ORI 390R.3 / ME384Q.3

Time-Series Analysis

Midterm Examination Spring, 2018

Instructor: Dr. Dragan Djurdjanovic

University of Texas at Austin

Thursday, March 8th, 2018. 12:30pm-1:45pm at ETC 5.132

SOLUTIONS

Problem 1. (Total 25 points)

YOUR QUESTIONS ARE ON THE NEXT PAGE. PLEASE, TURN THE PAGE!

Sentence 1: The Green's Function $G_k = g_1 \lambda_1^k + g_1 \lambda_2^k + + g_n \lambda_n^k$ corresponds to an, where $\lambda_1, \lambda_2 \lambda_n$ are roots of the
Sentence 2: Random walk is a special case of an model with the root of the autoregressive characteristic polynomial being equal to
Sentence 3: The variance of the eventual forecast error of an unstable system is . Ultimate forecast of a stable system tends towards 2
Sentence 4: Character of the inverse function of a time series following an ARMA model is determined by the
Sentence 5: The formula $E[X_t X_{t-t}] = \gamma_t = \sigma_a^2 \sum_{k=0}^{\infty} G_k G_{k+t}$ describing the autocovariance of a discrete time-series X_t governed by an
Sentence 6: Time-series described by an ARMA model can be seen as a response of a dynamic system driven by

Possible choices to complete sentences 1-6 of Problem 1.

Possible choices to complete sentences 1-6 of Problem 1.							
1. White Noise	4. <u>ARMA (n,m)</u>	7. <u>ARMA(1,1)</u>	10. ARMA(n,n-1)				
2. Zero	5. Orthogonal	8. AR(1)	11. Autoregressive				
	decomposition	0. <u>AA(1)</u>	characteristic polynomial				
		9. Moving average					
3. One	6. <u>Infinite</u>	characteristic	12. Finite				
		<u>polynomial</u>					

Part (b)

Circle the most appropriate answer offered to complete the following 2 statements and explain your answer. Each correct choice will bring 1 points and the appropriate explanation for that choice will bring another 4 points. Hence, there are 10 points to be won in this part (5 for each statement).

(total 15 points)

Example: A time series X_i described the ARMA(2,1) model

$$(1-0.4B)(1-0.9)X_t = (1-0.3B)$$

is stable/marginally stable/unstable.

Why:

The most appropriate answer is that this time series is stable and therefore your answer should look like this:

Example: A time series X_i described the ARMA(2,1) model

$$(1-0.4B)(1-0.9)X_t = (1-0.3B)$$

is stable/asymptotically stable/unstable.

The explanation for this choice is that all autoregressive roots of this ARMA model are inside the unit circle.

YOUR QUESTIONS ARE ON THE NEXT PAGE. PLEASE, TURN THE PAGE!

Start of the questions:

Statement 1. The system

$$X_{t} - 2X_{t-1} + X_{t-2} = a_{t} - 0.5a_{t-1}$$
 $a_{t} \sim NID(0, \sigma_{a}^{2})$

is stable | marginally stable | unstable

(circle the most appropriate answer and get 1 point)

Explain your answer (3 points)

Autoregressive char poly:
$$S^2-2S+1=(S-1)^2$$

=> $\lambda_1 = \lambda_2 = 1 = 5$ we have a repeated root at
(i.e. ON the unit circle) = 2 unstable!

Statement 2. The system

$$X_{t-1} + 3X_{t-1} + 3X_{t-2} - X_{t-3} = a_{t} - 0.9a_{t-1} + 0.14a_{t-2}$$
 $a_{t} \sim NID(0, \sigma_{u}^{2})$

is invertible | marginally invertible | non-invertible

(circle the most appropriate answer and get 1 point)

Explain your answer (3 points)

Moving average characteristic poly:

$$S^2 - 0.95 + 0.19 = (5 - 0.2)(5 - 0.7)$$

-) $V_1 = 02$, $V_2 = 0.7$ $|V_1| < 1$, $|V_2| < 1 = 5$
= 5 this model is
invertible!

Statement 3. The system

$$(1-B)(1+B+B^2)X_t = a_t - 2a_{t-1} + 3a_{t-2} \quad a_t \sim NID(0, \sigma_a^2)$$

is stable marginally stable unstable

(circle the most appropriate answer and get 1 point)

Explain your answer (3 points)

Autoregressive char poly:
$$(s-1)(s^2+s+1)$$

$$\lambda_1 = 1, \quad \lambda_{2/3} = \frac{1}{2}(-1\pm\sqrt{1-4}) = -\frac{1}{2}\pm\sqrt{\frac{5}{2}}$$

$$|\lambda_1| = |\lambda_2| = |\lambda_3| = 1 \quad \text{However, a CC these AR characteristic foots are distinct.}$$

$$=) we have distinct roots on the unit circle = 2$$

Statement 4. We have a system described by the ARMA model

$$X_{t} - 0.7X_{t-1} + 0.12X_{t-2} = a_{t} - \theta_{1}a_{t-1}$$

It is known that this model is equivalent to the model

marginally stable

$$X_t - 0.4X_{t-1} = a_t$$

Then, it must be that $\theta_1 = 0.7/\theta_1 = 0.3/\theta_1 = 0.$ (1 points)

Why? (2 points)

$$X_{t} - 07X_{t-1} + 012X_{t-2} = (1-03B)(1-0.4B)X_{t}$$
=> to make the original model look like $X_{t} - 0.4X_{t-1} = q_{t}$
we need be caused the AR poly root at 0.3. Hence,
we need $\theta_{t} = 0.3$

Problem 2. (Total 40 points)

Gate-opening in the papermaking process was found to be governed by the ARMA(2,1) model

$$X_{i} - 0.6X_{i-1} + 0.08X_{i-2} = a_{i} - 0.3a_{i-1}, \ a_{i} \sim NID(0, \sigma_{a}^{2})$$

where $\sigma_a^2 = 4$.

Part a (15 points)

Explicitly express the corresponding Green's function.

Explicitly express the corresponding Green's function.

$$\chi_{\xi} = 0.6 \, \chi_{\xi-1} + 0.08 \, \chi_{\xi-2} = (1 - 0.48)(1 - 0.28) \, \chi_{\xi} = > AR \, char \, \rho_0 G.$$

The first integral is the corresponding Green's function.

$$\chi_{\xi} = 0.6 \, \chi_{\xi-1} + 0.08 \, \chi_{\xi-2} = (1 - 0.48)(1 - 0.28) \, \chi_{\xi} = > AR \, char \, \rho_0 G.$$

$$g_1 = \frac{\chi_1 - \theta_1}{\lambda_1 - \lambda_2} = \frac{0.2 - 0.3}{0.2 - 0.4} = \frac{1}{2} i g_2 = \frac{\chi_2 - \theta_1}{\lambda_2 - \lambda_1} = \frac{0.4 - 0.3}{0.4 - 0.2} = \frac{1}{2}$$

Part b (15 points)

Explicitly express the covariance function $E[X_i X_{i-1}] = \gamma_i$ for the time-series described by the ARMA(2,1) model given above.

Part c (10 points)

Find the inverse function decomposition

$$X_{t} = a_{t} + I_{1}X_{t-1} + I_{2}X_{t-2} + I_{3}X_{t-3} + I_{4}X_{t-4} + \dots$$

of the gate-opening time-series.

$$(1-0.6B+0.08B^{2})X_{\ell} = (1-0.3B)Q_{\ell}$$

$$= \frac{1-0.6B+0.08B^{2}}{1-0.3B}X_{\ell} = (1-0.3B-0.01B^{2} \frac{1}{1-0.3B})X_{\ell}$$

$$= (1-0.3B-\frac{2}{2}0.01.0.3^{2-2}B^{\ell})X_{\ell}$$

$$= (1-0.3B-\frac{2}{2}0.01.0.3^{2-2}B^{\ell})X_{\ell}$$

$$= \frac{1-0.6B+0.08B^{2}}{1-0.3B}X_{\ell} = (1-0.3B-0.01B^{2} \frac{1}{1-0.3B})X_{\ell}$$

$$= \frac{1-0.6B+0.08B^{2}}{1-0.3B}X_{\ell} = (1-0.3B)Q_{\ell}$$

$$= \frac{1-0.6B+0.08B^{2}}{1-0.3B}X_{\ell} = (1-0.3B-0.01B^{2} \frac{1}{1-0.3B})X_{\ell}$$

$$= \frac{1-0.6B+0.08B^{2}}{1-0.3B}X_{\ell} = (1-0.3B)Q_{\ell}$$

$$= \frac{1-0.6B+0.08B^{2}}{1-0.3B}X_{\ell} = (1-0.3B-0.01B^{2} \frac{1}{1-0.3B})X_{\ell}$$

$$= \frac{1-0.3B+0.00B^{2}}{1-0.3B}X_{\ell} = (1-0.3B-0.01B^{2} \frac{1}{1-0.3B})X_{\ell}$$

$$= \frac{1-0.3B+0.00B^{2}}{1-0.3B}X_{\ell} = (1-0.3B-0.01B^{2} \frac{1}{1-0.3B})X_{\ell}$$

$$= \frac{1-0.3B+0.00B^{2}}{1-0.3B}X_{\ell} = (1-0.3B+0.00B^{2} \frac{1}{1-0.3B}X_{\ell} = (1-0.3B+0.00B^{2} \frac{1$$

Problem 3. (Total 35 points)

A researcher decided to use ARMA modeling techniques to forecast behavior of a welding process. He performed 4000 welding operations and for every tenth of them recorded the frequency at which the sensor signal displayed the most energy. Thus, he collected a time series of N=400 samples of the frequency locations of energy peaks. In order to forecast their behavior, he decided to fit an ARMA model to this time-series and Table 1 describes the results of fitting several ARMA models.

Parameters	AR(2)	ARMA(2,1)	ARMA(3,2)	ARMA(4,3)
Expected value for X_i	204 20	200 10		
μ_{X} (95% C.I.)	304 ± 20	300 ± 10	301 ±11	302 ±12
φ ₁ (95% C.I.)	1.1 ± 0.7	0.9 ± 0.5	0.85 ± 0.3	0.5 ± 0.2
φ ₂ (95% C.I.)	-0.3 ± 0.2	-0.2 ± 0.1	0.2 ± 0.2	-0.7 ± 0.1
φ ₃ (95% C.I.)			0.1 ± 0.3	0.8 ± 0.1
φ ₄ (95% C.I.)				-0.5 ± 0.2
θ ₁ (95% C.I.)		0.3 ± 0.4	0.3 ± 0.3	-0.3 ± 0.2
θ ₂ (95% C.I.)			0.1 ± 0.3	-0.7 ± 0.3
θ ₃ (95% C.I.)				0.6 ± 0.2
Residual Sum of Squares (RSS)	1490	1472	1465	1440

Part a (12 points)

The researcher used the ARMA(2n,2n-1) modeling technique. What model did he select if he used 95% confidence intervals to test the significance of the change of the corresponding Residual Sum of Squares (RSS). From the standard F-statistics table it is known that $F_{0.95}(1,\infty)=3.84,\ F_{0.95}(2,\infty)=3.00,\ F_{0.95}(3,\infty)=2.60,\ F_{0.95}(4,\infty)=2.37,\ F_{0.95}(5,\infty)=2.21,\ F_{0.95}(6,\infty)=2.10$ etc. (this is enough for you to solve this problem).

Note: For full credit, please conduct the tests in the appropriate order.

Test I: ARMA (4,3) US ARMA(2,1)

$$A_0 = 1440$$
; $A_1 = 1473$; $S = 4$; $C = 8$; $M = 400$
 $F = \frac{(A_1 - A_0)/S}{A_0/(M-C)} = 2.18 < F_{0.95}(4,06)=2.37$

=> Stag with ARMA(2,1)

Test 2: ARMA(2,1) VS AR12) $A_0 = 1472; A_1 = 1490; S = 1; C = 4; N = 400$ $F = \frac{(A_1 - A_0)/S}{A_0/(N-\Gamma)} = \frac{(A_1 - A_0)/S}{A_0/(N-\Gamma)}$

= 4.842 > Fo.gr (1, 2)=3.84

=> wust keep ARMA(2,1)

(doing it since the contidence interval of the in the ARMA(2,1) model encoupasses the zero)

Part b (8 points)

For the model found in part a, find the corresponding discrete-time impulse response.

Ne keep the ARMA(2,1) model
$$\chi_{t} - 0.9 \chi_{t-1} + 0.2 \chi_{t-2} = q_{t} - 0.3 q_{t-1}$$

$$\lambda_{112} = \frac{1}{2} (0.9 \pm \sqrt{0.9^{2} - 4.0.2}) = \lambda_{1} = 0.4; \lambda_{2} = 0.5$$

$$G_{c} = g_{1} \lambda_{1} + g_{2} \lambda_{2}, \quad g_{1} = \frac{\lambda_{1} - \partial_{1}}{\lambda_{1} - \lambda_{2}} = \frac{0.4 - 0.3}{0.4 - 0.5} = -1$$

$$g_{2} = \frac{\lambda_{2} - \partial_{1}}{\lambda_{2} - \lambda_{1}} = \frac{0.5 - 0.3}{0.5 - 0.4} = 2$$

$$= \lambda_{1} - (0.4) + 2 \cdot (0.5) +$$

Part c (6 points)

A young researcher wants to forecast where the frequency locations of the signal energy peaks will be after 20 more welding operations are performed and therefore decides to find a two step ahead prediction at time t=400 based on the model found in part a. Knowing that \dot{X}_{400} = 305 Hz, \dot{X}_{399} = 297, a_{400} = 2, calculate the predicted energy peak location in the frequency domain for him.

Hint: Do not forget to remove the mean value μ_X from the data before employing the ARMA model from part a to find $\hat{X}_{400}(2)$, and then put μ_X back when calculating the final prediction.

$$X_{400}^{\Lambda}(2) = ?$$

$$X_{t+2}^{\Lambda} - 0.9 X_{t+1}^{\Lambda} + 0.2 X_{t} = q_{t+2} - 0.3 q_{t+1}^{\Lambda}$$

$$X_{t}^{\Lambda}(2) - 0.9 X_{t}^{\Lambda}(1) + 0.2 X_{t} = 0$$

$$X_{400}^{\Lambda}(2) - 0.9 X_{500}^{\Lambda}(1) + 0.2 X_{400} = 0 \quad \text{where } X_{400} = X_{400} - f_{X}$$

$$= 305 - 300 = 5$$

$$X_{t+1}^{\Lambda} - 0.9 X_{t} + 0.2 X_{t-1}^{\Lambda} = q_{t+1}^{\Lambda} - 0.3 q_{t}^{\Lambda} = E \cdot 1t$$

$$= > X_{t}^{\Lambda}(1) - 0.9 X_{t} + 0.2 X_{t-1}^{\Lambda} = -0.3 q_{t}^{\Lambda} = >$$

$$X_{t}^{\Lambda}(1) - 0.9 X_{t} + 0.2 X_{t-1}^{\Lambda} = -0.3 q_{t}^{\Lambda} = >$$

$$X_{t}^{\Lambda}(1) - 0.9 X_{t} + 0.2 X_{t-1}^{\Lambda} = -0.3 q_{t}^{\Lambda} = >$$

$$X_{t}^{\Lambda}(1) - 0.9 X_{t}^{\Lambda}(1) = -0.3 q_{t}^{\Lambda}(1) - 0.2 x_{t}^{\Lambda}(1) = -0.3 q_{t}^{\Lambda}(1) = -0.3 q_{t}$$

Part d (9 points)

What is the 95% confidence interval for the 2-step ahead predicted energy peak location in the frequency domain that you calculated for him in the part c.

Hint: The 95% confidence interval will be the predicted value you found in part c plus/minus $1.96 \sqrt{Var[(X_{t+2} - \hat{X}_t(2))]} = 1.96 \sqrt{E[(X_{t+2} - \hat{X}_t(2))^2]}$ - so, you need to find the variance of the 2-step ahead prediction error for the model in you selected in part a.

$$V_{ar} \left[e_{qoo}^{\lambda}(2) \right] = V_{ar} \left[e_{t}^{\lambda}(2) \right] = \sqrt{a}^{2} \left[G_{o}^{\lambda} + G_{t}^{\lambda} \right]^{3}$$

$$X_{t} = \left(G_{o} + G_{t} \cdot B_{t} \cdot G_{2} \cdot B_{t}^{\lambda} + \ldots \right) q_{t}$$

$$\left(1 - 0.9 \cdot B_{t} \cdot 0.2 \cdot B_{t}^{\lambda} \right) X_{t} = \left(1 - 0.3 \cdot B \right) q_{t} = 2$$

$$\left(1 - 0.9 \cdot B_{t} \cdot 0.2 \cdot B_{t}^{\lambda} \right) \left(G_{o} + G_{t} \cdot B_{t} + G_{2} \cdot B_{t}^{\lambda} + \ldots \right) q_{t}^{2} = \left(1 - 0.3 \cdot B_{t} \right) q_{t}^{2}$$

$$B^{\circ} : \quad 1 = G_{o}$$

$$B^{\circ} : \quad 1 = G_{o}$$

$$B^{\circ} : \quad 1 = G_{o}$$

$$B^{\circ} : \quad 0.9 - G_{t} + G_{t} = -0.3 = 2 \cdot G_{t} = -0.3 + 0.9 = 0.6$$

$$G_{a}^{2} \approx \frac{RSS}{N - G_{t}} = \frac{1472}{400 - 4} = 3.72$$

$$\frac{1472}{400 - 4} = 3.72$$

$$\frac{1472}{4$$