

CS 412 Intro. to Data Mining

Chapter 9. Classification: Advanced Methods

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Artificial +

Neural Network for Classification

- □ Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has a **weight** associated with it
 - During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples

Artificial Neural Networks as an analogy of Biological Neural Networks

26

Discussion on the **A-NN Algorithm**

- □ *k*-NN for <u>real-valued prediction</u> for a given unknown tuple
 - □ Returns the mean values of the *k* nearest neighbors
- □ <u>Distance-weighted</u> nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their <u>distance</u> to the query x_q
 - ☐ Give greater weight to closer neighbors

$$w \equiv \frac{1}{d(x_a, x_i)^2}$$

1. กำหนุกจำหาน เพื่อนบ้าน

2. Stigon Bouth 1 Bonath of na mineral

3. กระบะพวระแทวเสือนปัง

- Robust to noisy data by averaging *k*-nearest neighbors
- <u>Curse of dimensionality</u>: distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, axes stretch or elimination of the least relevant attributes

พื้ออำเราแกกราวั

esn e boch

ตารางที่ 6–17 อัลกอริทึมกฎการเรียนรู้เพอร์เซปตรอน

Algorithm: Perceptron-Learning-Rule

1. Initialize weights w_i of the perceptron.

Shasa Data unipenis 2. UNTIL the termination condition is met DO

2.1 FOR EACH training example DO

- Input the example and compute the output. - Change the weights if the output from the

perceptron is not equal to the target output using the following rule.

No Paul Wi + With + Wi Minor making Penalty Replaced to State Addition Δwi ← α(t-o)xi input no Federa i

where t, o and α are the target output, the output from the perceptron and the learning rate, respectively.

การปรับน้ำหนักตามกฎการเรียนรู้เพอร์เซปตรอนโดยใช้อัตราการเรียนรู้ที่มีค่าน้อย เพียงพอ จะได้ระนาบหลายมิติที่จะลู่เข้าสู่ระนาบหนึ่งที่สามารถแบ่งข้อมูลออกเป็นสองส่วน ู้(ในกรณีที่ข้อมูลสามารถแบ่งได้) เพื่ออธิบายผลที่เกิดจากการปรับค่าน้ำหนัก เราจะลอง พิจารณาพฤติกรรมของกฎการเรียนรู้นี้ดูว่าทำไมการปรับน้ำหนักเช่นนี้จึงลู่เข้าสู่ระนาบที่ แบ่งข้อมูลได้อย่างถูกต้อง

- พิจารณากรณีแรกที่เพอร์เซปตรอนแยกตัวอย่างสอนตัวหนึ่งที่รับเข้ามาได้ถูกต้อง กรณีนี้จะพบว่า (t-o) ดังนั้น Δw_i ไม่เปลี่ยนแปลงเพราะ จะมีค่าเป็น 0 $\Delta w_i = \alpha(t-o)x_i$
- พิจารณาในกรณีที่เพอร์เซปตรอนให้เอาต์พูตเป็น –1 แต่เอาต์พูตเป้าหมายหรือ ค่าที่แท้จริงเท่ากับ 1 ในกรณีนี้หมายความว่าค่าที่เราต้องการคือ 1 แต่ค่าน้ำหนัก ไม่เหมาะสม ดังนั้นเพื่อที่จะทำให้เพอร์เซปตรอนให้เอาต์พุตเป็น 1 น้ำหนักต้องถูก ปรับให้สามารถเพิ่มค่าของ $ec{w}\cdotec{x}$ ในกรณีนี้หมายความว่าผลรวมเชิงเส้นน้อย เกินไปและน้อยกว่า 0 จึงได้เอาต์พูตเป็น -1 ดังนั้นสิ่งที่เราต้องการคือการเพิ่มค่า ผลรวมเชิงเส้นเพราะถ้าเราเพิ่มค่าได้เรื่อย ๆ จนมากกว่า 0 เพอร์เซปตรอนจะให้ เอาต์พุตเป็น 1 ซึ่งตรงกับที่เราต้องการ พิจารณาดูดังต่อไปนี้ว่าการปรับค่าโดยกฎ เรียนรู้ทำให้ผลรวมเชิงเส้นเพิ่มขึ้นได้อย่างไร กรณีนี้เราจะได้ว่า (t-o) (1-(-1)) มีค่าเป็น 2 และลองพิจารณาค่าของอินพุต x_i แยกกรณีดังนี้

f(Enx)

- ถ้า $x_i > 0$ จะได้ว่า Δw_i มากกว่า 0 เพราะว่า $\Delta w_i \leftarrow \alpha(t-o)x_i$ และ α มากกว่า 0, (t-o) = 2 และ $x_i > 0$ จากสมการการปรับน้ำหนัก $w_i \leftarrow w_i + \Delta w_i$ เมื่อ Δw_i มากกว่า 0 จะทำให้ w_i มีค่าเพิ่มขึ้นและ $\sum w_i x_i$ ก็จะมีค่าเพิ่มขึ้น เมื่อผลรวมมีค่ามากขึ้นแสดงว่าการปรับไปในทิศทางที่ ถูกต้องคือเมื่อปรับไปจนกระทั่งได้ผลรวมมากกว่า 0 จะทำให้ เพอร์เซปตรอนเอาต์พุตได้ถูกต้องยิ่งขึ้น
- \circ ถ้า $x_i < 0$ เราจะได้ว่า $\alpha(t-o)x_i$ จะมีค่าน้อยกว่า 0 แสดงว่า w_i ตัวที่คูณ กับ x_i ที่น้อยกว่า 0 จะลดลงทำให้ $\sum w_i x_i$ เพิ่มขึ้นเหมือนเดิม เพราะ x_i เป็นค่าลบและ w_i มีค่าลดลง ในที่สุดก็จะทำให้เพอร์เซปตรอนให้ เอาต์พุตได้ถูกต้องยิ่งขึ้น
- ในกรณีที่เพอร์เซปตรอนให้เอาต์พุตเป็น 1 แต่เอาต์พุตเป้าหมายหรือค่าที่แท้จริง เท่ากับ -1 จะได้ว่า w_i ของ x_i ที่เป็นค่าบวกจะลดลง ส่วน w_i ของ x_i ที่เป็นค่าลบ จะเพิ่มขึ้นและทำให้การปรับเป็นไปในทิศทางที่ถูกต้องเช่นเดียวกับในกรณีแรก

6.7.2 ตัวอย่างการเรียนฟังก์ชัน AND และ XOR ด้วยกฎเรียนรู้เพอร์เซปตรอน

พิจารณาตัวอย่างการเรียนรู้ของเพอร์เซปตรอนโดยจะให้เรียนรู้ฟังก์ชัน 2 ฟังก์ชัน ฟังก์ชัน แรกคือฟังก์ชัน AND แสดงในตารางที่ 6–18 ในกรณีนี้เราใช้ฟังก์ชันไบนารีเป็นฟังก์ชัน

กระตุ้น

	2/150	X	4 1%	- 0		
•	ตารางที่ 6–	18 ฟังก์ชัน	AND(x1,x2)			
	x_1	x_2	เอาต์พุต			
			เป้าหมาย			
	0	0	0			
	0	1	0			
	1	0	0			
	1	1	1			

ฟังก์ชัน AND ตามตารางด้านบนนี้จะให้ค่าที่เป็นจริงก็ต่อเมื่อ x1 และ x2 เป็นจริงทั้งคู่ (ดูที่ สดมภ์เอาต์พุตเป้าหมาย) ผลการใช้กฎการเรียนรู้เพอร์เซปตรอนกับฟังก์ชัน AND แสดงใน ตารางที่ 6–19

ร์ซัน 1.0.2: 15 มีค.2548 : 9:05 PM boonserm.k@chula.ac.th 6 การเรียนรู้ของเครื่อง **175**

d 24 62 5 d 0 Wi										O Style comdoulor			
	ตารางที่ 6–19 ผลการเรียนรู้ฟังก์ชัน AND โดยกฏการเรียนรู้เพื่อร์เซปตรอน											O JEN O 13 MAN NO	
	Perceptron Learning Example - Function AND												Trevet - Actual
	descring wife										40.		
Munason			Bias Inpu	ut x0=+1		100 (XIMI)	4	Alpha=			-	-	0.1+0.5 (0-1)0
171/0	Input	Input				Net Sum		Actual	/		eight Valı		1 Jal 1
(1 epoch)	xl	x2	1.0*w0	+ xl*wl	+x2*w2	= Input	Output	Output	Error	w0	wľ	w2	
	0	0	0.10	0.00	0.00	0.10	0	1	-0.50	(-0.40	0.10	0.10	
lson	0	1	-0.40		0.10		0	0	0.00	-0.40	0.10	0.10	0.1+0.5 (0-1)1
	1	0	-0.40		0.00		0	0			0.10	0.10	0·1 + (0.5) = -0.40
	1	1	-0.40	0.10	0.10	-0.20	1	0	0.50	0.10	0.60	0.60	
1	0	0	0.10	0.00	0.00	0.10	0	1	-0.50	-0.40	0.60	0.60	$\frac{w_1}{0.1 + 0.5} (1-0)1 = 0.60$
1 acach 3	0	1	-0.40	0.00	0.60	0.20	0	1	-0.50	-0.90	0.60	0.10	-0.4+0.5(1-0)1
1 epoch	1	0	-0.90	0.60	0.00	-0.30	0	0	0.00	-0.90	0.60	0.10	
	1	1	-0.90	0.60	0.10	-0.20	1	0	0.50		1.10	0.60	= 0.10
	0	0	-0.40				0	0	0.00		1.10	0.60	
	0	1	-0.40				0	1	-0.50		1.10	0.10	2
	1	0	-0.90	1.10	0.00	0.20	0	1	-0.50		0.60	0.10	7
	1	1	-1.40	100	0.10	100000000	1	0	0.00		1.10	0.60	87
	0	0	-0.90		0.00	-0.90	0	0	0.00	-0.90	1.10	0.60	ε.
	1	1	-0.90 -0.90	0.00	0.60	-0.30 0.20	0	0	-0.50	-0.90	1.10	0.60	TORUL P. P. J. L. B. Mangary
	1	1	-1.40		0.60	-0.20	1	0	0.50	-1.40 -0.90	0.60	1.10	
	0	0		0.00	0.00	-0.20	0	0	0.00	-0.90	1.10	1.10	
	0	1	-0.90		1.10		0		-0.50		1.10	0.60	~ .
	1	0	-1.40				0	0	100000000	-1.40	1.10	0.60	77
	1	1	-1.40				1	1	0.00	-1.40	1.10	0.60	25
	0	0	-1.40	1			0	0	0.00		1.10	0.60	19
	0	1	-1.40	0.00	0.60	-0.80	0	0	0.00	-1.40	1.10	0.60	on
	1	0	-1.40	1.10	0.00	-0.30	0	0	0.00	-1.40	1.10	0.60	
	1	1	-1.40	1.10	0.60	0.30	1	1	0.00	-1.40	1.10	0.60	/

ขั้นตอนแรกเริ่มจากการสุ่มค่า w_0 จนถึง w_2 ในที่นี้กำหนดให้เป็น 0.1 ทั้งสามตัว จากนั้น ก็เริ่มป้อนตัวอย่างเข้าไป (ทีละแถว) ตัวอย่างแรกได้ผลรวมเชิงเส้น (Net Sum) เป็น 0.10 ซึ่งมากกว่า 0 ดังนั้นเปอร์เซปตรอนจะให้เอาต์พุดจริง (Actual Output) ออกมาเป็น 1 ซึ่งผิด เพราะเอาต์พุดเป้าหมาย (Target Output) จะต้องได้เป็น 0 ทำให้อัตราการเรียนรู้คูณค่า ผิดพลาด (Alpha x Error) ได้ -0.50 หลังจากนี้ก็นำไปปรับน้ำหนักตาม $w_i \leftarrow w_i + \Delta w_i$ และ $\Delta w_i \leftarrow \alpha(t-o)x_i$ ดังนั้นจะได้เป็น $w_0 \leftarrow w_0 + \alpha(t-o)x_0 = w_0 + 0.50(-1)$ x 1 = 0.10 + (-0.5) = -0.4 ต่อไปก็ปรับค่า w_1 ในทำนองเดียวกัน $w_1 \leftarrow w_1 + \alpha(t-o)x_1 = w_1 + 0.50(-1)$ x 0 ดังนั้น w_1 จะเท่ากับ 0.10 คือไม่เปลี่ยนแปลง เช่นเดียวกับ w_2 ที่ไม่เปลี่ยนแปลง จะเห็นได้ ว่าแม้มีค่าผิดพลาดแต่ไม่มีการปรับค่า w_1 และ w_2 เนื่องจากอินพุตที่ใส่เข้าไปเป็น 0 ทำ