Contrôle 2

Durée: trois heures

Documents et calculatrices non autorisés

Nom : DAd D

Prénom : Clément

Classe: 32

Entourer votre professeur de TD : Mme Boudin / Mme Daadaa /M. Ghanem/ M. Goron / Mme Trémoulet

Consignes:

- vous devez répondre directement sur les feuilles jointes.
- aucune autre feuille, que celles agrafées fournies pour répondre, ne sera corrigée.
- aucune réponse au crayon de papier ne sera corrigée.
- toute personne ne respectant pas ces consignes se verra attribuer la note 00/20.

Exercice 1 (4,5 points)

1. Via une double intégration par parties, calculer $I = \int_1^e \sin(\ln(x)) dx$.

2. Via une integration par parties, calculer $J = \int_0^1 \arctan(x) dx$.

3. Via le changement de variable $u=\sqrt{x}$ puis une intégration par parties, calculer $K=\int_0^{\pi^2}\cos\left(\sqrt{x}\right)\mathrm{d}x$.

Exercice 2 (3 points)

Soient (u_n) et (v_n) deux suites réelles strictement positives telles que pour tout $n \in \mathbb{N}$,

$$\frac{u_{n+1}}{v} \leqslant \frac{v_{n+1}}{v}$$

2. Monstrer que si $u_n \xrightarrow[n \to +\infty]{} +\infty$ alors $v_n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 3 (3 points)

Encadrer le numéro des questions contenant les énoncés vrais.

Contrairement à d'habitude, les réponses erronées ne retirent pas de point!

- Soient (u_n) une suite réelle et ℓ ∈ R. Alors l'assertion « si (u_n) converge vers ℓ alors, pour tout n ∈ N, u_n ≤ ℓ » est équivalente à l'assertion « s'îl existe n ∈ N tel que u_n > ℓ, alors (u_n) ne converge pas vers ℓ ».
- 2 Si (u_n) est une suite géométrique non nulle de raison $q \in \mathbb{R}^*$, alors $\left(\frac{1}{u_n}\right)$ est une suite géométrique de raison $\frac{1}{q}$.
- Si (u_n) est une suite réelle bornée, il existe une suite extraite de (u_n) convergente.
- [4] Soit (u_n) une suite réclie. Alors (u_{6n}) est extraite de (u_{2n}).
- 5. Soit (un) une suite réelle. Alors (u3.2n+1) est extraite de (u6n).
- 6. Rien de ce qui précède.

Prita

Exercice 4 (3 points)

Solvent (u_m) et (u_n) définies pour tout u $\in \mathbb{N}$ par $u_m = \sum_{k=1}^{2m-1} \frac{(-1)^k}{(2k)!}$ et $u_m = u_m + \frac{1}{(4m+4)!}$

Mostive que $\langle u_n \rangle$ et $\langle v_n \rangle$ sont adjacentes

Un ed me suite crossante

Un est une suite decossate

Resignates Un et via sont done adjocentes

Exercice 5 (2 points)

Soit $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par $u_n=\frac{\ln(n!)}{n^2}$

1. Soit $n \in \mathbb{N}^*$. Montrer (sans récurrence) que $\ln(n!) \leq n \ln(n)$.

2. En déduire la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$.

Exercice 6 (5,5 points)

Soit (u_n) la suite réelle définie pour tout $n \in \mathbb{N}$ par $u_n = \sum_{k=0}^n \frac{1}{k!}$

1. Soient $n \in \mathbb{N}^*$ et $q \in \mathbb{R} \setminus \{1\}$. Que vaut la somme $\sum_{k=1}^n q^{k-1} = 1 + q + q^2 + \dots + q^{n-1}$?

$$\left(\sum_{k=1}^{n}q^{k-1}=U_{0}\left(\frac{1-q^{m}}{1-q}\right)=\frac{1-q^{m}}{1-q}$$

2. Soit $n \in \mathbb{N}^*$. Via la question précédente, montrer (sans récurrence), que $\sum_{k=1}^{n} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{n-1}}$

$$\frac{\hat{z}}{\hat{k}} = 1 = \frac{1 - \hat{q}}{1 - \hat{q}} \quad \text{donc} \quad \frac{\hat{z}}{\hat{k}} = 1 = \frac{1 - \left(\frac{1}{z}\right)^{n}}{1 - \frac{1}{z}}$$

$$\frac{\hat{z}}{\hat{k}} = 1 = \frac{1 - \hat{q}}{1 - \hat{q}} \quad \text{donc} \quad \frac{\hat{z}}{\hat{z}} = 1 = \frac{1 - \left(\frac{1}{z}\right)^{n}}{1 - \frac{1}{z}}$$

$$\frac{\hat{z}}{\hat{z}} = \frac{1 - \hat{q}}{1 - \frac{1}{z}} = 1 - \frac{1}{z}$$

3. Soit $k \in \mathbb{N}$ tel que $k \ge 2$. Montrer (sans récurrence) que $\frac{1}{k!} = \frac{1}{2 \times 3 \times \cdots \times k} \le \frac{1}{2^{k-1}}$

Vérifier que l'inégalité est encore vraie pour k=1.

4. Montrer que (u_n) est croissante.

dence & 1 est strictement avoissante

5. Montrer (sans récurrence), via les questions 2 et 3, que pour tout $n \in \mathbb{N}$, $u_n \leq 3$.

Un = \(\frac{\mathcal{E}}{\mathcal{E}!} \) et \(\frac{1}{\mathcal{E}!} \) \(\frac{1}{\mathcal{E}!} \

(u_n) est-elle convergente? Justifier votre réponse.

Un est strictement avissante et Un 63 donc Un est contregonte.