Lista extra de Sequências

- Esta é uma lista extra para auxiliar na nota das listas e como tal não há prazo para entrega. No entanto, se ela for entregue até a data da primeira prova, sua nota adicionará até 50% da nota da Lista 3. Entrega posterior conta como exercícios extra.
- A maioria das questões desta lista foram tiradas do Livro *Understanding Analysis* de Stephen Abbott.
- Todas as questões tem o mesmo valor individual.
- 1. Verifique usando a definição de limite que:

(a)
$$\lim \frac{1}{6n^2 + 1} = 0;$$

(b)
$$\lim \frac{3n+1}{2n+5} = \frac{3}{2}$$
;

(c)
$$\lim \frac{2}{\sqrt{n+3}} = 0$$
.

2. Argumente que a sequência

$$1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, \cdots$$

não converge para zero (A quantidade de zeros entre 1's cresce linearmente).

- 3. Denote por $\lfloor x \rfloor$ o maior inteiro menor ou igual a x. Calcule os limites:
 - (a) $\lim \left\lfloor \frac{1}{n} \right\rfloor$
 - (b) $\lim \left\lfloor \frac{10+n}{2n} \right\rfloor$
- 4. Seja $x_n \ge 0$ uma sequência. Prove
 - (a) Se $x_n \to 0$, então $\sqrt{x_n} \to 0$.
 - (b) Se $x_n \to x$, então $\sqrt{x_n} \to \sqrt{x}$.

5. Sejam (x_n) e (y_n) duas sequências. Defina a sequência mista (z_n) da seguinte maneira

$$(x_1, y_1, x_2, y_2, ..., x_n, y_n, ...).$$

Prove que z_n converge se, e somente se, (x_n) e (y_n) convergem para o mesmo valor.

- 6. Dê exemplos ou disprove:
 - (a) (x_n) e (y_n) divergentes com $(x_n + y_n)$ convergente.
 - (b) (x_n) convergente, (y_n) divergente com $(x_n + y_n)$ convergente.
 - (c) (x_n) converge e $x_n \neq 0$, mas $(\frac{1}{x_n})$ diverge.
 - (d) (a_n) ilimitada com (b_n) convergente e $(a_n b_n)$ limitada.
 - (e) (a_n) e (a_nb_n) convergentes com (b_n) divergente.
- 7. Dê exemplos ou disprove:
 - (a) Sequência ilimitada com subsequência convergente.
 - (b) Sequência monótona ilimitada com subsequência convergente.
 - (c) Uma sequência que contém subsequências convergindo para qualquer ponto no conjunto $\{1, 1/2, 1/3, 1/4, 1/5, ...\}$.
 - (d) Uma sequência que tem uma subsequência limitada, mas não possui nenhuma subsequência convergente.
- 8. Seja (a_n) uma sequência limitada.
 - (a) $y_n = \sup\{a_k : k \ge n\}$ é convergente.
 - (b) Chamamos o limite acima de *limite superior* e o denotamos como $\limsup a_n$. Dê significado para o *limite inferior* $\liminf a_n$.
 - (c) Prove que $\liminf a_n \leq \limsup a_n$ e dê exemplos onde a igualdade não ocorre.
 - (d) Prove que $\lim a_n$ existe se, e somente se, $\lim \inf a_n = \lim \sup a_n$.
- 9. Fixado $a \in \mathbb{R}$ e (a_n) uma sequência real. Prove os dois items abaixo.
 - (a) $\lim a_n = a$ se, e somente se, (a_n) é limitada e toda subsequência de (a_n) que converge tem limite a.
 - (b) $\lim a_n = a$ se, e somente se, toda subsequência de (a_n) possui uma subsequência que converge para a.