

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 May 2001 (10.05.2001)

PCT

(10) International Publication Number
WO 01/32898 A3

(51) International Patent Classification⁷: C12N 15/86,
15/12, C07K 14/47, A61K 48/00

(21) International Application Number: PCT/JP00/07737

(22) International Filing Date:
2 November 2000 (02.11.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/163,055 2 November 1999 (02.11.1999) US
11-359218 17 December 1999 (17.12.1999) JP

(71) Applicant (for all designated States except US): DNAVEC RESEARCH INC. [JP/JP]; 25-11, Kannondai 1-chome, Tsukuba-shi, Ibaraki 305-0856 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YONEMITSU, Yoshikazu [JP/JP]; Kyushu University, Graduate School of Medical Sciences, 1-1, Maidashi 3-chome, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582 (JP). HASEGAWA, Mamoru [JP/JP]; DNAVEC Research Inc., 25-11, Kannondai 1-chome, Tukuba-shi, Ibaraki 305-0856 (JP). ALTON, Eric, WFW [GB/GB]; Imperial College School of Medicine, Emmanuel Kaye Building, Manresa Road, London SW3 6LR (GB).

(74) Agents: SHIMIZU, Hatsuhi et al.; Kantei Tsukuba Bldg. 6F, 1-1-1, Oroshi-machi, Tsuchiura-shi, Ibaraki 300-0847 (JP).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:
7 September 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/32898 A3

(54) Title: RECOMBINANT SENDAI VIRUS VECTOR FOR INTRODUCING EXOGENOUS GENES TO AIRWAY EPITHELIA

(57) Abstract: Provided are a recombinant Sendai virus vector for introducing exogenous genes to airway epithelia and a method for introducing exogenous genes using the vector. The recombinant Sendai virus vector enables efficient gene transfer to native mucus-layered airway epithelial cells by briefly contacting the vector with the cells. Furthermore, the vector can introduce genes to not only apical surfaces but also submucosal glands where CFTR primarily expresses. The vector can thus be used for gene therapy of CF, a CFTR-deficient disease.

BEST AVAILABLE COPY

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/86 C12N15/12 C07K14/47 A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N C07K A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, MEDLINE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	YONEMITSU Y. ET AL.: "HVJ (Sendai virus)-cationic liposomes: A novel and potentially effective liposome-mediated technique for gene transfer to the airway epithelium." GENE THERAPY, vol. 4, no. 7, 1997, pages 631-638, XP000992923 ISSN: 0969-7128 the whole document -/-	1-10

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

23 April 2001

Date of mailing of the international search report

11/05/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Mandl, B

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	HASAN M. K. ET AL.: "CREATION OF AN INFECTIOUS RECOMBINANT SENDAI VIRUS EXPRESSING THE FIRELY LUCIFERASE GENE FROM THE 3' PROXIMAL FIRST LOCUS" JOURNAL OF GENERAL VIROLOGY, vol. 78, no. 11, 1997, pages 2813-2820, XP000886572 ISSN: 0022-1317 the whole document ---	1-10
A	SAEKI Y. ET AL.: "Development and characterization of cationic liposomes conjugated with HVJ (Sendai virus): reciprocal effect of cationic lipid for in vitro and in vivo gene transfer." HUMAN GENE THERAPY, vol. 8, 20 November 1997 (1997-11-20), pages 2133-2141, XP000992958 the whole document ---	1-10
A	SAKAI Y. ET AL.: "ACCOMMODATION OF FOREIGN GENES INTO THE SENDAI VIRUS GENOME: SIZES OF INSERTED GENES AND VIRAL REPLICATION" FEBS LETTERS, vol. 456, 6 August 1999 (1999-08-06), pages 221-226, XP000887286 ISSN: 0014-5793 the whole document ---	1-10
P,X	YONEMITSU Y. ET AL.: "Efficient gene transfer to airway epithelium using recombinant Sendai virus." NATURE BIOTECHNOLOGY, vol. 18, no. 9, September 2000 (2000-09), pages 970-973, XP002165781 ISSN: 1087-0156 the whole document -----	1-10

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 May 2001 (10.05.2001)

PCT

(10) International Publication Number
WO 01/32898 A2

(51) International Patent Classification⁷: **C12N 15/86,**
15/12, C07K 14/47, A61K 48/00

of Medicine, Emmanuel Kaye Building, Manresa Road,
London SW3 6LR (GB).

(21) International Application Number: PCT/JP00/07737

(74) Agents: SHIMIZU, Hatsushi et al.; Kantetsu Tsukuba
Bldg. 6F, 1-1-1, Oroshi-machi, Tsuchiura-shi, Ibaraki 300-
0847 (JP).

(22) International Filing Date:
2 November 2000 (02.11.2000)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO,
NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR,
TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

(30) Priority Data:
60/163,055 2 November 1999 (02.11.1999) US
11-359218 17 December 1999 (17.12.1999) JP

(71) Applicant (*for all designated States except US*): DNAVEC
RESEARCH INC. [JP/JP]; 25-11, Kannondai 1-chome,
Tsukuba-shi, Ibaraki 305-0856 (JP).

Published:

— Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and
(75) Inventors/Applicants (*for US only*): YONEMITSU,
Yoshikazu [JP/JP]; Kyushu University, Graduate School
of Medical Sciences, 1-1, Maidashi 3-chome, Higashiku,
Fukuoka-shi, Fukuoka 812-8582 (JP). HASEGAWA,
Mamoru [JP/JP]; DNAVEC Research Inc., 25-11, Kan-
nondai 1-chome, Tukuba-shi, Ibaraki 305-0856 (JP).
ALTON, Eric, WFW [GB/GB]; Imperial College School

A2
WO 01/32898

(54) Title: RECOMBINANT SENDAI VIRUS VECTOR FOR INTRODUCING EXOGENOUS GENES TO AIRWAY EPITHELIA

(57) Abstract: Provided are a recombinant Sendai virus vector for introducing exogenous genes to airway epithelia and a method for introducing exogenous genes using the vector. The recombinant Sendai virus vector enables efficient gene transfer to native mucus-layered airway epithelial cells by briefly contacting the vector with the cells. Furthermore, the vector can introduce genes to not only apical surfaces but also submucosal glands where CFTR primarily expresses. The vector can thus be used for gene therapy of CF, a CFTR-deficient disease.

DESCRIPTION

RECOMBINANT SENDAI VIRUS VECTOR FOR INTRODUCING EXOGENOUS GENES
TO AIRWAY EPITHELIA

5

Technical Field

The present invention relates to a recombinant Sendai virus vector for introducing exogenous genes to airway epithelia and a method for introducing exogenous genes using the vector.

10

Background Art

With the advent of molecular cloning techniques, an expanding array of genes with mutations responsible for important human diseases have been identified and isolated.

15

Absent or mutated genes in human patients can be replaced by *ex vivo* techniques, which include transformation of cells *in vitro* with naked DNA, DNA encapsulated in liposomes, appropriate integration vectors followed by introduction into a host organ ("ex vivo" gene therapy).

20

Gene therapy provides a means for transfer of a desired gene into a subject with the subsequent *in vivo* expression thereof. Gene transfer can be accomplished by transfecting the subject's cells or tissues *ex vivo* and reintroducing the transformed material into the host. Alternatively, genes can be administered directly to the recipient.

25

Nabel et al., Science (1990) 249: 1285-1288, pertains to *in vivo* intra-arterial transfection of pigs with liposomes containing a β -gal expression plasmid. Site-specific gene expression was observed in the arterial wall. There are several drawbacks to *ex vivo* therapy. For example, if only differentiated, replicating cells are infected, the newly introduced gene function will be lost as those cells mature and die. *Ex vivo* approaches also can be used to transfect only a limited number of cells and cannot be used to transfect cells which are not first removed from the body.

As described above, in gene therapy, it is very important

to appropriately select a gene to be introduced, target cells in which the introduced gene is to be expressed, gene transfer methods suitable for target tissues, and the administration route.

5 Cystic fibrosis (CF) is an autosomal recessive genetic disease causing inborn error of metabolism. CF patients are frequently found in the U.S. and Europe, and one in every 2,000 to 2,500 infants suffers from this disease. As a major symptom, abnormal external secretion produces viscous secreta, which
10 are accumulated in organs such as lung, respiratory tracts, pancreas, liver, and small intestine. The current therapy of CF focuses on lung transplantation and antibiotic treatment of pulmonary infectious diseases, which is particularly fatal.

15 The causative gene of CF, cystic fibrosis transmembrane conductance regulator (CFTR) gene, has been identified (Riordan, J.R. et al., Science 245: 1066-1073, 1989), and it is expected to develop gene therapy for CF in which a vector carrying a normal CFTR gene is introduced to airway epithelia. In gene therapy for CF, the exogenous gene should be introduced *in vivo*
20 because *ex vivo* treatment cannot be applied to lung and upper airway.

Several attempts have been made to administer vectors to lung. Hazinski et al. (Am. J. Respir. Cell Mol. Biol. (1991) 4: 206-209) discloses liposome-mediated gene transfer of DNA
25 into the intact rodent lung. Cationic liposomes were complexed to three fusion gene constructs composed of 1) the chloramphenicol acetyltransferase (CAT) gene linked to a Rous sarcoma virus (RSV) promoter; 2) the CAT gene linked to a mouse mammary tumor virus (MMTV) promoter; and 3) a
30 cytomegalovirus- β -galactosidase (CMV- β -gal) fusion gene. The liposome/DNA complexes were instilled into the cervical trachea of rats and detectable levels of gene expression observed.

Brigham et al. (Am. J. Med. Sci. (1989) 298: 278-281) describes the *in vivo* transfection of murine lungs with the
35 CAT gene using a liposome vehicle. Transfection was accomplished by intravenous, intratracheal or intraperitoneal

injection. Both intravenous and intratracheal administration resulted in the expression of the CAT gene in the lungs. However, intraperitoneal administration did not.

5 Canonico et al. (Clin. Res. (1991) 39: 219A) describes the expression of the human α -1 antitrypsin gene, driven by the CMV promoter, in cultured bovine lung epithelial cells. The gene was added to cells in culture using cationic liposomes. The experimenters also detected the presence of α -1 antitrypsin in histological sections of the lung of New Zealand white rabbits 10 following the intravenous delivery of gene constructs complexed to liposomes.

Furthermore, U.S. Patent No. 5,958,893 discloses a method for introducing a gene encoding truncated CFTR using currently available vectors such as adenovirus vectors or cationic 15 liposomes.

It was demonstrated, however, that adenovirus-mediated gene transfer to airway epithelia produced low gene transfer efficiency; low rate of uptake of adenoviral particles to the apical plasma membrane could be a cause of inefficient gene 20 transfer, and lack of both the $\alpha\beta\gamma$ integrins and the CAR receptors which are the receptors for adenovirus, in apical surface of airway epithelial cells (Goldman, M. et al., Gene Ther. 3: 811-818, 1996, Boucher, R.C., J. Clin. Invest 103: 441-445, 1999). In the case of cationic liposomes, mucus reportedly prevented their 25 uptake, and gene transfer efficiency was improved by removal of the mucus (Kitson, C. et al., Gene Ther. 6: 534-546, 1999, Zabner, J. et al., J. Biol. Chem. 270: 18997-19007, 1995, Fasbender, A. et al., Gene Ther. 4: 1173-1180, 1997).

To date, no report is available for vector systems and 30 gene transfer methods enabling efficient introduction of exogenous genes to airway epithelia. It has thus been desired to develop vectors for efficient gene transfer to airway epithelia.

Sendai virus belonging to the family Paramyxoviridae is 35 very useful as a vector for gene transfer, and its development is in progress (Kato, A. et al., EMBO J. 16: 578-598, 1997,

WO97/16538, WO97/16539). Sendai virus shows low toxicity and expresses genes introduced therein at an extremely high level. This virus is also very safe because a gene insert in the virus vector is never integrated into the host chromosome. It has
5 been reported that transfection ability of a Sendai virus vector is different from that of adenovirus (Goldman, M. et al., Gene Ther. 3: 811-818, 1996, Boucher, R.C., J. Clin. Invest 103: 441-445, 1999). For example, adenovirus is likely to infect injured sites, compared to uninjured sites (Kitson, C. et al.,
10 Gene Ther. 6: 534-546, 1999, Zabner, J. et al., J. Biol. Chem. 270: 18997-19007, 1995, Fasbender, A. et al., Gene Ther. 4: 1173-1180, 1997). These reports suggest that Sendai virus can complement the defect of adenovirus.

15 Disclosure of the Invention

An objective of the present invention is to provide a vector for introducing exogenous genes to airway epithelia and a method for introducing exogenous genes using the vector.

The present inventors investigated *in vitro* and *in vivo* gene transfer efficiency of a recombinant Sendai virus vector, adenovirus vector, and cationic lipid complex, each containing an exogenous gene, to airway epithelial cells derived from various animals. The results showed that the Sendai virus vector much more efficiently introduced the exogenous gene to
20 airway epithelial cells than the adenovirus vector and cationic lipid complex.

The inventors also found that the recombinant Sendai virus vector efficiently introduced the exogenous genes not only to permissive mouse respiratory tracts, but also to non-permissive
30 airway epithelial cells of large animals such as ferret, sheep, and human. Furthermore, the Sendai virus vector was found to infect submucosal glands as well as apical surfaces of epithelial cells. Based on these findings, the present invention was completed.

35 Specifically, the present invention provides a composition for introducing exogenous genes to airway epithelia

comprising a recombinant Sendai virus vector carrying an exogenous gene.

The present invention also provides a method for introducing exogenous genes to airway epithelia, the method comprising contacting a composition comprising a recombinant Sendai virus vector carrying an exogenous gene with airway epithelia covered with mucus.

The present invention will be illustrated below in more detail.

10 The "recombinant Sendai virus vector" used herein means a reconstitution product of virus and virus-like particles from recombinant Sendai virus cDNA and comprises recombinant Sendai virus RNA and a Sendai virus body having infectivity. The term "infectivity" used herein means the capability of a virus to 15 transfer its nucleic acid, etc. into cells through its adhesiveness to the cells and penetrating capability into cells via various mechanisms including fusion of the viral membrane and host cellular membrane. The recombinant Sendai virus vector can be ribonucleoprotein (RNP).

20 The "gene" used herein includes RNA and cDNA.

The "airway epithelial cells" means pseudostratified ciliated epithelial cells, as well as goblet and Clara cells, present on the internal surface of airways of nose, pharynx, trachea, or any conducting airway, or cells present on 25 gas-exchange alveolar surface including type-I and II pneumocytes in lung.

30 The recombinant Sendai virus vector of the present invention carries a recombinant Sendai virus gene. The native Sendai virus genome consists of short 3' leader region, nucleocapsid (N) gene, phospho (P) gene, matrix (M) gene, fusion (F) gene, hemagglutinin-neuraminidase (HN) gene, large (L) gene, and short 5' trailer region in this order.

35 The Sendai virus gene used as a starting material for producing the recombinant Sendai virus vector can be modified by deletion or substitution as long as the reconstituted recombinant Sendai virus vector can infect airway epithelial

cells and express, in the infected cells, the exogenous gene that the vector carries. For example, incomplete viruses such as DI particles (J. Virol. 68: 8413-8417, 1994) can be used.

For used in gene therapy, the preferable recombinant Sendai virus vector has infectivity but is deficient in disseminative capability. Disseminative capability can be eliminated by deleting at least one of F gene, HN gene, and M gene. Such a vector includes, for example, the gene of Sendai virus Z strain deficient only in the F gene. Additional examples are pSeV18'b(+) (Yu, D. et al., Genes to Cells 2: 457-466, 1997) and pSeV(+) (Kato, A. et al., EMBO J. 16: 578-587, 1997).

The recombinant Sendai virus gene can be obtained by inserting an exogenous gene into the Sendai virus gene as described above. Any exogenous gene can be used as long as it encodes a protein to be expressed in target airway epithelial cells. For gene therapy for CF, CFTR gene (Riordan, J.R. et al., Science 245: 1066-1073, 1989), a causative gene of CF, can be used. The exogenous gene includes genes encoding naturally occurring proteins and genes obtained by modifying the above genes by deletion, substitution, or insertion and encoding proteins functionally equivalent to the naturally occurring ones. For example, U.S. Patent No. 5,958,893 discloses a modified CFTR gene. Examples of the other exogenous genes include genes encoding α -1 antitrypsin (Long et al., Biochem 23: 4828-2837, 1984) DNase, superoxide dismutase (SOD), catalase, etc.

The recombinant Sendai virus vector carrying an exogenous gene can be prepared, for example, as described below, referring to the methods of Kato, A. et al. (EMBO J. 16: 578-587, 1997) and Yu, D. et al. (Genes to Cells 2: 457-466, 1997).

First, a DNA sample containing a cDNA base sequence of a desired gene is prepared. Preferably, the DNA sample can be electrophoretically recognizable as a single plasmid at the concentration of 25 ng/ μ l or higher. NotI recognition site in the target cDNA sequence should be removed in advance if it exists. Forward and reverse (antisense strand) side synthetic

DNA sequences are prepared as a primer pair containing the NotI recognition enzyme cleavage site sequence; the below-mentioned transcription termination sequences (E), intervening sequence (I), and transcription start sequence (S); and a part of the target gene sequence, to amplify and recover the desired gene fragment from the sample.

As a forward side synthetic DNA sequence, optional two or more oligo DNAs are selected from the 5' side, preferably four bases free of the NotI recognition site-derived sequences, GCG and GCC, more preferably ACTT, with adding to the 3' side the NotI recognition site gcggccgc, and optional nine bases with or without a multiple of six bases as a spacer sequence. Furthermore, a sequence corresponding to 25 bases of ORF from start codon ATG of the desired cDNA, including ATG, is added to the 3' side. In this case, approximately 25 bases are selected from the desired cDNA so that the 3' end of the forward side synthetic oligo DNAs should be G or C.

As a reverse side synthetic DNA sequence, optional two or more oligo DNAs are selected from the 5' side, preferably four bases free of the NotI recognition site-derived sequences, GCG and GCC, more preferably ATCC, with adding to the 3' side the NotI recognition site gcggccgc, and oligo DNAs of an insert fragment for adjusting the length. The length of this oligo DNAs is designed so that the total number of the complementary strand bases of cDNA and EIS bases derived from Sendai virus genome, including the NotI recognition site gcggccgc, becomes a multiple of six (so-called "rule of 6"; Kolakofski, D. et al., J. Virol. 72: 891-899, 1998, Calain, P. and Roux, L., J. Virol. 67: 4822-4830, 1993). The 3' end of the reverse side synthetic oligo DNAs is prepared by adding to the 3' side of the insert fragment the complementary strand sequence of S sequence of Sendai virus, preferably 5'-CTTCACCCT-3', I sequence, preferably 5'-AAG-3', and the complementary strand sequence of E sequence, preferably 5'-TTTTCTTACTACGG-3', a complementary sequence ending in either G or C, corresponding to 25 bases reversibly counted from a stop codon of the desired

cDNA sequence.

The standard method using ExTaq polymerase (Takara Shuzo Co.) can be used for PCR. Preferably, Vent polymerase (NEB) is used and an amplified target fragment is digested by NotI to be inserted into the NotI site of plasmid vector pBluescript. A base sequence of the resulting PCR product is confirmed by a sequencer to select plasmids with a correct sequence. The selected plasmid is inserted into NotI site of a genomic cDNA plasmid of Sendai virus, such as pSeV18+b(+) (Yu, D. et al., Genes to Cells 2: 457-466, 1997) or pSeV(+) (Kato, A. et al., EMBO J. 16; 578-587, 1997), cleaved by NotI, to obtain recombinant Sendai virus cDNA to which an exogenous cDNA is inserted. Alternatively, the recombinant Sendai virus cDNA can be obtained by directly inserting into the NotI site without using plasmid vector pBluescript.

A recombinant virus vector can be obtained by transcribing the recombinant Sendai virus cDNA prepared as described above *in vitro* or in cells to reconstitute the virus. A virus can be reconstituted from cDNA by the known method (WO97/16538, WO97/ 16539).

Reconstitution from cDNA can be performed as follows.

Monkey kidney derived cell line LLCMK2 is cultured to be 70% to 80% confluent (1×10^6 cells) in minimum essential medium (MEM) containing 10% fetal calf serum (FCS) and antibiotics (100 units/ml penicillin G and 100 µg/ml streptomycin) on a 6-well plastic plate. The cells are then infected with recombinant vaccinia virus vTF7-3 expressing T7 polymerase, which is inactivated by UV irradiation (Fuerst, T. R. et al., Proc. Natl. Acad. Sci. USA 83: 8122-8126, 1986, Kato, A. et al., Genes Cells 1: 569-579, 1996), by 2 PFU/cell. One hour after the infection, the cells were further cotransfected with 60 to 2 µg, more preferably 3 to 5 µg, of the above recombinant Sendai virus cDNA and the plasmid expressing viral proteins which act trans essential for the synthesis of whole Sendai virus genome (24 to 0.5 µg of pGEM-N, 12 to 0.25 µg of pGEM-P, and 24 to 0.5 µg of pGEM-L, more preferably,

1 µg of pGEM-N, 0.5 µg of pGEM-P and 1 µg of pGEM-L) (Kato, A. et al., Genes Cells 1: 569-579, 1996) by the transfection method such as the lipofection method using Superfect (QIAGEN Inc.). The transfected cells are cultured in serum-free MEM containing 100 µg/ml of rifampicin (Sigma) and cytosine arabinoside (AraC), more preferably, 40 µg/ml of cytosine arabinoside (AraC) to determine an optimal concentration of these drugs so as to minimize cytotoxicity of vaccinia virus and maximize the recovery of the virus (Kato, A et al., 1996, Genes Cells 1: 569-579). Forty-eight hours after the transfection, the cells are recovered and disrupted by repeating freeze thaw three times, and injected into chorioallantoic cavity of 10-day embryonated chicken egg. After three days, the chorioallantoic fluid is recovered to determine the virus titer by measuring hemagglutinin activity (HA). HA can be determined by "endo-point dilution method" (Kato, A. et al., 1996, Genes Cells 1: 569 579). The samples from which HA has not been detected are further injected into embryonated chicken eggs. The titer of Sendai virus to be recovered is usually 10⁸ to 10⁹ PFU/ml and that of the vaccinia virus vTF7-3 contained together is 10³ to 10⁴ PFU/ml or lower. The samples are diluted 10⁶ fold and multiplied again in chicken eggs to remove the vaccinia virus. The recombinant viruses obtained through the second or third passage in the embryonated chicken eggs are stored to obtain recombinant virus vectors into which the desired cDNA is inserted. Plaque forming potential of the stored virus is generally 10⁹ PFU/ml or 10,240 HA unit/ml, and this value will be kept if the virus is stored at -80°C.

Host cells used for reconstitution are not particularly limited as long as the recombinant Sendai virus cDNA can reconstitute in the cells. Cell lines used as hosts includes cultured cells such as CV-1 cells derived from monkey kidney and BHK cells derived from hamster kidney as well as LLCMK2 cells, and cells of human origin.

The reconstituted recombinant Sendai virus can be bound to adhering molecule, ligand, receptors, etc. on its envelope

surface for facilitating the adherence to specific cells.

The above-described chorioallantoic fluid containing the virus vector can be used as the composition comprising the recombinant Sendai virus vector of the present invention.

5 The composition of the present invention can comprise any physiologically acceptable medium such as deionized water, 5% dextrose in water, and the like. Other auxiliary components may be included in the composition such as stabilizers, biocides, etc. The composition comprising the recombinant Sendai virus
10 vector can be in lyophilized dosage form. Such a composition can further comprise, in addition to the above-described auxiliaries, stabilizers such as albumin, PrionexTM (Pentapharm, Japan), or the like.

15 The exogenous gene contained in the recombinant Sendai virus can be introduced into airway epithelial cells by contacting the composition containing the recombinant Sendai virus vector with airway epithelial cells covered by mucus. When cationic lipid is used for gene transfer to airway epithelial cells, the airway mucus is a serious barrier to cationic
20 lipid-mediated gene transfer and the mucus must be removed for introducing exogenous genes. In contrast, the composition containing the Sendai virus vector of the present invention can readily introduce exogenous genes by merely contacting it with airway epithelial cells with mucus.

25 The method for introducing exogenous genes of the present invention can be used for gene therapy by expression of exogenous genes that is expected to treat the disorder of airway epithelial cells, or endogenous genes encoding proteins deficient in the cells. For example, the composition of the present invention
30 containing the virus vector carrying the CFTR gene can be useful for therapy of CF. Gene therapy can be performed by applying the virus vector-containing composition of the present invention to airway epithelial cells of diseased sites *in vivo* or *ex vivo* and allowing exogenous genes to express in the cells.
35 *In vivo* gene transfer can be carried out by local application such as instillation or inhalation using nebulizers to nasal

cavity or lung. Examples of nebulizers include those commercially available and typically used in the treatment of asthma.

The virus vector-containing composition of the present invention can be applied to any mammals including human, mouse, 5 rabbit, sheep, bovine, monkey, etc.

Brief Description of Drawings

Figure 1 shows *in vivo* gene transfer efficiency of the 10 recombinant Sendai virus vector of the present invention and a cationic lipid complex in mouse lung and nose. Error bars indicate SEM.

Figure 2 shows effect of contact time on gene transfer efficiency of the recombinant Sendai virus vector of the present 15 invention (A) and a cationic lipid complex (B) in mouse nose assessed by nasal instillation (brief contact) and perfusion (longer contact). Error bars indicate SEM.

Figure 3 shows gene transfer efficiency of the recombinant Sendai virus vector of the present invention and the adenovirus 20 vector in mouse nose assessed by nasal instillation. Error bars indicate SEM.

Figure 4 shows microscopic photographs detecting by X-gal staining β -gal gene expression in mouse bronchile, trachea, and nose introduced by nasal instillation of the recombinant 25 Sendai virus vector of the present invention and the adenovirus vector.

Figure 5 shows microscopic photographs detecting by X-gal staining gene expression in mouse trachea and nose of β -gal introduced by nasal instillation of the recombinant Sendai virus 30 vector of the present invention and the adenovirus vector. NC indicates non-ciliated secretory cells and BC basal cells.

Figure 6 shows gene expression of in ferret lung of β -gal introduced by nasal instillation of the recombinant Sendai virus vector of the present invention. R1 indicates lower right lobe 35 and L1 upper left lobe.

Figure 7 shows microscopic photographs detecting gene

expression of in ferret lung of β -gal introduced by nasal instillation of the recombinant Sendai virus vector of the present invention. Photgraph a is for upper left lobe, b mid right lobe, c submucosal glands, and d control. Furthermore,

5 Lm indicates bronchial cavity and sm submucosal glands.

Figure 8 shows gene transfer efficiency of the recombinant Sendai virus vector of the present invention and a cationic lipid complex to human nasal epithelial cells collected from human healthy donors. Error bars indicate SEM.

10 Figure 9 shows gene transfer efficiency of the recombinant Sendai virus vector of the present invention and a cationic lipid complex to sheep tracheal cells. F indicates fresh cells and MD mucus-depleted cells. Error bars indicate SEM.

15 Figure 10 shows gene transfer efficiency of the recombinant Sendai virus vector of the present invention and a cationic lipid complex to mucin-added sheep tracheal cells. F indicates fresh cells and MD mucus-depleted cells. Error bars indicate SEM.

20 Figure 11 shows gene transfer efficiency of the recombinant Sendai virus vector of the present invention and the adenovirus vector to edge and mid portions of sheep tracheal cells. Error bars indicate SEM.

25 Figure 12 shows microscopic photographs detecting signals of GFP introduced by the recombinant Sendai virus vector of the present invention and the adenovirus vector to sheep tracheal cells.

Figure 13 schematically shows a conventional whole-cell configuration.

30 Figure 14 shows the time course of forskolin-induced inward current at -60 mV in COS7 cells expressing sample-1 SeV/CFTR. The membrane potential was kept at a holding potential of -60 mV. The vertical deflection indicates the rectangular pulses (duration, 1 s) at 15 s intervals from -100 mV to +60 mV. The dash line indicates the zero current level.

35 Figure 15 shows effects of forskolin on the membrane current in COS7 cell expressing sample-1 SeV/CFTR. The membrane

potential was kept at a holding of -60 mV. The dash line indicates the zero current level. Glibenclamide (300 μ M) inhibited forskolin-induced Cl currents.

Figure 16 shows current-voltage relationships obtained 5 in the absence or presence of 10 μ M forskolin. The membrane current amplitude was measured as mean value of the last 100 ms of the command pulses (1 s duration). The line was fitted by the least squares method.

Figure 17 shows the net membrane current obtained by 10 subtracting the membrane current recorded before the application of forskolin from that recorded during the application of 10 μ M forskolin in COS7 cells expressing sample-1 SeV/CFTR. The membrane potential was kept at a holding potential of -60 mV. The dash line indicates the zero current 15 level.

Best Mode for Carrying out the Invention

The present invention will be illustrated with reference to the following examples, but is not construed as being limited 20 thereto.

Example 1

Construction and reconstitution of recombinant Sendai virus vector

25 A recombinant Sendai virus was constructed by the known method (Kato, A. et al., EMBO J. 16: 578-598, 1997, Hasan, M.K. et al., J. Gen. Virol. 78: 2813-2810, 1997). First, 18 bp of spacer sequence (5'-(G)-CGGCCGCAGATCTTCACG-3') with the NotI restriction site was inserted into the proximal locus between 30 the leader sequence and the 5'-end of the sequence encoding N-protein of cloned SeV genomic cDNA, pSeV(+), to obtain plasmid pSeV18^b(+), which also contains a self-cleaving ribozyme site from antigenomic strand of hepatitis delta virus. Whole cDNA of *E. coli* lacZ containing nuclear localising signal, luciferase, 35 green fluorescent protein (GFP), and *E. coli* lacZ were amplified by polymerase chain reaction using the primers with the NotI

site and new sets of SeVE and S signal sequence-tags for exogenous genes, and inserted into the NotI site of the cloned genome. The whole length of template SeV gemones with exogenous genes were arranged to multiple of six nucleotides. Template SeV 5 genome with exogenous gene, plasmids encoding N-, P- and L-proteins (pGEM-N, pGEM-P, pGEM-L) were complexed with commercially available cationic lipids, GL-67-DOPE-PEG (Genzyme Co. Ltd.) and co-transfected with vaccinia virus vT7-3 (Fuerst, T.R. et al., Proc. Natl. Acad. Sci. USA 83: 8122-8126, 10 Kato, A. et al., Genes Cells 1: 569-579, 1996) to LLCMK2 cells. Forty hours later, the cells were disrupted by 3-cycles of freezing and thawing, and injected into the chorioallantoic cavity of 10-day-old embryonated chicken eggs. Then the virus was recovered and the vaccinia virus was eliminated by second 15 passage in eggs. Virus titer was determined by hemagglutination assay (HA) (Kato, A. et al., Genes Cells 1: 569-579, 1996) using chicken red blood cells, and the chorioallantoic fluid containing the viruses were kept freeze at -80°C just before use to serve as the composition containing the recombinant Sendai 20 virus vector of the present invention.

Example 2

In vivo gene transfer to the mouse nose and lung by nasal instillation or nasal perfusion

25 2-1. Comparing Sendai virus vector with cationic lipid pCMV-luciferase was constructed by insertion of HindIII-BamHI fragment of pGL3-control vector (Promega), into the multicloning site of pcDNA3 (Invitrogen) to be driven by human cytomegalovirus immediate early (CMV-IE) promoter. 30 pCMV-luciferase was then complexed with GL-67-DOPE-PEG (Genzyme Co. Ltd.) to obtain GL-67-pCMV-luc.

To examine gene transfer efficiency of the vectors to the lung and the effect of contact time on gene transfer efficiency, the vectors were administered to nasal cavity by 35 nasal instillation and nasal perfusion. First, male balb/c mice (6-8 weeks) were instilled intranasally with 100 µl of

various concentration of the Sendai virus vector containing luciferase (SeV-luc) prepared in Example 1 or GL-67-pCMV-luc (80 µg DNA/mouse) by the known method (Yonemitsu, Y. et al., Gene Ther. 4: 631-638, 1997).

5 Nasal perfusion was performed by intranasally inserting 5 mm of a catheter, and perfusing 150 µl each of vector solution at rate of 5 to 6 µl/minutes using Peristaltic pump (model P-1, Pharmacia Biotech). Two days after gene transfer, the mice were killed under the sufficient anesthesia by intraperitoneal
10 injection of overdose pentobarbitar, and turbinates, trachea, and lung were harvested and subjected to luciferase assay.

As a control, pSeV18b+ used in Example 1 was subjected to the same gene transfer procedure as described above. This plasmid was used as a control in the following examples.

15 Luciferase assay was performed as follows according to the known method (Yonemitsu, Y. et al., Gene Ther. 4: 631-638, 1997). First, tissues were washed with PBS and minced with scissors in the 1x lysis buffer with protease inhibitor cocktail, centrifuged at 13,000 rpm for 10 minutes at 4°C and 30 µl of the
20 supernatant was subjected to 100 µl of luciferase assay buffer (Promega). The light intensity was measured by Turner TD20e luminometer (Turner Co.) with 10 seconds integration soon after 10 seconds preincubation at 20°C. In this condition, 1 pg of recombinant luciferase (Promega) is equivalent to 2.56×10^1
25 RLU. The protein concentration was measured by Bradford's method using commercially available protein assay system (Bio-Rad Laboratories Ltd., Hertfordshire, UK) according to standard curve correspond to bovine serum albumin. The data was expressed as RLU/mg protein, and each samples were measured
30 more than twice.

Figures 1 (lung) and 2 (nose) show comparison of gene transfer efficiency between SeV-luc and GL-67-p-CMV-luc. As shown in Fig. 1, SeV-luc transfected lungs exhibited more than 1,000-fold higher luciferase activity than that of GL-67-pCMV-luc dose-dependently. Luciferase gene expression by SeV showed approximately 10,000-times greater than

GL-67-pCMV-luc without significant difference between different contact time. These results suggest that the SeV vector enables efficient gene transfer to mouse lung and nose by merely contacting the vector with airway epithelia.

5 2-2. Comparing Sendai virus vector with adenovirus vector

SeV-luc or adenovirus vector containing a luciferase gene, AdCMV-luciferase (Ade-luc) (Kendall, J.M. et al., Cell Calcium 19: 133-142, 1996) was instilled intranasally in the same manner as in Example 1, turbinates, trachea, and lung were harvested
10 and subjected to luciferase assay.

Sendai virus vector and adenovirus vector both carrying lacZ gene with nuclear localizing signal of simian virus large T antigen (SeV-NLS-lacZ and AdCMV-nls-lacZ) were prepared and subjected to nasal instillation in the same manner as described
15 in 2-1. Bronchi, tracheae, and turbinates were harvested. Each tissue was fixed with ice-cooled 2% paraformaldehyde with 0.25% glutaraldehyde in 0.1M PBS for 10 minutes and followed by X-gal staining (solution: 5 mM potassium ferrous cyanide, 5 mM ferric cyanide, 2 mM magnesium chloride, 1 mg/ml
20 5-bromo-4-chloro-3-indolyl- β -D-galacto-pyranoside) for 3 hours at room temperature under rotate shaker. The X-gal stained tissue was refixed and mounted to paraffin, and 5 μ m sections were examined under light microscope. The results are shown in Figs. 3, 4, and 5.

25 As shown in Fig. 3, SeV-luc transfected cells demonstrated 5,000-times greater gene expression than that of Ade-luc.

X-gal positive epithelial cells were scattered in the bronchioli in similar frequency in both vector innoculation (Fig. 4). On the other hand, X-gal positive cells were
30 frequently observed in SeV-NLS-lacZ treated animals, while blue cells were rare in the trachea or nose of AdCMV-nls-lacZ treated mice. As shown in Fig. 5, blue stains were seen not only in ciliated columnar cells but also non-ciliated secretary cells (NC). In contrast, no detectable blue signals were seen in
35 basal cells (BC).

These results reveal that Sendai virus vectors enable

gene transfer to airway epithelial cells to which adenovirus vectors cannot introduce genes.

Example 3

5 Gene transfer to lung of ferret

Ferrets (500-600 g weight) were anaesthetised and instilled intranasally with 3 ml of purified SeV-LacZ in BSS with either 3×10^8 or 3×10^9 pfu/ml (n=3 each group), as in Example 2. Controls (n=2) received 3 ml of SeV-Luc (10^9 pfu/ml).

10 Forty-eight hours post-infection, ferrets were sacrificed, the trachea cannulated *in situ* and the lungs inflated with ice cold fixative solution (2% formalin, 0.2% glutaraldehyde, 2 mM MgCl₂, 5 mM EGTA in PBS, pH 7.3). The trachea and lungs were excised en bloc and underwent X-Gal staining as described in Example

15 2. Each lung was dissected into 7 parts: trachea, 4 right lobes (upper (R1), mid (R2, R3), and lower (R4)) and 2 left lobes (upper (L1) and lower (L2)), and β -gal positive cells in the airway epithelia and submucosal glands were quantified microscopically by point counting using a graticulated lens.

20 Ten x20 magnification fields/airway were assessed to obtain the percentage of blue cells/airway and 3 to 8 airways randomly taken from different regions of a lobe (proximal, medium and distal) were assessed for each lobe. For submucosal glands, 10 to 28 fields (containing at least 4 glands)/lobe were assessed.

25 The error of repeat measurement (ERM) expressed as a coefficient of variation (CV) was 18%. Intra-animal CV was between 24 and 43% for animal receiving 10^8 pfu/ml and between 8 and 14% for animals receiving 10^9 pfu/ml.

The airway epithelia (Fig. 6A and Fig. 7a and b) and submucosal glands (Fig. 6B and Fig. 7c) were exhibited β -galactosidase activity dose-dependently. Submucosal glands are the predominant sites of CFTR expression. No activity was found in control (Fig. 7d).

35 Example 4

Gene transfer to nasal epithelial cells from human healthy donors

Nasal epithelial cells were collected by brushing from human healthy donors (6: male and 3: female). After 2-times wash with phosphate buffered saline (PBS: 137 mM NaCl, 3 mM KCl, 8 mM Na₂HPO₄, 1 mM KH₂PO₄, pH7.2), the cells were resuspended in the culture medium (Dulbecco's modified Eagle's medium; DMEM) with 10% bovine fetal serum, divided into 2 or 3 groups, and placed in the each wells of 96-culture plate. The viability of the nasal cells were confirmed by phase-contrast microscopic observation of ciliary beating and microscopic count of trypan blue-positive cell numbers. Vector solutions (SeV-luc and GL-67-pCMV-luc) were added to each well. Twenty four hours later, the cells were collected, washed 3-times with PBS, and subjected to luciferase assay as described in Example 2. The results are shown in Fig. 8.

SeV-luc transfected cells demonstrated about 1,000 times greater luciferase activity than that of GL-67-pCMV-luc transfected cells.

Example 5

Gene transfer to the sheep tracheal epithelia

5-1. Effect of mucus on gene transfer

Effect of mucus on gene transfer efficiency of each vector was examined using a sheep tracheal strip model, which was prepared by a known method (Kitson, C. et al., Gene Ther. 6: 534-546, 1999). After killing, the epithelial layer of resected sheep trachea was dissected to muscle and adventitia, and was cut into 0.5 cm² square pieces subsequently confirmed the ciliary beating under the phase-contrast microscope. In some tissue, mucus depletion was followed to the known method (Kitson, C. et al., Gene Ther. 6: 534-546, 1999). These tissues were placed in the air-liquid interface. Ten µl of SeV-luc or GL-67-luc vector solution was applied to the apical surface to perform transfection. After 48 hours, the pieces were subjected to luciferase assay as described in Example 2. The results are shown in Fig. 9.

As shown in Fig. 9, mucus was not markedly affect

SeV-mediated gene transfer compared to GL-67-luc-mediated gene transfer.

5-2. Effect of viscosity of mucus on gene transfer

The procedure of 5-1 was repeated except that various 5 concentrations of bovine salivary gland mucin were applied just before gene transfer. The results are shown in Fig. 10.

As Fig. 10 shows, gene transfer of GL-67-luc was inhibited by addition of mucin. Luciferase activities of the mucin added samples were not significantly different from that of fresh 10 samples, suggesting barrier activity of the mucin, but not mucus viscosity, to cationic lipid-mediated gene transfer. On the other hand, serous mucin components do not affect SeV infection efficiency, while mucus viscosity mildly affect to SeV-mediated gene transfection.

15 5-3. Site-specific transfection efficiency

Sheep tracheal epithelia were transfected with SeV-luc or AdCMV-luc in the same manner as in 5-1. After gene transfer, the edge of the tissue was dissected and cut, and the luciferase activity of edge and mid portion was measured separately. The 20 results are shown in Fig. 11. The same gene transfer procedure as above was repeated using SeV-GFP and high titer adenovirus serotype 5 carrying GFP driven by CMV-IE promoter, AdCMV-GFP (Kramel Biotech International Ltd.), in place of SeV-luc and AdCMV-luc. Two days after gene transfer, green fluorescent 25 protein (GFP) signals were observed under fluorescent phase-contrast microscope. The results are shown in Fig. 12.

As shown in Figs. 11 and 12, AdCMV-luc showed higher expression in injured edge, while relatively little expression in uninjured mid-portion of sheep tracheal tissue. In contrast, 30 SeV-luc-treated tissue showed no significant difference in gene expression between edge and mid portions.

Example 6

Construction of SeV/CFTR and electrophysiological 35 characterization

A recombinant Sendai virus vector expressing CFTR, the

causative gene of CF, was constructed. CFTR gene (Riordan, J.R. et al., Science 245: 1066-1073, 1989) was amplified by PCR using a primer set containing E and S signal sequences. The primer set used are as follows.

5 Forward primer: 5'-acttgccgcggccaaagttcaatgcagaggcgccctctg
gaaaaggccagc-3' (SEQ ID NO: 4)

Backward primer: 5'-atccgcggccgcgtatgaactttcaccctaagttttct
tactacggctaaagccttgttatcttgcaccttttc-3' (SEQ ID NO: 5).

The amplified fragment was inserted into the NotI site
10 of pSeV18'b(+), and reconstitution of the virus was conducted
as in Example 1.

COS7 cells were infected with the prepared CFTR-expressing
Sendai virus (sample-1 SeV/CFTR), and the obtained infected
cells were analyzed by the whole-cell patch clamp technique.

15 Figure 13 shows a summary of the whole-cell patch clamp technique.
A glass pipette containing a pipette solution was contacted
with a cell within a bath solution, and negative pressure was
applied to remove the cell membranes. In this occasion, the
pipette solution contains 145 mM NMDG⁺, 148.4 mM Cl⁻, 6.7 mM
20 Mg²⁺, 5 mM ATP, 10 mM glucose, 0.1 mM EGTA, and 10 mM HEPES (titrated
by Tris, pH 7.4), and the bath solution contains 141 mM Na⁺,
152.4 mM Cl⁻, 152.4 mM H₂PO₄⁻, 5 mM K⁺, 1.7 mM Mg²⁺, 2 mM Ca²⁺,
10 mM glucose, 0.1 mM EGTA, and 10 mM HEPES (titrated by Tris,
pH 7.4). The effects of forskolin on the membrane current in
25 COS7 cells expressing sample-1 SeV/CFTR were examined by
whole-cell recording (Fig. 14). As a result, a forskolin
concentration-dependent influx current was observed (a downward
decrease of trace), which was suppressed (an upward transition)
by glibenclamide (chloride channel blocker). The influx
30 current was reproduced by adding forskolin again after a single
wash, and was again suppressed by glibenclamide, which confirmed
that the observed change in current was a specific drug-induced
response.

Next, the time-dependency of each drug-induced reaction
35 was examined (Fig. 15). Forskolin induced a Cl⁻ current in COS7
cells expressing sample-1 SeV/CFTR, and a time-independent

reaction characteristic to chloride channels was observed. Glibenclamide (300 μ M) inhibited forskolin-induced Cl⁻ currents.

Figure 16 shows the current-voltage relationships derived based on the above data under the presence or absence of forskolin in COS7 cells expressing sample-1 SeV/CFTR. The lines cross at the point of origin if an endogenous Cl current is not present. In the graph obtained, the lines crossed between 10 and 20 mV. This suggests that a Cl current other than that induced by CFTR (forskolin-independent) is flowing in these COS7 cells. Figure 17 shows the difference in membrane current in the presence or absence of forskolin (net membrane current) obtained by subtracting the current recorded before the application of forskolin from that recorded during the application of forskolin.

Industrial Applicability

The present invention provides a recombinant Sendai virus vector for introducing exogenous genes to airway epithelia, to which conventional vectors for gene transfer cannot introduce genes efficiently, and a method for introducing exogenous genes using the vector. The recombinant Sendai virus vector of the present invention enables efficient gene transfer to native mucus-layered airway epithelial cells by briefly contacting the vector with the cells. The vector of the present invention can infect airway epithelial cells derived from mammals larger than mice, which suggests that the vector of the present invention enables effective gene therapy in need of gene transfer to airway epithelial cells. Furthermore, the vector of the present invention can introduce genes to not only apical surfaces but also submucosal glands where CFTR primarily expresses, indicating that it can be used for gene therapy of CF, a CFTR-deficient disease.

CLAIMS

1. A composition for introducing exogenous genes to airway epithelia comprising a recombinant Sendai virus vector carrying an exogenous gene.
2. The composition according to claim 1, wherein the Sendai virus vector does not contain at least one of F gene, HN gene, and M gene.
3. The composition according to claim 1 or 2, wherein the composition further comprises chicken egg chorioallantoic fluid.
4. The composition according to any one of claims 1 to 3, wherein the composition is for treatment of cystic fibrosis.
5. The composition according to any one of claims 1 to 4, wherein the exogenous gene is cystic fibrosis transmembrane conductance regulator (CFTR) gene or its derivative encoding a protein functionally equivalent to CFTR.
6. A method for introducing exogenous genes to airway epithelia, the method comprising contacting a composition comprising a recombinant Sendai virus vector carrying an exogenous gene with airway epithelia covered with mucus.
7. A method according to claim 6, wherein the Sendai virus vector does not contain at least one of F gene, HN gene, and M gene.
8. The method according to claim 6 or 7, wherein the composition further comprises chicken egg chorioallantoic fluid.
9. The method according to any one of claims 6 to 8, wherein the exogenous gene is cystic fibrosis transmembrane conductance regulator (CFTR) gene or its derivative encoding a protein functionally equivalent to CFTR.
10. The method according to any one of claims 6 to 9, wherein the airway epithelia is present on nose, pharynx, trachea, or any conducting airway or gas-exchange surface in the lung.

Figure 1

Figure 2

3/17

Figure 3

4/17

Figure 4

AdCMV-nls-lacZ (10^7 pfu)

SeV-NLS-lacZ (10^7 pfu)

5/17

Figure 5

6/17

Figure 6

A

B

7/17

Figure 7

Figure 8

Figure 9

Figure 10

10/17

11/17

Figure 11

Figure 12

Figure 13

14/17

Figure 14

15/17

Figure 16

17/17

Figure 17

SEQUENCE LISTING

<110> DNAVEC Research Inc.

<120> RECOMBINANT SENDAI VIRUS VECTOR FOR INTRODUCING
EXOGENOUS GENES TO AIRWAY EPITHELIA

<130> D3-105PCT

<140>

<141>

<150> US 60/163,055

<151> 1999-11-02

<150> JP 1999-359218

<151> 1999-12-17

<160> 5

<170> PatentIn Ver. 2.1

<210> 1

<211> 10

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: artificially
synthesized sequence

<400> 1

ctttcacctt

10

<210> 2

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: artificially
synthesized sequence

<400> 2

tttttcttac tacgg

15

<210> 3

<211> 18

<212> DNA

2/2

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: artificially synthesized sequence

<400> 3

cggccgcaga tcttcacg

18

<210> 4

<211> 51

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: artificially synthesized sequence

<400> 4

acttgcggcc gccaaagttc aatgcagagg tcgcctctgg aaaaggccag c

51

<210> 5

<211> 76

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: artificially synthesized sequence

<400> 5

atccgcggcc gcgatgaact ttcaccctaa gttttctta ctacggctaa agccttgtat 60
cttgcaccc tc ttcttc

76

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.