CS 160 Compilers

Lecture 7: Revisiting DFA &

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Yu Feng Fall 2021

Outline

Today: Revisiting RE & NFA & DFA

 High-level story: RegEx -> NFA -> DFA -> Table Assignment Project Exam Help

https://tutorcs.com

Finite automata

- Regular Expressions

 ⇔ Specification
- Finite Automata ⇔ Implementation

Assignment Project Exam Help

- A finite automata formally consists of: https://tutorcs.com
 - An input alphabet Σ WeChat: cstutorcs
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state \rightarrow input state

Finite automata

- Transition $S_1 \rightarrow \alpha S_2$
- This means: In state S_1 and input character α , go to state S_2 Assignment Project Exam Help
- If end of input and in https://tutogcstate → accept

WeChat: cstutorcs

• Otherwise \Rightarrow reject

Finite Automata as State Graphs

A simple example

• Here is an automaton that only accepts the string "1":

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Another simple example

• A finite automaton accepting any number of 1's followed by a single 0

• Alphabet: {0,1}

Assignment Project Exam Help

https://tutorcs.com

Epsilon transitions

- A special kind of transition: ε-transitions
- Machine can move from state A to B without reading any input Assignment Project Exam Help

https://tutores.com

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - At most one transition per input on any state Assignment Project Exam Help
 - No ε moves https://tutorcs.com

- Nondeterministic Finite Automate (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

RE to NFA

In-class exercise

• Please draw the NFA for: a (b | c)*

NFA to DFA: The Algorithm

```
q_0 \leftarrow \epsilon-closure(\{n_0\});
Q \leftarrow q_0;
WorkList \leftarrow \{q_0\};
while (Assignment Project Exam Help
     remove https://ountobooksickshist;
                                                    Apply NFA's
     for eachwechair astitions c \in \Sigma do
                                                    transition function to
          t \leftarrow \epsilon-closure(Delta(q,c)); each element of q
         T[q,c] \leftarrow t;
          if t ∉ Q then
              add t to Q and to WorkList;
     end;
end;
```


(a) NEA for "a(b | c)*" (With Etates Renumbered)

https://tutorcs.com

Set Name	DFA States	NFA States	ε -c1α	we <mark>Cha</mark>	(q,*)) t: cstutore
90	d_0	n_0	$ \begin{cases} n_1, n_2, n_3, \\ n_4, n_6, n_9 \end{cases} $	– none –	– none –
91	d_1	$ \begin{cases} n_1, n_2, n_3, \\ n_4, n_6, n_9 \end{cases} $	– none –	$ \left\{ n_5, n_8, n_9, \\ n_3, n_4, n_6 \right\} $	$ \left\{ \begin{array}{l} n_7, n_8, n_9, \\ n_3, n_4, n_6 \end{array} \right\} $
q ₂	d ₂	$ \begin{cases} n_5, n_8, n_9, \\ n_3, n_4, n_6 \end{cases} $	– none –	q_2	q_3
q_3	<i>d</i> ₃	$ \left\{ n_7, n_8, n_9, \\ n_3, n_4, n_6 \right\} $	– none –	q_2	q_3

 $- (d_0)^{a} - (d_1)^{b}$ $c \qquad d_3 \qquad c$

(a) Resulting DFA

(b) Iterations of the Subset Construction

Engineering a compiler, C2.4

TODOs by next lecture

- Hw2 will be out. Get familiar with the Patina language
- Come to the discussion session if you have questions Assignment Project Exam Help

https://tutorcs.com