Exercise Sheet 4

Exercise 1

Let x be a random variable. Consider the moment generating function

$$\phi_x : \mathbb{R} \to \mathbb{R}, \quad s \mapsto \mathbb{E}[\exp(sx)].$$

a) The exponential distribution with parameter $\lambda > 0$ is

$$p_{\lambda}(x) = \left\{ \begin{array}{ccc} \lambda \exp(-\lambda x) & : & x \ge 0 \\ 0 & : & x < 0 \end{array} \right..$$

Let $\lambda > s$. Show that

$$\phi_x(s) = \frac{\lambda}{\lambda - s}$$

for an exponentially distributed random variable x.

b) Show that $\phi_x(s)$ satisfies the following properties:

- 1. $\phi_x(0) = 1$
- 2. $\phi_x^{(k)}(0) = \mathbb{E}[x^k]$ for any integer $k \ge 0$

where $\phi_x^{(k)}(s)$ is the k^{th} derivative of ϕ_x at s.

c) Consider the independent random variables x_1, \ldots, x_n . Let $z = x_1 + \cdots + x_n$. Show that

$$\phi_z(s) = \prod_{i=1}^n \phi_{x_i}(s).$$

What is the form of $\phi_z(s)$ when the random variables x_i are also identically distributed?

d) Let x_1, \ldots, x_n be i.i.d. Bernoulli random variables with parameter p. Let $z = x_1 + \cdots + x_n$ be the sum. Use $\phi_z(s)$ to show that $\mathbb{E}[z] = np$ and optionally $\mathbb{V}[z] = np(1-p)$.

Context: Why do we care about this exercise?

Exercise 2

In this exercise, you will apply Hoeffding's error bounds to a binary classification problem. For a fixed classifier f and a given $\delta > 0$, the error bounds are

$$R_n(f) - \sqrt{-\frac{\ln(\delta/2)}{2n}} \le R(f) \le R_n(f) + \sqrt{-\frac{\ln(\delta/2)}{2n}}$$

OTH Regensburg AML Fakutät IM WS 2023/24 B. Jain 31.10.2023

Notebook exercise_2.ipynb provides code to generate a ground-truth population $\mathcal{Z} \subseteq \mathcal{X} \times \mathcal{Y}$ of N training examples from a fixed distribution. Apply different classifiers to the following experiment:

- 1. Choose a fixed model f. For example, fit a model on a randomly chosen training set of size 100 from \mathcal{Z} .
- 2. Compute the true risk R(f) over all examples from \mathcal{Z} .
- 3. Repeat for different test set sizes n:
 - (a) Repeat T times:
 - i. Sample a test set of size n from from \mathcal{Z} .
 - ii. Compute the empirical risk $R_n(f)$ on the test set.
 - iii. Compute Hoeffding's error bounds based on $R_n(f)$.
 - (b) Average the error bounds over all T trials
- 4. Plot the true risk R(f) and the average error bounds as a function of the test set size n.