TZS Vežbe: Čas 3, 28/10/2022

Ivan Milić

October 28, 2022

1 Zadatak 1

Posmatramo Sunce teleskopom prečnika 1 m. Fokusiramo se na "piksel" oblika kvadrata u centru Sunčevog diska, stranice 100 km. Pod pretpostavkom da površina Sunca zrači kao apsolutno crno telo (ne zrači), izračunajte broj fotona koji padne na teleskop u jednoj sekundi na talasnoj dužini 500 nm, u intervalu talasnih dužina širokom 2 pm.

Kolika bi bila prividna magnituda tog piksela posmatrana u tom "filteru"? (Hint: Uporediti sa bolometrijskom magnitudom Sunca).

2 Zadatak 2

Pod pretpostavkom da je daj izlazni intenzitet zračenja na nekoj talasnoj dužini λ , u zavisnosti od polarnog ugla θ (ili od kosinusa polarnog ugla, μ), izvedi izraz za osvetljenost koju daje zvezda na udaljenosti d, na talasnoj dužini λ . Poluprečnik zvezde je R.

3 Zadatak 3

Pretpostaviti da funkcija izvora na skali optičke dubine *na nekoj, referentnoj, talasnoj dužini* ima oblik:

$$S = a + b\tau \tag{1}$$

Ovo se zove Milne-Eddingtonova (Milne-Barbier-Ünsoldova) relacija (aproksimacija). Pretpostavimo sada da je odnos izmedju koeficijenta apsorpcije na

nekoj talasnoj dužini λ i referentnoj talasnoj dužini (npr. λ_0) konstantan i obeležimo ga sa r_{λ} .

Izvedite izraz za izlazni intenzitet na talasnoj dužini λ .

Pretpostavite da je r_λ u spektralnoj liniji neka gausovska funkcija sa datom amplitudom, poluširinom i centrom i vizualizujte rešenje za razne kombinacije parametara. Ovo r_λ se za spektralne linije često obeležava sa ϕ_λ i zove "apsorpcioni profil."

Odgovorite na sledeća pitanja:

- Da li je intenzitet u centru linije ikada jednak nuli? Objasnite fizički razlog.
- Od čega sve zavisi oblik linije u spektru? Da li je i on Gausova funkcija?
- Amplituda apsorpcionog profila linije mora da bude srazmerna koncentraciji apsorbera. Kako, u ovoj aproksimaciji, ekvivalentna širina linije zavisi od amplitude apsorpsionog profila?