Question 2

```
In [2]: #importing required libraries
        from sympy import *
        import matplotlib.pyplot as plt
        %config InlineBackend.figure_format='retina'
        %matplotlib inline
        init_printing(use_latex = True)
        from matplotlib import rcParams
        import pandas as pd
        import pandas_datareader as pdr
        import datetime
        import numpy as np
        plt.style.use('fivethirtyeight')
        #Seting font style and size
        rcParams['font.family'] = 'serif'
        rcParams['font.size'] = 16
        import math
In [3]: #Question 1
        #importing data with pandas
        filename = 'CA data.txt'
        df = pd.read csv(filename,delim whitespace = True,parse dates = True,index col
In [4]: #checking that the import was done correctly
        df.head()
Out[4]:
                             С
                                          G
           Quarter
         1981-01-01 109859750000 56521500000 43427750000
        1981-04-01 109707500000 56411000000 44640750000
        1981-07-01 109094500000 57100000000 43572500000
        1981-10-01 109304250000 57255750000 43120750000
        1982-01-01 107629750000 56774000000 41716750000
```

Part a.

```
In [5]: #Question 2 part a
    x = df.index
    C = df['C']
    I = df['I']
    G = df['G']
    Y = C + I + G

fig,ax = plt.subplots(2,2,sharey = False,sharex = False, figsize = (16,10))
    fig.suptitle("Plots of a closed Canadian Economy over time")
    ax[0,0].plot(x,Y,color = 'red',linestyle = '-',linewidth = 4)
    ax[0,1].plot(x,C,color = 'blue',linestyle = '-',linewidth = 4)
```

```
ax[1,0].plot(x,I,color = 'green',linestyle = '-',linewidth = 4)
ax[1,1].plot(x,G,color = 'black',linestyle = '-',linewidth = 4)
ax[0,0].set_xlabel('GDP')
ax[0,1].set_xlabel('Consumption')
ax[1,0].set_xlabel('Investment')
ax[1,1].set_xlabel('Government Spending')
```

Out[5]: Text(0.5, 0, 'Government Spending')

Part b.

```
In [89]:
         #Question 2 part b
         x = df.index
         Share C = C/Y
         Share_I = I/Y
         Share_G = G/Y
         fig = plt.figure(figsize=(16,6))
         plt.plot(x, Share_C, color='g', linestyle='-', linewidth=4, alpha=0.5, label =
         plt.plot(x, Share_I, color='b', linestyle='-', linewidth=4, alpha=0.5, label =
         plt.plot(x, Share_G, color='r', linestyle='-', linewidth=4, alpha=0.5, label =
         plt.legend(loc='upper left')
         plt.title('Shares of GDP components')
         plt.xlabel('x')
         plt.ylabel('y')
         Text(0, 0.5, 'y')
Out[89]:
```


-Consumption is consistently the largest share of GDP components -Government spending has seemed to trend downwards, rising breifly in 2020 presumably due to COVID-19. -Investment makes the smallest component, with an upward trend until 2020

Part c

```
In [28]: simple_gdp_growth_rate = Y.pct_change()
log_growth_rate = np.log(Y/Y.shift(1))
#log_growth_rate = [np.log(Y[i-2]) - np.log(Y[i-1]) for i in range(Y.size)]
```

```
In [33]: x = df.index
fig = plt.figure(figsize=(16,6))
plt.plot(x,simple_gdp_growth_rate,color = 'black',linestyle = 'solid',linewidtl
plt.plot(x,log_growth_rate,color = 'red',linestyle = 'dotted',linewidth = 4,lal
plt.title("Simple vs Logarithmic growth rates")
plt.legend()
```

Out[33]: <matplotlib.legend.Legend at 0x7f8103ab7e20>

The simple and log growth rates are approximately equal with a noticably larger difference in log rates during 2020.

```
In [9]: s = simple_gdp_growth_rate
l= log_growth_rate
```

Part d

```
In [10]:
         gdp_growth_rate = Y.pct_change()
         consumption_growth_rate = C.pct_change()
         investment_growth_rate = I.pct_change()
         fiscal spending growth rate = G.pct change()
         x = df.index
         fig,ax = plt.subplots(2,2,sharey = False,sharex = False, figsize = (16,12))
         fig.suptitle("Plots of Growth Rates")
         ax[0,0].plot(x,gdp\_growth\_rate,color = 'red',linestyle = '-',linewidth = 4)
         ax[0,1].plot(x,consumption_growth_rate,color = 'blue',linestyle = '-',linewidtl
         ax[1,0].plot(x,investment_growth_rate,color = 'green',linestyle = '-',linewidtl
         ax[1,1].plot(x,fiscal_spending_growth_rate,color = 'black',linestyle = '-',line
         ax[0,0].set xlabel('GDP')
         ax[0,1].set_xlabel('Consumption')
         ax[1,0].set_xlabel('Investment')
         ax[1,1].set_xlabel('Government Spending')
         Text(0.5, 0, 'Government Spending')
Out[10]:
```


Part e

Out[11]:		GDP	Consumption	Investment	Government Spending
	count	169.000000	169.000000	169.000000	169.000000
	mean	0.005817	0.006491	0.005989	0.004328
	std	0.014488	0.016309	0.026209	0.009413
	min	-0.116689	-0.138411	-0.132777	-0.038433
	25%	0.002754	0.002707	-0.002651	-0.000358
	50%	0.006416	0.006864	0.008631	0.004368
	75%	0.010967	0.010640	0.020386	0.009594
	max	0.114709	0.127537	0.142823	0.055440

In [12]: growth_rates.corr()

Out[12]:		GDP	Consumption	Investment	Government Spending
	GDP	1.000000	0.942299	0.811308	0.576212
	Consumption	0.942299	1.000000	0.605532	0.487783
	Investment	0.811308	0.605532	1.000000	0.281520
	Government Spending	0.576212	0.487783	0.281520	1.000000

Comsuption has the highest mean growth rate, and the highest correlation to GDP, followed by investment, and government spending having the least of the three.

Question 1

Part b.

```
In [60]: \#alpha = 0.5, epsilon = -2.0
         #demand function = 0.5p**-2
         \#deltap = -1*p**-3
         p = 0.5
         for i in range(100):
              f=.5 * p **-2 - 2 * p ** .5
              d=-1 * p **-3 - p **-.5
              deltap = -f/d
              p = p + deltap
              print(p)
              if abs(deltap) < 1.e-8:</pre>
                  break
         print(f"Computed in {i} iterations")
         0.5622236189720814
         0.5740285524734964
         0.5743489537536681
         0.5743491774984085
         0.5743491774985175
         Computed in 4 iterations
```

part c.

```
In [77]: p = np.linspace(0.01,2,100)
elasticities = [-2,-1]

def Excess_Demand(p,elas):
    return 0.5*p**elas - 2*p
for elasticity in elasticities:
    plt.plot(p,Excess_Demand(p,elasticity),label = f"&: {elasticity}")
```

```
plt.xlabel('Price')
plt.ylabel('Excess Demand')
plt.title('Excess Demand Function')
plt.axhline(y=0, color='r', linestyle='--', linewidth=1)

plt.legend()
plt.ylim(-2,2)
```

Out [77]: \$\displaystyle \left(-2.0, \ 2.0\right)\$

At an excess demand of 0, which would be the equilibrium level of demand and supply, the equilibrium price is exactly 0.5 at an ε of -1 and approximately 0.6 at an ε of -2, which is consistent with the analytical answers

part d.

```
In [79]: def excess_demand(p):
    return np.exp(-2*p) - 0.01*p- p**2

start = -2
    step = 0.1
    end = 2

p_values = np.arange(start,end*step,step)
    excess_demand_list = excess_demand(p_values)
    plt.plot(p_values, excess_demand_list, label='Excess Demand')
    plt.xlabel('Price (p)')
    plt.ylabel('Excess Demand')
    plt.title('Excess Demand Function')
    plt.axhline(y=0, color='r', linestyle='--', linewidth=1)

plt.ylim(-2,2)
    plt.grid(True)
```

```
plt.show()
```


Because of the power of the exponent, excess demand will decrease asymptotically for higher prices p.The equilibrium at Excess Demand = 0 corresponds to a price of approximately 0.5.

```
In [87]:
         p = 0.0
         for i in range(100):
              f=np.exp(-2*p) - 0.01*p- p**2
              d=-2*np.exp(-2*p) - 0.01 - p*2
              deltap = -f/d
              p = p + deltap
              print(p)
              if abs(deltap) < 1.e-8:</pre>
                  break
         print(f"Price = {p},computed in {i} iterations")
         0.49751243781094534
         0.564708557449029
         0.5639687247565134
         0.5639686164601598
         0.5639686164601576
         Price = 0.5639686164601576, computed in 4 iterations
         part e.
```

return np.exp(-p) - 0.01*p- p**4

In [81]: def excess_demand(p):

```
start = -2
step = 0.1
end = 2

p_values = np.arange(start,end+step,step)
excess_demand_list = excess_demand(p_values)
plt.plot(p_values, excess_demand_list, label='Excess Demand')
plt.xlabel('Price (p)')
plt.ylabel('Excess Demand')
plt.title('Excess Demand Function')
plt.axhline(y=0, color='r', linestyle='--', linewidth=1)
plt.ylim(-2,2)
plt.grid(True)
plt.show()
```


Due to the power and symbol of the exponents for e^p and p^4, function will curve downwards. Since prices cannot be negative, the equilibrium price will be approximately 0.8

```
0.9900990099009901
         0.849537232663613
         0.814329837165257
         0.8124344026543568
         0.8124292170425147
         0.8124292170038313
         Price = 0.8124292170038313, computed in 5 iterations
In []:
         p = 0.3
In [78]:
         for i in range(100):
              f=0.5*p**-2 - 2*p**1
              d=-1 * p **-3 - 2
              deltap = -f/d
              p = p + deltap
              print(p)
              if abs(deltap) < 1.e-8:</pre>
                  break
         print(f"Computed in {i} iterations")
         0.42694497153700195
         0.5541627107526501
         0.6201635563767954
         0.6298065982821767
         0.6299604873303536
         0.6299605249474344
         0.6299605249474366
         Computed in 6 iterations
In []:
```