

/	1	٦
/	(I
L	>	5

N = 7,] =	New overlapping. Intervals.
[1, 3]	[1,3]
[4,7]	[4,7]
[10, 14] [12, 22] \$\frac{1}{2}\left[\frac{1}{2}\left[0, 22]	[10, 24]
$[16,19]$ $[10,22]$ $\Rightarrow [10,22]$	[27, 30]
[21,24] [10,22] = [10,24]	[32, 35]
[27,30] [10,24]	
[32,35]	

Perodo Code! Input 7 i) List < Introval I.s

2) Inderval I. List Introval 7 ars; (or (indi =0; i < n; i +1) R if (I.s > l[i].e) h are. push (l[i]); 11 Care 1 3 clse if ([i].s > I.e) L ars. push (I); T l Mase2 Jos (int j = i ; j < n ; j ++) L ars.push (1 [i]); Jefvon ars; 3 else L I.s & min (I.s, l [i].s); // Cose I.e & max (I.e, l [i].e); 3 TC: O(n) SC: 0(n) return ars;

Edge Cose

Rain	Woder	Trapped

Given a array elements, where aso [i] represents the height of the building. Redwon the amount of water trapped, on the top of buildings.

arr[]- 22,1,3,2,1,2,4,3,43

Observation

Pseudo Code

int water-trap =0

for (inti=1; {2 (n-1); i++)

// Left_max ≠ leftmax [i-1]
// Dight - max → Dightmax [i+1]

int woder => min(left-max, right-max)
- arr [i];

if (water > 0) Water-trapped + = water;

refuser water trapped.

Tc:0(n) Sc:0(n)

Max_	Cuma	\Rightarrow	41
11)4% -	- SUM	7	-11

$$-4 -3 \qquad max_sum \neq \exists nl$$

$$Cf = 0$$

Pseudo (ode! int max_sum & Integer, minimum; int Sum 7 0; for (inti=0; i2n; i++) 2 Sum = Sum + aro [i]; max_sum = max (max_sum, sum); if (sum <0) Sum =0; TC: O(n) Sc: 0(1) reform max_som; -4 |-3 | -2 | -1 MGX-RUM =-Sum 70

