Energy-Accuracy-Security Trade-offs in Resistive In-memory Computing Architectures

Saion Roy^{1,2} and Naresh Shanbhag¹
¹University of Illinois at Urbana-Champaign, USA
²Northeastern University, USA

Electrical & Computer Engineering

Resistive IMCs in the Landscape of AI Accelerators

- eNVM-based IMCs lagging in energy efficiency & compute density (why?)
- Reason low array-level compute accuracy

https://github.com/UIUC-IMC/UIUC-IMC-benchmarking

Are eNVM-based IMCs Secure?

Low compute SNDR (Bug) → potential resilience to security attacks (Feature)?

Model Extraction Attacks (MEAs)

leakage of private training data & adversarial attacks

Security vulnerability of eNVM IMCs unknown?

[Roy & Shanbhag, "On the Security Vulnerabilities of MRAM-based In-Memory Computing Architectures against Model Extraction Attacks," *ICCAD*, 2024]

[Roy & Shanbhag, "Energy-Accuracy-Security Trade-off in Resistive In-memory Architectures," IEEE IEDM, 2024]

Electrical & Computer Engineering

Proposed MEA Construction Framework

statistical model

$$\hat{y} = Q[\beta g(\widetilde{\mathbf{w}}, \mathbf{x}) + \eta]$$

- Conductance Variations
- Parasitics Conductance
- Mirroring Mismatch
- ADC Thermal Noise
- ADC Quantization

Proposed SGD Attack for MEA

SGD Attack

Bit-error rate (BER)

Inference accuracy

Apply MEAs to retrieve weights of ResNet-20 last layer from MRAM-IMC chip

SGD attack requires least number of queries at **high SNDR** to achieve **lowest BER** for all ADC columns → inference accuracy within < 0.1% of FX

Measured Energy-Accuracy-Security Trade-offs

Previous attacks were performed at high SNDR

What happens at low SNDR?

	High bias (HB) $(I_B = 92 \mu A)$	Low bias (LB) $(I_B = 67 \mu A)$
Low frequency (LF) $(F_{clk} = 8.3 \text{ MHz})$	HB-LF (highest SNDR)	LB-LF
High frequency (HF) $(F_{clk} = 16.6 \text{ MHz})$	HB-HF	LB-HF (lowest SNDR)

Strongest attack fails at low-SNDR

Resistive IMCs are vulnerable to model extraction attacks

Low-SNDR settings resilient to MEAs, with need for algorithmic methods to boost inference accuracy under benign scenarios

Thank You!

Support from COCOSYS and CUBIC under JUMP 2.0 (DARPA and SRC) and DARPA FRANC Program is gratefully acknowledged