TD nº 3 – Espaces quotients et revêtements universels

Intégration sur les espaces quotients

On rappelle le résultat suivant du cours : si T est un espace topologique muni d'une mesure borélienne μ , et Γ est un groupe discret agissant sur T en préservant μ , alors pour toute fonction χ positive à décroissance rapide vérifiant

$$\sum_{g \in \Gamma} \chi(g \cdot x) = 1, \quad \forall x \in T,$$

on définit l'intégrale d'une fonction f Γ -invariante par

$$\int_{\Gamma \setminus T} f(x) d\mu(x) = \int_T f(x) \chi(x) d\mu(x).$$

Exercice 1. Intégration sur le cercle unité

- 1. Montrer qu'il existe un difféomorphisme $\phi: S^1 \to \mathbb{R}/2\pi\mathbb{Z}$ entre le cercle unité $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ et le quotient $\mathbb{R}/2\pi\mathbb{Z}$.
- 2. En déduire, pour toute fonction $f: S^1 \to \mathbb{C}$ continue, une expression de

$$\int_{S^1} f(z) d\mu(z),$$

où $d\mu$ désigne la mesure uniforme sur S^1 (appelée aussi mesure de Haar dans ce contexte).

3. Montrer que l'image de $d\mu$ par la transformation de Cayley $\varphi:\mathbb{C}\setminus\{-1\}\to\mathbb{C}\setminus\{-1\}$ définie par

$$\varphi(z) = \frac{1-z}{1+z},$$

est la mesure de Cauchy:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\varphi(e^{i\theta})) d\theta = \frac{1}{\pi} \int_{-\infty}^{\infty} f(it) \frac{dt}{1+t^2}.$$

4. On pose, pour tout $k \in \mathbb{Z}$, $\phi_k : \mathbb{C}^* \to \mathbb{C}^*, z \mapsto z^k$. En utilisant la théorie des séries de Fourier, démontrer que toute fonction $f \in L^2(d\mu)$ admet un développement sous la forme

$$f(z) = \sum_{k \in \mathbb{Z}} \langle f, \phi_k \rangle_{L^2(d\mu)} \phi_k(z), \quad \forall z \in S^1.$$

Solution.

1. Il s'agit ici de montrer un difféomorphisme entre deux variétés différentielles, donc on va passer par des cartes. Le cercle unité S^1 peut être recouvert par la réunion de deux ouverts

$$S^1 = U_1 \cup U_2,$$

où $U_1=S^1\setminus\{-1\}$ et $U_2=S^1\setminus\{1\}$. De même, $\mathbb R$ peut être recouvert par la réunion de V_1 et V_2 , où

$$V_1 = \bigsqcup_{k \in \mathbb{Z}} (2\pi k + \pi, 2\pi(k+1) + \pi), \quad V_2 = \bigsqcup_{k \in \mathbb{Z}} (2\pi k, 2\pi(k+1)),$$

qui passent au quotient en des ouverts V_1^* et V_2^* qui recouvrent $\mathbb{R}/2\pi\mathbb{Z}$. Montrons que U_1 et V_1^* sont difféomorphes. L'application $\phi: z \mapsto \exp(z)$ est holomorphe sur \mathbb{C} , donc a priori lisse sur \mathbb{R}^2 . De plus, $\phi(V_1) = U_1$ et $\phi|_{V_1}$ est surjective, et elle descend au quotient en une bijection lisse $\tilde{\phi}: V_1^* \to U_1$. On peut vérifier que la bijection réciproque est lisse également, en prenant la bonne détermination du logarithme dans le plan complexe. On montre que U_2 et V_2^* sont difféomorphes de la même manière.

2. On notera $[\theta] \in \mathbb{R}/2\pi\mathbb{Z}$ la classe d'équivalence de $\theta \in \mathbb{R}$ (il n'y a pas d'ambiguïté tant qu'on considère des fonctions de classe). On a, d'après la formule du cours appliquée à $T = \mathbb{R}$, $\Gamma = 2\pi\mathbb{Z}$, et $\chi : t \in \mathbb{R} \mapsto \mathbf{1}_{(-\pi,\pi)}(t)$,

$$\int_{\mathbb{R}/2\pi\mathbb{Z}} f([\theta])d[\theta] = \int_{-\pi}^{\pi} f(\theta)d\theta.$$

On voit facilement que la mesure ainsi définie a une masse totale de 2π , donc pour avoir une mesure de probabilité uniforme il suffit de diviser les deux membres de l'égalité par 2π . En utilisant le difféomorphisme de la question précédente, on obtient alors

$$\int_{S^1} f(z) d\mu(z) = \int_{\mathbb{R}/2\pi\mathbb{Z}} f(e^{\mathrm{i}[\theta]}) \frac{d[\theta]}{2\pi} = \int_{-\pi}^{\pi} f(e^{\mathrm{i}\theta}) \frac{d\theta}{2\pi}.$$

3. Calculons d'abord $\varphi(e^{i\theta})$:

$$\varphi(e^{\mathrm{i}\theta}) = \frac{1-e^{\mathrm{i}\theta}}{1+e^{\mathrm{i}\theta}} = \frac{e^{-\mathrm{i}\frac{\theta}{2}}-e^{\mathrm{i}\frac{\theta}{2}}}{e^{-\mathrm{i}\frac{\theta}{2}}+e^{\mathrm{i}\frac{\theta}{2}}} = \frac{1}{\mathrm{i}}\frac{\sinh(\frac{\theta}{2})}{\cosh(\frac{\theta}{2})} = -\mathrm{i}\tanh(\frac{\theta}{2}).$$

On utilise le changement de variable $t = \tanh(\frac{\theta}{2})$ dans l'intégrale

$$\int_{-\pi}^{\pi} f(\varphi(e^{i\theta}) \frac{d\theta}{2\pi},$$

et la formule en découle.

4. On rappelle que toute fonction $f:\mathbb{R}\to\mathbb{R}$ 2π -périodique vérifie l'égalité suivante dans L^2 :

$$f(x) = \sum_{n \in \mathbb{Z}} c_n(f)e^{\mathrm{i}nx}, \quad \forall x \in \mathbb{R},$$

οù

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-\mathrm{i}nt}dt.$$

Or, f passe au quotient en une fonction $\tilde{f}: \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{R}$, qui équivaut – par difféomorphisme – à une fonction $f: S^1 \to \mathbb{R}$. Il vient que

$$f(e^{\mathrm{i}\theta}) = \sum_{n \in \mathbb{Z}} \left(\int_{S^1} f(e^{\mathrm{i}t}) e^{-\mathrm{i}nt} \frac{dt}{2\pi} \right) e^{\mathrm{i}n\theta} = \sum_{n \in \mathbb{Z}} \langle f, \phi_n \rangle_{L^2(d\mu)} \phi_n(e^{\mathrm{i}\theta}).$$

Note : pour des fonctions suffisamment régulières on a même une convergence ponctuelle (par exemple en des points où f est continue, et dérivable à gauche et à droite).

Relèvements de chemins

Soit $\Sigma_g = \Gamma \backslash \mathbb{H}^2$ une surface hyperbolique compacte de genre $g \geq 2$. On rappelle que deux chemins $\gamma_1, \gamma_2 : [0,1] \to \Sigma_g$ sont homotopes s'il existe une application continue $\phi : [0,1]^2 \to \Sigma_g$ telle que $\phi(t,0) = \gamma_1(t)$ et $\phi(t,1) = \gamma_2(t)$ pour tout $t \in [0,1]$ (autrement dit si on peut déformer continûment γ_1 en γ_2 en préservant l'orientation). Un lacet de base $x \in \Sigma_g$ est un chemin

 $\gamma:[0,1]\to\Sigma_g$ tel que $\gamma(0)=\gamma(1)=x$. Un lacet est contractile (ou d'homotopie triviale) s'il est homotope à un point.

Le groupe fondamental de Σ_g base x est le groupe des classes d'équivalence d'homotopie des lacets de base x, pour la loi de produit

$$[\gamma_1][\gamma_2] = [\gamma_1 \cdot \gamma_2],$$

en notant $\gamma_1 \cdot \gamma_2$ la concaténation des lacets γ_1 et γ_2 .

On admet les résultats suivants :

- (propriété de relèvement) pour tout chemin $\gamma:[0,1]\to \Sigma_g$ d'origine x, il existe un unique chemin $\tilde{\gamma}:[0,1]\to \mathbb{H}^2$ d'origine \tilde{x} tel que $\gamma=\pi(\tilde{\gamma})$ (où $\pi:\mathbb{H}^2\to \Gamma\backslash\mathbb{H}^2$ désigne la projection sur le quotient). On appelle relèvement de γ de base \tilde{x} le chemin $\tilde{\gamma}$.
- Deux chemins $\gamma_1, \gamma_2 : [0,1] \to \Sigma_g$ d'origine x sont homotopes si et seulement si $\tilde{\gamma}_1$ et $\tilde{\gamma}_2$ d'origine $\tilde{x} \in \mathbb{H}^2$ sont homotopes.
- Deux chemins de mêmes extrémités dans \mathbb{H}^2 sont homotopes (on dit que \mathbb{H}^2 est simplement connexe).

Exercice 2. Homotopie et relèvement

1. Si γ est un chemin dans Σ_g d'origine x et si $\tilde{\gamma}$ est son unique relèvement d'origine \tilde{x} , on définit l'application Φ entre les classes d'homotopie d'origine x et \mathbb{H}^2 , par

$$\Phi: [\gamma] \mapsto \tilde{\gamma}(1).$$

Montrer que Φ est une bijection.

2. Montrer que si $\Sigma_g = \Gamma \backslash \mathbb{H}^2$, alors $\pi_1(\Sigma_g) \simeq \Gamma$. Indication : montrer qu'on a une bijection entre Γ et $\pi_1(\Sigma_g)$ en utilisant la question précédente, et vérifier que c'est bien un morphisme de groupes.

Solution.

- 1. Commençons par noter que Φ est bien définie : si γ_1 et γ_2 sont deux chemins homotopes dans Σ_g , alors par propriété de relèvement des chemins les relèvements $\tilde{\gamma}_1$ et $\tilde{\gamma}_2$ sont également homotopes, donc en particulier ont les mêmes extrémités : $\tilde{\gamma}_1(1) = \tilde{\gamma}_2(1)$. L'injectivité de Φ découle d'un raisonnement similaire : si γ_1, γ_2 sont deux chemins dans Σ_g de même origine x, tels que leurs relèvements respectifs $\tilde{\gamma}_1, \tilde{\gamma}_2$ d'origine \tilde{x} vérifient $\tilde{\gamma}_1(1) = \tilde{\gamma}_2(1)$, alors $\tilde{\gamma}_1$ et $\tilde{\gamma}_2$ sont homotopes dans \mathbb{H}^2 , et par conséquence $[\gamma_1] = [\gamma_2]$. Il reste à montrer la surjectivité : soit \tilde{y} un point fixé dans \mathbb{H}^2 ; notons ℓ le segment $[\tilde{x}, \tilde{y}]$ dans \mathbb{H}^2 . On peut prendre pour γ la projection de ℓ par le passage au quotient $\mathbb{H}^2 \to \Sigma_g$.
- 2. On a vu dans la question 1 que $\Phi: \pi_1(\Sigma_g) \to \mathbb{H}^2$ était une bijection. Si l'on restreint cette bijection aux classes d'homotopie de chemins fermés (ou lacets), on obtient une bijection entre $\pi_1(\Sigma_g)$ et l'ensemble des points $\tilde{y} \in \mathbb{H}^2$ tels que $\Gamma\{\tilde{y}\} = \{x\}$. Or, par définition de $\Sigma_g = \Gamma \setminus \mathbb{H}^2$, $\{x\} = \Gamma\{\tilde{x}\}$, et l'orbite de \tilde{x} par l'action de Γ est isomorphe à Γ (en tant que groupe).

Pour résumer, on a une bijection

$$[\gamma] \in \pi_1(\Sigma_g) \mapsto g \in \Gamma,$$

où g est tel que $g \cdot \tilde{x} = \tilde{\gamma}(1)$. Il reste à montrer que cette bijection est également un morphisme de groupes. Soit γ_1, γ_2 ; si $\tilde{\gamma}_1(1) = g_1 \cdot \tilde{x}$ et $\tilde{\gamma}_2(1) = g_2 \cdot \tilde{x}$, montrons que $\gamma_1 \tilde{\gamma}_2(1) = g_1 g_2 \cdot \{\tilde{x}\}$. Par hypothèse, le relèvement de γ_2 de base \tilde{x} termine en $g_2 \cdot \tilde{x}$. Le relèvement de $\gamma_1 \gamma_2$ de base \tilde{x} est constitué du relèvement de γ_2 de base \tilde{x} suivi du relèvement de γ_1 de base $\tilde{\gamma}_2(1) = g_2 \cdot \tilde{x}$, donc il termine bien en $g_1 g_2 \cdot \tilde{x}$ comme prévu.

Exercice 3. Homotopie libre et géodésiques

L'objectif de cet exercice est de démontrer que toute classe d'homotopie libre (c'est-à-dire en ne fixant plus le point de base dans le groupe fondamental) de Σ_g pour $g \geq 2$ admet un unique représentant géodésique. Pour cela, on introduit pour toute isométrie hyperbolique $g \in \mathrm{PSL}(2,\mathbb{R})$ son axe, à savoir l'unique géodésique qui passe par ses deux points fixes (lesquels sont toujours sur $\partial \mathbb{H}^2$).

- 1. Soit $\gamma:[0,1] \to \Sigma_g$ un lacet de base x. Montrer qu'on peut déformer son relevé $\tilde{\gamma}$ issu de \tilde{x} en un segment de la courbe qui passe par \tilde{x} et $[\gamma] \cdot \tilde{x}$ dont tous les points sont équidistants de l'axe de $[\gamma]$.
- 2. Montrer qu'on peut déplacer ce segment par translations successives pour le faire arriver sur l'axe de γ , et en déduire que le résultat γ^* est bien un représentant géodésique de la classe d'homotopie libre de γ .
- 3. Soit γ' une autre courbe de la même classe d'homotopie libre que γ^* . Montrer que ce n'est pas une géodésique. Indice : utiliser le fait que $[\gamma]$ agit par translation sur le disque ou le demi-plan, et appliquer cette translation aux chemins qui représentent l'homotopie entre γ^* et γ' .
- 4. Trouver une géodésique sur Σ_2 qui a la forme d'un 8 (autrement dit, qui est fermée et possède un point d'auto-intersection).

Solution.

1. On commence par montrer que Γx est un ensemble de points équidistants de l'axe de g = [γ]. En effet, en tant qu'isométrie de H², g déplace chaque point d'une distance au moins aussi grande que celle d'un bord du domaine fondamental. Par conséquent, g est une translation. Or, on peut montrer que H² est partitionné en courbes invariantes par g qui sont équidistantes de l'axe de g. Par exemple, si on se place dans le demi-plan de Poincaré, les translations le long de la demi-droite verticale passant par l'origine laissent invariantes les droites passant par x. Dans la représentation du disque de Poincaré, il s'agit d'arcs de cercle passant par -i et i, cf. Figure 1.

FIGURE 1 – Exemples de courbes équidistantes sur le disque et sur le demi-plan.

Par l'isométrie qui envoie l'axe vertical sur l'axe de g, on obtient de nouvelles courbes équidistantes qui sont des arcs de cercle passant par les extrémités de l'axe. Comme $\Gamma \tilde{x}$ est envoyé sur lui-même par g, il vient que l'ensemble $\{\ldots, g^{-1}\tilde{x}, \tilde{x}, g\tilde{x}, \ldots\}$ se situe bien sur une même courbe équidistante. À partir de là, on peut déformer par homotopie la courbe $\tilde{\gamma}$ en une courbe $\alpha(\tilde{\gamma})$ qui se trouve sur la courbe équidistante en question, comme sur la Figure 2. On peut effectuer cette déformation parce que deux courbes de mêmes extrémités sont toujours homotopes dans \mathbb{H}^2 .

FIGURE 2 – Déformation du relevé en une courbe équidistante.

2. On déforme $\alpha(\tilde{\gamma})$ en une succession de courbes $\alpha_t(\tilde{\gamma})$, $0 \le t \le 1$, le long de courbes équidistantes de sorte que $\alpha_0(\tilde{\gamma}) = \alpha(\tilde{\gamma})$ et $\alpha_1(\tilde{\gamma})$ se situe sur l'axe de g. On peut faire cela car pour tout t, $g \cdot \alpha_t(\tilde{\gamma})(0) = \alpha_t(\tilde{\gamma})(1)$, ce qui implique que l'homotopie libre est préservée. Cf. Figure 3.

FIGURE 3 – Déformation de la courbe équidistante en une courbe sur l'axe.

- 3. On se donne une autre courbe h dans la même homotopie libre que celle construite précédemment. En faisant agir g sur \tilde{h} , on obtient que les extrémités de \tilde{h} et leurs images sont toutes équidistantes de l'axe de g. En particulier la concaténation H des chemins $g^k \cdot \tilde{h}$ pour $k \in \mathbb{Z}$ produit une courbe qui passe par les extrémités de l'axe de g qui diffère de l'axe de g. Comme une seule géodésique passe par deux points donnés, on en déduit que H n'est pas une géodésique de \mathbb{H}^2 , et a fortiori \tilde{h} non plus.
- 4. Un domaine fondamental de Σ_2 est donné par un octogone de bord $a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}$. On peut voir par recollement que a_1b_1 par exemple est constitué de deux boucles qui ne se croisent pas, donc c'est une courbe qui a la forme d'un 8. Cependant, même si a_1 et b_1 sont des géodésiques, ce n'est pas le cas de a_1b_1 a priori. Il faut donc prendre l'unique géodésique dans la classe d'homotopie $[a_1b_1]$.