Soft Clustering

Alex(ander) Jung Assistant Professor for Machine Learning Department of Computer Science Aalto University

Reading.

Sec. 8.2. of https://mlbook.cs.aalto.fi

https://scikit-learn.org/stable/modules/mixture.html#gmm

Learning Goals

- basic idea of soft clustering
- a soft clustering algorithm
- probabilistic interpretation of algorithm
- how to choose number of clusters

Dataset = Set of Image Patches

Using Two Features (Red+Green)

Hard- vs. Soft-Clustering

Output of k-means (Last Lecture)

7

Output of Soft-Clustering (Today!)

Soft Clustering

- datapoints $(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})$
- i-th datapoint characterized by n features

$$\mathbf{x}^{(i)} = \left(x_1^{(i)}, \dots, x_n^{(i)}\right)$$

• i-th datapoint characterized by k label values

$$\mathbf{y}^{(i)} = \left(y_1^{(i)}, \dots, x_k^{(i)}\right)$$

Degree of Belonging

i-th datapoint characterized by k label values

$$\mathbf{y}^{(i)} = \left(y_1^{(i)}, \dots, x_k^{(i)}\right)$$

- $y_1^{(i)}$ degree of i-th datapoint belonging to cluster 1
- $y_2^{(i)}$ degree of i-th datapoint belonging to cluster 2
- •
- $y_{k_{22}}^{(i)}$ degree of i-th datapoint belonging to cluster k

Probabilistic Interpretation

- $y_c^{(i)}$ degree of i-th datapoint belonging to cluster c
- Interpret $y_c^{(i)}$ as probability

P(" i-th datapoint belongs to cluster c")

- $y_c^{(i)}$ can be any number between 0 and 1 (e.g., $y_c^{(i)}$ =0.33)
- $\sum_{c=1}^{k} y_c^{(i)} = 1$ (i-th datapoint must belong to some cluster)
- hard clustering requires $y_{\text{A. Jung, Plenoptima'22}}^{(i)}$ is either 0 or 1

Soft Clustering Methods

feature vectors

$$x^{(1)},...,x^{(m)}$$

a soft clustering method

predicted degrees of belonging

$$\widehat{\boldsymbol{y}}^{(1)}$$
,..., $\widehat{\boldsymbol{y}}^{(m)}$

Represent Clusters by Gaussians

Gaussian mixture model (GMM)

Gaussian Distribution

14

Cluster Spread

$$\frac{1}{m^{(c)}} \sum_{i=1}^{m} \hat{y}_{c}^{(i)} \left(\boldsymbol{x}^{(i)} - \boldsymbol{\mu}^{(c)} \right)^{T} \left(\boldsymbol{\Sigma}^{(1)} \right)^{-1} \left(\boldsymbol{x}^{(i)} - \boldsymbol{\mu}^{(c)} \right)$$

effective cluster size
$$m^{(c)} := \sum_{\text{A. Jung, Plenoptima}} \hat{y}_c^{(i)}$$

9/26/22

Update Cluster Mean and Covariance

for given (soft) cluster assignments $\hat{y}_c^{(i)}$ chose cluster means and cov. to min. cluster spreads

$$\mu^{(c)} := \frac{1}{m^{(c)}} \sum_{i=1}^{m} \hat{y}_c^{(i)} x^{(i)}$$
 for all c =1,...,k

$$\sum_{9/26/22}^{(c)} := \frac{1}{m^{(c)}} \sum_{i=1}^{m} \hat{y}_{c}^{(i)} (x^{(i)} - \mu^{(c)}) (x^{(i)} - \mu^{(c)})^{T}$$
A. Jung, Plenoptima'22

Cluster Assignment Update

9/26/22

A. Jung, Plenoptima'22

A Soft-Clustering Algorithm

initial choice for cluster means, cov. and effective size

 $\boldsymbol{\mu}^{(c)}$, $\boldsymbol{\Sigma}^{(c)}$, $m^{(c)}$

update cluster assignment

update cluster means, cov. and eff. size

A Soft-Clustering Algorithm

- •Input: $x^{(1)},...,x^{(m)}$, k, $\{\mu^{(c)},\Sigma^{(c)},m^{(c)}\}$
- 1. update soft cluster assignments $\hat{y}_c^{(i)}$
- 2. update cluster params $\mu^{(c)}$, $\Sigma^{(c)}$, $m^{(c)}$
- 3. go to 1. unless "finished"
- •Output: $\hat{y}_{c}^{(i)}$, $\mu^{(c)}$, $\Sigma^{(c)}$, $m^{(c)}$

Typical Cluster Shapes

this cluster structure still out of reach!

When to Stop?

Soft-Clustering Error

$$\mathcal{E}(\{\mu^{(c)}\}, \{\Sigma^{(c)}\}, \{m^{(c)}\}) := -\sum_{i=1}^{m} \log \sum_{c=1}^{k} \frac{m^{(c)}}{m} p(x^{(i)}; \mu^{(c)}, \Sigma^{(c)})$$

this is negative logarithm of probability to "see" datapoints under Gaussian mixture model

$$\mathcal{E}(\{\mu^{(c)}\}, \{\Sigma^{(c)}\}, \{m^{(c)}\})$$
stop when decrease too small

 $\mathcal{E}(\{\mu^{(c)}\}, \{\Sigma^{(c)}\}, \{m^{(c)}\})$

iteration

 $\mathcal{E}(\{\mu^{(c)}\}, \{\Sigma^{(c)}\}, \{m^{(c)}\})$

Non-Convexity of Soft-Clustering Error

local optimum A. Jung, Plenoptima 22 imal clustering

Initialization is Crucial

soft clustering depends crucially on init. means

repeat several times with different init.

How to choose number k of clusters?

- defined by application (img. seg.)
- desired compression rate
- "elbow-method"

For/Background Segmentation k=2 Cluster 1 = Background, Cluster 2=Foreground

Elbow Method

Choose k by Validation Error

 clustering an be used as pre-processing for follow-up regression method

 try different values of k and pick the one resulting in smallest validation error

To Sum Up

- represent clusters by Gaussian distributions
- soft clustering algorithm fits GMM
- iterative optimization of soft-clustering error
- trapped in local minimum for bad initialization

Thank You!