Resumo

Escoamentos multifásicos de material fluido e sólido representam um desafio às actuais capacidades de experimentação, conceptualização e modelação. O grande leque de escalas, quer temporais quer espaciais, envolvidas nestes fenómenos parece ter prevenido o desenvolvimento de modelos capazes de fornecer soluções atraentes para casos complexos, onde estas várias escalas são relevantes. Modelos competentes são aplicados tipicamente a escoamentos específicos, com escalas bem definidas, sofrendo de severos problemas fora do seu estreito domínio de aplicabilidade.

Observação directa, assim como medição de muitas quantidades neste tipo de escoamentos torna-se díficil ou impossível com os meios actuais, justificando-se assim a rarefeita literatura em modelos conceptuais robustos. Com o actual ritmo de crescimento de recursos computacionais, existe a esperança de que modelos resolvidos, com um número mínimo de hipoteses, possam levar a soluções aproximadas para estes escoamentos. Tais soluções terão o potencial de promover novas perguntas para investigar, levando a uma melhor compreensão dos fenómenos envolvidos.

O objectivo chave desta dissertação é a introdução de uma discretização sem malha unificada para sólidos rígidos e fluidos, permitindo a elaboração de simulações resolvidas de ambas as fases. A solução numérica, obtida por Smoothed Particle Hydrodynamics (SPH) e uma variante de Discrete Element Method (DEM), o Distributed Contact Discrete Element Method (DCDEM), é fruto da caracterização directa e local de contactos sólido-sólido e das interfaces sólido-fluido. A inovação do trabalho está centrada na generalização do acoplamento entre os métodos SPH e DEM para simulações resolvidas. Isto permite que teorias estado-da-arte para mecânica de contacto posam ser usadas em geometrias aleatórias, assim como o tratamento de tranferências de quantidade de movimento entre as fases sólida e fluida. Os métodos são introduzidos e analisados em detalhe.

Uma série de campanhas experimentais foi desenhada de modo a fornecer validação para simulações de escoamentos complexos. Juntamente com soluções analíticas e outras soluções numéricas encontradas na literatura, procede-se à caracterização do modelo quanto à qualidade das suas soluções. Experiências inéditas foram levadas a cabo, como escoamento do tipo rotura de barragem com objectos móveis a jusante e medição de velocidades de sedimentação de partículas macroscópicas. Para os casos de rotura de barragem, um conjunto de blocos foi colocado em várias configurações e depois sujeito à onda de frente abrupta e subsequente escoamento não-permanente. Os blocos são seguidos e as suas posições ao longo do tempo servem de comparação com os resultados numéricos. Uma técnica de Particle Image Velocimetry (PIV) permite a medição do campo de velocidade no local de impacte e uma comparação directa com os resultados numéricos. Os resultados apontam para a precisão do modelo, assim como a capacidade de lidar com interações complexas, como o transporte de detritos ou quantificação de acções hidrodinâmicas não permanentes em estruturas. O caso de sedimentação confirma que as forças hidrodinâmicas relevantes são bem reproduzidas.

Resultados preliminares em casos limite são apresentados e discutidos. Estes são casos onde o tratamento numéricos se demonstra desafiante para outros modelos e iniciativas experimentais são

simplesmente demasiado dispendiosas ou limitadas na quantidade de informação que podem recuperar.

Palavras Chave

Escoamentos multifásicos, Métodos sem malha, Smooth Particle Hydrodynamics, Discrete Element Method, Escoamento de detritos, Leis de contacto, Transporte sólido, Computação de alta performance, Impulsão, Validação