Answer sheet 1 - Yiwei Yang 2018533218

1. i.

proof: Denote set G as the powerset of set M. We have $|G|=2^{|M|}$. This indicates if M is infinite, G is infinite. Take $g_i,g_j\in G, \forall g_i,g_j\in G$, we have $g_i\Delta g_j=(g_i\cup g_j)-(g_i\cap g_j)\in G$.

1) $g_i \Delta g_i = \emptyset$, every element in this group is its own inverse.

2)
$$g_i \Delta g_j = (g_i \cup g_j) - (g_i \cap g_j) = g_j \Delta g_i$$
 which is connectivity

3)
$$(g_i \Delta g_j) \Delta g_k = ((g_i \cup g_j) - (g_i \cap g_j)) \cup g_k$$

 $-((g_i \cup g_j) - (g_i \cap g_j)) \cap g_k = g_i \cup ((g_j \cup g_k) - (g_j \cap g_k)) - g_i \cap ((g_j \cup g_k) - (g_j \cap g_k)) = g_i \Delta (g_j \Delta g_k)$ which is associative.

4) The empty set is the identity of the group

Thus $(P(M), \Delta)$ is abelian.

ii.

proof: 1)
$$((a,b)*(c,d))*(e,f) = (a,bd)*(e,f) = (a,bdf) = (a,b)*((c,d)*(e,f))$$

2)
$$(a,b)*(1,1) = (a,b)$$
, while $(1,1)*(a,b) = (1,b)$

Thus $(\mathbb{R} \times \mathbb{R}, *)$ is non-abelian semigroup.

The set of right- & left- units can be $\{(1,t),(k,t^{-1})|k,t\in\mathbb{R}\}$

2.
$$G = \{a^n = a, \forall n > 1\}$$

3. : l_a, r_a are bijections. Assume that for any elements a,b in G, we can find x,y in G such that a*x=b, y*a=b.

We are looking for a neutral element e. This satisfies $g_0e=g_0,g_0\in G$. By assumption, there is some e with $ge=g, \forall g\in G$. By assumption we may write $g=hg_0$ for some h. Then, we have $ge=(hg_0)\,e=h\,(g_0e)=hg_0=g$. and godesize godesi

$$\therefore$$
 $(G,*)$ is a group. \square

4. Let T be the set of all $n\in\mathbb{N}_{>0}$ s.t. $a_{f(1)}*\cdots*a_{f(n)}=a_1*\cdots*a_n$

holds for all sequences $\langle a_k \rangle_{1 \le k \le n}$ of n elements of S which satisfy:

$$orall i,j \in [1\dots n]: a_i*a_j = a_j*a_i$$

for every permutation $f: \mathbb{N}_n o \mathbb{N}_n$.

There are 3 cases to consider

1.
$$f(m+1) = m+1$$
. $a_{f(1)} * ... a_{f(m+1)} = (a_{f(1)} * ... a_{f(m)}) * a_{f(m+1)} = (a_1 * ... a_m) * a_{m+1} \stackrel{\text{ind}}{=\!=\!=} a_1 * ... a_{m+1}$
2. $f(1) = m+1$.

$$a_{f(1)}*...a_{f(m+1)} = a_{f(1)}*(a_{f(2)}*...a_{f(m+1)}) \stackrel{\mathrm{inc}}{=\!\!\!=\!\!\!=\!\!\!=} a_{m+1}*(a_{f'(1)}*...a_{f'(m)}) \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} a_{m+1}*(a_1*...a_m)$$
 $commutative = a_1*...a_m * a_{m+1}$. Here f' is defined as $\forall k \in [1 \dots m]: f'(k) = f(k+1)$

$$\begin{array}{l} \text{3. } f(r) = m+1 \text{ for some } r \in [2..m]. \\ a_{f(1)} \circ \cdots \circ a_{f(m+1)} = \left(a_{f(1)} \circ \cdots \circ a_{f(r-1)}\right) \cdot \left(a_{f(r)} \circ \left(a_{f(r+1)} \circ \cdots \circ a_{f(m+1)}\right)\right) \\ = \left(a_{f''(1)} \circ \cdots \circ a_{f''(r-1)}\right) \circ \left(a_{f''(m+1)} \circ \left(a_{f''(r)} \circ \cdots \circ a_{f''(m)}\right)\right) \\ = \left(a_{f''(1)} \circ \cdots \circ a_{f''(r-1)}\right) \circ \left(\left(a_{f''(r)} \circ \cdots \circ a_{f''(m)}\right) \circ a_{f''(m+1)}\right) = a_{f''(1)} \circ \cdots \circ a_{f''(m+1)} \\ \text{Here } f'' \text{ is defomed as } \forall k \in \mathbb{N}_{m+1} : \begin{cases} \sigma(k) & : k \in [1 \ldots r-1] \\ \sigma(k+1) & : k \in [r \ldots m] \\ m+1 & : k = m+1 \end{cases}$$

5. i.

proof: \leftarrow if (M,*) is a semigroup and t has an inverse. We have $t^{-1}*b=t^{-1}tb=b, \quad b*t^{-1}=btt^{-1}=b$. \therefore (M,\odot) is a monoid.

ightarrow: Suppose (M,\odot) is a monoid, Suppose 1 is a monoid of M, and a is the monoid of (M,*), we have $1=a*1=at1=at, \quad 1=1*a=1ta=ta$. Thus $a=t^{-1}$ which is the inverse of (M,*). \square

ii.

proof: \leftarrow : (M,*) is a group, $\because a \odot b = atb$ we have $a'(a \odot b) = (b \odot a)a', \forall a,b \in M$ (1) a' is the one-dimention mapping from a' to a'. And we have a', a', a' is the left monoid of a'. Is the left inverse of a'. a' is group.

 \rightarrow : The process of above prove is reversable. \square