ÖSSZJEGYZET EA JEGYZET

```
1)

//Tömb monoton növekvő rendezése

A: T[n] == A/0: T[n] <- Otól indexelünk a tömbben

A/1: T[n] <- 1től indexelünk a tömbben

A[0..n) <- Otól n-ig indexelünk az n nincs benne

//Beszúró rendezés = Insertion Sort

5 2 714638

25 7 14638

257 1 4638

1257 4 638

12457 6 38

124567 3 8
```

1234567 8

12345678

(insertionSort stukk)

- -> n-1 db iteráció
- -> minimális idő n
- -> maximális absztrakt idő n + (n-1)*(n-2)/2
- -stabil, ha valami a helyén van nem mozgatja
- -optimális, ha előre rendezett a tömb

//Összefésülés=Mergesort

"oszd meg és uralkodj elv"

=> felosztjuk részekre és a részeket rendezzük sorba, majd a részeket rendezzük tovább

$\left(\operatorname{merge}\left(A:\mathfrak{T}[n]\;;\;u,m,v:\left[0n\right]\right)\right)$				
// sorted merge of $A[um)$ and $A[mv)$ into $A[uv)$				
$d:=m-u\;//\;d$ is the	$d:=m-u\ //\ d$ is the length of $A[um)$.			
$Z: \mathfrak{T}[d]$; $Z[0d]$) := A[um)			
// sorted merge of $Z[0d)$ and $A[mv)$ into $A[uv)$				
k := u // copy into A[k]				
j := 0; $i := m$ // from $Z[j]$ or $A[i]$				
$i < v \land j < d$				
A[i]	$\langle Z[j] \rangle$			
A[k] := A[i]	A[k] := Z[j]			
i := i + 1	j := j + 1			
k := k + 1				
j < d				
A[k] := Z[j]				
$k := k + 1 \; ; \; j := j + 1$				

(mergeSort stukk)

2)

//Gyorsrendezés=Quicksort

- => oszd meg és uralkodj elv
 - kiválasztunk egy pivot elemet

- részre bontás egyenlőt mindegyhova
- <- a kisebbeket balra, a nagyobbakat jobbra az
- a részeket rekúrzivan rendezi tovább a fenti lépések alapján
- az üres és az egyelemű tömbök a rekurzió alapesetei
- műveletigénye lineáris

(quickSort stukk)

mT(n)

AT(n) eleme omega(n log n)

MT(n) eleme omega(n^2)

//Vegyes gyorsrendezés

- a kisméretű tömbökre beszúró rendezést használunk <-hatékonyabb

3)

//Verem = stack

- LIFO = Last In First Out
- dinamikus tömbbel reprezentáljuk
- A.length a verem fizikai mérete
- T a verem elemeinek típusa

pl. A/1: T[]

- tegyük fel h a read a kurrens inputról olvas be és a write a kurrens outputra ír ki

```
\begin{array}{|c|c|c|c|}\hline \textbf{Stack}\\ \hline -A/1:\mathcal{T}[] \ //\ \mathcal{T} \ \text{is some known type} \ ; \ A.length \ \text{is the physical}\\ \hline -\text{constant } m0:\mathbb{N}_{+}:=16 \ //\ \text{size of the stack, its default is } m0.\\ \hline -n:\mathbb{N}\ //\ n\in 0..A.length \ \text{is the actual size of the stack}\\ \hline +\text{Stack} \ (m:\mathbb{N}_{+}:=m0) \ \{A:=\mathbf{new}\ \mathcal{T}[m]:n:=0\} \ //\ \text{create empty stack}\\ \hline +\sim \operatorname{Stack}() \ \{\ \mathbf{delete}\ A\ \}\\ \hline +\operatorname{push} \ (x:\mathcal{T})\ //\ \text{push}\ x \ \text{onto the top of the stack}\\ \hline +\operatorname{pop}():\mathcal{T}\ //\ \text{remove and return the top element of the stack}\\ \hline +\operatorname{top}():\mathcal{T}\ //\ \text{return the top element of the stack}\\ \hline +\operatorname{isFull}():\mathbb{B}\ \{\mathbf{return}\ n=A.length\}\\ \hline +\operatorname{isEmpty}():\mathbb{B}\ \{\mathbf{return}\ n=0\}\\ \hline +\operatorname{setEmpty}()\ \{n:=0\}\ //\ \text{reinitialize the stack}\\ \hline \end{array}
```


(verem műveletek stukk)

mT(n) eleme omega(1)

MT(n) eleme omega(n)

AT(n) eleme omega(1)

//Sor = queue

- FIFO = Firs In First Out
- nullától indexelt dinamikus tömb
- Z.length a verem fizikai mérete
- T a verem elemeinek típusa

pl. Z: T[]

(sor stukk)

```
MT(n) eleme omega(n)
AT(n) eleme omega(1)
//Láncolt listák = linked lists
- véges sorozatok tárolására alternatív megoldás
lineáris adatszerkezet = a tömbök és láncolt listák véges sorozatokat tárolnak <-
lineáris struktura
- lehetnek egyirányú és kitirányú listák
//Egyirányú listák = one way/singly linked lists
- egyszerű <- S1L = Simple 1way List
- fejelemes <- H1L = Header node + 1way List
- két része van az elemeinek
      - a bal oldali az érték
      - a jobb oldali egy pointer ami a következő elem értékére mutat
//Egyszerű egyirányú listák S1L
L1->key
            <- az értékre mutat
L1->next
            <- a következő elemre mutat
                   <- a következő elem értékére mutat
L1->next->kev
4)
//Fejelemes listák H1L
- tartalmaz egy nulladik úgynevezett fejelemet
- a fejelem key mezője definiálatlan
- az üres H1L listának is van fejeleme
//Egyirányú listák kezelése
- memória és futási idő szempontjából egyszerű listák használata javasolt
```

- a fejelem helyett van amikor érdemesebb végelemet generálni

//Dinamikus memóriagazdálkodás new és delete utasítások használata

//Rendezések H1Lre

$(\operatorname{merge}(L1, L2 : E1^*) : E1^*)$				
$L1 \rightarrow key \leq L2 \rightarrow key$				
L := t := L1	L := t := L2			
$L1 := L1 \rightarrow next$	$L2 := L2 \rightarrow next$			
$L1 \neq \otimes \wedge L2 \neq \otimes$				
$L1 \rightarrow key \leq L2 \rightarrow key$				
$t := t \rightarrow next := L1$	$t:=t \rightarrow next:=L2$			
$L1 := L1 \rightarrow next$	$L2 := L2 \rightarrow next$			
$L1 \neq \emptyset$				
$t \rightarrow next := L1$	$t \rightarrow next := L2$			
return L				

- a cut levágja az első n elemet

//Ciklikus egyirányú listák

- az utolsó listaelem nextje nem null, hanem visszamutat az első elemre ha fejelemes lista akkor a fejelemre mutat
- ha üres a fejelemes lista akkor önmagára mutat

//Kétirányú listák = two way/doubly linked lists

- egyszerű <-S2L = Simple 2way List
- ciklikus <-C2L = Cyclic 2way List
- next és prev pointerek
- //Egyszerű kétirányú lista S2L
- kevésbé használt mert a beszúrás más ha előre szúród vagy ha középre vagy ha hátra

//Ciklikus kétirányú lista C2L

- lehet fejelemes vagy anélküli, alapértelmezésben maradjon fejelemes<-könnyebben használható
- műveletei: precede, follow, unlink

//Rendezések C2Lre

 $H \to [/]$ —[5]—[2]—[7]—[/] $\leftarrow H$ a $\langle 5; 2; 7 \rangle$ sorozat egy lehetséges ábrázolása, $H \to [/]$ —[/] $\leftarrow H$ a $\langle \rangle$ üres sorozaté.

	$(\overline{\operatorname{setEmpty}(H: \operatorname{E}2^*)})$		
	$p := H \rightarrow prev$		
	$p \neq H$		
	$\operatorname{unlink}(p)$ $\operatorname{\mathbf{delete}} p$		
	$p := H \to prev$		

$$\begin{array}{l} H \to [/] - [/] \leftarrow H \\ H \to [/] - [5] - [/] \leftarrow H \\ H \to [/] - [5] - [2] - [/] \leftarrow H \\ H \to [/] - [5] - [2] - [7] - [/] \leftarrow H \end{array}$$

$$\begin{split} H \to [/] &- \underline{[5]} - \underline{[2]} - \underline{[7]} - \underline{[2]} - \underline{[/]} \leftarrow H \\ H \to [/] - \underline{[2]} - \underline{[5]} - \underline{[7]} - \underline{[2]} - \underline{[/]} \leftarrow H \\ H \to [/] - \underline{[2]} - \underline{[5]} - \underline{[7]} - \underline{[2]} - \underline{[/]} \leftarrow H \\ H \to [/] - \underline{[2]} - \underline{[2]} - \underline{[5]} - \underline{[7]} - \underline{[/]} \leftarrow H \end{split}$$

5)

//Függvények aszimptomikus viselkedése

- \Rightarrow f fg akkor aszimptotikusan pozitív (=AP) fg, ha elg nagy n-re f(n) > 0
- AP fgk nagyságrendje = log n < n < n log n < n^2 < n^2 log n < n^3

- tulajdonságok: szimmetria, felcserélt szimmetria, tranzitivitás, reflexivitás, irreflexivitás

//NxN értelmezési tartományú fg

g: NxN -> R

fg AP, ha elég nagy n és elég nagy m értékre g(n,m)>0

GYAK JEGYZET

1)

//polinom helyttesítés

- n+1 mérető tömb, ha n-edfokú polinomunk van

A/1:T[n] <-1től indexelünk a tömbbe

A:T[n] <-0tók indexelünk

A.length <-tömb hossza

it(n) <-ciklusiterációk

S(n) <-szorzások

Ö(n) <-összeadások

pl.
$$p(x) = 3x^3 + 2x^2 - x + 5$$

$$\Rightarrow$$
 Z = [5, -1, 2, 3]

0 1 2 2 <-indexek

Ordo = O(g) <- olyan f függvényeket tartalmaz amelyre létezik c > 0, és elég nagy eleme n-re c*g(n) > f(n)

Omega = omegajel(g) <- olyan f függvényeket tartalmaz amelyre létezik d > 0, és elég nagy eleme n-re d*g(n) < f(n)

//Buborékos rendezés

- megnézi az első kettőt és ha az első nagyobb kicseréli
- célja hogy a legnagyobb elem hátra kerüljön
- mindig eggyel kevesebb elemet veszünk
- a cserék száma megegyezik az inverziókkal
- mCs(n) <- minimális csere szám
- MCs(n) <- maximális csere szám

ACs(n) <- átlagos csere szám

Bubor	ék pél	da: Csere			
3	5	2	4	1	0
3	5 🛑	→ 2	4	1	1
3	2	5 🛑	→ 4	1	1
3	2	4	5 🝁	→ 1	1
3	2	4	1	5	1. menet vége, 5 a helyén van
3 🛑	→ 2	4	1	5	1
2	3	4	1	5	0
2	3	4 💠	→ 1	5	1
2	3	1	4	5	2. menet vége
2	3	1	4	5	0
2	3 🛑	→ 1	4	5	1
2	1	3	4	5	3. menet vége
2 👍) 1	3	4	5	1
1	2	3	4	5	4. menet vége, rendezett a tömb

Csere összesen: 7 Összehaonlítás összesen: 10

(buborék példa)

JavítottBuborék(A:T[])

(javított buborék stukk)

//Maximum kiválasztásos rendezés

- az első elem lesz automatikusan a maximum
- végigmegy és összehasonlítja az elemeket a maximummal, ha nagyobb akkor a nagyobb lesz a maximum
- a végén a maximum helyet cserél az utolsó elemmel
- következő futásoknák a végézől mindig -1 elemmel cserélődik ki
- ha saját magával cserélünk valamit, azt is cserének számolja

(maximum kiválasztás példa)

MaxKivRend(A/1:T[n])Hányszor fut le (A.length=n)i=A.length downto 2nind := 1n-1j=2 to in+n-1+...+2A[j] > A[ind]n-1+n-2+...+1ind:=jskipCsere(A[ind],A[i])n-1

(maximum kiválasztás stukk)

2)

//Nevezetes nagyságrendek

konstans idejű <- verem vagy sor bármely műveletre

logaritmikus algoritmus <- bináris keresés pl. hw1

lineáris algoritmus <- maximum kiválasztás

n*log n algoritmus <- összefésülő rendezés

n^2 algoritmus <- beszúró rendezés

n^3 algoritmus <- mátrixszorzás

2^n algoritmus <- Hanoi-tornyai (=korongok/kövek átpakolása

egyesével, kisebbre nem kerülhet nagyobb)

n! algoritmus <- utazóügynök-probléma

//Beszúró rendezés

- első elem fix
- sorra veszi az elemeket, hogy az első elem előtt vagy mögött vannak, majd beszúrja

(insertionSort példa)

Stabil rendezés = ha több egyforma elem van, a balra lévő elem bal oldalt marad pl. 1 5 b2 3 j2 => 1 b2 j2 3 5

//Összefésülő rendezés

- szétszedi az elemeket fele fele
- majd azt is fele fele
- addig megy a fele fele, amíg már csak 1 vagy 2 elemű részek maradnak
- majd ezeket a részeket összehasonlítja külön külön
- majd lépésenként összevonja a részeket és összehasonlítja azokat is

//Verem

- folyamatosan dobálok bele elemeket
- mindig a legutoljára bekerült elemet vesszük ki

3)

LIFO = Last In First Out

push <- új elem

pop <- visszaadja a legutoljára bekerült elemet, törli a veremből

top <- visszaadja a legutoljára bekerült elemet és NEM törli

read() <- beolvas

//Lengyel forma = aritmetikai kifejezés postfix alakja

- infix alak pl. A + B, A + B * C
- prefix alak pl. +AB, +A*BC <- az operátor legelől van
- postfix alak pl. AB+, ABC*+ <- az operátor leghátul van
- hatványozás jobbról balra, minden mást balról jobbra

Feladat:
$$(ab+cd-*f g h-^{\prime})$$
; $+(-i)=$
A) $(a+b)*(c-d)/f^{(g-h)+j-l-i}$ kifejezés l felírni, még nem az algoritmust használva.)

B) Értékadó operátor hatása, Hova illik az értékadó op
$$x = (a + b) * (c - d) / f^(g - h) + j - l - i$$

operandust kiír, ha operátor bekerül a verembe, ha nyitó zárójel bekerül a verembe, ha csukó zárójel kiírni mindent a nyitó zerójel fölött

//Lengyel forma kiértékelés <-visszafele végigmegy az algoritmuson

//Quick sort = Gyors rendezés

- legrosszabb esetben n^2
- várható érték: nlogn

- véletlenszerűen kiválasztjuk a pivot elemet, elintézzük hogy minden nála kisebb egyenlő balra és minden nagyobb egyenlő jobbra kerüljön, majd rekúrzívan folytatódik a rendezés

```
4)
Feladat
x=a+(-b^c^2+d^e)/((f+g)^h/-k)-p^z
lengyel forma: xab-c2^^de*+fg+h*k-//+pz*-=
//Gyorsrendezés/Quick Sort
-random választ pivot elemet <- !!ZHn az első elem legyen
pl.
A=[24,9,2,19,10,28]
x=24 [28,9,2,19,10,] \Rightarrow [9,2,19,10,24,28] \Rightarrow x=9 [10,9,2.] \Rightarrow [2,9,10,19]
=>[2,9,10,19,24,28]
//Egyirányú lista
- pointerekkel lehet bejárni
- elem elérése: p->key, p->next
- új listaelem: p=new E1
- elem felszabadítása: delete p
- fajtái:
       - egyszerű egyirányú láncolt lista(SL1): ha L1 null pointer, a lista üres,
másképp rámutat az első elemre
       - fejelemes egyirányú láncolt lista(HL1): van egy L2, ami null pointer
mindig van egy eleme, ha üres akkor is
- műveletei: keresés, beszúrás, törlés
5)
//Fejelemes kétirányú ciklikus litásák (C2L)
```

prev <- az aktuális elemet megelőző elem

next <- a következő elem

- műveletei:

precede: listaelem beszúrása egy másik listaelem elé

follow: beszúrás a listaelem mögé

unlink: megadott listaelem kifűzése a listából

6)

//Sor

- FIFO

- egyirányú lista

KVÍZ JEGYZET

I.

1) IGAZ

buborékrendezés átlagos futási ideje teta n^2 (körben mínusz) a buborékrendezésbe a cserék száma egyenlő az inverziók számával

2) Tömb: [15,19,6,8,11]

10 összehasonlítást végez a buborékrendezés: 4 + 3 + 2 + 1

a cserék száma 6

3) minimumKiválasztás stukk

i = 1 to n-1ind := 1j = n-1 downto iA[j] < A[ind]

skip

4) Tömb: [12,6,9,8,10,1]

a tömb a maximum kiválasztás 3. menetének lefutása után: 1,6,8,9,10,12

II.

1) IGAZ

A beszúró rendezés helyben rendező algoritmus.

Az összefésülő rendezés több részfeladatra osztja a rendezést és azokat rekúrzívan oldja meg.

A vermek minden műveletének költsége teta 1

2) Beszúró rendezés, Tömb: [24,9,2,10,19,28,24,12]

kezdeti rendezett résztömb: A[1..1] = 24

- 2. menet után rendezett résztömb: A[1..3] = 2,9,24
- 5. menet után rendezett résztömb: A[1..6] = 2,9,10,19,24,28
- 2. menetben az összehasonlítások száma: 2, mozgatások száma 4
- 5. menetben az összehasonlítások száma: 1, mozgatások száma 0
- 3) Összefésülő rendezés, Tömb: [36,27,12,24,32,15,22,35,10]

rekúrzív felbontások

- 27,36
- 12,24
- 15,32
- 10,35
- 10,22,35
- 10, 15, 22, 32, 35
- 10,12,15,22,24,27,32,35,36
- 4) Verem

HelyesZárójelezés(): B

$$A => x = '(' \lor x = '[' \lor x = '{}']'$$

 $B \Rightarrow v.push(x)$

 $C \Rightarrow (v.top() = '(' \land x=')') \lor (v.top() = '[' \land x=']')$

D => return false

 $E \Rightarrow v.pop()$

F => return v.isEmpty()

III.

1) Igaz

lengyel forma egy aritmetikai kifejezés postfix alakja a gyorsrendezés egy randomizált algoritmus

2) lengyelforma kiértékelés stukk

lengyel_kiertekeles(S)

V: Stack; x:=read(S)

V.push(x)

x:=read(\$)
write(V.pop())

IV.

1) Igaz quicksortra

A quicksort oszd meg és uralkodj elvű

A tengely kiválasztása és a részekre bontás mindig lineáris időben fejeződik be A quicksort particionáló eljárása közben a tengellyel egyenlők a tengely elé, és mögé is kerülhetnek

A particionálás egy-elemű résztőmbre nem hajtódik végre

2) befűzés r-t p mögé

 $(*r).next:=p \rightarrow next; (*p).next:=r;$

 $r\rightarrow next:=p\rightarrow next; p\rightarrow next:=r;$

3) Igaz S1L-re

A lista utolsó elemének elérése $\theta(n)$, ahol n a lista elemszáma p→next:=p→next→next; hatása: kifűzi a p utáni elemet a listából Ha a lista egy p című eleme elé szeretnénk befűzni egy új elemet, akkor annak műveletigénye O(n), ahol n a lista elemszáma

4) Gyorsrendezés, Tömb: [8,7,13,6,11,3,1,9,4] (első elem=pivot) 4,7,6,3,1,+8,11,9,13 1,3,+4,7,6 +1,3 6,+7 9,+11,13 <- összehasonlítások száma 16

5) Első elem átfűzése leghátra

&L: E1*

$$L = 0 v L - next = 0$$

L := L->next

q->next != 0

q ->next := p $p \rightarrow next := 0$

٧.

1) metódusok

precede(q,r:E2*) = q beszúrása r elé follow(p,q:E2*) = q heszúrása p mögé unlink(q:E2*) = q kifűzése a listából

2) melyik művelet

$$p := q \rightarrow prev \; ; \; r := q \rightarrow next$$

$$p \rightarrow next := r \; ; \; r \rightarrow prev := p$$

$$q \rightarrow prev := q \rightarrow next := \mathbf{this}$$

⇒ unlink(q:E2*)

3) melyik művelet

$$r := p \rightarrow next$$

$$q \rightarrow prev := p \; ; \; q \rightarrow next := r$$

$$p \rightarrow next := r \rightarrow prev := q$$

⇒ follow(p,q:E2*)

4) melyik művelet

$$p := r \rightarrow prev$$

$$q \rightarrow prev := p \; ; \; q \rightarrow next := r$$

$$p \rightarrow next := r \rightarrow prev := q$$

⇒ precede(q,r:E2*)

5) C2L hányszor szerepel és törlés SearchAndDelete(#L:E2*,k:N) :N

p:= @
c:=0

d

p->key=k
c:=c+1

ß

§

t

P

return c

(üres)

p := L->next

p != L

r:=p->next
unlink(p)
delete(p)
p:=r

p:=p->next

	Unio(L1: E2*, L2: E2*)	
	p := L1->next	
	q := L2->next	
	p≠L1∧q≠L2	
p⇒key < q⇒key	p->key = q->key	p->key > q->key
	r := q->next	r := q->next
	q->prev->next := q->next	q->prev->next := q->next
	q->next->prev := q->prev	q->next->prev := q->prev
n :- n boost	delete q	p->prev->next := q
p := p->next	q := r	q->prev := p->prev
	p := p->next	p->prev := q
		q->next := p
		q := r
	q ≠ L2	
L1->prev->next := L2->next		
L2->next->prev := L1->prev		
L2->prev->next := L1		skip
L1->prev := L2->prev		_
L2->next := L2->prev := L2		

6) IGAZ

a piros téglalap utasításai helyettesíthetők az unlink(q) utasítással

7) IGAZ

a kék téglalap utasításai helyettesíthetők a precede(q,p) utasítással

8) IGAZ

a kék téglalap utasításai helyettesíthetők a follow(p->prev, q)

9) HAMIS

a sárga téglalap utasításai helyettesíthetők a follow... <-doesn't matter hamis

10) mT(n,m) és MT(n,m)

ha L2 minden eleme nagyobb L1 legnagyobb eleménél: Theta(n) ha L2 minden eleme kisebb L1 legkisebb eleménél: Theta(m) MT(n,m) = Theta(n+m)

11) hibás sorműveletek

Q.rem(x) x:=Q.top()

MINTAZH

1. feladat

Rendezd a megadott tömböt a beszúró rendezés segítségével, majd válaszolj a következő kérdésekre. Input: [86,29,90,31,47,91,20,40]

- (a) Hány összehasonlítás és hány mozgatás történt a 3. iterációban?
- (b) Melyik iterációban történt pontosan 6 mozgatás?
- (c) Összesen hány összehasonlítást végzett az algoritmus?
- (d) Add meg a tömb tartalmát a 4. iteráció végén.

(1)

- a) 3 összehasonlítás, 2 mozgatás
- b) 6. iterációban
- c) 20 összehasonlítás
- d) 29,31,47,86,90

2. feladat

Rendezd gyorsrendezéssel az [5;2;7;1;6;4;8;3] tömböt! Feltesszük, hogy a particionálás minden esetben az aktuális résztömbelső elemét választja tengelynek. Add meg sorban a partition(A,p,r) segédfüggvény hívásai által kiszámolt résztömböket, az elemeik felsorolásával, a tengelyt + előjellel különböztetve meg!

- (2) Tömb: [5,2,7,1,6,4,8,3] 2,1,4,3,+5,7,6,8 1,+2,4,3 3,+4 6,+7,8
- (3) $x = -x^2 + 5 * k/(y z * 3 + s)^x^2 b * d w$ lengyel forma: $xx-2^5k*yz3*-stx2^*/+bd*-w=$