

Master 2 Imagine

Projet Image: Reconnaissance faciale

Compte Rendu 6

DEROUBAIX Renaud, SERVA Benjamin

24 novembre 2024

Table des matières

1.	CNN					
	1.1 Dlib:	. 2				
	1.2 Test du modèle de reconnaissance faciale :	. 3				
	1.3 Matrice de confusion :	5				
2.	Application					
	2.1 Application : résultats et performance	. 6				
	2.2 Amélioration à implémenter					
	2.3 Portage sur android	7				
3.	Objectif pour la semaine #8 - CR7 :	7				

1. CNN

1.1 Dlib:

Le modèle Dlib utilisé dans deepface pour notre reconnaissance faciale est conçu de la manière suivante :

- Modèle ResNet network : "a version of the ResNet-34 network".
- 29 Couches de convolutions.
- Entraîné sur 3 millions de visages (FaceScrub dataset, VGG dataset, images récupérées sur Internet).
- 7485 individus différents.
- Initialisation : poids aléatoires.
- Optimisation : le réseau a été entraîné en utilisant une structured metric loss basée sur une pair-wise hinge loss.
- Performance : le modèle obtient une erreur moyenne de 0.993833 avec un écart type de 0.00272732 sur LFW.

Structured Metric Loss : fonction de perte utilisée pour entraîner un réseau afin de différentier les individus. Elle cherche à minimiser la distance entre les vecteurs caractéristiques des visages d'un même individu et à maximiser la distance entre les vecteurs des visages différents.

Pair-wise Hinge Loss: fonction de perte qui compare les paires de vecteurs caractéristiques dans un mini-Batch. Deux seuils, un seuil où la distance doit être inférieure pour les visages de même individu, l'autre où la distance doit être supérieure pour des vecteurs d'individu différents.

Le modèle utilise 68 points de repère pour localiser et analyser les caractéristiques faciales. Ils sont nécéssaire pour l'alignement des visages afin d'obtenir le vecteur caractéristique.

FIGURE 1 – Landmarks pour la reconnaissance faciale avec dlib

1.2 Test du modèle de reconnaissance faciale :

Pour tester le modèle, on a pris 50 images. Afin de faciliter les tests, nous avons ajouté des célébrités à notre banque d'image/YML

- 25 visages appartenant à la BDD dont 12 appartenant au étudiants .
- 25 visages n'appartenant pas à la BDD (Inconnu).

On obtient les résultats suivants :

Résultats de correspondance d'image avec labels

lmage	Label prédit	Distance	Image correspondante	Nombre d'images
Nayeon 1.jpg	Nayeon	0.0223	Nayeon 2.jpg	2
Adam 1.jpg	Adam	0.0259	Adam 4.jpg	9
Mickael 1.ipg	Mickael	0.0264	Mickael 4.ipg	4
Emmanuel 1.jpg	Emmanuel	0.0269	Emmanuel 6.jpg	ģ
Nayeon 2.jpg	Nayeon	0.0290	Nayeon 2.jpg	2
Arthur 1.jpg	Arthur	0.0230	Arthur 6.jpg	6
Stephen Curry 1.jpg	Stephen Curry	0.0348	Stephen Curry 1.jpg	4
Christian Bale 1.jpg	Christian Bale	0.0349	Christian Bale 2.jpg	2
Medine 1.jpg	Medine	0.0343	Medine 1.jpg	4
Yoan 1.ipg	Yoan	0.0380	Yoan 1.ipg	3
	Joaquin Phoenix	0.0384		3
Joaquin_Phoenix_1.jpg	Joaquin_Phoenix		Joaquin Phoenix 3.jpg	
Robert Oppenheimer 1.jpg	Robert Oppenheimer	0.0388	Robert Oppenheimer 2.jpg	3
Olivier Besancenot 1.jpg	Olivier Besancenot	0.0407	Olivier Besancenot 2.jpg	2
inconnu Sana 2.jpg	Nayeon	0.0435	Nayeon 1.jpg	2
Brian_1.jpg	Brian	0.0464	Brian_4.jpg	5
Cinkrof 1.jpg	Cinkrof	0.0467	Cinkrof 1.jpg	3
Elisa 1.jpg	Elisa	0.0480	Elisa 4.jpg	7
Stephen Curry 2.jpg	Stephen Curry	0.0494	Stephen Curry 1.jpg	4
Oren 1.jpg	Oren	0.0497	Oren 6.jpg	8
inconnu Sana 1.ipg	Naveon	0.0509	Naveon 1.ipg	2
inconnu Momo 1.jpg	Nayeon	0.0516	Nayeon 1.jpg	2
Brian 2.jpg	Brian	0.0523	Brian 5.jpg	5
Cillian Murphy 1.jpg	Cillian Murphy	0.0533	Cillian Murphy 3.jpg	5
Inconnu kaaris 1.jpg	Adam	0.0543	Adam 7.jpg	9
Benjamin 1.jpg	Benjamin	0.0556	Benjamin 2.jpg	11
inconnu duplantis 2.jpg	Pierre	0.0614	Pierre 2.ipg	6
Ludivine 1.jpg	Ludivine	0.0618	Ludivine 5.jpg	6
inconnu BSD 2.jpg	Medine	0.0654	Medine 2.jpg	4
Phillipe Poutou 1.jpg	Phillipe Poutou	0.0658	Phillipe Poutou 3.jpg	3
Saken 1.jpg	Adam	0.0659	Adam 9.jpg	9
inconnu antoine dupont 2.jpg	Cinkrof	0.0669	Cinkrof 3.jpg	3
inconnu duplantis 1.jpg	Pierre	0.0669	Pierre 6.jpg	6
inconnu_dupiantis_1.jpg	Adam	0.0700	Herre_6.jpg	9
Inconnu kaaris 2.jpg			Adam 6.jpg	
Inconnu Strauss 1.jpg	Arthur	0.0710	Arthur 3.jpg	6
Inconnu2_Momo.jpg	Ludivine	0.0726	Ludivine 4.jpg	6
Inconnu Tom Holland 2.jpg	Brian	0.0760	Brian 2.jpg	5
inconnu lamine yamal 1.jpg	Adam	0.0764	Adam 2.jpg	9
inconnu_RDjr_1.jpg	Medine	0.0775	Medine_3.jpg	4
Inconnu wpuech 1.jpg	Benjamin	0.0799	Benjamin 3.jpg	11
inconnu BSD 1.jpg	Benjamin	0.0803	Benjamin 10.jpg	11
inconnu RDjr 2.jpg	Medine	0.0806	Medine 3.jpg	4
inconnu antoine dupont 1.jpg	Benjamin	0.0807	Benjamin 10.jpg	11
inconnu itachi rl 1.jpg	Cinkrof	0.0807	Cinkrof 3.jpg	3
Inconnu Henry Cavill 1.jpg	Benjamin	0.0813	Benjamin 9.jpg	11
inconnu Tom Holland 1.jpg	Laetitia	0.0864	Laetitia 1.jpg	1
inconnu antoine dupont 3.jpg	Cinkrof	0.0874	Cinkrof 1.jpg	3
inconnu Tom Hardy 1.ipg	Yoan	0.0914	Yoan 2.jpg	3
inconnu Chaplin 1.jpg	Ludivine	0.0965	Ludivine 5.jpg	6
Inconnu Wemby 1.jpg	Adam	0.1000	Adam 5.jpg	9
inconnu Tom Hardy 2.jpg	Pierre	0.1009	Pierre 4.jpg	6
incomin form maruy z.jpg	TICHE	3.1003	ricite 4.jpg	

À travers ce tableau, on peut observer que la reconnaissance faciale est assez bonne, les personnes appartenant à la base de données de visage sont à l'exception d'un visage, tous reconnues.

Parmi les "inconnus", la grande majorité se trouve parmi les visages les plus loin des visages de la base de données. Qu'un seul visage dépasse la distance cosinus de 0.5.

On peut estimer que le seuil optimal de reconnaissance se situe entre 0,5 et 0,7, selon la priorité donnée : soit à une reconnaissance plus permissive, avec un risque d'identifier des individus incorrects, soit à une reconnaissance plus stricte, mais avec la possibilité de ne pas identifier certaines personnes correctement.

Distance 0.0259:

Distance 0.0659:

Distance 0.0435:

FIGURE 2 - Image IN - Visage de la BDD le plus proche

1.3 Matrice de confusion :

On fait la matrice de confusion sur les résultats obtenus précédements,

- Vrai Positif (TP): Visage appartenant à la BDD et est reconnu.
- Vrai Négatif (TF) : Visage inconnu à la BDD et est identifié comme inconnu.
- Faux Positif (FP): Visage inconnu à la BDD et est identifié comme un visage de la BDD.
- Faux Négatif (FN): Visage appartenant à la BDD et est identifié comme inconnu ou comme quelqu'un d'autre dans la BDD.

En fonction de différent threshold on peut obtenir les matrices de confusion suivante :

FIGURE 3 – Matrice de confusion

2. Application

2.1 Application : résultats et performance

Application simple: boutons pour activé/désactivé nos méthodes de reconnaissance faciale (par LBPH & CNN), deux caméras une pour visualiser l'extraction de visage en temps réel, toute les 0.15secondes, la deuxième pour faire la reconnaissance faciale en temps quasi réel toute les secondes.

FIGURE 4 – Application

FIGURE 5 – Exemple de rendu de chaque caméra

2.2 Amélioration à implémenter

- Bouton/Box pour pouvoir augmenter/diminuer la valeur du threshold.
- Faire en sorte que la zone d'extraction du visage lors de la reconnaissance faciale suive la zone d'extraction en temps réel.
- Améliorer les performances.

2.3 Portage sur android

La solution actuel et la plus adapté est d'utiliser buildozer mais pour l'instant on a eu quelques problèmes cette solution.

3. Objectif pour la semaine #8 - CR7 :

Nos objectifs d'ici le prochain compte rendu sont :

- Améliorer l'application
- Application mobile (?)
- Faire la vidéo.

Sources & Liens

- 1.1 Dlib modele.
- 1.1 Dlib landmark.
- 1.1 Dlib modele Deepface.

Github

Lien Github avec tout le code et compte rendu du projet.