CLAIMS

What is claimed is:

5

10

15

- 1. An organophotoreceptor comprising an electrically conductive substrate and a photoconductive element on the electrically conductive substrate, the photoconductive element comprising:
 - (a) a charge transport composition having the formula

where Y₁ and Y₂ are, each independently, an arylamine group;

 X_1 and X_2 are, each independently, a linking group;

 R_1 and R_2 are, each independently, a hydrogen, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group;

Z is a bridging group; and

n is a distribution of integers between 1 and 100,000 with an average value greater than 1; and

- (b) a charge generating compound.
- 2. An organophotoreceptor according to claim 1 wherein Y_1 and Y_2 , each independently, comprise an (N,N-disubstituted)arylamine group, a julolidine group, or a carbazole group.
- 3. An organophotoreceptor according to claim 1 wherein X₁ and X₂ comprise, each independently, a -(CH₂)_m- group where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_a group, a CR_b group, a CR_cR_d group, or a SiR_cR_f where R_a, R_b, R_c, R_d, R_e, and R_f are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.

- 4. An organophotoreceptor according to claim 3 wherein at least one of the methylene groups is replaced by a heterocyclic group, an aromatic group, a CHOH group, O, or S.
- 5. An organophotoreceptor according to claim 3 wherein the charge transport composition has the following formula:

where n is a distribution of integers between 1 and 100,000;

Y₁ and Y₂ are, each independently, an arylamine group; and

T has one of the following formulae:

$$T_1$$
 T_2 T_3 T_4 T_5

where T₁, T₂, T₃, T₄, and T₅ are, each independently, O, S, O=S=O, or C=O.

- 6. An organophotoreceptor according to claim 1 wherein Z comprises a - $(CH_2)_k$ group where k is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_g group, a CR_h group, a CR_iR_j group, or a SiR_kR₁ where R_g, R_h, R_i, R_j, R_k, and R_l are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
- 7. An organophotoreceptor according to claim 6 wherein Z has the formulae:

where Q is a bond, O, S, O=S=O, C=O, an aryl group, an NR₃ group, or a CR_4R_5 group, where R_3 , R_4 , and R_5 are, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group; and

5

25

Z₁, Z₂, Z₃, and Z₄ are, each independently, a bond or a -(CH₂)_n- group where n is an integer between 1 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, Si, B, P, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a CR₇ group, a CR₈R₉ group, or a SiR₁₀R₁₁ group, where R₆, R₇, R₈, R₉, R₁₀, and R₁₁ are, each independently, a bond, H, hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.

8. An organophotoreceptor according to claim 7 wherein Z has the formula:

$$-z_1$$
 Q Z_2

where Q is O=S=O, and Z_1 and Z_2 are, each independently, a bond.

- 9. An organophotoreceptor according to claim 1 wherein the photoconductive element further comprises a second charge transport material.
- 10. An organophotoreceptor according to claim 9 wherein the second charge transport material comprises an electron transport compound.
- 11. An organophotoreceptor according to claim 1 wherein the photoconductive element further comprises a polymer binder.
 - 12. An electrophotographic imaging apparatus comprising:
 - (a) a light imaging component; and

5

10

- (b) an organophotoreceptor oriented to receive light from the light imaging component,
 the organophotoreceptor comprising an electrically conductive substrate and a photoconductive element on the electrically conductive substrate, the photoconductive element comprising:
 - (i) a charge transport composition having the formula

where Y₁ and Y₂ are, each independently, an arylamine group;

 X_1 and X_2 are, each independently, a linking group;

R₁ and R₂ are, each independently, a hydrogen, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group;

Z is a bridging group; and

n is a distribution of integers between 1 and 100,000 with an average of greater than 1; and

(ii) a charge generating compound.

10

- 13. An electrophotographic imaging apparatus according to claim 12 wherein Y_1 and Y_2 , each independently, comprise an (N,N-disubstituted)arylamine group, a julolidine group, or a carbazole group.
- 14. An electrophotographic imaging apparatus according to claim 12 wherein X₁ and X₂ comprise, each independently, a -(CH₂)_m- group where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_a group, a CR_b group, a CR_cR_d group, or a SiR_eR_f where R_a, R_b, R_c, R_d, R_e, and R_f are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
 - 15. An electrophotographic imaging apparatus according to claim 14 wherein at least one of the methylene groups is replaced by a heterocyclic group, an aromatic group, a CHOH group, O, or S

16. An electrophotographic imaging apparatus according to claim 12 wherein Z comprises a - $(CH_2)_{k}$ - group where k is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_g group, a CR_h group, a CR_iR_j group, or a SiR_kR_l where R_g, R_h, R_i, R_j, R_k, and R_l are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group

5

15

20

25

17. An electrophotographic imaging apparatus according to claim 16 wherein Z has the formulae:

$$Z_1$$
 Z_2 or Z_3

where Q is a bond, O, S, O=S=O, C=O, an aryl group, an NR₃ group, or a CR_4R_5 group, where R_3 , R_4 , and R_5 are, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group; and

 Z_1 , Z_2 , Z_3 , and Z_4 are, each independently, a bond or a -(CH₂)_n- group where n is an integer between 1 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, Si, B, P, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a CR₇ group, a CR₈R₉ group, or a SiR₁₀R₁₁ group, where R₆, R₇, R₈, R₉, R₁₀, and R₁₁ are, each independently, a bond, H, hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.

18. An electrophotographic imaging apparatus according to claim 17 wherein Z has the formula:

$$-z_1$$
 Q
 Z_2

where Q is O=S=O, and Z_1 and Z_2 are, each independently, a bond.

- 19. An electrophotographic imaging apparatus according to claim 12 wherein the photoconductive element further comprises an electron transport compound.
- 20. An electrophotographic imaging apparatus according to claim 12 wherein the photoconductive element further comprises a binder.
 - 21. An electrophotographic imaging apparatus according to claim 12 further comprising a toner dispenser.
- 10 22. An electrophotographic imaging process comprising:
 - (a) applying an electrical charge to a surface of an organophotoreceptor comprising an electrically conductive substrate and a photoconductive element on the electrically conductive substrate, the photoconductive element comprising:
 - (i) a charge transport composition having the formula

where Y_1 and Y_2 are, each independently, an arylamine group;

X₁ and X₂ are, each independently, a linking group;

 R_1 and R_2 are, each independently, a hydrogen, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group;

Z is a bridging group; and

n is a distribution of integers between 1 and 100,000 with an average greater than 1; and

- (ii) a charge generating compound;
- (b) imagewise exposing the surface of the organophotoreceptor to radiation to dissipate charge in selected areas and thereby form a pattern of charged and uncharged areas on the surface;
 - (c) contacting the surface with a toner to create a toned image; and
 - (d) transferring the toned image to a substrate.

20

25

- 23. An electrophotographic imaging process according to claim 22 wherein Y_1 and Y_2 , each independently, comprise an (N,N-disubstituted)arylamine group, a julolidine group, or a carbazole group.
- 5

- 24. An electrophotographic imaging process according to claim 22 wherein X_1 and X_2 comprise, each independently, a -(CH₂)_m- group where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_a group, a CR_b group, a CR_cR_d group, or a SiR_eR_f where R_a, R_b, R_c, R_d, R_e, and R_f are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
- 25. An electrophotographic imaging process according to claim 22 wherein Z comprises a (CH₂)_k- group where k is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_g group, a CR_h group, a CR_iR_j group, or a SiR_kR_l where R_g, R_h, R_i, R_j, R_k, and R_l are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
 - 26. An electrophotographic imaging process according to claim 22 wherein the photoconductive element further comprises an electron transport compound.
- 25 27. An electrophotographic imaging process according to claim 20 wherein the toner comprises a toner comprising colorant particles.
 - 28. A charge transport composition having the formula:

where Y_1 and Y_2 are, each independently, an arylamine group;

 X_1 and X_2 are, each independently, a linking group;

R₁ and R₂ are, each independently, a hydrogen, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group;

Z is a bridging group; and

n is a distribution of integers between 1 and 100,000 with an average greater than 1.

- 29. A charge transport composition according to claim 28 wherein Y₁ and Y₂, each independently, comprise an (N,N-disubstituted)arylamine group, a julolidine group, or a carbazole group.
 - 30. A charge transport composition according to claim 28 wherein X_1 and X_2 comprise, each independently, a -(CH₂)_m- group where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_a group, a CR_b group, a CR_cR_d group, or a SiR_cR_f where R_a, R_b, R_c, R_d, R_e, and R_f are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
- 20

- 31. A charge transport composition according to claim 30 wherein at least one of the methylene groups is replaced by a heterocyclic group, an aromatic group, a CHOH group, O, or S.
- 25 32. A charge transport composition according to claim 30 wherein the charge transport composition has the following formula:

where n is a distribution of integers between 1 and 100,000 with an average value greater than 1;

Y₁ and Y₂ are, each independently, an arylamine group; and

T has one of the following formulae:

5

20

25

$$T_1$$
 T_2 T_3 T_4 T_5

where T_1 , T_2 , T_3 , T_4 , and T_5 are, each independently, O, S, O=S=O, or C=O.

- 33. A charge transport composition according to claim 28 wherein Z comprises a -(CH₂)_k- group where k is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_g group, a CR_h group, a CR_iR_j group, or a SiR_kR_l where R_g, R_h, R_i, R_j, R_k, and R_l are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
 - 34. A charge transport composition according to claim 33 wherein Z has the formulae:

where Q is a bond, O, S, O=S=O, C=O, an aryl group, an NR_3 group, or a CR_4R_5 group, where R_3 , R_4 , and R_5 are, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group; and

 Z_1 , Z_2 , Z_3 , and Z_4 are, each independently, a bond or a -(CH₂)_n- group where n is an integer between 1 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, Si, B, P, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a CR₇ group, a CR₈R₉ group, or a SiR₁₀R₁₁ group, where R₆, R₇, R₈, R₉, R₁₀, and R₁₁ are, each independently, a bond, H, hydroxyl, thiol, carboxyl,

an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.

35. A charge transport composition according to claim 34 wherein Z has the formulae:

$$-z_1$$
 Q Z_2

where Q is O=S=O, and Z_1 and Z_2 are, each independently, a bond.

5

10

15

20

25

36. A charge transport composition prepared by co-polymerizing a multi-functional compound comprising at least 2 active hydrogens selected form the group consisting of hydroxyl hydrogen, amino hydrogen, carboxyl hydrogen, and thiol hydrogen with a reactive-ring compound having the following formula

$$R_1$$
 N
 N
 Z
 N
 X_3
 X_4
 X_4
 X_2
 X_4
 X_4

where Y_1 and Y_2 are, each independently, an arylamine group;

 X_3 and X_4 , each independently, comprise a -(CH₂)_p- group, where p is an integer between 1 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_m group, a CR_n group, a CR_oR_p group, or a SiR_qR_r where R_m, R_n, R_o, R_p, R_q, and R_r are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group;

 R_1 and R_2 are, each independently, a hydrogen, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group;

Z comprises a -(CH₂)_k- group where k is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_g group, a CR_h group, a CR_iR_j group, or a SiR_kR_l where R_g, R_h, R_i, R_j, R_k, and R_l are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group; and

 E_1 and E_2 are, each independently, a reactive ring group.

- 37. A charge transport composition according to claim 36 wherein E_1 and E_2 , each independently, are selected from the group consisting of 3-, 4-, 5-, 7-, 8-, 9-, 10-, 11-, and 12-membered heterocyclic ring groups.
- 38. A charge transport composition according to claim 36 wherein E_1 and E_2 , each independently, are selected from the group consisting of 3-, 4-, 5-, 7-, 8-, 9-, 10-, 11-, and 12-membered cyclic ethers, cyclic amines, cyclic sulfides, cyclic amides, N-carboxy-a-amino acid anhydrides, lactones, and cyclosiloxanes.
- 39. A charge transport composition according to claim 36 wherein E_1 and E_2 , each independently, are selected from the group consisting of epoxides, oxetanes, aziridines, thiiranes, 2-azetidinone, 2-pyrrolidone, 2-piperidone, caprolactam, enantholactam, and capryllactam.
- 40. A charge transport composition according to claim 36 wherein the multi-functional compound is selected from the group consisting of triols, triamines, trithiols, diols, dithiols, diamines, dicarboxlyic acids, hydroxylamines, amino acids, hydroxyl acids, thiol acids, hydroxythiosl, and thioamines.

5

10