Apprendre à réaliser une régression linéaire

Marie Vaugoyeau

17 December 2024

Table of contents

1	import des packages	1			
2	Définition de la régression linéaire	1			
3	B Etude des résidus				
4	Les points extrêmes				
5	Les données				
6	Réalisation d'une régression linéaire				
	6.1 1 ^{ère} étape : Réalisation d'un nuage de points	9			
	6.2 2 ^{ème} étape : Vérifier les limites d'utilisation de la régression				
	6.3 3 ^{ème} étape : Création du modèle linéaire				
	6.4 4 ^{ème} étape : Validation du modèle	14			
	6.5 5ème étape : Réalistion d'un graphique résumé	17			

1 import des packages

library(tidyverse)

2 Définition de la régression linéaire

Objectif : Trouver une équation de type linéaire qui permet d'expliquer une variable réponse quantitative par une ou plusieurs variable(s) explicative(s).

i Différence entre régression linéaire et modèle linéaire

Il n'y en a pas!

Certaines personnes parlent de modèle de régression linéaire.

L'équation est de la forme :

$$Y = aX + b$$

Avec a : la pente et b : l'ordonnée à l'origine ou intecept

⚠ Attention

La régression de Y en fonction de X n'est pas la même que la régression de X en fonction de Y.

3 Etude des résidus

Pour ajuste la droite de régression, la méthode utilisée se base sur les **résidus** : **la méthode** des moindres carrées.

L'idée est d'avoir la somme la plus petite possible.

Les résidus

Un résidu est la différence entre la valeur observée et la valeur prédite par l'équation linéaire.

Les résidus doivent suivre une loi normale, vérifiable grâce à un graphique quantile-quantile (QQplot) ou le test de Shapiro-Wilk.

4 Les points extrêmes

Il y a deux sortes d'extrêmes :

• Extrême sur Y : ordonnée très différente des autres points d'abscisse proche -> Point non consistant

```
anscombe |>
  ggplot() +
  aes(x = x3, y = y3) +
  geom_point() +
  theme_classic()
```


 • Extrême sur X : abscisse nettement plus petite ou plus grande que celle des autres points -> Phénomène de levier

```
anscombe |>
  ggplot() +
  aes(x = x4, y = y4) +
  geom_point() +
  theme_classic()
```


A Point influent

Dans les deux cas, un point est **influant** lorsque la régression pratiquée avec ou sans ce point conduit à des résultats très différents.

```
anscombe |>
  ggplot() +
  aes(x = x3, y = y3) +
  geom_point() +
  geom_smooth(
    method = "lm",
    se = FALSE) +
  theme_classic()
```



```
anscombe |>
  ggplot() +
  aes(x = x4, y = y4) +
  geom_point() +
  geom_smooth(
    method = "lm",
    se = FALSE) +
  theme_classic()
```


5 Les données

Les données utilisées sont celles du jeu de données **iris**. Les longueurs et largeurs de sépales et pétales ont été mesurées sur 50 iris de 3 espèces, plus d'information sur la page d'aide help(iris).

summary(iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Min. :4.300	Min. :2.000	Min. :1.000	Min. :0.100
1st Qu.:5.100	1st Qu.:2.800	1st Qu.:1.600	1st Qu.:0.300
Median :5.800	Median :3.000	Median :4.350	Median :1.300
Mean :5.843	Mean :3.057	Mean :3.758	Mean :1.199
3rd Qu.:6.400	3rd Qu.:3.300	3rd Qu.:5.100	3rd Qu.:1.800
Max. :7.900	Max. :4.400	Max. :6.900	Max. :2.500
Species			
setosa :50			
versicolor:50			
virginica:50			

6 Réalisation d'une régression linéaire

6.1 1ère étape : Réalisation d'un nuage de points

La visualisation des données est une étape indispensable afin de vérifier les données et de contrôler la linéarité des données.

```
ggplot(iris) +
  aes(x = Sepal.Length, y = Sepal.Width) +
  geom_point() +
  theme_classic()
```


Attention

Il ne faut pas réaliser de régression linéaire si graphiquement on ne distingue pas de relation linéaire entre les données.

```
ggplot(iris) +
aes(x = Petal.Length, y = Petal.Width) +
geom_point() +
theme_classic()
```


6.2 2ème étape : Vérifier les limites d'utilisation de la régression

Les données doivent-être indépendantes et suivre (ou être approximées par) des lois normales.

```
shapiro.test(iris$Sepal.Length)

Shapiro-Wilk normality test

data: iris$Sepal.Length
W = 0.97609, p-value = 0.01018

shapiro.test(iris$Sepal.Width)
```

Shapiro-Wilk normality test

```
data: iris$Sepal.Width
W = 0.98492, p-value = 0.1012
```

```
shapiro.test(iris$Petal.Length)
```

Shapiro-Wilk normality test

```
data: iris$Petal.Length
W = 0.87627, p-value = 7.412e-10
```

```
shapiro.test(iris$Petal.Width)
```

Shapiro-Wilk normality test

```
data: iris$Petal.Width
W = 0.90183, p-value = 1.68e-08
```

```
iris |>
    ggplot() +
    aes(sample = Sepal.Length) +
    geom_qq() +
    geom_qq_line() +
    theme_bw()
```



```
iris |>
  pivot_longer(
    cols = - Species
) |>
    ggplot() +
    aes(sample = value) +
    geom_qq() +
    geom_qq_line() +
    facet_wrap(~ name, scales = "free") +
    theme_bw()
```


Note

La régression linéaire est assez résistante à l'absence de normalité et il est possible de la faire ici en prenant en compte la loi des grands nombres.

6.3 3ème étape : Création du modèle linéaire

Plusieurs packages ont des fonctions qui permettent de réaliser un modèle linéaire. Ici je vais rester sur la fonction lm() du package {stats} automatiquement chargé dans l'environnement.

Cette fonction prend comme premier argument la formula, c'est-à-dire la formule de type y ~ x et en deuxième argument data, le jeu de données utilisé.

```
modele_lineaire_petale <- lm(
  Petal.Width ~ Petal.Length,
  data = iris
)</pre>
```

Pour accéder aux coefficients, il y a plusieurs solutions :

- Rappeler le nom du modèle
- Utiliser la fonction summary() du package {base}
- Applique la fonction anova() du package {stats}
- Prendre la fonction Anova() du package {car}

```
modele_lineaire_petale
```

```
Call:
```

```
lm(formula = Petal.Width ~ Petal.Length, data = iris)
```

Residuals:

```
Min 1Q Median 3Q Max -0.56515 -0.12358 -0.01898 0.13288 0.64272
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.363076  0.039762 -9.131  4.7e-16 ***
Petal.Length  0.415755  0.009582  43.387  < 2e-16 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1

Residual standard error: 0.2065 on 148 degrees of freedom
Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16

anova(modele_lineaire_petale)

Analysis of Variance Table

Response: Petal.Width

Df Sum Sq Mean Sq F value Pr(>F)
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

0.043

1 80.26 80.260 1882.5 < 2.2e-16 ***

car::Anova(modele_lineaire_petale)

148

6.31

```
Anova Table (Type II tests)
```

Response: Petal.Width

Petal.Length

Residuals

Sum Sq Df F value Pr(>F)
Petal.Length 80.26 1 1882.5 < 2.2e-16 ***
Residuals 6.31 148

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Pour voir la différence entre les deux anova il faut ajouter des variables.

La sortie summary() nous dit que le modèle est significatif (p-value: < 2.2e-16) mais il faut vérifier qu'il est valide.

6.4 4ème étape : Validation du modèle

Le modèle est accepté si les **résidus** suivent une loi normale.

```
modele_lineaire_petale$residuals |>
    shapiro.test()
```

Shapiro-Wilk normality test

```
data: modele_lineaire_petale$residuals
W = 0.98378, p-value = 0.07504
```

```
modele_lineaire_petale$residuals |>
  as_tibble() |>
  ggplot() +
  aes(sample = value) +
  geom_qq() +
  geom_qq_line() +
  theme_classic()
```


Il est aussi bien de visualiser le modèle grâce à la fonction plot().

```
plot(modele_lineaire_petale)
```


Fitted values Im(Petal.Width ~ Petal.Length)

6.5 5ème étape : Réalistion d'un graphique résumé

Le nuage de points avec une droite est la meilleur représentation.

```
ggplot(iris) +
  aes(x = Petal.Length, y = Petal.Width) +
  geom_point() +
  geom_abline(
    intercept = modele_lineaire_petale$coefficients[[1]],
    slope = modele_lineaire_petale$coefficients[[2]],
    color = "red",
    linewidth = 2
) +
  geom_smooth(method = "lm") +
  ggpubr::stat_regline_equation() +
  theme_classic()
```

