Détection d'intrusions par l'analyse Big Data des fichiers logs

Réalisé par : ALLAL Yahia , AIT ICHOU Mustapha , AMMOURI Yassire

Faculté des Sciences de Rabat

12 Juillet 2024

Plan

- Problématique
- Définition des Fichiers de Logs et leurs Types
- OataSet
- Les modèles de machine learning choisis
- Les outils & Implémentation
- Démonstration
- Conclusion

Problématique

Problématique

- Les systèmes informatiques sont essentiels.
- La sécurité des systèmes est très importante. (Alors, comment peut-on protéger...?)
- Les anciennes méthodes ne sont pas efficaces.
- En utilisant les outils de big data pour résoudre ce problème.

Définition des Fichiers de Logs et leurs Types

Définition des Fichiers de Logs

Figure: Définition des Fichiers de Logs et leurs Types

Les fichiers de logs sont des enregistrements chronologiques des événements ou des transactions générés par les systèmes informatiques.

Types des Fichiers de Logs

Figure: Les Types de Fichiers de Logs

- **Log web** : Sont des événements web (les requêtes HTTP, les adresses IP des visiteurs, et les erreurs serveur).
- Log de réseau : Sont les activités et les erreurs liées aux services de réseau (les connexions entrantes et sortantes, les transferts de données).
- Log système : Sont des événements généraux du système (les démarrages et arrêts, les mises à jour du système).

DataSet

Data set: KDDCup99

KDDCup99

- Nombre d'Instances: Environ 4.9 millions d'instances de connexions réseau.
- Nombre de features : 42 caractéristiques
- Types d'Attaques : 22 types d'attaques répartis en quatre catégories principales:
 - Denial of Service (DoS): Déni de service
 - Remote to Local (R2L) : À distance vers local
 - User to Root (U2R): Utilisateur vers superutilisateur
 - Probing or port scanning : Exploration ou balayage de port

Les modèles de machine learning choisis

Random Forest

Testing Set:	precision	11	f1-score	
	precision	Lecall	11-score	support
	1.00	1.00	1.00	13386
	1.00	1.00	1.00	11809
accuracy			1.00	25195
macro avg	1.00	1.00	1.00	25195
weighted avg	1.00	1.00	1.00	25195
Confusion Matrix:				
[[13379 7]				
[25 11784	ກຳ			
Accuracy: 0.9987299067275253				
Accuracy. 0.3	367233667273	233		

Artificial Neural Network (ANN)


```
model = tf.keras.Sequential([
tf.keras.layers.Dense(units=64, activation='relu', input shape=(x train.shape[1:]),
                      kernel regularizer=regularizers.L1L2(11=1e-5, 12=1e-4),
                      bias regularizer=regularizers.L2(1e-4),
                      activity regularizer=regularizers.L2(1e-5)),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(units=128, activation='relu',
                      kernel regularizer=regularizers.L1L2(11=1e-5, 12=1e-4),
                      bias regularizer=regularizers.L2(1e-4).
                      activity regularizer=regularizers.L2(1e-5)),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(units=512, activation='relu',
                      kernel regularizer=regularizers.L1L2(11=1e-5, 12=1e-4).
                      bias regularizer=regularizers.L2(1e-4),
                      activity regularizer=regularizers.L2(1e-5)),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(units=128, activation='relu',
                      kernel regularizer=regularizers.L1L2(l1=1e-5, l2=1e-4),
                      bias regularizer=regularizers.L2(1e-4),
                      activity regularizer=regularizers.L2(1e-5)),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(units=1, activation='sigmoid'),
```


Les outils & Implémentation

Les outils

Implmentation

Comment fonctionne Kafka

Démonstration

Conclusion

Conslusion

La détection d'intrusions par l'analyse Big Data des fichiers logs présente plusieurs défis :

- Attaques zero-day: Difficiles à détecter car elles exploitent des vulnérabilités inconnues.
- Complexité des environnements réseau : Adaptation aux réseaux modernes complexes et distribués.
- Évolution des techniques d'attaque : Les systèmes doivent s'adapter rapidement aux nouvelles menaces.

Merci pour votre attention!

