МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

УТВЕРЖДАЮ Декан/Директор /Соболев В.В. *13.05.* 2023 г. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Динамические модели экономики 10/046 (2043) наименование - полностью направление (специальность) 01.04.04 «Прикладная математика» код, наименование - полностью направленность (профиль/ программного обеспечения и программа/специализация) «Разработка использованием математических методов решения задач искусственного интеллекта» наименование - полностью уровень образования: магистратура форма обучения: очная очная/очно-заочная/заочная общая трудоемкость дисциплины составляет: ___3____ зачетных единицы

Кафедра Прикладная математика и информационные технологии
полное наименование кафедры, представляющей рабочую программу
Составитель Кетова Каролина Вячеславовна, д.фм.н., профессор
Ф.И.О.(полностью), степень, звание
Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования и рассмотрена на заседании кафедры
Протокол от <i>37. 04</i> 20 <i>43</i> г. № <i>5</i>
Заведующий кафедрой
СОГЛАСОВАНО
Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану 01.04.04 «Прикладная математика» (программа «Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта»)
Протокол заседания учебно-методической комиссии по УГСН 010000 «Математика и механика» от
Председатель учебно-методической комиссии по УГСН 010000 «Математика и механика»
код и наименование – полностьюВ.Г. Суфиянов
В.Г. Суфиянов
Руководитель образовательной программы К.В. Кетова
1105

Аннотация к дисциплине

Название дисциплины	Динамические модели экономики
Направление (специальность) подготовки	01.04.04 «Прикладная математика»
Направленность (профиль/программа/ специализация)	«Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта»
Место дисциплины	Дисциплина по выбору части, формируемой участниками образовательных отношений Блока 1 Дисциплины (модули)
Трудоемкость (з.е. / часы)	3 з.е./ 108 часов
Цель изучения дисциплины	Изучение магистрантами методов построения математических моделей экономических систем, развивающихся во времени, а также приобретение навыков в решении практических задач.
Компетенции, формируемые в результате освоения дисциплины	ПК-4. Способен разрабатывать и исследовать математические модели технических и социально-экономических систем с использованием современных информационных технологий ПК-6. Способен формировать презентации, научно-технические отчеты по результатам исследований, оформлять результаты исследований в виде статей, обзоров и докладов на научно-технических конференциях
Содержание дисциплины (основные разделы и темы)	Задачи продолжения временных характеристик динамических систем. Модель динамического межотраслевого баланса. Динамическая модель Неймана. Равновесие в динамических моделях экономики. Принцип максимума Понтрягина для решения задач оптимального управления. Численное решение задач оптимального управления динамическими процессами Оптимальное потребление и накопление в односекторной модели Рамсея. Математическая модель эндогенного научно-технического прогресса. Аналитическое и численное решение задачи оптимального управления научно-техническим прогрессом.
Форма промежуточной аттестации	Зачет

1. Цели и задачи дисциплины:

Целью преподавания дисциплины является изучение магистрантами методов построения математических моделей экономических систем, развивающихся во времени, а также приобретение навыков в решении практических задач.

Задачи дисциплины:

- овладение средствами анализа экономических систем,
- получение навыков формализации и навыков построения экономических систем,
- изучение методов оптимального управления для решения задач развития динамических экономических систем.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

№	Знания									
п/п З										
1.	методы решения задач оптимального управления динамическими экономическими									
	системами									
2.	математические методы построения оптимальных траекторий движения экономических									
	систем;									
3.	метод динамического программирования									

Умения, приобретаемые в ходе изучения дисциплины

№ п/п У	Умения									
1.	обрабатывать и анализировать статистические данные экономического анализа, ставить и									
	решать конкретные задачи по разработке динамических моделей экономических систем									
2.	ставить и решать конкретные задачи по разработке динамических моделей									
	экономических систем									
3.	применять математический аппарат при решении задач оптимизации экономической									
	динамики									

Навыки, приобретаемые в ходе изучения дисциплины

№ п/п	Навыки									
1.	применения методов математического анализа к решению прикладных задач экономической динамики									
2.	обработки и анализа статистических данных экономических систем									
3.	профессиональной способности прогнозирования, моделирования и создания информационных процессов в конкретной предметной области									

Компетенции, приобретаемые в ходе изучения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ПК-4. Способен	ПК-4.1. Знать: основные принципы			
разрабатывать и	построения математических	1-3	_	_
исследовать	моделей технических и социально-	1-3	_	_
математические модели	экономических систем			
технических и	ПК-4.2. Уметь: разрабатывать	-	1-3	-

сопиалино	MATORILI II ORFODUTMI I DAUIAILIA			
социально-	методы и алгоритмы решения			
экономических систем с	инженерных и экономических задач			
использованием	на основе математического			
современных	моделирования с использованием			
информационных	современных информационных			
технологий	технологий			
	ПК-4.3. Владеть: практическими			
	навыками исследования			
	математических моделей			
	технических и социально-	-	-	1-3
	экономических систем с			
	использованием современных			
	информационных технологий			
ПК-6. Способен	ПК-6.1. Знать: требования и правила			
формировать	оформления научных публикаций,			
презентации, научно-	современные программные средства			
технические отчеты по	оформления презентаций и научно-	1-3	-	-
результатам	технических отчетов по результатам			
исследований,	исследований в соответствии с			
оформлять результаты	действующими стандартами			
исследований в виде	ПК-6.2. Уметь: вести содержательную			
статей, обзоров и	дискуссию в профессиональной			
<u> </u>	области, задавать вопросы и отвечать	-	1-3	-
докладов на научно-	на поставленные вопросы по теме			
технических	научной работы			
конференциях	ПК-6.3. Владеть: навыками проведения			
	научных обзоров, оформления			
	публикаций, рефератов и библиографий	_	_	1-3
	по тематике проводимых исследований;			1 2
	опытом выступлений с докладами на			
	научно-технических конференциях			

3. Место дисциплины в структуре ООП:

Дисциплина относится к части, формируемой участниками образовательных отношений Блока 1 «Дисциплины (модули)» ООП.

Дисциплина изучается на 2 курсе в 3 семестре.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): Принципы построения математических моделей, Методы оптимизации и теория оптимального управления.

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): —.

4. Структура и содержание дисциплины

4.1. Разделы дисциплин и виды занятий

№ п/п	Раздел дисциплины. Форма промежуточной	Всего асов на	еместр	Распределение трудоемкости раздела (в часах) по видам учебной работы		Содержание самостоятельно й работы
	аттестации	h)	контактная	CPC	и рассты

				лек	пр	лаб	КЧА		
1	2	3	4	5	6	7	8	9	10
1	Задачи продолжения временных характеристик динамических систем. Модель динамического межотраслевого баланса.	22	3	ı	4	1	-1	18	Подготовка к практическим занятиям
2	Динамическая модель Неймана. Равновесие в динамических моделях экономики.	22	3	-	4	1	-	18	Подготовка к практическим занятиям
3	Принцип максимума Понтрягина для решения задач оптимального управления. Численное решение задач оптимального управления динамическими процессами.	22	3	-	4	-	-	18	Подготовка к практическим занятиям
4	Оптимальное потребление и накопление в односекторной модели Рамсея. Математическая модель эндогенного научно-технического прогресса	40	3	-	4	16	-	20	Подготовка к практическим занятиям
5	Зачет	2	3	_	-		0,3	1,7	Зачет выставляется по совокупности результатов текущего контроля успеваемости
	Итого:	108	3	-	16	16	0,3	75,7	

4.2. Содержание разделов курса

№ п/п	Раздел дисциплины	Коды компетенции и индикаторов	Знания	Умения	Навыки	Форма контроля
1	Задачи продолжения	ПК-4.1	1-3	1-3	1-3	Работа на
	временных характеристик	ПК-4.2				практических
	динамических систем.	ПК-4.3				занятиях:

	Модель динамического	ПК-6.1				текущий
	межотраслевого баланса.	ПК-6.2				контроль
	Методы продолжения	ПК-6.3				выполнения
	временных рядов на основе					заданий
	МНК. Выделение тренда и					заданни
	периодической					
	составляющей методом					
	главных компонент.					
	Применение нейронных					
	сетей для продолжения					
	экономических временных					
	рядов. Расширение					
	статической модели					
	Леонтьева на динамические					
	экономические системы.					
	Оптимальные траектории.					
2	Динамическая модель	ПК-4.1	1-3	1-3	1-3	Работа на
	Неймана. Равновесие в	ПК-4.2				практических
	динамических моделях	ПК-4.3				занятиях:
	экономики. Матрицы затрат и	ПК-6.1				текущий
	выпуска в модели Неймана.	ПК-6.2				контроль
	Правило нулевого дохода.	ПК-6.3				выполнения
	Понятие стационарных	1110.5				заданий
	траекторий в динамической					задании
3	модели.	ПК-4.1	1-3	1-3	1-3	Работа на
3	Принцип максимума		1-3	1-3	1-3	
	Понтрягина для решения	ПК-4.2				практических
	задач оптимального	ПК-4.3				занятиях:
	управления. Численное	ПК-6.1				текущий
	решение задач оптимального	ПК-6.2				контроль
	управления динамическими	ПК-6.3				выполнения
	процессами. Существование					заданий
	равновесия в модели					
	Неймана. Равновесие в					
	модели межотраслевого					
	баланса. Постановка задачи					
	оптимального управления					
	динамическими системами.					
	Уравнения состояния,					
	критерии и граничные					
	условия. Формулировка					
	принципа максимума					
	Понтрягина. Конечно-					
	разностное представление					
	задачи оптимального					
	управления. Редукция задачи					
	оптимального управления к					
	задаче нелинейного					
	программирования. Методы					
1	решения оптимизационных			1	ĺ	i l
	задач.					

4	Оптимальное потребление и	ПК-4.1	1-3	1-3	1-3	Работа на
	накопление в односекторной	ПК-4.2				практических
	модели Рамсея.	ПК-4.3				занятиях:
	Математическая модель	ПК-6.1				текущий
	эндогенного научно-	ПК-6.2				контроль
	технического прогресса.	ПК-6.3				выполнения
	Аналитическое и численное					заданий,
	решение задачи					защита
	оптимального управления					лабораторной
	научно-техническим					работы
	прогрессом. Постановка					
	задачи в модели Рамсея.					
	Критерий оптимальности,					
	терминальные условия.					
	Анализ стационарных					
	траекторий. Применение					
	принципа максимума для					
	нахождения оптимальной					
	траектории. Постановка					
	задачи оптимального					
	развития эндогенного					
	научно-технического					
	прогресса. Критерии и					
	ограничения. Решение задачи					
	оптимального управления					
	научно-техническим					
	прогрессом на основе					
	принципа максимума					
	Понтрягина. Применение					
	численного метода.					

4.3. Наименование тем практических занятий, их содержание и объем в часах

№	№ раздела дисциплины	Наименование тем практических занятий	Трудоемк ость (час)
1.	1	Задачи продолжения временных характеристик динамических систем. Модель динамического межотраслевого баланса.	4
2.	2	Динамическая модель Неймана. Равновесие в динамических моделях экономики.	4
3.	3	Принцип максимума Понтрягина для решения задач оптимального управления. Численное решение задач оптимального управления динамическими процессами.	4
4.	4	Оптимальное потребление и накопление в односекторной модели Рамсея. Математическая модель эндогенного научнотехнического прогресса. Решение задачи оптимального управления научно-техническим прогрессом.	4
Всег	0	, · · · · · · · · · · · · · · · · · · ·	16

4.4. Наименование тем лабораторных работ, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование тем лабораторных работ	Трудоемкость (час)
1.	3	Оптимальное потребление и накопление в односекторной модели Рамсея.	8
2.	4	Математическая модель эндогенного научно-технического прогресса. Аналитическое и численное решение задачи оптимального управления научно-техническим прогрессом.	8
Всег	0		16

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводится текущий контроль выполнения заданий и защита лабораторной работы.

Примечание: оценочные материалы (типовые варианты заданий) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – зачет.

6. Учебно-методическое и информационное обеспечение дисциплины:

а) Основная литература

- 1. Симак Р.С. Экономико-математические методы и модели в социально-экономических исследованиях [Электронный ресурс]: учебно-методический комплекс / Р. С. Симак, Д. И. Васильев, Г. Г. Левкин. Электрон. текстовые данные. —Саратов: Ай Пи Эр Медиа, 2018. 152 с. Режим доступа: http://www.iprbookshop.ru/76890.html.
- 2. Экономико-математические методы и прикладные модели (2-е издание) [Электронный ресурс]: учебное пособие для вузов / В. В. Федосеев, А. Н. Гармаш, И. В. Орлова, В. А. Половников; под ред. В. В. Федосеев. Электрон. текстовые данные. М.: ЮНИТИ-ДАНА, 2019. 302 с. Режим доступа: http://www.iprbookshop.ru/52597.html.
- 3. Кетова К.В. Математические модели экономической динамики. Ижевск, Изд-во ИжГТУ, 2018. 281 с. (8 экз.)

б) Дополнительная литература

- 1. Кетова К.В. Качественный анализ математических моделей динамических систем [Текст]: учебное пособие для вузов / К. В. Кетова, Е. В. Касаткина; М-во образования и науки РФ, ФГБОУ ВПО "ИжГТУ имени М. Т. Калашникова". Ижевск: Изд-во ИжГТУ, 2013. 114 с.: ил. Библиогр.: с. 101-102. (9 экз)
- 2. Экономико-математические методы и прикладные модели [Электронный ресурс]: учебное пособие / В.В. Федосеев, А.Н. Гармаш, И.В. Орлова, В. А. Половников; под ред. В. В. Федосеев. Электрон. текстовые данные. М.: ЮНИТИ-ДАНА, 2020. 304 с. Режим доступа: http://www.iprbookshop.ru/15500.html.
- 3. Алексеенко В.Б. Математические модели в экономике [Электронный ресурс]: учебное пособие / В. Б. Алексеенко, Ю. С. Коршунов, В. А. Красавина. Электрон.

текстовые данные. — М: Российский университет дружбы народов, 2018.-80 с. — 978-5-209-04814-5. — Режим доступа: http://www.iprbookshop.ru/22160.html.

в) перечень ресурсов информационно-коммуникационной сети Интернет

- 1. Электронно-библиотечная система IPRbooks http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks.
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgi-bin/irbis64r_12/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS.
 - 3. Национальная электронная библиотека http://нэб.рф.
 - 4. Мировая цифровая библиотека http://www.wdl.org/ru/.
- 5. Международный индекс научного цитирования Web of Science http://webofscience.com.
- 6. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp.
 - 7. Справочно-правовая система КонсультантПлюс http://www.consultant.ru/.

г) программное обеспечение

- 1. Microsoft Office Standard 2007.
- 2. Doctor Web Enterprise Suite (комплексная защита) + ЦУ (до 21.02.2021).
- 3. Среда разработки Microsoft Visual Studio Community 2017.

д) методические указания

1. Русяк И.Г., Кетова К.В., Касаткина Е.В., Вавилова Д.Д. Методические указания к оформлению и выполнению рефератов, лабораторных работ, курсовых работ и проектов, практик, выпускных квалификационных работ для студентов направления «Прикладная математика», 2021. — 38 с.— Рег. номер МиЕН 1-1/2021.

7. Материально-техническое обеспечение дисциплины:

1. Практические занятия.

Учебные аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

2. Лабораторные работы.

Для лабораторных занятий используются аудитория №6-309, оснащенная следующим оборудованием: проектор, экран, компьютер/ноутбук

3. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова (ауд. 201 корпус № 1, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.7);

- помещения для самостоятельной работы обучающихся (указать ауд. 309, корпус №6, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.48).

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК).

Лист согласования рабочей программы дисциплины (модуля) на учебный год

Рабочая программа дисциплины (модуля) «Динамические модели экономики»
по направлению подготовки
01.04.04 Прикладная математика»
код и наименование направления подготовки (специальности)
по направленности (профилю/программе/специализации)
«Разработка программного обеспечения и математических методов решения задач
с использованием искусственного интеллекта» наименование направленности (профиля/программы/специализации)

согласована на ведение учебного процесса в учебном году:

Учебный год	« Согласовано»: заведующий кафедрой, ответственной за РПД (подпись и дата)
2023 – 2024	MRUS 27.04.2023
2024 – 2025	

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства по дисциплине

Динамические модели экономики

наименование - полностью

направление (специальность) <u>01.04.04 «Прикладная математика»</u> код, наименование – полностью

направленность (профиль/ программа/специализация) «Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта»

наименование – полностью

уровень образования: магистратура

форма обучения: очная

общая трудоемкость дисциплины составляет: 3 зачетных единицы

1. Оценочные средства

Оценивание формирования компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины.

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций, представлены ниже.

№ п/п	Коды компетенции и индикаторов	Результат обучения (знания, умения и навыки)	Формы текущего и промежуточного контроля
1	ПК-4.1. Знать: основные принципы построения математических моделей технических и социально-экономических систем	31: методы решения задач оптимального управления динамическими экономическими системами 32: математические методы построения оптимальных траекторий движения экономических систем 33: метод динамического программирования	Работа на практических занятиях: текущий контроль выполнения заданий
2	ПК-4.2. Уметь: разрабатывать методы и алгоритмы решения инженерных и экономических задач на основе математического моделирования с использованием современных информационных технологий	У1: обрабатывать и анализировать статистические данные экономического анализа, ставить и решать конкретные задачи по разработке динамических моделей экономических систем У2: ставить и решать конкретные задачи по разработке динамических моделей экономических систем У3: применять математический аппарат при решении задач оптимизации экономической динамики	Работа на практических занятиях: текущий контроль выполнения заданий
3	ПК-4.3. Владеть: практическими навыками исследования математических моделей технических и социально-экономических систем с использованием современных информационных технологий	Н1: применения методов математического анализа к решению прикладных задач экономической динамики Н2: обработки и анализа статистических данных экономических систем Н3: профессиональной способности прогнозирования,	Работа на практических занятиях: текущий контроль выполнения заданий, защита лабораторной работы

		T	T
		моделирования и создания	
		информационных	
		процессов в конкретной	
		предметной области	
4	ПК-6.1. Знать: требования и	31: методы решения задач	Работа на практических
	правила оформления научных	оптимального управления	занятиях: текущий
	публикаций, современные	динамическими	контроль выполнения
	программные средства	экономическими системами	заданий
	оформления презентаций и	32: математические методы	
	научно-технических отчетов по	построения оптимальных	
	результатам исследований в	траекторий движения	
	соответствии с действующими	экономических систем	
	стандартами	33: метод динамического	
		программирования	
5	ПК-6.2. Уметь: вести	У1: обрабатывать и	Работа на практических
	содержательную дискуссию в	анализировать	занятиях: текущий
	профессиональной области,	статистические данные	контроль выполнения
	задавать вопросы и отвечать на	экономического анализа,	заданий
	поставленные вопросы по теме	ставить и решать	
	научной работы	конкретные задачи по	
	, .	разработке динамических	
		моделей экономических	
		систем	
		У2: ставить и решать	
		конкретные задачи по	
		разработке динамических	
		моделей экономических	
		систем	
		У3: применять	
		математический аппарат	
		при решении задач	
		оптимизации	
		экономической динамики	
6	ПК-6.3. Владеть: навыками	Н1: применения методов	Работа на практических
	проведения научных обзоров,	математического анализа к	занятиях: текущий
	оформления публикаций,	решению прикладных задач	контроль выполнения
	рефератов и библиографий по	экономической динамики	заданий, защита
	тематике проводимых	Н2: обработки и анализа	лабораторной работы
	исследований; опытом	статистических данных	
	выступлений с докладами на	экономических систем	
	научно-технических	Н3: профессиональной	
	конференциях	способности	
	1 1	прогнозирования,	
		моделирования и создания	
		информационных	
		процессов в конкретной	
		предметной области	
		1 7	

Типовые задания для оценивания формирования компетенций

Наименование: зачет

Представление в ФОС: перечень вопросов

Перечень вопросов для проведения зачета:

- 1. Выделение тренда при анализе временных рядов методом наименьших квадратов.
- 2. Анализ временных рядов с применением метода главных компонент.
- 3. Применение нейронных сетей для продолжения временных рядов.
- 4. Формирование данных при анализе временных рядов.
- 5. Постановка задачи оптимального управления для динамических экономических моделей. Принцип максимума Понтрягина.
- 6. Математическая модель оптимального потребления и накопления (односекторная модель).
- 7. Качественный анализ траекторий уравнения, описывающего процессы производства и потребления (односекторная модель).
- 8. Графическая интерпретация решения задачи максимального потребления в односекторной модели экономики.
- 9. Математическая модель оптимального потребления и накопления (двухсекторная модель).
- 10. Анализ стационарных траекторий процесса производства и потребления в двухсекторной модели.
- 11. Математическая модель развития эндогенного научно-технического прогресса.
- 12. Применение принципа максимума Понтрягина для решения задачи оптимального управления при эндогенном научно-техническом прогрессе.
- 13. Графическая интерпретация решения задачи оптимального управления при эндогенном научнотехническом прогрессе.
- 14. Численный метод решения задач оптимального управления (редукция к задаче нелинейного программирования).

Критерии оценки: приведены в разделе 2.

Наименование: тест.

Представление в ФОС: набор вопросов для проведения тестирования.

Варианты заданий:

Компетенция

ПК-4. Способен разрабатывать и исследовать математические модели технических и социальноэкономических систем с использованием современных информационных технологий

Компетенция

ПК-6 Способен формировать презентации, научно-технические отчеты по результатам исследований, оформлять результаты исследований в виде статей, обзоров и докладов на научно-технических конференциях

Оценочные материалы

Компетенция ПК-4.

Проведение работы заключается в ответе на вопросы теста.

- 1. Выберите метод, относящийся к методам прогнозирования экономических процессов и явлений:
 - А) метод интерполяции;
 - В) метод сегментации;
 - С) метод экстраполяции;
 - D) метод позиционирования.

- 2. В модели Солоу объем производства определяется:
- А) инвестициями и потреблением,
- В) численностью населения и потреблением,
- С) инвестициями.
- 3. Y объем выпущенной продукции в стоимостном выражении, K объем основных фондов в стоимостном выражении, L числовое выражение объема трудовых ресурсов. Двухфакторная функция Кобба-Дугласа имеет вид:

A)
$$Y = AK^{\alpha}L^{\beta}$$

B)
$$Y = A(K^{\alpha} + L^{\beta})$$

C)
$$Y = A(K \cdot L)^{\alpha + \beta}$$

- 4. Идентификация экономико-математической модели заключается в:
- А) в нахождении прогнозных значений на основе экономико-математической модели;
- В) в статистической оценке неизвестных параметров экономико-математической модели;
- С) в проверке статистического ряда экономических показателей на наличие тренда.
- 5. Пусть вектор x(t) вектор фазовых переменных, $\psi(t)$ вектор двойственных переменных, $H(x(t),\psi(t),t)$ функция Гамильтона. Условия трансверсальности в Теореме Принцип максимума Понтрягина имеют вид:

A)
$$\dot{x}_k = -\frac{\partial H}{\partial \psi_k}$$
, $\dot{\psi}_k = \frac{\partial H}{\partial x_k}$, $k = 1,...n$.

B)
$$\dot{x}_k = \frac{\partial H}{\partial \psi_k}$$
, $\dot{\psi}_k = -\frac{\partial H}{\partial x_k}$, $k = 1,...n$.

C)
$$\dot{x}_k = \frac{\partial H}{\partial x_k}$$
, $\dot{\psi}_k = -\frac{\partial H}{\partial \psi_k}$, $k = 1,...n$.

Ключи теста:

Вопрос	1	2	3	4	5
Ответ	С	A	A	В	В

Компетенция ПК-6.

Проведение работы заключается в ответе на вопросы теста.

- 1. Составная часть презентации, содержащая различные объекты, называется:
- А) слайд
- В) лист
- С) кадр
- D) рисунок

- 2. Что такое Power Point:
- А) системная программа, управляющая ресурсами компьютера
- В) прикладная программа Microsoft Office, предназначенная для создания презентаций
- С) прикладная программа для обработки кодовых таблиц
- 3. Главная задача научного стиля речи:
- А) сообщение научных сведений, научное объяснение фактов
- В) непосредственное повседневное общение
- С) изображение и воздействие на читателя
- 4. Важнейшее качество научного термина:
- А) многозначность
- В) многозначимость
- С) однозначность
- 5. В каком значении употреблены слова в словосочетаниях: модель динамического межотраслевого баланса, динамическая модель Неймана, равновесие в динамических моделях экономики:
- А) общеупотребительном
- В) узкоспециальном
- С) широкоспециальном

Ключи теста:

Вопрос	1	2	3	4	5
Ответ	A	В	A	В	В

Критерии оценки: приведены в разделе 2.

Наименование: защита лабораторных работ.

Представление в ФОС: задания и требования к выполнению представлены в методических указаниях по дисциплине.

Варианты заданий: задания и требования к выполнению представлены в методических указаниях по дисциплине.

Пример задания:

Пусть f — некоторая экономическая характеристика. Изменение f во времени задается последовательностью точек $f_i = f(t_i)$, где $t_i = i \cdot \Delta t$. Известно поведение характеристики на отрезке времени T . Требуется определить прогнозное значение этой характеристики для моментов времени t > T следующими методами:

- 1) методом наименьших квадратов для полинома степени n = 1 и n = 2;
- 2) методом главных компонент с произвольным лагом τ ;
- 3) Методом нейронных сетей с произвольным лагом τ .

Критерии оценки: приведены в разделе 2.

Наименование: защита практических работ.

Представление в ФОС: задания и требования к выполнению представлены в методических указаниях по дисциплине.

Варианты заданий: задания и требования к выполнению представлены в методических указаниях по дисциплине.

Примеры заданий:

- 1. На основе отчетного межотраслевого баланса рассчитайте коэффициенты:
- прямых затрат,
- прямой трудоемкости единицы продукции,
- прямой фондоемкости единицы продукции.
- 2. По заданному на плановый период объему производства конечной продукции Y_{nn} составить математические модели для определения в планируемом периоде:
- объемов производства валовой продукции,
- коэффициентов полной трудоемкости единицы продукции,
- коэффициентов полной фондоемкости единицы продукции.
- 3. Рассчитайте для отраслей планируемые:
- объемы производства валовой продукции,
- коэффициенты полной трудоемкости единицы продукции,
- коэффициенты полной фондоемкости единица продукции.

Критерии оценки: приведены в разделе 2.

2. Критерии и шкалы оценивания

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов		
Практическая работа	Задания выполнены более чем наполовину. Присутствуют серьёзные ошибки. Продемонстрирован удовлетворительный уровень владения материалом. Проявлены низкие способности применять знания и умения к выполнению конкретных заданий. На защите практической работы даны правильные ответы не менее чем на 50% заданных вопросов		
Лабораторная работа	Лабораторная работа выполнена в полном объеме. Представлен отчет, содержащий необходимые расчеты, выводы, оформленный в соответствии с установленными требованиями. Продемонстрирован удовлетворительный уровень владения материалом при защите лабораторной работы, даны правильные ответы не менее чем на 50% заданных вопросов.		

Промежуточная аттестация по дисциплине проводится в форме зачета.

Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Билет к зачету, экзамену включает 2 теоретических вопроса и 1 практическое задание.

Промежуточная аттестация проводится в письменной форме. Время на подготовку: 60 минут. При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки:

Оценка	Критерии оценки		
	Обучающийся демонстрирует знание основного учебно-программного материала в объеме, необходимом для дальнейшей учебы, умеет		
«зачтено»	применять его при выполнении конкретных заданий, предусмотренных программой дисциплины		
«не зачтено»	Обучающийся демонстрирует значительные пробелы в знаниях основного учебно-программного материала, допустил принципиальные ошибки в выполнении предусмотренных программой заданий и не способен продолжить обучение		