Studies into the Synthesis of [12]Cyclacene

Zhuoran Zhang
Douglas Research Group
Graduate Student Research Symposium
06/07/2016

Research Projects

I. Synthesis of dibenzorubicenes

II. Synthesis of perfluorubrene $(C_{42}F_{28})$

Zhuoran Zhang, William A. Ogden, Victor Young, Jr. and Christopher J. Douglas *Chem. Commun.* 2016, Accepted Manuscript, DOI: 10.1039/C6CC03259A

III. Synthesis of [12]cyclacene derivatives

Completeness

Interesting Theoretical Molecules

Fullerenes and carbon nanotubes

Armchair CNT

Zig-zag CNT

- Sphere vs tube
- Materials science applications
- Curved conjugation

Interesting Theoretical Molecules

Fullerenes and carbon nanotubes

C₆₀

Armchair CNT

Zig-zag CNT

- Sphere vs tube
- Materials science applications
- Curved conjugation

Fragment structures: buckybowls and molecular belts

Corannulene

Cycloparaphenylene CPP

Cyclacene

- Curved aromatic surface
- Unique electronics
- Host-guest chemistry

- ❖ Template synthesis for C₆₀ or CNT
- Finite model for property studies
- **Support or refine** chemical theories

m = 5, 8, 14

Syntheses of [n]CPPs: A Recent Accomplishment

- Challenge: cyclic structure & ring strain
- Strategy: sequentially build up strain

Darzi, E. R.; Jasti, R. Chem. Soc. Rev., 2015, 44, 6401-6410.

Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. J. Am. Chem. Soc. 2008, 130, 17646-17647.

Cyclacene vs. CPP — A More Challenging Target?

[n]Cyclacene

Shape	Molecular hoops with radially oriented p orbitals	
Cavity	Yes	Yes
Structure unit	linear phenylene	linear benzenoid
π Electrons	4n or 4n+2	4n
Electronic property	Armchair CNT <i>metallic</i>	Zig-zag CNT Semiconductive
Known Synthesis	Yes	No

[n]CPP

Synthetic precedence to [n]Cyclacene derivatives

The Stoddart approach

Synthesis Precedence to [n]Cyclacene Derivatives

Cory's approach to [8]cyclacene

The Strategy for Macrocycle Synthesis

Strategy

Curved precursor

Stereoselective
Diels-Alder reaction

Macrocycle

dehydrogenation/oxidation quinone functionalization decarbonylation

End-game (Aromatization)

The Strategy for Macrocycle Synthesis—The Douglas Approach 10

Proposed Synthesis and Predicted Challenges

Challenge I: Stereoselective synthesis of cyclization precursor (half cycle)

Proposed Synthesis and Predicted Challenges

Challenge II: macrocyclization and late-stage functionalization

Literature precedence

$$\begin{array}{c}
 & Ph \\
 & N \\
 & O \\
 & N \\
 & O \\$$

Proposed Synthesis and Predicted Challenges

Challenge II: macrocyclization and late-stage functionalization

Controlled benzyne Diels-Alder reaction

Synthesis Attempts toward Syn-isomer

Synthesis Attempts toward Syn-isomer

Steric Analysis

Stereoselective Diels-Alder reactions — "EXO-exo selectivity"

Steric Analysis

Stereoselective Diels-Alder reactions — "EXO-exo selectivity"

Stereoselective Diels-Alder Reaction

Model study

Stereoselective Diels-Alder Reaction

Synthesis Attempts toward Syn-isomer

Synthesis Attempts toward Syn-isomer

Crystal Structure

> Syn-isomer as the major product!

Steven Underwood

Dr. Victor Young

Macrocyclization and late-stage functionalization

Model study

Acknowledgements

- Prof. Chris Douglas
- Team Cyclacene (Sarah, Lafe, Steve)
- Douglas group members
- NMR lab and XCL
- Funded by ACS PRF

Thank you

Future Work

Macrocyclization and late-stage functionalization