CHAPTER 4: 00 MODELING WITH UML

Software Engineering

Contents

- 1 Motivation and origins.
- 2 View of a Software System:

Static aspect.

Dynamic aspect.

- 3 OO Methods
- 4 The UML Notation.

Motivation and Origins

- OO Programming languages appear.
- The use of these languages requires a new viewpoint with respect to analysis and design.
- First OO analysis and design methods appear.

Motivation

- OO methods represent requirements in terms of objects and the services they offer.
- OO methods are more "natural" than traditional ones:
 - Functions/processes vs objects.

Motivation

 In OO methods the decomposition of the system is based on objects or classes that are discovered in the problem domain

Origins

- Rumbaugh, Blaha, (OMT)- 1991
- Coad, Yourdon 1991
- Shlaer, Mellor- 1992
- Booch- 1992
- Odell, Martin –1992
- Jacobson (OOSE) –1992
- Fusion 1994
- Booch, Rumbaugh, Jacobson (UML) -1997

2 View of a Software System

Static View

- Object:
 - Entity that exists in the real world.
 - Have identity and are differentiated.
 - Examples:
 - The bill 2003/0010
 - The plane with plate number 123
 - A customer
 - The plane with plate number 345

Static view

- Object Classes: Describe a collection of objects with:
 - Same properties.
 - Shared Behavior.
 - The plane with plate number 123
 - The plane with plate number 345

Plane

Static View: Associations

- Association: Allows linking or connecting objects of different classes.
- Example: A country has only one capital.

Static View: Generalization/ Specialization

• Generalization: Act or result obtained after distinguishing a concept that is more general than another.

 Inheritance: Allows properties and operations of a class to be accessible by a subclass.

Static View

 Static Aspect: Describes the static structure of a system and its interrelationships.

	Intra-objects	Inter-objects
Static Aspect	Object classes. Attributes Operations	Association Generalization

Dynamic View

- Objects communicate by means of invocation of operations on other objects.
- The dynamic view describes the aspects of a system that change over time:
 - Interactions between objects.
 - Possible states of an object.
 - Transitions between states.
 - What events are produced.
 - What operations are executed.

Dynamic View

State transition diagram.

Dynamic View

MSCs: describe interactions between different objects.

Static/Dynamic Views

- Static View: Structure and interrelationships.
- Dynamic View: Aspects that change overtime.

	Intra-object	Inter-objects
Static Aspect	Object classes. Attributes Operations	Association Generalization
Dynamic Aspect	State Transition Diagrams	MSCs

3 OO Methods

- OO Analysis:
 - A specification of the problem is created.
 - Describes what to do with the system.
- OO Design:
 - Definition of a software solution to satisfy the requirements.
 - Describes how the system will work

OO Methods: Continuity between models

Structured techniques:

OO Methods: Continuity between models

• In OO:

4 The UML Language

- UML = <u>Unified Modeling Language</u>
- UML: A general purpose language for OO modelling
- Starting Point:
 - Many OO methods with different notations.
 - Learning and tool construction inconvenients.
 - A Uniform notation needed.

UML History

- Started as the "unified method" with the participation of J. Rumbaugh and G. Booch in 1995. The same year I. Jacobson is incorporated.
- Partners in Rational Software, CASE tool Rational Rose.

UML evolution

UML: the success triangle

UML merges OO approaches

UML

- UML is not a method, it is a notation to describe systems.
 - Processes based on UML:
 - USD "Unified Software Development Process" by I. Jacobson.
 - RUP "Rational Unified Process" by Rational Software.
 - C. Larman "UML and patterns".

[&]quot;A model is a complete description of a system from a concrete viewpoint"

UML Charts

```
Use cases Chart
Class Chart (including instances chart)
Behavior Charts
    States Chart
    Activity Chart
    Interaction Diagrams
        Sequence Diagram
        Collaboration Diagram
Implementation Diagrams
    Components Diagram
    Deployment Diagram
```

Use Cases model

- Use cases is a technique to capture information about how a system or business presently works and how it is required to work in the future.
- They are used during requirements gathering to capture functional requirements of a system to be developed.

Use Cases

- Actors: Entities that exchange information with the system.
- Types of Actors:
 - Humans.
 - Devices.
 - Other software systems.
- A use case contains a sequence of transactions that exchange the actors and the system whenever a given functionality must be executed.

Use Cases: notation

System Make Order Generate Bill System Authorization System

Make Order Use Case Description

User Intentions	System Obligations	
1. Employee selects New Order		
-	2. System requests customer code.	
3.Empoloyee inserts customer code		
	4. System checks it exists	
5. While not end lines selected		
6. Employee inserts item code and quantity		
	7. System checks code exists	
	8. System calculates total of line and echoes	
	description and total of line	
End While		
	9. System calculates Orde r total and echoes total.	
	10. System requests customer payment card number	
11. Employee inserts card number		
	12. The system verifies validity against	
	authorization system	
13. Employee selects process order		
	14. System generates order number, echoes it and	
	stores all the information.	
Synchronous extensions		
#1	15. At 4 the customer does not exist, the system	
	reports error and go to setp 2.	
#2	16. At 7, the item does not exist, the system reports	
	error and go to step 5.	
#3	17. At 12 The card number is not valid. Go to step	
	11.	
Asynchronous Extensions		
#4		
18. In every step the employee may select Abort		
	19. The use case ends without any information	
	storage.	

Static Models

 Show the classes of a system and the relationships between them.

Dynamic Models

 State Transition Chart: It shows the lifecycles of the objects in the system.

Dynamic Models

 Sequence and Collaboration Diagrams: Show messages that are exchanged by objects that participate in a scenario or use case.

Sequence & Collaboration

Activity Diagrams

Special case of a States diagram where:

All (or most) states are action-ones

All (most) transitions are triggered by the finalization of actions.

The diagram may be associated to a :

Class

Implementation of an operation

A use case

Example

