Hie	rarchical clustering (Agglomerative)	Single Link						
	Points. A, A2 A3 A4 A5 A6 A7 A8 A9	A to A ii						
A,	O A CALLANDANA	Hall the second						
A ₂	1.4 0 [A (A (A))] THE TOTAL							
A,	5.9 4 0 [[(A . A) 4]	Total Territoria						
A.	2.3 3.6 6.7							
As	2.8 3.16 4.2 3.0 0							
Ac	3.1 4 5.6 2.2 1.4 0	halps I						
A,	5.8 6.3 6.3 5.6 3.1 2.8 0							
Ag	5.3 5 3 6.0 3.0 4.1 3.6 0							
Aq	5.6 5.8 5.09 5.3 2.8 3.1 1.4 2.2	0						
Aio	9.05 10.19 11.6 7.0 7.6 6.3 5.6 9.2	7.07 O						
A ,,	7.07 8 8.94 5.3 5.09 4 2.8 6.4 4.2 2.8 0							
""								
Simol	le linkage: This is the distance	A,= (3,7)						
21 19	le linkage: This is the distance between the closest	A2=(2,6)						
	members of the	A3= (2,2)						
	two clusters	A = (5,3)						
> E.	clidean distance:	A5 = (5,5)						
710	De (6,6)							
$D[(x,y),(a,b)] = \sqrt{(x-a)^2 + (y-b)^2} \qquad A_{2} = (8,4)$								
	Ag = (5,2)							
$A_{q} = (3,3)$								
		$A_{10} = (12.8)$ $A_{11} = (10.6)$						

	points	the al	a ni	ew P	oind hu	(2.5, doi	mg .	verage	1	
>	Now, add a new point (2,3,6) Now, add a new point (2,3,6) dist, which is formed by doing average list, which is formed by doing average (2.5,6) of A, and A2 le (3+2, 7+6) = (2.5,6) of A, and A2 le (2,5,6) Now, we will represent the pairwise distant between the updated data points in the form between the updated data points in the form of dable.									
100	(2.5,6.	5) (2,2)	(5,8)	(5,5)	(6,6)	(8,4)	(5,2)	(7,3) (12,	() (a)	
(2.5,6.5)	0							,		
(2,2)	4.5	0								
(5,8)	2.91	6-71	0							
(5,5)	2.92	42	3	0						
(6,6)	3.5	5.6	2.24	1.41	0					
(8,4)	6.64	6.3	5	3.61	2.8	0				
(5,2)	5.15	3	6	3	4-12	3.61	0			
		5.1	5.39	2.83	3.16	1-41	2.24	0		
(12,8)	9.69	11-6	7.0	7.62	6.32	2.6	9.2	7.07	0	
(10,6)		8.9	5.39	S · (0	4	2.8	6.4	4.24	2.83	
> Again, repeal the same step										
> find the closest points										
- Add a new point by doing average of										
> Add a new point by doing average of both the closest points										
	-> Update the table with new point									
->	Updat	e ith	d Ita	abu	with	neu	2 boin	d		
Repeat the above steps until all the										
data points are point part of one cluster										

let's draw the dendogram Single link Hierarchical clustering diagram (2,2) (12,3) (10,6)(5,5) (6,6) (5,8) (3,7) (2,6) (5,2) (8,4) (7,3)