Investition und Finanzierung, Test Beteiligungs- und Fremdfinanzierung

HENRY HAUSTEIN

Kapitalerhöhung gegen Einlagen

Aus dem Marktwert des Eigenkapitals und dem aktuellen Kurs können wir die Anzahl der alten Aktien berechnen:

alte Aktien =
$$\frac{EK}{\text{Kurs}} = \frac{30.000.000}{300} = 100.000$$

Aus der Änderung des Grundkapitals und dem Emissionskurs können wir die Anzahl der neuen Aktien berechnen:

neue Aktien =
$$\frac{\Delta Grundkapital}{Emissionskurs} = \frac{7.500.000}{240} = 50.000$$

Damit ergibt sich ein Mischkurs von

$$\mathrm{Kurs} = \frac{100.000 \cdot 300 + 50.000 \cdot 240}{100.000 + 50.000} = 280$$

Der Wert des Eigenkapitals ist damit $280 \cdot (100.000 + 50.000) = 42.000.000$, er steigt also um 12.000.000, was auch die Änderung der Bilanzsumme ist.

Dividendennachteil

Der Dividendennachteil ist (die neuen Aktien sind ein dreiviertel des Jahres dividendenberechtigt)

$$N = 39 \cdot (1 - 0.75) = 9,75$$

Aus dem Nennwert und dem gezeichneten Kapital kann man die Anzahl der alten Aktien bestimmen:

alte Aktien =
$$\frac{\text{gezeichnetes Kapital}}{\text{Nennwert}} = \frac{2.000.000}{10} = 200.000$$

Aus der Änderung des Grundkapitals und dem Nennwert können wir die Anzahl der neuen Aktien berechnen:

neue Aktien =
$$\frac{\Delta \text{Grundkapital}}{\text{Nennwert}} = \frac{400.000}{10} = 40.000$$

Das ergibt ein Bezugsverhältnis von $b=\frac{200.000}{40.000}=5$ und damit ergibt sich der Wert eines Bezugsrechtes:

$$B = \frac{K_a - (K_n + N)}{b+1}$$
$$= \frac{780 - (660 + 9, 75)}{6}$$
$$= 18,38$$

Annuitätenkredit

Die Annuität ist

$$A = \frac{q^n \cdot i}{q^n - 1} \cdot S_0$$
$$= \frac{1, 1^{27} \cdot 0, 1}{1, 1^{27} - 1} \cdot 30.000$$
$$= 3.247, 73$$

 ${\bf Damit\ ergibt\ sich\ folgender\ Tilgungsplan}$

Periode	Schuld am Anfang	Zinsen	Tilgung	Annuität	Schuld am Ende
1	30.000,00	3.000,00	247, 73	3.247, 73	29.752, 27
2	29.752, 27	2.975, 23	272,50	3.247, 73	29.479,77
3	29.479, 77	2.947, 98	299, 75	3.247, 73	29.180, 02
4	29.180, 02	2.918,00	329, 73	3.247, 73	28.850, 29
5	28.850, 29	2.885,03	362, 70	3.247, 73	28.487, 59
6	28.487, 59	2.848, 76	398, 97	3.247, 73	28.088, 62
7	28.088, 62	2.808,86	438, 87	3.247, 73	27.649, 75
8	27.649, 75	2.764, 98	482,75	3.247,73	27.167,00
9	27.167,00	2.716, 70	531,03	3.247, 73	26.635, 97
10	26.635, 97	2.663,60	584, 13	3.247, 73	26.051, 83
11	26.051, 83	2.605, 18	642, 55	3.247,73	25.409, 29
12	25.409, 29	2.540, 93	706, 80	3.247, 73	24.702, 49
13	24.702, 49	2.470, 25	777, 48	3.247, 73	23.925, 01
14	23.925, 01	2.392, 50	855, 23	3.247, 73	23.069, 78
15	23.069, 78	2.306, 98	940, 75	3.247, 73	22.129, 03
16	22.129, 03	2.212,90	1.034, 83	3.247, 73	21.094, 20
17	21.094, 20	2.109, 42	1.138, 31	3.247,73	19.955, 89
18	19.955, 89	1.995, 59	1.252, 14	3.247, 73	18.703, 75
19	18.703, 75	1.870, 38	1.377, 35	3.247, 73	17.326, 40
20	17.326, 40	1.732,64	1.515, 09	3.247, 73	15.811, 31
21	15.811, 31	1.581, 13	1.666,60	3.247, 73	14.144,71
22	14.144,71	1.414, 47	1.833, 26	3.247, 73	12.311, 45
23	12.311, 45	1.231, 14	2.016, 58	3.247, 73	10.294, 86
24	10.294, 86	1.029, 49	2.218, 24	3.247,73	8.076, 62
25	8.076, 62	807,66	2.440,07	3.247, 73	5.636, 55
26	5.636, 55	563,66	2.684, 07	3.247, 73	2.952, 48
27	2.952, 48	295, 25	2.952, 48	3.247, 73	0,00

Die gesuchte Summe ist dann

$$S = T_{24} + Z_{10} + ZB_8$$

= 2.218, 24 + 2.663, 60 + 3.247, 73
= 8.129, 57

Kreditsumme

Berechnung des Kapitalwertes dieses Kredites:

Periode	0	1	2	3	4	5	6	7
S_0	80.000							
Disagio	-3.200							
einmalige Kosten	-3.200							
laufende Kosten		-560	-560	-560	-560	-560	-560	-560
Tilgung		0	0	0	-20.000	-20.000	-20.000	-20.000
Zinsen		-4.800	-4.800	-4.800	-4.800	-3.600	-2.400	-1.200
Periodenüberschuss	73.600	-5.360	-5.360	-5.360	-25.360	-24.160	-22.960	-21.760

Formeln für den Kapitalwert:

$$C_0(q) = 73.600 - \frac{5.360}{q} - \frac{5.360}{q^2} - \frac{5.360}{q^3} - \frac{25.360}{q^4} - \frac{24.160}{q^5} - \frac{22.960}{q^6} - \frac{21.760}{q^7}$$

$$C_0(1,09) = 770,49$$

$$C_0'(q) = \frac{5.360}{q^2} + \frac{2 \cdot 5.360}{q^3} + \frac{3 \cdot 5.360}{q^4} + \frac{4 \cdot 25.360}{q^5} + \frac{5 \cdot 24.160}{q^6} + \frac{6 \cdot 22.960}{q^7} + \frac{7 \cdot 21.760}{q^8}$$

$$C_0'(1,09) = 313.942,53$$

Iteration des Newtonverfahrens:

$$q^* = 1,09 - \frac{770,49}{313.942,53}$$
$$= 1,0875$$
$$i^* = 8,75\%$$

Anleihen

Barwert der Anleihe 1:

$$BW = -103, 6 + \sum_{i=1}^{11} \frac{6,25}{1,02^i} + \frac{100}{1,02^{11}}$$
$$= 37,99$$

Barwert der Anleihe 2:

$$BW = -105, 6 + \sum_{i=1}^{14} \frac{7,5}{1,02^i} + \frac{100}{1,02^{14}}$$
$$= 60,98$$