Estadística II - Taller 06

Semestre: 2023-01

Profesores: Francisco Javier Rodríguez Cortés, Julieth Verónica Guarín Escudero

Monitor: Matheo Muñoz Betancur

1. Verifique la veracidad de las siguientes afirmaciones:

- a) Suponga que $\underline{\mathbf{x}}_0 = [1, x_{01}, \cdots, x_{0k}]$ es un punto en el que no se comete extrapolación, luego $\underline{\mathbf{x}}_0(\mathbf{X}^T\mathbf{X})^{-1}\underline{\mathbf{x}}_0^T < 1$.
- b) Considere a la entrada h_{ii} de la matriz $n \times n$ definida como: $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$, se tiene que $\sum_{i=1}^n h_{ii}$ es igual al número de covariables en el modelo.
- c) En un modelo de regresión suponga que 2p > n, luego el criterio para halllar puntos de balanceo es si para el dato x_i su $h_{ii} > 2\frac{p}{n}$.
- d) Una observación es influencial si $|\mathrm{DFFITS}_i| > 2\sqrt{\frac{k}{n}}.$
- 2. Considere la siguiente base de datos

Obs	Peso (Kg)	Sexo	Estatura	Circunferencia	Circunferencia
			(m)	cuello (cm)	muñeca (cm)
1	47.6	F	1.57	29.5	13.9
2	68.1	M	1.66	38.4	16
3	68	М	1.9	36.5	16.6
4	80	М	1.76	38	17.1
5	68.1	M	1.83	38	17.1
6	56.1	F	1.66	33	14.7
7	54.2	F	1.65	32.5	15.4
8	69.2	М	1.78	40.5	16.5
9	74.3	М	1.68	38	16.1
10	73.3	М	1.69	37.5	16.3
11	102.2	М	1.79	41.5	17.1
12	46.7	F	1.49	31.5	13.8
13	63.8	М	1.74	38	16.4
14	76.9	М	1.73	39.5	17.6
15	52.5	F	1.52	32.5	14.4
16	67.3	М	1.76	36.5	16.1
17	79.1	М	1.82	38	18
18	58.4	F	1.62	33	14.3
19	59.3	F	1.68	32	14.2
20	57.3	F	1.61	32	14.7
21	67.6	F	1.64	34.5	15.3
22	62.7	F	1.67	33	15.3
23	71.9	М	1.64	38.5	16.8
24	74.9	М	1.75	40	16.8
25	73	М	1.85	37.2	16.4
26	63.8	М	1.71	35	15.6

- a) Ajuste un modelo de regresión usando la estatura como respuesta y al resto como covariables (excepto al sexo, año y semestre).
- b) Plantee una prueba de hipótesis para algún subconjunto de parámetros del modelo y verifique si es significativo o no, hágalo planteando estadístico de prueba.
- c) Valide los supuestos del modelo, encuentre puntos de balanceo e influencia, también identifique outliers.

- d) Haga estimación de la media del vector $x_0 = \begin{bmatrix} 1 & 69.2 & 40.5 & 16.5 \end{bmatrix}$, considerando que su $h_{00} = 0.1449278$. ¿Es este un punto de interpolación?
- e) Haga predicción del vector $x_0=[1\ 64\ 36\ 15]$, considerando que su $h_{00}=0.06296156$. También del vector $x_0=[1\ 80\ 47\ 20]$ cuyo $h_{00}=0.4893428$. ¿Es posible hacer estas predicciones?

Nota: La base de datos se encuentra en https://raw.githubusercontent.com/fhernanb/datos/master/medidas_cuerpo2, utilice la función read.table() de R dándole como argumento la url.