Game Theory

Contract with Asymmetric Information

Instructor: Xiaokuai Shao

shaoxiaokuai@bfsu.edu.cn

Outline

- Adverse selection (逆向选择); Screening (甄别)
- Price discrimination (价格歧视/区别定价)
- Non-linear Pricing (非线性定价)
 - Non-linear two-part tariffs ("双"两部收费)
- Incentive compatibility (激励相容)
- Downward-distortion ("低端" 扭曲) & "Zero at top" (对最高 收入者实施 0 税率)
- Kuhn-Tucker Condition (库恩-塔克条件)
 - Constrained optimization (带有 (不等式) 约束的最优化)
 - Lagrangian (拉格朗日)
 - Complementary Slackness (互补-松弛)
- Spence-Mirrlees Single-Crossing (单交叉性)

Monopoly Pricing without Discrimination

Recall the monopoly's problem: The market demand is Q(p) where Q'(p) < 0. A monopoly firm with constant marginal cost c, chooses a linear price p to maximize profit:

$$p^{m} = \arg \max_{p} (p - c) Q(p)$$

$$Q(p^{m}) + (p^{m} - c) Q'(p^{m}) = 0 \Rightarrow p^{m} - c = -\frac{Q(p^{m})}{Q'(p^{m})} > 0.$$

If the monopoly firm is operated by a benevolent planner who offers a linear price p^{FB} to maximize total surplus, then the **first-best** outcome is given by

$$p^{FB} = c < p^m$$
.

Price Discrimination

The first-best outcome can be achieved, if, the monopoly firm is able to charge different prices to different consumers, i.e., **Perfect Price Discrimination**.

- Two consumers, type θ_L and θ_H , and $\theta_L < \theta_H$.
- Consumer i buys q_i units and pays a lump-sum transfer T_i to the seller.
- Utility: $\theta_i v(q_i) T_i$. Outside option is zero.
 - Assume: $\mathbf{v}'(\mathbf{q}) > 0$ and $\mathbf{v}''(\mathbf{q}) < 0$
- Firm's profit (if both types are served): $T_H cq_H + T_L cq_L$.

First-Best Solutions

Suppose consumer types are perfectly observable: the firm knows who is type H and who is type L, and offer (T_H, q_H) to H and (T_L, q_L) to L.

- From the consumer side, accepting the offer if $\theta_i v(q_i) T_i \ge 0$.
- For **each** consumer, the firm solves

$$\max_{T_i,q_i} T_i - cq_i$$

s.t. $\theta_i v(q_i) - T_i \ge 0$.

The participation constraint should be binding (i.e., "=")

- If ">", the firm can raise T_i to earn more.
- If "<", the firm gets nothing.

Sometimes the participation constraint is called **individual rationality**, i.e., IR.

• IR is binding: $T_i = \theta_i v(q_i)$.

First-Best Solutions

Plug the IR constraint into firm's objective:

$$\max_{q_i} \theta_i v(q_i) - cq_i$$

F.O.C. $\Rightarrow \theta_i v'(q_i^{FB}) = c, i = H, L.$

Because $\theta_L < \theta_H$ and v'' < 0:

$$\begin{split} \theta_L \nu'(q_L^{FB}) &= c = \theta_H \nu'(q_H^{FB}) \Leftrightarrow \nu'(q_L^{FB}) > \nu'(q_H^{FB}) \\ &\Leftrightarrow q_L^{FB} < q_H^{FB} \end{split}$$

Plug q_i^{FB} into the IR constraint, and by V > 0:

$$T_H^{FB} = \theta_H v(q_H^{FB}) > \theta_L v(q_L^{FB}) = T_L^{FB}.$$

Features of Perfect Discrimination

- Different prices T_i for different consumers θ_i .
- Each consumer gets zero surplus.
- Marginal utility is equal to the marginal cost.
- A higher profit (compared with linear pricing), and a higher output.
- Total surplus is maximized.
 - The benevolent planner solves $\max_{T_H, T_L, q_H, q_L} \theta_H v(q_H) T_H + \theta_L v(q_L) T_L + T_H cq_H + T_L cq_L$
 - FOC implies $\theta_i V(q_i) = c$, i = H, L.
 - Therefore, perfect discrimination = socially optimum ¹

However, such desirable outcome requires that the firm is able to distinguish θ_i .

¹That's why we put "FB" (first-best) as superscripts: ▶ ⟨♂ ▶ ⟨ ≧ ▶ ⟨ ≧ ▶ ⟨ ≧ ▶ ⟨ ≧ ▶ ⟨

Second-Best: Optimal Non-linear Pricing

- Now assume that buyers' types are θ_H and θ_L; but the seller does not know who is θ_H and who is θ_L.
- The seller offers two menus: (T_H, q_H) and (T_L, q_L). Each buyer chooses her/his menu voluntarily.
 The firm solves

$$\max_{T_i,q_i}(T_L-cq_L)+(T_H-cq_H).$$

Each buyer chooses (T(q), q) to maximize utility:

$$q_i = \arg\max_{q} \theta_i v(q_i) - T(q_i)$$

All buyers participate:

$$\theta_i v(q_i) - T(q_i) \geq 0.$$

Revelation Principle: 激励相容 (IC) 与参与约束 (IR)

Among the four conditions:

$$\begin{array}{lll} \theta_H v(q_H) - T_H \geq \theta_H v(q_L) - T_L & \text{H will not imitate L} & IC_H \\ \theta_L v(q_L) - T_L \geq \theta_L v(q_H) - T_H & \text{L will not imitate H} & IC_L \\ \theta_H v(q_H) - T_H \geq 0 & \text{H participates} & IR_H \\ \theta_L v(q_L) - T_L \geq 0 & \text{L participates} & IR_L \end{array}$$

- The first two are incentive compatible constraints: each type chooses the contract that is not intended to be designed for other types;
- The last two are participation constraints (IR: Individual Rationality).

How to use these constraints to solve the seller's problem?

Find the Binding "=" Constraints

$$\begin{array}{lll} \theta_H v(q_H) - T_H \geq \theta_H v(q_L) - T_L & \text{H will not imitate L} & IC_H \\ \theta_L v(q_L) - T_L \geq \theta_L v(q_H) - T_H & \text{L will not imitate H} & IC_L \\ \theta_H v(q_H) - T_H \geq 0 & \text{H participates} & IR_H \\ \theta_L v(q_L) - T_L \geq 0 & \text{L participates} & IR_L \end{array}$$

- $IR_L + IC_H \Rightarrow IR_H$ (IR_H is not binding): $\underbrace{\theta_H v(q_H) - T_H \ge \theta_H v(q_L) - T_L}_{IC_H} > \underbrace{\theta_L v(q_L) - T_L}_{IR_L} \ge 0.$
- Eliminate one of the two ICs.
 We claim that IC_H is binding and IC_L is redundant. And verify the claim after the solution is obtained.

Binding: $IC_H \& IR_L$; Redundant: $IR_H \& IC_L$

The remaining constraints are IC_H and IR_L :

$$\begin{array}{ll} \theta_H \textit{v}(q_H) - \textit{T}_H \geq \theta_H \textit{v}(q_L) - \textit{T}_L & \text{H will not imitate L} & \textit{IC}_H \\ \theta_L \textit{v}(q_L) - \textit{T}_L \geq 0 & \text{L participates} & \textit{IR}_L \end{array}$$

- IC_H will bind at equilibrium; otherwise, raising T_H is profitable;
- IR_L should bind at equilibrium; otherwise, raising T_L until it binds.

That is

$$\begin{array}{ll} \theta_H \textit{v}(q_H) - \textit{T}_H = \theta_H \textit{v}(q_L) - \textit{T}_L & \text{H will not imitate L} & \textit{IC}_H \\ \theta_L \textit{v}(q_L) - \textit{T}_L = 0 & \text{L participates} & \textit{IR}_L \end{array}$$

Solve the Relaxed Problem

For the binding constraints:

$$T_{L} = \theta_{L} v(q_{L}) \qquad IR_{L}$$

$$T_{H} = \theta_{H} v(q_{H}) - \theta_{H} v(q_{L}) + \theta_{L} v(q_{L}) \qquad IC_{H}$$

The seller's problem becomes

$$\begin{aligned} & \max_{T_i, q_i} (T_L - cq_L) + (T_H - cq_H) \\ \Rightarrow & \max_{q_L, q_H} \theta_L v(q_L) - cq_L + \theta_H v(q_H) - \theta_H v(q_L) + \theta_L v(q_L) - cq_H \end{aligned}$$

Optimal Second-Best Solution: Downward-Distortion

The seller's objective

$$\max_{q_L,q_H} \theta_L v(q_L) - cq_L + \theta_H v(q_H) - \theta_H v(q_L) + \theta_L v(q_L) - cq_H$$

• F.O.C. w.r.p. *q_H*:

$$\theta_H V(q_H^{SB}) = c \Leftrightarrow q_H^{SB} = q_H^{FB}$$

 \Rightarrow No distortion at the top.

• F.O.C. w.r.p. *q*_L:

$$\begin{split} &\theta_L \mathcal{V}(q_L^{SB}) - c - (\theta_H - \theta_L) \mathcal{V}(q_L^{SB}) = 0 \\ \Rightarrow &\theta_L \mathcal{V}(q_L^{SB}) = c + (\theta_H - \theta_L) \mathcal{V}(q_L) > c \\ \Rightarrow &\theta_L \mathcal{V}(q_L^{SB}) > c = \theta_L \mathcal{V}(q_L^{FB}) \Leftrightarrow q_L^{SB} < q_L^{FB} \end{split}$$

⇒ Downward distortion.

Evaluated at the solution, IR_L and IC_H are binding. For the remaining two constraints omitted, it can be verified that IC_L and IR_H are redundant:

$$\begin{array}{ll} \theta_H v(q_H) - T_H = \theta_H v(q_L) - T_L & \text{binding} & IC_H \\ \theta_L v(q_L) - T_L \geq \theta_L v(q_H) - T_H & \text{verify} & IC_L \\ \theta_H v(q_H) - T_H > 0 & \text{implied by } IR_L \text{ and } IC_H & IR_H \\ \theta_L v(q_L) - T_L = 0 & \text{binding} & IR_L \end{array}$$

 IC_L is redundant because evaluated at $T_L^{SB} = \theta_L v(q_L^{SB})$, the LHS of IC_L is zero. Using $T_H^{SB} = \theta_H v(q_H^{SB}) - \theta_H v(q_L^{SB}) + \theta_L v(q_L^{SB})$, the RHS of IC_L becomes $(\theta_L - \theta_H) v(q_H^{SB}) + (\theta_H - \theta_L) v(q_L^{SB}) = (\theta_H - \theta_L) \left[v(q_L^{SB}) - v(q_H^{SB}) \right]$, which is negative by $q_L^{SB} < q_H^{SB}$.

Example: Downward-Distortion

"量大从优"

Example: Downward-Distortion

二等座: "我一直怀疑, 设计车座的 人是不是都以为我们长这样子!!"

商务座

```
2021-06-05 (周六) G143% 北京南京 (07:50开) - 上海虹桥运 (13:12到)
```

假设腿一样长,但二等座设计的越舒服, θ_H 越有可能"伪装成" θ_L ,从而违反 IC_H .

Counter-Example: Downward-Distortion?

Kuhn-Tucker Condition* (库恩-塔克条件)

Constrained Optimization with **Inequality Constraints**

- A general representation of "Lagrangian"
- The objective $\max_{x} f(x)$ (f(x) is concave)
- Constraints: $g^i(x) \le 0$, i = 1, ..., m, $x \ge 0$ (every $g^i(x)$ is convex)
- The Lagrangian: $\mathcal{L}(x,\lambda) = f(x) \lambda g(x)$ where $\lambda \geq 0$.
- The optimal x* satisfy

 - **2** $g^{i}(x^{*}) \leq 0$ and $\lambda^{*} \geq 0$; $\lambda_{i}^{*}g^{i}(x^{*}) = 0$.
- "Complementary Slackness" (互补-松弛)
 - When $\lambda_i^* > 0$, then we say the constraint $g^i(x)$ is "binding"—that is, $g^i(x) = 0$.
 - Similarly, if $g^i(x) < 0$, then $\lambda_i^* = 0$.

Kuhn-Tucker: Decide Which Constraint is Binding

- The seller's objective: $T_H + T_L cq_H c_L$. Subjected to
 - IC_H : $\theta_H v(q_H) T_H \ge \theta_H v(q_L) T_L$, multiplier $\lambda_H \ge 0$
 - IC_L : $\theta_L v(q_L) T_L \ge \theta_L v(q_H) T_H$, multiplier $\lambda_L \ge 0$
 - IR_H : $\theta_H v(q_H) T_H \ge 0$, μ_H , multiplier $\mu_H \ge 0$
 - IR_L : $\theta_L v(q_L) T_L \ge 0$, μ_L , multiplier $\mu_L \ge 0$
- The Lagrangian is

$$\mathcal{L} = T_H + T_L - cq_H - cq_L$$

$$+ \lambda_H [\theta_H v(q_H) - T_H - \theta_H v(q_L) + T_L]$$

$$+ \lambda_L [\theta_L v(q_L) - T_L - \theta_L v(q_H) + T_H]$$

$$+ \mu_H [\theta_H v(q_H) - T_H]$$

$$+ \mu_L [\theta_L v(q_L) - T_L]$$

We have shown that IR_H is not binding, i.e., $\theta_H v(a_H) - T_H > 0 \Rightarrow \mu_H = 0$.

The Lagrangian becomes $(\mu_H = 0)$

$$\mathcal{L} = T_H + T_L - cq_H - cq_L$$

$$+ \lambda_H [\theta_H v(q_H) - T_H - \theta_H v(q_L) + T_L]$$

$$+ \lambda_L [\theta_L v(q_L) - T_L - \theta_L v(q_H) + T_H]$$

$$+ \mu_L [\theta_L v(q_L) - T_L]$$

•
$$\frac{\partial \mathcal{L}}{\partial q_H} = 0 \Rightarrow$$

- $c + (\lambda_H \theta_H - \lambda_L \theta_L) \, \sqrt{(q_H)} = 0$

•
$$\frac{\partial \mathcal{L}}{\partial q_L} = 0 \Rightarrow$$

- $c + (-\lambda_H \theta_H + \lambda_L \theta_L + \mu_L \theta_L) \, \forall (q_L) = 0$

Check "which IC is binding"

- $-c + (\lambda_H \theta_H \lambda_L \theta_L) \sqrt{(q_H)} = 0$
- $-c + (-\lambda_H \theta_H + \lambda_L \theta_L + \mu_L \theta_L) \checkmark (q_L) = 0$
 - If both IC_H and IC_L are not binding $\Rightarrow \lambda_H = \lambda_L = 0$, the first equation implies -c = 0. A contradiction.
 - If both IC_H and IC_L are binding:

$$IC_H \xrightarrow{``=''} T_H - T_L = \theta_H(v(q_H) - v(q_L));$$

 $IC_L \xrightarrow{``=''} T_H - T_L = \theta_L(v(q_H) - v(q_L)).$ A contradiction.

- If IC_L is binding but IC_H is not $\Rightarrow \lambda_L > 0, \lambda_H = 0$, the first equation implies that $-c \lambda_L \theta_L \vee (q_H) = 0$. A contradiction.
- The remaining possibility is $\lambda_H > 0$ and $\lambda_L = 0$, i.e., the first equation becomes $c = \lambda_H \theta_H V(q_H)$; the second equation becomes $\mu_L \theta_L V(q_L) = c + \lambda_H \theta_H V(q_L)$.

Check whether " IR_L is biding" $\Rightarrow \mu_L > 0$

• If $\mu_L = 0$, then $\underbrace{\mu_L \theta_L \sqrt{(q_L)}}_{=0} = \underbrace{c + \lambda_H \theta_H \sqrt{(q_L)}}_{>0} \Rightarrow$ contradiction.

Therefore, $\lambda_H > 0$, $\lambda_L = 0$, $\mu_H = 0$ and $\mu_L > 0$. After eliminating IC_L and IR_H , the Lagrangian becomes

$$\mathcal{L} = T_H + T_L - cq_H - cq_L$$

$$+ \lambda_H [\theta_H v(q_H) - T_H - \theta_H v(q_L) + T_L]$$

$$+ \mu_L [\theta_L v(q_L) - T_L]$$

Because $\lambda_H > 0$ and $\mu_L > 0$, the constrained optimization can be transformed into an un-constrained optimization: when solving

$$\max_{q_H,q_L} T_H + T_L - cq_H - cq_L$$

 T_H and T_L are replaced by using the two binding constraints, i.e.,

- $\mu_L > 0 \Rightarrow T_L = \theta_L v(q_L)$
- $\lambda_H > 0 \Rightarrow T_H = \theta_H v(q_H) \theta_H v(q_L) + \theta_L v(q_L)$

More than Two Types*

Now there are n agents, whose valuations are ranked by

$$\theta_1 < \ldots < \theta_n$$
.

Type i = 1, ..., n occurs with prob β_i and $\sum_{i=1}^n \beta_i = 1$. The seller offers a non-linear schedule $\{(T_1, q_1), ..., (T_n, q_n)\}$ to solve

$$\max_{T_i,q_i} \sum_{i=1}^n \beta_i (T_i - cq_i)$$

subject to

$$\begin{array}{ll} \theta_{i}v(q_{i}) - T_{i} \geq \theta_{i}v(q_{j}) - T_{j} & IC_{ij}, \forall i, j, i \neq j \\ \theta_{i}v(q_{i}) - T_{i} \geq 0 & IR_{i}, \forall i \end{array}$$

Eliminate the Redundant Constraints

 The IR of the lowest type binds, and all the other IR are redundant:

$$\begin{array}{l} \underbrace{\theta_1 v(q_1) - T_1 = 0}_{\text{suppose } IR_1 \text{ holds}} \Rightarrow \\ \underbrace{\theta_2 v(q_2) - T_2 \geq \theta_2 v(q_1) - T_1}_{IC_{21} \text{ holds}} > \theta_1 v(q_1) - T_1 = 0 \\ \Rightarrow \underbrace{\theta_j v(q_j) - T_j > 0}_{IR_j \text{ holds}}, \forall j = 2, ..., n. \end{array}$$

How to eliminate the IC?

Spence-Mirrlees Single-Crossing Property

Assumption (Single-Crossing)

 $\frac{\partial}{\partial \theta} \left[-\frac{\partial u/\partial q}{\partial u \partial T} \right] > 0$: the "marginal rate of substitution" between commodity (q) in terms of numéraire (T) is increasing in types.

Consider two arbitrary types, $\theta_i \neq \theta_j$, the *IC* are

$$\theta_{i}v(q_{i}) - T_{i} \ge \theta_{i}v(q_{j}) - T_{j}$$

$$\theta_{j}v(q_{j}) - T_{j} \ge \theta_{j}v(q_{i}) - T_{i}$$

$$\Rightarrow (\theta_{i} - \theta_{j})v(q_{i}) \ge (\theta_{i} - \theta_{j})v(q_{j})$$

$$\Rightarrow \begin{cases} \theta_{i} > \theta_{j} \Rightarrow q_{i} > q_{j} \\ \theta_{i} < \theta_{j} \Rightarrow q_{i} < q_{j} \end{cases}$$

Hence, by single-crossing, $\theta_1 < ... < \theta_n$ is associated with $q_1 < ... < q_n$.

Local Downward Incentive Constraints (LDIC)

Consider three types, $\theta_1 < \theta_2 < \theta_3$. There are three "downward incentive" constraints:

$$\begin{array}{ll} \theta_3 \textit{v}(q_3) - \textit{T}_3 \geq \theta_3 \textit{v}(q_2) - \textit{T}_2 & \text{local downward } \textit{IC}_{32} \\ \theta_2 \textit{v}(q_2) - \textit{T}_2 \geq \theta_2 \textit{v}(q_1) - \textit{T}_1 & \text{local downward } \textit{IC}_{21} \\ \theta_3 \textit{v}(q_3) - \textit{T}_3 \geq \theta_3 \textit{v}(q_1) - \textit{T}_1 & \text{downward } \textit{IC}_{31} \end{array}$$

By monotonicity $q_2(\theta_2) > q_1(\theta_1)$, $IC_{32} + IC_{21} \Rightarrow IC_{31}$:

$$\theta_{3}v(q_{3}) - T_{3} \ge \theta_{3}v(q_{2}) - \theta_{2}v(q_{2}) + \theta_{2}v(q_{1}) - T_{1} \quad IC_{32} + IC_{21}$$

$$\theta_{3}v(q_{3}) - T_{3} \ge \left[\underline{\theta_{3}v(q_{1})} - T_{1}\right]$$

$$\underline{-\theta_{3}v(q_{1})} + \theta_{3}v(q_{2}) - \theta_{2}v(q_{2}) + \theta_{2}v(q_{1})$$

$$= (\theta_{3} - \theta_{2})[v(q_{2}) - v(q_{1})] > 0$$

LDICs binding

- All ICs are implied by binding LDICs.
- All LUICs are implied by binding LDICs (excise).
- The seller's problem reduces to

$$\begin{split} \max_{q_i, T_i} \sum_{i=1}^n \beta_i (T_i - cq_i) \\ \theta_1 v(q_1) - T_1 &= 0 & IR_1 \\ \theta_i v(q_i) - T_i &\geq \theta_i v(q_{i-1}) - T_{i-1} & IR_{i,i-1} (\# n - 1) \\ q_i &> q_{i-1} & \text{monotonicity} \end{split}$$

The Lagrangian is

$$\mathcal{L} = \sum_{i=1}^{n} \{ \beta_{i} (T_{i} - cq_{i}) + \lambda_{i} [\theta_{i} v(q_{i}) - T_{i} - \theta_{i} v(q_{i-1}) + T_{i-1}] \}$$

$$+ \mu(\theta_{1} v(q_{1}) - T_{1})$$

$$\mathcal{L} = \sum_{i=1}^{n} \{ \beta_{i} (T_{i} - cq_{i}) + \lambda_{i} [\theta_{i} v(q_{i}) - T_{i} - \theta_{i} v(q_{i-1}) + T_{i-1}] \}$$

$$+ \mu(\theta_{1} v(q_{1}) - T_{1})$$

when *i* = *n*

$$\frac{\partial \mathcal{L}}{\partial q_n} = -\beta_n c + \lambda_n \theta_n V(q_n) = 0$$

$$\frac{\partial \mathcal{L}}{\partial T_n} = \beta_n - \lambda_n = 0$$

$$\Rightarrow \underbrace{\theta_n V(q_n^{SB}) = c}_{\Leftrightarrow q_n^{SB} = q_n^{FB}}$$

• when i < n, note that in the *IC* constraint, there is a LDIC: $i+1 \rightarrow i$

$$\mathcal{L} = \sum_{i=1}^{n} \left\{ \beta_{i}(T_{i} - cq_{i}) + \lambda_{i} \left[\theta_{i} v(q_{i}) - T_{i} - \theta_{i} v(q_{i-1}) + T_{i-1} \right] \right\}$$

$$+ \mu(\theta_{1} v(q_{1}) - T_{1})$$

$$= \sum_{i=1}^{n} \beta_{i}(T_{i} - cq_{i}) + \lambda_{n} \left[\theta_{n} v(q_{n}) - T_{n} - \theta_{n} v(q_{n-1}) + T_{n-1} \right]$$

$$+ \lambda_{n-1} \left[\theta_{n-1} v(q_{n-1}) - T_{n-1} - \theta_{n-1} v(q_{n-2}) + T_{n-2} \right] + \lambda_{n-3}(...)$$

$$+ \mu(\theta_{1} v(q_{1}) - T_{1})$$

when i < n,

$$\frac{\partial \mathcal{L}}{\partial \mathbf{q}_{i}} = -\beta_{i} \mathbf{c} - \lambda_{i+1} \theta_{i+1} \mathbf{v}'(\mathbf{q}_{i}) + \lambda_{i} \theta_{i} \mathbf{v}'(\mathbf{q}_{i}) = 0$$
$$\frac{\partial \mathcal{L}}{\partial T_{i}} = \beta_{i} + \lambda_{i+1} - \lambda_{i} = 0.$$

From

$$\frac{\partial \mathcal{L}}{\partial q_i} = -\beta_i \mathbf{c} - \lambda_{i+1} \theta_{i+1} \mathbf{v}'(q_i) + \lambda_i \theta_i \mathbf{v}'(q_i) = 0$$

$$\frac{\partial \mathcal{L}}{\partial T_i} = \beta_i + \lambda_{i+1} - \lambda_i = 0$$

for i = n - 1, for example, by $q_{n-1} < q_n$:

$$\lambda_{n-1}\theta_{n-1}\sqrt{(q_{n-1})} = \beta_{n-1}c + \lambda_n\theta_n\underbrace{\sqrt{(q_{n-1})}}_{>\sqrt{(q_n)}} > \beta_{n-1}c + \lambda_nc$$

$$\Leftrightarrow \theta_{n-1}\sqrt{(q_{n-1})} > \frac{\beta_{n-1} + \lambda_n}{\lambda_{n-1}}c = c$$

Similarly, for all i < n, $\theta_i \vee (q_i^{SB}) > c = \theta_i(q_i^{FB}) \Rightarrow q_i^{SB} < q_i^{FB}$.

Continuum Types*

Assume that θ is distributed according to CDF $F(\cdot)$ and PDF $f(\cdot) = F'(\cdot)$ with support $[\theta_L, \theta_H]$.

- The firm solves $\max_{q(\theta), T(\theta)} \int_{\theta_i}^{\theta_H} (T(\theta) cq(\theta)) f(\theta) d\theta$
- For the consumers:
 - Each θ buys (IR): $\theta v(q(\theta)) T(\theta) \ge 0$
 - Each θ will not buy the menu designed for others (IC): $\theta v(q(\theta)) T(\theta) \ge \theta v(q(\tilde{\theta})) T(\tilde{\theta}), \forall \theta, \tilde{\theta} \in [\theta_L, \theta_H]$
- Binding IR: $\theta_L v(q(\theta_L)) T(\theta_L) = 0$;
- For IC: a rational agent with type θ chooses $(q(\hat{\theta}), T(\hat{\theta}))$:

$$\begin{aligned} \max_{\hat{\theta}} \theta v(q(\hat{\theta})) - T(\hat{\theta}) \\ \Rightarrow \theta v'(q(\hat{\theta})) \frac{dq}{d\hat{\theta}} = T'(\hat{\theta}) \end{aligned}$$

The menu is "reasonable" provided that $\hat{\theta}$ "coincide" with θ .

Implementation: Mirrlees (1971)

- Agent θ chooses $(q(\hat{\theta}), T(\hat{\theta}))$: $\theta \lor (q(\hat{\theta})) \frac{dq}{d\hat{\theta}} = T'(\hat{\theta})$;
- Agent θ chooses a contract that is intended to be designed for θ , i.e., evaluated at $\hat{\theta} = \theta$, the optimal choice of each agent is $\theta V(q(\theta)) \frac{dq}{d\theta} = T'(\theta)$.
- The indirect utility of agent θ is

$$V(\theta) = \theta v(q(\theta)) - T(\theta) = \max_{\hat{\theta}} \theta v(q(\hat{\theta})) - T(\hat{\theta})$$

- By Envelop Theorem: $\frac{dV}{d\theta} = v(q(\theta))$.
- Integrating from $[\theta_L, \theta]$:

$$\int_{\theta_L}^{\theta} \frac{dV}{d\theta} d\theta = V(\theta) - V(\theta_L) = \int_{\theta_L}^{\theta} v(q(\theta)) d\theta.$$

- By IR: $V(\theta_L) = 0 \Rightarrow V(\theta) = \int_{\theta_L}^{\theta} v(q(\theta)) d\theta$.
- Indirect utility: $V(\theta) = \theta v(q(\theta)) T(\theta)$
- The seller's profit becomes

$$\begin{split} \pi &= \int_{\theta_L}^{\theta_H} \left[T(\theta) - cq(\theta) \right] f(\theta) d\theta \\ &= \int_{\theta_L}^{\theta_H} \left[\theta v(q(\theta)) - \int_{\theta_L}^{\theta} v(q(\theta)) d\theta - cq(\theta) \right] f(\theta) d\theta \\ &= \int_{\theta_L}^{\theta_H} \left[\theta v(q(\theta)) - cq(\theta) \right] f(\theta) d\theta \\ &+ \underbrace{\int_{\theta_L}^{\theta_H} \left[\int_{\theta_L}^{\theta} v(q(\theta)) d\theta \right] d \left[1 - F(\theta) \right]}_{= \int_{\theta_L}^{\theta} v(q(\theta)) d\theta \left[1 - F(\theta) \right] \left| \int_{\theta_L}^{\theta_H} \left[1 - F(\theta) \right] v(q(\theta)) d\theta \right]}_{= \int_{\theta_L}^{\theta_H} \left\{ \left[\theta v(q(\theta)) - cq(\theta) \right] f(\theta) - \left[1 - F(\theta) \right] v(q(\theta)) \right\} d\theta. \end{split}$$

The seller solves

$$\begin{split} \max_{q(\theta)} \int_{\theta_L}^{\theta_H} \left\{ \left[\theta \, v(q(\theta)) - c q(\theta) \right] f(\theta) - \left[1 - F(\theta) \right] v(q(\theta)) \right\} d\theta \\ \Rightarrow \left[\theta \, v'(q(\theta)) - c \right] f(\theta) &= \left[1 - F(\theta) \right] v'(q(\theta)) \\ \Rightarrow \left[\theta - \frac{1 - F(\theta)}{f(\theta)} \right] v'(q^{SB}(\theta)) &= c. \end{split}$$

• No distortion at top: when $\theta = \theta_H$,

$$\underbrace{\left(\theta_H - \frac{1 - F(\theta_H)}{f(\theta_H)}\right)}_{=\theta_H} V(q(\theta_H)) = c \Rightarrow q^{SB}(\theta_H) = q^{FB}(\theta_H)$$

Second-Best Contract

Definition

$$h(\theta) = rac{f(\theta)}{1-F(\theta)}$$
 hazard ratio; $\theta - rac{1-F(\theta)}{f(\theta)}$ virtual type.

Assumption

The hazard ratio and the virtual type is increasing in θ .

The second-best contract is

$$\underbrace{\left[\theta - \underbrace{\frac{1 - F(\theta)}{f(\theta)}}_{\text{inverse hazard ratio}} \right] }_{\text{virtual type}} \bigvee (q^{SB}(\theta)) = c$$

Second-Best v.s. Monopoly Linear Pricing

• Recall, the monopoly linear pricing: T = pq and $\theta v(q) - T = \theta v(q) - pq \Rightarrow$:

$$\theta V(q^m) = p^m$$

• The second-best non-linear pricing:

$$\begin{split} \left[\theta - \frac{1 - F(\theta)}{f(\theta)}\right] \, & \, \forall (q^{SB}(\theta)) = c \\ \Rightarrow \underbrace{\frac{p - c}{p}}_{\text{price markup}} &= \frac{1}{\theta} \underbrace{\frac{1 - F(\theta)}{f(\theta)}}_{\text{=inverse hazard ratio} = 1/h(\theta)} \end{split}$$

 A higher markup (distortion) for the low-type to prevent adverse selection

$$\frac{d}{d\theta}\left(\frac{p-c}{p}\right) = -\frac{1}{\theta^2}\frac{1}{h(\theta)} + \frac{1}{\theta}\frac{d}{d\theta}\left[\frac{1}{h(\theta)}\right] < 0.$$

Example: Insurance

- Under complete information, people subject to diversifiable risk should receive complete insurance against the risk from a risk neutral insurance company. The result fails under asymmetric information
- Consider a risk-averse agent with u(.) where u'(.)>0 and u''(.)<0. The agent's initial wealth is w. With probability θ the agent suffers a damage of d. Agent types could be θ_H or θ_L with probability β and $1-\beta$, respectively.
- The net reimbursement in case of a damage is *a*; the insurance premium to be paid is *n*. The agent's expected utility is

$$U(a, n) = \theta \underbrace{u(w - d + a)}_{=u_a} + (1 - \theta) \underbrace{u(w - n)}_{=u_n}$$

Complete Information

- Agent's utility: $U(a, n) = \theta u(w d + a) + (1 \theta)u(w n)$
- Reservation utility $R = \theta u(w d) + (1 \theta)u(w)$
- Observe that R_H < R_L:

•
$$R_H - R_L = (\theta_H - \theta_L)u(w - d) - (\theta_H - \theta_L)u(w) < 0.$$

Under complete information, the insurance company solves

$$\max_{a,n} -\theta a + (1 - \theta)n$$
s.t. $\theta u(w - d + a) + (1 - \theta)u(w - n)$

$$\geq \theta u(w - d) + (1 - \theta)u(w) = R$$

for each type.

The Lagrangian:

$$\begin{split} \mathcal{L} &= -\theta \mathbf{a} + (1 - \theta) \mathbf{n} \\ &+ \lambda \left(\theta \mathbf{u} (\mathbf{w} - \mathbf{d} + \mathbf{a}) + (1 - \theta) \mathbf{u} (\mathbf{w} - \mathbf{n}) - R \right) \\ \mathbf{a} &: \quad -\theta + \lambda \theta \mathbf{u}' (\mathbf{w} - \mathbf{d} + \mathbf{a}) = 0 \\ \mathbf{n} &: \quad 1 - \theta - \lambda (1 - \theta) \mathbf{u}' (\mathbf{w} - \mathbf{n}) = 0 \\ \lambda &: \quad \theta \mathbf{u} (\mathbf{w} - \mathbf{d} + \mathbf{a}) + (1 - \theta) \mathbf{u} (\mathbf{w} - \mathbf{n}) = R \end{split}$$

- The first two conditions:
 - $-d + a^* = -n^* \Rightarrow u_a^* = u_n^*$ for each type
- Combining the last equation: $\theta u_a^* + (1 \theta)u_n^* = R$ for each type
- Because $R_H < R_L$, we have $u_n^H < u_n^L$
- u'(.) > 0, then $u(w n^H) < u(w n^L) \Rightarrow n^H > n^L$.

Incomplete Information: Adverse Selection

- Because $R_H < R_L$, the high-risk agent is willing to take the insurance contract designed for the low-risk agent.
- The insurance company designs non-linear contracts: (a_H, n_H) and (a_L, n_L)
- The insurance company solves

$$\max_{\mathsf{a}_H,\mathsf{n}_H,\mathsf{a}_L,\mathsf{n}_L} (1-\beta)(-\theta_L \mathsf{a}_L + (1-\theta_L)\mathsf{n}_L) + \beta(-\theta_H \mathsf{a}_H + (1-\theta_H)\mathsf{n}_H)$$

- IC_H : $\theta_H u(w d + a_H) + (1 \theta_H) u(w n_H) \ge \theta_H u(w d + a_L) + (1 \theta_H) u(w n_L)$
- IC_L : $\theta_L u(w d + a_L) + (1 \theta_L)u(w n_L) \ge \theta_L u(w d + a_H) + (1 \theta_L)u(w n_H)$
- IR_H : $\theta_H u(w d + a_H) + (1 \theta_H) u(w n_H) \ge R_H$
- IR_L : $\theta_L u(w d + a_L) + (1 \theta_L)u(w n_L) \ge R_L$

- Denote $h = u^{-1}$ the inverse function of u(.).
 - $u'(.) > 0 \Rightarrow h' = \frac{1}{u'(.)} > 0$
 - $u''(.) < 0 \Rightarrow h'' = -\frac{u''(.)}{(u'(.))^2} > 0.$
- $u_a = u(w-d-a) \Rightarrow w-d-a = h(u_a) \Rightarrow a = w-d-h(u_a)$
- $u_n = u(w-n) \Rightarrow w-n = h(u_n) \Rightarrow n = w-h(u_n)$
- The objective $\max_{\mathsf{a}_H, \mathsf{n}_H, \mathsf{a}_L, \mathsf{n}_L} (1-\beta)(-\theta_L \mathsf{a}_L + (1-\theta_L) \mathsf{n}_L) + \beta(-\theta_H \mathsf{a}_H + (1-\theta_H) \mathsf{n}_H)$ becomes
 - $\max_{u_a^H, u_n^H, u_a^L, u_n^L} (1-\beta)(-\theta_L d \theta_L h(u_a^L) (1-\theta_L)h(u_n^L) + w) + \beta(-\theta_H d \theta_H h(u_a^H) (1-\theta_H)h(u_n^H) + w)$
- The binding constraint is IC_H and IR_L
 - IC_H : $\theta_H u_a^H + (1 \theta_H) u_n^H \ge \theta_H u_a^L + (1 \theta_H) u_n^L$. Multiplier λ
 - IR_L : $\theta_L u_a^L + (1 \theta_L) u_n^L \ge R_L$. Multiplier μ

The Lagrangian:

$$\begin{split} \mathcal{L} &= (1-\beta) \left[-\theta_L d - \theta_L h(u_a^L) - (1-\theta_L) h(u_n^L) + w \right] \\ &+ \beta \left[-\theta_H d - \theta_H h(u_a^H) - (1-\theta_H) h(u_n^H) + w \right] \\ &+ \lambda \left[\theta_H u_a^H + (1-\theta_H) u_n^H - \theta_H u_a^L - (1-\theta_H) u_n^L \right] \\ &+ \mu \left[\theta_L u_a^L + (1-\theta_L) u_n^L - R_L \right] \end{split}$$

- FOC u_a^L : $-\theta_L(1-\beta)h'(u_a^L) \theta_H\lambda + \mu\theta_L = 0$
- FOC u_n^L : $-(1 \theta_L)(1 \beta)h'(u_n^L) (1 \theta_H)\lambda + (1 \theta_L)\mu = 0$
- FOC u_a^H : $-\theta_H \beta h'(u_a^H) + \theta_H \lambda = 0$.
- FOC u_n^H : $-(1 \theta_H)\beta h'(u_n^H) + (1 \theta_H)\lambda = 0$

- From the FOCs of u_a^H and u_n^H :
 - $h'(u_a^H) = h'(u_n^H) \Rightarrow u_a^H = u_n^H = u^H$
 - No distortions for the high-risk agent
- FOC of $u_a^H \Rightarrow -\theta_H \beta h'(u_a^H) + \theta_H \lambda = 0$. Hence $\lambda > 0 \Rightarrow IC_H$ is binding:
 - $\theta_H u_a^H + (1 \theta_H) u_n^H = \theta_H u_a^L + (1 \theta_H) u_n^L$
- FOC of $u_a^L \Rightarrow \mu \theta_L = \theta_H \lambda + \theta_L (1 \beta) h'(u_a^L) > 0$. Hence $\mu > 0 \Rightarrow IR_L$ is binding
 - $\bullet \ \theta_L u_a^L + (1 \theta_L) u_n^L = R_L$
- Summing the binding IC_H and IR_L :
 - $u_a^H = u_n^H = R_L (\theta_H \theta_L)(u_n^L u_a^L) = R_L (\theta_H \theta_L)\Delta u$
- Using $\Delta u = u_n^L u_a^L$, from IR_L , we have
 - $u_a^L = R_L (1 \theta_L)\Delta u$
 - $u_n^L = R_L + \theta_L \Delta u$
- Plug the red equations into the objective.

The insurance company solves

$$\begin{aligned} & \max_{\Delta u} (1 - \beta) \left[-\theta_L d - \theta_L h (R_L - (1 - \theta_L) \Delta u) \right] \\ & + (1 - \beta) \left[-(1 - \theta_L) h (R_L + \theta_L \Delta u) + w \right] \\ & + \beta \left[-\theta_H d - h (R_L - (\theta_H - \theta_L) \Delta u) + w \right] \end{aligned}$$

FOC Δu:

$$(1 - \beta)\theta_L(1 - \theta_L)h'(R_L - (1 - \theta_L)\Delta u)$$
$$- (1 - \beta)(1 - \theta_L)\theta_Lh'(R_L + \theta_L\Delta u)$$
$$+ \beta(\theta_H - \theta_L)h'(R_L - (\theta_H - \theta_L)\Delta u) = 0$$

• The second-best solution Δu^{SB} is implicitly determined by

$$\frac{\beta(\theta_H - \theta_L)}{(1 - \beta)\theta_L(1 - \theta_L)} h' \left(R_L - (\theta_H - \theta_L) \Delta u^{SB} \right)
= h' \left(R_L + \theta_L \Delta u^{SB} \right) - h' \left(R_L - (1 - \theta_L) \Delta u^{SB} \right)$$

• Because $h'(.) = \frac{1}{u'(.)} > 0$, we know

$$h'\left(R_L + \theta_L \Delta u^{SB}\right) > h'\left(R_L - (1 - \theta_L)\Delta u^{SB}\right)$$

• Because $h''(.) = -\frac{u''(.)}{(u'(.))^2} > 0$, we know

$$R_L + \theta_L \Delta u^{SB} > R_L - (1 - \theta_L) \Delta u^{SB} \Rightarrow \Delta u^{SB} > 0$$

- That is, at second-best, $u_n^L > u_a^L$, or $u(w-d-a^{SB}) < u(w-n^{SB})$. Meanwhile, $u_a^H = u_n^H$.
- To reduce the incentives of the high-risk agent of pretend being a low-risk one, the insurance company let the latter type bear some risk.

References

Bolton, Patrick, and Mathias Dewatripont. Contract theory. MIT press. (Chapter 2).

Laffont and Martimort. The theory of incentives (Chapter 2).