Few-Shot Learning

2024. 07. 30 MLMLAB 연구실 학부연구생 소상연

Background

Background

Background

제한된 데이터로 모델을 학습시키는 것은 현실에서 매우 중요 -> "Few-shot learning"

Few-shot learning?

Deep Neural Net은 Large-scale training dataset이 필요함.

5개의 클래스당 1개의 데이터의 training set으로 학습시키는 것은 불가능, overfitting

Train / Support examples

Test / Query examples

Few-shot learning!

Few-shot learnin이란? "학습하는 법을 배우는 것"

Few-shot learning은 기존 지도학습처럼 학습 세트의 이미지를 인식한 다음 테스트 세트로 일반화하는 것이 아닌

'객체 간의 유사점과 차이점을 알도록 모델을 훈련'

Few-shot learning

-> 두 이미지가 유사한지 여부를 높은 신뢰도로 판단할 수 있고, 팡골린과 개는 다르게 생겼다는 것을 모델이 인식

Dataset 구조

•메타러닝 학습 → Adaptation **학습** → Test-set **평가**

•(Meta-train set 08) \rightarrow (Support set 98) \rightarrow (Query set 98)

Few-Shot Learning Training strategy

Episodic training

Few-Shot Learning 알고리즘의 종류

Metric-based

Optimization based

Episodic training

One Episodic

Metric-based learning

Prototypical networks

Prototype - class별 support 데이터의 평균 위치로, 각 class를 대표하는 역할 Prototype과 query 데이터끼리의 거리 계산

Optimization Based Meta -Learning

MAML

- 1) Support 데이터 S를 이용해 fine-tuning한다.
- 2) Query마다 classification score을 predict한다.
- 3) Query에 대한 loss를 이용해 θ를 optimize한다.

$$min_{ heta} \sum_{(S,Q)} L(\theta - \alpha \nabla_{\theta} L(\theta,S),Q)$$

Few-shot learning 용어

- •Support Set : 학습 과정에서 모델이 보는 데이터 셋으로, N개의 클래스당 K개의 예시가 포함
- •N-way K-shot : N개의 클래스, K개의 샘플 (5-way 1-shot : 5개의 클래스, 1개의 샘플)
- •Query Set : 모델의 성능을 평가하기 위해 사용하는 데이터 셋 Support set과는 별도로 구성되어 있으며, 모델이 새로운 데이터에 어떻게 일반화되는지를 평가
- •Episode : 모델이 학습하는 동안 Support set과 Query set이 하나의 에피소드로 묶음 반복적으로 사용되는 과정

Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for Autonomous Driving_2023_IEEE

MLMLAB

현재의 방법은 희귀 물체를 탐지하는 실용적이고 경제적인 접근 방식이 아님

-> 많은 수의 일반 물체와 몇 개의 희귀 물체를 모두 감지할 수 있는 일반적인 물체와 희귀 물체를 모두 감지하는 솔루션을 탐색하는 것을 목표

Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for Autonomous Driving_2023_IEEE

NuScenes 데이터셋에서 Few-Shot Learning을 위한 새로운 클래스 설정

Class	train&val	train	val
adult	10690	8870	1820
child	141	122	19
police_officer	34	31	3
construction_worker	542	457	85
car	27701	23158	4543
motorcycle	748	607	141
bicycle	735	574	161
bus.bendy	85	66	19
bus.rigid	572	459	113
truck	4215	3497	718
construction	648	529	119
trailer	1114	919	195
barrier	8415	6848	1567
trafficcone	6591	5381	1210
ambulance*	2	1	1
wheelchair*	18	18	0
personal_mobility*	24	20	4
animal*	52	49	3
debris*	164	124	40
police*	26	24	2
stroller*	63	55	8
bicycle_rack*	122	108	14
pushable_pullable*	1684	1473	211

- •선택된 클래스: 경찰 차량, 유모차, 밀거나 당길 수 있는 물체, 자전거 거치대 등 4개의 클래스를 선택 밀거나 당길 수 있는 물체 카테고리에는 유사한 형태적 속성을 가진 손수레, 바퀴가 달린 쓰레기통, 쇼핑 카트 등이 포함
- •검증 세트 조정: 선택된 클래스에 대해 희귀하거나 불균형한 인스턴스 문제를 해결하기 위해 검증 세트를 조정 훈련 세트에서 각 클래스의 객체 10개의 인스턴스를 확보하고, 나머지 객체 일부를 검증 세트에 추가

Few-shot 3D LIDAR Semantic Segmentation for Autonomous Driving_2023_ICRA

Abstract

- 대부분은 기본 클래스를 고려하지 않고 새로운 클래스만 예측
- 안전 문제로 인해 자율 주행에 직접 적용할 수 없다.
- → 새로운 클래스와 기본 클래스를 동시에 예측하는 few-shot 3D LiDAR 의미론적 분할 방법을 제안

Introduction

- few-shot 3D LiDAR 의미론적 분할의 배경 모호성에 대해 논의한 첫 번째 사람
- 편향되지 않은 교차 엔트로피 손실과 지식 추출 손실을 도입하여 배경 모호성을 명시적으로 해결
- →모델의 정확성과 일반화를 향상

RESIMAD: ZERO-SHOT 3D DOMAIN TRANSFER FOR AUTONOMOUS DRIVING WITH SOURCE RECONSTRUCTION AND TARGET SIMULATION_ICLR_2024

Abstract

- 자율주행(Autonomous Driving, AD) 시스템은 센서 유형의 변화와 지리적 상황의 변동과 같은 도메인 전이(Domain Shifts) 문제를 자주 겪는다.
- ReSimAD 체계는 자율주행 시스템이 도메인 전이 문제를 효과적으로 극복할 수 있도록 돕는다.
- 기존 도메인 지식을 활용하여 도메인 불변 표현을 생성하고, 새로운 도메인 데이터를 시뮬레이션함으로써 새로운 환경에 대한 적응을 용이하게 한다.
- 이를 통해 추가 데이터 수집 및 주석 비용을 절감하면서도 높은 성능을 유지

감사합니다

MLMLAB

학부 인턴 : 소상연