Dense Captioning for 3D Scenes with Transformers

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- V. Detection with Transformers
- V. Timeline until the Final Presentation

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

Point Cloud

Object Detection Module

Relational Graph Module

Captioning Module

Captions for the Object Proposals

PointNet++ **Voting Module Point Cloud Proposal Module Object Proposals** with Features **Object Masks**

Relational Graph Module

Captioning Module

Captions for the Object Proposals

Object Detection Module

PointNet++ **Voting Module Relational Graph Proposal Module Object Proposals Object Proposals** with Enhanced with Features **Features Object Masks Relation Features**

Captioning Module

Captions for the Object Proposals

Object Detection Module

Relational Graph Module

Point Cloud

PointNet++ **Voting Module Context-Aware Relational Graph Attention Proposal Module** Captioning **Object Proposals** PER WORD **Object Proposals** with Enhanced with Features **Features Object Masks Relation Features**

Object Detection Module

Relational Graph Module

Captioning Module

Point Cloud

Captions for the

Object Proposals

Module

PointNet++ **Voting Module Context-Aware Relational Graph Attention Proposal Module** Captioning **Object Proposals** PER WORD **Object Proposals** with Enhanced with Features **Features Object Masks Relation Features** Captioning **Object Detection Relational Graph**

Module

Captions for the Object Proposals

Module

Antonio Oroz – Kağan Küçükaytekin

Point Cloud

I. Scan2CapMMT Recap

PointNet++ **Voting Module** Memory-**Point Cloud Meshed Decoder Augmented Proposal Module Encoder Object Proposals Encoder Output** with Features **Encoder Mask Object Masks Object Detection Transformer Module** Module

Captions for the Object Proposals

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

Beam Search

Α

CHAIR

Beam Search

CHAIR

Α

NEXT: 0.5

INBETWEEN: 0.3

BEHIND: 0.1

CAR: 0.01

:

Beam Search

A CHAIR NEXT: 0.5

INBETWEEN: 0.3

BEHIND: 0.1

CAR: 0.01

MAX

Beam Search

Α

CHAIR

NEXT: 0.5

. . .

Antonio Oroz – Kağan Küçükaytekin

15

Beam Search

A: 0.9

CHAIR: 0.4

BEAM SEARCH SIZE 2

A: 0.9

TABLE: 0.3

Beam Search

BEAM SEARCH SIZE 2 A: 0.9

CHAIR: 0.4

NEXT: 0.5

INBETWEEN: 0.3

BEHIND: 0.1

A: 0.9

TABLE: 0.3

NEXT: 0.3

INBETWEEN: 0.2

i

Beam Search

BEAM SEARCH SIZE 2 A: 0.9

CHAIR: 0.4

NEXT: 0.5

0.9 * 0.4 * 0.5 = 0.18

INBETWEEN: 0.3

0.9 * 0.4 * 0.3 = 0.108

BEHIND: 0.1

0.9 * 0.4 * 0.1 = 0.036

:

A: 0.9

TABLE: 0.3

NEXT: 0.3

0.9 * 0.3 * 0.3 = 0.081

INBETWEEN: 0.2

0.9 * 0.3* 0.2 = 0.054

:

Beam Search

BEAM SEARCH SIZE 2

A: 0.9

CHAIR: 0.4

NEXT: 0.5

0.9*0.4*0.5 = 0.18

INBETWEEN: 0.3

0.9 * 0.4 * 0.3 = 0.108

BEHIND: 0.1

0.9 * 0.4 * 0.1 = 0.036

MAX

A: 0.9

TABLE: 0.3

NEXT: 0.3

0.9 * 0.3 * 0.3 = 0.081

INBETWEEN: 0.2

0.9 * 0.3 * 0.2 = 0.054

Beam Search

BEAM SEARCH SIZE 2 **A**: 0.9

A: 0.9

CHAIR: 0.4

NEXT: 0.5

0.9*0.4*0.5 = 0.18

INBETWEEN: 0.3

0.9 * 0.4 * 0.3 = 0.108

BEHIND: 0.1

0.9 * 0.4 * 0.1 = 0.036

TABLE: 0.3

NEXT: 0.3

0.9 * 0.3 * 0.3 = 0.081

INBETWEEN: 0.2

0.9 * 0.3* 0.2 = 0.054

Antonio Oroz – Kağan Küçükaytekin

MAX

Beam Search

A: 0.9

CHAIR: 0.4

NEXT: 0.5

• • •

BEAM SEARCH SIZE 2

A: 0.9

CHAIR: 0.4

INBETWEEN: 0.3

. . .

Beam Search

Reinforcement Learning

CIDEr

This is a white sink... 0.41

This white a rectangular... 0.32

This is kitchen white... 0.24

This white a to sink... 0.001

This is is white oven... 0.09

Beam Search

Reinforcement Learning

CIDEr

This is a white sink... 0.41

This white a rectangular... 0.32

This is kitchen white... 0.24

This white a to sink... 0.001

This is is white oven... 0.09

$$-\frac{1}{k}\sum_{i=1}^{k} \left(r(w^{i}) - b\right) \log(p(w^{i}))$$

Beam Search

Reinforcement Learning

CIDEr

This is a white sink... 0.41

This white a rectangular... 0.32

This is kitchen white... 0.24

This white a to sink... 0.001

This is is white oven... 0.09

MEAN b=0.21

$$-\frac{1}{k}\sum_{i=1}^{k} \left(r(w^{i}) - b\right) \log(p(w^{i}))$$

Beam Search

Reinforcement Learning

$$r(w^i) - b$$

This is a white sink...

0.2

This white a rectangular...

0.11

This is kitchen white...

0.03

This white a to sink...

-0.21

This is is white oven...

-0.12

MEAN **b**=0.21

$$-\frac{1}{k}\sum_{i=1}^{k} \left(r(w^{i}) - b\right) \log(p(w^{i}))$$

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

III. Quantitative Results: vs Scan2Cap

@0.5loU

Model	CIDEr	Bleu-4	Meteor	Rouge
VoteNet+GRU	34.31	21.42	20.13	41.33
VoteNet+MMT =Scan2CapMMT	32.99	21.92	20.96	44.40

III. Quantitative Results: vs Scan2Cap

@0.5loU

Model	CIDEr	Bleu-4	Meteor	Rouge
VoteNet+CAC	36.15	21.58	20.65	41.78
VoteNet+MMT =Scan2CapMMT	32.99	21.92	20.96	44.40

III. Quantitative Results: vs Scan2Cap

@0.5loU

Model	CIDEr	Bleu-4	Meteor	Rouge
VoteNet+RG+CAC = Scan2Cap	39.08	23.32	21.97	44.78
Scan2CapMMT = Scan2CapMMT	32.99	21.92	20.96	44.40

III. Quantitative Results: Reinforcement Learning

@0.5loU

Model	CIDEr	Bleu-4	Meteor	Rouge
VoteNet+RG+CAC = Scan2Cap	39.08	23.32	21.97	44.78
VoteNet+MMT = Scan2CapMMT	32.99	21.92	20.96	44.40
Scan2CapMMT RL	36.18	23.68	21.33	44.64

MMT: This is a brown refrigerator. It is to the left of the door.

S2C: This is a white refrigerator. It is to

the left of the door.

GT: There is a stainless steel refrigerator in corner of the room. There are entry doors to its left.

MMT: This is a brown table. It is in front of a window

S2C: This is a wooden chair. It is to the left of another chair.

GT: there is a large table in the room. it has ten chairs pulled up to it.

MMT: This is a black chair. It is at the table.

S2C: This is a wooden chair. It is

to the left of another chair.

GT: This is a brown chair. It is in

between two other chairs.

MMT: This is a brown door. It is to the right of the door.

S2C: This is a white door. It is to the left of the shelf.

GT: This is a stainless steel refrigerator. It is to the right of a kitchen counter.

MMT: This is a black trash can. It is to the right of the door.

S2C: This is a trash can. It sets against the wall.

GT: This is a gray trash can. It is to the right of a table.

MMT: This is a brown door. It is to the right of a bookshelf.

S2C: This is a white door. It is to the left of a couch.

GT: A light brown door beside a tall shelf. A black couch is to the right of it.

MMT: This is a black keyboard. It is on the desk.

S2C: This is a square pillow. It is on the couch.

GT: This is a small square gray pillow. It is located on a black couch.

MMT: This is a brown door. It is to the right of a bookshelf.

S2C: This is a white door. It is to the left of a couch.

GT: A light brown door beside a tall shelf. A black couch is to the right of it.

MMT: This is a black keyboard. It is on the desk.

S2C: This is a square pillow. It is on the couch.

GT: This is a small square gray pillow. It is located on a black couch.

MMT: This is a black chair. It is to the right of the desk.

S2C: This is a black office chair. It is in front of a desk.

GT: This is a long tan desk. It is located near a wall and a small cabinet.

MMT: This is a black chair. It is to the right of the desk.

S2C: This is a brown couch. It is to the left of a brown table.

GT: It is a black sofa. It is located to the wall behind the fan.

MMT: This is a black monitor. It is on the desk.

S2C: N/A

GT: The monitor is located on top of the desk, and to the left of the other monitor facing the chair.

MMT: This is a black keyboard. It is on the desk.

S2C: N/A

GT: This is a long tan desk. It is located next to a black office

chair.

Antonio Oroz – Kağan Küçükaytekin

MMT: This is a brown door. It is to the right of a bookshelf.

S2C: This is a white door. It is to the left of a couch.

GT: A light brown door beside a tall shelf. A black couch is to the right of it .

MMT: This is a black keyboard. It is on the desk.

S2C: This is a square pillow. It is on the couch.

GT: This is a small square gray pillow. It is located on a black couch.

MMT: This is a brown couch. It is to the right of the desk.

S2C: This is a brown couch. It is to the left of a table.

GT: The couch is located in the corner of the room. It is to the right side of the door.

2.MMT: This is a black keyboard. It is on a desk.

S2C: This is a black monitor. It is on a desk. GT: A black computer screen is sitting on the desk. It is next to a black framed computer screen and to the left of it.

MMT: This is a black chair. It is to the right of the desk.

S2C: This is a black office chair. It is in front of a desk.

GT: This is a long tan desk. It is located near a wall and a small cabinet.

Scan2CapMMT

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

Scan2CapMMT

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- V. Detection with Transformers
- V. Timeline until the Final Presentation

Antonio Oroz – Kağan Küçükaytekin

42

IV. Our Contribution

PointNet++ **Voting Module Context-Aware Relational Graph Attention Proposal Module Captioning Object Proposals** PER WORD **Object Proposals** with Enhanced with Features **Features Object Masks Relation Features**

Captions for the Object Proposals

Object Detection Module

Relational Graph Module

Captioning Module

Point Cloud

IV. Our Contribution

PointNet++ **Voting Module** Memory-**Meshed Decoder** Augmented **Proposal Module Encoder Object Proposals Encoder Output** with Features **Encoder Mask Object Masks**

Transformer Module

Captions for the Object Proposals

Object Detection Module

Point Cloud

V. Exploring Transformers for Detection Module

PointNet++ **Voting Module Context-Aware** Captions for the **Point Cloud Relational Graph Attention Object Proposals Proposal Module Captioning** PER WORD **Object Proposals Object Proposals** with Enhanced with Features **Features Object Masks Relation Features** Relational Graph **Object Detection Captioning Module** Module Module Antonio Oroz – Kağan Küçükaytekin

49

VoteNet

*Vote grouping is an issue! Especially when objects are overlapping.

*Vote grouping is an issue! Especially when objects are overlapping.

57

*Radius for grouping is an important hyperparameter

- *Vote grouping is an issue! Especially when objects are overlapping.
- *Radius for grouping is an important hyperparameter
- *NMS only for eval

3DETR

Point Cloud

Group-Free-3D

Point Cloud

PointNet++

VoteNet 3DETR Group-Free-3D

- Vote grouping is an issue!
- Cluster radius
- NMS reliance

VoteNet 3DETR Group-Free-3D

Vote grouping is an issue!

- Cluster radius
- NMS reliance

+No NMS +No NMS

VoteNet

Vote grouping is an issue!

- Cluster radius
- NMS reliance

3DETR

+No NMS +Predict with every decoder output Group-Free-3D

+No NMS +Predict with every decoder output

VoteNet

Vote grouping is an issue!

- Cluster radius
- NMS reliance

3DETR

+No NMS +Predict with every decoder output Group-Free-3D

+No NMS
+Predict with every decoder output
+Use learnable pos. embeddings

VoteNet

- Vote grouping is an issue!
- Cluster radius
- NMS reliance

3DETR

+No NMS +Predict with every decoder output Group-Free-3D

+No NMS
+Predict with every
decoder output
+Use learnable pos.
embeddings
+More efficient
point sampling
strategy

VoteNet

- Vote grouping is an issue!
- Cluster radius
- NMS reliance

3DETR

+No NMS
+Predict with every decoder output
+Simplest, flexible

Group-Free-3D

+No NMS
+Predict with every decoder output
+Use learnable pos. embeddings
+More efficient point sampling strategy

VoteNet 3DETR Group-Free-3D

74

<u>mAP@0.5</u>: 39.9 <u>mAP@0.5</u>: 47 <u>mAP@0.5</u>: 49

VoteNet 3DETR Group-Free-3D

mAP@0.5: 39.9 mAP@0.5: 47 mAP@0.5: 49

1M Parameters 7.3M Parameters 14.5M Parameters

VoteNet 3DETR Group-Free-3D

<u>mAP@0.5</u>: 39.9 <u>mAP@0.5</u>: 47 <u>mAP@0.5</u>: 49

1M Parameters 7.3M Parameters 14.5M Parameters

Because of data constraints, Group-Free-3D is more likely to overfit, so examine 3DETR

V. Exploring Transformers for Detection Module

Down-Sample Voting Module Context-Aware Captions for the **Point Cloud Relational Graph Attention Object Proposals Proposal Module Captioning Object Proposals** PER WORD **Object Proposals** with Enhanced with Features **Features Object Masks Relation Features** Relational Graph **Object Detection Captioning Module** Module Module

77

V. Exploring Transformers for Detection Module

V. Exploring Transformers for Detection Module

Context-Aware Captions for the **Point Cloud Attention Object Proposals Captioning** 3DETR PER WORD **Captioning** Module

Antonio Oroz – Kağan Küçükay<mark>t</mark>ekin

79

What we have done?

What we have done:

Integrate 3DETR into the architecture

What we have done:

- Integrate 3DETR into the architecture
- Test end-to-end pipeline by overfitting to single sample without caption

What we have done:

- Integrate 3DETR into the architecture
- Test end-to-end pipeline by overfitting to single sample without caption

Possible next steps?

What we have done:

- Integrate 3DETR into the architecture
- Test end-to-end pipeline by overfitting to single sample without caption

Possible next steps:

End-to-end overfit to small sample for whole task

What we have done:

- Integrate 3DETR into the architecture
- Test end-to-end pipeline by overfitting to single sample without caption

Possible next steps:

- End-to-end overfit to small sample for whole task
- Try transfer Learning with pre-trained 3DETR-m

What we have done:

- Integrate 3DETR into the architecture
- Test end-to-end pipeline by overfitting to single sample without caption

Possible next steps:

- End-to-end overfit to small sample for whole task
- Try transfer Learning with pre-trained 3DETR-m
- No promise! Ablation studies on our model is our Prio 1.

lames 8

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- V. Detection with Transformers
- V. Timeline until the Final Presentation

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

V. Timeline until Final Presentation

- Reproduced Scan2Cap
- Started MMT Implementation

1. Presentation

V. Timeline until Final Presentation

- Finalized MMT Implementation
- Implemented Beam Search and RL
- Looked into Detection Module alternatives
- Prototype 3DETR Implementation into Scan2Cap pipeline

- Reproduced Scan2Cap
- Started MMT Implementation

1. Presentation

2. Presentation

V. Timeline until Final Presentation

- Reproduced Scan2Cap
- Started MMT Implementation

- Finalized MMT Implementation
- Implemented Beam Search and RL
- Looked into Detection Module alternatives
- Prototype 3DETR Implementation into Scan2Cap pipeline

- Trying 3DETR with MMT
- Figuring out why Reinforcement
 Learning is unstable
- Qualitative and Quantitative Analysis

91

Ablation Study

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- V. Detection with Transformers
- V. Timeline until the Final Presentation

THANK YOU FOR YOUR ATTENTION :D

Dense Captioning for 3D Scenes with Transformers

- Scan2Cap
- II. Meshed-Memory Transformer
- III. Scan2CapMMT
- IV. Insights & First Results
- V. Next Steps

- I. Scan2Cap
- II. Meshed-Memory Transformer
- III. Scan2CapMMT
- IV. Insights & First Results
- V. Next Steps

L. Scan2Cap: 3D Dense Captioning

This is a black office chair.
It is in the corner next to a black chair.

I. Scan2Cap

Point Cloud

Captions for the
Object Proposals

L. Scan2Cap: Architecture

Point Cloud

Object Detection Module

Relational Graph Module

Captioning Module

Captions for the Object Proposals

99

L. Scan2Cap: Architecture

PointNet++ **Voting Module Point Cloud Proposal Module Object Proposals** with Features **Object Masks**

Relational Graph Module

Captioning Module

Captions for the Object Proposals

Object Detection Module

L Scan2Cap: Architecture

PointNet++ **Voting Module Point Cloud Relational Graph Proposal Module Object Proposals Object Proposals** with Enhanced with Features **Features Object Masks Relation Features**

Captioning Module

Captions for the Object Proposals

Object Detection Module

Relational Graph Module

L Scan2Cap: Architecture

Module

PointNet++ **Voting Module Context-Aware** Captions for the **Point Cloud Relational Graph Attention Object Proposals Proposal Module Captioning** PER WORD **Object Proposals Object Proposals** with Enhanced with Features **Features Object Masks Relation Features Relational Graph Object Detection Captioning**

Module

Module

- I. Scan2Cap
- II. Meshed-Memory Transformer
- III. Scan2CapMMT
- IV. Insights & First Results
- V. Next Steps

- I. Scan2Cap
- II. Meshed-Memory Transformer
- III. Scan2CapMMT
- IV. Insights & First Results
- V. Next Steps

II. Scan2CapMMT: Motivation for MMT

PointNet++ **Voting Module Point Cloud Proposal Module Object Proposals** with Features **Object Masks**

Object Detection Module

Relational Graph

Object Proposals with Enhanced Features

Relation Features

Relational Graph Module

Context-Aware
Attention
Captioning

PER WORD

Captions for the Object Proposals

Captioning Module

II. Scan2CapMMT: Motivation for MMT

PointNet++ **Voting Module Point Cloud Proposal Module Object Proposals** with Features **Object Masks**

Object Detection Module

Context-Aware Relational Graph Attention Captioning PER WORD **Object Proposals** with Enhanced **Features Relation Features**

Captions for the Object Proposals

Relational Graph Module

Captioning Module

II. Scan2Cap

II. Meshed-Memory Transformer

Extracted image features

Image Caption

II. Meshed-Memory Transformer

II. Meshed-Memory Transformer: Encoder

Encoder Layer 1

II. Meshed-Memory Transformer

II. Meshed-Memory Transformer

II. Meshed-Memory Transformer: Decoder

Decoder N+1 Decoder N Add & Norm FC ReLU FC Add & Norm Decoder Layer N Encoders Multi-Head Cross-Attention Add & Norm Masked Multi-Head Self-Attention Decoder N-1

- I. Scan2Cap
- II. Meshed-Memory Transformer
- III. Scan2CapMMT
- IV. Insights & First Results
- V. Next Steps

- I. Scan2Cap
- II. Meshed-Memory Transformer
- III. Scan2CapMMT
- IV. Insights & First Results
- V. Next Steps

III. Scan2CapMMT: Initial Architecture

PointNet++ **Voting Module Context-Aware** Captions for the **Point Cloud Relational Graph Attention Object Proposals Proposal Module Captioning** PER WORD **Object Proposals Object Proposals** with Enhanced with Features **Features Object Masks Relation Features**

Module

Object Detection Module

Relational Graph

Captioning Module

III. Scan2CapMMT: With MMT

PointNet++ **Voting Module Proposal Module Object Proposals** with Features

Object Masks

Object Detection Module

Memory-**Meshed Decoder Augmented Encoder Encoder Output Encoder Mask Transformer Module**

Captions for the Object Proposals

Point Cloud

Decoding Captions for multiple object proposals

Caption-Generation in Training and Evaluation

Decoding Captions for multiple object proposals

Caption-Generation in Training and Evaluation

- I. Scan2Cap
- II. Meshed-Memory Transformer
- III. Scan2CapMMT
- IV. Insights & First Results
- V. Next Steps

- I. Scan2Cap
- II. Meshed-Memory Transformer
- III. Scan2CapMMT
- IV. Insights & First Results
- V. Next Steps

IV. Insights & First Results:

- Parameters: Scan2Cap MMT **7,830,308** vs **6,175,612** Scan2Cap
- Dropout: 0
- Weight Decay: 0
- Learning Rate: Changed from 1e-3 to 1e-4

IV. Insights & First Results: Overfitting Results

1 SAMPLE 1 SCENE

Caption Loss

Caption Accuracy

BLEU-4 Score

IV. Insights & First Results: Overfitting Results

1 SAMPLE 1 SCENE

N SAMPLES 1 SCENE

Caption Loss

Caption Accuracy

BLEU-4 Score

IV. Insights & First Results: Overfitting Results

1 SAMPLE 1 SCENE

N SAMPLES 1 SCENE

N SAMPLES M SCENES

Caption Loss

Caption Accuracy

BLEU-4 Score

V. Insights & First Results: Training on the whole Dataset

Losses & Accuracies

Caption Accuracy

V. Insights & First Results: Training on the whole Dataset

Losses & Accuracies

Evaluation

Scan2CapMMT

Scan2Cap

- I. Scan2Cap
- II. Meshed-Memory Transformer
- III. Scan2CapMMT
- IV. Insights & First Results
- V. Next Steps

- I. Scan2Cap
- II. Meshed-Memory Transformer
- III. Scan2CapMMT
- IV. Insights & First Results
- V. Next Steps

BEAM SEARCH

Instead of generating one sentence for an object proposal, generate multiple sentences in parallel and choose the final sentence with log propobabilities.

BEAM SEARCH

REINFOCEMENT LEARNING

After pretraining on the Cross-Entropy loss, use Reinforcement Learning with CIDEr-D as a reward to train the model.

BEAM SEARCH

REINFOCEMENT LEARNING

HYPERPARAMETER TUNING

Internal Dimensions of MMT

Decoder-/Encoder-Layers

Learning Rate

Number of Proposals

Schedules

Weight Decay

 $\bullet \bullet \bullet$

BEAM SEARCH

REINFOCEMENT LEARNING

HYPERPARAMETER TUNING GROUP-FREE TRANSFORMER

Replace the current detection module with the Group-Free 3D Object Detection via Transformers module proposed by Liu et al.

BEAM SEARCH

REINFOCEMENT LEARNING

HYPERPARAMETER TUNING GROUP-FREE TRANSFORMER

AoA

MMT currently uses Dot-Product Attention which we could replace with Attention on Attention

- I. Scan2Cap
- II. Meshed-Memory Transformer
- III. Scan2Cap with MMT
- IV. Insights & First Results
- V. Next Steps

THANK YOU FOR YOUR ATTENTION: D

1 SAMPLE **1** SCENE

0 200 400 600 800 1k 1.2k 1.4k

Evaluation

1 SAMPLE **1** SCENE

Losses

1 SAMPLE 1 SCENE

Accuracies

0 200 400 600 800 1k 1.2k 1.4k

1 SAMPLE 1 SCENE

200 400 600 800 1k 1.2k 1.4k

:: ■ ::

N SAMPLES 1 SCENE

Evaluation

1 SAMPLE 1 SCENE

N SAMPLES 1 SCENE

Losses

1 SAMPLE 1 SCENE

N SAMPLES 1 SCENE

Accuracies

1 SAMPLE 1 SCENE

N SAMPLES 1 SCENE

N SAMPLES M SCENES

Evaluation

1 SAMPLE 1 SCENE

N SAMPLES 1 SCENE

N SAMPLES M SCENES

Losses

1 SAMPLE 1 SCENE

:: ■ ::

N SAMPLES 1 SCENE

N SAMPLES M SCENES

Accuracies

□ 🗏 🖸

II. Meshed-Memory Transformer

Attention

Encoder Layer 1

Develop and maintaion a-priori knowledge in persistent memory vectors

Memory Augmented Attention

II. Meshed-Memory Transformer: Attention

- Fully attentive.
- Scaled dot-product attention, without recurrence.
- Self attention in decoders
- Cross-attention bMeshedetween decoder and encoder
- Masked self-attention between decoders

II. Meshed-Memory Transformer: Encoder

Attention

Memory Augmented Attention

Develop and maintaion a-priori knowledge in persistent memory vectors

II. Meshed-Memory Transformer: Decoder

