HACKTIV8 //01

FTDS // Calculus // Derivative

Hacktiv8 DS Curriculum Team Phase 0 Learning Materials Hacktiv8 DS Curriculum Team

Objectives	
What is Calculus?	
Definition of Derivative	
Derivative Calculation	
High Order Derivative	
Optimization	
Derivative on Code	
What is Partial Derivative?	
Second Order	
Gradient	
Jacobian	
Hessian	
Partial Derivative on Code	

Contents

//02

- Basic understanding of derivative
- Able to calculate the derivative of a function
- Basic understanding of Partial Derivative
- Basic understanding of Gradient, Gradient Descent, Jacobian, and Hessian
- Able to calculate the Partial Derivative of a function
- Able to implement derivative calculation on Python

Calculus studied continuous changes

Since calculus studies continuous things, so that concept of limit is revealed.

Let consider a function $f(x) = \frac{(x^2-1)}{x-1}$ We want to find value of f(x) for x=1, f(1)

$$f(1) = \frac{(1^2 - 1)}{1 - 1} = \frac{0}{0}$$

Sometimes we can't directly calculate the value of f(x) for certain value of x.

We can choose a value approach to 1

$(x^2-1)(x-1)$
1.50000
1.90000
1.99000
1.99900
1.99990
1.99999

x close to 1, f(x) close to, it can be written mathematically:

$$\lim_{x \to 1} \frac{(x^2 - 1)}{x - 1} = 2$$

Concept of derivative comes from the concept of line

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope represents an increasing/decreasing change of y as x increases. Other words, the slope indicates how much the change is.

How does the value of y change as x increases?

To make it easier to see a change/measure the slope of a line, we consider a small area of a curve

HACKTIV8 Definition of Derivative

$$\lim_{\Delta x \to 0} \frac{f(x_b + \Delta x) - f(x_a)}{\Delta x} = \frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$$

General formula to calculate derivative of a function f(x):

$$f'(x) = nx^{n-1}$$

•
$$f(x) = x$$

•
$$f(x) = 2x^2 + 1$$

•
$$f(x) = 3x^2 + 2x - 4$$

Derivative Calculation

The following table is the rules of derivative

	Function f	Derivative f'
Constant	f(x) = c	f'(x) = 0
Sum	f(x) = g(x) + h(x)	f'(x) = g'(x) + h'(x)
Product	f(x) = g(x)h(x)	f'(x) = g(x)h'(x) + g'(x)h(x)
Quotient	$f(x) = \frac{g(x)}{h(x)}$	$f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{h^2(x)}$
Power	$f(x) = x^r \text{ with } r \neq 0$	$f'(x) = rx^{r-1}$
Exponential	$f(x) = \exp(x)$	$f'(x) = \exp(x)$
Logarithm	$f(x) = \ln(x)$	$f'(x) = \frac{1}{x}$
Sin	$f(x) = \sin(x)$	$f'(x) = \cos(x)$
Cos	$f(x) = \cos(x)$	$f'(x) = -\sin(x)$
Tan	$f(x) = \tan(x)$	$f'(x) = \frac{1}{\cos^2(x)}$
Chain Rule	f(x) = g(h(x))	f'(x) = g'(h(x)) h'(x)

In the previous lesson, we have reconized the derivative concept which is:

$$f'(x) = \frac{df(x)}{dx}$$

Is it possible that we derive the derivative of a function? IT'S POSSIBLE!

$$f''(x) = \frac{df'(x)}{dx} = \frac{d}{dx} \left(\frac{df(x)}{dx} \right) = \frac{d^2f(x)}{dx^2}$$

$$f^n(x) = \frac{d^n f(x)}{dx^n}$$

HACKTIV8

High Order Derivative

•
$$f(x) = 3x^2 + 2x - 4$$

•
$$f(x) = 4x^3 - x^2 + 7x + 1$$

One of the application of derivative is optimization. The aim of optimization is to find the minimum/maximum value (extreme point) of a function.

HACKTIV8

How to find the extreme point that is a local/global min/max?

To determine an extreme point whether it is local minimum or maximum, we can use the second derivative.

Finding extreme points: f'(x) = 0

The signatures of minimum/maximum/stationary extreme points:

A. Maximum : f''(x) < 0 *De-accelerate

B. Minimum : f''(x) > 0 *Accelerate

C. Stasionary : f''(x) = 0 *Stagnant/Constant

Derivative on Code // Symbolic

$$f(x) = 2x^2 + 4x - 1$$
$$f'(x) = 4x + 4$$

This method the input or the output as symbols even also the function.

import sympy as sy

$$x = sy.Symbol('x',real=True)$$

 $f = 2*x**2+4*x-1$

f.diff(x)

Output:

4x + 4

Derivative on Code // Numerical

$$f(x) = 2x^2 + 4x - 1$$
$$f'(x) = 4x + 4$$

In numeric way, we do not consider the input or the output as symbols, yet sample of data/array. import numpy as np

$$x = \text{np.linspace}(0,20)$$

 $y = 2*x**2+4*x-1$

df=np.diff(y)/np.diff(x)

import numpy as np

$$x = np.linspace(0,20)$$

 $y = 2*x**2+4*x-1$

OR

df=np.gradient(y,x)

Optimization on Code// Find Minimum

$$f(x) = 2x^2 + 4x - 1$$

In numeric way, we do not consider the input or the output as symbols, yet sample of data/array. from scipy.optimize import minimize_scalar

```
def f(x):
return 2*x**2+4*x-1
```

opt=minimize scalar(f)

Output:

fun: -3.0

nfev: 9

nit: 4

success: True

Partial Derivative works with multivariable function

In the prior lesson, we learn how to calculate the rate of change of a curve.

But how do we calculate the rate of change of a surface?

To measure a rate of change of a surface, we can calculate it based on each the axis direction. Let we have a surface z=f(x,y), the partial derivatives are:

$$\frac{\partial f(x,y)}{\partial x}$$

$$\frac{\partial f(x,y)}{\partial y}$$

$$z = f(x, y) = xy^2 + x^3$$

$$\partial_x f = \frac{\partial f}{\partial x} = y^2 + 2x^2$$

$$\partial_{y} f = \frac{\partial f}{\partial y} = 2xy$$

$$\frac{\partial^2 f(x,y)}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f(x,y)}{\partial x} \right) \qquad \frac{\partial^2 f(x,y)}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f(x,y)}{\partial y} \right)$$

$$\frac{\partial^2 f(x,y)}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f(x,y)}{\partial y} \right)$$

$$z = f(x, y)$$

$$\frac{\partial f(x,y)}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f(x,y)}{\partial y} \right)$$

$$\frac{\partial f(x,y)}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f(x,y)}{\partial x} \right)$$

$$z = f(x, y) = xy^2 + x^3$$

$$\partial_x f = \frac{\partial f}{\partial x} = y^2 + 2x^2$$

$$\partial_{y} f = \frac{\partial f}{\partial y} = 2xy$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (\partial_x f) = 4x$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (\partial_x f) = 2y$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (\partial_y f) = 2x$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (\partial_y f) = 2y$$

When you calculate the partial derivative of a multivariate function, you will get more than one results. Gradient simply store your results into a vector. Yet mathematically, gradient is a change rate on the surface.

$$\nabla f(x,y) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} \qquad \nabla f(x,y,z) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$$

$$z = f(x, y) = xy^2 + x^3$$

$$\partial_x f = \frac{\partial f}{\partial x} = y^2 + 2x^2$$

$$\partial_{y} f = \frac{\partial f}{\partial y} = 2xy$$

$$\nabla f(x,y) = \begin{pmatrix} y^2 + 2x^2 \\ 2xy \end{pmatrix}$$

Sometimes you will have a multi-dimensional function, also the input and the output are multi-dimensional. So, you will work with Jacobian. In brief, Jacobian is a matrix that store the partial derivative of the functions.

$$J_{f} = J_{i,j} = \frac{\partial}{\partial x_{j}} f(x)_{i} = \begin{bmatrix} \nabla f_{1} \\ \nabla f_{2} \\ \vdots \\ \nabla f_{i} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{j}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{j}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{i}}{\partial x_{1}} & \frac{\partial f_{i}}{\partial x_{2}} & \cdots & \frac{\partial f_{i}}{\partial x_{j}} \end{bmatrix}$$

HACKTIV8 Jacobian

$$f(x,y) = \begin{bmatrix} x^2y + y \\ 2xy - 2 \end{bmatrix}$$

$$J_{f} = \begin{bmatrix} \nabla f_{1} \\ \nabla f_{2} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} \end{bmatrix} = \begin{bmatrix} 2xy & x^{2} + 1 \\ 2y & 2x \end{bmatrix}$$

Like gradient for first order partial derivative, we can also store the second partial derivative results in a matrix. The matrix is called Hessian. Hessian also represents second order gradient.

$$H_{f} = \nabla^{2} f = H_{i,j} = \frac{\partial^{2}}{\partial x_{i} x_{j}} f(x)_{i} = \begin{bmatrix} \frac{\partial^{2} f_{1}}{\partial x_{1}^{2}} & \frac{\partial^{2} f_{1}}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f_{1}}{\partial x_{1} \partial x_{j}} \\ \frac{\partial^{2} f_{2}}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f_{2}}{\partial x_{2}^{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{j}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f_{i}}{\partial x_{i} \partial x_{1}} & \frac{\partial^{2} f_{i}}{\partial x_{i} \partial x_{2}} & \cdots & \frac{\partial^{2} f_{i}}{\partial x_{j}^{2}} \end{bmatrix}$$

HACKTIV8 Hessian

Example:

$$z = f(x, y) = xy^{2} + x^{3}$$

$$\frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial}{\partial x} (\partial_{x} f) = 4x$$

$$\frac{\partial^{2} f}{\partial x \partial y} = \frac{\partial}{\partial x} (\partial_{y} f) = 2y$$

$$H_{f} = \nabla^{2} f(x, y) = \begin{bmatrix} \frac{\partial}{\partial x} (\partial_{x} f) & \frac{\partial}{\partial x} (\partial_{y} f) \\ \frac{\partial}{\partial y} (\partial_{x} f) & \frac{\partial}{\partial y} (\partial_{y} f) \end{bmatrix} = \begin{bmatrix} 4x & 2y \\ 2y & 2x \end{bmatrix}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (\partial_y f) = 2x$$
$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (\partial_x f) = 2y$$

Partial Derivative on Code // Symbolic// First Order

$$f(x) = 4xy + x\sin z + x^3 + z^8y$$

This method the input or the output as symbols even also the function.

import sympy as sy

$$x,y,z = sy.symbols('x y z')$$

 $f = 4*x*y + x*sy.sin(z) + x**3 + z**8*y$

sy.diff(f,x) Output:
$$3x^2 + 4y + \sin z$$

sy.diff(f,y) Output:
$$4x + z^8$$

sy.diff(f,z) Output:
$$x \cos z + 8yz^7$$

Partial Derivative on Code // Symbolic// Gradient

$$f(x) = 4xy + x\sin z + x^3 + z^8y$$

This method the input or the output as symbols even also the function.

import sympy as sy
from sympy.tensor.array import derive_by_array

$$x,y,z = sy.symbols('x y z')$$

$$f = 4*x*y + x*sy.sin(z) + x**3 + z**8*y$$

$$derive_by_array(f, (x,y,z))$$

Output:

$$\begin{pmatrix} 3x^2 + 4y + \sin z \\ 4x + z^8 \\ x \cos z + 8yz^7 \end{pmatrix}$$

Partial Derivative on Code // Symbolic// Jacobian

$$f(x,y) = \begin{bmatrix} x^2y + y \\ 2xy - 2 \end{bmatrix}$$

This method the input or the output as symbols even also the function.

$$x,y,z = sy.symbols('x y z')$$

$$f = sy.Matrix([x**y+y, 2*x*y-2])$$

Output:

$$\begin{bmatrix} 2xy & x^2 + 1 \\ 2y & 2x \end{bmatrix}$$

Partial Derivative on Code // Symbolic// Hessian

$$z = f(x, y) = xy^2 + x^3$$

This method the input or the output as symbols even also the function.

import sympy as sy

$$x,y,z = sy.symbols('x y')$$

f.jacobian(X)

Output:

$$\begin{bmatrix} 4x & 2y \\ 2y & 2x \end{bmatrix}$$

Partial Derivative on Code // Numeric//

$$z = f(x, y) = xy^2 + x^3$$

Same as the derivative, we can use numpy gradient to compute partial derivative numerically. But, we need to define a matrix or tensor to store the f(x,y) values.

```
import numpy as np

def f(x,y):
    return x**2*y+2*x**3*y+y**4

x=np.linspace(1,10)
y=np.linspace(1,10)

z=np.array([[f(i,j) for i in x] for j in y])

dx,dy=np.gradient(z)
```