

Wasserwirtschaft

Anpassung des Pegelnetzes zur Sicherstellung des Messbetriebes bei Extremhochwasser

Sachstandsbericht 2003 – 2004

5/2004

Anpassung des Pegelnetzes zur Sicherstellung des Messbetriebes bei Extremhochwasser

Sachstandsbericht 2003 – 2004

Bearbeitung

Dipl. Hydrologin Yvonne Henrichs

Impressum

Herausgeber: Landesamt für Umwelt, Wasserwirtschaft

und Gewerbeaufsicht Rheinland-Pfalz

Amtsgerichtsplatz 1 55276 Oppenheim

Titelbilder: Januar-Hochwasser 2003 am Glan, Pegel Kloster Arnstein,

Zuwegung zum Pegel Martinstein beim Januar-Hochwasser 2003, LUWG

(von links nach rechts)

Satz und Layout: Tatjana Schollmayer, LUWG

Auflage: 52 Exemplare

© November 2004

Nachdruck und Wiedergabe nur mit Genehmigung des Herausgebers

Inhalt

1	Einführung	1
2	Konzept	2
3	Das System der Redundanz an den Pegeln	4
4	Die Umsetzung des Konzeptes an den Pegelanlagen in Rheinland-Pfalz	6
5	Beispiele	9
6	Zusammenfassung und Ausblick	13
7	Anhang	15

1 Einführung

Durch die Flutkatastrophe im Einzugsgebiet der Elbe sowie in Süddeutschland, Tschechien und Österreich im August 2002 wurden in den betroffenen Gebieten viele Pegelanlagen zerstört.

Angaben der sächsischen Umweltverwaltung zufolge wurden nicht wenige Pegelanlagen durch die Kraft der Wasser- und Geröllmassen mit fortgerissen. Strom- und Telefonnetze einschließlich der Mobilfunknetze sind entweder ausgefallen oder bei Überschreiten eines bestimmten Wasserstandes abgeschaltet worden, so dass eine Übermittlung der Hochwasserstände mit Hilfe technischer Einrichtungen zeitweilig oder dauerhaft unmöglich war.

In den darauf folgenden Monaten wurde die Diskussion um die Gewährleistung eines zuverlässigen Beobachtungsbetriebes und einer sicheren Datenfernübertragung unter extremen Hochwasserbedingungen im Rahmen des operationellen Hochwassermeldedienstes bundesweit intensiviert, auch und vor allem in Rheinland-Pfalz.

In Rheinland-Pfalz hat es in der jüngeren Vergangenheit immer wieder große Hochwasserereignisse gegeben, wenn auch nicht in der Größenordnung der oben geschilderten Geschehnisse. Betroffen waren und sind hiervon nicht nur der Rhein, sondern sehr häufig auch Mosel, Nahe, Glan, Lahn und Sieg, um nur die größeren Gewässer zu nennen.

Dabei hielten sich die durch Hochwasser verursachten baulichen Schäden an den Pegeln des rheinland-pfälzischen Messnetzes bislang in Grenzen. Auch die Fernübertragung der aktuellen Wasserstände von den Außenstationen an die Hochwassermeldezentren verursachte in der Regel keine größeren Probleme.

Aber auch in Zukunft sind Extremereignisse wie die an der Elbe oder vorher an der Oder aufgetretenen für den Rhein und seine Zuflüsse nicht auszuschließen.

Um im Falle eines Falles die rheinland-pfälzischen Pegel vor Zerstörungen bzw. Ausfällen weitestgehend zu schützen, haben das ehemalige Landesamt für Wasserwirtschaft Rheinland-Pfalz und die Regionalstellen Wasserwirtschaft, Abfallwirtschaft, Bodenschutz (RSWAB) im Auftrag des Ministeriums für Umwelt und Forsten ein Konzept zur Anpassung und Nachrüstung des Landespegelnetzes erarbeitet und in den Jahren 2003 bis 2004 in die Praxis umgesetzt.

Der vorliegende Bericht gibt Auskunft über die im einzelnen durchgeführten Maßnahmen.

Mittlerweile liegt eine Empfehlung der Länderarbeitsgemeinschaft Wasser zum Thema "Sicherstellung der Datengewinnung an Pegeln bei Extremhochwasser" (LAWA, 2004) vor, welche die Anforderungen an Pegel ausführlich behandelt und an die auf dieser Stelle hingewiesen werden soll.

2 Konzept

Um den Beobachtungsbetrieb und die Datenfernübertragung an Pegeln bei Extremhochwasser sicher gewährleisten zu können, müssen neben baulichen Aspekten und Fragen nach der Standsicherheit auch mögliche Grenzen der eingesetzten Messtechnik, die Verfügbarkeit von Strom und Medien zur Datenfernübertragung und nicht zuletzt organisatorische Fragen berücksichtigt werden.

Allem voran ist die Frage nach dem Schutzziel zu beantworten, also die Frage, welchen Anforderungen das Pegelnetz in der Gesamtschau und an jedem einzelnen Pegel unter extremen Hochwasserbedingungen genügen muss. Die Tatsache, dass ein absoluter Schutz der Pegelanlagen und damit eine 100-prozentige Datensicherheit nicht erreichbar sind, bildete hierbei eine Grundannahme.

Eine Sondersitzung der Landesarbeitsgruppe "Koordinierung Quantitativer hydrologischer Dienst" am 16.01.2003, bestehend aus Vertretern des Ministeriums für Umwelt und Forsten, dem ehemaligen Landesamt für Wasserwirtschaft und den Regionalstellen der Struktur- und Genehmigungsdirektionen, bildete den Auftakt für die weitere Planung.

Bei der Definition des Schutzzieles können grundsätzlich zwei Hauptansätze unterschieden werden:

- 1. Für alle betroffenen Pegel wird, ausgehend von einem Abfluss bestimmter Jährlichkeit (z.B. HQ200 oder HQ500) über die Wasserstand-Abfluss-Beziehung der jeweils maßgebliche Wasserstand festgelegt, bis zu dem die Messwertaufnahme und –übertragung zu gewährleisten sind. Alle Maßnahmen orientieren sich also an diesem maßgeblichen Wasserstand. Hierbei müssen u.U. Verlegungen von Messstellen an andere Standorte in Kauf genommen werden. (Pauschallösung mit einheitlichem Schutzziel; siehe LAWA-Empfehlung)
- 2. Unter der Option, den Standort der Pegel auf jeden Fall beizubehalten, werden alle Pegel einer Einzelfallprüfung unterzogen. Alle Maßnahmen zielen darauf ab, am vorhandenen Standort die Funktionsfähigkeit der Pegel einschließlich ihrer Ergänzenden Einrichtungen (im Sinne eines steigenden Wasserstandes) so lange wie möglich aufrecht zu erhalten (kein einheitliches Schutzziel, stattdessen "Optimierung des Ist-Zustandes").

Da außer den im laufenden Haushalt zur Verfügung stehenden Mitteln eine weitere finanzielle Unterstützung nicht vorgesehen war und eine Verlegung von Pegeln auch aus hydrologischen Gründen (Abbruch langer und zuverlässiger Beobachtungsreihen; neue Abflusstafel erforderlich) ausschied, fiel die Entscheidung zugunsten des zweiten Ansatzes.

Konkret umfassen die Maßnahmen zur Anpassung des Pegelnetzes zwei große Bereiche:

- I. Schutz der Pegelanlagen einschließlich der Messeinrichtungen vor dem Hochwasser (Pegelhaus, Messprofil, Messsteg, Elektroinstallation, Messgeräte und Technik zur Datenfernübertragung)
- II. Gewährleistung von Beobachtungsbetrieb und Datenfernübertragung für die operationelle Hochwasservorhersage

Die unter I. fallenden Maßnahmen variieren in Abhängigkeit von den konkreten örtlichen Bedingungen an der jeweiligen Pegelanlage. Ausführungen zu diesem Thema finden sich bei der Beschreibung der umgesetzten Maßnahmen in Kapitel 4.

Gewährleistung von Beobachtungsbetrieb und Datenfernübertragung im Rahmen der operationellen Hochwasservorhersage bedeutet soviel wie kontinuierliche Messwertaufnahme und ungestörter Datenfluss vom Geber zum Datensammler und über die Medien der Fernübertragung zur Hochwasserzentrale. In der Regel sollten diese Anforderungen mit Hilfe der modernen Pegeltechnik auch bei größeren Hochwassern problemlos bewerkstelligt werden können. Durch den Einsatz sogenannter redundanter Systeme lässt sich die Funktionssicherheit der Anlagen noch deutlich erhöhen. Das Prinzip redundanter Systeme wird weiter unten ausführlich behandelt und stellt das Kernstück der in den vergangenen beiden Jahren umgesetzten Maßnahmen dar.

Trotz der sehr hohen Zuverlässigkeit der gegenwärtigen Technik muss in die Betrachtungen auch eine Art "worst case" einbezogen werden. Darunter soll in diesem Zusammenhang eine Situation verstanden werden, in der trotz aller technischen und baulichen Maßnahmen am Standort des Pegels "nichts mehr geht", weil z.B. Telefon- und Mobilfunknetze total überlastet zusammenbrechen oder abgeschaltet werden.

Für diesen Fall kommt es darauf an, zumindest die Ablesung der Pegellatte sicherzustellen. Aus diesem Grunde sind die bestehenden Pegellatten in extreme Bereiche hinein zu verlängern.

Gegebenenfalls sind an geeigneter Stelle Hilfspegellatten zu setzen, wenn bei extremen Wasserständen die Latten an den Pegelanlagen z.B. infolge überfluteter Zuwegung (selbst mit Fernglas) ohne Gefahr für die persönliche Sicherheit des Beobachters nicht mehr ablesbar sind.

Die stündliche Ablesung der Pegellatten durch Beobachter bzw. Einsatzkräfte des Katastrophenschutzes, wie Feuerwehr oder THW, ist rechtzeitig zu organisieren und in der Beobachtervereinbarung bzw. den Einsatzplänen des Katastrophenschutzes festzulegen. Dabei ist zu beachten, dass aufgrund der Abschaltung der Telefon- und Mobilfunknetze gegebenenfalls größere Entfernungen vom Zentrum des Hochwassers zurückgelegt werden müssen, damit der Sende- und Empfangsbetrieb gewährleistet ist.

3 Das System der Redundanz an den Pegeln

Unter redundanten Systemen sollen bei den weiteren Betrachtungen Systeme verstanden werden, welche räumlich getrennt und unabhängig voneinander den Messwert (in diesem Fall den Wasserstand) erfassen, speichern und übertragen. Bei allen Gliedern der Datenflusskette muss dabei die Redundanz für sich genommen gewährleistet sein.

Abbildung 1: Redundante Messwerterfassung und -übertragung an Pegeln

Eines der beiden Systeme wird zum Basissystem erklärt, dessen Daten als die maßgeblichen geführt werden. Das zweite stellt das redundante System dar. Ein System ersetzt jeweils das andere, falls es zu einem Ausfall kommt; auf diese Weise wird jederzeit eine hinreichende Sicherstellung von Datengewinnung und –übertragung gewährleistet. Die Daten beider Systeme können aber auch im normalen Beobachtungsbetrieb parallel über zwei separate Abrufaufträge von der Zentrale abgerufen werden.

Geberredundanz:

Nach Möglichkeit sollten an ein und demselben Pegel zwei verschiedene Messverfahren zum Einsatz kommen, die Redundanz kann jedoch auch durch zwei voneinander getrennt laufende Messgeräte des gleichen Typs hergestellt werden.

Folgende Messprinzipien werden unterschieden:

- Schwimmer-Gegengewicht-Prinzip (Schwimmerpegel)
- berührungslose Wasserstandsmessung mittels Radar (Radarpegel)
- Einperlprinzip (Pneumatikpegel)
- Druckmesszellen-Prinzip (Drucksondenpegel)

Redundanz bei der Datenspeicherung:

Die Messwerte der beiden Geber sind getrennt voneinander mittels zweier verschiedener Datensammler zu speichern.

Redundanz bei der Datenfernübertragung:

Für die Datenfernübertragung stehen neben analogen Festnetztelefonanschlüssen verschiedene Mobilfunknetze zur Verfügung.

Redundanz bei der Energieversorgung:

Der Versorgung der Mess- und Übertragungseinrichtungen mit Energie kommt eine Schlüsselstellung im gesamten System zu. Außer der Versorgung mit herkömmlichem Netzstrom gibt es die Möglichkeit, die Geräte mit Solarenergie oder pufferbetriebenen Akkus zu betreiben.

Abbildung 2: Pegelnetz Rheinland-Pfalz – Ausstattung mit redundanten Systemen

4 Die Umsetzung des Konzeptes an den Pegelanlagen in Rheinland-Pfalz

Eine komplette Nachrüstung aller Landespegel ist aus fachlicher Sicht nicht erforderlich, außerdem im Verhältnis zu den vorhandenen Mitteln bei weitem zu kostspielig. Deswegen war zunächst festzulegen, welche Pegel ertüchtigt werden sollten.

Oberste Priorität besitzen die Messstellen, durch welche bei Erreichen oder Überschreiten einer bestimmten Meldehöhe der Hochwassermeldedienst ausgelöst wird. An diesen 5 Pegeln ist die größte Datensicherheit zu gewährleisten. Des weiteren muss sichergestellt werden, dass die Daten der Pegel, welche in die Vorhersagemodelle eingebunden sind, kontinuierlich zur Verfügung stehen. Insgesamt waren nach Anwendung dieser Kriterien 26 von insgesamt über 150 Pegeln des Landesmessnetzes nachzurüsten.

Die betreffenden Pegel sind in Abbildung 2 dargestellt und in Tabelle 1 unter Angabe des jeweiligen Vorhersagemodells aufgelistet (kursiv: Meldepegel).

Tabelle 1: Pegel mit redundanten Systemen

	Pegel	Gewässer	Einsatz in Modell
Nahe-Glan-Einzugsge-	Eschenau	Glan	LARSIM Nahe
biet	Odenbach	Glan	LARSIM Nahe
	Heimbach Bhf.	Nahe	LARSIM Nahe
	Martinstein	Nahe	LARSIM Nahe
	Oberstein	Nahe	LARSIM Nahe
	Boos	Nahe	LARSIM Nahe
	Grolsheim	Nahe	LARSIM Nahe
	Dietersheim	Nahe	LARSIM Nahe
	Kronweiler	Schwollbach	LARSIM Nahe
	Altenbamberg	Alsenz	LARSIM Nahe
	Planig	Appelbach	LARSIM Nahe
	Gensingen	Wiesbach	LARSIM Nahe
Lahn-Einzugsgebiet	Weinähr	Gelbach	Lahn-Modell
	Kloster Arnstein	Dörsbach	Lahn-Modell
Sieg-Einzugsgebiet	Betzdorf	Sieg	FUZZY Sieg
	Alsdorf	Heller	FUZZY Sieg
	Heimborn	Nister	FUZZY Sieg
Ahr-Einzugsgebiet	Altenahr	Ahr	landesweites Wasserhaushaltsmodell
Mosel-Einzugsgebiet	Bollendorf	Sauer	LARSIM Mosel / FUZZY Mosel
	Gemünd	Our	LARSIM Mosel / FUZZY Mosel
	Prümzurlay	Prüm	LARSIM Mosel / FUZZY Mosel
	Kordel	Kyll	LARSIM Mosel / FUZZY Mosel
	Papiermühle	Dhron	LARSIM Mosel / FUZZY Mosel
	Plein	Lieser	LARSIM Mosel / FUZZY Mosel
	Althornbach	Hornbach	LARSIM Mosel
	Contwig	Schwarzbach	LARSIM Mosel

Von Februar bis Mai 2003 wurden die betroffenen Pegel gemeinsam vom damaligen Landesamt für Wasserwirtschaft und den 6 Regionalstellen Wasserwirtschaft, Abfallwirtschaft, Bodenschutz der Struktur- und Genehmigungsdirektionen bereist. Erste Maßnahmen zur Verbesserung der Anlagensicherheit konnten bereits bei diesen Ortsterminen festgelegt werden.

In der 39. bis 50. KW des Jahres 2003 wurden von der Fa. OTT Messtechnik in Zusammenarbeit mit den Regionalstellen an den ersten 8 Pegeln redundante Systeme eingebaut. In der 32. bis 40. KW des Jahres 2004 erfolgte an weiteren 18 Pegeln ein entsprechender Ausbau.

Parallel hierzu wurden von den Regionalstellen die bestehenden Pegellatten, dort wo es sich als sinnvoll erwies, in den Extrembereich verlängert. Abschließende Arbeiten hierzu stehen noch aus.

Die Messgeräte sowie die Einrichtungen zum Speichern und Übertragen der Wasserstände (z.B. Telefon, Modem, Elektroinstallation, Steckdosen etc.) wurden höhergelegt und, soweit möglich, in überflutungsgeschützten Gehäusen untergebracht. Der Messbereich der mit Schwimmer betriebenen Pegel konnte in den meisten Fällen durch ein auf den Schwimmerschacht aufgesetztes Rohr o.ä. nach oben erweitert werden.

Im Anhang sind, gesondert für jede der 26 Messstellen, die redundanten Systeme (z.T. unter Nennung des spezifischen Produktnamens) und die Erweiterung des Messbereichs der Pegellatten beschrieben. An dieser Stelle sollen deshalb in allgemeiner Form die zum Einsatz kommenden Gerätetypen näher vorgestellt werden.

Die Sensoren und Datensammler stammen hauptsächlich von der Fa. OTT Messtechnik, Kempten. Bei den bereits vor der Umrüstung vorhandenen Messgeräten handelt es sich z.T. auch um Produkte der Fa. SEBA Hydrometrie, Kaufbeuren.

Geber:

ODS 4: Drucksonde; kapazitive Keramik-Referenzdruck-Messzelle

PS 1: Drucksonde; piezoresistive Messzelle

KALESTO: Radarsensor

20.501: Pneumatikpegel (Einperlprinzip; Druckwaage dient als Messinstrument)

OMEGA: Pneumatikpegel (Einperlprinzip)

NIMBUS: piezoresistive Si-Absolutdruckmesszelle (Einperlprinzip)

OWK 16: Winkelcodierer zur Umwandlung der Drehbewegung des Schwimmerseiles in

elektrische Signale)

THALIMEDES: schwimmerbetriebener Winkelcodierer mit integriertem Datensammler THALES: schwimmerbetriebener Winkelcodierer mit integriertem Datensammler

Datenspeicherung:

HYDROSENS: modular aufgebautes System für Messwerterfassung, -speicherung und

ühertragung

LogoSens: Mehrkanaldatensammler zum Erfassen, Verarbeiten, Speichern und Übertragen

von Wasserstandsdaten

Datenfernübertragung:

Bisher wurden die Wasserstände in den meisten Fällen über analoge Fernmeldeanschlüsse der Telekom via Modem zu den Abrufzentralen in der jeweiligen Regionalstelle bzw. den Hochwassermeldezentren übertragen. Dort, wo die Kosten für die Telefonleitung aufgrund der z.T. sehr abgelegenen Standorte zu hoch gewesen wären, werden bereits seit einigen Jahren Mobilfunknetze für die Datenfernübertragung genutzt.

Die Daten der redundanten Messsysteme werden fast ausschließlich über Mobilfunknetze (GSM) abgerufen. Derzeit nutzen 4 Mobilfunknetze den GSM-Standard: D1, D2, E-Plus und E2.

Stromversorgung:

Neben der normalen Stromversorgung über das Festnetz wurden zum Zwecke einer redundanten Energieversorgung Solaranlagen an den Pegelhäusern installiert.

5 Beispiele

In diesem Kapitel sollen die konkret durchgeführten Maßnahmen anhand einiger Beispiele dargestellt werden.

Abbildung 3 zeigt die redundante Datenspeicherung am Pegel Martinstein / Nahe mittels zweier, unabhängig voneinander betriebener Datensammler.

Abbildung 3: Redundante Datenspeicherung am Pegel Martinstein / Nahe

Am Pegel Idar-Oberstein an der Nahe ist durch die Anbringung zweier zusätzlicher Pegellatten nun auch ein Extremwasserstand von 5,10 m ohne Probleme ablesbar (höchster bisher beobachteter Wasserstand: 4,05 m am 23.01.1995). In Abbildung 4 sind die Höhen der Wasserstände bei mittlerem Hochwasserabfluss und bei Hochwasserabflüssen verschiedener Jährlichkeit in Bezug zum Pegelhaus eingezeichnet.

Die Abbildungen 5 und 6 zeigen das gesamte redundante System am Pegel Betzdorf/Sieg, einerseits in schematischer Form und zum anderen unter Angabe der einzelnen gerätetechnischen Komponenten.

Abbildung 4: Pegel Idar-Oberstein. Redundantes Messsystem und max. Messbereiche (Quelle: SGD Nord, RSWAB Koblenz, Herr Künzer)

Abbildung 5: Pegel Betzdorf/Sieg. Redundantes Messsystem (eingebaut am 25.09.2003) (Quelle: SGD Nord, Regionalstelle Montabaur, Herr Jürgen Michels)

LogoSens mit

- Nimbus
- Modem: GSM Siemens TC 35
- Stromversorgung: Akku 12 V/100 Ah Modem ist an Akku angeschlossen Akku wird momentan über Netzstrom geladen. Geplant ist dieses Jahr noch den Akku über ein Solarpanel zu versorgen.

Hydrosens-Midi mit

- OWK 16
- Modem: Elsa MicroLink 33.6
- Stromversorgung: Akku 12 V/6,5 Ah Modem ist nicht an Akku angeschlossen. Ist evtl. noch geplant.

Abbildung 6: Pegel Betzdorf/Sieg. Redundantes Messsystem

(Quelle: SGD Nord, Regionalstelle Montabaur, Herr Jürgen Michels)

6 Zusammenfassung und Ausblick

Mit der Umsetzung der vorgestellten Maßnahmen wurden ausgewählte Pegelanlagen so ausgestattet bzw. verändert, dass die Messgeräte durch extreme Hochwasser nicht gefährdet sind und die Wasserstandsdaten auch unter ungünstigen Bedingungen erfasst, gespeichert und übertragen werden können. Die tatsächliche Höhe eines extremen Wasserstandes ist hierbei, wie bereits eingangs erwähnt, von Pegel zu Pegel in Abhängigkeit von den konkreten Standortbedingungen definiert.

Die Messstellen, welche besondere Bedeutung für die Hochwasservorhersage bzw. den Hochwassermeldedienst besitzen, wurden hierbei vorrangig behandelt.

Ziel der kommenden Jahre ist es, in Abhängigkeit von der Haushaltslage, weitere Pegel nachzurüsten. Gerade im Hinblick auf das künftige landesweite Vorhersagemodell ist diese Aufgabe von besonderer Wichtigkeit.

Um einen reibungslosen Ablauf bei den Hochwasservorhersagemodellen sicherzustellen, wurden außerdem die Wasserstand-Durchfluss-Beziehungen der betroffenen Pegel in den extremen Hochwasserbereich hinein verlängert. Deren Plausibilität ist in Zukunft durch Intensivierung der Durchflussmessungen zu überprüfen.

Die Zuverlässigkeit und der Schutz der Pegelanlagen und damit die Sicherstellung des Datenflusses unter Extrembedingungen lassen sich weiter verbessern, indem eine optische Überwachung durch Digital-/Videokamera an besonders exponierten Messstellen eingeführt wird. Auch diesem Aspekt ist künftig noch mehr Aufmerksamkeit zu widmen.

7 Anhang

A 1	Pegel Alsdorf/He	ller
A I	Pegel Alsuoli/fit	Her

- A 2 Pegel Altenahr/Ahr
- A 3 Pegel Altenbamberg/Alsenz
- A 4 Pegel Althornbach 2/Hornbach
- A 5 Pegel Betzdorf/Sieg
- A 6 Pegel Bollendorf/Sauer
- A 7 Pegel Boos/Nahe
- A 8 Pegel Contwig/Schwarzbach
- A 9 Pegel Dietersheim/Nahe
- A 10 Pegel Eschenau/Glan
- A 11 Pegel Gemünd/Our
- A 12 Pegel Gensingen/Wiesbach
- A 13 Pegel Grolsheim/Nahe
- A 14 Pegel Heimbach/Nahe
- A 15 Pegel Heimborn/Nister
- A 16 Pegel Kloster Arnstein/Dörsbach
- A 17 Pegel Kordel/Kyll
- A 18 Pegel Kronweiler/Schwollbach
- A 19 Pegel Martinstein/Nahe
- A 20 Pegel Oberstein 2/Nahe
- A 21 Pegel Odenbach/Glan
- A 22 Pegel Papiermühle/Dhron
- A 23 Pegel Planig/Appelbach
- A 24 Pegel Plein/Lieser
- A 25 Pegel Prümzurlay/Prüm
- A 26 Pegel Weinähr/Gelbach

A 1 Pegel Alsdorf/Heller

Aeo [km²]: 196 **PNP [mNN]:** 186,43

Lage: 1,4 km ob. Mündung

Daten seit: 01.08.1955 **Betreiber:** SGD Nord,

RSWAB Montabaur

HHW = 293 cm am 07.02.1984

maximal ablesbarer Wasserstand an der Pegellatte: aktuell: 300 cm

geplant: 500 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1956–2003 am Pegel Alsdorf

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	84,6	104	128	145	161	177
W¹) in cm	213	235	258	273	287	300

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Alsdorf

	System A	System B
Messwertgeber	OWK 16	PS 1
Messverfahren	Schwimmerprinzip	piezoresistive Druckmessung
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	027414521	0160 / 7848268
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	320 cm	1000 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 2 Pegel Altenahr/Ahr

Aeo [km²]: 746

Lage: 31,7 km ob. Mündung

Daten seit: 01.11.1945

(mit Vorgängerpegel Reimerzhoven)

Betreiber: SGD Nord,

RSWAB Koblenz

HHW = 349 cm am 21.12.1993

maximal ablesbarer Wasserstand an der Pegellatte: 450 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1946–2003 am Pegel Altenahr (einschl. Vorgängerpegel Reimerzhoven)

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	138	161	184	198	210	220
W¹) in cm	276	302	326	340	352	362

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Altenahr

	System A	System B
Messwertgeber	ODS 4K – 10 PV	Nimbus
Messverfahren	kapazitive Druckmessung	Einperlprinzip
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens Midi	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	02643 / 3144	0160 / 98941755
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	450 cm	abhängig vom Funktionszustand des Mobilfunknetzes

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 3 Pegel Altenbamberg/Alsenz

Aeo [km²]: 317 **PNP [mNN]:** 123,10

Lage: 4,3 km ob. Mündung

Daten seit: 01.11.1955 **Betreiber:** SGD Süd,

RSWAB Kaiserslautern

HHW = 426 cm am 24.05.1978

maximal ablesbarer Wasserstand an der Pegellatte: aktuell: 400 cm

geplant: 550 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1956–2003 Pegel Altenbamberg

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	36,7	43,7	51,4	56,4	61,0	65,2
W¹) in cm	340	375	412	434	455	474

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Altenbamberg

	System A	System B
Messwertgeber	OWK 16	Kalesto
Messverfahren	Schwimmerprinzip	Radar
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens Midi	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	06708 / 616725	0151 / 11705999
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	380 cm	460 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 4 Pegel Althornbach 2/Hornbach

Aeo [km²]: 424 **PNP [mNN]:** 225,91

Lage: 8,0 km ob. Mündung

Daten seit: 01.11.1962 **Betreiber:** SGD Süd,

RSWAB Kaiserslautern

HHW = 474 cm am 21.12.1993

maximaler Messbereich der Pegellatte: 600 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten Reihe 1963–2003 Pegel Althornbach 1+2

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	67,9	85,7	107	122	136	149
W¹) in cm	407	431	454	467	478	488

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Althornbach

	System A	System B
Messwertgeber	20.501	PS1
Messverfahren	Einperlprinzip	piezoresistive Druckmessung
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	063381770	0151 / 11705995
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	690 cm	690 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 5 Pegel Betzdorf/Sieg

Aeo [km²]: 754 **PNP [mNN]:** 176,56

Lage: 98,5 km ob. Mündung

Daten seit: 24.10.1972 **Betreiber:** SGD Nord,

RSWAB Montabaur

HHW = 515 cm am 07.02.1984

maximal ablesbarer Wasserstand an der Pegellatte: aktuell: 500 cm

geplant: 750 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1952–2003 am Pegel Betzdorf

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	247	294	354	399	444	490
W¹) in cm	341	376	418	448	475	501

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Betzdorf

	System A	System B
Messwertgeber	OWK 16	Nimbus
Messverfahren	Schwimmerprinzip	Einperlprinzip
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens Midi	Logosens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	02741 / 23286	0160 / 7835493
Energieversorgung	Festnetzstrom	Solarstrom
	mit Akku 6,5 Ah	mit Akku 100 Ah
max. erfassbarer Wasserstand	500 cm	1000 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 6 Pegel Bollendorf/Sauer

Aeo [km²]: 3222 **PNP [mNN]:** 162,35

Lage: 33,7 km ob. Mündung

Daten seit: 01.11.1953

Betreiber: SGD Nord,
RSWAB Trier

HHW = 615 cm am 03.01.2003 maximal ablesbarer Wasserstand an der Pegellatte: 700 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1959–2003 am Pegel Bollendorf

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	572	676	802	893	982	1070
W¹) in cm	469	518	574	614	660	698

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Bollendorf

	System A	System B
Messwertgeber	OWK 16	Kalesto
Messverfahren	Schwimmerprinzip	Radar
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	06526 / 8467	0160 / 96917442
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	650 cm	750 cm

Auf der luxembourgischen Seite der Sauer befindet sich ein drittes abruffähiges Messsystem.

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

Pegel Boos/Nahe

Aeo [km²]: 2832 **PNP [mNN]:** 128,06

35,6 km ob. Mündung Lage:

Daten seit: 01.11.1951 **Betreiber:** SGD Nord,

maximal ablesbarer Wasserstand an der Pegellatte: aktuell: 560 cm

geplant: 680 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1952–2003 am Pegel Boos

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀
Q in m³/s	524	640	785	890	994
W¹) in cm	429	484	543	574	598

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Boos

	System A	System B
Messwertgeber	Omega	ODS 4K – 10 PV
Messverfahren	Einperlprinzip	kapazitive Druckmessung
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens 2
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	067512073	0160 / 98941753
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	645 cm	645 cm

A 8 Pegel Contwig/Schwarzbach

Aeo [km²]: 530 **PNP [mNN]:** 225,51

Lage: 9,5 km ob. Mündung

Daten seit: 01.11.1960 **Betreiber:** SGD Süd,

RSWAB Kaiserslautern

HHW = 406 cm am 21.12.1993

maximal ablesbarer Wasserstand an der Pegellatte:

aktuell: 420 cm geplant: 500 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1958–2003 am Pegel Contwig

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	34,7	39,6	44,9	48,3	51,4	54,2
W¹) in cm	317	345	375	394	410	424

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Contwig

	System A	System B
Messwertgeber	OWK 16	Kalesto
Messverfahren	Schwimmerprinzip	Radar
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	063325303	0151 / 11705997
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	550 cm	500 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 9 Pegel Dietersheim/Nahe

Aeo [km²]: 4037 **PNP [mNN]:** 80,72

Lage: 4,0 km ob. Mündung

Daten seit: 01.10.2002 Betreiber: SGD Süd,

RSWAB Mainz

HHW = 404 am 03.01.2003

maximal ablesbarer Wasserstand an der Pegellatte: 646 cm

Da eine Verlängerung der bestehenden Pegellatte an diesem Standort nicht sinnvoll ist, wurde an der Straßenbrücke Münster-Sarmsheim eine Pegellattenstaffel angebracht, die der Ablesung bei Extremhochwasser dient (Messbereich: 4-12 m).

Die bisherige Beobachtungsdauer des Pegels Dietersheim lässt eine hochwasserstatistische Auswertung noch nicht zu.

Tabelle 1: Redundante Systeme am Pegel Dietersheim

	System A	System B
Messwertgeber	Nimbus	PS1
Messverfahren	Einperlprinzip	piezoresistive Druckmessung
Geber-Nr.	0010	0018
Datenspeicherung	LogoSens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	06721 / 498724	0151 / 11738638
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	630 cm	abh. vom Funktionszustand des Mobilfunknetzes

A 10 Pegel Eschenau/Glan

Aeo [km²]: 597 **PNP [mNN]:** 80,31

Lage: 33,0 km ob. Mündung

Daten seit: 01.11.1965 **Betreiber:** SGD Süd,

RSWAB Kaiserslautern

HHW = 354 cm am 21.12.1993

maximal ablesbarer Wasserstand an der Pegellatte: 400 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1965–2003 am Pegel Eschenau

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	123	144	166	180	193	204
W¹) in cm	318	331	341	347	352	357

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Eschenau

	System A	System B
Messwertgeber	Kalesto	Thalimedes
Messverfahren	Radar	Schwimmerprinzip
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	Thalimedes, DFÜ-fähig
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	06387 / 993516	0160 / 96914311
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	400 cm	420 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 11 Pegel Gemünd/Our

Aeo [km²]: 613 **PNP [mNN]:** 229,00

Lage: 23,0 km ob. Mündung

Daten seit: 01.11.1972Betreiber: SGD Nord,

RSWAB Trier

HHW = 395 cm am 22.12.1991

maximal ablesbarer Wasserstand an der Pegellatte: 500 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1964–2003 Pegel Gemünd

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	164	189	217	235	252	267
W¹) in cm	349	372	384	394	403	410

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Gemünd

	System A	System B
Messwertgeber	Thalimedes	PS 1
Messverfahren	Schwimmerprinzip	piezoresistive Druckmessung
Geber-Nr.	0010	0018
Datenspeicherung	Thalimedes-Datensammler mit Modemanpassung	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	00352849031408	015111726043
Energieversorgung	Festnetzstrom	Festnetzstrom
max. erfassbarer Wasserstand	510 cm	640 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 12 Pegel Gensingen/Wiesbach

Aeo [km²]: 195 **PNP [mNN]:** 92,68

Lage: 2,5 km ob. Mündung

Daten seit: 01.11.1954 **Betreiber:** SGD Süd,

RSWAB Mainz

HHW = 195 cm am 24.05.1978

maximal ablesbarer Wasserstand an der Pegellatte: aktuell: 225 cm

geplant: 240 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1955–2003 am Pegel Gensingen

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	8,05	10,4	13,2	15,3	17,4	19,5
W¹) in cm	133	150	169	181	194	207

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Gensingen

	System A	System B
Messwertgeber	OWK 16	PS 1
Messverfahren	Schwimmerprinzip	piezoresistive Druckmessung
Geber-Nr.	0010	0018
Datenspeicherung	Thalimedes-Datensammler	LogoSens
Datenfernübertragung		Mobilfunk (GSM)
TelNr.		0151 / 11738635
Energieversorgung		Solarstrom
max. erfassbarer Wasserstand	295 cm (geplant)	abh. vom Funktionszustand des Mobilfunknetzes

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 13 Pegel Grolsheim/Nahe

Aeo [km²]: 4013 **PNP [mNN]:** 84,63

Lage: 7,4 km ob. Mündung

Daten seit: 23.05.1953 Betreiber: SGD Süd,

RSWAB Mainz

HHW = 507 cm am 21.12.1993

maximal ablesbarer Wasserstand an der Pegellatte: 646 cm

Eine Verlängerung der Pegellatte an diesem Standort ist nicht sinnvoll, da ab einem Wasser-stand von 548 cm die Pegelanlage nicht mehr begehbar ist. Für die Ablesung extremer Wasserstände wurde an der Straßenbrücke in Münster-Sarmsheim eine Pegellattenstaffel mit einem Messbereich von 4 bis 12 m angebracht.

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1956–2003 am Pegel Grolsheim

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀
Q in m³/s	599	727	881	991	1100
W¹) in cm	427	454	484	505	522

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Grolsheim

	System A	System B
Messwertgeber	20.501	ODS 4
Messverfahren	Einperlprinzip	kapazitive Druckmessung
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	06727 / 8360	0175 / 9355442
Energieversorgung	Festnetzstrom	Solarstrom

A 14 Pegel Heimbach/Nahe

Aeo [km²]: 320 **PNP [mNN]:** 310,16

Lage: 96,6 km ob. Mündung

Daten seit: 01.10.1955Betreiber: SGD Nord,

RSWAB Koblenz

HHW = 322 cm am 23.01.1995

maximal ablesbarer Wasserstand an der Pegellatte: 450 cm

Pegel Heimbach wird aufgrund ungünstiger hydraulischer Verhältnisse bei hohen Abflüssen nicht hochwasserstatistisch ausgewertet.

Tabelle 2: Redundante Systeme am Pegel Heimbach

	System A	System B
Messwertgeber	Omega + OWK 16	Kalesto
Messverfahren	Einperlprinzip	Radar
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	06789 / 7502	0160 / 98941751
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	520 cm	600 cm

A 15 Pegel Heimborn/Nister

Aeo [km²]: 218 **PNP [mNN]:** 196,33

Lage: 19,2 km ob. Mündung

Daten seit: 01.11.1955 **Betreiber:** SGD Nord,

RSWAB Montabaur

HHW = 240 cm am 07.02.1984

maximal ablesbarer Wasserstand an der Pegellatte: aktuell: 290 cm

geplant: 590 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1956–2003 am Pegel Heimborn

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	99,4	113	127	135	143	151
W¹) in cm	217	231	245	253	261	269

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Heimborn

	System A	System B
Messwertgeber	OWK 16	PS 1
Messverfahren	Schwimmerprinzip	piezoresistive Druckmessung
Geber-Nr.	0010	0018
Datenspeicherung	Thales-Datensammler mit Modemanpassung	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	02688422	0160 / 7850421
Energieversorgung	Solarstrom	Solarstrom
max. erfassbarer Wasserstand	420 cm	1000 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 16 Pegel Kloster Arnstein/Dörsbach

Aeo [km²]: 113 **PNP [mNN]:** 98,98

Lage: 1,5 km ob. Mündung

Daten seit: 01.11.1972 **Betreiber:** SGD Nord,

RSWAB Montabaur

HHW = 279 cm am 09.07.1983

Maximal ablesbarer Wasserstand an der Pegellatte: aktuell: 250 cm

geplant: 450 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1957–2003 Kloster Arnstein

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	16,2	22,7	34,0	45,4	60,1	79,0
W¹) in cm	126	151	182	209	238	273

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Kloster Arnstein

	System A	System B
Messwertgeber	OWK 16	PS 1
Messverfahren	Schwimmerprinzip	piezoresistive Druckmessung
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens Midi	LogoSens
Datenfernübertragung	Mobilfunk (GSM)	Mobilfunk (GSM)
TelNr.	0170 / 5870861	0160 / 7850195
Energieversorgung	Solarstrom	Festnetzstrom
max. erfassbarer Wasserstand	250 cm	1000 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 17 Pegel Kordel/Kyll

Aeo [km²]: 817 **PNP [mNN]:** 132,85

Lage: 8,0 km ob. Mündung

Daten seit: 01.10.1951 **Betreiber:** SGD Nord,

RSWAB Trier

HHW = 482 cm am 03.01.2003

maximal ablesbarer Wasserstand an der Pegellatte: 620 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1967–2003 Pegel Kordel

HQ_T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	157	185	220	246	272	297
W¹) in cm	417	450	483	505	521	535

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Kordel

	System A	System B
Messwertgeber	OWK 16	Nimbus
Messverfahren	Schwimmerprinzip	Einperlprinzip
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	06505 / 8973	0151 / 11726045
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	580 cm	650 cm

Die Wasserstände aus System B gehen als Eingangsdaten in eine stationäre Ultraschallanlage vom Typ Sonicflow ein.

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 18 Pegel Kronweiler/Schwollbach

Aeo [km²]: 64,6 **PNP [mNN]:** 293,59

Lage: 1,3 km ob. Mündung

Daten seit: 01.09.1968 **Betreiber:** SGD Nord,

RSWAB Koblenz

HHW = 268 cm am 23.01.1995 maximal ablesbarer Wasserstand an der Pegellatte: 300 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1969–2003 am Pegel Kronweiler

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	35,3	42,8	51,4	57,1	62,5	67,4
W¹) in cm	219	236	252	262	271	279

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Kronweiler (nur Messwertgeberredundanz)

	System A	System B
Messwertgeber	Nimbus	OWK 16
Messverfahren	Einperlprinzip	Schwimmerprinzip
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens Midi	Hydrosens Midi
Datenfernübertragung	Festnetzanschluss, analog	Festnetzanschluss, analog
TelNr.	06787 / 1731	06787 / 1731
Energieversorgung	Festnetzstrom	Festnetzstrom
max. erfassbarer Wasserstand	500 cm	465 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 19 Pegel Martinstein/Nahe

Aeo [km²]: 1468 **PNP [mNN]:** 164,10

Lage: 51,2 km ob. Mündung

Daten seit: 01.11.1935 **Betreiber:** SGD Nord,

RSWAB Koblenz

HHW = 532 cm am 23.01.1995

maximal ablesbarer Wasserstand an der

Pegellatte: 620 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1955–2003 am Pegel Martinstein

HQ_{T}	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	363	432	512	568	621	672
W¹) in cm	453	483	512	531	547	563

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Martinstein

	System A	System B
Messwertgeber	Omega + OWK 16	ODS 4K – 10 PV
Messverfahren	Einperlprinzip	kapazitive Druckmessung
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	06754 / 8215	0160 / 90544033
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	620 cm	620 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 20 Pegel Oberstein/Nahe

Aeo [km²]: 558 **PNP [mNN]:** 239,37

Lage: 73,2 km ob. Mündung

Daten seit: 01.11.1935 **Betreiber:** SGD Nord,

RSWAB Koblenz

HHW = 405 cm am 23.01.1995

maximal ablesbarer Wasserstand an der Pegellatte: 510 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1941–2003 am Pegel Oberstein

HQ_T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	209	255	313	356	398	441
W¹) in cm	278	309	344	369	393	417

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Oberstein

	System A	System B
Messwertgeber	Omega und OWK 16	Kalesto
Messverfahren	Einperlprinzip	Radar
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	06781 / 27479	0160 / 90544032
Energieversorgung	Festnetzstrom	Solarstrom
erfassbarer Wasserstand	0 - 450 cm	215 - 510 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 21 Pegel Odenbach/Glan

Aeo [km²]: 1088 **PNP [mNN]:** 147,75

Lage: 14,5 km ob. Mündung

Daten seit: 01.11.1972 **Betreiber:** SGD Süd,

RSWAB Kaiserslautern

HHW = 557 cm am 21.12.1993

maximal ablesbarer Wasserstand an der Pegellatte: aktuell: 510 cm

geplant: 630 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1955–2003 am Pegel Odenbach

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀
Q in m³/s	175	205	238	258	276
W¹) in cm	490	517	544	559	574

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Odenbach

	System A	System B
Messwertgeber	OWK 16	Kalesto
Messverfahren	Schwimmerprinzip	Radar
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	06753 / 4977	0160 / 96914313
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	535 cm	600 cm

A 22 Pegel Papiermühle/Dhron

Aeo [km²]: 170 **PNP [mNN]:** 146,79

Lage: 6,4 km ob. Mündung

Daten seit: 01.12.1955 **Betreiber:** SGD Nord,

RSWAB Trier

HHW = 238 cm am 21.12.1993

maximal ablesbarer Wasserstand an der Pegellatte: 300 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1962–2003 Pegel Papiermühle

HQ_T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	30,4	40,9	57,2	72,0	89,4	110
W¹) in cm	156	178	206	228	249	262

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Papiermühle (nur Messwertgeberredundanz)

	System A	System B
Messwertgeber	PS 1	Kalesto
Messverfahren	piezoresistive Druckmessung	Radar
Geber-Nr.	0010	0018
Datenspeicherung	LogoSens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Festnetzanschluss, analog
TelNr.	06507 / 938914	06507 / 938914
Energieversorgung	Festnetzstrom	Festnetzstrom
max. erfassbarer Wasserstand	400 cm	400 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 23 Pegel Planig/Appelbach

Aeo [km²]: 171 **PNP [mNN]:** 98,58

Lage: 1,6 km ob. Mündung

Daten seit: 01.07.1995 **Betreiber:** SGD Süd,

RSWAB Mainz

HHW = 150 cm am 03.01.2003

maximal ablesbarer Wasserstand an der Pegellatte: 290 cm

(Senkrechtlatte 3 m unterhalb der Straßenbrücke)

Tabelle 1: Redundante Systeme am Pegel Planig

	System A	System B
Messwertgeber	20.501 und Thalimedes-Datensammler	Kalesto
Messverfahren	Einperlprinzip	Radar
Geber-Nr.	0010	0018
Datenspeicherung	LogoSens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	0671 / 4834655	0151 / 11738632
Energieversorgung	Solarstrom	Festnetzstrom
max. erfassbarer Wasserstand	230 cm	230 cm

Der Pegel verfügt außerdem über eine stationäre Ultraschallanlage vom Typ Sonicflow, deren Daten ebenfalls via Datenfernübertragung abgerufen werden können (Geber-Nr. 0200).

A 24 Pegel Plein/Lieser

Aeo [km²]: 274 **PNP [mNN]:** 75,82

Lage: 21,1 km ob. Mündung

Daten seit: 01.11.1987

Betreiber: SGD Nord,

RSWAB Trier

maximal ablesbarer Wasserstand an der Pegellatte: 350 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1988–2003 am Pegel Plein

HQ_T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	91,6	106	123	136	148	160
W¹) in cm	279	306	336	359	379	398

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Plein

	System A	System B
Messwertgeber	Pneumatikpegel	PS 1
Messverfahren	Druckluftprinzip	piezoresistive Druckmessung
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	0657129815	015111726047
Energieversorgung	Festnetzstrom	Solarstrom
max. erfassbarer Wasserstand	650 cm	650 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 25 Pegel Prümzurlay/Prüm

Aeo [km²]: 574 **PNP [mNN]:** 180,52

Lage: 7,6 km ob. Mündung

Daten seit: 01.11.1953Betreiber: SGD Nord,

RSWAB Trier

HHW = 492 cm am 03.01.2003

maximal ablesbarer Wasserstand an der Pegellatte: 600 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1962–2003 am Pegel Prümzurlay

HQ _T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	170	198	228	247	265	281
W¹) in cm	393	428	461	482	502	520

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Prümzurlay

	System A	System B
Messwertgeber	OWK 16	Nimbus
Messverfahren	Schwimmerprinzip	Einperlprinzip
Geber-Nr.	0010	0018
Datenspeicherung	Hydrosens	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	06523 / 1075	0160 / 96917441
Energieversorgung	Festnetzstrom	Festnetzstrom
max. erfassbarer Wasserstand	570 cm	650 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher

A 26 Pegel Weinähr/Gelbach

Aeo [km²]: 210 **PNP [mNN]:** 104,92

Lage: 3,5 km ob. Mündung

Daten seit: 01.11.1972 **Betreiber:** SGD Nord,

RSWAB Montabaur

HHW = 244 cm am 07.02.1984

maximal ablesbarer Wasserstand an der Pegellatte: aktuell: 300 cm

geplant: 500 cm

Tabelle 1: Hochwasserwahrscheinlichkeiten für Reihe 1955–2003 am Pegel Weinähr

HQ_T	HQ ₅	HQ ₁₀	HQ ₂₅	HQ ₅₀	HQ ₁₀₀	HQ ₂₀₀ ²⁾
Q in m³/s	45,5	52,7	60,5	65,5	70	74,2
W¹) in cm	204	219	233	242	250	257

¹⁾ aus Q über die aktuelle W-Q-Beziehung abgeleitet

Tabelle 2: Redundante Systeme am Pegel Weinähr

	System A	System B
Messwertgeber	OWK 16	Kalesto
Messverfahren	Schwimmerprinzip	Radar
Geber-Nr.	0010	0018
Datenspeicherung	Thales-Datensammler mit Modemanpassung	LogoSens
Datenfernübertragung	Festnetzanschluss, analog	Mobilfunk (GSM)
TelNr.	026046239	0160 / 7850317
Energieversorgung	Solarstrom	Solarstrom
max. erfassbarer Wasserstand	300 cm	510 cm

²⁾ Wert aufgrund Beobachtungslänge statistisch unsicher