1 - Fundamental concepts & sampling

Basic concepts in Data Science

Variables & Values

variable = property of an object
value = specific state of variable

Measurement Levels

= Variable types

Determine most suitable method for analysis

- · visualization methods
- central tendency & dispersion
- examine relationship between variables

Qualitative vs quantative

Qualitative	Quantitative		
Not necessarily numeric Limited number of values	Number + unit of measurement Many values, often unique often contain result of measuremen		

Qualitative scales

- Nominal Categories
 (gender, race, country, shape, ...)
- Ordinal Order, rank
 (military rank, level of education, ...)

Quantitative Scales

- Interval No fixed zero point \implies no proportions $({}^{\circ}C, {}^{\circ}F)$
- Ratio Absolute zero point \implies proportions (distance (m), energy (J), weight (kg))

Proportions:

- 20m is 1/3th longer than 15m
- + $20\,^{\circ}C$ isn't 1/3th warmer than $15\,^{\circ}C$ (convert to $^{\circ}F$)

Relations between variables

Variables are related if values change systematically

Causal Relationships

- Cause Independent variable
- Consequence Dependent variable

Fake correlations / "Spurious correlations"

A relationship between variables does **not** necessarily indicate a causal relation!

Sample testing

Sample & population

- Population collection of all objects/people/... that you want to investigate
- Sample subset of population from which measurements will be taken

Under certain circumstances, the results for a sample are representative for the population.

Sampling method

Definition of population

Define sampling frame

How select elements for sample

• Random sample

• every element from population has equal chance of being included in sample

• Non-random sample

- elements for sample are *not* randomly selected
- objects that can be collected easily are more likey to be included (convenience sampling)

Stratified to variables

Age						
Gender	≤ 18]18,25]]25,40]	> 40	Total	
Woman Man	500 400	1500 1200	1000 800	250 160	3250 2560	
Total	900	2700	1800	410	5810	
Age						
Gender	≤ 18]18, 25]]25, 40]	> 40	Total	
Woman Man	50 40	150 120	100 80	25 16	325 256	
Total	90	270	180	41	581	

Possible Errors

Measurements in a sample will typically deviate from the value in the entire population \implies Errors!

Sampling errors

- Accidental sampling errors
 - pure coincidence
- Systematic sampling errors

- Online survey: people without internet are excluded
- Street survey: only people who are walking there are included
- Voluntary survey: only interested parties participate

Non-sampling errors

- Accidental non-sampling errors
 - Incorrectly ticked answers
- Systematic non-sampling errors
 - Poor or non-calibrated measuring equipment
 - Value can be **influenced** by the fact that you measure
 - Respondents lie (number of cigarettes a day)