The Network of Foreign Direct Investment Flows: Theory and Empirical Analysis¹

John Schoeneman² jbs5686@psu.edu PhD Candidate Boliang Zhu² bxz14@psu.edu Assistant Professor

Bruce Desmarais² bdesmarais@psu.edu Associate Professor

April 8, 2017

¹Acknowledgement: This material is based on work supported by the National Science Foundation under IGERT Grant DGE-1144860, Big Data Social Science.

²Pennsylvania State University

Introduction

- Motivation
 - Violation of Independence Assumptions
 - Theoretical Importance of Dependence Terms
- FDI as a Network
 - Reciprocity
 - Transitivity
- Simultaneously test exogenous variables

Reciprocity

Reciprocity

- Standard practice to resolve political opposition from competing firms
- Anti-reciprocal relationship in mixed dyads

Transitivity

Transitivity

- MNC expansion and supply-chain fragmentation
- Risk of Expropriation
- PTA networks

FDI Data and Exogenous Covariates

- Bilateral FDI statistics from UNCTAD, 2001-2012
- Dyad-level Covariates
 - Gravity +
 - Contiguity +
 - Common Language +
 - Four Types of Defense Treaties +
 - Colonial Relationships +
 - PTA depth +

- Node-level Covariates (s/r)
 - GDP per capita +/-
 - GDP Growth Rate +/+
 - Polity IV +/+
 - Political Violence -/-
 - Trade Openness +/+

The Exponential Random Graph Model (ERGM)

The probability (likelihood function) of observing the network is:

$$\Pr_{\theta;h;g}(Y = y) = \frac{h(y)\exp(\theta \cdot g(y))}{\kappa_{h,q}(\theta)}$$

Decomposition:

$$\underbrace{h(y)}_{Distribution}$$
 $\underbrace{m{ heta}}_{Effects}$ $\underbrace{g(y)}_{Net\ Stats}$ $\underbrace{\kappa_{h,g}(heta)}_{Normalize}$

ERGM Constants

$$\mathrm{Sum}: g(y) = \sum_{(i,j) \in \mathbb{Y}} y_{i,j}$$

Sum, Fractional Moment : $g(y) = \sum_{(i,j) \in \mathbb{Y}} y_{i,j}^{1/2}$

Non-Zero :
$$\mathbf{g}_k = \sum_{(i,j) \in \mathbb{Y}} \mathbb{I}(\mathbf{y}_{i,j} \neq 0)$$

ERGM Dependence Terms

Reciprocity :
$$g(y) = \sum_{(i,j) \in \mathbb{Y}} min(y_{i,j},y_{j,i})$$

Transitive Weights :
$$g(y) = \sum_{(i,j) \in \mathbb{Y}} \min \left(y_{i,j}, \max_{k \in N} \left(\min(y_{i,k}, y_{k,j}) \right) \right)$$
,

ERGM Covariates

Dyadic Covariate :
$$g(y, x) = \sum_{(i,j)} y_{i,j} x_{i,j}$$

Sender Covariate :
$$g(y, x) = \sum_{i} x_i \sum_{j} y_{i,j}$$

Receiver Covariate :
$$g(y, x) = \sum_{j} x_{j} \sum_{i} y_{i,j}$$

Model Fit and Bias

BIC Difference between Models

Count Model and Network Dependencies

Network Statistics

Covariate Results

Conclusion and Future Research

- Conclusion
 - Network terms are substantively important
 - Network terms need to be modeled instead of being assumed away
- Future Steps
 - Cyclical Weights
 - Network dynamics

Additional Covariates

