MAQAGRTGYDNREIVMKYIHYKLSQRGYEWDVGDVDAAPLG
AAPTPGIFSFQPESNPTPAVHRDMAARTSPLRPIVATTGPT
LSPVPPVVHLTLRRAGDDFSRRYRRDFAEMSSQLHLTPFTA
RGRFATVVEELFRDGVNWGRIVAFFEFGGVMCVESVNREMS
PLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSVRP
LFDFSWLSLKTLLSLALVGACITLGTYLGHK (SEQ
ID NO: 1)

FIG. 1

MAQAGRTGYDNREIVMKYIHYKLSQRGYEWDVGDVDAAAAA
ASPVPPVVHLTLRRAGDDFSRRYRRDFAEMSSQLHLTPFTA
RGRFATVVEELFRDGVNWGRIVAFFEFGGVMCVESVNREMS
PLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSVRP
LFDFSWLSLKTLLSLALVGACITLGTYLGHK (SEQ
ID NO: 2)

1	ATGGCTCAAG	CTGGGAGAAC	AGGGTATGAT	AACCGAGAGA	TCGTGATGAA
51	GTACATCCAT	TATAAGCTGT	CACAGAGGGG	CTACGAGTGG	GATGTGGGAG
101	ATGTGGACGC	CGCGGCCGCG	GCCGCGAGCC	CCGTGCCACC	TGTGGTCCAC
151	CTGACCCTCC	GCCGGGCTGG	GGATGACTTC	TCCCGTCGCT	ACCGTCGCGA
201	CTTCGCGGAG	ATGTCCAGTC	AGCTGCACCT	GACGCCCTTC	ACCGCGAGGG
251	GACGCTTTGC	TACGGTGGTG	GAGGAACTCT	TCAGGGATGG	GGTGAACTGG
301	GGGAGGATTG	TGGCCTTCTT	TGAGTTCGGT	GGGGTCATGT	GTGTGGAGAG
351	CGTCAACAGG	GAGATGTCAC	CCCTGGTGGA	CAACATCGCC	CTGTGGATGA
401	CCGAGTACCT	GAACCGGCAT	CTGCACACCT	GGATCCAGGA	TAACGGAGGC
451	TGGGACGCAT	TTGTGGAACT	GTACGGCCCC	AGTGTGAGGC	CTCTGTTTGA
501	TTTCTCTTGG	CTGTCTCTGA	AGACCCTGCT	CAGCCTGGCC.	CTGGTCGGGG
551	CCTGCATCAC	TCTGGGTACC	TACCTGGGCC	ACAAGTGA	(SEQ ID NO: 3)

MRHIICHGGVITEEMAASLLDQLIEEVLADNLPPPSHFE
PPTLHELHDLDVTAPEDPNEEAVSQIFPDSVMLAVQEGI
DLLTFPPAPGSPEPPHLSRQPEQPEQRALGPVSMPNLVP
EVIDLTGHEAGFPPSDDEDEEGEEFVLDYVEHPGHGCR
SCHYHRRNTGDPDIMCSLCYMRTCGMFVYSPVSEPEPE
PEPEPARPTRRPKMAPAILRRPTSPVSRECNSSTDSCD
SGPSNTPPEIHPVVPLCPIKPVAVRVGGRRQAVECIEDL
LNEPGQPLDLSCKRPRP (SEQ ID NO: 4)

FIG. 4

1	ATGAGACATA	TTATCTGCCA	CGGAGGTGTT	ATTACCGAAG	AAATGGCCGC
51	CAGTCTTTTG	GACCAGCTGA	TCGAAGAGGT	ACTGGCTGAT	AATCTTCCAC
101	CTCCTAGCCA	TTTTGAACCA	CCTACCCTTC	acgaactg <u>c</u> a	TGATTTAGAC
151	GTGACGGCCC	CCGAAGATCC	CAACGAGGAG	GCGGTTTCGC	AGATTTTTCC
201	CGACTCTGTA	ATGTTGGCGG	TGCAGGAAGG	GATTGACTTA	CTCACTTTTC
251	CGCCGGCGCC	CGGTTCTCCG	GAGCCGCCTC	ACCTTTCCCG	GCAGCCCGAG
301	CAGCCGGAGC	AGAGAGCCTT	GGGTCCGGTT	TCTATGCCAA	ACCTTGTACC
351	GGAGGTGATC	$\mathtt{GATCTTACC}\underline{\mathbf{G}}$	GCCACGAGGC	TGGCTTTCCA	CCCAGTGACG
401	ACGAGGATGA	AGAGGGTGAG	GAGTTTGTGT	TAGATTATGT	GGAGCACCCC
451	GGGCACGGTT	GCAGGTCTTG	TCATTATCAC	CGGAGGAATA	CGGGGGACCC
501	AGATATTATG	TGTTCGCTTT	GCTATATGAG	GACCTGTGGC	ATGTTTGTCT
551	ACAGTAAGTG	AAAATTATGG	GCAGTGGGTG	ATAGAGTGGT	GGGTTTGGTG
601	TGGTAATTTT	TTTTTTAATT	TTTACAGTTT	TGTGGTTTAA	AGAATTTTGT
651	ATTGTGATTT	TTTTAAAAGG	TCCTGTGTCT	GAACCTGAGC	CTGAGCCCGA
701	GCCAGAACCG	GAGCCTGCAA	GACCTACCCG	CCGTCCTAAA	ATGGCGCCTG
751	CTATCCTGAG	ACGCCCGACA	TCACCTGTGT	CTAGAGAATG	CAATAGTAGT
801	ACGGATAGCT	GTGACTCCGG	TCCTTCTAAC	ACACCTCCTG	AGATACACCC
851	GGTGGTCCCG	CTGTGCCCCA	TTAAACCAGT	TGCCGTGAGA	GTTGGTGGGC
901	GTCGCCAGGC	TGTGGAATGT	ATCGAGGACT	TGCTTAACGA	GCCTGGGCAA
951	CCTTTGGACT	TGAGCTGTAA	ACGCCCCAGG	CCATAA	(SEQ ID NO: 5)

1 GAATTCGCCG CCACCATGGA GGCTTGGGAG TGTTTGGAAG ATTTTCTGC
51 TGTGCGTAAC TTGCTGGAAC AGAGCTCTAA CAGTACCTCT TGGTTTTGGA
101 GGTTTCTGTG GGGCTCATCC CAGGCAAAGT TAGTCTGCAG AATTAAGGAG
151 GATTACAAGT GGGAATTTGA AGAGCTTTTG AAATCCTGTG GTGAGCTGTT
201 TGATTCTTTG AATCTGGGTC ACCAGGCGCT TTTCCAAGAG AAGGTCATCA
251 AGACTTTGGA TTTTTCCACA CCGGGGCGCG CTGCGGCTGC TGTTGCTTTT
301 TTGAGTTTTA TAAAGGATAA ATGGAGCGAA GAAACCCATC TGAGCGGGGG
351 GTACCTGCTG GATTTTCTGG CCATGCATCT GTGGAGAGCG GTTGTGAGAC
401 ACAAGAATCG CCTGCTACTG TTGTCTTCCG TCCGCCCGGC GATAATACCG
451 ACGGAGGAGC AGCAGCAGCA GCAGGAGGAA GCCAGGCGGC GGCGGCAGGA
501 GCAGAGCCCA TGGAACCCGA GAGCCGGCCT GGACCCTCGG GAATGAATGT

FIG. 6

1	GTCGACGCCG	CCACCAT	GCC	GCC	CAA	AACC	CCCCGAAAAA		AA	CGGCCGCCAC			
		M	P	P	K	T	P	R	K	Т	Α	Α	т

- 51 CGCCGCCGCT GCCGCCGCG AACCCCCGGC ACCGCCGCCG CCGCCCCCTC
 A A A A A A A E P P A P P P P P P P
- 101 CTGAGGAGGA CCCAGAGCAG GACAGCGGCC CGGAGGACCT GCCTCTCGTC E E D P E Q D S G P E D L P L V
- 151 AGGCTTGAGT TTGAAGAAAC AGAAGAACCT GATTTTACTG CATTATGTCA R L E F E E T E E P D F T A L C Q
- 201 GAAATTAAAG ATACCAGATC ATGTCAGAGA GAGAGCTTGG TTAACTTGGG K L K I P D H V R E R A W L T W E
- 251 AGAAAGTTTC ATCTGTGGAT GGAGTATTGG GAGGTTATAT TCAAAAGAAA K V S S V D G V L G G Y I Q K K
- 301 AAGGAACTGT GGGGAATCTG TATCTTTATT GCACGAGTTG ACCTAGATGA
 K E L W G I C I F I A R V D L D E
- 351 GATGTCGTTC ACTTTACTGA GCTACAGAAA AACATACGAA ATCAGTGTCC M S F T L L S Y R K T Y E I S V H
- 401 ATAAATTCTT TAACTTACTA AAAGAAATTG ATACCAGTAC CAAAGTTGAT K F F N L L K E I D T S T K V D
- 451 AATGCTATGT CAAGACTGTT GAAGAAGTAT GATGTATTGT TTGCACTCTT N A M S R L L K K Y D V L F A L F
- 501 CAGCAAATTG GAAAGGACAT GTGAACTTAT ATATTTGACA CAACCCAGCA S K L E R T C E L I Y L T Q P S S
- 551 GTTCGATATC TACTGAAATA AATTCTGCAT TGGTGCTAAA AGTTTCTTGG S I S T E I N S A L V L K V S W
- 601 ATCACATTT TATTAGCTAA AGGGGAAGTA TTACAAATGG AAGATGATCT I T F L L A K G E V L Q M E D D L
- 651 GGTGATTTCA TTTCAGTTAA TGCTATGTGT CCTTGACTAT TTTATTAAAC V I S F Q L M L C V L D Y F I K L

	S P P	M L L	K E P Y	K T A	V I P
751	ATTAATGGTT	CACCTCGAAC	ACCCAGGCGA	GGTCAGAACA	GGAGTGCACG
	I N G S	P R T	P R R	G Q N R	S A R
801	GATAGCAAAA	CAACTAGAAA	ATGATACAAG	ÀATTATTGAA	GTTCTCTGTA
	I A K	Q L E N	D T R	I I E	V L C K
851	AAGAACATGA	ATGTAATATA	GATGAGGTGA	AAAATGTTTA	TTTCAAAAAT
	E H E	C N I	D E V K	N V Y	F K N
901	TTTATACCTT F I P F	Ecori TTATGAATTC M N S	TCTTGGACTT L G L	GTAACATCTA V T S N	ATGGACTTCC G L P
951	AGAGGTTGAA	AATCTTTCTA	AACGATACGA	AGAAATTTAT	CTTAAAAATA
	E V E	N L S K	R Y E	E I Y	L K N K
1001	AAGATCTAGA	TCGAAGATTA	TTTTTGGATC	ATGATAAAAC	TCTTCAGACT
	D L D	R R L	F L D H	D K T	L Q T
1051	GATTCTATAG	ACAGTTTTGA	AACACAGAGA	ACACCACGAA	AAAGTAACCT
	D S I D	S F E	T Q R	T P R K	S N L
1101	TGATGAAGAG	GTGAATATAA	TTCCTCCACA	CACTCCAGTT	AGGACTGTTA
	D E E	V N I I	P P H	T P V	R T V M
1151	TGAACACTAT	CCAACAATTA	ATGATGATTT	TAAATTCTGC	AAGTGATCAA
	N T I	Q Q L	M M I L	N S A	S D Q
1201	CCTTCAGAAA	ATCTGATTTC	CTATTTTAAC	AACTGCACAG	TGAATCCAAA
	P S E N	L I S	Y F N	N C T V	N P K
1251	AGAAAGTATA	CTGAAAAGAG	TGAAGGATAT	AGGATACATC	TTTAAAGAGA
	E S I	L K R V	K D I	G Y I	F K E K
1301	AATTTGCTAA	AGCTGTGGGA	CAGGGTTGTG	TCGAAATTGG	ATCACAGCGA
	F A K	A V G	Q G C V	E I G	S Q R
351	TACAAACTTG	GAGTTCGCTT	GTATTACCGA	GTAATGGAAT	CCATGCTTAA
	Y K L G	V R L	Y Y R	V M E S	M L K

1401 ATCAGAAGAA GAACGATTAT CCATTCAAAA TTTTAGCAAA CTTCTGAATG SEE ERLS I QN FSK LL'ND 1451 ACAACATTTT TCATATGTCT TTATTGGCGT GCGCTCTTGA GGTTGTAATG H M S L L A C A L E V V M 1501 GCCACATATA GCAGAAGTAC ATCTCAGAAT CTTGATTCTG GAACAGATTT ATYS RST SQN LDSG TD L 1551 GTCTTTCCCA TGGATTCTGA ATGTGCTTAA TTTAAAAGCC TTTGATTTTT S F P W I L N V L N L K A F D F Y 1601 ACAAAGTGAT CGAAAGTTTT ATCAAAGCAG AAGGCAACTT GACAAGAGAA K V I E S F I K A E G N L T R E 1651 ATGATAAAAC ATTTAGAACG ATGTGAACAT CGAATCATGG AATCCCTTGC MIKH LER CEHRIME SLA 1701 ATGGCTCTCA GATTCACCTT TATTTGATCT TATTAAACAA TCAAAGGACC W L S D S P L F D L I K Q S K D R 1751 GAGAAGGACC AACTGATCAC CTTGAATCTG CTTGTCCTCT TAATCTTCCT E G P T D H L E S A C P L N L P 1801 CTCCAGAATA ATCACACTGC AGCAGATATG TATCTTTCTC CTGTAAGATC L Q N N H T A A D M Y L S P V R S 1851 TCCAAAGAAA AAAGGTTCAA CTACGCGTGT AAATTCTACT GCAAATGCAG P K K G S T T R V N S T A N A E 1901 AGACACAAGC AACCTCAGCC TTCCAGACCC AGAAGCCATT GAAATCTACC T Q. A T S A F Q T Q K P L K S T 1951 TCTCTTTCAC TGTTTTATAA AAAAGTGTAT CGGCTAGCCT ATCTCCGGCT S L S L F Y K K V Y R L A Y L R L 2001 AAATACACTT TGTGAACGCC TTCTGTCTGA GCACCCAGAA TTAGAACATA NTLCERLLSE HPE LEHI 2051 TCATCTGGAC CCTTTTCCAG CACACCCTGC AGAATGAGTA TGAACTCATG I W T L F Q H T L Q N E Y E L M

2101	R D R H	ATTIGGACCA	AATTATGATG I M M	TGTTCCATGT	ATGGCATATG
2151	CAAAGTGAAG	AATATAGACC	TTAAATTCAA	AATCATTGTA	ACAGCATACA
	K V K	N I D L	K F K	I I V	T A Y K
2201	AGGATCTTCC	TCATGCTGTT	CAGGAGACAT	TCAAACGTGT	TTTGATCAAA
	D L P	H A V	Q E T F	KRV	L I K
2251	GAAGAGGAGT	ATGATTCTAT	TATAGTATTC	TATAACTCGG	TCTTCATGCA
	E E E Y	D S I	I V F	Y N S V	F M Q
2301	GAGACTGAAA	ACAAATATTT	TGCAGTATGC	TTCCACCAGG	CCCCCTACCT
	R L K	T N I L	Q Y A	S T R	P P T L
2351	TGTCACCAAT	ACCTCACATT	CCTCGAAGCC	CTTACAAGTT	TCCTAGTTCA
	S P I	P H I	P R S P	Y K F	P S S
2401	CCCTTACGGA	TTCCTGGAGG	GAACATCTAT	ATTTCACCCC	TGAAGAGTCC
	P L R I	P G G	N I Y	I S P L	K S P
2451	ATATAAAATT	TCAGAAGGTC	TGCCAACACC	AACAAAAATG	ACTCCAAGAT
	Y K I	S E G L	P T P	T K M	T P R S
2501	CAAGAATCTT	AGTATCAATT	GGTGAATCAT	TCGGGACTTC	TGAGAAGTTC
	R I L	V S I	G E S F	G T S	E K F
2551	CAGAAAATAA	ATCAGATGGT	ATGTAACAGC	GACCGTGTGC	TCAAAAGAAG
	Q K I N	Q M V	C N S	D R V L	K R S
2601	TGCTGAAGGA	AGCAACCCTC	CTAAACCACT	GAAAAAACTA	CGCTTTGATA
	A E G	S N P P	K P L	K K L	R F D I
2651	TTGAAGGATC	AGATGAAGCA	GATGGAAGTA	AACATCTCCC	AGGAGAGTCC
	E G S	D E A	D G S K	H L P	G E S
2701	AAATTTCAGC	AGAAACTGGC	AGAAATGACT	TCTACTCGAA	CACGAATGCA
	K F Q Q	K L A	E M T	S T R T	R M Q
2751	AAAGCAGAAA	ATGAATGATA	GCATGGATAC	CTCAAACAAG	GAAGAGAAAT
	K Q K	M N D S	M D T	S N K	E E K *

NotI 2801 GAGGATCTCA GGACCGGCGG CCGC

FIG. 7D

F	_	$\overline{}$	D	т
c	u	u	к	1

1	GAATTCGCCG	CCACCATGAC M T	CATGGACTCT M D S	GGAGCAGACA G A D N	ACCAGCAGAG
51	TGGAGATGCA	GCTGTAACAG	AAGCTGAAAA	CCAACAAATG	ACAGTTCAAG
	G D A	A V T E	A E N	Q Q M	T V Q A
101	CCCAGCCACA	GATTGCCACA	TTAGCCCAGG	TATCTATGCC	AGCAGCTCAT
	Q P Q	I A T	L A Q V	S M P	A A H
151	GCAACATCAT	CTGCTCCCAC	CGTAACTCTA	GTACAGCTGC	CCAATGGGCA
	A T S S	A P T	V T L	V Q L P	N G Q
201	GACAGTTCAA T V Q	GTCCATGGAG V H G V	TCATTCAGGC I Q A	GGCCCAGCCA A Q P	TCAGTTATTC
251	AGTCTCCACA	AGTCCAAACA	GTTCAGATTT	CAACTATTGC	AGAAAGTGAA
	S P Q	V Q T	V Q I S	T I A	E S E
301	GATTCACAGG	AGTCAGTGGA	TAGTGTAACT	GATTCCCAAA	AGCGAAGGGA
	D S Q E	S V D	S V T	D S Q K	R R E
351	AATTCTTTCA	AGGAGGCCTT	CCT <u>T</u> CAGGAA	AATTTTGAAT	GACTTATCTT
	I L S	R R P S	F R K	I L N	D L S S
401	CTGATGCACC	AGGAGTGCCA	AGGATTGAAG	AAGAGAAGTC	TGAAGAGGAG
	D A P	G V P	R I E E	E K S	E E E
151	GCTTCAGCAC	CTGCCATCAC	CGCTGTAGCG	GTGCCAACGC	CAATTTACCG
	A S A P	A I T	A V A	V P T P	I Y R
501	GACTAGCAGT	GGACAGTATA	TTACCATTAC	CCAGAGAGGA	GCAATACAGC
	T S S	G Q Y I	T I T	Q R G	A I Q L
551	TGGCTAGCAA	TGGTACCGAT	GGGGTACAGG	GCCTGCAAAC	ATTAACCATG
	A S N	G T D	G V Q G	L Q T	L T M

FIG. 8A

601 GCCAATGCAG CAGCCACTCA GCCGGGTACT ACCATTCTAC AGTATGCACA A N A A A T Q P G T T I L Q Y A Q

651 GACCACTGAT GGACAGCAGA TCTTAGTGCC CAGCAACCAA GTTGTTGTTC

- 701 AAGCTGCCTC TGGAGACGTA CAAACATACC AGATTCGCAC AGCACCCACT A A S G D V Q T Y Q I R T A P T
- 751 AGCACTATTG CCCCTGGAGT TGTTATGGCA TCCTCCCAG CACTTCCTAC S T I A P G V V M A S S P A L P T
- 801 ACAGCCTGCT GAAGAAGCAG CACGAAAGAG AGAGGTCCGT CTAATGAAGA Q P A E E A A R K R E V R L M K N
- 851 ACAGGGAAGC AGCTCGTGAG TGTCGTAGAA AGAAGAAAGA ATATGTGAAA R E A A R E C R R K K E Y V K
- 901 TGTTTAGAAA ACAGAGTGGC AGTGCTTGAA AATCAAAACA AGACATTGAT C L E N R V A V L E N Q N K T L I
- 951 TGAGGAGCTA AAAGCACTTA AGGACCTTTA CTGCCACAAA TCAGATTAAT E E L K A L K D L Y C H K S D *

SalI 1001 TTGGGTCGAC

FIG. 8B

Figure 9. Maps of KB5008, pGL3-Control, KB5029, and KB5032.

KB5008 carries a RSVLTR promoter and was used to clone E1a and CREB. pGL3-Control carries a SV40 promoter and was used to clone E1b-19K and Bcl2. KB5029 carries the double expression cassettes for E1a and E1b-19K. KB5032 carries the double expression cassettes for CREB and Bcl2.

- 1 aagettgeeg eeaceatgag acatattate tgeeaeggag gtgttattae HindIII MRHIICHGGVI
- 51 cgaagaaatg geegeeagte titttggacea getgategaa gaggtaetgg T E E M A A S L L D Q L I E E V L
- 101 ctgataatct tccacctcct agccattttg aaccacctac ccttcacgaa A D N L P P P S H F E P P T L H E
- 151 ctgtatgatt tagacgtgac ggcccccgaa gatcccaacg aggaggcggt L Y D L D V T A P E D P N E E A
- 201 ttcgcagatt tttcccgact ctgtaatgtt ggcggtgcag gaagggattg V S Q I F P D S V M L A V Q E G I
- 251 acttactcac ttttccgccg gcgcccggtt ctccggagcc gcctcacctt D L L T F P P A P G S P E P P H L
- 301 tcccggcagc ccgagcagcc ggagcagaga gccttgggtc cggtttctat S R Q P E Q P E Q R A L G P V S
- 351 gccaaacett gtaceggagg tgategatet tacetgccae gaggetgget M P N L V P E V I D L T C H E A G
- 401 ttccacccag tgacgacgag gatgaagagg gtgaggagtt tgtgttagat FPPSDDEDEEGEFVLD
- 451 tatgtggagc accccgggca cggttgcagg tcttgtcatt atcaccggag Y V E H P G H G C R S C H Y H R
- 501 gaatacgggg gacccagata ttatgtgttc gctttgctat atgaggacct R N T G D P D I M C S L C Y M R T
- 551 gtggcatgtt tgtctacagt cctgtgtctg aacctgagcc tgagcccgag C G M F V Y S P V S E P E P E P E
- 601 ccagaaccgg agcctgcaag acctacccgc cgtcctaaaa tggcgcctgc PEPARPTRRPKMAP
- 651 tatcctgaga cgcccgacat cacctgtgtc tagagaatgc aatagtagta AILRRPTSPVSRECNSS
- 701 cggatagctg tgactccggt cettctaaca cacetcctga gatacacecg T D S C D S G P S N T P P E I H P
- 751 gtggtcccgc tgtgccccat taaaccagtt gccgtgagag ttggtgggcg VVPLCPIKPVAVRVGG
- 801 tcgccaggct gtggaatgta tcgaggactt gcttaacgag cctgggcaac R R Q A V E C I E D L L N E P G Q
- 851 ctttggactt gagetgtaaa egeeceagge cataactega g PLDLSCKRPRP-XhoI

Figure 10. Nucleotide coding sequence of E1a cDNA (SEQ ID NO: 40). Cloning sites HindIII and XhoI, and two amino acid residue positions Y47 and C124 are underscored.

- 1 <u>aagettgeeg ceaceatgag acatattate tgeeaeggag gtgttattae</u> HindIII M R H I I C H G G V I
- 51 cgaagaaatg geegeeagte ttttggacea getgategaa gaggtaetgg TEEMAASLLDQLIEEVL
- 101 ctgataatct tccacctcct agccattttg aaccacctac ccttcacgaa A D N L P P P S H F E P P T L H E
- 151 ctgcatgatt tagacgtgac ggcccccgaa gatcccaacg aggaggcggt L H D L D V T A P E D P N E E A
- 201 ttcgcagatt tttcccgact ctgtaatgtt ggcggtgcag gaagggattg V S Q I F P D S V M L A V Q E G I
- 251 acttactcac ttttccgccg gcgcccggtt ctccggagcc gcctcacctt D L L T F P P A P G S P E P P H L
- 301 tcccggcagc ccgagcagcc ggagcagaga gccttgggtc cggtttctat S R Q P E Q P E Q R A L G P V S
- 351 gccaaacctt gtaceggagg tgategatet tacetgeeac gaggetgget M P N L V P E V I D L T C H E A G
- 401 ttccacccag tgacgacgag gatgaagagg gtgaggagtt tgtgttagat FPPSDDEDEEGEFVLD
- 451 tatgtggagc accccgggca cggttgcagg tcttgtcatt atcaccggag Y V E H P G H G C R S C H Y H R
- 501 gaatacgggg gacccagata ttatgtgttc gctttgctat atgaggacct R N T G D P D I M C S L C Y M R T
- 551 gtggcatgtt tgtctacagt cctgtgtctg aacctgagcc tgagcccgag C G M F V Y S P V S E P E P E P E
- 601 ccagaaccgg agcctgcaag acctacccgc cgtcctaaaa tggcgcctgc PEPEPARPTRRPKMAP
- 651 tatectgaga egecegacat cacetgtgte tagagaatge aatagtagta A I L R R P T S P V S R E C N S S
- 701 cggatagetg tgacteeggt cettetaaca caceteetga gatacaeeeg T D S C D S G P S N T P P E I H P
- 751 gtggtcccgc tgtgccccat taaaccagtt gccgtgagag ttggtgggcg VVPLCPIKPVAVRVGG
- 801 tcgccaggct gtggaatgta tcgaggactt gcttaacgag cctgggcaac R R Q A V E C I E D L L N E P G Q
- 851 ctttggactt gagetgtaaa egeeceagge cataactega g PLDLSCKRPRP-XhoI

Figure 11. Nucleotide coding sequence of E1a_Y47H (SEQ ID NO: 41). Cloning sites HindIII and XhoI are underscored.

- l aagettgeeg eeaceatgae eatggaatet ggageagaea aceageagag HindIII M T M E S G A D N Q Q
 51 tggagatget getgtaacag aagetgaaaa teaacaaatg acageteaag S G D A A V T E A E N Q Q M T A Q
- 101 cccaaccaca gattgccaca ttagcccagg tatccatgcc agcagctcat A Q P Q I A T L A Q V S M P A A H
- 151 gcgacatcat etgeteceae tgtaacetta gtgcagetge ccaatgggea A T S S A P T V T L V Q L P N G
- 201 gacagtccaa gtccatggag ttattcaggc ggcccagcca tcagttattc Q T V Q V H G V I Q A A Q P S V I
- 251 agtetecaca agteeaaaca gtteagtett eetgtaagga ettaaaaaga QSPQVQTVQSSCKDLKR
- 301 cttttctccg gaactcagat ttcaactatt gcagaaagtg aggattcaca L F S G T Q I S T I A E S E D S
- 351 ggaatctgtg gatagtgtaa ctgattccca aaagcgaagg gaaattcttt Q E S V D S V T D S Q K R R E I L
- 401 caaggaggcc ttcctacagg aaaattttga atgacttatc ttctgatgca S R R P S Y R K I L N D L S S D A
- 451 ccaggggtgc caaggattga agaagaaaag tcggaagagg agacttcagc P G V P R I E E E K S E E E T S
- 501 ccctgccatc accactgtga cagtgccaac tccgatttac cagacaagca A P A I T T V T V P T P I Y Q T S
- 551 gtgggcagta tattgccatt acccagggag gagctataca gctggctaac S G Q Y I A I T Q G G A I Q L A N
- aatggtaccg atggggtaca gggccttcag acattaacca tgaccaatgc N G T D G V Q G L Q T L T M T N
- 651 agetgecact cageegggta ceaetattet acagtatgea cagaceactg AAATQPGTTILQYAQTT
- 701 atggacagca gattctagtg cccagcaacc aagttgttgt tcaagctgcc D G Q Q I L V P S N Q V V V Q A A
- 751 tetggegatg tacaaacata ceaaattegt acageaceca etageaceat S G D V Q T Y Q I R T A P T S T
- 801 cgcccctgga gttgttatgg catcctcccc ageacttcct acgcagcctg $^{\rm I}$ A P G V V M A S S P A L P T Q P
- 851 ctgaagaagc agcccggaag agagaggttc gtctaatgaa gaacagggaa A E E A A R K R E V R L M K N R E
- 901 gcagcaagag aatgtcgtag aaagaagaaa gaatatgtga aatgtttaga AARECRKKEYVKCL
- 951 gaacagagtg gcagtgcttg aaaaccaaaa caagacattg attgaggagc E N R V A V L E N Q N K T L I E E
- 1001 taaaagcact taaggacctt tactgccaca aatcagatta aggatcc L K A L K D L Y C H K S D BamHI

Figure 12. Nucleotide coding sequence of hamster CREB-B cDNA (SEQ ID NO: 42). Cloning sites HindIII and BamHI are underscored.

- 1 aagcttgccg ccaccatgac catggaatct ggagcagaca accagcagag
 HindIII M T M E S G A D N Q Q

 51 tggagatgct gctgtaacag aagctgaaaa tcaacaaatg acagctcaag
 S G D A A V T E A E N Q Q M T A Q
- 101 cccaaccaca gattgccaca ttagcccagg tatccatgcc agcagctcat A Q P Q I A T L A Q V S M P A A H
- 151 gcgacatcat ctgctcccac tgtaacctta gtgcagctgc ccaatgggca A T S S A P T V T L V Q L P N G
- 201 gacagtccaa gtccatggag ttattcaggc ggcccagcca tcagttattc Q T V Q V H G V I Q A A Q P S V I
- 251 agtetecaca agtecaaaca gtteagtett eetgtaagga ettaaaaaga Q S P Q V Q T V Q S S C K D L K R
- 301 cttttctccg gaactcagat ttcaactatt gcagaaagtg aggattcaca L F S G T Q I S T I A E S E D S
- 351 ggaatctgtg gatagtgtaa ctgattccca aaagcgaagg gaaattcttt Q E S V D S V T D S Q K R R E I L
- 401 caaggaggcc ttcctccagg aaaattttga atgacttatc ttctgatgca S R R P S F R K I L N D L S S D A
- 451 ccaggggtgc caaggattga agaagaaaag tcggaagagg agacttcagc P G V P R I E E E K S E E E T S
- 501 ccctgccatc accactgtga cagtgccaac tccgatttac cagacaagca A P A I T T V T V P T P I Y Q T S
- 551 gtgggcagta tattgccatt acccagggag gagctataca gctggctaac S G Q Y I A I T Q G G A I Q L A N
- 601 aatggtaccg atggggtaca gggccttcag acattaacca tgaccaatgc $^{\rm N}$ G T D G V Q G L Q T L T M T N
- 651 agetgecact cageegggta ceaetattet acagtatgea cagaceactg AAATQPGTTILQYAQTT
- 701 atggacagca gattctagtg cccagcaacc aagttgttgt tcaagctgcc D G Q Q I L V P S N Q V V V Q A A
- 751 tetggegatg tacaaacata ceaaattegt acageaceca etageaceat S G D V Q T Y Q I R T A P T S T
- 801 cgcccctgga gttgttatgg catcctcccc agcacttcct acgcagcctg I A P G V V M A S S P A L P T Q P
- 851 ctgaagaagc agcccggaag agagaggttc gtctaatgaa gaacagggaa A E E A A R K R E V R L M K N R E
- 901 gcagcaagag aatgtcgtag aaagaagaaa gaatatgtga aatgtttaga AARECRKKKEYVKCL
- 951 gaacagagtg gcagtgcttg aaaaccaaaa caagacattg attgaggagc ENRVAVLENQNKTLIEE
- 1001 taaaagcact taaggacctt tactgccaca aatcagatta aggatcc L K A L K D L Y C H K S D BamHI

Figure 13. Nucleotide coding sequence of hamster CREB-B Y134F cDNA (SEQ ID NO:

43). Cloning sites HindIII and BamHI are underscored.

- 1 <u>aagcttactg ttggtaaagc cgccaccatg gaggcttggg agtgtttgga</u>
 HindIII M E A W E C L
- 51 agatttttct gctgtgcgta acttgctgga acagagctct aacagtacct E D F S A V R N L L E Q S S N S T
- 101 cttggttttg gaggtttctg tggggctcat cccaggcaaa gttagtctgc S W F W R F L W G S S Q A K L V C
- 151 agaattaagg aggattacaa gtgggaattt gaagagcttt tgaaatcctg RIKEDYKWEFEELLKS
- 201 tggtgagetg tttgattett tgaatetggg teaceaggeg etttteeaag C G E L F D S L N L G H Q A L F Q
- 251 agaaggtcat caagactttg gatttttcca caccggggcg cgctgcggct E K V I K T L D F S T P G R A A A
- 301 gctgttgctt ttttgagttt tataaaggat aaatggagcg aagaaaccca A V A F L S F I K D K W S E E T
- 351 tetgageggg gggtacetge tggattttet ggccatgcat etgtggagag H L S G G Y L L D F L A M H L W R
- 401 cggttgtgag acacaagaat cgcctgctac tgttgtcttc cgtccgcccg A V V R H K N R L L L L S S V R P
- 451 gcgataatac cgacggagga gcagcagcag cagcaggagg aagccaggcg A I I P T E E Q Q Q Q E E A R
- 501 gcggcggcag gagcagagcc catggaaccc gagagccggc ctggaccctc R R R Q E Q S P W N P R A G L D P
- 551 gggaatga<u>tc taga</u> R E - *XhaI*

Figure 14. Nucleotide coding sequence of E1b-19K (SEQ ID NO: 44). Cloning sites HindIII and XbaI are underscored.

NcoI

- 1 ccatggctca agctgggaga acagggtatg ataaccgaga gatcgtgatg M A Q A G R T G Y D N R E I V M
- aagtacatcc attataagct gtcacagagg ggctacgagt gggatgtggg K Y I H Y K L S Q R G Y E W D V
- 101 agatgtggac gccgcggccg cggccgcgag ccccgtgcca cctgtggtcc G D V D A A A A A A S P V P P V V
- 151 acctgaccct ccgccgggct ggggatgact tctcccgtcg ctaccgtcgc H L T L R R A G D D F S R R Y R R
- 201 gacttcgcgg agatgtccag tcagctgcac ctgacgccct tcaccgcgag D F A E M S S Q L H L T P F T A
- 251 gggacgettt getaeggtgg tggaggaact etteagggat ggggtgaact R G R F A T V V E E L F R D G V N
- 301 gggggaggat tgtggccttc tttgagttcg gtggggtcat gtgtgtggag W G R I V A F F E F G G V M C V E
- 351 agcgtcaaca gggagatgtc acccctggtg gacaacatcg ccctgtggat S V N R E M S P L V D N I A L W
- $^{\rm 401}$ gaccgagtac etgaaccggc atetgcacac etggatccag gataacggag M T E Y L N R H L H T W I Q D N G
- 451 gctgggacgc atttgtggaa ctgtacggcc ccagtgtgag gcctctgttt G W D A F V E L Y G P S V R P L F
- 501 gatttetett ggetgtetet gaagaeeetg eteageetgg eeetggtegg DFSWLSLKTLLSLALV
- 551 ggcctgcatc actctgggta cctacctggg ccacaagtga tctaga G A C I T L G T Y L G H K XbaI

Figure 15. Nucleotide coding sequence of hamster Bcl2 deletion mutant (SEQ ID NO:

45). Cloning sites Ncol and Xbal are underscored.

Figure 16. Western blots of E1a, CREB and Bcl2.

In a), b), and c), 1x10⁵ CHO-K1 cells were transfected with 0.4 µg of indicated plasmid DNA. Cell lysates were collected after 48 hours and probed with appropriate antibodies. KB5008 transfected cells were used as negative controles.

Figure 17. E1a and CREB enhanced CMV promoter in CHO-K1 cells.

 1×10^5 cells were transfected with 0.02 µg of SEAP reporter construct KB5019 and 0.2 µg of E1a or CREB expressing constructs. Total DNA was added up to 0.4 µg/well by control plasmid KB5008, E1b-19K or Bc12 expressing plasmids. SEAP activities from culture media were assay 48 hours after transfection. The control was mock transfected CHO-K1 cells.

Figure 18. Western blots showing overexpression of hamster CREB-B Y134F and hamster Δ Bcl-2 in stable transfectant CHO-S cell lines.