DEVOIR SURVEILLÉ N°5 LE BARÈME

Nom:	Prénom :	Classe:
Nom:	Prenom:	Classe:

EXERCICE N°1

(2 points)

Une maladie atteint une ville de 30 000 habitants. On soumet cette population à un test afin de savoir s'ils sont « positifs » ou « négatifs ». Les résultats sont donnés dans le tableau ci-dessous.

_	Malades	Bien portants	Total
Test positif	851	582	1 433
Test négatif	49	28 518	28 567
Total	900	29 100	30 000

Dans les questions suivantes, arrondir les résultats demandés au centième.

1) Quelle est la fréquence marginale des personnes étant malades ?

$$\frac{900}{30000} = 0.03$$

donc la fréquence marginale des personnes étant malades est égale à 0,03.

2) Déterminer la fréquence conditionnelle des personnes ayant eu un test positif parmi les Malades.

$$\frac{851}{900} \approx 0.95$$

donc la fréquence conditionnelle des personnes ayant eu un test positif parmi les malades est égale à 0,95.

Un commerçant vend deux types d'ampoules : des ampoules de 10 watts et d'autres de 30 watts. On sait que :

- 25 % des ampoules en vente sont rondes ;
- 20 % des ampoules sont de 30 watts ;
- 80 % des ampoules de 10 watts sont oblongues.
- 1) A l'aide des données précédentes, compléter le tableau croisé d'effectifs ci-dessous.

	10 watts	30 watts	Total
Rondes	160 6:800-640	90 7: 250 – 160	$ \begin{array}{c} 250 \\ 1: \frac{25}{100} \times 1000 \end{array} $
Oblongues	$\frac{640}{5:\frac{80}{100}\times800}$	110 8:200-90	750 2:1000-250
Total 1 000	800 4:1000-200	$ \begin{array}{c} 200 \\ 3: \frac{20}{100} \times 1000 \end{array} $	1000

On choisit une ampoule au hasard. On nomme

- R l'événement : « l'ampoule choisie est ronde » et
- T l'événement : « l'ampoule choisie est de 30 watts »
- 2) Sachant que l'ampoule choisie est ronde, calculer la probabilité que l'ampoule soit de 10 watts.

2 pts

$$P_R(\overline{T}) = \frac{160}{250} = \frac{16}{25} = \mathbf{0.64}$$

donc, sachant que l'ampoule choisie est ronde, la probabilité que l'ampoule soit de 10 watts est égale à 0,64.

3) Calculer $P_T(R)$. Interpréter le résultat.

1 pt

$$P_T(R) = \frac{Card(T \cap R)}{Card(T)} = \frac{90}{250} = 0,45$$

donc, parmi les ampoules de 30 watts, la probabilité qu'elle soit ronde est égale à 0,45.

4) Calculer la probabilité que l'ampoule soit de 30 watts et qu'elle soit oblongue.

1 pt

$$P(T \cap \overline{R}) = \frac{110}{1000} = \frac{11}{100} = \mathbf{0.11}$$

5) L'ampoule choisie fait partie de celles qui sont de 10 watts. Quelle est la probabilité qu'elle soit ronde ?

2 pts

$$P_{\overline{T}}(R) = \frac{160}{800} = \frac{1}{5} = \mathbf{0.2}$$

donc parmi les ampoules de 10 watts, la probabilité qu'elle soit ronde est égale à 0,2.

2 pts

Dans une ville, une enquête, réalisée auprès de 300 ménages, portant sur les habitudes des habitants en matière d'écologie, a donné les résultats suivants :

- 70% des ménages pratiquent le tri sélectif.
- Parmi les ménages pratiquant le tri sélectif, 40% consomment des produits bio.
- Parmi les ménages ne pratiquant pas le tri sélectif, 10% consomment des produits bio.
- 1) Recopier et compléter le tableau ci-dessous.

	Tri sélectif	Tri non sélectif	Total
Consomme bio	$\frac{84}{3:\frac{40}{100}\times210}$	$ \begin{array}{c} 9 \\ 5: \frac{10}{100} \times 90 \end{array} $	93 7: 84+9
Ne consomme pas bio	126 4:210-84	81 6:90-9	207 8:126+81
Total	$ \begin{array}{c} 210 \\ 1: \frac{70}{100} \times 300 \end{array} $	90 2:300 –210	300

- On choisit au hasard un ménage parmi les 300 ayant répondu à l'enquête, et on 'intéresse aux évènements:
- T : « Le ménage pratique le tri sélectif »,
- B : « Le ménage consomme des produits bio ».

On donnera les résultats arrondis à 10^{-2} près et pour tout évènement A, on note \overline{A} l'évènement contraire.

2.a) Calculer
$$P(T)$$
 et $P(B)$.
$$P(T) = \frac{210}{300} = 0.7 ; P(B) = \frac{93}{300} = 0.31$$

2.b) Définir par une phrase l'évènement $T \cap B$, puis calculer sa probabilité.

 $T \cap B$ est l'événement « Le ménage pratique le tri sélectif ET consomme bio ».

2 pts
$$P(T \cap B) = \frac{84}{300} = \frac{7}{25} = 0,28$$

Définir par une phrase l'évènement $T \cup B$, puis calculer sa probabilité.

 $T \cup B$ est l'événement « Le ménage pratique le tri sélectif OU consomme bio ».

2 pts
$$P(T \cup B) = \frac{84 + 9 + 126}{300} = \frac{219}{300} = \frac{73}{100} = 0,73$$

Calculer $P_B(T)$. Interpréter le résultat dans le contexte de l'exercice

 (≈ 0.903)

 $P_B(T) = \frac{84}{93} = \frac{28}{31} \approx 0.9$ 2 pts La probabilité que le ménage choisi pratique le tri sélectif sachant qu'il consomme bio, est égale à environ 0,9.