INTEGERS

ARTHUR RYMAN

ABSTRACT. This article contains Z Notation definitions for concepts related to the integers, \mathbb{Z} . It has been type checked by fUZZ.

Contents

1.	Introduction	1
2.	Divisibility	1
3.	Divisors	2
4.	Prime Numbers	3
5.	Addition of Integer Sequences	3

1. Introduction

The integers, \mathbb{Z} , are built-in to Z Notation. This article provides definitions for some related objects so that they can be used and type checked in formal Z specifications.

2. Divisibility

This section defines divisibility of integers.

Given integers x and y we say that x divides y if there is some integer q such that qx = y.

```
\begin{array}{c}
Divides \\
x, y, q : \mathbb{Z} \\
q * x = y
\end{array}
```

Let divides denote the divisibility relation between integers where $(x, y) \in divides$ means that x divides y.

$$divides == \{ Divides \bullet x \mapsto y \}$$

Remark.

 $divides \in \mathbb{Z} \longleftrightarrow \mathbb{Z}$

Date: August 8, 2022.

We introduce the usual infix notation $x \mid y$ to denote that $(x, y) \in divides$.

$$(- | -) == divides$$

Example. The integer 7 divides 42 because 6 * 7 = 42.

7 | 42

Remark. Every integer x divides 0 because 0 * x = 0.

$$\forall x : \mathbb{Z} \bullet x \mid 0$$

3. Divisors

Let x be a nonzero integer that divides the integer y. We say that x is a divisor of y.

$_Divisor$			
Divides			
$x \neq 0$			

Let the relation $(x, y) \in is_divisor_of$ denote that x is a divisor of y.

$$is_divisor_of == \{ Divisor \bullet x \mapsto y \}$$

Let the set divisors(y) denote the set of all divisors of the integer y.

$$divisors == (\lambda y : \mathbb{Z} \bullet \{ x : \mathbb{Z} \mid (x, y) \in is_divisor_of \})$$

Remark.

 $divisors \in \mathbb{Z} \longrightarrow \mathbb{P} \mathbb{Z}$

Example. The integer 6 has the following divisors.

$$divisors(6) = \{-6, -3, -2, -1, 1, 2, 3, 6\}$$

Let the set $positive_divisors(y)$ denote the set of all positive divisors of the integer y.

$$positive_divisors == (\lambda \ y : \mathbb{Z} \bullet divisors(y) \cap \mathbb{N}_1)$$

Remark.

$$positive_divisors \in \mathbb{Z} \longrightarrow \mathbb{P} \ \mathbb{N}_1$$

Example. The integer 6 has the following positive divisors.

$$positive_divisors(6) = \{1, 2, 3, 6\}$$

INTEGERS 3

4. Prime Numbers

An integer p is prime if it is greater than one and only has one and itself as positive divisors.

```
\begin{array}{c} Prime \\ p: \mathbb{Z} \\ \\ p>1 \\ positive\_divisors(p) = \{1, p\} \end{array}
```

- p is greater than 1.
- 1 and p are the only positive divisors of p.

Example. The integer 2 is prime.

```
\begin{array}{c} \mathbf{let} \ p == 2 \bullet \\ Prime \end{array}
```

Let *primes* denote the set of all primes.

```
primes == \{ Prime \bullet p \}
```

Remark.

 $primes \subset \mathbb{N}_1$

Example. The natural numbers 2, 3, 5, and 7 are primes.

$$\{2,3,5,7\} \subseteq primes$$

5. Addition of Integer Sequences

Let l be a natural number and let x and y be two integer sequences of length l. Their sum z = x + y is the integer sequence of length l defined by pointwise addition of the terms in x and y.

```
 \begin{array}{c} AddIntegerSequences \\ l: \mathbb{N} \\ x, y, z: \operatorname{seq} \mathbb{Z} \\ \hline \\ l = \#x = \#y \\ z = (\lambda \, i: 1 \ldots l \bullet x \, i + y \, i) \end{array}
```

• The sequence z is defined by pointwise addition of the sequences x and y.

Let the function $add_int_seq(x, y) = z$ be the sum of two equal-length integer sequences.

```
add\_int\_seq == \{ AddIntegerSequences \bullet (x, y) \mapsto z \}
```

Remark. Addition is a partial function on the set of all pairs of integer sequences. $add_int_seq \in \operatorname{seq} \mathbb{Z} \times \operatorname{seq} \mathbb{Z} \longrightarrow \operatorname{seq} \mathbb{Z}$

We introduce the usual infix notation $x + y = add_int_seq(x, y)$.

$$(_+_) == add_int_seq$$

Email address, Arthur Ryman: arthur.ryman@gmail.com