Bài tập chương 4

Hà Lê Hoài Trung

Trong các giải thuật sau, giải thuật nào có thể gây ra trường hợp 1 process có thể không bao giờ được thực thi:

- 1. First come, first serve
- 2. Shortest job first
- 3. Round robin
- 4. Priority.

Giải thích lý do tại sao xảy ra trường hợp trên?

• Xét 1 tập các process sau có thời gian thực thi CPU tính bằng mili giây:

Process	Arrival- time	Burst - time
P1	0	7
P2	2	2
Р3	4	5
P4	7	3
p5	9	6

- 1. Vẽ sơ đồ Gautt thực thi của các process theo giải thuật định thời: FCFS, SJF, RR (quantumn = 3), cùng độ ưu tiên xét Pi và Pj, Pi ưu tiên hơn nếu i < j).
- 2. Thời gian chờ, thời gian đáp ứng, thời gian hoàn thành của các process trong từng giải thuật định thời?

• Xét 1 tập các process sau có thời gian thực thi CPU tính bằng mili giây:

Process	Arrival- time	Burst - time	Priority
P1	0	5	3
P2	2	2	2
Р3	4	8	1
P4	7	3	5
p5	9	4	4

- 1. Vẽ sơ đồ Gautt thực thi của các process theo giải thuật định thời: FCFS, SRTF, RR (quantumn = 3), Priority (thực hiện chế độ preemptive) (càng nhỏ càng ưu tiên, cùng độ ưu tiên xét Pi và Pj, Pi ưu tiên hơn nếu i < j).
- 2. Thời gian chờ, thời gian đáp ứng, thời gian hoàn thành của các process trong từng giải thuật định thời?

• Cho 4 tiến trình A, B, C, D với thời gian vào ready list và thời gian cần CPU cho các lần thứ 1, thứ 2, thứ 3 và thời gian thực hiện I/O tương ứng như bản sau:

Process	Arrival time	1 st exec	1 st I/O	2 nd exec	2 nd I/O	3 rd exec
Α	0	4	4	4	4	4
В	2	8	1	8	-	-
С	3	2	1	2	-	-
D	7	1	1	1	1	1

- Vẽ giản Gantt, Tính thời gian đợi trung bình, Thời gian đáp ứng trung bình, Thời gian lưu lại trong hệ thống trung bình cho các giải thuật.
- 1. FCFS
- 2. RR với q = 3
- 3. SRFT.

• Cho 4 tiến trình A, B, C, D với thời gian vào ready list và thời gian cần CPU cho các lần thứ 1, thứ 2, thứ 3 và thời gian thực hiện I/O tương ứng như bản sau:

Process	Arrival time	1 st exec	1 st I/O	2 nd exec	2 nd I/O
Α	0	3	1	3	1
В	2	5	2	-	-
С	5	2	3	3	-
D	7	6	2	5	3

- Vẽ giản Gantt, Tính thời gian đợi trung bình, Thời gian đáp ứng trung bình, Thời gian lưu lại trong hệ thống trung bình cho các giải thuật.
- 1. FCFS
- 2. RR với q = 3
- 3. SRFT

Process	Arrival time	Burst time (ms)	Priority
P1	0	8	3
P2	1	4	2
P3	2	3	1
P4	4	5	4

- 1. RR với q = 2
- 2. Preemptive Priority với số càng lớn càng ưu tiên
- 3. Điều phối ưu tiên nhiều cấp xoay vòng, sử dụng 2 cấp: Cấp 1 sử dụng giải thuật robin round với quantumn = 3ms. Cấp 2 sử dụng giải thuật SRTF. Một process nếu đã ở cấp I 5ms sẽ được chuyển xuống cấp II nếu đang ở trạng thái waiting còn nếu đang ở trạng thái running thì sau khi ra khỏi sẽ chuyển. Ngược lại một process đang ở cấp II sau khoãng thời gian 10ms sẽ được chuyển lên I. Khi các process vào bộ nhớ chính thì điều vào hàng đợi cấp I.

Process	Arrival time (ms)	Burst time (ms)
P1	0	8
P2	2	5
Р3	4	7
P4	7	3

Điều phối ưu tiên nhiều cấp xoay vòng, sử dụng 2 cấp: Cấp 1 sử dụng giải thuật robin round với quantumn = 3ms. Cấp 2 sử dụng giải thuật SRTF. Một process nếu đã ở cấp I 5ms sẽ được chuyển xuống cấp II nếu đang ở trạng thái waiting còn nếu đang ở trạng thái running thì sau khi ra khỏi sẽ chuyển. Ngược lại một process đang ở cấp II sau khoãng thời gian 10ms sẽ được chuyển lên I. Khi các process vào bộ nhớ chính thì điều vào hàng đợi cấp I.

```
/* test.c */
int main(int argc, char** argv)
{
    printf("Hello world.\n");
    printf("hi OS.\n");
    exit(0);
}
```

Biên dịch chương trình trong Linux gcc test.c –o test

Thực thi chương trình test ./test

Trong hệ thống sẽ có một quá trình *test* được tạo ra, thực thi và kết thúc.

 Liệt kê chuỗi trạng thái của quá trình test trong trường hợp tốt nhất:

```
/* test.c */
int main(int argc, char** argv)
{
  int n = 5;
    char* str;
  if (n % 2 == 0)
        str = "sô chăn \n";
  else
        str = "số lẻ \n";
  printf(str);
  exit(0);
}
```

Biên dịch chương trình trong Linux gcc test.c –o test

Thực thi chương trình test ./test

Trong hệ thống sẽ có một quá trình *test* được tạo ra, thực thi và kết thúc.

 Liệt kê chuỗi trạng thái của quá trình test trong trường hợp tốt nhất:

```
void main(){
    printf ("hi");
    fork ();
    fork ();
    printf ("Hello");
    fork ();
    printf ("Bye");
}
```

- Hỏi chương trình in ra các dòng chữ nào trên màn hình.
- Hỏi sau khi thực hiện đoạn lệnh trên có bao nhiêu process.

```
void main() {
        int pid;
        printf ("hi");
        pid = fork();
        if( pid == 0) {
                 fork ();
                 printf ("child"); 6
        } else if (pid > 0) {
                 fork();
                 fork();
                 printf(parent); 10
        } else
                 printf ("Bye"); 12
```

- Hỏi chương trình in ra các dòng chữ nào trên màn hình.
- Có bao nhiêu process sau khi thực hiện chương trình trên.