# Adversarial Examples for Eye-State Classification

Şefika EFEOĞLU

University of Potsdam

January 3, 2021

#### Motivation

- A robot named Chubby broke and hit the booth glasses without any instructions at Shenzhen Hi-tech Fair, 2016.
- Knightscope of Slicon Valley Robotics knocked down and injured a 16-month old boy in 2016.
- Uber autonomous test vehicle hit the 49-year-old woman and she died in 2018.



Figure: Autonomous Driving problem of Tesla due to perturbation.

#### Motivation Continue...



Figure: Adversarial Examples and Decision Boundary

### **Outlines**

- Introduction
- Background Knowledge
- Project
- Conclusion

#### Introduction

- Deep Neural Networks achieve extreme accuracy on image classification tasks
- However, vulnerable to adversarial examples.
- Regularization is ineffective against to perturbation
- Approach: regularization-based approach to adversarial examples using Parseval Networks and Adversarial Training.
- *Objective*: Improve the robustness of Eye-State Classifier using Adversarial Examples with Adversarial Training

## Eye-State Dataset



Figure: Eye-State data set consists of 5400 images, and the distribution of each eye state on the histogram

## Background Knowledge

## Road Map

- Adversarial Examples
- Past Gradient Sign Method
- Wide Residual Networks
- Parseval Networks
- Signal to Noise Ratio (SNR)

## Adversarial Examples

- specialised inputs created with the purpose of confusing a neural network
- cause misclassification
- fools the networks identifying a given input.

Types of adversarial attack

- Blackbox attack
- WhiteBox Attack
  - Fast Gradient Sign Method
  - Projected Gradient Descent
  - Deepfool etc..



Figure: adversarial example of the cat image

## Fast Gradient Sign Method

#### Definition

$$adv_x = x + \epsilon \cdot sign(\nabla_x J(\theta, x, y))$$



Figure: the example of that how adversarial example of an image is obtained using Fast Gradient Sign Method

#### Wide Residual Network

## Problem of Deep Neural Networks

- improving accuracy costs is expensive.
- training is a problem of diminishing feature reuse.
- very slow to train

#### Wide Residual Network

## Problem of Deep Neural Networks

- improving accuracy costs is expensive.
- training is a problem of diminishing feature reuse.
- very slow to train

## Proposed solutions

- decrease depth
- increase width of residual networks (Wide ResNet).

#### Parseval Networks

### Objectives

Using the advantages of orthogonality and convexity constraints, improve the accuracy of the deep neural networks.

Additionally, it provides faster converges on learning curves.

#### Parseval Networks

## Objectives

Using the advantages of orthogonality and convexity constraints, improve the accuracy of the deep neural networks.

Additionally, it provides faster converges on learning curves.

- 2 constraints below and parseval training are considered
- Orthogonality constraint
  - Convexity constraint in aggregation layer
  - Parseval Training

## Orthogonality Constraint

#### Definition

- an optimization algorithm on the manifold of orthogonal matrices
- another name is Stiefel Manifold

$$R_{\beta}\left(W_{k}\right) \leftarrow \frac{\beta}{2} \left|\left|W_{k}^{T}W_{k} - I\right|\right|_{2}^{2}$$

is expensive after each gradient update step.

 after every main gradient update, second update is applied to make the algorithm more efficient

## Orthogonality Constraint

#### Definition.

- an optimization algorithm on the manifold of orthogonal matrices
- another name is Stiefel Manifold

$$R_{\beta}\left(W_{k}\right) \leftarrow \frac{\beta}{2} \left|\left|W_{k}^{T}W_{k} - I\right|\right|_{2}^{2}$$

is expensive after each gradient update step.

 after every main gradient update, second update is applied to make the algorithm more efficient

$$W_k \leftarrow (1+\beta)W_k - \beta W_k W_k^T W_k$$

## Convexity Constraint in Aggregation Layer

#### **Definition**

- In Parseval Networks, aggregation layers output a convex combination of their inputs.
- To ensure that Lipschitz constant at the node n is such that

$$\Lambda_p^n \leq 1$$

euclidean projection is applied below

$$\alpha^* = \arg\min_{\gamma \in \Delta^{K-1}} ||\alpha - \gamma||_2^2$$

## Parseval Training

#### **Algorithm 1:** Parseval Training

```
\Theta = \{W_k, \alpha_k\}_{\kappa}^{k=1}, e \leftarrow 0
while \{e \le E\} do
       Sample a minibatch \{(x_i, y_i)\}_{i=1}^B.
       for k \in \{1, ..., K\} do
               Compute the gradient;
               G_{W_k} \leftarrow \nabla_{W_k} I(\Theta, \{(x_i, y_i)\})
               G\alpha_k \leftarrow \nabla_{\alpha_k} I(\Theta, \{(x_i, y_i)\})
               Update the parameters:
               W_k \leftarrow W_k - \epsilon \cdot G_{W_k}
               \alpha_k \leftarrow \alpha_k - \epsilon \cdot G_{\alpha_k}
               if hidden layer then
                       Sample a set S of rows of W_k
                       Projection:
                       W_s \leftarrow (1+\beta)W_s - \beta W_s W_s^T W_s.
                       \alpha_k \leftarrow \operatorname{argmin}_{\gamma \in \Lambda^{K-1}} ||\alpha_{K-\gamma}||_2^2
               end
       end
       e \leftarrow e + 1
  end
```

#### Wide Residual Network vs Parseval Network

| Properties Name          | Wide Residual Networks | Parseval Networks |  |
|--------------------------|------------------------|-------------------|--|
| Kernel Initializer       | Gaussian               | Orthogonal        |  |
| Orthoganality Constraint | X                      | ✓                 |  |
| Convexity constraint     | X                      | ✓                 |  |

Table: shows that the properties of two different networks

## Signal to Noise Ratio (SNR)

- abbreviated as SNR or S/N)
- 2 a measure used in science and engineering
- the ratio of useful information to false or irrelevant data in a conversation or exchange.

$$SNR(x, \delta_x) = 20 \log_{10} \frac{\|x\|_2}{\|\delta_x\|_2}$$



Figure: Example

## **Project**

## Methodologies

- Neural Network Models : Convolutional Neural Network, Residual Network, and Parseval Network.
- 2 Train the models without Adversarial Examples.
- Train the models using Adversarial Example with Adversarial Training algorithm.
- Evaluate the models using transferability of Adversarial Examples.
- Second to the effect of weight decay on the accuracy of CNN against adversarial examples.

## Hyperparameter Tuning

Learning Rate: 0.1, 0.01

Regularization Penalty: 0.01, 0.001, 0.0001

Batch Size: 64, 128, 256 Epochs: 50, 100, 150

| Model Name                | Width(k) | Accuracy | Loss     | Recall   | Precision |
|---------------------------|----------|----------|----------|----------|-----------|
| Baseline of Simple ResNet | 1        | 0.667830 | 0.942042 | 0.634336 | 0.650836  |
| Baseline of Wide ResNet   | 2        | 0.656195 | 1.077292 | 0.597981 | 0.635004  |
| WideResNet16-4            | 4        | 0.641070 | 1.374967 | 0.614458 | 0.668218  |

Table: shows the effect of width factor on deep neural networks which has 16 layers.

## Hyperparameter Tuning-Box Plot for Model Loss



Figure: Model Selection with 3 Fold Cross Validation

## Non-Adversarial Training Results



14 - ResNet - Parseval 12 - 10 - 0.9 - 0.8 - 0 - 10 - 20 - 30 - 40 - 50

model loss

Figure: Simple ResNet and Parseval

Figure: Simple ResNet and Parseval

### Attack the Model with Different Noise Levels



Figure: Label: Open



Figure: Label: Partly Open

## Signal To Noise Ratio Results



Figure: The accuracies of the models against different Signal to Noise Ratio (SNR)

## Summary of SNR Results

| Model Name // SNR     | Clean | 50    | 45    | 40    | 33    |
|-----------------------|-------|-------|-------|-------|-------|
| Parseval              | 0.714 | 0.665 | 0.629 | 0.562 | 0.4   |
| ResNet                | 0.696 | 0.652 | 0.623 | 0.563 | 0.396 |
| Parseval(Adversarial) | 0.703 | 0.697 | 0.695 | 0.687 | 0.664 |
| ResNet(Adversarial)   | 0.692 | 0.685 | 0.682 | 0.674 | 0.652 |

Table: The results show the mean accuracies of the models applied 10 fold CV against test dataset with different SNRs

#### Convolutional Neural Networks



Figure: The accuracies of the Fully Connected models against different Signal to Noise Ratio (SNR). Weight decay(WD) = 0.0001.

## Effect of Weight Decay on CNN



Figure: shows the effect of weight decay on model performance. L2 Regularization was used.

# Summary of SNR Results for Convolutional Neural Networks

| Model//SNR | Clean | 50    | 45    | 40    | 33    |
|------------|-------|-------|-------|-------|-------|
| SGD        | 0.706 | 0.67  | 0.65  | 0.602 | 0.472 |
| SGD_WD     | 0.705 | 0.694 | 0.685 | 0.665 | 0.618 |
| SGD_WD_DA  | 0.703 | 0.695 | 0.689 | 0.677 | 0.642 |

Table: shows the accuracies of fully connected models against the different SNR levels.

#### Conclusion

- Basic Residual Network is enough for this classification model.
- The model can be made smooth using adversarial training.
- Robustness was improved using adversarial training
- However, adversarial training is expensive.
- The result of SNR attacks to the models shows that Parseval Networks are more accurate than its vanilla corporate.
- CNN model Using weight decay outperformed CNN models without weight decay.
- Adversarial training approach outperformed CNN models with/without weight decay on experiments of adversarial examples.

#### Repository:

https://github.com/sefeoglu/adversarial\_examples\_parseval\_net

## **Bibliography**

- 1 Cisse, Bojanowski, Grave, Dauphin and Usunier, Parseval Networks: Improving Robustness to Adversarial Examples, 2017.
- 2 Zagoruyko and Komodakis, Wide Residual Networks, 2016.
- 3 Zhang, Jiliang, and Li, Chen, Adversarial Examples: Opportunities and Challenges, 2018