Trabajo Práctico Nro 6 - NP-completitud

Ejercicio 1

Responder breve y claramente:

1. Dar un esquema de prueba de la transitividad de las reducciones polinomiales. *Ayuda: en clase hicimos lo propio con las reducciones generales*.

Queremos probar que las reducciones polinomiales tienen la propiedad de transitividad como las generales, es decir, si $L_1 \leq_p L_2$ y $L_2 \leq_p L_3$, entonces $L_1 \leq_p L_3$.

Suponemos lo siguiente:

- $L_1 \leq_p L_2$ mediante una función $f: \Sigma^* \to \Sigma^*$.
- $L_2 \leq_p L_3$ mediante una función $g: \Sigma^* \to \Sigma^*$.
- Por definición de las reducciones polinomiales:
 - f y g son computables en tiempo polinomial por máquinas de Turing deterministas.
 - Para todo $w,x\in \Sigma^*$:
 - $ullet w \in L_1 \iff f(w) \in L_2$,
 - $x \in L_2 \iff g(x) \in L_3$.

Ahora vamos a crear la reducción polinomial que demuestre la transitividad, para eso definimos una nueva función $h: \Sigma^* \to \Sigma^*$ como h(w) = g(f(w)), es decir, h aplica primero f, y luego g al resultado. Una vez definida la nueva función, tenemos que verificar la correctitud de la misma y que respete el tiempo polinomial:

- Correctitud:
 - $w \in L_1 \iff f(w) \in L_2$ y $f(w) \in L_2 \iff g(f(w)) \in L_3$, entonces, por transitividad $w \in L_1 \iff h(w) \in L_3$. Demostramos que h cumple con la condición de correctitud para una reducción de L_1 a L_3 .
- Tiempo polinomial:
 - Como f es computable en tiempo polinomial, sabemos que f(w) se computa en un $tiempo \leq poly(|w|)$.
 - A su vez, como g es computable en *tiempo polinomial*, sabemos que g(x) donde x ahora es f(w) se computa en un tiempo $\leq poly(poly(|w|))$.
 - Entonces, como f y g son computables en tiempo polinomial el $Tiempo(h(w)) \leq poly(poly(|w|))$ que sique siendo polinomial.

2. ¿Cuándo un lenguaje es NP - dificil y cuándo es NP - completo?

Un lenguaje L se considera NP - difícil si todo lenguaje de la clase NP se puede reducir polinomialmente a él.

Un lenguaje L es NP-completo si cumple dos condiciones:

- L pertenece a la clase NP.
- L es NP-dificil. Es decir, todo lenguaje de NP se reduce polinomialmente a L. En resumen, un lenguaje NP-completo es un problema que está en NP y es tan difícil como cualquier otro problema en NP.
- 3. ¿Por qué si $P \neq NP$, un lenguaje NP completo no pertenece a P?

Si $P \neq NP$, un lenguaje NP - completo no pertenece a P porque si un lenguaje NP - completo L perteneciera a P, entonces se demostraría que P = NP.

Si L fuera un lenguaje NP-completo entonces sabemos por definición que:

- L pertenece a la clase NP.
- L es NP dificil. Es decir, todo lenguaje de NP se reduce polinomialmente a L.

Ahora, suponiendo que nuestro lenguaje L también pertenece a la clase P podríamos considerar un lenguaje L_1 que pertenezca a NP y, debido a que L es NP-completo, sabemos que existe una reducción polinomial $L_1 \leq_p L$ y como suponemos que L pertenece a P, entonces L_1 también pertenece a P. Como L_1 era un lenguaje cualquiera en NP, habríamos demostrado que todo lenguaje en NP pertenece también a P ($NP \subseteq P$), pero sabemos que $P \subseteq NP$ por definición (todo lenguaje decidible en tiempo polinomial también puede ser verificado en tiempo polinomial, trivialmente sin necesidad de un certificado, o por una máquina de Turing no determinística que simula la determinística). Por lo tanto, si un lenguaje NP-completo perteneciera a P, se concluiría que $NP \subseteq P$ y $P \subseteq NP$, lo que implica que P = NP. Pero dado que la condición inicial es que $P \neq NP$, la suposición de que un lenguaje NP-completo pertenece a P debe ser falsa. Por lo tanto, si $P \neq NP$, ningún lenguaje NP-completo puede pertenecer a P.

4. Enunciar el esquema visto en clase para agregar un lenguaje a la clase NPC.

El esquema nos dice:

- Demostrar que L_1 pertenece a la clase NP.
- Elegir un lenguaje L que ya se sabe que es NP-completo (como SAT o algún otro lenguaje previamente probado como NP-completo) y construir una reducción polinomial

de L a L_1 . Esto implica encontrar una función f computable en tiempo polinomial tal que para toda cadena w, $w \in L$ si y solo si $f(w) \in L_1$.

Debido a la transitividad de las reducciones polinomiales, si todo lenguaje en NP se reduce a L, y L se reduce polinomialmente a L_1 , entonces todo lenguaje en NP también se reduce polinomialmente a L_1 , cumpliendo así la condición de que L_1 es NP-difícil. Al pertenecer también a NP, se concluye que L_1 es NP-completo.

5. ¿Cuándo se sospecha que un lenguaje de NP está en NPI?

Sospechamos que un lenguaje de NP está en NPI cuando:

- Se cree que el lenguaje no puede ser decidido por una Máquina de Turing en tiempo polinomial, lo que sugiere que no pertenecería a la clase P.
- No se ha encontrado una reducción polinomial desde algún lenguaje conocido que sea NP-completo hacia este lenguaje, lo que sugiere que no pertenecería a la clase NP-completo.

Ejercicio 2

Probar:

1. Si $L_1 \in NPC$ y $L_2 \in NPC$, entonces $L_1 \leq_P L_2$ y $L_2 \leq_P L_1$.

Sabemos que L_1 pertenece a la clase NP (por la primera condición de su NP-completitud). Como L_2 es NP-completo, la segunda condición de su definición nos dice que todo lenguaje en NP se reduce polinomialmente a L_2 . Dado que L_1 es un lenguaje en NP, podemos tomar que $L_1 \leq_P L_2$.

De manera análoga, sabemos que L_2 pertenece a la clase NP (por la primera condición de su NP-completitud). Como L_1 es NP-completo, la segunda condición de su definición nos dice que todo lenguaje en NP se reduce polinomialmente a L_1 . Dado que L_2 es un lenguaje en NP, podemos tomar que $L_2 \leq_P L_1$.

En conclusión, si L_1 y L_2 son ambos lenguajes NP-completos, entonces, se deduce que $L_1 \leq_P L_2$ y $L_2 \leq_P L_1$.

2. Si $L_1 \leq_P L_2$, $L_2 \leq_P L_1$, y $L_1 \in NPC$, entonces $L_2 \in NPC$. Ayuda: recurrir directamente a la definición de NPC.

Para demostrar que $L_2 \in NPC$, debemos probar dos cosas para L_2 :

- $L_2 \in NP$.
- Para todo $L_i \in NP$, $L_i \leq_P L_2$ (L_2 es NP-dificil).

Por teorema sabemos que si $L_2 \leq_p L_1$ y $L_1 \in NP$, entonces $L_2 \in NP$. Por lo tanto, hemos demostrado que L_2 pertenece a la clase NP.

Por propiedad sabemos que las reducciones polinomiales son transitivas. Esto significa que si existe una reducción polinomial de L_i a L_1 ($L_i \leq_P L_1$) y una reducción polinomial de L_1 a L_2 ($L_1 \leq_P L_2$), entonces existe una reducción polinomial de L_i a L_2 ($L_i \leq_P L_2$). Como esto se cumple para todo $L_i \in NP$, se demuestra que todo lenguaje en NP se puede reducir polinomialmente a L_2 , lo que significa que L_2 es NP - dificil.

En conclusión, se demuestra la NP-completitud para L_2 .

Ejercicio 3

Un lenguaje es CO-NP-completo sii todos los lenguajes de CO-NP se reducen polinomialmente a él. Probar que SAT^C es CO-NP-completo. Ayuda: $L_1 \leq L_2$ sii $L_1^C \leq L_2^C$.

En la teoría se nos explica que el lenguaje SAT es NP-completo por lo tanto, por definición:

- SAT pertenece a NP.
- Para todo $L_i \in NP$, $L_i \leq_P SAT$ (SAT es NP-dificil).

Al SAT pertenecer a NP sabemos que por definición su complemento debe pertenecer a CO-NP, es decir, SAT^C pertenece a CO-NP.

Al saber que para todo $L_i \in NP$, $L_i \leq_P SAT$ (SAT es NP-dificil) por definición todo $L_i^C \in CO-NP$, $L_i^C \leq_p SAT^C$, de esta forma demostramos que todos los lenguajes de CO-NP se reducen polinomialmente a SAT^C , por lo tanto, SAT^C pertenece a CO-NP-completo.

Ejercicio 4

Sean los lenguajes A y B, tales que $A \neq \emptyset$, $A \neq \Sigma *$, y $B \in P$. Probar: $(A \cap B) \leq_P A$. Ayuda: intentar con una reducción polinomial que, dada una cadena w, lo primero que haga sea chequear si $w \in B$, teniendo en cuenta que existe un elemento e que no está en A.

Cosas que sabemos:

- Al $A \neq \emptyset$, $A \neq \Sigma *$ nos damos cuenta que existe al menos una cadena e que no está en A.
- Al $B \in P$ sabemos que existe una máquina de Turing M_B que decide B en tiempo polinomial.

Idea general: Primero tomamos la cadena w y verificamos que $w \in B$ utilizando la máquina M_B que sabemos que decide B en tiempo polinomial, si $w \notin B$ transformamos w a esta cadena e que sabemos que no está en A, si $w \in B$ mantenemos la cadena w para verificar que pertenezca a A.

Reducción: vamos a tener la función $f(w) = w \text{ si } w \in B \text{ } o \text{ } e \text{ si } w \notin B$. La función se computa en tiempo polinomial ya que las tareas que realiza pueden ser:

- Mantener la misma cadena w que es *polinomial*.
- Cambiar w por la constante e que tomamos en cuenta, que también es polinomial.

Verificación de la correctitud:

- 1. Si $w \in A \cap B$:
 - Entonces $w \in B \to f(w) = w$.
 - Como $w \in A \rightarrow f(w) = w \in A$.
- Entonces $f(w) \in A$.
- 2. Si $w \notin A \cap B$:
 - Si $w \notin B \to f(w) = e$, pero $e \notin A$ por construcción $\to f(w) \notin A$.
 - $\bullet \ \ \mathsf{Si} \ w \in B \ \mathsf{pero} \ w \not \in A \to f(w) = w \not \in A.$
- En ambos casos, $f(w) \notin A$.

Ejercicio 5

Sea el lenguaje

 $SH-s-t=\{(G,s,t)\mid G \text{ es un grafo no dirigido y tiene un camino de Hamilton del vértice s al vértice}$. Un grafo G=(V,E) tiene un camino de Hamilton del vértice s al vértice t sii G tiene un camino entre s y t que recorre todos los vértices restantes una sola vez. Probar que SH-s-t es NP-completo. Ayuda: se sabe que CH, el lenguaje correspondiente al problema del circuito hamiltoniano, es NP-completo.

Para verificar que SH-s-t es NP-completo tenemos que verificar 2 cosas:

• SH-s-t es NP, es decir, existe un certificado sucinto verificable en tiempo polinomial.

• SH - s - t es NP - dificil.

Como certificado sucinto verificable en tiempo polinomial nosotros enviamos el camino de aristas desde s hasta t que cumple la condición para pertenecer a SH-s-t. Es sucinto porque:

- Podemos verificar que todas las aristas del certificado están en la lista de aristas del grafo G que recibimos de entrada en un *tiempo polinomial* $O(|E|^2)$.
- El verificar el camino consiste en recorrer la lista de vértices del grafo G que recibimos de entrada, por cada vértice verificamos que esté una vez dentro de la lista de aristas del certificado. Teniendo en cuenta que el primer vértice a chequear sea el vértice s y el último vértice a chequear sea el vértice t. Todo esto se puede hacer en tiempo polinomial con $O(|V| \cdot |E|)$.

Teniendo en cuenta el certificado que usamos, el orden de complejidad para la verificación en el peor de los casos es de $O(G^2)$ que es polinomial. De esta forma verificamos que $SH-s-t\in NP$.

Para verificar que SH-s-t es NP-dificil vamos a hacer una reducción polinomial de CH a SH-s-t ($SH-s-t \leq_p CH$), al $CH \in NP-completo$ si llegamos a poder realizar esta reducción demostraríamos que SH-s-t es NP-dificil.

Idea general: Si tenemos un grafo G que pertenece a CH, es decir, tiene un circuito hamiltoniano lo que vamos a hacer es:

- Agregar el vértice s como un nuevo vecino a un nodo cualquiera de G, modificando las listas V y E del grafo G.
- Agregar el vértice t como un nuevo vecino a todos los vecinos originales del nodo que elegimos anteriormente de G, modificando las listas V y E del grafo G.
 Al hacer estas modificaciones garantizamos que si el grafo G originalmente tenía un circuito hamiltoniano, ahora tendrá un camino hamiltoniano desde el vértice s al vértice t.

Reducción: vamos a tener la función f((V, E)) = (V', E') donde V' es la nueva lista de vértices con s y t, y E' es la nueva lista de aristas con las aristas necesarias para cumplir la idea general de la reducción. La función se computa en un *tiempo polonomial* ya que:

- Agregar 2 vértices nuevos a la lista de vértices se hace en tiempo polinomial.
- Seleccionar un vértice cualquiera y agregar una nueva arista (s, vértice elegido) a la lista de aristas se hace en *tiempo polinomial*.
- Verificar los vecinos originales del vértice elegido y agregar nuevas aristas
 (t, vecino del vértice elegido) en la lista de aristas se hace en tiempo polinomial.

Verificación de la correctitud:

• Si $G(V,E) \in CH o f(V,E) \in SH-s-t$:

• Si G(V,E)
otin CH o f(V,E)
otin SH - s - t:

