Bayesian Learning Lecture 12 - Variable selection

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Overview

- Bayesian variable selection
- Model averaging
- **■** Posterior predictive analysis

Bayesian variable selection

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon.$$

Which variables have **non-zero** coefficient?

$$H_0$$
 : $\beta_0 = \beta_1 = ... = \beta_p = 0$

$$H_1 : \beta_1 = 0$$

$$H_2$$
 : $\beta_1 = \beta_2 = 0$

- Introduce variable selection indicators $\mathcal{I} = (I_1, ..., I_p)$.
- Example: $\mathcal{I}=(1,1,0)$ means that $\beta_1\neq 0$ and $\beta_2\neq 0$, but $\beta_3=0$, so x_3 drops out of the model.

Bayesian variable selection

Model inference, just crank the Bayesian machine:

$$p(\mathcal{I}|y, X) \propto p(y|X, \mathcal{I}) \cdot p(\mathcal{I})$$

■ The prior $p(\mathcal{I})$ is typically taken to be

$$I_1, ..., I_p | \theta \stackrel{\textit{iid}}{\sim} \textit{Bernoulli}(\theta)$$

- \blacksquare θ is the prior inclusion probability.
- Challenge: Computing the marginal likelihood for each model (*I*)

$$p(y|X, \mathcal{I}) = \int p(y|X, \mathcal{I}, \beta) p(\beta|X, \mathcal{I}) d\beta$$

Bayesian variable selection

- Let $\beta_{\mathcal{I}}$ denote the **non-zero** coefficients under \mathcal{I} .
- Prior:

$$eta_{\mathcal{I}} | \sigma^2 \sim \textit{N}\left(0, \sigma^2 \Omega_{\mathcal{I}, 0}^{-1}\right) \ \sigma^2 \sim \textit{Inv} - \chi^2\left(
u_0, \sigma_0^2\right)$$

Marginal likelihood

$$p(\mathbf{y}|\mathbf{X},\mathcal{I}) \propto \left|\mathbf{X}_{\mathcal{I}}'\mathbf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},0}^{-1}\right|^{-1/2} \left|\Omega_{\mathcal{I},0}\right|^{1/2} \left(\nu_0 \sigma_0^2 + RSS_{\mathcal{I}}\right)^{-(\nu_0 + n - 1)/2}$$

where $X_{\mathcal{I}}$ is the covariate matrix for the subset selected by \mathcal{I} .

 $lacksquare{1}{2}$ RSS $_{\mathcal{I}}$ is (almost) the residual sum of squares for model with ${\mathcal{I}}$

$$RSS_{\mathcal{I}} = y'y - y'X_{\mathcal{I}} (X'_{\mathcal{I}}X_{\mathcal{I}} + \Omega_{\mathcal{I},0})^{-1} X'_{\mathcal{I}}y$$

Bayesian variable selection via Gibbs sampling

- But there are 2^p model combinations to go through! Ouch!
- but most have essentially zero posterior probability. Phew!
- Simulate from the joint posterior distribution:

$$p(\beta, \sigma^2, \mathcal{I}|y, X) = p(\beta, \sigma^2|\mathcal{I}, y, X)p(\mathcal{I}|y, X).$$

- Simulate from $p(\mathcal{I}|y, X)$ using Gibbs sampling:
 - ightharpoonup Draw $I_1 | \mathcal{I}_{-1}$, y, X
 - ▶ Draw $I_2 | \mathcal{I}_{-2}$,y, X
 - **.**
 - ightharpoonup Draw $I_p|\mathcal{I}_{-p}$, y, X
- Note that: $Pr(I_i = 0 | \mathcal{I}_{-i}, y, X) \propto Pr(I_i = 0, \mathcal{I}_{-i} | y, X)$.
- Compute $p(\mathcal{I}|y,X) \propto p(y|X,\mathcal{I}) \cdot p(\mathcal{I})$ for $I_i = 0$ and for $I_i = 1$.
- Model averaging in a single simulation run.
- If needed, simulate from $p(\beta, \sigma^2 | \mathcal{I}, y, X)$ for each draw of \mathcal{I} .

Simple general Bayesian variable selection

The previous algorithm only works when we can compute

$$p(\mathcal{I}|y,X) = \int p(\beta,\sigma^2,\mathcal{I}|y,X)d\beta d\sigma$$

lacksquare lacksquare lacksquare eta and $\mathcal I$ jointly from the proposal distribution

$$q(\beta_p|\beta_c,\mathcal{I}_p)q(\mathcal{I}_p|\mathcal{I}_c)$$

- Main difficulty: how to propose the non-zero elements in β_p ?
- Simple approach:
 - ► Approximate posterior with all variables in the model:

$$\boldsymbol{\beta}|\mathbf{y},\mathbf{X} \overset{\mathit{approx}}{\sim} N\left[\boldsymbol{\hat{\beta}},J_{\mathbf{y}}^{-1}(\boldsymbol{\hat{\beta}})\right]$$

▶ Propose β_p from $N\left[\hat{\beta}, J_y^{-1}(\hat{\beta})\right]$, conditional on the zero restrictions implied by \mathcal{I}_p . Formulas are available.

Variable selection in more complex models

Posterior summary of the one-component split-t model.^a

Parameters	Mean	Stdev	Post.Incl.
Location μ			
Const	0.084	0.019	-
Scale φ			
Const	0.402	0.035	-
LastDay	-0.190	0.120	0.036
LastWeek	-0.738	0.193	0.985
LastMonth	-0.444	0.086	0.999
CloseAbs95	0.194	0.233	0.035
CloseSqr95	0.107	0.226	0.023
MaxMin95	1.124	0.086	1.000
CloseAbs80	0.097	0.153	0.013
CloseSqr80	0.143	0.143	0.021
MaxMin80	-0.022	0.200	0.017
Degrees of freedom v			
Const	2.482	0.238	_
LastDay	0.504	0.997	0.112
LastWeek	-2.158	0.926	0.638
LastMonth	0.307	0.833	0.089
CloseAbs95	0.718	1.437	0.229
CloseSqr95	1.350	1.280	0.279
MaxMin95	1.130	1.488	0.222
CloseAbs80	0.035	1.205	0.101
CloseSqr80	0.363	1.211	0.112
MaxMin80	-1.672	1.172	0.254
Skewness λ			
Const	-0.104	0.033	-
LastDay	-0.159	0.140	0.027
LastWeek	-0.341	0.170	0.135
LastMonth	-0.076	0.112	0.016
CloseAbs95	-0.021	0.096	0.008
CloseSqr95	-0.003	0.108	0.006
MaxMin95	0.016	0.075	0.008
CloseAbs80	0.060	0.115	0.009
CloseSqr80	0.059	0.111	0.010
MaxMin80	0.093	0.096	0.013

Model averaging

- Let γ be a quantity with the same interpretation in the two models.
- Example: Prediction $\gamma = (y_{T+1}, ..., y_{T+h})'$.
- lacksquare The marginal posterior distribution of γ reads

$$p(\gamma|y) = p(M_1|y)p_1(\gamma|y) + p(M_2|y)p_2(\gamma|y),$$

 $p_k(\gamma|\mathsf{y})$ is the marginal posterior of γ conditional on M_k .

- Predictive distribution includes three sources of uncertainty:
 - **Future errors**/disturbances (e.g. the ε 's in a regression)
 - Parameter uncertainty (the predictive distribution has the parameters integrated out by their posteriors)
 - ► Model uncertainty (by model averaging)

Posterior predictive analysis

- If $p(y|\theta)$ is a 'good' model, then the data actually observed should not differ 'too much' from simulated data from $p(y|\theta)$.
- Bayesian: simulate data from the posterior predictive distribution:

$$p(y^{rep}|y) = \int p(y^{rep}|\theta)p(\theta|y)d\theta.$$

- Difficult to compare y and y^{rep} because of dimensionality.
- Solution: compare low-dimensional statistic $T(y, \theta)$ to $T(y^{rep}, \theta)$.
- Evaluates the full probability model consisting of both the likelihood *and* prior distribution.

Posterior predictive analysis

- Algorithm for simulating from the posterior predictive density $p[T(y^{rep})|y]$:
 - 1 Draw a $\theta^{(1)}$ from the posterior $p(\theta|y)$.
- 2 Simulate a data-replicate $y^{(1)}$ from $p(y^{rep}|\theta^{(1)})$.
- 3 Compute $T(y^{(1)})$.
- 4 Repeat steps 1-3 a large number of times to obtain a sample from $T(y^{rep})$.
- We may now compare the observed statistic T(y) with the distribution of $T(y^{rep})$.
- Posterior predictive p-value: $Pr[T(y^{rep}) \ge T(y)]$
- Informal graphical analysis.

Posterior predictive analysis - Normal model, max statistic

