Mayank Kejriwal

University of Southern California

Conditional Random Fields (Advanced)

Outline

- Modeling
- Inference
- Training
- Applications

Parameter Learning

- Given the training data, $\{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\}_{i=1}^{N}$ wish to learn parameters of the model.
- For chain or tree structured CRFs, they can be trained by maximum likelihood
 - The objective function for chain-CRF is convex(see Lafferty et al(2001)).
- General CRFs are intractable hence approximation solutions are necessary

Parameter Learning

- Given the training data, $\{\mathbf{x}^{(i)},\mathbf{y}^{(i)}\}_{i=1}^N$ /e wish to learn parameters of the mode.
- Conditional log-likelihood for a general CRF:

$$\mathcal{L}(\boldsymbol{\lambda}) = \sum_{k} \left[\log \frac{1}{Z(\boldsymbol{x}^{(k)})} + \sum_{j} \lambda_{j} F_{j}(\boldsymbol{y}^{(k)}, \boldsymbol{x}^{(k)}) \right]$$

$$\frac{\partial \mathcal{L}(\boldsymbol{\lambda})}{\partial \lambda_{j}} = E_{\tilde{p}(\boldsymbol{Y}, \boldsymbol{X})} \left[F_{j}(\boldsymbol{Y}, \boldsymbol{X}) \right] - \sum_{k} E_{p(\boldsymbol{Y} \mid \boldsymbol{x}^{(k)}, \boldsymbol{\lambda})} \left[F_{j}(\boldsymbol{Y}, \boldsymbol{x}^{(k)}) \right]$$
 Empirical Distribution Hard to calculate!

• It is not possible to analytically determine the parameter values that maximize the log-likelihood – setting the gradient to zero and solving for λ does not always yield a closed form solution. (Almost always)

Parameter Learning

This could be done using gradient descent

$$\lambda \propto \max_{\lambda} L(\lambda; y \mid x) \propto \max_{\lambda} \log \sum_{i=1}^{N} p(\mathbf{y} \mid \mathbf{x}; \lambda)$$
$$\lambda_{i+1} \leftarrow \lambda_{i} + \alpha \cdot \nabla_{\lambda} L(\lambda; y \mid x)$$

Until we reach convergence

$$|L(\lambda_{i+1}; y | x) - L(\lambda_i; y | x)| < \acute{\mathsf{U}}$$

- Or any other optimization:
 - Quasi-Newton methods: BFGS [Bertsekas,1999] or L-BFGS [Byrd, 1994]
- General CRFs are intractable hence approximation solutions are necessary

Compared with Markov chains, CRF's should be more <u>discriminative</u>, much <u>slower</u> to train and possibly more susceptible to <u>over-training</u>.

- Regularization:
 - σ is a regularization parameter

$$f_{objective}(\theta) = P_{\theta}(\mathbf{y} | \mathbf{x}) - \frac{\|\theta\|^2}{2\sigma^2}$$

Training (and Inference): General Case

- Approximate solution, to get faster inference.
- Treat inference as shortest path problem in the network consisting of paths(with costs)
 - Max Flow-Min Cut (Ford-Fulkerson, 1956
- Pseudo-likelihood approximation:
 - Convert a CRF into separate patches; each consists of a hidden node and true values of neighbors; Run ML on separate patches
 - Efficient but may over-estimate inter-dependencies
- Belief propagation?!
 - variational inference algorithm
 - it is a direct generalization of the exact inference algorithms for linear chain CRFs
- Sampling based method(MCMC)

CRF frontiers

- Bayesian CRF:
 - Because of the large number of parameters in typical applications of CRFs
 - prone to overfitting.
 - Regularization?
 - Instead of
 - $\mathbf{y}^* = \max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}; \hat{\theta})$ • $\mathbf{y}^* = \max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}; \hat{\theta})$
- Semi-supervised CRF:
 - The need to have big labeled data!
 - Unlike in generative models, it is less obvious how to incorporate unlabelled data into a conditional criterion, because the unlabelled data is a sample from the distribution

$$p(\mathbf{x})$$

Outline

- Modeling
- Inference
- Training
- Some Applications

Some applications: Part-of-Speech-Tagging

• POS(part of speech) tagging; the identification of words as nouns, verbs, adjectives, adverbs, etc.

Students need another break
 CRF features: noun verb article noun

Feature Type	Description
Transition	\forall k,k' y _i = k and y _{i+1} =k'
Word	\forall k,w y _i = k and x _i =w \forall k,w y _i = k and x _{i-1} =w \forall k,w y _i = k and x _{i+1} =w \forall k,w,w' y _i = k and x _i =w and x _{i-1} =w' \forall k,w,w' y _i = k and x _i =w and x _{i+1} =w'
Orthography: Suffix	\forall s in {"ing","ed","ogy","s","ly","ion","tion", "ity",} and \forall k y _i =k and x _i ends with s
Orthography: Punctuation	$\forall k \ y_i = k \ and \ x_i \ is \ capitalized$ $\forall k \ y_i = k \ and \ x_i \ is \ hyphenated$

CRF for Information Extraction

- CRF gives us P(label | obs, model)
 - Extraction: Find most probable label sequence (y's), given an observation sequence (x's)
 - 2001 Ford Mustang GT V-8 Convertible \$12700
 - No more independence assumption
 - Conditionally trained for <u>whole</u> label sequence (given input)
 - "long range" features (future/past states)
 - Multi-features
 - Now we can use better features!
 - What are good features for identifying a price?

Person name Extraction

[McCallum 2001, unpublished]

Features in Experiment

Capitalized	Xxxxx	Character n-gram classifier says string is a person name (80% accurate)
Mixed Caps	XxXxxx	
All Caps	XXXXX	In stopword list (the, of, their, etc)
Initial Cap	X	In honorific list (Mr, Mrs, Dr, Sen, etc)
Contains Digit	xxx5	In person suffix list (Jr, Sr, PhD, etc)
All lowercase	XXXX	In name particle list (de, la, van, der, etc)
Initial	X	In Census lastname list;
Punctuation	.,:;!(), etc	segmented by P(name)
Period		In Census firstname list; segmented by P(name)
Comma	,	In locations lists (states, cities, countries)
Apostrophe	4	In company name list ("J. C. Penny")
Dash	-	In list of company suffixes (Inc, & Associates, Foundation)
Preceded by HTML tag		

- Hand-built FSM person-name extractor says yes, (prec/recall ~ 30/95)
- Conjunctions of all previous feature pairs, evaluated at the current time step.
- Conjunctions of all previous feature pairs, evaluated at current step and one step ahead.
- All previous features, evaluated two steps ahead.
- All previous features, evaluated one step behind.

Total number of features = ~200k

Training and Testing

- Trained on 65469 words from 85 pages, 30 different companies' web sites.
- Training takes 4 hours on a 1 GHz Pentium.
- Training precision/recall is 96% / 96%.
- Tested on different set of web pages with similar size characteristics.
- Testing precision is 92 95%, recall is 89 91%.

References

- J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML01, 2001.
- Charles Elkan, "Log-linear Models and Conditional Random Field," Notes for a tutorial at CIKM, 2008.
- Charles Sutton and Andrew McCallum, "An Introduction to Conditional Random Fields for Relational Learning," MIT Press, 2006
- Slides: An Introduction to Conditional Random Field, Ching-Chun Hsiao
- Hanna M. Wallach , Conditional Random Fields: An Introduction, 2004
- Sutton, Charles, and Andrew McCallum. An introduction to conditional random fields for relational learning.
 Introduction to statistical relational learning. MIT Press, 2006.
- Sutton, Charles, and Andrew McCallum. "An introduction to conditional random fields." arXiv preprint arXiv:1011.4088 (2010).
- B. Majoros, Conditional Random Fields, for eukaryotic gene prediction