ITP30002 Operating System

Virtual Memory

This lecture note is taken from the instructor's resource of Operating System Concept and then partly edited/revised by Shin Hong.

Background

- Code needs to be in memory to execute, but entire program rarely used
 - Error code, unusual routines, large data structures
- Consider ability to execute partially-loaded program
 - Program no longer constrained by limits of physical memory
 - Each program takes less memory while running -> more programs run at the same time
 - Increased CPU utilization and throughput with no increase in response time or turnaround time
 - Less I/O needed to load or swap programs into memory -> each user program runs faster

Virtual Memory

- Virtual memory: separation of user logical memory from physical memory
 - Only part of the program needs to be in memory for execution
 - Logical address space can therefore be much larger than physical address space
 - Allows address spaces to be shared by several processes
 - Allows for more efficient process creation
 - More programs running concurrently
 - Less I/O needed to load or swap processes

Virtual Memory

- Virtual address space: logical view of how process is stored in memory
 - Usually start at address 0, contiguous addresses until end of space
 - Meanwhile, physical memory organized in page frames
 - MMU must map logical to physical

Virtual-address Space

- Start stack from at Max logical address and grow "down" while heap grows "up"
 - Maximizes address space use
 - No physical memory needed until heap or stack grows to a given new page
- Enables sparse address spaces with holes left for growth, dynamically linked libraries, etc
- System libraries shared via mapping into virtual address space
- Shared memory by mapping pages readwrite into virtual address space
- Pages can be shared during fork(), speeding process creation

Demand Paging

- Bring a page into memory only when it is needed
 - Less I/O needed, no unnecessary I/O
 - Less memory needed
 - Faster response
 - More users
- Similar to paging system with swapping
- Page is needed ⇒ reference to it
 - invalid reference ⇒ abort
 - not-in-memory ⇒ bring to memory
- Lazy swapper never swaps a page into memory unless page will be needed
 - Swapper that deals with pages is a pager

Valid-Invalid Bit

- With each page table entry a valid—invalid bit is associated
 (v ⇒ in-memory memory resident, i ⇒ not-in-memory)
- Initially valid—invalid bit is set to i on all entries
- During MMU address translation, if valid—invalid bit in page table entry is i ⇒ page fault

Page Table When Some Pages Are Not in Main Memory

Page Fault

• If there is a reference to a page, first reference to that page will trap to operating system:

page fault

- I.Operating system looks at another table to decide:
 - Invalid reference ⇒ abort
 - Just not in memory
- 2.Find free frame
- 3. Swap page into frame via scheduled disk operation
- 4.Reset tables to indicate page now in memory Set validation bit = v
- 5. Restart the instruction that caused the page fault

Steps in Handling a Page Fault

Aspects of Demand Paging

- Extreme case start process with no pages in memory
 - OS sets instruction pointer to first instruction of process, non-memory-resident -> page fault
 - And for every other process pages on first access
 - Pure demand paging
- Actually, a given instruction could access multiple pages

 multiple page faults
 - Consider fetch and decode of instruction which adds 2 numbers from memory and stores result back to memory
 - Pain decreased because of locality of reference
- Hardware support needed for demand paging
 - Page table with valid / invalid bit
 - Secondary memory (swap device with swap space)
 - Instruction restart

Instruction Restart

- Consider an instruction that could access several different locations
 - block move

- auto increment/decrement location
- Restart the whole operation?
 - What if source and destination overlap?

Performance of Demand Paging

- Stages in Demand Paging (worse case)
- 1. Trap to the operating system
- 2. Save the user registers and process state
- 3. Determine that the interrupt was a page fault
- 4. Check that the page reference was legal and determine the location of the page on the disk
- 5. Issue a read from the disk to a free frame:
 - 1. Wait in a queue for this device until the read request is serviced
 - 2. Wait for the device seek and/or latency time
 - 3. Begin the transfer of the page to a free frame
- 6. While waiting, allocate the CPU to some other user
- 7. Receive an interrupt from the disk I/O subsystem (I/O completed)
- 8. Save the registers and process state for the other user
- 9. Determine that the interrupt was from the disk
- 10. Correct the page table and other tables to show page is now in memory
- I I. Wait for the CPU to be allocated to this process again
- 12. Restore the user registers, process state, and new page table, and then resume the interrupted instruction

Performance of Demand Paging (Cont.)

- Three major activities
 - Service the interrupt careful coding means just several hundred instructions needed
 - Read the page lots of time
 - Restart the process again just a small amount of time
- Page Fault Rate $0 \le p \le 1$
 - if p = 0 no page faults
 - if p = 1, every reference is a fault
- Effective Access Time (EAT)
 - (1 p) x memory access
 - + p (page fault overhead + swap page out + swap page in)

Demand Paging Example

- Memory access time = 200 nanoseconds
- Average page-fault service time = 8 milliseconds
- EAT = $(I p) \times 200 + p$ (8 milliseconds) = $(I - p) \times 200 + p \times 8,000,000$ = $200 + p \times 7,999,800$
- If one access out of 1,000 causes a page fault, then
 EAT = 8.2 microseconds.
 This is a slowdown by a factor of 40
- If want performance degradation < 10 percent
 - 220 > 200 + 7,999,800 x p 20 > 7,999,800 x p
 - p < .0000025
 - < one page fault in every 400,000 memory accesses

Demand Paging Optimizations

- Demand page in from program binary on disk, but discard rather than paging out when freeing frame
 - Used in Solaris and current BSD
 - Still need to write to swap space
 - Pages not associated with a file (like stack and heap) –
 anonymous memory
 - Pages modified in memory but not yet written back to the file system

Copy-on-Write (1/2)

- Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory
 - If either process modifies a shared page, only then is the page copied
- COW allows more efficient process creation as only modified pages are copied

Copy-on-Write (2/2)

- Free pages are allocated from a pool of zero-fill-on-demand pages
 - Pool should always have free frames for fast demand page execution
 - Don't want to have to free a frame as well as other processing on page fault
 - Why zero-out a page before allocating it?
- vfork() variation on fork() system call has parent suspend and child using copy-on-write address space of parent
 - Designed to have child call exec ()
 - Very efficient

Page Replacement

- What Happens if There is no Free Frame?
 Find and page out some page in memory yet not really in use
 - Algorithm terminate? swap out? replace the page?
 - Performance want an algorithm which will result in minimum number of page faults
 - Use modify (dirty) bit to reduce overhead of page transfers only modified pages are written to disk
- Page replacement completes separation between logical memory and physical memory – large virtual memory can be provided on a smaller physical memory

Basic Page Replacement

- I. Find the location of the desired page on disk
- 2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page replacement algorithm to select a victim frame
 - Write victim frame to disk if dirty
- 3. Bring the desired page into the (newly) free frame; update the page and frame tables
- 4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT

Page Replacement

Page and Frame Replacement Algorithms

- Frame-allocation algorithm determines
 - How many frames to give each process
 - Which frames to replace
- Page-replacement algorithm
 - Want lowest page-fault rate on both first access and re-access
- Evaluate algorithm by running it on a particular string of page numbers and computing the number of page faults on that string
 - String is just page numbers, not full addresses
 - Repeated access to the same page does not cause a page fault
 - Results depend on number of frames available
- In all our examples, the reference string of referenced page numbers is

Graph of Page Faults Versus The Number of Frames

Naive Approach: FIFO Algorithm

- Reference string:
 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
- 3 frames (3 pages can be in memory at a time per process)

- How to track ages of pages?
 - Just use a FIFO queue

FIFO Illustrating Belady's Anomaly

- Adding more frames can cause more page faults!
 - Belady's Anomaly

Optimal Algorithm

- Replace page that will not be used for longest period of time
 - 9 is optimal for the example
- How do you know this?
 - Can't read the future
- Used for measuring how well your algorithm performs

Least Recently Used (LRU) Algorithm

- Use past knowledge rather than future
- Replace page that has not been used in the most amount of time
- Associate time of last use with each page

- 12 faults better than FIFO but worse than OPT
- · Generally good algorithm and frequently used
- But how to implement?

LRU Algorithm (Cont.)

- Counter implementation
 - Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter
 - When a page needs to be changed, look at the counters to find smallest value
 - Search through table needed
- Stack implementation
 - Keep a stack of page numbers in a double link form:
 - Page referenced:
 - move it to the top
 - requires 6 pointers to be changed
 - But each update more expensive
 - No search for replacement
- LRU and OPT are cases of stack algorithms that don't have Belady's Anomaly

LRU Approximation Algorithms

- LRU needs special hardware and still slow
- Reference bit
 - With each page associate a bit, initially = 0
 - When page is referenced bit set to I
 - Replace any with reference bit = 0 (if one exists)
 - We do not know the order, however
- Second-chance algorithm
 - Generally FIFO, plus hardware-provided reference bit
 - Clock replacement
 - If page to be replaced has
 - Reference bit = $0 \rightarrow$ replace it
 - reference bit = I then:
 - set reference bit 0, leave page in memory
 - replace next page, subject to same rules

Second-Chance (clock) Page-Replacement Algorithm

Enhanced Second-Chance Algorithm

- Improve algorithm by using reference bit and modify bit (if available) in concert
- Take ordered pair (reference, modify)
- I.(0, 0) neither recently used not modified best page to replace
- 2.(0, I) not recently used but modified not quite as good, must write out before replacement
- 3.(1,0) recently used but clean probably will be used again soon
- 4.(1, 1) recently used and modified probably will be used again soon and need to write out before replacement
- When page replacement called for, use the clock scheme but use the four classes replace page in lowest non-empty class
 - Might need to search circular queue several times

Counting Algorithms

- Keep a counter of the number of references that have been made to each page
 - Not common
- Lease Frequently Used (LFU) Algorithm: replaces page with smallest count
- Most Frequently Used (MFU) Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used

Page-Buffering Algorithms

- Keep a pool of free frames, always
 - Then frame available when needed, not found at fault time
 - Read page into free frame and select victim to evict and add to free pool
 - When convenient, evict victim
- Possibly, keep list of modified pages
 - When backing store otherwise idle, write pages there and set to non-dirty
- Possibly, keep free frame contents intact and note what is in them
 - If referenced again before reused, no need to load contents again from disk
 - Generally useful to reduce penalty if wrong victim frame selected

Allocation of Frames

- Each process needs *minimum* number of frames
- Example: IBM 370 6 pages to handle SS MOVE instruction:
 - instruction is 6 bytes, might span 2 pages
 - 2 pages to handle from
 - 2 pages to handle to
- Maximum of course is total frames in the system
- Two major allocation schemes
 - fixed allocation
 - priority allocation
- Many variations

Fixed Allocation

- Equal allocation For example, if there are 100 frames (after allocating frames for the OS) and 5 processes, give each process 20 frames
 - Keep some as free frame buffer pool
- Proportional allocation: Allocate according to the size of process
 - Dynamic as degree of multiprogramming, process sizes change

Priority Allocation

- Use a proportional allocation scheme using priorities rather than size
- If process P_i generates a page fault,
 - select for replacement one of its frames
 - select for replacement a frame from a process with lower priority number

Global vs. Local Allocation

- Global replacement: process selects a replacement frame from the set of all frames; one process can take a frame from another
 - But then process execution time can vary greatly
 - But greater throughput so more common
- Local replacement: each process selects from only its own set of allocated frames
 - More consistent per-process performance
 - But possibly underutilized memory

Thrashing

- If a process does not have "enough" pages, the page-fault rate is very high
 - Page fault to get page
 - Replace existing frame
 - But quickly need replaced frame back
 - This leads to:
 - Low CPU utilization
 - Operating system thinking that it needs to increase the degree of multiprogramming
 - Another process added to the system
- Thrashing = a process is busy swapping pages in and out

Thrashing (Cont.)

Demand Paging and Thrashing

- Why does demand paging work?
 Locality model
 - Process migrates from one locality to another
 - Localities may overlap
- Why does thrashing occur? Σ size of locality > total memory size
 - Limit effects by using local or priority page replacement

Locality In A Memory-Reference Pattern

Working-Set Model

- Δ = working-set window = a fixed number of page references Example: 10,000 instructions
- WSS_i (working set of Process P_i) = total number of pages referenced in the most recent Δ (varies in time)
 - if Δ too small will not encompass entire locality
 - if Δ too large will encompass several localities
 - if $\Delta = \infty \Rightarrow$ will encompass entire program
- $D = \sum WSS_i \equiv \text{total demand frames}$
 - Approximation of locality
- if $D > m \Rightarrow Thrashing$
- Policy if D > m, then suspend or swap out one of the processes

Keeping Track of the Working Set

- Approximate with interval timer + a reference bit
- Example: $\Delta = 10,000$
 - Timer interrupts after every 5000 time units
 - Keep in memory 2 bits for each page
 - Whenever a timer interrupts copy and sets the values of all reference bits to 0
 - If one of the bits in memory = $I \Rightarrow$ page in working set
- Why is this not completely accurate?
- Improvement = 10 bits and interrupt every 1000 time units

Page-Fault Frequency

- More direct approach than WSS
- Establish "acceptable" page-fault frequency (PFF) rate and use local replacement policy
 - If actual rate too low, process loses frame
 - If actual rate too high, process gains frame

Memory-Mapped Files

- Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block to a page in memory
- A file is initially read using demand paging
 - A page-sized portion of the file is read from the file system into a frame
 - Subsequent reads/writes to/from the file are treated as ordinary memory accesses
- Simplifies and speeds file access by driving file I/O through memory rather than read() and write() system calls
- Also allows several processes to map the same file allowing the pages in memory to be shared
- But when does written data make it to disk?
 - Periodically and / or at file close() time
 - For example, when the pager scans for dirty pages

Memory-Mapped File Technique for all I/O

- Some OSes uses memory mapped files for standard I/O
- Process can explicitly request memory mapping a file via mmap ()
 system call
 - Now file mapped into process address space
- For standard I/O (open(), read(), write(), close()), mmap anyway
 - But map file into kernel address space
 - Process still does read() and write()
 - Copies data to and from kernel space and user space
 - Uses efficient memory management subsystem
 - Avoids needing separate subsystem
- COW can be used for read/write non-shared pages
- Memory mapped files can be used for shared memory (although again via separate system calls)

Memory Mapped Files

Allocating Kernel Memory

- Treated differently from user memory
- Often allocated from a free-memory pool
 - Kernel requests memory for structures of varying sizes
 - Some kernel memory needs to be contiguous
 - I.e. for device I/O

Buddy System

- Allocates memory from fixed-size segment consisting of physically-contiguous pages
- Memory allocated using power-of-2 allocator
 - Satisfies requests in units sized as power of 2
 - Request rounded up to next highest power of 2
 - When smaller allocation needed than is available, current chunk split into two buddies of next-lower power of 2
 - Continue until appropriate sized chunk available
- E.g., assume 256KB chunk available, kernel requests 21KB
 - Split into A_{L and} A_R of I28KB each
 - One further divided into B_L and B_R of 64KB
 - One further into C_L and C_R of 32KB each one used to satisfy request
- Advantage quickly coalesce unused chunks into larger chunk
- Disadvantage fragmentation

Buddy System Allocator

physically contiguous pages

Slab Allocator

- Alternate strategy
- Slab is one or more physically contiguous pages
- Cache consists of one or more slabs
- Single cache for each unique kernel data structure
 - Each cache filled with objects instantiations of the data structure
- When cache created, filled with objects marked as free
- When structures stored, objects marked as used
- If slab is full of used objects, next object allocated from empty slab
 - If no empty slabs, new slab allocated
- Benefits include no fragmentation, fast memory request satisfaction

Slab Allocation

Slab Allocator in Linux

- For example process descriptor is of type struct task_struct
- Approx I.7KB of memory
- New task -> allocate new struct from cache
 - Will use existing free struct task struct
- Slab can be in three possible states
 - I. Full all used
 - 2. Empty all free
 - 3. Partial mix of free and used
- Upon request, slab allocator
 - I. Uses free struct in partial slab
 - 2. If none, takes one from empty slab
 - 3. If no empty slab, create new empty

Slab Allocator in Linux (Cont.)

- Slab started in Solaris, now wide-spread for both kernel mode and user memory in various OSes
- Linux 2.2 had SLAB, now has both SLOB and SLUB allocators
 - SLOB for systems with limited memory
 - Simple List of Blocks maintains 3 list objects for small, medium, large objects
 - SLUB is performance-optimized SLAB removes per-CPU queues, metadata stored in page structure

Other Considerations -- Prepaging

Prepaging

- To reduce the large number of page faults that occurs at process startup
- Prepage all or some of the pages a process will need, before they are referenced
- But if prepaged pages are unused, I/O and memory was wasted
- Assume s pages are prepaged and α of the pages is used
 - Is cost of $s * \alpha$ save pages faults > or < than the cost of prepaging $s * (l \alpha)$ unnecessary pages?
 - α near zero \Rightarrow prepaging loses

Other Issues – Page Size

- Sometimes OS designers have a choice
 - Especially if running on custom-built CPU
- Page size selection must take into consideration:
 - Fragmentation
 - Page table size
 - Resolution
 - I/O overhead
 - Number of page faults
 - Locality
 - TLB size and effectiveness
- Always power of 2, usually in the range 2^{12} (4,096 bytes) to 2^{22} (4,194,304 bytes)
- On average, growing over time

Other Issues – TLB Reach

- TLB Reach The amount of memory accessible from the TLB
- TLB Reach = (TLB Size) X (Page Size)
- Ideally, the working set of each process is stored in the TLB
 - Otherwise there is a high degree of page faults
- Increase the Page Size
 - This may lead to an increase in fragmentation as not all applications require a large page size
- Provide Multiple Page Sizes
 - This allows applications that require larger page sizes the opportunity to use them without an increase in fragmentation

Other Issues – Program Structure

Program structure

- int[128,128] data;
- Each row is stored in one page
- Program $1:128 \times 128 = 16,384$ page faults

```
for (j = 0; j < 128; j++)
for (i = 0; i < 128; i++)
data[i,j] = 0;
```

- Program 2: 128 page faults

```
for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)
data[i,j] = 0;
```

Other Issues – I/O interlock

- I/O Interlock Pages must sometimes be locked into memory
- Consider I/O Pages that are used for copying a file from a device must be locked from being selected for eviction by a page replacement algorithm
- Pinning of pages to lock into memory

