60

Scattering geometry

Patterson function $P(\vec{r})$

2. Diffraction

$$I = \int d^{3}r \rho(\vec{r}) e^{-i\vec{K}\vec{r}} \int d^{3}r' \rho^{*}(\vec{r'}) e^{i\vec{K}\vec{r'}} = \int d^{3}r \rho(\vec{r}) e^{-i\vec{K}\vec{r}} \int d^{3}r' \rho(\vec{r'} + \vec{r}) e^{i\vec{K}(\vec{r'} + \vec{r})} = \int d^{3}r' e^{-i\vec{K}\vec{r'}} \int d^{3}r \rho(\vec{r}) \rho(\vec{r'} + \vec{r})$$

 $P(\vec{r}) = \int d^3r' \rho(\vec{r'} + \vec{r}) \rho(\vec{r'})$

autocorrelation function of scattering density

 $P(\vec{r})$ has a maximum, if \vec{r} corresponds to any spacing of scatterers

$P(\vec{r}) = \int d^3r' \rho(\vec{r'} + \vec{r}) \rho(\vec{r'})$

autocorrelation function of scattering density

 $g(r) = P(|\vec{r}|)$ pair correlation

Reciprocal lattice

2. Diffraction

Real space lattice

2d - lattice

Reciprocal lattice

 $\vec{q}_1 \perp \vec{a}_2, \vec{q}_1 \perp \hat{n}, \vec{q}_2 \perp \vec{a}_1, \vec{q}_2 \perp \hat{n}$

Brillouin zones 2. Diffraction

Ewald construction 2. Diffraction

- Die Richtung von k₀ ist durch das Experiment vorgegeben (einfallender Strahl).
- Zeichne k₀ so, dass die Spitze an einem Punkt des reziproken Gitters endet, hier (000).
- Zeichne einen Kreis (eine Kugeloberfläche) mit Radiusvektor k₀
- Für alle Punkte auf dem Kreis (der Kugeloberfläche) ist $\mathbf{G} = \mathbf{k} \mathbf{k}_0$ erfüllt, hier $\mathbf{G} = (340) - (000) = (340)$.

Bemerkung: Der Anfang von k₀ liegt in der Abbildung nur zufällig nahe einem Punkt des reziproken Gitters.

X-ray diffraction

2. Diffraction

Laue method

Diffraction of collimated, broadband X-ray beam at single crystal sample:

- $K \leq k_0 \leq K$
- · analysis of crystal symmetry
- · orientation of single crystals

Debeye-Scherrer method

Monochromatic X-ray diffraction from polycrystalline powder sample

- · Diffraction rings
- $0 \le 2\Theta \le 180 \Rightarrow G_{hkl} \le 2k_0$
- not verry precise, but lattice constant and crystal structure

X-ray diffraction

2. Diffraction

67

Rotating crystal method

3-axis goniometer (monochromator, sample, detector)

Monochromatic X-ray diffraction from single crystal

- simultaneous rotation: sample by 9, detector by 29
- resolution $\Delta \lambda / \lambda \approx 10^{-5}$ (X-rays or neutrons)

Photons, electrons, neutrons, He atoms

2. Diffraction

Wavelength $\lambda \approx$ lattice constant a

• photons:
$$\lambda(\hat{A}) \approx \frac{12,4}{E(\text{keV})}$$
 12,4keV $= 1\hat{A}$

• electrons:
$$\lambda(\hat{A}) \approx \frac{12,3}{\sqrt{E}(\sqrt{eV})}$$
 100 eV $= 1,23\hat{A}$

• neutrons:
$$\lambda(\text{Å}) \approx \frac{0.287}{\sqrt{\text{E}(\sqrt{\text{eV}})}}$$
 10 meV $\stackrel{\circ}{=} 2.87\text{Å}$

• He atoms:
$$\lambda(\text{Å}) \approx \frac{0.144}{\sqrt{F}(\sqrt{\text{eV}})}$$
 10 meV $= 1.44\text{Å}$

Low-energy electron diffraction

2. Diffraction

Electrons impinging on the crystal are elastically back-reflected and imaged by a phosphor screen.

The short inelastic mean free path of electrons in conducting materials (only a few lattice planes) makes LEED a surface sensitive technique.

The first Brillouin zone is defined as the Wigner-Seitz cell of the reciprocal lattice. All **k** vectors at the Brillouin zone boundary fulfil the Laue condition.

(101

All **k**₀, **k** satisfying the Laue condition lie on the bisecting plane perpendicular to **G**_{hkl}

Miller indices 2. Diffraction

Lattice plane defined by 3 points: $n_1\vec{a}_1, n_2\vec{a}_2, n_3\vec{a}_3$

Miller indices:

$$(h, k, l) = p \cdot (1/n_1, 1/n_2, 1/n_3)$$

 $G_{hkl} \perp$ lattice plane (hkl)

Some lattice planes and Miller indices of the cubic Bravais lattice

$$\vec{k} - \vec{k}_0 = \vec{G}_{hkl}$$
 $n \cdot \lambda = 2d_{hkl} \sin \vartheta$

$$n \cdot \lambda = 2d_{hkl} \sin \vartheta$$

Structure factor and atomic form factor

2. Diffraction

Atomic form factor f_{Fe} for iron

Structure factor

$$S_{hkl} = \sum_{\alpha} f_{\alpha} e^{-i\vec{G}_{hkl}t_{\alpha}}$$

$$I_{hkl} \propto \exp[-\frac{1}{3}u^2G_{hkl}^2]$$

Mean square displacement for harmonic oscillator:

$$\frac{1}{2}m\omega^2u^2 = \frac{3}{2}kT$$

Debye-Waller factor:

$$I_{hkl} \propto \exp[-kT \cdot G_{hkl}^2/m\omega^2]$$

