1. Suppose I denotes the identity tensor and the components of the vectors \mathbf{u} and \mathbf{v} and the second-order tensor, \mathbf{T} , are given as follows:

$$u_i \Rightarrow (1, -2, 2)$$
 $v_i \Rightarrow (-2, 1, -3)$ $T_{pq} \Rightarrow \begin{bmatrix} -1 & 2 & 3 \\ 2 & -2 & 2 \\ 4 & 3 & 4 \end{bmatrix}$

Consider the following equations:

$$(a) (\phi?) = \mathbf{u} \cdot \mathbf{v} \qquad (b) (\phi?) = \mathbf{T} \cdot \mathbf{u} \qquad (c) (\phi?) = \mathbf{u} \cdot \mathbf{T}^T$$
$$(d) (\phi?) = \mathbf{v} \cdot \mathbf{T} \cdot \mathbf{u} \qquad (e) (\phi?) = \mathbf{u} \otimes \mathbf{v} \qquad (f) (\phi?) = \mathbf{I} \cdot \mathbf{T}$$

- (i) For each equation, replace ϕ with an appropriate symbol to indicate that the quantity is a scalar, vector or second-order tensor.
- (ii) Write each equation in direct notation, indicial notation and matrix notation.
- (iii) Find the components of the resulting scalars, vectors, and tensors.
- (iv) Determine the components of T^{sym} and T^{sk} , the symmetric and skew-symmetric parts of T.
- (v) Determine the components b_i, c_i and d_i where

$$b_{i} = \frac{1}{2} \varepsilon_{ijk} T_{jk} \qquad c_{i} = \frac{1}{2} \varepsilon_{ijk} T_{jk}^{sym} \qquad d_{i} = \frac{1}{2} \varepsilon_{ijk} T_{jk}^{sk}$$

- 2. Show that the relation $\mathbf{v} = (\mathbf{v} \cdot \mathbf{n})\mathbf{n} + \mathbf{n} \times (\mathbf{v} \times \mathbf{n})$ holds $\forall \mathbf{n}$ and that this represents a resolution of \mathbf{v} into vectors parallel and perpendicular to \mathbf{n} (a unit vector).
- 3. Suppose **T** and **U** are second-order tensors.
 - (a) Show that $tr(T \cdot U) = tr(T^T \cdot U)$ if either **T** or **U** is symmetric.
 - (b) Show that $tr(\mathbf{T} \cdot \mathbf{U}) = 0$ if one of the tensors is skew-symmetric and the other is symmetric.
- 4. If A is a second-order tensor, and u, v and w are arbitrary vectors, use indicial notation to prove that

$$(A \cdot u) \cdot (v \times w) + u \cdot \lceil (A \cdot v) \times w \rceil + u \cdot \lceil v \times (A \cdot w) \rceil = (trA)u \cdot (v \times w) \quad \forall \ u, v, w$$

5. The angles between the respective base vectors in two systems are given in the table to the left. The components of a vector \mathbf{v} and a tensor \mathbf{T} in the \mathbf{e}_i system are given to the right.

- (a) Express \mathbf{e}_i in terms of \mathbf{E}_A ; Express \mathbf{E}_A in terms of \mathbf{e}_i . Verify that the basis \mathbf{E}_A is a right-handed orthonormal system.
- (b) Obtain the components of the transformation matrix. Leave answers in terms of the square roots of integers. Verify that the matrix is orthonormal.
- (c) Find the components of \mathbf{v} in the \mathbf{E}_A system. Denote these components as $\{v\}^E$. Apply the reverse transformation to show that you revert back to $\{v\}^e$.
- (d) Find the components of **T** in the \mathbf{E}_{A} system, i.e., find $\begin{bmatrix} E-E \\ T \end{bmatrix}$.
- (e) Find the mixed components $\begin{bmatrix} e^{-E} \\ T \end{bmatrix}$ and $\begin{bmatrix} E^{-e} \\ T \end{bmatrix}$.
- 6. \mathbf{E}_A is related to \mathbf{e}_i and \mathbf{g}_p is related to \mathbf{E}_A as shown. Obtain the transformation matrices for transforming components from:
 - (a) the \mathbf{e}_i basis to the \mathbf{E}_{A} basis,
 - (b) the \mathbf{E}_{A} basis to the \mathbf{g}_{p} basis, and
 - (c) the \mathbf{e}_i basis to the \mathbf{g}_p basis.

