Outline

Exercise 1
Problem 1
Problem 2

$$\neg p_1 \rightarrow \neg \neg p_2 \leftrightarrow p_3 \wedge p_4$$
.

$$\neg p_1 \rightarrow \neg \neg p_2 \leftrightarrow p_3 \wedge p_4$$
.

$$\neg p_1 \ \rightarrow \ \neg \ \neg p_2 \quad \leftrightarrow \ p_3 \wedge p_4$$

Connective	Name	Priority
Т	verum	
	falsum	
_	negation	4
^	conjunction	3
V	disjunction	3
\rightarrow	implication	2
\leftrightarrow	equivalence	1

$$\neg p_1 \rightarrow \neg \neg p_2 \leftrightarrow p_3 \wedge p_4$$
.

$$(\neg p_1 \rightarrow \neg \neg p_2) \leftrightarrow (p_3 \wedge p_4)$$

Connective	Name	Priority
T	verum	
	falsum	
_	negation	4
\wedge	conjunction	3
V	disjunction	3
\rightarrow	implication	2
\leftrightarrow	equivalence	1

$$\neg p_1 \rightarrow \neg \neg p_2 \leftrightarrow p_3 \wedge p_4$$
.

$$((\neg p_1) \xrightarrow{} (\neg \neg p_2)) \leftrightarrow (p_3 \wedge p_4)$$

Connective	Name	Priority
T	verum	
	falsum	
_	negation	4
\wedge	conjunction	3
V	disjunction	3
\rightarrow	implication	2
\leftrightarrow	equivalence	1

$$\neg p_1 \rightarrow \neg \neg p_2 \leftrightarrow p_3 \wedge p_4$$
.

$$((\neg p_1) \rightarrow (\neg (\neg p_2))) \leftrightarrow (p_3 \wedge p_4)$$

Connective	Name	Priority
T	verum	
1	falsum	
_	negation	4
\wedge	conjunction	3
V	disjunction	3
\rightarrow	implication	2
\leftrightarrow	equivalence	1

Show that the formulas $p \to (q \to r)$ and $(p \to q) \to r$ are not equivalent by finding an interpretation in which they have different truth values.

Show that the formulas $p \to (q \to r)$ and $(p \to q) \to r$ are not equivalent by finding an interpretation in which they have different truth values.

Take the interpretation $I_1 = \{p \mapsto 0, q \mapsto 0, r \mapsto 0\}$. We have

$$I_1(p \rightarrow (q \rightarrow r)) = 1;$$

 $I_1((p \rightarrow q) \rightarrow r)) = 0.$

Show that the formulas $p \to (q \to r)$ and $(p \to q) \to r$ are not equivalent by finding an interpretation in which they have different truth values.

Another solution is the interpretation $I_2 = \{p \mapsto 0, q \mapsto 1, r \mapsto 0\}$. We have

$$I_2(p \rightarrow (q \rightarrow r)) = 1;$$

 $I_2((p \rightarrow q) \rightarrow r)) = 0.$