Подмасиви на пермутация

Анализ

Нека разглеждаме произволна редица от различни естествени числа $\bf A$ (индексирана от 1) с медиана $\bf M$ и дължина $2{\bf k}$ + 1 (${\bf k}$ $\in \mathbb{N}_0$). След като сортираме числата в нарастващ ред, в новата редица $\bf A'$, $\bf A'_{k+1}$ = $\bf M$. (по дефиниция за медиана) Тъй като за всяка двойка ($\bf i$, $\bf j$) : $\bf i$ < $\bf j$, $\bf A'_i$ < $\bf A'_j$ (числата са наредени), то има точно $\bf k$ по-малки числа от $\bf M$. Аналогично има и $\bf k$ по-големи. Тъй като числата в $\bf A'$ са същите като в $\bf A$, то това свойство е вярно и за оригиналната редица. Следователно *необходимо и достатьчно условие* за една редица от различни числа да има медиана $\bf M$ е да съдържа самото число $\bf M$ и равен брой по-малки и по-големи от него други числа.

След като сме направили това наблюдение, можем да съставим решение със сложност $O(N^3)$. Разглеждаме всички подмасиви на A, съдържащи M. Намираме броевете на по-малките и по-големите от M числа линейно и ако те са равни, то тази редица отговаря на условието. Ако за фиксиран ляв край, линеино се обхожда масива и се разглеждат потенциалните десни крайща, сложносттасе сваля до $O(N^2)$.

Нека разглеждаме разликата между броевете на по-големите и по-малките от **M** числа за даден интервал. За да има медиана **M**, тази разлика трябва да е 0. Нека означим тази разлика за подинтервала [1, i] на пермутацията **P** с \mathbf{D}_i (\mathbf{D}_0 = 0, тъй като отговаря на празния интервал). За подинтервала от [i, j] на **P**, разликата $\mathbf{D}_{i,j} = \mathbf{D}_j - \mathbf{D}_{i-1}$ (Това е аналогично на похвата с частичните суми или partial sums). Замествайки $\mathbf{D}_{i,j}$ с 0 (за подинтервалите с медиана **M**), получаме, че $\mathbf{D}_j = \mathbf{D}_{i-1}$. За подинтервалите [i, j] с медиана **M** е вярно съю, че i $\leq u$ ндекса на **M** в $P \leq j$. Намираме линейно \mathbf{D}_i за всички интервали [0, i] : i $\leq u$ ндекса на **M** в P. Нека с $\mathbf{C}(\mathbf{x})$ означим броя на всички стойности за $\mathbf{i} : \mathbf{D}_i = \mathbf{x}$ и $\mathbf{i} \in [0, u$ ндекса на **M** в P). Този брои лесно би бил намиран след като се приложи алгоритъма за сортиране с броене на съответните стойности на \mathbf{D} . След това за фиксиран десен край \mathbf{j} , брой интервали с медиана **M** е точно $\mathbf{C}(\mathbf{D}_j)$) - броя потенциални начала, т.е. такива със стойност $\mathbf{D} = \mathbf{D}_i$. Сумирайки тези стойности на $\mathbf{C}(\mathbf{x})$, получаваме крайния резултат. Полученото решение е със сложност O(N).