CMPSC 465 Data Structures and Algorithms Spring 2022

Instructor: Chunhao Wang

Greedy algorithms

Greedy algorithms

Minimum Spanning Tree

Running time of Kruskal's algorithm (I)

Depends on how we implement make_set, find_set, and union

Using linked list:

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \quad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b) \quad \text{head} \to a \to b \to c \to d \to e$$

Cost of union: O(length of the shorter list)

Using an array to implement it:

vertex	1	2	3	4	5	union	1	2	3	4	5
head	1	1	1	4	4		1	1	1	1	1

Running time of Kruskal's algorithm (II)

Worst-case cost for union: O(|V|). What about the cost for lines 6-9? Consider a single $v \in V$. Once it's touched in some union operation, the size of the set at least doubles. Since the maximum size of a set can be |V|, each v is touched at most $O(\log |V|)$ times

At most |V| vertices are involved in union operations, so the total cost of lines 6-9: $O(|V|\log |V|)$

Total cost of the algorithm: $O(|E| \log |V|)$

Alternative data structure

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

Directed tree disjoint set:

Definition

 $\pi(x)$: parent of x

root node: x s.t. $\pi(x) = x$

rank(x): number of the edges in the longest simple path from x to a leaf

Operations of direct tree disjoint set (I)

```
\bullet make_set(\nu)
  def make_set(v):
      \pi(v) := v;
      rank(v) = 0;
  Cost: O(1)
• find_set(v)
  def find_set(v):
      while v \neq \pi(v):
       v := \pi(v);
      return v;
```

Cost: O(depth of the node in the tree)

what about union?

Operations of direct tree disjoint set (II)

• union:

Option 1

$$b^{0} c^{0} \qquad e^{0} d^{2}$$

$$b^{0} h^{0}$$
Option 2
$$b^{0} c^{0} \qquad d^{2}$$

$$e^{0} f^{1}$$

$$g^{0} h^{0}$$
better!

Basic idea: attach the smaller ranked tree to a larger one

Operations of direct tree disjoint set (II)

```
def union(x, y):

r_x := \text{find\_set}(x), r_y := \text{find\_set}(y);
if rank(r_x) > rank(r_y):

\pi(r_y) := r_x;
else:

\pi(r_x) := r_y;
```

if $\operatorname{rank}(r_x) == \operatorname{rank}(r_y)$: $\operatorname{rank}(r_y) := \operatorname{rank}(r_y) + 1;$ Cost: dominated by find_set

$$b^{0} \xrightarrow{x^{0}} e^{0} \xrightarrow{d^{2}} b^{0} \xrightarrow{x^{0}} e^{0} \xrightarrow{f^{1}} y^{0}$$

$$b^{0} \xrightarrow{x^{0}} e^{0} \xrightarrow{y^{0}} y^{0}$$

$$b^{0} \xrightarrow{x^{0}} e^{0} \xrightarrow{y^{0}} y^{0}$$

$$b^{0} \xrightarrow{x^{0}} e^{0} \xrightarrow{y^{0}} y^{0}$$

Cost of find_set using directed tree disjoint set

Observation

Root note with rank k is formed by the merge of two rank k-1 trees

Lemma

Any root node of rank k has at least 2k nodes in it

Proof.

By induction: base case has k = 0 and $2^0 = 1$.

Assume the statement is true for k-1. By observation: after merging, the number of nodes is $> 2^{k-1} + 2^{k-1} = 2^k$

By the lemma, if we have |V| nodes, the maximum rank is $\log |V|$. So

- the cost of find_set: $O(\log |V|)$
- the cost of union: $O(\log |V|)$

Total running time of Kruskal using directed tree disjoint set

```
1 def Kruskal_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
      Set A := \{ \};
      for v \in V:
         make_set(v);
                                                                       // O(|V|)
      Sort E in increasing order of edge weights ;
                                                                // O(|E| \log |V|)
      for (u, v) \in E:
          if find_set(u) \neq find_set(v):
             A:=A\cup\{(u,v)\};
             union(u, v);
```

Total cost: $O(|E| \log |V|)$

Prim's algorithm

Intuition: iteratively grows the tree

Prim's algorithm: pseudocode

Let S be the set included in the tree so far $cost(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } prev(\cdot) \text{ is used to keep track of the tree}$ **def** PRIM_MST (undirected G = (V, E), weights $w = (w_e)_{e \in E}$): for $v \in V$: $cost(v) := \infty;$ $\operatorname{prev}(v) := \operatorname{nil};$ Pick any initial vertex u_0 ; $cost(u_0) := 0;$ $H := \text{make_queue}(V)$; // keys are cost(v)**while** *H* is not empty: $v = \text{delete_min}(H);$ for $e := (v, z) \in E$: if $cost(z) > w_e$: $cost(z) := w_e;$ prev(z) := v;

CMPSC 465 Spring 2022

Prim's algorithm: a running example

Starting with f

Set S	а	b	С	d	е	f	g	h
{}	∞/nil	∞/nil	∞/nil	∞/nil	∞/nil	0/nil	∞/nil	∞/nil
f	∞/nil	∞/nil	7/f	2/f	6/ <i>f</i>		∞/nil	∞/nil
f, d	∞/nil	8/ <i>d</i>	7/f		6/ <i>f</i>		2/d	4/d
f, d, g	∞/nil	8/ <i>d</i>	7/f		6/ <i>f</i>			4/d
f, d, g, h	∞/nil	8/ <i>d</i>	7/f		2/h			
f, d, g, h, e	∞/nil	8/ <i>d</i>	1/e					
f, d, g, h, e, c	8/ <i>c</i>	8/ <i>d</i>						
f,d,g,h,e,c,b	4/b							
f, d, g, h, e, c, b, a								