EECS 281B / STAT 241B: Advanced Topics in Statistical Learningpring 2009

Lecture 20 — April 6th

Lecturer: Martin Wainwright Scribe: Vladislav Voroninski

Note: These lecture notes are still rough, and have only have been mildly proofread.

This is the danger environment.

Outline

- Rademacher and empirical covering
- some model selection issues

20.1 Recap

In recent lectures, we have talked we talked about Rademacher complexity:

$$\widehat{\mathbb{R}_n}(\mathcal{F}) = \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \sigma^i f(X^{(i)}) \right| \right]$$
 (20.1)

We have seen the connection to shatter coefficients and VC dimension. Today, we discuss connections to *empirical covering numbers*. Recall the definition of the mpirical L_1 -norm, denoted by $L_1(\widehat{\mathbb{P}_n})$ and defined by

$$||f - g||_{L_1(\widehat{\mathbb{P}_n})} = \frac{1}{n} \sum_{i=1}^n |f(X^{(i)}) - g(X^{(i)})|.$$
 (20.2)

Similarly, we define the empirical L_2 -norm

$$||f - g||_{L_2(\widehat{\mathbb{P}}_n)} = \frac{1}{n} \sqrt{\sum_{i=1}^n (f(X^{(i)}) - g(X^{(i)}))^2}$$
 (20.3)

We refer to metric entropies based on these norms as empirical metric entropies.

20.2 Rademacher complexity and empirical metric entropy

Our first result provides a connection between the Rademacher complexity and the empirical metric entropy:

Theorem 20.1 (Discretization). The Rademacher complexity is upper bounded as

$$\widehat{\mathbb{R}}_n(\mathcal{F}) \le \inf_{t>0} \left\{ t + c\sqrt{\frac{\log N(t, \mathcal{F}, L_2(\widehat{\mathbb{P}}_n))}{n}} \right\},\tag{20.4}$$

where c is some constant and the square-root term is the empirical $L_2(\widehat{\mathbb{P}}_n)$ metric entropy.

Proof: Let $N = N(t, \mathcal{F}, L_2(\widehat{\mathbb{P}}_n))$ and let f_1, \ldots, f_N be a t-cover of \mathcal{F} w.r.t the $L_2(\widehat{\mathbb{P}}_n)$ norm. Then for any $f \in \mathcal{F}$, there exists a function f_k such that $||f_k - f||_{L_2(\widehat{\mathbb{P}}_n)} \leq t$. Thus, we have

$$\left| \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} f(X^{(i)}) \right| \leq \left| \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} f_k(X^{(i)}) \right| + \left| \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} (f(X^{(i)}) - f_k(X^{(i)})) \right| \\
\leq \left| \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} f(X^{(i)}) \right| + \frac{1}{n} ||\sigma||_{L_2(\widehat{\mathbb{P}_n})} ||f - f_k||_{L_2(\widehat{\mathbb{P}_n})},$$

where the second step applies the Cauchy-Schwarz inequality to the inner product defined by $\langle f, g \rangle := \frac{1}{n} \sum_{i=1}^{n} f(X^{(i)}) g(X^{(i)})$.

Thus, we conclude that

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} f(X^{(i)}) \right| \le \max_{k=1,2...n} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} f_k(X^{(i)}) \right| + t,$$

and hence,

$$\widehat{\mathbb{R}_n}(\mathcal{F}) \leq \mathbb{E}_{\sigma} \max_{k=1,2...n} \left| \frac{1}{n} \sum_{i=1}^n \sigma^{(i)} f_k(X^{(i)}) \right| + t$$

$$\leq \sqrt{\frac{\log |N|}{n}} + t,$$

where the second inequality uses the form of Rademacher complexity for the finite set of functions \mathcal{F}_t . Finally, we can take the infimum over t > 0 on the RHS to obtain the result.

Let's consider some examples to illustrate.

Example 1. We begin by considering the case of Lipschitz functions that map $[0,1]^d$ to the real line \mathbb{R} . It is known that $\log N(t,\mathcal{F},||.||)$ ($\frac{1}{t}$)^d as $t \to 0$. In this case, we have

$$\widehat{\mathbb{R}}_n(\mathcal{F}) \le \inf_{t>0} \{ t + c\sqrt{\frac{1}{n}(\frac{1}{t})^d} \} \le c(\frac{1}{n})^{\frac{1}{2+d}}, \tag{20.5}$$

obtained by choosing $t = (\frac{1}{n})^{\frac{1}{2+d}}$. This very slow decay of the Rademacher complexity for large dimension d is the usual manifestation of the curse of dimensionality: i.e., to reduce the Rademacher complexity to some level ϵ , we need roughly $n \approx (1/\delta)^{2+d}$ samples, which explodes exponentially in the dimension.

We can obtain faster rates of decay of the Rademacher complexity by imposing more structure on our functions.

Example 2. As an extension of the previous example, let us consider functions on $[0,1]^d$ with k derivatives, and assume that the kth derivative is a Lipschitz function. In this case, it is known that

$$\log N(t, \mathcal{F}, ||.||) \ (\frac{1}{t})^{\frac{d}{k+1}}$$

so that we can conclude that

$$\widehat{\mathbb{R}}_n(\mathcal{F}_k) \le c(\frac{1}{n})^{\frac{k+1}{2(k+1)+d}}.$$
(20.6)

If d remains fixed while the number of derivatives k increases, then we obtain faster and faster rates, which is intuitively reasonable. However, if d is thought of as very large (or even increasing), then we also need the degree of smoothness k to be very large (or increasing) if there is any hope of obtaining a reasonable rate of convergence.

In the previous examples (unless the degree of smoothness is very large), the rates will be very slow for high dimensions d; note that even d = 100 and $\delta = 0.1$ in Example 1 would yield a required sample size of order $n \approx 10^{102}$, which is more than the number of atoms in the universe. There are other ways of side-stepping the curse of dimensionality, which involve imposing additive or separable structure on spaces of functions.

Example 3. Given a function $f:[0,1]^d \to \mathbb{R}$, suppose that we assume it obeys an additive decomposition, of the form

$$f(x_1, x_2 \dots x_d) = \sum_{i=1}^d g_i(x_i)$$
 (20.7)

where each $g_i : \mathbb{R} \to \mathbb{R}$. In this case, we would expect to have faster rates, since the function is not really d-variate in full generality, but rather a sum of univariate functions.

A related model is a sparsity model in which we assume that the function f depends only on some subset $S \subset \{1, 2 \dots d\}, |S| = k < d$ of co-ordinates—say

$$f(x_1, x_2 \dots x_d) = g(x_S)$$
 (20.8)

where $g: \mathbb{R}^k \to \mathbb{R}$. In this case, if the subset S were known, then we could immediately restrict to these co-ordinates. Otherwise, one can imagine trying to estimate the subset S, and then performing regression on the restricted subset.

Our final example concerns a parametric class of functions, namely the class of all linear functions on the unit ball

Example 4. Let us consider the class of linear functions

$$\mathcal{F} = \{ f_{\theta}(x) = <\theta, x > |\theta \in \mathbb{R}^d, ||\theta||_2 = 1 \}, \tag{20.9}$$

which is parameterized by vectors on the unit ball. In this case, it can be shown (see Homework # 3) that

$$\log N(t, \mathcal{F}, ||.||_2) \ d(\frac{1}{t}), \qquad \text{valid for } t \to 0.$$
 (20.10)

Using this relationship in the discretization theorem, we obtain

$$\widehat{\mathbb{R}}_n(\mathcal{F}) \le \inf_{t>0} \left\{ t + c_1 \sqrt{\frac{d \log(\frac{1}{t})}{n}} \right\} \le c_2 \sqrt{\frac{d \log n}{n}}$$
(20.11)

The scaling $\sqrt{d/n}$ in this upper bound is of the right order, but the log n term is actually an artifact of the method.

20.3 Dudley's entropy integral

The material that we have been covering is closely related to empirical process theory, a branch of probability and statistics that is concerned with the behavior of stochastic processes that are indexed by functions or other objects. A key result in this area is Dudley's entropy integral, which provides a much sharper upper bound on Rademacher complexity than the simple discretization argument that we considered. We state the result here:

Theorem 20.2. There exists a constant c such that the Rademacher complexity is upper bounded as:

$$\widehat{\mathbb{R}}_n(\mathcal{F}) \le c \int_0^\infty \sqrt{\frac{\log N(t, \mathcal{F}, L_2(\widehat{\mathbb{P}}_n))}{n}} dt.$$
 (20.12)

In the integral on the RHS, the important part is its behavior as $t \to 0$. (If the function class has a finite diameter D, then we known that the covering number is 1 for t sufficiently large, so the upper integration limit can be made finite.)

This theorem can be proved via the *chaining argument*, in which we decompose the supremum defining the Rademacher (or Gaussian) complexity into a series of terms, and discretize each term in a refined manner.

To illustrate the consequences of Dudley's theorem, let us revisit the case of the unit ball in d dimensions. Using our previous discretization method, the best bound on the Rademacher complexity scaled as $\sqrt{\frac{d \log n}{n}}$. This can be sharpened via the Dudley integral:

Example 5. In the case of the unit ℓ_2 ball $B_2(0,1)$, from Dudley's theorem and known results on the metric entropy of the ℓ_2 ball, we have

$$\widehat{\mathbb{R}}_n(B(0,1)) \leq c_1 \int_0^D \sqrt{\frac{\log N(t, B(0,1), ||.||)}{n}} dt$$

$$= c_1 \sqrt{\frac{d}{n}} \int_0^1 \sqrt{\log(\frac{1}{t})} dt,$$

where we have used the fact that the ℓ_2 ball has diameter 1. Continuing on, it can be shown that the given integral is finite, so that we conclude that

$$\widehat{\mathbb{R}}_n(B(0,1)) \leq c_2 \sqrt{\frac{d}{n}}.$$

Note that we have removed the superfluous $\log n$ factor from the previous result.