

Circuitos de Primeira Ordem

JOÃO PAULO ASSUNÇÃO DE SOUZA

Introdução

Analisamos três elementos passivos (indutores, capacitores e indutores) de forma isolada.

Agora analisaremos circuitos com diferentes elementos passivos.

- Circuito RC
- Circuito RL

Estes circuitos são conhecidos como circuitos de primeira ordem.

Caracterizados por uma equação diferencial de primeira ordem.

Duas formas de excitar um circuito de primeira ordem:

- Através das condições iniciais dos elementos (circuitos sem fontes). Neste método é suposto o conhecimento da energia armazenada no elemento armazenador.
- Através de fontes independentes. Neste curso, iremos estudar apenas fontes CC.

Circuito RC sem fonte

$$v(t) = V_0 e^{-t/RC}$$

→ Resposta Natural do Circuito

Circuito RC sem fonte

$$v(t) = V_0 e^{-t/\tau}$$

t	$v(t)/V_0$
au	0,36788
2τ	0,13534
3τ	0,04979
4τ	0,01832
5τ	0,00674

Circuitos RC sem fonte

Circuitos RC sem fonte

O segredo para se trabalhar com um circuito RC sem fonte é encontrar:

- 1. A tensão inicial $v(0) = V_0$ no capacitor.
- 2. A constante de tempo τ .

Suponha que $v_c(0)=15$ V. Determine v_c , v_x e i_x para t>0.

A chave do circuito abaixo foi fechada por um longo tempo e depois aberta em t=0. Determine v(t) para $t \ge 0$. Calcule a energia inicial armazenada no capacitor.

Tarefa

Fazer os problemas práticos 7.1 e 7.2 da referência [1].

Circuito RL sem fonte

$$i(t) = I_0 e^{-Rt/L}$$

→ Resposta Natural do Circuito

Circuito RL sem fonte

$$au = rac{L}{R}$$
 ——— Constante de Tempo

$$i(t) = I_0 e^{-t/\tau}$$

Circuitos RL sem fonte

O segredo para se trabalhar com o circuito RC sem fonte é determinar:

- 1. A corrente inicial $i(0) = I_0$ por meio do indutor.
- 2. A constante de tempo τ do circuito.

Suponha que i(0) = 10 A. Calcule i(t) e $i_x(t)$ no circuito abaixo.

A chave do circuito abaixo foi fechada por um longo período de tempo. Em t=0, a chave é aberta. Calcule i(t) para t>0.

No circuito abaixo, encontre i_o , v_o e i durante todo o tempo, supondo que a chave foi aberta por um longo período.

Funções de Singularidade

As funções de singularidade (ou de comutação), são muito úteis na análise de circuitos, pois descrevem com boa aproximação os sinais de comutação que surgem em circuitos elétricos decorrentes de operações de comutações (mudança de um estado para outro).

Por definição:

Funções de singularidade são funções que são descontínuas ou então que apresentam derivadas descontínuas.

Três funções de singularidade mais utilizadas em engenharia são:

- Degrau unitário
- Impulso unitário
- Rampa unitária

A função degrau unitário u(t) é 0 para valores negativos de t e 1 para valores positivos de t.

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

$$u(t - t_0) = \begin{cases} 0, & t < t_0 \\ 1, & t > t_0 \end{cases}$$

$$u(t+t_0) = \begin{cases} 0, & t < -t_0 \\ 1, & t > -t_0 \end{cases}$$

$$v(t) = \begin{cases} 0, & t < t_0 \\ V_0, & t > t_0 \end{cases}$$

Impulso unitário

A derivada da função degrau unitário é a função impulso unitário.

$$\delta(t) = \frac{d}{dt}u(t) = \begin{cases} 0, & t < 0 \\ \text{Indefinido}, & t = 0 \\ 0, & t > 0 \end{cases}$$

A função impulso unitário $\delta(t)$ é zero em qualquer ponto, exceto em t=0, onde ela é indefinida.

Impulso unitário

Fisicamente é impossível se obter um sinal de impulso unitário, mas é uma ferramenta extremamente útil para avaliar picos de tensão ou corrente em um circuito por exemplo.

$$\int_{0^{-}}^{0^{+}} \delta(t) dt = 1$$

Impulso unitário

$$\int_{a}^{b} f(t)\delta(t-t_0)dt = f(t_0)$$

Rampa unitária

Se integrarmos a função degrau unitário, obteremos a função rampa unitária.

$$r(t) = \int_{-\infty}^{t} u(\lambda) d\lambda = tu(t)$$

$$r(t) = \begin{cases} 0, & t \le 0 \\ t, & t \ge 0 \end{cases}$$

Rampa Unitária

$$r(t - t_0) = \begin{cases} 0, & t \le t_0 \\ t - t_0, & t \ge t_0 \end{cases}$$

Rampa Unitária

$$r(t+t_0) = \begin{cases} 0, & t \le -t_0 \\ t+t_0, & t \ge -t_0 \end{cases}$$

Esboce a função abaixo em termos de degrau unitário. Calcule sua derivada e esboce a mesma.

Expresse a função dente de serra mostrada na figura abaixo em termos de função de singularidade.

Tarefas

Problema prático 7.6, 7.7 e 7.8 da referência [1]

Exemplo 7.7 da referência [1]

Quando a fonte CC de um circuito RC for aplicada repentinamente, a fonte de tensão ou de corrente pode ser modelada como uma função degrau, e a resposta do circuito, é conhecida como resposta a um degrau.

A resposta a um degrau de um circuito é seu comportamento quando a excitação for a função degrau, que pode ser uma fonte de tensão ou de corrente.

Quando a fonte CC de um circuito RC for aplicada repentinamente, a fonte de tensão ou de corrente pode ser modelada como uma função degrau, e a resposta do circuito, é conhecida como resposta a um degrau.

A resposta a um degrau de um circuito é seu comportamento quando a excitação for a função degrau, que pode ser uma fonte de tensão ou de corrente.

$$V_s$$
 V_0
 t

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-t/\tau}, & t > 0 \end{cases}$$

Considere que o capacitor está inicialmente descarregado, ou seja, $V_0 = 0$.

$$v(t) = \begin{cases} 0, & t < 0 \\ V_s(1 - e^{-t/\tau}), & t > 0 \end{cases} \qquad \qquad v(t) = V_s(1 - e^{-t/\tau})u(t)$$

$$i(t) = \frac{V_s}{R} e^{-t/\tau} u(t)$$

Ao invés de se resolver a EDO do circuito utilizando as derivadas, como feito anteriormente, utilizaremos uma abordagem mais simplificada. Vamos analisar a equação da tensão no capacitor:

$$v(t) = V_s + (V_0 - V_s)e^{-t/\tau}, t > 0$$

Ao invés de se resolver a EDO do circuito utilizando as derivadas, como feito anteriormente, utilizaremos uma abordagem mais simplificada. Vamos analisar a equação da tensão no capacitor:

$$v(t) = V_s + (V_0 - V_s)e^{-t/\tau}, t > 0$$

Podemos dividir esta equação em duas componentes:

- A resposta natural
 decorrente da energia armazenada no capacitor;
- A resposta forçada
 devido ao efeito da fonte independente;

$$v = v_n + v_f$$

$$v_n = V_o e^{-t/\tau}$$

$$v_f = V_s (1 - e^{-t/\tau})$$

Outra maneira de se observar a resposta completa é dividi-la em duas componentes:

- Temporária → é a resposta do circuito que se extingue com o tempo;

$$v(t) = V_s + (V_0 - V_s)e^{-t/\tau}, \quad t > 0$$

$$v = v_t + v_{ss}$$

$$v_{ss} = V_s$$

Outra maneira de se observar a resposta completa é dividi-la em duas componentes:

- Temporária → é a resposta do circuito que se extingue com o tempo;

$$v(t) = V_s + (V_0 - V_s)e^{-t/\tau}, \qquad v(t) = v(\infty) + [v(0) - v(\infty)]e^{-t/\tau}$$

$$v = v_t + v_{ss}$$

$$v_{t} = (V_o - V_s)e^{-t/\tau}$$

$$v_{t} = V_s$$

Resposta a um degrau de um circuito RC.

Outra maneira de se observar a resposta completa é dividi-la em duas componentes:

- Temporária → é a resposta do circuito que se extingue com o tempo;

$$v(t) = V_s + (V_0 - V_s)e^{-t/\tau}, \qquad v(t) = v(\infty) + [v(0) - v(\infty)]e^{-t/\tau}$$

$$v = v_t + v_{ss}$$

$$v_t = (V_o - V_s)e^{-t/\tau}$$

$$v_{ss} = V_s$$
Note que se a chave for fechada em t=to, teremos:
$$v(t) = v(\infty) + [v(t_0) - v(\infty)]e^{-(t-t_0)/\tau}$$

A chave do circuito mostrado abaixo se encontra na posição A por um bom tempo. Em t=0, a chave muda para a posição B. Determine v(t) para t>0 e calcule seu valor em t=1 segundo e t=4 segundos.

No circuito ilustrado abaixo, a chave foi fechada por um longo tempo e é aberta em t=0. Determine *i* e *v* durante todo o período.

Resposta a um degrau de um circuito RL

A resposta ao degrau de um circuito RL também pode ser dividida em uma parte transiente e uma parte de regime estacionário.

$$i = i_t + i_{ss}$$
 \longrightarrow $i(t) = \frac{V_s}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-t/\tau}$ \longrightarrow $i(t) = i(\infty) + [i(0) - i(\infty)]e^{-t/\tau}$

Resposta a um degrau de um circuito RL

Considerando que a corrente inicial I_0 é nula, temos que:

$$i(t) = \begin{cases} 0, & t < 0 \\ \frac{V_s}{R} (1 - e^{-t/\tau}), & t > 0 \end{cases}$$

$$v(t) = V_s e^{-t/\tau} u(t)$$

$$i(t) = \frac{V_s}{R}(1 - e^{-t/\tau})u(t)$$

Determine i(t) no circuito mostrado abaixo para t>0. Suponha que a chave tenha sido fechada há um bom tempo.

Em t=0, a chave 1 do circuito abaixo é fechada e a chave 2 é fechada 4 segundos depois. Determine i(t) para t>0.

Circuitos de primeira ordem com amplificador operacional

Determine a resposta ao degrau $v_o(t)$ para t > 0 no circuito abaixo. Seja $v_i(t)=2u(t)$, $R_1=20~k\Omega$, $R_f=50~k\Omega$, $R_2=R_3=10~k\Omega$ e $C=2~\mu F$.

Tarefa

Estudar os exemplos 7.14 e 7.15 da referência [1].

Estudar a seção 7.9 da referência [1].

Aplicações

Flash Eletrônico para câmeras fotográficas

Aplicações

Ignição de automóveis

7.19 No circuito da Figura 7.99, determine i(t) para t > 0 se i(0) = 6 A.

7.23 Considere o circuito da Figura 7.103. Dado que $v_o(0) = 10$ V, determine v_o e v_x para t > 0.

7.43 Considere o circuito da Figura 7.110. Determine i(t) para t < 0 e t > 0.

7.47 Determine v(t) para t > 0 no circuito da Figura 7.114 se v(0) = 0.

7.55 Determine v(t) para t < 0 e t > 0 no circuito da Figura 7.121.

7.62 Para o circuito da Figura 7.127, calcule i(t) se i(0) = 0.

Lista de exercícios

7.1; 7.2; 7.5; 7.7;; 7.8; 7.9; 7.11; 7.13; 7.17; 7.18; 7.22; 7.23; 7.39; 7.43; 7.47; 7.51; 7.53; 7.55; 7.57; 7.69; 7.75

Bibliografia

• [1] SADIKU, M.N.O; ALEXANDER, A, K. Fundamentos de Circuitos Elétricos. 5ª edição, AMGH Editora LTDA, 2013. 840 p.