

Fakultät für Mathematik und Wirtschaftswissenschaften

Institut für Numerische Mathematik

Cache-optimierte QR-Zerlegung

Bachelorarbeit an der Universität Ulm

Vorgelegt von:

Florian Krötz florian.kroetz@uni-ulm.de

Gutachter:

Dr. Michael Lehn Dr. Andreas Borchert

Betreuer:

Dr. Michael Lehn

2018

© 2018 Florian Krötz Satz: PDF-LATEX 2 $_{arepsilon}$

Inhaltsverzeichnis

1	Einleitung								
	1.1	Cache)	1					
	1.2	Intel M	MKL	1					
		1.2.1	Anwendung der QR-Zerlegung	1					
2	BLAS								
	2.1	Datenstruktur für Matrizen							
	2.2	Einige	BLAS-Routinen	4					
		2.2.1	Matrix-Matrix Produkt (gemm)	4					
		2.2.2	Matrix-Vektor Produkt (gemv)	4					
		2.2.3	Rank1 update (ger)	5					
		2.2.4	Matrix-Matrix Produkt (trmm)	5					
		2.2.5	Matrix-Vektor Produkt (trmv)	5					
3	QR-	QR-Zerlegung (
	3.1	Definit	tion	6					
		3.1.1	Beispiel	6					
	3.2	House	eholder-Transformation	7					
		3.2.1	Householder Vector	8					
		3.2.2	Householder-Transformation anwenden	9					
		3.2.3	QR-Zerlegung mittels Housholder-Transformationen 1	0					
	3.3	Geblo	ckte QR-Zerlegung	2					
		3.3.1	Berechnung der Matrix T	3					
		3.3.2	Anwenden von $I - VTV^T$	4					
		3.3.3	Iterativer Algorithmus	5					
4	Implementierung und Benchmarks								
	4.1	Fehler	schätzer	6					
	4.2	MKL-V	Wrapper	7					
	43	3 Benchmarks							

Inhaltsverzeichnis

Α	Quelltexte		18				
В	Block Refl B.0.1	ector Orthogonal	19 23				
Lit	Literaturverzeichnis						

1 Einleitung

Wozu dient die QR-Zerlegung?

Warum muss die QR-Zerlegung schnell sein?

1.1 Cache

1.2 Intel MKL

Kapitel über die Wichtigkeit der Intel MKL.

1.2.1 Anwendung der QR-Zerlegung

- -LGS lösen
- -Ausgleichsprobleme lösen
- -QR-Verfahren Eigenwerte b erechnen.

2 BLAS

Die Abkürzung BLAS steht für Basic Linear Algebra Subprograms.

2.1 Datenstruktur für Matrizen

Vollbesetzte Matrizen werden bei BLAS entweder zeilen- oder spaltenweise abgespeichert. Das bedeutet, dass entweder die Zeilen- oder die Spalten der Matrix hintereinander im Speicher stehen.

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Matrix A Zeilenweise gespeichert

Matrix A Spaltenweise gespeichert

Eine Datenstruktur benötigt folgende Elemente:

- einen Zeiger auf eine Speicherfläche
- Informationen ob die Matrix zeilen- oder spaltenweise gespeichert ist

• die Dimension der Matrix.

Eine derartige Datenstruktur könnte in C so aussehen.

```
struct Matrix {
  double * data;
  std::ptrdiff_t incRow, incCol;
  std::size_t numRows, numCols;
}
```

Für Intel MKL Routinen müssen die Matrizen zeilenweise gespeichert sein.

2.2 Einige BLAS-Routinen

Im Folgenden werden einige BLAS-Routinen beschrieben, die bei der QR-Zerlegung benutzt werden. BLAS-Routinen werden nach folgendem Schema benannt. Der erste Buchstabe im Namen gibt an für welchen Datentype die Funktion implementiert wurde. Der Rest beschreibt die Funktion der Funktion.

Beispiel: "dgemm", das d zeigt an die Funktion ist für Doubles und "gemm" steht für "generel Matrix Matrix", die Funktion berechnet also das Matrix-Matrix Produkt für Matrizen deren Einträge Doubles sind.

2.2.1 Matrix-Matrix Produkt (gemm)

Die Funktion "gemm" berechnet das Matrix-Matrix Produkt. Der Funktion werden die Matrizen A,B und C und die Skalare α und β übergeben. Außerdem werden 2 Flags übergeben ob die Matrizen A und B transponiert werden sollen. Die Funktion berechnet

$$C \leftarrow \beta C + \alpha A B \tag{2.1}$$

Falls $\beta=0$ wird die Matrix C zuerst mit Nullen initialisiert. Falls C Einträge hat die NaN (Not a Number) sind, werden diese somit mit 0 überschrieben.

[7] Blas tecnicla forum netlib

2.2.2 Matrix-Vektor Produkt (gemv)

Die Funktion "gemv" berechnet das Matrix-Vektor Produkt. Der Funktion wird die Matrix A die Vektoren x und y und die Skalare α und β übergeben. Außerdem wird ein Flag übergeben das anzeigt ob die Matrix A Transponiert werden soll. Die Funktion berechnet

$$y \leftarrow \beta y + \alpha A x \tag{2.2}$$

Falls $\beta=0$ wird der Vektor y zuerst mit Nullen initialisiert. Falls y Einträge hat die NaN (Not a Number) sind, werden diese somit mit 0 überschrieben.

2.2.3 Rank1 update (ger)

Die Funktion "ger" berechnet ein dyadische Produkt aus den Vektoren x und y, skaliert die daraus resultierende Matrix mit α und addiert das Ergebnis auf A. Der Funktion wird die Matrix A die Vektoren x und y und das Skalar α übergeben. Die Funktion berechnet

$$A \leftarrow A + \alpha x y^T \tag{2.3}$$

2.2.4 Matrix-Matrix Produkt (trmm)

Die Funktion "trmm" berechnet das Matrix-Matrix Produkt einer Dreiecksmatrix mit einer voll besetzten Matrix. Der Funktion wird die Dreiecksmatrix A, die Matrix B und das Skalar α übergeben. Außerdem werden Flags mit übergeben die anzeigen ob A eine obere oder unter Dreiecksmatrix ist, ob A eine strikte oder unipotente Dreiecksmatrix ist, ob A von links oder rechts auf B multipliziert werden soll und ob A transponiert werden soll. Diese Eigenschaften werden unten in $op(\cdot)$ zusammengefasst.

Die Funktion berechnet

$$B \leftarrow \alpha \cdot op(A) \cdot B$$
 oder $B \leftarrow \alpha \cdot B \cdot op(A)$ (2.4)

2.2.5 Matrix-Vektor Produkt (trmv)

Die Funktion "trmv" berechnet das Matrix-Vektor Produkt für Dreiecksmatrizen. Die Funktion berechnet

$$x \leftarrow \alpha A x$$
 (2.5)

3 QR-Zerlegung

3.1 Definition

Eine Matrix $A \in \mathbb{R}^{m \times n}$, $m \geq n$ besitzt eine eindeutige QR-Zerlegung.

$$A = QR (3.1)$$

mit einer orthogonalen Matrix $Q \in \mathbb{R}^{m \times m}$ und einer oberen Dreiecksmatrix $R \in \mathbb{R}^{n \times n}$ [3]

Eine QR Zerlegung kann mit einer Householder-Transformation berechnet werden.

3.1.1 Beispiel

Lösung eines Minimierungsproblem

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|^2 \tag{3.2}$$

mit Matrix $A \in \mathbb{R}^{m \times n}$ mit rang(A) = n < m für die eine QR Zerlegung existiert. R besitzt die Gestalt

$$R = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \\ \hline & & 0 \end{pmatrix} = \begin{pmatrix} \hat{R} \\ \hline & \\ \hline & 0 \end{pmatrix}$$

 \hat{R} stellt eine obere Dreiecksmatrix dar. Damit kann man das Minimierungs Problem wie folgt modifizieren mit A=QR

$$\min_{x \in \mathbb{R}^n} ||Ax - b||^2 = \min_{x \in \mathbb{R}^n} ||Q^T (Ax - b)||^2 = \min_{x \in \mathbb{R}^n} ||Rx - Q^T b||^2$$
 (3.3)

Also löst

$$Rx = Q^T b (3.4)$$

das Minimierungsproblem (3.2). Da R eine Dreiecksmatrix ist, lässt sich (3.4) leicht mit Rückwärtseinsetzen lösen.

3.2 Householder-Transformation

Eine Matrix $H \in \mathbb{R}^{n \times n}$

$$H = I - 2\frac{vv^T}{v^Tv} \tag{3.5}$$

wird als Householder-Transformation und der Vektor $v \in \mathbb{R}^n$ als Householder-Vektor bezeichnet. Eine Householder-Transformation $H = I - 2 \frac{vv^T}{v^Tv}$ ist orthogonal und symmetrisch. [3]

Die Householder-Transformation spiegelt den Vektor x auf die Achse x_1 . Dazu multipliziert man H von links auf x

$$Hx = \alpha e_1 \tag{3.6}$$

mit dem Skalar $\alpha \in \mathbb{R}$ und e_1 als ersten kanonischen Einheitsvektor. Der Householder-Vektor steht senkrecht auf der Ebene an welcher x gespiegelt wird.

Die Abbildung 3.1 veranschaulicht die Spiegelung des Vektors x an der gestrichelt eingezeichneten Ebene auf die Achse x_1 .

Abbildung 3.1: Beispiel Householder-Transformation mit $x = (-1, 2)^T$

3.2.1 Householder Vector

Damit (3.6) gilt, wird der Vektor folgendermaßen berechnet. In dem man (3.5) in (3.6) einsetzt

$$Hx = x - 2\frac{vv^{T}}{v^{T}v}x = x - 2\underbrace{\frac{v^{T}x}{v^{T}v}}v = x - \lambda v \stackrel{!}{=} \alpha e_{1}$$

$$\implies v \in \operatorname{span}\{x - \alpha e_{1}\}$$

erhält man dass v in dem Span $x - \alpha e_1$ liegt.[3]

Setzt man $v=t(x-\alpha e_1)$ in $Hx=\alpha e_1$ (3.6) ein, erhält man

$$Hx = x - \frac{2}{v^{T}v}v(v^{T}x) = x - 2\frac{v^{T}x}{v^{T}v}v$$

$$= x - 2\frac{t(x - \alpha e_{1})^{T}x}{t(x - \alpha e_{1})^{T}t(x - \alpha e_{1})}t(x - \alpha e_{1}) = x - 2\frac{(x - \alpha e_{1})^{T}x}{(x - \alpha e_{1})^{T}(x - \alpha e_{1})}(x - \alpha e_{1})$$

$$= x - \frac{(x - \alpha e_{1})^{T}x}{\|x - \alpha e_{1}\|_{2}^{2}}(x - \alpha e_{1}) = \underbrace{\left(1 - \frac{2(x - \alpha e_{1})^{T}x}{\|x - \alpha e_{1}\|_{2}^{2}}\right)}_{\stackrel{!}{=} 0}x + \alpha e_{1}\underbrace{\frac{2(x - \alpha e_{1})^{T}x}{\|x - \alpha e_{1}\|_{2}^{2}}}_{\stackrel{!}{=} 1} \stackrel{!}{=} \alpha e_{1}$$

Damit das Letzte = gilt muss gelten.

$$1 = \frac{2(x - \alpha e_1)^T x}{\|x - \alpha e_1\|^2}$$

$$\Leftrightarrow (x - \alpha e_1)^T (x - \alpha e_1) = 2x^T x - 2\alpha x_1$$

$$\Leftrightarrow x^T x - 2\alpha x_1 + \alpha^2 = 2x^T x - 2\alpha x_1$$

$$\Leftrightarrow \alpha = \pm \sqrt{x^T x}$$

Das Vorzeichen von $\alpha=\pm\sqrt{x^Tx}$ kann man frei wählen, um $v=x-\alpha e_1$ zu berechnen.

Wählt man das Vorzeichen positiv kann Auslöschung auftreten, falls x annähernd ein positives Vielfaches von e_1 ist.

LAPACK [6] vermeidet die Auslöschung indem das Vorzeichen entgegengesetzt gewählt wird. Das bedeutet x wird immer auf die gegenüberliegende Seite gespiegelt.

Im Skript von Numerik 1 [3] wird das Vorzeichen immer positiv gewählt

 $\alpha = |\sqrt{x^T x}| = \|x\|_2.$ Eine mögliche Auslöschung im Fall $x_1 > 0$ wird hier durch die folgende Umformung vermieden.

$$v_1 = x_1 - ||x||_2 = \frac{x_1^2 - ||x||_2^2}{x_1 + ||x||_2} = \frac{-(x_2^2 + \dots + x_n^2)}{x_1 + ||x||_2}$$

Um den Vektor v später auf der frei werdenden Diagonalen von A speichern zu können wird er auf $v_1=1$ normiert. Dies geschieht mit

$$v = \frac{x - \alpha e_1}{x_1 - \alpha} \tag{3.7}$$

Mit der Normierung kann man den Faktor $au = \frac{2}{v^T v}$ berechnen. Setze dazu (3.7) in die Definition von τ ein.

$$\tau = \frac{2}{v^T v} = \frac{2(x_1 - \alpha)^2}{(x - \alpha e_1)^T (x - \alpha e_1)} = \frac{2(x_1 - \alpha)^2}{\|x\|_2^2 - 2\alpha x^T e_1 + \alpha^2} = \frac{2(x_1 - \alpha)^2}{2\alpha(\alpha - x_1)} = \frac{x_1 - \alpha}{\alpha}$$

Mit dem Faktor $au = \frac{2}{v^T v}$ kann man die Householder-Transformation schreiben als

$$H = I - 2\frac{vv^T}{v^Tv} = I - \tau vv^T$$

Algorithmus 1 Housholder-Vector(LAPACK DLARFG)

Input: $x \in \mathbb{R}^n$

 $\alpha = -1 * \operatorname{sign}(x_1) ||x||_2$

 $\tau = \frac{x_1 - \alpha}{}$

Output: Householder-Vektor v, τ

3.2.2 Householder-Transformation anwenden

Ein aufwändiges Matrix-Matrix-Produkt kann bei der Anwendung einer Housholder-Transformation $H = I - \tau v v^T$ auf die Matrix A umgangen werden, indem man geschickt klammert.

$$HA = (I - \tau vv^T)A = A - \tau (vv^T)A = A - \tau v(v^T A)$$

Statt eines Matrix-Matrix-Produkts muss man nur ein Matrix-Vektor-Produkt und ein dyadisches Produkt berechnen.

3.2.3 QR-Zerlegung mittels Housholder-Transformationen

Um A in eine obere Dreiecksmatrix R zu transformieren, wird eine Folge von Housholder-Transformationen auf A angewendet.

Zuerst wird aus der ersten Spalte der Matrix A ein Householder-Vektor berechnet, dann wird die Householder-Transformationen auf die Matrix angewandt. Diese Housholder-Transformation erzeugt Nullen in der ersten Spalte unterhalb es ersten Eintrags. Damit eine obere Dreiecksmatrix entsteht, wird als nächstes die Matrix A ohne die erste Zeile und Spalte betrachtet. Aus der ersten Spalte der neu betrachteten Matrix wird wieder ein Householder-Vektor berechnet und die Householder-Transformationen auf die Matrix angewandt. Fährt man nach diesem Schema immer weiter fort entsteht eine ober Dreiecksmatrix.

$$H_1 A = \begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{pmatrix} , \quad H_2 H_1 A = \begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix}$$

So erhält man die Faktorisierung

$$R = H_{n-1}H_{n-2} \cdot \ldots \cdot H_1A \Leftrightarrow A = (H_1 \cdot \ldots \cdot H_{n-1})R \Rightarrow Q = H_1 \cdot \ldots \cdot H_{n-1}$$

Q ist das Produkt aller Householder-Transformationen. Diese Vorgehensweise führt zum Algorithmus 2.

Algorithmus 2 Ungeblockte Housholder-Transformation.

Zur übersichtlicheren Beschreibung des Algorithmus werden die Bezeichnungen A_i und \hat{a}_i eingeführt. A_i zeigt auf einen Matrixblock der am i-ten Diagonalelement beginnt. \hat{a}_i zeigt auf die i-te Spalte unterhalb der Diagonalen. Matrizen sind 0 indiziert notiert.

```
1: Input: A \in \mathbb{R}^{m \times n}

2: for i = 0,1,2,..., n-1 do

3: (v_i, \tau_i) \leftarrow \text{householdervector}(\hat{a}_i)

4: w \leftarrow v^T * A_i \text{ (dgemv)}

5: A_i \leftarrow \tau * v * w + A_i \text{ (dger)}

6: if i < m then

7: \hat{a}_i \leftarrow v

8: end if

9: end for

10: Output: A \text{ QR zerlegt}, Vektor \tau \in \mathbb{R}^n
```

Der Algorithmus 2 überschreibt die Matrix A mit R. Aufgrund der Dreiecksstruktur von R, können unter der Diagonale die Housholder-Vektoren gespeichert werden. Die Householder-Vektoren haben die Form

$$v^{(j)} = (\underbrace{0, ..., 0}_{j-1}, 1, v_{j+1}^{(j)}, ..., v_m^{(j)})$$

Da die ersten j-1 Einträge Null sind und der Vektor so normiert wurde das der j Einträg gleich 1 ist, müssen die ersten j Einträge nicht gespeichert werden. Die Householder-Vektoren können somit unterhalb der Diagonalen gespeichert werden. Das geschieht im Algorithmus 2 in Zeile 7. Die Matrix A hat somit die Form

$$A = \begin{pmatrix} r_{1,1} & r_{1,2} & r_{1,3} \\ v_2^{(1)} & r_{2,2} & r_{2,3} \\ v_3^{(1)} & v_3^{(2)} & r_{3,3} \\ v_4^{(1)} & v_4^{(2)} & v_4^{(3)} \end{pmatrix}$$

3.3 Geblockte QR-Zerlegung

Ein geblockter Algorithmus ist sinnvoll, um bei großen Matrizen den Cache optimal zu nutzen.

Im folgenden wird ein geblockter Algorithmus beschrieben wie er auf von LAPACK verwendet wird. Die entsprechende Funktion bei LAPACK heißt "DGEQRF" [5].

Die Idee beim geblockten Algorithmus ist die Matrix in Blöcke aufzuteilen, die geblockte QR-Zerlegung für die Blöcke zu berechnen und die dabei verwendeten Householder-Transformationen auf den Rest der Matrix anzuwenden.

Betrachte dazu die Matrix $A \in \mathbb{R}^{m \times n}$ geblockt, mit einer geeigneten Blockgröße bs.

$$A = \left(\begin{array}{c|c} A_{0,0} & A_{0,\text{bs}} \\ \hline A_{\text{bs},0} & A_{\text{bs},\text{bs}} \end{array}\right) \tag{3.8}$$

Die Abbildung 3.2 zeigt schematisch die Partitionierung von A.

Abbildung 3.2: Aufteilung der Matrix A

Die Blockgröße bs wird so gewählt das die Geschwindigkeit der ungeblockten QR-Zerlegung für den Block $\left(\frac{A_{0,0}}{A_{\rm bs,0}}\right)$ optimal ist.

Für diesen Block wird die QR-Zerlegung mit dem ungeblockten Algorithmus (Algorithmus 2) berechnet.

$$\left(\frac{A_{0,0}}{A_{\mathsf{bs},0}}\right) \leftarrow \left(\frac{Q_{0,0} \backslash R_{0,0}}{Q_{\mathsf{bs},0}}\right) \tag{3.9}$$

Im Block $A_{0,0}$ steht auf und über der Diagonalen $R_{0,0}$. Unterhalb der Diagonalen und im Block $A_{\rm bs,0}$ stehen die Householder-Vektoren.

Nun muss man die bei der ungeblocketn QR-Zerlegung verwendeten Housholder-Transformationen auf die Restliche Matrix $\left(\frac{A_{0,\mathrm{bs}}}{A_{\mathrm{bs,bs}}}\right)$ anwenden.

Das Produkt mehrerer Householder-Transformationen kann geschrieben werden als:

$$H_1 H_2 \cdot \cdot \cdot H_k = I - VTV^T$$
 mit $H_i = I - \tau_i v_i v_i^T$

[1]

Die Anwendung der Householder-Transformationen $I-V*T*V^T$ auf $\left(\frac{A_{\text{bs,bs}}}{A_{\text{bs,bs}}}\right)$ erfolgt in 2 Schritten. Zuerst wird die Matrix T berechnet. Dann wird $I-V*T*V^T$ auf $\left(\frac{A_{\text{bs,bs}}}{A_{\text{bs,bs}}}\right)$ angewandt.

$$\left(\frac{A_{0,\text{bs}}}{A_{bs,\text{bs}}}\right) \leftarrow H^T \left(\frac{A_{0,\text{bs}}}{A_{bs,\text{bs}}}\right) \tag{3.10}$$

Der Block $A_{bs,bs}$ wird erneut aufgeteilt, in Abbildung 3.2 gestrichelt dargestellt. Fahre solange fort bis $A_{bs,bs}$ gleich der Blockgröße ist.

3.3.1 Berechnung der Matrix T

Die Matrix T wird in LAPACK von der Funktion "DLARFT" berechnet [4].

Sie bekommt eine Dreiecksmatrix $V \in \mathbb{R}^{m \times k}$ einen Vektor $\tau \in \mathbb{R}^k$ und eine Matrix $T \in \mathbb{R}^{k \times k}$ übergeben.

In der Dreiecksmatrix V stehen die Householder-Vektoren, im Vektor τ die zu den Householder-Vektoren gehörende τ_i .

Die Funktion berechnet eine obere Dreiecksmatrix T so dass

$$H_1H_2...H_k = I - VTV^T$$
 mit $H_i = I - \tau_i v_i v_i^T$

Warum und wie das Funktoniert wird hier beschreiben [1].

3.3.2 Anwenden von $I - VTV^T$

Die Anwendung der Householder-Transformationen auf eine Matrix C, wird in LA-PACK von der Funktion "LARFB" implementiert.

Die Funktion bekommt eine untere Dreiecksmatrix $V \in \mathbb{R}^{m \times k}$, eine obere Dreiecksmatrix $T \in \mathbb{R}^{k \times k}$ und eine Matrix $C \in \mathbb{R}^{m \times n}$ übergeben.

In der Dreiecksmatrix V stehen die Householder-Vektoren und T ist die zuvor berechnete Matrix. Die Matrix C wird upgedatet indem die Matrix $I-VTV^T$ von rechts auf die Matrix C angewendet wird.

Ein weiterer Übergabeparameter gibt an ob die Matrix $I-VTV^T$ transponiert werden soll. Die Funktion berechnet also

$$C \leftarrow HC = C - VTV^TC \quad \text{oder} \quad C \leftarrow H^TC = C - VT^TV^TC$$

Der Zweck der Funktion ist es die Householder-Transformationen, die bei der Bereicherung der QR-Zerlegung für einen Block entstanden sind, auf die restliche Matrix anzuwenden. Die Abbildung 3.3 zeigt wie die Matrix A für die Funktion Partitioniert wird.

Abbildung 3.3: Partitionierung vom A für larfb

 $\text{Falls } m>k \text{ werden die Matrizen } V \text{ und } C \text{ aufgeteilt in } V=\left(\frac{V_1}{V_2}\right) \text{ und } C=\left(\frac{C_1}{C_2}\right).$

Dabei wird V genau so geteilt, dass $V_1 \in \mathbb{R}^{k \times k}$ der quadratisch Dreiecksteil der Matrix ist und $V_2 \in \mathbb{R}^{m-k \times k}$ der Rest der Matrix. Die Matrix C wird in $C_1 \in \mathbb{R}^{k \times n}$ und $C_2 \in \mathbb{R}^{m-k \times n}$ aufgeteilt. Die Aufteilung ist so gewählt das das Matrix-Matrix-Produkt $V_1 \cdot C_1$ und $V_2 \cdot C_2$ möglich ist.

Diese Aufteilung ist notwendig da die BLAS-Funktion trmm (matrix-matrix product

where one input matrix is triangular) nur für Quadratische Dreiecksmatrizen implementiert ist.

Im Fall m = k ist die Aufteilung nicht notwendig da V quadratisch ist.

$$C \leftarrow C - \underbrace{VTV^TC}_{V \cdot T \cdot V^T \cdot C}$$
$$(C^T \cdot V \cdot T^T \cdot V^T)^T$$

Dies führt zu den

```
Algorithmus 3 I - VTV^T auf C anwenden.
```

Die Matrix ${\cal W}$ ist ein Workspace der in der Funktion

```
1: Input: V \in \mathbb{R}^{m \times k}, T \in \mathbb{R}^{k \times k}, C \in \mathbb{R}^{m \times n}

2: W \leftarrow C_1^T (copy)

3: W \leftarrow W * V_1 (trmm)

4: if m > k then

5: W \leftarrow W + C_2^T * V_2 (gemm)

6: end if

7: W \leftarrow W * T^T or W * T (trmm)

8: if m > k then

9: C_2 \leftarrow C_2 - V_2 * W^T (gemm)

10: end if

11: W \leftarrow W * V_1^T (trmm)

12: C_1 \leftarrow C_1 - W^T
```

3.3.3 Iterativer Algorithmus

Algorithmus 4 Iterativer Algorithmus

```
for i = 0 : n do

QR = A;

if i + ib > n then

Calc T: H = I - VTV^T

Apply H: A = H^TA

end if

end for
```

4 Implementierung und Benchmarks

Die verwendete Bibliothek wurde in der Vorlesung High Performance Computing 1 entwickelt [2].

Die Bibliothek ist in C++ geschrieben. Es sind Klassen für Matrizen und Vektoren implementiert, sowie einige BLAS-Routinen.

Die Matrix-Klassen erlauben den zugriff auf Matrixblöcke.

eventuell Beispiel

4.1 Fehlerschätzer

Es wurde der Fehlerschätzer von ATLAS verwendet. Nach Quelle Fragen!

$$err = \frac{\|A - QR\|_i}{\|A\|_i \cdot \min(m, n) \cdot \varepsilon} \tag{4.1}$$

 $\|\cdot\|_i$ ist eine passende Norm. Die Matrizen Q und R sind die QR-Zerlegung der Matrix $A\in\mathbb{R}^{m\times n}$. ε ist die kleinste darstellbare Zahl.

Die QR-Zerlegung ist gut genug falls der Fehler kleiner 1 ist err < 1.

Als Norm wurde die Zeilensummennorm $\|\cdot\|_{\infty}$ gewählt. Diese ist für eine Matrix $A\in\mathbb{R}^{m\times n}$ gegeben durch

$$||A||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$$

 ϵ ist auf dem Test-System $2.220446 \cdot 10^{-16}$

4.2 MKL-Wrapper

4.3 Benchmarks

peak performance einzeichnen

Taktrate * Register breite * 2

Taktrate: 3.20GHz AVX-Register 256-Bit 4 double

25,6

A Quelltexte

In diesem Anhang sind einige wichtige Quelltexte aufgeführt.

```
#include < stdio.h >
int main(int argc, char ** argv) {
  printf("Hallo HPC \n");
  return 0;
}
```

B Block Reflector

Das Produkt aus Householder-Transformationen $H_1 \cdot ... \cdot H_n$ lässt sich schreiben als

$$H_1 \cdot ... \cdot H_n = I - VTV^T$$

mit einer unteren Dreiecksmatrix $V \in \mathbb{R}^{m \times n}$ die die Housholder-Vektoren enthält und eine oberen Dreiecksmatrix $T \in \mathbb{R}^{n \times n}$ [1] Beweis:

n=2 Vorwärts

$$H_1 H_2 x = (I - \tau_1 v_1 v_1^T) (I - \tau_2 v_2 v_2^T) x$$

$$= (I - \tau_1 v_1 v_1^T - \tau_2 v_2 v_2^T + \tau_1 v_1 v_1^T \tau_2 v_2 v_2^T) x$$

$$= x - \tau_1 v_1 v_1^T x - \tau_2 v_2 v_2^T x + \tau_1 \tau_2 v_1 (v_1^T v_2) v_2^T x$$

$$= x - \tau_1 v_1 v_1^T x - \tau_2 v_2 v_2^T x + \tau_1 \tau_2 (v_1^T v_2) v_1 v_2^T x$$

Rückwärts

$$H_{1,2}x = (I - VTV^T)x = x - VTV^Tx$$

$$= x - (v_1, v_2) \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} v_1^T \\ v_2^T \end{pmatrix} x$$

$$= x - (v_1, v_2) \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} v_1^T x \\ v_2^T x \end{pmatrix}$$

$$= x - (v_1, v_2) \begin{pmatrix} av_1^T x + bv_2^T x \\ cv_2^T x \end{pmatrix}$$

$$= x - v_1(av_1^T x + bv_2^T x) - v_2(cv_2^T x)$$

$$= x - av_1v_1^T x - bv_1v_2^T x - cv_2v_2^T x$$

Koeffizienten Vergleich

$$a = \tau_1$$

$$b = -\tau_1 \tau_2(v_1^T v_2)$$

$$c = \tau_2$$

$$T = \begin{pmatrix} \tau_1 & -\tau_1 \tau_2(v_1^T v_2) \\ 0 & \tau_2 \end{pmatrix}$$

n=3 Vorwärts

$$H_{1}H_{2}H_{3}x = (I - \tau_{1}v_{1}v_{1}^{T})(I - \tau_{2}v_{2}v_{2}^{T})(I - \tau_{3}v_{3}v_{3}^{T})x$$

$$= (I - \tau_{1}v_{1}v_{1}^{T} - \tau_{2}v_{2}v_{2}^{T} + \tau_{1}v_{1}v_{1}^{T}\tau_{2}v_{2}v_{2}^{T})(I - \tau_{3}v_{3}v_{3}^{T})x$$

$$= (I - \tau_{1}v_{1}v_{1}^{T} - \tau_{2}v_{2}v_{2}^{T} - \tau_{3}v_{3}v_{3}^{T}$$

$$+ \tau_{1}v_{1}v_{1}^{T}\tau_{2}v_{2}v_{2}^{T} + \tau_{1}v_{1}v_{1}^{T}\tau_{3}v_{3}v_{3}^{T} + \tau_{2}v_{2}v_{2}^{T}\tau_{3}v_{3}v_{3}^{T}$$

$$- \tau_{1}v_{1}v_{1}^{T}\tau_{2}v_{2}v_{2}^{T}\tau_{3}v_{3}v_{3}^{T})x$$

$$= x - \tau_{1}v_{1}v_{1}^{T}x - \tau_{2}v_{2}v_{2}^{T}x - \tau_{3}v_{3}v_{3}^{T}x$$

$$+ \tau_{1}\tau_{2}(v_{1}^{T}v_{2})v_{1}v_{2}^{T}x + \tau_{1}\tau_{3}(v_{1}^{T}v_{3})v_{1}v_{3}^{T}x + \tau_{2}\tau_{3}(v_{2}^{T}v_{3})v_{2}v_{3}^{T}x$$

$$- \tau_{1}\tau_{2}\tau_{3}(v_{1}^{T}v_{2}v_{2}^{T}v_{3})v_{1}v_{3}^{T}x$$

Rückwärts

$$H_{1,2,3}x = (I - VTV^{T})x = x - VTV^{T}x$$

$$= x - (v_{1}, v_{2}, v_{3}) \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix} \begin{pmatrix} v_{1}^{T} \\ v_{2}^{T} \\ v_{3}^{T} \end{pmatrix} x$$

$$= x - (v_{1}, v_{2}, v_{3}) \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix} \begin{pmatrix} v_{1}^{T}x \\ v_{2}^{T}x \\ v_{3}^{T} \end{pmatrix}$$

$$= x - (v_{1}, v_{2}, v_{3}) \begin{pmatrix} av_{1}^{T}x + bv_{2}^{T}x + cv_{3}^{T} \\ dv_{2}^{T}x + ev_{3}^{T} \\ fv_{3}^{T} \end{pmatrix}$$

$$= x - v_{1}(av_{1}^{T}x + bv_{2}^{T}x + cv_{3}^{T}x)$$

$$- v_{2}(dv_{2}^{T}x + ev_{3}^{T}x)$$

$$- v_{3}(fv_{3}^{T})$$

$$= x - av_{1}v_{1}^{T}x - bv_{1}v_{2}^{T}x - cv_{1}v_{3}^{T}x$$

$$- dv_{2}v_{2}^{T}x - ev_{2}v_{3}^{T}$$

$$- fv_{3}v_{3}^{T}$$

Koeffizienten Vergleich

$$a = \tau_1$$

$$b = -\tau_1 \tau_2(v_1^T v_2)$$

$$c = -\tau_1 \tau_2 \tau_3(v_1^T v_2 v_2^T v_3) + \tau_1 \tau_3(v_1^T v_3)$$

$$d = \tau_2$$

$$e = -\tau_2 \tau_3(v_2^T v_3)$$

$$f = \tau_3$$

$$T = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix} = \begin{pmatrix} \tau_1 & -\tau_1 \tau_2(v_1^T v_2) & -\tau_1 \tau_2 \tau_3(v_1^T v_2 v_2^T v_3) + \tau_1 \tau_3(v_1^T v_3) \\ 0 & \tau_2 & -\tau_2 \tau_3(v_2^T v_3) \\ 0 & 0 & \tau_3 \end{pmatrix}$$

Mit Induktion kann man zeigen... siehe paper Im Paper wird gezeit wie man das verallgemeinern kann.

B.0.1 Orthogonal

Eine quadratische Matrix $Q \in \mathbb{R}^{n \times n}$ ist orthogonal, dann gilt

$$QQ^T = Q^TQ = I$$

Produkt orthogonaler Matrizen ist orthogonal. Sei $A^{-1}=A^T, B^{-1}=B^T$

$$(AB)^{-1} = B^{-1}A^{-1} = B^TA^T = (AB)^T$$

Die Househlder-Transformation $H=I-2\frac{vv^T}{v^Tv}$ ist symmetrisch und orthogonal das heißt $H^{-1}=H^T$

Da vv^T symmetrisch ist ($(vv^T)^T = vv^T$), folgt

$$H^T = \left(I - 2\frac{vv^T}{v^Tv}\right)^T = I - 2\frac{vv^T}{v^Tv} = H$$

Orthogonalität

$$HH^{T} = \left(I - 2\frac{vv^{T}}{v^{T}v}\right)\left(I - 2\frac{vv^{T}}{v^{T}v}\right) = I - 2\frac{vv^{T}}{v^{T}v} - 2\frac{vv^{T}}{v^{T}v} + \underbrace{4\frac{vv^{T}vv^{T}}{(v^{T}v)^{2}}}_{=4\frac{(v^{T}v)vv^{T}}{(v^{T}v)^{2}} = 4\frac{vv^{T}}{v^{T}v}}_{=4\frac{vv^{T}}{v^{T}v}} = I$$

 $\Rightarrow H = I - VTV^T$ und Q sind orthogonal

Literaturverzeichnis

- [1] JOFFRAIN, Thierry; LOW, Tze M.; QUINTANA-ORTÍ, Enrique S.; GEIJN, Robert van d.; ZEE, Field G. V.: Accumulating Householder Transformations, Revisited. In: ACM Trans. Math. Softw. 32 (2006), Juni, Nr. 2, 169–179. http://dx.doi.org/10.1145/1141885.1141886. DOI 10.1145/1141885.1141886. ISSN 0098–3500
- [2] LEHN MICHAEL, Borchert A.: Vorlesung High Performance Computing 1. http://www.mathematik.uni-ulm.de/numerik/hpc/ws17/, 2017. [Online; zugegriffen 31-05-2018]
- [3] STEFAN A. FUNKEN, Karsten U.: Einführung in die Numerische Lineare Algebra. Ulm, Germany, 2016
- [4] TENNESSEE, Univ. of California B. o.; LTD.., NAG: DLARFT forms the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors. http://www.netlib.org/lapack/explore-3.1.1-html/dgeqrf.f.html#DGEQRF.1, 2006. [Online; zugegriffen 12-06-2018]
- [5] TENNESSEE, Univ. of California B. o.; LTD.., NAG: LAPACK blocked QR. http://www.netlib.org/lapack/explore-3.1.1-html/dgeqrf.f.html, 2006. [Online; zugegriffen 31-01-2018]
- [6] TENNESSEE, Univ. of California B. o.; LTD.., NAG: LAPACK unblocked QR. http://www.netlib.org/lapack/explore-3.1.1-html/dgeqr2.f. html, 2006. – [Online; zugegriffen 31-01-2018]
- [7] TENNESSEE, University of: *BLAS Technical Forum*. http://www.netlib.org/blas/blast-forum/, 2001. [Online; zugegriffen 03-06-2018]

Name: Florian Krötz	Matrikelnummer: 884948	
Erklärung		
Ich erkläre, dass ich die Arbeit selbständig verfasst und gegebenen Quellen und Hilfsmittel verwendet habe.	keine anderen als die an-	
Ulm, den		
	Florian Krötz	
	TIONALI KIOLE	