slide 2

University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Representations and Bits

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 1

ECE 120: Introduction to Computing

MIT students created the Big Screw Award, which is given to "whoever [sic] has screwed over the most students over the past year." One professor taught in French to win it. The rest of my lectures will use this code: Good luck!

© 2016 Steven S. Lumetta. All rights reserved.

Represent One Type of Information with Another

We often represent one type of information with other patterns, physical quantities, and so forth.

examples

- English letters represented by drawn patterns
- colors represented by variations in radio signal amplitude

The mapping from one form to another is called a representation.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 3

slide 6

What Do We Need to Make a Representation Useful? What properties are necessary for a representation to be useful? Hints: Think about the tic-tac-toe code. Think about algorithm properties.

© 2016 Steven S. Lumetta. All rights reserved.

ECE 120: Introduction to Computing

A Question for You: How Many Bits do We Need?

How many bits do we need to represent a whole number in the range...

- from **0 to 31**?
- 32 different integers
- \circ so we need 5 bits (2⁵ = 32 bit patterns)
- from **0 to 100**?
- 101 different integers
- \circ so we need 7 bits (2⁷ = 128 bit patterns)

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 15

We Need One Bit Pattern for Each Possible Thing

Trick question: How many bits do we need to represent two books?

- ${}^{\circ}\text{The Collected Works of Shakespeare}$
- $^{\circ}$ Our textbook by Patt & Patel
- 2 different books
- \circ so we need only 1 bit! (2¹ = 2 bit patterns)

What matters is the **number of things**, not what those things are.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 16

How Many Bits Do We Need to Represent N Things?

Let's test your understanding (and generalize)! How many bits do we need to represent...

- a whole number from 1000 to 1100? 101 different integers, so **7 bits** (2⁷ = 128) one of **199 flavors of ice cream**?
 199 different flavors, so **8 bits** (2⁸ = 256)

- a living person?
 7-8 billion people, so 33 bits (2³³ > 8 billion)
- N things?
- $\lceil log_2 \, N \rceil$ (ceiling / integer at least as large as log base 2 of N)

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 17

Today's Not-so-Random Topics

- Layers in a Computer System
- Representations and Bits
- Integer Representations

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 18