Università degli Studi di Catania - Anno Accademico 2018/19 Corso di Laurea in Fisica Prova scritta di Analisi Matematica 2 24 giugno 2019

1. Stabilire se la forma differenziale

$$w(x,y) = \frac{2x - y + 1}{x^2 + (y - 1)^2} dx + \frac{x + 2y - 2}{x^2 + (y - 1)^2} dy$$

è esatta nel suo insieme di definizione. Calcolare poi

$$\int_{\gamma} w$$

essendo γ la curva di rappresentazione parametrica

$$\begin{cases} x = 2\cos t \\ y = \sin t - 1 \end{cases}$$

percorsa nel verso delle t crescenti.

2. Calcolare il flusso del campo vettoriale

$$\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (yz^2, -3y^2z, x)$$

attraverso la superficie

$$S = \{(x, y, z) \in \mathbb{R}^3 : y^2 + z^2 \le 1, \quad x = 3y^2 + z^2\}.$$

3. Calcolare

$$\iiint_D (x^2 + y^2) \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

essendo

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{4} + y^2 + z^2 \le 1, \quad x \le 1 \right\}.$$

4. Determinare gli estremi relativi della funzione definita dalla legge

$$f(x, y, z) = x^2 + y^2 + z^2 - x.$$

Trovare poi, se esistono, gli estremi assoluti nell'insieme

$$D = \left\{ (x,y,z) \in I\!\!R^3 \, : \, x^2 + \frac{y^2}{4} + \frac{z^2}{9} \leq 1 \right\}.$$

5. Data la successione di funzioni

$$\left\{\frac{(x-n)^4}{(x-n)^4+4}\right\}$$

1

- i) studiare la convergenza puntuale e uniforme in IR;
- ii) determinare gli intervalli in cui essa converge uniformemente.