

Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 1855 SBE 37 CONDUCTIVITY CALIBRATION DATA CALIBRATION DATE: 19-Jul-19 PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = 2.888594e-005

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
()	(. 00)	` ,	001101(1.12)	00112 (0/111)	` ,
22.0000	0.0000	0.00000	2644.37	0.00000	0.00000
1.0000	34.7201	2.96852	5382.92	2.96855	0.00003
4.5000	34.7008	3.27490	5588.82	3.27488	-0.00002
15.0000	34.6593	4.25439	6200.52	4.25434	-0.00005
18.5000	34.6502	4.59871	6401.39	4.59872	0.00002
23.9999	34.6400	5.15528	6712.97	5.15531	0.00003
29.0000	34.6338	5.67578	6991.40	5.67580	0.00001
32.5000	34.6287	6.04697	7183.14	6.04694	-0.00002

f = Instrument Output(Hz) * sqrt(1.0 + WBOTC * t) / 1000.0

t = temperature (°C); p = pressure (decibars); δ = CTcor; ϵ = CPcor;

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

