Name: Chiranjeevi Konduru, Rishabh Agarwal

NetID(s): konduru4, ra26

GAN and LSGAN MNIST

Show final results from training both your GAN and LSGAN (4x4 grid of images for both):

GAN - MNIST

Iter: 4500, D: 1.432, G:0.809

Learning rate	1e ⁻³
Noise_dim	100
Epochs	10
Optimizer	Adam
Batch_Size	128
loss	GAN loss

LSGAN - MNIST

Iter: 4500, D: 0.2226, G:0.179

Learning rate	1e ⁻³
Noise_dim	100
Epochs	10
Optimizer	Adam
Batch_Size	128
loss	LSGAN loss

GAN and LSGAN Cats

Show final results from training both your GAN and LSGAN (4x4 grid of images for both):

Note:

- These are results after 24000 iterations (total 24500 iterations), because I chose to show the 4x4 grid of images for every 1000 iterations, since showing the images for every 250 or 500 iterations is making PDF reach more than 100 pages and file size of 98 MB.
- Data Transformation techniques used on Cat dataset (Applicable to all the GAN models where Cat Face Dataset is used) are RandomCrop, Resize, ColorJitter, and Gaussian Blur (kernel_size = 3)

GAN - CAT (Final Output)

Iter: 24000, D: 0.03367, G:4.853

Hyperparameters:

Learning rate	1e ⁻³
Noise_dim	100
Epochs	50
Optimizer	Adam
Batch_Size	32
loss	GAN loss

LSGAN - CAT (Final Output)

Iter: 24000, D: 0.03709, G:0.5959

Hyperparameters:	
Learning rate	1e ⁻³
Noise_dim	100
Epochs	50
Optimizer	Adam
Batch_Size	32
loss	LSGAN loss

Discuss any differences you observed in quality of output or behavior during training of the two GAN models.

- The discriminator and generator losses for LSGANs were quite low from the beginning and stable (no major fluctuations). However, for the Normal GAN the Generator loss was high from the range (1.8-5.6) and fluctuating frequently and Discriminator loss also started high (1.411 epoch 1) but gradually decreased and was stable over the last epochs.
- The quality of images produced by LSGANs and regular GANs are almost similar, however for the few epochs in LSGANs the images had a greater detail (specifically comparing output after 15th epoch in both the cases).
- LSGANs took noticeably lesser time to run(train) while having similar or betterquality outputs (in some cases).

Do you notice any instances of mode collapse in your GAN training? Show some instances of mode collapse from your training output.

• Yes, we have seen several cases of mode collapse, where the diversity of the generated images is poor and the same image (same face different color/ same eye color, etc.) or a small group of identical images repeatedly appear.

GAN Outputs:

There was one instance of mode collapse in LS GANs:

Extra Credit - Alternative GAN Formulation

Explain what you did (describing all model changes and hyperparameter settings) and provide output images.

<u>Part 1</u>: We **implemented** the **WGAN loss** for 1st part of extra credit.

Hyperparameters:

Learning rate	5e ⁻⁴
Noise_dim	100
Epochs	40
Optimizer	Adam
Batch_Size	32
Img_Size	64
loss	WGAN loss

Outputs:

EPOCH: 5
Iter: 2000, D: -5.292e+04, G:-1.935e+03

EPOCH: 39
Iter: 19000, D: -1.247e+06, G:-8.067e+04

Part 2: Train your GAN on a different dataset. I trained my LSGAN on CelebA dataset.

<u>Data Transformations used (Applicable to all GAN models where CelebA dataset is used):</u> RandomCrop, Resize, ColorJitter, and Gaussian Blur (kernel_size = 5)

Note: Tried adding few other transformations like Erasing and RandomAffine, the issue was with the black patches on images made it hard to generate outputs clearly. Even after 30 epochs the images had a black patch on them. So finally went with gaussian blur to smooth the high quality CelebA dataset.

Hyperparameters:

Learning rate	1e ⁻⁴
Noise_dim	100
Epochs	30
Optimizer	Adam
Batch_Size	128
Img_Size	64
loss	LSGAN loss

Outputs:

EPOCH: 6

Iter: 2000, D: 0.1882, G:0.1957

EPOCH: 20

Iter: 7000, D: 0.02141, G:0.5557

Final Output (30 Epoch)

Part 3: Spectral Normalization on CAT faces Dataset and Celeb Faces Dataset

As can be observed in our pictures, we think that spectrally normalizing our convolution layers helped to improve the quality of images we generated with our GAN. This is because Spectrally Normalized (SN) GANs are thought to produce images of higher quality than Normal DC GAN (for respective Epochs) Reference: https://paperswithcode.com/method/spectral-normalization

Hyperparameters (Cat Data):

Learning rate	1e ⁻⁴
Noise_dim	100
Epochs	50
Batch_Size	32
Optimizer	Adam
Img_Size	64
loss	LSGAN loss

Outputs (Cat Faces Dataset)

EPOCH: 19

Iter: 9000, D: 0.06752, G:0.3259

EPOCH: 39

Iter: 19000, D: 0.01697, G:0.449

Hyperparameters (Celeb Faces Data):

Learning rate	1e ⁻⁴
Noise_dim	100
Epochs	50
Batch_Size	128
Optimizer	Adam
Img_Size	64
loss	LSGAN loss

Outputs (Celeb faces Dataset):

EPOCH: 20

EPOCH: 37

