GorshkovaYekS 17092024-192953

Найти точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса $z=1.89\text{--}2.07\mathrm{i}$.

Рисунок 1 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.235	-75.3
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

Найти точку (см. рисунок 2), соответствующую s_{22} на частоте 2.0 $\Gamma\Gamma$ ц.

Рисунок 2 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Задан двухполюсник на рисунке 3, причём R1 = 32.41 Om.

Рисунок 3 – Двухполюсник

Найти полуокружность (см. рисунок 4), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 4 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.3	0.601	125.8	2.587	42.9	0.102	49.3	0.234	-64.8
2.4	0.608	123.1	2.474	40.6	0.105	48.4	0.232	-67.2
2.5	0.617	120.7	2.370	38.5	0.109	47.5	0.229	-69.6
2.6	0.628	118.4	2.269	36.2	0.112	46.6	0.226	-72.1
2.7	0.633	116.1	2.181	33.9	0.116	45.6	0.224	-74.8
2.8	0.639	113.9	2.096	31.5	0.119	44.6	0.222	-77.5
2.9	0.646	111.8	2.021	29.6	0.122	43.7	0.219	-80.3
3.0	0.655	109.7	1.948	27.5	0.126	42.9	0.217	-83.1
3.1	0.660	107.7	1.882	25.7	0.129	41.9	0.215	-86.1
3.2	0.667	105.7	1.819	23.9	0.132	40.9	0.213	-89.1
3.3	0.674	103.8	1.757	21.9	0.135	40.0	0.212	-92.2

и частоты $f_{\scriptscriptstyle \rm H}=2.7$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=3.2$ $\Gamma\Gamma$ ц.

Найти модуль $s_{11}\,$ в дБ на частоте $f_{\scriptscriptstyle \mathrm{H}}\,$.

Варианты ОТВЕТА:

- 1) -4.0 дБ
- 2) -18.7 дБ
- 3) 6.8 дБ
- 4) -13.0 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.5	0.463	-171.7	11.579	76.3	0.039	57.9	0.246	-87.0
2.6	0.466	-173.5	11.106	74.9	0.040	57.9	0.241	-89.1
2.7	0.467	-175.1	10.688	73.7	0.042	57.9	0.238	-91.0
2.8	0.468	-176.6	10.275	72.5	0.043	57.9	0.234	-92.9
2.9	0.470	-178.1	9.920	71.4	0.044	57.8	0.232	-94.6
3.0	0.473	-179.5	9.569	70.2	0.045	57.8	0.230	-96.3
3.1	0.473	179.2	9.284	69.3	0.047	57.7	0.229	-97.5
3.2	0.474	177.9	9.002	68.2	0.048	57.5	0.227	-98.8
3.3	0.476	176.6	8.722	67.2	0.049	57.4	0.226	-100.0
3.4	0.477	175.3	8.446	66.0	0.051	57.3	0.225	-101.3
3.5	0.479	174.0	8.174	64.8	0.052	57.2	0.224	-102.6

и частоты $f_{\mbox{\tiny H}}=2.7$ $\Gamma\Gamma\mbox{\scriptsize II},\,f_{\mbox{\tiny B}}=3.2$ $\Gamma\Gamma\mbox{\scriptsize II}.$

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 0.7 дБ 2) 1.5 дБ 3) 3.0 дБ 4) 0.8 дБ

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.486	-129.9	19.485	99.7	0.029	50.5	0.431	-62.4
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
2.8	0.473	-168.0	10.058	75.0	0.043	51.9	0.278	-87.1
3.5	0.480	-178.9	8.017	66.8	0.051	52.1	0.259	-96.2
4.2	0.487	172.2	6.706	59.3	0.060	51.3	0.244	-102.7
4.9	0.501	164.5	5.698	51.7	0.068	49.6	0.227	-110.9
5.6	0.497	158.1	4.949	45.2	0.079	48.1	0.213	-115.9
6.3	0.508	149.8	4.422	38.1	0.087	44.3	0.196	-126.0
7.4	0.535	137.7	3.704	27.2	0.101	40.3	0.147	-142.3

и частоты $f_{\scriptscriptstyle \rm H}=1.4$ ГГц, $f_{\scriptscriptstyle \rm B}=6.3$ ГГц.

 ${\bf Ha\ddot{u}ru}$ обратные потери по входу $\,$ на $f_{\scriptscriptstyle \rm B}$.

Варианты ОТВЕТА:

1) 3.2 дБ 2) 6.4 дБ 3) 5.9 дБ 4) 2.9 дБ