Strong Kleene Supervaluation: Restricted Quantification and Material Implication.

Johannes Stern

Truth, Vagueness, and Indeterminacy

Aims and Outline

- Restricted quantification and material implication under semantic indeterminacy;
- Sorites, Vagueness, and Restricted Quantification
- New truth conditions (strong Kleene supervaluation);
- Restricted quantification and Curry's paradox;
- Show how to construct naive truth theories for strong Kleene supervaluation;
- Outlook: Conditionals, theories, and more.

- S Vagueness: Sorites series/paradox
- C Naive truth: Curry paradox
- P Presuppositional vs non-presuppositional readings/truth-conditions

- S Vagueness: Sorites series/paradox
- C Naive truth: Curry paradox
- P Presuppositional vs non-presuppositional readings/truth-conditions
- S, C, and P provide prima facie support for partial interpretations/models.
- Focus on S and C.

- S Vagueness: Sorites series/paradox
- C Naive truth: Curry paradox
- P Presuppositional vs non-presuppositional readings/truth-conditions
- S, C, and P provide prima facie support for partial interpretations/models.
- Focus on S and C.
- Focus on the determiner Every

- S Vagueness: Sorites series/paradox
- C Naive truth: Curry paradox
- P Presuppositional vs non-presuppositional readings/truth-conditions
- S, C, and P provide prima facie support for partial interpretations/models.
- Focus on S and C.
- Focus on the determiner Every
 - $\blacktriangleright \forall x \varphi := \text{Every}_x(\top, \varphi);$
 - $\varphi \to \psi := \text{Every}_{x}(\varphi, \psi) \text{ with } x \notin \text{FV}(\varphi \land \psi).$

Vagueness

Every and Sorites

```
A Sorites series
```

Premiss 1 Pa₀.

Premiss 2 Every_x (Pa_x, Pa_{x+1}) .

Conclusion $\forall x(Pa_x)$

Every and Sorites

A Sorites series

```
Premiss 1 Pa_0.
```

Premiss 2 Every_x(Pa_x , Pa_{x+1}).

Conclusion $\forall x(Pa_x)$

- Either a premiss is false or the inference unsound.
- Against partial interpretation of *P*.
- What is the logic/semantics of Every $_x$?

Classical supervaluation

- Quantification over (classical) admissible precisification;
- Vindicates all first-order logical truths.

Classical supervaluation

- Quantification over (classical) admissible precisification;
- Vindicates all first-order logical truths.

Many-valued logic

- Compositional truth-conditions;
- Logic/semantics of restricted quantification remains to be determined...

Classical supervaluation

- Quantification over (classical) admissible precisification;
- Vindicates all first-order logical truths.

Many-valued logic

- Compositional truth-conditions;
- Logic/semantics of restricted quantification remains to be determined...
- SV provides a logic/semantics for Every

Classical supervaluation

- Quantification over (classical) admissible precisification;
- Vindicates all first-order logical truths.

Many-valued logic

- Compositional truth-conditions;
- Logic/semantics of restricted quantification remains to be determined...
- ► SV provides a logic/semantics for Every
- ► If on accepts that S, C, and P introduce partiality, one should not try to vindicate classical tautologies.

- (a) Every red ball is red.
- (b) Every red ball is Jacky's.

- (a) Every red ball is red.
- (b) Every red ball is Jacky's.

Orthodox TCs

- ightharpoonup (a) is true iff $\|\text{red ball}\| \subseteq \|\text{red}\|$
- ▶ (b) is true iff $\|\text{red ball}\| \subseteq \|\text{Jacky's}\|$

- (a) Every red ball is red.
- (b) Every red ball is Jacky's.

Orthodox TCs

- ightharpoonup (a) is true iff $\|\text{red ball}\| \subseteq \|\text{red}\|$
- ▶ (b) is true iff $\|\text{red ball}\| \subseteq \|\text{Jacky's}\|$

- ▶ (a) is true iff $\|\text{not red ball}\| \cup \|\|\text{red}\| = D$
- ▶ (b) is true iff $\|\text{not red ball}\| \cup \|\text{Jacky's}\| = D$

- (a) Every red ball is red.
- (b) Every red ball is Jacky's.

Orthodox TCs

- ightharpoonup (a) is true iff $\|\text{red ball}\| \subseteq \|\text{red}\|$
- ▶ (b) is true iff $\|\text{red ball}\| \subseteq \|\text{Jacky's}\|$

- ▶ (a) is true iff $\|\text{not red ball}\| \cup \|\|\text{red}\| = D$
- ▶ (b) is true iff $\|\text{not red ball}\| \cup \|\text{Jacky's}\| = D$
- Contra Orthodox TCs: borderlines cases as a counterexample to (b).

- (a) Every red ball is red.
- (b) Every red ball is Jacky's.

Orthodox TCs

- ightharpoonup (a) is true iff $\|\text{red ball}\| \subseteq \|\text{red}\|$
- ▶ (b) is true iff $\|\text{red ball}\| \subseteq \|\text{Jacky's}\|$

- ▶ (a) is true iff $\|$ not red ball $\|$ \cup $\|$ red $\|$ = D
- ▶ (b) is true iff $\|\text{not red ball}\| \cup \|\text{Jacky's}\| = D$
- Contra Orthodox TCs: borderlines cases as a counterexample to (b).
- Contra Strong Kleene TCs: (a) and (b) both untrue if red is partial predicate.

- (a) Every red ball is red.
- (b) Every red ball is Jacky's.

Orthodox TCs

- ightharpoonup (a) is true iff $\|\text{red ball}\| \subseteq \|\text{red}\|$
- ▶ (b) is true iff $\|\text{red ball}\| \subseteq \|\text{Jacky's}\|$

- ▶ (a) is true iff $\|$ not red ball $\|$ \cup $\|$ red $\|$ = D
- ▶ (b) is true iff $\|\text{not red ball}\| \cup \|\text{Jacky's}\| = D$
- Contra Orthodox TCs: borderlines cases as a counterexample to (b).
- Contra Strong Kleene TCs: (a) and (b) both untrue if red is partial predicate.

Some Q-statements admit generic—non-instance based—explanations.

- Some Q-statements admit generic—non-instance based—explanations.
- ► Indefinite extensibility (global domain is never complete)

- Some Q-statements admit generic—non-instance based—explanations.
- Indefinite extensibility (global domain is never complete)
- ► Intuitionistic TCs for universal Q

- Some Q-statements admit generic—non-instance based—explanations.
- ► Indefinite extensibility (global domain is never complete)
- Intuitionistic TCs for universal Q

Theoretical Motivation

Indefinite extensibility: stability under domain extensions.

Toward Restricted Quantification in Partial Logics

- Non-instance based, "generic" understanding
- extensibility of the local domain
- Determiners as relations/concepts of first-order concepts
 - ▶ intensional [non-modal] understanding of concepts?
 - functions from interpretations to the domain

Theoretical Motivation

Semantic indeterminacy and partiality: stability under semantic precisifications/local domain extensions ("Monotonicity",)

Strong Kleene Supervaluation

Supervaluation structure $\mathfrak M$

A tuple (D, X, H) such that $D \neq \emptyset$ and

- ▶ X is a set of partial (strong Kleene) interpretations such that for all $I, J \in X$ and all closed terms t
 - ightharpoonup J(t) = I(t)
- \vdash $H \subseteq X \times X$ such that
 - H is transitive
 - ▶ if $(I, J) \in H$, then $I \leq J$.

Truth relative to an Interpretation

Let
$$J \in X$$
 and $\|\chi\|_X^{J,\beta} = \{d \in D \mid \mathfrak{M}, J \Vdash \varphi[\beta(x:d)]\}$.:

$$\begin{split} \mathfrak{M}, J \Vdash \mathsf{Every}_{\mathbf{x}}(\varphi, \psi)[\beta] & \quad \mathsf{iff} \ \forall J'((J, J') \in H \Rightarrow \|\varphi\|_{\mathbf{x}}^{J', \beta} \subseteq \|\psi\|_{\mathbf{x}}^{J', \beta}) \\ \mathfrak{M}, J \Vdash \neg \mathsf{Every}_{\mathbf{x}}(\varphi, \psi)[\beta] & \quad \mathsf{iff} \ \|\varphi\|_{\mathbf{x}}^{J, \beta} \cap \|\neg\psi\|_{\mathbf{x}}^{J, \beta}) \neq \emptyset \end{split}$$

strong Kleene truth for remaining clauses.

- Every as a relation on functions from interpretations to the domain;
 - ightharpoonup Dom $\mathfrak{M} := \{f \mid f \in {}^{X}D\}$
 - ightharpoonup Every $_{\mathfrak{M}}\subseteq \mathsf{Dom}_{\mathfrak{M}} imes \mathsf{Dom}_{\mathfrak{M}}$

- Every as a relation on functions from interpretations to the domain;
 - ightharpoonup Dom $\mathfrak{M} := \{f \mid f \in {}^{X}D\}$
 - ightharpoonup Every $_{\mathfrak{M}}\subseteq \mathsf{Dom}_{\mathfrak{M}} imes \mathsf{Dom}_{\mathfrak{M}}$
- ▶ $(f,g) \in \text{Every}_{\mathfrak{M}} \text{ iff } f(J) \subseteq g(J) \text{ for all } J \in X.$
- ▶ $(f,g) \in \text{Some}_{\mathfrak{M}} \text{ iff } f(J) \cap g(J) \neq \emptyset \text{ for all } J \in X.$

- Every as a relation on functions from interpretations to the domain;
 - ightharpoonup Dom $\mathfrak{M} := \{f \mid f \in {}^{X}D\}$
 - ightharpoonup Every $_{\mathfrak{M}}\subseteq \mathsf{Dom}_{\mathfrak{M}} imes \mathsf{Dom}_{\mathfrak{M}}$
- ▶ $(f,g) \in \text{Every}_{\mathfrak{M}} \text{ iff } f(J) \subseteq g(J) \text{ for all } J \in X.$
- ▶ $(f,g) \in \text{Some}_{\mathfrak{M}} \text{ iff } f(J) \cap g(J) \neq \emptyset \text{ for all } J \in X.$
- For φ set $\|\varphi\|_{\nu}^{\beta} \in \text{Dom}(\mathfrak{M})$ such that for all $J \in X$

$$\|\varphi\|_{\nu}^{\beta}(J) := \{a \in D \mid \mathfrak{M}, J \Vdash \varphi[\beta(x:a)]\}.$$

- Every as a relation on functions from interpretations to the domain;
 - ightharpoonup Dom $\mathfrak{M} := \{f \mid f \in {}^{X}D\}$
 - ightharpoonup Every $_{\mathfrak{M}}\subseteq \mathsf{Dom}_{\mathfrak{M}} imes \mathsf{Dom}_{\mathfrak{M}}$
- ▶ $(f,g) \in \text{Every}_{\mathfrak{M}} \text{ iff } f(J) \subseteq g(J) \text{ for all } J \in X.$
- ▶ $(f,g) \in \text{Some}_{\mathfrak{M}} \text{ iff } f(J) \cap g(J) \neq \emptyset \text{ for all } J \in X.$
- For φ set $\|\varphi\|_{v}^{\beta} \in \text{Dom}(\mathfrak{M})$ such that for all $J \in X$

$$\|\varphi\|_{\mathbf{v}}^{\beta}(J) := \{ a \in D \mid \mathfrak{M}, J \Vdash \varphi[\beta(\mathbf{x} : a)] \}.$$

Higher-Order Truth Condition

$$\begin{split} \mathfrak{M}, J \Vdash \mathsf{Every}_x(\varphi, \psi)[\beta] & \quad \text{iff } (\|\varphi\|_x^\beta. \|\psi\|_x^\beta) \in \mathsf{Every}_{\mathfrak{M}_J} \\ \mathfrak{M}, J \vdash \neg \mathsf{Every}_x(\varphi, \psi)[\beta] & \quad \text{iff } (\|\varphi\|_x^\beta, \|\neg\psi\|_x^\beta) \in \mathsf{Some}_{\mathfrak{M}_J} \end{split}$$

Taking Stock

Logic

- Corresponds to Nelson logic (N3);
- Some flexibility:
 - ► Use fde-style semantics: N4, Hype (QN*),...
 - Strengthening of tc for Every to allow for contraposition
- Kripke frames for intuitionistic logic

Data

- (a) 'Every red ball is red.' true at all interpretation.
- (b) 'Every red ball is Jacky's.' true if all borderline red balls belong Jacky.

Truth

A terminological primer

Naivity

A truth theory Th is called naive iff for all sentences φ

$$\varphi \in \operatorname{Th} \operatorname{iff} \mathbf{T}^{\scriptscriptstyle \Gamma} \varphi^{\scriptscriptstyle \sqcap} \in \operatorname{Th}.$$

Transparency

A truth theory Th is called transparent iff for all sentences φ,ψ

$$\psi(\varphi/p) \in \mathsf{Th} \, \mathsf{iff} \, \psi(\mathsf{T}^{\vdash} \varphi^{\lnot}/p) \in \mathsf{Th}.$$

Every and Curry

Quantified Curry

Let κ be the sentence

$$\mathsf{Every}_{x}(x = \lceil \kappa \rceil \wedge \mathsf{T} x, x \neq x)$$

- Curry's paradox main obstacle for conditionals/RQ in truth theories.
- Orthodox TC: κ is true iff κ is not in the interpretation of the truth predicate.
- ► No naive truth models with orthodox TCs
- Strong Kleene supervaluation: κ cannot be stably true or untrue under semantic precisification/local domain extensions

More on Curry

We cannot have

- Transparency, structural rules, and deduction theorem
- ► Transparency + MP + \rightarrow -contraction + \rightarrow -reflexivity

More on Curry

We cannot have

- Transparency, structural rules, and deduction theorem
- ► Transparency + MP + \rightarrow -contraction + \rightarrow -reflexivity

Logicality: Truth vs Conditional

- Logicality of →: Conditional defined relative to a model class also containing non-naive truth models.
- ▶ **Logicality of truth**: Conditional defined relative to naive truth models only; loss of crucial logical properties of \rightarrow .
- ▶ We opt for the logicality of \rightarrow ;
- Construct naive truth model that sees non-naive models.

Interpreting Truth

Expand supervaluation structure $\mathfrak{M}=(D,X,H)$ for \mathcal{L} to an supervaluation structure for \mathcal{L}_T

Assumptions

- \triangleright \mathcal{L} extends the language of some syntax theory \mathcal{L}_S , e.g., the language of arithmetic;
- \triangleright \mathcal{L} contains names of all elements of D;
- ▶ for all $\varphi \in \mathcal{L}_S$; $J, J' \in X$ and assignments β .
 - $\blacktriangleright \mathfrak{M}, J \Vdash \varphi[\beta] \text{ iff } \mathfrak{M}, J' \Vdash \varphi[\beta]$

Valuation on M

Function that assigns an interpretation to the truth predicate relative to a world and an interpretation:

▶ $f: X \to \mathcal{P}(Sent)$

Not all valuations are equally good. A valuation f is admissible on $\mathfrak{M}=(D,X,H)$ iff

▶ f is consistent, i.e., if for all $J \in X$ and $\varphi \in \mathcal{L}_T$:

$$\varphi \notin f(J)$$
 or $\neg \varphi \notin f(J)$;

Not all valuations are equally good. A valuation f is admissible on $\mathfrak{M}=(D,X,H)$ iff

▶ f is consistent, i.e., if for all $J \in X$ and $\varphi \in \mathcal{L}_T$:

$$\varphi \not\in f(J)$$
 or $\neg \varphi \not\in f(J)$;

▶ for all $J \in X$ and $\varphi \in \mathcal{L}$:

if
$$\varphi \in f(J)$$
, then $(\mathfrak{M}, J) \Vdash \varphi$;

Not all valuations are equally good. A valuation f is admissible on $\mathfrak{M}=(D,X,H)$ iff

▶ f is consistent, i.e., if for all $J \in X$ and $\varphi \in \mathcal{L}_{T}$:

$$\varphi \not\in f(J)$$
 or $\neg \varphi \not\in f(J)$;

▶ for all $J \in X$ and $\varphi \in \mathcal{L}$:

if
$$\varphi \in f(J)$$
, then $(\mathfrak{M}, J) \Vdash \varphi$;

▶ for all $J, J' \in X$, if $(J, J') \in H$, then $f(J) \subseteq f(J')$.

 $\text{Val}^{\text{Adm}}_{\mathfrak{M}}$ denotes the set of admissible interpretations on $\mathfrak{M}.$

Not all valuations are equally good. A valuation f is admissible on $\mathfrak{M}=(D,X,H)$ iff

▶ f is consistent, i.e., if for all $J \in X$ and $\varphi \in \mathcal{L}_{T}$:

$$\varphi \notin f(J)$$
 or $\neg \varphi \notin f(J)$;

▶ for all $J \in X$ and $\varphi \in \mathcal{L}$:

if
$$\varphi \in f(J)$$
, then $(\mathfrak{M}, J) \Vdash \varphi$;

▶ for all $J, J' \in X$, if $(J, J') \in H$, then $f(J) \subseteq f(J')$.

 $Val^{Adm}_{\mathfrak{M}}$ denotes the set of admissible interpretations on $\mathfrak{M}.$

Truth Interpretation

Let $J \in X$ and f an admissible valuation, then J_f is a called a truth-interpretation for the language \mathcal{L}_T :

$$J_f(P) := \begin{cases} f(J), & \text{if } P \doteq T; \\ J(P), & \text{otherwise.} \end{cases}$$

Admissibility Condition

Ordering

Let f, g be valuations of \mathfrak{M} . Then $f \leq g$ iff $f(w,J) \subseteq g(J)$, for all $J \in X$.

Admissibility Condition

Ordering

Let f, g be valuations of \mathfrak{M} . Then $f \leq g$ iff $f(w, J) \subseteq g(J)$, for all $J \in X$.

Admissibility condition

A function $\Phi: Val_{\mathfrak{M}} \to \mathcal{P}(Val_{\mathfrak{M}}^{Adm})$ is called an admissibility condition iff

if
$$g \in \Phi(f)$$
, then $f \leq g$.

- \triangleright Φ yields the admissible precisifications of an valuations f
- ▶ Φ induces an ordering on $Val^{Adm}_{\mathfrak{M}}: f \leq_{\Phi} g : \leftrightarrow g \in \Phi(f)$.

Admissibility Condition

Ordering

Let f, g be valuations of \mathfrak{M} . Then $f \leq g$ iff $f(w, J) \subseteq g(J)$, for all $J \in X$.

Admissibility condition

A function $\Phi: Val_{\mathfrak{M}} \to \mathcal{P}(Val_{\mathfrak{M}}^{Adm})$ is called an admissibility condition iff

if
$$g \in \Phi(f)$$
, then $f \leq g$.

- lacktriangle Φ yields the admissible precisifications of an valuations f
- ▶ Φ induces an ordering on $Val^{Adm}_{\mathfrak{M}}: f \leq_{\Phi} g : \leftrightarrow g \in \Phi(f)$.

Further Assumptions:

- \triangleright \leq_{Φ} is transitive
- ▶ if $f \le g$, then $\Phi(g) \subseteq \Phi(f)$.

Truth Structure

Let $\mathfrak{M}=(D,X,H)$ be a supervaluation structure and $Y\subseteq \operatorname{Val}^{\operatorname{Adm}}_{\mathfrak{M}}$. Then the tupel $(D,X\times Y,H_{\Phi})$ is called a **truth structure** iff for all $I,J\in X$ and $f,g\in Y$:

$$(I_f, J_g) \in H_{\Phi} : \leftrightarrow (I, J) \in H \& f \leq_{\Phi} g.$$

Truth Structure

Let $\mathfrak{M}=(D,X,H)$ be a supervaluation structure and $Y\subseteq \operatorname{Val}^{\operatorname{Adm}}_{\mathfrak{M}}$. Then the tupel $(D,X\times Y,H_{\Phi})$ is called a **truth structure** iff for all $I,J\in X$ and $f,g\in Y$:

$$(I_f, J_g) \in H_{\Phi} : \leftrightarrow (I, J) \in H \& f \leq_{\Phi} g.$$

Grounded Truth Structure

Let $\mathfrak{M}_{\mathbb{T}} = (D, X \times Y, H_{\Phi})$ be a truth structure. If there is an $f \in Y$ such that $Y \cap \Phi(f) \neq \emptyset$ and $f \leq g$ for all $g \in Y$, then $\mathfrak{M}_{\mathbb{T}}$ is called a **grounded truth structure**. A set Y_f with minimal element f is called a grounded truth set.

Truth Structures and Kripkean Truth

- ► Truth structure give an interpretation of \mathcal{L}_T ;
- ▶ No guarantee that interpretation of T is truth-like;

Truth Structures and Kripkean Truth

- ▶ Truth structure give an interpretation of \mathcal{L}_T ;
- ▶ No guarantee that interpretation of T is truth-like;

Aim

Find a grounded truth structure \mathfrak{M}_T with minimal $f \in Y$ such that for all $J \in X$, $w \in W$ and $\varphi \in \mathcal{L}_T$:

$$\mathfrak{M}_{\mathrm{T}}, J_f \Vdash \mathrm{T}^{\vdash} \varphi^{\lnot} \text{ iff } \mathfrak{M}_{\mathrm{T}}, J_f \Vdash \varphi.$$

Truth Structures and Kripkean Truth

- ► Truth structure give an interpretation of \mathcal{L}_T ;
- ▶ No guarantee that interpretation of T is truth-like;

Aim

Find a grounded truth structure \mathfrak{M}_T with minimal $f \in Y$ such that for all $J \in X$, $w \in W$ and $\varphi \in \mathcal{L}_T$:

$$\mathfrak{M}_{\mathsf{T}}, \mathit{J}_{f} \Vdash \mathsf{T}^{\vdash} \varphi^{\lnot} \text{ iff } \mathfrak{M}_{\mathsf{T}}, \mathit{J}_{f} \Vdash \varphi.$$

Transparency is out of reach!

Fixed Points

Definition (Compactness of Φ)

Set $\Phi(X) = \{\Phi(f) | f \in X\}$. Φ is compact on Y_f iff for all $X \subseteq Y_f$: if $\Phi(f_1) \cap \ldots \cap \Phi(f_n) \neq \emptyset$ for all $n \in \omega$ and $f_1, \ldots f_n \in X$, then $\bigcap \Phi(X) \neq \emptyset$.

Fixed Points

Definition (Compactness of Φ)

Set $\Phi(X) = \{\Phi(f) | f \in X\}$. Φ is compact on Y_f iff for all $X \subseteq Y_f$: if $\Phi(f_1) \cap \ldots \cap \Phi(f_n) \neq \emptyset$ for all $n \in \omega$ and $f_1, \ldots f_n \in X$, then $\bigcap \Phi(X) \neq \emptyset$.

Proposition

Let $\mathfrak{M} = (D, X, H)$ be a supervaluation structure and Φ compact. Then there exists a grounded truth set Y_f and admissible valuation function f such that for all $\varphi \in \operatorname{Sent}_{\mathcal{L}_T}$

$$(D, X \times Y_f, H_{\Phi}), J_f \Vdash \varphi \text{ iff } (D, X \times Y_f, H_{\Phi}), J_f \Vdash T^{\vdash} \varphi^{\urcorner}$$

for all $J \in X$.

Some more specifics

Let $Adm_{\mathfrak{M}}$ be the set of grounded truth sets. Define two operations:

▶ $\theta_{\mathfrak{M}}^{\Phi}: Val_{\mathfrak{M}}^{Adm} \times Adm_{\mathfrak{M}} \rightarrow Val_{\mathfrak{M}}$ such that for all $f \in Y_f \in Adm_{\mathfrak{M}}$ and $J \in X$:

$$[\theta_{\mathfrak{M}}^{\Phi}(f, Y_f)](J) := \{ \varphi \mid (F, X \times Y_f, H_{\Phi}), J_f \Vdash \varphi \}$$

▶ $\Theta_{\mathfrak{M}}^{\Phi}$: Adm $_{\mathfrak{M}} \to \mathcal{P}(Val_{\mathfrak{M}}^{Adm})$ such that for all $Y_f \in Adm_{\mathfrak{M}}$:

$$\Theta_{\mathfrak{M}}^{\Phi}(Y_f) = \{g \in Y_f \mid \theta_{\mathfrak{M}}^{\Phi}(Y_f, f) \leq g\}.$$

Some more specifics

Let $Adm_{\mathfrak{M}}$ be the set of grounded truth sets. Define two operations:

▶ $\theta_{\mathfrak{M}}^{\Phi}: Val_{\mathfrak{M}}^{Adm} \times Adm_{\mathfrak{M}} \rightarrow Val_{\mathfrak{M}}$ such that for all $f \in Y_f \in Adm_{\mathfrak{M}}$ and $J \in X$:

$$[\theta_{\mathfrak{M}}^{\Phi}(f, Y_f)](J) := \{ \varphi \mid (F, X \times Y_f, H_{\Phi}), J_f \Vdash \varphi \}$$

▶ $\Theta_{\mathfrak{M}}^{\Phi}$: Adm $_{\mathfrak{M}} \to \mathcal{P}(Val_{\mathfrak{M}}^{Adm})$ such that for all $Y_f \in Adm_{\mathfrak{M}}$:

$$\Theta_{\mathfrak{M}}^{\Phi}(Y_f) = \{ g \in Y_f \mid \theta_{\mathfrak{M}}^{\Phi}(Y_f, f) \leq g \}.$$

Observation

Let $f \in Y_f \in Adm_{\mathfrak{M}}$. Then

$$\theta(Y_f, f) = f \text{ iff } \Theta(Y_f) = Y_f.$$

'Naive' Fixed Point Property

$$\Phi_{\mathsf{Nve}}(f) := \begin{cases} \emptyset, & \text{if } f \notin \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}}; \\ \{g \in \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}} \mid f \leq g \& g \text{ is (N3)-naive}\}, & \text{otherwise.} \end{cases}$$

 $ightharpoonup \Phi_{Nve}(f)$ is compact on $Val_{\mathfrak{M}}^{Adm}$

'Naive' Fixed Point Property

$$\Phi_{\mathsf{Nve}}(f) := \begin{cases} \emptyset, & \text{if } f \notin \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}}; \\ \{g \in \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}} \,|\, f \leq g \,\&\, g \text{ is (N3)-naive}\}, & \text{otherwise.} \end{cases}$$

▶ $\Phi_{Nve}(f)$ is compact on $Val_{\mathfrak{M}}^{Adm}$

Proposition (Φ_{Nve} -fixed points)

Let $\mathfrak{M} = (D, X, H)$ be a supervaluation structure. The there exists a grounded truth set Y_f

$$\theta(Y_f, f) = f$$
 and $\Theta(Y_f) = Y_f$

with admissibility condition Φ_{Nve} .

'Naive' Fixed Point Property

$$\Phi_{\mathsf{Nve}}(f) := \begin{cases} \emptyset, & \text{if } f \not\in \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}}; \\ \{g \in \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}} \,|\, f \leq g \& g \text{ is (N3)-naive}\}, & \text{otherwise.} \end{cases}$$

• $\Phi_{Nve}(f)$ is compact on $Val_{\mathfrak{M}}^{Adm}$

Proposition (Φ_{Nve} -fixed points)

Let $\mathfrak{M} = (D, X, H)$ be a supervaluation structure. The there exists a grounded truth set Y_f

$$\theta(Y_f, f) = f$$
 and $\Theta(Y_f) = Y_f$

with admissibility condition Φ_{Nve} .

Naive valuation functions and transparency

▶ N3-logical truths

- ► N3-logical truths
- ► Closure under Nec and Conec

- ► N3-logical truths
- Closure under Nec and Conec
- ▶ truth commutation axioms for all logical connectives save →:
 - ightharpoonup $\neg Tx \leftrightarrow T \neg x$
 - $T(x \land y) \leftrightarrow Tx \land Ty$

- ► N3-logical truths
- Closure under Nec and Conec
- ▶ truth commutation axioms for all logical connectives save \rightarrow :
 - ightharpoonup $\neg Tx \leftrightarrow T \neg x$
 - $T(x \land y) \leftrightarrow Tx \land Ty$
- truth-iteration axioms:
 - ightharpoonup $\mathrm{T}t\leftrightarrow\mathrm{T}^{\Gamma}\mathrm{T}t^{\gamma}$

- ► N3-logical truths
- Closure under Nec and Conec
- ▶ truth commutation axioms for all logical connectives save →:
 - ightharpoonup $\neg Tx \leftrightarrow T \neg x$
 - $T(x \land y) \leftrightarrow Tx \land Ty$
- truth-iteration axioms:
 - ightharpoonup $\mathrm{T}t\leftrightarrow\mathrm{T}^{\Gamma}\mathrm{T}t^{\gamma}$
- ► Truth-principles for \rightarrow :
 - ightharpoonup $Tx \wedge T(x \rightarrow y) \rightarrow Ty$
 - $T(\neg x \lor y) \to T(x \to y)$

- N3-logical truths
- Closure under Nec and Conec
- ▶ truth commutation axioms for all logical connectives save \rightarrow :
 - ightharpoonup $\neg Tx \leftrightarrow T \neg x$
 - ightharpoonup $T(x \land y) \leftrightarrow Tx \land Ty$
- truth-iteration axioms:
 - ightharpoonup $\mathrm{T}t\leftrightarrow\mathrm{T}^{\Gamma}\mathrm{T}t^{\gamma}$
- ► Truth-principles for \rightarrow :
 - ightharpoonup $Tx \wedge T(x \rightarrow y) \rightarrow Ty$
 - $T(\neg x \lor y) \to T(x \to y)$

Deduction Theorem

Let J_f a fixed-point and \mathfrak{M}_{J_f} the J_f generated substructure of \mathfrak{M} . Then

$$\Gamma, \varphi \vDash_{\mathfrak{M}_{J_{\mathrm{f}}}} \psi \text{ iff } \Gamma \vDash_{\mathfrak{M}_{J_{\mathrm{f}}}} \varphi \rightarrow \psi$$

- $\forall x \mathrm{T} \varphi(\dot{x}) \leftrightarrow \mathrm{T} \forall v (\varphi(v/x))$
- lacktriangle requires admissible precisifications to be ω -complete

- $\forall x \mathrm{T} \varphi(\dot{x}) \leftrightarrow \mathrm{T} \forall v (\varphi(v/x))$
- \triangleright requires admissible precisifications to be ω -complete
- not a compact property

- $\forall x \mathrm{T} \varphi(\dot{x}) \leftrightarrow \mathrm{T} \forall v (\varphi(v/x))$
- ightharpoonup requires admissible precisifications to be ω -complete
- not a compact property
- contrast to classical SV not ruled out

- $\forall x \mathrm{T} \varphi(\dot{x}) \leftrightarrow \mathrm{T} \forall v (\varphi(v/x))$
- ightharpoonup requires admissible precisifications to be ω -complete
- not a compact property
- contrast to classical SV not ruled out
- Strong Kleene supervaluation has the existence property

- $\forall x \mathrm{T} \varphi(\dot{x}) \leftrightarrow \mathrm{T} \forall v (\varphi(v/x))$
- ightharpoonup requires admissible precisifications to be ω -complete
- not a compact property
- contrast to classical SV not ruled out
- Strong Kleene supervaluation has the existence property

ω -consistency

There are fixed points for

$$\Phi_{\omega-\mathsf{Nve}}(f) := \begin{cases} \emptyset, \text{ if } f \not\in \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}}; \\ \{g \in \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}} \,|\, f \leq g \,\&\, g \text{ is naive a. } \omega \text{ cons.} \}, \text{ else.} \end{cases}$$

Outlook

- Modal strong Kleene supervaluation: modality and natural language conditionals
- ► First-order approaches
 - External and internal axiomatizations
- Generalized quantifiers