

Computer Science and Engineering

Student ID:	21201826	Lab Section:	15
	silla Ana Forha	Lab Group:	12

Experiment No. 2

Verification of KVL & KCL

The aim of this experiment is to use multi-loops and various branch circuits to verify Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL).

Apparatus

- Multimeter
- \triangleright Resistors (1 $k\Omega \times 2$, 2. 2 $k\Omega$, 3. 3 $k\Omega$, 4. 7 $k\Omega$).
- > DC power supply
- > Breadboard
- Jumper wires

Part 1: KVL

Theory

KVL stands for Kirchhoff's Voltage Law, which is a fundamental principle used in electrical engineering and physics. It states that the sum of all the voltages in a closed loop in a circuit is equal to zero (Alternatively, it can be said that around any closed circuit the algebraic sum of the voltage rises equals the algebraic sum of the voltage drops).

Figure 1: Illustration of KVL

To illustrate KVL, consider Fig. 1. The sign on each voltage is the polarity of the terminal encountered first as we travel around the loop. Let us start with the voltage source and go around the top, then voltages would be $-V_s + V_1 + V_2 + V_3$. Thus, KVL yields,

Which can be interpreted as,

Sum of voltage rises = Sum of voltage drops

- Measure the resistances of the provided resistors and fill up the data table.
- > Construct the following circuit on a breadboard. Try to use minimum number of jumper wires:

Circuit 1

- \rightarrow Measure the voltage across each resistor $(V_{R_1}, V_{R_2}, V_{R_3}, V_{R_4})$ as shown in the figure above. Fill up the data tables.
- ightharpoonup Verify KVL as $\sum \Delta V = 0$ for each loop (take the polarity of the resistors clockwise).

For the left sided loop,
$$\sum \Delta V = -V_{s_1} - V_{R_1} + V_{s_2}$$

For the right sided loop, $\sum \Delta V = -V_{s_2} + V_{R_2} + V_{R_3} + V_{R_4}$

 \triangleright Calculate the theoretical values of V_{R_1} , V_{R_2} , V_{R_3} , V_{R_4} and note them down in the 'Theoretical Observation' row in Table 2 & 3. For V_{R_2} , V_{R_3} , V_{R_4} use the Voltage Divider Rule. Relevant formulas are given below for your convenience:

$$V_{R_1} = V_{s_1} - V_{s_2}$$
 $V_{R_2} = \frac{R_2}{R_s} \times V_{s_2}$ $V_{R_3} = \frac{R_3}{R_s} \times V_{s_2}$ where, $R_s = R_2 + R_3 + R_4$

Data Tables

Signature of Lab Faculty:

Date:

3/2/24

** For all the data tables, take data up to three decimal places, round to two, then enter into the table.

Table 1. Resistance Data

For all your future calculations, please use the observed values only (even for theoretical calculations).

Notation	Expected Resistance	Observed Resistance (kΩ)			
R_{1}	1 kΩ	1.009			
R_2	2.2 kΩ	2:16			
R	3.3.kQ	3.233			
R ₄	4.7kΩ	4.63			

Table 2: Data for Loop 1 (Left sided loop)

In the following table, V_{R1} is the voltage drop across resistor R_1 . Similar syntax applies to remaining resistors. Also, calculate the percentage of error between experimental and theoretical values of $\Sigma \Delta V$.

Observation	V s (V) (from dc power supply)	V s (V) (using multimeter)	V s ₂ (V) (from dc power supply)	V s 2 (V) (using multimeter)	<i>V</i> _{R1} (V)	$\sum \Delta V = -V_{s_1} - V_{R_1} + V_{s_2}$ (V)
Experimental	7.0	7.05	5	5.04	-2.615	5×10 ³
Theoretical		, ,		3 0 4		0

Absolute error = |Experimental value - Theoretical value|

Here, Absolute error in $\sum \Delta V$ calculation = $\begin{bmatrix} 5 \times 10^{-3} \end{bmatrix}$

In the following table, V_{R_2} is the voltage drop across resistor R_2 . Similar syntax applies to remaining resistors. Also, calculate the percentage of error between experimental and

theoretical valu	es of $\sum \Delta V$					<u>Σ</u> ΔV =
Observation	V s₂ (∀) (from dc power supply)	(using multimeter)	(V)	(V)	(V)	(V) 0.01
Experimental Theoretical	5	5.09	1.08)	1.650	2.331	0

Here, Absolute error in $\sum \Delta V$ calculation = $| \mathcal{O} \cdot \mathcal{O} \mathbf{1} |$

QUESTIONS

- 1. Let us take a look at Circuit 1 again. If we remove the 5V voltage source (V) from the middle, the remaining circuitry contains only one big loop (often referred to as the outer loop). Let us examine if KVL holds true for the outer loop too.
 - (a) Do you think KVL will be applicable to the outer loop?

Justify your answer. As the voltage can be mesured by voltmeders in porrolled. So the voltage one mesured nucessfully of the order loop.

(b) Use the values of V_{R_1} , V_{R_2} , V_{R_3} , V_{R_4} , V_{s_1} from Tables 2 & 3 to verify your answer from the above question.

Trom the above question.

$$\sum \Delta V = -V_{s_1} - V_{R_1} + V_{R_2} + V_{R_3} + V_{R_4} = \boxed{0.015}$$

Did KVL hold true for the outer loop?

Here, absolute error in $\sum \Delta V$ calculation = $\boxed{6.015}$

2. For the following circuit,

(a) Which of the pathways in the circuit shown above is/are loop(s)?

path made up of V_1 , V_2 , V_3 , and an open circuit, indicated by the solid arrow.

- \square path made up of V_3 , R_1 , and I_1 , indicated by the dashed arrow.
- \square path made up of V_4 , I_1 , R_2 and two open circuits, indicated by the noticed arrow.
- (b) Based on your choices in (a), how would you define a loop?

A loop in an ornangent of braches dements which one in a donne cineuit and kinchoffs

3. How many loops can you make for the following circuit? How many of them are 'Dependent' and how many are 'Independent'? [Hint: identify the nodes and redraw a simplified version of the circuit.]

Number of independent loops = 5

Number of dependent loops = 5

4. For the following circuit,

(a) How many loops may KVL be applied along? Mark the loops in the circuit diagram.

3100PA

(b) List all of the equations obtained by applying KVL along the number of loops mentioned in (a).

loops -> 10+ 1+ 1+ 12:0 -> 11+ 12:10-10 loops -> 12- 13+ b=0 -> 12+ 13- 6-10 loops -> -10+ 11- 13+ b=0=> 11- 13

(c) Can you observe any relationship among the equations? Is it possible to deduce any equation from the others? If so, show the deduction.

You vo in common in A, B, equation it's not deductable.

- (d) Now, have you been able to solve the simultaneous equations to get V_1 , V_2 , and V_3 ?
 - ☐ Yes ✓ No

If yes, what are they? If not, why are the equations not solvable and what is your conclusion?

Part 2: KCL

Theory

KCL stands for Kirchhoff's Current Law, which is another fundamental principle used in electrical engineering and physics. It states that the total current entering a mode in a circuit must equal the total current leaving the node. In other words, KCL states that the algebraic sum of currents entering and exiting a mode is equal to zero. This law is also essential for analyzing circuits and predicting the behavior of electrical systems.

Figure 2: Illustration of KCL

To illustrate KCL, consider Fig. 2. Here, we can see 5 branches connected to 1 node. The exiting currents are l_1 , l_3 , l_4 and the entering currents are l_2 , l_5 . Applying KCL gives,

$$\sum i = I_1 + (-I_2) + I_3 + I_4 + (-I_5) = 0$$

$$\Rightarrow I_1 + I_3 + I_4 = I_2 + I_5$$

Which can be interpreted as,

Sum of currents entering a node = Sum of currents leaving the node

Procedures

- > Measure the resistances of the provided resistors and fill up the data table.
- > Construct the following circuit on a breadboard. Try to use minimum number of

- Measure the voltage and current across each resistor $(V_R, V, I_s, I_1, I_2, \& I_3)$ as shown in the figure above. Use a Multimeter to measure the voltage, and use Ohm's law to calculate the current through each resistor. Fill up the data tables.
- Verify KCL as $\sum i = 0$ for the node connecting R to R_1 , R_2 , & R_3 (Assume positive exiting currents).

For this node,
$$\sum i = -I_s + I_1 + I_2 + I_3$$

 \triangleright Calculate the theoretical values of I, I_1 , I_2 , I_3 and note them down in the 'Theoretical Observation' row in Table 5. For I_1 , I_2 , & I_3 use the Current Divider Rule. Relevant formulas are given below for your convenience:

$$I_{1} = \frac{V_{s}}{R + R_{p}} \qquad I_{1} = \frac{(R_{1})^{-1}}{(R_{p})^{-1}} \times I_{s} \qquad I_{2} = \frac{(R_{2})^{-1}}{(R_{p})^{-1}} \times I_{s}$$

$$I_{3} = \frac{(R_{3})^{-1}}{(R_{p})^{-1}} \times I_{s} \qquad \text{where } R_{p} = \left((R_{1})^{-1} + (R_{2})^{-1} + (R_{3})^{-1} \right)^{-1}$$

Data Tables

Signature of Lab Faculty:		Date:	
---------------------------	--	-------	--

Table 4. Resistance Data

For all your future calculations, please use the observed values only (even for theoretical

calculations).

Notation	Expected Resistance	Observed Resistance (kΩ)		
R	1 kΩ	2.007		
R_{1}	1 kΩ	2.009		
R_{2}	_2,2 kΩ	2.16		
R_3	3.3.kΩ	3.233		

Table 5: Data from Circuit 2

In the following table, I_1 is the current through resistor R_1 . Similar syntax applies to remaining resistors. The voltage supplied to the complete circuit is denoted by V_s and the current being supplied to the whole network is denoted as I_s .

Observations	V _s (V) (from dc power supply)	V s (V) (using multimeter)	<i>V_R</i> (∨)	$I_s = \frac{v_R}{R}$ (mA)	<i>V</i> (V)	$I_1 = \frac{v}{R_1}$ (mA)	$I_2 = \frac{v}{R_2}$ (mA)	$I_3 = \frac{V}{R_3}$ (mA)	$\sum_{j=1}^{n} i = -I_{s} + I_{1} + I_{2} + I_{3}$ (mA)
Experimental	5	5.04	2:206	2.19	1.816	1.79	0.49	0.90	1.001
Theoretical									0

Here, Absolute error in
$$\sum i$$
 calculation = $1 \cdot 001$

^{**} For all the data tables, take data up to three decimal places, round to two, then enter into the table.

Questions

5. Kirchoff's current law (KCL) states that the algebraic sum of branch currents flowing into and out of a node is equal to zero. This is a consequence of another principle.

Which principle is it?

☐ Conservation of Energy ☐ Conservation of Electric Charge ☐ None of them

ter honed on conservation of charge because jundion there is no occumulation of charges the total. Sum of connect of jundion in zero

6. Using KCL, determine the current I for the following circuit.

Z I = 0 longoing = lincoming = 1+6+2+5-3 = 11

7. For the following circuit, determine the current I using only KCL and Ohm's Law.

$$-1 + 1 + 2 + 1 = 4 + 9 = 0$$

$$\Rightarrow -1 + \frac{1}{10} + 2 + \frac{1}{10} + 9 = 0$$

$$\Rightarrow -25 \vee -25 \vee -1 + 1 + 1 = 0$$

$$\Rightarrow -1 + 1 + \frac{-25}{10} = 0$$

$$\Rightarrow -1 + 1 + \frac{-25}{10} = 0$$

8

- (a) "KCL must always be applied at a node". The statement is—
 ☐ True ☐ False
- (b) Using KCL only, determine the value of I_3 if $I_1 = 2 A$ and $I_2 = 3 A$ in the circuit shown below.

Al point x,

I1+I2+I3=0

=>2+3+I3=0

current 5A Juil be owngoing from point
x.

Report

- 1. Fill up the theoretical parts of all the data tables.
- 2. Answer to the questions.
- 3. Discussion [your overall experience, accuracy of the measured data, difficulties experience dand your thoughts on those]. Start write from below the line.

Forkel! i. We conneded the circuit in the trainer kit on por cincuit diagram.

ii. Adjusted the input voltage by adjuster for different reading (iii) Conneded the ammed on to get the respective enrich media of required made

in Prepared the name procedure for different observation.

(FN) compared the value with theoretical value

(i) Repeded the procedure of KCL (i andi).

ii conneded volt modelen do gd the requiried voltage

(iii) Procedures are same as KCL.