Note sur la traduction de transformée de Welch en javascript

13 mai 2025

Il n'existe pas de bibliothèque fournissant la transformée de Welch en javascript. Donc je l'écris en utilisant https://github.com/indutny/fft.js/ (fft.js-master) pour la fft. J'implémente que ce qui est utilisé dans le programme python initial, ie fenêtre de hann et ... La référence de la fonction welch est https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html

Dans le javascript les paramètres passés sont

- data,
- -f fs (TEIs.getModule(TEImodule).AdcSamplingRate),
- -s len(data)//1024
- -m nombre de segments

les paramètres affectés

- window='hann',
- nperseg=nbperseg
- scaling='density'

Dans le python la commande scipy lancée est :

 $signal.welch(data, fs, 'hann', nperseg=nbperseg, scaling='density') \ avec \ fs=2000000 \ nbperseg=len(data)$

La preuve est le log suivant (les lignes apparaissent deux fois car on a appelé une fois avec seg=1 et une fois avec seg=2) :

 $PY: commande \ lancee: signal.welch(data, fs, 'hann', nperseg=nbperseg, scaling='density') \ avec \ fs=2000000 \ nbperseg=16384 \ len(data)=16384$

 $PY: commande \ lancee: signal.welch(data, fs, 'hann', nperseg=nbperseg, scaling='density') \ avec \ fs=2000000 \ nbperseg=32768 \ len(data)=32768$

PY : commande lancee : signal.welch(data, fs, 'hann',nperseg=nbperseg, scaling='density') avec fs=2000000 nbperseg=65536 len(data)=65536 fenêtre de Hann :

$$w(n) = \frac{1}{2} - \frac{1}{2}\cos\left(\frac{2\pi n}{M-1}\right) \qquad 0 \le n < M$$

On lance $\underline{\text{toujours}}$ le cas nperseg=len(data) et si on a demander $\sec>1$ on relance avec nperseg=len(data)/seg. Le nombre de frquence sera alors (len(data)/2+1)/seg

Questions

D'après la commande lancée nbperseg=len(data)/seg, mais les segments se recouvrent par défaut de moitié donc seg n'est pas le nombre de segments. Par exemple si $n=2^k$ et seg= 2 nbperseg= 2^{k-1} et il y aura 3 segments : $\left[0,2^{k-1}\right], \left[2^{k-2},3\,2^{k-2}\right]$ et $\left[2^{k-1},2^k\right]$ Les segments doivent aussi être des puissances de 2. Ci-dessus on a vu 2^{k-1} .

Les segments doivent aussi être des puissances de 2. Ci-dessus on a vu 2^{k-1} . Pour 2^q le débuts des segments seront de $\alpha 2^{q-1}$ et le dernier segment sera tel que $\alpha^* 2^{q-1} = 2^k$ donc $\alpha^* = 2^{k-q+1}$.

$$nps = \frac{N}{2^k} \Longrightarrow nbs = 2^{k+1} - 1$$