

Prediction Model for Alzheimer's Disease

Team 60: Xinyu Chen, Kyla Gabriel, Sofia Rojas, and Tilly Rigby

CompSci 109A Final Project, Fall 2023

Problem Statement

Can we accurately predict a **dementia diagnosis** in patients using demographic and clinical factors from the ADNI dataset?

101 Problem Statement
102 EDA
103 Modeling
104 Training details
105 Results

06 Conclusion

07 Future Work

Problem Statement

EDA

Modeling, Training

04 Results

05 Conclusion

Future Work

Variable Distribution

Diagnosis

Variable

Diagnosis

01 Problem Statement
02 EDA
03 Modeling, Training
04 Results
05 Conclusion
06 Future Work

Diagnosis

Distribution

PCA/t-SNE

PCA/t-SNE

Hyperparameters

n_estimators	50
max_depth	None
min_samples_split	55
min_samples_leaf	1
max_features	sqrt

	F1 Score
Train	0.91
Test	0.83

Precision Recall Curve

ROC Curve

Feature Importance

Main Takeaways

- Most important features are brain region size, age, and APOE4 expression
- Model should include APOE4 gene expression when predicting diagnosis
- Model had less efficient with balancing precision and recall for dementia (compared to MCI and CN)

Model was a <u>very good</u> classifier based on dementia ROC AUC score of 0.94

01 Problem Statement
02 EDA
03 Modeling, Training
04 Results
05 Conclusion

06 Future Work

LIMITATIONS

"white" and "married" are both **overrepresented** and have the highest feature importance of their groups.

01 Problem Statement
02 EDA
03 Modeling, Training
04 Results
05 Conclusion

06 Future Work

SAMPLING TECHNIQUES

Cluster-Based Oversampling to **augment** data

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). Jo, T., & Japkowicz, N. (2004).

BIAS MITIGATION ALGORITHMS

Pre-processing and in-processing techniques to **reduce bias**, such as reweighting and adversarial debiasing

Kamiran, F., & Calders, T. (2012). Zhang, B. H., Lemoine, B., & Mitchell, M. (2018).

MODEL INTERPRETATION

Methods like SHAP for model output explanations

Lundberg, S. M., & Lee, S.-I. (2017)

References

- He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE. <u>IEEE Xplore</u>.
- Jo, T., & Japkowicz, N. (2004). Class imbalances versus small disjuncts. ACM SIGKDD Explorations Newsletter, 6(1), 40-49. <u>ACM Digital Library</u>.
- Kamiran, F., & Calders, T. (2012). Data preprocessing techniques for classification without discrimination. Knowledge and Information Systems, 33(1), 1-33. <u>Springer Link</u>.
- Zhang, B. H., Lemoine, B., & Mitchell, M. (2018). Mitigating unwanted biases with adversarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. ACM. <u>ACM Digital Library</u>.
- Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874. <u>arXiv</u>.

THANK YOU