On a class of sums involving the floor function

Titu Andreescu and Dorin Andrica

For a real number x there is a unique integer n such that $n \le x < n+1$. We say that n is the greatest integer less than or equal to x or the floor of x. We denote $n = \lfloor x \rfloor$. The difference $x - \lfloor x \rfloor$ is called the fractional part of x and is denoted by $\{x\}$.

The integer $\lfloor x \rfloor + 1$ is called the *ceiling* of x and is denoted by $\lceil x \rceil$. For example,

$$\lfloor 2.1 \rfloor = 2$$
 $\{2.1\} = .1$ $\lceil 2.1 \rceil = 3$ $\lfloor -3.9 \rfloor = -4$ $\{-3.9\} = .1$ $\lceil -3.9 \rceil = -3$

The following properties are useful:

- 1) If a and b are integers, b > 0, and q is the quotient when a is divided by b, then $q = \left\lfloor \frac{a}{b} \right\rfloor$.
- 2) For any real number x and any integer n, $\lfloor x+n \rfloor = \lfloor x \rfloor + n$ and $\lceil x+n \rceil = \lceil x \rceil + n$.
- 3) For any positive real number x and any positive integer n the number of positive multiples of n not exceeding x is $\left\lfloor \frac{x}{n} \right\rfloor$.
 - 4) For any real number x and any positive integer n,

$$\left| \frac{\lfloor x \rfloor}{n} \right| = \left\lfloor \frac{x}{n} \right\rfloor.$$

We will prove the last two properties. For 3) consider all multiples $1 \cdot n, 2 \cdot n, \ldots, k \cdot n$, where $k \cdot n \leq x < (k+1)n$. That is $k \leq \frac{x}{n} < k+1$ and the conclusion follows. For 4) denote $\lfloor x \rfloor = m$ and $\{x\} = \alpha$. From the Division Algorithm and property 1) above it follows that $m = n \left\lfloor \frac{m}{n} \right\rfloor + r$, where $0 \leq r \leq n-1$. We obtain $0 \leq r + \alpha \leq n-1 + \alpha < n$, that is $\left\lfloor \frac{r+\alpha}{n} \right\rfloor = 0$ and

$$\left\lfloor \frac{x}{n} \right\rfloor = \left\lfloor \frac{m+\alpha}{n} \right\rfloor = \left\lfloor \left\lfloor \frac{m}{n} \right\rfloor + \frac{r+\alpha}{n} \right\rfloor = \left\lfloor \frac{m}{n} \right\rfloor + \left\lfloor \frac{r+\alpha}{n} \right\rfloor = \left\lfloor \frac{m}{n} \right\rfloor = \left\lfloor \frac{\lfloor x \rfloor}{n} \right\rfloor.$$

The following result is helpful in proving many relations involving the floor function.

Theorem. Let p be an odd prime and let q be an integer that is not divisible by p. If $f: \mathbb{Z}_+^* \to \mathbb{R}$ is a function such that:

- i) $\frac{f(k)}{p}$ is not an integer, $k = 1, 2, \dots, p-1$; ii) f(k) + f(p-k) is an integer divisible by $p, k = 1, 2, \dots, p-1$, then

$$\sum_{k=1}^{p-1} \left[f(k) \frac{q}{p} \right] = \frac{q}{p} \sum_{k=1}^{p-1} f(k) - \frac{p-1}{2}.$$
 (1)

Proof. From ii) it follows that

$$\frac{qf(k)}{p} + \frac{qf(p-k)}{p} \in \mathbb{Z}$$
 (2)

and from i) we obtain that $\frac{qf(k)}{p} \notin \mathbb{Z}$ and $\frac{qf(p-k)}{p} \notin \mathbb{Z}$, $k=1,\ldots,p-1$, hence

$$0 < \left\{ \frac{qf(k)}{p} \right\} + \left\{ \frac{qf(p-k)}{p} \right\} < 2.$$

But, from (1), $\left\{\frac{qf(k)}{p}\right\} + \left\{\frac{qf(p-k)}{p}\right\} \in \mathbb{Z}$, thus

$$\left\{\frac{qf(k)}{p}\right\} + \left\{\frac{qf(p-k)}{p}\right\} = 1, \quad k = 1, \dots, p-1.$$

Summing up and dividing by 2 yields

$$\sum_{k=1}^{p-1} \left\{ \frac{q}{p} f(k) \right\} = \frac{p-1}{2}.$$

It follows that

$$\sum_{k=1}^{p-1} \frac{q}{p} f(k) - \sum_{k=1}^{p-1} \left\lfloor \frac{q}{p} f(k) \right\rfloor = \frac{p-1}{2}$$

and the conclusion follows.

Application 1. The function f(x) = x satisfies both i) and ii) in Theorem, hence

$$\sum_{k=1}^{p-1} \left\lfloor k \frac{q}{p} \right\rfloor = \frac{q}{p} \cdot \frac{(p-1)p}{2} - \frac{p-1}{2},$$

MATHEMATICAL REFLECTIONS 3, (2006)

that is

$$\sum_{k=1}^{p-1} \left[k \frac{q}{p} \right] = \frac{(p-1)(q-1)}{2} \quad \text{(Gauss)}.$$
 (3)

Remark. From the proof of our Theorem, it follows that the above formula holds for any relatively prime integers p and q.

Application 2. The function $f(x) = x^3$ also satisfies conditions i) and ii), hence

$$\sum_{k=1}^{p-1} \left\lfloor k^3 \frac{q}{p} \right\rfloor = \frac{q}{p} \cdot \frac{(p-1)^2 p^2}{4} - \frac{p-1}{2} = \frac{(p-1)(p^2 q - pq - 2)}{4}. \tag{4}$$

For q=1 we obtain the 2002 German Mathematical Olympiad problem:

$$\sum_{k=1}^{p-1} \left\lfloor \frac{k^3}{p} \right\rfloor = \frac{(p-2)(p-1)(p+1)}{4}.$$
 (5)

Application 3. For $f: \mathbb{Z}_+^* \to \mathbb{R}$, $f(s) = (-1)^s s^2$, conditions i) and ii) in our Theorem are both satisfied. We obtain

$$\sum_{k=1}^{p-1} \left\lfloor (-1)^k k^2 \frac{q}{p} \right\rfloor = \frac{q}{p} (-1^2 + 2^2 - \dots + (p-1)^2) - \frac{p-1}{2}$$
$$= \frac{q}{p} \cdot \frac{p(p-1)}{2} - \frac{p-1}{2},$$

hence

$$\sum_{k=1}^{p-1} \left\lfloor (-1)^k k^2 \frac{q}{p} \right\rfloor = \frac{(p-1)(q-1)}{2}.$$
 (6)

Remark. By taking q = 1 we get

$$\sum_{k=1}^{p-1} \left[(-1)^k \frac{k^2}{p} \right] = 0.$$

Using now the identity $\lfloor -x \rfloor = -1 - \lfloor x \rfloor$, $x \in \mathbb{R} \setminus \mathbb{Z}$, the last display takes the form

$$\sum_{k=1}^{p-1} (-1)^k \left\lfloor \frac{k^2}{p} \right\rfloor = \frac{1-p}{2}.$$
 (7)

Application 4. Similarly, applying our Theorem to $f: \mathbb{Z}_+^* \to \mathbb{R}$, $f(s) = (-1)^s s^4$ yields

$$\sum_{k=1}^{p-1} \left\lfloor (-1)^k k^4 \frac{q}{p} \right\rfloor = \frac{q(p-1)(p^2 - p - 1)}{2} - \frac{p-1}{2}.$$
 (8)

Taking q = 1 gives

$$\sum_{k=1}^{p-1} \left\lfloor (-1)^k \frac{k^4}{p} \right\rfloor = \frac{(p-2)(p-1)(p+1)}{2}.$$
 (9)

Application 5. For $f(s) = \frac{s^p}{p}$, conditions i) and ii) in our Theorem are also satisfied and for q=1 we obtain

$$\sum_{k=1}^{p-1} \left\lfloor \frac{k^p}{p^2} \right\rfloor = \frac{1}{p} \sum_{k=1}^{p-1} \frac{k^p}{p} - \frac{p-1}{2} = \frac{1}{p^2} \left(\sum_{k=1}^{p-1} k^p - \frac{p(p-1)}{2} \right),$$

hence

$$\sum_{k=1}^{p-1} \left\lfloor \frac{k^p}{p^2} \right\rfloor = \frac{1}{2} \sum_{k=1}^{p-1} \frac{k^p - k}{p}.$$
 (10)

Formula (10) shows that half of the sum of the quotients obtained when $k^p - k$ is divided by p (Fermat's Little Theorem) is equal to the sum of the quotients obtained when k^p is divided by p^2 , $k = 1, 2, \ldots, p-1$.

References

[1] Andreescu, T., Andrica, D., Number Theory and its Mathematical Structures, Birkhäuser, Boston-Basel-Berlin (to appear).

University of Texas at Dallas School of Natural Sciences and Mathematics Richardson, TX 75080 e-mail: titu.andreescu@utdallas.edu

"Babeş-Bolyai" University Faculty of Mathematics and Computer Science Cluj-Napoca, Romania e-mail: dandrica@math.ubbcluj.ro