Να βρεθούν οι τιμές της παραμέτρου $\lambda \in \mathbb{R}$ ώστε η ευθεία $(\lambda^2 - 1)x + (1 - \lambda)y = 2$ να διέρχεται από το σημείο A(1,3).

Να λυθούν τα παρακάτω γραμμικά συστήματα με τη μέθοδο της αντικατάστασης.

i.
$$\begin{cases} -x + y = 2\\ 2x - 2y = 3 \end{cases}$$

iii.
$$\begin{cases} 2x + y = 1 \\ y = 7 - 2x \end{cases}$$

i.
$$\begin{cases} -x + y = 2\\ 2x - 2y = 3 \end{cases}$$
ii.
$$\begin{cases} x = 2y - 1\\ 4x - 8y = 5 \end{cases}$$

Γραμμική εξίσωση με δύο μεταβλητές x, y ονομάζεται κάθε εξίσωση της μορφής

$$ax + \beta y = \gamma$$

όπου $a, \beta, \gamma \in \mathbb{R}$.

Να βρεθούν οι τιμές της παραμέτρου $\lambda \in \mathbb{R}$ ώστε η ευθεία $\lambda x + (\lambda - 1)y = 4$ να διέρχεται από το σημείο A(-2,3).

Η εξίσωση παριστάνει ευθεία για κάθε $\lambda \in \mathbb{R}$ αφού

$$\lambda = 0 \text{ kai } \lambda - 1 = 0 \Rightarrow \lambda = 1$$

δηλαδή οι συντελεστές των x, y δεν μηδενίζονται συγχρόνως. Στη συνέχεια έχουμε ότι το σημείο A(-2,3)ανήκει στην ευθεία αυτή αν και μόνο αν για x=-2 και y=3

$$\lambda \cdot (-2) + (\lambda - 1) \cdot 3 = 4 \Rightarrow -2\lambda + 3\lambda - 3 = 4 \Rightarrow \lambda = 7$$

Να λυθούν τα παρακάτω γραμμικά συστήματα με τη μέθοδο της αντικατάστασης.

$$\begin{cases}
 x - 2y = 4 \\
 2x - 4y = 8
\end{cases}$$

iii.
$$\begin{cases} 4x + 2y = 6 \\ 6x + 3y = 9 \end{cases}$$

i.
$$\begin{cases} x - 2y = 4 \\ 2x - 4y = 8 \end{cases}$$
ii.
$$\begin{cases} 3x - 4y = 1 \\ -6x + 8y = -2 \end{cases}$$

Να υπολογίσετε την τιμή των παρακάτω λογαρίθμων.

i. log 100

iii. $\log 10^7$

v. $\ln e^2$

ii. log 10000

iv. $\log 10^{-19}$

vi. $\ln e^{-23}$