10장 개체 인증(Entity Authentication)

정보보호이론

Spring 2015

공지 Quiz 2

Quiz 2

- × 5/19일 오후 2시~2시 20분
- * 중간고사 이후~오늘 수업 분

■ Mid-Term II(재시험)

- 선택사항 (중간고사 I과 비교하여 좋은 점수 반영)
- ★ 5/23일 오후 2시∼5시
- 🔻 오늘 수업 분까지

■ Final Exam

- × 6/16일 오후 2시~5시
- 이번 학기 수업 분

10.1 개요

- 개체인증
 - * 개체의 신원을 증명하기 위한 일련의 과정
 - ▶ 개체 : 사람이나 기기
 - 🗴 인증 정보
 - ► What you are (voice, fingerprint, Iris)
 - ▶ What you know (password)
 - ▶ What you have (smart card, token card)

■ 미 AOL 취약 비밀번호 25가지

- 패스워드: low entropy
 - ★ 64-비트 패스워드를 발견하기 위해서는 < 2⁶⁴ 필요.
- 안전한 패스워드
 - 🗴 국내: 방통위, KISA : 패스워드 선택 및 이용 안내서
 - ▶ 세가지 종류 이상의 문자구성으로 8자리 이상의 길이로 구성된 문자열 (2.148 x 10¹⁴) OR 두 가지 종류 이상의 문자구성으로 10자리 이상의 길이로 구성된 문자열 (3.555 x 10¹⁵) (문자종류는 알파벳 대문자와 소문자, 특수문자, 숫자 4가지)
 - ▶ 안전한 패스워드는 △제3자가 쉽게 추측할 수 없는 패스워드 △패스워드 전송·저장 시 암호화 기준을 충족해야 한다
 - 🗴 해외: NIST 800-63 : Electronic Authentication Guideline (2006)
- Refer Strong passwords: How to create and use them.
- Example: I am 28 years old!
 - * How strong is yours?: Password Checker

- 국내 현황
 - × 2011년 11월 30일 한국암호포럼이 개최한 '암호의 역할 워크숍'
 - 회원가입이 가능한 공공기관 홈페이지 127개 가운데 111개 (87.4%)가 패스워드 안전성이 미흡
 - ★ 전체 조사 대상 기관 중 85%(108개)는 패스워드 구성이나 길이가 기준에 미치지 못했으며, 41.7%(53개)는 패스워드가 암호화되지 않고 전송돼 패스워드가 노출되는 것으로 나타났다. 그밖에도 안전한 패스워드 기준은 명시하고 있지만 구현상 오류가 있는 경우가 3.7%(4개), 입력 가능한 패스워드 기준 자체를 명시하지 않는 경우도 7.4%(8개)

■ 고정된 패스워드

- 🗴 도청 등의 위협
- 패스워드 테이블의 유출 시 위험

■ 해쉬된 패스워드

- 패스워드 테이블의 유출 시 해쉬 함수의 역상저항성으로 인하여 안전
 - ▶ 특정인 Alice의 패스워드를 알기 위해서는 $O(2^n)$ 번의 해쉬 평가 (n:해쉬 함수 의 출력 길이)
 - ▶ 임의 사용자의 패스워드를 알기 위해서는 offline 사전공격 (dictionary attack)이 효과적
 - → 추측된 패스워드 PW의 해쉬값 H(PW)와 패스워드 테이블의 모든 해쉬값과 비교

■ 솔트(Salt) 사용

- ※ 임의 사용자의 패스워드를 알기 위해서는 offline 사전공격 (dictionary attack)을 방어
 - ▶ 추측된 패스워드 PW의 해쉬값 H(PW)와 패스워드 테이블의 해 쉬값과 직접 비교 불가능
 - ▶ 모든 사용자 ID에 대하여 H(PW||S_{ID})와 테이블의 해쉬값과 비교 해야 함
 - \rightarrow ID의 개수가 t인 경우, 추측된 PW에 대하여 t번씩 증가
 - ▶ 솔트가 공개된 경우, 특정인 Alice의 PW를 알기 위한 계산은 변 동없음
 - \rightarrow 여전히 $O(2^n)$ 번의 해쉬 평가 (n:해쉬 함수의 출력 길이)

- OTP(One-Time Password)
 - 매번 다른 난수 사용
 - ▶ 사전 공격(Dictionary Attack)이나 재전송 공격(Replay Attack) 등 으로 부터 안전
 - Example: RSA SecureID
 - **X** Two factor authentication
 - x It has been hacked
 - 美RSA가 연이은 해킹으로 파문이 일자 자사 일회용비밀번호 (OTP)제품인 '시큐어ID' 4천만대를 전면 리콜 조치
 - ▶ 최근 '시큐어ID'는 연이은 해킹악재에 시달렸다. 지난 3월 OTP 소스코드 유출을 시작으로 최근에는 美군부의 심장이라 불리는 세계 최대 방위산 업체인 록히드마틴 전산망 해킹에도 '시큐어ID'가 침입에 활용된 것으로 알려져 사용자들의 신뢰를 잃었다.
 - ▶ '시큐어ID'는 현재 국내 금융권 및 주요기업을 중심으로 100만명 이상이 이용중

- 동기화 방식의 일회용 패스워드(Synchronized OTP)
 - ✗ 사용자와 서버는 시드(Seed)를 공유 후, 동일한 패스워드 생성
 - 시간 동기화 방식
 - \triangleright sk = h(seed, T) : current time T
 - ▶ 적절한 오차 허용 → 시간 구간 설정
 - 이벤트 동기화 방식
 - \triangleright sk = h(seed, C) : counter C
 - ▶ 전송 오류 시 *C* 동기화 필요
 - 🗴 Hybrid 동기화 방식
 - ▶ 한 구간 내에 여러 번의 패스워드 생성, 카운터 값 증가
 - ▶ 각 구간마다 카운터 값 초기화

- 동기화 방식의 일회용 패스워드(Synchronized OTP)
 - 패스워드 업데이트 방식
 - 1. 사용자와 서버는 초기 패스워드 P_1 사전 공유
 - 2. 사용자 → 서버 : $E_{P_1}(P_2)$
 - 3. 서버는 $E_{P_1}(P_2)$ 을 복호화한 후 P_2 를 획득. 두 번째 접속 시 P_2 를 패스워드로 사용
 - 4. ----
 - 5. $E_{P_k}(P_{k+1})$

- 비동기화 방식의 일회용 패스워드(Non-Synchronized OTP)
 - ※ 질의-응답(Challenge-Response) 방식 (10.3절)
 - ▶동기화 불필요, 통신량 증가
 - ➤ Lamport 방식 : 해쉬 체인(Hash chain) 사용
 - 1. 사용자는 비밀값 x를 생성, 서버의 접근 횟수 제한을 k
 - 2. $x, h(x) = x_1, h(h(x)) = x_2, ..., h^k(x) = x_k$
 - 3. 사용자와 서버는 초기 값 x_k 공유
 - 4. 사용자 → 서버 : x_{k-1}
 - 5. 서버는 $h(x_{k-i}) = x_k$ 검증 후 x_{k-1} 저장
 - 6. ----
 - 7. 사용자 \rightarrow 서버 : x_{k-i}

- 스마트 OTP
 - 🗴 등록 과정
 - ▶ 금융회사 창구에서 대면해 IC카드 OTP 생성 키를 받고, NFC 기능이 있는 스마트폰에 해당 앱을 다운받아 이용
 - 🗴 동작 과정

SMS OTP: Bank of America

■ 검증자가 생성한 질의에 대하여 증명자가 응답

대칭키를 이용한 방식 & 공개키를 이용한 방식

- 대칭키를 이용한 질의-응답 인증
 - 타임스탬프를 이용한 단방향 인증
 - 1. A: 타임스탬프 *t*₄ 생성
 - 2. A \rightarrow B: $E_k(t_A, A)$ { E_k 는 A와 B가 사전 공유된 k로 암호}
 - 3. $B: D_k(E_k(t_A, A))$ 후, t_A 가 현재시간 구간에 들어오는지 확인

- 대칭키를 이용한 질의-응답 인증
 - 🗴 난수(Nonce)를 이용한 단방향 인증
 - 1. B \rightarrow A: r_B {challenge}
 - 2. $A \rightarrow B: E_k(r_B, A) \{E_k \in A \text{와 B} \}$ 사전 공유된 $k \in A \text{와 B}$
 - 3. 검증자 B: $D_k(E_k(r_B, B))$ 후, r_B 확인

- 대칭키를 이용한 질의-응답 인증
 - 🗴 난수(Nonce)를 이용한 양방향 인증
 - 1. A \rightarrow B: r_A {A \supseteq | challenge}
 - 2. $B \rightarrow A : E_k(r_A) || r_B \{B \supseteq | \text{ challenge} \}$
 - 3. A: $D_k(E_k(r_A))$ 후, r_A 확인
 - 4. A \rightarrow B: $E_k(r_B)$
 - 5. B: $D_k(E_k(r_B))$ 후, r_B 확인

- 대칭키를 이용한 질의-응답 인증
 - × 반사공격 (Reflection Attack)
 - 1. $A(E) \rightarrow B: r_A \{A(E) \supseteq | challenge \}$
 - 2. B \rightarrow A(E): $E_k(r_A)||r_B$ {응답 & B의 challenge}
 - 3. $A(E) \rightarrow B: r_B$ {E의 challenge, 두 번째 세션 open}
 - 4. B \rightarrow A(E): $E_k(r_B)||r_B|$, {응답 & B의 challenge}
 - 5. $A(E) \rightarrow B: 첫 번째 세션의 정당한 응답 <math>E_k(r_B)$ 전송

- 해쉬 함수를 이용한 질의-응답 인증
 - * 해쉬 함수와 타임스탬프를 이용한 단방향 인증
 - 1. $A \rightarrow B : A, t_A, h(k, t_A) \{A \supseteq | response \}$

- 해쉬 함수를 이용한 양방향 인증
 - 🗴 난수(nonce)를 이용한 인증
 - 1. A \rightarrow B: r_A {A \supseteq | challenge}
 - 2. B \rightarrow A: r_B , $h(r_A, r_B, B)$ {B의 응답 & challenge}
 - 3. $A \rightarrow B: h(r_B, A)$

- 공개키 암호를 이용한 단방향 인증
 - 보수를 이용한 인증
 - 1. $B \rightarrow A : B, E_{pk_A}(r_B, B) \{B \supseteq | \text{ challenge} \}$
 - 2. $A \rightarrow B: r_B$

- 전자 서명을 이용한 단방향 인증
 - * 타임스탬프를 이용한 단방향 인증
 - 1. $A \rightarrow B : cert_A, t_A, B, S_A(t_A, B)$

- 전자 서명을 이용한 양방향 인증
 - 난수를 이용한 양방향 인증
 - 1. $A \rightarrow B: r_A \{A \supseteq | \text{ challenge} \}$
 - 2. $B \rightarrow A : cert_B, r_B, A, S_B(r_A, A)$ {B의 응답 & challenge}
 - 3. A \rightarrow B: $cert_A$, B, $S_A(r_B, B)$ {A의 응답 & challenge}

10.4 비트 약속(Bit Commitment)

■ 비트 (o또는 1) 값에 대하여 약속(Commitment)을 하고 이후에 약속 값에 대하여 확인하는 방법

생성 A → B : one bit b in padlock {commitment b의 생성}

확인 A → B: Key to open the padlock {b의 확인}

- 🗴 비트 약속의 성질
 - 1. 하이딩(Hiding): 검증자는 감춰진 비트의 내용에 대해서 알지 못해야 한다.
 - 2. 바인딩(Binding): 증명자는 자신이 선택한 비트를 감춘 이후에 변경할 수 없다.

10.4 비트 약속(Bit Commitment)

■ 대칭키 암호를 이용한 비트 약속

생성

- 1. $B \rightarrow A : R$
- 2. $A \rightarrow B : E_k(R,b)$

확인

- 1. $A \rightarrow B: k$
- 2. B는 $E_k(R,b)$ 를 복호화하여 R,b 확인
- \times What if $E_k(b)$ is used instead of $E_k(R, b)$?
- 🗴 하이딩?
 - ▶ k 없이 $E_k(R,b)$ 에서 commitment를 알 수없다.
- × 바인딩?
 - ▶ $E_k(R,b) = E_{k'}(R,b')$ 을 만족하는 k'을 찾는 것이 어려움

10.4 비트 약속(Bit Commitment)

- 공개키 암호를 이용한 비트 약속
 - 🗴 생성

 - 2. $A \rightarrow B : E_{pk}(x)$
 - 🗴 확인
 - 1. $A \rightarrow B : sk$
 - 2. B는 $E_{pk}(x)$ 를 복호화하여 x의 최하위 비트를 확인

10.5 동전 던지기(Fair Coin Flipping)

- 해쉬 함수를 이용한 동전 던지기
 - 1. A는 선택한 x 에 대한 해쉬 값 y = h(x)를 계산
 - 2. $A \rightarrow B: y$
 - 3. B는 x에 대한 최하위 비트를 추측
 - 4. $A \rightarrow B: x$
 - 5. B는 y = h(x) 를 계산한 후 1단계에서 받은 값과 비교
 - ✗ 하이딩:
 - ▶ 해쉬 함수의 역상 저항성(Preimage Resistance)으로 y를 보고 x를 추측할 수 없음
 - 🗴 바이딩
 - ▶ 충돌 저항성(Collision Resistance)으로 $lsb(x) \neq lsb(x')$ ∧ h(x) = h(x')를 만족하는 x'을 발견하기 어려움

10.5 동전 던지기(Fair Coin Flipping)

- 가환성을 가진 공개키 암호를 이용한 동전 던지기
 - $D_{k_2}(E_{k_1}(E_{k_2}(m))) = E_{k_1}(m)$
 - 1. $A \rightarrow B : E_A(m_0), E_A(m_1)$
 - 2. B는 $E_A(m_0)$, $E_A(m_1)$ 에서 하나를 선택하여 자신의 공개키로 암호 $E_B(E_A(m_x))$
 - 3. B \rightarrow A : $E_B(E_A(m_\chi))$
 - 4. A \rightarrow B: $E_B(m_x)$
 - 5. B는 $E_B(m_x)$ 를 복호화한 후 m_x 확인
 - 6. A → B: A의 (공개키, 개인키) {자기 법 집행(Self-Enforcing)}

■ 상호 증명 시스템(Interactive Proof System)

- 🗴 상호 증명 시스템의 특성
 - ▶ **완전성(Completeness)** : 문장이 True라는 것을 정직한 증명자가 알고 있다면 검증자는 True를 출력
 - ▶ **건전성(Soundness)** : 검증자가 True를 출력한 경우, 문장은 True 임

- 영지식 증명 시스템(Zero-Knowledge Interactive Proof System)
 - 영지식 상호 증명 시스템 의 특성
 - ▶ **완전성(Completeness)** : 문장이 True라는 것을 정직한 증명자가 알고 있다면 검증자는 True를 출력
 - ▶ **건전성(Soundness)** : 검증자가 True를 출력한 경우, 문장은 True 임
 - ▶ 영지식성(Zero-Knowledgeness): 증명자가 문장이 True라는 사실 이외에 어떠한 정보를 노출시킴 없이 문장을 검증자에게 확신시키는 성질
 - 검증자가 True인 문장을 입력 받아 증명자와 교신하는 과정에서 얻은 모든 정보는 영지식 증명 이전에 증명자의 도움 없이 생성할 수 것

- 도전-응답은 영지식 증명 시스템?
 - 1. $B \rightarrow A : C = E_A(M)$
 - 2. $A \rightarrow B : M$
 - > What if an attacker uses the verifier?
 - 1. B \rightarrow A: C = $E_A(M)$ {B의 challenge가 아니라 M을 알기 위함}
 - 2. $A \rightarrow B : M$

■ Basic ZKIP

Proof of Zero-Knowledgeness of ZKIP

< Real System >

■ Fiat-Shamir 프로토콜

- History--secrecy order by Patent Office (1986)
- 🗴 초기 설정 과정
 - 1. 큰 소수 p와 q를 선택한 후 $n = p \times q$ 을 계산
 - 2. $gcd(s,n) = 1 와 1 \le s \le n 1 인 비밀키 s를 선택$
 - 3. $v \equiv s^2 \mod n$ 을 계산. (v, n)를 공개키로 사용
- 🗴 인증 과정
 - 1. A는 $1 \le r \le n 1$ 인 r을 선택
 - 2. $A \rightarrow B : x \equiv r^2 \mod n$
 - 3. $B \rightarrow A : e \in \{0,1\}$
 - 4. $A \rightarrow B : y \equiv r \cdot s^e \mod n$
 - 5. 검증자는 $y^2 \equiv x \cdot v^e \mod n$ 확인

- Fiat-Shamir 프로토콜
 - × 공격자가 e를 추측하는 경우

Case 1:
$$e = 0$$
 인 경우 $x \equiv r^2 \mod n$ 와 $y = r$ 전송

검증식 통과 :
$$x \cdot v^0 = r^2 = y^2$$

Case 2:
$$e = 1$$
 인 경우 $x = r^2/v \mod n$ 와 $y = r$ 전송

검증식 통과 :
$$x \cdot v^1 = (r^2/v) \cdot v^1 = r^2 = y^2$$

→ 50%, 반복!!!

 $y^2 \equiv x \cdot v^e \mod n$?

증명자 A

검증자 B

- Fiat-Shamir 프로토콜
 - Security
 - ► Hardness to find sqrt(v) which is equivalent to factoring n.
 - × 완전성: $y^2 = r^2 \cdot s^{2c} = x \cdot v^c$
 - ➤ 건전성 : 정직한 증명자는 검증식에 통과되는 y1 과 y2를 알고 있음
 - $y1 = r \cdot s^{\circ} \qquad y2 = r \cdot s$ y1/y2 = s
 - ▶ 따라서 증명자는 비밀 "s"를 알고 있음
 - ▶ In formal proof, need to show that the prob. that y is cheated by dishonest P is negligible \rightarrow running m iterations guarantees that the prob. is 2^{-m} , that is negligible.

Zero-Knowledge:

- (1) Choose c = 0 or 1 at random (Guess the challenge)
- (2) Choose r at random. If c = 0, then $x = r^2$ and output (x, c, r). If c = 1, then $x = r^2/v$
- (3) Choose c' = 0 or 1 at random. If c'=c then output (x, c, r), else Goto Step (1)
- Such (x, c, r)'s have a probability distribution which is indistinguishable from those generated by interacting with honest prover.
- Impersonating Prover
 - Verifier cannot impersonate the prover since he cannot correctly guess "c".
- Running this "accreditation" t time results in the odd of fooling V in 2^t .

- Feige-Fiat-Shamir 프로토콜
 - 🗴 초기 설정 과정
 - 1. 큰 소수 p와 q를 선택한 후 $n = p \times q$ 을 계산
 - 2. $gcd(s_i, n) = 1$ 와 $1 \le s_i \le n 1$ 을 만족하는 비밀키 벡터 $s = \{s_1, s_2, ..., s_k\}$ 를 선택
 - 3. $v_i \equiv (s_i^2)^{-1} \mod n$, $(v = \{v_1, v_2, ..., v_k\}, n)$ 를 공개키로 사용
 - 🗴 인증 과정
 - 1. A는 $1 \le r \le n 1$ 인 r을 선택
 - 2. $A \rightarrow B : x \equiv r^2 \mod n$
 - 3. B → A: $e_i \in \{0,1\}$ 인 $e = \{e_1, e_2, ..., e_k\}$
 - 4. $A \rightarrow B : y \equiv r \cdot (s_1^{e_1} s_2^{e_2} \dots s_k^{e_k} \pmod{n})$
 - 5. 검증자는 $y^2 v_1^{e_1} v_2^{e_2} \dots v_k^{e_k} \equiv x \pmod{n}$ 확인

- Feige-Fiat-Shamir 프로토콜
 - \mathbf{x} Fiat-Shamir 인증 기법을 순차적으로 k번 수행한 것을 단 한번으로 평행하게(Parallel) 수행

증명자 A

검증자 B

 $y^2 v_1^{e_1} v_2^{e_2} \dots v_k^{e_k} \equiv x \pmod{n}$?

■ Schnorr 프로토콜

- 🗴 초기 설정 과정
 - 1. 큰 소수 q, q|p-1인 소수 p 선택
 - 2. $a^q \equiv 1 \pmod{p}$ 를 만족하는 $a(\neq 1)$ 를 선택
 - 3. $v \equiv a^{-s} \pmod{p}, (v, a, p)$ 는 공개키, s는 비밀
- 🗴 인증 과정
 - 1. A는 $1 \le r < q$ 인 r을 선택
 - 2. $A \rightarrow B : x \equiv a^r \pmod{p}$
 - 3. B \rightarrow A:1 $\leq e < 2^t$ 의 임의의 원소 e
 - 4. $A \rightarrow B: y \equiv (r + e \cdot s) \pmod{q}$
 - 5. 검증자는 $a^y \equiv x \cdot v^e \pmod{p}$ 확인

BIOMETRICS

- Accuracy of biometry techniques
 - ► False Rejection Rate (FRR)
 - ► False Acceptance Rate (FAR)

BIOMETRICS

- 🗴 지문
 - ▶ 다른 두 손가락의 지문은 상이
 - ▶ 지문의 모양은 평생 바뀌지 않음
 - ▶ 특징점 추출 : 단점, 분기점, Core, Delta
 - ▶ 단점 : 마모(화가), 장애인? 여성, 어린이, 노인, 땀이 있는 경우? → 다른 BIOMETRICS
 - ▶ 사례 : 병기 및 탄약 관리 지문인식 잠금장치, "심플 패스" Facebook 로그인

출처: ETRI

BIOMETRICS

- FaceRecog
 - ▶ 얼굴의 대칭적 구도, 생김새, 머리카락, 눈의 색상, 얼굴 근육의 움직임 등을 분석하여 얼굴의 특징 이용
 - ▶ 사례 : G20서울 정상회의 기간에 얼굴인식 시스템
- × Iris
 - ▶ 사례 : 인도 12억 인구의 생채정보를 등록하는 전자주민등록 사업 진행 중
 - 아다르(Aadhaar)로 지문과 홍채를 기록해 신원을 확인 할 수 있는 12자리의 고유 숫자를 부여하고, 전국 어디 에서나 이동통신 기기를 통해 8초 안에 개인을 식별

× Vein

▶ 사례 : 일본 18개 은행을 비롯하여 일본우정공사 등에서 정맥인 증을 이용한 ATM

그림 4, 지정맥 인증 장치의 ATM에 탑재 사례

BIOMETRICS

- Voice
 - ▶ 미리 기록해 둔 음성 패턴과 비교해 개인 인증
 - ▶ 사례: 법무부 보호관찰소, 음성인식 본인확인 시스템 구축

- 🗴 손 모양
 - ▶ 기기상에 올려놓은 손 모양에 대하여 상대적인 거리와 각도 등을 측정 후 저장해 놓은 자신의 바이오 정보와 비교하는 기술 → 높은 신뢰성 제 공
- 🗴 서명
 - ▶ 이미 작성된 서명을 인식하는 정적인 방법
 - ▶ 서명하는 과정을 동적으로 파악하는 방법
 - ▶ 서명시간, 속도, 종이로부터 펜이 떨어진 횟수 등
- > 걸음걸이
 - ▶ 걷는 사람의 실루엣을 정적 혹은 동적으로 획득하여 인식
 - ▶ 원거리에서 개인을 인식: 출입통제시스템
- × DNA
 - ▶ DNA 인식은 다른 제공자로부터 획득한 DNA를 포함한 세포 조각들 중에 서 핵산의 구성 성분인 뉴클레오티드 비교하는 기술
 - ▶ 범죄자 확인, 약물복용확인, 친자확인(부계, 모계 확인)등 다양한 요소에 서 활용

출처: "차세대 바이오인증 - ICT Standardization Strategy", TTA, 2011

10.7 차세대 개체 인증- Cognitive

10.7 차세대 개체 인증- Cognitive

Authentication

Drag 1,2,3 Keys to HoleKey

- Setting: two shared secrets
 - ► Secret Question: "Is there a person?"
 - Secret Sequence:
 5 meaningful bits
- ★ Challenge: 10pics → Answer:

- Original Answer: ??NN?N?Y?Y
- User's random at the position of "?"
- If N, assign "o".
- x If Y, assign "1".
- ➤ Response to the previous Example: 1000101101

- Authentication by thinking a password
 - ✗ We can avoid the shoulder surfing by simply transmitting some chosen thought.
 - ➤ Since every individual brain has a unique characteristic, all users will have different signals even if they are thinking the same word.

10.8 결제방식과 FinTech (Finance + Tech.)

그런데...

I am the only player

I can do

I can do

I can do

I can do

I can do what you are doing

- What if other parties could provide financial services, especially evaluate credit?
- × Why?
 - ► Save Money in Financial Services without using Bank
 - Remind that Paypal and Alipay began for the purpose of non-credit card based payment

성공사례

x TransferWise

(사진=트랜스퍼와이즈)

"자신들은 전혀 모르는 사람에게 500달러를 보낸셈이지만, 자신들의 목적인 500달러는 어찌 됐든 전달된거죠"

"그리고 이 과정에서 비싼 해외 송금료가 아닌 국내 송금료만 내면 되구요. ㅎㅎ"

"예전에는 이렇게 딱 매칭이 되는 사례를 도저히 찾을 수 없었겠지만, 인터넷과 SNS로 열린 초열결 시대에 얼마든지 이런 중계모델이 가능한 거죠"

성공사례

LeadingClub

▲미국 렌딩클럽(사진=렌딩크럽)

"은행창구에 앉은 '전문가'가가 아니더라도, 이런 정보를 안전하게 다룰 수 있는 '기술'을 가진 회사가 충분히 개인의 '대출' 여력을 알 수 있게 되면서"

"굳이 허가된 은행이나 금융기관에 비싼 이자를 내며 돈을 빌릴 게 아니라 나의 신용정보를 공개하고, 이를 보고 돈을 빌려줄 사람을 찾을 수 있는 시대가 됐습니다"

성공사례

- BitCoin vs AmazonCoin
- ApplePay vs Current C

KOHĽS expect great things:

- What if a person can evaluate credit risk?
 - KreditTech: using SNS info. and tracking smartphone

대한민국은?

FinTech 주무부처: 금감위?

y f 8+ ₩ 5

뉴스

아카데미

컨퍼런스

북스

광장

Hyundai Capital 현대캐피탈 다이렉트론

지갑 속 카드처럼 바로 쓰는 신용대출 직장 정보 입력 없이 10분 내 입금

핀테크 발목 잡는 5대 족쇄

박근혜 대통령이 핀테크 육성에 힘쓰라고 말한 뒤 정부 기관이 박차를 가하는 모습이다. 금융위원회 (금융위)는 지난 1월27일 IT·금융 융합 지원방안을 내놓았다. 그동안 핀테크 업계에서 문제라고 지 적한 점을 거의 모두 손보겠다고 발표했다. 적용 시기까지 6개월에서 1년 뒤로 못박았다.

핀테크 업계는 금융위 발표를 '종합선물세트'라 부르며 반겼다. 그동안 핀테크 산업에 목줄을 죄던 규제기관이 앞장 서 전방위적으로 핀테크 산업을 육성하겠다는 의지를 밝혔기 때문이다.

하지만 아쉬움도 남았다. 61쪽짜리 보고서에는 큰 틀에서 방향만 제시돼 있을 뿐이다. 구체적으로 어떤 규제를 어떻게 손볼 계획인지는 알 수 없다. 금융위를 일선에 내세운 정부가 진짜로 핀테크 산 업을 육성하려면 무엇부터 손봐야 할까. 한국핀테크포럼의 도움을 받아 핀테크 업계가 걸림돌이라 고 생각하는 법이나 규제가 무엇인지 들어봤다. IT전문 법무법인 테크앤로에서 법률 자문을 받았다.

〈표 1〉 완화할 필요가 있는 규제들

규제	관련 법률규정
금융기관의 공인인증서 사용 의무	내부 규정
금융실명제법상 대면 확인 의무	금융실명제법, 내부 규정
핀테크 기업들의 금융정보 공유 제한	개인정보보호법
금융기관들의 핀테크 자회사/ 합작회사 설립 제한	금융지주회사법

간편결제 시스템

■ 분야별 전자지급결제 서비스 동향

구분	정의	관련사	추진동향
Pg사	온라인 결제수단제공, 결제중계 및 정산을 주 업무로 하는 전문지급 결제대행사	PayPal, AliPay	- 글로벌 서비스화 - 결제 신기술 개발
		이니시스, LGU+, 한국사 이버결제	- 간편결제, 원클릭 결제
카드사	카드 결제처리 관련 권한, 인프라 제어권 등 전통적 결제주도권을 보유하고 있는 회사	VISA, Master Card, 신한, 국민, BC 등	- 지급결제서비스 직접제공 - 결제종단간 토탈 솔루션 제공
에 대한 영 통신사 로 모바일 혹은 모바일	이동통신 인프라와 단말 에 대한 영향력을 기반으 로 모바일 단말 결제(NFC)	ISIS/Vodafone	- NFC 단말 모바일 결제 - 개도국 진출
	후은 모바일 인프라 기반 홀에 수행	SK, KT, LGU+	- 단말, 이통사 인프 라 기반 결제 인증 서비스 개발

간편결제 시스템

■ 신용카드 지급결제와 인증

	지급결제확인	도용 문제	대응 노력
오프라인	물리적 카드 소유	카드 복제/위조카드 절도	IC카드(복제방지)서명 확인PINFDS
온라인	카드번호 제출	 스니핑 피싱/파밍 가맹점 도용 카드정보 유출 (POS, PG, 카드사) 	 암호통신(SSL) CVC, 유효기간 안심결제(1회용 정보+PW) 추가인증(고액결제시공인인증서) FDS

■ 안심클릭 × 등록과정

- > 인증방법(등록과정)
 - ▶ 카드번호, 카드 비밀번호, CVC, 유효기간, 휴대폰 SMS 인증번호
 - ▶ 카드번호, 카드 비밀번호, CVC, 유효기간, 공인인증서

안심클릭 결제과정 플랫폼보안 ①상품구매 안심클릭 CVC 번호 PW ②从是从數型以內投資量 2 10-10-1-10 소비자 판매자 (PG사) 공인인증서 (A) NB NOIE ZETH 공인인증서 인증 ⑤결제승인요청⑥결제승인결과 3CVC+PW ⑤결제승인요청 카드정보 <u>⑥</u>결제승인결과 카드사 **VANA**

- 안심클릭
 - > 인증방법(결제과정)
 - ▶ 안심클릭 PW + CVC (30만원 미만 결제 시)
 - ▶ 공인인증서 (30만원 이상 결제 시)
 - ▶ 단, 온라인 게임 등에서는 기준이 10만원으로 변경
 - × 서비스 특징
 - ▶ VISA의 3D-Secure(VISA 안심클릭) 모델을 한국형으로 개발하여 적용
 - ▶ 안심클릭 서비스 사용 시, 이용자가 등록한 개인확인 메시지 확인가능
 - ▶ 서비스 등록 후, 모든 PC에서 사용 가능
 - ▶ 사용자 카드의 정보는 사용자와 카드사만 저장하고 있음

■ ISP 결제 × 등록과정

- > 인증방법(등록과정)
 - ▶ 카드번호, 카드 비밀번호, CVC, 유효기간, 휴대폰 SMS 인증번호
 - ▶ 카드번호, 카드 비밀번호, CVC, 유효기간, 공인인증서

■ ISP 결제

× 결제과정

④인증 및 승인요청

④인증 및 승인요청

0壮

판매자

(PG사)

③인증 및 승인요 ⑥승인결과

⑤승인결과

■ ISP 결제

- > 인증방법(결제과정)
 - ▶ ISP 인증서 PW 입력 (30만원 미만 결제 시)
 - ▶ 추가적으로 공인인증서 인증 필요 (30만원 이상 결제 시)
 - ▶ 단, 온라인 게임 등에서는 기준이 1o만원으로 변경
- × 서비스 특징
 - ▶ 인증서 기반 결제 방법으로, 카드정보 입력 없이 ISP 인증서 PW 입력으로 결제 가능
 - ▶ 인증서가 저장된 PC에서만 사용 가능
 - ▶ 카드사의 FDS 모니터링

- 페이팔(Paypal)
 - ✗ 등록과정

사용자

- > 인증방법(등록과정)
 - ▶ 이메일 인증(메일 발송 링크 클릭) + 계좌 인증(은행계좌, 신용카드에 대해 입금 및 결제 처리 테스트)
 - ▶ 계좌연동 : PayPal 가입을 통해 가상계좌 생성 후 실 계좌 연동

- 페이팔(Paypal)
 - × 결제과정

- 페이팔(Paypal)
 - * 인증방법(결제과정)
 - ▶ ID/PW 로그인 (SSL 암호화 통신)
 - ▶ 추가적으로 SMS인증 또는 OTP카드 사용 가능
 - * 서비스 특징
 - ▶ ID/PW 만으로 결제 가능 (추가적인 S/W 설치 없음)
 - ▶ 가상계좌 간 거래, 네트워크 상 금융정보(신용카드 정보 등) 미 전송
 - ▶ PayPal사가 사용자의 카드정보를 저장 및 관리(신용카드 등록 시)
 - 🗴 보안정책
 - ▶ 보안 수준 : PCI-DSS(美 신용카드 보안 규격) 획득
 - ▶ 웹 표준 (SSL) 사용
 - ▶ FDS 24시간 모니터링
 - ▶ 분쟁 조정: 상품 미 배송, 불일치, 부정결제, 지불거절 등 거래분쟁 직접 조정
 - ▶ 버그 바운티 제도 : 보안 취약성 발견자에게 상금 지급

- 애플 페이(Apple pay)
 - × 등록과정
 - ▶ 아이튠즈: 아이튠즈에 등록된 신용카드 이용 가능
 - ▶ Passbook : 신용카드 사진촬영 / 번호입력

- 🗴 애플 페이 결제 저장 방식 및 활용 기술
 - ▶ 저장방식 : 신용카드 및 사용자의 결제 정보는 암호화를 통해 보안칩(Secure Enclave)에 저장
 - ▶ 지문인식 : 사전 등록된 신용카드 정보를 이용해 홈 버튼에 지문을 인식하여 결제하는 방식
 - ▶ NFC : NFC 기술을 이용하여 지급결제 서비스 제공
 - ▶ 토큰화(Tokenization) : 결제 간 데이터 유출 위험 최소화

■ 애플 페이(Apple pay)

- 애플 페이(Apple pay)
 - * 인증방법(결제과정)
 - ▶ Touch ID(지문인증)을 이용한 사용자 인증
 - 🗴 서비스 특징
 - ▶ 스마트폰을 이용한 NFC 기반 전자지급결제 서비스
 - ▶ Passbook 앱을 이용하여 신용카드 정보 저장
 - ▶ 지문인증을 통해 사용자 인증
 - ▶ 지문인식, 보안영역활용(SE), 토큰화를 통한 보안성 강화
 - 보안정책
 - ▶ 지문인식 : 반도체식 센서로 홈 버튼에 장착되어 Touch ID로 추출된 특징점을 보안영역(SE)에 저장
 - ▶ 위조지문 문제 발생 가능성
 - ▶ 보안영역: 지문정보는 보안영역(Secure Data Repository)에 저장되며, 비교(Matching)를 위해 보안 프로세서(Secure Enclave Processor)와 별도의 채널 사용
 - ▶ 토큰화 : 결제정보 암호화에 사용되는 기술, 사용자와 카드사만이 카 드정보를 가짐

그 밖의 인증기술 FIDO(1/2)

- FIDO(Fast Identity Online)
 - × ID/PW 입력 방식보다 더 높은 보안성을 제공하며, 활용도도 높은 인 증 서비스
 - ¥ UAF & U₂F
 - ▶ UAF(Universal Authentication Framework) Protocol : 디바이스에서 제공하는 인증방법을 온라인 서비스와 연동, 사용자를 인증하는 프로토콜

 - ▶ U2F(Universal 2nd Factor) Protocol : 기존 ID/PW를 사용하는 온라인 서비스에서 두 번째 인증요소를 추가하는 프로토콜

그 밖의 인증기술 FIDO(2/2)

■ UAF(Universal Authentication Framework): 비(非) 비밀번호 인증 ※ 등록 과정 ※ 인증 과정

비대면 인증

- 해외 주요 비대면 인증 방식
 - 🗴 프랑스 BNP Paribas 'Hello Bank!'
 - ▶ 고객정보 확인 후 계좌개설에 필요한 임시 비밀번호를 체크카드와 함께 등기우편으로 송부
 - 🗴 일본 Sony Bank
 - ▶ 우체국 직원이 수신인 신분증으로 실명확인
 - 🗴 미국 Ally Financial
 - ▶ 신청고객에게 서명카드 송부, 고객이 카드에 서명하여 보내면 확인함
 - ▶ 다른 은행에서 사용중인 계좌를 통해 실명/이체계좌의 보유여부 확인 가능
- 국내 도입 시 유의사항
 - 🗴 비대면 인증의 복잡도
 - ▶ 비대면 인증 절차가 너무 복잡한 경우, 이용자 부족으로 인해 제도개선 효과가 반감됨
 - 추가적인 인증 제도 필요
 - ▶ 이동통신사 DB를 활용한 본인명의 휴대폰 SMS 인증
 - ▶ 화상통화, 홍채·지문인식 등을 통한 인증
 - ▶ 다른 은행의 계좌를 이용한 실명확인 등