Chapitre 1

Antenne patch

1.1 Objectif

Le but est de réaliser une antenne qui résonne autour de 1.575 GHz. On mesure le s_{11} pour déterminer la bande passante. Le but est d'obtenir $-10\,\mathrm{dB}$ sur une largeur de bande de $40\,\mathrm{MHz}$.

Figure 1.1 – Dimensions de l'antenne patch

MASTER OF SCIENCE IN ENGINEERING

Variables		
$\overline{w_0}$	Largeur du pied	
w_1	Espacement entre le pied et l'antenne	
y_1	Hauteur du pied à l'extérieur de l'antenne	
y_0	Hauteur du pied à l'intérieur de l'antenne	
W	Longueur de l'antenne	
L	Largeur de l'antenne	
Constantes		Valeur
w_s	Largeur du PCB	$100\mathrm{mm}$
l_s	Longueur du PCB	$100\mathrm{mm}$
h	Épaisseur du PCB	$1.6\mathrm{mm}$
e	Épaisseur de cuivre	$35\mu m$

Table 1.1 – Liste des dimensions

1.2 FR-4

1.2.1 Calculs

La longueur W est donnée par

$$W = \frac{1}{2f_r\sqrt{\epsilon_0\epsilon_r}}\sqrt{\frac{2}{\epsilon_r+1}} = \frac{c}{2f_r}\sqrt{\frac{2}{\epsilon_r+1}}$$

Avec $f_r = 1.575\,\mathrm{GHz}$, on a la valeur suivante pour W

$$W = 58.46 \,\mathrm{mm}$$

La valeur de ϵ_{reff} permet de calculer les valeurs suivantes et est donnée par

$$\epsilon_{reff} = \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2} \frac{1}{\sqrt{1 + 10\frac{h}{W}}}$$

La valeur de ϵ_{reff} calculée est la suivante

$$\epsilon_{reff} = 4.11$$

La valeur ΔL est calculée de la manière suivante

$$\Delta L = 0.412h \frac{\epsilon_r + 0.3}{\epsilon_r - 0.258} \cdot \frac{\frac{W}{h} + 0.264}{\frac{W}{h} + 0.8}$$

On obtient la valeur suivante

$$\Delta L = 0.739 \,\mathrm{mm}$$

La valeur de L se calcule de la manière suivante

$$L = \frac{1}{2f_r\sqrt{\epsilon_r\mu_0}}\sqrt{\frac{1}{\epsilon_{reff} - 2\Delta L}}$$

La valeur calculée de L est

$$L = 46.94 \, \text{mm}$$

 Z_{in} est calculée avec

$$Z_{in} = \frac{60}{\sqrt{\epsilon_{reff}}} \ln \left(\frac{8h}{w_0} + \frac{w_0}{4h} \right)$$

L'objectif est d'atteindre $Z_{in} = 50 \Omega$. Ce n'est pas possible car le fonction ne passe pas par ce point, mais il est possible de choisir le point le plus proche, soit

$$w_0 = 1.59\,\mathrm{mm}$$

FIGURE 1.2 – Impédance Z_{in} en fonction de w_0

La distance y_1 est calculée en faisant

$$y_1 = \frac{c}{8f_r}$$

Soit

$$y_1 = 23.79 \,\mathrm{mm}$$

1.2.2 Itérations

Première itération

La première itération (avec les valeurs calculées) donne :

FIGURE $1.3 - s_{11}$ de la première itération

La fréquence de résonance n'est pas bonne, pour l'ajuster nous avons choisi d'effectuer une règle de trois sur les dimensions de la patch (W et L)

$$W' = \frac{1.513}{1.575} \cdot 58.46 \,\mathrm{mm} = 56.16 \,\mathrm{mm}$$

$$L' = \frac{1.513}{1.575} \cdot 46.9 \,\mathrm{mm} = 45.05 \,\mathrm{mm}$$

Deuxième itération : correction de la fréquence de résonance

FIGURE $1.4 - s_{11}$ de la deuxième itération

La fréquence est parfaitement celle que l'on cherche. La règle de trois est une bonne approximation. Il reste toutefois à augmenter la bande passante

Troisième itération: Essai d'augmentation de la bande passante

Nous avons essayé de modifier la taille de y_0 en la passant de $14\,\mathrm{mm}$ à $10\,\mathrm{mm}$

FIGURE $1.5-s_{11}$ de la troisième itération

La bande passante est plus mauvaise

Quatrième itération: Essai d'augmentation de la bande passante

Nous avons essayé de re-modifier y_0 en passant de $10\,\mathrm{mm}$ à $25\,\mathrm{mm}$

FIGURE $1.6 - s_{11}$ de la quatrième itération

Pratiquement plus aucune résonance, la modification était trop importante.

Cinquième itération : Essai d'augmentation de la bande passante

Nous avons repris une valeur proche du départ pour y_0 , soit 16 mm et changé la valeur de y_1 , soit 18 mm au lieu de 23.8 mm

FIGURE $1.7 - s_{11}$ de la cinquième itération

La bande passante est un peu meilleure, mais de très peu. La fréquence de résonance est plus basse en revanche $(-23\,\mathrm{dB}$ au lieu de $-17\,\mathrm{dB}$ dans l'itération deux).

Itérations 6,7 et 8 : Tests en modifiant w_0 et w_1

Toutes les modifications sur w_0 et w_1 n'ont montré aucune améliorations

FIGURE $1.8 - s_{11}$ des itérations 6,7,8

Les résultats sont mauvaise, nous avons repris les valeurs de l'itération 5

Itération 9

Les données sont celles de l'itération 5. La fréquence de résonance n'est pas parfaite

Itération 10

Correction de la fréquence de résonance par la règle de trois

FIGURE $1.9 - s_{11}$ de l'itération 10

La fréquence de résonance est acceptable. La bande passante n'est pas très bonne mais aucun paramètre modifiable ne semble la changer.

Itérations 11 et 12 : test en modifiant l'épaisseur du circuit

L'épaisseur a été modifiée à $2.5\,\mathrm{mm}$ puis $5\,\mathrm{mm}$

FIGURE $1.10 - s_{11}$ de l'itération 10

L'augmentation de l'épaisseur semble avoir un léger impact positif sur la bande passante.

1.2.3 Conclusion

La fréquence d'une antenne patch FR-4 peut facilement être ajustée en modifiant sa largeur et/ou sa longueur. Il est également possible d'obtenir un pic "profond" sur le s_{11} en modifiant y_0 et y_1 . En revanche il est très difficile, voir impossible de modifier la bande passante sans changer l'épaisseur du PCB. Les dimensions finales sont

- $--W = 56.27\,\mathrm{mm}$
- $--~L=45.08\,\mathrm{mm}$
- $-w_0 = 1.6 \,\mathrm{mm}$
- $-y_1 = 18 \,\mathrm{mm}$
- $-y_0 = 16 \,\mathrm{mm}$

Rayonnement

FIGURE 1.11 - Farfield de l'antenne patch réalisée sur FR-4

L'antenne rayonne fortement dans la direction +z

Directivité 6.74 dBi Gain isotrope 4.63 dBi Gain réalisé 4.59 dBi Efficacité totale 60.9 %

Table 1.2 – Valeurs mesurées pour l'antenne FR-4

L'efficacité est bien moins bonne que celle atteinte avec l'antenne dipôle.

1.3 Céramique

La valeur de ϵ_r pour la céramique est de 4.3

1.3.1 Calculs

Les calculs sont les mêmes que pour l'antenne en FR-4, à l'exception d'un changement de ϵ_r

- $-W = 41.7 \,\mathrm{mm}$
- $-\epsilon_{reff} = 8.77$
- $-\Delta L = 0.685 \,\mathrm{mm}$
- $-L = 21.14 \,\mathrm{mm}$
- $-w_0 = 1.1 \,\mathrm{mm}$
- $-y_1 = 23.79$

1.3.2 Itérations

Première itération

Les valeurs sont celles calculées plus haut

FIGURE $1.12 - s_{11}$ de l'itération 1

Le s_{11} n'est pas très bon et la fréquence de résonance n'est pas bonne

Deuxième itération : Amélioration du s_{11}

Comme la fréquence est facile à modifier, nous avons augmenté le y_0 (à $16\,\mathrm{mm}$).

FIGURE $1.13 - s_{11}$ de l'itération 2

Le s_{11} est meilleur

Troisième itération : Amélioration du s_{11}

L'étape précédente a fonctionner, nous recommençons avec $y_0=18\,\mathrm{mm}$

FIGURE $1.14 - s_{11}$ de l'itération 3

Le s_{11} s'est grandement dégradé

Quatrième itération : y_0 par régression

Pour trouver le y_0 , nous avons effectuée une régression quadratique sur les précédentes valeurs de y_0 (trois valeurs et trois valeurs minimales de s_{11}) pour trouver la valeur idéale de $y_0 = 15.4 \,\mathrm{mm}$

FIGURE $1.15 - s_{11}$ de l'itération 4

Le s_{11} est très bas, comme on s'y attendait

Cinquième itération : Correction de la fréquence de résonance

Les nouveaux W et L sont trouvés par règle de 3

$$W' = \frac{1.502}{1.575} \cdot 41.7 \,\text{mm} = 39.77 \,\text{mm}$$

$$L' = \frac{1.502}{1.575} \cdot 32.1 \,\mathrm{mm} = 30.61 \,\mathrm{mm}$$

FIGURE $1.16 - s_{11}$ de l'itération 5

La fréquence de résonance est parfaite mais la bande passante n'est pas bonne.

Sixième itération : Essai d'amélioration du s_{11}

La dimension y_0 est diminuée à $13\,\mathrm{mm}$

FIGURE $1.17-s_{11}$ de l'itération 6

Le s_{11} est moins bon qu'avant

Septième itération : Essai d'amélioration du $s_{11}\,$

La dimension y_0 est augmentée à $17\,\mathrm{mm}$

FIGURE $1.18 - s_{11}$ de l'itération 7

Le s_{11} est moins bien qu'avant

huitième itération : Essai d'amélioration du s_{11}

Au lieu d'augmenter y_0 , on le diminue à $15\,\mathrm{mm}$

FIGURE $1.19 - s_{11}$ de l'itération 8

Le minimum de s_{11} est très bon mais la bande passante n'est pas améliorée

Neuvième et dixième itérations : Changement de l'épaisseur

Par curiosité, nous avons modifié l'épaisseur du substrat pour étudier l'impact sur le s_{11} (4 mm et 3 mm)

FIGURE $1.20 - s_{11}$ des itérations 9 et 10

L'impact de la modification de l'épaisseur est plutôt négatif. La modification des autres paramètres pourrait aider à améliorer le s_{11} .

1.3.3 Conclusion

Comme pour l'antenne FR-4, il est facile d'obtenir une bonne fréquence de résonance mais obtenir une bande passante acceptable est très difficile. La meilleure solution possède une fréquence de résonance de 1.577 GHz et une bande passante de 22.6 MHz. Les dimensions finales sont :

- $--W = 39.7\,\mathrm{mm}$
- $-- \ L = 30.57\,\mathrm{mm}$
- $-w_0 = 1.1 \,\mathrm{mm}$

- $-y_1 = 23.79 \,\mathrm{mm}$ $-y_0 = 15 \,\mathrm{mm}$

Dans l'ensemble nous avons l'impression que développer une antenne sur céramique est plus facile que sur FR-4. Il semblerait que ce fait soit connu car beaucoup d'antennes disponibles sur la marché (en format SMD) sont réalisées en céramique.

Rayonnement

FIGURE 1.21 – Farfield de l'antenne patch réalisée sur céramique

Le champ de l'antenne est similaire à celle réalisée sur FR-4. Les valeurs mesurées sont les suivantes

Directivité $6.22\,\mathrm{dBi}$ Gain isotrope $2.66\,\mathrm{dBi}$ Gain réalisé $2.62\,\mathrm{dBi}$ Efficacité totale $43.7\,\%$

Table 1.3 – Valeurs mesurées pour l'antenne céramique

L'efficacité est encore moins bonne que celle réalisée sur FR-4