Code ▼

MACT 4233 - Assignment 1

Omar Moustafa 900222400

This is an R Markdown (http://rmarkdown.rstudio.com) Notebook. When you execute code within the notebook, the results appear beneath the code.

Hide

getwd()

[1] "/Users/omar/Desktop"

Question 1. Read any data set (of your choice) that consists of at least 5 quantitative variables into R

Hide

```
# Store the data set in an object and call it 'x'
x = read.csv("updated_version.csv", header = TRUE)
```

a. Print the first 5 rows of the data set using the R command

Hide

print(head(x,5))

a <int< th=""><th>s ×int></th><th>total_cholesterol <dbl></dbl></th><th>ldl <dbl></dbl></th><th>hdl <dbl></dbl></th><th>systolic_bp <dbl></dbl></th><th>diastolic_bp <dbl></dbl></th><th>smok <int></int></th><th>diabe <i< th=""></i<></th></int<>	s ×int>	total_cholesterol <dbl></dbl>	ldl <dbl></dbl>	hdl <dbl></dbl>	systolic_bp <dbl></dbl>	diastolic_bp <dbl></dbl>	smok <int></int>	diabe <i< th=""></i<>
1 57	1	229.4636	175.8791	39.22569	124.07013	91.37878	0	
2 58	1	186.4641	128.9849	34.95097	95.49255	64.35504	1	
3 37	1	251.3007	152.3476	45.91329	99.51933	64.95315	0	
4 55	1	192.0589	116.8037	67.20893	122.46000	73.82138	0	
5 53	1	151.2034	107.0174	60.69384	123.02226	81.12195	0	
5 rows 1-10 of 10 columns								

b. Produce the scatter plot matrix of any five variables

Scatter Plot Matrix of 5 Numeric Variables

- c. Comments on the above graphical displays:
- 1. There's a clear positive relationship between the variables "total_cholesterol" & "Idl" as the points seem to trend upwards, indicating that as total_cholesterol increases, Idl tends to do the same. This is consistent with the known physiological relationship which is that LDL is a main component of total cholesterol.
- 2. There's a clear negative relationship between the variables "ldl" & "hdl" as the points seem to trend downward, indicating that ldl increases, hdl tends to decreases.
- 3. It seems that the variable "hdl" has non-linear relationships with both "age" and "systolic_bp."
- 4. There are a handful of data points in the variables "total_cholesterol" & "Idl" which could be classified as outliers would could, therefore, represent high-risk patients suffering from cholesterol levels that are either abnormally high or abnormally low.
- d. Standardize the variables in your data using z = scale(x), then construct the scatter plot matrix using the following command

```
z = scale(x)
pairs(z, pch = 19, main = "Scatter Plot Matrix")
```

Scatter Plot Matrix

e. What are the differences between this plot and the previous one?

1124

120.31269

smoking

0.20200

diastolic_bp

80.23125

- 1. One major difference is that in this plot, all variables were standardized using z = scale(x) which converts each variable to follow the criteria of the standard normal random variable, particularly to have a mean of 0 and standard deviation of 1. In the new plot, the axes are in standardized units (z-score values) instead of the original units like the previous plot.
- 2. Another key difference is that in this plot, correlations and outliers are easier to perceive and takeaway from it compared to the previous plot. This is because, the relationships existing in the new plot appear more centered around zero which helps clearly identify them.
- f. Compute the mean vector x_bar and the covariance matrix, S, and the correlation matrix, R, of these variables.

```
Hide
# Compute the mean vector, 'x_bar'
x_bar = colMeans(x)
print("Mean Vector X-Bar:")
[1] "Mean Vector X-Bar:"
                                                                                       Hide
x_bar
               age
                                  sex total_cholesterol
                                                                        ldl
hdl
          systolic_bp
         49.88600
                             0.52700
                                               201.08749
                                                                  130.04781
                                                                                      49.8
```

diabetes

0.09000

heart_attack

0.10400

```
# Compute the covariance matrix, 'S'
S = cov(x)
print("Covariance Matrix S:")
```

[1] "Covariance Matrix S:"

Hide

S

	age	sex	total_cholesterol	ldl	
hdl systolic_bp	diastolic_bp				
age	201.9089129	-0.573495495	78.6981325	117.98363070	-19.01310
949 75.4141915	35.5018033				
sex	-0.5734955	0.249520521	0.0863663	-0.08899521	0.14285
132 0.6408879	0.2216204				
total_cholestero	l 78.6981325	0.086366295	1603.4142094	953.64979963	-195.71252
679 119.6793779	39.2518584				
ldl	117.9836307	-0.088995210	953.6497996	902.50129617	-178.86801
795 134.6746711	65.3015759				
hdl	-19.0131095	0.142851325	-195.7125268	-178.86801795	105.00464
991 -10.2644589	-8.5822511				
systolic_bp	75.4141915	0.640887934	119.6793779	134.67467108	-10.26445
888 240.4823397	127.7065860				
diastolic_bp	35.5018033	0.221620434	39.2518584	65.30157589	-8.58225
114 127.7065860	104.7739932				
smoking	-0.8878599	0.013559560	-0.9137725	-1.63408650	0.31759
241 -0.7617190	-0.1953443				
diabetes	-0.3821221	0.006576577	-0.3283134	-0.28173921	0.04958
405 -0.3567948	-0.0193464				
heart_attack	0.4733293	0.017209209	2.1634570	1.45851949	-0.45485
394 0.8258848	0.5452793				
	smoking	diabetes	heart_attack		
age	-0.887859860	0.382122122	0.47332933		
sex	0.013559560	0.006576577	0.01720921		
total_cholestero	l -0.913772469	0.328313420	2.16345699		
ldl	-1.634086497	7 -0 . 281739207	1.45851949		
hdl	0.317592411	0.049584053	-0.45485394		
systolic_bp	-0.761718995	-0 . 356794765	0.82588482		
diastolic_bp	-0.195344259	0 -0.019346404	0.54527932		
smoking	0.161357357	0.007827828	0.02601802		
diabetes	0.007827828	0.081981982	0.02566567		
heart_attack	0.026018018	0.025665666	0.09327728		

Hide

```
# Compute the correlation matrix, 'R'
R = cor(x)
print("Correlation Matrix R:")
```

[1] "Correlation Matrix R:"

R

```
sex total_cholesterol
                                                                     ldl
                                                                                 hdl
                         age
systolic_bp diastolic_bp
                  1.00000000 -0.080797725
                                                0.138313260 0.276388580 -0.13057834
0.34224234 0.244087714
                 -0.08079772 1.000000000
                                                0.004317857 -0.005930476 0.02790788
0.08273464 0.043344093
total_cholesterol 0.13831326 0.004317857
                                                1.000000000 0.792760752 -0.47697047
0.19273246 0.095765838
ldl
                  0.27638858 -0.005930476
                                                0.792760752 1.000000000 -0.58103797
0.28908157
           0.212360137
hdl
                 -0.13057834 0.027907882
                                               -0.476970473 -0.581037967 1.00000000
-0.06459371 -0.081822022
systolic_bp
                  0.192732460 0.289081575 -0.06459371
1.00000000 0.804535019
diastolic bp
                  0.24408771 0.043344093
                                                0.095765838 0.212360137 -0.08182202
0.80453502 1.000000000
smoking
                 -0.15555081 0.067576869
                                               -0.056809481 -0.135411871 0.07715631
-0.12228095 -0.047509397
diabetes
                 -0.09392155 0.045981967
                                               -0.028635618 -0.032753986 0.01689968
-0.08035588 -0.006601069
                                                0.176903926 0.158964588 -0.14533820
heart attack
                  0.10906810 0.112802792
0.17437730 0.174423239
                     smoking
                                 diabetes heart_attack
age
                 -0.15555081 - 0.093921545
                                             0.1090681
                  0.06757687
                              0.045981967
                                             0.1128028
sex
total_cholesterol -0.05680948 -0.028635618
                                             0.1769039
                 -0.13541187 -0.032753986
ldl
                                             0.1589646
hdl
                  0.07715631 0.016899683
                                            -0.1453382
systolic_bp
                 -0.12228095 -0.080355882
                                             0.1743773
diastolic_bp
                 -0.04750940 -0.006601069
                                             0.1744232
smoking
                  1.00000000 0.068059330
                                             0.2120762
                                             0.2934982
diabetes
                  0.06805933
                              1.000000000
heart_attack
                  0.21207618
                              0.293498168
                                             1.0000000
```

g. Verify the relationship between the covariance and correlation matrices, that is, how R is obtained from S and vice versa.

Hide

```
if(!require("dplyr")) install.packages("dplyr")
library(dplyr)
```

Compute D, which is the diagonal matrix of standard deviations
D = diag(S)^-0.5 # Extract diag and take sqrt
D = diag(D) # Create a diagonal matrix

R1 = D %*% S %*% D # Matrix Multiplication

D_inverse = diag(S)^0.5 # Now take the positive sqrt
D_inverse = diag(D_inverse) # Create a diagonal matrix

Compute S from R
S1 = D_inverse %*% R %*% D_inverse # Transform correlation back to covariance

		age s	ex	total_cholesterol	ldl	hdl	systolic_bp	diastolic_bp	smok
ing	diabetes hear	t_attack							
age		TRUE TR	UE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE							
sex		TRUE TR	UE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE							
tota	al_cholesterol	TRUE TR	UE	TRUE	TRUE	TRUE	TRUE	TRUE	T
RUE	TRUE	TRUE							
ldl		TRUE TR	UE	TRUE	TRUE	TRUE	TRUE	TRUE	T
RUE	TRUE	TRUE							
hdl		TRUE TR	UE	TRUE	TRUE	TRUE	TRUE	TRUE	T
RUE	TRUE	TRUE							
syst	tolic_bp	TRUE TR	UE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE							
dias	stolic_bp	TRUE TR	UE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE							
smol	king	TRUE TR	UE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE							
diak	oetes	TRUE TR	UE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE							
heai	rt_attack	TRUE TR	UE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE							

Hide

cat("\n") # Printing an empty line for legibility reasons

Hide

near(S, S1) # All are true now

near(R, R1) # All are true now

			total_cholesterol	ldl	hdl	systolic_bp	diastolic_bp	smok
ing c	diabetes h	eart_attack						
age		TRUE TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE						
sex		TRUE TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	T
RUE	TRUE	TRUE						
total	l_choleste	rol TRUE TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE						
ldl		TRUE TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE						
hdl		TRUE TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE						
	olic_bp	TRUE TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE	-			_		
	tolic_bp	TRUE TRUE	TRUF	TRUF	TRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE	11.02					•
smoki		TRUE TRUE	TDIIF	TRUE	TDIIE	TRUE	TRUE	Т
RUE	TRUE	TRUE	INOL	IIIOL	INOL	INOL	INOL	'
			TDUE	TDUE	TOUE	TDUE	TDUE	т
diabe		TRUE TRUE	IKUE	TRUE	IKUE	TRUE	TRUE	T
RUE .	TRUE	TRUE		-	-	 -	~~	_
	t_attack	TRUE TRUE	TRUE	TRUE	IRUE	TRUE	TRUE	Т
RUE	TRUE	TRUE						

Question 2. Consider any univariate normal random variable $X \sim N(\mu, \sigma)$, other than the standard normal random variable ($\mu = 0$ and $\sigma = 1$), then using R:

a. Plot the density function, f(x), over its appropriate range

```
# Graph of Normal PDF
m = 2 # mean
s = 4 # sigma (standard deviation)
x1 = 0
plot(function(x1) dnorm(x1, m, s), m - 3 * s, m + 3 * s)
```


b. Plot cumulative distribution function, F(x), over its appropriate range.

```
# Graph of Normal CDF
# x1, m, and s were already defined in part (a)
plot(function(x1) pnorm(x1, m, s), m - 3 * s, m + 3 * s, xlab = "x1", ylab = "Cumulat
ive Probability")
```


c. Compute the height of the density function when $x = \mu - 1.5\sigma$

Hide

```
# Normal PDF
# m and s were already defined in part (a)
new_x = m - 1.5*s
dnorm(new_x, m, s)
```

- [1] 0.0323794
 - d. Compute the probability that the random variable X is less than μ 1.5 σ

Hide

```
# Normal CDF
# new_x, m, and s were already defined in part (c)
pnorm(new_x, mean = m, sd = s)
```

- [1] 0.0668072
 - e. Compute the value of x such that the Pr(X >= x) = 0.17

Hide

```
# Quantiles of Normal # m and s were already defined in part (a) p = 0.17 qnorm(1 - p, m, s) # 1-p is what will help us find Pr(X >= x) = 0.17
```

[1] 5.816661

Add a new chunk by clicking the *Insert Chunk* button on the toolbar or by pressing *Cmd+Option+I*.