# **Chapter 11: Text Mining**

Lecturer: Dr. Nguyen Thi Ngoc Anh Email: ngocanhnt@ude.edu.vn

1

#### Data Mining in Text

- Association search in text corpuses provides suggestive information
  - Groups of related entities
  - · Clusters that identify topics
- Flexibility is crucial
  - Describe what an interesting pattern would look like
  - What causes items to be considered associated same document, sequential associations,?
  - Choice of techniques to rank the results
- Integrate with Information Retrieval systems
  - Common base preprocessing (e.g. Natural Language processing)
  - Need IR system to explore/understand text mining results

#### Why Text is Hard

- Lack of structure
  - Hard to preselect only data relevant to questions asked
  - Lots of irrelevant "data" (words that don't correspond to interesting concepts)
- Errors in information
  - Misleading/wrong information in text
  - Synonyms/homonyms: concept identification hard
  - Difficult to parse meaning I believe X is a key player vs. I doubt X is a key player
- Sheer volume of "patterns"
  - Need ability to focus on user needs
- Consequence for results:
  - False associations
  - · Vague, dull associations

### What About Existing Products? Data Mining Tools

- Designed for particular types of analysis on structured data
  - Structure of data helps define known relationship
  - Small, inflexible set of "pattern templates"
- Text is "free flow of ideas", tough to capture precise meaning
  - Many patterns exist that aren't relevant to problem
- Experiments with COTS products on tagged text corpuses demonstrate these problems
  - "Discovery overload": many irrelevant patterns, density of actionable items too low
  - Lack of integration with Information Retrieval systems makes further exploration/understanding of results difficult

### What About Existing Products? "Text Mining" Information Retrieval Tools

- "Text Mining" is (mis?)used to mean information retrieval
  - IBM TextMiner (now called "IBM Text Search Engine")
  - http://www.ibm.com/software/data/iminer/fortext/ibm\_tse.html
  - DataSet <a href="http://www.ds-dataset.com/default.htm">http://www.ds-dataset.com/default.htm</a>
- These are Information Retrieval products
  - · Goal is get the right document
- May use data mining technology (clustering, association)
  - Used to improve retrieval, not discover associations among concepts
- No capability to discover patterns among concepts in the documents.
- May incorporate technologies such as concept extraction that ease integration with a Knowledge Discovery in Text system

### What About Existing Products? Concept Visualization

- Goal: Visualize concepts in a corpus
  - SemioMap

http://www.semio.com/

SPIRE

http://www.pnl.gov/Statistics/research/spire.html

 Aptex Convectis <u>http://www.aptex.con</u> <u>convectis.htm</u>

High-level concept visualization

- Good for major trends, patterns
- Find concerts related to a norticu
- Find concepts related to a particular query
  - Helps find patterns if you know some of the instances of the pattern
- Hard to visualize "rare event"



### What About Existing Products? Corpus-Specific Text Mining

- Some "Knowledge Discovery in Text" products
  - Technology Watch (patent office)
     http://www.ibm.com/solutions/businessintelligence/textmining/techwatch.htm
  - TextSmart (survey responses) http://www.spss.com/textsmart
- Provide limited types of analyses
  - Fixed "questions" to be answered
  - Primarily high-level (similar to concept visualization)
- Domain-specific
  - Designed for specific corpus and task
  - Substantial development to extend to new domain or corpus

### What About Existing Products? Text Mining Tools

- True "Text Mining" just beginning to come to market
  - Associations: ClearForest http://www.clearforest.com
  - Semantic Networks: Megaputer's TextAnalyst™ <u>http://www.megaputer.com/taintro.html</u>
  - IBM Intelligent Miner for Text (toolkit) <u>http://www.ibm.com/software/data/iminer/fortext</u>
- Currently limited capabilities (but improving)
  - Further research needed
  - Directed research will ensure the right problems are solved
- Major Problem: Flood of Information
  - Analyzing results as bad as reading the documents

### Scenario: Find Active Leaders in a Region

- Goal: Identify people to negotiate with prior to relief effort
  - Want "general picture" of a region
  - No expert that already knows the situation is available
- Problems:
  - No clear "central authority"; problems are regional
  - Many claim power/control, few have it for long
  - Must include all key players in a region
- Solution: Find key players over time
  - Who is key today?
  - Past players (may make a comeback)

### Example: Association Rules in News Stories

- Goal: Find related (competing or cooperating) players in regions
- Simple association rules (any associated concepts) gives too many results
- Flexible search for associations allows us to specify what we want: Gives fewer, more appropriate results

| Person1             | Person2        | Support |
|---------------------|----------------|---------|
| Natalie Allen       | Linden Soles   | 117     |
| Leon Harris         | Joie Chen      | 53      |
| Ron Goldman         | Nicole Simpson | 19      |
| Mobotu Sese<br>Seko | Laurent Kabila | 10      |

| Person1   | Person2 | Place    | Support |
|-----------|---------|----------|---------|
| Mobuto    | Laurent | Kinshasa | 7       |
| Sese Seko | Kabila  |          |         |









## Example of Flexible Association Search Broadcast News Navigator Concept Correlation Tool



#### Text Databases and IR

- Text databases (document databases)
  - Large collections of documents from various sources: news articles, research papers, books, digital libraries, e-mail messages, and Web pages, library database, etc.
  - · Data stored is usually semi-structured
  - Traditional information retrieval techniques become inadequate for the increasingly vast amounts of text data
- Information retrieval
  - · A field developed in parallel with database systems
  - Information is organized into (a large number of) documents
  - Information retrieval problem: locating relevant documents based on user input, such as keywords or example documents

#### Information Retrieval

- Typical IR systems
  - Online library catalogs
  - Online document management systems
- Information retrieval vs. database systems
  - Some DB problems are not present in IR, e.g., update, transaction management, complex objects
  - Some IR problems are not addressed well in DBMS, e.g., unstructured documents, approximate search using keywords and relevance

#### Basic Measures for Text Retrieval



- Precision: the percentage of retrieved documents that are in fact relevant to the query (i.e., "correct" responses)
- Recall: the percentage of documents that are relevant to the query and were, in fact, retrieved

$$recall = \frac{|\{Relevant\} \cap \{Retrieved\}|}{|\{relevant\}|}$$

#### Information Retrieval Techniques(I)

- Basic Concepts
  - A document can be described by a set of representative keywords called index terms.
  - Different index terms have varying relevance when used to describe document contents.
  - This effect is captured through the assignment of numerical weights to each index term of a document. (e.g.: frequency, tf-idf)
- DBMS Analogy
  - Index Terms → Attributes
  - Weights → Attribute Values

#### Information Retrieval Techniques (2)

- Index Terms (Attribute) Selection:
  - Stop list
  - Word stem
  - $^{\circ}$  Index terms weighting methods
- Terms X Documents Frequency Matrices
- Information Retrieval Models:
  - Boolean Model
  - Vector Model
  - Probabilistic Model

#### **Boolean Model**

- Consider that index terms are either present or absent in a document
- As a result, the index term weights are assumed to be all binaries
- A query is composed of index terms linked by three connectives: not, and, and or
  - e.g.: car and repair, plane or airplane
- The Boolean model predicts that each document is either relevant or non-relevant based on the match of a document to the query

### Boolean Model: Keyword-Based Retrieval

- A document is represented by a string, which can be identified by a set of keywords
- Queries may use expressions of keywords
  - E.g., car and repair shop, tea or coffee, DBMS but not Oracle
  - Queries and retrieval should consider synonyms, e.g., repair and maintenance
- Major difficulties of the model
  - Synonymy: A keyword T does not appear anywhere in the document, even though the document is closely related to T, e.g., data mining
  - Polysemy: The same keyword may mean different things in different contexts, e.g., mining

### Similarity-Based Retrieval in Text Databases

- Finds similar documents based on a set of common keywords
- Answer should be based on the degree of relevance based on the nearness of the keywords, relative frequency of the keywords, etc.
- Basic techniques
- Stop list
  - Set of words that are deemed "irrelevant", even though they may appear frequently
  - E.g., a, the, of, for, to, with, etc.
  - Stop lists may vary when document set varies

### Similarity-Based Retrieval in Text Databases (2)

- Word stem
  - Several words are small syntactic variants of each other since they share a common word stem
  - · E.g., drug, drugs, drugged
- A term frequency table
  - Each entry frequent\_table(i, j) = # of occurrences of the word t<sub>i</sub> in document d<sub>i</sub>
  - Usually, the ratio instead of the absolute number of occurrences is used
- Similarity metrics: measure the closeness of a document to a query (a set of keywords)
  - · Relative term occurrences
  - Cosine distance:  $sim(v_1, v_2) = \frac{v_1 \cdot v_2}{|v_1| |v_2|}$

#### Indexing Techniques

- Inverted index
  - Maintains two hash- or B+-tree indexed tables:
    - document\_table: a set of document records <doc\_id, postings\_list>
    - term\_table: a set of term records, <term, postings\_list>
  - Answer query: Find all docs associated with one or a set of terms
  - + easy to implement
  - do not handle well synonymy and polysemy, and posting lists could be too long (storage could be very large)
- Signature file
  - Associate a signature with each document
  - A signature is a representation of an ordered list of terms that describe the document
  - Order is obtained by frequency analysis, stemming and stop lists

#### **Vector Model**

- Documents and user queries are represented as m-dimensional vectors, where m is the total number of index terms in the document collection.
- The degree of similarity of the document d with regard to the query q is calculated as the correlation between the vectors that represent them, using measures such as the Euclidian distance or the cosine of the angle between these two vectors.





#### Latent Semantic Indexing (I)

- Basic idea
  - Similar documents have similar word frequencies
  - Difficulty: the size of the term frequency matrix is very large
  - $^{\circ}\,$  Use a singular value decomposition (SVD) techniques to reduce the size of frequency table
  - Retain the K most significant rows of the frequency table
- Method
  - · Create a term x document weighted frequency matrix A
  - SVD construction:A = U \* S \*V'
  - Define K and obtain  $U_k$ ,  $S_k$ , and  $V_k$ .
  - Create query vector q'.
  - Project q' into the term-document space:  $Dq = q' * U_k * S_k^{-1}$
  - Calculate similarities:  $\cos \alpha = Dq \cdot D / ||Dq|| * ||D||$



#### Probabilistic Model

- Basic assumption: Given a user query, there is a set of documents which contains exactly the relevant documents and no other (ideal answer set)
- Querying process as a process of specifying the properties of an ideal answer set. Since these properties are not known at query time, an initial guess is made
- This initial guess allows the generation of a preliminary probabilistic description of the ideal answer set which is used to retrieve the first set of documents
- An interaction with the user is then initiated with the purpose of improving the probabilistic description of the answer set

#### Types of Text Data Mining

- Keyword-based association analysis
- Automatic document classification
- Similarity detection
  - Cluster documents by a common author
  - Cluster documents containing information from a common source
- Link analysis: unusual correlation between entities
- Sequence analysis: predicting a recurring event
- Anomaly detection: find information that violates usual patterns
- Hypertext analysis
  - Patterns in anchors/links
    - Anchor text correlations with linked objects

#### Keyword-Based Association Analysis

- Motivation
  - Collect sets of keywords or terms that occur frequently together and then find the association or correlation relationships among them
- Association Analysis Process
  - Preprocess the text data by parsing, stemming, removing stop words, etc.
  - Evoke association mining algorithms
    - · Consider each document as a transaction
    - View a set of keywords in the document as a set of items in the transaction
  - Term level association mining
    - · No need for human effort in tagging documents
    - The number of meaningless results and the execution time is greatly reduced

#### Text Classification(I)

- Motivation
  - Automatic classification for the large number of on-line text documents (Web pages, e-mails, corporate intranets, etc.)
- Classification Process
  - Data preprocessing
  - Definition of training set and test sets
  - Creation of the classification model using the selected classification algorithm
  - Classification model validation
  - Classification of new/unknown text documents
- Text document classification differs from the classification of relational data
  - Document databases are not structured according to attributevalue pairs

#### Text Classification(2)

- Classification Algorithms:
  - Support Vector Machines
  - K-Nearest Neighbors
  - Naïve Bayes
  - Neural Networks
  - Decision Trees
  - Association rule-based
  - Boosting

|                   |                |                               | WI          | 27.2                  | 27.0          | 77.4   | W o    |
|-------------------|----------------|-------------------------------|-------------|-----------------------|---------------|--------|--------|
|                   |                | # of documents                | 21.450      | 14.347                | 13.272        | 12.902 | 12,902 |
|                   | l              | # of training documents       | 14,704      | 10.667                | 9.610         | 9.603  | 9.603  |
|                   |                | # of test documents           | 6,746       | 3,680                 | 3,662         | 3,299  | 3,299  |
|                   | l              | # of categories               | 135         | 93                    | 92            | 90     | 10     |
| System            | Type           | Results reported by           |             | i                     | $\overline{}$ |        |        |
| Word              | (non-learning) | [Yang 1999]                   | .150        | .310                  | .290          |        |        |
|                   | probabilistic  | (Dumais et al. 1998)          |             |                       |               | .752   | .815   |
|                   | probabilistic  | [Joachims 1998]               |             | l                     |               |        | .720   |
|                   | probabilistic  | [Lam et al. 1997]             | .443 (M.Pc) | l                     |               |        |        |
| PROPBAYES         | probabilistic  | [Lewis 1992a]                 | .650        | l                     |               |        |        |
| Base              | probabilistic  | Li and Yamanishi 19991        |             | l                     |               | .747   |        |
|                   | probabilistic  | Li and Yamanishi 1999)        |             | l                     |               | .773   |        |
| Nic               | probabilistic  | (Yang and Liu 1999)           |             | l                     |               | .795   |        |
|                   | decision trees | Dumais et al. 1998            |             |                       | -             |        | .884   |
| C4.5              | decision trees | [Joachims 1998]               |             | l                     |               |        | .794   |
| Two               | decision trees | [Lewis and Ringuette 1994]    | 670         | l                     |               |        |        |
| Swap.1            | decision rules | [Aptd et al, 1994]            |             | .805                  |               |        |        |
| Rivern            | decision rules | [Cohen and Singer 1999]       | 683         | -811                  | 1             | 820    | ı      |
| SURPRISE PROPERTY | decision rules | [Cohen and Singer 1999]       | .753        | 759                   |               | 827    |        |
| DtEsc             | decision rules | Li and Yamanishi 1999         |             |                       |               | 820    |        |
| CHARADE           | decision rules | [Moulinier and Ganascia 1996] |             | .738                  |               |        |        |
| CHARADE           | decision rules | [Moulinier et al. 1996]       |             | 783 (E <sub>1</sub> ) |               |        |        |
| LLEF              | regression     | [Yang 1999]                   |             | -855                  | .810          | -      | -      |
| Like              | regression     | (Yang and Liu 1999)           |             |                       |               | .849   |        |
| RALANCEDWISNOW.   | on-line linear | [Dagan et al. 1997]           | .747 (M)    | .833 (M)              | -             |        |        |
| Winnow-Hoff       | on-line linear | Lam and Ho 1998               |             |                       |               | .822   |        |
| Roccino           | batch linear   | [Cohen and Singer 1999]       | .660        | .748                  | -             | .776   |        |
| PIND81M           | batch linear   | [Dumais et al. 1998]          |             | l                     |               | .617   | .646   |
| Rocemo            | batch linear   | [Joachims 1998]               |             | l                     |               |        | .799   |
| Rocemo            | batch linear   | [Lam and Ho 1998]             |             | l                     |               | .781   |        |
| Roccino           | batch linear   | Li and Yamanishi 19991        |             | l                     |               | .625   |        |
| CLASS             | neural network | [Ng ot al. 1997]              |             | .802                  |               | -      |        |
| Nagr              | neural network | [Yang and Liu 1999]           | ll l        | 1                     | 1             | .838   | ı      |
|                   | neural network | Wiener et al. 1995]           | ll l        | ı                     | .820          |        | ı      |
| Cos.W             | example-based  | [Lam and Ho 1998]             |             |                       |               | .860   |        |
| k-NN              | example-based  | Uoachims 1998l                |             | l                     |               |        | .823   |
| k-NN              | example-based  | [Lam and Ho 1998]             |             | l                     |               | .820   |        |
| k-NN              | example-based  | [Yang 1999]                   | .690        | .852                  | .820          |        | ı      |
| k-NN              | example-based  | [Yang and Liu 1999]           |             | 1                     |               | .856   | ı      |
|                   | SVM            | Dumais et al. 1998            |             |                       | -             | .870   | .920   |
| SynLocat          | SVM            | Ucachima 19981                | ll l        | ı                     | 1             |        | .864   |
| SYMLOCHT          | SVM            | ILi and Yamanishi 19991       |             | l                     |               | .841   |        |
| SVMLocert         | SVM            | [Yang and Liu 1999]           |             | l                     |               | .859   |        |
| ADABOOST/MH       | committee      | [Schapire and Singer 2000]    |             | .860                  | -             |        |        |
|                   | committee      | [Weiss et al. 1999]           | ll l        | 1                     | 1             | .878   | ı      |
|                   | Bayesian net   | Dumais et al. 1998            |             |                       | _             | .800   | .850   |
|                   |                |                               |             |                       |               |        |        |

#### **Document Clustering**

- Motivation
  - Automatically group related documents based on their contents
  - No predetermined training sets or taxonomies
  - Generate a taxonomy at runtime
- Clustering Process
  - Data preprocessing: remove stop words, stem, feature extraction, lexical analysis, etc.
  - Hierarchical clustering: compute similarities applying clustering algorithms.
  - Model-Based clustering (Neural Network Approach): clusters are represented by "exemplars". (e.g.: SOM)

### Goal: Automatically Identify Recurring Topics in a News Corpus

- Started with a user problem: Geographic analysis of news
- Idea: Segment news into ongoing topics/stories

  How do we do this?
- What we need:
  - Topics
  - "Mnemonic" for describing/remembering the topic
  - Mapping from news articles to topics
- Other goals:
  - Gain insight into collection that couldn't be had from skimming a few documents
  - Identify key players in a story/topic



#### A Data Mining Based Solution Idea in Brief

- A topic often contains a number of recurring players/concepts
  - Identified highly correlated named entities (frequent itemsets)
  - Can easily tie these back to the source documents
  - But there were too many to be useful
- · Frequent itemsets often overlap
  - Used this to cluster the correlated entities
  - But the link to the source documents is no longer clear
  - Used "topic" (list of entities) as a query to find relevant documents to compare with known mappings
- · Evaluated against manually-categorized "ground truth" set
  - Six months of print, video, and radio news: 65,583 stories
  - 100 topics manually identified (covering 6941 documents)

#### TopCat Process

- Identify named entities (person, location, organization) in text
  - Alembic natural language processing system
- Find highly correlated named entities (entities that occur together with unusual frequency)
  - Query Flocks association rule mining technique
  - Results filtered based on strength of correlation and number of appearances
- Cluster similar associations
  - Hypergraph clustering based on hMETIS graph partitioning algorithm (based on (Han et. al. 1997))
  - Groups entities that may not appear together in a single broadcast, but are still closely related

#### Preprocessing

- Identify named entities (person, location, organization) in text
  - Alembic Natural Language Processing system
- Data Cleansing:
  - Coreference Resolution
    - Used intra-document coreference from NLP system
    - Heuristic to choose "global best name" from different choices in a document
  - Eliminate composite stories
    - · Heuristic same headline monthly or more often
  - High Support Cutoff (5%)
    - Eliminate overly frequent named entities (only provide "common knowledge" topics)

#### Named Entities vs. Full Text

- Corpus contained about 65,000 documents.
- Full text resulted in almost 5 million unique worddocument pairs vs. about 740,000 for named entities.
- Prototype was unable to generate frequent itemsets at support thresholds lower than 2% for full text.
  - At 2% support, one week of full text data took 30 times longer to process than the named entities at 0.05% support.
- For one week:
  - 91 topics were generated with the full text, most of which aren't readily identifiable.
  - 33 topics were generated with the named-entities.

#### Frequent Itemsets

| Israel   | State     | West Bank | Netanyahu | Albright | Arafat | 627390806 |
|----------|-----------|-----------|-----------|----------|--------|-----------|
| Iraq     | State     | Albright  |           |          |        | 479       |
| Israel   | Jerusalem | West Bank | Netanyahu | Arafat   |        | 4989413   |
| Gaza     | Netanyahu |           |           |          |        | 39        |
| Ramallah | Authority | West Bank |           |          |        | 19506     |
| Iraq     | Israel    | U.N.      |           |          |        | 39        |

- Query Flocks association rule mining technique
  - 22894 frequent itemsets with 0.05% support
- Results filtered based on strength of correlation and support
  - Cuts to 3129 frequent itemsets
- Ignored subsets when superset with higher correlation found
  - 449 total itemsets, at most 12 items (most 2-4)

#### Clustering Cluster similar associations Hypergraph clustering based on hMETIS graph partitioning algorithm (adapted from (Han et. al. 1997)) • Groups entities that may not appear together in a single broadcast, but are still closely related **Authority** Iraq Ramallah $|v \in e|$ Bank Albright Arafat Israel Jerusalem Netanyahu Gaza

#### Mapping to Documents

- Mapping Documents to Frequent Itemsets easy
  - Itemset with support k has exactly k documents containing all of the items in the set.
- Topic clusters harder
  - Topic may contain partial itemsets
- Solution: Information Retrieval
  - Treat items as "keys" to search for
  - Use Term Frequency/Inter Document Frequency as distance metric between document and topic
- Multiple ways to interpret ranking
  - · Cutoff: Document matches a topic if distance within threshold
  - Best match: Document only matches closest topic

#### Merging

- Topics still to fine-grained for TDT
  - · Adjusting clustering parameters didn't help
  - Problem was sub-topics
- Solution: Overlap in documents
  - Documents often matched multiple topics
  - Used this to further identify related topics



### TopCat: Examples from Broadcast News

- LOCATION Baghdad PERSON Saddam Hussein PERSON Kofi Annan ORGANIZATION United Nations PERSON Annan ORGANIZATION Security Council LOCATION Irag
- LOCATION Israel
   PERSON Yasser Arafat
   PERSON Walter Rodgers
   PERSON Netanyahu
   LOCATION Jerusalem
   LOCATION West Bank
   PERSON Arafat

#### TopCat Evaluation

- Tested on Topic Detection and Tracking Corpus
  - Six months of print, video, and radio news sources
  - 65,583 documents
  - 100 topics manually identified (covering 6941 documents)
- Evaluation results (on evaluation corpus, last two months)
  - Identified over 80% of human-defined topics
  - Detected 83% of stories within human-defined topics
  - Misclassified 0.2% of stories
- Results comparable to "official" Topic Detection and Tracking participants
  - Slightly different problem retrospective detection
  - Provides "mnemonic" for topic (TDT participants only produce list of documents)

#### **Project Participants**

- MITRE Corporation
  - Modeling intelligence text analysis problems
  - Integration with information retrieval systems
  - Technology transfer to Intelligence Community through existing MITRE contracts with potential developers/first users
- Stanford University
  - Computational issues
  - Integration with database/data mining
  - Technology transfer to vendors collaborating with Stanford on other data mining work
- Visitors:
  - Robert Cooley (University of Minnesota, Summer 1998)
  - Jason Rennie (MIT, Summer 1999)

### Where we're going now: Use of the Prototype

- MITRE internal:
  - Broadcast News Navigator
  - GeoNODE
- External Use:
  - Both Broadcast News Navigator and GeoNODE planned for testing at various sites
  - GeoNODE working with NIMA as test site
  - Incorporation in DARPA-sponsored TIDES Portal for Strong Angel/RIMPAC exercise this summer



### Exercise Strong Angel June 2000





#### The scenario... Humanitarian Assistance

- Increasing violence against Green minority in Orange
- Green minority refugees massing in border mountains
  - Ethnic Green crossing into Green, though Orange citizens
- Live bomblets found near roads
- Basics in short supply
  - water, shelter, medical care

#### What We've Learned: Recommendations/Thoughts for Further Work

- Want flexibility in describing patterns
  - What lends support to an association (e.g. across hyperlink; combining sequential, "standard" associations)
  - Type of associated entity important in describing pattern
- Major risk: density of "good stuff" in results too low
  - Problem isn't wrong results, but uninteresting results
  - Simple support/confidence rarely appropriate for text
  - Support a range of metrics no single "proper measure"
- Cleaning and Mining as part of same process
  - Human cost of pre-mining cleansing too high
  - Human feedback on mining results (may alter results)

### What we see in the Future: COTS support for Data Mining in Text

- Working with vendors to incorporate query flocks technology in DBMS systems
  - Stanford University working with IBM Almaden Research
- Working with vendors to incorporate text mining in information retrieval systems
  - MITRE discussing technology transition with Manning&Napier Information Services, <u>Cartia</u>
- More Research needed
  - What are the types of analyses that should be supported?
  - What are the right relevance measures to find interesting patterns, and how do we optimize these?
  - What additional capabilities are needed from concept extraction?

#### Potential Applications

- Topic Identification
  - Identify by different "types" of entities (person / organization / location / event / ?)
  - Hierarchically organize topics (in progress)
- Support for link analysis on Text
  - Tools exist for visualizing / analyzing links (e.g. NetMap)
  - Text mining detects links -- giving link analysis tools something to work with
- Support for Natural Language Processing / Document Understanding
  - $^\circ\,$  Synonym recognition -- A and B may not appear together, but they each appear with X,Y, and Z -- A and B may be synonyms
- Prediction: Sequence analysis (in progress)

#### Similarity Search in Multimedia Data

- Description-based retrieval systems
  - Build indices and perform object retrieval based on image descriptions, such as keywords, captions, size, and time of creation
  - · Labor-intensive if performed manually
  - Results are typically of poor quality if automated
- Content-based retrieval systems
  - Support retrieval based on the image content, such as color histogram, texture, shape, objects, and wavelet transforms

### Queries in Content-Based Retrieval Systems

- Image sample-based queries
  - Find all of the images that are similar to the given image sample
  - Compare the feature vector (signature) extracted from the sample with the feature vectors of images that have already been extracted and indexed in the image database
- Image feature specification queries
  - Specify or sketch image features like color, texture, or shape, which are translated into a feature vector
  - Match the feature vector with the feature vectors of the images in the database