CORRECTIONS FOR EXERCISES IN §1

THOMAS HUDSON

Exercise 1.43. Consider $\psi \in \mathcal{D}(\mathbb{R})$ such that

$$\psi(x) = 1$$
 for all $x \in [-1, 1]$.

Such a test function exists by virtue of Lemma 1.19 since [-1,1] is compact, and thus

$$\left\langle \sum_{i=1}^{n} \delta_{1/n}, \psi \right\rangle = \sum_{i=1}^{n} \psi(1/n) = n \to \infty \quad \text{as } n \to \infty.$$

It follows that $\sum_{n=1}^{\infty} \delta_{1/n}$ does not converge in $\mathcal{D}'(\mathbb{R})$. Now consider $\psi \in \mathcal{D}(0, +\infty)$. Since ψ has compact support in $(0, +\infty)$, it follows that there exists $\delta > 0$ for which $\delta = \min \{ x \in \mathbb{R} : x \in \operatorname{supp}(\psi) \}.$

Let $N \in \mathbb{N}$ such that $N > 1/\delta$; then for all $m \ge N$, $1/m \le 1/N < \delta$, hence $1/m \notin \operatorname{supp}(\psi)$ and $\psi(1/m) = 0$. It follows that, for any $m \geq N$,

$$\left\langle \sum_{n=1}^{m} \delta_{1/n}, \psi \right\rangle = \sum_{n=1}^{m} \psi(1/m) = \sum_{n=1}^{N} \psi(1/m),$$

and hence $\sum_{n=1}^{m} \delta_{1/n}$ converges in $\mathcal{D}'(0, +\infty)$.

Exercise 1.69. The map $T: \mathcal{D}(\mathbb{R}) \to \mathbb{R}$ defined to be

$$\langle T, \phi \rangle := \int_{\mathbb{R}} |\phi(t)| dt$$

is not a distribution, since it is not linear:

$$\langle T, \phi \rangle + \langle T, -\phi \rangle = 2 \int_{\mathbb{R}} |\phi(t)| dt \neq 0 = \langle T, \phi - \phi \rangle.$$

We claim that the map $T: \mathcal{D}(\mathbb{R}) \to \mathbb{R}$ defined to be

$$\langle T, \phi \rangle := \sum_{n=0}^{\infty} \phi^{(n)}(n)$$

is a distribution. First, we define T^m for any $m \in \mathbb{N}$ to be

$$\langle T^m, \phi \rangle = \sum_{n=0}^m \phi^{(n)}(n).$$

 T^m is clearly well-defined since $\psi \in \mathbb{C}^{\infty}$, linear, and bounded since

$$\left| \langle T^m, \phi \rangle \right| \le \sum_{n=0}^m \sup \left\{ \left| \phi^{(n)}(x) \right| : x \in \operatorname{supp}(\phi) \right\}$$

$$\le (m+1) \sup \left\{ \left| \phi^{(k)}(x) \right| : x \in \operatorname{supp}(\phi), k \le m \right\}.$$

Here, implicitly, we have used the fact that $\phi(x) = 0$ for all $x \notin \text{supp}(\phi)$, so by induction, it follows that $\phi^{(n)}(x) = 0$ for all $x \notin \text{supp}(\phi)$. This entails that there exists $N \in \mathbb{N}$ such that

$$\operatorname{supp}(\phi) \subset B_N(0),$$

and therefore for all m > N, we have

$$\langle T^m, \phi \rangle = \sum_{n=0}^m \phi^{(n)}(n) = \sum_{n=0}^N \phi^{(n)}(n),$$

so T^m converges, and hence T is a distribution by Theorem 1.39.

Exercise 1.71. Let $\phi \in \mathcal{D}(\mathbb{R}^2)$; then there exists K > 0 such that $\phi(z, 2z) = 0$ for all z > K. Defining $f: [0, +\infty) \to \mathbb{R}$ as $f(z) := \phi(z, 2z)$, we note that f is C^{∞} , and

$$\int_0^\infty |f(z)| dz = \int_0^K |f(z)| dz \le \sup \{|\phi(x)| : x \in \operatorname{supp}(\phi)\} K,$$

hence f is integrable, and so

$$\langle T, \phi \rangle := \int_0^\infty \phi(z, 2z) \mathrm{d}z$$

is well-defined as a distribution, since the integral is linear. Next, we compute

$$\begin{split} \left\langle \frac{\partial T}{\partial x} + 2 \frac{\partial T}{\partial y}, \phi \right\rangle &= -\left\langle T, \frac{\partial \phi}{\partial x} + 2 \frac{\partial \phi}{\partial y} \right\rangle \\ &= -\int_0^\infty \frac{\partial \phi}{\partial x} (z, 2z) + 2 \frac{\partial \phi}{\partial y} (z, 2z) \mathrm{d}z, \\ &= -\int_0^\infty f'(z) \mathrm{d}z, \\ &= -\int_0^K f'(z) \mathrm{d}z, \\ &= f(0) - f(K) = \phi(0, 0) = \langle \delta_0, \phi \rangle, \end{split}$$

as required. To carry out the above computation, we have used the definition of differentiation for a distribution, the chain rule, the Fundamental Theorem of Calculus, and the fact that f is compactly supported.

Exercise 1.72. Let $v_n(x) := \frac{n}{1+n^2x^2}$, and $w_n(x) := \arctan(nx)$; we remark that since v_n and w_n are uniformly bounded by n and 1 respectively, they are in L^1_{loc} , and hence may be identified with distributions.

1. For $x \neq 0$, and $n \geq 1$, we estimate

$$0 \le \frac{n}{1 + n^2 x^2} = \frac{1}{1/n + nx^2} \le \frac{1}{nx^2} \to 0 \text{ as } n \to \infty,$$

which demonstrates that $v_n(x) \to 0$ for all $x \neq 0$, and hence $v_n(x)$ converges to v(x) := 0 almost everywhere.

2. By the above estimate, for any $\alpha > 0$,

$$\int_{\alpha}^{\infty} |v_n(x) - v(x)| dx = \int_{\alpha}^{\infty} |v_n(x)| dx \le \int_{\alpha}^{\infty} \frac{1}{nx^2} dx \le \frac{1}{n\alpha} \to 0,$$

and a similar argument holds for the integral over $(-\infty, -\alpha)$. Therefore $v_n \to v$ in $L^1((-\infty, -\alpha) \cup (\alpha, +\infty))$.

3. Let $\psi \in \mathcal{D}(\mathbb{R})$; then

$$\langle w_n, \psi \rangle = \int_{\mathbb{D}} w_n(x)\psi(x)dx = \int_{\mathbb{D}} \arctan(nx)\psi(x)dx.$$

We note that $|\arctan(nx)\psi(x)| \leq \frac{\pi}{2}|\psi(x)|$, which is integrable, and moreover

$$\arctan(nx)\psi(x) \to \frac{\pi}{2}\operatorname{sgn}(x)\psi(x) = \begin{cases} \frac{\pi}{2}\psi(x) & x > 0, \\ 0 & x = 0, \\ \frac{\pi}{2}\psi(x) & x < 0, \end{cases}$$

so by applying the Dominated Convergence Theorem, we obtain that

$$\langle w_n, \psi \rangle \to \left\langle \frac{\pi}{2} \operatorname{sgn}, \psi \right\rangle \quad \text{as } n \to \infty.$$

4. We note $w'_n(x) = v_n(x)$ so that

$$\lim_{n \to \infty} \langle v_n, \psi \rangle = \lim_{n \to \infty} \langle w'_n, \psi \rangle = \left\langle \frac{\pi}{2} \operatorname{sgn}', \psi \right\rangle = \langle \pi \delta_0, \psi \rangle,$$

where we have used the jump formula along with the fact that $\frac{\pi}{2}$ sgn is piecewise C^1 .

Alternatively, consider the change of variable y = nx; then:

$$\int_{\mathbb{R}} v_n(x)\psi(x)dx = \int_{\mathbb{R}} \frac{n\psi(x)}{1+n^2x^2} dx = \int_{\mathbb{R}} \frac{\psi(y/n)}{1+y^2} dy.$$

We note next that $\frac{\psi(y/n)}{1+y^2} \to \frac{\psi(0)}{1+y^2}$ as $n \to \infty$, and hence applying the Dominated Convergence Theorem once more, we find that

$$\int_{\mathbb{R}} \frac{\psi(y/n)}{1+y^2} dy \to \int_{\mathbb{R}} \frac{\psi(0)}{1+y^2} = \pi \psi(0) = \langle \pi \delta_0, \psi \rangle.$$

Exercise 1.73. 1. Let $f \in \mathcal{D}(\mathbb{R})$, and set $f_n(x) := f(x - n)$. We claim that $f_n(x) \to 0$ almost everywhere, $f_n \to 0$ in $\mathcal{D}'(\mathbb{R})$, and f_n does not converge in $L^1(\mathbb{R})$, unless f = 0.

First, we note that since f is compactly supported, there exists K such that $\operatorname{supp}(f) \subset B_K(0)$. Then whenever $n > K + |x|, |x - n| \ge |n| - |x| \ge K$, and hence f(x - n) = 0. It follows that $f_n(x) \to 0$ almost everywhere as $n \to \infty$.

Secondly, let $\psi \in \mathcal{D}(\mathbb{R})$. Since ψ is compactly supported,

$$\int_{\mathbb{R}} f_n(x)\psi(x)dx = \int_{\text{supp}(\psi)} f_n(x)\psi(x)dx.$$

Now, since $|f_n(x)\psi(x)| \leq \sup\{|f(x)| : x \in \operatorname{supp}(f)\}|\psi(x)|$, which is integrable, and $f_n\psi \to 0$ almost everywhere, applying the Dominated Convergence Theorem implies that

$$\int_{\mathbb{R}} f_n(x)\psi(x)\mathrm{d}x \to 0,$$

which entails that $f_n \to 0$ in $\mathcal{D}'(\mathbb{R})$.

Finally, suppose that f_n converges in $L^1(\mathbb{R})$. Then it follows that the limit of the sequence f_n in $L^1(\mathbb{R})$ agrees with the limit in the sense of distributions. Hence, it would follow that

$$\int_{\mathbb{R}} |f_n| \mathrm{d}x \to 0,$$

but

$$\int_{\mathbb{R}} |f_n(x)| dx = \int_{\mathbb{R}} |f(x-n)| dx = \int_{\mathbb{R}} |f(y)| dy,$$

and this integral is zero if and only if f = 0.

3. We begin by noting that (contrary to the definition of an approximation of the identity given in Exercise 1.32), here

$$\chi_{1/n^2}(x) := n^2 \chi(n^2 x)$$
 for some $\chi \in \mathcal{D}(\mathbb{R})$ such that $\int_{\mathbb{R}} \chi = 1$.

Next, we note that for any x > 0 and $k \le n$,

$$n^2x - n^2/k \ge n^2x - n \to \infty$$
 as $n \to \infty$.

Similarly, if x < 0 and $k \le n$,

$$n^2x - n^2/k \le n^2x \to -\infty.$$

It follows that for each $x \neq 0$, and any K, there exists N(x,K) such that whenever n > N(x,K),

$$\min\{|n^2x - n^2/k| : k = 1, \dots, n\} > K.$$

Moreover, choosing K such that $\chi(x) = 0$ for all $|x| \ge K$, we find that for $n \ge N(x, K)$,

$$\sum_{k=1}^{n} \chi_{1/n^2}(x - 1/k) = \sum_{k=1}^{n} n^2 \chi(n^2 x - n^2/k) = 0,$$

and hence the sequence converges to 0 almost everywhere.

On the other hand, suppose that $\operatorname{supp}(\chi) \subset B_R(0)$, let $\psi \in \mathcal{D}(\mathbb{R})$ such that $\psi(x) = 1$ for all $x \in [-R-1, R+1]$, and write

$$\left\langle \sum_{k=1}^{n} \chi_{1/n^2}(x-1/k), \psi \right\rangle = \sum_{k=1}^{n} \int_{\mathbb{R}} n^2 \chi(n^2 x - n^2/k) \psi(x) dx.$$

Consider a single term from this sum with the change of variable $y = n^2x - n^2/k$, we find that

$$\int_{\mathbb{R}} n^2 \chi(n^2 x - n^2/k) \psi(x) dx = \int_{\mathbb{R}} \chi(y) \psi(y/n^2 + 1/k) dy.$$

Next, we note that if |y| < R, we have that

$$\left|\frac{y}{n^2} + \frac{1}{k}\right| \le \frac{R}{n^2} + 1 \le R + 1.$$

By our choice of ψ , it follows that

$$\int_{\mathbb{R}} \chi(y)\psi(y/n^2 + 1/k) dy = \int_{\mathbb{R}} \chi(y) dy = 1,$$

but then

$$\sum_{k=1}^{n} \int_{\mathbb{R}} n^2 \chi(n^2 x - n^2/k) \psi(x) dx = n,$$

and hence the sequence does not converge in $\mathcal{D}'(\mathbb{R})$.