

Sanjeeb Prasad Panday, PhD
Associate Professor
Dept. of Electronics and Computer Engineering
Director (ICTC)
IOE, TU

- To derive the equation for updating weights in back propagation algorithm, we use Stochastic gradient descent rule.
- Stochastic gradient descent involves iterating through the training examples one at a time, for each training example d descending the gradient of the error Ed with respect to this single example.
- In other words, for each training example **d** every weight wji is updated by adding to it Δw_{ij} .
- · That is,

Where
$$W_{ji} \leftarrow W_{ji} + \Delta W_{ji}$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ii}}$$

Where
$$W_{ji} \leftarrow W_{ji} + \Delta W_{ji}$$

 $\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$

 where Ed is the error on training example d, that is half the squared difference between the target output and the actual output over all output units in the network,

$$E_d(\vec{w}) \equiv \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

 Here outputs is the set of output units in the network, t_k is the target value of unit k for training example d, and o_k is the output of unit k given training example d.

Notation Used:

```
\mathbf{x}_{ji} = the i<sup>th</sup> input to unit j

\mathbf{w}_{ji} = the weight associated with the i<sup>th</sup> input to unit j

\mathbf{net}_{j} = \sum_{i} \mathbf{w}_{ji} \mathbf{X}_{ji} (the weighted sum of inputs for unit j)

\mathbf{o}_{j} = the output computed by unit j

\mathbf{t}_{j} = the target output for unit j

\mathbf{\sigma} = the sigmoid function

\mathbf{outputs} = the set of units in the final layer of the network

\mathbf{Downstream(j)} = the set of units whose immediate inputs include the output of unit j
```


Where
$$W_{ji} \leftarrow W_{ji} + \Delta W_{ji}$$

 $\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ii}}$

To begin, notice that weight wji can influence the rest of the network only through netj.
 Therefore, we can use the chain rule to write,

$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$

$$= \frac{\partial E_d}{\partial net_i} x_{ji}$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial net_i} x_{ji}$$

$$net_j = \sum_i w_{ji} X_{ji}$$

$$\frac{\partial net_j}{\partial w_{ji}} = x_{ji}$$

• Our remaining task is to derive a convenient expression for $\frac{\partial E_d}{\partial net_j}$

To derive a convenient expression for $\frac{\partial E_d}{\partial net_j}$

We consider two cases in turn:

- · Case 1, where unit j is an output unit for the network, and
- Case 2, where unit j is an internal unit of the network.

The neuron

The sigmoid equation is what is typically used as a transfer function between neurons. It is similar to the step function, but is continuous and differentiable.

Figure: The Sigmoid Function

 One useful property of this transfer function is the simplicity of computing it's derivative. Let's do that now...

The derivative of the sigmoid transfer function

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$

$$= \frac{e^{-x}}{(1+e^{-x})^2}$$

$$= \frac{(1+e^{-x})-1}{(1+e^{-x})^2}$$

$$= \frac{1+e^{-x}}{(1+e^{-x})^2} - \left(\frac{1}{1+e^{-x}}\right)^2$$

$$= \sigma(x) - \sigma(x)^2$$

$$\sigma' = \sigma(1-\sigma)$$

Case 1: Training Rule for Output Unit Weights

Just as wji can influence the rest of the network only through net_j, net_j can influence the
network only through oj. Therefore, we can invoke the chain rule again to write,

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} \qquad \frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2 \qquad \frac{\partial o_j}{\partial (net_j)} = \frac{\partial \sigma(net_j)}{\partial (net_j)} \qquad \frac{\partial \sigma(x)}{\partial (x)} = \sigma(x) \left(1 - \sigma(x)\right)$$

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2 \qquad = \sigma(net_j) \left(1 - \sigma(net_j)\right)$$

$$= o_j \left(1 - o_j\right)$$

$$= -(t_j - o_j)$$

$$\frac{\partial E_d}{\partial net_j} = -(t_j - o_j) o_j (1 - o_j)$$

Case 1: Training Rule for Output Unit Weights

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$$

$$\Delta w_{ji} = -\eta \ \frac{\partial E_d}{\partial net_j} \ x_{ji}$$

$$\Delta w_{ji} = \eta (t_j - o_j) o_j (1 - o_j) x_{ji}$$

$$\Delta w_{ji} = \eta \, \delta_j \, x_{ji}$$

$$\frac{\partial E_d}{\partial net_j} = -(t_j - o_j) \ o_j (1 - o_j)$$

$$\delta_j = (t_j - o_j) \ o_j (1 - o_j)$$

Case 2: Training Rule for Hidden Unit Weights

$$\frac{\partial E_d}{\partial net_j} = \sum_{k \in Downstream(j)} \frac{\partial E_d}{\partial net_k} \frac{\partial net_k}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial o_j} \frac{\partial o_j}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k w_{kj} o_j (1 - o_j)$$

Case 2: Training Rule for Hidden Unit Weights

$$\frac{\partial E_d}{\partial net_j} = \sum_{k \in Downstream(j)} \frac{\partial E_d}{\partial net_k} \frac{\partial net_k}{\partial net_j} \\
= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial net_j} \\
= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial o_j} \frac{\partial o_j}{\partial net_j} \\
= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial o_j}{\partial net_j} \\
= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial o_j}{\partial net_j}$$

$$\frac{\partial E_d}{\partial net_j} = -(\underline{t_j - o_j}) \ o_j (1 - o_j)$$

$$\delta_j = (t_j - o_j) \ o_j (1 - o_j)$$

$$\frac{\partial \ net_k}{\partial o_j} = \frac{\partial x_{kj} w_{kj}}{\partial o_j} = \frac{\partial o_j w_{kj}}{\partial o_j}$$

$$\frac{\partial o_j}{\partial (net_j)} = \frac{\partial \sigma(net_j)}{\partial (net_j)}$$

$$= \sigma(net_j) \{1 - \sigma(net_j)\}$$

$$= o_j (1 - o_j)$$

Case 2: Training Rule for Hidden Unit Weights

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial net_j} x_{ji}$$

$$\frac{\partial E_d}{\partial net_j} = \sum_{k \in Downstream(j)} -\delta_k \ w_{kj} \ o_j (1 - o_j)$$

$$\Delta w_{ji} = \eta \ o_j (1 - o_j) \sum_{k \in Downstream(j)} \delta_k \ w_{kj} \ x_{ji}$$

$$\Delta w_{ji} = \eta \delta_j x_{ji}$$

$$\delta_j = o_j(1 - o_j) \sum_{k \in Downstream(j)} \delta_k \ w_{kj}$$

Assume that the neurons have a activation function, sigmoid perform a forward pass and a backward pass on the network. Assume that the actual output of y is 1 and learning rate is 0.9. Perform another forward pass.

$$Error = y_{target} - y_6 = 0.526$$

Forward Pass: Compute output for y4, y5 and y6.

$$a_j = \sum_{j} (\underline{w_{i,j} * x_i})$$
 $\underline{yj} = F(aj) = \frac{1}{1 + e^{-a_j}}$

$$a_4 = (w_{14} * x_1) + (w_{24} * x_2) + (w_{34} * x_3) + \theta_4$$

= $(0.2 * 1) + (0.4 * 0) + (-0.5 * 1) + (-0.4) = -0.7$
 $O(H_4) = y_4 = f(a_4) = 1/(1 + e^{0.7}) = 0.332$

$$a_5 = (w_{15} * x_1) + (w_{25} * x_2) + (w_{35} * x_3) + \theta_5$$

$$= (-0.3 * 1) + (0.1 * 0) + (0.2 * 1) + (0.2) = 0.1$$

$$O(H_5) = y_5 = f(a_5) = 1/(1 + e^{-0.1}) = 0.525$$

$$a_6 = (w_{46} * H_4) + (w_{56} * H_5) + \theta_6$$

$$= (-0.3 * 0.332) + (-0.2 * 0.525) + 0.1 = -0.105$$

$$O(O_6) = y_6 = f(a_6) = 1/(1 + e^{0.105}) = 0.474$$

Each weight changed by:

$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\delta_j = o_j (1 - o_j)(t_j - o_j) \quad \text{if } j \text{ is an output unit}$$

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{kj} \quad \text{if } j \text{ is a hidden unit}$$

- where η is a constant called the learning rate
- tj is the correct teacher output for unit j
- δj is the error measure for unit j

Backward Pass: Compute δ4, δ5 and δ6.

For output unit:

$$\delta_6 = y_6(1-y_6) (y_{target} - y_6)$$

= 0.474*(1-0.474)*(1-0.474)= 0.1311

Each weight changed by:

$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\delta_j = o_j (1 - o_j)(t_j - o_j) \quad \text{if } j \text{ is an output unit}$$

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{kj} \quad \text{if } j \text{ is a hidden unit}$$

- where η is a constant called the learning rate
- tj is the correct teacher output for unit j
- δj is the error measure for unit j

Compute new weights

$$\Delta w_{ji} = \eta \delta_j o_i$$

 $\Delta w_{46} = \eta \delta_6 y_4 = 0.9 * 0.1311 * 0.332 = 0.03917$ $w_{--}(\text{new}) = \Delta w_{--} + w_{--}(\text{old}) = 0.03917 + (-0.3) = 0.03917$

 w_{46} (new) = $\Delta w_{46} + w_{46}$ (old) = 0.03917 + (-0.3) = -0.261

 $\Delta w_{14} = \eta \delta_4 x_1 = 0.9 * -0.0087 * 1 = -0.0078$ $w_{14} \text{ (new)} = \Delta w_{14} + w_{14} \text{ (old)} = -0.0078 + 0.2 = 0.192$

Backward Pass: Compute δ4, δ5 and δ6.

For output unit:

$$\delta_6 = y_6(1-y_6) (y_{target} - y_6)$$

= 0.474*(1-0.474)*(1-0.474)= 0.1311

For hidden unit:

$$\delta_5 = y_5(1-y_5) w_{56} * \delta_6$$

= 0.525*(1 - 0.525)*(-0.2 * 0.1311) = -0.0065

=
$$y_4(1-y_4)$$
 $w_{46} * \delta_6$
= 0.332*(1 - 0.332)* (-0.3 * 0.1331) = -0.0087

Similarly, update all other weights

i	j	\mathbf{w}_{ij}	δί	x	η	Updated w _{ij}
4	6	-0.3	0.1311	0.332	0.9	-0.261
5	6	-0.2	0.1311	0.525	0.9	-0.138
1	4	0.2	-0.0087	1	0.9	0.192
1	5	-0.3	-0.0065	1	0.9	-0.306
2	4	0.4	-0.0087	0	0.9	0.4
2	5	0.1	-0.0065	0	0.9	0.1
3	4	-0.5	-0.0087	1	0.9	-0.508
3	5	0.2	-0.0065	1	0.9	0.194

Similarly, update bais weights

$\theta_{\mathbf{j}}$	Previous θ_j	δ_{j}	η	Updated θ_j
Θ_6	0.1	0.1311	0.9	0.218
Θ_5	0.2	-0.0065	0.9	0.194
Θ_4	-0.4	-0.0087	0.9	-0.408

$$Error = y_{target} - y_6 = 0.485$$

Forward Pass: Compute output for y4, y5 and y6.

$$a_j = \sum_j (w_{i,j} * x_i)$$
 $y_j = F(a_j) = \frac{1}{1 + e^{-a_j}}$

$$a_4 = (w_{14} * x_1) + (w_{24} * x_2) + (w_{34} * x_3) + \theta_4$$

$$= (0.192 * 1) + (0.4 * 0) + (-0.508 * 1) + (-0.408) = -0.724$$

$$O(H_4) = y_4 = f(a_4) = 1/(1 + e^{0.724}) = 0.327$$

$$a_5 = (w_{15} * x_1) + (w_{25} * x_2) + (w_{35} * x_3) + \theta_5$$

= (-0.306 * 1) + (0.1 * 0) + (0.194 * 1) + (0.194)=0.082
O(H₅) = y₅= f(a₅) = 1/(1 + e^{-0.082}) = 0.520

$$a_6 = (w_{46} * H_4) + (w_{56} * H_5) + \theta_6$$

= (-0.261 * 0.327) + (-0.138 * 0.520) + 0.218 = 0.061
 $O(O_6) = y_6 = f(a_6) = 1/(1 + e^{-0.061}) = 0.515$ (Network Output)

First, we will build a neural network with three layers:

Input layer with two inputs neurons

One hidden layer with two neurons

Output layer with a single neuron

Weights

- Neural network training is about finding weights that minimize prediction error.
- We usually start our training with a set of randomly generated weights.
- Then, backpropagation is used to update the weights in an attempt to correctly map arbitrary inputs to outputs.
- Our initial weights will be as following: w1 = 0.11, w2 = 0.21, w3 = 0.12, w4 = 0.08, w5 = 0.14 and w6 = 0.15

Dataset

Our single sample is as following inputs=[2, 3] and output=[1].

Forward Pass

Calculating Error

Reducing Error

- Our main goal of the training is to reduce the error.
- Since actual output is constant, the only way to reduce the error is to change prediction value.
- The question now is, how to change prediction value?
- By decomposing prediction into its basic elements we can find that weights are the variable elements affecting prediction value.
- In other words, in order to change prediction value, we need to change weights values.

Reducing Error

prediction =
$$\underbrace{(h_1) \ w_5 + (h_2) \ w_6}_{\text{prediction}} = \underbrace{(h_1) \ w_5 + (h_2) \ w_6}_{\text{h_2} = i_1 w_3 + i_2 w_4}$$

prediction = $(i_1 \ w_1 + i_2 \ w_2) \ w_5 + (i_1 \ w_3 + i_2 \ w_4) \ w_6$

to change prediction value, we need to change weights

Backpropagation

- Backpropagation, short for "backward propagation of errors", is a mechanism used to update the weights using gradient descent.
- It calculates the gradient of the error function with respect to the neural network's weights.
- · The calculation proceeds backwards through the network.

Backpropagation

For example, to update w6, we take the current w6 and subtract the partial derivative of **error** function with respect to w6.

Backpropagation

$${}^*w_6 = w_6 - a \; (h_2 \; . \; \Delta)$$

$${}^*w_5 = w_5 - a \; (h_1 \; . \; \Delta)$$

$${}^*w_4 = w_4 - a \; (i_2 \; . \; \Delta w_6)$$

$${}^*w_3 = w_3 - a \; (i_1 \; . \; \Delta w_6)$$

$${}^*w_2 = w_2 - a \; (i_2 \; . \; \Delta w_5)$$

$${}^*w_1 = w_1 - a \; (i_1 \; . \; \Delta w_5)$$

$$\begin{bmatrix} w_5 \\ w_6 \end{bmatrix} = \begin{bmatrix} w_5 \\ w_6 \end{bmatrix} - \mathbf{a} \, \mathbf{\Delta} \begin{bmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \end{bmatrix} = \begin{bmatrix} w_5 \\ w_6 \end{bmatrix} - \begin{bmatrix} \mathbf{a} \mathbf{h}_1 \mathbf{\Delta} \\ \mathbf{a} \mathbf{h}_2 \mathbf{\Delta} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_3 \\ \mathbf{w}_2 & \mathbf{w}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_3 \\ \mathbf{w}_2 & \mathbf{w}_4 \end{bmatrix} - \mathbf{a} \Delta \begin{bmatrix} \mathbf{i}_1 \\ \mathbf{i}_2 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{w}_5 & \mathbf{w}_6 \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_3 \\ \mathbf{w}_2 & \mathbf{w}_4 \end{bmatrix} - \begin{bmatrix} \mathbf{a} \mathbf{i}_1 \Delta \mathbf{w}_5 & \mathbf{a} \mathbf{i}_2 \Delta \mathbf{w}_6 \\ \mathbf{a} \mathbf{i}_2 \Delta \mathbf{w}_5 & \mathbf{a} \mathbf{i}_2 \Delta \mathbf{w}_6 \end{bmatrix}$$

a = 0.05 Learning rate, we smartly guess this number
$$\begin{bmatrix} w_5 \\ w_6 \end{bmatrix} = \begin{bmatrix} 0.14 \\ 0.15 \end{bmatrix} - 0.05(-0.809) \begin{bmatrix} 0.85 \\ 0.48 \end{bmatrix} = \begin{bmatrix} 0.14 \\ 0.15 \end{bmatrix} - \begin{bmatrix} -0.034 \\ -0.019 \end{bmatrix} = \begin{bmatrix} 0.17 \\ 0.17 \end{bmatrix}$$

$$\begin{bmatrix} w_1 & w_3 \\ w_2 & w_4 \end{bmatrix} = \begin{bmatrix} .11 & .12 \\ .21 & .08 \end{bmatrix} - 0.05(-0.809) \begin{bmatrix} 2 \\ 3 \end{bmatrix} . \begin{bmatrix} 0.14 & 0.15 \end{bmatrix} = \begin{bmatrix} .11 & .12 \\ .21 & .08 \end{bmatrix} - \begin{bmatrix} -0.011 & -0.012 \\ -0.017 & -0.018 \end{bmatrix} = \begin{bmatrix} .12 & .13 \\ .23 & .10 \end{bmatrix}$$

∆ = 0.191 − 1 = -0.809 ← Delta = prediction - actual

We can notice that
the prediction 0.26 is a
little bit closer to actual
output than the previously
predicted one 0.191.

- We can notice that
 the prediction 0.26 is a
 little bit closer to actual
 output than the previously
 predicted one 0.191.
- We can repeat the same process of backward and forward pass until error is close or equal to zero.

Thank you for your attention