1. (amended) A nucleic acid mimic in admixture with at least one target molecule selected from the group consisting of nucleic acids, transcription factors, carbohydrates and proteins, said mimic comprising a non-naturally occurring backbone structure to which are appended a plurality of heterocyclic bases,

at least one of said bases being substituted with at least one sterically bulky substituent at a position one, two or three atoms removed from the position of attachment of said base to the backbone.

2. (amended) The nucleic acid mimic according to claim 1 wherein said sterically bulky substituent is -R', -OR', SR', $-N(R')_2$, $-C(R')_3$, -C(=X)(R'), -C(=X)(-Y-R') or $S(=O)_{1-2}(-Y-R')$ wherein:

X is O, S or NH;

Y is O, S or NH; and

[wherein] R' comprises at least 3 atoms and is H, C_1 - C_{50} -alkyl, C_2 - C_{50} -alkenyl, C_2 - C_{50} -alkynyl, C_7 - C_{50} -alkyl-aryl, C_6 - C_{50} -aryl, C_{10} - C_{50} -naphthyl, C_{12} - C_{50} -biphenyl, C_7 - C_{50} -aryl-alkyl, pyridyl, imidazolyl, pyrimidinyl, pyridazinyl, quinolyl, acridinyl, pyrrolyl, furanyl, thienyl, isoxazolyl, oxazolyl, thiazolyl and biotinyl, wherein R' can be substituted one or more times by -NO, -NO₂, -SO₃-, -CN, -OH, -NH₂, -SH, -PO₃-, -COOH, -F, -Cl, -Br and -I.

_---11. The nucleic acid mimic according to claim 1 having

formula (I):

wherein:

n is at least 2,

each of L^1 - L^n is independently selected from the group consisting of hydrogen, hydroxy, $(C_1$ -C) alkanoyl, naturally occurring nucleobases, non-naturally occurring nucleobases, aromatic moieties, DNA intercalators, nucleobase-binding groups, heterocyclic moieties, and reporter ligands, at least one of L^1 - L^n being said base substituted with at least one sterically bulky substituent;

each of C^1 - C^n is $(CR^6R^7)_y$ where R^6 is hydrogen and R^7 is selected from the group consisting of the side chains of naturally occurring alpha amino acids, or R^6 and R^7 are independently selected from the group consisting of hydrogen, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, NR^3R^4 and SR^5 , where R^3 and R^4 are as defined above, and R^5 is hydrogen, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl, or R^6 and R^7 taken together complete an alicyclic or heterocyclic system,

ISIS-2169

each of D^1-D^n is $(CR^6R^7)_z$ where R^6 and R^7 are as defined above;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

each of G^1 - G^{n-1} is -NR³CO-, -NR³CS-, -NR³SO- or/-NR³SO₂-, in either orientation, where R³ is as defined above;

each pair of A¹-Aⁿ and B¹-Bⁿ are selected such that:

- (a) A is a group of formula (IIa), /IIb) or (IIc) and B is N or R3N+; or
- (b) A is a group of formula (II/d) and B is CH;

(IIa)

(IIb)

(IId)

where:

X is O_1/S_1 , Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR4;

eagh of p and q is zero or an integer from 1 to 5;

€ach of r and s is zero or an integer from 1 to 5;

ISIS-2169

p is zero or 1; $R^{h} \text{ is OH, NH}_{2} \text{ or -NHLysNH}_{2}; \text{ and } \\ R^{i} \text{ is H or COCH}_{3}.$

21. The nucleic acid mimic according to claim 11 having formula (IIIb):

wherein:

each L is independently selected from the group consisting of hydrogen, phenyl, heterocyclic base moieties, including those substituted with a sterically bulky group or groups, naturally occurring nucleobases, and non-naturally occurring nucleobases, at least one L being said base substituted with at least one sterically bulky substituent;

each $R^{7'}$ is independently selected from the group consisting of hydrogen and the side chains of naturally occurring alpha amino acids;

n is an integer from 1 to 60;