Voronoi diagram - A servey of various fast algorithms

Mingeon Jeong, Minseop Lee, Dongwon Lee, Chaewoon Lee May 25, 2023

이 글은 Voronoi Diagram을 $O(n^2)$ 또는 $O(n\log n)$ 의 시간에 구하는 알고리즘인 Fortune's Algorithm, Bowyer-Watson Algorithm, Jump Flooding Algorithm, Using divide and conquer, Incremental Algorithm을 소개한다.

1 Fortune's Algorithm

Fortune의 알고리즘은 포물선의 성질을 이용한 알고리즘이다. 포물선은 초점과의 거리와 준선과의 거리가 같은 집합의 모임이기 때문에, 초점이 각각 P와 Q이고 준선이 같은 선인 두 포물선의 교점은 PQ의 수직이등분선 위에 있다는 성질을 갖는다. 이를 이용하여 $O(n\log n)$ 에 Vornoni Diagram을 찾을 수 있다.

먼저 구체적인 알고리즘을 이야기하기 전에, 몇 가지 용어들을 정의하자.

- $sweep\ line$: 스위핑을 진행하는 직선으로 $x=x_0$ 로 쓰자. 아래 모든 과정에서 $sweep\ line$ 이 $x=x_0$ 이면 x좌표가 x_0 이하인 점들만 고려한다.
- beach line: 여러 개의 포물선의 일부분으로 이루어진 가장 오른쪽(가장 $x = x_0$ 와 가까운) 경계를 말한다. 준선은 $x = x_0$ 로 고정할 것이므로, 초점들만 리스트로 저장하면 beach line을 알 수 있다. 이 초점들의 목록을 Focus라고 하자. Figure 1.1은 beach line의 예시이다.
- $site\ event$: 점 P_i 가 추가되는 이벤트이다. 이 이벤트가 실행되면, Focus에 점 P_i 가 추가된다. 이 이벤트는 $x=x_0$ 인 점이 존재하면 실행된다.
- circle event: beach line을 이루는 어떤 포물선이 다른 포물선에 가려져 하나의 포물선이 사라지는 이벤트이다. 이 이벤트가 실행되면 Focus에 가려지는 포물선을 나타내는 점이 제거된다. 이 이벤트는 Focus에 포함되어 있으며 y좌표가 인접한 세 점의 외접원의 가장 오른쪽보다 $x=x_0$ 가 오른쪽에 있을 때 실행된다. 이 때 이 세 점의 외접원의 중심을 circle point라고 한다. Figure 1.2에 그 원과 circle point가 보여지고 있다.

Figure 1.1

Figure 1.2

구체적인 알고리즘은 아래와 같다:

- 1. 점을 x좌표가 커지는 순서대로 정렬한다. 정렬 후 i번째 점을 P_i 라 두자.
- 2. 양쪽과 연결된 양방향 연결리스트(Doubly Linked List) Focus를 만든다. 이 연결리스트는 y 좌표가 증가하는 순서로 점들을 담는다.
- $3. sweep line x = x_0$ 에 대해 x_0 을 증가시키면서
 - $site\ event$ 가 발생한 경우: Focus에 점 P_i 를 넣는다. 이 과정에서 알맞은 위치를 찾기 위해 y좌표를 기준으로 이분 탐색(binary search)를 사용한다. 또한, 이 과정에서 새롭게 생긴 포물선과 기존의 $beach\ line$ 의 교점을 이어 $Voronoi\ Diagram$ 을 이루는 선분에 추가한다.
 - $circle\ event$ 가 발생한 경우: 점 P_{i-1} , P_i , P_{i+1} 에서 $circle\ event$ 가 발생한 경우 Focus에서 점 P_i 를 제거한다. 또한, 이 이후에는 두 개의 포물선과 교점이 생기므로, 그 교점과 $circle\ point$ 를 이어 2개의 선분을 추가한다. (하나는 기존과 겹칠 것이다)
- $4. x_0 = \infty$ 가 될 때까지 위 작업을 반복하여 얻은 선분들은 Voronoi Diagram을 이룬다.

다음 웹페이지에서 위 과정을 직접 확인할 수 있다: http://www.eecs.tufts.edu/~vporok01/c163/

2 Bowyer-Watson Algorithm

Bowayer-Watson은 Voronoi Diagram과 쌍대관계인 들로네 삼각분할을 $O(n^2)$ 의 시간복잡도에 해결하는 방법이다. 만약 Quad Tree를 사용할 경우 $O(n\log n)$ 의 시간복잡도로 구현할 수 있다. 이 알고리즘의 구현 방식은 아래와 같다:

- 1. 모든 점을 포함하는 가장 큰 정삼각형(Supra-Triangle)를 잡는다.
- 2. i번째 점을 P_i 라 두고, 점을 정해진 순서대로 하나씩 돈다.
 - 첫 번째 점의 경우: 위의 가장 큰 정삼각형(Supra-Triangle)과 연결한다.
 - 첫 번째 점이 아닌 경우: 이미 그린 삼각형들 T_i 의 외접원들 중, P_i 를 포함하는 외접원을 만드는 삼각형 T_i 들을 제거하고, 그 삼각형들의 꼭짓점들과 P_i 를 이어 새로운 삼각형을 만든다.
- 3. N개의 점에 대해 위 작업을 반복하고, 가장 큰 정삼각형(Supra-Triangle)을 지우면 돌로네 삼각 분할이 만들어진다.

Figure 2.1는 위 과정을 그림으로 그린 것이다.

Figure 2.1

3 Jump Flooding Algorithm

Jump Flooding Algorithm은 가로 N, 세로 N의 격자를 이용하여 Voronoi Diagram을 얻거나 Distance transforms를 하는데 사용되는 알고리즘이다. 시간복잡도는 $O(N^2 \log N)$ 이며 이 알고리즘의 구현 방식은 아래와 같다:

- 1. 처음 점의 좌표에 그 점의 색으로 마킹한다. 이렇게 처음 flooding의 시작이 되는 점을 *seed*라고 한다.
- 2. step size(k)를 N/2부터 시작해 절반씩 줄이며 아래 수식에 따라 색을 마킹한다. 각 P=(x,y)에 대해 Q=(x+i,y+j) where $i,j\in -k,0,k$ 인 모든 Q가
 - ullet Q는 마킹되어 있지 않으나, P는 마킹된 경우 Q의 색으로 마킹한다.
 - Q와 P 모두 마킹된 경우, Q의 시드에 해당하는 것과 P의 시드에 해당하는 것 중 더 가까운 것으로 마킹한다.
- $O(\log N)$ 개의 점에 대해 위 작업을 반복하면 Voronoi Diagram이 만들어진다.

Figure 3.1는 위 과정을 그림으로 그린 것이다.

Figure 3.1

4 Using divide and conquer

분할 정복 알고리즘을 이용해 Voronoi Diagram을 $O(n \log n)$ 에 구할 수 있다.

- 1. 분할: x좌표를 기준으로 양쪽에 각각 절반의 점이 존재하도록 나눈다.
- 2. 마지막: 점이 3개 이하인 경우 수식적으로 Voronoi Diagram을 구한다.
- 3. 병합: 경계의 점들을 $monotone\ chain\ C$ 로 잇는다. 그 체인에 속하는 점을 체인 순서대로 $C_1,C_2,$ C_3,\cdots,C_k 라 두었을 때 C_i 와 C_i+1 의 수직이등분선이 경계면의 Voronoi Diagram이 된다.

아래는 세 과정을 각각 나타낸 것이다.

이제 monotone chain을 만드는 과정을 살펴보자.

- 1. 각각의 분할된 다이어그램에서 가장 y좌표가 큰 한 점을 고른다. 이 점을 P_1 , P_2 라 두자.
- 2. P_1 과 P_2 를 수직이등분선하는 직선을 그은 뒤, P_1 , P_2 의 셀의 경계와의 교점을 구한다.
- 3. 위에서 구한 교점들 중 가장 y좌표가 큰 교점을 선택하여, 그 지점까지 선분을 잇는다.
- 4. 위의 교점을 만든 수직이등분선을 만드는 두 점을 구한다. 즉, 그 두 점의 수직이등분선은 y좌 표가 가장 큰 교점을 만든다. 이 두 점 중 하나는 P_1 또는 P_2 일 것이므로, 겹치는 점을 제외한 나머지 두 점을 선택한다. 다시 2로 돌아가 과정을 반복한다.

 $monotone\ chain$ 을 만들 때, 각 정점은 최대 1번 확인하고, 각 간선은 최대 2번 확인하므로 시간복잡 도는 O(n)이다. 즉, 분할정복 과정의 전체 시간복잡도가 $O(n\log n)$ 이 된다. **Figure 4.4**는 위 과정을 그림으로 그린 것이다.

Рис. 4 Аналогично рисунку 3 обновляем один из концов отрезка. Пускаем луч и т.д

Figure 4.4

5 Incremental Algorithm

Incremental Algorithm을 이용하면 $O(n^2)$ 의 시간에 Voronoi Diagram을 구할 수 있다. 이 알고리즘의 기작은 분할 정복을 이용한 Voronoi Diagram 알고리즘에서 $monotine\ chain$ 을 구하는 것과 비슷하다. 알고리즘의 구현 방식은 아래와 같다:

- 1. 각 점 P_i 에 대하여 다음을 반복한다.
 - *i* = 1: 그 점의 셀을 전체 영역으로 잡는다.
 - i >= 2: P_i 가 포함된 셀을 P_j 의 셀이라고 하자. 그러면 선분 P_iP_j 의 수직이등분선은 Voronoi Diagram을 이루는 선이 된다. 이제 이 선과 P_j 의 셀의 경계선과의 교점을 구하자. 그 교점에서 다시 셀을 찾고 수직이등분선을 긋는 것을 반복한다.
- 2. n개의 점에 대해 위 작업이 종료되면 남는 선분들이 Voronoi Diagram이 된다.

위 과정에서 한번에 반복당 최대 n개의 점을 확인하기 때문에 시간복잡도는 $O(n^2)$ 이다. Figure 5.1는 위 과정을 그림으로 그린 것이다.

6 References

6.1 Fortune's Algorithm

- [1] https://en.wikipedia.org/wiki/Fortune's_algorithm
- [2] https://www.ams.org/publicoutreach/feature-column/fcarc-voronoi
- [3] https://kipl.tistory.com/7

6.2 Bowyer-Watson Algorithm

[4] https://www.youtube.com/watch?v=GctAunEuHt4

6.3 Jump Flooding Algorithm

- [5] https://www.youtube.com/watch?v=GctAunEuHt4
- [6] https://en.wikipedia.org/wiki/Jump_flooding_algorithm

6.4 Using divide and conquer

- [7] https://cw.fel.cvut.cz/b181/_media/courses/cg/lectures/06-voronoi-split.pdf
- [8] https://sudonull.com/post/76327-Building-a-Voronoi-diagram-using-the-divide-and-conquer

6.5 Incremental Algorithm

[9] https://www.ic.unicamp.br/~rezende/ensino/mo619/Sacristan,%20Voronoi%20Diagrams.pdf