right) - \left(abb\right)\right| = \left|\left(abd\right)\right| = \sqrt{3200} = 40\sqrt{2},$$

$$\left|\left[\overline{CA}\times\overline{BD}\;\right]\right|^2 = \Gamma\left(\overline{CA},\overline{BD}\;\right) = \begin{vmatrix}\overline{CA}^2 & \left(\overline{CA}\bullet\overline{BD}\;\right) \\ \left(\overline{CA}\bullet\overline{BD}\;\right) & \overline{BD}\end{vmatrix}, \, \text{где}$$

$$\overline{CA} = a^2 = 16, \overline{DB}^2 = (b - d)^2 = b^2 - 2(b \cdot d) + d^2 = 25 + 30 + 36 = 91,$$
 $(\overline{CA} \cdot \overline{BD}) = (a \cdot (d - b)) = (a \cdot d) - (a \cdot b) = 8 - 10 = -2,$ значит,

$$\Gamma\left(\overline{CA},\overline{BD}\right) = \begin{vmatrix} 16 & -2 \\ -2 & 91 \end{vmatrix} = 1452 \Rightarrow \left| [\overline{CA} \times \overline{BD}] \right| = \sqrt{1452} = 22\sqrt{3}$$
 Следовательно, $\rho(CA,BD) = \frac{40\sqrt{2}}{22\sqrt{3}} = \frac{20\sqrt{6}}{33}$.

(д) Угол α между прямой AC и плоскостью ABD – это угол между AC и её ортогональной проекцией AH на эту плоскость, т.е. $\alpha = \angle CAH$, поэтому $\sin \alpha = \frac{CH}{CA}$, где $CH = h_A$ уже найдена в п. (в), поэтому

$$\sin \alpha = \frac{40\sqrt{2}}{\sqrt{467}} : 4 = \frac{10\sqrt{2}}{\sqrt{467}}.$$

Ответы: (a)
$$\frac{20}{3}\sqrt{2}$$
; (б) $\frac{1}{2}\sqrt{467}$; (в) $\frac{40\sqrt{2}}{\sqrt{467}}$; (г) $\frac{20\sqrt{6}}{33}$; (д) $\arcsin\left(\frac{10\sqrt{2}}{\sqrt{467}}\right)$.

Пример 33. Для каждой грани тетраэдра построили вектор, перпендикулярный этой грани, направленный во внешнюю сторону и по длине равный площади этой грани. Доказать, что сумма этих четырех векторов равна нулю.

Решение. Пусть в тетраэдре ABCD векторы $a = \overline{DA}$, $b = \overline{DB}$ и $c = \overline{DC}$ образуют, например, левую тройку. Обозначим через N_{ABC} , N_{ABD} , N_{ACD} и N_{BCD} векторы, перпендикулярные граням ABC, ABD, ACD и BCD соответственно, направленные вовне и равные по длине площади соответствующей грани (см. Рис. 24). Тогда, очевидно,

$$N_{ABC} = \frac{1}{2}[\overline{AC} \times \overline{AB}], \quad N_{ABD} = \frac{1}{2}[\overline{DA} \times \overline{DB}], \quad N_{ACD} = \frac{1}{2}[\overline{DC} \times \overline{DA}]$$
 и $N_{BCD} = \frac{1}{2}[\overline{DB} \times \overline{DC}]$. Обозначим далее: $[a \times b] = p$, $[b \times c] = q$, $[c \times a] = r$. Находим: $\overline{AC} = c - a$, $\overline{AB} = b - a$, поэтому $[\overline{AC} \times \overline{AB}] = [(c - a) \times (b - a)] = [c \times b] - [a \times b] - [c \times a] + [a \times a] = -q - p - r;$ $[\overline{DA} \times \overline{DB}] = [a \times b] = p$, $[\overline{DC} \times \overline{DA}] = [c \times a] = r$, $[\overline{DB} \times \overline{DC}] = [b \times c] = q$. Следовательно, $N_{ABC} + N_{ABD} + N_{ACD} + N_{BCD} = \frac{1}{2}((-q - p - r) + p + r + q) = 0$.

Задачи для самостоятельного решения к главе 3.

- **3. 1.** Даны три вектора a{3; 4; -2}, b{1; -2; 5} и c{4; 2; -1}. Найти (а) $p = [b \times c]$ (б) повторное векторное произведение $q = [a \times [b \times c]]$ и проверить полученный ответ с помощью формулы «БАЦ ЦАБ».
- **3. 2.** Найти координаты единичного вектора, перпендикулярного плоскости ABC, где A(4;7;-2), B(-1;3;2) и C(3;4;2).

- **3. 3.** Найти площадь треугольника ABC, где A(2;3;7), B(-1;1;4) и C(3;2;6).
- **3. 4.** Про векторы a и b известно, что |a|=6, |b|=7, $(a \wedge b)=30^\circ$. Найти площадь параллелограмма, построенного на векторах p=2a+3b и q=a-4b.
- **3. 5.** Найти смешанное произведение (abc) векторов $a\{-2;4;5\}$, $b\{3;1;2\}$ и $c\{1;3;4\}$.
- **3. 6.** В тетраэдре ABCD известны координаты его вершин: A(-1;1;2), B(0;2;3), C(1;4;2), D(-3;4;1). Найти: (а) объем тетраэдра; (б) площадь грани BCD; (в) высоту, опущенную на грань BCD; (г) угол между прямой BC и плоскостью ABD; (д) расстояние между прямыми AC и BD.
- **3.7.** Даны три вектора a, b и c, известно, что $(abc) = \lambda$. Вычислить смешанное произведение (pqr), где p = 4a 3b, q = 2a 7c, r = 3b + 5c.
- **3. 8.** Найти угол между ненулевыми векторами a и b, если известно, что $|a \times b| = k (a \cdot b)$, где $k \in \mathbb{R}$.
- **3.9.** Доказать тождество $[a \times b]^2 + (a \cdot b)^2 = a^2 b^2$.
- **3. 10.** Найти $(a \cdot b)$, если |a| = 5, |b| = 4, и $|[a \times b]| = 10$.
- **3.11.** Дана левая тройка векторов a, b и c. Найти (abc), если |a|=2, |b|=5, |c|=3, $a\perp b$, $a\perp c$ и $\angle(b;c)=3\pi/4$.
- **3. 12.** Упростить выражение: $[i \times (2j+3k)] [j \times (4i-5k)] + [(i-6j+2k) \times k].$
- **3. 13.** Найти значение выражения 4(ijk) 2(jik) + 3(iki) + 7(kij) + (jki) 8(kji) 13(kkj) + 9(ikj).
- **3. 14.** В ромбе ABCD известны координаты вершин A(-4;5;4), B(-3;11;3), вершина C лежит в плоскости YOZ, а вершина D в плоскости XOZ. Найти координаты вершин C и D и площадь ромба.
- **3. 15.** В квадрате ABCD известны координаты вершин A(7;1;8), B(5;-2;2), вершина C лежит в плоскости XOY. Найти координаты вершин C и D и площадь квадрата.
- **3. 16.** В трапеции ABCD, в которой AD большее основание, известны координаты вершин A(-1;2;11), B(3;5;4) и точки пересечения диагоналей E(9;7;-4). Найти координаты вершин C и D, если площадь трапеции равна $\frac{49\sqrt{3}}{2}$.
- **3. 17.** В параллелограмме ABCD известны координаты вершин A(1;8;2), B(4;3;-5), вершина C лежит в плоскости XOZ, а вершина D на оси OY. Найти координаты вершин C и D и площадь параллелограмма.

- **3. 18.** В тетраэдре ABCD известны длины рёбер, выходящих из одной вершины A и углы между ними: AC = 3, AB = 5, AD = 6, $\angle CAD = 60^{\circ}$, $\angle CAB = \arccos \frac{1}{5}$, $\angle BAD = 120^{\circ}$. Найти: (a) объем тетраэдра ABCD; (б) площадь грани BCD; (в) расстояние от вершины A до плоскости BCD; (г) расстояние между прямыми AD и BC.
- **3. 19.** Даны векторы $a(1; \lambda; 1)$, $b(\lambda; -1; 3)$ и c(5; 0; 7). При каких значениях λ эти векторы (а) компланарны; (б) образуют правую тройку; (в) образуют левую тройку.
- **3. 20.** Площадь параллелограмма, построенного на векторах $a = \lambda m + n$ и b = 3m 4n, равна 18. Найти значение λ , если |m| = 1, |n| = 4, $(m \wedge n) = 5\pi/6$.
- **3. 21.** Объем тетраэдра *ABCD* равен 4, его вершины имеют координаты A(3;1;2), B(-1;4;1), C(2;1;5) и $D(2;\lambda;0)$. Найти значение λ .
- **3. 22.** Найти сумму всех значений α , при которых объем параллелепипеда, построенного на векторах a(3;-1;1), $b(\alpha;5;3)$ и $c(1;4;\alpha)$, равен 2.
- **3. 23.** Найти значения λ , если известно, что векторы a, b и c не компланарны и $((a + \lambda b)(b + \lambda c)(c + \lambda a)) = 7(cba)$.
- **3. 24.** При каких положительных значениях α точки $A(3;0;\alpha)$, $B(\alpha;1;8)$, C(2;4;3) и D(4;5;6) лежат в одной плоскости?
- **3. 25.** При каких отрицательных значениях λ площадь параллелограмма, построенного на векторах a(1;1;2) и $b(\lambda;1;3)$, равна $\sqrt{59}$?
- **3. 26.** Объем тетраэдра ABCD равен V_0 . Найти объем тетраэдра, построенного на векторах \overline{AK} , \overline{BM} и \overline{CN} , где $K \in BD$, $M \in CD$, $N \in AD$ и $DK : DB = \alpha$, $DM : DC = \beta$, $DN : DA = \gamma$.
- **3. 27.** Выразить формулой площадь треугольника ABC на плоскости через координаты его вершин: $A(x_1; y_1), B(x_2; y_2), C(x_3; y_3)$.
- **3. 28.** Выразить через скалярные произведения (наподобие формулы БАЦ–ЦАБ) следующие повторные векторные произведения: (a) $[b \times [c \times a]]$; (б) $[a \times [b \times a]]$; (в) $[[a \times b] \times c]$;
- **3. 29.** Даны произвольные векторы p, q, r и n. Доказать, что векторы $a = [p \times n]$, $b = [q \times n]$ и $c = [r \times n]$ компланарны.
- **3. 30.** Найти необходимое и достаточное условие на векторы a, b и c, при котором выполняется равенство $[a \times [b \times c]] = [[a \times b] \times c]$.
- **3.31.** Векторы p , q и r удовлетворяют условию p+q+r=0 . Доказать, что $[p\times q]=[q\times r]=[r\times p]$.
- **3.32.** Векторы p, q, r и n связаны соотношениями $[p \times q] = [r \times n]$ и $[p \times r] = [q \times n]$. Доказать коллинеарность векторов a = p n и b = q r.

- **3. 33.** Доказать, что векторы p, q и r, удовлетворяющие условию $[p \times q] + [q \times r] + [r \times p] = 0$, компланарны.
- **3. 34.** Три ненулевых вектора a, b и c связаны соотношениями $a = [b \times c]$, $b = [c \times a]$, $c = [a \times b]$. Найти длины этих векторов и углы между ними.
- **3. 35.** Доказать, что $|(pqr)| \le |p| \cdot |q| \cdot |r|$. В каком случае имеет место знак равенства?
- **3. 36.** Три вектора $a = \overline{OA}$, $b = \overline{OB}$ и $c = \overline{OC}$ удовлетворяют условию $[a \times b] + [b \times c] + [c \times a] = 0$.

Доказать, что точки A, B и C лежат на одной прямой.

- **3.37.** Из точки O проведены три некомпланарных вектора $a = \overline{OA}$, $b = \overline{OB}$ и $c = \overline{OC}$. Доказать, что плоскость ABC перпендикулярна вектору $n = [a \times b] + [b \times c] + [c \times a]$.
- **3.38.** Доказать, что для любых трех векторов a, b и c справедливы следующие тождества:
 - (a) $[[a \times b] \times [a \times c]] = (abc)a$;
 - (6) $([a \times b] \cdot [a \times c]) = a^2(b \cdot c) (a \cdot c)(a \cdot b);$
 - (B) $[a \times [b \times [c \times a]]] = (a \cdot b)[a \times c];$
 - (r) $[a \times [b \times c]] + [b \times [c \times a]] + [c \times [a \times b]] = 0$;
 - (д) $([a \times b][b \times c][c \times a]) = (abc)^2$;
 - (e) $(abc)^2 = a^2b^2c^2 a^2(b \cdot c)^2 b^2(a \cdot c)^2 c^2(a \cdot b)^2 + 2(a \cdot b)(a \cdot c)(b \cdot c)$.
- **3.39.** Доказать, что для любых четырех векторов a, b, c и d справедливы следующие тождества:
 - (a) $([a \times b] \cdot [c \times d]) = (a \cdot c)(b \cdot d) (a \cdot d)(b \cdot c);$
 - (6) $[[a \times b] \times [c \times d]] = (abd)c (abc)d = (acd)b (bcd)a;$
 - (B) $[a \times [b \times [c \times d]]] = (b \cdot d)[a \times c] (b \cdot c)[a \times d];$
 - (Γ) $[a \times [b \times [c \times d]]] = (acd)b (a \cdot b)[c \times d];$
 - (д) $([a \times b] \cdot [c \times d]) + ([a \times c] \cdot [d \times b]) + ([a \times d] \cdot [b \times c]) = 0;$
 - (e) $(a \cdot b)[c \times d] + (a \cdot c)[d \times b] + (a \cdot d)[b \times c] = (bcd)a$.
- **3. 40.** Доказать, что если векторы $a = [p \times q], b = [q \times r]$ и $c = [r \times p],$ компланарны, то и векторы p, q и r тоже компланарны.
- **3.41.** Доказать, что если векторы $a = [p \times q], b = [q \times r]$ и $c = [r \times p],$ компланарны, то они коллинеарны.
- **3. 42.** Доказать, что объем параллелепипеда, построенного на диагоналях граней данного параллелепипеда, равен удвоенному объему данного параллелепипеда.
- **3.43.** Выразить с помощью задачи 3.39(a) объем тетраэдра ABCD, если известны длина ребра AB, величина φ двугранного угла при этом ребре и площади соседних граней ABC и ABD.
- **3. 44.** Доказать, что для любых векторов a, b, c, p, q и r справедливы формулы:

(a)
$$\begin{vmatrix} (a \cdot p) & (a \cdot q) \\ (b \cdot p) & (b \cdot q) \end{vmatrix} = ([a \times b] \cdot [p \times q]);$$
(b)
$$\begin{vmatrix} (a \cdot p) & (a \cdot q) & (a \cdot r) \\ (b \cdot p) & (b \cdot q) & (b \cdot r) \\ (c \cdot p) & (c \cdot q) & (c \cdot r) \end{vmatrix} = (abc)(pqr).$$

- **3.45.** Доказать, что для любых трех векторов a, b и c справедливы следующие неравенства:
 - (a) $(a \cdot b)^2 \le a^2 b^2$;
 - (6) $[\boldsymbol{a} \times \boldsymbol{b}]^2 \leq \boldsymbol{a}^2 \boldsymbol{b}^2$;
 - (B) $(abc)^2 \le a^2b^2c^2$;
 - $(\Gamma) (abc)^2 \leq a^2b^2c^2 a^2(b \cdot c)^2;$

(д)
$$(abc)^2 \le a^2b^2c^2 - \frac{1}{3}(a^2(b \cdot c)^2 + b^2(c \cdot a)^2 + c^2(a \cdot b)^2)$$

- **3. 46.** При каких векторах a и b уравнение $[a \times x] = b$ имеет решения? Найти все эти решения.
- **3.47.** При каком условии на векторы a, b, c и d система уравнений $\begin{cases} [a \times x] + [b \times y] = c, \\ [b \times x] [a \times y] = d \end{cases}$

имеет решение? Найти все эти решения.

- **3. 48.** Даны четыре некомпланарных вектора a, b, c и d. Найти нетривиальную линейную комбинацию этих векторов, дающую нулевой вектор (искомые коэффициенты выразить через скалярное, векторное и/или смешанное произведения этих векторов).
- **3.49.** Даны три некомпланарных вектора a, b, c и еще один вектор d. Найти (выразить с помощью скалярного, векторного и/или смешанного произведения) координаты вектора по d в базисе $\{a, b, c\}$.
- **3. 50.** Даны три некомпланарных вектора a, b, c и еще один вектор d. Разложить вектор d по векторам $p = [b \times c]$, $q = [c \times a]$ и $r = [a \times b]$ (коэффициенты разложения выразить с помощью скалярного, векторного и/или смешанного произведения).
- **3.51.** Выразить формулой объем тетраэдра, если длины трех его рёбер, выходящих из одной вершины равны a, b и c, а углы между этими рёбрами равны α , β и γ .
- **3.52.** Доказать вторую теорему косинусов для тетраэдра: квадрат площади любой грани тетраэдра равен сумме квадратов площадей трех его других граней минус удвоенная сумма попарных произведений площадей этих трех граней на косинус угла между ними; например, для грани ABC тетраэдра ABCD:

$$S_{ABC}^2 = S_{ABD}^2 + S_{ACD}^2 + S_{BCD}^2 -$$

$$-2S_{ABD} \cdot S_{ABD} \cos \alpha - 2S_{ABD} \cdot S_{BCD} \cos \beta - 2S_{ACD} \cdot S_{BCD} \cos \gamma.$$

где α , β и γ — величины двугранных углов при рёбрах AD, BD и CD соответственно.

- **3. 53.** Доказать, что если три грани тетраэдра попарно перпендикулярны, то квадрат площади четвертой грани равен сумме квадратов площадей первых трех граней.
- **3. 54.** Пусть в трехгранном угле плоские углы равны α , β и γ , а противолежащие им двугранные углы равны φ , ψ и θ соответственно. Доказать следующие равенства:

(a)
$$\cos \theta = \frac{\cos \gamma - \cos \alpha \cdot \cos \beta}{\sin \alpha \cdot \sin \beta}$$
; (6) $\cos \gamma = \frac{\cos \theta + \cos \phi \cos \psi}{\sin \phi \sin \psi}$;
(B) $\frac{\sin \alpha}{\sin \phi} = \frac{\sin \beta}{\sin \psi} = \frac{\sin \gamma}{\sin \theta}$.

- **3. 55.** Доказать, что, что если три плоских угла одного трехгранного угла соответственно равны трем плоским углам другого трехгранного угла, то и противолежащие им двугранные углы первого трехгранного угла соответственно равны двугранным углам другого трехгранного угла.
- **3. 56.** Доказать, что если три двугранных угла одного трехгранного угла соответственно равны трем двугранным углам другого трехгранного угла, то и противолежащие им плоские углы первого трехгранного угла соответственно равны плоским углам другого трехгранного угла.
- **3.57.** Доказать, что все четыре грани тетраэдра равновелики тогда и только тогда, когда его противоположные рёбра попарно равны.
- **3.58.** Доказать, что противоположные рёбра тетраэдра равны тогда и только тогда, когда сумма косинусов двугранных углов при всех рёбрах тетраэдра равна 2.
- **3. 59.** Сумма плоских углов трехгранного угла равна 180^{0} . Доказать, что сумма косинусов его двугранных углов равна 1.
- **3. 60.** Если от каждой грани многогранника во внешнюю сторону отложить вектор, перпендикулярный этой грани и равный по длине её площади, то сумма всех этих векторов равна нулю. Доказать это утверждение для: (а) произвольной пирамиды; (б) произвольного выпуклого многогранника.

Литература

- **1.** Канатников А.Н., Крищенко А.П. Аналитическая геометрия. М., Изд. МГТУ, 1998. 392 с.
- **2.** Сборник задач по математике для втузов. Ч. 1. Линейная алгебра и основы математического анализа: Учеб. пособие для втузов / Под ред. А.В. Ефремова, Б.П. Демидовича. М.: Наука, 1993. 478 с.
- **3.** Клетеник Д.В. Сборник задач по аналитической геометрии. Спб.: Профессия, 2001. 240 с.
- **4.** Прасолов В.В., Шарыгин И.Ф. Задачи по стереометрии, М. Наука, 1989. 288 с.

Ответы

Обозначения: ♣ – указания 11, □ – применить.

К главе 1.

- **1.1.** (a) \overline{AF} ; (б) **0**.
- 1.4. p 3q + r = 0.
- **1.5.** ♣ (б)

 задачу 1. 11; (в) Выразить через радиус-векторы треугольника вершин радиус-векторы точек, делящих медианы треугольника в отношении 2:1, считая от вершины.
- **1. 6. 4.** (а) Выразить через радиус-векторы вершин тетраэдра радиусвекторы точек, делящих медианы тетраэдра в отношении 3:1, считая от вершин; (б) разложить по базису \overline{AB} , \overline{AD} , \overline{AA}_1 векторы \overline{AK} , \overline{AL} , \overline{AM} и \overline{AN} , где точки K, L, M и N середины диагоналей параллелепипеда $ABCDA_1B_1C_1D_1$.
- **1.7.** Разложить данные векторы по базису \overline{CA} , \overline{CB} .
- **1.8.** Разложить данные векторы по базису \overline{CA} , \overline{CB} .
- **1.9.** $\overline{CD} = q p$; (6) q 2p; (8) p + q; (7) 2q p; (e) 2q; (ж) 2q 2p.
- **1. 10.** (a) $\lambda(q-p)$; (b) $(\lambda-1)q \lambda p$; (b) $(\lambda \frac{1}{\lambda})q \lambda p$; (c) $\lambda q (\lambda+1)p$ $(\lambda = 2\cos 36^\circ = -\frac{1}{2}(1+\sqrt{5}).$
- **1.11.** Разложить данные векторы по векторам \overline{DA} , \overline{DB} , \overline{DC} .
- **1.** 12. *0*.
- **1. 13.** $\lambda = 1, \lambda = -2$.
- **1.14.** $\alpha = \frac{1}{\sqrt[3]{6}}, \beta = \sqrt[3]{\frac{2}{9}}.$
- **1. 15.** $\left(1-\frac{1}{\lambda}\right)\overline{AB}-\overline{AD}$.
- **1. 16. 4** Если M середина хорды AB, то $\overline{OM} = \frac{1}{2} \left(\overline{OA} + \overline{OB} \right)$.
- **1. 17.** Разложить данные векторы по базису \overline{CA} , \overline{CB} .
- **1. 18.** Разложить данные векторы по базису \overline{DA} , \overline{DB} , \overline{DC} .
- **1. 19.** \clubsuit (для тетраэдра) Вычесть разложения радиус-векторов точек E и E_1 через радиус-векторы вершин соответствующих тетраэдров.
- **1. 20. ♣** Точка M лежит на прямой $AB \Leftrightarrow \overline{AM} = \lambda \cdot \overline{AB}$ при некотором $\lambda \in \mathbb{R}$.
- **1. 21. 4.** Пусть $CA_1: CB = \alpha, AB_1: AC = \beta, BC_1: BC = \gamma, A_1M: AA_1 = x$ $B_1M: BB_1 = y, C_1M: CC_1 = z, a = \overline{CA}, b = \overline{CB}$. Тогда: $\overline{CM} = xa + (1-x)\alpha b = (1-y)(1-\beta)a + yb = (1-z)(\gamma a + (1-\gamma)b)$. Выразить отсюда γ, x, y и z через α и β .

¹¹ Выбор значка ♣ для «указаний» продиктован только его красотой.

- **1. 22.** ♣ Пусть $BA_1: BC = \alpha, CB_1: CA = \beta, AC_1: AB = \gamma$, выразить вектор $\overline{AA_1}$ через векторы $b = \overline{AB_1}$, $c = \overline{AC_1}$ и \square задачу **1. 20**.
- 1. 23. $\frac{\beta}{\alpha+\beta}\overline{AB} \frac{\alpha}{\alpha+\beta}\overline{CD}$.
- **1. 24.** 3.
- 1. 25. $\frac{1}{3}(p+q+r)$.
- **1. 26.** $\overline{BC} = \frac{6}{11} p \frac{10}{11} q + \frac{4}{11} r$.
- **1.27.** DM : MG = 4:7, EM : MF = 6:5.
- **1.28.** $EM: MB_1 = 7:6, \overline{BM} = \frac{6}{13} p + \frac{3}{13} q$.
- **1. 29.** (a) $\frac{1}{2}\sqrt{161}$; (б) $\frac{4}{5}\sqrt{21}$; (в) $M\left(3;\frac{20}{3};\frac{16}{3}\right)$; (г) $P\left(\frac{7}{2};7;6\right)$.
- **1.30.** C(8; 8; 8), D(9; 16; 13).
- **1.31.** (a) $\frac{1}{2}\boldsymbol{a} + \frac{1}{2}\boldsymbol{b}$; (б) $\frac{\sin\alpha}{\sin\alpha + \sin\beta}\boldsymbol{a} + \frac{\sin\beta}{\sin\alpha + \sin\beta}\boldsymbol{b}$; (в) $\tan\alpha \cdot \boldsymbol{a} + \tan\beta \cdot \boldsymbol{b}$; (г) $\frac{1}{3}\boldsymbol{a} + \frac{1}{3}\boldsymbol{b}$;

(д)
$$\frac{\sin\frac{\alpha}{2}}{\cos\frac{\beta}{2}\sin\left(\frac{\alpha+\beta}{2}\right)}\boldsymbol{a} + \frac{\sin\frac{\beta}{2}}{\cos\frac{\alpha}{2}\sin\left(\frac{\alpha+\beta}{2}\right)}\boldsymbol{b}; \text{ (e) } \operatorname{ctg}\boldsymbol{\beta}\operatorname{ctg}\boldsymbol{\gamma}\cdot\boldsymbol{a} + \operatorname{ctg}\boldsymbol{\alpha}\operatorname{ctg}\boldsymbol{\gamma}\cdot\boldsymbol{b};$$

$$(\mathbf{X}) \; \frac{\cos\alpha}{2\sin\beta\sin(\alpha+\beta)} \boldsymbol{a} + \frac{\cos\beta}{2\sin\alpha\sin(\alpha+\beta)} \boldsymbol{b} \; .$$

- **1.32.** (б) *N*{7:6:15}.
- 1. 33. *0*.
- **1.34.** $M\{-3:-9:8:16\}$.
- 1. 35. a.
- 1. 36. b.
- **1.37.** (a) $P\{\sin\alpha:\sin\beta:\sin\gamma\}$ **4.** cm. Πρимер 4; (б) $Q\{\sin2\alpha:\sin2\beta:\sin2\gamma\}$
 - * $\overline{CQ} = \frac{1}{2\sin\gamma} \left(\frac{\cos\alpha}{\sin\beta} \overline{CA} + \frac{\cos\beta}{\sin\alpha} \overline{CB} \right)$ и \square тригонометрическое тождество $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 4\sin\alpha\sin\beta\sin\gamma$; (в) $H\{\lg\alpha: \lg\beta: \lg\gamma\}$ * $\overline{CH} = \operatorname{ctg}\gamma \left(\operatorname{ctg}\beta \cdot \overline{CA} + \operatorname{ctg}\alpha \cdot \overline{CB}\right)$ и \square тригонометрическое тождество $\operatorname{ctg}\alpha\operatorname{ctg}\beta + \operatorname{ctg}\alpha\operatorname{ctg}\gamma + \operatorname{ctg}\beta\operatorname{ctg}\gamma = 1$.
- 1. 38. ♣

 ☐ задачу 1. 36.(б) и 1. 32.
- **1. 39.** *0* \square задачу 1. 36.(в) и 1. 32.
- **1.40.** $\left\{ \frac{\alpha_2}{\alpha_1 + \alpha_2} : \frac{\beta_2}{\beta_1 + \beta_2} : \left(1 \frac{\alpha_2}{\alpha_1 + \alpha_2} \frac{\beta_2}{\beta_1 + \beta_2} \right) \right\}$.
- **1.41.** $(\rho, AB) = h_C \cdot \left| 1 \frac{d_A}{h_A} \frac{d_B}{h_C} \right|, \left\{ \frac{d_A}{h_A} : \frac{d_B}{h_B} : \left(1 \frac{d_A}{h_A} \frac{d_B}{h_B} \right) \right\}.$
- **1. 42.** \clubsuit $\overline{OK} = \frac{|KD|}{h}\overline{OA} + \frac{|KE|}{h}\overline{OB} + \frac{|KF|}{h}\overline{OC}$, где h высота треугольника.
- **1.43.** $M\{\alpha_1\beta_1 : \alpha_2\beta_2 : \alpha_1\beta_2\}.$
- **1. 44.** $\det(P) = 0$, где P матрица 3-го порядка, составленная из барицентрических координат данных точек.

- **1. 45.** $\det(P) = 0$, где P матрица 4-го порядка, составленная из барицентрических координат данных точек.
- **1.46.** $\{m_A : m_B : m_C : m_D\}$.
- **1.47.** {3:1:6}.
- **1.48.** (6) (1°) N(15;-14;18); (2°) K(0;0;-1); (B) (1°) $Pr_{BCD}^{AB}(\mathbf{m}) = \{6;9;15\}$; (2°) $Pr_{AB}^{BCD}(\mathbf{m}) = \{5;-10;-5\}$; (3°) $Pr_{\overline{BD}}^{ABC}(\mathbf{m}) = 3\sqrt{6}$.
- **1.49.** (a) $-\frac{2}{3}a \frac{1}{3}d$; (б) $\frac{1}{4}b$; (в) $P\{0:1:5:2\}$, $Q\{1;0;2;0\}$.
- **1. 50.** Векторы a, b и c суть проекции вектора m на прямую OA, OB и OC параллельно плоскости OBC (соответственно OAC и OAB).
- **1.51. 4** Вычесть явные выражения для M_O и M_P .
- **1. 52.** (а) в его середине; (б) и (г) в точке пересечения диагоналей; (в) в центре; (д) в середине отрезка, соединяющего центроиды оснований.
- **1.53.** (a) $\{(b+c): (a+c): (a+b)\};$ (б) $\{(\sin\beta + \sin\gamma): (\sin\alpha + \sin\gamma): (\sin\alpha + \sin\beta)\}$ или $\{\cos\frac{\alpha}{2}\cos\left(\frac{\beta-\gamma}{2}\right): \cos\frac{\beta}{2}\cos\left(\frac{\gamma-\alpha}{2}\right): \cos\frac{\gamma}{2}\cos\left(\frac{\beta-\alpha}{2}\right)\}.$
- **1.54.** (a) $Q_1(\frac{13}{3}; \frac{11}{3}; 4)$; (б) $Q_2(\frac{9}{2}; 4; \frac{17}{4})$.
- **1. 55.** В центре вписанного шара второго тетраэдра, вершины которого совпадают с точками пересечения медиан граней данного тетраэдра.
- **1.56.** $\{(b+c+d): (a+c+e): (a+b+f): (d+e+f)\}.$
- **1.57.** {1:1:1:1}.
- **1.58.** $\{1:1:1:1\}$; (6) $\{S_{BCD}: S_{ACD}: S_{ABD}: S_{ABC}\}$.

К главе 2.

- **2. 1.** (а) и (б) нет, т.к. лишены смысла.
- 2. 2. Раскрыть скобки в левой и правой частях доказываемых тождеств.
- 2.3. $x\cos\alpha + y\cos\beta + z\cos\gamma$.
- **2.4.** (a) $m\{\sqrt{3}; \sqrt{3}; \sqrt{3}\}$; (6) $m\{-\sqrt{3}; -\sqrt{3}; -\sqrt{3}\}$.
- **2.5.** $p\{2\sqrt{3};-2;2\sqrt{5}\}$ или $p\{\sqrt{15};-1;2\sqrt{5}\}$.
- **2. 6.** $\alpha = \frac{3\pi}{4}, \beta = \frac{\pi}{2}, \gamma = \frac{\pi}{4}$ или $\alpha = \frac{\pi}{2}, \beta = \frac{\pi}{3}, \gamma = \frac{\pi}{6}$.
- 2.7. $\cos \varphi = \cos \alpha_1 \cdot \cos \alpha_2 + \cos \beta_1 \cdot \cos \beta_2 + \cos \gamma_1 \cdot \cos \gamma_2$.
- **2.8.** (a) $x = R\cos\theta\cos\varphi$, $y = R\cos\theta\sin\varphi$, $z = R\sin\theta$; (b) $\cos\alpha = \cos\theta\cos\varphi$, $\cos\beta = \cos\theta\sin\varphi$, $\cos\gamma = \sin\theta$.
- **2.9.** $R \cdot \arccos(\cos\theta_1\cos\theta_2\cos(\varphi_1 \varphi_2) + \sin\theta_1\sin\theta_2)$ **4.** кратчайший путь по поверхности шара между двумя её точками есть дуга окружности, являющейся сечением сферы плоскостью, проходящей через её центр и эти две точки, \square задачи 2.7 и 2.8 (б).
- 2. 10. $-\frac{9}{7}$.

2. 11.
$$-\frac{17}{\sqrt{129}}$$
.

2. 12. (a)
$$-\frac{1}{6}$$
; (б) $p\left\{2; -\frac{13}{5}; \frac{11}{5}\right\}$.

- **2. 13. 4.** (в) Пусть H точка пересечения высот AA_1 и BB_1 , рассмотреть векторы $a = \overline{HA}$, $b = \overline{HB}$ и $c = \overline{HC}$, вывести ортогональность векторов c и \overline{AB} из ортогональности пар векторов a, \overline{BC} и b, \overline{AC} ; (г) рассмотреть скалярный квадрат суммы векторов $\overline{OA} + \overline{OB} + \overline{OC}$, где O центр описанной окружности треугольника ABC.
- **2. 14.** \clubsuit Пусть $\overline{OH} = \overline{OA} + \overline{OB} + \overline{OC}$, доказать, что $\overline{HA} \perp \overline{BC}$, $\overline{HB} \perp \overline{AC}$.
- **2. 15.** \clubsuit Пусть O центр описанной окружности. Тогда $\overline{AH} = \overline{OB} + \overline{OC}$, $\overline{BC} = \overline{OC} \overline{OB}$.

2. 16.
$$\bullet$$
 $(\overline{HA} \bullet \overline{HB}) - (\overline{HB} \bullet \overline{HC}) = (\overline{HB} \bullet \overline{CA}) = 0$.

2. 17.
$$\clubsuit$$
 $\overline{OM} = \frac{1}{3} (\overline{OA} + \overline{OB} + \overline{OC})$ и \square задачу **2. 14.**

- **2. 18.** ♣ Пусть $p = \overline{OA}, q = \overline{OB}, r = \overline{OA}, \exists$ задачу **2. 14** и $OH^2 + a^2 + b^2 + c^2 = (p + q + r)^2 + (q r)^2 + (p r)^2 + (p q)^2$.
- **2. 19.** ♣ Пусть $a = \overline{OA}, b = \overline{OB}, c = \overline{OA},$ тогда $AB^2 + BC^2 + AC^2 + 9 \cdot OM^2 = (b c)^2 + (a c)^2 + (a b)^2 + 9 \cdot \left(\frac{1}{3}(a + b + c)\right)^2$

2. 20.
$$\clubsuit$$
 $\overline{OM} = \frac{1}{4} \left(\overline{OA} + \overline{OB} + \overline{OC} + \overline{OD} \right)$.

- 2. 21. $r\{4;-4;8\}$.
- **2. 22.** (a) $\lambda = -\frac{1}{4}$; (б) $\lambda = 2$.
- **2. 23.** (a) $\lambda = 3$; (б) $\lambda = \frac{5}{4}$.
- **2.24.** $\arccos(-\frac{1}{4})$.
- **2. 25. ♣** Разложить векторы сторон и медиан по базису $a = \overline{CA}$ и $b = \overline{CB}$.
- **2. 26.** $\frac{(1+k^2)(m^2-n^2)}{2k(m^2+n^2)}.$
- 2. 27. $\sqrt{281}$.
- **2.28.** $\arccos \frac{13}{15}$.
- **2. 29.** $\frac{13}{5\sqrt{10}}$.
- **2.30.** (a) $a \perp b \Leftrightarrow (a \cdot b) = 0$; (б) $(a \cdot b) > 0$; (в) $(a \cdot b) < 0$.
- **2.31.** $a \parallel c$ или $a \perp b \perp c$.
- 2. 32. ⊐ задачу 2. 19.
- **2. 33. ♣** Если O середина AC, то $MA^2 + MC^2 = 2 \cdot MO^2 + \frac{1}{2}AC^2$.

- **2. 34.** (а) центр описанной окружности; (б) точка пересечения медиан; (в) точка пересечения высот; (г) центр вписанной окружности.
- 2. 35. $\frac{23}{75}$.
- **2.36.** $\arccos \frac{3}{5}$.
- **2.37.** (a) $x_1\{4;-3\}, x_2\{\frac{7}{5}; \frac{24}{5}\};$ (б) $x\{1;2\};$ (в) $x\{-2;6\};$ (г) $x_1\{\frac{20}{\sqrt{29}}; \frac{8}{\sqrt{29}}\},$ $x_2\{-\frac{20}{\sqrt{29}}; -\frac{8}{\sqrt{29}}\}.$
- **2. 38.** $x = \alpha \cdot a + \beta \cdot b$, где $\alpha = \frac{pb^2 q(a \cdot b)}{a^2b^2 (a \cdot b)^2}$, $\beta = \frac{qa^2 p(a \cdot b)}{a^2b^2 (a \cdot b)^2}$.
- **2. 39.** $1 + 2xyz x^2 y^2 z^2 = 0$. \clubsuit свойство определителя Грама.
- **2. 40. 4** Упорядочить эти векторы так, чтобы изображающие их направленные отрезки AB, BC и CD обладали свойством: либо AB и CD либо BC и AD имеют общую точку (векторы \overline{AB} , \overline{BC} и \overline{CD} равны векторам a, b и c, но, возможно, в другом порядке).
- **2. 41. 4.** Пусть $a = |p|, b = |q|, c = |r|, x = \cos(q^r), y = \cos(p^r), z = \cos(p^q).$ При фиксированных a, b, c выражение |p| + |q| + |r| + |p + q + r| |p + q| |p + r| |q + r| есть функция f(x, y, z), определённая в трехмерной выпуклой области D, заданной неравенствами $|x| \le 1, |y| \le 1, |z| \le 1, 1 + 2xyz x^2 y^2 z^2 \ge 0$ (см. пример 23), её граница поверхность S внутри куба $|x| \le 1, |y| \le 1, |z| \le 1,$ заданная уравнением $1 + 2xyz x^2 y^2 z^2 = 0$, соответствующая компланарным векторам p, q и r. Показать, что f(x, y, z) монотонна по каждому переменному, и поэтому для каждой точки $M(x, y, z) \in D$ найдется точка $M_1(x_1, y_1, z_1)$ на поверхности S, для которой $f(x, y, z) \ge f(x_1, y_1, z_1)$, далее \square задачу 2.40.
- **2. 42. 4** (а) и (б): разложить векторы диагоналей параллелепипеда $ABCDA_1B_1C_1D_1$ по базису $a = \overline{AA_1}$, $b = \overline{AB}$, $c = \overline{AD}$; (в) Пусть $a = \overline{DA}$, $b = \overline{DB}$, $c = \overline{DC}$, тогда $AB \perp CD \Leftrightarrow ((b-a) \cdot c) = 0 \Leftrightarrow (a \cdot c) = (b \cdot c)$; (г) см. пример 20; (д) пусть O центр вписанного в тетраэдр шара, касающегося его граней в точках K, L, M и N, рассмотреть скалярный квадрат суммы радиус-векторов этих точек, точное равенство справедливо только когда противоположные рёбра попарно равны; (е) \square теорему косинусов для тетраэдра; (ж) Пусть O центр описанной сферы, тогда сумма радиус-векторов вершин относительно O равна нулю; (3) Если M точка пересечения медиан грани ABC тетраэдра ABCD, то $\overline{DM} = \frac{1}{3}(\overline{DA} + \overline{DB} + \overline{DC})$; (и) \square задачу 1. 11.

- **2. 43.** ♣ Пусть a, b, c, d радиус векторы вершин A, B, C и D относительно произвольной точки отсчета O, тогда условие означает, что $(a \cdot b) + (c \cdot d) = (a \cdot c) + (b \cdot d) = (a \cdot d) + (b \cdot c)$; (а) Пусть O центр описанной сферы, точка H конец вектора $\overline{OH} = \frac{1}{2}(a + b + c + d)$, тогда |a| = |b| = |c| = |d|, показать, что вектор $\overline{DH} = \frac{1}{2}(a + b + c d)$ ортогонален векторам $\overline{AB} = b a$ и $\overline{AC} = c a$; (б) $\overline{OM} = \frac{1}{4}(a + b + c + d) = \frac{1}{2}\overline{OH}$.
- **2. 44.** ♣ Разложить указанные векторы по векторам $a = \overline{DA}, b = \overline{DB}, c = \overline{DC}$.
- 2. 45. ♣ см. ♣ к задаче 2. 33.
- 2. 46. ♣ □ задачу 2. 20.
- **2. 47.** (a) 108; (б) 841; (в) 4356; (г) 1800.
- **2.48.** 0.
- **2. 49.** (а) не изменится; (б) умножится на λ^2 ; (в) и (г) не изменится.
- **2.50.** 0 **4** векторы p_1, p_2 и p_3 компланарны.
- **2.51.** (a) $\sqrt{\frac{19}{3}}$; (б) $\frac{3}{2\sqrt{7}}$.
- **2.52.** $-\frac{1}{2}(\alpha^2 + \beta^2 + \gamma^2)$.
- **2.53.** d = xa + yb + zc, где $x = \frac{m\sin^2\alpha + nr + kq}{\Delta}$, $y = \frac{mr + n\sin^2\beta + kp}{\Delta}$, $z = \frac{mq + np + k\sin^2\gamma}{\Delta}$, $p = \cos\beta\cos\gamma \cos\alpha$, $q = \cos\alpha\cos\gamma \cos\beta$, $r = \cos\alpha\cos\beta \cos\gamma$, $\Delta = 1 + 2\cos\alpha\cos\beta\cos\gamma \cos^2\alpha \cos^2\beta \cos^2\gamma$.
- **2.54.** $\cos \varphi = \frac{a^2 + d^2 b^2 f^2}{2ce}$ \clubsuit \Box теорему косинусов для тетраэдра.
- **2.55.** $2\sqrt{15}$.
- **2. 56.** $3\sqrt{7}$ \clubsuit \Box задачу 2. 2.(г) .
- 2. 57. 24 ♣ □ задачу 2. 2.(в).
- **2.58.** ♣ Разложить указанные векторы по векторам $a = \overline{DA}, b = \overline{DB}, c = \overline{DC}$.
- **2.59.** \clubsuit \sqsupset задачу 2.58. Точное равенство только когда ABCD параллелограмм.
- **2. 60.** \clubsuit Пусть $a = \overline{OA}, b = \overline{OB}, c = \overline{OC},$ тогда $\overline{OD} = a + c b$ и $a^2 = b^2 = c^2 = R^2.$
- **2.61. 4** Пусть a, b и c единичные векторы, направленные по рёбрам трехгранного угла, тогда векторы (a+b), (a+c) и (b+c) направлены по

биссектрисам его плоских углов, а векторы (a-b), (a-c) и (b-c) направлены по биссектрисам смежных углов.

- **2. 62. 4** Пусть $a = \overline{OA}$, $b = \overline{OB}$, $c = \overline{OC}$, тогда равенство трех указанных отрезков означает, что $(a+b-c)^2 = (a-b+c)^2 = (-a+b+c)^2$, откуда $(a \cdot b) = (a \cdot c) = (b \cdot c)$.
- **2. 63. 4.** Пусть a, b, c, d радиус-векторы вершин A, B, C и D относительно центра описанной сферы, тогда условие означает, что вектор $\frac{1}{2}(a+b-c-d)$ ортогонален векторам (a-b) и (c-d), а вектор $\frac{1}{2}(a+c-b-d)$ ортогонален векторам (a-c) и (b-d), откуда $(a \cdot b) = (c \cdot d), (a \cdot c) = (b \cdot d), (a \cdot d) = (b \cdot c)$.
- **2. 64.** $\operatorname{arccos}\left(-\frac{1}{3}\right)$ **4.** Пусть a, b, c и d единичные вектора, направленные по данным лучам, и $d = \alpha a + \beta b + \gamma c$, умножить это разложение скалярно на каждый из этих четырех векторов.
- **2. 65.** $\overline{OD} = \frac{1}{\alpha + \beta + \gamma} \left(\alpha \cdot \overline{OA} + \beta \cdot \overline{OB} + \gamma \cdot \overline{OC} \right)$, где $\alpha = b^2 c^2$, $\beta = a^2 c^2$, $\gamma = a^2 b^2$.
- **2. 66.** Рассмотреть скалярный квадрат суммы единичных векторов, направленных по этим лучам.
- 2. 67. ♣ См. ♣ к задаче 2. 33.
- **2. 68.** ♣ Пусть a, b и c радиус-векторы вершин A, B и C относительно центра описанной окружности O, тогда |a| = |b| = |c| = R, $\overline{CK} = \frac{1}{2}(a+b)-c$, $\overline{OE} = c + \lambda(\frac{1}{2}(a+b)-c)$, и условие $\overline{OE}^2 = R^2 \Rightarrow 2\lambda(\frac{1}{2}((a \cdot c) + (b \cdot c)) c^2) + \lambda^2(\frac{1}{2}(a+b)-c)^2 = 0 \Rightarrow AC^2 + BC^2 = (a-c)^2 + (b-c)^2 = 4R^2 2(a \cdot c) 2(b \cdot c) = 2\lambda(\frac{1}{2}(a+b)-c)^2 = 2CK \cdot CE$.
- **2. 69.** Пусть a, b, c, d радиус-векторы вершин A, B, C и D относительно центра O описанной сферы радиуса R, тогда $\overline{OE} = d + \lambda \left(\frac{1}{3} (a + b + c) d \right)$ и $\overline{OE}^2 = R^2$.
- **2.70.** 5 ♣ Диагонали граней образуют между собой углы 60°.
- **2.71.** $2\sqrt{55}$.
- **2.72.** ♣ Пусть тетраэдр построен на векторах p, q и r, тогда |p-q|=|r|, |p-r|=|q|, |q-r|=|p|. Искомый параллелепипед построен на векторах a, b и c таких, что b+c=p, a+c=q, a+b=r. Выразить a, b, c через p, q, r и показать, что $(a \cdot b) = (a \cdot c) = (b \cdot c) = 0$.
- **2.73. 4** Пусть тетраэдр построен на векторах p, q и r, тогда $(p \cdot q) = (p \cdot r) = (q \cdot r)$. Искомый параллелепипед построен на векторах

 $m{a}, \ \ m{b}$ и $\ \ m{c}$ таких, что $\ \ m{b}+m{c}=m{p}, \ m{a}+m{c}=m{q}, \ m{a}+m{b}=m{r}$. Показать, что $\ \ |m{a}|=|m{b}|=|m{c}|$.

К главе 3.

3.1. (a)
$$p\{-8, 21, 10\}$$
; (b) $q\{82, -14, 95\}$.

3. 2.
$$\pm \frac{1}{\sqrt{393}} \{-4; 16; 11\}$$
.

3.3.
$$S = \frac{1}{2}\sqrt{62}$$
.

3.4.
$$S = 231$$
.

3. 6. (a)
$$V = \frac{11}{6}$$
; (б) $= \frac{1}{2}\sqrt{93}$; (в) $h = \frac{11}{\sqrt{93}}$; (г) $\arcsin \frac{11}{6\sqrt{7}}$; (д) $\frac{19}{3\sqrt{26}}$.

3.7.
$$114\lambda$$
.

3.8.
$$arctg k$$
.

3.9.
$$(a \times b)^2 = a^2 \cdot b^2 \cdot \sin^2(a \wedge b)$$

3. 10.
$$\pm 10\sqrt{3}$$
.

3. 11.
$$-15\sqrt{2}$$

3. 12.
$$-i-4j+6k$$
.

3. 14.
$$C_1(0;6;1), D_1(-1;0;2), S_1 = \sqrt{819}; C_2(0;6;5), D_2(-1;0;6), S_2 = \sqrt{603}.$$

3. 15.
$$C_1(2;4;0)$$
 $D(4;7;6)$, $C_2(\frac{152}{13};-\frac{32}{13};0)$, $D_2(\frac{178}{13};\frac{7}{13};6)$, $S=49$.

3. 17.
$$C(3;0;-7)$$
, $D(0;5;0)$, $S=\sqrt{486}$.

3. 18. (a)
$$V = 9$$
; (б) $S = 6\sqrt{3}$; (в) $h = \frac{3}{2}\sqrt{3}$; (г) $= \frac{3}{2}\sqrt{3}$.

3. 19. (a)
$$\lambda \in \{2; \frac{1}{7}\}$$
 (б) $\lambda \in (\frac{1}{7}; 2)$; (в) $\lambda \in (-\infty; \frac{1}{7}) \cup (2; +\infty)$.

3. 20.
$$\lambda \in \{-3; \frac{3}{2}\}.$$

3. 21.
$$\lambda \in \{4; \frac{4}{13}\}.$$

3.23.
$$\lambda = -2$$
.

3.24.
$$\alpha = 5$$
.

3. 25.
$$\alpha = -2$$
.

3. 26.
$$(1 - \alpha\beta\gamma)V_0$$
.

3. 27.
$$S_{ABC} = \frac{1}{2} \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$
.

3.28. (a)
$$c(a \cdot b) - a(b \cdot c)$$
; (b) $a^2b - (a \cdot b)a$; (b) $b(a \cdot c) - a(b \cdot c)$.

3. 29. Векторы
$$a, b$$
 и c ортогональны вектору n .

3.30.
$$a \parallel c$$
 или $(a \cdot b) = (b \cdot c) = 0$.

- 3.31. r = -(p+q).
- **3. 32. 4** Показать, что $[a \times b] = 0$.
- **3. 33. 4** Умножить левую и правую часть данного равенства скалярно на вектор r.
- **3.34.** |a| = |b| = |c| = 1, $a \perp b \perp c \perp a$.
- **3. 35.** $|(pqr)| = |p| \cdot |q| \cdot |r| \cdot \sin \alpha \cdot \sin \beta$, где $\alpha = (p^q)$, β угол между вектором r и плоскостью векторов p и q. Точное равенство только если $\alpha = \beta = 90^\circ$.
- **3. 36. 4** Показать, что $[\overline{CA} \times \overline{CB}] = [(a-c) \times (b-c)] = 0$.
- **3. 37.** ♣ Вычислить $(n \cdot \overline{AB}) = (n \cdot (b a))$ и $(n \cdot \overline{AC})$.
- 3. 38. и 3.39. ♣ □ формулу 3.7.
- 3. 41. ♣ □ задачу 3. 40.
- 3.42. ((a+b)(b+c)(c+a)) = 2(abc).
- 3. 43. $V_{ABCD} = \frac{2S_{ABC} \cdot S_{ABD} \cdot \sin \varphi}{3|AB|}$.
- **3. 44. ♣** (а) см. задачу 3. 39(а); (б) разложить определитель по первой строке и □ задачу 3. 44(а) и 3. 39(е).
- **3. 46.** Если a = b = 0, то x любой вектор; если $a \neq 0$ и $(a \cdot b) = 0$, то $x = \frac{1}{a^2}[b \times a] + \lambda a$, $\lambda \in \mathbb{R}$; в остальных случаях решений нет.
- **3. 47.** При a=b=c=d=0 или $a^2+b^2>0$ и $(a \cdot c)=(b \cdot d)$, $(b \cdot c)=-(a \cdot d)$. Если a=b=c=d=0, то x,y любые векторы. Если $a^2+b^2>0$, то $x=\frac{1}{a^2+b^2}([c\times a]+[d\times b])+\lambda a+\mu b \\ y=\frac{1}{a^2+b^2}([a\times d]+[c\times b])+\mu a-\lambda b \end{cases} \lambda,\mu\in\mathbb{R}.$
- **3.48.** (bcd)a + (adc)b + (abd)c + (acb)d = 0 **4** \Box задачу 3.39 (б).
- **3.49.** $d\{\alpha;\beta;\gamma\}$, где $\alpha=\frac{(bcd)}{(abc)},\ \beta=\frac{(adc)}{(abc)},\ \gamma=\frac{(abd)}{(abc)}$.
- **3.50.** $d = \frac{(a \cdot d)}{(abc)} p + \frac{(b \cdot d)}{(abc)} q + \frac{(c \cdot d)}{(abc)} r + \square$ задачу 3. 39(e).
- 3.51. $V = \frac{1}{6}abc\sqrt{1 + 2\cos\alpha\cos\beta\cos\gamma \cos^2\alpha \cos^2\beta \cos^2\gamma}.$
- **3.52.** \clubsuit \Box Пример 33, возвести в скалярный квадрат равенство $N_{ABC} = -(N_{ABD} + N_{ACD} + N_{BCD}).$

- 3. 53. ♣ □ задачу 3. 52.
- 3. 54. ♣ (а) Пусть a, b и c единичные векторы, направленные по рёбрам трехгранного угла, $(b^{\wedge}c) = \alpha$, $(a^{\wedge}c) = \beta$, $(a^{\wedge}b) = \gamma$. Тогда, согласно задаче 3. 38(б), $\cos\theta = \cos([a \times c]^{\wedge}[b \times c]) = \frac{([a \times c] \cdot [b \times c])}{|[a \times c]| \cdot |[b \times c]|} = \frac{c^2(a \cdot b) (a \cdot c)(b \cdot c)}{\sin\beta\sin\alpha}$. (б) пусть p, q, r единичные векторы, перпендикулярные граням трехгранного угла, и $(q^{\wedge}r) = \varphi$, $(p^{\wedge}r) = \psi$, $(p^{\wedge}q) = \theta$, тогда векторы $[q \times r]$, $[r \times p]$ и $[p \times q]$ сонаправлены векторам a, b и c соответственно $\Rightarrow \cos\gamma = \frac{([q \times r] \cdot [r \times p])}{|[q \times r]| \cdot |[r \times p]|} = \frac{(q \cdot r)(p \cdot r) r^2(p \cdot q)}{\sin\varphi \cdot \sin\psi}$, (в) \Rightarrow задачу 3. 38(a): $|(abc)| = |c(abc)| = |[[a \times c] \times [b \times c]]| = \sin\alpha \cdot \sin\beta \cdot \sin\theta$; аналогично, $|(abc)| = \sin\alpha \cdot \sin\gamma \cdot \sin\psi = \sin\beta \cdot \sin\gamma \cdot \sin\varphi$.
- 3. 55. ♣ □ задачу 3.54(а).
- 3. 56. ♣ □ задачу 3.54(б).
- **3.57.** \clubsuit \Box Пример 33, рассмотрев скалярный квадрат равенства $N_{ABC} + N_{ABD} + N_{ACD} + N_{BCD} = 0$, где $|N_{ABC}| = |N_{ABD}| = |N_{ACD}| = |N_{BCD}|$, доказать, что противоположные двугранные углы тетраэдра попарно равны, затем \Box задачу **3.55**.
- 3. 58. ♣ См. ♣ к задаче 3.57.
- **3. 59.** Рассмотреть тетраэдр, все грани которого равные треугольники с углами α , β и γ , и \square пример 33 и задачи 2.42(д) и 3.54.
- 3. 60. ♣ Указанное свойство аддитивно в том смысле, что если произвольный многогранник разрезать плоскостью на два других многогранника, для которых оно верно, то это свойство справедливо и для исходного многогранника;

 пример 33. Выпуклый многогранник можно разрезать на пирамиды, а каждую пирамиду составить из тетраэдров.