Report: Transmission Lines

Panagiotis Koutris

May 2024

1.1. Ανάλυση κυκλώματος γραμμής μεταφοράς - Διάγραμμα Smith

Ερώτημα (α)

$$\begin{split} z_L &= \frac{Z_L}{Z_0} = 2~\Omega~~(0,25\lambda)\\ 0,25\lambda + 0,32\lambda = 0,57\lambda - 0,5\lambda = 0,007\lambda\\ z_A &= 0,6+j0,35\\ \mathbf{\Pi} \text{unuthis:}~~jx = j\frac{X}{Z_o} = -\frac{j}{2\pi f_0 C Z_0} = - = -\frac{j}{2\pi \cdot 10^9 \cdot 2 \cdot 10^{-12 \cdot 50}} = -j1,59\\ z_B &= z_A + jx = 0,6-j1,24~~(0,35\lambda)\\ 0,35\lambda + 0,24\lambda = 0,59\lambda - 0,5\lambda = 0,09\lambda\\ \text{Βρίσκουμε}~~z_C~~\text{και το αντιδιαμετρικό του σημείο στον ίδιο κύκλο}~~|\Gamma|~\text{είναι το}~~y_C\\ y_C &= 1-j1,6~~(0,321\lambda)\\ \mathbf{Open:}~~0,1\lambda \longrightarrow jb = j0,725\\ y_{in} &= y_C + jb = 1-j0,875\\ \text{Έτσι λοιπόν στην είσοδο έχουμε:}\\ |\Gamma| &= \frac{2\cdot 2}{5\cdot 2} = 0,423\\ SWR &= \frac{1+|\Gamma|}{1-|\Gamma|} = 2,466 \end{split}$$

Ερώτημα (β)

 $f_0' = 1,333f_0$

Για γραμμές μεταφοράς TEM:
$$U_p=constant$$

$$\frac{\lambda}{\lambda'}=\frac{f_0}{f_0'}=1,333\Rightarrow \lambda=1,333\lambda'$$

$$0,32\lambda\longrightarrow 0,426\lambda'$$

$$0,24\lambda\longrightarrow 0,32\lambda'$$

$$0,1\lambda\longrightarrow 0,133\lambda'$$

$$z_L=\frac{Z_L}{Z_0}=\frac{100}{50}=2~\Omega~~(0,25\lambda')$$

$$0,25\lambda'+0,426\lambda'=0,676\lambda'-0,5\lambda'=0,176\lambda'$$

$$z_A=1,25+j0,75$$
 Πυχνωτής: $jx=j\frac{X}{Z_o}=-\frac{j}{2\pi f_0'CZ_0}=-\frac{j}{2\pi\cdot 1.333\cdot 10^9\cdot 2\cdot 10^{-12}\cdot 50}=-j0,837$

Ερώτημα (γ)

Αν η γραμμή μεταφοράς δεν ήταν ΤΕΜ ή σχεδόν-ΤΕΜ, τότε θα χρειαζόμασταν σαν επιπλέον πληροφορία τη φασική ταχύτητα U_p ώστε να μπορούσαμε να βρούμε τη σχέση μεταξύ του λ και του λ' $(\lambda=\frac{U_p}{f}).$

1.2.Ανάλυση κυκλωμάτων γραμμών μεταφοράς στο πεδίο της συχνότητας

Ερώτημα (α)

Plots

Σημείωση: Παρατηρώντας το 1ο γράφημα στις συχνότητες 1 GHz και 1,33 GHz βλέπουμε ότι οι τιμές του μέτρου του συντελεστή ανάκλασης είναι αρκετά κοντά στις αντίστοιχες που υπολογίστηκαν στο ερώτημα 1.1, το οποίο και το περιμέναμε.

Ερώτημα (β)

Figure 1: Κυκλωματικό Ισοδύναμο

Plots:

Σημείωση: Από τη μορφή του πρώτου διαγράμματος συμπεραίνουμε ότι έχουμε ένα BSF (Band-Stop-Filter) στο οποίο κόβονται οι συχνότητες μεταξύ των 1.2 και $2.8~\mathrm{GHz}$

Ερώτημα (γ)

Figure 2: Κυκλωματικό Ισοδύναμο

Plots:

Σημείωση: Από τη μορφή του πρώτου διαγράμματος συμπεραίνουμε ότι έχουμε ένα LPF (Low-Pass-Filter) στο οποίο χόβονται οι συχνότητες μεγαλύτερες του $1{,}05~\mathrm{GHz}$.

1.3. Συζυγής προσαρμογή - Διάγραμμα Smith

Ερώτημα (α)

$$\begin{split} z_L &= \frac{Z_L}{Z_0} = \frac{10+j15}{50} = 0, 2+j0, 3 \\ z_g &= \frac{Z_g}{Z_0} = \frac{50-j40}{50} = 1-j0, 8 \\ Z_{in} &= Z_g^* \Rightarrow z_{in} = z_g^* = 1+j0, 8 \end{split}$$

1^{η} περίπτωση: Πυχνωτής παράλληλα στο φορτίο

Από το αντιδιαμετρικό σημείο y_L προσθέτοντας b>0 στο z_L δεν καταλήγει σε σημείο τομής με τον κύκλο SWR της εισόδου.

2^{η} περίπτωση: Πυχνωτής σε σειρά στο φορτίο

Προσθέτωντας x<0 στο z_L δεν υπάρχει σημείο τομής με τον κύκλο SWR της εισόδου.

3^{η} περίπτωση: Πυκνωτής παράλληλα στην είσοδο

Μέσω διαγράμματος Smith:

$$y_{in} = 0, 6 - j0, 45$$

$$\begin{array}{l} y_A = 0, 6 - j1, 4 \\ y_{in} = y_A + jb \Rightarrow \\ jb = 0, 6 - j0, 45 - (0, 6 - j1, 4) = j0, 95 \Rightarrow b = 0, 95 \\ C_3 = \frac{b}{2\pi \cdot f \cdot Z_0} = 3, 02 \ pF \\ l_3 = 0, 34\lambda - 0, 296\lambda = 0, 044\lambda \end{array}$$

4^{η} περίπτωση: Πυχνωτής σε σειρά στην είσοδο

Μέσω διαγράμματος Smith:

$$\begin{split} z_{in} &= 1 + j0, 8 \\ z_A &= 1 + j2; \\ z_{in} &= z_A - jx \Rightarrow \\ jx &= 1 + j2 - (1 - j0, 8) = j1, 2 \Rightarrow x = 1, 2 \\ C_4 &= \frac{1}{x \cdot 2\pi \cdot f \cdot Z_0} = 2, 65 \ pF \\ l_4 &= 0, 188\lambda - 0, 0, 048\lambda = 0, 14\lambda \end{split}$$

Ερώτημα (β)

$$P_L = P_{in} = \frac{|V_g|^2}{2} \cdot \frac{R_{in}}{(R_{in} + R_g)^2 + (X_{in} + X_g)^2} = 5 \ mW$$

Ερώτημα (γ)

Plots:

Σημείωση: Συγκρίνοντας τα 2 διαγράμματα καταλήγουμε στο συμπέρασμα ότι το πρώτο κύκλωμα (πυκνωτής παράλληλα στην είσοδο) παρέχει καλύτερο εύρος ζώνης.

Ερώτημα (β)

Η διαδικασία βελτιστοποίησης πραγματοποιήθηκε με την βοήθεια του Grey Wolf Optimizer (GWO) Tool box. Οι παρακάτω πίνακες αποτελεσμάτων περιέχουν τις βέλτιστες παραμέτρους αποστάσεων και το αντίστοιχο ελάχιστο μέσο μέτρο συντελεστή ανάκλασης.

Ερώτημα (γ)

Plot:

Ερώτημα (δ)

Ερώτημα (ε)

i)
$$Z_L = 20 + j30$$

ii) $Z_L = 180 - j200$

