Math 317: Homework 9

NAME:

Section 4.1

Recall the following

Definition. If $V \leq \mathbb{R}^m$ is a subspace, and $\mathbf{b} \in \mathbb{R}^m$, then we define the projection of \mathbf{b} onto V to be the unique vector $\mathbf{p} \in V$ with the property that $\mathbf{b} - \mathbf{p} \in V^{\perp}$, and we write $\mathbf{p} = \operatorname{proj}_V \mathbf{b}$ in this case.

The following exercise is recommended; it will not be graded.

Exercise (SA 4.1.13). Use the definition of projection given above to show that for any subspace $V \leq \mathbb{R}^m$, the function $\operatorname{proj}_V : \mathbb{R}^m \to \mathbb{R}^m$ is a linear transformation.

Problem 1 (SA 4.1.14). Prove directly from the definition above that if we let P denote the matrix projection onto V—that is, $P\mathbf{b} = \operatorname{proj}_V \mathbf{b}$ —then $P = P^2$ and $P = P^\top$. [Hints: For the latter, show that $P\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot P\mathbf{y}$ for all \mathbf{x}, \mathbf{y} . It may be helpful to write \mathbf{x} and \mathbf{y} as the sum of vectors in V and V^{\perp} . Then use Exercise 2.5.24.]

The next exercise is recommended but will not be graded.

Exercise (SA 4.1.15). Prove the converse of the fact in the last exercise. That is, if A is a matrix and $A^2 = A$ and $A^{\perp} = A$, then A is a projection matrix. [Hints: First decide onto which subspace V it should be projecting. Then Show that for any \mathbf{b} , the vector $\mathbf{p} = A\mathbf{b}$ satisfies the definition above of the projection of \mathbf{b} on the subspace V.]

As we have seen in lecture, if $V \leq \mathbb{R}^m$ is a subspace and $\mathbf{b} \in \mathbb{R}^m$, then

$$\mathbf{b} = \operatorname{proj}_V \mathbf{b} + \operatorname{proj}_{V^{\perp}} \mathbf{b}.$$

Therefore, if we know **b** and $\operatorname{proj}_{V^{\perp}} \mathbf{b}$, then we easily compute $\operatorname{proj}_{V} \mathbf{b}$ as follows: $\operatorname{proj}_{V} \mathbf{b} = \mathbf{b} - \operatorname{proj}_{V^{\perp}} \mathbf{b}$. It's sometimes the case that $\operatorname{proj}_{V^{\perp}} \mathbf{b}$ is very easy to compute, as in the next exercise, where the subspace V is a plane and V^{\perp} is equal to the span of a "normal" vector (i.e., a vector orthogonal to the plane V). For example, in Part (b), a normal vector to V is $\mathbf{n} = (1, 1, 1, 0)$, so the projection of \mathbf{b} onto V^{\perp} is $\frac{\mathbf{b} \cdot \mathbf{n}}{\|\mathbf{n}\|^2} \mathbf{n} = (1, 1, 1, 0)$. Therefore, $\operatorname{proj}_{V} \mathbf{b} = (-1, 0, 1, 3)$.

Problem 2 (SA 4.1.1). Find the projection of the given vector $\mathbf{b} \in \mathbb{R}^m$ onto the given hyperplane $V \leq \mathbb{R}^m$ by first finding the projection onto V^{\perp} , as suggested above.

(a)
$$V = \{x_1 + x_2 + x_3 = 0\} \le \mathbb{R}^3$$
, $\mathbf{b} = (2, 1, 1)$.

(b)
$$V = \{x_1 + x_2 + x_3 = 0\} \le \mathbb{R}^4$$
, $\mathbf{b} = (0, 1, 2, 3)$.

(c)
$$V = \{x_1 - x_2 + x_3 + 2x_4 = 0\} \le \mathbb{R}^4$$
, $\mathbf{b} = (1, 1, 1, 1)$.

Problem 3 (SA 4.1.2). Use the formula $P_V = A(A^{\top}A)^{-1}A^{\top}$ for the projection matrix to check that $P_V = P_V^{\top}$ and $P_V^2 = P_V$. Show that $I - P_V$ has the same properties, and explain why.

Problem 4 (SA 4.1.4). Let $V = \text{Span}\{(1,0,1),(0,1,-2)\} \leq R^3$. Construct the matrix P_V representing proj_V in two ways:

- (a) by finding $P_{V^{\perp}}$;
- (b) by using the formula $P_V = A(A^{\top}A)^{-1}A^{\top}$.

Problem 5 (SA 4.1.7). Find the least squares solution of

$$x_1 + x_2 = 1$$

$$x_1 - 3x_2 = 4$$

$$2x_1 + x_2 = 3.$$

Use your answer to find the point on the plane spanned by (1,1,2) and (1,-3,1) that is closest to (1,4,3).

Section 4.2

Problem 6 (SA 4.2.3). Let $V = \text{Span}\{(2,1,0,-2),(3,3,1,0)\} \leq \mathbb{R}^4$.

- (a) Find an orthogonal basis for V.
- (b) Use your answer to part (a) to find the projection of $\mathbf{b} = (0, 4, -4, -7)$ onto V.
- (c) Use your answer to part (a) to find the projection matrix P_V .

Problem 7. Let $\mathcal{C}^0([a,b])$ denote the vector space of continuous real-valued functions defined on [a,b]. Recall that an inner product on $\mathcal{C}^0([a,b])$ can be defined as follows: for $f,g\in\mathcal{C}^0([a,b])$,

$$\langle f, g \rangle = \int_a^b f(t)g(t) dt.$$

Using this inner product, find an orthogonal basis for the subspace $\mathcal{P}_1 \leq C^0([0,1])$, and use your answer to find the projection of $f(t) = t^2 + t - 1$ onto \mathcal{P}_1 .