ĐỀ KIỂM TRA GIỮA KỲ II – NĂM HỌC 2022 - 2023 MÔN TOÁN - LỚP 10

Thời gian làm bài : 90 Phút; (Đề có 25 câu)

ĐỀ CHÍNH THỰC (Đề có 3 trang)

Họ và tên: Số báo danh:

Mã đề 101

PHẦN CÂU HỔI TRẮC NGHIÊM

Câu 1: Cho hàm số bậc hai y = f(x) có đồ thị như hình vẽ.

Tìm giá trị lớn nhất của hàm số y = f(x).

A. 4.

B. 2.

C. 3.

D. 1.

Câu 2: Tìm trục đối xứng của parabol có đồ thị được cho như hình vẽ bên

- **A.** y = 3.
- **B.** x = 3.
- **C.** v = 2.
- **D.** x = 2.

Câu 3: Xác định hệ số a của tam thức bậc hai $f(x) = 2x^2 + 5x + 6$.

- **A.** a = 6.
- **B.** $a = 2x^2$.
- **C.** a = 2.
- **D.** a = 5.

Câu 4: Trong mặt phẳng Oxy, đường thẳng d: 2x + y + 3 = 0 vuông góc với đường thẳng nào dưới đây?

- **A.** $\Delta_1: x-2y+1=0$. **B.** $\Delta_4: 2x+y+3=0$. **C.** $\Delta_3: x+2y+1=0$.
- **D.** $\Delta_2 : 2x y + 1 = 0...$

Câu 5: Điểm nào dưới đây nằm trên đường thẳng $\Delta: 2x + y + 1 = 0$?

- **A.** C(1;2).
- **B.** A(1;-3).
- **C.** D(1;-2).
- **D.** B(-1;-3).

Câu 6: Với x thuộc tập hợp nào sau đây thì tam thức $f(x) = x^2 + 3x + 2$ luôn dương?

- **A.** (-2;-1).
- **B.** \mathbb{R} .

- **C.** $(-\infty; -2)$.
- **D.** $(-2; +\infty)$.

Câu 7: Tìm tọa độ đỉnh I của parabol $y = ax^2 + bx + c$ có đồ thị như hình vẽ bên

Câu 8: Đường thẳng đi qua điểm A(2;-1) và nhận VTCP $\vec{u}=(3;1)$ có phương trình tham số là

$$\mathbf{A.} \begin{cases} x = 2 - t \\ y = 3 + t \end{cases}$$

A.
$$\begin{cases} x = 2 - t \\ y = 3 + t \end{cases}$$
 B. $\begin{cases} x = 2 + 3t \\ y = -1 + t \end{cases}$ **C.** $\begin{cases} x = 3 + 2t \\ y = 1 - t \end{cases}$

$$\mathbf{C.} \quad \begin{cases} x = 3 + 2t \\ y = 1 - t \end{cases}.$$

$$\mathbf{D.} \quad \begin{cases} x = 3 - t \\ y = 1 + 2t \end{cases}.$$

Câu 9: Cho đường thẳng d: 2x-3y+1=0. Một vecto pháp tuyến của d là

A.
$$\vec{x} = (1; -3)$$
.

B.
$$\vec{e} = (-3;1)$$
.

C.
$$\vec{n} = (2;1)$$
.

D.
$$\vec{v} = (2; -3).$$

Câu 10: Cho bảng giá trị của hai đại lượng tương ứng x, y như hình bên dưới. Đại lượng y = f(x) là hàm số của đại lượng x.

x	0	1	2	3
y = f(x)	-5	2	5	-2

Tính giá trị f(1).

A.
$$f(1) = -5$$
.

B.
$$f(1) = -2$$
.

C.
$$f(1) = 2$$
. **D.** $f(1) = 5$.

D.
$$f(1) = 5$$
.

Câu 11: Khoảng cách từ điểm $M(x_0; y_0)$ đến dường thẳng $\Delta : ax + by + c = 0, (a^2 + b^2 \neq 0)$ được tính bởi công thức nào dưới đây?

A.
$$d(M, \Delta) = \frac{|ax_0 + by_0 + c|}{\sqrt{x_0^2 + y_0^2}}$$
..

B.
$$d(M,\Delta) = \frac{ax_0 + by_0 + c}{\sqrt{a + b}}$$
.

C.
$$d(M, \Delta) = |ax_0 + by_0 + c|$$
..

D.
$$d(M, \Delta) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$
.

Câu 12: Tìm tập xác định của hàm số $y = \sqrt{x-5}$.

A.
$$[5;+\infty)$$

B.
$$(-\infty; 5]$$
.

C.
$$(5;+\infty)$$
.

D.
$$\mathbb{R} \setminus \{5\}.$$

Câu 13: Cho hàm số y = f(x) có đồ thị như hình vẽ.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

A.
$$(-2;0)$$
.

B.
$$(-1;3)$$
.

C.
$$(-2;1)$$
.

D.
$$(-1;1)$$
.

Câu 14: Tìm tập xác định của hàm số $y = x^2 - 2x - 3$.

A.
$$\mathbb{R} \setminus \{-1\}$$
.

B.
$$\mathbb{R} \setminus \{3;-1\}.$$

C.
$$\mathbb{R}\setminus\{3\}$$
.

Câu 15: Tập nghiệm của bất phương trình $x^2 - 4x + 3 \le 0$ là

A.
$$(-\infty;1) \cup (3;+\infty)$$
. **B.** \mathbb{R} .

Câu 16: Tập nghiệm của phương trình $\sqrt{2x^2-4x+9} = x-3$ là

C.
$$\{-2;0\}$$
.

D.
$$\{-2\}$$
.

Câu 17: Trong mặt phẳng Oxy, đường thẳng đi qua hai điểm A(2;0) và B(0;3) có phương trình là

A.
$$\frac{x}{3} + \frac{y}{2} = 1$$
.

A.
$$\frac{x}{3} + \frac{y}{2} = 1$$
. **B.** $\frac{x}{3} + \frac{y}{2} = 0$. **C.** $\frac{x}{2} - \frac{y}{3} = 1$. **D.** $\frac{x}{2} + \frac{y}{3} = 1$.

C.
$$\frac{x}{2} - \frac{y}{3} = 1$$
.

D.
$$\frac{x}{2} + \frac{y}{3} = 1$$
.

Câu 18: Gọi α là góc giữa hai đường thẳng $d_1:4x-2y+1=0$ và $d_2:x-2y-2=0$. Tính $\cos\alpha$.

- **A.** $\cos \alpha = \frac{2}{5}$. **B.** $\cos \alpha = \frac{3}{5}$. **C.** $\cos \alpha = \frac{4}{5}$.
- **D.** $\cos \alpha = 1$.

Câu 19: Tập giá trị của hàm số $y = \sqrt{2x-1}$ là

A. $[0;+\infty)$.

C.

- **B.** $(\frac{1}{2}; +\infty)$. **C.** $[2; +\infty)$.
- **D.** $(-\infty; \frac{1}{2}]$.

Câu 20: Cho hàm số $y = x^2 + 2x - 1$. Hãy thay dấu "?" bằng các số thích hợp để hoàn thành bảng giá trị sau tại một số điểm.

х	-1	0	2	3
У	?	?	?	?

-	_	-	-	11	1
					•
х	-1	0	2	3	
y	2	-1	8	14	

	x	-1	0	2	3
_D	y	-2	-1	7	14

1						•
	х	-1	0	2	3	
	y	2	-1	7	14	

PHẦN CÂU HỎI TỰ LUẬN

Câu 21: Viết phương trình đường thẳng d qua điểm M(1;3) và cách điểm I(-1;5) một khoảng lớn nhất.

D.

Câu 22: Cho tam giác ABC có A(1;3), B(-1;5), C(4;-1). Viết phương trình đường cao AH của tam giác ABC.

Câu 23: Vẽ parabol $y = x^2 + 2x - 3$.

Câu 24: Tính tổng tất cả các nghiệm dương của phương trình $4\sqrt{25-x^2} = 19-x$.

Câu 25: Một quả bóng chuyền được phát lên từ độ cao 1 m và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 7 m sau 1 giây và đạt độ cao 9 m sau 2 giây. Trong khoảng thời gian bao lâu thì độ cao quả bóng lớn hơn 7 m.

ĐỂ KIỂM TRA GIỮA KỲ II – NĂM HỌC 2022 - 2023 MÔN TOÁN - LỚP 10

Thời gian làm bài : 90 Phút; (Đề có 25 câu)

ĐỀ CHÍNH THỰC (Đề có 3 trang)

Ho và tên: Số báo danh:

Mã đề 102

PHẦN CÂU HỎI TRẮC NGHIỆM

Câu 1: Xác định hệ số a của tam thức bậc hai $f(x) = 2x^2 + 5x + 6$.

A.
$$a = 2x^2$$
.

B.
$$a = 5$$
.

C.
$$a = 2$$
.

D.
$$a = 6$$
.

Câu 2: Đường thẳng đi qua điểm A(2;-1) và nhận VTCP $\vec{u} = (3;1)$ có phương trình tham số là

$$\mathbf{A.} \begin{cases} x = 3 - t \\ y = 1 + 2t \end{cases}.$$

$$\mathbf{B.} \quad \begin{cases} x = 2 - t \\ y = 3 + t \end{cases}.$$

B.
$$\begin{cases} x = 2 - t \\ y = 3 + t \end{cases}$$
 C.
$$\begin{cases} x = 2 + 3t \\ y = -1 + t \end{cases}$$
 D.
$$\begin{cases} x = 3 + 2t \\ y = 1 - t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 3 + 2t \\ y = 1 - t \end{cases}$$

Câu 3: Khoảng cách từ điểm $M(x_0; y_0)$ đến dường thẳng $\Delta : ax + by + c = 0, (a^2 + b^2 \neq 0)$ được tính bởi công thức nào dưới đây?

A.
$$d(M, \Delta) = \frac{|ax_0 + by_0 + c|}{\sqrt{x_0^2 + y_0^2}}$$
...

B.
$$d(M, \Delta) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

C.
$$d(M, \Delta) = |ax_0 + by_0 + c|...$$

D.
$$d(M,\Delta) = \frac{ax_0 + by_0 + c}{\sqrt{a + b}}$$
.

Câu 4: Cho hàm số bậc hai y = f(x) có đồ thị như hình vẽ.

Tìm giá trị lớn nhất của hàm số y = f(x).

C. 4.

D. 3.

Câu 5: Trong mặt phẳng Oxy, đường thẳng d: 2x + y + 3 = 0 vuông góc với đường thẳng nào dưới đây?

A. $\Delta_3: x+2y+1=0$. **B.** $\Delta_4: 2x+y+3=0$. **C.** $\Delta_1: x-2y+1=0$.

D. $\Delta_2 : 2x - y + 1 = 0...$

Câu 6: Tìm tọa độ đỉnh I của parabol $y = ax^2 + bx + c$ có đồ thị như hình vẽ bên

A. I(3;0).

B. I(2;2).

C. I(3;2).

D. I(0;3).

Câu 7: Cho đường thẳng d:2x-3y+1=0. Một vecto pháp tuyến của d là

- **A.** n = (2;1).
- **B.** $\vec{x} = (1; -3)$.
- C. $\vec{e} = (-3;1)$.
- **D.** $\vec{v} = (2; -3)$.

Câu 8: Cho hàm số y = f(x) có đồ thị như hình vẽ.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

- **A.** (-1;3).
- **B.** (-1;1).
- \mathbf{C} . (-2;0).
- **D.** (-2;1).

Câu 9: Điểm nào dưới đây nằm trên đường thắng $\Delta: 2x + y + 1 = 0$?

- **A.** B(-1;-3).
- **B.** D(1;-2).
- **C.** C(1;2).
- **D.** A(1;-3).

Câu 10: Cho bảng giá trị của hai đại lượng tương ứng x, y như hình bên dưới. Đại lượng y = f(x) là hàm số của đại lượng x.

•				
х	0	1	2	3
y = f(x)	-5	2	5	-2

Tính giá trị f(1).

- **A.** f(1) = 5.
- **B.** f(1) = -2.
- **C.** f(1) = -5.
- **D.** f(1) = 2.

Câu 11: Với x thuộc tập hợp nào sau đây thì tam thức $f(x) = x^2 + 3x + 2$ luôn dương?

- **A.** $(-\infty; -2)$.
- **B.** (-2;-1).
- **C.** $(-2; +\infty)$.

Câu 12: Tìm tập xác định của hàm số $y = \sqrt{x-5}$.

- **B.** $\mathbb{R} \setminus \{5\}.$
- **C.** $(5; +\infty)$.
- **D.** $(-\infty; 5]$.

Câu 13: Tìm tập xác định của hàm số $y = x^2 - 2x - 3$.

- **A.** $\mathbb{R} \setminus \{3\}$.

- **C.** $\mathbb{R} \setminus \{-1\}$.
- **D.** $\mathbb{R} \setminus \{3; -1\}.$

Câu 14: Tìm trục đối xứng của parabol có đồ thị được cho như hình vẽ bên

- **A.** x = 2.
- **B.** y = 2.
- **D.** y = 3.

Câu 15: Tập nghiệm của phương trình $\sqrt{2x^2 - 4x + 9} = x - 3$ là

- **B.** {0}.

D. $\{-2;0\}$.

Câu 16: Tập nghiệm của bất phương trình $x^2 - 4x + 3 \le 0$ là

- $\mathbf{A}. \varnothing.$
- **B.** \mathbb{R} .

- **C.** $(-\infty;1) \cup (3;+\infty)$.
- **D.** [1;3].

Câu 17: Trong mặt phẳng Oxy, đường thẳng đi qua hai điểm A(2;0) và B(0;3) có phương trình là

- **A.** $\frac{x}{2} + \frac{y}{3} = 1$. **B.** $\frac{x}{3} + \frac{y}{2} = 0$. **C.** $\frac{x}{3} + \frac{y}{2} = 1$.
- **D.** $\frac{x}{2} \frac{y}{3} = 1$.

Câu 18: Cho hàm số $y = x^2 + 2x - 1$. Hãy thay dấu "?" bằng các số thích hợp để hoàn thành bảng giá tri sau tai môt số điểm.

х	-1	0	2	3
У	?	?	?	?

	x	-1	0	2	3
A.	,		-1	/	14
	x	-1	0	2	3
	12	_		7	

	х	-1	0	2	3
D	y	-2	-1	7	14
D.					

х	-1	0	2	3
y	2	-1	8	14

C. y -2 1 7 11. Câu 19: Tập giá trị của hàm số $y = \sqrt{2x-1}$ là

A.
$$(-\infty; \frac{1}{2}]$$
.

A.
$$(-\infty; \frac{1}{2}]$$
. **B.** $(\frac{1}{2}; +\infty)$.

C.
$$[0; +\infty)$$

D.

C.
$$[0; +\infty)$$
. **D.** $[2; +\infty)$.

Câu 20: Gọi α là góc giữa hai đường thẳng $d_1:4x-2y+1=0$ và $d_2:x-2y-2=0$. Tính $\cos\alpha$.

$$\mathbf{A.} \quad \cos \alpha = \frac{2}{5}.$$

A.
$$\cos \alpha = \frac{2}{5}$$
. **B.** $\cos \alpha = \frac{4}{5}$. **C.** $\cos \alpha = \frac{3}{5}$. **D.** $\cos \alpha = 1$.

C.
$$\cos \alpha = \frac{3}{5}$$
.

D.
$$\cos \alpha = 1$$

PHẦN CÂU HỎI TƯ LUÂN

Câu 21: Vẽ parabol $y = x^2 + 2x - 3$.

Câu 22: Cho tam giác ABC có A(1;3), B(-1;5), C(4;-1). Viết phương trình đường cao AH của tam giác ABC.

Câu 23: Viết phương trình đường thẳng d qua điểm M(1;3) và cách điểm I(-1;5) một khoảng lớn nhất.

Câu 24: Tính tổng tất cả các nghiệm dương của phương trình $4\sqrt{25-x^2} = 19-x$.

Câu 25: Một quả bóng chuyền được phát lên từ độ cao 1 m và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 7 m sau 1 giây và đạt độ cao 9 m sau 2 giây. Trong khoảng thời gian bao lâu thì độ cao quả bóng lớn hơn 7 m?

ĐỀ KIỂM TRA GIỮA KỲ II – NĂM HỌC 2022 - 2023 MÔN TOÁN - LỚP 10

Thời gian làm bài : 90 Phút; (Đề có 25 câu)

ĐỀ CHÍNH THỰC (Đề có 3 trang)

Ho và tên: Số báo danh:

Mã đề 103

PHẦN CÂU HỎI TRẮC NGHIỆM

Câu 1: Tìm tập xác định của hàm số $y = x^2 - 2x - 3$.

- **A.** $\mathbb{R} \setminus \{3\}$.
- **B.** $\mathbb{R} \setminus \{-1\}$.

D. $\mathbb{R} \setminus \{3; -1\}.$

Câu 2: Trong mặt phẳng Oxy, đường thẳng d:2x+y+3=0 vuông góc với đường thẳng nào dưới đây?

- **A.** $\Delta_1: 2x y + 1 = 0$. **B.** $\Delta_1: x 2y + 1 = 0$. **C.** $\Delta_3: x + 2y + 1 = 0$. **D.** $\Delta_4: 2x + y + 3 = 0$.

Câu 3: Cho bảng giá trị của hai đại lượng tương ứng x, y như hình bên dưới. Đại lượng y = f(x) là hàm số của đại lượng x.

x	0	1	2	3
y = f(x)	-5	2	5	-2

Tính giá trị f(1).

- **A.** f(1) = 5.
- **B.** f(1) = -2. **C.** f(1) = -5.
- **D.** f(1) = 2.

Câu 4: Đường thẳng đi qua điểm A(2;-1) và nhận VTCP $\vec{u} = (3;1)$ có phương trình tham số là

- **A.** $\begin{cases} x = 3 + 2t \\ y = 1 t \end{cases}$ **B.** $\begin{cases} x = 2 t \\ y = 3 + t \end{cases}$ **C.** $\begin{cases} x = 2 + 3t \\ y = -1 + t \end{cases}$ **D.** $\begin{cases} x = 3 t \\ y = 1 + 2t \end{cases}$

Câu 5: Tìm tập xác định của hàm số $y = \sqrt{x-5}$.

- **A.** $[5;+\infty)$
- **B.** $(5; +\infty)$.
- C. $(-\infty; 5]$.
- **D.** $\mathbb{R} \setminus \{5\}$.

Câu 6: Tìm tọa độ đỉnh I của parabol $y = ax^2 + bx + c$ có đồ thị như hình vẽ bên

- **A.** I(3;0).
- **B.** I(2;2).
- **C.** I(3;2).
- **D.** I(0;3).

Câu 7: Điểm nào dưới đây nằm trên đường thẳng $\Delta: 2x + y + 1 = 0$?

- **A.** B(-1;-3).
- **B.** C(1;2).
- **C.** A(1;-3).
- **D.** D(1;-2).

Câu 8: Cho hàm số bậc hai y = f(x) có đồ thị như hình vẽ.

Tìm giá trị lớn nhất của hàm số y = f(x).

Câu 9: Khoảng cách từ điểm $M(x_0; y_0)$ đến dường thẳng $\Delta : ax + by + c = 0, (a^2 + b^2 \neq 0)$ được tính bởi công thức nào dưới đây?

A. $d(M, \Delta) = |ax_0 + by_0 + c|$...

B. $d(M, \Delta) = \frac{|ax_0 + by_0 + c|}{\sqrt{x_0^2 + y_0^2}}$..

C. $d(M, \Delta) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$.

D. $d(M, \Delta) = \frac{ax_0 + by_0 + c}{\sqrt{a + b}}$.

Câu 10: Với x thuộc tập hợp nào sau đây thì tam thức $f(x) = x^2 + 3x + 2$ luôn dương?

- **A.** $(-2;+\infty)$.
- **B.** (-2;-1).
- **C.** $(-\infty; -2)$.
- **D.** \mathbb{R} .

Câu 11: Cho hàm số y = f(x) có đồ thị như hình vẽ.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

- **A.** (-1;3).
- **B.** (-2;0).
- \mathbf{C} . (-2;1).
- **D.** (-1;1).

Câu 12: Xác định hệ số a của tam thức bậc hai $f(x) = 2x^2 + 5x + 6$.

- **B.** a = 6.
- **D.** a = 5.

Câu 13: Tìm trục đối xứng của parabol có đồ thị được cho như hình vẽ bên

- **A.** x = 2.
- **B.** y = 2.
- **C.** y = 3.
- **D.** x = 3.

Câu 14: Cho đường thẳng d: 2x-3y+1=0. Một vecto pháp tuyến của d là

- **B.** $\vec{x} = (1; -3)$.
- $\vec{\mathbf{C}}$. $\vec{v} = (2; -3)$.

Câu 15: Gọi α là góc giữa hai đường thẳng $d_1:4x-2y+1=0$ và $d_2:x-2y-2=0$. Tính $\cos\alpha$.

- A. $\cos \alpha = \frac{2}{5}$.
- **B.** $\cos \alpha = 1$.
- C. $\cos \alpha = \frac{4}{5}$.
- $\mathbf{D.} \ \cos\alpha = \frac{3}{5}.$

Câu 16: Trong mặt phẳng Oxy, đường thẳng đi qua hai điểm A(2;0) và B(0;3) có phương trình là

- **A.** $\frac{x}{3} + \frac{y}{2} = 1$. **B.** $\frac{x}{2} \frac{y}{3} = 1$. **C.** $\frac{x}{3} + \frac{y}{2} = 0$.
- **D.** $\frac{x}{2} + \frac{y}{3} = 1$.

Câu 17: Tập nghiệm của bất phương trình $x^2 - 4x + 3 \le 0$ là

Câu 18: Tập nghiệm của phương trình $\sqrt{2x^2 - 4x + 9} = x - 3$ là

A. {0}.

C.

- **B.** $\{-2;0\}$.
- $C. \{-2\}.$
- \mathbf{D} . \emptyset .

Câu 19: Tập giá trị của hàm số $y = \sqrt{2x-1}$ là

- **A.** $[2; +\infty)$.
- **B.** $(\frac{1}{2}; +\infty)$.
- **C.** [0;+∞).
- **D.** $(-\infty; \frac{1}{2}]$.

Câu 20: Cho hàm số $y = x^2 + 2x - 1$. Hãy thay dấu "?" bằng các số thích hợp để hoàn thành bảng giá trị sau tại một số điểm.

х	-1	0	2	3
y	?	?	?	?

- - x
 -1
 0
 2
 3

 y
 2
 -1
 8
 14

PHẦN CÂU HỎI TỰ LUẬN

Câu 21: Cho tam giác ABC có A(1;3), B(-1;5), C(4;-1). Viết phương trình đường cao AH của tam giác ABC.

Câu 22: Viết phương trình đường thẳng d qua điểm M(1;3) và cách điểm I(-1;5) một khoảng lớn nhất.

Câu 23: Vẽ parabol $y = x^2 + 2x - 3$.

Câu 24: Tính tổng tất cả các nghiệm dương của phương trình $4\sqrt{25-x^2} = 19-x$.

Câu 25: Một quả bóng chuyền được phát lên từ độ cao 1 m và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 7 m sau 1 giây và đạt độ cao 9 m sau 2 giây. Trong khoảng thời gian bao lâu thì độ cao quả bóng không nhỏ hơn 7 m.

ĐỂ KIỂM TRA GIỮA KỲ II– NĂM HỌC 2022 - 2023 MÔN TOÁN - LỚP 10

Thời gian làm bài : 90 Phút; (Đề có 25 câu)

ĐỀ CHÍNH THỰC (Đề có 3 trang)

Ho và tên: Số báo danh:

Mã đề 104

PHẦN CÂU HỎI TRẮC NGHIỆM

Câu 1: Điểm nào dưới đây nằm trên đường thẳng $\Delta: 2x + y + 1 = 0$?

- **A.** A(1;-3).
- **B.** B(-1;-3).
- **C.** C(1;2).
- **D.** D(1;-2).

Câu 2: Cho hàm số y = f(x) có đồ thị như hình vẽ.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

- **A.** (-2;1).
- **B.** (-1;3).
- \mathbf{C} . (-2;0).
- **D.** (-1;1).

Câu 3: Tìm tập xác định của hàm số $y = \sqrt{x-5}$.

- **A.** $[5;+\infty)$
- **B.** $\mathbb{R} \setminus \{5\}$.
- C. $(-\infty; 5]$.
- **D.** $(5; +\infty)$.

Câu 4: Với x thuộc tập hợp nào sau đây thì tam thức $f(x) = x^2 + 3x + 2$ luôn dương?

- **B.** $(-2; +\infty)$.
- \mathbf{C} . (-2;-1).

Câu 5: Khoảng cách từ điểm $M(x_0; y_0)$ đến dường thẳng $\Delta : ax + by + c = 0, (a^2 + b^2 \neq 0)$ được tính bởi công thức nào dưới đây?

B. $d(M, \Delta) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$.

A. $d(M, \Delta) = \frac{ax_0 + by_0 + c}{\sqrt{a + b}}$. **C.** $d(M, \Delta) = \frac{|ax_0 + by_0 + c|}{\sqrt{x_0^2 + y_0^2}}$.

D. $d(M, \Delta) = |ax_0 + by_0 + c|...$

Câu 6: Cho đường thẳng d:2x-3y+1=0. Một vecto pháp tuyến của d là

- **A.** $\vec{n} = (2;1)$.
- **B.** $\vec{x} = (1; -3)$.
- C. $\vec{e} = (-3;1)$.
- **D.** $\vec{v} = (2; -3)$.

Câu 7: Trong mặt phẳng Oxy, đường thẳng d: 2x + y + 3 = 0 vuông góc với đường thẳng nào dưới đây?

- **A.** $\Delta_2: 2x y + 1 = 0$. **B.** $\Delta_1: x 2y + 1 = 0$. **C.** $\Delta_4: 2x + y + 3 = 0$. **D.** $\Delta_3: x + 2y + 1 = 0$.

Câu 8: Đường thẳng đi qua điểm A(2;-1) và nhận VTCP $\vec{u} = (3;1)$ có phương trình tham số là

- **A.** $\begin{cases} x = 2 t \\ v = 3 + t \end{cases}$ **B.** $\begin{cases} x = 3 + 2t \\ v = 1 t \end{cases}$ **C.** $\begin{cases} x = 3 t \\ y = 1 + 2t \end{cases}$ **D.** $\begin{cases} x = 2 + 3t \\ y = -1 + t \end{cases}$

Câu 9: Xác định hệ số a của tam thức bậc hai $f(x) = 2x^2 + 5x + 6$.

- **A.** $a = 2x^2$.
- **B.** a = 2.
- **C.** a = 5.
- **D.** a = 6.

Câu 10: Cho bảng giá trị của hai đại lượng tương ứng x, y như hình bên dưới. Đại lượng

y = f(x) là hàm số của đại lượng x.

х	0	1	2	3
y = f(x)	-5	2	5	-2

Tính giá trị f(1).

A.
$$f(1) = -5$$
.

B.
$$f(1) = 5$$
.

C.
$$f(1) = -2$$
.

D.
$$f(1) = 2$$
.

Câu 11: Tìm tọa độ đỉnh I của parabol $y = ax^2 + bx + c$ có đồ thị như hình vẽ bên

A.
$$I(0;3)$$
.

B.
$$I(3;0)$$
.

C.
$$I(2;2)$$
.

D.
$$I(3;2)$$
.

Câu 12: Tìm trục đối xứng của parabol có đồ thị được cho như hình vẽ bên

A.
$$x = 3$$
.

B.
$$x = 2$$
.

C.
$$v = 2$$
.

D.
$$y = 3$$
.

Câu 13: Cho hàm số bậc hai y = f(x) có đồ thị như hình vẽ.

Tìm giá trị lớn nhất của hàm số y = f(x).

A 2

B. 4.

C. 1.

D. 2.

Câu 14: Tìm tập xác định của hàm số $y = x^2 - 2x - 3$.

- **A.** $\mathbb{R} \setminus \{3; -1\}$.
- **B.** $\mathbb{R} \setminus \{3\}.$
- **C.** ℝ.

D. $\mathbb{R} \setminus \{-1\}$.

Câu 15: Tập nghiệm của phương trình $\sqrt{2x^2 - 4x + 9} = x - 3$ là

- **A.** $\{-2;0\}$.
- **B.** {0}.

- **C.** $\{-2\}$.
- \mathbf{D} . \emptyset .

Câu 16: Tập nghiệm của bất phương trình $x^2 - 4x + 3 \le 0$ là

- A. Ø.
- **B.** \mathbb{R} .

- **C.** $(-\infty;1) \cup (3;+\infty)$.
- **D.** [1;3].

Câu 17: : Gọi α là góc giữa hai đường thẳng $d_1:4x-2y+1=0$ và $d_2:x-2y-2=0$. Tính $\cos\alpha$.

- $\mathbf{A.} \quad \cos \alpha = \frac{4}{5}.$
- **B.** $\cos \alpha = \frac{3}{5}$.
- $\mathbf{C.} \quad \cos \alpha = \frac{2}{5}.$
- **D.** $\cos \alpha = 1$.

Câu 18: Trong mặt phẳng Oxy, đường thẳng đi qua hai điểm A(2;0) và B(0;3) có phương trình là

- **A.** $\frac{x}{2} \frac{y}{3} = 1$.
- **B.** $\frac{x}{3} + \frac{y}{2} = 0.$ **C.** $\frac{x}{3} + \frac{y}{2} = 1.$ **D.** $\frac{x}{2} + \frac{y}{3} = 1.$

Câu 19: : Cho hàm số $y = x^2 + 2x - 1$. Hãy thay dấu "?" bằng các số thích hợp để hoàn thành bảng giá trị sau tại một số điểm.

х	-1	0	2	3
У	?	?	?	?

- -1y -211 1 В.
- 8
- xy -2-114

Câu 20: Tập giá trị của hàm số $y = \sqrt{2x-1}$ là

A. $(-\infty; \frac{1}{2}]$.

C.

- **B.** $(\frac{1}{2}; +\infty)$.
- **C.** $[0; +\infty)$.

D.

D. $[2; +\infty)$.

PHẦN CÂU HỎI TỰ LUẬN

Câu 21: Vẽ parabol $y = x^2 + 2x - 3$.

Câu 22: Viết phương trình đường thẳng d qua điểm M(1;3) và cách điểm I(-1;5) một khoảng lớn nhất.

Câu 23: Cho tam giác ABC có A(1;3), B(-1;5), C(4;-1). Viết phương trình đường cao AH của tam giác ABC.

Câu 24: Tính tổng tất cả các nghiệm dương của phương trình $4\sqrt{25-x^2} = 19-x$.

Câu 25: Một quả bóng chuyền được phát lên từ độ cao 1 m và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 7 m sau 1 giây và đạt độ cao 9 m sau 2 giây. Trong khoảng thời gian bao lâu thì độ cao quả bóng không nhỏ hơn 7 m.

DE KIEM TRA GIUA KY II – NĂM HỌC 2022 - 2023 MÔN TOÁN - LỚP 10

Thời gian làm bài : 90 Phút

Phần đáp án câu trắc nghiệm:

I was any as can it as inglifering								
Mã đề	101	102	103	104				
Câu								
1	C	C	C	A				
2	D	C	В	D				
3	C	В	D	A				
4	A	D	C	A				
5	В	C	A	В				
6	C	A	A	D				
7	D	D	C	В				
8	В	В	D	D				
9	D	D	C	В				
10	C	D	C	D				
11	D	A	D	В				
12	A	A	C	В				
13	D	В	A	A				
14	D	A	C	C				
15	C	C	C	D				
16	A	D	D	D				
17	D	A	В	A				
18	C	В	D	D				
19	A	C	C	D				
20	В	В	A	С				

Phần đáp án câu tự luận:

Mã đề 101:

Câu 21 : Viết phương trình đường thẳng d qua điểm M(1;3) và cách điểm I(-1;5) một khoảng lớn nhất.

Gợi ý làm bài:

Gọi H là hình chiếu của I trên d, ta có $d(I,d) = IH \le IM = 2\sqrt{2}$. Khoảng cách từ I(-1;5) đến d lớn nhất khi d vuông góc với IM. Vậy d qua M(1;3) và có VTPT $\overrightarrow{IM}(-2;2) = -2(1;-1)$ nên có phương trình

x - y + 2 = 0.

Câu 22 Cho tam giác ABC có A(1;3), B(-1;5), C(4;-1). Viết phương trình đường cao AH của tam giác ABC.

Gợi ý làm bài:

Đường thẳng AH đi qua A(1;3) và nhận VTPT $\overrightarrow{BC}(5;-6)$ nên có phương trình 5(x-1)-6(y-3)=0 hay

5x - 6y + 13 = 0.

Câu 23 : Vẽ parabol $y = x^2 + 2x - 3$.

Gợi ý làm bài:

+ Toa đô đỉnh của parabol là I(-1,-4).

+ Trục đối xứng : x = -1.

+ Parabol cắt trục tung tại điểm A(0;-3) và cắt trục hoành tại các điểm có hoành độ x=1, x=-3.

+ Đồ thị như hình vẽ:

Câu 24 Tính tổng tất cả các nghiệm dương của phương trình $4\sqrt{25-x^2} = 19-x$.

Gợi ý làm bài:

Bình phương hai vế phương trình và thu gọn ta được $17x^2 - 38x - 39 = 0$. Giải phương trình này ta được hai nghiệm $x_1 = 3, x_2 = -13/17$. Thử lại phương trình ban đầu, ta có tập nghiệm $S = \left\{3; \frac{-13}{17}\right\}$. Tổng các nghiệm dương của phương trình là 3.

Câu 25 Một quả bóng chuyền được phát lên từ độ cao 1 m và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 7 m sau 1 giây và đạt độ cao 9 m sau 2 giây. Tính khoảng thời gian để độ cao quả bóng không nhỏ hơn 7 m.

Gơi ý làm bài:

Chọn hệ trục tọa độ Oth như hình vẽ

Gọi parabol $h = at^2 + bt + 1, (a < 0)$

Từ giả thiết bài toán, ta có hệ $\begin{cases} 9 = 4a + 2b + 1 \\ 7 = a + b + 1 \end{cases}$ Giải hệ ta được $\begin{cases} a = -2 \\ b = 8 \end{cases}$.

Vậy, $h = -2t^2 + 8t + 1 \ge 7$ khi $1 \le t \le 3$.

Mã đề 102:

Câu 21 : Vẽ parabol $y = x^2 + 2x - 3$.

Gợi ý làm bài:

+ Tọa độ đỉnh của parabol là I(-1;-4).

+ Trục đối xứng : x = -1.

+ Parabol cắt trục tung tại điểm A(0,-3) và cắt trục hoành tại các điểm có hoành độ x=1, x=-3.

+ Đồ thi như hình vẽ:

Câu 22 Cho tam giác ABC có A(1;3), B(-1;5), C(4;-1). Viết phương trình đường cao AH của tam giác ABC.

Gợi ý làm bài:

Đường thẳng AH đi qua A(1;3) và nhận VTPT $\overrightarrow{BC}(5;-6)$ nên có phương trình 5(x-1)-6(y-3)=0 hay

5x - 6y + 13 = 0.

Câu 23 : Viết phương trình đường thẳng d qua điểm M(1;3) và cách điểm I(-1;5) một khoảng lớn nhất.

Gợi ý làm bài:

Gọi H là hình chiếu của I trên d, ta có $d(I,d) = IH \le IM = 2\sqrt{2}$. Khoảng cách từ I(-1;5) đến d lớn nhất khi d vuông góc với IM. Vậy d qua M(1;3) và có VTPT $\overrightarrow{IM}(-2;2) = -2(1;-1)$ nên có phương trình x-y+2=0.

Câu 24 Tính tổng tất cả các nghiệm dương của phương trình $4\sqrt{25-x^2} = 19-x$.

Gợi ý làm bài:

Bình phương hai vế phương trình và thu gọn ta được $17x^2 - 38x - 39 = 0$. Giải phương trình này ta được hai nghiệm $x_1 = 3, x_2 = -13/17$. Thử lại phương trình ban đầu, ta có tập nghiệm $S = \left\{3; \frac{-13}{17}\right\}$.

Tổng các nghiệm dương của phương trình là 3.

Câu 25 Một quả bóng chuyền được phát lên từ độ cao 1 m và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 7 m sau 1 giây và đạt độ cao 9 m sau 2 giây. Tính khoảng thời gian để độ cao quả bóng không nhỏ hơn 7 m.

3

Chọn hệ trục tọa độ Oth như hình vẽ

Gọi parabol $h = at^2 + bt + 1, (a < 0)$

Từ giả thiết bài toán, ta có hệ $\begin{cases} 9 = 4a + 2b + 1 \\ 7 = a + b + 1 \end{cases}$ Giải hệ ta được $\begin{cases} a = -2 \\ b = 8 \end{cases}$.

Vậy, $h = -2.t^2 + 8.t + 1 \ge 7$ khi $1 \le t \le 3$.

Mã đề 103:

Câu 21 Cho tam giác ABC có A(1;3), B(-1;5), C(4;-1). Viết phương trình đường cao AH của tam giác ABC.

Gợi ý làm bài:

Đường thẳng AH đi qua A(1;3) và nhận VTPT $\overrightarrow{BC}(5;-6)$ nên có phương trình 5(x-1)-6(y-3)=0 hay

5x - 6y + 13 = 0.

Câu 22 : Viết phương trình đường thẳng d qua điểm M(1;3) và cách điểm I(-1;5) một khoảng lớn nhất.

Gợi ý làm bài:

Gọi H là hình chiếu của I trên d, ta có $d(I,d) = IH \le IM = 2\sqrt{2}$. Khoảng cách từ I(-1;5) đến d lớn nhất khi d vuông góc với IM. Vậy d qua M(1;3) và có VTPT $\overline{IM}(-2;2) = -2(1;-1)$ nên có phương trình x-y+2=0.

Câu 23 : Vẽ parabol $y = x^2 + 2x - 3$.

- + Tọa độ đỉnh của parabol là I(-1;-4).
- + Truc đối xứng : x = -1.
- + Parabol cắt trục tung tại điểm A(0;-3) và cắt trục hoành tại các điểm có hoành độ x=1, x=-3.

+ Đồ thị như hình vẽ:

Câu 24 Tính tổng tất cả các nghiệm dương của phương trình $4\sqrt{25-x^2} = 19-x$.

Gợi ý làm bài:

Bình phương hai vế phương trình và thu gọn ta được $17x^2 - 38x - 39 = 0$. Giải phương trình này ta được hai nghiệm $x_1 = 3, x_2 = -13/17$. Thử lại phương trình ban đầu, ta có tập nghiệm $S = \left\{3; \frac{-13}{17}\right\}$. Tổng các nghiệm dương của phương trình là 3.

Câu 25 Một quả bóng chuyền được phát lên từ độ cao 1 m và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 7 m sau 1 giây và đạt độ cao 9 m sau 2 giây. Tính khoảng thời gian để độ cao quả bóng không nhỏ hơn 7 m.

Gợi ý làm bài:

Chọn hệ trục tọa độ Oth như hình vẽ

Goi parabol $h = at^2 + bt + 1, (a < 0)$

Từ giả thiết bài toán, ta có hệ $\begin{cases} 9 = 4a + 2b + 1 \\ 7 = a + b + 1 \end{cases}$ Giải hệ ta được $\begin{cases} a = -2 \\ b = 8 \end{cases}$.

Vậy, $h = -2.t^2 + 8.t + 1 \ge 7$ khi $1 \le t \le 3$.

Mã đề 104:

Câu 21 : Vẽ parabol $y = x^2 + 2x - 3$.

- + Tọa độ đỉnh của parabol là I(-1;-4).
- + Trục đối xứng : x = -1.
- + Parabol cắt trục tung tại điểm A(0;-3) và cắt trục hoành tại các điểm có hoành độ x=1, x=-3.

+ Đồ thị như hình vẽ:

Câu 22 : Viết phương trình đường thẳng d qua điểm M(1;3) và cách điểm I(-1;5) một khoảng lớn nhất.

Gợi ý làm bài:

Gọi H là hình chiếu của I trên d, ta có $d(I,d) = IH \le IM = 2\sqrt{2}$. Khoảng cách từ I(-1;5) đến d lớn nhất khi d vuông góc với IM. Vậy d qua M(1;3) và có VTPT $\overrightarrow{IM}(-2;2) = -2(1;-1)$ nên có phương trình x-y+2=0.

Câu 23 Cho tam giác ABC có A(1;3), B(-1;5), C(4;-1). Viết phương trình đường cao AH của tam giác ABC.

Gợi ý làm bài:

Đường thẳng AH đi qua A(1;3) và nhận VTPT $\overrightarrow{BC}(5;-6)$ nên có phương trình 5(x-1)-6(y-3)=0 hay 5x-6y+13=0.

Câu 24 Tính tổng tất cả các nghiệm dương của phương trình $4\sqrt{25-x^2} = 19-x$.

Gợi ý làm bài:

Bình phương hai vế phương trình và thu gọn ta được $17x^2 - 38x - 39 = 0$. Giải phương trình này ta được hai nghiệm $x_1 = 3, x_2 = -13/17$. Thử lại phương trình ban đầu, ta có tập nghiệm $S = \left\{3; \frac{-13}{17}\right\}$.

Tổng các nghiệm dương của phương trình là 3.

Câu 25 Một quả bóng chuyền được phát lên từ độ cao 1 m và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 7 m sau 1 giây và đạt độ cao 9 m sau 2 giây. Tính khoảng thời gian để độ cao quả bóng không nhỏ hơn 7 m.

Chọn hệ trục tọa độ Oth như hình vẽ

Gọi parabol $h = at^2 + bt + 1, (a < 0)$

Từ giả thiết bài toán, ta có hệ
$$\begin{cases} 9 = 4a + 2b + 1 \\ 7 = a + b + 1 \end{cases}$$
 Giải hệ ta được
$$\begin{cases} a = -2 \\ b = 8 \end{cases}$$
.

Vậy,
$$h = -2t^2 + 8t + 1 \ge 7$$
 khi $1 \le t \le 3$.