Total No. of Questions: 6

Total No. of Printed Pages:3

Faculty of Engineering End Sem (Odd) Examination Dec-2022 EC3CO11 Digital Communication

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

N

		questions are compulsory. Internal ches) should be written in full instead of	oices, if any, are indicated. Answers only a, b, c or d.)]
Q .1	i.	In digital transmission, the modulation bandwidth is-	on technique that requires minimum	1
		(a) Delta modulation (b) PCM	(c) DPCM (d) PAM	
	ii.	Quantization noise can be reduced	by the number of levels.	1
		(a) Decreasing	(b) Increasing	
		(c) Doubling	(d) Squaring	
	iii.	In which waveform logic 1 and logic	0 are represented by opposite one-	1
		half bit wide pulses-		
		(a) Unipolar RZ	(b) Bipolar RZ	
		(c) RZ-AMI	(d) Manchester coding	
	iv.	Matched filter provides signa		1
		(a) Maximum	(b) Minimum	
		(c) Zero	(d) Infinity	
	v.	Which modulation scheme is also	• -	1
		(a) ASK (b) FSK	(c) PSK (d) GMSK	
	Vi.	Which filter is used to get the final F	3	1
		(a) Low pass filter	(b) High pass filter	
		(c) Band pass filter	(d) Band stop filter	_
	vii.	Binary Huffman coding is a-		1
		(a) Prefix condition code		
		(b) Suffix condition code		
		(c) Prefix & Suffix condition code		
	:::	(d) None of these		1
	V111.	Which reduces the size of the data?		1
		(a) Source coding	(b) Channel coding (d) None of these	
		(c) Source & channel coding	(d) None of these	_

P.T.O.

ix. For a (7, 4) block code, 7 is the total number of bits and 4 is the number 1 of-(a) Information bits (b) Redundant bits (c) Total bits- information bits (d) None of these For hamming distance d_{min} and t errors in the received word, the 1 condition to be able to correct the errors is-(b) $2t + 2 < 2d_{min}$ (a) $2t + 1 \le d_{\min}$ (c) $2t + 1 \le 3d_{min}$ (d) None of these What is the fundamental difference between uniform quantization and Q.2 i. 2 non-uniform quantization? List out major advantages of digital communication over analog 3 communication system. iii. Explain differential pulse code modulation with suitable diagram. 5 OR iv. What is the major advantage of adaptive delta modulation? Explain 5 adaptive delta modulation in detail. List out desirable properties of line codes. O.3 i. 3 What is Inter Symbol Interference (ISI)? List out methods to remove ISI 7 and explain any one method in detail. Write brief note on maximum likelihood detector and show its error 7 OR iii. performance in white gaussian noise channel. Briefly explain Pseudo Noise (PN) sequence generator with suitable 3 O.4 i. diagram. Explain the concept of DPSK modulation with suitable diagram. Write brief note on frequency hopped spread spectrum system. List out 7 OR iii. its advantages and limitations. Briefly explain "Code-Efficiency" and "Code-Redundancy". O.5 i. Given the messages X_1 , X_2 , X_3 , X_4 , X_5 and X_6 with respective 6 probabilities 0.4, 0.2, 0.2, 0.1, 0.07 and 0.03. Construct a binary code by applying Shannon-Fano encoding procedure. Determine code efficiency and code redundancy of the code. OR iii. Given messages S₁, S₂, S₃ and S₄ with respective probabilities of 0.4, 6

0.3, 0.2 and 0.1. Construct a binary code by applying Huffman encoding

procedure. Determine the efficiency and redundancy of the code.

- Q.6 Attempt any two:
 - i. Consider a linear block code with the following parity check matrix-

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

5

5

- (a) Find the corresponding generator matrix.
- (b) Obtain the code word for the information sequence [0 1 0 1]
- ii. Briefly explain systematic and non-systematic cyclic codes.
- iii. Suppose a convolution encoder has generator polynomials 5 $g_1(x) = 1 + x + x^3$ and $g_2(x) = 1 + x^2$. Find the encoder output if the data input to the encoder is $d = \lceil 10111 \rceil$.

Scheme of Marking

Faculty of Engineering End Sem (Odd) Examination Dec-2020 Digital Communication (T) - EC3CO11 (T)

Programme: B.Tech.

Branch/Specialisation: EC

Note: The Paper Setter should provide the answer wise splitting of the marks in the scheme below.

Q.1	i)	In digital transmission, the modulation technique that requires minimum bandwidth is (a) Delta modulation	1
	ii)	Quantization noise can be reduced by the number of levels. (b) Increasing	1
	iii)	In which waveform logic 1 and logic 0 are represented by opposite one half bit wide pulses? (b) Bipolar RZ	1
	iv)	Matched filter provides signal to noise ratio. (a) Maximum	1
	v)	Which modulation scheme is also called as on-off keying method? (a) ASK	1
	vi)	Which filter is used to get the final FHSS signal? (c) Band pass filter	1
	vii	Binary Huffman coding is a (a) Prefix condition code	1
	vii	Which reduces the size of the data? (a) Source coding	1
	ix)	For a (7, 4) block code, 7 is the total number of bits and 4 is the number of (a) Information bits	1
	x)	For hamming distance d_{min} and t errors in the received word, the condition to be able to correct the errors is (a) $2t+1 \leq d_{min}$	1
Q.2	î.	Each Correct comparison carry: I-Marks (Students must write at least two correct comparisons to obtain full Marks)	2

	ii.	Each correct advantage carry: 1-Mark (Students must write at least three correct advantages to obtain full Marks)	3
	iii.	Block Diagram of DCM Transmitter/Receiver: 3-Marks Theoretical explanation of DPCM: 2-Marks	5
OR	iv.	Block Diagram of ADM : 2-Marks Theoretical explanation of ADM: 3-Marks	İ
Q.3	i.	Each correct property carry: 1-Mark (Students must write at least three correct properties to obtain full Marks)	3
	ii.	ISI Explanation : 2-Mark List of Methods to remove ISI: 1-Mark Explanation of any one method : 4-Marks	7
OR	iii.		7
Q.4	i.	Theoretical Explanation of PN code: 2- Marks Block Diagram of PN sequence generator: 1- Mark	3
	ii.	Block Diagram of DPSK Transmitter/Receiver : 4-Marks Theoretical explanation of DPSK: 3-Marks	7
OR	iii.	Block Diagram of FHSS: 2- Marks Theoretical explanation: 2- Marks Advantages: 2- Marks Limitation: 1- Mark	7
Q.5	i.	Explanation of Code Efficiency : 2- Marks Explanation of Code Redundancy : 2- Marks	4
		D. Co.	
		Prities Primary	di c

Given the messages X_1 , X_2 , X_3 , X_4 , X_5 and X_6 with respective probabilities 0.4, 0.2, 0.2, 0.1, 0.07 and 0.03. Construct a binary code by applying Shannon-Fano encoding procedure. Determine code efficiency and code redundancy of the code. X1 0 4 1 0 4 1 X1 0 2 1 0 2 0 X3 0 2 0 0 2 2 X4 0 1 0 0 1 0 X5 0 0 0 0 0 0 3 0 2- multis 001 0 001 1 12 Xi 10 01 1- Mark X3 001 X6 & PILI = (0 4)(2)+02(2)+02(2)+01(3)+(007)4 [L= 2.3 binits/message] + 0 03(4) Entropy $H(U) = \sum_{i=1}^{6} P_i \log \left(\frac{L}{p_i}\right)$ = 0.410.3 do + 0.2 leg do + 0.2 leg do + 0.3 leg do 1
+ 0.0 200 do 4 + 0.63 leg do 6.3

[H(4) = 2 209 bits/message] Code Redundancy = 1 - Te = 3.95 1 1/2 maxima

ii.	Explanation of Systematic Cyclic Code: 2.5 Marks Explanation Non Systematic Cyclic Code: 2.5 Marks		
iii.	Suppose a convolution encoder has generator polynomials $g_1(x) = 1 + x + x^3$ and $g_2(x) = 1 + x^2$. Find the encoder output if the data input to the encoder is $d = [10111]$.		
	Q=6 (iii) $3\pm(x)=1+x+x^2=[1 3 1]$ $3\pm(x)=1+x^2=[1 3 1]$ Priors the entreape $d=[3 0 3 1 3]$ $dx=1+x^2+x^2+x^4=1$. 1		
	• Cutput of the Encodor. $C(x) = C_1(x^2) + d C_2(x^2)$ $C_1(x^2) = 1 + x^2 + x^2 + x^{22}$ $C_1(x^2) = 1 + x^4 + x^6 + x^{12}$ $C(x) = 1 + x^4 + x^8 + x^{12} + x + x^3 + x^{13}$		
	C = 31, 10, 00, 01, 10, 02, 11 $C = 31, 10, 00, 01, 10, 02, 11$		
