Clase 17

IIC 2223

Prof. Cristian Riveros

Outline

Elim. de producciones inútiles (bis)

Forma normal de Chomsky

Outline

Elim. de producciones inútiles (bis)

Forma normal de Chomsky

Producciones en vacío y unitarias

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición

- Decimos que una producción de la forma: $X \rightarrow \epsilon$ es en vacío.
- Decimos que una producción de la forma: X → Y es unitaria.

Deseamos eliminar este tipo de producciones!

¿por qué?

Producciones en vacío y unitarias

Ejemplo

- ¿cuáles producciones son en vacío?
- ¿cuáles producciones son unitarias?

¿cómo eliminamos las producciones en vacío y unitarias?

¿és posible eliminar las producciones en vacío, siempre?

¿és posile eliminar las producciones en vacío?

S
$$\rightarrow$$
 a S b $\mid \epsilon$

Conclusión

Si $\epsilon \in \mathcal{L}(\mathcal{G})$, entonces

NO se pueden borrar las producciones en vacío sin alterar el lenguaje $\mathcal{G}.$

Desde ahora supondremos que $\epsilon \notin \mathcal{L}(\mathcal{G})$

¿es razonable?

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Observación

Suponga las reglas $X \to Y$ y $Y \to \gamma$ en P.

■ Si
$$\mathcal{G}' = (V, \Sigma, P \cup \{X \to \gamma\}, S)$$
 $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$?

• Si
$$\mathcal{G}'' = (V, \Sigma, P \cup \{X \to \gamma\} - \{X \to Y\}, S)$$
 $\mathcal{L}(\mathcal{G}'') = \mathcal{L}(\mathcal{G})$?

Suponga las reglas $X \to \epsilon$ y $Z \to \alpha X \beta$ en P.

• Si
$$\mathcal{G}' = (V, \Sigma, P \cup \{Z \to \alpha\beta\}, S)$$
 $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$?

• Si
$$\mathcal{G}'' = (V, \Sigma, P \cup \{Z \to \alpha\beta\} - \{X \to \epsilon\}, S)$$
 $\mathcal{L}(\mathcal{G}'') = \mathcal{L}(\mathcal{G})$?

Sea
$$\mathcal{G} = (V, \Sigma, P, S)$$
 una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Clausura de producciones unitarias y en vacío

Sea P^* el menor conjunto de producciones que contiene a P y cerrado bajo las siguientes reglas:

- 1. Si $X \to Y \in P^*$ y $Y \to \gamma \in P^*$, entonces $X \to \gamma \in P^*$.
- 2. Si $X \to \epsilon \in P^*$ y $Z \to \alpha X \beta \in P^*$, entonces $Z \to \alpha \beta \in P^*$.

Defina $\mathcal{G}^* = (V, \Sigma, P^*, S)$. Entonces:

- P^* es finito. (¿por qué?)
- $\mathcal{L}(\mathcal{G}^*) = \mathcal{L}(\mathcal{G}).$ (¿por qué?)

Para cualquier palabra $w \in \mathcal{L}(\mathcal{G}^*)$, sea \mathcal{T} un árbol de derivación de w en \mathcal{G}^* de tamaño mínimo.

Propiedad 1

El árbol de derivación $\mathcal T$ NO usa una producción unitaria.

Demostración (por contradicción)

Suponemos que ${\mathcal T}$ usa una producción unitaria:

Para cualquier palabra $w \in \mathcal{L}(\mathcal{G}^*)$, sea \mathcal{T} un árbol de derivación de w en \mathcal{G}^* de tamaño mínimo.

Propiedad 2

El árbol de derivación \mathcal{T} NO usa una producción **en vacío**.

Por la **Propiedad 1** y **Propiedad 2** tenemos que:

Para todo $w \in \mathcal{L}(\mathcal{G}^*)$, existe una derivación de w en \mathcal{G} que NO usa producciones en vacío ni producciones unitarias.

Podemos eliminar las producciones en vacío y unitarias de \mathcal{G}^* !

Teorema

Para toda CFG \mathcal{G} tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$, sea:

- \mathcal{G}^* la clausura de producciones unitarias y en vacío.
- $\hat{\mathcal{G}}$ el resultado de remover toda producción unitaria o en vacío de \mathcal{G}^* .

Entonces $\mathcal{L}(\hat{\mathcal{G}}) = \mathcal{L}(\mathcal{G})$ y $\hat{\mathcal{G}}$ no tiene producciones unitarias o en vacío.

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Para eliminar las producciones en vacío o unitarias de G:

- construimos \mathcal{G}^* haciendo la clausura de prod. unitarias y en vacío,
- construimos $\hat{\mathcal{G}}$ removiendo todas las prod. unitarias o en vacío de \mathcal{G}^* .

Por el resultado anterior sabemos que $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\hat{\mathcal{G}})$.

Importante: es posible que $\hat{\mathcal{G}}$ contiene símbolos inútiles.

Outline

Elim. de producciones inútiles (bis)

Forma normal de Chomsky

¿qué es una forma normal?

Ejemplo: polinomios

Un polinomio cualquiera:

$$p(x) := (x^3 \cdot ((x-2) + 3x^2) - (3x^5 - 2x^2)) \cdot 2x + 7$$

Un polinomio cualquiera

cuando planeamos hacer un algoritmo sobre polinomios:

$$p(x) := 2x^5 + 4x^3 - 4x + 7$$

Formas normales son útiles en computación para **estudiar** un objeto y **diseñar** algoritmos.

Definición

Una gramática $\mathcal G$ esta en forma normal de Chomsky (CNF) si todas sus reglas son de la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

¿cuáles gramáticas están en CNF?

S
$$\rightarrow$$
 a S b | ϵ

A \rightarrow A B | a | ϵ
B \rightarrow B A | b | ϵ

S \rightarrow AB | AC | SS
C \rightarrow SB
A \rightarrow a
B \rightarrow b

Definición

Una gramática \mathcal{G} esta en forma normal de Chomsky (CNF) si todas sus reglas son de la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

Si \mathcal{G} esta en CNF:

- \blacksquare ¿puede aceptar la palabra ϵ ?
- ¿puede tener reglas unitarias?
- ¿puede tener reglas en vacío?

Toda gramática se puede convertir en CNF

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

- Primero, suponga que $\mathcal G$ no contiene reglas en vacío o unitarias.
- Por lo tanto, todas las reglas en $\mathcal G$ son de la forma:
 - $X \to \gamma$ para $|\gamma| \ge 2$
 - X → a

 \dot{c} cómo transformamos \mathcal{G} en forma normal de Chomsky?

Hacia la forma normal de Chomsky

Sea una gramática ${\cal G}$ donde las reglas son de la forma:

- $X \to \gamma$ para $|\gamma| \ge 2$
- $X \rightarrow a$

Paso 1: Convertir todas las reglas a la forma:

- $X \to Y_1 Y_2 \dots Y_k$ para $k \ge 2$
- $X \rightarrow a$

Paso 2: Convertir todas las reglas a la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

Hacia la forma normal de Chomsky (Paso 1)

Paso 1

Convertir todas las reglas a la forma:

- $X \to Y_1 Y_2 \dots Y_k$ para $k \ge 2$
- $X \rightarrow a$

Solución:

- Para cada $a \in \Sigma$, agregar un nueva variable X_a y una regla $X_a \rightarrow a$.
- Reemplazar todas las ocurrencias antiguas de a por X_a .

Hacia la forma normal de Chomsky (Paso 1)

Hacia la forma normal de Chomsky (Paso 1)

Paso 1

Convertir todas las reglas a la forma $X \to Y_1 Y_2 \dots Y_k$ para $k \ge 2$ o $X \to a$.

Solución:

- Para cada $a \in \Sigma$, agregar un nueva variable X_a y una regla $X_a \rightarrow a$.
- Reemplazar todas las ocurrencias antiguas de a por X_a .

Correctitud

Si \mathcal{G}' es la gramática resultante, entonces se cumple que $\mathcal{L}(\mathcal{G}')$ = $\mathcal{L}(\mathcal{G})$.

Hacia la forma normal de Chomsky (Paso 2)

Paso 2

Convertir todas las reglas a la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

Solución:

Para cada regla $p: X \to Y_1 Y_2 \dots Y_k$ con $k \ge 3$:

- Agregamos una nueva variable Z.
- Reemplazamos la regla *p* por dos reglas:

$$X \to Y_1 Z$$
 y $Z \to Y_2 \dots Y_k$

Repetimos este paso hasta llegar a la forma normal de Chomsky.

Hacia la forma normal de Chomsky (Paso 2)

```
Ejemplo del Paso 2 (continuación)
El resultado del Paso 1 es:
                            S \rightarrow ASB \mid AB
                            S \rightarrow AZ \mid AB
                            Z \quad \to \quad S \; B
```

Hacia la forma normal de Chomsky (Paso 2)

Paso 2

Convertir todas las reglas a la forma: $X \rightarrow YZ$ o $X \rightarrow a$.

Solución:

Para cada regla $p: X \to Y_1 Y_2 \dots Y_k$ con $k \ge 3$:

- Agregamos una nueva variable Z.
- Reemplazamos la regla *p* por dos reglas:

$$X \to Y_1 Z$$
 y $Z \to Y_2 \dots Y_k$

Repetimos este paso hasta llegar a la forma normal de Chomsky.

Correctitud

Si \mathcal{G}'' es la gramática resultante, entonces se cumple que $\mathcal{L}(\mathcal{G}'')$ = $\mathcal{L}(\mathcal{G}')$.

Toda gramática se puede convertir en CNF

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Teorema

Existe una grámatica \mathcal{G}' en forma normal de Chomsky tal que:

$$\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$$

Si \mathcal{G}' no tiene reglas unitarias ni en vacío, entonces \mathcal{G}' es de **tamaño polinomial** con respecto a \mathcal{G} .