2020年度 大阪大学基礎工学部編入学試験 「物 理] 試 験 問 題

受験番号	志望学科・コース
2	学 科
4	コース

22: 26 30

[物理-1]

問題1

図(a)に示す単振り子、および、図(b)に示す物理振り子について考える。図(a)の単振り子は、長さI の糸の下端に質量m のおもりをつけ、糸の上端は回転できるように支点Oにつけ、鉛直面内で十分小さな振幅で振動している。鉛直方向と糸がなす角を θ とする。おもりの大きさと糸の質量と伸縮は無視できる。図(b)の物理振り子は、棒の下端に円板の形をした剛体をつけ、棒の上端は回転できるように支点Pにつけ、鉛直平面内で十分小さな振幅で振動している。鉛直方向と棒がなす角を θ とする。棒と円板は、棒の延長線上に円板の中心Cがあるように固定されており、一体となって運動している。点Pと点Cの距離はLであり、棒の質量は無視できる。円板は密度が一様であり、半径はR、質量はMである。また、剛体のPまわりの慣性モーメントはLである。点Oおよび点Pでの摩擦は無視できるものとする。重力加速度をgとして、以下の間に答えよ。

- (1) 単振り子において、Oまわりの慣性モーメントを、m, g, l, θ のうち必要なものを用いて表せ.
- (2) 単振り子において、おもりに作用する重力のOに関するモーメントの大きさを、m, g, l, θ のうち必要なものを用いて表せ、
- (3) 単振り子において、鉛直方向と糸がなす角 θ を時間tの関数 $\theta(t)$ として、おもりの運動を表す θ の微分方程式を、 θ 、t、m、g、t0 のうち必要なものを用いて表せ、振幅は十分に小さいため、 $\sin\theta \approx \theta$ の関係を用いてよい。
- (4) 単振り子の周期を、m,g,lのうち必要なものを用いて表せ.
- (5) 物理振り子において、鉛直方向と棒がなす角 ϕ を時間 t の関数 $\phi(t)$ として、剛体の運動を表す ϕ の微分方程式を、 ϕ 、t 、I 、M 、L 、g のうち必要なものを用いて表せ、振幅は十分に小さいため、 $\sin\phi \approx \phi$ の関係を用いてよい。
- (6) 物理振り子の周期を、I、M、L、g のうち必要なものを用いて表せ.
- (7) 物理振り子において、剛体のCまわりの慣性モーメントが $\frac{1}{2}MR^2$ であることを示せ.
- (8) 物理振り子において、剛体のPまわりの慣性モーメントIを、M, R, L, g のうち必要なものを用いて表せ、
- (9) 単振り子と物理振り子の周期が同じ場合、単振り子の糸の長さ1を、m, R, M, L, g のうち必要なものを用いて表せ、

(4)
$$\dot{\theta} = -\frac{2}{8}\theta$$

a= 13 T= 27

2020年度 大阪大学基礎工学部編入学試験 [物理]試験問題

受 験	番	号	志	望	学	科		٦.	ー ス
						2000	1	学	科
								=-	-ス

[物理-3]

問題3

1モルの理想気体に対して図に示すような、状態AからB、状態BからC、状態CからD、状態DからAへと変化させる準静的サイクルについて考える。状態AからBは温度 T_H の等温過程、状態BからCは断熱過程、状態CからDは温度 T_L の等温過程、状態DからAは断熱過程である。圧力 P、体積 V、絶対温度 T に対して、R を気体定数として状態方程式 PV=RT が成り立つものとする。また、定積モル比熱は定数 C_V で与えられるものとする。以下の間に答えよ。

カルトサイクル

- 1) 状態AからBまでの温度 T_H における等温過程において圧力及び体積を P_A V_A から, P_B , V_B へと変化させるとき,外部に行う仕事 W_{AB} を T_H , V_A , V_B ,R を用いて表せ.
- (2) 状態BからCまでの断熱過程の途中において圧力 P と体積 V に成り立つ関係式を P, V, C_V , R を用いて表せ、ただし、定数を const. として用いてもよい.
- (3) 状態A, B, C, Dにおける体積 V_A , V_B , V_C , V_D の間に成立する関係式を導け.
- (4) 状態BからCまでの断熱過程で外部に行う仕事 W_{BC} と状態DからAまでの断熱過程で外部に行う仕事 W_{DA} の合計, $W_{BC}+W_{DA}$ を計算せよ.
- (5) サイクルの一周で外部に行う仕事を $W_{\rm ex}$ とし、状態AからBの等温過程において吸収する熱量を $Q_{\rm H}$ とするとき、それらの比の値 $W_{\rm ex}/Q_{\rm H}$ を温度 $T_{\rm H}$ と $T_{\rm L}$ を用いて表せ、

