3.1. Pangkat

Pangkat dari sebuah bilangan adalah suatu indeks yang menunjukkan banyaknya perkalian bilangan yang sama secara beruntun. Notasi x^n berarti bahwa x harus dikalikan degan x itu sendiri sebanyak n kali. Notasi bilangan berpangkat sangat berguna untuk merumuskan penulisan bentuk perkalian sacara ringkas. Misalnya, $7 \times 7 \times 7 \times 7 \times 7$, cukup situlis dengan 7^5 .

3.1.1. Kaidah Pemangkatan Bilangan

Kaidah pemangkatan bilangan yang perlu diperhatikan adalah sebagai berikut:

1. $x^0 = 1$, untuk $x \neq 0$.

Misalnya: $4^0 = 1$.

2. $x^1 = x$, untuk $x \neq 0$.

Misalnya: $4^1 = 4$.

 $3. \quad x^{-n} = \frac{1}{x^n} \, .$

Misalnya: $4^{-2} = \frac{1}{4^2} = \frac{1}{16}$

4. $x^{\frac{a}{b}} = \sqrt[b]{x^a}$.

Misalnya: $8^{\frac{1}{3}} = \sqrt[3]{8^1} = \sqrt[3]{8} = 2$

 $5. \quad \left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$

Misalnya: $\left(\frac{3}{5}\right)^2 = \frac{3^2}{5^2} = \frac{9}{25}$

6. $(x^a)^b = x^{ab}$.

Misalnya: $(3^2)^4 = 3^{2x4} = 3^8 = 6.561$.

7.
$$x^{a^b} = x^c$$
, dengan $c = a^b$.

Misalnya: $3^{2^4} = 3^{16} = 43.046.721$.

3.1.2. Kaidah Perkalian Bilangan Berpangkat

Kaidah perkalian bilangan berpangkat adalah sebagai berikut:

1.
$$x^a \cdot x^b = x^{a+b}$$

Misalnya: $3^2 \cdot 3^4 = 3^{2+4} = 3^6 = 729$.

2.
$$x^a \cdot y^a = (xy)^a$$

Misalnya: 3^2 . $5^2 = (3.5)^2 = 15^2 = 225$.

3.1.3. Kaidah Pembagian Bilangan Berpangkat

Kaidah pembagian bilangan berpangkat adalah sebagai berikut:

1.
$$x^a : x^b = x^{a-b}$$

Misalnya: $3^2 : 3^4 = 3^{2-4} = 3^{-2} = 1/9$.

2.
$$x^a : y^a = (x/y)^a$$

misalnya: $3^2 : 5^2 = (3/5)^2 = 9/25$.

3.2. Akar

Akar merupakan bentuk lain untuk menyatakan bilangan berpangkat. Akar dari sebuah bilangan adalah basis yang memenuhi bilangan tersebut berkenaan dengan pangkat akarnya. Berdasarkan konsep pemangkatan, diketahui bahwa jika bilangan-bilangan yang sama (misalnya x) dikalikan sejumlah tertentu sebanyak (katakanlah) a kali, maka dapat ditulis menjadi x^a , dalam hal ini x disebut basis sedangkan a disebut pangkat. Misalkan $x^a = m$ maka x dapat juga disebut sebagai akar pangkat a dari a0, yang jika dituliskan dalam bentuk akar menjadi a1, a2, a3, a4, a5, a5, a6, a8, a8, a8, a9, a9

Misalnya: $\sqrt{9} = 3$ sebab $3^2 = 9$.

Secara umum, bilangan berpangkat dan bentuk akar dapat dilihat pada hubungan berikut:

$$\sqrt[a]{m} = x$$
 sebab $x^a = m$.

3.2.1. Kaidah Pengakaran Bilangan

Ada beberapa kaidah dalam pengakaran suatu bilangan yaitu:

1.
$$\sqrt[b]{x} = x^{\frac{1}{b}}$$

Misalnya:
$$\sqrt[3]{64} = 64^{\frac{1}{3}} = 4$$

$$2. \quad \sqrt[b]{x^a} = x^{\frac{a}{b}}$$

Misalnya:
$$\sqrt[5]{3^2} = 3^{\frac{2}{5}} = 1,55$$

3.
$$\sqrt[b]{xy} = \sqrt[b]{x} \cdot \sqrt[b]{y}$$

Misalnya:
$$\sqrt[3]{8 \times 64} = \sqrt[3]{8} \sqrt[3]{64} = 2 \times 4 = 8$$

$$4. \quad \sqrt[b]{\frac{x}{y}} = \frac{\sqrt[b]{x}}{\sqrt[b]{y}}$$

Misalnya:
$$\sqrt[3]{\frac{8}{64}} = \frac{\sqrt[3]{8}}{\sqrt[3]{64}} = \frac{2}{4} = 0,5$$

3.2.2. Kaidah Penjumlahan dan Pengurangan Bilangan Bentuk Akar

Bilangan-bilangan dalam bentuk akar hanya dapat dijumlahkan atau dikurangkan apabila akar-akarnya sejenis. Perhatikan kaidah berikut:

$$m\sqrt[b]{x^a} \pm n\sqrt[b]{x^a} = (m\pm n)\sqrt[b]{x^a}$$

Misalnya:
$$5\sqrt{3} + 2\sqrt{3} = 7\sqrt{3}$$

3.2.3. Kaidah Perkalian dan Pembagian Bilangan Bentuk Akar

Kaidah perkalian dan pembagian bilangan bentuk akar adalah sebagai berikut:

1.
$$\sqrt[b]{x}$$
 . $\sqrt[b]{y} = \sqrt[b]{xy}$

(Kaidah ini identik dengan kaidah pengakaran bilangan point 3).

Misalnya:
$$\sqrt[3]{8}$$
 . $\sqrt[3]{64} = \sqrt[3]{8 \times 64} = \sqrt[3]{512} = 8$

$$2. \quad \sqrt[b]{\sqrt[c]{x^a}} = \sqrt[bc]{x^a}$$

Misalnya:
$$\sqrt{\sqrt[3]{15625}} = 2 \times \sqrt[3]{15625} = \sqrt[6]{15625} = 5$$

$$3. \quad \frac{\sqrt[b]{x}}{\sqrt[b]{y}} = \sqrt[b]{\frac{x}{y}}$$

(Kaidah ini identik dengan kaidah pengakaran bilangan point 4).

Misalnya:
$$\frac{\sqrt[3]{8}}{\sqrt[3]{64}} = \sqrt[3]{\frac{8}{64}} = \sqrt[3]{\frac{1}{8}} = \frac{1}{2}$$

3.3. Logaritma

Logaritma merupakan invers dari bilangan bentuk berpangkat atau eksponen, sehingga antara eksponen dan logaritma mempunyai hubungan seperti berikut:

 $a^x = b$ jika dan hanya jika $x = a \log b$, untuk b > 0, a > 0, dan $a \ne 1$ dengan a disebut bilangan pokok, b disebut numerus, x disebut hasil logaritma.

Bentuk $x = a \log b$ dibaca " x adalah logaritma dari b dengan bilangan pokok a". Hubungan antara bentuk logaritma, bentuk pangkat, dan bentuk akar dapat dilihat pada bentuk berikut:

Bentuk Pangkat Bentuk Akar Bentuk Logaritma
$$a^{x} = b \qquad \qquad \sqrt[x]{b} = a \qquad \qquad a \log b = x$$

Perhatikan bahwa, suku-suku di ruas kanan menunjukkan bilangan yang dicari atau hendak dihitung pada masing-masing bentuk. Dari ketiga bentuk tersebut, maka bentuk logaritma $^5 \log 625 = 4$ sebab $5^4 = 625$ atau $\sqrt[4]{625} = 5$.

3.3.1. Basis Logaritma

Basis atau bilangan pokok logaritma selalu bernilai positif dan tidak sama dengan 1. Logaritma dengan basis 10 cukup ditulis $\log b$, bukan $^{10} \log b$. Sementara untuk logaritma dengan basis e dengan $e = 2,718287 \approx 2,72$, maka $^e \log b = \ln b$. Bentuk logaritma dengan basis e biasa disebut dengan logaritma natural.

3.3.2. Kaidah-Kaidah Logaritma

Beberapa kaidah tentang bentuk logaritma adalah sebagai berikut:

1. $\log a \cdot b = \log a + \log b$

$$2. \quad \log\left(\frac{a}{b}\right) = \log a - \log b$$

$$3. \quad {}^{a} \log b \cdot {}^{b} \log c = {}^{a} \log c$$

4.
$$\log a^n = n \log a$$

5.
$$a^n \log b = a \log b^{\frac{1}{n}} = \frac{1}{n} \log b$$

$$6. \quad {}^{a}\log b = \frac{\log b}{\log a} = \frac{1}{{}^{b}\log a}$$

$$7. \quad {}^{a}\log b = \frac{{}^{p}\log b}{{}^{p}\log a}$$

8.
$$a \log 1 = 0 \text{ sebab } a^0 = 1$$

9.
$$a \log a = 1 \text{ sebab } a^1 = a$$

3.3.3. Persamaan Logaritma

Persamaan logaritma dalam x adalah persamaan yang mengandung fungsi x di bawah tanda logaritma atau fungsi x sebagai bilangan pokok suatu logaritma. Sifat-sifat yang berlaku pada persamaan logaritma adalah sebagai berikut:

1. Jika
$$a \log f(x) = a \log p$$
, maka $f(x) = p$, untuk $f(x) > 0$.

2. Jika
$$a \log f(x) = b \log f(x)$$
, dengan $a \neq b$, maka $f(x) = 1$.

Contoh:

Jika $x \log 3 = 0.4$, berapakah x?

Penyelesaian:

$$^{x}\log 3 = 0,4 \Leftrightarrow ^{x}\log 3 = \frac{2}{5}$$

Jika dikonversi ke bentuk berpangkat diperoleh

$$3 = x^{\frac{2}{5}} \iff x = 3^{\frac{5}{2}} = 3^2 \cdot 3^{\frac{1}{2}} = 9\sqrt{3}$$
.

Jadi, nilai x yang dimaksud adalah $9\sqrt{3}$.

Soal-Soal Latihan.

- 1. Selesaikanlah bentuk berikut ke dalam bentuk yang paling sederhana.
 - a. $4^5 \cdot 4^3 \cdot 4^{-6}$
 - b. $5^3 \cdot 3^4 \cdot (-6)^4$
 - c. $4^5:4^3:4^{-6}$
 - d. $5^3:3^4:(-6)^4$
- 2. Ubahlah bentuk berikut ke dalam bentuk akar
 - a. $6^{2/3}$
 - b. $(6^{2/3})^2$
 - c. $3^{1/7}$. $3^{4/7}$. $3^{3/7}$
 - d. $7^{2/5} + 9^{3/5}$
- 3. Sederhanakan kemudian selesaikanlah bentuk berikut:
 - a. $10\sqrt{5} + 2\sqrt{5} 7\sqrt{5}$
 - b. $(\sqrt[3]{27})(5\sqrt[3]{125})$
 - c. $\left(\sqrt[4]{0.5169}\right)$
 - d. $(5\sqrt{16}):(2\sqrt{4})$
- 4. Ubahlah ke dalam bentuk logaritma:
 - a. 5⁴
 - b. $\sqrt[3]{64}$
 - c. $4^5 \cdot 4^3 \cdot 4^{-6}$
 - d. $3^{\frac{9}{2}}:\sqrt{243}$
- 5. Apabila *x* dan *y* masing-masing adalah 100 dan 50, hitunglah:
 - a. $\log xy$
 - b. $\log(x/y)$
 - c. $\log x^2 y$
 - d. $\log(x^2/y)$
- 6. tentukanlah *x* jika:
 - a. $x^5 = 50.000$

b.
$$100^x = 50.000$$

c.
$$3^{5x-1} = 27^{x+3}$$

- 7. Tentukan nilai x yang memenuhi $(3x+2)\log 27 = \log 3$.
- 8. Jika $9\log 8 = 3m$, tentukanlah nilai $4\log 3$.
- 9. Hitunglah $a \log (1/b) \log (1/c^2) \log (1/a^3)$.
- 10. Hitunglah ${}^{5}\log\sqrt{27} {}^{9}\log125 + {}^{16}\log32$.