The New Palestinian Geodetic Reference Frame 2023 - Pal-GRF2023

By: Dr. Ghadi Zakarneh

Associate Prof. in Geodesy

Associate Member IGS

Advisor for Head/Minister the Palestinian Land Authority (PLA)

Land Property Maps

- Othman Era: Registration books (description of parcel position)
- British/Jordanian Era (Cadastral Mapping): Village/Town→ Blocks → Parcels
- ► Hand drawings: scales 1:2500 1:1250 drawing accuracy ±0.5
- Chain & theodolite Surveying
- Required reference: continuous coordinates systems (2D): 2D Geodetic Network (Triangulation by theodolite): Palestine 1923 system
- After Era (WestBank & Gaza): New registration for single parcels + Military orders.
- PNA / PNA (now): New registration for single parcels + Cadastral Mapping: using Modern Technology + high Level of measurement accuracy
- does the old Reference (Pal-1923) support the modern Technologies?

Common Questions in Land Surveying in Palestine

- Is the land parcel registered in new Palestinian taswia (clean ownership)
- Is it registered by Jordanian/British taswia
 - was is subjected to official/unofficial division
 - Are official land marks still available on the ground
 - Can you stackout the borders: how accurate + conflict with other neighboring surveys
- Unregistered
 - Can you prove the ownership of a land
 - How safe are you from hidden conflict
- How was a land surveyed: Tools & Techniques + what was the reference.
- Are you in a master plan area
- Are you in Oslo area A,B, or C.
- What ownership or planning rules is the parcel govern the parcel by the Jordanian-Palestinian or occupation civil administration
 - Land Value/Price

Background (shape of the earth)

Classical Local Geodetic Networks Locally defined for local surveys

Palestinian Geodetic Network 1923-1947

2D Coordinates
Latitude/Longitude:
ellipsoid
Easting/Northing: Plane

Palestinian Projected coordinates 2D → 2D

Parameter	Pal1923 Grid
Ellipsoid	Clarck 1880
Semi-major axis	6378300.789m
Inverse flattening	293.4663155389802
Projection type	Transverse Cylinder
Projection Name	Cassini-Soldner
Latitude of origin	31.73409694444445°
Central meridian	35.21208055555556°
False easing	170251.555 m
False northing	126867.909 m
Scale	1
Datum	Palestine_1923
EPSG code	28191
Usage	Cadastral/Engineering

Global Coordinate Systems

Satellites follow global systems: GPS / GNSS

Regional / contental projects e.g. EURO

Common global system

ABOUT 🕶 NETWORK ~ PRODUCTS ~ DATA 🕶 DOCUMENTS ~ PARTICIPATE ~ CONTACT US Q ~ DATA AND PRODUCTS REAL-TIME SERVICE (RTS) Products File Access User Access Formats Monitoring IGS PRODUCTS Contributors About Precise Orbits and Clocks MULTI-GNSS (MGEX) Ionosphere Terrestrial Frame Tropospheric Differential Code Bias ANALYSIS CENTER COORDINATION Real Time Comparison DIS are Analysis Centers ReProcessing ociate. ACCESS TO PRODUCTS ACC Newsfeed ACC Resources GPS Orbits + Satellites & Station Clocks **GPS-ONLY** GLONASS Satellite Ephemerides

GNSS Broadcast Ephemeris

Geocentric Coordinates

Earth Rotation

Atmospheric Parameters

Ultra-Rapid Rapid

Final Broadcast

PPP

GLONASS-ONLY

Ultra-Rapid

Transformation parameters from ITRF2020 to past ITRFs. SOLUTION Τx Τz D **EPOCH** Τv Rx Rv Rz ppb .001" .001" .001" UNITS----> mm mm mm . RATES Tγ Tz D RxRy Rz Τx UNITS----> mm/v .001"/y mm/y mm/y ppb/y .001"/y .001"/y ITRF2014 -1.4 -0.9 1.4 -0.42 0.00 0.00 2015.0 0.00 rates 0.0 -0.1 0.2 0.00 0.00 0.00 0.00 0.2 1.0 ITRF2008 3.3 -0.29 0.00 0.00 0.00 2015.0 rates 0.0 -0.1 0.1 0.03 0.00 0.00 0.00 ITRF2005 2.7 0.1 -1.4 0.65 0.00 0.000.00 2015.0 0.3 0.1 rates -0.1 0.03 0.000.000.00 ITRF2000 -0.2 0.8 -34.2 2.25 0.00 0.00 0.00 2015.0 0.1 -1.7 rates 0.0 0.11 0.00 0.000.00 ITRF97 6.5 -3.9 -77.9 3.98 0.00 0.00 0.36 2015.0 0.1 -0.6 -3.1 0.12 0.00 0.00 0.02 rates ITRF96 6.5 -3.9 -77.9 3.98 0.00 0.00 0.36 2015.0 0.1 -0.6 -3.1 0.12 0.00 rates 0.000.02 ITRF94 6.5 -3.9 -77.9 3.98 0.000.00 0.36 2015.0 rates 0.1 -0.6 -3.1 0.120.000.000.02 ITRF93 -65.8 1.9 -71.3 4.47 -3.36 -4.33 0.75 2015.0 -2.8 -0.2 -2.3 0.12 -0.11 -0.19 0.07 rates -85.9 ITRF92 14.5 -1.9 3.27 0.000.000.36 2015.0 0.1 -3.1 0.12 0.00 0.00 rates -0.6 0.02 ITRF91 26.5 12.1 -91.9 4.67 0.00 0.00 0.36 2015.0 0.1 rates -0.6 -3.1 0.12 0.000.000.0224.5 ITRF90 8.1 -107.9 4.97 0.000.00 0.36 2015.0 0.1 -0.6 -3.1 0.12 0.00 0.00 0.02 rates ITRF89 29.5 32.1 -145.9 8.37 0.000.00 0.36 2015.0 rat**e**s 0.1 -0.6 -3.1 0.12 0.00 0.00 0.02 ITRF88 24.5 -3.9 -169.9 11.47 0.10 0.00 0.36 2015.0 0.1 rates -0.6 -3.1 0.120.000.00 0.02

Network of local coordinates

CORS

Connection global to local systems - Datum Transformations

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{Local} = (1+s) \begin{bmatrix} 1 & r_z & -r_y \\ -r_z & 1 & r_x \\ r_y & -r_x & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{WGS84} + \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix}$$

No governmental specifications for surveying with modern methods

Table 1. Projected coordinate systems in Palestine (Epsg 2019)

Parameter	Pal1923Grid	Pal1923Belt	New Pal-TM1
Ellipsoid	Clardx 1880	Clarck 1880	GRS 80
Semi-major axis	6378300.789m	6378300.789m	6378137.00m
Inverse flattening	293.4663155389802	293.4663155389802	298.257222100882
Projection type	Transverse Cylinder	Transverse Cylinder	Transverse Cylinder
Projection Name	Cassini-Soldner	Transverse Mercator	Transverse Mercator
Latitude of origin	31.73409694444445	31.73409694444445	31.73439361
Central meridian	35.21208055555556°	35.2120805555556°	35.20451694°
False easing	170251.555 m	170251.555 m	169529.584 m
False northing	126867.909 m	126867.909 m	126907.39 m
Scale	1	1	1.0000067
Datum	Palestine_1923	Palestine_1923	ITRF00/2004.75
EPSG code	28191	28192	
Usage	Cadastral/Engineering	Cartography/Mapping	Cadastral/Engineering

The transformed three dimensional coordinates projected coordinates are assumed to be equal to Pall 913Grid coordinates, although the different map projection and reference ellipsoid are integrated with a different datum.

Transformations between Local and Global systems in Palestine

Table 2. List of the most common datum transformation parameters used in Palestine (ESRI, ArcGIS 10.7.1 and ArcGIS Pro 2.4 Geographic and Vertical Transformation Tables 2019)

Param eter			Method		
rarameter	А	В	С	D	E
Source	Trimble TBC	Esri	Esri/QGIS	GNSS-provider A	GNSS-provider B
(ppm)	0	0	0	8.8471	5.4248
(sec)	0	0	-8.001	-11.1499	-0.33009
(sec)	0	0	-4.42	-8.56249	-1.85269
(sec)	0	0	-11.821	-5.04769	1.66969
(m)	230	219.247	275.722	121.451	-24.0024
(m)	71	73.802	-94.782	114.142	-17.1032
(m)	-273	-269.529	-340.894	-284.684	-17.8444
Ellipsoid	Clardx1880	Clarck1880	Clarck1880	Clarck1880	GRS80
Related Projected coordinates	Pal 1923 grid (Cassini)	Pal 1923 gri d (Cassini)	Pal 1923 grid (Cassini)	Pal 1923 grid (Cassini)	New Pal-TM

Validating the Old system in Palestine

Why Pal-GRF2023

- An Intermediate system between: Kinematic positioning (Satellite Orbits, tectonic Plates) and static positioning (Land/engineering surveying)
- High level of accuracy (mm-cm): compatible with GPS/GNSS Positioning,
 Drone Photogrammetry, and Laser Scanning.
- A unified official system to be used for all kinds of surveys.
- Unified method for converting coordinates and maps.
- Suitable for establishing or re-establishing GNSS continuous operating points and services (CORS).
- Suitable for local, regional and global positioning.

Design of Pal-GRF2023

- Coordinate System: PAL-GRF2023_Grid
- Datum: Pal-GRF2023
- ► ITRF system: ITRF2020
- Reference Epoch: 2023.5
- Earth Shape: GRS80 (most globally accepted)
- Projection: Transverse Mecator (Globally accepted for longitudinal areas
- Implementation/Realization:
 - 10 1st order points: observed 8hours: ITRF coordinates and velocities
 - 50 second order points (original points from Pal1923Grid): observed 4hours.
 - The 2nd order points are to be user for connecting new system with old surveys.

Projection		
Projection Method	TM	
scale	1.000 003	 The projected coordinate will be nearly same of classically reduced field distances to the MSL As Gaza is the farthest from the central meridian, the distortion are minimized by rising the projection surface near the topography (with small extension and topographic heights near MSL)
False Easting	220 000.00	 All easting coordinates in Palestine will positive All Easting coordinates in Gaza and West Bank will have 6 digits: 1xxxxx or 2xxxxx
False Northing	500 000.00	 All Northing coordinates in Palestine will positive All Coordinates in Gaza and west Bank will have 6 digits: 4xxxxx or 5xxxxx In this case the classical mix between XY=EN or XY=NE can easily be recognized by numbers
Central Meridian	35.235000000 35° 14' 06.000000"	Rounded values/without decimals of seconds and easy to written and inserted in different systems
Latitude of Origin	31.777 777 777 31° 46′ 40.000000″	 The Centre of the projection will be located inside AQSA-Mosquein Jerusalem (the Capital City) The central meridian passes through and near the largest possible area were infrastructures and cadastral surveys run in West Bank

Parameter	Value	
Ellipsoid		
Ellipsoid	GRS80	
Semi-majoraxis (a)	6378137.00	
Inverse flattening (f ⁻¹)	398.257 222 100	
	882	
Semi-minoraxis (b)	6356752.31414	

Used Global ITRF points

1st order Points (Least Squares)

STA.	Latitude			Std.dev		Lon	gitude	Std.dev	Elip. H	Std.dev
SIA.	d	m	s	m	d	m	s	m	m	m
PL01	32	32	33.73654	0.0011	35	13	17.42874	0.0013	140.8009	0.0032
PL02	32	23	17.74073	0.0011	35	29	1.13067	0.0013	-43.0897	0.0031
PL03	32	11	11.21786	0.0011	34	57	33.48289	0.0013	72.0734	0.0032
PL04	31	51	53.14465	0.0010	35	28	41.21388	0.0013	-242.0254	0.0030
PL05	31	53	7.23937	0.0011	35	4	39.28594	0.0013	426.3733	0.0032
PL06	32	6	0.89644	0.0011	35	16	57.31225	0.0014	678.5779	0.0033
PL07	31	42	17.32799	0.0009	35	9	34.27758	0.0012	882.5043	0.0027
PL08	31	25	23.06869	0.0011	35	14	3.07276	0.0013	568.3492	0.0031
PL09	31	23	16.25514	0.0009	34	54	50.99479	0.0012	620.0848	0.0028
PL10	31	30	29.10888	0.0010	35	5	28.73693	0.0013	922.5812	0.0030

32°30' 32°00' 31°30'

2nd order – New vs Old

Table 11-4: The ITRF2020 coordinates of trig points used in the datum transformation

Station Name	Longitude	Latitude	Elipsoidal Height	x	Y	Z	Transversal Mercator	
	deg	deg	m	m	m	m	Easting (m)	Northing(m)
022Y	35.26221304	32.03197218	868.118	4419744.989	3124979.803	3363897.940	222570.56	528186.79
1031X	35.34820952	32.17660381	597.728	4407909.768	3126545.620	3377341.308	230677.00	544230.14
1071X	35.22567569	32.21942691	786.2689	4412649.300	3115744.026	3381460.585	219121.02	548973.24
113P	35.03409585	32.34169000	147.8046	4416671.429	3096505.184	3392582.933	201086.60	562548.95
148T	35.36437648	32.49756667	300.4518	4391295.916	3116624.202	3407257.002	232158.75	579824.45
170L	35.53958386	32.19211837	-196.9022	4396149.256	3140327.480	3378374.148	248721.06	545985.61
189F	35.11333211	32.05674030	498.4021	4426401.695	3112466.194	3366030.045	208510.27	530939.43
199T	35.15543330	31.90661626	783.8077	4431520.741	3120934.540	3352059.743	212473.86	514288.94
239J	35.01771626	31.94200758	281.5503	4436960.654	3108838.328	3355125.239	199455.18	518231.18

Table 11-5: The PAL1923 coordinates of trig points used in the datum transformation

Station Name	Longitude	Latitude	Elipsoidal Height	x	Y	z	PAL192 (Cassini -	THE REAL PROPERTY.
	deg	deg	m	m	m	m	Easting (m)	Northing(m)
022Y	35.26142030	32.03166780	868.118	4419984.275	3125057.264	3363637.969	174912.41	159863.78
1031X	35.34741096	32.17632199	597.728	4408148.421	3126622.550	3377082.986	183015.34	175910.64
1071X	35.22487694	32.21914138	786.2689	4412888.382	3115820.649	3381201.776	171457.89	180650.76
113P	35.03329121	32.34139955	147.8046	4416911.528	3096580.998	3392323.272	153419.40	194221.65
148T	35.36354881	32.49730720	300.4518	4391535.588	3116698.912	3406999.744	184487.06	211506.32
170L	35.53879155	32.19187790	-196.9022	4396385.340	3140404.307	3378119.659	201060.26	177674.34
189F	35.11255782	32.05644304	498.4021	4426639.877	3112544.276	3365770.664	160852.72	162614.21
199T	35.15465447	31.90630092	783.8077	4431759.715	3121012.720	3351799.152	164819.45	145963.22
2391	35.01695221	31.94169399	281.5503	4437198.989	3108917.103	3354864.699	151800.86	149902.83

Connecting Pal-GRF2023 to Pal1923

3D Transformation Parameters (PAL-GRF to PAL1923)

$$\Delta X = 114.5200 \pm 14.8542 \,\mathrm{m}$$
 $\Delta Y = 79.3790 \pm 9.1074 \,\mathrm{m}$
 $\Delta Z = -281.6324 \pm 0.5174 \,\mathrm{m}$
 $R_X = -10.07015 \pm 0.51744 \,\mathrm{arcsec}$
 $R_Y = -8.45655 \pm 0.28998 \,\mathrm{arcsec}$
 $R_Z = -5.37202 \pm 0.74241 \,\mathrm{arcsec}$
 $\delta = 15.22329 \pm 1.23256 \,\mathrm{ppm}$

$$R = R_Z R_Y R_X = \begin{bmatrix} \cos R_Z & \sin R_Z & 0 \\ -\sin R_Z & \cos R_Z & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos R_Y & 0 & -\sin R_Z \\ 0 & 1 & 0 \\ \sin R_Z & 0 & \cos R_Y \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos R_X & \sin R_Z \\ 0 & -\sin R_Z & \cos R_X \end{bmatrix}$$

conclusions

- The design and field work was done local
- The calculations were controlled by : AXIS-Palestine & MibMap-Turkey
- The high level of accuracy was achieved 1-3mm
- The system is accurately define with respect to earth kinematic & time related positioning
- The system is suitable for establishing GNSS Networks for public and private sector
- Soon: the system will announced as the official system for all surveys in Palestine.

What is next?

- Extension to GAZA: 2 points were planned
- Active Network ?
- Regulat updatae and maintainance
- Transforming old surveys ←→ new surveys
- Developing more transformation method ...