SINGLE PHASE LIQUID INMERSION COOLING OF DISCRETE HEAT SOURCES IN A VERTICAL CHANNEL(U) MAYAL POSTGRADUATE SCHOOL HONTEREY CA S J HAZARD DEC 87 MO-M191 224 1/2 UNCLASSIFIED F/G 9/1



A SOCIO DE LA COCOCIO DE POSTO DE LA COSTA DE SOCIO DE COSTA DE CO



# NAVAL POSTGRADUATE SCHOOL Monterey, California



DTIC ELECTE MAR 2 8 1988

THESIS

SINGLE PHASE LIQUID IMMERSION COOLING OF DISCRETE HEAT SOURCES IN A VERTICAL CHANNEL

by

Sherrill John Hazard, III

December 1987

Thesis Advisor:

Yogendra Joshi

Approved for public release; distribution is unlimited

| UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                                            |                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                        | REPORT DOCU                                                                                                                                                 | MENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PAGE                                                                               | AI                                                                                         | 91 224                                                                                                   |
| 1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                        | <del>*************************************</del>                                                                                                            | 16 RESTRICTIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MARKINGS                                                                           | <del></del>                                                                                |                                                                                                          |
| 2a. SECURITY CLASSIFICATION AUTHORITY                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVAILABILITY O                                                                     |                                                                                            |                                                                                                          |
| 26. DECLASSIFICATION / DOWNGRADING SCHEDU                                                                                                                                                                                                                                                                                                                                              | LE                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l for publition is un                                                              |                                                                                            |                                                                                                          |
| 34. PERFORMING ORGANIZATION REPORT NUMBE                                                                                                                                                                                                                                                                                                                                               | R(S)                                                                                                                                                        | 5. MONITORING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ORGANIZATION R                                                                     | REPORT NUM                                                                                 | BER(S)                                                                                                   |
| 6a NAME OF PERFORMING ORGANIZATION  Naval Postgraduate School                                                                                                                                                                                                                                                                                                                          | 6b OFFICE SYMBOL<br>(If applicable)<br>Code 69                                                                                                              | 7a NAME OF MONITORING ORGANIZATION  Naval Postgraduate School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |                                                                                            |                                                                                                          |
| 6c. ADDRESS (City, State, and ZIP Code)                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             | 76. ADDRESS (Cit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ty, State, and ZIP                                                                 | Code)                                                                                      |                                                                                                          |
| Monterey, California 9394                                                                                                                                                                                                                                                                                                                                                              | 3-5000                                                                                                                                                      | Monterey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , Californ                                                                         | nia 939                                                                                    | 943-5000                                                                                                 |
| 8a. NAME OF FUNDING SPONSORING<br>ORGANIZATION                                                                                                                                                                                                                                                                                                                                         | 8b OFFICE SYMBOL<br>(If applicable)                                                                                                                         | 9. PROCUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T INSTRUMENT ID                                                                    | ENTIFICATION                                                                               | N NUMBER                                                                                                 |
| 8c. ADDRESS (City, State, and ZIP Code)                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                 | 10 SOURCE OF F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UNDING NUMBER                                                                      | RS                                                                                         |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             | PROGRAM<br>ELEMENT NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROJECT<br>NO                                                                      | TASK<br>NO                                                                                 | WORK UNIT<br>ACCESSION NO                                                                                |
| 11. TITLE (Include Security Classification)                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             | - DISCORDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEAM COLL                                                                          | DODG IN                                                                                    | 2 TERRICAL                                                                                               |
| SINGLE PHASE LIQUID IMMERS CHANNEL                                                                                                                                                                                                                                                                                                                                                     | ION COOLING O                                                                                                                                               | F DISCRETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEAT SOOI                                                                          | RCES IN                                                                                    | A VERTICAL                                                                                               |
| 12. PERSONAL AUTHOR(S) Hazard. Sherrill J., III                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                                            |                                                                                                          |
| 13a. TYPE OF REPORT- 13b TIME CO                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             | 14. DATE OF REPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |                                                                                            | AGE COUNT                                                                                                |
| Master's Thesis FROM 16. SUPPLEMENTARY NOTATION                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                          | 1987, Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ember                                                                              |                                                                                            | 160                                                                                                      |
| 10. SUPPLEMENTANT NOTATION                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                                            |                                                                                                          |
| 17. COSATI CODES                                                                                                                                                                                                                                                                                                                                                                       | 18 SUBJECT TERMS (C                                                                                                                                         | Continue on reversi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e if necessary and                                                                 | d identify by                                                                              | block number)                                                                                            |
| FIELD GROUP SUB-GROUP                                                                                                                                                                                                                                                                                                                                                                  | / Immersion C                                                                                                                                               | Cooling; Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cotruding 1                                                                        | Heat Sou                                                                                   | urces;                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                        | Vertical Ch                                                                                                                                                 | annel; Flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W Visuall                                                                          | zation (                                                                                   |                                                                                                          |
| 19. ABSTRACT (Continue on reverse if necessary                                                                                                                                                                                                                                                                                                                                         | and identify by block n                                                                                                                                     | umber)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                                                                                            | ·                                                                                                        |
| Natural convection liquinvestigated. A single cousing foil heaters mounted These components were attacolumn of 20 pin DIP's. A shrouding wall parallel to shrouding wall were placed accomplished using a laser particles. Photgoraphs we for four different power should be a compliant to the protrusion at each input protrusion at each input protrusion at each input protrusion. | clumn of eight on the back ched to a very channel was the test sure in a water is generated place taken of the test and a modificating at each ower setting | protruding of stainles tical plex formed by face. The mersion beans of light flow at ach of three and channes and channes the stand channe | ess steel : siglas wal placing a test sur path. Floo the test the test ee differen | nts was rectanged to since and wisual uminate surface and changed for each ere determined. | constructed ular blocks. mulate a movable d the lization was suspended e mid-plane nel widths. ch heated |
| UNCLASSIFIED/UNLIMITED - SAME AS R                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                             | Unclassif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fied                                                                               | -                                                                                          |                                                                                                          |
| 22. NAME OF RESPONSIBLE INDIVIDUAL Yogendra Joshi                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             | 226 TELEPHONE (1<br>(408) 646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nclude Area Code<br>-3400                                                          | ) 22c OFFIC                                                                                | e 69Ji                                                                                                   |

**DD FORM 1473, 84 MAR** 

Yogendra Joshi

#19 - ABSTRACT - (CONTINUED)

Visual results indicate two distinct flow regions. Far away from the components, a natural convection boundary layer flow was observed. Near the components, the flow was modified by the protrusions. As the component heat input increased, more pronounced three dimensional effects were noticed. Temperature measurements indicate that as the modified Grashof numbers increased, the nondimensional temperatures decreased for each component. Also, the difference in the nondimensional temperatures for various components decreased with increasing modified Grashof numbers.

Approved for public release; distribution is unlimited

Single Phase Liquid Immersion Cooling of Discrete Heat Sources in a Vertical Channel

by

Sherrill John Hazard, III
Lieutenant, United States Navy
B.S., University of Maine at Orono, 1980

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL December 1987

Author:

 $T_{1}$ 

Approved by:

Yogendra Joshi, Thesis Advisor

John Haz

Anthony J. Healey, Chairman

Department of Mechanical Engineering

Gordon E. Schacher,

Dean of Science and Engineering

# ABSTRACT

liquid cooling Natural convection of simulated electronic components was investigated. A single column of eight protruding components was constructed using foil heaters mounted on the back of stainless steel rectangular These components were attached to a vertical plexiglas wall to simulate a column of 20 pin DIP's. channel was formed by placing a smooth movable shrouding wall parallel to the test surface. The test surface and the shrouding wall were placed in a water immersion bath. Flow visualization was accomplished using a laser generated plane of light to illuminate suspended particles. Photographs were taken of the flow at the test surface mid-plane for four different power settings at each of three different channel widths. A nondimensional temperature and a modified Grashof number for each heated protrusion at each input power setting and channel width were determined. Visual results indicate two distinct flow regions. Far away from the components, a natural convection boundary layer flow was observed. Near the components, the flow was modified by the protrusions. As the component heat input increased, more pronounced three dimensional effects noticed. were Temperature measurements indicate that as the modified Grashof numbers increased, the nondimensional temperatures

decreased for each component. Also, the difference in the nondimensional temperatures for various components decreased with increasing modified Grashof numbers.



| иссээ<br>Эт | a <b>t</b> on<br>Prese | •  | - سران |
|-------------|------------------------|----|--------|
|             |                        |    | •      |
|             | •                      | •  |        |
|             |                        |    |        |
| •           |                        | ٠. | ٠.     |
| :           |                        | •  |        |
| 1           | 1                      |    |        |

٧

# THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free of computational and logic errors, they cannot be considered validated. Any application of these programs without additional verification is at the risk of the user.

# TABLE OF CONTENTS

| I.  | INT | RODUCTION                                              | 1  |
|-----|-----|--------------------------------------------------------|----|
|     | A.  | STATEMENT OF PROBLEM                                   | 1  |
|     | в.  | IMMERSION COOLING: ANALYTICAL AND EXPERIMENTAL STUDIES | 2  |
|     | c.  | OBJECTIVES                                             | 6  |
| II. | EXP | ERIMENT                                                | 7  |
|     | A.  | GENERAL DESIGN CONSIDERATIONS                          | 7  |
|     |     | 1. Heater Block Dimensions                             | 8  |
|     |     | 2. Heating Element                                     | 8  |
|     |     | 3. Heater Location                                     | 9  |
|     |     | 4. Visualization Technique                             | 9  |
|     |     | 5. Thermocouple Design and Placement                   | 9  |
|     |     | 6. Other Considerations                                | 10 |
|     | в.  | COMPONENTS                                             | 10 |
|     |     | 1. Heater                                              | 10 |
|     |     | 2. Test Surface and the Shrouding Wall                 | 12 |
|     |     | 3. Test Surface Back Containment                       | 12 |
|     |     | 4. Test Surface Support                                | 13 |
|     |     | 5. Immersion Tank                                      | 13 |
|     |     | 6. Immersion Bath Filtration and Purification          | 13 |
|     | c.  | ASSEMBLY                                               | 14 |
|     | D.  | INSTRUMENTATION                                        | 15 |
|     |     | 1. Power to the Heater                                 | 15 |

|        |     | 2.    | Temperature Measurement     | 16 |
|--------|-----|-------|-----------------------------|----|
| III.   | EXF | ERIME | ENTAL PROCEDURE             | 18 |
|        | A.  | APP   | ARATUS PREPARATION          | 18 |
|        | В.  | TEST  | PROCEDURE                   | 19 |
|        |     | 1.    | Initial Instrument Settings | 19 |
|        |     | 2.    | Instrument Readings         | 20 |
|        |     | 3.    | Photographic Technique      | 21 |
|        |     | 4.    | Experiment Completion       | 21 |
|        |     | 5.    | Channel Width               | 22 |
|        | c.  | DATA  | A ANALYSIS                  | 22 |
| IV.    | RES | ULTS  |                             | 28 |
|        | A.  | FLOV  | V VISUALIZATIONS            | 28 |
|        | в.  | QUA   | NTITATIVE                   | 30 |
| ٧      | CON | CLUSI | CONS                        | 33 |
| vI.    | REC | OMMEN | NDATIONS                    | 34 |
|        | A.  | IMPF  | ROVEMENT TO EXPERIMENT      | 34 |
|        |     | 1.    | Apparatus                   | 34 |
|        |     | 2.    | Data Acquisition            | 35 |
|        | В.  | ADDI  | TTIONAL EXPERIMENTAL WORK   | 35 |
| APPENI | XIC | A: 5  | SAMPLE CALCULATIONS         | 36 |
| APPENI | XIC | B: [  | JNCERTAINTY ANALYSIS        | 38 |
| APPEN  | XIC | C: 1  | TABULAR DATA                | 42 |
| APPENI | XIC | D: 5  | SOFTWARE                    | 78 |
| APPENI | XIC | E: 1  | TABULAR RESULTS             | 86 |
| APPENI | хтс | F: F  | TGURES                      | 93 |

| LIST OF | REFERENCES  |        | 140 |
|---------|-------------|--------|-----|
| INITIAL | DISTRIBUTIO | N LIST | 142 |

# LIST OF TABLES

| I.   | PHOTOGRAPH EXPOSURE VARIATIONS    | 21  |
|------|-----------------------------------|-----|
| II.  | PROPERTIES OF WATER               | 24  |
| III. | PHYSICAL CONSTANTS                | 25  |
| IV.  | THERMAL CONDUCTIVITY OF MATERIALS | 25  |
| 7.7  | IINCEDTATINTY WADTABLES           | 2.0 |

# LIST OF FIGURES

| 1.  | Temperature versus Heat Flux for Various Phenomena | 93  |
|-----|----------------------------------------------------|-----|
| 2.  | Assembled Test Surface and Shrouding Wall          | 94  |
| 3.  | Mounted Foil Heater                                | 94  |
| 4.  | Mounted Thermocouple                               | 95  |
| 5.  | System Configuration                               | 96  |
| 6.  | 20 Pin DIP and Chip Comparison, Top View           | 97  |
| 7.  | 20 Pin DIP and Chip Comparison, End View           | 97  |
| 8.  | Laser and Cylindrical Lens                         | 98  |
| 9.  | Laser and Camera Orientation                       | 99  |
| 10. | Block with Grooves                                 | 100 |
| 11  | Mounted Foil Heater, End Measured                  | 100 |
| 12. | Mounted Foil Heater, Length Measured               | 101 |
| 13. | Heater Block Schematic                             | 102 |
| 14. | Foil Heater Schematic                              | 103 |
| 15. | Power Lead Attachment                              | 104 |
| 16. | Slot and Holes in Test Surface                     | 105 |
| 17. | Containment Back Schematic                         | 106 |
| 18. | Test Surface and Shrouding Wall Support Bracket    | 107 |
| 19. | Immersion Tank                                     | 108 |
| 20. | Filtration and Purification System                 | 109 |
| 21. | Mounting the Heater Assemblies                     | 110 |
| 22. | Mounted Heater Assemblies                          | 111 |
| 23. | Close-Up of Mounted Heater Assemblies              | 112 |

| 24. | Thermo         | ocouple Connection Schematic                   | 113 |
|-----|----------------|------------------------------------------------|-----|
| 25. |                | Visualization Photographs for the              | 114 |
| 26. | Flow '73.81    | Visualization Photographs for the mm Spacing   | 115 |
| 27. | Flow 11.91     | Visualization Photographs for the 3 mm Spacing | 116 |
| 28. |                | s Test Surface Flow Visualization graph        | 117 |
| 29. |                | Number vs. Excess Temperature (Front Runs 1-4  | 118 |
| 30. |                | Number vs. Excess Temperature (Front Runs 5-8  | 119 |
| 31. |                | Number vs. Excess Temperature (Front Runs 9-12 | 120 |
| 32. |                | Number vs. Excess Temperature (Right Runs 1-4  | 121 |
|     |                | Number vs. Excess Temperature (Right Runs 5-8  | 122 |
| 34. |                | Number vs. Excess Temperature (Right Runs 9-12 | 123 |
| 35. | Block<br>Face) | Number vs. Excess Temperature (Left Runs 1-4   | 124 |
| 36. |                | Number vs. Excess Temperature (Left Runs 5-8   | 125 |
| 37. |                | Number vs. Excess Temperature (Left Runs 9-12  | 126 |
| 38. |                | Number vs. Excess Temperature (Top Runs 1-4    | 127 |
| 39. |                | Number vs. Excess Temperature (Top Runs 5-8    | 128 |
| 40. |                | Number vs. Excess Temperature (Top Runs 9-12   | 129 |
| 41. |                | Number vs. Excess Temperature (Bottom Runs 1-4 | 130 |

| 42. | Block Number vs. Excess Temperature (Bottom Face) Runs 5-8                                              | 131 |
|-----|---------------------------------------------------------------------------------------------------------|-----|
| 43. | Block Number vs. Excess Temperature (Bottom Face) Runs 9-12                                             | 132 |
| 44. | Block Number vs. Excess Temperature (Heater) Runs 1-4                                                   | 133 |
| 45. | Block Number vs. Excess Temperature (Heater) Runs 5-8                                                   | 134 |
| 46. | Block Number vs. Excess Temperature (Heater) Runs 9-12                                                  | 135 |
| 47. | Block Number vs. Excess Temperature (Comparison of Front Face and a Flat Plate with Constant Heat Flux) | 136 |
| 48. | Modified Grashof Number vs. Nondimensional Temperature Runs 1-4                                         | 137 |
| 49. | Modified Grashof Number vs. Nondimensional Temperature Runs 5-8                                         | 138 |
| 50. | Modified Grashof Number vs. Nondimensional Temperature Runs 9-12                                        | 139 |

# NOMENCLATURE

| <u>Symbol</u>    | <u>Description</u>                                                         | <u>Units</u>     |
|------------------|----------------------------------------------------------------------------|------------------|
| A                | Area                                                                       | m <sup>2</sup>   |
| g                | Acceleration due to gravity                                                | m/s <sup>2</sup> |
| Gr*              | Modified Grashof Number                                                    | Dimensionless    |
| k                | Thermal conductivity                                                       | W/m-°C           |
| kf               | Fluid thermal conductivity                                                 | W/m-°C           |
| $k_{PG}$         | Thermal conductivity of plexiglas                                          | W/m-°C           |
| $k_{\mathbf{R}}$ | Thermal conductivity of foam rubber insulation                             | W/m-°C           |
| L                | Characteristic length                                                      | m                |
| QCOND            | Energy loss via conduction through the back of the test surface            | W                |
| QCONV            | Energy convected into fluid                                                | W                |
| $Q_{IN}$         | Energy into foil heater                                                    | W                |
| R                | Resistance of precision resistor                                           | Ω                |
| RA               | Equivalent thermal resistance to conduction through plexiglas test surface | °C/w             |
| R <sub>B</sub>   | Equivalent thermal resistance to conduction through foam rubber insulation | °c/w             |
| TAVG             | Average block surface temperature                                          | °c               |
| TINF             | Ambient temperature                                                        | °c               |
| TB               | Bottom surface temperature of the block                                    | °C               |

| $\mathtt{T}_{\mathbf{F}}$ | Front surface temperature of the block | °C      |
|---------------------------|----------------------------------------|---------|
| TA                        | Heater temperature                     | °C      |
| TL                        | Left surface temperature of the block  | °c      |
| $T_{R}$                   | Right surface temperature of the block | °c      |
| ${\tt T}_{{\tt T}}$       | Top surface temperature of the block   | °C      |
| $v_{H}$                   | Voltage across heater                  | Volts   |
| $v_{\mathbf{T}}$          | Input voltage                          | Volts   |
| δ                         | Uncertainty of variable                | Various |
| β                         | Coefficient of expansion               | 1/°C    |
| ν                         | Kinematic viscosity                    | $m^2/s$ |

# **ACKNOWLEDGMENTS**

The author would like to express his deep gratitude to Assistant Professor Y. Joshi, his thesis advisor, for his guidance and advice in the endeavor.

He wishes to express appreciation to Mr. Mardo Blanco, Mr. Tom Christian, and Mr. Jim Schofield for their superior efforts solving perplexing construction problems.

The author would like to thank the Educational Media Department photography lab personnel for their rapid and continual effort in developing all photographs.

Last but not least, a special word of thanks and sincere appreciation to my wife, Marcella, whose understanding, support, and patience allowed for this work to be completed in a timely and effective manner.

### I. INTRODUCTION

#### A. STATEMENT OF PROBLEM

From the first electronic digital computer, ENIAC (1946), which used vacuum tubes as its basic logic elements, to the present use of integrated circuits, rapid advancements in the miniaturization of electronic components is well documented [Refs. 1,2]. This "boom" in technology has brought us from the small scale integration (SSI) device to the ultra large scale integration (ULSI) device in just 25 years [Ref. 3]. With the 1970 advent of the first one kilobit RAM semiconductor device, the number of memory cells contained on a single device has grown to the familiar 64K and more recently the 256K and 512K devices.

While the component density per chip has increased significantly, the chip dimensions have been considerably miniaturized. For example, a typical 64K RAM chip is only 14.2 square millimeters, approximately the size of a printed letter [Ref. 4]. The drive towards larger capacity and decreased size is expected to continue into the 1990's.

This trend toward higher packing densities has in turn lead to a considerable increase in heat fluxes at both the chip and module levels. For reliable long term operation of the device, these large heat fluxes must be removed, while maintaining the components at acceptably low temperature

levels. To get an idea of the magnitude of the decreased size to increased heat flux relationship let us consider a power dissipation of 10 watts on a 5x5 mm chip. This yields a heat flux of 5 x 10<sup>5</sup> w/m<sup>2</sup>, which is only 20 times less than that on the surface of the sun. As seen in Fig. 1, the sun's surface temperature is more than 6000°C while today's chips must be designed to operate at considerably lower temperatures, between 100°C to 125°C [Refs. 5,6,7]. A strong need to keep the devices at these low temperature levels exists, since for every 20°C decrease in chip temperature, the chi failure rates are cut in half [Ref. 5].

### B. IMMERSION COOLING: ANALYTICAL AND EXPERIMENTAL STUDIES

Immersion brings the liquid coolant into direct physical contact with the electronic package. It is therefore important that the coolant exhibit several crucial characteristics. It must be dielectric in nature so as not to adversely affect the circuits immersed in it. Also, it must be non-toxic as well as chemically inactive with the materials which compose the immersed portions of electronic package. Because very high heat transfer rates are attainable with direct immersion cooling, application has been receiving much attention in recent years [Refs. 3,8-10].

Having decided on the use of immersion cooling, the designer still has the choice of natural convection, forced convection or phase change as the cooling mechanism.

Because of its potentially high-dissipation capabilities, together with such added advantages as no noise and high reliability, natural convection is now generally recognized as an effective and viable means for proper thermal control of electronic packages [Ref. 11].

Two of the earliest studies in this area were conducted at Bell Telephone Laboratories by Baker [Refs. 12,13]. From his first study of free and forced convection cooling [Ref. 12], Baker showed that liquid immersion is an effective means of cooling small heat sources. The free convection cooling by liquid was found to be more than three times as effective as free convection cooling by air for the same device. For forced convection, the improvement was greater for liquid than air by a factor of 10.

In his second forced convection study using two different fluids [Ref. 13], boundary layer analysis showed that the convective heat transfer coefficient would increase significantly as the heat source size decreased. The convective heat transfer coefficient increased by a factor of 15 when the size was decreased from 2.00 to 0.01 square centimeters [Ref. 13]. A similar increase was noted for free convection.

More recently, Park and Bergles [Ref. 14] experimentally studied natural convection from discrete flush mounted and protruding heaters of varying widths, in water and R-113. They documented the increase in heat transfer coefficient

with decreasing width. Also, for protruding heaters, the heat transfer coefficients for the top heaters in an array were found to be higher than those for the bottom heaters. This trend was not observed for flush mounted heaters. As the distance between heaters increased, so did the heat transfer coefficients, the effect being greater in R-113 than in water.

Knock [Ref. 15] conducted a flow visualization study in a liquid filled rectangular enclosure with a single protruding heater from one vertical wall. Using water as the coolant, he found the existence of a dual-cell flow configuration where the upper cell was buoyancy driven and the lower cell was shear driven. He also concluded that as the heater height increased, the Nusselt number decreased.

Lin and Akins [Ref. 16] computed transient and steadystate natural convection heat transfer in a fluid-filled
cubical enclosure. The flow was initiated by subjecting
each of the six walls to a sudden change in temperature.
They concluded that the size of the enclosure determined the
circulation pattern.

Chu, et al. [Ref. 17] studied the natural convection in a rectangular enclosure with a long horizontal heat source mounted on one vertical wall. A number of different heater sizes and locations, as well as enclosure sizes, were investigated. They concluded that as the heater was moved downward on the wall, both the Rayleigh number and the

circulation rate increased. The heater size had little effect on circulation. A secondary flow cell was found to develop at the upper surface when the height of the enclosure was increased.

Yang, et al. [Ref. 11] used a three-dimensional finite difference method to study the natural convection cooling of a chip array in a rectangular enclosure filled with a dielectric liquid. They found the temperatures on the chip surfaces to be oscillatory, with wave forms ranging from simple to complex. The maximum chip surface temperatures occurred on the top row of chips for large gap sizes, but oscillated among all rows for small gas sizes.

It is clear from these studies that only a limited amount of information currently exists on natural convection in liquids from discrete protruding heat sources. The small size of the heat sources results in three-dimensional flow and temperature fields. The capability of numerically simulating these complex flows has only recently been developed for laminar flows, as an example in Yang et al. [Ref. 11]. Detailed measurements of transport are needed to verify such computations. Also, flow visualization studies are needed to examine the various possible flow regimes and the laminar to turbulent transition in such flows.

#### C. OBJECTIVES

The objectives of this study were:

- 1. to design and construct a liquid immersed vertical channel with discrete protruding heat sources. This geometry simulates a printed circuit board array with a number of heat dissipating electronic components. The heat sources were eight rectangular stainless steel protrusions, modeled geometrically after 20-pin dual-in-line packages (DIP). These were attached to the vertical card, in the form of a single vertical column.
- 2. to obtain the steady state natural convection flow pattern visualization within the interrupted channel, for a range of component power dissipation rates and plate spacings. The flow was visualized using a plane of light which illuminates suspended particles in the water.
- to measure component temperatures for various power inputs and card spacings and develop appropriate heat transfer correlations for this geometry.

This study was also intended to be a basis for future heat transfer experiments using various component array sizes and element spacings. The measurements will be used as a guide toward future experiments and computational efforts.

All objectives were achieved. As well a proving the reproducibility of both the numerical data and flow visualization photographs.

MATERIA DE SESSOS DE SESSO

### II. EXPERIMENT

#### A. GENERAL DESIGN CONSIDERATIONS

The channel assembly, seen in Fig. 2, consisted of a vertical test surface with eight rectangular stainless steel blocks protruding from it mounted in a vertical column. A parallel shrouding plate was placed in front of the test surface. This configuration was meant to simulate one column of 20-pin DIP's mounted on a printed circuit board, with the back of another printed circuit board directly in front of it.

Each protrusion was heated by a foil heater mounted on the back (Fig. 3). The foil heater and the stainless steel block together act as a 20-pin DIP model and are hereafter referred to as a heater. A precision 2.0 \Omegat1\% resistor placed in series with each heater and its power supply, allowed the input power to be accurately determined. Five thermocouples, one on the center of each exposed face of the heater allowed for surface temperature measurements (Fig. 4). An additional thermocouple was mounted in the center of each heater mounting slot to measure the heater temperature.

The channel assembly was suspended in the center of a one cubic meter tank filled with purified water. Three thermocouples monitor the tank temperature at the top, middle and bottom. A computer-aided data acquisition system

was used to measure temperatures throughout the study. A line drawing of the entire system is seen in Fig. 3.

Several criteria were established to be used as guidelines for design and construction. The following is a list of these criteria and their implications.

### 1. Heater Block Dimensions

As previously noted, each heater was to geometrically model a 20-pin DIP. Micrometer measurements of an actual 20-pin DIP were made and each heater block was cut from solid 304 stainless steel to these dimensions (Figs. 6, 7). Stainless steel was used to prevent chemical reaction with the water of the immersion bath, and because it has a thermal conductivity in the same range as an actual DIP.

# 2. <u>Heating Element</u>

appearant unitation of the second and incompanies of the second of the s

Each block was to be heated individually and must be able to withstand temperatures in excess of 100°C, the boiling point of water. There was also the necessity to be able to accurately determine the temperature at the heater's surface, as well as having an even heating of the block.

During design, both an imbedded resistor and a cartridge type heater were considered, but the inability to accurately determine the temperature at their centers forced their elimination. The resistance type foil heater, however, met or exceeded all the requirements set for the

heating element and had the advantage of ease of installation.

# 3. <u>Heater Location</u>

The goal of this study was to model a single column of DIPs in a vertical channel. After examining several actual printed circuit cards, a configuration of eight protruding heaters in a single column was decided on. The heaters were spaced on one inch centers as found in many actual applications.

# 4. Visualization Technique

Visualization was accomplished with an eight milliwatt helium neon laser and a cylindrical lens (Fig. 8). The beam of light was split into a plane which illuminated particles suspended in the immersion bath water (Fig. 9). The particles were Pliolite, an inert pigment used in the manufacture of paints and adhesives. The particles have a specific gravity of 0.93, which results in a large suspension time in water.

This technique allowed for the visualization of a single two-dimensional plane of the flow field. Other planes can be examined by minor realignment of the laser-lens assembly. The method also has the benefit of allowing the bath to remain electrically nonconductive.

SESSESSION SESSESSION DESCRIPTION PROPERTY

12.2.2.2.2.2

### 5. Thermocouple Design and Placement

To accurately measure the temperature of each block face, individual thermocouples were employed. However, if

the thermocouple protrudes above the surface, it will affect the flow field. Therefore a groove was cut on each face to accommodate the thermocouple. If the thermocouples are placed significantly below the surface, they will not accurately reflect the surface temperature. To minimize this problem, 0.003 inch copper-constantan thermocouples were used, and they were placed in 0.02 inch radius grooves (Fig. 10). The larger groove allowed for the thickness of the bonding agent. The grooves were cut so that the bead of the thermocouple will be located at the center of each surface.

# 6. Other Considerations

The test surface was constructed of plexiglas to allow for easier milling of heater mounting slots. The back of the test surface was covered with foam rubber insulation to minimize conduction losses through the test surface. The outer surfaces of the immersion tank were also covered with foam rubber insulation to minimize heat transfer with the ambient air. Styrofoam blocks covered with teflon were floated on the surface of the bath to prevent contamination of water and minimize heat losses through the free surface.

#### B. COMPONENTS

THE PERFORMANCE OF THE PROPERTY OF THE PROPERTY OF THE PERFORMANCE OF THE PROPERTY OF THE PROPERTY OF THE PERFORMANCE OF THE PE

#### 1. Heater

The heater assembly (Figs. 11, 12) consisted of a 0.94 inches (23.88 mm) long, 0.31 inches (7.87 mm) wide and 0.24 inches (6.10 mm) high 304 stainless steel block (Fig.

13). A resistance type foil heater was bonded to the back of each block using Omega Bond 101, a high thermal conductivity adhesive. The blocks have one groove cut into each side face with one end of the groove at the face center. A 0.04 inch diameter hole was drilled through the block from the front surface to allow for the passing of the thermocouple lead (Figs. 11, 12).

The foil heater consisted of a network of Inconel 600 conductor mounted on Kapton and is 1.37 inches (34.80 mm) long, 0.30 inches (7.62 mm) wide, and 0.007 inches (0.18 mm) thick (Fig. 14). Notches and holes were cut in the Kapton which align with the grooves and hole in the block. They allowed the passage of thermocouple wires, and also aided in the proper alignment of the foil heaters during bonding with the block. During the bonding of the foil heaters to the block, weight was applied to ensure uniform thickness of the adhesive and to also prevent curling at the edges. The power leads were soldered onto the protruding tabs of the foil heaters after the bonding agent had cured (Fig. 15).

The thermocouples were bonded in the grooves by placing a small drop of Eastman 910 adhesive on the thermocouple bead. The thermocouple was then placed in the designated groove. Using a straight pin, pressure was applied by hand until the adhesive set. After allowing for three hours of cure time, the remainder of the groove was

filled with Omega Bond 101 and smoothed to the level of the block face with a straight edge. The Omega Bond 101 experienced little shrinkage after curing. This procedure was repeated for each thermocouple.

# 2. Test Surface and the Shrouding Wall

Both the test surface and the shrouding wall were constructed of 1/2 inch (12.70 mm) thick plexiglas cut into a 12.0 inch (304.80 mm) square. Eight 0.015 inch (0.38 mm) deep, 1.41 inch (35.81 mm) long and 0.31 inch (7.87 mm) wide mounting slots were cut into the test surface on one inch (25.40 mm) vertical centers. This allowed the foil heaters to be mounted flush with the test surface while only the block protruded. Four 0.06 inch (1.524 mm) diameter holes were drilled through the test surface to conform to the grooves in each block. This allowed the thermocouple lead wires to pass through the test surface. One 0.12 inch (3.048 mm) diameter hole was drilled for the power leads to pass through (Fig. 16).

# 3. Test Surface Back Containment

Since all the wiring penetrated through the test surface, and the immersion bath was water, it was necessary to have a waterproof containment for the wiring. This was accomplished by fabricating a five sided box onto which the test surface was mounted (Fig. 17). The box was 12 inches (304.80 mm) square by 2.25 inches (57.150 mm) deep and was constructed of 0.50 inch (12.70 mm) plexiglas. A thin

groove was cut around the edges of the open face for a large O-ring gasket. The test surface was screwed over the open face with 20 stainless steel screws and compressed the O-ring to form a watertight seal. A 2 inch (50.80 mm) diameter plexiglas snorkel was mounted into the back of the containment box and extended to an elevation above the surface of the immersion bath. The wiring runs from the back of the test surface up through the snorkel.

## 4. Test Surface Support

Support for the test surface and shrouding wall was provided by an H style bracket which spanned the width of the tank (Fig. 18). The cross members between the span supports hold adjustable hangers to which the test surface and shrouding wall were attached, forming the vertical channel. These adjustable hangers allow the width of the vertical channel to be varied. They also allow the vertical adjustment of both the test surface and the shrouding wall.

### 5. Immersion Tank

The immersion tank was constructed such that the interior dimensions render a one cubic meter volume. The walls of the tank were 0.75 inch (19.050 mm) glass set in an aluminum frame. The glass was sealed watertight with Dow Corning 732 RTV adhesive/sealant (RTV) (Fig. 19).

# 6. Immersion Bath Filtration and Purification

Tap water was used and to ensure its purity and a resistivity of at least 0.1 megohn-cm, a Barnstead cartridge

filtration/purification system was employed (Fig. 20). consisted of four stages. The first stage contained a colloid/organic purification cartridge, followed by a high capacity deionization cartridge. The third stage was a high purity deionization cartridge, while the final stage was a 0.45 micron and larger filter cartridge. A suction was drawn from the bottom center of the tank with a small magnetic pump. The water passed through the four stage filtration/purification system and was returned to the top of the tank. Proper filtration/purification approximately 10 hours and one change of the colloid/organic and deionization cartridge was required. The filter cartridge did not require changing during a single filling of the tank.

#### C. ASSEMBLY

In addition to the thermocouples on the heater block assemblies, measurements of the mounting face temperature were made by placing a single thermocouple at the center of each mounting slot. These were bonded using Eastman 910 adhesive. This was the first step in the test surface assembly process.

STATES PARTICION

Land Control

Secreta 27 Miller

Once the heater assemblies, described in Section B, were ready, they were mounted on the test surface. For each heater block assembly the thermocouple wires and power leads were passed through their respective holes in the test surface (Fig. 21). A layer of Eastman 910 adhesive was then

applied to the bottom of the slot. Next, the heater assembly was firmly pressed into the mounting slot. This procedure was repeated for each heater assembly (Fig. 22).

Ten pounds of weight was distributed over all the protruding heaters and remains in place until the adhesive fully cured. Following the curing, the test surface was turned upside down and each lead was firmly cemented in this penetrating hole. The thermocouple and power leads were then assigned locations and routed through the snorkel. Next, the test surface was secured in place over the opening in the back containment box. The screw heads were covered with RTV and smoothed with a straightedge to the level of the test surface. The seam between the containment and test surface was also sealed with RTV.

Omega Bond 100 was used to fill in above the foil heater tab and in the seam around each heater assembly. This provided a watertight seal around each heater assembly and the test surface and also ensured a smooth and flat test surface (Fig. 23). Male plug-in connectors were then attached to each thermocouple lead wire and banana plug connectors to the power leads.

## D. INSTRUMENTATION

#### Power to the Heaters

Each heater was run in series with a precision resistor that was measured to have a 2.02 ohm resistance. All eight heaters were in parallel with a Hewlett Packard

model number 6200B, 0-10 volts, 0-10 amperes, power supply. Both the source voltage and the heater voltage were measured independently. The current to each heater was then calculated by subtracting the heater voltage from the source voltage and dividing by the resistance of the precision resistor. The power input to each heater was calculated by the product of the heater voltage and heater current. Both voltages were measured by a Hewlett Packard model 3852S data acquisition system containing a Hewlett Packard model 44701A integrating vollmeter, all controlled by a Hewlett Packard model 300 computer.

# 2. <u>Temperature Measurement</u>

The thermocouples described earlier in Sections A.5 and C were referenced individually to an ice bath, as seen in Fig. 24. Each reference thermocouple was connected such that its constantan lead was connected to the constantan lead of the measurement thermocouple. The copper leads of each measurement and reference thermocouple were connected directly to a Hewlett Packard model 44705A relay multiplexer and inserted into the data acquisition system. The data acquisition system then measures the ice referenced voltage of each thermocouple. The voltages were converted directly into temperatures in the controlling computer program by using a fourth order polynomial, fit to the thermocouple manufacturer's calibration data for copper-constantan

thermocouples over a  $10^{\circ}\text{C}$  to  $70^{\circ}\text{C}$  range, with a maximum curve fit uncertainty of  $0.00663^{\circ}\text{C}$  RMS.

#### III. EXPERIMENTAL PROCEDURE

#### A. APPARATUS PREPARATION

A stainless steel, propeller type, variable speed stirrer was used to stir the immersion bath. Stirring was performed to remove temperature stratification and to disperse the particles for flow visualization. While stirring, the floating styrofoam blocks were removed and the test surface and shrouding wall, mounted on the support bracket, were lowered into the immersion bath and positioned near the center of the tank. The styrofoam blocks were then replaced on the surface of the immersion bath. Stirring continued for 5 to 10 minutes.

The laser was energized next. The cylindrical lens was placed in the beam path and rotated to obtain the plane of light of greatest intensity normal to the test surface. The laser was positioned to allow the plane of light to fall directly on the center of each heater. The light plane passed through both the front wall of the tank, through a 0.125 inch by 12.0 inch slit, and the shrouding wall. The slit was used to obtain a well-defined plane of light and also to prevent extraneous scatter light from entering the tank. A 35 mm camera and tripod were set up to visualize the flow through the right hand wall of the tank. Two, 2 inch wide strips of thin cardboard were positioned to allow the camera to only photograph the space between the test

surface and shrouding wall. A data back on the camera allowed for easy sequencing of the photographs for later analysis.

Crushed ice was placed into a stainless steel Dewar flask along with the ice reference thermocouples. A mercury thermometer inserted into the ice base ensured that the ice bath was at 0±0.05°C. The data acquisition system and the computer was then turned on. The internal voltmeter in the data acquisition system requires a minimum one hour warm-up period. During this hour, no current was passed through the heaters. The tank was allowed to achieve quiescence. After one hour passed, a visual inspection of the illuminated particles in the tank was performed to ensure that the immersion bath was quiescent.

The temperature acquisition program, contained in Appendix D, was loaded and the temperatures of all heater surfaces and the immersion bath was measured. When the results showed all surfaces to be within 0.10°C of each other, and the tank temperature stratification to be less than 0.10°C, the experiment was ready to begin. A chance exists that the tank may need to be restirred, and allowed to sit to quiescence for approximately one hour.

#### B. TEST PROCEDURE

## 1. <u>Initial Instrument Settings</u>

Once the immersion bath was quiescent and the temperature of the heaters and the bath were within the

required values, a sampling of all thermocouple temperatures was performed and printed. This record was saved and labeled as the baseline for the run. The power calculation program, contained in Appendix D, was loaded, and the power supply was set to zero and energized.

The power was increased incrementally and the output from the power calculation program was checked. This was performed repeatedly until the desired power setting was achieved. For this study, four power settings, 0.2, 0.5, 1.0 and 2.0 watts, were used for each channel width.

### 2. <u>Instrument Readings</u>

Thermocouple temperature measurements were taken every 10 minutes until successive temperature measurements remained unchanged to within 0.10°C. At this point, it was assumed that steady state had been achieved. This process took between one and two hours, depending on the channel width and power setting.

Once steady state was attained, the thermocouples were monitored once more and the temperatures and voltages recorded. Single thermocouples on various heater assemblies were also sampled over a period of several minutes to detect any temperature oscillations with time.

The total voltage drop across the power supply and across each heater was measured. The power for each heater was then calculated and printed by the computer program.

After all the data had been recorded, and with the power

supply and laser on, flow visualization photographs were taken.

## 3. Photographic Technique

A Nikon F3 series camera with a 50 mm f2.8 lens, a MF-18 data back, a MD-4 motor drive, and a MT-2 intervelometer was used for the photography. The film used was Kodak ASA400 Tri-X Pan black and white print film. The first picture taken was a blank and the data back was set to display the date. The laboratory lighting was turned off. Using a flashlight the camera was set to f2.8, and the focus adjusted. The intervelometer was set for the required exposure length. Four photographs of each channel width and power setting were taken as shown in Table 1.

TABLE I
PHOTOGRAPH EXPOSURE VARIATIONS

| Picture # | <u>_f</u> _ | Exposure Time |
|-----------|-------------|---------------|
| 1         | 2.8         | 20 sec.       |
| 2         | 2.8         | 30 sec.       |
| 3         | 4.0         | 20 sec.       |
| 4         | 4.0         | 30 sec.       |

### 4. Experiment Completion

Once the photographs were taken, the laboratory lighting was turned on and the laser and power supply were

turned off. The propeller stirrer was started and the water immersion bath was mixed for 5 to 10 minutes. The immersion bath was now left to become quiescent again. After quiescence was achieved, the apparatus was ready to start another run with the same channel width at a different power level.

#### 5. Channel Width

The channel widths, also called spacings, for this study were as follows;

- a. no shrouding wall
- b. 2.91 inches (73.810 mm)
- c. 0.47 inches (11.913 mm).

These spacings were measured from the test surface to the shrouding wall. Each heating element protrudes 0.22 inches (5.598 mm) into this spacing, in front of the test surface. The spacings were changed by hoisting the test surface and shrouding wall support bracket from the immersion bath and removing the installed spacer. The spacer corresponding to the next spacing desired was installed. The apparatus was then ready for a new set of tests.

#### D. DATA ANALYSIS

There is more than one vertical dimension involved in this study. Any one of these could be chosen as the characteristic length, L, for determining the nondimensional temperature, T, and the Modified Grashof number, Gr\*. The 0.31 inch (7.874 mm) vertical height of the heater assembly

was chosen since it characterizes the local region of the buoyant flow. The corresponding temperature scale was easily obtained by combining the convected energy from each component with the component height and fluid thermal conductivity. An alternative would be the local downstream distance from the channel bottom. However, the appropriate temperature scale for this choice was not clear. The properties of the water were evaluated at the ambient bath temperature, T<sub>INF</sub>. These values, listed in Table II, were obtained by linearly interpolating a table of properties [Ref. 18].

In order to determine the net convected energy from each heater, the conduction losses, Q<sub>COND</sub>, were required to be determined for each power input and channel width. These were calculated from a resistance network consisting of the foam rubber insulation and the plexiglas. The net conduction loss is given by

$$Q_{COND} = \frac{\Delta T}{R_A + R_B} = \frac{T_H - T_{INF}}{R_A + R_B}$$
 (1a)

with

$$R_{\mathbf{A}} = \frac{\Delta X_{\text{PG}}}{k_{\text{PG}} A}$$

$$R_{\mathbf{B}} = \frac{\Delta X_{\text{R}}}{k_{\text{R}} A}$$
(1b)

TABLE II

PROPERTIES OF WATER [REF. 18]

| Kinematic<br>Viscosity<br>X·10 <sup>6</sup><br>M <sup>2</sup> /Sec | 1.0453 | 1.0460 | 1.1030 | 1.0998 | 1.0992 | 1.0983 | 1.0981 | 1.0979 | 1.0970  | 1.0970  | 1.0970  | 1.0966  |
|--------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|
| Expansion<br>Coefficient<br>$\beta \cdot 104$<br>1/°C              | 1.899  | 1.897  | 1.648  | 1.662  | 1.664  | 1.668  | 1.669  | 1.670  | 1.674   | 1.674   | 1.674   | 1.675   |
| Thermal<br>Conductivity<br>kf.103<br>w/m.°C                        | 86.009 | 600.35 | 596.80 | 96.965 | 596.99 | 597.04 | 597.06 | 597.07 | 599.11  | 597.11  | 597.11  | 597.14  |
| Spacing                                                            | 73.81  | 73.81  | 73.81  | 73.81  | 11.913 | 11.913 | 11.913 | 11.913 | No wall | No wall | No wall | No wall |
| O <sub>IN</sub>                                                    | 0.2    | 0.5    | 1.0    | 2.0    | 0.2    | 0.5    | 1.0    | 2.0    | 0.2     | 0.5     | 1.0     | 2.0     |
| T <sub>INF</sub>                                                   | 18.43  | 18.32  | 16.08  | 16.20  | 16.22  | 16.25  | 16.26  | 16.27  | 16.30   | 16.30   | 16.30   | 16.31   |
| Run                                                                | ı      | 7      | m      | 4      | 2      | 9      | 7      | ω      | 6       | 10      | 11      | 12      |

where A is the area normal to the direction of heat flow, and  $X_{\text{PG}}$  and  $X_{\text{R}}$  the thicknesses of plexiglas and foam rubber. See Table III.

TABLE III
PHYSICAL CONSTANTS

| ITEM            | VALUE    |                |
|-----------------|----------|----------------|
| A               | 0.000188 | m <sup>2</sup> |
| $\Delta X_{PG}$ | 0.006731 | m              |
| $\Delta x_R$    | 0.003175 | m              |

The thermal conductivity for each material was determined from a table of properties in Reference 19, and listed in Table IV.

TABLE IV
THERMAL CONDUCTIVITY OF MATERIALS

| <u>Material</u>   | $k \left( w/m - {}^{\circ}C \right)$ |
|-------------------|--------------------------------------|
| Plexiglas         | 0.1421                               |
| rubber insulation | 0.0389                               |

The temperature difference,  $\Delta T$ , was assumed to be the difference between the heater,  $T_{\rm H}$ , and the ambient temperature,  $T_{\rm INF}$ . The convective thermal resistance on the outside of the insulation was neglected here. This

calculation of  $Q_{\rm COND}$ , therefore, was a "worst case" estimate, using a one-dimensional model. Maximum estimated conduction losses in this study were only about 1.5% of the energy input.

After calculating  $Q_{\rm COND}$  and knowing the energy into the system,  $Q_{\rm IN}$ , a simple energy balance was used to determine the energy convected into the fluid,  $Q_{\rm CONV}$ :

$$Q_{CONV} = Q_{IN} - Q_{COND}$$
 (2a)

where

$$Q_{IN} = (\frac{V_T - V_H}{R}) V_H$$
 (2b)

and:

 $V_T$  = input voltage

V<sub>H</sub> = heater voltage

R = 2.02 ohms

The nondimensional temperature was next obtained as:

$$T = \frac{(T_{AVG} - T_{INF}) A k_f}{Q_{CONV} L}$$
 (3)

where  $T_{\mathrm{AVG}}$  is the average of the temperatures measured on the five exposed surfaces of the heater assembly and L is the characteristic length.

The Modified Grashof number is defined as:

$$Gr* = \frac{g \beta L^4 Q_{CONV}}{A k_f v^2}$$
 (4)

A complete set of sample calculations is contained in Appendix A. Uncertainty calculations in the evaluation of the nondimensional parameters is presented in Appendix B.

#### IV. RESULTS

#### A. FLOW VISUALIZATIONS

Photographs of the natural convection flow in a plane passing through the geometric center of each component are presented in Figs. 25-27. Fig. 25 depicts flows with no shrouding wall in place. Figures 26 and 27 show flows with the shrouding wall 73.81 mm and 11.193 mm, respectively, in front of the test surface. Finally, Fig. 28 depicts one component power input without the shrouding wall in which the camera and laser positions were interchanged.

Observations for all the no wall case (Fig. 25), show the presence of a dual flow structure. Near the protruding heaters, the flow resembles flow past an obstruction. It is clearly visible that the flow follows the contour of the protrusions dipping nearer the test surface after passing over a block and rising before reaching the next block. Further away from the test surface a buoyant boundary layer structure is visible, as expected.

At the lowest power input setting, 0.2 watts, distinct particle traces are visible throughout the flow, indicating a strong two-dimensional behavior near the center of the block. As the power input is increased, these traces get shorter. This indicates more pronounced out-of-plane motion and hence a stronger three-dimensional flow.

It is also quite evident that as the power input is increased, the entrainment velocities also increase but the thickness of the buoyant layer remains vertically unchanged. This may again be due to larger three-dimensional effects.

It is of some interest to note that Fig. 25 shows no dead regions or vortices. Also, for these power levels, the particle traces indicate laminar flow. The effective origin for the outer boundary region flow is approximately one and a half heater spacings upstream of the lowest heater at the lowest power setting. It moves further upstream with increasing input power.

Observations with the shrouding wall 73.81 mm in front of the test surface (Fig. 26), are similar to the no wall case in many respects. However, the entrainment velocity is smaller, therefore the buoyant layer thickness is decreased. Also, the effective origin of the flow has moved to approximately one heater spacing upstream at the low power inputs. It is also apparent that for the 0.2 watt input power setting, quiescence was not achieved, prior to the start of the run.

For the closest spacing (Fig. 27) the flow still follows the contour of the test surface and there are no dead zones or eddy flow visible. Since the shrouding wall is so close to the test surface, the entire gap region participates in the transport, unlike for the two previous spacings, where the shrouding was either absent or was significantly far

from the test surface. It is interesting to note that at this spacing, the shrouding was receiving thermal energy from within the channel. This caused a boundary layer flow to develop on the back of the shrouding wall.

Observation of the flow in Fig. 28 reveals the presence of entrainment from the left and right sides of the heater assemblies.

#### B. QUANTITATIVE

Graphs of block number vs. excess temperature are contained in Figs. 29-46. Note block 1 is the upper most block in the channel. It is also noted that thermocouple #1 corresponding to block 1 heater and thermocouple #31 corresponding to block 6 front face were broken and their data\_were not plotted. These figures allow a visual interpretation of the temperature across each block face at each spacing and power input. From these graphs and the data contained in Appendix C, no dramatic increase in temperature is apparent as the channel width is decreased.

Figure 47 is a comparison of the front surface temperature of the eight blocks at two watts with the self similar solution for a vertical uniform flux surface. The area of the flat plate is that formed by the eight blocks and the spacings between them. The uniform flux is then obtained by dividing the total convected energy with this area. The equation for the temperature excess at the surface is

$$(T_{SURF} - T_{INF}) = \left[\frac{Q_{CONV}}{1.172 k_{f}A}\right]^{4/5} \left[\frac{4v^{2}x}{g\beta}\right]^{1/5}$$
 (5)

where the constant 1.172 has been evaluated at Prandtl number equal to 6.7 for water. The fluid property values used were those of the 2.0 watt run with no wall, run 12. From Fig. 47, near the bottom of the heated protrusion column, the measured excess temperatures agree well with the similarity prediction. However, as the flow progresses up the channel, the actual data and the theoretical prediction diverge. This may be due to the increased three-dimensionality of the flow leading to more cooling of the heated blocks.

Results of the data analysis are contained in Appendix E in tabular form. These are also plotted in Figs. 48-50 as the modified Grashof number versus a nondimensional temperature T. We note that T is the inverse of the Nusselt number. Each graph is for a single channel width.

In all the graphs, a general trend is that as the modified Grashof number increases, the nondimensional temperature decreases, indicating higher Nusselt numbers. It is also apparent that the data for various blocks show less of a variation with increasing modified Grashof numbers. This indicates that the temperature variation for the different blocks is not directly proportional to the change in component energy dissipation. The data have been plotted over approximately a ten-fold increase in Q<sub>CONV</sub>.

However, the resulting component temperature increases are only by a factor of 3 to 4. This is evident for all channel widths.

Another important is trend observed from the nondimensional temperature variations in Figs. 48-50. For the lowest power input, resulting in the smallest modified Grashof number, the nondimensional temperatures decrease as the shrouding plate is moved further away from the test surface. At higher values of modified Grashof number, no significant difference is observed between the different channel widths. The difference at lower modified Grashof numbers presumably results from the greater entrainment as the channel width is increased. For larger modified Grashof numbers, conduction to the shrouding wall may become appreciable, making the temperature differences between the various spacings less significant.

#### V. CONCLUSIONS

The author has found no previous natural convection liquid immersion cooling studies of a simulated column of protruding electronic devices with or without a shrouding wall. A direct comparison with other studies has therefore not been possible.

Flow visualization provided the evidence of a dual flow structure. Near the test surface, the protrusions govern the flow structure, while further away from the test surface, the flow is similar to a natural convection boundary layer. There were no dead zones or vortices observed for the conditions examined. As the input power increased, the three-dimensional effects become more predominant and the effective origin moved further upstream. Entrainment velocities increased with increasing power input.

The surface temperatures increased with increasing power but no dramatic trend in temperature from spacing to spacing was apparent. The component temperatures near the bottom of the channel agreed with that of a flat plate with constant heat flux. Further downstream, the measured temperatures were below the uniform flux surface prediction. Nondimensional temperatures for each block decreased as the modified Grashof number increased.

#### VI. RECOMMENDATIONS

While performing the experimental runs a number of possible improvements to the apparatus were noted which would enable better flow visualization. Review of the obtained data showed that using the same configuration the data set should be enlarged to allow for better correlation of channel spacing and input power. These recommendations are stated below.

#### A. IMPROVEMENT TO EXPERIMENT

#### Apparatus

WARREN WARREN

Both the test surface and the shrouding wall should be \_painted a dark, flat color, with only a thin slit remaining unpainted on the shrouding wall to allow passage of the plane of light.

A metal plate with a 12 inch long slit should be manufactured. It should have two leveling screws and hang from the top of the tank. This would allow for easier alignment of the plane of light with the test surface.

A similar device with an adjustable width slit should be manufactured to aid with the photographing of the flow.

The laboratory should be made lightproof, thus removing the need for experimentation at night only.

#### 2. <u>Data Acquisition</u>

Data acquisition programs should be rewritten to include lines for the storage of acquired data. Also, the plotter should be interfaced with the system so that results could be directly plotted.

#### B. ADDITIONAL EXPERIMENTAL WORK

It is suggested that the following areas of study be experimentally explored:

- 1. Using the same test surface, several channel widths between 73.81 mm and 11.913 mm should be investigated to better understand the effects of card spacing. Note that at 11.913 mm thermal energy was conducted to the shrouding wall. It is recommended that the minimum channel spacing not be less than 11.913 mm, and that the minimum width where conduction to the shrouding wall is not present be found.
- 2. Using the same test surface, the input powers should be increased above 2.0 watts. Levels of 3.0, 4.0 and 5.0 watts are recommended. This will allow for a better power input to spacing correlation as well as seeing if the nondimensional temperature reaches a constant value.
- 3. Using the same test surface, only a selected number of blocks could be heated. This will allow an understanding of how the protrusion affects the flow.
- 4. A different test surface could be constructed and studied based on the above results. A 3 by 3 array of heater assemblies is recommended to begin with.

#### APPENDIX A

#### SAMPLE CALCULATIONS

### A. DETERMINATION OF INPUT POWER

Using the data for block 2, run 1, Appendix C, the input power is calculated, using Equation (3b), to be:

$$Q_{IN} = \frac{(1.75 - 1.48) \cdot 1.48}{2.02} = 0.20 \text{ watts}$$

#### B. NONDIMENSIONAL TEMPERATURE

Using the same data as above, the heat loss via conduction through the test surface is calculated. Employing Equations (1b) and (1c), as well as the information in Tables II and III, and Appendix C, the resistances and area are calculated to be:

$$A = (0.0079)(0.0239) = 0.000188 \text{ m}^2$$

$$R_A = \frac{0.006731}{(0.1421)(0.000188)} = 251.96 \text{ °C/W}$$

$$R_B = \frac{0.003175}{(0.0389)(0.000188)} = 434.15 \text{ °C/W}$$

From Equation (1a),  $Q_{COND}$  is then calculated:

$$Q_{COND} = \frac{(20.63 - 18.32)}{251.96 + 434.15} = 0.003 \text{ watts}$$

From Equation (2a), Q<sub>CONV</sub> is:

$$Q_{CONV} = 0.20 - 0.003 = 0.197$$
 watts

The average temperature of the convecting faces is:

$$T_{AVG} = \frac{(19.86 + 19.76 + 19.74 + 19.96 + 19.92)}{5.0} = 19.85$$
°C

The ambient temperature,  $T_{\mbox{\footnotesize{INF}}}$ , is taken as the average at three tank temperatures.

$$T_{INF} = \frac{(18.36 + 18.33 + 18.78)}{3.0} = 18.32$$
°C

From Equation (3) and Table II, the nondimensional temperature is found to be:

$$T = \frac{(19.85 - 18.32)(0.000188)(0.60038)}{(0.197)(0.007874)} = 0.11$$

#### C. MODIFIED GRASHOF NUMBER

Using Table II and Equation (4), the Modified Grashof number is calculated to be:

$$Gr* = \frac{(9.81)(1.897 \times 10^{-4})(0.197)(0.007874)^{4}}{(0.000188)(0.60035)(1.0460 \times 10^{-6})^{2}}$$

$$Gr* = 1.14 \times 10^5$$

## APPENDIX B

## UNCERTAINTY ANALYSIS

# TABLE V

## UNCERTAINTY VARIABLES

| <u>Variable</u>                                | Uncertainty                          | <u>Basis</u>                     |
|------------------------------------------------|--------------------------------------|----------------------------------|
| Voltmeter Resolution                           | 0.026°C<br>1.0 μV                    | Manufacturer<br>data             |
| Ice Bath Temperature                           | 0.05°C                               | Manufacturer<br>Calibration data |
| Polynomial Tempera-<br>ture Conversion         | 0.00663 <sup>O</sup> C RMS           | Polynomial fit error calculation |
| R                                              | 1.0%                                 | Manufacturer<br>data             |
| L                                              | 0.0000254 M                          | Resolution of measurement device |
| kf                                             | 0.008 W/m·°C                         | [Ref. 18]                        |
| k <sub>pg</sub>                                | 5.0%                                 | [Ref. 19]                        |
| k <sub>r</sub>                                 | 7.0%                                 | [Ref. 19]                        |
| β                                              | 0.0000535 1/°C                       | [Ref. 18]                        |
| ν                                              | $0.00012 \text{ m}^2/\text{sec}$     | [Ref. 18]                        |
| $\delta T_{H} = [(\delta VR)^{2} + (\delta I.$ | B.) $^{2}$ ] $^{1/2} + \delta$ curve |                                  |
| $\delta T_{\rm H} = [(0.025)^2 + (0.025)^2]$   | $(0.05)^2 1^{1/2} + 0.00663$         |                                  |

$$\delta T_{\rm H} = 0.063$$

$$\frac{\delta Q_{\text{IN}}}{Q_{\text{IN}}} = \left[ \left( \frac{\delta R}{R} \right)^2 + \left( \frac{\delta V_{\text{H}}}{V_{\text{H}}} \right)^2 + \left( \frac{\delta V_{\text{T}}}{V_{\text{T}}} \right)^2 \right]^{1/2}$$

$$= \left[ \left( \frac{0.02}{2.02} \right)^2 + \left( \frac{1 \times 10^{-6}}{2.32} \right)^2 + \left( \frac{1 \times 10^{-6}}{2.75} \right)^2 \right]^{1/2}$$

$$= 0.010$$

$$\frac{\delta A}{A} = \left[ \left( \frac{0.0000254}{0.007874} \right)^2 + \left( \frac{0.0000254}{0.023876} \right)^2 \right]^{1/2}$$

$$= 0.0034$$

= 0.07

$$\frac{\delta R_{A}}{R_{A}} = \left[ \left( \frac{\delta X_{pg}}{X_{pg}} \right)^{2} + \left( \frac{\delta A}{A} \right)^{2} + \left( \frac{\delta k_{pg}}{k_{pg}} \right)^{2} \right]^{1/2}$$

$$= \left[ \left( \frac{0.0000254}{0.006731} \right)^{2} + \left( 0.0034 \right)^{2} + \left( 0.05 \right)^{2} \right]^{1/2}$$

$$= 0.050$$

$$\frac{\delta R_{B}}{R_{B}} = \left[ \left( \frac{\delta X_{r}}{X_{r}} \right)^{2} + \left( \frac{\delta A}{A} \right)^{2} + \left( \frac{\delta k_{r}}{k_{r}} \right)^{2} \right]^{1/2}$$

$$= \left[ \left( \frac{0.0000254}{0.003175} \right)^{2} + \left( 0.0034 \right)^{2} + \left( 0.07 \right)^{2} \right]^{1/2}$$

$$\frac{Q_{\text{COND}}}{Q_{\text{COND}}} = \left[ \left( \frac{\delta R_{\text{A}}}{R_{\text{A}}} \right)^{2} + \left( \frac{\delta R_{\text{B}}}{R_{\text{B}}} \right)^{2} + \left( \frac{\delta T_{\text{H}}}{T_{\text{H}}} \right)^{2} + \left( \frac{\delta T_{\text{INF}}}{T_{\text{inf}}} \right)^{2} \right]^{1/2}$$

$$= \left[ (0.05)^{2} + (0.07)^{2} + \left( \frac{0.063}{20.63} \right)^{2} + \left( \frac{0.063}{18.32} \right)^{2} \right]^{1/2}$$

$$= 0.0861$$

$$\frac{\delta Q_{\text{CONV}}}{Q_{\text{CONV}}} = \left[ \left( \frac{\delta Q_{\text{COND}}}{Q_{\text{COND}}} \right)^2 + \left( \frac{\delta Q_{\text{IN}}}{Q_{\text{IN}}} \right)^2 \right]^{1/2}$$
$$= \left[ (0.086)^2 + (0.01)^2 \right]^{1/2}$$

$$= 0.087$$

$$\frac{\delta T}{T} = \left[ \left( \frac{\delta A}{A} \right)^2 + \left( \frac{\delta k_f}{k_f} \right)^2 + \left( \frac{\delta T_{AVG}}{T_{AVG}} \right)^2 + \left( \frac{\delta T_{inf}}{T_{inf}} \right)^2 + \left[ \frac{\delta Q_{CONV}}{Q_{CONV}} \right] + \left( \frac{\delta L}{L} \right)^2 \right]^{1/2}$$

$$= \left[ \left( 0.0034 \right)^2 + \left( \frac{0.0038}{0.60038} \right)^2 + \left( \frac{0.063}{19.85} \right)^2 + \left( \frac{0.063}{18.32} \right)^2 + \left( 0.087 \right)^2 + \left( \frac{0.0000254}{0.007874} \right)^2 \right]^{1/2}$$

$$= 0.0835$$

$$\frac{Gr^*}{Gr^*} = \left[ \left( \frac{\delta B}{B} \right)^2 + 4 \left( \frac{\delta L}{L} \right)^2 + \left( \frac{\delta Q_{CONV}}{Q_{CONV}} \right)^2 + \left( \frac{\delta A}{A} \right)^2 + \left( \frac{\delta k_f}{k_f} \right)^2 + 2 \left( \frac{\delta V}{V} \right)^2 \right]^{1/2}$$

$$= \left[ \left( \frac{53.5 \times 10^{-6}}{0.1897 \times 10^{-3}} \right)^2 + 4 \left( \frac{0.0000254}{0.007874} \right)^2 + (0.087)^2 - (0.0034)^2 + \left( \frac{0.008}{0.60038} \right)^2 + 2 \left( \frac{0.00012}{0.1046 \times 10^{-5}} \right)^2 \right]^{1/2}$$

$$= 162.24$$

The above uncertainty calculations are intended to be a representative example of the overall uncertainty for this study.

## APPENDIX C

## TABULAR DATA

| Run  | # 7 |
|------|-----|
| RULI | # 1 |

Spacing: 73.81 mm

Power: 0.2 watts

Date: 11 November 1987 BLOCK #!

| T. C. T. C. T. C. T. C. T. C.             | # 4<br># 5                   | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C.                | .00079035<br>.00077911<br>.00077978<br>.00079212<br>.00079029              | Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C | 20.0243445765<br>:9.7450558912<br>:9.7617177375<br>20.0663090423<br>20.0228541866<br>253317.564556 |
|-------------------------------------------|------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 9<br># 10<br># 1!          | Volts D.C.     | .00078393<br>.00077967<br>.00077895<br>.00078759<br>.00078618<br>.00081496 | Temp. DEG. C                | 19.8648471972<br>19.759983891<br>19.7410892474<br>19.9557819586<br>19.9207517085<br>20.8352713352  |
| T. C. T. C. T. C. T. C. T. C. T. C.       | # 14<br># 15<br># 16<br># 17 | BLOCK #3  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C. | .00078062<br>.00077524<br>.00077458<br>.00078948<br>.00078817              | Temp. DEG. C                | 19.7825938819<br>19.6488717936<br>19.6324647191<br>20.0027334804<br>19.9701908396<br>20.8599881386 |
| T. C. T. C. T. C. T. C. T. C. T. C.       |                              | BLOCK #4  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C. | .00078141<br>.00077793<br>.00077313<br>.00078624<br>.00078245              | Temp. DEG. C                | 18.9022265892<br>19.7132518396<br>19.5964169503<br>19.9222424083<br>19.8280709822<br>20.8386618334 |

## BLOCK #5

| T. C. T. C. T. C. T. C. T. C. | # 25<br># 26<br># 27<br># 28<br># 29<br># 30 | Volts D.C. | .00077637<br>.00077434<br>.00077308<br>.00073541<br>.00077941 | Temp.<br>Temp.<br>Temp.<br>Temp. | DEG. DEG. DEG. DEG. DEG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000 | 19.6769614222<br>19.6264983744<br>19.5951738766<br>19.9016206587<br>19.7525220116<br>20.5782076142 |
|-------------------------------|----------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------|
|                               |                                              | BLOCK #6                                                                     |                                                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                    |
| T. C. T. C. T. C. T. C. T. C. | # 31<br># 32<br># 33<br># 34<br># 35<br># 36 | Volts D.C. | .0271272<br>.00077167<br>.00077268<br>.00078155<br>.00077997  | Temp.<br>Temp.<br>Temp.          | DEG. (CDEG. (C))))))))))))))))))))) | 0000 | 4348.10146544<br>19.5601179051<br>19.5852291742<br>19.8057057213<br>19.7664398002<br>20.5279853066 |

### BLOCK #7

| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 38<br># 39<br># 40<br># 4! | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. | .00076535<br>.00076!1<br>.00076053<br>.00077596<br>.00077246 | Temp. DEG. C | 19.297242815<br>19.293062966<br>19.5667597958 |
|-------------------------------------------|------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------|
|-------------------------------------------|------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------|

### BLOCK #8

| T.<br>T.<br>T. | c. c. c. c. | # # # | 44<br>45<br>46<br>47 | Volts<br>Volts<br>Volts<br>Volts | D.C.<br>D.C.<br>D.C. | .0007653<br>.00075635<br>.00075687<br>.00077204<br>.00076312 | Temp. Temp. Temp. Temp. | DEG.<br>DEG.<br>DEG.<br>DEG. | 0000 | 19.4017132152<br>19.1790649214<br>19.192003674<br>19.5693172318<br>19.3474909198 |
|----------------|-------------|-------|----------------------|----------------------------------|----------------------|--------------------------------------------------------------|-------------------------|------------------------------|------|----------------------------------------------------------------------------------|
| Τ.             | C.          | #     | 48                   | Volts                            | D.C.                 | .00079523                                                    |                         |                              |      | 20.1455478033                                                                    |

## BATH TEMPERATURES (TOP TO BOTTOM)

| VOLTS D.C. | .00072357 | TEMP. DEG. C | 18.362739297  |
|------------|-----------|--------------|---------------|
| VOLTS D.C. | .00072241 | TEMP. DEG. C | 18.3338268635 |
| VOLTS D.C. | .00072041 | TEMP. DEG. C | 18.2839738639 |

```
BLOCK # 1 HEATER VLOTS D.C. 1.474186
```

BLOCK # 2 HEATER VLOTS D.C. 1.482119

BLOCK # 3 HEATER VLOTS D.C. 1.475075

BLOCK # 4 HEATER VLOTS D.C. 1.475035

BLOCK # 5 HEATER VLOTS D.C. 1.47361

BLOCK # 6 HEATER ULOTS D.C. 1.47488

BLOCK # T HEATER VLOTS D.C. 1.475371

BLOCK # 8 HEATER VLOTS D.C. 1.478689

### INPUT VLOTAGE D.D. VLOTS 1.756932

```
BLOCK # 1 HEATER POWER WATTS .205345631067
BLOCK # 2 HEATER POWER WATTS .201636420172
BLOCK # 3 HEATER POWER WATTS .205821288255
BLOCK # 4 HEATER POWER WATTS .205845515542
BLOCK # 5 HEATER POWER WATTS .205686204168
BLOCK # 6 HEATER POWER WATTS .205937056317
BLOCK # 7 HEATER POWER WATTS .205646997095
BLOCK # 8 HEATER POWER WATTS .203680625459
```

## Run #2

CONTROL TO SERVED THE CONTROL OF THE

T. C.

# 24

Spacing: 73.81 mm

0.5 watts Power:

11 November 1987 Date:

### BLOCK #1

Volts D.C.

|                                           |                              | 5230                                                                         |                                                                          |                                              |                |                                                                                                     |
|-------------------------------------------|------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|
| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 3<br># 2<br># 2            | Volts D.C. | .00084358<br>.00084743<br>.00087354<br>.00085713                         | Temp. DE<br>Temp. DE<br>Temp. DE<br>Temp. DE | 6. C           | 21.7959413132<br>21.3447868234<br>21.4401533038<br>22.0854206622<br>21.9278413532<br>-204.164485618 |
|                                           |                              | BLOCK #2                                                                     |                                                                          |                                              |                |                                                                                                     |
| T. G.<br>T. G.<br>T. G.<br>T. G.<br>T. G. | # 8<br># 9<br># 10<br># 11   | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C.            | .00035608<br>.0002405!<br>.00084449<br>.00086327<br>.00086!59            | Temp. DE<br>Temp. DE<br>Temp. DE<br>Temp. DE | 6. C           | 21.5543504051<br>21.2687280112<br>21.3673296705<br>21.5471712547<br>21.7907437714<br>23.5119106095  |
|                                           |                              | BF00K #3                                                                     |                                                                          |                                              |                |                                                                                                     |
| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 14<br># 15<br># 16<br># 17 | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C.            | .00084644<br>.0008356<br>.00083746<br>.0008556<br>.00086472<br>.00085167 | Temp. DE<br>Temp. DE<br>Temp. DE<br>Temp. DE | 16. C<br>16. C | 21.465168443<br>21.1470588682<br>21.1931529803<br>21.8699825115<br>21.8682061615<br>24.0151694159   |
|                                           |                              | BLOCK #4                                                                     |                                                                          |                                              |                |                                                                                                     |
| T. C. T. C. T. C. T. C. T. C.             | # 20<br># 21<br># 22<br># 23 | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C.                       | .00084549<br>.00093883<br>.00083459<br>.0008513<br>.00085424             | Temp. DE                                     | 16. C          | 21.1220274501<br>21.7835661228<br>21.608794953                                                      |

.00095168

Temp. DEG. C 24.015415791

## BLOCK #5

| Τ. | C. | # 25        | Volts D.C. | .00084001 | Temp. DEG. C | 21.2563394622 |
|----|----|-------------|------------|-----------|--------------|---------------|
| Τ. | С. | # 26        | Volts D.C. | .00083327 | Temp. DEG. C | 21.0893111906 |
| Т. | С. | # 27        | Volts D.C. | .00083464 | Temp. DEG. C | 21.1232666593 |
| Τ. | С. | # 28        | Volts D.C. | .00095408 | Temp. DEG. C | 21.8523682058 |
|    |    | # 29        | Volts D.C. | .00085179 | Temp. DEG. C | 21.5481302839 |
| Τ. | С. | <b>#</b> 30 | Volts D.C. | .00093206 | Temp. DEG. C | 23.5317872731 |
|    |    |             |            |           |              |               |

## BLOCK #6

| Τ. | С. | # | 31 | Volts | D.C. | .0204947  | Temp. | DEG. | C | 1561.85597436 |
|----|----|---|----|-------|------|-----------|-------|------|---|---------------|
| Τ. | С. | # | 32 | Volts | D.C. | .00082777 | Temp. | DEG. | С | 20.9529698935 |
| Ή. | С. | # | 33 | Volts | D.C. | .00083079 | Temp. | DEG. | С | 21.0278383615 |
| Τ. | С. | # | 34 | Volts | D.C. | .00085193 | Temp. | DEG. | С | 21.5515970394 |
| Τ. | С. | # | 35 | Volts | o.c. | .00084676 | Temp. | DEG. | С | 21.4235583962 |
| T. | С. | # | 36 | Volts | D.C. | .00092735 | Temp. | DEG. | C | 23.415615182  |

### BLOCK #7

| T. C. | # 37               | Volts D.C. | .0009184  | Temp. | DEG. C | 20.7206064139 |
|-------|--------------------|------------|-----------|-------|--------|---------------|
| T. C. | # 38               | Volts D.C. | .00080663 | Temp. | DEG. C | 20.4285698691 |
| T. C. | # 39               | Volts D.C. | .00081072 | Temp. | SEG. C | 20.5300704385 |
| T. C. | _ <del>#_</del> 40 | Volts D.C. | .00083772 | Temp. | DEG. C | 21.1995958973 |
| T. C. | # 41               | Volts D.C. | .00083321 | Temp. | DEG. C | 21.0878240359 |
| T. C. | # 42               | Volts D.C. | .00091659 | Temp. | DEG. C | 23.1501157605 |

## BLOCK #8

| Τ. | С. | # | 43 | Volts | D.C. | .00081677 | Temp. | DEG. | С | 20.6801733318 |
|----|----|---|----|-------|------|-----------|-------|------|---|---------------|
| Τ. | С. | # | 44 | Volts | D.C. | .00080155 | Temp. | DEG. | С | 20.3024714367 |
| Τ. | С. | # | 45 | Volts | D.C. | .0008017  | Temp. | DEG. | С | 20.3061952802 |
| Τ. | С. | # | 46 | Volts | D.C. | .00083331 | Temp. | DEG. | С | 21.0903026246 |
| Т. | C. | # | 47 | Volts | D.C. | .00081589 | Temp. | DEG. | С | 20.6583430413 |
| Τ. | С. | # | 48 | Volts | D.C. | .00089782 | Temp. | DEG. | С | 22.6866252613 |

## BATH TEMPERATURES (TOP TO BOTTOM)

| VOLTS D.C. | .00072415 | TEMP. DEG. | C | 18.3771948788 |
|------------|-----------|------------|---|---------------|
| UOLTS D.C. | .00072244 | TEMP. DEG. | С | 18.3345746201 |
| VOLTS D.C. | .00071894 | TEMP. DEG. | С | 18.2473286999 |

```
BLOCK # 1 HEATER VLOTS D.C. 2.308692
```

```
BLOCK # 2 HEATER VLOTS D.C. 2.321047
```

```
BLOCK # 3 HEATER VLOTS D.C. 2.310025
```

```
BLOCK # 4 HEATER VLOTS D.C. 2.309965
```

BLOCK # 5 HEATER VLOTS D.C. 2.307129

BLOCK # 8 HEATER VLOTS 0.0. 2.309733

BLOCK # T HEATER VLCTS D.C. 2.310471

BLOCK # 8 HEATER VLOTS D.C. 2.315697

#### INPUT VLOTAGE D.C. VLOTS 2.75119

BLOCK # 1 HEATER POWER WATTS .505738412185 BLOCK # 2 HEATER POWER WATTS .494248574119 BLOCK # 3 HEATER POWER WATTS .50450602927 BLOCK # 4 HEATER POWER WATTS .504561538181 BLOCK # 5 HEATER POWER WATTS .5071811935 BLOCK # 6 HEATER POWER WATTS .5047761391 BLOCK # 7 HEATER POWER WATTS .504093301311 BLOCK # 8 HEATER POWER WATTS .499242491892

## Run #3

T. C. # 23

T. C. # 24

Spacing: 73.81 mm

Power: 1.0 watt

Date: 16 November 1927

### BLOCK #1

| T. G. T. G. T. G. T. G. T. G. T. G. | # 4<br># 5                        | Volts D.C. | .00085264<br>.0008407<br>.00084341<br>.00085203<br>.00085072<br>.0718988   | Temp. [] Temp. [] Temp. [] Temp. [] Temp. [] Temp. [] | DEG. C<br>DEG. C<br>DEG. C | 21.340575407<br>22.2963785306<br>21.789210509                                                     |
|-------------------------------------|-----------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------|
|                                     |                                   | BLOCK #2                                                                     |                                                                            |                                                       |                            |                                                                                                   |
|                                     | # 8<br><u>#</u> 9<br># 10<br># 11 | Volts D.C. | .00084097<br>.00082733<br>.00083003<br>.00085922<br>.00085725<br>.00100509 | Temp. [<br>Temp. [<br>Temp. [<br>Temp. [<br>Temp. [   | DEG. C<br>DEG. C<br>DEG. C | 21.0089983693<br>21.7320819645                                                                    |
|                                     |                                   | BLOCK #3                                                                     |                                                                            |                                                       |                            |                                                                                                   |
| T. C.<br>T. C.<br>T. C.             | # 15                              | Volts D.C. | .00084813<br>.00082149<br>.00082354<br>.00087966<br>.0008622<br>.00104456  | Temp. [<br>Temp. [<br>Temp. [<br>Temp. [<br>Temp. ]   | DEG. C<br>DEG. C<br>DEG. C | 21.4574906652<br>20.797246471<br>20.8480851991<br>22.2377774762<br>21.8058412397<br>26.2983644288 |
|                                     |                                   | BLOCK #4                                                                     |                                                                            |                                                       |                            |                                                                                                   |
| T. C.<br>T. C.<br>T. C.             | -                                 | Volts D.C. Volts D.C. Volts D.C. Volts D.C.                                  | .0008555<br>.00081905<br>.000824<br>.00087152                              | Temp. D<br>Temp. D<br>Temp. D                         | DEG. C                     | 21.6399909929<br>20.7367291048<br>20.8594921586<br>22.0389264933                                  |

.00105802

Temp. DEG. C 21.7996538091 Temp. DEG. C 26.6283138115

Volts D.C. .00086195

Volts D.C.

# BLOCK #5

| т. ( | c. | # | 25 | Volts | D.C. | .00083707 | Temp. | DEG. | С | 21.1834884457 |
|------|----|---|----|-------|------|-----------|-------|------|---|---------------|
| T. ( | C. | # | 26 | Volts | D.C. | .00082369 | Temp. | DEG. | С | 20.8518048988 |
| T. ( | c. | # | 27 | Volts | D.C. | .0008239  | Temp. | DEG. | С | 20.8570124309 |
| T. ( | c. | # | 28 | Volts | D.C. | .00087763 | Temp. | DEG. | С | 22.187577725  |
| T. ( | C. | # | 29 | Volts | D.C. | .0008539  | Temp. | DEG. | С | 21.6003766327 |
| T. ( | С. | # | 30 | Volts | D.C. | .00102435 | Temp. | DEG. | С | 25.8025269276 |
|      |    |   |    |       |      |           |       |      |   |               |

# BLOCK #6

| Τ. | С. | <b>#</b> 31 | · Volts D.C. | .0268306  | Temp. DEG. C | 4169.36370749 |
|----|----|-------------|--------------|-----------|--------------|---------------|
| Τ. | С. | # 32        | Volts D.C.   | .00080957 | Temp. DEG. C | 20.5015332825 |
| Τ. | С. | # 33        | Volts D.C.   | .00081653 | Temp. DEG. C | 20.6742197127 |
| Τ. | С. | # 34        | Volts D.C.   | .00085761 | Temp. DEG. C | 21.6922275192 |
| Τ. | €. | # 35        | Volts D.C.   | .00084015 | Temp. DEG. C | 21.2598082976 |
| Τ. | С. | <b>#</b> 36 | Valts D.C.   | .00102488 | Temp. DEG. C | 25.8:55385789 |

## BLOCK #7

| Τ. | C. | <u>#</u> 37 | Volts D.C. | .00080817 | Temp. DEG. | С | 20.4667901543 |
|----|----|-------------|------------|-----------|------------|---|---------------|
| T. | С. | # 38        | velts D.C. | .0007829  | Temp. DEG. | С | 19.8392532308 |
| τ. | С. | # 39        | Volts D.C. | .00079324 | Temp. DEG. | C | 20.0961253311 |
| Τ. | С. | # 40        | Volts D.C. | .00084154 | Temp. DEG. | ε | 21.2942474331 |
| Τ. | С. | # 41        | Volts D.C. | .00082852 | Temp. DEG. | С | 20.9740433028 |
| Τ. | С. | # 42        | Volts D.C. | .00100595 | Temp. DEG. | C | 25.3506541914 |

# BLOCK #8

| T. | C. | # 43         | Volts D.C. | .0008016  | Temp. DEG. | С | 20.303712721  |
|----|----|--------------|------------|-----------|------------|---|---------------|
| Τ. | C. | # 44         | Volts D.C. | .00077564 | Temp. DEG. | С | 19.6588152085 |
| Τ. | С. | # 45         | Volts D.C. | .0007749  | Temp. DEG. | С | 19.6404197327 |
| Τ. | С. | # 46         | Volts D.C. | .00083422 | Temp. DEG. | С | 21.1128572041 |
| Τ. | C. | # 47         | Volts D.C. | .00079941 | Temp. DEG. | С | 20.2493415233 |
| T. | С. | <b># 4</b> 8 | Volts D.C. | .0009841  | Temp. DEG. | С | 24.8135071922 |

## BATH TEMPERATURES (TOP TO BOTTOM)

| VOLTS D.C. | .00063358 | TEMP. DEG. | С | 16.114752114  |
|------------|-----------|------------|---|---------------|
| VOLTS D.C. | .00063229 | TEMP. DEG. | С | 16.082453277  |
| VOLTS D.C. | .00063074 | TEMP. DEG. | С | 16.0436418264 |

BLOCK # 1 HEATER VLOTS D.C. 3.2881

BLOCK # 2 HEATER VLOTS D.C. 3.30615

BLOCK # 3 HEATER VLOTS D.C. 3.28981

BLOCK # 4 HEATER VLOTS D.C. 3.28965

BLOCK # 5 HEATER VLOTS D.C. 3.28679

BLOCK # 6 HEATER VLOTS D.C. 3.28936

BLOCK # 7 HEATER VLOTS D.C. 3.2906

BLOCK # 8 HEATER VLOTS D.C. 3.29782

### INPUT VLOTAGE D.C. VLOTS 3.91787

and the control of th

BLOCK # ! HEATER POWER WATTS !.02512214703
BLOCK # 2 HEATER POWER WATTS 1.00120696931
BLOCK # 3 HEATER POWER WATTS 1.02287033099
BLOCK # 4 HEATER POWER WATTS 1.02308115
BLOCK # 5 HEATER POWER WATTS 1.02546319485
BLOCK # 6 HEATER POWER WATTS 1.02346319485
BLOCK # 7 HEATER POWER WATTS 1.02182904059
BLOCK # 8 HEATER POWER WATTS 1.01228380743

# Run #4

Spacing: 73.81 mm

Power: 2.0 watts

Date: 16 November 1987

# BLOCK #1

| T. 0. T. 0. T. 0. T. 0. T. 0.             | # 3<br># 4<br># 5            | Volts D.C. | .00099999<br>.00098964<br>.0009904<br>.00104:59<br>.00101351<br>0526:8:   | Temp. [<br>Temp. [<br>Temp. [            | DE6. C<br>DE6. C<br>DE6. C | 24.9634436235                                                    |
|-------------------------------------------|------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|----------------------------|------------------------------------------------------------------|
|                                           |                              | BLOCK #2                                                                     |                                                                           |                                          |                            |                                                                  |
| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 9<br># 10<br># 11          | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C.            | .00098101<br>.00095578<br>.0009585<br>.00102363<br>.00101402<br>.00131394 | Temp. [<br>Temp. [<br>Temp. [<br>Temp. [ | DEG. C<br>DEG. C<br>DEG. C | 25.7846528787<br>25.5488916062                                   |
|                                           |                              | BLOCK #3                                                                     |                                                                           |                                          |                            |                                                                  |
| T. S.<br>T. C.<br>T. G.<br>T. C.<br>T. C. | # 14<br># 15<br># 16<br># 17 | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C.            | .00096566<br>.00094913<br>.00093948<br>.00102837<br>.00098013<br>.0013708 | Temp. [<br>Temp. [<br>Temp. [<br>Temp. [ | DEG. C                     | 23.7147451812<br>25.9011951721                                   |
|                                           |                              | BLOCK #4                                                                     |                                                                           |                                          |                            |                                                                  |
| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 21<br># 22<br># 23         | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C.                       | .00096349<br>.00093199<br>.00093953<br>.00098074<br>.00099323             | Temp. [<br>Temp. [<br>Temp. [<br>Temp. [ | DEG. C<br>DEG. C<br>DEG. C | 23.5300609272<br>23.7159778176<br>24.7308541777<br>25.0380259348 |
| 1                                         | # 24                         | Volts D.C.                                                                   | .00137817                                                                 | Temp. [                                  | リヒじ・ レ                     | 34.4104326334                                                    |

## BLOCK #5

| T. C. T. C. T. C. T. C. T. C. T. C. | . # | 26<br>27<br>28<br>29 | Volts D.C. | .00097024<br>.00095663<br>.00095773<br>.00104532<br>.0010185<br>.00135099 | Temp.<br>Temp.<br>Temp.<br>Temp. | DEG.<br>DEG.<br>DEG.<br>DEG. | 0000 | 24.4724726756<br>24.1373561325<br>24.1644498276<br>26.317000557<br>25.6589065951<br>33.7546109452 |
|-------------------------------------|-----|----------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|------------------------------|------|---------------------------------------------------------------------------------------------------|
|                                     |     |                      | BLOCK #6                                                                     |                                                                           |                                  |                              |      |                                                                                                   |

| Τ, | C. | # | 31 | Volts | D.C. | 0831284   | Temp. | DEG. | С | 405992.00471  |
|----|----|---|----|-------|------|-----------|-------|------|---|---------------|
| T. | С. | # | 32 | Volts | D.C. | .00093437 | Temp. | DEG. | C | 23.58875325   |
| T. | С. | # | 33 | Volts | D.C. | .00095337 | Temp. | DEG. | С | 24.0570513909 |
| T. | С. | # | 34 | Volts | D.C. | .00101723 | Temp. | DEG. | С | 25.6277218494 |
| Τ. | С. | # | 35 | Volts | D.C. | .00099699 | Temp. | DEG. | С | 25.1304590652 |
| Τ. | C. | # | 36 | Volts | D.C. | .00136077 | Temp. | DEG. | С | 33.9906937561 |

## BLOCK #7

| Τ. | C. | # | 37 | Volts | D.C. | .00094894 | Temp. | DEG. | C | 23.9479043329 |
|----|----|---|----|-------|------|-----------|-------|------|---|---------------|
| Τ. | С. | # | 38 | Volts | D.C. | .0009049  | Temp. | DEG. | 0 | 22.8615046201 |
| Τ. | С. | # | 39 | Volts | D.C. | .00092636 | Temp. | DEG. | C | 23.3911933139 |
| Ŧ. | C. | # | 40 | Volts | D.C. | .00101444 | Temp. | DEG. | С | 25.5592065735 |
| T. | C. | # | 41 | Volts | D.C. | .00098306 | Temp. | DEG. | С | 24.7879256219 |
| T. | С. | # | 42 | Volts | D.C. | .0013394  | Temp. | DEG. | С | 33.4746860386 |

### BLOCK #8

| Τ. | ε. | # | 43 | Volts | D.C. | .00092161 | Temp. | DEG. | С | 23.2740005238 |
|----|----|---|----|-------|------|-----------|-------|------|---|---------------|
| Τ. | С. | # | 44 | Volts | D.C. | .00088689 | Temp. | DEG. | С | 22.4165257577 |
| Τ. | €. | # | 45 | Volts | D.C. | .00088349 | Temp. | DEG. | C | 22.3324752532 |
| T. | С. | # | 46 | Volts | D.C. | .00099579 | Temp. | DEG. | С | 25.1009610456 |
| Τ. | С. | # | 47 | Volts | D.C. | .00092944 | Temp. | DEG. | С | 23.4671684316 |
| T. | С. | # | 48 | Volts | D.C. | .00128954 | Temp. | DEG. | С | 32.2685944092 |

## BATH TEMPERATURES (TOP TO BOTTOM)

| VOLTS D.C. | .00063761 | TEMP. DEG. | С             | 16.2156411894 |
|------------|-----------|------------|---------------|---------------|
| VOLTS D.C. | .00063615 | TEMP. DEG. | Ç             | 16.1790931662 |
| VOLTS B.C. | .00063754 | TEMP. DEG. | $\mathcal{C}$ | 16.2139889481 |

BLOCK # 1 HEATER VLOTS D.C. 4.62592

BLOCK # 2 HEATER VLOTS D.C. 4.65012

BLOCK # 3 HEATER VLOTS D.C. 4.62731

BLOCK # 4 HEATER VLOTS D.C. 4.62709

BLOCK # 5 HEATER VLOTS D.C. 4.62453

BLOCK # 6 HEATER VLOTS D.C. 4.52678

BLOCK # 7 HEATER VLOTS D.C. 4.62881

BLOCK # 8 HEATER VLOTS D.C. 4.63865

#### INPUT VLOTAGE D.C. VLOTS 5.50953

BLOCK # 1 HEATER POWER WATTS 2.02351939168 BLOCK #-2 HEATER POWER WATTS 1.97839585604 BLOCK # 3 HEATER POWER WATTS 2.02094328129 BLOCK # 4 HEATER POWER WATTS 2.02135113842 BLOCK # 5 HEATER POWER WATTS 2.02609358911 BLOCK # 5 HEATER POWER WATTS 2.02192576485 BLOCK # 7 HEATER POWER WATTS 2.01816116

BLOCK # 8 HEATER POWER WATTS 1.99985520396

Spacing: 11.913

Power: 0.2 watts

Date: 17 November 1987

| T. C. T. C. T. C. T. C. T. C. T. C. | <b>#</b> 4<br><b>#</b> 5                            | Volts D.C. | .00070914<br>.00070222<br>.00070959<br>.00071276<br>.00071114<br>.0651422 | Temp. DEG. C   | 18.0029581147<br>17.8303297555<br>18.0141818604<br>18.093239593<br>18.0528394784<br>143771.001054  |
|-------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                     |                                                     | BLOCK #2                                                                     |                                                                           |                                                                                              |                                                                                                    |
| T. G.<br>T. G.<br>T. G.<br>T. G.    | # 8<br># 9<br># 10                                  | Volts D.C. | .00070498<br>.0007008<br>.00069983<br>.00071178<br>.0007084<br>.00073574  | Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C | 17.8991887536<br>17.7948985648<br>17.7706941095<br>18.0688004516<br>17.9845007343<br>18.5659585444 |
|                                     |                                                     | BLOCK #3                                                                     |                                                                           |                                                                                              |                                                                                                    |
|                                     | # 14<br># 15<br># 16<br># 17                        | Volts D.C. | .00070403<br>.0005988<br>.00059779<br>.00071117<br>.00070759              | Temp. DEG. C                | 17.9754893689<br>17.7449911752<br>17.7197860303<br>18.0535876605<br>17.9667909783<br>18.8208748884 |
|                                     |                                                     | BLOCK #4                                                                     |                                                                           |                                                                                              |                                                                                                    |
|                                     | 1 19<br>1 00<br>1 0<br>1 00<br>1 00<br>1 03<br>1 04 | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Polts D.C. volts D.C.            | .00071244<br>.00059555<br>.00069395<br>.00070627<br>.00070348             | Temp. DEG. C                | 18.0852596654<br>17.6641305202<br>17.6214487367<br>17.931369563<br>17.9617665744<br>18.8425379729  |

| T. C. T. C. T. C. T. C. T. C.             | # 26<br># 27<br># 28<br># 29 | Volts D.C. | .00069733<br>.000693<br>.00069395<br>.00070453<br>.00070072 | Temp.<br>Temp.<br>Temp.<br>Temp. | DEG. CODEG. CODEG. CO | 17.7083060338<br>17.6002312761<br>17.6239448487<br>17.8879623972<br>17.7929023659<br>18.6004549184 |
|-------------------------------------------|------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|-----------------------|----------------------------------------------------------------------------------------------------|
|                                           |                              | BLOCK #6                                                                     |                                                             |                                  |                       |                                                                                                    |
| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 32<br># 33<br># 34<br># 35 | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C.            | .0632886<br>.00068795<br>.00068902<br>.0006997<br>.00069678 | Temp.<br>Temp.<br>Temp.<br>Temp. | DEG. C<br>DEG. C      | 127933.131493<br>17.4741558483<br>17.5008715397<br>17.7674501235<br>17.6945796016                  |
|                                           |                              | BLOCK #7                                                                     |                                                             |                                  |                       |                                                                                                    |
| T. C.<br>T. C.<br>T. C.                   | # 38<br># 39                 | Volts B.C. Volts B.C. Volts B.C. Volts B.C.                                  | .0006945<br>.00068188<br>.00068375<br>.00069482             | Temp.<br>Temp.                   | DEG. C                | 17.63767324<br>17.3225732021<br>17.3895283267<br>17.6456604925                                     |

## BLOCK #8

Volts D.C.

T. C.

Volts D.C. .00069182

| Τ. | c. | # | 43 | Volts [ | D.C. | .00067 <del>9</del> 8 | Temp. | DEG. | С | 17.2706198805 |
|----|----|---|----|---------|------|-----------------------|-------|------|---|---------------|
| ۲. | С. | # | 44 | Volts ( | D.C. | .00057404             | Temp. | DEG. | С | 17.1267207233 |
| Τ. | c. | # | 45 | Volts ( | D.C. | .00067405             | Temp. | DEG. | С | 17.1269705844 |
| Τ. | C. | # | 46 | Volts [ | D.C. | .00068794             | Temp. | DEG. | С | 17.4739061621 |
| Τ. | C. | # | 47 | Volts ( | D.C. | .00068                | Temp. | DEG. | С | 17.2756156288 |
| Τ. | С. | # | 48 | Volts ( | D.C. | .00071555             | Temp. | DEG. | С | 18.1628100985 |

.00072565

Temp. DEG. C 17.570774941)

Temp. DEG. C 18.4145780413

### BATH TEMPERATURES (TOP TO BOTTOM)

| VOLTS D.C. | .00063946 | TEMP. DEG. C | 15.2519481857 |
|------------|-----------|--------------|---------------|
| VOLTS D.C. | .00063674 | TEMP. DEG. C | 16.1938628959 |
| VOLTS D.C. | .00063796 | TEMP. DEG. C | 15.2244023031 |

```
BLOCK # 1 HEATER VLOTS D.C. 1.479227
```

BLOCK # 2 HEATER VLOTS D.C. 1.486967

BLOCK # 3 HEATER VLOTS D.C. 1.479592

BLOCK # 4 HEATER VLOTS D.C. 1.479553

BLOCK # 5 HEATER VLOTS D.C. 1.47892

BLOCK # 6 HEATER VLOTS D.C. 1.479432

BLOCK # 7 HEATER VLOTS D.C. 1.480182

BLOCK # 8 HEATER VLOTS D.C. 1.483219

#### INPUT VLOTAGE D.C. VLOTS 1.762348

BLOCK # 1 HEATER POWER WATTS .207325845281
BLOCK # 2 HEATER POWER WATTS .202714088825
BLOCK # 3 HEATER POWER WATTS .207110651253
BLOCK # 4 HEATER POWER WATTS .20713375774
BLOCK # 5 HEATER POWER WATTS .20750858305
BLOCK # 6 HEATER POWER WATTS .207205437481
BLOCK # 7 HEATER POWER WATTS .206760908026
BLOCK # 8 HEATER POWER WATTS .204955166461

T. C. # 21

T. C. # 22

T. C. # 23

T. C. # 24

Spacing: 11.913 mm

Power: 0.5 watts

Date: 17 November 1987

#### BLOCK #1

Volts D.C.

Volts D.C.

Volts D.C.

Volts D.C.

| T.<br>T.<br>T. | c. c. c. c.                             | # # # | 2<br>3<br>4        | Volts<br>Volts<br>Volts                   | D.C.<br>D.C.<br>D.C. | .0007757<br>.00075667<br>.0007762<br>.00078484<br>.00078316               | Temp. Temp. Temp. Temp. | DEG.<br>DEG.<br>DEG.<br>DEG. | 0000 | 19.6603067034<br>19.4357857992<br>19.6727356515<br>19.8874582327<br>19.8457139695<br>82326.501046  |
|----------------|-----------------------------------------|-------|--------------------|-------------------------------------------|----------------------|---------------------------------------------------------------------------|-------------------------|------------------------------|------|----------------------------------------------------------------------------------------------------|
|                |                                         |       |                    | BLO                                       | OCK #2               |                                                                           |                         |                              |      |                                                                                                    |
| T.<br>T.<br>T. | 0.0000000000000000000000000000000000000 | # #   | 8<br>9<br>10<br>11 | Volts<br>Volts<br>Volts<br>Volts<br>Volts | D.C.<br>D.C.<br>D.C. | .00077145<br>.00076157<br>.00076161<br>.00078706<br>.00077903<br>.0008491 | Temp.<br>Temp.<br>Temp. | DEG.<br>DEG.<br>DEG.<br>DEG. | 0000 | 19.5546479536<br>19.3114222554<br>19.3099297019<br>19.9425148528<br>19.7430775733<br>21.4815142779 |
|                |                                         |       |                    | BL                                        | OCK #3               |                                                                           |                         |                              |      |                                                                                                    |
| T.<br>T.<br>T. | c. c. c. c.                             | # #   | 16                 | Volts Volts Volts Volts Volts             | D.C.<br>D.C.<br>D.C. | .00076889<br>.00075901<br>.00075925<br>.00078362<br>.00077795             | Temp.<br>Temp.<br>Temp. | DEG.<br>DEG.<br>DEG.<br>DEG. | 0000 | 19.4909931345<br>19.2452480378<br>19.2512190091<br>19.8571442991<br>19.7162344944<br>21.8790944579 |
|                |                                         |       |                    | BL                                        | OCK #4               |                                                                           |                         |                              |      |                                                                                                    |
|                | C.                                      |       |                    | . Volts<br>Volts                          |                      | .00077507                                                                 | •                       |                              |      | 19.5446457813<br>19.1414908466                                                                     |
|                |                                         |       |                    |                                           |                      |                                                                           |                         |                              |      |                                                                                                    |

Para secson recessor parameter recessor recessed recessor bessesse recessor recessor

.0007536

.0007804

.0007729

.00087154

Temp. DEG. C 19.1106331706

Temp. DEG. C 19.5905937854

Temp. DEG. C 22.0369474692

Temp. DEG. C 19.777126406

| T. C. T. C. T. C. T. C. T. C.    | # 27<br># 28 | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. | .00075757<br>.00075131<br>.00075303<br>.00077823<br>.00075679 | Temp.<br>Temp.<br>Temp.<br>Temp. | DEG. C<br>DEG. C<br>DEG. C<br>DEG. C<br>DEG. C | 19.2094206886<br>19.053540927<br>19.0964479449<br>19.723193952<br>19.4387701379<br>21.5065273003 |
|----------------------------------|--------------|-------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                  |              | 8L0CK #6                                                          |                                                               |                                  |                                                |                                                                                                  |
| T. C.<br>T. C.<br>T. C.<br>T. C. | _            | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. | .0522216<br>.00074305<br>.00074401<br>.00076745<br>.00075893  | Temp.<br>Temp.<br>Temp.          | DEG. C<br>DEG. C<br>DEG. C<br>DEG. C           | 119433.511569<br>18.8480158435<br>18.871918566<br>19.4551836773<br>19.2432576979                 |

Temp. DEG. C 21.3296751022

### 8L00k #7

Volts D.C. .00084297

T. C. # 36

| τ. ο | Э.       | # .              | 37  | Volts | D.C. | .00074382 | Temp. | DEG. | С | 18.8571579109 |
|------|----------|------------------|-----|-------|------|-----------|-------|------|---|---------------|
| T. ( | Ο.       | # :              | 38  | Volts | D.C. | .00072871 | Temp. | DEG. | С | 18.4908309143 |
| Τ. ( | Э.       | # :              | 39  | Voits | D.C. | .0007342  | Temp. | DEG. | С | 18.6276080094 |
| T. ( | Ο.       | # .              | 40  | Volts | D.C. | .00075992 | Temp. | DEG. | С | 19.2678875873 |
| 7. 0 | Э.       | <del>- #</del> . | 4 1 | Volts | D.C. | .00075266 | Temp. | DEG. | С | 19.0872397726 |
| T. 0 | <u>.</u> | # /              | 42  | Volts | D.C. | .00083567 | Temp. | DEG. | С | 21.1487936715 |

### BLOCK #8

| Τ, | С. | # | 43 | Volts | D.C. | .00072821 | ĭemp. | DEG. | С | 18.4783720998 |
|----|----|---|----|-------|------|-----------|-------|------|---|---------------|
| Τ. | С. | # | 44 | Volts | D.C. | .00071818 | Temp. | DEG. | С | 18.2283818345 |
| Τ, | C. | # | 45 | Volts | O.C. | .00071525 | Temp. | DEG. | С | 18.1553298798 |
| Τ. | C. | # | 45 | Volts | D.C. | .0007481  | Temp. | DEG. | С | 18.9737411325 |
| Τ. | C. | # | 47 | Voits | D.C. | .00072787 | Temp. | DEG. | С | 18.4698999262 |
| Τ. | С. | # | 48 | Volts | D.C. | .00081745 | Temp. | DEG. | С | 20.6972895837 |

## BATH TEMPERATURES (TOP TO BOTTOM)

| VOLTS D.C. | .00063986 | TEMP. DEG. C | 16.271959944  |
|------------|-----------|--------------|---------------|
| VOLTS D.C. | .00063916 | TEMP. DEG. C | 16.2344392365 |
| UGLIS D.C. | .00063874 | TEMP. DEG. C | 16.243926516  |

```
BLOCK # 1 HEATER VLOTS D.C. 2.31381
```

```
BLOCK # 2 HEATER VLOTS D.C. 2.325955
```

```
BLOCK # 3 HEATER VLOTS D.C. 2.314405
```

BLOCK # 7 HEATER VLOTS D.C. 2.315302

BLOCK # 8 HEATER VLOTS D.C. 2.32009

#### INPUT VLGTAGE D.C. VLOTS 2.756495

STATE OF THE PROPERTY OF THE P

```
BLOCK # 1 HEATER POWER WATTS .507074897951
BLOCK # 2 HEATER POWER WATTS .495751976067
BLOCK # 3 HEATER POWER WATTS .506523574661
BLOCK # 4 HEATER POWER WATTS .506538454423
BLOCK # 5 HEATER POWER WATTS .507505519849
BLOCK # 6 HEATER POWER WATTS .506753605495
BLOCK # 7 HEATER POWER WATTS .505691757717
BLOCK # 8 HEATER POWER WATTS .501238216109
```

Spacing: 11.913

Power: 1.0 watt

Date: 17 November 1987

| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # <b>4</b><br># 5                            | Volts D.C.     | .00086707<br>.00085117<br>.0008672<br>.0008699<br>.00087838                | Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C | 21.926356748<br>21.5327772142<br>21.9295733868<br>21.9963757079<br>22.2061250329<br>4860.44901559  |
|-------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 9<br># 10<br>_ <u>#</u> 11                 | Volts D.C.     | .00025135<br>.00084486<br>.00084905<br>.00089124<br>.00087403<br>.00102538 | Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C | 21.7848036559<br>21.3764951463<br>21.4802759762<br>22.5240398348<br>22.0985408295<br>25.8278095143 |
| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 13<br># 14<br># 15<br># 16<br># 17<br># 18 | BLOCK #3  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C. | .00085993<br>.00084233<br>.00084307<br>.000865<br>.00087456                | Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C |                                                                                                    |
| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 20<br># 21<br># 22                         | BLOCK #4  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C. | .00086349<br>.00083851<br>.0008377<br>.00088555<br>.00087317               | Temp. DEG. C                | 21.8377671353<br>21.2191719321<br>21.1991002913<br>22.4081213593<br>22.0772684996<br>26.9869333575 |

| Τ. | С. | # | 25 | Volts D. | C00084506 | •     |      |   | 21.381449386  |
|----|----|---|----|----------|-----------|-------|------|---|---------------|
| Τ. | С. | # | 26 | Volts D. | C00083412 | Temp. | DEG. | С | 21.1103787297 |
| Τ. | C. | # | 27 | Volts D. | C00083973 | Temp. | DEG. | C | 21.2494017377 |
| Τ. | С. | # | 28 | Volts D. | C00088712 | Temp. | DEG. | С | 22.4222110038 |
| Τ. | C. | # | 29 | Volts D. | C00086534 | Temp. | DEG. | С | 21.883548591  |
| T. | C. | # | 30 | Volts D. | C00103501 | Temp. | DEG. | С | 26.0641255333 |
|    |    |   |    | <b>.</b> |           |       |      |   |               |

### BLOCK #6

| Т. | c. | # 31        | Volts D.C. | .0483189  | Temp. DEG. C | 40950.8457007 |
|----|----|-------------|------------|-----------|--------------|---------------|
| Τ. | C. | <b>#</b> 32 | Volts D.C. | .00082127 | Temp. DEG. C | 20.7917902939 |
| Τ. | C. | # 33        | Volts D.C. | .00082191 | Temp. DEG. C | 20.8076626403 |
| Τ. | С. | <b>#</b> 34 | Volts D.C. | .0008673  | Temp. DEG. C | 21.9320477899 |
| Τ. | C. | # 35        | Volts D.C. | .0008495  | Temp. DEG. C | 21.4914205785 |
| T. | С. | # 36        | Volts D.C. | .00102794 | Temp. DEG. C | 25.890640057  |

## BLOCK #7

| Τ. | С. | # 37            | Volts D.C. | .00082072 | Temp. DEG. C | 20.7781495851 |
|----|----|-----------------|------------|-----------|--------------|---------------|
|    |    | <b>#</b> 38     | Volts D.C. | .00079664 | Temp. DEG. C | 20.1805620148 |
| Τ. | C. | <del>*</del> 39 | Volts D.C. | .00080792 | Temp. DEG. C | 20.4605857652 |
| Τ. | C. | # 40            | Volts D.C. | .00095499 | Temp. DEG. C | 21.6273642643 |
| Τ. | C. | # 41            | Volts D.C. | .00084054 | Temp. DEG. C | 21.2719489826 |
| Τ. | С. | # 42            | Volts D.C. | .0010133  | Temp. DEG. C | 25.5312082938 |

## BLOCK #8

| Τ. | c. | # | 43 | Volts D.C. | 00079706 | Temp. | DEG. | С | 20.1909912969 |
|----|----|---|----|------------|----------|-------|------|---|---------------|
| Τ. | C. | # | 44 | Volts D.C. | 0007804  | Temp. | DEG. | С | 19.777126406  |
| Τ. | C. | # | 45 | Volts D.C. | 00077589 | Temp. | DEG. | С | 19.6650297407 |
| Τ. | C. | # | 45 | Volts D.C. | 00083833 | Temp. | DEG. | C | 21.2147116387 |
| Τ. | C. | # | 47 | Volts D.C. | 00080045 | Temp. | DEG. | C | 20.275162387  |
| J. | С. | # | 48 | Volts D.C. | 00098359 | Temp. | DEG. | С | 24.8009625523 |

## BATH TEMPERATURES (TOP TO BOTTOM)

| VOLTS D.C. | .00053962 | TEMP. DEG. | С | 16.2659529138 |
|------------|-----------|------------|---|---------------|
| VOLTS D.C. | .00063902 | TEMP. DEG. | С | 16.250935021  |
| VOLTS D.C. | .00063946 | TEMP. DEG. | С | 16.2619481867 |

BLOCK # 1 HEATER VLOTS D.C. 3.30153

BLOCK # 2 HEATER VLOTS D.C. 3.31896

BLOCK # 3 HEATER VLOTS D.C. 3.30248

BLOCK # 4 HEATER VLOTS D.C. 3.30231

BLOCK # 5 HEATER VLOTS D.C. 3.30105

BLOCK # 5 HEATER VLOTS D.C. 3.30192

BLOCK # 7 HEATER VLOTS D.C. 3.30351

BLOCK # 8 HEATER VLOTS D.C. 3.31045

#### INPUT VLOTAGE D.C. VLOTS 3.9327

BLOCK # 1 HEATER POWER WATTS 1.03159737134
BLOCK #-2 HEATER POWER WATTS 1.00840520317
BLOCK # 3 HEATER POWER WATTS 1.03034106218
BLOCK # 4 HEATER POWER WATTS 1.03055594104
BLOCK # 5 HEATER POWER WATTS 1.03223179627
BLOCK # 5 HEATER POWER WATTS 1.03108173149
BLOCK # 7 HEATER POWER WATTS 1.02897794895
BLOCK # 8 HEATER POWER WATTS 1.0197660953

Spacing: 11.913 mm

Power: 2.0 watts

Date: 17 November 1987

## BLOCK #1

| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 3 # 4 # 5 | 2<br>3<br>4<br>5 | Volts<br>Volts<br>Volts<br>Volts | D.C.<br>D.C.<br>D.C. | .00098045<br>.00097514<br>.0009913<br>.00098299<br>.00100831 | Temp.<br>Temp.<br>Temp.<br>Temp. | DEG.<br>DEG.<br>DEG. | 0000 | 24.7237197749<br>24.5930678391<br>24.9905733571<br>24.7862037369<br>25.4086353635<br>-184.374127276 |
|-------------------------------------------|-------------|------------------|----------------------------------|----------------------|--------------------------------------------------------------|----------------------------------|----------------------|------|-----------------------------------------------------------------------------------------------------|
|                                           |             | •                |                                  | )CK #2               | .0010143                                                     | remp.                            | DES.                 | Ü    | .0413/4/2/2/3                                                                                       |

| Τ. | С. | #        | 7   | Volts | D.C. | .00098243 | Temp. | DEG. | C | 24.7724284372 |
|----|----|----------|-----|-------|------|-----------|-------|------|---|---------------|
| Ŧ. | С. | #        | 8   | Volts | D.C. | .0009667  | Temp. | DEG. | С | 24.3853301675 |
| T. | С. | #        | 9   | Volts | D.C. | .00097125 | Temp. | DEG. | С | 24.497332499  |
| T. | C. | #        | 10  | Volts | D.C. | .00102098 | Temp. | DEG. | С | 25.7197969998 |
| T. | C. | #        | 1.1 | Volts | D.C. | .00101565 | Temp. | DEG. | С | 25.5889222746 |
| Τ. | С. | <u>#</u> | 12  | Volts | D.C. | .00132052 | Temp. | DEG. | C | 33.018342373  |

## BLOCK #3

| Τ. | С. | # | 13 | Volts | D.C. | .00099028          | Temp. | DEG. | C | 24.965492916  |
|----|----|---|----|-------|------|--------------------|-------|------|---|---------------|
| Τ. | С. | # | 14 | Volts | D.C. | . <b>0009</b> 5138 | Temp. | DEG. | С | 24.2543408025 |
| Т. | С. | # | 15 | Volts | D.C. | .0009671           | Temp. | DEG. | С | 24.3951775629 |
| Τ. | С. | # | 16 | Volts | D.C. | .00098953          | Temp. | DEG. | С | 24.9470505872 |
| T. | С. | # | 17 | Volts | D.C. | .00101017          | Temp. | DEG. | С | 25.4543274978 |
| Τ. | С. | # | 18 | Volts | D.C. | .00138144          | Temp. | DEG. | С | 34.489273804  |

| T. C. | # 19        | Volts D.C. | .00100216 | Temp. DEG. C | 25.2575258334 |
|-------|-------------|------------|-----------|--------------|---------------|
| T. C. | <b>#</b> 20 | Volts D.C. | .00096484 | Temp. DEG. C | 24.3395371535 |
| T. C. | # 21        | Volts D.C. | .00096499 | Temp. DEG. C | 24.3432302987 |
| T. C. | # 22        | Volts D.C. | .00103215 | Temp. DEG. C | 25.9939544242 |
| T. C. | # 23        | Volts D.C. | .00102539 | Temp. DEG. C | 25.8280549698 |
| T. C. | # 24        | Volts D.C. | .00141873 | Temp. DEG. C | 35.3874418393 |

| T. ( | C. : | <b>#</b> 25 | Volts D.C. | .00098718 | Temp. | DEG. C | 24.8892500791 |
|------|------|-------------|------------|-----------|-------|--------|---------------|
| T. ( | C. 1 | <b>#</b> 26 | Volts D.C. | .0009658  | Temp. | DEG. ( | 24.3631727971 |
| T. ( | C. : | # 27        | Volts D.C. | .00097725 | Temp. | DEG. 0 | 24.6449883594 |
| T. ( | C. 4 | <b>#</b> 28 | Volts D.C. | .00105606 | Temp. | DEG. 0 | 26.5802816979 |
| T. ( | C. : | <b>#</b> 29 | Volts D.C. | .00102888 | Temp. | DEG. C | 25.9137113471 |
| T. ( | C. : | # 30        | Volts D.C. | .0013606  | Temp. | DEG. 0 | 33.9865910549 |
|      |      |             | BLOCK #6   |           |       |        |               |
| τ. ( | C. 1 | <b>#</b> 31 | Volts D.C. | 0368589   | Temp. | DEG. C | 14771.9525454 |
| T. ( | C. 1 | <b>#</b> 32 | Units D.C  | 00094839  | Temo  | DER C  | 73 93/3616310 |

#### T. C. # 32 T. C. # 33 Temp. DEG. C 23.9343516318 .00094839 Volts D.C. .00095853 Temp. DEG. C 24.1841533835 T. C. # 34 Temp. DEG. C 26.0741841938 Velts D.C. .00103542 Temp. DEG. C 25.2870143219 T. C. # 35 Volts D.C. .00100336 T. C. # 36 Volts D.C. .00135645 Temp. DEG. C 33.8864260423

### BLOCK #7

| Τ. | С. | # 3 | 37 | Volts | D.C. | .00094947 | Temp. | DEG. | С | 23.9609638506 |
|----|----|-----|----|-------|------|-----------|-------|------|---|---------------|
| Τ. | C. | # 3 | 38 | Volts | D.C. | .00090844 | Temp. | DEG. | С | 22.9489207544 |
| Τ. | С. | # 3 | 39 | Volts | D.C. | .00092711 | Temp. | DEG. | С | 23.4095948418 |
| Τ. | C. | # 4 | 40 | Volts | D.C. | .00101354 | Temp. | DEG. | С | 25.5598887592 |
| Τ. | С. | # 4 | 41 | Volts | D.C. | .00098967 | Temp. | DEG. | С | 24.9504932085 |
| Τ. | С. | # 4 | 42 | Volts | D.C. | .00133622 | Temp. | DEG. | С | 33.3978533444 |

#### BLOCK #8

| Τ. | c. | # | 43 | Volts | D.C. | .00091492 | Temp. | DEG. | С | 23.1088960739 |
|----|----|---|----|-------|------|-----------|-------|------|---|---------------|
| Τ. | Ç. | # | 44 | Volts | D.C. | .00088503 | Temp. | DEG. | С | 22.3705459828 |
| Τ. | С. | # | 45 | Volts | D.C. | .00087504 | Temp. | DEG. | С | 22.1235222652 |
| Τ. | C. | # | 45 | Volts | D.C. | .00099407 | Temp. | DEG. | С | 25.0586774191 |
| Τ. | C. | # | 47 | Volts | D.C. | .00092318 | Temp. | DEG. | С | 23.3127390151 |
| T. | C. | # | 48 | Volts | D.C. | .00128974 | Temp. | DEG. | C | 32.2734383616 |

### BATH TEMPERATURES (TOP TO BOTTOM)

| VOLTS D.C. | .00053972 | TEMP. D | EG. C | 16.2684558519 |
|------------|-----------|---------|-------|---------------|
| VOLTS D.C. | .00063946 | TEMP. D | EG. C | 15.2519481867 |
| VOLTS D.C. | .0005398  | TEMP. D | EG. C | 16.2704581933 |

respected incorporation and the property of th

```
BLOCK # 1 HEATER VLOTS D.C. 4.63301
```

BLOCK # 2 HEATER VLOTS D.C. 4.65723

BLOCK # 3 HEATER VLOTS D.C. 4.63437

BLOCK # 4 HEATER VLOTS D.C. 4.63386

BLOCK # 5 HEATER VLOTS D.C. 4.6326

BLOCK # 6 HEATER VLOTS D.C. 4.63347

BLOCK # 7 HEATER VLOTS D.C. 4.83566

BLOCK # 8 HEATER ULOTS D.C. 4.64555

#### INPUT VLOTAGE D.C. VLOTS 5.5173

```
BLOCK # 1 HEATER POWER WATTS 1.02818040143
BLOCK #12 HEATER POWER WATTS 1.96194247827
BLOCK # 3 HEATER POWER WATTS 1.01565555539
BLOCK # 4 HEATER POWER WATTS 1.0165011307
BLOCK # 5 HEATER POWER WATTS 1.01694119801
BLOCK # 5 HEATER POWER WATTS 1.016125905069
BLOCK # 7 HEATER POWER WATTS 1.016125905069
BLOCK # 8 HEATER POWER WATTS 1.00482079827
```

Spacing: No Wall

Power: 0.2 watts

Date: 18 November 1987

| T. C. T. C. T. C. T. C. T. C. T. C. | # 1<br># 2<br># 3<br># 4<br># 5<br># 6 | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C.                          | .00070266<br>.00069842<br>.00070024<br>.0007085<br>.0007047<br>.0599001 | Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C                 | 17.8413079193<br>17.735506202<br>17.7809250032<br>17.9869950151<br>17.9922034951<br>101722.622549  |
|-------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| T. C. T. C. T. C. T. C. T. C.       | _                                      | BLOCK #2  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C.  Volts D.C.  BLOCK #3 | .00070104<br>.00069642<br>.00069706<br>.0007076<br>.0007043             | Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C | 17.800887:133<br>17.6855948216<br>17.701567551<br>17.9645460343<br>17.8822243832<br>18.5969572571  |
| T. C.<br>T. C.<br>T. C.<br>T. C.    | # 15<br># 16<br># 17                   | Volts D.C.               | .00070065<br>.00069458<br>.00069496<br>.00070667<br>.00070201           | Temp. DEG. C                | 17.791'556852<br>17.6356700652<br>17.6491548749<br>17.9413476832<br>17.8250900914<br>18.7685807612 |
| · .                                 | # 19<br># 20<br># 21<br># 23<br># 23   | Volts D.C.    | .0007092<br>.00069264<br>.00069146<br>.00070405<br>.00070015            | Temp. DEG. C                | 18.0044546288<br>17.5912447834<br>17.5617879137<br>17.875987336<br>17.7786792154<br>18.775553632   |

| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | * 26<br>* 27<br>* 28<br>* 29 | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C.            | .00059694<br>.00069151<br>.0005919<br>.00070297<br>.00059891<br>.00073208 | Temp. DEG. 3<br>Temp. DEG. 3<br>Temp. DEG. 3<br>Temp. DEG. 3 | 10.6985707848<br>10.5620361217<br>10.572770036<br>10.8490422884<br>10.7477360124<br>16.5747351180   |
|-------------------------------------------|------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                           |                              | BLOCK #6                                                                     |                                                                           |                                                              |                                                                                                     |
| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 32<br># 33<br># 34<br># 35 | Volts D.C. | .0684059<br>.0006877!<br>.00068907<br>.0006984<br>.00069629<br>.00073087  | Temp. DEG. S<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C | 175187,827844<br>17,4661633458<br>17,5021199013<br>17,50216990931<br>17,6621036954<br>18,5446493733 |

### BLOCK #7

| T. C. # 37          | Volts D.C. | .00069103 | Temp. DEG. C | 17.55 853 95  |
|---------------------|------------|-----------|--------------|---------------|
| T. C. # 38          | Volts D.C. | .00068235 | Temp. DEG. 3 | 17.3343119003 |
| T. C. # 39          | Volts D.C. | .00068515 | Temp. DEG. C | 17,4052376826 |
| T. C. <u>-# 4</u> 0 | Volts D.C. | .00069503 | Temp. DEG. C | 17.6509023569 |
| T. C. # 41          | Volts D.C. | .00069528 | ⊺emp. DEG. € | 17.8571419421 |
| T. C. # 42          | Volts D.C. | .0007268  | Temp. DEG. 0 | 18.4432365486 |

### BLOC+ #8

| T. | С. | # 43        | Volts D.C. | .00068306 | Temp. DEG. | С | 17.3520443201 |
|----|----|-------------|------------|-----------|------------|---|---------------|
|    |    | # 44        | Volts D.C. | .00058003 | Temp. DFG. | С | 17,2763649867 |
|    |    | <b>#</b> 45 | Volts D.C. | .00057934 | Temp. DEG. | С | 17.2591294683 |
|    |    | <b>#</b> 46 | Volts D.C. | .00069069 | Temp. DEG. | С | 17.5425651131 |
|    |    | # 47        | Volts D.C. | .00068316 | Temp. DEG. | С | 17.3545417703 |
| Τ. | C. | # 48        | Volts D.C. | .00071856 | Temp. DEG. | С | 18.237855358  |

SEESSESSE CONTRACTOR DESCRIPTION

### BATH TEMPERATURES (TOP TO BOTTOM)

| VOLTS D.C. | .00064216 | TEMP. DEG. | С | 16.3295236403 |
|------------|-----------|------------|---|---------------|
| VOLTS D.C. | .00064005 | TEMP. DEG. | С | 16.2767154582 |
| VOLTS D.C. | .00064024 | TEMP. DEG. | С | 16.2814709269 |

and the second of the second o

```
BLOCK # 1 HEATER VESTS 5.0. 1.471185
BLOCK # 3 HEATER LESTS 5.0. 1.478895
BLOCK # 3 HEATER LESTS 5.0. 1.478895
BLOCK # 4 HEATER LESTS 5.0. 1.471518
BLOCK # 4 HEATER LESTS 5.0. 1.471441
BLOCK # 5 HEATER LESTS 5.0. 1.471283
BLOCK # 7 HEATER LESTS 5.0. 1.471283
BLOCK # 7 HEATER LESTS 5.0. 1.471283
```

# 198 To 0.1988 000 TO 000 878 44

```
Buller & Hegateway Land gart
                             • • •
BLOVE B C HEATER TO LEE LATE
Bun o : ) Hearth ongel yarn
                              124 T 66 TO S
Bulling a semantan negati yanta
                              Carlotte Carlotte
BUTTO I COMPATENCE SEE SEE
                              2427 ... 214
But a section of game gate
                              ويتاروه فيوجها
Burger & Commenter of the Comment
                             etala etala e
Budde : - Againga - Two waster
```

Spacing: No Wall

Power: 0.5 watts

Date: 18 November 1987

| 7. 3  |   |    | Volts D.C.        | .00077196                             | Temp.             | DEG. C       | 19.5673292028            |
|-------|---|----|-------------------|---------------------------------------|-------------------|--------------|--------------------------|
| T. C  |   |    | Volts D.C.        | .00075295                             |                   | DEG. C       |                          |
| T. C  |   |    | Volts D.C.        | .00075599                             |                   | DEG. C       |                          |
| T. C  |   |    | Volts D.C.        | .00078598                             | •                 | DEG. C       |                          |
| T. S  |   |    | Volts D.C.        | .00077882                             |                   | DEG. C       | <del></del> - :          |
| T. 0. |   | 5  | Valts D.C.        | .050299                               | -                 | DEG. C       | 3, , 4 , 4 4 4 4 4 4 4 4 |
|       |   |    |                   |                                       | C .D.             | J20. J       | 30242.05 .25C            |
|       |   |    | EL001 #2          |                                       |                   |              |                          |
| • .   | : | -  | volts 5.1.        | 3035535                               | -                 |              |                          |
|       | _ | -  | Valts D.C.        | . 2027637                             |                   |              |                          |
| • -   | 1 | 3  |                   | .0007576                              |                   | QEG. C       | 19.2151432874            |
|       | • |    | volts 5.0.        | .00075724                             |                   | CEB. I       |                          |
|       | • | C. | Volts D.C.        | . 0007866                             | ĭemp.             | CEG. C       | 19.9311865124            |
|       | : |    | voits 0.1.        | . 20077723                            |                   | CEB. T       |                          |
|       | - | -  | volts D.D.        | .00085097                             | <sup>™</sup> ⊕™E. | CEGLO        | 01.5078045880            |
|       |   |    | €0.33k <b>4</b> 3 |                                       |                   |              |                          |
|       | : |    |                   | 0 <b>00</b> 76645                     | ****              | ~ <b>≠</b> . | 7 4237144648             |
|       | : | •  | . • 5 _           | 22275425                              |                   |              | 424962374                |
| •     |   |    |                   | 322"-4"                               | ***               |              | 10.00000                 |
|       |   |    | . • •             | 2027572                               |                   |              |                          |
|       | 1 |    |                   |                                       | = "L              |              |                          |
|       | t |    | • •               | 22200                                 | # T is            |              | 4.2                      |
|       |   |    |                   | e e e e e e e e e e e e e e e e e e e | <b></b>           | •            | 447.73                   |
|       |   |    | r - <b>14</b>     |                                       |                   |              |                          |
|       |   |    |                   |                                       |                   |              |                          |
|       | • |    | •                 |                                       |                   |              | <b>1</b> (1) (1) (1) (1) |
|       | 1 |    |                   |                                       |                   |              | 1                        |
|       | ; |    | • •               | •                                     |                   |              | 4                        |
|       |   |    | •                 | • •                                   | • •               |              |                          |
|       | , |    |                   | •                                     | •                 |              | • •                      |
|       |   |    |                   |                                       |                   |              |                          |

| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 25<br># 26<br># 27<br># 28<br># 29<br># 30 | Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. Volts D.C. BLOCK #6   | .00075665<br>.0007481<br>.00074975<br>.00077707<br>.00076375<br>.00084926 | Temp.<br>Temp.<br>Temp.<br>Temp. | DEG. C<br>DEG. C<br>DEG. C<br>DEG. C<br>DEG. C | 19.1865296279<br>18.9737411325<br>19.0148127392<br>19.5943612718<br>19.3631613086<br>21.4854768222 |
|-------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|
| T. C.<br>T. C.<br>T. C.<br>T. C.<br>T. C. | # 31<br># 32<br># 33<br># 34<br># 35<br># 36 | Volts D.C. | .0785367<br>.00073939<br>.00074344<br>.00076531<br>.00075892<br>.00084826 | Temp.<br>Temp.<br>Temp.<br>Temp. | DEG. C<br>DEG. C<br>DEG. C<br>DEG. C<br>DEG. C | 306107.842144<br>18.7568760777<br>18.8577254643<br>19.401962028<br>19.2430099049<br>21.4607103931  |

## BLOCK #7

| T. C. # 37        | Valts D.C.         | .00074454  | Temp. DEG. C          | 18.885:14364: |
|-------------------|--------------------|------------|-----------------------|---------------|
| T. C. # 38        | volts D.C.         | .00072862  |                       | 19.4885883509 |
| T. C. # 39        | volts 0.0.         | .00073538  | Temp. DEG. C          | 18.65700:4:38 |
| T. C. <u>#</u> 40 | ⊍alts D.S.         | .00275757  | Temp, DEG. 0          | 19.2169849347 |
| T. S. * 41        | Valts 5.5.         |            | Temp. DEG. 1          | 19, 350192789 |
| T. C. # 42        | .51 <b>::</b> 5.5. | . 20082778 | T <b>emp. 0E</b> 3. 0 | 59 . 9851. 55 |

# eudo- #4

| 7. 0. |                | 2011: 1.L             | 38377084 | <b>*####</b> 0 <b>8</b> 5 1 | and the second section of the pro- |
|-------|----------------|-----------------------|----------|-----------------------------|------------------------------------|
| •     |                |                       | 30070104 | iems DES                    | 196196 136                         |
| • •   |                | 5 · • · · · · · · · · | 23600965 | emi (E)                     | الروادي في عربه والأناس الأناس ال  |
| •     |                | • • •                 | 303 % 31 | Temp (E)                    | · 24647720                         |
| •     |                |                       | 264 ?#   | emp .E-                     | A                                  |
| • (   | <b>3</b> 4 ··· | . • •                 | 200- 20  | PPL "F                      | 2 34 2 3 5 6 4                     |

#### one of the state of the state

| - | *, *, *, .     | <b>.</b> |     |
|---|----------------|----------|-----|
|   | 12.2           | w        | 4.4 |
|   | F. S. Carlotte | nut.     |     |

BLOCK # 1 HEATER VLOTS D.C. 2.318752

BLOCK # 2 HEATER VLOTS D.C. 2.330904

BLOCK # 3 HEATER VLOTS D.C. 2.3193

BLOCK # 4 HEATER VLOTS D.C. 2.319161

BLOCK # 5 HEATER VLOTS D.C. 2.318535

BLOCK # 6 HEATER VLOTS D.C. 2.318915

BLOCK # 7 HEATER VLOTS D.E. 2.320085

BLOCK # 8 HEATER VLOTS D.C. 0.304893

## INPUT NESTHER 1000 LOTS I TRITE

8200k : HEHTSHIR AND ANT 1 50 4 4222

BECCH By HERTSHIP WERE WHITE I ARE NOT A CO.

Broken Broken Broken Later Later 

and the second second

Spacing: No Wall

Power: 1.0 watt

Date: 18 November 1987

8100- 1

| • | 1          |        | 2005-7-12     | 1emp 1E-     | • | 709955 Telephone |
|---|------------|--------|---------------|--------------|---|------------------|
| • | r .        | 7. * * | 20274 (47)    | *** <u>*</u> |   | 484377 149       |
| • | :          | . • •  | 120 miles (5) | ***          |   | Sgr 2004         |
| • | <b>2</b> 4 | • :    | 3 3 3 m s     | ••;          |   | 4                |
|   | :          | • •    |               | • ~          |   |                  |
|   | :          | •      | •             | •            |   |                  |

:

.

| T. C. # 25 T. C. # 26 T. C. # 27 T. C. # 28 T. C. # 29 T. C. # 30 | Volts D.C. | .00084304<br>.00082799<br>.0009304<br>.00088298<br>.00085725 | Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C<br>Temp. DEG. C | 21.3314092579<br>20.9584242747<br>21.0181705619<br>22.3196664278<br>21.6833155213<br>25.9512579238 |
|-------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                           | **************************************                                       | 3384734<br>3384734                                           |                                                              | ]                                                                                                  |

|   | •                                       |          |       |
|---|-----------------------------------------|----------|-------|
|   | ·                                       |          |       |
|   |                                         |          |       |
| • |                                         | <b>.</b> |       |
| • | •                                       |          |       |
| • |                                         |          | • • • |
|   |                                         | • •      |       |
|   | • •                                     | • •      |       |
| • |                                         | •        |       |
|   |                                         |          |       |
|   |                                         |          |       |
|   |                                         |          |       |
|   |                                         |          |       |
|   | •                                       |          |       |
|   | ,                                       |          |       |
|   | ,                                       | • -      |       |
| · | ,                                       | ••       |       |
|   |                                         | ••       |       |
| • | • • • • • • • • • • • • • • • • • • • • | ••       |       |
| • |                                         |          |       |
| • | • • • • • • • • • • • • • • • • • • • • |          | Ċ     |
| • | * * * * * * * * * * * * * * * * * * *   |          |       |

```
BLOCK # 1 HEATER VLOTS D.C. 3.28433
```

```
    ・ 日本の 1000 本の 400 本の 2000 できる場合を含めてまた。 1000 できません。 4000 本の 400 できる 400 を見るとしません。
    ・ 本 の 1000 本の 400 できません。 2000 を見るとしません。
    ・ ロ の 1000 では、400 を見ることをはません。 2000 を見るとしません。 4000 を見るとしません。
```

Spacing: No Wall

Power: 2.0 watts

Date: 18 November 1987

| T. C. |             | Volts D.C.      | .00100754   | Temp. DEG. ( | 25.3921753126   |
|-------|-------------|-----------------|-------------|--------------|-----------------|
| T. C. | <b>#</b> 2  | Volts D.C.      | .00099476   | Temp. DES. ( | 25.0756404799   |
| T. C. | <b>*</b> 3  | Volts D.C.      | .00100175   | Temp. DEG. ( | 25.2476959383   |
| T. C. | <b>x</b> 4  | Volts D.C.      | .00104886   | Temp. DEG.   | 26.4037952168   |
| T. C. | <b>#</b> 5  | Volts D.C.      | .00102275   | Temp. DEG. 0 | 25.7632503868   |
| T. C. | <b>=</b> 5  | valts D.C.      | . 0058052 ' | Temp. DEG. : | 134.573569863   |
|       |             | 8_00% <b>#2</b> |             |              |                 |
|       |             |                 |             |              |                 |
| T. D. |             | yolts D.C.      | .00099972   | Temp. SEG. 3 |                 |
| T. C. |             | volts E.C.      | . 00095:3:  | Temp. DEG. ( | 24.2526170225   |
| T. S. |             | volts D.C.      | .0009554    | Temp. DEG. ( | 24.1070536644   |
| T. C. |             | Volts D.C.      | .00102935   | Temp. DEG. ( |                 |
| 7. 0. |             | volts D.C.      | .00102272   | Temp. DEG. ( |                 |
| Ť. C. | # 12        | Volts E.C.      | .0013287    | Temp. DEG.   | 33.2161121574   |
|       |             | BLGC+ #3        |             |              |                 |
| T. C. | <b>*</b> 17 | Volts D.C.      | .00097605   | Tama Med (   | 24.6154607831   |
| ·     |             | Volts D.C.      | . 30094861  | Temp. DEG. ( |                 |
| T. C. |             | Volts D.C.      | .00094867   | Temp. DEG. ( |                 |
| T. C. |             | Volts D.C.      | .00102941   | Temp. DEG. ( |                 |
| T. C. |             | Volts D.C.      | .00098165   | Temp. DEG. ( |                 |
| T. C. |             | Volts D.C.      | .0013812    | Temp. DEG. ( |                 |
| 1     | # 10        | voits b.c.      | .0013612    | Temp. DEG. ( | . 54,4654677546 |
|       |             | BLOCK #4        |             |              |                 |
| т. с. | # 19        | Volts D.C.      | .00097153   | Temp. DEG. 0 | 24.5042241058   |
| T. C. | # 20        | Volts D.C.      | .00093507   | Temp. DEG. ( | 23.6060143493   |
| T. C. | # 21        | Volts D.C.      | .00093541   | Temp. DEG. ( | 23.6143980907   |
| T. C. | # 22        | Volts D.C.      | .00098113   | Temp. DEG. ( | 24.740448554    |
| т. с. | # 23        | Volts D.C.      | .00099116   | Temp DEG. (  |                 |
| T. C. | # 24        | Volts D.C.      | .00138586   | Temp. DEG. ( |                 |

| T. C. T. C. T. C. T. C. T. C.       | # 26<br># 27<br># 28<br># 29 | Volts D.C. | .00097727<br>.00096117<br>.00095846<br>.00104858<br>.00101464 | Temp. DEG. C              | 24.6454804705<br>24.2491694442<br>24.1824293543<br>26.3969315908<br>25.5641183855<br>33.926977279 |
|-------------------------------------|------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                     |                              | BLOCK #6                                                                     |                                                               |                                                                                            |                                                                                                   |
| T. C. T. C. T. C. T. C. T. C. T. C. | # 32<br># 33<br># 34<br># 35 | Volts D.C. | .0184661<br>.00093562<br>.00095092<br>.00102525<br>.00100942  | Temp. DEG. C | 1104.75486434<br>23.6195762117<br>23.9966909256<br>25.824618581<br>25.4359037688<br>34.1955430547 |

## BLOCK #7

| Τ. | С. | <b>#</b> 37       | Volts D.C. | .00095197 | Temp. DEG. C | 24.0225605151 |
|----|----|-------------------|------------|-----------|--------------|---------------|
|    |    | <b>#</b> 38       | Volts D.C. | .00090534 | Temp. DEG. C | 22.8723707565 |
|    |    | # 39              | volts D.C. | .00093074 | Temp. DEG. C | 23.499232299  |
|    |    | <del>-</del> # 40 | Volts D.C. | .00101508 | Temp. DEG. C | 25.5994819606 |
|    |    | # 41              | Volts D.C. | .0009884  | Temp. DEG. C | 24.9192528199 |
| Τ. | C. | # 42              | Volts D.C. | .00133658 | Temp. DE6. C | 33.4065520005 |

# BLOCK #8

| T. C.<br>T. C.<br>T. C. | # 44        | Volts D.C.<br>Volts D.C.<br>Volts D.C. | .00092359<br>.00090358 | Temp. DEG. C | 23.3228549035                  |
|-------------------------|-------------|----------------------------------------|------------------------|--------------|--------------------------------|
| T. C.                   | <b>#</b> 46 | Volts D.C.                             | .00088635              | Temp. DEG. C | 22.4031775278<br>25.2354082889 |
| T. C.                   |             | Volts D.C.<br>Volts D.C.               | .00093101<br>.0012997  | •            | 23.5058914404<br>32.5146055682 |

# BATH TEMPERATURES (TOP TO BOTTOM)

| VOLTS D.C. | .0005428  | TEMP. DEG. ( | C | 16.3455401802 |
|------------|-----------|--------------|---|---------------|
| VOLTS D.C. | .00064058 | TEMP. DEG. ( | С | 16.2899805997 |
| VOLTS D.C. | .00064043 | TEMP. DEG. ( | С | 16.2862263502 |

BLOCK # 1 HEATER VLOTS D.C. 4.64237

BLOCK # 2 HEATER VLOTS D.C. 4.66686

BLOCK # 3 HEATER VLOTS D.C. 4.64344

BLOCK # 4 HEATER VLOTS D.C. 4.64304

BLOCK # 5 HEATER VLOTS D.C. 4.64245

BLOCK # 6 HEATER VLOTS D.C. 4.64253

BLOCK # 7 HEATER VLOTS D.C. 4.54473

BLOCK # 8 HEATER VLOTS D.C. 4.65456

#### INPUT VLOTAGE D.C. VLOTS 5.52795

BLOCK # 1 HEATER POWER WATTS 2.03524258644
BLOCK # 2 HEATER POWER WATTS 1.98939924624
BLOCK # 3 HEATER POWER WATTS 2.03325203683
BLOCK # 4 HEATER POWER WATTS 2.0339963002
BLOCK # 5 HEATER POWER WATTS 2.0350927995
BLOCK # 6 HEATER POWER WATTS 2.03494500624
BLOCK # 7 HEATER POWER WATTS 2.03085070822
BLOCK # 8 HEATER POWER WATTS 2.01249809822

#### APPENDIX D

#### SOFTWARE

TEMPERATURE MEASUREMENT ACQUISION PROGRAM

```
10
                        REAL Volts(60)
  20
                        REAL Temp. 59 1
  40
                        PRINT "
                                                                                                                                                  BLOCK #1"
  50
                        PRINT
                        CUTPUT 709: "CONFMEAS DOV. 100, USE 0"
  51
 52
                        ENTER 709: Wolts: 60:
 50
                        GUTPUT 709: "CONFMEAS DOW, 100-105, USE 0"
  7.2
                        F09 1=0 T0 5
  30
                        ENTER 709: Volts IN
  3Ø
                         Temp I:=.0006797+:25525.1329*Volts I:--:507789.2467*(Volts I:-:0cts I
  21952034.3364+ \c.ts/I/M3//+ 8370810998.1974+\Volts/I/M4//
 100
                        PRINT "T. 3. #": [+! ]
                                                                                                             voits 0.0. ":volts(I), "Temp. DEG. C ":Temp(I)
  110
                        NEXT I
  120
                        PRINT " "
                        PRINT "
 130
                                                                                                                                                 BLOCH #2"
 140
 150
                        BUTPUT 709: "CONFMEAS DOU. 106-111 USE 0"
 160
                       FOR I=5 TO 11
 170
                        ENTER 709: Volts(I)
                        Temp(I) = .0005797 + (25925.1328 * Volts(I)) + (607789.2467 * (Volts(I) * Volts(I))) + (607789.2467 * (Volts(I) * Volts(I) * (Volts(I) * Volts(I) * (Volts(I) * Volts(I) * (Volts(I) * (Volts(I)
 180
  21952034.3364* Volts(I) 37 (+: 9370810996.1874*: Volts(I) 477
 190
                       PRINT "T. C. #":I+!,' volts D.C. ":Volts(I), "Temp. DEG. C ::Temp(I)
 200
                       NEXT I
 210
                       PRINT "
 220
                       PRINT "
                                                                                                                                                 BLOCE #3"
 230
                       PRINT " "
                       OUTPUT 709: "CONFMEAS DCV.112-117,USE 0"
 240
 250
                      FOR I=12 TO 17
 260
                       ENTER 709: Volts(I)
 270
                       Temp(I) = .0006797 + (25825.1328 * Volts(I)) + (607799.2467 * (Volts(I) * Volts(I)) + (607799.2467 * (Volts(I) * Volts(I))) + (607799.2467 * (Volts(I) * Volts(I) * (Volts(I) * Volts(I) * (Volts(I) * Volts(I) * (Volts(I) 
21952034.3364*(Volts(I)^3))+(8370910996.1874*(Volts\I)^4))
280
                       PRINT "T. C. \#":I+1," Volts D.C. ":Volts(I),"Temp. DEG. C ":Temp(I)
290
                      NEXT I
300
                      PRINT "
310
                      PRINT "
                                                                                                                                                BLOCK #4
320
                      OUTPUT 709: "CONFMEAS DCV.118-119,USE &
330
                      FOR I=18 TO 19
340
350
                      ENTER 709: Volts(I)
360
                      Temp(I)=.0006797+(25825.1328*Voits.I)=(607789.2467*/Voits/I)*Volts.I
21952034.3364+(Volts(I)/3))+(8370910958.1874+ Volts(I) 4))
370
                      PPINT "T. C. #":I+1," Volts C.C. ":volts-I-,""emp. BEG. C :Temp :
380
                      NEXT I
```

```
OUTPUT 709: "CONFMEAS DOU, 200+203, USE 0"
400
      FOR I=20 TO 23
410
      ENTER 709: Voits(I)
      Temp(I)=.0005797+:25325.1328+Valts I):- 607799.2467+ valts I:+Valts:I:+Valts:I:+Val
21952034.3364*(Voits(I))3:\+(83708)0996.1874*(Volts:I))4//
      PRINT "T. C. #":I+1," voits D.C. :voits(I),"Temp. DEG. C :Temp(I)
430
440
      NEXT I
      PRINT "
450
      PRINT "
                                      BLOCK #5"
450
      PRINT " "
470
480
      OUTPUT 709; "CONFMEAS DOV.204-209.USE 0"
490
      FOR I=24 TO 29
      ENTER T09: Volts(I)
500
      Temp(I)=.0006797+(25825,1328*Volts(I))+(607789.2467*(Volts(I))*Volts(I)))>+<
510
21952034.3364*(Volts(I) 3))+(8370810996.1874*(Volts(I)"4))
      PRINT "T. C. #": [+1] " volts O.C. ": Volts(I), "Temp. DEG. C ": Temp(I)
520
530
      NEXT I
      PRINT " "
540
      PRINT "
                                       BLCC+ #5"
550
      PRINT
560
      OUTPUT 709: "CONFMEAS DOU, 2:0-2:5, USE 0"
570
      FOR 1=30 TO 35
580
590
      ENTER 709: Volts (I)
      Temp(I)=.0008797+(25825.1328+valts(I))-(607789.2467+(valts(I)+valts(I))-(
600
21952034.3364*(Volts(I)^3))+(8370810996.1674*(Volts(I)^4))
      PRINT "T. C. #":I+1," Voits D.J. Tivoits(I), Temp. DEG. D. :Femp.I
610
620
      NEXT I
     FOR J=1 TO 14
530
     PRINT
640
      NEXT J
650
      PRINT "
660
                                      BL00K #7"
570
      OUTPUT 709; "CONFMEAS COU. 218-219 USE &"
680
690
      FOR 1=35 TO 39
700
      ENTER 709:Volts(I)
      Temp(I)=.0006797+/25825.1328+/blts I:>--607788.2467+/blts/I:>-vblts/I:>-/
710
21952034.3364*(Volts(I)^3))+:8370913998.1874**Volts(I) 4 **
720
      PRINT "T. C. #":I+1," volts D.C. ":volts(I , Temp. DEG. C :Temp:I)
730
      NEXT I
      OUTPUT 709: "CONFMEAS DD. 300-30" JUSE 0
740
      FOR I=48 TO 41
750
760
      ENTER 708: Volts/I
      Temp: I = .0006797+ 05805.1308+volts [ ---807789.0487+ loits [ + oits ]
770
21952034.3364*(volts.I) 2 (*.8373813988.1874* us.ts I 4
      PRINT T. C. # (I+')
                            voits 0.0. Fib.ts 1 Fempl 089 0
780
790
      NEXT I
```





and seconds seconds personal personal contents and contents a second personal personal states

CALL CONTROL SECTION SECTION SECTIONS SECTIONS

```
800
                                         PRINT " "
                                        PRINT "
                                                                                                                                                                                                                                                                        BLOCK #8"
810
820
                                         PRINT " "
                                         OUTPUT 709; "CONFMEAS DCV, 302-307, USE 0"
830
840
                                         FOR I=42 TO 47
                                         ENTER 709; Volts(I)
850
                                         Temp(I) = .0006797 + (25825.1328 + Volts(I)) - (507789.2467 + (Volts(I) + Volts(I))) - (507789.2467 + (Volts(I) + Volts(I) + Volts(I))) - (507789.2467 + (Volts(I) + Volts(I) + Volts(I) + Volts(I) + (Volts(I) + (Volts(I) + (Volts(I) + Volts(I) + (Volts(I) + (Volts(I
860
21952034.3364*(Volts(I)^3))+(8370810996.1874*(Volts(I)^4))
                                         PRINT "T. C. #":I+1," Volts D.C. ":Volts(I), "Temp. DEG. C ":Temp(I)
870
880
                                         NEXT I
                                         PRINT "
890
1130 PRINT " "
1140 PRINT "
                                                                                                                                                                                                   BATH TEMPERATURES (TOP TO BOTTOM)"
1150 PRINT " "
1160 OUTPUT 709; "CONFMEAS DCV.317-319,USE 0"
1170 FOR I=57 TO 59
1180 ENTER 709; Volts(I)
1190 - \mathsf{Temp}(I) = .0006797 + (25825.1329 + \mathsf{volts}(I)) + (507789.2467 + (\mathsf{volts}(I) + \mathsf{volts}(I))) + (50778
21952034.3364*(Volts(I)^3))+(8370810996.1874*(Volts(I)^4)
1200 PRINT "UOLTS D.C. "; Uolts(I), "TEMP. DEG. C "; Temp(I)
1210 NEXT I
 1220 END
```

#### SINGLE THERMOCOUPLE TEMPERATURE VARIATION PROGRAM

```
10
                 REAL Volts(101)
20
                 REAL Temp(101)
30
                 PRINTER IS 1
40
                 PRINT " INPUT THE NUMBER OF CONSECUTIVE READINGS YOU WANT."
                 PRINT " "
50
                PRINT " THIS PROGRAM WILL READ ONLY THE THERMOCOUPLE SHOWN IN THE"
60
70
                 PRINT " SOURCE CODE. IF YOU WISH TO WORK WITH A DIFFERENT ONE YOU "
                 PRINT " MUST ENTER THAT T.C. ON THE CONFMEAS LINE OF THE CODE!!!"
80
90
                 INPUT N
                 PRINT"
100
                 PRINT " "
110
120
                 PRINT " INPUT THE NUMBER OF THE T.C. YOU WANT TO MEASURE."
130
                 INPUT M
131
                 PRINTER IS 701
140
                 PRINT " THESE ARE ": N, "CONSECUTIVE READINGS FOR THERMOCOUPLE # ":M
                 PRINT " "
150
                PRINT " "
160
170
                FOR I=50 TO N+50
180
                OUTPUT 709; "CONFMEAS DCV, 115, USE 0"
190
                 ENTER 709: Volts(I)
200
                Temp(I) = .0005797 + (25825.1328 + Volts(I)) - (607789.2467 + (Volts(I) + Volts(I))) + (607789.2467 + (Volts(I) + Volts(I) + Volts(I))) + (607789.2467 + (Volts(I) + Volts(I) + Volts(I) + (Volts(I) + Volts(I) + Volts(I) + (Volts(I) + (Volts(I) + Volts(I) + (Volts(I) + (Volts(I) + (Volts(I) + Volts(I) + (Volts(I) + (Volts(
21952034.3354*(Volts(I)^3))+(8370810995.1874*(Volts(I)^4))
210
                PRINT "VOLTS D.C. "; Volts(I), "TEMP. DEG. C "; Temp(I)
220
                NEXT I
230
                Evolts=0.
                Etemp=0.
240
250
                FOR J=50 TO N+50
260
                Evolts=Evolts+Volts(J)
270
                Etemp=Etemp+Temp(J)
280
                NEXT J
290
                Avolts=Evolts/(N+1)
300
                Atemp=Etemp/(N+1)
310
                PRINT " "
320
                 PRINT "AVERAGE VOLTAGE D.C. IS "; Avolts
330
                PRINT " "
340
                PRINT "AVERAGE TEMPERATURE DEG. C IS "; Atemp
350
                PRINTER IS 1
360
                 END
```

programmes seems of the control of t

### HEATER VOLTAGE ACQUISION AND POWER CALCULATION PROGRAM

```
10
      REAL Volts(59)
920
      OUTPUT 709; "CONFMEAS DCV, 308-315.USE 0"
930
      FOR I=48 TO 55
940
      ENTER 709; Volts(1)
950
      PRINT " "
      PRINT "BLOCK #"; I-47, "HEATER VLOTS D.C."; Volts(I)
960
970
      NEXT I
980
      PRINT "
      PRINT " "
990
1000 PRINT " "
1010 OUTPUT 709; "CONFMEAS DCV, 316, USE 0"
1020 ENTER 709; Volts (56)
1030 PRINT " "
     PRINT " "
1040
     PRINT "INPUT VLOTAGE D.C. VLOTS"; Volts(56)
1050
1060 PRINT " "
1070 PRINT " "
1080 Resist=2.02
1090 FOR I=48 TO 55
1100 Pow=((Volts(56)-Volts(I))/Resist)+Volts(I)
1110 PRINT "BLOCK #"; I-47, "HEATER POWER WATTS" (Pow
1120 NEXT I
1220 END
```

```
DATA REDUCING PROGRAM WRITTEN IN FORTRAN
DOUBLE PRECISION T(48), TT(48), Q(8), QCONV(8), GR(8), TTT(8), AT(8)
     DOUBLE PRECISION TINF, KH20, BETA, NU, DXPG, DXR, KPG, KR, A, G, R1, R2, LEN DOUBLE PRECISION POWER, SPACE
     CHARACTER NAME×8, FNAME×8, EPNAME×8, GRNAME×8
     INTEGER RUN
     DXPG = 0.006731D0
     DXR = 0.003175D0
     KPG = 0.1421D0
     KR = 0.0389D0
     A = 0.000188D0
     G = 9.81D0
     LEN = 0.007874D0
     R1 = DXPG/(KPG*A)
     R2 = DXR/(KR*A)
     PRINT*, 'INPUT RUN #, INTEGER ONLY'
     READ*, RUN
     PRINT*, 'INPUT POWER VALUE IN WATTS'
     READ*, POWER
     PRINT*, 'INPUT SPACING IN MM' READ*, SPACE
     PRINTX, 'INPUT TEMPERATURE & INFINITY, DEG. C'
     READ*, TINF
     PRINT*, 'INPUT THE THERMAL CONDUCTIVITY OF H20, K'
     READ*, KH20
     PRINT*, 'INPUT THE EXPANSION COEFFICIENT, B'
     READ*, BETA
     PRINT*, 'INPUT THE VISCOSITY, NU'
     READ*, NU
*************
  READ IN TEMPERATURE DATA
**********
     PRINT*, 'INPUT THE NAME CORRESPONDING TO THE FILE TYPE OF DATA.' READ (5,'(A)') NAME REWIND 9
     OPEN (UNIT=9, FILE=NAME)
     DO 100 I=1,48,1
        READ(9, *) T(I)
 100 CONTINUE
***********
  CALCULATE T - TINF
**************
     DO 200 I=1,48,1
        TT(I) = T(I) - TINF
 200 CONTINUE
***********************

* CALCULATE CONDUCTION LOSSES THROUGH THE TEST SURFACE *

L = 6
     DO 300 I=1,8,1
        Q(I) = TT(L) \times (1.0/(R1+R2))
        L=L+6
 300 CONTINUE
```

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

SKKKKKI TSSEEDIJ DEDDENT DEDREIT KKKKKIK DEDDENT KRKKKKI KKKKKKT KKKKKKT KKKKKK TADERKKT TOPERKKT KK

ስ ነገር የመጀመር ያስፈር መስመር ያስተለር የሚያስፈር የሚያስ

```
************************
* CALCULATE CONVECTED HEAT FLUX *
*******************
     DO 400 I=1,8,1
        QCONV(I) = POWER - Q(I)
 400 CONTINUE
****************************
  CALCULATE AVERAGE SURFACE TEMPERATURES *
************************
     J = 1
     DO 105 I=1,8,1
        AT(I) = (T(J)+T(J+1)+T(J+2)+T(J+3)+T(J+4))/5.0
        J = J+6
 105 CONTINUE
*******************
  CALCULATE NONDIMENSIONAL TEMPERATURE *
***************
     DO 205 I=1,8,1
        TTT(I)=(AT(I)-TINF)/((QCONV(I)*LEN)/(A*KH2O))
 205 CONTINUE
*************
* CALCULATE MODIFIED GRASHOF NUMBER *
**************************************
     DO 500 I=1,8,1
        GR(I) = ((G \times BETA \times (QCONV(I) / A)) \times (LEN \times 4)) / (KH2O \times (NU \times 2))
 500 CONTINUE
*****************
* GENERATE OUTPUT DATA FILES *
     PRINT*, 'INPUT THE FILETYPE FOR THE OUTPUT FILE'
     READ (5, (A) ) FNAME
     REWIND 11
     OPEN (UNIT=11, FILE=FNAME)
     WRITE (11,1100) RUN, POWER, SPACE, TINF, KH20, BETA, NU
WRITE (11,1101)
1101 FORMAT(1X,/1X,/1X,/BLOCK #',3X,'QCOND',5X,'QCONV',5X,'GRASHOF #',4 CX,'NON-DIMEN. TEMP.')
     DO 600 J=1,8,1
        WRITE (11,1102) J,Q(J),QCONV(J),GR(J),TTT(J)
 600 CONTINUE
 1102 FORMAT(1X,3X,12,5X,F5.3,5X,F5.3,5X,E9.3,8X,F6.3)
1103 FORMAT(1X,/,1X,/,1X,/,5X,'B#',4X,'TF',6X,'TR',6X,'TL',6X,'TT',6X,'CTB',6X,'TH')
     K = 1
     DO 601 N=1,8,1
        WRITE(11,12)N,TT(K),TT(K+1),TT(K+2),TT(K+3),TT(K+4),TT(K+5)
        K = K+6
```

PERSONAL PROPERTY PROPERTY

£43333335

Comment

```
601 CONTINUE
         WRITE(11,1104)
WRITE(11,1104)

1104 FORMAT(1X,/,1X,/,1X,'B# = BLOCK NUMBER',
    C3X,'TF = FRONT TEMP.',,
    C1X,'TR = RIGHT TEMP.',
    C4X,'TL = LEFT TEMP.',,
    C1X,'TT = TOP TEMP.',
    C6X,'TB = BOTTOM TEMP.',,
    C1X,'TH = HEATER TEMP.')
    PRINT*,'ENTER THE FILETYPE FOR EASYPLOT DATA FILE.'
    READ (5,'(A)') EPNAME
    REWIND 12
         REWIND 12
         OPEN (UNIT=12, FILE =EPNAME)
        K=1
         DO 700 M=1,8,1
          WRITE(12,12)M,TT(K),TT(K+1),TT(K+2),TT(K+3),TT(K+4),TT(K+5)
          K=K+6
  700 CONTINUE
    12 FORMAT (4X,12,2X,F6.3,2X,F6.3,2X,F6.3,2X,F6.3,2X,F6.3,2X,F6.3)
         PRINT*, 'ENTER THE FILETYPE FOR GR# EASYPLOT.'
READ(5,'(A)') GRNAME
REWIND 15
         OPEN(UNIT=15, FILE=GRNAME)
         DO 800 M=1,8,1
              WRITE(15,1300) TTT(M), GR(M)
  800 CONTINUE
1300 FORMAT(3X, F6.3, 2X, E10.3)
         STOP
```

END

#### APPENDIX E

### TABULAR RESULTS

RUN NUMBER 1
POWER IN WATTS 0.200
SPACING IN MM. 73.810
AMBIENT TEMP. DEG. C 18.430
THERMAL CONDUCTIVITY OF H20 0.60038E+00
EXPANSION COEFFICIENT, B 0.18994E-03
VISCOSITY, NU 0.10453E-05

| BLOCK # | QCOND | QCONV | GRASHOF # | NON-DIMEN. | TEMP. |
|---------|-------|-------|-----------|------------|-------|
| 1       | 0.003 | 0.197 | 0.114E+05 | 0.108      |       |
| 2       | 0.003 | 0.197 | 0.114E+05 | 0.104      |       |
| 3       | 0.003 | 0.197 | 0.114E+05 | 0.100      |       |
| 4       | 0.004 | 0.196 | 0.114E+05 | 0.098      |       |
| 5       | 0.003 | 0.197 | 0.114E+05 | 0.092      |       |
| 6       | 0.003 | 0.197 | 0.114E+05 | 0.088      |       |
| 7       | 0.003 | 0.197 | 0.114E+05 | 0.074      |       |
| 8       | 0.003 | 0.197 | 0.115E+05 | 0.068      |       |
|         |       |       |           |            |       |
|         |       |       |           |            |       |

| B# | DTF   | DTR   | DTL   | DTT   | DTB   | HTG   |
|----|-------|-------|-------|-------|-------|-------|
| 1  | 1.560 | 1.330 | 1.310 | 1.630 | 1.570 |       |
| 2  | 1.450 | 1.320 | 1.340 | 1.530 | 1.485 | 2.200 |
| 3  | 1.350 | 1.200 | 1.220 | 1.560 | 1.530 | 2.400 |
| 4  | 1.350 | 1.260 | 1.190 | 1.500 | 1.400 | 2.420 |
| 5  | 1.240 | 1.150 | 1.170 | 1.460 | 1.330 | 2.160 |
| 6  |       | 1.110 | 1.150 | 1.380 | 1.330 | 2.080 |
| 7  | 0.960 | 0.840 | 0.890 | 1.220 | 1.150 | 2.030 |
| 8  | 1.000 | 0.800 | 0.790 | 1.120 | 0.940 | 1.730 |

B# = BLOCK NUMBER DTF = TF - TINF
DTR = TR - TINF DTL = TL - TINF
DTT = TT - TINF DTB = TB - TINF
DTH = TH - TINF

RUN NUMBER 2
POWER IN WATTS 0.500
SPACING IN MM. 73.810
AMBIENT TEMP. DEG. C 18.320
THERMAL CONDUCTIVITY OF H20 0.60035E+00
EXPANSION COEFFICIENT, B 0.18970E-03
VISCOSITY, NU 0.10460E-05

| BLOCK # 1 2 3 4 5 6 7 8 | QCOND<br>0.007<br>0.008<br>0.008<br>0.008<br>0.007<br>0.007        | QCOI<br>0.49<br>0.49<br>0.49<br>0.49<br>0.49                                | 93<br>92<br>92<br>92<br>93<br>93                                   | GRASHOF \$ 0.285E+05 0.285E+05 0.285E+05 0.285E+05 0.285E+05 0.285E+05 0.286E+05 | NON-                                                                        | DIMEN.<br>0.099<br>0.095<br>0.093<br>0.091<br>0.089<br>0.095<br>0.072  | TEMP. |
|-------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|-------|
| B# 1 2 3 4 5 6 7 8      | DTF<br>3.480<br>3.330<br>3.140<br>3.070<br>2.940<br>2.400<br>2.360 | DTR<br>3.020<br>2.950<br>2.830<br>2.910<br>2.770<br>2.630<br>2.110<br>1.980 | DTL<br>3.120<br>3.060<br>2.870<br>2.800<br>2.710<br>2.210<br>1.990 | DTT<br>3.770<br>3.530<br>3.570<br>3.460<br>3.530<br>3.230<br>2.770               | DTB<br>3.610<br>3.470<br>3.550<br>3.290<br>3.230<br>3.100<br>2.770<br>2.340 | DTH<br><br>5.190<br>5.690<br>5.690<br>5.210<br>5.100<br>4.830<br>4.370 |       |

RUN NUMBER 3
POMER IN WATTS 1.000
SPACING IN MM. 73.810
AMBIENT TEMP. DEG. C 16.080
THERMAL CONDUCTIVITY OF H20 0.59680E+00
EXPANSION COEFFICIENT, B 0.16480E-03
VISCOSITY, NU 0.11030E-05

| BLOCK # | QCOND | QCONV | GRASHOF # | NON-DIMEN. | TEMP. |
|---------|-------|-------|-----------|------------|-------|
| 1       | 0.014 | 0.986 | 0.449E+05 | 0.080      |       |
| 2       | 0.013 | 0.987 | 0.449E+05 | 0.076      |       |
| 3       | 0.015 | 0.985 | 0.448E+05 | 0.078      |       |
| 4       | 0.015 | 0.985 | 0.448E+05 | 0.077      |       |
| 5       | 0.014 | 0.986 | 0.449E+05 | 0.076      |       |
| 6       | 0.014 | 0.986 | 0.449E+05 | 0.072      |       |
| 7       | 0.014 | 0.986 | 0.449E+05 | 0.064      |       |
| 8       | 0.013 | 0.987 | 0.449E+05 | 0.059      |       |
|         |       |       |           |            |       |

| B# | DTF   | DTR   | DTL   | DTT   | DTB   | DTH    |
|----|-------|-------|-------|-------|-------|--------|
| 1  | 5.490 | 5.190 | 5.260 | 6.220 | 5.690 |        |
| 2  | 5.200 | 4.860 | 4.930 | 5.650 | 5.610 | 9.250  |
| 3  | 5.380 | 4.720 | 4.770 | 6.260 | 5.730 | 10.220 |
| 4  | 5.560 | 4.660 | 4.780 | 5.960 | 5.720 | 10.550 |
| 5  | 5.100 | 4.770 | 4.780 | 6.110 | 5.520 | 9.720  |
| 6  |       | 4.420 | 4.590 | 5.610 | 5.181 | 9.740  |
| 7  | 4.390 | 3.760 | 4.020 | 5.210 | 4.890 | 9.270  |
| 8  | 4.220 | 3.580 | 3.560 | 5.030 | 4.170 | 8.730  |

RUN NUMBER 4
POWER IN WATTS 2.000
SPACING IN MM. 73.810
AMBIENT TEMP. DEG. C 16.200
THERMAL CONDUCTIVITY OF H20 0.59696E+00
EXPANSION COEFFICIENT, B 0.16621E-03
VISCOSITY, NU 0.10998E-05

| BLOCK # 1 2 3 4 5 6 7 8                    | QCOND<br>0.025<br>0.024<br>0.026<br>0.027<br>0.026<br>0.026<br>0.025 | QCON<br>1.97<br>1.97<br>1.97<br>1.97<br>1.97<br>1.97 | 5<br>6<br>4<br>3<br>4<br>4<br>5                                             | GRASHOF # 0.912E+05 0.912E+05 0.911E+05 0.911E+05 0.911E+05 0.912E+05 0.913E+05 | NON                                                                         | -DIMEN. 0.066 0.063 0.060 0.058 0.063 0.060 0.057 0.051                       | TEMP. |
|--------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|
| B#<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DTF<br>8.980<br>8.540<br>8.160<br>8.110<br>8.270<br>7.750<br>7.070   | 7.920<br>7.750<br>7.330<br>7.940<br>7.390<br>6.660   | DTL<br>8.770<br>7.980<br>7.510<br>7.520<br>7.960<br>7.860<br>7.190<br>6.130 | DTT<br>10.030<br>9.580<br>9.700<br>8.530<br>10.120<br>9.430<br>9.360<br>8.900   | DTB<br>9.340<br>9.350<br>8.520<br>8.840<br>9.460<br>8.930<br>8.590<br>7.270 | DTH<br><br>16.660<br>18.030<br>18.210<br>17.550<br>17.790<br>17.270<br>16.070 |       |

RUN NUMBER 5
POWER IN WATTS 0.200
SPACING IN MM. 11.913
AMBIENT TEMP. DEG. C 16.220
THERMAL CONDUCTIVITY OF H20 0.59699E+00
EXPANSION COEFFICIENT, B 0.16645E-03
VISCOSITY, NU 0.10992E-05

| BLOCK # 1 2 3 4 5 6 7 8                    | QCOND<br>0.003<br>0.004<br>0.004<br>0.003<br>0.003<br>0.003   |                                                                    | 7<br>6<br>6<br>7<br>7                                              | GRASHOF # 0.910E+04 0.909E+04 0.908E+04 0.908E+04 0.910E+04 0.910E+04 0.911E+04 0.913E+04 |                                                                    | DIMEN.<br>0.129<br>0.122<br>0.120<br>0.117<br>0.109<br>0.100<br>0.093<br>0.075 | TEMP. |
|--------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|-------|
| B#<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DTF<br>1.780<br>1.630<br>1.650<br>1.860<br>1.490<br><br>1.420 | DTR<br>1.610<br>1.570<br>1.520<br>1.440<br>1.380<br>1.250<br>1.100 | DTL<br>1.790<br>1.550<br>1.500<br>1.400<br>1.400<br>1.280<br>1.150 | DTT<br>1.870<br>1.850<br>1.830<br>1.710<br>1.670<br>1.550<br>1.430                        | DTB<br>1.830<br>1.760<br>1.750<br>1.640<br>1.570<br>1.470<br>1.350 | DTH<br>2.450<br>2.600<br>2.620<br>2.380<br>2.290<br>2.190                      |       |

RUN NUMBER 6
POWER IN WATTS 0.500
SPACING IN MM. 11.913
AMBIENT TEMP. DEG. C 16.250
THERMAL CONDUCTIVITY OF H20 0.59705E+00
EXPANSION COEFFICIENT, B 0.16685E-03
VISCOSITY, NU 0.10983E-05

| BLOCK # 1 2 3 4 5 6 7 8                    | QCOND<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.007<br>0.007   | QC0<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4       | 92<br>92<br>92<br>92<br>92<br>93<br>93                                      | GRASHOF # 0.229E+05 0.229E+05 0.229E+05 0.229E+05 0.229E+05 0.229E+05 0.229E+05 0.229E+05 | NON-                                                                        | DIMEN.<br>0.100<br>0.096<br>0.095<br>0.093<br>0.088<br>0.082<br>0.076 | TEMP. |
|--------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|-------|
| B#<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DTF<br>3.410<br>3.300<br>3.240<br>3.390<br>2.960<br><br>2.620<br>2.230 | DTR 3.190 3.060 2.990 2.890 2.800 2.600 2.240 1.980 | DTL<br>3.420<br>3.060<br>3.000<br>2.860<br>2.850<br>2.620<br>2.380<br>1.900 | DTT<br>3.640<br>3.690<br>3.610<br>3.530<br>3.470<br>3.210<br>3.020<br>2.720               | DTB<br>3.600<br>3.490<br>3.470<br>3.340<br>3.190<br>2.990<br>2.840<br>2.220 | DTH<br>5.230<br>5.630<br>5.790<br>5.260<br>5.080<br>4.900<br>4.450    |       |

RUN NUMBER 7
POWER IN WATTS 1.000
SPACING IN MM. 11.913
AMBIENT TEMP. DEG. C 16.260
THERMAL CONDUCTIVITY OF H20 0.59706E+00
EXPANSION COEFFICIENT, B 0.16693E-03
VISCOSITY, NU 0.10981E-05

| BLOCK #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | QCOND<br>0.013<br>0.014<br>0.015<br>0.016<br>0.014<br>0.014<br>0.014 | QC0<br>0.9<br>0.9<br>0.9<br>0.9                                             | 87<br>86<br>85<br>84<br>86<br>86                                            | GRASHOF # 0.459E+05 0.458E+05 0.458E+05 0.458E+05 0.459E+05 0.459E+05 0.459E+05 | иои                                                                | -DIMEN.<br>0.082<br>0.081<br>0.078<br>0.080<br>0.077<br>0.072<br>0.067<br>0.057 | TEMP. |
|-------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|-------|
| B# 12345678                                     | DTF<br>5.670<br>5.520<br>5.490<br>5.580<br>5.120<br>4.520<br>3.930   | DTR<br>5.270<br>5.120<br>5.050<br>4.960<br>4.850<br>4.530<br>3.920<br>3.520 | DTL<br>5.670<br>5.220<br>5.070<br>4.940<br>4.990<br>4.550<br>4.200<br>3.400 | DTT<br>5.740<br>6.260<br>5.610<br>6.150<br>6.160<br>5.670<br>5.370<br>4.950     | DTB<br>5.950<br>5.840<br>5.850<br>5.820<br>5.620<br>5.010<br>4.010 | DTH<br><br>9.570<br>10.340<br>10.730<br>9.800<br>9.630<br>9.270<br>8.540        |       |

| BLOCK # 2 3 4 5 6 7 8 | QCOND<br>0.024<br>0.027<br>0.028<br>0.028<br>0.026<br>0.026<br>0.025 | 1.9<br>1.9<br>1.9<br>1.9<br>1.9                                             | 976<br>976<br>973<br>972<br>974<br>975                             | GRASHOF #<br>0.920E+05<br>0.920E+05<br>0.919E+05<br>0.918E+05<br>0.919E+05<br>0.919E+05<br>0.919E+05 |                                                                             | N-DIMEN.<br>0.062<br>0.063<br>0.062<br>0.064<br>0.065<br>0.062<br>0.057       | TEMP. |
|-----------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|
| B#<br>12345678        | DTF<br>8.450<br>8.500<br>8.690<br>8.990<br>8.620<br>7.690<br>6.840   | DTR<br>8.320<br>8.110<br>7.980<br>8.070<br>8.090<br>7.660<br>6.680<br>6.100 | DTL<br>8.720<br>8.230<br>8.120<br>8.370<br>7.910<br>7.140<br>5.850 | DTT<br>8.520<br>9.450<br>8.680<br>9.720<br>10.310<br>9.800<br>9.390<br>8.790                         | DTB<br>9.140<br>9.320<br>9.180<br>9.560<br>9.640<br>9.640<br>8.680<br>7.040 | DTH<br><br>16.750<br>18.220<br>19.120<br>17.720<br>17.620<br>17.130<br>16.000 |       |

|    | B1<br>23<br>45<br>67<br>8                                  | BLOCK<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8               | RUN NU<br>POWER<br>SPACIN<br>AMBIEN<br>THERMA<br>EXPAUS<br>VISCOS | B\$ 1234 567 8                                              | BLOCK<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8              | RUN NI<br>POWER<br>SPACII<br>AMBIEI<br>THERM<br>EXPAUS<br>VISCOS |
|----|------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|
|    | 1 1 1 1 1 1 1 1 1                                          | •                                                           | IN<br>IG I<br>IT T<br>L C                                         |                                                             | •                                                          | IN<br>NG<br>NT<br>AL<br>SIO                                      |
|    | DTI<br>.50<br>.40<br>.70                                   | 000000                                                      | WATEMITEMITEMITEMITEMITEMITEMITEMITEMITEMI                        | DT8.4<br>8.5<br>8.6<br>8.6<br>7.6                           | 00000                                                      | WAIN<br>TEM<br>CON                                               |
|    | 60<br>00<br>00<br>00<br>00<br>00                           | COND<br>.003<br>.003<br>.004<br>.003<br>.003<br>.003        | MM.<br>P. D<br>DUCT<br>DEFF                                       | 50<br>00<br>90<br>90<br>20<br>                              | CONI<br>. 024<br>. 027<br>. 028<br>. 026<br>. 026<br>. 025 | MM. IP. I                                                        |
|    | 1 1 1 1 1 1 1                                              |                                                             | N<br>EG<br>IV<br>IC                                               | 8 8 7 6                                                     |                                                            | DE(                                                              |
|    | DTR<br>.44<br>.39<br>.34<br>.29<br>.26<br>.17<br>.03       |                                                             | G. C                                                              | DTF<br>8.32<br>8.12<br>7.98<br>8.07<br>8.09<br>7.66<br>6.68 |                                                            | VIT'                                                             |
|    | 0000000                                                    | 0.00.00.00.                                                 | HR<br>O<br>T,                                                     |                                                             | 1.1.1.1.1.                                                 | 913<br>C<br>Y (                                                  |
|    | 1<br>1<br>1<br>1<br>1                                      | ONV<br>197<br>197<br>196<br>197<br>197                      | 16.<br>F H<br>B                                                   | -                                                           | 97<br>97<br>97<br>97<br>97<br>97                           | 16<br>)F<br>B                                                    |
|    |                                                            | 7                                                           | . 3<br>12<br>0                                                    | 8.<br>8.<br>8.<br>7.                                        | 6632445                                                    | H2                                                               |
| 90 | TL<br>480<br>400<br>350<br>260<br>270<br>200<br>100<br>960 |                                                             | NG 1<br>00<br>0 (                                                 | 720<br>230<br>120<br>070<br>370<br>910<br>140<br>850        |                                                            | 270<br>20<br>0.16                                                |
|    |                                                            | 0.0.0.0.0.0.                                                | ) . 5                                                             |                                                             | 0.00.00.00.00.00.00.00.00.00.00.00.00.0                    |                                                                  |
|    | 1.1.1.1.1.                                                 | 91<br>91<br>91<br>91<br>91                                  | 97                                                                | 8989099                                                     | 999999                                                     |                                                                  |
|    | TT<br>661<br>661<br>581<br>551<br>431<br>351<br>241        | HOI<br>8E<br>9E<br>9E<br>9E<br>9E                           |                                                                   | DTT.52.45.45.31.39.79                                       | 20E<br>20E<br>19E<br>19E<br>19E                            |                                                                  |
|    | )<br>)<br>)<br>)                                           | +04<br>+04<br>+04<br>+04<br>+04                             | E+0                                                               | 0<br>0<br>0<br>0<br>0<br>0                                  | + 05<br>+ 05<br>+ 05<br>+ 05<br>+ 05<br>+ 05<br>+ 05       | E+0                                                              |
|    | 11111111                                                   |                                                             | 0                                                                 | 9                                                           |                                                            | 00                                                               |
|    | DTB<br>.590<br>.580<br>.520<br>.480<br>.360                | ИС                                                          |                                                                   | DTB<br>9.14<br>9.32<br>9.18<br>9.56<br>9.64<br>9.02<br>3.68 | N                                                          |                                                                  |
|    |                                                            | I – N                                                       |                                                                   | 0000000                                                     | 0N-                                                        |                                                                  |
|    | 2. 2. 2. 2. 2. 2.                                          | 0.0.0.0.0.0.                                                |                                                                   | 16<br>18<br>19<br>17<br>17                                  | 000000                                                     |                                                                  |
|    | TH<br>300<br>470<br>480<br>270<br>240<br>140<br>940        | EN.<br>112<br>109<br>107<br>106<br>100<br>094<br>088<br>076 |                                                                   | 0TH<br>.750<br>.220<br>.120<br>.720<br>.620<br>.130         | MEN.<br>.062<br>.063<br>.064<br>.065<br>.065               |                                                                  |
|    |                                                            | TE                                                          |                                                                   |                                                             |                                                            |                                                                  |
|    |                                                            | EM                                                          |                                                                   |                                                             | E                                                          |                                                                  |

PRODUCED TOTAL TOTAL STREET STREETS TOTAL STREET

RUN NUMBER 10
POWER IN WATTS 0.500
SPACING IN MM. NO SHROUDING WALL
AMBIENT TEMP. DEG. C 16.300
THERMAL CONDUCTIVITY OF H20 0.59712E+00
EXPANSION COEFFICIENT,B 0.16737E-03
VISCOSITY,NU 0.10970E-05

| BLOCK # 1 2 3 4 5 6 . 7 8 | QCOND<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.007   |                                                                    | 92<br>92<br>92<br>92<br>92                                         | GRASHOF # 0.230E+05 0.230E+05 0.230E+05 0.230E+05 0.230E+05 0.230E+05 0.231E+05 |                                                                    | DIMEN.<br>0.096<br>0.093<br>0.091<br>0.088<br>0.085<br>0.080<br>0.074<br>0.066 | TEMP. |
|---------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|-------|
| B#12345678                | DTF<br>3.270<br>3.190<br>3.130<br>3.250<br>2.890<br><br>2.550<br>2.270 | DTR<br>3.040<br>2.910<br>2.840<br>2.710<br>2.670<br>2.460<br>2.110 | DTL<br>3.120<br>2.900<br>2.830<br>2.700<br>2.710<br>2.560<br>2.560 | DTT<br>3.640<br>3.630<br>3.550<br>3.410<br>3.390<br>3.100<br>2.750              | DTB<br>3.440<br>3.390<br>3.270<br>3.180<br>3.060<br>2.940<br>2.310 | DTH<br>5.230<br>5.600<br>5.640<br>5.180<br>5.160<br>4.900<br>4.540             |       |

RUN NUMBER 11
POWER IN WATTS 1.000
SPACING IN MM. NO SHROUDING WALL
AMBIENT TEMP. DEG. C 16.300
THERMAL CONDUCTIVITY OF H20 0.59712E+00
EXPANSION COEFFICIENT, B 0.16737E-03
VISCOSITY, NU 0.10970E-05

| BLOCK # 1 2 3 4 5 6 7 8 | QCOND<br>0.014<br>0.015<br>0.015<br>0.015<br>0.014<br>0.014            | QC0<br>0.9<br>0.9<br>0.9<br>0.9                                    | 86<br>85<br>85<br>86<br>86<br>87                                            | GRASHOF # 0.461E+05 0.461E+05 0.460E+05 0.461E+05 0.461E+05 0.461E+05       |                                                                             | -DIMEN. 0.080 0.075 0.077 0.076 0.075 0.075 0.065 0.059                  | TEMP. |
|-------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|-------|
| B#12345678              | DTF<br>5.410<br>5.150<br>5.300<br>5.490<br>5.030<br><br>4.470<br>4.030 | DTR<br>5.160<br>4.750<br>4.850<br>4.660<br>4.280<br>3.310<br>3.750 | DTL<br>5.270<br>4.760<br>4.740<br>4.700<br>4.720<br>4.480<br>4.150<br>3.500 | DTT<br>6.190<br>5.770<br>6.050<br>5.890<br>6.020<br>5.500<br>5.240<br>4.980 | DTB<br>5.650<br>5.650<br>5.630<br>5.570<br>5.380<br>5.210<br>4.940<br>4.110 | DTH<br><br>9.340<br>10.250<br>10.480<br>9.650<br>9.690<br>9.180<br>8.650 |       |

RUN NUMBER 12
POWER IN WATTS 2.000
SPACING IN MM. NO SHROUDING WALL
AMBIENT TEMP. DEG. C 16.310
THERMAL CONDUCTIVITY OF H20 0.59714E+00
EXPANSION COEFFICIENT, B 0.16753E-03
VISCOSITY, NU 0.10966E-05

| BLOCK # 1 2 3 4 5 6 7 8 | QCOND<br>0.025<br>0.025<br>0.026<br>0.027<br>0.026<br>0.026<br>0.025   | 1.9<br>1.9<br>1.9<br>1.9                                           | 975<br>1775<br>1774<br>1774<br>1774<br>1775                                 | GRASHOF #<br>0.924E+05<br>0.923E+05<br>0.923E+05<br>0.923E+05<br>0.924E+05<br>0.924E+05<br>0.925E+05 |                                                                             | DIMEN.<br>0.063<br>0.063<br>0.063<br>0.063<br>0.063<br>0.065<br>0.057         | TEMP. |
|-------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|
| B#12345678              | DTF<br>9.080<br>8.570<br>8.300<br>8.190<br>8.330<br><br>7.710<br>7.010 | DTR<br>8.770<br>7.940<br>7.630<br>7.300<br>7.310<br>6.560<br>6.520 | DTL<br>8.940<br>7.800<br>7.460<br>7.300<br>7.870<br>7.690<br>7.190<br>6.090 | DTT<br>10.090<br>9.590<br>9.620<br>8.430<br>10.090<br>9.510<br>9.290<br>8.920                        | DTB<br>9.450<br>9.480<br>8.440<br>8.680<br>9.250<br>9.130<br>8.610<br>7.200 | DTH<br><br>16.910<br>18.170<br>18.290<br>17.620<br>17.890<br>17.100<br>16.200 |       |

Room assessal vereinal societies deposor bespecial societies societies deposite inspecial bespecial

## APPENDIX F FIGURES



Figure 1. Temperature versus Heat Flux for Various Phenomena [Ref. 5]



Figure 2. Assembled Test Surface and Shrouding Wall

PARAMENTAL MANAGEMENT RESERVED BESSESSA WORKSOM TANAMENTAL



Figure 3. Mounted Foil Heater



Figure 4. Mounted Thermocouple



Figure 5. System Configuration

Kossi Teessessi Teessessi seessessi Teessessi Teessessi Teessessi Peressessi Peressessi Beenessi Peressessi Teess



Figure 6. 20 Pin DIP and Chip Comparison, Too View



Figure 7. 20 Pin DIP and Chip Comparison, End View



Figure 8. Laser and Cylindrical Lens



Figure 9. Laser and Camera Orientation



Figure 10. Block with Grooves



Figure 11. Mounted Foil Heater, End Measured



Figure 12. Mounted Foil Heater, Length Measured



TRESSESSE BESSESSE DESCRICT BESSESSE BESSESSE BESSESSE DESCRICT CONTROL OF THE PROPERTY.

THE TACKET TO STATE OF THE TACKET OF THE TAC

Figure 13. Heater Block Schematic



Foil Heater Schematic Figure 14



Figure 15. Power Lead Attachment



Figure 16. Slot and Holes in Test Surface



Figure 17. Containment Back Schematic

TOTALISM SECRECIES CONTOUR TOTAL SECRECIES PERFORM FRANCISM SECRECIES BOARDON SECRECIES INVESTIGATION TOTAL



Test Surface and Shrouding Wall Support Bracket Figure 18.

ESDAN VARIORIA COCCIOSA DIVIDICAL SOSSIOSIA TACACESA VINIDIO VICENZIZZA PRINCIPIO VINIDIO VINI



Figure 19. Immersion Tank



Figure 20. Filtration and Purification System



Record secreted nonneral indicates parables personed personed personed bearing parables parables par

term receives personal beregger surcess merenant implication receives received received received parts

Figure 21. Mounting the Heater Assemblies



Figure 22. Mounted Heater Assemblies



Figure 23. Close-Up of Mounted Heater Assemblies



Figure 24. Thermocouple Connection Schematic



Flow Visualization Photographs for the No Wall Spacing Figure 25.



Flow Visualization Photographs for the 73.81 mm Spacing Figure 26.



Flow Visualization Photographs for the 11.913 mm Spacing Figure 27.



Figure 28. Across Test Surface Flow Visualization Photograph



Block Number vs. Excess Temperature (Front Face) Runs 1-4 Figure 29.



Block Number vs. Excess Temperature (Front Face) Runs 5-8 Figure 30.



Block Number vs. Excess Temperature (Front Face) Runs 9-12 Figure 31.



Block Number vs. Excess Temperature (Right Face) Runs 1-4 Figure 32.



Excess Temperature (Right Face) Runs 5-8 Block Number vs. Figure 33.



Block Number vs. Excess Temperature (Right Face) Runs 9-12 Figure 34.



Block Number vs. Excess Temperature (Left Face) Runs 1-4 Figure 35.



Block Number vs. Excess Temperature (Left Face) Runs 5-8 Figure 36.



Block Number vs. Excess Temperature (Left Face) Runs 9-12 Figure 37.



Block Number vs. Excess Temperature (Top Face) Runs 1-4 Figure 38.



Block Number vs. Excess Temperature (Top Face) Runs 5-8 Figure 39.

TO SERVICE OF THE CONTRACT TO SERVICE SERVICE TO SERVIC



Block Number vs. Excess Temperature (Top Face) Runs 9-12 Figure 40.



Block Number vs. Excess Temperature (Bottom Face) Runs 1-4 Figure 41.

SERVICE DESCRIPT SESSION



Block Number vs. Excess Temperature (Bottom Face) Runs 5-8 Figure 42.



Block Number vs. Excess Temperature (Bottom Face) Runs 9-12 Figure 43.



Block Number vs. Excess Temperature (Heater) Runs 1-4 Figure 44.



Block Number vs. Excess Temperature (Heater) Runs 5-8 Figure 45.

EEEEE TOTALE



Block Number vs. Excess Temperature (Heater) Runs 9-12 Figure 46.



Block Number vs. Excess Temperature (Comparison of Front Face and a Flat Plate with Constant Heat Flux) Figure 47.



Modified Grashof Number vs. Nondimensional Temperature Runs 1-4 Figure 48.



Modified Grashof Number vs. Nondimensional Temperature Runs Figure 49.

KNOWY KKKKKY KONONOST NEGOCIĄTYZKIEGIK WZKKKKY WKZKKATOWOWA NEGOCIA WKKKKKY TZKKKKKY TZKKKKY TOKKKKY TOKK



Modified Grashof Number vs. Nondimensional Temperature Runs 9-12 Figure 50.

## LIST OF REFERENCES

- 1. Hanson, D., <u>The New Alchemists</u>, pp. 57-61, Avon Books, New York, 1987.
- 2. Bashe, C.J., "The Architecture of IBM's Early Computers," <u>IBM J. Res. Dev.</u>, Vol. 26, No. 5, pp. 363-365, 1981.
- 3. Chu, R.C., "Heat Transfer in Electronic Systems," The Eight International Heat Transfer Conference, Vol. 1, pp. 293-305, 1986.
- Solomon, S., "The Idaho Chip," <u>Science Digest</u>, Vol. 91, No. 7, p. 16, July 1983.
- 5. Oktay, S., "High Heat from A Small Package," <u>Mechanical Engineering</u>, Vol. 108, No. 3, ASME Publication, pp. 36-42, March 1986.
- 6. Oktay, S., <u>Electronic Package Cooling</u>, Second Annual International Electronics Packaging Conference, San Diego, California, November 15-17, 1982.
- 7. Bar-Cohen, A., <u>Thermal Management of Air- and Liquid-cooled Multichip Modules</u>, 23rd ASME/AICHE Heat Transfer Conference, Denver, Colorado, August 4-7, 1985.
- 8. Simons, R.E., and Moran, K.P., "Immersion Cooling Systems for High Density Electronic Packages," <u>National Electronic Packaging and Production Conference (NEPCONN) Proceedings</u>, pp. 396-409, February 1977.
- 9. Bar-Cohen, A., "Thermal Design of Immersion Cooling Modules for Electronic Components," <u>Heat Transfer Engineering</u>, Vol. 4, Nos. 3-4, 1983.
- 10. Simons, R.E., and Chu, R.C., "Direct Immersion Cooling Techniques for High Density Electronic Packages and Systems," <u>Proceedings of the 1985 International Symposium on Microelectronics</u>, pp. 314-321, Anaheim, California, November 1985.

TO SERVEN THE COLOUR SERVEN TO SERVEN TO SERVEN THE TANK

11. Yang, K.T., Liu, K.V., Wu, Y.W., and Kelleher, M.D., Local Oscillatory Surface Temperature Responses in Immersion Cooling of a Chip Array by Natural Convection in an Enclosure, 1987.

- 12. Baker, E., "Liquid Cooling of Microelectronic Devices by Free and Forced Convection," <u>Microelectronic and Reliability</u>, Vol. 11, pp. 213-221, 1972.
- 13. Baker, E., "Liquid Immersion Cooling of Small Electronic Devices," <u>Microelectronics and Reliability</u>, Vol. 12, pp. 163-173, 1973.
- 14. Park, K.A., and Bergles, A.E., "Natural Convection Heat Transfer Characteristics of Simulated Microelectric Chips," <u>Heat Transfer in Electronic Equipment--1985</u>, ASME Publication, pp. 29-37, 1985.
- 15. Knock, R.H., Flow Visualization Study of Natural Convection from a Heated Protrusion in a Liquid Filled Rectangular Enclosure, M.S.M.E. Thesis, Naval Postgraduate School, Monterey, California, December 1983.
- 16. Lin, Y-S, and Akins, R.G., "An Experimental Study of Flow Patterns and Heat Transfer by Natural Convection Inside Cubical Enclosures," <u>Natural Convections in Enclosures--1983</u>, HTD-Vol. 26, ASME Publication, pp. 35-42, 1983.
- 17. Chu, H. H-S, Churchill, S.W. and Patterson, C.V.S., "The Effect of Heater Size, Location, Aspect Ratio, and Boundary Conditions on Two-Dimensional, Laminar, Natural Convection in Rectangular Channels," <u>Journal of Heat Transfer</u>, pp. 194-201, May 1976.
- 18. Incropera, F.P., and DeWitt, D.P., <u>Fundamentals of Heat and Mass Transfer</u>, p. 774, John Wiley & Sons, 1981.
- 19. Touloukian, Y.S., and others, <u>Thermophysical Properties</u> of Matter, Vols. 1 and 2, IFI/Plenum, 1970.

KIRIS SARAN TERRADA MANANASAN MANANASAN TERRASAN TERRASAN

- 20. Vliet, G.C., "Natural Convection Local Heat Transfer on Constant Heat Flux Inclined Surfaces," <u>Journal of Heat Transfer</u>, Vol. 91, p. 511, 1969.
- 21. Vliet, G.C. and Lin, C.K., "An Experimental Study of Turbulent Natural Convection Boundary Layers," <u>Journal of Heat Transfer</u>, Vol. 91, p. 517, 1969.

## INITIAL DISTRIBUTION LIST

|    |                                                                                                                                             | No. | Copies |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| 1. | Defense Technical Information Center<br>Cameron Station<br>Alexandria, Virginia 22304-6145                                                  |     | 2      |
| 2. | Library, Code 0142<br>Naval Postgraduate School<br>Monterey, California 93943-5002                                                          |     | 2      |
| 3. | Mr. Howard Stevens<br>Head, Electrical Research Center<br>David Taylor Research Center<br>Annapolis, Maryland 21402                         |     | 2      |
| 4. | Professor Y. Joshi, Code 69Ji<br>Department of Mechanical Engineering<br>Naval Postgraduate School<br>Monterey, California 93943-5004       |     | 5      |
| 5. | Professor M.D. Kelleher, Code 69Kk<br>Department of Mechanical Engineering<br>Naval Postgraduate School<br>Monterey, California 93943-5004  |     | 1      |
| 6. | Professor A.D. Kraus, Code 62Ks Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California 93943-5004 |     | 2      |
| 7. | LCDR Thomas Wilson, USN<br>SMC #1089<br>Naval Postgraduate School<br>Monterey, California 93943-5000                                        |     | 1      |
| 8. | LT Dan Knight, USN<br>SMC #2681<br>Naval Postgraduate School<br>Monterey, California 93943-5000                                             |     | 1      |
| 9. | LT Terry Benidict, USN<br>SMC #1238<br>Naval Postgraduate School<br>Monterey, California 93943-5000                                         |     | 1      |

10. LT Sherrill John Hazard, III 1017 Wood Crest Drive Appleton, Wisconsin 54915

4

)AIL - ILMED 5-88 DTC