Applications of Network Science

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- A. L. Barabási (2016). Network Science Chapter 01 and Chapter 02
- F. Menczer, S. Fortunato, C. A. Davis (2020). A First Course in Network Science Chapter 00
- URLs cited in the footer of specific slides

Networks Science

- Interdisciplinary; indeed we often address problems from disciplines other than CS
- Empirical and data-driven; it is based on the observation of networks
- Quantitative, mathematical, computational

"Red string" suspect boards

A very common TV trope involves detectives looking at a wall where suspects are connected by red strings

Help fight

organized crime and collusion

https://itnews.iu.edu/articles/2014/complex-networks-researcher-at-iu-fighting-crime-with-mobile-phone-data.php

Help understand political corruption

- 37 corruption cases in Spain in 1989-2018 involving 2,753 people having 27,545 connections
- There are 197 connected components, 58 isolated nodes, and a giant component of 40% of nodes and 53% of edges
 - "empirical results and simulations indicate that **a few**recidivist agents typically play a prominent role in corruption
 activities. These agents act as **bridges** among minor corrupt
 groups and possibly engage and coordinate them to work in
 more extensive and often much more harmful corruption
 processes to society." (emphasis added)

Help fight police corruption

Help to forecast epidemics

https://www.youtube.com/watch?v=mm2u9RKwgsY

Help understand organization structures

Help improve the communications of an organization

- About 3M e-mails sent or received by an EU research organization address
- Nodes are e-mail addresses (~1K internal, ~250K external)
- Edges are e-mails

https://www.youtube.com/watch?v=4JS-30dglqg

Help to understand international trade

Multiple structural, economic, geographical, and political factors affect the global trade network structure.

https://doi.org/10.1007/s41109-022-00479-7

Fight misinformation and hate online

Improve mobility within cities

City grids have polarities that can be seen through networks analysis.

Help understand society, diseases, and design new treatments and drugs

Must watch:
Nicholas Christakis (1 hour)

https://www.youtube.com/watch?v=wadBvDPeE4E

What we will learn

- To describe a network in formal terms
- To identify it as such and characterize it
- To visualize different networks
- To operate with networks programmatically
- To find important nodes and communities
- To make discoveries or help others make them
- Much more (to a large extent, it's up to you!)

How we will learn

- Theory sessions:
 - Help you understand how to model complex networks
 - Help you find important nodes, communities, and track influence
 - Do some simple (and not so simple) exercises to check that you understood correctly each concept, and to help you remember
- Practice sessions:
 - Help you work with complex networks
 - Manage and analyze graphs in Python
- My focus is on what I think has value for you as a data scientist

Summary

Things to remember

Applications of complex networks analysis

Additional contents (not included in exams)

Why network science is important to me

PhD work (2000-2004)

- Collecting web pages
- Characterizing national web domains
 - Chile, Korea, Greece, Spain ...

An influential book (to me)

This book came out in 2002 and made me see networks everywhere; it's an easy read, written for the general public, highly recommended

Its author, Albert-László Barabási visited my university **in Chile** while I was a PhD student :-)

Early post-doctoral work (~2006-2009)

- Web spam pages
 - Pages created to deceive search engines
 - Attract traffic by stuffing themselves with keywords
 - Increase link score of other pages
 - Methods evolve all the time, how to catch them?

An Eureka! Moment 2006

Visualization of a web spam dataset using gnuplot; spam nodes (in black) cluster together!

Paper: https://doi.org/10.1145/1277741.1277814

Query flows

2008

We wonder what is the most likely query before or after another query?

How are they connected? This is how we developed **query flow graphs**

Graphs in my own work

- Everywhere! See https://chato.cl/research/
- Currently:
 - part of a larger toolbox
 - skeptical about structural-only conclusions