T3p Elektrodynamik

30.07., SS 2013

Hauptklausur

Prof. Buchalla

Aufgabe 1: Kurze Fragen

- a) Zeigen Sie, dass die Einheit des magnetischen Feldes im cgs-System gegeben ist durch [B] = $g^{1/2}$ cm^{-1/2}s⁻¹.
- b) Eine Punktladung Q befinde sich im Ursprung eines kartesischen Koordinatensystems. Wie groß ist der Fluss des von ihr erzeugten elektrischen Feldes durch die Kugeloberfläche $(x-2a)^2 + y^2 + z^2 = a^2$?
- c) Zeigen Sie die Identität rot(rot \vec{F}) = grad(div \vec{F}) $\varDelta \vec{F}$. Verwenden Sie die Indexschreibweise und den Levi-Civita-Tensor ϵ_{ijk} .
- d) Leiten Sie aus den freien Maxwell-Gleichungen ($\rho = 0$, $\vec{j} = 0$) die Wellengleichung für das elektrische Feld \vec{E} her.
- e) Die Intensität einer monochromatischen ebenen elektromagnetischen Welle in einem homogenen Dielektrikum mit Brechungsindex n ist

$$I = c/(8\pi) nE_0^2$$

wobei E_o die reelle Amplitude der elektrischen Feldstärke bezeichnet. Bei senkrechtem Einfall der Welle auf eine ebene Trennfläche aus einem Dielektrikum mit Brechungsindex n in eines mit Brechungsindex n' sind die elektrischen Feldamplituden der transmittierten (E_o') und der reflektierten Welle (E_o'') gegeben durch

$$E_0' / E_0 = (2n) / (n + n')$$
 & $E_0'' / E_0 = (n - n') / (n + n')$

Berechnen Sie den Transmissionsgrad T und den Reflexionsgrad R. Zeigen Sie, dass T + R = 1.

f) Eine ebene elektromagnetische Welle im Vakuum hat das elektrische Feld

$$\vec{E}(\vec{x},t) = E_o e^{i(kx - \omega t)}$$

Berechnen Sie daraus das magnetische Feld der Welle als Funktion $k = \vec{k} / | \vec{k} |$ und \vec{Eo} . Hinweis: \vec{Eo} soll E_o mit Vektorpfeil bedeuten. k = ... soll k Dach bezeichnen.

g) Gegeben sei das Vektorfeld $\vec{F}(x) = -\vec{x} / r^3$, $r \equiv |\vec{x}|$. Wie groß ist das Linienintegral $\int \vec{F} \, d\vec{l}$ entlang der geraden Verbindung der Punkte $P_1 = (-a, 0, 0)$ und $P_2 = (0, b, 0)$?

Aufgabe 2: Bewegter Draht

Ein unendlich langer gerader Draht von vernachlässigbar dünnem Querschnitt befinde sich im Inertialsystem K' in Ruhe und trage eine homogene Linienladungsdichte λ . Der Draht liege auf der z'-Achse von K'. Das System K' und der Draht bewegen sich gegenüber dem Laborsystem K mit der konstanten Geschwindigkeit β in Richtung der z'-Achse, die mit der z-Achse von K zusammenfällt. Die Koordinaten von K und K' sind verknüpft durch (Lichtgeschwindigkeit c=1)

$$\begin{pmatrix} t \\ z \end{pmatrix} = \gamma \quad \begin{pmatrix} 1 & b \\ b & 1 \end{pmatrix} \quad \begin{pmatrix} t' \\ z' \end{pmatrix} \qquad \text{mit } \mathbf{x} = \mathbf{x}', \, \mathbf{y} = \mathbf{y}' \text{ und } \mathbf{b} = \beta$$

- a) Bestimmen Sie das elektrische und magnetische Feld, \vec{E}' und \vec{B}' , im Ruhesystem des Drahts in Zylinderkoordinaten (z', r', ϕ'). Verwenden Sie $\vec{E}' = E'$ \vec{er} mit \vec{er} Einheitsvektor in r.
- b) Geben Sie Potentiale Φ' und A_z' an, die den Feldern \vec{E}' und \vec{B}' entsprechen. Hinweise: $A_x' = A_y' = 0$; es sei $\Phi'(r = a) = 0$
- c) Berechnen Sie Φ und A_z in K aus Φ' und A_z' durch eine Lorentztransformation ($A_x = A_y = 0$).
- d) Berechnen Sie \vec{E} und \vec{B} in K aus Φ und A_z .
- e) Überprüfen Sie mit den expliziten Ausdrücken für \vec{E}' , \vec{B}' und \vec{E} , \vec{B} die Lorentz-Invarianz von $\vec{E} \cdot \vec{B}$ und $\vec{E}^2 \vec{B}'^2$.
- f) Geben Sie Ladungs- und Stromdichte ρ' und j_z' in K' an. Zeigen Sie, dass in K gilt $(j_x = j_y = j_x' = j_y' = 0)$

$$\rho = \gamma \lambda \delta(x) \delta(y) \hspace{1cm} \& \hspace{1cm} j_z = \gamma \beta \lambda \delta(x) \delta(y)$$

g) Betrachten Sie einen Kreiszylinder mit Radius r und Länge l um die z-Achse in K (Zylinderachse & z-Achse fallen zusammen). F sei die gesamte Zylinderoberfläche, G die kreisförmige Grundfläche des Zylinders. Skizzieren Sie die Anordnung. Zeigen Sie, dass in K die folgenden Maxwell-Gleichungen erfüllt sind:

$$\oint_F \vec{E} \, d\vec{\sigma} = 4\pi Q \qquad \& \qquad \oint_{\partial G} \vec{B} \, d\vec{s} = 4\pi I + \partial + \int_G \vec{E} \, d\vec{\sigma}$$