3.7 覆叠空间

3.7.1 覆叠空间的概念与例子

¶ 覆叠空间的定义

我们在计算 $\pi_1(S^1)$ 时,核心步骤是证明 S^1 的提升引理即引理3.5.8,而该引理证明的关键要点是投影映射 $p: \mathbb{R} \to S^1$ 的 "局部可逆性",即存在 S^1 的开覆盖 $\{U_i\}$ 使得

- $p^{-1}(U_i) = \bigcup V_j^i$ 是 \mathbb{R} 中开集的不交并,
- 每个 $p_j^i = p|_{V_i^i}: V_j^i \to U_i$ 是一个同胚.

事实上,这样的"覆叠结构"广泛存在于几何中,且与基本群密切相关:不仅覆叠结构可被用于计算特定空间的基本群,而且基本群也可以用于分类覆叠结构.因此我们定义

定义 3.7.1. (覆叠空间)

设 X 是一个拓扑空间. 若存在拓扑空间 \widetilde{X} 以及连续映射 $p:\widetilde{X}\to X$ 使得对于任意 $x\in X$,存在于 x 的一个开邻域 U 满足如下性质:

- (1) $p^{-1}(U) = \bigcup_{\alpha} V_{\alpha}$, 其中 V_{α} 是 \widetilde{X} 中的不交开集.
- (2) 对于任意的 α , 映射 $p_{\alpha} := p|_{V_{\alpha}} : V_{\alpha} \to U$ 是一个同胚.

则我们称 \widetilde{X} 为 X 的一个**覆叠空间**(covering space),称映射 p 是一个**覆叠映射**(covering map),并且对于任意 $x \in X$,称 $p^{-1}(x)$ 为该覆叠映射在 x 处的**纤维** (fiber).

注 3.7.2.

- (1) 我们总假设 X 和 \widetilde{X} 都是道路连通的. 事实上,
 - $\stackrel{\sim}{E}$ $\stackrel{\sim}{X}$ $\stackrel{\sim}{E}$ $\stackrel{\sim}{X}$ $\stackrel{\sim}{E}$ $\stackrel{\sim}{X}$ $\stackrel{\sim}{E}$ $\stackrel{\sim}{Y}$ $\stackrel{$

$$\widetilde{X}_0 := p^{-1}(X_0)$$

是 X_0 的一个覆叠空间. 所以我们总可以通过限制到道路连通分支的方法,使得 X 是道路连通的.

- 如果 X 是道路连通的, \widetilde{X} 是 X 的覆叠空间,那么 \widetilde{X} 的道路连通分支是 X 的覆叠空间. 所以我们总可以通过限制到道路连通分支的方法,使得 \widetilde{X} 是道路连通的.
- (2) 在 X 道路连通的条件下,可以验证 (留作习题):
 - p 总是满射 (假设 $\widetilde{X} \neq \emptyset$).
 - 对于任意 $x \in X$,纤维 $p^{-1}(x)$ 都有着相同的势,称为覆叠的**叶数** (number of sheets). 若 $|p^{-1}(x)| = n$,则我们称该覆叠为一个 n-重覆叠 (n-fold covering).

¶ 覆叠空间: 例子

例 3.7.3. 以下是一些覆叠空间的例子:

(1) $\mathbb{R} \in S^1$ 的覆叠空间, 其覆叠映射 $p: \mathbb{R} \to S^1$, $x \mapsto e^{2\pi i x}$.

(2) S^1 以多种不同的方式成为 S^1 的覆叠空间: 对于任意整数 $n \in \mathbb{Z} \setminus \{0\}$,

$$p_n: S^1 \to S^1, \quad z \mapsto z^n$$

给出了 S^1 的一个 |n|-重覆叠.

(3) 类似地,对于任意整数 $n \in \mathbb{Z} \setminus \{0\}$,映射

$$p_n: \mathbb{C}^* \to \mathbb{C}^*, \quad z \mapsto z^n$$

是一个 |n| 重覆叠映射.

[然而, $p_n: \mathbb{C} \to \mathbb{C}, z \mapsto z^n$ 不是一个覆叠映射.]

(4) 复指数映射

$$\exp: \mathbb{C} \to \mathbb{C}^* = \mathbb{C} \setminus \{0\}$$

是一个覆叠映射: 对于任意的 $z = re^{i\theta} \in \mathbb{C}^*$, 我们有

$$\exp^{-1}(z) = \{ \log r + (2k\pi + \theta)i \mid k \in \mathbb{Z} \},\$$

由此可以验证 exp 是一个覆叠映射.

(5) S^n 是实射影空间 \mathbb{RP}^n (参见例1.4.35) 的一个覆叠空间,覆叠映射为

$$p: S^n \to \mathbb{RP}^n = S^n/\sim, \quad x \to [x],$$

其中 $x_1, x_2 \in S^n$, $x_1 \sim x_2 \iff x_1 = \pm x_2$. 这是一个二重覆叠. [然而, $\mathbb{R}^{n+1} \setminus \{0\}$ 不是 \mathbb{RP}^n 的一个覆叠空间.]

(6) 在例1.4.44(5)中, 我们定义透镜空间 L(p,q)(p 和 q 为互质的整数) 为商空间

$$L(p;q) := S^3 / \sim,$$

其中 $(z_1, z_2) \sim (z_1', z_2') \iff \exists k \in \mathbb{Z}$ 使得 $z_1' = e^{2\pi k i/p} z_1, z_2' = e^{2\pi k q i/p} z_2$. 可以验证在商映射之下, S^3 是 L(p,q) 的一个 p-重覆叠空间.

(7) 如果 $p: \widetilde{X} \to X$ 和 $p': \widetilde{X'} \to X'$ 都是覆叠映射, 那么映射

$$p\times p':\widetilde{X}\times\widetilde{X}'\to X\times X',\; (\widetilde{x},\widetilde{x}')\mapsto (p(\widetilde{x}),p'(\widetilde{x}'))$$

也是覆叠映射. 特别地, $\widetilde{X} = \mathbb{R}^n$ 是 $\mathbb{T}^n = S^1 \times \cdots \times S^1$ 的覆叠空间.

(8) 同上节一样,我们记"亏格"为g的紧无边曲面为 Σ_g .则 Σ_{11} 是 Σ_3 的(5 重)覆叠空间,如下图所示.类似地,可以构建从 Σ_{kr+1} 到 Σ_{k+1} 的r重覆叠映射.

下面这些图给出了(1),(2),(8)所描述的覆叠映射:

¶覆叠空间 v.s. 群作用

注意到例3.7.3中的 (1), (2), (5), (6) 已经在例1.4.44中作为特定的群作用下的商空间出现过. 一般地,假设 G 是一个群,作用在拓扑空间 \widetilde{X} 上,

$$X = \widetilde{X}/G := \widetilde{X}/\sim,$$

为该群作用下的商空间. 一个自然的问题是:

「问题」: 商映射 $p: \widetilde{X} \to X$ 是一个覆叠映射吗?

事实上,在习题 1,4 中我们已经给出了商映射 $p:\widetilde{X}\to X$ 是覆叠映射的一个充分条件:

$$\forall \tilde{x} \in \widetilde{X}, \ \exists \tilde{x}$$
的开邻域 \widetilde{U} , 使得对 $\forall g \neq e \in G, \ \bar{q}(g \cdot \widetilde{U}) \cap \widetilde{U} = \emptyset.$ (★)

定义 3.7.4. (纯不连续作用)

如果群 G 在拓扑空间 X 上的作用满足条件 (\bigstar),则我们称该作用是**纯不连续的** (properly discontinuous) .

在习题 1.4 中我们证明了如下结果,为了完整性起见我们给出详细证明:

命题 3.7.5. (特定群作用下商映射是覆叠映射)

假设群 G 作用在拓扑空间 \widetilde{X} 上. 若该作用是纯不连续的,则 \widetilde{X} 是商空间 $X=\widetilde{X}/G$ 的一个覆叠空间,且商映射 $p:\widetilde{X}\to X$ 是一个覆叠映射.

证明 令 $x \in X, \tilde{x} \in p^{-1}(x)$, \tilde{U} 为 \tilde{x} 的满足条件 (\bigstar) 的开邻域. 记 $U = p(\tilde{U})$. 则由定义,

$$p^{-1}(U) = p^{-1}(p(\widetilde{U})) = \bigcup_{g \in G} g \cdot \widetilde{U}$$

是 \widetilde{X} 中开集的并集. 因此由商拓扑的定义,集合 U 为 X 中的开集. (这蕴含了 p 是一个开映射.) 由此 $p(\widetilde{U})$ 是 x 的一个开邻域,且满足覆叠空间中的条件(1).

下面验证覆叠空间定义中的条件 (2). 我们首先注意到由条件 (\bigstar), $p|_{\widetilde{U}}:\widetilde{U}\to U$ 是单射,由 U 的定义它是满射. 作为商映射它是连续的. 由上一段相同的论证可得它是一个开映射. 因此 $p|_{\widetilde{U}}:\widetilde{U}\to p(\widetilde{U})$ 是一个同胚. 由此可知对于任意的 $g\in G$, 映射

$$p_g:g\cdot\widetilde{U}\to p(\widetilde{U})$$

是以下两个同胚的复合

$$g \cdot \widetilde{U} \xrightarrow{g^{-1}} \widetilde{U} \xrightarrow{p} p(\widetilde{U}),$$

从而也是一个同胚.

可以验证例1.4.44中所涉及的群作用都是纯不连续的,故所得的商映射都是覆叠映射.

例 3.7.6. 考虑 $\mathbb{Z}_2 = \{1, -1\}$ 在 $\mathbb{T}^2 = S^1 \times S^1 \subset \mathbb{C}^2$ 的作用,

$$1 \cdot (z, w) = (z, w), \quad (-1) \cdot (z, w) = (\bar{z}, -w).$$

这是一个纯不连续作用,给出了 \mathbb{T}^2 到 \cdots Klein 瓶的二重覆叠! [验证!]

3.7.2 映射的提升

¶提升引理

我们先给出映射提升的定义:

定义 3.7.7. (映射的提升)

设 $p: \widetilde{X} \to X$ 为一个覆叠映射, 而 $f: Y \to X$ 是一个连续映射. 若连续映射 $\widetilde{f}: Y \to \widetilde{X}$ 使得右边的图表交换, 即

$$p \circ \tilde{f} = f$$
,

则称 \tilde{f} 为 f 的一个**提升** (lifting).

通过重复引理3.5.8的证明,可以得到任意具有"初始提升"的连续映射 $F: P \times I \to X$ 可被唯一提升:

引理 3.7.8. (一般提升引理)

设 P 是拓扑空间, $p: \widetilde{X} \to X$ 是一个覆叠映射. 若映射

$$F_0 = F|_{P \times \{0\}} : P \times \{0\} \to X$$

可以被"提升"为连续映射 $\widetilde{F}_0: P \times \{0\} \to \widetilde{X}$,则存在 F 的提升 $\widetilde{F}: P \times I \to \widetilde{X}$,使得 $\widetilde{F}_0 = \widetilde{F}|_{P \times \{0\}}$,且满足该条件的提升是唯一的.

特别地,分别取 P 为单点集以及 P = [0,1],我们可以得到

推论 3.7.9. (道路提升性质)

设 $p:\widetilde{X}\to X$ 是覆叠映射,则对于 X 中任意起点为 $\gamma(0)=x_0$ 的道路 $\gamma:[0,1]\to X$,以及任意 $\tilde{x}_0\in p^{-1}(x_0)$,在 \widetilde{X} 中有唯一一条起点为 $\widetilde{\gamma}(0)=\tilde{x}_0$ 的道路 $\widetilde{\gamma}:[0,1]\to \widetilde{X}$,使得 $\widetilde{\gamma}$ 是 γ 的提升,即 $p\circ\widetilde{\gamma}=\gamma$.

以及

推论 3.7.10. (同伦提升性质)

设 $p: \widetilde{X} \to X$ 是覆叠映射

- (1) 对于 X 中任意具有固定起始点 $F(s,0) \equiv x_0$ 的同伦 $F:[0,1] \times [0,1] \to X$,和任意 $\tilde{x}_0 \in p^{-1}(x_0)$,在 \widetilde{X} 中存在唯一具有固定起点 $\widetilde{F}(s,1) \equiv \tilde{x}_0$ 的同伦 $\widetilde{F}:[0,1] \times [0,1] \to \widetilde{X}$,使得 \widetilde{F} 是 F 的一个提升,即 $p \circ \widetilde{F} = F$.
- (2) 若同伦 F 是道路同伦,即还具有固定终点 $F(s,1)\equiv x_1\in X$,则 \widetilde{F} 也是道路 同伦,即存在 $\widetilde{x}_1\in p^{-1}(x_1)$ 使得 $\widetilde{F}(s,1)\equiv x_1$.

注 3.7.11.

- (1) 若 γ 是一个圈,即 γ (1) = γ (0),提升后的道路 $\tilde{\gamma}$ 一般不再是圈,即 $\tilde{\gamma}$ (1) $\neq \tilde{\gamma}$ (0). 但是由同伦提升可知,如果 γ 是道路同伦等价于常值道路的圈,则提升后的道路 $\tilde{\gamma}$ 依然是圈. 在习题中我们将给出圈提升后依然是圈的充要条件.
- (2) 虽然道路同伦的提升是道路同伦,但是跟 \tilde{x}_0 可以从 $p^{-1}(x_0)$ 中任选不同,只要选定了起点 \tilde{x}_0 ,则终点 $\tilde{x}_1 \in p^{-1}(x_1)$ 就已经被唯一确定下来了(这是因为道路 $F_s(\cdot) = F(s, \cdot)$ 具有唯一的提升). 特别地,"圈的道路同伦"的提升一般不再是"圈的道路同伦",而只是一般道路的道路同伦. 当然,如果是同伦于常值圈的"圈的道路同伦",那么提升后依然是"圈的道路同伦"(这还是因为道路具有唯一提升). 作为推论,我们证明

命题 3.7.12. (覆叠映射诱导基本群的单同态)

设 $p:\widetilde{X}\to X$ 是覆叠映射,且 $p(\widetilde{x}_0)=x_0$.则 $p_*:\pi_1(\widetilde{X},\widetilde{x}_0)\to\pi_1(X,x_0)$ 是单射.

证明 设 $\widetilde{\gamma}$ 是 \widetilde{X} 中以 \widetilde{x}_0 为基点的一个圈,且 $p_*([\widetilde{\gamma}]_p) = e$,即 $\gamma := p \circ \widetilde{\gamma}$ 道路同伦于 x_0 处的常值道路 γ_{x_0} . 则由同伦提升引理, $\widetilde{\gamma}$ (作为 γ 的以 \widetilde{x}_0 为起点的提升道路)与 $\gamma_{\widetilde{x}_0}$ (作为 γ_{x_0} 的以 \widetilde{x}_0 为起点的提升道路)是道路同伦等价的,从而 $[\widetilde{\gamma}]_p = e \in \pi_1(\widetilde{X}, \widetilde{x}_0)$.

¶提升的唯一性

现在我们考虑一般的提升. 事实上,即使没有引理3.7.8中的额外假设(注意引理3.7.8要求具有初始提升但不要求连通性,而此处要求 *Y* 连通),一般的提升也总是唯一的:

命题 3.7.13. (提升的唯一性)

设 $p:\widetilde{X}\to X$ 是覆叠映射, $f:Y\to X$ 为连续映射,且 $\tilde{f}_1,\tilde{f}_2:Y\to\widetilde{X}$ 是 f 的两个提升. 若 Y 是连通的,且存在 $g_0\in Y$ 使得 $\tilde{f}_1(g_0)=\tilde{f}_2(g_0)$,则在 Y 上有 $\tilde{f}_1=\tilde{f}_2$.

证明 对于任意 $y \in Y$, 我们取 f(y) 在 X 中的开邻域 U, 使得 $p^{-1}(U)$ 是无交并

$$p^{-1}(U) = \bigcup_{\alpha} \widetilde{U}_{\alpha},$$

且使得每个

$$p_{\alpha} := p|_{\widetilde{U}_{\alpha}} : \widetilde{U}_{\alpha} \to U$$

都是同胚. 在这些 U_{α} 中,分别记包含 $\tilde{f}_1(y)$ 和 $\tilde{f}_2(y)$ 的开集为 \widetilde{U}_1 和 \widetilde{U}_2 . 下面我们采用连通性论证说明 $\tilde{f}_1 \equiv \tilde{f}_2$. 为此我们令

$$Y_0 = \{ y \in Y \mid \tilde{f}_1(y) = \tilde{f}_2(y) \}.$$

则我们有

- $Y_0 \neq \emptyset$, 因为我们有 $y_0 \in Y_0$.
- Y_0 是闭集: 假设 $y \notin Y_0$, 即 $\tilde{f}_1(y) \neq \tilde{f}_2(y)$. 因为 $p(f_1(y)) = p(f_2(y))$, 所以 $\widetilde{U}_1 \neq \widetilde{U}_2$, 从而由无交性, $\widetilde{U}_1 \cap \widetilde{U}_2 = \emptyset$. 由连续性, 存在一个 y 在 Y 中的开邻域 N 使得

$$\widetilde{f}_1(N) \subset \widetilde{U}_1, \quad \widetilde{f}_2(N) \subset \widetilde{U}_2.$$

由此可得 $N \cap Y_0 = \emptyset$. 因此 Y_0^c 是开集,即 Y_0 是闭集.

• Y_0 是开集: 假设 $y \in Y_0$, 则 $\widetilde{U}_1 \cap \widetilde{U}_2 \neq \emptyset$, 从而 $\widetilde{U}_1 = \widetilde{U}_2$. 同理我们可以找到 y 的一个开邻域 N 使得 $f_1(N) \subset \widetilde{U}_1 = \widetilde{U}_2$. 因为 p 在 $\widetilde{U}_1 = \widetilde{U}_2$ 上是单射, 并且

$$p \circ \tilde{f}_1 = p \circ \tilde{f}_2,$$

所以我们能推出在 N 上有 $\tilde{f}_1=\tilde{f}_2$. 于是 $N\subset Y_0$, 从而 Y_0 是开集. 最后,由 Y 的连通性可知 $Y_0=Y$, 即在 Y 上恒有 $\tilde{f}_1=\tilde{f}_2$.

¶ 提升的存在性

一般提升的存在性通常更为复杂. 假设映射 f 可被提升为 \tilde{f} , 那么我们就会有如下<u>带标定点的提升交换图表</u>. 特别地,由 π_1 的函子性,我们得到提升存在的必要条件

$$f_*(\pi_1(Y, y_0)) = p_*(\tilde{f}_*(\pi_1(Y, y_0))) \subset p_*(\pi_1(\widetilde{X}, \tilde{x}_0)).$$

反之我们证明,只要Y是道路连通且局部道路连通的,那么上述必要条件也是充分的:

定理 3.7.14. (提升存在性的判别准则)

设 $p:(\widetilde{X},\widetilde{x}_0)\to (X,x_0)$ 是一个覆叠映射,并且 $f:(Y,y_0)\to (X,x_0)$ 是连续的. 如果 Y 是道路连通且局部道路连通的,那么 f 可被提升 a 为 \widetilde{f} 当且仅当

$$f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(\widetilde{X}, \widetilde{x}_0)).$$
 (*)

"注意,此处提升为带有标定点的提升,即还要满足 $\tilde{f}(y_0)=\tilde{x}_0$.

证明 我们已经看到 (*) 是存在提升 \tilde{f} 的必要条件.

现在我们假设 (*) 成立. 为证明提升的存在性,我们任取 $y \in Y$. 由 Y 的道路连通性,存在一条 Y 中的从 y_0 到 y 的道路 γ . 于是 $f \circ \gamma$ 是一条 X 中的以 x_0 为起点的道路,从而可以被唯一提升为 \widetilde{X} 中以 \widetilde{x}_0 为起点的道路 $f \circ \gamma$. 定义

$$\tilde{f}(y) = \widetilde{f \circ \gamma}(1).$$

下面我们证明 $\tilde{f}: Y \to \widetilde{X}$ 就是我们所求的提升. 因为由定义我们有 $\tilde{f}(y) \in p^{-1}(f(y))$, 我们仅需要验证 \tilde{f} 是良定的并且是连续的.

• [\tilde{f} **是良定的**]: 设 γ' 是 Y 中从 y_0 到 y 的另一条道路. 则 $(f \circ \gamma')*(\overline{f} \circ \gamma) = f \circ (\gamma'*\overline{\gamma})$ 是 X 中以 x_0 为基点的圈,且满足

$$[(f \circ \gamma') * (\overline{f \circ \gamma})]_p = f_*([\gamma' * \overline{\gamma}]_p) \in f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(\widetilde{X}, \widetilde{x}_0)).$$

因此存在一个道路同伦 $F:[0,1]\times[0,1]\to X$ 连接了圈 $(f\circ\gamma')*(\overline{f\circ\gamma})$ 和 "X 中以 x_0 为基点某个形如 $\gamma_1=p\circ\tilde{\gamma}_1$ 的圈 γ_1 ",其中 $\tilde{\gamma}_1$ 是 \widetilde{X} 中以 \tilde{x}_0 为基点的一个圈. 我们可以道路同伦 F 提升成起点为 $\widetilde{F}(s,0)=\tilde{x}_0$ 的道路同伦 $\widetilde{F}:[0,1]\times[0,1]\to\widetilde{X}$. 我们有

• $\widetilde{F}(0,t)$ 是以 \widetilde{x}_0 为起点的道路 $F(0,t) = (f \circ \gamma') * (\overline{f} \circ \gamma)$ 的唯一提升. 由道路提升的唯一性, 我们必然有 $\widetilde{F}(0,t) = (f \circ \gamma') * (\overline{f} \circ \gamma)$, 其中 $\overline{f} \circ \gamma$ 是道路 $\overline{f} \circ \gamma$ 的

以 $\widetilde{f} \circ \gamma'(1)$ 为起点的唯一提升.

• 同理 $\widetilde{F}(1,t)$ 是 γ_1 的以 \tilde{x}_0 为起点的唯一提升, 因此我们有 $\widetilde{F}(1,t) = \tilde{\gamma}(t)$. 因为 \widetilde{F} 是道路同价, 故 $\widetilde{F}(0,1) = \widetilde{F}(1,1)$, 即

$$(\widetilde{f \circ \gamma'}) * (\widetilde{\overline{f \circ \gamma}})(1) = \widetilde{F}(0,1) = \widetilde{F}(1,1) = \widetilde{\gamma}(1) = \widetilde{x}_0.$$

由此 $(\widetilde{f \circ \gamma})(1) = \tilde{x}_0$. 因此 $(\widetilde{f \circ \gamma})$ 是以 \tilde{x}_0 为起点的 $f \circ \gamma$ 的提升,由道路提升的唯一性, $(\overline{f \circ \gamma}) = \widetilde{f \circ \gamma}$. 从而有

$$\widetilde{f\circ\gamma}(1)=\overline{(\overline{f\circ\gamma})}(1)=(\widetilde{\overline{f\circ\gamma}})(0)=\widetilde{f\circ\gamma'}(1).$$

• [\tilde{f} **是连续的**]: 我们首先固定一条从 y_0 到 y 的道路 γ . 取 f(y) 的邻域 $U \subset X$ 以及 $\tilde{f}(y)$ 的邻域 $\widetilde{U} \subset X$,使得 $p|_{\widetilde{U}}: \widetilde{U} \to U$ 是一个同胚. 由 Y 的局部道路连通性, 我们可以找到一个 y 的道路连通开邻域 $V \subset f^{-1}(U)$. 对于任意 $y' \in V$,我们令 $\lambda \in V$ 中从 y 到 y' 的一条道路. 则 $f \circ \lambda$ 是 U 中的一条从 f(y) 从 f(y') 的道路. 因为 $p|_{\widetilde{U}}$ 是一个同胚, $\widehat{f} \circ \lambda = (p|_{\widetilde{U}})^{-1} \circ f \circ \lambda$ 是 $f \circ \lambda$ 的以 $\widetilde{f}(y)$ 为起点的唯一提升.

因为 $\widetilde{f} \circ \gamma$ 是 \widetilde{X} 中从 \widetilde{x}_0 到 f(y) 的一条道路, 道路 $(\widetilde{f} \circ \gamma) * (\widetilde{f} \circ \lambda)$ 是道路 $(f \circ \gamma) * (f \circ \lambda) = f \circ (\gamma * \lambda)$ 的以 \widetilde{x}_0 为起点的提升道路. 因为 $\gamma * \lambda$ 是 Y 中一条从 y_0 到 y' 的道路, 由 \widetilde{f} 的定义,我们有

$$\begin{split} \tilde{f}(y') &= (\widetilde{f} \circ \gamma) * (\widetilde{f} \circ \lambda)(1) = (p|_{\widetilde{U}})^{-1} \circ f \circ \lambda(1) = (p|_{\widetilde{U}})^{-1} \circ f(y'). \\ \text{由此可得} \ \tilde{f}(V) \subset \widetilde{U} \ \text{且} \ \tilde{f}|_{V} &= (p|_{\widetilde{U}})^{-1} \circ f. \ \text{因此} \ \tilde{f} \ \text{在} \ V \ \text{上连续}. \end{split}$$

¶应用: 零伦的判定

我们给出提升存在性的一个简单应用:

命题 3.7.15. (球到圆的映射零伦)

对任意 $n \ge 2$, 任意连续映射 $f: S^n \to S^1$ 是零伦的.

证明 因为 $Im(f_*) = \{e\}$, f 可以被提升到映射 $\tilde{f}: S^n \to \mathbb{R}$. 但是因为 \mathbb{R} 是可缩的,因此 \tilde{f} 是零伦的,从而 $f = p \circ \tilde{f}$ 也是零伦的.

翻译成同伦群的语言,该命题告诉我们:对于任意 $n \geq 2$,有 $\pi_n(S^1) = \{e\}$.

『在复分析中的一个应用

我们之前就已经看到指数映射

$$\exp: \mathbb{C} \to \mathbb{C}^* = \mathbb{C} \setminus \{0\}$$

是一个覆叠映射. 现在我们尝试去定义**复对数函数**. 我们知道,对于 $0 \neq z = re^{i\theta}$,我们有一个多值函数 $\log z = \ln r + i(\theta + 2k\pi)$ $(k \in \mathbb{Z})$. 现在我们希望对于某些给定的子集 $U \subset \mathbb{C}^*$,定义一个 (单值的) 复函数 $\log : U \to \mathbb{C}$,使得

$$\exp \circ \log = \mathrm{Id}$$
.

核心观察: 因为 exp : $\mathbb{C} \to \mathbb{C}^*$ 是覆叠映射,所以如果在 U 上存在单值的对数函数 $\log : U \to \mathbb{C}$,那么它就是嵌入映射 $\iota : U \hookrightarrow \mathbb{C}^*$ 的提升映射.

根据提升存在性的判别准则:

(1) 因为 $\mathrm{Id}_*(\pi_1(\mathbb{C}^*)) \not\subset \exp_*(\pi_1(\mathbb{C}))$,故 $\mathrm{Id}: \mathbb{C}^* \to \mathbb{C}^*$ 不能被提升,从而 \log 不能被定义在 \mathbb{C}^* 上.

$$\begin{array}{c|c}
\mathbb{C} & \mathbb{C} \\
\exists \log? & \downarrow \exp \\
\mathbb{C}^* & \downarrow \text{exp} \\
\mathbb{C}^* & U \xrightarrow{i} \mathbb{C}^*
\end{array}$$

(2) 对数函数 $\log: U \to \mathbb{C}$ 存在当且仅当

$$i_*(\pi_1(U)) \subset \exp_*(\pi_1(\mathbb{C})) = \{e\},\$$

即当且仅当 $i_*(\pi_1(U)) = \{e\}$,即U 不包含任何环绕原点的圈. 特别地,我们看到

- 若区域 $U \subset \mathbb{C}^*$ 单连通,则 \log 是良好定义的(但单连通并非必要条件).
- 若 $i_*(\pi_1(U)) = \{e\}$,即 U 不包含任何环绕原点的圈. 则对于任意 t,函数

$$z^t = e^{t \log z}$$

是在 U 上良定的连续函数. 注意: $F(t,z) := z^t$ 不是一个在 S^1 上良定的函数, 因而并不是 S^1 上的恒等映射和常值映射之间的同伦.

类似地,对于任意正整数 d > 1,映射

$$p_d: \mathbb{C}^* \to \mathbb{C}^*, \quad z \mapsto z^d$$

是一个 p-重覆叠映射, 而 $z \mapsto z^{1/d}$ 是在该覆叠映射下包含映射 ι 的提升:

$$\begin{array}{c|c} \mathbb{C}^* & \mathbb{C}^* \\ \not \exists z^{1/d} \nearrow^{\mathscr{I}} & p_d(z) = z^d \\ \mathbb{C}^* & \stackrel{\mathrm{Id}}{\longrightarrow} \mathbb{C}^* \\ \end{array}$$

于是,由

$$(p_d)_*(\pi_1(\mathbb{C}^*)) \simeq d\mathbb{Z} \not\supset \mathbb{Z} \simeq \pi_1(\mathbb{C}^*) = \mathrm{Id}_*(\pi_1(\mathbb{C}^*))$$

可知不存在定义在整个 \mathbb{C}^* 上的映射 $z^{1/d}$. 事实上, 重复之前的论证, 易见 $z^{1/d}$ 在 $U \subset \mathbb{C}^*$ 上良定的当且仅当 U 不包含任何环绕原点的圈(因为 $i_*(\pi_1(U))$ 要么是 \mathbb{Z} 要么是 $\{e\}$).

更一般地,给定任意多项式 f=f(z),记 Z_f 是 f 的零点集.我们可以问:

问题: 能否在区域 $U \subset \mathbb{C} \setminus Z_f$ 上定义 $f^{1/d}$?

答案是: $f^{1/d}$ 在 U 上良定当且仅当

$$f_*(\pi_1(U)) \subset d\mathbb{Z} \subset \mathbb{Z} \simeq \pi_1(\mathbb{C}^*).$$

例如,如果 $a_1 < a_2 < \cdots < a_{2n}$ 为实数,并且

$$f(z) = (z - a_1)(z - a_2) \cdots (z - a_{2n}),$$

那么我们可以在集合

$$U = \mathbb{C} \setminus \bigcup_{1 \le k \le n} [a_{2k-1}, a_{2k}]$$

上定义 $\sqrt{f(z)}$, 因为 U 中每条闭曲线必然环绕 f 的零点偶数次, 从而 $[\gamma]_p$ (和 $f_*([\gamma]_p)$)

是一个"偶"的类. 这个事实在黎曼面 (Riemann surface) 的理论中扮演了重要角色.

3.7.3 用覆叠计算基本群

¶ 基本群与终点集

下面我们用覆叠空间的方法去研究底空间的基本群. 在第3.5节中我们用覆叠映射

$$p: \mathbb{R} \to S^1, \quad t \mapsto e^{2\pi i t},$$

证明了 $\pi_1(S^1,1) \simeq \mathbb{Z}$, 其中 \mathbb{Z} 实际上是所有 $\tilde{\gamma}_n : [0,1] \to \mathbb{R}$, $t \mapsto nt$ 的终点,换言之,作为集合, $\mathbb{Z} = p^{-1}(1)$. 一般情况下,我们有

命题 3.7.16. (基本群与终点集)

设 $p: \widetilde{X} \to X$ 为一个覆 叠映射, $\widetilde{x}_0 \in \widetilde{X}$ 且 $x_0 = p(\widetilde{x}_0)$. 我们定义**提升对应**

$$\alpha: \pi_1(X, x_0) \to p^{-1}(x_0), \qquad \alpha([\gamma]) := \tilde{\gamma}(1) \in p^{-1}(x_0)$$

其中 $\tilde{\gamma}$ 是 γ 的满足条件 $\tilde{\gamma}(0) = \tilde{x}_0$ 的唯一提升. 则

- (1) $\alpha: \pi_1(X, x_0) \to p^{-1}(x_0)$ 是良定的.
- (2) 如果 \widetilde{X} 是道路连通的, 那么 α 是满射.
- (3) 如果 \widetilde{X} 是单连通的,那么 α 是双射. α

"注:这可以告诉我们基本群这个集合有多"大",但并没有告诉我们群结构.

证明

(1) 因为 $\tilde{\gamma}$ 是 γ 的提升, $p(\tilde{\gamma}(1)) = \gamma(1) = x_0$. 因此

$$\tilde{\gamma}(1) \in p^{-1}(x_0).$$

现在假设 $\gamma' \in [\gamma]_p$, 即 $\gamma' \sim \gamma$. 由道路提升引理, γ' 可被唯一提升为具有起点 \widetilde{x}_0 的道路 $\widetilde{\gamma}'$. 由同伦提升引理, $\widetilde{\gamma}'$ 与 $\widetilde{\gamma}$ 是道路同伦的,从而 $\widetilde{\gamma}'(1) = \widetilde{\gamma}(1)$. 因此映射 α 是良定的.

(2) 设 \widetilde{X} 是道路连通的. 对于任意 $\widetilde{x}_1 \in p^{-1}(x_0)$, 令 λ 为 \widetilde{X} 中从 \widetilde{x}_0 到 \widetilde{x}_1 的道路,则 $\gamma = p \circ \lambda : I \to X$ 是一个以 x_0 为基点的圈,从而 $[\gamma]_p \in \pi_1(X, x_0)$. 由道路提升的唯一性, γ 的满足 $\widetilde{\gamma}(0) = \widetilde{x}_0$ 的提升 $\widetilde{\gamma}$ 必然是道路 λ . 由此可得

$$\alpha([\gamma]_p) = \tilde{\gamma}(1) = \lambda(1) = \tilde{x}_1.$$

因此 α 是满射.

(3) 最后设 \widetilde{X} 单连通, γ, γ' 都是以 x_0 为基点的圈并且

$$\alpha([\gamma]_p) = \alpha([\gamma']_p).$$

也就是说,若 $\tilde{\gamma}$ 和 $\tilde{\gamma}'$ 分别是 $\tilde{\gamma}$ 和 $\tilde{\gamma}'$ 的以 \tilde{x}_0 为起点的提升,那么 $\tilde{\gamma}(1)=\tilde{\gamma}'(1)$.于是 $\tilde{\gamma}*\overline{\gamma}'$ 是 \tilde{X} 中以 \tilde{x}_0 为基点的圈.因为 \tilde{X} 是单连通的,我们有

$$\tilde{\gamma} * \overline{\tilde{\gamma}'} \sim c_{\tilde{x}_0}.$$

故

$$\gamma * \overline{\gamma'} = p(\tilde{\gamma} * \overline{\tilde{\gamma'}}) \underset{p}{\sim} p(c_{\tilde{x}_0}) = c_{x_0}.$$

因此我们得到 $[\gamma]_p = [\gamma']_p \in \pi_1(X, x_0)$, 即 α 是单射.

注 3.7.17. 更一般地,在 \widetilde{X} 不是单连通时,可以证明: $\pi_1(X, x_0)$ 的子群 $p_*(\pi_1(\widetilde{X}, \tilde{x}_0))$ 的指标是 $|p^{-1}(x_0)|$. 换句话说,存在一个 $\pi_1(X, x_0)$ 中 $p_*(\pi_1(\widetilde{X}, \tilde{x}_0))$ 的陪集到纤维 $p^{-1}(x_0)$ 之间的双射.

¶在万有覆叠空间上的群作用 → 基本群

因为单连通的覆叠空间非常重要, 我们定义

定义 3.7.18. (万有覆叠空间)

如果 \widetilde{X} 是 X 的覆叠空间,且 \widetilde{X} 是单连通的,则我们称 \widetilde{X} 是 X 的**万有覆叠空间** (universal covering space) .

例 3.7.19.

- \mathbb{R} 是 S^1 的一个万有覆叠, 而 S^1 并不是.
- S^2 是 S^2 的一个万有覆叠, \mathbb{R}^2 是 \mathbb{T}^2 的一个万有覆叠, 单位圆盘 D 是 $\Sigma_2 = \mathbb{T}^2 \# \mathbb{T}^2$ 的一个万有覆叠 (如下所示)¹⁶.
- S^n 是 \mathbb{RP}^n $(n \ge 2)$ 的一个万有覆叠. S^3 是 L(p;q) 的一个万有覆叠. SU(2) 是 SO(3) 的一个万有覆叠¹⁷.
- $S^1 \vee S^1$ 的万有覆叠是 $\langle a,b \rangle$ 的 Cayley 图,如下所示. 18

The universal covering of $S^1 \vee S^1$

The universal covering of $\mathbb{T}^2 \# \mathbb{T}^2$

¶在万有覆叠空间上的群作用 → 基本群

如果 \widetilde{X} 是X的万有覆叠,那么作为集合,我们有

$$\pi_1(X, x_0) = p^{-1}(x_0).$$

¹⁶根据**单值化定理**, D 是所有 Σ_n 的万有覆叠, 其中 $n \geq 2$.

 $^{^{17}}$ 一般地, **旋量群** Spin(n) 是 SO(n) 的一个万有覆叠, 其中 n > 3.

这里没有给出 $\pi_1(X, x_0)$ 的群结构,因为我们在 $p^{-1}(x_0)$ 上没有群结构. 然而,如果覆叠映射是由某个群作用给出的商映射,那么我们将会有一个群结构:

命题 3.7.20. (群作用与基本群的群结构)

设群 G 在 \widetilde{X} 上的作用是纯不连续的,从而 $p:\widetilde{X}\to X=\widetilde{X}/G$ 为覆叠映射,则

(1) 对于任意 $x_0 \in X = \widetilde{X}/G$ 以及 $\widetilde{x}_0 \in p^{-1}(x_0)$,存在一个群同态

$$\beta: \pi_1(X, x_0) \to G.$$

- (2) 如果 \widetilde{X} 是道路连通的,那么 β 是满射,..
- (3) 如果 \widetilde{X} 是单连通的,那么 β 是双射.

证明 令 $\alpha: \pi_1(X, x_0) \to p^{-1}(x_0)$ 为由 $\tilde{x}_0 \in p^{-1}(x_0)$ 确定的提升对应. 由 (★) 和定义,对于任意 $\tilde{x}_1 \in p^{-1}(x_0)$,存在唯一元素 $g \in G$ 使得 $g \cdot \tilde{x}_0 = \tilde{x}_1$. 记

$$\rho: p^{-1}(x_0) \to G, \ \tilde{x}_1 \mapsto g,$$

于是我们得到一个映射

$$\beta = \rho \circ \alpha : \pi_1(X, x_0) \to G, \qquad [\gamma] \stackrel{\alpha}{\longmapsto} \tilde{\gamma}(1) = \tilde{x}_1 \stackrel{\rho}{\longmapsto} g \in G$$

因为 $\tilde{x}_1 \in p^{-1}(x_0) \stackrel{\rho}{\longleftrightarrow} g \in G$ 是双射, 从命题3.7.16中得到 (2) 和 (3).

现在我们证明 β 是一个群同态. 为此我们令 $g_1 = \beta([\gamma_1]_p), g_2 = \beta([\gamma_2]_p)$, 即

$$g_1 \cdot \widetilde{x}_0 = \widetilde{\gamma}_1(1), \qquad g_2 \cdot \widetilde{x}_0 = \widetilde{\gamma}_2(1).$$

则 $g_1 \cdot \widetilde{\gamma}_2$ 是 \widetilde{X} 中从 $g_1 \cdot \widetilde{x}_0 = \widetilde{\gamma}_1(1)$ 到 $g_1 \cdot \widetilde{\gamma}_2(1) = g_1 g_2 \cdot \widetilde{x}_0$ 的一条道路. 由道路提升唯一性可知 $\widetilde{\gamma}_1 * (g_1 \cdot \widetilde{\gamma}_2)$ 是 \widetilde{X} 中 $\gamma_1 * \gamma_2$ 的以 x_0 为起点的提升,即

$$\widetilde{\gamma_1 * \gamma_2} = \widetilde{\gamma}_1 * (g_1 \cdot \widetilde{\gamma}_2).$$

于是 $\widetilde{\gamma_1}*\widetilde{\gamma_2}(1) = g_1 \cdot \widetilde{\gamma_2}(1) = g_1 g_2 \cdot \widetilde{x_0}$. 从而由定义我们得到

$$\beta([\gamma_1]_p \cdot [\gamma_2]_p) = \beta([\gamma_1 * \gamma_2]_p) = \rho((\widetilde{\gamma_1} * \widetilde{\gamma_2})(1)) = g_1 g_2 = \beta([\gamma_1]_p)\beta([\gamma_2]_p),$$

从而完成了证明.

作为推论, 我们立刻得到

推论 3.7.21

- $\pi_1(\mathbb{RP}^n) \simeq \mathbb{Z}_2$.
- $\pi_1(L(p;q)) \simeq \mathbb{Z}_p$.

有了这些基本群, 我们马上得到

推论 3.7.22. (更多的零伦)

任意从 \mathbb{RP}^2 或者 L(p;q) (p>1) 映到 S^1 的连续映射都是零伦的.

证明 因为从 \mathbb{Z}_2 或 \mathbb{Z}_p 到 \mathbb{Z} 的群同态一定是平凡同态,故我们有 $\mathrm{Im}(f_*) = \{e\}$,从而可以被提升为到 \mathbb{R} 的映射 \widetilde{f} . 因为 \mathbb{R} 可缩,所以 \widetilde{f} 是零伦映射,于是 $f = p \circ \widetilde{f}$ 也零伦. \square