1. Сумма, разность, произведение, частое комплексных чисел в алгебраической форме

Найти сумму, разность, произведение и частное комплексных чисел в алгебраической форме:

1.
$$z_1 = 2 + 3i$$
, $z_2 = 1 + i$.
2. $z_1 = 3 + 4i$, $z_2 = 1 - i$.
3. $z_1 = 1 - 2i$, $z_2 = -1 + i$.
4. $z_1 = 2 + 5i$, $z_2 = -1 - i$.
5. $z_1 = 3 - 8i$, $z_2 = 2 + i$.
6. $z_1 = 3 - 7i$, $z_2 = 2 - i$.
7. $z_1 = 2 + 6i$, $z_2 = -2 + i$.
8. $z_1 = 4 + 2i$, $z_2 = -2 - i$.
9. $z_1 = 5 + 3i$, $z_2 = 3 + i$.
10. $z_1 = 6 - 2i$, $z_2 = 3 + i$.
11. $z_1 = 7 + 9i$, $z_2 = -3 + i$.
12. $z_1 = 3 - 7i$, $z_2 = -3 - i$.
13. $z_1 = 4 + 3i$, $z_2 = 4 + i$.
14. $z_1 = 8 + 3i$, $z_2 = 4 + i$.
15. $z_1 = 8 - 2i$, $z_2 = -4 + i$.
16. $z_1 = 9 + 2i$, $z_2 = 5 + i$.
17. $z_1 = 7 + 3i$, $z_2 = 5 + i$.
18. $z_1 = 6 - 4i$, $z_2 = 5 - i$.

2. Решение квадратных уравнений

Решить над комплексной плоскостью следующие уравнения:

1.a)
$$x^2 + 1 = 0$$
.

2. a)
$$x^2 + 2 = 0$$
.

3. a)
$$x^2 + 3 = 0$$
.

4. a)
$$x^2 + 4 = 0$$
.

5. a)
$$x^2 + 5 = 0$$
.

6. a)
$$x^2 + 6 = 0$$
.

7. a)
$$x^2 + 7 = 0$$
.

8. a)
$$x^2 + 8 = 0$$
.

9. a)
$$x^2 + 9 = 0$$
.

10. a)
$$2x^2 + 1 = 0$$
.

11. a)
$$3x^2 + 1 = 0$$
.

12. a)
$$4x^2 + 1 = 0$$
.

13. a)
$$5x^2 + 1 = 0$$
.

14. a)
$$6x^2 + 1 = 0$$
.

15. a)
$$7x^2 + 1 = 0$$
.

16. a)
$$8x^2 + 1 = 0$$
.

17. a)
$$9x^2 + 1 = 0$$
.

18. a)
$$2x^2 + 3 = 0$$
.

19. a)
$$2x^2 + 5 = 0$$
.

$$6) x^2 + 3x + 4 = 0.$$

$$6) x^2 - 2x + 3 = 0.$$

$$6) x^2 - 5x + 7 = 0.$$

6)
$$x^2 + x + 2 = 0$$
.

$$6) x^2 + 3x + 3 = 0.$$

$$6) x^2 + x + 1 = 0.$$

$$6) x^2 + 4x + 5 = 0.$$

$$6) x^2 - 2x + 2 = 0.$$

$$6) 3x^2 - x + 1 = 0.$$

$$6) 2x^2 + 2x + 1 = 0.$$

$$6) x^2 + 2x + 9 = 0.$$

$$6) x^2 - 3x + 5 = 0.$$

$$6) x^2 + x + 6 = 0.$$

6)
$$3x^2 + x + 2 = 0$$
.

$$6) 2x^2 - 5x + 4 = 0.$$

6)
$$x^2 + x + 3 = 0$$
.

6)
$$5x^2 - x + 1 = 0$$
.

$$6) 4x^2 + 2x + 1 = 0.$$

$$6) x^2 + 2x + 5 = 0.$$

3. Тригонометрическая и показательная формы комплексного числа

Представить комплексное число в показательной и тригонометрической формах:

5)
$$Z = 2 + 2\sqrt{3}i$$

7)
$$Z = -2 + 2\sqrt{3}i$$

9)
$$Z = 2\sqrt{3} + 2i$$

11)
$$Z = -2\sqrt{3} + 2i$$

17)
$$Z = 3 + \sqrt{3}i$$

19)
$$Z = -3 + \sqrt{3}i$$

21)
$$Z = \sqrt{3} + 3i$$

23)
$$-\sqrt{3} + 3i$$

25)
$$Z = 1 + i$$

27)
$$Z = -1 + 1$$

29)
$$Z = 1 + \sqrt{3}i$$

31)
$$Z = -1 + \sqrt{3}i$$

33)
$$Z = \sqrt{3} + i$$

35)
$$Z = -\sqrt{3} + i$$

6)
$$Z = 2 - 2\sqrt{3}i$$

8)
$$Z = -2 - 2\sqrt{3}i$$

10)
$$Z = 2\sqrt{3} - 2i$$

12)
$$Z = -2\sqrt{3} - 2i$$

18)
$$Z = 3 - \sqrt{3}i$$

$$Z = -3 - \sqrt{3}i$$

22)
$$\sqrt{3} - 3i$$

24)
$$-\sqrt{3} - 3i$$

26)
$$Z = 1 - i$$

28)
$$Z = -1 - i$$

30)
$$Z = 1 - \sqrt{3}i$$

32)
$$Z = -1 - \sqrt{3}i$$

34)
$$Z = \sqrt{3} - i$$

36)
$$Z = -\sqrt{3} - i$$

4. Произведение и частное комплексных чисел в тригонометрической форме

Найти произведение и частное комплексных чисел в тригонометрической форме:

1)
$$z_1 = 2 + 2\sqrt{3}i$$
, $z_2 = -5\sqrt{3} - 5i$

2)
$$z_1 = 2 - 2\sqrt{3}i$$
, $z_2 = -5\sqrt{3} + 5i$

3)
$$z_1 = -2 + 2\sqrt{3}i$$
, $z_2 = 5\sqrt{3} - 5i$

4)
$$z_1 = -2 - 2\sqrt{3}i$$
, $z_2 = 5\sqrt{3} + 5i$

5)
$$z_1 = 2 + 2i$$
, $z_2 = -5 - 5\sqrt{3}i$

6)
$$z_1 = 2 - 2i$$
, $z_2 = -5 + 5\sqrt{3}i$

7)
$$z_1 = -2 + 2i$$
, $z_2 = 5 - 5\sqrt{3}i$

8)
$$z_1 = -2 - 2i$$
, $z_2 = 5 + 5\sqrt{3}i$

9)
$$z_1 = 3 + \sqrt{3}i$$
, $z_2 = -7\sqrt{3} - 7i$

10)
$$z_1 = 3 - \sqrt{3}i, z_2 = -7\sqrt{3} + 7i$$

11)
$$z_1 = -3 + 3i, z_2 = 7\sqrt{3} - 7i$$

12)
$$z_1 = -3 - 3i, z_2 = 7\sqrt{3} + 7i$$

13)
$$z_1 = 2\sqrt{3} + 2i, z_2 = -6 - 6\sqrt{3}i$$

14)
$$z_1 = 2\sqrt{3} - 2i, z_2 = -6 + 6\sqrt{3}i$$

5. Возведение комплексных чисел в степень

Выполнить возведение в степень по формуле Муавра следующих комплексных чисел:

1)	(6 –	· 6i) ³
4)	(6+	· 6i) ³

7)
$$(-1 + \sqrt{3}i)^6$$

10)
$$(5\sqrt{3} + 5i)^3$$

13)
$$(-4+4i)^4$$

$$(-4 + 4i)$$

16)
$$(4-4i)^4$$

19)
$$(2 + 2i)^4$$

22) $(1 - i)^6$

25)
$$(7-7i)^3$$

28)
$$(7 + 7i)^3$$

31)
$$(-3-3i)^4$$

34)
$$(\sqrt{3}-i)^6$$

2)
$$(-6+6i)^3$$

5)
$$(-1 - \sqrt{3}i)^6$$

8)
$$(1 - \sqrt{3}i)^6$$

11)
$$(-5\sqrt{3}+5i)^3$$

14)
$$(-4-4i)^4$$

17)
$$(-2-2i)^4$$

20) $(-2+2i)^4$

23)
$$(-1+i)^6$$

26)
$$(-7 + 7i)^3$$

29)
$$(3+3i)^4$$

32)
$$(3-3i)^4$$

35)
$$(-\sqrt{3}-i)^6$$

3)
$$(-6-6i)^3$$

6)
$$(1 + \sqrt{3}i)^6$$

9)
$$(5\sqrt{3}-5i)^3$$

12)
$$(-5\sqrt{3}-5i)^3$$

15)
$$(4+4i)^4$$

18)
$$(2-2i)^4$$

21)
$$(-1-i)^6$$

24)
$$(1+i)^6$$

27)
$$(-7-7i)^3$$

30)
$$(-3+3i)^4$$

33)
$$(\sqrt{3} + i)^6$$

36)
$$(-\sqrt{3}+i)^6$$

6. Извлечение корня из комплексного числа

Найти все значения корня из комплексного числа

	2 /	_		
1١	1 2/	6	1	6i
	ľ	O.	┰	$oldsymbol{\iota}$

4)
$$\sqrt[3]{-6+6i}$$

7)
$$\sqrt[3]{7 + 7i}$$

10)
$$\sqrt{-8-8i}$$

13)
$$\sqrt[4]{4-4i}$$

16)
$$\sqrt[4]{4+4i}$$

19)
$$\sqrt{9-9i}$$

22)
$$\sqrt{-2-2\sqrt{3}i}$$

2)
$$\sqrt[3]{-6-6i}$$

5)
$$\sqrt[3]{-7+7i}$$

8)
$$\sqrt[3]{7-7i}$$

11)
$$\sqrt{8 + 8i}$$

14)
$$\sqrt[4]{-4-4i}$$

17)
$$\sqrt{9+9i}$$

20)
$$\sqrt{-9-9i}$$

23)
$$\sqrt{2 + 2\sqrt{3}i}$$

3)
$$\sqrt[3]{6-6i}$$

6)
$$\sqrt[3]{-7-7i}$$

9)
$$\sqrt{-8 + 8i}$$

12)
$$\sqrt{8-8i}$$

15)
$$\sqrt[4]{-4+4i}$$

18)
$$\sqrt{-9 + 9i}$$

21)
$$\sqrt{2-2\sqrt{3}i}$$

24)
$$\sqrt{-2 + 2\sqrt{3}i}$$