24 septembre 2022 MP2I

Devoir Surveillé 1, corrigé

Exercice 1. Limite d'une somme.

1) Majoration de la suite. Dans toute la question, on fixe $n \in \mathbb{N}^*$.

a) On va poser le changement d'indice j=n-k (ou k=n-j) dans la définition de u_n . On a alors :

$$u_n = \frac{1}{n^n} \sum_{j=0}^n (n-k)^n$$
$$= \sum_{j=0}^n \left(\frac{n-j}{n}\right)^n$$
$$= \sum_{j=0}^n \left(1 - \frac{j}{n}\right)^n.$$

b) Pour $x \in \mathbb{R}$, on pose $f(x) = e^x - x - 1$. f est dérivable comme somme de fonctions dérivables et $\forall x \in \mathbb{R}$, $f'(x) = e^x - 1$. On a donc f' négative sur \mathbb{R}_- et positive sur \mathbb{R}_+ . f est donc décroissante sur \mathbb{R}_- et croissante sur \mathbb{R}_+ donc f admet un minimum en 0. Puisque f(0) = 0, on a alors $\forall x \in \mathbb{R}$, $e^x \geq x + 1$.

c) Soit $x \ge -1$. On a alors $1 + x \ge 0$. En appliquant la fonction $u \mapsto u^n$ (qui est croissante sur \mathbb{R}_+ , on obtient alors :

$$(1+x)^n \leq (e^x)^n \leq e^{nx}.$$

En reprenant l'expression du a), on remarque que si $j \in [0,n]$, alors on a bien $-\frac{j}{n} \ge -1$. On en déduit que $\left(1-\frac{j}{n}\right)^n \le e^{n\times(-j/n)} = e^{-j}$. En sommant cette inégalité de 0 à n, on en déduit que :

$$\sum_{j=0}^{n} \left(1 - \frac{j}{n}\right)^n \le \sum_{j=0}^{n} e^{-j},$$

ce qui est l'inégalité demandée.

d) Puisque pour j entier, $e^{-j}=\left(\frac{1}{e}\right)^j$, on reconnait une somme géométrique de raison $\frac{1}{e}\neq 1$. On en déduit que :

$$\sum_{j=0}^{n} e^{-j} = \frac{1 - \left(\frac{1}{e}\right)^{n+1}}{1 - \frac{1}{e}}$$

$$= \frac{1 - e^{-n-1}}{1 - e^{-1}}$$

$$= \frac{e - e^{-n}}{e - 1}.$$

On en déduit que pour tout $n \in \mathbb{N}^*$, $u_n \leq \frac{e}{e-1}$ (puisque le terme en $-e^{-n}$ est négatif) donc la suite est majorée.

2) Minoration de L. Soient $n > m \ge 1$ des entiers.

a) On a:

$$u_n = \sum_{j=0}^n \left(1 - \frac{j}{n}\right)^n$$
$$= \sum_{j=0}^m \left(1 - \frac{j}{n}\right)^n + \sum_{j=m+1}^n \left(1 - \frac{j}{n}\right)^n.$$

On peut décomposer ainsi puisque n > m. La seconde somme est positive puisque pour $j \le n$, on a $1 - \frac{j}{n} \ge 0$, et on somme donc des termes positifs. On en déduit que $u_n \ge \sum_{j=0}^{m} \left(1 - \frac{j}{n}\right)^n$.

b) « La fonction f est dérivable en 0 » signifie que la quantité $\frac{f(x)-f(0)}{x-0}$ tend vers une limite finie quand x tend vers 0. On appelle cette limite f'(0). On pose ici $f: u \mapsto \ln(1+u)$. Cette fonction est dérivable en 0 comme composée de fonctions dérivables. On en déduit que :

$$\lim_{u \to 0} \frac{\ln(1+u) - \ln(1+0)}{u - 0} = f'(0).$$

En calculant la dérivée de la fonction, on trouve que pour x > -1, $f'(x) = \frac{1}{1+x}$, ce qui donne bien f'(0) = 1.

c) Soit $j \in [0, m]$.

i) Puisque $j \leq m < n$, on a alors $\frac{j}{n} < 1$ et donc $1 - \frac{j}{n} > 0$. On en déduit alors que $\left(1 - \frac{j}{n}\right)^n > 0$ et on peut donc composer par le logarithme. On a alors par propriété du logarithme :

$$\ln\left(1 - \frac{j}{n}\right)^n = n\ln\left(1 - \frac{j}{n}\right).$$

En composant alors par l'exponentielle, on obtient que $e^{\ln\left(1-\frac{j}{n}\right)^n}=e^{n\ln\left(1-\frac{j}{n}\right)}$, ce qui donne l'égalité voulue puisque $e^{\ln\left(1-\frac{j}{n}\right)^n}=\left(1-\frac{j}{n}\right)^n$.

ii) Remarquons tout d'abord que la propriété est vraie pour j=0 (on obtient $\lim_{n\to+\infty}1=e^0$). Supposons à présent j>0. On a alors en utilisant la question 2.b) en $x_n=-\frac{j}{n}\neq 0$ (qui tend vers 0 quand n tend vers l'infini) que :

$$\lim_{n \to +\infty} \frac{\ln\left(1 - \frac{j}{n}\right)}{-\frac{j}{n}} = 1 \Leftrightarrow \lim_{n \to +\infty} n \ln\left(1 - \frac{j}{n}\right) = -j.$$

Par composition de limites (la fonction exponentielle est continue) et en utilisant la question précédente, on en déduit que $\lim_{n\to+\infty} \left(1-\frac{j}{n}\right)^n = e^{-j}$.

d) En passant à la limite dans l'inégalité obtenue en 2.a) (on a une somme finie de termes, m étant fixé et on a le droit de passer à la limite dans les inégalités larges), on en déduit en sommant les différentes limites que :

$$\sum_{j=0}^{m} e^{-j} \le L.$$

3) On peut alors calculer la somme précédente. On a toujours par somme géométrique de raison différente de 1 (voir le calcul du 1.d) :

2

$$\sum_{j=0}^{m} e^{-j} = \frac{e - e^{-m}}{e - 1}.$$

On a donc pour tout $m \in \mathbb{N}$, $L \ge \frac{e-e^{-m}}{e-1}$. En passant à la limite quand m tend vers l'infini, l'exponentielle tendant vers 0 en $-\infty$, on en déduit que :

$$L \ge \frac{e}{e-1}$$
.

Or, la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par $\frac{e}{e-1}$ donc $\forall n\in\mathbb{N},\ u_n\leq\frac{e}{e-1}$. En passant à la limite quand n tend vers l'infini, on a donc $L\leq\frac{e}{e-1}$. Par double encadrement, on en déduit que $L=\frac{e}{e-1}$.

Exercice 2. Deux équations fonctionnelles.

1)

- a) On suppose f solution. C'est l'analyse
 - i) En x = y = 0, on obtient f(0) = 0 + 0 = 0.
 - ii) On évalue en y=0 et $x\in\mathbb{R}$. On a donc $\forall x\in\mathbb{R},\ 0=xf(x)+0$. On en déduit que pour $x\neq 0,\ f(x)=0$. Puisque d'après la question précédente f(0)=0, on en déduit que pour tout $x\in\mathbb{R},\ f(x)=0$.
- b) $C'est \ la \ synth\`ese$. La fonction nulle étant clairement solution (on a 0 = 0 + 0), c'est la seule solution de cette équation.

2)

- a) On suppose f solution. C'est l'analyse
 - i) On prend x = 1 et y = 0 par exemple, on a f(1 f(0)) = 0. Si on pose z = 1 f(0), on a donc bien f(z) = 0.
 - ii) On évalue à présent la propriété en y=z. On a alors $\forall x \in \mathbb{R}, \ f(x-0)=1-x-z$. En posant k=1-z, on a bien k indépendant de x vérifiant $\forall x \in \mathbb{R}, \ f(x)=-x+k$.
- b) Réciproquement, on suppose que f est de la forme $\forall x \in \mathbb{R}, \ f(x) = -x + k$ où $k \in \mathbb{R}$. C'est la synthèse. On a alors :

$$\forall x, y \in \mathbb{R}, \ f(x + f(y)) = -(x - (-y + k)) + k = -x - y + 2k.$$

On en déduit que f vérifie l'équation proposée si et seulement si $k=\frac{1}{2}$. Il n'y a finalement qu'une seule solution à cette équation, la fonction $f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & -x+\frac{1}{2} \end{array} \right.$

Exercice 3. Autour de la périodicité.

- 1) Pour $n \in \mathbb{N}$, on a $(-1)^{n+2} = (-1)^n \times (-1)^2 = (-1)^n \times 1 = (-1)^n$. La suite est donc 2-périodique.
- 2) Supposons $(u_n)_{n\in\mathbb{N}}$ périodique de période $T\in\mathbb{N}^*$. On a alors $(u_n)_{n\in\mathbb{N}}$ périodique à partir du rang 0 (on prend N=0). De plus, si on fixe $n\in\mathbb{N}$, alors on a $u_{n+T}=u_n$ ce qui prouve que $(u_n)_{n\in\mathbb{N}}$ est répétable.
- 3) Prenons la suite définie par $u_0 = 2$ et $\forall n \in \mathbb{N}^*, u_n = (-1)^n$. Alors cette suite est périodique à partir du rang 1 mais elle n'est pas périodique car elle ne reprend jamais la valeur 2.
- 4) Prenons la même suite que ci-dessus. Elle n'est pas répétable car elle ne repasse jamais par la valeur $u_0 = 2$ (c'est à dire que $\forall T \in \mathbb{N}^*, u_{0+T} \neq u_0$).

5)

- a) La propriété demandée est vraie pour les premiers rangs (on a $u_0 = 1, u_1 = 1$ et $u_3 = 1$ (pour k=0,1,2). On remarque que par définition, avant de retomber sur un 1, la suite est décomposée par paquets de 1 terme, puis 2, puis 3, puis 4, etc. en recommençant chaque nouveau paquet à
 - par paquets de 1 terme, pars 2, pars 2, pars 3, pars 3.

 1. On en déduit que le k+1-ième 1 de la suite est en position $\sum_{i=1}^{k} j = \frac{k(k+1)}{2}$. On a donc bien
 - $\forall k \in \mathbb{N}, \ u_{\frac{k(k+1)}{2}} = 1.$
 - b) Puisque $v_k = \sum_{i=1}^k j$, la suite $(v_k)_{k \in \mathbb{N}}$ est une suite d'entiers strictement croissante avec $u_0 = 0$.

On peut donc décomposer $\mathbb{R}_+ = [u_0, u_1[\cup [u_1, u_2[\cup [u_2, u_3[\cup \ldots]]] \cap \mathbb{R}_+]]$ On recouvre bien toutes les valeurs puisque $\lim_{k \to +\infty} v_k = +\infty$.

En particulier, pour $n \in \mathbb{N}$, si on prend le plus grand indice k tel que $v_k \leq n$ (qui existe car lim $v_k = +\infty$ donc la suite finit par dépasser n), on a alors $n < v_{k+1}$. On a donc bien la propriété $k{\to}{+}\infty$ demandée.

c) Fixons $n \in \mathbb{N}$. D'après la propriété précédente, il existe donc $k \in \mathbb{N}$ tel que $v_k \leq n < v_{k+1}$. Puisque $u_{v_k} = 1$ et que le prochain 1 est atteint en $u_{v_{k+1}}$, on en déduit que le n fait parti du « paquet » associé au k+1-ième 1 de la suite. Ainsi, si $n=v_k$, on a $u_n=1$, si $n=v_k+1$, $u_n = 2$, etc. jusqu'au terme $u_{v_k+k} = 1 + k$. C'est bien le dernier terme du paquet puisque $v_{k+1} = \sum_{i=1}^{k+1} j = v_k + (k+1).$

Pour retomber sur u_n , il suffit par exemple de se déplacer dans le paquet suivant (où on aura les entiers consécutifs de 1 à 1+(k+1)=k+2). Il faut ici se décaler de k+1 (toujours puisque $v_{k+1} = v_k + (k+1)$, ce qui donne $u_n = u_{n+(k+1)}$. En prenant donc T = k+1, on a donc que $(u_n)_{n \in \mathbb{N}}$ est répétable. La différence entre la répétabilité et la périodicité est que le T peut dépendre de n, c'est à dire le terme de la suite considéré alors que pour une suite périodique, c'est le même T pour tous les n.

d) $(u_n)_{n\in\mathbb{N}}$ n'est pas périodique à partir d'un certain rang? Supposons par l'absurde qu'elle soit T-périodique à partir du rang $N \in \mathbb{N}$. Fixons un entier $k \in \mathbb{N}$ tel que $N \leq v_k$ et tel que $T \leq k$ (ceci existe car $\lim_{k \to +\infty} v_k = +\infty$). On a alors $u_{v_k} = 1$ et $u_{v_k+T} = 1 + T \neq 1$ (puisque l'on est toujours dans le « paquet » associé à u_{v_k} , on a pas encore atteint le paquet de $u_{v_{k+1}}$ car $v_{k+1} = v_k + (k+1)$ et T < k+1.