МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра космического приборостроения и систем связи

УТВЕРЖДАЮ
Проректор по учебной работе

Проре

ИССЛЕДОВАНИЕ ПУАССОНОВСКОГО ПОТОКА

Методические указания по выполнению практической работы №1 для студентов, обучающихся по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи» по курсу «Теория телетрафика»

2

УДК 621.391

Составители: А.В. Хмелевская, А.Н. Шевцов

Рецензент Доктор технических наук, старший научный сотрудник, профессор кафедры В.Г. Андронов

Исследование Пуассоновского потока: методические указания по выполнению практической работы №1 по курсу «Теория телетрафика» / Юго-Зап. гос. ун-т; сост. А.В. Хмелевская, А.Н. Шевцов. Курск, 2017. — 35 с.: ил. 2, табл. 1. — Библиогр.: с. 35.

Методические указания по выполнению практической работы содержат краткие теоретические сведения о различных потоках событий, задания для выполнения работы, примеры их выполнения в программной среде Microsoft Excel, а также перечень вопросов для самоконтроля.

Методические указания полностью соответствуют требованиям типовой программы, утвержденной УМО по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи», а также рабочей программе дисциплины «Теория телетрафика».

Предназначены для студентов, обучающихся по направлению подготовки 11.03.02 очной и заочной форм обучения.

Текст печатается в авторской редакции

Подписано в печать 15.12.13 . Формат 60х841/16. Усл. печ. л. 2,0 . Уч.-изд. л. 4.24. Тираж 100 экз. Заказ 325 Бесплатно Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94

1 Цель работы

- изучение пуассоновского потока и методов аппроксимации теоретическим распределением данных наблюдения за входящим потоком и потоком обслуживания в системах массового обслуживания.

2 Теоретические сведения

Поток требований называют однородным, если:

- все требования потока обслуживаются в системе массового обслуживания одинаково;
- рассмотрение требований (событий) потока, которые по своей природе могут быть различными, ограничивается рассмотрением моментов времени их поступления.

Поток называется **регулярным**, если события в потоке следуют один за другим через интервалы времени одинаковой длительности.

Функция f(x) плотности распределения вероятности случайной величины T, обозначающей интервал времени между событиями, для регулярного потока имеет вид:

$$f(x) = \delta(x - \bar{t}) \tag{1}$$

где δ - дельта функция,

 \bar{t} - математическое ожидание случайной величины T.

Дисперсия интервала между событиями регулярного потока (моментами поступления требований) D[T] равна 0, а интенсивность наступления событий в потоке (среднее число требований в единицу времени) λ равна $\frac{1}{t}$.

Поток называется **случайным**, если события в потоке следуют один за другим через интервалы времени случайной длительности.

Случайный поток может быть описан как случайный вектор, который, в свою очередь, может быть задан одним из двух способов:

1) Функцией распределения моментов наступления событий $T_1, T_2, ..., T_n$

$$F(t_1, t_2, ..., t_n) = P(T_1 < t_1, T_2 < t_2, ..., T_n < t_n)$$
(2)

где t_i — значение моментов наступления $T_i(i=1,n)$,

2) Функцией распределения интервалов между наступлением последовательных событий $\tau_1, \tau_2, ... \tau_n$:

$$F(\theta_1, \theta_2, \dots, \theta_n) = P(\tau_1 < \theta_1, \tau_2 < \theta_2, \dots, \tau_n < \theta_n), \tag{3}$$

где θ_i - значения интервалов между событиями $\tau_i(i=1,n)$,

В последнем случае моменты наступления событий могут при необходимости быть найдены из рекуррентных соотношений:

$$t_{1} = t_{0} + \theta_{1},$$
 $t_{2} = t_{1} + \theta_{2},$
....
 $t_{n} = t_{n-1} + \theta_{n},$
(4)

где t_0 - момент наступления первого события потока.

Поток называется **стационарным**, если вероятность попадания того или иного числа событий на элементарный участок времени длиной τ зависит только от длины участка и не зависит от того, где именно на оси t расположен этот участок.

Поток событий называется потоком **без последействия**, если для любых непересекающихся участков времени число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой.

Поток событий называется **ординарным**, если вероятность попадания на элементарный участок двух или более событий пренебрежимо мала по сравнению с вероятностью попадания одного события.

Поток событий, обладающий всеми тремя свойствами - стационарностью, отсутствием последействия, ординарностью - называется простейшим, или стационарным пуассоновским потоком.

Пуассоновский поток событий тесно связан с известным из теории вероятностей распределением Пуассона: число событий по-

тока, попадающих на временной интервал некоторой величины, распределено по закону Пуассона.

Если на временной оси t, где наблюдается поток событий, выделить некоторый участок времени длины τ , начинающийся в момент t_0 и заканчивающийся в момент $t_0 + \tau$, то нетрудно доказать, что вероятность попадания на этот участок ровно m событий выражается формулой:

$$P_m = \frac{a^m \cdot e^{-a}}{m!} \tag{5}$$

где a — среднее число событий, приходящееся на участок τ ; e — основание натуральных логарифмов (2,71828...),

$$m! = \begin{cases} 1 \cdot 2 \cdot 3 \cdot \dots \cdot (m-1) \cdot m, & m \ge 1 \\ 1, & m = 1 \end{cases}$$

Для стационарного (простейшего) пуассоновского потока величина a равна интенсивности потока λ , умноженной на длину интервала:

$$a = \lambda \cdot t \tag{6}$$

где **интенсивность, или плотность потока** λ есть среднее число событий, приходящихся на единичный временной интервал. В зависимости от физической природы изучаемой системы интенсивность может иметь различную размерность, например, чел/мин, руб/день, кг/час, запросов/сек, документов/сутки, отправлений/сутки и т.д.

Функция распределения:

$$F_T(t) = P(T \le t) \tag{7}$$

представляющая собой по определению вероятность того, что случайная величина T (интервал времени между событиями) не превысит значения t, имеет для пуассоновского потока следующий вид:

$$F_T(t) = 1 - e^{-\lambda \cdot t} \tag{8}$$

Такой закон распределения называется **показательным** (или **экспоненциальным**) с плотностью λ . Величина λ называется также **параметром** показательного закона.

Математическое ожидание случайной величины T равна,

$$\bar{t} = \frac{1}{\lambda} \tag{8}$$

а дисперсия составляет:

$$D[T] = \frac{1}{\lambda^2} \tag{9}$$

Среднеквадратическое отклонение случайной величины T находится как квадратный корень из дисперсии.

$$\sigma_T = \sqrt{D[T]} = \frac{1}{\lambda} \tag{10}$$

Как нетрудно видеть, математическое ожидание величины T равно ее среднеквадратическому отклонению, что является характерной особенностью экспоненциального распределения.

Таким образом, вероятность появления *т* событий в заданном промежутке времени описывается **пуассоновским** распределением, а вероятность того, что временные интервалы между событиями потока не превзойдут некоторого наперед заданного значения, описывается **экспоненциальным** распределением. Это различные описания одного и того же стохастического процесса.

Пример 1

По шоссе мимо наблюдателя движется в одном направлении простейший поток машин. Известно, что вероятность отсутствия машин в течение 5 минут равна 0,5. Требуется найти вероятность того, что за 10 минут мимо наблюдателя пройдет не более двух машин.

Решение

Примем за единицу времени 5 мин. В задаче требуется найти следующее:

$$P(m \ge 2) = \sum_{i=0}^{2} P(m=i) = \frac{(2\lambda)^{0}}{0!} e^{-2\lambda} + \frac{(2\lambda)^{1}}{1!} e^{-2\lambda} + \frac{(2\lambda)^{2}}{2!} e^{-2\lambda} = (1+2\lambda+2\lambda^{2}) e^{-2\lambda}$$

По условию задачи:

$$P(m=0) = \frac{(\lambda)^2}{1!}e^{-\lambda} = e^{-\lambda} = 0.5$$

Откуда:

$$\lambda = -\ln 0.5 = \ln 2 \approx 0.693$$

и, подставляя в выражение для $P(m \le 2)$, получаем:

$$P(m \le 2) \approx 0.837$$

Весьма распространенными на практике являются случаи, когда нескольких простейших потоков соединяются в один или, наоборот, из одного простейшего потока образуются несколько. При слиянии (объединении, суперпозиции) n независимых простейших потоков с интенсивностями $\lambda 1,...,\lambda n$ образуется простейший поток, имеющий интенсивность $\lambda = \lambda 1 + ... + \lambda n$.

При ветвлении (разъединении) потока интенсивности λ на n направлений так, что вероятности перехода заявки в каждое из направлений равны $p_1, p_2, ..., p_n$, $\sum_{i=1}^n p_i = 1$, образуется n простейших потоков с интенсивностями $\lambda_{p1}, ..., \lambda_{pn}$ соответственно.

Любое исследование системы массового обслуживания начинается с изучения того, что необходимо обслуживать, иначе говоря, с изучения характеристик входящего потока заявок. В нетривиальных случаях требуется также обследование самой системы массового обслуживания с целью нахождения характеристик обслуживания, (потока обслуживания). Решение задач анализа и проектирования систем массового обслуживания намного упрощается в случаях, когда входящий поток и поток обслуживания являются простейшими (пуассоновскими).

3 Пример выполнения практического задания

3.1 Пример анализа данных наблюдения входящего потока

Предположим, что проводилось наблюдение за потоком посетителей в отделении банка в течение 10 дней его работы. Результаты почасового наблюдения представлены в таблице 1.

Таблица 1 – Результаты почасового наблюдения за потоком посетителей

Часы Дни	1	2	3	4	5	6	7	8
1	2	4	2	3	4	3	5	2
2	3	2	3	2	7	2	3	3
3	1	3	4	3	4	6	4	2
4	4	4	4	5	9	3	4	4
5	2	1	3	7	3	6	2	3
6	3	2	3	4	5	5	3	2
7	4	3	4	3	8	3	4	3
8	1	2	2	4	3	4	2	4
9	3	4	6	3	4	2	4	2
10	2	2	3	5	6	4	2	5

Определим интенсивность входящего потока покупателей за час работы отделения и, используя критерий Пирсона с уровнем значимости α =0,05, подвергнем проверке гипотезу о том, что поток описывается пуассоновским законом распределения.

Решение

1) Сгруппируем данные по числу клиентов банка k, посетивших отделение в течение часа, а результаты представим в виде Excel - таблицы:

k	1	2	3	4	5	6	7	8	9
f_k	3	19	23	21	6	4	2	1	1

Для автоматизированного подсчета частот fk по данным, представленным в исходной таблице, следует использовать функцию СЧЕТЕСЛИ приложения Excel.

2) Находим интенсивность потока λ:

$$\lambda = \overline{k} = \frac{\sum_{k=1}^{8} k \cdot f_k}{\sum_{k=1}^{8} f_k} = \frac{279}{80} = 3,49$$

В приложении Excel удобно вычислять интенсивность, предварительно подсчитав в ячейках отдельной строки входящие в числитель выражения для λ произведения $k \cdot f_k$.

k	1	2	3	4	5	6	7	8	9	Σ
f_k	3	19	23	21	6	4	2	1	1	80
$k \cdot f_k$	3	38	69	84	30	24	14	8	9	279

3) По формуле находим и заносим в строку f^T теоретические значения частот:

$$f_k^T = N \frac{\lambda^k}{k!} e^{-\lambda}$$
, где $N = \sum_{k=1}^8 f_k = 80$

<i>k</i>	1	2	3	4	5	6	7	8	9	Σ
f_k	3	19	23	21	6	4	2	1	1	80
$k \cdot f_k$	3	38	69	84	30	24	14	8	9	279
f^T	8.53	14.88	17.29	15.08	10.52	6.11	3.05	1.33	0.51	

4) Вычислим и занесем в строку таблицы значения $\frac{\left(f_{k}-f_{k}^{T}\right)^{2}}{f_{k}^{T}}$, стоящие в числителе выражения под знаком суммы в формуле $\chi_{\text{набл}}^{2}=\sum_{k=1}^{8}\frac{\left(f_{k}-f_{k}^{T}\right)^{2}}{f_{k}^{T}}$ для наблюдаемого значения критерия Пирсона.

k	1	2	3	4	5	6	7	8	9	Σ
f_k	3	19	23	21	6	4	2	1	1	80
$k \cdot f_k$	3	38	69	84	30	24	14	8	9	279
f^T	8.53	14.88	17.29	15.08	10.52	6.11	3.05	1.33	0.51	
$\frac{\left(f_k - f_k^T\right)^2}{f_k^T}$	3.59	1.14	1.88	2.33	1.94	0.73	0.36	0.08	0.46	12,51

В результате получаем наблюдаемое значение $\chi^2_{\text{набл}} = 12,51$

5) По заданному уровню значимости α =0,05 и числу степеней свободы v = n-2, где n - число групп в ряду (в нашем случае n=9) по таблице значений критических точек χ^2 распределения находим:

$$\chi_{\kappa\rho}^{2}(\alpha,\nu) = \chi_{\kappa\rho}^{2}(0,005,7) = 14,07$$

6) Поскольку $\chi^2_{\text{набл}} < \chi^2_{\text{мабл}}$ (12,51 < 14,07) не отвергаем гипотезу о том, что входящий поток описывается пуассоновским законом распределения с интенсивностью λ =3,49 час⁻¹.

Вид теоретической и экспериментальной зависимостей для рассмотренного примера показан на построенной средствами Excel диаграмме, представленной на рисунке 1.

Рисунок 1 – Теоретическая и экспериментальные зависимости

3.2 Пример анализа данных наблюдения потока обслуживания

Предположим, что проводилось наблюдение за временем обслуживания клиентов отделения банка кассиром, в результате чего получена таблица для частот интервалов следующего вида:

		tмин	tмакс	f
]	l	0	5	27
2	2	5	10	23
	3	10	15	18
4	1	15	20	11
4	5	20	25	8
(5	25	30	3

Определим среднее время t_s и интенсивность μ обслуживания клиентов банка, после чего обоснуем с уровнем значимости α =0,05

гипотезу о том, что время \bar{t}_s распределено по показательному закону, используя для этого критерий Пирсона.

1) Находим среднее значение каждого временного интервала по формуле:

$$\frac{1}{t_k} = \frac{t_k^{\min} + t_k^{\max}}{2}, k = 1, 2, ..., 6$$

Значения заносим в столбец, добавляемый к таблице справа:

	tмин	tмакс	f	tcp
1	0	5	27	2.5
2	5	10	23	7.5
3	10	15	18	12.5
4	15	20	11	17.5
5	20	25	8	22.5
6	25	30	3	27.5

2) Находим среднее время \bar{t}_s

$$\bar{t}_s = \frac{\sum_{k=1}^{6} \bar{t}_k \cdot f_k}{\sum_{k=1}^{6} f_k} = 10,22$$
 мин

и интенсивность µ обслуживания

$$\mu = \frac{1}{t_c} = 0.10 \text{ MUH}^{-1}$$

В приложении Excel среднее время удобно вычислять, предварительно подсчитав в ячейках отдельного столбца входящие в выражение для среднего времени произведения $k \cdot f_k$.

3) По формуле находим теоретические частоты:

$$f_k^T = N \Big(e^{-\mu \cdot t_k^{\min}} - e^{-\mu \cdot t_k^{\max}} \Big)$$
, где $N = \sum_{k=1}^6 f_k = 90$

	tмин	tмакс	f	\overline{t}_k	$k \cdot f_k$
1	0	5	27	2.5	67.5
2	5	10	23	7.5	173
3	10	15	18	12.5	225
4	15	20	11	17.5	193
5	20	25	8	22.5	180
6	25	30	3	27.5	82.5
Σ			90		

	tмин	tмакс	f	- +	$k \cdot f_{k}$	₽T
	imun	imunc	J	t_k	$K J_k$	J
1	0	5	27	2.5	67.5	34.82
2	5	10	23	7.5	173	21.35
3	10	15	18	12.5	225	13.09
4	15	20	11	17.5	193	8.03
5	20	25	8	22.5	180	4.92
6	25	30	3	27.5	82.5	3.02
Σ	_		90	_		

7) Вычислим и занесем в отдельный столбец таблицы значения $\frac{\left(f_k-f_k^T\right)^2}{f_k^T}$, входящие в выражение под знаком суммы в формуле $\chi^2_{\text{набл}}=\sum_{k=1}^6\frac{\left(f_k-f_k^T\right)^2}{f_k^T}$ для наблюдаемого значения критерия Пирсона.

	tмин	tмакс	f	tcp	f^{T}	$rac{\left(f_k - f_k^T ight)^2}{f_k^T}$
1	0	5	27	2.5	67.5	34.82
2	5	10	23	7.5	173	21.35
3	10	15	18	12.5	225	13.09
4	15	20	11	17.5	193	8.03
5	20	25	8	22.5	180	4.92
6	25	30	3	27.5	82.5	3.02
Σ			90			6.75

В результате получаем $\chi^2_{\text{набл}} = 6,75$.

4) По заданному уравнению значимости α =0,05 и числу степеней свободы v=n-2 , где n - число групп в ряду (в нашем случае n=6) в таблице значений критических точек χ^2 распределения находим

$$\chi_{\kappa\rho}^{2}(\alpha,\nu) = \chi_{\kappa\rho}^{2}(0,005,7) = 9,49.$$

5) Поскольку $\chi^2_{\text{набл}} < \chi^2_{\text{мабл}}$ (6,75 < 9,49) не отвергаем гипотезу о том, что время обслуживания клиентов описывается экспоненциальным законом распределения с интенсивностью μ = 0,10 мин⁻¹.

Вид теоретической и экспериментальной зависимостей для рассмотренного примера показан на диаграмме:

Рисунок 2 – Теоретическая и экспериментальная зависимости

4 Задание на практическую работу

В работе требуется:

- 1) Провести анализ данных наблюдения двух потоков в системе массового обслуживания:
- входящего потока. Данные представляют собой число появления требований в единицу времени.
- потока обслуживания. Данные представляют собой число требований, обслуженных в интервале наблюдения.

Данные наблюдения входящего потока и потока обслуживания приводятся в приложении. Номером варианта служит порядковый номер студента в списке группы.

- 2) Определить параметры потока (плотность и среднее время интервала поступления или обслуживания заявок).
- 3) Дать заключение о возможности отнесения потока к пуассоновскому потоку

Таблица χ^2 приводится в приложении.

4) Для каждого потока построить диаграммы с теоретическими и экспериментальными значениями. Для входящего потока строится гистограмма вероятности появления определенного числа требований в единицу времени. Для выходящего потока (потока обслуживания) — график функции распределения длительности обслуживания.

Работа выполняется с помощью табличного редактора Microsoft Excel.

4.1 Индивидуальное задание

- 1) В бюро обслуживания поступает в среднем 12 заявок в час. Считая поток заказов простейшим, определить вероятность того, что:
 - за 1 минуту не поступит ни одного заказа,
 - за 10 минут поступит не более трех заказов.
- 2) В ресторан, который начинает работать в 11.00, прибывает в среднем 20 посетителей в час. Поток посетителей можно считать простейшим. Требуется определить:
- вероятность того, что в 11.12 в ресторан придет 20 посетителей при условии, что в 11.07 их было 18,

- вероятность того, что между 11.28 и 11.30 в ресторане окажется новый посетитель, если известно, что предшествующий посетитель прибыл в 11.25.
- 3) На взлетно-посадочную полосу аэродрома прибывает пуассоновский поток самолетов, в среднем 2 самолета за 5 минут. Найти вероятность того, что в течение 15 минут произведут посадку 3 самолета.
- 4) Парикмахерская обслуживает в час 12 клиентов. В часы пик в среднем приходит пять посетителей в час. Считая поток посетителей простейшим, определить вероятность того, что клиента начнут обслуживать сразу.
- 5) Дан пуассоновский поток с параметром 2 мин⁻¹. Найти вероятность того, что длина интервала между соседними требованиями составляет от 1 до 2 минут.
- 6) По железной дороге мимо наблюдателя движется в одном направлении простейший поток поездов. Известно, что вероятность отсутствия поездов в течение 10 минут равна 0,8. Требуется найти вероятность того, что за 20 мин мимо наблюдателя пройдет не более трех поездов.
- 7) По автостраде движется поток автомобилей, подчиняющийся пуассоновскому распределению с параметром 1 мин⁻¹. Найти вероятность того, что длина интервала между соседними автомобилями составляет от 2 до 4 минут.
- 8) В пункт текущего ремонта оргтехники поступают требования на ремонт. Поток требований можно считать простейшим с интенсивностью λ =0,307. Найти вероятность того, что за час не поступит ни одного требования на ремонт.
- 9) Время обслуживания функциональных узлов некоторой системы массового обслуживания распределено по показательному закону $F(t)=1-e^{-1.5t}$, где t время в минутах. Найти вероятность того, что обслуживание продлится не более 15 мин.
- 10) В пункт текущего ремонта вагонов метро поступают требования на ремонт. Поток требований можно считать простейшим с интенсивностью λ =0,617. Найти вероятность того, что за час поступит одно требование (вагон) на ремонт.
- 11) Производится наложение (суперпозиция) двух простейших потоков с интенсивностями λ_1 и λ_2 . Будет ли поток, получив-

шийся в результате наложения, простейшим, и если да, то с какой интенсивностью?

- 12) Производится случайное прореживание простейшего потока событий с интенсивностью λ ; каждое событие, независимо от других, с вероятностью p сохраняется в потоке, а с вероятностью l-p выбрасывается. Каким будет поток, получающийся в результате прореживания простейшего потока?
- 13) Поток машин, идущих по шоссе в одном направлении, представляет собой простейший поток с интенсивностью 2 машины в минуту. Человек выходит на шоссе, чтобы остановить первую попавшуюся машину, идущую в данном направлении. Найти закон распределения времени, в течение которого ему придется ждать машину; математическое ожидание и среднее квадратичное отклонение времени ожидания.
- 14) Компьютерный класс связан с каналом Интернет через 10-канальный концентратор. Интенсивности передачи данных по каждому из 10 каналов равны соответственно 540 бит/с, 120 бит/с, 40 бит/с, 170 бит/с, 350 бит/с, 60 бит/с, 742 бит/с, 153 бит/с, 500 бит/с, 100 бит/с. Поток данных подчиняется пуассоновскому закону распределения. Определить интенсивность передачи данных в канале Интернет.
- 15) Производится случайное прореживание простейшего потока событий с интенсивностью λ =4; каждое событие, независимо от других, с вероятностью p=0,6 сохраняется в потоке, а с вероятностью l-p выбрасывается. Каким будет поток, получающийся в результате прореживания простейшего потока?
- 16) Поток машин, идущих по шоссе в одном направлении, представляет собой простейший поток с интенсивностью 8 машин в минуту. Шоссе имеет развилку в три направления. Вероятность движения машин в первом направлении равна 0,12, во втором 0,68, в третьем 0,20. Определить интенсивности движения автомобилей во всех направлениях.
- 17) Производится случайное прореживание простейшего потока событий с интенсивностью λ =0,7; каждое событие, независимо от других, с вероятностью p=0,75 сохраняется в потоке, а с вероятностью l-p выбрасывается. Каким будет поток, получающийся в результате прореживания простейшего потока?
- 18) Производится разбиение случайного простейшего потока событий с интенсивностью λ =4,9 на три потока. Вероятности попа-

дания событий в тот или иной поток равны соответственно p1=0,2, p2=0,54, p3=0,26. Определить интенсивности каждого получившегося потока в результате разбиения.

- 19) Производится разбиение случайного простейшего потока событий с интенсивностью λ =1,6 на 2 потока. Вероятности попадания событий в тот или иной поток соответственно равны p1=0,44, p2=0,56. Определить интенсивности каждого получившегося в результате разбиения потока.
- 20) Компьютерный класс связан с каналом Интернет через 5-канальный концентратор. Интенсивности передачи данных по каждому из 10 каналов равны соответственно 541 бит/с, 110 бит/с, 44 бит/с, 171 бит/с, 356 бит/с. Поток данных подчинятся пуассоновскому закону распределения. Определить интенсивность передачи данных в канале Интернет.

4.2 Варианты данных наблюдения

4.2.1 Входящий поток.

Вариант №1

	1	2	3	4	5	6	7	8
1	4	5	4	3	5	5	3	7
2	7	4	3	3	2	4	5	5
3	7	3	1	5	8	5	6	3
4	2	7	4	5	6	3	2	3
5	5	2	5	2	1	3	2	4
6	4	4	2	2	4	4	2	1
7	3	4	5	4	1	5	2	4
8	5	1	5	7	3	4	5	5
9	7	4	3	4	7	4	4	3
10	3	5	5	2	4	3	3	5

	1	2	3	4	5	6	7	8
1	2	3	6	3	5	11	6	4
2	3	4	5	4	3	8	4	2
3	2	3	4	5	4	5	6	5
4	4	5	3	10	5	3	4	2
5	3	2	9	5	4	4	5	3
6	5	3	5	12	5	3	2	7
7	2	5	8	4	7	5	6	4

Вариант №3_

	1	2	3	4	5	6	7	8
1	1	3	7	3	5	11	6	4
2	3	5	5	4	10	8	4	2
3	2	4	4	5	4	5	6	5
4	5	5	3	10	5	3	4	2
5	3	2	8	5	4	4	5	3
6	5	3	5	11	5	4	2	7
7	2	5	8	4	7	5	6	4
8	1	4	8	9	7	10	6	5
9	3	5	2	4	8	5	6	4

Вариант №4_____

	1	2	3	4	5	6	7	8
1	3	1	8	3	3	7	5	4
2	5	3	5	4	9	5	4	2
3	4	2	3	5	4	4	6	5
4	5	5	4	10	5	3	4	2
5	2	3	4	5	4	8	5	3
6	3	5	5	11	5	5	2	7
7	5	2	10	4	7	8	6	4
8	4	1	11	9	7	8	6	5

	1	2	3	4	5	6	7	8
1	1	2	0	5	1	1	2	2
2	0	1	1	1	0	0	1	1
3	1	3	1	2	0	1	1	2
4	1	0	3	1	0	1	3	4
5	1	1	2	1	2	6	1	1
6	0	1	2	1	2	0	1	1
7	0	0	4	1	0	1	3	4

Вариант №6

	1	2	3	4	5	6	7	8
1	2	4	6	1	2	2	0	5
2	1	1	1	1	0	1	2	1
3	3	1	7	2	5	1	0	1
4	1	1	1	1	0	1	2	2
5	1	3	3	1	2	2	2	2
6	4	4	2	1	3	2	2	1
7	1	1	2	1	0	0	3	5

	1	2	3	4	5	6	7	8
1	0	2	0	2	2	4	2	1
2	2	3	3	2	1	2	1	4
3	1	2	1	1	1	5	4	1
4	3	2	2	1	2	2	0	1
5	1	4	2	2	0	1	0	2
6	2	7	2	3	1	0	2	6
7	1	6	1	1	2	2	1	1
8	3	3	3	1	2	0	2	2

	1	2	3	4	5	6	7	8
1	2	0	4	1	3	2	4	5
2	2	0	2	3	3	2	1	2
3	2	5	4	0	5	0	1	2
4	6	4	1	3	6	5	3	4
5	8	3	3	2	3	4	0	7
6	1	2	3	4	3	3	0	2
7	2	3	4	7	0	2	2	2
8	4	1	3	5	0	4	3	3

Вариант №9

	1	2	3	4	5	6	7	8
1	3	2	1	2	0	1	5	2
2	3	7	3	4	2	7	3	3
3	2	2	3	6	3	4	3	5
4	5	4	4	2	6	5	6	2
5	4	2	1	6	2	3	1	5
6	3	1	3	6	6	5	3	2
7	4	3	5	2	5	3	5	1
8	7	3	8	3	4	8	4	2

	1	2	3	4	5	6	7	8
1	3	2	1	2	0	1	5	2
2	3	7	3	4	2	7	3	3
3	2	2	3	6	3	4	3	5
4	5	4	4	2	6	5	6	2
5	4	2	1	6	2	3	1	5
6	3	1	3	6	6	5	3	2
7	4	3	5	2	5	3	5	1
8	7	3	8	3	4	8	4	2

Вариант **№**1 <u>1</u>

	1	2	3	4	5	6	7	8
1	6	2	4	4	4	5	2	6
2	1	1	3	4	3	3	3	4
3	0	1	6	2	3	3	2	3
4	4	1	5	4	2	5	2	2
5	4	1	4	4	3	4	3	4
6	4	4	3	3	2	3	3	3
7	1	3	6	2	2	1	3	2
8	3	2	2	3	1	2	2	3

Вариант №12

	1	2	3	4	5	6	7	8
1	2	1	4	5	1	2	7	2
2	1	2	3	2	2	5	1	0
3	2	0	2	3	2	4	1	6
4	0	4	2	4	6	2	1	1
5	2	2	2	4	1	5	2	1
6	4	1	1	2	4	2	1	3
7	4	2	3	1	2	2	2	1
8	0	1	1	2	1	0	2	1

	1	2	3	4	5	6	7	8
1	1	4	4	5	2	3	5	1
2	2	5	7	1	1	3	1	5
3	2	1	6	1	4	1	4	1
4	3	2	4	1	1	1	3	2
5	5	2	5	4	1	1	2	3
6	2	3	5	3	2	2	6	2
7	1	5	1	2	0	3	1	0
8	1	3	1	3	3	2	2	2

	1	2	3	4	5	6	7	8
1	1	2	2	4	3	1	2	2
2	2	3	1	1	3	1	2	3
3	2	2	3	3	4	2	1	2
4	2	5	1	0	1	1	5	1
5	2	2	0	2	2	2	2	2
6	1	3	3	1	0	0	0	1
7	1	1	3	1	0	0	4	4
8	1	2	2	2	3	3	2	2

Вариант №15

	1	2	3	4	5	6	7	8
1	1	2	0	3	2	2	2	0
2	2	2	3	1	3	0	1	3
3	3	1	5	3	0	1	0	5
4	1	2	1	2	1	3	3	1
5	2	3	1	5	3	5	3	0
6	1	4	1	1	3	3	2	1
7	2	1	3	2	1	4	2	3
8	3	2	2	1	1	0	3	2

	1	2	3	4	5	6	7	8
1	2	2	3	5	4	2	5	2
2	2	0	2	2	2	1	2	1
3	1	3	1	0	1	2	5	2
4	2	2	0	4	1	1	1	2
5	1	0	3	1	3	2	1	0
6	1	3	2	4	4	2	2	0
7	2	3	2	3	5	4	0	3
8	5	2	1	2	3	6	5	1

Вариант №17__

	1	2	3	4	5	6	7	8
1	3	2	1	2	2	4	3	2
2	0	3	2	2	1	3	3	1
3	3	2	1	0	2	0	3	1
4	6	0	1	2	2	0	0	1
5	0	1	2	1	2	3	0	2
6	0	1	2	1	2	2	2	0
7	1	4	1	1	0	1	1	1
8	6	3	3	3	2	3	2	0

Вариант №18

	1	2	3	4	5	6	7	8
1	2	6	3	3	1	3	2	1
2	3	1	5	4	1	4	2	1
3	1	4	1	2	2	4	1	0
4	1	2	3	2	0	2	1	2
5	0	2	2	1	3	4	2	2
6	2	3	3	2	2	2	7	4
7	2	1	3	2	4	2	5	1
8	1	1	1	8	6	1	3	2

Вариант №19_

	1	2	3	4	5	6	7	8
1	3	4	0	3	3	2	4	4
2	3	2	2	6	6	0	2	1
3	2	2	6	3	0	2	0	4
4	2	3	4	1	4	1	2	2
5	3	2	1	3	2	0	5	4
6	3	2	2	3	2	0	5	1
7	2	4	3	2	4	4	7	3
8	2	3	0	2	8	3	2	1

	1	2	3	4	5	6	7	8
1	3	3	5	3	5	3	3	3
2	3	4	3	2	4	1	5	2
3	1	4	4	2	2	4	4	4
4	2	2	4	2	2	1	3	2
5	1	4	3	1	2	3	2	3
6	2	3	4	3	4	4	3	4
7	2	2	2	3	0	5	3	4
8	6	3	6	4	5	3	4	3

Вариант №21

	1	2	3	4	5	6	7	8
1	4	3	5	3	5	3	4	1
2	2	3	4	3	4	3	2	5
3	6	5	2	2	2	1	5	7
4	5	7	5	3	2	5	5	3
5	0	3	9	4	6	3	1	7
6	1	2	5	7	2	3	4	3
7	5	5	3	3	3	4	4	8
8	5	4	6	3	1	9	5	9

Вариант №22_

	1	2	3	4	5	6	7	8
1	3	2	2	5	4	3	1	6
2	1	2	2	0	1	1	2	2
3	4	2	1	5	3	1	0	3
4	7	6	2	4	2	1	4	0
5	3	2	4	5	2	4	4	5
6	2	6	1	2	1	3	2	4
7	4	7	3	1	6	3	2	6
8	4	1	2	2	1	3	0	4

	1	2	3	4	5	6	7	8
1	3	1	2	2	1	1	2	0
2	1	6	3	1	7	2	1	1
3	5	3	4	3	3	2	1	3
4	2	1	3	2	1	4	3	4
5	3	4	4	1	1	5	0	4
6	3	1	3	3	2	0	5	3
7	5	4	5	1	3	0	1	1
8	6	4	2	4	5	5	1	4

Вариант №24

	1	2	3	4	5	6	7	8
1	1	3	0	1	3	1	0	0
2	1	2	1	1	1	4	0	1
3	5	4	7	1	6	0	2	5
4	3	1	2	2	1	3	3	2
5	2	4	5	2	1	0	2	4
6	2	1	5	2	3	1	0	5
7	0	2	2	1	4	2	3	2
8	0	2	6	1	8	1	2	3

Вариант №25_

	1	2	3	4	5	6	7	8
1	2	1	2	3	1	4	3	1
2	4	5	5	2	2	2	2	0
3	2	2	5	2	3	0	2	3
4	5	4	2	1	2	0	3	2
5	2	5	3	2	1	2	0	0
6	4	2	1	3	2	2	4	2
7	2	5	1	3	4	4	3	4
8	3	0	0	3	2	1	4	2

4.2.2 Поток обслуживания

Вариант №1

	tмин	tмакс	f
1	0,00	1,87	50
2	1,87	3,74	17
3	3,74	5,60	20
4	5,60	7,46	8
5	7,46	9,32	3
6	9,32	11,18	1

Вариант №2

	tмин	tмакс	f
1	0,00	8,60	98
2	8,60	17,20	43
3	17,20	25,80	5
4	25,80	34,40	3
5	34,40	43,00	1
6	43,00	51,60	1

Вариант №3

	tмин	tмакс	f
1	0,00	9,52	94
2	9,52	19,05	38
3	19,05	28,57	10
4	28,57	38,09	3
5	38,09	47,62	2
6	47,62	57,14	3

	tмин	tмакс	f
1	0,00	5,29	170
2	5,29	10,58	64
3	10,58	15,87	20
4	15,87	21,16	6
5	21,16	26,45	3
6	26,45	31,75	3

	tмин	tмакс	f
1	0,00	6,35	144
2	6,35	12,70	49
3	12,70	19,05	14
4	19,05	25,40	4
5	25,40	31,75	2
6	31,75	38,09	3

Вариант №6

	tмин	tмакс	f
1	0,00	11,64	142
2	11,64	23,28	44
3	23,28	34,92	16
4	34,92	46,56	5
5	46,56	58,20	3
6	58,20	69,84	3

Вариант №7

	tмин	tмакс	f
1	0,00	12,70	224
2	12,70	25,40	76
3	25,40	38,09	43
4	38,09	50,79	8
5	50,79	63,49	4
6	63,49	76,19	3

	tмин	tмакс	f
1	0,00	15,87	212
2	15,87	31,75	56
3	31,75	47,62	29
4	47,62	63,49	9
5	63,49	79,36	4
6	79,36	95,24	3

	tмин	tмакс	f
1	0,00	8,47	124
2	8,47	16,93	70
3	16,93	25,40	33
4	25,40	33,86	7
5	33,86	42,33	3
6	42,33	50,79	3

Вариант №10

	tмин	tмакс	f
1	0,00	4,65	39
2	4,65	9,31	16
3	9,31	13,96	7
4	13,96	18,62	1
5	18,62	23,27	0
6	23,27	27,93	1

Вариант №11

	tмин	tмакс	f
1	0,00	7,94	89
2	7,94	15,87	38
3	15,87	23,81	10
4	23,81	31,75	3
5	31,75	39,68	2
6	39,68	47,62	3

	tмин	tмакс	f
1	0,00	5,82	137
2	5,82	11,64	49
3	11,64	17,46	17
4	17,46	23,28	6
5	23,28	29,10	3
6	29,10	34,92	3

	tмин	tмакс	f
1	0,00	6,24	142
2	6,24	12,49	48
3	12,49	18,73	16
4	18,73	24,97	4
5	24,97	31,22	3
6	31,22	37,46	3

Вариант №14

	tмин	tмакс	f
1	0,00	16,72	131
2	16,72	33,44	54
3	33,44	50,16	31
4	50,16	66,88	4
5	66,88	83,60	3
6	83,60	100,32	3

Вариант №15

	tмин	tмакс	f
1	0,00	4,97	172
2	4,97	9,95	51
3	9,95	14,92	18
4	14,92	19,89	6
5	19,89	24,87	4
6	24,87	29,84	3

	tмин	tмакс	f
1	0,00	14,83	42
2	14,83	29,66	18
3	29,66	44,49	1
4	44,49	59,32	1
5	59,32	74,15	1
6	74,15	88,98	1

	tмин	tмакс	f
1	0,00	7,93	30
2	7,93	15,86	17
3	15,86	23,78	10
4	23,78	31,71	6
5	31,71	39,64	0
6	39,64	47,57	1

Вариант №18

	tмин	tмакс	f
1	0,00	4,06	36
2	4,06	8,11	16
3	8,11	12,17	4
4	12,17	16,23	6
5	16,23	20,28	1
6	20,28	24,34	1

Вариант №19

	tмин	tмакс	f
1	0,00	8,74	34
2	8,74	17,47	17
3	17,47	26,21	5
4	26,21	34,95	4
5	34,95	43,69	2
6	43,69	52,42	2

	tмин	tмакс	f
1	0,00	10,14	49
2	10,14	20,28	9
3	20,28	30,41	6
4	30,41	40,55	2
5	40,55	50,69	0
6	50,69	60,83	1

	tмин	tмакс	f
1	0,00	7,76	33
2	7,76	15,52	12
3	15,52	23,28	11
4	23,28	31,04	5
5	31,04	38,80	2
6	38,80	46,56	1

Вариант №22

	tмин	tмакс	f
1	0,00	9,44	37
2	9,44	18,89	20
3	18,89	28,33	5
4	28,33	37,78	0
5	37,78	47,22	1
6	47,22	56,67	1

Вариант №23

	tмин	tмакс	f
1	0,00	3,55	22
2	3,55	7,09	20
3	7,09	10,64	12
4	10,64	14,18	6
5	14,18	17,73	2
6	17,73	21,27	2

	tмин	tмакс	f
1	0,00	7,75	42
2	7,75	15,50	12
3	15,50	23,25	4
4	23,25	31,01	2
5	31,01	38,76	0
6	38,76	46,51	1

	tмин	tмакс	f
1	0,00	2,72	28
2	2,72	5,44	17
3	5,44	8,15	5
4	8,15	10,87	6
5	10,87	13,59	6
6	13,59	16,31	2

4.3 Порядок составления отчета

Практическая работа рассчитана на 4 часа для очной и заочной форм обучения направления подготовки 11.03.02 и выполняется в 1й контрольной точке.

Отчет по практической работе должен включать:

- цель работы;
- краткие теоретические сведения;
- исходные данные по каждому потоку,
- промежуточные данные расчетов,
- значения показателей потоков,
- наблюдаемые и табличные значения χ2,
- вывод о принятии/отбрасывании гипотезы пуассоновского (экспоненциального) распределения,
 - диаграммы теоретических и экспериментальных значений;
- выводы о выполнении работы с анализом полученных результатов.

Минимальный балл за практическую работу составляет 0.5 балла (выполнил работу, но не защитил). Максимальный балл – 4 (выполнил работу и защитил без замечаний).

Примерные критерии оценки качества отчётов по лабораторной работе:

- оформление отчёта не соответствует предъявляемым требованиям минус 0,5 балла;
- полученные экспериментальные материалы не обработаны (осциллограммы, спектрограммы и т. п.) минус 0.5 балла;
- выводы не соответствуют результатам работы минус 0,5 балла;

- работа защищена не вовремя (после окончания 1й контрольной точки) — минус 0.5 балла.

5 Контрольные вопросы

- 1) Что такое пуассоновский поток?
- 2) Как записывается и что позволяет найти формула Пуассона?
- 3) Как называется и что означает параметр пуассоновского закона?
- 4) Какому закону распределения подчиняются интервалы между поступлением отдельных заявок потока?
- 5) Как найти вероятность того, что в течение определенного интервала поступит не более определенного числа требований?
- 6) Чему равно математическое ожидание интервала времени между событиями в пуассоновском потоке?
- 7) Чему равно среднеквадратическое отклонение интервала времени между событиями в пуассоновском потоке?
- 8) В каких целях проводится аппроксимация экспериментальных данных относительно потока заявок и времени обслуживания в системе массового обслуживания теоретической зависимостью?
- 9) Из каких основных шагов состоит построение теоретической зависимости?
- 10) Зачем нужно проводить оценку статистической значимости результата?
- 11) Что будет являться результатом слияния двух пуассоновских потоков?
- 12) Какие потоки получаются при ветвлении пуассоновского потока на несколько потоков?

6 Список используемых источников

- 1) Козликин, В.И. Теория массового обслуживания [Текст]: учебное пособие / В.И. Козликин, Л.П. Кузнецова; Минобрнауки России, Юго-Западный государственный университет. Курск: ЮЗГУ, 2013. 143 с
- 2) Кирпичников, А. П. Методы прикладной теории массового обслуживания [Текст] / А. П. Кирпичников. Казань : Казанский университет, 2011. 200 с.
- 3) Теория вероятностей [Текст] : учебное пособие : [для студентов техн. и экон. спец. дневной, заочной и дистан. форм обучения] / Е. В. Журавлева [и др.] ; Юго-Зап. гос. ун-т. Курск : ЮЗГУ, 2015. 175 с
- 4) Крылов, В.В. Теория телетрафика и ее приложения [Текст]: учебное пособие / В. В. Крылов, С. С. Самохвалова. СПб.: БХВ-Петербург, 2005. 288 с
- 5) Вентцель, Е. С. Исследование операций. Задачи, принципы, методология [Текст] : учебное пособие / Е. С. Вентцель. М. : Высшая школа, 2001. 208 с.