Nonlinear Optimization Lecture 13 Garrick Aden-Buie

Thursday, February 25, 2016

Theorem

$$\begin{aligned} & \min \quad f(x) & & w = \begin{bmatrix} u \\ v \end{bmatrix} \\ & g(x) \leq 0 \\ & \text{s.t.} \quad h(x) = 0 & \beta(x) = \begin{bmatrix} g(x) \\ h(x) \end{bmatrix} \\ & x \in X & \theta(w) = \inf_{x \in X} \left\{ f(x) + w^T \beta(x) \right\} \end{aligned}$$

Def. Lagrangian Dual Function is the $\theta(w) = \inf_{x \in X} \{f(x) + w^T \beta(x)\}.$

Rewriting the theorem from last lecture:

- If X is a non-empty compact set.
- $X(w) \{ \bar{x} : f(\bar{x}) + w^T \beta(\bar{x}) = \inf \{ f(x) + w^T \beta(x) \} \}$
- Suppose $X(\bar{w})$ is the singleton $\{\bar{x}\}$
- Then $\theta(w)$ is differentiable at \bar{w} and $\nabla \theta(\bar{w}) = \beta(\bar{x})$.

Theorem

- X: non-empty, compact
- f, β are continuous
- $X(\bar{w})$ is not empty for any \bar{w}
- If $\bar{x} \in X(\bar{w})$, then $\beta(\bar{w})$ is a subgradient of θ at \bar{w} .

Proof. $\theta(w)$ is a concave function $\Rightarrow \exists$ a subgradient for all w.

$$\begin{split} \theta(w) &= \inf_{x \in X} \{ f(x) + w^T \beta(x) \} \\ &\geq f(\bar{x}) + w^T \beta(x) \\ &= f(\bar{x}) + (w - \bar{w})^T \beta(\bar{x}) + \bar{w}^T \beta(\bar{x}) \\ &= [f(\bar{x}) + \bar{w}^T \beta(\bar{x})] + (w - \bar{w})^T \beta(\bar{x}) \\ &= \theta(\bar{w}) + \beta(\bar{x})^T (w - \bar{w}) \\ \Rightarrow &\beta(\bar{x}) \text{ is a subgradient at } \bar{w} \end{split}$$

Example

$$\min \quad -x_1 - x_2$$

$$\text{s.t} \quad x_1 + 2x_2 - 3 \le 0$$

$$x_1, x_2 \in \{0, 1, 2, 3\}$$

$$\theta(u) = \inf_{x \in X} \{-x_1 - x_2 + u(x_1 + 2x_2 - 3)\}$$

$$= \inf_{x \in X} \{(u - 1)x_1 + (2u - 1)x_2 - 3u\}$$

$$= \begin{cases} -6 + 6u & \text{if } u \le \frac{1}{2} \\ -3 & \text{if } \frac{1}{2} \le u \le 1 \\ -3u & \text{if } u \ge 1 \end{cases}$$

Let $\bar{u} = \frac{1}{2}$. Then $X(\bar{u}) = \arg\min_{x \in X} \{f(x) + \bar{u}g(x)\}.$

min
$$-x_1 - x_2 + \frac{1}{2}(x_1 + x_2 - 3) = -\frac{1}{2}x_1 - \frac{3}{2}$$

s.t $x_1, x_2 \in \{0, 1, 2, 3\}$

Then $X(\frac{1}{2}) = \{(3,0), (3,1), (3,2), (3,3)\}.$

The subgradients of $\theta(u)$ at $u = \frac{1}{2}$. From the theorem, $\beta(\bar{u}) \ \forall \bar{x} \in X(\bar{w})...$

$$g(3,0) = 3 - 3 = 0$$

 $g(3,1) = 3 + 2 - 3 = 2$
 $g(3,2) = 3 + 4 - 3 = 4$
 $g(3,3) = 3 + 6 - 3 = 6$

Figure 1:

Note that there are infinite subgradients at \bar{u} , for any line with slope between 0 and 6. The theorem states that *some* of the subgradients are given in the form above, but not all.

Theorem

- X: non-empty compact
- f, β : continuous
- ξ is a subgradient of θ at \bar{w} if and only if $\xi \in \text{convex hull of } \{\beta(\bar{x}) \colon \bar{x} \in X(\bar{w})\}.$

Line Search without Derivative

 $\min f(x)$, $f: \mathbb{R} \to \mathbb{R}$. Let f be strictly quasiconvex (monotonically decreasing, and then monotonically increasing).

Strictly quasiconvex function: $f(\lambda \bar{x} + (1 - \lambda)\hat{x}) < \max\{f(\bar{x}), f(\hat{x})\}, \forall \lambda \in (0, 1), f(\bar{x}) \neq f(\hat{x}).$

Figure 2: Quasiconvex function illustration and first line search algorithm layout.

Theorem

- (1) If $f(\lambda) \le f(\mu)$, then $f(x) \ge f(\lambda) \ \forall x \in (\mu, b]$.
- (2) If $f(\lambda) \ge f(\mu)$, then $f(x) \ge f(\mu) \ \forall x \in [a, \lambda)$.

Point (1) states that if f(b) is highest and $f(\mu)$ and $f(\lambda)$ are lower (in that order), then the inflection point is definitely not between μ and b. Point (2) says the same thing but on the side of f(a), discarding the points between a and λ .

Proof. Suppose not: assume $\exists \bar{x} \in (\mu, b]$ such that $f(\bar{x}) < f(\lambda)$. Then $f(\lambda) < f(\mu) < f(\bar{x}) \le f(b)$. Consider the definition of strong quasiconvex functions:

$$f(\mu) < \max\{f(\lambda), f(\bar{x})\}\$$

= $f(\lambda)$

But this is a contradiction.

Dichotomous Search

Intuition: We would like to maximize the search area that is being abandoned in each step. In the above line search if λ, μ, a, b are all highly separated, then each iteration discards a small portion of the search space.

Figure 3:

Let
$$\lambda_k = \frac{a_k + b_k}{2} - \epsilon$$
 and $\mu_k = \frac{a_k + b_k}{2} + \epsilon$

Step 0 Choose an interval $[a_1, b_1]$ that contains an optimal solution. Choose $\epsilon > 0, \delta > 0$. Set k = 1.

Step 1 Compute λ_k, μ_k .

Step 2 If $f(\lambda_k) < f(\mu_k)$ let

$$a_{k+1} = a_k$$

$$b_{k+1} = \mu_k$$

Otherwise, let

$$a_{k+1} = \lambda_k$$

$$b_{k+1} = b_k$$

Step 3 If $b_{k+1} - a_{k+1} < \delta$, then stop:

$$x^* \approx \frac{a_{k+1} + b_{k+1}}{2}$$

Otherwise, set k = k + 1 and go to **Step 1**.

Note that we ned $\epsilon < \frac{\delta}{2}$ for this to work. But that this algorithm requires a significant number of function evalutions, which will add computation time. This leads us to the next algorithm.

Golden Section Search

Figure 4:

In the previous algorithm, new function evaluations are needed for every point evaluated at every iteration. In the golden section search, we want to re-use previous function evaluations, and only evaluate one new point at each search.

Position so that $\mu_{k+1} = \lambda_k$ or $\lambda_{k+1} = \mu_k$.

$$\lambda_k = \alpha a_k + (1 - \alpha)b_k$$
$$\mu_k = (1 - \alpha)a_k + \alpha b_k$$

Find α so that $\mu_{k+1} = \lambda_k$

$$\mu_{k+1} = (1 - \alpha)a_{k+1} + \alpha b_{k+1}$$

$$= (1 - \alpha)a_k + \alpha \mu_k$$

$$= (1 - \alpha)a_k + \alpha((1 - \alpha)a_k + \alpha b_k)$$

$$= (1 - \alpha^2)a_k + \alpha^2 b_k$$

$$\lambda_k = \alpha a_k + (1 - \alpha)b_k$$

So we want $1 - \alpha^2 = \alpha \Rightarrow \alpha = \frac{-1 + \sqrt{5}}{2} \approx 0.618$

If we do n function evaluations the length of the interval is reduced by $(0.618)^{n-1}$. Dichotomous search is only $\approx (0.5 - \epsilon)^{\frac{n}{2}}$.