Combining Multiple Heuristics Online

Matthew Streeter^I Daniel Golovin^I

Stephen F. Smith²

Carnegie Mellon University

K Computer Science Department

²The Robotics Institute

AAAI July 24, 2007

Why heuristics?

- The world is full of NP-hard problems
- Heuristics often work well in practice
 - SAT solvers handle formulae with 10⁶ variables, used for hardware and software verification
- Much interest in developing better heuristics (annual SAT solver competition)

Heuristics have complementary strengths & weaknesses

Running time of heuristics varies widely across instances

Instance	SatELiteGTI CPU (s)	MiniSat CPU (s)
liveness-unsat-2-01dlx_c_bp_u_f_liveness	33	15
vliw-sat-2-0/9dlx_vliw_at_b_iq6_bug4	376	≥ 120000
vliw-sat-2-0/9dlx_vliw_at_b_iq6_bug9	≥ 120000	131

 Can often reduce average-case run time by running several heuristics in parallel (on a single processor)

This talk

- Goal: interleave the execution of multiple heuristics in order to improve average-case running time
- Schedule for interleaving can be learned online while solving a sequence of problems

Related work

- Algorithm portfolios
 - Assign each heuristic a fixed proportion of CPU time, plus a fixed restart threshold (Huberman et al. 1997, Gomes et al. 2001)
 - Later work used instance features to predict which heuristic will finish first (e.g., Leyton-Brown et al. 2003, Xu et al. 2007)
- Combining Multiple Heuristics (Sayag et al. 2006)
 - considered resource-sharing schedules and task-switching schedules
 - gave offline algorithms + bounds for PAC learning;
 algorithms are exponential in #heuristics

Formal setup

- Given: k heuristics, n decision problems to solve
- Using jth heuristic to solve ith instance takes time τ_{ij} , where $\tau_{ij} \in \{1, 2, ..., B\} \cup \{\infty\}$
- For each i, assume $\min_{j} \tau_{ij} \leq B$
- Solve each problem by interleaving execution of heuristics according to a task-switching schedule

Task-switching schedules

- Mapping S from integer time slices to heuristics;
 S(t) = heuristic to run from time t to time t+1
- Example:

Task-switching schedules

Mapping S from integer time slices to heuristics;
 S(t) = heuristic to run from time t to time t+1

Task-switching schedules

Mapping S from integer time slices to heuristics;
 S(t) = heuristic to run from time t to time t+1

 Can also handle model where we throw away all work when switching between heuristics

Three settings

 We consider selecting task-switching schedules in three settings:

- \Rightarrow Offline: given table \top as input, compute an optimal schedule
 - **Learning-theoretic:** PAC-learn an optimal restart schedule from training instances

• Online: you are fed an *arbitrary* sequence of instances one at a time, and must solve each instance before moving on to the next

The offline setting

- Offline problem: given table T of completion times, compute task-switching schedule that minimizes sum of CPU time over all instances
- Think T of as training data

Can think of a task-switching schedule as a path in a k-dimensional grid with sides of length B+1 (here B=4)

Can think of a task-switching schedule as a path in a k-dimensional grid with sides of length B+1 (here B=4)

E.g. "run h₁ for 2 seconds, then run h₂ for 3 seconds..."

	h_1	h_2
I_1		
I_2		
I_3		
I_4		

	h_1	h_2
I_1		
I_2		
I_3		
I_4		

	h_1	\mathbf{h}_2
I_1	3	4
I_2		
I_3		
I_4		

	h_1	h_2
I_1	3	4
I_2	2	1
I_3		
I_4		

	h_1	\mathbf{h}_2
I_1	3	4
I_2	2	1
I_3	2	4
I_4		

	h_1	\mathbf{h}_2
I_1	3	4
I_2	2	1
I_3	2	4
I_4	3	1

	h_1	\mathbf{h}_2
I_1	3	4
I_2	2	1
I_3	2	4
I_4	3	1

 Time complexity is O(nk(B+1)^k)

- Time complexity is O(nk(B+1)^k)
- Can get α approximation in time
 O(nk(1+logα B)^k)

Greedy approximation algorithm

Greedy approximation algorithm

- How hard is it to compute optimal task-switching schedule?
 - Special case B=1 is MIN-SUM SET COVER. NP-hard to get 4-€ approx for any €>0 (Feige, Lovász, & Tetali 2002)
- Greedy alg. for MIN-SUM SET COVER gives 4-approx.
 We generalize to get 4-approx for task-switching schedules

Greedy approximation algorithm

- How hard is it to compute optimal task-switching schedule?
 - Special case B=1 is MIN-SUM SET COVER. NP-hard to get 4-€ approx for any €>0 (Feige, Lovász, & Tetali 2002)
- Greedy alg. for MIN-SUM SET COVER gives 4-approx.
 We generalize to get 4-approx for task-switching schedules
- Algorithm: greedily pick pair (h,t) such that running heuristic h for t (additional) time steps maximizes #(new instances solved)/t (append (h,t) to schedule and repeat)

The online setting

- World secretly selects sequence of n instances
- For i from 1 to n
 - You select schedule S_i to use to solve ith instance
 - As feedback you observe how much time Si takes
- regret = E[your total time] min_(schedules S) (S's total time)
- Want worst-case regret that is o(n)

Online algorithms

Online algorithms

- We give a strategy whose worst-case regret is $O(Bkn^{2/3}(Bk \log k)^{1/3}) = o(n)$
 - combines online shortest path algorithm of György et al. (2006) with technique from Cesa-Bianchi et al. (2005)
 - total decision-making time is comparable to running offline shortest path alg.

Online algorithms

- We give a strategy whose worst-case regret is $O(Bkn^{2/3}(Bk \log k)^{1/3}) = o(n)$
 - combines online shortest path algorithm of György et al. (2006) with technique from Cesa-Bianchi et al. (2005)
 - total decision-making time is comparable to running offline shortest path alg.
- Ongoing work: online version of greedy approximation algorithm

Experimental Evaluation

- Various conferences hold annual solver competitions
 - each submitted solver is run on a sequence of instances (subject to time limit)
 - awards for solvers that solve the most instances in various instance categories
- We downloaded tables of completion times, used them to run our offline algorithms

Solver	Avg. CPU (s)	#Solved
SATPLAN	507	83
MaxPlan	641	88
MIPS-BDD	946	54
CPT2	969	53
FDP	1079	46
IPPLAN-ISC	1437	23

Solver	Avg. CPU (s)	#Solved
Greedy schedule (optimistic)	358	98
Greedy schedule (pessimistic)	476	96
SATPLAN	507	83
MaxPlan	641	88
MIPS-BDD	946	54
CPT2	969	53
FDP	1079	46
Parallel schedule	1244	89
IPPLAN-ISC	1437	23

Solver	Avg. CPU (s)	#Solved
Greedy schedule (optimistic)	358 (407)	98 (97)
Greedy schedule (pessimistic)	476 (586)	96 (95)
SATPLAN	507	83
MaxPlan	64 I	88
MIPS-BDD	946	54
CPT2	969	53
FDP	1079	46
Parallel schedule	1244	89
IPPLAN-ISC	1437	23

Greedy schedule

Summary of results

Solver competition	Domain	Speedup factor (range across categories)
SAT 2005	satisfiability	1.2 — 2.0
ICAPS 2006	planning	1.4
CP 2006	constraint satisfaction	1.0 — 1.5
IJCAR 2006	theorem proving	1.0 — 7.7

Future work

- Generalization to randomized algorithms (next talk)
- Online version of greedy algorithm (in progress)
- Exploiting features of instances/runs