

Fiche technique et formules du traitement des séries statistiques

Semestre: 2 **A.U.**: 2021-2022 **Prof.** H. El-Otmany

BUT-Tech. de Co.

NB: cette fiche présente les techniques nécessaires minimales des sériés statistiques bivariées; elle ne constitue donc pas un objectif mais un pré-requis pour le traitement des séries statistiques!

1 Série statistique bivariée

Soit (X,Y) une série statistique quantitative observée sur une même population de taille n.

- Le point moyen ou le centre de gravité de la série (X, Y) est défini pour
 - a) les données simples par : $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.
- b) les données groupées par : $\overline{X} = \frac{1}{n} \sum_{i=1}^{p} n_i x_i$, $\overline{Y} = \frac{1}{n} \sum_{i=1}^{p} n_i y_i$ où $n = \sum_{i=1}^{p} n_i$.

 La variance de Z (où Z joue le rôle de X ou de Y) est définie pour
- - a) les données simples par : $V(Z) = \overline{Z^2} (\overline{Z})^2 = \frac{1}{n} \sum_{i=1}^n z_i^2 \left(\frac{1}{n} \sum_{i=1}^p z_i\right)^2$.
 - b) les données groupées par : $V(Z) = \overline{Z^2} (\overline{Z})^2 = \frac{1}{n} \sum_{i=1}^p n_i z_i^2 \left(\frac{1}{n} \sum_{i=1}^p n_i z_i\right)^2$ où $n = \sum_{i=1}^p n_i$.
- La covariance de la série (X, Y) est définie pour
 - a) les données simples par : $Cov(X,Y) = \overline{XY} \overline{X} \times \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i \overline{X} \times \overline{Y}$.
 - b) les données groupées par : $Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{p} n_i x_i y_i \overline{X} \times \overline{Y}$ où $n = \sum_{i=1}^{p} n_i$.

Tableau de contingence 2

Distribution en effectif et en fréquence 2.1

— La distribution en effectif ou en fréquence de la série (X, Y) est donnée par le tableau suivant :

					· · /	-
X	y_1		y_j	•••	y_m	Σ
x_1	n_{11} ou f_{11}		n_{1j} ou f_{1j}	• • •	n_{1m} ou f_{1m}	n_1 . ou f_1 .
:		٠	:	٠	÷	:
x_i		٠٠.	n_{ij} ou f_{ij}	٠	÷	n_i . ou f_i .
	:	٠	:	٠	÷	:
x_k	n_{k1} ou f_{k1}	• • •	n_{kj} ou f_{kj}	• • •	n_{km} ou f_{km}	$n_{k\cdot}$ ou $f_{k\cdot}$
Σ	$n_{\cdot 1}$ ou $f_{\cdot 1}$		$n_{\cdot j}$ ou $f_{\cdot j}$	• • •	$n_{\cdot m}$ ou $f_{\cdot m}$	$n=\sum\limits_{i=1}^k n_{k.}=\sum\limits_{j=1}^m n_{.j}$ ou 1

- $-n_{ij}$ est le nombre de fois où la modalité x_i de X et la modalité y_j de Y ont étés observées simultanément.
- $n_{i.} = \sum_{j=1}^{m} n_{ij}$ est l'effectif marginal de la modalité x_i de X.
- $n_{\cdot j} = \sum_{i=1}^k n_{ij}$ est l'effectif marginal de la modalité y_i de Y.

 $f_{ij} = \frac{n_{ij}}{n}$ est la proportion $\frac{n_{ij}}{n}$ ou le pourcentage $\frac{n_{ij}}{n} \times 100\%$ des individus possédant à la fois la modalité x_i de X et la modalité y_j de Y.
- $f_{i\cdot} = \frac{n_{i\cdot}}{n}$ est la fréquence marginale de la modalité x_i de X indépendamment de Y. $f_{\cdot j} = \frac{n_{\cdot j}}{n}$ est la fréquence marginale de la modalité y_j de Y indépendamment de X.

Distribution marginale en effectif ou en fréquence

— La distribution marginale de X en effectif ou en fréquence est :

8			
X	Effectif marginal		
x_1	n_1 .		
:	:		
x_i	n_{i} .		
:	:		
x_k	n_k .		
Σ	$n = \sum_{i=1}^{k} n_i.$		

X	fréquence marginale
x_1	$f_{1\cdot}$
::	
x_i	$f_{i\cdot}$
:	:
x_k	$f_{k\cdot}$
\sum	1

— La distribution marginale de Y en effectif ou en fréquence est :

Y	Effectif marginal
y_1	$n_{\cdot 1}$
•	:
y_j	$n_{\cdot 1}$
:	÷ :
y_m	$n_{\cdot m}$
Σ	$n = \sum_{j=1}^{m} n_{\cdot j}$

Y	fréquence marginale
y_1	$f_{\cdot 1}$
:	:
y_{j}	$f_{\cdot j}$
	:
y_m	$f_{\cdot m}$
\sum	1

Moyenne marginale et variance marginale

— La moyenne marginale de X (respectivement de Y) est définie par :

$$ar{X} = rac{1}{n} \sum_{i=1}^k n_i \cdot x_i \quad \left(\text{resp. } ar{Y} = rac{1}{n} \sum_{j=1}^m n_{\cdot j} y_j
ight)$$

— La variance marginale de X (respectivement de Y) est définie par :

$$S_X^2 = \frac{1}{n} \sum_{i=1}^k n_{i \cdot} (x_i - \bar{X})^2 \quad \left(\text{resp. } S_Y^2 = \frac{1}{n} \sum_{j=1}^m n_{\cdot j} (y_j - \bar{Y})^2 \right)$$

Dépendance entre deux variables X et Y

On considère la fréquence marginale f_i du i^{eme} individus de la variable X et la fréquence marginale $f_{\cdot j}$ du j^{eme} individus de la variable Y. Pour $1 \leqslant i, j \leqslant n$, on note f_{ij} la fréquence du couple (x_i, y_j) .

- Les variables X et Y sont **indépendantes** si pour tout $1 \le i, j \le n$, on a $f_{ij} = f_{i\cdot} \times f_{\cdot j}$.
- Les variables X et Y sont **dépendantes** s'il existe un $(i, j) \in \{1, \dots, n\}$ telle que $f_{ij} \neq f_{i.} \times f_{.j}$.

Ajustement linéaire par la méthode des moindres carrés

- Le coefficient de corrélation linéaire est $r(X,Y)=\frac{Cov(X,Y)}{V(X)}$. La droite de régression ou des moindres carrés de Y en fonction de X est y=ax+b où a= $\frac{Cov(X,Y)}{V(X)}$ et $b = \overline{Y} - a\overline{X}$.