Code in src/HW1.ipynb

Problem 1

- (a) See src/cube.gif
- (b) 3D rotation matrices are not commutative.

Figure 1: two transformations

(c) First, I rotate the cube around Y for $\pi/4$. Then, I rotate the cube around X for $\arcsin(1/\sqrt{3})$.

Explanation: According to the Hint, to project the cube's body diagonal into the point, we need to rotate it and let it align with z axis. The angle between the body diagonal and z axis is $\arcsin(1/\sqrt{3})$.

(d) Change the code to fit into the scenario where the focal length is infinite. See src/dolly_zoom.py

(b) infinite focal length

Figure 2: (c) and (d)

Problem 2

(a) A wonky picture:

Figure 3: wonky picture

(b) Use normalized cross correlation as the similarity metric. The first channel has (0,0) offset. The subtitle includes the offsets for the second and the third channel.

Figure 4: aligned

(c) The subtitle includes the offsets for the second and the third channel of the first stage, the second stage and the overall.

(a) (2,3),(4,1) then (1,0),(0,-1), overall (5,6),(8,1)

(b) (2,11),(9,6) then (0,0),(0,0), overall (4,22),(18,12)

Figure 5: Pyramid

Problem 3

(a) RGB:

Figure 6: RGB

LAB:

Figure 7: LAB

- (b) From the channel L we can distinguish two pictures' lightness easily.
- (c) See $\operatorname{src/im1.jpg}$, $\operatorname{im2.jpg}$ and $\operatorname{info.txt}$