Introduction to machine learning

Maksim Kretov

Lecture 5: Basic concepts for neural networks and BP algorithm

Course information

Course

10 lectures + 2 seminars; February-May 2017.

Schedule and up-to-date syllabus

https://goo.gl/xExEuL

Contact information and discussion

Maksim Kretov (<u>kretovmk@gmail.com</u>)

Slack group: https://miptmlcourse.slack.com

to get an invite, send e-mail to kretovmk@gmail.com.

Plan of the course

Math and basics of ML (1-2)Theoretical Some of ML methods (3) tasks Seminar on ML basics (4)Basics of neural networks **Today** (6)Deep learning overview Training deep networks (7)+Practical tasks DL for Computer Vision (8-9)**Solving more** complex ML DL for time series prediction (10-11)tasks using NNs Concluding seminar (12)

Plan for the lecture

- A. Previous lectures
 - 1. ML tasks
 - 2. ERM framework
- B. Basic definitions for neural networks (NNs)
 - 1. Perceptron, MLP
 - 2. Universality of NNs
 - 3. NN structure for MNIST
 - 4. Loss function
- C. Training neural networks
 - 1. Overview and SGD
 - 2. Backpropagation (BP) algorithm
 - 3. Other training methods
- D. Practical assignment

A.1 Previous lectures: ML tasks

Supervised learning:

Training set: $\mathbf{D} = \{(\mathbf{x}_n, y_n), n = 1, ... N\}$ (inputs and labels!)

Y are class ids or numbers => classification or regression

Task to solve:

Predict y^* for new input $x^* =>$ Focus on accurate prediction

Unsupervised learning:

Training set: $D = \{\mathbf{x}_n, n = 1, ... N\}$ (just inputs!)

Task to solve:

Finding compact description of data

A.2 Previous lectures: ERM framework

Empirical risk minimization approach (ERM)

Formula for fitting the model within ERM framework:

$$\theta^{opt} = \operatorname{argmin}_{\theta} \frac{1}{N} \sum_{n=1}^{N} L(y_n, \hat{y}_n) + \lambda \Omega(\theta)$$

 $L(y_n, f(\mathbf{x}_n, \theta))$ is loss function; $\hat{y}_n = f(\mathbf{x}_n, \theta)$ is prediction

 $\Omega(\theta)$ is a regularizer (penalize certain values of θ , for example: L1, L2)

=> learning converted into optimization task!

Classification of new input:

$$\hat{y} = f(\mathbf{x}^*, \theta^{opt})$$

B.1 Basic definitions: Perceptron, MLP

Perceptron (McCulloch-Pitts neuron)

Perceptron has very limited learning capacity. For example, cannot learn XOR.

$$\hat{y} = f(\theta^T \mathbf{x})$$

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}$$
 (Heaviside function)

Problem of linearly separable two-class classification task

$$\theta^T \mathbf{x} > 0$$
, if \mathbf{x} is of class 0

$$\theta^T \mathbf{x} < 0$$
, if \mathbf{x} is of class 1

Training procedure (perceptron rule)

$$\theta^{(i)} = \theta^{(i-1)} + \alpha_i \sum_{\mathbf{x}_n \in M} y_n \mathbf{x}_n$$

M – misclassified examples

B.1 Basic definitions: Perceptron, MLP

Perceptron (McCulloch-Pitts neuron)

Applying least squares to classification task => $\theta = (0,0,1/2)$, i.e. classifier puts 0.5 everywhere.

=> Problem: How to deal with non linearly separable problems?

Let's make better representation of input data:

- 1) Convert to another feature space (**non-linear** transformation): $\max \begin{bmatrix} \binom{0}{0}, \binom{1}{1} & 1 \end{pmatrix} \binom{x_1}{x_2} + \binom{0}{-1} \end{bmatrix}$
- 2) Perform linear classification, because task is now linearly separable.

B.1 Basic definitions: Perceptron, MLP

Feed-forward multilayer neural network (MLP)

Input layer

Let's write these transformations using matrix notations:

$$a^1 = f^1(W^1 x + b^1)$$

$$a^L = f^L(W^L a^{L-1} + b^L)$$

Logistic regression models stacked on top of each other with the final layer being regression / classification model.

ReLU
$$(x) = \max(0, x)$$
 faster than exp!

$$\operatorname{sigm}(x) = \frac{1}{1 + \exp(-x)}$$

$$\tanh(x) = \frac{\exp(2x) - 1}{1 + \exp(2x)}$$

$$\tanh(x) = \frac{\exp(2x) - 1}{\exp(2x) + 1}$$

B.2 Basic definitions: Universality of NNs

Perceptron making NAND gate

Х	Υ	X Y
0	0	1
0	1	1
1	0	1
1	1	0

Provides basis for the rest of boolean functions of two variables (NAND gate is universal).

=> We can use combination of perceptrons to calculate any boolean function.

B.2 Basic definitions: Universality of NNs

MLP can approximate any function

Consider NN with one hidden layer (K neurons), single output neuron and activation function f:

$$OUT(\mathbf{x}) = \sum_{k=1}^{K} c_k f(\theta^T \mathbf{x}) + c_0$$

f(z) is non-constant, bounded and monotonically-increasing function.

Theorem:

Let $g(\mathbf{x})$ be a continuous function defined in a compact subset $\mathbf{S} \subset \mathbf{R}^n$ and any $\varepsilon > 0$. Then there is a two layer network with $K(\varepsilon)$ hidden nodes of the form (1), so that:

$$|g(\mathbf{x}) - \text{OUT}(\mathbf{x})| < \varepsilon \ \forall \ \mathbf{x} \in \mathbf{S}$$

B.3 Basic definitions: NN structure for MNIST

Using MLP for solving MNIST task

70k images of handwritten digits (28x28=784)

Why 10 neurons in out layer? Viable options:

- a) 1 neuron (regression)
- b) 4 neurons (binary code)
- c) 10 neurons (for each numeral)

Softmax activation function for output layer:

$$\hat{y}_{nk} = \frac{\exp(z_{nk})}{\sum_{k=1}^d \exp(z_{nk})}$$
 normalized probabilities

^{*} Picture from http://neuralnetworksanddeeplearning.com/chap1.html

B.4 Basic definitions: Loss function

Loss functions for NNs:

What properties should loss function have?

- be smooth and easy to differentiate (accuracy is not smooth!)
- be somehow connected to a clear proxy such as accuracy
- ideally have a probabilistic interpretation

B.4 Basic definitions: Loss function

Possible loss functions for NNs:

1. Quadratic cost (both classification and regression)

$$L(Y, f(\mathbf{X}, \theta)) = \frac{1}{N} \sum_{n=1}^{N} L(y_n, \hat{y}_n) = \frac{1}{2N} \sum_{n=1}^{N} ||\hat{y}_n - y_n||^2$$

2. Cross-entropy cost (usual choice for classification)

$$H(p,q) = -\sum_{k} p_{k} \ln q_{k} = > L(Y, f(\mathbf{X}, \theta)) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{d} y_{nk} \ln \hat{y}_{nk}$$

From probabilistic point of view, we parameterize $p(y|x,\theta) =>$

- Maximizing likelihood of correct class in predicted distribution
- KL divergence between true and predicted distributions

Exercise: Show that minimizing cross-entropy equivalent to minimizing KL div.

2 minute break...

Questions?

C.1 Training NNs: Overview and SGD

Gradient descent:

$$\theta^{(i)} = \theta^{(i-1)} - \alpha_i \nabla_{\theta} L(Y, f(\mathbf{X}, \theta))$$

Stochastic gradient descent algorithm (SGD):

SGD updates parameters after each example (online learning):

- 1. Initialize θ
- 2. For each training example (y_n, x_n) do (= one epoch):

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} L(y_n, f(\mathbf{x}_n, \theta))$$

3. Repeat until stop criterion is met

Naïve approach: let's find derivatives numerically!

Much slower.. Full forward pass for each parameter is needed.

$$\frac{\partial L}{\partial \omega_i} pprox \frac{L(\omega_i + \varepsilon) - L(\omega_i)}{\varepsilon}$$
 and same for each parameter (millions of them).

Backpropagation algorithm (BP):

Idea: let's use chain rule in order to calculate derivatives (θ is a vector!):

$$\frac{\partial}{\partial \theta} L(y_n, f(\mathbf{x}_n, \theta)) = \underbrace{\frac{\partial L(y_n, f)}{\partial f} \underbrace{\partial f(\mathbf{x}_n, \theta)}_{\text{EASY!}} \underbrace{\frac{\partial L(y_n, f)}{\partial \theta}}_{\text{HARD..}}$$

Backpropagation algorithm (BP) – notations:

 ω_{jk}^l - weight for the connection from the k^{th} neuron in the $(l-1)^{th}$ layer to the j^{th} neuron in the l^{th} layer.

 b_i^l - bias for j^{th} neuron in the l^{th} layer.

 a_{j}^{l} - activation of the j^{th} neuron in the l^{th} layer.

$$a_j^l = \sigma \left(\sum_k \omega_{jk}^l a_k^{l-1} + b_j^l \right)$$

Backpropagation algorithm (BP) - matrix notations:

Same in matrix form:

 $\omega_{ik}^l o \omega^l$ - weight matrix for the l^{th} layer

 $b_i^l \rightarrow b^l$ - bias vector for the l^{th} layer.

 $a_i^l \rightarrow a^l$ - activation vector for the l^{th} layer.

 $z^l = \omega^l \ a^{l-1} + b^l$

(weighted input)

 $a^l = \sigma(z^l)$

(element-wise)

=> Use ext. libraries for fast matrix calculation.

Backpropagation algorithm (BP) - easy part:

 $a^{L}(\mathbf{x}_{n}) = f(\mathbf{x}_{n}, \theta)$ – activation of neurons of L^{th} layer.

And let's find derivative of loss function first:

$$\frac{\partial L(y_n, f)}{\partial f} = \frac{1}{2N} \frac{\partial}{\partial f} \sum_{n=1}^{N} (f(\mathbf{x}_n, \theta) - y_n)^2 = \frac{1}{2N} \frac{\partial}{\partial a^L} \sum_{n=1}^{N} (a^L(\mathbf{x}_n) - y_n)^2 = \frac{1}{N} \sum_{n=1}^{N} (a^L(\mathbf{x}_n) - y_n)^2$$

Definition

Hadamar product of matrices:

$$(A \circ B)_{ij} = A_{ij}B_{ij}$$

Backpropagation algorithm (BP) – formulas:

More complex task: Calculating $\frac{\partial a^L}{\partial \theta}$, where θ are weights ω_{jk}^l and biases b_j^l .

Let's introduce auxiliary quantities:

$$\delta_j^l \equiv \frac{\partial L}{\partial z_j^l}$$
 (error on l^{th} layer)
$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

May cause slow learning if neuron is "saturated" (activation is close to 0 or 1)

Equation #1:

$$\delta_j^L = \frac{\partial L}{\partial a_j^L} \sigma'(z_j^L) \quad \text{or in matrix notations: } \delta^L = \frac{\partial L}{\partial a^L} \circ \sigma'(z^L)$$

Proof: just apply chain rule.

Backpropagation algorithm (BP) – formulas:

Equation #2:

$$\delta_j^l = \sum_k \omega_{kj}^{l+1} \delta_k^{l+1} \, \sigma'(z_j^l) \qquad \text{or in matrix notations: } \delta^l = \left(\left(\omega^{l+1} \right)^T \delta^{l+1} \right) \circ \sigma'(z^l)$$

Proof:

$$\delta_j^l \equiv \frac{\partial L}{\partial z_j^l} = \sum_k \frac{\partial L}{\partial z_k^{l+1}} \frac{\partial z_k^{l+1}}{\partial z_j^l} = \sum_k \frac{\partial z_k^{l+1}}{\partial z_j^l} \delta_k^{l+1} = \sum_k \omega_{kj}^{l+1} \sigma'(z_j^l) \delta_k^{l+1}$$

Use definition of z_i^l to make the last transition:

$$z^l = \omega^l a^{l-1} + b^l$$

Backpropagation algorithm (BP) – formulas:

Equation #3:

$$\frac{\partial L}{\partial b_j^l} = \delta_j^l$$
 or in matrix notations: $\frac{\partial L}{\partial b^l} = \delta^l$

Proof:
$$\frac{\partial L}{\partial b_j^l} = \frac{\partial L}{\partial z_j^l} \frac{\partial z_j^l}{\partial b_j^l} = \delta_j^l * 1 = \delta_j^l$$

Equation #4:

$$\frac{\partial L}{\partial \omega_{jk}^l} = a_k^{l-1} \delta_j^l \qquad \text{or in matrix notations: } \frac{\partial L}{\partial \omega^l} = a^{l-1} \delta^l$$

Proof:
$$\frac{\partial L}{\partial \omega_{jk}^l} = \frac{\partial L}{\partial z_j^l} \frac{\partial z_j^l}{\partial \omega_{jk}^l} = a_k^{l-1} \delta_j^l$$

Backpropagation algorithm (BP) - pseudocode 1:

Given: input **x**

Forward pass:

$$z^1 = \omega^1 \mathbf{x} + b^1$$
 for $l = 1$
 $a^1 = \sigma(z^1)$ for $l = 1$
 $z^l = \omega^l a^{l-1} + b^l$ for $l > 1$
 $a^l = \sigma(z^l)$ for $l > 1$ till $l = L$

Backpropagation algorithm (BP) - pseudocode 2:

Given: input x

Backward pass:

$$\delta^L = \frac{\partial L}{\partial a^L} \circ \sigma'(z^L) \qquad \text{for } l = L$$

$$\delta^l = ((\omega^{l+1})^T \delta^{l+1}) \circ \sigma'(z^l)$$
 for $l < L$

Using derivatives calculated above:

$$\frac{\partial L}{\partial b^l} = \delta^l$$
 biases

$$\frac{\partial L}{\partial \omega^l} = a^{l-1} \delta^l \qquad \text{weights}$$

Backpropagation algorithm (BP) - pseudocode 2:

Given: input x

Backward pass:

$$\delta^L = \frac{\partial L}{\partial a^L} \circ \sigma'(z^L) \qquad \text{for } l = L$$

$$\delta^{l} = \left(\left(\omega^{l+1} \right)^{T} \delta^{l+1} \right) \circ \sigma'(z^{l}) \qquad \text{for } l < L$$

Using derivatives calculated above:

$$\frac{\partial L}{\partial b^l} = \delta^l$$
 biases

$$\frac{\partial L}{\partial \omega^l} = a^{l-1} \delta^l \qquad \text{weights}$$

Next week

Training Neural Networks: better and faster

Improving convergence of training process

- Weights initialization
- Loss function
- Regularization
- Advanced GD

D.1 Homework

- 1. Exercises from presentation.
- 2. Rewrite equations in "batch" form.
- 3. Practical assignment, see jupyter notebook.

Refs

1. Thorough review of relevant math topics:

http://info.usherbrooke.ca/hlarochelle/ift725/review.pdf

- 2*. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning.
- 3. Kevin P. Murphy, Machine Learning: A probabilistic perspective.
- 4. David Barber, Bayesian Reasoning and Machine Learning.
- 5. Sergios Theodoridis, Machine Learning: A Bayesian and optimization perspective.
- 6*. See also refs in practical assignment and online courses, especially one from Hugo Larochelle (presentation from lecture 1).