```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

from utils import *

paths = (
    '001_2/', '004_3/', '007_2/', '010_2/', '013_2/', '016_3/', '019_2/',
    '002_2/', '005_2/', '008_3/', '011_2/', '014_2/', '017_2/', '020_3/',
    '003_2/', '006_2/', '009_2/', '012_3/', '015_2/', '018_2/'
)
```

## Часть 1 - Кросс-валидация со всеми признаками

8

```
path_prefix = '20_CV/'
RMSE_train_dict, MaxAE_train_dict = get_train_RMSE_and_MaxAE(paths, path_prefix)

RMSE_train = get_dataframe_from_dict(RMSE_train_dict)

RMSE_train
```

|        | 1        | 2        | 3        | 4        | 5        | 6        |
|--------|----------|----------|----------|----------|----------|----------|
| 001_2/ | 0.120919 | 0.084082 | 0.062760 | 0.051472 | 0.043619 | 0.038107 |
| 004_3/ | 0.120302 | 0.072518 | 0.056587 | 0.046938 | 0.041302 | 0.036185 |
| 007_2/ | 0.121456 | 0.084417 | 0.061506 | 0.050379 | 0.042991 | 0.037381 |
| 010_2/ | 0.093744 | 0.064102 | 0.055371 | 0.044211 | 0.038469 | 0.033682 |
| 013_2/ | 0.116201 | 0.076903 | 0.061246 | 0.050796 | 0.041229 | 0.035357 |
| 016_3/ | 0.120578 | 0.077606 | 0.057131 | 0.047842 | 0.040956 | 0.034150 |
| 019_2/ | 0.111036 | 0.060873 | 0.048292 | 0.040735 | 0.031922 | 0.026586 |
| 002_2/ | 0.122298 | 0.084100 | 0.058906 | 0.045388 | 0.034573 | 0.029597 |
| 005_2/ | 0.120458 | 0.082319 | 0.067157 | 0.049982 | 0.037691 | 0.034106 |
| 008_3/ | 0.119678 | 0.087418 | 0.066172 | 0.049741 | 0.042254 | 0.033021 |
| 011_2/ | 0.122288 | 0.083724 | 0.065022 | 0.054020 | 0.044243 | 0.035111 |
| 014_2/ | 0.110597 | 0.077155 | 0.066311 | 0.055831 | 0.042268 | 0.037741 |
| 017_2/ | 0.121850 | 0.082442 | 0.067057 | 0.054958 | 0.046875 | 0.035091 |
| 020_3/ | 0.122114 | 0.081254 | 0.066421 | 0.052049 | 0.040875 | 0.035573 |
| 003_2/ | 0.121253 | 0.084457 | 0.060592 | 0.049094 | 0.040302 | 0.034595 |
| 006_2/ | 0.118483 | 0.082420 | 0.063865 | 0.046196 | 0.040106 | 0.035099 |
| 009_2/ | 0.121782 | 0.083845 | 0.062508 | 0.048202 | 0.040885 | 0.033569 |
| 012_3/ | 0.121376 | 0.083739 | 0.067331 | 0.049657 | 0.039303 | 0.035616 |
| 015_2/ | 0.121939 | 0.089863 | 0.069525 | 0.052572 | 0.044592 | 0.039312 |
| 018_2/ | 0.121423 | 0.083482 | 0.061531 | 0.050652 | 0.040443 | 0.035017 |
| mean   | 0.118489 | 0.080336 | 0.062265 | 0.049536 | 0.040745 | 0.034745 |

```
MaxAE_train = get_dataframe_from_dict(MaxAE_train_dict)
MaxAE_train
```

|        | 1        | 2        | 3        | 4        | 5        | 6        |
|--------|----------|----------|----------|----------|----------|----------|
| 001_2/ | 0.470366 | 0.260929 | 0.146011 | 0.151498 | 0.089491 | 0.082024 |
| 004_3/ | 0.480658 | 0.240738 | 0.145557 | 0.118380 | 0.098618 | 0.097534 |
| 007_2/ | 0.456261 | 0.259297 | 0.139964 | 0.129346 | 0.098664 | 0.086051 |

```
010_2/ 0.333910 0.177327 0.151028 0.098466 0.093490 0.092018
     013_2/ 0.484294 0.202097 0.158287 0.139703 0.111492 0.079888
     016_3/ 0.377936 0.236615 0.114585 0.111764 0.100849 0.083262
     019_2/ 0.543117 0.149160 0.122075 0.091572 0.077055 0.063245
     002_2/ 0.479974 0.258365 0.122984 0.149788 0.075315 0.074220
     005_2/ 0.479458 0.259407 0.241699 0.174367 0.077688 0.066542
     008_3/ 0.442839 0.325556 0.202026 0.139051 0.120524 0.077604
     011_2/ 0.478719 0.239221 0.170075 0.111236 0.112983 0.089412
     014_2/ 0.249682 0.227810 0.160260 0.168492 0.095471 0.089129
     017_2/ 0.481718 0.238778 0.160079 0.113472 0.107138 0.086892
     020_3/ 0.467387 0.253384 0.206111 0.125542 0.103034 0.091947
     003_2/ 0.492843 0.259101 0.145976 0.136370 0.106804 0.086323
     006_2/ 0.488641 0.259691 0.181083 0.106377 0.090629 0.081403
     009_2/ 0.476543 0.258734 0.142473 0.156945 0.099366 0.079976
     012_3/ 0.471205 0.260796 0.241637 0.123166 0.094321 0.089449
RMSE_valid_dict, MaxAE_valid_dict = get_validation_RMSE_and_MaxAE(paths, path_prefix, 6)
     018_2/ 0.478662 0.259643 0.139597 0.147450 0.100504 0.083592
```

RMSE\_valid = get\_dataframe\_from\_dict(RMSE\_valid\_dict) RMSE valid

|        | 1        | 2        | 3        | 4        | 5        | 6        |
|--------|----------|----------|----------|----------|----------|----------|
| 001_2/ | 0.092003 | 0.040390 | 0.036168 | 0.040273 | 0.030290 | 0.029487 |
| 004_3/ | 0.137363 | 0.160385 | 0.160173 | 0.084115 | 0.061299 | 0.021428 |
| 007_2/ | 0.124568 | 0.017565 | 0.063930 | 0.066297 | 0.065559 | 0.033727 |
| 010_2/ | 0.400514 | 0.301230 | 0.310669 | 0.384675 | 0.318956 | 0.448607 |
| 013_2/ | 0.179576 | 0.231349 | 0.121337 | 0.134604 | 0.090724 | 0.076035 |
| 016_3/ | 0.166245 | 0.115803 | 0.053797 | 0.061908 | 0.057575 | 0.066873 |
| 019_2/ | 0.324606 | 0.326372 | 0.303654 | 0.291341 | 0.260283 | 0.277238 |
| 002_2/ | 0.027207 | 0.038603 | 0.107855 | 0.095515 | 0.104767 | 0.104082 |
| 005_2/ | 0.104949 | 0.091456 | 0.073366 | 0.085884 | 0.082676 | 0.086615 |
| 008_3/ | 0.206787 | 0.112284 | 0.118516 | 0.102944 | 0.080266 | 0.087564 |
| 011_2/ | 0.027507 | 0.072718 | 0.068899 | 0.061982 | 0.060354 | 0.056136 |
| 014_2/ | 0.327023 | 0.182551 | 0.421978 | 0.325447 | 0.318953 | 0.238196 |
| 017_2/ | 0.055732 | 0.089650 | 0.031684 | 0.057760 | 0.047506 | 0.059262 |
| 020_3/ | 0.128781 | 0.126168 | 0.122575 | 0.042509 | 0.078785 | 0.081844 |
| 003_2/ | 0.144555 | 0.012126 | 0.090271 | 0.036047 | 0.022904 | 0.016274 |
| 006_2/ | 0.213099 | 0.104778 | 0.129757 | 0.119603 | 0.117107 | 0.037987 |
| 009_2/ | 0.058849 | 0.049163 | 0.043738 | 0.074568 | 0.048140 | 0.045014 |
| 012_3/ | 0.108242 | 0.074996 | 0.080027 | 0.080966 | 0.084133 | 0.088916 |
| 015_2/ | 0.161935 | 0.040459 | 0.045680 | 0.048031 | 0.033079 | 0.093773 |
| 018_2/ | 0.074277 | 0.062060 | 0.068841 | 0.059711 | 0.065005 | 0.046975 |
| mean   | 0.153191 | 0.112505 | 0.122646 | 0.112709 | 0.101418 | 0.099802 |

MaxAE\_valid = get\_dataframe\_from\_dict(MaxAE\_valid\_dict)

|        | 1        | 2        | 3        | 4        | 5        | 6        |
|--------|----------|----------|----------|----------|----------|----------|
| 001_2/ | 0.129585 | 0.056734 | 0.040884 | 0.056376 | 0.042403 | 0.041693 |
| 004_3/ | 0.194201 | 0.226763 | 0.226476 | 0.118951 | 0.083138 | 0.030302 |
| 007_2/ | 0.141718 | 0.019922 | 0.088442 | 0.093488 | 0.091054 | 0.044687 |

```
010_2/ 0.563148 0.423407 0.435531 0.538877 0.447280 0.631848
013_2/ 0.239864 0.284315 0.167425 0.187432 0.098874 0.080031
016_3/ 0.166371 0.135033 0.058642 0.078068 0.061532 0.092577
                                 0.408066
019_2/ 0.413371 0.438276 0.428567
                                           0.364640
                                                    0.390151
002_2/ 0.038237 0.047065 0.148475 0.135023 0.134191 0.132077
005_2/ 0.109724 0.097356 0.079006
                                 0.091148 0.087919 0.090997
008_3/ 0.256810 0.157288 0.167236 0.125415 0.084766 0.093784
011 2/ 0.038404 0.089192 0.095212 0.086226
                                           0.085327 0.077205
014_2/ 0.450734 0.251948 0.594937 0.460252 0.450561
                                                    0.336354
017_2/ 0.055956 0.109053 0.033814 0.081614 0.060583 0.078181
020_3/ 0.163529
               0.167385 0.161788
                                  0.057574
                                           0.107337
                                                     0.098911
003_2/ 0.185291
                0.014690
                        0.127465
                                 0.048906
                                           0.032336
                                                    0.022855
006_2/ 0.296492 0.148154 0.180538 0.169029
                                           0.165573 0.045493
009_2/ 0.066699 0.069032 0.054401 0.092183 0.067110 0.046685
012_3/ 0.124719 0.087576 0.112680 0.113441 0.094622 0.101703
015_2/ 0.206749 0.051292 0.060911 0.066041 0.039567 0.132375
018_2/ 0.101082 0.082744 0.083475 0.067910 0.068849 0.061849
mean 0.197134 0.147861 0.167295 0.153801 0.133383 0.131488
```

```
plt.plot(RMSE_train.columns, RMSE_train.loc['mean'], label='RMSE train')
plt.plot(RMSE_valid.columns, RMSE_valid.loc['mean'], label='RMSE valid')
plt.legend()
plt.xlabel('Model complexity')
plt.xlabel('Error')
plt.show()
```



По рисунку видно, что не наступает переобученности. Поэтому лучшим будем считать размерность дескриптора с минимальной ошибкой валидации.

```
print(f"Минимальная ошибка RMSE валидации при размерности {RMSE_valid.columns[np.argmin(RMSE_valid.loc['mean'])]}")
print(f"Минимальная ошибка МахАЕ валидации при размерности {MaxAE_valid.columns[np.argmin(MaxAE_valid.loc['mean'])]}")
```

```
Минимальная ошибка RMSE валидации при размерности 6 Минимальная ошибка MaxAE валидации при размерности 6
```

По полученным результам становится ясно, что наилучшая размерность дескриптора – 6. Поэтому далее обучаем на всей базе с этой размерностью.

## → Часть 2 - Обучение на полной выборке с наилучшей размерностью

```
path_prefix = 'full_set/desc_dat/'
full_set_desc = get_full_set_desc_dat(path_prefix, 6)
plot energy vs configuration(full set desc)
```

RMSE, MaxAE = get\_full\_set\_desc\_dat\_errors(full\_set\_desc)
print('Обучение на полной выборке с дескриптором 6го уровня:')
print(f'RMSE: {RMSE}, MaxAE: {MaxAE}')

Обучение на полной выборке с дескриптором 6го уровня: RMSE: 0.036351709578525106, MaxAE: 0.0640099999999998

# Часть 3 - Кросс-валидация с одним признаком

path\_prefix = '20\_CV\_only\_DS/'
RMSE\_train\_dict, MaxAE\_train\_dict = get\_train\_RMSE\_and\_MaxAE(paths, path\_prefix)

RMSE\_train = get\_dataframe\_from\_dict(RMSE\_train\_dict)
RMSE\_train

|        | 1        | 2        | 3        | 4        | 5        | 6        |
|--------|----------|----------|----------|----------|----------|----------|
| 001_2/ | 0.210326 | 0.208484 | 0.206862 | 0.206306 | 0.204986 | 0.203679 |
| 004_3/ | 0.212150 | 0.210588 | 0.208302 | 0.208113 | 0.207294 | 0.206299 |
| 007_2/ | 0.209469 | 0.208005 | 0.205716 | 0.205549 | 0.204794 | 0.203562 |
| 010_2/ | 0.175210 | 0.174597 | 0.172806 | 0.171628 | 0.167749 | 0.152045 |
| 013_2/ | 0.199498 | 0.196629 | 0.194902 | 0.194380 | 0.192366 | 0.191997 |
| 016_3/ | 0.213525 | 0.212005 | 0.209983 | 0.208699 | 0.208580 | 0.194747 |
| 019_2/ | 0.199651 | 0.196734 | 0.194642 | 0.194459 | 0.192717 | 0.182456 |
| 002_2/ | 0.208683 | 0.208266 | 0.204604 | 0.204554 | 0.203889 | 0.190816 |
| 005_2/ | 0.203867 | 0.196712 | 0.196492 | 0.196200 | 0.195443 | 0.179028 |
| 008_3/ | 0.205234 | 0.204877 | 0.203684 | 0.200853 | 0.198900 | 0.197866 |
| 011_2/ | 0.211410 | 0.209868 | 0.207934 | 0.207549 | 0.206585 | 0.191100 |
| 014_2/ | 0.208172 | 0.207670 | 0.203870 | 0.203830 | 0.203341 | 0.201952 |
| 017_2/ | 0.208284 | 0.206722 | 0.204109 | 0.204025 | 0.203149 | 0.191932 |
| 020_3/ | 0.211190 | 0.210093 | 0.209219 | 0.209025 | 0.208487 | 0.193880 |
| 003_2/ | 0.206606 | 0.205169 | 0.203240 | 0.202792 | 0.201632 | 0.201033 |
| 006_2/ | 0.205538 | 0.204582 | 0.200141 | 0.199828 | 0.199092 | 0.189782 |
| 009_2/ | 0.211357 | 0.209590 | 0.207755 | 0.207354 | 0.206376 | 0.205156 |
| 012_3/ | 0.212952 | 0.211333 | 0.209251 | 0.208952 | 0.207970 | 0.192981 |
| 015_2/ | 0.209180 | 0.206958 | 0.206075 | 0.205992 | 0.205121 | 0.190910 |
| 018_2/ | 0.209294 | 0.208019 | 0.206112 | 0.205678 | 0.204903 | 0.188187 |
| mean   | 0.206580 | 0.204845 | 0.202785 | 0.202288 | 0.201169 | 0.192470 |

MaxAE\_train = get\_dataframe\_from\_dict(MaxAE\_train\_dict)
MaxAE\_train

 001\_2/
 0.718878
 0.669424
 0.700504
 0.710916
 0.710606
 0.727879

**004 3**/ 0.716794 0.671626 0.707440 0.713846 0.713112 0.727250 **007\_2**/ 0.715309 0.671378 0.707151 0.713352 0.712861 0.728261 **010\_2/** 0.455497 0.454087 0.472027 0.465658 0.471678 0.468851 **013\_2/** 0.727774 0.667851 0.698551 0.708775 0.708651 0.717638 **016\_3/** 0.717486 0.666744 0.696612 0.716605 0.718183 0.680130 **019\_2**/ 0.724577 0.657333 0.695786 0.705938 0.713022 0.701824 **002\_2/** 0.713976 0.740064 0.710380 0.713801 0.713346 0.694205 **005\_2/** 0.701360 0.590963 0.604895 0.594241 0.601367 0.572830 **008\_3**/ 0.704580 0.681043 0.694335 0.714958 0.725132 0.744581 **011\_2/** 0.715085 0.669754 0.702531 0.712158 0.711638 0.690672 **014\_2/** 0.715894 0.744670 0.714681 0.711925 0.715630 0.732297 **017\_2/** 0.715628 0.670341 0.708093 0.712549 0.711955 0.694614 **020\_3/** 0.726197 0.686968 0.706219 0.712931 0.712216 0.687911 **003\_2/** 0.709558 0.666228 0.699096 0.708971 0.708115 0.719026 **006\_2/** 0.708033 0.747269 0.715194 0.707416 0.712313 0.696181 **009\_2/** 0.719206 0.670711 0.702920 0.712518 0.711954 0.727303 **012\_3**/ 0.716066 0.669910 0.704513 0.712382 0.711337 0.695135 **015\_2/** 0.718855 0.657486 0.678706 0.683810 0.683046 0.660344 **018\_2/** 0.712339 0.671310 0.703488 0.713837 0.713345 0.692787 mean 0.702655 0.666258 0.686156 0.692329 0.693975 0.687986

RMSE\_valid\_dict, MaxAE\_valid\_dict = get\_validation\_RMSE\_and\_MaxAE(paths, '20\_CV\_only\_DS/', 6)

RMSE\_valid = get\_dataframe\_from\_dict(RMSE\_valid\_dict)
RMSE valid

 1
 2
 3
 4
 5
 6

 001\_2/
 0.120756
 0.128180
 0.109408
 0.125921
 0.135302
 0.145654

 004\_3/
 0.141312
 0.137840
 0.144400
 0.140915
 0.134464
 0.145671

```
5
                                                           6
001_2/ 0.157495 0.168671 0.146347 0.164780 0.171443 0.200090
004 3/ 0.143722 0.144889 0.161348 0.153117 0.146555 0.148936
007_2/ 0.197727 0.184424 0.205017 0.196232 0.186478 0.185522
010_2/ 0.851269 0.865804 0.817998 0.834691 0.840444 0.882530
013_2/ 0.424184 0.442936 0.443871 0.442618 0.457187 0.443723
016_3/ 0.113257 0.082900 0.132351 0.356508 0.544139 0.537909
019_2/ 0.473019 0.491689 0.492974 0.491544 0.507511 0.449302
002 2/ 0.239803 0.250595 0.247952 0.243699 0.235712 0.128549
005_2/ 0.290734 0.401064 0.387168 0.397782 0.390504 0.459101
008_3/ 0.350937 0.356447 0.333142 0.664264 3.487801 0.930025
011_2/ 0.089865 0.083785 0.068974 0.080486 0.085242 0.171589
014_2/ 0.224031 0.235756 0.233166 0.235711 0.223274 0.218550
017_2/ 0.218960 0.205019 0.225805 0.220691 0.209384 0.181519
020_3/ 0.237633 0.213336 0.160740 0.153450 0.114663 0.067698
003 2/ 0.261961 0.262202 0.243410 0.258082 0.273969 0.254754
006_2/ 0.248453 0.271882 0.299843 0.316364 0.314719 0.209666
009_2/ 0.102259 0.113459 0.088448 0.103777 0.107409 0.124556
012 3/ 0.094955 0.094794 0.115546 0.102780 0.087856 0.079838
015_2/ 0.161305 0.222654 0.201339 0.196656 0.197204 0.088195
018 2/ 0.177390 0.165163 0.161079 0.164426 0.156812 0.211620
mean 0.252948 0.262873 0.258326 0.288883 0.436915 0.298684
```

```
plt.plot(RMSE_train.columns, RMSE_train.loc['mean'], label='RMSE train')
plt.plot(RMSE_valid.columns, RMSE_valid.loc['mean'], label='RMSE valid')
plt.legend()
plt.xlabel('Model complexity')
plt.xlabel('Error')
plt.show()
```



По рисунку видно, что не наступает переобученности. Поэтому лучшим будем считать размерность дескриптора с минимальной ошибкой валидации.

```
print(f"Минимальная ошибка RMSE валидации при размерности {RMSE_valid.columns[np.argmin(RMSE_valid.loc['mean'])]}") print(f"Минимальная ошибка MaxAE валидации при размерности {MaxAE_valid.columns[np.argmin(MaxAE_valid.loc['mean'])]}")
```

```
Минимальная ошибка RMSE валидации при размерности 1 Минимальная ошибка MaxAE валидации при размерности 1
```

Хоть минимум ошибки валидации достигается при размерности 1, мы будем использовать далее размерность 3, т.к. это лучшая размерность до переобучения.

#### Часть 4 - Об∨чение на полной выборке с одним признаком

full\_set\_desc\_only\_DS = get\_full\_set\_desc\_dat('full\_set\_only\_DS/desc\_dat/', 6)
plot\_energy\_vs\_configuration(full\_set\_desc\_only\_DS)



RMSE, MaxAE = get\_full\_set\_desc\_dat\_errors(full\_set\_desc\_only\_DS)
print('Обучение на полной выборке с дескриптором 6го уровня:')
print(f'RMSE: {RMSE}, MaxAE: {MaxAE}')

Обучение на полной выборке с дескриптором 6го уровня: RMSE: 0.09458696504880278, MaxAE: 0.31166

### - Итоги

Итак, ошибка предсказания на выборке с одним признаком больше, чем при использовании всех параметров. Это выглядит разумно, т.к. выбранный нами признак DS - это не единственный значимый признак. Это можно понять по анализу тренировочного набора.