線性代數作業 1

0516009 吳宗達

2016/11/16

1 背景介紹

給你 n 個點對 (x_i,y_i) 和 m 個方程式 $\mathbf{F_k}(x)$, 找出一組係數 \hat{x} 使得 $\sum_{k=0}^m \mathbf{F_k}(x_i)$ 與 y_i 要盡量靠近, 也就是 $e(w) = \sum_{i=1}^n (\sum_{k=0}^m \mathbf{F_k}(x_i) - y_i)^2/n$ 要最小化

2 程式說明

以 matlab2016 來實做程式, 可以到 https://github.com/cthbst/LAclass 下載本程式

3 執行結果

3.1 測試 1

以
$$F_k(x) = \frac{1}{\sqrt{2\pi}\sigma_m} exp(\frac{-(x-\mu_2)^2}{2\sigma_m^2})$$
 逼近

Figure 1: e(w) = 0.0741

Figure 2: e(w) = 0.0169

3.2 測試 2

以 $F_k(x)=x^k$ 逼近

Figure 3: e(w) = 0.0750

Figure 4: e(w) = 0.0236

4 結論

觀察誤差值, 可以看出用鐘型曲線逼近, 在 Dataset1 和 Dataset2 逼近的表現都比多項式好, 以及可以看出因為 Dataset1 的資料分佈較鬆散, 不同函數下可以改善的誤差值有限, 而 Dataset2 資料分佈較為密集, 誤差值得差異相對大了許多。