1N91x, 1N4x48, FDLL914, FDLL4x48

Small Signal Diode

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

Part Number	Marking	Package	Packing Method
1N914	914	DO-204AH (DO-35)	Bulk
1N914-T50A	914	DO-204AH (DO-35)	Ammo
1N914TR	914	DO-204AH (DO-35)	Tape and Reel
1N914ATR	914A	DO-204AH (DO-35)	Tape and Reel
1N914B	914B	DO-204AH (DO-35)	Bulk
1N914BTR	914B	DO-204AH (DO-35)	Tape and Reel
1N916	916	DO-204AH (DO-35)	Bulk
1N916A	916A	DO-204AH (DO-35)	Bulk
1N916B	916B	DO-204AH (DO-35)	Bulk
1N4148	4148	DO-204AH (DO-35)	Bulk
1N4148TA	4148	DO-204AH (DO-35)	Ammo
1N4148-T26A	4148	DO-204AH (DO-35)	Ammo
1N4148-T50A	4148	DO-204AH (DO-35)	Ammo
1N4148TR	4148	DO-204AH (DO-35)	Tape and Reel
1N4148-T50R	4148	DO-204AH (DO-35)	Tape and Reel
1N4448	4448	DO-204AH (DO-35)	Bulk
1N4448TR	4448	DO-204AH (DO-35)	Tape and Reel
FDLL914	Black	SOD-80	Tape and Reel
FDLL914A	Black	SOD-80	Tape and Reel
FDLL914B	Black	SOD-80	Tape and Reel
FDLL4148	Black	SOD-80	Tape and Reel
FDLL4148-D87Z	Black	SOD-80	Tape and Reel
FDLL4448	Black	SOD-80	Tape and Reel
FDLL4448-D87Z	Black	SOD-80	Tape and Reel

DO-35 Cathode is denoted with a black band

THE PLACEMENT OF THE EXPANSION GAP HAS NO RELATIONSHIP TO THE LOCATION OF THE CATHODE TERMINAL

SOD-80 COLOR BAND MARKING

DEVICE 1ST BAND FDLL914 FDLL914A FDLL914B FDLL4148 FDLL4448 BLACK BLACK BLACK BLACK BLACK

-1st band denotes cathode terminal

1N91x, 1N4x48, FDLL914, FDLL4x48

ABSOLUTE MAXIMUM RATINGS (Values are at T_A = 25°C unless otherwise noted) (Note 1)

Rating	Symbol	Value	Unit
Maximum Repetitive Reverse Voltage	V_{RRM}	100	V
Average Rectified Forward Current	I _O	200	mA
DC Forward Current	I _F	300	mA
Recurrent Peak Forward Current	I _f	400	mA
Non-repetitive Peak Forward Surge Current Pulse Width = 1.0 s	I _{FSM}	1.0	Α
Pulse Width = 1.0 μs		4.0	Α
Storage Temperature Range	T _{STG}	-65 to +200	°C
Operating Junction Temperature Range	TJ	-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Power Dissipation	P_{D}	500	mW
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	300	°C

ELECTRICAL CHARACTERISTICS (Values are at $T_A = 25$ °C unless otherwise noted) (Note 2)

Symbol	Pai	rameter	Conditions	Min	Max	Unit
V_{R}	Breakdown Voltage		I _R = 100 μA	100		V
			I _R = 5.0 μA	75		V
V _F	Forward Voltage	914B / 4448	I _F = 5.0 mA	0.62	0.72	V
		916B	I _F = 5.0 mA	0.63	0.73	V
		914 / 916 / 4148	I _F = 10 mA		1.0	V
		914A / 916A	I _F = 20 mA		1.0	V
		916B	I _F = 20 mA		1.0	V
		914B / 4448	I _F = 100 mA		1.0	V
I _R	Reverse Leakage		V _R = 20 V		0.025	μΑ
			V _R = 20 V, T _A = 150°C		50	μΑ
			V _R = 75 V		5.0	μΑ
C _T	Total Capacitance	916/916A/916B/4448	V _R = 0, f = 1.0 MHz		2.0	pF
		914/914A/914B/4148	V _R = 0, f = 1.0 MHz		4.0	pF
t _{rr}	Reverse Recovery	- Fime	$I_F = 10 \text{ mA}, V_R = 6.0 \text{ V (600 mA)}$ $I_{rr} = 1.0 \text{ mA}, R_L = 100 \Omega$		4.0	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Non–recurrent square wave $P_W = 8.3$ ms.

^{1.} These ratings are limiting values above which the serviceability of the diode may be impaired.

1N91x, 1N4x48, FDLL914, FDLL4x48

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Reverse Voltage vs. Reverse Current B_V – 1.0 to 100 μA

Figure 3. Forward Voltage vs. Forward Current V_F – 1 to 100 μA

Figure 5. Forward Voltage vs. Forward Current $V_F - 10$ to 800 mA

GENERAL RULE: The Reverse Current of a diode will approximately double for every ten (10) Degree C increase in Temperature

Figure 2. Reverse Current vs. Reverse Voltage I_R – 10 to 100 V

Figure 4. Forward Voltage vs. Forward Current V_F – 0.1 to 10 mA

Figure 6. Forward Voltage vs. Ambient Temperature V_F - 0.01 - 20 mA (- 40 to +65°C)

1N91x, 1N4x48, FDLL914, FDLL4x48

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Total Capacitance

Figure 9. Average Rectified Current ($I_{F(AV)}$) vs. Ambient Temperature (I_A)

Figure 8. Reverse Recovery Time vs. Reverse Recovery Current

Figure 10. Power Derating Curve

AXIAL LEAD CASE 017AG ISSUE O

DATE 31 AUG 2016

DOCUMENT NUMBER:	98AON13443G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	AXIAL LEAD		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

MiniMELF / SOD-80 CASE 100AD ISSUE O

DATE 30 APR 2012

DOCUMENT NUMBER:	98AON79582E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	MINIMELF / SOD-80		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

<u>1N914 FDLL4148 FDLL914 1N4148 1N4148TR 1N4448 1N914A 1N914ATR 1N914B 1N914BTR 1N916</u> <u>1N916B FDLL4448 FDLL914A FDLL914B 1N4448TR 1N4148TA 1N914TR 1N916TR 1N4148-T50R 1N4148-T50A 1N4148-T50A 1N914-T50A FDLL4148-D87Z FDLL4448-D87Z</u>