Teoria degli Automi e Calcolabilità a.a. 2021/22 Prova scritta 17 febbraio 2022

Esercizio 1 Minimizzare il seguente DFA, descrivendo in modo preciso i passaggi effettuati:

Soluzione Inizialmente abbiamo le due classi $\{q_2, q_4\}$ dei finali e $\{q_1, q_3, q_5, q_6, q_7, q_8\}$ dei non finali. Leggendo b possiamo discriminare $\{q_1, q_6, q_8\}$ (che vanno in stati non finali) da $\{q_3, q_5, q_7\}$ (che vanno in stati finali). Non si può discriminare ulteriormente, quindi si ottiene il seguente DFA minimo:

Esercizio 2 Provare che il linguaggio $\{a^nb^mc^k \mid n,m>0,k>n+m\}$ non è regolare.

Soluzione Possiamo dimostrarlo utilizzando il pumping lemma. Infatti, preso n arbitrario, consideriamo la stringa $a^nb^nc^{2n+1}$ che appartiene al linguaggio ed è di lunghezza $\geq n$. Decomponenendo questa stringa come uvw con $|uv| \leq n$ e $v \neq \epsilon$, si ha che sicuramente le stringhe u e v contengono solo v. Allora la stringa v0 contiene un numero di v0 strettamente maggiore di quello in v0, quindi non appartiene al linguaggio.

Esercizio 3 Dare un automa a pila che riconosca (per pila vuota) il linguaggio dell'esercizio precedente. È possibile dare un automa deterministico?

Soluzione Una soluzione è la seguente:

Non è possibile dare un automa deterministico in quanto il linguaggio contiene due stringhe di cui una è prefisso dell'altra: per esempio, *abccc* e *abcccc*.

Esercizio 4 Dire se le seguenti affermazioni relative a proprietà dei programmi sono vere o false motivando la risposta. Consideriamo come programmi macchine di Turing usate come riconoscitori.

- 1. La proprietà "nessuna stringa di lunghezza ≤ 2 è accettata dalla macchina" è estensionale.
- 2. La proprietà "nessuna stringa di lunghezza ≤ 2 è accettata dalla macchina" è ricorsivamente enumerabile.
- 3. La proprietà "la macchina effettua più di dieci passi su tutte le stringhe di lunghezza ≤ 2 " è ricorsiva.
- 4. La proprietà "la macchina effettua più di dieci passi su tutte le stringhe di lunghezza > 2" è ricorsivamente enumerabile.¹

Soluzione

- Vero. Infatti si tratta di una proprietà che dipende solo dal comportamento della macchina, ossia dal linguaggio accettato.
- Falso. Infatti questa proprietà è non ricorsiva per il teorema di Rice in quanto estensionale e non banale; la proprietà complementare, ossia "esiste una stringa di lunghezza ≤ 2 accettata dalla macchina" è ricorsivamente enumerabile in quando basta eseguire in interleaving la macchina su tutte le stringhe di lunghezza ≤ 2 che sono in numero finito; quindi questa proprietà non può essere ricorsivamente enumerabile per il teorema di Post.
- Vero. Infatti basta eseguire la macchina per dieci passi su tutte le stringhe di lunghezza ≤ 2 che sono in numero finito.
- Falso, infatti la proprietà complementare, ossia "la macchina effettua meno di dieci passi su qualche stringa di lunghezza > 2" è ricorsivamente enumerabile, in quanto si può utilizzare la tecnica a zig-zag per eseguire la macchina su tutte le (infinite) stringhe di lunghezza > 2; quindi questa proprietà non può essere ricorsivamente enumerabile per il teorema di Post. (Assumiamo il fatto, intuitivamente vero, che entrambe le proprietà siano non ricorsive).

Esercizio 5 Si provi che $\mathcal{P} = \{x \mid \phi_x(1) = 5 \text{ oppure } \phi_x(2) = 5\}$ è riducibile a $\mathcal{Q} = \{x \mid \phi_x(1) = 0 \text{ e } \phi_x(2) = 0\}$, ossia che il problema di determinare se un algoritmo, dati gli input 1 e 2, restituisce 5 su almeno uno dei due, è riducibile al problema di determinare se un algoritmo restituisce 0 sia sull'input 1 sia sull'input 2.

¹Segnalo che per un mio errore di trascrizione questa domanda non è quella che avrei voluto (in particolare, la non ricorsività non è provabile in modo semplice).

Soluzione Dobbiamo trasformare un input x per il problema \mathcal{P} (un algoritmo) in un input x'=g(x) per il problema \mathcal{Q} in modo tale che $\phi_x(1)=5$ oppure $\phi_x(2)=5$ se e solo se $\phi_{x'}(1)=0$ e $\phi_{x'}(2)=0$.

Questo si può ottenere costruendo l'algoritmo x'=g(x) nel modo seguente:

input $y \to \sec \phi_x(1) = 5$ oppure $\phi_x(2) = 5$ restituisco 0, altrimenti non terminazione

Allora: se $\phi_x(1) = 5$ oppure $\phi_x(2) = 5$, l'algoritmo restituisce 0 per qualunque y, quindi in particolare $\phi_{x'}(1) = 0$ e $\phi_{x'}(2) = 0$, altrimenti l'algoritmo non termina per qualunque y, quindi in particolare sull'input 1 e sull'input 2. Si noti che la condizione $\phi_x(1) = 5$ oppure $\phi_x(2) = 5$ può essere controllata eseguendo in interleaving $\mathcal{M}_x(1)$ e $\mathcal{M}_x(2)$.