Problem Solving: Homework 3.10

Name: Chen Shaoyuan Student ID: 161240004

November 7, 2017

1 [TJ] Exercise 3-3

The Cayley table formed by symmetries of a rectangle is:

0	id	ρ	μ_h	μ_{v}
id	id	ρ	μ_h	μ_{v}
ρ	ρ	id	μ_{v}	μ_h
μ_h	μ_h	μ_{v}	id	ρ
μ_{v}	μ_{v}	μ_h	ρ	id

where ρ denotes 180° rotation, μ_h, μ_v denote reflection across the horizontal axis and the vertical axis, id denotes identity. The Cayley table for \mathbb{Z}_4 is:

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

There are 4 elements in each group.

The groups are not same, because they contain different elements.

2 [TJ] Exercise 3-6

The Cayley table for \mathbb{Z}_4 is:

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
1 2 3	2	3	0	1
3	3	0	1	2

3 [TJ] Exercise 3-7

First, we show that * is a mapping from $S \times S$ to S. If $a, b \neq -1$, then $a*b = a+b+ab = (a+1)(b+1)-1 \neq -1$. Hence the closure holds.

Second, the identity is 0, for every $a \in S$, 0 * a = 0 + a = a. Likewise a * 0 = a.

Third, let's verify the associativity:

$$(a*b)*c = (a+b+ab)*c$$

$$= (a+b+ab)+c+(a+b+ab)c$$

$$= a+b+c+ab+ac+bc+abc$$

$$a*(b*c) = a*(b+c+bc)$$

$$= a+b+c+bc+a(b+c+bc)$$

$$= a+b+c+ab+ac+bc+abc$$

So the associativity holds. Fourth, for every element $a \in S$, the inverse of a is 1/(a+1)-1, for

$$a*(1/(a+1)-1) = a+1/(a+1)-1+a(1/(a+1)-1)$$
$$= a+1-1-a$$
$$= 0$$

Likewise (1/(a+1)-1)*a = 0.

Therefore, (S,*) is a group. Also, it is easy to verify that a*b = b*a, hence it is also abelian.

4 [TJ] Exercise 3-17

$$G_1 = (\mathbb{Z}_8, +_8)$$

 $G_2 = (\mathbb{Z}_8, \oplus)$
 $G_3 = (\{e^{2\pi i/8} : i \in \mathbb{Z}_8\}, \cdot)$

where $+_8$ means plus modulo 8, \oplus means bitwise exclusive-or, \cdot means the multiplication of two complex numbers.

These groups are different, because the sets of elements of the groups are different, or the binary operations differ.

5 [TJ] Exercise 3-28

1. If m = 0 or n = 0, then the $g^m = e$ or $g^n = e$, so the conclusion holds. If both m and n are positive, note that

$$g^n = g^{n-1}g = (g^{n-2}g)g = g^{n-2}g^2 = \dots = gg^{n-1}$$

so

$$g^{m}g^{n} = g^{m}(gg^{n-1}) = (g^{m}g)g^{n-1}$$

$$= g^{m+1}g^{n-1} = \cdots = g^{m+n}$$

Likewise, when both m and n are negative, the conclusion holds.

When one of m and n, assume with out loss of generality, n, is positive, and the other is negative, we have

$$g^{m}g^{n} = (g^{m+1}g^{-1})(gg^{n-1}) = g^{m+1}(g^{-1}g)g^{n-1}$$

= $g^{m+1}g^{n-1} = \dots = g^{m+n}$

Therefore, the conclusion holds.

- 2. If *n* is non-negative, then $(g^m)^n = (g^m)^{n-1}g^m = (g^m)^{n-2}g^mg^m = (g^m)^{n-2}(g^{2m}) = \cdots = g^{mn}$.
 - Otherwise, we have $(g^m)^n = ((g^m)^{-1})^{-n} = (g^{-m})^{-n} = g^{mn}$.

So the conclusion holds.

3. $(gh)^n = ((gh)^{-1})^{-n} = (h^{-1}g^{-1})^{-n}$

If G is abelian, then

$$(gh)^{n} = (gh)^{n-1}(gh) = (gh)^{n-2}(ghgh)$$
$$= (gh)^{n-2}(gghh) = (gh)^{n-2}(g^{2}h^{2})$$
$$= \dots = g^{n}h^{n}$$

if n is non-negative, otherwise

$$(gh)^n = (h^{-1}g^{-1})^{-n} = h^n g^n = g^n h^n$$

So the conclusion holds.

6 [TJ] Exercise 3-36

H is a subset of \mathbb{Q}^* , and the identity $1 \in H$. For every $g = 2^{k_1}$, $h = 2^{k_2}$, we have $gh = 2^{k_1+k_2} \in H$, and $g^{-1} = 2^{-k_1} \in H$, hence H is a subgroup of \mathbb{Q}^* .

7 [TJ] Exercise 3-38

 \mathbb{T} is a subset of \mathbb{C}^* , and the identity $1 \in \mathbb{T}$. For every $g,h \in \mathbb{T}$, we have |gh| = 1 and $|g^{-1}| = 1$, so $gh,g^{-1} \in \mathbb{T}$, hence \mathbb{T} is a subgroup of \mathbb{C}^* .

8 [TJ] Exercise 3-41

H is a subset of G, and the identity $0_{2\times 2} \in H$. For every $A, B \in H$, we have $(A+B)_{11} = (A+B)_{22} = 0$, $-A_{11} = -A_{22} = 0$, so $A+B, -B \in H$, hence H is a subgroup of G.

9 [TJ] Exercise 3-41

$$ba = a^4b = (a^3a)b = (ea)b = ab$$

10 [TJ] Exercise 3-52

Let x = e, we have $y^2 = y$, therefore y = e, so the group G contains only the identity, i.e. G is trivial, and of course G is abelian.

11 [TJ] Exercise 4-1

- (a) False. $U(8) = \{1,3,5,7\}$, while none of them is a generator of U(8).
- (b) False. 49 is relatively prime to 60, so it is a generator of \mathbb{Z}_{60} , while 49 is not prime.
- (c) False. Assume, to the contrary that \mathbb{Q} has a generator a, then for all $q \in \mathbb{Q}$, there exists an integer n, such that q = na. However, if q = a/2, such n does not exist. So \mathbb{Q} is not cyclic.
- (d) False. Consider the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ (Klein 4-group), all of its subgroups are cyclic, however, the group itself is not cyclic.
- (e) True. If G contains any infinite order element a, then G contains infinitely many different subgroups: $\langle a \rangle$, $\langle a^2 \rangle$, $\langle a^3 \rangle$, \cdots . Therefore, all elements of G have finite order. Since G contains finite number of subgroups, it contains finitely many cyclic subgroups, each of which is finite. Because every element belongs to at least one cyclic subgroup, the group G is exactly the union of all its cyclic subgraphs, which is still finite.

12 [TJ] Exercise 4-12

The trivial group is a cyclic group with exactly one generator.

The cyclic group \mathbb{Z} has exactly two generators, 1 and -1.

The cyclic group \mathbb{Z}_8 has exactly four generators, 1, 3, 5 and 7.

For arbitrary n, since every cyclic group is isomorphic to either \mathbb{Z} or \mathbb{Z}_n , we only have to consider \mathbb{Z}_n . So, whether there exists a cyclic group with n generators depends on whether there exists positive integer m such that $\phi(m) = n$, where ϕ is the Euler ϕ -function. For example, $\phi(3) = 2$, so \mathbb{Z}_3 has 2 generators. However, it can be proved in number theory that there does not exist positive integer m such that $\phi(m) = 3$, hence there does not exist cyclic group that contains exactly 3 generators.

13 [TJ] Exercise 4-21

The 5th roots of unity are: 1, $e^{2\pi i/5}$, $e^{4\pi i/5}$, $e^{6\pi i/5}$, $e^{8\pi i/5}$

The generators of this group are $e^{2\pi i/5}$, $e^{4\pi i/5}$, $e^{6\pi i/5}$, $e^{8\pi i/5}$.

The primitive 5-th roots of unity are $e^{2\pi i/5}$, $e^{4\pi i/5}$, $e^{6\pi i/5}$, $e^{8\pi i/5}$.

14 [TJ] Exercise 4-24

 \mathbb{Z}_{pq} has $\phi(pq)$ generators, since p and q are distinct primes, we have $\phi(pq) = \phi(p)\phi(q) = (p-1)(q-1)$, because ϕ is a multiplicative function. So \mathbb{Z}_{pq} has (p-1)(q-1) generators.

15 [TJ] Exercise 4-32

The order of y is $n/\gcd(k,n) = n$, which means $\langle y \rangle$ contains as many elements as G has, i.e. y is a generator of G.

16 [TJ] Exercise 5-3

- (a) (16)(15)(13)(14), even
- (b) (16)(15)(24)(23), even
- (c) (16)(12)(14)(12)(14), odd
- (d) (14)(15)(12)(17)(13)(12)(14)(12)(13)(16)(14)(15), even
- (e) (17)(13)(16)(12)(14), odd

17 [TJ] Exercise 5-5

The subgroups of S_4 are

- trivial subgroups: {id};
- subgroups of order 2: {id,(12)}, {id,(13)}, {id,(14)}, {id,(23)}, {id,(24)}, {id,(34)}, {id,(12)(34)}, {id,(13)(24)}, {id,(14)(23)};
- cyclic subgroups of order 3: $\langle (123) \rangle$, $\langle (124) \rangle$, $\langle (134) \rangle$ and $\langle (234) \rangle$;
- cyclic subgroups of order 4: $\langle (1234) \rangle$, $\langle (1324) \rangle$, $\langle (1243) \rangle$;
- Klein 4-groups: {id, (12), (34), (12)(34)}, {id, (13), (24), (13)(24)}, {id, (14), (23), (14)(23)}, {id, (12)(34), (13)(24), (14)(23)};
- S_3 subgroups: permutations of $\{1,2,3\}$, $\{1,2,4\}$, $\{1,3,4\}$ and $\{2,3,4\}$;
- "rectangle" subgroups: {id, (13), (24), (13)(24), (12)(34), (14)(23), (1234), (1432)}, {id, (14), (23), (14)(23), (12)(34), (13)(24), (1243), (1342)} and {id, (12), (34), (14)(23), (12)(34), (13)(24), (1324), (1423)};
- the alternating group: A_4 ;
- S₄ itself.

The sets are

- (a) $\{\sigma \in S_4 : \sigma(1) = 3\} = \{(13), (13)(24), (132), (134), (1324), (1342)\};$
- (b) $\{\sigma \in S_4 : \sigma(2) = 2\} = \{id, (13), (14), (34), (134), (143)\};$
- (c) $\{\sigma \in S_4 : \sigma(1) = 3 \text{ and } \sigma(2) = 2\} = \{(13), (134)\};$

18 [TJ] Exercise 5-16

Let 1, 2, 3, 4 denote the four vertices of a tetrahedron, respectively. Then all its rigid motions can be represented as a permutation of 1, 2, 3, 4, and they are:

- eight 60° rotation operations: (123), (321), (124), (421), (134), (431), (234), (432);
- three 120° rotation operations: (12)(34), (13)(24), (14)(23);
- and, the identity: id.

Note that these permutations are exactly all even permutations on 4 letters, so it is the same as A_4 .

19 [TJ] Exercise 5-27

We only have to prove that λ_g is one-to-one and onto. For every $b \in G$, there exists $a = g^{-1}b$, such that

$$\lambda_g(a) = gg^{-1}b = b$$

so λ_g is onto.

For every $a, b \in G$, if $\lambda_g(a) = \lambda_g(b)$, i.e. ga = gb, then we have a = b, so λ_g is one-to-one.

Therefore, λ_g is one-to-one and onto, so λ_g is a permutation of G.

20 [TJ] Exercise 5-29

The centers of D_8 , D_10 are $\{id, i\}$, where i denotes inversion through the center of the polygon.

For arbitrary n, the center of D_n is $\{id\}$ if n is odd, or $\{id,i\}$ is even. Note, that only when n is even D_n contains i.

It is obvious that id and i are central. For any element other than id, it is either a reflection or a rotation. Let ρ be any rotation and μ be any reflection. It is easy to verify that $\rho \mu = \mu \rho^{-1}$. Note that $\rho^{-1} = \rho$ if and only if $\rho = i$. So any element other than id and i is not central.

21 [TJ] Exercise 6-11

(a) \to (b): for every $h \in H$, there exists $h' \in H$, such that $g_1h = g_2h'$. Hence we have $hg_2^{-1} = h(g_1hh'^{-1})^{-1} = (hh'^{-1}h^{-1})g_1^{-1} \in Hg_1^{-1}$, so $Hg_2^{-1} \subseteq Hg_1^{-1}$. Likewise we have $Hg_1^{-1} \subseteq Hg_2^{-1}$, so $Hg_1^{-1} = Hg_2^{-1}$.

(b) \rightarrow (a): for every $h \in H$, there exists $h' \in H$, such that $hg_1^{-1} = h'g_2^{-1}$. Hence we have $g_2h = (g_1h^{-1}h')h = g_1(h^{-1}h'h) \in g_1H$, so $g_2H \subseteq g_1H$. Likewise $g_1H \subseteq g_2H$, so $g_1H = g_2H$.

(a) \rightarrow (c) is immediate. (also we have $g_2H \subseteq g_1H$)

(c) \rightarrow (d): $g_2H \subseteq g_1H$, and $g_2 = g_2e$ is an element of the former one, so it is also an element of the latter one, i.e. $g_2 \in g_1H$.

(d) \rightarrow (e): since $g_2 \in g_1H$, there exists $h \in H$, such that $g_2 = g_1h$, so $g_1^{-1}g_2 = h \in H$.

(e) \to (a): for every $h \in H$, we have $g_1h = g_1(g_1^{-1}g_2)(g_1^{-1}g_2)^{-1}h = g_2((g_1^{-1}g_2)^{-1}h) \in g_2H$ and $g_2h = g_2(g_1^{-1}g_2)^{-1}(g_1^{-1}g_2)h = g_1(g_1^{-1}g_2h) \in g_1H$, so every element of g_1H is an element of g_2H , and vice versa. Hence $g_1H = g_2H$.

Therefore, these 5 conditions are equivalent.

22 [TJ] Exercise 6-12

Consider the left coset gH and right coset Hg for arbitrary $g \in G$. For every $h \in H$, $gh = gh(g^{-1}g) = (ghg^{-1})g \in Hg$, which means $gH \subseteq Hg$; $hg = (gg^{-1})hg = g(g^{-1}h(g^{-1})^{-1}) \in gH$, which means $Hg \subseteq gH$, so gH = Hg. Therefore, the right cosets are identical to left cosets.

23 [TJ] Exercise 6-16

Since G is finite, every element of G has finite order. Let's consider the elements whose orders are not 2. G contains exactly one element of order 1, the identity. For every $a \in G$ that the order or a are greater than 2, a^{-1} is also an element whose order is greater than 2. Furthermore, $a^{-1} \neq a$, for otherwise $a^2 = 1$, which leads to contradiction. This means that the elements whose orders are greater than 2 can be paired up. Therefore, the number of elements of order 2 is odd.

The conclusion above shows that G contains at least one element of order 2. The cyclic graph generated by such an element is a subgroup of G of order 2.

24 [TJ] Exercise 6-21

For arbitrary element $a \in G$ ($a \ne e$), the order of a is p^k , where $0 < k \le n$. Then, $a^{p^{k-1}}$ is an element of order p, which means $\langle a^{p^{k-1}} \rangle$ is a proper subgroup of order p.

If $n \ge 3$, it is true that G must have proper subgroup of order p^2 . If there exists some element a of order p^k , by first Sylow theorem.

25 [TJ] Exercise 9-6

Suppose $f: \{\omega_n^i\} \to \mathbb{Z}_n$ is defined as

$$f(\boldsymbol{\omega_n}^i) = i$$

then f is one-to-one and onto. And we have

$$f(\boldsymbol{\omega_n}^i \cdot \boldsymbol{\omega_n}^j) = f(\boldsymbol{\omega_n}^{(i+j) \bmod n}) = (i+j) \bmod n$$
$$= [f(\boldsymbol{\omega_n}^i) + f(\boldsymbol{\omega_n}^j)] \bmod n = (i+j) \bmod n$$

So the *n*th roots of unity are isomorphic to \mathbb{Z}_n .

26 [TJ] Exercise 9-7

Let $\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$ denote the cyclic group of order n. Suppose $f : \langle a \rangle \to \mathbb{Z}_n$ is defined as

$$f(a^n) = n$$

then f is one-to-one and onto. And we have

$$f(a^i \cdot a^j) = f(a^{(i+j) \bmod n}) = (i+j) \bmod n$$
$$= [f(a^i) + f(a^j)] \bmod n = (i+j) \bmod n$$

So $\langle a \rangle$ is isomorphic to \mathbb{Z}_n .

27 [TJ] Exercise 9-8

Suppose, to the contrary, that $\mathbb Q$ is isomorphic to $\mathbb Z$. Since $\mathbb Z$ is cyclic, $\mathbb Q$ is also cyclic. However, we have already proved in Exercise 4-1(c) that $\mathbb Q$ is not cyclic, which leads to contradiction.

28 [TJ] Exercise 9-9

We have proved in Exercise 3-7 that G is a group. We define a map f from G to \mathbb{R}^* as

$$f(a) = a + 1$$

then f is one-to-one and onto. Also, we have

$$f(a*b) = f(a+b+ab) = a+b+ab+1$$

= $f(a)f(b) = (a+1)(b+1) = a+b+ab+1$

so (G,*) is isomorphic to \mathbb{R}^* .