PATENT

In re Application of: Attorney Docket No.: OSLER1120 Abdelhamid Sayari

Application No.: 10/539,225 Filed: December 7, 2005

Page 2

IN THE CLAIMS

Please amend claims 1, 9, and 17-23, as shown. The following listing of the claims replaces all previous listings.

- 1. (Currently amended) A water-tolerant, regenerable adsorbent for use in an acid gas dry scrubbing process, said adsorbent comprising surface or framework amine-functionalised mesoporous silica or organosilica, wherein amino groups are readily accessible within the pore channels volumes, pore surfaces or pore walls of the mesoporous silica or organosilica, and wherein the adsorbent has a carbon dioxide adsorption capacity of at least 2.50 cc/g at standard temperature and pressure.
- The adsorbent of claim 1, wherein the amine-functionalised mesoporous 2. (Original) silica or organosilica comprises amine-containing molecules that are covalently bound to the surface of the pore walls.
- The adsorbent of claim 2, wherein the amine-containing molecules are 3. (Original) amine-containing trialkoxysilane or trichlorsilane.
- The adsorbent of claim 1, wherein the pore walls of the aminefunctionalised mesoporous silica or organosilica has a hydrophobic surface and amine-containing molecules are dispersed within the hydrophobic surface.
- 5. (Original) The adsorbent of claim 4, wherein the amine-containing molecules are alkylamines, arylamines or alkylarylamines.
- The adsorbent of claim 5, wherein the alkylamines are selected from the group consisting of monoethanolamine (MEA), diethanolamine (DEA), diisopropylamine (DIP), N-methyldiethanolamine (MDEA), 2-amino-2-methyl-1-propanol (AMP), polyethylenimine, β , β '-hydroxyaminoethylether and combinations thereof.

In re Application of:

PATENT Attorney Docket No.: OSLER1120 Abdelhamid Sayari

Application No.: 10/539,225 Filed: December 7, 2005

Page 3

The adsorbent of claim 1, wherein the mesoporous silica or organosilica comprises an amine-functionalised framework.

- The adsorbent according to claim 1, wherein the acid gas is 8. (Previously presented) carbon dioxide.
- 9.(Currently amended) A method of dry scrubbing comprising the step of contacting a gaseous stream containing an acid gas to be removed with water-tolerant, regenerable adsorbent comprising surface or framework amine-functionalised mesoporous silica or organosilica, wherein amino groups are readily accessible within the pore channels volumes, pore surfaces or pore walls of the mesoporous silica or organosilica.
- 10. (Original) The method according to claim 9, wherein the amine-functionalised mesoporous silica or organosilica comprises amine-containing molecules that are covalently bound to the surface of the pore walls.
- 11. (Original) The method according to claim 9, wherein the pore walls of the aminefunctionalised mesoporous silica or organosilica has a hydrophobic surface and amine-containing molecules are dispersed within the hydrophobic surface.
 - 12. (Canceled).
- 13. (Previously presented) A process for preparing an adsorbent according to claim 2, comprising:
 - providing a mesoporous silica or organosilica; and (a)
- (b) grafting an amine-containing silane to the surface of the mesoporous silica or organosilica to produce the amine-functionalised mesoporous silica or organosilica.
- 14. (Previously presented) A process for preparing an adsorbent according to claim 2, comprising:

In re Application of:

Abdelhamid Sayari

Attorney Docket No.: OSLER1120

Application No.: 10/539,225 Filed: December 7, 2005

Page 4

(a) mixing a source of silica or organosilica, an amine-containing silane and an amphiphile molecule under conditions that facilitate self assembly to produce the amine-functionalised mesoporous silica or organosilica.

- 15. (Previously presented) A process for preparing an adsorbent according to claim 2, comprising:
 - (a) providing a mesoporous silica or organosilica;
- (b) grafting an reactive group-containing silane to the surface of the mesoporous silica or organosilica; and
- (c) treating the reactive group-containing mesoporous silica or organosilica with an amine to produce the amine-functionalised mesoporous silica or organosilica.
- 16. (Previously presented) A process for preparing an adsorbent according to claim 2, comprising:
- (a) mixing a source of silica or organosilica, a reactive group-containing silane and an amphiphile molecule to produce the reactive group-containing mesoporous silica or organosilica; and
- (b) treating the reactive group-containing mesoporous silica or organosilica with an amine to produce the amine-functionalised mesoporous silica or organosilica.
- 17. (Currently amended) A process for preparing an adsorbent according to claim 4, comprising:
- (a) preparing a mesoporous silica or organosilica in the presence of a swelling agent and selectively extracting the swelling agent to produce a hydrophobic layer on the surface of the mesoporous silica or organosilica; and
- (b) treating the mesoporous silica or organosilica produced in step (a) with an amine to produce the amine-functionalised mesoporous silica or organosilica.

In re Application of:

Abdelhamid Sayari

Application No.: 10/539,225 Filed: December 7, 2005

Page 5

(c) mixing a silica source with an amphiphilic molecule having at least one amino

group under conditions that facilitate self assembly of the silica source and the amphiphile to

PATENT

Attorney Docket No.: OSLER1120

produce the amine-functionalised mesoporous silica or organosilica,

wherein, the amine-functionalised mesoporous silica or organosilica is a mesoporous silica or organosilica having pores filled with amine containing amphiphilic molecules.

18. (Currently amended) A process for preparing an adsorbent according to claim 1,

comprising:

(a) mixing a silica source with an amphiphilic molecule having at least one amino

group under conditions that facilitate self assembly of the silica source and the amphiphile to

produce the amine-functionalised mesoporous silica or organosilica,

wherein the amine-functionalized mesoporous silica or organosilica is a mesoporous silica or organosilica having pores filled with amine-containing amphiphilic molecules.

(a) - reacting a silica source with an amphilic molecule; and

(b) simultaneously or subsequently adding an amine-containing swelling agent.

19. (Currently amended) A process for preparing an adsorbent according to claim 1,

comprising:

(a) reacting a silica source with an amphilic molecule; and

(b) simultaneously or subsequently adding an amine-containing swelling agent.

(a) mixing a reactive-group-containing silica source with an amphiphilic molecule to

produce a mesoporous silica or organosilica having a framework comprising reactive sites; and

(b) introducing amino groups at the reactive sites to produce the amine functionalised

mesoporous silica or organosilica.

WEST\21660463.1 354891-000004 In re Application of:

Abdelhamid Sayari

Application No.: 10/539,225 Filed: December 7, 2005

Page 6

20. (Currently amended) A system process for removal of an acid gas from a gaseous stream, comprising:

(a) mixing a reactive group-containing silica source with an amphiphilic molecule to produce a mesoporous silica or organosilica having a framework comprising reactive sites; and

PATENT

Attorney Docket No.: OSLER1120

- (b) introducing amino groups at the reactive sites to produce the amine-functionalised mesoporous silica or organosilica
 - (a) two or more sorbent beds comprising the adsorbent of claim 1;
 - (b) valve means for controlling gas flow through the sorbent beds; and;
 - (c) pump means for controlling gas pressure in the system.
- 21. (Currently amended) The A system for removal of an according to claim 21, wherein the acid gas is carbon dioxide from a gaseous stream, comprising:
 - (a) two or more sorbent beds comprising the adsorbent of claim 1;
 - (b) valve means for controlling gas flow through the sorbent beds; and;
 - (c) pump means for controlling gas pressure in the system.
- 22. (Currently amended) The system according to claim 21, wherein the adsorbent is pelletized with a binder that is an inert secondary material acid gas is carbon dioxide.
- 23. (Currently amended) The system according to claim 21, wherein the adsorbent is pelletized with a binder that is an active inert secondary material.
- 24. (Previously presented) The system according to claim 21, wherein the adsorbent is pelletized with a binder that is an active secondary material.
- 25. (Previously presented) The method according to claim 9, wherein the mesoporous silica or organosilica comprises an amine-functionalized framework.