Prediction Learning and Games – Exercise Solutions

Ludovic Schwartz

Contents

2	Prediction with Expert Advice	2
	Exercise 2	2
	Exercise 5. Nonuniform initial weights	:

Chapter 2

Prediction with Expert Advice

Exercise 2.2

Consider a weighted average forecaster based on a potential function

$$\Phi(u) = \psi\left(\sum_{i=1}^{N} \phi(u_i)\right).$$

Assume further that the quantity $C(r_t)$ appearing in the statement of Theorem 2.1 is bounded by a constant for all values of r_t and that the function $\psi(\phi(u))$ is strictly convex. Show that there exists a nonnegative sequence $\epsilon_n \to 0$ such that the cumulative regret of the forecaster satisfies, for every n and for every outcome sequence y^n ,

$$\frac{1}{n} \left(\max_{i=1,\dots N} R_{i,n} \right) \le \epsilon_n$$

Solution: We start by assuming that $C(r_t) \leq C$ for all values of r_t . We apply theorem 2.1 and we get that:

$$\Phi(R_n) \le \Phi(0) + \frac{1}{2} \sum_{t=1}^n C(r_t) \le \Phi(0) + \frac{Cn}{2}$$

Then, since we know that $\psi \circ \phi$ is non decreasing and strictly convex, it must be increasing and as a result, both $\psi \circ \phi$ and ϕ must be invertible and increasing and we have :

$$\psi\left(\phi\left(\max_{i=1,\dots,N} R_{i,n}\right)\right) \le \psi\left(\max_{i=1,\dots,N} \phi(R_{i,n})\right) \le \psi\left(\sum_{i=1}^{N} \phi(R_{i,n})\right) = \Phi(R_n)$$

Hence:

$$\max_{i=1,\dots,N} R_{i,n} \le \phi^{-1}(\psi^{-1}(\Phi(R_n)))$$

$$\frac{1}{n} \left(\max_{i=1,\dots,N} R_{i,n} \right) \le \underbrace{\frac{(\psi \circ \phi)^{-1} \left(\Phi(0) + \frac{Cn}{2}\right)}{n}}_{f}$$

Now we need to show that $\epsilon_n \to 0$. That is the same as saying that for a strictly convex increasing function F, we have $\lim_{x\to\infty}\frac{F^{-1}(x)}{x}=0$ or equivalenty $\lim_{x\to\infty}\frac{F(x)}{x}=+\infty$. This doesn't seem to be true in general. Indeed, the function $F(x)=\sqrt{x^2+1}-1$ is strictly convex but $F(x)\underset{x\to\infty}{\sim} x$. The result would be true if we assume that $\psi\circ\phi$ is strongly convex as it would be lower bounded by a positive quadratic.

Exercise 2.5 Nonuniform initial weights

By definition, the weighted average forecaster uses uniform initial weights $w_{i,0} = 1$ for all i = 1, ..., N. However, there is nothing special abut this choice, and the analysis of the regret for this forecaster can be carried out using any set of nonnegative numbers for the initial weights.

Consider the exponentially weighted average forecaster run with arbitrary inital weights $w_{1,0}, \ldots, w_{N,0} > 0$, defined for all $t = 1, 2, \ldots$, by

$$\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{i,t}}{\sum_{j=1}^{N} w_{j,t-1}}, \quad w_{i,t} = w_{i,t-1} \exp{-\eta \ell(f_{i,t}, y_t)}.$$

Under the same conditions as in the statement of Theorem 2.2, show that for every n and for every outcome sequence y^n ,

$$\widehat{L}_n \le \min_{i=1,\dots,N} \left(L_{i,n} + \frac{1}{\eta} \log \frac{1}{w_{i,0}} \right) + \frac{\log W_0}{\eta} + \frac{\eta}{8} n$$

where $W_0 = w_{1,0} + \cdots + w_{N,0}$

Solution: As in the proof of theorem 2.2, we define:

$$W_{t} = \sum_{i=1}^{N} w_{i,t}$$

$$= \sum_{i=1}^{N} \exp(-\eta L_{i,t}) w_{i,0}$$

$$= \sum_{i=1}^{N} \exp(-\eta L_{i,t}) + \frac{1}{\eta} \log \frac{1}{w_{i,0}}$$

Now as in the proof of theorem 2.2, we analyse $\log \frac{W_t}{W_0}$ and $\log \frac{W_t}{W_{t-1}}$. We have :

$$\log \frac{W_n}{W_0} = \log \left(\sum_{i=1}^N \exp -\eta \left(L_{i,n} + \frac{1}{\eta} \log \frac{1}{w_{i,0}} \right) \right) - \log W_0$$

$$\geq \log \left(\max_{i=1,\dots,N} \exp -\eta \left(L_{i,n} + \frac{1}{\eta} \log \frac{1}{w_{i,0}} \right) \right)$$

$$= -\eta \left(\min_{i=1,\dots,N} L_{i,n} + \frac{1}{\eta} \log \frac{1}{w_{i,0}} \right) - \log W_0$$

On the other hand, exactly as in the proof of Theorem 2.2, we get for each t = 1, ..., n,

$$\log \frac{W_t}{W_{t-1}} = \log \frac{\sum_{i=1}^{N} \exp\left(-\eta \ell(f_{i,t}, y_t)\right) \exp\left(-\eta \left(L_{i,t-1} + \frac{1}{\eta} \log \frac{1}{w_{i,0}}\right)\right)}{\sum_{i=1}^{N} \exp\left(-\eta \left(L_{i,t-1} + \frac{1}{\eta} \log \frac{1}{w_{i,0}}\right)\right)}$$

$$= \log \frac{\sum_{i=1}^{N} w_{i,t-1} \exp\left(-\eta \ell(f_{i,t}, y_t)\right)}{\sum_{i=1}^{N} w_{i,t-1}}$$

$$\leq -\eta \ell(\hat{p}_t, y_t) + \frac{\eta^2}{8}$$

Where the last inequality is obtained by using Hoeffding's Lemma and the convecity of the loss exactly like in the proof of Theorem 2.2. Summing over t = 1, ..., n, we get

$$\log \frac{W_n}{W_0} \le -\eta \widehat{L_n} + \frac{\eta^2}{8} \eta.$$

Putting this together with the previous upper bound and solving for \widehat{L}_n we get :

$$\widehat{L_n} \le \min_{i=1,\dots,N} \left(L_{i,n} + \frac{1}{\eta} \log \frac{1}{w_{i,0}} \right) + \frac{\log W_0}{\eta} + \frac{\eta}{8} n$$