

中华人民共和国国家标准

GB/T 14848—2017 代替 GB/T 14848—1993

地下水质量标准

Standard for groundwater quality

2017-10-14 发布

2018-05-01 实施

目 次

	前音	
	引者	I
	引言	n
	1 范围	I
	1 范围	
	然泡性引用文件	
	3 术语和定义	
	术语和定义 ·····	
	地下水质量分类及指标	
	地下水质量调查与收测	1
	地下水质量调查与监测	1
	地下水质量评价	
Ì	寸录 A(规范性限录) 地下北洋日伊左右以及一下	5
	付录 A (规范性附录) 地下水样品保存和送检要求	7
1	^{†录 B} (资料性附录) 地下水质量检测指标推荐分析方法 ····································	
Ash	·考文献 ········ 1]	1
	\$考文献 ······ 1	4
		•

前言

本标准按照 GB/T 1.1-2009 给出的规则起草。

本标准代替 GB/T 14848—1993《地下水质量标准》,与 GB/T 14848—1993 相比,除编辑性修改外,主要技术变化如下:

- 水质指标由 GB/T 14848—1993 的 39 项增加至 93 项,增加了 54 项;
- 参照 GB 5749—2006《生活饮用水卫生标准》,将地下水质量指标划分为常规指标和非常规指标;
- ——感官性状及一般化学指标由 17 项增至 20 项,增加了铝、硫化物和钠 3 项指标;用耗氧量替换了高锰酸盐指数。修订了总硬度、铁、锰、氨氮 4 项指标;
- ——毒理学指标中无机化合物指标由 16 项增加至 20 项,增加了硼、锑、银和铊 4 项指标;修订了亚硝酸盐、碘化物、汞、砷、镉、铅、铍、钡、镍、钴和钼 11 项指标;
- 毒理学指标中有机化合物指标由 2 项增至 49 项,增加了三氯甲烷、四氯化碳、1,1,1-三氯乙烷、三氯乙烯、四氯乙烯、二氯甲烷、1,2-二氯乙烷、1,1,2-三氯乙烷、1,2-二氯丙烷、三溴甲烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、氯苯、邻二氯苯、对二氯苯、三氯苯(总量)、苯、甲苯、乙苯、二甲苯、苯乙烯、2,4-二硝基甲苯、2,6-二硝基甲苯、萘、蒽、荧蒽、苯并(b) 荧蒽、苯并(a) 芘、多氯联苯(总量)、γ-六六六(林丹)、六氯苯、七氯、莠去津、五氯酚、2,4,6-三氯酚、邻苯二甲酸二(2-乙基已基)酯、克百威、涕灭威、敌敌畏、甲基对硫磷、马拉硫磷、乐果、百菌清、2,4-滴、毒死蜱和草甘膦;滴滴涕和六六六分别用滴滴涕(总量)和六六六(总量)代替,并进行了修订;
- ——放射性指标中修订了总α放射性;
- 修订了地下水质量综合评价的有关规定。

本标准由中华人民共和国国土资源部和水利部共同提出。

本标准由全国国土资源标准化技术委员会(SAC/TC 93)归口。

本标准主要起草单位:中国地质调查局、水利部水文局、中国地质科学院水文地质环境地质研究所、中国地质大学(北京)、国家地质实验测试中心、中国地质环境监测院、中国水利水电科学研究院、淮河流域水环境监测中心、海河流域水资源保护局、中国地质调查局水文地质环境地质调查中心、中国地质调查局沈阳地质调查中心、中国地质调查局南京地质调查中心、清华大学、中国农业大学。

本标准主要起草人:文冬光、孙继朝、何江涛、毛学文、林良俊、王苏明、刘菲、饶竹、荆继红、齐继祥、周怀东、吴培任、唐克旺、罗阳、袁浩、汪珊、陈鸿汉、李广贺、吴爱民、李重九、张二勇、王璜、蔡五田、刘景涛、徐慧珍、朱雪琴、叶念军、王晓光。

本标准所代替标准的历次版本发布情况为:

——GB/T 14848—1993。

引言

随着我国工业化进程加快,人工合成的各种化合物投入施用,地下水中各种化学组分正在发生变化;分析技术不断进步,为适应调查评价需要,进一步与升级的 GB 5749—2006 相协调,促进交流,有必要对 GB/T 14848—1993 进行修订。

GB/T 14848—1993 是以地下水形成背景为基础,适应了当时的评价需要。新标准结合修订的 GB 5749—2006、国土资源部近 20 年地下水方面的科研成果和国际最新研究成果进行了修订,增加了指标数量,指标由 GB/T 14848—1993 的 39 项增加至 93 项,增加了 54 项;调整了 20 项指标分类限值,直接采用了 19 项指标分类限值;减少了综合评价规定,使标准具有更广泛的应用性。

地下水质量标准

1 范围

本标准规定了地下水质量分类、指标及限值,地下水质量调查与监测,地下水质量评价等内容。 本标准适用于地下水质量调查、监测、评价与管理。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注目期的引用文件、仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件

GB 5749-2006 生活饮用水卫生标准

GB/T 27025—2008 检测和校准实验室能力的通用要求

3 术语和定义

下列术语和定义适用于本文件

3.1

地下水质量 groundwater quality

地下水的物理、化学和生物性质的总称

3.2

常规指标 regular indices

反映地下水质量基本状况的指标,包括感官性状及一般化学指标、微生物指标、常见毒理学指标和 放射性指标。

3.3

非常规指标 non-regular indices

在常规指标上的拓展,根据地区和时间差异或特殊情况确定的地下水质量指标。反映地下水中所产生的主要质量问题,包括比较少见的无机和有机毒理学指标。

3.4

人体健康风险 human health risk

地下水中各种组分对人体健康产生危害的概率

4 地下水质量分类及指标

4.1 地下水质量分类

依据我国地下水质量状况和人体健康风险,参照生活饮用水、工业、农业等用水质量要求,依据各组分含量高低(pH除外),分为五类。

Ⅰ类:地下水化学组分含量低,适用于各种用途;

Ⅱ类:地下水化学组分含量较低,适用于各种用途;

Ⅲ类:地下水化学组分含量中等,以 GB 5749—2006 为依据,主要适用于集中式生活饮用水水源及

GB/T 14848-2017

工农业用水;

Ⅳ类:地下水化学组分含量较高,以农业和工业用水质量要求以及一定水平的人体健康风险为依据,适用于农业和部分工业用水,适当处理后可作生活饮用水;

Ⅴ类:地下水化学组分含量高,不宜作为生活饮用水水源,其他用水可根据使用目的选用。

4.2 地下水质量分类指标

地下水质量指标分为常规指标和非常规指标,其分类及限值分别见表1和表2。

表 1 地下水质量常规指标及限值

序号	指标	I类	Ⅱ类	Ⅲ类	IV类	V类
1		官性状及一般	化学指标	V.		
1	色(铂钴色度单位)	€5	≤ 5	≤15	€25	>25
2	嗅和味	无	无	无	无	有
3	浑浊度/NTU"	€3	≪3	≪3	≤10	>10
4	肉眼可见物	无	无	无	无	有
5	рН		6.5≤pH≤		5.5≤pH<6.5 8.5 <ph≤9.0< td=""><td>pH<5.5 д</td></ph≤9.0<>	pH<5.5 д
6	总硬度(以 CaCO ₃ 计)/(mg/L)	≪150	€300	≤450	≤650	>650
7	溶解性总固体/(mg/L)	€300	€500	≪1 000	≤2 000	>2 000
8	硫酸盐/(mg/L)	€50	≤150	≤250	<350	>350
9	氯化物/(mg/L)	≪50	€150	€250	≪350	>350
10	铁/(mg/L)	≤0.1	≤0.2	≤0.3	≤2.0	>2.0
11	锰/(mg/L)	≤0.05	≪0.05	≤0.10	<1.50	
12	铜/(mg/L)	≤0.01	≤0.05	≤1.00	<1.50 ≤1.50	>1.50
13	锌/(mg/L)	≤0.05	€0.5	≤1.00	<5.00	>1.50
14	铝/(mg/L)	≤0.01	≤0.05	≤0.20	<0.50	>5.00
15	挥发性酚类(以苯酚计)/(mg/L)	≤0.001	≤0.001	≤0.002	≤0.00	>0.50
16	阴离子表面活性剂/(mg/L)	不得检出	≤0.1	≪0.3	≪0.01	>0.01
17	耗氧量(COD _{Mn} 法,以O ₂ 计)/(mg/L)	≤1.0	€2.0	≤3.0	<0.5 ≤10.0	>0.3
8	氨氮(以 N 计)/(mg/L)	≤0.02	≤0.10	≪0.50	≤1.50	>10.0
9	硫化物/(mg/L)	≤0.005	≪0.01	≤0.02		>1.50
0	钠/(mg/L)	≤100	≤150	≤200	≪0.10 ≪400	>0.10
		微生物指标	(100	\\\ 200	400	>400
1	总大肠菌群/(MPNb/100 mL 或 CFUc/ 100 mL)	≪3.0	€3.0	€3.0	≪ 100	>100
2	菌落总数/(CFU/ mL)	≤100	≤100	≤100	≤1 000	>1 000
		毒理学指标		204	× 400	Z 1 000
3	亚硝酸盐(以 N 计)/(mg/L)	≤0.01	≤0.10	≪1.00	≤4.80	>4.80

表 1 (续)

字号	指标	I类	Ⅱ类	Ⅲ类	IV类	V类
		毒理学指标				
24	硝酸盐(以N计)/(mg/L)	€2.0	≤5.0	≤20.0	€30.0	>30.0
25	氰化物/(mg/L)	≤0,001	≤0.01	≤0.05	≤0,1	>0.1
26	氟化物/(mg/L)	≤1.0	≤1.0	≤1.0	€2.0	>2.0
27	碘化物/(mg/L)	≪0.04	≤0.04	≤0.08	≤0.50	>0.50
28	汞/(mg/L)	≤0.000 1	≤0.000 1	≪0.001	≤0.002	>0.002
29	砷/(mg/L)	€0.001	≪0.001	≤0.01	≤0.05	>0.05
30	硒/(mg/L)	0:0 1	<0.01	€0.01	≤0.1	>0.1
31	镉/(mg/L)	≤0.000 1	<0.001	0.005	€0.01	>0.01
32	铬(六价)/(mg/l)	≤0.005	≤0.01	≤0.05	0.10	>0.10
33	铅/(mg/L)	≤0.005	≤0.005	≤0.01	€0.10	>0.10
34	三氯甲烷 / µg/L	≤0.5	≤6	€60	300	>300
35	四氯化碳/(μg/L)	≤0.5	≤0.5	≤2.0	€50.0	>50.0
36	苯/(μg/L)	€0.5	< 1,0	< 10.0	≤120	>120
37	甲苯 / (μg/L)	≤0.5	<u></u> ≤140	< 700	≪1 400	>1 400
		放射性指标				
38	总α放射性/(Bq/L)	≪0.1	€0.1	/ < 0.5	>0.5	>0.5
39	总β放射性 ((Bq/L)	≪0.1	ò1.0	< 1.0	>1.0	>1.0
b	NTU 为散射 浊度单位 MPN 表示最可能数。 CFU 表》、菌落形成单位。					

表 2 地下水质量非常规指标及限值

序号	指标	I类	Ⅱ类	Ⅲ类	IV类	V类
		毒理学指标		The state of the s		nh
1	镀/(mg/L)	<0.000m	0.000 1	≤0.002	≤0.06	>0.06
2	硼/(mg/L)	€0,02	≤0.10	≤0,50	€2.00	>2.00
3	锑/(mg/L)	≤0.000 1	≤0.000 5	≤0.005	≤0.01	>0.01
4	钡/(mg/L)	≤0,01	≤0.10	≤0.70	≪4.00	>4.00
5	镍/(mg/L)	≤0.002	≤0.002	≤0.02	≤0.10	>0.10
6	钻/(mg/L)	≤0.005	≤0.005	≤0.05	≤0.10	>0.10
7	钼/(mg/L)	≤0.001	≤0,01	≤0.07	≤0.15	>0.15
8	银/(mg/L)	≪0.001	≤0.01	≤0.05	≤0.10	>0.10

表 2 (续)

序号	指标	K= II	I类	Ⅱ类	Ⅲ类	IV类	V类
			毒理学指标	Š			
9	铊/(mg/L)	4	≤0.000 1	≤0.000 1	≤0.000 1	≪0.001	>0.00
10	二氯甲烷/(µg/L)		≤1	≪2	€20	€500	>500
11	1,2-二氯乙烷/(μg/L)		≤0.5	€3.0	≪30.0	€40.0	>40.0
12	1,1,1-三氟乙烷/(μg/L)	in the	≤0.5	≪400	€2 000	≪4 000	>4 00
13	1,1,2-三氯乙烷/(μg/L)	100	≤0.5	≪0.5	€5.0	≤60.0	>60.0
14	1,2-二氯丙烷/(μg/L)		≤0.5	€0.5	€5.0	≪60,0	>60.0
15	三溴甲烷/(μg/L)		≪0.5	≤10.0	≤100	≪800	>800
16	氯乙烯/(µg/L)		≤0.5	≤0.5	€5.0	€90.0	>90.0
17	1,1-二氯乙烯/(μg/L)		≤0.5	≪3.0	€30.0	≪60.0	>60.0
18	1,2-二氯乙烯/(μg/L)	NII .	≤0.5	€5.0	€50.0	≪60.0	>60.0
19	三氯乙烯/(μg/L)		≤0.5	€7.0	€70.0	≤210	>210
20	四氯乙烯/(µg/L)		≤0.5	≤4.0	≤40.0	€300	>300
21	氯苯/(µg/L)	10.00	€0.5	≪60.0	€300	≤600	>600
22	邻二氯苯/(µg/L)		≤0.5	≤200	≪1 000	≤2 000	>2 000
23	对二氯苯/(μg/L)		€0.5	≪30.0	≪300	≤600	>600
4	三氯苯(总量)/(µg/L)°		€0.5	≤4.0	≤20.0	≤180	>180
5	乙苯/(µg/L)		€0,5	€30.0	€300	≤600	>600
6	二甲苯(总量)/(μg/L) ^b	-	≤0.5	≤100	≪500	≤1 000	>1 000
7	苯乙烯/(µg/L)		≤0.5	€2.0	≤20.0	≤40.0	>40.0
8	2,4-二硝基甲苯/(μg/L)		≤0.1	≪0.5	≤5.0	≪60.0	>60.0
9	2,6-二硝基甲苯/(μg/L)		≤0.1	≤0.5	≤5.0	≤30,0	>30.0
0	萘/(µg/L)		≪1	≤10	≤100	≤600	>600
1	蒽/(μg/L)		≤1	€360	≤1 800	≪3 600	>3 600
2	荧 蒽/(μg/L)		≤1	€50	€240	≤480	>480
3	苯并(b)荧蒽/(μg/L)		≤0.1	€0.4	≪4.0	≤8.0	>8.0
1	苯并(a)芘/(μg/L)		≤0.002	≤0.002	≤0.01	≤0.50	>0.50
5	多氯联苯(总量)/(μg/L) ^c		≤0.05	≤0.05	≤0.50	≤10.0	>10.0
ò	邻苯二甲酸二(2-乙基已基)酯/(μg/L)		≪3	€3	≪8.0	≤300	>300
	2,4,6-三氯酚/(μg/L)		≤0.05	€20.0	€200	€300	>300
	五氯酚/(µg/L)		≤0.05	≤0.90	≤9.0	≤18.0	>18.0
	六六六(总量)/(µg/L)d		≤0.01	€0.50	≤5.00	<300	>300
18	γ-六六六(林丹)/(μg/L)		≪0.01	€0.20	≤2.00	<150	>150
	滴滴涕(总量)/(μg/L)°		≤0.01	≤0.10	≤1.00	<2.00	>2.00

表 2 (续)

序号	指标	I类	Ⅱ类	Ⅲ类	IV类	V类
		毒理学指标	61020	E10-211-3		
42	六氯苯/(µg/L)	≤0.01	≪0.10	≤1.00	€2.00	>2,00
43	七氯/(µg/L)	≤0.01	≤0.04	≪0.40	≪0.80	>0.80
44	2,4-滴/(μg/L)	≤0.1	≪6.0	≤30.0	≤150	>150
45	克百威/(µg/L)	≤0.05	≤1.40	€7.00	≪14.0	>14.0
46	涕灭威/(µg/L)	≤0.05	≤0.60	€3,00	€30.0	>30.0
47	敌敌畏/(µg/L)	≤0.05	≤0.10	≤1.00	≤2.00	>2.00
48	甲基对硫磷/(µg/L)	≤0.05	≪4.00	≤20.0	≪40.0	>40.0
49	马拉硫磷/(µg/L)	≤0.05	€25.0	€250	≤500	>500
50	乐果/(µg/L)	≤0.05	≤16.0	≤80.0	≤160	>160
51	毒死蜱/(µg/L)	≤0.05	≤6.00	≤30.0	≤60.0	>60.0
52	百菌清/(µg/L)	≤0.05	≤1.00	≤10.0	≤150	>150
53	莠去津/(µg/L)	≤0.05	≤0.40	€2,00	≪600	>600
54	草甘膦/(µg/L)	≤0.1	≤140	≤700	≤1400	>1400

- "三氯苯(总量)为1,2,3-三氯苯、1,2,4-三氯苯、1,3,5-三氯苯3种异构体加和。
- 5二甲苯(总量)为邻二甲苯、间二甲苯、对二甲苯3种异构体加和。
- 。多氯联苯(总量)为 PCB28、PCB52、PCB101、PCB118、PCB138、PCB153、PCB180、PCB194、PCB206 9 种多氯联苯 单体加和。
- d 六六六(总量)为 α -六六六、 β -六六六、 γ -六六六、 δ -六六六 4 种异构体加和。
- 。滴滴涕(总量)为 o,p'-滴滴涕、p,p'-滴滴伊、p,p'-滴滴滴、p,p'-滴滴涕 4 种异构体加和。

5 地下水质量调查与监测

- 5.1 地下水质量应定期监测。潜水监测频率应不少于每年两次(丰水期和枯水期各1次),承压水监测频率可以根据质量变化情况确定,宜每年1次。
- 5.2 依据地下水质量的动态变化,应定期开展区域性地下水质量调查评价。
- 5.3 地下水质量调查与监测指标以常规指标为主,为便于水化学分析结果的审核,应补充钾、钙、镁、重碳酸根、碳酸根、游离二氧化碳指标;不同地区可在常规指标的基础上,根据当地实际情况补充选定非常规指标进行调查与监测。
- 5.4 地下水样品的采集参照相关标准执行,地下水样品的保存和送检按附录 A 执行。
- 5.5 地下水质量检测方法的选择参见附录 B,使用前应按照 GB/T 27025—2008 中 5.4 的要求,进行有效确认和验证。

6 地下水质量评价

- 6.1 地下水质量评价应以地下水质量检测资料为基础。
- 6.2 地下水质量单指标评价,按指标值所在的限值范围确定地下水质量类别,指标限值相同时,从优不

GB/T 14848-2017

从劣。

示例:挥发性酚类Ⅰ、Ⅱ类限值均为 0.001 mg/L,若质量分析结果为 0.001 mg/L 时,应定为Ⅰ类,不定为Ⅱ类。

6.3 地下水质量综合评价,按单指标评价结果最差的类别确定,并指出最差类别的指标。

示例: 某地下水样氯化物含量 400 mg/L,四氯乙烯含量 350 μ g/L,这两个指标属 V类,其余指标均低于 V类。则该地下水质量综合类别定为 V类, V 类指标为氯离子和四氯乙烯。

附 录 A (规范性附录) 地下水样品保存和送检要求

地下水样品的保存和送检要求见表 A.1。

表 A.1 地下水样品的保存和送检要求

序号	检测指标	采样容器和体积	保存方法	保存时间
1	色	G 或 P,1 L	原样	10 d
2	嗅和味	G 或 P,1 L	原样	10 d
3	浑浊度	G 或 P,1 L	原样	10 d
4	肉眼可见物	G 或 P,1 L	原样	10 d
5	pH	G或P,1L	原样	10 d
6	总硬度	G 或 P,1 L	原样	10 d
7	溶解性总固体	G或P,1L	原样	10 d
8	硫酸盐	G或P,1L	原样	10 d
9	氯化物	G或P,1L	原样	10 d
10	铁	G或P,1L	原样	10 d
11	锰	G,0.5 L	硝酸,pH≤2	30 d
12	铜	G,0.5 L	硝酸,pH≤2	30 d
13	锌	G,0.5 L	硝酸,pH≤2	30 d
14	铝	G,0.5 L	硝酸,pH≤2	30 d
15	挥发性酚类	G,1 L	氢氧化钠,pH≥12,4 ℃冷藏	24 h
16	阴离子表面活性剂	G或P,1L	原样	10 d
17	耗氧量(COD _{Mn} 法)	G 或 P,1 L	原样 或硫酸,pH≤2	10 d 24 h
18	氨氮	G 或 P,1 L	原样 或硫酸,pH≤2,4 ℃冷藏	10 d 24 h
19	硫化物	棕色 G,0.5 L	每 100 mL 水样加入 4 滴 乙酸锌溶液(200 g/L)和 氢氧化钠溶液(40 g/L),避光	7 d
20	钠	G 或 P,1 L	原样	10 d
21	总大肠菌群	灭菌瓶或灭菌袋	原样	4 h
22	菌落总数	灭菌瓶或灭菌袋	原样	4 h
23	亚硝酸盐	G 或 P,1 L	原样 或硫酸,pH≤2,4 ℃冷藏	10 d 24 h

表 A.1 (续)

序号	检测指标	采样容器和体积	保存方法	保存时间
24	硝酸盐	G 或 P,1 L	原样 或硫酸,pH≪2,4 ℃冷藏	10 d 24 h
25	氰化物	G,1 L	氢氧化钠,pH≥12,4 ℃冷藏	24 h
26	氟化物	G 或 P,1 L	原样	10 d
27	碘化物	G 或 P,1 L	原样	10 d
28	汞	G,0.5 L	硝酸,pH≤2	30 d
29	砷	G 或 P,1 L	原样	10 d
30	硒	G,0.5 L	硝酸,pH≤2	30 d
31	镉	G,0.5 L	硝酸,pH≪2	30 d
32	铬(六价)	G或P,1L	原样	10 d
33	如	G,0.5 L	硝酸,pH≪2	30 d
34	总α放射性	P,5 L	原样或盐酸,pH≤2	30 d
35	总β放射性	P,5 L	原样或盐酸,pH≤2	30 d
36	铍	G,0.5 L	硝酸,pH≪2	30 d
37	位 男	G 或 P,1 L	原样	10 d
38	锑	G,0.5 L	硝酸,pH≪2	30 d
39	钡	G,0.5 L	硝酸,pH≤2	30 d
40	镍	G,0.5 L	硝酸,pH≤2	30 d
41	钴	G,0.5 L	硝酸,pH≪2	30 d
42	钼	G,0.5 L	硝酸,pH≤2	30 d
43	银	G,0.5 L	硝酸,pH≤2	30 d
44	铊	G,0.5 L	硝酸,pH≤2	30 d
45	三氯甲烷	2×40 mL VOA 棕色 G	加酸,pH<2,4 ℃冷藏	14 d
46	四氯化碳	2×40 mL VOA 棕色 G	加酸,pH<2,4 ℃冷藏	14 d
47	苯	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
48	甲苯	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
49	二氯甲烷	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
50	1,2-二氯乙烷	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
51	1,1,1-三氯乙烷	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
52	1,1,2-三氯乙烷	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
53	1,2-二氯丙烷	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d

表 A.1(续)

序号	检测指标	采样容器和体积	保存方法	保存时间
54	三溴甲烷	2×40 mL VOA 棕色 G	加酸,pH<2,4 ℃冷藏	14 d
55	氯乙烯	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
56	1,1-二氯乙烯	2×40 mL VOA 棕色 G	加酸,pH<2,4℃冷藏	14 d
57	1,2-二氯乙烯	2×40 mL VOA 棕色 G	加酸,pH<2,4 ℃冷藏	14 d
58	三氯乙烯	2×40 mL VOA 棕色 G	加酸,pH<2,4 ℃冷藏	14 d
59	四氯乙烯	2×40 mL VOA 棕色 G	加酸,pH<2,4 ℃冷藏	14 d
60	氯苯	2×40 mL VOA 棕色 G	加酸,pH<2,4 ℃冷藏	14 d
61	邻二氯苯	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
62	对二氯苯	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
63	三氯苯(总量)	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
64	乙苯	2×40 mL VOA 棕色 G	加酸,pH<2,4 ℃冷藏	14 d
65	二甲苯(总量)	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
66	苯乙烯	2×40 mL VOA 棕色 G	加酸,pH<2,4 °C冷藏	14 d
67	2,4-二硝基甲苯	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
68	2,6-二硝基甲苯	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
69	萘	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
70	蒽	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
71	荧蒽	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
72	苯并(b)荧蒽	2×1 000 mL 棕色 G	4℃冷藏	7 d(提取),40 d
73	苯并(a)芘	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
74	多氯联苯(总量)	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
75	邻苯二甲酸二 (2-乙基已基)酯	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
76	2,4,6-三氯酚	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
77	五氯酚	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
78	六六六(总量)	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
79	γ-六六六(林丹)	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
80	滴滴涕(总量)	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
81	六氯苯	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
82	七氯	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
83	2,4-滴	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d

表 A.1(续)

序号	检测指标	采样容器和体积	保存方法	保存时间
84	克百威	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
85	涕灭威	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
86	敌敌畏	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
87	甲基对硫磷	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
88	马拉硫磷	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
89	乐果	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
90	毒死蜱	2×1 000 mL 棕色 G	4 C冷藏	7 d(提取),40 d
91	百萬清	2×1 000 mL 棕色 G	1℃冷藏	7 d(提取),40 d
92	莠去津	1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d
93	草甘麻	2×1 000 mL 棕色 G	4 ℃冷藏	7 d(提取),40 d

- 注1:G——硬质玻璃瓶;P——聚乙烯瓶。
- 注 2: 对一无机检测指标。当采样容器、采样体积、保存方法和保存时间一致时。可采集一份样品供检测用。
- 注 3:4 号~66 号为挥发性有机物、同一份样品已完成上还拒标分析。 供采样 2×40 mL。
- 注 4: VOA 标色玻璃瓶指专用于挥发性有机物取样分析的玻璃瓶。可用于吸归捕集自动进样器、配套内附聚四氟乙烯膜、取样针可直接剩穿取样的瓶盖。
- 注 5. 67 号 ~83 号, 图 号 ~92 号为极性比较小的半挥发性有机物,可以采用同一流程进行萃取测定,共采样 2×1 000 mL。
- 注 6. 84 号 -85 号为极性比较。的半挥发性负机物,可以采用同一流和进行学取测定,共采相 2×1 000 mL。
- 注 7: 93 号書衍生化、单独为一分低流程,采样量 2×1,000 mL。

附 录 B (资料性附录) 地下水质量检测指标推荐分析方法

地下水质量检测指标推荐分析方法见表 B.1。

表 B.1 地下水质量检测指标推荐分析方法

序号	检测指标	推荐分析方法
1	色	铂-钴标准比色法
2	嗅和味	嗅气和尝味法
3	浑浊度	散射法、比浊法
4	肉眼可见物	直接观察法
5	pH	玻璃电极法(现场和实验室均需检测)
6	总硬度	EDTA容量法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法
7	溶解性总固体	105 ℃干燥重量法、180 ℃干燥重量法
8	硫酸盐	硫酸钡重量法、离子色谱法、EDTA容量法、硫酸钡比浊法
9	氯化物	离子色谱法、硝酸银容量法
10	铁	电感耦合等离子体原子发射光谱法、原子吸收光谱法、分光光度法
11	锰	电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法、原子吸收光谱法
12	铜	电感耦合等离子体质谱法、原子吸收光谱法
13	锌	电感耦合等离子体质谱法、原子吸收光谱法
14	铝	电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法
15	挥发性酚类	分光光度法、溴化容量法
16	阴离子表面活性剂	分光光度法
17	耗氧量(COD _{Mn} 法)	酸性高锰酸盐法、碱性高锰酸盐法
18	氨氮	离子色谱法、分光光度法
19	硫化物	碘量法
20	钠	电感耦合等离子体原子发射光谱法、火焰发射光度法、原子吸收光谱法
21	总大肠菌群	多管发酵法
22	菌落总数	平皿计数法
23	亚硝酸盐	分光光度法
24	硝酸盐	离子色谱法、紫外分光光度法
25	氰化物	分光光度法、容量法
26	氟化物	离子色谱法、离子选择电极法、分光光度法
27	碘化物	分光光度法、电感耦合等离子体质谱法、离子色谱法
28	汞	原子荧光光谱法、冷原子吸收光谱法
29	砷	原子荧光光谱法、电感耦合等离子体质谱法
30	硒	原子荧光光谱法、电感耦合等离子体质谱法

表 B.1 (续)

序号	检测指标	推荐分析方法
31	镉	电感耦合等离子体质谱法、石墨炉原子吸收光谱法
32	铬(六价)	电感耦合等离子体质谱法、分光光度法
33	铅	电感耦合等离子体质谱法
34	总α放射性	厚样法
35	总β放射性	薄样法
36	铍	电感耦合等离子体质谱法
37	砌	电感耦合等离子体质谱法、分光光度法
38	锑	原子荧光光谱法、电恐耦合等离子体质谱法
39	钡	电感耦合等离子体质谱法
40	镍	电感耦合等离子体质谱法
41	钻	更感耦合等离子体质谱法
42	***	电感耦合等离子体质谱法
43	银	电感耦合等离子体质谱法、石墨炉原子吸收光谱法
44	铊	电感耦合等离子体质谱法
45	三氯甲烷	
46	四氟化碳	
47	苯	
48	甲苯	
19	- 氯甲烷	
50	1,2 二氯乙烷	
51	1,1,1 三氯乙烷	
52	1,2- 氯乙烷	
3	1.2-二氯丙烷	
4	三溴甲烷	
5	氯乙烯	
		吹扫-捕集/气相色谱-压谐法
6	1,1-二氯乙烯	顶空/气相色谱 质谱法
7	1,2-二氯乙烯	
8	三氯乙烯	
9	四氯乙烯	
0	氯苯	
1	邻二氯苯	
2	对二氯苯	
3	三氯苯(总量)	the transfer of the state of th
4	乙苯	Oh #>
5	二甲苯(总量)	Market Bank Bank Bank Bank Bank Bank Bank Bank
		118

表 B.1 (续)

序号	检测指标	推荐分析方法
67	2,4-二硝基甲苯	气相色谱-电子捕获检测器法 气相色谱-质谱法
68	2,6-二硝基甲苯	
69	萘	气相色谱-质谱法 高效液相色谱-荧光检测器-紫外检测器法
70	蒽	
71	荧蒽	
72	苯并(b)荧蒽	
73	苯并(a)芘	
74	多氯联苯(总量)	气相色谱-电子捕获检测器法 气相色谱-质谱法
75	邻苯二甲酸二	气相色谱-电子捕获检测器法 气相色谱-质谱法 高效液相色谱-紫外检测器法
	(2-乙基已基)酯	
76	2,4,6-三氯酚	
77	五氯酚	
78	六六六(总量)	气相色谱-电子捕获检测器法 气相色谱-质谱法
79	γ-六六六(林丹)	
80	滴滴涕(总量)	气相色谱-电子捕获检测器法 气相色谱-质谱法
81	六氯苯	
82	七氯	
83	2,4-滴	
84	克百威	液相色谱-紫外检测器法
85	涕灭威	液相色谱-质谱法
86	敌敌畏	
87	甲基对硫磷	气相色谱-氮磷检测器法 气相色谱-质谱法 液相色谱-质谱法
88	马拉硫磷	
89	乐果	
90	毒死蜱	
91	百菌清	气相色谱-电子捕获检测器法 气相色谱-质谱法 液相色谱-质谱法
92	莠去津	
93	草甘膦	液相色谱-紫外检测器法 液相色谱-质谱法

注 1: 45 号~66 号为挥发性有机物,可采用吹扫-捕集/气相色谱-质谱法或顶空/气相色谱-质谱法同时测定。

注 2:67号~83号、86号~92号可采用气相色谱-质谱法同时测定。

注3:83号~92号可采用液相色谱-质谱法同时测定。

注 4: 草甘膦需要衍生化,应单独一个分析流程。

参考文献

- [1] GB/T 1576-2008 工业锅炉水质
- [2] GB 3838-2002 地表水环境质量标准
- [3] GB 5084-2005 农田灌溉水质标准
- [4] GB/T 14157-1993 水文地质术语
- [5] CJ/T 206-2005 城市供水水质标准
- [6] SL 219-2013 水环境监测规范
- [7] 金银龙,鄂学礼,张岚.GB 5749—2006《生活饮用水卫生标准》释义[M].北京:中国标准出版社,2007.
- [8] 卫生部卫生标准委员会.GB 5749—2006《生活饮用水卫生标准》应用指南[M].北京:中国标准出版社,2010.
 - [9] 夏青,陈艳卿,刘宪兵.水质基准与水质标准[M].北京:中国标准出版社,2004.
- [10] Australian Govement, National Health and Medical Research Council, Natural Resource Management Ministerial Council. National Water Quality Management Strategy, Australian drinking water guidelines. 2013.
- [11] Council Directive 98/83/EC on the quality of water intended for human consumption.EU's Drinking Water Standard.1998.
- [12] U.S. Environmental Protection Agency .Edition of the drinking water standards and health advisories. Washington, D.C., 2012.
 - [13] World Health Organization. Guidelines for drinking-water quality(4th ed.). Geneva, 2011.

中 华 人 民 共 和 国 国 家 标 准 地下水质量标准 GB/T 14848-2017

中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100029) 北京市西城区三里河北街16号(100045)

岡址 www.spc.net.cn 总编室:(010)68533533 发行中心:(010)51780238 读者服务部:(010)68523946 中国标准出版社秦皇岛印刷厂印刷

各地新华书店经销 * 开本 880×1230 1/16 印张 1.25 字数 32 千字

2017年10月第一版 2017年10月第一次印刷

书号: 155066 • 1-57243 定价 21.00 元

如有印装差错 由本社发行中心调换 版权专有 侵权必究 举报电话:(010)68510107

