INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

LEIC, LEETC Arquitetura de Computadores

Teste de Época Especial (16/fev/2018)

Duração do Teste: 2 horas e 30 minutos

[1] Considere um processador, de ciclo único, com o diagrama de blocos apresentado na figura.

O processador suporta a execução do seguinte conjunto de instruções, em que as constantes const₄ e address⁷ representam números naturais e a constante offset⁵ representa um número relativo:

N.º	Instrução	Codificação										Descrição
		b ₉	b ₈	b ₇	b ₆	b 5	b ₄	b ₃	b ₂	\mathbf{b}_1	b ₀	
1	ldi rx,#const4	A definir										rx = const ₄
2	ld rx,[ry]	A definir									rx = M[ry]	
3	st rx,[ry]	0	0	0	rx2	rx1	rx ₀	ry2	ry ₁	ryo	0	M[ry] = rx
4	add rx,ry	0	1	1	rx2	rx ₁	rx ₀	ry ₂	ry ₁	ry ₀	0	rx = rx + ry
5	and rx,ry	1	1	0	rx2	rx1	rx ₀	ry2	ry1	ry0	0	rx = rx & ry
6	jz address7	A definir										(Z == 0) ? PC = address7 : PC = PC + 1
7	jmp offset5	A definir									PC = PC + offset5	

- a) Codifique as instruções ldi, ld, jz e jmp utilizando uma codificação linear a 3 bits. Explicite os bits do código de instrução que correspondem aos sinais AA, AB, AD, OP_ALU e OPCODE. [2 val.]
- b) Considere que o PC = 0xFF. Indique a gama de endereços possíveis de alcançar com a instrução JMP. [0,5 val.]
- c) Considerando que o módulo Descodificador Instruções é implementado usando exclusivamente uma ROM, indique a programação da mesma. [1,5 val.]
- d) Indique a dimensão em bits da memória de código e da ROM do módulo Descodificador Instruções, apresentando os cálculos realizados. [0,5 val.]
- e) Indique quantos ciclos de relógio são necessários para executar cada uma das instruções. [0,5 val.]

[2] Considere o sistema computacional baseado no PDS16 representado na figura.

- a) Quais os endereços base e dimensões que os módulos ROM, RAM e portos de entrada e saída ocupam no espaço de endereçamento? Indique eventuais zonas em *foldback*. [1,5 val.]
- b) Desenhe o esquema de um módulo de ROM adicional com 8Kbyte de dimensão contíguo à ROM já existente, usando módulos ROM de 4Kx8. [2 val.]
- c) Pretende-se aumentar o porto de entrada existente para 16 bits. Desenhe o novo esquema do porto de entrada com 16 bits de modo a ser acessível a 8 ou a 16 bits [1 val.]
- d) Quais as memórias e/ou portos do sistema é que permitem o acesso com instruções que utilizam endereçamento direto? [0.5 val.]

[3] Considerando as convenções definidas para a passagem de parâmetros, retorno de valores e preservação de registos. Os tipos uint8 e uint16 representam inteiros a 8 e a 16 bits sem sinal, respetivamente, e o tipo int16 representa inteiros a 16 bits com sinal. Considere as definições seguintes:

```
uint16 valabs( int16 val ) {
   if( val > 0 ) {
      return val;
   }
   return -val;
}

uint16 sum(uint8 a[i], int16 b[i]) {
   uint16 acc = 0;

   for(uint8 i=0; i<20; i++) {
      if (a[i] != 0)
        acc += valabs(b[i])
   }
   return acc;
}</pre>
```

Com vista ao alojamento de variáveis, assuma que a secção ".data" está localizada na gama de memória com endereçamento direto.

Escreva, em assembly do PDS16, o alojamento das variáveis em memória, se necessárias, e a tradução do código:

- a) Da função valabs. [2,5 val.]
- b) Da função sum. [2,5 val.]
- [4] Tendo como base o sistema SDP16, pretende-se implementar um sistema de contagem de pessoas dentro de uma sala com a seguinte especificação:
 - A sala tem uma porta de entrada e uma porta de saída, controladas pelos sensores S1 e S2, respetivamente
 - O sistema inicia-se com os dois sensores, S1 e S2, inativos e o valor 0x0 afixado no porto de saída.
 - Quando entra uma pessoa, dá-se uma transição ascendente no sensor S1. Quando sai uma pessoa, dá-se uma transição descendente no sensor S2.
 - O número de pessoas dentro da sala deve ser afixado no porto de saída do SDP16 (considere um máximo de 7 pessoas).
 - a) Desenhe um fluxograma da máquina de estados do sistema. [1 val.]
 - b) Programe em assembly do PDS16 o sistema de contagem enunciado. [4 val.]