Megan deBettencourt

Menlo Park, CA

in LinkedIn

debetten

About Me _

I am a quantitative scientist and researcher with a background in computational cognitive neuroscience and over a decade of experience building AI and ML tools to model human behavior and analyze multimodal physiological data. I develop realtime, closed-loop systems, ranging from brain-computer interfaces to human-Al interactions, to enhance human behavior.

Princeton University, Princeton Neuroscience Institute

PhD, Neuroscience Sept. 2016 MA, Neuroscience Aug. 2012

Columbia University, School of Engineering and Applied Science

BS, Applied Mathematics magna cum laude

Experience _

Senior Quantitative UX Researcher, Google

Oct. 2025 - Present

May 2010

· Apply quantitative, data-driven methods to analyze user behavior and guide product decisions for Search Ads

Senior Research Scientist, Ruby Neurotech

Feb. 2023 - Sept. 2025

- Developed and deployed Al-powered scalable and individualized digital intervention for mental health and PTSD, improving user outcomes (50% reduction in memory intrusions)
- · Engineered LLM-based system to deliver and assess multi-turn human-AI conversations, achieving alignment with human ratings (Spearman $\rho = 0.5$)
- Conducted multimodal logs analysis of behavioral and physiological signals (pupil, gaze, heart-rate, webcam) to identify biomarkers of engagement via advanced statistics, machine learning, and multivariate modeling
- Skills: Experimental Design, Data Analysis, Statistics, Machine Learning, AI LLMs & Prompt Engineering, Python

Consultant, Stanford University, Wu Tsai Human Performance Alliance

2023 - 2024

- Advised on experimental design & data analysis pipeline to advance real-time eye-tracking research studies
- Skills: Experimental Design, Statistics, Eye-tracking, Python, Research, Mentorship

NIH K99 and F32 Post-doctoral fellow (NIH BRAIN Initiative K99/R00), University of Chicago

2016 - 2023

- Conducted multimodal user research studies (500+ participants) and applied machine learning to classify brain states and predict memory (from EEG, eye-tracking, behavioral, and patient data)
- Developed personalized, adaptive closed-loop systems using real-time behavioral data to forecast attention lapses
- Mentored a team of 10+ researchers, authored scientific publications, and secured NIH funding
- Skills: Machine learning, Multivariate Modeling, Experiment Design, EEG, Eye-tracking, Statistics, Python, R, MATLAB

NSF Graduate Research Fellow PhD Student, Princeton University, Princeton Neuroscience Institute

- Engineered closed-loop fMRI neurofeedback system to decode and improve human visual attention in real time from high-dimensional whole brain data (~100k voxels)
- · Launched partnership with Intel Labs to build cloud-based neuroimaging analysis software platform Brainiak
- Developed brain-computer interfaces for clinical applications in depression and anxiety through collaborations with multiple institutions
- Led multimodal user studies (500+ participants) collecting behavior, neuroimaging, and eye-tracking data
- Skills: Machine learning, High-performance computing, Brain-computer interfaces, Neuroimaging, Python, MATLAB

Undergraduate Researcher, Columbia University, Biomedical & Electrical Engineering Departments

2008 - 2010

• Built signal processing pipelines and used ML tools to decode single-trial neural data from EEG and fMRI

Selected publications and presentations.

Over 100 presentations for academic and industry audiences (e.g., CMU, Intel, Microsoft, UCSF, Stanford)
Over 1000 citations for 20+ publications in top journals. For a full list of publications, see Google Scholar or Pubmed

- MT deBettencourt et al. (arXiv) AI-guided digital intervention with physiological monitoring reduces intrusive memories after experimental trauma.
- Invited panelist for NeurIPS 2022 workshop (All Things Attention)
- MT deBettencourt et al. (2019) Real-time triggering reveals concurrent lapses of attention and working memory. *Nat. Hum. Behav.* Article | Github
- MT deBettencourt et al. (2015) Closed-loop training of attention with real-time brain imaging. Nat. Neurosci. Article

General Skills

- Programming & Data Analysis: Python (numpy, pandas, scipy, scikit-learn, statsmodels, pytorch), R, MATLAB, High-performance computing (Slurm)
- AI & ML: LLM prompt engineering, few/zero-shot learning, supervised & unsupervised learning, regression & classification
- Statistics & Experimental Design: Hypothesis testing, regression modeling, mixed-effects models, multivariate analysis, parametric and non-parametric statistical tests (e.g., permutation tests), power analysis, A/B testing
- Data Visualization: matplotlib, seaborn, streamlit dashboards, Adobe Illustrator, Canva
- Neuroscience & Physiology: gaze-tracking, pupillometry, PPG, face/pose tracking via webcam, EEG, fMRI, fNIRS

Languages _

English native; French fluent