CSC 143 Java

Program Efficiency & Introduction to Complexity Theory

Program Efficiency & Resources

- · Question: Given different implementations, which one is
- · Goal: Find way to measure resource usage in a way that is independent of particular machines/implementations
- Resources
- Execution time
- · Execution space (choosing the correct data structure)
- · Network bandwidth
- others
- · We will focus on execution time
- Basic techniques/vocabulary apply to other resource measures

(c) 2001, University of Washington

Analysis of Execution Time

- First: describe the size of the problem in terms of one or more parameters
 - Often size of data structure, but can be magnitude of some numeric parameter, etc.
- Then, count the number of steps needed as a function of the problem size

(c) 2001, University of Washington

20-3

20-5

Cost of operations: Constant Time Ops

- Constant-time operations: each take one abstract time "step"
- Simple variable declaration/initialization (double sum = 0.0;)
- Assignment of numeric or reference values (var = value;)
- Arithmetic operation (+, -, *, /, %)
- Array subscripting (a[index])
- Simple conditional tests (x < y, p != null)
- Operator new itself (not including constructor cost) Note: new takes significantly longer than simple arithmetic or assignment, but its cost is independent of the problem we're trying to analyze
- Note: watch out for things like method calls or constructor invocations that look simple, but are expensive

2/20/2012

(c) 2001, University of Washington

20-6

Costs of Statements

```
· Sequential: S1; S2; ... Sn
  sum the costs of S1 + S2 + \dots + Sn
```

• Conditional: how long it might take to execute the code if (condition) { // take max cost (S1, S2) (plus cost of evaluating the condition)

} else { S2;

Loop:

Calculate cost of each iteration Calculate number of iterations Total cost is the product of these

2/20/2012

(c) 2001. University of Washington

Example

· What is the running time of the following logic?

```
//Given some array vector of size N
double ans = 0.0;
for (int k = 0; k < N; k++) {
  ans = ans + vector[k];
```

- · What things happen only once?
- What things happen N times?
- · Add them all up

2/20/2012

(c) 2001. University of Washington

20-1

Function Calls

- · Cost for f(a, b, c) is
 - · Cost of actually calling the function (constant overhead)
 - + cost of evaluating the arguments
 - + cost of parameter passing (normally constant time in Java for both numeric and reference values)
 - + cost of executing the function body

2/20/2012

(c) 2001, University of Washington

20-7

20-9

20-11

Exercise

- Analyze the running time of printMultTable
- Pick the problem size
- Count the number of steps

```
// print multiplication table with
// n rows and columns
void printMultTable(int n) {
    for (int k=1; k <=n; k++) {
        for (int c = 1; c <=n; c++) {
            System.out.print(r * c + " ");
        }
        System.out.println();
    }
}
```

2/20/2012

(c) 2001, University of Washington

Nested Loops (2)

 What if the number of iterations of one loop depends on the counter of the other?

```
int j, k, sum = 0;
for ( j = 0; j < N; j++ )
for ( k = 0; k < j; k++ )
sum += k * j;
```

- · Analyze inner and outer loops together
- Number of iterations of the inner loop is

```
0 + 1 + 2 + ... + (N-1) == (N) (N-1)/2
```

2/20/2012

(c) 2001, University of Washington

Comparing Algorithms

- Suppose we analyze two algorithms and get these times
 - Algorithm 1: 2n² + 37n + 120
 - Algorithm 2: 5n + 3

How do we compare these? What really matters?

- Answer: In the long run, the thing that is most interesting is the cost as the problem size n gets large
 - What are the costs for n=10, n=100; n=1,000; n=1,000,000?
 - Mainstream computers are so fast these days that time needed to solve small problems is rarely of interest

Not necessarily so for slow, low-power, or embedded systems

2/20/2012

(c) 2001, University of Washington

20-10

Orders of Growth. Does it matter?

What happens as the problem size doubles?

Even speeding up by a factor of a million, 10³⁰¹⁰ is only reduced

N	log ₂ N	5N	N log ₂ N	N^2	2 ^N
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	~109
64	6	320	384	4096	~1019
128	7	640	896	16384	~1038
256	8	1280	2048	65536	~1076
10000	13	50000	105	108	~103010

2/20/2012 (c) 2001, University of Washington

Asymptotic Complexity

- Asymptotic Complexity: As N gets large, focus on the highest order term
- · Ignores lots of details, concentrates on the bigger picture
- The asymptotic complexity gives us a (partial) way to answer "which algorithm is more efficient"
- Algorithm 1: 2n² + 37n + 120 is proportional to n²
- Algorithm 2: 50n + 42 is proportional to n
- Graphs of functions are handy tool for comparing asymptotic behavior

2/20/2012

(c) 2001, University of Washington

Big-O Notation

• Definition: If f(n) and g(n) are two complexity functions, we

f(n) = O(g(n))

if there is a constant c such that

 $f(n) \le c \cdot g(n)$

for all sufficiently large n

pronounced f(n) is Big-O(g(n)) or is order g(n)

Implications

- The notation f(n) = O(g(n)) is **not** an equality; think of it as shorthand for
 - "f(n) grows at most like g(n)" or
 - "f grows no faster than g" or
 - "f is bounded by g"
- O() notation is a worst-case analysis
- · Generally useful in practice
- · Sometimes want average-case or expected-time analysis if worstcase behavior is not typical (but often harder to analyze)

Complexity Classes

- Several common complexity classes (problem size n) Memorize these!
- · Constant time:
- O(k) or O(1)
- O(log n) [Base doesn't matter. Why?]
- · Logarithmic time: · Linear time:
- O(n)
- "n log n" time:
- O(n log n) $O(n^2)$
- · Quadratic time: · Cubic time:
- $O(n^3)$
- · Exponential time: O(kn)
- O(nk) is often called polynomial time
- Rule of thumb: polynomial time = practical; exponential time = find a different algorithm

2/20/2012

(c) 2001, University of Washington

Analyzing List Operations

We can use O() notation to compare the costs of different list implementations

Operation

- Dynamic Array Linked List*
- Construct empty list Size of the list
- isEmpty
- Clear
- Add item to start of list
- Locate item (contains, IndexOf)
- Add or remove item once it has been located

* with head, tail, and size

2/20/2012 (c) 2001, University of Washington

Practical Advice For Speed Lovers

- First pick the right algorithm and data structure
 - · Implement it carefully, insuring correctness
- Then optimize for speed but only where it matters
- · Constants do matter in the real world
- · Clever coding can speed things up, but the result is likely to be harder to read, modify
- Use tools to find hotspots concentrate on these

"Premature optimization is the root of all evil"

2/20/2012

(c) 2001. University of Washington

20-17

More Advice... "It is easier to make a correct program efficient than to make an efficient program correct' -- Edsgar Dijkstra 2/20/2012 (c) 2001. University of Washington 20-18

20 - 3

Summary

- Analyze algorithm sufficiently to determine complexity
- Compare algorithms by comparing asymptotic complexity
- For large problems, an asymptotically faster algorithm will always trump clever coding tricks
- Optimize/tune only things that actually matter, once you've picked the best algorithm

2/20/2012

(c) 2001, University of Washington

Computer Science Note

- Algorithmic complexity theory is one of the key intellectual contributions of Computer Science
- Typical problems
 - What is the worst/average/best-case performance of an algorithm?
- What is the best complexity bound for all algorithms that solve a particular problem?
- Interesting and (in many cases) complex, sophisticated math
- Still some key open problems

2/28/2012

2001. University of Washington