Exercice 9. Soit $V = \mathbb{R}^3$ et $S = \{(9, 9, 0), (2, 0, 1), (3, 5, -4), (12, 12, -1)\} \subset V$.

- (i) Trouver une base de Vect(S).
- (ii) Déterminer si Vect(S) = V.

Solution 9. Ici $V = \mathbb{R}^3$ et $S = \{(9,9,0), (2,0,1), (3,5,-4), (12,12,-1)\} \subset V$.

(i) Trouver une base de $\mathrm{Vect}(S)$ revient à trouver une base de l'espace ligne L de la matrice B suivante :

$$B = \begin{pmatrix} 9 & 9 & 0 \\ 2 & 0 & 1 \\ 3 & 5 & -4 \\ 12 & 12 & -1 \end{pmatrix}$$

Avec l'opération élémentaire $L'_1 = L_1/9$, on obtient :

$$B' = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 3 & 5 & -4 \\ 12 & 12 & -1 \end{pmatrix}$$

Avec les opérations élémentaires $L_2''=L_2'-2L_1'$, $L_3''=L_3'-3L_1'$ et $L_4''=L_4'-12L_1'$, on obtient :

$$B'' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & -1 \end{pmatrix}$$

Avec l'opération élémentaire $L_2^{\prime\prime\prime}=L_2^{\prime\prime}+L_3^{\prime\prime},$ on obtient :

$$B''' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & -3 \\ 0 & 2 & -4 \\ 0 & 0 & -1 \end{pmatrix}$$

Avec les opérations élémentaires $L_2''''=L_3'''/2,$ $L_3''''=-L_4'''$ et $L_4''''=L_2'''-3L_4'''$ on obtient :

$$B'''' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

On en déduit que dim L = 3 et que ((1,1,0),(1,-2,0),(0,0,1)) est une base de L. Donc dim Vect(S) = 3 et ((1,1,0),(1,-2,0),(0,0,1)) est une base de Vect(S).

(ii) $\operatorname{Vect}(S)$ est un sous-espace vectoriel de V et $\dim \operatorname{Vect}(S) = \dim V = 3$. On en déduit que $\operatorname{Vect}(S) = V$.

Exercice 10. Montrer que $\{x^2 - x + 1, 2x + 1, 2x - 1\}$ est une base de $\mathbb{P}_2(\mathbb{R})$.

Solution 10. On doit montrer que $S = \{x^2 - x + 1, 2x + 1, 2x - 1\}$ est une base de $V = \mathbb{P}_2(\mathbb{R})$.

On sait que dim V=3 et $\mathcal{B}=(1,x,x^2)$ est une base de V. Par rapport à cette base \mathcal{B} , on a

$$[x^2 - x + 1]_{\mathcal{B}} = (1, -1, 1), \quad [2x + 1]_{\mathcal{B}} = (1, 2, 0) \quad \text{et} \quad [2x - 1]_{\mathcal{B}} = (-1, 2, 0).$$

Ainsi S est une base de V si et seulement si le rang ligne de la matrice A est égal à 3 où :

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & 0 \\ -1 & 2 & 0 \end{pmatrix}$$

Avec les opérations élémentaires $L_2' = L_2 - L_1$ et $L_3' = L_3 + L_1$, on obtient :

$$A' = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 3 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

Avec les opérations élémentaires $L_2'' = L_3'$ et $L_3'' = L_2'$, on obtient :

$$A'' = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 3 & -1 \end{pmatrix}$$

Avec l'opération élémentaire $L_3^{\prime\prime\prime}=L_3^{\prime\prime}-3L_2^{\prime\prime}$ on obtient :

$$A''' = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -4 \end{pmatrix}$$

Avec l'opération élémentaire $L_3'''' = -L_3'''/4$ on obtient :

$$A'''' = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

On en déduit que le rang ligne de A vaut bien 3 et donc que S est une base de V.

Exercice 11. Soient $V = \mathbb{R}^2$ et $v = (3, -1) \in V$ où les coordonnées de V sont données par rapport à la base usuelle $\mathcal{B} = ((1, 0), (0, 1))$ de \mathbb{R}^2 .

- (i) Donner les coordonnées de v par rapport à la base $\mathcal{B}_1 = ((1, -1), (1, 1))$.
- (ii) Donner les coordonnées de v par rapport à la base $\mathcal{B}_2 = ((1,2),(1,3))$.

Solution 11. Soit $V = \mathbb{R}^2$ et $v = (3, -1) \in V$ où les coordonnées de V sont données par rapport à la base usuelle $\mathcal{B} = ((1, 0), (0, 1))$ de \mathbb{R}^2 .

(i) On doit donner les coordonnées de v par rapport à la base $\mathcal{B}_1 = ((1,-1),(1,1))$. On cherche $\lambda_1, \lambda_2 \in \mathbb{R}$ tels que $\lambda_1(1,-1) + \lambda_2(1,1) = (3,-1)$. Sous forme matricielle, ce système équivaut à :

$$A = \begin{pmatrix} 1 & 1 & 3 \\ -1 & 1 & -1 \end{pmatrix}$$

Avec l'opération élémentaire $L'_2 = L_2 + L_1$ on obtient :

$$A' = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 2 & 2 \end{pmatrix}$$

Ainsi $\lambda_2 = 1$ et $\lambda_1 = 3 - \lambda_2 = 2$. Donc $[v]_{\mathcal{B}_1} = (2, 1)^T$.

(ii) On doit donner les coordonnées de v par rapport à la base $\mathcal{B}_2 = ((1,2),(1,3))$. On cherche $\lambda_1, \lambda_2 \in \mathbb{R}$ tels que $\lambda_1(1,2) + \lambda_2(1,3) = (3,-1)$. Sous forme matricielle, ce système équivaut à :

$$B = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 3 & -1 \end{pmatrix}$$

Avec l'opération élémentaire $L_2' = L_2 - 2L_1$ on obtient :

$$B' = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 1 & -7 \end{pmatrix}$$

Ainsi $\lambda_2 = -7$ et $\lambda_1 = 3 - \lambda_2 = 10$. Donc $[v]_{\mathcal{B}_2} = (10, -7)^T$.

Exercice 12. Soit $V = M_{2\times 2}(\mathbb{R})$ et

$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, a - c = 0 \right\} \subset V.$$

- (i) Montrer que W est un sous-espace vectoriel de V.
- (ii) Trouver une base \mathcal{B} de W.
- (iii) Vérifier que \mathcal{B} est bien une base de W.
- (iv) Compléter \mathcal{B} en une base de V.

Solution 12. Soit $V = M_{2\times 2}(\mathbb{R})$ et

$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, a - c = 0 \right\} \subset V.$$

(i) On doit montrer que W est un sous-espace vectoriel de V. Bien sur W est un sous ensemble non vide de V. Soient

$$A_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}, A_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$$

des éléments de W et $\lambda \in \mathbb{R}$. On a

$$A_1 + A_2 = \begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{pmatrix}$$

Comme $(a_1 + a_2) - (c_1 + c_2) = (a_1 - c_1) + (a_2 - c_2) = 0 + 0 = 0$, on a $A_1 + A_2 \in W$. Aussi

$$\lambda A_1 = \begin{pmatrix} \lambda a_1 & \lambda b_1 \\ \lambda c_1 & \lambda d_1 \end{pmatrix}$$

Comme $\lambda a_1 - \lambda c_1 = \lambda (a_1 - c_1) = \lambda \cdot 0 = 0$, on a $\lambda A_1 \in W$. Ainsi W est un sous-espace vectoriel de V.

(ii) On doit trouver une base \mathcal{B} de W. Soit

$$\mathcal{B} = \left(\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

(iii) On doit vérifier que \mathcal{B} est bien une base de W. On a que W est un sous-espace vectoriel de V et $W \neq V$ car, par exemple,

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in V \setminus W.$$

Comme dim V=4 on doit donc avoir dim $W\leq 3$. Ainsi pour montrer que $\mathcal B$ est une base de W il suffit de montrer que

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

sont linéairement indépendants. Supposons $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ sont tels que

$$\lambda_1 \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

Alors

$$\begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_1 & \lambda_3 \end{pmatrix} = 0$$

et donc $\lambda_1 = \lambda_2 = \lambda_3 = 0$. Ainsi

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

sont bien linéairement indépendants.

(iv) Comme $\dim W = \dim V - 1$, pour compléter $\mathcal B$ en une base de V on peut ajouter à $\mathcal B$ un élément de $V \setminus W$, par exemple

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Exercice 13. Soit $V = \mathbb{P}_2(\mathbb{R})$. Pour chacun des sous-ensembles S suivants de V, trouver une base de Vect(S), déterminer si Vect(S) = V et compléter S en une base de V.

- (i) $S = \{1 + x, 1 + 2x\}.$
- (ii) $S = \{1 + x, x^2 + x + 2, 2x^2 + 2\}.$
- (iii) $S = \{1 + x, x^2 + x + 1, 2x^2 + 2\}.$

Solution 13. Soit $V = \mathbb{P}_2(\mathbb{R})$. Pour chacun des sous-ensembles S suivants de V, on doit trouver une base de Vect(S), déterminer si Vect(S) = V et compléter S en une base de V. On va utiliser la base usuelle $\mathcal{B} = (1, x, x^2)$ de V. Notons que dim V = 3.

(i) $S = \{1 + x, 1 + 2x\}.$

Par rapport à \mathcal{B} , on a $[1+x]_{\mathcal{B}} = (1,1,0)^T$ et $[1+2x]_{\mathcal{B}} = (1,2,0)^T$. Aussi Vect(S) est égal à l'espace ligne L de A où

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L'_2 = L_2 - L_1$, on obtient :

$$A' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

On en déduit que B = ((1,1,0),(0,1,0)) est une base de L, et donc $\mathcal{B}_S = (1+x,x)$ est une base de Vect(S). Ainsi dim Vect(S) = 2, et comme Vect(S) est un sous-espace vectoriel de V avec dim $\text{Vect}(S) \neq \dim V$, on a $\text{Vect}(S) \neq V$.

Comme on peut compléter B en une base de \mathbb{R}^3 en ajoutant par exemple (0,0,1), on en déduit que l'on peut compléter \mathcal{B}_S en une base \mathcal{B}_1 de V en ajoutant x^2 , i.e. $\mathcal{B}_1 = (1 + x, x, x^2)$.

(ii) $S = \{1 + x, x^2 + x + 2, 2x^2 + 2\}.$

Par rapport à \mathcal{B} , on a $[1+x]_{\mathcal{B}} = (1,1,0)^T$, $[2+x+x^2]_{\mathcal{B}} = (2,1,1)^T$ et $[2+2x^2]_{\mathcal{B}} = (2,0,2)^T$. Aussi Vect(S) est égal à l'espace ligne L de A où

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 2 & 0 & 2 \end{pmatrix}$$

Avec l'opération élémentaire $L_2' = L_2 - 2L_1$, on obtient :

$$A' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 0 & 2 \end{pmatrix}$$

Avec l'opération élémentaire $L_3''=L_3'-2L_1',$ on obtient :

$$A'' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -2 & 2 \end{pmatrix}$$

Avec l'opération élémentaire $L_3''' = L_3'' - 2L_2''$, on obtient :

$$A''' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L_2'''' = -L_2'''$, on obtient :

$$A'''' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

On en déduit que B = ((1, 1, 0), (0, 1, -1)) est une base de L, et donc $\mathcal{B}_S = (1 + x, x - x^2)$ est une base de $\operatorname{Vect}(S)$. Ainsi dim $\operatorname{Vect}(S) = 2$, et comme $\operatorname{Vect}(S)$ est un sous-espace vectoriel de V et dim $\operatorname{Vect}(S) \neq \dim V$, on a $\operatorname{Vect}(S) \neq V$. On peut compléter B en une base B' de \mathbb{R} , en ajoutant, par exemple, (0,0,1), i.e. B' = ((1,1,0),(0,1,-1),(0,0,1)). On en déduit que l'on peut compléter \mathcal{B}_S en une base \mathcal{B}_1 de V en ajoutant x^2 , i.e. $\mathcal{B}_1 = (1 + x, x - x^2, x^2)$.

(iii) $S = \{1 + x, x^2 + x + 1, 2x^2 + 2\}.$

Par rapport à \mathcal{B} , on a $[1+x]_{\mathcal{B}} = (1,1,0)^T$, $[1+x+x^2]_{\mathcal{B}} = (1,1,1)^T$ et $[2+2x^2]_{\mathcal{B}} = (2,0,2)^T$. Aussi Vect(S) est égal à l'espace ligne L de A où

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 0 & 2 \end{pmatrix}$$

Avec l'opération élémentaire $L_2' = L_2 - L_1$, on obtient :

$$A' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 2 \end{pmatrix}$$

Avec l'opération élémentaire $L_3'' = L_3' - 2L_1'$, on obtient :

$$A'' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & 2 \end{pmatrix}$$

Avec les opérations élémentaires $L_2'''=-L_3''/2$ et $L_3'''=L_2'',$ on obtient :

$$A''' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

On en déduit que B = ((1, 1, 0), (0, 1, -1), (0, 0, 1)) est une base de L, et donc $\mathcal{B}_S = (1 + x, x - x^2, x^2)$ est une base de Vect(S). Ainsi dim Vect(S) = 3, et comme Vect(S) est un sous-espace vectoriel de V et dim $\text{Vect}(S) = \dim V$, on a Vect(S) = V.

Exercice 14. Soit V un \mathbb{R} -espace vectoriel de dimension n. Soient U et W des sous-espaces vectoriels de V de dimension plus grande que n/2. Montrer que $U \cap W$ est non trivial.

Solution 14. Soit V un \mathbb{R} -espace vectoriel de dimension n. Soient U et W des sous-espaces vectoriels de V de dimension plus grande que n/2. On doit montrer que $U \cap W$ est non trivial. Comme U et W sont des sous-espaces vectoriels de V, on a

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W).$$

Faisons un raisonnement par l'absurde. Supposons que $U \cap W$ est trivial. Alors dim $U \cap W = 0$ et

$$\dim(U + W) = \dim U + \dim W > n/2 + n/2 = n.$$

Or U+W est un sous-espace vectoriel de V et donc $\dim(U+W) \leq n$. On a donc obtenu une contradiction. On doit donc bien avoir $U \cap W \neq 0$.

Exercice 15. Soient $V = M_{2\times 2}(\mathbb{R})$ et U et W les sous espaces vectoriels de V suivants :

$$U = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R} \right\}$$

et

$$W = \left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} : a, c, d \in \mathbb{R} \right\}$$

- (i) Déterminer $\dim U$.
- (ii) Déterminer $\dim W$.
- (iii) Déterminer $\dim(U \cap W)$.
- (iv) Déterminer $\dim(U+W)$ de deux manières différentes.

Solution 15.

(i) Soit

$$\mathcal{B}_1 = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

Alors \mathcal{B}_1 est une base de U et on déduit que dim U=3.

(ii) Soit

$$\mathcal{B}_2 = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

Alors \mathcal{B}_2 est une base de W et on déduit que dim W=3.

(iii) On a

$$U \cap W = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} : a, d \in \mathbb{R} \right\}$$

et

$$\mathcal{B}_2 = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

est une base de $U \cap W$. Ainsi $\dim(U \cap W) = 2$.

(iv) Il est facile de montrer que U+W=V et donc $\dim(U+W)=\dim V=4$. Autrement, on a $\dim(U+W)=\dim U+\dim W-\dim(U\cap W)=3+3-2=4$.

Exercice 16. Soit $a \in \mathbb{R}$ et

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & a & 4 \\ -1 & 1 & a \end{pmatrix} \in M_{3 \times 3}(\mathbb{R}).$$

Déterminer l'espace ligne de A selon la valeur de a. En particulier, montrer que si $a = \in \{-2, 3\}$ alors A peut être engendré par deux éléments de \mathbb{R}^3 .

Solution 16. On a

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & a & 4 \\ -1 & 1 & a \end{pmatrix}$$

Avec les opérations élémentaires : $L'_1 = L_1$, $L'_2 = L_2 - 2L_1$, $L'_3 = L_3 + L_1$, on obtient :

$$A' = \begin{pmatrix} 1 & 2 & 3 \\ 0 & a - 4 & -2 \\ 0 & 3 & a + 3 \end{pmatrix}$$

Donc l'espace ligne L de A est $L = \text{Vect}(\{(1,2,3), (0,a-4,-2), (0,3,a+3)\})$. Il est facile de voir que $(0,a-4,-2) \notin \text{Vect}(\{1,2,3\})$ et $(0,3,a+3) \notin \text{Vect}(\{1,2,3\})$. Ainsi

$$Vect(\{(1,2,3)\}) \subseteq L.$$

Aussi $L = \text{Vect}(\{(1, 2, 3), (0, a - 4, -2)\})$ si et seulement si

$$Vect(\{(0, a-4, -2)\}) = Vect(\{(0, 3, a+3)\}).$$

Autrement

$$L = Vect(\{(1,2,3), (0, a-4, -2), (0,3, a+3)\}).$$

Maintenant

$$\operatorname{Vect}(\{(0, a-4, -2)\}) = \operatorname{Vect}(\{(0, 3, a+3)\}) \iff (0, a-4, -2) = t(0, 3, a+3) \quad \text{où} \quad t \in \mathbb{R}$$

$$\iff a-4 = 3t \quad \text{et} \quad -2 = (a+3)t$$

$$\iff \frac{a-4}{3} = \frac{-2}{a+3}$$

$$\iff a^2 - a - 6 = 0$$

$$\iff a = -2 \quad \text{ou} \quad a = 3.$$

Ainsi si $a \notin \{-2, 3\}$ alors

$$L = \text{Vect}(\{(1,2,3), (0, a-4, -2), (0,3, a+3)\}),$$

si a = -2 on a

$$L = \text{Vect}(\{(1, 2, 3), (0, -6, -2)\}),$$

et si a = 3 on a

$$L = \text{Vect}(\{(1,2,3), (0,-1,-2)\}).$$

Exercice 17. Soit

$$A = \begin{pmatrix} 2 & 0 & 3 & 4 \\ 0 & 1 & 1 & -1 \\ 3 & 1 & 0 & 2 \\ 1 & 0 & -4 & -1 \end{pmatrix} \in M_{4 \times 4}(\mathbb{R}).$$

Trouver le rang ligne de A, déterminer une base de l'espace ligne de A, et compléter cette base en une base de \mathbb{R}^4 .

Solution 17. Soit

$$A = \begin{pmatrix} 2 & 0 & 3 & 4 \\ 0 & 1 & 1 & -1 \\ 3 & 1 & 0 & 2 \\ 1 & 0 & -4 & -1 \end{pmatrix} \in M_{4 \times 4}(\mathbb{R}).$$

On doit trouver le rang ligne de A, déterminer une base de l'espace ligne de A, et compléter cette base en une base de \mathbb{R}^4 .

Avec les opérations élémentaires $L_1'=L_4,\,L_2'=L_1$ et $L_4'=L_2,$ on obtient :

$$A' = \begin{pmatrix} 1 & 0 & -4 & -1 \\ 2 & 0 & 3 & 4 \\ 3 & 1 & 0 & 2 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

Avec les opérations élémentaires $L_2^{\prime\prime}=L_2^{\prime}-2L_1^{\prime},$ $L_3^{\prime\prime}=L_3^{\prime}-3L_1^{\prime},$ on obtient :

$$A'' = \begin{pmatrix} 1 & 0 & -4 & -1 \\ 0 & 0 & 11 & 6 \\ 0 & 1 & 12 & 5 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

Avec l'opération élémentaire $L_3^{\prime\prime\prime}=L_3^{\prime\prime}-L_4^{\prime\prime},$ on obtient :

$$A''' = \begin{pmatrix} 1 & 0 & -4 & -1 \\ 0 & 0 & 11 & 6 \\ 0 & 0 & 11 & 6 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

Avec l'opération élémentaire $L_2^{\prime\prime\prime\prime}=L_2^{\prime\prime\prime}-L_3^{\prime\prime\prime},$ on obtient :

$$A'''' = \begin{pmatrix} 1 & 0 & -4 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 11 & 6 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

Avec les opérations élémentaires $L_4'''''=L_2'''',\,L_2'''''=L_4''''$, on obtient :

$$A''''' = \begin{pmatrix} 1 & 0 & -4 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 11 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

On en déduit que ((1,0,-4,-1),(0,1,1,-1),(0,0,11,6)) est une base de l'espace ligne L de A, dim L=3 et ((1,0,-4,-1),(0,1,1,-1),(0,0,11,6),(0,0,0,1)) est une base de \mathbb{R}^4 .

Exercice 18.

Le système suivant possède t-il une solution rélle?

$$\begin{cases} x_1 + 3x_2 + x_3 = 1 \\ 2x_1 + 4x_3 = 0 \\ x_1 - 3x_2 - 3x_3 = 0 \end{cases}$$

Solution 18. On doit déterminer si le système suivant possède une solution rélle.

$$\begin{cases} x_1 + 3x_2 + x_3 = 1 \\ 2x_1 + 4x_3 = 0 \\ x_1 - 3x_2 - 3x_3 = 0 \end{cases}$$

Sous forme matricielle ce système correspond à AX = b où

$$A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 0 & 4 \\ 1 & -3 & -3 \end{pmatrix} \quad \text{et} \quad b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Ce système possède une solution réelle si et seulement si le rang colonne de A est égal au rang colonne de la matrice augmentée

$$B = (A \mid b) = \begin{pmatrix} 1 & 3 & 1 & 1 \\ 2 & 0 & 4 & 0 \\ 1 & -3 & -3 & 0 \end{pmatrix}.$$

En transposant les matrices A et B on obtient que le système possède une solution réelle si et seulement si le rang ligne de $C = A^T$ est égal au rang ligne de $D = B^T$ où

$$C = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 0 & -3 \\ 1 & 4 & -3 \end{pmatrix}$$

et

$$D = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 0 & -3 \\ 1 & 4 & -3 \\ 1 & 0 & 0 \end{pmatrix}.$$

Considérons C. Avec les opérations élémentaires $L_2' = L_2 - 3L_1$ et $L_3' = L_3 - L_1$, on obtient :

$$C' = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -6 & -6 \\ 0 & 2 & -4 \end{pmatrix}$$

Avec les opérations élémentaires $L_2'' = -L_2'/6$ et $L_3'' = L_3'/2$, on obtient :

$$C'' = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & -2 \end{pmatrix}$$

Avec l'opération élémentaire $L_3''' = -(L_3'' - L_2'')/3$, on obtient :

$$C''' = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Le rang ligne de C vaut donc 3 et est maximal. Comme le rang ligne de D est supérieur ou égal au rang ligne de C, ces deux rangs ligne doivent etre égaux. Ainsi le système possède bien une solution réelle.

Exercice 19. Soit $V = \mathbb{R}^4$ et $S = \{(2,0,3,4), (0,1,1,-1), (3,1,0,2), (1,0,-4,-1)\} \subset V$. Trouver une base de Vect(S) et compléter cette base en une base de V.

Solution 19. Soit $V = \mathbb{R}^4$ et $S = \{(2,0,3,4), (0,1,1,-1), (3,1,0,2), (1,0,-4,-1)\} \subset V$. On doit trouver une base de $\mathrm{Vect}(S)$ et compléter cette base en une base de V. Soit

$$A = \begin{pmatrix} 1 & 0 & -4 & -1 \\ 2 & 0 & 3 & 4 \\ 3 & 1 & 0 & 2 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

Avec les opérations élémentaires $L_2' = L_2 - 2L_1$ et $L_3' = L_3 - 3L_1$, on obtient :

$$A' = \begin{pmatrix} 1 & 0 & -4 & -1 \\ 0 & 0 & 11 & 6 \\ 0 & 1 & 12 & 5 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

Avec l'opération élémentaire $L_3'' = L_3' - L_4'$, on obtient :

$$A'' = \begin{pmatrix} 1 & 0 & -4 & -1 \\ 0 & 0 & 11 & 6 \\ 0 & 0 & 11 & 6 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

Avec l'opération élémentaire $L_2^{\prime\prime\prime}=L_2^{\prime\prime}-L_3^{\prime\prime},$ on obtient :

$$A''' = \begin{pmatrix} 1 & 0 & -4 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 11 & 6 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

Avec les opérations élémentaires $L_2^{\prime\prime\prime\prime}=L_4^{\prime\prime\prime}$ et $L_4^{\prime\prime\prime\prime}=L_2^{\prime\prime\prime},$ on obtient :

$$A'''' = \begin{pmatrix} 1 & 0 & -4 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 11 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

On en déduit que ((1,0,-4,-1),(0,1,1,-1),(0,0,11,6)) est une base de $\mathrm{Vect}(S)$ et ((1,0,-4,-1),(0,1,1,-1),(0,0,11,6),(0,0,0,1))

est une base de V.

Exercice 20. Soit $V = \mathbb{P}_3(\mathbb{R})$ et $S = \{x^2 + x, -2x + 2, 2x^2 + 3x + 4\}$. Trouver une base de Vect(S) et compléter cette base en une base de V.

Solution 20. Soit $V = \mathbb{P}_3(\mathbb{R})$ et $S = \{x^2 + x, -2x + 2, 2x^2 + 3x + 4\}$. On doit trouver une base de Vect(S) et compléter cette base en une base de V. Par rapport à la base $\mathcal{B} = (1, x, x^2, x^3)$ de V, on a $[x^2 + x]_{\mathcal{B}} = (0, 1, 1, 0)^T$, $[-2x + 2]_{\mathcal{B}} = (2, -2, 0, 0)^T$ et $[2x^2 + 3x + 4]_{\mathcal{B}} = (4, 3, 2, 0)^T$. Soit

$$A = \begin{pmatrix} 2 & -2 & 0 & 0 \\ 4 & 3 & 2 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L_1'=L_1/2,$ on obtient :

$$A' = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 4 & 3 & 2 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L_2''=L_2'-4L_1',$ on obtient :

$$A'' = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 7 & 2 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L_2^{\prime\prime\prime}=L_2^{\prime\prime}-7L_3^{\prime\prime},$ on obtient :

$$A''' = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & -5 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Avec les opérations élémentaires $L_2^{\prime\prime\prime\prime}=L_3^{\prime\prime\prime}$ et $L_3^{\prime\prime\prime\prime}=-L_2^{\prime\prime\prime}/5,$ on obtient :

$$A'''' = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

On en déduit que $(1-x, x+x^2, x^2)$ est une base de Vect(S) et $(1-x, x+x^2, x^2, x^3)$ est une base de V.