Use a sketch to assist in transforming the following integral to polar coordinates. Then evaluate the resulting integral.

$$\int_0^{\sqrt{6}} \int_{-\sqrt{6-x^2}}^{\sqrt{6-x^2}} e^{x^2 + y^2} \, dy \, dx$$

у
BLYLJA
$0 \le x \le \sqrt{6}$ $-\sqrt{6-x^2} \le y \le \sqrt{6-x^2}$
-16-X ² > Y = 10-X ²
X O I I I I I I I I I I I I I I I I I I
Banded by
$\chi = 0$
V~.\[\(\sigma \)
$ \begin{array}{c} X = \sqrt{6} \\ X^2 + y^2 = 6 \end{array} $
$x^2 + y^2 = 6$
Convert to polar
021656
$0 \le V \le \sqrt{6}$ $-\frac{\pi}{2} \le 0 \le \frac{\pi}{2}$
2-0=2
Integral
$\int_{0}^{\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} f(r(cs(0), rsin(0)) r d \theta dr$
Jo J 1 1 (1050) 1 5000
$= \int_{0}^{\sqrt{6}} \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} (e^{r^{2}\cos^{2}(\omega) + r^{2}\sin^{2}(\omega)}) r d\omega dr$
- Jo J-# CC Jr dear
$=\int_{0}^{\pi}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}re^{r^{2}}d\theta dr$
$=\int_0^{\pi} re^{r^2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta dr$
$= \int_{0}^{\sqrt{6}} re^{r^{2}} \left(\frac{\pi}{2} + \frac{\pi}{2} \right) dr$
= 10 re (2 + 2) dr

Use a sketch to assist in transforming the following integral to polar coordinates. Then evaluate the resulting integral.

$$\int_{-\sqrt{5}}^{\sqrt{5}} \int_{0}^{\sqrt{5-y^2}} \cos(x^2 + y^2) \, dx \, dy$$

Theorem

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \cos(\gamma^{2}) r dr d\theta$$

$$V = V^{2} \qquad \text{Bands}$$

$$\frac{1}{2} dv = V dr \qquad \sqrt{5} \Rightarrow 5 \qquad 0 \Rightarrow 0$$

$$= \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{5} \cos(v) dv d\theta$$

$$= \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(\sqrt{5}) d\theta$$

$$= \frac{1}{2} \sin(5) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta$$

$$= \frac{1}{2} \sin(5) \left(\frac{\pi}{2} + \frac{\pi}{2}\right)$$

$$= \frac{\pi}{2} \sin(5)$$

7		ż		
Z= X ²	2:	= y ²	$\mathcal{O} = \chi^2$	+ 72
$(^{2} = 5 \times)$ $(^{2} - 5 \times) = 0$ $(= 5)$ $(= 0)$	y z	2-=0 =0		$\frac{x^2 + 5x}{-x^2 + 5x}$
$\begin{array}{c} r band \\ x^2 + y^2 = \end{array}$	5 _X			
$V^{2} = 5 cc$ $Y = 5 ccs$				

$$= \frac{5^{4}}{16} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} | + 2\cos(2\theta) + \frac{1}{2} + \frac{1}{2}\cos(4\theta) d\theta$$

$$= \frac{5^{4}}{16} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} | \frac{3}{2} + 2\cos(2\theta) + \frac{1}{2}\cos(4\theta) d\theta$$

$$= \frac{5^{4}}{16} \left(\frac{3}{2} + \frac{\pi}{2} + \frac{2}{2}\sin(2\theta) + \frac{1}{8}\sin(4\theta) \right) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \frac{5^{4}}{16} \left(\frac{3}{2} + \frac{\pi}{2} + \frac{3\pi}{4} \right)$$

$$= \frac{5^{4}}{16} \left(\frac{3\pi}{4} + \frac{3\pi}{4} \right)$$

$$= \frac{5^{4}}{16} \left(\frac{6\pi}{4} \right)$$

$$= \frac{3750\pi}{64}$$

$$= \frac{1875\pi}{32}$$

Use polar coordinates to calculate the area of the region.

$$R = \{(x, y) \mid x^2 + y^2 \le 100, x \ge 8\}$$

$$8^{2} + y^{2} = |00|$$
 $y^{2} = 36$
 $y = \frac{1}{6}$

Introsection of Bounds in Polar

 $tan(0) = \frac{6}{8}$
 $0 = arctan(\frac{6}{8})$

Bounds in Polar

 $-arctan(\frac{1}{8}) \leq 0 \leq arctan(\frac{1}{8})$
 $8 \sec(0) \leq r \leq 10$

Integral

$$\int_{-arctan(\frac{1}{8})}^{10} \left(\frac{1}{2}r^{2}\right) \left|_{\frac{10}{8} \sec(0)}^{10} d0\right|$$
 $= \int_{-arctan(\frac{1}{8})}^{10} \left(\frac{1}{2}r^{2}\right) \left|_{\frac{10}{8} \sec(0)}^{10} d0\right|$
 $= \int_{-arctan(\frac{1}{8})}^{10} \left(\frac{1}{2}r^{2}\right) \left|_{\frac{10}{8} \sec(0)}^{10} d0\right|$
 $= \int_{-arctan(\frac{1}{8})}^{10} \left(\frac{1}{2}r^{2}\right) \left|_{\frac{10}{8} \sec(0)}^{10} d0\right|$

$$=\frac{1}{2}\left(\left|CC\right| - 64 tun(0)\right) \left|\frac{\operatorname{autun}(\frac{4}{8})}{\operatorname{-autun}(\frac{4}{8})}\right|$$

$$=\frac{1}{2}\left[\left(\left|CC\right| - 64 tun(0)\right) \left|\frac{\operatorname{autun}(\frac{4}{8})}{\operatorname{-}64 tun(-\operatorname{autun}(\frac{4}{8}))}\right|$$

$$-\left(A tun(-\operatorname{autun}(\frac{6}{8}))\right)$$

Find the average value of $F(x, y) = \frac{x^2 + 2xy + y^2}{x^2 + y^2}$ over the region in the first quadrant bounded by the coordinate axes and the line $x + y = 4$.
V = 5 V + 0
$\gamma = -\chi + 4$
x Bounds
X Year 13
0 ≤ x ≤ 4 0 ≤ y ≤ -x + 4
G (V C-V) A
Convert Bonds to Polar
CENTLY 1 12001 (15) 10 10 101
$B \leq \theta \leq \frac{\pi}{2}$
r Bund
V(cs(a) + Vsin(b) = 4
10 - 4
$V = \overline{(es(e) + sin(e))}$
$0 \leq V \leq \frac{4}{\cos(0) + \sin(0)}$
O = V = (cs(0) tsin(0)
Integral
$\int_{2}^{\frac{\pi}{2}} \left(\cos(\omega) + \sin(\omega) \right)$
F(x, y) drdo
$= \int_{-\infty}^{\frac{\pi}{2}} \int_{-\infty}^{\infty} \frac{1}{(\cos(\omega) + \sin(\omega))} \left(\frac{V^2 + 2(v(\cos(\omega))(v\sin(\omega)))}{v^2} \right) V dV d\omega$
$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{4}{(\sigma(\sigma)+\sin(\sigma))}} \left(\frac{Y^{2}+2(v(\sigma(\sigma))(v\sin(\sigma)))}{Y^{2}} \right) Y dV d\sigma$

$$=\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\frac{(a_{(0)+s)n(0)}}{(a_{(0)}+2)^{2}}\left(\frac{x^{2}+2x^{2}\cos(a)\sin(a)}{x^{2}}\right)r dr da$$

$$=\int_{0}^{\frac{\pi}{2}}\frac{1}{(a_{(0)+s)n(0)}}\left(\frac{x^{2}+2x^{2}\cos(a)\sin(a)}{x^{2}}\right)r dr da$$

$$=\int_{0}^{\frac{\pi}{2}}\frac{1}{(a_{(0)+s)n(0)}}\left(\frac{x^{2}+2x^{2}\cos(a)\cos(a)}{x^{2}}\right)r dr da$$

$$=\int_{0}^{\frac{\pi}{2}}\frac{1}{(a_{(0)+s)n(0)}}\left(\frac{x^{2}+2x^{2}\cos(a)\cos(a)}{x^{2}}\right)r dr da$$

$$=\int_{0}^{\frac{\pi}{2}}\frac{1}{(a_{(0)+s)n(0)}}\left(\frac{x^{2}+2x^{2}\cos(a)\cos(a)}{x^{2}}\right)r dr da$$

$$=\int_{0}^{\frac{\pi}{2}}\frac{1}{(a_{(0)+s)n(0)}}\left(\frac{x^{2}+2x^{2}\cos(a)\cos(a)}{x^{2}}\right)r dr da$$

$$=\int_{0}^{\frac{\pi}{2}}\frac{1}{(a_{(0)+s)n(0)}}\left(\frac{x^{2}+2x^{2}\cos(a)}{x^{2}}\right)r dr da$$