Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment	No
------------	----

Faculty of Engineering End Sem Examination Dec-2023

EN3BS09 Computational Statistics

Programme: B.Tech. Branch/Specialisation: CSBS

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. Standard Normal Distribution has which of the following properties:
 (a) Mean=Variance=1
 (b) Standard deviation=Variance=0
 - (c) Mean=0, Variance=1
 - (d) Mean=Standard deviation
 - ii. The shape of Normal distribution data curve is____:
 - (a) Bell shaped (b) Triangular (c) Rectangular (d) Circular
 - iii. Which of the following methods is used to select the best subset of 1 predictor variables in multiple linear regression?
 - (a) Forward selection
- (b) Backward elimination
- (c) Stepwise regression
- (d) All of these
- iv. Which analysis is portrayed by the equation: $Y = b_0 + b_1X_1 + b_2X_2 + 1$ $b_3X_3... + b_1X_1$?
 - (a) Simple regression
- (b) Multiple regression

(c) Chi-square

- (d) None of these
- v. What is the condition of multicollinearity?
 - (a) Two or more independent variables are highly correlated
 - (b) Two or more dependent variables are highly correlated
 - (c) The independent variables are not correlated with the dependent variable
 - (d) None of these
- vi. Generally, Principal Component Analysis can be applied on:
 - (a) Labelled dataset

(b) Unlabelled dataset

(c) Both (a) & (b)

(d) Datasets not required

P.T.O.

1

1

$\Gamma \gamma 1$	
4	

	[2]		
vii.	A multivariate statistical technique for variables, usually for discovering under		1
	is known as-		
	(a) Multiple regression	(b) Factor analysis	
	(c) Discriminant analysis	(d) None of these	
viii.	In exploratory factor analysis, how m	uch variance would a good model	1
	be likely to explain?		
	(a) 0 to 25% (b) 25% to 50%	(c) 50% to 75% (d) 75% to 100%	
ix.	Which of the following is required by	K-means clustering?	1
	(a) Defined distance metric	(b) Number of clusters	
	(c) Initial guess as to cluster centroids	(d) All of these	
х.	Which of the following clustering requ	aires merging approach?	1
	(a) Partitional	(b) Hierarchical	
	(c) Naive Bayes	(d) None of these	
i.	Explain the term "Estimation of Paran	neters".	2
ii.	Mention the conditions under which		3
	Normal distribution		

Q.2

3 Normal distribution.

- iii. The marks of 1000 students in an exam follows Normal distribution with 5 Mean 70 & Std. Deviation 5. Find number of students whose marks will be-
 - (a) Less than 65
 - (b) More than 75
 - (c) Between 65 & 75

Table: Standard Normal Cumulative Probabilities (Z-score)

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823	
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985	
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170	
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379	
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611	
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867	
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148	
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451	
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776	
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.//94	./823	.7852	
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133	
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389	
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621	
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830	
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015	
Ι٦	9032	9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177	

		[3]	
OR	iv.	How do you determine the best fit line for a linear regression model?	5
Q.3	i.	What is the difference between the simple linear regression model and the multiple linear regression model?	4
	ii.	Explain multivariate analysis of variance and covariance.	6
OR	iii.	What are the basic assumptions required to validate the regression model?	6
Q.4	i.	Explain discriminant analysis with an example.	3
	ii.	Consider the two-dimensional patterns (2, 1), (3, 5), (4, 3), (5, 6), (6, 7), (7, 8). Compute the principal component using PCA Algorithm.	7
OR	iii.		7
Q.5	i.	What is difference between factor analysis and normality test?	4
	ii.	What do you mean by factor loading? Explain with an example.	6
OR	iii.	How common factors extracted? Elaborate with some examples.	6
Q.6		Attempt any two:	
	i.	What is cluster analysis? Explain its types.	5
	ii.	Differentiate between hierarchical and overlapping clustering.	5
	iii.	Explain K-Means clustering with an example.	5

[4]

Marking Scheme

Computational Statistics- EN3BS09 (T)

Q.1	i)	c) Mean=0, Variance=1 (Answer)		1
	ii)	a) Bell shaped (Answer)		1
	iii)	d) All of the Above (Answer)		1
	iv)	b) Multiple regression (Answer)		1
	v)	a) Two or more independent variab (Answer)	oles are highly correlated	1
	vi)	b) Unlabelled dataset (Answer)		1
	vii)	b) Factor analysis (Answer)		1
	viii)	c) 50% to 75% (Answer)		1
	ix)	d) all of the mentioned (Answer)		1
	x)	b) Hierarchical (Answer)		1
Q.2	i.	"Estimation of Parameters". (A	as per explanation)	2
	ii.	Mention the conditions	(1 Mark*3)	3
	iii.	i) Less than 65 (Ans=159)	2 Marks	5
		ii) More than 75 (Ans=159)	2 Marks	
		iii) Between 65 & 75 (Ans=682)	1 Mark	_
OR	iv.	Definition	2 Marks	5
		Example	3 Marks	
Q.3	i.	The Simple Linear Regression model	2 Marks	4
		The Multiple Linear Regression model	2 Marks	
	ii.	Analysis of variance	3 Marks	6
		Covariance.	3 Marks	
OR	iii.	Basic assumptions model	(1 Mark*6)	6
Q.4	i.	Definition	2 Marks	3
		Example	1 Mark	
	ii.	Eigen Value	4 Marks	7
		Eigen Vector	3 Marks	
OR	iii.	Definition	3 Marks	7
		Steps	4 Marks	
Q.5	i.	Difference between factor analysis	2 Marks	4

		Normality test	2 Marks	
	ii.	Factor Loading	3 Marks	6
		Explain with an example	3 Marks	
OR	iii.	Factors extracted with some examples	3 Marks	6
		Elaborate with some examples.	3 Marks	
Q.6		Attempt any two:		
	i.	Cluster Analysis (Definition)	2 Marks	5
		Explain its types.	3 Marks	
	ii.	Differentiate between Hierarchical	2.5 Marks	5
		Overlapping clustering.	2.5 Marks	
	iii.	Definition	2 Marks	5
		Examples	3 Marks	

P.T.O.