

Clustering: K-Means

DCS310

Sun Yat-sen University

Outline

- Introduction to Clustering
- K-Means

What is Clustering?

• Given a set of data instances $\{x^{(i)}\}_{i=1}^N$, clustering is about how to partition them into different groups

- The Objective
 - High similarity for intra-class instances
 - Low similarity for inter-class instances

Similarity Criteria Matters

Different similarity criteria could lead to different results

Similar or not?

Criteria 1: Identity Criteria 2: Glasses

Real-world Applications

Image grouping

Image segmentation

Automatically group semantic-similar documents together

Web-search result clustering

Social network analysis

Gene expression data clustering

Market segmentation

Outline

- Introduction to Clustering
- K-Means

K-Means Algorithm

• Randomly initialize K centers μ_k for $k = 1, \dots, K$, and then evaluate the distance between data $x^{(n)}$ and the centers μ_k

• Data $x^{(n)}$ is assigned to the cluster k with the smallest distance

$$r_{nk} = \begin{cases} 1, & \text{if } k = \arg\min_{j} \|\mathbf{x}^{(n)} - \boldsymbol{\mu}_{j}\|^{2} \\ 0, & \text{otherwise} \end{cases}$$

Updating the centers with the average of data in every cluster

Repeating the assignment and center updating process above

Convergence Guarantee

The total distance between the data and their corresponding centers

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| \boldsymbol{x}^{(n)} - \boldsymbol{\mu}_{k} \|^{2}$$

• It can be shown that the k-means algorithm can be recovered from optimizing r_n and μ_k of the below problem *alternatively*

$$\min_{r_{n_i}\mu_k} J$$

s.t. $r_n \in$ onehot vector $\forall n \& k$

where $r_n \triangleq [r_{n1}, r_{n2}, \dots, r_{nK}]$ is required to be a one-hot vector

The total distance J decreases monotonically, thus the K-means algorithm is guaranteed to converge

x ... data point

... centroid

Clusters after round 1

x ... data point

... centroid

x ... data point

... centroid

Clusters at the end

Issues: Number of Clusters

 How to set the value for K is extremely important to the final clustering result

The distance J decreases as the number of clusters K increases.
Thus, we cannot determine K by seeking the minimum of J

- 1) One possible method is to choose the elbow point (here K=2)
- 2) Another possible method is to determine the best K value according to the performance of downstream applications

Issues: Initialization

 The performance of K-means also highly depends on the positions of initial centers

- Random method
 - Choose the data instance randomly
 - Issue: may choose nearby instances
- Distance-based method
 - Start with one random data instance
 - Choose the point that is farthest to the existing centers
 - Issue: may choose outliers
- 3) Random + Distance method
 - Start with one random data instance
 - Choose the next center randomly from the remaining instances that is far away from existing centers

Issues: Hard Assignment

Hard assignment

A point either belongs to a cluster or not at all, that is, r_{nk} is equal to either 1 or 0

Soft K-means

Instead of assigning $x^{(n)}$ to a cluster k in a hard fashion, soft K-means assigns it in a soft way

$$r_{nk} = \frac{e^{-\beta \|x^{(n)} - \mu_k\|^2}}{\sum_{i=1}^{K} e^{-\beta \|x^{(n)} - \mu_i\|^2}}$$

$$\boldsymbol{\mu}_k \leftarrow \frac{\sum_{n=1}^N r_{nk} \, \boldsymbol{x}_n}{\sum_{n=1}^N r_{nk}}$$

 r_{nk} can be interpreted as the probability that data $\mathbf{x}^{(n)}$ belongs to the cluster k

Issues: Others

Sensitive to outliers

Round shape

The Euclidean distance determines the boundary is globular. When different clusters have irregular shapes, the performance is poor

