Frühjahr 11 Themennummer 3 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- a) Sei $U:=\{z\in\mathbb{C}:\ |z|<2\}$ und $f:U\to\mathbb{C}$ holomorph mit f(0)=0 und f(1)=1. Zeigen Sie, dass es ein $z\in U$ gibt mit $f(z)\in\mathbb{R}$ und f(z)>1.
- b) Bleibt die Aussage in (a) richtig, wenn man
 - i) auf die Voraussetzung f(0) = 0 verzichtet, oder
 - ii) U durch eine beliebige offene Teilmenge von \mathbb{C} mit $0 \in U$ und $1 \in U$ ersetzt?

Lösungsvorschlag:

- a) f ist eine nichtkonstante, holomorphe Funktion auf einem Gebiet. Nach dem Satz von der Gebietstreue ist $f(U) \subset \mathbb{C}$ ein Gebiet, also insbesondere offen. Wegen f(1) = 1 gilt $1 \in f(U)$ und somit existiert ein $\varepsilon > 0$ mit $\{z \in \mathbb{C} : |z-1| < \varepsilon\} \subset f(U)$. Also ist $1 + \frac{\varepsilon}{2} \in f(U)$ und es existiert ein $z \in U$ mit $f(z) = 1 + \frac{\varepsilon}{2}$, also $f(z) \in \mathbb{R}$ und f(z) > 1.
 - i) Nein, betrachte $f \equiv 1$.
 - ii) Nein, betrachte $U:=\{z\in\mathbb{C}: \operatorname{Re} z\neq \frac{1}{2}\}$ und $f(z):=\begin{cases} 0, & \text{falls Re } z<\frac{1}{2},\\ 1, & \text{falls Re } z>\frac{1}{2}. \end{cases}$

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$