

FORMATO DE SYLLABUS Código: AA-FR-003

Macroproceso: Direccionamiento Estratégico

Versión: 01

Fecha de Aprobación: 27/07/2023

Proceso: Autoevaluación y Acreditación

FACULTAD:		Tecnológica							
PROYECTO CURRICULAR:		Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:				
			I. IDENTIF	ICACIÓN DEL ESPACIO A	CADÉMICO				
NOMBRE DEL E	SPACIO ACAI	DÉMICO: COMUNICACIO	NES MÓVILES						
Código del espacio académico:			7413	Número de créditos académicos: 3				3	
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	5	
Tipo de espacio académico:			Asignatura	х	Cátedra				
			NATUR/	ALEZA DEL ESPACIO ACA	DÉMICO:				
1		gatorio mentario		Electivo Intrínseco		Electivo Extrínseco			
			CARÁ	CTER DEL ESPACIO ACAD	ÉMICO:				
Teórico		Práctico		Teórico-Práctico	х	Otros:		Cuál:	
			MODALIDAD	DE OFERTA DEL ESPACIO	ACADÉMICO:				
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:	
			II. SUGERENCIAS	S DE SABERES Y CONOCIN	/IENTOS PREVIOS				

El estudiante debe haber cursado asignaturas como propagación de ondas, teoría de modulación, sistemas de comunicaciones digitales, y medios de transmisión. Es recomendable tener habilidades en análisis matemático de señales, fundamentos de probabilidad y estadística, y nociones de redes de datos y sistemas embebidos. El conocimiento en herramientas de simulación como MATLAB, Python, GNU Radio o NS-3 será valioso para las prácticas.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

Las comunicaciones móviles son el pilar de la conectividad moderna, facilitando servicios esenciales que van desde la telefonía hasta el internet de las cosas (IoT) y la inteligencia artificial distribuida. Esta asignatura prepara al estudiante para comprender la evolución, arquitectura y funcionamiento de los sistemas móviles, y lo capacita para diseñar, modelar y evaluar redes móviles actuales y futuras. Con un enfoque en 5G, 6G, virtualización de funciones de red (NFV), redes definidas por software (SDN) y edge computing, el curso responde a las exigencias de la industria 4.0 y la transformación digital.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Analizar, diseñar y evaluar redes móviles celulares modernas, considerando su evolución tecnológica, modelos de propagación, arquitectura y calidad de servicio.

Objetivos Específicos:

Identificar componentes, protocolos y arquitecturas de las redes móviles de segunda a sexta generación.

Analizar modelos de tráfico, propagación, cobertura e interferencia en entornos móviles.

Evaluar técnicas de acceso y modulación en entornos multicanal y multipropósito.

Aplicar conceptos de optimización espectral, virtualización, y redes inteligentes.

Diseñar propuestas de red para escenarios reales usando simulación y análisis comparativo.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propositos de formación:

Fortalecer habilidades en diseño de redes móviles inteligentes para contextos urbanos y rurales.

Promover competencias en análisis de modelos de propagación y comportamiento espectral.

Desarrollar capacidades críticas para aplicar tecnologías emergentes en la infraestructura móvil.

Potenciar la integración de redes móviles con servicios de IoT y cómputo distribuido.

Resultados de aprendizaje:

Analiza arquitecturas y tecnologías de redes móviles desde 2G hasta 6G.

Evalúa modelos de propagación y técnicas de mitigación de desvanecimientos.

Diseña y simula configuraciones de redes móviles considerando eficiencia espectral y QoS.

Aplica tecnologías como MIMO, SDN y radio cognitiva en soluciones de conectividad móvil.

Formula propuestas de mejora para redes móviles urbanas o rurales, integrando dispositivos IoT.

VI. CONTENIDOS TEMÁTICOS

z. r rmeipiosae reaesteralares

Celdas, estaciones base, handoff y roaming

Reuso de frecuencia, sectorización, patrones hexagonales

Tráfico: Erlang B, calidad de servicio (QoS)

2. Modelos de propagación en movilidad

Modelos Okumura-Hata, COST231 y UMi/UMa

Desvanecimientos y retardos (fading y Doppler)

Cobertura y análisis de campo

3. Arquitecturas celulares 2G-4G

GSM, GPRS, EDGE y su evolución

UMTS y HSPA: eficiencia y capacidad

LTE v LTE-A: acceso múltiple v MIMO básico

4. Tecnologías de acceso y modulación

TDMA, CDMA, OFDM, OFDMA, SC-FDMA

Codificación, diversidad, receptores Rake

Modulación adaptativa y codificación de canal

5. Redes 5G y tendencias hacia 6G

NR, Massive MIMO, mmWave, beamforming

Redes inteligentes (SDN/NFV, slicing, MEC)

Perspectivas 6G: THz, IA distribuida, gemelos digitales

6. Simulación, análisis y casos prácticos

Simulación de tráfico y cobertura (MATLAB, NS-3)

KPIs: throughput, latencia, pérdida de paquetes

Diseño de red móvil en escenarios urbanos/rurales

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

Se adoptará un enfoque de aprendizaje basado en proyectos (ApP), combinando clases magistrales, estudios de caso, prácticas de laboratorio, simulación con software especializado y desarrollo de propuestas tecnológicas para contextos reales. El trabajo colaborativo y el pensamiento crítico serán pilares metodológicos.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con equipos SDR (Software Defined Radio), emuladores celulares, analizador de espectro, kits NB-IoT, infraestructura de red local con nodos para pruebas en IoT y cómputo en el borde, simuladores de red: MATLAB, NS-3, Simulink, Open5GS, srsRAN.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se programará una visita a un operador móvil o centro de investigación en telecomunicaciones donde los estudiantes puedan conocer la infraestructura de red celular, estaciones base 5G, despliegue de IoT o pruebas con SDR. Estas visitas permitirán relacionar los conceptos teóricos con aplicaciones reales.

XI. BIBLIOGRAFÍA

Focha rovisión por Consojo Curricular:						
XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS						
ETSI y 3GPP Technical Specifications (actualizadas).						
Huido J. Comunicaciones Móviles: GSM, UMTS y LTE. Ed. Ra-Ma.						
Dahlman, E., Parkvall, S., Skold, J. 5G NR: The Next Generation Wireless Access Technology. Academic Press, 2020.						
Liyanage, M. Software Defined Mobile Networks. Wiley, 2015.						
nappaport, 1.5. Whereas communications. I finishes and Tractice Haif, 21th Ed.						

Número de acta:

Rappaport, T.S. Wireless Communications: Principles and Practice. Prentice Hall, 2nd Ed.

Fecha aprobación por Consejo Curricular: