Colley 6.2.4, 6.2.13, 6.3.1, 6.3.25, 7.2.1, 7.2.14, 7.3.4 T/F 6, 10, 8

Colley 6.2.4 Verify Green's theorem for the given vector field

$$\mathbf{F} = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$$

and region D by calculating both

$$\oint_{\partial D} M \, dx + N \, dy$$
 and $\iint_{D} (N_x - M_y) dA$

where $\mathbf{F} = 2y \mathbf{i} + x \mathbf{j}$ and \mathbf{D} is the semicircular region $x^2 + y^2 \le a^2$, $y \ge 0$.

Colley 6.2.13 Evaluate $\oint_C (x^4y^5 - 2y) dx + (3x + x^5y^4) dy$, where *C* is the oriented curve pictured in Figure 6.29.

Figure 6.29 The oriented curve C of Exercise 13.

Colley 6.3.1 Consider the line integral $\int_C z^2 dx + 2y dy + xz dz$.

- (a) Evaluate this integral, where C is the line segment from (0,0,0) to (1,1,1).
- (b) Evaluate this integral, where C is the path from (0,0,0) to (1,1,1) parameterized by $\mathbf{x}(t) = (t,t^2,t^3)$, $0 \le t \le 1$.
- (c) Is the vector field $\mathbf{F} = z^2 \mathbf{i} + 2y \mathbf{j} + xz \mathbf{k}$ conservative? Why or why not?

Colley 6.3.25 Let $F = x^2 i + \cos y \sin z j + \sin y \cos z k$.

- (a) Show that ${\bf F}$ is conservative and find a scalar potential function f for ${\bf F}$.
- (b) Evaluate $\int_x \mathbf{F} \cdot d\mathbf{s}$ along the path $\mathbf{x} : [0,1] \to \mathbf{R}^3$, $\mathbf{x}(t) = (t^2 + 1, e^t, e^{2t})$

Colley 7.2.1 Let
$$X(s,t) = (s,s+t,t), \quad 0 \le s \le 1, \quad 0 \le t \le 2$$
. Find
$$\iint_{X} (x^{2} + y^{2} + z^{2}) dS.$$

Colley 7.2.14 Let S denote the closed cylinder with bottom given by z = 0, top given by z = 4, and lateral surface given by the equation $x^2 + y^2 = 9$. Orient S with outward normals. Determine the given vector surface integral

$$\iint_{S} (x \mathbf{i} + y \mathbf{j}) \cdot d\mathbf{S}$$

Colley 7.3.4 Verify Stoke's theorem for the given surface and vector field: S is defined by $x^2 + y^2 + z^2 = 4$, $z \le 0$, oriented by downward normal;

$$\mathbf{F} = (2y - z)\mathbf{i} + (x + y^2 - z)\mathbf{j} + (4y - 3x)\mathbf{k}.$$

Colley 7 T/F

- 6. If *S* is the unit sphere centered at the origin, then $\iint_S x^3 dS = 0$.
- 10. $\iint_S (-y\mathbf{i} + x\mathbf{j}) \cdot d\mathbf{S} = 0$, where *S* is the cylinder $x^2 + y^2 = 9$, $0 \le z \le 5$.
- 18. $\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$ has the same value for all piecewise smooth, oriented surfaces S that have the same boundary curve C.