Parity Asymmetry in the CMB UF REU under Dr. Zachary Slepian

Michael Bartlett

University of Oklahoma

July 18, 2023

Outline

Overview of the Problem

2 Initial Calculations

Start by expanding the two correlation functions in terms of isotropic basis functions:

$$\zeta_{X_0}(\vec{r}_1, \vec{r}_2, \vec{r}_3) = \sum_{\Lambda} \tilde{\zeta}_{\Lambda}(r_1, r_2, r_3) \mathcal{P}_{\Lambda}(\hat{r}_1, \hat{r}_2, \hat{r}_3)
\zeta_{E}(\vec{x}_0, \vec{x}_1, \vec{x}_2, \vec{x}_3) = \sum_{\Lambda'} \tilde{\zeta}_{\Lambda'}(x_0, x_1, x_2, x_3) \mathcal{P}_{\Lambda'}(\hat{x}_0, \hat{x}_1, \hat{x}_2, \hat{x}_3)$$

Where Λ is the set $\{l_1, l_2, l_3\}$ and Λ' is the set $\{l_0', l_1', l_{01}', l_2', l_3'\}$

We can then set the two functions equal since they are correlation functions describing the same points

$$\zeta_{x_{0}}(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}) = \zeta_{E}(\vec{x}_{0}, \vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3})
\Downarrow
\sum_{\Lambda} \zeta_{\Lambda}(r_{1}, r_{2}, r_{3}) \mathcal{P}_{\Lambda}(\hat{r}_{1}, \hat{r}_{2}, \hat{r}_{3}) = \sum_{\Lambda'} \zeta_{\Lambda'}(x_{0}, x_{1}, x_{2}, x_{3}) \mathcal{P}_{\Lambda'}(\hat{x}_{0}, \hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3})$$

We now multiply both sides by $\mathcal{P}^*_{\Lambda''}(\hat{x}_0, \hat{x}_1, \hat{x}_2, \hat{x}_3)$ and then integrate over all orientations $d\hat{x}_0 d\hat{x}_1 d\hat{x}_2 d\hat{x}_3 = d\hat{x}$

$$\int d\hat{x} \sum_{\Lambda} \zeta_{\Lambda}(r_1, r_2, r_3) \mathcal{P}_{\Lambda}(\hat{r}_1, \hat{r}_2, \hat{r}_3) P^*_{\Lambda''}(\hat{x}_0, \hat{x}_1, \hat{x}_2, \hat{x}_3) =$$

$$\int d\hat{x} \sum_{\Lambda'} \zeta_{\Lambda'}(x_0, x_1, x_2, x_3) \mathcal{P}_{\Lambda'}(\hat{x}_0, \hat{x}_1, \hat{x}_2, \hat{x}_3) P^*_{\Lambda''}(\hat{x}_0, \hat{x}_1, \hat{x}_2, \hat{x}_3)$$

Using the orthogonality of isotropic basis functions which states

$$\int d\hat{R} \,\, \mathcal{P}_{\Lambda}(\hat{R}) \mathcal{P}_{\Lambda'}^*(\hat{R}) = \delta_{\Lambda_1 \Lambda_1'} \delta_{\Lambda_2 \Lambda_2'} ...$$

we can simplify the right hand side of the previous equation:

$$\int d\hat{x} \sum_{\Lambda'} \zeta_{\Lambda'}(x_0, x_1, x_2, x_3) \mathcal{P}_{\Lambda'}(\hat{x}_0, \hat{x}_1, \hat{x}_2, \hat{x}_3) \mathcal{P}_{\Lambda''}(\hat{x}_0, \hat{x}_1, \hat{x}_2, \hat{x}_3)$$

$$= \zeta_{\Lambda''}(x_0, x_1, x_2, x_3)$$

Plugging this back into the previous equation we get the key relation:

$$\int d\hat{x} \sum_{\Lambda} \zeta_{\Lambda}(r_1, r_2, r_3) \mathcal{P}_{\Lambda}(\hat{r}_1, \hat{r}_2, \hat{r}_3) \mathcal{P}_{\Lambda''}(\hat{x}_0, \hat{x}_1, \hat{x}_2, \hat{x}_3) \tag{1}$$

Solving the integral on the right will give an expression for the coefficients of the correlation function centered on earth in terms of the correlation function centered at x_0

Solving for \vec{r} in terms of \vec{x}

Consider a great circle going through the poles at an angle ϕ_i to the x-axis where ϕ_i is the ϕ angle of vector $\vec{x_i}$ for i=1,2,3

Solving for \vec{r} in terms of \vec{x}

Using the law of Cosines and defining the distance to the cmb to be d^* we get:

$$|\vec{r_i}| = \sqrt{d^{*2} + d^{*2} - 2d^*d^*\cos(\theta_i)}$$
$$r_i = \sqrt{2}d^*\sqrt{1 - \cos(\theta_i)}$$

