Apply advanced statistical and analytical methods to solve complex problems.

```
In [2]: ▶ import pandas as pd
 import numpy as np
 from sklearn.model_selection import train_test_split
 from sklearn.ensemble import RandomForestRegressor
 from sklearn.metrics import mean_squared_error, r2_score
 import matplotlib.pyplot as plt
 import seaborn as sns
 # Load the California Housing dataset
 from sklearn.datasets import fetch_california_housing
 housing = fetch_california_housing()
 # Convert the dataset into a pandas DataFrame
 df = pd.DataFrame(housing.data, columns=housing.feature names)
 df['PRICE'] = housing.target
 # Display the first few rows of the dataframe
 print(df.head())
 # Split the data into training and testing sets
 X = df.drop('PRICE', axis=1)
 y = df['PRICE']
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 # Initialize the Random Forest Regressor
 rf = RandomForestRegressor(n_estimators=100, random_state=42)
 # Fit the model on the training data
 rf.fit(X_train, y_train)
 # Make predictions on the test data
 y_pred = rf.predict(X_test)
 # Evaluate the model
mse = mean_squared_error(y_test, y_pred)
 r2 = r2_score(y_test, y_pred)
 print(f"Mean Squared Error: {mse}")
 print(f"R-squared: {r2}")
 # Feature importance
 importance = rf.feature_importances_
 feature_importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': importance})
 feature_importance_df = feature_importance_df.sort_values('Importance', ascending=False)
 # Plotting feature importance
 plt.figure(figsize=(10, 6))
 sns.barplot(x='Importance', y='Feature', data=feature_importance_df)
 plt.title('Feature Importance')
 plt.show()
 # Visualize the actual vs predicted prices
 plt.figure(figsize=(10, 6))
 plt.scatter(y_test, y_pred)
 plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linewidth=2)
 plt.xlabel('Actual Prices')
 plt.ylabel('Predicted Prices')
 plt.title('Actual vs Predicted Prices')
 plt.show()
```

Output:

	MedInc H	louseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	\
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	
	Longitude	PRICE						
0	-122.23	4.526						
1	-122.22	3.585						
2	-122.24	3.521						
3	-122.25	3.413						
4	-122.25	3.422						
Mean Squared Erro		Error:	0.25536849	27247781				

Mean Squared Error: 0.255368492724778

R-squared: 0.8051230593157366

