# COMPUTER ORGANIZATION (IS F242)

**LECT 12: FLOATING POINT** 

# Floating Point – IEEE 754 Standard



- Use equivalent of "scientific notation"
   +/- .significand x 2<sup>exponent</sup>
- Need to represent F (fraction), E (exponent), and sign.
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

## Floating-Point Representation

- IEEE 754 floating point standard
  - Single precision
    - 1 bit sign, 8 bit exponent and 23 bit fraction
  - Double precision
    - 1 bit sign, 11 bit exponent and 52 bit fraction

## IEEE 754 Floating Point Representation

- Single precision 4 bytes
- Double Precision 8 bytes
- Extended Double 10 bytes
- Quadruple Precision 16 bytes





# IEEE 754 Floating-Point (32-bits)

#### Single Precision

$$N = (-1)^S \times 1$$
. fraction  $\times 2^{\text{exponent } -127}$ ,  $1 \le \text{exponent } \le 254$   
 $N = (-1)^S \times 0$ . fraction  $\times 2^{-126}$ , exponent  $= 0$ 

#### **Double Precision**

$$N = (-1)^S \times 1$$
. fraction  $\times 2^{\text{exponent} - 1023}$ ,  $1 \le \text{exponent} \le 2046$   
 $N = (-1)^S \times 0$ . fraction  $\times 2^{-1023}$ , exponent  $= 0$ 

Bias value for SP is 127 and for DP it is 1023

## Exponent for Floating point Number

- Exponent is in excess or biased notation
  - 8 bits (in single precision) to represent exponent
  - -128 to +127 OR 0 to 255 (256 values) can be represented
  - Not really interested in representing negative number (avoid complications)
  - How will we manage?
    - Add a bias value so that all Negative values will become positive.
    - Bias in Single precision is +127. Why?
    - Bias in Double precision is +1023.

## Normalization

- Floating point Numbers are usually normalized
  - Exponent is adjusted so that leading bit (MSB) of the mantissa is 1
  - Since MSB is always 1, No need to store it

#### Standard 32 bit Floating point representation

$$N = (-1)^S \times 1.$$
fraction  $\times 2^{exponent-127}$ ,  $1 \le exponent \le 254$ 

$$N = (-1)^S \times 0.$$
fraction  $\times 2^{-126}$ , exponent = 0

## Floating Point Example

Single-precision IEEE floating point number

- □ Sign is 1 → number is negative.
- Exponent field is 01111110 = 126 (decimal).

Value = -1.1 x  $2^{(126-127)}$  = -1.1x  $2^{-1}$  = -0.11 Decimal Equivalent: -0.75.

## Floating Point Example

Represent 1/8 (0.125) in IEEE 754 format?

Binary equivalent of 0.125 is 0.001 or 1.0 x 2<sup>-3</sup> (Normalized)

 $N = (-1)^s X 1.fraction X 2^{exponent-127}$ 

Sign bit = 0 (Number is positive)

exponent - 127 = -3 i.e. exponent = 124

Binary equivalent of 124 = 01111100

Final representation of 1/8 in IEEE 754 format is

## Floating Point Example

Represent 2<sup>-131</sup> in IEEE 754 format?

Binary equivalent of 0.00001x 2<sup>-126</sup>

If exponent is 0 then

 $N = (-1)^s X 0.$ fraction  $X 2^{-126}$ 

Sign bit = 0 (Number is positive)

exponent = 0

Final representation of 2<sup>-131</sup> in IEEE 754 format is

#### Denormalized Numbers

- Used to handle exponent underflow i.e. exponent is too small to represent
  - How to fit exponent in representable range???
  - Shift fraction to the right and increase exponent accordingly
- Is it really beneficial? If Yes. How?
- Representation
  - Exponent of zero with non zero fraction
  - Bit to the left to the binary point is zero
  - □ True exponent is -126

## Floating point Representation

- What is the largest positive number we can represent by using a floating point representation?
  - $_{\square}$  0 11111110 111111111111111111111111  $\sim 2^{128}$
- What is the smallest positive number we can represent by using a floating point representation?

## Exercises

- 0.0101 x 2<sup>67</sup>
- 01110.1010 x 2<sup>-7</sup>
- **-127.625**
- 0.0011 x 2<sup>-137</sup>
- **0**

## Exceptional cases

- exponent is 0, fraction is non-zero
  - □ + or − denormalized number
- exponent is 0, fraction is zero
  - ZERO
- exponent is 255(2047), fraction is zero
  - □ + or infinity

## Exceptional cases

- exponent is 255(2047), fraction is non-zero
  - NaN (Not a Number)
  - Sign bit is 0/1
  - Biased exponent is 255
  - Mantissa is non zero

## Exceptional cases

- Signaling NaN (sNaN or NaNS)
  - If a = 0 then Signaling NaN (sNaN)
    - Example: Divided by Zero, Square root of Negative Number, logarithm of a negative number, tangent of an odd multiple of 90 degrees (or π/2 radians), inverse sine or cosine of a number which is less than -1 or greater than +1
  - Signaling NaN signals an invalid operation exception
- Quiet NaN (qNaN or NanQ)
  - If a = 1 then quiet NaN (qNaN)
    - Example: Any operation on signaling NaN, 0/0, ∞/∞, ∞/-∞, -∞/∞, -∞/-∞, 0×∞, 0×-∞, The power 1°, ∞ + (-∞), (-∞) + ∞ and equivalent subtractions
  - qNaN propagates through without signaling an exception

## Overflow and Underflow

#### Overflow

 A positive exponent becomes too large to fit in the exponent field

#### Underflow

 A negative exponent becomes too large to fit in the exponent field

## Arithmetic Operations

- Addition & Subtraction
  - Check for Zeros
  - Align the Mantissas
  - Add or Subtract the Mantissas
  - Normalize the result
  - Example
    - $X = 0.3 * 10^2 Y = 0.2 * 10^3$
    - $X = (0.1 * 2^{\circ})_2 Y = (-0.0111 * 2^{\circ})_2$
    - $\blacksquare$  12.5 x 10<sup>1</sup> + 346 x 10<sup>-3</sup>



## FP Adder Hardware

