Data Mining (CS4038)

Quiz No.4

Roll No:	Section: _	В

Date:01-04-2024

(10 marks)

Question No.1

Consider the following dataset of Passed and Failed exams with three attributes: studied(Y/N), slept(Y/N) and cheated(Y/N) and answer the questions given below. Compute the Gini Index for all of these attributes and identify which is best attribute to serve as root node.

Student ID	Studied	Slept	Cheated	Result
1				Passed
1	Yes	No	No	Failed
2	Yes	No	Yes	THE RESERVE AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.
3	No	Yes	No	Failed
4	Yes	Yes	Yes	Failed
5	Yes	Yes	No	Passed
6	No	No	Yes	Failed
7	No	No	No	Failed
8	No	Yes	Yes	Failed

Gini (Result) =
$$1 - (\frac{2}{8})^2 - (\frac{6}{8})^2$$

= $[0.375]$

Gini (Studied) (45)

Gini (Yes/slept) =
$$1 - (\frac{1}{4})^2 - (\frac{3}{4})^2$$

Slept

90.375

Passed 1

Falled $\frac{3}{4}$

Cini (No/slept) = $1 - (\frac{1}{4})^2 - (\frac{3}{4})^2$

Falled $\frac{3}{4}$
 $\frac{3}{4}$

Cini (slept) = $\frac{4}{8}(0.375) + \frac{4}{8}(0.375)$

= $0.1875 + 0.1875 = [0.375]$

Cheated

Gini (Yes/cheated) = $1 - (\frac{0}{4})^2 - (\frac{4}{4})^2$

Passed 0

Failed $\frac{4}{4}$

Failed $\frac{4}{4}$

Cini (No/cheated) = $1 - (\frac{1}{4})^2 - (\frac{1}{4})^2$

Gini (No/cheated) = $1 - (\frac{1}{4})^2 - (\frac{1}{4})^2$

Gini (cheated) = $\frac{4}{8}(0) + \frac{4}{8}(0.5)$

= 0.25

As the Gini Index value of studied and cheated

As the Gini Index value of studied and chester attributes is the Lowest and same so, that anyone of these 2 attributes can serve a Root node in Decision tree.

Data Mining (CS4038)

Quiz No.4

Roll No:	Q.1.2.110.4
1011 140;	Section:
Onaction	

Date:01-04-2024

Question No.1

(10 marks)

Consider the following dataset of Passed and Failed exams with three attributes: studied(Y/N), slept(Y/N) and cheated(Y/N) and answer the questions given below. Compute gain ratio of all these attributes and identify which is the best attribute to serve as root node.

Student ID	Studied	Slept	Cheated	Danula
1	Yes			Result
2		No	No	Passed
2	Yes	No	Yes	Failed
1	No	Yes	No	Failed
4	Yes	Yes	Yes	Failed
5	Yes	Yes	No	Passed
6	No	No	Yes	Failed
7	No	No	No	Failed
8	No	Yes	Yes	Failed

Entropy (t) =
$$-\frac{2}{2}$$
 P; (t) log P; (t)

Result

Entropy (Result) = $-\frac{2}{8}$ log $(\frac{2}{8})$ - $\frac{6}{8}$ log $(\frac{6}{8})$ Passed 2.

Failed $\frac{6}{8}$
 $= 0.8112$

Entropy (studied) =
$$-\frac{2}{4}\log_2(\frac{2}{4}) - \frac{2}{4}\log_2(\frac{2}{4})$$
 passed $\frac{2}{4}$ of $\frac{4}{4}$ Entropy (no studied) = $-\frac{2}{4}\log_2(\frac{2}{4}) - \frac{4}{4}\log_2(\frac{4}{4})$ Failed $\frac{2}{4}$ $\frac{4}{4}$

Entropy (studied) =
$$\frac{4}{8}(1) + \frac{4}{8}(0)$$

Crain info = $\frac{5}{6}$ Ent (Result) - Ent (studied)

= $0.8112 - 0.5 = 0.3112$

Split info = $-\frac{1}{2}$ $\frac{ni}{n}$ log $\frac{ni}{n}$ = $-\frac{4}{8}$ log $\frac{4}{8}$ + $\frac{4}{8}$ log $\frac{4}{28}$ = 1

Ent (Yes | Slept) =
$$-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{3}{4} \log_3(\frac{3}{4})$$

= 0.8112

Ent (no | Slept) = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{3}{4} \log_3(\frac{3}{4})$

= 0.8112

Ent (slept) = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{3}{4} \log_3(\frac{3}{4})$

= 0.8112

Ent (slept) = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{3}{4} \log_3(\frac{3}{4})$

= 0.8112

Gain info = 0.8112 - 0.8112

Split info = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (Yes | Cheated) = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Fassed 0

Ent (No/cheated) = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (Cheated) = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (No) cheated = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (No) cheated = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (No) cheated = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (No) cheated = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (No) cheated = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (No) cheated = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (No) cheated = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (No) cheated = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (No) cheated = $-\frac{1}{4} \log_3(\frac{1}{4}) - \frac{1}{4} \log_3(\frac{1}{4})$

Ent (No) c

So, As the Gain Rutto of Studied and cheated attributes is highest and save so anytone of these attributes can serve as root no de for

Decision tree.