CAPÍTULO 2

Exercícios 2.3

1. Sejam $A \subset B \subset \mathbb{R}^2$ e B tem conteúdo nulo. Então, $\forall \ \varepsilon > 0$, existe um número finito de retângulos $A_1, A_2, ..., A_n$ tais que $B \subset A_1 \cup A_2 \cup ... \cup A_n$ e $\sum_{i=1}^n m(A_i) < \varepsilon$ onde $m(A_i)$ é a área do retângulo A_i .

(*B* pode ser coberto por um número finito de retângulo cuja soma das áreas seja tão pequena quanto se queira.)

Como $A \subseteq B$ então A também pode ser coberto por esses retângulos.

Logo, se $A \subset B$ então $\forall \ \epsilon < 0$, existe um número finito de retângulos $A_1, A_2, ..., A_n$

tais que
$$A \subset A_1 \cup A_2 \cup ... \cup A_n$$
 e $\sum_{i=1}^n m(A_i) < \varepsilon$.

Portanto, A tem conteúdo nulo.

- **2.** Seja $\phi \subset \mathbb{R}^2$. Consideremos um conjunto $B \subset \mathbb{R}^2$ tal que B tem conteúdo nulo. Como $\phi \subset B$, então ϕ também terá conteúdo nulo.
- 3. Suponhamos que o conjunto tenha n pontos. Para cada ponto, considere um quadrado com centro no ponto e com lado estritamente menor que $\sqrt{\frac{\varepsilon}{n}}$. Os quadrados cobrem o conjunto e a soma das áreas é menor que ε . Logo, o conjunto tem conteúdo nulo.