习题讲解

Hw1 – Hw3, Quiz 1

王彤 wangt_@zju.edu.cn

1. 能实现任何逻辑函数的逻辑门的集合,被称为逻辑门的完全集。已知二输入与门、二输入或门和非门为一个完全集。试证明:二输入或门、异或门为逻辑门的完全集。

解:

利用异或门得到非门: $Y = A \oplus 1 = \bar{A}$,

再加上本来的或门,可以用非门和或门得到与门: $Y = \overline{A} + \overline{B} = \overline{AB} = \overline{AB}$

 AB_{\circ}

或
$$Y = (A \oplus B) \oplus (A + B) = AB$$

2. 采用公式法将下面的逻辑函数化简成最简与或式,并用与非门实现。

$$M: Y = (A\overline{B} + D)(AB + \overline{B})D + ABE + A\overline{D}E$$

$$= AD(B + \overline{B}) + \overline{B}D + ABE + A\overline{D}E$$

$$= AD + \overline{B}D + ABE + A\overline{D}E$$

$$= AD(1+E) + \bar{B}D + ABE + A\bar{D}E$$

$$= AD + \overline{B}D + ABE + A\overline{D}E + ADE$$

$$= AD + \bar{B}D + ABE + AE$$

$$= AD + \bar{B}D + AE$$

$$= \overline{\overline{AD} \cdot \overline{BD} \cdot \overline{AE}}$$

$$A + \bar{A}B = A + B$$

$$A + AB = A$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

3. 用权6, 3, 1, 1将十进制表示为含权的二进制码。

解:

十进制	6	3	1	1	
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	1	
3	0	1	0	0	
4	0	1	0	1	
5	0	1	1	1	
6	1	0	0	0	
7	1	0	0	1	
8	1	0	1	1	
9	1	1	0	0	

4. 列出真值表:输入是3位二进制,输出为3位循环码解:

3位二进制	3 位循环码
000	000
001	001
010	011
011	010
100	110
101	111
110	101
111	100

5. 和**8421BCD**码(1010100)等值的二进制数为 。

解: BCD 码定义: 用4位二进制的前10个码代表十进制的0~9。

$$54 = 32 + 16 + 0 + 4 + 2 + 0 = (110110)_2$$

误: 1. 没有理解8421BCD码,把(1010100)看作二进制数,换算84

$$2.(5 + 4 =) 9 / 504$$

6. 一个格雷码的前一个码是0101, 后一个是1100, 这个格雷码是。

解:根据格雷码的定义,答案为0100。

注意,虽然1101 也满足每项只变化1 比特,但是,格雷码还需要满足每一位的状态按照一定的顺序循环。自右向左,状态循环中连续的0、1 数目增加一倍。

7. 给定逻辑函数Y的波形图如下图所示,试写出该逻辑函数的真值表和逻辑表达式。

7. 给定逻辑函数Y的波形图如下图所示,试写出该逻辑函数的真值表和逻辑表达式。

7. 给定逻辑函数Y的波形图如下图所示,试写出该逻辑函数的真值表和逻辑表达式。

A3	A2	A1	A0	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

$$\begin{split} Y &= A_3 ' A_2 ' A_1 ' A_0 + A_3 ' A_2 ' A_1 A_0 ' \\ &+ A_3 ' A_2 A_1 ' A_0 ' + A_3 ' A_2 A_1 A_0 \\ &+ A_3 A_2 ' A_1 ' A_0 ' + A_3 A_2 ' A_1 A_0 \\ &+ A_3 A_2 A_1 ' A_0 + A_3 A_2 A_1 A_0 ' \\ &= A_3 \oplus A_2 \oplus A_1 \oplus A_0 \end{split}$$

- 8. 采用卡诺图法化简下列逻辑函数,要求表达式尽量简单。
- 1) $F(A,B,C,D) = \sum m(0,1,4,7,9,10,13) + \sum d(2,5,8,12,14,15)$,其中d为任意项

CD	00	01	11	10
00	1	1		X
01	1	X	1	
11	X	1	X	X
10	X	1		1

$$F(A,B,C,D) = \bar{C} + A\bar{D} + BD$$

8. 采用卡诺图法化简下列逻辑函数,要求表达式尽量简单。

2)
$$Y(A, B, C, D) = (\bar{A} + B + C + D)(A + \bar{B})(A + B + D)(\bar{B} + C)(\bar{B} + \bar{C} + \bar{D})$$

01 11 10
$$Y = \prod M(0,2,4,5,6,7,8,12,13,15)$$

= $\sum m(1,3,9,10,11,14)$

反演定理:

$$Y' = A\bar{B}\bar{C}\bar{D} + \bar{A}B + \bar{A}\bar{B}\bar{D} + B\bar{C} + BCD$$

$$Y(A, B, C, D) = B\overline{D} + AC\overline{D}$$

9. 将下面函数化简为最简与或式,不必考虑冒险。

1)
$$Y = \bar{A}D + AB\bar{C} + A\bar{B}\bar{D} + \bar{A}\bar{B}\bar{C}\bar{D}$$
, 约束条件为
$$ABC + ABD + ACD + BCD = 0$$

CD AB	00	01	11	10
00	1	1	1	
01		1	X	
11	1	X	X	X
10	1		X	1

无关项覆盖最小项

无关:是否把这些最小项写入 逻辑函数式无关紧要,可以写 入也可以删除

$$Y = \bar{A}D + A\bar{D} + \bar{A}\bar{B}\bar{C}$$

9. 将下面函数化简为最简与或式,不必考虑冒险。

2)
$$Y = \prod M(1,3,4,6,7,9,11,12,14,15)$$

$$Y = \sum m(0,2,5,8,9,13)$$

$$Y = \bar{B}\bar{D} + B\bar{C}D$$

10. 用最小项之和与最大项之积来表示下列函数

$$F(A,B,C,D) = \bar{B}D + \bar{A}D + BD$$

CD AB	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

$$F(A, B, C, D) = \bar{B}D + \bar{A}D + BD$$

$$= (\bar{B} + \bar{A} + B)D$$

$$= D$$

$$= \sum m(1,3,5,7,9,11,13,15)$$

$$= \prod M(0,2,4,6,8,10,12,14)$$

11. 用异或门和与门实现下面的布尔表达式。

$$F = A\bar{B}C\bar{D} + \bar{A}BC\bar{D} + A\bar{B}\bar{C}D + \bar{A}B\bar{C}D$$

解:

$$F = A\bar{B}(C\bar{D} + \bar{C}D) + \bar{A}B(C\bar{D} + \bar{C}D)$$
$$= (A\bar{B} + \bar{A}B)(C\bar{D} + \bar{C}D)$$

12. 有函数
$$F1(A,B,C,D) = ABC\overline{D} + B\overline{C}D + A\overline{B}D + A\overline{B}\overline{C}D + \overline{A}D$$

$$F2(A,B,C,D) = CD + ABCD + BD + ACD + BCD$$

试求函数 $F3(A,B,C,D) = F1 \oplus F2$ 的最简与或表达式。

12. 解:

CD	00	01	11	10		CD AB	00	01	11	10	CD AB	00	01	11	10
00	0	1	1	0		00	0	0	1	0	00	0	1	0	0
01	0	1	1	0	\oplus	01	0	1	1	0		0	0	0	0
11	0	1	0		Ψ	11	0	1	1	0	11	0	0	1	1
10	0	1	0	0		10	0	0	1	0	10	0	1	1	0

$$F3(A,B,C,D) = \bar{B}\bar{C}D + ACD + ABC = \bar{B}\bar{C}D + A\bar{B}D + ABC$$

12. 解:

$$F1(A, B, C, D) = \bar{C}D + \bar{A}D + ABC\bar{D}$$

$$F2(A, B, C, D) = BD + CD$$

$$F3(A,B,C,D) = \bar{A}\bar{B}\bar{C}D + A\bar{B}\bar{C}D + A\bar{B}CD + ABC\bar{D} + ABCD$$

$$= \bar{B}\bar{C}D + ACD + ABC$$

误:
$$F3(A,B,C,D) = \bar{A}\bar{B}\bar{C}D + A\bar{B}\bar{C}D + A\bar{B}CD + ABC\bar{D} + ABCD$$

$$= \bar{B}\bar{C}D + ACD + ABC\bar{D}$$

$$= \bar{B}\bar{C}D + ABC + A\bar{B}CD$$

- 逻辑表达式形式变换(课本2.9节)
- 与或→与非-与非:将整个与或项两次求反
- 与或 → 与或非:将不包含在Y内的最小项相加后求反
- 与或 → 或与:

与或→与或非→或与

$$A + BC = (A + B)(A + C)$$

- 与或→或非-或非:
 - 与或→与或非→或非

1. 设计一个码变换电路,将二-十进制(BCD码)转化成余 3 码。要求采用与门、或门和反相器实现,所有门的输入端不超过两个。列出卡诺图、逻辑表达式,画出电路图。

解:

BCD	余3码	BCD	余3码
0000	0011	0101	1000
0001	0100	0110	1001
0010	0101	0111	1010
0011	0110	1000	1011
0100	0111	1001	1100

无关项

Y2	CD AB	00	01	11	10
	00	0	1		1
	01	1	0	0	0
	11	X	X	X	X
	10	0	1	X	X

Y3 CD	00	01	11	10
00	0	0	0	0
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

$$Y_{3} = A + BD + BC$$

$$Y_{2} = \overline{B}D + \overline{B}C + B\overline{C}\overline{D}$$

$$Y_{1} = \overline{C}\overline{D} + CD$$

$$Y_{0} = \overline{D}$$

2. 画出4片8-3优先编码器74HC148组成32-5线的优先编码器的逻辑图,允许附加必要的门电路。采用74HC148的逻辑图。

解: 首先明确74HC148输入输出端口对应的意义。

输入: S为使能端, 低电平有效。

输出: Y's为低时,代表"电路工作,且无编码输入"。

 Y'_{EX} 为低时,代表"电路工作,且有编码输入"。

编码器不工作时,输出全部为高电平"1"。

按照书本中例题4.5.1的解法,高优先级的编码器没有编码输出时,低优先级的才能使能,所以先将Ys和S依次相连;

```
2. Z4 = 1: I \in [16, 31]
```

Z3 = 1: $I \in [8,15] \cup [24,31]$

Z2 = 1: $I \in [4,7] \cup [12,15] \cup [20,23] \cup [28,31]$

Z1 = 1: $I \in \{2,3,6,7,10,11,14,15,18,19,22,23,26,27,30,31\}$

Z0 = 1: $I \in \{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31\}$

2.
$$Z4 = Y_{EX}(2) + Y_{EX}(3) = \overline{Y'_{EX}(2) \cdot Y'_{EX}(3)}$$

 $Z3 = Y_{EX}(1) + Y_{EX}(3) = \overline{Y'_{EX}(1) \cdot Y'_{EX}(3)}$
 $Z2 = Y2(0) + Y2(1) + Y2(2) + Y2(3) = \overline{Y2'(0) \cdot Y2'(1) \cdot Y2'(2) \cdot Y2'(3)}$
 $Z1 = Y1(0) + Y1(1) + Y1(2) + Y1(3) = \overline{Y1'(0) \cdot Y1'(1) \cdot Y1'(2) \cdot Y1'(3)}$
 $Z0 = Y0(0) + Y0(1) + Y0(2) + Y0(3) = \overline{Y0'(0) \cdot Y0'(1) \cdot Y0'(2) \cdot Y0'(3)}$

3. 设计代码转换电路,输入为 3 位格雷码,输出为二进制码。要求用一个 8 线-3 线优先级编码器 74HC148 和一个 3 线-8 线译码器 74HC138,不采用其它器件。

解:

将格雷码输入3线-8线译码器,可以得到一个最小项;利用这个最小项输入8线-3线优先级编码器,可以获得一个唯一的三位的编码,所以只用将两者连接好,就可以得到二进制码。

这里需要注意输入输出的有效性(高有效或是低有效)。

3.

格雷码	译码器输出	优先编码器输入	二进制码
	$Y_0'Y_1'Y_2'Y_3'Y_4'Y_5'Y_6'Y_7'$	$I_0'I_1'I_2'I_3'I_4'I_5'I_6'I_7'$	
000	0111_1111	XXXX_XXX0	000
001	1011_1111	XXXX_XX01	001
011	1110_1111	XXXX_X011	010
010	1101_1111	XXXX_0111	011
110	1111_1101	XXX0_1111	100
111	1111_1110	XX01_1111	101
101	1111_1011	X011_1111	110
100	1111_0111	0111_1111	111

译码器 输出	优先编码 器输入
Y_0'	I,'
Y_1'	I_6
Y_3'	I_5
Y_2'	${\rm I_4}'$
Y_6'	I_3
Y ₇ '	I ₂ '
Y ₅ '	I_1'
Y_4^{\prime}	I_0

3.

4. 用一个8选1数据选择器设计一个函数发生器电路(S0、S1、A分别对应A2、A1、A0输入端口),电路功能表如下所示。

S1	S0	Y
0	0	A ullet B
0	1	A+B
1	0	$A \oplus B$
1	1	$\overline{\overline{A}}$

解: (例4.5.5)

$$S' = 0$$

$$Y = D_0(A_2'A_1'A_0') + D_1(A_2'A_1'A_0) + D_2(A_2'A_1A_0') + D_3(A_2'A_1A_0) + D_4(A_2A_1'A_0') + D_5(A_2A_1'A_0) + D_6(A_2A_1A_0') + D_7(A_2A_1A_0)$$

4.

S1	S 0	Y
0	0	$A \bullet B$
0	1	A+B
1	0	$A \oplus B$
1	1	\overline{A}

$$Y = \overline{S_0} \overline{S_1} (A \bullet B) + S_0 \overline{S_1} (A + B) +$$

$$\overline{S_0} S_1 (A \oplus B) + S_0 S_1 \overline{A}$$

$$= \overline{S_0} \overline{S_1} A B + S_0 \overline{S_1} A + S_0 \overline{S_1} \overline{A} B +$$

$$\overline{S_0} S_1 \overline{A} B + \overline{S_0} S_1 A \overline{B} + S_0 S_1 \overline{A}$$

$$Y = m_0 0 + m_1 B + m_2 B + m_3 \overline{B} +$$

$$m_4 B + m_5 1 + m_6 1 + m_7 0$$

5. 用一个3线-8线译码器和门电路设计下列逻辑函数(A、B、C分别对应A2、

$$Y_{1} = AB + A\overline{C}$$

$$Y_{2} = \overline{AB + BD} \bullet BC + \overline{AB + BC}$$

$$Y_{1} = ABC + AB\overline{C} + A\overline{B}\overline{C} = m_{4} + m_{6} + m_{7} = \overline{m_{4}} \bullet \overline{m_{6}} \bullet \overline{m_{7}}$$

$$Y_{2} = \overline{AB} + BD \bullet BC + \overline{AB} + B\overline{C} = ABC\overline{D} + \overline{AB} + B\overline{C}$$

$$= ABC\overline{D} + \overline{ABC} + \overline{ABC} + AB\overline{C} = m_{2} + m_{3} + m_{6} + m_{7}\overline{D}$$

$$= \overline{m_{2}} \bullet \overline{m_{3}} \bullet \overline{m_{6}} \bullet \overline{m_{7}}\overline{D} = \overline{m_{2}} \bullet \overline{m_{3}} \bullet \overline{m_{6}} \bullet (\overline{m_{7}} + D)$$

5.

6. 试用4位并行加法器74HC283设计一个加/减运算电路。当控制信号M=0时,它将两个输入的4位二进制数相加,而M=1时它将两个输入的4位二进制数相减。两数相加的绝对值不大于15。允许附加必要的门电路。

解:
$$M = 0$$
时, $S_3S_2S_1S_0 = a_3a_2a_1a_0 + b_3b_2b_1b_0$

$$M=1 \ \ \text{if}, \ \ S_3S_2S_1S_0=a_3a_2a_1a_0+[b_3b_2b_1b_0]_{\nmid h}=a_3a_2a_1a_0+b_3'b_2'b_1'b_0'+1$$

输出的和是补码形式, S_F 是和的符号位, 和为正数时 $S_F = 0$, 和为负数是 $S_F = 1$ 。

7. 试用两个4位数值比较器组成三个数的判断电路。要求能够判别三个4位二进制数 $A(a_3a_2a_1a_0)$ 、 $B(b_3b_2b_1b_0)$ 、 $C(c_3c_2c_1c_0)$ 是否相等、A是否最大、A是否最小,并分别给出"三个数相等"、"A最大"、"A最小"的输出信号。可以附加必要的门电路。

解: "A最大" =
$$(A > B) \cdot (A > C)$$

"三个数相等" =
$$(A = B) \cdot (A = C)$$

7.

7.

误:八位数值比较器

$$c_3c_2c_1c_0a_3a_2a_1a_0$$
 $a_3a_2a_1a_0b_3b_2b_1b_0$

$$c_3c_2c_1c_0a_3a_2a_1a_0 = a_3a_2a_1a_0b_3b_2b_1b_0$$
: (A = B = C)

$$c_3c_2c_1c_0a_3a_2a_1a_0 > a_3a_2a_1a_0b_3b_2b_1b_0 : C > A \& (A = B \mid A > B \mid A < B)$$

$$A > B & A = C$$

$$c_3c_2c_1c_0a_3a_2a_1a_0 < a_3a_2a_1a_0b_3b_2b_1b_0 : C < A & (A = B | A > B | A < B)$$

$$A < B \& A = C$$

- 8. 设计一个四比特位8421BCD码乘以5的电路,要求输出也为8421BCD码, 写出设计过程,画出电路。
- 1)用4线-16线译码器及门电路实现此电路(只画出十位的BCD码电路即可)。
- 2)不用任何器件设计此电路,请写出设计过程,画出电路。

解: 输入 $A_3A_2A_1A_0$, 输出 $Y_7Y_6Y_5Y_4Y_3Y_2Y_1Y_0$:

$$Y_7Y_6Y_5Y_4 * 10 + Y_3Y_2Y_1Y_0 * 1 = A_3A_2A_1A_0 * 5$$

对右边进行化简,得到:

 $Y_7Y_6Y_5Y_4*10+Y_3Y_2Y_1Y_0*1=(A_3A_2A_1*2+A_0)*5=A_3A_2A_1*10+A_0*5$ 因为 A_0*5 不会产生进位:

$$Y_7Y_6Y_5Y_4 = A_3A_2A_1$$

 $Y_3Y_2Y_1Y_0 = A_0 * 5$

8.

输入	A3	A2	A1	A0	乘5	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	5	0	0	0	0	0	1	0	1
2	0	0	1	0	10	0	0	0	1	0	0	0	0
3	0	0	1	1	15	0	0	0	1	0	1	0	1
4	0	1	0	0	20	0	0	1	0	0	0	0	0
5	0	1	0	1	25	0	0	1	0	0	1	0	1
6	0	1	1	0	30	0	0	1	1	0	0	0	0
7	0	1	1	1	35	0	0	1	1	0	1	0	1
8	1	0	0	0	40	0	1	0	0	0	0	0	0
9	1	0	0	1	45	0	1	0	0	0	1	0	1

$$Y_7 = 0$$
 $Y_6 = A_3$ $Y_5 = A_2$ $Y_4 = A_1$
 $Y_3 = 0$ $Y_2 = A_0$ $Y_1 = 0$ $Y_0 = A_0$

8.
$$Y_7 = 0$$
 $Y_6 = A_3$ $Y_5 = A_2$ $Y_4 = A_1$ $Y_3 = 0$ $Y_2 = A_0$ $Y_1 = 0$ $Y_0 = A_0$

按照第一小题的题意,要用4线-16线译码器及门电路实现此电路(只画出十位的BCD码电路即可)。

利用4线-16线译码器可以得到A₃A₂A₁A₀的全部最小项,须注意除去无关项。

$$Y_{6} = A_{3} = m_{8} + m_{9} + \dots + m_{15} = m_{8} + m_{9} = \overline{m_{8} \bullet m_{9}}$$

$$Y_{5} = A_{2} = \sum m(4, 5, 6, 7, 12, 13, 14, 15) = \overline{m_{4} \bullet m_{5} \bullet m_{6} \bullet m_{7}}$$

$$Y_{4} = A_{1} = \sum m(2, 3, 6, 7, 10, 11, 14, 15) = \overline{m_{2} \bullet m_{3} \bullet m_{6} \bullet m_{7}}$$

8.

9. 试分析下图电路中当A、B、C、D单独一个改变状态时是否存在竞争-冒险现象?如果存在竞争-冒险现象,那么都发生在其他变量为何种取值的情况下?

Y = A'CD + AB'D + BC' + CD'

9.

$$Y = A'CD + AB'D + BC' + CD'$$

- (1)当B = 0,C = D = 1时,输出逻辑式简化为Y = A + A'故A改变状态时存在竞争-冒险现象。
- (2) 当A = 1,C = 0,D = 1时,输出逻辑式简化为Y = B + B'故B改变状态时存在竞争-冒险现象。
- (3) 当A = 0,B = D = 1,或者B = 1,D = 0时,输出逻辑式简化为Y = C + C'故C改变状态时存在竞争-冒险现象。
- (4) 当A = 1, B = 0, C = 1, 或者A = 0, C = 1时,输出逻辑式简化为Y = D + D'

故D改变状态时存在竞争-冒险现象。

- 组合逻辑电路设计
- 译码器: $Y = \sum m_i$, 或/与非
- 数据选择器: $Y = D_0(A_1'A_0') + D_1(A_1'A_0) + D_2(A_1A_0') + D_3(A_1A_0)$
- 半加器/全加器
- 数值比较器
- 多片低位器件互联组成高位器件:
 - 3线-8线译码器 → 4线-16线译码器
 - 4位数值比较器→8位数值比较器

画图规范存在问题:

- 设计过程
- 逻辑框图内部标注: 不写/改写
- 输入输出信号
- 没有用规定的器件实现
- 低电平有效符号
- 交叉点
- 与门
- 高电平/接地
- 不画器件
- 输入输出编码

1. 人的血型有 A、B、AB、O四种。输血时输血者的血型与受血者的血型必须符合图1中用箭头指示的授受关系。试用数据选择器设计一个逻辑电路,判断输血者与受血者的血型是否符合上述规定。(提示:可以用两个逻辑变量的四种取值表示输血者的血型,用另外两个逻辑变量的四种取值来表示受血者的血型)

1. 首先对血型编号,以MN表示输血者血型,PQ表示受血者血型,令A=00,B=01,AB=10,O=11,Y表示判断结果,Y=0表示不符合要求,Y=1表示符合要求。

根据授受关系可列出真值表:

根据真值表,列出逻辑表达式: Y = M'N'P'Q'+ M'N'PQ'+ M'NP'Q+ M'NPQ'+ MN'PQ'+ MNP'Q'+ MNP'Q+ MNPQ'+ MNPQ

M	N	P	Q	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

1. 首先对血型编号,以MN表示输血者血型,PQ表示受血者血型,令A=00,B=01,AB=10,O=11,Y表示判断结果,Y=0表示不符合要求,Y=1表示符合要求。

根据授受关系可列出真值表:

根据真值表,列出逻辑表达式: Y = M'N'P'Q'+ M'N'PQ'+ M'NP'Q+ M'NPQ'+ MN'PQ'+ MNP'Q'+ MNP'Q+ MNPQ'+ MNPQ

2. BCH(binary coded hexary)数字运算系统就是一种有限域运算系统。在模为6的BCH数字运算系统中,0到5分别采用000-001-010-011-100-101表示。模6运算域的加减法,与我们实数域加减法的区别就是输入在0到5范围内,且计算结果要对6取模。如3+4=(7 mod 6)=1。现要设计一个数字子系统,可以完成BCH码的加减计数功能,控制端为MODE。当MODE=0时,BCH数字系统为当前输入数字加1再模6;当MODE=1时,BCH数字系统为当前输入数字减1再模6。框图如下图所示: A,B,C,MODE为输入,X,Y,Z为BCH输出。

2. (1) 请列出输入输出真值表。(注意考虑无关项)

	输	λ		输出			
MODE	A	В	С	X	Y	Z	
0	0	0	0	0	0	1	
0	0	0	1	0	1	0	
0	0	1	0	0	1	1	
0	0	1	1	1	0	0	
0	1	0	0	1	0	1	
0	1	0	1	0	0	0	
1	0	0	0	1	0	1	
1	0	0	1	0	0	0	
1	0	1	0	0	0	1	
1	0	1	1	0	1	0	
1	1	0	0	0	1	1	
1	1	0	1	1	0	0	

2. (2) 根据真值表,利用卡诺图,写出X,Y,Z的最简与或式。(画出卡诺图,并给出化简结果。)

BC MA	00	01	11	10
00	0	1	0	1
01	0	0	X	X
11	1	0	X	X
10	0	0	1	0

BC MA	00	01	11	10
00	0	0	1	0
01	1	0	X	X
11	0	1	X	X
10		0	0	0

BC MA	00	01	11	10
00	1	0	0	1
01	1	0	X	X
11	1	0	X	X
10	1	0	0	1

X = MODE'(BC+AC') + MODE(AC+A'B'C')

Y=MODE(BC+AC')+MODE'(BC'+A'B'C)

Z=C'

3. 一个4输入优先编码器真值表如表所示,其中D0的优先级最低,D3的优先级最高。X表示无关条件,V表示有效位指示符。

	输	入	输出			
D_0	D_1	D_2	D_3	X	у	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

(1) 优先编码器出输出表达式如下:

$$x = D_2 + D_3$$
 $y = D_1 \overline{D_2} + D_3$ $V = D_0 + D_1 + D_2 + D_3$

写出这个 4 输入优先编码器的 Verilog HDL 行为描述,输入 D 用 4 位矢量, always 模块中用 if-else 描述,假定输入 D[3]具有最高优先级。

3. (1) 优先编码器出输出表达式如下:

$$x = D_2 + D_3$$
 $y = D_1 \overline{D_2} + D_3$ $V = D_0 + D_1 + D_2 + D_3$

写出这个 4 输入优先编码器的 Verilog HDL 行为描述,输入 D 用 4 位矢量, always 模块中用 if-else 描述,假定输入 D[3]具有最高优先级。

```
module encoder behavior(x, y, V, D);
 2
        input[3:0] D;
 3
        output x, y, V;
 4
        req x, y, V;
        always @ (D)
 6
          begin
                 if (D[3]) begin x = 1'b1; y = 1'b1; V = 1'b1; end
 8
            else if (D[2]) begin x = 1'b1; y = 1'b0; V = 1'b1; end
 9
            else if (D[1]) begin x = 1'b0; y = 1'b1; V = 1'b1; end
            else if (D[0]) begin x = 1'b0; y = 1'b0; V = 1'b1; end
10
11
            else
                           begin x = 1'b0; y = 1'b0; V = 1'b0; end
12
          end
13
      endmodule
14
```

注:用always块建立组合逻辑模型时,用阻塞赋值。

3. (2) 采用 Verilog HDL 语言仿真验证题目2的 4 输入优先编码器的行为级模型,给出仿真结果波形(需包含输入信号所有可能的值)。波形注意要截完整,不要遗漏信号名。

解:

本题主要考察模块的调用,以及测试文件的写法,由于只要求验证行为级模型,所以只需要调用行为级模型,并且赋予输入信号所有有可能的值,观察输出就可以了。当然门级模型一同验证比对也是可以的。要产生输入信号所有有可能的值,可以采用真值表的方法产生,也可以采用行为描述(定义变量不断加1)。

```
'include "encoder behavior.v"
                     'include "encoder gate.v"
3. (2)
                     module test encoder;
                       wire xb, yb, Vb;
                       wire xg, yg, Vg;
                       reg[3:0] D;
                       encoder behavior encoder1(xb, yb, Vb, D);
                       encoder gate encoder2 (xg, yg, Vg, D);
              10
                       initial
              11
                         begin
              12
                         #10 D=4'b0000;
              13
                         #10 D=4'b0001;
              14
                         #10 D=4'b0010;
              15
                         #10 D=4'b0011;
              16
                         #10 D=4'b0100;
              17
                         #10 D=4'b0101;
              18
                         #10 D=4'b0110;
              19
                         #10 D=4'b0111;
              20
                         #10 D=4'b1000;
              21
                         #10 D=4'b1001;
              22
                         #10 D=4'b1010;
              23
                         #10 D=4'b1011;
              24
                         #10 D=4'b1100;
              25
                         #10 D=4'b1101;
              26
                         #10 D=4'b1110;
              27
                        #10 D=4'b1111;
                                                             PPT lect06 p34-p40
              28
                         #10 $finish;
              29
                         end
              30
                     endmodule
```

3. (2)

Quiz 1

设计一个多功能组合逻辑电路, M_1M_0 为功能控制信号,ab为输入逻辑变量,F为电路输出。功能如右表所示(例如:当 $M_1M_0=00$ 时,实现F=a·b功能,当 $M_1M_0=10$ 时,实现F=a①b功能等)。要求:用一片74HC138和最少的与非门来实现该逻辑功能。要求写出逻辑表达式并画出电路图。

74HC138功能表

	输入			输出						
S_1	$S_2' + S_1'$	A_2 A_1 A_0	Y_7	Y_6'	Y_5'	Y_4'	Y_3'	Y_2'	Y_1'	Y_0'
0	X	XXX	1	1	1	1	1	1	1	1
X	1	XXX	1	1	1	1	1	1	1	1
1	0	0 0 0	1	1	1	1	1	1	1	0
1	0	0 0 1	1	1	1	1	1	1	0	1
1	0	0 1 0	1	1	1	1	1	0	1	1
1	0	0 1 1	1	1	1	1	0	1	1	1
1	0	1 0 0	1	1	1	0	1	1	1	1
1	0	1 0 1	1	1	0	1	1	1	1	1
1	0	1 1 0	1	0	1	1	1	1	1	1
1	0	1 1 1	0	1	1	1	1	1	1	1

 M_1M_0

Quiz 1

F $= \overline{M_{1}M_{0}}ab + \overline{M_{1}}M_{0}\overline{a}b + \overline{M_{1}}M_{0}a\overline{b} + M_{1}\overline{M_{0}}ab + M_{1}\overline{M_{0}}\overline{a}\overline{b} + M_{1}M_{0}ab + M_{1}M_{0}a\overline{b} + M_{1}M_{0}a\overline{$

$$= \overline{\overline{m_1' \cdot m_2' \cdot m_5' \cdot m_6' \cdot b}} \cdot \overline{\overline{m_3' \cdot m_4'} \cdot b'} \cdot \overline{m_7}$$

Quiz 1

最少的与非门理解为: 充分 利用所给的芯片, 不必要将 所有的地址位接法全列出来 比较

习题讲解

Hw1 – Hw3, Quiz 1

王彤 wangt_@zju.edu.cn