Homework 1

Due date: Oct. 19th, 2023

Turn in your hard-copy hand-writing homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

- 1. (a) Use Kirchhoff's law to find U_s and i.
 - (b) Calculate resistance R.

2. Use Kirchhoff's law to calculate U_0/U_s in terms of a, R_1 , R_2 , and R_d . Except for U, all other variables are known quantities.

- 3. For the circuit below, using Δ -Y conversion
 - (a) Calculate the U.
 - (b) Calculate the U_{ab} .

4. The node voltage U_a equals 15V, using nodal analysis method to obtain U_s and I.

- 5. For the circuit below,
 - (a) apply nodal analysis method to find V_a , V_b .
 - (b) find the power delivered by each source (2 voltage sources and 2 current sources).

6. Use mesh current analysis method, calculate the absorbed power of current source and voltage source, given R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = 1Ω , α = 4, I_s = 1A, V_s = 1V

7. $R_1=R_2=R_3=R_4=10\Omega,\,\beta=2,$ use the mesh current method to find V_s/i

