Algoritmos Exactos y Metaheurísticas

Primer Semestre 2025

Universidad Diego Portales Prof. Víctor Reyes Rodríguez

Objetivos

- Modelamiento de problemas: continuación.
- Métodos completos: Resolución a través de árboles de búsqueda.
- Backtracking

Repaso: CSP

¿Qué es un problema de satisfacción con restricciones (CSP)?

Es un problema en donde dado un conjunto de variables X, un conjunto de dominios D y un conjunto de restricciones C, debemos encontrar asignaciones a las variables en D de tal manera de satisfacer todas las restricciones de C.

CSP: N-Reinas

- Posicionar en un tablero de N X N, N reinas de tal manera que no se ataquen entre ellas.
 - Definir variables y dominios.
 - Definir restricciones.
 - ¿Cuál es el espacio de búsqueda?

CSP: N-Reinas

- Podríamos tener N variables, cada una podría tomar un valor entre 1 y N². Cada valor representará donde se colocará la i-ésima variable. Supongamos que N=4. Un ejemplo de solución sería: Q₁=3, Q₂=5, Q₃=12 y Q₄=14. ¿Cuál sería el tamaño del espacio de búsqueda en este caso?
- Otra representación: Cada columna sólo puede contener una reina, por tanto, sólo necesitamos saber en qué fila estará la reina i-ésima. Por tanto tendríamos N variables, cada una podría tomar un valor entre 1 y N. Una solución sería $Q_1=2$, $Q_2=4$, $Q_3=1$ y $Q_4=3$. ¿Cuál sería el tamaño del espacio de búsqueda en este caso?

CSP: N-Reinas

- Si nos enfocamos en la última representación, las restricciones serían:
 - \circ $Q_i \neq Q_i$, con $i \neq j$. Para todo i,j=1,...,n (horizontal)
 - \circ $|Q_i Q_i| \neq |i-j|$, con $i \neq j$. Para todo i,j = 1,...,n (diagonal)

Proceso de búsqueda

- Búsqueda Completa
 - Se explora el espacio de búsqueda del problema, de manera <u>exhaustiva y</u> <u>ordenada.</u>
 - El proceso termina cuando:
 - Se encuentra una solución o todas (CSP), la óptima (COP).
 - Se demuestra que no hay solución
 - Se agotan los recursos computacionales (RAM).
 - Hay timeout (se llega al tiempo límite)

Proceso de búsqueda: árbol

Elementos presentes:

- Estado inicial: nodo raíz, ejemplo: tablero vacío sin reinas.
- Estado: Nodo que representa la "Foto" del momento de la búsqueda. Por ejemplo, ubicación de las reinas. Los nodos no-hoja corresponden a soluciones incompletas.
- Acciones: A partir de un estado, que conjunto (finito) de acciones podemos realizar.
 Estas podrían tener un costo asociado. Generan nodos hijo.
- Nodos hojas: si cumplen con las restricciones del problema, serían soluciones.

Backtracking cronológico (BT)

• Se realiza en profundidad

 En cada rama del árbol hacemos una asignación, es decir le asignamos un valor a una variable o hacemos una acción dependiendo del problema.

 Cada vez que hacemos una asignación debemos chequear si esta es <u>consistente</u>. Esto quiere decir que todas las otras variables <u>tienen al</u> <u>menos un valor</u> en su dominio que soporta dicha asignación.

Backjumping

- ¿Hay algún problema con lo anterior?
 - Si, como se puede ver en el ejemplo, la primera asignación es incompatible con todas las decisiones posteriores.
 - Generamos nodos innecesarios en la búsqueda. Esto es conocido como Thrashing.
- Una solución: Técnicas Look-Back
 - Hacer saltos hacia atrás más eficientes (Backjumping)
 - Salta a una variable responsable del bloqueo.
 - No enumera algunas asignaciones parciales que no conducen a una posible solución.
 - Reduce el Thrashing.
 - o **IMPORTANTE**: Sigue siendo completa la búsqueda.

Backjumping dirigido por conflictos (CBJ)

- Salta a la variable responsable del bloqueo
- No enumera algunas asignaciones parciales que no conducen a la solución.
- Para cada variable, guardar el conjunto de conflictos Conf(x;)
- Por cada valor erróneo, registrar en $Conf(x_i)$ la variable más prematuramente instanciada (o todas las variables asociadas a la restricción donde esté la más prematuramente instanciada) y en conflicto con el intento actual de instanciación.
- Cuando no queden valores por intentar, el conjunto entrega las causas del problema y el punto de regreso será la variable más reciente en el conjunto de conflictos.

Backjumping dirigido por conflictos: Ejemplo

Backjumping dirigido por conflictos

- Hemos llegado a un camino sin salida (<u>deadend</u>). Esto debido a que existe un vacío de dominio (domain wipe-out)
- Dado que la última variable que está en conflicto es X_4 , entonces volvemos a ese punto del árbol.
- No se pierden soluciones en este proceso, es decir, la técnica sigue siendo completa.

Backjumping dirigido por conflictos: Ejemplo

Resumen

- Hemos estudiado el problema de las N-Reinas (aunque solo útil del punto de vista académico)
- Estudiamos técnicas de backtracking y una técnica look-back.
- Próxima clase técnicas Look-Ahead y heurísticas de selección de variable.