世界知的所有権機関 国。際事 務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07C 237/22, 255/60, 275/28, 341/06, 311/19, 327/42, 327/48, 335/26, CO7D 205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64, 309/38, 333/34, 333/38, 333/70, 335/02, A61K 31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

A1

(11) 国際公開番号

WO98/22432

(43) 国際公開日

1998年5月28日(28.05.98)

(21) 国際出願番号

PCT/JP97/04174

JP

(22) 国際出願日

1997年11月17日(17.11.97)

(30) 優先権データ

特願平8/306192

1996年11月18日(18.11.96)

神徳 宏(KOUTOKU, Hiroshi)[JP/JP]

〒305 茨城県つくば市松代五丁目6番14号 Ibaraki.(JP) (74) 代理人

弁理士 長井省三,外(NAGAI, Shozo et al.) 〒174-8612 東京都板橋区連根三丁目17番1号 山之内製薬株式会社 特許情報部内 Tokyo, (JP)

(71) 出願人(米国を除くすべての指定国について) 山之内製薬株式会社

(YAMANOUCHI PHARMACEUTICAL CO., LTD.)[JP/JP] 〒103 東京都中央区日本橋本町2丁目3番11号 Tokyo. (JP)

(72) 発明者:および

(75) 発明者/出願人(米国についてのみ)

公口伸明(TANIGUCHI, Nobuaki)[JP/JP]

〒305 茨城県つくば市桜田丁目28番4号 Ibaraki, (JP)

岡田 他(OKADA, Minoru)[JP/JP]

〒302 茨城県取手市本郷五丁目6番29号 Ibaraki, (JP)

知来英貴(KAKU, Hidetaka)[JP/JP]

〒305 茨城県つくば市松代四丁目6番7-403 Ibaraki, (JP)

島田逸郎(SHIMADA, Itsuro)[JP/JP]

〒305 茨城県つくば市高野台 二丁目12番1-B201 Ibaraki, (JP)

野澤栄典(NOZAWA, Eisuke)[JP/JP]

〒305 茨城県つくば市二の宮三丁目13番1-402 Ibaraki, (JP)

AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, GH, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO特許 (GH, KE, LS, MW, SD, SZ, UG, ZW), ユーラシ ア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR,

添付公開書類

NE, SN, TD, TG).

国際調査報告書

NOVEL ACYLAMINO-SUBSTITUTED ACYLANILIDE DERIVATIVES OR PHARMACEUTICAL (54) Title: COMPOSITION COMPRISING THE SAME

新規アミルアミノ置模アミルアニリト誘導体又はその極薬組成物 (54)発明の名称

(57) Abstract

Acylamino-substituted acylanilide derivatives represented by general formula (1) or salts thereof, and a pharmaceutical composition comprising the same. They have an antiandrogenic activity and are useful as a prophylactic or therapeutic agent for prostatic cancer, prostatic hypertrophy, defemination, hypertrichosis, bald head, acne, seborrhea and the like in whole How is involved as an exacerbating factor.

BEST AVAILABLE COPY

(57) 要約

下記一般式(I)で示されるアシルアミノ置換アシルアニリド誘導体又はその塩及び、これ らを含有する医薬組成物。

抗アンドロゲン作用を有し、アンドロゲンが増悪因子として関与する前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ瘡、脂漏等の予防又は治療剤として有用。

~. 開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

SSTTTTTTTUUUUVYZ SSTTTTTTTUUUUVYZ SSTTTTTTTUUUUVYZ アファージルルリクガ国ズィーン ド シス ゲ タムラ アスチトタトトトウウ米ウヴニジ アフロG - MRT A GS Z N U W アフロG - MRT A GS Z N U W アフローン

明和谐

新規アジルでは置換でしルアニ県・誘導体ではその医薬組成物

技術分野

本発明は、抗アンドロデン薬として有用な、新規アシルアミノ置換アシルアニリト誘導体及 びその塩並びに医薬組成物に関する

背景技術

ステロイドホルモンの一種であるアンドロゲンは精巣や副腎皮質から分泌され、男性ホルモン作用を引き起こす。アンドロゲンは、標的細胞内に取り込まれて核内のアンドロゲン受容体に結合し、アンドロゲンが結合した該受容体は、量体を形成する。この工量体はDNA上のアンドロゲンーレスホンスーエレスと同語合してm=RNAの合成を促進し、アンドロゲン・作用を引る蛋白を誘導することにより、生体内で種々の作用を発現させる(Prostate Suppl 45-51(1996))。アンドロゲンが増態因子となる疾患には、前立腺癌、前立腺腫大症、男性化症、多毛症、禿頭症、ざ癌、脂漏等が挙げられる。抗アンドロゲン剤は、アンドロゲンの転写活性化を抑制し、アントロゲンの作用を遮断することが、これもので、上ロー、が増態因子となる疾患の治療剤として行用である。

一抗で、トロケン剤は、基質類的のスペル(体質格を有する化合物)スペロ(行 系抗で、)コ ゲン剤)と、非スケロイ(骨格を有する化合物)非ステロ(行系抗で)トロゲン剤)に分類されている。

非ステロイド系抗アンドロゲン剤としては、アシルアニリド誘導体であるフルタミド(特開昭49-81332)が知られている。フルタミド自体には抗アンドロゲン作用はなく、代謝によってカルボニル基に直結する炭素原子(α炭素原子)に水酸基が置換することによりハイドロキシフルタミドとなり、活性発現することが知られており、この水酸基が抗アンドロゲン作用の発現に不可欠なものであると考えられている(J. Med. Chem 31、954-959 (1988))。また、ビカルタミド(GB 8、221、421)も既に諸外国にて上市されており、GB 8、221、421にはアシルアニリド誘導体のアシル部分がアリール(又はヘテロアリール)スルホニル(又はスルフィニル若しくはチオ)やアリール(又はヘテロアリール)アミノで置換されたアルカノイル等であるアシルアニリド誘導体がクレームされている。しかしながら、実質的に開示された化合物は、ハイドロキシフルタミドと同様に、全てα炭素原子に水酸基を有する化合物である。

ー・方、カルホニルでミケーセトアニリバ誘導体としては、US 4、532、251に、ビランニルカルボニル基又は置換イミダンリルカルホニル基で置換された2、6ージパニケ ケルニル りゅう アミドル役団剤として開示されている。しかしたがら、これらり化合物が抗アントロサン作用を有することは開示も示唆もされていない。

非ステコイト系抗アンドロケン剤としては、上記の化合物がよく知られているが、これらの抗アンドロケン剤の効果は十分とはいえず、また副作用の面でいくつかの問題が指摘されている。 即ち、薬物の中枢、の作用によると考えられる女性化乳房、乳房痛 (Semin. Oncol 18 (5 Suppl 6) 13-18 (1991). J. Med. Chem. 31 954-959 (1988)) や長期使用によるアコニスト作用の発現 (J. Urol. 153 (3 part 2) 1070-1072 (1995)) 等である。特に、前立腺癌の治療においては、アンドロゲン作用を完全に遮断する必要がある為、アコニスト作用の発現は治療上大きな問題となる。

本発明の目的は、強力な抗アンドロゲン作用を有し、これらの副作用が少ない、新規アジルアミノ置換アジルアニ中、誘導体及びその塩を提供すること、更にはこれらを含有する匠薬を提供することである。

発明の開発

本発明者。は、既存(抗工、主コヤン剤に付随事ではより問題点を解決)も、、税息可 完を行ったとこう。意外には、アニュアミノ基の関操してい、カフェリ 誘導体が、従来、活 性発現に必要であると考えられていた。最近素原子の水酸基を有さなくとは、強い抗工ントニ ゲン作用を示し、更に副作用が少なく、良好な経口活性を有する化合物である事を見出し 本発明を完成させるに至った

即も、本発明は、下記一般式(1)で示されるアシルアミノ置換アシルアニリド誘導体又は その塩に関する

(式中の記号は以下の意味を有する。

R¹及びR²:同一又は異なってハロゲン原子、シアノ、ハロゲノ低級アルキル、ニトロ、カルボキシル、低級アルカノイル又は低級アルコキシカルボニル基

R*: 水素原子又は低級アルキル基

n:0 表ば1

R*、R*、R*及びR*:同一又は異なって水素原子、置換基を有していて制度い低級アルキル 又はアラルキル基

或いは、R*とR⁵が一体となってペテロ原子を含んでいても良いシクロアルキル基を形成してもよく、スは、nが1のときR⁵とR*が一体となって、シクロアルキレン基を形成してもよい。

A,及びA.:同一又は異なって結合又は低級アルキレン基

R*: 水素原子、水酸基、低級アルコキシ、低級アルキル、アラルキル又はアラルキルナキシ 基

或いはR*とR*が一体となって含窒素シクロアルキレン基を形成してもよく、又はnが1のときR*とR*が一体となって含窒素シクロアルキレン基を形成してもよい。

2:アシル基

X:酸素原子又は硫黄原子

但し、Zかペデロアリールカルボニル基の場合は、RでRの少なくど、一方は水素原子以外の基を示す。)

好表现这次,Z为Y一R与式中心记号时以下的意味与有量的

R*: 低級アルキル、E クロアルキル、又は置換基を有いていておおいてリール、アラルテニル、 アラルキル、昔してはアリール・オキシ 低級アルキル、或いは、ペンセン環と縮合しておよ いペテロアリール基

R": 水業原子又は低級アルキル基

X₂:酸素原子又は硫黄原子

m. 5 人(式1, 2

但し、Yがカルボニル基であり、R[®]がヘテロアリール基の場合は、R[®]とR[®]の少なくとも一方は水素原子以外の基を示す。)であるアシルアミノ置換アシルアニリ(誘導体又はその塩;

更に好ましくは、R*又はR*、R*及びR*の低級アルキル基若しくはアラルキル基の置換基が、1以上の同一又は異なった、ハロゲン原子、水酸基、低級アルコキシ、低級アルカノイルオキシ、ハロゲノ低級アルキル基からなる群より選択される置換基であり、R*:のアリール、アラルケニル、アラルキル若しくはアリールオキシ低級アルキル基、若しくは、ベンゼン

環と縮合してもよい、モニアニール基ト置換基が、1又はそれ以上の同一又は異なった。ハニーン原子、水酸基、ハニデノ低級アルキル、低級アルキル、低級アルコキン、ハニテノ低級アルカノイルでキシ、フェニル、モノ若しくはご低級アルキルでより基、カルボキシル基、低級アルコキシカルボニル基、モノ苦しくはご低級アルギルアミノカルボニル、低級アルカノイルアミノ及びオキソ基からなる個より選択される置換基であるアシルアミノ置換アシルアニリド誘導体又はその塩;

より好ましくは、nが0でもり、R*又はR*が同一又は異なって水素原子、又は1以上の同一又は異なった置換基が、水酸基、低級アルコキシ、低級アルカノイルオキシ、ハロザノ低級アルキル基からなる群より選択される置換基を有していても良い低級アルキル若しくはアラルキル基であるアシルアミノ置換アシルアニリビ誘導体又はその塩;

最も好ましては、以下よりなる群の化合物又はその塩から選択される化合物:

N-{1-[(4-5 アノー3 - トリフルオロメチルフェニル) カルバモイル]ー | ーメチルエデル・-4-アルオロバンズアミド;

N-11-[(3,4-i5)]r/7i=n) カルバモイル]-1-4 チルエチル[-4-7)ルオロッジ スア $\exists i$:

 $N = (1 + 1)(1 + 2\pi m + 4 + 1) \times 2\pi m + 2\pi m + 3\pi m + 4\pi m + 4\pi$

ペー・1-[(4-) アノー3-) サバル オロマチル 7 [(22元) カル・サイル) 1 メデルエチル 1-2、4、6-トリアルオコペン ス字 (注):

4ークロコーNー | 1ー[(4ーシアノー3ートリフルオロメチルフェニル) カルバモイル]ー1ー メチルエチル | ベンズア : ド;

である。

また。 七葉明ピーエー・アミン置換アシルアニリド誘導体又はその製薬学的に許容される 塩を有効成分とする医薬組成物、殊に抗アンドロゲン剤である医薬組成物に関し、なかでも、 前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ瘡、脂漏の予防又は治療剤である る医薬組成物に関する。

一般式(I)で示される化合物について更に説明すると、次の通りである。

本明細書の一般式の定義において、特に断らない限り「低級」なる用語は炭素数が1万至 6個の直鎖又は分枝状の炭素鎖を意味する。 置換基を行していても良いアリール基、アラルケニル基、アラルキル基、ペンゼン環と縮合しても良い、テロアリール基、苦しくはアールオキン低級アルキル基は、環上に1万部3個の置換基を有していてもよし、好ましくは、ハロケン原子、ハロゲノ低級アルキル基、低級アルキル基、低級アルキル基、低級アルコキン基、ハロゲノ低級アルコキン基、ニトロ基、低級アルカノイルオキン基、水酸基、フェニル基、モノ苦しくはが低級アルキルアミノカルボニル基、低級アルカノイルアミノ基又はオキソ基である

R*, R*, R*及びR*において「置換基を有していても良い低級アルキル基又はアラルキル 基」の置換基は、I以上の同一又は異なった置換基が、水酸基、低級アルコキシ基、低級ア ルカノイルオキシ基、ハロデノ低級アルキル基からなる群より選択される

「低級アルキル基」は直鎖状又は分枝状の炭素数1~6の低級アルキル基を示し、例え、 ・(世メチル、エチル、nープロビル、イノプロビル、nープチル、イソプチル、secープチル、tert ープチル、nーペンチル、nーペキシルなどが挙げられ、炭素数1~3の低級アルキル基が 好ましい

「低級アルキレン基目で直鎖状では分枝状の炭素数1~6の低級アルキレン基を示し、例 元はメチレン、エチレン、コロビレン、イグアロビンン、デチレン、デタスチレン、ベキサメチ レンなどの質はつかに炭素数1~4の低級でを含むに基の好まして、更に質まし合するチレン である。

「アリール基」は炭素数6~12の芳香族炭素水素基が好まし、例えばフェニル、 α ・サフチル、 β ーナフチルなどがあげられる。更には、炭素数6~10のものが好ましい。

「アラルキル基」は「アリールー低級アルキレンー」を意味する。

「アラルキルオキシ基」は「アリールー低級アルキレンー〇一」を意味する。

「アラルケニル基」は「アリールー低級アルケニレンー」を意味し、好ましくはC₆₋₁₀アリールーC 、アルケニル基でもり、フェニルエテニル、フェニルフロペニル、ナフチルエテニル、ナフチルプロペニルなどが挙げられる。

「アリールオキシ低級アルキル基」は「アリールー〇ー低級アルキレンー」を意味する。

「低級アルコキシ基」は「低級アルキルー〇一」を意味する。

「低級アルコキシカルボニル基」は「低級アルキルー〇一〇(=〇)ー」を意味する。

「低級アルカノイル基」は「低級アルキルーC(=O)-」を意味する.

「低級アルカノイルオキシ基」は「低級アルキルーC(=O)-O-」を意味する。

PCT/JP97/04174

「低級アルカフィルアミノ基立」に扱びルキルー $C(=O) = NR^{11} = 1$ を意味し、 R^{1} に水 素原子 Zは低級アルキル 基を示っ

「ハロゲン原子(としては例えば、コー素、塩素、臭素又はヨウ素原子などが挙げられる「ハロゲ (低級アルキル基)の低級アルキル基は上記のC₁。アルキル基に上記ハロゲン原子が1-3個置換したものであり、トリフルでロメデルが好ましい。

・ハコゲノ低級アルコキシ基(はFハロサノ低級アルキルーOー)を意味する

「アジル基」は、広義のアジル基を意味し、カルホニル誘導体及びスルホニル誘導体を意味する。

15 クロアルキル基式は3~8員飽和炭化水素環を意味し、好ましくは3~6員のシクロアルキルである。

fo クコアルキレン基]は上記の、クロアルキルの結合手が2つのものである

「モノ苦しくはジ低級アルキルでく/基下は、上記低級アルキル基か1 Zは2置換したアミノ基を食味する。

「エノ告しくはジ低級アルキルアミノカルホニル盟」とは、「モノ告しくはジ低級アルキルアミノーC = O(1)」を意味する

「R 世Rでから体となって、空中原子を含んでいてわれば、色でである。基本形成するとは、 環境子は、CR 世R 及びそれ、高結合した。心理事項子を含む。上記、クロである。基であれ、 環上に窒素原子、酸素原子、硫黄原子の心選択される。一中原子につを含んでいてわた。 また、該、デロ原子、例えば、硫黄原子は1 くは2個のオギソ基で置換されていてもた。空 素原子は低級アルギル基で置換されていてもよい。ペテロ原子は酸素原子が好まし、具 体的にはオギザニルが挙げられる

「nが1のときR®とR®が一体となって、シクロアルキレン基を形成する」とは、R®とR®及びそ いうと結合して、エザキロ子でA」を環原子として含む上記シクロアルキレンを形成すること を意味する

「ベンゼン環と縮合していても良いへテロアリール基」とは、窒素原子、酸素原子又は硫 黄原子から選択されるヘテロ原子1乃至3個を含む5又は6員ヘテコアリール基、又はベン ゼン環と縮合した2環系ヘテロアリール基を意味し、該ヘテロアリールとしては、ビロール、イ ミダゾール、ヒラゾール、ビリジン、ヒラジン、ビリミジン、ヒリダジン、トリアゾール、チオフェン、 チオピラン、フラン、ピラン、ジオキソラン、チアゾール、イソチアゾール、チアジアゾール、チ

アンコ、オキャソール、イバキャソール、オキサジアジール、フラボン、バオキャソール、オキャシン、オキャジアジン、ジオキサジン等が挙げられ、ベンゼン環と縮合した含窒素ペテロアリールとしてはインドール、イソインドール、キャリン、イソキュリン、インチオコェン、ベング・ファイン・ル、ベング・フラボン等が挙げられる。好味し、は、ヒリジン、ヒリミジン、イントール、キャリン、チオフェン、フラン等である

ルペデコアリールカルボニル 魅 Jとは、ルペデコアリールーC (=O) - Jを意味し、ペデコアリールとは、上記の5 スは6員ペデコアリールを意味する

「R*ER*か一体となって含窒素シクロアルキレン基を形成する」又は「nが1のときR*ER*が一体となって含窒素シクロアルキレン基を形成する」とは、環原子とLでR*が置換している炭素原子を含む5~7頁含窒素シクロアルカン、又は環原子としてR*が置換している炭素原子を含む5~7頁含窒素原子及びAを含む4~7員含窒素シクロアルカンを形成することを意味し、具体的にはビロール、ヒヘジシ、2ーへキャヒドコアゼピン等が挙げられ、ビロール又はヒヘジシンが好ましい。

本発明化合物において三級アミンを有する化合物は当該アミンがオキシド化されていて もよし、それらのマキンド化誘導体をすって包含するものである。

本範期化合物中は、医生結合に基づした変異性体が存在する。置換基づ種類に主
は、4個乃面複数個の主意境素原子を育まる場合にあり、「紅に基づし取り体、18)体等・ 光学異性体、ラセ 体、1 アステレナー・等が存在する。また、置換基づ種類に対しては、 二重結合を存する場合も活め、(Z)体、(E)体等の幾何異性体が存在する。更に環を存む る化合物ではシスートランスが存在することがある。本発明は、これらの異性体の分離され たものあるいは混合物を全て包含する。

本発明化合物は塩を形成する。具体的には、無機酸若しくは有機酸との酸付加塩、あるいは無機若しくは有機塩基との塩であり、製薬学的に許容しうる塩が好ましい。これらの塩としては、具体的には塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸若しくは燐酸等の鉱酸、又はギ酸、酢酸、フロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸若しくは、トルエンスルホン酸等の有機酸、又はアスハラギン酸若しくはグルタミン酸などの酸性アミノ酸との付加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、リチウムなど無機塩基、メチルアミン、エチルアミン、エタノールアミンなどの有機塩基、リジン、オルなど無機塩基、メチルアミン、エチルアミン、エタノールアミンなどの有機塩基、リジン、オル

ニモンなどの塩基性できる酸とり塩等を挙げることが出来る。更に4級アンモニウム塩でもで ことしてきる。4級アンモニウム塩は、具体的には低級アルキルパライト、低級アルキルトで ラート、低級アルキルトシラートではペンシルハライド等と反応させて得られるアンモニウム 塩であり、好ましてはメチルヨージドではペンシルクロリド等との塩である。

更に、本範則化合物は水和物、エグノール等とり溶媒和物や結晶多形を形成することができる。本範期は、これらの水和物、溶媒和物では結晶多形の分離されたものあるいは混合化合物を全て包含する。

(製造法)

本発明化合物(I)は、種々の製造法を適用して製造することができる。以下にその代表的な製造法について説明する。

第一製法

$$\begin{array}{c} R_{1} \\ R_{2} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{6} \\ R_{7} \\ R_{2} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{6} \\ R_{7} \\ R_{8} \\$$

大事の記号は、面建り同様である。

本製造法は、一般式(II) で示される置換でニコンスはその塩と、一般式(III) で示される カルボン酸スパモの反応性誘導体スはチオカルボン酸、スはその反応性誘導体とをでご 化し、保護基を有するときは保護基を除去する事により本発明化合物(I)を製造する方法である

化合物(III)の反応性誘導体としては、カルボン酸のメチルエステル、エチルエステル、イソブチルエステル、tertーブチルエステルなどの通常のエステル、酸クロリド、酸フロミドの如き酸ハライド、酸アジド、2、4ージニトロフェノールなどのフェノール系化合物や1ーヒドロキシスクシンイミド、1ーヒドロキシベンゾトリアゾールなどのNーヒドロキシアミン系化合物等と反応させて得られる活性エステル、対称型酸無水物、アルキル炭酸ハライドなどのハロカルボン酸アルキルエステルやヒバロイルハライドなどと反応させて得られる有機酸系混合酸無水物や塩化ジフェニルホスホリル、Nーメチルモルホリンとを反応させ、又はトリフェニルホスフィンなどの有機燐化合物とNーブロモスクシンイミド等の活性化剤の組み合わせで得られ

る有機舞業の活性エスールが業けられる

またカルボン酸を遮離酸で反応させるとき、又は活性エステルを単離セーに反応させる時など、ジシクロペキシルカルボジイミト、カルボエルジイミダゾール、ジフェニルボスボリルアジド、ジエモルボスボリルシアニドや1ーエチルー3ー(3ージメチルアミノフロビル)カルボジイミド塩酸塩、チオニルクロリド、オキザリルクロリド、近塩化燐、三塩化燐、オキシ塩化燐、ベンプトリアゾールー1ーイルオキシトリス(ジメチルアミノ)フォスフォニウムペキャフルオロフオスフェート、無水トリフルオロ酢酸、無水酢酸、ビバロイルクロリド、メタンスルボニルクロリドやトシルクロリド等の縮合剤を使用するのが好適である。特に本発明においては酸クロリド又は、燐酸系の混合酸無水物を用いる方法が有利である。

反応は使用する反応性誘導体や縮合剤などによっても異なるが、通常ジグロロメタン、シグロコエタン、グロロホルムなどのパロゲン 化炭化水素類、ベンゼン、トルエン、キシンン等の 芳香族炭化水素類、エーデル、デトラヒドロフラン等のエーデル類、酢酸エチュエステル等のエステル類、アセトニビル、N、Nージメチルホルムア は、N、Nージメチルアセトア は、Nーメチルー2ーヒコリンやジメチルスルカボンド等の反応に不活性な有機溶媒中、治却下、治却下方至室温下、又は室温力配加熱下に行われる

画、反応に際して、置換アニル(IDを過剰に用いても、Nースチのモルボル。) ロスチルア 1、トリにチルア 1、N、N 、 スチルア に ル、レル 1、1 (N、N ー、スチルア に ル)、 ヒリシン、ヒコル、ルチシ) などの 塩基の存在 1 (口反応させるのが、反応を円滑に進行させるとで有利な場合がある。と いう などは溶媒とすることにできる

この際分子内に存在する酸素原子、硫黄原子、窒素原子等は保護基と結合していることが望ましい場合があり、このような保護基としてはGreene及びWuts著、「Protective Groups in Organic Synthesis」第2版に記載の保護基等を挙げることができ、これらを反応条件に応じて適宜使い分けることができる。

第二製法

$$R^{1}$$
 R^{2} R^{3} R^{4} R^{5} R^{6} R^{7} N^{1} N^{1} N^{2} N^{2} N^{3} N^{4} N^{5} N^{6} N^{7} N^{8} N^{1} N^{2} N^{2} N^{3} N^{4} N^{5} N^{6} N^{7} N^{8} N^{2} N^{2} N^{3} N^{4} N^{5} N^{6} N^{7} N^{8} N^{2} N^{2} N^{3} N^{4} N^{5} N^{6} N^{7} N^{8} N^{2} $N^$

(式中の記号は、前述と同様である。)

本製造法式、本差明化合物(IV)で示される置換アジスは七の塩と、一般式(V)で示されるカルボン酸、スパモの反応性誘導体、イルボン酸、スパモの反応性誘導体、千寸カンボン酸、スパモの反応性誘導体とを下述化し、本範明化合物(Dを製造する方法でから、電一製法と同様の反応条件が使用可能である。

更にウレアスはチャウレア誘導体を台成する際には、上記り他に介た アン酸エステル、 スはイソチオシアン酸エステル誘導体との縮台反応を用いるのが好適である

反応は使用する反応性誘導体や縮合剤などによっても異なるが、通常ジクロロメダン、ジクロコエタン、クロコボルスなどのヘロケン化炭化水素類、ペンセン、トルエン、キュレン等が芳香族炭化水素類、エーテル、モトラビトロプラン等のエーテル類、酢酸エチルエステル等のエステル類、N、N・ジメチルボルムアミドやN、N・ジメチルアセトアミドやジメチルスルホルンド等の反応に不活性な有機溶媒中、治却下、治却下乃至室温下、又は室温乃至加熱下に行われる。

尚, 反応に際して、本発明化合物 (IV) を過剰に用いたり、Nーメチルモルホリン、トリメチルアミン、トリエチルアミン、N, Nーシメチルアニリン、ヒリシン、4ー(N, Nージメチルアミク) ヒリジン、ヒニリン、ルチンンなどの塩基の存在下に反応させるカル、反応を円滑に進行させる上で行利な場合いする。としてなりに溶媒といって足にさる

第二型力

(式中の記号は、前述と同様である)

七型造法は、本発明化合物(Ia)で示されるアミド基をモオアドド基へと変換し、本発明化合物(Ib)を製造する方法である。

本反応は五硫化二燐、Lawesson試薬等アミド誘導体からチオアミド誘導体を台成する 公知である任意の化学的方法により製造可能である

反応は通常ジクロロメタン,ジクロロエタン,クロロホルムなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、エーテル、テトラヒドロフラン等のエーテル類、酢酸エチルエステル等のエステル類、ヒリジン等の反応に不活性な有機溶媒中、冷

却下、冷却下乃至室温下、又は室温乃至加熱下に行われる

また分手内に複数個のアミド基文はウレアが存在する場合、反応条件等の調節により任意の部位又は複数個のアミド基をモオアミド基に、ウレアをモオウレアに変換する事が可能である。

その他、加水分解、水素化、ウレイド化等も常法により行われる

このようにして製造された本発明化合物は、遊離のまま、その塩、その水和物、その溶媒和物、あるいは結晶多形の物質として単離精製される。本発明化合物(1)の塩は、常法の造塩反応に付すことにより製造することもできる。

上記製法の原料化合物中には、新規な物質も含まれているが、参考例記載の製法やモの製法に進せる方法、或いは当業者が任意に実施可能な要法を適用して製造できる。

単離精製は、抽出、濃縮、留生、結晶化、濾過、再結晶、各種クロマトグラフィー等の通常の化学操作を適用して行われる。

各種の異性体は、適当な原料化合物を選択することにより、あるいは異性体間の物理化学的性質の差を利用して分離することができる。例えば、光学異性体は適当な原料を選択することにより、あるいはラセミ化合物のラセミ分割法により、立体化学的に純粋な異性体に例でによってきる。

産業上の利用可能性

本発明化合物はアンドロデンによる転写活性化を抑制することにより、強力な抗ア: トロデン作用を有し、中枢作用、アゴニスト作用等の副作用の少ない化合物である。

従って、本発明化合物はアンドロゲンが増悪因子として関与する疾患、例えば、前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ瘡、脂漏等の治療又は予防剤として有用である。

本発明化合物の有用性は、下記の試験方法により確認されている。

1. ヒトアンドロゲン受容体に対する転写活性化作用

ヒト アンドロゲン受容体発現遺伝子、MMTVレホーター遺伝子安定形質転換体および SV40レホーター遺伝子安定形質転換体の取得

CHO 細胞を, 直径 100 mm の細胞培養用ディッシュに I×10° 個播き, 12~18 時間後に, リン酸カルシウムと共沈殿させたヒト アンドロゲン受容体発現プラスミト, MMTV-LTR

PCT/JP97/04174

n三 フェラーゼレホーターフラスミド(ネオマイ)ン耐性遺伝子も含む)を加え自ランスフェクションを行った。15時間後に培地を除き、細胞を数段階に希釈し播き直し、培地にGENETICIN®(ネナマイ)ン)を終濃度 500 μ g/ml となるように加えた。約1週間後、ネオマイシン(によって選択された細胞を剥がし、限界希釈法によりにトプントコーン侵害体免現遺伝子、MMTV-ルシフェラーゼレホーター遺伝子を恒常的に発現する細胞を単離取得した(CHO/MMTV 安定形質転換体)

上記と同様にして SV40 レホーター遺伝子安定形質転換体を取得した。たたし、SV40 レホーターフラスボビネオマイシン 耐性遺伝子発現フラスボを同時にトランスフェクトした (CHO/SV40 安定形質転換体)

a)にトアンドロゲン受容体に対する転写活性化作用の評価(agonist 作用)

本発明化合物による転送活性化作用を InM DHT により誘導される転送活性に対する 比率として以下の式により算出した

誘導率(%)=100(X-B)/(I-B)

ElnM DHT を添加した場合の(MMTVルシフェラーゼ活性)/(SV40ルシフェラーセ活性)

B:無処置での(MMTVルシフェラーセ活性)/(SV40ルシフェラーセ活性)

N す 窓町化 か物を添加り 上場合 カ(MMTV4シフェラーゼ活性)/(SV404シフェラーゼ活性) b)ヒト アンドロゲン受容体に対する転写活性化抑制作用の評価(antagonist 作用)

CHO/MMTV 安定形質転換体細胞および CHO/SV40 安定形質転換体細胞を、それぞれ 96well 細胞培養用ルミノフレートに 1×10^4 個播き、 $6\sim8$ 時間後に DHT(最終濃度 0.3 nM)と同時に本発明化合物を添加した 化合物添加 18 間後に 1% トリトン-X および 10% グリセロールを含む溶液 $20~\mu$ 1を加え細胞を溶かし、0.47 mM ルシフェリンを含む ルシフェラーゼ基質液 $100~\mu$ 1を加え、ルミノメーターを用いて発光量を測定し、これらを

ヒト アンドロケン受容体による MMTV-LTR 転等活性化的よび、非特異的な SV40 フェモードー転写活性化により得られるが、フェラーセの活性とした

本発明化合物による転写活性化抑制作用を 0.3nM DHT により誘導される転写活性に 対する阻害率として以下の式により算出した

阻害率(%)=100(Г-X*)/(Г-B)

- F:0.3nM DHTの海添加した場合の(MMTVルシフェラーゼ活性)(SV40ルシフェラーゼ活性)B:無処置での(MMTVルシフェラーゼ活性)(SV40ルシフェラーゼ活性)
- X 本発明化合物と0.3nM DHT を同時に添加した場合の(MMTVルンフェラーセ活性)/(SV40ルンフェラーセ活性)

上記の方法で算出した阻害率が50%となる本発明化合物の濃度から1C漏を求めた上記の及びb)により求められた本発明化合物の活性を以下に示す

表1

試験化台物	b) antagonist [印]] IC ₅₀ (nM)	a) agonist 作用 10 μ Μ添加時の誘導率 (%)
実施例25	0.87	1.9
実施例17	0.56	0.5
"玛施例图2	0.75	l -l
(兵施例72	0.71	0.4
異施例69	10	0.3
Bicalutamide	0.88	. 18.9

- 2. 幼若去勢ラーマッテストステロン誘導前立腺重量増加に対する抑制作用
- 3 週令の雄性 Wistar ラットを去勢後 72 時間より、ロビオン酸テストステロンおよび本発明 化合物を同時に1日1回5日間連続投与した。最終投与6時間後、腹側前立腺の湿重量を 測定し、プロビオン酸テストステロンによる前立腺重量増加に対する本発明化合物の抑制 作用を検討した。

プロピオン酸テストステロンは 5% エタノールを含む綿実油に溶解しラット体重 1Kg あたり 0.5mg を皮下投与した 本発明化合物は 0.5% メチルセルロース溶液に懸濁し経口投与した。

本発明化合物の前立腺重量増加抑制作用はフロビオン酸テストステロンおよび本発明化合物をともに投与した群を試験群、フロビオン酸テストステロンのみを投与した群を対照群、プロビオン酸テストステロンおよび本発明化合物ともに投与しない群を無処置群として、以下の計算式により算出した。

抑制率(%)=100(B-A)/(B-C)

- A試験群の腹側面立腺湿重量
- B 对照群 []腹側面立腺湿重量
- C無処置群の腹側面立腺湿重量

上記の試験法により求められた本発明化合物の活性を以下に示す

表2

試験化合物	前立腺重量增加抑制率(%)
	(10mg/kg_p o.)
実施例42	79
実施例30	79

これらの試験により、本発明化合物は純粋な抗で、トロデン作用を有し、アンドロデンの作用を強く抑制することが確認された。また、中枢移行性が低いことも確認されており、副作用が少なく、アンドロデンが増悪因子として関与する疾患の予防・治療薬として有用な化合物である。

本発明化合物又はその塩の1種又は2種以上を育効成分として含育する製剤は、通常製剤化に用いるわれば、1種の膨胀形剤、その他の添加剤を用いて調製される

投与、は電視、圧削、サンセル剤、顆粒剤、散剤、液剤与にする経口投与、とからは静止、 筋正等の圧射剤、生剤、経度等による排溢に関与いいにれる形態であって利息。 投与 量は症状、投与対象の組合、性別等を考慮して個々の場合に応じて適宜決定されるか、重 常経口投与の場合成人111当り0、01~1000mg程度、好ましくは0、1~100mg、非経口 投与の場合成人1日当り0、1~100mg、好ましくは0、001~50mg程度であり、これを1回 で、あるいは2~4回に分けて投与する

本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる このような固体組成物においては、一つ又はそれ以上の活性物質が、少なくとも一つの不活性な希釈剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシフロビルセルロース、微結晶セルロース、デンブン、ホリビニルビロリドン、メタケイ酸、アルミン酸マグネシウムと混合される 組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤や繊維素グルコール酸カルシウムのような崩壊剤、ラケトースのような安定化剤、グルタミン酸又はアスパラギン酸のような溶解補助剤を含有していても良い錠剤又は丸剤は必要によりショ糖、ゼラチン、ヒドロキシプロヒルセルロース、ヒドロキシフロ

ビルマチルセルロースでダレート等の題表えば胃溶性あるいは腸溶性物質のファルムで被 膜して制度い

経口投与のための高体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロ・ ブ剤、エリキシル剤等を含み、一般的に用いられるで活性食命釈剤、例えば精製水、エタケ ールを含む この組成物は不活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味剤、 風味剤、芳香剤、防腐剤を含有していても良い

非経自投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水及び生理食塩水の含まれる。
非水溶性の溶液剤、懸濁剤としては、例えばプロビレンクリコール、ホリエチレングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ボリソルメート80等がある。このような組成物はさらに防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えば、ラケトース)、溶解補助剤(例えば、グルタミン酸、アスハラギン酸)のような補助剤を含んでいても良い。これらは例えばパクデリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。また、これらは無菌の固体組成物を製造し、使用前に無菌水又は無菌のは再用溶媒に溶解して使用することにできる。

範囲を実施するための最良の形態

りますに実施例を掲記り、水を明を更に詳細に説明する。本を明は、これらの実施例に何ら制限されるものではない。尚、実施例で用いられる原料化合物の製造方法を参考例として説明する。

参考例1-1

2-(4-フルオロフェニルスルホニルアミノ)ブタン酸メチル

2-アミノブタン酸メチル塩酸塩1.54gをクロロホルム15mlに溶解し、氷冷下、トリエチルアミン2.23g、p-フルオロフェニルスルホニルクロリド1.95gを順次滴下した後、アルゴン雰囲気下、室温で4時間攪拌した。反応液をクロロホルム35mlで希釈し、1N塩酸50ml、飽和重曹水50mlで洗浄後、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残渣にジイソプロヒルエーテル10mlを加え、折出した結晶を酢酸エチルより再結晶し、無色結晶の表題化合物2.73gを得た

参考例1-1と同様に以下の参考例を合成した。

恭善也.	2. 企物图
双考例1-1	12 (44) ソルサい ミップルグミッ せつぶがんだい ノ動をそれ
参考例1 B	2002 - ちゃション アイルアミバービー イナルフロバン 酸スナル
参考例1-4	セーローン アルベン アイルアミカービー ぐらしつけいン酸 をもん
参号例1 5	ピー (4ー)パブル ナロメモル・ジングルマミカーピー たらルブロバン 酸メモル
参考例1-6	2-(4-フルオロフェニルスルボニルマミハー2-メチルフロハン酸メチル
泰等例1-7	- 2 - (4 - エトロフェニルスルボニルアミノ) - 2 - メチルブロハン酸メチル
参考例1-8	2-(4-メトキシフェニルスルホニルアミリー2-メチルフロバン酸メチル
参考例1-9	3 - (4-7)にすロフェニルスルボニルブミリフロージ酸メデル
泰考例1-1·1	3-14-7ルナログにエルスルボニルでくりですと酸メモル
参考例1-!1	
泰考例1-12	1 14-70年では、ジェイルアミコングロアロビルウルボン酸やデル
珍考例1 13	1-(4-フルザロフェニルスルボニルアミン) でに ジーチルカルボン酸くチル
泰省例1-14	1~(4~7年寸から) ツイルでくりょうけい ジーチルカルボン酸くチル
参号例1-15	1 (4) フルナロフェニルスルホニルアミハシ ニム・キシルカルボン酸メデル
参考例1-16i	1-(4-7) すいシッイルアミハシタニ、キシルカルホン酸メチル
参考例1 !7	4-(4・ブルオ(レジンソイルアミリテトセトセピラン・4 カルボン酸くデル
参考例]-18	5 - (4 - 7) すけいの 2 子ルアミカー22.0 - Fサメチャフタン酸ニチル

参号例2一1

2-(4-)ルオロフェニルスルポニルアミハブタン酸

2 (4-20 オコフェニルスルカニルでくりで2)酸メモル2,73gをメタケーな40ml(こ 高解)、小音で、1N水酸化土田ウン水溶液20mlが滴す後、室温で8時間攪打した 減力 1にメストールを慣去にた後、水台で、1N塩酸20mlを滴すしてpH2とし、酢酸ニナル50mlで4回抽出した 有機層が無水硫酸でする。ウンで乾燥し、減量で1に溶媒を留去した後、残渣に2 ケニロエルニーテル20mlを加え、排出して結晶を酢酸エチルより再結晶し、無色結晶の表題化合物1,53gを得た

参考例2-1と同様に、以下の参考例を合成した

参考例	化合物名
参考例2-2	2- (4-フルオロフェニルスルホニル) メチルアミノ プロバン酸
3 3	2 1-フルオロバンソイルアミノ)・2-メチルブロハン酸
参考例2-4	2-(2-外キシベンゾイルアミノ)-2-メチルプロハン酸
参考例2-5	2 - (4-シアノベンゾイルアミノ) - 2-メチルプロパン酸
参考例2-6	2-(4- リフルオロメチルペンソイルアミノ)-2-メチルブロバン酸
参考例2-7	2-(4-フルオロフェニルスルボニルアミノ)-ピーメチルブロハン酸
参考例2-8	2-(4-ニトロフェニルスルホニルアミノ)-2-メチルプロバン酸
参考例2-9	2-(4- 外キシフェニルスルホニルアミノ)-2-メチルプロバン酸
参考例2-1()	2-(N-バンジルオキシー4-フルオロバンズアミド)-2-メチルフロバン酸
参考例2-11	3-(4-フルオロフェニルスルホニルアミノ)プロパン酸
参考例2-12	3-(4-フルオロフェニルスルホニルアミノ)ブタン酸
参考例2-13	1-(4-フルオロフェニルスルホニルアミハシクロプロピルカルボン酸

参考例2-14	1 (4 · フルオロベンドイルアミリングロブロビルカルボン酸
参考例2-15	主・(4・アルオロフェニルスルボニルアくり) タムペンチルカルボン酸
参考例2·15	1 - (4 - フル 中ロペンソイルアミノ): 当たら チルカルホン酸
参考例217	1 (4) アルブロア。エルスルボニルでくわっては国内のカルボン酸
参考例2-18	1 - (4) フルオローン イイルアミリングローキンルカルボン酸
参考例219	4 (4-フルナロバン ロイルアミカテトがはhのビデン・4-カルボン酸
绿带例2-20	コー (4 - フルオロイン イイルアミハ) 2.2.2 - トリメモル ブタン酸

参考例3

2-[(4-7ルオロフェニルスルボニル)メチルアミノ]フロバン酸メチル

2-(4-アルオロアニニルスルホニルアミハフロハン酸メチル500mgをN, N-ジメチルホルニアミピ5mlに溶解した後、炭酸カリウム320mgを加え、室温で10分間機拌した。皮底液を水治し、ヨウ化メチル330mgを加え、アルコン雰囲気下、室温で12時間機拌した。皮底液を酢酸ニチン50mlで希釈し、蒸留水50mlで洗浄した後、無水硫酸マクネシウムで乾燥した。減圧下に溶媒を留去した後、得られた粗結晶を酢酸エチルから再結晶し、無色結晶の表題化合物470mgを得た。

参考例4-1

 2π 이 1 시간하는 경우되었다. 제한 1 N (4 \pm 1 전 N) 대한 기가 되는 2π 가 하는 2π 가 되었다.

2 ミニュナは、ウルキニリア・コロー 1 酸6,69g N, N・ ファルコロトでは7年70 mbの混合液を、20 C (ご治却にた後、モナニルクロ中3,93gを適下した アルコ・専門気下、回温度で1時間攪拌した後、4ーアミノー2・トリアルオロメチルバンソニトラル5,58gを少量ずつ加え、更に3時間攪拌した 反応液を酢酸エチル200mlで希釈後、飽和重曹水200mlで洗浄し、更に蒸留水200mlで2回洗浄した後、無水硫酸マグネシウムで乾燥した 減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エニー・デニン (7:1) 高出部より粗結晶を得た この粗結晶を酢酸エチルから再結晶し、

参考例4-1と同様に以下の参考例を合成した

無色結晶の表題化合物8.17gを得た。

参考例.	化合物名
参考例4-2	2ーパンジルオキシカルボニルアミノーNー(4ーシアノー3ートリフルオロメチル
	フェニル)メチルブロハンアニリド
参考例4-3	2ーバンジルオキシカルボニルアミノーNー(4ーシアノー3ートリフルオロメチル
	フェニル) - 3 - メトキシブロパンアミド

紫菁例二 4	おことしてもからからからからできる。なことになった。なこれのでは、これでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、なこれのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないので
森特例4 B	2 アピルオキシオルドニルアミハ ペ (1), 4 、1 ア アミニル) ー 3 「イデリー 2 ヤヤン アミト
容等例4-6	1 ジンルサポンカルボニルアミハ・ス・は、シアバー3 下げ (ルザビジサル) フェニル、シガンプチルカルナキサミト

参考例5

2-(Nーパンジルオキシカルボニルアミハー2-メチルココパン酸

1N水酸化士トリウム水溶液56ml(1,水冷下,2-アミノ-2-メチルフロハン酸5,79gを加え,続いて、ペンジルオキシカルホニルクロド12,45gと1N水酸化ナトリウム水溶液75mlをそれぞれ4回に分けて滴下し、室温で3時間攪拌した。反応溶液を100mlのエーテルで3回洗った後、pH2になるまで1N塩酸を加え、300mlの酢酸エチルで3回抽出した。有機層を蒸留水で洗い、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、残渣を酢酸エチルーハキサン混合溶媒により再結晶し、無色結晶の表題化合物6,95gを得た参考例6

4'ーシアノー3'ートリフルオロメチルトリフルオロアセトアニリト

| 4 - アイ/ 2 - トリコルサロノチルトに ノニレグル 5,00gを755まのより以20mi (「溶解)、無水トリン 12mi (65,31mi を加え 楽温に 130分機打し 1 世 月日 - 活品を適取し、7 *** ボスムで洗浄に 実題化合物3,93gを得た

33苦例7

4ーメチルアミノーセートリフルオロメチルベンソニトリル

水素化ナトリウム0. 22gをN, Nージメチルホルムアミド10mlに懸濁し、上記4'ーシアノー3'ートリアルオロメチルトリアルオロアセトアニリド1. 41gを加え氷治下30分攪拌した 反応溶液にヨウ化メチル0. 62mlを加え4時間60℃で攪拌後, 反応溶液に氷冶下飽和炭酸カリワム水溶液10mlを加え同温度で1時間攪拌した 反応液を酢酸エチル50mlで希积後、蒸留水50mlで2回洗浄し、無水硫酸マグネシウムで乾燥した 減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルーへキサン(3:7)溶出部より表題化合物0. 63gを得た。

参考例8

2-(ベンジルオキシアミノ)-2-メチルプロハン酸エチル

ュープロモ 介閣酸エチル1.95gおよびOーバンシルビドロキシルでは 塩酸塩1.6gでN、Nージメチルボルムアミド溶液20mlに無水炭酸カリウム3.3gを加え、120 Cで10時間 提押した 反応溶液を減圧下濃縮し、残渣に水を加え、酢酸エチルで抽出した 有機層を0.5N塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗滌した後、無水硫酸ナドリウムで乾燥した 溶媒を減圧下に留去し、残渣をシリカゲルカラムクロットグラフィーにて精製し、ヘキサン=酢酸エチル(10:1)溶出部より油状物として表題化合物0.33gを得た参考例9

2-(N-バンジルオキシー4-フルオロバンズエミロ)-2-メチルフロバン酸エチル 2-(ベンジルオキシアミカ)-2-メチルフロバン酸エチル 0.85 g カビリジン溶液 10 ml;に 4-フルオロバンブイルクロリド 0.68 g を加え、10 時間加熱還流した。反応溶液を減圧下濃 縮し、残渣に1 N塩酸を加え、酢酸エチルで抽出した。有機層を水洗後、無水硫酸マグキシ ウムで乾燥した。溶媒を減圧下留去し、得られた結晶を石油エーテルで洗滌し、表題化合物 0.95 g を得た

参考例10-1

セーアミノーN=14ーシアノー3ートリフルオにスチルフェニル)プロバシアミド

なら例4 1で合成した2 ー に、カヨウ、ウルキニルで、「トー(4-)」で、3-1 コルナルのチルでは、4 に、1 5 00mgを1、2 ー にははませた5 milで容解し、水合工、4 メチルスルでは790mg、こつ化すうましたチルエー・ル 錯体600mgを順次加点、アルゴン雰囲気で、全温で13時間提供した後、飽和塩化で、モニウム水溶液10mlを加たた。更に室温で30分攪拌した後、水冶下、pH10になるまで1N水酸化ナトリウム水溶液を加え、酢酸エチル50mlで3回抽出し、有機層を無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残渣にメタノールを加え、析出した結晶をメタノールより再結晶し、無

(別法)

2-アミノー2-メチルプロヒオン酸277mgをN, Nージメチルアセトアミド3mlに懸濁し、 -10°Cにてチオニルクロリドの、206mlを加え同温にて1時間攪拌した。次いで4-アミノー 2-トリフルオロメチルベンズニトリルを加え、室温まで徐々に昇温しながら2時間攪拌した 反応溶液に水を加え、酢酸エチルで洗浄後、1規定水酸化ナトリウム水溶液でアルカリ性に した。遊離した油状物を酢酸エチルで抽出し、無水硫酸ナトリウムにて乾燥した。溶媒を減

圧下濃縮し、得点がた残留物を10カゲルカラムクロマトグラフィーにて精製し、クロコボルニースタノール(97:10)福出部より表題化合物400mgを無色油状物として得た。更に酢酸エール 一小キャンコッ再結晶を行い表題化合物を得た。本化合物の諸物性値は上記で得られた化合物と完全に一致した

参考例10-1と同様に以下の参考例を台成した

参考例10-2

2-アミノーN-(4-1) アノー3ードリアルオロメチルフェニル) -2-メチルフロハンアミト 参号例10-3

N-(4-シア :-3-トリフルオロメチルフェニル)-2-メチルココリンア :ド塩酸塩 参考例11-1

2-アミノーNー()、4ーミミアノフェエル) -2-メチルフロバンアミド

(1)2ーパンジルオキシカルホニルアミノー2ーメチルフロバン酸30gとN, Nージメチルアセトでは130mlの混合液を、一20℃に治却した後、チオニルクロ明410、2mlを適下した。アルニン雰囲気下、同温度で1時間攪拌した後、4ーアミゲロタニニドリル18、2gとN, Nージメチルでセトでミド70mlの混合液を濁下し、同温度で7時間、更に0℃で18時間攪拌した。反応部を解酸コチルで流程後、飽和重要水で洗浄した。更に、1N塩酸、飽和塩化土にウナ水溶液で洗浄した。無水硫酸、ケキンウムで乾燥にた。減圧下に溶媒を促出し、相結晶を得だ

(2)得られた粗結晶を19年22以上100mlに溶解し、水冷下にメチルスルフィト25ml、 アッ化ホウ素シエチルエーテル錯体15mlを順次加え、室温で3日間攪拌した後、更に、ジメチルスルフィド25ml、三フッ化ホウ素ジエチルエーテル錯体15mlを加え、室温で1日間攪拌した。反応液に1N塩酸を加え、攪拌した後分液し、水層をクロロホルムで洗浄した。水層が5!110になるまで1N水酸化ナトリウムを加えた後、酢酸エチルにより抽出した。減圧下に溶媒を留去し、得られた粗結晶を酢酸エチルとヘキサンの混合溶媒より再結晶し、表題化合物4.7gを得た

参考例11-1と同様に以下の参考例を台成した

参考例11-2

2-アミノー2-(3,4-ジシアノフェニルカルバモイル)エチル アセテート

参考例12-1

2ーパンジルオキシカルボニルアミニーNーローシアノーはーシアノーは一川でルオロメチルでニニルシー3ーメキシでロハンアミド2. Ogを下むトニトリル30mlに溶解し、氷冷下、ヨウ化トリスチルシラン1. 4mlを加え、同温で1時間攪拌した 反応液にメタノール1ml、水30mlを順次加え、ジエチルエーテルで洗浄した 水層がpH9になるまで飽和重曹水を加えた後、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥した 減圧下に溶媒を留去し、得られた粗結晶を酢酸エチルとハキサンの混合溶媒により再結晶し、表題化合物1. Ogを得た

参考例12-12同様に以下の参考例を合成した

参考例12-2

1ープミノーNー(4ーシアノー3ートリアルオコメデルで上ニル)シクコプチルカルボキサミト参考例12ー3

3ーアミノーNー(4ーシアノー3ートリアルオコメチルフェニル)ー2,2ージメチルフロバン アミド

参考例10

2一年17年(3,4) 11. アクシニューコールディング、ケイ

参考例10で含成した2ーでは、ウルボニュイア / N (3, 4-1)、アクルニュイナー3ー / チルブタンでは 1, 88g及びき酸530mgのでごうには2つ 溶液に 社 ラボスはローエニル フナスフィン ハラジウム 1, 66gを加えアルゴン 気流下10時間加熱還流した 反応混合物を減圧下濃縮し得られた残留物を1規定塩酸及び酢酸エチルに溶解し水層を分離した この水層を1規定水酸化ナトリウム水溶液にて塩基性にし、遊離した油状物を酢酸エチルで抽出後、無水硫酸ナトリウムにて乾燥した 溶媒を減圧下濃縮し、得られた残留物をシリカゲルカラムクロマトグラフィーにて精製し、クロロホルムーメタノール (95:5、V/V) 溶出部より表題化合物435mgを無色油状物として得た。

参考例14

1ーベンジルオキシカルボニルーNー(4ーシアノー3ートリフルオコメチルフェニル)ー2 ーメチルフロリンアミド

1ーベンジルオキシカルボニルー2ーメチルーフロリン3.2gを1,2ージクロロエタン10ml に溶解し、氷冷下、オキサリルクロリド470mgを滴下した後、触媒量のN、Nージメチルホル

ムアミドを加え、同温で1時間攪拌した。減足平に溶媒を留去した後、1,2~ミクニコニタ) 20mlを加え再度電去した。得られて残渣をN、N~ミメナルでセトアミド5mlに溶解し、水 冷下、4~アミノー2~ドプル オロメチル・シンニドブル3、2gを少量ずつ加えた後、室温で 6時間攪拌した。反応液を酢酸ニチル50mlで希釈し上後、1N塩酸50ml、飽和重曹水50 ml、蒸留水50mlでそれぞれ洗浄して無水硫酸マグネシウムで乾燥した。減圧下に溶媒を 留去した後、クロコホルム~ヘキサンから再結晶し、表題化合物5、64gを得た

参考例15-1

〔4ー(4ーマルオロベンゾイル)アミド]シクロハキシルカルボン酸

4ーアミルクコペキシルカルボン酸 (cis 及び trans の混合物) 1. 43gを1規定水酸化サトリウム水溶液10ml に溶解し、トリエチルア シ 1. 01gを加えた。次いで4ープルオコペンディルクコピ 1. 59gのテトラヒドロフラン溶液 (5ml)を氷冷下滴下し、室温にて2時間攪拌した反応溶液を減圧にて濃縮し、エーテルで洗浄後、濃塩酸を用いて酸性にし、酢酸エチルで抽出し、乾燥後濃縮し表題化合物 2. 41gを得た

参考例15-1と同様にして以下の参考例を合成した

参号例15 2

THE NATION AND A CAR COST HOLD THE POST OF ME

「紅いの紫芳例の物性値を表に示け

/なお、裏中の記号はは下の意味を有する

Ref Ex:参考例番号

AcOEt 酢豚エチル

DATA:物理化学的性状

Hex : ヘキサン

NMR:核磁気共鳴スペクトル

EtOH:エタノール

(特に明記しない限り、DMSO-da)

(Et)-O:ジエチルエーテル

TMS 内部標準で測定)

1.2-diCl-Et: 1, 2ージクロロエタン

mp :融点

表3

Ref.Ex	DATA		
1-1	NMR: 0:0.77(3H,t,J=7.3Hz),1.40-1.66(2H.m),3.40-3.64(1H,m),3.68(3H,s), 7.28-7.47 (2H,m),7.77-7.92(2H.m),8.15(1H,d,J=8.8Hz)		
1-2	NMR(CDCl₃,TMS internal standard) δ:1.68(6H,s),3.79(3H,s),6.77(1H,br),7.00-7.19(2H,m),7.71-7.87(2H,m)		
1-3	NMR(CDCl ₃ ,TMS internal standard) δ:1.65(6H,s),3.62(3H,s),4.00(3H,s),6.95-7.45(3H,m),8.20-8.49(2H,m)		

Ref.Ex	DATA			
TIEL.EX	2010			
1-4	NMR: 6:1.46(6H,s).3.58(3H,s).7.90-8.03(4H,m).8.72(1H,s)			
1-5	NMR: 8:1.48(6H,s).3.60(3H,s).7.73-8.10(4H,m).8.85(1H,s)			
1-6	NMR(CDCl ₃ ,TMS internal standard)			
	6:1.39(6H.s),3.58(3H,s),5.43(1H.s),7.08-7.16(2H.m),7.85-8.85(2H,m)			
1-7	NMR(CDCl ₃ ,TMS internal standard)			
	0:1.48(6H.s),3.71(3H,s),5.63(1H.br),8.02-8.12(2H,m),8.31-8.40(2H,m)			
1-8	NMR(CDCl ₃ ,TMS internal standard)			
	6:1.44(6H,s),3.66(3H,s),3.86(3H,s),5.27(1H,br),6.90-7.00(2H,m),7.56-7.86 (2H,m)			
1-9	NMR(CDCl ₃ ,TMS internal standard)			
1.10	↑:2.55-2.64(2H.m),3.12-3.34(2H.m).3.69(3H.s).7.18-7.31(3H.m),7.81-7.85 (2H.m)			
1-10	NMR(CDCl ₃ ,TMS internal standard)			
	6:1.19(3H.d,J=6.8Hz),2.53(2H,d,J=5.5Hz),3.62-3.90(4H,m),5.37-5.45(1H,m),7.11-7.21(2H,m),7.79-7.95(2H,m)			
1-11				
1-12	NMR; δ:1.15-1.32(4H,m),3.31(3H,s).7.32-7.52(2H,m),7.73-7.89(2H,m), 8.78(1H,s) NMR; δ:1.07-1.28(2H,m),1.35-1.55(2H,m),3.60(3H,s),7.20-7.40(2H,m),7.85-8.01			
' '-	(2H.m),9.08(1H.br)			
1-13	NMR: 0:1.40-1.57(4H.m),1.80-2.02(4H.m),3.45(3H.s),7.31-7.51(2H.m),7.40-7.90			
	(2H.m).8.25(1H.s)			
1-14	NMR: 0:1.55-2.25(8H.m),3.58(3H.s),7.19-7.39(2H.m),7.85-8.01(2H,m), 8.66(1H.s)			
1-15	NMR: 6:1.15-1.40(6H,m),1.65-1.88(4H,m),3.39(3H,s),7.30-7.51(2H,m),7.74-7.90			
	(2H.m),8.08(1H.s)			
1-16	NMR: 6:1.38-2.30(10H.m).3.58(3H.s),7.18-7.39(2H.m),7.83-7.98(2H,m), 8.38(1H.s)			
1-17	NMR: 6:1.97-2.10(4H,m),3.58-3.76(7H,m).7.27-7.35(2H,m),7.90-7.98(2H,m),			
	8.64(1H,br)			
1-18	NMR(CDCI ₃ ,TMS internal standard)			
	6.1.29(3H.t.J=7.5Hz).1.30(6H.s).1.54(6H.s).4.21(2H,q,J=7.5Hz).7.10(2H,t.J=8.6Hz).			
2-1	7.71(1H,br),7.81(2H,dd, J=5.4.8.6Hz)			
2-1	NMR: 0::0.77(3H.t.J=7.3Hz).1.40-1.66(2H.m),3.42-3.66(1H.m).7.29-7.49 (2H.m), 7.77-7.92(2H.m).8.15(1H.d.J=8.8Hz)			
2-2	NMR(CDCl ₃ ,TMS internal standard)			
	1.39(3H.d.J=7.3Hz),2.84(3H.s),4.65-4.89(1H.m),7.07-7.27(2H.m),7.76-7.92			
	(2H,m)			
2-3	NMR(CDCl ₃ ,TMS internal standard)			
	o:1.68(6H,s),7.00-7.33(3H,m),7.73-7.89(2H,m)			
2-4	NMR(CDCl ₃ .TMS internal standard)			
	∆:1.69(6H,s),4.01(3H,s),6.95-7.52(3H,m),8.20-8.51(2H,m)			
2-5	NMR: à :1.46(6H,s),7.92-8.05(4H,m).8.70(1H,s),12.25(1H,br)			
2-6	NMR: δ:1.48(6H,s),7.79-8.11(4H,m),8.87(1H,s),12.23(1H,br)			
2-7	à:1.68(6H.s),5.05(1H,s),7.05-7.14(2H,m),7.66-7.77(2H,m)			
2-8	NMR(CDCl ₃ ,TMS internal standard)			
2-9	δ:1.53(6H,s),5.44(1H,s),8.03-8.12(2H,m),8.31-8.41(2H,m)			
2-3	NMR(CDCl ₃ ,TMS internal standard)			
2-10	∆:1.43(6H,s),3.74(3H,s),5.30(1H,br),6.89-7.01(2H,m),7.57-7.80(2H,m) NMR(CDCl₃,TMS internal standard)			
	6:1.76(6H.s),4.74(2H,br),6.95(2H,dd,J=1.8Hz,7.7Hz),7.08(2H,t,J=8.7Hz),7.24-7.35			
	(3H,m).7.78-7.84(2H,m)			
2-11	NMR(CDCl ₃ ,TMS internal standard)			
	δ:2.58-2.69(2H,m),3.12-3.33(2H,m),7.20-7.29(3H,m),7.81-7.87(2H,m)			
2-12	NMH(CDCl ₃ , I MS internal standard)			
	δ:1.19(3H,d,J=6.8Hz),2.53(2H,d,J=5.5Hz),3.59-3.88(1H,m), 5.37-5.46(1H,m), 7.09.			
	7.27(2H,m),7.83-7.99(2H,m)			

Ref.Ex	DATA			
	NMR: 6:1.10-1.42(4H.m),7.32-7.52(2H.m),7.73-7.89(2H.m).8.61(1H,s), 12.28(1H.br)			
2-13	NMR: 0:1.01-1.20(2H.m),1.27-1.49(2H.m),7.15-7.45(2H.m),7.85-8.08(2H.m).			
2-14	8.98(1H,br). 12.37(1H,br)			
2-15	NMR: 6:1.20-2.05(8H.m),7.29-7.50(2H.m),7.75-7.90(2H.m).8.05(1H.s), 12.42(1H.			
	NMR: 6:1.55-2.25(8H.m),7.18-7.40(2H.m),7.84-8.01(2H.m).8.51(1H,s), 12.12(1H.br)			
2-16	NMR: 6:1.55-2.25(811m),7:15-7.45(211m),7:54-6.54(211m),7:54(211m),7:54(211m),7:54(211m),7:54(211m),7:54(211m),7:54(211m),7:54(211m),7:54(211m),7:54(211m),7:54(211m),7:54(211m			
2-17	NMR: 0:1.25-2.35(10H,m).7.15-7.42(2H,m).7.80-8.00(2H,m).8.24(1H,s)			
2-18	NMR: 6:1.25-2.35(10H,m),7:13-7.42(2H,m),7.65-6.65(2H,m),7.90-7.98(2H,m), 8.52			
2-19	NMR: 6:1.90-2.12(4H,m),3.57-3.77(4H,m),7.27-7.35(2H,m),7.90-7.96(2H.m), 6.52 (1H,br),12.37(1H.br)			
2-20	NMR(CDCl ₃ ,TMS internal standard)			
	6:1.33(6H.s),1.58(6H.s),7.07(2H.t,J=8.6Hz),7.40(1H.br),7.81(2H.dd, J=5.1.8.6Hz)			
3	NMR(CDCl ₃ ,TMS internal standard)			
	o :1.38(3H,d,J=7.3Hz),2.84(3H,s).3.56(3H,s).4.65-4.89(1H,m),7.08-7.29 (2H,m),			
	7.76-7.91(2H.m)			
4-1	NMR(CDCl ₃ ,TMS internal standard)			
	6:1.47(3H,d,J=7.0Hz),4.32-4.48(1H,m),5.17(2H,s),5.25(1H,d,J=7.0Hz),7.35 (5H,s),			
1 2	7.75-7.77(2H,m),7.92(1H,br).9.06(1H,br) NMR: \(\delta\):1.41(6H,s),5.01(2H,s),7.28-7.35(5H,m),7.69(1H,s), 8.07(1H,d.			
4-2	J=8.8Hz).8.20(1H,d.J=8.8Hz).8.33(1H,s),10.34(1H,s)			
4-3	NMR: δ :3.27(3H,s),3.34-3.64(2H,m),4.35-4.46(1H,m),5.00-5.10(2H,m),7.30-			
4-3	7.39(5H,m),7.76-7.82(1H,m),8.01-8.14(2H,m),8.28-8.32(1H,m),10.91(1H,br)			
4-4	NMR: 6:1.19(6H,s),3.27-3.32(2H,m),4.98(2H,s),7.25-7.38(6H,m),8.03-8.17(2H,m),			
4-4	8.30-8.35(1H,m)			
4-5	NMR: 0::0.85-0.95(6H,m),1.99-2.09(1H,m),3.99(1H,t,J=7.8Hz),4.47-4.51 (2H,m),5.16-			
7 3	5.22(1H,m).5.27-5.35(1H,m).5.86-5.97(1H.m).7.64(1H.d,			
	J=7.8Hz).7.99(1H.dd.J=1.4.6.3Hz).8.07(1H.d.J=6.3Hz).8.31(1H.d.J=1.4Hz).10.86(1H			
4-6	.br) NMR. 0., 1.60-2.90(6H.m),5.02(2H.s),7.10-7.50(5H.m),7.95-8.40 (4H.m), 10.24(1H.br)			
5	NMR(CDCI, TMS internal standard)			
	o:1.57(6H.s),5.10(2H,s).5.50(1H.br),7.34(5H.s),10.42(1H.br)			
6	NMR(CDCl _a ,TMS internal standard)			
	o :7.28(1H.d,J=7.8Hz),7.87(1H,dd,J=1.5,7.8Hz),8.46(1H,d,J=1.5Hz)			
7	NMR(CDCl _a ,TMS internal standard)			
'	6:2.93(3H,d,J=5.2Hz),4.68(1H,br),6.68(1H,dd,J=2.4,8.6Hz),6.84(1H,d,J=2.4Hz),7.41			
	(1H,d,J=8.6Hz)			
8	NMR(CDCl ₃ ,TMS internal standard)			
	δ:1.26(3H,t,J=7.3Hz),1.30(6H,s),4.18(2H,q,J=7.3Hz),4.72(2H,s),6.04(1H,s),7.25-			
	7.36(5H,m)			
9	NMR(CDCl ₃ ,TMS internal standard)			
	· .1.29(3H,t,J=7.0Hz),1.72,3H,s),4.24(2H,q,J=7.0Hz),4.66(2H,br),6.95(2H,d,J=7.7Hz			
).7.07(2H,t.J=8.7Hz),7.26-7.34(3H,m),7.73-7.77(2H,m)			
10-1	mp: 79-80°C			
10-2	mp: 116-117 ⁻ C(AcOEt-Hex)			
10-3	mp: 234-238°C (EtOH-(Et) ₂ O)			
11-1	NMR: 8:1.32(6H,s),5.34(2H,br),8.06(1H,d,J=8.4Hz),8.21(1H,dd, J=2.1,8.4Hz),8.44			
	(1H.d,J=2.1Hz)			
11-2	NMR: δ:1.99(3H,s),3.67(1H,t,J=5.5Hz),4.18 (2H,d,J=5.5Hz) 5.05(2H,br), 7.95-8.20			
1-	(2H,m), 8.30-8.45(1H,m)			
12-1	NMR: δ :3.26(3H,s).3.32-3.62(3H,m),4.97(2H,br),8.07-8.15(2H,m),8.38-8.41(1H,m)			
12-2	NMR: δ:1.55-2.70(6H,m),5.31(3H,br),8.00-8.55(3H,m)			
12-3	NMR: δ:1.14(6H,s),2.75(2H,s),3.31 (1H,br), 5.34(2H,br),7.96-8.10(2H,m),8.27-8.30			

Ref.Ex	DATA		
	(1H.m)		
13	NMR(CDCl ₃ .TMS internal standard): 6::0.86(3H,d,J=6.6Hz), 1:07(3H,d, J=7.0Hz),2:41-2:53(1H,m),3:43(1H,d,J=3.3Hz),7:73(1H,d,J=8.8Hz),7:94 (1H,dd,J=2:2.8.8Hz), 8:21(1H,d,J=2:2Hz),10:18(1H,br)		
14	NMR: 0:1.51(1.5H,s),1.53(1.5H,s),1.86-2.04(3H,m),2.13-2.23(1H,m),3.51-3.62 (1H,m),3.67-3.80(1H,m),4.88(0.5H,d,J=12.6Hz),5.07(1H,s),5.13 (0.5H,d,J=12.6Hz),7.02-7.18(2.5H,m),7.27-7.40(2.5H,m),8.03-8.30(3H,m),10.01(1H,s)		
15-1	NMR: 6:1.30-2.50(9H, m), 3.10-3.50(1H, m), 7.21-7.36(2H, m), 7.87-8.40(2H, m), 8.14-8.28(1H, m), 12.24(1H, br)		
15-2	NMR(CDCl ₃ ,TMS internal standard): 6: 3.46-6.60(1H, m), 4.30-4.60(4H, m), 7.06-7.18(2H, m), 7.61-7.70(2H, m)		

実施例1

N-(4-1) アソー3-|ボフルオロメチルフェニル) -2-[(メチルスルホニル) アミノ] = ロ ハンア計

参考例10-1で合成した2-アミノ-N-(4-シアノ-3-国)フルオロスチルフェニル)
フロハンでは250mgをクロロボルム5mlに溶解し、水冷下、内はチルアミン110mg、メタンスルボニルクロ場 120mgを加え、アルゴン雰囲気下、室温で3時間攪拌した。反応液をクロロボルム50mlで流行する。種で3時間攪拌した。反応液をクロロボルム50mlで流行する。無水硫酸でする。
コンで乾燥した。減量 10 高煙を留えたたの点、残造を解酶エデルより再結晶は、無色結晶の表題化合物114mgを得た。

実施例上同様にして実施例2-16を合成した

実施例17

N = (4 - 5T) / (-3 - 50) フル オロメチルフェニル) + 2 + 1[(4 - 7 ルオロフェニル) スルホニル] アミノ ブチルアミド

2-(4-フルオロフェニルスルホニルアミノ)ブタン酸500mgをテトラヒドロフラン5mlに溶解し、水冷下、オキザリルクロリド470mgを滴下した後、触媒量のN、Nージメチルホルムアミドを加え、同温度で1時間攪拌した。減圧下に溶媒を留去した後、テトラヒドロフラン20mlを加え再度留去した。得られた残渣をN、Nージメチルホルムアミド5mlに溶解し、氷冷下、4-アミノー2ートリフルオロメチルベンゾニトリル580mgを少量ずつ加えた後、室温で6時間攪拌した。反応液を酢酸エチル50mlで希釈した後、1N塩酸50ml、飽和重曹水50ml、蒸留水50mlでそれぞれ洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルーへキサン(17:3)溶

出部より粗結晶を得た。この粗結晶を酢酸エデルが、再結晶し、無色結晶の表題化合物3 81mgを得た。

実施例17と同様にして実施例18-21を合成した

実施例22

N-(4-シアソー3-トリプルオロメチルフェニル)-2-([(4-ブルオコフェニル)スルホ ニル³アミノ(フロハンチオアミド

N-(4-5 アノー3-トリフルオロメチルフェニル) -2-1[(4-フルオロコェニル)スルボニル] アミバココ・ウアミドGOOmgをトルエン TOmlに溶解し、Lawesson試薬290mgを加えた。アルゴン雰囲気下、3日間加熱還流に任後、反応液を室温まで治却し、減圧下に溶媒を留去した。疾液をシリカゲルカラムプロマトグラコマーに付し、酢酸エチルーペキサン(4:1) 溶出部より粗結晶を得た。この粗結晶を酢酸エチルから再結晶し、無色結晶の表題化合物339mgを得た

実施例1と同様にして実施例23,24を合成した

実施例25

N・コー[(4-))アプーローが17年オロスチのフェニル)カルコモブルー 1-メチルエチルニチル・4-17年オロス・スアド

2-14-17ルでロステルイル 2-7-54 コエム: 解500mgを、"ロロスタ: 30ml に溶解: 、水冷土、トリフェニルボスコン: 933mg、N-コロモスタ: 17 (1-633mgを順か: 少量すっ加えた後、アルコン雰囲気下、同温度で2時間攪拌した。更に4 アンパー2ートリフルオロスチルパンソニトリル872mgを少量すっ加え、室温で3時間攪拌した。減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロベトグラフィーに付し、酢酸エチルーパキサン(17:3)溶出部より粗結晶を得た。この粗結晶を酢酸エチルから再結晶し、無色結晶の表質化合物156mgを得た

実施例25と同様にして実施例26-33を合成した。

実施例1と同様にして実施例34-64を合成した

実施例65

N-\1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチルト-2-シアノベンズアミド

(1) フタルアミド酸5. Ogのジクロロメタン溶液80mlに、氷冷下、トリエチルアミン8.27ml

及 アクロコギ酸エチル 6. 37mlを加え1時間攪拌した後, 室温で更に6時間攪拌した。減圧 下, 溶媒を留出し、(メンセンー・ペキャン混合溶媒を加え折出して結晶を適別して、適高を 留まして、2 ーミア 7 安息 香酸無水物 658mgを得た

(2)参考例10-2で合成した2-〒ミノーN-(4-シアノー3 トピアルオロメチルニェニル) -2-マールプロペンアミド200mgのジクロロメタン溶液10mlに上記2-シアフ安息香酸無 水物323mgを加え、室温で9時間攪拌した「反応溶液に飽和重曹水を加え攪拌した後、 酢酸エチルにより抽出した。有機層を無水硫酸マグネシウムにより乾燥し、減圧下、溶媒を 留去した。残渣をシリカゲルカラムクロマトグラフィーにて精製し、酢酸エチルーペキナン (1:1)溶出部より粗結晶を得た。この粗結晶をメタノールー酢酸エチル混合溶媒により再結 晶し、表題化合物190mgを得た。

渠施例66

N=(4-シアノー3-トリプルオロメチルフェニル) -2-[2-(4-フルオロフェニル) アセチルア <math>[2] -2-メチルフロ・ションド

- (1)4 アルオロフェニル酢酸102mgのジクロロメタン溶液5ml(こ、氷治下、オキザリルクロ学0,057ml及び触媒量のN、Nージメチルよれるで含む加え、電温で2時間提出した。 (4) 減り主、溶視を濃縮乾固して、4・アル・アニースでもそんでの明を書い
- (2) 巻号例10・2で合成した2ーでデーN-(4-1)で 3 「1974」ではスポートでは、 ル) 2 メチルロロバンで活 150mg ロジクロロメソン語前5mlにはサニューの加えた後、 水治下上記4 になずロフェニルでセチルクロ明のジクロロメソン語前5mlを加え、同温でし 5時間攪拌した後、室温で1、5時間攪拌した 反応溶液に酢酸エチルを加え、これを飽相 重曹水、続いて、飽和食塩水で洗浄後、無水硫酸マグネシウムで有機層を乾燥し、減圧下、 溶媒を留去して粗結晶を得た。この粗結晶を酢酸エチルから再結晶し、表題化合物98mg を得た

実施例67

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル1-2-ビドロキシベンズアミド

実施例44で合成した2-(11-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}カルバモイル)フェニルアセテート150mgをメタノール1mlに溶解し、1N水酸化ナトリウム水溶液3mlを加えた後、室温で2時間攪拌した。減圧下にメタノ

ールを留きたた後、IN塩酸を加えることにより租結晶を得た。こり租結晶を酢酸エデュウ ペキャンカ混合溶媒により再結晶し、表題化合物102mgを得た。

宝施例68

N-(1-[(4-) アノー3-トリアルオロメチルフェニル)カル ハモイル]-1 - メチルニチル [-8-キ パンカルボキナベン

- (1)8・キ クリン カルボン酸230mg クン クコロメタン 溶液5mlに、氷冷下、オキザリルクロリ ドO. 114ml及び触媒量のN、Nージメチルホルムアミドを加え、氷冷下、30分攪拌した後、 減圧下、溶媒を濃縮乾固して、8ーキノリン カルボニル クロリド塩酸塩を得た
- (2)参考例10-2で台成した2-アミノーN-(4-) アノー3ートリアルオロメデルでエニル)-2-メデルでロバンアミド300mgかどクロロメソン溶液5mlに、水冷下、上記8-キュリンカルボニンクロ門-塩酸塩のビクロロメタン溶液5ml及び同じエデルでもの、364mlを加え、空温で2時間攪拌した。反応溶液に酢酸エデルを加え、これを飽和重曹水、続いて、水で洗浄後、無水硫酸マグネシウムで有機層を乾燥し、減圧下、溶媒を留去した後、残渣をシドカゲルカラムクロマトグラフィー(に付し、酢酸エデルーペキサン(1:1)溶出部より粗結晶を得た。この粗結晶を酢酸エデルとペキサンドの混合溶媒より再結晶し、表題化合物155mgを得た

专题例68公司使用工工方题例69~78至合成厂生

実施例79

Nー [1 + [14 + 17 / - 3 + トリアルオロスチルニュニル) カルパモイル] ー 1 - ノデルエデル | ル 1 - 4 - ヒリジンカルボキサミド

イソニコチン酸0.15gとジクロロメタン10mlの混合液に、氷冷下、Nーヒドロキシベングトリアゾール0.18g、1ー(3ージメチルアミノフロヒル)ー3ーエチルカルボジイミド塩酸塩0.25減煙点加えた。同温で、2時間攪拌した後、2ーアミノーNー(4ーシアノー3ートリフルオロメチルフェニル)ー2ーメチルフロパンアミド0.30gを加え、室温で6時間、更にテトラヒドロフラン5mlを加え同温で65時間攪拌した。反応液に飽和重曹水を加え、酢酸ニチルで抽出し、飽和塩化ナトリウム水溶液で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去し、得られた粗結晶を酢酸エチルとヘキサンの混合溶媒より再結晶し、表題化合物0.26gを得た。

実施例79と同様にして実施例80-87を合成した。

実施例88

- 2ー[(4ー) アフー3ートリマルオコノモルフェニル)カルパモイル] - 2ー (2ーフルオロー) ンズア(ト) エモルーアセヤート

- (1)3-アセトキシー2-パンルオキシカルボニルアミノフロバン酸3、9gをN、Nーミボチルアセトアミド30mlに溶解し、一20℃に治却した後、チオニルクロリド1、1mlを滴下したアルゴン雰囲気下、0℃で1時間攪拌した後、コーアミノー3ートリアルオロメチル・ペンプニトリル2、6gを少量すつ加え、同温度で2時間攪拌した。反応液を酢酸ニチルで命釈後、飽和重曹水で洗浄した。更に、0、1N塩酸、飽和塩化ナトリウム水溶液で洗浄した後、無水硫酸マグネンウムで乾燥した。減圧下に溶媒を留出し、粗結晶を得た
- (2) 得られた粗結晶をジクロロメタン100mlに溶解し、水冷下、ジメチルズルフ 津 10ml、 して一化中ウ素しエチルエーデル錯体8mlを順次加え、室温で4時間提拌した。反応液に 飽和重曹水を加え、酢酸エチルで抽出した後、飽和塩化ナトリウム水溶液で洗浄した。無 水硫酸マグネシウムで乾燥した後、減圧下に溶媒を留去し、粗結晶を得た
- (3) 得られた粗結晶をジクロロメタン 15mlに溶解し、水冷下、2-フルオロベンブイキタロ 男・0.56ml、トリエチルでミンO.66mlを順次加点、室温で2時間攪拌した。反応液に飽和 重曹水を加え、酢酸キチキで加出した後、0.1 N塩酸、飽和塩化土と中で大溶液で洗浄。 た 無水硫酸、2 多)ウムで乾燥でた後、減り上に溶煙を留去し、粗結晶を得し、胃にわた 粗結晶を酢酸エチルと、キサ、の混合溶塊により再結晶に、表題化合物1.25gを得し 実施例89

N={I=[(4-シアノ-3+トリ▽ルオロメチルフェニル)カルバモイル]-2-ビドロキシニチル}-2-フルオロベンズアミド

実施例90

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}-4-メトキシベンズアミド

2017ミノーN・ユーシアノー3ーにつれずコメールではエニュー2 メールでローンアジュ30mgをからラビコンラン5mlに溶解し、別の上、デニールアジ 260 μ1、4 - ボーバールフィルでロ中310mgを順次加え、収益 ドで40 分間提押した後、水を加えた。東に電温で5分援押した後、減圧下に溶媒を留去し、残渣を酢酸エール30mlと1 N塩酸水溶液とに分配し、有機層を飽和炭酸水素ナトリウム水溶液15ml、水15ml×2、飽和食塩水15mlで洗浄し、硫酸ナトリウムで乾燥した。減圧下に溶媒を留去した後、残渣をシリカケルカラムクローでグラフェー(酢酸エールにより結晶化し、得られた油状物質をジイソコロビルエーールー酢酸エールにより結晶化し、得られた結晶を酢酸エールより再結晶し、無色結晶の表題化合物326mgを得た

実施例90と同様にして実施例91、92を合成した

実施例9:1

4- ゴロモー2- クロローN-11-[(4-) アノー3-トリブルオコメチルフェニル)カル ハニイル]-1-メールエチルトペンスアジ

4 コロモ・2ー作の中安息香酸520mgをデトラビドコプラ: 10mlに溶解し、水流下でデザリルクロ中230 μ1、N、N・・メチルネルスで、下1滴を順け加え、室温にて1時間提出で反応記を減り下に高媒を得まし、後流に1、2ー、プロロック: 至期を再度留ました 後流を デーランドロプタ: 4miに溶解し、水流下2 アニーN・ロー、アニー3 トリコン イロステルコニューローステルコロッシア 計540mg、ドルチルアに 310 μ1を順次加入、50 ッ間攪拌した 反応被に氷を加え、2時間30 分間攪拌し、減圧下に高媒を留ました 残流が酢酸エチル50mlと1N塩酸水溶液30mlとに分配し、有機層を飽和炭酸水素ナトリウム水溶液30ml、飽和食塩水30ml×2で洗浄し、硫酸ナトリウムで乾燥した 減圧下に溶媒を留去した後、残渣を酢酸エチルーエーテルより再結晶し、無色結晶の表題化合物572mgを得た

実施例93と同様にして実施例94を合成した。

実施例95

N-.1-[(4-シアノ-3-トリ▽ルオロメチルフェニル)カルバモイル]-1-メチルエール1-4-ヒドロキシベンズアミド

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}-4-メトキシベンズアミド340mgをメチレンクロリド10mlに溶解し、-78℃にて1M三

奥化ホウ素塩化メチレン溶液3.5mlを加え、窒温にて40時間搅拌した。反応液を水冷し、水10mlを加え5分攪拌し、クコロホルム60mlで抽出した。存機層を飽和炭酸水素土(ドウン水溶液30ml、水30ml、水30ml、飽和クエン酸水溶液30ml×2で洗浄し、硫酸土と)ウムで乾燥した減圧下に溶媒を留出し、残渣をジイインコロンニーデルー酢酸エチルより結晶化し、酢酸エチルーエーデルージイインコロンニーデルー、キャンより再結晶し、無色結晶の表題化合物139mgを得た

実施例96

NーペンジルオキシーNー(1ー((4ーシアソー3ー)リフルオロメチルフェニル) ウルバモ イル! - 1 - メチルエチル! - 4 - フルオロペンスアミト

2-(4-7ルオロ-N-バンジルオキ) ベンズア(約) -2-メチルフロバン酸(), 7gにジタロコメタン20mlを加え、-10~-15 Cで機律主、五塩化リン(), 48gを少しすつ加えた。-10℃で1時間機律後、同温度で4-アミノ-2-ドリフルオコメチルバンゾニドリル(), 59gを加え、さらに室温で1時間機律した。反応溶液をクロロボルムで希釈後、水洗し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下に留去し、残渣をシリカゲルカラムクロマドグラフィーにて精製した。小キサ)一酸酸エチル(2:1)溶出部計り得られた結晶をディケロにルニーチュで洗滌にて去趣化合物(), 61gを得た

表施例97

 $N=A-\{0\}=\{T^{-1}-B-\{0\}^{-1}, T^{-1}-B+1\}$ $A+A-\{A+B+1\}+A-\{A+B+1\}+A+1\}$ $A+A-\{A+B+1\}+A+1\}$

NーベンジルオキシーNー(1ー[(4ーシアノー3ートリフルオロメチルフェニル)カルパモイル]ー1ーメチルエチル1ー4ーフルオロベンズアミドO. 3gおよびぎ酸アンモニウムO. 15gのエタノール10mlの懸濁溶液に10%ハラジウム炭素O. 05gを加え、室温で30分間攪拌した。ハラジウム炭素を濾去後、水を加え、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧下に留去し、残渣をシリカゲルカラムクロマトグラフィーにて精製した。ヘキサンー酢酸エチル(1:1)溶出部より得られた結晶を酢酸エチルおよびヘキサンの混合溶媒より再結晶し、表題化合物O. 18gを得た。

実施例98

Nー (4ーシアノー3ートリフルオロメチルフェニル) ー2ーメチルー2ー (3ーフェニルウレイド) フロバンアミド

参考例10-2で含成した2-〒ミニN (4-シアノー3-トリアルオロメデルでエニルー2-メデルでロハン下ミド300mg ウジクロロペタン溶液10mlに、水冷ト、デエニルイや、デナート659mgを加え、室温で4、5時間攪拌した。反応溶液に、飽和重曹水、続いて1N塩酸を加え、析出した粗結晶を遮取した。この粗結晶を酢酸エデルより再結晶し、去趣化合物205mgを得た。

実施例99

N-(4-5 アパー3ートリアル オロメチルフェニル) - 2 - メチルー2 - (千オベンズアミ) ** フロハンアミ)**

参考例10-2で合成した2-アミノーN-(4-シアノ-3-トリフルオロメチルフェニル・ -2-メチルフロハンアミド400mgを出り、5mlに溶解し、(チオペンソイルチナ)酢酸34 4mg、ドリエチルアミン226mgを加点、電温で110時間攪拌した。反応液を2N硫酸水溶点に注ぎ、酢酸エチルで抽出した。有機層を飽和重曹水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留ました後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルーへキサン(1:1)溶出部より粗結晶を得た。この粗結晶を酢酸エチルとベキサンの混合溶媒により再結晶し、表題化合物60mgを得た。

- (実施例25日同様に) で実施例100~104を合成した
- 実施例12同様にて実施例105 107を合成した
- |実施例25世間様に1||で実施例108を合成した
- 実施例1と同様にして実施例109。111を含成して
- 実施例25と同様にして実施例112-122を含成した
- 実施例1と同様にして実施例123-129を合成した

実施例130 -

□□(4-シアノ-3-ト゚゚フルオロメチルベンゾイル)-[4-(4-フルオロベンゾイル)アミド]シクロヘキシルカルボキサミド

参考例15-1で合成した[4-(4-フルオロベンゾイル)アミド]シクロヘキシルカルボン酸を用いて、参考例14と同様の手法を用いて反応及び後処理を行った。得られた粗抽出物をシリカゲルカラムクロマトグラフィーにより精製し、酢酸エチルーヘキサン(1:1)溶出部より単一の化合物(A)を得た。更に溶出を続け他の異性体(B)を得た。

実施例130と同様にして実施例131を合成した。

これが与実施例の構造及び物性値を表に示す。

84 85 80 81.

ここで、表中のAは一般式(TRCおける

$$A_i = A_i$$

部分に相当する

なお、表中の記号は参考例の表と同様の意味を有し、それ以外の記号については以下の 意味を有する。...

Ex. : 実施例番号

MS :質量分析值

Me : メギル

(i-Pr)₂O:ジイソフロビルエーテル

Et :エチル

MeOH :メタノー・ル

Ac :アセチル

i-PrOH イグコムノール

Benzyl - CH;--

表 4

		· · · · · ·	R	<u> </u>
Ex.		R.	R ⁹	DATA
1	CF,	CN	CH ₃	mp. 164-165 (
	1	ĺ		NMR: + .1.37(3H,d,J=6.8Hz),2.94(3H,s),4.01-4.17
		ļ		(1H.m).7.68(1H.d.J=8.0Hz).8.06(1H.dd.J=1.8.8.8Hz).8
				.12(1H.d.J=8.8Hz).8.29(1H,d.J=1.8Hz).10.80(1H,s)
2	CF ₃	CN	_//\	mp: 189-190 ((AcOEt-Hex)
				NMR: 6:1.21(3H,d,J=6.8Hz),3.94-3.98(1H,m), 7.46-
				7.54(3H,m),7.74-7.84(3H,m),8.03-8.08 (2H,m), 8.32-
				8.33 (1H.m),10.71(1H.s)
3	CF ₃	ĊИ		mp: 178-179 C (AcOEt-Hex)
				NMR: 6:1.24(3H.d,J=7.0Hz),3.94-4.00(1H,m),7.28-
			,	7.31(2H,m).7.80-7.84(3H,m),8.04-8.08(2H,m), 8.37
-				(1H.d,J=8.0Hz),10.71(1H.s)
4	CF ₃	CN		mp: 179-180 C (AcOEt-Hex)
	1			NMR: 0:1.24(3H,d,J=6.8Hz),3.94-3.99(1H,m),7.42-
				7.53(2H,m),7.73-7.80(3H,m),7.94-8.12(2H,m), 8.46
	0=	-		(1H,d,J=8.4Hz),10.70(1H,s)
5	CF₃	CN		mp: 170-171°C (AcOEt-Hex)
			—(<u> </u>	NMR: 0:1.24(3H,d,J=6.8Hz),3.93-4.04(1H,m),7.63-
				7.69(4H,m),7.78(1H,dd,J=1.6,8.4Hz),8.04-8.09(2H,m),
	0=			8.07(1H.d.J=8.4Hz).8.46(1H,d.J=8.8Hz),10.69(1H.s)
6	CF ₃	CN		mp: 183-184 C (AcOEt-Hex)
			—()—CN	NMR: δ:1.25(3H,d,J=7.0Hz),3.98-4.05(1H,m),7.77
				(1H, dd,J=2.0,8.2Hz),7.88-7.97(4H,m),8.00(1H,d,
				J=2.0Hz),8.08(1H,d,J=8.8Hz),8.69(1H,d,J=8.2Hz),10.
				74(1H,s)

	Ex.	R	R ²	Rº	DATA
-	7	CF ₃		()	mp. 134-135 ((AcOEt-Hex)
		- 1		$-\langle \underline{} \rangle - CF_3$	INMR. 6:1.27(3H.d.J=6.8Hz).3.99-4.07(1H,m), 7.72
	1		!		(1H.dd.J=1.2,8.8Hz).7.79(2H.d.J=8.0Hz).7.95-8.06
1	;		1		(4H.m),8.66(1H,d,J=8.8Hz),10.73(1H,s)
_	8	CF ₃	CN		mp: 111-112 ((AcOEt-Hex)
i	Ĭ	٠. ر	0,1	—(` `>─0CF₃	NMR: 0:1.26(3H.d.J=6.8Hz).3.98-4.05(1H.m),7.41
				\ <u>_</u>	(2H,d,J=8.6Hz),7.76(1H,d,J=8.6Hz), 7.87-7.89(2H,m),
					8.06(2H.d.J=8.6Hz). 8.52(1H.d.J=8.6Hz), 10.75(1H.s)
-	9	CF ₃	CNI		mp: 184-185 (`(AcOEt-Hex)
	9		CIA	'	NMR: 0:1.32(3H.d.J=7.2Hz).4.01-4.14(1H.m),7.07-
İ				// \	7.12(1H,m).7.41-7.47(1H,m),7.78-7.82(2H,m).8.03
1				\	(1H,d,J=1.6Hz).8.08(1H,d,J=8.6Hz).8.67(1H,d,J=8.6H
					z).10.77(1H.s)
-		05			
	10	CF ₃	CN	/////	mp: 159-160 C (AcOEt-Hex)
				[NMR: 0:1.25(3H,d.J=7.6Hz),3.98-4.05(1H,m),7.49
					(1H,t,J=8.4Hz),7.54-7.56(1H,m),7.70-7.78(2H,m),7.79
i					(1H,dd,J=1.8.8.4Hz),8.03(1H,d,J=1.8Hz),8.07(1H,d,J=
L		ļ			8.4Hz).8.54(1H,d.J=8.4Hz),10.77(1H,s)
	11	CF ₃	CN	CN	mp: 189-190 ((AcOEt-Hex)
!				─ ⟨′ \⟩	NMR: 8:1.27(3H.d,J=7.2Hz),4.00-4.08(1H.m),7.67-
				\=/	7.71(1H,m),7.78(1H,dd,J=1.6,8.6Hz).7.96(1H,d,J=7.6
					Hz ,8.00(1H,d,J=1.6Hz),8.04-8.11(3H,m), 8.64(1H,d,
					J=8.6Hz),10.79(1H,s)
	12	CF ₃	CN	CF ₃	mp: 143-144'(`(AcOEt-Hex)
1		"			NMR: 8:1.28(3H.d,J=6.8Hz),4.03-4.10(1H,m).7.70-
		1		_/	7.74(2H,m).7.84(1H,d,J=8.0Hz).7.96(1H,d,J=1.6Hz).8.
					01(1H,s).8.04-8.07(2H,m).8.68(1H,d,J=8.8Hz),
					10.77(1H.s)
ľ	13	CF,	CN	/\.\^\.	mp. 167-168 (AcOEt-Hex)
1		,			NMR1.24(3H.d.J=7 0Hz).4.00-4.04(1H.m).7.48-7.51
		i	1		(1H.m),7.57-7.60(2H,m),7.76-7.78(2H,m),7.85-7.90
-					(3H,m).7.98(1H,d.J=8.8Hz).8.34(1H.s).8.41(1H.d.J=8.
				1	0Hz).10.63(1H,s)
-	14	CF ₃	CN	1	mp: 193-194 ((AcOEt-Hex)
	7 7	J 3	0,1	1	NMR: 8:1.19(3H,d.J=6.8Hz),3.95-4.00(1H,m), 7.51
					(1H,t,J=7.6Hz),7.58-7.62(2H,m),7.67-7.71(1H,m), 7.78
					(1H,d,J=1.6Hz),7.93-8.06(3H,m), 8.13(1H,d,J=7.2Hz),
					8.67(2H.d,J=8.8Hz),10.52(1H.s)
	15	CE	CN	1	mp: 199-200 C (AcOEt-Hex)
	10			N N	MMR: δ:1.27(3H.d,J=7.2Hz),4.37-4.44(1H,m),7.60-
			!		
1		1			7.72(4H,m)7.83(1H,d,J=1.6Hz).8.00(1H.d,J=8.8Hz).8.
					17(1H,dd,J=1.2,8.4Hz),8.31(1H,dd,J=4.6,7.2Hz),8.43(
					1H,dd,J=1.6,8.8Hz),9.02(1H,dd,J=1.6,4.0Hz),10.65(1
		1	1		(H,s)
	16	CF:	, CN		mp: 185-186 C (AcOEt-Hex)
ļ					NMR: δ:1.34(3H,d.J=6.8Hz),3.97-4.06(1H,m), 7.00-
					7.04(1H,m),7.25-7.35(4H,m),7.48-7.50(2H,m), 7.84
					(1H,dd,J=2.0,8.8Hz),7.96(1H,d.J=8.8Hz),8.04(1H.d.J=
					8.0Hz),8.10(1H,d,J=2.0Hz),10.80(1H,s)

$$\begin{array}{c|c} R^{1} & R^{3} & R^{4} \\ \hline R^{2} & X & R^{8} \end{array}$$

				<u> </u>			Λ
Ex.	R:	R²	R^3	Χ	R ⁴	R ⁸	DATA
17	CF ₃	CN	H	0	CH ₂ CH ₃	Н	mp: 170-171°C
							NMR: 10:0.83(3H,t,J=7.4Hz),1.52-1.72 (2H, m),
							3.77-3.82(1H,m),7.24-7.28(2H,m), 7.75-7.82
							(3H,m).8.01(1H,d.J=2.0Hz).8.07(1H.d.J=8.4Hz),
							8.36(1H.d,J=8.8Hz).10.74(1H.s)
18	CF₃	CN	Н	0	CH₃	CH₃	mp: 171-172 ((AcOEt-Hex)
				:		:	NMR: (CDCI ₃ ,TMS internal standard)
			i	!			1.09(3H,d.J=7.3Hz).2.86(3H,s),4.58-4.62
							(1H,m),7.26-7.30(2H,m),7.80(1H,d,J=8.6Hz),
							7.86-7.90(3H.m). 8.08(1H.d,J=1.8Hz). 8.79 (1H,s)
19	CF₃	CN	СНЗ	0	CH₃	Η	mp: 157-158 (*) (AcOEt-Hex)
	i						NMR: 6:1.08(3H,d.J=6.8Hz).3.25(3H,br). 4.09
							(1H,br),7.38(2H,t,J=8.0Hz),7.73-7.81 (4H,m),
							8.22-8.34(2H.m)
20	CF ₃	CN	H	0	benzyl	Н	mp: 248-249 ((AcOEt-Hex)
							NMR: 0:2.77-2.99(2H,m),4.08-4.14(1H,m), 7.14
							(2H,t,J=8.8Hz),7.19-7.26 (5H,m),7.61-7.64
							(2H,m),7.72(1H,d,J=8.8Hz), 7.96(1H,s), 8.07
							(1H,d.J=8.8Hz).8.61(1H,d.J=8.8Hz),10.77(1H.s)
21	CF,	CN	H	0	Н	Н	mp: 179-180 ((AcOEt-Hex)
							NMR: 0:3.77(2H.d.J=6.1Hz),7.38-7.42(2H.m),
							7.86-7.90(3H.m).8.08-8.12(2H,m).8.25-8.27
	05	<u> </u>	ļ				(1H.m), 10.71(1H,s)
22	CF,	CN	H	S	CH ₃	Н	mp: 86-87 (
							NMR: 6:1.32(3H.d.J=6.8Hz),4.39-4.46 (1H, m),
							7.28-7.34(2H.m),7.78-7.84(2H,m), 8.18-8.24
							(2H,m).8.31(1H.d,J=8.4Hz).8.42 (1H.s),
							12.01(1H,s)

表 6

$$\begin{array}{c|c}
R^1 & H & A & (O)_2 \\
R^2 & O & H
\end{array}$$

Ex.	R'	R²	Α	R ⁹	DATA
23	CF₃	CN	Me Me	s	mp: 166-167 C(AcOEt-Hex) NMR: δ:1.41(6H,s),7.06-7.10(1H,m), 7.57-7.61(1H,m),7.84-7.87(1H,m),8.07-8.14 (2H, m).8.23-8.30(2H,m),10.29(1H,s)
24	CF₃	CN	OMe	− √F	mp: 90-95 C (AcOEt-(i-Pr) ₂ O-Hex) NMR: δ : 3.19(3H,s),3.42-3.52(2H,m), 4.09- 4.17(1H,m),7.23-7.28(2H,m),7.76-7.84 (3H, m),8.01-8.03(1H,m),8.07(1H,d,J=8.4Hz), 8.51(1H,d,J=9.2Hz),10.81(1H,s)

Ex.	R.	R ²	Α	R ^s	DATA
31	.CF ₃	CN	Me Me	—√_ÿ—F	mp. 117-118 C (AcOEt-Hex) NMR(CDCl ₃ ,TMS internal standard) 6:1.47(6H,s),5.84(1H,s),7.22(2H,t,J=8.8Hz), 7.79(1H,d,J=8.8Hz),7.90-7.95(3H,m), 8.07 (1H,s),9.20(1H,br)
32	CF₃	CN	Me Me	-NO ₂	mp: 109-110°C (AcOEt-Hex) NMR: 0:1.50(6H,s),7.89-7.92(2H,m).8.00- 8.15(4H,m),8.28(1H,d,J=2.0Hz),8.90(1H,s),1 0.33(1H,s)
33	CF ₃	CN	Me Mc	——————————————————————————————————————	mp: 124-125 C(AcOEt-Hex) NMR: 0:1.45(6H,s),3.76(3H,s),6.82(2H,d, J=8.8Hz),7.73-7.75(3H,m),7.89-7.92 (1H,m), 8.00(1H,d,J=2.0Hz),9.67 (1H,s), 10.83(1H,s)

				DATA
	R	A	R ⁹	DATA
25	CF ₃	Me Me	_//\\	mp: 207-208 (
				NMR(CDCl ₃ ,TMS internal standard)
				à:1.77(6H,s),6.29(1H,s),7.15-7.19(2H.m), 7.76 (1H,
				d,J=8.3Hz).7.75-7.83(2H,m),7.87-7.90(1H,m). 8.07
				(1H.d,J=2.0Hz).10.67(1H.s)
26	CF ₃	Me Me	0ÇH.,	mp: 124-125 (AcOEt-Hex)
		×)	NMR. (1.57(6H.s).3.97(3H,s),7.05(1H.t. J=7.2Hz).
		1	<u> </u>	7.20(1H.d.J=8.4Hz),7.49-7.54(1H.m), 7.79(1H.dd.
	i	ļ		J=2.0,8.4Hz).8.07(1H,d,J=8 4Hz).8.15(1H.dd.J=2.0.8
				.4Hz).8.31(1H.d.J=2.0Hz).8.55(1H.s).10.20(1H.s)
27	CF ₃	Me Me	// ·	mp: 256-258 ((MeOH-EtOH)
		,×.	—()—CN	NMR: 6:1.54(6H,s),7.98(2H,m).8.03-8.15 (4H, m),
				8.29(1H,d,J=2.0Hz),8.85(1H,s).10.22(1H.s)
28	CF ₃	Me Me		mp: 222-225 C (AcOEt-Hex)
			('_')-CF ₃	NMR: δ:1.55(6H,s),7.87(2H,d,J=8.8Hz),8.06 (1H,d,
				J=8.8Hz),8.13-8.15(3H,m),8.30(1H,d.J=2.0Hz), 8.83
L				(1H.s),10.23(1H,s)
29	CN	Me Me		mp: 198-199 C(EtOH)
		X .	\ __\\\	NMR: δ:1.52(6H,s),7.31(2H,t,J=8.8Hz),7.98-8.04
İ				(3H,m),8.10(1H,dd,J=2.0,8.6Hz),8.30(1H,d,J=2.0Hz),
				8.59(1H,s),10.15(1H,s)
30	CI	Me Me		mp: 227-230°C(AcOEt-Hex)
			- 	NMR: δ:1.51(6H,s),7.31(2H,t,J=8.9Hz),7.75(1H, dd,
				J=2.6,8.7Hz),7.85(1H,d,J=8.7Hz),8.00(2H,dd,J=5.4,8
		L		.9Hz),8.06(1H.d.J=2.6Hz),8.55(1H,br),10.00(1H,br)
34	CF₃	Me Me	F	mp: 168-169 C (AcOEt-Hex)
			<u> </u>	NMR: δ:1.54(6H,s),7.27-7.32(2H,m),7.52-7.58
			(' ')	(1H,m),7.72-7.76(1H,m),8.08 (1H,d, J=8.4Hz), 8.16
			(=/	(1H,dd,J=1.6,8.4Hz),8.33(1H,d,J=1.6Hz),8.52(1H,d,J
				=1.6Hz),10.22(1H,s)

Ex.	R ¹	A	R ⁹	DATA
35	CF ₃	Me Me	F	mp: 204-206 ((AcOEt-Hex)
		\rightarrow	_// \\\	NMR: 0:1.53(6H,s),7.38-7.43(1H,m),7.50-7.56 (1H,
			\/	m),7.75-7.78(2H.m),8.04-8.15 (2H.m), 8.30(1H.s).
				8.69(1H.s),10.22(1H.s)
36	CF ₃	Ме Ме	1./2.	mp: 184-185 ((CHCl ₃)
		\rightarrow	ا ا	NMR: 0:1.54(6H,s),7.51-7.54(1H,m),8.05(1H,d,J=
			N.	8.8Hz), 8.13-8.16(1H,m).8.24-8.27 (1H,m).8.30(1H,
				d.J=1.6Hz),8.72(1H.dd.J=1.6.5.2Hz), 8.80(1H,s).
<u>.</u>				9.11(1H.d,J=1.6Hz), 10.22(1H.s)
37	CF ₃	Me Me	(-3)	mp: 129-130 (((i-Pr) ₂ O)
			لين الس	NMR: 0:1.61(6H.s),7.64-7.62(1H.m),8.00-8.01 (2H,
			N	m). 8.06(1H.d,J=9.2Hz).8.14-8.16 (1H,m). 8.31
				(1H,d,
-	05	Ме Ме		J=1.6Hz).8.72(1H,d,J=8.8Hz).8.83(1H,s).10.34(1H,s)
38	CF ₃	Me Me		mp: 173-174 ((AcOEt-C ₆ H ₆)
				NMR: 0:1.58(6H,s),7.59-7.65(2H.m),7.98-8.06 (5H,
			•	m),8:14-8.17(1H,m),8.32(1H,d.J=1.6Hz), 8.56 (1H,s),
39	C=	Me		8.74(1H.s), 10.26(1H.s)
39	CF ₃	Ţ,	_/ >	mp: 220-221 (`(AcOEI-Hex)
				NMR(CDCl ₃ ,TMS internal standard)
				o:1.26(3H,s),1.79-1.85(11H,m),4.68-4.72(1H,m), 5.98-6.00(1H,m),7.81-7.83(2H,m), 7.98-8.00 (1H,m),
				9.88-9.89(1H,m)
40	CF ₃	M e	()	mp: 206-207 ((AcOEt-Hex)
	- ,		<i>─</i> ⟨′ <i>></i> ⊢F	NMR (CDCl ₃ .TMS internal standard): 6:1.61(3H,d,
			<u>_</u>	J=8.6Hz).4.93-4.97(1H,m).6.82-6.84(1H,m). 7.16-
				7.19(2H.m).7.76(1H.d.J=8.5Hz).7.84-7.87 (2H.m).
				7.97(1H.d. J=8.5Hz).8.02 (1H.s).9.88(1H.s)
41	CF,	Me Me	F	mp. 166-167 (AcOEt-Hex)
		<u>~</u>	<u> </u>	NMR. (6) 1.53(6H.s),7.18-7.23(1H.m),7.34-7.40 (1H.
			— /_ <i>></i> — F	m). 7.79-7.85(1H.m),8.08(1H.d, J=8.8Hz). 8.16 (1H.
				dd,J=1.6.8.8Hz).8.32(1H.d.J=1.6Hz).8.55(1H.d.J=1.6
				Hz),10.22(1H,s)
42	CF ₃	Me Me	F	mp: 182-183° (AcOEt-Hex)
				NMR: 6:1.52(6H,s),7.14-7.20(2H,m),7.48-7.56 (1H,
				m), 8.10(1H,d,J=8.8Hz), 8.17(1H.dd, J=1.6, 8.8Hz),
43	CF ₃	Me Me	CI	8.33(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s)
43		X W 6	CI	mp: 214-215 C (AcOEt-Hex)
		/ · \	— CI	NMR: 6:1.51(6H,s),7.55(1H,dd,J=1.6Hz, 8.0Hz),
			<u></u>	7.66-7.69(2H,m),8.08(1H,d,J=8.4Hz), 8.18-8.21 (1H,
44	CF ₃	Me Me		m), 8.35-8.36(1H,m),8.87(1H,s), 10.28(1H,s) mp: 171-172 ((AcOEt-Hex)
''	3	\times		NIAD. N. ACKELLING CAKELLING TO THE COLUMN
				7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J=
				1.6,7.2Hz),8.18(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,8.8
				Hz),8.33(1H,d,J=1.6Hz),8.61(1H.s),10.17(1H.s)
45	CF ₃	Me Me	/	mp: 207-208°C (AcOEt-Hex)
		\times	// \\\\ a=	NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2H,
			CF ₃	m).7.87-7.89(1H,m),8.08-8.10(1H,m), 8.18-8.20 (1H,
	<u> </u>			m).8.38(1H.s).8.93(1H.s), 10.30(1H,s)
46	CF ₃	Me Mc	1	mp: 215-216 ⁻ C (AcOEt-Hex)
				NMR: 8:1.58(6H,s),7.46-7.60(3H,m),7.85 (1H,d,
				J=6.8Hz),7.97-8.13(4H,m),8.24-8.26 (1H,m),8.39
L	11			

Ex.	<u>D</u> .	A 1	R ⁹	DATA
<u> </u>				(1H.s).8.86(1H.s).10.42(1H.s)
47	CF ₃	Me Me		mp. 195-196 ((AcOEt-Hex)
4/		× .		NMR: 0:1.52(6H.s),7.35-7.40(1H.m),7.45-7.49 (1H,
			∕ }−Br	m), 7.61-7.66(2H.m), 8.08(1H.d. J=8.8Hz), 8.21(1H,
				dd,J=2.4,8.8Hz).8.38(1H.d.J=2.4Hz),8.81(1H.s),10.2
				7(1H.s)
		Me Me		mp: 180-182 C(AcOEt-Hex)
48	CF ₃ ;	We !	,	NMR: 6:1.52(6H.s),7.40-7.51(3H.m),7.61-7.65 (1H.
			// ">─cı	m).8.05-8.24(2H.m).8.37(1H.br),8.83 (1H.br),10.28
			· <u> </u>	(1H,s)
-		Me Me		mp: 203-204 (*(AcOEt-Hex)
49	CF.	Mc Me	<u>~</u> (" '\$	NMR: 0:1.54(6H.s),7.46-7.50(2H,m).7.53-7.57 (1H,
		2.00		m), 7.93-7.95(2H.m), 8.05(1H,d, J=8.4Hz), 8.14
				(1H.dd.J=1.6,8.4Hz),8.31(1H.d,J=1.6Hz).8.86(1H.s),
	\ <u></u>			10.20(1H.s)
50	CF ₃	Me Me		mp: 106-107 C (AcOEt-Hex)
			\sim	NMR: 6:1.51(6H.s),6.63-6.66(1H.m),7.18-7.20 (1H.
	1 !		O	m).7.86-7.88(1H.m),8.05 (1H.d, J=8.4Hz), 8.13-8.17
				(1H.m).8.30(1H.d.J=2.0Hz).8.38(1H.s). 10.25(1H,s)
51	CF ₃	Me Me		mp: 145-146 C (AcOEt-Hex)
		X	المراكب المراكب	NMR: 6:1.48(6H,s),3.72(3H,s),6.04(1H,dd,J=2.4,
į	1		N	4.0Hz).6.89-6.92(1H,m).6.98-7.01(1H.m),7.97 (1H.
			Мe	s),8.05(1H,d,J=8.8Hz),8.15-8.19(1H,m), 8.33(1H,d,
				J=1.6Hz).10.17(1H.s)
52	CN	OAc		mp: 209-210 ((AcOEt-MeOH)
		j		NMR: 0:2.01(3H.s),4.34-4.46(2H,m).4.83-4.90 (1H.
i		·		m).7.30-7.37(2H.m).7.96-8.06(3H.m). 8.09(1H.d.
				J=8.8Hz).8.30(1H.d.J=2.4Hz).8.97(1H.d.J=7 6Hz).10
				.98(1H.s)
53	CF ₃	Me Me		mp: 125-127 ((AcOEt-Hex)
		l v	, , , ,	NMR: 0:1.52(6H.s),7.16-7.20(1H.m),7.76-7.79 (1H.
•			S	m).7.95-7.98(1H.m).8.05(1H,d.J=8.8Hz). 8.13-8.18
		1		(1H,m).8.30(1H.d.J=2.0Hz),8.54(1H.s),10.23(1H.s)
54	CF ₃	Me Me		mp: 198-199 ((AcOEt-Hex)
		/ X.	Me	NMR: 6:1.51(6H,s),2.27(3H,s),7.21-7.29(2H,m).
İ	1	•	Me	7.32-7.37(1H,m),7.54-7.58(1H,m),8.07(1H.d, J=8.8
	1			Hz).8.19(1H,dd,J=2.0,8.8Hz),8.38(1H,d,J=2.0Hz).8.5
				3(1H,s),10.25(1H.s)
55	CN	Me Me		mp: 175-176°C (AcOEt-Hex)
			/\	NMR: 0:1.52(6H,s),7.27-7.33(2H,m),7.52-7.58 (1H,
1	1		\ <u>-</u>	m),7.72-7.77(1H,m),8.05(1H,d,J=8.4Hz), 8.13 (1H,
1	1			dd,J=2.0,8.4Hz),8.34(1H,d,J=2.0Hz),8.51-8.55 (1H,
				m),10.20(1H,s)
56	CN	Me Me	1 - 1 -	mp: 139-141 C(AcOEt-Hex)
-			FY YF	NMR: 6:1.51(6H,s),7.14-7.21(2H,m),7.48-7.57 (1H,
				m),8.07(1H,d,J=8.8Hz),8.12(1H,dd,J=2.0,8.8Hz),8.35
				(1H,d.J=2.0Hz).9.11(1H,s),10.16(1H,s)
57	CF ₃	Me Me		mp: 221-223 ⁻ C (AcOEt-Hex)
"	0.3	Ί×		NMR: 8:1.56(6H,s),7.43-7.50(2H,m),7.95-8.08 (3H,
				m),8.15-8.19(1H,m),8.30-8.34(2H,m),8.86 (1H,s),
				10.29(1H,s)
1	1		1	

Ex.	R	A	R⁴	DATA
58	CF ₃	_ OMe	/	mp: 195-196 (`(AcOEt-MeOH)
				NMR: 0:3.31(3H.s),3.73(2H,d.J=4.4Hz),4.78-4.85
				(1H.m).7.28-7.35(2H.m).7.54-7.61(1H.m).7.66-7.71
				(1H,m),8.02-8.06(1H,m).8.12(1H,d,J=8.8Hz), 8.31
				(1H,d.J=2.4Hz).8.55-8.66(1H,m).11.01(1H,s)
59	CF ₃	OMe		mp: 187-188 ((AcOEt-Hex)
	' '		— — — F	NMR: 0:3.32(3H.s),3.70-3.79(2H,m),4.77-4.84 (1H,
			<u> </u>	m),7.29-7.36(2H,m),7.97-8.14(4H,m), 8.32 (1H.d. J=
				2.0Hz).8.83(1H.d.J=6.8Hz).10.99(1H.s)
60	CF ₃	Me Me	1	mp: 164-165 C(AcOEt-Hex)
	J. 3	\sim	F	NMR: 6:1.53(6H,s),7.28-7.34(1H,m),7.50-7.64 (2H,
			L. L	m).8.09(1H.d.J=8.4Hz).8.17(1H.dd,J=1.6.8.4Hz).8.34
), (1)	(1H.d.J=1.6Hz),8.74(1H.s),10.24(1H.s)
61	CF ₃	Me Me	~ /^\ E	mp: 208-209°C (AcOEt-Hex)
"	0, 3	\times		
			Service F	NMR: 6:1.53(6H.s).7.53-7.61(1H,m).7.78-7.84 (1H,
			ŕ	m),8.01-8.08(2H,m),8.12-8.15(1H,m), 8.29 (1H,d,
62	CF ₃	Me Me	. F	J=1.6 Hz), 8.70(1H,s), 10.21(1H,s)
02	CF3		Y	mp: 161-162 ((AcOEt-Hex)
		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NMR: 6:1.52(6H.s),7.33-7.45(2H,m),7.59-7.65 (1H,
	•		Г	m),8.08(1H.d.J=8.8Hz),8.15(1H.dd,J=1.6,8.8Hz),8.33
63	CF ₃	Me Mc		(1H,d,J=1.6Hz),8.71(1H,s),10.24(1H,s)
63	CF3	W & W &		mp: 143-144 (`((i-Pr) ₂ O)
1			Me	NMR: 6:1.11(9H.s),1.42(6H.s),7.39(1H,s),8.04-8.11
-			Ме	(2H,m),8.30-8.33(1H,m),9.00(1H.s)
64	CN	Me _ Me	e l	MS FAB (m/z):383[(M+1)*]
]		NMR: 0:0.97(6H.d.J=6.6Hz),2.05-2.19(1H,m),4.51
			1 '1	(1H.t.J=8.3Hz).7.15(2H.t.J=7.9Hz).7.46-7.58(1H, m).
				8.01(1H.dd.J=1.9.8.5Hz).8.09(1H.d.J=8.5Hz).8.33(1
25	-			H.d.J=1.9Hz).9.15(1H.d.J=8.3Hz).11.03(1H.br).
65	CF.	Me Me		mp: 204 205°C
			(′)—cn	NMR: 0:1.54(6H.s), 7.67-7.71(1H.m), 7.80-7.84
			\	(1H, m). 7.92(1H.d,J=7.6Hz). 7.99(1H.d. J=7.6Hz),
				8.07 (1H.d,J=8.8Hz), 8.19(1H.dd, J=1.6.8.8Hz), 8.31
-	0=		·	(1H.d,J=1.6Hz). 8.95(1H.s). 10.27(1H,s)
66	CF ₃	Me Me	F	mp: 215-217 (
			し、共才	NMR: 6:1.42(6H,s),5.02(2H,s),7.28-7.36 (4H,m),
		. *	~ ~	7.69(1H,s),8.07(1H,d.J=8.2Hz).8.20(1H,d,J=8.2Hz),
				8.33(1H,s),10.32(1H,s)
67	CF ₃	Me. Me		mp: 205-206 C
			✓ У—он	NMR: δ:1.57(6H,s),6.91-6.94(2H,m),7.40-7.44(1H,
			\/	m). 7.99(1H,dd,J=1.6,8.0Hz),8.06 (1H,d, J=8.4Hz),
		}		8.15(1H,dd,J=2.0,8.4Hz), 8.30(1H,d, J=2.0Hz),
				8.86(1H,s),10.27(1H,s), 11.88(1H,s)
68	CF ₃	Me Me		mp: 188-189°C
			(Y	NMR: 1.66(6H,s),7.73-7.77(2H,m),8.06 (1H,d,
		1		J=8.8Hz).8.17(1H,dd,J=2.0,8.4Hz).8.24(1H,dd,J=1.6,
		[8.4Hz).8.31(1H,d,J=1.6Hz).8.49(1H,dd,J=1.6,7.2Hz),
		I		8.29(1H,dd,J=1.6,8.4Hz),9.15(1H,m),10.37(1H,s),11.
				46(1H,s)
69	CF ₃	Me Me		mp: 122-123 C(AcOEt-Hex)
		×	/	NMR: δ:1.49(6H,s),6.08-6.12(1H,m),6.85-6.88
			N	(1H,m),6.93-6.97(1H,m),8.01-8.06(2H,m),8.13-8,17
			11	(1H,m),8.30-8.34(1H,m),10.21(1H,s),11.40-11.46
				7

WO 98/22432 PCT/JP97/04174

Ex.	P.	Α ;	R ^s	DATA
	13		11	(1H.br)
70	CF	Me Me	26.5	[MS FAB (m/z):418[(M+H)*]
	0. 3	\times		INMR: 0:1.41(6H.s),1.47(6H.s),7.18-7.33(5H.m),
!		,	\times	7.45(1H,s),8.05-8.14(2H,m),8.24-8.26(1H,m), 9.89
į	1		Ме Ме	(1H,s)
71	CF,	Me Me	- 1	mp: 194-195 € (AcOEt-Hex)
i			1	NMR: 6:1.52(6H.s),7.28-7.39(2H,m),7.45-7.52 (1H,
				m).8.09(1H,d,J=8.4Hz).8.16-8.20(1H,m), 8.33 (1H.d.
				J=1.6Hz).9.13(1H.s),10.15(1H.s)
72	CF ₃	Me Me	F YES	mp: 182-184'C`(AcOEt-Hex)
i		,×,	。	NMR: \(\delta\):1.53(6H.s),7.42(1H.dd.J=2.4,8.0Hz), 7.54-
	' İ	į.		7.58(1H.m), 7.78(1H,t,J=8.0Hz), 8.08(1H,d, J=8.4Hz),
				8.15-8.18(1H,m),8.33-8.35(1H.m),8.62-8.65(1H.m).
				10.27(1H.s)
73	CF ₃	Me Me	CI F	mp: 166-169 (`(AcOEt-Hex)
		* *		NMR: 0:1.51(6H.s),7.30-7.37(1H.m),7.52(1H.dd.
1				J=2.4,8.4Hz),7.72(1H,dd,J=6.4,8.4Hz).8.09(1H,d.J=8
	!			.8Hz),8.18-8.22(1H,m).8.34-8.37(1H,m),8.45 (1H.s),
	05	M = M =		10.28(1H,s)
74	CF ₃	Me Me	TF	mp: 187-188 C(AcOEt-Hex)
1				NMR: 6:1.53(6H,s),7.54(1H,t.J=9.2Hz),7.90-7.95
			O i	(1H,m),8.05(1H,d,J=8.4Hz).8.11-8.16(1H,m), 8.25
				(1H.dd,J=2.0,7.2Hz),8.28-8.30(1H.m),8.76 (1H.s). 10.22(1H.s)
75	CF ₃	Ме Ме		mp: 197-199 ((AcOEt-Hex)
/3	UF ₃		1-1-1-1	NMR: 0:1.51(6H.s),7.27-7.34(2H.m),8.10(1H.d. J=
				8.4Hz).8.15-8.20(1H.m).8.31-8.33(1H.m).9.12(1H.s).
			F	10.22(1H.s)
76	CF,	Me Me	/	mp. 222-223 (AcOEt-Hex)
	0. ,	~/	·=' —	NMR. • .1.42(6H.s).7.24-7.28(3H,m).7.35-7.40 (3H.
	!		N 1/ 1	(m),7.44-7.56(2H,m),7.75-7.79(1H,m), 8.07 (1H,d.
ļ				J=8.8Hz),8.13-8.16(1H.m).8.32-8.34 (1H.m). 8.65
i				(1H.s),10.22(1H,s)
77	CF ₃	Me Me		may 107 100 () (A = OFA Herr)
		\sim X $_{\odot}$	-	NMR: 0:1.55(6H,s),7.39-7.44(1H,m),7.47-7.53 (2H,
		-		m).7.72-7.81(4H,m),8.02-8.08(3H,m),8.14-8.18 (1H,
				m).8.31-8.33(1H,m).8.63(1H.s).10.22 (1H.s)
78	CF₃	Me Me	F	MS FAB (m/z):400[(M+H)*]
	-	\times		NMR: δ:1.56(6H,s),7.15(1H,d,J=5.6Hz),7.69-7.73
				(1H,m),7.82(1H,dd,J=4.5,5.6Hz),8.07(1H,d.J=8.5Hz),
'	!!!		, 5	8.09(1H,br),8.13(1H,d,J=1.9,8.5Hz),8.28(1H,d.J=1.9
	نسنا			Hz),10.24(1H,br)
79	CF ₃	Me Me		mp: 197-199°C (AcOEt-Hex)
				NMR: δ :1.54(6H,s),7.84-7.87(2H,m),8.06(1H,d,J=
				8.8 Hz),8.12-8.16(1H,m),8.30(1H,d,J=2.4Hz), 8.73-
<u></u>				8.76(2H,m),8.87(1H,s),10.29(1H,s)
80	CF ₃	Me Me	N =	mp: 106-108°C (AcOEt-Hex)
			N	NMR: 8:1.61(6H,s),8.07(1H,d,J=8.4Hz),8.13-8.17
				(1H,m),8.30(1H,d,J=1.6Hz),8.79-8.82(1H,m), 8.90-
-	-			8.93(2H,m),9.15-9.17(1H,m),10.32(1H,s)
81	CF ₃	Me Me	N N	mp: 170-171 C(AcOEt-Hex)
			1人人り	NMR: δ :1.65(6H,s),7.80-7.91(2H,m),8.06(1H,d, J=
				8.8Hz),8.13-8.20(2H,m),8.26-8.32(2H,m), 8.53 (1H,
L	1		L	s),8.96(1H,s),9.45(1H,s),10.38(1H,s)

Ex. R ¹ A R ² DATA 82 CF ₃ Me Me Me Me Me CHO — F MS EI (m/z):423(M¹) 83 CF ₃ Me Me Me CHO — F MS EI (m/z):423(M¹) 84 MS EI (m/z):423(M¹) 85 CH ₃ Me Me Me CHO — F MS EI (m/z):423(M¹) 86 CH ₄ Me Me MS EI (m/z):423(M¹) 87 CH ₄ Me Me CHO — F MS EI (m/z):423(M¹) 88 CH ₄ Me Me MS EI (m/z):423(M¹) 89 CH ₄ Me Me MS EI (m/z):423(M¹) 80 CH ₄ Me Me MS EI (m/z):423(M¹) 81 CH ₄ Me MS EI (m/z):423(M¹) 82 CH ₄ Me Me MS EI (m/z):423(M¹) 83 CH ₄ Me Me MS EI (m/z):423(M¹) 84 CH ₄ Me Me MS EI (m/z):423(M¹) 85 CH ₄ Me Me MS EI (m/z):423(M¹) 86 CH ₄ Me MS EI (m/z):423(M¹) 87 CH ₄ Me MS EI (m/z):423(M¹) 88 CH ₄ Me MS EI (m/z):423(M¹)	H.d. 3.30-
NMR: 6:1.57(6H,s),6.75-6.78(1H,m),7.14-7.19 m),7.40-7.44(1H,m),7.57(1H,d,J=8.0Hz),7.64 (1 J=8.0Hz),8.06(1H,d,J=8.8Hz),8.13-8.17 (1H,m), 8.33(2H,m),10.22(1H,s),11.28(1H,br) MS EI (m/z):423(M') NMR: 6:1.47(6H,s),4.53(2H,s),6.94-7.00(2H,m) 7.04-7.11(2H,m),8.08(1H,d,J=8.4Hz),8.17-8.22	H.d. 3.30-
m),7.40-7.44(1H.m),7.57(1H.d.J=8.0Hz),7.64 (1 J=8.0Hz).8.06(1H.d.J=8.8Hz),8.13-8.17 (1H.m), 8.33(2H.m),10.22(1H.s),11.28(1H.br) MS EI (m/z):423(M¹) NMR: 0:1.47(6H.s),4.53(2H,s),6.94-7.00(2H.m 7.04-7.11(2H.m),8.08(1H,d,J=8.4Hz),8.17-8.22	H.d. 3.30-
J=8.0Hz).8.06(1H.d.J=8.8Hz),8.13-8.17 (1H.m). 8.33(2H.m).10.22(1H.s).11.28(1H.br) 83 CF ₃ Me Me CHO CHO NMR: 0:1.47(6H.s),4.53(2H.s).6.94-7.00(2H.m) 7.04-7.11(2H.m).8.08(1H.d.J=8.4Hz),8.17-8.22	3.30-
83 CF ₃ Me Me CHO — F MS EI (m/z):423(M') NMR: 0:1.47(6H.s),4.53(2H,s).6.94-7.00(2H.m) 7.04-7.11(2H.m).8.08(1H.d,J=8.4Hz).8.17-8.22	
83 CF ₃ Me Me CHO - CHO - F MS EI (m/z):423(M¹) NMR: 0:1.47(6H.s),4.53(2H,s).6.94-7.00(2H.m 7.04-7.11(2H.m).8.08(1H.d,J=8.4Hz),8.17-8.22	
NMR: 0:1.47(6H.s),4.53(2H,s).6.94-7.00(2H.m) 7.04-7.11(2H.m).8.08(1H,d,J=8.4Hz),8.17-8.22	
7.04-7.11(2H.m).8.08(1H,d,J=8.4Hz).8.17-8.22	
m).8.27-8.30(1H,m).8.32(1H,s). 10.21 (1H,s)	
84 CF ₃ Me Me / O mp: 289-290 (AcOEt-MeOH)	
NMR: 0:1.72(6H,s),5.61(1H,d.J=9.2Hz),7.58 (1	ни
J=9.2Hz).8.13-8.20(2H,m).8.27-8.34(2H,m), 10.3	37.
10.44(1H.m).10.49(1H.br)	,, -
85 CF ₃ Me Me mp: 147-149 (AcOEt-Hex)	
NMR: 0:1.56(6H.s).7.02-7.07(1H.m).7.16-7.21	
The first the first term of th	
m).7.32-7.36(1H.m),7.37-7.42(1H,m),7.62-7.66 m).8.05(1H.d,J=9.2Hz),8.14-8.19(1H,m). 8.30-8.	
(1H,m).8.53(1H,s).10.29 (1H,s). 11.55(1H,br)	JJ
86 CF ₃ Me Me mp: 100-102 (AcOEt-Hex)	
NMR: 0:1.50(6H,s),2.45(3H,s),6.85-6.88(1H,m)	
/*/70(1H,d,J=4.0Hz),8.03-8.07(1H,m),8.13-8.17(ıH.
m),8.29-8.32(1H.m),8.41(1H,s),10.22(1H.s) 87 CF ₃ Me Me mp: 231-232 C(AcOEt-Hex)	
implication 202 (Viceocities)	
NMR: 0:1.55(6H.s),7.02-7.08(1H.m),7.32-7.34	
m).7.36-7.45(2H,m).8.05(1H.d,J=8.4Hz).8.16 (1H.d,J=8.4Hz).8.16 (1H	
J=2.0.8.4Hz),8.31(1H,d,J=2.0Hz).8.59(1H,s).10.	28(1
H.s).11.66(1H.s) 88 CF ₁	
NMR: (2.01(3H.s), 4.34-4.48(2H.m), 4.87-4.96	
m).7.27-7.37(2H.m),7.43-7.68(1H.m).7.65-7.79(
m).8.05(1H.dd.J=2.1,9.0Hz), 8.14 (1H.d.J=9.0Hz)	
8.30(1H.d.J=2.1Hz).8.74-8.82(1H.m), 11.04(1H.) 89 CF ₃ OH mp: 181-182 ((AcOEt-MeOH))	or)
NMR: 0:3.80-3.85(2H,m).4.63-4.68(1H,m).5.18	
5.24(1H,m),7.29-7.37(2H,m),7.55-7.62(1H,m), 7	72-
7.77(1H,m),8.02-8.06(1H.m),8.12(1H,d, J=8.8Hz).
8.33-8.38(2H.m),10.92(1H.s) 90 CF ₃ Me Me mp: 179 (
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
7.91(2H,d,J=8.7Hz),8.04(1H,d,J=8.7Hz),8.02-8.0	
(1H.m).8.29-8.31(1H,m),8.38(1H,br), 10.16(1H,br)	<u>r)</u>
- \- \- \- \- \- \- \- \- \- \- \- \- \-	I, d,
J=8.4Hz),8.05(1H.d,J=8.4Hz),8.11-8.16(1H,m), 8	.28-
8.30(1H,m),8.65(1H,br),10.19(1H,br)	
Imp. 173 C (ACOE)	- [
NMR: 0:1.52(6H,s),7.56(2H,d,J=8.4Hz),7.96(2H	I, d,
J=8.4Hz).8.05(1H,d,J=8.7Hz),8.12-8.16(1H,m), 8	.29-
8.31(1H,m),8.65(1H,br),10.19(1H,br)	
93 CF ₃ Me Me CI mp: 223 (
Br NMR: 6:1.50(6H,s),7.60(1H,d,J=8.1Hz),7.68(1H	i, d,
J=1.8,8.1Hz),7.81(1H,d,J=1.8Hz),8.08(1H,d,J=9	0Hz
),8.17-8.22(1H,m),8.35-8.36(1H,m),8.87 (1H,br),	
10.28(1H,br)	1

Ex.	R'	Α	R⁵	DATA
94	CF ₃	Mc Mc	Br F	mp. 199 ((AcOEt-(Et) ₂ O) NMR: n:1.51(6H.s).7.35-7.41(1H.m).7.62-7.66 (1H. m).7.68-7.73(1H.m).8.08(1H,d,J=8.4Hz).8.18-8.22 (1H.m).8.37-8.39(1H.m).8.83(1H.br).10.28 (1H.br)
95	CF ₃	M c M e	—/он	MS FAB (m/z):392[(M+H) ⁻] NMR: 0 :1.50(6H,s),6.80(2H,d,J=8.7Hz),7.80(2H,d,J=8.7Hz),8.04(1H,d,J=9.0Hz).8.11-8.16(1H,m), 8.26 (1H,br).8.30-8.32(1H,m),9.99(1H,br), 10.15(1H,br)

Ex.	R	Α	R ⁸	DATA
96	CF ₃	Me Me	O-Benzyl	MS FAB (m/z):500[(M+H) ⁻] NMR(CDCl ₃ ,TMS internal standard): 0:1.85 (6H.s), 4.60 (2H.br),6.78(2H.d.J=7.4Hz).6.88(2H,t.J=8.8Hz).7.08-7.33 (3H,m),7.74-7.81 (3H,m), 7.93(1H.dd,J= 2.2, 8.4 Hz). 8.09 (1H,d,J=2.2Hz),10.05(1H.s)
97	CF ₃	Me Me	ОН	mp: 211-213 C NMR(CDCl ₃ +DMSO-d ₆ ,TMS internal standard) à :1.67(6H,s),7.05-7.10(2H,m),7.74(1H,d, J=8.5Hz),7.84-7.89(2H,m),7.95(1H,d, J=1.8Hz),8.10(1H,dd, J=1.8.8.4Hz), 9.17(1H,s),9.23(1H,s)

表 9

Ex.	R¹	R²	Y	R⁵	DATA
98	3-CF ₃	4-CN	O N H	—	mp: 144-146 ((AcOEt) NMR: 6:1.40(6H,s),6.69(2H,s),6.80-6.63 (1H,m),7.01(1H,d.J=2.4Hz),7.35-7.40(3H,m), 7.45-7.49(2H,m),7.65(1H,d.J=8.4Hz), 8.54(1H,br)
99	3 CF,	4-CN	C=S	~(_)	mp: 194-196 (**),7.40-7.52(3H,m),7.84-7.87(2H,m), 8.06-8.08(2H,m),8.24(1H,s), 10.02(1H,s),10.20(1H,s)
100	3-CI	5-CI	C=0	→F	mp: 229-230 C(AcOEt-Hex) NMR: δ :1.50(6H.s),7.23(1H,t.J=1.3Hz), 7.31 (2H,t,J=6.8Hz),7.73(1H,d,J=1.3Hz),7.98-8.04 (2H.m),8.51(1H.s),9.73(1H,s)
101	3-CF ₃	5-CF ₃	C=0	→Ç_>F	mp: 240-241°C(AcOEt-Hex) NMR: \(\delta\):1.53(6H,s),7.32(2H,t,J=6.6Hz), 7.71 (1H,s),8.02(2H,dd,J=3.9,6.6Hz),8.37(2H,s),8.5 9(1H,s),10.10(1H,s)

Ex.	R:	R²	Υ	R"	DATA .
102	2-CF ₃	4-CN	C=0	— (_)—F	MS FAB (m/z):394[(M+H)*] NMR: 0:1.52(6H,s).7.32(2H,t,J=9.0Hz),7.95- 8.03(3H,m).8.13-8.19(1H,m).8.24-8.28(1H,m), 8.74(1H,br).9.16(1H,br)

表10

		·····	110		
Ex.	R.	Α	Y	R⁰	DATA
103	CF ₃	15.020° \	SO ₂		mp: 145-146 (`(AcOEt-Hex)
					NMR: 6:2.57(2H,t.J=6.8Hz),3.04-3.10
					(2H. m),7.40-7.45(2H,m),7.84-7.88 (3H,m),
					7.92 (1H.dd,J=2.0.8.6Hz).8.09(1H.d.
					J=8.6Hz).8.24(1H,d,J=2.0Hz).10.72(1H,s)
104	CF ₃	Me	SO₂		mp: 163-164 ○ (AcOEt-Hex)
					NMR: 6:1.02(3H.d.J=6.4Hz).2.46(2H.d.
					J=6.8Hz),3.64-3.71(1H,m),7.29-7.33(2H,m),
					7.80-7.91(5H,m).8.16(1H,s), 10.60(1H,s)
105	CF ₃	Mc Me	C=0		mp: 180-181 ℂ (AcOEt-Hex)
					NMR: 6:1.27(6H, s.),4.03(2H,d,J=7.0Hz),
					7.24-7.31 (2H,m),7.82-7.88(2H,m), 8.09
					(1H.d,J=8.6Hz), 8.13-8.18(1H,m),8.32-
					8.35(1H,m).8.42-8.48 (1H.m).10.02(1H,s)
106	CF,	Me Mo	SO ₂		mp: 161-162 ((AcOEt-Hex)
					NMR: 6:1.19(6H. >).3.02(2H,d,J=6.7Hz).
					7.36-7.43(2H.m).7.76-7.88(3H.m).8.06-8.13
					(2H.m).8.28-8.31(1H.m).9.91(1H.s)
107	CF,	Mc Me	C=0	_	mp: 191-192 ((AcOEt-Hex)
					NMR: 6:1.27(6H,s).3.60(2H,d,J=6.4Hz),
					7.10-7.16 (2H,m).7.44-7.53(1H,m).8.08
					(1H.d,J=8.8Hz), 8.15-8.19(1H,m),8.35-
					8.38(1H,m).8.72-8.77 (1H,m), 10.04(1H,s)
108	CF ₃	Me Me	C=O		MS FAB (m/z):436[(M+H)*]
					NMR(CDCl ₃ ,TMS internal standard):
		Ме Ме			6:1.48 (6H.s), 1.61 (6H.s), 7.11(2H,t,J=
					8.7Hz),7.77-7.86(3H,m),7.93-8.05 (4H.m)

表11

Ex.	R'	Α	Υ	R ⁹	DATA
109	CF₃	\Diamond	C=0		mp: 236-238°C (AcOEt-Hex) NMR: \Rightarrow :1.80-2.02(2H,m),2.28-2.38 (2H,m),2.60-2.74(2H,m),7.30-7.37 (2H,m), 8.01-8.08(3H,m),8.12-8.16 (1H,m),8.30-8.32(1H,m),9.02(1H,s), 10.18(1H,s)

Ex. R A Y H DATA 110 CF ₃ SO ₂	2H,m). m),8.41 -2.31 (2H, 2H, m). m), 8.33- H.s) -1.33 (2H, 2H,m), 7.96
NMR: 6:1.53-1.80(2H,m).2.04-m).2.37-2.46(2H,m).7.23-7.32 (27.73-7.80(2H,m).7.98-8.15 (3H. (1H.s).10.24(1H.s) 111	2H,m). m),8.41 -2.31 (2H, 2H, m). m), 8.33- H.s) -1.33 (2H, 2H,m), 7.96
7.73-7.80(2H.m),7.98-8.15 (3H. (1H.s).10.24(1H.s) 111 CF ₃ C=O F mp: 205-207 (AcOEt-Hex) NMR: 0:1.79-2.05(2H.m),2.22-2.750-7.59(1H.m),8.09-8.16(2H.r. 8.36(1H.m),9.46(1H.s),10.23 (1. 8.36(1H.m),9.46(1H.s),10.23 (1. 112 CF ₃ SO ₂ mp: 211-213 (AcOEt-Hex) NMR: 0:1.02-1.05(2H.m),7.82-7.86(2. (1H.dd,J=1.6.8.4Hz),8.07(1H,d. 113 CF ₃ C=O mp: 284-286 (AcOEt-Hex) NMR: 0:1.19-1.22(2H,m),1.53	-2.31 (2H, 2H, m), m), 8.33- H,s) -1.33 (2H, 2H,m), 7.96
(1H.s).10.24(1H.s) 111 CF ₃ C=O F mp: 205-207 ((AcOEt-Hex) NMR: 0:1.79-2.05(2H,m).2.22- m),2.67-2.76(2H,m),7.16-7.23(2 7.50-7.59(1H,m).8.09-8.16(2H.r. 8.36(1H.m).9.46(1H.s),10.23 (1 mp: 211-213 ((AcOEt-Hex) NMR: 0:1.02-1.05(2H,m),1.30 m).7.30-7.35(2H.m),7.82-7.86(2 (1H.dd.J=1.6.8.4Hz).8.07(1H,d12(1H.d.J=1.6Hz).8.45(1H.s).1 113 CF ₃ C=O mp: 284-286 ((AcOEt-Hex) NMR. 0:1.19-1.22(2H,m),1.53	-2.31 (2H, 2H, m), m), 8.33- H,s) -1.33 (2H, 2H,m), 7.96
(1H.s).10.24(1H.s) 111 CF ₃ C=O F mp: 205-207 ((AcOEt-Hex) NMR: 0:1.79-2.05(2H,m).2.22- m),2.67-2.76(2H,m),7.16-7.23(2 7.50-7.59(1H,m).8.09-8.16(2H.r. 8.36(1H.m).9.46(1H.s),10.23 (1 mp: 211-213 ((AcOEt-Hex) NMR: 0:1.02-1.05(2H,m),1.30 m).7.30-7.35(2H.m),7.82-7.86(2 (1H.dd.J=1.6.8.4Hz).8.07(1H,d12(1H.d.J=1.6Hz).8.45(1H.s).1 113 CF ₃ C=O mp: 284-286 ((AcOEt-Hex) NMR. 0:1.19-1.22(2H,m),1.53	-2.31 (2H, 2H, m), m), 8.33- H,s) -1.33 (2H, 2H,m), 7.96
The second secon	2H, m), m), 8.33- H.s) -1,33 (2H, 2H.m), 7.96
NMR: 0:1.79-2.05(2H,m).2.22-m),2.67-2.76(2H,m).7.16-7.23(27.50-7.59(1H,m).8.09-8.16(2H,r).8.36(1H,m).9.46(1H,s),10.23 (11.02-1.05(2H,m).1.30 m).7.30-7.35(2H,m),7.82-7.86(2(1H,dd,J=1.6.8.4Hz).8.07(1H,dd,J=1.6.8.4Hz).8.07(1H,dd,J=1.6.8.4Hz).8.45(1H,s).1 mp: 284-286 © (AcOEt-Hex) NMR: 0:1.19-1.22(2H,m),1.53	2H, m), m), 8.33- H.s) -1,33 (2H, 2H.m), 7.96
m),2.67-2.76(2H,m),7.16-7.23(2 7.50-7.59(1H,m),8.09-8.16(2H,r 8.36(1H,m),9.46(1H,s),10.23 (1 mp: 211-213 ((AcOEt-Hex) NMR: 0:1.02-1.05(2H,m),1.30 m),7.30-7.35(2H,m),7.82-7.86(2 (1H,dd,J=1.6,8.4Hz),8.07(1H,d. .12(1H,d,J=1.6Hz),8.45(1H,s),1 mp: 284-286 ((AcOEt-Hex) NMR: 0:1.19-1.22(2H,m),1.53	2H, m), m), 8.33- H.s) -1,33 (2H, 2H.m), 7.96
7.50-7.59(1H,m),8.09-8.16(2H.r 8.36(1H.m),9.46(1H,s),10.23 (1 mp: 211-213 (AcOEt-Hex) NMR: 0:1.02-1.05(2H,m),1.30 m),7.30-7.35(2H,m),7.82-7.86(2 (1H.dd,J=1.6.8.4Hz),8.07(1H,d. .12(1H.d,J=1.6Hz),8.45(1H.s),1 mp: 284-286 (AcOEt-Hex) NMR: 0:1.19-1.22(2H,m),1.53	m), 8.33- H.s) -1.33 (2H, 2H.m), 7.96
8.36(1H.m), 9.46(1H.s), 10.23 (1 mp: 211-213 ((AcOEt-Hex) NMR: 0:1.02-1.05(2H,m), 1.30 m), 7.30-7.35(2H.m), 7.82-7.86(2 (1H.dd, J=1.6.8.4Hz), 8.07(1H,d. .12(1H.d, J=1.6Hz), 8.45(1H.s), 1 mp: 284-286 ((AcOEt-Hex) NMR: 0:1.19-1.22(2H,m), 1.53	H.s) -1.33 (2H, 2H,m). 7.96
112 CF ₃ SO ₂ mp: 211-213 C (AcOEt-Hex) NMR: 0:1.02-1.05(2H,m),1.30 m),7.30-7.35(2H,m),7.82-7.86(2 (1H.dd,J=1.6.8.4Hz),8.07(1H,d. .12(1H.d,J=1.6Hz),8.45(1H.s),1 mp: 284-286 C (AcOEt-Hex) NMR: 0:1.19-1.22(2H,m),1.53	-1.33 (2H, 2H.m). 7.96
NMR: 0:1.02-1.05(2H,m),1.30 m),7.30-7.35(2H,m),7.82-7.86(2 (1H,dd,J=1.6,8.4Hz),8.07(1H,d, .12(1H,d,J=1.6Hz),8.45(1H,s),1 The state of the 2H,m). 7.96	
NMR: 0:1.02-1.05(2H,m),1.30 m),7.30-7.35(2H,m),7.82-7.86(2 (1H,dd,J=1.6.8.4Hz),8.07(1H,d, .12(1H,d,J=1.6Hz).8.45(1H.s),1 mp: 284-286 ((AcOEt-Hex) NMR: 0:1.19-1.22(2H,m),1.53	2H,m). 7.96
(1H,dd,J=1.6.8.4Hz),8.07(1H,d. .12(1H,d,J=1.6Hz).8.45(1H.s),1 113 CF ₃ C=O mp: 284-286 (AcOEt-Hex) NMR. 0:1.19-1.22(2H,m),1.53	
(1H,dd,J=1.6.8.4Hz),8.07(1H,d. .12(1H,d,J=1.6Hz).8.45(1H.s),1 113 CF ₃ C=O mp: 284-286 (AcOEt-Hex) NMR. 0:1.19-1.22(2H,m),1.53	
113 CF ₃ C=O 12(1H.d.J=1.6Hz).8.45(1H.s).1 mp: 284-286 C (AcOEt-Hex) NMR. 0:1.19-1.22(2H,m),1.53	J=8.4Hz).8
113 CF ₃ C=O mp: 284-286 ((AcOEt-Hex) NMR. 0:1.19-1.22(2H,m),1.53	
NMR. 0:1.19-1.22(2H,m),1.53	
	4 50 (01)
(1H.d.J=8.8Hz).8.20(1H,dd.J=2	
.32(1H,d.J=2.0Hz),9.03(1H.s).1	10.25(1H,s)
114 CF ₃ SO ₂ mp: 177-178 C (AcOEt-Hex)	
F NMR: 0.1.49-1.63(4H,m),1.84	I-1.90 (2H.
m),2.06-2.12(2H,m),7.23-7.28(2	
-7.82(2H.m),7.97-8.09(4H.m), 1	10.11(111.3)
115 CF ₃ / C=O / mp: 235-236 (`(AcOEt-Hex)	
NMR: 0:1.62-1.81(4H,m),1.99	
m).2.26-2.33(2H,m).7.28-7.34(2H,m)	
-8.05(3H.m).8.12(1H.dd.J=1.6.	8.8Hz).8.29
(1H.d.J=1.6Hz).8.62(1H,s), 10.	.23 (1H.s)
116 CF ₃ SO, mp. 188-189 (AcOEt-Hex)	
F NMR: 1.1.22-1.54(6H.s),1.84	-1 88 (4H
m).7.19-7.24(2H.m), 7.72(1H.s	
(2H.m).7.95(1H.dd.J=1.6,8.8H:	2),8.04-8.08
(2H,m),9.91(1H,s)	
117 CF ₃ C=O mp: 241-242 ((AcOEt-Hex)	
	5-1.68 (5H,
m),1.93-2.00(2H.m),2.04-2.11((2H,m), 7.28
-7.33(2H,m),7.93-8.13(5H,m),8	
J=2.0Hz), 10.12(1H,s)	, ,,=1
118 CN C=O mp: 294-295 C (AcOEt)	0 1 55 (01)
NMR: 6:1.18-1.22(2H,m).1.52	
m),7.30-7.36(2H,m),8.00-8.06	
8.16-8.19(1H,m),8.33(1H,d, J=	₌1.6Hz),
9.04(1H,s),10.21(1H,s)	
119 CN SO ₂ mp: 171-172 (AcOEt-Hex)	
MMR: δ:0.98-1.02(2H,m),1.2	8-1.32 (2H
m),7.33-7.39(2H,m),7.80-7.86	
7.96(1H,dd,J=2.0,8.4Hz),8.04	-
Hz),8.17(1H,d,J=2.0Hz),8.48(1	1H,S),10.23
1H,s)	
120 CN SO ₂ mp: 214-215 C (AcOEt-Hex)	
—————————————————————————————————————	
	0-1.89 (2H,
m),2.02-2.12(2H,m),7.28-7.34	•

Ex.	R ¹	A	Y	R ⁹	DATA
					8.06(2H,m).8.16(1H,d, J=2.0Hz). 10.12(1H,s)
121	CN	\mathcal{L}	C=O	-√_` ≻F	mp: 134-135 C (AcOEt-Hex) NMR: 0:1.60-1.81(4H,m),1.96-2.07 (2H,m).2.22-2.34(2H,m),7.28-7.34(2H,m). 7.98-8.05(3H,m),8.07-8.11(1H,m), 8.29 (1H,d,J=2.0Hz),8.62(1H,s),10.19(1H,s)
122	CF₃		C=0	F	mp: 246-247 C (AcOEt) NMR: 6:2.02-2.10(2H,m),2.15-2.24 (2H,m),3.70-3.77(4H,m),7.30-7.36 (2H,m),7.98-8.15(4H,m),8.28-8.30 (1H,m),8.43 (1H,s),10.23(1H,s)
130	CF₃		C=O	F	(A) MS FAB(m/z):432[(M-H)] NMR: 0:1.30-1.70(4H, m), 1.90-2.00 (4H, m), 2.25-2.50(1H, m), 3.70-3.85(1H, m), 7.25-7.38(2H, m), 7.88-7.96(2H, m), 7.97-8.02(1H,m), 8.09(1H, d, J=8.4Hz), 8.23-8.33(2H, m), 10.63(1H, br) (B) MS FAB(m/z):434{(M+H)*] NMR: 0:1.58-1.90(8H, m), 2.57-2.65 (1H, m), 3.90-4.02(1H, m), 7.23-7.31(2H, m), 7.88-7.96(2H, m), 7.97-8.03(1H, m), 8.08(1H, d, J=8.4Hz), 8.19-8.26(1H, m), 8.36(1H, br), 10.59(1H, br)

表12

Ex.	R'	R ²	Υ	R ⁹	DATA
123	CF ₃	CZ	C=0	—√F	mp: 249-250 (CEtOH) NMR: \(\triangle : 1.63(3H,s), 1.94-2.03(3H,m), 2.17-2.28(1H,m), 3.50-3.59(1H,m), 3.73-3.82(1H,m), 7.29(2H,t,J=9.0Hz), 7.65(2H,dd,J=5.6,9.0Hz), 8.10(1H,d,J=8.8Hz), 8.17(1H,dd,J=1.8,8.8Hz), 8.34(1H,d,J=1.8Hz), 9.96(1H,s)
124	CF ₃	CZ	SO₂		mp: 115-116°C: ((Et) ₂ O-Hex) NMR: \(\delta: 1.50(3H,s), 1.88-2.07(3H,m), 2.22-2.31(1H,m), 3.36-3.46(1H,m), 3.61-3.69(1H,m), 7.56-7.62(2H,m), 7.66-7.71(1H,m), 7.78-7.82 (2H,m), 8.14(1H,d, J=8.4Hz), 8.23(1H,dd, J=2.0.8.4Hz), 8.29(1H,d,J=2.0Hz), 10.04(1H,s)
125	CF ₃	CN	SO₂	— √ ≻F	mp: 180-182 C (i-PrOH-CHCl ₃) NMR: \(\delta: 1.52(3H,s), 1.89-2.07(3H,m), 2.22-2.31(1H,m), 3.39-3.46(1H,m), 3.61-3.68(1H,m), 7.39-7.45(2H,m), 7.84-7.90(2H,m), 8.13(1H,d, J=8.8Hz), 8.22(1H,dd, J=2.0,8.8Hz), 8.27(1H,d, J=2.0Hz), 10.03(1H,s)
126	CF₃	CN	SO₂	——— осн ₃	mp: 149-150 °C (EtOH-(Et) ₂ O) NMR: δ:1.49(3H,s),1.86-2.07(3H,m),2.20- 2.30(1H,m),3.28-3.42(1H,m),3.56-3.68(1H,m), 3.84(3H,s),7.03-7.13(2H,m), 7.70-7.75(2H,m),

				R ⁹	DATA
Ex.	R' !	R ²	<u>Y</u>	<u> </u>	8.13(1H.d.J=8.8Hz), 8.23(1H.dd.J=2.0.8.8Hz),
i					18.29(1H.d.J=2.0Hz),10.02(1H.s)
127	CF ₃	CN	H O H	—()—cı	Imp: $182-184 \leftarrow (CH_2Cl_2-(Et)_2O)$ NMR: $0:1.53(3H.s),1.86-1.95(1H,m),1.97-$ 2.20(3H,m),3.59-3.67(1H,m),3.75-3.83 (1H,m), 7.23-7.28(2H,m),7.52-7.57(2H,m), 8.07(1H.d, J=8.4Hz),8.18(1H,dd,J=2.0.8.4Hz), 8.33(1H,d,J=2.0Hz),8.35(1H,br),9.97(1H,s)
128	CF ₃	CN	O H H	CH₂CH₃	mp: 173-175 (` (1.2-diCl-Et) NMR: 6:1.00(3H,t.J=7.2Hz),1.46(3H.s), 1.76- 1.84(1H.m),1.86-2.02(2H.m),2.10-2.19 (1H.m), 2.95-3.10(2H.m),3.29-3.37(1H.m), 3.51-3.60 (1H,m), 6.24-6.30(1H,m),8.07(1H.d. J=8.8Hz), 8.13(1H.dd.J=2.0.8.8Hz),8.31(1H,d. J=2.0Hz), 10.15(1H,s)
129	CF ₃	CN	O N H	Me Me	mp: 167-168 (AcOEt-Hex) NMR. 6:1.05(3H,t,J=6.4Hz),1.46(3H,s), 1.75- 1.83(1H,m),1.86-2.02(2H,m),2.10-2.20(1H,m), 3.31-3.38(1H,m),3.52-3.60 (1H,m),3.65-3.78 (1H,m),5.93(1H,d,J=8.6Hz),8.07(1H,d, J=8.6Hz),8.12(1H,dd,J=1.8,8.6Hz),8.30(1H,d, J=1.8Hz),10.17(1H,s)

Ex. I	Structure	DATA
131	F ₃ C N N N	MS FAB(m'z).392[(M+H) ⁺] NMR. ÷ 3.60-3.75(1H. m), 4.20-4.30 (2H. m), 4.35-4.60 (2H. m), 7.25-7.34(2H. m), 7.68-7.76(2H. m), 7.95-8.20(1H. m), 8.08-8.14(1H, m), 8.30(1H. br), 10.83(1H. br)

前記の実施例以外に以下に本発明の別の化合物を表に示す

これらの化合物は、上記の製造法及び実施例中に記載した合成経路と方法、及び通常の当業者にとって公知であるそれらの変法を用いて合成することができ、特別の実験を必要とするものではない。

ここで、表中の記号は以下の意味を示す。

Com.:化合物番号

<u></u>	<u> </u>		
Com	Structure	Com.	Structure
1	F ₃ C N N N N OMe	2	HO ₂ C NO
3	NC N N N N H CI	4	MeO ₂ C H O H
5	F NC CI	6	F ₂ C. H N O F
	CI NC CI NH NH O CI NC	8	F ₃ C N H N H N N H N N H N N H N N H N N H N N N H N N N H N N N N H N N N N H N
9	0,N S O CO,Me N S S	10	F,C H N H Br
11	F N S N S	12	NC NC NC NC NC NC NC NC NC NC NC NC NC N
10	NC CF ₃ CF ₃ OCF ₃ OCF ₃	14	F ₃ C H N N N N N N N N N N N N N N N N N N
15	CI NC CI	16	F ₃ C NC N N O F

Com.	Structure	Com.	Structure
17	NC H O N S O N S O F	18	F ₃ C H N I O NC
19	CI NC CI	20	Br N O N O CI
21	NC H CHF 0 F N N N N N N N N N N N N N N N N N	22	F ₃ C H N O C1
23	F NC NC NC NC NC NC NC NC NC NC NC NC NC	24	F ₃ C NC NMe ₂

請求の範囲

1. 下記一般式(1)で示されるアジルアミ/置摘アジルアニ中誘導体文はその塩

(式中の記号は、以下の意味を有する

 R^1 及び R^2 : 同一又は異なってハロゲン原子、シアノ、ハロゲノ低級アルキル、ニトロ、カルボ キシル、低級アルカノイル又は低級アルコキシカルボニル馬

Ri:水素原子又は低級アルキル基

n:0又は1

 R^4 , R^6 , R^6 及び R^7 : 同一又は異なって水素原子、置換基を有していても良い低級アルキル 又はアラルキル基

、或いは、R*とR*が一体となってペーヤの原子を含んでいても良いシグロアルキル基を形成してもよし、又は、n=1のときR*+R*が一体となって、、グロアルキレン場を形成してもない Λ 、及び Λ は同一又は異なって結合又は低級でするに、基

R*: 水素原子、水酸基、低級アルコキー、低級アルキル、アラルキュ スは低級アラルギルギャン基

或いはR⁸とR⁶が一体となって含窒素シクロアルキレン基を形成してもよく、又はnが140ときR⁷とR⁸が一体となって含窒素シクロアルキレン基を形成してもよい

Z:アシル基

X.:酸素原子又は硫黄原子

但し、Zがヘテロアリールカルボニル基の場合は、R*とR*の少なくとも一方は水素原子以外の基を示す。)

2. 下記一般式(1)で示されるアシルアミノ置換アシルアニリド誘導体又はその塩

(式中の記号は、) 下の意味を有する

R*及心R:同一では異なってハロケン原子、シアプ、ハコナブ低級アルギル、エニコ、ウルボ キシル、低級アルカマイルでは低級アルコギシカルボニル基

n:0又は1

R⁴, R⁷, R⁷及 JR⁷:同一又は異なって水素原子、置換基を有していても良い低級でルキル 又はアラルキル基

或いて、RPとRFが一体となってペテロ原子を含んでいても良いシクロアルキル基を形成してもよい、又は、nが1VできRでとRFが一体となって、シクロアルキレン基を形成してもよい A,及のA」:同一又は異なって結合又は低級アルキレン基

R*: 水素原子, 水酸基, 低級アルコキシ, 低級アルキル, アラルキル くは低級アラルキルオキ: 基

或いてR*とR*が一体となって含窒素シクロアルキレン基を形成してもよく、又はnが100ときR*とR*が一体となって含窒素シクロアルキレン基を形成してもよい。

 $Z: Y - R^*$

R1:低級でルジェ、2000年4年4、文は置換基を有りですられていた。4、2004では4、 アラルキル、特に、はでルールサギン低級でもキュ、地口は、このでは関と縮合してもて しゃいのでは、4基

R[®]及びR^世:水素原子又は低級アルキル基

X₁及びX₂:酸素原子又は硫黄原子

m:0又は1,2

但し、マボカルボニル基であり、R*がヘテロアリール基の場合は、R*とR*の少なくとも一方は水素原子以外の基を示す。)

3. 下記一般式(1)で示されるアシルアミノ置換アシルアニリバ誘導体又はその塩

(式中の記号は、以下の意味を有する。

WO 98/22432

R¹及びR*:同一又は異なってハロゲン原子、シアノ、ハロゲノ低級アルキル、ニトロ、カルホキシル、低級アルカフイル又は低級アルコキシカルボニル基

A,及びA」:同一又は異なって結合又は低級アルキレン基

n:0又每1

R*又はR*、R*及びR*:同一又は異なって水素原子、又は1以上の同一又は異なった。ハロゲン原子、水酸基、低級アルコキシ、低級アルカノイルオキシ、ハロゲノ低級アルキル基からたる群より選択される置換基を有していても良い低級アルキル苦しくはアラルキル基

或いて、R*とR*か一体となってヘテロ原子を含んでいても良いシクロアルキル基を形成してもよく、又は、nが1のときR*とR*が一体となって、シクロアルキレン基を形成してもよい R*: 水素原子、水酸基、低級アルコキシ、低級アルキル、アラルキル又は低級アラルキルオキシ基

或いはR[®]とR[®]が一体となって含窒素シクロアルキレン基を形成してもよく、又はnが1のときR[®]とR[®]が一体となって含窒素シクロアルキレン基を形成してもよい

 $Z:Y=R^*$

R*:低級アルキル、1900アルキル、1 くはそれは上の同一くは異なった、小ロケノ吸液アルコール酸基、ハロゲノ低級アルキル、低級アルキル、低級アルコキュ、小ロケノ低級アルコール・シンティ、ニトロ、低級アルカノイルオキュ、フェニル、モノ若しくはび低級アルキルアミノカルボキシル、低級アルカノイルアミノ及びオキソ基からなる群より選択される置換基を有していてもよいアリール、アラルケニル、アラルキル、苦しくはアリールオキシ低級アルキル・ル、或いは、ベンゼン環と縮合してもよいヘテロアリール基

R®及びR™:水素原子又は低級アルキル基

X₁及びX₂:酸素原子又は硫黄原子

m:0又は1,2

但し、Yがカルボニル基であり、R[®]がヘテロアリール基の場合は、R[®]とR[®]の少なくとも一方は水素原子以外の基を示す。)

WO 98/22432 PCT/JP97/04174

4. nか0であり、R*又はR*が同一又は異なって水素原子、又は13と上の同一又は異なった置換基が、水酸基、低級アルコキシ、低級アルカフィンオキシ、ハロデフ低級アルキルがらなる群より選択される置換基を有していても良い低級アルキル若してはアラルキル基でもる請求の範囲6記載のアンルアミフ置換アンルアニ中、誘導体ではその塩

5. 以下よりなる群の化合物又はその塩から選択される清求の範囲1記載の化合物:

N-!1-((4-シアソー))ードプルナロメチルフェニル)カルバモイル]ー1-メチルエチルニー

N+(1+[(), 4+ジシアノフェニル) カルバモイル[-1- メデルエデル]ー4-フルオロベンスア(下)

N-11-[(3-2ロー4ーシア r^* ェニル) カルバモイル] -1-メチルエチル -4- r^* ルオコペンズア(下);

N- $\{1-[(4-5) / (-3+1)]$ フルオロメチルフェニル) カルバモイル] -1- メチルエチル $\{-2,4,6-1\}$ フルオロベンスアミドス:

4ークコローNー(1ー[(4ーシアノー3ートリマルオロメチルフェニル)カルバモイル]ー1ー メチルコ チル (水) スアミド

- 請求、施囲1記載して、カテン環棟で、1円22円 読得体スにその製薬学的に許定される塩を有効成分とする医薬組成物。
- 7. 抗アンドロケン剤である請求り範囲6記載の医薬組成物
- 8. 前立腺癌, 前立腺肥大症, 男性化症, 多毛症, 禿頭症, さ瘡, 脂漏の予防スは治療 剤である請求の範囲7記載の医薬組成物

INTERNATIONAL SEARCH REPORT

Then, DOTTHE COAC

International application No.

PCT/JP97/04174

Int.Cl ⁶ C07C237/22, 255/60, 275/28, 311/06, 31					
207/16, 207/48, 209/08, 209/30, 209/36 According to International Patent Classification (IPC) or to both p	. 213/81, 215/36, 217/22, 241/12 ·	241/14, 307/64,			
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followe Int. Cl ^o C07C237/22, 255/60, 275/28, 311/06, 31	d by classification symbols)				
207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64,					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (na CA (STN), REGISTRY (STN)	ame of data base and, where practicable, so	earch terms used)			
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where a	•	Relevant to claim No.			
A Chem. abstr., Vol. 101, 1984, the abs 'Synthesis of α -(arylsulfonylamino)- ω -p-4-amidinoanilides', Pharmazic, 1983, 38(1)	henylalkylcarboxylic acid 3- and	2. 3			
A US, 4532251, A (Chevron Research Con July 30, 1985 (30, 07, 85), Claims; column 9, 10 (Family; none)	npany).	1 - 4			
A JP. 49-81332. A (Scherico Ltd.), August 6, 1974 (06, 08, 74), Claims & BE, 807588, A & DE, 2357757, A & NL, 7315903. A & FR, 2207712. & US, 3875229, A & HU, 11563, T & GB, 1446084, A		1 - 8			
Further documents are listed in the continuation of Box C.	See patent family annex.				
Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search	"T" later document published after the interm date and not in conflict with the application the principle or theory underlying the invocument of particular relevance; the classidered novel or cannot be considered when the document is taken alone document of particular relevance; the classidered to involve an inventive step we combined with one or more other such do being obvious to a person skilled in the adocument member of the same patent fair	on but cited to understand rention imed invention cannot be to involve an inventive step imed invention cannot be then the document is ocuments, such combination rt inity			
February 4, 1998 (04, 02, 98) Name and mailing address of the ISA/	February 17, 1998 (17, 02, 9	8)			
Japanese Patent Office					

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP97/04174

A. (Continuation) CLASSIFICATION OF SUBJECT MATTER

309/38. 333/34. 333/38. 333/70. 335/02. A61K31/165. 31/275. 31/34. 31/35. 31/38. 31/395. 31/40. 31/44. 31/47

B. (Continuation) FIELD SEARCHED

309/38, 333/34, 333/38, 333/70, 335/02, A61K31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1. C07C237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, C07D205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64, 309/38, 333/34, 333/38, 333/70, 335/02, A61K31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1. 6 C07C237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, C07D205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64, 309/38, 333/34, 333/38, 333/70, 335/02, A61K31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CA (STN), REGISTRY (STN)

C. 関連すると認められる文献

C. 肉座 /	D C BOOK DATE OF THE	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	Chem. abstr., Vol. 101, 1984, the abstract No. 6764, VIEWEG, H. 'Synthesis of α -(arylsulfonylamino)- ω -phenylalkylcarboxylic acid 3- and -4-amidinoanilides', Pharmazie, 1983, 38(12), 818-20	2, 3
A	US, 4532251, A (Chevron Research Company) 30. 7月. 1985 (30. 07. 85) クレーム, 第9-10欄 (ファミリーなし)	1 - 4

X C欄の続きにも文献が列挙されている。

└ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」元行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

04.02.98

国際調査報告の発送日

17.02.98

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区設が関三丁目4番3号

特許庁審査官(権限のある職員) 柳 和子

细

4H | 9547

電話番号 03-3581-1101 内線 3444

C(続き).	関連すると認められる文献	
引用文献の		関連する 請求の範囲の番号
カテゴリー* A	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 JP, 49-81332, A (シエリコ・リミテツド) 6.8月.1974(06.08.74) 特許請求の範囲 &BE, 807588, A & DE, 235757, A1 &NL,7315903, A &FR,2207712, A1 &US,3875229, A &HU,11563, T &GB,1446084, A	請求の範囲の番号
		·

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
	D BLACK BORDERS	
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
	☐ FADED TEXT OR DRAWING	
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
	☐ SKEWED/SLANTED IMAGES	
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
	☐ GRAY SCALE DOCUMENTS	
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
	Потиев.	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)