Analisa Algoritma Rekursif dengan Pohon Rekursi

Wijayanti N Khotimah

Pohon Rekursi

- Meskipun metode substitusi bisa digunakan untuk menyelesaikan recurrence, terkadang kita mengalami kesulitan dalam menebak pola suatu persamaan.
- ✓ Pohon rekursi merupakan salah satu cara untuk menyelesaikan persamaan recurrence secara langsung dengan menggambar.
- ✓ Dalam pohon rekursi, satu buah node merepresentasikan cost dari satu buah sub problem.
- ✓ Perhitungan cost pada pohon rekursi adalah dengan menjumlahkan cost pada setiap node dalam 1 level untuk mendapatkan perlevel cost, kemudian perlevelcost tersebut dijumlahkan untuk mendapatkan cost untuk semua level dalam rekursi.

Contoh: Pohon Rekursi pada MergeSort

Recurrence dari mergesort adalah sebagai berikut:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

Misal *c* adalah waktu yang dibutuhkan untuk menyelesaikan problem dengan ukuran 1, maka persamaan di atas dapat dinyatakan dengan:

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$

Contoh: Pohon Rekursi pada MergeSort

- ✓ Pohon rekursi dari recurrence mergesort bisa digambarkan sbb:
- ✓ Cost untuk masing-masing level adalah *cn*
- ✓ Level ke *i* dari puncak mempunyai jumlah node sebanyak *2ⁱ*
- ✓ Pada level paling bawah 2ⁱ=n, sehingga bisa disimpulkan bahwa jumlah level (i+1) adalah log₂n+1
- ✓ Jadi cost total=cn(log₂n+1) =Θ(nlogn)

Contoh: algoritma untuk menyelesaikan puzzle

Tower of Hanoi

Solusi rekursif:

- pindahkan secara rekursif n 1 keping dari tiang 1 ke tiang 2 dengan memanfaatkan tiang 3 sebagai transisi
- 2. pindahkan kepingan terbesar dari tiang 1 ke tiang 3
- 3. pindahkan secara rekursif n-1 keping dari tiang 2 ke tiang 3 dengan memanfaatkan tiang 1 sebagai transisi

Analisis algoritma rekursif untuk menyelesaikan puzzle Tower of Hanoi

- Parameter apa yang menjadi input size?
- Apa yang menjadi operasi dasar?
- Adakah worst case dan best case pada algoritma tsb?
- Berapa kali operasi dasar dieksekusi dalam bentuk recurrences?
 - Apa yang menjadi kondisi awal?
- Apa yang menjadi solusi recurrences tsb?

• Hint:
$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

Solving Recurrences (2)

- Pohon Rekursi
 - Susun sebuah tree pemanggilan fungsi rekursi
 - ✓ Node: pemanggilan fungsi rekursi
 - ✓ Label node: parameter pemanggilan fungsi rekursi
 - Hitung jumlah berapa kali pemanggilan fungsi dilakukan deng menghitung jumlah node dalam tree

Contoh pada Tower of Hanoi:

$$C(n) = \sum_{l=0}^{n-1} 2^l$$
 where *l* is the level in the tree = $2^n - 1$