EX 1

EX 1

EX 1.1

EX 1.2

EX 1.3

EX 1.1

During a heating process, the temperature of a system rises by $10^{\circ}C$. Express this rise in temperature in K, ${^{\circ}F}$, and R

$$\Delta K = \Delta^{\circ} C = 10 K$$

$$\Delta R = 1.8 \Delta^{\circ} C = 18 R$$

$$\Delta^{\circ}F = \Delta R = 18^{\circ}F$$

EX 1.2

A vacuum gage connected to a chamber reads $5.8~\rm psi$ at a location where the atmospheric pressure is $14.5~\rm psi$. Determine the absolute pressure in the chamber

$$P_{vac} = P_{atm} - P_{atm}$$
$$= 14.5 - 5.8 = 8.7psi$$

EX 1.3

The water in a tank is pressurized by air, and the pressure is measured by a multifluid-manometer as shown in the following figure. The tank is located on a mountain where the atmospheric pressure is $85.6\ kPa$.

Determine the air pressure in the tank if $h_1=0.1\ m$, $h_2=0.2\ m$, and $h_3=0.35\ m$. Take the densities of water, oil, and mercury to be $1000\ kg/m^3$, $850\ kg/m^3$, and $13,600\ kg/m^3$, respectively.

$$\left\{egin{aligned} P_A &= P_1 +
ho_w g h_1 \ P_B &= P_A +
ho_o g h_2 \ P_B &= P_2 +
ho_m g h_3 \end{aligned}
ight.$$
 $\Longrightarrow P_1 = P_2 +
ho_m g h_3 -
ho_w g h_1 -
ho_O g h_2 \ = 129.65 k Pa$