GRAPH

What is a Graph?

• A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

- An edge e = (u,v) is a pair of vertices
- Example:

Terminology: Adjacent and Incident

- If (v₀, v₁) is an edge in an undirected graph,
 - v₀ and v₁ are adjacent
 - The edge (v₀, v₁) is incident on vertices v₀ and v₁
- If $\langle v_0, v_1 \rangle$ is an edge in a directed graph
 - v₀ is adjacent to v₁, and v₁ is adjacent from v₀
 - The edge $\langle v_0, v_1 \rangle$ is incident on v_0 and v_1

Terminology: Degree of a Vertex

- The degree of a vertex is the number of edges incident to that vertex
- For directed graph,
 - the in-degree of a vertex v is the number of edges that have v as the head
 - the out-degree of a vertex v is the number of edges that have v as the tail
 - if di is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is

$$e = (\sum_{i=1}^{n-1} d_i)/2$$

Why? Since adjacent vertices each count the adjoining edge, it will be counted twice

Examples

directed graph in-degree out-degree

Terminology: Path

path: sequence of vertices v₁, v₂,...v_k such that consecutive vertices v_i and v_{i+1} are adjacent.

More Terminology

simple path: no repeated vertices

• cycle: simple path, except that the last vertex is the same as the first

Even More Terminology

•connected graph: any two vertices are connected by some path

- subgraph: subset of vertices and edges forming a graph
- connected component: maximal connected subgraph. E.g., the graph below has 3 connected components.

Subgraphs Examples

More...

- tree connected graph without cycles
- forest collection of trees

Connectivity

- Let $\mathbf{n} = \text{#vertices}$, and $\mathbf{m} = \text{#edges}$
- A complete graph: one in which all pairs of vertices are adjacent
- How many total edges in a complete graph?
 - Each of the n vertices is incident to \mathbf{n} -1 edges, however, we would have counted each edge twice! Therefore, intuitively, $\mathbf{m} = \mathbf{n}(\mathbf{n} 1)/2$.
- Therefore, if a graph is not complete, m < n(n-1)/2

More Connectivity

$$\mathbf{m} = \# \text{edges}$$

• For a tree $\mathbf{m} = \mathbf{n} - 1$

$$\mathbf{n} = 5$$

$$\mathbf{m} = 4$$

If m < n - 1, G is not connected

$$\mathbf{n} = 5$$

$$\mathbf{m} = 3$$

Oriented (Directed) Graph

A graph where edges are directed

Directed vs. Undirected Graph

- An undirected graph is one in which the pair of vertices in a edge is unordered, $(v_0, v_1) = (v_1, v_0)$
- A directed graph is one in which each edge is a directed pair of vertices, $\langle v_0, v_1 \rangle != \langle v_1, v_0 \rangle$ tail head

ADT for Graph

objects: a nonempty set of vertices and a set of undirected edges, where each edge is a pair of vertices

functions: for all $graph \in Graph$, v, v_1 and $v_2 \in Vertices$

Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no incident edge.

Graph InsertEdge(graph, v_1,v_2)::= return a graph with new edge between v_1 and v_2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges incident to it are removed

Graph DeleteEdge(graph, v_1 , v_2)::=return a graph in which the edge (v_1 , v_2) is removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE else return FALSE

List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

Graph Representations

- Adjacency Matrix
- Adjacency Lists

Adjacency Matrix

- \Leftrightarrow Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n by n array, say adj_mat
- ❖ If the edge (v_i, v_j) is in E(G), adj_mat[i][j]=1
- If there is no such edge in E(G), adj_mat[i][j]=o
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Merits of Adjacency Matrix

- From the adjacency matrix, to determine the connection of vertices is easy
- The degree of a vertex is $\sum_{i=1}^{n-1} adj_{mat}[i][j]$
- For a digraph (= directed graph), the row sum is the out_degree, while the column sum is the in_degree

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 $outd(vi) = \sum_{j=0}^{n-1} A[i,j]$

Adjacency Lists (data structures)

Each row in adjacency matrix is represented as an adjacency list.

```
#define MAX_VERTICES 50

typedef struct node *node_pointer;

typedef struct node {
    int vertex;
    struct node *link;
};

node_pointer graph[MAX_VERTICES];
int n=0; /* vertices currently in use */
```


An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes

Some Operations

- degree of a vertex in an undirected graph
 - -# of nodes in adjacency list
- # of edges in a graph
 - -determined in O(n+e)
- out-degree of a vertex in a directed graph
 - -# of nodes in its adjacency list
- in-degree of a vertex in a directed graph
 - -traverse the whole data structure

Graph Traversal

- <u>Problem:</u> Search for a certain node or traverse all nodes in the graph
- Depth First Search
 - Once a possible path is found, continue the search until the end of the path
- Breadth First Search
 - Start several paths at a time, and advance in each one step at a time

Depth-First Search

Exploring a Labyrinth Without Getting Lost

- A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a string and a can of red paint without getting lost.
- We start at vertex s, tying the end of our string to the point and painting s "visited". Next we label s as our current vertex called u.
- Now we travel along an arbitrary edge (u, v).
- If edge (u, v) leads us to an already visited vertex v we return to u.
- If vertex v is unvisited, we unroll our string and move to v, paint v "visited", set v as our current vertex, and repeat the previous steps.

Breadth-First Search

- Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree with several useful properties.
- The starting vertex *s* has level 0, and, as in **DFS**, defines that point as an "anchor."
- In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
- These edges are placed into level 1
- In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
- This continues until every vertex has been assigned a level.
- The label of any vertex v corresponds to the length of the shortest path from s to v.

BFS - A Graphical Representation

More BFS

Applications: Finding a Path

- Find path from source vertex s to destination vertex d
- Use graph search starting at s and terminating as soon as we reach d
 - Need to remember edges traversed
- Use depth first search?
- Use breath first search?

DFS vs. BFS

destination

G | Call DFS on G | found destination - done!

Path is implicitly stored in DFS recursion

Path is: A, B, D, G

DFS vs. BFS

BFS Process

Add G

rear fr	ont	rear	front	rear	front	rear	front
	1		В		D C		D
Initial call to Add A to que		1	eue A Add B	-	ieue B d C, D	Dequ Nothing	eue C to add

G found destination - done!
Dequeue D Path must be stored separately