Chuong 3

Theo giới hạn dưới về số lượng bit kiểm tra, nếu một mã tuyến tính C(n,k) có thể sửa sai các lỗi sai $\leq t$ bit thì số bit kiểm tra $r=n-k$ phải thỏa điều kiện nào sau đây?	$2^r \ge \sum_{i=0}^t \binom{n}{i}$	$2^r \le \sum_{i=0}^t \binom{n}{i}$	$2r \le \sum_{i=0}^{t} \binom{n}{i}$	$2r \le \sum_{i=0}^{t} \binom{n}{i}$
Cho từ mã c = 01001, hãy xác định chiều dài từ mã c?	2	3	4	5
Cho từ mã c = 1010, hãy xác định chiều dài từ mã c?	2	3	4	5
Cho từ mã c = 01021, hãy xác định chiều dài từ mã c?	2	3	4	5
Cho từ mã c = 10320, hãy xác định chiều dài từ mã c?	2	3	4	5
Cho từ mã c = 1120, hãy xác định chiều dài từ mã c?	2	3	4	5
Cho từ mã c = 132, hãy xác định chiều dài từ mã c?	2	3	4	5
Cho từ mã c = 00, hãy xác định cơ số của từ mã c?	2	3	4	5
Cho từ mã c = 0102, hãy xác định cơ số của từ mã c?	2	3	4	5

Cho từ mã c = 11302, hãy xác định cơ số của từ mã c?	2	3	4	5
Trọng số Hamming của từ mã 101101 này là bao nhiêu?	2	3	4	5
Trọng số Hamming của từ mã 11001 này là bao nhiêu?	2	3	4	5
Trọng số Hamming của từ mã 11202 này là bao nhiêu?	2	3	4	5
Trọng số Hamming của từ mã 102111 này là bao nhiêu?	2	3	4	5
Khoảng cách Hamming giữa hai từ mã 1011101 và 1001001?	2	3	4	5
Khoảng cách Hamming giữa hai từ mã 0111011 và 0110101?	2	3	4	5
Khoảng cách Hamming giữa hai từ mã 1010111 và 0110101?	2	3	4	5
Cho bộ mã U = { <mark>0110,</mark> 0101, 0111, 1110, 1000, 1011}, khoảng cách Hamming của bộ mã U?	1	2	3	4
Cho bộ mã U = {0000, <mark>0101, 0111</mark> , 1110, 1000, 1111}, khoảng cách Hamming của bộ mã U?	1	2	3	4
Cho bộ mã U = {0100, 0101, 0111, 1110, 1000, 1111}, khoảng cách Hamming của bộ	1	2	3	4

mã U?				
Giải mã cyclic theo thuật toán chia dịch vòng với từ mã phát đi là $a(x)$ có vector lỗi $e(x)$ thì từ mã r(x) nhận được là:	r(x) = a(x) + e(x)	$r(x) = \frac{a(x)}{e(x)}$	r(x) = 2a(x) + e(x)	$r(x) = 2\frac{a(x)}{e(x)}$
Bộ mã nào sau đây được gọi là bộ mã đều?	U = {00, 01, 101, 101}	U = {00, 01, 11, 10}	Cả ##A và ##B đều đúng	Cả ##A và ##B đều sai
Bộ mã nào sau đây được gọi là bộ mã đều?	U = {00, 01, 11, 10}	U = {001, 010, 110, 111}	Cả ##A và ##B đều đúng	Cả ##A và ##B đều sai
Bộ mã nào sau đây được gọi là bộ mã đều?	U = {00, 01, 101, 101}	U = {0, 10, 001, 111}	U = {0 <mark>0, 11, 10, 01}</mark>	U = {00 01, 001, 0001}
Bộ mã nào sau đây được gọi là bộ mã đều?	U = {00, 01, 101,	U = {01, 10, 001,	U = {0, 01, 10,	Cả ba đáp án còn
by ma mad sad day daye gyr la by ma ded:	101}	111}	1101}	lại đều sai
Bộ mã nào sau đây được gọi là bộ mã đều?	101} U = {00, 01, 10, 11}	111} U = {01, 02, 12, 23}	1101} U = {001, 010, 110, 111}	lại đều sai U = {0, 01, 101, 101}
	U = {00, 01, 10,	-	U = {001, 010, 110,	U = {0, 01, 101,
Bộ mã nào sau đây được gọi là bộ mã đều? Trong mã hóa Huffman, dữ liệu luôn luôn	U = {00, 01, 10, 11}	U = {01, 02, 12, 23}	U = {001, 010, 110, 111}	U = {0, 01, 101, 101}

bằng bao nhiêu?				
Các mạch logic nào được dùng trong bộ mã hóa và bộ giải mã để thực hiện các mã cyclic?	Thanh ghi dịch và bộ cộng module 2	Bộ đếm và bộ nhân	Thanh ghi dịch và bộ đếm	Bộ cộng module 2 và bộ
Mã khối tuyến tính (6,2) có bao nhiêu từ mã thừa (mã dư)?	24	28	60	64
Cho mã cyclic (n,k) với đa thức sinh $g(x)$. Phát biểu nào sau đây là đúng?	$g(x)$ là ước số của $x^k + 1$	$g(x)$ là ước số của $x^n + 1$	$g(x)$ là ước số của $x^{n-k} + 1$	Bậc của $g(x)$ bằng k
Điều nào sau đây không đúng đối với mã cyclic?	Mã cyclic là một loại mã dùng để phát hiện sai và sửa sai	Mã cyclic làm giảm dư thừa thông tin	Trong bộ mã cyclic, dịch vòng của một từ mã là một từ mã khác nằm trong bộ mã.	Trong bộ mã cyclic, tổng của hai từ mã là một từ mã khác nằm trong bộ mã
Việckhó hơn việc	Phát hiện lỗi, sửa lỗi	Sửa lỗi, phát hiện lỗi	Tạo lỗi, sửa lỗi	Tạo lỗi, phát hiện lỗi
Mã là mã khối tuyến tính đặc biệt có thêm một thuộc tính. Nếu một từ mã được dịch vòng, kết quả là một từ mã khác.	Phi tuyến	Chập	Cyclic	Cả ba đáp án còn lại đều sai
Nếu khoảng cách Hamming giữa từ mã ở phía phát và từ mã tương ứng nhận được ở phía thu là 3, thì có bit bị lỗi.	2	3	4	Cả ba đáp án còn lại đều sai

Giả sử từ mã có trọng số b và chiều dài từ mã l . Hỏi bộ mã có biểu diễn như hình dưới là bộ mã nào? $\begin{array}{ccccccccccccccccccccccccccccccccccc$	U = {00, 10, 110, 011}	U = {00, 11, 010, 111}	U = {00, 10, 010, 1010}	U = {1, 00, 110, 0100}
Chọn bộ mã được biểu diễn với phương pháp cây mã như sau: 23	U = {3, 21, 123, 11, 102}	U = {3, 11, 23, 102, 123}	U = {1, 10, 01, 011, 101}	U = {1, 01. 21, 101, 110}
Chọn bộ mã được biểu diễn với phương pháp cây mã như sau:	$U = \{3, 10, 21, 123, 11, 102\}$	$U = \{3, 11, 23, 011, 102, 123\}$	$U = \{1, 10, 01, 01, 101, 101, 111\}$	U = {3, 21, 11, 13, 223, 102}

Chọn bộ mã được biểu diễn với phương pháp cây mã như sau: 23	U = {3, 10, 21, 123, 11, 102}	U = {3, 11, 23, 011, 102, 123}	U = {3, 223, 23, 21, 11, 102}	U = {1, 10, 01, 011, 101, 111}
Chọn bộ mã được biểu diễn với phương pháp cây mã như sau:	U = {3, 11, 23, 011, 102, 123}	U = {3, 223, 23, 21, 11, 102}	$U = \{1, 10, 01, 01, 101, 101, 111\}$	$U = \{33, 10, 21, 321, 232, 231\}$

	0 1		23						
Ma trận Hammii		_		,	ng cách là:	<i>d</i> =1	d=2	d = 3	d = 4
Một bộ cho mộ nếu?		_				Hiệu suất mã hóa tốt nhất	Chiều dài trung bình nhỏ nhất trong tất cả các bộ mã	Cả ##A và ##B đều đúng	Cả ##A và ##B đều sai
	rng đượ	rc cho	theo B mã là: 2 011		uất p(u _i) 1, chiều	$\overline{L} = 2,45$	$\overline{L} = 2,98$	$\overline{L} = 3,11$	$\overline{L} = 3,24$
Chọn pl biểu sau		u nào	đúng ti	rong cá	c phát	_		Một mã mà phân tách được thì có các chiều dài từ mã không thỏa bất	Nếu một mã phân tách được thì không tồn tại một bộ mã tương

	phải được mã hóa thành từ mã có chiều dài càng nhỏ	thành từ mã có	đẳng thức Kraft	đương về chiều dài các từ mã mà có tính prefix
Chọn phát biểu đúng nhất trong các phát biểu sau:	Hiệu suất mã hóa của bộ mã hóa nguồn là tỷ số giữa entropy của nguồn và chiều dài trung bình của bộ mã	cho một nguồn tin thì tin có xác suất càng lớn phải	tách mã được là không tồn tại dãy	Cả ba đáp án còn lại đều đúng
Tìm $f(x)$ với phép nhân đa thức trên trường GF(2) là $f(x) = g_1(x) * g_2(x)$. Trong đó, $g_1(x) = 1 + x^2$ và $g_2(x) = 1 + x^2 + x^3$.	$f(x) = 1 + x^3 + x^4 + x^5$	$f(x) = 1 + x^2$	$f(x) = x^5$	$f(x) = 1 + x^5$
Cho $f(x) = x^6 + x^5 + x^4 + x + 1,$ $g(x) = x^3 + x + 1, \text{ tìm đa thức dư của phép}$ chia f(x) cho g(x):	$1 + x + x^2$	1+ <i>x</i>	$1+x^2$	$1 + x + x^3$
Cho mã khối tuyến tính (4,2) có ma trận sinh là: $G = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$. Các từ mã tương ứng với ma trận sinh G là:	c = {0000, 0001, 1010, 1011}	c = {0000, 1100, 0111, 1011}	c = {0000, 1100, 0111, 1011}	c = {0000, 1101,1011, 0110}
Bộ mã hóa nguồn khi nào gọi là tối ưu?	Nếu bộ mã có chiều dài là nhỏ nhất trong các từ mã	chiều dài trung	Nếu bộ mã có chiều dài trung bình nhỏ nhất trong các từ mã	Nếu bộ mã có chiều dài là nhỏ nhất trong các bộ mã

Tìm $f(x)$ với phép nhân đa thức trên trường GF(2) là $f(x) = g_1(x) * g_2(x)$. Trong đó, $g_1(x) = 1 + x^2 + x^3$ và $g_2(x) = 1 + x$.	$f(x) = 1 + x^4$	$f(x) = 1 + x^3$	$f(x) = 1 + x + x^2 + x^4$	$f(x) = x^4$
Bộ mã nào được biểu diễn với trọng số b và chiều dài từ mã / như sau: b 6	U = {00, 11, 010, 111}	U = {00, 01, 101, 110}	U = {00, 10, 110, 011}	U = {00, 10, 010, 110}
Tìm $f(x)$ với phép nhân đa thức trên trường GF(2) là $f(x) = g_1(x) * g_2(x)$. Trong đó, $g_1(x) = 1 + x + x^2 + x^4$ và $g_2(x) = 1 + x$.	$f(x) = 1 + x^3 + x^4 + x^5$	$f(x) = 1 + x + x^2$	$f(x) = x^5$	$f(x) = 1 + x^5$
Bộ mã nào sau đây được gọi là bộ mã đều?	U = {00, 01, 10}	U = {000, 010, 001}	Cả ##A và ##B đều đúng	Cả ##A và ##B đều sai
Bộ mã nào sau đây được gọi là bộ mã đều?	U = {00, 01, 101, 101}	U = {01, 10, 001, 111}	U = {00, 11, 000, 111}	U = {001, 010, 110, 111}

Bộ mã nào sau đây được gọi là bộ mã đều?	U = {0, 01, 001, 0001}	U = {1, 10, 110, 1110}	U = {00, 01, 11, 10}	U = {0, 10, 011, 010}
Bộ mã nào sau đây được gọi là bộ mã đều?	U = {0, 01, 11, 10}	U = {00, 010, 100, 111}	Cả ##A và ##B đều đúng	Cả ##A và ##B đều sai
Chọn phát biểu đúng trong các phát biểu sau:	Một mã tuyến tính $C(n,k)$ được gọi là mã vòng nếu từ mã $c_1 = a_0 a_1 a_{n-2} a_{n-1}$ là một từ mã thì từ mã $c_2 = a_{n-1} a_0 a_1 a_{n-2}$ cũng là một từ mã	Mã vòng có đa thức từ mã khác 0 có bậc nhỏ nhất là duy nhất.	Trong mã vòng, không tồn tại hai đa thức mã khác O, khác nhau và có cùng bậc nhỏ nhất	Cả ba đáp án còn lại đều đúng
Mã vòng (cyclic) C(7,4) có đa thức sinh $g(x)=1+x+x^3$ thì ma trận sinh tương ứng là:	$G = \begin{bmatrix} 1+x+x^3 \\ x+x^2+x^4 \\ x^2+x^3+x^5 \\ x^3+x^4+x^6 \end{bmatrix}$	$G = \begin{bmatrix} 1+x+x^3 \\ x+x^2+x^4 \\ 1+x^3+x^5 \\ x^3+x^4+x^6 \end{bmatrix}$	$G = \begin{bmatrix} 1+x+x^3 \\ x+x^2+x^4 \\ x^2+x^3+x^5 \\ 1+x^2+x^6 \end{bmatrix}$	$G = \begin{bmatrix} 1 + x + x^3 \\ x + x^2 + x^4 \\ x^2 + x^3 + x^4 \\ 1 + x^4 + x^6 \end{bmatrix}$
Đa thức kiểm tra của mã vòng (cyclic) C(n,k) được tính như sau:	$h(x) = \frac{x^n + 1}{g(x)}$	$h(x) = \frac{x^n + 1}{2g(x)}$	$h(x) = \frac{2(x^n + 1)}{g(x)}$	$h(x) = \frac{x^n - 1}{g(x)}$
Da thức sinh $g(x)$ và đa thức kiểm tra $h(x)$ của mã vòng (cyclic) C(n,k) được gọi là trực giao khi: $\frac{\partial inh \ nghĩa}{\partial không \ gian \ con \ trực giao}$ của C trong khôn		$[g(x)-h(x)] \mod(x^n+1) = 0$ $l\hat{a}$	$g(x).h(x)\bmod(x^n+1)=1$	$\frac{g(x)}{h(x)} \operatorname{mod}(x^{n} + 1) = 0$

Nói cách khác, mã đối ngẫu \mathbf{C}^{\perp} gồm các từ mã n bit trực giao với các từ mã của \mathbf{C} .

$$C^{\perp} = \{ v \in \{0, 1\}^n \mid v.w = 0, \ \forall w \in C \},\$$

Trong đó $v=(v_1\,v_2\,\ldots\,v_n\,);\,w=(x_1\,x_2\,\ldots\,x_n\,),$ các $x_b,\,v_i\in\{0,\,1\},$ ký hiệu v.w là tích vô hướng xác định bởi:

 $v.w = \sum_{i=1}^{n} x_i v_i$, tổng này thực hiện với các phép +.bit và x.bit.

Thí dụ 2.5

- 1. Trên trường F_2 , ta có tích vô hướng của các từ mã: (1001).(1101) = 1.1 + 0.1 + 0.0 + 1.1 = 1 + 0 + 0 + 1 = 0. Vậy các từ mã 1001 và 1101 là trực giao nhau.
- Tương tự: ta có (1111).(1110) = 1. Vậy các từ mã 1111 và 1110 là không trực giao.

Khoảng cách giữa hai từ mã bằng của từ mã tổng của hai từ mã đó.	Kích thước	Trọng số	Khoảng cách tối thiểu	Cả ba đáp án còn lại đều sai
Cho khoảng cách Hamming tối thiểu của bộ mã là d_{\min} . Khả năng phát hiện lỗi tối đa của mã sửa sai là:	d _{min} +1	$d_{\min} - 1$	$d_{ m min}$	d _{min} / 2
Cho khoảng cách Hamming tối thiểu của bộ mã là d_{\min} . Số lỗi có thể sửa được tối đa của mã sửa sai là:	d _{min} +1	$d_{\min} - 1$	$\left(d_{\min}+1\right)/2$	$\left(d_{\min}-1\right)/2$
Khoảng cách tối thiểu của mã khối tuyến tính (d _{min}) bằng số cột tối thiểu phụ thuộc tuyến tính của H ^T hay nói cách khác, của chúng bằng vectơ không.	Tổng	Hiệu	Tích	Thương
Khi biểu diễn một mã khối tuyến tính là (n,k) thì n là số bit và k là số bit:	Từ mã, bản tin	Bản tin, từ mã	Bản tin, kiểm tra	Từ mã, kiểm tra
Đa thức sinh của một mã cyclic (n,k) phải là ước của:	$x^n + 1$	x^n-1	$x^n/2$	x^{2n}
Khoảng cách Hamming giữa hai từ mã $v_1 = 1100001011$ và $v_2 = 1001101001$ là:	1	2	3	4
Trong các mã nào dưới đây, mã nào là khối tuyến tính trên GF (2)?	{111, 100, 001, 010}	{00000, 01111, 10100, 11011}	{110, 101, 001, 010}	{0000, 0111, 1000, 1101}

Cho mã cyclic (n,k) (mã vòng) với đa thức sinh $g(x)$. Phát biểu nào sau đây là đúng:	$g(x)$ là ước số của $x^k + 1$	$g(x)$ là ước số của $x^n + 1$	$g(x)$ là ước số của $x^{n-k} + 1$	Bậc của $g(x)$ bằng k
Mã nào dưới đây không phải là mã hóa kênh	Mã cyclic (mã vòng)	Mã khối tuyến tính	Mã Huffman	Mã Hamming
Khoảng cách mã Hamming là số lượng phần tử tương ứng của hai từ mã?	Giống nhau	Khác nhau	Bằng 0	Cả ba đáp án còn lại đều sai
Điều kiện nào sau đây là điều kiện thiết yếu để có một mã kiểm soát lỗi tốt?	Các phương pháp mã hóa và giải mã nhanh hơn	Khả năng sửa lỗi tốt hơn	Khả năng truyền thông tin cực đại tính bằng bit /s	Cả ba đáp án còn lại đều đúng
Trong mã tuyến tính, khoảng cách Hamming tối thiểu giữa hai từ mã bất kỳ trong bộ mã luôn trọng số tối thiểu của các từ mã khác không trong bộ mã	Nhỏ hơn	Lớn hơn	Bằng	Cả ba đáp án còn lại đều sai
Theo tính chất tuyến tính của mã tuyến tính, của hai từ mã trong mã cyclic (mã vòng) cũng là một từ mã hợp lệ	Tổng	Hiệu	Tích	Thương
Nếu sai lỗi được sửa tại, nó được gọi là mã sửa lỗi trước (Forward Error Correction)	Phía phát	Phía thu	Cả ##A và ##B đều đúng	Cả ba đáp án còn lại đều sai
Trong số học modulo-2, cho kết quả tương tự.	Cộng và nhân	Cộng và chia	Cộng và trừ	Cả ba đáp án còn lại đều sai

Trong số học modulo-2, chúng ta sử dụng phép toán cho cả phép cộng và phép trừ.	XOR	OR	AND	NOT
Điều kiện đối với mã khối tuyến tính có ma trận sinh G và ma trận kiểm tra H, là:	$GH^T = 0$	$(GH)^T = 0$	$G^T H^T = 0$	$G^T H = 0$
giữa hai từ mã là số lượng các vị trí tương ứng khác nhau.	Mã Hamming	Khoảng cách Hamming	Quy tắc Hamming	Cả ba đáp án còn lại đều sai
Trong mã khối tuyến tính, phép toán của bất kỳ hai từ mã hợp lệ nào sẽ tạo ra một từ mã hợp lệ khác.	XOR	OR	AND	NOT
Đa thức sinh của một mã cyclic (7, 4) có bậc là:	2	3	4	5
Nếu C là một từ mã trong bộ mã khối tuyến tính và H là ma trận kiểm tra chẵn lẻ thì:	CH = 0	$C^T H = 0$	$C^T H^T = 0$	$CH^T = 0$
Khi giải mã cho mã cyclic, nếu từ mã nhận được r (x) giống từ mã được truyền, thì r (x) mod g (x) bằng:	Không	Khác không	Vô hạn	Các đáp án còn lại đều sai
Bộ mã nào được biểu diễn với trọng số b và chiều dài từ mã / như sau:	$U = \{10, 101, 1000, 100, 111\}$	$U = \{01, 101, 0001, 001, 111\}$		U = {10, 01, 101, 010, 111}

b 7				
Bộ mã nào được biểu diễn với phương pháp cây mã như sau:	U = {3, 223, 23, 21, 11, 102}	U = {1, 10, 01, 011, 101, 111}	U = {33, 10, 21, 321, 232, 231}	U = {33, 23, 21, 11, 102, 321}
Bộ mã nào được biểu diễn với phương pháp cây mã như sau:	U = { 00, 011, 012, 10, 110, 112, 22, 201}		U = { 00, 11, 121, 011, 112, 221, 100, 122}	
Sau khi thực hiện mã hóa nguồn rời rạc có entropy bằng I,9 Với bộ mã có khả năng	$\overline{L} = 1,905$	$\overline{L} = 1,805$	$\overline{L} = 1,705$	$\overline{L} = 1,605$

giải mã tức thời thì bộ mã tối ưu có độ dài từ mã trung bình \overline{L} bằng bao nhiêu?				
Tìm câu phát biểu đúng nhất trong các phát biểu sau:	Khoảng cách của bộ mã tuyến tính bằng trọng số Hamming nhỏ nhất của các từ mã	Khoảng cách của bộ mã tuyến tính bằng trọng số Hamming lớn nhất của các từ mã	tuyến tính bằng trọng số Hamming	Khoảng cách của bộ mã tuyến tính bằng trọng số Hamming lớn nhất của các từ mã khác không
Trong mã khối tuyến tính có ma trận sinh G và ma trận kiểm tra H, tin u cần mã hóa ở nguồn để có được từ mã c. Khi đó biểu thức nào dưới đây là đúng?	c = u * G	c = u * H	c = u - H	c = u - G
Sau khi thực hiện mã hóa nguồn rời rạc có entropy là 1,4. Với bộ mã có khả năng giải mã tức thời thì bộ mã tối ưu có độ dài từ mã trung bình \overline{L} bằng bao nhiêu?	$\overline{L}=1,35$	$\overline{L} = 1,45$	$\overline{L} = 1,55$	$\overline{L} = 1,65$
Tìm $f(x)$ với phép cộng đa thức trên trường GF(2) là $f(x) = g_1(x) + g_2(x)$. Trong đó, $g_1(x) = 1 + x^3 + x^6$ và $g_2(x) = x^3 + x^6 + x^7$.	$f(x) = x^3 + x^4 + x^5 + x^6 + x^7$	$f(x) = 1 + x^7$	$f(x) = 1 + x^3 + x^5 + x^7$	Các đáp án còn lại đều sai
Tìm $f(x)$ với phép cộng đa thức trên trường GF(2) là $f(x) = g_1(x) + g_2(x)$.	- ()	$f(x) = 1 + x^4 + x^5$	$f(x) = 1 + x^7$	Các ba đáp án còn lại đều sai

Trong đó, $g_1(x) = 1 + x^2 + x^4 + x^5$ và $g_2(x) = 1 + x^4 + x^5 + x^7$.				
Tìm $f(x)$ với phép cộng đa thức trên trường GF(2) là $f(x) = g_1(x) + g_2(x)$. Trong đó, $g_1(x) = 1 + x + x^2 + x^4$ và $g_2(x) = 1 + x^4 + x^5$.		$f(x) = 1 + x + x^4$	$f(x) = x^4 + x^5$	$f(x) = 1 + x^9$
Tìm $f(x)$ với phép cộng đa thức trên trường GF(2) là $f(x) = g_1(x) + g_2(x)$. Trong đó, $g_1(x) = 1 + x + x^2 + x^4$ và $g_2(x) = x^4$.		$f(x) = 1 + x^4$	$f(x) = x^4$	$f(x) = 1 + x^8$
Tìm $f(x)$ với phép nhân đa thức trên trường GF(2) là $f(x) = g_1(x) * g_2(x)$. Trong đó, $g_1(x) = 1 + x^3 + x^6$ và $g_2(x) = 1 + x^3$.	$f(x) = x^6$	$f(x) = 1 + x^4$	$f(x) = x^9$	$f(x) = 1 + x^9$
Cho mã vòng (cyclic) (7,4) có đa thức sinh $g(x)=1+x+x^3$. Đa thức kiểm tra là:	$h(x) = x^4 + x^2 + x + 1$	$h(x) = x^4 + x^3 + x + 1$	$h(x) = x^4 + x + 1$	$h(x) = x^4 + 1$
Một mã có khoảng cách tối thiểu d _{min} = 5. Hỏi mã này có khả năng sửa bao nhiêu lỗi	1	2	3	4

Để đảm bảo phát hiện tối đa 5 lỗi trong mọi trường hợp, khoảng cách Hamming tối thiểu của bộ mã khối phải là:	5	6	11	12
Trong mã khối (n,k), nếu n = 5, khoảng cách Hamming tối đa giữa hai từ mã là	2	3	4	5
Cho mã C = {0000, 1100, 0011, 1111}, khoảng cách Hamming của bộ mã là:	1	2	3	4
Chiều dài từ mã $c = 12103$ là:	2	3	4	5
Chiều dài từ mã $c = 10021$ là:	2	3	4	5
Cho mã tuyến tính $\left(7,4\right)$, tốc độ mã này là:	R = 1,75	R = 2,75	R = 3,75	R = 4,75
Mã hóa Huffman cho tập ký tự $\{A, B, C, D\}$ có xác suất xuất hiện tương ứng là $\{0,4;0,1;0,2;0,3\}$. Độ dài trung bình từ mã của mã Huffman xây dựng được là:	2,1 bit	1,9 bit	2 bit	0,8 bit
Cho mã khối tuyến tính có ma trận sinh $G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$, bản tin $u = \begin{bmatrix} 101 \end{bmatrix}$ được	c = 11100	c = 10101	c = 11101	c = 11001

mã hóa thành từ mã nào dưới đây?				
Bộ mã nào sau đây có thể là mã Huffman cho một nguồn gồm 4 ký tự?	{01,10,00,111}	{0,10,110,111}	{1,01,10,001}	{0,110,111,101}
Trong mã khối tuyến tính (n,k), nếu k = 2 và n = 3, chúng ta có $\frac{n-k=1}{d}$ từ mã thừa (dư).	8	6	4	2
Xác định chiều dài từ mã $c = 11100$.	2	3	4	<mark>5</mark>
Thực hiện mã hóa cho mã vòng (cyclic) (7,4) có $g(x)=1+x+x^3$. Giả sử đa thức thông tin cần mã $a(x)=x^3+x$, đa thức nâng bậc của $a(x)$ là:	$x^4 + x^6$	$x^4 + x^8$	$x^3 + x^6$	$x^4 + x^2$
Cho mã vòng (8,3) với đa thức sinh $g(x) = x^5 + x^4 + x + 1$. Để xây dựng sơ đồ mã hóa theo phương pháp nhân, số ô nhớ trong sơ đồ là:	3	5	8	4
Cho mã vòng (8,3) với đa thức sinh $g(x) = x^5 + x^4 + x + 1$. Để xây dựng sơ đồ mã hóa theo phương pháp chia, số ô nhớ trong sơ đồ là:	3	5	8	4
Cho mã vòng (8,3) với đa thức sinh $g(x) = x^5 + x^4 + x + 1$. Giả sử bản tin đầu	11000111	01101110	11000110	01100110

vào là 110, từ mã hệ thống tương ứng là:				
Cho mã vòng (8,5) với đa thức sinh $g(x) = x^3 + x^2 + x + 1$. Mã này có khoảng cách Hamming d ₀ bằng bao nhiêu?	2	3	4	5
Cho mã vòng (8,3) với đa thức sinh $g(x) = x^5 + x^4 + x + 1$. Mã này có khoảng cách Hamming d ₀ bằng bao nhiêu?	2	3	4	5
Cho mã vòng (8,3) với đa thức sinh $g(x) = x^5 + x^4 + x + 1$. Syndrome của bộ mã là?	$S = (c_0 + c_2 + c_3, c_1 + c_3 + c_4, c_2 + c_4 + c_5, c_3 + c_5 + c_6)$	$S = (c_0 + c_1 + c_4 + c_5, c_1 + c_2 + c_5 + c_6, c_2 + c_3 + c_6 + c_0, c_3 + c_4 + c_0 + c_1)$	The state of the s	$+ c_2 + c_3, c_2 + c_3 +$
Cho một nguồn gồm 7 ký tự với xác suất lần lượt là {0,37; 0,33; 0,16; 0,07; 0,04; 0,02; 0,01}. Nếu mã hóa nguồn này bằng mã Huffman thì hiệu quả mã bằng bao nhiêu?	97,47% 2.11 / 2.17	979,74%	98,56%	98,65%
Cho một nguồn gồm 7 ký tự với xác suất lần lượt là {0,46; 0,30; 0,12; 0,06; 0,03; 0,02; 0,01}. Nếu mã hóa nguồn này bằng mã Huffman thì hiệu quả mã (hiệu suất mã) bằng bao nhiêu?	99,89%	99,98%	99,4%	99,04%
Xét mã khối tuyến tính (7,4) với ma trận	0001101	0110100	1110000	1111111

sinh				
$\textbf{\textit{G}} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$ Cho biết từ mã nào dưới đây là từ mã hợp lệ?				
Cho mã khối tuyến tính (15,11) với ma trận kiểm tra H như sau:				
$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1$	(3,1)	(2,1)	(3,2)	(1,0)
Cho mã vòng (8,3) với đa thức sinh g(x) = x ⁵ +x ⁴ +x+1. Gia sử bản tin đầu vào là 011. Nếu xây dựng sơ đồ mã hóa theo phương pháp chia, thì giá trị các ô nhớ trong bảng mã hóa ở nhịp 1 là:	10001	11101	11011	11001
Cho mã vòng (8,3) với đa thức sinh g(x) = x^5+x^4+x+1 . Gia sử bản tin đầu vào là 011. Nếu xây dựng sơ đồ mã hóa theo phương pháp nhân, thì giá trị các ô nhớ trong bảng	001	101	100	111

mã hóa ở nhịp 5 là:				
Cho mã vòng (8,3) với đa thức sinh g(x) = x^5+x^4+x+1 . Giả sử bản tin đầu vào là 011. Nếu xây dựng sơ đồ mã hóa theo phương pháp chia, thì giá trị các ô nhớ trong bảng mã hóa ở nhịp 2 là:	01100	10100	01111	10011
Cho biết $x^7+1=(x+1)(x^3+x+1)(x^3+x^2+1)$. Hãy cho biết có thể xây dựng được tổng cộng bao nhiều mã vòng trên vành $Z_2[x]/x^7+1$.	4	5	6	7
Cho biết $x^{15}+1$ được phân tích thành 5 tích của 5 đa thức bất khả quy (không kể đa thức 1). Hãy cho biết có thể xây dựng được tổng cộng bao nhiều mã vòng trên vành $Z_2[x]/x^{15}+1$.	29	30	31	32
Cho mã vòng (15,8) với đa thức sinh $g(x)=(x^3+1)(x^4+x+1)$ trên vành $Z_2[x]/x^{15}+1$. Hỏi khi xây dựng mạch mã hóa cho mã này bằng phương pháp chia và	8 và 7	7 và 8	7 và 7	8 và 8

phương pháp nhân thì số ô nhớ trong mạch lần lượt là:					
Cho mã vòng (15,7) với đa thức sinh $g(x)=(x^4+x^3+1)(x^4+x+1)$ trên vành $Z_2[x]/x^{15}+1$. Hỏi khi xây dựng mạch mã hóa cho mã này bằng phương pháp chia và phương pháp nhân thì số ô nhớ trong mạch lần lượt là:	8 và 7	7 và 8	7 và 7	8 <mark>và 8</mark>	
Cho biết $x^6+1=(x^2+x+1)(x^2+x+1)(x+1)(x+1)$ trên vành $Z_2[x]/x^6+1$. Hỏi có bao nhiều mã vòng (6,2) trên vành này:	1	2	3	4	
Cho từ mã nhận được ở phía thu $c=01001111$ và được giải mã bằng cách sử dụng ma trận kiểm tra: $H = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	Không có sai lỗi nào xảy ra.		Có một lỗi đã xảy ra và lỗi nằm ở bit 3 (c ₂)		
Giả sử rằng đã xảy ra tối đa 1 sai trong quá trình truyền, kết luận nào dưới đây là					

đúng?				
Cho mã vòng (6,3) với đa thức sinh g(x) = x³+1. Giả sử bản tin đầu vào là 011. Nếu xây dựng sơ đồ mã hóa theo phương pháp nhân, thì giá trị các ô nhớ trong bảng mã hóa ở nhịp 4 là:	011	101	100	111
Cho mã vòng (6,3) với đa thức sinh g(x) = x³+1. Gia sử bản tin đầu vào là 011. Nếu xây dựng sơ đồ mã hóa theo phương pháp nhân, thì giá trị các ô nhớ trong bảng mã hóa ở nhịp 5 là:	011	101	110	111
Cho mã vòng (6,3) với đa thức sinh g(x) = x³+1. Gia sử bản tin đầu vào là 011. Nếu xây dựng sơ đồ mã hóa theo phương pháp chia, thì giá trị các ô nhớ trong bảng mã hóa ở nhịp 2 là:	011	101	110	111
Cho mã vòng (6,3) với đa thức sinh g(x) = x³+1. Giả sử bản tin đầu vào là 011. Nếu xây dựng sơ đồ mã hóa theo phương pháp chia, thì giá trị các ô nhớ trong bảng mã hóa ở nhịp 3 là:	011	101	110	111
Thiết bị mã hóa cho mã vòng (cyclic) (7,4) có $g(x) = 1 + x + x^3$. Giả sử đa thức thông	r(x) = x + 1	$r(x) = x^2 + 1$	$r(x) = x^2$	$r(x) = x^3 + 1$

tin cần mã $a(x) = x^3 + x$, đa thức dư cần tìm để thiết lập từ mã tương ứng là:				
Thiết bị mã hóa cho mã vòng (cyclic) (7,4) có $g(x) = 1 + x + x^3$. Giả sử đa thức thông tin cần mã $a(x) = x^3 + x$ và đa thức dư $r(x) = x + 1$. Từ mã vòng (cyclic) được xây dựng là:	$c(x) = x^6 + x^4 + x + 1$	$c(x) = x^6 + x^3 + x + 1$	$c(x) = x^6 + x^4 + x^2 + 1$	$c(x) = x^6 + x^4 + x$
Thiết bị mã hóa cho mã vòng (cyclic) (7,4) có $g(x)=1+x+x^3$. Giả sử đa thức thông tin cần mã $a(x)=x^3+x$ và đa thức dư $r(x)=x+1$. Từ mã vòng (cyclic) được xây dựng dưới dạng nhị phân tương ứng là:	1100101	1010101	1111011	1011010
Xét hệ thống tuyến tính $(7,4)$ có ma trận $\sinh \ G = \begin{bmatrix} 1000001\\0100111\\0010110\\0001011 \end{bmatrix}, \ \text{ma trận kiểm tra}$ sẽ là:	$H = \begin{bmatrix} 0110100 \\ 0111010 \\ 1101001 \end{bmatrix}$	$H = \begin{bmatrix} 1010100 \\ 0111010 \\ 1001001 \end{bmatrix}$	$H = \begin{bmatrix} 1100100 \\ 0011010 \\ 1101001 \end{bmatrix}$	$H = \begin{bmatrix} 0010100 \\ 0111010 \\ 1101001 \end{bmatrix}$
Cho mã khối tuyến tính (4,2) có ma trận sinh $G = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$. Các từ mã tương ứng với	c = {0000, 1001, 1010, 0101}	c = {0000, 0100, 1010, 0111}	c = {0000, 1101, 1010, 0101}	c = {0000, 0100, 1010, 1110}

ma trận hệ thống của ma trận sinh G là:				
Mã vòng (cyclic) C(7,4) có đa thức sinh $g(x)=1+x+x^3$ thì ma trận sinh tương ứng là: Tham số đưa ra để đánh giá chất lượng hoạt động của phương pháp mã hóa tối ưu	$G = \begin{bmatrix} 1101000 \\ 0110100 \\ 0011010 \\ 0001101 \end{bmatrix}$ Chiều dài từ mã	$G = \begin{bmatrix} 1001000 \\ 1110100 \\ 0011010 \\ 0001101 \end{bmatrix}$ Entropy của nguồn	$G = \begin{bmatrix} 1101000\\0110100\\0101010\\1001101 \end{bmatrix}$ Hiệu quả lượng tin	$G = \begin{bmatrix} 1101010 \\ 0110100 \\ 0011010 \\ 1001101 \end{bmatrix}$ Hiệu suất lập mã
là?				
Một bản tin được xây dựng từ tập các ký tự $X = \{P, Q, R, S, T\}$ với xác suất lần lượt là $\{0,22;0,34;0,17;0,19;0,08\}$. Hỏi nếu bản tin này gồm 100 ký tự trên tập X được mã hóa bằng mã Huffman thì chiều dài trung bình của bản tin mã hóa là:	220 bit	222 bit	225 bit	227 bit
Mã cyclic (7, 4) có đa thức sinh g (x) = 1 + $x^2 + x^3$, từ mã tương ứng với bản tin $u = 1010$ là:	1010101	1001001	1001110	1100011
Cây mã hóa Huffman được xây dựng cho tập dữ liệu $\{A,B,C,D,E\}$ với xác suất tương ứng là $\{0,17;0,11;0,24;0,33;0,15\}$. Độ dài từ mã trung bình của mã Huffman cho tập dữ liệu này là:	2,1	2,26	2,38	2,52
Một bản tin được xây dựng từ tập các ký	2,16	2,26	2,36	2,46

tự $X = \{A, B, C, D, E\}$ với xác suất lần lượt là $\{0,11;0,4;0,16;0,09;0,24\}$. Độ dài trung bình từ mã của mã Huffman được xây dựng cho tập các ký tự này là:				
Cho mã khối tuyến tính (7,4) có ma trận sinh: $G = \begin{bmatrix} 1101000\\0110100\\0011010\\0001101 \end{bmatrix}.$ Từ mã tương ứng với bản tin u = 1101 là:	c=1010001	c=1010101	c=1010111	c = 1001001
Cho nguồn tin có các ký tự A, B, C, D, E, F, G và H lần lượt có xác suất xuất hiện tương ứng là 0.1, 0,18; 0,4; 0,05; 0,06; 0,1; 0,07 và 0,04. Sử dụng mã thống kê tối ưu Huffman cơ sở, hãy cho biết bộ mã U đạt được tương ứng là gì?		10, 110, 1010,	Bộ mã U = {0, 10, 101, 1010, 1111, 11101, 1011, 11101}	
Cho sơ đồ khối của bộ mã chập nhị phân như sau, chuỗi bit ngõ ra sau khi mã hóa chuỗi bit tin ngõ vào là: 11101	011 110 101 101 110	110 101 101 110 011	110 011 110 101 101	101 101 110 011 110

Input T T Output				
Cho sơ đồ khối của bộ mã chập nhị phân như sau, chuỗi bit ngõ ra sau khi mã hóa chuỗi bit tin ngõ vào là: 11101	11 01 01 10 11	11 01 01 10 00	11 01 01 10 10	11 01 01 11 10
Cho mã khối tuyến tính có ma trận sinh $G = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \text{, bản tin } u = \begin{bmatrix} 101 \end{bmatrix}$ được mã hóa thành từ mã là:	c =111001	c = 111011	c = 110101	c = 011001
Cho mã khối tuyến tính có ma trận sinh $G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \text{,} \qquad \text{bản} \qquad \text{tin}$ $u = \begin{bmatrix} 1101 \end{bmatrix} \text{được mã hóa thành từ mã là:}$	c=1100101	c = 1101101	c = 1100110	c = 1010101
Syndrome là phần dư của phép chia $r(x)$	$g(x) = 1 + x + x^3$	$g(x) = 1 + x^2 + x^3$	$g(x) = 1 + x + x^2$	$g(x) = 1 + x + x^4$

cho đa thức sinh $g(x)$ theo biểu thức sau:									
r(x) = q(x)r(x) + s(x)									
Da thức sinh $g(x)$ theo mạch tính					h tính				
syndrome bên dưới là:									
$\overbrace{x(x)}_{S_0} \xrightarrow{q(x)}_{S_1} \xrightarrow{q(x)}_{S_2}$				q(x)					
Nguồn tin có các từ mã u_i với xác suất $p(u_i)$ tương ứng được cho theo Bảng sau, chiều dài trung bình của bộ mã là:									
	i	1	2	3		<u></u>	<u></u>	- 1.7	<u></u>
	Ui	0	101	1101	-	$\overline{L} = 1,5$	$\overline{L} = 1,6$	$\overline{L} = 1,7$	$\overline{L} = 1,8$
	p(u _i)	0,6 5	0,31	0,04					
Cho mã	Cho mã khối tuyến tính (4,2) có ma trận sinh				rận sinh			(0000 1001	(0000 446
là: $G = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$. Các từ mã tương ứng			$c = \{0000, 1101, 0101, 1010\}$	$ \begin{vmatrix} c = \{0000, 1101, \\ 1011, 0110 \} \end{vmatrix} $	c = {0000, 1001, 0111, 1010}	c = {0000, 1101, 0111, 1010}			
với ma trận sinh G là:									