

# Lecture 4 — Binary representation

Dr. Aftab M. Hussain,
Assistant Professor, PATRIOT Lab, CVEST

Chapter 2

#### Signed magnitude representation

- In this notation, the number consists of a magnitude and a symbol ( + or ) or a bit (0 or 1) indicating the sign
- This is similar to the representation of signed numbers used in ordinary arithmetic
- For example, the string of bits 01001 represents +9, and 11001 represents -9 in signed magnitude representation
- In signed-magnitude, -9 is obtained from +9 by changing only the sign bit in the leftmost position from 0 to 1
- Weird: +0 is represented as 0000 and minus 0 is represented as 1000. So, two representations for zero – inefficient and may cause errors

#### Signed complement representation

- When arithmetic operations are implemented in a computer, it is more convenient to use a different system, referred to as the signed complement system, for representing negative numbers
- In this system, a negative number is indicated by its complement
- Whereas the signed-magnitude system negates a number by changing its sign, the signed-complement system negates a number by taking its complement
- Since positive numbers always start with 0 (plus) in the leftmost position (in all representations), it follows that the complement will always start with a 1, indicating a negative number
- In signed-1's-complement, -9 is obtained by taking the 1's complement of all the bits of +9, including the sign bit
- The signed-2's-complement representation of -9 is obtained by taking the 2's complement of the positive number, including the sign bit

## Reading and Writing signed complements

- Write into memory the following numbers in signed 2's complement prestation in 4 bits:
- +3
- -7
- 0
- We read these numbers from memory knowing its in signed 2's complement prestation in 4 bits, what are the numbers?:
- (1100)<sub>2</sub>
- (1111)<sub>2</sub>
- (0000)<sub>2</sub>
- (1000)<sub>2</sub>

## Interpretations for 4 bit binary numbers

| Decimal | Signed-2's<br>Complement | Signed-1's<br>Complement | Signed<br>Magnitude |
|---------|--------------------------|--------------------------|---------------------|
| +7      | 0111                     | 0111                     | 0111                |
| +6      | 0110                     | 0110                     | 0110                |
| +5      | 0101                     | 0101                     | 0101                |
| +4      | 0100                     | 0100                     | 0100                |
| +3      | 0011                     | 0011                     | 0011                |
| +2      | 0010                     | 0010                     | 0010                |
| +1      | 0001                     | 0001                     | 0001                |
| +0      | 0000                     | 0000                     | 0000                |
| -0      | _                        | 1111                     | 1000                |
| -1      | 1111                     | 1110                     | 1001                |
| -2      | 1110                     | 1101                     | 1010                |
| -3      | 1101                     | 1100                     | 1011                |
| -4      | 1100                     | 1011                     | 1100                |
| -5      | 1011                     | 1010                     | 1101                |
| -6      | 1010                     | 1001                     | 1110                |
| -7      | 1001                     | 1000                     | 1111                |
| -8      | 1000                     | _                        | _                   |

### Signed addition

- Here is some magic: if the numbers are represented in memory in 2's complement form, we just need to add the two numbers, the sign takes care of itself!
- Bigger magic: the result is also in 2's complement representation
- The sign bit is to be included in the addition and if there is a carry, it is discarded
- Examples in 4-bit signed 2's complement representation:
- 1. 3+1
- 2. 1+(-7)
- 3. (-8)+5
- 4. 7+(-3)
- In order to obtain a correct answer, we must ensure that the result has a sufficient number of bits to accommodate the sum
- If we start with two n-bit numbers and the sum occupies n + 1 bits, we say that an
  overflow occurs

### Signed subtraction

- Subtraction of two signed binary numbers when negative numbers are in 2's-complement form is simple and can be stated as follows:
  - Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend (including the sign bit)
  - A carry out is discarded
- This works because: M N = M + (-N)
- Examples in 4-bit signed 2's complement representation:
- 1. 3-5
- 2. 6-2
- 3. 1-7