Energie

• In der Mechanik:

- Potentielle Energie
$$W_{pot} = m \cdot g \cdot h$$

- Kinetische Energie
$$W_{kin} = \frac{1}{2} m v^2$$

- Elastische Energie
$$W_{elast} = \frac{1}{2} c \cdot s^2$$

- Energieerhaltungssatz:
 - In einem abgeschlossenen System ist die Summe der Energien konstant

$$\sum_{i} W_{i} = konstant$$

Leistung & Wirkungsgrad

• Definition:

- Leistung ist die pro Zeit umgesetzte Energie

$$P = \frac{dW}{dt}$$
 $[P] = \frac{[W]}{[t]} = \frac{Nm}{s} = W(Watt)$

Wirkungsgrad

- Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
- \circ Für den Wirkungsgrad gilt $\eta = rac{\Delta E_{
 m nutz}}{\Delta E_{
 m zu}}$.
- \circ Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: $\eta=rac{P_{
 m nutz}}{P_{
 m zu}}$

Schwingungen

Periodendauer T

Zeitdauer, nach der sich Schwingung wiederholt

Frequenz f

- Anzahl der Schwingungen pro Zeit
- Kehrwert der Periodendauer

$$f = \frac{1}{T}$$
 $[f] = \frac{1}{[t]} = \frac{1}{s} = Hz$ (Hertz)

Federpendel

Masse *m* und Feder *c*

- Auslenkung der Feder um Strecke s aus der Ruhelage erzeugt Rückstellkraft F_{riick}
- Energieformen: Kinetische und elastische Energie

$$f = \frac{1}{2\pi} \cdot \sqrt{\frac{c}{m}}$$

Fadenpendel

Masse *m* und Faden *L*

- Auslenkung der Masse um Strecke s' (Näherung: $s' \approx s$) aus der Ruhelage erzeugt Rückstellkraft F_{riick}
- Energieformen: Kinetische und potentielle Energie

