

Department of CSE

LAB REPORT

Course Code and Name: CSE209 Electrical Circuits			
Experiment no:06			
Experiment name: Verification of Thevenin's theorem			
Semester and Year: Fall 22	GROUP NO:		
Name of Student:	Course Instructor information:		
BM Shahria Alam	M Saddam Hossain Khan Senior Lecturer		
2021-3-60-016	Department of Computer Science & Engineering		
Sidratul Moontaha			
2021-3-60-048			
Antara Sarker			
2021-3-60-056 Date of Report Submitted:			

14.12.2022

Experiment title: Verification of Thevenin's theorem.

Abstract:

Thevenin's theorem states that a linear two-terminal network can be replaced by an equivalent circuit containing a voltage source Eth in series with a resistance Rth. Eth is equal to the open circuit voltage between the terminals and Rth is the ratio of the open circuit voltage to the short circuit current through the terminals. Experimentally, Eth may be measured by measuring the open circuit voltage and Rth can be calculated by measuring the open circuit voltage and the short circuit current.

Objective:

To gain knowledge and observe Thevenin's theorem theoretically and using PSpice simulation.

Circuit diagrams:

Figure 1. Circuit diagram whose Thevenin's equivalent to be determined.

Figure 2. Circuit diagram to measure the open circuit voltage

Figure 3. Circuit diagram to measure the short circuit current

Figure 4. Circuit diagram to verify Thevenin's theorem.

Table 1: Experimental Datasheet for determining Thevenin's equivalent circuit.

Measured Value of E_1	Measured Value of E_2	Measured Value of $V_{\rm L}$	Measured Value of I_L	Measured value of Voc	Measured value of I_{SC}	Measured of values resistors (kilo ohm)
10V	5V	3.3V	3.3mA	7.1V	6.034mA	$R_1 = 1$ ohms $R_2 = 3.3$ ohms $R_3 = 4.7$ ohms $R_4 = 1$ ohms $R_L = 1$ ohms

Table 2: Experimental Datasheet for Thevenin's equivalent circuit.

$E_{\text{th}} = V_{\text{OC}}$	Rth = V oc/ I sc	Measured Value of $V_{\rm L}$	Measured Value of $I_{\rm L}$	
7.1V	1.15 K ohms	3.29V	3.3mA	

Post-Lab Report Answer:

Answer to the Post-Lab Question 1:

Measured values are = 10V, = 5V, = 1K, = 3.3K, = 4.7K, = 1K and = 1K

For figure 1:
KVL at mesh 1,
5.7(1)
KVL at mesh 2,
(2)
KVL at mesh 3,
3.3(3)
From equation (1), (2) and (3)
∴ and = 3.260mA
For figure 2:
KVL at mesh 1,
(1)
KVL at mesh 2,
(2)
From (1) and (2),
∴ = 7.1V

For figure 3:

KVL at mesh 1,

$$5.7 = -10....(1)$$

KVL at mesh 2,

$$-+5.3-3.3=5...$$
 (2)

KVL at mesh 3,

$$-3.3 + 3.3 = 5...$$
 (3)

From (1), (2) and (3)

=6.034mA

∴ =6.034mA

So, = 7.1V, = 1.15 Kohm

For figure 4:

$$= 3.3V$$
, $= 3.3mA$

So, Thevenin's theorem is verified

Answer to the Post-Lab Question 2:

Comparing the theoretically calculated values with the experimental (using PSpice) values:

Theoretically calculated values are = 3.29V, = 3.3mA, = 7.1V, = 6.034mA, = 7.1V, = 1.15Kohm, = 3.260V and =3.260mA

Experimentally (using PS pice) Measured values are = 3.29V, = 3.3mA, = 7.090V, = 6.034mA, = 7.1V, = 1.15 Kohm, = 3.29V and =3.3mA

Comment: There are some small differences between the experimental measured values and the theoretical values.

Answer to the Post-Lab Question 3:

Solving the circuits of Figures using PSpice:

Simulation for figure 1:

Figure 1. Circuit diagram whose Thevenin's equivalent to be determined. From figure 1, VL= 3.26V and IL= 3.260mA

Simulation for figure 2:

Figure 2. Circuit diagram to measure the open circuit voltage

From figure 2, Voc= 7.090V

Simulation for figure 3:

Figure 3. Circuit diagram to measure the short circuit current.

From figure 3, Isc= 6.034mA

Simulation for figure 4:

Figure 4. Circuit diagram to verify Thevenin's theorem.

From figure 4, VL= 3.260V and IL= 3.260mA

Since there is no difference, we can say the Thevenin's theorem is verified.

Result & Discussion:

So after theoretically calculating, the values are = 3.260V, = 3.260mA, = 7.089V, = 6.034mA, = 7.089V, = 1174.840hm.

Measured values are = 3.260V, = 3.260mA, = 7.090V, = 6.034mA, = 7.09V, = 1175 ohm

Here we have slight differences between the theoretical values and the experimental measured

values. Pre-Lab data and experimental data are also almost the same. From this experiment, we slightly broaden our knowledge we gained from the previous experiment. By doing this experiment we have been able to simulate our circuits via PSpice and test the results. After doing this experiment we gain knowledge about Thevenin's theorem.

Conclusion:

In these experiments, the readings were taken very carefully. Though there is no slight difference between calculated value and PSpice value, at the end of the experiment we finally learned about Thevenin's theorem.

Reference:

[1] Lab manual

Table:

Experiment number : 06

Table: 01 Experimental Datasheet of Letermining Therenin's equivalent cicuit.

Measurer value of E.	Measured value of Ez	Meanwood value of VL	Meanwood value of IL	Meanwied value of Voc	Meanwed value of Isc	Meanwood Yalsurs of reenistan (KA)
10 ~	5 v	3.3 <	3.3 mA	7.1 ~	6.2 mA	R1= 1160 R2= 2°3160 R3= 4°760 R4= 1160 RL= 1160

Table :- 02 Experimental Datasheet for Therenin's equivalent circuit.

Eth = Voc	Rth = Yoc/Isc	Measured value of Vi	Measured value of IL
7.17	1.15 KD	3.29 mA	3.33mA

Name: B.M Shalvia Alam

ID: 2021-3-60-04816

Name: sidratul Moordaha

ID :- 2021 - 3-60-048

Name: Antarca Souver

1D :2021 - 3-60-056

12/12/22

Pre labs:

Name: Antoura Santair Rypa

ID: 2021 - 3-60 -056

Exp no : 06 Group no: 01

Lab 6 - Pre-Lab Report

Hene, I = is

KVL at mesh 1,

KVL at mesh 2;

$$\Rightarrow -V_1 + 1.303 V_2 = 1.515 - 2$$

KVL at mesh 1:

KVL at mesh 2:

$$i_2 - i_1 + i_2 + 3.3(i_2 - i_3) = 5$$

KVL at mesh 3:

$$3.3(i_3-i_2)=5$$

from eq (1), (2) and (3) we get —

$$= 3.259 \text{ V}_{1} \text{ 1k} \text{ V2}_{0+}$$

$$4.7 \text{ K}_{1} \text{ 1ov} \text{ 1sv} \text{ V3}_{0}$$

$$\frac{V_1}{4.7} + \frac{V_{1-10}}{1} + \frac{V_{1-V_2}}{1} = 0$$

$$\Rightarrow$$
 2.212 $v_1 - v_2 = 10 - 1$

$$\frac{v_2-5}{3.3}+v_2-v_1=0$$

BD SCHOOL SHO

From eq (1),(2),(3) we get i, = - 0.961 mA; i2 = 4.519 mA; ig = 6.034 mA

$$R_{\text{HL}} = \frac{V_{0c}}{I_{se}} = \frac{7.093}{6.034} = 1.175 \, \text{K}$$

$$R_{\text{HL}} = 1.175 \, \text{K}$$

As Ve and It from Fig 12 - is equivalent to the VL and IL of Fig 4, so the

Name: B M Shahreia Alam

ID: 2021-3-60-016

Course: CSEZO9 (7)

Exp no: 06

Lab-6 Pre lab report

KVL at mesh ?;

$$(i_2-i_1)+i_2+3.3(i_2-i_3)=10$$

KVL at mesh 3;

From eq (), (11) (111) we get,

KVL at mesh 1,

$$4.7i_1 + i_1 - i_2 = 10$$

$$\Rightarrow 5.7i_1 - i_2 = 10 - - - (i)$$

KVL at mesh 2;

$$i_2 - i_1 + i_2 + 3 \cdot 3 (i_2 - i_3) = 5$$

=>- $i_1 + 5 \cdot 3 \cdot i_2 - 3 \cdot 3 \cdot 3 = 5 - - - \cdot (ii)$

KVL at mesh 3;

from eq (i, ii, iii) we get.

$$\hat{l}_1 = -0.961 \, \text{mA}$$

$$R_{H} = \frac{V_{0e}}{I_{se}} = \frac{7.093}{6.034}$$

$$\frac{V_1}{4.7} + \frac{V_1 - 10}{1} + \frac{V_1 - V_2}{1} = 0$$

kCL at node 2;

$$\frac{\sqrt{2}-5}{3\cdot 3} + \sqrt{2} - \sqrt{1} = 0$$

From eq (1) and (2)

$$V_{00} = V_{2}$$

$$= 7.098V$$

$$F_{Hh} = 1.178k$$

$$V_{L} = \frac{7.093}{1 + 1.175} \times 1$$

$$= 3.259 \text{ V}$$

$$I_{L} = \frac{V_{L}}{R_{L}}$$

$$= 3.259 \text{ mA}$$

As VL and IL from fig 1 is equivalent to the VL and IL of fig-4. So, the venino theorem is vertified.

Name: Sidocatul Moontaher ID: 2021-3-60-048 Lab : 06

Here, IL = 13

KVL at mesh 1,

KVL at mesh 2,

$$(i_2-i_1)+i_2+3.3(i_2-i_3)=10$$

=> $i_1+5.3i_2-3.3i_3=5-2$

KVL at mesh 3,

$$3.3(i_3-i_2)+i_3=5$$

=> $-3.5i_2+4.3i_3=5$

From ear, 1, 2 3, i1 = -1.274 mA i2=2.73 mA i3=3.25 mA IL = 3.25 mA · VL = 1 LRL = 3.25 Y

KCL in mode 1,

$$\frac{v_1}{4.7} + \frac{v_{1}-10}{1} + \frac{v_{1}-v_{2}}{1} = 0$$

$$\Rightarrow$$
 2.21 $V_1 - V_2 = 10 - 0$

KCL at node 2,

$$\frac{v_2-5}{3\cdot 3}+v_2-v_1=0$$

From, ear (1)
$$v_1 = 7.92V$$
 $v_2 = 7.093V$
 $VOC = 7.093V = VL$
 $VOC =$

VL = 7.093 XI = 3.259V

Aro, VL and IL from fig-1 is equivalent to the VL and IL of fig-4, so therenings theorem is verified.