

≔

?

3

W

☆ Buying Show Tickets

There are *n* people standing in line to buy show tickets. Due to high demand, the venue sells tickets according to the following rules:

- The person at the head of the line can buy exactly 1 ticket and must then exit the line
- If a person needs to purchase additional tickets, they must re-enter the *end* of the line and wait to be sold their next ticket (assume exit and re-entry takes zero seconds).
- Each ticket sale takes exactly 1 second.

We express the initial line of n people as an array, $tickets = [tickets_0, tickets_1, ..., tickets_{n-1}]$, where each $tickets_i$ denotes the number of tickets that person i wishes to buy. If Jesse is located at position p, how many seconds will it take for him to purchase $tickets_p$ tickets?

For example, if tickets = [1, 2, 5] and p = 1, the first five seconds of ticket sales look like this:

Complete the waiting Time function in the editor below. It has two parameters:

- 1. An array, tickets, of n positive integers describing the initial sequence of people standing in line. Each $tickets_i$ describes the number of tickets that the person waiting at initial position i needs to purchase.
- 2. An integer, *p*, denoting Jesse's position in *tickets*.

The function must return an integer denoting the number of seconds it takes for Jesse to finish purchasing exactly $tickets_p$ tickets.

3

function:

vendors-test

The first line contains an integer, *n*, denoting the number of elements in *tickets*.

Each line *i* of the *n* subsequent lines contains an integer describing *tickets_i*.

The last line contains an integer, p.

3

4

(5)

6

7

8

9

10

11

12

13

14

(15)

(16)

17)

Constraints

- $1 \le n \le 10^5$
- $1 \le tickets[i] \le 10^9$, where $0 \le i < n$.
- $0 \le p < n$

Output Format

Return an integer denoting the number of seconds it takes for Jesse to finish purchasing exactly $tickets_D$ tickets.

Sample Input 0

Sample Output 0

12

Explanation 0

Given tickets = [2, 6, 3, 4, 5], Jesse's wait time looks like this:

- 0. window \leftarrow 2 \leftarrow 6 \leftarrow 3 \leftarrow 4 \leftarrow 5
- 1. window $\leftarrow 6 \leftarrow 3 \leftarrow 4 \leftarrow 5 \leftarrow 1$
- 2. window \leftarrow **3** \leftarrow 4 \leftarrow 5 \leftarrow 1 \leftarrow 5
- 3. window $\leftarrow 4 \leftarrow 5 \leftarrow 1 \leftarrow 5 \leftarrow 2$
- 4. window $\leftarrow 5 \leftarrow 1 \leftarrow 5 \leftarrow 2 \leftarrow 3$
- 5. window $\leftarrow 1 \leftarrow 5 \leftarrow 2 \leftarrow 3 \leftarrow 4$
- 6. $window \leftarrow 5 \leftarrow 2 \leftarrow 3 \leftarrow 4$ (the person at the head of the line in the previous step purchased their last ticket and does not re-enter the line)
- 7. window \leftarrow **2** \leftarrow 3 \leftarrow 4 \leftarrow 4
- 8. window \leftarrow 3 \leftarrow 4 \leftarrow 4 \leftarrow 1
- 9. window $\leftarrow 4 \leftarrow 4 \leftarrow 1 \leftarrow 2$
- 10. window $\leftarrow 4 \leftarrow 1 \leftarrow 2 \leftarrow 3$
- 11. window \leftarrow **1** \leftarrow 2 \leftarrow 3 \leftarrow 3
- 12. $window \leftarrow 2 \leftarrow 3 \leftarrow 3$ (Jesse purchased his last ticket and does not re-enter the line)

ල ල Sample Input 1

4		
1		
1		
1		
1		
0		

Sample Output 1

```
1
```

Explanation 1

Given *tickets* = [1, 1, 1, 1], Jesse's wait time looks like this:

- 0. window \leftarrow **1** \leftarrow 1 \leftarrow 1 \leftarrow 1
- 1. $window \leftarrow 1 \leftarrow 1 \leftarrow 1$ (Jesse purchased his ticket and does not re-enter the line) Because it took a total of one second for Jesse to purchase $tickets_0 = 1$ ticket, we return 1.

Sample Input 2

4			
5			
5			
2			
3			
3			

Sample Output 2

```
11
```

Given tickets = [5, 5, 2, 3], Jesse's wait time looks like this:

- 0. window $\leftarrow 5 \leftarrow 5 \leftarrow 2 \leftarrow 3$
- 1. window $\leftarrow 5 \leftarrow 2 \leftarrow 3 \leftarrow 4$
- 2. window \leftarrow 2 \leftarrow 3 \leftarrow 4 \leftarrow 4
- 3. window \leftarrow **3** \leftarrow **4** \leftarrow **4** \leftarrow **1**
- 4. window $\leftarrow 4 \leftarrow 4 \leftarrow 1 \leftarrow 2$
- 5. window $\leftarrow 4 \leftarrow 1 \leftarrow 2 \leftarrow 3$
- 6. window $\leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow 3$
- 7. $window \leftarrow 2 \leftarrow 3 \leftarrow 3$ (the person at the head of the line in the previous step purchased their last ticket and does not re-enter the line)

Notepad to edit them on windows.

(20)

