Math 323 HW18

Minh Bui

June 15, 2017

Problem 11.10: Define $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x^2 & \text{if } x > 0\\ 0 & \text{if } x = 0\\ -x^2 & \text{if } x < 0 \end{cases}$$

(a) Prove that f(x) is bijective.

Proof. We need to prove f(x) is both injective and surjective.

1. f(x) is injective.

We want to show: if for $a, b \in \mathbb{R}$ and f(a) = f(b), then a = b. Assume $a, b \in \mathbb{R}$ and f(a) = f(b). We consider

$$f(a) = \begin{cases} a^2 & \text{if } a > 0\\ 0 & \text{if } a = 0\\ -a^2 & \text{if } a < 0 \end{cases}$$

$$f(b) = \begin{cases} b^2 & \text{if } b > 0\\ 0 & \text{if } b = 0\\ -b^2 & \text{if } b < 0 \end{cases}$$

But f(a) = f(b) because of our assumption. We have 3 cases for a (or b).

- i. a and b have the same sign. Assume a < 0 and b < 0. Then $f(a) = f(b) = -a^2 = -b^2$. (a b)(a + b) = 0. Since a and b have the same sign, only (a b) = 0 can happen. So a = b.
- ii. a = 0 and b = 0. Then a = b = 0.
- iii. a and b do not have the same sign. Assume a>0 and b<0. Then $f(a)=f(b)=a^2=-b^2$. So $a^2+b^2=0$. But we know $a^2>0$ and $b^2>0$ for $a\neq 0$ and $b\neq 0$. So $a^2+b^2>0$. This case can't happen.

Note that we actually have 5 cases but we only need to consider 3 cases because the value of a and b are interchangable. Thus, f(x) is injective.

2. f(x) is surjective.

We want to show: If $y \in \mathbb{R}$, then $\exists x \in \mathbb{R}$ s.t y = f(x).

Assume $y \in \mathbb{R}$. We consider 3 cases for y.

i. y < 0. Assume y < 0. Then -y > 0. Let $x = \sqrt{-y}$ and we are done.

- ii. y = 0. Let x = 0.
- iii. y > 0. Let $x = \sqrt{y}$.
- So f(x) is surjective.

Thus f(x) is bijective.

(b) Find $f^{-1}(x)$.

Solution.

$$f^{-1}(x) = \begin{cases} \sqrt{x} & \text{if } x > 0\\ 0 & \text{if } x = 0\\ -\sqrt{-x} & \text{if } x < 0 \end{cases}$$

(c) Consider $g: \mathbb{R} \to \mathbb{R}$ given by g(x) = x|x|. Compare this to f(x).

Using the definition of absolute value, we observe q(x).

$$g(x) = x|x| = \begin{cases} x^2 & \text{if } x > 0\\ 0 & \text{if } x = 0\\ x|x| = x(-x) = -x^2 & \text{if } x < 0 \end{cases}$$

So f(x) = g(x).

Problem 12.6: Let $f: A \to B$ be a function. Let $S_1, S_2 \subseteq A$ and $T_1, T_2 \subseteq B$.

(a) Prove that if $S_1 \subseteq S_2$, then $f(S_1) \subseteq f(S_2)$.

Proof. Let $f: A \to B$ be a function. Let $S_1, S_2 \subseteq A$. Assume $S_1 \subseteq S_2$. We want to show: if $y \in f(S_1)$, then $y \in f(S_2)$. By definition

$$f(S_1) = \{ y \in B \mid \exists x \in S_1 \text{ s.t } y = f(x) \}$$

 $f(S_2) = \{ y \in B \mid \exists x \in S_2 \text{ s.t } y = f(x) \}$

Assume $y \in f(S_1)$. So then $\exists x_1 \in S_1 \text{ s.t } y = f(x_1)$. But since $S_1 \subseteq S_2, x_1 \in S_2$. But then that means $\exists x_2 = x_1 \in S_2 \text{ s.t } y = f(x_2)$. And so $y \in f(S_2)$.

(b) Prove that if $T_1 \subseteq T_2$, then $f^{-1}(T_1) \subseteq f^{-1}(T_2)$.

Proof. Let $f: A \to B$ be a function. Let $T_1, T_2 \subseteq B$. Assume $T_1 \subseteq T_2$. We want to show: If $x \in f^{-1}(T_1)$, then $x \in f^{-1}(T_2)$. By definition

$$f^{-1}(T_1) = \{ x \in A \mid f(x) \in T_1 \}$$
$$f^{-1}(T_2) = \{ x \in A \mid f(x) \in T_2 \}$$

Assume $x \in f^{-1}(T_1)$. This means $f(x) \in T_1$. But since $T_1 \subseteq T_2$, $f(x) \in T_2$. But then that also means $x \in f^{-1}(T_2)$. Thus $f^{-1}(T_1) \subseteq f^{-1}(T_2)$.

Problem 12.7: Prove: If $f: A \to B$ is a function with domain A and S_i with $i \in \mathcal{I}$ is a family of sets where $\forall i \in \mathcal{I}, S_i \subseteq A$, then

$$f\left(\bigcap_{i\in\mathcal{I}}S_i\right)\subseteq\bigcap_{i\in\mathcal{I}}f(S_i)$$

Proof. Assume $f: A \to B$ is a function with domain A. Let S_i with $i \in \mathcal{I}$ is a family of sets where $\forall i \in \mathcal{I}, S_i \subseteq A$.

Assume $a \in f\left(\bigcap_{i \in \mathcal{I}} S_i\right)$. This means

$$a \in \{ y \in B \mid \exists x \in \bigcap_{i \in \mathcal{I}} S_i \text{ s.t } y = f(x) \}$$

By this definition, $\exists \alpha \in \bigcap_{i \in \mathcal{I}} S_i$ s.t $a = f(\alpha)$. So then $\forall i \in \mathcal{I}, \alpha \in S_i$. So $\forall i \in \mathcal{I}, f(\alpha) \in f(S_i)$ in which $f(S_i) \subseteq B$. This also means $f(\alpha) \in \bigcap_{i \in \mathcal{I}} f(S_i)$ by our definition of intersection of family of sets. But we have $a = f(\alpha)$. So $a \in \bigcap_{i \in \mathcal{I}} f(S_i)$.