

案例分析與未來建議

- □待測物為 0402 的被動元件,振動送料機送料速度為 70 個/秒,廠商要求 FOV 要看到前後料的 狀態,方便後續驗證。
 - $0402 \rightarrow 1 \text{mm} * 0.5 \text{mm}$
 - 看到前後料, FOV = 3mm * 1.5mm
 - 70 個 / 秒 → 14ms/ 個
 - 取像速度 >> 14ms/3 (4.6 ms)

□Sensor 選用 (PYTHON 300):

SPECIFICATIONS

Key Specifications

Table 1. GENERAL SPECIFICATIONS

Parameter	Specification				
Pixel type	In-pixel CDS. Global shutter pixel architecture				
Shutter type	Pipelined and triggered global shutter				
Frame rate Zero ROT/ Normal ROT mode	P1-SN/SE/FN: PYTHON 300: 815/545 fps PYTHON 500: 545/385 fps PYTHON 1300: 210/165 fps P2-SN/SE: 50/43 fps P3-SN/SE/FN: NA/90 fps				
Master clock	P1, P3-SN/SE/FN: 72 MHz when PLL is used, 360 MHz (10-bit) / 288 MHz (8-bit) when PLL is not used P2-SN/SE: 72 MHz				
Windowing	8 Randomly programmable windows. Nor- mal, sub-sampled and binned readout modes				
ADC resolution	10-bit, 8-bit (Note 1)				
LVDS outputs	P1-SN/SE/FN: 4/2/1 data + sync + clock P3-SN/SE/FN: 2/1 data + sync + clock				
CMOS outputs	P2-SN/SE: 10-bit parallel output, frame_valid, line_valid, clock				
Data rate	P1-SN/SE/FN: 4 x 720 Mbps (10-bit) / 4 x 576 Mbps (8-bit) P2-SN/SE: 72 Mhz P3-SN/SE/FN: 2 x 720 Mbps (10-bit)				
Power dissipation (10-bit mode)	P1-SN/SE/FN: 620 mW (4 data channels) P1, P3-SN/SE/FN: 420 mW (2 data ch.) P1, P3-SN/SE/FN: 270 mW (1 data ch.) P2-SN/SE: 420 mW				
Package type	48-pin LCC				

Table 2. ELECTRO-OPTICAL SPECIFICATIONS

Parameter	Specification			
Active pixels	PYTHON 300: 640 (H) x 480 (V) PYTHON 500: 800 (H) x 600 (V) PYTHON 1300: 1280 (H) x 1024 (V)			
Pixel size	4.8 μm x 4.8 μm			
Conversion gain	0.096 LSB10/e ⁻ 140 μV/e ⁻			
Dark temporal noise	< 9 e ⁻ (Normal ROT, 1x gain) < 7 e ⁻ (Normal ROT, 2x gain)			
Responsivity at 550 nm	7.7 V/lux.s			
Parasitic Light Sensitivity (PLS)	<1/8000			
Full Well Charge	10000 e-			
Quantum Efficiency at 550 nm	56%			
Pixel FPN	< 1.0 LSB10			
PRNU	< 2% or 10 LSB10 on half scale response of 525LSB10			
MTF	68% @ 535 nm - X-dir & Y-dir			
PSNL at 20°C	120 LSB10/s, 1200 e ⁻ /s			
Dark signal at 20°C	5 e ⁻ /s, 0.5 LSB10/s			
Dynamic Range	> 60 dB in global shutter mode			
Signal to Noise Ratio (SNR max)	40 dB			

FOV = 3mm * 1.5mm

Sensor size W = 640*4.8um = 3.07mmSensor size H = 480*4.8um = 2.3 mm

1X Lens = 3.07mm * 2.3mm 0.5X Lens = 6.14mm * 4.6mm

□速度匹配 (PYTHON 300):

SPECIFICATIONS

Key Specifications

Table 1. GENERAL SPECIFICATIONS

Parameter	Specification				
Pixel type	In-pixel CDS. Global shutter pixel architecture				
Shutter type	Pipelined and triggered global shutter				
Frame rate Zero ROT/ Normal ROT mode	P1-SN/SE/FN: PYTHON 300: 815/545 fps PYTHON 500: 545/385 fps PYTHON 1300: 210/165 fps P2-SN/SE: 50/43 fps P3-SN/SE/FN: NA/90 fps				
Master clock	P1, P3-SN/SE/FN: 72 MHz when PLL is used, 360 MHz (10-bit) / 288 MHz (8-bit) when PLL is not used P2-SN/SE: 72 MHz				
Windowing	Randomly programmable windows. Nor- mal, sub-sampled and binned readout modes				
ADC resolution	10-bit, 8-bit (Note 1)				
LVDS outputs	P1-SN/SE/FN: 4/2/1 data + sync + clock P3-SN/SE/FN: 2/1 data + sync + clock				
CMOS outputs	P2-SN/SE: 10-bit parallel output, frame_valid, line_valid, clock				
Data rate	P1-SN/SE/FN: 4 x 720 Mbps (10-bit) / 4 x 576 Mbps (8-bit) P2-SN/SE: 72 Mhz P3-SN/SE/FN: 2 x 720 Mbps (10-bit)				
Power dissipation (10-bit mode)	P1-SN/SE/FN: 620 mW (4 data channels) P1, P3-SN/SE/FN: 420 mW (2 data ch.) P1, P3-SN/SE/FN: 270 mW (1 data ch.) P2-SN/SE: 420 mW				
Package type	48-pin LCC				

Table 2. ELECTRO-OPTICAL SPECIFICATIONS

Parameter	Specification		
Active pixels	PYTHON 300: 640 (H) x 480 (V) PYTHON 500: 800 (H) x 600 (V) PYTHON 1300: 1280 (H) x 1024 (V)		
Pixel size	4.8 μm x 4.8 μm		
Conversion gain	0.096 LSB10/e ⁻ 140 μV/e ⁻		
Dark temporal noise	< 9 e ⁻ (Normal ROT, 1x gain) < 7 e ⁻ (Normal ROT, 2x gain)		
Responsivity at 550 nm	7.7 V/lux.s		
Parasitic Light Sensitivity (PLS)	<1/8000		
Full Well Charge	10000 e-		
Quantum Efficiency at 550 nm	56%		
Pixel FPN	< 1.0 LSB10		
PRNU	< 2% or 10 LSB10 on half scale response of 525LSB10		
MTF	68% @ 535 nm - X-dir & Y-dir		
PSNL at 20°C	120 LSB10/s, 1200 e ⁻ /s		
Dark signal at 20°C	5 e ⁻ /s, 0.5 LSB10/s		
Dynamic Range	> 60 dB in global shutter mode		
Signal to Noise Ratio (SNR max)	40 dB		

Physical speed: 14ms/PCS

Object size W = 1 mm/4.8 um = 208 pixelObject size H = 0.5 mm/4.8 um = 104 pixel

Image speed: 208/14 = 14.9pixel/ms

Exposure time: 0.5pixel/14.9 = 0.03ms

Capturing speed: 815fps → 1.2ms Capturing speed: 545fps → 1.8ms

Moving pixel/capturing: 1.2*14.9 = 18pixe Moving pixel/capturing: 1.8*14.9 = 27pixe

Consume time = Exposure time + Capturing time + Processing time + uncertain system delay time Consume time = $0.03 \text{ ms} + 1.2 \text{ms} + 1.5 \text{ms} = 3.73 \text{ms} \implies 3.73*14.9 = 55.6 \text{ pixel}$

□注意事項:

- 連續取像時間與處理時間是否匹配。
- 延遲時間是否能準確控制,關鍵因素包含計算時間、位置資訊及 非即時作業系統的變動性。
- 軌道上移動速度是否一致?(盡可能縮短判斷位置到吹氣位置的距離,降低變速所帶來的影響)。
- 送料速度是否能準確估測?
- 電磁閥的反應時間是否需要考慮進來?
- 吹氣跟洩氣的反應速度。

Image speed: 208/14 = 14.9pixel/ms

Industries

- Electric components and equipment
- Manufacturing
- Semiconductors
- Machinery parts
- Material production
- Packaging
- Printing
- Agriculture and food
- Health care and life science
- Logistics
- Monitoring and surveillance
- · etc.

Applications

- Gauging and measurement
- 3D measurement
- Bar code and data code reading
- · OCR
- Object detection
- Object recognition
- Print inspection
- Surface inspection
- Defect detection
- Completeness check
- Robotic guidance
- · etc.

Machine Vision Algorithms

- Basic processing
- 1D & 2D measurement
- · Color analysis
- Segmentation
- · Matching
- · Shape finding
- Pattern recognition
- Feature extraction and analysis
- OCR
- Registration
- Calibration
- · Blob analysis
- Morphology
- · etc.

Sizeugih of All

- Complex background
- Size and shape variation
- Distortion
- Classification
- Object detection
- Feature extraction
- · etc.

Machine Vision + Deep Learning

https://www.youtube.com/watch?v=7tBTE1EFYUI

Deep Learning Software

Software	Initial Release	Open Source	Language	CUDA Support	Actively Developed
Dlib	2002	Yes	C++	Yes	Yes
Theano	2007	Yes	Python	Yes	No
Caffe	2013	No	Python, C++	Yes	No
TensorFlow	2015	Yes	C++, Python	Yes	Yes
Chainer	2015	Yes	Python	Yes	Yes
Keras	2015	Yes	Python, R	Yes	Yes
Apache MXNet	2015	Yes	C++, Python, Matlab, R, etc.	Yes	Yes
Microsoft Cognitive Toolkit (CNTK)	2016	Yes	Python, C++, C#/.NET	Yes	Yes
PyTorch	2016	Yes	Python	Yes	Yes
Matlab		Yes	Matlab	Yes	Yes
Wolfram Mathematica		Yes	Wolfram Language	Yes	Yes

Deep Learning Software

Source: Google Trend, Worldwide, 4/9/14-5/9/19, Machine Learning & Artificial Intelligence

Deep

Learning

The problem of fruit or weed detection

Bulanon et al. (2002)

Payne et al. (2013)

Payne et al. (2012)

Bakhshipour et al. (2017)

112/10/18

應用案例

Smart Farm Machinery Applying Deep Learning

Source: http://agrobot.com/

https://www.youtube.com/watch?v=M3SGScaShhw

應用案例

Traditional Approach for Image Classification (Shallow Classification)

技術前沿

技術前沿

JETSON NANO SPECIFICATIONS 128 Core Maxwell **GPU** 472 GFLOPs (FP16) CPU 4 core ARM A57 @ 1.43 GHz Memory 4 GB 64 bit LPDDR4 25.6 GB/s Storage 16 GB eMMC 4K @ 30 | 4x 1080p @ 30 | 8x 720p @ 30 Video Encode (H.264/H.265) 4K @ 60 | 2x 4K @ 30 | 8x 1080p @ 30 | 16x 720p @ Video Decode 30 | (H.264/H.265) 12 (3x4 or 4x2) MIPI CSI-2 DPHY 1.1 lanes Camera (1.5 Gbps) HDMI 2.0 or DP1.2 | eDP 1.4 | DSI (1 x2) **Display** 2 simultaneous 1 x1/2/4 PCIE **UPHY** 1 USB 3.0 SDIO/SPI/SysIOs/GPI

112/10/18

Os/I2C

1x SDIO / 2x SPI / 5x SysIO / 13x GPIOs / 6x I2C

ON INVIDIA.

Synergy of Advanced Technologies

□程式進修:

□機器視覺與 AI:

WILEY-VCH

Carsten Steger, Markus Ulrich, and Christian Wiedemann

Machine Vision Algorithms and Applications

Second Completely Revised and Enlarged Edition

DIY 專案開發

□人臉定位 (Dlib, HoG-SVM) + 人臉辨識 (ResNet) + 肢體動作(運動)辨識 (Skeleton + Machine learning)

https://www.youtube.com/watch?v=CBPsMGQB5p0

□雜草辨識 (Deeping learning) + 自走車導航 (Motion control + SLAM) + 自動噴灑除草劑 (I/O control)