

Experimental Evaluation of Multipath TCP Schedulers

Christoph Paasch¹, Simone Ferlin², Özgü Alay² and Olivier Bonaventure¹

¹ICTEAM, UCLouvain, Belgium ²Simula Research Laboratory, Fornebu, Norway

Multipath TCP

Resource pooling
Increased resilience to failures

Multipath TCP - Example

Multipath TCP - Example

Multipath TCP Scheduler

What opportunities lie in Multipath TCP Schedulers?

- What does it influence?
- How to implement it?
- How to evaluate it?

What does the scheduler influences?

Head-of-Line Blocking

- Session blocked due to #1
- High application-level delay
- Burstiness

Receive-window limitations

- Unused capacity on low-delay path
- Overall, reduced goodput

A pluggable scheduler framework

- Scheduling was a static decision
- Pluggable Scheduler Framework
 - Per MPTCP-session
 - loadable modules

```
while (subflow = MPTCP->sched->get_subflow()) != NULL do
    while (data = MPTCP->sched->get_data(subflow)) != NULL do
        send_data(subflow, data);
```

user@home:~\$ sysctl -w net.mptcp.mptcp scheduler='roundrobin'

Round-robin scheduler (RR)

- Round-robin scheduler (RR)
- Lowest-Delay-First (LowRTT)

- Round-robin scheduler (RR)
- Lowest-Delay-First (LowRTT)

Extensions:

Retransmission and Penalization (RP)
Bufferbloat mitigation (BM)

Extensions:

Retransmission and Penalization (RP)

Extensions:

Bufferbloat mitigation (BM)

Evaluating Schedulers

Resource Pooling

LowRTT: 11 Mbps

LowRTT + RP: 46 Mbps

Resource Pooling - normalization

"Multipath Aggregation of Heterogeneous Access Networks". D. Kaspar. Phd Thesis. University of Oslo. 2011.

Mininet evaluation

	Low-BDP	High-BDP
Capacity	0.1 to 100 Mbps	0.1 to 100 Mbps
RTT	0 to 50 ms	0 to 400 ms
Buffering	0 to 100 ms	0 to 2000 ms

Mininet evaluation

Emulated environment

~400 experiments

"Experimental Design" -approach

[&]quot;On the Benefits of Applying Experimental Design to improve Multipath TCP". C. Paasch, R. Khalili and O. Bonaventure. CoNEXT 2013.

Mininet evaluation

Measuring application-delay

- Custom application, sending at constant rate
- Blocks of 8KB
- Measuring application-delay

Measuring application-delay

Delay-Variance: 60 - 50 = 10ms

NorNet testbed

Application-limited flows (500Kbps)

Conclusion

Conclusion

 Scheduling adds a new dimension with new problems and opportunities

Pluggable scheduler for easy switching

No "perfect" scheduler (yet)