EPFL - Printemps 2021	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 11	16 Mai 2022

1 Exercices

Exercice 1.

Soit $\alpha \in \mathbb{F}_{27}^{\times}$ un élément différent de 1 et -1. Montrer que soit α , soit $-\alpha$, est un générateur du groupe cyclique \mathbb{F}_{27}^{\times} .

Exercice 2.

Fixons un nombre premier p.

- 1. Pour r > 0, énumérez les sous-corps de \mathbb{F}_{p^r} . Si s divise r, énumérez les corps intermédiaires $\mathbb{F}_{p^s} \subseteq L \subseteq \mathbb{F}_{p^r}$.
- 2. Montrez que l'ensemble $\{0 \neq a \in \mathbb{F}_{16} \mid \mathbb{F}_2(a) = \mathbb{F}_{16} \text{ et } \langle a \rangle \neq \mathbb{F}_{16}^{\times} \}$ possède 4 éléments. Ici $\langle a \rangle$ désigne le sous-groupe de \mathbb{F}_{16}^{\times} généré par l'élément $a \neq 0$.

 Indication: Etudiez la structure du groupe \mathbb{F}_{16}^{\times} .
- 3. Plus généralement, montrez que l'ensemble $\{0 \neq a \in \mathbb{F}_{p^4} \mid \mathbb{F}_p(a) = \mathbb{F}_{p^4} \text{ et } \langle a \rangle \neq \mathbb{F}_{p^4}^{\times} \}$ possède $p^4 p^2 \varphi(p^4 1)$ éléments, où φ est la fonction de comptage d'Euler.

Exercice 3 (Corps de décomposition sur \mathbb{F}_p).

Fixons un nombre premier p > 0 et un polynôme $f(x) \in \mathbb{F}_p[x]$ irréductible de degré d.

- 1. Montrez que f divise $x^{p^d} x$ dans $\mathbb{F}_p[x]$.

 Indication: A l'aide du Théorème 3.4.17, montrez que \mathbb{F}_{p^d} contient une racine de f.
- 2. Montrez que f(x) se scinde sur \mathbb{F}_{p^d} .
- 3. Montrez que f n'a pas de racines multiples.
- 4. Soit $g \in \mathbb{F}_p[x]$ un polynôme irréductible de degré d qui n'est pas associé à f. Montrez que f et g n'ont pas de racines en commun.
- 5. Montrez que

$$x^{p^d} - x = \prod_{\substack{h \text{ unitaire irréd.} \\ \text{dans } \mathbb{F}_p[x] \\ \text{deg } h \text{ divise } d}} h.$$

Exercice 4 (Polynômes irréductibles sur \mathbb{F}_p).

Fixons un nombre premier p > 0. Nous allons calculer le nombre N_d de polynômes irréductibles unitaires d'un degré fixé sur \mathbb{F}_p . (Rappelons qu'un polynôme est unitaire si son coefficient dominant vaut 1).

1. Montrez que

$$d \cdot N_d = \left| \mathbb{F}_{p^d} \setminus \bigcup_{L \subsetneq \mathbb{F}_{p^d}} L \right|$$

où L parcourt l'ensemble des sous-corps strictement inclus dans \mathbb{F}_{p^d} .

Indication: Utilisez les résultats de l'Exercice 3 et le Théorème fondamental des corps finis.

2. Montrez que

$$N_2 = \frac{p^2 - p}{2}, \quad N_3 = \frac{p^3 - p}{3}, \quad N_4 = \frac{p^4 - p^2}{4}, \quad N_5 = \frac{p^5 - p}{5}, \quad N_6 = \frac{p^6 - p^3 - p^2 + p}{6}.$$

Pour établir une formule générale, il sera utile d'introduire la **fonction de Möbius**. Il s'agit de la fonction

$$\mu \colon \mathbb{N}_{>0} \longrightarrow \{-1,0,1\}$$

définie par

$$\mu(n) = \begin{cases} 0 & \text{si } n \text{ est divisible par } p^2 \text{ pour un premier } p, \\ 1 & \text{si } n = 1 \text{ ou si } n \text{ est le produit d'un nombre pair de premiers distincts,} \\ -1 & \text{si } n \text{ est le produit d'un nombre impair de premiers distincts.} \end{cases}$$

Ceci étant, passons au cas général:

- 3. Si n, m divisent d et sont premiers entre eux, montrez que $\mathbb{F}_{p^{d/n}} \cap \mathbb{F}_{p^{d/n}} = \mathbb{F}_{p^{d/n}}$ dans \mathbb{F}_{p^d} .
- 4. Montrez que

$$N_d = \frac{1}{d} \sum_{r|d} \mu\left(\frac{d}{r}\right) p^r.$$

Indication : Soit $d=s_1^{i_1}\cdots s_n^{i_n}$ la décomposition en produit de nombres premiers. Montrez d'abord que

$$dN_d = \left| \mathbb{F}_{p^d} \setminus igcup_{j=1}^n \mathbb{F}_{p^{d/s_j}}
ight|$$

puis développez le terme de droite grâce à la formule d'inclusion-exclusion.

Exercice 5.

Fixons un entier premier p. Soit $n_j = p^{m_j}$ où $m_j = \prod_{i=1}^j i$ pour chaque entier $j \geq 1$, et soit $K_j = \mathbb{F}_{n_j}$.

- 1. Démontrez que les K_j peuvent être mis dans un système direct. Autrement dit, il existe des homomorphismes injectives $\iota_j: K_j \to K_{j+1}$ pour chaque entier $j \ge 1$.
- 2. Fixons ι_j comme dans le point précédent. Montrez que la limite directe K, comme définie dans le Lemme 4.8.7, est un corps, et de plus il existe un plongement $\mathbb{F}_p \to K$
- 3. Démontrez que K est algébrique sur \mathbb{F}_p
- 4. Démontrez que chaque polynôme $f \in \mathbb{F}_p$ scinde sur K. (Autrement dit K est la clôture algébrique de \mathbb{F}_p , et on le dénote d'habitude par $\overline{\mathbb{F}}_p$. Dans une manière similaire, le corps de nombres algébriques $\mathbb{C}_{alg,\mathbb{Q}}$, en utilisant la notation du Cor 4.2.21, est la clôture algébrique de \mathbb{Q} . Aussi, \mathbb{C} est la clôture algébrique de \mathbb{R} . On étudiera plus des clotûre algébriques à la fin du semestre.)