Section 9.1 and 9.3 Binary Relations Comp 232 Representing Rinary Relations Instructor:

Representing Binary Relations Instructor: Robert Mearns 1. Where are we headed in Sections 9.1 and 9.3 ?

We introduced the notion of a relation when we covered Functions in Section 2.3-2.5

Cartesian Relation Functions

Product A Subset of a Relations that are

In the last part of the course we look at Binary Relations of a set with itself. All Relations are subsets of A x A. The Relations may or may not be functions.

•

2. Methods to represent a Relation of a set with itself:

f: AXA Consider $A = \{1,2\}, R = \{(1,2), (2,2)\}$ - List the ordered pairs:

 $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x < y \}$, Note: 3R4 but 4R3 - Set Builder notation: (R means relation, ℝ means Real numbers)

- Graphic - List elements of set twice Ex 1:1 1 - Join the pairs 2 2

- Directed Graph (Di-graph) List elements of A once: (see following notes)
- Boolean Matrix (0-1 Matrix): (see following notes)
- 3. Directed graph or Di-graph for $A \rightarrow A$:
 - Step 1 Put a point (called a vertex) for each element in set A. Each entry in A is written once
 - Step 2 Join the vertices that are related with arrows. Reversing arrows should be kept separate when the relation goes both ways
 - Step 3 If an entry is related to itself put a circular arrow around its vertex.

Ex: Consider R: A \to A where A = {a, b, c} and R = { (a,a), (a,c), (b,c), (c,b), (b,b) }

We will use this form in Section 9.4

3

- 4. Matrix method to store a Relation on $A \times B$: [A does not have to = B]
 - a) Definition: A Matrix is a rectangular set of elements. (has rows and columns)

A matrix is denoted by an uppercase letter

Entries in Matrix are denoted by lowercase letters with subscripts for row, column Dimension of Matrix refers to the number of rows and number of columns

Ex:
$$Matrix M = \begin{array}{|c|c|c|c|c|}\hline 1 & 0 & 1 \\\hline 0 & 1 & 1 \\\hline \end{array}$$

b) We will use Boolean values for the matrix entries in the following work:

Review	Represent R with a matrix					
Set $A = \{a,b,c\}$	Set $A = \{a,b,c\}$					
Fix order of A: (order cannot change)	Fix	ord	er o	1 A:	(ord	er cannot change)
Form bit strings (ordered sets of 1,0)						
$S_1 = 1 \ 0 \ 1$	Each element of R has two components so each bit entry will					
	des	igna	ite 2	pos	sitior	as in A: row for 1st, col for 2nd in each pair:
1^{st} bit =1 (True) \rightarrow a is present		2	nd p	osit	on	Each matrix entry designates one pair:
2^{nd} bit = 0 (False) \rightarrow b is not present			a	b	c	1:1 0/5 1) /) +D
3^{rd} bit =1 (True) \rightarrow c is present	1 st a 1 1 0 b 1 1 1			1	0	a, c bit = 0 (False) \rightarrow (a, c) \notin R
				1	1	
	c 0 1 1				1	

We have $R = \{(a,a), (a,b), (b,a), (b,b), (b,c), (c,b), (c,c)\}$

Write the ordered pairs in Relation R_1 : R1= {(2,2),(2,5),(5,2),(5,5),(5,9),(9,5),(9,9)}

5. Since a relation is a set of ordered pairs we can do set operations:

Review	New: Assume $A = \{a,b\}$				
Negate a bit string S S = 1,0,1 becomes 0, 1, 0 called compliment of S	Negate bit Matrix: $M_R = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	$R_1 = \{(a, b), (b, b)\}$ is the compliment of $R = \{(a,a), (b,a)\}$				
Bit string And $\equiv (\land, \land)$	Bit string And $\equiv (\land, \land)$ Ex: Consider $M_R \land M_{R_1}$				
$S_1 = 1 \ 0 \ 0$ $S_1 = 1 \ 1 \ 0 \ \land$ = 1 0 0	$ \begin{array}{ c c c c c }\hline 1 & 0 \\\hline 1 & 0 \\\hline \end{array} \ \land \begin{array}{ c c c c c c c c c c c c c c c c c c c$				

Review	New: Assume $A = \{a,b\}$
Bit string Or \equiv (\lor, \lor) :	Bit string Or $\equiv (\lor, \lor)$ Ex: Consider $M_R \lor M_{R_1}$:
$S_1 = 1 \ 0 \ 0$ $S_2 = 1 \ 1 \ 0 \ \lor$ $= 1 \ 1 \ 0$	$ \begin{array}{ c c c c c }\hline 1 & 0 \\\hline 1 & 1 \\\hline \end{array} \ \lor \ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Bit string Xor:	Bit string Xor: Ex: Consider $M_R \oplus M_{R_2}$:
$S_1 = 1 \ 0 \ 0$ $S_2 = 1 \ 1 \ 0 \ \oplus$ $= 0 \ 1 \ 0$ True when: $(S1 \lor S2) \ \land \ \neg (S1 \land S2)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

6. Composition of Relations: This operation has a structure similar to composition of functions.

Ex: Consider
$$A = \{3,4,5\}$$
 with relations
$$S = \{ (3,4), (4,3), (4,5), (5,3) \}$$

$$T = \{ (3,5), (4,4), (4,5), (5,4) \}$$

We will do T \circ S. Do relation S first . (Idea also works if it is a set related to itself as in S \circ S) T \circ S ordered pairs: 3R4 (from S) then 4R4 and 4R5 (from T) so composition T \circ S has 3R4 and 3R5

Complete the Relation $T \circ S$: $T \circ S = \{(3,4), (3,5), (4,5), (4,4), (5,5)\}$

- 7. Composition of two relations can be done with matrices.
 - a) First we need to know the structure of matrix multiplication. Multiplication of matrices does not multiply corresponding entries We will use a base ten example below to get the idea how the matrix multiplication process is defined for: $M_L \times M_R$
 - Step 1 "Pour" row 1 of left matrix down col 1 of right matrix multiply corresponding entries then add all the products. This gives the entry in Row 1 Col 1 of the answer matrix
 - Step 2 Repeat Step 1 use Row 1 with Col 2 gives the entry in Row 1 Col 2 of the answer matrix.
 - Step 3 Repeat ... Until all rows of left matrix have operated on all columns of the right matrix

1	2 0		2	0	4		1x2+2x3+0x5	1x0+2x1+0x1	1x4+2x1+0x3		8	2	6
3	0 4	X	3	1	1	=	3x2+0x3+4x5	3x0+0x1+4x1	3x4+0x1+4x3	=	26	4	24
5	1 2		5	1	3		5x2+1x3+2x5	5x0+1x1+2x1	5x4+1x1+2x3		23	3	27

- b) Now to calculate T o S in previous example:
- Step 1 Form the matrices for the relations: Ms, MT
- Step 2 Use the matrix multiplication structure above except treat 0, 1 as Boolean values and use Boolean Multiplication(and), Addition(or) to multiply: denote as $M_s \odot M_T$

Note the order of the matrices Ms Mt. In Matrix Algebra AXB \neq BXA

Fig. Union the previous A = (2.4.5) with relations: S = (.2.4) (4.3) (4.5) (5.3)

Ex: Using the previous A = $\{3,4,5\}$ with relations: S = $\{(3,4), (4,3), (4,5), (5,3)\}$ T = $\{(3,5), (4,4), (4,5), (5,4)\}$

Using the answer to matrix $M_{T \circ S}$ we get Relation $T \circ S = \{(3,4),(3,5),(4,4),(4,5),(5,5)\}$

8. Four types of Relations R where R is a subset of the Cartesian Product $\,A \times A\,$

R is Relexive iff $\forall x$ $(x, x) \in R$ $xRx \in R$ $\begin{array}{cccc} xRy & \boldsymbol{\rightarrow} & yRx \\ xRy & \bigwedge & yRx & \boldsymbol{\rightarrow} & x=y \end{array}$ R is Symmetric iff $\forall (x,y) (x,y) \in R \rightarrow (y,x) \in R$

R is Anti-symmetric iff $\forall (x,y) [(x,y) \in R \land (y,x) \in R] \rightarrow x = y$

(is not opposite of Symmetric) Anti-symmetric ightarrow only time you have symmetry is when elements are equal R is Transitive iff $\forall (x,y,z) [(x,y) \in R \land (y,z) \in R] \rightarrow (x,z) \in R$ $xRy \land yRz \rightarrow xRz$

R={(a,a)} is both Symmetric and Anti-symmetric

Ex: Let $A = \{a, b, c\}$

Type	List Relation R	Characteristic	Sketch
Reflexive	$R_1 = \{ (a,a), (b,a), (b,b), (c,c), \}$	aRa, bRb, cRc make it Reflexive. If cRc is missing → not Reflexive	$ \begin{array}{ccc} a & & & \\ b & & & \\ c & & & \\ \end{array} $
Symmetric	$R_2 = \{ (a,c), (b,c), (c,b), (c,a) \}$	aRc, cRa, bRc, cRb make it Symmetric If cRa is missing → not Symmetric	a b b c
Anti-symmetric	$R_3 = \{ (a,a), (b,a) \}$	aRa makes it Anti-symmetric If aRb is added → not Anti-symmetric	a a b c c c
Transitive	$R_4 = \{ (a,b), (b,c), (a,c), (a,a) \}$	aRa, bRc, aRc make it Transitive If aRc missing → not Transtive	$ \begin{array}{cccc} a & & & & \\ b & & & & \\ c & & & & \\ c & & & & \\ \end{array} $

a) If $xRy = \{ (x,y) \mid x \in A, y \in A, xRy \}$, $A = \{a,b,c\} \}$ What do you know about the dimensions of M_R ?

M_{R₁}=

Number Rows = Number of Column \rightarrow Mr is a Square matrix (3X3)

b) If
$$R_1 = \{ (a, a), (a,b), (b,a), (b,b), (b,c), (c,b), (c,c) \}$$

Calculate Matrix M_{R_1}

 $M_{R_1} = \begin{array}{c} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}$

c) Is R_1 is Reflexive? If so what matrix characteristic do we see? Yes. Ones on the diagonal from top Left to bottom Right. Main Diagonal

d) Is R_1 is Symmetric? If so what matrix characteristic do we see? Yes. Matrix is Symmetric about the main diagonal. Mr1 is a Symmetric matrix. Note: if we rewrote the matrix M_{R_1} with the rows of M_{R_1} becoming the columns of a new matrix the new matrix is called the Transpose of M_{R_1} .

.,	1	1	0
$M_{R_1} =$	1	1	1
	0	1	1

Ex 1: If the matrix of a relation R is given as $M_R =$

- (i) What relation type(s) apply?
- (ii) How many ordered pairs are there?
- (iii) If $R = \{ (x,y) \in A \times A \mid xRy, A = \{d,e,f,g\} \}$, list R.

1	0	1	0
0	1	0	0
1	0	1	1
0	0	1	1

15

Ex 1: If the matrix of a relation R is given as $M_R =$

(i) What relation type(s) apply?

(ii) How many ordered pairs are there?

(iii) If $R = \{ (x,y) \in A \times A \mid xRy, A = \{d,e,f,g\} \}$, list R.

1	0	1	0
0	1	0	0
1	0	1	1
0	0	1	1

Answers: (i) Reflexive, Symmetric (ii) 8 ordered pairs

(iii) $R = \{(d,d), (d,f), (e,e), (f,d), (f,f), (f,g), (g,f), g,g)\}$, (Did you check Transitive)? Not Transitive. Matrix form does not show this. Show by checking the pairs.

17

```
Ex 2: Consider A = \{1,2,3,4\} and R_1 = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}
                                                           R_2 = \{ (1,1), (2,1), (3,1), (3,2), (4,1) \}
 (i) Find the matrices for R<sub>1</sub>, R<sub>2</sub>
 (ii) Find the matrix for the relation R_2 \circ R_1
(iii) Using the matrix in (ii) write the ordered pairs in R<sub>2</sub> o R<sub>1</sub>
       Answer: R_2 \circ R_1 = \{ (1,1), (2,1), (2,2), (3,1) \}
Ex 3: If the matrix of a Relation R is M_R = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} and R relates A×A where A = {x,y}
(i) List the ordered pairs for R
(ii) Find the matrix for the relation R^3 = R \circ R \circ R
(iii) Using the matrix in (ii) write the ordered pairs in R<sup>3</sup>
   Answers: (i) R = \{(x,x), (x,y), (y,y)\} (iii) R^3 = \{(x,x), (x,y), (y,y)\} (ii) M_{R^3} = \{(x,x), (x,y), (y,y)\} (iii) M_{R^3} = \{(x,x), (x,y), (y,y)\}
 Ex 4: Consider R_1 = \{ (x,y) \in \mathbb{R} x \mathbb{R} \mid x < y \}
                          R_2 = \{ (x,y) \in \mathbb{R} x \mathbb{R} \mid x > y \}
 Use Set-Builder notation to describe: Compliment of R_1, R_1 \cap R_2, R_1 \cup R_2, R_1 - R_2, R_2 - R_1
   Answers: Compliment of R_1 = \{ (x,y) \in \mathbb{R} x \mathbb{R} \mid x \ge y \}
                R_1 \cap R_2 = \{ (x,y) \in \mathbb{R} x \mathbb{R} \mid (x < y) \land (x > y) \} \equiv \phi \text{ (null set)}
                R_1 \cup R_2 = \{ (x,y) \in \mathbb{R} x \mathbb{R} \mid (x \le y) \lor (x \ge y) \} \equiv \{ (x,y) \in \mathbb{R} x \mathbb{R} \mid x \ne y \}
                R_1 - R_2 = R_1
```

19

 $R_2 - R_1 = R_2$

```
Ex 5: R = \{ (1,1), (2,1), (3,2), (4,3) \}

(i) Find R^3 and R^4 without a matrix:

(ii) Make a conjecture concerning R^k, k \ge 4

Answer: (i) R^4 = R \circ R \circ R \circ R

= R \circ R \circ (R \circ R)

= R \circ R \circ \{ (1,1), (2,1), (3,1), (4,2) \}

= R \circ \{ (1,1), (2,1), (3,1), (4,1) \}

= \{ (1,1), (2,1), (3,1), (4,1) \}

(ii) Conjecture: R^k = R^3 for k \ge 4
```

Ex 6: $R = \{ (1,3), (4,5), (4,3) \}$, find R inverse. Inverse of a relation R has same structure as inverse of a function: If R: A \rightarrow B the R inverse: B \rightarrow A Answer: Inverse of R = $\{ (3,1), (5,4), (3,4) \}$

Ex 7: Prove: $[(R: A \rightarrow A) \land (S: A \rightarrow A) \land R, S]$ Symmetric $] \rightarrow R \cup S$ is symmetric Hint: A Relation is a set so the proof is similar in structure to a set builder proof.

Answer:

```
1.
             Let (a, b) any element of R
2.
             \rightarrow (b, a) \in R
                                                                  Def of Symmetric for R
3.
             Let (c, d) any element of S
4.
             \rightarrow (d, c) \in S
                                                                  Def of Symmetric for S
5.
             R \cup S = \{ (a, b) \in R \lor (c, d) \in S \}
                                                                  Def of U
6.
             R \cup S = \{(a, b) \land (b, a) \lor (c, d) \land (d, c)\}
                                                                  Lines 1,2,3,4
7.
             \forall (x,y) \in R \cup S \rightarrow (y,x) \in R \cup S
                                                                  Line 6
             R \cup S is symmetric
Concl:
                                                                  Definition of Symmetric relation
                                                                                                            21
             QED
```

R