Quaternionen mit Java

Christian Basler

Inhaltsverzeichnis

1	Zusammenfassung	1
2	Grundlagen2.1 Polardarstellung	1 2 2
3	Java-Bibliothek	3
4	Beispielanwendungen 4.1 Wo ist unten?	4 4
5	Diskussion	4
6	Literatur	4
7	Anhang	4

1 Zusammenfassung

2 Grundlagen

Quaternionen $\mathbb H$ erweitern die Komplexen Zahlen $\mathbb C$ um die Komponenten jund k.

$$q = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$$

Dabei gilt $\mathbf{i}^2=\mathbf{j}^2=\mathbf{k}^2=\mathbf{i}\mathbf{j}\mathbf{k}=-1$ und daher auch z.B. $\mathbf{i}\mathbf{j}=\mathbf{k}$ und $\mathbf{j}\mathbf{k}=\mathbf{i}.$

Euklidische Vektoren können dabei wie folgt in eine Quaternion abgebildet werden:

$$q_{\vec{v}} = 0 + v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$$

Daher wird der Imaginärteil einer Quaternion auch Vektorteil genannt. Eine solche Quaternion, welche nur aus Vektorteil besteht, wird auch als *reine Quaternion* bezeichnet.

2.1 Polardarstellung

Quaternionen $\notin \mathbb{R}$ lassen sich eindeutig in der Form

$$q = |q|(\cos\phi + \epsilon\sin\phi)$$

darstellen mit dem Betrag

$$|q| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}$$

dem Polarwinkel

$$\phi := \arccos q = \arccos \operatorname{Re} q$$

und der reinen Einheitsquaternion

$$\epsilon = \frac{\mathrm{Im}q}{|\mathrm{Im}q|}$$

2.2 Rotation

Quaternionen erlauben eine elegante Darstellung von Drehungen im dreidimensionalen Raum:

$$y = qxq^{-1} = qx\bar{q}$$
$$q = \cos\frac{\alpha}{2} + \epsilon\sin\frac{\alpha}{2}$$

qist dabei eine Einheitsquaternion und stellt eine Drehung um Achse ϵ mit Winkel α dar.

 $^{^{1}|}q| = 1$

3 Java-Bibliothek

Die Java-Bibliothek stellt ein Objekt "Quaternion"mit folgenden Methoden zur Verfügung:

- q.add(r) = q + r
- q.subtract(r) = q r
- q.multiply(r) = qr
- q.conjugate() = \bar{q}
- q.norm() = |q|
- q.normalize() = $\frac{q}{|q|}$
- q.reciprocal() = q^{-1}
- q.divide(r) = qr^{-1}
- q.rotate (θ, x, y, z) = Rotation um Achse (x, y, z) mit Winkel θ
- $q.\exp() = e^q$
- q.ln() = ln q
- $q.dot(r) = q \cdot r = q_0 r_0 + q_1 r_1 + q_2 r_2 + q_3 r_3$
- q.cross(r) = $\vec{q} \times \vec{r}$ (d.h. q_0 und r_0 werden ignoriert)
- q.getRe() = $\mathbf{Re} \ q$
- q.getIm() = $\mathbf{Im} q$
- \bullet q.getPhi()
- q.getEpsilon()
- q.equals(r, δ) = $|q r|^2 < \delta$
- $\bullet \ q.equals(r) = q.equals(r, \, Quaternion.DELTA) \\$

Zum Erstellen neuer Quaternionen besteht ausserdem die statische Methode H in folgenden Ausführungen:

- $H(q_0, q_1, q_2, q_3) = q_0 + q_1 i + q_2 j + q_3 k$
- H(x, y, z) = xi + yj + zk
- H(w) = w
- $H(\alpha, \vec{v}) = \cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2} v_x + j \sin \frac{\alpha}{2} v_y + k \sin \frac{\alpha}{2} v_z$
- H([x, y, z]), H([w, x, y, z])
- getRotation(p, q) = r, so dass $rp\bar{r} = q$

Für Fälle wo euklidische Vektoren benötigt werden, z.B. beim Konstruktor $\mathbb{H}(\alpha, \vec{v})$, gibt es ausserdem die Klasse Vector, welche jedoch nur sehr eingeschränkte Funktionen bietet.

4 Beispielanwendungen

- 4.1 Wo ist unten?
- 4.2 Künstlicher Horizont
- 5 Diskussion
- 6 Literatur
- 7 Anhang