

Making any planar surface into a touch-sensitive display by a mere projector and camera

Jingwen Dai Ronald Chung
Computer Vision Laboratory
Dept. of Mech. and Automation Engineering
The Chinese University of Hong Kong

PROCAMS2012, Providence, RI, 17 June 2012

Introduction & Motivation

Introduction & Motivation

Previews Works

Additional Sensors

- Light Touch (IR optical sensors)
- Diamondtouch (capacitive sensor array)
- Smartskin (mesh-shaped antenna)
- Skinput (bio-acoustic sensing array)
- LightSpace, Omnitouch (Kinect)

Computer Vision

- □ [Letessier2004] -- Fingertip tracking, not touching detection
- [Kjeldsen2002, Hardenberg2001] -- Delay-based scheme
- □ [Marshall2008] Color change of the fingernail
- [Song2007, PlayAnywhere2005] -- Shadow casted by finger
- [Fitriani2007] -- Deformation on soft surface

Main Contributions

- Using only off-the-shelf devices
- Achieving 3D sensing without explicit 3D reconstruction
- Use of prior knowledge to enhance robustness

System Prototype

Overview

Priors in Projector-Camera System

Geometric (Homography)

Camera's image plane

Projector's projection panel

Table surface

Radiometric

$$C_{pre} = VP + C$$

Embedding Codes into Video Projection

Embedded Pattern Design Strategy

Method	Array Size	Win. Size	Alph. Length
[Morita 1988]	24 * 24	3 * 4	2
[Kiyasu 1995]	18 * 18	4 * 2	2
[Salvi 1998]	29 * 29	3 * 3	3
[Spoelder 2000]	65 * 63	2 * 3	2
[Albitar 2007]	27 * 29	3 * 3	3
[Desjardins 2007]	53 * 38	3 * 3	3
[Chen 2008]	82 * 82	3 * 3	7

Summary of typical spatial coding methods

Constraints of Pattern Generation

- Code Uniqueness
- Large Hamming Distance

Hand Segmentation & Fingertip Detection

- (a) Approximate segmentation
- (b) H-channel
- (c) Refined hand region
- (d) Hand contour and detected fingertips

Touch Detection Through Homography

Third-Person Perspective

Experiments -- Display Quality Evaluation

Experiments -- Touch Accuracy Evaluation

	Illumination				
Surface	Dark		Normal		
	$\epsilon(px)$	FRR/FAR(%)	$\epsilon(px)$	FRR/FAR(%)	
Gray	2.98	1.12/0.45	3.05	1.32/0.48	
Yellow	3.04	1.23/0.57	3.12	1.54/0.61	
Artifact	3.12	1.77/0.67	3.20	1.76/0.63	

Comparison with recent depth-camera sensing based methods

In [2], the informal observed **spatial error** of finger detection on planar surface was between **3-6 pixels**,

In Omni-Touch [6], the **FRR** and **FAR** of finger click detection on four different surfaces were **0.8**% and **3.3**%.

Experiments -- Efficiency Evaluation

Subroutine	Hand Seg.	FTip Loc.	Touch Det.	Total
Time (ms)	14.63	1.32	1.74	17.69

Average processing time

Conclusion

This paper explores the possibility of replacing the display panel and the mouse-and-keyboard by a mere projector and camera.

Limitations

- Hand segmentation depends on radiometric parameters
- Too fast hand movement
- Single hand operation