Paradigmas de Solução de Problemas

Divisão e Conquista - Transformada Rápida de Fourier

Prof. Edson Alves - UnB/FGA 2020

Sumário

- 1. Transformada de Fourier
- 2. Transformada Rápida de Fourier
- 3. Referências

Transformada de Fourier

Série de Fourier

- ullet Uma série de Fourier consiste na expansão de uma função períodica f(x) em termos de senos e cosenos
- Isto possível porque as funções $\sin(mx)$ e $\sin(ny)$ são ortogonais para $m \neq n$ no intervalo $[-\pi, \pi]$:

$$\int_{-\pi}^{\pi} \sin(mx)\sin(nx)dx = \int_{-\pi}^{\pi} \sin(mx)\cos(nx)dx$$
$$= \int_{-\pi}^{\pi} \cos(mx)\cos(nx)dx = 0$$

• Para m=n, segue que

$$\int_{-\pi}^{\pi} \sin^2(mx) dx = \int_{-\pi}^{\pi} \cos^2(mx) dx = \pi$$

Série de Fourier

• Deste modo,

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx),$$

onde

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Exemplo: Onda Quadrada

Exemplo: Onda Quadrada

• O coeficiente a_0 é dado por

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)dt = \frac{1}{\pi} \int_{0}^{\pi} a \, dt = a$$

• Os coeficientes a_n , para $n \ge 1$, são todos iguais a zero, pois

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt = \frac{a}{\pi} \left[\frac{\sin(nt)}{n} \Big|_{0}^{\pi} \right] = 0$$

ullet Os coeficientes b_n são iguais a zero, para n par, e

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt = -\frac{a}{\pi} \left[\left. \frac{\cos(nt)}{n} \right|_{0}^{\pi} \right] = \frac{2a}{m\pi},$$

se n é ímpar

Transformada Rápida de Fourier

Referências

Referências

- 1. **CHEEVER**, Erick. The Fourier Series, acesso em 12/08/2020.
- 2. Wolfram. Fourier Series, acesso em 12/08/2020.