

Fig. 2. Energy spectrum for all decay events observed as a member of a R-d1 event chain. The previously known activities are labeled. The discontinuity at the energy of 1100 keV is due to the different energy calibration for proton- and α -decay

Fig. 3. Time difference between a recoil implantation and a subsequent decay event observed in the same pixel of the DSSD, when the decay is (a) $^{108}I(\alpha)$, (b) $^{107}Te(\alpha)$ or (c) $^{108}I(p)$ followed by the α decay of 107 Te. In panel (d), the time difference between two subsequent decay events of $^{108}I(p)$ and $^{107}Te(\alpha)$ is presented. The quoted half-lives were obtained with the logarithmic time-scale method [35] (panels (a) and (b)) or maximum likelihood method [36] (panels (c) and (d)). The solid lines in (a) and (b) are fits to the data, and the dashed lines in (c) and (d) are the probability density distributions [35] corresponding to the half-lives obtained from

these fits. The peak labeled "Bgr" corresponds to random correlations, see text for

Fig. 4. Energy-energy correlation matrix for two subsequent decay events in R-d1-d2 chains, when the R-d1 and d1-d2 time differences are less than 130 ms and 18 ms, respectively. The inset provides the energy spectrum of the newly observed 1081 proton decay events, which are highlighted with a dashed circle in the main panel. Due to a high count rate in the DSSD and the long half-life, 108 Te α -decay events

self-correlate randomly. The dashed lines mark the energies of selected, previously

Table 1

Q values, half-lives $T_{1/2}$, and mass excesses Δ obtained in the present study com-

identified, charged-particle decay activities in this region.

Quantity	This work 597(13)	AME2016 [31,38,39] 600(110)	Other studies	
$Q_p(^{108}I) \text{ (keV)}$			≥240	[19
			≲600	[26
$Q_p(^{104}Sb)$ (keV)	510(20)	510(100)	≥150	[19
			≤520	[19
			≲550	[26
$Q_{\alpha}(^{108}I)$ (keV)	4097(10)	4100(50)	4099(5)	[26
$Q_{\alpha}(^{107}\text{Te}) \text{ (keV)}$	4007(10)	4008(5)	3982(16)	[40
			4012(10)	[32
$Q_{\alpha}(^{112}Cs)$ (keV)	3940(20)	3930(120)	≥3830	[19
			≤4210	[19
			≲3940	[29
$T_{1/2}(^{107}\text{Te}) \text{ (ms)}$	3.6(2)	3.1(1)	$3.6^{+0.6}_{-0.4}$	[40
	` '	()	3.1(1)	[29
$T_{1/2}(^{108}I) \text{ (ms)}$	26.4(8)	36(6)	36(6)	[29
$\Delta(^{104}\text{Sb}) \text{ (MeV)}$	-59.17(8)	-59.17(12)		
$\Delta(^{108}I)$ (MeV)	-52.65(8)	-52.65(13)		