Shadow Price Learning and Expectationally Driven Business Cycles

Brian Dombeck

Lewis & Clark College Department of Economics

May 27th, 2020

Some Hyperbolic Motivation

Q: What is the fundamental difference between economics as a science and the natural sciences?

Some Hyperbolic Motivation

Q: What is the fundamental difference between economics as a science and the natural sciences?

A: The forward-looking nature of decision making by economic agents

- Life-cycle and permanent income hypothesis (consumption);
- Present-value and asset pricing (investment and savings);
- Ricardian equivalence (fiscal policy);
- Central bank credibility and inflation management (monetary) policy);
- Exchange rate pegs and speculative currency crises (trade) balance and international finance)

This Paper

Overview •000000000

> Replace RE with SP-learning (bounded optimality)in news-shock model to determine:

- ► How macroeconomic models are affected by our decisions regarding expectations formation mechanisms which impinge upon "optimal" behavior
- Whether there any notable interactive effects between information and expectations

Overview

This Paper

Replace RE with SP-learning (bounded optimality)in news-shock model to determine:

- ► How macroeconomic models are affected by our decisions regarding expectations formation mechanisms which impinge upon "optimal" behavior
 - Resulting equilibria are statistically different from each other
- Whether there any notable interactive effects between information shocks and RE alternatives alternatives
 - The difference is amplified by the presence of anticipated shocks within the model

Why Consider Information and Expectations-Based Explanations of Business Cycle Activity?

Related Literature

- Modern macroeconomics is defined by its focus on modeling expectations (e.g. Muth (1961); Lucas (1976))
- Mixed evidence about relative importance of news versus surprise shocks in generating expectationally driven business cycles (e.g. Beaudry and Portier (2006); Ramey (2011); Schmitt-Grohe and Uribe (2012); Barsky and Sims (2011); Khan and Tsoukalas (2012))
- Adaptive learning can generate qualitatively similar expectationally driven business cycles (Eusepi and Preston (2011); Milani (2011, 2012, 2017))

Overview 0000000000

- Timing of economic shocks: "Surprise shocks" versus "news shocks"
- Macroeconomic dynamic stochastic general equilibrium (DSGE) models and the "co-movement problem"
- (Boundedly) rational behavior: Rational expectations equilibrium (REE), expectational stability (E-stability), and restricted perceptions equilibrium (RPE)

Key Concept #1: Timing of Economic Shocks

- News shocks represent incomplete (but true) information received today about future innovations to exogenous processes
- ► Help to predict future economic fundamentals but do not affect current or past fundamentals
- Forward-looking behavior implies news shocks should impact contemporaneous endogenous variables

Key Concept #2: News-shock Models and the Comovement Problem

- Post-war US data exhibits strong positive comovement in aggregate consumption, investment, employment, and output.
- Standard-bearing modern-day neoclassical and modern sticky price models predict negative comovement between consumption and investment, employment, and output in response to anticipated productivity shocks
- "News-shock models" modify economy to produce qualitatively realistic expectationally driven business cycles (EDBCs) in response to news shocks

Overview 0000000000

Key Concept #3: (Boundedly) Rational Behavior

- Rational Expectations: Decision makers are endowed with a correctly specified and correctly estimated forecasting model for all relevant variables
- ▶ Boundedly Rational Expectations: Decisions makers act like "good econometricians" endowed with a forecasting model which is updated based on forecast errors over time

Organization of Talk

- Describe the economic environment, information structure, and expectation-formation assumptions
- Solve the model under different expectations assumptions
- 3 Calibrate, simulate, and compare results

Characterizing the Model

Representative agent, news-shock model of Jaimovich and Rebelo (2009) which features:

- Standard household labor-leisure/consumption-savings decision with novel preference structure to solve static comovement problem
- Costly to adjust investment and ability to vary utilization rate of existing physical capital to solve dynamic comovement problem
- Competitive markets for factors and fungible final good
- Exogenous stochastic processes for total factor productivity (TFP) and the conversion-rate of consumption to investment

News Shocks and Expectations

- ▶ Households receive news about future innovations to exogenous stochastic processes zero, four, and eight periods (quarters) in advance
- ➤ This information is incorporated into household forecasts of future fundamentals, which affects decisions today
- ► Two models of forecasting: rational expectations (RE) and shadow price learning (SPL)

Adaptive Learning and Bounded Rationality/Optimality

- ► Evans and McGough (2015) consider shadow price learning (SP-learning) to explore bounded optimality: agents use forecasts of state transition equations and shadow prices to take optimal actions given beliefs.
- Benefits of SP-learning:
 - Highlights the link between prices, opportunity costs, and behavior
 - Agents solve a simple two-period problem instead of an infinite-period problem - no dynamic programming!
 - Forecasting/optimizing mistakes corrected over time allows for structural shifts

- RE assumes households know the conditional distribution of all variables i.e. their perceptions about the laws of motion for all variables correspond exactly to the actual laws of motion
 - Implication: Forecast errors are uncorrelated over time
- SPI assumes households forecast the value of the factors which determine optimal decision making today i.e. the endogenous shadow prices which affect expected marginal cost/marginal benefit using a simple linear forecasting model
 - Implication: Speed of updating introduces inertia and allows for systematic mistakes; forecasting endogenous shadow prices suggests boundedly optimal behavior.

Representing the Model

Choose C_t , I_t , h_t , u_t , K_t , and S_t to maximize

$$\max \qquad \hat{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{\left(C_t - \frac{\psi h_t^{1+\frac{1}{\theta}} S_t}{1+\frac{1}{\theta}}\right)^{1-\sigma} - 1}{1-\sigma}$$
 subject to
$$S_t = C_t^{\gamma} S_{t-1}^{1-\gamma}$$

$$K_t = (1-\delta(u_t))K_{t-1} + I_t \left(1-\varphi\left(\frac{I_t}{I_{t-1}}\right)\right)$$

$$C_t + A_t I_t = W_t h_t + R_t \left(u_t K_{t-1}\right) + Profits_t$$

$$Y_t = z_t \left(u_t K_{t-1}\right)^{\alpha_k} \left(h_t\right)^{\alpha_h}$$

$$I_{-1}, K_{-1}, S_{-1} \text{ given}$$

Technology and Information

Exogenous stochastic processes indexed by $x = \{A, z\}$ evolve according to

$$\ln\left(\frac{x_t}{x}\right) = \rho_x \ln\left(\frac{x_{t-1}}{x}\right) + w_{x,t}^0$$
$$w_{x,t}^{k_x} = w_{x,t-1}^{k_x+1} + \sigma_x^{k_x} \nu_{x,t}^{k_x}$$

where $k_x = \{0, 1, ..., N_x\}$ and N_x is the length of the forecasting horizon for process x.

Example: One-period Ahead News

If agents receive news one and zero periods ahead...

$$\ln\left(\frac{x_t}{x}\right) = \rho_x \ln\left(\frac{x_{t-1}}{x}\right) + w_{x,t}^0$$

$$w_{x,t}^0 = w_{x,t-1}^1 + \sigma_x^0 \nu_{x,t}^0$$

$$w_{x,t}^1 = \sigma_x^1 \nu_{x,t}^1$$

$$\Rightarrow \ln\left(\frac{x_t}{x}\right) = \rho_x \ln\left(\frac{x_{t-1}}{x}\right) + \left(\underbrace{\sigma_x^0 \nu_{x,t}^0}_{\text{Unanticipated}} + \underbrace{\sigma_x^1 \nu_{x,t-1}^1}_{\text{Anticipated}}\right)$$

Solving the Model

Temporary equilibrium is of the form

$$\hat{E}_t G(u_t, x_t, x_{t+1}, \lambda_t, \lambda_{t+1}) = 0$$

where x and u are vectors of states and controls, respectively; λ_t is a vector of endogenous state shadow prices.

This paper (currently): replace non-linear transition equations for shadow prices with simple linear model used to forecast.

Compare resulting *restricted perceptions equilibrium* to REE of linearized system.

Updating the Forecasting Model: Adaptive Learning

The household's forecasting model for endogenous shadow prices is given by

$$\lambda_t = \tilde{H}_t' \tilde{x}_t \tag{2.1}$$

where \tilde{x}_t is data and coefficient estimates \tilde{H}_t are updated via recursive least squares according to

$$R_{H,t} = R_{t-1}^{H} + g_t \left(\tilde{x}_{t-1} \tilde{x}_{t-1}' - R_{t-1}^{H} \right)$$
 (2.2)

$$\tilde{H}_{t} = \tilde{H}_{t-1} + g_{t} R_{H,t}^{-1} \tilde{x}_{t-1} \left(\lambda_{t-1} - \tilde{H}'_{t-1} \tilde{x}_{t-1} \right)'$$
 (2.3)

where R_H is the matrix of sample second moments for regressors.

Methodology

- The model solutions from RE and SPL provide a recursive system of equations as a function of exogenous stochastic processes and parameters
- The system is "calibrated" using previous estimates for the parameters
- Simulations are conducted by subjecting the complete model to a sequence of random shocks
- Resulting simulated data is captured and summary statistics analyzed

Figure: SP-learning with constant gain ROLS. Solid red line is non-stochastic RE steady state.

Tests for Mean Equality (Model With News)

	RE Mean	SPL Mean	pval	95% Low	95% High
Consumption	0.533	0.568	0.000	-0.036	-0.032
Labor Supply	0.200	0.212	0.000	-0.013	-0.012
Investment	0.154	0.172	0.000	-0.019	-0.018
Output	0.687	0.736	0.000	-0.052	-0.046
Investment SP	0.000	0.060	0.000	-0.061	-0.059
Capital SP	4.250	4.043	0.000	0.193	0.219
Habit-adjustment SP	-154.107	-155.120	0.000	0.704	1.321

Table: t-tests for Data Generating Process, News, 230 Periods

Tests for Mean Equality (Model Without News)

	RE Mean	SPL Mean	pval	95% Low	95% High
Consumption	0.534	0.563	0.000	-0.031	-0.027
Labor Supply	0.200	0.210	0.000	-0.011	-0.010
Investment	0.154	0.169	0.000	-0.016	-0.014
Output	0.688	0.728	0.000	-0.043	-0.038
Investment SP	-0.000	0.034	0.000	-0.035	-0.034
Capital SP	4.248	4.068	0.000	0.167	0.192
Habit-adjustment SP	-154.085	-154.949	0.000	0.558	1.170

Table: t-tests for Data Generating Process, No News, 230 Periods

Comparison of Simulated Moments

	US Data	RE (News)	SPL (News)	RE (No News)	SPL (No News)
σ_h/σ_Y	0.968	0.714	0.716	0.714	0.715
σ_I/σ_Y	3.103	2.386	2.167	2.282	2.023
σ_C/σ_Y	0.712	0.737	0.706	0.746	0.725
corr(Y, h)	0.860	1.000	1.000	1.000	1.000
corr(Y, I)	0.890	0.850	0.879	0.922	0.912
corr(Y,C)	0.770	0.969	0.969	0.977	0.986

Table: Predicted Business Cycle Statistics

Conclusion

- ➤ SP-learning causes convergence to an RPE which is statistically different from the model's REE
- ▶ Difference is amplified by presence of news shocks due to persistent overestimation of benefit of future investment
- SP-learning as a tool for applied macroeconomists to improve model fit yields mixed results

Future Work

- Can agents learn to optimize?
 - ▶ If so, does news effect speed of convergence?
- 4 How does RPE compare to REE at higher order solutions?
- Or SPL and bounded optimality generate interesting distributions with heterogeneous agents?