Math 300.2 Homework 6

Paul Hacking

October 18, 2017

Reading: Sundstrom, Sections 4.2, 4.3, and 8.1.

Justify your answers carefully.

- (1) Let a_1, a_2, a_3, \ldots be the sequence defined recursively by $a_1 = 5, a_2 = 13$, and $a_n = 5a_{n-1} 6a_{n-2}$ for $n \ge 3$. Prove using strong induction that $a_n = 2^n + 3^n$ for all $n \in \mathbb{N}$.
- (2) Let a_1, a_2, a_3, \ldots be the sequence defined recursively by $a_1 = 1$ and $a_n = 1 + a_1 + a_2 + \ldots + a_{n-1}$ for $n \ge 2$. Guess a formula for a_n and prove your formula is correct using strong induction.

Hint: For all $n \in \mathbb{N}$ and $x \in \mathbb{R}$ such that $x \neq 1$,

$$1 + x + x^{2} + \dots + x^{n-1} = \frac{x^{n} - 1}{x - 1}.$$

- (3) Let $f_1, f_2, f_3, ...$ be the Fibonacci numbers defined recursively by $f_1 = 1$, $f_2 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$. Let $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$ be the two solutions of the quadratic equation $x^2 = x + 1$. Prove by strong induction that $f_n = \frac{1}{\sqrt{5}}(\alpha^n \beta^n)$.
- (4) Let a_1, a_2, a_3, \ldots be the sequence defined recursively by $a_1 = 1$ and $a_{n+1} = 1 + \frac{1}{a_n}$ for $n \ge 1$.
 - (a) Let f_1, f_2, \ldots be the Fibonacci numbers. Prove by induction that $a_n = \frac{f_{n+1}}{f_n}$ for all $n \in \mathbb{N}$.
 - (b) What is the limit of a_n as $n \to \infty$? [Hint: Use the result of Q3 and the fact that $\left|\frac{\beta}{\alpha}\right| < 1$.]

- (5) Let f_1, f_2, \ldots be the Fibonacci numbers. Prove the following statement by induction: $f_{n+1}^2 f_n f_{n+2} = (-1)^n$ for all $n \in \mathbb{N}$.
- (6) Find the greatest common divisor of each of the following pairs of integers. Use the Euclidean algorithm and show your work.
 - (a) 126, 91.
 - (b) 253,143.
 - (c) 113, 51.
- (7) For each of the following pairs of integers a and b, find integers x and y such that $ax + by = \gcd(a, b)$. Use the Euclidean algorithm and show your work.
 - (a) 100, 31.
 - (b) 169, 65.
- (8) Prove the following statement: For all $a, b, c \in \mathbb{Z}$ such that $a, b \neq 0$, if $a \mid c$ and $b \mid c$ and $\gcd(a, b) = 1$ then $ab \mid c$. [Hint: Recall the following result (proved in class): For all $l, m, n \in \mathbb{Z}$

such that $l \neq 0$, if $l \mid mn$ and gcd(l, m) = 1, then $l \mid n$. Now write down the definition of $a \mid c$ and use this result to construct a direct proof of the statement.

- (9) Prove the following statement: For all $n \in \mathbb{N}$, gcd(7n + 17, 2n + 5) = 1. [Hint: Use the Euclidean algorithm.]
- (10) Let $f_1, f_2,...$ be the Fibonacci numbers. Prove by induction that $gcd(f_{n+1}, f_n) = 1$ for all $n \in \mathbb{N}$.