Autonomous Intelligence Systems <u>Labortory</u>

Exercise Nr. 2

Implementing a CNN in Tensorflow

Author: Basharat Basharat Matriculation Nr. 4053110

Email: <u>Basharat.basharat@uranus.uni-freiburg.de</u>

Introduction:

Implementing of a Convolution Neural Network using the Tensorflow package. Convolution neural network consists of two convolution layers with (16 filters with size [3x3] and a stride of 1, and each convolution layer followed by a ReLU as an activation function and a max pooling layer with (pool size 2). Fully connected (Dense layer) consists of 128 units (neurons) and a final softmax layer for classification. The model is trained by optimizing the cross-entropy loss with stochastic gradient descent.

Learning Rates:

By using different (learning rates) in the stochastic gradient descent, the following training accuracy and training loss with training set and evaluation set.

Results : Training Set & Eval Set:

Learning Rate	0.1	0.01	0.001	0.0001
Training loss	0.02879	0.0165	0.0238	0.0113
Evaluation loss	0.0376	0.0289	0.0287	0.0287
Training accuracy	0.990	0.990	0.9901	0.9901

The above learning graphs are in the json files, which are uploaded in my github. Unfortunately I was not able to plot the graphs due to less amount of time for this particular exercise.

I was also not able to implement the random_search.py as to lack of time. If I am provided more time I can try to solve the second part of the exercise.