

Sommaire

- Introduction
- Schémas
- Modèles géométriques
 - Modèle 1
 - Modèle 2
 - Complexification
- Cinématique
- Dynamique
- Conclusion et améliorations possible
- Annexes

Introduction

• 1 Robot à câble, 2 élèves ingénieurs, 5 mois d'expertise

Robot à câble:

- Un cube (espace de travail)
- Un effecteur (plaque carrée en aluminium laminé)
- 4 poulies sur un plan

• <u>Tâches:</u>

- Mesure & prises de côtes sur le robot
- Définition d'un modèle et implémentation
- Comparaison essais/calculs

• Un travail en lien avec les autres groupes:

- IA pour entrainement
- Automatique pour commande
- Jeux avec robot pour déplacement

Figure 1: Robot à câble du Hall 3 des Ateliers du campus des Arts et Métiers de Paris (vu de profil)

Avantages	Inconvénients
Faible inertieRapideLarge espace de travail	CâblesDifficile à utiliserCommunication entre les moteurs

Schémas

Schéma des nominations

Hypothèses:

- Les câbles sont accrochés à d'une extrémité au centre des poulies et de l'autre, au point d'attache de l'effecteur.
- Les câbles sont toujours tendus

Figure 2: Schéma des nominations

Schémas

Schéma des dimensions

Dimension	Explication	Dimensions variables?
h_1	Hauteur 1, hauteur des poulies 1 et 3 par rapport au sol. Dimension	Non
h_2	Hauteur 2, hauteur des poulies 2 et 4 par rapport au sol.	Non
l_1	Longueur 1, longueur entre les pieds de la structure du robot à câbles.	Non
L	Longueur de la plaque de l'effecteur.	Non
ı	Largeur de la plaque de l'effecteur.	Non
λ_i	Longueur du câbles i.	Oui

Tableau 2: Tableau des dimensions du robot

Figure 3: Schéma des dimensions

Schémas

Schéma des bases et repères

Figure 4: Schéma des bases et repères

Modèle 1:

Fermetures géométriques

Hypothèses:

- Les câbles sont accrochés à d'une extrémité au centre des poulies et de l'autre, au point d'attache de l'effecteur.
- Les câbles sont toujours tendus

Figure 3: Schéma des dimensions

On obtient des équations pour chaque poulie :

$$X_e = \pm \lambda_i \sin(\theta_i) \pm \frac{1}{2} [l\cos(\phi_1) \pm L\sin(\phi_1)] \pm l_i$$

$$Y_e = \pm \lambda_i \cos(\theta_i) \pm \frac{1}{2} [\pm l\sin(\phi_1) \pm L\cos(\phi_1)] \pm h_i$$

Figure 5: Schéma pour le modèle 1 du robot

Ce qui nous donne finalement :

$$\begin{split} q_1 &= \frac{1}{r} \sqrt{ (-\frac{1}{2}(l\cos(\phi_1) + L\sin(\phi_1) - X_e + l_1)^2 + (+\frac{1}{2}(l\sin(\phi_1) - L\cos(\phi_1) + Y_e - h_1)^2 } \\ q_2 &= \frac{1}{r} \sqrt{ (-\frac{1}{2}(l\cos(\phi_1) - L\sin(\phi_1) - X_e + l_1)^2 + (-\frac{1}{2}(l\sin(\phi_1) + L\cos(\phi_1) - Y_e + h_2)^2 } \\ q_3 &= \frac{1}{r} \sqrt{ (-\frac{1}{2}(l\cos(\phi_1) - L\sin(\phi_1) + X_e)^2 + (-\frac{1}{2}(l\sin(\phi_1) + L\cos(\phi_1) + Y_e - h_1)^2 } \\ q_4 &= \frac{1}{r} \sqrt{ (-\frac{1}{2}(l\cos(\phi_1) - L\sin(\phi_1) + X_e)^2 + (\frac{1}{2}(l\sin(\phi_1) - L\cos(\phi_1) - Y_e + h_2)^2 } \end{split}$$

 q₁: position angulaire des moteurs (rad)

•
$$r = \kappa * \sqrt{e^2 + \frac{\rho^2}{2\pi}}$$

- κ : rapport de réduction des enrouleurs
- *e* : rayon des enrouleurs
- ρ : pas des enrouleurs

La commande donnée ici est un déplacement (500mm;500mm)

Modèle 2:

Suivi des points d'accroche

Centre de l'effecteur → Point d'accroche → Centre de la poulie

Hypothèses:

- Les câbles sont accrochés à d'une extrémité au centre des poulies et de l'autre, au point d'attache de l'effecteur.
- Les câbles sont toujours tendus


```
# Calcul de la Jacobienne
J = jacobian(X, Y, phi_1) # Jacobienne (d_rond L/ d_rond X); X = [x, y, phi_1) à l'instant courant
# Calcul de la pseudo inverse de la Jacobienne pour estimer variation de la position de la plaque
J_pseudo_inv = pinv(J.T @ J) @ J.T # Pseudo-inverse de la Jacobienne
dl = J @ target_move # Variation attendue des longueurs des câbles
delta_q = J_pseudo_inv @ dl # Variation de position à partir de la longueur des câbles attendues
```

- Position initiale (X_i, Y_i, ϕ_1)
- Position finale (X_f, Y_f, ϕ_{1_f})
- Données simulation $(step, V_{min}, nb_{etape}, \epsilon)$

- Pour i $\in [0, nb_{etape}]$, on a X_e, Y_e, ϕ_{1_e} .
- Calcul dx, dy, $d\phi_1$
- Calcul direction

- Calcul Jacobienne avec X_e, Y_e et ϕ_{1_a}
- Calcul variation des câbles attendues
- Calcul des positions des moteurs attendues avec la variation des câbles calculé
- Mises à jour des longueurs de câbles et des vitesses
- Condition d'arrêt

- Animations
- Plot
- Données de test

```
X \leftarrow delta_q[0]
Y += delta_q[1]
phi_1 += delta_q[2]
 rint("\nPosition : X = ", X, "Y = ", Y, "phi_1 = ", phi_1)
X_traj.append(X)
Y_traj.append(Y)
phi_traj.append(phi_1)
 Calcul de la nouvelle longueur et vitesse des câbles
l_curr = cable_lengths(X, Y, phi_1)
l_prev = l_traj[-1]
v = (l_curr - l_prev) / step # Vitesse estimée
v_traj.append(v)
1_traj.append(1_curr)
# Arrêt si on a atteint la position finale à avec une marge de [Valeur finale * epsilon/100] Valeur finale * epsilon/100]
tol = epsilon / 100
abs_tol_x = tol * max(1.0, abs(X_final))
abs_tol_y = tol * max(1.0, abs(Y_final))
abs_tol_phi = tol * max(1.0, abs(phi_1_final))
  abs(X - X_final) <= abs_tol_x and \
   abs(Y - Y_final) <= abs_tol_y and \
abs(phi_1 - phi_1_final) <= abs_tol_phi:</pre>
    print("\nArrêt à L'itération:", i, "\n")
```

La commande donnée ici est un déplacement (500mm;500mm)

Comparaison:

	Cable 1 (mm)	Cable 2 (mm)	Cable 3 (mm)	Cable 4 (mm)
Initialisation	956	1257	1055	1334
Simulation	1095	561	1753	1479
Mesure initiale	940	1310	1030	1330
Mesure finale	1090	630	1670	1450
Erreur	10,5	61	54	16,5

Position du centre de l'effecteur

Figure 8: Résultats des tests avec le modèle 2

Modèles géométriques-Complexification

Hypothèse:

Les câbles ne sont plus reliés au centre des poulies mais sortent tangentes à leurs rayons.

Modèles géométriques-Complexification

Figure 10: Schéma pour complexification du modèle

- Décomposition du câble en 3 segments pour aller de l'enrouleur à l'effecteur
- · Hypothèses:
 - $\Delta y \ll \Delta Y$
 - $\beta * R_p \ll \lambda'$
 - Le câble est vertical entre l'enrouleur et la poulie
- On calcule donc les 3 longueurs λ',
 λ" et λ" pour les sommer

Remarque : les hypothèses faites restreignent l'espace de travail

Cinématique

Relation Vitesses angulaires moteurs – Vitesses linéaires des câbles : $\dot{Q}_1 = R^{-1} * \dot{\Lambda}_1$

Relation Vitesses linéaires des câbles – Vitesse effecteur : $\dot{\Lambda}_1 = J(x) * \dot{X}_1$

Relation Vitesses angulaires moteurs – Vitesse effecteur: $\dot{Q}_1 = R^{-1} * J(x) * \dot{X}_1$

Paramètres:

 X_e, Y_e, ϕ_1 : Coordonnées de l'effecteur X_i, Y_i : Coordonnées de la poulie i a_i, b_i : Coordonnées point d'accroche i

Vecteurs:

 \dot{Q}_1 : Vecteur des vitesses angulaire des moteurs

 $\dot{\Lambda}_1$: Vecteur des vitesses linéaires des câbles

 \dot{X}_1 : Vecteur des vitesses de l'effecteur $(\dot{X},\dot{Y},\dot{\phi}_1)$

R: Vecteur des coefficients d'enroulement des enrouleurs et moteur

 j_i : Expression de la colonne i de la Jacobienne

$$\dot{J}_{i} = \begin{bmatrix} \frac{2X_{e} - 2X_{i} + 2a_{i}\cos(\phi_{1}) - 2b_{i}\sin(\phi_{1})}{2l_{i}} \\ \frac{2Y_{e} - 2Y_{i} + 2b_{i}\cos(\phi_{1}) + 2a_{i}\sin(\phi_{1})}{2l_{i}} \\ \frac{-2(b_{i}\cos(\phi_{1}) + a_{i}\sin(\phi_{1}))(X_{e} - X_{i} + a_{i}\cos(\phi_{1}) - b_{i}\sin(\phi_{1}))) - 2(a_{i}\cos(\phi_{1}) - b_{i}\sin(\phi_{1}))(Y_{e} - Y_{i} + b_{i}\cos(\phi_{1}) + a_{i}\sin(\phi_{1}))}{2l_{i}} \end{bmatrix}$$

Dynamique

Relation de Newton-Euler:

$$\begin{pmatrix} \sum f \\ \sum \tau \end{pmatrix} = M(\dot{x})\ddot{x} + C(x, \dot{x})\dot{x}$$

Hypothèses:

- Centres de masse et géométriques de l'effecteur confondus
- Pas de frottements

Dynamique de l'effecteur :

$$\begin{bmatrix} m_{tot} & 0 & 0 \\ 0 & m_{tot} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \cdot \ddot{\boldsymbol{x}} = -\boldsymbol{J}^T \cdot \boldsymbol{t} + \begin{bmatrix} 0 \\ -m_{tot} * g \end{bmatrix}$$

Dynamique du bloc moteur + enrouleur :

$$\tau_m = I_m \ddot{q} + F_f(\dot{q}) + R.t$$

Or on néglige les frottements et les 4 moteurs sont identiques :

$$\tau_m = I_m \ddot{q} + R.t$$

Equation finale	Direct	Inverse
$M(x).\ddot{x} = -J^T R^{-1} (\tau_m - I_m.\ddot{q}) + g(x)$	$\ddot{x} = J^+ R \ddot{q} + \dot{J}^+ R \dot{q}$	$\ddot{q} = R^{-1}(J\ddot{x} + \dot{J}\dot{x})$

Conclusion et améliorations possibles

- Modèle géométrique validé par l'expérimentation
- Modèle géométrique utilisable pour d'autres groupes (IA, automatique, jeux avec robot)
- Modèle cinématique utilisable
- Simulation facilement utilisable (commande en pas, animation, codes explicites, documentation)
- PJE très formateur (autonomie, recherches de nouveau modèle, tests, complexification, ...)
- Une documentation et un code disponible en ligne : https://github.com/Ngatam/geometry

Améliorations possibles	Description
Modèles en 3D	Modèle en 3D faisable en faisant du suivi de point (modèle 2)
Consigne de vitesse et test modèle cinématique	V_min dans la simulation peut être variable au cours du temps, utiliser ça pour une loi de vitesse / consigne en vitesse
Dynamique du robot	Les équations du modèle dynamique peuvent être implantées dans le code de la simulation après test sur le modèle cinématique

Itération

Itération

Itération

Itération

biration

Direction

