邏輯系統實習

實驗一

麵包板(一): 基本邏輯閘實作

國立成功大學電機系

2016

大綱

- 數位 IC的分類
- TTL IC的特性
- 電阻色碼圈辨識
- 邏輯閘IC介紹
- 麵包板架構說明
- 電源供應器操作說明
- 三用電表操作說明
- 使用 LED驗證邏輯值

- 實作注意事項
- **■** 實作範例
 - NOT gate
 - ☐ AND gate
- 基礎題 (一)
 - □ 通用閘
- *基礎題 (二)*
 - □ 半加器
- 挑戰題
 - ☐ XNOR gate
- 實驗結報繳交

數位IC的分類

				DCTL (直接耦合電晶體邏輯)		
			RTL	RTL (電阻-電晶體邏輯)		
		 飽和型		RCTL (電阻-電容-電晶體邏輯)		
	雙極性	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DTL	DTL (二極體-電晶體邏輯)		
數位IC		ゴトタケイロ ボリ		HTL (高臨限邏輯)		
			TTL (電晶體-電晶體邏輯)			
			ECL (射極耦合邏輯)			
		非飽和型	CTL (互	補電晶體邏輯)		
	單極性	MOS (金氧	氢半導體邏輯)			
		CMOS (互	補金氧半	導體邏輯)		

TTL IC的特性

- TTL系列使用的電源為直流5V。
- 輸入、輸出狀態為邏輯0與邏輯1時的電壓如下表。

	輸入電壓	輸出電壓
邏輯0	0.8V以下	0.4V以下
邏輯1	2.0V以上	2.4V以上

- 54/74系列
 - □ SN54系列保證在-55°C~125°C溫度變化範圍內工作。
 - □ SN74系列保證在0°C~70°C溫度變化範圍內工作。

М

TTL inverter的標準電路

ightharpoonup 當 $V_i = V_H$,各個電晶體的工作模式為:

 Q_4 : inverse active mode

 Q_3 : saturation mode

 Q_1 : saturation mode

Q₂: cutoff mode

D: OFF

ightharpoonup 當 $V_i = V_L$ (假定 $V_L = 0.2V$),各電晶體工作模式為:

 Q_4 : saturation mode

Q₃: cutoff mode

 Q_1 : cutoff mode

Q₂: active mode

D:ON

TTL inverter的標準電路

在輸出端不接任何邏輯 閘的情況下:

$$V_{OH} \cong 3.7V \cdot V_{OL} \cong 0.1V$$

$$V_{IH} \cong 1.4V \cdot V_{IL} \cong 0.5V$$

$$\mathbf{NM_L} = \mathbf{V_{IL}} - \mathbf{V_{OL}} = \mathbf{0.4V}$$

$$NM_H = V_{OH} - V_{IH} = 2.3V$$

生 4/古	黑	棕	紅	橙	黄	綠	藍	紫	灰	口
數值	0	1	2	3	4	5	6	7	8	9

	黑	棕	紅	橙	当	綠	藍	紫	灰	金
乘數	10 ⁰	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁻¹	10-2
	1	10	100	1K	10K	100K	1M	10M	0.1	0.01

誤差	棕	紅	綠	柴	金
率	1%	2%	0.5%	0.1%	5%

數值、數值、乘數、誤差率 棕、 黑、 橙、 金

 $10x10^3 \pm 5\% = 10K \pm 5\%$

NOT	
$C = \overline{A}$	
A — O— O	

輸入A	輸出C	輸出電壓位準
0	1	
1	0	

AND	輸入A	輸入B	輸出C	輸出電壓位準
$C = A \bullet B$	0	0	0	
Δ —	0	1	0	
$\begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$	1	0	0	
	1	1	1	

OR	輸入A	輸入B	輸出C	輸出電壓位準
C = A + B	0	0	0	
A — \(\)	0	1	1	
$\begin{pmatrix} A \\ B \end{pmatrix} - C$	1	0	1	
	1	1	1	

NAND	輸入A	輸入B	輸出C	輸出電壓位準
$C = \overline{A \bullet B}$	0	0	1	
Δ —	0	1	1	
)— C	1	0	1	
	1	1	0	

NOR	輸入A	輸入B	輸出C	輸出電壓位準
$C = \overline{A + B}$	0	0	1	
Δ — \	0	1	0	
$\begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix} \bigcirc C$	1	0	0	
	1	1	0	

9 + 5 V
7402
\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\
+5V
Ĭ

XOR	輸入A	輸入B	輸出C	輸出電壓位準
$C = A \oplus B = \overline{A} \bullet B + A \bullet \overline{B}$	0	0	0	
A C	0	1	1	
	1	0	1	
	1	1	0	

麵包板架構說明

電源供應器操作說明

- 接上電源線前請先確認VCC是否為5V,若否,按下電源供應器上"+vset"設定5V後再按下"enter"確定。
- 按下右下角"ON/OFF",電源供應器會啟用或停止供電。

三用電表操作說明

- 使用三用電表量測電壓功能時,因IC的VCC 為5V,所以請將檔位調至V-20。
- 量測時,將黑色探針接地,移動紅色探針測量各pin腳之電壓,以求得該pin腳之邏輯值。
- 電壓與邏輯值之轉換,請見P.4。

使用LED驗證邏輯值

- 驗證時,請將輸出串聯一個電阻與LED到GND,注意LED的接腳極性。
- 當輸出為邏輯1時LED會發光,反之輸出為邏輯0時LED則不會發光。

長腳為正,短腳為負

實作注意事項 (1/4)

- 1) 注意IC的缺口方向,以及內部邏輯閘的配置方式(NOR 7402的邏輯 閘方向配置與其他邏輯閘相反)。
- 2)實驗中IC要完全插進麵包板上以免接觸不良,以及注意IC在麵包板上配置的正確性。

實作注意事項(2/4)

- 3)接線時,建議使用紅色線連接VCC、黑色線連接GND,以方便除錯。
- 4)實作時,請等待所有電路連接完成後才接上電源線,以避免因電路連接錯誤而導致IC燒毀。

實作注意事項(3/4)

■ 5)移除IC時,請使用小鑷子夾取IC向上拔除,以 免折斷IC之接腳。

實作注意事項 (4/4)

- 6)實作時,請先將接線圖繪製於紙上,再依照該接線圖在麵包板上實現,方便以後除錯。
 - □ 步驟一:挑選可用的IC。
 - □ 步驟二:規劃邏輯閘方向與配置位置。
 - □ 步驟三:挑選邏輯閘並註明編號。
 - □ 步驟四:繪製VCC(紅)與GND(黑)

實作範例 (1/2) NOT gate

實作範例 (2/2) AND gate

基礎題(一) 通用閘

■ 已知NAND gate與NOR gate可以組合出與NOT、AND、OR gate相同功能的電路。

- 請利用NOR gate組合出與NOT、AND、OR gate相同功能的電路。
 - □ 實作時,請先將接線圖繪製於下一頁上,再依照該接線圖在麵包板上實現。
 - □ 驗證時,請利用LED與電阻檢測輸出之邏輯值。

基礎題 (二) 半加器

- 請實作與驗證 半加器。
 - □ 實作時,請先將接線圖繪製於下一頁上,再依照該接線圖在麵包板上實現。
 - □ 驗證時,請利用LED與電阻檢測輸出之邏輯值。

А	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$Sum = \overline{A} \bullet B + A \bullet \overline{B} = A \oplus B$$

$$Carry = A \bullet B$$

XNOR gate

- 因本次實驗未準備XNOR (74266)的IC,請同學利用NOR (7402)、NOT (7404)、AND (7408)組合出與XNOR相同功能的電路。
 - □ 實作時,請先將接線圖繪製於下一頁上,再依照該接線圖在麵包板上實現。
 - □ 驗證時,請利用三用電表將各輸入所產生的輸出電壓位準值求出,並且 反推回輸出的邏輯值(邏輯0或邏輯1)並填於下表中。

XNOR	輸入A	輸入B	輸出C	輸出電壓位準
$C = \overline{A \oplus B} = \overline{\overline{A} \bullet B + A \bullet \overline{B}}$	0	0		
A	0	1		
	1	0		
	1	1		

實驗結報繳交

- 基礎題 (一)
 - □ 請繪製出如何使用NOR gate組合出與NOT、AND、OR gate相同功能的 電路。
 - □ 請附上接線圖、實驗電路照片與解釋。
- 基礎題 (二)
 - □ 請附上接線圖、實驗電路照片與解釋。
- 挑戰題
 - □ 請附上接線圖、實驗電路照片與解釋。
 - □ 請完成XNOR之輸入A、輸入B、輸出C、輸出電壓位準表格。
- 各自之心得報告