InthenameofGod

Sequence Generative Adversarial Nets (SeqGAN)

And

Objective-Reinforced Generative AdversarialNetworks (ORGAN)

Hosseinabbasi

Contents

Introduction GAN

Application GAn

SeqGAN

ORGAN

Result

Reference

GANs

Genrative

Learn a generative Model

Adversarial

Trained in an adverarial setting

Networks

Use Deep Neural Networks

What Generative Models?

We've only seen discriminative models so far

- Given an image X, predict a label
- Estimates P(Y|X)

Discriminative models have several key limitations

- Can't model P(X), i.e. the probability of seeing a certain image
- Thus, can't sample from P(X), i.e. can't generate new images

Generative models (in general) cope with all of above

- Can model P(X)
- Can generate new images

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p(x)}[\log D(x)] + \mathbb{E}_{z \sim q(z)}[\log(1 - D(G(z)))]$$

$$D^* = \underset{D}{\operatorname{argmax}} V(D,G)$$

$$G^* = \underset{G}{\operatorname{argmin}} V(D,G)$$

In this formulation, Discriminator's strategy was $D(x) \to 1$, $D(G(z)) \to 0$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)},\ldots,x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight) \right].$$

end for

- ullet Sample minibatch of m noise samples $\{m{z}^{(1)},\dots,m{z}^{(m)}\}$ from noise prior $p_g(m{z})$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

Discriminator

updates

Generator updates

Training GANs

Training Discriminator

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

Training GANs

Training Generator

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

Applications

- Image-to-Image Translation
- Text-to-Image Synthesis
- Face Aging

• • •

Image-to-Image Translation

Figure 1 in the original paper.

Link to an interactive demo of this paper

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. "Image-to-image translation with conditional adversarial networks". arXiv preprint arXiv:1611.07004. (2016).

Text-to-Image Synthesis

this small bird has a pink breast and crown, and black primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

this magnificent fellow is almost all black with a red crest, and white cheek patch.

this white and yellow flower have thin white petals and a round yellow stamen

Figure 1 in the original paper.

Text-to-Image Synthesis

Figure 2 in the original paper.

Positive Example:

Real Image, Right Text

Negative Examples:

Real Image, Wrong Text Fake Image, Right Text

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. "Generative adversarial text to image synthesis". ICML (2016).

Face Aging with Conditional GANs

Figure 1 in the original paper.

Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). "Face Aging With Conditional Generative Adversarial Networks". arXiv preprint arXiv:1702.01983.

Sequence Generative Adversarial Nets (SeqGAN)

SeqGAN

Algorithm 1 Sequence Generative Adversarial Nets

Require: generator policy G_{θ} ; roll-out policy G_{β} ; discriminator D_{ϕ} ; a sequence dataset $\mathcal{S} = \{X_{1:T}\}$ 1: Initialize G_{θ} , D_{ϕ} with random weights θ , ϕ . 2: Pre-train G_{θ} using MLE on \mathcal{S} 3: $\beta \leftarrow \theta$ 4: Generate negative samples using G_{θ} for training D_{ϕ} 5: Pre-train D_{ϕ} via minimizing the cross entropy 6: repeat 7: for g-steps do 8: Generate a sequence $Y_{1:T} = (y_1, \dots, y_T) \sim G_{\theta}$ for t in 1:T do 9: Compute $Q(a = y_t; s = Y_{1:t-1})$ by Eq. (4) 10: end for 11: Update generator parameters via policy gradient Eq. (8) 12: 13: **end for** 14: for d-steps do Use current G_{θ} to generate negative examples and com-15: bine with given positive examples STrain discriminator D_{ϕ} for k epochs by Eq. (5) 16: 17: end for $\beta \leftarrow \theta$ 18: 19: until SeqGAN converges

The Discriminative Model for Sequences

Deep discriminative models such as deep neural network (DNN) (Vesely et al `. 2013),

convolutional neural network (CNN) (Kim 2014) recurrent convolutional neural network (RCNN) (Lai et al. 2015)

The Generative Model for Sequences

recurrent neural networks (RNNs)

specifically, the g-steps, d-steps and k parameters in Algorithm

Application

Poems
Spoken language
Generation of music

Table 1: Sequence generation performance comparison. The p-value is between SeqGAN and the baseline from T-test.

Algorithm	Random	MLE	SS	PG-BLEU	SeqGAN
NLL	10.310	9.038	8.985	8.946	8.736
<i>p</i> -value	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	

Objective-Reinforced Generative AdversarialNetworks (ORGAN)


```
Algorithm 1: Objective-Reinforced Generative Adversarial Networks (ORGAN)
require: Generator G_{\theta}; Discriminator D_{\phi}; dataset S = \{Y_{1:T}\}; objective O: Y \to (0,1)
Initialize G_{\theta}, D_{\phi} with random weights \theta, \phi;
Pre-train G_{\theta} using MLE on S;
Generate negative samples using G_{\theta} for training D_{\phi};
Pre-train D_{\phi} by minimizing the cross entropy;
repeat
    for g-steps do
        Generate a sequence Y_{1:T} = (y_1, ..., y_T) \sim G_{\theta};
        for t in 1:T do
            Compute Q(s = Y_{1:t-1}, a = y_t) by Eq. 4 using D_{\phi} and O to calculate rewards per Eq. 6
        end
        Update generator parameters \theta via policy gradient by Eq 5.;
    end
    for d-steps do
        Use G_{\theta} to generate negative examples and combine with given positive examples S;
        Train discriminator D_{\phi} for k epochs by Eq. 1;
    end
until model converges;
```

RL Parameter

Results of ORGAN optimizing different metrics

Objective	Algorithm	Tonality	Melodicity	Ratio of Steps	Diversity
Tonality	Naive RL	0.629	0.640	0.023	0.086
	ORGAN ($\lambda = 0.6$)	0.449	0.452	0.010	0.274
	SeqGAN	0.048	0.101	0.317	0.377
	MLE	0.055	0.097	0.280	0.560
Melodicity	Naive RL	0.467	0.629	0.062	0.238
	ORGAN ($\lambda = 0.6$)	0.594	0.679	0.033	0.386
	SeqGAN	0.057	0.103	0.304	0.535
	MLE	0.055	0.097	0.280	0.560
Ratio of Steps	Naive RL	0.001	0.003	0.901	0.278
	ORGAN ($\lambda = 0.8$)	0.010	0.030	0.771	0.551
	SeqGAN	0.044	0.084	0.302	0.648
	MLE	0.055	0.097	0.280	0.560

Table 3: Results of ORGAN optimizing different metrics. Each measure was taken over a set of 6400 generated songs. Bolded entries represent the optimized metric as well as the diversity achieved by ORGAN in each experiment.

Result

Finally, future work should extend ORGANs to work with data that is not sequential, such as images.

This requires framing the GAN setup as a reinforcement learning problem in order to add an arbitrary (not necessarily differentiable) objective function.

Reference

- 1. Yu, Lantao, et al. Seqgan: sequence generative adversarial nets with policy gradient. arXiv preprint arXiv:1609.05473 (2016).
- 2. Gabriel L. Guimaraes, Benjamin Sanchez-Lengeling, Pedro Luis Cunha Farias, Alán Aspuru-Guzik: Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models. arXiv:1705.10843v1 [stat.ML] 30 May 2017.
- 3. Dag Inge Helgøy: Markus LundA Continuous Approach to Controllable Text Generation using Generative Adversarial Network.: Master of Science in Computer Science: June 2017.

THE END With thanks for your attention