MDCCSR_ELO, Monitor DCC Status Register

The MDCCSR EL0 characteristics are:

Purpose

Read-only register containing control status flags for the DCC.

Configuration

AArch64 System register MDCCSR_EL0 bits [30:29] are architecturally mapped to External register <u>EDSCR[30:29]</u>.

AArch64 System register MDCCSR_EL0 bits [30:29] are architecturally mapped to AArch32 System register <u>DBGDSCRint[30:29]</u>.

Attributes

MDCCSR_EL0 is a 64-bit register.

Field descriptions

63	62	61	60595857565554535251	50494847	46 45 44	4 434241403938	<u> 37363534</u>	33 32			
	RES0										
RES0	RXfull	TXfull	RES0	RAZ	RESORA	Z RES0	RAZ	RES0			
31	30	29	28272625242322212019	18171615	1413 12	2 1110 9 8 7 6	5 4 3 2	1 0			

Bits [63:31]

Reserved, res0.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the **EDSCR**.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

Bits [28:19]

Reserved, res0.

Bits [18:15]

Reserved, RAZ.

Bits [14:13]

Reserved, res0.

Bit [12]

Reserved, RAZ.

Bits [11:6]

Reserved, res0.

Bits [5:2]

Reserved, RAZ.

Bits [1:0]

Reserved, res0.

Accessing MDCCSR EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCCSR_EL0

op0	op1	CRn	CRm	op2
0b10	0b011	0b0000	0b0001	0b000

```
if Halted() &&
ConstrainUnpredictableBool(Unpredictable IGNORETRAPINDEBUG)
    X[t, 64] = MDCCSR\_EL0;
elsif PSTATE.EL == ELO then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif MDSCR EL1.TDCC == '1' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
```

```
elsif EL2Enabled() && (HCR EL2.TGE == '1' |
MDCR EL2.<TDE, TDA> != '00') then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED:
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = MDCCSR\_EL0;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR EL3.TDCC == '1' then
        UNDEFINED:
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.<TDE, TDA> != '00'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED:
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = MDCCSR\_EL0;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
```

```
else
     X[t, 64] = MDCCSR_EL0;
elsif PSTATE.EL == EL3 then
     X[t, 64] = MDCCSR_EL0;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.