Part IA - Dynamics and Relativity Definitions

Lectured by G. I. Ogilvie

Lent 2015

Basic concepts

Space and time, frames of reference, Galilean transformations. Newton's laws. Dimensional analysis. Examples of forces, including gravity, friction and Lorentz. [4]

Newtonian dynamics of a single particle

Equation of motion in Cartesian and plane polar coordinates. Work, conservative forces and potential energy, motion and the shape of the potential energy function; stable equilibria and small oscillations; effect of damping.

Angular velocity, angular momentum, torque.

Orbits: the $u(\theta)$ equation; escape velocity; Kepler's laws; stability of orbits; motion in a repulsive potential (Rutherford scattering). Rotating frames: centrifugal and coriolis forces. *Brief discussion of Foucault pendulum.*

Newtonian dynamics of systems of particles

Momentum, angular momentum, energy. Motion relative to the centre of mass; the two body problem. Variable mass problems; the rocket equation. [2]

Rigid bodies

Moments of inertia, angular momentum and energy of a rigid body. Parallel axes theorem. Simple examples of motion involving both rotation and translation (e.g. rolling).

Special relativity

The principle of relativity. Relativity and simultaneity. The invariant interval. Lorentz transformations in (1+1)-dimensional spacetime. Time dilation and length contraction. The Minkowski metric for (1+1)-dimensional spacetime. Lorentz transformations in (3+1) dimensions. 4-vectors and Lorentz invariants. Proper time. 4-velocity and 4-momentum. Conservation of 4-momentum in particle decay. Collisions. The Newtonian limit.

Contents

1	Nev	vtonian dynamics of particles	3	
	1.1	Newton's laws of motion	3	
	1.2	Galilean transformations		
	1.3	Newton's Second Law	•	
2	Dimensional Analysis			
	2.1	Units	4	
	2.2	Scaling	4	
3	Forces			
	3.1	Force and potential energy in one dimension	ļ	
	3.2	Motion in a potential	ļ	
	3.3	Equilibrium points	ļ	
	3.4	Force and potential energy in three dimensions	ļ	
	3.5	Central forces	ļ	
	3.6	Gravity	(

1 Newtonian dynamics of particles

Definition (Particle). An particle is an object of insignificant size. It can be regarded as a point. It has a mass m > 0, and electric charge q.

Its position at time t is described by its position vector, $\mathbf{r}(t)$ or $\mathbf{x}(t)$ with respect to an origin O.

Definition (Frame of reference). A *frame of reference* is choice of coordinate axes for **r**. The axes may be fixed, moving, or accelerating relative to another frame.

With a frame of reference, we can write **r** in cartesian coordinates as (x, y, z)

Definition (Velocity). The *velocity* of the particle is

$$\mathbf{v} = \dot{\mathbf{r}} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}.$$

and is tangent to the path or trajectory.

Definition (Acceleration). The acceleration of the particle is

$$\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{r}} = \frac{\mathrm{d}^2 \mathbf{r}}{dt^2}.$$

Definition (Momentum). The momentum of a particle is

$$\mathbf{p} = m\mathbf{v} = m\dot{\mathbf{r}}.$$

m is the *inertial mass* of the particle, and measures its reluctance to accelerate (c.f. Newton's Second Law)

1.1 Newton's laws of motion

Definition (Inertial frames). *Inertial frames* are frames of references in which the frames themselves are not accelerating. Newton's Laws only hold in inertial frames.

1.2 Galilean transformations

Definition (Galilean boost). A Galilean boost is a change in frame of reference by

$$\mathbf{r}' = \mathbf{r} - \mathbf{v}t$$
$$t' = t$$

for a fixed, constant \mathbf{v} .

1.3 Newton's Second Law

- 2 Dimensional Analysis
- 2.1 Units
- 2.2 Scaling

3 Forces

3.1 Force and potential energy in one dimension

Definition (Potential energy). Given a force field F = F(x), we define the potential energy to be a function V(x) such that

$$F = -\frac{\mathrm{d}V}{\mathrm{d}x}.$$

or

$$V = -\int F \, \mathrm{d}x.$$

V includes an arbitrary additive constant.

3.2 Motion in a potential

3.3 Equilibrium points

Definition (Equilibrium point). A particle is in *equilibrium* if it has no tendency to move away. It will stay there for all time. Since $m\ddot{x} = -V'(x)$, the equilibrium points are the stationary points of the potential energy, i.e.

$$V'(x_0) = 0;$$

3.4 Force and potential energy in three dimensions

Definition (Power). The *power* is the rate at which work is done on a particle by a force. It is given by

$$P = \mathbf{F} \cdot \mathbf{v}$$
.

Definition (Work done). The *work done* on a particle by a force is the change in kinetic energy caused by the force. The work done on a particle moving from $\mathbf{r}_1 = \mathbf{r}(t_1)$ to $\mathbf{r}_2 = \mathbf{r}(t_2)$ along a trajectory C is the line integral

$$W = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_{t_1}^{t_2} \mathbf{F} \cdot \dot{\mathbf{r}} dt = \int_{t_1}^{t_2} P dt.$$

Definition (Conservative force and potential energy). A *conservative force* is a force field $\mathbf{F}(\mathbf{r})$ that can be written in the form

$$\mathbf{F} = -\nabla V.$$

V is the potential energy function.

3.5 Central forces

Definition (Central force). A central force is a force with a potential V(r) that depends only on the distance from the origin, $r = |\mathbf{r}|$. Note that a central force can be both attractive or repulsive.

Definition (Angular momentum). The angular momentum of a particle is

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = m\mathbf{r} \times \dot{\mathbf{r}}.$$

Definition (Torque). The $torque\ G$ of a particle is the rate of change of momentum.

 $\mathbf{G} = \frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \mathbf{r} \times \mathbf{F}.$

3.6 Gravity

Definition (Gravitaional potential and field). The *gravitational potential* is the gravitational potential energy per unit mass. It is

$$\Phi_g(r) = -\frac{GM}{r}.$$

Note that *potential* is different from *potential energy*. The *gravitational field* is the force per unit mass,

$$\mathbf{g} = -\nabla \Phi_g = -\frac{GM}{r^2}\hat{\mathbf{r}}.$$

These are properties of the mass M alone.

Then the potential energy of a second particle is $V = m\Phi_g$.