Optimization in Machine Learning

Lecture 15: Algorithms for Optimization, Convergence Analysis of Gradient Descent under Lipschitz Continuity and Convexity, Enhancements via Smoothness and Strong Convexity

Ganesh Ramakrishnan

Department of Computer Science Dept of CSE, IIT Bombay https://www.cse.iitb.ac.in/~ganesh

March. 2025

[Recap] Convergence Rate For Smooth + Strongly Convex

• Setting $R^2 = ||x_0 - x^*||^2$, we get:

$$|f(x_T)-f(x^*)| \leq \frac{L}{2}\left(1-\frac{\mu}{L}\right)^T R^2$$

- To get an error of ϵ , we require $\frac{L}{2} \left(1 \frac{\mu}{L}\right)^T R^2 \le \epsilon$ which implies $T \ge \frac{L}{\mu} \log(\frac{R^2 L}{2\epsilon})$.
- To get an error of $\epsilon = 0.01$, we now need only $L/\mu \log(50R^2L)$ iterations as opposed to $50R^2L$ iterations in the smooth case!

March. 2025

Summary of Results so Far...(with convexity by default)

- Lipschitz continuous functions (C). With $\gamma = \frac{R}{B\sqrt{T}}$, achieve an ϵ -approximate solution in R^2B^2/ϵ^2 iterations
- Smooth Functions (S): With $\gamma=1/L$, achieve an ϵ -approximate solution in $\frac{R^2L}{\epsilon}$ iterations.
- Smooth + Strongly Convex (SS): With $\gamma=1/L$, achieve an ϵ -approximate solution in $\frac{L}{\mu}\log(\frac{R^2L}{2\epsilon})$ iterations.
- Concrete examples. Let $L=B=10, R=1, \mu=1$. Then, we have the following:
 - ϵ = 0.1, C: 10000, S = 50, SS = 8.49 iterations
 - ϵ = 0.01, C: 1000000, S = 500, SS = 13.49 iterations
 - ullet $\epsilon =$ 0.001, C: 100000000, S = 5000, SS = 18.49 iterations
- As ϵ reduces by 10, the number of iterations of strongly + smooth case increases only by a additive constant! This is linear convergence!

Summary of Results so Far...(with convexity by default)

- Lipschitz continuous functions (C). With $\gamma=\frac{R}{B\sqrt{T}}$, achieve an ϵ -approximate solution in R^2B^2/ϵ^2 iterations
- Smooth Functions (S): With $\gamma=1/L$, achieve an ϵ -approximate solution in $\frac{R^2L}{\epsilon}$ iterations.
- Smooth + Strongly Convex (SS): With $\gamma=1/L$, achieve an ϵ -approximate solution in $\frac{L}{\mu}\log(\frac{R^2L}{2\epsilon})$ iterations.
- Concrete examples. Let $L=B=10, R=1, \mu=1$. Then, we have the following:
 - $\epsilon=0.1$, C: 10000, S = 50, SS = 8.49 iterations $\epsilon=0.01$, C: 1000000, S = 500, SS = 13.49 iterations $\epsilon=0.001$, C: 100000000, S = 5000, SS = 18.49 iterations
- As ϵ reduces by 10, the number of iterations of strongly + smooth case increases only by a additive constant! This is linear convergence! Revisist optional slides and notice that this is Q-linear convergence.

 What if we have strong convexity? Can a function be **both** Lipschitz Continuous and Strongly Convex?

 What if we have strong convexity? Can a function be both Lipschitz Continuous and Strongly Convex?

Very often (especially in ML) we cannot insist on differentiability ==> We cannot insist on L-smoothness But we could add a regularizer and get strong convexity nevertheless!

• What if we have strong convexity? Can a function be **both** Lipschitz Continuous and Strongly Convex?

• Unfortunately No!!!! The consider the form

- What if we have strong convexity? Can a function be **both** Lipschitz Continuous and Strongly Convex?
- Unfortunately No!!!!
- But on a bounded set, we can assume that they are (and the gradients are upper bounded)

- What if we have strong convexity? Can a function be **both** Lipschitz Continuous and Strongly Convex?
- Unfortunately No!!!!
- But on a bounded set, we can assume that they are (and the gradients are upper bounded)
 Within a bounded set &g: |\wideta|^2 ≤ R²

Very often (especially in ML) we cannot insist on differentiability ==> We cannot insist on L-smoothness
But we could add a regularizer and get strong convexity nevertheless!

March. 2025

- What if we have strong convexity? Can a function be both Lipschitz Continuous and Strongly Convex?
- Unfortunately No!!!!
- But on a bounded set, we can assume that they are (and the gradients are upper bounded)
- Can we get an improved convergence rate in such a case?

 Improvement upon $O(\epsilon^2)$

4 / 107

- What if we have strong convexity? Can a function be **both** Lipschitz Continuous and Strongly Convex?
- Unfortunately No!!!!
- But on a bounded set, we can assume that they are (and the gradients are upper bounded)
- Can we get an improved convergence rate in such a case?
- We can obtain an improved $O(1/\epsilon)$ bound!!

• Recall:
$$g_t^T(x_t - x^*) = \frac{\gamma_t}{2} ||g_t||^2 + \frac{1}{2\gamma_t} (||x_t - x^*||^2 - ||x_{t+1} - x^*||^2)$$

• Recall: Using stronger lower bound on the above expression(s) via strong convexity:

$$g_t^T(x_t - x^*) \ge |f(x_t) - f(x^*) + \frac{\mu}{2}||x_t - x^*||^2$$

• Combining, we obtained:

$$\frac{||x_{t+1} - x^*||^2}{||x_{t+1} - x^*||^2} \le 2\gamma \left(f(x^*) - f(x_t)\right) + \frac{\gamma^2 ||g_t||^2}{||x_t - x^*||^2} + \frac{|(1 - \mu \gamma)||x_t - x^*||^2}{||x_t - x^*||^2}$$

March. 2025

- Recall: $g_t^T(x_t x^*) = \frac{\gamma_t}{2} ||g_t||^2 + \frac{1}{2\gamma_t} \left(||x_t x^*||^2 ||x_{t+1} x^*||^2 \right)$
- Recall: Using stronger lower bound on the above expression(s) via strong convexity:

$$g_t^T(x_t-x^*) \geq f(x_t)-f(x^*)+\frac{\mu}{2}||x_t-x^*||^2$$
 we used this for L-smoothness only.

• Combining, we obtained:

Combining, we obtained:
$$\frac{||x_{t+1} - x^*||^2}{||x_{t+1} - x^*||^2} \le \frac{2\gamma \left(f(x^*) - f(x_t)\right)}{2\gamma \left(f(x^*) - f(x_t)\right)} + \frac{(1 - \mu\gamma)||x_t - x^*||^2}{2\gamma \left(f(x^*) - f(x_t)\right)} + \frac{(1 - \mu\gamma)||x_t - x^*||^2}{2\gamma \left(f(x^*) - f(x_t)\right)} = \frac{1}{2\gamma \left(f(x^*) - f(x_t)\right)} + \frac{(1 - \mu\gamma)||x_t - x^*||^2}{2\gamma \left(f(x^*) - f(x_t)\right)} = \frac{1}{2\gamma \left(f(x^*) - f(x_t)\right)} + \frac{(1 - \mu\gamma)||x_t - x^*||^2}{2\gamma \left(f(x^*) - f(x_t)\right)} = \frac{1}{2\gamma \left(f(x^*) - f(x_t)\right)} + \frac{(1 - \mu\gamma)||x_t - x^*||^2}{2\gamma \left(f(x^*) - f(x_t)\right)} = \frac{1}{2\gamma \left(f(x^*) - f(x_t)\right)} + \frac{(1 - \mu\gamma)||x_t - x^*||^2}{2\gamma \left(f(x^*) - f(x_t)\right)} = \frac{1}{2\gamma \left(f(x^*) - f(x_t)\right)} + \frac{(1 - \mu\gamma)||x_t - x^*||^2}{2\gamma \left(f(x^*) - f(x_t)\right)} = \frac{1}{2\gamma \left(f(x^*) - f(x_t)\right)} = \frac$$

• Recall:
$$g_t^T(x_t - x^*) = \frac{\gamma_t}{2} ||g_t||^2 + \frac{1}{2\gamma_t} (||x_t - x^*||^2 - ||x_{t+1} - x^*||^2)$$

• Recall: Using stronger lower bound on the above expression(s) via strong convexity:

$$g_t^T(x_t - x^*) \ge |f(x_t) - f(x^*) + \frac{\mu}{2}||x_t - x^*||^2$$

• Combining, we obtained:

$$||x_{t+1} - x^*||^2 \le |2\gamma (f(x^*) - f(x_t))| + |\gamma^2||g_t||^2 + |(1 - \mu\gamma)||x_t - x^*||^2$$

• Now, with Lipschitz continuity, assume the gradients $||g_t|| \le B \Longrightarrow ||g_t||^2 \le B^2$. Combining with strong convexity we get,

$$\left| f(x_t) - f(x^*) \right| \leq \left| \frac{B^2 \gamma_t}{2} + \left| \left(\frac{1}{2\gamma_t} - \frac{\mu}{2} \right) ||x_t - x^*|| - \frac{1}{2\gamma_t} ||x_{t+1} - x^*||^2 \right|$$

• Recall:
$$g_t^T(x_t - x^*) = \frac{\gamma_t}{2} ||g_t||^2 + \frac{1}{2\gamma_t} (||x_t - x^*||^2 - ||x_{t+1} - x^*||^2)$$

• Recall: Using stronger lower bound on the above expression(s) via strong convexity:

$$g_t^T(x_t - x^*) \ge |f(x_t) - f(x^*) + \frac{\mu}{2}||x_t - x^*||^2$$

• Combining, we obtained:

$$||x_{t+1} - x^*||^2 \le |2\gamma(f(x^*) - f(x_t))| + |\gamma^2||g_t||^2 + |(1 - \mu\gamma)||x_t - x^*||^2$$

ullet Now, with Lipschitz continuity, assume the gradients $||g_t|| \leq B \Longrightarrow ||g_t||^2 \leq B^2$.

Combining with strong convexity we get,
$$0 \rightarrow \text{make Knis}$$
 disappear do $1 \rightarrow \text{make Knis}$ disappear $1 \rightarrow \text{make Knis}$ disappear

le will do a scheme with G to make things work

Telescopic sum

n¶? 4 ≣ ▶ ≣ •9 4 № 5/

March. 2025

So Far:

$$|f(x_t) - f(x^*)| \le \frac{B^2 \gamma_t}{2} + \left(\frac{1}{2\gamma_t} - \frac{\mu}{2}\right) ||x_t - x^*|| - \frac{1}{2\gamma_t} ||x_{t+1} - x^*||^2$$

March, 2025

• So Far:

$$\sum_{t} |f(x_{t}) - f(x^{*})| \leq \frac{B^{2} \gamma_{t}}{2} + \left(\frac{1}{2\gamma_{t}} - \frac{\mu}{2}\right) ||x_{t} - x^{*}|| - \frac{1}{2\gamma_{t}} ||x_{t+1} - x^{*}||^{2}$$

6 / 107

So Far:

$$|f(x_t) - f(x^*)| \le \frac{B^2 \gamma_t}{2} + \left(\frac{1}{2\gamma_t} - \frac{\mu}{2}\right) ||x_t - x^*|| - \frac{1}{2\gamma_t} ||x_{t+1} - x^*||^2$$

• For the specific case of $\gamma_t^{-1} = \mu(1+t)/2$ and multiplying both sides by t:

$$\begin{aligned} t\left[f(x_{t}) - f(x^{*})\right] &\leq \frac{B^{2}t}{\mu(t+1)} + \frac{\mu}{4} \left\{t(t-1) \frac{||x_{t} - x^{*}||^{2}}{-(t+1)t} \frac{||x_{t+1} - x^{*}||^{2}}{||x_{t+1} - x^{*}||^{2}}\right\} \\ &\leq \frac{B^{2}}{\mu} + \frac{\mu}{4} \left\{t(t-1) \frac{||x_{t} - x^{*}||^{2}}{-(t+1)t} \frac{||x_{t+1} - x^{*}||^{2}}{||x_{t+1} - x^{*}||^{2}}\right\} \end{aligned}$$

So Far:

$$f(x_t) - f(x^*) \le \frac{B^2 \gamma_t}{2} + \left(\frac{1}{2\gamma_t} - \frac{\mu}{2}\right) ||x_t - x^*|| - \frac{1}{2\gamma_t} ||x_{t+1} - x^*||^2$$
• For the specific case of $\gamma_t^{-1} = \mu(1+t)/2$ and multiplying both sides by t :

$$\sum_{t=0}^{T-1} \left[t \left[f(x_t) - f(x^*) \right] \le \frac{B^2 t}{\mu(t+1)} + \frac{\mu}{4} \left\{ t (t-1) ||x_t - x^*||^2 - (t+1)t ||x_{t+1} - x^*||^2 \right\} \right]$$

$$\le \frac{B^2}{\mu} + \frac{\mu}{4} \left\{ t (t-1) ||x_t - x^*||^2 - (t+1)t ||x_{t+1} - x^*||^2 \right\}$$

$$= 0 \text{ for } t = 0 \text{ for } t = 0$$

So Far:

$$|f(x_t) - f(x^*)| \le \frac{B^2 \gamma_t}{2} + \left(\frac{1}{2\gamma_t} - \frac{\mu}{2}\right) ||x_t - x^*|| - \frac{1}{2\gamma_t} ||x_{t+1} - x^*||^2$$

• For the specific case of $\gamma_t^{-1} = \mu(1+t)/2$ and multiplying both sides by t:

$$\begin{aligned} \left| t \left[f(x_t) - f(x^*) \right] &\leq \frac{B^2 t}{\mu(t+1)} + \frac{\mu}{4} \left\{ t(t-1) \frac{\|x_t - x^*\|^2}{\|x_t - x^*\|^2} - (t+1)t \frac{\|x_{t+1} - x^*\|^2}{\|x_{t+1} - x^*\|^2} \right\} \\ &\leq \frac{B^2}{\mu} + \frac{\mu}{4} \left\{ t(t-1) \frac{\|x_t - x^*\|^2}{\|x_t - x^*\|^2} - (t+1)t \frac{\|x_{t+1} - x^*\|^2}{\|x_{t+1} - x^*\|^2} \right\} \end{aligned}$$

• Now we can use the telescoping sum and obtain...

$$\sum_{t=1}^{T} t(f(x_t) - f(x^*)) \leq \frac{TB^2}{\mu} + \mu/4(0 - T(T+1) \frac{||x_{T+1} - x^*||^2}{\mu}) \leq \frac{TB^2}{\mu}$$

So Far:

$$\sum_{t=1}^{T} t(f(x_t) - f(x^*)) \leq \frac{TB^2}{\mu}$$

$$f(x^{2}) \leq f(x_{T}) \leq f(x_{T-1}) \leq \cdots \leq f(x_{1})$$

$$0 \leq f(x_{T}) - f(x^{2}) \leq \cdots \leq f(x_{1}) - f(x^{2})$$

$$\sum_{t=1}^{T} t \left(f(x_t) - f(x^*) \right) < \sum_{t=1}^{T} t \left(f(x_t) - f(x^*) \right) \leq \frac{TB^2}{\mu}$$

$$\left(\sum_{t=1}^{T-1} \left(f(x_T) \cdot f(x')\right)\right)$$

$$= \frac{T(T-1)}{2} \left(f(x_T) - f(x')\right)$$

So Far:

$$\sum_{t=1}^{T} t(f(x_t) - f(x^*)) \leq \frac{TB^2}{\mu}$$

• Multiply by 2/(T(T+1)) on both sides to make it a convex combination:

$$\sum_{t=1}^{T} \frac{2t}{T(T+1)} (f(x_t) - f(x^*)) \leq \frac{2B^2}{\mu(T+1)}$$

So Far:

$$\sum_{t=1}^{T} t(f(x_t) - f(x^*)) \leq \frac{TB^2}{\mu}$$

• Multiply by 2/(T(T+1)) on both sides to make it a convex combination:

$$\sum_{t=1}^{T} \frac{2t}{T(T+1)} (f(x_t) - f(x^*)) \leq \frac{2B^2}{\mu(T+1)}$$

ullet Thus, for the error $\leq \epsilon$, we need $\mathcal{T} \geq rac{2B^2}{\mu\epsilon} - 1$

7 / 107

Summary of Results so Far (with convexity by default)...

- Lipschitz continuous Functions (C). With $\gamma = \frac{R}{B\sqrt{T}}$, attain an ϵ -approximate solution in R^2B^2/ϵ^2 iterations
- Lipschitz continuous + Strongly Convex Functions (CS) with $\gamma_t = \mu(1+t)/2$ attain an an ϵ -approximate solution in $2B^2/\epsilon 1$ iterations
- Smooth Functions (S): With $\gamma=1/L$, attain an ϵ -approximate solution in $\frac{R^2L}{\epsilon}$ iterations.
- Smooth + Strongly Convex Functions (SS): With $\gamma=1/L$, attain an ϵ -approximate solution in $\frac{L}{\mu}\log(\frac{R^2L}{2\epsilon})$ iterations.
- Concrete examples. Let $L=B=10, R=1, \mu=1$. Then, we have the following:
 - $ightharpoonup \epsilon = 0.1$, C: 10000, CS: 2000, S = 50, SS = 8.49 iterations
 - $m{\epsilon}=$ 0.01, C: 1000000, CS: 20000, S = 500, SS = 13.49 iterations
 - $ightharpoonup \epsilon = 0.001$, C: 100000000, CS: 200000, S = 5000, SS = 18.49 iterations

Summary of Results so Far (with convexity by default)...

- Lipschitz continuous Functions (C). With $\gamma = \frac{R}{B\sqrt{T}}$, attain an ϵ -approximate solution in R^2B^2/ϵ^2 iterations
- Lipschitz continuous + Strongly Convex Functions (CS) with $\gamma_t = \mu(1+t)/2$ attain an an ϵ -approximate solution in $2B^2/\epsilon 1$ iterations
- Smooth Functions (S): With $\gamma=1/L$, attain an ϵ -approximate solution in $\frac{R^2L}{\epsilon}$ iterations. • Smooth + Strongly Convex Functions (SS): With $\gamma=1/L$, attain an ϵ -approximate
- Smooth + Strongly Convex Functions (SS): With $\gamma=1/L$, attain an ϵ -approximate solution in $\frac{L}{\mu}\log(\frac{R^2L}{2\epsilon})$ iterations.

Optimization in Machine Learning

- Concrete examples. Let $L=B=10, R=1, \mu=1$. Then, we have the following:
 - ϵ = 0.1, C: 10000, CS: 2000, S = 50, SS = 8.49 iterations
 - ϵ = 0.01, C: 1000000, CS: 20000, S = 500, SS = 13.49 iterations
 - $\epsilon = 0.001$, C: 1000000000, CS: 2000000, S = 5000, SS = 18.49 iterations

8 / 107

Lower Bounds with convexity (No proof will be discussed in the class)

- Case I: Lipschitz Continuous Functions: Any black-box procedure will have an error of at least $\frac{RB}{2(1+\sqrt{T})}$ (GD: $\frac{RB}{\sqrt{T}}$)
- Case II: Lipschitz Continuous + Strongly Convex Functions: Any black-box procedure have an error of at least $\frac{B^2}{2\mu T}$ (GD: $\frac{2B^2}{\mu(T-1)}$)
- Case III: Smooth Functions: Any black box procedure will have an error of at least

$$\frac{3L}{32}\frac{R^2}{(T+1)^2}$$
 (GD: $\frac{LR^2}{2T}$) - notice the gap between lower bound and actual time!

- ► Can some improvement to the GD algorithm help bridge this? Ans: YES Accelerated GD
- Case IV: Smooth + Strongly Convex Functions: Define $\kappa = \frac{L}{\mu}$. Then, any black box

procedure will have an error of at least
$$\frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2(T-1)}$$

(contrast with GD:
$$\frac{L}{2} \left(1 - \frac{\mu}{L} \right)^T = \frac{L}{2} \left(\frac{\kappa - 1}{\kappa} \right)^T$$
)

For proofs, see Section 3.5 (page 53 onwards of) https://arxiv.org/pdf/1405.4980.pdf/107

Lower Bounds with convexity (No proof will be discussed in the class)

- Case I: Lipschitz Continuous Functions: Any black-box procedure will have an error of at least $\frac{RB}{2(1+\sqrt{T})}$ (GD: $\frac{RB}{\sqrt{T}}$)
- Case II: Lipschitz Continuous + Strongly Convex Functions: Any black-box procedure have an error of at least $\frac{B^2}{2uT}$ (GD: $\frac{2B^2}{u(T-1)}$) $T > \lambda$
- Case III: Smooth Functions: Any black box procedure will have an error of at least

$$\frac{3L}{32}\frac{R^2}{(T+1)^2}$$
 (GD: $\frac{LR^2}{2T}$) - notice the gap between lower bound and actual time!

- ► Can some improvement to the GD algorithm help bridge this? Ans: YES Accelerated GD
- Case IV: Smooth + Strongly Convex Functions: Define $\kappa = \frac{L}{\mu}$. Then, any black box

procedure will have an error of at least
$$\frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2(T-1)}$$
 $k > 1$

(contrast with GD:
$$\frac{L}{2} \left(1 - \frac{\mu}{L} \right)^T = \frac{L}{2} \left(\frac{\kappa - 1}{\kappa} \right)^T$$
)

For proofs, see Section 3.5 (page 53 onwards of) https://arxiv.org/pdf/1405.4980.pdf/107

Accelerated GD? Why could GD be slow?

- GD has suboptimal rates for smooth (and to a smaller extent for smooth + strongly convex).
- GD relies just on local gradient information
- Can we add some momentum from the progress made so far to push it faster towards the optimal?

March. 2025

Accelerated GD? Why could GD be slow?

- GD has suboptimal rates for smooth (and to a smaller extent for smooth + strongly convex).
- GD relies just on local gradient information
- Can we add some momentum from the progress made so far to push it faster towards the optimal?

Motivation1: Bridging the gap Concern: The gap could have been worse for some other function that Nesterov would have come up with?

Motivation2: Emperically could

Motivation 2: Emperically could the next Iterate have been influenced by the series of previous iterates (which also account for some curvature of the function)

Ang movement

• Momentum Accelerated GD: $x_{act} = x_{old} + \hat{\mathbf{v}}$ where $\hat{\mathbf{v}} = \mu \mathbf{v} - \eta_k \frac{\partial f}{\partial x}$

March, 2025

• Momentum Accelerated GD: $x_{act} = x_{old} + \hat{\mathbf{v}}$ where $\hat{\mathbf{v}} = \mu \hat{\mathbf{v}} - \eta_k \frac{\partial f}{\partial x}$

(Multipicative factor associated with the history (captured through the velocity)

- Momentum Accelerated GD: $x_{act} = x_{old} + \hat{\mathbf{v}}$ where $\hat{\mathbf{v}} = \mu \mathbf{v} \eta_k \frac{\partial f}{\partial \mathbf{v}}$
- v plays the role of velocity it is the direction and speed at which the parameter x_i moves through parameter space.
- Set to an exponentially decaying average of the negative gradient: Decay factor will be

$$\mu \in [0,1)$$

- Momentum Accelerated GD: $x_{act} = x_{old} + \hat{\mathbf{v}}$ where $\hat{\mathbf{v}} = \mu \mathbf{v} \eta_k \frac{\partial f}{\partial x}$
- v plays the role of velocity it is the direction and speed at which the parameter x_i moves through parameter space.
- Set to an exponentially decaying average of the negative gradient: Decay factor will be $\mu \in [0,1)$. Common values of μ used in practice are .5, .9, and .99.
- Physical analogy

 negative gradient is a force moving a particle through parameter space, according to Newton's laws of motion
- Step size largest when

- Momentum Accelerated GD: $x_{act} = x_{old} + \hat{\mathbf{v}}$ where $\hat{\mathbf{v}} = \mu \mathbf{v} \eta_k \frac{\partial f}{\partial x}$
- \mathbf{v} plays the role of velocity it is the direction and speed at which the parameter x_i moves through parameter space.
- Set to an exponentially decaying average of the negative gradient: Decay factor will be $\mu \in [0,1)$. Common values of μ used in practice are .5, .9, and .99
- Physical analogy

 particle through parameter space, according to Newton's laws of motion
- Step size largest when

Suggestion: When the gradient and velocity are in the same direction More generally: When successive gradients are in the same direction

- Momentum Accelerated GD: $x_{act} = x_{old} + \hat{\mathbf{v}}$ where $\hat{\mathbf{v}} = \mu \mathbf{v} \eta_k \frac{\partial f}{\partial x}$
- \mathbf{v} plays the role of velocity it is the direction and speed at which the parameter x_i moves through parameter space.
- Set to an exponentially decaying average of the negative gradient: Decay factor will be $\mu \in [0,1)$. Common values of μ used in practice are .5, .9, and .99.
- Physical analogy

 negative gradient is a force moving a particle through parameter space, according to Newton's laws of motion
- Step size largest when many successive gradients point in exactly the same direction

Momentum update

- Momentum Accelerated GD: $x_{act} = x_{old} + \hat{\mathbf{v}}$ where $\hat{\mathbf{v}} = \mu \mathbf{v} \eta_k \frac{\partial f}{\partial x}$
- v plays the role of velocity it is the direction and speed at which the parameter x_i moves through parameter space.
- Set to an exponentially decaying average of the negative gradient: Decay factor will be $\mu \in [0,1)$. Common values of μ used in practice are .5, .9, and .99. Juding history
- Physical analogy ⇒ negative gradient is a force moving a particle through parameter space. according to Newton's laws of motion
- Step size largest when many successive gradients point in exactly the same direction

- Momentum Accelerated GD: $x_{act} = x_{old} + \hat{\mathbf{v}}$ where $\hat{\mathbf{v}} = \mu \mathbf{v} \eta_k \frac{\partial f}{\partial x}$
- \mathbf{v} plays the role of velocity it is the direction and speed at which the parameter x_i moves through parameter space.
- Set to an exponentially decaying average of the negative gradient: Decay factor will be $\mu \in [0,1)$. Common values of μ used in practice are .5, .9, and .99.
- Physical analogy

 negative gradient is a force moving a particle through parameter space, according to Newton's laws of motion
- Step size largest when many successive gradients point in exactly the same direction

- Momentum Accelerated GD: $x_{act} = x_{old} + \hat{\mathbf{v}}$ where $\hat{\mathbf{v}} = \mu \mathbf{v} \eta_k \frac{\partial f}{\partial x}$
- \mathbf{v} plays the role of velocity it is the direction and speed at which the parameter x_i moves through parameter space.
- Set to an exponentially decaying average of the negative gradient: Decay factor will be $\mu \in [0,1)$. Common values of μ used in practice are .5, .9, and .99.
- Physical analogy

 negative gradient is a force moving a particle through parameter space, according to Newton's laws of motion
- Step size largest when many successive gradients point in exactly the same direction

Momentum and its variants

• Modified Nesterov momentum \Rightarrow gradient is evaluated after the current velocity is applied. Speeds up rate of convergence from O(1/T) to $O(1/T^2)$

Polyak's Momentum

$$\boldsymbol{x}_{t+1} \! = \boldsymbol{x}_t \! - \! \alpha \nabla f(\boldsymbol{x}_t) \! + \! \mu(\boldsymbol{x}_t - \boldsymbol{x}_{t-1})$$

Nesterov Momentum

$$x_{t+1} = x_t + \mu(x_t - x_{t-1}) \\ -\gamma \nabla f(x_t + \mu(x_t - x_{t-1}))$$

Momentum and its variants

• Modified Nesterov momentum \Rightarrow gradient is evaluated after the current velocity is applied. Speeds up rate of convergence from O(1/T) to $O(1/T^2)$ for L-continuity and strong convexity case

$$x_{t+1} = x_t - \alpha \nabla f(x_t) + \mu(x_t - x_{t-1})$$

$$x_{t+1} = x_t + \mu(x_t - x_{t-1}) - \gamma \nabla f(x_t + \mu(x_t - x_{t-1}))$$

$$-\alpha \nabla f(x_t) \leftarrow Difference \rightarrow -r\nabla f(x_t + u(x_t - x_{t-1})) = -r \nabla f(x_{new})$$

Attempt 1: Polyak's Heavy Ball Momentum

- Recall standard gradient descent: $x_{t+1} = x_t \alpha_t \nabla f(x_t)$
- Polyak's Heavy Ball Momentum adds inertia: $x_{t+1} = x_t \frac{\alpha_t \nabla f(x_t)}{\mu_t (x_t x_{t-1})}$
- Heavy Ball result: For smooth + strongly convex functions, the heavy ball algorithm

converges in
$$\frac{R^2}{2} \left(1 - \sqrt{\frac{1}{\kappa}} \right)^T = \frac{L}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa}} \right)^T$$
 in comparison with GD's $\frac{R^2}{2} \left(1 - \frac{1}{\kappa} \right)^T = \frac{L}{2} \left(\frac{\kappa - 1}{\kappa} \right)^T$ iterations.

 Heavy Ball momentum is not optimal for the Smooth case (though it is optimal for the strongly convex + smooth class)

Attempt 1: Polyak's Heavy Ball Momentum

Conservatively exploits curvature

In this term which is standard GD the curvature is not being exploited

- Recall standard gradient descent: $x_{t+1} = x_t \frac{\alpha_t \nabla f(x_t)}{\alpha_t}$
- Polyak's Heavy Ball Momentum adds inertia: $x_{t+1} = x_t \alpha_t \nabla f(x_t) + \mu_t (x_t x_{t-1})$
- Heavy Ball result: For smooth + strongly convex functions, the heavy ball algorithm

converges in
$$\frac{R^2}{2} \left(1 - \sqrt{\frac{1}{\kappa}}\right)^T = \frac{L}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa}}\right)^T$$
 in comparison with GD's $\left(\frac{R^2}{2} \left(1 - \frac{1}{\kappa}\right)^T\right) = \left(\frac{L}{2} \left(\frac{\kappa - 1}{\kappa}\right)^T\right)$ iterations.

Comparable and Commensurate with Lower Bo

Velocity exploits curvature empirically

• Heavy Ball momentum is not optimal for the Smooth case (though it is optimal for the strongly convex + smooth class)

> We have both an upper bound and a lower bound on the curvature We might have to be a bit careful in going aggressively in exploiting curvature \sim