Machine Learning

Course-End Project Problem Statement

Creating Cohorts of Songs

Problem Scenario:

The customer always looks forward to specialized treatment, whether shopping on an e-commerce website or watching Netflix. The customer desires content that aligns with their preferences. To maintain customer engagement, companies must consistently provide the most relevant information.

Starting with Spotify, a Swedish audio streaming and media service provider, boasts over 456 million active monthly users, including more than 195 million paid subscribers as of September 2022. The company aims to create cohorts of different songs to enhance song recommendations. These cohorts will be based on various relevant features, ensuring that each group contains similar types of songs.

Problem Objective:

As a data scientist, you should perform exploratory data analysis and cluster analysis to create cohorts of songs. The goal is to better understand the various factors that create a cohort of songs.

Data Description:

The dataset comprises information from Spotify's API regarding all albums by the Rolling Stones available on Spotify. It's crucial to highlight that each song possesses a unique ID.

Variable	Description
name	It is the name of the song.
album	It is the name of the album.
release_date	It is the day, month, and year the album
	was released.
track number	It is the order in which the song
	appears on the album.
id	It is the Spotify ID for the song.
uri	It is the Spotify URI for the song.
acousticness	A confidence measure from 0.0 to 1.0
	indicates whether the track is acoustic.
	1.0 represents high confidence that the
	track is acoustic.

danceability	It describes how suitable a track is for dancing based on a combination of
	musical elements, including tempo,
	rhythm stability, beat strength, and
	overall regularity. A value of 0.0 is the
	least danceable, and 1.0 is the most
	danceable.
energy	It is a measure from 0.0 to 1.0 and
	represents a perceptual measure of
	intensity and activity. Typically,
	energetic tracks feel fast, loud, and
	noisy. For example, death metal has
	high energy, while a Bach prelude
	scores low on the scale. Perceptual
	features contributing to this attribute
	include dynamic range, perceived
	loudness, timbre, onset rate, and
	general entropy.
instrumentalness	It predicts whether a track contains no
	vocals. "Ooh" and "aah" sounds are
	treated as instrumental in this context.
	Rap or spoken word tracks are clearly
	"vocal." The closer the
	instrumentalness value is to 1.0, the
	greater the likelihood that the track
	contains no vocal content. Values above
	0.5 are intended to represent instrumental tracks, but confidence is
	higher as the value approaches 1.0.
liveness	It detects the presence of an audience
IIVCIIC33	in the recording. Higher liveness values
	represent an increased probability that
	the track was performed live. A value
	above 0.8 provides a strong likelihood
	that the track is live.
loudness	The overall loudness of a track in
	decibels (dB) and loudness values are
	averaged across the entire track and
	are useful for comparing the relative
	loudness of tracks. Loudness is the
	loudness of tracks. Loudness is the

	quality of a sound that is the primary
	psychological correlate of physical
	strength (amplitude). Values typically
	range between -60 and 0 dB.
speechiness	It detects the presence of spoken words
	in a track. The more exclusively speech-
	like the recording (e.g., talk show,
	audiobook, poetry), the closer to 1.0 the
	attribute value. Values above 0.66
	describe tracks that are probably made
	entirely of spoken words. Values
	between 0.33 and 0.66 describe tracks
	that may contain both music and
	speech, either in sections or layered,
	including such cases as rap music.
	Values below 0.33 most likely represent
	music and other non-speech-like tracks.
tempo	The overall estimated tempo of a track
·	is measured in beats per minute (BPM).
	In musical terminology, the tempo is
	the speed or pace of a given piece and
	derives directly from the average beat
	duration.
valence	A measure from 0.0 to 1.0 describes the
	musical positivity conveyed by a track.
	Tracks with high valence sound more
	positive (e.g., happy, cheerful,
	euphoric), while tracks with low valence
	sound more negative (e.g., sad,
	depressed, angry).
popularity	The popularity of the song ranges from
	0 to 100.
duration_ms	It is the duration of the track in
	milliseconds.

Steps to Perform:

1. Initial data inspection and data cleaning:

- Examine the data initially to identify duplicates, missing values, irrelevant entries, or outliers. Check for any instances of erroneous entries and rectify them as needed
- 2. Refine the data for further processing based on your findings
- 3. Perform exploratory data analysis and feature engineering
 - a. Utilize suitable visualizations to identify the two albums that should be recommended to anyone based on the number of popular songs in each album
 - b. Conduct exploratory data analysis to delve into various features of songs, aiming to identify patterns
 - c. Examine the relationship between a song's popularity and various factors, exploring how this correlation has evolved
 - d. Provide insights on the significance of dimensionality reduction techniques. Share your ideas and elucidate your observations
- 4. Perform cluster analysis
 - a. Identify the right number of clusters
 - b. Use appropriate clustering algorithms
 - c. Define each cluster based on the features