

Estimating the number of people based on Wi-Fi probe request frames

Department of Information Engineering and Computer Science

Supervisors Student

Fabrizio Granelli Samuel Bortolin

Daniele Miorandi

Academic year 2019/2020

About this Project

Internship at U-Hopper:

Big Data Analytics

Business Intelligence

Chatbot

IoT solutions

Artificial Intelligence solutions

Problem Statement

Badly handled demand can lead to overcrowding and inefficiency of the services

→ Inefficient and bad organized service leads to higher costs

→ Badly managed overcrowding during this global pandemic period due to COVID-19 leads to long queues and new infections

Research Statement

Is it possible to continuously estimate the number of people in a place of interest based on the Wi-Fi probe request frames?

Thesis Objectives

→ Capture and analysis of Wi-Fi probe request frames

→ Data extraction, transmission and storage

→ Analysis of Wi-Fi probe request frames patterns

→ Provide an estimate of the number of customers

State of the Art

→ Analysis of different methods to count/estimate people

Infrared sensors, LSE, treadle switch-based systems, Video methods,

Audio methods, Wi-Fi, Bluetooth, BLE, LTE, Radar, RFID approaches

→ Many fields of applicability and different implementations

Why Wi-Fi solution?

High diffusion of Wi-Fi devices

High accuracy using machine learning

Low-cost implementation

Real-time data transmission

User privacy ensured

Standard 802.11 → Management frames → Probe request frames

Designed and developed a system for this problem that could work in several context

Tested the system in a Cafe and collected 4 weeks of data and manually-annotated ground truth

System Architecture

Data Collector Logic

Packet sniffing using Scapy → Information extraction

MAC address anonymization using BLAKE2s

Check connection → Local storage / MQTT transmission

Connect and login to the MQTT broker (username and password)

→ Publish batches to the dedicated queue

Data management

Back-End Logic

Publish to a topic → MQTT broker forwards the data to the subscribers

MQTT receiver in the Back-End → Subscription and storage in a database

Data cleaning → RSSI threshold, random encounters, blacklist → # devices

Machine Learning algorithm \rightarrow Fit degree and coefficients of polynomial approximations using trend and seasonality of the # devices \rightarrow # people

Presence of devices

Ground Truth Collection

Feasibility Test at Home

Devices		Day 1			Day 2			Day 3		Comments	
	# probes	RSSI range 1	RSSI range 2	# probes	RSSI range 1	RSSI range 2	# probes	RSSI range 1	RSSI range 2		
Wi-Fi gate	6410	-75 ÷ -81		4959	-65 ÷ -77		4819	-65 ÷ -75		omnipresent, send 2/4 probe every ~ 30 sec, static, ~ 6/7 m away	
Smart TV	6	-83 ÷ -89		1			1			static in the living room, ~ 6/7 m away	
PlayStation 4	13660	-71 ÷ -83		5	-71 ÷ -75		5	-75 ÷ -81		static in the living room, ~ 6/7 m away	
iMac	294	-83 ÷ -91		197	-79 ÷ -87		59	-75 ÷ -85		static in my bedroom, ~ 10 m away	
MacBook	32	-87 ÷ -91	-61 ÷ -67	1			1			range 1 \rightarrow far, not in the kitchen; range 2 \rightarrow nearby, in the kitchen	
Mom's Samsung	38	-75 ÷ -91		3	-73 ÷ -79		1			far, not in the kitchen (Wi-Fi usually turned off)	
Grandma's Samsung	1			1			39	-71 ÷ -81	-57 ÷ -65	range 1 \rightarrow far, not in the kitchen; range 2 \rightarrow nearby, in the kitchen	
Thomas's Samsung	103	-75 ÷ -89	-57 ÷ -69	49	-71 ÷ -79	-51 ÷ -69	166	-73 ÷ -81	-47 ÷ -69	range 1 \rightarrow far, not in the kitchen; range 2 \rightarrow nearby, in the kitchen	
Dad's iPhone	94	-75 ÷ -91	-55 ÷ -65	1547	-77 ÷ -83	-49 ÷ -67	1170	-69 ÷ -83	-35 ÷ -67	range 1 \rightarrow far, not in the kitchen; range 2 \rightarrow nearby, in the kitchen	
Mattia's iPhone	1377	-77 ÷ -91	-59 ÷ -75	978	-75 ÷ -85	-49 ÷ -65	2051	-73 ÷ -85	-49 ÷ -67	range 1 \rightarrow far, not in the kitchen; range 2 \rightarrow nearby, in the kitchen	
My iPhone	40	-79 ÷ -91	-65 ÷ -67	54	-73 ÷ -85	59	98	-73÷ -83	-53 ÷ -67	range 1 \rightarrow far, not in the kitchen; range 2 \rightarrow nearby, in the kitchen	
Printer	1			1	-81		1			static in my bedroom, ~ 10 m away	
Other Wi-Fi dongle	1			13084	-19 ÷ -23	-37 ÷ -63	12188	-19 ÷ -23	-37 ÷ -61	another Wi-Fi dongle, 1/2 probe every 6/7 sec → value swings sometimes	
Samsung Galaxy J3	17	-85 ÷ -91		1			1			non-home device	
Samsung Galazy A20e	1			1	-83		1			non-home device	
Randomized MACs	626			568			1190			probes with randomized MAC address, vague values of the RSSI	
Total	22698			21445			21785			average of 22000 Wi-Fi probe request frames for ~ 18 hours	

3 days of data collection, $\sim\!66.000$ Wi-Fi PRF \rightarrow detecting devices in the area

Validation

- → Raspberry Pi in a Cafe where I annotate manually the ground truth
 - → Eclipse Mosquitto Broker MQTT of U-Hopper on their server
- → MQTT receiver and MongoDB on U-Hopper server using Docker containers and using a volume for persisting data
- → Analyzer/Estimator on my pc to use on the volume + collected ground truth to test accuracy and reliability of the proposed system

	2020-06-16	2020-06-17	2020-06-18	2020-06-19	2020-06-20	2020-06-21		Total1
Probe captured	24011	19329	22533	23041	19062	11238		119214
Ttotal MACs	1489	873	1281	1307	1447	1187		7584
MACs only registered once	909	504	753	852	1002	634		4654
MACs lasted shorter than 20 seconds	443	280	395	344	342	447		2251
MACs occurred more than 10 times throughout the day	2	3	3	3	2	0		13
MACs lasted longer than 7200 seconds in any of it's occurrences	4	2	5	5	4	3		23
MACs remained	131	84	125	103	97	103		643
Manual annotations	116	61	63	51	37	12		340
							Mean Absolute Error	1.461
							Mean Squared Error	4.039
							Scaled_MAE_trend/count	0.448
							Scaled_MSE_trend/count	0.700

2020-06-23	2020-06-24	2020-06-25	2020-06-26	2020-06-27	2020-06-28		Total2	Total
45730	56835	58203	61900	28941	19768		271377	390591
1579	2260	2293	2282	1182	715		10311	17895
333	490	509	462	242	106		2142	6796
1060	1568	1543	1577	805	517		7070	9321
0	2	1	2	0	0		5	18
6	5	6	8	3	3		31	54
180	195	234	233	132	89		1063	1706
76	67	69	63	31	14		320	660
						Mean Absolute Error	1.461	1.461
						Mean Squared Error	4.039	4.039
						Scaled_MAE_trend/count	0.448	0.448
						Scaled_MSE_trend/count	0.700	0.700

Summary

→ It is possible to continuously estimate the number of people based on the Wi-Fi probe request frames

→ Designed and developed a system to do that

→ Tested the system in a Cafe and collected 4 weeks of data and manually-annotated ground truth

Future Works

→ Real-Time integration

- → Test the system in different context
- → Improve the Machine Learning model