Protocols for Wireless Sensor Networks

Protocols for wireless sensor networks

- Wireless personal area networks
 - Standards for physical and link layers
 - Bluetooth (IEEE 802.15.1)
 - IEEE 802.15.4 (physical layer + link layer)
 - Network and application layers
 - Zigbee alliance industry standard
- Note
 - Most figures from IEEE standard documents and the CC2420 data sheet

Comparison of range and bit rate

IEEE 802.15.4: Physical layer

- Frequencies
 - 2.4GHz band -16 channels
- Data rate
 - 250kbps

Table 1—Frequency bands and data rates

PHY (MHz)	Frequency band (MHz)	Spreading parameters		Data parameters			
		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols	
868/915	868-868.6	300	BPSK	20	20	Binary	
	902–928	600	BPSK	40	40	Binary	
868/915 (optional)	868-868.6	400	ASK	250	12.5	20-bit PSSS	
	902–928	1600	ASK	250	50	5-bit PSSS	
868/915 (optional)	868-868.6	400	O-QPSK	100	25	16-ary Orthogonal	
	902–928	1000	O-QPSK	250	62.5	16-ary Orthogonal	
2450	2400-2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal	

Modulation

- Direct sequence spread spectrum
- Offset QPSK

Figure 18—Modulation and spreading functions

- 16 symbols
- 4 data bits per symbol

Table 24—Symbol-to-chip mapping

Data symbol (decimal)	Data symbol (binary) (b ₀ b ₁ b ₂ b ₃)	Chip values (c ₀ c ₁ c ₃₀ c ₃₁)		
0	0000	110110011100011010101001001110		
1	1000	111011011001110000110101000010		
2	0100	0010111011011001110000110101010		
3	1100	00100010111011011001110000110101		
4	0 0 1 0	0101001000101110110110011100011		
5	1010	001101010010011110110110011100		
6	0 1 1 0	11000011010100100111101101101		
7	1110	100111000011010100100111101101		
8	0001	1000110010010110000001110111111		
9	1001	10111000110010111000000111011		
10	0 1 0 1	011110111000110010111000000111		
11	1101	011101111011100011001001010000		
12	0 0 1 1	00000111011110111000110010110		
13	1011	01100000011101111011100011001001		
14	0 1 1 1	10010110000001110111101110001100		
15	1111	11001001011000000111011110111000		

Offset QPSK

Figure 19—O-QPSK chip offsets

Figure 20—Sample baseband chip sequences with pulse shaping

IEEE 802.15.4: MAC layer

Beacon mode

Non-beacon mode

Beacon order (BO)

- Beacon interval
 BI=aBaseSuperframeDuration×2^{BO}
- Beacon order: 0≤BO≤14 (BO=15 non-beacon mode)
- aBaseSuperframeDuration=960 symbols (15.36 ms)

Superframe order (SO)

- Superframe duration SD=aBaseSuperframeDuration×2^{SO}
- Superframe slot=aBaseSlotDuration×2^{SO}
- aBaseSlotDuration=60 symbols (0.96 ms)
- 0≤SO≤BO≤14
- BO=15 means non-beacon order
- SO=BO means no inactive period

Guaranteed time slot (GTS)

- A node can request a guaranteed timeslot
- If accepted by the PAN coordinator
 - Use timeslots during the contention-free period and also transmit during contention access period
 - A superframe supports up to 7 GTS with one or more timeslots
 - Minimum CAP length is 440 symbols
 - In star topology

Frame formats

Figure 10—Schematic view of the beacon frame and the PHY packet

Data frame format

Figure 11—Schematic view of the data frame and the PHY packet

Octets:	1	0/2	0/2/8	0/2	0/2/8	0/5/6/10/ 14	variable	2
Frame Control	Sequence Number	Destination PAN Identifier	Destination Address	Source PAN Identifier	Source Address	Auxiliary Security Header	Frame Payload	FCS
		Addressing fields						
MHR							MAC Payload	MFR

13

Acknowledgement frame format

- Optional
- "Stop and wait"
- Retransmissions after macAckWaitDuration
 - 54-120 symbols

Figure 12—Schematic view of the acknowledgment frame and the PHY packet

MAC commands

Table 82—MAC command frames

Command frame	C 1	RFD		6.1.1	
identifier	Command name	Tx	Rx	Subclause	
0x01	Association request	X		7.3.1	
0x02	Association response		X	7.3.2	
0x03	Disassociation notification	X	X	7.3.3	
0x04	Data request	X		7.3.4	
0x05	PAN ID conflict notification	X		7.3.5	
0x06	Orphan notification	X		7.3.6	
0x07	Beacon request			7.3.7	
0x08	Coordinator realignment		X	7.3.8	
0x09	GTS request			7.3.9	
0x0a-0xff	Reserved			_	

CSMA-CA

- Unslotted
- Slotted CSMA/CA

Slotted CSMA/CA

Minimum inter-frame spacing

- Short IFS (12 symbols) for frame sizes ≤ 18 bytes
- Long IFS (40 symbols) frame sizes > 18 bytes

Topologies

Figure 1—Star and peer-to-peer topology examples

Transmission methods

- Indirect data transmission
 - Energy saving
 - From co-ordinator to end-device
 - End-device sleeps most of the time
 - Co-ordinator stores pending messages until end-device wakes up
 - Beacon mode or end-device can poll the co-ordinator periodically
- Direct transmission

Zigbee alliance protocol stack

Figure 3-2: ZigBee functional layers architecture & protocol stack

- PAN co-ordinator (FFD)
- Router (FFD)
- End-device (RFD or FFD)

Routing

- Tree-based routing
- Mesh networks
 - Table-driven
 - On-demand
 - Ad hoc On-demand Distance Vector (AODV), RFC 3561
- A Zigbee router maintains
 - A routing table
 - A route discovery table

Tree-based structure

- Co-ordinator as the root
- Routers (white)
- End-devices (blue)

 Outline of routing protocol

- Route discovery
 - Based on AODV
 - Router broadcasts a route request (RREQ)
 - Destination sends a route reply (RREP)
 - See homework problems

6LoWPAN

- IP protocol stack for WPAN
 - Contiki micro IP stack (SICS Sweden)
 - Sensinode (now ARM)
 - Nanostack and IPv6
 - Archrock (now Cisco)
 - PhyNet and IPv6
 - IEEE WG 6LoWPAN
 - IPv6 over Low-power WPAN
 - www.ietf.org/html.charters/6lowpan-charter.html

PhyNet (Archrock, Cisco)

Sensinode (ARM)

Bluetooth low-energy

- Ultra low-power Bluetooth
- Health and medicine
- Interworking with Bluetooth
 - Stand-alone chip
 - Dual-mode chip
- Specifications
 - ISM band 2.4 GHz
 - 1 Mbps (phy layer)
 - 150 m range
- Use case
 - Sports and wellness
- Profiles
 - Watch profile
 - Human interface device profile
 - Sensor profile

Wibree Technology Protocol Stack

Industrial environments

Dynastream Innovations Inc

IEEE 802.15.4 plus time synchronization and frequency hopping. TDMA – Time division multiple access

