MATH 321 DAY 12 - CARDINALITY CONTINUED

Exercise 1.

- 10. Let $\{x_1, x_2, x_3, \ldots\}$ be a sequence of real numbers.
 - (a) [T/F] It is possible to construct a non-empty closed interval $I_1 \subset \mathbf{R}$ so that $x_1 \in \mathbf{R}$
 - (b) [T/F] It is possible to construct a non-empty closed interval $I_2 \subset I_1$ so that $x_2 \in I_2$
 - (c) [T/F] For every $n \in \mathbb{N}$, it is possible to construct a non-empty closed interval I_n that does not contain x_{n+1} .
 - (d) ∩_{n=1}[∞] I_n contains x_k for some k ∈ N.
 - (e) $\bigcap_{n=1}^{\infty} I_n$ is empty/non-empty. (Choose one and prove it).
 - (f) R is countable/uncountable. (Choose one and prove it).
- (1) True; let $I_1 = [x_1 + 1, x_1 + 2]$
- (2) True; consider the intervals $[x_1 + 1, x_1 + \frac{4}{3}]$ and $[x_1 + \frac{5}{3}, x_1 + 2]$. Then x_2 can be in at most one of these intervals; choose one of these intervals that does not contain x_2 to be I_2 .
- (3) True; we may repeat this process inductively. Suppose we have constructed I_n so that $x_1, \ldots, x_n \notin I_n$. We may then divide I_n into thirds; consider the first third and last third. Then x_{n+1} is in at most one of these thirds; choose one of the two subintervals that does not contain x_{n+1} and call it I_{n+1} .
- (4) False; for all $k \in \mathbb{N}$, $x_k \notin I_k$, and thus $x_k \notin \bigcap_{n=1}^{\infty} I_n$.
- (5) By the Nested Interval Property, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. Choose an element x of $\bigcap_{n=1}^{\infty} I_n$; then $x \in \mathbb{R}$, but $x \notin \{x_1, x_2, x_3, \dots\}$, since if it were, x could not be in $\bigcap_{n=1}^{\infty} I_n$.

Theorem 2. \mathbb{R} is uncountable.

Proof. Assume for contradiction that \mathbb{R} is countable. Then we may enumerate $\mathbb{R} = \{x_1, x_2, x_3, \dots, \}$. We construct $\{I_n\}_{n=1}^{\infty}$ as above so that $x_k \notin I_k$ for all $x_k \in \mathbb{R}$. But by the Nested Interval Prop, $\bigcap_{n=1}^{\infty} I_n$ is nonempty, and hence contains a real number $x \in \mathbb{R}$. Thus $x \neq x_k$ for any k, for otherwise $x = x_k \notin I_k$ and thus $x \notin \bigcap_{n=1}^{\infty} I_n$. This contradicts our enumeration of \mathbb{R} . Therefore, \mathbb{R} is uncountable.

- The force of the theorem is that the cardinality of \mathbb{R} is a "larger type of infinity" than countably infinite, i.e. than \mathbb{N}, \mathbb{Z} , or \mathbb{Q} .
- It's an important exercise to show that any subset of a countable set must be either countable or finite [left for homework].
 - This isn't too surprising. If a set can be arranged into a single list, then deleting some elements from the list results in another (shorter, and possibly terminating) list.
- ullet This means the countable sets are the smallest type of infinite set. $\mathbb R$ is bigger.
- In fact, \mathbb{R} is bigger than any countable union of countable sets:

Exercise 3. (reading question) Explain the flaw in the following proof that \mathbb{Q} is uncountable: suppose for contradiction that $\mathbb{Q} = \{r_1, r_2, \dots\}$. We construct $\{I_n\}_{n=1}^{\infty}$ so that $r_k \notin I_k$ for all $r_k \in \mathbb{Q}$. But by the NIP, $\bigcap_{n=1}^{\infty} I_n$ is nonempty, and hence contains a rational number $r \in \mathbb{Q}$. Thus $r \neq r_k$ for any k, otherwise $r = r_k \notin I_k$ and thus $x \notin \bigcap_{n=1}^{\infty} I_n$. This contradicts our enumeration of \mathbb{Q} . Therefore, \mathbb{Q} is uncountable.

• Show \mathbb{Q} does not satisfy the NIP. In other words, give an example of a sequence $\{I_n \cap \mathbb{Q}\}_{n=1}^{\infty}$ of "closed bounded intervals of \mathbb{Q} " such that $\bigcap_{n=1}^{\infty} (I_n \cap \mathbb{Q}) = \emptyset$.

• In fact, if we union together countably many copies of \mathbb{Q} , then the result is still countable. So no amount of (countably) unioning together \mathbb{Q} can give us \mathbb{R} or even fill in the "holes" in \mathbb{Q} left by \mathbb{I} .

Theorem 4.

- (1) If A_1, A_2, \ldots, A_m are each countable sets, then the union $A_1 \cup A_2 \cup \cdots \cup A_m$ is countable.
- (2) If A_n is a countable set for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is countable. ("A countable union of countable sets is countable.")

Proof. Exercise 1.5.3. \Box

- We have mathematician Georg Cantor to thank for our knowledge that \mathbb{R} is uncountable. In fact, Cantor proved much more.
- Cantor's proof that \mathbb{R} is uncountable is very similar to the proof above, but it was initially resisted.
- His work eventually produced a paradigm shift in the way mathematicians understand the infinite.

0.1. Cantor's diagonalization method.

• Cantor also proved the following:

Theorem 5. The open interval (0,1) is uncountable.

Exercise 6. Show that (0,1) is uncountable if and only if \mathbb{R} is uncountable. This shows that what follows is an alternate proof that \mathbb{R} is uncountable.

- We show that there is a 1-1 correspondence betweem (0,1) and \mathbb{R} .
- We'd like a function $f:(0,1)\to\mathbb{R}$ that passes the horizontal line test and stretches "all the way" from $-\infty$ to ∞ .
- Notice that the tangent function almost does it $-g:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$ defined by $g(x)=\tan(x)$ is a 1-1 correspondence!
- What we need to do is scale the tangent function so that it hits its full period in (0,1): we want x=0 to be input into the tan function as $-\frac{\pi}{2}$ and 1 to be input as $\frac{\pi}{2}$. Try

$$f(x) = \tan\left(\pi x - \frac{\pi}{2}\right).$$

• Then $f:(0,1)\to\mathbb{R}$ is 1-1 and onto.

Proof. We proceed by contradiction and assume that there does exist a function $f: \mathbb{N} \to (0,1)$ that is 1-1 and onto.

• For each $m \in \mathbb{N}$, f(m) is a real number between 0 and 1, and we represent it using the decimal notation

$$f(m) = .a_{m1}a_{m2}a_{m3}a_{m4}a_{m5}\dots$$

- Here, for each $m, n \in \mathbb{N}$, a_{mn} is the digit from the set $\{0, 1, 2, \dots, 9\}$ that represents the *n*th digit in the decimal expansion of f(m).
- The 1-1 correspondence between \mathbb{N} and (0,1) can be summarized in the doubly indexed array

N		(0, 1)								
1	\longleftrightarrow	f(1)	=	$.a_{11}$	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	• • • •
2	\longleftrightarrow	f(2)	=	$.a_{21}$	a_{22}	a_{23}	a_{24}	a_{25}	a_{26}	• • •
3	\longleftrightarrow	f(3)	=	$.a_{31}$	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}	• • •
4	\longleftrightarrow	f(4)	=	$.a_{41}$	a_{42}	a_{43}	a_{44}	a_{45}	a_{46}	• • •
5	\longleftrightarrow	f(5)	=	$.a_{51}$	a_{52}	a_{53}	a_{54}	a_{55}	a_{56}	
6	\longleftrightarrow	f(6)	=	$.a_{61}$	a_{62}	a_{63}	a_{64}	a_{65}	a_{66}	
:		÷		÷	÷	÷	÷	÷	÷	٠

- Here, every real number in (0,1) is assumed to appear somewhere on the list.
- Now for the pearl of the argument-define a real number $x \in (0,1)$ with the decimal expansion $x = .b_1b_2b_3b_4...$ using the rule

$$b_n = \begin{cases} 2 & \text{if } a_{nn} \neq 2\\ 3 & \text{if } a_{nn} = 2. \end{cases}$$

- To compute the digit b_1 , we look at the digit a_{11} in the upper left-hand corner of the array. If $a_{11} = 2$, we choose $b_1 = 3$; otherwise, we set $b_1 = 2$.

Exercise 7.

- (1) Explain why the real number $x = .b_1b_2b_3b_4...$ cannot be f(1).
- (2) Now, explain why $x \neq f(2)$, and in general why $x \neq f(n)$ for any $n \in \mathbb{N}$.
- (3) Point out the contradiction that arises from these observations and conclude that (0,1) is uncountable.

Exercise 8. Supply rebuttals to the following complaints about the proof of Theorem 1.6.1.

- (1) Every rational number has a decimal expansion, so we could apply this same argument to show that the set of rational numbers between 0 and 1 is countable. However, because we know that any subset of \mathbb{Q} must be countable, the proof of the theorem must be flawed.
 - ullet The step where we define x doesn't work because all rationals have terminating decimal expansions.
- (2) Some numbers have *two* different decimal representations. Specifically, any decimal expansion that terminates can also be written with repeating 9's. For instance, 1/2 can be written as .5 or .4999.... Doesn't this cause some problems?
 - Since b_n has no 9s in it, much less repeating 9s, this won't be an issue.
 - Some versions of this proof define $x = .b_1b_2b_3b_4...$ using the rule $b_n = a_{nn}$; would this version still work?

Exercise 9. Let S be the set consisting of all sequences of 0's and 1's. Observe that S is not a particular sequence, but rather a large set whose elements are sequences; namely,

$$S = \{(a_1, a_2, a_3, \dots) : a_n = 0 \text{ or } 1\}.$$

As an example, the sequence $(1,0,1,0,\dots) \in S$, as is $(1,1,1,1,\dots)$. Give a rigorous argument showing that S is uncountable.