Section 1.3 Homework

Jiayu Hu

November 3, 2016

Example 5

```
Let f(n) = 1 + 3 + 5 + ... + (2n - 1)

Let p(n) be the statement f(n) = n^2

When n = 1, we can get 1 = 1^2. So, p(n) is true at n = 1

We now assume \forall k, p(k)

Our goal is to show \forall k, p(k) \Rightarrow p(k+1)

For n = k, we have f(k) = k^2

So f(k+1) = f(k) + [2*(k+1) - 1] = k^2 + 2k + 1 = (k+1)^2

We have shown that \forall k, p(k) \Rightarrow p(k+1).

Therefore, we have shown that \forall n, p(n) \blacksquare
```

Example 7

If x and y are positive odd integers, then we can express x and y as x = 2m + 1, y = 2n + 1 where m and n are nonnegative integers. Then, we obtain

$$xy = (2m+1)(2n+1)$$
 (by definition of x and y)
$$= 4mn + 2m + 2n + 1$$
 (expand the expression)
$$= 2(2mn + m + n) + 1$$
 (2 is a common factor of $2mn$, m and n)
$$= 2k + 1$$
 ($k = 2mn + m + n$ is also a positive integer)
$$= Old\ Positive\ Integer$$
 (by definition of a positive odd integer)

Example 9

\boldsymbol{p}	$oldsymbol{q}$	$q \Rightarrow p$	$p \Rightarrow q$	
T	\boldsymbol{T}	$oldsymbol{T}$	T	
T	$oldsymbol{F}$	T	$oldsymbol{F}$	
\boldsymbol{F}	T	$oldsymbol{F}$	T	
\boldsymbol{F}	$oldsymbol{F}$	T	T	

Conclusion: $q \Rightarrow p$ is not logically equivalent to $p \Rightarrow q$

Example 10

\boldsymbol{p}	\boldsymbol{q}	$\sim p$	$\sim q$	$\sim p \Rightarrow \sim q$	$p \Rightarrow q$
T	T	$oldsymbol{F}$	$oldsymbol{F}$	T	T
T	\boldsymbol{F}	\boldsymbol{F}	T	T	$oldsymbol{F}$
$oldsymbol{F}$	T	T	\boldsymbol{F}	$oldsymbol{F}$	T
$oldsymbol{F}$	\boldsymbol{F}	T	T	T	T

Conclusion: $\sim p \Rightarrow \sim q$ is not logically equivalent to $p \Rightarrow q$

Example 11

(a) If it is snowing, then the temperature outside is less than one-hundred degrees Fahrenheit.

Contrapositive: If the temperature outside is not less than one-hundred degrees Fahrenheit, then it not snowing. (T)

Converse: If the temperature outside is less than one-hundred degrees Fahrenheit, then it is snowing. (F)

Inverse: If it is not snowing, then the temperature outside is not less than one-hundred degrees Fahrenheit. (F)

(b) If an animal has feet, then it can walk.

Contrapositive: If an animal can not walk, then it does not have feet. (F)

Converse: If an animal can walk, then it has feet. (T)

Inverse: If an animal does not have feet, then it can not walk. (T)