A Universal Model for Pricing All Options

David Gershon david@gershon.com

April 2017

ABSTRACT

This paper presents a new option pricing approach for all underlying assets that precisely fits the market data. We obtain the probability density function of the underlying asset without any external parameter. The density function for a given expiration date is uniquely determined by the prices of three options with different strikes but the same expiration. Our approach allows for the calculation of path dependent options as we are able to calculate the contingent density function of the underlying asset between subsequent expiries as a function of the underlying asset price. The new model accurately matches market option prices in all asset classes (currencies, interest rates, equities and commodities) including exotic options. The data validates that all liquid financial assets behave according to this new three parameter probability density function, yet typically each asset class corresponds to a different region of the parameter space.

ACKNOWLEDGEMENT

I am very grateful to Robert Merton, Myron Scholes and Michael Brennen for very helpful discussions. I am also thankful to Avner Kalay for his great encouragement and support, Rafi Eldor and John Heaton for useful comments and Boris Levitan for valuable technical comments.

Since the publication of the revolutionary Black Scholes (BS) (1973) and Merton (1973) models, option pricing has witnessed an explosion in new models, each one differently describing the stochastic process of the underlying asset. In the past two decades, option markets have become increasingly liquid and transparent making testing of various models with actual market data relatively simple. Many empirical papers, such as Bakshi, Cao and Chen (1997) and Bates (2003) provide broad analysis of different models with direct comparison to the market. Even with these advances, until now, more than four decades after the invention of the BS model, there has been no model that is able to produce a realistic volatility smile.

Because of this reason, Vanilla option prices are quoted via their "implied volatility", which is the specific BS volatility for each strike. When the underlying asset is a forward paying asset post expiry, such as options on swaps, then the implied volatility is determined via the Black (1976) model. The implied volatilities of Vanilla options with the same underlying asset and expiration for a large range of strikes make up what is called the "volatility smile" a la Rubinstein (1983). The reason for the word "smile" is that typically the volatility at very high and low strikes is higher than the volatility for strikes around the current underlying asset price or forward rate. Some recent papers about the volatility smile include Carr and Lee (2010), Carr and Wu (2016), Carr and Madan (2013), Madan (2014), Gatheral (2008), Gatheral, Matic, Radoicic and Stefanica (2017), El Euch, Gatheral and Rosenbaum (2017).

In this paper, we develop a new approach to price options that accurately generates the volatility smile. The same model applies to all asset classes including interest rates, and hence we view it as a universal model. The model was fully tested in all asset classes- currencies, equities, commodities and interest rates- for liquid assets/rates where the bid-ask price spreads in the market are tight, and there is little uncertainty about the "market price". Our volatility smile is obtained from deriving the probability density function of the underlying asset/rate. Unlike the BS (lognormal) model where the probability density function is dictated by one variable (the volatility), in our model, the probability function is dictated by three

potentially correlated variables. Hence, for example, the prices of options of three strikes with the same expiration determine the full volatility smile for this expiration. In deriving the model, we show that the three quantities that determine the volatility smile include the "pivot" volatility for the expiration (which can be thought of as the At The Money (ATM) volatility), the expected variance of the pivot volatility from inception to the expiration, and the expected covariance of the pivot volatility and the underlying asset/rate from inception to the expiration. After testing against a wide selection of asset across all asset classes, we conclude that the options market considers all liquid financial assets as though they obey the same type of new probability density function generated by this model. Moreover, we see that different asset classes are governed by different regions of the parameter zone leading to the varying shape of volatility smiles across asset classes.

In deriving our volatility smile we assume absolutely nothing about the stochastic process of the underlying asset. We start by valuing certain European option structures (butterflies and risk reversals) using the risk neutral 'no arbitrage' approach, as the expected profit generated from instantaneously re-hedging during the option lifetime against value fluctuations due to the instantaneous changes in the underlying asset price and the expected volatility of the underlying asset return until maturity. We then make a natural assumption that the (correlated) instantaneous changes in the underlying asset price and volatility are essentially independent of the current underlying asset price and volatility. In this case, the volatility smile emerges as a path integral over all the paths of the underlying asset price from inception to expiry. When considering all these structures for the same maturity, the equality between the path integral expression and the value of the butterflies and risk reversals provides a consistency condition for the density function to maturity to satisfy. We describe an iterative method to solve for the (unique) density function that satisfies the consistency condition. This allows us to obtain the density function of the underlying asset from just the no arbitrage condition. As an example, we show that if we assume that the expected volatility of

the underlying asset is constant from inception to maturity then we obtain the BS price without the pre-assumption that the underlying asset follows a simple Brownian process. Neglecting all third and higher order contributions in the instantaneous changes of the underlying asset and volatility, we then obtain a general expression for the volatility smile that depends only on the expected volatility of the underlying asset return at inception (essentially the at the money volatility), the variance of the instantaneous changes of the underlying asset, and the covariance of the instantaneous changes of the underlying asset and the volatility.

Over the past two decades, many new types of path dependent options, known as exotic options and embedded option products have become popular. So far, no model has been able to accurately price these exotic options universally in the market, even when calibrated with prices from the vanilla option market. For example, the stochastic volatility model of Hull and White (1987), Heston (1993); the interest rates term structure model of Cox, Ingersol and Ross (1985), the two-factor short rate model of Longstaff and Schwartz (1992); the stochastic volatility jump diffusion models of Bates (1996) and Scott (1997), the local volatility model of Dupire (1994), Derman and Kani (1994); the stochastic local volatility of Schonbucher (1999), Lediot (2002) and Lipton (2002), the Libor market models (LMM) of Brace, Gatarek and Musiela (known as BGM) (1997) and the SABR model of Hagan, Kumar, Lensienwski and Woodward (2002) all cannot match the prices for exotic options. These models usually have a range of option parameters at which they perform reasonably well, but elsewhere they are off market. Our formalism, which requires no external parameters or calibration, allows us to obtain the conditional transfer probability from the vanilla term structure. Therefore, we can calculate the price of exotic options. We compare the prices of a large sample of four types of liquid exotic options quoted in the interbank market to those generated by our model. In all cases, the market and model prices are remarkably close.

The paper is organized as follows. In Section 1, we create a generic representation of the volatility smile through the introduction of two new functions while simultaneously solving a

system of two equations. We then develop consistency condition equations in Section 2 that stem from the path integral representation of the two equations from Section 1. Section 3 develops an iterative process to solve these consistency condition equations while Section 4 applies this methodology to the simple case of constant volatility to show that the Black-Scholes model is a specific case of this general theory. In section 5, we analyze the no-arbitrage zone implied by the model and show that different asset classes correspond to different regions of the parameter space of the model. The model is tested empirically against market prices in all asset classes in Section 6. In Section 7, we derive the probability transfer density function (the contingent density function) between two volatility smiles, and then we show in Section 8 how this density function can be used to accurately price exotic options. Section 9 concludes.

1. Generic Representation of The Volatility Smile

In this section, we propose a new representation for the volatility smile involving the introduction of two functions. We explain the motivation for this representation and discuss their asymptotic behavior. These two functions will be self-determined in the following sections and offer a very useful way to obtain volatility smiles.

We start by deriving the one smile model for all asset classes. We need a terminology that will apply to all asset classes regardless of their different financial market conventions. We thus start with the fact that in all markets the BS/Black model provides the mapping between option prices and volatilities and vice versa. (For simplicity from now whenever we use BS we also include the Black model.) In the BS model, the prices of the European vanilla call and put options are

$$P_{call} = df (F N(d_1) - K N(d_2))$$
 (1)

$$P_{put} = df (K N(-d_2) - F N(-d_1))$$
 (2)

where

$$d_1 = \frac{\log(\frac{F}{K})}{\sigma\sqrt{T}} + \frac{1}{2}\sigma\sqrt{T} \quad ; \quad d_2 = d_1 - \sigma\sqrt{T}$$
 (3)

F is the forward price of the underlying asset at expiry, df is the domestic discount factor and N(x) is the Normal cumulative distribution function.

When the underlying asset of the option has a forward payment post-expiry, for example a future contract with settlement date after the expiry of the option or a swap with payments after the expiry of the option, then the BS model is modified by the Black model with the introduction of an "annuity". The annuity serves to discount the value of the asset to the expiry date. For example, the Black formula to calculate an option on swaps (called a swaption) is

$$P_{\text{receiver}} = An \ df \ (F \ N(d_1) - K \ N(d_2)$$

$$P_{payer} = An df (K N(-d2) - F N(-d_1))$$
 (5)

where F is the forward rate of the swap or the current fixed rate of the underlying forward started swap and An is its annuity which can be approximated using the forward price F as follows

An=
$$(df(T) - df(T+L))/F = (1-1/(1+F/m)^mL)/F$$
 (6)

Here L is the tenor/length of the swap in years and m is the compounding per year in the swap rate (e.g. if the swap pays two semi-annual coupons per year m=2). The terms Payer/receiver replace call/put and refer to the counterparty that pays/receives the fixed rate of the swap vs. the floating (market rate) rate of the coupons of the swap.

Regardless of the pricing model used to calculate the option price, having option prices for all strikes P(K) enables us to obtain the distribution/density function of the price of the underlying asset on the expiration day. By definition the price of a call option with strike K and expiry T is

$$P_{call}(K,T) = df \int (S-K)^{+}g(S,T) dS$$
 (7)

where g (S,T) is the density of the underlying asset at time T and spot price S(T) and (S-K)⁺ is S-K for S>K and 0 otherwise. Therefore, we have that

$$g(S,T) = df^{-1} \frac{\partial^2 P(K,T)}{\partial K^2} \Big|_{K=S}$$
 (8)

Given a European vanilla option, we define its BS implied volatility as the **intrinsic volatility** of this option. Intrinsic volatility is defined as the volatility there would have been in the absence of a volatility smile. Given the prices of European vanilla options with expiry T for all strikes K, P(K,T), we obtain the implied volatility smile $\sigma(K,T)$ by solving

$$P(K,T) = BS(K,T,\sigma(K,T))$$
(9)

or more generally, the price of the option at time t when the underlying asset price is s is $P(s,t,K,T) = BS(s,t,K,T,\sigma(s,t,K,T))$. Notice that whenever F, K > 0 the function $\sigma(s,t,K,T)$ exists. If F and/or K are negative, we can use the shifted volatility scheme for the mapping where X is such that F+X, K+X>0

$$P(K,T) = BS (K+X,T,F+X, \sigma_{shifted} (K,T))$$
(10)

We will return to this in section 5. For simplicity we omit t and s in some places.

One of the reasons we selected the representation in (1) is because it automatically satisfies some required conditions. For example, the difference between the call and the put with the same strike satisfies Call (K) – Put (K) = df (F – K) and so the volatility of call and put options with the same strike is the same.

We started with a general option pricing function P and calculated its intrinsic (implied) volatility via the BS, so if we want to learn how the price P changes with respect to the intrinsic volatility, we can simply use the BS derivatives.

$$\Delta P(K,T) = \Delta \sigma(K,T) \text{ d BS } (K,T,\sigma(K,T)) / \text{ d } \sigma(K,T)$$

$$d P(K,T) / \text{ d } \sigma(K,T) = \text{Vega } (K,T,\sigma(K,T)) = df \text{ F } \sqrt{\text{T}} \text{n}(d_1(\sigma(K,T)))$$
(11)

and similarly with higher derivatives of P(K,T). To make the equations more compact we omit the dependency of $\sigma(K,T)$ on T, but it clearly exists. In (11) we used the fact that the BS Vega of call and put options are

$$Vega_{call} = \frac{d \operatorname{Pcall}(\sigma)}{d \sigma} = Vega_{put} = \frac{d \operatorname{Pput}(\sigma)}{d \sigma} = df \operatorname{F} \sqrt{\operatorname{T}} \operatorname{n}(d_1), \tag{12}$$

where $n(d_1)$ is the standard normal density function.

Therefore, the strike for which the Vega is maximal satisfies d1=0 and is denoted K₀.

We define a **pivot** volatility as the volatility that corresponds to d1=0 and denote it as σ_0 .

For any option with strike K, we define $\zeta(K)$ as the difference between the price of the option and the BS price when the pivot volatility σ_0 is used instead of the intrinsic volatility

$$\zeta(K) = P(K) - BS(K, \sigma_0) = BS(\sigma(K)) - BS(\sigma_0)$$
(13)

Of course at the pivot strike $\zeta(K_0)=0$. While in (9) it depends on whether the option is a call or a put, $\zeta(K)$ is the same for both a call and put with the same strike K.

 d_1 **Strike Duality:** Since Vega depends on d_1^2 , it means that there are two different strikes with the same Vega. Taking the higher strike for a call option and the lower for a put option $K_{put} < K_0 < K_{call}$ they satisfy

$$d_1(Kc_{all}, \sigma(K_{call})) = -d_1(K_{put}, \sigma(K_{put}))$$
(14)

We define the two strikes that satisfy (14) as **dual** strikes. Hence same Vega strangle and risk reversals are defined as

$$d_1$$
Strangle = Call options (d_1) + Put option $(-d_1)$ (15)

$$d_1$$
Risk Reversal = Call options (d_1) - Put option $(-d_1)$ (16)

where for a given strike of the call option K_{call} the strike of the put options K_{put} is its dual strike. In the BS model the call and the put have opposite Deltas.

Market makers hedge the volatility risk in their option portfolio along three axes.

The first hedge is against changes in the volatility. The hedge is achieved by having a Vega neutral (i.e. zero in total) portfolio. To neutralize the Vega, traders buy/sell At The Money (ATM) straddles which are the most liquid.

The second hedge is against changes in the Vega as a result of changes in the volatility. This means that $\frac{d \text{ Vega}}{d \sigma}$ for the portfolio should be close to zero. (The worst case is when $\frac{d \text{ Vega}}{d \sigma}$ is very negative. In this case, fluctuations in the ATM volatility will cause serious losses in rehedging the Vega.) The primary tool to offset $\frac{d \text{ Vega}}{d \sigma}$ for their portfolio is Vega neutral butterflies.

The third hedge is against changes in the Vega as a result of changes in the underlying asset price. This means that the portfolio has to have a $\frac{d \text{ Vega}}{d \text{ S}}$ close to zero. The primary tool to offset $\frac{d \text{ Vega}}{d \text{ S}}$ for the portfolio is risk reversals (which are Vega neutral). Notice that $\frac{d \text{ Vega}}{d \text{ S}}$ is the same as $\frac{d \text{ Delta}}{d \text{ \sigma}}$. Hence, hedging the Vega from the underlying spot movement is the same as hedging the Delta from fluctuations in the volatility.

The Vega derivatives of the d_1 strangle are:

$$\frac{d \text{ Vega}}{d \sigma} (\text{Call } (d_1) + \text{Put } (-d_1)) = df \text{ F} \sqrt{\text{T}} n(d_1) d_1^2 \left(\frac{1}{\sigma_c} + \frac{1}{\sigma_n} \right)$$
 (17)

$$\frac{\text{d Vega}}{\text{d S}} \left(\text{Call } (d_1) + \text{Put } (-d_1) \right) = df \frac{F}{S} n(d_1) \left(d_1 \left(\frac{1}{\sigma_p} - \frac{1}{\sigma_c} \right) + 2\sqrt{T} \right)$$
 (18)

The Vega derivatives of the d_1 risk reversal are:

$$\frac{d \operatorname{Vega}}{d \operatorname{S}} \left(\operatorname{Call} \left(\operatorname{d}_{1} \right) - \operatorname{Put} \left(-\operatorname{d}_{1} \right) \right) = -d f \frac{F}{S} \operatorname{n} \left(\operatorname{d}_{1} \right) \operatorname{d}_{1} \left(\frac{1}{\sigma_{\operatorname{c}}} + \frac{1}{\sigma_{\operatorname{p}}} \right)$$
(19)

$$\frac{\mathrm{d}\,\mathrm{Vega}}{\mathrm{d}\,\sigma}\left(\mathrm{Call}\left(\mathrm{d}_{1}\right)-\mathrm{Put}\left(-\mathrm{d}_{1}\right)\right) = -df\,\mathrm{F}\sqrt{\mathrm{T}}\mathrm{n}(\mathrm{d}_{1})\mathrm{d}_{1}\left(\mathrm{d}_{1}\left(\frac{1}{\sigma_{\mathrm{p}}}-\frac{1}{\sigma_{\mathrm{c}}}\right)+2\sqrt{\mathrm{T}}\right) \tag{20}$$

We define the Vega neutral butterfly as

Vega Neutral Butterfly
$$(d_1)$$
 = strangle (d_1) – $e^{-\frac{d_1^2}{2}}$ × straddle $(d_1 = 0)$ (21)
Notice that the pivot ATM straddle has zero $\frac{d \text{ Vega}}{d \sigma}$ but non-zero $\frac{d \text{ Vega}}{d \sigma}$.

In the case of the Black model for swaptions (or any forward payment underlying asset)

Vega _{Black} = An
$$df \, F\sqrt{T} \, e^{-\frac{d_1^2}{2}}$$
 = An Vega _{BS} (22)

and we replace the derivatives by the spot price S with the derivatives by the forward price F.

The right hand side of equations (17) and (20) is multiplied by the annuity An(F) and equations (18) and (19) become

$$\frac{d \text{ Vega}}{d \text{ F}} \left(\text{Call } (d_1) + \text{Put } (-d_1) \right) = \text{An } n(d_1) df \left(d_1 \left(\frac{1}{\sigma_p} - \frac{1}{\sigma_c} \right) + 2 \left(\frac{\frac{d \text{An}}{d \text{F}}}{\text{An}} \text{F} + \sqrt{T} \right) \right)$$

$$\frac{d \text{ Vega}}{d \text{ F}} \left(\text{Call } (d_1) - \text{Put } (-d_1) \right) = -\text{An } n(d_1) df d_1 \left(\frac{1}{\sigma_c} + \frac{1}{\sigma_p} \right)$$
(23)

We now look at all the d_1 risk reversal and d_1 Vega neutral butterflies where the strikes of the call and the put are d_1 -dual. These structures offer a hedge against the impact of the shape of the smile, but the effectiveness of the hedge depends on d_1 . We want to find the relative value between risk reversals with different d_1 's and some relative values between butterflies with different d_1 's that will ultimately define the smile in a unique way.

We start with a heuristic argument: How would a D₁ butterfly (i.e. the call and the put that correspond to d_1 = D₁) be evaluated versus a D₂ butterfly? From a hedging perspective, we will directly compare $\frac{d\ Vega}{d\ \sigma}$, but may potentially also compare other elements like the time decay

of $\frac{d \text{ Vega}}{d \sigma}$ and the range of the spot (in interest rates the range of the forward) where the $\frac{d \text{ Vega}}{d \sigma}$ will still be significant.

Similarly, we ask how would a D_1 risk reversal be evaluated versus a D_2 risk reversal? Again, from a hedging perspective, we will compare $\frac{d\ Vega}{d\ S}$ but may also compare other elements like the time decay of $\frac{d\ Vega}{d\ S}$ and the range of the spot (forward) where $\frac{d\ Vega}{d\ S}$ is significant.

Chart 1a illustrates the behavior over spot and time of $\frac{d \text{ Vega}}{d \sigma}$ for D₁ and D₂ strangles corresponding to d₁=.75 and d₁=1.25 for expiry 1 year. In this chart we use a constant volatility σ =15%.

Chart 1b illustrates the behavior over spot and time of $\frac{d \text{ Vega}}{d \text{ S}}$ for D₁ and D₂ strangles corresponding to d₁=.75 and d₁=1.25 for expiry 1 year and σ =15%.

Chart 1a: dVega/d σ for d₁ strangles over spot and time. σ =15% and the expiry is 1 year. Each line represents to time to maturity. The 1Y line correspond to the time at inception, the 9m line corresponds to 3 months after the inception, etc. The d₁=1.25 strangle has a faster time decal and a narrower spread of the dVega/d σ .

d1=1.25 d1=0.75

Chart 1b: dVega/ds for d_1 Risk Reversal over spot and time. σ =15% and the expiry is 1 year. Each line represents to time to maturity. The 1Y line correspond to the time at inception, the 9m line corresponds to 3 months after the inception, etc. The d_1 =1.25 Risk Reversal has a faster time decal of the dVega/ds.

In order to make this approach more rigorous, we first need to "generalize" these quantities in order to make them orthogonal in the Vega derivatives. We can define a **generalized butterfly** with zero $\frac{d\ Vega}{d\ S}$ and a **generalized risk reversal** with zero $\frac{d\ Vega}{d\ \sigma}$ as follows.

If we add an ATM straddle to the Vega neutral butterfly, we can have a generalized butterfly that has zero $\frac{d \, Vega}{d \, S}$. Notice that the ATM straddle does not change $\frac{d \, Vega}{d \, \sigma}$ for the butterfly.

The structure of the generalized butterfly would then be

Butterfly'(
$$d_1$$
) = butterfly (d_1) + α ATM straddle (24)

where

$$\alpha = e^{-\frac{d_1^2}{2}} \frac{d_1}{2\sqrt{T}} \left(\frac{1}{\sigma_p} - \frac{1}{\sigma_c} \right)$$
 (25)

satisfies

$$\frac{d \text{ Vega}}{d \sigma} \text{ (Butterfly' } (d_1)) = \frac{d \text{ Vega}}{d \sigma} \text{ (Butterfly } (d_1)) = \frac{d \text{ Vega}}{d \sigma} \text{ (Strangle } (d_1))$$
 (26)

$$\frac{d \text{ Vega}}{d \text{ S}} (\text{Butterfly'} (d_1)) = 0$$
 (27)

Similarly we define a generalized risk reversal (RR)

$$RR'(d_1) = RR (d_1) - \omega \text{ Butterfly'}(d_1)$$

$$= RR (d_1) - \omega \text{ Vega neutral butterfly}(d_1) - \omega \alpha \text{ ATM straddle}(0)$$
 (28)

where

$$\omega = -\frac{\sigma_c - \sigma_p + 2\sqrt{T}\sigma_c\sigma_p/d_1}{\sigma_c + \sigma_n}$$
 (29)

satisfies

$$\frac{d \operatorname{Vega}}{d \operatorname{S}} (\operatorname{RR}' (\operatorname{d}_1)) = \frac{d \operatorname{Vega}}{d \operatorname{S}} (\operatorname{RR} (\operatorname{d}_1))$$
(30)

$$\frac{d \text{ Vega}}{d \sigma} (RR' (d_1)) = 0$$
 (31)

We now represent the volatility smile with 2 equations:

$$\zeta_{\text{butterfly}'}(d_1) = \zeta_{\text{strangle}}(d_1) = \lambda (d_1, T, \sigma_0) \frac{d \text{ Vega}}{d \sigma} (\text{strangle}(d_1))$$
 (32)

$$\zeta_{RR'}\left(d_{1}\right) = \zeta_{RR}(d_{1}) - \omega \zeta_{strangle}\left(d_{1}\right) = \chi\left(d_{1}, T, \sigma_{0}\right) \frac{d \text{ Vega}}{d \text{ S}} \left(RR(d_{1})\right) \tag{33}$$

where λ (d₁, T , σ ₀) and χ (d₁, T , σ ₀) are two functions to be determined in Section 4. At this stage they can be viewed as the ratio between the generalized Vega derivatives and their zeta's. Equation (33) can also be written as

$$\zeta_{RR}(d_1) = \lambda (d_1, T, \sigma_0) \frac{d \operatorname{Vega}}{d \sigma} (RR(d_1)) + \chi (d_1, T, \sigma_0) \frac{d \operatorname{Vega}}{d S} (RR(d_1))$$
(34)

From equations (32)-(33), we get a set of two coupled equations.

For the higher strike K_c:

$$\zeta_c = df \, \operatorname{Fn}(d_1) \, d_1(\frac{\lambda(d_1)\sqrt{T}d_1}{\sigma_c} - \lambda(d_1)T - \frac{\chi(d_1)}{2F}(\frac{1}{\sigma_c} + \frac{1}{\sigma_p}))$$
(35)

and for the lower strike K_p (we use $K_c > K_0 > K_p$):

$$\zeta_p = df \, \mathrm{F} \, \mathrm{n}(d_1) \, d_1(\frac{\lambda(d_1)\sqrt{\mathrm{T}}d_1}{\sigma_p} + \lambda(d_1)T + \frac{\chi(d_1)}{2\mathrm{F}}(\frac{1}{\sigma_c} + \frac{1}{\sigma_p})) \tag{36}$$

Equations (35) and (36) can be written as functions of d_1 since $\zeta_c = \zeta(d_1)$;

$$\zeta_p = \zeta(-d_1) ; \sigma_c = \sigma(d_1) ; \sigma_p = \sigma(-d_1)$$
(37)

By plugging equations (1), (2) and (24) into the expressions (35) and (36), we can derive the asymptotic behavior of $\lambda(d_1)$ and $\chi(d_1)$ using the asymptotic behavior of N(x) at infinity and the moment formula for implied volatility derived by Roger Lee (2003). In Appendix 1 we show explicitly that

$$\lambda(d_1) \to O(d_1^{-2}), \ \chi(d_1) \to O(d_1^{-1}), \ d_1 \to \infty$$
 (38)

Finally, for an underlying asset with a forward payment (like swaptions) where the Black model is applicable instead of BS, there is a minor modification for α in (24), as follows

$$\alpha_{\text{Black}} = e^{-\frac{d_1^2}{2}} \frac{\frac{d_1}{2\sqrt{T}} \left(\frac{1}{\sigma_p} - \frac{1}{\sigma_c}\right)}{1 + \frac{1}{A_n} F \frac{dA_n}{dF}}$$
(39)

and ω is the same as in (29). Therefore, in this situation, equations (35) and (36) get scaled by the annuity value An leaving us with equations (40) and (41).

$$\zeta_c = \text{An F } n(d_1)d_1(\frac{\lambda(d_1)\sqrt{T}d_1}{\sigma_c} - \lambda(d_1)T - \frac{\chi(d_1)}{2F}(\frac{1}{\sigma_c} + \frac{1}{\sigma_n}))$$
 (40)

$$\zeta_p = \text{An F } n(d_1)d_1(\frac{\lambda(d_1)\sqrt{T}d_1}{\sigma_p} + \lambda(d_1)T + \frac{\chi(d_1)}{2F}(\frac{1}{\sigma_c} + \frac{1}{\sigma_p}))$$
(41)

2. Path Integral representation of the Volatility Smile

In this section, we derive a new approach to pricing options. We formulate the risk neutral valuation of the d_1 butterfly and d_1 risk reversal as their expected profit from continuous re-hedging against instantaneous changes in the underlying asset price and its expected volatility until maturity, without any pre-assumption about the stochastic process they follow. The expressions for the valuations coincide with the representation of the volatility smile suggested in section 1 reformulated in terms of path integrals and provide explanations for the well-known shape of the volatility smile.

Let us first explain why there must be a volatility smile. Denote the ATM volatility for expiry T at inception by σ_0 . Obviously, the ATM volatility is expected to fluctuate until expiry. Let us divide the time to expiry T into N time intervals $t_i = iT/N$. At each time i, the ATM volatility until the expiry T is $\sigma(t_i, T)$. We define the stochastic variable $\delta \sigma_{i.} = \sigma(t_i, T) - \sigma(t_{i-1}, T)$, and similarly the change in the underlying asset price from time t_{i-1} to t_i is denoted $\delta s_i = s_i - s_{i-1}$.

We first consider a specific Vega neutral d_1 butterfly with expiry T (i.e. Vega hedged d_1 strangle). We denote the strikes of the butterfly as K_{call} , K_{put} , K_0 . The change in the value of the butterfly (up to a second order) from time t_{i-1} to time t_i due to the change in the volatility is

$$\begin{split} &\delta \; \Pi i \; (butterfly, \, t_i) = Vega(t_{i-1}) \; \delta \sigma_i + \delta \; Vega(t_i) \; \delta \sigma_i / 2 = Vega(butterfly \, , t_{i-1}) \; \delta \sigma_i \\ &+ \frac{1}{2} \frac{d \; Vega}{d \; \sigma} \left(butterfly, \, t_{i-1} \right) \; \delta \sigma_i^2 \; + \; \frac{1}{2} \frac{d \; Vega}{d \; s} \left(butterfly, \, t_{i-1} \right) \; \delta \sigma_i \; \delta s_i \end{split} \tag{42}$$

In equation (42), we assume that in the infinitesimal time interval the smile moves almost parallel to the ATM volatility and

Vega(butterfly,
$$t_{i-1}$$
) = Vega(K_{call} , t_{i-1}) + Vega(K_{put} , t_{i-1}) - 2 $e^{-\frac{d_1^2}{2}}$ Vega(K_0 , t_{i-1}) (43)

The re-hedging strategy for changes in the ATM volatility $\sigma(t_i, T)$ is as follows. At time t_i the hedger buys or sells ATM options whose ATM strike is K_0^i so that the total amount of Vega of the butterfly and the ATM hedge is zero. Since the previous ATM hedge had a strike k_0^{i-1} which may be different than K_0^i , the hedger replaces the previous ATM option hedge with the current ATM option. Therefore at each time t_i the only hedge is the current ATM option so that

Vega(ATM hedge,
$$t_i$$
) = - Vega (butterfly, t_i) (44)

The ATM option has $\frac{d \ Vega}{d \ \sigma} = 0$ and $\frac{d \ Vega}{d \ s} = -\frac{Vega}{s}$. Hence the replacement of the ATM strike hedge with K_0^{i-1} at time t_i by strike K_0^i generates a profit/loss of

Vega (ATM hedge,
$$t_{i-1}$$
) $\delta\sigma_i + \frac{1}{2} \frac{d \text{ Vega}}{d \text{ s}}$ (ATM hedge, t_{i-1}) $\delta s_i \delta \sigma_i =$
- Vega (butterfly, t_{i-1}) $\delta\sigma_i - \frac{1}{2}$ Vega (butterfly, t_{i-1})/ $s_{i-1} \delta s_i \delta \sigma_i$ (45)

Therefore up to a second order, the total profit/loss from the butterfly and the hedge is

$$δ Πi (butterfly + ATM hedge, ti) = \frac{1}{2} \frac{d Vega}{d σ} (butterfly, ti-1) δσi2 +$$

$$\frac{1}{2} (\frac{d Vega}{d s} (butterfly, ti-1) - Vega (butterfly, ti-1)/si-1) δσi δsi$$

$$(46)$$

The profit/loss from time i to i+1 is realized at time i+1 (i.e. on a cash basis). In the re-hedging process, the hedger either borrows money at interest rate r_i to buy the ATM option or lends money at interest rate r_i after selling the ATM option. Therefore when taking into account the funding cost, up to second order the profit/loss in (46) becomes

 df_i δ Πi (butterfly + ATM hedge, t_i)

where df_i is the discount factor from inception to time i.

Therefore the expected profit from holding the butterfly until maturity while re-hedging with the ATM option is

$$E\left(\sum_{i=1}^{N} df_{i} \, \delta\Pii(\text{butterfly} + \text{ATM hedge}\right) = \frac{1}{2}E\left(\sum_{i=1}^{N} df_{i} \, \frac{\text{d Vega}}{\text{d } \sigma} \text{ (butterfly,} \right)$$

$$t_{i-1} \, \delta\sigma_{i}^{2} + \left(s_{i-1} \, \frac{\text{d Vega}}{\text{d } s} \text{ (butterfly, } t_{i-1}) - \text{Vega (butterfly, } t_{i-1}) \right) \, \delta\sigma_{i} \, \frac{\delta s_{i}}{s_{i-1}}$$

$$(47)$$

Now, if $\delta \sigma_i$ and $\frac{\delta s_i}{s_{i-1}}$ are independent (or approximately independent) of

Vega (d₁ strangle, t_{i-1}) and Vega (K₀, t_{i-1}) then the last equation can be written as

$$E(\sum_{i=1}^{N} \delta \Pi i) \approx \frac{1}{2} E(\sum_{i=1}^{N} df_{i} \frac{d \text{ Vega}}{d \sigma} (\text{butterfly, t}_{i-1})) E(\sum_{i=1}^{N} \delta \sigma_{i}^{2})/N + \frac{1}{2} E(\sum_{i=1}^{N} df_{i} (s_{i-1} \frac{d \text{ Vega}}{d \sigma} (\text{butterfly, t}_{i-1}) - \text{Vega (butterfly, t}_{i-1})) E(\sum_{i=1}^{N} \delta \sigma_{i}) + \frac{\delta s_{i}}{s_{i-1}})/N$$

$$(48)$$

We denote

$$Var (\sigma_{ATM}) = E \left(\sum_{i=1}^{N} \delta \sigma_i^2\right) / N = ; \qquad Cov (\sigma_{ATM}, s) = E \left(\sum_{i=1}^{N} \delta \sigma_i \frac{\delta s_i}{s_{i-1}}\right) / N$$
 (49)

where Var (σ_{ATM}) is the expected variance of the ATM volatility in the period from now until maturity and Cov (σ_{ATM},s) is the expected covariance of the ATM volatility and the return of the underlying asset price in the period from now until maturity (notice that if $0 \neq E \sum_{i=1}^{N} \delta \sigma_i$ then this is not exactly the covariance).

Similarly we can calculate the profit for the d₁ risk reversal with re-hedging using ATM options

$$E(\sum_{i=1}^{N} \delta \Pi i) \approx \frac{1}{2} E(\sum_{i=1}^{N} df_{i} \frac{d \text{ Vega}}{d \sigma} (\text{risk reversal, t}_{i-1})) \text{ Var } (\sigma_{\text{ATM}}) + \frac{1}{2} E(\sum_{i=1}^{N} df_{i} (s_{i-1} \frac{d \text{ Vega}}{d \sigma} (\text{risk reversal, t}_{i-1}) - \text{Vega}(\text{risk reversal, t}_{i-1}))$$

$$Cov(\sigma_{\text{ATM}}, s)$$
(50)

Now we can connect equation (48) to the price of the d_1 butterfly. Up to a second order, the price of the d_1 Vega neutral butterfly is made of two components: the first is the BS price with

some constant volatility σ'_0 which takes into account the re-hedging of the options with the underlying asset and the time decay of the options, and the second is expected profit from continuous re-hedging of the Vega due to the changes in the ATM volatility. Hence

$$P(d_{1} \text{ butterfly}) = BS(K^{call}, \sigma_{0}') + BS(K^{put}, \sigma_{0}') + e^{-\frac{d_{1}^{2}}{2}} BS(K_{0}, \sigma_{0}') + \frac{1}{2} E(\sum_{i=1}^{N} df_{i} \frac{d \text{ Vega}}{d \sigma} \text{ (butterfly, } t_{i-1}) \text{) Var } (\sigma_{ATM}) + \frac{1}{2} E(\sum_{i=1}^{N} df_{i} (s_{i-1} \frac{d \text{ Vega}}{d \text{ s}} \text{ (butterfly, } t_{i-1}) - \text{Vega(butterfly, } t_{i-1})) \text{ Cov } (\sigma_{ATM}, s)$$

and similarly the price of the d₁ risk reversal is

 (σ_{ATM},s)

$$P(d_{1} \text{ risk reversal}) = BS(K_{call}, \sigma_{0}') - BS(K_{put}, \sigma_{0}')$$

$$+ \frac{1}{2} E(\sum_{i=1}^{N} df_{i} \frac{d \text{ Vega}}{d \sigma} (\text{risk reversal, t}_{i-1})) \text{ Var } (\sigma_{ATM}) +$$

$$\frac{1}{2} E(\sum_{i=1}^{N} df_{i} (s_{i-1} \frac{d \text{ Vega}}{d \text{ s}} (\text{risk reversal, t}_{i-1}) - \text{Vega}(\text{risk reversal, t}_{i-1})) \text{Cov}$$
(52)

Since the combination of all butterflies and risk reversals define the whole volatility smile, equations (51)-(52) describe the volatility smile under 3 assumptions:

- (i) The option price is approximated by decomposing it into the constant volatility element and the varying volatility element
- (ii) The varying volatility element is calculated up to a second order. Clearly contributions from higher order terms are smaller than the bid-ask spread.
- (iii) The changes of the ATM volatility and the underlying asset return at time t_i are independent of the Vega of the option at time t_{i-1} .

The last assumption can be easily removed.

Under these assumptions, we can express the whole smile with only 3 variables: Var (σ_{ATM}) , Cov (σ_{ATM},s) and $\sigma_0{}'$.

Moreover, equations (51)-(52) explain the shape of the volatility smile. At d_1 =0 by definition the butterfly becomes zero. For very large d1 values, the contribution of the summations goes to zero because the Vega of the butterfly goes to zero. Therefore, as d1 increases from zero, the summation contribution shape has at least one maximum which we denote d_1^{max} . This implies that zeta must be growing at least in some area from d_1 =0 to d_1^{max} . Thus, the "average" volatility of the call and put of the strangles is increasing. We conclude that in this range the volatility must have a smile shape.

In order to obtain σ_0 ', we can look at the ATM option with d_1 =0 and strike K_0 at inception. Consider the d_1 =0 straddle, i.e Call and Put with strike K_0 . Applying the same re-hedging strategy with the concurrent ATM options at each time t_i we obtain

$$E\left(\sum_{i=1}^{N} \delta \operatorname{\Pii}\left(K_{0}\right)\right) = \frac{1}{2}E\left(\sum_{i=1}^{N} df_{i} \frac{d \operatorname{Vega}}{d \sigma} \left(\operatorname{Straddle} K_{0}, t_{i-1}\right) \delta \sigma_{i}^{2} + \left(s_{i-1}\left(\frac{d \operatorname{Vega}}{d \sigma} \left(\operatorname{Straddle} K_{0}, t_{i-1}\right) - \operatorname{Vega} \left(\operatorname{Straddle} K_{0}, t_{i-1}\right)\right) \delta \sigma_{i} \frac{\delta s_{i}}{s_{i-1}}\right)$$
(53)

Decomposing the price of the straddle with strike K_0 into the BS price and re-hedging profits as we did before and taking into account the fact that by definition $\zeta(K_0) = 0$ gives us

P(Straddle
$$K_0$$
) = BS (Straddle k_0 , σ_0) = BS (Straddle k_0 , σ'_0) +
$$\frac{1}{2}E(\sum_{i=1}^{N} df_i(\frac{d \text{ Vega}}{d \sigma} \text{ (Straddle } k_0, t_{i-1}) \delta \sigma_i^2 + (s_{i-1} \frac{d \text{ Vega}}{d s} \text{ (Straddle } K_0, t_{i-1}) - Vega (Straddle K_0, t_{i-1})) $\delta \sigma_i \frac{\delta s_i}{s_{i-1}}$)$$

We can get a simple expression for σ_0' using

0= BS(
$$K_0$$
, σ'_0) - BS(K_0 , σ_0) \approx Vega (K_0 , σ_0)($\sigma'_0 - \sigma_0$) +
$$\frac{d \text{ Vega}}{d \sigma} (K_0, \sigma_0)(\sigma'_0 - \sigma_0)^2/2$$
 (55)

and
$$\frac{\text{d Vega}}{\text{d }\sigma}(K_0, \sigma_0)=0$$

Then up to second order

$$\sigma'_{0} \approx \sigma_{0} - \frac{1}{2}E\left(\sum_{i=1}^{N} df_{i} \frac{d \text{ Vega}}{d \sigma} \text{ (Straddle k}_{0}, t_{i-1}) \text{ Var } (\sigma_{\text{ATM}}) + (s_{i-1} \frac{d \text{ Vega}}{d \text{ s}} \right)$$
(Straddle k₀, t_{i-1}) – Vega (Straddle k₀, t_{i-1})) Cov (σ_{ATM} ,s)) / ($df F_{i-1} \sqrt{T/2\Pi}$) (56)

Therefore we can say that the volatility smile is determined by the following expected values

$$\sigma_0$$
, Var (σ_0) , Cov (σ_0,s) (57)

We now follow the same steps we took in order to reach equations (32)-(33) and define the generalized butterfly and risk reversal as follows:

Generalized (d₁ butterfly) \equiv d₁ butterfly' = (d₁ butterfly) - α (d₁=0 strangle)

such that

$$\zeta_{\text{strangle}}\left(d_{1}\right) = \zeta\left(d_{1} \text{ butterfly}\right) = \frac{1}{2}E\left(\sum_{i=1}^{N} df_{i} \frac{d \text{ Vega}}{d \sigma} \text{ (butterfly', t}_{i-1}) \delta \sigma_{i}^{2}\right)$$

$$\approx \frac{1}{2}E\left(\sum_{i=1}^{N} df_{i} \frac{d \text{ Vega}}{d \sigma} \text{ (butterfly', t}_{i-1}) \right) \text{ Var } (\sigma_{\text{ATM}})$$
(58)

where α satisfies equation (59)

0 = BS (d₁ butterfly, σ'_0) - BS (d₁ butterfly, σ_0) - α (BS (Straddle k₀, σ_0) -

BS (Straddle k₀,
$$\sigma'_0$$
)) + $\frac{1}{2}E\sum_{i=1}^N df_i \left[\frac{d \text{ Vega}}{d \text{ s}} \left(d_1 \text{ butterfly, t}_{i-1}\right) - \text{Vega} \left(d_1\right)\right]$ (59)

butterfly, $t_{i\text{-}1}$)/ $s_{i\text{-}1}$ - α ($\frac{d\ Vega}{d\ s}$ (d_1 =0 strangle, $t_{i\text{-}1}$) –

Vega (d_1 =0 strangle, t_{i-1}) / s_{i-1})] $\delta \sigma_i \delta s_i$

Generalized (d₁ risk reversal) \equiv d₁ risk reversal' = d₁ risk reversal + ω (d₁ butterfly') +

+ β (d₁=0 strangle)

where the amount of the butterfly' ω and the amount of the d_1 =0 strangle β are set to offset the $\frac{d\ Vega}{d\ \sigma}$ of the risk reversal and the $\frac{d\ Vega}{d\ s}$ of the re-hedging with ATM options and the contribution from σ'_0 (for simplicity we omit df_i from the following expressions).

$$\zeta_{RR'}(d_1) = E\left(\sum_{i=1}^{N} s_{i-1} \frac{d \operatorname{Vega}}{d \operatorname{s}} \left(d_1 \operatorname{risk reversal}, t_{i-1}\right)\right) \frac{\delta s_i}{s_{i-1}} \delta \sigma_i / 2$$

$$= E\left(\sum_{i=0}^{N-1} s_i \frac{d \operatorname{Vega}}{d \operatorname{s}} \left(d_1 \operatorname{risk reversal}, t_i\right)\right) \operatorname{Cov} \left(\sigma_{ATM}, s\right) / 2$$
(60)

where ω and β are selected such that

$$0 = \omega E\left(\sum_{i=1}^{N} \frac{d \text{ Vega}}{d \sigma} \left(d_1 \text{ butterfly', t_i}\right)\right) + \beta E\left(\sum_{i=1}^{N} \frac{d \text{ Vega}}{d \sigma} \left(d_1 = 0 \text{ strangle, t_i}\right) + E\left(\sum_{i=1}^{N} \frac{d \text{ Vega}}{d \sigma} \left(d_1 \text{ Risk Reversal, t_i}\right)\right)$$
(61)

and

0= BS (d₁ risk reversal,
$$\sigma'_0$$
) – BS (d₁ risk reversal, σ_0) –
$$\beta(BS (Straddle k_0, \sigma_0) - BS (Straddle k_0, \sigma'_0)) +$$
(β $E(\sum_{i=1}^{N} s_{i-1} \frac{d \text{Vega}}{d \text{ s}} (d_1=0 \text{ strangle, t}_i)$ - Vega (d₁=0 strangle, t_i)) – (62)

Equation (60) can also be written in a similar style as equation (34):

 $E(\sum_{i=1}^{N} \text{Vega } (d_1 \text{ Risk Reversal, } t_i))) \text{ Cov } (\sigma_{ATM}, s) / 2$

$$\zeta_{RR} (d_1) = \frac{1}{2} E(\sum_{i=0}^{N-1} \frac{d \text{ Vega}}{d \sigma} (\text{risk reversal, t}_i)) \text{ Var } (\sigma_{ATM})
+ \frac{1}{2} E(\sum_{i=0}^{N-1} s_i \frac{d \text{ Vega}}{d \sigma} (d_1 \text{ risk reversal, t}_i)) \text{ Cov } (\sigma_{ATM}, s) / 2$$
(63)

In the following, we obtain the functions $\lambda(d_1)$ and $\chi(d_1)$ for options on all underlying assets except for forward paying assets such as interest rates swaps. Later we obtain them for options on swaps (swaptions) for which we have to take into account the forward rate and the annuity.

The power of the methodology suggested below is that we do not need to know the probability density function to go from the underlying asset price at time t_1 to another price at time t_2 g $((s_1,t_1 \rightarrow s_2,t_2))$ implied from the vanilla options prices.

The implementation of (58) and (60) in conjunction with (32) and (33) as the time interval between periods goes to 0 is done via the translation of the summation to integrals using the density function of the underlying asset g(s,t) and then eventually solving for the density function.

We now define the following path integrals for the d_1 call and put options with expiry T and ATM volatility σ_0

$$\begin{split} & \text{E}\left(\frac{\text{d Vega}}{\text{d }\sigma} \, \text{strangle (d_1)}\right) = \int_0^T \text{dt } \int_0^\infty \text{ds } g(s,t) df(t) \left[\frac{\text{d Vega}}{\text{d}\sigma}(s,t,T,\sigma_t(K_{\text{call}},T),K_{\text{call}}) \right. \\ & \left. \frac{\text{d Vega}}{\text{d}\sigma}(s,t,T,\sigma_t(K_{\text{put}},T),K_{\text{put}}) \right] \end{aligned}$$

$$E\left(\frac{d \text{ Vega}}{d \sigma} \text{ straddle (d_1=0)}\right) = 2\int_0^T dt \int_0^\infty ds \text{ g(s,t)} df(t) \frac{d \text{ Vega}}{d \sigma}(s,t,T,\sigma_t(K_0,T),K_0)$$

$$\text{E}\left(s\frac{\text{d Vega}}{\text{d s}}\text{ strangle (d_1)}\right) = \int_0^T \text{dt } \int_0^\infty \text{ds } g(s,t) df(t) s\left[\frac{\text{d Vega}}{\text{d s}}(s,t,T,\sigma_t(K_{\text{call}},T),K_{\text{call}})\right. \\ \left. + \frac{\text{d Vega}}{\text{d }\sigma}(s,t,T,\sigma_t(K_{\text{put}},T),K_{\text{put}})\right]$$

E (Vega (strangle (d₁)) =
$$\int_0^T dt \int_0^\infty ds \ g(s,t) \ df(t)$$
 [Vega (s,t,T, $\sigma_t(K_{call},T),K_{call}$) + Vega (s,t,T, $\sigma_t(K_{put},T),K_{put}$)]

and similarly for risk reversal

etc.

$$\begin{split} & \text{E}\left(s\frac{\text{d Vega}}{\text{d s}}\,\text{risk reversal (d_1)}\right) = \int_0^T \text{d}t\,\int_0^\infty \text{d}s \;\; g(s,t)s\left[\frac{\text{d Vega}}{\text{d s}}\left(s,t,T,\sigma_t(K_{call},T),K_{call}\right) - \right. \\ & \frac{\text{d Vega}}{\text{d }\sigma}\left(s,t,T,\sigma_t(K_{put},T),K_{put}\right) \,\right] \end{split}$$

(64)

where K_c and K_p are the current strikes of the call and put options that correspond to d_1 , and K_0 is the strike of the current ATM straddle. The integral over time is from today to the expiry T, the density function g(s,t) is the same as in (8), and df(t) is the discount factor for time t. The calculation of $\frac{dVega}{d\sigma}$ or $\frac{dVega}{ds}$ through the integral at time t and spot s is done with the smile at time t for options with expiry time T-t. We denote the smile at time t for expiration T as $\sigma_t(K,T)$. In other words, we use the expressions for the Vega derivatives with the volatility that corresponds to the strikes determined at inception, i.e. $\sigma_t(K) = \sigma(s,K,t,T)$ where the smile in the integral is calculated via (35) and (36). We now define

$$\tilde{\lambda} \equiv \text{Var} (\sigma_{ATM})/2$$
 and $\tilde{\chi} \equiv \text{Cov} (\sigma_{ATM}, s)/2$

Equation (58) becomes

$$\zeta_{\text{ butterfly }}(d_1) = \lambda (d_1, T, \sigma_0) \frac{d \text{ Vega}}{d \sigma} \left(\text{strangle}(d_1) \right) = \tilde{\lambda} \left(\text{E} \left(\frac{d \text{ Vega}}{d \sigma} \text{ strangle} \right) \right)$$

$$(65)$$

$$(d_1) - e^{-\frac{d_1^2}{2}} \text{E} \left(\frac{d \text{ Vega}}{d \sigma} \text{ straddle} \left(d_1 = 0 \right) \right) + \alpha \tilde{\lambda} \text{E} \left(\frac{d \text{ Vega}}{d \sigma} \text{ straddle} \left(d_1 = 0 \right) \right)$$

And similarly equation (60) becomes

$$\zeta_{RR'}(d_1) = \zeta_{RR} - \omega \zeta_{butterfly}(d_1) = \chi(d_1, T, \sigma_0) \frac{d \text{ Vega}}{d \text{ s}} (\text{risk reversal}(d_1)) = \tilde{\chi}$$

$$E \left(s \frac{d \text{ Vega}}{d \text{ s}} \text{ risk reversal } (d_1)\right)$$
(66)

where α and ω can be written with the integrals in (64).

From here, $\lambda(d_1)$ and $\chi(d_1)$ are defined in equations (67) and (68)

$$\lambda(d_{1}) = \left[\tilde{\lambda}(E(\frac{d \text{ Vega}}{d \sigma}d_{1} \text{ strangle}) - (e^{-\frac{d_{1}^{2}}{2}} - \alpha) E(\frac{d \text{ Vega}}{d \sigma}d_{1} = 0 \text{ straddle}))\right] / \frac{d \text{ Vega}}{d \sigma}(\text{strangle}(d_{1}))$$
(67)

$$\chi(d_1) = \tilde{\chi} E \left(s \frac{d \text{ Vega}}{d \text{ s}} d_1 \text{ risk reversal } \right) / \frac{d \text{ Vega}}{d \text{ S}} \text{ (risk reversal (d_1))}$$
 (68)

To determine α and ω we use equations (59),(61), and (62) along with

$$BS(K_0, \sigma_0) = BS(K_0, \sigma'_0) + \tilde{\lambda} E\left(\frac{d \text{ Vega}}{d \sigma} d_1 = 0 \text{ straddle}\right) / 2 + \tilde{\chi} (E(s \frac{d \text{ Vega}}{d s} d_1 = 0 \text{ straddle})) / 2$$

$$(69)$$

$$\alpha = (BS (d_1 \text{ strangle}, \sigma_0) - BS (d_1 \text{ strangle}, \sigma'_0) + \tilde{\lambda} (E (s \frac{d \text{ Vega}}{d \text{ s}} d_1 \text{ strangle})$$

$$- e^{-\frac{d_1^2}{2}} E (s \frac{d \text{ Vega}}{d \text{ s}} d_1 = 0 \text{ straddle}) + E (Vega d_1 \text{ strangle}) - e^{-\frac{d_1^2}{2}} E (Vega d_1 = 0 \text{ straddle})$$

$$\text{straddle})) / (2 BS(K_0, \sigma_0) - 2 BS(K_0, \sigma'_0) + \tilde{\lambda} E (s \frac{d \text{ Vega}}{d \text{ s}} d_1 = 0 \text{ straddle}) - E$$

$$(Vega d_1 = 0 \text{ straddle}))$$

$$\beta = [BS (d_1 \text{ risk reversal}, \sigma'_0) - BS (d_1 \text{ risk reversal}, \sigma_0) - \beta (BS(K_0, \sigma'_0) - BS(K_0, \sigma_0)) + \tilde{\chi} E (Vega d_1 \text{ risk reversal}) / \tilde{\chi} (E (s \frac{d \text{ Vega}}{d \text{ s}} d_1 = 0 \text{ straddle}) - E$$
(Vega d₁=0 straddle))

$$\omega = -\left(E\left(\frac{d \text{ Vega}}{d \sigma} d_1 \text{ risk reversal}\right) + \beta E\left(\frac{d \text{ Vega}}{d \sigma} d_1 = 0 \text{ straddle}\right)\right) / \left(E\left(\frac{d \text{ Vega}}{d \sigma} d_1 \right)$$

$$\text{strangle} - \left(e^{-\frac{d_1^2}{2}} - \alpha\right) E\left(\frac{d \text{ Vega}}{d \sigma} d_1 = 0 \text{ straddle}\right)\right)$$

$$(72)$$

Calculation of $\lambda(d_1)$ and $\chi(d_1)$ for swaptions and other forward starting underlying assets

The implementation of equations (58),(60), and (64) to options on forward starting assets is straight forward. In options on forward starting assets such as swaps, the variable to consider is the underlying forward rate F instead of the underlying spot price, and of course one has to take into account the annuity in the calculations. The integral over the spot price in (64) is replaced by the integral over the forward rate, $\frac{d \text{ Vega}}{d \text{ S}}$ is replaced by $\frac{d \text{ Vega}}{d \text{ F}}$, and the density

function in (8) is replaced by g(F,t). Instead of call and put, we now have receiver and payer of the fixed rate.

$$\tilde{\lambda} \equiv \text{Var} \left(\sigma_{\text{ATM}} \right) / 2$$
 and $\tilde{\chi} \equiv \text{Cov} \left(\sigma_{\text{ATM}}, F \right) / 2$ (73)

For example

$$E\left(\frac{d \text{ Vega}}{d \sigma} \text{ strangle (d1)}\right) \equiv \int_{0}^{T} dt \int_{0}^{\infty} dF \text{ g(F,t)} df(t)$$

$$\left[\frac{d \text{Vega}}{d \sigma} (F, t, T, \sigma_{t}(K_{\text{receiver}}, T), K_{\text{receiver}}) + \frac{d \text{Vega}}{d \sigma} (F, t, T, \sigma_{t}(K_{\text{payer}}, T), K_{\text{payer}})\right]$$
(74)

$$E\left(F\frac{\mathrm{d}\,\mathrm{Vega}}{\mathrm{d}\,\mathrm{F}}\,\mathrm{strangle}\,(\mathrm{d}1)\right) \equiv \\ \int_0^T \mathrm{dt} \int_0^\infty \mathrm{dF}\,\mathrm{g}(\mathrm{F},\mathrm{t})\,df(\mathrm{t})\mathrm{F}\left[\frac{\mathrm{d}\,\mathrm{Vega}}{\mathrm{d}\mathrm{F}}\,(\mathrm{F},\mathrm{t},\mathrm{T},\sigma_\mathrm{t}(\mathrm{K}_\mathrm{receiver},\mathrm{T}),\mathrm{K}_\mathrm{receiver}) - \\ \frac{\mathrm{d}\,\mathrm{Vega}}{\mathrm{d}\mathrm{F}}\,(\mathrm{F},\mathrm{t},\mathrm{T},\sigma_\mathrm{t}\big(\mathrm{K}_\mathrm{payer},\mathrm{T}\big),\mathrm{K}_\mathrm{payer})\right] \\ \text{where } \frac{\mathrm{d}\,\mathrm{Vega}}{\mathrm{d}\mathrm{F}}\,\mathrm{includes}\,\mathrm{a}\,\frac{\mathrm{d}\,\mathrm{An}(\mathrm{F},\mathrm{t},\mathrm{T})}{\mathrm{d}\mathrm{F}}\,\mathrm{term}\,\mathrm{and}\,\mathrm{the}\,\mathrm{annuity}\,\mathrm{An}\,\mathrm{in}\,\mathrm{the}\,\mathrm{integral} \\ \mathrm{changes}\,\,\mathrm{with}\,\,\mathrm{the}\,\,\mathrm{time}\,\mathrm{t}\,,\,\,\mathrm{An}\,=\,\mathrm{An}(\mathrm{F},\mathrm{T}-\mathrm{t})$$

3. Calculating The Probability Density Function

In order to calculate the path integrals of the butterflies and risk reversals and obtain ζ butterfly (d_1) and ζ_{RR} (d_1) , we need to obtain g(s,t) for $0 \le t \le T$. Equations (65) and (66) are consistency equations on the probability density function g(s,T). This is because the set of $\zeta_{butterfly}$ (d_1) and $\zeta_{RR'}$ (d_1) for all $\{d_1\}$ and σ_0 define the probability density function to maturity as in (8), which is used in the path integrals. In this section, we show how to calculate the density function g(s,T) via an iterative process.

Since we are calculating the valuation of European options, the path integrals should be independent of the path to expiry. Hence, when we solve for g(s,T), we have some freedom in selecting a consistent g(s,t) for t<T. We divide the time to expiry T into very small equal time

steps Δt =T/N. This generates the time series t_1 ,..., t_N =T. Let us denote by $g_1(s_0,0 \to s,t_1)$ the probability density function from time 0 to time t_1 . s_0 is the underlying asset spot price at time 0 and s is the underlying asset spot price at time t_1 . We will now create a term structure so that at any time t_i the forward term structure from t_i to t_{i+1} {t,t+ Δt } is the same and is translational invariant in the spot axis . Therefore, the probability density function $g(s,t\to S,t+\Delta t)$ is the same for any t and $g(s,t\to S,t+\Delta t)=g(\gamma s,t\to \gamma S,t+\Delta t)$ for all γ . The density function from time 0 to t_2 $g_2(s_0,0\to s,t_2)$ is a convolution integral of g_1

$$g_2(s_0, 0 \to s2, t_2) = \int ds \ g_1(s_0, 0 \to s, t_1) \ g_1(s, t_1 \to s2, t_2)$$
 (76)

and similarly

$$g_n(s_0, 0 \to s_n, t_n) = \int ds \, g_{n-1}(s_0, 0 \to s, t_{n-1}) g_1(s, t_{n-1} \to s_n, t_n)$$
 (77)

In this methodology, by definition, we preserve the property that the probability to reach time T is independent of the path, provided that the time step is small enough. Hence, for any j we can write the integral in (77) as

$$g_n (s_0, 0 \to s_n, t_n) = \int ds \ g_{n-j} (s_0, 0 \to s, t_{n-j}) \ g_j (s, t_{n-j} \to s_n, t_n)$$
 (78)

We refer to $g_1(0, t_1)$ as the **kernel density** since all the density functions from 0 to T will be calculated from it. Naturally, the forward density from t_j to t_{j+n} is the same as from 0 to t_n

$$g_n(s_0, 0 \to s, t_n) = g_{j,j+n}(s_0, t_j \to s, t_{j+n})$$
 (79)

We use the following method. From a given g(s,T), we calculate the kernel density. Then we obtain g_n (s_0 , $0 \rightarrow s_n$, t_n) for all n=2,...,N-1. Equation (7) can then be used to calculate the whole volatility smile from inception to t_n for all n=1,...,N in order to obtain g(s,t) for all s,t. This set of volatility smiles automatically gives the **forward** volatility smiles from t_n to T- t_n for all n.

We use the forward volatility smiles to calculate Vega(s, t, T, $\sigma_t(K_{call}, T)$, K_{call}), $\frac{dVega}{d\sigma}(s, t, T, \sigma_t(K_{call}, T), K_{call}) \text{ and } \frac{dVega}{ds}(s, t, T, \sigma_t(K_{call}, T), K_{call}) \text{ and similarly for } K_{put} \text{ and } K_0 \text{ in the integral representation in (64). We calculate the integrals (65) and (66) for a wide range of {d₁} (e.g. from 0.1 to 5) and obtain from the set of <math>\zeta_{butterfly}(d_1)$ and $\zeta_{RR'}(d_1)$ a new density function g(s,T). We repeat the process until convergence.

We now develop a recursive process to calculate $g_1(s_0, 0 \to s, t_1)$ from $g_T(s_0, 0 \to s, T)$. To reduce the number of calculations, we select $N=2^m$ for some integer m. We use

$$g_{2j}(s_0, 0 \rightarrow s_{2j}, t_{2j}) = \int ds \, g_j(s_0, 0 \rightarrow s, t_j) g_j(s, t_j \rightarrow s_{2j}, t_{2j})$$
(80)

Since the density function is the same for each of the two halves of the period, we start with the known terminal distribution of the asset at expiry $T = 2^m t_1$ and calculate the density for half the period $t = 2^{m-1}t_1$, continuing recursively until we obtain g_1 from g_2 .

We start by defining G_j (s_0 , $0 \rightarrow s_j$, t_j) as the cumulative density function for g_j (s_0 , $0 \rightarrow s_j$, t_j). We define a one-to-one mapping of G_j to the normal cumulative distribution function N(x) so that

$$G_{i}(\log(s_{i}/s_{0}) \equiv N(X_{i}) \tag{81}$$

or

$$X_{j} \equiv N^{-1} \left(G_{j} \left(\log(s_{j}/s_{0}) \right) \right) \tag{82}$$

Denote the inverse function as $s_i(X_i)$. Now we define the function $V_i(X)$

$$V_{j}(X_{j}) = d \log s_{j}(X_{j}) / dX_{j}$$
(83)

V_j(X) must be strictly positive as it is a mapping between two density functions. Therefore,

$$P_{\text{Call}}(K, 2jt, s_0) = \int_{-\infty}^{\infty} dX''_{j} \int_{-\infty}^{\infty} dX'_{j} \ n(X''_{j}) \ n(X'_{j}) \left(e^{\log S_{2j}(X'_{j}, X''_{j})} - K \right)^{+}$$
 (84)

where

$$\log S_{2j}(X'_{j'}X''_{j}) = \int_{0}^{X'_{j}} V_{j}(x) dx + \int_{0}^{X''_{j}} V_{j}(x) dx + \log F$$
 (85)

For j<N/2 the mapping of the function $G_{2j} (log(S_{2j}/s_0))$ to the normal distribution

$$X_{2j} \equiv N^{-1}(G_{2j}(\log(S_{2j}/s_0))$$
(86)

is given from the previous step when we calculated g_{2j} from g_{4j} . We express the price of a call option as

$$P_{\text{Call}}(K, 2jt, s_0) = \int_{-\infty}^{\infty} dX_{2j} \left(e^{\log S_{2j}(X_{2j})} - K \right)^+ n(X_{2j})$$
 (87)

where

$$\log S_{2j}(X_{2j}) = \int_0^{X_{2j}} V_{2j}(x) dx + \log F_{2j}$$
 (88)

and

$$F_{2j} = s_0 e^{(r_l - r_r)_{2j} 2jt}$$
(89)

In the first iteration 2j=N, so $G_{2j}=G_T$ is obtained from the first guess smile at time T. We find $V_j(x)$ by equating (84) and (87) for a large set of strikes. We use an optimization method developed by Levenberg (1944), Marquardt (1963) known as LMA, and Kanzow, Yamashita, Fukushima (2004). We define the price of the option (87) with expiry time 2jt as $P(K,2jt,s_0)$ and the price derived from the convolution (84) as $\widehat{P}(K,2jt,V_j)$ and solve for the V which minimizes the target function S(V) defined as

$$S(V) = \sum_{K_i} [(P(K_i, 2jt, s_0) - \widehat{P}(K_i, 2jt, V)) \text{ Vega}(K_i, T)]^2$$
(90)

The summation is over the set of strikes $\{K_i\}$ selected to cover a wide range around the ATM strike. Since $P(K_i, 2jt, s_0)$ is known, we can select the strikes using d_1 . For example, we can select K from $d_1=2.5$ to $d_2=2.5$ to $d_3=2.5$ to $d_4=2.5$ to

weight function in order to give a higher weight to the area of the ATM strike with higher Delta. Vega is calculated from the known smile P(K,T).

Hence we showed how to obtain the density function of the underlying asset when the smile is determined by the 3 inputs of equation (57). Obviously this means that any three option prices on the smile determine the smile since we can solve for the three variables of (57) from the three given prices. Once the density function g(s,T) is obtained, the volatility smile is determined and the functions $\lambda(d_1,T)$ and $\chi(d_1,T)$ are obtained. Hence $\lambda(d_1,T)$ and $\chi(d_1,T)$ are self-generated. The importance of these functions is clear: it is a lot easier to calculate option prices by using equations (32) and (33) then by integrating the density function in (7). The volatility smile model can be expressed through tables of $\lambda(d_1,T)$ and $\chi(d_1,T)$ for different sets of the underlying three variables. Therefore we want to characterize the smile using the three variables defined now.

The BS Delta of the call and put options are

$$\Delta_{\text{call}} = \frac{dPcall}{dS} = e^{-r_f T} N(d_1) \quad ; \qquad \Delta_{\text{put}} = -e^{-r_f T} N(-d_1)$$
 (95)

For example, a 25 delta call corresponds to a d1 such that 25% = $e^{-r_f T} N(d_1)$ or

$$d_1 25\Delta = N^{-1}(0.25 e^{r_f T})$$
 (96)

When the interest rate $r_f = 0$, then $d_1 25\Delta = 0.674$.

25 Delta Risk Reversal =
$$\sigma$$
 (d₁25 Δ) - σ (-d₁25 Δ) \equiv 25 Δ RR

Delta Neutral ATM volatility =
$$\sigma$$
 (d₁=0) $\equiv \sigma_0$ (97)

25 Delta butterfly = $(\sigma (d_1 25\Delta) + \sigma (-d_1 25\Delta))/2 - \sigma_0 \equiv 25\Delta Fly$

We use the three variables of equation (97) to characterize a smile. For each set of { σ_0 , 25 Δ RR, 25 Δ Fly} we have $\lambda(d_1,T) = \lambda(d_1,T,\sigma_0,25\Delta$ RR, 25 Δ Fly) and $\chi(d_1,T) = \chi(d_1,T,\sigma_0,25\Delta$ RR, 25 Δ Fly). For simplicity we omit σ_0 , 25 Δ RR, and 25 Δ Fly going forward.

While the process we described to obtain g(s,T) did not directly involve the functions $\lambda(d_1,T)$ and $\chi(d_1,T)$, there is an alternative process to obtain g(s,T) by actually solving for the self-consistent $\lambda(d_1,T)$ and $\chi(d_1,T)$ that satisfy equations (65) and (66). $\lambda(d_1,T)$ and $\chi(d_1,T)$ are also solved via an iterative process. Using a first guess for $\lambda(d_1,T)$ and $\chi(d_1,T)$, the corresponding density function $g_T(s_0,0\rightarrow S,T)$ is calculated. Like before, we can then recursively calculate the kernel density.

Following the calculation of all the density functions g_1, \ldots, g_N , we calculate the implied term structure that corresponds to each of the density functions from 1 to N: $\lambda(d1, t_j)$, $\chi(d_1, t_j)$, $\sigma_0(t_j)$, 25Δ RR(t_j), 25Δ Fly(t_j) for $1 \le j \le N$ and also automatically obtain the forward term structure from time t_j to T: $\lambda_{t_j}(d_1, T - t_j)$, $\chi_{t_j}(d_1, T - t_j)$, $\sigma_{t_j}(T -$

$$\lambda (d_1, T) = \tilde{\lambda} (E(\frac{d \text{ Vega}}{d \sigma} \text{ strangle } (d_1)) - (e^{-\frac{d_1^2}{2}} - \alpha) E(\frac{d \text{ Vega}}{d \sigma} \text{ strandle}$$

$$(d_1=0))) / \frac{d \text{ Vega}}{d \sigma} (\text{strangle}(d_1))$$
(98)

$$\chi (d_1, T) = \tilde{\chi} E \left(\frac{d \text{ Vega}}{d \text{ s}} \text{ risk reversal (d_1)} \right) / \frac{d \text{ Vega}}{d \text{ s}} \left(\text{risk reversal(d_1)} \right)$$
(99)

We now take the new $\lambda(d_1,T)$, $\chi(d_1,T)$ and recalculate the corresponding g(s,T) and repeat the whole process. We continue with these iterations until we reach convergence in $\lambda(d_1,T)$ and $\chi(d_1,T)$. We define the convergence in the Mth iteration by the condition on the shape functions

$$\left| F_{\lambda,\chi}^{M+1}(d_1) - F_{\lambda,\chi}^{M}(d_1) \right| < 0.001$$
 (100)

Finally, when we calculate g(s,T) or $\lambda(d_1,T)$ and $\chi(d_1,T)$ for forward paying assets such as swaptions, we apply the same process on equations (74) and (75) and calculate the kernel density function $g_1(F_0,0\to F_1,t_1)$ followed by the density functions $g_n(F_0,0\to F_n,t_n)$ n=2,...,N-1 with F_n corresponding to the forward rate of the underlying swap at time t_n .

4. Example: Option Pricing at Constant Volatility

In this section, we demonstrate the methodology from section 2 to derive European Vanilla option prices in the case of constant volatility. We derive the path integral obtained from the risk neutral valuation of the expected profit generated from continuous re-hedging against instantaneous changes in the price of the underlying asset and show that the resulting density function g(s,t) is the lognormal distribution function. Hence, our method leads to the BS model without any pre-determined assumption on the probability distribution of the underlying asset. At the end of the section we expand the method to the general case.

As we did in section 2, let us divide the time to expiry T into N time intervals $t_i = iT/N$. At each time i, the change in the underlying asset price from time t_{i-1} to t_i is denoted $\delta s_i = s_i - s_{i-1}$.

We first consider a Delta neutral d_1 strangle with expiry T. We denote the strikes of the butterfly as K_{call} , K_{put} . The change in the value of the strangle (up to a second order) from time t_{i-1} to time t_i is

$$\begin{split} \delta \; \Pi i \; (\text{strangle, } t_i) = \text{Theta}(t_{i\text{-}1})(\; t_{i\text{-}} \; t_{i\text{-}1}) + \text{Delta}(t_{i\text{-}1}) \; \delta s_i + \frac{1}{2} \; \delta \; \text{Delta}(t_{i\text{-}1}) \; \delta s_i = \\ \text{Theta}(t_{i\text{-}1}) \; \delta t_i + \text{Delta}(\text{strangle }, t_{i\text{-}1}) \; \delta s_i + \frac{1}{2} \; \text{Gamma } \; (\text{strangle, } t_{i\text{-}1}) \; \delta s_i^2 \end{split}$$

Where as usual Gamma(strangle $,t_{i-1}$)= Gamma(K_{call} $,t_{i-1}$) + Gamma(K_{put} $,t_{i-1}$) and

Theta
$$(t_i) = \frac{d \Pi (strangle, t_i)}{d t}$$
; Gamma $(t_i) = \frac{d Delta (strangle, t_i)}{d s}$ (102)

The re-hedging strategy for changes in the underlying asset is as follows. At time t_i , the hedger buys or sells a certain amount of the underlying asset at the market price s_i so that the total amount of Delta of the strangle and the hedge is zero. Therefore, the amount of the hedge is the opposite of the Delta of the strangle. Up to a second order, the total profit/loss from the strangle and the hedge is

$$\delta$$
 Πi (strangle + hedge, t_i) = Theta(t_{i-1})(t_{i} - t_{i-1}) + $\frac{1}{2}$ Gamma (strangle, t_{i-1}) δs_i^2 (103)
For simplicity we assume that the interest rates are zero.

Therefore the expected profit from holding the strangle until maturity while re-hedging with the underlying asset is

$$E(\sum_{i=1}^{N} \delta \operatorname{\Pii(butterfly + hedge)}) = E(\sum_{i=1}^{N} \operatorname{Gamma(strangle, t_{i-1})} \delta s_{i}^{2} / 2 + E(\sum_{i=1}^{N} \operatorname{Theta(t_{i-1})} \delta t_{i}) = E(\sum_{i=1}^{N} \frac{1}{2} s_{i-1}^{2} \operatorname{Gamma(strangle, t_{i-1})} (\frac{\delta s_{i}}{s_{i-1}})^{2} +$$

$$\operatorname{Theta(t_{i-1})} \delta t_{i}$$

$$(104)$$

Now, if δs_i is independent of s_i then

$$E(\sum_{i=1}^{N} \delta \Pi i) = \frac{1}{2} E(\sum_{i=1}^{N} s_{i-1}^{2} Gamma (strangle, t_{i-1})) E(\sum_{i=1}^{N} (\frac{\delta s_{i}}{s_{i-1}})^{2} / N) + E(\sum_{i=1}^{N} Theta (t_{i-1}) \delta t_{i})$$

$$= \frac{1}{2} \sigma^{2} E(\sum_{i=1}^{N} s_{i-1}^{2} Gamma (strangle, t_{i-1})) + E(\sum_{i=1}^{N} Theta (t_{i-1}) \delta t_{i})$$
where $\sigma^{2} \equiv \frac{1}{N} E\sum_{i=1}^{N} (\frac{\delta s_{i}}{s_{i-1}})^{2}$

 σ^2 is the expected variance of the underlying asset's return in the period from inception (the time of calculating the option) until maturity. Hence the price of the strangle at inception is

$$\Pi(\text{strangle}, t = 0) = \frac{1}{2}\sigma^2 E(\sum_{i=0}^{N-1} s_i^2 \text{Gamma (strangle}, t_i)) + E(\sum_{i=0}^{N-1} \text{Theta (t_i) } \delta t_{i+1})$$
(106)

Similarly we can calculate the profit for the d_1 risk reversal with re-hedging using the underlying asset. However, since the risk reversal has non-zero delta we need to consider a delta hedged risk reversal. In this case

 $\Pi(\text{Delta hedged } d_1 \text{ risk reversal}, t = 0) = \text{Call}(K_{\text{call}}) - \text{Put}(K_{\text{put}}) - s_0 \text{Delta}(K_{\text{call}}) + s_0 \text{Delta}(K_{\text{put}})$

$$= \frac{1}{2}\sigma^2 E(\sum_{i=0}^{N-1} s_i^2 \text{ Gamma(risk reversal, t_i)}) + E(\sum_{i=0}^{N-1} \text{Theta (t_i) } \delta t_{i+1})$$
(and Delta(K_{put}) = - Delta(K_{call}))

When we translate (106) and (107) to the path integral form we obtain

$$\begin{split} &\text{P (strangle (d_1)) = } \int_0^T dt \, \int_0^\infty ds \, \, g(s,t) \\ &\left[\frac{1}{2} \, \sigma^2 s^2 \, \left(\text{Gamma}(s,t,T,\sigma_t(K_{call},T),K_{call}) \, + \right. \right. \\ &\left. \left. \left(\text{Gamma}(s,t,T,\sigma_t(K_{put},T),K_{put})\right) + \text{Theta}(s,t,T,\sigma_t(K_{call},T),K_{call}) \, + \right. \\ &\left. \left(\text{Theta Gamma}(s,t,T,\sigma_t(K_{put},T),K_{put})\right) \right] \end{split}$$

P (risk reversal (d₁)) – s₀Delta (risk reversal d₁)) =
$$\int_0^T dt \int_0^\infty ds \ g(s,t)$$

$$\begin{split} &\left[\frac{1}{2} \ \sigma^2 \ s^2 \left(\text{Gamma}(s,t,T,\sigma_t(K_{call},T),K_{call}) - \right. \right. \\ &\left. \text{Gamma}(s,t,T,\sigma_t(K_{put},T),K_{put}) \right) + \text{Theta}(s,t,T,\sigma_t(K_{call},T),K_{call}) - \end{split} \tag{109} \end{split}$$

Theta Gamma(s, t, T,
$$\sigma_t(K_{put}, T)$$
, K_{put})

Where P(strangle) and P(risk reversal) are the prices of the strangle and risk reversal respectively, at inception.

Now we follow the procedure in section 3 to solve for g(s,T). It is easy to see that if the density function g(s,T) is

$$g(s,T) = \frac{1}{\sigma s \sqrt{2\pi T}} e^{-(\log \frac{s}{s_0} - T\sigma^2/2)^2/(2\sigma^2 T)}$$
(110)

then for every t_i the density function that satisfies equations (76)-(80) is

$$g(s,t_j) = \frac{1}{\sigma s \sqrt{2\pi t_j}} e^{-(\log \frac{s}{s_0} - t_j \sigma^2/2)^2/(2\sigma^2 t_j)}$$
(111)

$$g(s,t_{j}, s_{T},T_{j}) = \frac{1}{\sigma s_{T} \sqrt{2\pi(T-t_{j})}} e^{-(\log \frac{s_{T}}{s} - (T-t_{j})\sigma^{2}/2)^{2}/(2\sigma^{2}(T-t_{j}))}$$
(112)

where $g(s,t_j,s_T,T_j)$ is the forward density function at the underlying asset price s from time t_j to T. When substituting (111) and (112) into the integrals in (108) and (109) and using

$$P_{\text{call}}(s, K_{\text{call}}, t, T_{,}) = \int_{0}^{\infty} ds_{T} (s_{T} - K)^{+} \frac{1}{\sigma s_{T} \sqrt{2\pi (T - t)}}$$
(113)

$$\rho^{-(\log \frac{S_T}{S} - (T-t)\sigma^2/2)^2/(2\sigma^2(T-t))}$$

$$P_{\text{put}}(s, K_{\text{put}}, t, T_{s}) = \int_{0}^{\infty} ds_{T} (K - s_{T})^{+} \frac{1}{\sigma s_{T} \sqrt{2\pi (T - t)}}$$

$$e^{-(\log \frac{s_{T}}{s} - (T - t)\sigma^{2}/2)^{2}/(2\sigma^{2}(T - t))}$$
(114)

we obtain the BS prices of the d_1 strangles and d_1 risk reversals. Therefore, without any assumption on the stochastic behavior of the underlying asset, we reached the conclusion that when the underlying asset's return $\delta s_i/s_i$ is independent of the underlying asset price s_i and no additional factor affects the price of the option (e.g. the variance of the return of the price of the underlying asset does not change), then up to second order, the option price is the BS price.

It should be mentioned that rather than calculating the correction to the BS model due to non-constant volatility, which we did in order to coincide with the volatility smile representation, we can derive the price of butterflies and risk reversals by considering simultaneously the gains from all hedges. In order to calculate the price of a d_1 butterfly, we calculate the expected value of the butterfly under the following hedging strategy: at each time t_i , we re-hedge the Delta with the underlying asset and re-hedge the Vega with the ATM (d_1 =0) straddle which has zero Delta. Hence, the Vega re-hedging does not affect the Delta hedging of the butterfly, but it adds to the Gamma and Theta of the butterfly in (104).

Since at each time t_i the Vega (ATM hedge) = -Vega (butterfly), the notional (amount) of the ATM straddle at time t_i is

-Vega(butterfly)/Vega(d₁=0 straddle) = -Vega(butterfly)
$$\sqrt{2\Pi}/(2Fdf\sqrt{T-t_i})$$
 (115)

The Gamma and Theta of the ATM straddle hedge satisfy

Gamma(ATM hedge) = - Vega(butterfly)/
$$\sigma_i s_i^2 (T - t_i)$$
 (116)

Theta(ATM hedge)=
$$\frac{1}{2}$$
Vega(butterfly) $\frac{\sigma_i}{T-t_i}$ (117)

Therefore when we take all the contributions into account we obtain

P(d₁ butterfly)=
$$\frac{1}{2}\sigma^2$$
E($\sum_{i=0}^{N-1} s_i^2$ Gamma (butterfly, t_i) - Vega(butterfly,

$$t_i)/\sigma_i(T-t_i)$$
 + E($\sum_{i=0}^{N-1}$ (Theta (butterfly, t_i) + $\frac{1}{2}$ Vega(butterfly, t_i) $\frac{\sigma_i}{T-t_i}$ (1-

$$2N(\sigma_i\sqrt{T-t_i})\delta t_i) + \frac{1}{2}Var(\sigma_{ATM}) E(\sum_{i=0}^{N-1} \frac{d \text{ Vega}}{d \sigma} (\text{butterfly, } t_i)) +$$
 (118)

$$\frac{1}{2}$$
Cov (σ_{ATM} ,s) $E(\sum_{i=0}^{N-1} (s_i \frac{d \text{ Vega}}{d \text{ s}} (\text{butterfly, t_i}) - \text{Vega}(\text{butterfly, t_i}))$

And similarly for the delta hedged d₁ risk reversal

P(d₁ risk reversal) – 2s₀Delta(d₁)=
$$\frac{1}{2}\sigma^2$$
E($\sum_{i=0}^{N-1}s_i^2$ Gamma (risk reversal, t_i) -

Vega(risk reversal,
$$t_i$$
)/ $\sigma_i(T - t_i)$) + E($\sum_{i=0}^{N-1}$ (Theta (risk reversal, t_i) +

$$\frac{1}{2} \text{Vega(risk reversal, t_i)} \frac{\sigma_i}{T - t_i} \left(1 - 2N(\sigma_i \sqrt{T - t_i}) \right) \delta t_i \right) +$$
(119)

$$\frac{1}{2}$$
 Var (σ_{ATM}) E($\sum_{i=0}^{N-1} \frac{d \text{ Vega}}{d \sigma}$ (risk reversal, t_i)) +

$$\frac{1}{2}$$
Cov (σ_{ATM} ,s) E($\sum_{i=0}^{N-1} (s_i \frac{d \text{Vega}}{d \text{s}} (\text{risk reversal, t_i}) - \text{Vega}(\text{risk reversal, t_i}))$

(108) and (109) should be modified accordingly. It is easy to see that when the volatility is constant (i.e. $\sigma_i \equiv \sigma$ for all i and the density function is (110)) then, as required, (118) and (119) become (106) and (107) respectively. Hence, instead of solving for g(s,T) in the equations for ζ (d_1 butterfly) and ζ (d_1 risk reversal) in (58) and (60), we can solve for it directly from the path integrals of (118) and (119).

5. Analysis of The Volatility Smile Model

In this section, we analyze the properties of the volatility smile by using the smile representation of section 1 with the functions $\lambda(d_1,T)$ and $\chi(d_1,T)$ that are calculated in section 3. As discussed, these functions will depend on three inputs which we will choose in this section. In addition, we analyze the density function g(s,T) that is obtained from the model.

We represent $\lambda(d_1,T)=\lambda(d_1,T,\,\sigma_0,\,25\Delta RR\,,\,25\Delta Fly)$ and $\chi(d_1,T)=\chi(d_1,T,\,\sigma_0,\,25\Delta RR\,,\,25\Delta Fly)$ in the form of a scale factor and a shape function that contains the dependency on d_1 and is normalized to 1 at $d_125\Delta=N^{-1}(0.25~e^{r_fT})$.

$$\lambda(\mathsf{T},\,\mathsf{d}_1) = \lambda_0(\mathsf{T})\,\mathsf{F}_\lambda(\mathsf{T},\mathsf{d}_1) \tag{120}$$

$$\chi(T, d_1) = \chi_0(T) F_{\chi}(T, d_1)$$
 (121)

$$F_{\lambda}(d_1 25\Delta, T) = F_{\chi}(d_1 25\Delta, T) = 1$$
 (122)

 $\lambda_0(0,t)$ and $\chi_0(0,t)$ can be determined directly from equation (32) and (33)

$$\zeta_{\text{strangle}} (d_1 25 \Delta, T) = \lambda_0(T) \frac{\partial \text{Strangle}}{\partial \sigma} (d_1 25 \Delta)$$
 (123)

$$\zeta_{RR'}(d_1 25\Delta, T) = \chi_0(T) \frac{\partial RR}{\partial \sigma} (d_1 25\Delta)$$
 (124)

In order to gain better insight into the functions $\lambda(d_1,T,\sigma_0,25\Delta RR,25\Delta Fly)$ and $\chi(d_1,T,\sigma_0,25\Delta RR,25\Delta Fly)$, we will plot the shape functions for different sets of $\{\sigma_0,25\Delta RR,25\Delta Fly\}$ and expiration.

Table 2 shows the shape functions F_{λ} , F_{χ} of λ and χ for different market data and expiries. We use the following σ_0 , 25 Δ RR, and 25 Δ Fly: {10,1,0.1}, {12,2,0.25}, {15,3,0.75}, {18,4,1}, {25,5,1.2}, {30,6,1.2}, {45,10,2} for the following maturities: three month, one year, two years and three years.

N=4																	
Expiry	3 months																
σ ΑΤΜ	25dRR	25dFly	d1	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5
10.00%	1.000%	0.100%	FA	0.982	0.993	1.003	1.010	1.013	1.018	1.022	1.011	0.965	0.896	0.833	0.789	0.765	0.746
			FB	0.984	0.994	1.003	1.008	1.009	1.008	1.001	0.978	0.927	0.868	0.828	0.810	0.782	0.756
			FA/FB	0.9980	0.9989	1.0005	1.0019	1.0043	1.0099	1.0207	1.0345	1.0420	1.0324	1.0068	0.9734	0.9776	0.9876
12.00%	2.000%	0.250%	FA	0.970	0.995	1.002	0.984	0.959	0.943	0.932	0.905	0.874	0.849	0.829	0.788	0.702	0.593
			FB	0.971	0.994	1.003	0.990	0.966	0.946	0.921	0.885	0.856	0.844	0.841	0.814	0.733	0.622
			FA/FB	0.9990	1.0012	0.9995	0.9942	0.9919	0.9975	1.0120	1.0223	1.0212	1.0060	0.9847	0.9678	0.9575	0.9548
15.00%	3.000%	0.750%	FA	1.053	1.057	0.975	0.889	0.830	0.798	0.773	0.744	0.706	0.641	0.566	0.499	0.446	0.406
			FB	1.078	1.052	0.977	0.904	0.858	0.827	0.792	0.753	0.704	0.631	0.553	0.488	0.436	0.396
			FA/FB	0.9768	1.0044	0.9980	0.9825	0.9676	0.9659	0.9750	0.9869	1.0029	1.0165	1.0220	1.0229	1.0239	1.0261
18.00%	4.000%	1.000%	FA	1.061	1.074	0.968	0.869	0.806	0.772	0.743	0.716	0.679	0.617	0.545	0.484	0.435	0.399
			FB	1.112	1.071	0.969	0.886	0.839	0.809	0.774	0.737	0.688	0.616	0.542	0.480	0.431	0.394
			FA/FB	0.9538	1.0026	0.9988	0.9807	0.9603	0.9544	0.9611	0.9715	0.9873	1.0011	1.0064	1.0074	1.0094	1.0127
25.00%	5.000%	1.200%	FA	1.090	1.074	0.968	0.874	0.815	0.784	0.758	0.730	0.699	0.645	0.573	0.506	0.453	0.415
			FB	1.131	1.071	0.969	0.892	0.853	0.829	0.799	0.766	0.727	0.665	0.584	0.510	0.451	0.405
			FA/FB	0.9636	1.0033	0.9984	0.9797	0.9558	0.9448	0.9479	0.9529	0.9610	0.9705	0.9798	0.9905	1.0046	1.0249
30.00%	6.000%	1.200%	FA	1.089	1.061	0.974	0.892	0.838	0.808	0.784	0.758	0.734	0.697	0.630	0.553	0.489	0.444
			FB	1.105	1.056	0.976	0.910	0.873	0.851	0.823	0.795	0.773	0.735	0.661	0.573	0.498	0.440
			FA/FB	0.9855	1.0048	0.9977	0.9809	0.9597	0.9493	0.9522	0.9527	0.9505	0.9487	0.9541	0.9651	0.9824	1.0105
45.00%	10.000%	2.000%	FA	1.065	1.056	0.976	0.898	0.843	0.808	0.776	0.749	0.727	0.691	0.628	0.554	0.497	0.475
			FB	1.093	1.055	0.976	0.908	0.866	0.836	0.806	0.786	0.770	0.741	0.676	0.596	0.521	0.465
			FA/FB	0.9744	1.0006	0.9997	0.9889	0.9737	0.9658	0.9628	0.9527	0.9436	0.9327	0.9286	0.9306	0.9534	1.0218

Expiry	1 year																
σATM	25dRR	25dFly	d ₁	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5
10.00%	1.000%	0.100%	FA	0.980	0.994	1.003	1.002	0.998	1.001	1.012	1.012	0.978	0.930	0.897	0.860	0.823	0.789
			FB	0.977	0.991	1.004	1.010	1.010	1.013	1.015	1.002	0.967	0.939	0.908	0.879	0.851	0.823
			FA/FB	1.0028	1.0028	0.9988	0.9920	0.9878	0.9888	0.9968	1.0092	1.0113	0.9903	0.9878	0.9779	0.9680	0.9583
12.00%	2.000%	0.250%	FA	1.024	1.019	0.992	0.953	0.920	0.903	0.892	0.866	0.839	0.818	0.802	0.775	0.709	0.607
			FB	1.015	1.011	0.995	0.972	0.951	0.937	0.917	0.884	0.860	0.854	0.859	0.849	0.788	0.676
			FA/FB	1.0081	1.0082	0.9964	0.9805	0.9677	0.9639	0.9726	0.9798	0.9751	0.9576	0.9339	0.9129	0.8995	0.8978
15.00%	3.000%	0.750%	FA	1.114	1.080	0.966	0.870	0.810	0.778	0.750	0.723	0.692	0.638	0.568	0.504	0.453	0.415
			FB	1.152	1.077	0.967	0.887	0.848	0.824	0.794	0.762	0.723	0.661	0.583	0.513	0.456	0.412
			FA/FB	0.9668	1.0026	0.9988	0.9807	0.9554	0.9440	0.9454	0.9489	0.9565	0.9662	0.9745	0.9837	0.9943	1.0087
18.00%	4.000%	1.000%	FA	1.085	1.084	0.964	0.863	0.800	0.762	0.730	0.702	0.671	0.618	0.551	0.490	0.442	0.407
			FB	1.160	1.089	0.962	0.874	0.830	0.802	0.769	0.741	0.704	0.644	0.570	0.502	0.447	0.402
			FA/FB	0.9351	0.9959	1.0020	0.9874	0.9631	0.9513	0.9493	0.9475	0.9527	0.9599	0.9663	0.9763	0.9886	1.0106
25.00%	5.000%	1.200%	FA	1.082	1.063	0.973	0.891	0.838	0.802	0.770	0.741	0.713	0.668	0.602	0.537	0.499	0.454
			FB	1.121	1.065	0.972	0.900	0.859	0.831	0.802	0.782	0.757	0.713	0.642	0.572	0.514	0.488
			FA/FB	0.9651	0.9982	1.0008	0.9904	0.9748	0.9655	0.9600	0.9480	0.9427	0.9373	0.9371	0.9395	0.9700	0.9302
30.00%	6.000%	1.200%	FA	1.073	1.045	0.981	0.920	0.878	0.847	0.815	0.787	0.764	0.733	0.689	0.628	0.587	0.542
			FB	1.073	1.037	0.984	0.937	0.903	0.876	0.848	0.836	0.827	0.812	0.772	0.697	0.618	0.597
			FA/FB	1.0002	1.0077	0.9965	0.9826	0.9716	0.9668	0.9606	0.9415	0.9243	0.9020	0.8930	0.9013	0.9501	0.9081
45.00%	10.000%	2.000%	FA	1.033	1.014	0.994	0.979	0.963	0.931	0.897	0.874	0.847	0.821	0.796	0.771	0.748	0.725
			FB	0.982	0.988	1.005	1.013	0.999	0.966	0.939	0.920	0.897	0.875	0.854	0.833	0.813	0.793
			FA/FB	1.0524	1.0259	0.9890	0.9662	0.9634	0.9633	0.9556	0.9506	0.9444	0.9381	0.9320	0.9258	0.9197	0.9136

In the ONLINE Appendix 3 we provide the tables for 2 and 3 years

Chart 4 shows the influence of the expiry on the shape functions F_{λ} , F_{χ} with σ_0 =18, 25 Δ RR=3, 25 Δ Fly=0.75 and the following expiries: 1 month, 3 months, 6 months, 1 year, 2 years, 5 years.

Chart 6a: The shape functions for different maturities

σ0 =18, 25Δ RR=3, 25Δ Fly=0.75

 $F_{\chi}(d_1)$

Chart 5 shows the influence of the ATM volatility on the shape functions F_{λ} , F_{χ} for expiry 1 year, 25 Δ RR=2, 25 Δ Fly=0.5 and σ_0 =7%, 10%, 15%, 20%, 25%

25Δ RR=2, 25Δ Fly=0.5 Chart 6c: The shape functions for different ATM volatilities expiry 1 year N=128

 $F_{\lambda}(d_1)$

 $F_{\chi}(d_1)$

Chart 6 shows the volatility smile in two cases: σ_0 =10, 25 Δ RR=1, 25 Δ Fly=0.25 with expiry 1 year and σ_0 =15, 25 Δ RR=2.5, 25 Δ Fly=0.5 with expiry 1 year.

Chart 6d: The volatility smile

Expiry 1 Year $\sigma_0 = 10$, 25 Δ RR=1, 25 Δ Fly=.25

Zoom in

Expiry 1 Year σ₀ =15, 25Δ RR=2.5, 25Δ Fly=.5

Zoom in

Chart 7 shows the shape functions F_{λ} , F_{χ} of λ and χ for five year swaptions for 3 sets of market data { σ_0 =10, 25 Δ RR=1, 25 Δ Fly=0.25}, { σ_0 =18, 25 Δ RR=3, 25 Δ Fly=0.75}, { σ_0 =25, 25 Δ RR=6, 25 Δ Fly=1.5}. The 5-year interest rate is 4% and the 5Y5Y swaption forward rate is 5%. As can be seen, the influence of the annuity on λ and χ is not large.

In addition we show the resulting term structure of σ_0 , 25 Δ RR and 25 Δ Fly.

As can be seen in chart 9, the kernel compensates for the translational invariance by selecting a steep slope for λ and χ . The slope moderates as the expiry increases. This is why we can produce λ and χ in the translational invariance assumption with very high accuracy.

Chart 8 shows the term structure of the shape functions F_{λ} , F_{χ} of λ and χ for N=128 and N=256 for σ_0 =18, 25 Δ RR=3, 25 Δ Fly=0.75 with expiry 2 years.

Chart 10 shows the density function in our model g(s,T) with the following market parameters for a one year expiry: $\{\sigma_0 = 20, 25\Delta \text{ Fly} = 0.5 \text{ and } 25\Delta \text{ RR} = -2, 0, 2\}$ and $\{\sigma_0 = 20, 25\Delta \text{ Fly} = 1.5 \text{ and } 25\Delta \text{ RR} = -2, 0, 2\}$. In each example we show the resulting volatility smile.

Chart 11a-c shows the mapping between $log(S_T/S_0)$ and the normal distribution parameter X_T of equation (114) that results from our model (i.e. $log S_T/S_0 (X_T)$) for 3 cases: σ_0 =20, 25 Δ Fly=0.5 and 25 Δ RR= -2, 0, 2 and for an expiry of three months, one year and two years. As a reference, we also display the case where S_T has lognormal density with σ_0 =20.

As can be seen, the graphs are always steeper than the straight line in the lognormal case. Moreover, chart 10b demonstrates that for positive 25Δ RR, the slope steepens for very positive X_T as 25Δ RR gets larger and the graphs slope diminishes for very negative X_T . Similarly, for negative 25Δ RR, the slope steepens for very negative X_T as 25Δ RR gets more negative and the slopes diminish for very positive X_T .

Chart 11d shows the mapping between $log(S_T/S_0)$ and the normal distribution parameter X_T of equation (114) for 4 cases of 25 Δ Fly with fixed 25 Δ RR: σ_0 =20, 25 Δ RR=0 and 25 Δ fly= 0.5, 1, 2, 3 for expiry one year. As can be seen, the larger the 25 Δ fly the steeper is the graph for both very negative and very positive X_T .

Chart 11a: Mapping between the probability density function of log (S_T/S_0) to normal distribution for σ_0 =20, 25 Δ Fly=.5, 25 Δ RR=-2,0,2 Expiry T= 3 months Year and zero interest rates.

Chart 11b: Mapping between the probability density function of log (S_T/S_0) to normal distribution for $\sigma_0 = 20$, 25Δ Fly=.5, 25Δ RR=-2,0,2 Expiry T= 1 Year and zero interest rates.

Chart 11c: Mapping between the probability density function of log (S_T/S_0) to normal distribution for $\sigma_0 = 20$, 25Δ Fly=.5, 25Δ RR=-2,0,2 Expiry T= 2 Years and zero interest rates.

Chart 11d: Mapping between the probability density function of log (S_T/S_0) to normal distribution for σ_0 =20, 25 Δ RR=0, 25 Δ Fly=.5, 1, 2,3 Expiry T= 1 Year and zero interest rates.

No arbitrage

One important question is to identify the range of market data parameters that is arbitrage free. For example, when we look at (97) obviously $25\Delta RR$ cannot be too large otherwise we may

have negative volatility. Hence, given the ATM volatility, we find the region of $25\Delta RR$ and $25\Delta fly$ that satisfies the requirement that the density function is strictly positive.

Chart 12 shows the arbitrage free areas for several ATM volatilities for expiry 1 year. In fact we see that for ANY reasonable market data, and especially any market data that ever traded in the market in the past 20 years, there is no arbitrage.

6. Comparison of The Model to Market Prices

In this section, we display the results of a comparison of historical market data to the model suggested in (34) and (35) for FX, equities, and commodities as well. We also compare the model defined in (40) and (41) for swaptions against historical market data. We conclude that our three input model accurately replicates the market prices in all asset classes.

In order to maintain a unified format for all asset classes, we will use the parameterization $\lambda(d_1,T,\sigma_0,25\Delta RR,25\Delta Fly)$ and $\chi(d_1,T,\sigma_0,25\Delta RR,25\Delta Fly)$ in all cases. Yet, the three natural inputs in each market – FX, equities, commodities and interest rates - are slightly different. When calculating the smile for non-FX markets, it is easier to first solve for the three FX inputs that correspond to the other three inputs. For example, if we are given that the ATMF volatility for 5Y5Y USD swaptions is 27%, the 100bp payer volatility is 27% and the

100 bp volatility receiver is 43%, while the 5Y5Y forward is 2.7%, then we first translate these inputs to Delta neutral ATM volatility 28.8%, 25Delta RR =-9.2%, and 25Delta Fly=4%. With these inputs, we obtain the full smile $\sigma(K)$ or Price(K) and return to the interest rates convention. Similarly, when we consider exchange prices, for each maturity we find Delta neutral ATM volatility, 25Delta RR, 25Delta Fly and the forward rate that closely replicate the exchange call options.

In the comparison of the model to the market data, we only select liquid assets in order to ensure that we truly represent "the market" without distortions that result from a lack of liquidity. We display the following representatives from all the asset classes here: major currencies as well as liquid emerging market currency pairs in FX options, some very liquid commodity options, interest rate swaptions in highly traded tenors for some major currencies, and liquid stock options that pay no dividend (in order to resemble European options). Moreover, the market data provided by interbank brokers for the last trading date of the year is highly accurate since this data is used for marking to market all the trading books and the annual trading results are generated from this data. Hence we compare the model to data from Dec 31 2014 and Dec 31 2015.

PLEASE NOTICE THAT ALL THE DATA APPEARS IN APPENDIX 3 in the internet. We only bring one example for each asset class in the article itself.

Table 3 compares the model to the FX options market.

We look at nine currency pairs which represent the whole spectrum from the liquidity and interest perspectives: EUR/USD; USD/JPY; EUR/JPY; EUR/GBP; EUR/CHF; GBP/USD; EUR/CHF; USD/KRW; EUR/PLN. The data we have is ATM volatility, the volatility of 25 Delta call, 25 Delta put, 10 Delta call, 10 Delta put. We use the ATM volatility and the volatility of the 25 Delta call and put as the three inputs. We calculate the 10 Delta call and put

volatilities in the model and compare them to the market data of 10 Delta calls and puts for 1 month, 3 month, and 1 year expiries.

We need to take into account the market convention of Delta reference when the US Dollar is the left-hand currency (e.g. USD/JPY – US Dollar against the Japanese Yen). In this case, the Delta is calculated such that the premium of the option needs to be hedged as well. As a result, equation (7) is not applicable and even the Delta neutral ATM volatility does not correspond to the d_1 =0 strike. In this case, we solve for the Delta neutral ATM volatility, the volatility of the 25 Delta call, and the volatility of the 25 Delta put that correspond to (7) while generating exactly the same output and use them for determining the smile.

Dec 31 2015											
DCC 31 2013											
EUR/USD		spot	1.0861			USD/JPY		spot	120.32		
1 month	31 days	Forward	1.08692			1 month	34 days	Forward	120.243		
	ATM	25RR	25Fly	10RR	10Fly		ATM	25RR	25Fly	10RR	10Fly
market	9.725	-0.45	0.175	-0.8	0.5	market	7.45	-0.95		-1.8	1.025
model		-0.45	0.175	-0.847	0.601	model	7.45	-0.95	0.35	-1.73	1.058
	10d P	25d P	atm	25d call	10 d call		10d P	25d P	atm	25d call	10 d call
model vol	1.025	10.125	9.725	9.675	9.903	model vol	9.374	8.275	7.45	7.325	7.642
Market vol	10.625	10.125	9.725	9.675	9.825	Market vo	9.375	8.275	7.45	7.325	7.575
3 month	92 days	Forward	1.08867			3 month	92 days	Forward	120.022		
	ATM	25RR	25Fly	10RR	10Fly		ATM	25RR	25Fly	10RR	10Fly
market	9.975	-1.05	0.2	-1.7	0.6	market	8.025	-0.7	0.375	-1.35	1.175
model	9.975	-1.05	0.2	-1.774	0.662	model	8.025	-0.7	0.375	-1.38	1.205
	2 10d P	25d P	atm	25d call	10 d call		10d P	25d P	atm	25d call	10 d call
model vol	11.524	10.7	9.975	9.65	9.750	model vol	9.921	8.75	8.025	8.05	8.540
Market vol	11.425	10.7	9.975	9.65	9.725	Market vo	9.875	8.75	8.025	8.05	8.525
1 Year	365 days	Forward	1.10012			1 Year	369 days	Forward	119.0774		
	ATM	25RR	25Fly	10RR	10Fly		ATM	25RR	25Fly	10RR	10Flv
market	10.1		-		0.9	market	9.05	-		-0.45	- /
model	10.1	-1.725	0.275	-2.892	0.901	model	9.05	-0.275	0.65	-0.422	2.209
	10d P	25d P	atm	25d call	10 d call		10d P	25d P	atm	25d call	10 d call
model vol	12.447	11.2375	10.1	9.5125	9.555	model vol	11.470	9.8375	9.05	9.5625	11.048
Market vol	12.4375	11.2375	10.1	9.5125	9.5625	Market vo	11.5	9.8375	9.05	9.5625	11.05

Table 4 compares the model to the commodity options market. We consider Brent, Gold, and copper call option prices with maturities one month to 3 years for Brent, 1 year for gold, and 6 months for copper.

Dec 31 20:											
BRENT											
DIVELLAT											
Expirv	26-Jan-16			Expiry	24-Mar-16			Expiry	22-Dec-16		
Forward	ATM	25dRR	25fFly	Forward	ATM	25dRR	25fFly	Forward	ATM	25dRR	25fFl
37.6569	44.65	-3.71	1.43	39.37	43.26	-2.89	1.22	45.49	33.51	-1.7	0.99
37.0303	44.03	-3.71	1.43	33.37	43.20	-2.03	1.22	43.43	33.31	-1.7	0.53
Strike	Exchange	model		Strike	Exchange	model		Strike	Exchange	model	
20		17.667		20				5.11116		40.498	
21		16.671		21	18.45	18.451		10		35.517	
22		15.677		22		17.467		15		30.572	
23		14.684		23		16.487		17.5	28.09	28.120	
24		13.692		24		15.512		20		25.686	
25		12.702		25	14.54	14.544		25		20.923	
26		11.714		26		13.585		27.5		18.635	
		11.714		26.5	13.11	13.109		30		16.440	
26.5 27		10.729		26.5		12.637		35			
					12.64					12.419	
27.5		10.238		28		11.705		37.5		10.629	
28		9.749		29		10.791		39		9.634	
28.5		9.261		30		9.900		40	8.99	9.005	
29		8.776		31	9.04	9.034		41	8.39	8.403	
29.5		8.294		31.5	8.62	8.613		42		7.830	
30		7.816		32		8.199		43	7.28	7.285	
30.5		7.342		32.5	7.8	7.794		44	6.77	6.768	
31	6.88	6.875		33	7.4	7.398		45	6.29	6.280	
31.5	6.43	6.413		33.5	7.01	7.012		46	5.83	5.819	
32	5.97	5.960		34	6.63	6.635		46.5	5.61	5.599	
32.5	5.53	5.516		34.5	6.26	6.268		47	5.4	5.386	
33	5.09	5.082		35	5.91	5.912		48	5	4.981	
33.5	4.67	4.659		35.5	5.56	5.567		49	4.62	4.604	
34	4.25	4.250		36	5.23	5.234		50	4.27	4.255	
34.5	3.85	3.856		37	4.6	4.602		51	3.94	3.932	
35		3.478		37.5	4.3	4.305		52		3.635	
35.5		3.118		38		4.019		53		3.360	
36		2.778		38.5	3.75	3.747		54	3.1	3.107	
36.5		2.459		39	3.49	3.487		55		2.875	
37		2.163		39.5	3.24	3.240		56		2.660	
37.5		1.890		40	3.01	3.006		57	2.45	2.463	
38		1.641		40.5	2.79	2.785		58		2.281	
38.5		1.418		41.3	2.58	2.577		59	2.1	2.113	
39		1.219		41.5	2.39	2.384		60	1.95	1.959	
39.5		1.045		42	2.2	2.203		61	1.81	1.816	
40		0.893		42.5	2.03	2.035		62		1.685	
40.5		0.761		43	1.88	1.879		63	1.56	1.564	
41	0.65	0.648		43.5	1.73	1.735		64	1.45	1.453	
41.5		0.552		44	1.6	1.601		65	1.35	1.350	
42		0.469		44.5	1.47	1.477		66	1.26	1.255	
42.5		0.399		45		1.362		67	1.17	1.168	
43		0.340		45.5		1.256		68		1.088	
43.5		0.291		46		1.158		69		1.014	
44	0.25	0.249		46.5	1.06	1.068		70	0.94	0.946	
44.5	0.21	0.213		47	0.98	0.984		71	0.88	0.883	
45	0.18	0.183		47.5	0.9	0.907		72	0.82	0.825	
45.5	0.16	0.158		48	0.83	0.836		73	0.76	0.771	
46	0.14	0.137		48.5	0.77	0.771		74	0.71	0.722	
46.5		0.120		49	0.71	0.711		75	0.67	0.676	
47		0.105		49.5		0.656		76		0.634	

Table 5 compares the model to the equity options market.

We look at call options on the S&P and Dax indices and Google stock option prices with maturities from about one month to two years. The reason we selected Google is that the company never pays dividends, and therefore the call options are effectively priced as European options

Dec 31 20:	15										
GOOGLE											
Fxnirv	15-Jan-16			Fxnirv	13-Mar-16			Fxniry	20-Jan-17		
Forward	ATM	25dRR	25fFly	Forward	ATM	25dRR	25fFly	Forward	ATM	25dRR	25fFly
778.879	19.8	-4	0.45	779.474	26.33	-4.24	0.4	777.776	27.67	-5.7	0.7
//0.0/9	19.6	-4	0.45	779.474	20.55	-4.24	0.4	777.776	27.67	-5.7	0.7
strike	bid	ask	model	strike	bid	ask	model	strike	bid	ask	model
260	517.00	520.5	518.88	330	447.8	451.30	449.71	260	517.50	522.5	520.0
270	507.00	510.7	508.88	340	437.80	441.4	439.73	270	508	512.5	510.2
275	502.1	505.7	503.88	350	427.8	431.4	429.76	280	498	502.5	500.4
280	497.1	500.7	498.88	360	417.6	421.4	419.78	290	488	493	490.68
285	492.2	495.4	493.88	370	407.9	411.5	409.81	300	478.5	483	480.90
290	487.1	490.4	488.88	380		401.5		310		473.5	471.1
295	482.2	485.4	483.88	390		391.5		320	459.5	464	461.3
300	477.1	480.4	478.88	400		381.5		330	449.8	454	451.6
305	472	475.4	473.88	410		371.5		340	440.1	444.5	441.9
310	467.1	470.4	468.88	420		361.5	359.99	350	430	434.5	432.2
315	462.1	465.4	463.88	430		351.5	350.04	360	420.8	434.5	432.2
320	457	460.4	458.88	440		341.5	340.10	370	411.2	415.5	412.8
325	452.2	455.4	453.88	450		331.8		380	401.6	415.5	403.2
330	447	450.4	448.88	460		322	320.22	390	391.5	396.5	393.6
335	442.2	445.4	443.88	470		312	310.29	400	382	387	384.0
340	437.6	440.4	438.88	480	298.5	302	300.37	410	372.5	377.5	374.5
345	432.2	435.4	433.88	490		292		420	363.6	368	365.0
350	427.3	430.5	428.88	495	283.4	287	285.50	430	353.5	358.5	355.6
355	422.3	425.5	423.88	500		282	280.54	440	344.8	349	346.2
360	417.3	420.5	418.88	505	273.5	277.2	275.59	450	335	339.5	336.8
365	412.2	415.5	413.88	510	268.9	272.3	270.65	460	326.3	330.5	327.6
370	407	410.5	408.88	515	264.1	267.3	265.70	470	317.1	321.5	318.3
375	402	405.5	403.88	520	259	262.4	260.76	480	307.5	312	309.2
380	397.6	400.5	398.88	525	253.8	257.4	255.82	490	298	303	300.1
385	392.3	395.5	393.88	530	249.2	252.5	250.89	500	289	294	291.1
390	387.2	390.5	388.88	535	244	247.5	245.96	510	280.5	285	282.2
395	382.2	385.5	383.88	540	239	242.5	241.03	520	272.1	276.5	273.4
400	377.6	380.5	378.88	545	233.9	237.5	236.11	530	263.1	267.5	264.7
405	372.3	375.5	373.88	550	229	232.8	231.19	540	255	259.5	256.1
410	367.1	370.5	368.88	555	224.6	227.9	226.28	550	246.1	251	247.6
415	362.2	365.5	363.88	560	219.8	223	221.37	560	237.5	242	239.2
420	357.7	360.5	358.88	565	214.9	218.1	216.47	570	229	233.5	230.9
425	352.3	355.5	353.88	570		213	211.58	580	220.5	225	222.7
430	347.2	350.5	348.88	575	205.5	208.4	206.70	590	213	217.5	214.73
435	342.2	345.5	343.88	580	200.3	203.5	201.83	600	205	209.5	206.8
440	337.4	340.5	338.88	585	195.5	198.7	196.97	610	197.1	209.3	199.0
440	337.4	340.5	333.88	585		198.7		620	189.5	194	199.0
450	327.8	330.5	328.88	595	185.8	189	187.29	630		186.3	183.8
455	322.4	325.5	323.88	600		184		640		178.5	176.4
460	317.7	320.5	318.88	605	175.5	179.4		650		171.6	169.1
465	312.8	315.5	313.88	610		174.6		660	160	164.5	162.0
470	307.8	310.5	308.88	615	166	169.8		680		150.4	148.3
475	302.5	305.5	303.88	620		165.1	163.38	700		137	135.1
480	297.7	300.5	298.88	625	156.6	160.4	158.66	720	120.6	122.8	122.6
485	292.8	295.8	293.88	630		155.7	153.96	740	108.7	111.2	110.7
490	287.8	290.8	288.88	635	147.8	151	149.30	760	97.8	99.9	99.5
495	282.8	285.8	283.88	640	142.6	146.4	144.66	780	87.5	89.7	88.9
500	277.5	280.5	278.88	645	138.1	141.8	140.06	800	76.8	79.9	79.1
505	272.7	275.5	273.88	650	133.9	137.2	135.49	820	69.2	70.9	70.0

Table 6 compares the model to the in interest rate swaptions market.

Using broker data, we collect the volatilities of swaptions in EUR, USD, JPY and CHF with maturities from one year to 10 years when the underlying swap is five years (1Y5Y; 2Y5Y; 5Y5Y; 10Y5Y). In the case of EUR, the brokers provide both the regular and the shifted volatility. In the case of CHF, the brokers provide only the shifted volatility.

Dec 31 20:	15																
Dec 31 20.	15																
	USD																
								ATM	25d RR	25d fly							
	1y5y			forward (%)	2.065			36.7	-10	2							
	2,01			10111a1a (70)	2.005			50.7	- 10	_							
Strike b.p.	from fwd		-150.00	-100	-75	-50	-25	-12.5	0.00	12.5	25	50	75	100	150	200	300
Strike in (%			0.565	1.065	1.315	1.565	1.815	1.94	2.065	2.19	2.315	2.565	2.815	3.065	3.565	4.065	5.065
Market vo			74.1	55.09	49.3	44.76	41.23	39.75	38.39	37.53	36.73	35.64	35.36	35.14	35.97	37.34	40.45
model			74.42	54.91	49.11	45.02	41.99	39.98	38.43	37.25	36.54	35.52	35.21	35.02	35.88	37.29	40.31
								ATM	25d RR	25d fly							
	2у5у			forward (%)	2.300			33	-9	3.3							
Strike b.p.	from fwd		-150	-100	-75	-50	-25	-12.5	0	12.5	25	50	75	100	150	200	300
Strike in (%	6)		0.800	1.300	1.550	1.800	2.050	2.175	2.300	2.425	2.550	2.800	3.050	3.300	3.800	4.300	5.300
Market vo	I		62.48	49.32	44.87	41.27	38.34	37.14	36.04	35.09	34.20	32.90	32.21	31.61	31.54	32.12	34.05
model			62.07	48.12	44.63	41.21	38.72	37.11	36.01	35.1	34.11	32.73	32.06	31.98	31.69	32.21	34.31
								ATM	25d RR	25d fly							
	5Y5Y			forward (%)	2.7090			29		3.5							
Strike b.p.	from fwd	-200	-150	-100	-75	-50	-25	-12.5	0	12.5	25	50	75	100	150	200	300
Strike in (%	6)	0.709%	1.209%	1.709%	1.959%	2.209%	2.459%	2.584%	2.709%	2.834%	2.959%	3.209%	3.459%	3.709%	4.209%	4.709%	5.709%
Market vo	I	62.17	49.35	41.93	39.13	36.79	34.76	33.85	32.99	32.23	31.51	30.23	29.21	28.29	27.05	26.37	26.11
model		62.01	49.02	45.51	38.99	36.61	34.64	33.62	32.74	32.21	31.32	30.13	29.02	28.11	27.21	26.51	27.01
								ATM	25d RR	25d fly							
	10Y5Y			forward (%)	2.9840			24		4							
Strike b.p.	from fwd		-150	-100	-75	-50	-25	-12.5	0	12.5	25	50	75	100	150	200	
Strike in (%	6)		1.484%	1.984%	2.234%	2.484%	2.734%	2.859%	2.984%	3.109%	3.234%	3.484%	3.734%	3.984%	4.484%	4.984%	
Market vo	l l		39.36	34.02	31.98	30.23	28.72	28.04	27.4	26.82	26.26	25.28	24.47	23.73	22.66	21.98	
model			40.04	34.41	32.11	30.43	28.99	28.21	27.44	26.86	26.37	25.33	24.51	23.81	22.93	22.34	

As can be seen from all the tables in the appendix, it is fair to say that the model universally matches the vanilla market in all asset classes. Our conclusion is that all European vanilla options obey the same model.

7. Calculation of The Probability Transfer Density

In the previous sections, we developed a method to generate the probability density function for a given expiry with three market data inputs. In this section, we develop a method to obtain the transfer density function $g(s_1,t_1,\rightarrow s_2,t_2)$ from the probability density function $g(s,t_1)$ and $g(s,t_2)$ for any $t_2 > t_1$. $g(s_1,t_1,\rightarrow s2,t_2)$ is often referred to in the industry as the **contingent probability** $g(s_2,t_2\mid s_1,t_1)$. In our approach, we use the same type of density function with expiry t_2-t_1 , and at each underlying spot price s_1 , we need to obtain the three inputs that characterize the density function. At every s_1 , these three inputs form the implied **forward local smile** at time t_1 . We choose to parameterize the smile at each spot and time with $\{\sigma_0, 25\Delta RR, 25\Delta fly\}$ of equation (97). In order to define the implied forward local smile at time t_1 and the underlying asset spot price s for expiry t_2 , we need to find the set of three functions

$$\{\sigma_0(s, t_1, t_2); 25\Delta RR(s, t_1, t_2); 25\Delta Fly(s, t_1, t_2)\}\$$
 (125)

We can think of the implied functions σ_0 (s, t_1 , t_2); $25\Delta RR(s, t_1, t_2)$; $25\Delta Fly$ (s, t_1 , t_2) as the expected value of these stochastic variables at each spot price s. One should expect that the implied values depend on the probability of the various paths from s_0 to s. For example, if we move in equal steps from s_0 ,0 \rightarrow s, t, then we expect σ_0 to be a lot smaller than if s remains close to s_0 most of the time and jumps to s just a very short time before t (or similarly if the underlying price zigzags sharply on the way to s). The same argument applies to the 25Δ RR and 25Δ Fly. Yet, the forward local implied smile is meaningful when T-t is very small, such as a few days or hours, since a change in the price of the underlying asset that takes place in a day or two will have a very similar impact on the smile, usually with very little influence on the path taken. Since we are interested in creating a dense grid of implied local smiles in order to be able to calculate the prices of exotic options, we will take a very small t_2 - t_1 (say a day or hours) which is exactly the limit where the implied smile is most meaningful.

Before we explain how to calculate the implied local smile from one expiry time t_1 to another expiry time t_2 , it is important to explain what our expectation of the qualitative behavior of the implied local smiles are. Let us first describe the economic behavior of the three smile functions (106) at any $0 < t_1 < t_2$.

Chart 12 depicts the qualitative behavior of $\sigma_0(T,s,t)$; $25\Delta RR(T,s,t)$; $25\Delta Fly(T,s,t)$ and F(T,s,t) as a function of the underlying price for a given t and T and as a function of (T-t).

The behavior of the ATM volatility $\sigma_0(t,T,s)$ as a function of s is a smooth strictly positive function with **one** minimum with turning points on each side, i.e. on the right side of the minimum the function monotonically increases but at a decreasing pace for large s and on the left side of the minimum it is a monotonically decreasing function which decreases at an increasing pace for low s (**Chart 12i**). Usually when there is a very large move in the price of the underlying asset, financial markets tend to initially align with the move in the options market and the risk reversal will favor the direction of the large move. There is usually some overshoot

whenever there is a shock in the market but this overshoot is much smaller for very large moves.

Considering no-arbitrage, we get $|25\Delta RR(s)| \ll \sigma_0(s)/2$, but it is expected that the ratio $25\Delta RR(s)/\sigma_0(s)$ will decrease in the limits of very large and very small s (**Chart 12ii**).

The behavior of the $25\Delta Fly(s)$ is similar to the ATM volatility in the sense that it is positive with one minimum. It tends to have a much lower slope at very large or small spot prices, and we have seen that in the biggest shocks in the past 20 years, the ATM exceeded 100% (**Chart 12iii**).

Even though we will not include the local forward rate in the implied local smile, it can be included as well. The forward rate F(s) is a monotonically increasing function of the spot price and the ratio F(s)/s will increase when s is very large and decrease when s is very small. The ratio is the exponent of the interest rates' differential. For example, it is expected that when a certain currency is devalued, its interest rate will be sharply hiked, when a stock price plunges, its dividend rate is expected to decrease, when the price of a certain commodity collapses, its cost of carry decreases. Therefore, in all asset classes the ratio is expected to go up when there is a drastic increase in the price and sharply down if there is a drastic decrease in the price. However, after the area of the price shock the ratio changes at a slower pace.

The behavior of all the smile variables as well as the forward rate depend on the time to maturity. The longer the maturity the more moderate is the change in the smile variables.

Obtaining the implied local smile:

We use the equation

$$P(K, t_2, s_0) = df_1 \int ds_1 g(s_0, 0 \rightarrow s_1, t_1)) P(K, t_2 - t_1, s_1)$$
(126)

where

$$P(K, t_2 - t_1, s_1) = P(K, t_2, t_1, s_1, \sigma_0(s_1), 25dRR(s_1), 25dfly(s_1))$$
(127)

and where $g(s_0, 0 \rightarrow s_1, t_1)$ is derived from the smile at t_1 , and df_1 is the discount factor from time zero to time t_1 .

Now we use the LMA optimization method to solve for the three functions. In order to obtain the solution that satisfies the desired shape of $\sigma_0(s_1)$, $25 dRR(s_1)$, $25 dfly(s_1)$ (our three economic conditions), we use the Tikhonov (1963) Regularization and Tarantola (2005) method. In essence, we introduce a set of small regularization penalties that ensure stability (uniqueness) of the solution without affecting its precision.

We select N points s_i at time t_1 that range from $-B \le d_1(t_1) \le B$, where $d_1(t_1)$ refers to the smile at t_1 (e.g. B=3.5). At each s_i , we find $\sigma_0(s_i)$, $25dRR(s_i)$, $25dfly(s_i)$, and we interpolate between all the points s_i later. Therefore, we are solving for 3N parameters. We select M strikes K_j from both sides of the ATM strike at t_2 ranging from the ATM strike to very low Delta, $-C \le d_1(t_2) \le C$, where $d_1(t_2)$ corresponds to the smile at t_2 (e.g. C=2.5). As the target function, we use the difference between (126) and the known smile at t_2 for a large sample of strikes.

$$\begin{aligned} &\text{Min (} \Sigma_{j}\{(P(K_{j},t_{2},s_{0})-\int ds_{1} \ g(s_{0},0\rightarrow s_{1},t_{1})) \ P(K_{j},t_{2}-t_{1},s_{1})) \\ &\text{Vega}(K_{j},t_{2})\}^{2}+\sum_{i} \ C_{i} \) \end{aligned} \tag{128}$$

Where the C_i include the three economical regularizations. For example, the condition that $25\Delta RR(s_i)$ is monotonically increasing can be met by construction, by including only positive increments for $25\Delta RR(s_{i+1})$ - $25\Delta RR(s_i)$. For the condition that $\sigma_0(s_i)$ and $25\Delta fly(s_i)$ are always positive and have only one minimum, we can use the derivatives of $\sigma_0(s_i)$ and $25\Delta fly(s_i)$) with respect to s_i . One can also include smoothness conditions in the $\sum_i C_i$ in (128). For example, to prevent oscillations we penalize negative curvature for $\sigma_0(s_1)$ and $25dfly(s_1)$ and for $25dRR(s_1)$ we penalize negative curvature of the left wing and positive curvature on the right wing.

Due to standard numerical issues, the larger N is the more we may see little oscillations in the shapes of the three parameters. In order to smooth out these fluctuations, we have to introduce some conditions with very low weight to reduce the wavy/zigzag shape without affecting the accuracy. Practically, we can choose N=9 spot points. In this case, we are solving for 27 variables.

Chart 13 shows the results of the implied local smile of the three parameters in some cases. From 1 day going forward: 1 day, 1 week, 2 weeks, 1 month, 2 month, 3 month, 6 month, 1 year

Given the implied local smile at (s_1, t_1) for expiry date $t_2 \{ \sigma_0 (s_1), 25\Delta RR(s_1), 25\Delta fly(s_1) \}$, it is straightforward to derive the transfer density function $g(s_1, t_1 \rightarrow s_2, t_2)$ from s_1 to any underlying asset spot price s_2 at time t_2 .

Dynamically replicating a given option:

Having the probability transfer density allows for the creation of a dynamic replicating strategy for a given option. In other words, at each time interval, we can replicate the change of the value of the given option with some dynamically reset "replicating portfolio". Let us parameterize the density function with $\{\sigma_0(s), 25\Delta RR(s), 25\Delta fly(s)\}$. These three variables are stochastic and correlated, and when we calculate the probability density transfer, we obtain a certain expectation of these variables at a certain spot and time (please see Appendix 2). Since at each time interval we have to replicate the outcome of three stochastic processes, we need to use three options to replicate the given option in addition to using the underlying asset. In Appendix 2, we demonstrate dynamic replication with three strikes with d_1 = -D,0,D and discuss optimization of D.

8. Exotic Options and Comparison to The Interbank Market

In this section, we test the procedure of Section 6 to obtain the probability transfer density function $g(s_1,t_1 \rightarrow s_2,t_2)$. Given a term structure of the volatility (e.g. σ_0 , 25dRR, 25dFly) for benchmark periods (expiries), we know how to obtain the complete probability transfer density $g(s,t \rightarrow s',t+\Delta t)$ for a time increment Δt as small as we like. This allows us to calculate path-dependent options, known as exotic options. Like before, we can test our model against the market data to validate our procedure. We can also calculate vanilla options via the probability transfer density for different term structures and show that the price is independent of the term structure but only on the market data to maturity.

In the currency (FX) options market for example, knockout and binary options are kinds of exotic options that trade very regularly with relatively high liquidity. This provides us with a great testing field. We can take the live term structure when an exotic option trades in the market and price it via the transfer density and compare the model price to the traded price. Hence we will compare the model price to four kinds of exotic options:

Double no touch (DNT): This binary option has a low barrier and a high barrier. If the underlying spot price stays strictly between the two barriers and never touches either of them from inception to expiry, it pays 1 at expiry, otherwise 0.

One touch (OT): This binary option has one barrier that is either above or below the current spot. If the underlying spot price touches the barrier at least once from inception to expiry it pays 1 at expiry, otherwise 0.

Knockout (KO): These options pay like European vanilla options (put/call with a strike) provided that the barrier is not touched from inception to the expiry of the option.

Double Knockout (DKO): These options have two barriers and pay like European vanilla options (put/call with a strike) provided that neither of the barriers is touched from inception to the expiry of the option.

We start with the DNT with expiry T with low barrier B_I and high barrier B_h . The current spot price is s_0 ($B_I < s_0 < B_h$). The price of the option is the **contingent cumulative distribution** between B_1 and B_h at expiry i.e. contingent on not touching B_I and B_h from inception until the expiry date.

$$\begin{aligned} &P_{DNT}(B_{l}, B_{h}, T, s_{0}) = df \int_{B_{l}}^{B_{h}} ds_{T} g (s_{0}, 0 \rightarrow s_{T}, T | B_{l} < s_{t} < B_{h} \forall t \leq T) \\ &\equiv df G(s_{0}, 0 \rightarrow s_{T}, T | B_{l} < s_{t} < B_{h} \forall t \leq T) \end{aligned}$$
(129)

We choose the time interval Δt =T/N. From the given market term structure which includes the expiries $T_1, T_2, ..., T$, we interpolate/extrapolate over the term structure in order to have the term structure for every time t_i =i Δt <T. For each t_i , we calculate the density function $g(s,t_i)$ and then using the technique of Section 6, we calculate $g_i(s,t_i)$ from the density functions $g(s,t_i)$ and $g(s,t_{i+1})$. Now

$$G(s_{0}, 0 \rightarrow s_{T}, T \mid B_{l} < s_{t} < B_{h} \forall t \leq T) =$$

$$\int_{Bl}^{Bh} ds_{1} \int_{Bl}^{Bh} ds_{2} ... \int_{Bl}^{Bh} ds_{N} g_{1}(s_{0}, 0 \rightarrow s_{1}, t_{1}) g_{2}(s_{1}, t_{1} \rightarrow s_{2}, t_{2}) ... g_{N}(s_{N-1}, t_{N-1} \rightarrow s_{N}, t_{N})$$
(130)

We divide (B_h - B_l) into M spot points s_j and numerically calculate on a grid of s,t (B_l < s < B_h; 0 \leq t \leq T). Similarly, the price of a double knock out call option with strike K is

$$\begin{split} P_{DKO}(\text{T,K,B}_{\text{I}},\text{B}_{\text{h}}) &= \text{df } \int_{Bl}^{Bh} ds_1 \int_{Bl}^{Bh} ds_2 ... \int_{Bl}^{Bh} ds_N \, g_1(s_0,0 \to s_1,t_1) \, g_2(s_1,t_1 \to s_2,t_2) ... \, g_N(s_{N-1},t_{N-1} \to s_N,t_N) \, (s_N-K)^+ \end{split} \tag{131}$$

We can use the method in (131) for vanilla options (where B_i =0 and B_h = ∞) in order to show that the option price is independent of the term structure.

Table 7 shows the 6-month vanilla smile for three different term structures using the density integral (131) when the lower barrier is zero and the upper barrier is infinity. In addition, we compare to the vanilla smile formula. As can be seen the option prices are very similar in all the term structures.

		6 month	vanilla	smile (using d	ifferent	term s	tructure	es			
		Term strucu	ture 1			Term struc	cuture 2			Term struc	cuture 3	
	Tenor	ATM	25d RR	25d Fly		ATM	25d RR	25d Fly		ATM	25d RR	25d Fly
	1W	12.00%	2.000%	0.250%		8.00%	1.000%	0.150%		10.00%	2.000%	0.250%
	1M	11.73%	2.00%	0.25%		8.27%	1.13%	0.16%		10.00%	2.000%	0.250%
	3M	11.00%	2.00%	0.25%		8.96%	1.48%	0.20%		10.00%	2.000%	0.250%
	6M	10.00%	2.000%	0.250%		10.00%	2.000%	0.250%		10.00%	2.000%	0.250%
strikes	0.900	0.940	0.980	1.020	1.060	1.100	1.140	1.180	1.220	1.260	1.300	1.340
TS 1	10.81%	1.11%	9.51%	9.09%	9.32%	9.96%	10.74%	11.62%	12.56%	13.56%	14.68%	15.92%
TS 2	10.81%	10.10%	9.53%	9.10%	9.34%	9.97%	10.69%	11.63%	12.55%	13.61%	14.69%	15.92%
TS 3	10.80%		9.52%	9.13%	9.33%				12.56%			15.94%
Market	10.85%	10.15%	9.55%	9.13%	9.31%	9.95%	10.73%	11.60%	12.54%	13.58%	14.74%	15.98%

Table 8 includes examples of prices from the interbank broker market and their model price for Double no touch, One touch and Barrier options. These examples with different barriers, maturities and strikes of four kinds of options help us to verify that the transfer density we developed in the previous section is indeed the transfer density in the options market.

	One Tou	ıch					
date	ccv	spot	expiry	barrier	BS	market	model
6-Nov-15	USDJPY	•	11 DAYS	125	-	7.5	7.6
8-Feb-16	EURUSD	1.117	42 DAYS	1.06	14.3	13.25	13.1
14-Apr-16	USDJPY	109.15	49 DAYS	107.4	68	62.25	61.9
10-Feb-16	EURUSD	1.1295	5M	1.000	7	9.75	9.6

	Double	No Toucl	h			
date	ссу	spot	expiry	range	market	model
13-Nov-15	EURUSD	1.079	2M	1.040-1.1200	21	20.6
22-Mar-16	USDJPY	113.35	2M	108.00-115.00	29	28.1
22-Mar-16	USDJPY	111.4	2M	109.50-115.00	17.75	16.9
23-Mar-16	EURUSD	1.1215	2M	1.0750-1.1450	24.75	24.6
9-Nov-15	EURUSD	1.074	3M	1.0250-1.1150	18.5	18.3
11-Nov-15	EURUSD	1.0755	3M	1.050-1.15	19.75	20.1
1-Feb-16	EURUSD	1.0835	3M	1.030-1.1300	12.25	12.1
25-Feb-16	USDJPY	112.05	3M	106.00-118.00	35	33.75
1-Mar-16	EURUSD	1.086	3M	1.055-1.1150	6.75	6.4
5-Feb-16	EURUSD	1.1195	4M	1.060-1.1400	8.25	7.9
17-Mar-16	USDJPY	112.5	4M	106.00-115.00	17.5	16.9
23-Mar-16	USDJPY	112.3	5M	104-115.50	25.25	24.9
9-Feb-16	USDJPY	115.3	6M	110-120	10.5	10.3
24-Feb-16	USDJPY	111.85	6M	102.5-114.5	9.9	9.9
9-Nov-15	EURUSD	1.077	9M	1.000-1.1500	20	19.6
6-Nov-15	EURUSD	1.0875	1Y	.97-1.19	35.5	35.7
25-Feb-15	EURUSD	1.105	1Y	1.0300-1.1700	9.5	9.4
29-Feb-16	EURUSD	1.092	1Y	1.000-1.1800	20.25	20.1
1-Mar-16	EURUSD	1.087	1Y	1.000-1.1800	21.25	21
2-Mar-16	EURUSD	1.0855	1Y	.9600-1.2000	40.25	39.9
17-Mar-16	EURUSD	1.122	1Y	1.0200-1.1750	14	14.1
5-Apr-16	EURUSD	1.1395	1Y	1.000-1.2000	24	24
5-Apr-16	USDJPY	110.5	1Y	100.00-120.00	37.75	37

	Barriers								
date	ссу	spot	expiry	strike		barrier	Call/Put	market	model
11-Nov-15	EURUSD	1.075	2M	1.0325	КО	1.0975	EUR P	0.455	0.46
10-Nov-15	EURUSD	1.0745	3M	1.03	RKO	0.97	EUR P	0.24	0.24
2-Mar-16	EURUSD	1.0845	3M	1.13	ко	1.0525	EUR C	0.655	0.66
10-Nov-15	USDJPY	123.2	4M	116	ко	127.5	USD P	0.38	0.37
2-Mar-16	EURUSD	1.086	4M	1.05	RKO	1	EUR P	0.16	0.16
7-Dec-15	EURUSD	1.0885	6M	1.035	ко	1.12	EUR P	0.78	0.77
7-Dec-15	EURUSD	1.084	6M	1.04	KI	1.04	EUR C	1.42	1.41
2-Feb-16	EURUSD	1.0905	6M	1.07	RKO	1.01	EUR P	0.24	0.23
5-Feb-16	EURUSD	1.12	6M	1.04	ко	1.15	EUR P	0.465	0.47
8-Feb-16	EURUSD	1.1125	6M	1.18	ко	1.075	EUR C	0.83	0.84
24-Feb-16	USDJPY	111.75	6M	107	KI	107	USD C	1.9	1.89
14-Apr-16	USDJPY	109.2	6M	103	ко	115	USD P	1.21	1.19
16-Nov-15	EURUSD	1.072	8M	1.15	ко	1.05	EUR C	0.615	0.63
8-Feb-16	EURUSD	1.1145	9M	1.02	KI	1.02	EUR C	0.965	0.95
17-Mar-16	USDJPY	112.15	10M	124	ко	105	USD C	0.48	0.48
5-Feb-16	EURUSD	1.1125	315 DAYS	1.01	KI	1.01	EUR C	1.015	1.011
8-Dec-15	EURUSD	1.0865	1Y	1.16	KI	1.16	EUR P	1.29	1.31
9-Feb-16	USDJPY	115.2	1Y	115.2	ко	130	USD C	0.46	0.46
9-Feb-16	USDJPY	115.2	1Y	130	ко	111	USD C	0.46	0.47
10-Feb-16	EURUSD	1.1295	1Y	1.05	ко	1.16	EUR P	0.81	0.8
1-Mar-16	EURUSD	1.087	1Y	1.05	RKO	0.95	EUR P	0.34	0.35
2-Mar-16	EURUSD	1.0875	1Y	1.21	ко	1	EUR C	1.165	1.18
3-Mar-16	USDJPY	113.95	1Y	100	KI	120	USD P	0.34	0.32
5-Apr-16	USDJPY	110.95	1Y	100	RKO	90	USD P	0.21	0.23
11-Apr-16	EURUSD	1.141	1Y	1.15	KI	1.05	EUR C	0.5	0.47
14-Apr-16	EURUSD	1.137	1Y	1.075	КО	1.18	EUR P	1.24	1.23

9. Summary and Conclusions

In this paper, we provided the first option pricing model that accurately reflects the prices of options in the market for underlying assets in all asset classes. We started by deriving the probability density function of all underlying assets- currencies, commodities, equities and interest rates- and showed that it is determined by any three option prices on the volatility smile. We then tested our model on an extremely large set of data on liquid assets in all asset classes and showed that the model closely matches the market. This demonstrates that the market assumes that all liquid financial products, i.e. stocks, currencies, commodities and interest rates behave according to the same 3 variable density function we found in this paper.

We then showed how to obtain the contingent density function (or the probability transfer density function) between 2 periods if the density functions from inception to these periods are known. Lastly, we used the contingent density function to calculate the price of different types of exotic options and compared the model to the prices in the market. Once again, the model matches market prices. We conclude that this new model reflects the market universally.

Appendix 1: Asymptotic Behavior of $\lambda(d_1)$, $\chi(d_1)$

In this Appendix, we calculate the asymptotic behavior of $\lambda(d1)$ and $\chi(d1)$. We start with the model equations (43) and (44)

$$\zeta_{c} = df \operatorname{Fn}(d_{1}) \left(\frac{\lambda \sqrt{T} d_{1}^{2}}{\sigma_{p}} + \lambda d_{1}T + \frac{\chi d_{1}}{2F} \left(\frac{1}{\sigma_{c}} + \frac{1}{\sigma_{p}} \right) \right)$$
(A1)

$$\zeta_{p} = df \operatorname{Fn}(d_{1}) \left(\frac{\lambda \sqrt{\operatorname{Td}_{1}^{2}}}{\sigma_{p}} - \lambda d_{1} \operatorname{T} - \frac{\chi d_{1}}{2\operatorname{F}} \left(\frac{1}{\sigma_{c}} + \frac{1}{\sigma_{p}} \right) \right)$$
(A2)

We first calculate the asymptotic solution in the limit $|\log K/F| \rightarrow \infty$.

In the BS formula (1) and (2), we use the asymptotic expression for N(x):

$$N(x) = 1 - n(x)/x, x \to \infty$$
 (A3)

$$N(x) = -n(x)/x, x \to -\infty \tag{A4}$$

At $\pm\infty$ the contribution from the ATM volatility σ_0 is negligible compared to σ_c or σ_p since $\sigma_0 < \sigma_c$ and $\sigma_0 < \sigma_p$. We denote

$$v \equiv \sigma \sqrt{T}$$
 (A5)

Using

$$K/F n(d_2) = n(d_1)$$
(A6)

we obtain (for simplicity we take df=1)

$$\zeta_c(K) = \operatorname{Fn}(d_1) \left(\frac{1}{d_1 - v_c} - \frac{1}{d_1} \right) = \operatorname{Fn}(d_1) \frac{v_c}{d_1(d_1 - v_c)}$$
 (A7)

$$\zeta_{p}(K) = F n(d_{1}) \left(\frac{1}{d_{1}^{p} - v_{p}} - \frac{1}{d_{1}^{p}} \right) = Fn(d_{1}) \frac{v_{p}}{d_{1}(d_{1} + v_{p})}$$
 (A8)

Therefore

$$\frac{\zeta_{c}(K) + \zeta_{p}(K)}{Fn(d_{1})} = \frac{1}{d_{1}} \left(\frac{v_{c}}{d_{1} - v_{c}} + \frac{v_{p}}{d_{1} + v_{p}} \right) = \frac{v_{c} + v_{p}}{(d_{1} - v_{c})(d_{1} + v_{p})}$$
(A4)

Comparing to the combination of (A1) and (A2)

$$\frac{\zeta_{c}(K) + \zeta_{p}(K)}{Fn(d_{1})} = \lambda \sqrt{T} d_{1}^{2} \left(\frac{1}{\sigma_{c}} + \frac{1}{\sigma_{p}} \right)$$
 (A10)

we obtain the asymptotic expression for λ :

$$\lambda T = \frac{1}{d_1^2} \frac{v_c v_p}{(d_1 - v_c)(d_1 + v_p)}$$
 (A11)

Similarly

$$\begin{split} \frac{\zeta_c(K) - \zeta_p(K)}{Fn(d_1)} = \\ \frac{1}{d_1} \left(\frac{v_c}{d_1 - v_c} - \frac{v_p}{d_1 + v_p} \right) = \frac{d_1(v_c - v_p) + 2v_c v_p}{d_1(d_1 - v_c)(d_1 + v_p)} \end{split} \tag{A12}$$

And using (A11)

$$\frac{\zeta_{c}(K) - \zeta_{p}(K)}{Fn(d_{1})} = \frac{d_{1}(v_{c} - v_{p})}{d_{1}(d_{1} - v_{c})(d_{1} + v_{p})} + 2\lambda Td_{1}$$
(A13)

Subtracting (A2) from (A1)

$$\begin{split} \frac{\zeta_{c}(K)-\zeta_{p}(K)}{n(d_{1})} = \\ -\chi d_{1}\left(\frac{1}{\sigma_{c}}+\frac{1}{\sigma_{p}}\right) + \lambda F \sqrt{T}\left(d_{1}^{2}\left(\frac{1}{\sigma_{c}}-\frac{1}{\sigma_{p}}\right)-2\sqrt{T}d_{1}\right) \end{split} \tag{A14}$$

and comparing to (A13)

$$\frac{d_{1}(v_{c} - v_{p})}{d_{1}(d_{1} - v_{c})(d_{1} + v_{p})} + 2\lambda T d_{1}$$

$$= -\frac{\chi\sqrt{T}}{F} d_{1} \left(\frac{1}{v_{c}} + \frac{1}{v_{p}}\right) + \lambda T d_{1} \left(d_{1} \left(\frac{1}{v_{c}} - \frac{1}{v_{p}}\right) - 2\right) \tag{A15}$$

Thus,

$$\begin{split} \frac{\chi\sqrt{T}}{F} \left(\frac{1}{v_{c}} + \frac{1}{v_{p}}\right) &= \\ &- \frac{(v_{c} - v_{p})}{d_{1}(d_{1} - v_{c})(d_{1} + v_{p})} + \lambda T \left(d_{1} \left(\frac{1}{v_{c}} - \frac{1}{v_{p}}\right) - 4\right) = \\ \frac{1}{d_{1}^{2}} \frac{v_{c}v_{p}}{(d_{1} - v_{c})(d_{1} + v_{p})}) \left(\left(d_{1} \left(\frac{1}{v_{c}} - \frac{1}{v_{p}}\right) - 4\right) - \frac{d_{1}(v_{c} - v_{p})}{v_{c}v_{p}}\right) &= \\ -2 \frac{1}{d_{1}^{2}} \frac{2v_{c}v_{p} + d_{1}(v_{c} - v_{p})}{(d_{1} - v_{c})(d_{1} + v_{p})} \end{split}$$
 (A16)

Finally we have:

$$\lambda T = \frac{1}{d_1^2} \frac{v_c v_p}{(d_1 - v_c)(d_1 + v_p)}$$
 (A17)

$$\chi = -\frac{2F}{\sqrt{T}} \frac{1}{d_1^2} \frac{2v_c v_p + d_1(v_c - v_p)}{(d_1 - v_c)(d_1 + v_p)} \times \frac{v_c v_p}{v_c + v_p}$$
(A5)

Equations (A17) and (A18) provide asymptotic expressions for λ and χ for $d_1 \to \infty$ with no assumptions on the behavior of the volatility smile. If the volatility stays finite at the limits, then $\lambda^{\sim}1/d_1^4$ and $\chi^{\sim}1/d_1^3$. Otherwise we need to use the results of Lee (2003) about finite moments of probability densities and their asymptotes. According to Lee, if there exists a supremum

$$\beta_{\rm p} = \frac{\sigma_{\rm p}^2 T}{\log(F/K_{\rm p})}, \quad K_{\rm p} \to 0 \tag{A20}$$

and

$$\beta_{\rm c} = \frac{\sigma_{\rm c}^2 T}{\log(F/K_{\rm c})}, \quad K_{\rm c} \to \infty$$
 (A21)

Then the moments $E[S^{1+p}]$ and $E[S^{-q}]$ are guaranteed to be finite, where

$$p = \frac{1}{2\beta_c} \left(1 - \frac{\beta_c}{2} \right) \tag{A22}$$

$$q = \frac{1}{2\beta_p} \left(1 - \frac{\beta_p}{2} \right) \tag{A23}$$

In order to have finite first moment β_p , $\beta_c \leq 2$.

Since

$$v_c^2 = \beta_c \log K_c/F$$
, $v_p^2 = \beta_p \log F/K_p$ (A24)

we obtain

$$d_{1} = -\left(\frac{1}{\beta_{p}} + \frac{1}{2}\right)v_{p} = -\left(\frac{1}{\beta_{c}} - \frac{1}{2}\right)v_{c} \tag{A25}$$

$$d_1 + v_p = -\left(\frac{1}{\beta_p} - \frac{1}{2}\right)v_p, \quad d_1 - v_c = -\left(\frac{1}{\beta_p} + \frac{1}{2}\right)v_p$$
 (A26)

Substituting all this into (A17) and (A18) we get the asymptotes of λ and χ

$$\lambda T d_1^2 = \frac{4\beta_c \beta_p}{\left(2 - \beta_p\right)(2 + \beta_c)} \tag{A27}$$

$$\frac{-\chi\sqrt{T}d_1}{2F} = \frac{4\beta_c\beta_p(\beta_c - \beta_p - \beta_c\beta_p)}{(2 - \beta_p)(2 + \beta_c)(\beta_c + \beta_p)}$$
(A28)

References

Bakshi, G., Cao, C., Chen, Z., 1997. Empirical performance of alternative option pricing models. Journal of Finance 52, 2003–2049.

Bates, David, 1996b, Testing option pricing models, in G. S. Maddala and C. R. Rao, eds: Handbook of Statistics, Vol. 15: Statistical Methods in Finance (North Holland, Amsterdam), pp. 567-611.

Bates, D.S. / Journal of Econometrics 116 (2003) 387 - 404 403

Black, Fischer (1976). The pricing of commodity contracts, Journal of Financial Economics, 3, 167-179.

Black, Fischer; Myron Scholes (1973). "The Pricing of Options and Corporate Liabilities". Journal of Political Economy. 81 (3): 637–654. doi:10.1086/260062.

Black, F.; Karasinski, P. (1991). "Bond and Option pricing when Short rates are Lognormal". Financial Analysts Journal: 52–59.

Black, F., Derman, E., Toy, W. (1990). "A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options". Financial Analysts Journal: 24–32.

Brace, A., Gatarek, D., Musiela, M. (1997): "The Market Model of Interest Rate Dynamics", Mathematical Finance, 7(2), 127-154.

Carr, Peter, Wu Liuren (2016). "Analyzing volatility risk and risk premium in option contracts: A new theory". Journal of Financial Economics 120, 1-20

Carr, Peter, Madan Dilip (2014): "Jointly Modeling of VIX and SPX Options at a Single and Common Maturity with Risk Management Applications"

Carr P., Lee R. (2010). "Implied volatility in stochastic volatility models", Encyclopedia of Quantitative Finance.

Cox, John, Jonathan Ingersoll, and Stephen Ross, 1985, A theory of the term structure of interest rates, Econometrica 53, 385-408.

Dupire, Bruno (1994). "Pricing with a Smile".

Risk.http://www.risk.net/data/risk/pdf/technical/2007/risk20_0707_technical_volatility.pdf **Derman**, E., Iraj Kani (1994). "Riding on a Smile." RISK, 7(2) Feb.1994, pp. 139-145, pp. 32-39." (PDF). Risk. Retrieved 2007-06-01.

El Euch O., Gatheral J. and Rosenbaum M. (2017). "Roughening Heston"

Gatheral, Jim (2008). "Consistent modeling of SPX and VIX options", Bachelier Congress 37, p39 **Gatheral** J., Matic I., Radoicic R., Stefanica D. (2017). "Tighter bounds for implied volatility" **Hagan**, P., Kumar, D., Lesniewski, A., and Woodward, D.: Managing smile risk, Wilmott Magazine, September, 84 - 108 (2002).

Heston, Steven, 1993, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies 6, 327-343. Empirical Performance of Alternative Option Pricing Models 2049

Hull, John, and Alan White, 1987a, The pricing of options with stochastic volatilities, Journal of Finance 42, 281-300.

Jarrow, Robert (2002). Modelling Fixed Income Securities and Interest Rate Options (2nd ed.). Stanford Economics and Finance. ISBN 0-8047-4438-6

Lee, Roger W., "The Moment Formula for Implied Volatility at Extreme Strikes" (2003) http://www.cmapx.polytechnique.fr/~mazari/Articles-Finances-X-scans/LeeRoger.pdf) **Levenberg**, Kenneth (1944). "A Method for the Solution of Certain Non-Linear Problems in Least Squares". Quarterly of Applied Mathematics. 2: 164–168.

Longstaff, F.A. and Schwartz, E.S. (1992). "Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model" (PDF). Journal of Finance. 47 (4): 1259–82.

Madan, Dilip (2014), "Recovering Statistical Theory in the Context of Model Calibrations" **Marquardt**, Donald (1963). "An Algorithm for Least-Squares Estimation of Nonlinear

Parameters". SIAM Journal on Applied Mathematics. 11 (2): 431–441. doi:10.1137/0111030.

Merton, Robert C. (1973). "Theory of Rational Option Pricing". Bell Journal of Economics and Management Science. The RAND Corporation. 4 (1): 141–

183. doi:10.2307/3003143. JSTOR 3003143.

Merton, Robert, 1973, Theory of rational option pricing, Bell Journal of Economics 4, 141-183. **Merton**, Robert, 1976, Option pricing when the underlying stock returns are discontinuous, Journal of Financial Economics 4, 125-144.

Melino, Angelo, and Stuart Turnbull, 1990, Pricing foreign currency options with stochastic volatility, Journal of Econometrics 45, 239-265.

Rubinstein, M., 1983. Displaced diFusion option pricing. Journal of Finance 38, 213–217. **Rubinstein**, Mark, 1985, Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE options classes from August 23, 1976 through August 31, 1978, Journal of Finance 40, 455-480.

Rubinstein, Mark, 1994, Implied binomial trees, Journal of Finance 49, 771-818. **Scott**, Louis, 1987, Option pricing when the variance changes randomly: Theory, estimators, and applications, Journal of Financial and Quantitative Analysis 22, 419-438. **Tikhonov** A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G., 1995, Numerical Methods for the Solution of Ill-Posed Problems, Kluwer Academic Publishers.

Material Online

Appendix 2: Additional Tables for F_{λ} , F_{χ} of λ and χ for different market data

Expiry	2 years																
σ ΑΤΜ	25dRR	25dFly	d1	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5
10.00%	1.000%	0.100%	FA	1.008	1.007	0.997	0.980	0.966	0.965	0.974	0.974	0.941	0.893	0.860	0.858	0.841	0.825
			FB	0.998	0.999	1.000	0.999	0.998	1.002	1.007	0.997	0.964	0.940	0.913	0.886	0.860	0.835
			FA/FB	1.0098	1.0082	0.9965	0.9809	0.9688	0.9632	0.9672	0.9770	0.9762	0.9502	0.9428	0.9689	0.9784	0.9880
12.00%	2.000%	0.250%	FA	1.042	1.024	0.990	0.950	0.919	0.902	0.889	0.861	0.835	0.821	0.817	0.808	0.755	0.652
			FB	1.024	1.012	0.995	0.974	0.957	0.945	0.924	0.893	0.879	0.888	0.915	0.937	0.895	0.779
			FA/FB	1.0169	1.0113	0.9950	0.9756	0.9599	0.9547	0.9615	0.9640	0.9505	0.9249	0.8922	0.8627	0.8439	0.8377
15.00%	3.000%	0.750%	FA	1.094	1.074	0.968	0.878	0.820	0.785	0.754	0.726	0.696	0.647	0.580	0.515	0.463	0.436
			FB	1.145	1.076	0.967	0.888	0.848	0.821	0.791	0.766	0.734	0.681	0.607	0.537	0.478	0.434
			FA/FB	0.9558	0.9977	1.0011	0.9882	0.9677	0.9569	0.9536	0.9479	0.9482	0.9501	0.9542	0.9599	0.9681	1.0035
18.00%	4.000%	1.000%	FA	1.046	1.066	0.971	0.883	0.826	0.786	0.750	0.722	0.693	0.644	0.579	0.525	0.506	0.474
			FB	1.122	1.076	0.967	0.885	0.839	0.807	0.776	0.758	0.726	0.675	0.606	0.545	0.505	0.461
			FA/FB	0.9330	0.9914	1.0041	0.9977	0.9838	0.9740	0.9667	0.9535	0.9545	0.9539	0.9558	0.9641	1.0029	1.0272
25.00%	5.000%	1.200%	FA	1.053	1.043	0.981	0.922	0.879	0.845	0.810	0.784	0.759	0.744	0.718	0.698	0.679	0.660
			FB	1.076	1.042	0.982	0.929	0.891	0.863	0.839	0.835	0.814	0.794	0.753	0.725	0.693	0.662
			FA/FB	0.9786	1.0008	0.9996	0.9929	0.9867	0.9787	0.9658	0.9399	0.9332	0.9374	0.9538	0.9630	0.9800	0.9973
30.00%	6.000%	1.200%	FA	1.029	1.020	0.991	0.963	0.943	0.923	0.897	0.882	0.863	0.843	0.824	0.806	0.788	0.770
			FB	1.010	1.005	0.998	0.988	0.976	0.961	0.954	0.943	0.932	0.921	0.911	0.901	0.890	0.880
			FA/FB	1.0192	1.0154	0.9933	0.9750	0.9669	0.9605	0.9402	0.9360	0.9255	0.9152	0.9050	0.8949	0.8849	0.8750
45.00%	10.000%	2.000%	FA	0.876	0.955	1.019	1.056	1.054	1.007	0.967	0.944	0.933	0.917	0.900	0.884	0.868	0.853
			FB	0.863	0.943	1.024	1.074	1.056	0.994	0.932	0.875	0.822	0.772	0.725	0.681	0.640	0.601
			FA/FB	1.0149	1.0126	0.9950	0.9837	0.9982	1.0132	1.0384	1.0785	1.1355	1.1875	1.2418	1.2986	1.3580	1.4201

Expiry	3 years																
σ ΑΤΜ	25dRR	25dFly	d1	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5
10.00%	1.000%	0.100%	FA	1.019	1.011	0.995	0.977	0.964	0.962	0.970	0.969	0.933	0.886	0.855	0.818	0.783	0.749
			FB	1.005	1.001	0.999	0.997	0.997	1.003	1.008	0.997	0.963	0.943	0.917	0.892	0.868	0.844
			FA/FB	1.0138	1.0092	0.9960	0.9798	0.9666	0.9596	0.9629	0.9717	0.9688	0.9393	0.9317	0.9167	0.9019	0.8874
12.00%	2.000%	0.250%	FA	1.056	1.027	0.988	0.948	0.920	0.904	0.890	0.863	0.839	0.828	0.831	0.836	0.798	0.701
			FB	1.030	1.012	0.995	0.978	0.965	0.954	0.934	0.907	0.901	0.919	0.963	1.010	0.990	0.885
			FA/FB	1.0256	1.0152	0.9933	0.9700	0.9526	0.9472	0.9530	0.9513	0.9320	0.9016	0.8629	0.8278	0.8069	0.7924
15.00%	3.000%	0.750%	FA	1.080	1.065	0.972	0.889	0.836	0.800	0.766	0.737	0.709	0.662	0.596	0.537	0.509	0.471
			FB	1.127	1.068	0.970	0.897	0.856	0.827	0.798	0.778	0.751	0.703	0.633	0.567	0.518	0.513
			FA/FB	0.9576	0.9966	1.0016	0.9915	0.9762	0.9668	0.9603	0.9473	0.9443	0.9410	0.9412	0.9468	0.9820	0.9168
18.00%	4.000%	1.000%	FA	1.034	1.052	0.977	0.902	0.850	0.810	0.772	0.745	0.716	0.676	0.632	0.613	0.584	0.556
			FB	1.093	1.060	0.974	0.901	0.853	0.821	0.792	0.781	0.752	0.711	0.656	0.617	0.574	0.535
			FA/FB	0.9458	0.9926	1.0035	1.0021	0.9956	0.9867	0.9744	0.9536	0.9527	0.9506	0.9640	0.9942	1.0167	1.0397
25.00%	5.000%	1.200%	FA	1.015	1.024	0.990	0.953	0.927	0.901	0.872	0.852	0.851	0.841	0.831	0.821	0.811	0.802
			FB	1.029	1.018	0.992	0.966	0.941	0.919	0.907	0.902	0.893	0.885	0.876	0.868	0.860	0.852
			FA/FB	0.9862	1.0062	0.9973	0.9867	0.9851	0.9797	0.9618	0.9444	0.9531	0.9508	0.9484	0.9461	0.9438	0.9414
30.00%	6.000%	1.200%	FA	0.848	0.930	1.030	1.098	1.123	1.094	1.057	0.979	0.913	0.886	0.843	0.802	0.763	0.726
			FB	0.867	0.939	1.026	1.090	1.105	1.076	1.050	0.989	0.977	0.943	0.909	0.877	0.846	0.817
			FA/FB	0.9780	0.9899	1.0039	1.0072	1.0162	1.0167	1.0066	0.9890	0.9346	0.9401	0.9272	0.9146	0.9021	0.8897
44.00%	10.000%	2.000%	FA	0.713	0.877	1.051	1.133	1.120	1.060	1.026	0.998	0.968	0.947	0.922	0.898	0.874	0.851
			FB	0.751	0.895	1.044	1.098	1.048	0.943	0.920	0.862	0.808	0.757	0.709	0.665	0.623	0.583
			FA/FB	0.9495	0.9800	1.0074	1.0316	1.0691	1.1233	1.1156	1.1577	1.1986	1.2505	1.2996	1.3507	1.4037	1.4589

Appendix 3: Dynamic Replication in the New Model

One of the most appealing features in the BS model is the dynamic replication of the option with the underlying asset. One can form a dynamic portfolio of one unit of the option and a varying amount of

the underlying asset where the amount of the underlying asset in the portfolio is reset in each time interval so that the total risky (i.e. non deterministic) element of the portfolio vanishes until the next time interval. In the BS model, the underlying asset follows a simple stochastic process and which carries into the option price that depends on it. Thus, the amount of the underlying asset in the portfolio can be determined by setting the stochastic component in the portfolio to 0. This results in a dynamic delta hedging of the option. There is yet an assumption that the transaction cost of readjusting the portfolio is zero. In deriving our model so far, we used quasi-no arbitrage conditions in the smile and therefore did not deal with readjusting portfolios and hence had no transaction cost involved. Now we want to demonstrate how to implement the dynamic replication approaches to our formalism.

As we have seen, at time t_1 and underlying asset price s_1 , the density function $g(s_1,t_1\to s_2,t_2)$ of the underlying asset for time t_2 depends on three stochastic factors,. $\sigma_0(s_1,t_1,t_2)$, $25\Delta RR(s_1,t_1,t_2)$, $25\Delta fly(s_1,t_1,t_2)$ which are strongly correlated with each other and the underlying asset price. The correlation is a highly non trivial one because it also has to take into account the price history of the underlying asset. Since we do not know the stochastic processes of s, s_1 , s_2 , s_3 , s_4 , s_2 , s_3 , s_4 , s_2 , s_3 , s_4 , s_4 , s_4 , s_5 , s_5 , s_7 ,

$$\delta s(t) = \hat{f}_0(s,t,\sigma_0(s,t),RR(s,t),fly(s,t))$$

$$\delta \sigma_0(t) = \hat{f}_1(s,t,\sigma_0(s,t),RR(s,t),fly(s,t))$$

$$\delta RR(t) = \hat{f}_2(s,t,\sigma_0(s,t),RR(s,t),fly(s,t))$$

$$\delta Fly(t) = \hat{f}_3(s,t,\sigma_0(s,t),RR(s,t),fly(s,t))$$
(A29)

Therefore

$$g\left(\frac{s_{\mathrm{T}}}{s_{\mathrm{0}}}, 2\delta t, \sigma_{0,2\delta t}, \mathsf{RR}_{0,2\delta t}, \mathsf{Fly}_{0,2\delta t}\right) = \int_{0}^{\infty} \mathsf{d}s \ g\left(\frac{s}{s_{\mathrm{0}}}, \delta t, \sigma_{0,\delta t}, \mathsf{RR}_{0,\delta t}, \mathsf{Fly}_{0,\delta t}\right)$$

$$\iiint d\sigma(s, \delta t) \ d\mathsf{RR}(s, \delta t) \ d\mathsf{Fly}(s, \delta t)$$

 $\omega(\sigma(s, \delta t), RR(s, \delta t), Fly(s, \delta t), s, \delta t) g(S_T/s, \delta t, \sigma(s, t), RR(s, t), Fly(s, t)) =$

$$= \int_{0}^{\infty} ds \ g \left(s/s_{0}, \delta t, \sigma_{0,\delta t}, RR_{0,\delta t}, Fly_{0,\delta t} \right) g(s_{T}/s, \delta t, \boldsymbol{\sigma}_{s,\delta t}, \boldsymbol{RR}_{s,\delta t}, \boldsymbol{Fly}_{s,\delta t})$$
(A30)

Where $\omega(\sigma(s, \delta t), RR(s, \delta t), Fly(s, \delta t), s, \delta t)$ is the 'combined' density function and $\sigma_{s,\delta t}$, $RR_{s,\delta t}$, $Fly_{s,\delta t}$ are considered the **effective** values of $\sigma(s,\delta t)$, $RR(s,\delta t)$, $RR(s,\delta t)$, $RR(s,\delta t)$ at $(s,\delta t)$.

For the option price P, we can write

$$P(\mathsf{t}+\delta\mathsf{t}) = \int_0^\infty \mathrm{d} S_T \ \int_0^\infty \mathrm{d} s \ g\left(s/S_0,\mathsf{t},\sigma_\mathsf{t}\,,\mathsf{RR}_\mathsf{t}\,,\mathsf{Fly}_\mathsf{t}\,\right) \ \iiint d\sigma(s,\mathsf{t}) \ d\mathsf{RR}(s,\mathsf{t}) \ d\mathsf{Fly}(s,\mathsf{t})$$

$$\omega(\sigma(s,t), RR(s,t), Fly(s,t), s, t) g(S_T/s, \delta t, \sigma(s,t), RR(s,t), Fly(s,t))$$

Payoff (S_T , t+ δt)

$$= \int_0^\infty \mathrm{d}s_T \, \int_0^\infty \mathrm{d}s \, g \, \left(s/s_0, t, \sigma_t \, , RR_t \, , Fly_t \, \right) g(s_T/s, \delta t, \pmb{\sigma}_{s, \delta t} \, , \pmb{RR}_{s, \delta t} \, , \pmb{Fly}_{s, \delta t} \, \right)$$

Payoff(t+δt)

$$= \int_0^\infty dS_T g(S_T/S_0, t + \delta t, \sigma_{t+\delta t}, RR_{t+\delta t}, Fly_{t+\delta t}) Payoff(S_T, t+\delta t)$$
(A31)

Where $\sigma_{s,\delta t}$, $RR_{s,\delta t}$, $Fly_{s,\delta t}$ are considered the **effective** values of $\sigma(s,t)$, RR(s,t), Fly(s,t) at (s,t).

Dynamic Replication of a given option with 3 options

Given an option with strike K and expiry time T, we divide T into small intervals δt =T/N. At t_i = i δt and spot s_i we want to calculate the replication strategy until time t_{i+1} . Since at each spot and time the price of the given option depends on 4 stochastic factors $(s(t), \sigma(s, t), RR(s, t), Fly(s, t))$, we need to replicate it with the spot price and three different options with the same expiry so their prices depend on the same three stochastic factors. We replicate the given option with three specific vanilla options, i.e. their strike is determined at the inception of the given option (t=0). The most natural replication at time t=0 is the way traders hedge their portfolio, i.e. hedge the spot, hedge the Vega with an ATM delta neutral straddle, hedge the dVega/dvol with a d_1 Vega neutral butterfly and hedge the dVega/dSpot with a d_1 Risk Reversal. If there is no transaction cost, then theoretically there is no preferred d1. However, in the real world, d1 can be determined by optimization. Hence at each interval i and underlying asset price s_1 (s_1 , t_i) we construct the portfolio Π as follows.

$$\Pi(s_1, t_i) = P(K, s_1, t_i, T) + D_i S_1 + V_i P_{\text{straddle}}(K_0, s_1, t_i, T) + R_i P_{RR}(K_{d1}, s_1, t_i, T) + F_i P_{\text{butterfly}}(K_{d1}, s_1, t_i, T)$$
(A40)

where P(K) is the price of the given option with strike K which can be either a call or put and V_i , R_i , F_i are the dynamic hedging amounts that are selected so that

$$\Pi(s_1, t_i, D_i, V_i, R_i) = \Pi(s, t_{i+1}, D_i, V_i, R_i, F_i)$$
 for all s (A41)

Before rearranging terms, we define the fixed strikes

$$K_{1} = K_{d1}$$
; $K_{2} = K_{-d1}$ (A42)

We get

$$\Pi(s_1, t_i) = P(K, s_1, t_i, T)) + D_i S_1 + W_{0i} (P_{call}(K_0, s_1, t_i, T) + P_{put}(K_0, s_1, t_i, T)) + P_{call}(K_0, s_1, t_i, T) + P_{call}(K_0, s_1, t_i, T)) + P_{call}(K_0, s_1, t_i, T) + P_{call}(K_0, s_1, T) + P_{call}(K_0, s_1, T) + P_{call}(K_0, s_1, T) + P_{c$$

$$W_{1i} P_{call}(K_1, s_1, t_i, T) + W_{2i} P_{put}(K_2, s_1, t_i, T)$$
(A43)

 W_{0i} , W_{1i} , W_{2i} are three numbers which represent the amounts of the options with strikes K_0 K_1 K_2 in the portfolio at time interval i respectively. $P(K_i)$ is the price of the option with strike K_i which can be either call or put. Notice that we could replace the delta by

$$D_{i}S_{1}=D_{i}\left(P_{call}(K_{0}, s_{1}, t_{i}, T) - P_{put}(K_{0}, s_{1}, t_{i}, T)\right) \tag{A44}$$

The notional (weights) D_i , W_{0i} , W_{1i} , W_{2i} are determined such that the value of the portfolio remains the same at time t_{i+1} regardless of the underlying move from t_i to t_{i+1} , but practically we mean in the vicinity of s_1 .

$$\Pi_{i}(s_{1}, t_{i}, T) \approx \Pi_{i}(s, t_{i+1}, T) = P(K, s, t_{i+1}, T)) + D_{i}S + W_{0i} (P_{call}(K_{0} s, t_{i+1}, T) + P_{put}(K_{0} s, t_{i+1}, T)) + W_{1i} P_{call}(K_{1} s, t_{i+1}, T) + W_{2i} P_{put}(K_{2}, s, t_{i+1}, T)$$
(A45)

for all s not too far from s_1 . The accuracy of the replication depends on how small the time interval δt is.

In order to calculate D_i and W_i 's at (s_1, t_i) , we need to obtain the implied local smile at s_1 for expiry T and the implied local smile at s_1 for expiry t_{i+1} . This means

$$\sigma_0(s_1, t_i, t_{i+1}), 25\Delta RR(s_1, t_i, t_{i+1}), 25\Delta fly(s_1, t_i, t_{i+1})$$
 (A46)

$$\sigma_0(s_1, t_i, T), 25\Delta RR(s_1, t_i, T), 25\Delta fly(s_1, t_i, T)$$
 (A47)

In addition, we need to calculate the implied local smile for all s at t_{i+1} at each s₂

$$\sigma_0(s_2, t_{i+1}, T), 25\Delta RR(s_2, t_{i+1}, T), 25\Delta fly(s_2, t_{i+1}, T)$$
 (A48)

Using (143)-(145) we look for W_{0i} , W_{1i} , W_{2i} that minimize

$$\mathsf{Min} \sum_{\{S_2\}} (\Pi_{\hat{\boldsymbol{t}}}(s_1, t_i, \mathsf{T}) \ - \ \Pi_{\hat{\boldsymbol{t}}}(s_2, t_{i+1}, \mathsf{T}))^2 \, \mathsf{g}(s_1, \mathsf{t}_i \ \to \ s_2, \mathsf{t}_{i+1})$$

where $\{S_2\}$ corresponds to all the underlying asset prices at time t_{i+1} . In practice, we can take N points around s_1 and sum over all of them.

Appendix 4: Comparison of the model to the market

Currencies Dec 31 2015

EUR/USD			spot	1.0	0861				USD/JPY		spot	120.32		
1 month	31 0	lays	Forwa	rd 1.08	8692				1 month	34 days	Forward	120.243		
	ATN	1	25RR	25Fly		10RR	10Fly			ATM	25RR	25Fly	10RR	10Fly
market		9.725	-0	0.45 0	.175	-	0.8	0.5	market	7.45	-0.95	0.35	-1.8	1.02
model			-0	0.45 0	.175	-0.8	847 0.6	601	model	7.45	-0.95	0.35	-1.73	1.058
	10d	Р	25d P	atm		25d ca	II 10 d ca	ill		10d P	25d P	atm	25d call	10 d call
model vol		1.025	10.:	125 0	.725	9.6	575 9.9	U3	model vo	9.374	8.275	7.45	7.325	7.642
Market vol		10.625	10.1		.725			325	Market vo		8.275	7.45	7.325	7.57
3 month	92 0	lays	Forwai	rd 1.08	8867				3 month	92 days	Forward	120.022		
market	ATN	9.975	25RR -1	.05	0.2	10RR	10Fly	0.6	market	ATM 8.025	25RR -0.7	25Fly 0.375	10RR -1.35	10Fly 1.17
		9.975			0.2	-1.7		662			-0.7	0.375	-1.38	1.209
model	2 10d		-1 25d P	.05 atm		25d ca			model	8.025 10d P	-0.7 25d P	atm		10 d call
model vol	1	1.524	1	.0.7 9	.975	9	.65 9.7	50	model vo	9.921	8.75	8.025	8.05	8.540
Market vol		11.425			9.975			725	Market vo		8.75	8.025	8.05	8.525
1 Year	365	days	Forwa	rd 1.10	0012				1 Year	369 days	Forward	119.0774		
	ATN		25RR	255		10RR	10Fly			ATM	2500	2556	10RR	10Fly
market	AIN	10.1		25Fly 725 0	.275			0.9	market	9.05	25RR -0.275	25Fly 0.65	-0.45	2.225
model		10.1			.275	-2.8			model	9.05	-0.275		-0.422	2.209
ouc.	10d		25d P	atm		25d ca			model	10d P	25d P	atm		10 d call
model vol	1	2.447	11.23	375	10.1	9.5	125 9.5	55	model vo	11.470	9.8375	9.05	9.5625	11.048
Market vol		2.4375	11.2		10.1	9.5			Market vo			9.05	9.5625	11.05
USD/GBP	•	spot		1.4736					EUR/JPY		spot	130.6	5	
4	24 dave			1 4727					1	34 days	F	120 (12)		
	34 days	Forwa		1.4737					1 month		Forward	130.6123		
market	ATM 8.1	25RR -	0.55	.5Fly 0.15	10RF	-0.95	10Fly 0.45		market	ATM 8.25	25RR -0.75	25Fly 0.275	10RR -1.325	10Fly 0.775
model	8.1		0.55	0.15		-0.99	0.49		model	8.25	-0.75			
	10d P	25d P	_	itm	25d		10 d call		model	10d P	25d P	atm	25d call	10 d call
model vol	9.085	0	.525	8.1		7.975	8.095		model vol	9.742	8.9	8.25	8.15	8.401
Market vo	9.025		.525	8.1		7.975	8.075		Market vo	9.6875	8.9			
3 month	92 days	Forwa	rd	1.4738					3 month	92 days	Forward	130.5845	5	
	ATM	25RR	2	!5Fly	10RF	,	10Fly			ATM	25RR	25Fly	10RR	10Fly
market	8.8		-1.2	0.25	TOU	-2.1	0.775		market	8.925	-1.05			-
model	8.8		-1.2	0.25		-2.06	0.784		model	8.925	-1.05			
	10d P	25d P		itm	25d		10 d call		mouer	10d P	25d P	atm	25d call	10 d call
model vol	10.614		9.65	8.8		8.45	8.554		model vol	10.903	9.8	8.925	8.75	9.123
Market vo	10.625		9.65	8.8		8.45	8.525		Market vo	10.925	9.8			
1 Year	369 days	Forwa	ard	1.4764					1 Year	369 days	Forward	130.5155	5	
	ATN4	2500		oc clv	100	,	10Eb:			ATN4	SERR	2551	1000	1055
market	ATM 10.425	25RR	.625	25Fly 0.475	10RF	-4.7	10Fly 1.575		market	ATM 10.3	25RR -1.8	25Fly 0.6	10RR -3.3	10Fly 3 1.975
model	10.425	_	.625	0.475		-4.58	1.52		model	10.3	-1.8			
	10d P	25d P	а	itm	25d	call	10 d call			10d P	25d P	atm	25d call	10 d call
model vol	14.235	12	.213	10.425	9	.5875	9.655		model vol	13.867	11.8	10.3	3 10	10.657
Market vo	14.35	12	.213	10.425	9	.5875	9.65		Market vo	13.925	11.8	10.3	3 10	10.625

EUR/G	BP		spot	0.7369		EUR/CI	HF		spot	1.0889	
1 month	34 days	Forward	0.737395			1 month	34 days	Forward	1.08828		
	ATM	25RR	25Fly	10RR	10Fly		ATM	25RR	25Fly	10RR	10Fly
market	8.775	0.2	0.2	0.35	0.55	market	6.2	-0.4	0.35	-0.7	0.975
model	8.775	0.2	0.2	0.38	0.66	model	6.2	-0.4	0.35	-0.68	1.06
	10d P	25d P	atm	25d call	10 d call		10d P	25d P	atm	25d call	10 d call
model vol	9.245	8.875	8.775	9.075	9.625	model vol	7.600	6.75	6.2	6.35	6.920
Market vol	9.15	8.875	8.775	9.075	9.5	Market vol	7.525	6.75	6.2	6.35	6.825
3 month	92 days	Forward	0.738533			3 month	92 days	Forward	1.0872		
	ATM	25RR	25Fly	10RR	10Fly		ATM	25RR	25Fly	10RR	10Fly
market	9.15	0.325	0.25	0.55	0.775	market	6.775	-0.725	0.525	-1.325	1.6
model	9.15	0.325	0.25	0.58	0.813	model	6.775	-0.725	0.525	-1.295	1.671
	10d P	25d P	atm	25d call	10 d call		10d P	25d P	atm	25d call	10 d call
model vol	9.673	9.2375	9.15	9.5625	10.253	model vol	9.11	7.6625	6.775	6.9375	7.799
Market vol	9.65	9.2375	9.15	9.5625	10.2	Market vol	9.0375	7.6625	6.775	6.9375	7.7125
1 Year	369 days	Forward	0.745168			1 Year	369 days	Forward	1.08144		
	ATM	25RR	25Fly	10RR	10Fly		ATM	25RR	25Fly	10RR	10Fly
market	10.525	0.6	0.425	1.15	1.4	market	7.7	-2.05	0.75	-3.85	2.525
model	10.525	0.6	0.425	1.15	1.426	model	7.7	-2.05	0.75	-3.69	2.555
	10d P	25d P	atm	25d call	10 d call		10d P	25d P	atm	25d call	10 d call
model vol	11.376	10.65	10.525	11.25		model vol	9.11				8.410
Market vol	11.35	10.65	10.525	11.25	12.5	Market vol	12.15	9.475	7.7	7.425	8.36

USD/KI	RW	spot	1175.9			EUR/PL	N		spot	4.2635	
1 month	34 days	Forward	1176.15			1 month	34 days	Forward	4.26975		
	ATM	25RR	25Fly	10RR	10Fly		ATM	25RR	25Fly	10RR	10Fly
market	9.85	0.8	0.2	1.45	0.6	market	6.75	0.475	0.2	0.8	0.625
model	9.85	0.8	0.2	1.46	0.68	model	6.75	0.475	0.2	0.86	0.71
	10d P	25d P	atm	25d call	10 d call		10d P	25d P	atm	25d call	10 d call
model vol	9.804	9.65	9.85	10.45	11.262	model vol	7.030	6.7125	6.75	7.1875	7.890
Market vol	9.725	9.65	9.85	10.45	11.175	Market vol	6.975	6.7125	6.75	7.1875	7.775
3 month	92 days	Forward	1177.9			3 month	92 days	Forward	4.2813		
	ATM	25RR	25Fly	10RR	10Fly		ATM	25RR	25Fly	10RR	10Fly
market	10.6	1.45	0.325	2.7	0.9	market	6.75	0.85	0.275	1.6	0.875
model	10.6	1.45	0.325	2.56	0.96	model	6.75	0.85	0.275	1.51	0.91
	10d P	25d P	atm	25d call	10 d call		10d P	25d P	atm	25d call	10 d call
model vol	10.280	10.2	10.6	11.65	12.840	model vol	6.905	6.6	6.75	7.45	8.415
Market vol	10.15	10.2	10.6	11.65	12.85	Market vol	6.825	6.6	6.75	7.45	8.425
1 Year	369 days	Forward	1179.38			1 Year	369 days	Forward	4.3339		
	ATM	25RR	25Fly	10RR	10Fly		ATM	25RR	25Fly	10RR	10Fly
market	11.3				-	market	7.15		-	3.15	1.35
model	11.3	2.8	0.55	4.89	1.62	model	7.15	1.65	0.45	2.98	1.391
	10d P	25d P	atm	25d call	10 d call		10d P	25d P	atm	25d call	10 d call
model vol	10.475	10.45	11.3	13.25	15.365	model vol	7.051	6.775	7.15	8.425	10.031
Market vol	10.4	10.45	11.3	13.25	15.39	Market vol	6.925	6.775	7.15	8.425	10.075

Commodities: Dec 31 2015

Expirv	26-Jan-16			Fxpirv	24-Mar-16					
Forward	ATM	25dRR	25fFly	Forward	ATM	25dRR	25fFly			
37.6569	44.65	-3.71	1.43	39.37	43.26	-2.89	1.22			
Strike	Exchange	model		Strike	Exchange	model		Strike	Exchange	model
20		17.667		20	19.44	19.437		66	0.07	0.075
21	16.68	16.671		21	18.45	18.451		67	0.07	0.069
22		15.677		22	17.46	17.467		68	0.06	0.064
23 24		14.684 13.692		23	16.48 15.51	16.487 15.512		69 70	0.05	0.059
25		12.702		25	14.54	14.544		71	0.04	0.05
26		11.714		26	13.58	13.585		72	0.04	0.048
26.5		11.221		26.5	13.11	13.109		73	0.04	0.04
27 27.5	10.72 10.23	10.729 10.238		27	12.64 11.71	12.637 11.705		74 75	0.03	0.04
28		9.749		29	10.80	10.791		76	0.03	0.03
28.5	9.26	9.261		30	9.91	9.900		77	0.03	0.03
29		8.776		31	9.04	9.034		78	0.02	0.03
29.5		8.294		31.5	8.62	8.613		79	0.02	0.03
30.5	7.82 7.35	7.816 7.342		32 32.5	8.20 7.80	8.199 7.794		80 81	0.02	0.03
31		6.875		33	7.40	7.398		82	0.02	0.02
31.5		6.413		33.5	7.01	7.012		83	0.02	0.02
32		5.960		34	6.63	6.635		84	0.02	0.02
32.5		5.516		34.5	6.26	6.268		85	0.02	0.02
33		5.082		35	5.91	5.912		86	0.02	0.02
33.5 34		4.659 4.250		35.5 36	5.56 5.23	5.567 5.234		87 88	0.02	0.02
34.5		3.856		37	4.60	4.602		89	0.02	0.02
35		3.478		37.5		4.305		90	0.01	0.01
35.5		3.118		38	4.02	4.019				
36		2.778		38.5	3.75	3.747				
36.5		2.459		39	3.49	3.487				
37 37.5	2.16 1.89	2.163 1.890		39.5 40	3.24 3.01	3.240 3.006				
37.3		1.641		40.5	2.79	2.785				
38.5		1.418		41	2.58	2.577				
39	1.22	1.219		41.5	2.39	2.384				
39.5		1.045		42	2.20	2.203				
40		0.893		42.5	2.03	2.035				
40.5 41	0.76 0.65	0.761 0.648		43 43.5	1.88 1.73	1.879 1.735				
41.5		0.552		43.3	1.60	1.601				
42		0.469		44.5	1.47	1.477				
42.5		0.399		45	1.36	1.362				
43		0.340		45.5	1.25	1.256				
43.5		0.291		46	1.16	1.158				
44 44.5		0.249 0.213		46.5 47	1.06 0.98	1.068 0.984				
45		0.183		47.5	0.90	0.907				
45.5		0.158		48	0.83	0.836				
46		0.137		48.5	0.77	0.771				
46.5	0.12	0.120		49	0.71	0.711				
47		0.105		49.5	0.65	0.656				
47.5 48		0.092		50 50.5	0.61 0.56	0.605 0.559				
48.5		0.072		51	0.52	0.516				
49		0.065		51.5	0.48	0.477				
49.5		0.058		52	0.44	0.441				
50		0.053		52.5	0.41	0.407				
50.5 51	0.05	0.048		53 53.5	0.38	0.377				
51.5		0.044		53.5	0.35	0.349				
52		0.037		54.5		0.300				
52.5		0.034		55	0.29	0.279				
53	0.03	0.032		55.5	0.27	0.259				
53.5		0.030		56		0.241				
54		0.028		56.5		0.225				
54.5 55		0.026 0.024		57 57.5		0.210 0.196				
55.5		0.023		58		0.130				
56		0.021		58.5		0.172				
56.5	0.02	0.020		59		0.161				
57		0.019		59.5	0.16	0.151				
57.5		0.018		60	0.15	0.142				
58		0.017		61		0.126				
58.5 59		0.016 0.015		62		0.112 0.101				
59.5		0.013		64		0.101				
60		0.014		65		0.082				

Expiry	22-Dec-16						Expiry	21-Dec-18		
Forward	ATM	25dRR	25fFly				Forward	ATM	25dRR	25fFly
45.49	33.51	-1.7	0.99				53.205	24.15	-4.35	2.51
Strike	Exchange	model		Strike	Exchange	model	Strike	Exchange	model	
5		40.498		103		0.172	48	12.22	12.341	
10		35.517		104		0.166	49	11.64	11.767	
15		30.572		105		0.161	50	11.08	11.202	
17.5		28.120		106		0.156	51	10.54	10.645	
20 25		25.686 20.923		107 108		0.152 0.147	52 53	10.01 9.50	10.095 9.551	
27.5	20.93 18.65	18.635		110		0.147	53	9.50	9.551	
30		16.440		115		0.123	55	8.53	8.485	
35		12.419		120	0.10	0.110	56	8.07	7.964	
37.5	10.62	10.629		125		0.100	57	7.62	7.458	
39		9.634		130		0.092	58	7.20	6.972	
40 41	8.99 8.39	9.005 8.403		135 140		0.085 0.078	59 60	6.79 6.40	6.527 6.136	
42		7.830		145		0.073	61	6.03	5.789	
43	7.28	7.285		150		0.068	62	5.68	5.480	
44	6.77	6.768		175	0.04	0.051	63	5.34	5.201	
45	6.29	6.280		200	0.03	0.040	64	5.02	4.946	
46		5.819					65	4.73	4.712	
46.5 47	5.61 5.40	5.599 5.386					66	4.45 4.20	4.495 4.292	
47	5.00	4.981					68	3.96	4.292	
49		4.604					69	3.74	3.923	
50		4.255					70	3.55	3.753	
51	3.94	3.932					71	3.37	3.593	
52		3.635					72	3.20	3.441	
53 54		3.360 3.107					73 74	3.06 2.92	3.297 3.160	
55		2.875					75	2.80	3.031	
56		2.660					76	2.70	2.908	
57	2.45	2.463					77	2.60	2.793	
58		2.281					78	2.51	2.683	
59		2.113 1.959					79 80	2.43	2.580	
60 61	1.95 1.81	1.816					81	2.35 2.28	2.482 2.390	
62		1.685					82	2.22	2.302	
63		1.564					83	2.15	2.218	
64		1.453					84	2.10	2.137	
65		1.350					85	2.04	2.061	
66 67	1.26 1.17	1.255 1.168					86 87	1.99 1.94	1.988 1.919	
68		1.088					88	1.90	1.853	
69		1.014					89	1.85	1.791	
70	0.94	0.946					90	1.81	1.732	
71	0.88	0.883					91	1.77	1.676	
72	0.82	0.825					92	1.73	1.624	
73 74		0.771 0.722					93	1.69 1.66	1.574	
75		0.722					95	1.62	1.526 1.480	
76		0.634					96	1.59	1.437	
77	0.59	0.595					97	1.56	1.395	
78		0.560					98	1.52	1.355	
79		0.526					99	1.49	1.317	
80 81		0.496 0.467					100 101	1.46 1.43	1.280 1.246	
82		0.441					101	1.41	1.246	
83		0.417					103	1.38	1.181	
84	0.4	0.395					104	1.35	1.151	
85		0.374								
86		0.355								
87 88		0.337 0.320								
89		0.305								
90		0.291								
91	0.29	0.277								
92		0.265								
93		0.253								
94 95		0.242				75				
95		0.232								
97		0.214								
98		0.206								
99		0.198								
100	0.2	0.191								

Expiry	29-Jan-16			Expiry	31-Mar-16					
Forward	ATM	25dRR	25fFly	Forward	ATM	25dRR	25fFly			
1060.15	11.63	-0.7	0.3	1060.35	14.53	-1.26	0.6			
Strike	Exchange	model		Strike	Exchange	model		Strike	Exchange	model
675	385.2	385.146		675	385.8	385.48		1190		2.85
700		360.146		700	360.8	360.54		1195	2.7	2.62
725 750	335.2 310.2	335.146 310.146		725 750	335.8 310.8	335.62 310.73		1200 1205	2.5	2.41 2.22
730	285.2	285.147		730	285.8	285.87		1210	2.2	2.05
800		260.148		800	260.9	261.06		1215	2	1.90
825	235.2	235.152		825	236.1	236.28		1220	1.9	1.77
850		210.160		850	211.4	211.57		1225	1.7	1.64
860		200.166		860	201.5	201.71		1230	1.6	1.53
870		190.174		870	191.7	191.86		1235	1.5	1.43
875 880	185.2 180.2	185.179 180.185		875 880	186.8 181.9	186.95 182.04		1240 1245	1.4	1.34 1.26
890		170.201		890	172.1	172.25		1250	1.3	1.18
900		160.222		900	162.4	162.50		1255	1.1	1.11
910		150.249		910	152.7	152.81		1260	1	1.05
920	140.2	140.284		920	143.1	143.19		1265	1	0.99
925	135.3	135.304		925	138.4	138.41		1270	0.9	0.94
930	130.3	130.327		930	133.7	133.65		1275	0.9	0.89
940		120.382		940	124.3	124.22		1280	0.8	0.85
950		110.449		950	115.1	114.93		1285	0.8	0.80
955 960	105.4 100.5	105.489 100.535		955 960	110.5 106	110.34 105.79		1290 1295	0.7 0.7	0.77 0.73
965	95.5	95.589		965	101.5	103.79		1300	0.7	0.73
970		90.654		970	97	96.85		1305	0.6	0.67
975	85.7	85.731		975	92.6	92.46		1310	0.6	0.64
980	80.8	80.826		980	88.2	88.13		1315	0.6	0.61
985	75.9	75.943		985	83.9	83.86		1320	0.5	0.59
990		71.089		990	79.6	79.66		1325	0.5	0.56
995	66.3	66.273		995	75.5	75.53		1330	0.5	0.54
1000	61.5	61.504		1000	71.5	71.48		1335	0.5	0.52
1005	56.8	56.794		1005	67.5	67.52		1340	0.4	0.50
1010 1015	52.2 47.6	52.156 47.607		1010 1015	63.6 59.8	63.64 59.86		1345 1350	0.4	0.48 0.46
1013		43.164		1020	56.1	56.17		1330	0.4	0.40
1025	38.9	38.848		1025	52.5	52.59				
1030	34.7	34.681		1030	49.1	49.13				
1035	30.7	30.689		1035	45.8	45.78				
1040	26.9	26.899		1040	42.5	42.55				
1045	23.3	23.338		1045	39.4	39.46				
1050				1050						
1055				1055						
1060 1065		14.281 11.865		1060 1065		31.00 28.48				
1003		9.761		1070		26.11				
1075		7.961		1075	24	23.90				
1080	6.4	6.445		1080	22	21.85				
1085	5.1	5.187		1085	20	19.95				
1090		4.156		1090		18.19				
1095		3.319		1095		16.57				
1100		2.646		1100	15	15.09				
1105		2.109		1105	13.7	13.73				
1110 1115		1.681 1.344		1110 1115		12.49 11.36				
1113		1.077		1113		10.33				
1125		0.868		1125		9.39				
1130		0.703		1130		8.54				
1135	0.6	0.574		1135		7.76				
1140		0.472		1140						
1145		0.391		1145		6.42				
1150		0.326		1150		5.85				
1155				1155		5.32				
1160 1165		0.233 0.198		1160 1165		4.85 4.43				
1170		0.198		1170		4.43				
1175				1175		3.70				
1180				1180						

Expiry	30-Jun-16						Expiry	30-Dec-16					
Forward	ATM	25dRR	25fFly				Forward	ATM 16.93	25dRR	25fFly 0.34			
1061.58	15.57	-1.47	0.72				1065.5	16.93	-0.91	0.34			
Strike	Exchange	model		Strike	Exchange	model	Strike	Exchange	model		Strike	Exchange	model
675	387.4	387.60		1190		10.31	675	391.5	392.23		1195		27.81
700 725	362.5 337.7	362.86 338.14		1195 1200		9.73 9.18	700 725	367.0 342.8	367.66 343.24		1200 1205		26.74 25.71
750	313	313.48		1200		8.66	750	318.8	319.02		1203		24.72
775	288.4	288.87		1210		8.18	775	295.1	295.07		1215		23.77
800	264	264.36		1215		7.73	800	271.7	271.47		1220		22.85
825 850	239.8	239.99		1220	7.3 6.9	7.30	825 850	248.8	248.33		1225		21.96
860	215.9 206.5	215.86 206.31		1225 1230		6.91 6.53	860	226.3 217.4	225.76 216.91		1230 1235		21.11
870	197.1	196.82		1235		6.19	870	208.7	208.19		1240		19.49
875	192.4	192.10		1240		5.86	875	204.3	203.87		1245		18.73
880	187.7	187.41		1245		5.56	880	200.0	199.59		1250		18.00
890 900	178.5 169.3	178.09 168.87		1250 1255		5.27 5.00	890 900	191.5 183.0	191.12 182.80		1255 1260		17.29 16.61
910	160.2	159.76		1260		4.75	910	174.8	174.62		1265		15.96
920	151.2	150.79		1265	4.7	4.51	920	166.8	166.60		1270		15.34
925	146.8	146.35		1270		4.29	925	162.8	162.66		1275		14.73
930	142.4	141.96		1275		4.09	930	158.9	158.75		1280		14.16
940 950	133.7 125.1	133.29 124.79		1280 1285		3.89 3.71	940 950	151.2 143.7	151.08 143.58		1285 1290		13.60 13.06
955	120.8	120.61		1203		3.54	960	136.3	136.27		1290		12.55
960	116.6	116.48		1295	3.5	3.38	965	132.7	132.69		1300		12.06
965	112.5	112.40		1300		3.23	970	129.1	129.16		1305		11.59
970	108.4	108.38		1305		3.09	975	125.6	125.68		1310		11.13
975 980	104.4 100.5	104.41 100.50		1310 1315		2.96 2.84	980 985	122.1 118.6	122.25 118.88		1315 1320		10.70 10.28
985	96.6	96.65		1313		2.72	990	115.2	115.55		1325		9.87
990	92.8	92.86		1325		2.61	995	111.9	112.28		1330		9.49
995	89	89.14		1330		2.51	1000	108.7	109.07		1335		9.12
1000	85.3	85.48		1335	2.5	2.42	1005	105.6	105.90		1340		8.76
1005 1010	81.7 78.1	81.89 78.38		1340 1345		2.33	1010 1015	102.5 99.5	102.80 99.75		1350 1360		8.10 7.48
1010	74.6	74.93		1350		2.16	1020	96.5	96.76		1370		6.92
1020	71.2	71.56		1355		2.09	1025	93.6	93.82		1375		6.65
1025	68	68.27		1360		2.02	1030	90.7	90.94		1380		6.40
1030	64.8	65.07		1365		1.95	1035	87.9	88.12		1390		5.92
1035 1040	61.7 58.7	61.94 58.90		1370 1375	1.9 1.8	1.89 1.83	1040 1045	85.1 82.4	85.36 82.65		1400 1410		5.48 5.08
1045	55.7	55.96		1380		1.77	1050	79.8	80.01		1410		4.71
1050	52.9	53.10		1385	1.7	1.72	1055	77.2	77.42		1425		4.53
1055	50.1	50.33		1390		1.67	1060	74.6	74.89		1430		4.37
1060	47.4	47.67		1395		1.62	1065	72.1	72.42		1450		3.77
1065 1070	45 42.6	45.10 42.63		1400 1405	1.5 1.4	1.58 1.53	1070 1075	69.8 67.5	70.01 67.66		1475 1500		3.15 2.65
1075	40.3	40.26		1403	1.4	1.49	1080	65.3	65.36		1525		2.03
1080	38.1	38.01		1420		1.41	1085	63.1	63.13		1550		1.91
1085	35.9	35.87		1425		1.38	1090	61.0	60.95		1575		1.64
1090		33.83		1430		1.35	1095	59.0	58.84		1600		1.42
1095 1100		31.90 30.07		1440	1.1	1.28	1100 1105	57.0 55.0	56.78 54.79		1625	1.0	1.24
1105		28.34					1110	53.1	52.85				
1110		26.71					1115	51.2	50.96				
1115		25.16					1120	49.4	49.14				
1120		23.70					1125	47.7	47.36				
1125 1130		22.33 21.03					1130 1135	45.9 44.3	45.65 43.98				
1135		19.81					1140	42.7	42.37				
1140		18.66					1145	41.1	40.81				
1145		17.58					1150	39.6	39.30				
1150		16.56					1155	38.1	37.84				
1155 1160		15.60 14.70					1160 1165	36.7 35.3	36.43 35.07				
1165		13.85					1170	33.9	33.75				
1170		13.05					1175	32.6	32.47				
1175		12.30					1180	31.4	31.24				
1180	11.6 11	11.59 10.93					1185 1190	30.2 29.0	30.06 28.91				

COPPE	K	Exchange:	COMEX								
Expiry Forward	31-Jan-16 ATM	25dRR	25fFly	Expiry Forward	31-Mar-16 ATM	25dRR	25fFly	Expiry Forward	30-Jun-16 ATM	25dRR	25fFly
2.12992	21.75	-2.33	0.48	2.14054	24.44	-2.58	0.57	2.143	24.66	-2.7	0.6
Strike	Exchange	model		Strike	Exchange	model		Strike	Exchange	model	
0.25	1.8800	1.87993		0.25	1.8915			0.25	1.8965	1.89300	
0.5	1.6300	1.62993		0.5	1.6415			0.5	1.6465	1.64304	
0.75	1.3800	1.37993		0.75	1.3915			0.75	1.3965	1.39334	
1.25	1.1300 0.8800	1.12993 0.87995		1.05	1.1415 1.0915			1 1.05	1.1465 1.0965	1.14456 1.09495	
1.3	0.8300	0.82998		1.1	1.0415			1.1	1.0465	1.04538	
1.35	0.7800	0.78001		1.15	0.9915	0.99119		1.15	0.9965	0.99586	
1.4	0.7300	0.73007		1.2	0.9415			1.2	0.9465	0.94641	
1.45 1.5	0.6800 0.6300	0.68014		1.25 1.3	0.8915			1.25	0.8965	0.89704 0.84779	
1.55	0.5800	0.63024 0.58038		1.35	0.8415 0.7915			1.3	0.8465 0.7965	0.84779	
1.6	0.5300	0.53057		1.4	0.7415			1.4	0.7465	0.74986	
1.65	0.4805	0.48082		1.45	0.692	0.69326		1.45	0.697	0.70132	
1.7	0.4305	0.43114		1.5	0.6425			1.5	0.648	0.65318	
1.75 1.8	0.3810 0.3320	0.38157 0.33219		1.55 1.6	0.5935 0.5445			1.55	0.5995 0.552	0.60561 0.55875	
1.82	0.3320	0.33213		1.65	0.4965			1.65	0.5055	0.53873	
1.83	0.3030	0.30273		1.7	0.449			1.7	0.46	0.46794	
1.84	0.2930	0.29296		1.75	0.4025	0.40216		1.75	0.416	0.42441	
1.85	0.2835	0.28321		1.8	0.357	0.35625		1.8	0.3745	0.38239	
1.86	0.2735	0.27350		1.85	0.3135			1.85	0.3345	0.34210	
1.87 1.88	0.2640 0.2545	0.26382 0.25419		1.9 1.95	0.2715 0.2305			1.9 1.95	0.297 0.262	0.30375 0.26752	
1.89	0.2450	0.24460		2	0.2303			2	0.2295	0.23356	
1.9	0.2355	0.23507		2.05	0.157			2.05	0.1995	0.20203	
1.91	0.2260	0.22560		2.1	0.126			2.1	0.1725	0.17306	
1.92	0.2165	0.21619		2.15	0.0995			2.15	0.148	0.14674	
1.93	0.2075	0.20687		2.2	0.077			2.2	0.1265	0.12319	
1.94 1.95	0.1980 0.1890	0.19763 0.18848		2.25	0.0585 0.044			2.25	0.1075 0.0905	0.10266 0.08504	
1.96	0.1800	0.17943		2.35	0.032			2.35	0.076	0.07012	
1.97	0.1710	0.17050		2.4	0.024			2.4	0.063	0.05760	
1.98	0.1620	0.16170		2.45	0.018			2.45	0.0525	0.04716	
1.99	0.1530	0.15303		2.5	0.0135			2.5	0.043	0.03851	
2.01	0.1445 0.1360	0.14451		2.55	0.01 0.0075			2.55	0.0355 0.029	0.03139 0.02555	
2.01	0.1360	0.13615 0.12797		2.6 2.65	0.0075			2.6 2.65	0.029	0.02555	
2.03	0.1195	0.11998		2.7	0.004			2.7	0.019	0.01693	
2.04	0.1115	0.11219		2.75	0.003	0.00292		2.75	0.015	0.01380	
2.05	0.1040	0.10461		2.8	0.002			2.8	0.012	0.01128	
2.06	0.0965	0.09727		2.85	0.0015			2.85	0.0095	0.00926	
2.07	0.0895 0.0830	0.09017 0.08333		2.9 2.95	0.001 0.001			2.9 2.95	0.0075 0.006	0.00764 0.00633	
2.09	0.0830	0.08333		3	0.0001			3	0.005	0.00538	
2.1	0.0700	0.07048		3.05	0.0005			3.05	0.004	0.00443	
2.11	0.0645	0.06449		3.1	0.0005	0.00062		3.1	0.003	0.00375	
2.12	0.0585	0.05881		3.15	0.0005			3.15	0.0025	0.00320	
2.13 2.14	0.0535	0.05345		3.2	0.0005			3.2	0.002	0.00275	
2.14	0.0485	0.04840 0.04368		3.25 3.3	0.0005 0.0005			3.25	0.0015 0.001	0.00237 0.00206	
2.16	0.0395	0.03929		3.35	0.0005			3.35	0.001	0.00180	
2.17	0.0355	0.03522		3.4	0.0005	0.00025		3.4	0.0005	0.00159	
2.18	0.0320			3.45	0.0005						
2.19	0.0285	0.02804		3.5	0.0005						
2.2	0.0255 0.0225	0.02491 0.02207		3.55	0.0005 0.0005						
2.21	0.0223			3.65	0.0005						
2.23	0.0175			3.7	0.0005						
2.24	0.0155	0.01516		3.75	0.0005						
2.25	0.0135			3.8	0.0005						
2.26	0.0115 0.0100			3.85	0.0005 0.0005						
2.27 2.28	0.0100	0.01027 0.00900		3.9 3.95	0.0005						
2.29	0.0075	0.00789		4	0.0005						
2.3	0.0065	0.00691		4.05	0.0005	0.00005					
2.31	0.0055	0.00605		4.1	0.0005						
2.32	0.0045	0.00530		4.15	0.0005						
2.33	0.0040 0.0035	0.00465 0.00407		4.2	0.0005 0.0005						
2.34	0.0033	0.00358		4.23	0.0003						
2.36	0.0035			1.5	2.0003						
2.37	0.0020	0.00276				70					
2.38	0.0015	0.00243				78					
2.39	0.0015										
2.41	0.0010 0.0010	0.00190 0.00168									
2.41	0.0010	0.00168									
2.43	0.0005	0.00132									
2.44	0.0005	0.00118									

Stocks & Indices

GOOGLE											
Expiry	15-Jan-16										
Forward	ATM	25dRR	25fFly								
778.879	19.8	-4	0.45								
strike	bid	ask	model	strike	bid	ask	model	strike	bid	ask	model
260	517.00	520.5	518.88	600	177.8	180.7	178.99	767.5	18.9	20.4	19.68
270	507.00	510.7	508.88	602.5	174.9	178.2	176.50	770	17.4	18	17.99
275	502.1	505.7	503.88	605	172.8	175.7	174.01	772.5	15.9	17.1	16.37
280	497.1	500.7	498.88	607.5	169.9	173.2	171.51	775	14.3	15	14.83
285	492.2	495.4	493.88	610 612.5	167.8 165	170.7	169.02	777.5 780	12.9	13.6	13.37
290 295	487.1 482.2	490.4 485.4	488.88 483.88	615	162.8	168.2 165.7	166.53 164.04	782.5	11.8 10.3	12.2 11.1	11.98 10.69
300	477.1	480.4	478.88	617.5	159.8	163.2	161.55	785	9.3	10	9.47
305	472	475.4	473.88	620	157.8	160.7	159.06	787.5	8.3	9	8.35
310	467.1	470.4	468.88	622.5	154.8	158.2	156.57	790	7.3	8	7.31
315	462.1	465.4	463.88	625	152.8	155.8	154.08	792.5	6.2	7	6.37
320		460.4	458.88	627.5	149.8	153.3	151.59	795	5.5	6	5.51
325	452.2	455.4	453.88	630	147.9	150.7	149.10	797.5	4.7	5.3	4.75
330		450.4	448.88	632.5	144.8	148.2	146.61	800	4.1	4.4	4.11
335 340	442.2 437.6	445.4 440.4	443.88 438.88	635 637.5	142.8 139.9	145.7 143.4	144.12 141.63	802.5 805	3.5 2.95	3.8	3.52 2.96
345		435.4	433.88	640	137.8	140.8	139.14	807.5	2.45	2.75	2.50
350		430.5	428.88	642.5	134.9	138.3	136.66	810	2.1	2.35	2.13
355	422.3	425.5	423.88	645	132.9	135.8	134.17	812.5	1.8	1.95	1.81
360	417.3	420.5	418.88	647.5	129.8	133.3	131.69	815	1.45	1.65	1.53
365	412.2	415.5	413.88	650	127.9	130.8	129.20	817.5	1.3	1.4	1.30
370		410.5	408.88	652.5	125	128.3	126.72	820	1	1.2	1.11
375		405.5	403.88	655	122.6	125.8	124.24	822.5	0.9	1	0.95
380 385	397.6 392.3	400.5 395.5	398.88 393.88	657.5 660	119.9 117.9	123.4 120.8	121.76 119.28	825 827.5	0.7	0.85	0.81
390	387.2	390.5	388.88	662.5	114.9	118.3	116.80	830	0.45	0.6	0.59
395	382.2	385.5	383.88	665	112.9	116	114.32	832.5	0.35	0.55	0.51
400		380.5	378.88	667.5	110	113.4	111.84	835	0.3	0.5	0.44
405	372.3	375.5	373.88	670	108	110.9	109.36	837.5	0.3	0.45	0.38
410		370.5	368.88	672.5	105.1	108.4	106.89	840	0.2	0.4	0.32
415	362.2	365.5	363.88	675	103	105.9	104.41	842.5	0.15	0.35	0.28
420	357.7	360.5	358.88	677.5	100.1	103.4	101.94	845	0.1	0.45	0.24
425 430	352.3 347.2	355.5 350.5	353.88 348.88	680 682.5	97.6 95.2	101 98.4	99.47 97.00	847.5 850	0.1	0.6	0.21
435	342.2	345.5	343.88	685	92.6	96.1	94.53	830	0.03	0.3	0.10
440		340.5	338.88	687.5	90.2	93.5	92.06				
445	332.3	335.5	333.88	690	88.1	91	89.60				
450	327.8	330.5	328.88	692.5	85.2	88.6	87.14				
455	322.4	325.5	323.88	695	82.7	86	84.68				
460	317.7	320.5	318.88	697.5	80.3	83.6	82.22				
465	312.8	315.5	313.88	700	78.2	81.1	79.77				
470 475	307.8 302.5	310.5 305.5	308.88 303.88	702.5 705	75.4 73.1	78.7	77.32				
480		300.5	298.88	707.5	70.3	76.2 73.8	74.88 72.44				
485	292.8	295.8	293.88	710	68.4	71.3	70.01				
490	287.8	290.8	288.88	712.5	65.4	68.9	67.59				
495	282.8	285.8	283.88	715	63.5	66.5	65.18				
500	277.5	280.5	278.88	717.5	61.3	64.2	62.77				
505		275.5	273.88	720	58.3	61.6	60.38				
510	267.8	270.5	268.89	722.5	55.8	59.2	58.00				
515	262.8	265.5	263.89	725	54	56.9	55.63				
520 525	257.6 252.8	260.5 255.5	258.89 253.89	727.5 730	51.7 49.3	54.5 52.2	53.28 50.95				
530		250.7	248.90	732.5	46.9	49.9	48.63				
535	242.3	245.6	243.90	735	44.7	47.6	46.34				
540		240.6	238.90	737.5	42.3	45.3	44.07				
545		235.6	233.91	740	39.9	43.1	41.82				
550		230.6	228.91	742.5	38	40.9	39.60				
555		225.6	223.92	745	35.5	38.7	37.42				
560		220.6	218.92	747.5	33.9	36.6	35.26				
565 570		215.6 210.6	213.93 208.94	750 752.5	31.8 29.2	34.5 32.5	33.15 31.07				
575		205.6	203.94	752.5	27.2	30.4	29.04				
580		200.8	198.95	757.5	25.2	28.5	27.06				
585		195.6	193.96	760	24.1	26.7	25.13				
590	187.9	190.6	188.97	762.5	22.2	24.7	23.25				
595	182.8	185.6	183.98	765	20.6	22.7	21.43				

Expiry	13-Mar-16							Expiry	20-Jan-17			Expiry	19-Jan-18		
Forward	ATM	25dRR	25fFly					Forward	ATM	25dRR	25fFly	Forward	ATM	25dRR	25fFly
779.474	26.33	-4.24	0.4					777.776	27.67	-5.7	0.7	775.919	28.2	-5.28	0.63
strike	bid	ask	model	strike	bid	ask	model	strike	bid	ask	model	strike	bid	ask	model
330	447.8	451.30	449.71	745	57.5	59.8	58.97	260	517.50	522.5	520.08	370		420	
340	437.80	441.4	439.73	750	54.6	56.5	55.70	270	508	512.5	510.27	380		411	408.8
350	427.8	431.4	429.76	755	51.2	53.4	52.52	280	498	502.5	500.47	390		402	399.8
360	417.6	421.4	419.78	760	48.5	50.3	49.45	290	488	493	490.68	400		393	390.9
370	407.9	411.5	409.81	765	45.4	47.3	46.47	300	478.5	483	480.90	410		384	382.0
380	397.9	401.5	399.84	770	42.6	44.3	43.59	310	468.5	473.5	471.14	420		375.5	
390	387.7	391.5	389.87	775	39.9	41.6	40.82	320	459.5	464	461.38	430		366.5	364.5
400 410	378 368	381.5 371.5	379.91 369.95	780 785	37.5 34.7	38.9 36.2	38.16 35.60	330 340	449.8 440.1	454 444.5	451.64 441.92	440		358 349.5	355.9 347.4
420	357.9	361.5	359.99	790	32.3	33.9	33.15	350	430	434.5	432.21	460		343.3	339.0
430	348	351.5	350.04	795	30.1	31.5	30.80	360	420.8	425.5	422.53	470		332.5	330.6
440	338	341.5	340.10	800	28	29.1	28.57	370	411.2	415.5	412.88	480		325	322.4
450	328.3	331.8	330.15	805	25.7	27.2	26.44	380	401.6	406	403.25	490	312	316.5	314.2
460	318.1	322	320.22	810	23.8	25.1	24.43	390	391.5	396.5	393.65	500	304	308.5	306.2
470	308.5	312	310.29	815	21.9	23.1	22.52	400	382	387	384.09	520		292.5	
480	298.5	302	300.37	820	20.1	21.3	20.72	410	372.5	377.5	374.57	540		277.5	
490	288.7	292	290.45	825	18.4	19.6	19.02	420	363.6		365.08	560		263	260.1
495 500	283.4 278.9	287 282	285.50 280.54	830 835	17.1 15.6	18.2 16.7	17.43 15.94	430 440	353.5 344.8	358.5 349	355.63 346.24	580		248.5 234.5	245.6 231.6
500	278.9	277.2	280.54	840	14.1	15.2	14.55	440	344.8	339.5	336.89	620		234.5	
510	268.9	277.2	270.65	845	12.7	13.9	13.26	460	326.3	330.5	327.60	640		207.5	
515	264.1	267.3	265.70	850	11.7	12.7	12.06	470	317.1	321.5	318.39	660		194.5	
520	259	262.4	260.76	855	10.5	11.6	10.95	480	307.5	312	309.24	670		188.5	186.1
525	253.8	257.4	255.82	860	9.5	10.5	9.93	490	298	303	300.16	680		182	180.1
530	249.2	252.5	250.89	865	8.5	9.6	8.99	500	289	294	291.17	690	171.5	176	174.1
535	244	247.5	245.96	870	7.9	8.8	8.13	510	280.5		282.26	700		170.5	168.4
540	239	242.5	241.03	875	6.9	8	7.35	520	272.1		273.45	710		165	162.7
545	233.9	237.5	236.11	880	6.4	7.3	6.63	530	263.1	267.5	264.74	720		158.5	157.1
550	229	232.8	231.19	885	5.8	6.5	5.98	540	255	259.5	256.13	730		154.2	151.7
555 560	224.6 219.8	227.9 223	226.28 221.37	890 895	5.1 4.5	5.3	5.39 4.86	550 560	246.1 237.5	251 242	247.62 239.23	740 750		148.8 143	146.4 141.2
565	214.9	218.1	216.47	900	4.5	4.8	4.38	570	237.3	233.5	230.94	760		138	136.1
570	209.5	213	211.58	905	3.7	4.3	3.95	580	220.5	225	222.78	770		133.3	131.1
575	205	208.4	206.70	910	3.3	3.8	3.56	590	213	217.5	214.73	780		128.5	126.3
580	200.3	203.5	201.83	915	2.95	3.7	3.21	600	205	209.5	206.81	790		123.6	
585	195.5	198.7	196.97	920	2.55	3.1	2.89	610	197.1	202	199.02	800	115	119.1	117.0
590	190.6	193.8	192.12	925	2.35	2.95	2.61	620	189.5	194	191.36	810	110.5	114.6	112.5
595	185.8	189	187.29	930	2.05	2.75	2.35	630	182	186.3	183.83	820		111	108.2
600	181	184	182.47	935	1.75	2.5	2.13	640	174.6		176.44	830		106	103.9
605	175.5 171.3	179.4	177.67	940	1.6	2.05	1.92	650	167.2	171.6	169.19	840		101.9	99.8
610 615	1/1.3	174.6 169.8	172.88 168.12	945 950	1.45	2.1 1.65	1.74 1.57	660 680	160 146	164.5 150.4	162.09 148.32	850 860		97.9 94.1	95.8 92.0
620	161.9	165.1	163.38	955	1.1	1.5	1.42	700	133.3	137	135.16	880		86.7	84.6
625	156.6	160.4	158.66	960	1	1.4	1.29	720	120.6		122.63	900		79.8	77.7
630	152.4	155.7	153.96	965	0.85	1.25	1.17	740	108.7	111.2	110.74	920		73.5	71.3
635	147.8	151	149.30	970	0.75	1.25	1.06	760	97.8		99.52	940		68.5	65.4
640	142.6	146.4	144.66	975	0.65	1.1	0.97	780	87.5	89.7	88.99	960		62.2	59.9
645	138.1	141.8	140.06	980	0.55	1.05	0.88	800	76.8	79.9	79.17	980		56.8	54.8
650	133.9	137.2	135.49					820	69.2	70.9	70.06	1000		52.1	50.2
655	129.3	132.7	130.95					840	60.1	62.8	61.72	1020		48.5	45.9
660 665	125 120.6	128.2 123.6	126.46 122.01					860 880	53.6 47.1	55.3 48.5	54.14 47.32	1040		43.6 39.9	42.0 38.4
670	116.1	119.4	117.60					900	40.9	42.6	41.23	1080		39.9	35.2
675	110.1	119.4	113.25					920	35.6		35.84	1100		33.5	32.2
680	107.4	110.5	108.94					940	30.9	32.5	31.11	1120		32	29.5
685	103.2	106.2	104.68					960	26.7	28.1	26.97	1140		28.1	27.0
690	99	102	100.49					980	23.1	24.4	23.37	1160		25.7	24.7
695	94.9	97.9	96.35					1000	19.9	21.1	20.25	1180	21.3	23.5	22.7
700	90.7	93.8	92.27					1020	17.1	18.3	17.55				
705	86.7	90	88.27					1040	14.7	15.8	15.23				
710	82.7	85.9	84.33					1060	12.6		13.22				
715 720	78.9 75.1	82 78.4	80.46 76.67					1080 1100	10.7 9.2	12 10.3	11.50 10.02				
720	75.1 71.4	78.4	76.67					1100	7.9		10.02 8.75				
730	67.5	70.9	69.33					1140	6.7		7.65				
735	64.1	67.3	65.79					1160	4.5		6.70				
740	61.2	63.2	62.33					1180	4.9		5.88				

DAX										
Evel	15 lon 10			F	, 10 84 10					
	15-Jan-16	25400	25451.	Expire			25451			
Forward 10769.09	ATM 20.822	25dRR -4.01	25fFly 0.37	Forward 10763.5		25dRR -5.327	25fFly 0.42			
strike	exchange	model		strike	exchange	model		strike	exchange	model
7500	3270.5	3269.45		550				12500	16.9	19.48
7600	3170.5	3169.54		700				12550		17.83
7700	3070.5	3069.65		750				12600		16.33
7800 7900	2970.5 2870.6	2969.76 2869.89		780 800				12650 12700		14.96 13.72
8000	2770.6	2770.04		820				12750		12.58
8100	2670.6	2670.21		840				12800		11.54
8200	2570.7	2570.41		850	0 2305.9	2307.89		13000	5.6	8.17
8300	2470.8	2470.63		860				13200		5.77
8400	2370.9	2370.89		865				13400		4.05
8500 8600	2271 2171.2	2271.19 2171.52		870 875				13600 13800		2.84 1.99
8700	2071.5	2071.91		880				14000		1.39
8800	1971.8	1972.36		885				14200		0.97
8850	1922	1922.60		890				14400		0.69
8900	1872.2	1872.87		895	0 1878.1	1878.60		14600	0.5	0.49
8950	1822.4	1823.15		900	0 1831.3	1831.69		14800	0.4	0.35
9000	1772.7	1773.46		905		-		15000		0.26
9050	1723	1723.79		910				15200		0.19
9100	1673.4	1674.14		915				15400		0.14
9150 9200	1623.7 1574.2	1624.53 1574.94		920				15600 15800		0.11
9200	1574.2	1574.94		925				15800		0.09
9300	1475.2	1475.86		935				16200		0.07
9350	1425.8	1426.38		940				16400		0.05
9400	1376.4	1376.94		945						
9450	1327.1	1327.56		950	0 1377.4	1375.72				
9500	1277.9	1278.24		955						
9550	1228.8	1229.00		960						
9600	1179.8	1179.87		965						
9650 9700	1130.9 1082.1	1130.85 1081.96		970 975						
9750	1033.5	1033.23		980						
9800	985.1	984.70		985						
9850	936.9	936.40		990						
9900	889	888.39		995						
9950	841.4	840.72		1000	0 958.4	956.54				
10000	794.1	793.44		1005	0 919.2	917.50				
10050	747.2	746.60		1010						
10100	700.9	700.28		1015						
10150 10200	655.1 610.1	654.57 609.55		1020						
10250	565.8	565.32		1025						
10300	522.4	521.99		1035						
10350	480.1	479.68		1040						
10400	438.8	438.51		1045	0 629.5	629.81				
10450	398.9	398.61		1050	0 596.6	597.28				
10500	360.3	360.12		1055						
10550	323.2	323.18		1060						
10600 10650	287.7 254	287.95 254.54		1065						
10700	222.6	234.54		1070						
10750	193	193.76		1075						
10800	165.8	166.64		1085						
10850	141	141.78		1090						
10900	118.8	119.25		1095						
10950	98.8	99.11		1100						
11000	81.5	81.39		1105						
11050	66.5	66.05		1110						
11100	53.7	53.02		1115						
11150 11200	43 34.1	42.20 33.36		1120 1125						
11250	26.9	26.27		1130						
11300	21	20.67		1135						
11350	16.3	16.27		1140						
11400	12.6	12.84		1145	0 153.2	152.04				
11450	9.7	10.17		1150						
11500	7.5	8.07		1155						
11550	5.8	6.42		1160						
11600	4.4	5.12		1165						
11650 11700	3.4 2.6	4.07 3.24		1170 1175						
11750	2.6	2.57		11/5						
11800	1.6	2.04		1185						
11850	1.3	1.61		1190	0					
11900	1.5	1.26		1195						
11950	0.8	0.99		1200						
12000	0.6	0.78		1205						
12050	0.5	0.61		1210						
12100	0.4	0.47		1215						
12150	0.4	0.37		1220	0 33.1	33.66				

	16-Dec-16	3E4D2	JEffh.						15-Dec-17	JE 4DD	2555
Forward 10825.48	ATM 21.00	25dRR -5.29	0.47					Forward 10914.95	ATM 20.26	25dRR -4.51	25fFly 0.59
strike	exchange	model		strike	exchange	model		strike	exchange	model	
1000	9839.4	9826.17		12500	270.9	265.97		2000	8925.9	8924.05	
1800	9037.5	9029.35		12600	248.9	244.12		2200	8726	8726.33	
2000	8837.1	8830.31		12700	228.5	223.93		2400	8526.5	8528.81	
2200 2400	8636.8 8436.6	8631.35 8432.48		12800 12900	209.5 191.9	205.34 188.29		2600 2800	8327.4 8128.6	8331.52 8134.44	
2600	8236.5	8233.70		13000	175.4	172.68		3000	7930.3	7937.60	
2800	8036.5	8035.01		13100	160.3	158.42		3200	7732.5	7740.99	
3000	7836.7	7836.42		13200	146.3	145.41		3400	7535.1	7544.61	
3200 3400	7637 7437.6	7637.96 7439.64		13400 13600	121.7 101.1	122.66 103.68		3600 3800	7338.3 7142.1	7348.48 7152.60	
3600	7238.4	7241.47		13800	83.6	87.87		4000	6946.4	6956.98	
3800	7039.3	7043.45		14000	69.2	74.66		4200	6751.3	6761.67	
4000	6840.6	6845.59		14200	57.2	63.61		4400	6556.9	6566.69	
4200	6642.2	6647.91		14400	47.3	54.35		4600	6363.3	6372.12	
4400 4600	6444 6246.3	6450.43 6253.15		14600 14800	39.2 32.5	46.59 40.07		4800 5000	6170.3 5978.2	6177.96 5984.25	
4800	6048.9	6056.10		15000	27.1	34.58		5200	5786.9	5791.07	
5000	5851.9	5859.29		16000	11.5	17.13		5400	5596.6	5598.51	
5200	5655.5	5662.74		17000	5.6	8.68		5600	5407.3	5406.66	
5400 5600	5459.5 5264.1	5466.50 5270.63		18000	3.2	4.48		5800 6000	5219 5031.9	5215.75 5026.04	
5800	5264.1	5075.22						6200	5031.9 4846.3	4837.73	
6000	4875.4	4880.32						6400	4661.9	4651.01	
6200	4682.2	4686.00						6600	4479.3	4466.10	
6400	4489.9	4492.34						6800	4298.2	4283.20	
6600	4298.5	4299.54						7000	4119	4102.53	
6800 7000	4108.4 3919.4	4107.84 3917.45						7200 7400	3941.9 3766.9	3924.28 3748.66	
7200	3732	3728.61						7400	3594.5	3576.03	
7400	3546.1	3541.57						7800	3424.6	3406.73	
7600	3362.2	3356.66						8000	3257.3	3240.83	
7800	3180.3	3174.16						8200	3093.4	3078.41	
8000 8200	3000.9 2824.2	2994.38 2817.61						8400 8600	2932.5 2774.9	2919.67 2764.98	
8400	2650.4	2644.11						8800	2621.2	2614.47	
8600	2479.9	2474.17						9000	2471.1	2468.26	
8700	2396	2390.62						9200	2324.9	2326.29	
8800	2312.9	2308.01						9400	2183.3	2188.41	
8900 9000	2231 2149.8	2226.40 2145.82						9600 9800	2045.9 1913	2054.52 1924.56	
9100	2069.8	2066.30						9900	1848.6	1861.03	
9200	1990.9	1987.89						10000	1785.2	1798.49	
9300	1913.2	1910.63						10100	1723	1736.94	
9400	1837	1834.57						10200	1661.6	1676.37	
9500	1761.7	1759.76						10300	1602.6	1616.79 1558.18	
9600 9700	1687.5 1614.7	1686.24 1614.06						10400 10500	1544 1486.5	1500.56	
9800	1543.7	1543.25						10600	1430.8	1443.92	
9900	1473.6	1473.85						10700	1376.2	1388.25	
10000	1405	1405.91						10800	1323.3	1333.57	
10050	1371.4	1372.49						10900	1271	1279.87	
10100 10150	1338.2	1339.45 1306.80						11000 11100	1220.7	1227.15 1175.43	
10200	1273	1274.53						11200	1171.5	1124.69	
10250	1240.7	1242.65						11300	1076.7	1074.96	
10300	1209.1	1211.16						11400	1031.6	1026.29	
10350	1177.8	1180.08 1149.40						11600	945	933.82	
10400 10450	1147 1116.6	1119.40						11800 12000	863.2 787.1	848.26 769.52	
10500	1086.6	1089.28						12200	715.5	697.43	
10550	1056.9	1059.84						12400	649.6	631.72	
10600	1028.1	1030.83						12600	588.2	572.02	
10650	999.2	1002.25						12800	531.3	517.91	
10700 10750	971.2 943.2	974.10 946.39						13000 13200	478.8 430.8	468.98 424.79	
10800	916	919.12						13400	386.8	384.86	
10850	889.2	892.29						13600	346.9	348.73	
10900	863	865.91						13800	310.8	315.95	
10950	837.1	839.99						14000	277.7	286.16	
11000 11050	811.6 786.6	814.53 789.53									
11100	762.3	764.98									
11150	738.1	740.88									
11200	714.7	717.23									
11300	669.5	671.27					82				
11400 11500	625.6	627.15 584.87									
11500	584.2 544.5	544.47									
11700	506.8	505.96									
11800	471	469.35									
11900	436.8	434.65									
12000	405	401.87									

SPX									
Expiry	15-Jan-16								
Forward	ATM	25dRR	25fFly						
2041.841	15.42	-4.86	0.06						
strike	exchange	model		strike	exchange	model	strike	exchange	model
300 400	1/41.6	1741.841 1641.841		1540 1545	502.05 497.05	501.927 496.933	1905 1910	139.75 134.95	139.857 135.052
500	1541.65			1550		491.939	1915	130.15	130.264
600	1441.65			1555	487.05	486.945	1920	125.45	125.496
700	1341.65	1341.841		1560		481.952	1925	120.75	120.750
750	1291.65			1565	477.05	476.959	1930	116.05	116.028
800 850	1241.65 1191.75	1241.841 1191.841		1570 1575	472.05 467.15	471.966 466.974	1935 1940	111.35 106.75	111.334 106.669
900	1141.75			1580		461.982	1945	100.75	100.003
925	1116.75			1585	457.15	456.990	1950	97.55	97.443
950	1091.75			1590		451.998	1955	93.05	92.889
975	1066.75			1595		447.007	1960	88.55	88.378
1000 1025	1041.75 1016.75	1041.841 1016.841		1600 1605	442.15 437.15	442.016 437.025	1965 1970	84.15 79.75	83.915 79.509
1023	991.75	991.841		1610		437.025	1975	75.45	75.164
1075	966.75	966.841		1615		427.045	1980	71.25	70.884
1100	941.75	941.841		1620	422.15	422.055	1985	67.05	66.674
1125	916.75	916.841		1625	417.25	417.066	1990	62.85	62.540
1150	891.75	891.841		1630		412.077	1995	58.85	58.489
1175 1200	866.85 841.85	866.841 841.841		1635 1640	407.25 402.25	407.089 402.101	2000	54.85 50.95	54.529 50.666
1200	821.85	821.842		1645	397.25	397.114	2003	47.15	46.906
1225	816.85	816.842		1650		392.127	2015	43.55	43.254
1240	801.85	801.842		1655	387.25	387.140	2020	39.95	39.716
1250	791.85	791.842		1660		382.154	2025	36.45	36.298
1260	781.85	781.842		1665	377.25	377.169	2030	33.05	33.005
1270 1275	771.85 766.85	771.842 766.842		1670 1675	372.25 367.35	372.184 367.200	2035	29.75 26.65	29.841 26.813
1273	761.85	761.842		1680		362.217	2045	23.65	23.925
1290	751.85	751.842		1685	357.35	357.234	2050	20.85	21.175
1300	741.85	741.843		1690	352.35	352.251	2055	18.1	18.567
1310	731.85	731.843		1695	347.35	347.270	2060	15.6	16.106
1320	721.85	721.843		1700		342.289	2065	13.3	13.797
1325 1330	716.85 711.85	716.843 711.844		1705 1710	337.35 332.35	337.309 332.329	2070 2075	11.2 9.4	11.647 9.664
1340	701.85	701.844		1715		327.351	2080	7.8	7.863
1350	691.85	691.845		1720		322.373	2085	6.3	6.265
1360	681.85	681.845		1725	317.45	317.396	2090	5.1	4.905
1365	676.85	676.846		1730		312.421	2095	4.1	3.792
1370	671.85	671.846		1735	307.45 302.45	307.446	2100	3.2 2.55	2.930
1375 1380	666.85 661.85	666.846 661.847		1740 1745	297.45	302.473 297.501	2105 2110	1.95	2.286 1.809
1385	656.85	656.847		1750		292.530	2115		1.451
1390	651.85	651.848		1755		287.560	2120	1.15	1.175
1395	646.85	646.848		1760		282.593	2125	0.85	0.958
1400	641.85	641.849		1765		277.626	2130		0.784
1405 1410	636.85 631.85	636.850 631.850		1770 1775		272.661	2135 2140	0.5	0.643 0.527
1410	626.85	626.851		1775		267.698 262.737	2140		0.527
1420	621.85	621.852		1785		257.778	2150		0.352
1425	616.85	616.853		1790	252.65	252.820	2155	0.15	0.287
1430	611.85	611.854		1795		247.864	2160		0.232
1435	606.85	606.855		1800		242.911	2165	0.15	0.188
1440 1445	601.95 596.95	601.856 596.858		1805 1810		237.959	2170 2175		0.151 0.121
1445	596.95	596.858		1810		233.010 228.064	21/5		0.121
1455	586.95	586.862		1820		223.121	2185	0.15	0.078
1460	581.95	581.864		1825		218.181			
1465	576.95	576.866		1830		213.243			
1470	571.95	571.868		1835		208.310			
1475 1480	566.95 561.95	566.871		1840		203.379 198.453			
1480	556.95	561.874 556.877		1845 1850		198.453			
1490	551.95	551.880		1855		1 8:3 512			
1495	546.95	546.884		1860		183.699			
1500	541.95	541.888		1865		178.791			
1505	536.95	536.892		1870		173.890			
1510 1515	531.95 526.95	531.896		1875		168.995			
1515 1520	526.95 522.05	526.901 521.906		1880 1885		164.110 159.234			

Expiry	16-Mar-16									Expiry	16-Dec-16		
Forward	ATM	25dRR	25fFly							Forward	ATM	25dRR	25fFly
2032.598	16.93	-6.29	0.13							1997.615	19.11	-8.84	0.36
strike	exchange	model		strike	exchange	model	strike	exchange	model	strike	exchange	model	
300		1732.613		1660	381.25	382.701	2125	17.5	19.384	100	1897.45	1897.854	
400	1632.45	1632.634		1670	371.65	373.222	2130	15.9	17.394	200	1798.45	1798.395	
500	1532.65	1532.672		1675	366.85	368.495	2135	14.4	15.441	300	1699.55	1699.207	
550		1482.699		1680	362.05	363.773	2140		13.537	400	1600.75	1600.288	
600		1432.734		1690	352.45	354.336	2145	11.6	11.704	500	1502.05	1501.638	
650		1382.776		1700	342.95	344.894	2150		9.985	550	1452.85	1452.421	
700 750		1332.828 1282.891		1710 1720	333.45 324.05	335.437 325.956	2155 2160	9.2 8.2	8.406 6.958	600 650	1403.65 1354.45	1403.273 1354.181	
800		1232.967		1725	319.35	321.205	2165	7.2	5.902	700	1305.35	1305.095	
825		1208.010		1730	314.55	316.446	2170		5.213	750	1256.25	1256.042	
850		1183.057		1740	305.25	306.905	2175	5.5	4.747	800	1207.25	1207.060	
875	1158.35	1158.109		1750	295.85	297.340	2180	4.7	4.395	850	1158.45	1158.198	
900		1133.164		1760	286.55	287.767	2190	3.5	3.848	900	1109.65	1109.500	
925		1108.224		1770	277.25	278.198	2200	2.6	3.400	925	1085.25	1085.215	
950		1083.290		1775	272.65	273.418	2210	1.8	2.994	950	1060.95	1060.974	
975		1058.361		1780	268.05	268.642	2220		2.638	975	1036.75	1036.775	
1000 1025		1033.438 1008.522		1790 1800	258.85 249.75	259.111 249.616	2225 2230	1.05 0.9	2.477 2.326	1000 1025	1012.45 988.35	1012.619 988.505	
1023	983.75	983.611		1810	249.75	249.010	2240		2.050	1023	964.15	964.435	
1075	958.85	958.708		1820	231.65	230.787	2250		1.802	1075	940.05	940.428	
1100	933.95	933.811		1825	227.15	226.126	2260		1.578	1100	916.05	916.487	
1125	909.05	908.916		1830	222.65	221.488	2270	0.5	1.374	1125	892.05	892.613	
1150	884.15	884.023		1840	213.75	212.288	2275	0.45	1.280	1150	868.15	868.806	
1175	859.25	859.135		1850	204.95	203.177	2280	0.4	1.192	1175	844.35	845.067	
1200	834.35	834.254		1860	196.25	194.159	2290		1.029	1200	820.55	821.398	
1225	809.55	809.382		1865	191.85	189.687	2300	0.3	0.886	1225	796.85	797.799	
1250	784.65	784.522		1870	187.55	185.243	2310		0.761	1250	773.25	774.352	
1260	774.75 759.85	774.583 759.679		1875 1880	183.25 178.95	180.826	2320 2325	0.3	0.651 0.601	1275	749.75	751.161 728.183	
1275 1280	754.85	754.712		1890	170.45	176.439 167.758	2340	0.25	0.469	1300 1325	726.35 702.95	705.348	
1300	734.95	734.712		1900	162.05	159.211	2350	0.23	0.395	1350	679.75	682.573	
1310	725.05	724.934		1910	153.75	150.809	2550	0.2	0.555	1375	656.65	659.784	
1320	715.15	715.015		1920	145.55	142.565				1400	633.65	636.920	
1325	710.15	710.058		1925	141.55	138.506				1425	610.75	613.952	
1330	705.15	705.101		1930	137.45	134.492				1450	588.05	590.925	
1340	695.25	695.191		1935	133.55	130.525				1475	565.45	567.884	
1350	685.35	685.286		1940	129.55	126.605				1500	543.05	544.874	
1360	675.45	675.385		1945	125.65	122.736				1525	520.85	521.933	
1370	665.55	665.489		1950	121.75	118.918				1550	498.75	499.106	
1375 1380	660.55 655.55	660.543 655.598		1955 1960	117.85 114.05	115.152 111.439				1575 1600	476.95 455.25	476.436 453.955	
1390	645.65	645.712		1965	110.25	107.779				1625	433.85	433.933	
1400	635.75	635.831		1970	106.45	104.172				1650	412.65	409.745	
1410	625.85	625.954		1975	102.75	100.620				1675	391.65	388.127	
1420	615.95	616.084		1980	99.05	97.122				1700	370.95	366.918	
1425	611.05	611.150		1985	95.45	93.679				1725	350.55	346.177	
1430	606.15	606.218		1990	91.85	90.291				1750	330.45	325.872	
1440	596.25	596.359		1995	88.35	86.958				1775	310.75	306.032	
1450	586.35	586.507		2000	84.75	83.681				1800	291.35	286.703	
1460	576.45	576.663		2005	81.35	80.459				1825	272.25	267.928	
1470	566.65	566.827		2010	77.95	77.292				1850	253.55	249.736 232.115	
1475 1480	561.65 556.75	561.912 557.000		2015	74.55 71.25	74.179 71.121				1875 1885	235.35		
1490		547.184		2020 2025	71.25 67.95	68.115				1900	228.15	225.226	
1500		537.380		2030	64.75	65.163				1925	200.15	198.576	
1510		527.589		2035	61.65	62.261				1950	183.25	182.641	
1520		517.813		2040	58.55	59.411				1975	166.95	167.238	
1525		512.932		2045	55.55	56.619				2000	151.15	152.336	
1530		508.054		2050	52.55	53.890				2025	135.95	137.896	
1540		498.315		2055	49.65	51.222				2050	121.35	123.939	
1550		488.595		2060	46.85	48.615				2075	107.45	110.655	
1560		478.892		2065	44.05	46.067				2100	94.45	98.038	
1570 1575		469.205 464.368		2070	41.45	43.577				2125	82.05	86.053	
1575		459.534		2075 2080	38.85 36.25	41.143 38.764				2150 2175	70.65 60.05	74.655 63.785	
1580		459.534		2080	33.85	36.438				2200	50.45	53.353	
1600		440.235		2090	31.45	34.162				2225	41.75	43.192	
1610		430.606		2095	29.25	31.935				2250	33.95	33.466	
1620		420.990		2100	27.05	29.754				2275	27.15	24.292	
1625		416.187		2105	24.95	27.615				2300	21.25	17.569	
1630		411.387		2110	22.95	25.515				2325	16.3	13.923	
1640		401.796		2115	21.05	23.445				2350	12.1	11.838	
1650	390.85	392.224		2120	19.3	21.401				2375	8.8	10.437	

Interest rates: Dec 31, 2015

	USD																
	4.5.			f (0/)	2.005			ATM	25d RR	25d fly							
	1y5y			forward (%)	2.065			36.7	-10	2							
Strike b.p.	from fwd		-150.00	-100	-75	-50	-25	-12.5	0.00	12.5	25	50	75	100	150	200	300
Strike in (%	5)		0.565	1.065	1.315	1.565	1.815	1.94	2.065	2.19	2.315	2.565	2.815	3.065	3.565	4.065	5.065
Market vo			74.1	55.09	49.3	44.76	41.23	39.75	38.39	37.53	36.73	35.64	35.36	35.14	35.97	37.34	40.45
model			74.42	54.91	49.11	45.02	41.99	39.98	38.43	37.25	36.54	35.52	35.21	35.02	35.88	37.29	40.31
								ATM	25d RR	25d fly							
	2y5y			forward (%)	2.300			33	-9								
Strike b.p.			-150	-100	-75	-50	-25	-12.5	0		25	50	75	100	150	200	300
Strike in (%			0.800	1.300	1.550	1.800	2.050	2.175	2.300	2.425	2.550	2.800	3.050	3.300	3.800	4.300	5.300
Market vo model			62.48 62.07	49.32 48.12	44.87 44.63	41.27 41.21	38.34 38.72	37.14 37.11	36.04 36.01	35.09 35.1	34.20 34.11	32.90 32.73	32.21 32.06	31.61 31.98	31.54 31.69	32.12 32.21	34.05 34.31
model			62.07	46.12	44.03	41.21	36.72	37.11	30.01	33.1	34.11	32.73	32.00	31.96	31.09	32.21	34.31
								ATM		25d fly							
	5Y5Y			forward (%)	2.7090			29	-8.65	3.5							
Strike b.p.		-200	-150	-100	-75	-50	-25	-12.5	0		25	50	75	100	150	200	300
Strike in (%		0.709%	1.209%	1.709%	1.959%	2.209%	2.459%	2.584%	2.709%	2.834%	2.959%	3.209%	3.459%	3.709% 28.29	4.209%	4.709% 26.37	5.709% 26.11
Market vo model		62.17 62.01	49.35 49.02	41.93 45.51	39.13 38.99	36.79 36.61	34.76 34.64	33.85 33.62	32.99 32.74	32.23 32.21	31.51	30.23	29.21	28.29	27.05 27.21	26.37	26.11
modei		62.01	49.02	45.51	38.99	36.61	34.64	33.62	32.74	32.21	31.32	30.13	29.02	28.11	27.21	26.51	27.01
								ATM	25d RR	25d fly							
	10Y5Y			forward (%)	2.9840			24	-6.2	4							
Strike b.p.	from fwd		-150	-100	-75	-50	-25	-12.5	0	12.5	25	50	75	100	150	200	
Strike in (%			1.484%	1.984%	2.234%	2.484%	2.734%	2.859%	2.984%	3.109%	3.234%	3.484%	3.734%	3.984%	4.484%	4.984%	
Market vo			39.36	34.02	31.98	30.23	28.72	28.04	27.4	26.82	26.26	25.28	24.47	23.73	22.66	21.98	
model			40.04	34.41	32.11	30.43	28.99	28.21	27.44	26.86	26.37	25.33	24.51	23.81	22.93	22.34	
	EUR																
								ATM	25d RR	25d fly							
	1y5y			forward (%)	0.5790			72.4	-22	2.4							
Strike b.p.	from foud						-25	-12.5	0	12.5	25	50	100	150	200	300	
Strike b.p. Strike in (%							0.329%	0.454%	0.579%	0.704%	0.829%	1.079%	1.579%	2.079%	2.579%	3.579%	
Market vo							99.68	87.25	79.47	74.23	70.53	65.80	61.33	59.47	58.62	58.14	
model							97.12	86.96	79.32	73.99	70.42	65.83	61.59	59.68	58.81	58.49	
	2.5.			f (0()	0.0700			ATM 57.3	25d RR	25d fly							
	2y5y			forward (%)	0.8780			57.3	-20	2.5							
Strike b.p.	from fwd						-25	-12.5	0	12.5	25	50	75	100	150	200	
Strike in (%	5)						0.628%	0.753%	0.878%	1.003%	1.128%	1.378%	1.628%	1.878%	2.378%	2.878%	
Market vo							72.99	67.43	63.22	59.94	57.32	53.46	48.93	46.54	45.17	43.89	
model							72.04	67.61	62.98	60.02	57.13	53.39	48.81	46.51	45.03	44.02	
								ATM	25d RR	25d fly							
	5y5y			forward (%)	1.6940			34	-7.9	2.6							
Strike b.p.	from fwd			-100	-75	-50	-25	-12.5	0	12.5	25	50	75	100	150	200	300
Strike in (%				0.694%	0.944%	1.194%	1.444%	1.569%		1.819%	1.944%	2.194%	2.444%	2.694%	3.194%	3.694%	4.694%
Market vo				63.44	49.52	45.56	43.96	42.57	41.34	40.25	38.4	35.66	33.77	32.42	30.68	26.37	26.11
model				62.92	49.03	45.23	44.01	42.29	41.28	40.21	38.53	35.59	33.81	32.49	29.77	26.42	25.99
								ATM	25d RR	25d fly							
	10y5y			forward (%)	2.2980			27.7	-6	3.5							
Strike b.p.	from fwd			-150	-100	-50	-25	-12.5	0	12.5	25	50	100	150	200	300	
Strike in (%				0.798%	1.298%	1.798%	2.048%	2.173%	2.298%	2.423%	2.548%	2.798%	3.298%	3.798%	4.298%	5.298%	
Market vo				53.87	42.6	36.63	34.56	33.67	32.87	32.14	31.47	30.3	28.46	27.1	26.07	24.67	
model				52.33	42.12	36.43	34.26	33.81	33.02	32.46	31.96	30.77	28.87	27.46	26.51	25.03	

EUR	shifted	vols														
shift	2.6000%					ATM	25d RR	25d fly								
Shifted for	ward	3.1790				14	1.4	0.7								
Strike b.p.	from fwd			-150	-100	-50	-25	-12.5	0	12.5	25	50	100	150	200	
Strike in (%	6)			-0.921%	-0.421%	0.079%	0.329%	0.454%	0.579%	0.704%	0.829%	1.079%	1.579%	2.079%	2.579%	
shifted str	ike			1.679%	2.179%	2.679%	2.929%	3.054%	3.179%	3.304%	3.429%	3.679%	4.179%	4.679%	5.179%	
Market vo	I			17.75	16.49	15.19	14.59	14.33	14.12	13.97	13.89	14.02	15.6	18.79	23.81	
model				18.51	16.98	15.31	14.42	14.21	14.09	14.01	13.92	13.83	15.46	18.97	24.12	
shift	2.6000%					ATM	25d RR	25d fly								
Shifted for	ward	3.4780				15.5	3.9	0.95								
Strike b.p.	from fund			-150	-100	-50	-25	-12.5	0	12.5	25	50	100	150	200	
Strike b.p. Strike in (9				-0.622%	-0.122%	0.378%	0.628%	0.753%	0.878%	1.003%	1.128%	1.378%	1.878%	2.378%	2.878%	
shifted str				1.978%	2.478%	2.978%	3.228%	3.353%	3.478%	3.603%	3.728%	3.978%	4.478%	4.978%	5.478%	
Market vo	-			16.5	15.99	15.6	15.49	15.47	15.48	15.52	15.59	15.86	16.97	19	22.22	
model				17.19	16.37	15.59	15.31	15.07	15.12	15.41	15.51	16.10	17.47	19.29	22.44	
shift	2.6000%					ATM	25d RR	25d fly								
Shifted for	ward	4.2940				16.9	5.8									
Strike b.p.	from fwd		-200	-150	-100	-50	-25	-12.5	0	12.5	25	50	100	150	200	300
Strike in (9			-0.306%	0.194%	0.694%	1.194%	1.444%	1.569%	1.694%	1.819%	1.944%	2.194%	2.694%	3.194%	3.694%	4.694%
shifted str			2.294%	2.794%	3.294%	3.794%	4.044%	4.169%	4.294%	4.419%	4.544%	4.794%	5.294%	5.794%	6.294%	7.294%
Market vo	ı		15.64	15.66	15.76	15.95	16.09	16.17	16.27	16.38	16.49	16.77	17.5	18.52	19.92	24.59
model			16.02	15.93	15.49	15.71	15.91	16.17	16.46	16.51	16.69	16.99	17.77	18.78	20.09	24.39
shift	2.6000%					ATM	25d RR	25d fly								
Shifted for	ward	4.8980				15.8	6.75	1.1								
Strike b.p.	from fwd		-200	-150	-100	-50	-25	-12.5	0	12.5	25	50	100	150	200	300
Strike in (9			0.298%	0.798%	1.298%	1.798%	2.048%	2.173%	2.298%	2.423%	2.548%	2.798%	3.298%	3.798%	4.298%	5.298%
shifted str	ike		2.898%	3.398%	3.898%	4.398%	4.648%	4.773%	4.898%	5.023%	5.148%	5.398%	5.898%	6.398%	6.898%	7.898%
Market vo	I		13.98	14.1	14.27	14.53	14.7	14.79	14.89	15	15.11	15.37	16	16.81	17.85	20.95
model			14.28	13.93	14.11	14.40	14.59	14.81	14.99	15.19	15.28	15.51	16.02	16.63	17.98	20.66

	JPY												
						ATM	25d RR	25d fly					
	1y5y	forward (%)	0.2290			74	-3.5						
Strike b.p	. from fwd						0	25	50	75	100	150.00	200
Strike in	%)						0.229%	0.479%	0.729%	0.979%	1.229%	1.729%	2.229%
Market v	ol						75.11	72.42	71.03	69.62	69.24	70.18	71.6
model							74.97	72.52	71.01	69.79	69.31	69.78	70.91
						ATM	25d RR	25d fly					
	2y5y					69	-3.5	2.8					
Strike b.r	o. from fwd	forward (%)	0.3170				0	25	50	75	100	150.00	200
Strike in							0.317%	0.567%	0.817%	1.067%	1.317%	1.817%	2.317%
Market v							71.24	69.14	70.33	71.75	73.02	75.08	76.62
model							71.98	68.96	69.93	71.42	72.89	75.12	76.95
						ATM	25d RR	25d fly					
	5y5y					51.9	-3.5	2.9					
Strike b.p	. from fwd	forward (%)	0.6810			-25	0	25	50	75	100	150	200
Strike in	%)					0.431%	0.681%	0.931%	1.181%	1.431%	1.681%	2.181%	2.681%
Market v	ol					61.66	55.82	53.37	52.26	51.73	51.48	51.34	51.39
model						61.13	56.01	53.76	52.47	51.55	51.33	51.42	51.79
						ATM	25d RR	25d flv					
	10v5v					31.6	250 KR 0.15	,					
	20,0,	forward (%)	1.4220			31.0	0.13	, ,					
Strike b.p	. from fwd		-100	-75	-50	-25	0	25	50	75	100	150	
Strike in	%)		0.672%	0.922%	1.172%	1.422%	1.672%	1.922%	2.172%	2.422%	2.922%	3.422%	
Market v	ol		39.25	35.67	33.7	32.67	32.18	32	32	32.1	32.43	32.82	
model			39.03	35.81	34.01	32.89	32.43	32.01	31.94	32.03	32.39	32.81	

	CHF	shifted vo	ls											
								ATM	25d RR	25d fly				
	1y5y			forward (%)	-0.074			29.5	-3	0.8				
shift		2.0000%												
Shifted f	orward	1.926												
Strike b.	p. from fwd			-150	-100	-50	-25	0	25	50	100	150	200	300.00
Strike in				-1.574	-1.074	-0.574	-0.324	-0.074	0.176	0.426	0.926	1.426	1.926	2.93
shifted s				0.426	0.926	1.426	1.676	1.926	2.176	2.426	2.926	3.426	3.926	4.93
Market				58.83	40.92	33.11	31.02	29.81	29.29	29.23	29.9	30.96	32.12	34.35
model				58.01	41.07	32.99	31.21	29.92	29.36	29.13	29.62	30.81	32.11	34.49
								ATM	25d RR	25d fly				
	2y5y			forward (%)	0.182			29.3		1.4				
shift	7-7	2.0000%		,										
Shifted f	orward	2.182												
	p. from fwd		-200		-100	-50	-25	0		50	100	150	200	300
Strike in			-1.818		-0.818	-0.318	-0.068	0.182	0.432	0.682	1.182	1.682	2.182	3.182
shifted s			0.182		1.182	1.682	1.932	2.182	2.432	2.682	3.182	3.682	4.182	5.182
Market v	/ol		81.18	49.15	38.57	33.11	31.47	30.37	29.69	29.33	29.24	29.62	30.19	31.50
model			80.91	48.67	38.14	33.3	31.73	30.54	29.43	29.09	29.12	29.41	30.22	31.71
								ATM	25d RR	25d fly				
	5y5y			forward (%)	0.79			25.6	-4.5	2.1				
shift		2.0000%												
Shifted f	orward	2.79												
Strike b.	p. from fwd			-150	-100	-50	-25	0	25	50	100	150	200	300
Strike in	(%)			-0.710	-0.210	0.290	0.540	0.790	1.040	1.290	1.790	2.290	2.790	3.790
shifted s	trike			1.290	1.790	2.290	2.540	2.790	3.040	3.290	3.790	4.290	4.790	5.790
Market v	/ol			37.36	32.28	29.07	27.98	27.17	26.60	26.21	25.88	25.91	26.13	26.83
model				37.01	31.98	29.06	28.03	27.58	26.97	26.01	25.92	25.71	26.06	26.71
								ATN4	25452	25.4.6				
	F: -10: -			f = (0()	0.70			ATM	25d RR	25d fly				
ah:ft	5y10y	2.000001		forward (%)	0.79			22	-5.1	4.25				
shift		2.0000%												
Shifted f	orward	2.79												
	p. from fwd		-200		-100	-50	-25	0		50	100	150	200	300
Strike in			-0.836		0.164	0.664	0.914	1.164	1.414	1.664	2.164	2.664	3.164	4.164
shifted s	trike		1.164	1.664	2.164	2.664	2.914	3.164	3.414	3.664	4.164	4.664	5.164	6.164
Market v	/ol		35.25	30.34	27.10	24.96	24.20	23.62	23.19	22.88	22.54	22.47	22.55	22.95
model			36.02	30.82	27.72	25.08	24.57	23.91	23.46	22.99	22.31	22.23	22.42	22.71

As can be seen, the model replicates the prices of options in the market in all the asset classes very accurately.