Prerequisiti

Andrea Canale

May 20, 2025

Contents

1	Rac	licali come potenze con esponente frazionario	2
2 Equazioni di una retta passante per un punto assegnata		nazioni di una retta passante per un punto con pendenza	2
	asst	Egnata	_
3	Equ	nazione di una retta passante per due punti	2
4	Pen	ndenza di una retta	2
	4.1	Retta in forma implicita	2
	4.2	Retta da punti P e Q sul grafico	2
5	Proprietà dei logaritmi		3
	5.1	Riscrittura	3
	5.2	Logaritmo con argomento prodotto	3
	5.3	Logaritmo con argomento in forma potenza	3
	5.4	Logaritmo con argomento sotto forma di frazione	3
	5.5	Riscrittura di un logaritmo in un'altra base	3
	5.6	Riscrittura di un logaritmo	3
6	Risolvere equazioni logaritmiche		3
	6.1	Equazioni elementari	3
	6.2	Equazioni risolvibili con passaggio all'esponenziale	3
	6.3	Equazioni risolvibili con incognita ausiliaria	3
7	Ris	olvere equazioni esponenziali	4
	7.1	Equazioni esponenziali elementari	4
		7.1.1 Casi particolari	4

1 Radicali come potenze con esponente frazionario

Per esprimere radici come potenze con esponente frazionario si segue la seguente regola:

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

2 Equazioni di una retta passante per un punto con pendenza assegnata

Si usa la seguente equazione sostituendo m con la pendenza e $y_p,\,x_p$ con il punto richiesto:

$$y - y_p = m(x - x_p)$$

3 Equazione di una retta passante per due punti

Si usa la seguente equazione sostituendo x_1, y_1 e x_2, y_2 con le coordinate dei punti:

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$$

Questo vale se $x_1 \neq x_2$ e $y_1 \neq y_2$

Altrimenti si usa la formula: $x=x_1$ se $x_1=x_2$ altrimenti $y=y_1$ se $y_1=y_2$

4 Pendenza di una retta

4.1 Retta in forma implicita

Data: ax + by + c = 0, possiamo fare $m = -\frac{a}{b}$ con $b \neq 0$

4.2 Retta da punti P e Q sul grafico

Conoscendo i punti $P(x_p,y_p)$ e $Q(y_q,y_q)$ con $x_p \neq x_q$, possiamo trovare la pendenza come: $m=\frac{y_q-y_p}{x_q-x_p}$ con $x_q\neq x_p$

5 Proprietà dei logaritmi

- 5.1 Riscrittura
- 5.2 Logaritmo con argomento prodotto

$$log_a(b \cdot c) = log_a(b) \cdot log_a(c)$$

5.3 Logaritmo con argomento in forma potenza

$$log_a(b^c) = c \ log_a(b)$$

5.4 Logaritmo con argomento sotto forma di frazione

$$log_a(\frac{b}{c}) = log_a(b) - log_a(c)$$

5.5 Riscrittura di un logaritmo in un'altra base

$$log_a(b) = \frac{log_c(b)}{log_c(a)}$$

5.6 Riscrittura di un logaritmo

$$log_a(b) = \frac{1}{log_b(a)}$$

6 Risolvere equazioni logaritmiche

6.1 Equazioni elementari

Se volessi risolvere una equazione della forma: $log_a(f(x)) = log_a(g(x))$ basterà considerare solo gli argomenti, in questo caso f(x) = g(x)

6.2 Equazioni risolvibili con passaggio all'esponenziale

Se volessi risolvere un'equazione della forma $log_a(f(x)) = b$ dove a > 0 e $a \neq 1$, possiamo trasformarla facendo: $f(x) = a^b$

6.3 Equazioni risolvibili con incognita ausiliaria

Per risolvere equazioni della forma: $2log_a^2 + log_a + 2 ==$ si può imporre una variabile ausiliaria $log_a = y$ e risolvere $2y^2 + y + 2 = 0$ e poi una volta trovate le soluzioni risolviamo $log_a^i = y_i$ e otterremo le soluzioni finali.

7 Risolvere equazioni esponenziali

7.1 Equazioni esponenziali elementari

Sono equazioni della forma $a^x=b$ e si possono risolvere solo se b si può riscrivere come potenza con la stessa base di a

In caso ciò non fosse possibile bisogna ricorrere ai logaritmi:

$$x = log_a(b)$$

7.1.1 Casi particolari

- $b \le 0$ indica che l'equazione è impossibile
- a=1 e $b \neq 1$ indica che l'equazione è impossibile item a=1 e b=1 indica che l'equazione è indeterminata

Queste regole valgono anche per l'equazioni di forma $a^x=b^y$

8 Equazioni trigonometriche

8.1 Equazioni basilari

Equazioni del tipo sin(x)=a si risolvono con l'uso delle funzioni inverse cos^{-1} , sin^{-1} , ...