Industry-Specific Intelligent Fire Management System

Vel Tech Multi Tech. Dr. Rangarajan Dr. Sakunthala Engineering College

Nalaiya Thiran - Project Report

Team ID: PNT2022TMID22392

Hariprasad S

Satheesh E

Athulraj P

Selvaram S

TABLE OF CONTENTS

Chapter	Title	Page. No
1	INTRODUCTION	4
	1.1 Project Overview	4
	1.2 Purpose	5
2	LITERATURE SURVEY	5
	2.1 Existing problem	6
	2.2 References	7
	2.3 Problem Statement Definition	8
3	IDEATION & PROPOSED SOLUTION	9
	3.1 Empathy Map Canvas	10
	3.2 Ideation & Brainstorming	11
	3.3 Proposed Solution	14
	3.4 Problem Solution fit	16
4	REQUIREMENT ANALYSIS	17
	4.1 Functional requirement	17
	4.2 Non-Functional requirements	17
5	PROJECT DESIGN	18
	5.1 Data Flow Diagrams	19
	5.2 Solution & Technical Architecture	19
	5.3 User Stories	20
6	PROJECT PLANNING & SCHEDULING	21
	6.1 Sprint Planning & Estimation	22
	6.2 Sprint Delivery Schedule	23
	6.3 Reports from JIRA	23
7	CODING & SOLUTIONING	31
	7.1 Feature 1	31
	7.2 Feature 2	31
	7.3 Feature 3	33
8	TESTING	34
	8.1 Test Cases	34
	8.2 User Acceptance Testing	35
9	RESULTS	36
	9.1 Performance Metrics	36

10	ADVANTAGES & DISADVANTAGES	36
11	CONCLUSION	37
12	FUTURE SCOPE	37
13	APPENDIX	37
	Source Code	37
	GitHub & Project Demo Link	42

1. INTRODUCTION

Industrial intelligent fire management system that can control security and safety of the industry intelligently within the minimum time and the design of a system using wireless sensor networks, fire alarm sensor, and human detecting sensor to address the problems with existing disaster emergency response systems in times of fire hazard. To address this problem, this study aims to implement a smart fire detection system that would not only detect the fire using integrated sensors but also alert industry owners, emergency services, and local police stations to protect lives and valuable assets simultaneously. The proposed model of our project employs different integrated detectors, such as heat, smoke, and flame. The signals from those detectors go through the system algorithm to check the fire's potentiality and then broadcast the predicted result to various parties using GSM modem associated with the system. To get real-life data without putting human lives in danger, an IoT technology has been implemented to provide the fire department with the necessary data. Finally, the main feature of the proposed system is to minimize false alarms, which, in turn, makes this system more reliable.

1.1.Project Overview

- Sending random fire and temperature values will be sent to the IBM IoT platform
- Sensors values can be viewed in the Web Application
- Notifies the admin the random values cross the threshold value
- Create and configure IBM Cloud Services
- Create IBM Watson IoT Platform
- Create a device & configure the IBM IoT Platform
- Create Node-RED service
- Create a database in Cloudant DB to store location data
- Develop a web Application using Node-RED Service.
- Develop the web application using Node-RED
- Develop a python script to publish the location details to the IBM IoT platform

1.2.Purpose

- To prevent and suppress unwanted fires by rendering prompt and efficient services so as to keep the loss of life and property to the minimum.
- To reduce amounts of flammable and combustible materials.
- To reduce ignition hazards.
- To ensure safe emergency evacuation of occupants.
- To allow for quick emergency response.

2. LITERATURE SURVEY

The related work of the existing solutions were studied in the various technical papers and referred in the Research Publications.

- [1] Ahmed Imteaj et.al. Studied the problems faced by factory workers in times when fire breaks out. They proposed a system using Raspberry Pi 3 which is capable of detecting fire and providing information about area of fire. The Raspberry Pi controls multiple Arduino boards which are connected with several motors and cameras to capture the fire incident. In their proposed model, they discussed about the modern technology that can be used to reduce extremely unfortunate accidents caused by fire; designed the whole system and calculated its effectiveness.
- [2] Ondrej Krejcar proposed a model for location enhancement and personnel tracking using Wi-Fi networks. The project has represented the control system concept that is used in handling information of location and control unit operations. The location of the user present in the building, is obtained through Wi-Fi access points. From this points, it is to understand the usability of the Wi-Fi networks in live tracking and then have utilized this functionality to track fire and give information about location of fire to various devices intimating people about the mishap.
- [3] "Design and Implementation of a fire detection and control system for automobiles using fuzzy logic" is used to get the safety features in home and industrial areas. They have designed new model using WSN. Not only have they incorporated temperature and humidity sensors but

also included fire and smoke sensors while developing the model. They present a preceding study of WSN is able to detect fire alarm. It is for setting up a wireless sensor network with three sensors. An application was developed for getting home information

- [4] Azka Ihsan Nurrahman, Kusprasapta Mutijarsa have proposed a prototype for a centralized management system for homes or offices which helps better in managing the safety features. In this, home management system is required. This system controls the room lights by turning on and off automatically, it keeps the record of use of electronic device status, turning on and off the ac regulator automatically, it displays the room temperature in home. If fire is detected in the house, it turn on sprinkler at home, it supervises at home via surveillance cameras, take photos and store them including recordings of surveillance at home, it detects the movements of people at home, and provide notification when someone enters the house
- [5] An efficient smart emergency response system for fire hazards using IoT is explained in detail which provide a quality public safety and security services to adopt leveraged data driven emergency response systems with urban IoT design standards.
- [6] An intelligent fire detection and mitigation system safe from fire is being specified in detail with proper safety system.
- [7] The design and Implementation of a fire detection and control system for automobiles using fuzzy logic is given with early detection and exact fire location detection using fuzzy logic.
- [8] The efficiency increase for electrical fire detection and alarm systems through implementation of fuzzy expert systems is explained with high efficiency detection system.

2.1. Existing Problem

- On the edge of the system, there are pieces of hardware that detect the fire. The hardware includes- Fire Panel systems or sensors for smokes or gas leakages.
- The next level in the architecture comprises of hardware that is responsible for communicating with the prior layer by the means of either wired means or wireless RF signals.

- RS-485 is an industrial specification that defines the electrical interface and physical layer for point-to-point communication of electrical devices.
- Prior layer consists of hardware like Nodes, Hubs or Gateways and these hardware devices have Internet access by wired or wireless means.

2.2.Reference

- [1] Lakshmana Phaneendra Maguluri, Tumma Srinivasarao, Maganti Syamala, R. Ragupathy, N.J. Nalini, "Efficient Smart Emergency Response System for Fire Hazards using IoT", International Journal of Advanced Computer Science and Applications, Vol. 9, No. 1, 2018.
- [2] MD Iftekharul Mobin, MD Abid-Ar-Rafi, MD Neamul Islam and MD Rifat Hasan, "An intelligent fire detection and mitigation system safe from fire (sff)", International journal of computer applications (0975 8887), volume 133 no.6, January 2016.
- [3] MS. Vidhy Khule, MS. Divya Dhagate and MS. Rajashree Kadam, "Design and Implementation of a fire detection and control system for automobiles using fuzzy logic", ISSN: 2277-9655, April, 2017.
- [4] Ionuţ-Lucian Homeag, Radu Pârlog-Cristian and Mircea Covrig, "Efficiency increase for electrical fire detection and alarm systems through implementation of fuzzy expert systems", ISSN: 1454-234x, 2013.
- [5] Aiswarya Muralidharan and Fiji Joseph, "Fire Detection System Using Fuzzy Logic", ISSN: 2277-9655, April, 2014.
- [6] Ms.Simmi Sharma, Diwankar Singh, Sanjay Singh Rathore and Paras Bansal, "Fire Detection System with GSM Using Arduino", Imperial Journal of Interdisciplinary Research (IJIR), ISSN: 2454-1362, 2017
- [7] Li Da Xu, Wu He and Shancang Li, "Internet of Things in Industries: A Survey", IEEE Transactions on Industrial Informatics, November 2014. [8] Chang-Su Ryu, "IoT-based Intelligent for Fire Emergency Response Systems", International Journal of Smart Home, 2015.

- [8] ZHANG Ying-cong, YU Jing, "A Study on the Fire IOT Development Strategy", Procedia Engineering 52 (2013).
- [9] Vikshant Khanna, Rupinder Kaur Cheema, "Fire Detection Mechanism using Fuzzy Logic", International Journal of Computer Applications (0975 8887), Volume 65– No.12, March 2013.

2.3. Problem statement Definition

There was an industry outside the town. One day the industry was on an fire accident, the employees stopped the machines and ran outside the industry and they informed the incident to the fire station around. Then the fire officer arrived the industry and they controlled the fire with a minimal damage.

Who does the problem affect?	Working People, Proprietor, Share Holder, Loss of Life, Surrounding Environment etc		
What are the boundaries of the problem?	Fire station, Hospitals, Industries		
	Fire Alarms should be checked Periodically,		
W/l4 :- 4l :9	Electrical Hazards, Combustible Dust, Hot		
What is the issue?	Work, Flammable Liquids and Gasses,		
	Equipment and Machinery, Smoking.		
When does the issue occurs?	Lack of Awareness, Improper Maintenance,		
when does the issue occurs?	False Alarm		
Where is the issue a coursing?	Industry-Machinery place, Power control		
Where is the issue occurring?	Room, Cooking Place.		
	It can help Avoid Injuries, Loss of Life,		
Why is it important that we fix the	Costly Damages, Reduce Damage to		
problem?	Facility/building, Protect against Potential		
	Fines, 24/7 Protection.		

3. IDEATION & PROPOSED SOLUTION

Ideation is the process where you generate ideas and solutions through sessions such as Sketching, Prototyping, Brainstorming, Brain writing, Worst Possible Idea, and a wealth of other ideation techniques. Ideation is also the third stage in the Design Thinking process. Although many people might have experienced a "brainstorming" session before, it is not easy to facilitate a truly fruitful ideation session. In this article, we'll teach you some processes and guidelines which will help you facilitate and prepare for productive, effective, innovative and fun ideation sessions Ideation is often the most exciting stage in a Design Thinking project, because during Ideation, the aim is to generate a large quantity of ideas that the team can then filter and cut down into the best, most practical or most innovative ones in order to inspire new and better design solutions and products.

3.1. Empathy Map canvas

3.2. Ideation & Brainstorming

3.3.Proposed Solution

Parameter	Description
Problem Statement (Problem to be	There was an industry outside the town. One day
solved)	the industry was on a fire accident, the employees
	stopped the machines and ran outside the industry
	and they informed the incident to the fire station
	around. Then the fire station team arrived the
	industry and they extinguished the fire with a
	minimal damage.
Idea / Solution description	In an event of electrical fire accident, there are
	some precautionary measures that are to be
	followed,
	The IoT based Circuit Breaker to be used.
	A circuit breaker is an electrical switch designed to
	protect an electrical circuit from damage caused by
	overcurrent/overload or short circuit. Its basic
	function is to interrupt current flow after protective
	relays detect a fault.
	IoT security camera to be used for Monitor
	who is entering and leaving a building in real-time.
	The oxygen supply should be cut off in that place
	when there is no employee, which will completely
	shut down the fire in that place. If oxygen cannot
	be cut off when the employee is present in that
	place so, use sodium bicarbonate which can be
	used in the event of electric fire where we can't use
	water in such incident. These are all monitor and
	controlled by Iot.
Novelty / Uniqueness	We can use chemical flame inhibition, such as dry

	chemicals and halogenated hydrocarbons
	(Halogens), interrupt the flame-producing
	chemical reaction and stop flaming
Social Impact / Customer Satisfaction	When a fire accident takes place you should be in
	a position to extinguish the fire with minimal
	damage which will be the main area of the
	customer satisfaction.
Business Model (Revenue Model)	Industrial-based intelligent smart emergency
	response system that can control security and
	safety of the industry intelligently within the
	minimum time and the design of a system using
	wireless sensor networks, fire alarm sensor, and
	human detecting sensor to address the problems
	with existing disaster emergency response systems
	in times of fire hazard. The system has
	decentralized control that can intelligently guide
	evacuees based on the detection of humans for
	removing them from industry to minimize the loss
	of human life and industrial assist. The existing
	system was able to secure the industry but not
	within enough time as the system was designed
	using various sensors but not as a single unit to
	address the problems in times of fire or any other.
	Each sensor were connected to the system
	separately and function individually which makes
	the system slow. The modified system can secure
	the industry intelligently within minimum time as
	the system is designed using different sensors as a
	single unit to address the problems in times of fire
	or any other.

Scalability of the Solution

With businesses and processes changing daily, there will always be demand for new features, products and services for your business. Additionally, there are several different business models and pricing tiers you can implement that will allow you to reach all types of customers.

3.4. Problem Solution Fit

4. REQUIREMENT ANALYSIS

Requirement Analysis, also known as Requirement Engineering, is the process of defining user expectations for a new software being built or modified. In software engineering, it is sometimes referred to loosely by names such as requirements gathering or requirements capturing. Requirements analysis encompasses those tasks that go into determining the needs or conditions to meet for a new or altered product or project, taking account of the possibly conflicting requirements of the various stakeholders, analyzing, documenting, validating and managing software or system requirements.

4.1.Functional Requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form
FR-2	User Confirmation	Confirmation via Email
FR-3	Resource discovery	Find devices and services of interest to the requesting entity
FR-4	Resource management	Planning, Scheduling and allocating technology to a program
FR-5	Code management	Integrating sensors to web UI
FR-6	Event management	Integrating data to the users

4.2. Non-Functional Requirement

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The Application perform the tasks safely,

		effectively, and efficiently
NFR-2	Security	Assuring all data inside the system or its part will be protected against malware attacks or unauthorized access.
NFR-3	Reliability	The Application does not recover from failure quickly, it takes time as the application is running in single server.
NFR-4	Performance	Response Time and Net Processing Time is Fast
NFR-5	Availability	This application is available to all the time
NFR-6	Scalability	The fire and smoke detectors has a response time of 0.013 minutes which is more effective than normal system

5. PROJECT DESIGN

Project design is an early phase of a project where the project's key features, structure, criteria for success, and major deliverables are planned out. The aim is to develop one or more designs that can be used to achieve the desired project goals. Stakeholders can then choose the best design for the execution of the project. The project design steps might generate various outputs, such as sketches, flowcharts, site trees, HTML screen designs, prototypes, photo impressions, and more. The project design includes everything from who is responsible for completing the project to a description of the project, its goals, outcomes and objectives. It describes when these goals, outcomes and objectives will be reached, and the major deliverables, products or features that will be completed

5.1.Data Flow Diagrams

5.2. Solution & Technical Architecture

5.3.User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
	(1,000	As a user, I can register for the			
			application by	I can access		
Customer	Registration	USN-1	entering my email, password, and	my account / dashboard	High	Sprint-1
			confirming my password.			
	User Confirmation	USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
	Login	USN-3	As a user, I can log into the application by entering email & password		High	Sprint-1
Sensing	Sensor	USN-4	In industry, sensor sense the fire and smoke.	Indicate by sensor	High	Sprint-2
Extinguish	Actuators	USN-5	If the sensor detected the fire, next step is extinguishing the fire with the help of Sprinkler.	Extinguish the fire	High	Sprint-2
Data	Cloud	USN-6	All the values are stored in the cloud database	Store the data	High	Sprint-3

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Intimation	Siren	USN-7	If the fire is detected, employee should evacuate by the intimation by Siren/Buzzer.	Evacuate	High	Sprint-4
Notification	Notification Event management USN-8		Notification message will be sent to the fire department, proprietor.	Notify	Medium	Sprint-4

6. PROJECT PLANNING & SCHEDULING

Planning and scheduling of your resource plays a key role in project management. It helps you understand the scope of the project ahead of time and manage/assign your resource accordingly. Besides, it provides an overview of who's responsible for delivering what and by when. A comprehensive process that outlines the project phases, tasks under each stage, and dependencies is known as project scheduling. It also considers skills and the number of resources required for each task, their order of occurrence, milestones, interdependencies, and timeline. Compare two scenarios—one, where your project details are all over the place, and second, where you maintain a centralized data repository of your project plan. This is what a project schedule does. It brings together all the project-related information in one place that opens doors for seamless communication between the project manager and stakeholders.

6.1.Sprint Planning & Estimation

	Functional	User		C4			
Sprint	Requirement	Story	User Story / Task	Story	Priority		
	(Epic)	Number		Points			
		USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	6	High		
Sprint-1	Registration & Login	USN-2	As a user, I will receive confirmation email, once I have registered for the application	7	High		
		USN-3	As a user, I can log into the application by entering email & password	7	High		
	Sensor & Actuators	USN-4	In industry, sensor sense the fire and smoke.	10	High		
Sprint-2			Actuators	Actuators	USN-5	If the sensor detected the fire, next step is extinguishing the fire with the help of Sprinkler.	10
Sprint-3	Cloud	USN-6	All the values are stored in the cloud database.	20	High		
Sprint-4	Siren & Event	USN-7	If the fire is detected, employee should Evacuate by the intimation by Siren/Buzzer.	10	High		
Sprint-4	management	USN-8	Notification message will be sent to the fire Department, proprietor.	10	High		

6.3. Sprint Delivery Schedule

Sprint	Total	Duration	Sprint Start	Sprint End	Story	Sprint
	Story		Date	Date	Points	Release Date
	Points			(Planned)	Completed	(Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.4. Reports From JIRA

Creating Roadmap

Creating Backlog

Sprint 1 is processing in Board

Sprint 1 is completed

Roadmap by All Sprint

Issues by Sprints

Sprint 1 Burnup Report

Sprint 1 Burndown Report

Sprint 1 Velocity Report

SPRINT 2 COMPLETED

VELOCITY 2 REPORT

SPRINT 3 COMPLETED

VELOCITY 3 REPORT

ALL ISSUES COMPLETED

OVERALL VELOCITY REPORT

7. CODING & SOLUTION

7.1. Feature 1

To connect IBM Watson Iot Platform with code

import time
import sys
import ibmiotf.application
import ibmiotf.device

import random

#Provide your IBM Watson Device Credentials

```
organization = "hycgw4"

deviceType = "Industry"

deviceId = "Safety"

authMethod = "token"

authToken = "6cj)4?!*u8kwo*84a6"
```

7.2. Feature 2

Publish data to IBM Watson Iot Platform

try:

deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method":
authMethod, "auth-token": authToken}

```
deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
  except Exception as e:
      print("Caught exception connecting device: %s" % str(e))
      sys.exit()
  # Connect and send a data
  deviceCli.connect()
      def myOnPublishCallback():
         print ("Published Temperature = %s C" % Temperature, "Humidity = %s %%" %
Humidity, "to IBM Watson")
       success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on_publish=myOnPublishCallback)
       if not success:
         print("Not connected to IoTF")
       deviceCli.commandCallback = myCommandCallback
  # Disconnect the device and application from the cloud
```

```
deviceCli.disconnect()
```

7.3. Feature **3**

```
Now create Twilio SMS api for send Alert Message to higher authority import os

from twilio.rest import Client

account_sid = 'ACdf538f343de5d91d1c1d2c5d79469482'

auth_token = 'f8615a53b24f4b2cb2ce3627409592b8'

client = Client(account_sid, auth_token)

message = client.messages \
.create(
from_ = '+19789615397',
body='Emergency!!',
to = '+917502272799')
print(message.sid)
```

8. TESTING

Testing is the process of evaluating a system or its component with the intent to find whether it satisfies the specified requirements or not. In simple words, testing is executing a system in order to identify any gaps, errors, or missing requirements in contrary to the actual requirements.

8.1.Test cases

Count	Inputs	Outputs	Results	
1	Temperature:70	Sprinkler & Exhaust fan Off	Normal condition	
	Humidity:30	1		
2	Temperature:90	Sprinkler & Exhaust fan Off	Normal condition	
	Humidity:20	•		
3	Temperature:100	Sprinkler & Exhaust fan ON	Critical condition	
	Humidity:5	and alert Message send	Critical condition	
4	Temperature:50	Sprinkler & Exhaust fan Off	Normal condition	
	Humidity:35	Sprinker & Exhaust run on	Troffilat Collation	
5	Temperature:99	Ready to Sprinkler &	Critical condition	
	Humidity:9	Exhaust fan On	Critical condition	
6	Temperature:80	Sprinkler & Exhaust fan Off	Normal condition	
	Humidity 25	Sprinker & Exhaust run on	rvormar condition	
7	Temperature:50	Sprinkler & Exhaust fan Off	Normal condition	
, ,	Humidity:35	Sprinker & Exhaust full Off	Normal condition	
8	Temperature:65	Sprinkler & Exhaust fan Off	Normal condition	
	Humidity 39	Sprinker & Emilians rain on	Troffilm Condition	
9	Temperature:98	Ready to Sprinkler &	Critical condition	
	Humidity:9	Exhaust fan On	Critical condition	
10	Temperature:40	Sprinkler & Exhaust fan Off	Normal condition	
	Humidity:36	Sprinkier & Landast fall Off		

8.2. User Acceptance Testing

Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolve

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By design	12	5	3	20	40
External	5	3	12	10	30
Fixed	8	2	0	20	30
Not Reproduced	3	7	8	15	25
Skipped	3	5	2	1	11
Won't Fix	2	1	7	5	15
Totals	33	23	32	71	159

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total cases	Not Tested	Fail	Pass
Client Application	4	0	0	4
Security	2	0	0	2
Exception Reporting	11	0	0	11
Final Report Output	5	0	0	5

9. RESULTS

9.1. Performance Metrics

CPU usage

The Python V3.7.0 is make the best use of the CPU. For every loop the program runs in O(1) time, neglecting the network and communication. The program sleeps for every 1 second for better communication with MQTT. As the program takes O(1) time and the compiler optimizes the program during compilation there is less CPU load for each cycle. The upcoming instructions are on the stack memory, so they can be popped after execution.

Memory usage

The sensor values, networking data are stored in sram of the ESP32. It's a lot of data because ESP32 has only limited amount of memory (520 KB). For each memory cycle the exact addresses are overwritten with new values to save memory and optimal execution of the program

Garbage collection

In the server-side garbage collection is done by the Node framework. In the IoT device, python does not have any garbage collection features. But it is not necessary in this scenario as the memory is used again for storing the data. Any dangling pointer or poorly handled address space is not allocated.

10. ADVANTAGES & DISADVANTAGES

Advantages

- All device status can be shown in a dashboard
- Automatic alerting of admin as well as fire authorities using SMS
- Automatically turning on/off sprinkler as well as exhaust fan when the temperature reach a threshold value.

 Authentication is required to turn on/off of sprinkler and exhaust fan as well as sending SMS alert manually

Users can see the dashboard using a web application as well as MIT app inventor

Disadvantages

• Need large database since many data is stored in cloud database every second.

• If the physical device is damaged the entire operation is collapsed.

• Always need to connect with the internet.

11.CONCLUSION

This project depicts the necessity and an efficient solution for fire safety. Internet of Things was the main concept used and the project mainly builds on the techniques which are already presents and also it has overcome many obstacles present in the previous systems. But still there are few tweaks and remodelling required to get a more efficient and working model.

12.FUTURE SCOPE

The existing devices can be modified to work in different specialized environment as well as scale to house use to big labs Since fire accidents can cause major loss in human lives in homes to big industries as well as it can be used in public places, vehicles.

13.APPENDIX

Source Code

import time

import sys

import ibmiotf.application

import ibmiotf.device

```
import random
import os
from twilio.rest import Client
account_sid = 'ACdf538f343de5d91d1c1d2c5d79469482'
auth_token = 'f8615a53b24f4b2cb2ce3627409592b8'
```

#Provide your IBM Watson Device Credentials

```
organization = "hycgw4"

deviceType = "Industry"

deviceId = "Safety"

authMethod = "token"

authToken = "6cj)4?!*u8kwo*84a6"
```

Initialize

```
def myCommandCallback(cmd):
    print("Command received: %s" % cmd.data['command'])
    status=cmd.data['command']
```

```
if status=="Sprinkler On":
    print ("Sprinkler is on")
  elif status=="Sprinkler Off":
    print ("Sprinkler is off")
  elif status=="Exhaust On":
    print ("Exhaust is on")
  else:
    print ("Exhaust is off")
  #print(cmd)
try:
      deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
     deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
```

```
except Exception as e:
     print("Caught exception connecting device: %s" % str(e))
      sys.exit()
# Connect and send a data
deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
    Temperature=random.randint(60,100)
    Humidity=random.randint(0,50)
    data = { 'Temperature' : Temperature, 'Humidity': Humidity }
    #print data
    def myOnPublishCallback():
       print ("Published Temperature = %s C" % Temperature, "Humidity = %s
%%" % Humidity, "to IBM Watson")
```

```
= deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on\_publish=myOnPublishCallback)
    if not success:
       print("Not connected to IoTF")
    time.sleep(10)
    if Temperature==100:
      print("Sprinkler is ON")
      client = Client(account_sid, auth_token)
      message = client.messages \setminus
      .create(
      from_ = '+19789615397',
      body='Emergency!!',
      to = '+917502272799')
      print(message.sid)
     else:
```

print(" ") deviceCli.commandCallback = myCommandCallback# Disconnect the device and application from the cloud deviceCli.disconnect() GitHub Link: https://github.com/IBM-EPBL/IBM-Project-21422- 1659780050 Project Demo Link: https://drive.google.com/file/d/10P9YRk- 8vQLYeHt35EBrZeoeA0lwjdDx/view?usp=sharing