Классификация вулканической активности с помощью компьютерного зрения

Инна Лялина

Аккаунты в соцсетях

- fb.com/lyalina.inna
- in linkedin.com/in/lyalina

Roadmap

- Выявление потребности в автоматизации процесса мониторинга
- о Сбор и анализ данных
- Разметка классов, подготовка масок изображений
- 1

Анализ данных

Классификация ML

- о Бинарная классификация
- Множественная классификация

3

Сегментация CNN

- Генерация описания наблюдаемого объекта
- Сохранение истории наблюдений в структурированном виде

- классификаторы о Деревья решений

о Линейные

Классификация CNN

 Сегментация участков принадлежащих бинарным классам выбросов

4

- Визуализация направления движения
- Вычисление количественных характеристик полученных сегментов

Практическое применение

Анализ данных

Классы изображений

Предобработка данных

Классификация ML

Линейные классифкаторы и деревья решений

Логистическая регрессия

Алгоритм опорных векторов

Дерево решений

Случайный лес

Bagging

Gradient Boosting

Оценка моделей

Machine Learning Algorithm (on validation dataset)

	Accuracy	Recall	Precision	F1 score	Model size, Mb
Logistic Regression	0.86	0.91	0.88	0.87	8
SVM	0.87	0.91	0.88	0.87	528
Decision Tree	0.8	0.82	0.81	0.8	0.002
Random Forest	0.87	0.81	0.87	0.87	0.067
Bagging	0.93	0.91	0.93	0.93	233
Gradient Boosting	0.8	0.82	0.81	0.8	0.12

Классификация CNN

Бинарная классификация CNN

Применение предобученных сверточных сетей на основе архитектуры ResNet50 и VGG19 с весами ImageNet для определения наличия выбросов: лавовый поток или парогазовый столб.

Множественная классификация CNN

 \rightarrow

Применение сверточной сети для получения полного описания состояния наблюдаемого объекта. Сравнение проводилось по двум архитектурам ResNet50 и VGG19

Оценка моделей CNN классификации

Сети на основе предобученных сетей ResNet и VGG с весами Imagenet показали приемлемый результат бинарной классификации:

Accuracy = 0.9

Loss = 0.1

Множественная классификация для генерации обобщённого описания состояния наблюдаемого объекта на основе сверточных сетей требует более дополнительного исследования и настройки: Accuracy = 0.6 Loss = 0.3

Сегментация CNN

U net сегментация

Для выделения сегментов на изображении, относящихся к одному из классов выбросов, была применена сверточная нейронная сеть, за основу которой взята архитектура U-net. Accuracy = 0.7 Loss = 0.01

Оценка моделей

Convolutional Networks (on test dataset)

	Accuracy	Recall	Precision	F1 score	Binary crossentropy	Dice coef	Model size, Mb
ResNet_model_status	0.89	0.84	0.9	0.89			96
VGG_model_status	0.91	0.84	0.93	0.91			59
ResNet_model_pillar	0.68	0.47	0.69	0.68			96
VGG_model_pillar	0.73	0.42	0.78	0.71			78
ResNet_model_lava	0.93	0.81	0.93	0.93			96
VGG_model_lava	0.82	0.91	0.87	0.83			78
ResNet_model_multiclass	0.67	0	0.48	0.55			96
VGG_model_multiclass	0.65	0.07	0.51	0.56			59
UNet_model_lava	0.78	0.09	0.83	0.7	0.04	0.93	89
UNet_model_pillar	0.73	0.58	0.73	0.73	0.02	0.98	89

Практическое применение

Точность предсказаний модели

Практическое применение

Мониторинг состояния и уведомление об изменении состояния вулкана

Вычисление количественных характеристик

Сохранение истории наблюдений в структурированном виде

Мониторинг

Мониторинг состояния и уведомление в случае изменения состояния вулкана

Количественные характеристики

Вычисление количественных характеристик:

- Площадь покрытия
- Направление движения
- Категоризация состояния по вычисленным характеристикам

Сохранение истории наблюдений

(→) С помощью обработки маски класса, полученной на этапе сегментации, вычисляются градиенты и визуализируются в виде гистограмм

Классификация вулканической активности с помощью компьютерного зрения

