

Avaliação: por que?

- Testar a usabilidade e a funcionalidade do sistema
 - Requisitos dos usuários estão efetivamente sendo atendidos?
 - Sistema comporta-se como esperado?
 - Usuário fica satisfeito e consegue realizar suas tarefas?
- Pode ocorrer
 - Em laboratório
 - In loco, i.e., no local de uso
- Pode ou não envolver usuários finais

Objetivos da Avaliação

- Analisar a cobertura da funcionalidade do sistema
 - Apropriada? Suporta as tarefas necessárias?
 - Atende às expectativas? Permite bom desempenho?
- Analisar o efeito da interface sobre o usuário
 - Usabilidade? Agrada? Fácil de usar?
- Identificar possíveis problemas específicos do sistema
 - Resultados inesperados? Confusão?

Avaliação - Grupos de Métodos

- Inspeção de usabilidade (predictive evaluation)
 - Sem envolver usuários e aplicável a qualquer fase do desenvolvimento de um sistema (implementado ou não)
- Testes de Usabilidade
 - Métodos de avaliação centrados no usuário
 - Métodos experimentais ou empíricos
 - Métodos observacionais
 - Métodos consultivos
- Avaliação não deve ser uma fase única no final do processo de design
- Método de avaliação deve ser cuidadosamente escolhido

Avaliação - Outros Grupos

- Experimentos Controlados
 - Experimentos controlados cuidadosamente planejados e executados em laboratório
 - Tratamento estatístico para preparar experimento
 - Hipótese a ser testada
 - Variáveis de interesse controladas
 - Laboratórios projetados, rigor na observação e monitoramento do uso do sistema
 - Tratamento estatístico para validar os resultados
- Métodos Interpretativos
 - Como o usuário utiliza o sistema em seu ambiente de trabalho, e como esse uso se integra com outras atividades.
 - Avaliação participativa, avaliação etnográfica
 - Registro em vídeo/áudio para apoiar a análise

Avaliação: Estudos em Laboratório 😈

- Com os designers, sem usuários
- Com usuários (Testes de Usabilidade)
 - Facilidades de registro audio-visual
 - Espelhos de duas faces
 - Computadores instrumentados

Avaliação: Estudos em Laboratório 😈

- Situação artificial: sem interrupção, sem contexto, sem conversas...
 - Interessante quando:
 - Situação de uso real é perigosa ou remota
 - Deseja-se avaliar tarefas restritas
 - Deseja-se deliberadamente manipular o contexto
 - Para comparar designs alternativos em um contexto controlado
 - Detectar problemas/ estudar aspectos específicos
 - Observar procedimentos pouco usados

Avaliação: in Loco

- Designer/avaliador vai ao ambiente de trabalho do usuário para observá-lo em ação com o sistema
- Situação de uso real, 'quase natural'... porém
 Interrupções, ruído, influência da presença do
 'observador', humano ou não...
- Certas tarefas são difíceis de observar em laboratório ou em loco
 - Ex. as muito longas, que consomem dias ou meses...
- Custo é um aspecto relevante
 - Tirar usuário do trabalho vs. montar uma infra-estrura de observação no local (e talvez atrapalhar...)

Métodos Interpretativos

- Interpretativa: subjetiva
 - Preocupada com usuários
 - Abordagem sociológica e antropológica
- Envolve diretamente os usuários
 - Questionar/observar usuários (formal ou informalmente)

Métodos Interpretativos

- Lab não é o mundo real
- Não pode controlar todas as variáveis
- Contexto é negligenciado
- Tarefas testadas são artificiais e curtas

Avaliação do Design

- Quanto antes detectar problemas, melhor...
- Muitas técnicas que não envolvem necessariamente usuários
 - Dependem do designer, de um especialista em fatores humanos
- Objetivo: identificar se princípios cognitivos ou resultados empíricos aceitos estão sendo violados
 - Em geral, métodos analíticos...
- Métodos de Inspeção
 - Também podem ser usados para avaliar implementação

Inspeção de Usabilidade

Avaliação do Design: Inspeção de Usabilidade

- Avaliadores inspecionam ou examinam aspectos relacionados à usabilidade da interface
- Avaliadores
 - Especialistas em usabilidade, consultores de desenvolvimento de software, usuários finais, especialistas em um determinado padrão de interface, ...
- Resultados dependem dos avaliadores
 - Sustentados pela confiança depositada em seus julgamentos
- Métodos variam
 - Quanto à forma de efetuar julgamentos
 - Quanto aos critérios a serem adotados pelos julgadores

Avaliação do Design: Inspeção de Usabilidade

- Métodos informais de avaliação (empíricos)
 - Usam a habilidade e a experiência dos avaliadores
- Estudos demonstram que são um bom complemento aos testes de usabilidade com usuários
- Alguns métodos (não mutuamente exclusivos)
 - Percurso Cognitivo (Cognitive walkthrough)
 - Avaliação heurística
 - Revisão de Guidelines
 - Inspeção de Consistência

Inspeção de Usabilidade: Objetivos

- Encontrar problemas de usabilidade no design de uma interface
- Fazer recomendações no sentido de melhorar a usabilidade do design
- - Facilidade de aprendizado, eficiência de uso, quão 'agradável' ao usuário, freqüência de ocorrência e severidade de erros do usuário
- Trabalho de inspeção: identificar, classificar e contar o número de problemas de usabilidade

Inspeção de Usabilidade: Dificuldades

- O que é um 'problema de usabilidade'?
- Muitas vezes um único problema se manifesta de várias formas
 - Um único elemento da interface pode dificultar o aprendizado, torná-lo lento, causar erros, ou simplesmente ser feio/desagradável
- Difícil estabelecer definições, mas...
 - Na maioria dos casos bom senso é suficiente
- Problema de usabilidade
 - Qualquer aspecto do design onde uma mudança pode afetar uma ou mais medidas de usabilidade

Inspeção de Usabilidade

- Identificar os problemas é apenas uma parte do processo..
- A equipe deve fazer um redesign da interface
 - Tentar corrigir a maior quantidade possível de problemas Tipicamente, os relatórios gerados a partir da lista de problemas contêm sugestões...
 - Muitos métodos sugerem reuniões entre a equipe de avaliadores e a equipe de desenvolvimento
 - Discussão de soluções de redesign
 - Custo associado ao redesign
- Problemas devem ser priorizados quanto a sua
 - graus de severidade: geralmente derivados do impacto causado pelo problema no usuário e no mercado
 - Compromisso: custo vs. severidade

Inspeção de Usabilidade: Métodos

- Avaliação heurística
 - Inspeção da interface tendo como base uma pequena lista de heurísticas de usabilidade
- Percurso Cognitivo (Cognitive walkthrough)
 - Avaliador simula um usuário típico percorrendo' a interface para executar tarefas típicas
 - + Tarefas freqüentes, críticas,

Inspeção de Usabilidade: Métodos

- Revisão de Guidelines
 - Interface é analisada para verificar se está de acordo com uma lista de guidelines de usabilidade
 - ~1.000 guidelines, exige expertise do revisor
- Inspeção de Consistência
 - Avaliador verifica consistência dentro de uma família de interfaces
 - Terminologia, cores, layout, formatos de entrada e saída, material on line de treinamento e ajuda, ...

Inspeção de Usabilidade: Vantagens

- Métodos facilmente integráveis a processos convencionais de . desenvolvimento de software
- Não exigem muita experiência e longo treinamento para que possam ser utilizados
- Boa experiência educacional para designers novatos

Inspeção de Usabilidade

Avaliação Heurística Nielsen (www.usetit.com)

Avaliação Heurística

- Adequada tanto para detectar problemas graves como problemas menores
- Adequada para avaliar o design (em estágios iniciais ou avançados)
- Pode ser usada mesmo por quem não tem muita experiência com avaliação
- Também pode ser usada para avaliar implementações

Procedimento

- 2. Realizar avaliação independente
- 3. Discussão/Coleta
- 4. Atribuição de taxa de severidade

1. Obter entradas

- Time de avaliação (treinado no método)
- Familiarizar com o domínio
- Storyboards/scenarios que mostram detalhes suficientes
- Heurísticas!

2. Realizar avaliação independente

- Julgar protótipo relativamente ao conjunto de heurísticas
- Quais heurísticas
 - Nielsen: 10 heurísticas
 - outras

O que é um bug de usabilidade?

- O que quer que o avaliador julgue como tal!
- Durante a avaliação não se deve focar no fato do erro ser relavante ou não.

3. Discussão/Coleta

- Organizar todos os problemas encontrados
- Filtrar quais são os problemas importantes.

Graduação da severidade

- ___
- Baseada na
 - Frequência
 - Impacto
 - Persistência
 - Impacto no mercado
- Escala de 0 a 4

Custo benefício

 Estudo de 1994 mostra economia de 48 vezes

Inspeção de Usabilidade

Avaliação Heurística Jakob Nielsen 10 heurísticas de usabilidade

1 Visibilidade do status do sistema

O sistema deve sempre manter os usuários informados sobre o que está acontecendo, através de feedback apropriado dentro de um tempo de resposta razoável

2 Casamento entre o sistema e o mundo real

O sistema deve falar a linguagem do usuário, com palavras, frases e conceitos familiares ao usuário (em vez de termos do sistema). O projeto deve seguir convenções do mundo real numa ordem natural e lógica.

3 Controle e liberdade do usuário

O sistema deve oferecer saídas claras para situações nas quais usuários se encontram por terem escolhido funções do sistema por: não deve ser necessário um diálogo extenso. O sistema deve suportar *undo e redo*.

4 Consistência e padrões

O sistema deve apresentar informações de modo consistente e padronizado (sejam os padrões formais ou não). Os usuários não devem ter que imaginar que palavras ou situações ou ações diferentes significam, de fato, a mesma coisa.

5 Prevenção de erros

Melhor que boas mensagens de erro é preparar um projeto que impede os erros de acontecer.

econhecimento em vez de lembrança

O sistema deve fazer com que objetos, ações e opções estejam claramente visíveis. O usuário não deve ser obrigado a lembrar informações de uma parte do diálogo para outra. Instruções para uso do sistema devem estar visíveis ou facilmente acessíveis sempre que apropriado.

Flexibilidade e eficiência de uso

O sistema deve oferecer aceleladores ao usuário especialista, os quais são invisíveis aos novatos. O sistema deve permitir que usuários programem ações frequentes.

estético e minimalista

- Os diálogos usuário-sistema não devem conter informações que são irrelevantes ou raramente utilizadas. Cada unidade de informação no diálogo compete com as unidade que são de fato relevantes e, assim, diminuem a sua visibilidade relativa.
- Ajudar usuários a reconhecer, diagnosticar e se recuperar de erros
 - Mensagens de erro deve ser expressas em linguaem simples, sem códigos, indicando precisamente o prolblema e sugerir uma solução de modo construtivo.

Ajuda e documentação

Apesar de ser melhor se o sistema puder ser utilizado sem documentação alguma, há situações em que ajuda e documentação se fazem necessários. Tal apoio deve ser fácil de ser encontrado, estar focado na tarefa do usuário, listar passos concretos a ser realizados, e não serem grandes.

Avaliação Heurística

- Nielsen, 1993: discount usability engineering
 - http://www.useit.com/papers/guerrilla_hci.htm
- Métodos baratos, rápidos e fáceis de serem
- Avaliação heurística é o principal método
 - Fácil: pode ser ensinada em 4 hs.
 - Rápida: maioria das avaliações requer cerca de um dia
 - Barata: tanto quanto se deseje
 - Pequeno conjunto de avaliadores examina a interface e julga suas características em face de reconhecidos princípios de usabilidade (heurísticas)

Avaliação Heurística

- Experiência indica que diferentes pessoas encontram diferentes problemas
- . Resultados melhoram significativamente utilizando múltiplos
- Três a cinco
- Em um primeiro momento: avaliações individuais
- Sessão de avaliação
 - Cada avaliador percorre a interface pelo menos duas vezes inspecionando os diferentes componentes de diálogo
 Problemas detectados são associados às heurísticas violadas
- Heurísticas
 - Regras gerais que objetivam descrever propriedades comuns de interfaces usáveis

Avaliação Heurística

Um avaliador não detecta todos os problemas

Bons avaliadores acham problemas simples e problemas Hard complexos

U

Avaliação Heurística

- Sessões de avaliação individual
 - Tipicamente 2 hs.
 - Mais tempo para interfaces grandes ou complexas (muitos componentes de diálogo)
 - Melhor dividir a avaliação em sessões curtas, cada qual avaliando um cenário específico de interação
 - Além das heurísticas gerais, pode-se também considerar heurísticas específicas da categoria do produto analisado
 - Avaliador deve justificar o que considera um problema com base nas heurísticas que considera violadas
 - Deve ser o mais específico possível
 - Deve listar cada problema separadamente

Avaliação Heurística

- Sessões de avaliação individual

 - Avaliador pode ser deixado por conta própria..

 Caso seja um perito no domínio do sistema, ...
 - ou caso o sistema seja de domínio geral (voltado para população em
 - caso contrário deve ser auxiliado
 - Acompanhamento por pessoa da equipe de desenvolvimento Prover cenários típicos de uso Construído com base na análise de tarefas reais
- Listas de problemas dos avaliadores consolidadas em uma
- Atribuição de graus de severidade aos problemas
- Discussão com equipe de desenvolvimento
 - A partir da lista de problemas não é difícil gerar um design revisado
 - Redesign baseado na diretrizes fornecidas pelos princípios de usabilidade violados

Avaliação Heurística

- Exemplos de problemas encontrados com o uso:
 - Rocha e Baranauskas, Design e Avaliação de Interfaces Humano Computador, Cap. 4
 - http://www.sims.berkeley.edu/courses/is213/s01/projec ts/P1/travelite_HE.htm

(alunos aplicando...)

- http://www.bls.gov/ore/htm_papers/st960160.htm (problema real)
- Ver também
 - http://www.sitepoint.com/article/520 (HE step by step guide)

Avaliação Heurística

- Graus de severidade do problema
 - Combinação de três fatores
 - Freqüência de ocorrência (comum ou raro)
 - Impacto do problema (fácil ou difícil)
 - Persistência do problema (esporádica ou repetidamente)
 - Impacto do problema no mercado (popularidade do produto)

Avaliação Heurística

Graus de Severidade

Não concordo que isso é um problema de usabilidade Problema cosmético - correção pode ser feita se houver

Problema menor - correção pode ter baixa prioridade Problema grave - correção deve ter alta prioridade Catástrofe de usabilidade - correção é imperativa

- Valores atribuídos depois da consolidação dos problemas em uma lista única, pelo grupo de
- Coerênciana atribuição de valores depende da experiência dos avaliadores

Inspeção de Usabilidade

Percurso Cognitivo

Percurso Cognitivo

- Revisores avaliam a interface proposta no contexto da execução de uma ou mais tarefas do
- Origem:
 - walkthrough para inspeção de código (Engenharia de Software)
 - Percorrer uma seqüência de código, passo a passo, detalhadamente, para checar certas características
- Percurso Cognitivo
 - Passos a serem seguidos pelo usuário para executar uma certa tarefa
 - Avaliadores percorrem a seqüência de tarefas e ações, passo a passo, para detectar potenciais problemas de usabilidade

Percurso Cognitivo

- Foco:
 - avaliar um design quanto à sua facilidade de aprendizagem, particularmente aprendizagem por exploração
 - Avaliadores verificam se cada passo é ou não adequado a um usuário novato
 - O usuário seria bem sucedido ao tentar executá-lo?
 - Processo de percurso dividido em duas fases básicas
 - Fase preparatória
 - Fase de análise

Para realizar um percurso cognitivo

É necessário (fase preparatória):

- Uma descrição do protótipo do sistema
- Pode ser incompleta, mas razoavelmente detalhada
- Detalhes como posicionamento e termos usados no menu podem faze enorme diferença
- Uma descrição da tarefa do usuário
 - Deve ser uma tarefa representativa
 - Uma lista completa das ações
 - Necessárias para completar a tarefa com o protótipo
- Uma descrição dos usuários
 - Quem são e que tipo de experiência e conhecimento os avaliadores podem assumir que eles têm

Para realizar um percurso cognitivo

Fase de análise

- Contar uma 'estória verossímil' sobre como o usuário iria
- Para cada ação, em cada uma das tarefas, os analistas
- respondem quatro questões: Os usuários...
 Farão a ação correta para atingir o resultado desejado?
- Perceberão que a ação correta está disponível?
- Irão associar a ação correta ao efeito desejado?
- Se a ação correta for executada, perceberão um progresso em relação à tarefa?
- Estória verossímel de sucesso
- Estória verossímel de fracasso
 - Se a resposta a alguma das questões acima é negativa

Percurso Cognitivo

- Em papel
- · Protótipo não funcional
- Protótipo funcional
- Pode ser individual ou em grupo
- Grupo pode envolver
 - Outros designers, engenheiros de software, representantes de outras unidades organizacionais (publicidade, treinamento, documentação)

Percurso Cognitivo

Qual sua experiência e conhecimento técnico?

- Ex. Usuários de Linux, pessoas que trabalham com o MS Word
- Quais tarefas serão analisadas?
 - Todas as que o sistema suporta... ou as mais relevantes... ou as mais problemáticas...
 - Coleção de tarefas deve ser representativa
- Qual a sequência de ações correta para cada tarefa?
- Granularidade da descrição depende da expertise do usuário
- Qual a interface?
 - Como cada tarefa/ação é 'prompted' pelo sistema?
 - Protótipo em papel ou implementação.

Percurso Cognitivo

- Percorrendo as tarefas/ações, respondendo às 4 perguntas...
 - Usuários farão a ação correta para atingir o resultado desejado?
 - Usuário vai saber como iniciar a tarefa?
 - Ex. Sabe o que precisa ser feito para começar a tarefa?
 - Usuários perceberão que a ação correta está disponível? Ex. Opção para disparar a tarefa é claramente indicada no menu?
 - Usuários irão associar a ação correta ao efeito desejado? Ex. Associar um ícone com o que deseja fazer?
 - Se a ação correta for executada, perceberão um progresso em relação à tarefa?
 - · Há feedback do que ocorreu?

Percurso Cognitivo

- Exemplos de estórias:
 - DFAB, 11.4.1; Rocha e Baranauskas, Cap. 4
- Importante registrar a informação gerada durante o percurso
 - Anotações, vídeo
- Resultados do percurso podem ser usados para corrigir problemas

Percurso Cognitivo

- - Enfoque em um único atributo de usabilidade
 - Não deve ser usado como único método de avaliação
- Vantagens
 - Detecta conflitos entre designer e usuário quanto à concepção das tarefas
 - Detecta escolhas ruins/inconsistentes de nomes, rótulos, terminologia
 - Detecta respostas inadequadas à ações

Testes de Usabilidade

Teste de Usabilidade

- Restrições de tempo e recursos
 - ... mas pode reduzir tempo e custos!
- Laboratórios de Usabilidade:
 - Equipe de especialistas em teste e design de interfaces, equipamento para monitoração
 - Usability Laboratories: A 1994 Survey
 - http://www.useit.com/papers/uselabs.html
 - Microsoft
 - http://www.microsoft.com/usability/default.htm

 - http://www.sun.com/usability/
 - Empresa que vende equipamentos para labs. de usabilidade
 - http://ww

Testes de Usabilidade

- Testes devem ser cuidadosamente planejados e preparados
 - Qual o objetivo do teste?
 - Melhorar um design em desenvolvimento, ou...
 - Avaliar a qualidade global de uma interface em fase final de definição

U

Testes de Usabilidade

- Plano detalhado de teste
 - O que se deseja obter?
 - Quando e aonde vai acontecer?
 - Qual a duração prevista de cada sessão?
 - Qual o suporte computacional e software necessários?
 - Qual o estado do sistema no início do teste?
 - Quem serão os experimentadores?
 - Quem serão os usuários, quantos, como consegui-los?
 - Que tarefas serão solicitadas aos usuários?
 - Qual critério será utilizado para decidir que os usuários terminaram cada tarefa corretamente?
 - Quanto o experimentador poderá ajudar cada usuário?
 - Quais dados serão coletados, como serão analisados?
 - Qual o critério para determinar que a interface é um sucesso?

Testes de Usabilidade

- Problemas: confiabilidade e validade
- Confiabilidade: grau de certeza de que o mesmo resultado será obtido se o teste for repetido
- Validade: resultados do teste refletem os aspectos de interface que se deseja testar
 - Resultados obtidos têm significado fora do laboratório?
 - Cuidados: diferenças individuais entre usuários, escolha de usuários, escolha de tarefas, diferença entre equipamentos
 - Validade requer planejamento cuidadoso e tratamento estatístico adequado dos dados coletados

Testes de Usabilidade

- Escolha de usuários
 - Representativos de usuários reais do sistema
 - Idade. nível educacional.
 - Experiência prévia com uso de computadores, conhecimento do domínio,...
 - Ideal: usuários reais!!
 - Nem sempre é possível...
- Experimentadores
 - Preparação: conhecimento sobre a aplicação, sobre a interface
 - Pode até ser os próprios projetistas, mas isso requer um certo cuidado...

Testes de Usabilidade

- Tarefas
 - Representativas do uso da interface
 - Dar boa cobertura aos componentes mais significativos
 - Poder ser completadas no tempo razoável para uma sessão de teste (1 a 3 horas)
 - Grau de dificuldade gradativa
 - Planejadas para que possam ser interrompidas a qualquer tempo
 - Descrição de cada tarefa s ser efetuada deve ser fornecida por escrito
 - Realista e inserida em um cenário de uso
- Teste piloto
 - 1 a 3 usuários
 - Para refinar os procedimentos definidos
- Dados obtidos são descartados para efeito de análise

Etapas de um Teste

- Preparação
 - O local, os equipamentos...
- Introdução
 - Explicar aos usuários, colocá-los a vontade, esclarecer objetivos
- Teste
 - Evitar interferir, evitar ajudar
- Sessão Final
 - Ouvir usuários

Etapas de um Teste

- O que os usuários devem saber
 - Propósito do teste é avaliar o sistema, não o usuário
 - Podem expressar suas opiniões livremente
 - Resultados do teste servirão para melhorar a interface
- O sistema é confidencial
- Participação no teste é voluntária, e pode ser interrompida por ele
- Resultados do teste não são públicos, anonimato dos participantes é garantido
- Caso estejam sendo feitas gravações em vídeo/áudio, explicar
- Explicar que pode perguntar, mas nem sempre o experimentador pode responder
- Instruções específicas sobre o teste

Testes de Usabilidade

- Gravações em vídeo podem ser um recurso valioso para avaliação posterior
 - Ideal é não identificar as pessoas
- Entretanto, a análise é difícil
 - Importante complementar registro com anotações, log files...
- Protocolo Think-aloud
 - Atmosfera informal e agradável

Testes de Usabilidade

- Medidas quantitativas de desempenho
 - Importantes
 - Para avaliar se objetivos de usabilidade foram atendidos
 - Certos objetivos podem ser avaliados por medidas auantificáveis
 - Para comparar produtos competitivos
 - Para pesquisas em fatores humanos
 - Ex. Eficiência de uso (uma guideline de usabilidade)
 - Medir tempos para executar tarefas...

Medidas Típicas Quantificáveis

- Tempo que o usuário gasta para executar uma tarefa
- Número de tarefas completadas em um intervalo de tempo
- Razão entre interações de sucesso e de erro
- Número de erros do usuário
- Número de ações errôneas imediatamente subsequentes
- Número de comandos distintos utilizados pelo usuário
- Número de comandos nunca utilizados
- Freqüência de uso do help ou manuais, tempo de consulta
- Quantas vezes o manual resolveu o problema do usuário
- Proporção entre comentários do usuário favoráveis e críticos
- Quantidade de 'tempo morto'
- Número de vezes que o usuário desviou do objetivo da tarefa

Testes de Usabilidade

- Em geral, um único teste coleta um pequeno sub-conjunto de medidas
- Testes de campo
 - Sistemas colocados em ambientes de uso reais
 - Coleta de dados automática pelo sistema
- Observação síncrona ou remota

Testes de Usabilidade

THINK ALOUD

Testes de Usabilidade: THINK ALOUD

- Pensando em voz alta (THINK ALOUD)
 - Usuário verbaliza o que está pensando enquanto usa o sistema
 - Expectativa é que os pensamentos mostrem como o usuário interpreta cada item da interface
 - Inadequada quando o objetivo é obter medidas de desempenho
 - Usuários tendem a ficar mais lentos e cometer mais erros
 - Requer experimentador bem-preparado
 - Estimular o usuário a falar
 - Não interferir no uso do sistema
 - Vantagem: mostra o que o usuário está fazendo e porque está fazendo, enquanto está fazendo
 - Boa estratégia: usuários trabalhando aos pares
 - Outra alternativa: pedir que os usuários comentem depois suas ações gravadas em vídeo

Ver tb

- http://www.dimap.ufrn.br/~jair/piu/artigos/avaliacao.pdf Avaliação de Interfaces de Usuário Conceitos e Métodos Raquel Oliveira Prates, Simone Diniz Junqueira Barbosa
 http://homepages.dcc.ufmg.br/~rprates/ihc/#bibliografía
- http://www.ceunsp.edu.br/eventos/seminfo/material/sergio_avalia cao_interface.pdf