Семинар 1

Алексеев Василий

2 сентября 2024

Содержание

1	Числа		
	1.1	C1, §3, №4	3
2	Производная		4
	2.1	Некоторые свойства производной	6
	2.2	Производная сложной функции	7
	2.3	Некоторые табличные производные	7
	2.4	C1, §13, №32	9
	2.5	C1, §13, №79	10
3	Heo	Неопределённый интеграл	
	3.1	Некоторые свойства неопределённого интеграла	11
	3.2	Интегрирование по частям	11
	3.3	Некоторые табличные интегралы	12
	3.4	C2, §1, Nº13(7)	14
	3.5	C2, §1, Nº23(1)	14
	3.6	C2 §1 Nº24(3)	15

1. Числа

Рис. 1: Одно яблоко, два яблока, ... — натуральные числа используются при счёте предметов.

Натуральные числа используются при счёте предметов (1). Однако при измерении длины чего-то только натуральными числами уже не обойтись. И, скажем, линейка позволяет оценить длину в долях какого-то "эталона", например сантиметра (2). Это рациональные числа. Но вообще, "идеально точное измерение" почти наверняка попадёт "мимо" любых делений, какие бы маленькие они ни были (3). Такие числа, не укладывающиеся в рациональные, называются иррациональными.

Рис. 2: Рациональные числа — когда для измерения чего-то натуральных уже не хватает. (Но "идеальную точность" достигнуть нельзя — довольствуемся приближениями.)

Кроме этого, выделяют ещё *ноль* и *отрицательные числа*. Вводится множество *целых* чисел — натуральные числа, противоположные им, и ноль. А рациональные и иррациональные могут быть как больше, так и меньше нуля. "Вообще все-все" числа (рациональные и иррациональные) образуют множество *действительных* чисел.

Более формально, действительное число — такое, которое может быть представлено в виде десятичной дроби (конечной или бесконечной). Рациональное число — это такое, которое может быть представлено в виде $\frac{p}{q}$, где $p \in \mathbb{Z}$, а $q \in \mathbb{N}$. При этом также верно, что рациональные числа и только они представимы в виде конечных или бесконечных периодических десятичных дробей.

Пример. Периодическая десятичная дробь — такая, у которой дробная часть с какого-то момента строится бесконечным повторением какого-то фрагмента. Например:

$$1,0809202420242024... = 1,0809(2024)$$

Получим представление приведённого числа в виде обычной дроби. Для этого надо как-то "избавиться" от бесконечной части. И можно прийти к такому способу:

 $10000 \cdot 1,0809(2024) = 10809,2024(2024)$ $10000 \cdot 1,0809(2024) - 1,0809(2024) = 10809,2024 - 1,0809$

Рис. 3: Иррациональные числа — "не такие, как рациональные" (всё, что не попадает чётко на штрихи, отмеченные на линейке).

И в итоге в виде дроби число выражается так:

$$1,0809(2024) = \frac{10809,2024 - 1,0809}{10000 - 1} = \frac{108092024 - 10809}{9999 \cdot 10000}$$

Кроме самих чисел ("придуманных объектов") существуют ещё действия, которые можно с ними делать ("придуманные операции"). Например, сложение. Со сложением натуральных чисел "всё понятно": 1+1=2. Однако при сложении рациональных уже приходится пользоваться "правилами", как вообще их складывать. (А как сложить два иррациональных числа?..) Но даже с натуральными числами может быть не так просто: если за "абстрактными" числами стоят какие-то реальные объекты, а за "абстрактным" сложением — какое-то "реальное", работающее по своим правилам. Например, "одна счётная палочка" + "ещё одна палочка" = "две палочки". Но "масса одного нуклона" + "масса другого нуклона" > "массы ядра, состоящего из этих нуклонов". Или распродажное "1+1=3" ("купи две перчатки — получи третью в подарок").

В общем, на числа, как и на операции с ними — можно смотреть как отчасти на придуманные "правила игры", как на модель (возможно) чего-то "реального", живущего по своим (возможно, не до конца известным) правилам...

1.1. C1, §3, №4

Доказать, что для любых рациональных чисел a и b, таких что a < b, найдётся иррациональное число c, удовлетворяющее условию a < c < b.

Решение.

Вариант 1, где проводится сопоставление с отрезком, для которого точно "всё хорошо". Известно, что $\sqrt{3} \in \mathbb{L}^1$ При этом $\sqrt{3} \approx 1,7... \in [1,2]$. То есть на отрезке [1,2] точно есть хотя бы одно иррациональное число.

Вернёмся теперь к "абстрактному" отрезку [a,b] из условия. Можно заметить, что каждое число этого отрезка можно представить в виде "a плюс сдвиг". Так, a=a+0, b=a+(b-a) — а у всех внутренних точек сдвиг варьируется от 0 до (b-a):

$$x \in [a, b] \leftrightarrow x = a + s, \ s \in [0, b - a]$$

$$\leftrightarrow x = a + d(b - a), \ d \in [0, 1]$$

$$(1)$$

где в последнем переходе сдвиг был выражен через параметр $d \in [0, 1]$ как "доля длины отрезка [a, b]". 2

Но точно такое же представление точек можно привести и для точек "заведомо хорошего" отрезка [1, 2]:

$$x \in [1, 2] \leftrightarrow x = 1 + d(2 - 1) = 1 + d, d \in [0, 1]$$

Получаем взаимно однозначное соответствие между точками отрезков [a,b] и [1,2]: точки с одинаковыми значениями d "связаны" (если на отрезке [a,b] точке x_0 соотвествует сдвиг с параметром d_0 , то на отрезке [1,2] найдётся единственная точка y_0 , которой соответствует сдвиг с таким же d_0 , и наоборот). Посмотрим, какая точка x^* отрезка [a,b] соответствует точке $\sqrt{3} \in [1,2]$. Пусть $\sqrt{3} = 1 + d^*$. Тогда и $x^* = a + d^*(b-a)$. Но из представления $\sqrt{3}$ как суммы $1 + d^*$ следует, что доля $d^* \in \mathbb{I}$! А потому и $x^* \in \mathbb{I}$.

Вариант 2, где просто находится нужное c.

В прошлом сюжете рассматривались сдвиги от начальной точки отрезка. А можно ли из a просто сразу "перепрыгнуть" в иррациональное число? Да, можно, если величина "прыжка" будет иррациональной и не очень большой (чтоб не вылететь на пределы [a,b]). Приведём пример такого "прыжка":

$$x^* = a + \frac{\sqrt{3}}{100}(b - a)$$

Вариант 3, где с не находится в явном виде, но немного "замороченно" строится руками. Перепрыгнуть сразу в иррациональное число — можно, но, возможно, не очень интересно. Поэтому теперь последовательно построим руками "своё" иррациональное число!

Пусть, для наглядности, a=1,729 и b=1,730. Начнём строить иррациональное число из отрезка [a,b]. В первом "приближении" возьмём $x_1=1,729$ (то есть просто $x_1=a$). Далее, уйдём чуть в сторону от a (за b уже точно не перелетим): $x_2=1,7291$. Оба x_1 и x_2 рациональные... И как бы мы ни "плодили" ещё цифр справа после запятой — всё равно

¹От противного: допустим, $\sqrt{3} \in \mathbb{Q}$. Тогда $\sqrt{3} = \frac{p}{q}$, где $p \in \mathbb{Z}$, $q \in \mathbb{N}$. Домножая на q обе части равенства и потом ещё возводя в квадрат, получаем: $3q^2 = p^2$. Но такого не может быть, потому что если разложить на простые множители левую и правую части, то слева множитель 3 будет в нечётной степени, а справа — в чётной. Противоречие. Значит, $\sqrt{3} \in \mathbb{I}$.

 $^{^{2}}$ Символом ↔ обозначена "равносильность переходов": если "слева", то и "справа" (→), и если "справа", то и "слева" (←).

десятичная дробь будет конечной. Иррациональное же число не представимо ни в виде конечной, ни в виде бесконечной периодической десятичной дроби. Поэтому надо предложить алгоритм, такой чтоб в пределе (при неограниченном количестве присоединений ещё одной цифры справа) получалась бесконечная непериодическая дробь. Сделать так, чтоб дробь была просто бесконечной — не сложно. Можно, например, просто бесконечное число раз приписывать справа единицу:

$$x_1 = 1,729$$

 $x_2 = 1,7291$
 $x_3 = 1,72911$
...
 $x_n = 1,72911 \dots 1$

Но в таком случае, очевидно, в пределе получаем 1,729(1) — периодическая десятичная дробь, а потому число рациональное. Нужно как-то "предотвратить" образование периода в дроби... Поэтому опять будем приписывать справа единицы, но, например, будем чередовать их с двойками, так чтобы периода никогда не возникло:

$$x_1 = 1,729$$

 $x_2 = 1,7291$
 $x_3 = 1,72912$
 $x_4 = 1,729121$
 $x_5 = 1,7291212$
 $x_6 = 1,72912122$
 $x_7 = 1,729121221$
...

 $x_n = 1,72912122122212222122221...$

Число x^* , получаемое в пределе при $n \to +\infty$ (при переходе в члену последовательности x_n со всё более высоким номером, то есть при бесконечном дописывании справа цифр по описанному выше алгоритму), лежит на отрезке [a,b] и по построению является бесконечной непериодической десятичной дробью, а потому иррациональное. (Видно, что по такой "схеме" можно построить ещё сколько угодно иррациональных чисел на заданном отрезке.)

2. Производная

Пусть есть функция $f: X \to \mathbb{R}, X \subseteq \mathbb{R}$. Пусть $x_0 \in X$, и функция определена в некоторой окрестности точки x_0^3 (определена во всех точках "рядом" с x_0). Тогда производной функции f(x) в точке x_0 называется следующий предел (если он существует):

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Или, в немного других обозначениях:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

³Иными словами, x_0 — внутренняя точка X.

Рис. 4: Производная функции f(x) в точке x_0 — тангенс угла наклона касательной к графику функции в этой точке. А касательная — как *предел* секущей при приближении второго её конца в $x_0 + \Delta x$ к интересуемой точке: $\Delta x \to 0$. (Таким образом, чтобы можно было говорить о производной функции в точке, функция должна быть определена как в самой точке, так и рядом с ней — в её *окрестности*.) (Источник картинки: commons.wikimedia.org/wiki/File:Derivative_of_a_function.svg.)

Саму производную тоже есть несколько вариантов, как обозначать. Так,

$$f'(x_0) \equiv f'(x)|_{x=x_0}$$

(запись справа — подстановка, её смысл: "взяли производную, получили функцию f'(x), и потом подставили вместо x конкретную точку x_0 , в которой хотим узнать значение производной"). Или, ещё способ:

$$f'(x_0) = \frac{df(x_0)}{dx}$$

где d означает $\partial u \phi \phi e p e h u u a л. ^4$ Отсюда же можно получить выражение для дифференциала функции в точке:

$$df(x_0) = f'(x_0) \, dx$$

⁴О дифференциале "с физической точки зрения" часто думают как о "(бесконечно) малом приращении". Но на математике так лучше не говорить, потому что такому определению "недостаёт точности" (хотя бы потому, что не понятно, насколько всё-таки малое). С другой стороны, что-то про "малость дифференциала" есть и в математике... Дифференциал функции в точке — это просто линейная функция от дифференциала аргумента: $df(x_0) \equiv f'(x_0) dx$ (функция, проходящая через точку x_0 с наклоном $f'(x_0)$).

Пример. Найдём из определения производную функции $f(x) = x^2, x \in \mathbb{R}$. Пусть $x_0 \in \mathbb{R}$. Тогда производная в этой точке:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x_0 + \Delta x)^2 - x_0^2}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{2x_0 \Delta x + \Delta^2 x}{\Delta x} = \lim_{\Delta x \to 0} (2x_0 + \Delta x) = 2x_0$$

(где в последнем переходе при вычислении предела уже ничего не мешало "просто занулить" Δx).

Таким образом,
$$f'(x) = 2x$$
.

2.1. Некоторые свойства производной

Из определения производной следует, что производная обладает свойством *линейно-сти*:

$$(\alpha f(x))' = \alpha f'(x), \quad \alpha \in \mathbb{R}$$
$$(f(x) + g(x))' = f'(x) + g'(x)$$

Производная произведения функций (fg)(x) = f(x)g(x):

$$(fg)' = f'g + fg'$$
 (2)

Проверим:

$$(fg)'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta)g(x_0 + \Delta) - f(x_0)g(x_0)}{\Delta x} = \blacktriangle$$

Добавим и вычтем в числителе слагаемое, так чтобы можно было перегруппировать, вынести за скобку общий множитель и прийти к разности значений в точках "одиночных" функций f и g:

Производная частного функций $\frac{f(x)}{g(x)}$:

$$\left[\left(\frac{f}{g} \right)' = \frac{f'g - fg'}{g^2} \right] \tag{4}$$

Показать это можно, сведя всё к уже рассмотренному ранее произведению:

$$\left(\frac{f}{g}\right)' = \left(fg^{-1}\right)' = f'g^{-1} + f\left(g^{-1}\right)' = \frac{f'}{g} + f\cdot\left(y^{-1}\right)'|_{y=g}\cdot g' = \frac{f'}{g} - f\cdot\frac{1}{g^2}\cdot g' = \frac{f'g - fg'}{g^2}$$

Дифференциал аргумента — это просто приращение аргумента: $dx = x - x_0$. Но при приближении к x_0 приращение функции становится всё больше "похоже" на дифференциал, так что в пределе отношение "малых приращений" в самом деле становится равно отношению дифференциалов, то есть производной ("касательная в пределе становится секущей").

2.2. Производная сложной функции

Рис. 5: Функции $f: X \to Y$ и $g: Y \to Z$ и сложная функция $\phi: X \to Z$, $\phi(x) = g(f(x))$.

Пусть есть функции $f: X \to Y$ и $g: Y \to Z$. Пусть $x_0 \in X$, $f(x_0) \equiv y_0$. Тогда если существуют производные $f'(x_0)$ и $g'(y_0)$, то производная сложной функции $\phi(x) = g(f(x))$ (см. рисунок 5) равна:

$$\phi'(x_0) = \left(g(f(x)) \right)' \Big|_{x=x_0} = g'(y_0)|_{y_0 = f(x_0)} f'(x_0)$$
 (5)

Это тоже можно показать из определения производной (с парой "махинаций" типа "добавления/убирания" чего-то (3)):

$$\phi'(x_0) = \lim_{\Delta x \to 0} \frac{g(f(x_0 + \Delta x)) - g(f(x))}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{g(f(x_0 + \Delta x)) - g(f(x))}{f(x_0 + \Delta x) - f(x_0)} \cdot \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$= \lim_{\Delta y \to 0} \frac{g(y_0 + \Delta y) - g(y_0)}{y - y_0} \cdot \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$= g'(y_0) f'(x_0)$$

2.3. Некоторые табличные производные

Приведём "базовые" производные.

$$(x^{\alpha})' = \alpha x^{\alpha - 1}, \quad \alpha \in \mathbb{R}, \ x > 0 \quad ($$
или $\alpha \in \mathbb{N}, \ x \in \mathbb{R})$ (6)

$$(e^x)' = e^x \tag{7}$$

$$(a^x)' = a^x \ln a \tag{8}$$

Пример. Покажем последнюю формулу:

$$(a^{x})' = (e^{x \ln a})' = (e^{y})' |_{y=x \ln a} \cdot (x \ln a)' = a^{x} \cdot \ln a$$

$$\ln' x = \frac{1}{x} \tag{9}$$

$$\sin' x = \cos x \tag{10}$$

$$\cos' x = -\sin x \tag{11}$$

$$tg' x = \frac{1}{\cos^2 x} \tag{12}$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}} \tag{13}$$

Пример. Посмотрим, почему получается такое выражение для производной арксинуса. Область значений arcsin есть $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Значит, на этом промежутке arcsin будет функцией, *обратной* функции sin:

$$\arcsin \sin x = x, \quad x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

С другой стороны, sin будет обратной для arcsin (на другом промежутке):

$$\sin \arcsin x = x, \quad x \in [-1, 1]$$

Продифференцируем последнее равенство:

$$(\sin \arcsin x)' = x'$$

 $\sin' y|_{y=\arcsin x} \cdot \arcsin' x = 1$
 $\cos \arcsin x \cdot \arcsin' x = 1$

Откуда получаем:

$$\arcsin' x = \frac{1}{\cos \arcsin x}$$

Но так как $\arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, то $\cos \arcsin x > 0$. Поэтому можно выразить косинус следующим образом (корень с "плюсом"):

$$\cos \arcsin x = \sqrt{1 - \sin^2 \arcsin x} = \sqrt{1 - x^2}$$

В результате имеем (13).

$$arctg' x = \frac{1}{1+x^2} \tag{14}$$

Пример. Найдём производную функции y = |x|.

Если нарисовать график функции, то будет видно, что в любой его точке, кроме x = 0, можно провести единственную касательную: правее нуля тангенс угла наклона будет равен +1, левее он будет -1. В нуле же можно провести несколько касательных, поэтому производная в этой точке не определена.

Если решать не графически, а аналитически, то можно просто раскрыть модуль и рассмотреть функцию на двух участках:

$$y = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Тогда производная:

$$y' = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

При взятии производной из первого условия $x \ge 0$ был исключён ноль, потому что это "крайняя" точка промежутка — а чтобы производная существовала, функция должна быть определена в окрестности (то есть таким образом, разбивкой на случаи " $x \ge 0$ "/"x < 0" производную в нуле не найти). Точку ноль можно бы было рассмотреть отдельно, попытавшись найти производную в ней по определению. Но это бы тоже ни к чему не привело, потому что при "движении" в разные стороны от нуля (влево или вправо, то есть $\Delta x < 0$ или $\Delta x > 0$) получались бы разные производные, чего быть не может.

2.4. C1, §13, Nº32

Найти производную функции y = f(x) и указать её область существования:

$$y = \log_x 2^x$$

Решение. Логарифм с переменным основанием — такой функции нет среди "табличных производных". Но можно перейти к новому основанию (фиксированному):

$$\log_x 2^x = \frac{\ln 2^x}{\ln x} \tag{15}$$

Теперь можно воспользоваться правилом вычисления производной частного:

$$\left(\frac{\ln 2^x}{\ln x}\right)' = \frac{(\ln 2^x)' \ln x - \ln 2^x (\ln x)'}{\ln^2 x} = \blacktriangle$$

Производная сложной функции в числителе: 5,6

$$(\ln 2^x)' = \frac{1}{y}\Big|_{y=2^x} \cdot (2^x)' = \frac{1}{2^x} \cdot 2^x \ln 2 = \ln 2$$

Поэтому, возвращаясь к производной f'(x):

$$\blacktriangle = \frac{\ln 2 \ln x - \ln 2^x \frac{1}{x}}{\ln^2 x} = \frac{\ln 2(\ln x - 1)}{\ln^2 x}$$

Область определения f'(x):

$$\begin{cases} x > 0 \\ \ln^2 x \neq 0 \end{cases} \leftrightarrow \begin{cases} x > 0 \\ x \neq 1 \end{cases} \leftrightarrow x \in (0, 1) \cup (1, +\infty)$$

 $^{^5}$ Или, если предварительно упростить, можно было обойтись и без сложной функции: $\ln 2^x = x \ln 2 \Rightarrow (\ln 2^x)' = (x \ln 2)' = \ln 2$.

 $^{^{6}}$ (И упрощать тогда уж лучше было ещё раньше, выражение (15) для самой функции f(x)...)

2.5. C1, §13, №79

Найти производную функции y = f(x):

$$y = \sin \ln |x|$$

Решение. Данная в условии функция является "сложной-сложной" функцией:

$$y = \sin(\ln(|x|))$$

Поэтому её производная (две ступени "разворачивания"):

$$y' = \sin' z|_{z=\ln|x|} \cdot \ln' y|_{y=|x|} \cdot |x|'$$

$$= \cos z|_{z=\ln|x|} \cdot \frac{1}{y}|_{y=|x|} \cdot \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

$$= \cos \ln|x| \cdot \frac{1}{|x|} \cdot \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

Можно заметить, что "ветвление" для случаев x>0 и x<0 можно убрать, придя к такому выражению:

$$y' = \frac{\cos \ln |x|}{x}$$

3. Неопределённый интеграл

Первообразной функции f(x) на некотором промежутке называется функция F(x), такая что на данном промежутке F'(x) = f(x).

Пример. Пусть $f(x)=x, x\in\mathbb{R}$. Тогда $F(x)=\frac{x^2}{2}$ будет первообразной. Но и $\frac{x^2}{2}+1$ тоже будет первообразной, и $\frac{x^2}{2}+10$, и вообще $F(x)+C,C\in\mathbb{R}$.

Существуют ли первообразные "другого" вида? Пусть F'(x) = f(x) и G'(x) = f(x). Что можно сказать про связь между F(x) и G(x)?

$$F'(x) = G'(x) \leftrightarrow F'(x) - G'(x) = 0 \leftrightarrow \big(F(x) - G(x)\big)' = 0$$

то есть производная функции F-G равна нулю на \mathbb{R} (промежуток, на котором F(x) и G(x) являются первообразными функции f(x)). Но в таком случае "очевидно", что это константная функция, то есть $F-G=C\in\mathbb{R}$.

Поэтому все первообразные функции f(x) имеют вид $F(x) + C, C \in \mathbb{R}$.

 $Heonpeden\ddot{e}$ нным интегралом функции f(x) называется совокупность всех первообразных этой функции (см. рисунок 6):

$$\int f(x) dx = \{ F(x) + C \mid C \in \mathbb{R} \}$$

где F(x) — какая-то одна первообразная. Обычно эту запись упрощают, опуская скобки, означающее множество (хотя это всё так же остаётся множеством):⁷

$$\int f(x) dx = F(x) + C, \quad C \in \mathbb{R}$$

 $^{^{7}}$ В некоторых таблицах интегралов можно увидеть, что в упрощениях идут ещё дальше и пишут просто $\int f(x) dx = F(x)$. Но на контрольных или экзаменах так точно писать не надо :)

Рис. 6: Об интегрировании можно думать как о действии, в некотором смысле обратном дифференцированию (в том смысле, что интегрирование действует "в другую сторону"). Однако в строгом смысле интегрирование не является обратной операцией, хотя бы потому что результат взятия производной от функции — функция, результат же взятия неопределённого интеграла от функции — множество функций.

3.1. Некоторые свойства неопределённого интеграла

Из определения производной и связи интеграла с производной:

$$\int f'(x) dx = \int df(x) = f(x) + C$$

Из свойств производных следует свойство линейности неопределённого интеграла:

$$\int \alpha f(x) dx = \alpha \int f(x) dx, \quad \alpha \in \mathbb{R}$$
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

3.2. Интегрирование по частям

Если существует интеграл вида $\int u(x)v'(x)\,dx$, то его можно считать следующим образом (формула интегрирования по частям):

$$\int uv' dx = uv - \int vu' dx \tag{16}$$

Формулу можно представить и в таком виде:

$$\int u \, dv = uv - \int v \, du \tag{17}$$

Убедимся, что (16) "работает". В левой и правой частях формулы стоят множества первообразных. Пусть F(x) — какая-то первообразная у интеграла слева, то есть F'(x) = uv'.

Пусть G(x) — какая-то первообразная у интеграла справа, то есть G'(x) = vu'. Но тогда в правой части формулы (16) оказывается функция uv - G, производная которой:

$$(uv - G)' = (uv)' - G' = u'v + uv' - vu' = uv' = F'(x)$$

совпадает с производной первообразной слева. Таким образом, первообразная слева лежит во множестве первообразных справа, и наоборот. То есть множества первообразных совпадают. О чём и говорит формула (16).

3.3. Некоторые табличные интегралы

Приведём формулы некоторых "популярных" интегралов.

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \quad \alpha \neq -1$$
 (18)

$$\int \frac{1}{x} dx = \ln|x| + C \tag{19}$$

Замечание. Почему справа в (19) стоит модуль? Если x>0, то очевидно, что $\ln'x=\frac{1}{x}$. Однако подынтегральная функция $\frac{1}{x}$ определена и при x<0, поэтому и на этой области хорошо бы узнать первообразную. Убеждаемся, что

$$\ln'(-x) = \frac{1}{y} \bigg|_{y=-x} \cdot (-x)' = \frac{1}{-x} \cdot -1 = \frac{1}{x}$$

Таким образом, в самом деле $\ln'|x| = \frac{1}{x}$. (Ещё это можно попробовать представить графически.)

$$\int e^x dx = e^x + C \tag{20}$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C, \quad a > 0, \ a \neq 1$$
 (21)

Пример. Последнее соотношение можно проверить просто по производной, а можно и "по-честному" вычислить интеграл, сведя его к интегралу от e^x . Сделаем это ради дополнительной демонстрации "приёмов интегрирования":

$$\int a^{x} dx = \int e^{x \ln a} dx = \frac{1}{\ln a} \int e^{x \ln a} d(x \ln a)$$

$$= \frac{1}{\ln a} \int e^{y} dy \Big|_{y=x \ln a} = \frac{1}{\ln a} e^{y} \Big|_{y=x \ln a} + C = \frac{a^{x}}{\ln a} + C$$

 $\int \sin x \, dx = -\cos x + C$ (22)

$$\int \cos x \, dx = \sin x + C \tag{23}$$

$$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C \tag{24}$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C \tag{25}$$

Пример. Рассмотрим ещё "усложнённую версию" последнего интеграла (при a > 0):

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \int \frac{1}{a\sqrt{1 - \left(\frac{x}{a}\right)^2}} dx = \int \frac{1}{\sqrt{1 - \left(\frac{x}{a}\right)^2}} d\left(\frac{x}{a}\right)$$
$$= \int \frac{1}{\sqrt{1 - y^2}} dy \Big|_{y = x/a} = \arcsin\left(\frac{x}{a}\right) + C$$

Итого:

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin\left(\frac{x}{a}\right) + C, \quad a > 0$$
 (26)

 $\int \frac{1}{1+x^2} dx = \operatorname{arctg} x + C \tag{27}$

Опять, усложним и по аналогии с примером выше получим:

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C, \quad a \neq 0$$
 (28)

Пример. Помимо того, чтоб "усложнять", можно что-то поменять. Так, сделаем разность вместо суммы в знаменателе подынтегральной функции (28):

$$\int \frac{1}{x^2 - a^2} dx = \int \frac{1}{(x - a)(x + a)} dx = \blacktriangle$$

"Заметим", что дробь, стоящая под интегралом, представима как сумма дробей:

$$\frac{1}{(x-a)(x+a)} = \left(\frac{1}{x-a} - \frac{1}{x+a}\right) \cdot \frac{1}{2a}$$

Поэтому интеграл можно переписать как сумму интегралов:

$$\blacktriangle = \frac{1}{2a} \left(\int \frac{1}{x-a} dx - \int \frac{1}{x+a} dx \right) = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C$$

Итого ("высокий логарифм"):

$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, \quad a \neq 0$$
 (29)

Изменение же знаков в знаменателе (26) приводит к такому интегралу ("длинный логарифм"):

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln\left|x + \sqrt{x^2 \pm a^2}\right| + C, \quad a \neq 0$$
 (30)

__ ___

3.4. C2, §1, №13(7)

Найти интеграл:

$$J = \int \frac{1}{\sqrt{e^x - 1}} \, dx$$

Решение. Сделаем замену, в надежде, что это поможет, упростив вид подынтегральной функции:

$$e^{x} = y, \quad y > 0$$

$$x = \ln y$$

$$dx = d(\ln y) = \ln' y \, dy = \frac{1}{v} \, dy$$

В результате замены приходим к интегралу вида:

$$J = \int \frac{1}{\sqrt{y-1}} \cdot \frac{1}{y} \, dy = \int \frac{1}{y\sqrt{y-1}} \, dy$$

Интеграл всё ближе к какому-то табличному. Единственное, что теперь "мешает" — это корень в знаменателе (точнее, что в знаменателе стоит произведение одночлена на корень). Устраним корень ещё одной заменой, в надежде, что это упрощение не приведёт к усложнению чего-то другого:

$$\sqrt{y-1} = z, \quad z \ge 0$$

 $y = z^2 + 1$
 $dy = d(z^2 + 1) = (z^2 + 1)' dz = 2z dz$

Интеграл после замены:

$$J = \int \frac{1}{(z^2 + 1)z} \cdot 2z \, dz = 2 \int \frac{1}{z^2 + 1} \, dz$$

А это табличный интеграл, поэтому теперь остаётся только выписать первообразную и ещё провести обратные замены:

$$J = 2 \arctan z + C$$

$$= 2 \arctan \sqrt{y-1} + C$$

$$= 2 \arctan \sqrt{e^x - 1} + C$$

3.5. C2, $\S1$, \mathbb{N}^{2} 3(1)

Найти интеграл:

$$J = \int \ln^2 x \, dx$$

Решение.

Способ 1: замена + по частям.

Заменим неудобный "нетабличный" логарифм:

$$\ln x = y, \quad y \in \mathbb{R}$$
$$x = e^{y}$$
$$dx = d(e^{y}) = e^{y} dy$$

Интеграл после замены:

$$J = \int y^2 e^y \, dy$$

А теперь можно несколько раз проинтегрировать по частям, чтобы y^2 ушла. Первое "по-частям":

$$J = \int y^2 de^y = y^2 e^y - \int e^y d(y^2) = y^2 e^y - 2 \int y e^y dy = A$$
 (31)

Второе "по-частям":

Заменяя обратно y на x, получаем:

$$J = x \ln^2 x - 2(x \ln x - x) + C$$

Способ 2: сразу по частям.

Можно попробовать интегрировать сразу по частям, без замены. При этом в качестве "dv" выступает просто dx:

$$J = \int \ln^2 x \, dx = x \ln^2 x - \int x \, d(\ln^2 x) = \bigstar$$

Найдём отдельно дифференциал:

$$d(\ln^2 x) = (\ln^2 x)' dx = 2y|_{y=\ln x} \cdot \ln' x dx = 2\frac{\ln x}{x} dx$$

Возвращаясь к интегралу и беря аналогично второй раз по частям:

$$\star = x \ln^2 x - 2 \int \ln x \, dx = x \ln^2 x - 2 \left(x \ln x - \int x \, d \ln x \right)$$

$$= x \ln^2 x - 2 \left(x \ln x - \int dx \right) = x \ln^2 x - 2(x \ln x - x) + C$$
(33)

3.6. C2, §1, №24(3)

Найти интеграл:

$$J = \int e^{ax} \sin bx \, dx, \quad a^2 + b^2 \neq 0$$

Решение. Выражение $a^2 + b^2 \neq 0$ есть лишь "математичный" способ сказать, что хотя бы один из коэффициентов a и b точно не ноль.

Что можно сделать с J? Точно можно посмотреть на него как на интеграл вида $\int u \, dv$ и попробовать взять его по частям. Причём в качестве "dv" можно выбрать и $e^{ax} \, dx$, и $\sin bx \, dx$. Только вот дифференцирование "u" в этом случае (которая будет либо $\sin bx$, либо e^{ax} соответственно) ни к чему хорошему вроде бы не приведёт (она не пропадёт)... Но "по частям" прямо напрашивается, да и других вариантов особо нет, к тому же "не знаешь, что делать — делай то, что можешь". В общем, по частям.

Пусть $u = e^{ax}$ и $dv = \sin bx \, dx$. Преобразуем выражение для dv, выделив дифференциал функции:

$$\sin bx \, dx = \sin bx \, d\left(\frac{bx}{b}\right) = \frac{1}{b}\sin bx \, d(bx) = \frac{1}{b}\sin y \, dy|_{y=bx} = \frac{1}{b}d(-\cos y)|_{y=bx} = -\frac{1}{b}d\cos bx \tag{34}$$

Из выражения выше видно, что мы "неявно предположили", что $b \neq 0$. Хотя, возможно, могло быть и так, что b = 0, но $a \neq 0$. Но примем всё-таки, что $b \neq 0$, и если получим ответ для этого случая, то потом уже посмотрим, имеет ли смысл рассматривать отдельно вариант b = 0.

Возвращаемся к интегралу:

$$J = -\frac{1}{b} \int e^{ax} d\cos bx = -\frac{1}{b} \left(e^{ax} \cos bx - \int \cos bx \, de^{ax} \right)$$

Дифференциал функции в получившемся после интегрирования по частям новом интеграле:

$$de^{ax} = (e^{ax})' dx = (e^y)'|_{y=ax} \cdot (ax)' dx = ae^{ax} dx$$
 (35)

Итого, выражение для интеграла J после применения "по частям":

$$J = -\frac{1}{b} \left(e^{ax} \cos bx - a \underbrace{\int e^{ax} \cos bx \, dx} \right) \tag{36}$$

Ничего хорошего вроде бы не получилось (а как будто даже наоборот). Зато снова есть возможность проинтегрировать по частям — интеграл I, возникший в правой части. Так как e^{ax} только что вынесли из-под дифференциала (35), то занесём теперь под дифференциал функцию $\cos bx$ (иначе придём ровно к тому же, с чего начали). (Преобразования аналогичны (34)):

$$\cos bx \, dx = \frac{1}{b}\cos bx \, d(bx) = \frac{1}{b}\, d\sin bx$$

Теперь берём по частям интеграл I:

$$I = \frac{1}{b} \int e^{ax} d\sin bx = \frac{1}{b} \left(e^{ax} \sin bx - \int \sin bx \, de^{ax} \right) \stackrel{\text{(35)}}{=} \frac{1}{b} \left(e^{ax} \sin bx - a \int e^{ax} \sin bx \, dx \right)$$

Внимательно вглядываясь в получившееся выражение, можно заметить, что справа опять появился интеграл J!

$$I = \frac{1}{b} \left(e^{ax} \sin bx - aJ \right) \tag{37}$$

Но интеграл I сам возник ранее при вычислении J (36). Поэтому, если подставить в (36) вместо I выражение (37), то придём к уравнению относительно J!⁸

$$J = -\frac{1}{b} \left(e^{ax} \cos bx - a \cdot \frac{1}{b} \left(e^{ax} \sin bx - aJ \right) \right)$$

Раскрывая скобки, перенося туда-сюда слагаемые из одной части в другую, упрощая (и не забывая добавить "+ C", чтоб получить множество первообразных), получаем:

$$J = \frac{e^{ax}(a\sin bx - b\cos bx)}{a^2 + b^2} + C$$

 $^{^{8}}$ Всё-таки не совсем "уравнению", потому что J- это множество.

Вспомним, что мы начали с допущения $b \neq 0$. Но видно, что в финальном ответе разрешается случай и b=0. Единственное, что важно — это что $a^2+b^2\neq 0$. Но это дано по условию. Таким образом, интеграл нашли. (Можно было бы в самом начале по-другому выбрать u и dv — путь вычислений был бы немного другой, но ответ бы получился такой же.)