

Aplicações de sinais

Tópicos sobre Detecção e Estimação ... 1

Prof. Raul T. Rato

DEEC - 2021

Começando:

Apresentação para esta aula: (27 Abr)

Dumitru Ciobotari 50183

Determine o espectrograma do Dmonky.mat

Explique as opções que fez quanto à escolha e duração da janela

O que se vê depende de como se olha:

O que se vê depende de como se olha:

Um exemplo ilustrativo Ver das duas formas: de perto e de longe

Diferem no espectro de frequências espaciais

Um exemplo ilustrativo Ver das duas formas: de perto e de longe

Does The Effect Exist? Effect Exists Effect Doesn't Exist Hit Rate False Alarm Rate True Positive Rate False Positive Rate Statistical Power Statistical Significance Receptor - Decision Effect Observed $(1 - \beta)$ Type I Error Rate (α) **Correct Rejection Rate** Miss Rate False Negative Rate True Negative Rate Type II Error Rate (β) $(1-\alpha)$

- Emitter - Signal -

De volta ao 1 - 2 - 3

O espectro de potência é o quadrado do módulo da DFT

O espectro de potência é o quadrado do módulo da DFT

Multiplicar DFTs é efectuar a convolução (circular) dos sinais no tempo.

Exemplo: Sa=[1-32] Sb= [2 0 -1] clear close all clc bSa = 1%#ok<*NOPTS> bsc = 5.0000-8.0000 3.0000 bSa= [1 -3 2] bsd = 5.0000-8.0000 bSb= [2 0 -1] 3.0000 bSc= cconv(bSa, bSb, 3) bSe = 23 3 -2 bSd= ifft(fft(bSa).*fft(bSb)) bSe= conv(bSa, bSb)

A FFT da (convolução circular de um sinal com ele próprio invertido no tempo) (autocorrelação circular) tem como resultado o espectro de potência do sinal

Teorema de Wiener – Khinchin (WK)

Muito cuidado aqui: Inverter o sinal no tempo usando o flip() do MATLAB tem truque!

nverter
$$aZ^{0} + bZ^{-1} + cZ^{-2}$$

Inverter
$$aZ^0 + bZ^{-1} + cZ^{-2}$$
 deve resultar em $cZ^2 + bZ^1 + aZ^0$

e nunca em
$$cZ^0 + bZ^{-1} + aZ^{-2}$$
,
que é o que acontece quando se usa o flip()

Dá erro!

Dá erro!

```
clear
close all
clc
% - Dah erro - flip descompensado
% # ok <* NOPTS >
bSa = [ 1 -3 2]
bSb = flip(bSa)
bSc = cconv(bSa, bSb, 3)
bfSd = abs(fft(bSa)).*abs(fft(bSa))
bfSe = fft(bSc)
```

```
bSa = 1 -3 2

bSb = 2 -3 1

bSc = -7.0000 -7.0000 14.0000

bfSd = 0 21 21

bfSe = 0.0000 + 0.0000i -10.5000 +18.1865i -10.5000 -18.1865i
```

O flip() descompensa os índices. Como re-compensar?

Já não dá erro!

Aplicações do teorema de WK

Aplicações do teorema de WK

Sabe-se que para detectar um sinal no meio do ruído deve ser utilizado um filtro adaptado

```
clear
close all
clc
N = 10;
            %Comprimento do sinal
            %Comprimento da observacao
NN= 100;
OFF= 2+fix((NN-N-1)*rand); %Offset do sinal
kN = rand(NN, 1);
kS= rand(N,1);
 kRecebido= kN+ [zeros((OFF-1),1); kS; zeros((NN-N-OFF+1),1)];
 kH= flip(kS);
 kDetOutRaw= conv(kH, kRecebido);
                                                                                                                   Recebido
 kDetOut= kDetOutRaw(N:end);
                                                                                                                   Detector
plot(kRecebido);
hold on;
plot(kDetOut, 'r');
grid on;
xlabel(sprintf('Off= %d', OFF))
legend('Recebido', 'Detector')
                                                                     20
                                                                            30
                                                                                        50
                                                                                               60
                                                                                                     70
                                                                                                            80
                                                                                                                  90
                                                                                       Off= 56
```


Aplicações do teorema de WK

Sabe-se que para detectar um sinal no meio do ruído deve ser utilizado um filtro adaptado

```
clear
close all
             Notar como a detecção melhorou
clc
             %Comprimento do sinal
N = 100;
NN= 1000;
             %Comprimento da observação
OFF= 2+fix((NN-N-1)*rand); %Offset do sinal
kN = rand(NN, 1);
kS= rand(N, 1);
kRecebido= kN+ [zeros((OFF-1),1); kS; zeros((NN-N-OFF+1),1)];
 kH= flip(kS);
                                                                                                                     Recebido
kDetOutRaw= conv(kH, kRecebido);
                                                                                                                     Detector
 kDetOut= kDetOutRaw(N:end);
§ - -
plot(kRecebido);
hold on;
plot(kDetOut, 'r');
grid on;
xlabel(sprintf('Off= %d', OFF))
legend('Recebido', 'Detector')
                                                                                           500
                                                                                                       700
                                                                                                             800
                                                                                                                    900
                                                                                         Off= 211
```


Aplicações do teorema de WK

Construção de um WHITE (incorrelacionado) spike train

O problema é encontrar os spikes quando o que se tem é a saída do filtro

Como fazer? Filtro adaptado

Spiking filter Deconvolution

E se o filtro (Sistema) for desconhecido?

Blind Deconvolution

O problema é encontrar os spikes quando o que se tem é a saída do filtro

Estimando a resposta impulsiva posso fazer a deconvolução.

Exemplo de deconvolução

https://www.youtube.com/watch?v=kzNIXZ-8tTs

Terminando:

Apresentação para a próxima aula: (29 Abr)

Descreva como o teorema de WK pode ser usado como auxiliar na busca por petróleo.

Nota: É interessante pesquisar sobre o MIT GAG

M.I.T. GEOPHYSICAL ANALYSIS GROUP (GAG)

RESEARCH PROGRAM OF THE M.I.T. GEOPHYSICAL ANALYSIS GROUP (GAG)	657
Introduction	657
How and Why the GAG developed	659
The Problem	659
Conception of the GAG Project	659
Wadsworth, Bryan, Robinson, and Hurley	660
A Request to M.I.T. for \$13,000	662
The Petroleum Companies Solicited for Funds	662
The GAG Project gets established	
A Trip to California	665
The M.I.T. GAG Reports	666
GAG Project based on Work of Predecessors	000
	669
Results of the M.I.T. GAG Project	
The "Digital Revolution"	669
The GAG Project interests Cecil Green and Eugene	
McDermott	671
The MIT-GSI Student Cooperative Plan	671
Green becomes a Member of Course XII's Corporation	
Visiting Committee	672
A Building, Professorships, A Court and a Stabile,	
and Scholarships	672
Summary	673
Bibliography	674
Appendix I. M.I.T. Geophysical Analysis Group (GAG) Project	0/4
	676
(1952-1957): ContributorsExpenditures	6/6
Appendix II. Staff Members of the M.I.T. Geophysical Analysis	
Group and Degrees received from M.I.T	677
Appendix III. Companies and their Representatives who supported	
The M.I.T. Geophysical Analysis Group Project	678

OBRIGADO