CS1632, Lecture 16: Pairwise and Combinatorial Testing

Wonsun Ahn

Let's Test A Word Processor

- Specifically, its ten possible font effects
 - Italic
 - Bold
 - Underline
 - Strikethrough
 - Superscript
 - Shadow
 - Embossed
 - 3-D
 - Outline
 - Inverse

These can be combined

- Plain text
- Superscript
- Bold
- •Italic and strikethrough
- Bold and underlined
- Bold italic strikethrough shadowed superscript

How many tests would you need to test all the possible font combinations?

2¹⁰

1,024 tests!

That's quite a few tests...

But it's necessary! What if...

... a problem only occurs with 3-D shadowed bold italic superscript text?

That's going to be hard to find.

Turns Out Other People Have Thought About This!

The National Institute of Standards and Technology did a survey

See: "Practical Combinatorial Testing",
 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800
 -142.pdf

- Study of dozens of applications in 6 domains
 - Medical devices, Web Browser, Web Server, Database, Network Security

Turns Out That's Unlikely!

- On average, percentage of defects covered by ...
 - A single variable: 17 68%
 - Two interacting variables: 53 − 97%
 - Three interacting variables: 74 99%
 - Four interacting variables: 89 100%
 - Five interacting variables: 96 100%
 - Six interacting variables: 100%
- Majority of defects are found just by testing all possible pairs
- At max, just SIX variables were involved in a defect

Error detection rates for interactions 1 to 6

Similar Distribution Found In Many Domains

- Web browser
- Avionics software
- Telecommunications software
- Flight Traffic Control
- Network security software

Pairwise Testing

- This is called "pairwise", or "all-pairs" testing.
- We are testing all possible pairs of interactions, e.g.:
 - Not-Bold / Not-Italic
 - Bold / Not-Italic
 - Not-Bold / Italic
 - Bold / Italic

Remember our exhaustive 10-font-effect testing plan?

- It was 1,024 (2 ^ 10) tests.
- How many tests would it require to test all pairs of interactions?
 - That is, all possible combinations of:
 - bold/italic,
 - subscript/bold
 - underline/strikethrough
 - Every possible pairing of two variables
- Choose 2 from 10 = $\binom{10}{2} = \frac{10*9}{2} = 45$ and 4 combination per pair 45 * 4 = 180 tests?
 - No! A single test can test multiple pairs of interactions at the same time

Answer: 8

No.	BOLD	ITALIC	STRIKETHROUGH	UNDERLINE	THREAD	SHADOW	SUPERSCRIPT	SUBSCRIPT	EMBOSSED	ENGRAVED
1	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE
2	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	TRUE
3	TRUE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE
4	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE
5	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE
6	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE
7	-	-	-	-	-	-	-	FALSE	-	FALSE
8	-	-	-	-	-	-	-	TRUE	-	TRUE

- Reduced number of tests by two orders of magnitude! (1024 \rightarrow 8)
- This is called a covering array (will tell you how to make this soon)
- Is this always good enough test coverage?

Of course not

- But we can "dial up" the number of possible interactions to check for any t number of interactions
- For example, check every three-way combination (t = 3):
 - Bold / Italic / Underline
- Or four-way (t = 4)
 - Bold / Italic / Underline / Superscript
- Up to whatever number of interactions possible
 - At this point, would be the same as exhaustive testing

Combinatorial Testing

- This generalized version of pairwise testing is known as "combinatorial testing"
- Note that pairwise testing is technically just a specific kind of combinatorial testing where t = 2

Combinatorial Testing Example

 The maximum number of interactions causing a defect found in the NIST studies was six. So let's test all six-way combinations of our font effects.

Recall that:

- # tests required for full pairwise testing was 8
- # tests required for exhaustive testing was 1,024
- How many to test all six-way interactions?

Actually a difficult question to answer off the top of your head

- Determining the exact number necessary is an NP-Hard problem.
- But there are some good algorithms out there that approximate it
- See "IPOG: A General Strategy for T-Way Software Testing" https://www.nist.gov/publications/ipog-general-strategy-t-way-software-testing

... and the answer is...

- The best answer IPOG software could come up with is 165.
- Approximately an order of magnitude less than exhaustive testing!
- But would have found the same number of defects, according to NIST.

Interesting!

- Pairwise testing (8 tests): catches 90% of defects
- Six-way testing (165 tests): catches ~99.999999% of defects
- Exhaustive testing (1024 tests): catch ~100% of defects

- IF THEY ARE DONE RIGHT!
- The "right" combination of tests for each situation is given in: https://math.nist.gov/coveringarrays/ipof/ipof-results.html
 - Even these are not optimal (remember the problem is NP-Hard)
 - But they are pretty close

Law of Diminishing Returns

• We already saw increasing t doesn't get us much beyond t = 2

How about testing cost (10 variables, 5 values per variable)?

t-way	2	3	4	5	6
No. of Tests	48	308	1843	10119	50920
Time(s)	0.11	0.56	6.38	63.8	791.35

Law of Diminishing Returns

Cost increases exponentially as we increase t!

- Cost = $O(d^t * log n)$
 - t: number of interactions
 - d: domain size (number of values a parameter can take)
 - *n*: number of parameters

Covering Arrays

- Covering array: set of test cases covering all t-way combinations
- At below is a covering array where t = 3

Steps To Make Your Own Covering Array

- Make a truth table with all variables
 - Each line in truth table indicates a test
 - Running all these tests would be an exhaustive test
- Make a list of all t-way interactions for desired t
 - Example: Bold, Italic, Underline. t = 2
 - Bold / Italic
 - Bold /Underline
 - Italic/Underline

Generating Covering Arrays

- Goal: Complete "mini truth table" for each t-way interaction
 - E.g. For 2-way: F F | F T | T F | T T
- Starting from the first interaction do the following:
 - Add test case that fulfills each entry in the mini truth table
 E.g. Bold / Underline = T F can be fulfilled by:

- If an already added test case fulfills the entry, nothing to do!
- Continue until mini truth tables for all interactions are completed

Sounds easy enough. Why is it NP-Hard?

- Note there are many candidates to choose from.
 - E.g. Bold / Underline = T F can be fulfilled by:

N	lo.	BOLD	ITALIC	STRIKETHROUGH	UNDERLINE	THREAD	SHADOW	SUPERSCRIPT	SUBSCRIPT	EMBOSSED	ENGRAVED
3	92	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE
		But a	also:								
	lo.	POLD.	ITALIC	STRIVETUROLICH	LINIDEDLINE	TUDEAD	CHVDOW	CLIDEDCCDIDT	CLIDCCDIDT	EMPOSSED	ENCDAVED

No.	BOLD	ITALIC	STRIKETHROUGH	UNDERLINE	THREAD	SHADOW	SUPERSCRIPT	SUBSCRIPT	EMBOSSED	ENGRAVED
123	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE

- But there are only a handful of optimal choices.
 - Here is where the NP-Hardness creeps in.
 - We'll just choose randomly. It affects quality but not correctness of solution.

Covering Array Example

Bold	Italic	Underline	Mini-	Fruth
F	F	F	F	F
F	F	T	F	T
F	T	F	T	F
F	T	T	T	T
T	F	F		
Т	F	T		
T	T	F		
T	T	T		

Covering Array Example

Bold	Italic	Underline	
. F	F	F	Bold / Italic
F	F	Т	Bold / Underline
F	T	F	Italic / Underline
F	T	Т	
T	F	F	
T	F	Т	
T	T	F	
Т	Т	T	
	F F F T T	F F F T T F T T T T T T T T T T T T T T	F F F F F T F T T F T T T F F T T F T T F T T F

Covering Array Example – Bold / Italic

Test	Bold	Italic	Underline	
1	F	F	F	Bold / Italic
2	F	F	T	Bold / Underline
3	F	T	F	Italic / Underline
4	F	T	T	
5	T	F	F	
6	T	F	T	
7	T	T	F	
8	Т	T	T	

Covering Array Example – Bold / Underline

Test	Bold	Italic	Underline	
1	F	F	F	Bold / Italic
2	F	F	T	Bold / Underline
3	F	T	F	Italic / Underline
4	F	T	T	
5	T	F	F	
6	T	F	T	
7	T	T	F	
8	Т	T	Т	

Covering Array Example – Italic / Underline

Test	Bold	Italic	Underline	
1	F	F	F	Bold / Italic
2	F	F	T	Bold / Underline
3	F	T	F	Italic / Underline
4	F	T	T	
5	T	F	F	
6	T	F	T	
7	T	T	F	
8	T	T	T	

Run a Subset of Tests

Test	Bold	Italic	Underline	
1	F	F	F	Bold / Italic
2	F	F	T	Bold / Underline
3	F	T	F	Italic / Underline
4	F	Т	T	
5	T	F	F	Necessary Tests
6	T	F	T	Unnecessary Tests
7	T	T	F	
8	Т	Т	Т	

Can Minimize Further Using Better Algorithms

Test	Bold	Italic	Underline	
1	F	F	F	Bold / Italic
2	F	F	Т	Bold / Underline
3	F	T	F	Italic / Underline
4	F	Т	Т	
5	T	F	F	Necessary Tests
6	T	F	Т	Unnecessary Tests
7	Т	Т	F	
8	Т	Т	T	

OK, this works for small numbers of variables, but what about big ones?

- Imagine a 34-variable system
 - Exhaustive testing: 17 billion tests
 - All 3-way interactions: 33 tests
 - All 4-way interactions: 85 tests
- Actually gets BETTER the higher the number of variables (n)
 - Size of exhaustive testing: $O(2^n) \rightarrow$ Exponential!
 - Size of coverage array: $O(2^t * log n) \rightarrow$ Logarithmic!
- Not just a little better many orders of magnitude better

Remember at the beginning of the term when I talked about the impossibility of testing every combination of inputs?

This is a possible amelioration.

Won't It Take Long To Manually Make Covering Arrays For Large Number of Variables?

YES

- Are you kidding? I already told you it is an NP-Hard problem.
- You can use a program to do it for you.
- Example: NIST ACTS

https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/downloadable-tools

Now Please Read Textbook Chapter 17