MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET

Avd. Matematik Examinator: Olof Sisask Tentamensskrivning i Linjär algebra, MM5012 7.5 hp 25 augusti 2023

15p ger garanterat betyg E. Motivera alla lösningar noggrant. Obevisade deluppgifter kan användas.

Påminnelse. Kom ihåg att om \mathbb{F} är en kropp så skriver vi

- $P_n(\mathbb{F})$ för \mathbb{F} -vektorrummet av polynom av grad högst n med koefficienter i \mathbb{F} och
- $\mathbf{M}_{m \times n}(\mathbb{F})$ för \mathbb{F} -vektorrummet av $m \times n$ -matriser med element i \mathbb{F} .

Uppgifter.

- 1. (a) (1p) Låt v_1, v_2, \ldots, v_n vara n olika vektorer i ett vektorrum V över en kropp \mathbb{F} . Ange definitionen av att $\{v_1, v_2, \ldots, v_n\}$ är en bas för V.
 - (b) (2p) Visa att $\{1, x, x^2, x^3\}$ är en bas för $P_3(\mathbb{R})$.
 - (c) (2p) Låt $V = P_3(\mathbb{R})$ och låt

$$v_1 = 1 + x$$
, $v_2 = x + x^2$, $v_3 = x^2 + x^3$, $v_4 = x^3 + 1$

vara fyra element i V. Avgör om vektorerna $\{v_1, v_2, v_3, v_4\}$ är en bas för V eller inte (och kom ihåg att motivera noggrant).

- 2. (a) (2p) Låt $T:V\to V$ vara en linjär operator på ett F-vektorrum V. Ange definitionerna av begreppen egenvektor och egenvärde för T, samt vad det betyder för T att vara diagonaliserbar.
 - (b) (3p) Låt $T: \mathbb{R}^3 \to \mathbb{R}^3$ vara den linjära operatorn (på \mathbb{R} -vektorrummet \mathbb{R}^3) som ges av

$$T(x_1, x_2, x_3) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Beräkna alla egenvärden för T och baser för de tillhörande egenrummen, samt avgör om T är diagonaliserbar.

3. Betrakta polynomrummet $P_3(\mathbb{R})$ med inre produkten

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx$$
 (för $f, g \in P_3(\mathbb{R})$).

Låt V vara delmängden till $P_3(\mathbb{R})$ som består av alla polynom $p \mod \int_0^1 p(x) dx = 0$.

- (a) (1p) Visa att V är ett delrum till $P_3(\mathbb{R})$.
- (b) (2p) Bestäm en bas för V.
- (c) (2p) Bestäm två element i en $ortogonal\ bas$ för V samt ange hur en fullständig ortogonal bas för V kan hittas som innehåller dessa två.

Var god vänd!

4. **(5p)** Avgör vilka av följande avbildningar som är diagonaliserbara relativt en ON-bas (för respektive vektorrum).

(a)
$$L_A: \mathbb{R}^3 \to \mathbb{R}^3$$
 där $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}$

(b)
$$L_B: \mathbb{R}^3 \to \mathbb{R}^3 \text{ där } B = \begin{pmatrix} 10 & -1 & 2 \\ -1 & 20 & 3 \\ 2 & 3 & 30 \end{pmatrix}$$

(c)
$$L_C: \mathbb{C}^2 \to \mathbb{C}^2 \text{ där } C = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

(d)
$$L_D: \mathbb{C}^2 \to \mathbb{C}^2$$
 där $D = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$

- 5. (a) (1p) Låt $A \in M_{n \times n}(\mathbb{R})$. Ange definitionen av att A är en ortogonal matris.
 - (b) (4p) Beräkna en singulärvärdesuppdelning av matrisen

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_{2 \times 3}(\mathbb{R}).$$

- 6. (a) (1p) Låt V och W vara vektorrum över samma kropp F. Ange definitionen av att en avbildning $T:V\to W$ är $linj\ddot{a}r$.
 - (b) (3p) Låt $T: V \to W$ vara en bijektiv linjär avbildning och låt $T^{-1}: W \to V$ vara den inversa avbildningen, som uppfyller $T^{-1}(T(v)) = v$ för alla $v \in V$. Bevisa att T^{-1} är linjär.
 - (c) (1p) Låt $T: \mathbb{R}^2 \to P_1(\mathbb{R})$ ges av T(a,b) = 2a + (a+b)x. Ange en formel för den inversa avbildningen $T^{-1}: P_1(\mathbb{R}) \to \mathbb{R}^2$.

Rättningen av tentan kommer att vara färdig ungefär 2 veckor efter tentamensskrivning. Därefter kan en elektronisk kopia av tentan beställas från studentexpeditionen genom länken https://survey.su.se/Survey/48245/sv.