Monotonic functions, infinite limits and limit at infinity, the derivative of a real function

Definition (Monotonic functions). Let X be a subset of \mathbf{R} , and let $f: X \to \mathbf{R}$ be a function. We say that f is monotone increasing iff $f(y) \geq f(x)$ whenever $x, y \in X$ and y > x. We say that f is strictly monotone increasing iff f(y) > f(x) whenever $x, y \in X$ and y > x. Similarly, we say f is monotone decreasing iff $f(y) \leq f(x)$ whenever $x, y \in X$ and y > x, and strictly monotone decreasing iff f(y) < f(x) whenever $x, y \in X$ and y > x. We say that f is monotone if it is monotone increasing or monotone decreasing, and strictly monotone if it is strictly monotone increasing or strictly monotone decreasing.

Example The function $f(x) := x^2$, when restricted to the domain $[0, \infty)$, is strictly monotone increasing. but when restricted instead to the domain $(-\infty, 0]$, is strictly monotone decreasing. Thus the function is strictly monotone on both $(-\infty, 0]$ and $[0, \infty)$, but is not strictly monotone (or monotone) on the full real line $(-\infty, \infty)$.

Continuous functions are not necessarily monotone (consider for instance the function $f(x) = x^2$ on \mathbf{R}), and monotone functions are not necessarily continuous; for instance, consider the function $f: [-1,1] \to \mathbf{R}$ defined earlier by

$$f(x) := \begin{cases} -1 & \text{if } x \le 0\\ 1 & \text{if } x > 0. \end{cases}$$

Let $f: E(\subset \mathbb{R}) \to \mathbb{R}$. $a \in E$ is a point of discontinuity of f

$$\Leftrightarrow \ \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in E \qquad \text{Such that } |x-a| < \delta \& \ |f(x)-f(a)| \ge \varepsilon$$

Theorem Let f be monotonically increasing on (a, b). Then f(x+) and f(x-) exist at every point of x of (a, b). More precisely,

(25)
$$\sup_{a < t < x} f(t) = f(x-) \le f(x) \le f(x+) = \inf_{x < t < b} f(t).$$

Furthermore, if a < x < y < b, then

$$(26) f(x+) \le f(y-).$$

Proof By hypothesis, the set of numbers f(t), where a < t < x, is bounded above by the number f(x), and therefore has a least upper bound which we shall denote by A. Evidently $A \le f(x)$. We have to show that A = f(x-).

Let $\varepsilon > 0$ be given. It follows from the definition of A as a least upper bound that there exists $\delta > 0$ such that $a < x - \delta < x$ and

(27)
$$A - \varepsilon < f(x - \delta) \le A. \quad \text{TWRERS}$$

Since f is monotonic, we have

(28)
$$f(x - \delta) \le f(t) \le A \qquad (x - \delta < t < x).$$

Combining (27) and (28), we see that

$$|f(t) - A| < \varepsilon$$
 $(x - \delta < t < x)$.

Hence f(x-) = A.

The second half of (25) is proved in precisely the same way. Next, if a < x < y < b, we see from (25) that

(29)
$$f(x+) = \inf_{x < t < b} f(t) = \inf_{x < t < y} f(t).$$

The last equality is obtained by applying (25) to (a, y) in place of (a, b). Similarly,

(30)
$$f(y-) = \sup_{a < t < y} f(t) = \sup_{x < t < y} f(t).$$

Comparison of (29) and (30) gives (26).

Corollary Monotonic functions have no discontinuities of the second kind.

Theorem Let f be monotonic on (a, b). Then the set of points of (a, b) at which f is discontinuous is at most countable.

Proof Suppose, for the sake of definiteness, that f is increasing, and let E be the set of points at which f is discontinuous.

With every point x of E we associate a rational number r(x) such that

$$f(x-) < r(x) < f(x+).$$

Since $x_1 < x_2$ implies $f(x_1 +) \le f(x_2 -)$, we see that $r(x_1) \ne r(x_2)$ if $x_1 \ne x_2$.

We have thus established a 1-1 correspondence between the set E and a subset of the set of rational numbers. The latter, as we know, is countable.

Definition (Left and right limits). Let X be a subset of \mathbf{R} , f: $X \to \mathbf{R}$ be a function, and let x_0 be a real number. If x_0 is an adherent point of $X \cap (x_0, \infty)$, then we define the *right limit* $f(x_0+)$ of f at x_0 by the formula

$$f(x_0+) := \lim_{x \to x_0; x \in X \cap (x_0, \infty)} f(x),$$

provided of course that this limit exists. Similarly, if x_0 is an adherent point of $X \cap (-\infty, x_0)$, then we define the *left limit* $f(x_0-)$ of f at x_0 by the formula

$$f(x_0-) := \lim_{x \to x_0; x \in X \cap (-\infty, x_0)} f(x),$$

again provided that the limit exists. (Thus in many cases $f(x_0+)$ and $f(x_0-)$ will not be defined.)

For any real number x, a neighborhood of x is any segment $(x - \delta, x + \delta)$.

Definition For any real c, the set of real numbers x such that x > c is called a neighborhood of $+\infty$ and is written $(c, +\infty)$. Similarly, the set $(-\infty, c)$ is a neighborhood of $-\infty$.

Definition (Infinite adherent points). Let X be a subset of \mathbf{R} . We say that $+\infty$ is adherent to X iff for every $M \in \mathbf{R}$ there exists an $x \in X$ such that x > M; we say that $-\infty$ is adherent to X iff for every $M \in \mathbf{R}$ there exists an $x \in X$ such that x < M.

In other words, $+\infty$ is adherent to X iff X has no upper bound, or equivalently iff $\sup(X) = +\infty$. Similarly $-\infty$ is adherent to X iff X has no lower bound, or iff $\inf(X) = -\infty$. Thus a set is bounded if and only if $+\infty$ and $-\infty$ are not adherent points.

Definition (Limits at infinity). Let X be a subset of \mathbf{R} with $+\infty$ as an adherent point, and let $f: X \to \mathbf{R}$ be a function. We say that f(x) converges to L as $x \to +\infty$ in X, and write $\lim_{x \to +\infty; x \in X} f(x) = L$, iff for every $\varepsilon > 0$ there exists an M such that f is ε -close to L on $X \cap (M, +\infty)$ (i.e., $|f(x) - L| \le \varepsilon$ for all $x \in X$ such that x > M). Similarly we say that f(x) converges to L as $x \to -\infty$ iff for every $\varepsilon > 0$ there exists an M such that f is ε -close to L on $X \cap (-\infty, M)$.

Example Let $f:(0,\infty)\to \mathbf{R}$ be the function f(x):=1/x. Then we have $\lim_{x\to+\infty:x\in(0,\infty)}1/x=0$.

Definition Let f be a real function defined on $E \subset R$. We say that $f(t) \to A$ as $t \to x$,

where A and x are in the extended real number system, if for every neighborhood U of A there is a neighborhood V of x such that $V \cap E$ is not empty, and such that $f(t) \in U$ for all $t \in V \cap E$, $t \neq x$.

Definition Let f be defined (and real-valued) on [a, b]. For any $x \in [a, b]$ form the quotient

$$\phi(t) = \frac{f(t) - f(x)}{t - x} \qquad (a < t < b, t \neq x),$$

and define

$$f'(x) = \lim_{t \to x} \phi(t),$$

provided this limit exists

If f' is defined at a point x, we say that f is differentiable at x. If f' is defined at every point of a set $E \subset [a, b]$, we say that f is differentiable on E.

Theorem Let f be defined on [a, b]. If f is differentiable at a point $x \in [a, b]$, then f is continuous at x.

Proof As $t \to x$, we have

$$f(t) - f(x) = \frac{f(t) - f(x)}{t - x} \cdot (t - x) \to f'(x) \cdot 0 = 0.$$

Theorem Suppose f and g are defined on [a, b] and are differentiable at a point $x \in [a, b]$. Then f + g, fg, and f/g are differentiable at x, and

(a)
$$(f+g)'(x) = f'(x) + g'(x)$$
;

(b)
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
;

(c)
$$\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}.$$

In (c), we assume of course that $g(x) \neq 0$.

Proof

Let h = fg. Then

$$h(t) - h(x) = f(t)[g(t) - g(x)] + g(x)[f(t) - f(x)].$$

If we divide this by t - x and note that $f(t) \to f(x)$ as $t \to x$, (b) follows. Next, let h = f/g. Then

$$\frac{h(t)-h(x)}{t-x}=\frac{1}{g(t)g(x)}\left[g(x)\frac{f(t)-f(x)}{t-x}-f(x)\frac{g(t)-g(x)}{t-x}\right].$$

Letting $t \to x$, we obtain (c).

Theorem Suppose f is continuous on [a, b], f'(x) exists at some point $x \in [a, b]$, g is defined on an interval I which contains the range of f, and g is differentiable at the point f(x). If

$$h(t) = g(f(t)) \qquad (a \le t \le b),$$

then h is differentiable at x, and

(3)
$$h'(x) = g'(f(x))f'(x).$$

Proof Let y = f(x). By the definition of the derivative, we have

(4)
$$f(t) - f(x) = (t - x)[f'(x) + u(t)],$$

(5)
$$g(s) - g(y) = (s - y)[g'(y) + v(s)],$$

where $t \in [a, b]$, $s \in I$, and $u(t) \to 0$ as $t \to x$, $v(s) \to 0$ as $s \to y$. Let s = f(t). Using first (5) and then (4), we obtain

$$h(t) - h(x) = g(f(t)) - g(f(x))$$

$$= [f(t) - f(x)] \cdot [g'(y) + v(s)]$$

$$= (t - x) \cdot [f'(x) + u(t)] \cdot [g'(y) + v(s)],$$

or, if $t \neq x$,

(6)
$$\frac{h(t) - h(x)}{t - x} = [g'(y) + v(s)] \cdot [f'(x) + u(t)].$$

Letting $t \to x$, we see that $s \to y$, by the continuity of f, so that the right side of (6) tends to g'(y)f'(x), which gives (3).

Examples

(a) Let f be defined by

$$f(x) = \begin{cases} x \sin \frac{1}{x} & (x \neq 0), \\ 0 & (x = 0). \end{cases}$$

$$f'(x) = \sin\frac{1}{x} - \frac{1}{x}\cos\frac{1}{x} \qquad (x \neq 0).$$

For
$$t \neq 0$$
,
$$\frac{f(t) - f(0)}{t - 0} = \sin \frac{1}{t}$$
.

As $t \to 0$, this does not tend to any limit, so that f'(0) does not exist.

(b) Let f be defined by

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & (x \neq 0), \\ 0 & (x = 0). \end{cases}$$

$$f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x} \qquad (x \neq 0).$$

At x = 0, we appeal to the definition, and obtain

$$\left|\frac{f(t)-f(0)}{t-0}\right| = \left|t\sin\frac{1}{t}\right| \le |t| \qquad (t \ne 0);$$

letting $t \to 0$, we see that

$$f'(0)=0.$$

Thus f is differentiable at all points x, but f' is not a continuous function, since $\cos (1/x)$ does not tend to a limit as $x \to 0$.

Definition (Local maxima and minima). Let $f: X \to \mathbf{R}$ be a function, and let $x_0 \in X$. We say that f attains a local maximum at x_0 iff there exists a $\delta > 0$ such that the restriction $f|_{X \cap (x_0 - \delta, x_0 + \delta)}$ of f to $X \cap (x_0 - \delta, x_0 + \delta)$ attains a maximum at x_0 . We say that f attains a local minimum at x_0 iff there exists a $\delta > 0$ such that the restriction $f|_{X \cap (x_0 - \delta, x_0 + \delta)}$ of f to $X \cap (x_0 - \delta, x_0 + \delta)$ attains a minimum at x_0 .

Remark If f attains a maximum at x_0 , we sometimes say that f attains a global maximum at x_0 , in order to distinguish it from the local maxima defined here. Note that if f attains a global maximum at x_0 , then it certainly also attains a local maximum at this x_0 , and similarly for minima.

Example Let $f: \mathbf{R} \to \mathbf{R}$ denote the function $f(x) := x^2 - x^4$. This function does not attain a global minimum at 0, since for example f(2) = -12 < 0 = f(0), however it does attain a local minimum, for if we choose $\delta := 1$ and restrict f to the interval (-1,1), then for all $x \in (-1,1)$ we have $x^4 \leq x^2$ and thus $f(x) = x^2 - x^4 \geq 0 = f(0)$, and so $f|_{(-1,1)}$ has a local minimum at 0.

Definition Let f be a real function defined on a metric space X. We say that f has a local maximum at a point $p \in X$ if there exists $\delta > 0$ such that $f(q) \le f(p)$ for all $q \in X$ with $d(p, q) < \delta$.

Theorem Let f be defined on [a, b]; if f has a local maximum at a point $x \in (a, b)$, and if f'(x) exists, then f'(x) = 0.

Proof Let $\delta > 0$ so that

$$a < x - \delta < x < x + \delta < b$$
.

If $x - \delta < t < x$, then

$$\frac{f(t) - f(x)}{t - x} \ge 0.$$

Letting $t \to x$, we see that $f'(x) \ge 0$. If $x < t < x + \delta$, then

$$\frac{f(t) - f(x)}{t - x} \le 0,$$

which shows that $f'(x) \le 0$. Hence f'(x) = 0.

Remark The analogous statement for local minima is also true.

Remark The above theorem does not work if the open interval (a,b) is replaced by a closed interval [a,b]. For instance, the function $f:[1,2] \to \mathbf{R}$ defined by f(x):=x has a local maximum at $x_0=2$ and a local minimum $x_0=1$ (in fact, these local extrema are global extrema), but at both points the derivative is $f'(x_0)=1$, not $f'(x_0)=0$. Thus the endpoints of an interval can be local maxima or minima even if the derivative is not zero there. Finally, the converse of it is false.

Examples.

- 1) $f(x) = x^2, f : \mathbb{R} \to \mathbb{R}$, has a global minimum at $x_0 = 0$.
- 2) $f(x) = x^3, f : \mathbb{R} \to \mathbb{R}$, satisfies f'(0) = 0 although it neither has a local minimum nor a local maximum at $x_0 = 0$. Thus, $f'(x_0) = 0$ is not a sufficient condition for a local minimum or maximum.
- 3) $f(x) = x, f : [0,1] \to \mathbb{R}$, has a local minimum at $x_0 = 0$ and a local maximum at $x_0 = 1$. However, at neither point $f'(x_0) = 0$. The reason is that the domain of definition of f, [0,1], does not contain an open interval around $x_0 = 0$ or $x_0 = 1$.
- 4) $f(x) = 2x^3 3x^2, f : \mathbb{R} \to \mathbb{R}$, satisfies $f'(x_0) = 0$ for $x_0 = 0, 1$, and it has a local maximum at $x_0 = 0$, and a local minimum at $x_0 = 1$.

Theorem (Rolle's theorem) Suppose that f is a real-valued function, defined on a closed interval [a,b], which is continuous on the closed interval [a,b] and differentiable on the open interval (a,b). Suppose that f(a) = f(b). Then there exists $c \in (a,b)$ such that f'(c) = 0.

Proof If f(x) = f(a) for all $x \in (a,b)$ then f'(x) = 0 for all $x \in (a,b)$. Otherwise f is not monotonic on [a,b], and therefore has a local maximum or local minimum at an interior point c of [a,b]. Then f'(c) = 0, by the above theorem.

Proposition If f is a continuous function on an interval I then f is injective if and only if f is strictly monotonic.

Proof If f is strictly monotonic, then certainly f is injective. Suppose that f is not strictly monotonic, and suppose for example that a < b < c while f(a) < f(c) < f(b). Then there exists $d \in [a,b]$ such that f(d) = f(c), contradicting the fact that f is injective. Other possibilities are dealt with in the same way.

Corollary Suppose that $f'(x) \neq 0$, for each $x \in (a,b)$. Then f is strictly monotonic.

Proof If not, f is not injective and so there exists $a \le a' < b' \le b$ for which f(a') = f(b'). But then there exists a' < c < b' with f(c') = 0, giving a contradiction.