ACE Examination Paper 1 Year 12 Mathematics Extension 1 Yearly Examination Worked solutions and marking guidelines

Section I		
	Solution	Criteria
1.	Three heads with $n = 5$ $P(X = 5) = {}^{5}C_{3} \ 0.7^{3} (1 - 0.7)^{5-3}$ $= 10 \times 0.7^{3} 0.3^{2}$	1 Mark: B
2.	$\int \sin^2 2x dx = \frac{1}{2} \int (1 - \cos 4x) dx$ $= \frac{1}{2} \left(x - \frac{1}{4} \sin 4x \right) + C$ $= \frac{x}{2} - \frac{1}{8} \sin 4x + C$	1 Mark: A
3.	The maximum height, for angle θ , occurs when $\dot{y}=0$, that is $y = Vt\sin\theta - \frac{1}{2}gt^2$ $\dot{y} = V\sin\theta - gt$ $0 = V\sin\theta - gt$ $t = \frac{V\sin\theta}{g}$ Maximum height $y = Vt\sin\theta - \frac{1}{2}gt^2$ $y = \left(\frac{V^2\sin^2\theta}{g} - \frac{V^2\sin^2\theta}{2g}\right)$ $= \frac{V^2\sin^2\theta}{2g}$	1 Mark: C
4.	$= \frac{V^2 \sin^2 \theta}{2g}$ $A = \int_0^4 6x - x^2 - 2x dx$ $= \int_0^4 4x - x^2 dx$	1 Mark: B
5.	$N = 135 + Ae^{kt}$ $\frac{dN}{dt} = k \times Ae^{kt}$ $= k(N - 135)$	1 Mark: D
6.	$u = \ln x \text{ and } du = \frac{1}{x} dx \qquad u = \ln e = 1, u = \ln e^2 = 2$ $\int_e^{e^2} \frac{1}{x \ln x} dx = \int_1^2 \frac{1}{u} du$ $= [\ln u]$ $= \ln 2 - \ln 1$ $= \ln 2$	1 Mark: B

	Solution	Criteria
7.	w + v = u	1 Mark: D
	w = u - v	
	$= u^2 - 2uv + v^2$	
	$ \underline{w} ^2 = \underline{u} ^2 + \underline{v} ^2 - 2 \underline{u} \underline{v} \cos 60$	
	$: \underline{w} ^2 = \underline{u} ^2 + \underline{v} ^2 - \underline{u} \underline{v} $	
8.	The correct step 1 is shown below	1 Mark: A
	Step 1: To prove the statement true for $n = 2$	
	$LHS = 2 \times 1 = 2$	
	RHS = $\frac{1}{3} \times 2 \times (2^2 - 1) = 2$	
	Result true for $n = 2$	
9.	$\sin x - \cos x = R\sin(x + \alpha)$	1 Mark: D
	$= R\sin x \cos \alpha + R\cos x \sin \alpha$ $R\cos \alpha = 1 \text{ (1)}$	
	$R\sin\alpha = -1 \text{ (2)}$	
	Equation ② divided by equation ①	
	$\tan \alpha = -1$	
	$\alpha = \frac{7\pi}{4}$	
	Squaring and adding the equations	
	$R^2(\sin^2\alpha + \cos^2\alpha) = 1 + 1$	
	$R^2 = 2$	
	$R = \sqrt{2} (R > 0)$	
	$ \therefore \sin x - \cos x = \sqrt{2} \sin \left(x + \frac{7\pi}{4} \right) $	
10.	Particle reaches the ground when $y = 0$	1 Mark: C
	$y = -\frac{1}{2}gt^2 + Vt\sin\theta + 90$	
	$y = -\frac{1}{2}gt^{2} + Vt\sin\theta + 90$ $0 = -\frac{1}{2}gt^{2} + 50t\sin\theta + 90$	
	$\frac{1}{2}gt^2 = 90$	
	2 20 20 20 20 20 20 20 20 20 20 20 20 20	
	$t = \sqrt{\frac{180}{g}} = \sqrt{\frac{36 \times 5}{g}}$	
	$=6\sqrt{\frac{5}{g}}$ seconds	
	\sqrt{g}	
		I

Section	ı II	
11(a)	$\overrightarrow{PQ} = 5\underline{i} - 4\underline{j}$ 2 -4 1 5 Q	2 Marks: Correct answer. 1 Mark: Shows some understanding.
11(b) (i)	LHS = $\sin\left(x + \frac{\pi}{4}\right)$ = $\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}$ = $\sin x \times \frac{1}{\sqrt{2}} + \cos x \times \frac{1}{\sqrt{2}}$ = $\frac{\sin x + \cos x}{\sqrt{2}}$	2 Marks: Correct answer. 1 Mark: Uses the sum of angles formula or exact values.
11(b) (ii)	$= RHS$ $\frac{\sin x + \cos x}{\sqrt{2}} = \frac{\sqrt{3}}{2}$ $\sin \left(x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$ $x + \frac{\pi}{4} = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}$ $x = \frac{\pi}{12} \text{ or } \frac{5\pi}{12}$	2 Marks: Correct answer. 1 Mark: Finds one solution or shows some understanding.
11(c) (i)	$P(\text{Two blue balls at least once}) = 1 - P(\text{No blue ball 5 times})$ $= 1 - \left(1 - \frac{4}{7} \times \frac{3}{6}\right)^{5}$ $= 0.8140 \dots$ ≈ 0.814	2 Marks: Correct answer. 1 Mark: Use of complementary event.
11(c) (ii)	Let p be the probability of getting two blue balls. $p = \frac{4}{7} \times \frac{3}{6} = \frac{2}{7} n = 5$ $P(X = x) = {}^{5}C_{x} \left(\frac{2}{7}\right)^{x} \left(\frac{5}{7}\right)^{50-x}$ $P(X = 3) = {}^{5}C_{3} \left(\frac{2}{7}\right)^{3} \left(\frac{5}{7}\right)^{5-3}$ $= \frac{2000}{16.807} \approx 0.119$	2 Marks: Correct answer. 1 Mark: Shows some understanding.
11(d)	$P(X = 3) = {}^{5}C_{3}\left(\frac{1}{7}\right)\left(\frac{3}{7}\right)$ $= \frac{2000}{16807} \approx 0.119$ $f(x) = 4\tan^{-1}x$ $f'(x) = \frac{4}{1+x^{2}}$ Th curve cuts the y-axis when $x = 0$ $f'(0) = \frac{4}{1+0^{2}} = 4$ $\therefore \text{Slope of the tangent is 4.}$	2 Marks: Correct answer. 1 Mark: Differentiates the inverse function.

11(e)	$1 + \cos 2x$	2 Marks: Correct
(i)	$LHS = \frac{1 + \cos 2x}{\sin 2x}$	answer.
	$2\cos^2 x$	4 M 1 H
	$={2\sin x \cos x}$	1 Mark: Uses a correct and
	COSX	appropriate trig
	$=\frac{1}{\sin x}$	identity.
	$=\cot x$	
	= RHS	
11(e)	$1 + \cos(2 \times 15^{\circ})$	1 Mark: Correct
(ii)	$\cot 15^{\circ} = \frac{1 + \cos(2 \times 15^{\circ})}{\sin(2 \times 15^{\circ})}$	answer.
	$(\sqrt{3})$	
	$=\frac{1+\left(\frac{\sqrt{3}}{2}\right)}{\frac{1}{2}}$	
	= 1	
	$= 2 + \sqrt{3}$	
12(a)	- 2 1 V3	2 Marks: Correct
()	$V = \pi \int_0^{\ln 4} x^2 dy$ $= \pi \int_0^{\ln 4} (e^y)^2 dy$ $= \pi \left[\frac{1}{2} e^{2y} \right]_{10}^{\ln 4}$	answer.
	$\int_0^{\ln 4}$	1 Marala IIIaa
	$=\pi \int_0^{\infty} (e^y)^2 dy$	1 Mark: Uses volume formula
	[1 22] ln4	with at least one
	$=\pi \left[\frac{1}{2}e^{2y}\right]_{10}$	correct value.
	$=\frac{\pi}{2}(e^{2\ln 4}-e^0)$	
	2	
	$=\frac{15\pi}{2}$ cubic units	
12(b)	$u + \overrightarrow{AB} = v$	1 Mark: Correct
(i)	$\overrightarrow{AB} = \overrightarrow{v} - \overrightarrow{u}$	answer.
12(b)	$u + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{OP}$	2 Marks: Correct
(ii)		answer.
	$\overrightarrow{OP} = \underline{u} + \frac{1}{2}(\underline{v} - \underline{u})$	1 Mark: Shows
	$=\frac{1}{2}(\dot{u}+\dot{v})$	some
	2 (* ' *)	understanding.
12(b)		1 Mark: Correct
(iii)	$\overrightarrow{AP} = \frac{1}{2}\overrightarrow{AB}$	answer.
	$=\frac{1}{2}(v-u)$	
	2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
12(b)	$\overrightarrow{BP} = -\overrightarrow{AP}$	1 Mark: Correct
(iv)		answer.
	$= -\frac{1}{2}(\underline{v} - \underline{u})$	
	$=\frac{1}{2}(\dot{u}-\dot{v})$	
	2 (2)	
12(c)	$\int dx$. x	2 Marks: Correct
	$\int \frac{dx}{\sqrt{36 - x^2}} = \sin^{-1} \frac{x}{6} + C$	answer.
	- 100 x	1 Mark: Uses
		inverse sine fn.

12(d)	$\int_0^{\frac{\pi}{4}} \cos^2 \frac{1}{2} x dx = \int_0^{\frac{\pi}{4}} \frac{1}{2} (1 + \cos x) dx$	2 Marks: Correct answer.
		1 Mark: Uses double
	$= \frac{1}{2} [x + \sin x]_0^{\frac{\pi}{4}}$	angle formula to
	$= \frac{1}{2} \left[\left(\frac{\pi}{4} + \frac{1}{\sqrt{2}} \right) - (0+0) \right]$	simplify the integral.
	$=\frac{1}{2}\left(\frac{\pi}{4}+\frac{1}{\sqrt{2}}\right)$	
12(e)	Step 1: To prove true for $n = 2$	3 marks: Correct
	$3^{n} - 2n - 1 = 3^{2} - 2 \times 2 - 1 = 4$ Result is true for $n = 2$	answer.
	Step 2: Assume true for $n = k$	2 marks: Proves the
	$3^k - 2k - 1 = 4m$	result true for $n = 1$
	where m is an integer Step 3: To prove true for $n = k + 1$	and attempts to use
	$3^{k+1} - 2(k+1) - 1 = 4p$	the result of $n = k$ to prove the result for
	where p is an integer	n = k + 1
	LHS = $3^{k+1} - 2(k+1) - 1$	
	$= 3(3^{k}) - 2k - 2 - 1$ $= 3(3^{k} - 2k - 1) + 4k$	1 mark: Proves the result true for $n = 1$.
	=3(3m)+4k	
	= 3(4m) + 4k $= 4(3m + k)$	
	=4p	
	= RHS	
	Step 4: True by induction	
13(a)	$T = 2 + Ae^{-kt}$	1 Mark: Correct
(i)	$(Ae^{-kt} = T - 2)$	answer.
	$\frac{dT}{dt} = -k \times Ae^{-kt}$	
	=-k(T-2)	
13(a)	Initially $t = 0$ and $T = 20$	3 Marks: Correct
(ii)	$T = 2 + Ae^{-kt}$	answer.
	$20 = 2 + Ae^{-k \times 0}$ $A = 18$	2 Marks: Finds the
	A = 18 Now $t = 20$ and $T = 10$	value of A and an
	$T = 2 + 18e^{-kt}$	expression for <i>k</i> .
	$10 = 2 + 18e^{-k \times 20}$	1 Mark: Finds the
	$e^{-20k} = \frac{8}{18} = \frac{4}{9}$	value of A.
	$-20k = \ln\frac{4}{9}$	
	$k = -\frac{1}{20} \ln \frac{4}{9}$	
	$=\frac{1}{20}\ln\frac{9}{4}$	
	= 0.0405	

13(a)	We need to find t when $T = 5$	2 Marks: Correct
(iii)	$T = 2 + 18e^{-kt}$	answer.
	$5 = 2 + 18e^{-kt}$	1 Mark: Makes
	$e^{-kt} = \frac{3}{18} = \frac{1}{6}$	some progress towards the solution.
	$-kt = \ln\frac{1}{6}$	Solution.
	$t = -\frac{1}{k} \ln \frac{1}{6}$	
	$=\frac{1}{k}\ln 6$	
	$=20\frac{\ln 6}{\ln \frac{9}{4}}$	
	= 44.1902	
	≈ 44 minutes	
	∴ It will take about 44 minutes for the bottle to cool to 5°C.	
13(b)	u = x + 1	3 Marks: Correct
	du = dx when $x = 15$, $u = 16$ and $x = 0$, $u = 1$	answer.
	$\int_{15}^{15} x \qquad \int_{16}^{16} u - 1 \qquad .$	2 Marks: Makes
	$\int_0^{15} \frac{x}{\sqrt{x+1}} dx = \int_1^{16} \frac{u-1}{\sqrt{u}} du$	significant progress
	$=\int_{1}^{16} u^{\frac{1}{2}} - u^{-\frac{1}{2}} du$	towards the solution.
	$= \left[\frac{2u^{\frac{3}{2}}}{3} - 2u^{\frac{1}{2}}\right]_{1}^{16}$	1 Mark: Sets up the integration using the substitution.
	$= \frac{2}{3} \left(16^{\frac{3}{2}} - 1 \right) - 2 \left(16^{\frac{1}{2}} - 1 \right)$ $= 36$	
13(c)	E(X) = np	2 Marks: Correct
(i)	$40 \times p = 5$	answer. 1 Mark: Makes
	p = 0.125	some progress.
13(c)	Var(X) = np(1-p)	2 Marks: Correct
(ii)	$= 40 \times 0.125(1 - 0.125)$ $= 4.375$	answer. 1 Mark: Makes
	— 1 .3/3	some progress.
13(d)	$ u = \sqrt{2^2 + 3^2}$	2 Marks: Correct
	$=\sqrt{13}$	answer.
	$\hat{u} = \frac{\hat{u}}{ u }$	1 Mark: Shows
		some
	$\hat{u} = \frac{\ddot{u}}{ \ddot{u} }$ $= \frac{1}{\sqrt{13}} (2\ddot{\iota} + 3\ddot{\iota})$	understanding.

4.46.3		2.14
14(a)	$x = Vt\cos\theta \ (1)$	3 Marks: Correct
(i)	$y = Vt\sin\theta - \frac{1}{2}gt^2$	answer.
	From equation ① $t = \frac{x}{V \cos \theta}$ substitute into equation ②	2 Marks: Makes
	$V\cos\theta$	significant progress
	$y = V \times \frac{x}{V \cos \theta} \times \sin \theta - \frac{1}{2}g \times \frac{x^2}{V^2 \cos^2 \theta}$	towards the solution.
		Solution.
	$= x \tan \theta - \frac{gx^2}{2V^2} \sec^2 \theta$	1 Mark: Makes <i>t</i> the
	27	subject of equation
	Given $h = \frac{V^2}{2a}$ and $\sec^2 \theta = (1 + \tan^2 \theta)$ then	1).
	_ -	
	$y = x \tan\theta - \frac{1}{4h}x^2(1 + \tan^2\theta)$	
14(a) (ii)	Now (a, b) satisfies the equation $y = x \tan \theta - \frac{1}{4h}x^2(1 + \tan^2 \theta)$	3 Marks: Correct answer.
	1 2(1 + 20)	
	$b = a \tan \theta - \frac{1}{4h} a^2 (1 + \tan^2 \theta)$	2 Marks: Makes
	$4hb = 4hatan\theta - a^2(1 + tan^2\theta)$	significant progress towards the
	$(1 + \tan^2 \theta)a^2 - 4h \tan \theta + 4hb = 0$	solution.
	$a^2 \tan^2 \theta - 4h \tan \theta + 4hb + a^2 = 0$	
	Quadratic equation has 2 solutions if $\Delta > 0$	1 Mark: Substitutes
	$b^2 - 4ac > 0$	(a, b). into equation
	$(-4ha)^2 - 4a^2(4hb + a^2) > 0$	of flight and
	$16h^2 a^2 - 16a^2hb - 4a^4 > 0$	simplifies.
	$4a^2(4h^2 - 4hb - a^2) > 0$	
	$4h^2 - 4hb - a^2 > 0$	
	$a^2 < 4h^2 - 4hb$	
	$a^2 < 4h(h-b)$	
14(b)	Step 1: To prove true for $n = 1$	3 marks: Correct
	2 _ 1	answer.
	$LHS = \frac{2}{1 \times 2} = 1$	
	RHS = $\frac{2 \times 1}{1 + 1} = 1$	2 marks: Proves the
		result true for $n = 1$
	Result is true for $n = 1$	and attempts to use
	Step 2: Assume true for $n = k$	the result of $n = k$ to
	$S_k = \frac{2k}{k+1}$	prove the result for
	Step 3: To prove true for $n = k + 1$	n = k + 1
	$S_{k+1} = \frac{2(k+1)}{k+2}$	4 15
		1 mark: Proves the result true for $n = 1$.
	$S_k + T_{k+1} = S_{k+1}$	result true for $n=1$.
	$S_k + T_{k+1} = S_{k+1}$ $LHS = \frac{2k}{k+1} + \frac{2}{(k+1)(k+2)}$	
	$=\frac{2k(k+2)+2}{(k+1)(k+2)}$	
	$= \frac{2(k^2 + 2k + 1)}{(k+1)(k+2)} = \frac{2(k+1)(k+1)}{(k+1)(k+2)}$	
	$=\frac{2(k+1)}{k+2}$	
	= RHS	
	Step 4: True by induction	
		<u>i</u>

14(c)	$u = 1 + e^x$ or $e^x = u - 1$	2 Marks: Correct
	$\frac{du}{dx} = e^x \text{ or } du = e^x dx$	answer.
		1 Mark: Sets up the
	$\int \frac{e^{3x}}{1+e^x} dx = \int \frac{e^{2x} \times e^x}{1+e^x} dx$	integral in terms of
	$= \int \frac{(u-1)^2}{u} du$	u.
	y α	
	$=\int \frac{u^2-2u+1}{u}du$	
	$=\int (u-2+\frac{1}{u})du$	
	J	
	$=\frac{u^2}{2}-2u+\ln u+C$	
	$= \frac{(1+e^x)^2}{2} - 2(1+e^x) + \ln(1+e^x) + C$	
	2	
14(d)	$y = 4x - x^2 + 8 \tag{1}$	1 Mark: Correct
(i)	$y = x^2 - 2x \ (2)$	answer.
	Substitute $x^2 - 2x$ for y into equation ①	
	$x^2 - 2x = 4x - x^2 + 8$ $2x^2 - 6x - 8 = 0$	
	$x^2 - 3x - 4 = 0$	
	(x-4)(x+1) = 0	
	x = 4 and $y = 8$	
	x = -1 and y = 3	
14(4)	\therefore Points of intersection are (4, 8) and (-1, 3)	2 Marilan Carrier
14(d) (ii)	$\int_{-1}^{1} (4x - x^2 + 8) - (x^2 - 2x) dx$	2 Marks: Correct answer.
	$= \int_{-1}^{4} (-2x^2 + 6x + 8) dx$	1 Mark: Shows
	$= -2 \int_{-1}^{4} (x^2 - 3x - 4) dx$	some understanding.
	$= -2 \left[\frac{x^3}{3} - \frac{3x^2}{2} - 4x \right]^4$	
	$= -2\left[\left(\frac{64}{3} - \frac{48}{2} - 16 \right) - \left(-\frac{1}{3} - \frac{3}{2} + 4 \right) \right]$	
	$=41\frac{2}{3}$ square units	
14(e)	$\frac{dy}{dx} = e^{6x}(1+y^2)$	2 Marks: Correct answer.
	$\int e^{6x} dx = \int \frac{1}{1+y^2} dy$	1 Mark: Separates the variables and
	$\frac{1}{6}e^{6x} + C = \tan^{-1}y$	attempts to integrate.
	$y = \tan\left(\frac{1}{6}e^{6x} + C\right)$	