

16

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
13 February 2003 (13.02.2003)(10) International Publication Number
WO 03/012082 A2**PCT**(51) International Patent Classification⁷: C12N 5/06,
15/11, A61K 48/00, 31/70

(21) International Application Number: PCT/GB02/03409

(22) International Filing Date: 25 July 2002 (25.07.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0118223.7 26 July 2001 (26.07.2001) GB

(71) Applicant (for all designated States except US): AXOR-DIA LIMITED [GB/GB]; Firth Court, Western Bank, Sheffield S10 2TN (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ANDREWS, Peter [GB/GB]; University of Sheffield, Western Bank, Sheffield S10 2TN (GB). WALSH, James [GB/GB]; University of Sheffield, Western Bank, Sheffield S10 2TN (GB). GOKHALE, Paul [GB/GB]; University of Sheffield, Western Bank, Sheffield S10 2TN (GB).

(74) Agent: HARRISON GODDARD FOOTE; 31 St
Saviourgate, York YO1 8NQ (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/012082 A2

(54) Title: METHOD FOR MODULATING STEM CELL DIFFERENTIATION USING STEM LOOP RNA

(57) Abstract: This invention relates to a method to promote the differentiation of stem cells, typically embryonic stem cells, through the use of RNA interference, by the introduction of stem loop RNA into a cell.

Method for Modulating Stem Cell Differentiation Using Stem Loop RNA

The invention relates to a method to modulate stem cell differentiation comprising introducing stem loop containing RNA into a stem cell to ablate mRNA's which encode polypeptides which are involved in stem cell differentiation; stem loop RNA's ; and nucleic acid molecules and vectors encoding stem loop RNA's.

- A number of techniques have been developed in recent years which purport to specifically ablate genes and/or gene products. For example, the use of anti-sense 10 nucleic acid molecules to bind to and thereby block or inactivate target mRNA molecules is an effective means to inhibit the production of gene products. This is typically very effective in plants where anti-sense technology produces a number of striking phenotypic characteristics. However, antisense is variable leading to the need to screen many, sometimes hundreds of, transgenic organisms carrying one or 15 more copies of an antisense transgene to ensure that the phenotype is indeed truly linked to the antisense transgene expression. Antisense techniques, not necessarily involving the production of stable transfecants, have been applied to cells in culture, with variable results.
- 20 In addition, the ability to be able to disrupt genes via homologous recombination has provided biologists with a crucial tool in defining developmental pathways in higher organisms. The use of mouse gene "knock out" strains has allowed the dissection of gene function and the probable function of human homologues to the deleted mouse genes, (Jordan and Zant, 1998).
- 25 A much more recent technique to specifically ablate gene function is through the introduction of double stranded RNA, also referred to as inhibitory RNA (RNAi), into a cell which results in the destruction of mRNA complementary to the sequence included in the RNAi molecule. The RNAi molecule comprises two complementary 30 strands of RNA (a sense strand and an antisense strand) annealed to each other to

form a double stranded RNA molecule. The RNAi molecule is typically derived from exonic or coding sequence of the gene which is to be ablated.

Surprisingly, only a few molecules of RNAi are required to block gene expression
5 which implies the mechanism is catalytic. The site of action appears to be nuclear as little if any RNAi is detectable in the cytoplasm of cells indicating that RNAi exerts its effect during mRNA synthesis or processing.

The exact mechanism of RNAi action is unknown although there are theories to
10 explain this phenomenon. For example, all organisms have evolved protective mechanisms to limit the effects of exogenous gene expression. For example, a virus often causes deleterious effects on the organism it infects. Viral gene expression and/or replication therefore needs to be repressed. In addition, the rapid development of genetic transformation and the provision of transgenic plants and animals has led
15 to the realisation that transgenes are also recognised as foreign nucleic acid and subjected to phenomena variously called quelling (Singer and Selker, 1995), gene silencing (Matzke and Matzke, 1998) , and co-suppression (Stam et. al., 2000).

Initial studies using RNAi used the nematode *Caenorhabditis elegans*. RNAi
20 injected into the worm resulted in the disappearance of polypeptides corresponding to the gene sequences comprising the RNAi molecule(Montgomery et. al., 1998; Fire et. al., 1998). More recently the phenomenon of RNAi inhibition has been shown in a number of eukaryotes including, by example and not by way of limitation, plants, trypanosomes (Shi et. al., 2000) *Drosophila spp.* (Kennerdell and Carthew, 2000).

25 Recent experiments have shown that RNAi may also function in higher eukaryotes. For example, it has been shown that RNAi can ablate *c-mos* in a mouse oocyte and also E-cadherin in a mouse preimplantation embryo (Wianny and Zernicka-Goetz, 2000).

30 The use of RNAi to ablate stem cell RNA is disclosed in our co-pending application, WO 02/16620, which is incorporated by reference.

During mammalian development those cells that form part of the embryo up until the formation of the blastocyst are said to be totipotent (e.g. each cell has the developmental potential to form a complete embryo and all the cells required to support the growth and development of said embryo). During the formation of the blastocyst, the cells that comprise the inner cell mass are said to be pluripotential (e.g. each cell has the developmental potential to form a variety of tissues).

- 5 Embryonic stem cells (ES cells, those with pluripotentiality) may be principally derived from two embryonic sources. Cells isolated from the inner cell mass are termed embryonic stem (ES) cells. In the laboratory mouse, similar cells can be derived from the culture of primordial germ cells isolated from the mesenteries or genital ridges of days 8.5-12.5 *post coitum* embryos. These would ultimately differentiate into germ cells and are referred to as embryonic germ cells (EG cells).
- 10 15 Each of these types of pluripotential cell has a similar developmental potential with respect to differentiation into alternate cell types, but possible differences in behaviour (eg with respect to imprinting) have led to these cells to be distinguished from one another .
- 20 Typically ES/EG cell cultures have well defined characteristics. These include, but are not limited to;
- i) maintenance in culture for at least 20 passages when maintained on fibroblast feeder layers;
 - 25 ii) produce clusters of cells in culture referred to as embryoid bodies;
 - iii) ability to differentiate into multiple cell types in monolayer culture;
 - iv) can form embryo chimeras when mixed with an embryo host;
 - v) express ES/EG cell specific markers.
- 30 Until very recently, *in vitro* culture of human ES/EG cells was not possible. The first indication that conditions may be determined which could allow the establishment of

human ES/EG cells in culture is described in WO96/22362. The application describes cell lines and growth conditions which allow the continuous proliferation of primate ES cells which exhibit a range of characteristics or markers which are associated with stem cells having pluripotent characteristics.

5

More recently Thomson *et al* (1998) have published conditions in which human ES cells can be established in culture. The above characteristics shown by primate ES cells are also shown by the human ES cell lines. In addition the human cell lines show high levels of telomerase activity, a characteristic of cells which have the 10 ability to divide continuously in culture in an undifferentiated state. Another group (Reubinoff et. al., 2000) have also reported the derivation of human ES cells from human blastocysts. Shambrott *et. al.*, 1998 have also described EG cell derivation. In Lake *et al* J Cell Science 2000, 113:555-66 and Rathjen et al J Cell Science 1999, 112: 601-12, ectodermal stem cells are disclosed. The above references are each both 15 incorporated by reference in their entirety.

A feature of ES/EG cells is that, in the presence of fibroblast feeder layers, they retain the ability to divide in an undifferentiated state for several generations. If the 20 feeder layers are removed then the cells differentiate. The differentiation is often to neurones or muscle cells but the exact mechanism by which this occurs and its control remain unsolved.

In addition to ES/EG cells a number of adult tissues contain cells with stem cell characteristics. Typically these cells, although retaining the ability to differentiate 25 into different cell types, do not have the pluripotential characteristics of ES/EG cells. For example haemopoietic stem cells have the potential to form all the cells of the haemopoietic system (red blood cells, macrophages, basophils, eosinophils etc). All of nerve tissue, skin and muscle retain pools of cells with stem cell potential. Therefore, in addition to the use of embryonic stem cells in developmental biology, 30 there are also adult stem cells which may also have utility with respect to determining the factors which govern cell differentiation. . Further recent studies have suggested

that some stem cells previously thought to be committed to a single fate, (e.g neurons) may indeed possess considerable pluripotency in certain situations. Neural stem cells have recently been shown to chimerise a mouse embryo and form a wide range of non-neural tissue (Clark et. al., 2000).

5

- A further group of cells which have relevance to developmental biology are pluripotent embryonal carcinoma cells (EC cells) which are stem cells of teratocarcinomas, also referred to as teratomas, which are able to differentiate into all cell types found in these tumours. A teratocarcinoma also includes teratocarcinoma cells which do not have the full pluripotential characteristics of an EC cell but nevertheless can differentiate into a restricted number of differentiated tissues. These cells have many features in common with ES/EG cells. The most important of these features is the characteristic of pluripotentiality.
- 10 Teratomas contain a wide range of differentiated tissues, and have been known in humans for many hundreds of years. They typically occur as gonadal tumours of both men and women. The gonadal forms of these tumours are generally believed to originate from germ cells, and the extra gonadal forms, which typically have the same range of tissues, are thought to arise from germ cells that have migrated 20 incorrectly during embryogenesis. Teratomas are therefore generally classed as germ cell tumours which encompasses a number of different types of cancer. These include seminoma, embryonal carcinoma, yolk sac carcinoma and choriocarcinoma.
- The similar biology of EC cells with ES/EG cells has been exploited to study the 25 developmental fates of cells and to identify cell markers commonly expressed in EC cells and ES/EG cells. For example, and not by way of limitation, the expression of specific cell surface markers SSEA-3 (+), SSEA-4 (+), TRA-1-60 (+), TRA-1-81 (+) (Shevinsky et al 1982; Kannagi et al 1983; Andrews et al 1984a; Thomson et al 1995); alkaline phosphatase (+) (Andrews et. al., 1996); and Oct 4 (Scholer et. al., 30 1989; Kraft et. al., 1996; Reubinoff et. al., 2000; Yeom et. al., 1996).

We have accumulated expression studies which identify a number of genes thought to be involved in determining the developmental fate of stem cells, particularly embryonic stem cells. By northern blotting we have identified the expression of human homologs of two signalling pathways believed to be critical in cell fate

5 determination. Expression of ligands, receptors and downstream components of the Notch and Wingless signalling cascades have been elucidated. Using the model system NTERA2/D1 embryonal carcinoma cells we have recorded changes in the expression of some of these components as the cells differentiate. Bearing in mind the role these cascades play in embryonic development throughout the animal

10 kingdom, these changes suggest a significant role for both the wingless and Notch signalling pathways in differentiation of stem cells. Furthermore the activity of some genes are required for differentiation to occur along specific pathways e.g. the myogenic gene MyoD1. Other genes have activity which inhibits cellular differentiation along particular pathways. We envisage regulation of stem cell

15 differentiation to yield a specific cell type could be achieved by:

- (i) inhibition of certain genes that normally promote differentiation along particular pathways; therefore promoting differentiation to alternate cell phenotypes;
 - 20 (ii) inhibition of gene activity that prevents differentiation into particular cell types; and
 - (iii) a combination of (i) and (ii), see figure 1
- 25 In our co-pending application, WO02/16620, we introduce RNAi molecules homologous to genes encoding factors involved in stem cell differentiation. The differentiation of stem cells during embryogenesis, during tissue renewal in the adult and wound repair is under very stringent regulation; aberrations in this regulation underlie the formation of birth defects during development and are thought to
- 30 underlie cancer formation in adults.

Generally, it is envisaged that stem cells are under both positive and negative regulation which allows a fine degree of control over the process of cell proliferation and cell differentiation: excess proliferation at the expense of cell differentiation can lead to the formation of an expanding mass of tissue – a cancer – whereas express
5 differentiation at the expense of proliferation can lead to the loss of stem cells and production of too little differentiated tissue in the long term, and especially the loss of regenerative potential. Certain genes have already been identified to have a negative role in preventing stem cell differentiation. Such genes, like those of the Notch family, when mutated to acquire activity can inhibit differentiation; such
10 mutant genes act as oncogenes. On the contrary, loss of function of such genes on their inhibition results in stem cell differentiation.

We propose to use EC cells has a model cell system to follow the effects of perturbations in stem cell differentiation. We further propose an alternative approach
15 to introduce double stranded RNA molecules into stem cells to ablate mRNA's.

The invention relates to the provision of stem-loop RNA structures which can either be synthesised *in vitro* followed by transfection into a stem cell, or alternatively, synthesised *in vivo* by the stem cell from vectors which are provided with expression
20 cassettes which include a DNA molecule which includes the coding sequence for the stem-loop RNA.

The DNA molecule encoding the stem-loop RNA is constructed in two parts, a first part which is derived from a gene the regulation of which is desired. The second part
25 is provided with a DNA sequence which is complementary to the sequence of the first part. The cassette is typically under the control of a promoter which transcribes the DNA into RNA. The complementary nature of the first and second parts of the RNA molecule results in base pairing over at least part of the length of the RNA molecule to form a double stranded hairpin RNA structure or stem-loop. The first
30 and second parts can be provided with a linker sequence.

According to a first aspect of the invention there is provided a method to modulate the differentiation state of a stem cell comprising:

- (i) contacting a stem cell with at least one nucleic acid molecule comprising a sequence of a gene which mediates at least one step in the differentiation of said cell which nucleic acid molecule consists of a first part linked to a second part wherein said first and second parts are complementary over at least part of their length and further wherein said first and second parts form a double stranded region by complementary base pairing over at least part of their length;
- 5 (ii) providing conditions conducive to the growth and differentiation of the cell treated in (i) above; and optionally
- 10 (iii) maintaining and/or storing the cell in a differentiated state.

In a preferred method of the invention said first and second parts are linked by at
15 least one nucleotide base.

The provision of first and second sequences which are complementary to one another and which comprise at least part of the coding sequence of a gene involved in stem cell differentiation means that when the sequence is transcribed into RNA the
20 complementarity between first and second sequences allows base pairing between first and second sequences to form a double stranded RNA structure, see Figure 1. The optional provision of a linking region bewteen first and second parts results in the formation of a so called "hair-pin" loop structure. The transcription of the nucleic acid provides many copies of the hair-pin loop RNA which effectively
25 functions as a RNAi molecule.

In a preferred method of the invention said nucleic acid molecule is a stem loop RNA molecule. Alternatively, said nucleic acid molecule is a DNA molecule which encodes said stem loop RNA. Ideally said DNA molecule is a vector adapted for
30 expression of said stem loop RNA.

The stem cell in (i) above may be a teratocarcinoma cell.

In a preferred method of the invention said conditions are *in vitro* cell culture conditions.

5

In a further preferred method of the invention said stem cell is selected from: pluripotent stem cells such as embryonic stem cell; embryonic germ cell and embryonal carcinoma cells; and lineage restricted stem cells such as, but not restricted to; haemopoietic stem cell; muscle stem cell; nerve stem cell; skin dermal sheath stem cell; liver stem cell; and teratocarcinoma cells.

10

It will be apparent that the method can provide stem cells of intermediate commitment. For example, embryonic stem cells could be programmed to differentiate into haemopoietic stems cells with a restricted commitment.

15 Alternatively, differentiated cells or stem cells of intermediate commitment could be reprogrammed to a more pluripotential state from which other differentiated cell lineages can be derived.

In a further preferred method of the invention said stem cell is an embryonic stem cell or embryonic germ cell.

20

In a yet further preferred method of the invention said stem loop RNA molecule is derived from a gene which encodes a cell surface receptor expressed by a stem cell.

25 In a further preferred method of the invention said cell surface receptor is selected from: human Notch 1(hNotch 1); hNotch 2; hNotch 3; hNotch 4; TLE-1; TLE-2; TLE-3; TLE-4; TCF7; TCF7L1; TCFFL2; TCF3; TCF19; TCF1; mFringe; lFringe; rFringe; sel 1; Numb; Numblike; LNX; FZD1; FZD2; FZD3; FZD4; FZD5; FZD6; FZD7; FZD8; FZD9; FZD10; FRZB.

30

In an alternative preferred method of the invention said stem loop RNA molecule is derived from a gene which encodes a ligand.

Typically, a ligand is a polypeptide which binds to a cognate receptor to induce or
5 inhibit an intracellular or intercellular response. Ligands may be soluble or membrane bound.

In a further alternative preferred method of the invention said ligand is selected from:
D11-1; D113; D114; D1k-1; Jagged 1; Jagged 2; Wnt 1; Wnt 2; Wnt 2b; Wnt 3; Wnt
10 3a; Wnt5a; Wnt6; Wnt7a; Wnt7b; Wnt8a; Wnt8b; Wnt10b; Wnt11; Wnt14; Wnt15.

Alternatively, said gene is selected from: SFRP1; SFRP2; SFRP4; SFRP5; SK;
DKK3; CER1; WIF-1; DVL1; DVL2; DVL3; DVL1L1;mFringe; lFringe; rFringe;
sel11; Numb; LNX Oct4; NeuroD1; NeuroD2; NeuroD3; Brachyury; MDFI.

15 In a further preferred method of the invention said stem loop RNA molecule is derived from at least one of the sequences identified in Table 4 or Figures 4-54.

In a yet futher preferred embodiment of the invention said sequence is derived from
20 Oct 4. Preferably the Oct 4 sequence corresponds to nucleotide sequence about 610 to about 1032 of the Oct 4 sequence found in GenBank accession number NM_002701.

Many methods have been developed over the last 30 years to facilitate the
25 introduction of nucleic acid into cells which are well known in the art and are applicable to the stem loop RNA structures disclosed herein or the vectors which encode said stem loop structures.

Methods to introduce nucleic acid into cells typically involve the use of chemical
30 reagents, cationic lipids or physical methods. Chemical methods which facilitate the uptake of DNA by cells include the use of DEAE -Dextran (Vaheri and Pagano Science 175: p434) . DEAE-dextran is a negatively charged cation which associates

and introduces the nucleic acid into cells. Calcium phosphate is also a commonly used chemical agent which when co-precipitated with nucleic acid introduces the nucleic acid into cells (Graham et al Virology (1973) 52: p456).

- 5 The use of cationic lipids (eg liposomes (Felgner (1987) Proc.Natl.Acad.Sci USA, 84:p7413) has become a common method. The cationic head of the lipid associates with the negatively charged nucleic acid backbone to be introduced. The lipid/nucleic acid complex associates with the cell membrane and fuses with the cell to introduce the associated nucleic acid into the cell. Liposome mediated nucleic acid transfer has
10 several advantages over existing methods. For example, cells which are recalcitrant to traditional chemical methods are more easily transfected using liposome mediated transfer.

More recently still, physical methods to introduce nucleic acid have become effective
15 means to reproducibly transfect cells. Direct microinjection is one such method which can deliver nucleic acid directly to the nucleus of a cell (Capecchi (1980) Cell, 22:p479). This allows the analysis of single cell transfectants. So called “biolistic” methods physically shoot nucleic acid into cells and/or organelles using a particle gun (Neumann (1982) EMBO J, 1: p841). Electroporation is arguably the
20 most popular method to transfect nucleic acid. The method involves the use of a high voltage electrical charge to momentarily permeabilise cell membranes making them permeable to macromolecular complexes.

More recently still a method termed immunoporation has become a recognised
25 technique for the introduction of nucleic acid into cells, see Bildirici *et al* Nature (2000) 405, p298. The technique involves the use of beads coated with an antibody to a specific receptor. The transfection mixture includes nucleic acid, antibody coated beads and cells expressing a specific cell surface receptor. The coated beads bind the cell surface receptor and when a shear force is applied to the cells the beads are
30 stripped from the cell surface. During bead removal a transient hole is created through which nucleic acid and/or other biological molecules can enter. Transfection

efficiency of between 40-50% is achievable depending on the nucleic acid used. In addition the specificity of cell delivery of RNAi's can be enhanced by association or linkage of the RNAi to specific antibodies, ligands or receptors.

- 5 There are also a number of commercially available transfection kits which purport to provide high efficiency transfection of cells. A kit which is particularly preferred is sold under the tradename ExGen 500tm by MBI Fermentas, Lithuania. ExGen is a polyethylenimine, non-liposomal transfection reagent.
- 10 According to a further aspect of the invention there is provided a stem loop RNA molecule derived from a coding sequence of at least one gene involved in stem cell differentiation comprising a first part linked to a second part wherein said first and second parts are complementary over at least part of their length and further wherein said first and second parts form a double stranded region by complementary base pairing over at least part of their length.
- 15

In a preferred embodiment of the invention said first and second parts are linked by at least one nucleotide base. In a further preferred embodiment of the invention said first and second parts are linked by 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide bases. In a 20 yet further preferred embodiment of the invention said linker is at least 10 nucleotide bases.

In a preferred embodiment said coding sequence is an exon.

- 25 Alternatively said RNA molecule is derived from intronic sequences or the 5' and/or 3' non-coding sequences which flank coding/exon sequences of genes which mediate stem cell differentiation.

In a further preferred embodiment of the invention the length of the RNA molecule is 30 between 10 nucleotide bases (nb) -1000nb. More preferably still the length of the

RNA molecule is selected from 10nb; 20nb; 30nb; 40nb; 50nb; 60nb; 70nb; 80nb; 90nb. More preferably still said RNA molecule is 21nb in length.

In a further preferred embodiment of the invention said RNA molecule is 100nb;
5 200nb; 300nb; 400nb; 500nb; 600nb; 700nb; 800nb; 900nb; or 1000nb. More
preferably still said RNA molecule is at least 1000nb.

In a further preferred embodiment of the invention said RNA molecule comprises
sequences identified in Table 4 or Figures 4-54.

10

In yet a further preferred embodiment of the invention said RNA molecules comprise
modified nucleotide bases.

15

It will be apparent to one skilled in the art that the inclusion of modified bases, as
well as the naturally occurring bases cytosine, uracil, adenosine and guanosine, may
confer advantageous properties on RNA molecules containing said modified bases.
For example, modified bases may increase the stability of the RNA molecule thereby
reducing the amount required to produce a desired effect. The provision of modified
bases may also provide stem-loop structures which are more or less stable.

20

According to a further aspect of the invention there is provided a nucleic acid
molecule encoding at least part of a gene which mediates at least one step in stem cell
differentiation comprising a first part linked to a second part which first and second
parts are complementary over at least part of their length, wherein said nucleic acid
25 molecule is operably linked to at least one further nucleic acid molecule capable of
promoting transcription of said nucleic acid linked thereto and further wherein said
first and second parts form a double stranded region by complementary base pairing
over at least part of their length as or when said nucleic acid molecule is transcribed.

30 In a preferred embodiment of the invention said first and second parts are linked by
linking nucleotides as hereinbefore described.

It will be apparent to one skilled in the art that the synthesis of RNA molecules which form RNA stem loops can be achieved by providing vectors which include target genes, or fragments of target genes, operably linked to promoter sequences.

- 5 Typically, promoter sequences are phage RNA polymerase promoters (eg T7, T3, SP6). Advantageously vectors are provided with multiple cloning sites into which genes or gene fragments can be subcloned. Typically, vectors are engineered so that phage promoters flank multiple cloning sites containing the gene of interest.
- 10 Alternatively target genes or fragments of target genes can be fused directly to phage promoters by creating chimeric promoter/gene fusions via oligo synthesising technology. Constructs thus created can be easily amplified by polymerase chain reaction to provide templates for the manufacture of RNA molecules comprising stem loop RNA's.
- 15 According to a further aspect of the invention there is provided a vector including an expression cassette comprising a first sequence linked to a second sequence wherein said first and second sequences are complementary over at least part of their lengths and further wherein the expression cassette is transcriptionally linked to a promoter sequence.
- 20 In a preferred embodiment of the invention said first and second parts are linked by linking nucleotides as hereinbefore described.

- 25 Vectors including expression cassettes encoding stem-loop RNA's are adapted for eukaryotic gene expression. Typically said adaptation includes, by example and not by way of limitation, the provision of transcription control sequences (promoter sequences) which mediate cell/tissue specific expression. These promoter sequences may be cell/tissue specific, inducible or constitutive.

30

Promoter elements typically also include so called TATA box and RNA polymerase initiation selection sequences which function to select a site of transcription initiation. These sequences also bind polypeptides which function, *inter alia*, to facilitate transcription initiation selection by RNA polymerase.

5

Adaptations also include the provision of selectable markers and autonomous replication sequences which both facilitate the maintenance of said vector in either the eukaryotic cell or prokaryotic host. Vectors which are maintained autonomously are referred to as episomal vectors. Further adaptations which 10 facilitate the expression of vector encoded genes include the provision of transcription termination sequences.

These adaptations are well known in the art. There is a significant amount of published literature with respect to expression vector construction and recombinant 15 DNA techniques in general. Please see, Sambrook et al (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Laboratory, Cold Spring Harbour, NY and references therein; Marston, F (1987) DNA Cloning Techniques: A Practical Approach Vol III IRL Press, Oxford UK; DNA Cloning: F M Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons, Inc.(1994).

20

According to a further aspect of the invention there is provided a cell transfected with the nucleic acid or vector according to the invention. Preferably said cell is an embryonic stem cell or embryonic germ cell. Alternatively said cell is an embryonal carcinoma cell.

25

According to a further aspect of the invention there is provided a method to manufacture stem loop RNA molecules comprising:

- (i) providing a vector or promoter/gene fusion according to the invention;

30

(ii) providing reagents and conditions which allow the synthesis of the RNA molecule comprising a stem loop RNA molecule according to the invention; and

5 (iii) providing conditions which allow the RNA molecule to base pair over at least part of its length, or at least that part corresponding to the nucleic acid sequence encoding said stem cell gene which mediates stem cell differentiation.

Preferably said gene, or gene fragment is selected from those genes represented in table 4 or Figures 4-54.

10

In vitro transcription of RNA is an established methodology. Kits are commercially available which provide vectors, ribonucleoside triphosphates, buffers, RNase inhibitors, RNA polymersases (eg phage T7, T3, SP6) which facilitate the production of RNA.

15

According to a further aspect of the invention there is provided an *in vivo* method to promote the differentiation of stem cells comprising administering to an animal an effective amount of stem loop RNA molecule, or vector encoding a stem loop RNA molecule according to the invention, sufficient to effect differentiation of a target 20 stem cell.

Preferably said method promotes differentiation *in vivo* of endogenous stem cells to repair tissue damage *in situ*.

25

It will be apparent to one skilled in the art that stem loop RNA relies on homology between the target gene RNA and double stranded region of the stem loop in a similar way to conventional RNAi. This confers a significant degree of specificity to the stem loop RNA molecule in targeting stem cells. For example, haemopoietic stem cells are found in bone marrow and stem loop RNA molecules may be 30 administered to an animal by direct injection into bone marrow tissue.

Stem loop RNA molecules may be encapsulated in liposomes to provide protection from an animals immune system and/or nucleases present in an animals serum.

Liposomes are lipid based vesicles which encapsulate a selected therapeutic agent

5 which is then introduced into a patient. Typically, the liposome is manufactured either from pure phospholipid or a mixture of phospholipid and phosphoglyceride. Typically liposomes can be manufactured with diameters of less than 200nm, this enables them to be intravenously injected and able to pass through the pulmonary capillary bed. Furthermore the biochemical nature of liposomes confers

10 permeability across blood vessel membranes to gain access to selected tissues. Liposomes do have a relatively short half-life. So called STEALTH^R liposomes have been developed which comprise liposomes coated in polyethylene glycol (PEG). The PEG treated liposomes have a significantly increased half-life when administered intravenously to a patient. In addition STEALTH^R liposomes show reduced uptake

15 in the reticuloendothelial system and enhanced accumulation selected tissues. In addition, so called immuno-liposomes have been developed which combine lipid based vesicles with an antibody or antibodies, to increase the specificity of the delivery of the RNAi molecule to a selected cell/tissue.

20 The use of liposomes as delivery means is described in US5580575 and US 5542935.

It will be apparent to one skilled in the art that the stem loop RNA molecules can be provided in the form of an oral or nasal spray, an aerosol, suspension, emulsion, and/or eye drop fluid. Alternatively the stem loop RNA molecules may be provided in tablet form. Alternative delivery means include inhalers or nebulisers.

25

According to a yet further aspect of the invention there is provided a therapeutic composition comprising a stem loop RNA molecule according to the invention or a vector encoding a stem loop RNA according to the invention.

30 Preferably said stem loop RNA molecule or vector is for use in the manufacture of a medicament for use in promoting the differentiation of stem cells to provide

differentiated cells/tissues to treat diseases where cell/tissues are destroyed by said disease.

- Typically this includes pernicious anemia; stroke, neurodegenerative diseases such as
- 5 Parkinson's disease, Alzheimer's disease; coronary heart disease; cirrhosis; diabetes. It will also be apparent that differentiated stem cells may be used to replace nerves damaged as a consequence of (eg replacement of spinal cord tissue).

- In a further preferred embodiment of the invention said therapeutic composition
- 10 further comprises a diluent, carrier or excipient.

According to a further aspect of the invention there is provided a cell obtainable by the method according to the invention.

- 15 It will be apparent that a cell obtainable by the method according to the invention has useful applications . For example, a stably transfected cell under the control of a regulatable promoter (ie inducible, repressible, developmentally regulated, cell lineage regulated, cell-cycle regulated) offers the opportunity to modulate the expression of the stem-loop RNA in said cell thereby modulating the differentiation
- 20 state, or not as the case maybe, in culture or *in vivo*.

According to a yet further aspect of the invention there is provided at least one organ comprising at least one cell obtainable by the method according to the invention.

- 25 According to a yet further aspect of the invention there is provided a non-human transgenic animal comprising a RNA molecule according to the invention, or a nucleic acid molecule according to the invention, or a vector according to the invention.
- 30 An embodiment of the invention will now be described by example only and with reference to the following figures and tables wherein:

Table 1 represents a selection of antibodies used to monitor stem cell differentiation;

5 Table 2 represents nucleic acid probes used to assess mRNA markers of stem differentiation;

Table 3 represents protein markers of stem cell differentiation;

10 Table 4 represents specific primers used to generate stem loop RNA for gene specific inhibition;

Table 5 represents vectors used for the expression of stem loop RNA in cells including the promoters used to drive transcription of stem loop RNA's.

15 Figure 1 illustrates stem cell differentiation is controlled by positive and negative regulators (A). The specific cell phenotypes that are derived are a direct result of positive and negative regulators which activate or suppress particular differentiation events. Stem loop RNA can be used to control both the initial differentiation of stem 20 cells (A) and the ultimate fate of the differentiated cells D1 and D2 by repression of positive activators which would normally promote a particular cell fate;

Figure 2 represents the Oct 4 nucleic acid sequence from position 610-1032 of the sequence found in GenBank accession number NM_002701.

25 Fig 3A illustrates a transcription cassette comprising a promoter sequence operable linked to a nucleic acid encoding a stem loop RNA; Fig 3B illustrates a stem loop RNA synthesised from the cassette illustrated in Fig 1A;

30 Figure 4 is the nucleic acid sequence of murine notch ligand delta-like 1;

Figure 5 is the nucleic acid sequence of murine notch ligand jagged 1;

Figure 6 is the nucleic acid sequence of human notch ligand jagged 1 (alagille syndrome) (JAG1);

Figure 7 is the nucleic acid sequence of human notch ligand jagged 2 (JAG2)

5

Figure 8 is the nucleic acid sequence of murine notch ligand jagged 2;

Figure 9 is the nucleic acid sequence of human notch ligand delta-like 3 (DLL3);

10 Figure 10 is the nucleic acid sequence of human notch ligand delta-1 (DLL1);

Figure 11 is the nucleic acid sequence of human notch ligand delta-like 4 (DLL4);

Figure 12 is the nucleic acid sequence of murine notch ligand delta-like 4(DLL4);

15

Figure 13 represents the nucleic acid sequence of human *Wnt 13*;

Figure 14 represents the nucleic acid sequence of human *dickkopf1*;

20 Figure 15 represents the nucleic acid sequence of human *dickkopf2*;

Figure 16 represents the nucleic acid sequence of human *dickkopf3*; and

Figure 17 represents the nucleic acid sequence of human *dickkopf4*;

25

Figure 18 represents the nucleic acid sequence of WNT-1;

Figure 19 represents the nucleic acid sequence of WNT-2;

30 Figure 20 represents the nucleic acid sequence of WNT 2B;

Figure 21 represents the nucleic acid sequence of WNT 3;

Figure 22 represents the nucleic acid sequence of WNT 4;

5 Figure 23 represents the nucleic acid sequence of WNT 5A;

Figure 24 represents the nucleic acid sequence of WNT 6;

Figure 25 represents the nucleic acid sequence of WNT 7A;

10

Figure 26 represents the nucleic acid sequence of WNT 8B;

Figure 27 represents the nucleic acid sequence of WNT 10B;

15 Figure 28 represents the nucleic acid sequence of WNT 11;

Figure 29 represents the nucleic acid sequence of WNT 14

Figure 30 represents the nucleic acid sequence of WNT 16;

20

Figure 31 represents the nucleic acid sequence of FZD 1;

Figure 32 represents the nucleic acid sequence of FZD 2;

25 Figure 33 represents the nucleic acid sequence of FZE 3;

Figure 34 represents the nucleic acid sequence of FZD 4;

Figure 35 represents the nucleic acid sequence of FZD 5;

30

Figure 36 represents the nucleic acid sequence of FZD 6;

- Figure 37 represents the nucleic acid sequence of FZD 7;
- Figure 38 represents the nucleic acid sequence of FZD 8;
- 5 Figure 39 represents the nucleic acid sequence of FZD 9;
- Figure 40 represents the nucleic acid sequence of FZD 10;
- 10 Figure 41 represents the nucleic acid sequence of FRP;
- Figure 42 represents the nucleic acid sequence of SARP 1;
- Figure 43 represents the nucleic acid sequence of SARP 2;
- 15 Figure 44 represents the nucleic acid sequence of FRZB;
- Figure 45 represents the nucleic acid sequence of FRPHE;
- 20 Figure 46 represents the nucleic acid sequence of SARP 3;
- Figure 47 represents the nucleic acid sequence of CER 1;
- Figure 48 represents the nucleic acid sequence of DKK1;
- 25 Figure 49 represents the nucleic acid sequence of DKK 2;
- Figure 50 represents the nucleic acid sequence of DKK 3;
- 30 Figure 51 represents the nucleic acid sequence of DKK 4;

Figure 52represents the nucleic acid sequence of WIF-1;

Figure 53 represents the nucleic acid sequence of SRFP 1;

5 Figure 54 represents the nucleic acid sequence of SRFP 4;

10

15 Materials and Methods

Cell Culture

NTERA2 and 2102Ep human EC cell lines were maintained at high cell density as previously described (Andrews et al 1982, 1984b), in DMEM (high glucose formulation) (DMEM)(GIBCO BRL), supplemented with 10% v/v bovine foetal calf serum (GIBCO BRL), under a humidified atmosphere with 10% CO₂ in air.

Stem Loop RNA Production

25 Primers were designed against specific target genes with T7 bacteriophage promoters at their 5' ends . The primers consist of typically 18- 25 bp against the target gene, a linker sequence of variable length (indicated by N in primer sequence) followed by the reverse complement of the gene specific sequence. The primers were used in a standard RNA in vitro. transcription reaction using a MEGASCIPT kit following 30 manufacturers protocols (Ambion, USA). Longer siRNA templates were produced by cloning head-to -tail the sense and anti-sense gene specific sequences to generate a palindromic template from which RNA could be synthesized.

The following primers were used

35

Gene	Accession Number	Primer Sequence
Oct4	Z11899	TAA TAC GAC TCA CTA TAG Ggagcagcttggctcgagaag(N)cctctcgagcccaagctgc
HsNotch2		TAA TAC GAC TCA CTA TAGGt cgt gca aga gcc agt tac cc(N)gg gta act ggc tct tgcaeg a
HsNotch1	M73980	TAA TAC GAC TCA CTA TAGGa atg gtc aat gcg agt ggc tgt cc(N)gg aca gcc act cgc gtt gac cat t
CIF		TAA TAC GAC TCA CTA TAGGa gta gtg aga gtg aga gta aca(N)tgt tac tct cac tct cac tac t
RBPJ-kappa		TAA TAC GAC TCA CTA TAGGt cctgtg cctgtg gta gag a(N)t ctc tac cac agg cac agg a
Dlk1	NM_002226	TAA TAC GAC TCA CTA TAGGcctc ttg ctc ctg ctg gct tt(N)aaaggccagcaggagcaaggagg

Capital letters indicate the T7 polymerase promoter sequence.

- 5 In each case, a quantity of the PCR was electrophoresed through agarose to verify product size and abundance, whilst the remainder was purified by alkaline phenol/chloroform extraction. RNA was synthesized using the Megascript kit (Ambion Inc.) according to the manufacturer's protocol and acid phenol/chloroform extracted. The simultaneous synthesis of complementary strands of RNA in a single
- 10 reaction circumvents the requirement for an annealing step. However, the quality and duplexing of the synthesized RNA was confirmed by agarose gel electrophoresis, with the desired products migrating as expected for double stranded DNA of the same length.

15 Stem Loop RNA introduction to Cell Lines

Human EC stem cells were seeded at 2×10^5 cells/well of a 6 well plate in 3 cm^3 of Dulbecco's modified Eagles medium and allowed to settle for 3 hrs.

- Appx. $9.5\mu\text{g}$ of DNA was incubated with an optimised amount of ExGEN 500 for
- 20 each well of a 6-well plate. Previously cells were seeded 1 day before. This gives apprx. a 70% confluent culture. The DNA/ExGen mixture was added to the cells and the culture vessel spun at 280g for 5 mins.

Total RNA production

Growing cultures of cells were aspirated to remove the DME and foetal calf serum. Trace amounts of foetal calf serum was removed by washing in Phosphate-buffered saline. Fresh PBS was added to the cells and the cells were dislodged from the culture vessel using acid washed glass beads. The resulting cell suspension was centrifuged at 300xg. The pellets had the PBS aspirated from them. Tri reagent (Sigma, USA) was added at 1ml per 10^7 cells and allowed to stand for 10 mins at room temperature. The lysate from this reaction was centrifuged at 12000 x g for 15 minutes at 4°C. The resulting aqueous phase was transferred to a fresh vessel and 0.5 ml of isopropanol / ml of trizol was added to precipitate the RNA. The RNA was pelleted by centrifugation at 12000 x g for 10 mins at 4°C. The supernatant was removed and the pellet washed in 70% ethanol. The washed RNA was dissolved in DEPC treated double-distilled water.

15 Analysis of the differentiation of EC stem cells induced by exposure to Stem Loop RNA

Following exposure to stem loop RNA corresponding to specific key regulatory genes, the subsequent differentiation of the EC cells was monitored in a variety of ways. One approach was to monitor the disappearance of typical markers of the stem cell phenotype; the other was to monitor the appearance of markers pertinent to the specific lineages induced. The relevant markers included surface antigens, mRNA species and specific proteins.

25 Analysis of Transfectants by Antibody Staining and FACS

Cells were treated with trypsin (0.25% v/v) for 5 mins to disaggregate the cells; they were washed and re-suspended to 2×10^5 cells/ml. This cell suspension was incubated with 50µl of primary antibody in a 96 well plate on a rotary shaker for 1 hour at 4°C. Supernatant from a myeloma cell line P3X63Ag8, was used as a negative control. The 96 well plate was centrifuged at 100rpm for 3 minutes. The plate was washed 3 times with PBS containing 5% foetal calf serum to remove unbound antibody. Cell

were then incubated with 50 µl of an appropriate FITC-conjugated secondary antibody at 4°C for 1 hour. Cells were washed 3 times in PBS + 5% foetal calf serum and analysed using an EPICS elite ESP flow cytometer (Coulter eletronics, U.K).(Andrews et. al., 1982)

5

Northern blot Analysis of RNA

- RNA separation relies on the generally the same principles as standard DNA but with some concessions to the tendancy of RNA to hybridise with itself or other RNA molecules. Formaldehyde is used in the gel matrix to react with the amine groups of
- 10 the RNA and form Schiff bases. Purified RNA is run out using standard agarose gel electrophresis. For most RNA a 1% agarose gel is sufficient. The agarose is made in 1X MOPS buffer and supplemented with 0.66M formaldehyde.Dried down RNA samples are reconstituted and denatured in RNA loading buffer and loaded into the gel. Gels are run out for apprx. 3 hrs (until the dye front is 3/4 of the way down the
- 15 gel).

- The major problem with obtaining clean blotting using RNA is the presence of formaldehyde. The run out gel was soaked in distilled water for 20 mins with 4 changes, to remove the formaldehyde from the matrix. The transfer assembly was
- 20 assembled in exactly the same fashion as for DNA (Southern) blotting.The transfer buffer used however was 10X SSPE. Gels were transferred overnight. The membrane was soaked in 2X SSPE to remove any agarose from the transfer assembly and the RNA was fixed to the membrane. Fixation was achieved using short-wave (254 nM) UV light. The fixed membrane was baked for 1-2 hrs to drive off any residual
- 25 formaldehyde.

- Hybridisation was achieved in aqueous phase with formamide to lower the hybridisation temperatures for a given probe. RNA blots were prehybridised for 2-4 hrs in northern prehybridisation solution. Labelled DNA probes were denatured at
- 30 95°C for 5 mins and added to the blots. All hybridisation steps were carried out in rolling bottles in incubation ovens. Probes were hybridised overnight for at least 16

hrs in the prehybridisation solution. A standard set of wash solutions were used. Stringency of washing was achieved by the use of lower salt containing wash buffers. The following wash procedure is outlined as follows

	2X SSPE	15 mins	room temp
5	2X SSPE	15 mins	room temp
	2X SSPE/ 0.1% SDS	45 mins	65°C
	2X SSPE/ 0.1% SDS	45 mins	65°C
	0.1X SSPE	15 mins	room temp

10 **Preparation of radiolabelled DNA probes**

The method of Feinberg and Vogelstein (Feinberg and Vogelstein, 1983) was used to radioactively label DNA. Briefly, the protocol uses random sequence hexanucleotides to prime DNA synthesis at numerous sites on a denatured DNA template using the 15 Klenow DNA polymerase I fragment. Pre-formed kits were used to aid consistency . 5-100ng DNA fragment (obtained from gel purification of PCR or restriction digests) was made up in water,denatured for 5 mins at 95°C with the random hexamers. The mixture was quenched cooled on ice and the following were added,

- 5 µl [α -32P] dATP 3000 Ci/mmol
20 1 µl of Klenow DNA polymerase (4U)

The reaction was then incubated at 37°C for 1 hr. Unincorporated nucleotide were removed with spin columns (Nucleon Biosciences).

Production of cDNA

25 The enzymatic conversion of RNA into single stranded cDNA was achieved using the 3' to 5' polymerase activity of recombinant Moloney-Murine Leukemia Virus (M-MLV) reverse transcriptase primed with oligo (dT) and (dN) primers. For Reverse Transcription-Polymerase Chain Reaction, single stranded cDNA was used.
30 cDNA was synthesised from 1µg poly (A)+ RNA or total RNA was incubated with the following
1.0µM oligo(dT) primer for total RNA or random hexamers for mRNA

0.5mM 10mM dNTP mix
1U/ μ l RNase inhibitor (Promega)
1.0U/ μ l M-MLV reverse transcriptase in manufacturers supplied buffer
(Promega)

- 5 The reaction was incubated for 2-3 hours at 42°C

Fluorescent Automated Sequencing

To check the specificity of the PCR primers used to generate the template used in stem loop RNA production automatic sequencing was carried out using the prism 10 fluoresently labelled chain terminator sequencing kit (Perkin-Elmer) (Prober et al 1987). A suitable amount of template (200ng plasmid, 100ng PCR product), 10 μ M sequencing primer (typically a 20mer with 50% G-C content) were added to 8 μ l of prism pre-mix and the total reaction volume made up to 20 μ l. 24 cycles of PCR (94°C for 10 seconds, 50°C for 10 seconds, 60°C for 4 minutes). Following thermal 15 cycling, products were precipitated by the addition of 2 μ l of 3M sodium acetate and 50 μ l of 100 % ethanol. DNA was pelleted in an Eppendorf microcentrifuge at 13000 rpm, washed once in 70% ethanol and vacuum dried. Samples were analysed by the in-house sequencing Service (Krebs Institute). Dried down samples were resuspended in 4 μ l of formamide loading buffer, denatured and loaded onto a ABI 20 373 automatic sequencer. Raw sequence was collected and analysed using the ABI prism software and the results were supplied in the form of analysed histogram traces.

Detection of specific protein targets by SDS-PAGE and Western Blotting

25 To obtain cell lysates monolayers of cells were rinsed 3 times with ice-cold PBS supplemented with 2 mM CaCl₂. Cells were incubated with 1 ml/75 cm² flask lysis buffer (1% v/v NP40, 1% v/v DOC, 0.1 mM PMSF in PBS) for 15 min at 4°C. Cell lysates were transferred to eppendorf tubes and passed through a 21 gauge needle to 30 shear the DNA. This was followed by freeze thawing and subsequent centrifugation (30 min, 4°C, 15000g) to remove insoluble material. Protein concentrations of the

supernatants were determined using a commercial protein assay (Biorad). Samples were prepared for SDS-PAGE by adding 6 times Laemmli electrophoresis sample buffer and boiling for 5 min. After electrophoresis with 16 µg of protein on a 10% polyacrylamide gel (Laemmli, 1970) the proteins were transferred to PVDF membrane. The blots were washed with PBS and 0.05% Tween (PBS-T). Blocking of the blots occurred in 5% milk powder in PBS-T (60 min, at RT). Blots were incubated with the appropriate primary antibody. Horseradish peroxidase labelled secondary antibody was used to visualise antibody binding by ECL (Amersham, Bucks., UK). Materials used for SDS-PAGE and western blotting were obtained from 5 Biorad (California, USA) unless stated otherwise.

10 Biorad (California, USA) unless stated otherwise.

Table 1: Antibodies used to detect stem cell differentiation

Antibody	Class	Species	Cell phenotype detected	Changes on Differentiation	Reference
TRA-1-60	IgM	Mouse	Human EC, ES cells.	↓ differentiation	Andrews et.al., 1984a
TRA-1-81	IgM	Mouse	Human EC, ES cells.	↓ differentiation	Andrews et al, 1984a
SSEA3	IgM	Rat	Human EC, ES cells.	↓ differentiation	Shevinsky et al 1982, Fenderson et al 1987
SSEA4	IgG	Mouse	Human EC, ES cells.	↓ differentiation	Kannagi et al 1983 Fenderson et al 1987
A2B5	IgM	Mouse		↑ differentiation	Fenderson et al 1987
ME311	IgG	Mouse		↑ differentiation	Fenderson et al 1987
VIN-IS-56	IgM	Mouse		↑ differentiation	Andrews et al 1990
VIN-IS-53	IgG	Mouse		↑ differentiation	Andrews et al 1990

Table 2: Probes used to assess mRNA markers of differentiation

Gene	Cell Type
Synaptophysin	Neuron
NeuroD1	Neuron
MyoD1	Muscle
Collagens	Cartilage
Alpha-actin	Skeletal muscle
Smooth-muscle actin	Smooth muscle

5

10

Table 3: Protein markers of differentiation, detected by Western Blot and/or immunofluorescence.

15 The following antibodies were detected by the appropriate commercially available antibodies

Cell Type	Antigen
Neurons	Neurofilaments
Glial cells	GFAP
Epithelial cells	Cytokeratins
Mesenchymal cells	Vimentin
Muscle	Desmin
Muscle	Tissue specific actins
Connective tissue cells	Collagens

Table 4: Specific Primers used to generate Stem Loop RNA for gene specific inhibition

5 All sequences written 5' to 3'

	Gene Name	Accession number	PCR primer Sequences	Position
Notch Pathway				
Ligands:				
	Dll-1	AF003522		
	Dll3	NM_016941		
	Dll4	NM_019454		
	Dlk-1	NM_003836		
	Jagged1	U73936		
	Jagged2	NM_002226		
Receptors:				
	Notch1	M73980	gccccgccttgtggttctgttc gcggcgccgtccctcctttcc	5224-5726
	Notch2	In-house sequence	gccagaatgatgctacctgt tagagcagcaccaatggAAC	
	Notch3	U97669	Aaggtaaaaaaaggaggcaagtgtt Aaggaaatgagaggccagaaggaga	7013-7348
	Notch4	U95299	ggctgcccctcccactctcg cagccccggcccccaggatAG	3727-4132
Downstream:				
	TLE-1	NM_005077		
	TLE-2	M99436		
	TLE-3	M99438		
	TLE-4	M99439		

	TCF7	NM_003202		
	TCFFL2	Y11306		
	TCF3	M31523		
	TCF19	NM_007109		
	TCF1	NM_000545		
	mfringe	NM_002405		
	lfringe	U94354		
	rFringe	AF108139		
	Se11	AF157516		
	Numb	NM_003744		
	LNX	NM_010727		
Wingless Pathway				
Ligands				
	Wnt1	NM_005430		
	Wnt2	NM_003391		
	Wnt2B	NM_004185	tgagtggttccctgtactctg actcacactgggtaacacgg	1159-1503
	Wnt5A	L20861		
	Wnt6	AF079522		
	Wnt7A	NM_004625		
	Wnt8B	NM_003393		
	Wnt10B	NM_003394		
	Wnt11	NM_004626		
	Wnt14	AF028702		
	Wnt15	AF028703		
	Wnt16	AF169963		
Receptors				
	FZD1	NM_003505		
	FZD2	NM_001466	tacccagagcggcatacatttt	955-1439

			acgaagccggccaggaggaagga c	
	FZD3	NM_017412		
	FZD4	NM_012193		
	FZD5	NM_003468		
	FZD6	NM_003506	Tggcctgaggagcttgaatgtgac Atcgcccagaaaaatccaatgaa	607-1026
	FZD7	NM_003507		
	FZD8	AA481448		
	FZD9	NM_003508		
	FZD10	NM_007197		
	FRZB	NM_001463		
Extracellular Effectors				
	SFRP1	NM_003012		
	SFRP2	AF017986		
	SFRP4	AF026692	agaggagtggctgcaatgaggc gcgcggcgtttttctt	877-1178
	SFRP5	NM_003015		
	SK	AB020315		
	CER1	NM_005454		
	WIF-1	NM_007191		
	DVL1	U46461		
	DVL2	NM_004422		
	DVL3	NM_004423		
Transcription Factors				
	Oct4	Z11899		
	Brachyury	NM_003181		

	NeuroD1	NM_002500		
	NeuroD2	NM_006160		
	NeuroD3	U63842		
	MyoD	NM_002478		
	MDFI	NM_005586		
	REST	NM_005612		

Table 5

- 5 Listed are examples of vector systems that are to be used in cells to direct the production of stem loop RNA.

Expression System	Vectors	Accession numbers	Promoters
Tet-on/Tet-off Clontech, USA	pTet-on pTet-off pTRE2-Hyg	U89930 U89929	CMV MyoD1 NeuroD1 Oct4 GATA1 Beta-actin PGK
IRES Invitrogen, Netherlands)	pIRES-EGFP		CMV MyoD1 NeuroD1 Oct4 GATA1 Beta-actin PGK
Ecdysone Invitrogen, Netherlands	pIND pVgRXR		CMV MyoD1 NeuroD1 Oct4 GATA1 Beta-actin PGK

References

5

Andrews P.W., Goodfellow P.N., Shevinsky L., Bronson D. L. and Knowles B.B. 1982. Cell surface antigens of a clonal human embryonal carcinoma cell line: Morphological and antigenic differentiation in culture. *Int. J. Cancer.* 29: 523-531.

10 Andrews P.W., Banting G.S., Damjanov I., Arnaud D. and Avner P. 1984a. Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. *Hybridoma.* 3: 347-361.

15 Andrews P.W., Damjanov I., Simon D., Banting G., Carlin C., Dracopoli N.C. and Fogh J. 1984b. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2: Differentiation *in vivo* and *in vitro*. *Lab. Invest.* 50: 147-162.

20 Andrews P.W., Nudelman E., Hakomori S. -i. and Fenderson B.A. 1990. Different patterns of glycolipid antigens are expressed following differentiation of TERA-2 human embryonal carcinoma cells induced by retinoic acid, hexamethylene bisacetamide (HMBA) or bromodeoxyuridine (BUdR). *Differentiation.* 43: 131-138.

25 Fenderson B.A., Andrews P.W., Nudelman E., Clausen H. and Hakomori S.-i. 1987. Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. *Dev. Biol.* 122: 21-34.

Kannagi, R., Levery, S.B., Ishigami, F., Hakomori, S., Shevinsky, L.H., Knowles, B.B. and Solter, D. (1983) New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. *J. Biol. Chem.* 258, 8934-30 8942.

- Shevinsky, L.H., Knowles, B.B., Damjanov, I. and Solter, D. (1982) Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. *Cell* 30, 697-705.
- 5 Solter, D. and Knowles, B.B. (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). *Proc. natl. Acad. Sci. USA* 75, 5565-5569.

Recent progress in identifying genes regulating hematopoietic stem cell function and fate Craig T Jordan, Gary Van Zant Current Opinion in Cell Biology 1998, 10:716-720.

10

- Singer MJ, Selker EU. Genetic and epigenetic inactivation of repetitive sequences in *Neurospora crassa*: RIP, DNA methylation, and quelling. *Curr Top Microbiol Immunol.* 1995;197:165-77.
- 15 Matzke MA, Matzke AJ. Gene silencing in plants: relevance for genome evolution and the acquisition of genomic methylation patterns. *Novartis Found Symp.* 1998;214:168-80; discussion 181-6. Review.

Stam M, de Bruin R, van Blokland R, van der Hoorn RA, Mol JN, Kooter JM. Distinct features of post-transcriptional gene silencing by antisense transgenes in single copy and inverted T-DNA repeat loci. *Plant J.* 2000 Jan;21(1):27-42.

- 20 Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in *Caenorhabditis elegans*. *Proc Natl Acad Sci U S A.* 1998 Dec 22;95(26):15502-7.

- Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*.
25 *Nature.* 1998 Feb 19;391(6669):806-11

Kennerdell JR, Carthew RW. Heritable gene silencing in *Drosophila* using double-stranded RNA. *Nat Biotechnol.* 2000 Aug;18(8):896-898.

- Shi H, Djikeng A, Mark T, Wirtz E, Tschudi C, Ullu E. Genetic interference in *Trypanosoma brucei* by heritable and inducible double-stranded RNA. *RNA*. 2000 Jul;6(7):1069-76.
- 5 Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. *Nat Cell Biol*. 2000 Feb;2(2):70-5
- Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. *Science*.
10 1998 Nov 6;282(5391):1145-7.
- Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP. Isolation of a primate embryonic stem cell line. *Proc Natl Acad Sci U S A*. 1995 Aug 15;92(17):7844-8.
15
- Prober JM, Trainor GL, Dam RJ, Hobbs FW, Robertson CW, Zagursky RJ, Cocuzza AJ, Jensen MA, Baumeister K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. *Science*. 1987 Oct 16;238(4825):336-41.
20 Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. *Anal Biochem*. 1983 Jul 1;132(1):6-13.
- 25 Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. *Methods Enzymol*. 1987;155:335-50.
- Scholer HR, Hatzopoulos AK, Balling R, Suzuki N, Gruss P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. *EMBO J*. 1989 Sep;8(9):2543-50.
30

Kraft HJ, Mosselman S, Smits HA, Hohenstein P, Piek E, Chen Q, Artzt K, van Zoelen EJ. Oct-4 regulates alternative platelet-derived growth factor alpha receptor gene promoter in human embryonal carcinoma cells. *J Biol Chem.* 1996 May 5;31;271(22):12873-8.

Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. *Nat Biotechnol.* 2000 Apr;18(4):399-404.

10

Shambrott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. *Proc Natl Acad Sci U S A.* 1998 Nov 10;95(23):13726-31.

15

Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J. Generalized potential of adult neural stem cells. *Science.* 2000 Jun 2;288(5471):1660-3.

20

25

30

CLAIMS

1. A method to modulate the differentiation state of a stem cell comprising:
 - i) contacting a stem cell with at least one nucleic acid molecule comprising a sequence of a gene which mediates at least one step in the differentiation of said cell which nucleic acid molecule consists of a first part linked to a second part wherein said first and second parts are complementary over at least part of their length and further wherein said first and second parts form a double stranded region by complementary base pairing over at least part of their length;
 - 10 (ii) providing conditions conducive to the growth and differentiation of the cell treated in (i) above; and optionally
 - (iii) maintaining and/or storing the cell in a differentiated state.
2. A method according to Claim 1 wherein said first and second parts are linked by at least one nucleotide base.
3. A method according to Claim 1 or 2 wherein said nucleic acid molecule is a stem loop RNA molecule or a nucleic acid molecule or a vector encoding said stem loop RNA.
- 20 4. A method according to any of Claims 1-3 wherein said conditions are *in vitro* cell culture conditions.
5. A method according to any of Claims 1-4 wherein said stem cell is selected from the group consisting of: an embryonic stem cell; an embryonic germ cell; an embryonal carcinoma cell; a haemopoietic stem cell; a muscle stem cell; a nerve stem cell; a skin dermal sheath stem cell; a liver stem cell; a teratocarcinoma cell.
- 30 6. A method according to any of Claims 1-5 wherein said stem cell is an embryonic stem cell or embryonic germ cell.

7. A method according to any of Claims 1-6 wherein said nucleic acid molecule is derived from at least one nucleic acid sequence as represented by Figures 4- 54.
8. A RNA molecule derived from a coding sequence of at least one gene involved in stem cell differentiation comprising a first part linked to a second part wherein said first and second parts are complementary over at least part of their length and further wherein said first and second parts form a double stranded region by complementary base pairing over at least part of their length.
5
9. A RNA molecule according to Claim 8 wherein said first and second parts are linked by at least one nucleotide base (nb).
10
10. A RNA molecule according to Claim 9 wherein said first and second parts are linked by 2, 3, 4, 5, 6, 7, 8, 9, or 10nb in length.
15
11. A RNA molecule according to Claim 9 wherein said linker is at least 10nb in length.
12. A RNA molecule according to any of Claims 8-11 wherein the length of the RNA molecule is between 10nb –1000nb in length.
20
13. A RNA molecule according to Claim 12 wherein the length of the RNA molecule is selected from 10nb; 20nb; 30nb; 40nb; 50nb; 60nb; 70nb; 80nb; 90nb in length.
25
14. A RNA molecule according to Claim 12 wherein said RNA molecule is 100nb; 200nb; 300nb; 400nb; 500nb; 600nb; 700nb; 800nb; 900nb; or 1000nb in length.
15. A RNA molecule according to Claim 8 wherein said RNA molecule is at least 1000nb in length.
30

16. A RNA molecule according to Claim 8 wherein said RNA molecule is 21nb in length.
- 5 17. A RNA molecule according to any of Claims 8 -16 wherein said RNA molecule comprises sequences identified in Figures 4-54.
18. A RNA molecule according to any of Claims 8-17 wherein said RNA molecules comprise modified nucleotide bases.
- 10 19. A nucleic acid molecule which encodes an RNA molecule according to any of Claims 8-18 wherein said nucleic acid molecule is operably linked to at least one further nucleic acid molecule capable of promoting transcription of said nucleic acid linked thereto.
- 15 20. A nucleic acid molecule according to Claim 19 wherein said further nucleic acid molecule is a promoter capable of inducible transcription.
21. A vector including a nucleic acid molecule according to Claim 19 or 20.
- 20 22. A cell transfected with an RNA molecule according to any of Claims 8-18, nucleic acid molecule according to Claim 19 or 20 or a vector according to Claim 21.
- 25 23. A cell according to Claim 22 wherein said cell is an embryonic stem cell or embryonic germ cell.
24. A cell according to Claim 22 wherein said cell is an embryonal carcinoma cell.
- 30 25. A method to manufacture stem loop RNA molecules comprising:

- (i) providing a nucleic acid molecule according to Claim 19 or 20 or a vector according to Claim 21;
- 5 (ii) providing reagents and conditions which allow the synthesis of the RNA molecule comprising a RNA molecule according to any of Claims 8-18; and
- (iii) providing conditions which allow the RNA molecule to base pair over at least part of its length, or at least that part corresponding to the nucleic acid sequence
10 encoding said stem cell gene which mediates stem cell differentiation.
26. An *in vivo* method to promote the differentiation of stem cells comprising administering to an animal an effective amount of an RNA molecule according to any of Claims 8-18, a nucleic acid molecule according to Claim 19 or 20 or a vector according to Claim 21, sufficient to effect differentiation of a target stem cell.
15
27. A RNA molecule according to any of Claims 8-18, a nucleic acid molecule according to Claim 19 or 20 or a vector according to Claim 21 for use as a pharmaceutical.
20
28. A pharmaceutical composition comprising a RNA molecule according to any of Claims 8-18, a nucleic acid molecule according to Claim 19 or 20 or a vector according to Claim 21.
- 25 29. Use of a RNA molecule according to any of Claims 8-18, a nucleic acid molecule according to Claim 19 or 20 or a vector according to Claim 21 for the manufacture of a medicament for use in promoting the differentiation of stem cells to provide differentiated cells/tissues to treat diseases where cell/tissues are destroyed by said disease.
30

30 Use according to Claim 29 wherein said disease is selected from the group consisting of: pernicious anemia; stroke, neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease; coronary heart disease; cirrhosis; diabetes; nerves damaged as a consequence of trauma (e.g. replacement of spinal
5 cord tissue).

31. A cell obtainable by the method according to any of Claims 1-7.
32. An organ comprising at least one cell according to Claim 31.
- 10 33. A non-human transgenic animal comprising a RNA molecule according to any of Claims 8-18, or a nucleic acid molecule according to Claim 19 or 20, or a vector according to Claim 21.

15

20

25

30

Figure 1

Figure 2

5'
AGCAGCTTGGGCTCGAGAAGGATGTGGTCCGAGTGTGGTTCTGTAACCGGCCAG
AAGGGCAAGCGATCAAGCAGCGACTATGCACAACGAGAGGATTGAGGCTGCTGG
GTCTCCTTCTCAGGGGGACCAGTGTCCCTCTGGCCCCAGGGCCCCATTTGGT
GCCCGAGGCTATGGGAGCCCTCACTCACTGCACTGTACTCCTCGGTCCCTTCCCTG
AGGGGGAAAGCCTTCCCCCTGTCTGTCAACCACTCTGGGCTCTCCCTGCATTCAA
CTGAGGTGCCTGCCCTAGGAATGGGGACAGGGGGAGGGAGGAGCTAG
GGAAAGAAAACCTGGAGTTGTGCCAGGGTTTGATTAAGTCTTCATTCACTAA
GGAAGGAATTGGGAACACAAAGGG
3'

A**B**

Figure 3

Figure 3

GTCCAGCGGTACCATGGCCGTGGAGCGCGTAGCCCTGCCGTGGTCTGCCCTGCTGTGC
 CAGGTCTGGAGCTCGCGTATTGAGCTGAAGCTGCAGGAGTCGTCAACAAGAAGGGCTG
 CTGGGAACCGCAACTGCTGCCGGGGCTCTGGCCCGCCTGCGCCTGCAGGACCTCTTC
 GCGTATGCCCAAGCACTACCAGGCCAGCGTGTACCGGAGCCACCTGCACCTACGGCAGTG
 CTGTCACGCCAGTGCTGGGTGTCACTCCTCAGCCTGCCGTGATGGCGCAGGCATCGACCCCG
 CTTCAAGCAACCCCATCCGATTCCCCTCGGCCACCTGGCCAGGTACCTCTCTGATCATTG
 AAGCCTCCATACAGACTCTCCCGATGACCTCGAACAGAAACCCAGAAAGACTCATGCC
 GCCTGACCACACAGAGGCACCTACTGTGGGAGAAGAATGGTCTCAGGACCTCACAGTAGCG
 GCCGACAGACCTCCGGTACTCTTACCGGTTGTGACGAGCACTACTACGGAGAAGGGTG
 CTCTGTGTTCTGCCGACCTCGGGATGACGCCCTGGCCACTTCACCTGCCGGGAGCAGAGGGAG
 AAGATGTGCGACCCCTGGCTGGAAAGGCCAGTACTGCACTGACCCAATCTGCTGCCAGGGTGT
 GATGACCAACATGGATACTGTGACAAACAGGGAGTGCAAGTGCAGAGTTGGCTGGCAGGGC
 CGCTACTGCGATGAGTGCATCCGATACCCAGGTGTCCTCCATGGCACCTGCCAGCAACCCCTGGC
 AGTGAACTGCCAGGAAGGCTGGGGGGCTTTCTGCAACCAAGACCTGAACTACTGTACTCA
 CCATAAGCCGTGCAGGAATGGAGCCACCTGCACCAACAGGCCAGGGAGCTACACATGTC
 CTGCCGACCTGGTATACAGGTGCCAAGTGTGAGCTGGAAAGTAGATGAGTGTGCTCTAGCCCC
 TGCAAGAACGGAGCGAGCTGCACGGACCTTGAGGACAGCTCTCTGCAACCTGCCCTCCGGCT
 TCTATGGCAAGGTCTGTGAGCTGAGCGCCATGACCTGTGCAAGATGCCCTGCTTCATGGAGG
 ACGATGTTCAGATAACCCCTGACGGAGGCTACACCTGCCATTGCCCTGGCTCTGGCTTC
 AACTGTGAGAAGAAGATGGATCTCTGCCGCTCTCCCTGTTCTAACGGTGCCAAGTGTG
 ACCTCGGCAACTCTTACCTGTGCCGGTGCCAGGCTGGCTCTCCGGGAGGTACTGCGAGGACAA
 TGTGGATGACTGTGCCCTCTCCCGTGTGCAAATGGGGGACCTGCCGGGACAGTGTGAACGAC
 TTCTCTGTACCTGCCACCTGGTACACGGCAAGAACTGCAAGGCCCTGTCAAGCAGGTGTG
 AGCATGCAACCTGCCATAATGGGCCACCTGCCACAGAGGGCCAGCGTACATGTGTGAGT
 GCGCCCAGGGTATGGGGCCCAACTGCCAGTTCTGCTCCCTGAGCCACCAACAGGGCCAT
 GGTGGTGGACCTCAGTGAGAGGCATATGGAGAGGCCAGGGCGGCCCTCCCCCTGGTGGCGT
 GTGTGCCGGGGTGGTGTGCTGCTCTCTGCTGCTGGCTGTGCTGCTGGTGTCTGCC
 GGCTGAAGCTACAGAAACACCAGCCTCACCTGAACCTGTGGGGAGAGACAGAAACCATGA
 ACAACCTAGCCAATTGCCAGCGCGAGAAGGACGTTCTGTTAGCATATTGGGCTACCCAGAT
 CAAGAACACCAACAAGAAGCGGACTTACCGGGACATGGAGGCCAAGAAGAGCAGTTA
 AGGTCGATACCCACTGTGGACTATAACCTCGTCTGAGACCTCAAGGGAGATGAAGGCCACGG
 TCAGGGATAACACACAGCAAACGTGACACCAAGTGCAGTCACAGAGCTGCAAGGAGAAGAG
 AAGATCGCCCCAACACTTAGGGGGGGAGATTCTGACAGAAAAAAGGCCAGAGTCTGTCTAC
 TCTACTTCAAAGGACACCAAGTACCAAGTCAGCTGGTGTATGTTCTGCAAGAAAAGGATGAGTGTG
 TTATAGCGACTGAGGTGAAGATGGAAGCGATGTGGCAAATTCCATTCTCTCAAATAAAAT
 TCCAAGGATATGCCCGATGAATGCTGCTGAGAGAGGAAGGGAGAGGAACCCAGGGACTG
 CTGCTGAGAACCGAGGTTCAAGCGAAGCTGTTCTCTCAGAGTTAGCAGAGGCCACACTG
 CCAGCCTAGGCTTGGCTGCCGCTGGACTGCCCTGCTGGTTGTTCCATTGCACTATGGACAGTTG
 CTTTGAAGAGTATATAATTAAATGGACGAGTGACTTGTGATTCAATAGGAAGCACCGCACTGCC
 CACGTCTATCTGGATTACTATGAGCCAGTCTTCTGAACTAGAAACACAACGCCCTTATTG
 TCCTTTTGATACTGAGATGTGTTTTTTCTAGACGGGAAAAAGAAAACGTGTGTTATT
 TTTGGGATTGTAAAAATTTTATGATATCTGTAAGCTGAGTATTGTGACGTTCAATT
 TTTTATAATTAAATTGGTAAATATGTACAAAGGCACCTCGGGTCTATGTGACTATATT
 TTGTATATAATTGTATTATGGAATTGTCAGGAAATGTTAGTATTGAGTTTACTGTTTGTAAAT
 GAAGAAATTCAATTAAAAATTTCCAAAATAATATAATGAACCTACA

Figure 4

CGGGCAGAGGTGGAAGAGGGGGAGCGCCTCAAAGAACGATCAGAATAATAAAAGGAGGCC
 GGGCTTTGCCCTCTGGAACGCCGGCTCTGAAAGGGCTTTGAAAAGTAGTGTGTTTCCA
 GTCGTGCATGCCAATCCACGGAGTATATTAGAGGCCGGACGCCGGCGGCCGCCGGAGCG
 ACGACGGCAGCCTCGGGGGAGCACCAGCGCTAGCAGCGCGGCCGGTCCGGAGTGCCGTG
 GCGCGCGCGAGCGATCGGGTCCCCACGGACGCCGGCGCCGCCGGAGTCCCTGAGTCTT

CTGCTGCCCTGCTCTGTGCCCTCGAGCCAAGGTGTGGGGCCTGGTCAGTTGAGCTGG
AGATCCTGTCCATGCAGAACGTGAATGGAGAGCTACAGAATGGAACTGTTGTGGAGTCC
GGAACCTGGCGACCGCAAGTGCACCCGCAGAGTGTGATACTGACTTCAAAGTGTGCCTCA
AGGAGTATCAGTCCCGCGTCACTGCCGGGGACCTGAGCTCGAGCTCGGCTCAGGGCTACGCCTGT
CATCGGGGTAACACCTCAATCTCAAGGCCAGCCGTGGCAACGACCCTAATCGCATCGTACTG
CCTTCAGTTGCCTGGCCAGGGCTACACTTGTGGTGGAGGCCTGGATTCCAGTAATG
ACACTATTCAACCTGATAGCATAATTGAAAAGGCTTCTCACTCAGGCATGATAAACCCTAGCCG
GCAATGGCAGACACTGAAACAAAACACAGGGATTGCCACTCGAGTATCAGATCCGAGTGAC
CTGTGATGACCAACTATGGCTTGGCTGCAATAAGTCTGTCGCCCAGAGATGACTTCTTG
GACATTATGCCGTGACAGAACGGCAACAAAACCTGCACTGGAGTGCATGGAAAGGCTGGATGGGTCTGATT
GCAACAAAGCTATCGCCGACAGGGCTGCAGTCCCAGCATGGGCTTGTAAACCTCCAGGTG
ACTGCAGGTGCCAGTACGGTTGGCAGGGCTGTACTGCAGAAGTGCATCCGCACCCAGGAT
GTGTCACGGCACCTGCAATGAAACCTGGAGTGCCTCTGTGAGACCAACTGGGTGGACAGC
TCTGTGACAAAGATCTGAATTACTGTGGACTCATCAGCCCTGTCTCAACCGGGAACATGTAG
CAACACTGGGCTGACAAATACCAAGTGCCTGCCAGAGGGCTACTCGGGCCCCACTGTGA
AATTGCTGAGCATGCTTGTCTCTGACCCCTGCCATAACCGAGGCAGCTGCAAGGAGACCTCC
TCAGGCTTGAGTGTGAGTGTCTCCAGGCTGGACTGGCCCCACGTGTCCACAAACATCGATG
ACTGTTCTCAAATAACTGTTCCATGGGGCACCTGCCAGGATCTGGTAATGGATTCAAGTG
TGTGCCCCCAGTGGACTGCAAGACTGTCAAGTGAATGAGTGCAGGCAA
ACCTTGTAATGCCAGATCCTGTAAGAATCTGATTGCCAGCTACTACTGTGATTGCCCTCTG
GCTGGATGGTCAGAACCTGTGACATAAATATCAATGACTGCCCTGGCCAGTGTCAAGATGACG
CCTCCTGTGGGATTGGTAATGGTATCGCTGATCTGTCCACCTGGCTATGCAGCGATCAC
TGTGAGAGAGACATCGATGAGTGTGCTAGCAACCCCTGCTGAATGGGGTCACTGTCAAGGAA
GAAATCAACAGATTCCAGTGTCTGTCCCAGTGGTTCTCTGGAAACCTCTGCACTGGACA
TCGATTACTGCGAGGCCAACCTTGCCAGAATGGGCCAGTGTCAACATCGTGCAGTGA
TTCTGCAAGTCCCCGAGGACTATGAGGGCAAGAAGTGCACACCTGAAAGACCAACTGCCG
TACCACCACCTGCGAAGTGAAGTGCAGCTGACTGTGGCCATGGCCTCCAACGACACGCC
GGGGTGCCTGATATCTCTCTAACGTCTGTGGTCCCCATGGGAAGTGCAGAGGCCAGTGGAG
GCAAATTACCTGTGACTGTAACAAAGGCTCACGGCACCTACTGCCATGAAAATATCAACGA
CTGCGAGAGCAACCCCTGTAACAAACGGTGGCACCTGCATCGATGGCTTAACCTACAAGTGT
ATCTGTAGTGCAGGGCTGGAGGGAGCGCACTGTGAGAACAAACATAATGACTGTAGCCAGAAC
CCTTGTCACTACGGGGTACATGTCAGAACCTGGTCAATGACTTTACTGTGACTGCAAAATG
GCTGGAAAGGAAAGACTTGCAATTCCCGTGCAGCCAGTGTGACGAAGCCACGTGTAATAATG
GTGGTACCTGTATGATGAAGTGGACACGTTAAGTGCATGTGTCCTGGCTGGCTGGGAAGGAA
CAAATTGTAATATAGCTAGAAACAGTAGCTGCCTGCCAACCTGTCTGCAATGGAGGTACCTG
CGTGGTCAATGGAGACTCCTCACCTGTGCAAGAAGGCTGGAGGGCCCTATTGACT
CAAATACCAACGACTGCAGTCCCCATCCTGTAACATAGCGGGACCTGTGACGGAGAC
AACTGGTATGGTGCAGTGGCCAGGACTGCAGGATAAACATCAATG
AGTGCAGTCTCCCTGTGCCTTGGGCCACCTGTGAGGATGAGATCAATGGCTACCAGTG
TATCTGCCCTCCAGGACATAGTGGTGCAGTGCCTGCAAGTTCAAGGGCGATCTGCATCACC
ATGGGGAGAGTGTGAACTTGATGGGCAAGTGGGATGATGACTGTAACACCTGCCAGTGCCTG
AATGGACGGTGGCCTGCTCAAGGTCTGGTGTGGCCAGACCTGCAAGGCTCCACAAAAGC
CAAATGAGTCCCCAGTGGCAGAGCTGCATCCGGTCTGGATGACCAGTGTTCGTGCGCC
CCTGCACTGGTGGCGAATGCGGTCTCCAGCCAGCAGTGAAGACCAAGTGCACATC
TGACTCCTATTACCAAGGATAACTGTGCAAAACATCACTTCACTTAAACAAAGAGATGATGTCT
CCAGGTCTTACCAACGAAACACATTGCAAGCAATTGAGGAATTGAAATATCCTGAAGAATGTT
CTGCTGAAATTGATCTACATAGCCTGTGAGCCTTCCCTGTCAAGAACAAATGAAATACACGT
GGCCATCTGCAAGAACATCCGGGATGATGGGAAACCTGTCAAGGAAATTACCGATAAAAT
AATAGATCTGTTAGTAAACGGGATGGAACAGCTCACTTATTGCTGCGGTTGCAGAAGTCAG
AGTCAGAGGCGTCCTGTAAAAAACAGAACAGATTCCCTGGTCTGTGAGCTCTGTCTTA
ACAGTGGCTGGGTCTGTGCTTGGTGCAGCCTCTACTGGTGTGACGGAAGCGCGGAAGC
CCAGCAGCCACACTCACTCCGCCCCGAGGACAACACCACAAATGTGCGGAGCAGCTGA
ACCAAAATCAAAAACCCATCGAGAAACACGGAGCCAACACGGTCCCCATTAAGGATTACGAGA
ACAAAAACTCCAAAATGTCAAAATCAGGACACACAACCTCGGAAGTGGAGGAGGATGACATG
GATAAACACCAGCAGAAAGTCCGTTGCCAACAGCCAGTGTATACGCTGGTAGACAGAGAG
GAGAAGGCCCCAGCGGCACGCCAACACCGAACTGGACAAATAACAGGACAACAG

AGACTTGGAAAGTGCCAGAGCTTGAACCGGATGGAATACATCGTATAGCAGACAGTGGGCTG
CCGCCATAGGTAGAGTTGAGGGCACCGCGGGCCG

Figure 5

CTGCGGCCGGCCCGAGCTAGGCTGGTTTTTTCTCCCCCTCCCTCCCCCTTTTCATGCAGC
TGATCTAAAAGGAATAAAAGGCTGCGCATAATCATAATAATAATAAAAAGAAGGGAGCGCGAGAGAAGGA
GAAAGCCGGAGGTGGAAGAGGAGGGGGAGCGTCTCAAAGAACGATCAGAATAATAAAAAGGAGGGCG
CTCTTGCCTCTGAACGGCCGCTTGAAGGGCTTGAAGAGTGGTGTGTTCCAGTCGTGCA
TGCTCCAATCGCGGAGTATATTAGAGCCGGACGCCGGCCGAGGGCAGCGCGACGGCAGCAG
GCGCAGCACAGCGAACAGCAGCGCCGCTCCGAGTGCCTCGCCGCGCAGCGATGCGT
CCCCACGGACCGCGCCGGCTCGGGCGCCCCCTAACGCTCTGCTGCCCTGCTGTGCCCTGCGAGC
CAAGGTGTGTGGGGCTCGGGTCAGITCGAGTGGAGATCCTGTCCATGCAGAACGTGAACGGGAGCTG
CAGAACGGAACTGCTGCCGCCGAAACCGGGAGACCGCAAGTGCACCCCGCAGAGTGTGAA
CATACTCAAAGTGTGCCCTAAGGAGTATCAGTCCCCTGTCACGCCGGGGGGCCCTGAGCTTCGGCTC
AGGGTCCACGCCGTGTCATCGGGGCAACACCTCAACCTCAAGGCCAGCCCGAACGACCGAACCC
ATCGTGTGCCCTCAGTTGCCCTGCCAGGTCTATACGTTGTTGTGGAGGGTGGATTCCAGTA
ATGACACCGTTCAACCTGACAGTATTATTGAAAAGGCTCTACTCGGGCATGATCAACCCAGCCGCA
GTGGCAGACGCTGAAGCAGAACACGGCGTTGCCACTTGAAGTATCAGATCCCGTGACCTGTGATGAC
TACTACTATGGCTTGGCTGCAATAAGTTCTGCCCTCAGAGATGACTCTTGGACACTATGCCCTG
ACCAGAAATGGCAACAAAACCTGCATGGAAGGCTGGATGGGCCGAATGTAACAGAGTATTGCCGAA
AGGCTGCACTGCTAACGATGGCTTGGCAACCTCCAGGTGACTGCAAGGTGCCAGTATGGCTGGCAAGGC
CTGTACTGTGATAAGTGCATCCCACACCCGGATGCGTCCACGGCATCTGTAATGAGCCCTGGCAGTG
TCTGTGAGACCAACTGGGGCGCCAGCTCTGTGACAAAGATCTCAATTACTGTGGACTCATCAGCCGT
TCTCAACGGGGAAACTGTAGCAACACAGGCCCTGACAATATCAGTGTGCCCTGAGGGTATTCA
GGACCCAACCTGTGAAATTGCTGAGCACGCCCTGCCCTCTGATCCCTGTCACAACAGAGGAGCTGTAAGG
AGACCTCCCTGGCTTGTGAGTGTGAGTGTCCCCAGGCTGGACCGGCCACATGCTCTACAAACATTGA
TGACTGTCTCTTAATAACTGTTCCCACGGGGCACCTGCCAGGACCTGGTAAACGGATTAAAGTGTG
TGCCCCCAGTGGACTGGAAAACGTGCCAGTAGATGCAAATGAAATGTGAGGCCAACCTGTGTA
ACGCCAAATCCTGTAAGAATCTCATTGCCAGCTACTACTGCACTGTCTTCCGGCTGGATGGGTCA
TTGTGACATAATATTAAATGACTGCCCTGGCCAGTGTGAGAATGACGCCCTGTCGGGATTGGTTAA
GGTTATCGCTGATCTGTCACCTGGCTATGCAAGGCGATCACTGTGAGAGAGACATCGATGAATGTGCC
GCAACCCCTGTTGAATGGGGTCACTGTGAGAATGAAATCACAGATTCCAGTGTCTGTG
TTCTCTGAAACCTCTGTCAGTGGACATCGATTATTGTGAGCCTAATCCCTGCCAGAACGGTGCCAG
TGCTACAACCGTGCAGTGACTATTCTGCAAGTGGCCAGGACTATGAGGGCAAGAACGACTGCTCACACC
TGAAAGACCACTGCCGACGACCCCTGTGAGTGTGACAGCTGCACTGGCCATGCCCTCAACGA
CACACTGAAGGGTGCCTGATATTCTCCAACGTCTGTGGCTCAGGGAAAGTCAAGAGTCAGTC
GGAGGCAAATTACCTGTGACTGAAACAAAGGCTCACGGGAACATACTGCCATGAAAATATTAA
GTGAGAGCAACCCCTGTAGAAACGGTGGCACTGCACTGATGGTGTCAACTCCTACAAGTCATCTG
TGACGGCTGGAGGGGCCACTGTGAAACCAATATTAAATGACTGCAAGCCAGAACCCCTGCCACAATGG
GGCACGTGTCGCCACCTGGTCAATGACTTCACTGTGACTGAAAAATGGGTGAAAGGAAAGACCTGCC
ACTCACGTGACAGTCAGTGTGATGAGGCCACGTGCAACAAACGGTGGCACCTGCTATGAGGGGGATC
TTTAAGTGCATGTGTCCTGGCGCTGGGAAGGAACAAACCTGTAACATAGCCGAAACAGTAGCTGCC
CCCAACCCCTGCCATAATGGGGCACATGTGTTGCAACGGCGAGTCTTACGTGCGTCTGCAAGGAAG
GCTGGAGGGGCCACTGTGCTGAGAATACCAATGACTGCAAGCCCTCATCCCTGTTACAACAGCGGCAC
CTGTGTTGAGACAACGGTACCGGTGCAATGTGCCCGGTTTGTGCTGGGCCAGTCAGAATA
AACATCAATGAATGCCAGTCTTCACCTTGTGCCCTGGAGCGACCTGTGTTGAGATCAATGGCTACC
GGTGTGCTGCCCTCCAGGGCACAGTGGTCCAAGTGCAGGAAGTTCAAGGGAGACCTGCACTACCAT
GGGGAGTGTGATACCAAGATGGGCCAAATGGGATGATGACTGTAATACCTGCCAGTGCCTGAA
ATCGCCTGCTCAAAGGTCTGGTGTGCCCTGACCTGCTCCACAAAGGGCACAGCGAGTGGCC
GCCGGCAGAGCTGCATCCCCATCTGGACGACCAGTGCCTGCCACCCCTGCACTGGTGTGGCGAGTG
TCGGTCTCCAGTCTCCAGGGTGAAGACAAAGTGCACCTGACTCCTATTACCAAGGATAACTGTG
AACATCACATTACCTTAACAAGGAGATGATGTCACCAGGTCTACTACGGAGCACATTGCA
TGAGGAATTGAATATTGAAAGAATGTTCCGCTGAATATTCAATCTACATCGCTTGCAGCCTTCCC
TTCAGCGAACATGAAATACATGTGCCATTCTGCTGAGAAGATATAACGGGATGATGGGAACCGATCAAG
GAAATCACTGACAAAATAATGATCTGTTAGAAACGTGATGGAAACAGCTCGCTGATTGCTGCC
CAGAAGTAAGAGTTCAGAGGCCCTCTGAAGAACAGAACAGATTCCCTGCTGAGCTGT
CTTAACGTGGCTGGATCTGTTGCTGGTGAAGGCCCTACTGGTGCCTGCCAGCAGCGGAGCAGTGA
GGCAGCCACACACTCAGCCTGAGGACAACACCACAAACGTGCGGGAGCAGCTGAACCAGATA

AAAACCCCATTGAGAAACATGGGGCAACACGGTCCCCATCAAGGATTACGAGAACAAAGAACACTCCAAAT
 GTCTAAAATAAGGACACACAATTCTGAAGTAGAAGAGAGGACGACATGGACAAACACCAGCAGAACAGCCG
 GTTGCCAAGCAGCCGGCGTACGCTGGTAGACAGAGAAAGAGAACGCCCAACGGCACGCCGACAAC
 ACCCAAACGGACAAACAAACAGGACAACAGAGACTTGGAAAGTGCAGAGCTAAACCGAATGGAGA
 CATCGTATAGCAGACCGCGGGCACTGCCGCGCTAGGTAGAGTCTGAGGGCTTGTAGTTCTTAAACTGT
 CGTGTCACTCGAGTCTGAGGCCGTTGCTGACTAGAATCCCTGTGTAATTAAAGTTGACAAGCTG
 GCTTACACTGGCAATGGTAGTTCTGTTGGCTGGAAATCGAGTGCAGCATCTCACAGCTATGCAA
 AAGCTAGTCACACAGTACCCCTGGTTGTGTCAGCCGACACGGCTCGAGTCAGGCTCCAGGA
 GCCTGCCAGCCCCCTGGCTTTGAGCTCCACCTGCCAGATGTCCTAATGGTGATGCAGTCTTAGAT
 CATAGTTTATTTATTTATGACTCTTGAGTTTTGTATATTGGTTTATGATGACGTACAAGTA
 GTTCTGTATTTGAAAGTGCCTTGAGCTCAGAACACCAGCAACGATACAAATGACTTTATTATT
 TTTTAATTGTATTTGTTGGGGAGGGAGACTTGATGTCAGCAGTTGCTGGTAAATGAAAGAA
 TTTAAAGAAAAAAATGTCAAAAGTAGAACTTTGTATAGTTATGAAATAATTCTTTTATTAAATCACTG
 TGATATTGATTATTAACCTAAATCAAGAGCCTAAACATCATTCTTTTATTATATGTATGT
 GTTAGAATTGAAGGTTTGATAGCATTGTAAGCGTATGGCTTATTGAACTCTCTCATTACT
 TGTTGCCTATAAGCCAAATTAAGGTGTTGAAATAGTTATTAAACAAATAGGATGGCTCTGTG
 CCCAGAAACTGTGAAATTGACGACGTCAGATGTTAAACACCTCTATAGCATCACITAA
 AACACGTTTAAGGACTGACTGAGGCAGTTGAGGATTAGTTAGAACAGGTTTTGTTGTTGTT
 TTGTTCTGCTTAGACTGAAAAGAGACAGGCAGGTGATCTGCTGCAGAGCAGTAAGGGAAACAAGT
 TGAGCTATGACTAACATAGCCAAATGTGAGTGGTTGAATATGATTAACAAATTAAATTGTG
 AACTTGGAAAGCACCAACTGACTTGTAAATTGATTTCTTACCCATTGACATAACTGAAAC
 CACTGTAGATTGATTTTTAATCTACTGCATTAGGGAGTATTCTAATAAGCTAGTGAATACT
 TGAACCATAAAATGTCCAGTAAGATCACTGTTAGATTGCCATAGAGTACACTGCCTGCCAAAGT
 GAAATCAAAGTGTATTACGAAGTTCAAGATCAAAAGGTTATAAAACAGAGTAATCTGTTGTT
 CATTGAGACCGTGAAGATACTTGATTGCTTATTAGTGTATATGAAACATACAAATGCATCTTGATG
 TGTTGTTCTGGCAATAAATTGAAAAGTAATATTATAAATTGTTGATGAAACATGGAAACAGT
 GTGGCTCTCTGAGCTACGTAGTTCTACCGGCTTGCGCTGCTGCCACCTGCTGAGTCTGTC
 TGGTAATCGGGGTATAATAGGCTCTGCCAGAGGGATGGAGGAAGAATGAAAGGTTTCAACCC
 AAAACTCATCTGGAGTTCTAAAGACTGGGCTGCTGAAAGCTGAGCTGAGCTGGGGAGCCCC
 GAGCCTGATTCCCTGTTATTCAACAGCAAGTGTGAATAAACACCAGTGGATTAAATGG
 AAAAAAAAAAAAAAA

Figure 6

GGAGGGGGCGCGCGCGCGCGGGGGGGCGGGCGGGCGGGCGGGCGGGCGGGCGGGCGGGCG
 GGGCCTTCCCCCGCGCTGCTGCTGCTGCTGGCGCTCTGGGTGCAAGCGCGCGGCCATGGCTATT
 CGAGCTGCAGCTGAGCGCGCTGCGGAACGTGAACGGGGAGCTGCTGAGCGCGCGCTGCTGACCGCGC
 GGCGGACAAACCGCGCGGGGGCTGCGGCCACGACGAGTGCAGCACGTACGTGCGCGTGTGCCCTAAAG
 AGTACCAAGGCAAGGTGACCCCCACGGGGCCCTGCACTACGCCACGGCGCCACGCCCGTGTGGCG
 CAACTCTTCTACCTGCCCGGGCGCTCGTCATCCCCTCCAGITGCCCTGCCGCTCCCTTACCCCTACGTGG
 GACCAAGGACCCGGGCTTCGTCATCCCCTCCAGITGCCCTGCCGCTCCCTTACCCCTACGTGG
 AGGCCTGGGACTGGGACAACGATACCAACCCGAATGAGGAGCTGCTGATCGAGCGAGTGTGCGATGCC
 CATGATCAACCCGGAGGACCGCTGGAAGAGCCTGCACITCAGGCCACGTGGCGCACCTGGAGCTGCG
 ATCCGCGTGCCTGCGACGAGAACTACTACAGGCCACTGCAACAAGTTCTGCCGCCCGCAACGACT
 TTTTCGGCCACTACACCTGCGACCGAGTACGGCAACAAGGCTGCATGGACGGCTGGATGGCAAGGAGTG
 CAAGGAAGCTGTGTAACAAAGGGTGTAAATTGCTCACGGGGATGCACCGTGCCCTGGGAGTGAG
 TGCAGCTACGGCTGGCAAGGGAGGITCTGCGATGAGTGTGTCCTAACCCGGCTGCGTGCATGGCAGTT
 GTGTGGAGCCCTGGCAGTGCACACTGTGAGGACCAACTGGGGCGCTGCTGTGACAAAGACCTGAAC
 CTGTCAGGCCACCCCTGCAACCGAGGCACGTGCATCAACGCCGAGGCTGACCGAGTACCGCTGC
 ACCTGCCCTGACGGCTACTGGCAGGAACCTGTGAGAAGGCTGAGCACGCCGCACCTCCAACCGTGTG
 CCAACGGGGCTTGCCATGAGGTGCCGTCGGCTTCGAATGCCACTGCCATCGGGCTGGAGCGGGCC
 CACCTGTGCCCTGACATCGATGAGTGTGCTGCAACCGCTGTGCCGCGGGCTGGCACCTGTGTGGAC
 GTGGACGGCTTGAGTGCATCTGCCGAGCAGTGGTGGGGCCACCTGCCAGCTGGACGTCAACGACT
 GTGAAGGGAAAGCCATGCCCTAACGCTTTCTGCAAAACCTGATTGGCGCTATTACTGTGATTGCAT
 CCCGGCTGGAAAGGCATCAACTGCCATATCAACGTCAACGACTGTGCGCGGGCAGTGTGAGCATGGGC
 ACCTGCAAGGACCTGGTGAACGGTACCGAGTGTGCTGCCACGGGGCTCGGAGGCCGATTGCGAG
 TGGAACGAGACAAGTGTGCCAGCAGCCCTGCCACAGCGCGGGCCTCTGCGAGGGACCTGGCGACGGCT
 CCACTGCCACTGCCCTCAGGGCTTCTCCGGGCCCTCTGAGGGTGGATGTCAGCCTTGTGAGCCAAGC
 CCCTGCCGGAACGGCGCTGCTGCTATAACCTGGAGGGTACTATTACTGCGCCTGCCCTGATGACTTTG
 GTGGCAAGAAGTGCCTGCCGAGCCGTGCCCTGGGGGCCCTGAGAGTGCATGGCTGCC

GTCAGACGCGGGCCTGGATGCCGGCACAGCAGCCTCCGGCGTGTGGCCCCCATGGACGCTGCCT
 AGCCAGCCAGGGGCAACTTTCTGCATCTGTGACAGTGGCTTACTGGCACCTACTGCCATGAGAACAA
 TTGACGACTGCCCTGGGCCAGCCCTGCCAATGGGGCACATGCATCGATGAGGTGGACGCCCTCCGCTG
 CTTCTGCCCCAGCGGCTGGAGGGCAGCTCTGCACACCAATCCCACGACTGCCCTCCGATCCCTGC
 CACAGCCGCGCCGCTGCTACGACCTGGCAATGACTTACTGTGCGTGCGACGACGGCTGGAAGGGCA
 AGACCTGCCACTACCGCAGTTCAGTGCATGCCTACACCTGCAGCAACGGTGGCACCTGCTACGACAG
 CGCGACACCTCCGCTGCCCTGCCCTGGAGGGCAGCACCTGCCGCGTGCACAGAACAGC
 AGCTGCCCTGCCCCACCCCTGTGTGAATGGTGGCACCTGCCGTGGCAGCGGGGCTCCTCTCTGCATCT
 GCCGGGACGGCTGGAGGGCTGTAATTGCACTACAATACCAACGACTGCAACCCCTGCCCTGCTACAA
 TGGTGGCATCTGTGTTGACGGCGTCAACTGGTCCGCTGCCCTGCGCTACGGGGCCAAGTGTGTGGATGAGATCA
 TGCCGACATCAACATCGACGAGTGCAGTCCGCTGCCCTGCGCTACGGGGCCAAGTGTGTGGATGAGATCA
 ACGGGTATCGCTGTAGCTGCCACCCCGCCAGCGGCCCGGGTGCAGGAAGTGTATGGGTTGGGAG
 ATCCTGCTGGTCCCAGGGCACTCCGTTCCACACCGAAGCTCTGGTGGAGACTGCAACAGCTGCCGC
 TGCTGGATGGCCCGCGTACTGCAGCAAGGTGTGGTGGGATGGAAGCCTGCTGCTGCCGGCCAGC
 CCGAGGCCCTGAGCGCCAGTGCCCACTGGGGCAAGGGCCTGGAGAAGGCCAGTGTCTGG
 ACCACCCCTGTAGGGCCTGGGGGAGTGCAGCGCAGAAGAGCCACCGAGCACCCCTGCCACGCTC
 GGCCACCTGGACAATAACTGTGCCGCTCACCTGCAATTCAACCGTGACCACGTGCCAGGGCACCA
 CGGTGGCGCCATTGCTCCGGATCCGCTCCCTGCCAGCCACAAGGGCTGTGGCACGGGACCGCCTGCT
 GGTGTTGCTTGCGACCGGGCGTCCCTGGGGGAGTGCAGCGCAGAAGAGCCACCGAGCACCCCTGCCACGCTC
 AGGGACCTGCGTACAGCAGCCTGATCCAGGGCGGCCACGCCATCGTGGGCCATACCCAGCGG
 GGAACAGCTCACTGCTCCGGCTGTCAACGGTCAAGGTGGAGACGGTTTACGGGCGGCTTCCAC
 AGGTCTGCTGGTGCCTGTGTTGTTGCTTCAACGCTGCTGTGGCTGGCGTGTGGCTGTGCGTG
 TGGTGGACACGCAAGCGCAGGAAAGAGCGGGAGAGGAGCCGGCTGCCGCGGGAGGAGAGCGCAACAC
 AGTGGGCCCGCTCAACCCATCCGAACCCATCGAGGGCCGGGGGCCACAAGGACGTGCTTACCA
 GTGCAAGAACTTCAACGCCCGCCGCGCAGGGCGACGAGGCGCTGCCGGACCGGCCACGCC
 GTCAGGGAGGATGAGGAGGACGAGGATCTGGCCGCGGTGAGGAGGACTCCCTGGAGGCGGAGAACGTC
 TCTCACACAAATTCAACAAAGATCTGGCCGCTCGCCGGGAGGCCACTGGGCTCAGGCCAA
 AGTGGACAACCGCGCGTCAAGGAGCATCAATGAGGCCCTACGCCAGGAGTAGGGCGGCTGCG
 CTGGGCCGGGACCCAGGGCCCTCGTGGGAGCCATGCCGCTGCCGGACCCGGAGGCCAGGCATGTGCT
 AGTTTCTTATTITGTAAAAAAACCAAAACAAAACCAATGTTTATTCTACGTTTCTTAA
 CCTTGATAAATTATTAGTAACGTCACTGTCAGGCTGAAAACAATGGAGTATTCTCGATAGITGCTATTITG
 TAAAGTTCCGTGCGTGGACTCGCTGTATGAAAGGAGAGGAAAGGGTGTCTGCGTGTGCA
 GTAGCGTTGTAACAGAGGTTGTGACTGTTACAGAATCTTCTTTATTCTCACTCGGGTTCT
 GTGGCTCCAGGCCAAAGTCCGGTGAGACCCATGGCTGTGGCTGGCCATGGCTGTGGGACC
 CGTGGCTGATGGTGTGGCTGTGGCTGCGTGGACTCGTGGCTGTCAATGGACCTGTGGCTGTGCGT
 GGGACCTACGGTGGTGGCTGGGACCTGGTATTGATGTGGCCCTGCCGACGGCCGTGGCTGT
 TGACGCACCTGTGGTGTGTTAGTGGGCTGAGGTCATGCCGCTGCCAAGGCCAGGTCAACCTCGCG
 CTTGCTGGCCAGTCCACCCCTGCCCTGCCGCTGTGCTTCCCTCTGCCAGAACGCCGCTCCAGCGATCTC
 TCCACTGTGCTTCAAGAAGTGCCTCTGCTGCCAGTCTCCATCTGGACGGCGGAGTATTGAA
 GCTCGTACAGTGCCTCACACAGACCCCTCGCAACTGTCCACCGTGCGGCCACCAGCGCTGCC
 ACCTGCCGGCCCGGCCGCCCTCTCGTAAAGTGCATTITGTAAATGTGTACATATTAAAGGAAGCA
 CTCTGTATATTGATTGAATAATGCCACCAAAAAAAAAAAATTCTGCC

Figure 7

TCGAGGCGCGATGCGGGCACGCCGCTGGGGACGCCCTGCCCTGGCGGTGCTGCTGCTACTGG
 TTCTGTGCGTGAGCGACGCCATGGCTATTGAGCTGAGCTGAGCGCGCTGCC
 CGTGAACGGGAGCTGCTGAGCGCGCTGCTGACGGCACGCCGGACGACGCC
 GGGCTGCCGCCGACCGAGTGCAGCACGTACGGCTACGCCACGCCGTGCTGGGAGGCC
 GGTGACGCCACGGGGCCCTGCAGCTACGGCTACGCCACGCCGTGCTGGGAGGCC
 CTTCTACCTGCCGCCGGCGCTGCTGCTTCCCTCTGCCAGITGCCCTGCCGCTTCA
 CCACCAAGGACCCGGGCCCTGCTGCTGCTGCGCAGTCTCCATCTGGACGGCGGAGTATTGAA
 TCGTGGAGGCCTGGACTGGACAATGACACCACTCCAGATGAGGAGCTGCTGATTGAGCGGG
 TGTGCACTGCTGGCATGATCAACCCAGAGGACCGCTGGAAGAGGCCTGCACTTCAGCGGCCACG
 TGGCACACCTGGAGCTGCAAGATCCAGTGCAGTGCCTGTGATGAGAAACTACTACAGTGCACCTGCA
 ACAAGTTCTGCCGGCCCGCAACGACTTCTTGGCCACTATACCTGCAACAGTACGGCAACAA
 GGCCTGCACTGGATGGCTGGATGGCAAGAATGCAAAGAAGCCGTGTAACAAAGGATGAA
 TTTGCTCACGGGGATGCACTGTGCTGGGAGTGCAGCTACGGCTGGCAGGGCAA

GTTCTGTGACGAGTGTGTCCTTACCCCTGGCGTGCATGGCAGCTGTGGAGGCCCTGGCAC
 TGTGACTGTGAGACCAACTGGGGTGGCCTGCTGCGACAAAGACCTGAACACTGTGGCAGC
 CACCACCCCTGTGTCACGGGGTACCTGCATCAATGCTGAGCCTGACCAATACCTCTGCGCCT
 GCCCAGATGGCTACTTGGCAAGAACGTGAGCGGGCTGAGCACGCCCTGCGCTCAACCCGT
 GTGCCAATGGGGCTCTGCCACGAAGTGCCATCTGGCTTGAATGCCACTGTCCGTCAGGATG
 GAGCGGACCCACCTGTGCCTCGACATTGATGAGTGTGCCTCTAACCCATGTGAGCGGGTGGT
 ACCTGCGTGGATCAGGTGGACGGCTCGAGTCATCTGCCGGAGCAGTGGGTGGGGCTACT
 TGCCAGCTGGACGCCAATGAGTGTGAAGGGAGGCCGTGCCCTAATGCTTTCTGCAAAAACC
 TGATTGGCGGCTATTACTGTGATTGCCCTCCGGGCTTGAAGGGCATCAACTGCCAATCACAT
 CAACGATTGTATGGGAGGTGTCAGCATGGGGCACCTGCAAGGACCTGGTCAATGGGTACCA
 GTGTGTGCCCCGGGGCTTGGAGGTGCCATTGCAACTAGAGTACGACAAGTGTGCCAG
 CAGCCCTGCCGGGGTGGCATCTGCGAGGGACCTGGGATGGCTCCGCTGCCACTGCCCA
 CGGGGCTCTCTGGGCTGCACTGTGAGGTGACATGGATCTGTGAACCAAGCCCTGCCCTCA
 ACGGTGCTCGCTGCTACAACCTTGAGGGTGACTIONACTGCGCCTGCCAGAAGACTTGGTGG
 CAAGAACTGCTCAGTGCCAGGGACACATGCCCTGCCGGGATGTAGAGTGTGATGGCTG
 CGGGTTCGAGGCAGGGTCCAGGGCACGCCGGTGCACCCCTGCTGATCTGTGACAGCGGCTTCAAGGCACC
 GCACTGCGTTAGCCTGCCCTGGGGAAACTCTCCTGCTGATCTGTGACAGCGGCTTCAAGGCACC
 TACTGCCATGAAAACATTGACGACTGCATGGGCCAGCCCTGCCGCAACGGGGGACGTGCATT
 GACGAAGTGGACTCCTCCGCTGCTCTGCCCTGGGAGGAAGGAGAACTCTGTGACATCA
 ATCCCAACGACTGCCCTCCGACCCCTGCCACAGCCGCCGCTGCTATGACCTGGTCAATGA
 CTTCTACTGTGCGCTGTGACGATGGCTGGAAGGGCAAGACCTGCCACTCACCGAGTTCCAGTGT
 GACGCTCACCTGCAGCAACGGTGGCACATGCTATGACAGCGGCGACACCTCCGCTGCCG
 TGCCCTCCGGGCTGGAAGGGCAGCACCTGCACCATGCCAAGAACAGCAGCTGTGCCCCAAT
 CCCTGTGTAATGGAGGCACCTGCGTGGTAGCGGAGACTCTTCTCCTGCATCTGCCGGGATG
 GCTGGGAGGGCCGACCTGCACACATAACACCAATGACTGCAACCCCTGCCCTGCTATAACG
 GAGGCATCTGTGTTGATGGCCTCAACTGGTCCGCTGAGTGTGCGCTTGGCCCCAGGTGCCAGGAA
 GATGAGATCAACGGGTACCGCTGCAGCTGCCACCGAGTCGTTCTGGCCATGGAGTTCTGG
 TGACTGCCGTATCAACATTGATGAGTGCAGCTGCCACCGAGTCGAGTGTGCGCTTGGGGTCC
 GAGGCATCTGTGTTGATGGCCTCAACTGGTCCGCTGAGTGTGCGCTTGGCCCCAGGTGCCAGGAA
 GTGGTCATATTACGAGGCCCTGCTGGTCCGGGAATGCTCTCCGCATGGAGTTCTGG
 TGGAAAGACTGCAACAGCTGCCCTGGATGCCACCGGGATTGTAGCAAGGTATGGTGC
 GATGGAAGCCTGCCCTGCTCTGGTCAGCCCAGCGATCCGAGTGCCAGTGCCCTGAGGCA
 GCAATGTCAGGAGAAGGCCGTGGTCAGTGCAGCCACCCCTGTGAGAAACTGGGGGAGTG
 TACAGCGGAGGAGCCTGCCACCCAGCACCCCTGTGAGCCACGGAGCAGTCATTGGACAA
 CAACTGTGCCGACTCACACTGCCCTCAACCGTGTCAAGTGCCTCAGGGACCACCGTGGC
 GCTATCTGCTCTGGAATCCGAGCCTGCCCTGCCACGAGGGCGGGCACAGGCCCTCC
 TGCTGCTTGTGATCGAGCATCCTGCCCTGGGGCAGTGCAGTGTGGAGGTGGCTATGTCTT
 TGCAAGGGACCTGCCCTGACAGCAGCCTGATCCAGAGCACAGCCACGCCATGTGGCTGCTAT
 CACTCAGAGAGGAAATAGCTCACTGCTGGCTGTGACCGAGGTCAAGGTGGAAACAGTTGT
 TATGGGTGGCTTCCACAGGTCTGTTGGTCCCCTGCTGTGACCGTGTGCTAGTGTGCTG
 TCGCCTGTTGTTATCTGCTGAGTGGACACGAAAGCGCAGGAAAGAACGTGAGAGGAGCC
 GGCTACCGGGATGAGAGCACCAACAACAGTGGGCCCTGCTCAATCCCATCCGAACCCCA
 TTGAGCGGCCAGGCCAGCGCTGGCACTGGGGCACAAGGACATACTTACCAAGTGC
 AAAACTCACACCGCCGCCCGCAGGGCAGGCAGGCACGGCCAGTGCCGGCAGTGGCATGGG
 CTGGTGGGGAGGACGAGGAGGATGAAGAGCTGAGCCGTGGAGATGGGACTCCCCAGAGGCA
 GAGAAGTTCATCTCACACAAGTCAACAAAGACCCAGCTGCCCTCGGAAGGCCAGCCTGCT
 GGGCTCCAGGGCCAAAGTGGACAACCGGCCGTCAAAGTACCAAGGACGTGCCCTGCTG
 GCAGGGAGTAGCCAGCCACCGAGGCTGGCACCCAGAACCTTGTGCGCACCAGCCTGCC
 GACCATAGGAGGCCAGGCCGTGCTAGTGTGTTATTTGTGAAAAAAACAAAAACAAAAAC
 CAAAAAAACAAACGGAGTATTCTGGATCATTGCTATTGTGAAAGTTCCGCGTCGACGCAC
 CGGAAAAACAAACGGAGTATTCTGGATCATTGCTATTGTGAAAGTTCCGCGTCGACGCAC
 TGTGGCAGGAGAGCAGGGCGTGTGATGTGTGTGTGTCCTCACC

Figure 8

GAAGGCCATGGCTCCCCACGGATGTCCGGGCTCCCTCCAGACTGTGATCCTAGCGCTATTTCTC
 CCCCAACACGGCCCGTGGCGTCTCGAGCTGAGATCCACTCTTCCGGGGGGTCCAGGCCCTGGG
 CCCCGGGTCCCCCTGCAGCGCCGGCTCCCTGCCCTTCAAGAGTCTGCCGAAGCCTGGGCT

CTCAGAGGAGGCCGAGTCCCCGTGCGCCCTGGCGCGCGCTGAGTGCAGCGCGAACCGGCTACACC
 GAGCAGCCGGAGCGCCCGCGCTGATCTCCACTGCCCCACGGGCTCTGCAGGTGCCCTCCGGGACG
 CCTGGCCTGGCACCTCTTCATCATCGAAACCTGGAGAGAGGAGTTAGGAGACCAGATTGGAGGGCC
 CGCCTGGAGCCTGCGCGCTGGCAGGCGCGCTGGCAGCCGGAGGCCCTGGGGCCGG
 ATTCAGCGCGCAGGCCCTGGAGCTGCGCTCTCGTACCGCGCGCTGCGAGGCCCTGCCGTCGGGA
 CCGCGTGACGCCCTGCCGTCCCGCAGGCCCTCGCGTCCGGACTGCCCTGCC
 ACCGCTCGAGGACGAATGTGAGGCCGCTGGTGTGCGAGCAGGCTGAGCCCTGAGCATGGCTTGT
 AACACAGCCGGTGAATGCCGATGCCTAGAGGGCTGGACTGGACCCCTGCAACGGTCCCTGTCTCCACCA
 GCAGCTGCCCTAGCCCCAGGGCCCTCGTACCAACGGATGCCCTGCCCTGGGCTGGGCCCTG
 TGACGGGAACCGTGTGCCAATGGAGGCAGCTGTAGTGAAGACACCCAGGTCTTGAATGCACCTGCC
 CGTGGGTTCTACGGCTCGGTGTGAGGTGAGGGTGAATGTGAGATGGACCCCTGCTCAACGGCG
 GCTTGTGTGCGGGGTGCAAGACCCCTGACTCTGCCACTGCCACCTGGTTCCAAGGCTC
 CAACTGTGAGAAGAGGGTGGACCGGTGCAAGCCATGCCCAATGGCGACTGCCCTGGACCG
 GGCCACGCCCTGCCGTGCCGTGCCCGCTCGCGGGCTCGCGGCTCGTGCAGCACGACCTGGACCGACT
 GCGCGGGCCGCGCTGCGCTAACGGCGGACGTGTGTGGAGGGCGCGCCACCGCTGCTCC
 GCTGGGCTCGGCCGCGACTGCCCGAGCGCGCGAACCGTGCACGCCGCCCTGTGCTCACGGC
 GGCGCTGCTACGCCACTCTCGGCCCTGCTGCGCTTGCGCTCCCGTACATGGGAGCGCGGTGTG
 AGTTCCCAGTGCACCCGACGGCGCAAGGCCCTGCCCGGGCCGCCGGGCTCAGGCCGGGACCC
 TCAGCGCTACCTTGTGCCCTGGCTCTGGGACTGCTGTGCGCCGGCGTGGCGCTGCGCTCTG
 CTGGTCAACGTGCGCCGCCGTGGCACTCCCAGGATGCTGGTCTCGCTTGCTGGCTGGGACCCGGAGC
 CGTCAGTCCACGCACTCCCGATGCACTCAACAACCTAAGGACGCAAGGAGGGTCCGGGATGGTCCGG
 CTCGTCGCTAGATTGGAATGCCCTGAAGATGTAGACCCCTCAAGGGATTATGTCAATCTGCTCC
 ATCTACGCTCGGGAGGTAGCGACGCCCTTTCGGGCGTACACACTGGCGCGCTGGGAGAGGAGC
 ACCTGCTTTTCCTACCCCTCTGATTCTGTCGTGAATGAATTGGTAGAGTCTCTGGAAGGTTT
 AAGCCCATTTCAGTCTAACCTACTTCATCCTATTTGCATCCCTTATCGTTGAGCTACCTGCC
 ATCTCTCTT

Figure 9

AAACCGGAACGGGGCCAACCTCTGGGGCTGGAGAAGGGAAACGAAGTCCCCCGGTTCCGAGGT
 GCCTTCTCGGGCATCTGGTTGGCTGGGGACTTCGAGGGGATATAAAAGAACGGCGCTTGGGA
 AGAGGCGGAGACCGGCTTAAAGAAAGAAGTCTTGGTCTCGGGCTTGGCGAGGCAAGGGCGAGGCAG
 GGCGCTTCTGCCACGCTCCCGTGGCCCTACGATCCCCCGCGCTCCGCCGCTGTTCAAGGAGAGAA
 GTGGGGCCCCCAGGCTCGCGCTGGAGCGAAGCAGCATGGCAGTGGTGCACGCCGCTGGCCCTGGCGT
 GCTCTCGGCCCTGCTGTCAAGGTCTGGAGCTCTGGGTGTTGAACTGAAGCTGCAGGAATTGCTCAAC
 AAGAAGGGCTGCTGGGAACGCAACTGCTGCCCGGGGCCACGCCGTGCGCTGCCGA
 CCTCTCCCGCTGCTCAAGCACTACCAGGCCAGCGTGTCCCCCGAGCCGCCCTGCACCTACGGCAG
 CGCCGTACCCCGTGTGGCGTCACCTTCAGTCTGCCGACGGCGGGCGCGACTCCGCTTC
 AGCAACCCATCCGCTTCCCTCGCTTACCTGGCGGGACCTCTCTCTGATTATTGAAGCTCTCC
 ACACAGATTCTCTGATGACCTCGCAACAGAAAACCCAGAAAGACTCATGCCCTGGCCACCCAGAG
 GCACCTGACGGTGGCGAGGAGTGGTCCCAGGACCTGCAACAGCAGCGGCCACGGACCTCAAGTACT
 TACCGCTTCGTGTGACGAACACTACTACGGAGAGGGCTGCTCCGTTCTGCCGTCCCCGGGAGATG
 CCTTCGGCCACTTCACCTGTGGGAGCGTGGGAGAAAAGTGTGCAACCCGGTGGAAAGGGCCCTACTG
 CACAGAGCGATCTGCCCTGGATGTGATGAGCAGCATGGATTGTGACCAAACCAAGGGGAATGCAAG
 TGCAGAGTGGGTGGCAGGGCGGTACTGTGACGAGTGTATCCGCTATCCAGGCTGTCTCCATGGCACCT
 GCCAGCAGCCCTGGCAGTGCACACTGCCAGGAAGGCTGGGGGGCTTCTGCAACCCAGGACCTGAAC
 CTGACACACCCATAAGCCCTGCAAGAATGGAGCCACCTGCAACCAACCGGGCAGGGAGCTACACTC
 TCTGCCGGCTGGTACACAGGTGCCACCTCGAGCTGGGATTGACGAGTGTGACCCAGCCCTGTA
 AGAACGGAGGGAGCTGACGGATCTCGAGAACAGACTCTGTACCTGCCAACCGGCTCTACGGCAA
 AATCTGTGAATTGAGTGCACATGACCTGTGCGGACGCCCTGCTTAACGGGGGTCGGTGCAGACAGC
 CCCGATGGAGGGTACAGCTGCCGTGCCCGTGGGCTACTCCGGCTCAACTGTGAGAACAAAATTGACT
 ACTGAGCTCTCACCTGTTCTAACAGGTGCAAGTGTGGACCTGGTGTGATGCCACCTGTGCC
 CCAGGCCGGCTCTCGGGAGGGACTGTGACGACAACGTGGACGACTGCCCTCTCCCGTGCACCG
 GGGGGCACCTGCCGGATGGCGTGAACGACTCTCTGCCACCTGCCGCTGCTACACGGGAGGGCA
 GCAGTGCCTCCCGTACGAGGTGCGAGCAGCACCGTCCACAATGGGGCACCTGCCACCAAGAGGGCA
 CGGCTATGTGTGCGAATGTGCCCGAAGCTACGGGGTCCCAACTGCCAGTTCTGCTCCCCGAGCTGCC
 CGGGGCCAGGGTGGTGGACCTCACTGAGAACGACTAGAGGGCAGGGGGCCATTCCCTGGGTGGCG
 TGTGCGCCGGGGTACCTTGTCTCATGCTGCTGGGCTGTGCGCTGTGGTGTGCGTCCGGCT
 GAGGCTGAGAACGACCCGGCCCCAGCGACCCCTGCCGGGGAGACGGAGACCATGAACAACCTGGC
 AACTGCCAGCGTGAAGAAGGACATCTCAGTCAGCATCGGGGCCACGAGATCAAGAACACCAAC
 AGGGGACTTCACGGGGACCACAGGCCGACAAGAATGGCTCAAGGGCCCTACCCAGGGTGGACA
 TAACCTCGTGCAGGACCTCAAGGGTACGACACCGCCGTCAGGGACGCCACAGCAAGCGTACACCAG

TGCCAGCCCCAGGGCTCCTCAGGGAGGAGAAGGGACCCGACCACACTCAGGGGTGGAGAACATCG
 AAAGAAAAGGCCGGACTCGGGCTGTTCAACTTAAAGACACCAAGTACCAAGTCGGGTACGTATATC
 CGAGGAGAAGGATGAGTCGCTCATAGCAACTGAGGTGAAATGGAAGTGAAGATGGCAAGACTCCCGTT
 CTCTAAAATAAGTAAATTCCAAGGATATATGCCCAACGAATGCTGCTGAAGAGGGAGGCCCTCGT
 GGACTGCTGCTGAGAAACCGAGTTCAAGACCGAGCAGGTTCTCCCTGAGGTCTCGACGCCCTGCCGACA
 GCCTGTCGCCGCCGGCCCTCGGCCTGCCACTGCCCTCCGTGACGTGCCGTTGCACTATGGACAGITGCTC
 TTAAGAGAATATATTTAAATGGGTGAACTGAATTACGCCATAAGAACATGCACTGCCCTGAGTGTATAT
 TTTGGATTCTTATGAGCCAGTCTTCTGAATTAGAAACACAAACACTGCCCTTATTGTCTTTTGAT
 ACGAAGATGTGCTTTCTAGATGGAAAAGATGTGTTATTGATTTGATTTGATTTTCAAGTAAATTTTCAAG
 ATATCTGAAAGCTGAGTATTGATGTTGCTTTTATAATTAAATTGATGAAATATGTACAAA
 GGCACCTCGGGCTATGTGACTATATTGATATAAATGTTATGGAATATTGTGCCAATGTTA
 TTGAGTTTTACTGTTGTTAATGAAGAAATTCTTTAAATATTGATTTCAAAATAATTITATG
 AGGAATTC

Figure 10

ATGGCGGCAGCGTCCCGGAGCGCCTCTGGCTGGCGCTACTGCTGTTGGCACTTGGCAGCGCG
 CGGCCGGCTCCGGCGTCTTCAGCTGCAAGCTGCAAGGAGTTCAACAGAGCGCCGCTACTGCCAGTGG
 CGGCCCTGCAAGCCGGCTGCCGACTTTCTCCCGCTGCCCTAACGACTTCCAGGGCTGCTCG
 CCCGACCCCTGCACTTCGGGACCGTCTCCACGCCGGTATTGGCACCAACTCTTCGCTGCTCCGGGACG
 ACAGTAGCGGGGGGGCGCAACCCCTCTCAACTGCCCTCAATTTCACCTGGCCGGTACCTCTCGCT
 CATCATCGAAGCTTGGCACGCCAGGAGACGACCTGCCAGAGGCTTGCACAGATGCACTCATC
 AGCAAGATGCCATCCAGGGCTCCCTAGCTGTTGGTCAGAACTGGTTATTGGATGAGCAAACAGCACCC
 TCACAAGGCTGCCACTCTTACCGGGTCACTGCAAGTAACTACTATGGAGACAATGCTCCCGCT
 GTGCAAGAAGCGCAATGACCAACTCGGCCACTATGTGTCAGCCAGGCAATGGCAACTGTCCTGCC
 GTTGGACTGGGAATTGCAACAGCTATGTCTTGGCTGTCATGAACAGAATGGCTACTGCA
 GCAAGCCAGCAGAGTGCCTCTGCCGCCAGGCTGGCAGGGCCGGTGTGTAACGAATGCATCCCCACAA
 TGGCTGCCCACGGCACCTGCAAGCACTCCCTGGCAATGTAATTGATGAGGGCTGGGAGGCCCTGTT
 TGTGACCAAGATCTCAACTACTGCACCCACCCTCCCATGCAAGAATGGGCAACGTGCTCAACAGTG
 GGCAGCGAAGCTACACCTGCACCTGTCGCCAGGCTACACTGGTGTGACTGTGAGCTGGAGCTCGA
 GTGTGACAGCAACCCCTGCGCAATGGAGGCAGCTGTAAGGACCAGGAGATGGCTACCAACTGCC
 CCTCCGGCTACTATGCCCTGCAATTGTAACACAGCACCTTGAGCTGCCACTCCCCCTGCTTCAATG
 GGGCTCCTGCCGGAGCGCAACCAAGGGGCAACTATGCTTGTGAATGTCCCCCAACTTACCGGCTC
 CAACTGCGAGAAGAAAGTGGACAGGTGACCGAGCAACCCCTGTGCCAACGGGGACAGTGCCTGAACCA
 GGTCAAGCGCATGTGCCCTGCCGATTCACTGGGACCTACTGTGAACCTCCACGTGCGACT
 GTGCCGTAACCCCTGCGCCACGGTGGCACTGCCATGACCTGGAGAATGGCTCATGTCACCTGCC
 TGCCGCTCTGCCGACGCTGTGAGGTGCCACATCCATCGATGCCCTGCCAGTCCCTGCTTC
 AACAGGGCCACCTGCTACACGACCTCTCCACAGACACCTTGTGCAACTGCCCTATGGCTTGTGG
 GCAGCCGCTGCGAGTCCCCGTGGCTGCCGCCAGCTCCCTGGGTGCCGCTCGCTGGGTGG
 GCTGGCAGTGTGCTGGTACTGCTGGCATGGTGGCAGTGGCTGTGCCAGCTGCCGCTCGACGCC
 GACGACGGCAGCAGGGAGCCATGAACAACCTGCGGACTTCCAGAAGGACAACCTGATTCTGCC
 AGCTTAAAACACAAACAGAAGAAGGAGCTGGAAGTGGACTGTGCCCTGGACAAGTCCAACGTGGCA
 ACAGCAAAACACACATGGACTATAATCTGGCCCAGGGCCCTGGGCGGGGGACATGCCAGGAAG
 TTTCCCCACAGTACAAGAGCTTAGGAGAGAAGGCCACTGCCGTACACAGTAAAAGCCAGAGTGC
 GGATATCAGCGATATGCTCCCCAGGGACTCCATGTACCGAGTGTGTTGATATCAGAGGAGAGGAA
 TGAATGTGTCATTGCCACGGAGGTATAA

Figure 11

CTCGCAGGCTAGGAACCCGAGGCCAAGAGCTGCAGCAAAGTCACCTGGGTGCAGTGTACTCCCTCACTA
 GCCCGCTCGAGACCCCTAGGATTGCTCCAGGACACGTACTTAGAGCAGCCACCGCCAGTCGCCCTCACC
 TGGATTACCTACCGAGGCATCGAGCAGCGGAGTTTGAGAAGGCAGAACAGGAGCAGCGTCCCGAGGG
 AATCAGCTTTCAAGAACCTGGCTGGCAGACGGGACTTGCGGGAGAGCGACATCCCTAACAGCAGATT
 GGAGTCCCGGAGTGGAGAGGACACCCCAAGGGATGACGCCCTGCCGAGGCCCTGCGCTGGCGT
 ACTGCTGCTGGCGGTACTGTGGCCGAGCAGCGCCTGCCGCTCCGGCATCTCCAGCTGCCGCTGCAG
 GAGTTCGTCAACCAGCGCGGTATGCTGCCAATGGCAGTCCCTGCCAACCGGGCTGCCGACTTCTT
 GCATTGCTTAAGCACTTCCAGGCAACCTTCTCCGAGGGACCCCTGCCACCTTGGCAATGTCTCC
 GGTATTGGCACCAACTCTTCGCTGTCAGGGACAAGAATAGCGGAGTGGTGCACCCCTGCACTG
 CCCTCAATTCAACCTGCCGGAACCTCTCACTCAACATCCAAGCTGGCACACACCGGGAGACGACC
 TGCGGCCAGAGACTTCGCCAGGAAACTCTCATCAGCAAATCATCATCCAAGGCTCTTGTGTTGG

TAAGATTGGCGAACAGACGGAGCAAATGACACCCTCACCAAGACTGAGCTACTCTTACCGGGTCATCTGC
 AGTGACAACATACTATGGAGAGAGCTGTTCTGCCTATGCAAGAAGCGCAGTACCCACTTCGGACATTATG
 AGTGCAGGCCAGATGGCAGCCTGTCTGCCTGCCGGCTGGACTGGGAAGTACTGTGACCAGCCTATATG
 TCTITCTGGCTGTCTATGAGCAGAAATGGTTACTGCAGCAAGCCAGATGAGTGCATCTGCCGTCAGGTTGG
 CAGGGTCGCCTGTCAATGAATGTATCCCCACAATGGCTGTCATGGCACCTGCAGCATCCCCTGGC
 AGTGTGCCTGCGATGAGGGATGGGGAGGTCTGTTGTACCAAGATCTCAACTACTGTACTCACCAC
 TCCGTGCAAGAATGGATCAACGTGTTCAACAGTGGGCAAAGGGTATACCTGCACCTGTCTCCCAGGC
 TACACTGGTGAGCACTGTGAGCTGGGACTCAGCAAGTGTGCCAGCAACCCCTGTGAAATGGTGGCAGCT
 GTAAGGACCAGGAGAATAGTACCAACTGCCTGTGCCCCCAGGCTACTATGCCAGCACTGTGAGCATAG
 TACCTTGACCTGTGCGGACTCACCCCTGCTTCAATGGGGCTCTTGCCGGAGCGCAACCAGGGTCCAGT
 TATGCCGCAATGCCCCCCAACCTTACCGGCTCTAATGTGAGAAGAAAAGTAGACAGGGTGTACCAAGCA
 ACCCGTGTGCCAATGGAGGCCAGTGCCTGAAACAGAGGTCCAAGCGAACCTGCCGTGCCGCTGGGATT
 CACAGGCACCCACTGTGAACTGCACATCAGCATTGTGCCGAAGTCCCTGTGCCACGGGGCACTTGC
 CACGATCTGGAGAATGGGCTGTGTCACCTGCCGCTGGCTCTGGCAGGGCCTGCCAGGGTGC
 TAACCCACGATGCCGTGCCCTCCGGACCCCTGCTCAATGGGCCACCTGCTACACTGCCCTCTCCCCAAA
 CAACTTCGTCTGCAACTGTCTTATGGCTTGTGGCAGCCGCTGCAGTTCCGTGGCTGCCACCC
 AGCTTCCCTGGGTAGCTGTCGCTGGCGTGGGCTAGTGGTACTGCTGGTGTGTCATGGTGG
 TAGTGGCTGTGCCGAGCTGCCGCTCGGAGGCCAGTACGAGAGCAGGGAAAGCCATGAAACATCTGC
 AGACTTCCAGAAGGACAACCTAATCCCTGCCGCCCAGCTCAAAACACAAACAGAAGAAGGAGCTGG
 GTGGACTGTGGTCTGGACAAGTCAAATTGTGGCAAACACTGCAGAACACACATTGGACTACAATCTAG
 CGGGACTCCTAGGACGGGCAGCATGCCCTGGGAAGTATCCTCACAGTGACAAGAGCTAGGAGAGAAGT
 GCCACTTCGTTACACAGTGAGAAGCCAGTGTGAAATCAGCCATTGCTCTCCAGGGACTCTATG
 TACCAATCAGTGTGTTGATATCAGAAGAGAGGAACGAGTGTGATTGCCACAGGGTATAAGGCAGA
 GCCTACTCAGACACCCAGCTCCGCCAGCAGCTGGCCTCTGCAATTGTTACATTGCATCCTGT
 ATGGGACATTTAGTATGACAGTGTGCTCTGGGAGGAGGAATGGCATGAACTGAAACAGAC
 TGAACCCGCCAAGAGTTGACCCGCTTGACACCCCTCAGGAGTCTGCCCTGGCTCAGATGGCAGCCCC
 GCCAAGGGAACAGAGTTGAGGAGTTAGAGGAGCATCAGTTGAGCTGATATCTAAGGTGCCCTCGAACCT
 GGACTTGCTCTGCCAACAGTGGTCACTATGGAGCTCTGACTGTTCTCCAGAGAGTGGCAGTGGCCCTAG
 TGGGTCTGGCGCTGTAGCTCTGGCATCTGTTTCCAAAGTGCCTTGGCCAGACTCCATCC
 TCACAGCTGGGCCAAATGAGAAAGCAGAGAGGAGGCTTGCAAAGGGATAGGCCCTCCGCAGGCAGAACG
 CCTTGGAGTTGGCATTAAAGCAGGAGCTACTCTGCAAGGTGAGGAAGGCCGAGGGGACACGTGTGC
 TCCTGCCCTCCAACCCAGCAGGTGGGTGCCACCTGCAGCCTCTAGGCAAGAGTTGGCCTTCCCTGGT
 CCTGGTGCCTCTGGCTCATGTGAAACAGATGGCTTAGGGCACGCCCTTGGCAGGCCAGGGTACAGG
 CCTCACTGGGAGCTCAGGCCCTCATGCTAAACTCCCAATAAGGGAGATGGGGGGAGGGGGCTGTGC
 CTAGGCCCTCCCTCCCTCACACCCATTGGGCCCTGAGCCTGGCTCCACAGTGCCACTGTGC
 CCCGAGACCAACCTGAAAGCCGATTTCAAAAATCAATAATATGAGGTTTGAGTTGAGTTTATTTGG
 AATCTAGTATTGATAATTAAAGAACAGACTGCCCTTCTACATTAAACATTATTTGTAT
 ATAATGTGATTATAATATGAAACAGATGTGACATAAAAAAAAAAAAAAA

Figure 12

AAACCCACTCCACCTTACTACCAGACAACCTAGCCAAACCATTACCAAATAAAGTATAAGGC
 GATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATGAAAAATTATAAC
 CAAGCATAATATAGCAAGGACTAACCCCTAACCTCTGCATAATGAATTAACTAGAAATAACT
 TTGCAAGGAGAGTCAAAGCTAAGGCCCGAAACCAGGCAGCTACCTAAGAACAGCTAAAA
 GAGCACACCCGCTATGTAGCAAATAGTGGGAAGATTATAGGTAGAGGCAGCAAACCTACC
 GAGCTGGTATAGCTGGTGTCCAAGATAGAATCTAGTCAACTTAAATTGCCACAGAA
 CCCTCTAAATCCCTGTAAATTAACTGTTAGTCCAAAGAGGAACAGCTTGGACACTAGG
 AAAAACCTTGTAGAGAGAGTGTGAGGCCAACTTCCACACTTCCACATTGTTGAGTGGCCTTGG
 AGTGGTAGCCATAAGCATTGGAAATTCAACTAAAAGTGAAGGATCTGAGGACGGCAGT
 ACCTGGCATACTACACAGTCAGCGTTCAACAAGTGTGCAAAGGTACATTGGGCACTGG
 GGCACGAGTGATCTGTGACAATATCCCTGGTTGGTGAAGCCGGCAGCGGCAGCTGTGCCAGCGT
 TACCCAGACATCATGCCCTGAGCGGGAGGGTGGCTGCCAGAATGGATCCGAGAGTGTGAC
 CAATTCCGCCACCACCGCTGGAACTGTACCAACCCCTGGACCGGACACCCGTCTTGGCCGTG
 TCATGCTCAGAAGTAGCCGAGAGGCAGCTTGTATATGCCATCTCATCAGCAGGGGTGATCCA
 CGCTATTACTCGCGCCTGTAGCCAGGGTGAACGTGAGTGTGCACTGTGACCCCTACACCGT
 GGCCGACACCATGACCAGCGTGGGACTTTGACTGGGGTGGCTGAGTACAGTACAACATCCACTAC
 GGTGTCGTTTGCCAAGGCCCTCGTGGATGCCAAGGAGAAGAGGCTTAAGGATGCCGG
 CTCATGAACTTACATAACCGCTGTGGCGCACGGCTGTGCGCGGTTGTCAAGCTGGAGT

GTAAGTGCATGGCGTAGTGGTCTGTACTCTGCGCACCTGCTGGCGTGCACTCAGATT
 CCGCCGCACAGGTGATTACCTGCGCGACGCTATGATGGGGCTGTGCAGGTGATGCCACCA
 AGATGGTGCAACTTCACCGCAGCCGCAAGGCTATGCCGTGCCACCCGGAGTGTATTTGTC
 TACTTGACAACCTCTCCAGATTACTGTGTCTGGACAAGGCTGCAGGTTCCCTAGGCAGTCAG
 GCCGTGCTGCAGCAAGACATCAAAGGAACAGACGGTTGTGAAATCATGTGTGCTGGCCAG
 GGTACGACACAACTCGAGTCACCCGTGTTACCCAGTGTGAGTGCAAATTCACTGGTGTGTC
 TGTACGGTGCAAGGAATGCAGAAATACTGTGGACGTCATACTGCAAAGCCCCAAGAAGGC
 AGAGTGGCTGGACCAGACCTGAACACACAGATACTCACTCATCCCTCCAATTCAAGCCTCTCA
 ACTCAAAGCACAAGATCCTGATGCACACCTCCCTCCACCCCTCCACCCCTGGGCTGCTACCGC
 TTCTATTAAGGATGTAGAGAGTAATCCATAGGGACCATGGTGTCTGGCTGGTCTTAGCCC
 TGGGAAGGAGTTGTGAGGGATATAAGAAACTGTGCAAAGCTCCCTGATTCCGCTGGAGAT
 TTGAAGGGAGAGTAGAAGAGATAGGGGCTTTAGAGTGAAATGAGTTGCACTAAAGTACGTA
 GTTGAGGCTCCTTTCTTCTTGTGACCAAGCTCCGACACTTCTTGGTGTGCAAGAGGAAG
 GGTACCTGTAGAGAGCTCTTGTGTTCTACCTGGCAAAGTTAGATGGGACAAAGATGAATG
 GCATGCTCCCTCTGAAGTCCGTTGAGCAGAACTACCTGGTACCCCGAAAGAAAAATCTTAG
 GCTACCACATTCTATTATTGAGAGCCTGAGATGTTAGCCATAGTGGACAAGGTTCCATTACAT
 GCTCATATGTTATAAAACTGTGTTGTAGAAGAAAAGAATCATAACAATACAACACACATT
 CATTCTCTCTTCTCTACCATCTAACCTGTATTGGACAGCACTGCCTCTTGCTTACTT
 GCTGCTGTCAAACGTAGGGATGCAGTGGTCCATGCTAACAGATCATTAAAACACCC
 TAGAACACTCCTAGGATAGATTAAATGT

Figure 13

ACCGCAGGGGGCTCCGGACCCCTGACTCTGCAAGCCGAACCGGCACGGITTCGTGGGGACCCAG
 GCTTGAAAGTACGGTATTTCTCTTCTCCCTTGTGAGTCCTCTGAGATGATGGCTCT
 GGGCGCAGCGGGAGCTACCCGGGCTTTGTCGCGATGGTAGCGGCGGCTCGGGCGGCCACCC
 TCTGCTGGGAGTGAGCGCCACCTGAACTCGGTTCTCAATTCAAACGCTATCAAGAACCTGCC
 CCACCGCTGGCGCGCTCGGGGCACCCAGGCTCTGAGTCAGCGCCGCCGGGAATCTG
 TACCCGGCGGGATAAGTACCAAGACCAATTGACAACCTACAGCCGTACCCGTGCCAGAGGAC
 GAGGAGTGCAGCACTGATGAGTACTGCGCTAGTCCCACCCGGAGGGGACGCAGGCGTGC
 ATCTGCTCGCCTGCAGGAAGCGCCGAAACGCTGCATGCGTCACGCTATGTGCTGCCCGGG
 ATTACTGAAAAATGAAATATGTGTCTCTGATCAAATCTTCCGAGGAGAAATTGAGGA
 AACCATCACTGAAAGCTTGGTAATGATCATAGCACCTGGATGGTATTCCAGAAGAACCA
 TTGTCITCAAAATGTATCACACCAAAGGACAAGAAGGTTCTGTTGTCTCCGGTCATCAGACT
 GTGCCTCAGGATTGTGTGCTAGACACTCTGGTCAAGATCTGTAACACCTGCTCTGAAAGA
 AGGTCAAGTGTGATCAAGCATAGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGTTG
 TTACTGTGGAGAAGGTCTGTCTGCCGGATACAGAAAGATCACCACAGCCAGTAATTCTCT
 AGGCTCACACTGTCAAGAGACACTAAACCAGCTATCCAAATGCACTGAACCTTTATATAA
 TAGATGCTATGAAAACCTTTATGACCTCATCAACTCAATCCTAAGGATAACAAGTCTGTG
 GTTCAGTTAACGATTCCAATAACACCTCCAAAACCTGGAGTGTAAAGAGCTTGTCTTAT
 GGAACCTCCCTGTGATTGCAAGTAAATTACTGTATTGAAATTCTCAGTGTGGCACTACCTGAA
 ATGCAATGAAAACCTTAAATTATTCTAAAGGTGCTGCACTGCCTATTCTCTGTATGTA
 AATTCTGTACACATTGATTGTTCTGACTGACAAATATTCTATATTGAACATGAAAGTAAATCA
 TTTCAGCTTATAGTTCTAAAGCATAACCCCTTACCCCTTAAATTCTAGAGTCAAGACGAA
 GGATCTCTGGAAATGACAAATGATAGGTACCTAAAGTAAACATGAAATACTAGCTTATTTC
 TGAAATGTACTATCTTAATGCTTAAATTATAATTCCCTTAGGCTGTGATAGTTTGAAATAAA
 ATTTAACATTAAATCATGAAATGTATAA

Figure 14

AGAAAGCGGGAGCCCGCGCGAGCGTAGCGCAAGTCCGCTCCCTAGGCATCGCTCGCTGGCA
 GCGATTCGCTGTCTTGTGAGTCAGGGACAACGCTCGGGCAACTGTGAGTGCAGCTGTGG
 GGGACCTCGATTCTCTCAGATCTCGAGGATCGGTCCGGGACGTCTCCTGATCCCTACTAA

AGCGCCTGCTAACTTGAAGGAGCACTGTGTCCTGCAAAGTTGACACATAAAGGATAGGA
AAAGAGAGGAGAGAAAAGCAACTGAGTTAAGGAGAAGGAGCTGATGCGGGCCTCTGATCA
ATTAAAGAGGAGAGTTAACCGCCGAGATCCCAGGGACCAAGGAGGTGCGGGCAAGAAGG
AACGGAAGCGGTGCGATCCACAGGGCTGGGTTCTGCACCTTGGTCAGCCTCCTGGCGA
GAAAGCGCCTCGCATTTGATTGCTCCAGTTATTGAGAACTTCCTGCTCTGGTGAGAAGCG
GTCTCGCTGGGTTCCGCTAATTCTGTGAGGCGTGAGACTGAGTTCATAGGGCCTGGTC
CCCAGAACCAAGGGTTGAGGAACACAATCTGCAAGCCCCCGCACCCAAAGTGAGGGGCC
CGTGTGGGTCCTCCCTCCCTTGATTGCTCCAGGCGAGCAAGGATTGCTCTGCTGCCTACTGG
CCTCGCCGGAGATGGCCGCGTGTGAGGCGAGCAAGGATTGCTCTGCTGCCTACTGG
CCGCGGTGCTGATGGTGGAGAGCTCACAGATCGGCAAGTCGCGGGCCAAACTCAACTCCATCA
AGTCCTCTGGCGGGAGACGCCCTGGTCAGGCCCAATCGATCTGCGGCATGTACCAAG
GAUTGGCATTGGCGGCAGTAAGAAGGGAAAAACCTGGGCAGGCCTACCCCTGTAGCAGTG
ATAAGGAGTGTGAAGTGGAGGTATTGCCACAGTCCCCACCAAGGATCATGGCCTGCATGG
TGTGTGGAGAAAAAAAGAAGCGTGCACCGAGATGGCATGTGCTGCCAGTACCGCTGCA
ATAATGGCATTGTATCCCAGTTACTGAAAGCATCTAACCCCTCACATCCGGCTGGATGG
TAECTCGGACAGAGATCGAAACCACGGTCATTACTCAAACCATGACTTGGATGGCAGAACT
AGGAAGACCACACACTAACAGATGTCACATATAAAAGGCATGAAGGAGACCCCTGCCTACGATC
ATCAGACTGCATTGAAGGGTTTGCTGTGCTCGTCAATTCTGGACCAAAATCTGCAAACCAAGTG
CTCCATCAGGGGAAGTCTGTACCAAACAACGCAAGAAGGGTTCTCATGGGCTGGAAATTTC
CAGCGTTGCGACTGTGCGAAGGGCCTGTGCAAAGTATGGAAAGATGCCACCTACTCCCA
AAGCCAGACTCCATGTGTCAGAAAATTGATCACCATTGAGGAACATCATCAATTGAGACT
GTGAAGTTGTATTAATGCATTAGCATGGTGGAAAATAAGGTTAGTGCAGAAGAATG
GCTAAAATAAGAAACGTGATAAGAATATAGATGATCACAAAAAGGGAGAAAGAAAATGAA
CTGAATAGATTAGAATGGGTGACAAATGCACTGAGCCAGTGTGTTCCATTATGCAACTTGTCTA
TGTAATAATGTACACATTGTGAAAATGCTATTATAAGAGAACAGCACACAGTGGAAAT
TACTGATGAGTAGCATGTGACTTCCAAGAGTTAGGTTGTGCTGGAGGAGAGGTTCTTCAG
ATTGCTGATTGCTTATACAATAACCTACATGCCAGATTCTATTCAACGTTAGAGTTAACAA
AATACTCTAGAATAACTGTTATACAATAGGTTCTAAAATAAGGTTAAACAAAGAACAGCCACAAAT
AAACATGGAGCATTGTTAATTACAACAGAAAATTACCTTTGATTGTAACACTACTCTGCTG
TTCAATCAAGAGTCTGGTAGATAAGAAAAAAATCAGTCATATTCTCAAATAATTGCAAATA
ATGGCCAGTTGTTAGGAAGGCCTTAGGAAGACAAATAACAAACAGCCACAAAT
ACTTTTTTCAAATTTAGTTACCTGTAATTATAAGAACAGACAGAAAACAGTT
CCTTCAGATTCTACGGAATGACAGTATATCTCTTATCCTATGTGATCCTGCTGAAATGCA
TTATATTCTCAAACATACCCATAAATTGACTAGTAAACACTACACAGAGCAGAATTIT
CACAGATGGAAAAAAATTAAAGATGTCATATATGTGGAAAAGAGCTAACAGAGAGATC
ATTATTCTAAAGATTGCCATAACCTGATTGATAGAATTAGATTGGTAAATACATGTATT
CATACATACTGTGGTAATAGAGACTTGAGCTGGATCTGTACTGCACTGGAGTAAGCAAGAA
AATTGGGAAAACCTTCTGTTGTCAGGTTGGCAACACATAGATCATATGTGAGGCACA
AGTTGGCTGTTCATCTTGAAACCCAGGGATGCACAGTCTAAATGAATATCTGATGGATTG
CTATCATAATTACTATGCAAGATGAATTCACTGAGGTCTGTGTCCTGACTATCCTCAAAT
TATTATTATAGTGTGAGATCCTCAAATACTCAATTCACTGAGGTTGACAAATGGACT
CCTGAAGTAGACAGAGTAGTGAGGTTCTGATTGCCCTCTATAAGCTCTGACTAGCCAATGGCAT
CATCCAATTCTCCAAACCTGTCAGCATCTGCTTATTGCCAAAGGGCTAGTTGGTTT
CTGCAGCCATTGCGTTAAAAATATAAGTAGGATAACTGTAACCTGCAATTGCTAATCT
ATAGACACCACAGTTCTAAATTCTTGAAACCACTTACTACTTTAAACTAACAGTT
CTAAATACTTGTCTGGAGCACAAAACAATAAAAGGTATCTTATAGTCGTGACTTTAAACTTT
TGTAGACCACAATTCACTTTAGTTCTTACTAAATCCATCTGCACTCTCAAATTAAAGT
TCTCCAGTAGAGATTGAGTTGAGCCTGTATATCTATTAAAAATTCAACTCCCACATATAATT
TACTAAGATGATTAAGAGACTTACATTCTGCACAGGTCTGCAAAACAAAAATTATAAAACTAGT
CCATCCAAGAACCAAGTTGTATAAACAGGGTGTATAAGCTGGTAAATGAAAATGGAAC
ATTCAATCAAACATTCTATATAACAATTATTATACAAATTGGTTCTGCAATTGCTAATTTC
TTATGTCACCCCTTAAATTATTATTGAAAGTAAATTATTACAGGAAATGTTAATGAGATG
TATTCTTATAGAGATATTCTTACAGAAAGCTTGAGCAGAAATATAATTGCACTATTGACT
TTGTAATTAGGAAAATGTATAATAAGATAAAATCTATTAAATTCTCCTCTAAACTGA
ATTCAAAGC

Figure 15

15/41

ACACACAGGCGGCGGCTCGGGCGCAGAGCGGAGATGCAGCGGCTGGGCCACCCCTGCTGTG
 CCTGCTGCTGGCGCGCGGTCCCCACGGCCCCCGCGCCCGTCCGACGGCGACCTCGGCTCCA
 GTCAAGCCCAGCCCGGCTCTCAGCTACCCGAGGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGA
 GAGGTTGAGGAAGTGGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGA
 GGCAGAAGAAGCTGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACCTACCTCCCAGCTA
 TCACAATGAGACCAACACAGACAGAAGGTTGAAATAATACCATCCATGTGCACCGAGAAAAT
 TCACAAGATAACCAACAACCAGACTGGACAAATGGCTTTTCAGAGACAGITATCACATCTGTG
 GGAGACGAAGAAGGAGAAGGAGCCACGAGTGCATCATCGACGAGGACTGTGGGCCAGCAT
 GTACTGCCAGTTGCCAGCTCCAGTACACCTGCCAGCATGCCGGGGCAGAGGATGCTCTGC
 ACCCGGGACAGTGAGTGTGGAGACCAAGCTGTGTCTGGGTCACTGCACCAAAATGCC
 ACCAGGGGCAGCAATGGGACCATCTGTGACAACCAAGAGGGACTGCCAGCCGGGCTGTGCTGT
 GCCTTCCAGAGAGGGCTGCTGTTCCCTGTGTCACACCCCTGCCGTGGAGGGCGAGCTTGCC
 ATGACCCCCGCCAGCCGGCTCTGGACACCTCATCACCTGGAGCTAGAGCCTGATGGAGCCTGG
 CCGATGCCCTGTGCCAGTGGCTCCCTGCCAGCCCCACAGCCACAGCCTGGTGTATGTGTC
 AAGCCGACCTTCGTGGGAGCCGTGACCAAGATGGGAGATCCTGCTGCCAGAGAGGTCCCC
 GATGAGTATGAAGTTGGCAGCTTCATGGAGGGAGGTGCGCCAGGAGCTGGAGGACCTGGAGG
 AGCCTGACTGAAGAGATGGCGCTGGGGAGCCTGCCGTGCCGCGTGCAGTGTGGAGGG
 GAAGAGATTAGATCTGGACAGGGCTGTGGTAGATGTGCAATAGAAATAGCTAATTATTCC
 CCAGGGTGTGCTTCTGGCGTGGGCTGACCAAGGCTTCTCCTACATCTTCTCCAGTAAGTT
 CCCTCTGGCTTGCAGCATGAGGTGTGCACTTGTGTCAGCTCCCCCAGGCTGTTCTCCAGG
 TCACAGTCTGGCTTGGAGAGTCAGGCAGGGTAAACTGCAGGAGCAGTTGCCACCCCTGT
 CCAGATTATTGGCTGCTTGCCTCTACCAAGTGGCAGACAGCCGTTGTTCTACATGGCTTGAT
 AATTGTTGAGGGAGGGAGATGGAAACAATGTGGAGTCTCCCTCTGATTGGTTGGGAAATG
 TGGAGAAGAGTGCCTGCTTGCACACATCAACCTGGCAAAATGCAACAAATGAATTTC
 CGCAGTICCTTCATGGCATAGGTAAAGCTGTGCCCTCAGCTGGCAGATGAAATGTTCTGTC
 ACCCTGCATTACATGTGTTATTCACTCCAGCAGTGTGCTCAGCTCCTACCTCTGCCCCAGGG
 GCATTTCATATCCAAGATCAATTCCCTCTCAGCACAGCCTGGGGAGGGGTCATTGTTCTCC
 TCGTCCATCAGGGATCTCAGAGGCTCAGAGACTGCAAGCTGCTGCCCAAGTCACACAGCTAG
 GAAGACCAGAGCAGTTCATCTGGTGTGACTCTAACGCTCAGTGTCTCTCCACTACCCACAC
 CAGCCTGGTGCACCAAAAGTGTCTCCAAAAGGAAGGAGAATGGGATTTCCTTGGAGG
 TGCACATCTGGAATTAGGTCAAACAAATTCTCACATCCCTCTAAAGTAAACTACTGTTAG
 ACAGCAGTGTCTCACAGTGTGGGCAGCCGCTCTAACGCTGCTCTCCACTACCCACAC
 CCCTTTGGCAGTTGCAATTAGTAACCTTGAAAGGTATATGACTGAGCGTAGCATACAGG
 CCTGCAGAAACAGTACTTAGGTATTGTAGGGCGAGGATTATAATGAAATTGCAAAATCAC
 TTAGCAGCAACTGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGCTG
 AAACATGGTTGTAATATGCACTGCAACACTGAACACTCTACGCCACTCCACAAATGATGTT
 AGGTGTCACTGGACTGTTGCCACCATGTATTCACTCCAGAGTTCTAAAGTTAAAGTGCACATG
 ATTGTATAAGCATGCTTCTTGTAGTTAAATTATGTATAAACATAAGTGCATTAGAAATCA
 AGCATAAAATCACTCAACTGCTCTTCT

Figure 16

GACAAACAGACGACGTGCTGAGCTGCCAGCTTAGTGGAAAGCTCTGCTCTGGGTGGAGAGCAGC
 CTCGCTTGGTGACGCACAGTGTGGCTCTGCTCTCCAGGAGCCCCGGATTGAAGGATGGTGGCG
 GCCGCTCTGCTGGGCTGAGCTGGCTCTGCTCTCCAGGAGCCCCGGATTGAAGGATGGTGGCG
 ACATCAGGAGCTCTGCTGACCTGCATGGGCCCGGAAGGGCTCACAGTGCCTGCTGACACGG
 ACTGCAATACCAAGAAAGTCTCTGCCCTCCAGCCCCCGCATGAGAAGCCGTTCTGCTACATGTC
 TGGGTTGCCAGGAGGTGCCAGCGAGATGCCATGTGCTGCCCTGGACACTCTGTTGAAACGA
 TGTTGTACTACGATGGAAGATGCAACCCAAATTAGAAAGGCAGCTGTGATGAGCAAGATGG
 CACACATGCAGAAGGAACAACGGGGCAGGAGGAGAAAGGGAGGAGAAAGTGTCTGAGAAACTTT
 GTATTAAAGAAATCACAAGGCAGGAAGGGACAAGAGGGAGGAGAAAGTGTCTGAGAAACTTT
 GTGGCCCTGGACTTGTGCTGCTGTCATTGGACGAAAATTGTAAGCCAGTCCAGAAATCTCCAGCGT
 GGACAGGTCTGCTCCAGAAGAGGGCATAAAGACACTGCTCAAGCTCCAGAAATCTCCAGCGT

TGCGACTGTGGCCCTGGACTACTGTGTCGAAGCCAATTGACCAGCAATCGCAGCATGCTCGAT
TAAGAGTATGCCAAAAAATAGAAAAGCTATAAATATTCAAAATAAAGAAGAACATTGC
ATTGAG

Figure 17

ATGGGGCTCTGGCGCTTGCCTGGCTGGTTCTGCTACGCTGCTGGCGCTGGCCGCTCT
GCCCGCAGCCCTGGCTGCCAACAGCAGTGGCGATGGGGTATTGTAAACGTAGCCTCCTCC
ACGAACCTGCTTACAGACTCCAAGAGTCTGCAACTGGTACTCGAGCCCAGTCTGCAAGCTGTGA
GCCGCAAACAGCGCGCCTGATACGCCAAATCCGGGGATCTGCACAGCGTAGGTGGGGGGC
TGCAGAGTGGCGTGCAGTGCAAGTGGAGTTCCGGAAATGCCGCTGGAACTGTCCCCTG
CTCCAGGGCCCCACCTCTCGGCAAGATGTCAACCGAGGCTGAGAGAAACGGCGTTATCTT
CGCTATCACCTCCGCCGGGGTCAACCTCGGTGGCGCTCTGCTCAGAAGGTCCATCGAA
TCCTGCACGTGTGACTACCGCGGGCGCCGGCCCCGGGGCCCCACTGGCACTGGGGGGCTGC
AGCGACAACATTGACTCGGCCCTCTCGGCCGGAGTTCTGGACTCCGGGAGAAGGGG
CGGGACCTGCGCTCCTCATGAACCTTACAACAACGAGGCAGGGCGTACGACCGTATTCTCG
AGATGCGCCAGGAGTGCAAGTGCACGGGATGTCCGGCTATGCACGGTGCACGTGCTGGA
TGCGGCTGCCACGCTGCGCGCGTGGCGATGTGCTGCGCACCGCTTCGACGGCGCTCGCG
CGTCCTGTACGGCAACCGCGCAGCAACCGCGCTTCGCGAGCGGAGCTGCTGCGCTGGAGCC
GGAAGACCCGGCCCACAAACCGCCCTCCCCCACGACACCTGCTACTTCGAGAAATGCCAAC
TTCTGCACGTACAGCGGACGCGCTGGCACAGCAGGCACGGCACGGCGCCTGTAACAGCTCG
TCGCCCCGCTGGACGGCTGCGAGCTGCTCTGCTGCCAGGGGCCACCGCACGCGCACGAG
CGCGTACCGAGCGCTGCAACTGCACCTCACTGGTCTGCCACGTCAGCTGCCACTGCA
CGCACACGCGCGTACTGCACGAGTGTCTGTA

Figure 18

AGCAGAGCGGACGGCGCGGGAGGCAGCGCAGAGCTTCCGGCTGCAGGCCTCGCTGCCGC
TGGGAATTGGGCTGTGGCGAGGCAGGTCCGGCTGGCTTATCGCTCGCTGGGCCATCGTT
TGAAACCTTATCAGCGAGTCGCCACTCGTCGCAAGGACCGAGCGGGGGGGCGCGAG
GCGCGGGCGTACGAGGCCTCCGGAGCTGAGCGCTCTGCTCTGGCACGCGATGGCGCCC
GCACACGGAGTCTGACCTGATGCAAGACGCAAGGGGTTAATATGAACGCCCTCTCGGTGGAA
TCTGGCTCTGGCTCCCTCTGCTCTTGACCTGGCTACCCCGAGGTCAACTCTCATGGTGGTAC
ATGAGAGCTACAGGTGGCTCCCTCAGGGTATGTGCGATAATGTGCCAGGGCTGGTGGAGCAGC
CAGCGCAGCTGTGTCACCGACATCCAGATGTGATGCGTGCATTAGCCAGGGCTGGCGAG
TGGACAGCAGAATGCCAGCACCAGTTCCGCCAGCACCGCTGGAATTGCAACACCTGGACAGG
GATCACAGCCTTTGGCAGGGCTACTCCGAAGTAGTGGAAATCTGCTTGTGTTATGCCAT
CTCTCAGCTGGAGTTGTATTTGCATCACCAAGGGCTGTAGCCAAGGAGAAGTAAAATCTGT
TCCTGTGATCCAAAGAAGATGGGAAGCGCCAAGGACAGCAAAAGGCATTGATGGCAAAAGGAAAG
TGCAGTGATAACATTGACTATGGGATCAAATTGCCCGCATTGTGGATGCAAAAGGAAAG
AAAGGAAAGGATGCCAGAGCCCTGATGAATCTCACAAACAACAGAGCTGGCAGGAAGGCTGTA
AAGCGGTCTGAAACAAGAGTCAAGTGCCACGGGGTGAGCGGCTCATGTAACCTCAGGACA
TGCTGGCTGCCATGGCGACTTCAGGAAAACGGGGGATTATCTCTGGAGGAAGTACAATGGG
GCCATCCAGGTGGTATGAACCAGGATGGCACAGGTTCACTGTGGCTAACGAGAGGGTTAAG
AAGCCAACGAAAATGACCTCGTGTATTTGAGAATTCTCAGACTACTGTATCAGGGACCGAG
AGGCAGGCTCCCTGGGTACAGCAGGCCGTGTGCAACCTGACTTCCGGGATGGACAGCT
GTGAAGTCATGTGCTGTGGAGAGGGCTACGACACCTCCATGTCACCCGGATGACCAAGTGTG
GGTGTAAAGTCCACTGGTCTGCCGTGCGCTGTCAGGACTGCCTGGAAGCTCTGGATGTGCA
CACATGCAAGGCCCCAAGAACGCTGACTGGACAACCGCTACATGACCCAGCAGCGTCACC
ATCCACCTCCCTACAAGGACTCCATTGGATCTGCAAGAACACTGGACCTITGGTTCTTC
TGGGGGGATATTCTTAAGGCATGTGGCTTATCTCAACGGAAAGCCCCCTTCTCCCTGGG
GGCCCCAGGATGGGGGCCACCGCTGCACCTAAAGCCTACCCATTCTATCCATCTCCTGGT
TTCTGAGTCATCTCCCCCTGGCGAGTTCTCTTGGAAATAGCATGACAGGCTGTCAGCCGG
GAGGGTGGTGGGCCAGACCACTGTCTCCACCCACCTGACGTTCTTCTAGAGCAGTTG

GCCAAGCAGAAAAAAAGTGTCTCAAAGGAGCTTCTCAATGTCTCCCACAAATGGTCCCAAT
 TAAGAAATTCCATACITCTCTCAGATGGAACAGTAAGAAAGCAGAACACTGCCCTGACTT
 AACTTTAACITTTGAAAAGACCAAGACTTTGTCTGTACAAGTGGTTTACAGTACCAACCCTTA
 GGGTAATTGGAATTACCTGGAGAAGAATGGCTTCAATACCCTTAAGTTAAAATGTGTAT
 TTTCAAGGCATTATTGCCATATTAAAATCTGATGTAACAAGGTGGGACGTGTCCCTTGGT
 ACTATGGTGTGTTGTATCTTGTAAGAGCAGAAAGCCTCAGAAAGGGATTGCTTGCATTACTGT
 CCCCTGATATAAAAATCTTAGGGAATGAGAGTCCCTCTCACITAGAATCTGAAGGGATT
 AAAAAGAAGATGAATGGTCTGGCAATATTCTGTAACTATTGGGTGAATATGGTGGAAAATAAT
 TTAGTGGATGGAATATCAGAAGTATATCTGTACAGATCAAGAAAAAAGGAAGAATAAAATTC
 CTATATCAT

Figure 19

CGGGAGTCTCGGGAGCTATGCTGAGACCGGGTGGTGCAGGAGCTGCGCAGCTCCCGCT
 TCGGCGGCCAGCGCCCCGGTCCCTGTGCCGTGCCCGCGGCCCCGACGGCTCCGGGCTTCG
 GCCCGCCTAGGTCTGCCCTGCCCTCTGCTCCTGCTGCTGCTGACGCTGCCGGCCCGTAGACAC
 GTCCCTGGTGGTACATTGGGGCACTGGGGCACGAGTGTACTGTGACAATATCCCTGGTTGGT
 AGCCGGCAGCGGCAGCTGTGCCAGCGTACCCAGACATCATGCGTTAGTGGCGAGGGTGCC
 CGAGAATGGATCCGAGAGTGTCAAGCACCAATTCCGCCACCACCGCTGGAACGTACCACTG
 GACCGGGACCACACCGCTTTGGCGTGTATGCTCAGAAGTAGCCGAGAGGCACTTTGTAT
 ATGCCATCTCATCAGCAGGGTAGTCCACGCTATTACTCGCGCCTGTAGCCAGGGTAACGTGAG
 TGTGTGCAGCTGTGACCCCTACACCCGTGCCGACACCATGACCAGCGTGGGACTTGACTGG
 GGTGGCTGAGTGACAACATCCACTACGGTGTCCGTTTGCCAAGGCCCTCGTGGATGCCAAGG
 AGAAGAGGCTAAGGATGCCGGCCCTCATGAACTTACATAATAACCGCTGTGGTCGACCG
 CTGTGCGCGGTTCTGAAGCTGGAGTGTAAAGTGCATGGCGTAGTGGTCTGTACTCTGCG
 CACCTGCTGGCGTGCACTCTCAGATTCCGCCGACAGGTGATTACCTGCGCGACGCTATGAT
 GGGGCTGTGAGGTGATGCCACCCAAGATGGTCCAACITCACCGCAGGCCGCCAAGGCTAT
 CGCCGTGCCACCCGGACTGATCTGTCTACTTGACAACACTCCAGATTACTGTGTCTGGACAA
 GGCTGCAGGTCCCTAGGCACTGCAAGGCCGTGTGCAAGAACATCAAAAGGAACAGACGG
 TTGTGAAATCATGTGCTGTGGCCAGGGTACGACACAACCTCGAGTCACCGTGTACCCAGTGT
 GAGTGCAAATCCACTGGTGTGCTGTGCAAGGAATGCAAGAAATACTGTGGACGTC
 CATACTTGCAAAGCCCCAAGAAGGCAAGAGTGGCTGGACAGACCTGAAACACAGATACTC
 ACTCATCCCTCCAATTCAAGCCTCTCAACTCAAAGCACAAGATCCTGCATGCACACCTCCT
 CCACCCCTCACCCCTGGGCTGCTACCGCTTCTATTAAAGGATGTAGAGAGTAATCCATAGGGACC
 ATGGTGTCTGGCTGGTCTTAGCCCTGGGAAGGAGTTGTCAAGGGATATAAGAAACTGTGCA
 AGCTCCCTGATTCCCGCTCTGGAGATTGAAGGGAGAGTAGAAGAGAGATAGGGGTCTTACA
 GTGAAATGAGTTGCACTAAAGTACGTAGTTGAGGCTCTTTCTTCCCTTGACCCAGCTCC
 CGACACTCTGGTGTGCAAGAGGAAGGGTACCTGTAGAGAGCTCTTTGTCTACCTGGC
 CAAAGTTAGATGGACAAAGATGAATGGCATGTCCTCTCTGAAGTCCGTTGAGCAGAAACTA
 CCTGGTACCCGAAAGAAAAATCTTAGGCTACCACATTCTATTATTGAGAGCCTGAGATGTTAG
 CCATAGTGGACAAGGTTCCATTACATGCTCATATGTTATAAAACTGTGTTGTAGAAGAAAA
 AGAATCATAACAATACAAACACACATTCAATTCTCTTTCTCTACCAATTCTCAACCTGTAT
 TGGACAGCACTGCCCTTTGCTACTTGCTGCCGTGTCAAACTGAGGTGGATGCAGTGGTCC
 CATGCTTAACAGATCATTAAAACACCCCTAGAACACTCCTAGGATAGATTATGT

Figure 20

GCGCTTCTGACAAGCCGAAAGTCATTCCAATCTCAAGTGGACTTTGTCCAACATTGGGG
 CGTCGCTCCCCCTCYTCATGGTCGGGCAAACCTCCTCCTCGGCCCTTCTTAATGGAGCCCC
 ACCTGCTCGGGCTGCTCTCGGCCCTCTGCTCGGTGGCACCAAGGGCTCGTGGCTACCCAAT
 TTGGTGGTCCCTGGCCCTGGGCCAGCAGTACACATCTGGCTCACAGCCCCTGCTCGGCC
 TCCATCCCAGGCCTGGTCCCCAAGCAACTGCGCTCTGCCGAATTACATCGAGATCATGCCG

CGTGGCCGAGGGCGTGAAGCTGGCATCCAGGAGTGCCAGCACCAGTTCCGGGCCGCCGCT
 GGAACACTGCACCAACCATAAGATGACAGCCTGCCATCTTGGGCCGTCTCGACAAAGCCACCCG
 CGAGTCGGCCTCGTTACGCCATCGCCTGGCCGGCTGGCCTCGCCGTACCCGCTCTGC
 GCCGAGGGCACCTCCACCATTTGCGGCTGTGACTCGCATATAAGGGCCCTGGCGAAGGC
 TGGAAAGTGGGCGGCTGCAGCGAGGACGCTGACTTCGGCGTGTAGTGTCCAGGGAGTCGCG
 GATGCGCGAGAACAGGCCGGACGCCGCTCGGCATGAACAAGCACAAACAGAGGCCGG
 CCGCACGACTATCCTGGACCACATGCACCTCAAATGCAAGTGCCACGGCTGTGGGAGCTGT
 GAGGTGAAGACCTGCTGGTGGCGCAGCCTGACTTCGTGCCATCGGTGACTTCCTCAAGGACA
 AGTATGACAGCGCTCGGAGATGGTAGTAGAGAACCGCTGAGTCCCAGGGCTGGGTGGAGA
 CCCTCCGGGCCAAGTACTCGCTCTCAAGGCCACCCACGGAGAGGGACCTGGTCAACTACGAGA
 ACTCCCCCAACTTTGTGAGGCCAACCCAGAGACGGGTTCTTGGCACAGGGACCGGACTTG
 CAATGTCACCTCCCACGGCATCGATGGCTGCGATCTGCTCTGTGTGGCCGGGGCACACACG
 AGGACGGAGAACGGAGAAAATGCCACTGCATCTTCACTGGTGTGCTACGTACGCTG
 CAGGAGTGTATTGCATCTACGACGTGCACACCTGCAAGTAGGGCACCAG

Figure 21

ATGAGTCCCCGCTCGTGCCTCGCTCGCCTCCTCGTCTCGCCGTCTTCAGCCGCCGC
 GAGCAACTGGCTGTACCTGGCCAAGCTGTCGTCGGTGGGAGCATCTCAGAGGAGGAGACGTG
 CGAGAAACTCAAGGGCTGATCCAGAGGCAGGTGAGATGTGCAAGCGGAACCTGGAAAGTCAT
 GGACTCGGTGCGCCGGTGCCTCAGCTGGCATTGAGGAGTGCAGTACCGAGTCCGGAAACCG
 GCGCTGGAACTGCTCCACACTCGACTCCTGCCGTCTCGGAAGGTGGTACGCAAGGGATT
 CGGGAGGCGGCCITGGTGTACGCCATCTCTCGGCAGGTGTGGCCTTGCAGTGACGCCGGT
 GCAGCAGTGGGAGCTGGAGAACGTGCGGTGTGACAGGACAGTGCATGGGTGAGCCCACAG
 GGCTCCAGTGGTCAGGATGCTCTGACAACATGCCATCGGTGTGGCCTTCTCAAGTCGTTG
 TGGATGTGCGGGAGAGAACGAAAGGGGCTCGTCCAGCAGAGCCCTCATGAACTCCACAACA
 ATGAGGCCGGAGAACGGCATCTGACACACATGCCGTGAAATGCAAGTGCACGGGTGT
 CAGGCTCCTGTGAGGTAAAGACGTGCTGGCAGCCGTGCCCTCCGCCAGGTGGTACG
 CACTGAAGGAGAACGTTGATGGTGCCTAGGATGGAGCCACGCCGCGTGGCTCTCCAGGG
 CACTGGTGCCACGCAACGACAGTCAAGCCGACACAGATGAGGACTTGGTGTACTGGAGC
 CTAGCCCCGACTCTGTGAGCAGGACATGCGCAGCGCGTGTGGCAGAGGGGCCACAT
 GCAACAAGACGTCCAAGGCCATCGACGGCTGTGAGCTGCTGTGGCCGGCTTCCACA
 CGGCGCAGGTGGAGCTGGCTGAACGCTGCAGCTGCAAATTCACTGGTGTGCTCGTCAAGTG
 CGGCAGTGCCAGCGGCCGTGGAGTTGCACACGTGCCATGTA

Figure 22

ATTAATTCTGGCTCCACTTGTGCTCGGCCAGGTTGGGAGAGGGACGGAGGGTGGCCGCAGC
 GGGTTCTGAGTGAATTACCCAGGAGGGACTGAGCACAGCACCAACTAGAGAGGGGTCAAGGG
 GTGCGGGACTCGAGCGAGCAGGAAGGAGGCAGGCCCTGGCACCCAGGGCTTGACTCAACAGA
 ATTGAGACACGTTGTAATCGCTGGCGTCCCCCGCAGAGATCCCAGCGAAAATCAGATT
 CTGGTGGAGTTGCGTGGGTGATTAAATTGGAAAAAGAAACTGCCATATCTGCCATCAAAAA
 ACTCACGGAGGAGAACGCACTGAAACAGTAAACTTAAGAGACCCCCGATGCTCCCTGG
 TTTAACCTGTATGCTGAAAATTATCTGAGAGGAAATAACATCTTCCCTCTCCCTCCAG
 AAGTCCATTGGAATATTAAGCCCAGGAGTTGCTTGGGGATGGCTGGAAGTGCAATGTCTCCA
 AGTTCTCCTAGTGGCTTGGCCATATTTCTCCTCGCCAGGTTGTAAATTGAAGCCAATT
 GGTGGTCGCTAGGTATGAAATAACCCCTGTCAGATGTCAGAAGTATATATTAGGAGCACAGCC
 TCTCTGAGCCAAGTGGCAGGACTTCTCAAGGACAGAACAGAAACTGTGCCACTTGTATCAGGAC
 CACATGCAGTACATCGGAGAACGGCGAAGACAGGCATCAAAGAACGCAATTCCGA
 CATCGACGGTGGAACTGCAGCACTGTGGATAACACCTGTTTGGCAGGGTGTGAGCAGATAG
 GCAGCCCGAGACGGCCTCACATACGCCGTGAGCGCAGCAGGGTGTGAAACGCCATGAGCC
 GGGCGTGCCTCGAGGGCGAGCTGTCCACCTGCCGTGAGCCGCCGCCAAGGACC

TGCCGGGACTGGCTGGGGCGCTGCAGACAAACATCGACTATGGTACCGCTTGCAA
GGAGTCGTGGACGCCCGAGCAGGGAGCGCATCCACGCCAAGGGCTCTACGAGAGTGTGCTG
CATCCTCATGAACCTGCACAACAACAGAGGCCCGCAGGACGGTGTACACCTGGCTGATGT
GGCCTGCAAGTGCATGGGTGATGCCCTGAAGGAGAAGTACGACAGCGCGGCCATCGGG
AGACTTCCGCAAGGTGGTGATGCCCTGAAGGAGAAGTACGACAGCGCGGCCATCGGG
CACAGCGGGCAAGTTGGTACAGGTCAACAGCCGTTCAACTCGCCACCACAAAGACCT
GGTCTACATGCACCCCAGCCCTGACTACTGCGTGCAGCAATGAGAGCACCGCTCGTGGC
GCAGGGCCGCTGTGCAACAAGACGTCGGAGGGATGGATGGCTGCAGCTCATGTGCTGCG
CCGTGGGTACGACCAGTCAAGACCGTGAGACGGAGCGCTGCCACTGCAAGTTCACTGGT
CTGCTACGTCAAGTGCAAGAAGTGCACGGAGATCGTGGACCAGTTGTGCAAGTAGTGG
GCCACCCAGCACTCAGCCCCGCTCCCAGGACCCGCTATTATAGAAAGTACAGTGA
TTTGGTTTAAAGAAATTTTATTTCACCAAGAATTGCAACCGAACCATTTTCTG
TTACCATCTAAGAACTCTGGTTATTATAATTATAATTATTATITGCAATAATGGGG
GGGAACCACGAAAATTTTATTGTGGATCTTGAAAAGTAATAACAGACTCTTGG
AGTATAGAATGAAGGGGAAATAACACATACCTAACCTAGCTGTGGACATGGTACACAT
CCAGAAGGTAAGAAATACATTCTTCTCAAATATGCCATCATATGGATGGTAGGTT
CAGTTGAAAGAGGGTGGTAGAAATCTATTACAATTAGCTTCTATGACCAAAATGAGTT
ATTCTCTGGTCAAGATAAAAGGTCTGGAAAACAACAAACAAACAAACCTCCCTCC
CCAGCAGGGCTGCTAGCTTCTGCATTTCAAAATGATAATTACAATGGAAGGACAAGA
ATGTCATATTCTAAGGAAAAAGTATATCACATGTCTCATTCTCTCAAATATTCCATTGCA
GACAGACCGTCATTCTAATAGCTCATGAAATTGGCAGCAGGGAGGAAAGTCCCCAGAAA
TTAAAAAAATTAAAACCTTATGTCAAGATGTTGATTGAGCTGTATAAGAATTGGGATT
AGATTGTAAAAAGACCCCCAATGATTCTGGACACTAGATTITGTTGGGAGGTGGCTT
AACATAATGAAATATCCTGTATTCTTAGGGATACTTGGTTAGTAATTATAATAGT
TAATACATGAATCCCATTACAGGTTCTCAGCCAAGCAACAAGGTAATTGCGTGC
CACTGCACCAGAGCAGACACCTATTGAGGAAAACAGTGAATCCACCTCTTCA
GAGCCCTCTGATTCTCCGTGTTGATGTGATGCTGGCCACGTTCCAACGGCAGCT
TGGGTCCTTGGTTGAGGACAGGAAATGAAACATTAGGAGCTGCTGGAAAACAGT
CTACTTAGGGATTCTTGTCTAAACATTATTGAGGAGCAGTAGTTCTATGTTAATG
ACAGAACTGGCTAATGGAATTACAGAGGTGTCAGCGTACTGTATGATCCTGT
AGATTATCCACTCATGCTTCTCTATTGTACTGCAGGTGTACCTAAAATGTT
TGAACAGTTGCATTATAAGGGGGAAATGTGGTTAATGGTGCCTGATATCT
GTACATAACATATATATACATATATAAATATAAATATAAATATCTCATTG
CAGTGAATTAGATTACAGCTACTCTGGGTTATCTCTGTCTAGAGCATTG
TGCAGTCCAGTGGATTATCCTAAAGTTTTGAGTCTGAGCTGGCTGTGG
GATCATACCTGAGCACGAGCAAGCAACCTCGTTCTGAGGAAGAAGCT
TGAAATGCGTGTGGGTGAAGATACTTCTTCTGCTCACCCCTTGCT
CATTCTGTTCACTTGTGGAGAGGGCATTACTGTGTTGTTAAGACAT
TCAAAACTCAGAACGATCAGCAATGTTCTCTTCTAGTT
GCCTATTAGAAATGACAGTACTTATTAAATTGAGTCCCTAAGGA
TAGCTTTTTTTTTTTTTTTAATAAGGACACCTCTTCCAACAGGCC
TCTTATCTCAGACTACGTTGTTAAAAGTTGGAAAGATA
AGGAGGGTGGCTTCACTACACCTCAGCCA
ACATCAGCCA
AATTGTGAGCAAAAGATCTGAAAGCAAAAGCA
TTTATTATACAAAACCATGAAGTACT
CTCATGTTATGAAGAGAGTTGAGTT
AATATTCTACATGTCATT
ATATTCTGTCTGCGT
CCAAATGGAAG

Figure 23

GGCACGAGCGCAGGAGACACAGGCCTGGCTGCCCGTCCGCTCTCGCCCTCCGCCGCCCTCCTCGCC
CGGG ATGGGGCCCCCCCCCGGCCGCCGCCGGATCCCTCGCCCTCCCCGGCCGCCGCGTTGCGCTCGCCGCCGCTCG
CACTGAAGCCCAGGGCCCTCGCGCGCCGCCGGTTGCCCGCAGCCCTGCCCGGCTTGCCACCCGGGGCGGCCG

20/41

TAGGGCGGTCAAG ATGCTGCCGCCCTTACCCCTCCGCCCTGGGCTGCTGCTGCTGCTCCTGTGCCCG
 GCGCACGTCGGCGGACTGTGGTGGCTGTGGGCAGCCCCCTGGTTATGGACCCCTACCAGCATCTGCAGGA
 AGGCACGGCGCTGGCCGGCGAGGCCAGTGTGCCAGGCTGAGCCGAAGTGGTGGCAGAGCTAGC
 TCGGGCGCCCGGCTCGGGTGCAGAGTGCCTCCAGTTCCGCTTCCGCCGCTGGAATTGCTCCAGC
 CACAGCAAGGCCTTGGACGCATCCTGCAACAGACATTGGAGACGGCCTCGTGTGCCATCACTG
 CGGCCGCGCCAGGCCACGCCGTACCGCAGGCCCTGTTCTATGGCAGCTGCTGCAGTGCGGCTGCCAGGC
 GCCCCCGGGCGGGCCCTCCCCGGCCCTCCGCCCTGCCGACCCCCGGACCCCCCTGCCCGCGGGC
 TCCCCGAAGGCAGCGCCGCTGGGAGTGGGGAGGCTGCCGACGACGTGGACTTCGGGAGAGAAGT
 CGAGGCCTTTATGGACGCGCGACAAGCGGGACGCCGAGACATCCGCGCGTGGTGAACATGCACAA
 CAACGAGGGGGCAGGCTGCCGTGCCAGGCCACCGAGTCACATGCCACGGCTGTGCCAG
 TCATGCCGCTGCGCACCTGCTGGCAGAAGCTGCCCTCCATTGCGAGGTGGGCCGCGCTGCTGGAGC
 GCTTCCACGGCGCTCACCGTCATGGCACCAACGACGCCAGGCCCTGCTGCCGCCGCTCGCACGCT
 CAAGCCGGGGCGAGCGGACCTCTACGCCGCGATTGCCCGACTTTGCCGCCCCAACCGACGC
 ACCGGCTCCCCGGCACGCCGTGCCCTGCAATAGCAGGCCCGACCTCAGCGGCTGCCACCTGC
 TGTGCTGCCGCCGGGACCCGCCAGGAGAGCGTGCAGCTGAAGAGAACTGCCCTGCGCTTCCACTG
 GTGCTGCGTAGTACAGTGCACCGTTGCCGTGCGCAAGGAGCTCACCTCTGCCGTGACCCGCCGCC
 CGGCCGCTAGACTGACTTCGCGCAGGGTGGCTCGCACCTGTGGACCTCAGGGACCCGCCACCGGGC
 CTCTGCCGCTGAGCCCAGCCCTCCCTGCAAAGCCAACCTCCAGGGCTCTGAAATGGTGGAGGCGA
 GGGGCTTGAGAGAACGCCACCAAGGCCAGGGGCCAGACGCCCGAAAAGGCCGCTGGGGAG
 CGTTAAAGGACACTGTACAGGCCCTCCCTGGCTCTAGGAGGAAACAGTTTTAGACTGGAA
 AAAAGCCAGTCTAAAGGCCCTGGATACTGGCTCCCCAGAACTGCTGCCACAGGATGGTGGGTGAGGT
 TAGTATCAATAAAGATATTAAACCAAAAAAAAAAAAAAA

Figure 24

CACCGTCCGGCCAATCGGGACTATGAACCGGAAAGCGCTGCCCTGGGCCACCTCTTTC
 TCAGCCTGGGATGGCTGCCCTGGATCGGTGGCTCTCCCTCAGTGGTAGCTCTGGCGCAAC
 GATCATCTGTAACAAGATCCCAGGCCCTGGCTCCCAGACAGCGGGCGATCTGCCAGAGCCGCC
 CGACGCCATCATCGTCATAGGAGAAGGCTCACAAATGGGCTGGACGAGTGTCAAGTTCACTTC
 CGCAATGGCCGCTGGAACTGCTCTGCACTGGAGAGCGCACCGTCTCGGGAAAGGAGCTCAA
 GTGGGGAGCCGGACGGTGCACCTACGCCATCTGCCCGGGCTGGCCACGCCATC
 ACAGCTGCCCTGTACCCATGGCACCTGAGCAGTGGCTGCGACAAAGAGAACGCCAG
 TACCACGGGACAGGGCTGGAAGTGGGGTGGCTGCTGCCGACATCCGCTACGGCATCGC
 TTCGCCAAGGTCTTGATGCCGGAGATCAAGCAGAACTGCCGACTCTCATGAACCTGC
 ACAACAACGAGGCAGGCCGAAAGATCTGGAGGAGAACATGAAGCTGGAATGTAAGTGCAC
 GGCCTGTCAGGCTCGTCACCACCAAGACGTGCTGGACCACACTGCCACAGTTGGAGCTG
 GGCTACGTGCTCAAGGACAAGTACAACGAGGCCGTTACGTGGAGGCCCTGCGCCAGGCC
 AACAAAGCGGCCACCTCTGAAGATCAAGAACGCCACTGTGCTACCGCAAGCCATGGACACG
 GACCTGGTGTACATCGAGAAGTCGCCAACTACTGCGAGGAGGCCGACCGCAGTGTG
 GGCACCCAGGGCCGCGCCTGCAACAAGACGCCAGGGCTCCCCAGGCCAGCGGCTGTGACCTCATGTG
 TGTGGCGTGGCTACAACACCCACCAAGTACGCCCGCTGTGGCAGTGCACGTGAAAGTTCCACT
 GGTGCTGCTATGTCAAGTGCACACCGTGCAGCGAGCGACGGAGATGTACACGTGCAAGTGAG
 CCCCGTGTGCAACACCACCCCTCCCGCTGCAAGTCAGATTGCTGGAGGACTGGACCGTTCCAAG
 CTGCGGGCTCCCTGGCAGGATGCTGAGCTTCTGCTGAGGAAGGTACTTTCTGGGTT
 TCCCTGAGGACATCCGTGGGGAAAAAAATCTCTCAGAACCCCTCAACTATTCTGTTCCACACCC
 AATGCTGCTCACCCCTCCCCAGACACGCCAACGCCAGTCCCTCCGCCGGCTGGAGCGAAGCCTCTG
 CAGCAGGAACCTGGACCCCTGGGCCTCATCACAGCAATTTAACAAATTATTGATAAAAAA
 TAATATTAAATTATTAATTAAAAAGAATTCTCCACCTCAAAAAAAAAAAAAAA
 AAAAGGGGG

Figure 25

21/41

TCCGCTTACACACCAAGGAAAGTTGGCTTGAGAAGAATTCCATCCCCATGCCACTGGAGGAA
 GAATATTCNCCCGTCTGCTTACCCATCTCCCCAGTTTGTGAATTCTCTAGCTGTTACTCC
 AGAGGATTATGTTCTTCAAAGCCTCTGTACATCTGTCTTACCTGTGTCTCCAACCT
 AGCCACAGCTGGTGGTGAACAATTCTGTACATCTGTCTTACCTGTGTCTCCAACCT
 GCAGTGTGGCAGCTGGTCCCAGAGTGGTATTGAAGAATGCAAGTATCAGTTGCCTGGGACC
 GCTGGAACGCTGCCCTGAGAGAGGCCCTGCAGCTGTCCAGCATGGTGGCTCGCAGTGCCAATCG
 GGAGACAGCATTTGTGCATGCCATCAGITCTGCTGGAGTCATGTACACCCCTGACTAGAAACTGC
 AGCCTGGAGATTTGATAACTGTGGCTGTGATGACTCCCGCAACGGGCAACTGGGGGACAA
 GGCTGGCTGTGGGGAGGCTGCAGTACAATGTGGGCTCGGAGAGGCGATTCCAAGCAGTT
 GTCGATGCCCTGAAACAGGACAGGATGCACGGGCAGCCATGAACCTGCACAACAACGAGGCT
 GGCGCAAGGCGGTGAAGGGCACCATGAAACGCACGTGTAAGTGCATGGCGTCTGGCAGC
 TGCACCCACGCGACACTGTGGCTGCAGCTGCCAGTCCCGAGGTGGCGCAGCTGAAG
 GAGAAGTACCAACGCGACTCAAGGTGGACCTGCTGCAGGGTGTGGCAACAGCGCGGCC
 CGCGCGCCATCGCCGACACCTTCGCTCATCTCTACCCGGAGCTGGTGCACCTGGAGGACT
 CCCCCGACTACTGCCTGGAGAACAAAACGCTAGGGCTGTGGCACCGAAGGCCAGAGTGCC
 TAAGGCAGGGCGGGCCCTGGGTGCTGGGAACCTCGCAGCTGCCGGCTCTGCCGGGACT
 GCGGGCTGGCGGTGGAGGGAGCGCCGGCGAGACCGTGTCCAGCTGCAACTGCAAGTCCACT
 GGTGCTGTGCAGTCGCTGCAGCAGTGCAGCGAGGGTACCAAGTACTTCTGTAGCCGCG
 AGAGCGGCCGCGGGGGCGCTGCGCACAAACCCGGAGAAAACCCCTAAGGGTTCTCTGCC
 CCCTCTTTCCACTGGTTCTGGCTCTTAGAGACCCGGTAATTGTGGAACCTAGGAAT
 GGGGAACCCGCTCTCCAGACCTAGGGATCCTGAAAGGGAAAAACTGCAATTCTCAAAGCT
 TGCCACTTCCAGCCTGTTCCCCAATTCTCTGTGCTCTAAAGCTCTGTGAATCTCGC
 AGCCACACCTAGGTCTGAAAACCTCAGGCTTGAGTTACTGATCTCTGGATTAGGAAAACAG
 GTGTTCTCTCCCTCTCCCTATCAGCCCTAACTCTGACCTAGCCTATCAACCCCTAGGCCTG
 GAAAAACCTCTCATACACGCGAGGACCCAGGTTACTCAAAGCTTGCCTTGGCCACTGTC
 TGCTACCAGGGCTCACCTCTGTCACCTCTCTGACAGCTCCTCCCTGCTACTGCTGA
 CCAAATTCCAGGAATCTGAATGCTTCTCTCTCCCTTCCCTTCCCTTCCCTTCCCTTCC
 AGGAAACTGGCCCCGAAAAGCATGTCCTGGGTTGGCTTAGAGGCAGAGGTTGAAGATG
 GAAGAGGGAGCTGGAGTGTAACTTGAACACCCAAGGGTGTACTCATCCCTATGGTATCATA
 TCATGAATGGACTTTACTAGTGGGCAATGACTTTCTAGACAATAACCCGAGGGACTCCAGAT
 ACATACCCCGAAGGTCTAGGAAATACGTTAAGGGCAGATTACAGTCATTCTACCCCTTAAAG
 GTAACCTCTCCCTCTGACCTACTTCCTCTAGCAACCAACTTACCTCTTCTCCAAAGG
 ATCTTGTCTCTGAGCCAAGACTGAGGTAAATAAGCCACTTCCCTTCAAGATCCTGGTCTG
 CACCTCTAGA

Figure 26

GCGGCCGCGTCGACGGAGGGCTGCAGCTCGTCAGCCGGCAGAGCCACCTGAGCTGGTG
 AGAGCAAAGCCAGAGCCCCCAGTCCTTGTGCGCCGGCTTGTATCTCTCTCGATCACTCCCTCC
 CTTCTCCCTCCCTCCCTCCCGCGCCGCGCGCTGGGAAGCGGTGAAGAGGAGTGGCC
 CGGCCCTGGAAGAACATGCGCTCTGACAAGGGGACAGAACCCAGCGCAGTCTCCCCACGGTTA
 AGCAGCACTAGTGAAGCCAGGCAACCCACCGTGCCTGTCTGGACCCCGACCCAAACAC
 TGGAGGTCTGATCGATCTGCCACCGGAGCCTCCGGCTTCGACATGCTGGAGGAGCCCCGGC
 CGCGGCCTCCGCCCTCGGGCTCGCGGGCTCTGTTCTGGCTGTGAGTCGGCTCTAAG
 CAATGAGATTCTGGGCTGAAGTTGCTGGCGAGCCGGCTGACGGCAACACCGTGTGCTTG
 ACGCTGTCCGGCCTGAGCAAGCGGCAGCTAGACCTGTGCCTGCGAACCCGACGTGACGGCG
 TCCGCGCTTCAGGGCTGACATCGCGTCCACGAGTGTGAGCACCAGCTGCCGACCGCCT
 GGAACCTGCTCCGCGCTTGAGGGCGGCCGCTGCCGACCCAGCGCCATCTCAAGCGCG
 GTTTCGAGAAAGTGTCTTCTCCATGCTGGCTGTGGGTATGCAACGAGTAGGCCAC
 GGCGCTGAGCCTGGCAAGCTGGTGAAGCTGTGGCTGGTGGAGGGCAGTGGTGAAGCAGGA
 TCGGCTGAGGGCAAACCTGCTGAGCTGCAGGCAGTGTCCCGAGGCAAGAGTTCCCCACTCT
 CTGCCAGCCCTGGCCCTGGCTCAAGCCCCAGCCCTGGCCCCCAGGACACATGGGAATGGGT
 GGCTGTAACCATGACATGGACTTGGAGAGAAGTTCTCTGGGATTCTGGATTCCAGGGAAAG
 CTCCCCGGGACATCCAGGCACGAATGCAATCCACAAACAACAGGGTGGGGCGCCAGGTGGTAA
 CTGAAAACCTGAAGCGAAATGCAAGTGTGATGGCACATCAGGCAGCTGCCAGTCAAGACAT

GCTGGAGGGCGGCCCAAGAGTCCGGCAGTGGGGCGGCGTTGAGGGAGCGGCTGGCCGG
 GCCATCTTCATTGATACCCACAACCGCAATTCTGGAGCCTCCAGCCCCGTCTGCCTCCCCGTGCG
 CCTCTCAGGAGAGCTGGTCACTTTGAGAAAGTCTCCTGACTCTGTGAGCGAGACCCACTATG
 GGCTCCCCAGGGACAAGGGGCCGGCCTGCAACAAGACCAGCCGCTTGGATGGCTGTGGC
 AGCCTGTGCTGTGGCCGTGGCACAAACGTCTCCGGCAGACACAGAGTTGAGCGCTGCCATTGCC
 GCTTCCACTGGTGCTGCTATGTGCTGTGATGAGTGAAGGTTACAGAGTGGTGAATGTGTG
 TAAGTGAGGGTCAGCCTAACCTGGGCTGGGAAGAGGACTGTGTGAGAGGGCGCCCTTC
 AGCCCTTGTCTGATTCTCCAAGGTCACTCTGGTCCCTGGAAGCTAAAGTATCTACCTG
 GAAACAGCTTAGGGTGGTGGGTCAGGTGGACTCTGGGATGTGTAGCCTCTCCAAACA
 ATTGGAGGGTCTGAGGGGAAGCTGCCACCCCTCTCTGCTCCTAGACACCTGAATGGACTAA
 GATGAAATGCACTGTATTGCTCTCCACTCTCAACTCCAGAGCCCCTTAACCTGATTCTATA
 CTCCTTTGGCTGGGAAGTCCCTATAGTTTCAACCCTCTCCCTGAGGGATAACCCAGGCA
 CTGTTGGAGCCATAAGATCTGTATCTAGAAAAGAGATCACCCACTCTATGACTATCCCCAAA
 CTCCTTACTGCAGCCTGGCTCCCTCTTGTGGGATAATGGGAGACAGTGGTAGAGAGGTTTT
 CTTGGGAAAGAGACAGAGTGTGAGGGGACTCTCCCTGAATCCTCAGAGAGTTGTCTGTCCA
 GGCCCTAGGAAGTTGTCTCTCCATTCAAGATGTTAATGGGACCCCTCCAAAGGAAGGGTT
 TTCCCATGACTCTGGAGCCTCTTTCTTCAGCAGGAAGGGTGGGAAGGGATAATTATC
 ATACTGAGACTTGTCTGGTCTGTTGAAACTAAAATAATTAAAGTTACTGGAAAAAA
 AAAAAAAA

Figure 27

TAACCCGCCCTCCGCTCTCCCGCTGCAGGCGGGCGTGCAGGACCAAGCGGCGGCCGTGCAG
 CGGGAGGACTCGGCCGGCTCCCTGGGTGTGACCCCGGGCGCCGCCGACGATG
 AGGGCGCGGCCGCAGGTCTGCAGGGCGCTGCTTCGCCCTGGCGCTCCAGACCGCGTGTGCT
 ATGGCATCAAGTGGCTGGCGCTGCTCAAGACACCATGCCCTGGCACTGAACCAGACGCAAC
 ACTGCAAGCAGCTGGAGGGCTGGGTCTGACAGGTGCAGCTGTGCCGCAGAACCTGGAGC
 TCATGCACACGGTGGTGCACGCCCGCGAGGTATGAAGGCCCTGCGCCGGGCTTGC
 CATGCGCTGGAACTGCTCTCCATTGAGCTGCCCTCAACTATTGCTTGACCTGGAGAGAGGG
 ACCGGGAGTCGGCTTGTATGCGCTGCGCCACCCTAGCCACGCCATGCCCGGG
 CCTGCACCTCCGGCGACCTGCCCGCTGCTCTGCCCGCTCCAGGTGAGCACC
 CGGGAAACGCTGGGAAGATGTGCGGACAACCTCAGCTACGGGCTCTCATGGGGCAAGTT
 TTCCGATGCTCTATGAAGGTAAAAAAACAGGATCCAAGCAATAAAACTGATGCGTCTACA
 CAACAGTGAAGTGGGAGACAGGCTCTGCACGCCCTCTGGAAATGAAGTGTAAAGTGC
 GGTGTCTGGCTCTGCTCCATCCGACCTGCTGGAAGGGCTGCAGGAGCTGCAGGATGTGGCT
 GCTGACCTCAAGACCCGATACCTGCTGGCCACCAAGGTAGTCACCGACCCATGGGACCC
 AAGCACCTGGTCCCAAGGACCTGGATATCCGGCTGTGAAGGACTGGAACTGTTTATTGC
 AGAGCTCACCTGACTTTGCATGAAGAATGAGAAGGTGGGCTCCACGGGACACAAGACAGGC
 AGTGAACAAGACTTCAACGGAAGCGACAGCTGCACCTATGTGCTGCCGGCTGGCTACA
 ACCCCTACACAGACCGCGTGGTCAGCGGTGCCACTGTAAGTACCACTGGTGTCTACGT
 CTGCCGAGGTGTGAGCGTACCGTGGAGCGCTATGCTGCAAGTGAAGGCCCTGCC
 ACGCAGGAGCGAGGACTTGCCTCAAGGACCCCTCAGCAACTGGGCGGGGGCTGGAGACACT
 CCATGGAGCTGCTGTGAATTCAAGATGCCAGGATGGGAGGCGGCTGTGCTTGC
 CTTGGAAGCCACCAGGAACAGAACAGAACGGTCTGGCCACCCCTGGAAGGAGNGCAG
 AACCGACAAGATTAAAATAACTGGCAGCCTGAGNTCTGGAGTGCACAGNNTGGTGAAG
 GAGCAGGGCTGGGATCGGTGAGACTGATAACAGACTGACCTTCAAGGGCCACAGAGACAGC
 CTCCGGGAAGGGTCTGCCGCTTCTCAGAATGTTCTGCCGGACCCCTGGCCACCC
 GTCTGAGCTGCTGGGCCACCATGGAATCACTAGCTCAGGTTGTAATGTTCTTGT
 NTTGCTTTCTCCCTGGATGTTGGAAGCTACAGAAATATTATAAAACATAGCTTCTT
 TGGGGTGGCACTCTCAATTCTCTTATATATTANATATATAAATATATGATATATATA
 ATGATCTCTAATNTAAAATAGCTTTAAGCAGCTGTATGAAATAATGCTGAGTGAGCCCC
 GCCGCCCTGAGTCCCGGCCGTCAAGTGAACCGCAGACCCCTGGGCTGGCAGAGGG
 AGCTCTCCAGTTCCGGCA

Figure 28

23/41

GGCGCGGCAAGATGCTGGATGGGTCCCCGCTGGCGCGCTGGCTGGCCGCGCCTCGGGCTGA
 CGCTGCTCGCCCGCTGCGCCCTCGGCCGCTACTTCGCGCTGACGGGCAGCGAGCCCCT
 GACCATCCTCCCGCTGACCCCTGGAGGCCAGAGCGGCCAGGCGCACTACAAGGCCTGCGA
 CCGGCTGAAGCTGGAGCGGAAGCAGCGGCCAGTGTGCCGCGCCAGGCGCACTACAAGGCCTGCGA
 CGCTGGTGGAGGCCGTGAGCATGAGTGCCTCGAGTGCCAGTTCCAGTTCCGCTTGAGCGCTG
 GAAGTCACGCTGGAGGGCCGCTACCGGGCCAGCCTGCTCAAGCGAGGCTTAAGGAGACTGC
 CTTCCCTATGCCATCTCCTCGGCTGGCCTGACGCACGCACTGGCCAAGGCCTGAGCGCCTGG
 CGCATGGAGCGCTGTACCTGCGATGAGGCACCCGACCTGGAGAACCGTGAGGCCTGGCAGTGG
 GGGGGCTGCGAGACAACCTTAAGTACAGCAGCAAGTCTGCAAGGAATTCTGGCAGACGG
 TCAAGCAAGGATCTGCCAGGCCGTGGACTTCCACAACAACCTGCTGGGTGTGAAGGTGATC
 AAGGCTGGGTGGAGACCACCTGCAAGTGCACGGCGTGTAGGCTCATGCACGGTGCAGGAC
 TGCTGGCGGCAGTTGGCGCTTCCATGAGGTGGCAAGCATCTGAAGCACAAGTATGAGACG
 GCACTCAAGGTGGCAGCACCAATGAAGCTGCCGGCAGGGCAGGTGCCATCTCCCCACCA
 CGGGGCCGTGCTCGGGGGCAGGTGGCAGCGACCCGCTGCCCGCAGTCCAGAGCTGGTGCAC
 CTGGATGACTCGCTAGCTTCTGCCCTGGCTGGCGCTTCTCCCCGGCACCGCTGGCGTAGGT
 GCCACCGTGAGAAGAACTGCGAGAGCATCTGCTGTGGCCGGCCATAACACACAGAGCCGG
 TGGTGACAAGGCCCTGCCAGTGCCAGGTGCGTTGGCTGCTATGTGGAGTGCAGGCAGTGCA
 CGCAGCGTGAGGAGGTCTACACCTGCAAGGGCTGAGTTCCAGGCCCTGCCAGGCCCTGCTGCA
 CAGGGTGAGGCATTGACACCGGTGTGAAGGGTCTACACCTGACACGGCTGAGTTCTGGGCT
 CGACCAGCCAGCTGCGTGGGTACAGGCATTGACACAGTGTGAATGGGTCTACACCTGCT
 GGGCTGAGTCCTGGCTCAGACCTAGCAGCGTGGGTAGTCCCTGGCTCAGTCCTAGCTGCA
 TGGGGTGCAGGCATTGACAGAGCATGAATGGGCCTACACCTGCCAAGGCTGAATCCCTGGC
 CCAGGCCAGCCCTGCTGACATGGCACAGGCATTGACACCGGTGTGAGGGAGTGTACACCTGCAA
 GGGCTGAGGCCCTGGGCCAGTCAGCCCTGCTGCTCAGAGTGCAGGCATTGACATGGTGA
 GAAGGTCTACACCTGCAAGGGACGAGTCCCCGGGCTGGCCAACCTGCTGTGCAGGGTGAGG
 GCCATGCATGCTAGTATGAGGGTCTACACCTGCAAGGACTGAGAGGCTTTT

Figure 29

AGCCTGAAAAACCACAGAGGGCAAAGCCAGAAAGATGGAAAGGCACCCACCCATGCAGCTC
 ACCACTTGCCTCAGGGAGACCCCTTCAACAGGGCTTCTCAAAAGACCTCCCTATGGTGGTGG
 GCATTGCCTCTTCGGGGTCTCAGAGAACGAGCTGGCTGCGCCAATTGCGCTGAACAGCCGCA
 GAAGGAGCTGTCAAGAGGAAACCGTACCTGCTGCCAGGCATCCGAGAGGGCGCCGGCTGG
 CATTCAAGGAGTGCAGGAGGCCAGTTCAAGACACGAGAGATGGAAGTGCATGATCACGCCGCC
 CACTACCGCCCCGATGGCGCCAGCCCCCTTTGGCTACGAGCTGAGCAGCGGCCACCAAAGA
 GACAGCATTTATTTATGCTGTGATGGCTGAGGCCCTGGCTGATTCTGTGACCAGGTGATGAGT
 GCAGGCACATGACAGAGTGTCTGTGACACCACCTGCAAGACGGCGGCTCAGCAAGTGA
 GGCTGGCACTGGGGGGCTGCTCCGATGATGTCCAGTATGGCATGTGGTCAAGCAGAAAGTCC
 TAGATTCCCCATGGAAACACCAACGGCAAAGAAAACAAAGTACTATTAGCAATGAACCTAC
 ATAACAATGAAGCTGGAAAGGCAGGCTGCGCCAAGTTGATGTCAGTAGACTGCCGTGCCACG
 GAGTTCCGGCTCTGTGCTGTGAAAACATGCTGGAAAACCATGTTCTTTGAAAAGATTGG
 CCATTGTTGAAGGATAAAATGAAAACAGTATCCAGATATCAGACAAAATAAGAGGAAAAT
 GCGCAGGAGAGAAAAGATCAGAGGAAAATCCAATCCATAAGGATGATCTGCTCTATGTTAA
 TAAGTCTCCCAACTACTGTGAGAGATAAGAAAACGGAAATCCCAGGGACACAAGGCAGAGA
 ATGCAACCGTACATCAGAGGGTGCAGATGGCTGCAACCTCCTGCTGTGGCCAGGGTACAAC
 ACCCATGTGGTCAGGCACGTGGAGAGGTGTGAGTGTAAAGTCATCTGGTGTGCTATGTCCGTT
 GCAGGAGGTGTGAAAGCATGACTGATGTCCACACTTGCAAGTAACCACTCCATCCAGCCTGG
 GCAAGATGCCTCAGCAATATAACATGGCATTGCAACCAGAGAGGTGCCCATCCCTGTGCAGCG
 CTAGTAAAGTTGACTCTTGCAGTGGAAATCCC

Figure 30

24/41

AGTTGAGGGATTGACACAAATGGTCAGGCAGGCCGGCGGAGAAGGGAGGCGGAGGCAGGG
 GGGAGCCGAGCCCCTGGCTGGAGAGTTCGCTCTCACGGGCCGGCACTAGCGCG
 GCGCCGCCAGCCGGAGCCAGCAGCGAGCCAGGGCAGGAAGCGGGACACGACCCCGCGC
 CCTAGCCACCCGGTTCTCCCGCCCGCGCTCATGAATCGCAAGTTCCGCGGCGC
 GGCTCGGTACGCAGAACAGGAGCCGGGAGCGGGCGAAAGCGGTTGGCTCGACGGAG
 GGCACCCCGCAGAGGTCTCCCTGGCCAGGGGGAGCCGCCGGCGTCCCCCTGGCAGC
 CCCAGCGGAGCCAGAGAGAGGAGCGAGAAAGTATGGCTGAGGAGGAGGCCTAAGA
 AGTCCCAGGGCCCGCCGGCTGGCGAGCTGGAACTTGTGCCGGGCGCTCGGCCCCGC
 TGGCGGAGGAGGGCAGCGGGAGCCGGCTGGCGCCGCCAGTTGACCCCCGGCGAT
 TGGCGCGCCAGCTGCTGCTGCTGCTTGGCTGCTGGAGGCTCCGCTGCTGCTGGGGTCCGGC
 CCAGCGGCGGGCAGGGCCAGGCCAGGGGCCGGGAGCCGCCGGGAGCAACCGCCGCC
 CTCAGCAGCAACAGAGCGGGCAGCAGTACAACGGCAGCGGGCATCTCGTCCGGACCAAG
 GCTATTGCCAGCCATCTCCATCCGCTGTGACGGACATCGCTACAACCAGACCATATGCC
 CAACCTGCTGGCCACACGAACCAGGAGGACGCGGGCTGGAGGTGACCAAGTTCTACCCCT
 AGTAAAAGTGCAGTGTCCGCTGAGCTCAAGTTCTCTGTGCTCCATGTACGCCCGTGTG
 ACCGTGCTAGAGCAGCGCTGCCGCCCCCTGCCGCTCCCTGTGCGAGCGCGCGGCCAGGGCTG
 GAGGCCTCATGAACAAGTCGGCTTCCAGTGGCAGACACGCTCAAGTGTGAGAAGTCCG
 GTGACGGCGCCGGCAGCTGCGTGGGCCAGAACACGTCGACAAGGGCACCGTGGCG
 TCGCTGCTTCCAGAGTTCTGGACCAGCAACCCCTCAGCACGGCGGGAGGGCACCGTGGCG
 TTCCCGGGGGCGCCGGCGCTGGAGCGAGGCAAGTTCTCTGCCCGCGGCCCTCAAGGTG
 CCCTCTACCTCAACTACCACCTCTGGGGAGAAGGACTGCGCGCACCTTGAGGCCACCA
 AGGTGTATGGGCTCATGTAACCTGGGCCAGGGAGCTGCGCTCTCGCGCACCTGGATTGGCAT
 TTGGTCAGTGTGCTGCGCCTCACGCTTCACTGGTGTACGTACCTGGTGACATGCGG
 CGCTCAGCTACCCGGAGCGGCCCATCATCTCTGTCCGGCTGTTACACGGCGTGGCGTGG
 CCTACATCGCCGGCTTCTCTGGAAGACCGAGTGGTGTGTAATGACAAGTTGCCGAGGACGG
 GGCACGCACTGTGGCGAGGGCACCAAGAACAGGAGGGCTGCAACCATCCTCTCATGATGCTCA
 CTTCTCAGCATGGCCAGCTCATCTGGGGTGTACCTGTGCTCACCTGGTCTGGCGGCTG
 GCATGAAGTGGGCCACGAGGCCATCGAAGCCAACCTCACAGTATTTCACCTGCCGCTGG
 CTGTGCCGGCATCAAGACCATACCATCTGGCGTGGGCCAGGTGGACGGCATGTGCTGA
 GCGGAGTGTGCTCGTGGGCTTAACAACGTCGACGCCCTGGCTTGTGCTGCTCTCCGATCCG
 CTTCGTGTACCTGTTATCGGCACGTCTCTGCTGGCCGGTTGTGCTGCTCTCCGATCCG
 CACCATCATGAAGCACGATGGCACCAAGACCGAGAACAGCTGGAGAACAGCTCATGGTGC
 CGTCTCAGCGTGTACACTGTGCCAGCCACCATCGTACCGCTGCTACTCTACGAGCAG
 GCCTCCGGGACCAGTGGGAACCGCAGCTGGTGGCCAGAGCTGCAAGAGCTACGCTATCCC
 TGCCCTCACCTCCAGGCGGGCGAGGCGCCCGCCGACCCGCCATGAGCCGGACTTCACG
 GTCTCATGATTAAGTACCTATGACGCTGATGTTGGCATCACGTCGGCTTCTGGATCTGGT
 CGGCAAGACCCCAACTCCTGGAGGAAGTTACACGAGGCTACCAACAGCAAACAAGGG
 GACTACAGTGTGAGACCCGGGCTCAGCCATGCCAGGCCTGGGGGGCGAGCGATCCC
 CCAAAGCCAGGCCGTGGAGITCGTCCAATCCTGACATCTCGAGGTTCTCACTAGACA
 CTCTTCGCGAGGCTCTTGAACAACTCAGCTCTGCAAAGCTCCGCTCCCTGAGGCAAAG
 ACACGAGGGCCGACTGCCAGAGGGAGGATGGACAGACCTTGTGCCCTCACACTCTGGTACCA
 GGACTGTTGCTTTATGATTGAAATAGCTGTGTAAGATTGTTGTAAGTATATTGTTAA
 ATGACGACCGATCACGCTTTCTTCAAAAGTTTAATTATTAGGGCGTTAACATT
 TGAGGCTTCTCTGGAGTATTGCAAAGGAGCTAAACTGGTGTGCAACCGC
 ACAGCGCTCTGGCTCGCCGCTCTCCCTACACGGGTGCTGGGACGGCTGGCGCC
 AGCTCCGGGGCGAGTTCAGCAGTGGGGTGCAGTAGGGCTGCGCTGCCAGGGTCACTCCC
 GCCTCCCTCTTGGCCCCCTCCCCCTCTGCTCCCTCCCTTCTTCTGGTGGAGG
 GCTCTAAGGTACAGAACTCCACAAACCTCAAATCTGGAGGAGGGCCCCATACATTACAAT
 TCCTCCCTGCTCGGGGGTGGATTGCGAAGGCCGCTCCCTCGACTTCCTGAAAGCTGGATT
 ACTGTCCAGAACCTTCTCCAACCTCATGGGGGCCACGGGTGTGGCGCTGGCAGTCTCAGCC
 TCCCTCACGGTACCTCAACGCCAGACACTCCCTCTCCACCTTAGTTGTTACAGGGTGA
 GTGAGATAACCAATGCCAAACTTTGAAGTCTAATTGAGGGGTGAGCTCATTCATTCT
 AGTGTCTAAACCTGGTATGGGTTGGCAGCGTCACTGAAAGATGTGGTTACTGAGATTGG
 AAGAAGCATGAAGCTTGTGTTGGAGAGACTGAAGATATGGGTTATAAAATGTAATT
 CTAATTGCATACGGATGCCGGCACCTGCCCTTGAGAATGAGACAGCCTGCGCTAGATT
 ACCGGTCTGAAAATGGAATGTTGAGGTACCTGGAAAGCTTGTAAAGGAGTTGATTTGC

TTTCCCTAACAGACAGAAAACGTAACAGAAATTGAAAACCTGAAGGATATTCAGTGTAT
GGACTTCCTCAAAATGAAGTGCTATTTCTATTITTAATCAAATAACTAGACATATATCAGAA
ACTTTAAAATGTAAAAGTGTACACTTCACACATTATTACGATTATTATTCAGCAGCACATT
TGAGGGGGGAAACAATTACACCAACAAATAACCTGGTAAGATTTCAGGAGGTAAAGAAGGT
GGAATAATTGACGGGGAGATAGCGCCTGAATAACAAAATATGGGCATGCATGCTAAAGGG
AAAATGTGTGCAGGTCTACTGCATAATCCTGTGTGCCTCTTTGGATTACAGAAATGTGT
CAAATGTAATCTTCAAAGCCATTAAAAAATATTCACTTAGITCTCTGTGAAGAAGAGGGAGA
AAAGCAATCCTCCTGATTGATTGTTAAACTTAAAGAATTATCAAAATGCCGTACTTAGG
ACCTAAATTATCTATGTCTGCATACGCTAAATGATATTGGCTTGAATTGGTATACATT
ATTCTGTTCACTATCACAAAATCATCTATTATAGAGGAATAGAAGTTATATATATAATA
CCATATTITTAATTCAACAAATAAAAATTCAAAGTTGTACAAAATTATATGGATTITGTGCC
TGAAAATAATAGAGCTTGAGCTGTCTGAACATTACATTATGGTGTCTCATAGCCAATCCC
ACAGTGTAAAATTCA

Figure 31

Figure 32

'GCCGCTCCGGTACCTGAGGGACCGCGCCGCCGCGGCAGCGGTGAGCCCCCCCCCACC
CCTTGGAGCCAGGCGCCGGGTCTGAGGATAGCATTCTCAAGACCTGACTTATGGAGCACTTG
TAACCTGAGATA TTTCAGTTGAAGGAAGAAATAGCTCTCTCTAAGATGGAATCTGTGGTTTG

GGAATGTGGTTGATCAACTTGATATGTTGCCAAATGTGCCCATGTAATAAAATGAAAAGAA
 GAGACAAGATGATGTCATTTCCCATATTGTGAAACCAAAACAAACGCCCTTGTGAGACCAA
 GCTAACAAACCTCTGACGGTGCGAAGAGTATTAACTGTTGAAGAATTAAACAGTAAGATACA
 GAAGAAGTACCTCGAGCTGAGACCTGCAGGTGTATAAATATCTAAACATATTGAATAGG
 CCTGATCATCTGAATCTCCTCAGACCCAGGAAGGATGGCTATGACTTGGATTGTCTCTCTT
 TGGCCCTGACTGTGTTCATGGGCATATAGGTGGCACAGTTGTTCTGTGAACCTATTAC
 CTTGAGGATGTGCCAAGATTGCCITATAACTACCTCATGCCATACTCTGAATCATTATG
 ACCAACAGACAGCAGCTTGGCAATGGAGCCATTCCACCCATGGTGAATCTGGATTGTCTCG
 GGATTCCGGCTTTCTTGTGACTCTACGCTCCTATTGTATGGAATATGGACGTGTCACAC
 TTCCCTGTCGTAGGCTGTGTCAGGGCTTACAGTGAGTGTGCAAGCTCATGGAGATGTTGG
 TGTTCCCTGGCCTGAAGATATGGAATGCACTAGGTCCCAGATTGTGATGAGCCATATCCTCGA
 CTTGTGGATCTGAATTAGCTGGAGAACCAACTGAAGGAGCCCCAGTGGCAGTGCAGAGAGAC
 TATGTTTTGTTGTCACCTCCATTGGATTTGCTGAAGATCGAGTAGCCTGATCTGGTTATTCTTTCTGCATGT
 GCGTGATTGTTCACCTCCTGTCCAATATGACTTCAGAAGAGAAGAACTGTCATTGCTCGCT
 ATTTCATAGGATTGATTCAATCATTCCTCGGCCACATTGTTACTTTTAACCTTTGA
 TTGATGTCACAAGATTCCGTTATCTGAAGGGCTATTATATTATGCACTGCTACATGATG
 GTATCCTTAATTCTCATTGGATTTGCTGAAGATCGAGTAGCCTGCAATGCATCCATCCC
 TGCACAATATAAGGCTTCCACAGTGACACAAGGATCTCATATAAAAGCCTGTACCATGCTTT
 ATGATACTCTATTTTTACTATGGCTGGCAGTGTATGGTGGTAATTCTTACCATCACATGGTT
 TTAGCAGCTGTGCCAAGTGGGGTAGTGAAGCTATTGAGAAGAAAGCATTGCTGTTACGCC
 AGTGCATGGGCATCCCCGGAACCTAACCATCATCCTTGTACGATGAATAAAATTGAAGGTG
 ACAATATTAGTGGCGTGTGTTGGCCTCTACGATGTTGATGCATTGAGATAATTGTTCTT
 GCTCCCTCTGCCTGTATGTGGTAGTTGGGTTCTCTCTTAGCTGGCATTATATCCCTAAA
 CAGAGTCGAATTGAGATTCCATTAGAAAAGGAGAACAAAGATAAATTAGTGAAGTTATGAT
 CCGATCGGTGTTTCAGCATTCTTATCTGTACCAACTCTGGTGTAAATTGGATGCTACTTTA
 TGAGCAAGCTTACCGGGCATCTGGAAACACGTGGATACAAGAACGCTGCAGAGAATATCA
 CATTCCATGTCATATCAGGTTACTCAAATGAGTCGCCAGACTGATTCTTCTGATGAAAT
 ACCTGATGGCTCTCATAGTGGCATTCCCTCTGTATTGGGTTGAAAGCAAAAGACATGCTTT
 GAATGGGCCAGTTTTCATGGCGTAGGAAAAAGAGATAGTGAATGAGAGGCCAGGGTA
 CTCCAGGAACCTGATTTGCTCAGTCTCTGAGGGATCCAAACTCTCTATCATAAGAAAGT
 CAAGGGGAACTTCCACTCAAGGAACATCCACCCATGCTTCAACTCAGCTGGCTATGGGGA
 TGATCAAAGAACGAGCAAGCAGGAAGCATCCACAGCAAAGTGGAGCAGCTACCACGGCAGCCTCC
 ACAGATCACGTGATGGCAGGTACGCCCTGCAGTTACAGAGGAATGGAGGAGAGACTACCTC
 ATGGCAGCATGTCACGACTAACAGATCACTCCAGGCATAGTAGTCTCATCGGCTCAATGAACA
 GTCACGACATAGCAGCATCAGAGATCTCAGTAATAATCCCATGACTCATATCACACATGGCACC
 AGCATGAATCGGGTATTGAAGAAAGATGGAACCAGTGTCTTAATTGTTGTCTAAGGTGGAAA
 TCTTGTGCTGTTAAAAGCAGATTCTTGCCTTGTGACTGACTGATAGCTGACTCACA
 GTTAACATGCTTCTAGTCAAGTACAGATTGTGTCAGTGGAAAGGTAATGATTGCTTTTATA
 TTGCACTCAAACCTGGAACATCAAGGCATCCAAAACACTAAGAATTCTATCATCACAAAAATAAT
 TCGTCTTCTAGGTTATGAAGAGATAATTATTGTTGCTGAGCATTATAAACCCACTCATT
 TTATATTAGAAAAATCTAAATGTTGACTGCTTGTAGTGAACCTTCACTATACTATAAAC
 TAGTTGTGAGATAACATTCTGGTAGCTCAGTTAATAAAACAAATTCAAGAATTAAAGAAATTTC
 TATGCAAGGTTACTCTCAGATGAACAGTAGGACTTGTAGTTTATTCCACTAAGTGGAAA
 AAGAAGTGTGTTAAACTGTAGGAGAATTAAATAAAATCAGCAAGGGTATTAGCTAATAGA
 ATAAAAGTGCACAGAAGAATTGATTAGTCTATGAAAGGTCTTAAAATTCTATCGAAATA
 ATCTTCACTGCAGAGATATTCAAGGGTTGGATTAGCAGTGGAAATAAGAGAGATGGCATTGTTCC
 CCTATAATTGTGCTGTTTATAACTTTGTAAATTACTTTCTGGCTGTGTTTATAACTT
 ATCCATATGCATGATGGAAAAATTAAATTGTTAGGCCATCTTCCATGTAATAGTATTGATT
 ATAGAGAACTTAATGTTCAAAATTGCTTGTGGAGGGCATGTAATAAGATAAACATCATA
 ATAAGGTAAACCACAATTACAAAATGGCAAAACA

Figure 33

GCTGCGCAGCGCTGGCTGCTGGCTGGCCTCGCGAGACGCCAACGGACGCCGGCGCCGG
 CTTGTGGCTGCCGCTGCAGCCATGACCTCGCAGCCTGTCCTCGGCCCTGGCCCGGACG
 TCTAAAATCCACACAGTCGCGCAGCTGCTGGAGAGCCGCCGCTGCCCTCGCGCCGA

TCACACTCCCGTCCGGGAGCTGGGAGCAGCGCGGCAGCCGGCAGCCGGCGCCCCGTGCAAACGTGGG
GTGTCGCCAGAGCAGCCCCAGCGCTGCCGCTGCTACCCCGATGCTGCCATGGCTGGCG
GGCGCAGGGCCGAGCGTCCCAGGGCGCCCGGGCGCTCGGGCTCAGTCTGGGTTGCTCTG
CAGTTGCTGCTGCCATGGCCAGAACCTCGGCTACAACGTGACCAAGATGCCAACCTGGTTG
CCCATCCGATCTCCATGTGCCAGAACCTCGGCTACAACGTGACCAACTTCACACCGCTCATCCAGTACG
GGCACGAGCTGCAGACGGACGCCAGCTGAGCTGACAACTTCACACCGCTCATCCAGTACG
GCTGCTCCAGCCAGCTGAGTTCTCTTGTCTGTTATGTGCCAATGTGCACAGAGAAGATC
AACATCCCCATTGGCCCATGCCGGCATGTGCTTCAAGTCAAGAGACGCTGTGAACCCGTCC
TGAAGGAATTGGATTGCTGCCAGAGAGTCTGAACGTGAGCAAATTCCCACACAGAACG
ACCACAACCACATGTGCATGGAAGGGCCAGGTGATGAAGAGGGTGCCTTACCTCACAAAACCC
CCATCCAGCCCTGGGAAGAGTGTCACTCTGTTGGAACCAATTCTGATCAGTACATCTGGGTGAA
AAGGAGCCTGAACTGTGCTCAAGTGTGGCTATGATGCTGGCTTATACAGCCGCTCAGCCAAG
GAGTCACTGATATCTGGATGGCTGTGCTGGGCCAGCCTGTGTTCATCTCCACTGCCCTCACAGT
ACTGACCTTCCTGATCGATTCTCTAGGTTTCTACCCCTGAGCGCCCCATCATATTCTCAGTA
TGTGCTATAATATTATAGCATTGCTTATATTGTCAGGCTGACTGTAGGCCGGAAAGGATATC
CTGTGATTGAGAGGCAGCAGAACCTGTTCTCATCCAAGAAGGACTTAAGAACACAGGATG
TGCAATAATTCTCTGATGTACTTTTGGAAATGCCAGCTCCATTGGGGTTATTCTGA
CACTCACITGGTTTGGCAGCAGGACTCAAATGGGTGATGAAGCCATTGAAATGCACAGCTC
TTATTCCACATTGCAGCCTGGGCCATCCCCGAGTAAAACCATTTGTCATCTGATTATGAGA
CTGGTGGATGCAGATGAACACTGACTGGCTTGCTATGTTGGAAACCAAAATCTGATGCCCTCA
CCGGGTTCTGTTGGCTCCCTTACTTATTGGTCAATTGAAACTTGTCTGATTGCTGCAGGT
TTGGTGGCCTGTTCAAAATCGTCAAATCTCAAAGGATGGACAAAGACAGACAAGITA
GAAAGACTGATGGTCAAGATTGGGTGTTCTCAGTACTGTACACAGTCCCTGCAACGTGTGA
TTGCTGTTATTGAAATCTCAACTGGGCACTTTTGGTATTCTGAGATGATTCCAAC
ATGGCTGTTGAAATGTTGAAAACCTTATGTCCTTGTGGTGGCATCACTCAGGCATGTGGAT
TTGGTCTGCCAAAGTCTCACACGTGGCAGAAGTGTCAAACAGATTGGTAATTCTGGAAAG
GTAAGAGAGAGAAGAGGAAATGGTGGTGAAGCCTGGAAAAGGCAGTGAGACTGTGGT
ATAAGGCTAGTCAGCCTCCATGCTTCTCATTTGAAGGGGGAAATGCCAGCATTTGGAGGA
AATTCTACTAAAAGTTATGCACTGAAATCTCAGTTGAACAAACTAGCAACAATTAAAGTGA
CCCGTCAACCCACTGCCCTCCACCCGACCCAGCATCAAAAAACCAATGATTGCTGCAGAC
TTTGAATGATCCAAATGGAAAAGCCAGTTAGAGGCTTCAAAGCTGTGAAAATCAAACG
TTGATCACTTAGCAGGTTGCAGCTGGAGCGTGGAGGTCTGCCTAGATTCCAGGAAGTCCAG
GGCGATACTGTTCCCTGCAGGGTGGGATTGAGCTGTGAGTTGTAACTAGCAGGGAGAAA
TATTAACCTTAAACCTTACCATTTAAATACTAACTGTTCTTCAGATAGCAAAGCAATC
TATAAACACTGGAAACGCTGGGTCAGAAAAGTGTACAAGAGTTTATAGTTGGCTGATGTA
ACATAACATCTCTGTTGCGCTGTGCTGTTAGAACTTGTGGACTGCACTCCAAAGAA
GTGGTGTAGAATCTTCAGTGCCTTGTCTAAACAGTTATTGAACAAACAAAAGTACTGT
ACTCACACACATAAGGTATCCAGTGGATTCTCTCTGTCTCTCTCTAAATTCAACATCT
CTCTCTGGCTGCTGTTCTCATTTATGTTAATGACTCAAAAAAGGTATTGAGA
TTTTGTACTGCAGCATGCTAAAGAGGGAAAAGGAAGGGTATTCACTTGTGACAATCACT
TAATTCAAGAGAAAATGAGATTACTAAGTTGACTTACCTGACGGACCCAGAGACCTATTGCA
TTGAGCAGTGGGACTTAATATATTACTGAGATTGCTGATGCTATGAGACGCCAGTCTGGA
AGAGCTGAAATGTTAAGTTCTGGCAACTTGCATTCAACAGATTAGCTGTGAAATTGAG
TGTCAATTACAATTAAAGCACATTGTTGGACCATGACATAGTATACTCAACTGACTTTAAAC
TATGGTCAACTCAACTGCACTTCAGAATGATAGTGCCTTAAATTGTTATTGAGA
CATAGAACATGTTATCAGAATCTGGCTACTTAGGACAATGGAGACTTTTCACTTAAAGG
GAAC TGAGGACAGCTAACACTTGGTGTGAAATTGTTCTCTAGTAATTGGCAAGGCT
CCTTGTAAAGATTCACTGGAGGAGTGTGGCCTGGAGTATTATGTTGCTTAATGAATCTCC
AGAATGCCAGGCCAGAACGCTGATTGGTAGTAGGAAATAAGTGTAGACCATATGAAATGAAC
TGCAAACCTAAATAGCCCAGGTCTTAATTGCTTCTAGCAGAGGTATCCAAGCTTTAAATT
ATGCATACGTCTTCAACAGGGGGTACCCCCAGCAGCCTCTGAAAATTGCACTTCTTAA
CTGTAACTGGCTTCTCTACCTGCTTAGGCCTCTAATCATGAGATCTGGGACAAATTG
ACTATGTCACAGGTTGCTCTCTGTAACTCATACCTGCTGCTCAGCAACTGCTTGTCAATGA
CATTATTATTAAATTGCTTAAAGGAAAGGACTCAAAATTCAAAAGGTGGTCAAATT
TTCAATCACACTTGTGGAAAAACATTCCAGGGACTCAAAATTCAAAAGGTGGTCAAATT
TGGAAGTAAGCATTCTCTTAAATTGGTTGAGCCTATGCCCATAGTTGACATT

CCCTTCTTCTTCCTTTGTTGTGGTCTTGAGCTCTGACATCAAGATGCATGTA
GTCGATTGTATGTTGAAGGCAGAACGCTTGGCTTTGAGACTGAAGTTAAGTGGGCACAGGTG
GCCCTGCTGCTGCCAGCTGAGTACCTTGGCTAGACTCTAGGTCAAGGCTCCAGGAGCATG
AGAATTGATCCCCAGAAGAACCATTTAACCTCCATCTGATACTCCATTGCCATGAAATGTA
ATGTGAACCTCCGTGCTGCTGTAGACAGTCCCATAACTGTCCACGGCCCTGGAGCACGCAC
CCAGGGCAGAGCCTGCCCTACTCACGCTCTGCTCTGGTCTTGGAGTTGTGCAGGGACTC
TGGCCAGGCAGGGAGGAAGAACCGAGCGTAGGGACTGGCTTGTAGAGTATAAGAG
GTTTGTAAATGCAGTTCTTCATAATGTGTAGTGTGACAGTGGCTTGTAGAGTATAAGAG
AAGCCAGGCATGGAGTAGGTGATCGATACTGTCAATGACTAAATAACAATAAAAAGAGCA
CTTGGGTGAATCTGGCACCTGATTCTGAGTTGAGTTCTGGAGCTAGTGTGTTGACAATGCT
TTGGGTTTGACATGCCCTTCCACAAATCTTGCCTTTCAGGGCAAAGTGTATTGATCAGA
AGTGGCCATTGGATTAGTAGCCTAGCAATGCTACAGGGTATAGGCCCTCTCCCTTCACAT
TCCAGACAATGGAGAGTGTGTTAGGTTCAAGGAAAGAACCTTGTGGCTGAGGGTCAGTTACC
AGTGAACCTCAATCAACTCCATCACTCTAAATCGTGTATTGTTAAAAAAATCAGTTATT
TTATTGAGTGCCGACTGTAGTAAAGCCCTGAAATAGATAATCTCTGTTCTAATGATCTAG
GATGGGGACGCACCCAGGTCTGCTGAACTTACTGTTCTGGAAAGGAGCAGGGACCTCTG
GAATTCCCATCTGTTCACTGTCTCCATTCCATAAAATCTTCTGTTGAGCCACACACCCAG
CCTGGGTCTCTACTTTAACACATCTCTCATCCCTTCCAGGACTTCTCCAAAGTCAGTTAC
AGGTGGTTAACAGAAAGCATCAGCTCTGCTCGTACAGTCTGGAGAAATCCCTAGGAA
GAATGAGAGTAGGCCACAAGGACATGGCCACACATCTGCTTGGCTTGGCAATTCA
GGGCTGGGGTATTCCATGTGACTTGTATAGGTATATTGAGGACAGCATTGCTAGAGAAA
GGTGAGGGTTGTTCTCTGAAACCTACAGTAAATGGGTATGATTGTAGCTCCTCAGAA
ATCCCTGGCCTCCAGAGATAAACATGGTCAATGGCACCTCTGCCAACCTCCCTGGTA
GATTCTTCTCTGCTTCAATAGGCCAAACCTCAGGGCAAGGGACATGGGGTAGAGTGGT
GCTGCCAGAACCATCTGCTGAGCTACTGGTGTATTCAATCCTCTTCTGAAACTGGAGAAGGG
ATTCCTGATCTGAGACTGTTGCTGAACTGGCAACTACTGGGCTGAAACTGGAGAACGG
GTGACATTTTAAATTCAAGAGATGCTTGTGATTCTCTCCCAGGTCACTGTCTCACCTGCA
CTCTCCAAACTCAGGTTCCGGGAAGCTTGTGTCTAGATACTGAATTGAGATTCTGTTCA
CCTTTAGCTCTACTCTGGCTCCCTCATCCTCATGGTCACTGAATTAAATGCTTATTGTAT
TGAGAACCAAGATGGGACCTGAGGACACAAAGATGAGCTAACAGTCTCAGGCCCTAGAGGAAT
AGACTCAGGGATTTCACCAGGTGGTGCAGTATTGATTCTGGTGTCTAGATACTGAATTGAGATTCTGTTCA
TTAGGAAGGGAGCCATTGAGCACAGACTTGAAGGAACCTTTTGTGTTGTTGTTGT
TTGTTGTTGTTGAGACAGGGCTTGCTCTGCTACCCAGGCTGGGCGAACGGCAG
TCTGGCTACTGCAACCTCTGCCCTGGTTCAAGTGATTCTCTGCCACAGCCTCTGAGGA
GCTGGACTACAGGTGGTGTCTACCAGGCCAGCTACTCTGTTAGTAGAGAACGGGTT
TCACTGTGTGGCCAGGCTGGTCTGAACCTCTGACCTCATGATCTGCCGCTCAGCCTCCAA
AGTGTGGATTACAAGTGTGAGCCACACACTGGCCTGGAAGGAACCTTAAATCAGTT
ACGTCTTGTATTGCTGTGATGGAGGACACTGGAGAGAGITGCTATTCCAGTCATGTC
GAGTCACTGGACTCTGAAAATCCTATTGGTCTTATTGAGTTAGAGTTCCCTCTG
GGTTGTATTATGCTGCAATGACCTGGTTATCACTTCTCCAGGGTAGATCATAGATC
TTGAAACTCCTAGAGAGCATTGCTCTACCAAGGATCAGATACTGGAGCCCCACATAA
GATTCACTTCACTCTAGCCTACATAGAGCTTCTGCTGTCTTGTGACCTTCTG
TGATTACACACTGACAGTACCAAGGAGACAAATGACTACAGATCCCCGACATGCCCTCT
CTTGGCAAGCTCAGTGGCTGATAGTAGCATGTTCTGTTCTGATGTACCTTTCTCT
CTTGCATGCCAATCCCAGAATTCCCCAGGCAATTGAGGACCTTTGGGGTCTAT
ATGAGCCATGCTCTCAAAGCTTAAACCTCTGCTCTCTACAATATTGATCAGTACATGAC
GTCATCCTAGAAGGGCTCTGAAAAGAGGGCAAGAGCCACTCTGCCACAAAGGTGGATCC
ATCTCTCTCCGAGGTTGAAAGTTCAAATTGACTAATAGGCTGGGCCCTGACTTGGCTG
TGGCTTGGAGGGTAAGCTGTTCTAGATCTCTCCAGTGGCATGGAGGTGTTCTGA
ATTGGTCTACCTCACAGGGATGTTGTGAGGCTTGAAGAACGGTAAAAATGATGGCCCTGAG
CTCTTGTAAGAAAGGTAGATGAAATATCGGATGTAATCTGAAAAAAAGATAAAATGTGACTT
CCCCGCTCTGCAAGCAGTCGGCTGGATGCTCTGCTGGCTTCTGATGTACCTTTCT
ACAGCTCCAGGAACCTGAAAGCAATCTGGGACTTCAAGATGTTGACAAAGAGGTACCA
CAAACCTCTGCTACACATGCCCTGAATGAATTGCTAAATTCAAAGGAAATGGACCCCTGCTT
TAAGGATGTACAAAAGTATGCTGCATCGATGTACTGTAATTCTAATTCACTGTAC

29/41

AAAGAAAACCCCTGCTATTAAATTGTATTAAAGGAAAATAAAGTTTGTITGTTAAAAAAA
AA

Figure 34

ACCCAGGGACGGAGGACCCAGGCTGGCTGGGACTGTCTGCTCTTCTCGGCAGGCCGTGG
AGAGTCCTTCCTGGAATCCGAGCCCTAACCGTCTCTCCCCAGCCCTATCGGCAGGAGCGG
AGCGCTGCCAGCGAGGCAGCGCCTTCCCAGCAGCTTATCTTGACGGTTCTTAAAGG
AAAAACGAACCAACAGGTTGCCAGCCCCGGCGCCACACACGAGACGCCGGAGGGAGGAAGGCC
CGGCCGGATTCTCTGCCGTGTGCGTCCCTCGCAGGGCTGCTGGAGGCAGGGAGGGAGGG
GGCGATGGCTGGCCTGACCCATCCGCGCCCTCGCTGTGCTGCTGCTGCTGCCATGTGC
GTGGGCCGGCGCCGCGTCCAAGGCCCGGTGTGCCAGGAAATACGGTGCCCATGTGC
CGCGCATCGGCTACAACCTGACGACATGCCAACCAACCAGTTCAACCACGACACGCAGGACGAG
GCCGCCTGGAGGTGACCAAGTCTGCCCTGGTGGAGATCCAATGCTGCCGACCTGCC
TCTTCCTATGCACTATGTACACGCCATCTGCTGCCGACTACCACAAGCCGCTGCCGCCCTGC
CGCTCGGTGTGCGAGCGCCAAGGCCGGTGTGCCGCTGATGCCAGTACGGCTTCGCCT
GGCCCGAGCGCATGAGCTGCGACCGCCTCCGGTGTGGCCGACGCCAGGTCTCGCA
TGGATTACAACCGCAGCGAGGCCACCACGCCGCCCCCAGGCCCTTCCAGCCAAGGCCACCC
TCCAGGCCGCCAGGGGCCGGCTGGGGGCGAATGCCGCTGGGGGCCGTTCTGTG
CAAGTGTGCGAGGCCCTCGTGCCTATTGAAGGAGTCACACCGCTACAACAAGGTGCGG
ACGGGCCAGGTGCCAAGTGCCTGACCGTACCGAGCCCTTCAGTGCCGACGCC
ACGTTGCCACCTCTGGATAGGCCTGTTGGCGGTGTGCTTATCTCACGTTCCACCA
GGCCACCTTCATCGACATGGACACGTTCCGCTATCTGAGCGCCCATCTTCTGTCA
CTGCTACCTGTGCGTGTGCTGGCTTCCCTGGTGCCTGGTGTGGCCATGCCAGCGTGGC
CTGAGCCCGAGCACCAACCACATCCACTACGAGACCACGGCCCTGACTGTGCA
CTTCCTCTGGCTACTTCTGGCATGGCAGCTCCATCTGGTGGGTCTCTGTGCTCAC
GGTTCTGGCCGCCGATGAAGGGCAACGAGGCCATGCCGCTACGCCAGTACTCC
ACCTGGCTGCGTGGCTCATCCCCAGCGTCAAGTCCATCACGGCACTGGCGT
CGGGGACCCAGTGGCCGGCATCTGCTACGGCAACCAGAACCTGA
ACTCGCTGCCGCTT
CGTGTGGCCGCTGGTGTCTACCTGCTGGTGGGCACGCTTCTGTGCTGGCGGCTTGT
CGCTCTCCGATCCGAGCGTCAAGCAGGGCCGACCAAGACGCCAGTGGAGAAC
TCATGATCCGATCGGCATCTTACGCTGCTACACGGTCCCCGCCAGCATGGTGGCG
CTACCTGTACGAGCAGCACTACCGCGAGAGCTGGGAGGCGGCTACCTGCGC
CCACGACACCGGCCAGCCGCGCCAAGGCCAGTACTGGGTGT
TGCGTGGTGGCGATCACGTGGCGTCTGGATCTGGTGGCAAGACGGTGGAGTC
CGGCGTTTACCCAGCCGCTGCTGCCGCCCGCGCCACAAGAGCGGGGCCATG
GCCGAGGGACTACCCCGAGGCAGCGCCGCTCACAGGCAGGCCGGGCCGG
GCCGCCACCTACCAAGCAGGTGTCCCTGCGCACGTGAGGAGGCTGCCGCCAGGGACTC
GGCCGGAGAGCTGAGGGGAGGGGGCGTTTGTGTTGGTAGTTTGCCAAGGT
ACTTCCGTTA
CCTTCATGGTGTGTTGCCCTCCCGCGACTGGAGAGAGGGAAAGAGGGCGTTTCGAG
GAAGAACCTGCCCAGGTCTTCTCAAGGGGCCAGCTACGTGATTCTATTGCGTTCTTA
CCTGCCCTTTATGGGAACCCCTTTAATTATATGTAT

Figure 35

GCAGCTCCAGTCCCAGCAACCCGGAGCCGTCTCAGGTCCCTGGGGGAACGGTGGGTTA
GACGGGGACGGGAAGGGACAGCGGCCCTCGACCGCCCCCGAGTAATTGACCCAGGACTCATT
TTCAGGAAAGCTGAAAATGAGTAAAATAGTGAATGAGGAATTGAACATTATCTTGGAT
GGGGATCTCTGAGGATGCAAAGAGTGAATTCAAGCCATGTGGTAAATCAGGAATTGA
AGAAAATGGAGATGTTACATTGTTGACGTGATTGTTCTACCCCTCTAACAGGGACAGT
CTCTCACCTGTGAACCAATTACTGTTCCCAGATGTATGAAAATGGCCTACAACATGACGTTTT
CCCTAATCTGATGGGTCTTATGACCGAGTATTGCCGCGTGGAAATGGAGCATTTCTCCT
CTCGCAAATCTGGAATGTTACCCAAACATTGAAACTTCTCTGCAAAGCATTGAC
GCATAGAACAAATTCAATGTTGCCACCTGCGTAAACTTGTGAGAAAGTATATTCTGATTG

CAAAAAATTAAATTGACACTTTGGGATCCGATGGCCTGAGGAGCTGAATGTGACAGATTACAA
 TACTGTGATGAGACTGTCCTGTAACCTTTGATCCACACACAGAATTCTTGGTCCTCAGAAGA
 AAACAGAACAGTCAAAGAGACATTGGATTGGTGTCAAGGCATCTTAAGACACTCTGGGG
 GACAAGGATATAAGTTCTGGGAATTGACCAGTGTGCGCCTCCATGCCCAACATGTATTAA
 AAGTGATGAGCTAGAGTTGCAAAAAGTTTATTGGAACAGTTCAATATTGTCCTTGCA
 ACTCTGTTCACATTCTTACTTTAATTGATGTTAGAAGATTCAGATACCCAGAGAGACCAAT
 TATATATTACTCTGTTACAGCATTTGATCTCITATGTAATTGATCTCATGGATTGCTGGCGA
 TAGCACAGCCTGCAATAAGGCAGATGAGAAGCTAGAACACTGGTGCACACTGTTGCTTAGGCTCT
 CAAAATAAGGCTTGCACCGTTTGTATGCTTTGTTATTTCACAATGGCTGCAGTGTG
 GTGGGTGATTCTTACCAATTACTGGTCTTAGCTGCAGGAAGAAAATGGAGTTGTGAAGCCATC
 GAGCAAAAAGCAGTGTGGTTCATGCTGTCATGGGAACACCCAGGTTCTGACTGTTATGC
 TTCTGCTCTGAACAAAGTTGAAGGAGACAAACATTAGTGGAGTTGCTTGTGTTGGCTCTCT
 CCTGGATGCTCTCGCTACTTTGTACTCTGCCACTGTCCTTGTGTTGGCTCTCT
 TCTTTAGCTGGCATTATTCTTAAATCATGTTGACAACTACATGATGGCCGGAAACC
 AAGAAAAACTAAAGAAATTATGATTGACATTGGAGCTTCAGCGGCTGTATCTGTGCCATT
 AGTGACACTTCGGATGTTACGTCATGAGCAAGTGAACAGGATTACCTGGAGATAACTTGG
 GTCTCTGATCATTGTCGTACGATACCATATCCCAGTCCTTATCAGGCAAAAGCAGCAGC
 CAGAATTGGCTTATTATGATAAAACCTGATGACATTAAATTGTTGCATCTGCTGTC
 TGGGTGGAAGCAAAAAGACATGCACAGAATGGGCTGGGTTTTAAACGAAATCGCAAGAGA
 GATCCAATCAGTGAAGAGTACTACAGGAATCATGAGTTTCTTAAAGCACAATT
 CTAAAGTTAAACACAAAAAGAAGCACTATAACCAAGTTACACAAAGCTGAAGGTCAATT
 AATCCATGGGAACCAGCACAGGGACTACAGCAAATCATGGCACTTCTGCACTAGCAATT
 GCCATGATTACCTAGGACAAGAAACTTGACAGAAATCCAACCTCACCAGAACATCAATGA
 GAGAGGTGAAAGCGGACGGAGCTAGCACCCCCAGGTTAAGAGAACAGGACTGTGGTGAACCT
 GCCTCGCCAGCAGCATCCATCTCAGACTCTGGGAACAGGTCGACGGGAAGGGCCAGGCA
 GGCAGTGTATCTGAAAGTGCAGGAGTGAAGGAAGGATTAGTCCAAAGAGTGAATTACTGAC
 ACTGGCCTGGCACAGAGCAACAATTGCAAGGCTCCAGTTCTCAGGAGTGAAGAAAAGAGCAGGGAGGTGGTGT
 GGTTCCACATCTGCTTCACTGCAAGGTTAAGGAGTGAAGAAAAGAGCAGGGAGGTGGTGT
 ATTCAAGTACTGAAAGAACATTCTCGTTACTCAGAACAAATTGTTGTGTTACACTGGAAGT
 GACCTATGCACTGTTGTAAGAACACTGTTACGTTACGTTCTCTTGCACATTAAAGGTTAATG
 TACTGTTACTGGAAAAAAATAGAGTTCAAGAACATAATGACTCATTTACACAAAGGTTAATG
 ACAACAATATACTGAAAACAGAAATGTGCAGGTTAATAATATTAAATAGTGTGGAGGA
 CAGAGTTAGAGGAATCTCCTTCTATTATGAAAGATTCTACTCTGGTAAGAGTATTAAAGA
 TGTACTATGCTATTAACTCTTGTATATAAAATCAAGATATTCTTGTGAAGTATTAAATCT
 TATCCTGTATCTTATACATATTGAAAATAAGCTTATATGTTGAACCTTTGAATCC
 TATTCAAGTATTATCATGCTATTGTGATATTGCACTTGGTAGCTTACACTGAATT
 TAAGAAAATTGAAAATAGTCTCTTTATACTGAAAAAAAGATATACAAAAAGTCTTATAA
 TAGGAATTAACTTAAAAACCCACTTATTGATACCTTACCATCTAAATGTGTATTATAG
 TCTCGTTAGGAATTTCACAGATCTAAATTGTAACTGAAATAAGGTGCTACTCAAAGAGT
 GTCCACTATTGATTGATTATGCTGCTCACTGATCCTCTGCATATTAAAATAAAAGTCTCAA
 AGGGTTAGTAGACAAAATGTTAGTGTATTATAACCAACTACAGITGCTTATATTGTTAA
 AATGTTCATGACCACCCATTGATTGATTGATTATAACCAACTACAGITGCTTATATTGTTAA
 CTTTGTCTTAACATTAGAATATTACATTGATTACAGTACCTTCTCAGACATTG
 AG

Figure 36

CTCTCCCAACCGCCTCGCAGCTCAGGCTGAGAGCACCGCTGACTCGCGGCCGGATG
 CGGGACCCCGGGCGCGGGCGCTCGCTTGTCCCTGGCCTCTGTGCCCTGGTGTGGCGCTGC
 TGGGCGCACTGTCGCGGGCGCCGGCGCAGCCGTACCAAGGGAGAGAAGGGCATCTCCGTGC
 CGGACACGGCTCTGCCAGCCATCTCCATCCCGCTGTGCACGGACATCGCCTACAACCAGAC
 CATCCTGCCAACCTGCTGGCCACACGAACCAAGAGGACGCGGGCCTGAGGTGACCAAGT
 CTACCCGCTGGTAAGGGCAGTGTCTCCGAACCTCGCTTCTTCTTATGCTCCATGTATGCGC
 CCGTGTGACCGTGTGATCAGGCCATCCCGCCGTGTCCTCTGTGCGAGCGCGCCGCCA

GGGCTGCGAGGCCTCATGAACAAGTCGGCTTCCAGTGGCCGAGCCTGCGCTGCGAGAA
CTTCCCCTGTGACGGTGCAGGGCGAGATCTCGTGGGCCAGAACACGTCGGACGGCTCCGGGG
CCCAGGCGGGGGCCCCACTGCCTACCCCTACCGCGCCCTACCTGCCGGACCTGCCCTCACCGCG
CTGCCCCCGGGGGCTCAGATGGCAGGGGGCGTCCGCCCTCCCTCTCATGCCCGTCACTCG
TCAAGGTGCCCGTACCTGGGCTACCGCTTCTGGGTGAGCGCAGTTGTGGCGCCCGTGC
ACCGGGCCGTGCCAACGGCTGATGTACTTTAAGGAGGAGGAGAGGCCCTCGCCCTCTG
GGTGGCGTGTGGTCCGTGCTGTGCGCCTCGACGCTTITACCGTCTCACCTACCTGGTGG
ACATCGGGCGCTCAGCTACCCAGAGCGGGCCATCATCTTCTGTGGCGTCACTTCATGGT
GGCCGTGGCGCACGTGGCCGGCTCCTCTAGAGGACCGCGCCGTGCGTGGAGCGCTTC
GACGATGGCTACCGCACGGTGGCGCAGGGCACCAAGAAGGAGGGCTGCACCATCCTCTCATG
GTGCTCTACTCTCGGATGGCCAGCTCCATCTGGTGGGTCACTCTGTCTCTCACITGGTCT
GGCGGCCGGCATGAAGTGGGGCACGAGGCCATCGAGGCCACTCGCAGTACTTCCACCTGGC
CGCGTGGGCCGTGCCGCCGTCAAGACCATCACTATCCTGCCATGGGCCAGGTAGACGGGA
CCTGCTGAGGGGGTGTGCTACGTTGGCCTCTCCAGTGTGGACCGCGTGCAGGGCTTC
GCGCCTCTGTTGCTACCTCTCATAGGACAGTCCTTCTGCTGGCCGGCTCGTGTCCCTCTC
CGTATCCGCAACATCATGAAACACGACGGCACCAAGACCGAGAAGCTGGAGAAGCTCATGGT
CGCATCGCGTCTCAGCGTCTCACACAGTGGCCACCATCGTCTGGCTACTTCTA
CGAGCAGGCCCTCCCGAGCACTGGAGCGCACCTGGCTCTCGAGACGTGCAAGAGCTATGC
CGTGCCTGCCGCCGCCACTTCCGCCATGAGCCCCGACTTCACCGTCTGGATCTGGTGG
TACCTGATGACCATGATCGTGGCATCACCACGGCTCTGGGACTGGGAGACTCGGTATGAG
AGTCGTGGCGCCGCTTCTACCACAGACTTAGCCACAGCAGCAAGGGGGAGACTCGGTATGAG
CCCCGGCCCTCCCCACCTTCCCACCCAGCCCTTGCAGAGGAGAGGCCAGGTAGGGAAA
AGAACTGCTGGGTGGGGCCTGTTCTGTAACCTTCTCCCCCTACTGAGAAGTGACCTGGAA
GTGAGAAGTTCTTGAGATTGGGGCGAGGGGGTGAATTGGAAAAGAAGACCTGGGTGGAAAAG
CGGTTGGATGAAAAGATTCTAGGCAAAGACTTGCAAGGAAGATGATGATAACGGCGATGTGAA
TCGTCAAAGGTACGGGCCAGCTTGTGCTTAATAGAAGGTGAGACCAGCAGAGACTGCTGTGA
GTTTCTCCGGCTCCGAGGCTGAACGGGACTGTGAGCGATCCCCCTGCTGCAGGGCGAGTGGC
CTGTCAGACCCCTGTGAGGCCGGAAAGGTACAGCCCTGTCTGCCGGTGGCTGTTGTGG
AAAGAGGGAGGGCTCTGCCGGTGTGCTTGTCAAGCAGTGGTCAAACCCATAATCTTCTC
GGGCCAAACTGGAGCCCAGATGGTTAATTCCAGGGTCAAGACATTACGGTCTCTCCTC
CCCCCTCCCGCCTGTTCTCCCGTACTGCTTCAAGGTCTGTAAAATAAGCATTGGAAAGT
CTTGGGAGGCTGCCGTAGAATCCTAATGTGAGGATGCAAAAGAAATGATGATAACATTG
AGATAAGGCCAAGGAGACGTGGAGTAGGTATTCTACTTTCTGTTCTGAGGAAAGCAG
GAGGCAGAAAGACGGGTGTTTATTGGTCAATACCCCTGAAAAGAAGTGTGACTTGTGCTT
TTCAAAACAGGAATGCAATTCTCCCTGTCTTGTGAAAGAGACAAAGAGGAAACAAAGT
GTCTCCCTGTGAAAGGCATAACTGTGACGAAAGCAACTTTATAGGCAAAGCAGCGCAAATC
TGAGGTTCCCGTGGTGTAAATTGGTGAAGATAAACATTCTTAAAGGAAAGTGAAGA
GCAGTGTGCTGTCACACACCCTTAAGCCAGGGTTCTGACTTCGCTAAAGGAAATGTAAGAGG
TTTGTGCTGTTAAATAAATTAAATTCACTGGAAACACATGATCCAACAGACTATGTTAAATAT
TCAGGGAAATCTCTCCCTCATTTACTTTCTGCTATAAGCTATATTAGGTTCTTCTAT
TTTCTCCATTGGATCTTGAGGAAAAACATAATGTCTCAGCCTCATATAAAAGGA
AAGTTAATTAAAAAAAGCAAAGGCCATTGGTCTTCTGTTCTGGTCCATCAATCTGT
TTATTAACATCATCCATATGCTGACCCCTGTCTGTGTTGGGGTGGAGGCGATCAGCAG
ATACCATAGTGAACGAAGAGGAAGGTTGAACCATGGGCCATCTTAAAGAAAGTCATTAA
AAGAAGGTAAACTCTAAAGTGTGATTCTGGAGTTCTGAAATGTGCTGGAAGACTAAATT
AACTTAAATCATGTAATTCTGTAATAGAACCTCGGATTCTTGATGATGGGGTAAAGC
TTAGCAGAGAATCATGGGAGCTAACCTTATCCCACCTTGACACTACCCCTCAATCTGCAAC
ACTATCCTGTTCTCAGAACAGTTAAATGCCAATCATAGAGGGTACTGAAAGTGTACAAG
TTACTTTATATGTAATGTTCACTGAGTGGAACTGCTTTACATTAAGTAAAGTAAATCGATCT
TGTGTTCTCAACCTCAAAACTATCTCATCTGTCAAGATTAAACTCCAACACAGGTT
GCATCTTGTGCTGATCTTAAAGTGCATGTGAAATTGTAAGAAAATATATTGTATT
GTATATTGTAATCTCCATTGGTAAAGAAAATATATTGTATTATACATTTACTTGG
ATTGGTGTGGCTTAAAGGTACCCACTTATCACATGTACAGATCACAAATAAATT
TTTTAAATAC

Figure 37

32/41

ACAGCATGGAGTGGGTTACCTGTGGAAGTGACCTCGCTGCTGGCCGCCTGGCGCTGCTGCA
 GCGCTCTAGCGCGCTCGGCCGCTCGCCAAGGAGCTGGCATGCCAAGAGATCACCGTGC
 GCTGTGTAAGGGCATCGGCTACAACACTACACCTACATGCCAACATCAGITCAACCACGACACGCA
 AGACGAGGCAGGGCCTGGAGGTGACCAAGCTCTGGCCGCTGGTGGAGATCCAGTGCTCGCCCGA
 TCTCAAGTTCTCCTGTGCAGCATGTACACGCCATCTGCCTAGAGGACTACAAGAACGCCGCTG
 CCGCCCTGCCGCTGGTGTGCAGCGCAGGCCAAGGCCGCTGCCGCCGCTATGCCAGTAC
 GGCTTCGCGCTGCCGACCGCATCGCTGCCACCGCTGCCAGGCCAGGCCGCCGCGCTGC
 CTGTGCATGGACTACAACCGCACCGACCTAACCAACCGCCGCCAGGCCGCCGCCGCGCTGC
 CGCCGCCGCCGCCGGCGAGCAGCCGCTCGGGCAGCGGCCACGCCGCCGCCGCCGGGCCA
 GGCCCCCGCACCGCGAGGCCAGGGCGGTGGCGGCCAGGCCAGGCCGCCGCCAGCT
 CGCGCGGCCGGCGGTGGCGGAAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCC
 GGGTGCAGTCCGCGCGCTATGGTGAACGCTGAGCGCCACCCGCTACAACCGC
 GTCAAGACAGGCCAGATCGTAACCGCGCTGCCCTGCCACAACCCCTTTTCAAGCCAGGACG
 AGCGCGCTTCACCGTCTCTGGATCGGCCGTGGTGGCTGCTGCTCGTGTCCACCTCGCC
 ACCGTCTCCACCTCTTATCGACATGGAGCGCTCAAGTACCCGGAGCGGCCATTATCTCCT
 CTCGGCCTGCTACCTCTCGTGTGGCTACCTAGTGCCTGGTGGCGGGCACGAGAAC
 GTGGCGTGCAGCGGTGGCGCCGGCGCAGGGGGCGCTGGGGCGCGGGCGCGCG
 GGGCGCGGGCGCGGGCGCGGGCGCGGGCGCGGGCGCGGGCGAGTACGAGGAGC
 TGGCGCGGTGGAGCAGCACGTGCGTACGAGAACCGGCCGCGTGTGCACCGTGGCT
 TCTTGCTGGTCTACTCTCGGATGCCAGCTCATGGTGGGTGATCTTGTGCTCACATGG
 TTCCTGGCGGCCGTATGAAGTGGGCAACGAAGCCATGCCGGTACTCGCAGTACTCCACC
 TGGCCCGTGGCTGTGCCAGCGTCAAGTCCATGCCGTGCTGGCGCTCAGCTGGTGGACGG
 CGACCCGGTGGCGGGCATCTGCTACGTGGCAACCAAGAGCCTGGACAACCTGCCGGCTTCGT
 GCTGGCGCGCTGGTCACTACCTCTCATCGGACCATGTTCTGCTGGCGGCTCGTGTCCC
 TGTCGCATCCGCTCGGTCAAGAACAGGACGGCCCCACCAAGACGACAAGCTGGAGA
 AGCTGATGATCCGCTGGGCTGTCACCGTGTACACCGTGGCCGCGTGGTGGTGGTGC
 CTGCCTCTCTACGAGCAGCACACCGCCCGCGTGGGAGGCCACGACAACACTGCCGTGCC
 CGGGACCTGCGAGCCCAGGCACGCAGGCCGACTACGCCGTCTCATGCTCAAGTACTTC
 TGTGCCCTAGTGGTGGGATCACCTCGGGCGTGGTGGTGTGGTCCGGCAAGACGCTGGAGTCTG
 GCGCTCCCTGTGCACCCGCTGCTGTGGCCAGCAAGGGCGCCGGTGGCGGGGGCGCG
 CGCCACGGCCCGGGGGGTGGCGGGCGGGGGCGGGGGCGGGGGGGACCCGGCGCG
 GCGGGGGGCGGGCGGGCGGGGGCTCCCTACAGCAGTCAGCACTGCCGTGACGTGG
 GGTGGGCACGGCGAGCTCCGTCTATCCAAAGCAGATGCCATTGTCAGGCTGAGCGGA
 GGGGAGGGGGCGCCCAGGAGGGGTGGGGAGGGGGCGAGGAGACCCAAGTGCAGCGAACGG
 AACACTTGATGGCTGAGGTTCCCACCCCTCACAGTGTGATTGATAGCATGATAATGAAC
 TCTTAATGGTATCCATTAGCTGGACTAAATGACTCACTTAGAACAAAGTACCTGGATTGAA
 GCCTCCCAGACCCAGCCCCCTTCTCCATTGATGTGCCGGGAGCTCCCTCCGCCACCGCTTAAT
 TTCTGTTGGCTGAGGAGGGTGGACTCTGCCGTTCCAGAACCCGAGATTGGAGGCCCTCC
 GGCTGCACTGGCTGGGTTGCACTGAGATACACAGATTTCACCTGGGAGAACCTTTCTCC
 CTCGACTCTCCTACGTAACCTCCACCCCTGACTTACCCCTGGAGGGAGGGTGAACGCCACCTG
 ATGGGATTGCACTGGTGGGTATTCTTAATGACCAAGGCAAATGCCATTGTCAGGCTGAGTAA
 AACAAACAAGAACAAAGAACAAAGAACAAACAAGAACAAACAAGAACAAACAAGAAC
 AATGTCTTAATTATACACCCACGTAATACGGGTTCTACATTAGAGGATGTATTATATAAT
 TATTGTTAAATTGTAaaaaaaaaaaaaAGTGTAAAATATGTATATATCCAAAGATATAGTGT
 ATTTTTGTAAGTTAGAGGCTAACCCCTGTAAGAACAGATATAAGTATTCTATTGTCA
 ATAAAAATGACTTTGATAATGATTAACTGACCATGCCCTCTCCCCGCCCTCTGAGCTGTC
 ACCCTAAAGTGTGCTAAGGACGCACTGGGAAAATGGACATTCTGGCTGTCACTGTC
 TGACCTTAGGCATGGAGAAAATTACTGTTAAACTCTAGTTCTTAAGTGTAGCCAAGTA
 ATCATTGTTGAACGAAATCAAATTGAGTTTGACCTCCCCAAAGACGGTGTGTTATGCA
 GAGCTTTCTGATCCATGGATAACAACTCTCACTTAGTGGATGTAATGGAACCTCTGCAA
 GGCAGTAATTCCCTAGGCCTGTTATTATCCTGCATGGTACTAAAGGTTCAAAACCC
 GAAAAAAA

Figure 38

33/41

CCGCCTTCGGCCCGGGCCTCCCAGGGATGGCGTGGCGCCTCTGCGGGGGCGCTGCTGCTGTGG
 CAGCTGCTGGCGCGGGCGCGCGGGCACTGGAGATCGGCCCTCGACCCGGAGCGCGGGCGC
 GGGGCTGCGCCGTGCCAGGGCGTGGAGAGATCCCCATGTGCCGCGGATCGGCTACAACCTGACC
 CGCATGCCAACCTGCTGGGCCACACGTCGAGGGCGAGGCGGCTGCCGAGCTAGCGGAGTT
 GCGCGCTGGTGCAGTACGGCTGCCACAGCCACCTGCGCTTCTCCTGTGCTCGCTACGCGC
 CCATGTGCACCGACCAGGTCTGACGCCATTCCGCCATGCCGCGGACTCGCTCGACTGCGC
 CCTGCGCTGCCGCCATCATGGAGCAGTCAACTTGGCTGGCGGACTCGCTCGACTGCGC
 CGGCTGCCACCGCAACGACCCGACGCCGCTGTGCATGGAGGCCGCGGAGAACGCCACGGCC
 GGCCCCGCGAGCCCCACAAGGGCCTGGCATGTCGCCGCGGCCGCGGCCCT
 CCCGGAGACCTGGGCCGGCGCGGGCGAGTGGCACCTGCGAGAACCCGAGAAGTCCAG
 TACGTGGAGAAGAGGCCGCTCGCGACCGCGCTGCCGCTGCCGCCCGCGTCGAGGTGTTCTGGTCC
 CGGCGACAAGGACTTCGCGCTGGCTGGATGGCGTGTGGCGCTGTGCTTCTTCCA
 CGCCTCACTGTGCTCACCTTCTGCTGGAGCCCCACCGCTTCCAGTACCCGAGCGCCCATC
 ATCTTCCCTCCATGTGCTACAACGTACTCGCTGCCCTCTGATCCGTGCCGGAGC
 GCAGAGCGTGGCCTGTGACCAGGAGGCCGCGCTACGTGATCCAGGAGGCCGAGAA
 CACGGGCTGACGCTGGCTTCTACTGCTCTACTACTTCGGCATGCCAGCTCGCTCTGGTGG
 GTGGCCTGACGCTCACCTGGCTTGCGCCGGAGAAATGGGCCACGAGGCCATCGAG
 GCCCACGGCAGCTATTCACATGGCTGCCCTGGGCCGCTCAAGACCATCGTCATCC
 TGACCCCTGCGCAAGGTGGCGGGTGTGAGCTGACTGGCTTGTACGTGCCAGCACGGATG
 CAGCAGCGCTCACGGGCTCGTGTGGTCCCCCTCTGGCTACCTGGTGTGGCAGTAGTT
 CCTCCTGACCGGCTCGTGTGGCCCTCTCACATCCGAAGATCATGAAGACGGGGCACCAC
 ACAGAGAAGCTGGAGAAGCTCATGGTCAAGATCGGGCTCTCCATCCTCTACACGGTCCCCG
 CCACCTGCGTCATCGTTGCTATGTCTACGAACGCCCAACATGGACTTCTGGCGCCTCGGGCC
 ACAGAGCAGCCATGCGCAGCGGCCGCGGGGCCGGAGGCCGGAGGGACTGCTCGCTGCCAGG
 GGGCTGGTGCCACCCTGGCGGTCTCATGCTCAAATTTATGTCAGTGTACTGGTGGTGGGATC
 ACCAGCGCGCTGGGTGTGGAGCTCCAAGACTTTACAGACCTGGCAGAGCCTGTGCTACCGCA
 AGATAGCAGCTGGCGGGCCCAAGGCCGCGCCCCGGAGCTACGGACGTGGCA
 CGCACTGCCACTATAAGGCTCCCACCGTGGCTTGACATGACTAAGACGGACCCCTTTGGA
 GAACCCCACACACCTCTAGCCACACAGGCCCTGGCGGGGGTGGCTGCTGCCCTCTGCCCT
 CCACGCCCTGCCCTGCATCCCCCTAGAGACAGCTGACTAGCAGCTGCCAGCTGTCAAGGTCA
 GGCAAGTGAACCGGGGACTGAGGATCAGGGCGGGACCCCTGAGGCTATTAGGGAGAT
 GGGGGCTCCCCTAATGCGGGGGCTGGACCGAGGCTGAGTCCCCACAGGGCTTAGTGGAGGAT
 GTGGAGGGGGGGCAGAGGGTCCAGCCGGAGTTATTAATGATGTAATTATTGTGCGT
 CCTCTGGAAGCTGTGACTGGAATAACCCCCCGTGGCACTGCTGATCCTCTGGCTGGGAAG
 GGGGAAGGTAGGAGGTGAGGC

Figure 39

ACACGTCCAACGCCAGCATGCAGGCCGGCCCCCGCTGGCTGGCTCTGCAAGGTGATGG
 GCTCGTGCGCCCATCAGCTCATGGACATGGAGCGCCGGCGACGGCAAATGCCAGGCCA
 TCGAGATCCCAGTGTGCAAGGACATCGGCTACAACATGACTCGTATGCCAACCTGATGGGCC
 ACGAGAACCGCGAGGGCAGCCATCCAGTTGACGCCGCTGGTGGAGTACGGCT
 GCCACGCCACCTCGCTTCTCTGCTGCTGTACGCCGATGTGACCGAGCAGGTCTC
 TACCCCCATCCCCGCTGCCGGTCTGTGCGAGCAGGCCGGCTCAAGTGTCTCCGATTATG
 GAGCAGTCAACTCAAGTGGCCGACTCCCTGGACTGCCGAAACTCCCCAACAGAACGAC
 CCCAACTACCTGTGCATGGAGGCCAACACGGCTCGGACGCCACCCGGGGCTCGGGC
 CTGTTCCGCCGCTTCCGCCAGCGGCCACAGCGCGCAGGAGCACCCGCTGAAGGAC
 GGGGGCCCCGGCGCGGGCTGCAGACAACCCGGCAAGTCCACCACTGGAGAGAGCGC
 GTCGTGCGCCGCTCTGCACGCCGGCTGGACGTGACTGGAGCCGAGGACAAGCGCTT
 CGCAGTGGCTGGCTGCCATCTGGCGGTGCTGTGCTTCTCCAGCGCTTACCGTGTCA
 CCTTCCTCATGACCCGGCCGCTTCCGCTACCCGAGCGCCCATCATCTTCCTCTCCATGTGC
 TACTGCGTCTACTCCGTGGCTACCTCATCCGCCCTTCGCCGGCGCCAGAGGACATGCCCTGCG
 ACCGGGACAGCGGCCAGCTCATGTACCCAGGAGGGACTGGAGAGGACGCCGCTGACGCTGG
 TCTTCCTGGTCCCTACTACTTCGGCATGCCAGCTCGCTGGTGGTGGTCCCTCACGCTCACC

TGGTTCTGGCGCCGGAAGAAGTGGGGCACGAGGCCATCGAAGCCAACAGCAGCTACTTC
CACCTGGCAGCCTGGCATCCCGCGGTGAAGACCATCCTGATCCTGGTCATGCGCAGGGTG
GCAGGGGACGAGCTCACCGGGTCTGCTACGTGGCAGCATGGACGTCAACCGCCTCACCGGC
TTCGTGCTCATCCCCCTGGCCTGCTACCTGGTCATGGCACGTCTCATCCTCTGGGCTCGT
GGCCCTGTTCCACATCCGGAGGGTGAAGAACGGCGCGAGAACACGGACAAGCTGGAGA
AGCTCATGGTGCATCGGGCTCTCTGTGCTGTACACCGTGCCGGCACCTGTGTGATGCC
TGCTACTTTACGAACGCCCAACATGGATTACTGGAAGATCCTGGCGCGCAGCACAAAGTGA
AAATGAACAACCAGACTAAACGCTGGACTGCCTGATGGCCGCCTCCATCCCAGCGTGGAGA
TCTTCATGGTGAAGATCTTATGCTGCTGGTGGGGATCACCAGCGGGATGTGGATTGGAC
CTCCAAGACTCTGCAGTCTGGCAGCAGGTGTGCAGCGTAGGTAAAGAAGAAGGCCGGAG
AAAACCGGCCAGCGTGAACCGGGGATTACAAAAAAAGCCAGCATCCCCAGAAC
TCACCACGGGAAATATGAGATCCCTGCCAGTCGCCACCTGCGTGTGAACAGGGCTGGAGGG
AAGGGCACAGGGCGCCCGAGCTAAGATGTGGTGTCTTCTGGTTGTGTTTCTTCTTCTT
CTTCTTTTTTTTATAAAAGCAAAGAGAAATACATAAAAAAGTGTITACCCCTGAAATT
AGGATGCTGTGATACACTGAAAGAAAAATGTAACCTAAAGGGTTTGTGTTGTTGGTTTCC
AGCGAAGGGAAAGCTCCTCCAGTGAAGTAGCCTTGTGTAACTAATTGTGGTAAAGTAGTGA
TTCAGCCCTCAGAAGAAAACCTTGTGTTAGAGCCCTCGTAAATATACATCTGTGATTTGAGTT
GGCTTGTACCCATTACAATAAGAGGACAGATAACTGCTTGCAAATTCAAGAGCCTCCCC
TGGGTTAACAAATGAGCCATCCCCAGGGCCCACCCCCAGGAAGGCCACAGTGTGGGCGGCAT
CCCTGCAGAGGAAAGACAGGACCCGGGGCCGCTCACACCCAGTGGATTGGAGTTGCTTA
AAATAGACTCTGGCCTTCACCAATAGTCTCTGTCAAGACAGAACCTCCATCAAACCTCACAT
TTGTGAACCAACGATGTGCAATACATTCTTCTTCTTCTTGTAAAATAAAAGAGAAACAA
GTATTTGCTATATATAAGACAACAAAAGAAATCTCTAACAAAAGAAACTAGAGGCCAGC
CCTCAGAAACCCCTCAGTGTACATTGTGGCTTTAATGGAAACCAAGCCAATGTTATAGA
CGTTGGACTGATTGTGGAAAGGGGGGGAGAGGGAGAAGGGATCATTCAAAGTTACCCA
AAGGGCTTATTGACTCTTCTATTGTAAACAAATGATTCCACAAACAGATCAGGAAGCACTA
GGTTGGCAGAGACACTTGTCTAGTGTATTCTTACAGTGCCAGGAAAGAGTGGTTCTGCG
TGTGTATATTGTAATATGATATTCTCATGCTCCACTATTATTAAAAATAATGTTCT
TTAAAAAAA

Figure 40

CCTGCAGCCTCCGGAGTCAGTGCAGCGCCGCCGCCGCCCTCCTGCTGCCGCACCTC
CGGGAGCCGGGGCGCACCCAGCCCGAGCGCCGCCCTCCCGCCGCCCTCGACCGCAG
GCCGAGGGCCCACTGGCCGGGGGACCGGGCAGCAGCTGGCCGGAGGCCGGCAAC
GCTGGGGACTCGCCTTGTCCCCGGAGGTCCCTGGAAGTTGCGGCAGGACGCGCGCGGG
AGGCGCGGAGGCAGCCCCGACGTGCGGAGAACAGGGCGAGGCCGGCATGGCATCGGG
CGCAGCGAGGGGGCCGCGCGGGCCCTGGCGTGTGCTGGCGCTGGCGCGCGCTCTG
GCCGTGGCTCGCCAGCAGTACGACTACGTGAGCTCCAGTGGACATCGGCCGTACAG
AGCAGGGCGCTCTACACCAAGCACCTCAGTGCCTGGACATCCCGCGGACCTGCGGCTGTG
ACAACGTGGCTACAAGAAGATGGTGTGCCAACCTGCTGGAGCAGAGACCATGGCGAGG
TGAAGCAGCAGGCCAGCAGCTGGTCCCCGTCTGCAACAAAGAACTGCCACGCCGGACCCAGG
TCTTCTCTGCTCGCTCTCGCCGCGTCTGCTGGACCGGCCATCTACCCGTGCGCTGGCTC
TGCAGGGCGTGCAGACTCGTGCAGCCGGTATGCAAGTTCTGGCTTCTACTGGCCGAGA
TGCTTAAGTGTGACAAGTCCGGAGGGGACGTCTGCATGCCATGACGCCAACATGCCAC
CGAACCTCCAAGCCCCAAGGCACAACGGTGTCTCCCTGTGACAACAGAGTTGAAATCTGA
GGCCATCATTGAACATCTCTGTGCCAGCGAGTTGCACTGAGGATGAAAATAAGAAGTGA
AAAAGAAAATGGCGACAAGAAGATTGTCCTTCAAGAAGAAGAAGGCCCTGAAGTTGGGCC
TCAAGAAGAAGGACCTGAAGAAGACTTGTGCTGTACCTGAAGAATGGGCTGACTGTCCCTG
ACCAAGCTGGACAACCTCAGCCACCACCTCCTCATCATGGGCCAGGTGAAGAGCCAGTACTT
GCTGACGGCCATCCACAAGTGGGACAAGAAAAACAAGGAGTTCAAAAACCTCATGAAGAAA
TGAAAAAAACCATGAGTGGCCCACCTTCACTGGTGTGTTAAGTGAATTCTCCGGGGCAGGGTGG
GGAGGGAGCCTCGGGTGGGGAGCAGGGGGGACAGTGCCGGAAACCGTGGTCACACA
CACGCACTGCCCTGTCACTAGTGGACATTGTAATCCAGTCGGCTTGTGCAAGCATTCCC

CCCTTCCCTCATGCCACGCTCAAACCCCAGGGTAGCCATGGCGGGTAAAGCAAGGGCC
ATTAGATTAGGAAGGTTTTAAGATCCGCAATGTGGAGCAGCAGCCACTGCACAGGAGGAGG
TGACAAACCATTCCAACAGCAACACAGCCACTAAAACACAAAAAGGGGGATTGGCGGAAA
GTGAGAGCCAGCAGCAAAACTACATTGCAACTGTGGATCTATTGGCTGATCTAT
GCCTTCAACTAGAAAATTCTAATGATTGCAAGTCACGTTGTTCAAGGTCCAGAGTAGTTCT
TTCTGCTGCTTAAATGGAAACAGACTCATACCACACTTACAATTAAAGGTCAAGCCCAGAAAG
TGATAAGTGCAGGGAGGAAAAGTCAAGTCCATTATCTAATAGTGACAGCAAAGGGACCAGGG
GAGAGGCATTGCCCTCTGCCACAGTCTTCCGTGTGATTGTCITTAATCTGAATCAGCCAG
TCTCAGATGCCCAAAGTTCGGTTCTATGAGCCCCGGCATGATCTGATCCCCAAGACATGT
GGAGGGGCAGCTGTGCCCTGCTGAGAAAAGGAACCACAGTGAGCCTGAGAGAGA
CGCGGATTTCGGGCTGAGAAGCAGTAGTTTCAAAACACATAGTTA

Figure 41

GAATTCGTTCAGCCTGGTTAAGTCCAAGCTGGCTCATTCTGCTCCCCCGGTGGAGCCCCCG
GAGCTGCGCGGGCTTGCAAGCGCCTCGCCCGCTGTCTCCCGGTGTCCGCTTCTCCGCGC
CCCAGCCGCCGGCTGCCAGCTTCCGGCCCTGCCCTTAACCAGCTCCGTCCTACCCCTAGGGGTC
GGCACCACGATGCTGCAGGGCCCTGGCTCGCTGCTGCTCTCCCTGCCACTGCTGCCT
GGGCTCGCGCGCGGGCTCTCCCTTTGCCAGCCGACTTCTCCTACAAGCGCAGCAATTG
AACCCATCCCGCCAACCTGCAGCTGTGCCACGGCATCGAATACCAGAACATGCGGCTGCC
AACCTGCTGGGCCACGAGACCATGAAGGAGGTGCTGGAGCAGGCCGCTTGATCCGCTG
GTCATGAAGCAGTGCCACCCGGACACCAAGAAAGTTCTGTGCTGCTCTCGCCCCGCTG
TCGATGACCTAGACGAGACCATCCAGCCATGCCACTCGNTGCGTGCAGGTGAAGGATCG
GCGCCCGGTATGTCCGCTTCCCTGGCCGACATGCTTGAGTGCAGCCTTCCCCAGGA
CAACGACTTTGCATCCCCCTGCTAGCAGCGACCACCTCCTGCCAGCCACCGAGGAAGCTCCA
AAGGTATGTGAAGCCTGCAAAATAAAATGATGATGACAACGACATAATGAAACGCTTGT
AAAAATGATTTCGACTGAAAATAAAAGTAAGGAGATAACCTACATCAACCGT

Figure 42

CCGGGTGGAGCCCCCGGAGCTGCGCGGGCTTGCAAGCGCCTCGCCCGCGTGTCTCCGGTGTCCC
GCTTCTCCGCGCCCCAGCCGCCGGCTGCCAGCTTCCGGCCCTGCCCTCCCCGGCTCCGCTCCCTGCC
GCCCGGGACAAGCTCGAACCTCCGGCCCTGCCCTCCCCGGCTCCGCTCCCTGCCCTGGGGTC
GCGGCCACGATGCTGCAGGGCCCTGGCTCGCTGCTGCTCTCCCTGCCCTGCCACTGCTGCC
CTCGCGCGCGGGCTTCCCTTTGCCAGCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCCAC
CCTGCCAACCTGCAGCTGTGCCACGGCATCGAATACCAGAACATGCGGCTGCCAACCTGCTGGCCACG
AGACCATGAAGGAGGTGCTGGAGCAGGCCGCGCTGGATCCGCTGGTATGAAGCAGTGCCACCGGA
CACCAAGAAGTCTGTGCTCGCTTCCGCCCCGCTGCCCTCGATGACCTAGACGAGACCATCCAGCCA
TGCCACTCGCTCGCGTGCAGGTGAAGGACCGCTGCCCGGCTATGCTGCCCTCGCTTCCCTGG
CCGACATGCTTGAGTGCAGCGACCGTTCCCCCAGGACAACGACCTTGCATCCCCCTGCTAGCAGCGACCA
CTCTGCCAGCCACCGAGGAAGCTCAAAGGTATGTGAAGCCTGAAAAATAAAATGATGATGACAAC
GACATAATGAAACGCTTGTAAAAATGATTTGCACTGAAAATAAAAGTAAGGAGATAACCTACATCA
ACCGAGATAACAAATCATCTGGAGACCAAGAGCAAGACCATTTACAAGCTGAACGGTGTGTCGAAAG
GGACCTGAAGAAATCGGTGCTGTGGCTCAAAGACAGCTTGCACTGTGAGGAGATGAACGACATC
AACGCCCTATCTGGTATGGACAGAAAACAGGGTGGGAGCTGGTATCACCTCGGTGAAGCGGTGG
AGAAGGGCAGAGAGAGTTCAAGCGCATCTCCCGCAGCATCGCAAGCTGCAGTGCAGTGTAGTCCC
TGATGGCTCGACAGGCCGCTCCAGAGCACGGCTGACCATTTCTGCTCCGGATCTCAGCTCC
CCAAGCACACTCCTAGCTGCTCCAGTCTCAGCTGGGAGCTTCCCTGCCCTTGCACGTTGCATCC
CCAGCATTCTGAGTTAAAGGCCACAGGAGTGGATAGCTGTTTCACTAAAGGAAAGCCCACCGA
ATCTGTAGAAATATTCAAACATAAAATCATGAATATTGATGAAAGTT

Figure 43

36/41

ACGGGGCCTGGCGGSAGGGCGGTGGCTGGAGCTCGGTAAAGCTCGTGGGACCCATTGGGG
 GAATTGATCCAAGGAAGCGGTATTGCCGGGGAGGAGAAGAGCTCCCAGATCCTGTGTCAC
 TTGCAGCGGGGGAGGCGGAGACCGGGAGCGGGCTTTGGCGTCACTGCGCGCTGCACCC
 GCCCATCCTGCCGGATCATGGCTGCGCAGCCGGAGGGATGCTGCTGCTGCGGGCG
 GCTGCTGCCCTGGCTGCTCTGCCTGCTCCGGTGCCGGCTGGCGTCAAGCCTGTGAG
 CCCGTCGCATCCCCCTGTGCAAGTCCCTGCCCTGGAACATGACTAAGATGCCAACACCTGC
 ACCACAGCACTCAGGCCAACGCCATCCTGCCATCGAGCAGITCGAAGGCTGCTGGCACCC
 ACTGCAGCCCCGATCTGCTCTTCTCTGTGCCATGTACGCCCATCTGCACCATTGACTTC
 CAGCACGAGCCCATAACCCCTGTAAGTCTGTGCGAGCAGGGCCGGCAGGGCTGTGAGCCC
 ATACTCATCAAGTACCGCCACTCGTGGCGGAGAACCTGGCTGCGAGGAGCTGCCAGTGTAC
 GACAGGGCGTGTGCACTCTCCGAGGCCATGTTACTGCCAGGGCTGATTTCTATGG
 ATTCTAGTAACGGAAACTGTAGAGGGCAAGCAGTGAACGCTGTAATGTAAGCTATTAGAG
 CTACACAGAACCTATTCCGGAACAATTACAACATGTCAATTGGCTAAAGTAAAGAGAT
 AAAGACTAACATTCCACGGGACACTGTCAACCTCTATACCAGCTGGCTGCCCTCCACTT
 GGTAACATTGAGGAATATATCATCATGGCTATGAAGATGAGGAACGTTCCAGATTACTCTGG
 AATGTTAATGAGGAATATATCATCATGGCTATGAAGATGAGGAACGTTCCAGATTACTCTGG
 TGGAAGGCTCTAGCTGAGAAGTGGAGGATCGACTCGGTTAAAAAGTTAACGGCTGGGATA
 TGAAGCTTCGTCACTTGGACTCAGTAAAAGTGATTCTAGCAATAGTGAATTCCACTCAGAGTCA
 GAAGTCTGGCAGGAACCTGCAACCCCCGGCAAGCACGCAACTAAATCCGAAATACAAAAGTA
 ACACAGTGGACTTCTATTAAAGACTTACTTGCATTGCTGGACTAGCAAAGGAAATTGCACTAT
 TGCACATCATATTCTATTGTTACTATAAAATCATGTGATAACTGATTATTACTCTGTTCTCT
 TTTGGTTCTGCTCTCTCTCAACCCCTTGTAAATGGTTGGGGCAGACTCTTAAGTATA
 TTGTGAGTTCTATTCACTAATCATGAGAAAAACTGTTCTTGCAATAATAAAATTAAAC
 ATGCTGTTA

Figure 44

CAGCGGCCGTGAATTCTAGGGCGGTTCGCGCCCCGAAGGCTGAGAGCTGGCGCTGCTCGT
 CCCTGTGCCCCAGACGGCGGAGCTCCGCGGCCGACCCCGGGCCCCCTTGCTGCCACTGG
 AGTTGGGGAAAGAAACTCTCCTGCGCCCCAGAACAGATTCTCCTCGCGAAGGGACAGCGAA
 AGATGAGGGTGGCAGGAAGAGAACGGCGCTTCTGTCTGCCGGGTCGCAGCGAGAGGGCA
 GTGCATGTTCCCTCCATCCTAGTGGCGCTGTGCCCTGTGGCTGCACCTGGCGCTGGCG
 CGCGCGCCCTCGAGGGCGTGCATCCCTATGTGCCGGCACATGCCCTGGAACATCACCG
 GATGCCAACACCCTGCACCACAGCACGAGAACGCCATCCTGGCCATCGAGCAGTACGA
 GGAGCTGGTGACGTAACTGCAGCGCCGTGTCGCTCTCTGTGCCATGTACCGC
 ATTGCAACCTGGAGTTCTGCACGACCCATCAAGCCGTGCAAGTCGGTGTGCAACCGCG
 GCGACACTCGAGCCCTCATGAAGATGTACAACCACAGCTGGCCGAAGCCTGGCG
 ACGAGCTGCCTGTCTATGACCGTGGCGTGCATTGCGCTGAAGCCATCGTCACGGACCTCCC
 GGAGGATGTTAAGTGGATAGACATCACACCAGACATGATGGTACAGGAAAGGCTCTTGATGT
 TGACTGTAACGCCAACGCGGATCGGTGCAAGTGTAAAAGGTGAAGCCAACCTTGGCAAC
 GTATCTCAGAAAAACTACAGCTATGTTATTGCAAGGAAATAAAAGCTGTGAGGAGTGG
 CTGCAATGAGGTACAACGGTGGATGTAAGAGATCTCAAGTCTCATCACCCATCCCT
 CGAACTCAAGTCCGCTCATTACAATTCTTGCAGTGTCCACACATCCTGCCCATCAAG
 ATGTTCTCATGTGTTACGAGTGGCGTCAAGGATGATGCTCTGAAAATTGCTTAGTGAA
 AAATGGAGAGATCAGCTTAGTAAAAGATCCATACAGTGGGAAGAGAGGGCTGCAGGAACAGCG
 GAGAACAGTTAGGACAAGAAGAAAACAGCGGGCGCACAGCTGAGTAATCCCCCAAACC
 AAAGGGAAAGCCTCTGCTCCAAACCAGCCAGTCCAAAGAAGAACATAAAAGGTG
 CCAGAAGAGAACAAACCGAAAAGAGTGTGAGCTAACACTAGTTCAAAGCGGAGACTCCGAC
 TTCCCTACAGGATGAGGCTGGGCATTGCCCTGGACAGCCTATGTAAGGCCATGTGCC
 CTAACAACTCACTGCAGTGTCTCATAGACACATCTGCAGCATTCTTAAGGCTATGCTC
 AGTTTTCTTGTAAAGCCATCACAGCCATAGTGGTAGGTTGCCCTTGGTACAGAAGGTGAG
 TTAAAGCTGGGGAAAAGGCTTATTGCAATTGCAATTGCAAGGTAACCTGTGCTACTCTAGAAG
 AGTAGGGAAAATAATGCTGTTACAATTGACCTAATATGTGCAATTGTAAGGCTATGCCATAT
 TTCAACAAACACGTAATTTCACAGTATGTTATTACCTTTGATATCTGTTGCAAT
 GTTAGTGTGATGTTAAAATGTGATGAAAATATAATGTTTAAGAAGGAACAGTAGTGGATGA
 ATGTTAAAAGATCTTATGTGTTATGGTCTGCAGAAGGATTGATGAAAGGGATT

GAAAAATTAGAGAAGTAGCATATGGAAAATTATAATGTGTTTTTACCAATGACTTCAGTTCTGTTTTAGCTAGAAACTAAAAACAAAATAATAAAGAAAAATAAAAGGAGGAGG
 CAGACAATGTCGGATTCTGTTTTGGTACCTGATTCCATGATCATGATGCTTCTGTCAA
 CACCCCTCTTAAGCAGCACAGAACAGTGAGTTGTCTGTACCATAGGAGTTAGGTACTAATT
 AGTTGGCTAATGCTCAAGTATTTATACCCACAAGAGAGGGATGTCACTCATCTTACTTCCAG
 GACATCCACCCGAGAATAATTGACAAGCTAAAAATGGCCTCATGTGAGTGCCAAATTG
 TTTTCTTCATTAAATATTTCTTGCCTAAATACATGTGAGAGGGAGTAAATATAATGTACA
 GAGAGGAAAGTTGAGTCCACCTCTGAAATGAGAATTACTTGACAGTTGGGATACITTAATCAG
 AAAAAAAGAACCTATTGAGCATTATCAACAAATTCTATAATTGTGGACAATTGGAGGCAT
 TTATTAAACAAATTATTGGCCTTGTCTAACACAGTAAGCATGTATTATAAGGCATT
 CAATAAATGCACAACGCCAAAGGAATAAAACCTATCTAACCTACTCTCACTACACAGA
 GGTAATCACTATTAGTATTGCGATATTATTCTCCAGGTGTTGCTATGCACTATAAAATGA
 TTGAAACAATAAAACTAGGAACCTGTATACATGTGTTCTAACCTGCCCTTGCTGCC
 TTATTGAGATAAGTTCTGTCAAGAAAGCAGAAACCATCTCATTCTAACAGCTGTGTTATA
 TTCCATAGTATGCATTACTCAACAAACTGTTGTCTATTGGATACTTAGGTGGTTCTCACTGA
 CAATACTGAATAAACATCTCACCGGAATTC

Figure 45

AAGCTTGATATCGAATT CGCGGCCGTCGACGGGAGGCAGGATCAGTCGGGGCACCGC
 AGCGCAGGCTGCCACCCACCTGGCGACCTCCGCGGCCGGCGCGCTGGTAGAGTC
 AGGGCCGGGGCGCACGCCGAACACCTGGCGCCGGCGCCGGCGACCGAGCGTCGGGGCTGCGC
 GGCAGCCCTGGAGAGGGCGCAGCCGATGCGGGCGCGCGCGCGCGCTGCGAGGAGTACGA
 GGCGCGCTGGCGCTGCTGGCGCTGCAGCTGGCGCCGGCGCTGCGAGGAGTACGA
 CTACTATGGCTGGCAGGCCGAGCCGCTGCACGCCGCTCTACTCCAAGCCGCCAGTGCCT
 GACATCCCTGCCGACCTGCCGCTGCCACACGGTGGCTACAAGCGCATGCGGCTGCCAAC
 TGCTGGAGCAGAGAGCCTGGCGAAGTGAAGCAGCAGGCCAGCTGGCTGCCGCTGCTGG
 CCAAGCGCTGCCACTGGATACGAGGTCTCTGTGCTCGCTCTTGCGCCGCTGTCTCGAC
 CGGCCATCTACCGCTGCCGCTCGCTGTGCGAGGCCGTCGCGCCGGCTGCGCCGCTCATGG
 AGGCCTACGGCTCCCCCTGGCTGAGATGCTGACTGCCACAAGTCCCCCTGGACAACGACCT
 CTGCATGCCGTGAGTCCGGCACCTGCCGCCACCGCCCTCAGTGAACCAAGATCTGCC
 CAGTGTGAGATGGAGCACAGTGTGACGCCCTCATGGAGCAGATGTGCTCCAGTGA
 GTCAAAATGCCATCAAGGAGATCAAGATAGAGAATGGGACCGAAGCTGATTGGAGGCCA
 GAAAAAGAAGAAGCTGCTCAAGCCGGCCCCCTGAAGCGCAAGGACACCAAGCGGCTGG
 TGCACATGAAGAATGGCGCGGGCTGCCCTGCCACAGCTGGACAGCCTGGCGGGCAGCT
 TGGTCATGGCCGAAAGTGGATGGACAGCTGCTGCTCATGCCGTCTACCGCTGGGACAAGA
 AGAATAAGGAGATGAAGTGGCAGTCAAATTGTTCTCCTACCCCTGCTCCCTACTACCC
 TTCTCTACGGGGCGGCAGAGCCCCACTGAAGGGACTCCTCTGCCAGCTGTGCC
 GCTGCCCTCTGGCCCCGCCAACCTCCAGGCTGACCCGCCACTGGAGGGTGTTCACG
 AATGTTGTTACTGGCACAAGGCCAAGGGATGGCACGGAGCCCAGGCTGCTTTGACCCA
 GGGGCTGGGTCCCTGGATGTTGGCTCTCTCAGGAGCAGGGCTCTCATCTGGGT
 GAAGACCTCAGGGTCTCAGAAAGTAGGCAGGGAGGGAGAGGGTAAGGGAAAGGTGGAGGG
 TCAGGGCACCCCTGAGGCCGAGGTTTCAGAGTAGAAGGTGATGTCAGCTCCAGCT
 GGTGGTGGGGCTCACCTGAAGAGGGAGTCTCAATATTAGGCTAAGCTATTGGAAAGTTC
 TCCCCACCGCCCCCTGTACCGCTCATCCTAGCCCCCTTAGGAAAGGAGTTAGGGCTCAGT
 TCCAGCCACACCCCTGCCCTCCCCAGCTTGCCCATTCCTGCCCAAGGCCAGAGCT
 CAGACTGGAGAGCAAGCCCAGGCCAGCCTGGCATAGACCCCTCTGGTCCGCCGTGG
 ATTCCCGGGATTCAATTCTCAGCCTCTGCTTCTCCCTTATCCAATAAGTATTGCTACT
 TGAGGCCATAGGTACTAGACAACCAATACATGCAGGGTTGGGTTCTAATTTTAACT
 AATTAAATCAAAGGTGACGCCGCCGCCGGAATTCTGCAGCCGGGATCCCCGGTAC
 GAGCTCGAATT

Figure 46

38/41

ATGCATCTCCTCTTATTTCAGCTGCTGGTACTCCTGCCTCTAGGAAAGACCACACGGCACCAAGG
 ATGGCCGCCAGAACATCAGAGTCTCTTCCCCGTACTCCTGCCAAGGAATCAAAGAGAGCTCC
 CACAGGCAACCATGAGGAAGCTGAGGAGAAGCCAGATCTGTTGCGAGTGCACACACCTGT
 AGCCACCAGCCTGCAGGGAGGCCAGAGGCAGAGAGAGAGAGATGCTGTCCAGATTGGCA
 GGTTCTGGAAGAACGCTGAGAGAGAAATGCATCCATCCAGGGACTCAGATAGTGAGGCCCTCC
 CACCTGGGACCCAGTCCCTCATCCAGGCCATAGATGAAATGAAAATGGAGAAATCTCCTCTCG
 GGAAGAACCCAAGAAATTCTGGCACCACTTCATGTTCAGAAAAACTCCGGCTCTCAGGGGGT
 CATCTGCCCATCAAAAGCCATGAAGTACATTGGGAGACCTGCAGGACAGTGCCTTCAGCCA
 GACTATAACCCACGAAGGCTGTAAAAAGTAGTTGTCAGAACACAACCTTGCTTGGGAAATGC
 GGGTCTGTTCATTTCTGGAGCCGCAGCACTCCCACCTCCTGCTCACTGTTGCTGC
 CAAGTTCACCAACGATGCACITGCCACTGAACACTGCAACTITCCTCCGTGATCAAGGTGGT
 ATGCTGGTGGAGGAGTGCAGTGAAGGTGAAGACGGAGCATGAAGATGGACACATCCTACAT
 GCTGGCTCCAGGATTCCCTATCCCAGGAGTTCAAGCTGA

Figure 47

CGGCACGGTTCTGGGGACCCAGGCTTGCCTGAAAGTGACGGTCATTTCTCTTCTCCCTCT
 TGAGTCTTCTGAGATGATGGCTCTGGCGCAGCGGGAGCTACCCGGGCTTTGTCGCGATGGT
 AGCGGGCGCTCTGGCGCCACCCCTGCTGGGAGTGCAGGCCACCTGAACTCGGTTCTCAAT
 TCCAACGCTATCAAGAACCTGCCCGGACCGCTGGGCGCTGCAGGGGACCCAGGCTCTGCA
 GTCAGCGCCGCCGGGAATCCTGTACCCGGGCGGGAAATAAGTACCAAGGACATTGACAACAC
 CAGCGTACCCGTGCGCAGAGGACGAGGAGTGCAGGACTGTAGTACTGCGTAGTCCCACC
 CGCGGAGGGGACGCAGGCAGTCAAAATCTGCTCGCCTGCAGGAAGCGCCAAAACGCTGCATG
 CGTCACGCTATGTGCTGCCCGGGAAATTACTGCAAAATGGAATATGTGTGTTCTGATCAAA
 ATCATTTCCAGGGAGAAATTGAGGAAACCATCACTGAAAGCTTGGTAATGATCATAGCACCTT
 GGATGGGTATTCAGAAGAACCCCTGCTTCAAAATGTATCACACCAAAGGACAAGAAGG
 TTCTGTTGTCCTCGGTATCAGACTGTGCCTCAGGATTGTGTTGCTAGACACTCTGGTCCA
 AGATCTGAAACCTGTCTGAAAGAACGTCAAGTGTGTTACCAAGCATAAGGAGAAAAGGCTCTC
 ATGGACTAGAAAATATTCAGCGTTACTGTGGAGAACGTGTTCTGCCGATACAGAAAAGA
 TCACCATCAAGCCAGTAATTCTCTAGGCTTCACACTTGTCAAGAGACACTAACCCAGCTATCCA
 AATGCAGTGAACCTCTTATATAATAGATGCTATGAAAACCTTATGACCTTATCAACTCAA
 TCCTAAGGATATACAAGTCTGTGGTTACCTGAAATGCAATGAAACTTTAATTATTTCTAAAGGTGCTGCA
 GAGTGTAAAGAGCTTGTCTTATGGAACCTCCCTGTGATTGCAAGTAAATTACTGTATTGAAA
 TTCTCAGTGTGGCACTTACCTGAAATGCAATGAAACTTTAATTATTTCTAAAGGTGCTGCA
 CTGCCTATTTCCTCTGTTATGAAATTGTACACATTGATTGTTATCTGACTGACAAATA
 TTCTATATTGAACTGAAGTAAATCATTCAAGCTTATAGTTCTTAAAGCATAACCCCTTACCCCA
 TTTAATTCTAGAGTCTAGAACGCAAGGATCTTGGAAATGACAAATGATAGGTACCTAAAATG
 AACATGAAAATACTAGCTTATTTCTGAAATGACTATCTTAATGCTTAAATTATATTCCCTT
 AGGCTGTGATAGTTTGAATAAAATTAAACATTAAATATCATGAAATGTTATAAGTAGACAT

Figure 48

GCGGGTCTCGCTTGGGTCCGCTAATTCTGCTCTGAGGCGTGAGACTGAGTTCATAGGGTCT
 GGGTCCCAGAACCAAGGAAGGGTTGAGGGAAACACAATCTGCAAGCCCCCGCAGCCAAGTGG
 GGCCCCGTGTTGGGTCTCCCTCCCTTGCAATTCCCACCCCTCCGGGCTTGCGTCTCTGG
 GACCCCTCGCCGGAGATGGCCGCGTTGATGCGGAGCAAGGATTGCTCTGCTGCTCCT
 ACTGGCCGCGGTGCTGATGGTGGAGAGCTCACAGATCGGCAAGTTCGCGGGCCAACACTCAACTC
 CATCAAGTCCTCTCTGGCGGGAGACGCCTGGTCAGGCCAATCGATCTGCGGGCATGTAC
 CAAGGACTGGCATTGGCGCAGTAAGAACGGCAAAACCTGGGGCAGGCCTACCCCTGTAGC
 AGTGATAAGGAGTGTGAAGTTGGAGGTATTGCCACAGTCCCCACCAAGGATCATGGCCTGC
 ATGGTGTGCGAGAAAAAGAACGCGTGCACCCAGATGGCATGTGCTGCCCCAGTACCCGC
 TGCAATAATGGCATCTGTATCCAGTTACTGAAAGCATCTTAACCCCTCACATCCGGCTCTGG
 ATGGTACTCGGCACAGAGATGAAACCACGGTCATTACTCAAACCATGACTTGGGATGGCAGA
 ATCTAGGAAGACCACACACTAAGATGTCACATATAAAGGGCATGAAGGAGACCCCTGCCTAC
 GATCATCAGACTGCATTGAAGGGTTTGCTGCTCGTCATTCTGGACCAAAATCTGCAAACC

AGTGCTCCATCAGGGGAAAGTCTGTACCAAAACAACGCAAGAAGGGTTCTATGGGCTGGAAAT
 TITCCAGCGTTGCGACTGTGCGAAGGGCTGTCTGCAAAGTATGGAAAGATGCCACCTACTCC
 TCCAAAGCCAGACTCCATGTGTTCAGAAAATTGATCACCATTGAGGAACATCATCAATTGCA
 GACTGTGAAGTTGTATTAATGCATTAGCATGGTGGAAAATAAGGTTAGATGCAGATCAGAAAG
 AATGGCTAAAATAAGAACGTGATAAGAATATAGATGATCAC

Figure 49

CTATCACAATGAGACCAACACAGACACGAAGGTTGGAAATAATACCATCCATGTGCACCGAGA
 AATTCAAGATAACCAACAACAGACTGGACAAATGGTCTTTAGAGACAGTTATCACATCT
 GTGGGAGACGAAGAAGGCAGAAGGAGCCACGAGTGCATCATCGACGAGGACTGTGGGCCAG
 CATGTACTGCCAGTTGCCAGCTCCAGTACACCTGCCAGCCATGCCGGGCCAGAGGATGCTC
 TGCAACCGGGACAGTGAGTGTGGAGACAGCTGTGTCTGGGTCACTGCACCAAAATG
 GCCACCAAGGGCAGCAATGGGACCATCTGTGACAACCAAGAGGGACTGCCAGCCGGGCTGTGC
 TGTGCCCTCCAGAGAGGCCAGTGTGTCACACCCCTGCCAGGGCTGGAGGGCGAGCTT
 GCCATGACCCGCCAGCCGGCTCTGGACCTCATCACCTGGAGCTAGACCTGATGGAGCCTT
 GGACCGATGCCCTGTGCCAGTGGCTCTGCCAGCCCCACAGCCACAGCCTGGTGTATGTG
 TGCAAGCCGACCTCTGGGGAGCCGTGACCAAGATGGGAGATCCTGCTGCCAGAGAGGTC
 CCCGATGAGTATGAAGTTGGCAGCTCATGGAGGGAGCCTGCCAGGAGCTGGAGGACCTGGAG
 AGGAGCCTGACTGAAGAGATGGCCTGGGGAGCCTGCCAGGAGCTGGAGGACCTGGAG
 GGGGAAGAGATTAGATCTGGACCAGGCTGGTAGATGTGCAATAGAAATAGCTAATTAT
 TTCCCCAGGTGTGCTTAGGCAGGGCTGACCAGGCTTCTCCTACATCTTCTCCAGTAAG
 TTCCCCCTGGCTTGACAGCATGAGGTGTTGTGCATTGTCAGCTCCCCCAGGCTGTTCTCCA
 GGCTTCACAGTCTGGTCTGGAGAGTCAGGCAGGGTTAAACTGCAGGAGCAGTTGCCACC
 CCTGTCAGATTATTGGCTGCTTGCCTCTACCAGTTGCCAGACAGCCGTTGTCATGGCT
 TTGATAATTGTTGAGGGAGGAGATGAAACAATGTGGAGTCTCCCTGATTGGTTTGGGG
 AAATGTGGAGAAGAGTGCCTTGCAACATCAACCTGGAAAAATGCAACAAATGAATT
 TTCCACGCAGTTCTTCATGGCATAGGTAAGCTGTGCCCTCAGCTGTTGAGATGAAATGTT
 TGTTCACCTGCATTACATGTGTTATTACATCCAGCAGTGTGCTCAGCTCCTACCTCTGTGCA
 GGGCAGCATTTCATATCCAAGATCAATTCCCTCTCAGCACAGCCTGGGGAGGGGTCATTG
 TTCTCCTCGTCCATCAGGATCTCAGAGGNCTCAGAGACTGCAAGCTGCTGCCAAGTCACAC
 AGCTAGTGAAGACCAGAGCAGTTCATCTGGTTGTGACTCTAAGCTCAGTGTCTCCACTAC
 CCCACACCAGCCTGGTGCCACAAAAGTGTCCCCAAAAGGAAGGAGAATGGGATTTCTT
 TGAGGCATGCACATCTGGAATTAGGTAAACTAATTCTCACATCCCTCTAAAGTAAACTACT
 GTTAGGAACAGCAGTGTCTCACAGTGTGGGGCAGCCGTCCTCTAATGAAGACAATGATATTG
 ACACGTCCCTCTTGGCAGTTGCAATTGAAAGGTATATGACTGAGCGTAGCATAC
 AGGTTAACCTGCAGAAACAGTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTGCA
 AAATCACTTAGCAGCAACTGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGG
 CTGTGTGAAACATGGITGTAATATGCGACTGCGAACACTGAACCTACGCCACTCCACAAATGA
 TGTTTCAGGTGTCATGGACTGTTGCCACCATGTTACATCCAGAGTTCTAAAGTTAAAGTGT
 CACATGATTGATAAGCATGCTTCTTGAGTTAAATTATGATAAACATAAGTGCATTAG
 AAATCAAGCATAAAATCAC

Figure 50

AGACGACGTGCTGAGCTGCCAGCTAGTGGAAAGCTCTGCTCTGGTGGAGAGCAGCCTCGCTT
 GGTGACGCACAGTGTGCTGGACCCCTCCAGGAGCCCCGGATTGAAGGGATGGTGGCGGCCGTCT
 GCTGGGCTGAGCTGGCTCTGCTCTCCCTGGAGCTCTGGTCTGGACTCAACAAACATCAGG
 AGCTCTGCTGACCTGCATGGGCCCGGAAGGGCTCACAGTGCCTGTCTGACACGGACTGCAAT
 ACCAGAAAAGTTCTGCCCTCCAGCCCCGATGAGAAGCCGTTCTGTGCTACATGTGTTG
 GGAGGAGGTGCCAGCGAGATGCCATGTGCTGCCCTGGGACACTCTGTGTGAACGATGTTGAC
 TACGATGGAAGATGCAACCCCAATTAGAAAGGCAGCTGATGAGCAAGATGGCACACATGC
 AGAAGGAACAACTGGGCACCCAGTCCAGGAACCAACCAAAAGGAAGCCAAGTATTAAGA
 AATCACAAGGCAGGAAGGGACAAGAGGGAGAAAGTTGACTGTGAGAACTTTGACTGTGCCCTG

GA CTT GCT GTG CTC GT CATT TGG ACG AAA ATT GTA AG CCAG TC CTT GG AG GG AC AG GT
 CT GCT CCAG AAG AG GG CATA AAG AC ACT GCT CA AG CT CCAG AA AT CT TC AG CG TT GC ACT GT
 GG CC CT GG ACT ACT GT GT CGA AG CC AAT GACC AG CA AT CGG CAG CAT GCT CG AT TA AG AG TA
 GCC AAA AA AT AG AAA AG CT ATA AAT ATT CAAA ATA AGA AGA AT CCAC ATT GC

Figure 51

AGGCAGAAATACTTCTATGAATT CCT GTCCITGCGCTCCCTGGATAAAGGCATCATGGCAGATCC
 AACCGTCAATGTCCCTCTGCTGGGAACAGTGCTCACAGGCATCAGTTGTTCAAGTTGGTTTC
 CCATGCTTGGAAAACAGGATGGGTGGCAGCATTGAAGTGGATGTGATTGTTATGAATTCTG
 AAGGCAACACCATTCTCAAACACCTCAAATGCTATCTTCTTAAACATGTCAACAAGCTGA
 GTGCCAGCGGGTGCCAAATGGAGGCTTGTAAATGAAAGACGCATCTGCAGTGTCCCTGA
 TGGGTTCCACGGACCTCACTGTGAGAAAGCCTTGTACCCACGATGTATGAATGGTGGACTT
 TGTGTGACTCCTGGTTCTGCATCTGCCACCTGGATTCTATGGAGTGAACGTGACAAAGCAA
 ACTGCTCAACCACCTGCTTAATGGAGGGACCTGTTCTACCCCTGAAATGTATTGCCCTCCA
 GGACTAGAGGGAGAGCAGTGTGAAATCAGCAAATGCCACAAACCTGTGAAATGGAGGTA
 ATGCATTGGTAAAAGCAAATGTAAGTGTCCAAGGTTACCAAGGGAGACCTCTGTCAAAGCCT
 GTCTGCGAGCCTGGCTGGTGACATGGAACCTGCATGAACCCAAACAAATGCCAATGTCAA
 GAAGGTTGGCATGGAAGACACTGCAATAAAAGGTACGAAGCCAGCCTCATACATGCCCTGAGC
 GCAGCAGCGCCCAGCTCAGGCAGCACACGCCACTTAAAGGCCGAGGAGCGGCGGCATC
 CACCTGAATCCAATTACATCTGGTAACCTCGACATCTGAAACGTTTAAGTTACACCAAGTT
 ATAGCCTTGTAAACCTTCATGTGTTGAATGTTCAAATAATGTTCAATTACACTTAAGAATACTG
 GCCTGAATTATTAGCTTCATTATAAATCACTGAGCTGATATTACTCTCCTTTAAGTTTCT
 AAGTACGTCTGTAGCATGTTAGATTCTGTTCAAGTGTCTTGGGACAGATTATATT
 ATGTCAATTGATCAGGTTAAAATTTCAGTGTGAGTTGGCAGATATTICAAAAATTACAATGC
 ATTTATGGTGTCTGGGGCAGGGGAACATCAGAAAGGTTAAATTGGGAAAAATGCGTAAGTC
 ACAAGAATTGGATGGTGCAGTTAATGTTGAAGTTACGCATTAGTTCAGATTATGTCAGATAT
 TTAGATGTTGTTACATTAAAATTGCTCTTAATTAAACTCTCAATAACATAATTGTA
 CCTTACCAATTCCAGAGATTAGTATTAAAAAAATTACACTGTGGTAGTGGCATTT
 AAACAATATAATATTCTAAACACAATGAAATAGGAATATAATGTATGAACCTTGTGATTG
 GCTTGAAGCAATATAATATTGTAACAAAACACAGCTTACCTAATAAACATTATACTG
 TTGTATGTATAAAATAAGGTGCTGCTTAGTTTC

Figure 52

ATGGGCATCGGGCGCAGCGAGGGGGCCGCCGCGGGCAGCCCTGGCGTGTGGCGCTGGCGCG
 CGCTCTGGCGTGGCTGGCCAGCGAGTACGACTACGTGAGCTTCCAGTCGGACATCGGCCCGTACCA
 GAGCGGGCGCTCTACACCAAGCCACCTCAGTGGTGGACATCCCCGGACCTGGCGTGTGCCACAAC
 GTGGGCTACAAGAAGATGGTGTGCTGCCAACCTGCTGGAGCACGAGACCATGGCGGAGGTGAAGCAGCAG
 CCAGCAGCTGGGTGCCCTGCTCAACAAGAACTGCCACGCCAGGTCTCCTCTGCTCGCTCTT
 CGCGCCCGTCTGCTGGACCGGCCATCTACCCGTGTCGCTGGCTCTGCAGGCCGTGCGACTCGTGC
 GAGCCGGTATGCAGTTCTGGCTCTACTGGCCGAGATGCTTAAGTGTGACAAGTTCCCGAGGGGG
 ACGTCTGCATGCCATGACGCCCAATGCCACCGAAGCCTCCAAGCCCCAAGGCACAACGGTGTGTC
 TCCCTGTGACAACAGAGTTGAAATCTGAGGCCATCTGAAACATCTGTGCCAGCGAGTTGGCTGAGT
 TTAAAGATGATTGGGTAGCTCCATAACTCATGCTGCAAGCTGGTCTCTCATCCAACTCCTCAA
 AGCGGCAGGAGCAGGAAGTGGGACTCCTGAGAGAAGGCTGGATATGCCCTTTATTACACTCATCCA
 AGGAAATCTGCCCAACCTGTGCCAGGCCGATCACGCATGAGGCTAAAGACGGAGGCCACTCCGCTG
 GCTCTGGGTAGATCTGCCCTGGACTGTTGCCAGTGCCTGGAGCGCCCTGCGGTCTGCAGCTTCC
 CACACCACCGAAGAAGTGGGAAACTGAGGATACATTCTCCTCCAGGTAAAGGGATTCTCAAT
 GAAGGGCTGTGTCACCTTCCACACTTAGATACTACTACCTGAAAACCAGCATGCAGCATGTACAT
 CAAGAGTACCAAGGCACATAGTGCTCAAGTCTGGCTAATATGCCACCTGCAGAGAGATGTAAAGATGAAG
 AAGACAAAGCCATGTTCAAAGTGA

Figure 53

41/41

GGCGGGTTCGCGCCCCGAAGGCTGAGAGCTGGCGTGTGCCCTGTGTGCCAGACGGCGAGCTCCG
 CGGCCGGACCCCGGGCCCCGTTGCTGCCACTGGAGTTGGGGAAAGAAACTCTCCTGCCAGA
 AGATTTCTCCTCGCGAAGGGACAGCGAAAGATGAGGGTGGCAGGAAGAGAAGGCCTTCTGTCTGCC
 GGGGTCGCAGCGAGAGGGCAGTGCCATGTCCTCTCCATCCTAGTGGCGCTGTGCCCTGGCTGCC
 TGGCGCTGGCGTGCAGCGCCCTGCAGGGTGGCAGGAGAACGCATGCCATGTGCCAGATGCCCTGGAA
 CATCACCGGGATGCCAACCAACCACCTGCACCCACAGCACGAGGAGAACGCATCCTGCCATGAGCAGTAC
 GAGGAGCTGGTGGACGTGAACCTGCAGGCCGTGCGCTTCTCTCTGTGCCATGTACGCCATT
 GCACCCCTGGAGTCTGCACGCCATCAAGCCGTCAAGTCGGTGTGCCAACGCCGCGGACGACTG
 CGAGCCCTCATGAAGATGTACAACCACAGCTGGCCGAAAGCCTGGCTGCAGGAGCTGCCGTCTAT
 GACCGTGGCGTGTGCATTCGCTGAAGCCATGTCACGGACCTCCGGAGGATGTTAAGTGGATAGACA
 TCACACCAGACATGAGTACAGGAAAGGCCCTTGATGTTACTGTAACGCCATAAGGCCGATCGGTG
 CAAGTGTAAAAGGTGAAGCCAACCTTGGCAACGTATCTCAGCAAAACTACAGCTATGTTATTG
 AAAAATAAAGCTGTGCAGAGGGAGTGGCTGCAATGAGGTACAACGGTGGATGTTAAAAGAGATCTTCA
 AGTCCCTCATCACCATCCCTCGAACTCAAGTCCCCTCATTACAAATTCTCTGCCAGTGTCCACACAT
 CCTGCCCATCAAGATGTTCTCATCATGTGTTACGGAGTGGCTCAAGGATGATGCTCTTGA
 TTAGTTGAAAATGGAGAGATCAGCTTAGTAAAAGATCCATACAGTGGGAAGAGAGGGCTGCAGGAACAGC
 GGAGAACAGTTCAGGACAAGAAGAAAACAGCCGGCGACCAGTCGTAGTAATCCCCCAAACCAAAGGG
 AAAGCCTCTGCTCCAAACCCAGCCAGTCCCAGAAGAACATTAAAATAGGAGTGCAGAAGAGAAC
 AACCCGAAAAGAGTGTGAGCTAACTAGTTCAAAGCGGAGACTCCGACTTCCCTACAGGATGAGGCTG
 GGCATTGCCTGGGACAGCCTATGTAAGGCCATGCCCCCTGCCCTAACAAACTCACTGCAGTGTCTTCA
 TAGACACATCTGCAGCATTCTTAAGGCTATGCTCAGTTTCTGTAAGCCATCACAGCATA
 GTGGTAGGTTGCCCTTGGTACAGAAGGTGAGTTAAAGCTGGAAAAGGCTTATTGCAATTG
 GAGTAACCTGTGTGCATACTCTAGAAGAGTAGGGAAAATAATGCTGTTACAATTGACCTAATATG
 ATTGAAAATAATGCCATATTCAAACAAAACACGTAATTTTTACAGTATGTTATTACCTTTGA
 TATCTGTTGTTGCAATGTTAGTGTGTTAAAATGTGATGAAAATAATGTTTTAAGAAGGAACAGT
 AGTGGAAATGAATGTTAAAAGATCTTATGTTATGGCTGCAGAAGGATTTGTGATGAAAGGGAT
 TTTTGAAAATTAGAGAAGTAGCATATGAAAATTATAATGTTTTTACCAATGACTTCAGTTCT
 GTTTTAGCTAGAAAATTAAAACAAAATAATAAAAGAAAATAATAAAAAGGAGAGGAGACAAT
 GTCTGGATTCTGTTTTGGTTACCTGATTCCATGATCATGATGCTCTGTCAACACCCCTTAAGC
 AGCACCAAGAACAGTGAGTTGCTGTACCAATTAGGAGTTAGGTACTAATTAGTGGCTAATGCTCAAGT
 ATTATACCCACAAGAGAGGTATGTCACTCATCTTACTTCCAGGACATCCACCCCTGAGAATAATTGA
 CAAGCTTAAAATGGCTTCAATGAGTGCACAGCCAAAGGAAATAAACTCTATCTAATCCTACTCTC
 AATACATGTGAGAGGAGTTAAATATAATGTCAGAGAGGAAAGTTGAGTCCACCTCTGAAATG
 TACTTGACAGTTGGGAACTTTAATCAGAAAAAAAGAACTTATTGAGCATTATTAATCAACAAATT
 ATTGAGCAATTGGAGGCATTATTAAAAACAAATTATTGGCTTTGCTAACACAGTAAGCAT
 GTATTCTATAAGGCATTCAATAAAATGACAAACGCCAAAGGAAATAAACTCTATCTAATCCTACTCTC
 ACTACACAGAGGTAACTACTATTAGTATTGGCATATTATTCTCCAGGTGTTGCTTATGCACTTAA
 AATGATTGAAACAAATAAAACTAGGAACCTGTATACATGTTGTTCTAACCTGCCCTTGTGGCC
 TTTATTGAGATAAGTTCTGTCAAGAAAGCAGAAACCATCTCATTTCTAACAGCTGTGTTATTCCA
 TAGTATGCATTACTCAACAAACTGTTGCTATTGGATACTTAGGTGGTTCTCACTGACAATGAA
 TAAACATCTCACCGGAATT

Figure 54

GAGGCGCCTGGGACCGCGTGGGAGCCGAGCCGAACCGAGTAGGGACCGGGACCGCGCGGCCGCC
 TCCCCGGCCGGGGCCCCGGCGAGCCGAGCGCGCGCCCCGTCGCCACCCGGCGCGCTGGATGC
 GCGGGGTCCCCGGCGAGCCCCGGGCCAGCGCCCGAGCGCCCGAGAGGCCAGGGCCGCGCTGGGG
 CGGGGACGCCGCGCCCTSTBGTGCGCCAGGCGCGCCCCGAGACAGCCGGGGGCCGCCAGCCGC
 CGCCCGCGCTGAGCCCCGGGCCCGCGGCCGCCCCGGCGAGCAGCTGAGGAGGCTGTGCGNAGGG
 CAGACAGCCAGGGCAGCTGTCAGCTGGTGTGAGCTGAGCTGCTGGTCAAGTTCGGCGCCGAC
 CACCTGCTCCCGCCCGCAGACGAGCGCATCTTCCAGGAGGCTGTGCGNAGGGCAACACGAGG
 GCTGCAGTYGCTGCTGAGAACATGACCAACTGCGAGTTCAACGTGAACCTGCTGGTCTGAG
 GCGCTGCAACAGTCGGTACATGTCGGCAACCTGGTGTGAGCTGCTGGTCAAGTTCGGCGCC
 ATCCGCCCTGGCAACCGCGACGGCTGGAGCGCGCTGCAMATGCCGCTGGTGGCCACAGGACATC
 GTGCTCTATCTCATACCAAGGCGAAGTACGCGGCCAGCGCSGGTGTATGCCGCCGGACCCCG
 CGGCCCTGGCCCGCGTGTCTGCTGTACCTCCGCCAACTACCTCGGTGCGCMCGGCTCGCAGG
 CGGCCAGAAGGCCGTGGCAACGGCGAATACGGCGCTGCGTCMCGGCCAGGGTC