Acoustic Echo Cancellation

Special Assignment- 3EC2102 Adaptive Signal Processing

Chintan A. Joshi

Index

- Echo
- Acoustic Echo
 - Seriousness
 - Acoustic Room Impulse Response
- Acoustic Echo Cancellation
 - Block diagram
 - General procedure
- Adaptive Echo Cancellation Algorithms
 - LMS
 - NLMS
 - RLS
 - APA
 - FAP
 - VSS-APA

Echo

- Velocity of sound is approximately 343 m/s at 25°C
- Echo occur if
 - Any reflecting object placed more than 11.3 m far from the sound source produce echo
 - Delay is more then 32.94 msec
- Reverberation.

Acoustic Echo

- Sound from a loudspeaker is picked up by the microphone in the same room
- Problem exists in any communications where there is a speaker and a microphone
- Examples:
 - Hands-free car phone systems
 - A standard telephone or cellphone in speakerphone
 - Physical coupling (vibrations of the loudspeaker transfer to the microphone via the handset casing)

Acoustic Echo

Seriousness of AE compared to network echo in telephony

Long delay

• The echo path may change according movement of microphone

 The background noise can be strong and nonstationary

Acoustic Room Impulse Response

Figure: Impulse Response of Room *

Acoustic Echo Canceller

General AEC procedure

- A far-end signal is delivered to acoustic feedback synthesizer.
- The far-end signal is reproduced by the speaker
- A microphone picks up the sound
- The far-end signal is filtered and delayed.
- The filtered far-end signal is subtracted from the near-end signal.
- The resultant signal should not contain any direct or reverberated sound produced by the speaker.

Requirements

• Fast convergence of adaptive filter

• Stable convergence

 No performance degradation for the real speech signal

Echo Cancellation Algorithms

- LMS
- NLMS
- RLS
- APA (Affine Projection Algorithm)
- FAP (Fast Affine Projection)
- VSS-APA(Variable Step Size APA)

LMS Algorithm

- Most popular adaptation algorithm is LMS
 - Define cost function as mean-squared error
- Simple, no matrices calculation involved in the adaptation
- Based on the method of steepest descent
- Move towards the minimum on the error surface to get to minimum gradient of the error surface estimated at every iteration

LMS Algorithm cont..

LMS Algorithm cont..

• Filter output =
$$y \not = \sum_{k=0}^{M-1} u \not = -k \stackrel{\overline{w}^*}{\underline{w}_k} \not= -k \stackrel{\overline{w}^*}{\underline{w}$$

• Estimation error =
$$e \not = d \not = d \not = y \not = 0$$

LMS Algorithm cont..

 The LMS algorithm is convergent in the mean square if and only if the step-size parameter satisfy

$$0 < \mu < \frac{2}{\lambda_{max}}$$

• λ_{max} is the largest eigenvalue of the correlation matrix of the input data

Affine Projection Algorithm(APA)

- Affine:
 - Type of geometric transformation:
 - A geometric transformation that maps points and parallel lines to points and parallel lines

- Derived From NLMS
- Using *lagrange multipliers* with multiple weighting factors

Affine Projection Algorithm cont..

S=linear subspace s'=affine subspace

Figure : Affine Projection*

Affine Projection Algorithm cont..

- cost function of affine projection filter:
- $J(n)=||W(n+1)-W(n)||^2+...$

...
$$\sum_{k=0}^{N-1} Re \left[\lambda_k^* (d(n-k) - \delta \lambda^n(n-i) * ||W(n)||^2 W^H(n+1) * u(n-k) \right]$$

- A^H(n)= input data matrix in hermitian transpose [N*M]
- d^H(n)=desired response vector in hermitian transpose[N*1]
- λ^{H} = lagrange multiplyer vector in hermitian transpose
- Weight vector

$$W(n + 1) = [I - \mu AH(n) (A(n) AH(n)) - 1 A(n)] * W(n) + ...$$
... $\mu AH(n) (A(n) AH(n))^{-1} * d(n)$

Affine Projection Algorithm cont..

- Fast Convergence compared to NLMS in acoustic environment
- But computational complexity also increases
- Inverse of correlation matrix is required
- Fast Affine Projection (FAP) has been proposed by S. L. gay and tavathia in 1995

Fast Affine Projection* (FAP) cont..

- LMS like low complexity and memory requirements
- RLS like fast convergence
- Computationally efficient then APA
- uses a sliding windowed FRLS to assist in a recursive calculation of the solution.

Fast Affine Projection (FAP) cont..

• When input is speech signals, FAP converges rapidly compared to other algorithms

Figure: Comparison of FAP for different orders of projection, N, with speech excitation

Variable Step Size APA*

Figure: AEC Configuration

^{*} Constantin Paleologu,, Jacob Benesty at al. "A Variable Step-Size Affine Projection Algorithm Designed for Acoustic Echo Cancellation", IEEE Transactions on audio, speech, and language processing, vol. 16, no. 8, november 2008

Variable Step Size APA cont..

- Different step size for three different scenario
 - Single talk
 - Background noise only w(n)
 - Double talk
 - Background noise w(n) and near end speech u(n)
 - Under-Modeling
 - Echo caused by the part of the system that cannot be modeled

Variable Step Size APA cont..

simulation result: comparison between APA, the robust proportionate APA(R-PAPA) and VSS-APA

Conclusion

- Acoustic Echo is a type of interference in voice communication
- To eliminate it, best method is Adaptive filters
- Different kinds of algorithms
 - -Fast = RLS, FAP
 - More efficient = VSS-APA
 - Choose according to requirements

Thank You