

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

			Semester III						
No	Type	Code	Course	L	T	P	0	E	C
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3
1	BSC*	MA202	Foundation of Mathematics-I*	2	1	0	6	09	3
2	PC	EC201	Computer Architecture & Organization						
3	PC	EC202	Electronic Devices	3	0	2	4	09	4
4	PC	EC203	Network Theory	3	0	2	4	09	4
5	SBC	EC204	Electronic Instruments and Measurement Lab	0	1	2	2	05	2
6	SBC	AS201	Communication Skills	1	0	2	2	05	2
7	ABL	SVXX/ STXX	SEVA II or III /SATVA II or III	0	0	0	0	03	1
8	HSSE	HSEXX	HSS-I	2	0	0	3	05	2
			TOTAL	16	2	12	30	63	25

^{*}Only for Lateral Entry Students

	Semester IV										
No.	Type	Code	Course	L	T	P	0	E	C		
1	BSC	MA203	Probability and Stochastic Processes	3	0	0	5	08	3		
1	BSC*	MA204	Foundation of Mathematics-II	2	1	0	6	09	3		
2	PC	EC205	Analog Circuits	3	0	2	6	11	4		
3	PC	EC206	Microcontrollers	3	0	2	6	11	4		
4	PC	EC207	Signals and Systems	3	0	2	6	11	4		
5	SBC	EC208	Mini Project-I	0	0	0	4	04	2		
6	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	3	01	1		
7	HSSE	HSEX2	HSS-II	2	0	0	3	05	2		
8	S/M SCX1/MNX1 SCOPE-I/Minor-I								3		
			ΓΟΤΑL	16	1	6	39	60	26		

^{*}Only for Lateral Entry Students

	Second Summer for HSC students										
No.	No. Type Code Course L T P O E C										
1	MLC	AS202	Constitution of India	1	0	0	05	06	NC		

	Second Summer (For Lateral Entry Students)										
No.	No. Type Code Course L T P O E C										
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3		
1	BSC	MA203	Probability and Stochastic Processes		0	0	5	08	3		
2	MLC	AS202	Constitution of India	1	0	0	05	06	NC		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Semester-III

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
	Linear Algebra	2	0	2	5	9	2	0	1	3
(BSC)		Examination Scheme								
		Component]	ISE		MSE		ESE	Total
MA201		Theory			50		50		100	200
		Laboratory			50				50	100

Pre-requis	ite Course Codes, if any.	MA101, MA102							
Course Ob	pjective: To develop mathematical skills for solving	ng engineering problems.							
Course Ou	Course Outcomes (CO): At the End of the course students will be able to:								
MA201.1	Solve a homogeneous and non-homogeneous sys	tem of linear equations using rank of amatrix.							
MA201.2	Solve system of linear equations by Numerical Methods.								
MA201.3	Solve equations in real life problems and to encode and decode messages using the concept of								
	matrices.								
MA201.4	Identify whether given structures are vector s	spaces and subspaces and construct a basis							
	for them.								
MA201.5	Show if a given matrix is diagonalizable or n	ot.							
MA201.6	Apply concepts of Eigenvalues and eigenvec	tors to calculate functions of a square matrix,							
	Google page rank vector and solve systems of	f differential equations using							
	diagonalization of matrices.								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA201.1	3											
MA201.2	3											
MA201.3	3	1										
MA201.4	3											
MA201.5	3											
MA201.6	3	1										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA201.1							
MA201.2							
MA201.3							
MA201.4							
MA201.5							
MA201.6							

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $\sqrt{$ Understand $\sqrt{}$ Apply $\sqrt{}$ Analyze Evaluate	e
---	---

Module	Unit	Topics	Ref	Hrs.				
No.	No.	2	ICI	1115.				
1	Title	Basics of matrices	3,5	03				
	1.1	Revision of basic matrices and types of matrices.		01				
	1.2	Row echelon form, Reduced Row Echelon form, Rank of a matrix.		02				
2	Title	Linear equations & its solutions	1,2,3,5	07				
	2.1	Consistency and solution of simultaneous linear homogeneous and non-		02				
		homogeneous equations.						
	2.2 Application of solving systems of equations in traffic control.							
	2.3	Solution of system of linear algebraic equations, by		04				
	(1) Gauss Elimination Method							
	(2) Gauss Jordan method							
	(3) Gauss Jacobi Iteration method							
		(4) Gauss Seidel Method.						
3	Title	Vector spaces (over field of real numbers)	1,2,5	08				
	3.1	Vector space, subspace, span, linear dependence and		08				
		independence of vectors, basis, dimension, orthogonal projection						
		& gram-Schmidt process. Null space, row space, column space,						
		Rank-Nullity theorem (only statement). Least square method.						
4	Title	Encoding & decoding using Matrices.	4	02				
	4.1	Application of matrices to Coding and Decoding		02				
5	Title	Eigenvalues and Eigenvectors	1,2,3,5	08				
	5.1	Eigenvalues, Eigenvectors and its properties. Cayley Hamilton theorem		04				
		and its applications. Diagonalization of matrices. Derogatory and Non-derogatory matrices.						
	5.2	Application to find google page rank. Functions of a square matrix.		04				
	3.2	Solving system of differential equations using diagonalization.		04				
6	Self-	1.2 Normal form.	1,2,3,5	05*				
	Study	2.2 Forming equations using KVL for circuits and solving them	, ,-,-					
		using matrices.						
		3.1 Singular Value Decomposition.						
		5.1 Additional properties with proofs of eigenvalues and						
		eigenvectors.						
		Total (*Not in	cluded)	28				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment							
1	Introduction to Scilab (getting started) and its benefits to use as a mathematics tool.							
2	Basic commands of scilab and vectors & matrix operations.							
3	onditional branching and iterations using Scilab.							
4	Solution of linear equations using row-echelon and inverse of a matrix.							
5	Solutions of linear equations using Gauss Elimination method.							
6	Solutions of linear equations using Gauss Jordan method.							
7	Solutions of linear equations using Gauss-Jacobi method.							
8	Solutions of linear equations using Gauss-Seidel method.							
9	Solutions of linear equations using Crout's method.							
10	To find Eigen values and Eigenvectors using Scilab							

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1.	Linear Algebra and its applications	4th	Gilbert	Cengage	2014
			Strang		
2.	Higher Engineering Mathematics	44th	Dr. B. S.	Khanna	2020
			Grewal	Publications	

Sr. No.	Title	Edition	Authors	Publisher	Year
1.	Linear Algebra and its applications	3rd	David. C. Lay	Pearson Education	2006
2.	Elementary Linear Algebra Application Version	6th	H Anton and Crorres	John Wiley & Sons	2010
3.	Advanced Engineering Mathematics	28th	H. K Das	S. Chand	2014
4.	Hill Ciphers	1st	Jonaki B Ghosh	At Right Angles	2015
5.	Advanced Engineering Mathematics	10th	Erwin Kreysizg	John Wiley & Sons	2011

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teach	(Hrs/v	Credits Assigned						
Code		L	T	P	0	E	L	T	P	Total
(DCC)		2	1	0	6	9	2	1	0	3
(BSC)	Foundations of Mathematics-I	Examination Scheme								
MA202		Comp	Component		ISE		MSE		ESE	Total
WIAZUZ		The	Theory		75		75		150	300

Pre-requis	site Course Codes, if any							
Course Ob	pjective: To develop foundation of mathematical skills.							
Course Ou	Course Outcomes (CO): At the End of the course students will be able to: -							
MA202.1	Differentiate a function of one variable and partially differentiate a function of more than one variable.							
MA202.2	Apply the concept of partial differentiation to find extreme values of a given function.							
MA202.3	Find nth order derivative of a given function.							
MA202.4	Expand a given function as a power series.							
MA202.5	Perform operations on matrices and find inverses and determinants of them.							
MA202.6	Perform vector operations and compute dot products and cross products between them.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA202.1	2											
MA202.2	2											
MA202.3	2											
MA202.4	1											
MA202.5	1											
MA202.6	1											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA202.1							
MA202.2							
MA202.3							
MA202.4							
MA202.5							
MA202.6							

Remember $\sqrt{}$ Understand $\sqrt{}$ ApplyAnalyzeEvaluateCreate	
--	--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.		
1	Title	Differential Calculus	1,2	18		
	1.1	Partial fractions. Derivatives of standard functions, product and quotient rule for differentiation.		04		
	1.2	Partial derivatives of first and higher order, composite differentiation		03		
	1.3 Application of partial derivatives: Local Maxima and Minima of functions of two variables.					
	1.4	Successive Differentiation: Proofs of nth derivatives of standard functions. Use of partial fractions to calculate nth derivatives of given functions. Leibnitz theorem for nth derivative of product of		05		
	1.5	two functions. Infinite series: expansion of functions in powers of x using maclaurin series. Taylor's series.		04		
2	Title	Matrices	1,2	07		
	2.1	Addition and scalar multiplication of matrices. Matrix multiplication, types of matrices.		03		
	2.2	Elementary row transformations, finding inverses using matrices, determinants and its properties		04		
3	Title	Vectors	1,2	03		
	3.1	Vector definition, addition, scalar multiplication, dot product of two vectors, angle between two vectors, cross product.		03		
		,	Total	28		

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Higher Engineering	44th	Dr. B. S.	Khanna	2020
	Mathematics		Grewal	Publications	

Sr. No	Title	Edition	Authors	Publisher	Year
1	Advanced Engineering	10th	Erwin Kreysizg	John Wiley &	2011
	Mathematics			Sons	
2	Advanced Engineering	28th	H. K. Dass	S. Chand	2014
	Mathematics			Publications	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	T	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
		3	0	2	4	9	3	0	1	4	
(PC)	Computer Architecture &	Examination Scheme									
, ,		Comp		ISE	I	MSE		SE	Total		
EC201	Organization	The	eory		75		75		50	300	
		Laboratory			50			4	50	100	

Pre-requis	ite Course Codes, if any.	EC101, Any Programming Language					
Course Ob	pjective: Imparting concepts of ea	ach component of computer architecture thoroughly with					
practical as	practical aspects including memory systems and I/O communications with interfacing						
Course Ou	itcomes (CO): At the End of the	course students will be able to					
EC201.1	Describe basic computer structu	ure and compare computer architecture models					
EC201.2	Design algorithms to solve ALU	U operations and memory mapping techniques					
EC201.3	Comprehend processor archite	ecture with various design methods of CPU with comparative					
	analysis	•					
EC201.4	Describe memory systems with	design and analysis of mapping techniques for cache and virtual					
	memory						
EC201.5	Analyze different parallel proce	essing and pipelining concepts with pipelining hazards					
EC201.6	Comprehend different types of	I/O buses, compare and contrast different types of data transfer					
	methods and arbitration techniq	ues					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC201.1	3											
EC201.2		2		2								
EC201.3	2			2								
EC201.4		2		2								
EC201.5	2											
EC201.6	2											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
	IEOI	1 EO2	1 EO3	1 E O 4	1301	1302	1303
EC201.1							
EC201.2							
EC201.3							
EC201.4							
EC201.5							
EC201.6							

Remember	Understand	Apply	Analyze $\sqrt{}$	Evaluate	Create	
----------	------------	-------	-------------------	----------	--------	--

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	Compon	icht		
Module	Unit	Topics	Ref.	Hrs.
No.	No.	Topics	Kei.	1115.
1	Title	Overview of Computer Architecture and Organization		
	1.1	Introduction of Computer Organization and Architecture, Basic organization	1	5
		of computer and block level description of the functional units, Evolution of		
		x86 Computers, Von Neumann model, Harvard Model, Embedded system		
	1.2	Performance Issues: Designing for performance, Amdahl's Law, Multi-	1	
		core, GPGPU		
2	Title	Data Representation and Arithmetic Algorithms		6
	2.1	Number representation: Floating-point representation, Floating point	2,3	
		arithmetic, IEEE 754 floating point number representation		
	2.2	Integer Data computation: Addition, Subtraction. Multiplication: Signed	2,3	
		multiplication, Booth's algorithm.		
	2.3	Division of integers: Restoring and non-restoring division	2,3	
3	Title	Processor Organization and Control Unit		9
	3.1	CPU Architecture, Register Organization	1,2,4	
		Instruction formats, basic instruction cycle. Instruction interpretation and		
		sequencing, Case Study of 8086 Architecture and Register Organization.		
	3.2	Control Unit: Soft wired (Micro-programmed) and hardwired control unit	2,4	
		design methods. Microinstruction sequencing and execution. Micro		
		operations		
	3.3	RISC and CISC: Introduction to RISC and CISC architectures and design	2,4	
		issues.	,	
4	Title	Memory Organization		11
	4.1	Introduction to Memory and Memory parameters. Classifications of primary	1,2	
		and secondary memories. Types of RAMS and ROM, Allocation policies,		
		Memory hierarchy and characteristics.		
	4.2	Cache memory: Concept, architecture (L1, L2, L3), mapping techniques.	1,2	
		Cache Coherency, Interleaved and Associative memory.		
	4.3	Virtual Memory: Concept, Segmentation and Paging, Page replacement	1,2,4	
		policies		
5	Title	I/O Organization and Introduction to Parallel Processing		11
	5.1	Buses: Types of Buses, Bus Arbitration, BUS standards	2	
	5.2	I/O Interface, I/O channels, I/O modules and IO processor, Types of data	1,2	
		transfer techniques: Programmed I/O, Interrupt driven I/O and DMA.	,	
	5,3	Introduction to parallel processing concepts, Flynn's classifications, pipeline	1,2,4	
	3-	processing, Pipeline stages, Pipeline Hazards	, · , ·	
6	Self	Comparative Study of microprocessors and micro architectures with respect		4*
~	Study	to their important features.8086 instructions and assembler directives with		
		addressing modes with memory interfacing techniques. Cache memory		
		protocol and virtual memory concepts in Pentium processors. Vector and		
		Array Processors with VLIW architecture		
	I	Total (*Not inc	luded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component, if any: (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Implementation of various Arithmetic Operations through Assembly Language Programming for microprocessor 8086 (MASM)
2	Simulate the operation of COPY and PASTE in 8086 (MASM)
3	Implement various String Operations in 8086 through the utilities provided by DOS interrupts (MASM)
4	Generation of alphabetic arrangement of a given string in 8086 (MASM)
5	Design password application (generation and detection) in 8086 (MASM)
6	Design of Carry Look Ahead Adder
7	Implementation and programming of Booth's Multiplication Algorithm
8	Implementation and programming of Division Algorithm (Non-Restoring and Restoring)
9	Implementation of Mapping techniques of Cache memory
10	Implementation of Page Replacement Policies

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Computer Organization	Fifth	Carl Hamacher, Zvonko Vranesic and Safwat Zaky	Tata McGraw-Hill	2002
2	Computer Organization and Architecture: Designing for Performance	Eighth	William Stallings	Pearson	2010
3	Computer System Architecture	Third	M, Morris Mano	Pearson	1993 Reprinted 2007
4	Computer Architecture & Organization	Third	John P. Hayes	McGraw- Hill	1998

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Structured Computer	Sixth	Andrew S. Tanenbaum	Pearson	2013
	Organization				
2	Microprocessor and	Third	Douglas V Hall	Tata-	2012
	Interfacing: Programming			McGraw	
	& Hardware			Hill	
3	Computer Architecture and	Second	B. Govindarajulu	McGraw	Paperback
	Organization: Design			Hill	-2017
	Principles and Applications				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teach	ing Scl	Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
		3	0	2	4	9	3	0	1	4
(PC)	Electronic Devices	Examination Scheme								
, ,		Comp	onent		ISE		MSE	E	ESE	Total
EC202		Theory			75		75	1	150	300
		Labor	ratory		50				50	100

Pre-requi	site Course Codes, if any. ES13 (Basic Electrical Technology)							
Course O	Course Objective: To teach fundamentals of electronic devices							
Course O	Course Outcomes (CO): At the End of the course students will be able to							
EC202.1	Discuss device physics and characteristics of semiconductor devices.							
EC202.2	Discuss working principle and characteristics of BJT							
EC202.3	Discuss working principle and characteristics of FET							
EC202.4	Analyze single stage BJT and FET amplifier circuits							
EC202.5	Discuss semiconductor device fabrication process							
EC202.6	Discuss construction, working principle and characteristics of advance semiconductor devices							
	HEMT, MESFET and HBT							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC202.1	2	1			2							
EC202.2	2	1			2							
EC202.3	2	1			2							
EC202.4	2	3			2							
EC202.5	2	1			2							
EC202.6	2	1			2							3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC202.1							
EC202.2							
EC202.3							
EC202.4							
EC202.5							
EC202.6							

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Module	Unit	Topics	Ref.	Hrs.
No.	No.	-		1115
1	Title	Diode	1	
	1.1	Review of PN Junction Analysis		6
	1.2	Applications of Diode: Simple diode model, Limiter circuits, Rectifiers, Clamper Circuits, Peak Detector and Voltage Doubler		
	1.3	Zener diode and Schottky diode		
2	Title	Bipolar Devices	1,2	11
_	2.1	BJT: The bipolar transistor action, minority carrier distribution, low-		
		frequency common-base current gain, non-ideal effects, Ebers-Moll Model and Hybrid-Pi Model		
	2.2	Voltage amplifier, current amplifier, trans-conductance amplifier and trans-resistance amplifier. Biasing schemes for BJT amplifiers, bias stability, various		
		configurations (such as CE, CB, CC) and their features, small signal analysis, low frequency models, estimation of voltage gain, input		
		resistance, output resistance etc., design procedure for specifications, frequency analysis of multistage amplifiers.		
3	Title	Field Effect Devices: JFET	1,2	11
	3.1	Construction, operation, and device characteristics		
	3.2	Biasing schemes for FET amplifiers, bias stability, various configurations (such as CS, CG, CD) and their features, small signal analysis, low frequency models, estimation of voltage gain, input		
		resistance, output resistance etc., design procedure for specifications, frequency analysis of multistage amplifiers.		
4	Title	Field Effect Devices: MOSFET	2	10
	4.1	Two terminal MOS structure, MOSFET construction, Band diagrams under equilibrium and external bias, Threshold Voltage		
	4.2	V-I and CV characteristics, Channel length modulation, Short Channel effects, MOSFET Model		
5	Title	Integrated circuit fabrication process	R-3	4
	5.1	Oxidation, diffusion, ion implantation, photolithography		
	5.2	Etching, chemical vapor deposition, sputtering, twin-tub CMOS process.		
6	Self- Study	Device structure, principle of operation and V-I characteristics of MODFET (i.e. HEMT), MESFET and HBT		4*
		Total (*Not incl	uded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To plot forward and reverse characteristics of semiconductor diode
2	Implement clipper and clamper circuits using diode
3	Implement half-wave and full-wave rectifier circuits
4	To plot characteristics of Zener diode and observe Zener as voltage regulator
5	Finding characteristics of BJT configurations (CE/CB/CC) using simulation and hardware
	implementation.
6	Obtain the operating point for different biasing circuits
7	Design and implement single stage BJT based amplifier for the required specifications.
8	Obtain frequency response of single stage BJT based amplifier
9	Finding characteristics of FET (CG/CS/CD) using Simulation and Hardware Implementation
10	Design and implement single stage FET based amplifier for the required specifications.
11	Obtain frequency response of single stage FET based amplifier
12	Obtain Input-Output Characteristics of MOSFET using circuit simulator

Textbooks:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Electronic Devices and Circuits	Eleventh	RL Boylestad and Lous Nashelsky	Prentice Hall	2013
2	Electronic Circuit Analysis and Design	Third	Donald A. Neamen	Tata McGraw Hill	2006

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Semiconductor Physics and Devices	Fourth	Donald A. Neamen and Dhrubes Biswas	Tata McGraw Hill	2017
2	CMOS Digital Integrated Circuits	Fourth	Sung-Mo Kang, Yusuf Leblebici and Chulwoo Kim	Tata McGraw Hill	2019
R-3	Semiconductor Devices: Physics and Technology	Third	S. M. Sze and Ming- Kwei Lee	Wiley	2015

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code	Course Ivame	L	T	P	0	E	L	T	P	Total
(PC)		3	0	2	4	09	3	0	1	4
(2 0)		Examination					Scheme			
FICANA	Network Theory	Comp	ponent		ISE	N	ISE	ES	E	Total
EC203		The	eory		75		75	150	0	300
		Laboratory			50			50	•	100

Pre-requi	site Course Codes, if any. ET101							
Course O	Course Objective: To teach fundamental theorems for circuit analysis.							
Course O	utcomes (CO): At the End of the course students will be able to							
EC203.1	Analyze the given circuits using theorems and transformation techniques							
EC203.2	Analyze the given circuit using Graph Theory							
EC203.3	Analyze the given RL, RC and RLC circuits in time domain							
EC203.4	Analyze the given RL, RC and RLC circuits in frequency domain							
EC203.5	Predict the circuits using Foster and Cauer realization methods							
EC203.6	Explain the concept of two port network, relation between the parameters							
	and their interconnection							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC203.1		3										
EC203.2		3										
EC203.3		3										
EC203.4		3										
EC203.5	3											
EC203.6	3											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC203.1					3	2	
EC203.2					3	2	
EC203.3					3	2	
EC203.4					3	2	
EC203.5					3	2	
EC203.6					3	2	

Remember Understand	Apply	Analyze√	Evaluate	Create	
---------------------	-------	----------	----------	--------	--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Module	Unit	Topics	Ref.	Hrs.
No.	No.		ICI.	
1	Title	Analysis of DC circuits and coupled circuits:		12
	1.1	Analysis of circuits with and without controlled sources using generalized	3	
		loop, node matrix, Superposition, Thevenin, Norton, Maximum Power		
_	1.0	transfer.	1	
	1.2	Self and mutual inductances, coefficient of coupling, Dot convention,	1	
		equivalent circuit, solution using loop analysis		
2	Title	Graph Theory:		4
	2.1	Concept of loop, tree, co-tree, incidence matrix,	4	
_		cut set matrix and tie set matrix		
2	2.2	Duality principle and its application	4	- 10
3	Title 2.1	Transient Analysis:	1.0	12
	3.1	Time domain analysis of R-L and R-C circuits: Forced and natural	1,3	
		response, time constant, initial and final values	1.0	
	3.2	Time domain analysis of R-L-C circuits: Forced and natural response, effect	1,3	
		of damping		
		Solution using second order equation for standard input		
_	3.3	signals: Transient and steady state time response Frequency domain analysis of RLC circuits: S-domain	1,3	
	3.3	representation, applications of Laplace Transform insolving electrical	1,3	
		networks		
4	Title	Network Synthesis:		6
•	4.1	Network Function: driving point and transfer function, Poles and Zeros,	2	v
	4.1	calculation of residues by analytical and graphical method,	_	
		frequency response		
_	4.2	Positive real functions: Concept of positive real function, testing for	2	
		Hurwitz polynomials, testing for necessary and sufficient		
		conditions for positive real functions		
	4.3	Synthesis of RC, RL, LC circuits: Concepts of synthesis of RC,	2	
		RL, LC driving point functions.		
	Title	Two Port Network:		8
	5.1	Parameters: Open Circuit, Short Circuit, Transmission and Hybrid	1	
		parameters, relationships among parameters, reciprocity and symmetry		
		conditions		
	5.2	Series/parallel connection: T and Pi representations,	1	
		interconnection of Two-Port networks		
6	Self-	Millman's theorem, Telogen's theorem, Nonplanar graphs, Solution		4*
	Study	using first order equation for standard input signals, Transient and		
		steady state time response, solution using universal formula, Terminated		
		Two-Port networks	1 1 1	42
		Total (*Not inc	iuded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component

Sr. No.	Title of the Experiment
1	To measure and calculate currents and voltages for a given resistive circuit and verify KCL
	and KVL.
2	To verify superposition theorem experimentally for a given resistive circuit consisting of
	two independent sources.
3	To verify Thevenin's theorem experimentally for a given circuit.
4	To verify maximum power transfer theorem experimentally for a given circuit.
5	To verify reciprocity theorem experimentally for a given circuit.
6	To measure and calculate RC time constant for a given RC circuit.
7	To measure and calculate RC time constant for a given RL circuit.
8	To measure and analyze (settling time, overshoot, undershoot, etc.) step response of for a
	given series RLC circuit for following cases: (1) $\zeta = 1$ (critically damped system), (2) ζ
	>1(over damped system), (3) ζ <1 (under damped system). Choose appropriate values of
	R, L, and C to obtain each of above cases one at a time.
9	To measure and calculate Z-parameters for a given two-port system.
10	To measure and calculate Y-parameters for a given two-port system.
11	To measure and calculate h-parameters for a given two-port system.
12	To measure and calculate ABCD-parameters for a given two-port system.

Design based Problems (DP)/Open Ended Problem:

- 1. Write a 'c' program to obtain RC time constant from a given step response of RC circuit.
- 2. Write a 'c' program to plot frequency response of RC circuit for different values of R and C.
- 3. Write a 'c' program to obtain 3-dB bandwidth and RC time constant from a given frequency response of RC circuit.
- 4. Write a 'c' program to plot impedance of a given series RLC circuit as a function of frequency. Also obtain minimum value of impedance and series resonance frequency using 'c' program.
- 5. Write a 'c' program to obtain following parameters from step response of series RLC circuit for different values of R, L and C.
 - a. Propagation delay
 - b. Overshoot
 - c. Undershoot
 - d. Damping factor
 - e. Natural frequency
 - f. Settling time

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Circuit Theory	Seventh	A.	Dhanpat Rai and Co.,	2018
		Revised Edition	Chakrabarti	New Delhi	
2	Network Analysis	Third Edition	M E Van	Prentice-Hall of	2018
			Valkenburg	India Pvt. Ltd.	

Sr. No.	Title Edition Author		Authors	Publisher	Year
3	Network Analysis and	Second Edition	Franklin F	Wiley	2006
	Synthesis		Kuo		
4	Networks and Systems	Second Edition	D. Roy	New Age	2009
			Choudhury	International Pvt.	
				Ltd, Wiley	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teac	Teaching Scheme (Hrs/week)					Credits Assigned			
Code	Course Traine	L	T	P	О	E	L	T	P	Total	
		0	1	2	2	5	0	1	1	2	
(SBC)	Electronics			Ex	kamina	ation S	cheme				
	Instruments and	Comp	onent	IS	SE	MS	SE ESE To			Total	
EC204	Measurement Lab	The	Theory			-					
		Laborator		150				50		200	

Pre-requis	ite Course Codes, if any. ET101
Course Ob	ejective: To teach principle of working and application of various measuring instruments used in
Electronics	Laboratories
Course Ou	atcomes (CO): At the End of the course students will be able to
EC204.1	Describe the working of measuring instruments available in the lab
EC204.2	Find out and verify the manufacturers, make, models, market cost and specifications of the given
	instrument
EC204.3	Select the suitable test and measuring instrument for the given circuit
EC204.4	Operate the instrument for observing and recording the given signal in time domain and frequency
	domain
EC204.5	Recognize the importance of calibration of instruments
EC204.6	Design signal conditioning circuit for measurement of various parameters

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC204.1	2	1			3							
EC204.2	2	1			3							2
EC204.3	2	2			3							
EC204.4	2	1			3							
EC204.5	2	1			3							
EC204.6	2	1	3		3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC204.1							
EC204.2							
EC204.3							
EC204.4							
EC204.5							
EC204.6							

Remember $\sqrt{}$ Understand $\sqrt{}$ Apply $\sqrt{}$ Analyze Evaluate Creat
--

Sardar Patel Institute of Technology
(Autonomous Institute Affiliated to University of Mumbai)
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Sr. No.	Title of the Experiment
1	Measurement of static parameters using analog ammeter, voltmeter, and galvanometer.
2	Exploring controls of CRO/DSO and measurement of various parameters in the given circuit using CRO/DSO
3	Study of working principle and exploring controls of function generator, signal generator and arbitrary function generator
4	Study of working principle of tachometer, lux meter, clamp meter and thermal camera and demonstrate its use.
5	Study of working principle of multimeter, wattmeter & energy meter and demonstrate its use.
6	Designing DC bridge for Resistance Measurement (Quarter, Half and Full bridge)
7	Designing signal Conditioning circuit for Strain Measurement
8	Designing AC bridge Circuit for capacitance measurement and verification using Q-meter
9	Designing signal Conditioning circuit for Temperature Measurement
10	Designing signal Conditioning circuit for Distance Measurement

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Т	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	T	P	0	E	L	T	P	Total	
		1	0	2	2	5	1	0	1	2	
SBC	Professional	Examination Scheme									
	Communication Skills	Comp	onent		ISE]	MSE	E	SE	Total	
AS201	SKIIIS	Theory									
		Labor	atory		200					200	

Pre-requi	site Course Codes, if any.							
	Course Objective: To demonstrate the desired spoken and written communication skills required in							
early profe	essional life, with focus on job placements.							
Course O	Course Outcomes (CO): At the End of the course students will be able to							
AS201.1	Demonstrate the spoken and written skills for job placements.							
AS201.2	Draft professional documents.							
AS201.3	Design written communication for social media.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS201.1										2		
AS201.2										2		
AS201.3										2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS201.1							
AS201.2							
AS201.3							

Remember	Understand	$\mathbf{Apply} \sqrt{}$	Analyze√	Evaluate	Create	
----------	------------	--------------------------	----------	----------	--------	--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	L Hrs.	P Hrs
1.	Title	Placement Skills		6	12
	1.1	Resume Writing & Cover Letter			
	1.2	Group Discussion			
	1.3	Case Studies/Pitching a startup			
	1.4	Team Building Skills/Work			
	1.5				
2	Title	Corporate Communication		6	12
	2.1	Presentation Skills			
	2.2	Meeting: Notice, Agenda, Minutes			
	2.3	Proposal Writing			
	2.4	Report Writing: Informative, Analytical report			
3	Title	Research Writing		2	4
	3.1	Sourcing information through digital media			
	3.2	Written communication using social media: Blog			
4	Self	Research Paper, News Analysis		•	6*
	Study				
		Total(*Not incl	uded)	42 I	nrs

List of ISEs

Sr. No.	Title of the Experiment	Marks					
1	Resume	20					
2	Cover Letter	20					
3	GD	40					
4	Mock Interview	20					
5	Presentation	20					
6	Blog Writing	20					
7	Team Building Activity						
8	Minutes of the Meeting/Notice & Agenda	20					
9	Proposal Writing	20					
10	Report Writing	20					
	Total 200						

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Interpersonal Skills at Work	2002	John Hayes	McGraw Hill Education	2002
2	Campus Placement: A Comprehensive Guide	2016	Ankur Malhotra	McGraw Hill Education	2016

Sardar Patel Institute of Technology
(Autonomous Institute Affiliated to University of Mumbai)
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Sr. No.	Title	Edition	Authors	Publisher	Year
1	If I Understood You, Would I Have This	2017	Alan Alda	Random	2017
	Look on My Face? My Adventures in the Art			House	
	and Science of Relating and Communicating				
2	Handbook for Writing Proposals	2010	Robert J. Hamper,	McGraw Hill	2010
			Sue Baugh	Education	
3	Effective Communication Skills for	2000	Harry Chambers	Paperback	2000
	Scientific and Technical Professionals			Basic Books	
4	The Art of Writing Together	2008	William Issac	Crown	2008
				Business	
5	Communication Skills	2011	Meenakshi	Oxford, India	2011
			Raman, Sangeeta		
			Sharma		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Semester-IV

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week) Credits Assigned						ned		
Code	Course Name	L	T	P	О	E	L	T	P	Total
		3	0	0	5	8	3	0	0	3
(BSC)		Examination Scheme								
	Probability and Stochastic Processes	Component			ISE		MSE	F	ESE	Total
MA203	Stochastic I Tocesses	The	ory	75			75		150	300
		Labor	atory		-				-	-

Pre-requis	ite Course Codes, if any. MA101, MA102						
Course Ob	pjective: To provide the fundamentals and advanced concepts of probability theory and random						
process to	support core courses in electronic and Electronic and communication engineering. The required						
mathematic	mathematical foundations will be studied at a fairly rigorous level and the applications of the probability						
theory and	random processes to engineering problems will be emphasized.						
Course Ou	Course Outcomes (CO): At the End of the course students will be able to						
MA203.1	Apply concepts of mathematics to set operations and probability theory						
MA203.2	Apply concepts of probability theory to single random variables						
MA203.3	Apply theorems to multiple random variables and investigate significance of Central Limit						
	Theorem.						
MA203.4	Determine solutions to various characteristics of random variables/distributions/processes						
MA203.5	Investigate characteristics of random processes						
MA203.6	To interpret use of probability distributions in real world and illustrate Markov Theory application						
	to Queuing theory.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA203.1	3	3			1				1	3		1
MA203.2	3	3			1				1	3		1
MA203.3	3	3			1				1	3		1
MA203.4	3	3			1				1	3		1
MA203.5	3	3			1				1	3		1
MA203.6	3	-							1	3		1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA203.1	2	2					
MA203.2	2	2					
MA203.3	2	2					
MA203.4	2	2					
MA203.5	2	2					
MA203.6	2	2					

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand√	Apply√	Analyze√	Evaluate	Create

Module No.	Unit No.	Topics	Ref.	Hrs.				
1	Title	Probability	1,2	08				
	1.1	Sets and set operations; Probability space; Conditional	,					
		probability and Bayes theorem						
2	Title	Single Random Variable	1,2	08				
	2.1	Discrete random variables, probability mass function,						
		probability distribution function, example random variables and						
		distributions						
	2.2	Continuous random variables, probability density function,						
		probability distribution function, example distributions						
3	Title	Multiple Random Variables	1,2	10				
ļ	3.1	,						
		moments of random variables;						
		Conditional distribution						
	3.2	densities and moments; Characteristic functions of a random						
		variable						
	3.3	Markov, Chebyshev and Chernoff bounds						
4	Title	Sequence of Random Variables	1,2	06				
	4.1	Random sequences and modes of convergence (everywhere,						
		almost everywhere, probability, distribution and mean square)						
	4.2	Limit theorems; Strong and weak laws of large numbers, central						
		limit theorem.						
5	Title	Random Process	1,2	10				
	5.1	Random process. Stationary processes. Mean and covariance						
		functions. Ergodicity.						
	5.2	Transmission of random process through LTI. Power spectral						
		density.						
6	Self-	Application of different probability distributions (to any	1,2	06*				
	Study	one field of interest but not limited to)						
	,	1. Wireless Communication						
		2.Queuing theory						
		3. Networking						
		4. Digital Signal Processing.						
		5.VLSI						
			Total	42				

^{*}Not included in the total

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Probability, Random Variables	4 th	A. Papoulis and S.	McGraw Hill	2002
	and Stochastic Processes		Unnikrishnan Pillai		
2	Probability and Random	3 rd	H. Stark and J.	Pearson	2002
	Processes with Applications to Signal Processing		Woods	education	

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Probability And Random	3 rd	Alberto Leon	Pearson	2008
	Processes for Electrical		Garcia	education	
	Engineering				
2	Probability, Statistics and	3 rd	T Veerarajan	McGraw Hill	2008
	Random Processes				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	ŗ	Геасhi (Hr	ng Sc s/wee			Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
(DCC)		2	1	0	6	9	2	1	0	3
(BSC)	Foundations of				Exam	inatio	n Scher	ne		
MA204	Mathematics-II	Comp	onent		ISE		MSE	F	SE	Total
		Theory			75		75	1	150	300

Pre-requis	site Course Codes, if any.	Foundations of Mathematics-I				
Course Objective: To develop basic foundation of mathematical skills.						
Course Outcomes (CO): At the End of the course students will be able to: -						
MA204.1	Integrate a function of one variable using various techniques					
MA204.2	Sketch basic curves and solve	double and triple integrals.				
MA204.3	Solve basic problems using	properties of complex numbers.				
MA204.4	Solve differential equations	of first order.				
MA204.5	Apply the techniques of solv	ving first order differential equations to electrical				
	engineering problems.					
MA204.6	Solve differential equations	of higher order				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA204.1	1											
MA204.2	1											
MA204.3	1											
MA204.4	2											
MA204.5	1	1										
MA204.6	2											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA204.1							
MA204.2							
MA204.3							
MA204.4							
MA204.5							
MA204.6							

$\textbf{Remember} \sqrt{ \qquad \qquad } \textbf{Understand} $	$\mathbf{Apply} \sqrt{}$	Analyze	Evaluate	Create
---	--------------------------	---------	----------	--------

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Integral Calculus	1,2	13
	1.1	Formulae for integral of standard functions, integration by parts, integration by method of substitution.		04
	1.2	Gamma functions, Beta functions. Differentiation under Integral sign with constant limits and one parameter.		04
	1.3	Standard curves (lines, circles, parabolas, ellipses). Concept of double integration. Evaluation of double and triple integrals.		05
2	Title	Complex Numbers	1,2	03
	2.1	Operations on complex numbers, polar form of a complex number, properties of a complex number.		03
3	Title	Differential Equations	1,2	12
	3.1	Exact differential equations. Linear differential equations of the first order and equations reducible to linear.		04
	3.2	Solving differential equations of first order in electrical networks.		01
	3.3	Linear differential equations with constant coefficients: complementary function and particular integral.		07
			Total	28

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Higher Engineering	44th	Dr. B. S.	Khanna	2020
	Mathematics		Grewal	Publications	

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Advanced Engineering	10th	Erwin	John Wiley &	2011
	Mathematics		Kreysizg	Sons	
2	Advanced Engineering	28th	H. K. Dass	S. Chand	2014
	Mathematics				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	1	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total	
	(PC) Analog Circuits	3	0	2	6	11	3	0	1	4	
(PC)		Examination Scheme									
		Comp	Component ISE]	MSE	F	SE	Total		
EC205		Theory			75		75		150	300	
EC205		Laboratory			50				50	100	

Pre-requi	site Course Codes, if any. ET101, ET202					
Course O	Course Objective: To teach fundamentals of analog electronic circuits					
Course O	Course Outcomes (CO): At the End of the course students will be able to					
EC205.1	Apply the concept of negative and positive feedback					
EC205.2	Discuss differential amplifier and power amplifier circuits					
EC205.3	Discuss fundamentals of operational amplifier IC					
EC205.4	Design linear and non-linear applications using operational amplifier IC					
EC205.5	Discuss various data conversion techniques					
EC205.6	Design applications with special purpose ICs					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC205.1	1	1	2	2								
EC205.2	1	1	2	2								
EC205.3	1	1	2	2								
EC205.4	1	1	2	2								
EC205.5	1	1	2	2								
EC205.6	1	1	3	2								

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC205.1							
EC205.2							
EC205.3							
EC205.4							
EC205.5							
EC205.6							

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Module	Unit	Topics	Ref.	Hrs.
No.	No.	Topics	IXCI.	1115.
1	Title	Feedback topologies and Oscillators	1	8
	1.1	Voltage series, current series, voltage shunt, current shunt, effect of		
		feedback on gain, bandwidth etc., calculation with practical circuits,		
		concept of stability, gain margin and phase margin.		
	1.2	Oscillators: Review of the basic concept, Barkhausen criterion, RC		
		oscillators (phase shift, Wien bridge etc.) and LC oscillators		
		(Hartley, Colpitt, Clapp etc.)		
2	Title	Differential amplifier and Power Amplifier	1	8
	2.1	Current mirror: Basic topology and its variants, V-I characteristics,		
		output resistance and minimum sustainable voltage (VON),		
		maximum usable load.		
	2.2	Differential amplifier: Basic structure and principle of operation,		
		calculation of differential gain, common mode gain, CMRR and		
		ICMR.		
	2.3	Power amplifiers: Power BJTs, Power MOSFETs, Heat Sinks,		
		Class A, Class B, Class C and Class AB operation, Power efficiency		
3	Title	Operational Amplifier	2	12
	3.1	Functional Block Diagram of op amp, DC and AC characteristics of		
		an op-amp, Ideal op-amp		
	3.2	Linear Applications of Operational Amplifier		
		Inverting and non-inverting amplifier, adder, subtractor, integrator,		
		differentiator, difference amplifier, instrumentation amplifier		
		Active Filters: First order filters, second order active finite and		
		infinite gain low pass, high pass		
	3.3	Non-Linear Applications of Operational Amplifier		
		Comparators: Inverting comparator, non-inverting comparator,		
		zero crossing detector		
		Schmitt Triggers: Inverting Schmitt trigger	_	
4	Title	Data Converters	2	6
	4.1	Digital-to-analog converters (DAC): Weighted resistor, R-2R		
		ladder, resistor string etc.		
	4.2	Analog to-digital converters (ADC): Single slope, dual slope,		
		successive approximation, flash etc.		
	4.3	Switched capacitor circuits: Basic concept, practical configurations,		
		application in amplifier, integrator, ADC etc.		
5	Title	Special Purpose Integrated Circuits	2	8
	5.1	Timer 555 and its applications		
	5.2	Three-terminal fixed (78XX series) and general purpose 723 voltage		
		regulators.		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

6	Self-	Multiplier IC's, Power Amplifier IC's, PLL and VCO. Design of	6*
	Study	applications using these IC's.	
		Total (*Not included	1) 42

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment						
1	Design and implement any one negative feedback amplifier						
2	Design and implement any one oscillator circuit						
3	Design and implement differential amplifier with and without current mirror circuit						
4	Design and implement any one power amplifier circuit						
5	To measure (a) Input bias current, (b) Input offset current, (c)Input offset voltage & (d) Slew						
	rate of the given Op-Amp IC 741.						
6	Design and implement linear application using Op-Amp IC 741.						
7	Design and implement non-linear application using Op-Amp IC 741						
8	Design and implement active filter circuit using Op-Amp IC 741.						
9	Design and implement data converter circuit						
10	Design and Implement Multivibrator Circuits using IC 555						
11	Design, Implement and analyze Voltage Regulator Circuit using IC 723.						

Textbooks:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Electronic Circuit Analysis and	Third	Donald A.	Tata McGraw	2006
	Design		Neamen	Hill	
2	Linear Integrated Circuits	Fourth	D. Roy	New Age	2018
			Choudhury and S.	International	
			B. Jain	Publishers	

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Millman's Electronic Devices and Circuits	Third	Jacob Millman, Christos C Halkias, and Satyabratata JIT	McGraw Hill	2014
2	Design with operational amplifiers and analog integrated circuits	Fourth	Sergio Franco	Tata McGraw Hill	2016
3	Op-Amps and Linear Integrated Circuits	Fourth	Ramakant A. Gayakwad	Pearson Prentice Hall	2015

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total
	Microcontrollers	3	0	2	6	11	3	0	1	4
(PC)		Examination Scheme								
		Comp	onent		ISE	1	MSE	E	SE	Total
EC206		The	eory		75		75	1	50	300
		Labor	ratory		50				50	100

Pre-requis	site Course Codes, if any.	EC101, ET201					
Course Ob	Course Objective: Imparting the detailed architectural features of various microcontrollers like 8051, PIC						
and ARM a	and ARM along with integrated peripherals and programming						
Course Ou	Course Outcomes (CO): At the End of the course students will be able to						
EC206.1	Compare and contrast traditional microprocessor with traditional microcontroller 8051						
EC206.2	Understand and describe architectural features of microcontrollers like PIC and ARM						
EC206.3	Comprehend ARM core model and	d classify different modes of operation with justification					
EC206.4	Classify various instructions with	addressing modes of microcontrollers like PIC and ARM					
EC206.5	Analyze the given problem statement through program in PIC and ARM	ent and apply the programming concepts to solve the problem					
EC206.6	Illustrate and utilize the integrated	peripherals of 16- and 32-bit microcontrollers					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC206.1	3											
EC206.2	3											
EC206.3	3											
EC206.4	3											
EC206.5		3			3			3		3		
EC206.6		3	2									

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC206.1							
EC206.2							
EC206.3							
EC206.4							
EC206.5							
EC206.6							

Remember	Understand	Apply	Analyze √	Evaluate	Create	
----------	------------	-------	------------------	----------	--------	--

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Module	Unit	Topics	Ref.	Hrs.
1	Title	Introduction of 8-bit Microcontroller – 8051		
	1.1	Overview of 8051 Family of Controllers	1	4
	1.2	Architecture of 8051 with block diagram schematic	1	
	1.3	Brief description of integrated components of 8051	1	
2	Title	PIC Microcontroller		10
	2.1	Microcontroller architecture and Programming model	2	
	2.2	Instruction set with addressing modes	2	
	2.3	Programming and Problem-solving approaches	2	
3	Title	PIC Integrated Peripherals		9
	3.1	I/O Ports with its interfacing	2	
	3.2	Interrupt Structure	2	
	3.3	Timers with its configuration	2	
	3.4	Data Converters (ADC and DAC) 2		
	3.5	Serial I/O (SPI and I ² C protocol)	2	
4	Title	ARM7TDMI(ARMv4T) Architecture		10
	4.1	Features and advantages, ARM versions	3,4	
	4.2	Processor operating states, ARM core data flow model, operating 3		
	4.3	Instruction set with addressing modes	3,4	
5	Title	LPC2148 ARM7 Processor Programming and Interfacing		9
	5.1	Processor state changing (ARM←→THUMB), Exceptions, interrupts,	3,4	
	5.2	Timer Programming, Watchdog Timer	3,4	
	5.3	ADC and Sensor Interfacing	3,4	
	5.4	SPI and I2C Peripheral Interface	3,4	
6	Self Study	ARM-v7-M (Cortex-M3), Comparison of ARM-v&-A (Cortex A8), ARM-v7-R (Cortex R4), ARM-v7-M (Cortex M3). Application Case Study for PIC and ARM controllers		6*
		Total (*Not inc	luded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Programming the I/O Port of 8-bit 8051 Microcontroller and effectively interface the LED and
	switch.
2	Programming and Interfacing for utilization of on-chip resources like Timers and Serial
	Communication of 8-bit 8051 Microcontroller.
3	PIC assembly language programming and simulation
4	PIC LED/LCD interfacing and programming
5	PIC Timers and interrupts programming
6	PIC ADC Programming
7	ARM LEDs and Keyboard Interface
8	ARM Programming and Interfacing of sensors using on chip ADC
9	ARM Programming and Interfacing on chip Serial Port
10	ARM Programming and Interfacing on chip timer

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The 8051 Microcontroller and Embedded Systems: Using	Second	Muhammad Ali Mazidi, Janice G.	Pearson	2006
	Assembly and C		Mazidi and R. D.		
2	Fundamentals of	Fourth	McKinlay Ramesh Gaonkar	Penram	2007
2	Microcontrollers and Applications in Embedded Systems (with PIC18 microcontroller family)	rourth	Kamesii Gaolikai	International Publishing Pvt. Ltd	2007
3	ARM System Developer's Guide Designing and Optimizing System Software	First	Andrew N. Sloss, Dominic Sysmes and Chris Wright	Elsevier Inc Morgan Kaufmann	2004
4	ARM Architecture, Reference Manual	Second	David Seal	Addison Wesley	2001

Sr. No.	Title	Edition	Authors	Publisher	Year
1	PIC Micron roller: An Introduction to Software & Hardware Interfacing	Second	Han- Way Huang	Cengage Learning	2005
2	ARM System-on-Chip Architecture	Second	Steve Furber	Addison- Wesley	2000

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Course Name Teaching Schem (Hrs/week)				!	Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total
	C) Signals and Systems	3	0	2	6	11	3	0	1	4
(PC)		Examination Scheme								
, ,		stems Componer			ISE	I	MSE		ESE Total	
EC207		Theory			75		75		.50	300
EC207		Laboratory			50				50	100

Pre-requis	ite Course Codes, if any.	MA101, MA102			
Course Ob	Course Objective: To develop strong foundation of continuous time signals and systems				
Course Ou	itcomes (CO): At the End of the	course students will be able to			
EC207.1	Classify and illustrate various or	perations on signals and systems.			
EC207.2	Analyze the properties of a conti	inuous time signal in frequency domain and observe the spectrum.			
EC207.3	Apply Laplace Transform on co	ntinuous time signals			
EC207.4	Evaluate Linear Time Invariant	system response using Laplace Transform			
EC207.5	Design analog Butterworth and	Chebyshev filter			
EC207.6	Interpret system using state space	re model			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC207.1	3	-			3				3	3		2
EC207.2	3	2			3				3	3		2
EC207.3	3	2			3				3	3		2
EC207.4	3	2			3				3	3		2
EC207.5	3	2			3				3	3		2
EC207.6	3	-			1				3	3		1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC207.1	2	2				2	
EC207.2	2	2				2	
EC207.3	2	2				2	
EC207.4	2	2				2	
EC207.5	2	2				2	
EC207.6	2	2				-	

emember $\sqrt{}$ Understand $\sqrt{}$	$\mathbf{Apply} \sqrt{}$	Analyze $\sqrt{}$	Evaluate	Create	
--	--------------------------	-------------------	----------	--------	--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Module	Unit	Topics	Ref.	Hrs.
No.	No.		1.0	- 00
1	Title	Overview of Continuous Time Signals and Systems	1,2	08
	1.1	Introduction: Signals, systems, elementary signals, exponential, sine,		
		step, impulse, ramp, rectangular, triangular and operations on signals		
	1.2	Classification of signals: Continuous Signals, deterministic and non-		
		deterministic, periodic and aperiodic, symmetric (even) and		
		asymmetric (odd), energy and power, causal and anti-causal signals.		
	1.3	Operations of Signals: Shifting, Scaling, Time Reversal, Addition and		
		Multiplication, Convolution, Correlation		
2	Title	Fourier Series and Fourier Transform	1,2	10
	2.1	Fourier series: Orthogonal representation of signals, Continuous Time		
		Fourier Series (CTFS), magnitude and phase spectra, Gibbs		
		phenomenon, Parsevel's relation,		
	2.2	Fourier Transform: Fourier Transform and Inverse Fourier		
		Transform on periodic and non-periodic signals, Limitations of Fourier		
		Transform and need for Laplace Transform, Properties of Fourier		
		Transform, Parsevel's relation, Energy and Power Spectral Density and		
		Bandwidth.		
3	Title	Laplace Transform	1,2	04
	3.1	Laplace Transform, Properties of Laplace Transform, Relation between		
		Laplace Transform and Fourier Transform,		
	3.2	Inverse Laplace Transform using Partial Fraction method		
4	Title	Linear Time Invariant (LTI) Systems	1,2	08
	4.1	Classification of systems: Static and dynamic, time variant and time		
		invariant, linear and nonlinear, causal and non-causal, stable and		
		unstable systems.		
	4.2	Impulse Response, Transfer Function, Differential Equation, Stability		
		of Systems, Frequency Response, Solution of Differential Equation		
		using Laplace Transform		
5	Title	Analog Filter Design	1,2	12
	5.1	Design of Ideal Analog filter, Butterworth Low Pass Filter (LPF)		
		design, Butterworth High Pass Filter (HPF) design, Butterworth Band		
		Pass Filter (BPF) and Band Reject Filter design, Pole zero plot of		
		Butterworth filters, Magnitude Spectrum		
	5.2	Equiripple Filters, Chebyshev Type-I LPF, HPF Design, Pole zero		
		plot of Chebyshev filter, magnitude spectrum.		L

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	5.3	Realization diagram (Form I and II)		
6	Self Study	State Space Model: Procedure to determine state equations, State equations from transfer function, Laplace transform solution of state equations		6*
		Total (*Not inclu	uded)	42

Laboratory Component

Sr. No.	Title of the Experiment
1	Representation of Signals
2	Operations on Signals
3	Convolution on Continuous Time Signals
4	Synthesis of signals using Fourier Series
5	Synthesis of signals using Fourier Transform
6	Analysis of LTI system using Laplace Transform
7	Plotting of frequency spectrum
8	Butterworth filter design
9	Chebyshev filter design
10	Mini project: Analysis of real-world signals

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	3 rd	Nagoor Kani	Tata McGraw Hill	2011
2	Digital Signal Processing	4 th	Ramesh Babu	Scitech	2014

а					
Sr. No.	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	2 nd	Alan V Oppenheim, Alan S, Willsky and A Hamid	Pearson	2002
			Nawab		
2	Signals and Systems	3 rd	Simon Haykin and Barry Van Veen	John Wiley & Sons	2002
3	Linear Systems and	4 th	B. P. Lathi	Oxford University	2005
	Signals			Press	
4	Signals and Systems	2 nd	H. P Hsu, R. Ranjan	Schaum's outlines	2006

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	T	P	О	E	L	T	P	O	Total
	Mini Project-I	0	0	0	4	4	0	0	0	2	2
(SBC)		Examination Scheme									
, ,		Component			IS	SE	M	SE	ES	SE	Total
	William Troject I	Theory									
EC208		Laboratory Self-Study 100					-	-			
					10	00			10	00	200

Pre-requi	isite Course Codes, if any.					
Course O	bjective: To apply engineering knowledge and propose innovative, sustainable solutions					
to the real	-life challenges					
Course O	Course Outcomes (CO): At the End of the course students will be able to					
EC208.1	Discover potential research areas for addressing societal issues					
EC208.2	Conduct a survey of basic and contemporary literature in the preferred field of study.					
EC208.3	Formulate and propose a plan for creating a solution for the research plan identified.					
EC208.4	EC208.4 Exercise the team building, communication and management for design and					
	implementation of projects.					
EC208.5	8.5 Compare and contrast the several existing solutions for research challenge					
EC208.6	Report and present the findings of the study conducted in the preferred domain.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC208.1												
EC208.2												
EC208.3												
EC208.4												
EC208.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC208.1						
EC208.2						
EC208.3						
EC208.4						
EC208.5						

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. appropriate)

Remember	Understand $\sqrt{}$	$\mathbf{Apply} \sqrt{}$	Analyze√	Evaluate $$	Create
----------	-----------------------------	--------------------------	----------	-------------	--------

Pre-requisite Course	All the Courses till third Semester
Codes	

Mini project is an opportunity to make a difference in the experience of education in its own way. It is an attempt of scientific study of the problem in surrounding in order to guide, correct and evaluate the actions and decisions about it. It is based on a small project correlating scientific knowledge and day to day experience which encourages development of scientific attitude to solve real life problems among students.

The Objectives of Action Research are:

- ✓ To make students sensitive towards societal issues
- ✓ To learn scientific principles from day-to-day experiences
- ✓ To develop psycho-technological skills through observation, classification, statement of hypothesis etc.
- ✓ Development of communication, organizational skills and maturity through discussion, presentation etc.
- ✓ To develop ability to correlate science, technology and society
- ✓ To apply engineering knowledge and propose innovative, sustainable solutions to the real-life challenges

Steps for Implementation: (ISE: Through 2 Phases of Evaluation) and ESE

- ✓ Keen observation of the surrounding/society
- ✓ Identification of the problem
- ✓ Analysis of the problem
- ✓ Collection of relevant information by formulating research questions
- ✓ Suggesting plan of action
- ✓ Conducting experiments
- ✓ To draw conclusion
- ✓ To find the possible solution to rectify the problem
- ✓ To execute experiments and remedial measures wherever possible

Students can seek guidance from teachers, other experts and make effective use of other sources of information available around them. Students must ensure that problem to be solved in manageable in one semester.

Teachers must follow the below mentioned principles:

- ✓ Make student confront problem solving
- ✓ Develop methods and techniques of handling problems.
- ✓ Teach how to use the methods and not directly give solution to the problem.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

✓ Lead the students to the peak of their powers for improvement of better learning.

The H/W and S/W resources required to complete the Mini-Project-I may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- Learning additional skills
- Development of ability to define and design the problem and lead to its accomplishment with proper planning
- Learn the behavioral discipline by working in a team. The team may be maximum three (03) students.

Evaluation:

Project report should contain project title, student details, certificate and acknowledgements. Other sections of the report shall be decided by the department based on projects. But it must have introduction, necessity of project, objectives, hypothesis, plan, observations, and analysis of results, conclusion and references along with other sections related to technology. The ISE and ESE evaluation will be carried out based on the rubrics framed by the Department. The ESE marks will be based on final demonstration of the project and viva based on it and report/poster/technical paper of the project in the standard format provided by the Department.