Arquitectura de computadores: Memorias

0.1 SRAM

[Static Random Access Memory] En cuanto a capacidad son muy pequeñas, pero son las más rápidas, con el costo de ser las mas grandes y caras.

0.1.1 Flip flops

Responden en un solo ciclo de reloj, usadas para los registros de la CPU.

0.1.2 Cache

La verdadera SRAM, usada en la cache del procesador, con el costo de responder en 2 ciclos de reloj.

- Par leer: Conecta las salidas y lee por las dos lineas.
- Para escribir: Alimenta las dos lineas con los Q y \overline{Q} correspondientes

0.2 DRAM

[Dynamic Random Access Memory] Es más barata que las anteriores y usada en la memoria principal. Con el costo de funcionar a base de condensadores, pues debe ser refrescada frecuentemente. Esta memoria presenta R/W asíncronos.

0.3 DDR-SDAM

[Double Data Rate Sync Dynamic Random Access Memory] Se usa en las memorias principales actuales como una evolución de la DRAM tradicional. Se caracteriza por funcionar de forma sincrónica y con R/W en ambos flancos del reloj.

0.4 ROM

Memorias diseñadas para ser de solo lectura y permitir pocas o incluso ninguna re-escritura.

0.4.1 ROM

[Read Only Memory] Las primeras en su clase, con la característica de tener datos cableados manualmente. Duraderas pero extremadamente caras.

0.4.2 PROM

[Programable Read Only Memory] Una variación de la ROM tradicional que puedes programar en casa, quemando fusibles para escribir los bits. Sin posibilidad de borrar sus datos.

0.4.3 EPROM

[Erasable Programable Read Only Memory] También puedes programarla en casa, pero ahora con la función de borrar los datos con luz UV.

0.4.4 EEPROM

[Electric Erasable Programable Read Only Memory] Una variación de la EPROM, con un borrado de datos puramente eléctrico.

0.5 FLASH

La memoria usada en los discos SSD actuales. Parecida a las EEPROM, aunque hecha a base de una modificación de los MOSFET con una compuerta flotante (como un capacitor).