Classification in Deep Learning: A Beginner's Guide

Theophilus Ansah-Narh, Ph.D. theophilus.ansah-narh@gaec.gov.gh

July 26, 2023

Outline

- Big Data
- Machine Learning
- Deep Learning
- Performance Metrics
- **DEMO**
- Remarks

Big Data

The Erra of Big Data I

Facets and Elements of Big Data. Image credit: Dzone website

- Big data is an amount of data that is enormous in volume and is constantly expanding rapidly.
- No typical data management systems can effectively store or analyze this data because of its magnitude and complexity.
- fundamental characteristics of big data are listed below

The Erra of Big Data II

Volume

- Big Data is a vast *volume* of data generated from many sources daily, such as business processes, machines, social media platforms, networks, human interactions, and many more.
- Industry trends predict a significant increase in data volume over the next few years.
- Usually measured in gigabytes (GB), terabytes (TB), zettabytes (ZB), and yottabytes (YB)
- Nonetheless, Big data generally refers to datasets with a high volume of the order of magnitude of exabytes $(10^{18}B = 10^{9}GB = 10^{6}TB = 1EB)$ and greater (Jelic *et al.* 2019).

The Erra of Big Data III

The Erra of Big Data IV

The Evolving Data-Rich Astronomy

An example of a "Big Data" science driven by the advances in computing/information technology

Key challenges: data heterogeneity and complexity

Image credit: Djorgovski, 2019

The Erra of Big Data V

The Erra of Big Data VI

Variety

- In the past, data is only collected from databases and sheets.
- These days the data will come in array forms, that are PDFs, Emails, audios, SM posts, photos, videos, etc.
- Big Data can be structured, unstructured, and semi-structured that are being collected from different sources.
 - **Structured data:** In Structured schema, along with all the required columns. It is in a tabular form. Structured Data is stored in the relational database management system.
 - **Semi-structured:** In Semi-structured, the schema is not appropriately defined, e.g., JSON, XML, CSV, TSV, and email. OLTP (Online Transaction Processing) systems are built to work with semi-structured data. It is stored in relations, i.e., tables.
 - Unstructured Data: All the unstructured files, log files, audio files, video files, e-mails, word processing, and image files are included in the unstructured data.

The Erra of Big Data VII

Veracity

- The accuracy of your findings can be severely harmed by poor data reliability.
- Making it one of the most crucial big data qualities
- There's a need to calibrate your data since most of the data you encounter is unstructured.

The Erra of Big Data VIII

```
In [13]: print('Group wise Stats')
    print("Messages:", total_messages)
    print('Media:', media_messages)
    print('Emojis:', emojis)
    print('Links:', links)
```

Group wise Stats Messages: 845 Media: 182 Emojis: 511 Links: 188

The Erra of Big Data IX

Emoji Distribution

The Erra of Big Data X

User interventions count (cumulative)

The Erra of Big Data XI

Count of sent characters (cumulative)

The Erra of Big Data XII

Response matrix

The Erra of Big Data XIII

The Erra of Big Data XIV

The Erra of Big Data XV

The Erra of Big Data XVI

The Erra of Big Data XVII

Value

- On this data set, analysis and pattern recognition are performed.
- The results of the method may be used to determine the value of the data.
- Making it one of the most crucial big data qualities.

Machine Learning

Machine Learning I

Image credit: mapendo site

Machine Learning II

Image credit: Mehra & Hasanuzzaman, (2020)

Machine Learning III

TYPES OF MACHINE LEARNING

Supervised Machine Learning Unsupervised Machine Learning Semi-Supervised Learning Reinforcement Learning

Image credit: spiceworks site

Machine Learning IV

Artificial Intelligence

The theory and development of computer systems able to perform tasks normally requiring human intelligence

Machine Learning

Gives computers "the ability to learn without being explicitly programmed"

Deep Learning

Machine learning algorithms
with brain-like logical
structure of algorithms
called artificial neural
networks

LEVITY

Deep Learning

Deep Learning I

Machine Learning

Deep Learning

Image credit: Odi & Nguyen, (2018)

Deep Learning II

Schematic of a feed-forward neural network

Deep Learning III

Image credit: Zhu et al , (2019)

 4
 3
 4

 2
 4
 3

 2
 3
 4

Image

Convolved Feature

Image credit: Medium

Deep Learning V

Input

7	3	5	2
8	7	1	6
4	9	3	9

Output

8	6
0	0

GSSTI-GAEC

Deep Learning VI

Deep Learning VII

Image credit: Dot Net

Performance Metrics

Performance Metrics Classification I

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

Performance Metrics Classification II

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

Performance Metrics Classification III

Metric	Formula	Evaluation focus
Accuracy	$ACC = \frac{TP + TN}{TP + TN + FP + FN}$	Overall effectiveness of a classifier
Precision	$PRC = \frac{TP}{TP + FP}$	Class agreement of the data labels with the positive labels given by the classifier
Sensitivity	$SNS = \frac{TP}{TP + FN}$	Effectiveness of a classifier to identify positive labels. Also called true positive rate (TPR)
Specificity	$SPC = \frac{TN}{TN + FP}$	How effectively a classifier identifies negative labels. Also called true negative rate (TNR)
F ₁ score	$F_1 = 2 \frac{PRC \cdot SNS}{PRC + SNS}$	Combination of precision (PRC) and sensitivity (SNS) in a single metric
Geometric mean	$GM = \sqrt{SNS \cdot SPC}$	Combination of sensitivity (SNS) and specificity (SPC) in a single metric
Area under (ROC) curve	$AUC = \int_{0}^{1} SNS \cdot dSPC$	Combined metric based on the receiver operating characteristic (ROC) space (Powers, 2011)

DEMO

Remarks

Workflow of ML

Image credit: spiceworks site

