#### **REPUBLIQUE TUNISIENNE**

\*\*\*\*

Université de Carthage

\*\*\*\*

INSTITUT NATIONAL DE SCIENCES APPLIQUÉES ET DE TECHNOLOGIE

\*\*\*\*

**AEROBOTIX CLUB** 

# Projet de conception et de construction d'un planeur

18/11/2020



Introduction (members)

Ce projet est réalisé par l'equipe 6, une équipe composée de 5 membres du club d'Aerobotix, étudiants à l'insat.

Ces membres sont:

- Ahmed Aziz Boussaid
  - •Ilef Rjiba
  - Mayssa Chouat

Wala Zoghlami.



Après les formations d'initiations en aéronautiques déroulée au sein de l'institut national des sciences appliquées et de technologie par le club Aerobotix, nous réalisons ce projet dans le but de mettre concrètement en application les connaissances acquises. Ce projet s'étend sur une période de deux semaines parallèlement aux cours du premier semestre.

### Introduction

- Origine de projet: Ce projet est né de la volonté de participer au workshop planeur organisé par le club Aerobotix de l'insat et de réaliser un travail en relation avec l'aéronautique.
- Développement de l'étude : La première partie de notre réflexion a consisté en l'établissement du cahier des charges

relatif à la réalisation de l'aile. Ceci nous a permis de rassembler tous les objectifs et contraintes associés à cette étude. Ce cahier des charges a donné un fil conducteur à notre étude, à commencer par l'étude aérodynamique de l'aile qui a permis le choix d'un nouveau profil et qui a fourni les bases pour tous les calculs ultérieurs.

Afin de réaliser la conception de l'aile, il a fallu préalablement faire l'inventaire puis le choix des différentes possibilités de réalisation. Ceci nous a permis d'orienter les calculs de structures, puis d'effectuer des modélisations informatiques. Après avoir validé les différentes étapes de l'étude, nous nous sommes attelés à la fabrication de l'aile et la realisation de notre planeur.





Introduction

**Donnes** du problème

Améliorer le comportement en vol du planeur

Réduire le poids de l aile

Manipuler facilement l'aile



2- description des forces aérodynamiques

## Objectif





### 1- dimensions du planeur

# 2- description des forces aérodynamiques

| fonctions                                    | Description des environnements concernés | Critères          |
|----------------------------------------------|------------------------------------------|-------------------|
| Résister aux efforts extérieur               | Charge admissible<br>Flexion de l'aile   | Poids<br>rigidité |
| Améliorer les caractéristiques aérodynamique | Vol a long distance                      | Cx<br>Cz          |
| Montage de l'aile                            | Maniabilité<br>Eléments de fixation      | Maniabilité       |

## Calcul aérodynamique

· Le choix de profil

Le choix du profil dépend principalement des performances que l'on attend de l'avion.

Dans notre étude, on choisira un profil pour un avion de début afin d'obtenir une plus faible vitesse de décrochage

On choisira un profil en fonction des vitesses de vol

#### Attendues



#### Plan convexe:

- l'extrados est convexe et l'intrados plan
- plus guère utilisé

### 1- dimensions du planeur

## 2- description des forces aérodynamiques

### caractéristiques du planeur

### Aile

| (mm)           | Trapèze 1 | Trapèze 2 | Trapèze 3 | Trapèze 4    | Trapèze 5 |
|----------------|-----------|-----------|-----------|--------------|-----------|
| Corde emplant. | 167       | -         | -         | i <b>-</b> . | -         |
| Corde saumon   | 100       |           |           |              |           |
| Longueur       | 300       |           |           |              |           |
| Flèche /BA     | 66        |           |           |              |           |
| ■Vrillage (°)  | 0.0       |           |           |              |           |
| Dièdre (°)     | 0         |           |           |              |           |

| Surface totale (dm²)  | 8.01  |
|-----------------------|-------|
| Corde moyenne (mm)    | 136.3 |
| Envergure aéro (mm)   | 600   |
| Envergure totale (mm) | 653   |
| Allongement           | 4.49  |
| Allongement ellip.    | 4.56  |
| Foyer aile (mm)       | 64.3  |
| V 63                  |       |

# 1- dimensions du planeur

2- description des forces aérodynamiques

| 100                 |               |              | Stabil                                 | lisateur        |                     | 111                  |      |
|---------------------|---------------|--------------|----------------------------------------|-----------------|---------------------|----------------------|------|
| (mm)                | Trapèze 1     | Trapèze 2    | Trapèze 3                              | Trapèze 4       | Trapèze 5           | Surface totale (dm²) | 1.99 |
| Corde emplant.      | 100           | -            | -                                      | -               |                     | Corde moyenne (mm)   | 84.2 |
| Corde saumon        | 66            |              |                                        |                 |                     | Envergure aéro (mm)  | 240  |
| Longueur            | 120           |              | vi |                 |                     | Allongement          | 2.89 |
| Flèche /BA          | 33            |              | _                                      |                 |                     | Allongement ellip.   | 3.05 |
| Levier stab         | 367           | Hauteur stab | 0                                      | Desti Nevelo    |                     | Foyer stab (mm)      | 36.4 |
| Ouverture (°) / 180 | Ecart latéral | 20           | Profil   Planche                       | <u>M</u>        | Bras de levier (mm) | 339                  |      |
|                     | . δ           | Ţ.           |                                        | Dérive(s) (dm²) | 1.5                 | Volume de stab       | 0.62 |

# 1- dimensions du planeur

2- description des forces aérodynamiques

| Marge si       |              | 5% ÷     |         |
|----------------|--------------|----------|---------|
| CG C           | 30.0%        |          | 71.1    |
| Foyer          | 35.0%        |          | 77.9    |
| Masses (g)     | <b>—</b> 150 | <b>N</b> | •       |
| Charge (g/dm²) | 18.7         |          | <u></u> |

### une force de traînée

Fx, parallèle à la direction moyenne de l'écoulement

### une force de dérive

Fy, perpendiculaire à la direction moyenne de l'écoulement, dans le plan horizontal

### une force de portance

Fz, perpendiculaire à la direction moyenne de l'écoulement, dans le plan vertical.





### Analyse de la géométrie de voilure (VLM







### **METEROLOGIE**



# DTTA 162030Z 24005KT 210V270 9999 SCT023 21/10 Q1020



| DTTA               | Aéroport de Tunis-Carthage, Tunis, Tunisia.                                                                  |   |
|--------------------|--------------------------------------------------------------------------------------------------------------|---|
| 162030             | Tunis-Carthage Le 16, 20:30h UTC ( 21:30h en Tunisie)                                                        |   |
| 24005KT<br>210V270 | Vents de 5kt (knots) de direction ouest/sud-ouest (240°), en variant entre ouest (270°) et sud- ouest (210°) |   |
| 9999               | Visibilités 10km ou plus (+9999m)                                                                            |   |
| SCT023             | Des nuages épars à une hauteur de 2300 ft.                                                                   |   |
| 21/10:             | température 21°C; point de rosée 10°C //on peut calculer l'humidité 10*100/21= 47%                           |   |
| Q1020              | La pression 1020 hPa                                                                                         | * |

#### **METEROLOGY**



# DTTA 161000Z VRB02KT 7000 FEW023 21/12 Q1024

### Conclusion

Durant ce projet nous avons eu l'occasion de créer notre propre planeur et de faire notre propre recherche pour réaliser un modèle de planeur adéquat. Ce qui a résulté en l'evolution de notre compréhension du vaste domaine qu'est l'aéronautique. .

### Perspective

En réalisant ce travail nous avons traité les differents aspects de la conception d'un planeur ce qui nous inspire à rechercher la composition des autres types d'avions

# Merci pour votre attention!