

7.3

BTS Systèmes Numériques Option : IR E 6-2 – PROJET TECHNIQUE

Dossier de présentation et de validation du projet (consignes et contenus)

G	Groupement académique : Créteil Paris Versailles Session : 2023									
L	Lycée : Dorian (070676C)									
	Ville : Paris									
N	° du p	rojet : 6	Nom du	ı projet :	Tube de K	(uı	ndt automa	atisé		
_						1				
Pr	ojet no	ouveau	Oui■	Non 🗆			Projet inter		Oui ■ Formation initiale ■	Non □ Apprentissage □
Sp	écialité	é des étudiants	EC 🗆	IR ■	Mixte \square		Nombre d'é			Apprentissage L
P	ofesse	eurs responsable	es:	BESSON	-DUPART - LI	LAS	ER – LOUIS -	GUILBERT		
S	omn	naire								
1	Pré	sentation et situ	uation du	projet da	ns son envi	ror	nnement			2
	1.1	Contexte de r	éalisation							2
	1.2	Présentation (du projet.							2
	1.3	Situation du p	rojet dan	s son con	texte					2
	1.4	Cahier des cha	arges – Ex	pression	du besoin					2
2	Spé	écifications								3
	2.1	Diagrammes S	SYSML			••••				3
	2.2	Contraintes de	e réalisati	on						3
	2.3	Ressources m	ises à disp	osition d	es étudiant	s (I	ogiciels / m	atériels / d	ocuments)	3
3	Rép	partition des for	nctions ou	cas d'util	isation par	étı	udiant			4
4	Exp	oloitation Pédag	ogique – (Compéter	nces termin	ale	es évaluées :			5
5	Pla	nification (Gant	t)							6
6	Cor	ndition d'évalua	tion pour	l'épreuve	e E6-2					6
	6.1	Disponibilité d	des équipe	ements				•••••		6
	6.2	Atteintes des	objectifs (du point c	le vue clien	t				6
	6.3	Avenants :	venants :							6
7	Obs	servation de la d	commissio	on de Vali	dation					7
	7.1	Avis formulé p	oar la com	nmission o	le validatio	n :.				7
	7.2	Nom des men	nbres de l	a commis	sion de vali	da	tion acadén	nique :		7

1 Présentation et situation du projet dans son environnement

1.1 Contexte de réalisation

Constitution de l'équipe de projet :	Étudiant 1	Étudiant 2	Étudiant 3	Étudiant 4		
Projet développé :	Au lycée / centre	de formation	Entreprise	Mixte □		
Type de client ou donneur d'ordre	Entreprise ou org	anisme commandit	aire Oui 🗆	Non 🛘		
(commanditaire) :	Nom :					
	Adresse :					
	Contact :					
	Origine du projet	:				
	Idée :		Lycée ■	Entreprise \square		
	Cahier de	es charges :	Lycée ■	Entreprise \square		
	Suivi du F	Projet :	Lycée ■	Entreprise \square		
Si le projet est développé en partenariat	Nom de l'entrep	orise :				
avec une entreprise :	Adresse de l'entreprise :					
	Site Web : http://					
	Tel :Mail du contact :					

1.2 Présentation du projet

(Présentation succincte / synoptique de l'architecture / limite de l'étude /attente du point de vue du client)

Les particuliers, les professionnels de la musique ou les industriels utilisent parfois des matériaux acoustiques pour leur confort, voire leur santé.

Un fabricant et distributeur de matériaux acoustiques souhaite mesurer le coefficient d'absorption acoustique des matériaux qu'il propose à la vente afin de mieux conseiller ses clients.

1.3 Situation du projet dans son contexte

Domaine d'activité du système support d'étude :	☐ télécommunications, téléphonie et réseaux téléphoniques :
	■ informatique, réseaux et infrastructures ;
	■ multimédia, son et image, radio et télédiffusion ;
	☐ mobilité et systèmes embarqués ;
	☐ électronique et informatique médicale ;
	■ mesure, instrumentation et microsystèmes ;
	■ automatique et robotique.

1.4 Cahier des charges – Expression du besoin

Les particuliers, les professionnels de la musique ou les industriels utilisent parfois des matériaux acoustiques pour leur confort, voire leur santé.

Un fabricant et distributeur de matériaux acoustiques dispose d'un tube de Kundt destiné à mesurer le coefficient d'absorption acoustique des matériaux qu'il propose à la vente, en fonction de la fréquence.

Il s'agit pour chaque fréquence sonore émise par un haut-parleur dans le tube, de mesurer pour les ondes stationnaires dans le tube entre le haut-parleur et le matériau testé, les amplitudes sonores maximales P_{max} (aux ventres de pression) et minimales P_{min} (aux nœuds de pression), ceci au moyen d'une tige mobile pourvue d'un microphone relié à un oscilloscope.

Alors le coefficient d'absorption du matériau pour cette fréquence vaut :
$$\propto 1 - \left(\frac{n-1}{n+1}\right)^2 \propto 1 - \left(\frac{n-1}{n+1}\right)^2$$
 avec $n = \frac{P_{max}}{P_{min}}$ $n = \frac{P_{max}}{P_{min}}$

Les fréquences à tester sont les suivantes :

- pour un tube de dimensions intérieures 45 * 500 mm, le matériau acoustique peut être testé pour des fréquences entre 200 Hz et 3400 Hz.
- les fréquences de test sont normalisées, ce sont tous les tiers d'octave entre 200 Hz et 3150 Hz

		200	250	315	400	500	630	800
1000	1250	1600	2000	2500	3150			

En effet, le tube de Kundt en possession du fabricant et distributeur de matériaux acoustiques est <u>analogique et à déplacement manuel</u>. Les mesures sont donc fastidieuses pour un opérateur humain et sujettes à des erreurs.

Elles justifient donc l'automatisation du tube de Kundt :

- le déplacement de la tige pourvue du microphone sera alors géré par un moteur pas-à-pas commandé via
- <mark>le réglage de la fréquence</mark> du haut-parleur <mark>se fera de façon automatique par un GBF</mark> relié au haut-parleur, <mark>le GBF étant piloté par un PC.</mark>
- <mark>la mesure des amplitudes</mark> de tensions correspondant aux amplitudes de pressions acoustiques <mark>se fera au moyen d'un oscilloscope piloté par PC</mark>
- la mesure du coefficient d'absorption pour chaque fréquence sera enregistrée dans une base de données référencant le matériau testé.
- ce matériau testé sera ensuite identifié grâce à un code barre collé dessus et rangé, afin d'être disponible en démonstration pour un acheteur potentiel.

2 Spécifications

2.1 Diagrammes SYSML

Diagramme d'exigence / Diagramme de contexte / Diagramme des cas d'utilisation / Diagramme séquence

2.2 Contraintes de réalisation

Contraintes financières (budget alloué):

Matériels déjà présents.

Contraintes de développement (matériel et/ou logiciel imposé / technologies utilisées) :

Plateforme de développement OtCreator, WAMP, Arduino ...

Programmation orienté objet : création de classes dédiées : Instrument , GBF, Oscillo, Douchette,

Matériels (cf. ci-dessous)

Contraintes qualité (conformité, délais, ...) :

Le pilotage de la mesure doit être simple et effectuable par un non-informaticien.

Les données finales fournies seront conformes aux unités utilisées par les acousticiens (coefficient d'absorption).

Les courbes doivent être lisibles.

Contraintes de fiabilité, sécurité :

Le déplacement de micro du tube doit être sécurisé (max et min sinon destruction!) et le pilotage ne doit pas rentrer en oscillation aux ventres de pression et aux nœuds de pression (asservissement!).
L'IHM contiendra un bouton d'arrêt d'urgence de la mesure

2.3 Ressources mises à disposition des étudiants (logiciels / matériels / documents)

Principaux constituants :	Caractéristiques techniques :
 Un tube de Kundt Un oscilloscope connecté IEEE 488 Une carte Agilent USB / IEEE 488 Un GBF connecté IEEE 488 pour contrôler le son du haut-parleur Un voltmètre connecté IEEE 488 Un moteur pas à pas pour automatiser le déplacement de la tige Une platine Arduino MEGA 2560 + afficheur+ carte contrôleur pour la commande du moteur pas à pas Le caisson acoustique pour isoler les mesures Un ordinateur pour piloter le GBF et récupérer les mesures de l'oscilloscope Un jeu d'échantillons de matériaux isolants : mousse, bois brut de différentes épaisseurs, métal, bois et feutrine, liège, plastique Imprimante code barre Douchette code barre 	 Les Pc utilisent Windows 7 64b Les matériels seront reliés par bus IEEE 488. (éventuellement émuler USB et port série si IEEE 488 indisponible)

3 Répartition des fonctions ou cas d'utilisation par étudiant

	Fonctions à développer et tâches à effectuer	
Étudiant 1 EC □ IR ■	Liste des fonctions assurées par l'étudiant	Installation : Oui
	 Concevoir l'IHM de l'application de mesure Mettre en place le banc de mesure 	Mise en œuvre : Oui
	 Réaliser des tests manuels Coder le module de pilotage des appareils du banc 	Configuration : Oui
	de mesure	Réalisation : Oui
	 Coder un module d'affichage de la mesure Regrouper tous les modules logiciels dans l'IHM 	Documentation : Oui
Étudiant 2 EC □ IR ■	Liste des fonctions assurées par l'étudiant	Installation : Oui
	Installer le système de déplacementCoder le module de pilotage du moteur par	Mise en œuvre : Oui
	l'Arduino Coder le module d'affichage des informations	Configuration : Oui
	importantes par l'Arduino sur son afficheur (position, vitesse, etc.)	Réalisation : Oui
	 Coder une classe de communication avec l'IHM Coder un module logiciel pour imprimer les codesbarres qui doit s'intégrer dans l'IHM Coder un module pour tracer la courbe du coefficient d'absorption du matériau testé 	Documentation : Oui
Étudiant 3 EC □ IR ■	Liste des fonctions assurées par l'étudiant	Installation : Oui
	 Mise en place du serveur WEB et la base de données Définition et création de la base de données pour 	Mise en œuvre : Oui
	 archiver les mesures et les autres paramètres Coder un module logiciel pour lire et écrire dans la 	Configuration : Oui
	base de données les informations pertinentes. Le module logiciel doit s'intégrer dans l'IHM	Réalisation : Oui
	 Coder une classe de lecture du code-barres à l'aide de la douchette RS232 	Documentation : Oui
	 Création des pages Web : de consultation des mesures 	
	 d'un système expert permettant de choisir le meilleur matériau en fonction du coefficient d'absorption pour une fréquence donnée 	

4 Exploitation Pédagogique – Compétences terminales évaluées :

	Flactronique & Communications	Informatique & Déceaux	Étudiant 1 É		Étudi	ant 2	Étudiant 3		Étudiant 4	
	Electronique & Communications	Informatique & Réseaux	EC	IR	EC	IR	EC	IR	EC	IR
			111	///	111	///	/h		111	/h
C2.1	Maintenir les informations		//		//		//		//	//
C2.1	Formaliser l'expression d'un beso	in	//		111		//		//	111
C2.2	Organiser et/ou respecter la plani		//		//		///		//	//
C2.4	Assumer le rôle total ou partiel de	<u> </u>	//		//		///		//	//
C2.5	Travailler en équipe	ener de projet	//		//		//		//	111
C2.5	Travallier en equipe		///	_	///	_		_	///	///
C3.1	Analyser un cahier des charges		111		111		111		111	111
C3.3	Définir l'architecture globale d'un	prototype ou d'un système	//		1/1		111		111	111
C3.5	Contribuer à la définition des élén contraintes du cahier des charges	G	/h		/h		/h		/h	/h
C3.6	Recenser les solutions existantes i	répondant au cahier des charges	111	111	111	111	111	111	111	111
C3.8	Elaborer le dossier de définition de la solution technique retenue		li,	•	li		/h	•	/h	li
C3.9	Valider une fonction du système à partir d'une maquette réelle		/h	/h	li,	/h	/h	/h	111	/h
C3.1 0	Réaliser la conception détaillée d'un module matériel et/ou logiciel		li	•	li		li	•	li	/h
			,							
C4.1	Câbler et/ou intégrer un matériel		111		///		111		111	111
C4.2	Adapter et/ou configurer un maté	riel	111		///		111		111	111
C4.3	Adapter et/ou configurer une structure Logicielle	Installer et configurer une chaîne de développement	111		111		111	•	111	111
C4.4	Fabriquer un sous ensemble	Développer un module logiciel	111		//		111		111	111
C4.5	Tester et valider un module logiciel et Matériel	Tester et valider un module logiciel	li	-	li		/h		/h	/h
C4.6	Produire les documents de fabrication d'un sous ensemble	Intégrer un module logiciel	/h		/h		/h	•	/h	/h
C4.7	Documenter une réalisation maté	rielle / logicielle	//		111		111		111	111

5 Planification (Gantt)

Préciser les dates :

\triangleright	début du projet	06/01/2020
\triangleright	revues 1 (R1)	27/01/2020
\triangleright	revue 2 (R2)	09/03/2020
\triangleright	revue 3 (R3)	11/05/2020
\triangleright	remise du projet	25/05/2020
	soutenance finale	08/06/2020

6 Condition d'évaluation pour l'épreuve E6-2

6.1 Disponibilité des équipements

L'équipement sera-t-il disponible ? Oui ■ Non □

6.2 Atteintes des objectifs du point de vue client

Que devra-t-on observer à la fin du projet qui témoignera de l'atteinte des objectifs fixés, du point de vue du client ?

L'application doit permettre de piloter une mesure, de sauvegarder et d'afficher la mesure.

Lors de la mesure, le fabricant et distributeur de matériaux acoustiques souhaite un affichage temps réel sous forme de courbe (Echelle autoscaling de préférence).

L'ergonomie et la simplicité seront appréciées...

Les données et le choix des matériaux (via système expert) est consultable sur un poste distant à partir d'un navigateur WEB.

Le fabricant et distributeur de matériaux acoustiques pourra imprimer les courbes visualisées avec informations (axes abscisse et ordonnée, et informations de paramétrage (type de matériaux, épaisseur, ...)

6.3 Avenants :	
Date des avenants :	Nombre de pages :

Observation de la commission de Validation Ce document initial: ☐ comprend X pages et les documents annexes suivants : (À remplir par la commission de ☐ a été étudié par la Commission Académique de validation qui s'est réunie à validation qui valide le sujet de projet) le/ 20xx Défini 🗖 Insuffisamment défini Contenu du projet : Non défini 🗖 Problème à résoudre : Cohérent techniquement Pertinent / À un niveau BTS SN □ Complexité technique: Suffisante □ Insuffisante □ Exagérée \square (liée au support ou au moyen utilisé) Cohérence pédagogique : Le projet permet l'évaluation de toutes les compétences terminales \square (relative aux objectifs de l'épreuve) Chaque candidat peut être évalué sur chacune des compétences Planification des tâches demandées aux Projet ... étudiants, délais prévus, ...: Défini et raisonnable □ Insuffisamment défini Non défini 🗖 Les revues de projet sont-elles prévues : Oui 🛘 Non \square (dates, modalités, évaluation) Conformité par rapport au référentiel et à la Oui 🔲 Non \square définition de l'épreuve : Observations: 7.1 Avis formulé par la commission de validation : ☐ Sujet accepté ☐ Sujet à revoir : ☐ Conformité au Référentiel de Certification / Complexité en l'état ☐ Définition et planification des tâches ☐ Critères d'évaluation Autres: ☐ Sujet rejeté Motif de la commission :

7.2 Nom des membres de la commission de validation académique :

Nom	Établissement	Académie	Signature

7.3 Visa de l'autorité académique :

(nom, qualité, Académie, signature)

Ce document est contractuel pour la sous-épreuve E6-2 (Projet Technique) et sera joint au « Dossier Technique » de l'étudiant. En cas de modification du cahier des charges, un avenant sera élaboré et joint au dossier du candidat pour présentation au jury, en même temps que le carnet de suivi.