SAMSUNG

Team ThunderSalama Almansoori, Althaf Abdul Wahab

Al Course

Rain Prediction

UNIT 1. Overview

- 1.1. Our project
- 1.2. Goal

UNIT 2. Data Preprocessing

- 2.1. Data info
- 2.2. Data Visualization
- 2.3 Data Cleaning

UNIT 3. Model Building

- 3.1. Linear Regression
- 3.2. KNN Neighbors
- 3.3. Neural Network

Rain Prediction

Rain prediction is an important part of weather forecasting because it assists people and organizations in reducing rain-related losses, increasing preparation, ensure water security and enhancing social benefits.

Aim

We intend to train our AI model with 10 years of daily weather observations data so that we can anticipate rain for the next day.

About The Data

- Public weather data from the Commonwealth of Australia's Bureau of Meteorology
 - 10 years of daily Data
 - 49 Locations across Australia
 - 23 attributes including the target variable
 "RainTomorrow", indicating whether or not it will rain the next day

Together for Tomorrow! Enabling People

2.2. Data Visualization

There are 23 attributes that are the daily weather parameters such as Max-Min temperature, evaporation, wind speed, rainfall, humidity, pressure, etc.

Number of records: 145,460

	columns (total		
#	Column	Non-Null Count	Dtype
0	Date	145460 non-null	object
1	Location	145460 non-null	object
2	MinTemp	143975 non-null	float64
3	MaxTemp	144199 non-null	float64
4	Rainfall	142199 non-null	float64
5	Evaporation	82670 non-null	float64
6	Sunshine	75625 non-null	float64
7	WindGustDir	135134 non-null	object
8	WindGustSpeed	135197 non-null	float64
9	WindDir9am	134894 non-null	object
10	WindDir3pm	141232 non-null	object
11	WindSpeed9am	143693 non-null	float64
12	WindSpeed3pm	142398 non-null	float64
13	Humidity9am	142806 non-null	float64
14	Humidity3pm	140953 non-null	float64
15	Pressure9am	130395 non-null	float64
16	Pressure3pm	130432 non-null	float64
17	Cloud9am	89572 non-null	float64
18	Cloud3pm	86102 non-null	float64
19	Temp9am	143693 non-null	float64
20	Temp3pm	141851 non-null	float64
21	RainToday	142199 non-null	object
22	RainTomorrow	142193 non-null	object
dtype	es: float64(16)	, object(7)	

Together for Tomorrow! Enabling People Education for Future Generations

2.2. Data Visualization

Data head

								1												
index	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	WindDir9am	WindDir3p	Wind Speed9am	Wind Speed3pm	Humidity9am	Humidity3pm	Pressure9am	Pressure3pm	Cloud9am	Cloud3pm	Temp9am
0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	w	44.0	w	WNW	20.0	24.0	71.0	22.0	1007.7	1007.1	8.0	NaN	16.9
1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	NNW	wsw	4.0	22.0	44.0	25.0	1010.6	1007.8	NaN	NaN	17.2
2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	wsw	46.0	w	wsw	19.0	26.0	38.0	30.0	1007.6	1008.7	NaN	2.0	21.0
3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	SE	Е	11.0	9.0	45.0	16.0	1017.6	1012.8	NaN	NaN	18.1
4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0	ENE	NW	7.0	20.0	82.0	33.0	1010.8	1006.0	7.0	8.0	17.8

- Missing Values
- Non-Numerical Values
- Some correlation between the data such as evaporation & humidity
 - Large Values (scaling)

Checking for Data imbalance

Rainfall over years

Parse dates into date times, by creating columns from date as year month and day of month

2.2. Data Visualization

Data Correlation Matrix

We have highly correlated values >89% Need to avoid multi-collinearity

- MaxTemp vs Temp9am
- Temp3pm vs Temp9am
- Pressure3pm vs Pressure9am
- MaxTemp vs Temp3pm

2.3. Data Cleaning

Data Preprocessing

- Removing Highly correlated data
- Removing columns with 40% missing values.
- Fill the missing or Nan values with mean and mode.
- Label encoding the categorial variables
- Preparing the data for scaling, removing outliers

Data Correlation

Removing the highly correlated values >= 0.89:

- Temp9am
- Pressure9am
- Temp3pm

Data Preprocessing

Outliers present

Data Preprocessing

After removing the outliers

Model Building

- Linear Regression Model
 - KNN Neighbors
- Sequential Neural Network

3.1. Linear Regression

Linear Regression

Following steps are involved in the model building

- Assigning X and y the status of attributes and tags
- Splitting test and training sets
- Train and predict
- Accuracy, Sensitivity, Specificity and Precision using the confusion matrix
- ROC curve
- Accuracy = 0.839
- Sensitivity = 0.429
- Precision = 0.688
- AUC = 0.841

KNN Neighbor

Following steps are involved in the KNN model building

- KNN bias-Variance tradeoff as function of k
- KNN hyperparameter optimization
- ▶ Best k : 25
- Best Accuracy: 0.839

3.3. Neural Network

Sequential Neural Network

- Following steps are involved in the Neural Network model building
 - Initializing the neural network using Sequential API Keras model
 - Defining by <u>adding layers</u>, <u>ReLu activation function</u>, <u>Binary Cross entropy loss function</u> and Adam Gradient descent algorithm to optimize
 - Compiling the neural network
 - Train the neural network

3.3. Neural Network

Concluding the NN:

- Testing on the test set
- Evaluating the confusion matrix
- Evaluating the classification report
- Accuracy = 0.84058

	precision	recall	f1-score	support	
0 1	0.86 0.70	0.95 0.42	0.90 0.52	31192 8291	
accuracy macro avg weighted avg	0.78 0.83	0.69 0.84	0.84 0.71 0.82	39483 39483 39483	

Classification report

Conclusion

Projected Impact

We have achieved our objective set out to create an **AI model for rain predictions** and hope to improve it with more data as per user case. We also managed to illustrate and compare logistic regression model and KNN neighbor model.

We hope to work on and create the below for a comprehensive sustainable solution.

- 1. Cloud detection and segmentation from satellite images
- 2. Algorithm to predict and detect moisture-laden clouds and deploy cloud precipitation resources
- 3. Real-time prediction of hostile weather using big data

SAMSUNG

Together for Tomorrow! Enabling People

Education for Future Generations

©2019 SAMSUNG. All rights reserved.

Samsung Electronics Corporate Citizenship Office holds the copyright of book.

This book is a literary property protected by copyright law so reprint and reproduction without permission are prohibited.

To use this book other than the curriculum of Samsung innovation Campus or to use the entire or part of this book, you must receive written consent from copyright holder.