

INF 302 : Langages & Automates

Chapitre 6 : Automates à États Finis Déterministes — Distinguabilité, Équivalence, Minimisation

Yliès Falcone

ylies.falcone@univ-grenoble-alpes.fr — www.ylies.fr

Univ. Grenoble-Alpes, Inria

Laboratoire d'Informatique de Grenoble - www.liglab.fr Équipe de recherche LIG-Inria, CORSE - team.inria.fr/corse/

Année Académique 2020 - 2021

Intuition et objectifs

- Ingrédients de base : états (accepteurs), symboles, transitions *syntaxe*.
- Exécution, mot accepté, langage accepté sémantique.
- Problèmes de décision : langage vide, langage infini.
- Opérations sur automate/opérations sur langage : négation/complémentation, produit/intersection.

Plan Chap. 6 - AEFD - Distinguabilité, Équivalence, Minimisation

- 1 Tester l'équivalence entre états
- 2 Tester l'équivalence entre automates
- Minimisation d'automates déterministes
- 4 Résumé

Équivalence et Minimisation : motivations par un exemple

Questions

- Quels états peuvent être "distingués"?
- Quels états sont "équivalents"?

De manière plus générale :

- Peut-on définir une équivalence entre états?
- Peut-on dire si 2 automates sont équivalents?
- Peut-on avoir une représentation « canonique » (on dira minimale) d'un automate?

Équivalence/distinguabilité sont reliées à la notion d'acceptation.

Dans ce chapitre, nous considérons $A=(Q,\Sigma,\delta,q_{\mathrm{init}},F)$ un AEFD complet dont tous les états sont accessibles.

Plan Chap. 6 - AEFD - Distinguabilité, Équivalence, Minimisation

- Tester l'équivalence entre états
- 2 Tester l'équivalence entre automates
- Minimisation d'automates déterministes
- 4 Résumé

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Distinguabilité entre états

Définition et exemple

« Deux états sont distinguables s'il existe un mot qui, à partir de l'un des états, mène à un état accepteur, et à partir de l'autre état, mène à un état non accepteur. »

Définition (Relation de distinguabilité entre états)

La relation de distinguabilité \neq entre états sur Q est définie par :

$$\forall p,q \in Q: \qquad \Big(p \neq q \quad \mathrm{ssi} \quad \exists u \in \Sigma^*: \Big(\delta^*(p,u) \in F \iff \delta^*(q,u) \in F\Big)\Big)$$

Deux états non-distinguables sont dits équivalents (relation \equiv).

Exemple (États (non) distinguables)

- distinguables : $1 \neq 2$, $1 \neq 3$, $1 \neq 4$, $1 \neq 6$, $2 \neq 3$, ...
- équivalents : $4 \equiv 6$, $2 \equiv 8$, mais aussi $1 \equiv 5$ et $q \equiv q$ pour tout état q.

Distinguabilité entre états

Propriétés de la relation

Rappel de la définition de la relation de distinguabilité

$$p \neq q$$
 ssi $\exists u \in \Sigma^* : (\delta^*(p, u) \in F \iff \delta^*(q, u) \in F)$

Théorème : à propos de la relation de distinguabilité

La relation de distinguabilité \neq entre états de Q est :

- ullet anti-réflexive : $orall q \in Q$: eg(q
 eq q),
- symétrique : $\forall p, q \in Q : p \neq q \implies q \neq p$.

Illustration du théorème

- anti-réflexivité : q ≠ q, pour tout état q,
- symétrie : $6 \neq 1$ et $1 \neq 6$.

Comment calculer la relation de distinguabilité?

Comment calculer \neq ?

La définition de la relation de distinguabilité n'est pas directement utilisable pour la calculer.

- Elle requière de lire des mots arbitrairement longs.
- Recherche de mots dans un ensemble infini (Σ^*) .

Technique pour calculer \neq

- \hookrightarrow Limiter la relation de distinguabilité à k symboles.
- \hookrightarrow Calculer \neq de manière *itérative*.

Distinguabilité entre états à k pas

Définition (Distinguabilité à k pas)

Pour chaque $k \in \mathbb{N}$, on introduit la relation \neq_k sur Q:

- ② Pour $k \in \mathbb{N}$, $p \neq_{k+1} q$ ssi $(p \neq_k q) \lor (\exists a \in \Sigma : \delta(p, a) \neq_k \delta(q, a))$.

Exemple (États distinguables à k pas)

- $k = 0 : x \neq_0 3 \text{ et } 3 \neq_0 x$, avec $x \in \{1, 2, 4, \dots, 8\}$;
- $k = 1 : 1 \neq_1 \{2, 6, 8\}, 2 \neq_1 \{1, 4, 5, 7\},$..., et $x \neq_1 y$ pour $x \neq_0 y$;
- $k = 2 : x \neq_2 y \text{ pour } x \neq_1 y$.

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Construction de \neq à partir de \neq_k

Lemme

Pour tout $k \in \mathbb{N}$, $q \neq_k q'$ ssi

$$\exists u \in \Sigma^* : |u| \leq \underline{k} \wedge \left(\delta^*(q, u) \in F \iff \delta^*(q', u) \in F\right).$$

Corollaire

$$\bigcup_{k\in\mathbb{N}}\neq_k = \neq$$

En utilisant la définition de la définition de distinguabilité à k pas, nous déduisons le lemme suivant.

Lemme

Pour tout $k \in \mathbb{N}$,

$$\neq_{k+1} = \neq_k \cup \bigcup_{q \in \mathbb{Z}} \{(q, q') \mid (\delta(q, a), \delta(q', a)) \in \neq_k \}$$

Nous pouvons en déduire un algorithme de calcul des états distinguables.

Y. Falcone (UGA - Inria)

Distinguabilité entre états

Algorithme 1 Calcul des états distinguables

```
Entrée: A = (Q, \Sigma, \delta, q_{init}, F)
                                                    (* un AEFD complet dont tous les états sont accessibles *)
Sortie : D \subseteq Q \times Q
                                                                (* relation de distinguabilité entre états de Q *)
 1: ensemble de couples d'états D, D_{pre};
                                                         (* D contient les couples d'états distinguables *)
                                                            (* D<sub>pre</sub> est la valeur de D à l'itération précédente *)
 2: ensemble de couples d'états X;
                                                             (* nouveaux distinguables pour chaque itération *)
 3: D := (F \times (Q \setminus F)) \cup (Q \setminus F) \times F;
                                               (* D initialisé avec états accepteurs/non-accepteurs, D=\neq_0 *)
 4: D_{nre} := \emptyset:
                                                                            (* maj de D_{pre} (sauvegarde de D) *)
 5: tant que D_{pre} \neq D faire
     D_{nre} := D:
 6.
         X := \{(p,q), (q,p) \in Q \times Q \mid \exists a \in \Sigma : (\delta(p,a), \delta(q,a)) \in D)\};
                                                                    (* calcul des nouveaux états distinguables *)
         D := D \cup X:
                                                                         (* ajouter les états distinguables à D *)
     fin tant que
10: retourner D;
                                                                                                      (*D = \neq *)
```

Remarque Dans une implémentation de cet algorithme et la représentation de son exécution, il est souhaitable d'utiliser l'anti-réflexivité et la symétrie de D, D_{pre} (et X). \square

Y. Falcone (UGA - Inria)

Distinguabilité entre états : exemple

Distinction entre états : correction de l'algorithme

Rappelons que $A = (Q, \Sigma, q_{\text{init}}, \delta, F)$ est un AEFD complet dont tous les états sont accessibles.

Théorème : Correction de l'algorithme de distinction entre états

- L'algorithme distingue *uniquement* des états distinguables.
- L'algorithme distingue tous les états distinguables.
- Pour le premier point, il suffit de montrer que l'algorithme calcule la limite de la suite (D_i)_{i∈N} définie comme suit :
 - $D_0 = F \times (Q \setminus F) \cup (Q \setminus F) \times F$;
 - $X_{n+1} = \{(p,q), (q,p) \mid \exists a \in \Sigma : (\delta(p,a), \delta(q,a)) \in D_n\};$
 - $D_{n+1} = D_n \cup X_{n+1}$.
- Pour le second point, nous faisons une preuve par l'absurde. La démonstration utilise δ^* , la fonction de transition δ étendue aux mots.

Distinction entre états : correction de l'algorithme - preuve

Démonstration.

Supposons que le théorème soit faux (cad, il existe un automate contre-exemple). Alors, il existe au moins une "mauvaise paire" d'états $\{p, q\}$ t.q. :

- p et q sont distinguables : il existe $w \in \Sigma^*$ tel que soit $\delta^*(p, w) \in F$ soit $\delta^*(q, w) \in F$ (ou exclusif),
- l'algorithme ne distingue pas ces états.

Soit $w = a_1 \cdot a_2 \cdots a_n$ le plus court mot distinguant une mauvaise paire $\{p,q\}$

- $w \neq \epsilon$ d'après l'initialisation de l'algorithme (ligne 5)
- soient $p' = \delta(p, a_1)$ et $q' = \delta(q, a_1)$
 - p' et q' sont distingués par $a_2 \cdots a_n$ car $\delta^*(p', a_2 \cdots a_n) = \delta^*(p, w)$ et $\delta^*(q', a_2 \cdots a_n) = \delta^*(q, w)$
 - $a_2 \cdots a_n$ est plus court que n'importe quel mot distinguant une mauvaise paire
 - $\{p', q'\}$ ne peut pas être une mauvaise paire
- ullet l'algorithme déclarera donc $\{p',q'\}$ comme distinguables
- d'après le corps de la boucle de l'algorithme, dans le pire des cas, à l'itération suivante, $\{p,q\}$ sera marquée.

Plan Chap. 6 - AEFD - Distinguabilité, Équivalence, Minimisation

- 1 Tester l'équivalence entre états
- 2 Tester l'équivalence entre automates
- Minimisation d'automates déterministes
- 4 Résumé

Tester l'équivalence entre deux automates

Considérons deux AEFDs complets :

- $A = (Q^A, \Sigma, q_{\text{init}}^A, \delta^A, F^A)$,
- $B = (Q^B, \Sigma, q_{\text{init}}^B, \delta^B, F^B).$

Question

Comment savoir si A et B acceptent le même langage?

Procédure pour tester l'équivalence entre deux automates

- **1** Construire l'automate $E = (Q^A \cup Q^B, \Sigma, q_{\text{init}}^A, \delta^A \cup \delta^B, F^A \cup F^B)$.
- 2 Tester si q_{init}^A et q_{init}^B sont distinguables dans E.

Tester l'équivalence entre deux automates

Exemple

Exemple (Deux automates équivalents)

1	X			
2		Х		
3		×		
4	Х		х	х
	0	1	2	3

Plan Chap. 6 - AEFD - Distinguabilité, Équivalence, Minimisation

- 1 Tester l'équivalence entre états
- 2 Tester l'équivalence entre automates
- Minimisation d'automates déterministes
- 4 Résume

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Rannelons que A = C

Équivalence entre états

Rappelons que $A = (Q, \Sigma, \delta, q_{\text{init}}, F)$ est un AEFD complet dont tous les états sont accessibles.

Définition (Relation d'équivalence entre états)

La relation d'équivalence \equiv entre états sur Q est définie par :

$$\forall p, q \in Q: \qquad p \equiv q \quad \text{ssi} \quad \forall u \in \Sigma^*: \left(\delta^*(p, u) \in F \iff \delta^*(q, u) \in F\right)$$

- \equiv est effectivement une relation d'équivalence. C'est une relation :
 - réflexive,
 - symétrique,
 - transitive.

Notations :

- ullet [q] : la classe d'équivalence de l'état q
- $Q_{/\equiv}$: l'ensemble des classes d'équivalence (dans un automate avec ensemble d'états Q).

Équivalence et distinguabilité sont duales

Deux états sont équivalents si et seulement s'ils ne sont pas distinguables.

La relation d'équivalence \equiv_k

Soit $A = (Q, \Sigma, \delta, q_{\text{init}}, F)$ un AEFD dont tous les états sont accessibles.

Question

Comment calculer \equiv ?

Définition (Équivalence à k pas)

Pour chaque $k \in \mathbb{N}$, on introduit la relation $\equiv_k \operatorname{sur} Q$:

- ② Pour $k \in \mathbb{N}$, $q \equiv_{k+1} q'$ ssi

$$q \equiv_{\mathbf{k}} q' \wedge \forall \mathbf{a} \in \Sigma : \delta(q, \mathbf{a}) \equiv_{\mathbf{k}} \delta(q', \mathbf{a}).$$

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Construction de \equiv à partir de \equiv_k

Lemme

Pour tout $k \in \mathbb{N}$, $q \equiv_k q'$ ssi :

$$\forall u \in \Sigma^* : |u| \leq k \implies (\delta^*(q, u) \in F \iff \delta^*(q', u) \in F).$$

Corollaire

$$\bigcap_{k\in\mathbb{N}}\equiv_k=\equiv$$

En utilisant la définition de la définition d'équivalence à k pas, nous déduisons le lemme suivant.

Lemme

Pour tout $k \in \mathbb{N}$,

$$\equiv_{k+1} = \equiv_k \cap \bigcap_{a \in \mathcal{S}} \{(q, q') \mid (\delta(q, a), \delta(q', a)) \in \equiv_k \}$$

Nous pouvons en déduire un algorithme de calcul des classes d'équivalence.

Y. Falcone (UGA - Inria)

INF 302: Langages & Automates

Algorithme de calcul de $Q_{/\equiv}$

Algorithme 2 Calcul des classes d'équivalence

```
Entrée : A = (Q, \Sigma, \delta, q_{init}, F)
                                                   (* un AEFD complet dont tous les états sont accessibles *)
Sortie : R = Q_{-}
```

- 1: **ensemble de** couples d'états R;

- (* R est la partition finale "la plus fine" recherchée *)
- 2: **ensemble de** couples d'états R_{pre}

(* R_{pre} est la valeur de R à l'itération précédente *)

- 3: **ensemble de** couples d'états X;
 - (* temporaire pour chaque itération, états distinguables trouvés *)
- 4: $R := (F \times F) \cup ((Q \setminus F) \times (Q \setminus F))$;
 - (* R initialisée à la partition entre états accepteurs/non accepteurs, $R = \equiv_0 *$)

- 5: $R_{nre} := \emptyset$:
- 6: tant que $R_{pre} \neq R$ faire
- $R_{nre} := R$: 7:

(* maj de Rpre *)

- $X := \{(p,q) \in R \mid \exists a \in \Sigma : ((\delta(p,a),\delta(q,a)) \notin R)\};$
 - (* calcul des états distinguables *)

 $R := R \setminus X$:

(* enlever les états distinguables découverts à cette itération de R *)

- 10: fin tant que
- 11: retourner R;

Remarque Dans une implémentation de cet algorithme et la représentation de son exécution, il est souhaitable d'utiliser la réflexivité et la symétrie de R, R_{pre} (et X).

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Minimisation : automate minimisé et équivalence

Soit $A = (Q, \Sigma, q_{\text{init}}, \delta, F)$ un AEFD complet dont tous les états sont accessibles.

Définition (Minimisé d'un automate – aussi appelé automate quotient)

Le minimisé de A est l'automate $A_{/\equiv}=(Q_{/\equiv},\Sigma,[q_{\mathrm{init}}],\delta_{/\equiv},F_{/\equiv})$ où :

• $\delta_{/\equiv}$ est la fonction de transition t. q. :

$$\begin{array}{ccc} \delta_{/\equiv} & : & Q_{/\equiv} \times \Sigma \to Q_{/\equiv} \\ \delta_{/\equiv}([q],a) & \stackrel{\mathrm{def}}{=} & [\delta(q,a)] \end{array}$$

• $F_{/\equiv} = \{ [q] \mid q \in F \}.$

Remarque Comme δ est une application, $\delta_{/\equiv}$ l'est également.

Théorème

Étant donnés A et son minimisé $A_{/\equiv}$:

- **1** $L(A_{/\equiv}) = L(A)$;
- **Q** $A_{/\equiv}$ est minimal pour L(A): il n'existe pas d'AEFD complet qui reconnaît L(A) et contient moins d'états que $A_{/\equiv}$

Minimisation d'automate : exemple

_ ≡ ₀	\equiv_1	\equiv_2	\equiv_3
1	2	2	2
2 3 5 6	3	3	2 3
3	1	1	1
5	1 5 6	5 6	5 6
6	6	6	6
4	4	4	4
7	7	7	7

Pourquoi l'algorithme de minimisation est optimal?

Soit $A = (Q, \Sigma, \delta, q_{init}, F)$ un AEFD complet dont tous les états sont accessibles.

Soit M l'automate minimisé obtenu par l'algorithme de minimisation.

Supposons qu'il existe un automate N qui accepte le même langage que A mais avec moins d'états que M.

- Appliquer la procédure pour tester l'équivalence entre automates sur M et N.
- Les états initiaux de M et N sont indistinguables car L(M) = L(N).
- Remarquer que si p et q sont indistinguables alors tous les successeurs sur n'importe quel symbole sont indistinguables (sinon p et q seraient distinguables).
- ullet Tous les états de M sont indistinguables d'au moins un état de N.
 - ullet prenons p de M, il existe $w \in \Sigma^*$ depuis l'état initial de M vers p
 - $\bullet\,$ par w nous pouvons atteindre un état de N depuis son état initial
 - ullet par induction, p et l'état atteint dans N par w sont indistinguables
- ullet Comme N a moins d'états que M, il y a deux états de M qui sont indistinguables du même état dans N.
- Par transitivité de la relation d'indistinguabilité, ces deux états sont indistinguables l'un de l'autre.
- Contradiction : d'après la correction de l'algorithme de minimisation, M est tel que tous ses états sont distinguables.

Plan Chap. 6 - AEFD - Distinguabilité, Équivalence, Minimisation

- Tester l'équivalence entre états
- 2 Tester l'équivalence entre automates
- Minimisation d'automates déterministes
- 4 Résumé

Résumé du Chapitre 5 : Équivalence et Minimisation d'Automate Déterministes

Équivalence et Minimisation d'Automate Déterministes

- Distinguabilité (\neq) et équivalence (\equiv) entre états,
- Distinguabilité et équivalence entre automates,
- Minimisation d'automate (A_{\equiv}) .

Bonus

 Déterminer pourquoi les algos de calculs des relations d'états distinguables et équivalents terminent.