

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Docket No: Q77453

Nobumasa ABE

Appln. No.: 10/659,700

Group Art Unit: Unknown

Confirmation No.: 4744

Examiner: Unknown

Filed: September 11, 2003

For:

COLOR IMAGE FORMING APPARATUS

SUBMISSION OF PRIORITY DOCUMENTS

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

Submitted herewith are five (5) certified copies of the priority documents on which claims to priority was made under 35 U.S.C. § 119. The Examiner is respectfully requested to acknowledge receipt of said priority documents.

Respectfully submitted,

Registration No. 23,063

SUGHRUE MION, PLLC

Telephone: (202) 293-7060

Facsimile: (202) 293-7860

Enclosures: Japan 2002-265407

Japan 2002-268301 Japan 2002-273320 Japan 2002-573321 Japan 2002-280815

Date: June 28, 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 9月11日

出 願 番 号 Application Number:

特願2002-265407

[ST. 10/C]:

[J P 2 0 0 2 - 2 6 5 4 0 7]

出 願 人
Applicant(s):

セイコーエプソン株式会社

2003年 9月29日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

J0094222

【提出日】

平成14年 9月11日

【あて先】

特許庁長官殿

【国際特許分類】

G03G 15/00

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

阿部 信正

【特許出願人】

【識別番号】

000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】

100092509

【弁理士】

【氏名又は名称】

白井博樹

【選任した代理人】

【識別番号】

100088041

【弁理士】

【氏名又は名称】

阿部龍吉

【選任した代理人】

【識別番号】

100092495

【弁理士】

【氏名又は名称】

蛭川昌信

【選任した代理人】

【識別番号】

100095120

【弁理士】

【氏名又は名称】 内田亘彦

【選任した代理人】

【識別番号】 100095980

【弁理士】

【氏名又は名称】 菅井英雄

【選任した代理人】

【識別番号】 100094787

【弁理士】

【氏名又は名称】 青木健二

【選任した代理人】

【識別番号】 100097777

【弁理士】

【氏名又は名称】 韮澤 弘

【選任した代理人】

【識別番号】 100091971

【弁理士】

【氏名又は名称】 米澤・明

【選任した代理人】

【識別番号】 100109748

【弁理士】

【氏名又は名称】 飯高 勉

【手数料の表示】

【予納台帳番号】 014878

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0107788

【包括委任状番号】 0208335

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】カラー画像形成装置

【特許請求の範囲】

【請求項1】像担持体の周囲に帯電手段、像書込手段および現像手段を配置した画像形成ステーションを転写ベルトに沿って各色毎に設けた画像形成装置において、前記帯電手段は像担持体に当接して回転するブラシローラであり、各像担持体から各ブラシローラに駆動力を伝達して各ブラシローラを駆動することを特徴とするカラー画像形成装置。

【請求項2】前記像担持体の駆動力を増速ギヤを介してブラシローラに伝達させることを特徴とする請求項1記載のカラー画像形成装置。

【請求項3】前記像担持体とブラシローラの回転方向を同一とすることを特徴とする請求項2記載のカラー画像形成装置。

【請求項4】前記転写ベルトが中間転写ベルトであることを特徴とする請求項1記載のカラー画像形成装置。

【請求項5】前記転写ベルトが紙搬送ベルトであることを特徴とする請求項 1記載のカラー画像形成装置。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、像担持体の周囲に帯電手段、像書込手段および現像手段を配置した 画像形成ステーションを転写ベルトに沿って各色毎に設け、転写ベルトを各ステーションに通過させることによりカラー画像を形成させるタンデム型のカラー画 像形成装置に関する。

 $[0\ 0\ 0\ 2]$

【従来の技術】

上記タンデム型の画像形成装置として、例えば特開平11-084798号公報には、転写ベルト(紙搬送ベルト)の搬送方向に沿って複数の画像形成ステーションを配置し、ブラシローラによって各画像形成ステーションの像担持体を一様に帯電する技術が開示されている。ここでは、ブラシローラの駆動方法につい

ては開示されていないが、モノクロの画像形成装置において、ブラシローラに像 担持体から駆動力を伝達する方式が知られている(例えば特開2000-292 78参照)。

[0003]

【特許文献1】特開平11-084798号公報

【特許文献2】特開2000-29278

[0004]

【発明が解決しようとする課題】

近年の画像形成装置は、現像手段と像担持体とを非当接として現像を行うジャンピング現像や、重合法で製造された球形度が高く粒径が均一なトナーを用いることで像担持体から記録媒体(用紙または中間転写ベルト)へのトナー像の転写効率を向上させ、像担持体のクリーニング手段(ゴムブレード等)を排除した画像形成方法が採用されるようになり、像担持体の駆動負荷が低減されている。

[0005]

しかしながら、タンデム型画像形成装置で上述のように各像担持体の駆動負荷が小さくなると、例えば像担持体駆動系の歯車のバックラッシュと転写ベルト (中間転写ベルトまたは紙搬送ベルト) に対する転写ローラやクリーニングブレードの当離接動作が相乗して画像に周期的な濃淡むらや色ずれが発生する場合があるという問題を有している。

[0006]

本発明は、上記従来の問題を解決するものであって、画像の濃淡むらや色ずれ を低減させることができるカラー画像形成装置を提供することを目的とする。

[0007]

【課題を解決するための手段】

上記目的を達成するために、本発明のカラー画像形成装置は、像担持体の周囲に帯電手段、像書込手段および現像手段を配置した画像形成ステーションを転写ベルトに沿って各色毎に設けた画像形成装置において、前記帯電手段は像担持体に当接して回転するブラシローラであり、各像担持体から各ブラシローラに駆動力を伝達して各ブラシローラを駆動することを特徴とする。

また、前記像担持体の駆動力を増速ギヤを介してブラシローラに伝達させることを特徴とする。

また、前記像担持体とブラシローラの回転方向を同一とすることを特徴とする

また、前記転写ベルトが中間転写ベルトであることを特徴とする。また、前記転写ベルトが紙搬送ベルトであることを特徴とする。

[0008]

【発明の実施の形態】

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は、本発明のカラー画像形成装置の1実施形態であり全体構成を示す模式的断面図、図2は図1の転写ベルトユニットおよび画像形成ユニットの拡大図である。なお、以下の説明において、各図面間で同一の構成については、同一番号を付して説明を省略する場合がある。本実施形態は転写ベルトとして中間転写ベルトを用いる例である。

[0009]

図1において、本実施形態の画像形成装置1は、ハウジング本体2と、ハウジング本体2の前面に開閉自在に装着された第1の開閉部材3と、ハウジング本体2の上面に開閉自在に装着された第2の開閉部材(排紙トレイを兼用している)4と、を有し、さらに第1の開閉部材3には、ハウジング本体2の前面に開閉自在に装着された開閉蓋3、を備え、開閉蓋3、は第1の開閉部材3と連動して、または独立して開閉可能にされている。

$[0\ 0\ 1\ 0\]$

ハウジング本体2内には、電源回路基板および制御回路基板を内蔵する電装品ボックス5、画像形成ユニット6、送風ファン7、転写ベルトユニット9、給紙ユニット10が配設され、第1の開閉部材3内には、二次転写ユニット11、定着ユニット12、記録媒体搬送手段13が配設されている。画像形成ユニット6および給紙ユニット10内の消耗品は、本体に対して着脱可能な構成であり、その場合には、転写ベルトユニット9を含めて取り外して修理または交換を行うことが可能な構成になっている。

[0011]

転写ベルトユニット9は、ハウジング本体2の下方に配設され図示しない駆動源により回転駆動される駆動ローラ14と、駆動ローラ14の斜め上方に配設される従動ローラ15と、この2本のローラ14、15間に張架されて図示矢印方向へ循環駆動される中間転写ベルト16と、中間転写ベルト16の表面に当接されるクリーニング手段17とを備え、従動ローラ15および中間転写ベルト16が駆動ローラ14に対して図で左側に傾斜する方向に配設されている。これにより中間転写ベルト16駆動時のベルト搬送方向が下向きになるベルト面16aが下方に位置するようにされている。本実施形態においては、前記ベルト面16aはベルト駆動時のベルト張り面(駆動ローラ14により引っ張られる面)である

$[0\ 0\ 1\ 2]$

上記駆動ローラ14および従動ローラ15は、支持フレーム9aに回転自在に支持され、支持フレーム9aの下端には回動部9bが形成され、この回動部9bはハウジング本体2に設けられた回動軸(回動支点)2bに嵌合され、これにより、支持フレーム9aはハウジング本体2に対して回動自在に装着されている。また、支持フレーム9aの上端にはロックレバー9cが回動自在に設けられ、ロックレバー9cはハウジング本体2に設けられた係止軸2cに係止可能にされている。

[0013]

駆動ローラ14は、二次転写ユニット11を構成する2次転写ローラ19のバックアップローラを兼ねている。駆動ローラ14の周面には、図2に示すように、厚さ3mm程度、体積抵抗率が $10^5\Omega$ ・cm以下のゴム層14aが形成されており、金属製の軸を介して接地することにより、2次転写ローラ19を介して供給される2次転写バイアスの導電経路としている。このように駆動ローラ14に高摩擦かつ衝撃吸収性を有するゴム層14aを設けることにより、2次転写部へ記録媒体が進入する際の衝撃が中間転写ベルト16に伝達しにくく、画質の劣化を防止することができる。

$[0\ 0\ 1\ 4]$

また、本実施形態においては、駆動ローラ14の径を従動ローラ15の径より 小さくしている。これにより、2次転写後の記録媒体が記録媒体自身の弾性力で 剥離し易くすることができる。また、従動ローラ15をクリーニング手段17の バックアップローラとして兼用させている。

クリーニング手段17は、搬送方向下向きのベルト面16a側に設けられている。図2に示すように、二次転写後に中間転写ベルト16の表面に残留しているトナーを除去するクリーニングブレード17aと、回収したトナーを搬送するトナー搬送部材17bを備え、クリーニングブレード17aは、従動ローラ15への中間転写ベルト16の巻きかけ部において中間転写ベルト16に当接されている。

[0015]

また、中間転写ベルト16の搬送方向下向きのベルト面16a裏面には、後述する各画像形成ステーションY, M, C, Kの像担持体20に対向して板バネ電極からなる1次転写部材21がその弾性力で当接され、1次転写部材21には転写バイアスが印加されている。

転写ベルトユニット9の支持フレーム9aには、駆動ローラ14に近接してテストパターンセンサ18が設置されている。このテストパターンセンサ18は、中間転写ベルト16上の各色トナー像の位置決めを行うとともに、各色トナー像の濃度を検出し、各色画像の色ずれや画像濃度を補正するためのセンサである。

$[0\ 0\ 1\ 6]$

画像形成ユニット6は、複数(本実施形態では4つ)の異なる色の画像を形成する画像形成ステーションY(イェロー用),M(マゼンタ用),C(シアン用),K(ブラック用)を備え、図3に詳しく示すように、各画像形成ステーションY,M,C,Kにはそれぞれ、感光ドラムからなる像担持体20と、像担持体20の周囲に配設された、帯電手段22、像書込手段23および現像手段24を有している。なお、帯電手段22、像書込手段23および現像手段24は、画像形成ステーションYのみに図番を付けて他の画像形成ステーションについては構成が同一のため図番を省略する。また、各画像形成ステーションY,M,C,Kの配置順序は任意である。

そして、各画像形成ステーションY, M, C, Kの像担持体20が中間転写ベルト16の搬送方向下向きのベルト面16aに当接されるようにされ、その結果、各画像形成ステーションY, M, C, Kも駆動ローラ14に対して図で左側に傾斜する方向に配設されることになる。像担持体20は、図示矢印に示すように、中間転写ベルト16の搬送方向に回転駆動される。

[0018]

[0019]

像担持体20として負帯電性の感光体を用いる場合、ブラシローラへ印加する電圧は、直流成分-300~-500Vに対して周波数1KHz程度の交流成分を800~1300V重畳させた電圧を用いることが望ましい。また、本実施形態のようにクリーナレス構成の画像形成方法を用いる場合には、非画像形成時にブラシローラへトナーと帯電極性と逆極性のバイアスを印加することでブラシローラに付着した転写残りトナーを像担持体20に放出させ、一次転写部で中間転写ベルト16上に転写して中間転写ベルト16のクリーニング手段17で回収する構成とすることが望ましい。

[0020]

このような帯電手段22を用いることで極めて少ない電流によって像担持体表面を帯電させることができるので、コロナ帯電方式のように装置内外を多量のオゾンによって汚染することがない。また、像担持体20との当接がソフトであるので、ローラ帯電方式を用いた時に発生する転写残りトナーの帯電ローラや像担持体への固着も発生しにくく、安定した画質と装置の信頼性を確保することがで

きる。

[0021]

像書込手段23は、発光ダイオードやバックライトを備えた液晶シャッタ等の素子を像担持体20の軸方向に列状に配列したアレイ状書込ヘッドを用いている。アレイ状書込ヘッドは、レーザー走査光学系よりも光路長が短くてコンパクトであり、像担持体20に対して近接配置が可能であり、装置全体を小型化できるという利点を有する。本実施形態においては、各画像形成ステーションY, M, C, Kの像担持体20、帯電手段22および像書込手段23を像担持体ユニット25(図2)としてユニット化することにより、アレイ状書込ヘッドの位置決めを保持する構成とし、像担持体ユニット25の交換時にはアレイ状書込ヘッドを含めて交換し、新たな像担持体ユニットに対して光量調整や位置決めを行って再使用を行う構成としている。

[0022]

次に、現像手段24の詳細について、図2の画像形成ステーションKを代表して説明する。本実施形態においては、各画像ステーションY, M, C, Kが斜め方向に配設され、かつ像担持体20が中間転写ベルト16の搬送方向下向きのベルト面16aに当接される関係上、トナー貯留容器26を斜め下方に傾斜して配置している。そのため、現像手段24として特別の構成を採用している。

[0023]

すなわち、現像手段24は、トナー(図のハッチング部)を貯留するトナー貯留容器26と、このトナー貯留容器26内に形成されたトナー貯留部27と、トナー貯留部27内に配設されたトナー撹拌部材29と、トナー貯留部27の上部に区画形成された仕切部材30と、仕切部材30の上方に配設されたトナー供給ローラ31と、仕切部材30に設けられトナー供給ローラ31に当接されるブレード32と、トナー供給ローラ31および像担持体17に当接するように配設される現像ローラ33と、現像ローラ33に当接される規制ブレード34とから構成されている。

[0024]

像担持体20は中間転写ベルト16の搬送方向に回転され、現像ローラ33お

よび供給ローラ31は、図示矢印に示すように、像担持体20の回転方向とは逆方向に回転駆動され、一方、撹拌部材29は供給ローラ31の回転方向とは逆方向に回転駆動される。トナー貯留部27において撹拌部材29により撹拌、運び上げられたトナーは、仕切部材30の上面に沿ってトナー供給ローラ31に供給され、供給されたトナーはブレード32と摺擦して供給ローラ31の表面凹凸部への機械的付着力と摩擦帯電力による付着力によって、現像ローラ33の表面に供給される。現像ローラ33に供給されたトナーは規制ブレード34により所定厚さの層厚に規制され、薄層化したトナー層は、像担持体20へと搬送されて現像ローラ33と像担持体20が接触して構成するニップ部及びこの近傍で像担持体20の潜像部を現像する。

[0025]

図1に戻り、給紙ユニット10は、記録媒体Pが積層保持されている給紙カセット35と、給紙カセット35から記録媒体Pを一枚ずつ給送するピックアップローラ36とからなる給紙部を備えている。

第1の開閉部材3内には、二次転写部への記録媒体Pの給紙タイミングを規定するレジストローラ対37と、駆動ローラ14および中間転写ベルト16に圧接される二次転写手段としての二次転写ユニット11と、定着ユニット12と、記録媒体搬送手段13と、排紙ローラ対39と、両面プリント用搬送路40を備えている。

[0026]

二次転写ユニット11は、固定軸41に回動自在に枢支された回動レバー42と、回動レバー42の一端に回動自在に設けられた二次転写ローラ19と、回動レバー42の他端と第1の開閉部材3間に配設されたスプリング43とを備え、常時は、二次転写ローラ19がスプリング43の付勢により図示矢印方向に移動し、中間転写ベルト16および駆動ローラ14に押圧可能にされている。回動レバー42のスプリング43側には偏心カム44が設けられ、回動レバー42、スプリング43および偏心カム44は、二次転写ローラ19の離当接手段を構成している。そして、偏心カム44の回動により、回動レバー42がスプリング43に抗して回動し二次転写ローラ19を中間転写ベルト16から離れるようにされ

ている。

[0027]

定着ユニット12は、ハロゲンヒータ等の発熱体を内蔵して回転自在な加熱ローラ45と、この加熱ローラ45を押圧付勢する加圧ローラ46と、加圧ローラ46に揺動可能に配設されたベルト張架部材47と、加圧ローラ45とベルト張架部材47間に張架された耐熱ベルト49を有し、記録媒体に2次転写されたカラー画像は、加熱ローラ45と耐熱ベルト49で形成するニップ部で所定の温度で記録媒体に定着される。本実施形態においては、中間転写ベルト16の斜め上方に形成される空間、換言すれば、中間転写ベルト16に対して画像形成ユニット6と反対側の空間に定着ユニット12を配設することが可能になり、電装品ボックス5、画像形成ユニット6および中間転写ベルト16への熱伝達を低減することができ、各色の色ずれ補正動作を行う頻度を少なくすることができる。

[0028]

本実施形態の画像形成装置においては、図1に示すように、ハウジング本体2内に中間転写ベルト16および各画像形成ステーションY, M, C, Kを斜めに配置し、電装品ボックス5を各画像形成ステーションY, M, C, Kの鉛直下方に配置している。そして、電装品ボックス5内の電源回路や、駆動回路、制御回路等の電気回路からの配線(図1の二点鎖線で示す)をコネクタ50を介して、一次転写部材21、帯電手段22、像書込手段23、テストパターンセンサ18に着脱自在に接続させている。なお、第1の開閉部材3内の二次転写ユニット1、定着ユニット12等にもコネクタ50を介して配線してもよく、あるいは第1の開閉部材3の回動軸3bの付近を通して配線してもよい。

[0029]

以上のような画像形成装置全体の作動の概要は次の通りである。

- (1) 図示しないホストコンピュータ等(パーソナルコンピュータ等)からの印字指令信号(画像形成信号)が電装品ボックス5内の制御回路に入力されると、各画像形成ステーションY, M, C, Kの像担持体20、現像手段24の各ローラ、および中間転写ベルト16が回転駆動される。
- (2)像担持体20の表面が帯電手段22によって一様に帯電される。

- (3) 各画像形成ステーションY, M, C, Kにおいて一様に帯電した像担持体 20の表面に、像書込手段23によって各色の画像情報に応じた選択的な露光がなされ、各色用の静電潜像が形成される。
- (4) それぞれの像担持体20に形成された静電潜像が現像手段24によりトナー像が現像される。

[0030]

- (5)中間転写ベルト16の1次転写部材21には、トナーの帯電極性と逆極性の一次転写電圧が印加され、像担持体20上に形成されたトナー像が一次転写部において中間転写ベルト16の移動に伴って順次、中間転写ベルト16上に重ねて転写される。
- (7) この1次画像を1次転写した中間転写ベルト16の移動に同期して、給紙カセット35に収納された記録媒体Pが、レジストローラ対37を経て2次転写ローラ19に給送される。
- (8) 1次転写画像は、2次転写部位で記録媒体と同期合流し、押圧機構によって中間転写ベルト16の駆動ローラ14に向かって押圧された2次転写ローラ19で、1次転写画像とは逆極性のバイアスが印加され、中間転写ベルト16上に形成された1次転写画像は、同期給送された記録媒体に2次転写される。

[0031]

- (9) 2次転写に於ける転写残りのトナーは、従動ローラ15方向へと搬送されて、このローラ15に対向して配置したクリーニング手段17によって掻き取られ、そして、中間転写ベルト16はリフレッシュされて再び上記サイクルの繰り返しを可能にされる。
- (10) 記録媒体が定着手段12を通過することによって記録媒体上のトナー像が定着し、その後、記録媒体が所定の位置に向け(両面印刷でない場合には排紙トレイ4に向け、両面印刷の場合には両面プリント用搬送路40に向け)搬送される。

[0032]

次に、本発明の特徴について説明する。図3は、図2の像担持体20および帯電手段22の駆動系を示す斜視図である。

各像担持体20の一方の端部には像担持体駆動ギヤ51が連結され、各駆動ギヤ51間には中継ギヤ52が噛合されている。また、中間転写ベルト16の搬送方向最上流側の画像形成ステーションY(図2)の像担持体20に近接して駆動モータ53が配設され、出力ギヤ54を介して、最上流側の像担持体20の駆動ギヤ51に噛合されている。

[0033]

また、各像担持体20の他方の端部には従動ギヤ55が連結されるとともに、各帯電手段(ブラシローラ)22の他方の端部には駆動ギヤ56が連結され、前記従動ギヤ55と駆動ギヤ56間に増速ギヤ57が噛合されている。この増速ギヤ57は、小径部57aと大径部57bを有する二段ギヤからなり、小径部57aが従動ギヤ55に噛合され、大径部57bが駆動ギヤ56に噛合されている。

[0034]

上記構成においては、一つの駆動モータ53から1列配置された出力ギヤ54、像担持体駆動ギヤ51、中継ギヤ52によって、順次、各像担持体20を駆動し、かつ、従動ギヤ55、増速ギヤ57、駆動ギヤ56を介して帯電手段22を駆動するようにしている。

[0035]

図4は、各画像形成ステーションで感光体(像担持体)20のみが回転する場合と、感光体20がブラシローラ22を駆動(感光体に対して約2倍の周速度で同一回転方向)する場合の感光体駆動負荷(駆動トルク)の差を説明するための図である。

図4に示すように、感光体20からブラシローラ22を増速駆動することにより、感光体の駆動トルクは2倍弱まで増加させることができる。その結果、像担持体駆動系の歯車のバックラッシュと転写ベルトに対する転写ローラやクリーニングブレードの当離接動作が相乗して発生する画像の濃淡むらや色ずれを低減することができる。

[0036]

また、本実施形態では、感光体20とブラシローラ22の周速度が異なり、感 光体20に対するブラシローラ22の摩擦力と静電吸着力が感光体駆動系を構成 するバックラッシュを打ち消す方向に作用するので、より効果的に画像の濃淡むらや色ずれを解消することができる。

さらに、感光体20とブラシローラ22の回転方向を同一とすることにより、 感光体20に対するブラシローラ22の摩擦力と静電吸着力が感光体駆動系を構 成する歯車のバックラッシュを打ち消す方向に対してより効果的に作用させるこ とができる。

[0037]

図5は、本発明のカラー画像形成装置の他の実施形態であり全体構成を示す模式的断面図である。なお、以下の説明で図1の実施形態と同一の構成については同一番号を付して説明を省略する。本実施形態は転写ベルトとして紙搬送ベルトを用いる例であり、図1の中間転写ベルト16の代わりに紙搬送ベルト59を用いている。

[0038]

本実施形態においては、第1の開閉部材3内に転写ベルトユニット9と定着ユニット12が配設されている。転写ベルトユニット9は、ハウジング本体2の上方に配設され、図示しない駆動源により回転駆動される駆動ローラ14と、駆動ローラ14の斜め下方に配設される従動ローラ15およびバックアップローラ60と、この3本のローラに張架されて図示矢印方向へ循環駆動される紙搬送ベルト59と、バックアップローラ60に対向して紙搬送ベルト59の表面に当接するクリーニング手段17とを備え、駆動ローラ14および紙搬送ベルト59が従動ローラ15に対して図で左側に傾斜する方向に配設されている。これにより紙搬送ベルト59駆動時のベルト張り側59aが下方に位置し、ベルト弛み側が上方に位置するようにされている。

[0039]

また、紙搬送ベルト59の裏面には、各画像形成ステーションY, M, C, K の像担持体20に対向して板バネ電極からなる転写部材61がその弾性力で当接され、転写部材61には転写バイアスが印加されている。そして、各画像形成ステーションY, M, C, Kの像担持体20が紙搬送ベルト59のベルト張り側59aに当接されるようにされ、その結果、各画像形成ステーションY, M, C.

Kも従動ローラ15に対して図で左側に傾斜する方向に配設されている。

[0040]

以上、本発明の実施の形態について説明したが、本発明はこれに限定されるものではなく、種々の変更が可能であり、また、従来公知または周知の技術を必要に応じて置換または付加することが可能である。

[0041]

例えば、上記実施形態においては、一つの駆動モータ53から1列配置された 出力ギヤ54、像担持体駆動ギヤ51、中継ギヤ52によって、順次、各像担持 体20を駆動するようにしているが、各像担持体20を駆動するモータを各像担 持体20毎に設けるようにしてもよく、同一の作用効果が奏される。

[0042]

また、図1の実施形態においては、駆動ローラ14を下方に従動ローラ15を 上方に配置しているが、従動ローラ15を下方に駆動ローラ14を上方に配置す るようにしてもよい。

なお、本発明においては、中間転写ベルトおよび紙搬送ベルトを総称して転写 ベルトとして定義している。

【図面の簡単な説明】

- 【図1】本発明の1実施形態を示す模式的断面図である。
- 【図2】図1の転写ベルトユニット及び画像形成ユニットの拡大図である。
- 【図3】図2の像担持体および帯電手段の駆動系を示す斜視図である。
- 【図4】本発明における感光体駆動負荷を説明するための図である。
- 【図5】本発明の他の実施形態を示す模式的断面図である。

【符号の説明】

- Y, M, C, K…画像形成ステーション、16…中間転写ベルト(転写ベルト)
- 20…像担持体、22…帯電手段(ブラシローラ)、24…現像手段
- 5 7…増速ギヤ、5 9…紙搬送ベルト(転写ベルト)

【図4】

【図5】

【書類名】要約書

【要約】

【課題】タンデム型カラー画像形成装置において、画像の濃淡むらや色ずれを低減する。

【解決手段】像担持体の周囲に帯電手段、像書込手段および現像手段を配置した画像形成ステーションを転写ベルトに沿って各色毎に設けた画像形成装置において、前記帯電手段は像担持体20に当接して回転するブラシローラ22であり、各像担持体20から各ブラシローラ22に駆動力を伝達して各ブラシローラを駆動する。

【選択図】図3

特願2002-265407

出願人履歴情報

識別番号

[000002369]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所

東京都新宿区西新宿2丁目4番1号

氏 名 セイコーエプソン株式会社