ECE 712: Matrix Computations for Signal Processing mini Assignment 2

Due: Tues Oct 28, 2025

Consider the Approximation Theorem that we discussed in class (p.83 in the book). If **A** is a full–rank $m \times n$ matrix, then the matrix \mathbf{A}_r of rank $r < \min(m, n)$ is defined as

$$\mathbf{A}_r = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T, \tag{1}$$

where all the above variables are defined in the book. Then the Approximation Theorem says that \mathbf{A}_r is the closest matrix of rank r to \mathbf{A} in the Frobenius norm sense, i.e. that $||\mathbf{A} - \mathbf{A}_r||_F$ is minimum over all $m \times n$ matrices of rank r.

- 1. Prove that $\mathbf{A}_r = \mathbf{P}_c \mathbf{A}$, where \mathbf{P}_c is the projector onto the subspace defined by \mathbf{U}_1 . What is this subspace called?
- 2. Prove that $\mathbf{A}_r^T = \mathbf{P}_r \mathbf{A}^T$, where \mathbf{P}_r is the projector onto the subspace defined by \mathbf{V}_1 . What is this subspace called?