MACM 201 Homework 6 (Quiz Oct. 23)

- 1. Define a polynomial P(x) so that $[x^k]P(x)$ is the number of binary strings of length 100 with k 1's.
- 2. For each equation, express the number of solutions as the coefficient of a polynomial.
 - (a) $b_1 + b_2 + b_3 = 12$ where $0 \le b_i \le 6$ holds for i = 1, 2, 3
 - (b) $b_1 + b_2 + b_3 = 14$ where $b_1, b_2, b_3 \ge 0$ and b_1, b_2 are odd while b_3 is even.
 - (c) $b_1 + b_2 + b_3 + b_4 = 17$ where $2 \le b_1 \le 5$, $b_2, b_3, b_4 \ge 0$, b_2 is even, b_3 is odd, and b_4 is a multiple of 3.
- 3. Define a generating function R(x) with the property that $[x^n]R(x)$ is the number of ways there are to use pennies, dimes, and quarters to add up to a total of n cents.
- 4. In this problem we are interested in counting the number of solutions to

$$(\star)$$
 $a_1 + a_2 + a_3 + a_4 = n$ where $a_1, a_2, a_3, a_4 \ge 0$

- (a) Define a generating function $P_1(x)$ with the property that $[x^n]P_1(x)$ is the number of solutions to (\star) .
- (b) Define a generating function $P_2(x)$ with the property that $[x^n]P_2(x)$ is the number of solutions to (\star) satisfying the additional condition that a_1, a_2 are even but a_3, a_4 are odd.
- (c) Define a generating function $P_2(x)$ with the property that $[x^n]P_2(x)$ is the number of solutions to (\star) satisfying the additional conditions that $10 \le a_1 \le 100$, a_2 is even, and a_3 is a multiple of 3.
- 5. Let C_n denote the set of strings of length n over the alphabet $\{0, 1, 2, 3\}$.
 - (a) Define a polynomial $Q_1(x)$ with the property that $[x^k]Q_1(x)$ is the number of strings in \mathcal{C}_n that have exactly k nonzero symbols.
 - (b) Define a polynomial $Q_2(x)$ with the property that $[x^k]Q_2(x)$ is the number of strings in \mathcal{C}_n that have exactly k letters that are 2 or 3 (so the remaining n-k will be 0 or 1).

- (c) Define the weight of a string $s \in \mathcal{C}_n$ to be $s_1 + s_2 + \ldots + s_n$ (for example, the string s = 32102 has weight 3 + 2 + 1 + 0 + 2 = 8). Define a polynomial $Q_3(x)$ with the property that $[x^k]Q_3(x)$ is the number of strings in \mathcal{C}_n with weight k.
- (d) Define the funny weight of a string $s \in \mathcal{C}_n$ to be 7 times the number of 3's in s plus 4 times the number of 2's in s (so each 0 or 1 contributes nothing). Define a polynomial $Q_4(x)$ with the property that $[x^k]Q_4(x)$ is the number of strings in \mathcal{C}_n with funny weight equal to k.