Devoir Hors Classe n°2

Qualité du devoir	Note /5
Non rendu	0
Aucun investissement et/ou soin : travail bâclé!	1
Partie du sujet non traitée ou bâclée	2
Travail correct mais qui aurait mérité plus d'investissement	3
Bon travail mais quelques erreurs et/ou manque de soin	4
Très bon travail, soigneux et détaillé	5

Exercice 1

On se place dans un repère de l'espace $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{j})$. On considère les points A(2,0,1) et B(1,1,2), et les vecteurs $\overrightarrow{u}(2,0,1)$ et $\overrightarrow{v}(0,-1,2)$. On note aussi I le milieu de [AB].

- 1. Dans la base $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{j})$, calculer les coordonnées du vecteur \overrightarrow{AB} et du point I.
- 2. Montrer que $(\overrightarrow{AB}, \overrightarrow{u}, \overrightarrow{v})$ est une base de l'espace.
- 3. Donner les nouvelles coordonnées du point I dans le repère $(A, \overrightarrow{AB}, \overrightarrow{u}, \overrightarrow{v})$.

Exercice 2 (Autour de la suite géométrique)

On considère $(u_n)_{n\geq 0}$ une suite géométrique de raison q. On suppose que $u_0>0$.

- 1. On suppose que q = 1. Montrer que la suite (u_n) converge et donner sa limite.
- 2. On suppose que 0 < q < 1. Montrer que la suite (u_n) est décroissante.

En déduire que celle-ci converge et rappeler sa limite à l'aide du cours.

- **3.** Dans la suite, on suppose que q>1. En utilisant l'inégalité de Bernoulli, montrer que pour tout $n\in\mathbb{N}$, on a : $q^n\geq 1+n(q-1)$
- **4.** En déduire que la suite (u_n) diverge vers $+\infty$.

Vers le supérieur :

Soit q > 0 tel que $q \neq 1$, on considère la suite définie par $v_n = \sum_{k=0}^n q^k = 1 + q + \cdots + q^n$.

- **5.** Soit $n \in \mathbb{N}$, rappeler la valeur de v_n .
- **6.** Déterminer la limite de (v_n) en fonction des valeurs de q.