2.16 Do Now: Linear regression and correlation

1. The flash rate of fireflies depends on various factors, including temperature. As the temperature drops, the flash rate slows down.

Firefly field data (simulated) where T is the temperature and f(T) is the number of seconds between flashes.

T	54	60	64	70	75
f(T)	5	8	10	11	13

- (a) Plot the data in the table on the grid below (one point is plotted for you)
- (b) Calculate \bar{x} and \bar{y}
- (c) Enter the data in your calculator

Temperature dependence of male *Photinus aquilonius* fireflies

2. Dr. Huson buys a new plant and measures how tall it is after a number of weeks. Some of his measurements are shown below. Plot the points in the grid below.

Weeks	2	5	7	10
Height (cm)	5	6	8	9

State, to the *nearest tenth*, the linear regression equation that approximates the height, y, of the plants after x weeks.

Explain what the y-intercept means in the context of the problem.

Explain what the slope means in the context of the problem.