Théorème de Grothendieck

Leçons: 201, 208, 213, 234

Théorème 1

Soit (X, μ) un espace de probabilités, et S un sous-espace vectoriel fermé de $L^p(\mu)$ tel que $S \subset L^{\infty}(\mu)$. Alors S est de dimension finie.

Démonstration. Étape 1 : il existe K > 0 tel que $\forall f \in S, ||f||_{\infty} \leq K||f||_{p}$.

Soit i l'injection canonique de $(S, \|\cdot\|_{\infty})$ dans $(S, \|\cdot\|_p)$. C'est une application linéaire bijective, qui est continue car $\|\cdot\|_p \le \|\cdot\|_{\infty}$ puisque $\mu(X) = 1$. De plus ses espaces de départ et d'arrivée sont des Banach :

- D'une part car S est fermé dans $L^p(\mu)$ qui est complet selon le théorème de Riesz-Fischer;
- D'autre part, si $(f_n)_n \in S^{\mathbb{N}}$ tend vers f dans $L^{\infty}(\mu)$, alors $(i(f_n))_n$ tend vers i(f) dans $L^p(\mu)$ donc comme S est fermé dans L^p , $i(f) = f \in S$, de sorte que S est aussi un sous-espace fermé de $L^{\infty}(\mu)$, donc est complet.

Par conséquent, selon le théorème d'isomorphisme de Banach, i est un isomorphisme bicontinu; en particulier, il existe K > 0 tel que $\forall f \in S, \|f\|_{\infty} \leq K\|f\|_{p}$.

Étape 2 : il existe M > 0 tel que $\forall f \in S, ||f||_p \le K||f||_{\infty}$.

Soit $f \in S$, on distingue deux cas :

• Premier cas : p < 2. Selon l'inégalité de Hölder,

$$||f||_p^p \le \mu(X)^{1-\frac{p}{2}} \left(\int_X (|f(x)|^p d\mu(x))^{\frac{2}{p}} \right)^{\frac{p}{2}} \le ||f||_2^p$$

si bien que $||f||_p \le ||f||_2$.

• Deuxième cas : $p \ge 2$.

$$||f||_p^p = \int_X |f(x)|^{p-2} |f(x)|^2 d\mu(x) \le ||f||_{\infty}^{p-2} ||f||_2^2 \stackrel{\text{etape } 1}{=} K^{p-2} ||f||_p^{p-2} ||f||_2^2$$

donc en simplifiant de part et d'autre de l'inégalité, $\|f\|_p^2 \le K^{p-2} \|f\|_2^2$ et le résultat s'ensuit.

Étape 3: utilisation de ces relations de domination.

Soit (f_1, \ldots, f_n) une famille orthonormée de S. Si $c = (c_1, \ldots, c_n) \in \mathbb{Q}^n$, il existe $X_c \subset X$ de mesure pleine tel que

$$\forall x \in X_c, \left| \sum_{i=1}^n c_i f_i(x) \right| \le \left\| \sum_{i=1}^n c_i f_i \right\|_{\infty} \le M_1 \left\| \sum_{i=1}^n c_i f_i \right\|_2 = M_1 \sqrt{\sum_{i=1}^n c_i^2}$$

avec $M_1>0$ une constante (cf étapes 1 et 2).

Donc si $X' = \bigcup_{c \in \mathbb{Q}^n} X_c$, X' est de mesure pleine et on a

$$\forall c \in \mathbb{Q}^n, \forall x \in X', \left| \sum_{i=1}^n c_i f_i(x) \right| \leq M_1 \sqrt{\sum_{i=1}^n c_i^2}.$$

Comme \mathbb{Q}^n est dense dans \mathbb{R}^n , le résultat vaut également pour $c \in \mathbb{R}^n$.

En particulier, si
$$x \in X'$$
, $c_i = f_i(x)$, on obtient $\left| \sum_{i=1}^n f_i(x)^2 \right| \le M_1 \sqrt{\sum_{i=1}^n f_i(x)^2}$ soit

$$\left(\sum_{i=1}^n f_i(x)^2\right) \leq M_1^2.$$

Donc en intégrant, $\sum_{i=1}^{n} \|f_i\|_2^2 \le M_1^2$ soit, comme (f_1, \dots, f_n) est orthonormée, $n \le M_1^2$.

Supposons que S soit de dimension infinie. On pourrait alors trouver une famille libre de taille $E(M_1^2)+1$, ce qui fournirait par le procédé d'orthonormalisation de Gram-Schmidt, une famille orthonormée de S de cette taille : cela contredit le résultat ci-dessus. Donc S est de dimension finie.

Remarque. Le théorème de l'isomorphisme de Banach est une conséquence du théorème de Baire, qu'il faut donc connaître.

Références : Maxime ZAVIDOVIQUE (2013). *Un max de maths*. Calvage et Mounet (attention il y a une erreur).

2