4

- 1. أنواع النهايات
- 2. الاتصال في نقطة
- الاتصال على مجال
- 4. مبرهنة القيم الوسيطية5. الدالة العكسية
- ا. النهايات والاتصال
- اا. حساب النهايات و الفروع اللانهائية
 - ااا. دراسة الإشارة
 - IV. الاشتقاق
- ٧. تغيرات -تقعر وضع نسبي
 - الا. نقط هامة
- VII. ملخص لقواعد nx و *e

- المجزوءة :
- A. دراسة الدوال العددية
 - B. المتتاليات العددية
 - C. حساب التكامل
 - D. الأعداد العقدية

1. هناك أربع أنواع من النهايات

$$\lim_{x \to \pm \infty} f(x) = \pm \infty \quad \# \lim_{x \to \pm \infty} f(x) = b \quad \# \lim_{x \to a} f(x) = \pm \infty \quad \# \lim_{x \to a} f(x) = b \quad \#$$

ļ

الفروع اللانهائية

3 فروع شلجمية

3 مقاربات

اتصال في نقطة

الاتصال في مجال

الدالة العكسية مبرهنة القيم وسيطية

2. الاتصال في نقطة :

 $l \in \mathbb{R}$: عيث $\lim_{x \to x} f(x) = l = f(x_0)$: نقول أن $\lim_{x \to x} f(x) = \lim_{x \to x} f(x)$ نقول أن

3. الاتصال على مجال:

]a,b[المجال مفتوح]a,b[إذا كانت f متصلة في كل عنصر من المجال]a,b[إذا كانت f

5

العمليات على الدوال المتصلة و نتائج:

لتكن g و دالتين متصلتين على مجال g و g عدد حقيقي • الدوال g و g متصلة على المجال g	العمليات على الدوال المتصلة
\mathbb{R} كل دالة حدودية متصلة على \mathbb{R} كل دالة جذرية ودالة لا جذرية متصلة على مجموعة تعريفها $\ln(x)$ الدالة اللوغاريثمية $\ln(x)$ متصلة على $0,+\infty$ \mathbb{R} الدالة الأسية e^x متصلة على \mathbb{R}	نتائج :

لتحديد صورة مجال:

f(I) المجال		7 ti~ ti
f تزایدیهٔ علی I	I تناقصية على f	المجال <i>I</i>
f([a,b]) = [f(a),f(b)]	f([a,b]) = [f(b), f(a)]	[a,b]
$f([a,b[) = \left[f(a), \lim_{x \to b^{-}} f(x)\right]$	$f([a,b[) = \left[\lim_{x \to b^{-}} f(x), f(a) \right]$	[a, b[
$f(]a,b]) = \lim_{x \to a^+} f(x), f(b)$	$f(]a,b]) = \left[f(b), \lim_{x \to a^+} f(x)\right[$]a,b]
$f(]a,b[) = \lim_{x \to a^+} f(x), \lim_{x \to b^-} f(x)[$	$f(]a,b[) = \lim_{x \to b^{-}} f(x), \lim_{x \to a^{+}} f(x)[$]a,b[
$f([a, +\infty[) = \left[f(a), \lim_{x \to +\infty} f(x)\right]$	$f([a, +\infty[) = \left[\lim_{x \to +\infty} f(x), f(a) \right]$	[<i>a</i> , +∞[
$f(]a, +\infty[) = \lim_{x \to a^+} f(x), \lim_{x \to +\infty} f(x)[$	$f(]a, +\infty[) = \lim_{x \to +\infty} f(x), \lim_{x \to a^{+}} f(x)[$] <i>a</i> , +∞[
$f(]-\infty,b]) = \lim_{x \to -\infty} f(x), f(b)$	$f(]-\infty,b]) = \left[f(b), \lim_{x\to-\infty}f(x)\right]$]-∞, <i>b</i>]
$f(]-\infty,b[) = \lim_{x \to -\infty} f(x), \lim_{x \to b^{-}} f(x)[$	$f(]-\infty,b[) = \lim_{x \to b^{-}} f(x), \lim_{x \to -\infty} f(x)[$]-∞, <i>b</i> [
$f(\mathbb{R}) = \lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x)$	$f(\mathbb{R}) = \lim_{x \to +\infty} f(x), \lim_{x \to -\infty} f(x)$	R

معلومة بيناتنا: صورة مجال أتنفعنا ف مبرهنة القيم الوسيطية و الدالة العكسية أو باش تحسبها ضروري تكون الدالة رتيبة

6

4. مبرهنة القيم الوسيطية:

I بين أن المعادلة $f\left(x\right)=0$ تقبل حلا وحيدا lpha على مجال مفتوح lpha شروطها:

- Iمتصلة على المجال f \circ
 - Iرتيبة على المجال f
 - $0 \in f(I)$ o
- $f(a) \times f(b) < 0$: نتحقق من أن $\alpha \in]a,b[$ ادا طلب التحقق أن

ملاحظات:

عند الإجابة على هذا السؤال نستنتج ما يلي : ۖ

lpha مبيانيا : (C_f) يقطع محور الأفاصيل في نقطة وحيدة أفصولها $oldsymbol{\checkmark}$

 $f(\alpha) = 0$: جبریا

5. الدالة العكسية

J معرفة على المجال f^{-1} معرفة على المجال المجال

J = f(I) عمرفة على المجال f نبين أن f دالة متصلة و رتيبة قطعا على المجال المجال و نبين أن f معرفة على المجال

لتحدبد صيغة الدالة العكسية:

$$\begin{cases} \forall x \in J & \forall y \in I \\ f^{-1}(x) = y \Leftrightarrow f(y) = x \end{cases}$$
نستعين بالتكافؤ التالي:

اتصال الدالة العكسية

I إذا كانت f دالة متصلة و رتيبة قطعا $_{-}$ على المجال f فإن الدالة عكسية $_{-}^{-1}$ متصلة على المجال

اشتقاق الدالة العكسية

I دالة متصلة و رتيبة قطعا_على المجال $f'\neq 0$ و المجال $f'\neq 0$ و المجال $f'\neq 0$ فلدينا ،

$$\forall x \in f(I) \quad (f^{-1})'(x_0) = \frac{1}{f'(f^{-1}(x_0))}$$

التمثيلان المبيانيان للدالتين f و f متماثلان للمنصف الأول للمعلم

