Álgebra de Diagramas de Blocos

Diagrama de Blocos

- O diagrama de blocos é construído a partir das equações que descrevem um determinado sistema.
- Um diagrama de blocos de um sistema é uma representação das funções desempenhadas por cada componente e de fluxo de sinais.
- Este diagrama indica a inter-relação que existe entre os vários componentes, onde todas as variáveis do sistema são ligadas às outras através da relação entre a entrada e saída dos blocos. Esta relação é a chamada função de transferência.

- Para analisar o comportamento de um sistema estabelecese relações entre as varias variáveis deste sistema, pela substituição das variáveis intermediarias, nas equações que descrevem o sistema, de forma que resulte uma expressão que relacione diretamente as variáveis de interesse.
- Ou através da simplificação do diagrama de blocos.

Regra Principal:

Não alterar a relação entre as variáveis de entrada e saída dos blocos que se quer simplificar.

PROF^a NINOSKA BOJORGE

Diagrama de Blocos

1)
$$Y = A - B - C$$

$$2) Y = G_1G_2A$$

3) $Y = G_1(A - B)$

Profa. Ninoska Bojorge

4) $Y = G_1A + G_2B$

_

Diagrama de Blocos

5) $Y = (G_1 + G_2)A$

6) Conexão de blocos em malha fechada

PROF^a NINOSKA BOJORGE

Diagrama de Blocos

7) Movimento de blocos em relação a um somador

8) Movimento de bloco em relação a ponto de junção

PROF^a NINOSKA BOJORGE

Diagrama de Blocos

9) Movimento de bloco para dentro do ponto de junção

Álgebra de Diagrama de Blocos

Consiste de Blocos que podem ser reduzidos

Regras de Redução de Blocos

#1. Combinando blocos em cascata ou em paraleloR

#2. Deslocando um pto somatório atrás de um bloco

#3. Movendo o ponto somatório à frente de um bloco

#4. Deslocando um pto de bifurcação (pickoff) atrás de um bloco

#5. Deslocando um pto de bifurcação à frente de um bloco

#6. Eliminando uma malha feedback

#7. Troca entre dois pontos de soma

Exemplo 1

Encontre a função de transferência dos seguintes diagramas de blocos

Solução:

- 1. Movendo ponto bifurcação A à frente do bloco G_2
- 2. Eliminando a malha I & simplificando

3. Movendo ponto bifurcação B atrás bloco $G_4 + G_2G_3$

4. Elimine a malha III

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G_1(G_4 + G_2G_3)}{1 + G_1G_2H_1 + H_2(G_4 + G_2G_3) + G_1(G_4 + G_2G_3)}$$

Solução:

1. Elimine a malha I

2. Movendo bifurcação A atrás bloco $\frac{G_2}{1+G_2H_2}$

3. Elimine malha II

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G_1 G_2}{1 + G_2 H_2 + G_1 G_2 H_3 + G_1 H_1 + G_1 G_2 H_1 H_2}$$

(c)

Solucao:

2. Elimine malha I e Simplifique

3. Elimine malha II & IIII

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3 G_4}{1 + G_2 G_3 H_3 + G_3 G_4 H_4 + G_1 G_2 G_3 H_2 - G_1 G_2 G_3 G_4 H_1}$$

(d)

Solução:

2. Eliminando malha I & Simplificando

3. Elimine malha II

$$T(s) = \frac{Y(s)}{R(s)} = G_4 + \frac{G_1 G_2 G_3}{1 + G_2 H_1 + G_2 G_3 H_2 + G_1 G_2 H_1}$$

Exemplo 2

Determinar o efeito de R e N em Y no seguinte diagrama

Neste sistema linear, a saída Y contém duas partes, uma parte está relacionada com R e a outra é causada por N :

$$Y = Y_1 + Y_2 = T_1 R + T_2 N$$

Se ajustamos N=0, logo temos Y1:

$$Y_1 = Y_{N=0} = T_1 R$$

Do mesmo modo, seja R=0, Y2 será obtida como:

$$Y_2 = Y_{R=0} = T_2 N$$

Assim, a saída de Y é dado como :

$$Y = Y_1 + Y_2 = Y_{N=0} + Y_{R=0}$$

Solução:

1. Troca ponto somatorio A e B

2. Eliminando malha II & simplificando

Redesenhando o diagrama:

5. Quebrar o ponto soma M:

Eliminar malha acima:

$$\begin{array}{c|c}
\hline
 & 1 + G_1 G_3 G_4 + \frac{G_1 G_2 G_4}{1 + G_2 H_1} \\
\hline
 & 1 + G_1 G_3 + \frac{G_1 G_2}{1 + G_2 H_1} \\
\hline
\end{array}$$

$$Y_2 = \frac{1 + G_2 H_1 + G_1 G_2 G_4 + G_1 G_3 G_4 + G_1 G_2 G_3 G_4 H_1}{1 + G_2 H_1 + G_1 G_2 + G_1 G_3 + G_1 G_2 G_3 H_1} N$$

7. De acordo com o princípio da superposição, Y_1 e Y_2 podem ser combinadas, Assim:

$$Y = Y_1 + Y_2$$

$$= \frac{1}{1 + G_2 H_1 + G_1 G_2 + G_1 G_3 + G_1 G_2 G_3 H_1} [(G_1 G_2 + G_1 G_3 + G_1 G_2 G_3 H_1)R$$

$$+ (1 + G_2 H_1 + G_1 G_2 G_4 + G_1 G_3 G_4 + G_1 G_2 G_3 G_4 H_1)N]$$