Standard Operating Procedure (SOP)

Title: Bioinformatics Workflow for Genome Assembly and Gene Variation Analysis of

Microsporidia sp. from *Anopheles* Mosquitoes

Version: 1.0

Prepared by: [Your Name]

Date: [Insert Date]

Institution: [Insert Lab/Organization Name]

1. Purpose

This SOP outlines the standardized bioinformatics protocol for processing DNBSeq 150 bp paired-end reads from *Microsporidia*-infected *Anopheles* mosquito tissues. The pipeline performs

quality control, host read removal, microbial decontamination, genome assembly, annotation, and

gene variation analysis including clustering.

2. Scope

This procedure is designed for graduate-level bioinformatics practitioners and is intended to facilitate reproducible genomic analyses of microsporidian symbionts. It supports comparative genomics and

molecular epidemiology studies of microsporidia across different geographical regions.

3. Requirements

3.1. Software & Tools

Install the following bioinformatics tools via Conda:

```
```bash
conda install -y -c bioconda fastqc multiqc bwa samtools kraken2 \
unicycler quast busco augustus genemarks repeatmodeler repeatmasker \
blast mafft orthofinder
4. Input
- Paired-end sequencing reads: `*.fq.gz` files from DNBSeq platform
- Reference genomes for host species: *Anopheles arabiensis* and *A. gambiae*
- Kraken2 database (e.g., `minikraken_8GB`)
- Augustus model species or trained parameters for Microsporidia
5. Procedure
5.1. Quality Control
Tools: FastQC, MultiQC
```bash
fastqc raw_reads/*.fq.gz -o qc_output/
multiqc qc_output/
```

```
...
```

```
### 5.2. Host Read Removal
Tools: BWA, Samtools
```bash
bwa index host_reference.fa
bwa mem host_reference.fa reads_R1.fq.gz reads_R2.fq.gz | samtools view -bS - | samtools sort -o
host_mapped.bam
samtools index host_mapped.bam
...
5.3. Decontamination
Tools: Kraken2
```bash
kraken2 --db minikraken_8GB --paired clean_R1.fq clean_R2.fq \
--report kraken_report.txt --unclassified-out clean_R#.fq --use-names
### 5.4. De Novo Genome Assembly
Tool: Unicycler
```bash
unicycler -1 clean_R1.fq -2 clean_R2.fq -o assembly_dir
```

## ### 5.5. Gene Prediction

Tools: Augustus, GeneMarkS

```bash

augustus --species=microsporidia assembly.fasta > augustus_output.gff gmsn.pl --seq assembly.fasta --genome-type euk --output gms_output

...

5.6. Repeat Masking

Tools: RepeatModeler, RepeatMasker

```bash

BuildDatabase -name genome\_db assembly.fasta

RepeatModeler -database genome\_db -pa 4

• • • •

### 5.7. Genome Quality Assessment

Tools: QUAST, BUSCO

```bash

quast assembly.fasta -o quast_output

busco -i assembly.fasta -l microsporidia_odb10 -m genome -o busco_output

...

5.8. Gene Clustering and Variation Analysis

Tool: OrthoFinder

| ```bash |
|--|
| orthofinder -f protein_directory/ |
| |
| |
| |
| |
| ## 6. Expected Output |
| - Quality control reports |
| - Filtered read files |
| - Assembled genome in FASTA format |
| - GFF annotations from Augustus and GeneMarkS |
| - Repeat annotation files |
| - BUSCO and QUAST reports |
| - OrthoFinder clustering results |
| |
| |
| |
| ## 7. Troubleshooting |
| - Ensure tools are correctly installed with appropriate versions. |
| - Validate paths and file names, especially for large paired-end datasets. |
| - For Augustus, consider training a species-specific model for better gene prediction. |
| |
| |
| |
| ## 8. References |
| |
| 1. FastQC - https://www.bioinformatics.babraham.ac.uk/projects/fastqc |

- 2. MultiQC Ewels et al., Bioinformatics, 2016
- 3. BWA Li & Durbin, Bioinformatics, 2009
- 4. Samtools Danecek et al., Gigascience, 2021
- 5. Kraken2 Wood et al., Genome Biol, 2019
- 6. Unicycler Wick et al., PLOS Comp Biol, 2017
- 7. Augustus Stanke et al., Nucleic Acids Res, 2004
- 8. GeneMarkS Besemer et al., Nucleic Acids Res, 2001
- 9. RepeatModeler Flynn et al., PNAS, 2020
- 10. BUSCO Simão et al., Bioinformatics, 2015
- 11. QUAST Gurevich et al., Bioinformatics, 2013
- 12. OrthoFinder Emms & Kelly, Genome Biol, 2019

Appendix B: Simplified For-Loop Version (Early Learners)

```python

import os

# Define paths

raw\_reads\_dir = "all\_reads/other\_reads"

output\_dir = "output"

kraken\_db = "/mnt/lustre/bsp/DB/KRAKEN2/minikraken\_8GB\_20200312"

# Ensure output directories exist

os.makedirs(output\_dir, exist\_ok=True)

```
for fq1 in os.listdir(raw_reads_dir):
 if fq1.endswith("_1.fq.gz"):
 fq2 = fq1.replace("_1.fq.gz", "_2.fq.gz")
 fq1_path = os.path.join(raw_reads_dir, fq1)
 fq2_path = os.path.join(raw_reads_dir, fq2)
 sample = fq1.replace("_1.fq.gz", "")
 # Kraken2 classification
 --db
 {kraken_db}
 --paired
 --classified-out
 os.system(f"kraken2
{output_dir}/{sample}_classified#.fq "
 f"--unclassified-out {output_dir}/{sample}_unclassified#.fq --report
{output_dir}/{sample}_report.txt "
 f"{fq1_path} {fq2_path}")
 # Unicycler assembly
 os.system(f"unicycler
 -1
 {output_dir}/{sample}_unclassified_1.fq
 -2
{output_dir}/{sample}_unclassified_2.fg "
 f"-o {output dir}/unicycler {sample} --no pilon --threads 32")
...
```

# Loop through paired-end files