Sistemi e Applicazioni Cloud

Appello del 20 febbraio 2025 [Tempo consegna: 2h 30m]

Parte 1: rete base

Si usi un simulatore per studiare il comportamento di un sistema in grado di parallelizzare il traffico su diversi nodi.

Il sistema è mostrato nella figura.

Figure 1: Modello di rete

Il carico in ingresso è $\lambda=100$ richieste al secondo e viene ripartito equamente tra gli N server (politica round-robin o random a piacere). I server hanno capacità di servizio $\mu_1=10$ richieste/sec. Il tempo di servizio segue una distribuzione lognormal con coefficiente di variazione cv=3. Il processo di servizio delle richieste è vincolato ad un SLA sul tempo di risposta medio T_r che deve restare al di sotto di 250 ms.

Testare il tempo di servizio per N=20 indicando anche l'intervallo di confidenza del 65% [$\approx 600ms$].

$$\frac{N \quad T_r \quad \pm \text{CI}}{20}$$

Parte 2: dimensionare il bilanciamento

Identificare mediante la teoria delle reti di code il valore di N tale per cui il requisito di SLA soddisfatto

$$N T_{i}$$

Parte 3: verifica

Eseguire un'analisi del tempo di risposta per un range di valori di $N \in [15, 20, 25, 30, 35, 40, 45, 50].$

\overline{N}	T_r	\pm CI
15		
20		
25		
30		
35		
40		
45		
50		

Punto bonus: realizzare plot dei dati sulla base dell'esempio fornito

Figure 2: Plot