ЛАБОРАТОРНАЯ РАБОТА №22

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ АДИАБАТЫ ВОЗДУХА РЕЗОНАНСНЫМ МЕТОДОМ

Поляков Даниил, Б07-Ф3

Цель работы: определение показатель адиабаты воздуха резонансным методом.

Оборудование:

- Функциональный генератор. Цена деления при измерении частоты равна 0.01 Гц. Приборная погрешность принимается за половину цены деления, т.е. 0.005 Гц;
- Стеклянная трубка с газом, имеющая внутренний диаметр, равный 14.00±0.01 мм, проградуированная от 0 до 80 см³ и имеющая цену деления, равную 0.2 см³;
- Магнитный поршень, имеющий массу 8.80±0.26 г и диаметр, равный 13.97±0.01 мм;
- Соленоид.

Расчётные формулы:

• Резонансная частота:

$$f = \frac{1}{2\pi} \sqrt{\frac{\gamma p_0 S S_1}{mV}} = \frac{dd_1}{8} \sqrt{\frac{\gamma p_0}{mV}}$$

 p_0 — давление газа в трубке (равно атмосферному давлению); $m=(8.80\pm0.26)~\Gamma$ — масса поршня; V — объём газа в трубке;

S — внутренняя площадь сечения трубки;

 S_1 – площадь поверхности поршня;

 $d = (14.00 \pm 0.01) \, {
m MM}$ — внутренний диаметр трубки;

 $d_1 = (13.97 \pm 0.01) \, \mathrm{мм} \,$ – диаметр поршня;

 γ — показатель адиабаты воздуха.

- Формулы для вычисления погрешностей:
 - о Абсолютная погрешность прямых измерений:

1

$$\Delta x = \sqrt{t^2 \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)} + \Delta x_B^2}$$

n — количество измерений; t — коэффициент Стьюдента; Δx_B — приборная погрешность.

Метод проведения измерений

- 1. Откроем кран установки и с помощью магнита переместим поршень к делению 70 см³. Закроем кран, переместим соленоид так, чтобы поршень был наполовину перекрыт соленоидом. Запустим генератор и настроим силу тока, чтобы амплитуда колебаний поршня была около 5 мм.
- 2. Медленно изменяя частоту функционального генератора, добьёмся максимальной амплитуды колебаний поршня. Снимем показания частоты с прибора. Дважды повторим измерения: выключим генератор, сбросим частоту генератора, заново запустим его и снова подберём резонансную частоту при том же положении поршня.
- 3. Повторим те же измерения для других положений поршня в трубке.

Таблицы и обработка данных

Приборная погрешность счётчика частоты равна половине цены деления: $\Delta f_B = 0.005~\Gamma$ ц.

При каждом нахождении резонансной частоты проводилось 3 измерения. Абсолютная погрешность находилась по формуле для погрешности прямых измерений, указанной в разделе «Расчётные формулы». Во всех случаях коэффициент Стьюдента t при n=3, $\alpha=0.68$ равен 1.4.

Коэффициент наклона графика (и его погрешность) прямой зависимости найдём по методу наименьших квадратов.

Показание барометра в комнате: $p_0 = 74.65$ см. рт. ст ≈ 99525 Па.

Теоретическая зависимость f(V) выражается в виде:

$$f = \frac{dd_1}{8} \sqrt{\frac{\gamma p_0}{mV}}$$

Чтобы найти коэффициент γ , изобразим график линеаризованной функции $f^2(V^{-1})$.

$$f^2 = \gamma \frac{p_0 d^2 d_1^2}{64mV} = \gamma \theta => \theta = \frac{p_0 d^2 d_1^2}{64mV}$$

Таблица 1. Результаты исследования зависимости **f(V)**

11.51 11.97 2 65 11.97 11.85±0.16 140.5 10 11.62 12.14	6.57 04.0 12.7
11.51 11.97 2 65 11.97 11.85±0.16 140.5 10 11.62 12.14	04.0
2 65 11.97 11.85±0.16 140.5 10 12.14	
2 65 11.97 11.85±0.16 140.5 10 11.62 12.14	
11.62 12.14	
12.14	12 7
	12 7
3 60 12.15 12.143±0.007 147.5 1	12 7
	14.1
12.14	
13.04	
4 55 13.04 13.043±0.007 170.1 1	22.9
13.05	
13.51	
5 50 13.23 13.37±0.11 178.8 1	35.2
13.37	
14.39	
6 45 14.37 14.383±0.011 206.9 1	50.2
14.39	
15.00	169.0
7 40 15.05 15.04±0.03 226.1 1	
15.06	
16.11	
8 35 15.85 15.94±0.12 254.1 19	93.1
15.86	
17.30	
9 30 17.36 17.36±0.05 301.5 2	25.3
17.43	
18.84	
10 25 18.83 18.87±0.05 356.2 2	70.4
18.95	
21.30	
11 20 21.10 21.23±0.09 450.9 3	38.0
21.30	
24.15	
12 15 24.27 24.30±0.14 590.7 4.	50.6
24.49	
29.45	
13 10 29.42 29.48±0.06 868.9 6	76.0
29.56	

График 1. Зависимость квадрата резонансной частоты f^2 от величины θ , обратной объёму V газа в трубке.

$$\gamma = 1.280 \pm 0.008$$

Число степеней свободы газа:

$$i = \frac{2}{\gamma - 1} = 7.1 \pm 0.2$$

Выводы

В результате эксперимента было получено значение показателя адиабаты воздуха:

$$\gamma = 1.280 \pm 0.008$$

Теоретическое значение показателя адиабаты воздуха при 20°С равно 1.400. Расхождение значения коэффициента адиабаты с его теоретическим значением может быть связано с наличием трения между поршнем и стенками трубки и сложностью определения положения максимальной амплитуды колебаний поршня.

Так как экспериментальная зависимость, представленная на графике 1, получилась линейной, можно сделать вывод о правильности теоретической формулы, которая её выражает.