

Thensity
$$I = E/\Delta t = P$$
 in unit W

A or $r^2 \rightarrow I \propto \frac{1}{r^2}$

A circle = Rr^2 (2D waves on water)

A ophere = $4\pi r^2$ (3D waves expanding)

Example: radio-frammittes emits in all directions with $P = 10 \text{ kW}$

What is intensity at $1 \text{ km} ? \rightarrow A$ sphere = $4\pi r^2$
 $I = \frac{P}{4\pi r^2} = \frac{10 \text{ kW}}{4\pi (1000m)^2}$
 $= 8 \times 10^{-4} \frac{W}{m^2}$

What is intensity at $10 \text{ km} ? \rightarrow I = \frac{10 \text{ kW}}{1000m}$
 $= 8 \times 10^{-6} \text{ W}$

The solution of V in V

3) How much brough does an antenna at 10km with an effective area of 10cm × 10cm receive?

$$P = IA = 4\pi (0.1m)^2 P = 1 \times 10^{-6} W$$