

CHAPTER 3:

THE Z-TRANSFORM & ITS APPLICATION TO THE ANALYSIS OF LTI SYSTEMS

Lesson #9: The Z-transform

Lesson #10: Z-transform properties

Lesson #11: Inversion of Z-transform

Lesson #12: Analysis of LTI systems in the z-domain

1. Definition of the Z-transform

- 2. Region of convergence
- 3. Examples of Z-transform

Introduction to Z-Transform (ZT)

Recall the Laplace Transform:

$$F(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$$

Z-Transform is the discrete-time counterpart of the Laplace Transform:

$$F(z) = \sum_{n=-\infty}^{\infty} f[n]z^{-n}$$

s and z take values in the complex plane t and n are time variables Infinite integral replaced by infinite sum e^{-st} replaced by z⁻ⁿ

From Laplace Transform to Z-Transform

Take a CT signal f(t) and sample it:

Sampling = multiplying by an infinite series of timeshifted impulses, and then summing

$$f(t) \xrightarrow{sampling} f_s(t)$$

$$f_s(t) = \sum_{n=-\infty}^{\infty} f(t)\delta(t - nT) = \sum_{n=-\infty}^{\infty} f(nT)\delta(t - nT)$$

From Laplace Transform to Z-Transform

Take the Laplace Transform of the sampled signal:

$$L[f_s(t)] = \int_{-\infty}^{\infty} \left[\sum_{n=-\infty}^{\infty} f(nT)\delta(t-nT) \right] e^{-st} dt = \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} f(nT)\delta(t-nT) e^{-st} dt$$
$$= \sum_{n=-\infty}^{\infty} f(nT) \int_{-\infty}^{\infty} \delta(t-nT) e^{-st} dt = \sum_{n=-\infty}^{\infty} f(nT) e^{-snT}$$

Let f(nT) = f[n] and $e^{sT} = z$ then:

$$F(z) = \sum_{n=-\infty}^{\infty} f[n]z^{-n}$$

Definition of the Z-transform

For a DT signal x[n] = ..., x[-2], x[-1], x[0], x[1], x[2], ...

The **bilateral Z-transform** of x[n] is defined to be

$$X(z) = ZT\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
 Sum goes over all integer values

Assume that values of z exist such that the summation converges. z takes values in the complex plane

Poles and Zeros of Z-transform

$$X(z) = ZT\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

Poles
$$p_k \leftarrow \rightarrow X(p_k) = \infty$$

Poles
$$p_k \leftrightarrow X(p_k) = \infty$$

Zeros $z_k \leftrightarrow X(z_k) = 0$

Poles are roots of denominator polynomial

Zeros are roots of numerator polynomial

Note: find these *after canceling any common factors* – and do this for polynomial in z (not in z^1)

- 1. Definition of the Z-transform
- 2. Region of convergence
- 3. Examples of Z-transform

Region of convergence (ROC)

ROC: set of all values of z, for which X(z) converges We will find the ROC for these cases:

- Right-sided signal $(x[n] = 0, n < n_0)$
- Left-sided signal $(x[n] = 0, n>n_0)$
- Two-sided signal $(-\infty < n < +\infty)$
- Finite-duration signal

Right-sided signal

for right-sided x[n]

$$X(z) = \sum_{n=n_0}^{\infty} x[n]z^{-n}$$

$$X(z) = \sum_{n=n_0}^{\infty} x[n] \left(\frac{1}{z}\right)^n$$
 Sum goes from n_0 to infinity

As $n \to \infty$, need $(1/z)^n \to 0$ for sum to converge.

Happens for z OUTSIDE the poles $|z| > r_{max}$.

$$|z| > r_{max}$$

Right-sided signal

Infinite Egg White!!!

Right-sided signal

If x[n] is not causal then X(z) will not converge at $z = \infty$

 \rightarrow we can't include ∞ in the ROC

Ex:
$$x[n] = u[n+1]$$

$$X(z) = \sum_{n=-1}^{\infty} z^{-n} = z + \sum_{n=0}^{\infty} z^{-n}$$

ROC:
$$r_{max} < |z| < \infty$$

Left-sided signal

for left-sided
$$x[n]$$

$$X(z) = \sum_{n=-\infty}^{n_0} x[n]z^{-n}$$

Sum goes from minus infinity to n_o

As
$$n \to -\infty$$
, need $(1/z)^n \to 0$ or $z^m \to 0$

Happens for z INSIDE the poles (rather than outside)

Left-sided signal

$$|z| < r_{min}$$

Egg Yolk!!!

Left-sided signal

If x[n] has values at some times > 0, then X(z) does not converge at $z = 0 \rightarrow we$ can't include 0 in the ROC

Ex: x[n] = u[-n+1]

$$X(z) \equiv \sum_{n=-\infty}^{1} z^{-n} = z^{-1} + \sum_{n=0}^{\infty} z^{n}$$

ROC: $0 < |z| < r_{min}$

Two-sided signal

Two-sided signal = Left-sided signal + right-sided signal

Note: if $|a| \ge |b|$ then X(z) does not exist

Finite-duration signal

For
$$x(n) = \delta(n-m)$$
 $\longrightarrow X(z) = \sum_{n=-\infty}^{\infty} \delta(n-m)z^{-n} = z^{-m}$

$$x[n] = \sum_{k=n_1}^{n_2} x[k] \delta[n-k] \Rightarrow X(z) = \sum_{k=n_1}^{n_2} x[k] z^{-k}$$

ROC: all of z, except:

$$z = 0 \text{ if } k > 0$$

$$z = \infty$$
 if $k < 0$

- 1. Definition of the Z-transform
- 2. Region of convergence
- 3. Examples of Z-transform

Find the ZT of the right-sided and the left-sided sequences

$$x_{1}[n] = a^{n}u[n] \quad \text{and} \quad x_{2}[n] = -(a^{n})u[-n-1]$$

$$X_{1}(z) = \sum_{n=0}^{\infty} a^{n}z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^{n} = \begin{cases} \frac{1}{1-az^{-1}} & |az^{-1}| < 1\\ \infty & |az^{-1}| > 1 \end{cases}$$

$$= \frac{z}{z-a}, \quad |z| > |a|$$

Find the ZT of the right-sided and the left-sided sequences

$$x_1[n] = a^n u[n]$$
 and $x_2[n] = -(a^n)u[-n-1]$

$$X_{2}(z) = -\sum_{n=-1}^{-\infty} a^{n} z^{-n} = -\sum_{n=1}^{\infty} (a^{-1} z)^{n} = \begin{cases} -\frac{a^{-1} z}{1 - a^{-1} z} & |a^{-1} z| < 1\\ -\infty & |a^{-1} z| > 1 \end{cases}$$

$$=\frac{z}{z-a}, |z|<|a|$$

The ROC must be specified for the bilateral Z-Transform to be unique

4

Examples of Z-transform

Find the ZT of the left-sided signal

$$x[n] = 3^n u[-n-1] + 4^n u[-n-1].$$

Find the ZT of the two-sided signal $x[n] = a^{|n|}$

Find the ZT of the two-sided signal

$$h[n] = (.5)^n u[n-1] + 3^n u[-n-1].$$

Find the ZT of the signal

$$x[n] = \frac{1}{2}\delta[n-1] + 3\delta[n+1]$$

Find the ZT of the right-sided-sided signal

$$x[n] = r^n \sin(bn)u[n]$$

$$x(n) = \frac{1}{2j}r^{n}e^{jbn}u(n) - \frac{1}{2j}r^{n}e^{-jbn}u(n)$$

$$= \frac{1}{2j} (r e^{jb})^n u(n) - \frac{1}{2j} (re^{-jb})^n u(n)$$

$$\Rightarrow X(z) = \frac{1}{2j} \left(\frac{z}{z - r e^{jb}} - \frac{z}{z - r e^{-jb}} \right)$$

$$r^{n} \sin(bn)u(n) \stackrel{Z}{\longleftrightarrow} \frac{rz \sin b}{z^{2} - 2rz \cos b + r^{2}}, |z| > |r|$$

- 2. Time shifting
- 3. Frequency scaling
- 4. Multiplication by *n*
- 5. Convolution in time
- 6. Initial value
- 7. Final value

Linearity

$$ax[n] + by[n] \stackrel{Z}{\longleftrightarrow} aX(z) + bY(z)$$

The new ROC is the intersection of ROC $\{X(z)\}$ and ROC $\{Y(z)\}$ If aX(z) + bY(z) cancels pole then the new ROC is bigger

Z-transform properties

2. Time shifting

- 3. Frequency scaling
- 4. Multiplication by *n*
- 5. Convolution in time
- 8. Initial value
- 9. Final value

Time shifting

$$x[n-n_0] \longleftrightarrow z^{-n_0} X(z)$$

The new ROC is the same as ROC{X(z)} except for z = 0 if $n_0 > 0$ and $z = \infty$ if $n_0 < 0$

Proof:

$$Z\{x[n-n_o]\} = \sum_{n=-\infty}^{\infty} x[n-n_o]z^{-n}$$
 let $l = n - n_o$
$$\sum_{l=-\infty}^{\infty} x[l]z^{-(l+n_o)} = z^{-n_o} \sum_{l=-\infty}^{\infty} x[l]z^{-l} = z^{-n_o}X(z)$$

Delay of k means that the Z-transform is multiplied by z-k

Example of applying the timeshifting property

Determine the ZT of the signal:

$$w[n] = \frac{1}{4} \left\{ (-1)^n + (3)^{n-5} \right\} u[n-5]$$

Z-transform properties

- 1. Linearity
- 2. Time shifting
- 3. Frequency scaling
- 4. Multiplication by *n*
- 5. Convolution in time
- 6. Initial value
- 7. Final value

Frequency scaling

$$a^n x[n] \stackrel{Z}{\longleftrightarrow} X\left(\frac{z}{a}\right)$$

The new ROC is the scaled ROC{X(z)} with factor /a/ (bigger or smaller)

Proof:

$$ZT\{a^n x[n]\} = \sum_{n=-\infty}^{\infty} a^n x[n] z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x[n] \left(\frac{z}{a}\right)^{-n} = X\left(\frac{z}{a}\right)$$

Multiplication by aⁿ results in a complex scaling in the z-domain

Example of applying the frequency-scaling property

Determine the ZT of the signal:

$$x[n] = a^n u[n]$$

Z-transform properties

- 1. Linearity
- 2. Time shifting
- 3. Frequency scaling
- 4. Multiplication by *n*
- 5. Convolution in time
- 6. Initial value
- 7. Final value

Multiplication by n

The new ROC is the same $ROC\{X(z)\}$

Proof:

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n} \Rightarrow \frac{dX(z)}{dz} = -\sum_{n = -\infty}^{\infty} nx[n]z^{-n-1} = -\frac{1}{z}\sum_{n = -\infty}^{\infty} nx[n]z^{-n}$$
$$\Rightarrow ZT\{nx[n]\} = \sum_{n = -\infty}^{\infty} nx[n]z^{-n} = -z\frac{dX(z)}{dz}$$

Example of applying the multiplication-by-n property

Determine the ZT of the signal:

$$x[n] = na^n u[n]$$

Z-transform properties

- 1. Linearity
- 2. Time shifting
- 3. Frequency scaling
- 4. Multiplication by n
- 5. Convolution in time
- 6. Initial value
- 7. Final value

Convolution in time

$$y[n] = x[n] * h[n] \stackrel{Z}{\longleftrightarrow} X(z)H(z)$$

The new ROC is the intersection of ROC $\{X(z)\}$ and ROC $\{Y(z)\}$ If poles cancel zeros then the new ROC is bigger

Proof:

$$y[n] = x[n] * h[n] \longleftrightarrow \sum_{n=-\infty}^{\infty} \left[\sum_{k=-\infty}^{\infty} x[k]h[n-k] \right] z^{-n}$$

Switching the order of the summation:

$$Y(z) = \sum_{k=-\infty}^{\infty} x[k] \sum_{n=-\infty}^{\infty} h[n-k] z^{-n}$$

$$= \sum_{k=-\infty}^{\infty} x[k] z^{-k} \sum_{n-k=-\infty}^{\infty} h[n-k] z^{-(n-k)}$$

$$= X(z).H(z)$$

Application of the convolution property

Convolution in time domain multiplication in Z domain

Example

Compute the convolution of the signals:

$$x_1[n] = \delta[n] - 2\delta[n-1] + \delta[n-2]$$

$$x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] + \delta[n-5]$$

Z-transform properties

- 1. Linearity
- 2. Time shifting
- 3. Frequency scaling
- 4. Multiplication by n
- 5. Convolution in time
- 6. Initial value
- 7. Final value

Initial value theorem

If x[n] is causal then x[0] is the initial value of the function x[n]

$$x[0] = \lim_{z \to \infty} X(z)$$

Proof:

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n} = x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots$$

Obviously, as
$$z \to \infty$$
, $z^{-n} \to 0$

Initial value theorem

If x[n] = 0 with $n < n_0$ then $x[n_0]$ is the initial value, and

$$x[n_0] = \lim_{z \to \infty} [z^{n_0} X(z)]$$

Proof:

$$X(z) = \sum_{n=n_0}^{\infty} x[n]z^{-n} = x[n_0]z^{-n_0} + x[n_0+1]z^{-(n_0+1)} + x[n_0+2]z^{-(n_0+2)} + \dots$$

$$z^{n_0}X(z) = x[n_0] + x[n_0 + 1]z^{-1} + x[n_0 + 2]z^{-2} + \dots$$

As
$$z \to \infty$$
, $z^{n_0}X(z) = x[n_0]$

Initial value theorem

Ex 1: Find the initial value of x[n] where X(z) = z/(z-0.6)

Ex 2: Find the initial value of x[n] where $X(z) = (z^3)/(z-0.6)$

Z-transform properties

- 1. Linearity
- 2. Time shifting
- 3. Frequency scaling
- 4. Multiplication by n
- 5. Convolution in time
- 6. Initial value
- 7. Final value

Final value theorem

If this limit exists then x[n] has a final value (steady-state value)

$$\lim_{n\to\infty} x[n] = x[\infty] = \lim_{z\to 1} [(z-1)X(z)]$$

Proof: Exercise

Examples

Ex1: unit step u[n]

$$ZT\{u[n]\} = \frac{z}{z-1}$$

$$\Rightarrow \lim_{z \to 1} (z - 1) \cdot \frac{z}{z - 1} = 1 = > Ok!$$

Ex2: sinusoidal signal

$$ZT\left\{\sin\left[\frac{\pi n}{2}\right]u[n]\right\} = \cdots$$

Examples

Ex3: the impulse response of an LTI system is $h[n] = a^n u[n]$, |a| < 1. Determine the value of the step response of the system as $n \rightarrow \infty$

The step response of the system is:

$$y[n] = h[n] * u[n] \rightarrow Y(z) = X(z).H(z)$$

Lecture #10 Inversion of Z-transform

1. Inverse Z-transform formula

- 2. Using partial fraction expansion to invert the ZT
- 3. Using power series expansion to invert ZT

FT formula building

Using the Cauchy theorem:

$$I = \frac{1}{2\pi j} \oint_C z^{n-1} dz = \begin{cases} 1 & \text{if } z = 0 \\ 0 & \text{if } z \neq 0 \end{cases}$$

Z: complex variable

Counterclockwise contour integral is along a closed path in the z plane

FT formula building

Multiplying two sides of ZT definition formula by $\frac{1}{2\pi i}z^{l-1}$

$$\frac{1}{2\pi j} X(z) z^{l-1} = \frac{1}{2\pi j} \sum_{n=-\infty}^{\infty} x[n] z^{-n} z^{l-1}$$

Taking the integral:

$$\frac{1}{2\pi j} \oint_C X(z) z^{l-1} dz = \frac{1}{2\pi j} \oint_C \left(\sum_{n=-\infty}^{\infty} x[n] z^{-n} z^{l-1} \right) dz \quad \text{Applying the Cauchy theorem}$$

$$= \sum_{n=-\infty}^{\infty} x[n] \underbrace{\frac{1}{2\pi j} \oint_C z^{(l-n)-1} dz}_{=x[l]}$$

Inverse ZT formula

The inverse ZT is defined by

$$x[n] = \frac{1}{2\pi j} \oint_{C} X(z) z^{n-1} dz$$

Counterclockwise contour integral is along a closed path in the z plane.

LTI case: can avoid integration – use easier methods

- 1. Inverse Z-transform formula
- 2. Using partial fraction expansion to invert the ZT
- 3. Using power series expansion to invert ZT

Partial fraction expansion

$$Y(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} = \frac{N(z)}{D(z)} = \sum_{k=1}^{N} \frac{r_k z}{z - p_k}$$

$$p_k = \text{pole} \quad r_k = \text{residue}$$

Distinct poles:
$$r_k = \frac{Y(z)}{z}(z - p_k)\Big|_{z=p_k}$$

Partial fraction expansion

Repeated poles:

$$F(z) = \frac{N(z)}{(z - p_1)^r} = \frac{k_1}{z - p_1} + \frac{k_2}{(z - p_1)^2} + \dots + \frac{k_r}{(z - p_1)^r}$$

$$k_{r} = F(z)(z - p_{1})^{r} \Big|_{z=p_{1}}$$

$$k_{i} = \frac{1}{(r-i)!} \frac{d^{r-i}}{dz^{r-i}} [F(z)(z - p_{1})^{r}] \Big|_{z=p_{1}}$$

$$i = 1, ..., r-1$$

Z-Transform table

1
$$\delta(n) \leftrightarrow 1$$

1
$$\delta(n) \leftrightarrow 1$$

2 $\delta(n-m) \leftrightarrow z^{-m}$

3
$$a^n u[n] \leftrightarrow \frac{z}{z-a}$$

4
$$\operatorname{na}^{n}\operatorname{u}[n] \leftrightarrow \frac{\operatorname{az}}{(z-a)^{2}}$$

5
$$n^2 a^n u[n] \leftrightarrow \frac{az(z+a)}{(z-a)^3}$$

6
$$a^n \cos(\Omega n)u[n] \leftrightarrow \frac{z(z-a\cos\Omega)}{z^2-2az\cos\Omega+a^2}$$

7
$$a^n \sin(\Omega n)u[n] \leftrightarrow \frac{az \sin \Omega}{z^2 - 2az \cos \Omega + a^2}$$

Examples of partial fraction expansion

Distinct poles
$$X(z) = \frac{2z^2 - 5z}{(z-2)(z-3)}, |z| > 3$$

Divide X(z) by z, to "save" z for later

$$\frac{X(z)}{z} = \frac{2z-5}{(z-2)(z-3)} = \frac{(z-2)+(z-3)}{(z-2)(z-3)}$$

$$=\frac{1}{z-3}+\frac{1}{z-2}, |z|>3$$

$$\Rightarrow$$
 x(n) = $(3^n + 2^n)u(n)$

Repeated poles
$$X(z) = \frac{2z}{(z-2)(z-1)^2}$$
, $|z| > 2$

$$\frac{X(z)}{2z} = \frac{1}{(z-2)(z-1)^2} = \frac{A}{z-2} + \frac{B}{z-1} + \frac{C}{(z-1)^2}, |z| > 2$$

$$A(z-1)^2 + B(z-1)(z-2) + C(z-2) = 1$$

 $A = 1; B = -1; C = -1;$

$$X(z) = 2 \left[\frac{z}{z-2} - \frac{z}{z-1} - \frac{z}{(z-1)^2} \right], |z| > 2$$

$$x(n) = 2(2^{n} - 1 - n)u(n)$$

Complex poles
$$X(z) = \frac{z}{z^2 - 0.5z + 0.25}$$
 $|z| > 0.5$

$$a^n \sin(\Omega n)u[n] \leftrightarrow \frac{az \sin \Omega}{z^2 - 2az \cos \Omega + a^2}$$

$$X(z) = \frac{4}{\sqrt{3}} x \frac{(0.5)z \sin \frac{\pi}{3}}{z^2 - 2(0.5)z \cos \frac{\pi}{3} + (0.5)^2} |z| > 0.5$$

$$x(n) = \frac{4}{\sqrt{3}} (0.5)^n \sin\left(\frac{\pi}{3}n\right) u(n)$$

Time-shift property

$$W(z) = \frac{z^{-4}}{z^2 - 2z - 3}, |z| > 3$$

Divide W(z) by z, to "save" z for later

$$\frac{W(z)}{z} = \frac{z^{-5}}{z^2 - 2z - 3} = \frac{z^{-5}}{(z+1)(z-3)} = \left(\frac{-\frac{1}{4}}{z+1} + \frac{\frac{1}{4}}{z-3}\right)z^{-5}$$

$$w[n] = -\frac{1}{4}(-1)^{n-5}u[n-5] + \frac{1}{4}(3)^{n-5}u[n-5]$$

- Given $h(n) = a^n u(n) (|a| < 1)$ and x(n) = u(n). Find y(n) = x(n)*h(n)

$$y[n] = \frac{1-a^{n+1}}{1-a}u[n]$$

Find the output y(n) to an input x(n) = u(n) and an LTI system with impulse response $h(n) = -3^nu(-n-1)$

$$y[n] = -\frac{1}{2}u[n] - \frac{3}{2}(3)^n u[-n-1]$$

- 1. Inverse Z-transform formula
- 2. Using partial fraction expansion to invert the ZT
- 3. Using power series expansion to invert ZT

Power series expansion

If you can expand X(z) as a series in z^1

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \dots + x[-2]z^2 + x[-1]z^1 + x[0]z^0 + x[1]z^{-1} + x[2]z^{-2} + \dots$$

$$X(z) = \dots + a_{-2}z^{2} + a_{-1}z^{1} + a_{0}z^{0} + a_{1}z^{-1} + a_{2}z^{-2} + \dots$$

you can pick off x(n) as the coefficients of the series

$$a_n \equiv x[n]$$

Examples of power series expansion

Find the inverse Z-transform of

$$X(z) = 1 + 2z^{-1} + 3z^{-2}$$
 ROC: $|z| > 0$

$$x(0) = 1$$

$$x(1) = 2$$

$$x(2) = 3$$

$$x(n)(n \neq 0,1,2) = 0$$

$$-X(z) = \frac{1}{1 - az^{-1}}, \quad ROC: |z| > |a|$$

Long division

$$X(z) = 1 + az^{-1} + a^2z^{-2} + a^3z^{-3} + ...$$

$$x(0) = 1$$

$$x(1) = a$$

$$x(2) = a^2$$

$$x(3) = a^3$$

• • •

$$x(n)(n < 0) = 0$$

Lecture #11

Analysis of LTI systems in the Z-domain

1. Transfer function

- 2. LTI system properties from transfer function
- 3. Unilateral Z-transform
- 4. Using unilateral Z-Transform to solve the difference equations

Transfer function

For system impulse response **h(n)**, its ZT is often called **Transfer Function H(z)**

Consider H(z) = N(z)/D(z)

The roots of N(z): system zeros

The roots of D(z): system poles

D(z) = 0: characteristic equation

Determination of transfer function

- Take Z-Transform for both side
- Put the Y(z) on left side
- Divide both side by X(z)

3. From block diagram:

- (1) Find the difference equation, then find H(z) from equation
- (2) Put X(z) as input, then directly find Y(z) from block diagram

Transfer function from difference equation

ZT

$$- \sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{r=0}^{M} b_r z^{-r} X(z)$$
-Linear

-Time-shift

$$Y(z) = X(z) \cdot H(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{r=0}^{\infty} b_r z^{-r}}{\sum_{k=0}^{N} a_k z^{-k}}$$

Transfer function from difference equation

Multiply num. and den. by z^N :

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{r=0}^{M} b_r z^{-r}}{\sum_{k=0}^{N} a_k z^{-k}} = \frac{\sum_{r=0}^{N} b_r z^r}{\sum_{k=0}^{N} a_k z^k}$$

Example

For the a-filter:

$$y(n) - (1 - \alpha)y(n - 1) = \alpha x(n)$$

Its transfer function:

$$H(z) = \frac{\sum_{r=0}^{M} b_r z^{-r}}{\sum_{k=0}^{N} a_k z^{-k}} = \frac{\alpha}{1 - (1 - \alpha)z^{-1}}$$

For example: $y[n] - 0.9y[n-1] = 0.1x[n] \rightarrow \alpha = 0.1$

$$H(z) = \frac{0.1z}{z - 0.9}$$

Transfer function from block diagram

Find the transfer function of the delay unit

$$y[n] = x[n-1] \rightarrow Y(z) = z^{-1}X(z) \rightarrow H(z) = z^{-1}$$

Transfer function from block diagram

Find the transfer function of this feedback system

$$y[n] = (x[n]+y[n]*h_2[n])*h_1[n]$$

 $\rightarrow Y(z) = [X(z)+Y(z).H_2(z)].H_1(z)$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{H_1(z)}{1 - H_1(z).H_2(z)}$$

Lecture #11

Analysis of LTI systems in the Z-domain

1. Transfer function

2. LTI system properties from transfer function

- 3. Unilateral Z-transform
- 4. Using unilateral Z-Transform to solve the difference equations

Causality

Recall:

Causal system
$$\leftarrow \rightarrow h[n] = 0 \quad \forall n < 0$$

• h(n) is right-sided signal $\leftarrow \rightarrow$ ROC of transfer function is

$$|z| > r_{\text{max}}$$

■ An LTI system is causal if and only if the ROC of the transfer function is the exterior of a circle of radius $r_{max} < \infty$ including the point $z = \infty$

Causality (cont)

Consider the system:

$$H(z) = \frac{z^2 + 0.4z + 0.9}{z - 0.6} = z + \frac{z + 0.9}{z - 0.6}$$
Unit advance y[n]=x[n+1]
$$\to \text{ noncausal}$$

- For the causal system, the numerator of H(z) can not be of higher order than the denominator
- If the numerator order is less equal to the denominator order then the system is causal???

Consider this system:

$$h[n] = -u[-n-1]$$

$$H(z) = \frac{z}{z-1} \quad ROC : |z| < 1$$

Numerator order is 1; denominator order is 1; but it is noncausal!!!

Stability

Recall:

Stable system
$$\leftarrow \rightarrow$$

Stable system
$$\leftrightarrow \sum_{n=-\infty}^{+\infty} |h[n]| < \infty$$

Its transfer function:

$$H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n} \Longrightarrow |H(z)| \leq \sum_{n=-\infty}^{\infty} |h[n]z^{-n}| = \sum_{n=-\infty}^{\infty} |h[n]| |z^{-n}|$$

Unit circle
$$|z| = 1 \rightarrow |H(z)| \le \sum_{n=-\infty}^{\infty} |h[n]|$$
 The ROC includes $|z| = 1$

 An LTI system is BIBO stable if and only if the ROC of the transfer function includes the unit circle.

Causality and Stability

 The conditions for causality and stability are different and one does not imply the other

4 cases:

- Causal and stable system
- Non-causal and stable system
- Causal and unstable system
- Non-causal and unstable system
- A causal system is BIBO stable, provided that all poles of H(z) lie inside the unit circle.

Ex1: Given an LTI system:

$$H(z) = \frac{2z^2 - 1.6z - 0.9}{z^3 - 2.5z^2 + 1.96z - 0.48}$$

The poles of H(z):

$$\rightarrow$$
 p = 1.2 0.8 0.5

- 1. |z|>1.2: causal, unstable
- **2.** 0.8<|z|<1.2: non-causal, stable
- 3. $0.5 \neq |z| < 0.8$: non-causal, unstable

Ex2: A LTI system is characterized by:

Specify the ROC of H(z) and find h[n] for the following conditions:

- 1. The system is stable
- The system is causal
- 3. The system is anticausal

Ex2: A LTI system is characterized by:

$$H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}} = \frac{z(3z - 4)}{z^2 - 3.5z + 1.5} = \frac{z}{z - 0.5} + \frac{2z}{z - 3}$$

Invertibility

The inverse of a system H(z) is a second system $H_i(z)$ that, when cascaded with H(z), yields the identity system

$$H(z).H_{i}(z) = 1$$

 $H_{i}(z) = 1/H(z)$

$$\xrightarrow{X(z)} \xrightarrow{H(z)} \xrightarrow{X(z)}$$

Invertibility

$$H(z) = N(z)/D(z) \rightarrow H_i(z) = D(z)/N(z)$$

H(z) is causal $\rightarrow M \le N$ and if $H_i(z)$ is causal $\rightarrow N \le M$.

Hence, for both systems to be causal $\rightarrow M = N$

H(z) is stable: all poles lie inside the unit circle.

 $H_i(z)$ is stable: all poles (zeros of H(z)) lie inside the unit circle.

Hence, for both systems to be stable, both the poles and zeros of H(z) must lie inside the unit circle

Lecture #11

Analysis of LTI systems in the Z-domain

- 1. Transfer function
- 2. LTI system properties from transfer function

3. Unilateral Z-transform

4. Using unilateral Z-Transform to solve the difference equations

Unilateral Z-Transform

In control applications, causal systems are interested in:

$$h[n] = 0$$
 with all $n < 0$

→ When considering CT causal systems, the Unilateral Laplace Transform is used

Similarly, when considering DT causal systems, the Unilateral Z-transform is used

- In difference equations, the initial conditions are non-zero
- → the Unilateral Z-Transform is used

Unilateral ZT

- **1.** It does not contain information about the signal x[n] for n < 0
- 2. Unilateral $X^+(z)$ is identical to the bilateral X(z) of the signal x[n].u[n]
- **3.** ROC of $X^+(z)$ is always outside a circle \rightarrow no need to refer to ROC

Time shifting property of unilateral ZT

If
$$x[n] \overset{Z^+}{\longleftrightarrow} X^+(z)$$

then $x(n-k) \overset{Z^+}{\longleftrightarrow} z^{-k} X^+(z) + z^{-k} \sum_{i=-k}^{-1} x[i]z^{-i}, k > 0$

Ex.:
$$x(n-1) \leftarrow \rightarrow x(-1) + z^{-1}X^{+}(z)$$

 $x(n-2) \leftarrow \rightarrow x(-2) + z^{-1}x(-1) + z^{-2}X^{+}(z)$

Lecture #11

Analysis of LTI systems in the Z-domain

- 1. Transfer function
- 2. LTI system properties from transfer function
- 3. Unilateral Z-transform
- 4. Using unilateral Z-Transform to solve the difference equations

Using Z-transform to solve the difference equation

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{r=0}^{M} b_r x[n-r]$$

- 1. Take the unilateral ZT of equation
- 2. Find the output in the Z-domain, Y(z)
- **3.** Use inverse ZT to get the output y(n) from Y(z)

Find the output, y[n], $n \ge 0$ of the system

$$y[n] = 3y[n-1]-2y[n-2]+x[n]$$

in two cases:

$$x[n] = 3^{n-2}u[n], y[-2] = 0, y[-1] = 0$$

$$x[n] = 3^{n-2}u[n], \quad y[-2] = -\frac{4}{9}, \quad y[-1] = -\frac{1}{3}$$

$$y[n] = 3y[n-1] - 2y[n-2] + x[n]$$

b) Take the unilateral ZT of the equation:

$$y[n] = 3y[n-1] - 2y[n-2] + x[n]$$

E1. Find x(n)*h(n) using the Z-transform

a)
$$x[n] = (\frac{1}{4})^n u[n-1], h[n] = [1+(\frac{1}{2})^n]u[n]$$

b)
$$x[n] = u[n], h[n] = \delta[n] + (\frac{1}{2})^n u[n]$$

c)
$$x[n] = nu[n], h[n] = 2^n u[n-1]$$

We want to design a causal LTI system with the property that if the input is $x[n] = (0.5)^n u[n] - 0.25(0.5)^{n-1} u[n-1]$ then the output is $y[n] = (1/3)^n u[n]$

- a) Find H(z) and then h(n) of a system that satisfies the foregoing conditions
- b) Find the difference equation that characterizes this system
- c) Determine a realization of the system that requires the minimum possible amount of memory
- d) Determine if the system is stable

E3. Use the Z-transform to evaluate the following series:

a)
$$x = \sum_{n=0}^{\infty} 0.2^n$$

$$b)x = \sum_{n=4}^{\infty} 0.2^n$$

c)
$$x = \sum_{n=0}^{\infty} 0.2^n \cos(0.2n)$$

E4. A causal linear, time-invariant system is described by this difference equation:

$$y[n] = x[n] + y[n-1]$$

- a) Find the system impulse response
- b) Find y[n] for an input $x[n] = \left(\frac{1}{2}\right)^n u[n]$. Label the natural and forced responses in y[n]
- c) Is the system BIBO stable?

E5. Find the inverse of the bilateral Z-transform:

$$F(z) = \frac{1.5z^2 - 1.3}{(z - 1)(z - 9)}$$

for the following regions of convergence.

- a) |z| < 0.9
- b) |z| > 1
- c) 0.9 < |z| < 1
- d) Find the final values of the functions of parts (a)through (c)