Lecture 5: Classical Encryption Part 1

COSC362 Data and Network Security

Book 1: Chapter 3 - Book 2: Chapter 2

Spring Semester, 2021

Motivation

Studying historical ciphers in order to:

- Establish basic notation and terminology
- Introduce basic cryptographic operations still used as building blocks for modern cryptographic algorithms
- Explore typical attacks and adversary capabilities that cryptosystems should defend against

Some books:

- "The Codebreakers" by D. Kahn about history of cryptography
- "The Code Book" by S. Singh about classical and modern cryptography

Outline

Introduction
Basic Definitions
Cryptanalysis
Statistics of Natural Language

Transposition Ciphers

Simple Substitution Ciphers
Caesar Cipher
Random Simple Substitution Cipher

Outline

Introduction
Basic Definitions
Cryptanalysis
Statistics of Natural Language

Transposition Ciphers

Simple Substitution Ciphers
Caesar Cipher
Random Simple Substitution Ciphe

- Basic Definitions

Terminology

The science of cryptology has two facets:

- Cryptography: the study of designing cryptosystems
- Cryptanalysis: the study of breaking cryptosystems

These facets are generally studied together.

Another facet (not covered in this course) could be:

Steganography: the study of concealing information

- Basic Definitions

Confidentiality and Authentication

- Cryptography is the science of secret writing:
 - ▶ Transformations of data depending on a secret called the key.
- Cryptography used to provide confidentiality and authentication (or integrity):
 - ► Confidentiality: a key is needed to *read* the message.
 - ▶ Authentication: a key is needed to *write* the message.

Cryptosystems

A cryptosystem consist of:

- a set of plaintexts (holding the original message)
- ▶ a set of *ciphertexts* (holding the encrypted message)
- a set of keys
- ▶ a function, called *encryption* or *encipherment*, which transforms the plaintext into a ciphertext
- an inverse function, called decryption or decipherment, which transforms the ciphertext back into the plaintext

The ciphertext is sometimes called cryptogram.

- Basic Definitions

Symmetric and Asymmetric Cryptography

- Symmetric key cipher (secret key cipher):
 - Encryption and decryption keys are known ONLY to the sender and receiver.
 - ▶ Secure channel for transmission of the keys.
- Asymmetric key cipher (public key cipher):
 - ▶ Each participant has a public key AND a private key.
 - Possibly working for both encryption of messages and creation of digital signatures.

Notation for Symmetric Encryption Algorithms

- Encryption function E
- Decryption function D
- Message or plaintext M
- Cryptogram or ciphertext C
- Shared secret key K

Encryption is denoted as C = E(M, K)

Decryption is denoted as M = D(C, K)

└- Cryptanalysis

Methods of Cryptanalysis

An adversary has access to many methods to break a cryptosystem, such as:

- What are the resources available to the adversary? Examples: computational capability, inputs/outputs of the system.
- What is the adversary aiming to achieve? Examples: retrieving the whole secret key, distinguishing two messages (e.g. YES and NO). Why is this important?

Exhaustive Key Search

- Basic method: exhaustive key search (or brute force attack) where the adversary tries ALL possible keys.
- NO ONE can prevent such attack:
 - All cryptosystems must have ENOUGH keys to make exhaustive search too difficult computationally.
- ► The adversary may find the key without trying exhaustive search!
- ► The adversary may break the cryptosystem without finding the key!

Prevention of exhaustive key search is a minimum standard.

Attack Classification

- Ciphertext Only Attack: the attacker has access to ONLY intercepted ciphertexts.
- ► Known Plaintext Attack: the attacker knows a small amount of plaintexts and their corresponding ciphertexts.
- ► Chosen Plaintext Attack: the attacker can obtain the ciphertext from some plaintext that it has selected (the attacker has an "inside encryptor" available).
- ► Chosen Ciphertext Attack: the attacker can obtain the plaintext from some ciphertext that it has selected (the attacker has an "inside decryptor" available).

Which Attacks Should Be Prevented?

- ► A cryptosystem is seen as *highly insecure* if it can be practically attacked using only intercepted ciphertexts.
- ► A cryptosystem should be secure against chosen plaintext and chosen ciphertext attacks (modern standard).
- ► History shows that chosen ciphertext attacks are practical to set up for an attacker.

Kerckhoffs' Principle

Kerckhoffs' Principle: The attacker has complete knowledge of the cipher (i.e. the decryption key is the only item UNKNOWN to the attacker):

- ► History has shown that it is a reasonable assumption. Can we think of any examples?
- Using a secret, non-standard algorithm can cause severe problems:
 - ▶ This would be an example of *security through obscurity*.

Alphabets

- ► Historical ciphers: defining the alphabet for the plaintext and ciphertext (usually the same).
- ► Roman alphabet: *A*, *B*, *C*, · · · , *Z*. Sometimes are included: space, upper and lower case, punctuation.
- Sometimes, alphabet is mapped to numbers: $A = 0, B = 1, C = 2, \dots, Z = 25$. And space is 26.
- ▶ Real-world attackers would need to work out the alphabet.

Statistical Attacks

- Statistical attacks depend on using the redundancy of the alphabet. Can you read this? TDY S VRY CLD
- ► Information from distribution of single letters, digrams (double letters) and trigrams (triple letters) helps in the attack.
- ► Exact statistics of a language vary according to what sample is taken.

- Statistics of Natural Language

Sample Statistics for English

- ► The following statistics give a typical distribution of *English text* (calculated on a text passage of 143000 characters).
- ► Simplifying the statistics: the text is restricted to a plaintext alphabet of 27 characters:
 - ► ABCDEFGHIJKLMNOPQRSTUVWXYZ∇ with ∇ being space.
- Proportions shown are relative:
 - Example: ∇ accounts for 14.6% of all characters while E∇ accounts for 2.3% of all digrams.

Statistics of Natural Language

Single Character Percentage Frequencies

∇ 14.6	A 7.0	H 2.6	V 1.3	Z 0.1
E 10.1	R 5.2	M 2.5	B 1.3	J 0.1
N 7.8	S 5.1	P 2.5	Y 0.8	Q 0.1
T 7.5	L 3.7	U 2.4	W 0.6	
I 7.1	C 3.5	G 1.7	K 0.2	
O 7.0	D 3.5	F 1.6	X 0.1	

Introduction

Statistics of Natural Language

Most Common Digram Percentage Frequencies

E∇ 2.3	D∇ 1.7	ES 1.3	RE 1.1
∇A 2.1	TI 1.7	AT 1.3	IO 1.1
ON 1.9	AN 1.6	ND 1.3	∇I 1.1
IN 1.9	EN 1.6	N∇ 1.3	ME 1.0
∇T 1.8	TH 1.6	AL 1.2	ER 0.9
S⊽ 1.7	NT 1.4	HE 1.2	∇O 0.9

Outline

Introduction
Basic Definitions
Cryptanalysis
Statistics of Natural Language

Transposition Ciphers

Simple Substitution Ciphers
Caesar Cipher
Random Simple Substitution Ciphe

Basic Cipher Operations

Historical ciphers combine two basic operations:

Transposition: characters in the plaintext are mixed up with each other (permuted).

Substitution: each character (resp. set of characters) is replaced by a different character (resp. set of characters).

Transposition Ciphers

- Permuting characters in a fixed period d and permutation f.
- Plaintext seen as a matrix of rows of length d.
- Permuting rows/columns and outputting in row/column order.
- Here, considering permutation of rows and outputting in column order.

Simple Transposition Cipher

- ▶ Key is (*d*, *f*)
- Each block of d characters is re-ordered using permutation f
- ▶ *d*! permutations of length *d*:
 - $d! = d \times (d-1) \times (d-2) \times \cdots \times 2 \times 1$
- \blacktriangleright *Example:* d = 10 gives 3, 628, 800 possible keys

Cryptanalysis of a Transposition Cipher

- Frequency distribution of ciphertext characters = Frequency distribution of plaintext characters:
 - ▶ Helping to identify a transposition cipher.
- ▶ If d is small then transposition ciphers solved by hand using anagramming:
 - Restoring disarranged characters to their original positioning.
- ► Guessing value of *d* and writing the ciphertext in columns s.t. there are *d* rows.
- ► Knowledge of plaintext language digrams and trigrams to optimise trials.
- Automating this process.

Outline

Introduction
Basic Definitions
Cryptanalysis
Statistics of Natural Language

Transposition Ciphers

Simple Substitution Ciphers
Caesar Cipher
Random Simple Substitution Cipher

Simple Substitution Ciphers

- Each character in the plaintext alphabet replaced by a character in the ciphertext alphabet following a substitution table.
- ▶ Also called *monoalphabetic* substitution ciphers.
- Transposition ciphers permutes PLAINTEXT characters while substitution ciphers permute ALPHABET characters.
- ▶ Some special cases:
 - Caesar cipher
 - Random simple substitution cipher

Caesar Cipher

Caesar Cipher

Moving the *i*th letter of an alphabet to (i + j)th letter, s.t. the key is j.

- ▶ One can write the substitution table or simply:
 - ▶ Encryption: $C_i = (M_i + j) \mod n$
 - ▶ Decryption: $M_i = (C_i j) \mod n$
 - either n = 26 or n = 27 (size of alphabet)
- ▶ *Example:* j = 1 then CIPHER \rightarrow DJQIFS

Cryptanalysis of the Caesar Cipher

- Finding where one of the most frequent characters is shifted to.
- Example: given the ciphertext PACGHJUHHCRICGRFWRUCRICPHGLFLQH
 - Counting the characters
 - Most common characters: H and C (frequency is 5 each)
- Let ∇ be in the alphabet (n = 27), finding where it is mapped to?
 - ► Trial 1: $\nabla \rightarrow$ H, i.e. j = 8, thus HTV ∇ BM $\nabla \nabla$ VJA \cdots , so incorrect
 - ► Trial 2: $\nabla \rightarrow$ C, i.e. j = 3, thus MY ∇ DEGREE ∇ OF ∇ DOCTOR ∇ OF ∇ MEDICINE

Random Simple Substitution Cipher

- Assigning a random character of the alphabet to another character of the alphabet.
- ► Encryption and decryption defined by substitution table that randomly permutes the alphabet.
- If the alphabet has 26 characters, then 26! keys. Why?
 - ▶ Greater than 10²⁶
 - Too many keys to search even with modern computers
- Caesar cipher is a special case.

Example

Message: THE ∇ EVENING ∇ AND ∇ THE ∇ MORNING

Substitution table (key):

Casciii	ation table	\.\ U j/.
$A\toS$	$J\toG$	$S\toM$
$B\toJ$	$K \to C$	$T\toO$
$C\toV$	$L\toF$	$U\toQ$
$D\toI$	$M \to K$	$V\toD$
$E\toN$	$N\toB$	$W\toP$
$F\toY$	$O\toU$	$X\to\nabla$
$G\toW$	$P \to H$	$Y\toT$
$H\toA$	$Q\toL$	$Z\toX$
$I\toZ$	$R \to R$	$\nabla \to E$

Message substitution (encryption):

(encryption):						
T o O	$N \to B$	$D\toI$				
$H \to A$	$I \rightarrow Z$	abla o E				
$E \to N$	$N \to B$	$T\toO$				
abla o E	$G\toW$	$H\toA$				
$E \to N$	abla o E	$E\toN$				
$V \to D$	A o S	abla o E				
E o N	$N \to B$	• • •				

Cryptogram: OANENDNBZBWESBIEOANEKURBZBW

Cryptanalysis of a Random Substitution

- Using frequency analysis on alphabet characters
- Deciphering the following ciphertext:

F,JLTXCFWKOVLHK,JVKCBCOTEEVLPKCK,JV,JSTWT,JYVK,JVO,JSTSBPLVITWCWPVDBIT WICKTKOLVPHYTPRB.JSTOLVYTKK.JSC.JETSCGTUHK.JPTKYLFRTPETXCBTK.JFXC.JT.J STGCZHTVOCGVZJCXTJTLCJCSHWPLTPOLCWYKFOJSTCQQCLCJHKVQTLCJTKEFJSV HJCQQLTYFCRZTETCLJSTCXVLJFATXTWJKSVHZPRTYCZYHZCJTPCJCGTLBZVEOFI HLTKCBOTLYTW.JESFYSFKZCLITFWYVW.JFWHVHKVOTLC.JFVWF.JEVHZPOLVPHYTXVL TJSCWYHRFYXTJTLKVOICKCBTCLKCBCZFJJZTZTKKJSCWVWTYTWJFXTOTLYHRFYX TJTLJSTYCHKJEYKVPCEKYVWKJCWJZBLTYHOTLCJTPCWPEKWTGTLPTKJLVBTPJST KVZTOLVPHY,LISC,IPEKCOOTCLKEK,ISTPEK,IEZZTPEC,ITLWVEVWTYHREYXT,ITLVOE C.ITI OI VPHYTKXVI T.ISCWYHRFYXT.ITI KVOICK.ISTTDOTWKTEWEC.ITI .ISTWPVTKWV JCXVHW.LIVCYTW.JEXTOTI YHREYXT.JTI. JSTIJ TC.JOCY.JVI VO.JSTTDOTWKTI TKEPTK FWJSTTZTYJLFYTWTLIBJSTYVKJVOKHLGTFZZCWYTEFZZRTXFWFXHXCWPJSTITWT I CZTDOTWKTKCPZFREJHX . . .

Frequency Analysis of Ciphertext

No.	Character	%	Frequency
1	Т	15.4	110
2	J	10.2	73
3	С	8.3	59
4	K	6.7	48
5	L	6.7	48
6	V	6.3	45

- ▶ E and T are the most frequent characters in English:
 - ightharpoonup E ightharpoonup T and T ightharpoonup J in the substitution table
- Looking for English words such as THE and other common trigrams.

Using Cryptool

- Solving random substitution by hand is tedious and requires many trials and errors.
- Using Cryptool (freeware package):
 - ▶ Some utilities to help us, such as frequency counts.
 - ► Cryptool has a ciphertext-only tool to solve simple random substitution (needs a bit of help to get the full answer).

Substitution Table (Key)

Using Cryptool, the substitution table (key) is:

Plaintext	Α	В	С	D	Е	F	G	Н	I
Ciphertext	С	R	Υ	Р	Т	0	ı	S	F
Plaintext	J	K	L	М	N	0	Р	Q	R
Ciphertext	U	N	Z	Х	W	V	Q	М	L
Plaintext	S	Т	U	V	W	Χ	Υ	Z	
Ciphertext	K	J	Н	G	E	D	В	Α	

The plaintext starts with: ITREMAINSFORUSTOSAY...