

	$\sigma_1^{\#1}{}_+\alpha\beta$	$\sigma_1^{\#_2^2}$	$\tau_1^{\#1}_+ \alpha_\beta$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{lpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$ au_1^{\#2}$
$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3 \ell \sqrt{2} k}{(3+k^2)^2 t_2}$	0	0	0	0
$\sigma_{1}^{#2} + \alpha^{\beta}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\tau_1^{\#1} + ^{\alpha\beta}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	$-\frac{1}{k^2 r_1}$	$-\frac{\sqrt{2}}{k^2 r_1 + 2 k^4 r_1}$	0	$-\frac{2i}{kr_1+2k^3r_1}$
$\sigma_{1}^{\#2} +^{lpha}$	0	0	0	$-\frac{\sqrt{2}}{k^2 r_1 + 2 k^4 r_1}$	$\frac{3k^2r_{1}-2t_3}{(k+2k^3)^2r_1t_3}$	0	$\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$
$\tau_{1}^{\#1} + ^{\alpha}$	0	0	0	0	0	0	0
$t_1^{#2} + \alpha$	0	0	0	$\frac{2i}{kr_1+2k^3r_1}$	$-\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$	0	$\frac{6k^2r_{1}-4t_3}{(1+2k^2)^2r_{1}t_3}$

$f_{1^-}^{#2}$	0	0	0	$-\frac{2}{3} I k t_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}{}_{lpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	[1 3]	0	$-\frac{1}{3}\vec{l}\sqrt{2}kt_3$
$\omega_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_{1}^{\#1}_{lphaeta}$	1 i	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}$	$\frac{\sqrt{2}t_2}{3}$	3 E	$-\frac{1}{3}$ ikt ₂	0	0	0	0
$\omega_{1}^{\#1}_{\alpha\beta}$		$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\overline{l}\sqrt{2}kt_2\left -\frac{1}{3}\overline{l}kt_2\right $	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{#2} + \alpha$

0

 $f_{0}^{#1} \dagger | i \sqrt{2} kt_{3}$

 \vdash

Source constraints

SO(3) irreps

П

 $r_{0}^{\#1} - 2 \, \bar{i} \, k \, \sigma_{0}^{\#1} = 0$

 \sim

0

 $\tau_{1}^{\#2}{}^{\alpha}+2\,i\,k\,\,\sigma_{1}^{\#2}{}^{\alpha}$

 $2k^2t_3$

0

0

 \sim

0 ==

 $t_1^{\#1}\alpha$

0

0

 \sim

0

 $r_{1}^{\#1}\alpha\beta + ik \sigma_{1}^{\#1}\alpha\beta$

0

2

0 ==

 $\tau_2^{\#1}\alpha\beta$

 $0 k^2 r_2 + t_2$

3

 $\sigma_1^{\#2}\alpha\beta$

H

 $\sigma_1^{\#1}{}^{\alpha\beta}$

0

		7				
2	24	r#1	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
0 ==		$\sigma_{0}^{\#1}$	2 t3	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$ (1	0	0
$\sigma_2^{\#1}\alpha\beta$ =:	Total #:		$\sigma_{0}^{\#1} + \frac{1}{(1 - 1)^{1/2}}$	$\tau_{0}^{\#1} + \frac{1}{(1 - 1)^{1/2}}$	$\tau_{0}^{#2} +$	$\sigma_{0}^{\#1}$ †

0

0

0

0

0

0

 $k^2 r_2 + t_2$

Massive particl	е
Pole residue:	$-\frac{1}{r_2}$ >

Polarisations: $-\frac{t_2}{} > 0$ Square mass: *r*2 Spin: Parity: Odd

(No massless particles)

Unitarity conditions

 $< 0 && t_2$