CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 7 SETTEMBRE 2015

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Si dia la definizione di grafo (semplice) e quella di grafo connesso.

Esercizio 2. Indicato con \mathbb{P} l'insieme degli interi positivi primi, e posto $X = \{10, 25, 26\}$, elencare gli elementi di ciascuno degli insiemi:

```
\begin{split} A &= \{ p \in \mathbb{P} \mid (\forall x \in X)(p|x) \}, \\ B &= \{ p \in \mathbb{P} \mid (\exists x \in X)(x|p) \}, \\ C &= \{ p \in \mathbb{P} \mid (\forall x \in X)(p|x \lor p < x) \}, \\ D &= \{ p \in \mathbb{P} \mid p < 20 \land (\forall x \in X)(p|x \Rightarrow p = 2) \}, \\ E &= \{ p \in \mathbb{P} \mid p > 8 \Rightarrow (\exists x \in X)(p|x) \}. \end{split}
```

Esercizio 3. Nell'insieme $S = \{1, 2, 3\}$ si consideri la relazione binaria α di grafico

$$\{(1,1),(1,3),(2,2),(3,1),(3,3)\}.$$

 α una relazione di equivalenza? Nel caso lo sia, elencare le classi di equivalenza in S/α .

Esercizio 4. Si considerino le relazioni binarie $S \in \mathcal{R}$ definite in \mathbb{N} ponendo, per ogni $a, b \in \mathbb{N}$,

$$a \otimes b \iff (a \leq b \vee \operatorname{rest}(a,3) \mid \operatorname{rest}(b,3));$$
 $a \otimes b \iff (a \leq b \wedge \operatorname{rest}(a,3) \mid \operatorname{rest}(b,3)).$

- (i) S non è né d'ordine né di equivalenza; perché?
- (ii) Invece \mathcal{R} è d'ordine. Determinare gli eventuali elementi minimali, massimali, minimo e massimo in $(\mathbb{N}, \mathcal{R})$.
- (iii) Quali dei seguenti sono reticoli, e quali no? Per quelli che lo sono, specificare se sono reticoli distributivi e se sono reticoli complementati: (\mathbb{N}, \mathbb{R}) , $(3\mathbb{N} + 1, \mathbb{R})$, (A, \mathbb{R}) , (B, \mathbb{R}) , dove $A = \{n \in \mathbb{N} \mid n \leq 9\}$ e $B = \{1, 7, 18, 23, 31, 300\}$. Nel rispondere, disegnare i diagrammi di Hasse di (A, \mathbb{R}) e (B, \mathbb{R}) .
- (iv) In $(\mathbb{N}, \mathcal{R})$, determinare, se esistono, inf $\{59, 61\}$ e sup $\{59, 61\}$.
- (v) Spiegare perché non esistono in $(\mathbb{N}, \mathcal{R})$ quattro elementi a due a due non confrontabili tra loro.

Esercizio 5. Si consideri l'applicazione $f:(a,b)\in\mathbb{Z}_{12}\times\mathbb{Z}_{12}\mapsto ab\in\mathbb{Z}_{12}$.

- (i) f è suriettiva?
- (ii) Determinare gli elementi dell'insieme $A = \{a \in \mathbb{Z}_{12} \mid (\exists b \in \mathbb{Z}_{12} \setminus \{\bar{0}\})((a,b) \in \overleftarrow{f}(\{\bar{0}\}))\}.$
- (iii) Determinare gli elementi dell'insieme $B = \{a \in \mathbb{Z}_{12} \mid (\exists b \in \mathbb{Z}_{12})((a,b) \in \overline{f}(\{\bar{1}\}))\}.$
- (iv) $\mathcal{F} := \{A, B\}$ è una partizione di \mathbb{Z}_{12} ? (Giustificare la risposta in tutti i dettagli).
- (v) Indicata, per ogni $a \in \mathbb{Z}_{12}$, con f_a l'applicazione: $b \in \mathbb{Z}_{12} \mapsto ab \in \mathbb{Z}_{12}$, dire per quali $a \in \mathbb{Z}_{12}$ f_a è iniettiva e per quali f_a è suriettiva.
- (vi) Determinare, se possibile, l'applicazione inversa di $f_{\bar{7}}$ (utilizzare e risolvere a questo scopo un'opportuna equazione congruenziale).

Esercizio 6.

- (i) Senza effettuare prodotti, si spieghi perché in $\mathbb{Z}_5[x]$ si ha $x^5-x=x(x-\bar{1})(x-\bar{2})(x-\bar{3})(x-\bar{4})$.
- (ii) Si costruisca un polinomio $g \in \mathbb{Z}_5[x]$ di grado 5 che non ammetta radici in \mathbb{Z}_5 .

Per ogni primo p, sia f_p il polinomio $x^5 - x \in \mathbb{Z}_p[x]$.

- (iii) Per ogni p, si giustifichi il fatto che f_p è prodotto, in $\mathbb{Z}_p[x]$, di fattori di grado 1 se e solo se $x^2 + \bar{1}$ ha radici in \mathbb{Z}_p
- (iv) Si trovi un primo p tale che f_p abbia, in $\mathbb{Z}_p[x]$, un fattore irriducibile di grado 2.
- (v) Esiste un primo p tale che f_p abbia, in $\mathbb{Z}_p[x]$, un fattore irriducibile di grado 3?