

Multidisciplinary System Design Optimization applied to a Space Shuttle External Fuel Tank

Anonymous MIT students

- Introduction
- Problem Statement
- Model Implementation and Validation
- Design of Experiment
- Single Objective Optimization
- Sensitivity Analysis
- Multi objective Optimization
- Conclusions

✓ Introduction

- Problem Statement
- Model Implementation and Validation
- Design of Experiment
- Single Objective Optimization
- Sensitivity Analysis
- Multi objective Optimization
- Conclusions

Problem Statement

Maximize the Return On Investment (ROI) by changing the physical Space Shuttle External Fuel Tank design variables while satisfying the given mechanical requirements (Volume, Stress, Vibrations) at a fixed specific Payload.

Problem Statement (cont')

Revenue (tax payers) — (Launch Fixed Costs + Tank Cost)

(Launch Fixed Costs + Tank Cost)

- ✓ Introduction
- ✓ Problem Statement
- Model Implementation and Validation
- Design of Experiment
- Single Objective Optimization
- Sensitivity Analysis
- Multi objective Optimization
- Conclusions

Model implementation and validation

Objectives (7)

- Total surface of the tank
- Tank weight
- Total seam cost
- Delta payload
- Payload launched
- ROI

Design Variables (6)

- Nose cone height
- Radius of the hemisphere
- Length of the cylindrical body
- Nose cone thickness
- Cylinder thickness
- Hemisphere thickness
- Aspect ratio of cone

Constraint (5)

- Volume
- Stress (cylinder nose, hemisphere, nose cone)
- Vibration

Parameters (10)

- Cost of material/unit
- Cost Seam/unit
- Material weight/unit
- Liquid fuel pressure
- Payload 1
- Payload 2
- **Nominal Payload**
- Profit ratio
- Vibration constant
- Fixed launch cost per weight
- Charge to customer for launching payload per unit weight

Model implementation and validation (cont')

		Description	Symbol	Unit of measurement	Inputs	Outputs
Design Vector	1	Nose cone height	Н	cm		11, 12, 17, 28
	2	Length of center cylindrical body	L	cm		9, 10, 15
	3	Radius of hemisphere	R	cm		7,8,9,10,11,12,16, 17, 18, 19, 24, 25, 26, 28, 32
	4	Nose cone thickness	Tonte	cm		21, 22, 26
	5	Cylinder thickness	Testinder	cm		21, 22, 24
	6	Hemisphere thickness	Themisphere	cm		21, 22, 25
8	7	Hemisphere Surface	HS	cm ²	3	13, 21, 22
g	8	Hemisphere Volume	HV	cm ³	3	14
lo Vol	9	Cylinder Surface	CS	cm ²	2,3	13, 21, 22
Surfaces and Volumes	10	Cylinder Volume	CV	cm ¹	2,3	14
8	11	Cone Surface	CnS	cm ²	1,3	13, 21, 22
ace	12	Cone Volume	CnV	cm ³	1,3	14
il il	13	Tank surface	TS	cm ²	7, 9, 11	28
σ,	14	Tank volume	TV	cm³	8, 10, 12	36
76.	15	Seam length in Cylinder	S1	cm	2	20, 23
長	16	Seam length in Hemisphere	S2	cm	3	20, 23
Seams length	17	Seam length in Cone	S3	cm	1,3	20, 23
SIII	18	Seam length cy linder & hemisph	S4	cm	3	20, 23
3	19	Seam length cy linder & cone	S5	cm	3	20, 23
97.80	20	Total Seam length	St	cm	15-19	
Weight and	21	Tank weight	TW	kg	9,5,7,6,11,4	30, 32
material cost	22	Tank material cost	C _{material}	dollar	9,5,7,6,11,4	27
Seam Cost	23	Cost of seams	C _{scam}	dollar	15-19	27
	24	C. C. L. C.		N. Samera	3, 5	34
2	25	Cylinder Eq. stress	E	N/cm sq		35
Stress	-	Sphere Eq. stress	SE	N/cm sq	3,6	
	26	Cone Eq. stress	CE	N/cm sq	3,4	33
Total cost	27	Total Cost	TC	dollar	22, 23	27

Model implementation and validation (cont')

N2 Matrix

Modules									
Design Vector	Surfaces and Volumes	Seam lengths	Weight and material costo	Seam cost	Stre86	Total Cost	Payload	Retut of investment	Const raints
Design Vector	1,2,3	1,2,3	456		1456		1,3		1,234
	Surfaces and Volumes		6,7,11				13		
		Seam lengths	v	15, 16, 17, 18, 19					
			Weight and material costo			z			21
				Seam cost		23			
					Stress				24,25,25
						Total Cost		23	
			V.				Payload	23	
								Retuit of investment	
			k						Constraints

Model implementation and validation (cont')

Block Diagram

Model implementation and validation (cont')

Model Validation

- The given nominal values of the real External Tank were used in the model formulas
- Outputs verified the model as valid, but with low fidelity

E.g.: Nominal Tank Weight = 27,737.79 [Kg]

Model Tank Weight = 21,254.46 [Kg]

- ✓ Introduction
- ✓ Problem Statement
- Model Implementation and Validation
- Design of Experiment
- Single Objective Optimization
- Sensitivity Analysis
- Multi objective Optimization
- Conclusions

Design of Experiment

DOE factors and levels

Factors	Level 1	Level 2	Level 3
HR2	1	2	3
L	4600	4800	5000
R	420	435	450
TCO	0.66	0.75	0.84
TCY	0.66	0.7	0.74
TH	0.76	0.86	0.96

18-Orthogonal array

X 0 =	1
	4600
	435
	0.84
	0.74
	0.86

 $ROI_0 = 0.0903$

Exp	HR2	L	R	TCO	TCY	TH
1	1	4600	420	0.66	0.66	0.76
2	1	4800	435	0.75	0.7	0.86
3	1	5000	450	0.84	0.74	0.96
4	2	4600	420	0.75	0.7	0.86
5	2	4800	435	0.84	0.74	0.76
6	2	5000	450	0.66	0.66	0.86
7	3	4600	435	0.66	0.74	0.86
8	3	4800	450	0.75	0.66	0.96
9	3	5000	420	0.84	0.7	0.76
10	1	4600	450	0.84	0.7	0.86
11	1	4800	420	0.84	0.74	0.96
12	1	5000	435	0.75	0.66	0.76
13	2	4600	435	0.84	0.66	0.96
14	2	4800	450	0.66	0.7	0.76
15	2	5000	420	0.75	0.74	0.86
16	3	4600	450	0.75	0.74	0.76
17	3	4800	420	0.84	0.66	0.86
18	3	5000	435	0.66	0.7	0.96

Main effects

Variable	Level	Factor	Mean	Main Effect
	1	1	-0.2455	0.2555
HR2	2	2	-0.4377	0.0633
	3	3	-0.8197	-0.3187
	1	4600	-0.3959	0.1050
L	2	4800	-0.6122	-0.1112
	3	5000	-0.4948	0.0062
	1	420	-0.6945	-0.1936
R	2	435	-0.1060	0.3950
	3	450	-0.7024	-0.2014
	1	0.66	-0.7426	-0.2416
TCO	2	0.75	-0.4401	0.0609
	3	0.84	-0.3806	0.1204
	1	0.66	-0.5596	-0.0586
TCY	2	0.7	-0.6043	-0.1034
	3	0.74	-0.3390	0.1620
	1	0.76	-0.5986	-0.0976
TH	2	0.86	-0.3494	0.1515
	3	0.96	-0.5959	-0.0950

- ✓ Introduction
- ✓ Problem Statement
- Model Implementation and Validation
- Design of Experiment
- Single Objective Optimization
- Sensitivity Analysis
- Multi objective Optimization
- Conclusions

Single Objective Optimization

Best solution by Genetic Algorithm

Single Objective Optimization

- ✓ Introduction
- ✓ Problem Statement
- Model Implementation and Validation
- Design of Experiment
- Single Objective Optimization
- Sensitivity Analysis
- Multi objective Optimization
- Conclusions

Sensitivity Analysis

Sensitivity Analysis

$$\frac{\frac{d(x)}{dC}}{\frac{d(C)}{d(C)}} = \begin{bmatrix} \frac{dHR2}{dC} \\ \frac{dR}{dC} \\ \frac{dTCO}{dTCO} \\ \frac{dC}{dTCY} \\ \frac{dC}{dTH} \\ \frac{dC}{dC} \end{bmatrix} = \begin{bmatrix} -0.02576 \\ \sim 0 \\ \sim 0 \\ \sim 0 \\ \sim 0 \end{bmatrix}$$

$$\frac{d(x)}{d(FL)} = \begin{bmatrix} \frac{dHK2}{dFL} \\ \frac{dR}{dFL} \\ \frac{dGFL}{dTCO} \\ \frac{dFL}{dTCY} \\ \frac{dFL}{dTCY} \\ \frac{dFL}{dFL} \\ \frac{dFL}{dFL} \\ \frac{dFL}{dFL} \end{bmatrix} = \begin{bmatrix} -1.993 * 10^{-5} \\ \sim 0 \\ 3.164 * 10^{-6} \\ -5.155 * 10^{-6} \\ -2.206 * 10^{-8} \\ -9.482 * 10^{-8} \end{bmatrix}$$

Constraint	Form	Value at x*	Active?
Vibration constraint	1- VF/VFallo wed ≤o	~ 0	Yes
Volume constraint	1- Vtank/Vno minal ≤o	~ 0	Yes
Eq. Cylinder stress constraint	Scyl/Sallo wed-1≤0	~ 0	Yes
Eq. Hemisphere stress constraint	Shem/Sall owed-1≤0	~ 0	Yes
Eq. Cone stress constraint	Scon/Sallo wed-1≤0	~ 0	Yes

- ✓ Introduction
- ✓ Problem Statement
- Model Implementation and Validation
- ✓ Design of Experiment
- Single Objective Optimization
- Sensitivity Analysis
- Multi objective Optimization
- Conclusions

Multi Objective Optimization

- ✓ Introduction
- ✓ Problem Statement
- Model Implementation and Validation
- ✓ Design of Experiment
- Single Objective Optimization
- Sensitivity Analysis
- Multi objective Optimization
- Conclusions

Conclusions

- Single Objective Optimization
- Multi Objective Optimization

http://www.nasa.gov/topics/shuttle_station/index.html

MIT OpenCourseWare http://ocw.mit.edu

ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.