AutoML: Dynamic Configuration & Learning

Learning to Learn: Supervised

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

ldea

- Learn algorithms directly, e.g., how to search in the weight space
- First idea: learn weight updates of a neural network

ldea

- Learn algorithms directly, e.g., how to search in the weight space
- First idea: learn weight updates of a neural network

Learning to learn by gradient descent by gradient descent

[Andrychowicz et al. 2016]

Weight updates (note: θ denote DNN weights):

$$\theta^{(t+1)} = \theta^{(t)} - \alpha^{(t)} \nabla f(\theta^{(t)})$$

Idea

- Learn algorithms directly, e.g., how to search in the weight space
- First idea: learn weight updates of a neural network

Learning to learn by gradient descent by gradient descent

[Andrychowicz et al. 2016]

Weight updates (note: θ denote DNN weights):

$$\theta^{(t+1)} = \theta^{(t)} - \alpha^{(t)} \nabla f(\theta^{(t)})$$

Even more general:

$$\theta^{(t+1)} = \theta^{(t)} + g^{(t)}(\nabla f(\theta^{(t)}), \phi)$$

where g is the optimizer and ϕ are the parameters of the optimizer g.

Idea

- Learn algorithms directly, e.g., how to search in the weight space
- First idea: learn weight updates of a neural network

Learning to learn by gradient descent by gradient descent

[Andrychowicz et al. 2016]

Weight updates (note: θ denote DNN weights):

$$\theta^{(t+1)} = \theta^{(t)} - \alpha^{(t)} \nabla f(\theta^{(t)})$$

Even more general:

$$\theta^{(t+1)} = \theta^{(t)} + g^{(t)}(\nabla f(\theta^{(t)}), \phi)$$

where g is the optimizer and ϕ are the parameters of the optimizer g.

 \rightsquigarrow Goal: Optimize f wrt θ by learning g (resp. ϕ)

$$L(\phi) = \mathbb{E}\left[f(\theta^*(f,\phi))\right]$$

where L is a loss function and $\theta^*(f,\phi)$ are the optimized weights θ^* by using the optimizer parameterized with ϕ on function f.

$$L(\phi) = \mathbb{E}\left[f(\theta^*(f,\phi))\right]$$

where L is a loss function and $\theta^*(f,\phi)$ are the optimized weights θ^* by using the optimizer parameterized with ϕ on function f.

$$L(\phi) = \mathbb{E}\left[\sum_{t=1}^{T} w^{(t)} f(\theta^{(t)})\right]$$

$$L(\phi) = \mathbb{E}\left[f(\theta^*(f,\phi))\right]$$

where L is a loss function and $\theta^*(f,\phi)$ are the optimized weights θ^* by using the optimizer parameterized with ϕ on function f.

$$L(\phi) = \mathbb{E}\left[\sum_{t=1}^{T} w^{(t)} f(\theta^{(t)})\right]$$

where \boldsymbol{w}_t are arbitrary weights associated with each time step and

$$L(\phi) = \mathbb{E}\left[f(\theta^*(f,\phi))\right]$$

where L is a loss function and $\theta^*(f,\phi)$ are the optimized weights θ^* by using the optimizer parameterized with ϕ on function f.

$$L(\phi) = \mathbb{E}\left[\sum_{t=1}^{T} w^{(t)} f(\theta^{(t)})\right]$$

where w_t are arbitrary weights associated with each time step and

$$\theta^{(t+1)} = \theta^{(t)} + g^{(t)}$$
$$\binom{g^{(t)}}{h^{(t+1)}} = m(\nabla_{\theta} f(\theta^{(t)}), h^{(t)}, \phi)$$

$$L(\phi) = \mathbb{E}\left[f(\theta^*(f,\phi))\right]$$

where L is a loss function and $\theta^*(f,\phi)$ are the optimized weights θ^* by using the optimizer parameterized with ϕ on function f.

$$L(\phi) = \mathbb{E}\left[\sum_{t=1}^{T} w^{(t)} f(\theta^{(t)})\right]$$

where w_t are arbitrary weights associated with each time step and

$$\theta^{(t+1)} = \theta^{(t)} + g^{(t)}$$
$$\binom{g^{(t)}}{h^{(t+1)}} = m(\nabla_{\theta} f(\theta^{(t)}), h^{(t)}, \phi)$$

 \leadsto Goal: Learn m via ϕ by using gradient descent by optimizing L

$$L(\phi) = \mathbb{E}\left[f(\theta^*(f,\phi))\right]$$

where L is a loss function and $\theta^*(f,\phi)$ are the optimized weights θ^* by using the optimizer parameterized with ϕ on function f.

$$L(\phi) = \mathbb{E}\left[\sum_{t=1}^{T} w^{(t)} f(\theta^{(t)})\right]$$

where w_t are arbitrary weights associated with each time step and

$$\theta^{(t+1)} = \theta^{(t)} + g^{(t)}$$
$$\binom{g^{(t)}}{h^{(t+1)}} = m(\nabla_{\theta} f(\theta^{(t)}), h^{(t)}, \phi)$$

- \leadsto Goal: Learn m via ϕ by using gradient descent by optimizing L
- → "Learning to learn gradient descent by gradient descent"

Learning to Learn: LSTM approach [Andrychowicz et al. 2016]

Optimizee Target network to be trained

Optimizer LSTM with hidden state h_t that predicts weight updates g_t

Learning to Learn: Coordinatewise LSTM optimizer [Andrychowicz et al. 2016]

- One LSTM for each coordinate (i.e., weight)
- \bullet All LSTMs have shared parameters ϕ
- Each coordinate has its own separate hidden state

Learning to Learn: Coordinatewise LSTM optimizer [Andrychowicz et al. 2016]

- One LSTM for each coordinate (i.e., weight)
- \bullet All LSTMs have shared parameters ϕ
- Each coordinate has its own separate hidden state
- We can train the LSTM on k weights and apply it larger DNNs with k' weights, where $k \leq k'$

Learning to Learn with LSTM: Results [Andrychowicz et al. 2016]

Learning to Learn with LSTM: Results [Andrychowicz et al. 2016]

Changing the original architecture of the DNN:

→ learnt optimizer is robust against some architectural changes

Learning to Learn with LSTM: Results [Andrychowicz et al. 2016]

Changing the activation function to ReLU:

→ fails on other activation functions

Learning Black-box Optimization [Chen et al. 2017]

Black Box Optimization Setting

$$\mathbf{x}^* \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

- **①** Given the current state of knowledge $h^{(t)}$ propose a query point $\mathbf{x}^{(t)}$
- ② Observe the response $y^{(t)}$
- **3** Update any internal statistics to produce $h^{(t+1)}$

Learning Black-box Optimization [Chen et al. 2017]

Learning Black Box Optimization

Essentially, a similar idea as before:

$$\begin{array}{rcl} h^{(t)}, \mathbf{x}^{(t)} & = & \mathsf{RNN}_{\phi}(h^{(t-1)}, \mathbf{x}^{(t-1)}, y^{(t)}) \\ y^{(t)} & \sim & p(y|\mathbf{x}^{(t)}) \end{array}$$

- Using recurrent neural network (RNN) to predict next x_t .
- ullet $h^{(t)}$ is the internal hidden state

Learning Black-box Optimization: Loss Functions [Chen et al. 2017]

• Sum loss: Provides more information than final loss

$$L_{\mathsf{sum}}(\phi) = \mathbb{E}_{f,y^{(1:T-1)}}\left[\sum_{t=1}^T f(\mathbf{x}^{(t)})
ight]$$

Learning Black-box Optimization: Loss Functions [Chen et al. 2017]

• Sum loss: Provides more information than final loss

$$L_{\mathsf{sum}}(\phi) = \mathbb{E}_{f,y^{(1:T-1)}} \left[\sum_{t=1}^T f(\mathbf{x}^{(t)}) \right]$$

- El loss: Try to learn behavior of Bayesian optimizer based on expected improvement (El)
 - requires model (e.g., GP)

$$L_{\mathsf{EI}}(\phi) = -\mathbb{E}_{f,y^{(1:T-1)}} \left| \sum_{t=1}^T \mathsf{EI}(\mathbf{x}^{(t)}|y^{(1:t-1)})
ight|$$

Learning Black-box Optimization: Loss Functions [Chen et al. 2017]

• Sum loss: Provides more information than final loss

$$L_{\mathsf{sum}}(\phi) = \mathbb{E}_{f, y^{(1:T-1)}} \left[\sum_{t=1}^{T} f(\mathbf{x}^{(t)}) \right]$$

- El loss: Try to learn behavior of Bayesian optimizer based on expected improvement (El)
 - requires model (e.g., GP)

$$L_{\mathsf{EI}}(\phi) = -\mathbb{E}_{f,y^{(1:T-1)}}\left[\sum_{t=1}^T \mathsf{EI}(\mathbf{x}^{(t)}|y^{(1:t-1)})
ight]$$

Observed Improvement Loss:

$$L_{\mathsf{OI}}(\phi) = \mathbb{E}_{f, y^{(1:T-1)}} \left[\sum_{t=1}^{T} \min \left\{ f(\mathbf{x}^{(t)}) - \min_{i < t} (f(\mathbf{x}^{(i)})), 0 \right\} \right]$$

Learning Black-box Optimization: Results [Chen et al. 2017]

• Hartmann3 is an artificial function with 3 dimensions

Learning Black-box Optimization: Results [Chen et al. 2017]

- Hartmann3 is an artificial function with 3 dimensions
- \rightarrow L_{OI} and L_{EI} perform best
- \sim $L_{
 m OI}$ easier to compute than $L_{
 m EI}$ because we need a predictive model to compute EI

AutoML: Dynamic Configuration & Learning

Learning to Learn: Reinforcement Learning

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

Source: https://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Action Step update Δx

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Action Step update Δx

Transition $\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} + \Delta \mathbf{x}$

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Action Step update Δx

Transition
$$\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} + \Delta \mathbf{x}$$

Cost/Reward Objective value at the current location

- Since the RL agent will optimize the cumulative cost, this is equivalent to L_{sum} [Chen et al. 2017] $(\gamma = 0)$
- encourages the policy to reach the minimum of the objective function as quickly as possible

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Action Step update Δx

Transition
$$\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} + \Delta \mathbf{x}$$

Cost/Reward Objective value at the current location

- Since the RL agent will optimize the cumulative cost, this is equivalent to $L_{\sf sum}$ [Chen et al. 2017] $(\gamma=0)$
- encourages the policy to reach the minimum of the objective function as quickly as possible

Policy DNN predicting μ_d of Gaussian (with constant variance σ^2) for dimension d; sample $\Delta \mathbf{x}_d \sim \mathcal{N}(\mu_d, \sigma^2)$

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Action Step update Δx

Transition $\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} + \Delta \mathbf{x}$

Cost/Reward Objective value at the current location

- Since the RL agent will optimize the cumulative cost, this is equivalent to L_{sum} [Chen et al. 2017] $(\gamma = 0)$
- encourages the policy to reach the minimum of the objective function as quickly as possible

Policy DNN predicting μ_d of Gaussian (with constant variance σ^2) for dimension d; sample $\Delta \mathbf{x}_d \sim \mathcal{N}(\mu_d, \sigma^2)$

Training Set randomly generated objective functions

- 2-layer DNN with ReLUs
- Training datasets for training RL agent: four multivariate Gaussians and sampling 25 points from each
 - → hard toy problem

Learning Acquisition Functions [Volpp et al. 2019]

• Instead of learning everything, it might be sufficient to learn hand-design heuristics

Learning Acquisition Functions [Volpp et al. 2019]

- Instead of learning everything, it might be sufficient to learn hand-design heuristics
- In Bayesian Optimization (BO), the most critical hand-design heuristic is the acquisition function
 - trade-off between exploitation and exploration
 - ▶ Depending on the problem at hand, you might need a different acquisition function

Learning Acquisition Functions [Volpp et al. 2019]

- Instead of learning everything, it might be sufficient to learn hand-design heuristics
- In Bayesian Optimization (BO), the most critical hand-design heuristic is the acquisition function
 - trade-off between exploitation and exploration
 - ▶ Depending on the problem at hand, you might need a different acquisition function
 - Choices:
 - ★ probability of improvement (PI)
 - ★ expected improvement (EI)
 - ★ upper confidence bounds (UCB)
 - ★ entropy search (ES) quite expensive!
 - ★ knowledge gradient (KG)
 - ***** ...

Learning Acquisition Functions [Volpp et al. 2019]

- Instead of learning everything, it might be sufficient to learn hand-design heuristics
- In Bayesian Optimization (BO), the most critical hand-design heuristic is the acquisition function
 - trade-off between exploitation and exploration
 - ▶ Depending on the problem at hand, you might need a different acquisition function
 - Choices:
 - ★ probability of improvement (PI)
 - ★ expected improvement (EI)
 - ★ upper confidence bounds (UCB)
 - ★ entropy search (ES) quite expensive!
 - ★ knowledge gradient (KG)
 - *
- Idea: Learn a neural acquisition function from data
- → Replace acquisition function

Bayesian Optimization: Algorithm

Algorithm 1 Bayesian Optimization (BO)

1 $\mathcal{D}^{(0)} \leftarrow \text{initial_design}(\mathcal{X});$

3 return Best x according to D or \hat{c}

Input : Search Space \mathcal{X} , black box function f, acquisition function α , maximal number of function evaluations T

```
\begin{array}{l} \text{for } t = 1, 2, \dots T - |D_0| \text{ do} \\ \mathbf{2} & | \hat{c}: \mathbf{x} \mapsto c(\mathbf{x}) \leftarrow \text{fit predictive model on } \mathcal{D}^{(t-1)}; \\ & \text{select } \mathbf{x}^{(t)} \text{ by optimizing } \mathbf{x}^{(t)} \in \arg\max_{\mathbf{x} \in \mathcal{X}} \alpha(\mathbf{x}; \mathcal{D}^{(t-1)}, \hat{c}); \\ & \text{Query } y^{(t)} := f(\mathbf{x}^{(t)}); \\ & \text{Add observation to data } D^{(t)} := D^{(t-1)} \cup \{\langle \mathbf{x}^{(t)}, y^{(t)} \rangle\}; \end{array}
```

Neural Acquisition Function [Volpp et al. 2019]

Although the acquisition function α depends on the history $\mathcal{D}^{(t-1)}$ and the predictive model \hat{c} , α mainly makes use of the predictive mean μ and variance σ^2 .

Neural Acquisition Function [Volpp et al. 2019]

Although the acquisition function α depends on the history $\mathcal{D}^{(t-1)}$ and the predictive model \hat{c} , α mainly makes use of the predictive mean μ and variance σ^2 .

Neural acquisition function (AF):

$$\alpha_{\theta}(\mathbf{x}) = \alpha_{\theta}(\mu^{(t)}(\mathbf{x}), \sigma^{(t)}(\mathbf{x}), \mathbf{x}, t, T)$$

where θ are the parameters of a neural network, and μ , σ , \mathbf{x} , t, T are its inputs.

Policy π_{θ} : Neural acquisition function α_{θ}

Policy π_{θ} : Neural acquisition function α_{θ}

Episode: run of π on $f \in \mathcal{F}'$

 \bullet $\ensuremath{\mathcal{F}}$ is a set of functions we can sample functions from

Policy π_{θ} : Neural acquisition function α_{θ}

Episode: run of π on $f \in \mathcal{F}'$

 \bullet $\ensuremath{\mathcal{F}}$ is a set of functions we can sample functions from

State $s^{(t)}$: $\mu^{(t)}$ and $\sigma^{(t)}$ on a set of points $\xi^{(t)}$, and t and T

Policy π_{θ} : Neural acquisition function α_{θ}

Episode: run of π on $f \in \mathcal{F}'$

 \bullet $\ensuremath{\mathcal{F}}$ is a set of functions we can sample functions from

State $s^{(t)}$: $\mu^{(t)}$ and $\sigma^{(t)}$ on a set of points $\xi^{(t)}$, and t and T

Action $a^{(t)}$: Sampled point $\mathbf{x}^{(t)} \in \xi^{(t)}$

Policy π_{θ} : Neural acquisition function α_{θ}

Episode: run of π on $f \in \mathcal{F}'$

ullet ${\mathcal F}$ is a set of functions we can sample functions from

State $s^{(t)}$: $\mu^{(t)}$ and $\sigma^{(t)}$ on a set of points $\xi^{(t)}$, and t and T

Action $a^{(t)}$: Sampled point $\mathbf{x}^{(t)} \in \xi^{(t)}$

Reward $r^{(t)}$: negative simple regret: $r^{(t)} = f(\mathbf{x}^*) - f(\hat{\mathbf{x}})$

 \bullet assumes that we can estimate the optimal \mathbf{x}^* for training functions

```
Policy \pi_{\theta}: Neural acquisition function \alpha_{\theta}
```

Episode: run of π on $f \in \mathcal{F}'$

ullet ${\mathcal F}$ is a set of functions we can sample functions from

State $s^{(t)}$: $\mu^{(t)}$ and $\sigma^{(t)}$ on a set of points $\xi^{(t)}$, and t and T

Action $a^{(t)}$: Sampled point $\mathbf{x}^{(t)} \in \xi^{(t)}$

Reward $r^{(t)}$: negative simple regret: $r^{(t)} = f(\mathbf{x}^*) - f(\hat{\mathbf{x}})$

ullet assumes that we can estimate the optimal \mathbf{x}^* for $\emph{training}$ functions

Transition probability: Noisy evaluation of f and the predictive model update

 \bullet The state is described by a discrete set of points $\xi^{(t)} = \{\xi_n\}_{n=1}^N$

- The state is described by a discrete set of points $\xi^{(t)} = \{\xi_n\}_{n=1}^N$
- We feed these points through the predictive model and the neural AF to obtain $\alpha_{\theta}(\xi_n) = \alpha_{\theta}(\mu^{(t)}(\xi_n), \sigma^{(t)}(\xi_n), \xi_n, t, T),$

- ullet The state is described by a discrete set of points $\xi^{(t)} = \{\xi_n\}_{n=1}^N$
- We feed these points through the predictive model and the neural AF to obtain $\alpha_{\theta}(\xi_n) = \alpha_{\theta}(\mu^{(t)}(\xi_n), \sigma^{(t)}(\xi_n), \xi_n, t, T),$
- $\alpha_{\theta}(\xi_i)$ are interpreted as the logits of categorical distribution, s.t.

$$\pi_{\alpha}(\cdot \mid s^{(t)}) = \mathsf{Cat}\left[\alpha_{\theta}(\xi_1), \dots, \alpha_{\theta}(\xi_N)\right]$$

- ullet The state is described by a discrete set of points $\xi^{(t)}=\{\xi_n\}_{n=1}^N$
- We feed these points through the predictive model and the neural AF to obtain $\alpha_{\theta}(\xi_n) = \alpha_{\theta}(\mu^{(t)}(\xi_n), \sigma^{(t)}(\xi_n), \xi_n, t, T),$
- $\alpha_{\theta}(\xi_i)$ are interpreted as the logits of categorical distribution, s.t.

$$\pi_{\alpha}(\cdot \mid s^{(t)}) = \mathsf{Cat}\left[\alpha_{\theta}(\xi_1), \dots, \alpha_{\theta}(\xi_N)\right]$$

- ullet Due to curse of dimensionality, we need a two step approach for $\xi^{(t)}$
 - lacktriangle sample $\xi_{
 m global}$ using a coarse Sobol grid
 - 2 sample ξ_{local} using local optimization starting from the best samples in ξ_{global}
- $\leftrightarrow \xi^{(t)} = \xi_{\mathsf{global}} \cup \xi_{\mathsf{local}}$

Learning Acquisition Functions: Overview [Volpp et al. 2019]

Results on Artificial Functions [Volpp et al. 2019]

- Approach by [Volpp et al. 2019] called MetaBO
- MetaBO performs better than other acquisition functions (EI, GP-UCB, PI) and other baselines (Random, TAF)

Results on Artificial Functions [Volpp et al. 2019]

- Approach by [Volpp et al. 2019] called MetaBO
- MetaBO performs better than other acquisition functions (EI, GP-UCB, PI) and other baselines (Random, TAF)

Assumption: You have a family of functions at hand that resembles your target function.

AutoML: Dynamic Configuration & Learning Learning to Adjust Learning Rates

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

Learning Problem [Daniel et al. 2016]

• Optimization of a function:

$$\theta \in \arg\min F(\mathbf{X}; \theta)$$

where $\mathbf X$ is an input matrix and f is parameterized by $\theta.$

Learning Problem [Daniel et al. 2016]

Optimization of a function:

$$\theta \in \arg\min F(\mathbf{X}; \theta)$$

where $\mathbf X$ is an input matrix and f is parameterized by $\theta.$

$$F(\mathbf{X}; \theta) = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}^{(i)}; \theta)$$

$$\theta^{(t+1)} = \theta^{(t)} - \alpha^{(t)} \nabla F(\theta^{(t)})$$
$$\nabla F(\theta^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\theta^{(t)})$$

• Idea: Learn the hyperparameters of the weight update (short notation)

$$\theta^{(t+1)} = \theta^{(t)} - \alpha^{(t)} \nabla F(\theta^{(t)})$$
$$\nabla F(\theta^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\theta^{(t)})$$

 \bullet For SGD, this would be for example the learning rate α

$$\theta^{(t+1)} = \theta^{(t)} - \alpha^{(t)} \nabla F(\theta^{(t)})$$
$$\nabla F(\theta^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\theta^{(t)})$$

- ullet For SGD, this would be for example the learning rate lpha
- ullet Note (i): lpha have to be adapted in the course of the training
 - similar to learning rate schedules (e.g., cosine annealing)

$$\theta^{(t+1)} = \theta^{(t)} - \alpha^{(t)} \nabla F(\theta^{(t)})$$
$$\nabla F(\theta^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\theta^{(t)})$$

- ullet For SGD, this would be for example the learning rate lpha
- ullet Note (i): lpha have to be adapted in the course of the training
 - similar to learning rate schedules (e.g., cosine annealing)
- ullet Note(ii): later we denote the learnt hyperparameters as λ

$$\theta^{(t+1)} = \theta^{(t)} - \alpha^{(t)} \nabla F(\theta^{(t)})$$
$$\nabla F(\theta^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\theta^{(t)})$$

- ullet For SGD, this would be for example the learning rate lpha
- ullet Note (i): lpha have to be adapted in the course of the training
 - similar to learning rate schedules (e.g., cosine annealing)
- ullet Note(ii): later we denote the learnt hyperparameters as λ
- Idea: Use reinforcement learning to learn a policy $\pi: s \mapsto a$ to control the learning rate (or other adaptive hyperparameters)

Recap: Reinforcement Learning for Dynamic Algorithm Configuration

To apply that, we need to define:

- State description
- Action space
- Reward function

Predictive change in function value:

$$s_1 = \log \left(\mathsf{Var}(\Delta \tilde{f}_i) \right)$$
$$\Delta \tilde{f}_i = \tilde{f}(\mathbf{x}^{(i)}; \theta + \delta \theta) - f(\mathbf{x}^{(i)}; \theta)$$

where $\tilde{f}(\mathbf{x}^{(i)}; \theta + \delta \theta)$ is done by a first order Taylor expansion

Predictive change in function value:

$$s_1 = \log \left(\mathsf{Var}(\Delta \tilde{f}_i) \right)$$
$$\Delta \tilde{f}_i = \tilde{f}(\mathbf{x}^{(i)}; \theta + \delta \theta) - f(\mathbf{x}^{(i)}; \theta)$$

where $\tilde{f}(\mathbf{x}^{(i)}; \theta + \delta\theta)$ is done by a first order Taylor expansion **Disagreement of function values:**

$$s_2 = \log\left(\mathsf{Var}(f(\mathbf{x}^{(i)}; \theta))\right)$$

Predictive change in function value:

$$s_1 = \log \left(\mathsf{Var}(\Delta \tilde{f}_i) \right)$$
$$\Delta \tilde{f}_i = \tilde{f}(\mathbf{x}^{(i)}; \theta + \delta \theta) - f(\mathbf{x}^{(i)}; \theta)$$

where $\tilde{f}(\mathbf{x}^{(i)}; \theta + \delta\theta)$ is done by a first order Taylor expansion **Disagreement of function values:**

$$s_2 = \log\left(\mathsf{Var}(f(\mathbf{x}^{(i)}; \theta))\right)$$

Discounted Average (smoothing noise from mini-batches):

$$\hat{s}_i \leftarrow \gamma \hat{s}_i + (1 - \gamma) s_i$$

Predictive change in function value:

$$\begin{split} s_1 &= \log \left(\mathsf{Var}(\Delta \tilde{f}_i) \right) \\ \Delta \tilde{f}_i &= \tilde{f}(\mathbf{x}^{(i)}; \theta + \delta \theta) - f(\mathbf{x}^{(i)}; \theta) \end{split}$$

where $\tilde{f}(\mathbf{x}^{(i)}; \theta + \delta\theta)$ is done by a first order Taylor expansion Disagreement of function values:

$$s_2 = \log\left(\mathsf{Var}(f(\mathbf{x}^{(i)}; \theta))\right)$$

Discounted Average (smoothing noise from mini-batches):

$$\hat{s}_i \leftarrow \gamma \hat{s}_i + (1 - \gamma) s_i$$

Uncertainty Estimate (noise level):

$$s_{K+i} \leftarrow \gamma s_{K+i} + (1 - \gamma)(s_i - \hat{s}_i)^2$$

RL for Step Size Policies: Learning [Daniel et al. 2016]

Reward (average loss improvement over time):

$$r = \frac{1}{T-1} \sum_{t=2}^{T} \left(\log(L^{(t-1)}) - \log(L^{(t)}) \right)$$

RL for Step Size Policies: Learning [Daniel et al. 2016]

Reward (average loss improvement over time):

$$r = \frac{1}{T-1} \sum_{t=2}^{T} \left(\log(L^{(t-1)}) - \log(L^{(t)}) \right)$$

Optimal Policy:

$$\pi^*(\lambda \mid s) \in \underset{\pi}{\operatorname{arg\,max}} \int \int p(s)\pi(\boldsymbol{\lambda} \mid s)r(\boldsymbol{\lambda}, s) \,\mathrm{d}s \,\mathrm{d}\boldsymbol{\lambda}$$

RL for Step Size Policies: Learning [Daniel et al. 2016]

Reward (average loss improvement over time):

$$r = \frac{1}{T-1} \sum_{t=2}^{T} \left(\log(L^{(t-1)}) - \log(L^{(t)}) \right)$$

Optimal Policy:

$$\pi^*(\lambda \mid s) \in \underset{\pi}{\operatorname{arg\,max}} \int \int p(s)\pi(\boldsymbol{\lambda} \mid s)r(\boldsymbol{\lambda}, s) \, \mathrm{d}s \, \mathrm{d}\boldsymbol{\lambda}$$

• can be learnt for example via Relative Entropy Policy Search (REPS) [Peter et al. 2010]

RL for Step Size Policies: Training [Daniel et al. 2016]

- Goal: obtain robust policies,
 i.e., good performance for many different DNN architectures
 - → Sample architectures e.g., with different numbers of filters and layers
 - → (Sub-)Sample dataset
 - \leadsto Sample number of optimization steps

RL for Step Size Policies: Training [Daniel et al. 2016]

- Goal: obtain robust policies,
 i.e., good performance for many different DNN architectures
 - Sample architectures e.g., with different numbers of filters and layers
 - → (Sub-)Sample dataset
 - → Sample number of optimization steps

MNIST SGD

"Ours" refers to the approach by <code>[Daniel et al. 2016]</code> and η is the learning rate

AutoML: Dynamic Configuration & Learning Dynamic Configuration

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

- Many iterative heuristics in algorithms are dynamic and adaptive
 - the algorithm's behavior changes over time
 - the algorithm's behavior changes based on internal statistics

- Many iterative heuristics in algorithms are dynamic and adaptive
 - the algorithm's behavior changes over time
 - the algorithm's behavior changes based on internal statistics
- These heuristics might control other hyperparameters of the algorithms

- Many iterative heuristics in algorithms are dynamic and adaptive
 - the algorithm's behavior changes over time
 - the algorithm's behavior changes based on internal statistics
- These heuristics might control other hyperparameters of the algorithms
- Example: learning rate schedules for training DNNs
 - exponential decaying learning rate: based on number of iterations, learning rate decreases

- Many iterative heuristics in algorithms are dynamic and adaptive
 - the algorithm's behavior changes over time
 - the algorithm's behavior changes based on internal statistics
- These heuristics might control other hyperparameters of the algorithms
- Example: learning rate schedules for training DNNs
 - exponential decaying learning rate: based on number of iterations, learning rate decreases
 - Reduce learning rate on plateaus: if the learning stagnates for some time, the learning rate is decreased by a factor

- Many iterative heuristics in algorithms are dynamic and adaptive
 - the algorithm's behavior changes over time
 - the algorithm's behavior changes based on internal statistics
- These heuristics might control other hyperparameters of the algorithms
- Example: learning rate schedules for training DNNs
 - exponential decaying learning rate: based on number of iterations, learning rate decreases
 - Reduce learning rate on plateaus: if the learning stagnates for some time, the learning rate is decreased by a factor
- other examples: restart probability of search, mutation rate of evolutionary algorithms, . . .

- How can we parameterize learning rate schedules?
 - exponential decaying learning rate:
 - ★ initial learning rate
 - ★ minimal learning rate
 - ★ multiplicative factor

- How can we parameterize learning rate schedules?
 - exponential decaying learning rate:
 - ★ initial learning rate
 - * minimal learning rate
 - ★ multiplicative factor
 - 2 Reduce learning rate on plateaus:
 - ★ patience (in number of epochs)
 - ★ patience threshold
 - ★ decreasing factor
 - ★ cool-down break (in number of epochs)

- How can we parameterize learning rate schedules?
 - exponential decaying learning rate:
 - ★ initial learning rate
 - * minimal learning rate
 - ★ multiplicative factor
 - 2 Reduce learning rate on plateaus:
 - ★ patience (in number of epochs)
 - ★ patience threshold
 - ★ decreasing factor
 - ★ cool-down break (in number of epochs)

→ Many hyperparameters only to control a single hyperparameter

- How can we parameterize learning rate schedules?
 - exponential decaying learning rate:
 - ★ initial learning rate
 - ★ minimal learning rate
 - ★ multiplicative factor
 - 2 Reduce learning rate on plateaus:
 - ★ patience (in number of epochs)
 - ★ patience threshold
 - ★ decreasing factor
 - ★ cool-down break (in number of epochs)
- → Many hyperparameters only to control a single hyperparameter
- Still not guaranteed that optimal setting of e.g. learning rate schedules will lead to optimal learning behavior
 - Learning rate schedules are only heuristics

- So far, we assumed that an algorithm runs with static settings
- However, settings, such as learning rate, have to be adapted over time

Definition

Let

ullet $\lambda \in \Lambda$ be a hyperparameter configuration of an algorithm ${\mathcal A}$,

- So far, we assumed that an algorithm runs with static settings
- However, settings, such as learning rate, have to be adapted over time

Definition

- ullet $\lambda \in \Lambda$ be a hyperparameter configuration of an algorithm ${\mathcal A}$,
- ullet $p(\mathcal{D})$ be a probability distribution over meta datasets $\mathcal{D} \in \mathbf{D}$,

- So far, we assumed that an algorithm runs with static settings
- However, settings, such as learning rate, have to be adapted over time

Definition

- ullet $\lambda \in \Lambda$ be a hyperparameter configuration of an algorithm ${\mathcal A}$,
- ullet $p(\mathcal{D})$ be a probability distribution over meta datasets $\mathcal{D} \in \mathbf{D}$,
- $s^{(t)}$ be a state description of \mathcal{A} solving \mathcal{D} at time point t,

- So far, we assumed that an algorithm runs with static settings
- However, settings, such as learning rate, have to be adapted over time

Definition

- ullet $\lambda \in \Lambda$ be a hyperparameter configuration of an algorithm ${\mathcal A}$,
- ullet $p(\mathcal{D})$ be a probability distribution over meta datasets $\mathcal{D} \in \mathbf{D}$,
- $s^{(t)}$ be a state description of \mathcal{A} solving \mathcal{D} at time point t,
- ullet $c: \Pi imes D o \mathbb{R}$ be a cost metric assessing the cost of a control policy $\pi \in \Pi$ on $\mathcal{D} \in \mathbf{D}$

- So far, we assumed that an algorithm runs with static settings
- However, settings, such as learning rate, have to be adapted over time

Definition

- ullet $\lambda \in \Lambda$ be a hyperparameter configuration of an algorithm ${\mathcal A}$,
- ullet $p(\mathcal{D})$ be a probability distribution over meta datasets $\mathcal{D} \in \mathbf{D}$,
- ullet $s^{(t)}$ be a state description of ${\cal A}$ solving ${\cal D}$ at time point t,
- $c: \Pi \times D \to \mathbb{R}$ be a cost metric assessing the cost of a control policy $\pi \in \Pi$ on $\mathcal{D} \in \mathbf{D}$ the *dynamic algorithm configuration problem* is to obtain a policy $\pi^*: s_t \times \mathcal{D} \mapsto \lambda$ by optimizing its cost across a distribution of datasets:

$$\pi^* \in \operatorname*{arg\,min} \int_{\mathbf{D}} p(\mathcal{D}) c(\pi, \mathcal{D}) \, \mathrm{d}\mathcal{D}$$

State $\boldsymbol{s}^{(t)}$ are described by statistics gathered in the algorithm run

State $s^{(t)}$ are described by statistics gathered in the algorithm run Action $a^{(t)}$ change hyperparameters according to some control policy π

State $s^{(t)}$ are described by statistics gathered in the algorithm run Action $a^{(t)}$ change hyperparameters according to some control policy π Transition run the algorithm from state $s^{(t)}$ to $s^{(t+1)}$ for a "short" moment by using the hyperparameters defined by $a^{(t)}$

State $\boldsymbol{s}^{(t)}$ are described by statistics gathered in the algorithm run

Action $a^{(t)}$ change hyperparameters according to some control policy π

Transition run the algorithm from state $s^{(t)}$ to $s^{(t+1)}$ for a "short" moment by using the hyperparameters defined by $a^{(t)}$

Reward $r^{(t)}$ Return your current solution quality (or an approximation)

- State $s^{(t)}$ are described by statistics gathered in the algorithm run
- Action $a^{(t)}$ change hyperparameters according to some control policy π
- Transition run the algorithm from state $s^{(t)}$ to $s^{(t+1)}$ for a "short" moment by using the hyperparameters defined by $a^{(t)}$
- Reward $r^{(t)}$ Return your current solution quality (or an approximation)
- Context \mathcal{D} A given dataset (or task)

Solve unknown MDP by using reinforcement learning (RL):

$$\mathcal{V}_{\mathcal{D}}^{\pi}(s^{(t)}) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{\mathcal{D}}^{(t+k+1)} | s^{(t)} = s\right]$$

Solve unknown MDP by using reinforcement learning (RL):

$$\mathcal{V}_{\mathcal{D}}^{\pi}(s^{(t)}) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{\mathcal{D}}^{(t+k+1)} | s^{(t)} = s\right]$$

$$= \mathbb{E}\left[r_{\mathcal{D}}^{(t+1)} + \gamma \mathcal{V}_{\mathcal{D}}^{\pi}(s^{(t+1)}) | s^{(t+1)} \sim \mathcal{T}_{\mathcal{D}}(s^{(t)}, \pi(s^{(t)}))\right]$$

Solve unknown MDP by using reinforcement learning (RL):

$$\mathcal{V}_{\mathcal{D}}^{\pi}(s^{(t)}) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{\mathcal{D}}^{(t+k+1)} | s^{(t)} = s\right]$$

$$= \mathbb{E}\left[r_{\mathcal{D}}^{(t+1)} + \gamma \mathcal{V}_{\mathcal{D}}^{\pi}(s^{(t+1)}) | s^{(t+1)} \sim \mathcal{T}_{\mathcal{D}}(s^{(t)}, \pi(s^{(t)}))\right]$$

$$\pi^* \in \arg\max_{s \in \mathbf{J}} \int_{\mathbf{D}} p(\mathcal{D}) \int_{S^{(0)}} \Pr(s^{(0)}) \cdot \mathcal{V}_{\mathcal{D}}^{\pi}(s^{(0)}) \, \mathrm{d}s^{(0)} \, \mathrm{d}\mathcal{D}$$

Solve unknown MDP by using reinforcement learning (RL):

$$\mathcal{V}_{\mathcal{D}}^{\pi}(s^{(t)}) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{\mathcal{D}}^{(t+k+1)} | s^{(t)} = s\right]$$

$$= \mathbb{E}\left[r_{\mathcal{D}}^{(t+1)} + \gamma \mathcal{V}_{\mathcal{D}}^{\pi}(s^{(t+1)}) | s^{(t+1)} \sim \mathcal{T}_{\mathcal{D}}(s^{(t)}, \pi(s^{(t)}))\right]$$

$$\pi^* \in \underset{\pi \in \Pi}{\arg\max} \int_{\mathbf{D}} p(\mathcal{D}) \int_{\mathcal{S}^{(0)}} \Pr(s^{(0)}) \cdot \mathcal{V}_{\mathcal{D}}^{\pi}(s^{(0)}) \, \mathrm{d}s^{(0)} \, \mathrm{d}\mathcal{D}$$

→ equivalent to Dynamic Algorithm Configuration definition

• Challenge: Evaluating a policies on all datasets is often not feasible

- Challenge: Evaluating a policies on all datasets is often not feasible
- Curriculum learning [Bengio et al. 2009] showed that we should have a curriculum of tasks we tackle

- Challenge: Evaluating a policies on all datasets is often not feasible
- Curriculum learning [Bengio et al. 2009] showed that we should have a curriculum of tasks
 we tackle
- Self-paced learning [Kumar et al. 2010] tries to automatically find such as a curriculum
 - ► Focus on "easy" tasks where the agent can improve most:

- Challenge: Evaluating a policies on all datasets is often not feasible
- Curriculum learning [Bengio et al. 2009] showed that we should have a curriculum of tasks
 we tackle
- Self-paced learning [Kumar et al. 2010] tries to automatically find such as a curriculum
 - ► Focus on "easy" tasks where the agent can improve most:

$$\max_{\pi, \mathbf{v}} \mathcal{C}(\pi, \mathbf{v}, K) = \sum_{i=1}^{|\mathbf{D}|} \mathbf{v}_i \mathcal{R}_i(\pi) - \frac{1}{K} \sum_{i=1}^{|\mathbf{D}|} \mathbf{v}_i$$

with θ being the agent's policy parameters and ${\bf v}$ being a masking vector for choosing the tasks at hand.

AutoML: Dynamic Configuration & Learning Overview

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

- Often we treat AutoML as a black-box problem
 - ▶ Black box: We choose input to the black box and observe outcome

- Often we treat AutoML as a black-box problem
 - ▶ Black box: We choose input to the black box and observe outcome
 - ► E.g., classical hyperparameter optimizer:

Input: Hyperparameter configuration \rightarrow Output: Accuracy

- Often we treat AutoML as a black-box problem
 - ▶ Black box: We choose input to the black box and observe outcome
 - ► E.g., classical hyperparameter optimizer: Input: Hyperparameter configuration → Output: Accuracy
- We discussed how to extend AutoML to a more grey-box approach:
 - ► Grey Box: We still choose the input, but we can observe more than the outcome, e.g, intermediate results

- Often we treat AutoML as a black-box problem
 - ▶ Black box: We choose input to the black box and observe outcome
 - ► E.g., classical hyperparameter optimizer: Input: Hyperparameter configuration → Output: Accuracy
- We discussed how to extend AutoML to a more grey-box approach:
 - Grey Box: We still choose the input, but we can observe more than the outcome, e.g, intermediate results
 - ▶ We might can control the "box" a bit, e.g., early termination

- Often we treat AutoML as a black-box problem
 - ▶ Black box: We choose input to the black box and observe outcome
 - ► E.g., classical hyperparameter optimizer: Input: Hyperparameter configuration → Output: Accuracy
- We discussed how to extend AutoML to a more grey-box approach:
 - Grey Box: We still choose the input, but we can observe more than the outcome, e.g, intermediate results
 - ▶ We might can control the "box" a bit, e.g., early termination
 - ▶ E.g., learning curve predictions, multi-fidelity optimization, . . .

- Often we treat AutoML as a black-box problem
 - ▶ Black box: We choose input to the black box and observe outcome
 - ► E.g., classical hyperparameter optimizer: Input: Hyperparameter configuration → Output: Accuracy
- We discussed how to extend AutoML to a more grey-box approach:
 - Grey Box: We still choose the input, but we can observe more than the outcome, e.g, intermediate results
 - ▶ We might can control the "box" a bit, e.g., early termination
 - ▶ E.g., learning curve predictions, multi-fidelity optimization, . . .
 - → often more efficient than black-box approaches (if done right)

- Often we treat AutoML as a black-box problem
 - ▶ Black box: We choose input to the black box and observe outcome
 - ► E.g., classical hyperparameter optimizer: Input: Hyperparameter configuration → Output: Accuracy
- We discussed how to extend AutoML to a more grey-box approach:
 - Grey Box: We still choose the input, but we can observe more than the outcome, e.g, intermediate results
 - ▶ We might can control the "box" a bit, e.g., early termination
 - ▶ E.g., learning curve predictions, multi-fidelity optimization, . . .
 - → often more efficient than black-box approaches (if done right)
- Ultimately, we would like to treat AutoML as a white-box problem
 - White-box: We can observe and control all details of an algorithm run

- Often we treat AutoML as a black-box problem
 - ▶ Black box: We choose input to the black box and observe outcome
 - ► E.g., classical hyperparameter optimizer: Input: Hyperparameter configuration → Output: Accuracy
- We discussed how to extend AutoML to a more grey-box approach:
 - ► Grey Box: We still choose the input, but we can observe more than the outcome, e.g, intermediate results
 - ▶ We might can control the "box" a bit, e.g., early termination
 - ▶ E.g., learning curve predictions, multi-fidelity optimization, . . .
 - → often more efficient than black-box approaches (if done right)
- Ultimately, we would like to treat AutoML as a white-box problem
 - White-box: We can observe and control all details of an algorithm run
- → Goal: Replace algorithm components by learned policies

IOHs

Iterative Optimization Heuristics (IOHs) propose a set of solution candidates in each iteration based on previous evaluations.

IOHs

Iterative Optimization Heuristics (IOHs) propose a set of solution candidates in each iteration based on previous evaluations.

- Many ML algorithms are iterative in nature, in particular for big data, e.g.:
 - SGD (for linear models or for deep neural networks)
 - Tree-based algorithms

IOHs

Iterative Optimization Heuristics (IOHs) propose a set of solution candidates in each iteration based on previous evaluations.

- Many ML algorithms are iterative in nature, in particular for big data, e.g.:
 - SGD (for linear models or for deep neural networks)
 - Tree-based algorithms
- Often we have only a single solution candidate (e.g., weights of neural network)
 - ▶ If we use a evoluationary strategy as in neural evoluation, we have a population of solution candidates

IOHs

Iterative Optimization Heuristics (IOHs) propose a set of solution candidates in each iteration based on previous evaluations.

- Many ML algorithms are iterative in nature, in particular for big data, e.g.:
 - SGD (for linear models or for deep neural networks)
 - Tree-based algorithms
- Often we have only a single solution candidate (e.g., weights of neural network)
 - ► If we use a evoluationary strategy as in neural evoluation, we have a population of solution candidates
- Hopefully, the quality of solution candiates improves in each iteration
 - Update of the weights of a neural network

IOHs

Iterative Optimization Heuristics (IOHs) propose a set of solution candidates in each iteration based on previous evaluations.

- Many ML algorithms are iterative in nature, in particular for big data, e.g.:
 - SGD (for linear models or for deep neural networks)
 - Tree-based algorithms
- Often we have only a single solution candidate (e.g., weights of neural network)
 - ► If we use a evoluationary strategy as in neural evoluation, we have a population of solution candidates
- Hopefully, the quality of solution candiates improves in each iteration
 - Update of the weights of a neural network
- Main component is the heuristic for proposal mechanism of new solution candidates

Learning for IOHs

Dynamic Adaptation of Hyperparameters

The goal is to dynamically adapt hyperparameters based on some feedback from the algorithm.

Learning for IOHs

Dynamic Adaptation of Hyperparameters

The goal is to dynamically adapt hyperparameters based on some feedback from the algorithm.

Dynamic Algorithm Configuration: DAC

The goal of DAC is to learn a policy from data that adapts the hyperparameter settings of an IOH.

Learning for IOHs

Dynamic Adaptation of Hyperparameters

The goal is to dynamically adapt hyperparameters based on some feedback from the algorithm.

Dynamic Algorithm Configuration: DAC

The goal of DAC is to learn a policy from data that adapts the hyperparameter settings of an IOH.

Learning to Learn: L2L

The goal of L2L is to learn a proposal mechanism from data.

AutoML: Dynamic Configuration & Learning

Population-based Training

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

On-the-fly Adaption

 Dynamic algorithm configuration assumes that we have access to a representative learning environment in an offline learning phase

On-the-fly Adaption

- Dynamic algorithm configuration assumes that we have access to a representative learning environment in an offline learning phase
- What if we don't access to such an env or don't have to time for offline learning?

On-the-fly Adaption

- Dynamic algorithm configuration assumes that we have access to a representative learning environment in an offline learning phase
- What if we don't access to such an env or don't have to time for offline learning?

→ Try to figure out best hyperparameter settings on the fly

Massively parallelized Random Search

ullet Sample many hyperparameter configurations $oldsymbol{\lambda}^{(i)}$ and evaluate them all in parallel

Massively parallelized Random Search

- ullet Sample many hyperparameter configurations $oldsymbol{\lambda}^{(i)}$ and evaluate them all in parallel
- Pure exploration on a large population of configurations

Massively parallelized Random Search

- ullet Sample many hyperparameter configurations $oldsymbol{\lambda}^{(i)}$ and evaluate them all in parallel
- Pure exploration on a large population of configurations
- No dynamic adaptation

Population-based Training [Jaderberg et al. 2017]

• The color indicates the performance over time

Population-based Training [Jaderberg et al. 2017]

• The color indicates the performance over time

Population-based Training [Jaderberg et al. 2017]

• The color indicates the performance over time

- Sample initial population
 - ightharpoonup Each population member is a combination of hyperparameter setting λ and (partially trained) model

- Sample initial population
 - ightharpoonup Each population member is a combination of hyperparameter setting λ and (partially trained) model
- Train population for a bit

- Sample initial population
 - ightharpoonup Each population member is a combination of hyperparameter setting λ and (partially trained) model
- Train population for a bit
- Tournament selection to drop poorly performing population members

- Sample initial population
 - ightharpoonup Each population member is a combination of hyperparameter setting λ and (partially trained) model
- Train population for a bit
- Tournament selection to drop poorly performing population members
- Use mutation (and cross-over) to generate off-springs
 - ▶ Change the hyperparameter settings, but inherits the partially trained model (+ pertubation)

- Sample initial population
 - ightharpoonup Each population member is a combination of hyperparameter setting λ and (partially trained) model
- Train population for a bit
- Tournament selection to drop poorly performing population members
- Use mutation (and cross-over) to generate off-springs
 - ▶ Change the hyperparameter settings, but inherits the partially trained model (+ pertubation)
- New population consists of so-far best performing ones and new off-springs

- Sample initial population
 - ightharpoonup Each population member is a combination of hyperparameter setting λ and (partially trained) model
- Train population for a bit
- Tournament selection to drop poorly performing population members
- Use mutation (and cross-over) to generate off-springs
 - ▶ Change the hyperparameter settings, but inherits the partially trained model (+ pertubation)
- New population consists of so-far best performing ones and new off-springs
- **o** Go to 2.

• PBT returns an already trained model (e.g., DNN or RL policy)

- PBT returns an already trained model (e.g., DNN or RL policy)
- PBT uses evolutionary computing to determine well-performing hyperparameter settings

- PBT returns an already trained model (e.g., DNN or RL policy)
- PBT uses evolutionary computing to determine well-performing hyperparameter settings
- Since hyperparameter settings changes while training the models,
 PBT relates to dynamic algorithm configuration

- PBT returns an already trained model (e.g., DNN or RL policy)
- PBT uses evolutionary computing to determine well-performing hyperparameter settings
- Since hyperparameter settings changes while training the models,
 PBT relates to dynamic algorithm configuration
- Since each population member (i.e., model) can be trained independently,
 PBT can be efficiently parallelized
 - → Drawback: requires substantial parallel compute resources

• Bayesian Optimization (BO) is well known for its sample efficiency

- Bayesian Optimization (BO) is well known for its sample efficiency
- Idea: Can we use BO to guide PBT?

- Bayesian Optimization (BO) is well known for its sample efficiency
- Idea: Can we use BO to guide PBT?
- → Less parallel compute resources are required(?)

- Bayesian Optimization (BO) is well known for its sample efficiency
- Idea: Can we use BO to guide PBT?
- → Less parallel compute resources are required(?)
- → Scales better to higher dimensional spaces(?)

$\overline{\mathsf{PBT}} + \mathsf{BO}$: Outline

- Sample initial population
 - ightharpoonup Each population member is a combination of hyperparameter setting λ and (partially trained) model
- Train population for a bit
- Tournament selection to drop poorly performing population members
- Use Bayesian optimization to select new hyperparameter settings
 - ▶ Change the hyperparameter settings, but inherits the partially trained model (+ pertubation)
- New population consists of so-far best performing ones and new off-springs
- Go to 2.

• Challenge I: PBT runs in parallel asynchronously

- Challenge I: PBT runs in parallel asynchronously
- → BO has to take into account that other hyperparameter settings are being evaluated already

- Challenge I: PBT runs in parallel asynchronously
- → BO has to take into account that other hyperparameter settings are being evaluated already
- Several ideas on how to parallelize BO

- Challenge I: PBT runs in parallel asynchronously
- → BO has to take into account that other hyperparameter settings are being evaluated already
- Several ideas on how to parallelize BO
 - Randomize the model training or optimization of the acquisition function

- Challenge I: PBT runs in parallel asynchronously
- → BO has to take into account that other hyperparameter settings are being evaluated already
- Several ideas on how to parallelize BO
 - Randomize the model training or optimization of the acquisition function
 - Thompson sampling to use only a single explanation of the data (in proportion to its likelihood)

- Challenge I: PBT runs in parallel asynchronously
- → BO has to take into account that other hyperparameter settings are being evaluated already
- Several ideas on how to parallelize BO
 - ► Randomize the model training or optimization of the acquisition function
 - Thompson sampling to use only a single explanation of the data (in proportion to its likelihood)
 - ► Hallucinate performance of other hyperparameter settings in optimistically, pessimistically or in expectation of the current surrogate model

PBT + BO: Parallel Evaluation [Parker-Holder et al. 2020]

ullet Challenge II: The cost depends on the previous $oldsymbol{\lambda}^{(1)}, oldsymbol{\lambda}^{(2)}, \dots, oldsymbol{\lambda}^{(t-1)}$

PBT + BO: Parallel Evaluation [Parker-Holder et al. 2020]

- Challenge II: The cost depends on the previous $\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(t-1)}$
- BO-Surrogate model predicts the cost improvement over time:

$$c_{\mathsf{PBT}}^{(t)}(\boldsymbol{\lambda}) = \frac{c^{(t)}(\boldsymbol{\lambda}) - c^{(t-1)}(\boldsymbol{\lambda})}{\Delta t}$$

where $c^{(t)}(\pmb{\lambda})$ is the cost for a given hyperparameter setting at time step t.

PBT + BO: Parallel Evaluation [Parker-Holder et al. 2020]

- Challenge II: The cost depends on the previous $\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(t-1)}$
- BO-Surrogate model predicts the cost improvement over time:

$$c_{\mathsf{PBT}}^{(t)}(\pmb{\lambda}) = rac{c^{(t)}(\pmb{\lambda}) - c^{(t-1)}(\pmb{\lambda})}{\Delta t}$$

where $c^{(t)}(\pmb{\lambda})$ is the cost for a given hyperparameter setting at time step t.

 \bullet Remark: Also add $c^{(t-1)}$ as an input to the BO-surrogate model to ease the task of predicting the improvement