

1 Review

5

6

10

11 12

13

14

15

16

17

18 19

20 21

22

23

24

25

2627

USO DE MATERIALES SOSTENIBLES EN LA ARQUITECTURA MODERNA

USE OF SUSTAINABLE MATERIALS IN MODERN ARCHITECTURE

- 4 Mirian Cerna 1, *, Karen Vargas 1, Andrés Muñoz 1, and Gianella Chalacan 1
 - ¹ Faculty of Engineering Science, State Technical University of Quevedo, Quevedo 120301, Ecuador
 - * Correspondence: mcernam@uteq.edu.ec

Resumen: El presente artículo aborda el impacto que tienen los materiales sostenibles en el planeta y sobre la arquitectura moderna. Se examinan diferentes materiales sostenibles en la construcción para ayudar en el medioambiente. Se revisan investigaciones en el estado del arte que destacan comparaciones en la utilización de biomateriales para una construcción más sostenible. Este análisis propone contribuir la importancia de concientización en cada persona para ayudar a mantener el medioambiente a través de los materiales sostenibles, se destacarán funciones primordiales en las cuales los materiales tendrán un alto desarrollo en la arquitectura moderna. Se presenta un sistema el cual toma en cuenta las dimensiones importantes en la construcción y desarrollo de diseños arquitectónicos sostenibles. En el estudio metodológico se da a conocer el porcentaje del desarrollo en materiales como las diferentes cenizas usadas en construcciones sostenibles.

Abstract: This article addresses the impact that sustainable materials have on the planet and on modern architecture. Different sustainable materials are examined in construction to help the environment. State-of-the-art research is reviewed that highlights comparisons in the use of biomaterials for more sustainable construction. This analysis proposes to contribute the importance of awareness in each person to help maintain the environment through sustainable materials, primary functions in which materials will have a high development in modern architecture will be highlighted. A system is presented which takes into account the important dimensions in the construction and development of sustainable architectural designs. In the methodological study, the percentage of development in materials such as the different ashes used in sustainable constructions is revealed.

Keywords: Sustainable materials - biomaterials, Architecture, Construction, Pollution.

Citation: To be added by editorial staff during production.

Academic Editor: Firstname Lastname

Received: date 32
Revised: date 33
Accepted: date 34
Published: date 35

Copyright: © 2024 by the authors 8 Submitted for possible open accessory publication under the terms and 10 conditions of the Creative Commons 14 Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

1. Introduction

28

29

30

31

37

Esta investigación tiene como finalidad dar a conocer la importancia de cuidar nuestro planeta a través del uso de materiales sostenibles en la arquitectura moderna. Hoy en día, el mundo está causando un gran daño al medio ambiente al agotar los recursos naturales como: el aire, el agua y el suelo, destruyendo ecosistemas, hábitats y llevando a la extinción de especies animales (Mohd Taib et al., 2023).

El uso de materiales sostenibles en la arquitectura moderna es fundamental en el campo constructivo y son aquellos que pese a su producción, uso y eliminación generan un impacto ambiental mínimo ya que no producen gases de efecto invernadero. Por último, se sustituyen materiales contaminantes, especialmente en los casos de corta durabilidad, los materiales de alto impacto ambiental, por opciones naturales o completamente reciclables, por ejemplo el hormigón geopolímero es un nuevo material sostenible que nos ayuda a disminuir la contaminación en el medio ambiente ya que está hecho de materiales de desechos con actividad química desechable (Ljungberg, 2007).

A continuación se presentan distintas investigaciones relacionadas con la problematica del uso de materiales no sostenibles y su grave efecto en el medioambiente y en la arquitectura moderna.

1.1 Revisión del Estado del Arte sobre el uso de materiales sostenibles en la arquitectura moderna

Bakhearev (2005) presenta una revisión del estado del arte sobre los materiales geopoliméricos preparados con cenizas volantes Clase F (Indica la capacidad de soportar un aumento de temperatura máxima de 115°C a una temperatura ambiente máxima de 40°C) del cual estudió la activación de cenizas al material geopolimérico curado a temperaturas de hasta 70 °C. Obtuvo el resultado sobre la resistencia a la compresión, alcanzada después de 28 días fue de 8 MPa (Megapascal, se usa para grandes presiones, normalmente en poca superficie)

1.2 Propuesta de Revisión del estado del arte

Para realizar una construcción sostenible debe tomarse en cuenta tres dimensiones: ambiental, social y económica; por lo tanto, son factores que deben evaluarse sí o sí, para poder realizar un diseño sostenible, desarrollando estrategias apropiadas en el lugar establecido. El diseño ecológico tiene un impacto positivo tanto en la salud de las personas como en el ambiente, con esto se busca reducir los costos operativos, así mejoran la comercialización de los edificios y las organizaciones, y aumentan la productividad (Ali, et al. 2009).

Figure 1. Construcción sostenible que cuenta con las tres dimensiones dadas.

2. Materials and Methods

Cuando se realizaron la investigación para realizar el trabajo se debieron de hacer uso de varios materiales como viene a ser Google académico el cual facilito la obtención de información haciendo uso también de Mendeley para recolectar las referencias de dichas paginas y empleando reuniones mediante paginas como lo es Google meets para comunicarse entre los integrantes del grupo.

Para empezar con el proyecto investigativo, el grupo estuvo de acuerdo con el reparto de los temas en manera equitativa. Así cada integrante aportó en la realización del documento, realizándolo de manera eficaz.

107 108 109

110 111

112 113

> 114 115

116

117 118

120

121

122

A continuación, el primer proceso fue usar los pasos correspondientes en un artículo científico para poder hacer un buen proyecto investigativo, esto quiere decir que hizo usó de cierto orden específico. En el cual deben ir los puntos a tomar en cuenta al momento de realizar un trabajo de este tipo; como los son: la introducción, la metodología utilizada, antecedentes, resumen, trabajos relacionados, etc.

De esta forma se inició de una forma más organizada, flexible, eficiente y productiva.

Al comenzar la etapa de recolección de las herramientas investigativas recomendadas, la recolección de datos pudo darse de manera efectiva usando artículos científicos, los cuales nos proporcionaron datos confiables y precisos. De esta forma permitieron realizar la investigación con trabajos realizados por expertos en la materia.

Al momento de realizar una investigación de este tipo, no solo hace falta una recolección de datos de varios artículos científicos, sino que al utilizar la información de dicho artículo debimos asegurarnos de que estos contengan DOI. Este mismo nos permite tener acceso a su ubicación en internet.

Una vez que nos hemos asegurado que todos los artículos en los cuales hemos entrado y hecho uso de información, obtuvimos las correspondientes referencias y bibliografías. Mostrando así la credibilidad a el trabajo y la honestidad de los investigadores.

Gracias a la herramienta de "Mendeley" la cuál facilito conseguir las referencias de una manera más sencilla y confiable.

Para redactar bien las partes de la investigación, se realizó varias reuniones las cuales fueron llevadas a cabo mediante Google meet y de forma presencial.

Al realizar reuniones de este tipo, llevamos a cabo una mejor organización. De esta forma se puedan realizar revisiones bibliográficas, sobre las fuentes investigadas de donde se extrajo la información, comprobando si son fuentes confiables o sí sirven para el proyecto realizado.

3. Results

This section may be divided by subheadings. It should provide a concise and precise description of the experimental results, their interpretation, as well as the experimental conclusions that can be drawn.

3.1. Subsection

3.1.1. Subsubsection

Bulleted lists look like this:

- First bullet;
- Second bullet;
- Third bullet.

Numbered lists can be added as follows:

- 1. First item;
- 2. Second item;
- Third item.

The text continues here.

3.2. Figures, Tables and Schemes

All figures and tables should be cited in the main text as Figure 1, Table 1, etc.

Figure 1. This is a figure. Schemes follow the same formatting.

125

126

127

128

129

130

131

3.3 Preguntas de Investigación

- 1. ¿Cuál es el objetivo principal del desarrollo del uso de materiales sostenibles en la arquitectura moderna?
- 2. ¿En qué ayuda estos materiales sostenibles a cuidar el planeta?
- 3. ¿Cuáles son los materiales sostenibles analizados en el artículo?
- 4. ¿El tiempo de durabilidad de los materiales sostenibles en la construcción?

Table 1. Tabla de extracción de datos.

Refere ncias	Título del Artículo	Tipo Doc.	A ñ o	Tipo de Estud io	El objetivo principal del desarrollo del uso de materiales sostenible s en la arquitectur a moderna.	En qué ayuda los materiales sostenibles a cuidar el planeta	El tiempo de durabilidad de los materiales sostenibles en la construcción	Materiales sostenibles que ayudan a cuidar el planeta.	Estudiante /Revisor
(Mohd	Un	Journal	2	Exper	Su objetivo	En este caso	Aproximadament	Uso del	Chalacan
Taib	nuevo		0	iment	es	el bambú	e 1 a 3 años	bambú.	Cruz
et al.,	paradig		2	al.	prolongar	ayuda a	cuando esta		Gianella
2023)	ma en el		3		la vida del	capturar el	expuesto a la		Aillen
Mohd	uso del				planeta a	CO2 y	intemperie, 4 a 7		
Taib,	bambú				través de	también es	años cuando está		
MZ,	como				este	un	cubierto y entre 10		
Ahmad	material				material	material	a 15 años cuando		
,	sostenibl				renovable	renovable	las condiciones		
S. y	e para la				como el	que	son totalmente		
Nogroh	construcc				bambú el	al cosecharse	favorables		
0,	ión de				cual puede	no daña el	significativamente		
W.	edificios				soportar	ecosistema	su vida puede		
(2023).	futuros.				cargas	ni			

	Revista				pesadas y	se agotan los	extenderse a		
	de				•		durar más de 50		
					es	recursos			
	procedim				resistente	naturales.	años		
	ientos				al				
	medioam				viento y a				
	bientales				los				
	y de				terremotos.				
	comporta								
	miento							_	
(Lee,	Reinterpr	Article	2	Obser	Su objetivo	Ayuda en la	Sistema de	La	Chalacan
2020)	etando la		0	vacio	es asegurar	maximizació	recuperación de	tecnología a	Cruz
Lee, J.	arquitect		2	nal	que los	n de la	calor: Pueden	través de un	Gianella
H.	ura		0		países en	eficiencia	durar	sistema de	Aillen
(2020).	sustentab				crecimient	energética, la	aproximadamente	recuperación	
Lee,	le:¿Qué				О	minimizació	15 a 20 años o	de calor,	
JH	significa				aproveche	n de los	más.	iluminación	
(2020).	sintáctica				n sus	impactos	Iluminación LED:	LED, vidrio	
	mente?				recursos	negativos	En promedio,	de triple	
					sin	sobre el	pueden durar	capa de baja	
					agotarlos,	medio	entre 25,000 a	emisividad y	
					como un	ambiente.	50,000 horas, lo	un sistema	
					chef	Por lo tanto,	que equivale a	de micro	
					talentoso	se concluye	alrededor de 10 a	rejillas.	
					que utiliza	que el uso de	20 años.		
					ingrediente	materiales	Vidrio de triple		
					s frescos	sostenibles	capa de baja		
					sin	en la	emisividad:		
					desperdici	arquitectura	Puede durar al		
					ar nada. Es	moderna es	menos 20 años o		
					como	económico	más.		
					encontrar	también en	Sistema de micro		
					el	términos	rejillas: En		
					equilibrio	tecnológicos,	general, se espera		
					perfecto en	ambientales	que duren, al		
					una cuerda	y espaciales.	menos 10 a 15		
					floja:	J == [= = = = = = = = = = = = = = = = =	años.		
					cuidar del		Sistema BIPV		
					planeta		(Generación de		
					mientras		energía integrada		
					construimo		en vidrios y		
					s un futuro		paneles): Es		
							similar a la de los		
					próspero.		Sillillar a la de los		

	1		l			I			
							paneles solares		
							convencionales,		
							que es de		
							alrededor de 25 a		
							30 años o más.		
							Bombas de calor		
							geotérmicas:		
							Estos sistemas		
							pueden durar más		
							de 20 año,		
							especialmente si		
							se les da un		
							mantenimiento		
							adecuado.		
							Sistema de		
							conductos de luz:		
							Los conductos de		
							luz de alta calidad		
							pueden durar al		
							menos 20 años o		
							más.		
(Lennar	Selección	Article	2	Longi	Evitar el	El uso de	Con el	Materiales	Andrés
t Y.	y		0	tudin	uso de	materiales	tratamiento	de alto	Santiago
Ljungb	diseño		0	al	recursos	sostenibles	adecuado y su	impacto	Muñoz
erg,	de		7		que	ayuda a que	mantenimiento las	ambiental,	Araujo
2007)	material				son	se cause	edificaciones	opciones	,
,	es para				limitados y	menos	pueden llegar	naturales o	
	el				evitar	impacto	a durar años	completame	
	desarrol				grandes	ambiental en		nte	
	lo de				impactos	el área de la		reciclables.	
	product				ambientale	construcción.			
	os				s				
	sostenib								
	les.								
(T.	Material	Journal	2		Su objetivo	Estos	Estos mismo	Cenizas	Andrés
Bakhar	es	Joanna	0	Exper	es el usar	materiales	pueden llegar	volantes	Santiago
ev,	geopoli		0	iment	las cenizas	ayudarían a	a tener un	Materiales	Muñoz
2005)	méricos		5	al	volantes	reducir la	tiempo de	geopoliméric	Araujo
	prepara			, ui	como	contaminaci	vida útil de 5	os	11144,0
	dos con				forma	ó	a 30 años	el potencial	
	cenizas				de crear	n a la hora	a 50 a105	de los	
	volantes				materiales	de		materiales	

	Clase F				goog al/	las		goon olim- (i -	
					geopolímer			geopoliméric	
	У				os.	construccion		os como el	
	curado					е		nuevo	
	a					s incluso		cemento,	
	tempera					teniendo		influencia	
	tura					funciones		del curado a	
	elevada.					como		altas	
						reforzar		temperatura	
						materiales.		s, creación	
								de nuevos	
								materiales	
								de	
								construcción.	
(Fridley	Madera	Capítul	2	Obser	El objetivo	La madera es	Se centra en	Estructura	Vargas
, K. J.	у	o de	0	vacio	principal	uno de los	el pasado,	de	Aguiar
2002)	materiale	libro	0	nal	de	materiales	presente y	construcción	Karen
	s		2		este	de	futuro de la	con madera,	Amelia
	derivado				artículo	construcción	madera de	mercado de	
	s de la				es	más antiguos	ingeniería y	la ingeniería	
	madera:				proporcion	y el uso	los materiales	y la	
	estado				a	estructural	de madera en	construcción,	
	actual y				r una	de	aplicaciones	madera	
	futuro de				descripció	madera y	de ingeniería	industrializa	
	un				n	materiales	civil.	da,	
	material				general del	de		materiales a	
	estructur				estado	madera		base de	
	al				actual y el	continúa		madera.	
					futuro de	creciendo de			
					la	manera			
					madera de	constante.			
					ingeniería	constante.			
					y los				
					materiales				
					a				
					base de				
0.5			_		madera.				**
(Maria	Material	Article	2	Estud	Materiales	Puede verse	En los	madera	Vargas
ni, A.,	es		0	io de	que	como un	últimos diez o	transparente.	Aguiar
&	transpare		2	caso	reemplaza	nuevo	quince años	térmicas y	Karen
Maluce	ntes a		2		n	"bloqu	se ha	mecánicas,	Amelia
	base de				total o	e de	investigado la	lignina,	

lli, G.	madera:				parcialmen	construcción	posibilidad de	material	
2022)	estado				t	"	eliminar la	curado,	
,	actual				e a las	sostenible e	lignina	aplicaciones	
	del arte y				fuentes	inteligente	incrustada y	de ahorro de	
	perspecti				fósiles en	para el	limitar así los	energía,	
	vas de				diversos	desarrollo de	fenómenos de	quema con	
	futuro				campos de	nuevos	dispersión de	facilidad los	
	racaro				aplicación	sistemas	la luz,	residuos.	
					son cada	funcionales y	consiguiendo	residuos.	
					vez más	estructurales	así la llamada		
					importante		asi ia namada		
					_	,			
					S	que demuestra			
					y tienen				
					implicacio	avances			
					n	interesantes			
					es para la	e			
					ciencia y la	influyentes			
					tecnología	en			
					de los	campos que			
					materiales.	van desde			
						ventanas			
						transparente			
						s			
						hasta células			
						solares y			
						componente			
						s			
						optoelectróni			
						cos.			
(Ali, H.	Desarroll	Article	2	Obser	Busca la	Los edificios		La madera	Vargas
H., & al	ando una		0	vacio	responsabil	ecológicos		ya que es un	Aguiar
Nsairat,	herramie		0	nal	i	son		material	Karen
S. F.	nta de		9		dad de	energéticam		reciclable y	Amelia
2009)	evaluaci				equilibrar	e		renovable.	
	ón de				la	nte			
	edificios				salud	eficientes,			
	sustentab				económica,	eficientes en			
	les para				ambiental	agua,			
	países en				y	duraderos,			
	desarroll				social a	no			
	o – Caso				largo	tóxicos, con			
	de				plazo.	instalaciones			
		<u> </u>	1	l	r		1		

	Jordania					de alta			
	jordania					calidad y			
						materiales			
						con un alto			
						contenido de			
						reciclaje.			
Maywa	Sostenibi	Article	2	Obser	El objetivo	La	De 10 a 15	El uso de	Vargas
-		Article			de esta	introducción		láminas de	_
ld,	lidad: el		0	vacio		de sistemas	años.	ETFE como	Aguiar
C.,	arte de la		1	nal	investigaci				Karen
&	arquitect		6		ó	de paneles		nuevo	Amelia
Riesser,	ura				n es	de		material	
F. (2016)	moderna				reducir	ETFE en la		transparente	
(2016).					el consumo	construcción		sustituto del	
					de energía	moderna no		vidrio.	
					en los	sólo			
					edificios.	supondrá			
						una			
						contribución			
						significativa			
						a			
						la			
						sostenibilida			
						d			
						medioambie			
						n			
						tal, sino que			
						también			
						traerá			
						beneficios			
						económicos			
						y			
						sociales.			
Vandev	Desarroll	Article	2	Exper	Reducir el	Reducción	El tiempo	Materiales	Vargas
yver	О		0	iment	impacto	del consumo	relativo,	sostenibles:	Aguiar
e, H.,	sostenibl		1	al	ambiental,	de recursos,	según el uso.	Madera	Karen
Heynen	e,		4		promover	menor		certificada,	Amelia
, H.,	arquitect				la	emisión de		materiales	
&	ura y				sostenibili	contaminant		reciclados,	
Welter,	modernis				d	e		aislamientos	
V. M.	mo:				ad en la	s, mayor		naturales,	
(2014).	aspectos				construcció	eficiencia		paneles	
	de una				n.	energética,		solares.	

	controve					promoción			
	rsia en					de			
						economía			
	curso					circular.			
T.1.1.	т.	D1	_	Г	E.L.		T . J 1.212 J. J. J. J.	A1	17
Tabb,	La	Book	2	Exper	Este	Al utilizar	La durabilidad de	Algunos	Vargas
P., &	ecologiza		0	iment	proceso	materiales	los materiales	ejemplos de	Aguiar
Devire	ción de la		1	al	busca	sostenibles,	sostenibles varía,	materiales	Karen
n, A. S.	arquitect		7		reducir los	se protege el	pero en general	sostenibles	Amelia
(2017).	ura				impactos	planeta al	están diseñados	son la	
					ambientale	reducir las	para resistir el	madera	
					s negativos	emisiones de	paso del tiempo y	certificada,	
					causados	contaminant	reducir la	materiales	
					por los	es y	necesidad de	reciclados y	
					edificios y	promover la	reemplazo.	paneles	
					diseños	conservación		solares, que	
					urbanos	de recursos		contribuyen	
						naturales.		a cuidar el	
								planeta.	
Danaci,	Materiale	Article	2	Long	Proporcion	Los	El tiempo es	Lana de roca	Vargas
Н. М.,	S		0	uitud	a una	materiales	relativo.	ampliamente	Aguiar
& Akin,	aislantes		2	inal.	descripció	aislantes que		utilizada y	Karen
N.	térmicos		2		n general	contienen		un producto	Amelia
(2022).	en				de los	aerogel		de	
	arquitect				materiales	pueden		nanotecnolo	
	ura: un				aislantes	ahorrar un		gía	
	estudio				utilizados	8% de la			
	comparat				históricam	carga de			
	ivo con				ente en la	refrigeración			
	aerogel y				industria	en			
	lana de				de la	comparación			
	roca.				construcció	con el uso de			
					n.	lana de roca.			
Tiza, T.	Evaluaci	Journal	2		El	Dadas las		Los recursos	Vargas
M.,	ón del		0		propósito	tasas		naturales	Aguiar
Singh,	potencial		2		de este	actuales de		como el	Karen
S. K.,	del		1		estudio es	urbanización		bambú y los	Amelia
Kumar,	bambú y		Е		revisar el	global y		materiales	
L.,	la fibra		x		uso de la	crecimiento		de fibra de	
Shettar,	de lana		p		fibra de	planetario,		lana pueden	
M. P.,	de oveja		e		lana en la	los		servir como	
&	como		r		industria	productos		materiales	
Singh,	materiale		i		de la	desarrollado		aislantes	

	1						T	ı	ı
S. P.	s de		m		construcció	s deben		adecuados	
(2021).	construcc		e		n.	desempeñar		como	
	ión		n			un papel en		alternativas	
	sostenibl		t			todos los		sostenibles a	
	es: una		a			aspectos de		las	
	revisión.		1			la economía,		necesidades	
						la sociedad y		de	
						el medio		construcción	
						ambiente.		más	
								modernas.	
Wu, Z.,	Utilizació	Article	2	Exper	En este			El fieltro de	Vargas
Zeng,	n de la		0	iment	trabajo,			lana, un tipo	Aguiar
Y., Liu,	arquitect		2	al	transforma			de material	Karen
Y.,	ura de		1		mos fieltro	Como	La durabilidad de	de biomasa	Amelia
Xiao,	fieltro de				de lana en	materiales	los materiales	natural.	
Н.,	lana de				materiales	para	sostenibles varía,		
Zhang,	desecho				conductore	electrodos de	pero en general		
T., &	para				s mediante	almacenamie	están diseñados		
Lu, M.	sintetizar				polimeriza	nto de	para resistir el		
(2021).	materiale				ción in situ	energía se	paso del tiempo y		
	s de				de pirrol y	pueden	reducir la		
	electrodo				prensado	utilizar	necesidad de		
	s				en caliente.	fieltros de	reemplazo.		
	autoport					lana con			
	antes					mallas de			
	para el					aire y			
	almacena					estructuras			
	miento					de canales			
	eficiente					abiertos.			
	de								
	energía.								
(Sieffert	Construc	Journal	2	Exper	El objetivo	En este caso	Una solución	Nuevas <u>tecn</u>	Chalacan
et al.,	ción		0	iment	principal	un	prometedora es	ologías,	Cruz
2014)	sostenibl		1	al	es	desarrollo	reutilizar	nuevos	Gianella
Sieffert,	e con		4		reutilizar	sostenible	materiales	materiales y	Aillen
Y.,	materiale				materiales	sería un	obsoletos que ya	eficiencia	
Huyge	S				que ya han	desafío	han sido	energética en	
n, J. M.,	reutiliza				sido	global que	fabricados. Pero la	los edificios	
&	dos en el				fabricados.	debe	reutilización de		
Daudo	contexto				Esto	incorporarse	materiales está		
n, D.	de una				depende	tanto en la	fuertemente		
(2014).	colaborac				de un	ingeniería	asociada con la		

					T	T			
	ión				cambio de	civil como en	pobreza y será		
	ingenierí				mentalidad	la	necesario un		
	a civil-				hacia la	arquitectura.	cambio radical de		
	arquitect				reutilizació	Siendo una	mentalidad para		
	ura.				n/reciclaje	oportunidad	lograr la		
					de	para mejorar	sostenibilidad por		
					materiales	el	completo.		
					en lugar de	replanteamie			
					desecharlo	nto de los			
					s.	planes de			
						estudio			
						mediante el			
						desarrollo de			
						colaboracion			
						es activas.			
(Ige et	Una	Journal	2	Obser	El objetivo	Actualmente	Dependientement	Materiales	Chalacan
al.,	revisión		0	vacio	principal	, los	e del año de	naturales,	Cruz
2021)	de la		2	nal	es utilizar	investigador	plantación y	concretos de	Gianella
	efectivid		1		materiales	es buscan	cosecha.	bajas	Aillen
	ad de la				que a largo	soluciones		emisiones,	
	Evaluaci				plazo	innovadoras		materiales	
	ón del				ayuden al	para los		compuestos.	
	Ciclo de				medio	problemas		1	
	Vida				ambiente	de la			
	para				en general.	industria del			
	medir los					cemento			
	impactos					debido al			
	ambienta					creciente			
	les de					crecimiento			
	la					demográfico,			
	producci					el rápido uso			
	ón de					de los			
	cemento					recursos			
	contento					energéticos y			
						los			
						problemas			
						de			
						eliminación			
						de residuos.			
(Possi	Debate	Journal	2		La			El acero	Chalacan
(Rossi,						Sobre todo,		inoxidable es	
2014)	sobre el	s and	0		reducción	porque el			Cruz
	uso del	books			de huella	acero		conocido por	

	acero		1		ecológica	inoxidable		su	Gianella
	inoxidabl		4		en las	tiene		durabilidad	Aillen
	e en las				construccio	excelentes		excepcional.	
	construcc				nes de	propiedades		En	
	iones con				diseños	anticorrosiva		condiciones	
	miras a				arquitecton	s, lo que		adecuadas,	
	la				icos.	hace que su		puede durar	
	sostenibil				1000.	agradable		décadas e	
	idad.					aspecto dure		incluso	
	idda.					mucho		siglos sin	
						tiempo. En		corroerse, lo	
				Exper		cuanto a la	El acero reciclado.	que lo	
				iment		gestión del	Li accio reciciado.	convierte en	
				al		ciclo de vida,		un material	
				aı		el acero		muy	
						inoxidable		duradero	
						no requiere		para	
						recubrimient		diversas	
						os, lo que		aplicaciones,	
						genera bajos		incluida la	
						costos de		construcción.	
						mantenimien		construcción.	
						to que			
						generan			
						valor a largo			
						plazo para el			
						propietario			
						del edificio.			
(Oti &	Ladrillos	Article	2	Obser	Es una	Este material	Los ladrillos de	Los ladrillos	Chalacan
Kinuthi	de arcilla	7 II ticic	0	vacio	forma de	de	arcilla sin cocer,	de arcilla sin	Cruz
a, 2012)	cruda		1	nal.	recuperaci	construcción,	también	cocer para	Gianella
a, 2012)	estabiliza		2	iiai.	ón de	la arcilla	conocidos como	uso	Aillen
	dos para		_		energía a	desempeña	adobe, pueden	ambiental y	Amen
	uso para				partir de	un papel	tener una vida útil	sustentable.	
	ambienta				residuos. A	importante	de varias décadas	susternable.	
	l y				sí, este	en la mejora	a siglos,		
	sostenibl				trabajo de	de la	dependiendo de		
	e.				investigaci	eficiencia	factores como el		
	с.				ón sobre el	ambiental y	clima, el		
					análisis	la			
						sostenibilida	mantenimiento y		
					ambiental		la exposición a la		
					y de	d de los	intemperie. Con el		

					sostenibili	edificios y	cuidado		
					dad de	contribuye a	adecuado, los		
					ladrillos de	la	edificios		
					barro	prosperidad	construidos con		
					cocido	económica y	ladrillos de adobe		
					surge con	el desarrollo	pueden durar		
					el objetivo	de	mucho tiempo.		
					de	infraestructu			
					contribuir	ras en el			
					a reducir el	Reino Unido			
					consumo	y en todo el			
					energético	mundo.			
					y las				
					consecuent				
					es				
					emisiones				
					de				
					CO 2 deriv				
					adas de la				
					cocción de				
					ladrillos de				
					barro en				
					hornos,				
					que tiene				
					un efecto				
					directo				
					sobre el				
					cambio				
					climático.				
(Achal	Efecto de	Journal	2		Mejorar lo	En este caso	La durabilidad a	El hormigón	Chalacan
et al.,	las		0		mas pronto	el hormigón	largo plazo del	armado	Cruz
2011)	bacterias		1		posible el	ayuda a	hormigón se ve		Gianella
	calcifican		1		planeta a	reducir la	afectada en gran		Aillen
	tes sobre				través del	necesidad de	medida por su		
	las				reciclaje de	reconstrucci	permeabilidad. El		
	propieda				uso de	ón frecuente	hormigón con alta		
	des de				materiales	, lo que a su	permeabilidad		
	permeaci				sostenibles.	vez	proporciona fácil		
	ón de las			Exper		disminuye la	acceso tanto al		
	estructur			iment		cantidad de	agua como a		
	as de			al		recursos	sustancias		
	hormigó					utilizados a	nocivas, lo que		
	0-	<u> </u>	l	<u> </u>	<u> </u>		, 1	<u> </u>	<u> </u>

		ı	1			T			
	n.					largo	resulta en el		
	Revista					tiempo.	deterioro del		
	de						hormigón o del		
	Microbio						refuerzo de acero		
	logía y						incrustado en el		
	Biotecnol						hormigón o una		
	ogía						combinación de		
	industria						ambos.		
	1.								
(Casco	seño de	Article	2	Obser	Prolongar	Se deben	la reducción de las	Membranas	Chalacan
ne,	cubiertas		0	vacio	la vida en	evaluar las	emisiones de	elastomérica	Cruz
2019)	verdes:		1	nal	el planeta a	característica	gases de efecto	s:	Gianella
	Estado		9		través de	s físicas,	invernadero y el	Caracterizad	Aillen
	del arte				áreas	como la	efecto isla de calor	as por un	
	en				verdes es	conductivida	urbano, la	polímero	
	tecnologí				decir las	d térmica y	prevención de la	elastomérico	
	a y				plantas.	la inercia, las	lluvia ácida	mezclado	
	materiale					densidades	aumentando los	con betún,	
	S.					máxima y	valores de pH, la	que le	
	Sostenibi					mínima, la	mejora de la	confiere	
	lidad.					gravedad	calidad del aire	flexibilidad a	
						específica, la	produciendo más	bajas	
						conductivida	oxígeno y	temperatura	
						d hidráulica	secuestrando	s y excelente	
						y el índice de	dióxido de	elasticidad;	
						vacíos, de	carbono y	Membranas	
						estos	disminuyendo el	plastomérica	
						materiales	tráfico.	s:	
						reciclados.		Caracterizad	
								as por un	
								polímero	
								plastomérico	
								mezclado	
								con betún,	
								que le da	
								estabilidad a	
								altas	
								temperatura	
								s y ofrece	
								alta	
								resistencia a	
								la exposición	

	<u> </u>	1	1	ı	T	T	T		T 1
								a los rayos	
								UV;	
								Membranas	
								Elasto-	
								Plastomérica	
								s: Combina	
								las	
								característica	
								s de las dos	
								membranas	
								anteriorment	
								e descritas.	
(Ljungb	Selección	Journal	2	Exper	La creación	En un	Un producto	La	Chalacan
erg,	y diseño	and	0	iment	de espacios	mundo con	técnico suele estar	disponibilida	Cruz
2007)	de	Book	0	al.	mas	recursos	fabricado con uno	d de	Gianella
	materiale		7		saludables	limitados y	o varios	materiales	Aillen
	s para el				para que	graves	materiales. Sin	para los	
	desarroll				su	impactos	embargo, hay	productos no	
	o de				poblacion	ambientales,	ejemplos de	aumentará	
	producto				respire un	es obvio que	productos	en el futuro,	
	S				aire libre	un estilo de	inmateriales como	ya que la	
	sustentab				de	vida más	programas de	cantidad de	
	les				contamina	sostenible	ordenador. La	material es	
					ntes.	será cada	sostenibilidad de	limitada.	
						vez más	un determinado		
						importante.	producto basado		
						1	en materiales		
							depende		
							principalmente		
							del material o		
							materiales		
							utilizados para el		
							producto en sí o		
							durante su vida		
							útil según, por		
							ejemplo, un ACV		
							(Evaluación del		
							ciclo de		
							vida). Durante el		
							ciclo de vida de		
							un producto		
							material, se pasan		
							materiai, se pasan		

				<u> </u>			117		
							por diferentes		
							etapas, como		
							extracción del		
							material,		
							fabricación,		
							embalaje,		
							transporte y uso		
							del producto.		
(Adrien	Redescu-				Su objetivo	Ayuda a la	La tierra cruda	Se hace uso	Andrés
Aras-	briendo				es reducir	reducción de	puede llegar a	de la tierra	Santiago
Gaudry	el patri-				la huella	consumo de	durar desde unas	cruda para la	Muñoz
a b,	monio de				de carbono	energía final	cuantas semanas a	realización	Araujo
2023)	la tierra				ocasionada	y a su vez	poder durar	de	
	cruda de				por el área	reducir la	incluso varios	construccion .	
					de la	contaminaci	años esa es una de	es eso quiere	
	la zona				construcció	ón que causa	las ventajas las	decir que se	
	de				n el cual es	el área de la	cuales	hace uso de	
	Cham-				un sector	construcción	proporciona este	los	
	pagne				que tiene		material y sus	materiales	
	(Francia):				un fuerte		capacidades de	locales los	
	cartogra-				impacto en		conservación.	cuales son	
	fía y tipo-				la , .			reutilizables	
	, ,				contaminac			y de bajo	
	logía de				ión del			impacto	
	una ar-				medio			ambiental	
	quitec-				ambiente				
	tura ver-								
	nácula de								
	adobe es-								
	pecífica								
(JC	Construir	Article	2	Obser	El objetivo	Conocer	Las	La	Andrés
Morel		Tittlete	0	vacio	principal	sobre los que	construcciones	realización	Santiago
_, 2001)	casas con		0	nal	es	los nuevos	hechas con	de técnicas	Muñoz
	materia-		1	1101	reutilizar	materiales	materiales locales	con el uso de	Araujo
	les loca-		1		materiales	locales como	pueden llegar a	los	211auj0
	les: signi-				que ya han	lo son la	variar	materiales	
	fica redu-				sido	mampostería	dependiendo de	locales para	
	cir drásti-				fabricados.	de piedra	la situación, pero	construcción	
	camente				Esto	demostrand	en la mayoría de	de edificios	
					depende	o una baja en	casos una		
	el im-				de un	la	edificación de este		
	pacto				'				

Γ					1 . 1		. 1 11		
	ambien-				cambio de	contaminaci	tipo puede llegar		
	tal de la				mentalidad	ón al usar	a durar con una		
	construc-				hacia la	este material.	vida útil de 50 a		
	ción.				reutilizació		70 años		
					n/reciclaje				
					de				
					materiales				
					en lugar de				
					desecharlo				
					s.				
(Jigme	Innovar	Article	2	Exper	El objetivo	Se realiza	Las edificaciones	Madera	Andrés
Thinley	la cons-		0	iment	es que al	una	realizadas con		Santiago
a b			2	al	hacer uso	comparación	este material		Muñoz
2023)	trucción		3		de estos	entre los	pueden llegar a		Araujo
	residen-				materiales	diferentes	durar hasta 100		,
	cial de				la	tipos de	años siempre y		
	Bután				contaminac	técnicas para	cuando a estas		
	con ma-				ión	la	mismas se les		
	dera ma-				provocada	construcción	realice el		
					por las	de edificios	mantenimiento		
	ciza para				construccio	para que de	adecuado		
	la soste-				nes.	esa manera			
	nibilidad				nes.	ver cual			
	econó-					provoca			
	mica y					mayor			
	ambien-					contaminaci			
						ón.			
	tal					OII.			
	Explo-	Article	2	Exper	Reducir la	Ayuda a	Generalmente la	Lana de	Andrés
	rando el		0	iment	contaminac	reducir el	vida de un objeto	oveja	Santiago
, 2024)	potencial		2	al.	ión	uso de	aislante llega a ser		Muñoz
	de la lana		4		realizada	materiales	de 5 a 7 años		Araujo
					por los	los cuales			
	de oveja				materiales	contribuyen			
	como				aislantes.	a la			
	material					contaminaci			
	aislante					ón usando			
	ecoló-					una opción			
	gico: una					mas natural			
			i			1.1 .	I		
						y amigable			
	revisión					con el medio			

	1.								
	exhaus-								
	tiva y								
	una clasi-								
	ficación								
	analítica								
(Eden	Una revi-	Article	2	Obser	Se trata de	Los	Bambú		Andrés
Binega	sión de		0	vacio	una forma	materiales			Santiago
Yemese	estudios		2	nal	en la que	como el			Muñoz
gen a,	experi-		3		se usa	bambú y el			Araujo
2023)	mentales				materiales	barro han sido			
	sobre				de origen natural	utilizados			
	compo-				para poder	desde la			
	nentes de				reducir la	antigüedad			
	Cob,				contaminac	para la			
	Hempcre				ión como	construcción			
	_				lo son los	de casas y			
	te y				materiales	edificaciones			
	bambú y				de origen				
	el lla-				terrestre.				
	mado a								
	la transi-								
	ción ha-								
	cia la								
	construc-								
	ción de								
	vivien-								
	das sus-								
	tentables								
	con im-								
	presión								
	3D								
(Yongp	Reciclaje	Article	2		Sirve para	Ayuda a la	La durabilidad de	Polvo de	Andrés
eng	de polvo		0		la	mejora de la	estos materiales	granito y	Santiago
Luo a	de gra-		2		reducción	resistencia	puede llegar a ser	residuos de	Muñoz
b, 2022)	nito y re-		2		de	de los	tanto de 10 hasta	mármol.	Araujo
	-		Е		residuos	materiales	15 años.		
	siduos de		x		de solidos	de			
	mármol		р		у	construcción.			
			e		acumulado				

	produci-		r		s los cuales				
	dos a		i		afectan al				
	partir del		m		medio				
	procesa-		e		ambiente				
	miento		n		en gran				
			t		medida				
	de la pie-		a						
	dra para		1						
	la prepa-								
	ración de								
	vitrocerá-								
	mica ar-								
	quitectó-								
	nica.								
(Madh	El bambú	Article	2	Exper	Evitar la	Ayuda a la	Al tener un	Bambú	Andrés
ura	como		0	iment	degradació	evitar la	correcto cuidado		Santiago
Yadav,	material		2	al.	n del	continuación	de este material		Muñoz
2021)	sosteni-		1		medio	del daño que	puede llegar a		Araujo
	ble en la				ambiente y	se realiza a el	durar varios años		
	industria				la	medio	caso contrario de		
					reducción	ambiente y a	no ser así puede		
	de la				de recursos	la vez evitar	durar solo un par de años.		
	construc-				de madera	la utilización de	de anos.		
	ción: una					materiales			
	visión					con tanta			
	general.					regularidad			
						evitando que			
						su número			
						se reduzca.			

Theorem 1. Example text of a theorem. Theorems, propositions, lemmas, etc. should be numbered sequentially (i.e., Proposition 2 follows Theorem 1). Examples or Remarks use the same formatting, but should be numbered separately, so a document may contain Theorem 1, Remark 1 and Example 1.

The text continues here. Proofs must be formatted as follows:

Proof of Theorem 1. Text of the proof. Note that the phrase "of Theorem 1" is optional if it is clear which theorem is being referred to. Always finish a proof with the following symbol. \Box

The text continues here.

4. Discussion

132

133134

135

136 137

138 139

140

Authors should discuss the results and how they can be interpreted from the perspective of previous studies and of the working hypotheses. The findings and their implications should be discussed in the broadest context possible. Future research directions may also be highlighted.

5. Conclusions

En conclusión, queda demostrado que este studio resalta la necesidad de realizar un cambio en los materiales utilizados en la arquitectura moderna y construcción, ya que a través de la recopilación de datos se puede llegar a la deducción que los materiales anteriormente presentados pueden ayudar a reducir la contaminación ambiental. Estos mismos materiales son de larga duración además que generan un impacto ambiental limitado durante su proceso de producción. Un claro ejemplo de esto es el bambú ya que este puede llegar a durar 50 años si se tiene bajo ciertas condiciones y también ayuda a atrapar el CO2.

La importancia de estos resultados se presenta como prueba que también es possible utilizar otros materiales para la construcción. Estos materiales ofrecen una ventaja considerable al ser más económicos y poseer una vida útil prolongada, lo que resulta especialmente beneficioso para países en desarrollo.

Es crucial reconocer las limitaciones de este estudio, se presentan restricciones en cuanto a las fuentes de información sobre materiales sostenibles, ya que no se exploró en detalle de estos elementos creados por el ser humano.

6. Patents

This section is not mandatory but may be added if there are patents resulting from the work reported in this manuscript.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.com/xxx/s1, Figure S1: title; Table S1: title; Video S1: title.

Author Contributions: For research articles with several authors, a short paragraph specifying their individual contributions must be provided. The following statements should be used "Conceptualization, X.X. and Y.Y.; methodology, X.X.; software, X.X.; validation, X.X., Y.Y. and Z.Z.; formal analysis, X.X.; investigation, X.X.; resources, X.X.; data curation, X.X.; writing—original draft preparation, X.X.; writing—review and editing, X.X.; visualization, X.X.; supervision, X.X.; project administration, X.X.; funding acquisition, Y.Y. All authors have read and agreed to the published version of the manuscript." Please turn to the CREdit taxonomy for the term explanation. Authorship must be limited to those who have contributed substantially to the work reported.

Funding: Please add: "This research received no external funding" or "This research was funded by NAME OF FUNDER, grant number XXX" and "The APC was funded by XXX". Check carefully that the details given are accurate and use the standard spelling of funding agency names at https://search.crossref.org/funding. Any errors may affect your future funding.

Acknowledgments: In this section, you can acknowledge any support given which is not covered by the author contribution or funding sections. This may include administrative and technical support, or donations in kind (e.g., materials used for experiments).

Conflicts of Interest: Declare conflicts of interest or state "The authors declare no conflicts of interest." Authors must identify and declare any personal circumstances or interest that may be perceived as inappropriately influencing the representation or interpretation of reported research results. Any role of the funders in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results must be declared in this section. If there is no role, please state "The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results".

Appendix A

The appendix is an optional section that can contain details and data supplemental to the main text—for example, explanations of experimental details that would disrupt the flow of the main text but nonetheless remain crucial to understanding and reproducing the research shown; figures of replicates for experiments of which representative data is shown in the main text can be added here if brief, or as Supplementary data. Mathematical proofs of results not central to the paper can be added as an appendix.

Appendix B

All appendix sections must be cited in the main text. In the appendices, Figures, Tables, etc. should be labeled starting with "A" – e.g., Figure A1, Figure A2, etc.

References

References must be numbered in order of appearance in the text (including citations in tables and legends) and listed individually at the end of the manuscript. We recommend preparing the references with a bibliography software package, such as EndNote, ReferenceManager or Zotero to avoid typing mistakes and duplicated references. Include the digital object identifier (DOI) for all references where available.

Citations and references in the Supplementary Materials are permitted provided that they also appear in the reference list here.

In the text, reference numbers should be placed in square brackets [] and placed before the punctuation; for example [1], [1–3] or [1,3]. For embedded citations in the text with pagination, use both parentheses and brackets to indicate the reference number and page numbers; for example [5] (p. 10), or [6] (pp. 101-105).

- Achal, V., Mukherjee, A., & Reddy, M. S. (2011). Effect of calcifying bacteria on permeation properties of concrete structures. Journal of Industrial Microbiology & Biotechnology, 38(9), 1229-1234. 10.1007/s10295-010-0901-8
- Adrien Aras-Gaudry a b, G. F. _, E. H. _. (2023). Rediscovering raw earth heritage of Champagne area (France): Cartography and typology of a specific adobe vernacular architecture. 10.1016/j.matpr.2023.08.310
- Cascone, S. (2019). Green roof design: State of the art on technology and materials. Sustainability, 11(11), 3020. 10.3390/su11113020
- 217 Cheng Sun a b, J. G. a b, Q. D. ab _, D. Q. a b, W. C. c, X. Y. (2023). Are straw bales better insulation materials for constructions? A review. 10.1016/j.dibe.2023.100209
 - Danaci, H. M., & Akin, N. (2022). Thermal insulation materials in architecture: a comparative test study with aerogel and rock wool. Environmental Science and Pollution Research, 29(48), 72979-72990. 10.1007/S11356-022-20927-2/METRICS
 - Duan, P., Yan, C., Luo, W., & Zhou, W. (2016). Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Construction and Building Materials, 106, 115-125. 10.1016/J.CONBUILDMAT.2015.12.0955
 - Eden Binega Yemesegen a, A. M. M. b. (2023). A review of experimental studies on Cob, Hempcrete, and bamboo components and the call for transition towards sustainable home building with 3D printing. 10.1016/j.conbuildmat.2023.132603
 - Farooq, F., Jin, X., Faisal Javed, M., Akbar, A., Izhar Shah, M., Aslam, F., & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Construction and Building Materials, 306, 10.1016/J.CONBUILDMAT.2021.1247622
 - Fridley, K. J. (2002). Wood and Wood-Based Materials: Current Status and Future of a Structural Material. Journal of Materials in Civil Engineering, 14(2), 91-96. 10.1061/(ASCE)0899-1561(2002)14:2(91)
- Ige, O. E., Olanrewaju, O. A., Duffy, K. J., & Obiora, C. (2021). A review of the effectiveness of Life Cycle Assessment for 231 gauging environmental impacts from cement production. Journal of Cleaner Production, 324(129213), 129213. 10.1016/j.jcle-233 pro.2021.129213

207

208

189

190

191

192

193

194 195

196 197

198

199 200

201

202

209 210

211

212

213 214

215

216

218 219

220

221 222

223 224

225

226 227 228

229

232

- 234 11. JC Morel _, una mesbah una, M. O. b, P. W. c. (2001). Building houses with local materials: means to drastically reduce the environmental impact of construction. 10.1016/S0360-1323(00)00054-8
- 236 12. Jigme Thinley a b, S. H. a. (2023). Innovating Bhutan's residential construction with mass timber for economic and environmental sustainability. 10.1016/j.jobe.2023.107763
- 238 13. Lee, J. H. (2020). Reinterpreting sustainable architecture: What does it mean syntactically? Sustainability, 12(16), 6566. 10.3390/su12166566
- 240 14. Lennart Y. Ljungberg. (2007). Materials selection and design for development of sustainable products. 241 10.1016/j.matdes.2005.09.006
- 242 15. M. Asif. (2009). 2 Sustainability of timber, wood and bamboo in construction. 10.1533/9781845695842.31
- 243 16. Madhura Yadav, A. M. (2021). Bamboo as a sustainable material in the construction industry: An overview. 10.1016/j.matpr.2021.01.125
- Mariani, A., & Malucelli, G. (2022). Transparent Wood-Based Materials: Current State-of-the-Art and Future Perspectives.
 Materials 2022, Vol. 15, Page 9069, 15(24), 9069. 10.3390/MA152490699
- Maywald, C., & Riesser, F. (2016). Sustainability The Art of Modern Architecture. Procedia Engineering, 155, 238–248.
 10.1016/J.PROENG.2016.08.025
- 19. Mohd Taib, M. Z., Ahmad, S., & Nogroho, W. (2023). A new paradigm in using bamboo as sustainable material for future building construction. Environment-Behaviour Proceedings Journal, 8(23), 195–200. 10.21834/ebpj.v8i23.4512
- 251 20. Oti, J. E., & Kinuthia, J. M. (2012). Stabilised unfired clay bricks for environmental and sustainable use. Applied Clay Science, 58, 52–59. 10.1016/j.clay.2012.01.011
- 253 21. products. 10.1016/j.matdes.2005.09.006
- 22. Rossi, B. (2014). Discussion on the use of stainless steel in constructions in view of sustainability. Thin-Walled Structures, 83, 182–189. 10.1016/j.tws.2014.01.021
- 23. Sieffert, Y., Huygen, J. M., & Daudon, D. (2014). Sustainable construction with repurposed materials in the context of a civil engineering–architecture collaboration. Journal of Cleaner Production, *67*, 125–138. 10.1016/j.jclepro.2013.12.018
- 24. Sulava Hetimy, N. M. O. A. E. D. E. (2024). Exploring the potential of sheep wool as an eco-friendly insulation material: A comprehensive review and analytical ranking, 10.1016/j.susmat.2023.e00812
- 260 25. T. Bakharev. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. 10.1016/j.cem-261 conres.2004.06.031
- 26. Tabb, P., & Deviren, A. S. (2017). The greening of architecture: A critical history and survey of contemporary sustainable architecture and urban design. The Greening of Architecture: A Critical History and Survey of Contemporary Sustainable Architecture and Urban Design, 1–193. 10.4324/9781315239293/GREENING-ARCHITECTURE-PHILLIP-JAMES-TABB-SENEM-DEVIREN
- 27. Tiza, T. M., Singh, S. K., Kumar, L., Shettar, M. P., & Singh, S. P. (2021). Assessing the potentials of Bamboo and sheep wool fiber as sustainable construction materials: A review. Materials Today: Proceedings, 47, 4484–4489. 10.1016/j.matpr.2021.05.322
- 28. Vandevyvere, H., Heynen, H., & Welter, V. M. (2014). Sustainable Development, Architecture and Modernism: Aspects of an Ongoing Controversy. Arts 2014, Vol. 3, Pages 350-366, 3(4), 350–366. 10.3390/ARTS3040350
- 29. Wang, M., Liu, H., Feng, X., Wang, X., Shen, K., Qi, H., & Rojas, O. J. (2023). State-of-the-art luminescent materials based on wood veneer with superior strength, transparency, and water resistance. Chemical Engineering Journal, 454, 140225. 10.1016/J.CEJ.2022.140225

- 30. Wu, Z., Zeng, Y., Liu, Y., Xiao, H., Zhang, T., & Lu, M. (2021). Utilization of waste wool felt architecture to synthesize self-supporting electrode materials for efficient energy storage. New Journal of Chemistry, 45(37), 17513–17521.

 10.1039/D1NJ03834F
- 277 31. Yongpeng Luo a b, S. B. a b, Y. Z. a b c d. (2022). Recycling of granite powder and waste marble produced from stone processing for the preparation of architectural glass–ceramic. 10.1016/j.conbuildmat.2022.128408
- Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.