作业三

- 1. 已知系统的特征方程如下,试判断系统的稳定性,并求出不稳定系统在 s 右半平面的根数及虚根值。
 - a) $3s^4 + 10s^3 + 5s^2 + s + 2 = 0$
 - b) $s^5 + 3s^4 + 12s^3 + 24s^2 + 32s + 48 = 0$
- 2. 两个系统的传递函数分别是 $G_1(s) = \frac{1}{2s+1}$ 和 $G_2(s) = \frac{1}{s+1}$,当输入信号为 $x_i(t) = 1(t)$ 时,给出其输出信号到达各自稳态值的 63.2%的先后顺序。
- 3. 设单位反馈系统的开环传递函数 $G(s) = \frac{4}{s(s+5)}$,该系统的阶跃响应类型为______. (欠阻尼/过阻尼/零阻尼/负阻尼)。
- 4. 如图所示的阻容网络, $u_i(t) = [1(t) 1(t-30)]v$,试求不同时刻系统的输出。

- (1) t = 4s 时, $u_o(t) =$ ____v (小数点后保留三位有效数字)
- (2) t = 30s 时, $u_o(t) =$ ____v (小数点后保留一位有效数字)
- 5. 单位阶跃情况下测得某伺服机构的响应为 $x_o(t) = 1 + 0.2e^{-60t} 1.2e^{-10t}$, 系统的闭环 传递函数为 $\frac{k}{s^2 + as + b}$, 系统的无阻尼自振角频率和阻尼比分别为 w_n 和 ζ , 试求:
 - (1) $k = ____, a = ____, b = ____.$ (答案取整数)
 - (2) $w_n = ____($ 小数点后保留一位有效数字) $\zeta = ____($ 小数点后保留两位有效数字)
- 6. 设一单位反馈系统的开环传递函数为 $G(s) = \frac{10}{s(s+1)}$, 该系统的阻尼比 $\zeta = 0.157$,

无阻尼比自振角频率为3.16rad/s,现将系统改变为如下图所示,为使阻尼比0.5,试求 k_n 的值。(小数点后保留两位有效数字)

7. 已知某控制系统的结构图如下:

试进行如下计算:

- (1) 确定系统的闭环传递函数;
- (2) 当 $\tau=0, K_1=1$ 时,求系统的超调量 M_p 和调节时间 t_s (取 $\Delta=\pm 5\%$);
- (3) 若要求此系统单位阶跃响应的超调量 $M_p=16.3\%$,峰值时间 $t_p=1s$,求参数 K_1 和 τ 的值
- 8. 一单位反馈系统,其开环传递函数为 $G(s) = \frac{3s+10}{s(5s-1)}$,求系统的动态误差系数;并求

当输入量为 $r(t)=1+t+\frac{1}{2}t^2$ 时,稳态误差的时间函数 $e_s(t)$ 。