Calcolo infinitesimale

L'operazione di limite

Nelle applicazioni l'operazione di limite si usa per studiare cosa accade ad una certa grandezza dopo un grande periodo di tempo (comportamento asintotico o divergenza) o per valori particolari della variabile indipendente.

L'operazione di limite

L'operazione di limite ha lo scopo di descrivere il comportamento di una funzione nei pressi di un punto di accumulazione per il suo dominio.

L'operazione di limite

Cosa accade all'espressione -x+3 quando x assume dei valori vicini al valore 2?

$$\lim_{x\to 2}(-x+3)=1$$

$$y = x^3 + x^2 - x$$

A cosa tende questa espressione

$$\lim_{x \to 1} (x^3 + x^2 - 1) = 1$$

quando x assume un valore vicino a 1

Per essere sicuri di poterci avvicinare a x a piacere, x deve essere un punto di accumulazione

Perché non sostituire il valore di x nell'espressione di f(x)?

$$y = \frac{1}{x-1}$$

Attenzione!

Ricordiamo che il punto di accumulazione x_0 potrebbe non appartenere ad A e quindi $f(x_0)$ potrebbe non essere definita.

Pur esistendo, non è detto che $f(x_0) = 1$.

Sia $f: A \rightarrow R$ ed x_0 un punto di accumulazione per A. Sia $l \in R$.

Diremo che
$$\lim_{x \to x_0} f(x) = l$$

Se
$$\forall \epsilon > 0$$
, $\exists \delta_{\epsilon} > 0 \mid |x - x_0| < \delta_{\epsilon} \Rightarrow |f(x) - 1| < \epsilon$.

Se
$$\forall I_{\varepsilon}(I) \exists I_{\delta}(x_0) \mid x \in I_{\delta}(x_0) \Rightarrow f(x) \in I_{\varepsilon}(I)$$

Ricordiamo che dalla definizione di valore assoluto segue che:

•
$$|f(x)| < \varepsilon$$
 equivale a $-\varepsilon < f(x) < \varepsilon$

•
$$|f(x)| > M$$
 equivale a $f(x) > M \circ f(x) \leftarrow M$

$$\lim_{x \to \frac{1}{2}} f(x) = -\frac{7}{10}$$

$$\int_{-0.5}^{1} \int_{-0.5}^{1} \int_{-0.5}^{1} \int_{-0.5}^{1} \int_{-0.7}^{1} \int_{-0.7$$

Se
$$\forall$$
 $I(-0,7) \exists$ $I_{\epsilon}(0,5) \mid x \in I_{\epsilon}(0,5) \Rightarrow f(x) \in I(-0,7)$

Verificare i seguenti limiti.

$$\lim_{x\to 3}(x+2)=5$$

$$\lim_{x \to +1} (2x - 6) = -4$$

Verificare i seguenti limiti

$$\lim_{x \to +3} (x+2) = 5$$
 è vero se

$$\forall \varepsilon > 0, \exists \delta_{\varepsilon} > 0 \mid |x - x_0| < \delta_{\varepsilon} \Rightarrow |f(x) - 1| < \varepsilon$$

$$\forall \epsilon \text{>} 0 \text{, } \exists \ \delta_{\epsilon} \text{>} 0 \text{ } | \text{ } | \text{x- 3}| \text{< } \delta_{\epsilon} \Rightarrow | \text{x+2-5}| \text{< } \epsilon$$

Verificare i seguenti limiti

$$\lim_{x \to +1} (2x - 6) = -4$$

è vero se

$$\forall \epsilon > 0, \exists \delta_{\epsilon} > 0 \mid |x - x_0| < \delta_{\epsilon} \Rightarrow |f(x) - 1| < \epsilon$$

$$\forall \epsilon \text{>} 0 \text{, } \exists \ \delta_{\epsilon} \text{>} 0 \text{ } | \text{ } |x\text{-} 1| \text{< } \delta_{\epsilon} \Rightarrow |2x\text{-}6\text{-}(\text{-}4)| \text{< } \epsilon$$

$$2|x-1|<\varepsilon$$

Sia f: $A \rightarrow R$ ed x_0 un punto di accumulazione per A.

Diremo che
$$\lim_{x \to x_0} f(x) = \infty$$

Se $\forall M>0$, $\exists \delta_M>0 \mid |x-x_0| < \delta_M \Rightarrow |f(x)|>M$.

$$\lim_{x \to 3} f(x) = +\infty$$
15.75
10.5
5.25

Se $\forall M>0$, $\exists \delta_M>0 \mid |x-3| < \delta_M \Rightarrow |f(x)|>M$.

Verificare i seguenti limiti.

$$\lim_{x \to 2} \log |x - 2| = -\infty$$

Asintoti

Un asintoto è una retta a cui il grafico della funzione tende.

Una retta y=mx+q è un asintoto per il grafico della funzione $f:R\rightarrow R$ se

$$\lim_{\substack{x \to x_0 \\ oppure \\ x \to \infty}} \left[f(x) - (mx + q) \right] = 0$$

Asintoti

Se $\lim_{x\to x_0} f(x) = \infty$ allora si è in presenza di un

asintoto verticale di equazione $x=x_0$.

Limite finito per $x \rightarrow \infty$

Sia $f: A \rightarrow R$, con A illimitato, e sia $l \in R$.

Diremo che
$$\lim_{x\to\infty} f(x) = l$$

Se $\forall \epsilon > 0, \exists M > 0 \mid |x| > M \Rightarrow |f(x) - 1| < \epsilon.$

Limite finito per $x \rightarrow \infty$

$$\lim_{x \to +\infty} f(x) = 2$$

Se
$$\forall \epsilon > 0$$
, $\exists M > 0 \mid |x| > M \Rightarrow |f(x) - 2| < \epsilon$.

Verificare i seguenti limiti.

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

Asintoti

Se $\lim_{x\to\infty} f(x) = l$ allora si è in presenza di un

asintoto orizzontale di equazione y=1

$$\lim_{x \to +\infty} f(x) = 2$$

Limite infinito per $x \rightarrow \infty$

Sia $f: A \rightarrow R$, con A illimitato.

Diremo che $\lim_{x\to\infty} f(x) = \infty$

Se $\forall N>0$, $\exists M>0 \mid |x|>M \Rightarrow |f(x)|>N$.

Limite infinito per $x \rightarrow \infty$

$$\lim_{x \to +\infty} f(x) = +\infty$$

Se $\forall N>0$, $\exists M>0 \mid |x|>M \Rightarrow |f(x)|>N$.

Verificare i seguenti limiti.

$$\lim_{x \to +\infty} x^2 = +\infty$$

Asintoti

Se $\lim_{x\to\infty} f(x) = \infty$ la funzione potrebbe avere

un asintoto obliquo, cioè una retta y=mx+q

$$\lim_{x\to\infty} \left[f(x) - (mx+q) \right] = 0$$

Limite destro per $x \rightarrow x_0$

Sia $f: A \rightarrow R$ ed x_0 un punto di accumulazione per A. Sia $l \in R$.

Diremo che
$$\lim_{x \to x_0^+} f(x) = l$$

se
$$\forall \epsilon > 0$$
, $\exists \delta_{\epsilon} > 0 \mid 0 < (x - x_0) < \delta_{\epsilon} \Rightarrow |f(x) - I| < \epsilon$.

Sia $f: A \rightarrow R$ ed x_0 un punto di accumulazione per A. Sia $l \in R$.

Diremo che
$$\lim_{x \to x_0^-} f(x) = l$$

se
$$\forall \epsilon > 0$$
, $\exists \delta_{\epsilon} > 0 \mid -\delta_{\epsilon} < (x-x_0) < 0 \Rightarrow |f(x)-1| < \epsilon$.

Verificare i seguenti limiti.

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

Condizione necessaria e sufficiente perché

esista
$$\lim_{x\to x_0} f(x) = l$$
 é che esistano e siano

uguali
$$\lim_{x \to x_0^+} f(x) = l e \lim_{x \to x_0^-} f(x) = l$$
.

Esempi di non esistenza del limite

$$y = segno(x) = \begin{cases} 1 & : x \ge 0 \\ -1 & : altrove \end{cases}$$

$$f(x) = \begin{cases} 2 & : x > 2 \\ x^2 + 2 & : altrove \end{cases}$$

Teorema di unicità del limite

Sia f: $A \rightarrow R$ ed x_0 un punto di accumulazione per A. Se esiste $\lim_{x \to x_0} f(x) = l$ allora è unico.

Esempi di non esistenza del limite

 $\lim_{x\to +\infty}\cos x$

 $\lim_{x \to +\infty} \sin x$

Teorema della permanenza del segno

Sia f: $A \rightarrow \mathbb{R}$ ed x_0 un punto di accumulazione per A. Se esiste $\lim_{x \to x_0} f(x) = l > 0$ allora esiste

 $I(x_0)$ in cui f(x)>0, $\forall x \in I(x_0)\setminus\{x_0\}$.

Corollario

Sia $f: A \rightarrow \mathbb{R}$ ed x_0 un punto di accumulazione per A. Se esiste $I(x_0)$ in cui f(x)>0, $\forall x \in I(x_0)\setminus\{x_0\}$

ed esiste $\lim_{x\to x_0} f(x) = l$, allora ≥ 0 .

Sia f: $A \rightarrow R$ | y=k ed x_0 un punto di accumulazione per A, allora $\lim_{x \to x_0} k = k$

Sia f: $A \rightarrow R \mid y=x \text{ ed } x_0 \text{ un punto di accumulazione per } A$, allora $\lim_{x \to x_0} x = x_0$

Sia f: $A \rightarrow R$ ed x_0 un punto di accumulazione per A. Sia $\lim_{x \to x_0} f(x) = l$ allora $\lim_{x \to x_0} k \cdot f(x) = k \cdot l$

Somma

Siano f e g: $A \rightarrow R$ ed x_0 un punto di accumulazione per A.

Siano
$$\lim_{x \to x_0} f(x) = l$$
 e $\lim_{x \to x_0} g(x) = m$

allora
$$\lim_{x \to x_0} [f(x) + g(x)] = l + m$$

Somma

ATTENZIONE:
$$\lim_{x \to x_0} [f(x) + g(x)] = l + m$$

NON IMPLICA
$$\lim_{x \to x_0} f(x) = l \operatorname{E} \lim_{x \to x_0} g(x) = m$$

$$\lim_{x \to x_0} \left[\sin^2 x + \cos^2 x \right] = \lim_{x \to x_0} 1 = 1$$

Differenza

Siano f e g: $A \rightarrow R$ ed x_0 un punto di accumulazione per A.

Siano
$$\lim_{x \to x_0} f(x) = l$$
 e $\lim_{x \to x_0} g(x) = m$

allora
$$\lim_{x \to x_0} [f(x) - g(x)] = l - m$$

Prodotto

Siano f e g: $A \rightarrow R$ ed x_0 un punto di accumulazione per A.

Siano
$$\lim_{x \to x_0} f(x) = l$$
 e $\lim_{x \to x_0} g(x) = m$

allora
$$\lim_{x \to x_0} [f(x) \cdot g(x)] = l \cdot m$$

Potenza

Siano f: $A \rightarrow \mathbb{R}$ ed x_0 un punto di accumulazione per A. Sia $\lim_{x \to x_0} f(x) = l$ allora $\lim_{x \to x_0} [f(x)]^n = l^n$

Divisione

Siano f e g:
$$A o R$$
 ed x_0 un punto di accumulazione per A . Sia $g(x) \neq 0$ in $I(x_0) \setminus \{x_0\}$. Siano $\lim_{x \to x_0} f(x) = l$ e $\lim_{x \to x_0} g(x) = m \neq 0$ allora $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l}{m}$

Inverso

Siano
$$f: A \to \mathbb{R}$$
 ed x_0 un punto di accumulazione per A . Sia $f(x) \neq 0$ in $I(x_0) \setminus \{x_0\}$. Sia $\lim_{x \to x_0} f(x) = l \neq 0$, allora $\lim_{x \to x_0} \frac{1}{f(x)} = \frac{1}{l}$

Inverso

Siano $f: A \rightarrow \mathbb{R}$ ed x_0 un punto di accumulazione per A. Sia $f(x)\neq 0$ in $I(x_0)\setminus\{x_0\}$.

Sia
$$\lim_{x \to x_0} f(x) = 0$$
, allora $\lim_{x \to x_0} \frac{1}{f(x)} = \infty$.
Se $f(x)>0$ in $I(x_0)$ allora $\lim_{x \to x_0} \frac{1}{f(x)} = +\infty$

Inverso

Siano $f: A \rightarrow \mathbb{R}$ ed x_0 un punto di accumulazione per A. Sia $f(x)\neq 0$ in $I(x_0)\setminus\{x_0\}$.

Sia
$$\lim_{x \to x_0} f(x) = \infty$$
, allora $\lim_{x \to x_0} \frac{1}{f(x)} = 0$.

Asintoti obliqui

$$\lim_{x\to\infty} [f(x) - (mx+q)] = 0$$

$$q = \lim_{x \to +\infty} \left[f(x) - mx \right]$$

$$m = \lim_{x \to \infty} \frac{f(x)}{x}$$

Per dimostrarla è necessario dividere per x

Se q e m≠0 esistono e sono finiti allora posso dire che esiste l'asintoto obliquo di equazione y=mx+q.

Le operazioni con i limiti possono essere eseguite anche quando $x \rightarrow \infty$.

Se l=∞ posso operare come con i reali con le seguenti eccezioni:

FORME INDETERMINATE

Esercizio

Studiare le seguenti funzioni:

$$y = \frac{2}{x} + 3$$

$$y = \frac{1}{x - 1} - \frac{1}{x + 3}$$

$$y = x^2(x-5)^2$$

Siano $f: A \rightarrow R$ ed x_0 un punto di accumulazione per A. La funzione f si dice continua in $x_0 \in A$ se $\lim_{x \to x_0} f(x) = f(x_0)$

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$$

Se $f: A \rightarrow R$ è continua per tutti i punti di un intervallo del dominio allora si dice che è continua in quell'intervallo.

Se $f: A \rightarrow R$ è continua per tutti i punti di A allora si dice che è continua nel dominio.

Su tutto R.

La funzione costante y=k

La funzione identità y=x

I polinomi

Le funzioni sinx e cosx

La funzione esponenziale

Se $f: A \rightarrow R$ non è continua in $x \in A$ allora si dice che la funzione è discontinua nel punto x.

Discontinuità di prima specie $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$

$$y = \begin{cases} x^2 & \text{per x>0} \\ -3 & \text{per x<0} \end{cases}$$

Se $f: A \rightarrow R$ non è continua in $x \in A$ allora si dice che la funzione è discontinua nel punto x.

Discontinuità di seconda specie

$$\lim_{\substack{x \to x_0^- \\ oppure \\ x \to x_0^+}} f(x) = \infty$$

$$y = \begin{cases} \frac{1}{x} & \text{per x>0} \\ -3 & \text{per x<0} \end{cases}$$

Se $f: A \rightarrow R$ non è continua in $x \in A$ allora si dice che la funzione è discontinua nel punto x.

Discontinuità di terza specie

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \neq f(x_0)$$

$$y = \begin{cases} x^2 & \text{per } x \neq 0 \\ -3 & \text{per } x = 0 \end{cases}$$

Teorema di Weierstrass

Sia f: $D=[a,b] \rightarrow R$, continua. Essa ammette massimo e minimo assoluto in D.

Corollario 1

Sia $f: D=[a,b] \rightarrow R$, continua. Essa assume tutti i valori compresi tra il massimo e il minimo.

Corollario 2

Sia f: D=[a,b] \rightarrow R, continua. Se f(a)>0 \land f(b)<0 $\Rightarrow \exists c \in D \mid f(c)=0$.

Operazioni tra funzioni continue

Somma

Siano f e g: $A \rightarrow R$ continue in A, allora anche f+g è continua.

Differenza

Siano f e g: $A \rightarrow R$ continue in A, allora anche f-g è continua.

Operazioni tra funzioni continue

Prodotto

Siano f e g: $A \rightarrow R$ continue in A, allora anche f·g è continua.

Potenza

Sia $f: A \rightarrow R$ continua in A, allora anche $[f(x)]^n$ è continua.

Operazioni tra funzioni continue

Divisione

Siano f e g:
$$A \rightarrow R$$
 continue in A.
Sia $B=\{x \in A \mid g(x)\neq 0\}$. Allora $\frac{f}{g}$ è continua in B.

Sia f: $A \to \mathbb{R}$ continua in A. Sia $B=\{x \in A \mid f(x)\neq 0\}$. Allora $\frac{1}{f}$ è continua in B.

Continuità della funzione inversa

Sia $f: A \rightarrow B$ continua in $x_0 \in A$ ed invertibile. Allora $f^{-1}: B \rightarrow A$ è continua in $y_0 = f(x_0)$.

Nel loro dominio

Le funzioni razionali fratte

Le funzioni irrazionali

La funzione tanx

La funzione logaritmo

Le inverse delle funzioni goniometriche

Limite di funzione composta

Siano f: $A \rightarrow B$ e g: $B \rightarrow C$. Sia x_0 punto di accumulazione per A e $\lim_{x \to x_0} f(x) = l$.

Sia I punto di accumulazione per B e $\lim_{y\to l} g(y) = L$.

Allora esiste $\lim_{x\to x_0} g(f(x)) = L$.

Limite di funzione composta

Esempio:

Siano f: R
$$\rightarrow$$
 R
x \sim x-2

e g:
$$R\setminus\{0\} \rightarrow R$$
.
y \longrightarrow $1/y$

$$\lim_{x\to 2}(x-2)=0$$

$$\lim_{x\to 0} 1/x = \infty$$

Allora esiste
$$\lim_{x\to 2} \frac{1}{x-2} = \infty$$

Continuità di funzione composta

Siano $f: A \rightarrow B e g: B \rightarrow C$, continue. Allora anche la funzione $g \circ f$ è continua.

$$\lim_{x \to x_0} f(x) = f(x_0)$$

$$\lim_{y \to y_0} g(y) = g(y_0)$$

$$\lim_{x \to x_0} y = y_0$$

$$\lim_{x \to x_0} g(f(x)) = \lim_{y \to y_0} g(y) = g(y_0) = g(f(x_0))$$

Risoluzione di forme indeterminate

$$\infty$$
 - ∞

$$\lim_{x \to \infty} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

Mettere in evidenza il termine di grado maggiore

$$\lim_{x\to\infty} \left[-3x^2 + 2x \right]$$

$$\lim_{x\to\infty} \left[x - 4x^3 + 2 \right]$$

Risoluzione di forme indeterminate

$$\frac{\infty}{\infty}$$

$$\lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0}$$

Mettere in evidenza il termine di grado maggiore sia al numeratore che al denominatore.

$$\lim_{x\to\infty}\frac{x^2+2}{3x^2-1}$$

$$\lim_{x \to \infty} \frac{x^2 + 2}{3x^2 - 1} \qquad \lim_{x \to \infty} \frac{x^3 + 1}{-9x^2 - 3}$$

$$\lim_{x\to\infty}\frac{x}{-x^2+1}$$

Risoluzione di forme indeterminate

$$\frac{0}{0}$$

$$\lim_{x \to x_0} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0} = \frac{0}{0} = \lim_{x \to x_0} \frac{(x - x_0) P^{n-1}(x)}{(x - x_0) Q^{m-1}(x)}$$

Scomporre numeratore e denominatore e poi semplificare.

$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x^3 + 4x^2 + x - 6}$$

Infiniti e infinitesimi

Sia f: $A \rightarrow B$ e sia x_0 punto di accumulazione per A.

La funzione si dice infinitesima in x_0 se $\lim_{x\to x_0} f(x) = 0$

La funzione si dice infinita in x_0 se $\lim_{x\to x_0} f(x) = \infty$

Siano f e g: $A \rightarrow R$ e sia x_0 punto di accumulazione per A. Siano f e g infinitesime in x_0 .

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = a \in R, a \neq 0 \qquad \text{feg}$$

f e g sono infinitesimi dello stesso ordine

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

f è infinitesimo di ordine superiore

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty$$

g è infinitesimo di ordine superiore

$$\nexists \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

infinitesimi non confrontabili

Siano f e g: $A \rightarrow R$ e x_0 punto di accumulazione per A. Siano f e g infinitesime in x_0 .

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = l \neq 0$$

f è infinitesimo dello stesso ordine rispetto a g.

Siano f e g: $A \rightarrow R$ e x_0 punto di accumulazione per A. Siano f e g infinitesime in x_0 .

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

f è infinitesimo di ordine superiore rispetto a g.

Ordine di un infinitesimo

Siano f e g: $A \rightarrow R$ e sia x_0 punto di accumulazione per A. Siano f e g infinitesime in x_0 . Diciamo che f è un infinitesimo di ordine a rispetto a g se

$$\lim_{x \to x_0} \frac{|f(x)|}{|g(x)|^{\alpha}} = l > 0$$

g è detto infinitesimo campione.

$$\lim_{x \to 0} \frac{f(x)}{x^{\alpha}} = l$$

$$\lim_{x \to b} \frac{f(x)}{(x-b)^{\alpha}} = l$$

Siano
$$f: R \rightarrow R$$
 e $g: R \rightarrow R$
 $x \quad y=x \quad x \quad y=sinx$

$$\lim_{x \to 0} x = 0$$

$$\lim_{x \to 0} \sin x = 0$$

f e g sono infinitesime in x=0.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

f e g sono infinitesimi dello stesso ordine.

Siano
$$f: R \rightarrow R$$
 eg: $R \rightarrow R$
 $x y=x$ $y=x^2$

$$\lim_{x \to 0} x = 0 \qquad \qquad \lim_{x \to 0} x^2 = 0$$

f e g sono infinitesime in 0.

$$\lim_{x \to 0} \frac{x^2}{x} = 0$$

g è infinitesimo di ordine superiore.

Siano f e g: $A \rightarrow R$ e sia x_0 punto di accumulazione per A. Siano f e g infinite in x_0 .

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = a \in R, a \neq 0$$

f e g sono infiniti dello stesso ordine

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

g è infinito di ordine superiore

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty$$

f è infinito di ordine superiore

$$\not\exists \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

infiniti non confrontabili

Ordine di un infinito

Siano f e g: $A \rightarrow R$ e sia x_0 punto di accumulazione per A. Siano f e g infinite in x_0 . Diciamo che f è un infinito di ordine a rispetto a g se

$$\lim_{x \to x_0} \frac{|f(x)|}{|g(x)|^{\alpha}} = l > 0$$

g è detto infinito campione.

$$\lim_{x \to +\infty} \frac{f(x)}{x^{\alpha}} = l$$

Complessità computazionale

Studio delle risorse (tempo di calcolo e memoria) necessarie l'esecuzione di un algoritmo/programma.

Come varia il tempo di esecuzione di un programma all'aumentare dei dati su cui opera?

E' una funzione monotòna crescente o costante?

Complessità computazionale

Algoritmo	Tempo di esecuzione
Estrazione di un elemento da un vettore	Costante O(1)
Somma di n numeri Ricerca sequenziale	Lineare O(n)
Ricerca binaria	Logaritmico O(log n)
Algoritmi di ordinamento ottimali (es. Heap Sort)	N-logaritmico O(n log n)
Prodotto di due matrici quadrate Bubble Sort	Polinomiale O(n^3) O(n^2)
Torre di Hanoi	Esponenziale O(2^n)
Problema del commesso viaggiatore	Fattoriale O(n!)

Complessità computazionale

Esercizio

Studiare le seguenti funzioni:

$$y = \frac{x^2 + 1}{x}$$

$$y = \frac{e^x}{x}$$