

Ù&@^œ^¦ £ Q&È		GÍ »Á√ã¢Á, Đ, ÁÙ^ã { ã&ÁÖ^• ã }
PÔX	Ùœ), 忦åÁÚXTæ¢ÁÜæ&\ ã), *ÁÛ^• ♂{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	18.56 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.82	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	115 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 20.76$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.100 (Draggura)	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and nomino carract.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

 $^{^{\}circ}\,$ Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>466.32</u>	<u>4823.75</u>	k
Compressive Load =	3865.38	4375.31	k
Lateral Load =	<u>15.34</u>	2619.84	k
Moment (Weak Axis) =	0.03	<u>0.01</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 116873.0 in-lbs Resisting Force Required = 1770.80 lbs A minimum 132in long x 25in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2951.34 lbs to resist overturning. Minimum Width = Weight Provided = 4984.38 lbs Sliding Force = 604.03 lbs Use a 132in long x 25in wide x 18in tall Friction = 0.4 Weight Required = 1510.07 lbs ballast foundation to resist sliding. Resisting Weight = 4984.38 lbs Friction is OK. Additional Weight Required = Cohesion 604.03 lbs Sliding Force = Cohesion = 130 psf Use a 132in long x 25in wide x 18in tall 22.92 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2492.19 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

SDLC		1.0D -	+ 1.0S			1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S				0.6D + 0.6W			
Vidth	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in
FA	1455 lbs	1455 lbs	1455 lbs	1455 lbs	1176 lbs	1176 lbs	1176 lbs	1176 lbs	1838 lbs	1838 lbs	1838 lbs	1838 lbs	-205 lbs	-205 lbs	-205 lbs	-205 lbs
FB	1446 lbs	1446 lbs	1446 lbs	1446 lbs	1656 lbs	1656 lbs	1656 lbs	1656 lbs	2193 lbs	2193 lbs	2193 lbs	2193 lbs	-2216 lbs	-2216 lbs	-2216 lbs	-2216 lbs
F_{\vee}	198 lbs	198 lbs	198 lbs	198 lbs	1102 lbs	1102 lbs	1102 lbs	1102 lbs	958 lbs	958 lbs	958 lbs	958 lbs	-1208 lbs	-1208 lbs	-1208 lbs	-1208 lbs
P _{total}	7885 lbs	8085 lbs	8284 lbs	8483 lbs	7816 lbs	8016 lbs	8215 lbs	8414 lbs	9015 lbs	9215 lbs	9414 lbs	9614 lbs	569 lbs	689 lbs	809 lbs	928 lbs
М	3859 lbs-ft	3859 lbs-ft	3859 lbs-ft	3859 lbs-ft	3360 lbs-ft	3360 lbs-ft	3360 lbs-ft	3360 lbs-ft	5057 lbs-ft	5057 lbs-ft	5057 lbs-ft	5057 lbs-ft	2537 lbs-ft	2537 lbs-ft	2537 lbs-ft	2537 lbs-ft
е	0.49 ft	0.48 ft	0.47 ft	0.45 ft	0.43 ft	0.42 ft	0.41 ft	0.40 ft	0.56 ft	0.55 ft	0.54 ft	0.53 ft	4.46 ft	3.68 ft	3.14 ft	2.73 ft
9/	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								

Ballast Width

4984 lbs 5184 lbs 5383 lbs 5583 lbs

27 in

256.4 psf 273.0 psf 270.9 psf

399.2 psf 513.8 psf 502.4 psf

28 in

26 in

<u>25 in</u>

257.9 psf

406.0 psf

Maximum Bearing Pressure = 514 psf Allowable Bearing Pressure = 1500 psf

248.5 psf 261.1 psf 259.4 psf

412.5 psf 421.0 psf 413.2 psf

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.08 \text{ ft}) =$

Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

267.1 psf

268.9 psf

491.8 psf

0.0 psf

0.0 psf

482.0 psf 174.6 psf 116.7 psf 101.4 psf

0.0 psf

0.0 psf

fmin

Bearing Pressure

250.9 psf

427.5 psf

252.2 psf

249.7 psf

419.8 psf

Weak Side Design

Overturning Check

 $M_0 = 848.1 \text{ ft-lbs}$

Resisting Force Required = 814.20 lbs S.F. = 1.67

Weight Required = 1357.00 lbs Minimum Width = 25 in in Weight Provided = 4984.38 lbs A minimum 132in long x 25in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		25 in		25 in			25 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	255 lbs	665 lbs	255 lbs	833 lbs	2406 lbs	833 lbs	74 lbs	194 lbs	74 lbs	
F _V	2 lbs	0 lbs	2 lbs	6 lbs	0 lbs	6 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	6425 lbs	4984 lbs	6425 lbs	6708 lbs	4984 lbs	6708 lbs	1879 lbs	4984 lbs	1879 lbs	
M	5 lbs-ft	0 lbs-ft	5 lbs-ft	20 lbs-ft	0 lbs-ft	20 lbs-ft	1 lbs-ft	0 lbs-ft	1 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	
f _{min}	279.7 psf	217.5 psf	279.7 psf	290.2 psf	217.5 psf	290.2 psf	81.9 psf	217.5 psf	81.9 psf	
f _{max}	281.0 psf	217.5 psf	281.0 psf	295.2 psf	217.5 psf	295.2 psf	82.1 psf	217.5 psf	82.1 psf	

Maximum Bearing Pressure = 295 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 25in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		
Maximum Axial Load =	2.973 k	
M12 Bolt Capacity =	12.808 k	
Strut Bearing Capacity =	7.421 k	
Utilization =	<u>40%</u>	
Diagonal Strut		
· · · · · · · · · · · · · · · · · · ·		

Maximum Axial Load = 3.260 k

M12 Bolt Capacity = 12.808 k

Strut Bearing Capacity = 7.421 k

Utilization = 44%

Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 46.89 in Allowable Story Drift for All Other Structures, Δ = { 0.020 h_{sx} 0.938 in Max Drift, $\Delta_{MAX} =$ 0.061 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 126 \text{ in}$$
 $J = 0.432$
 348.575

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 27.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 126$$
 $J = 0.432$
 221.673

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.5$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$k_1Bn$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

 $\phi F_L = 23.1 \text{ ksi}$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6 P_b}\right)^2$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

 $Cc = 41.015$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

2.155 in⁴

$$Sx = 1.335 \text{ in}^3$$

$$M_{max}St = 2.788 \text{ k-ft}$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$SZ = \frac{1}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
1.88 in²
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16.1 Use
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{\theta_b}\right)$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

31.1 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\begin{array}{lll} S1 = & 35.2 \\ m = & 0.68 \\ C_0 = & 41.067 \\ Cc = & 43.717 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 73.8 \\ \phi F_L = & 1.3\phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L St = & 29.4 \text{ ksi} \\ lx = & 984962 \text{ mm}^4 \\ & & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \end{array}$$

3.4.18
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $M_{max}St =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.363 k-ft

3.4.10

 $P_{max} =$

Rev. 11.05.2015

Rb/t = 18.1
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi E = \phi b[Bc-1.6Dc^{*}\sqrt{(I bSc)}]$$

$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$ $\phi F_L = 31.4$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

A.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in³

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

24.5

y =

 $M_{max}St = 1.460 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\phi F_L = 29.6 \text{ ksi}$	$\phi F_L = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$\begin{array}{rll} lx = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ y = & 27.5 \text{ mm} \\ Sx = & 0.621 \text{ in}^3 \\ M_{max}St = & 1.460 \text{ k-ft} \end{array}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$
 $M_{max}Wk = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$

$$J = 0.942$$
 98.9729

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L =$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

$$L_b = 63.42$$

 $J = 0.942$

$$0.942$$
 98.9729

$$\left(Bc - \frac{\theta_y}{\theta_b}Fcy\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\left(Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$y = 0.672 \text{ in}^4$$

 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$
 $M_{max}St = 1.460 \text{ k-ft}$

 $\phi F_L = 1.3 \phi y F c y$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.7854 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

3.4.9

Rev. 11.05.2015

24.5 b/t =S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_1 =$ 28.2 ksi b/t =24.5 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 12.77 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 13.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Y	-46.9	-46 9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-63.697	-63.697	0	0
2	M14	٧	-63.697	-63.697	0	0
3	M15	V	-98.441	-98.441	0	0
4	M16	V	-98.441	-98.441	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	144.766	144.766	0	0
2	M14	٧	110.022	110.022	0	0
3	M15	V	57.906	57.906	0	0
4	M16	V	57 906	57 906	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	_		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	487.955	2	982.147	1	.806	1	.004	1	Ö	1	0	1
2		min	-636.772	3	-1129.308	3	.039	15	0	15	0	1	0	1
3	N7	max	.041	9	1112.124	1	502	15	0	15	0	1	0	1
4		min	107	2	-83.933	3	-11.799	1	024	1	0	1	0	1
5	N15	max	.03	9	2973.373	1	0	10	0	10	0	1	0	1
6		min	-1.329	2	-358.708	3	0	11	0	11	0	1	0	1
7	N16	max	1903.577	2	3365.62	1	0	14	0	2	0	1	0	1
8		min	-2015.265	3	-3710.574	3	0	3	0	12	0	1	0	1
9	N23	max	.041	9	1112.124	1	11.799	1	.024	1	0	1	0	1
10		min	107	2	-83.933	3	.502	15	0	15	0	1	0	1
11	N24	max	487.955	2	982.147	1	039	15	0	15	0	1	0	1
12		min	-636.772	3	-1129.308	3	806	1	004	1	0	1	0	1
13	Totals:	max	2877.944	2	10527.535	1	0	10						
14		min	-3289.069	3	-6495.763	3	0	11						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	120.333	1	431.335	1	-7.643	15	0	3	.287	1	0	1
2			min	4.973	15	-551.157	3	-185.56	1	011	1	.012	15	0	3
3		2	max	120.333	1	302.31	1	-5.881	15	0	3	.096	1	.548	3
4			min	4.973	15	-387.929	3	-142.721	1	011	1	.004	15	428	1
5		3	max	120.333	1	173.286	1	-4.119	15	0	3	0	12	.905	3
6			min	4.973	15	-224.701	3	-99.882	1	011	1	046	1	705	1
7		4	max	120.333	1	44.262	1	-2.357	15	0	3	005	12	1.072	3
8			min	4.973	15	-61.474	3	-57.044	1	011	1	137	1	832	1
9		5	max	120.333	1	101.754	3	596	15	0	3	007	12	1.049	3
10			min	4.973	15	-84.763	1	-14.205	1	011	1	179	1	809	1
11		6	max	120.333	1	264.981	3	28.634	1	0	3	007	15	.835	3
12			min	4.973	15	-213.787	1	.717	12	011	1	17	1	635	1
13		7	max	120.333	1	428.209	3	71.472	1	0	3	005	15	.43	3
14			min	4.973	15	-342.811	1	2.479	12	011	1	112	1	31	1
15		8	max	120.333	1	591.436	3	114.311	1	0	3	0	10	.165	1
16			min	4.973	15	-471.836	1	4.24	12	011	1	003	1	164	3
17		9	max	120.333	1	754.664	3	157.15	1	0	3	.155	1	.791	1
18			min	4.973	15	-600.86	1	6.002	12	011	1	.004	12	95	3
19		10	max	120.333	1	917.892	3	199.988	1	.005	9	.363	1	1.567	1
20			min	4.973	15	-729.884	1	7.763	12	011	1	.012	12	-1.925	3
21		11	max	120.333	1	600.86	1	-6.002	12	.011	1	.155	1	.791	1
22			min	4.973	15	-754.664	3	-157.15	1	0	3	.004	12	95	3
23		12	max	120.333	1	471.836	1	-4.24	12	.011	1	0	10	.165	1
24			min	4.973	15	-591.436	3	-114.311	1	0	3	003	1	164	3
25		13	max	120.333	1	342.811	1	-2.479	12	.011	1	005	15	.43	3
26			min	4.973	15	-428.209	3	-71.472	1	0	3	112	1	31	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
27		14	max	120.333	1	213.787	1	717	12	.011	1	007	15	.835	3
28			min	4.973	15	-264.981	3	-28.634	1	0	3	17	1	635	1
29		15	max	120.333	1	84.763	1	14.205	1	.011	1	007	12	1.049	3
30			min	4.973	15	-101.754	3	.596	15	0	3	179	1	809	1
31		16	max	120.333	1	61.474	3	57.044	1	.011	1	005	12	1.072	3
32			min	4.973	15	-44.262	1	2.357	15	0	3	137	1	832	1
33		17	max	120.333	1	224.701	3	99.882	1	.011	1	0	12	.905	3
34			min	4.973	15	-173.286	1	4.119	15	0	3	046	1	705	1
35		18	max	120.333	1	387.929	3	142.721	1	.011	1	.096	1	.548	3
36		'	min	4.973	15	-302.31	1	5.881	15	0	3	.004	15	428	1
37		19	max	120.333	1	551.157	3	185.56	1	.011	1	.287	1	0	1
38		15	min	4.973	15	-431.335	1	7.643	15	0	3	.012	15	0	3
39	M14	1	max	54.232	1	453.55	1	-7.87	15	.006	3	.326	1	0	1
40	IVITA	<u> </u>	min	2.246	15	-424.583	3	-191.084	1	009	1	.013	15	0	3
		2											1		
41		 	max	54.232	1	324.526	1	-6.108	1 <u>5</u>	.006	3	.128		.424	3
42			min	2.246	15	-301.89	3	-148.245		009		.005	15	454	_
43		3	max	54.232	1	195.501	1	-4.346	15	.006	3	0	3	.704	3
44			min	2.246	15	-179.197	3	-105.406	1_	009	1	02	1_	757	1
45		4	max	54.232	1	66.477	1	-2.585	15	.006	3	004	12	.842	3
46			min	2.246	15	-56.504	3	-62.568	1	009	1	118	1	91	1
47		5	max	54.232	1_	66.189	3	823	15	.006	3	007	12	.836	3
48			min	2.246	15	-62.547	1	-19.729	1	009	1	166	1	912	1
49		6	max	54.232	1	188.882	3	23.11	1	.006	3	007	15	.687	3
50			min	2.246	15	-191.572	1	.498	12	009	1	164	1	764	1
51		7	max	54.232	1	311.575	3	65.948	1	.006	3	005	15	.396	3
52			min	2.246	15	-320.596	1	2.259	12	009	1	112	1	465	1
53		8	max	54.232	1	434.268	3	108.787	1	.006	3	0	10	0	15
54			min	2.246	15	-449.62	1	4.021	12	009	1	01	1	04	3
55		9	max	54.232	1	556.96	3	151.626	1	.006	3	.142	1	.584	1
56			min	2.246	15	-578.645	1	5.782	12	009	1	.004	12	618	3
57		10	max	54.232	1	679.653	3	194.464	1	.009	1	.344	1	1.334	1
58		1.0	min	2.246	15	-707.669	1	7.543	12	006	3	.012	12	-1.339	3
59		11	max	54.232	1	578.645	1	-5.782	12	.009	1	.142	1	.584	1
60		 ' ' 	min	2.246	15	-556.96	3	-151.626		006	3	.004	12	618	3
61		12	max	54.232	1	449.62	1	-4.021	12	.009	1	0	10	0	15
62		12	min	2.246	15	-434.268	3	-108.787	1	006	3	01	1	04	3
63		13		54.232				-2.259	12	.009	1	005	15		3
		13	max		1	320.596	1		1	006	3	112		.396 465	
64		4.4	min	2.246	15	-311.575	3	-65.948					1_		1
65		14	max	54.232	1	191.572	1	498	12	.009	1	007	15	.687	3
66		4.5	min	2.246	15	-188.882	3	-23.11	1	006	3	164	1	764	1
67		15	max		1	62.547	1	19.729	1	.009	1	007	12	.836	3
68			min	2.246	15	-66.189	3	.823	15	006	3	166	1	912	1
69		16	max	54.232	1	56.504	3	62.568	1	.009	1	004	12	.842	3
70			min	2.246	15	-66.477	1	2.585	15	006	3	118	1	91	1
71		17	max	54.232	1_	179.197	3	105.406	1	.009	1	0	3	.704	3
72			min	2.246	15	-195.501	1	4.346	15	006	3	02	1	757	1
73		18	max	54.232	1	301.89	3	148.245	1	.009	1	.128	1_	.424	3
74			min	2.246	15	-324.526	1	6.108	15	006	3	.005	15	454	1
75		19	max	54.232	1	424.583	3	191.084	1	.009	1	.326	1	0	1
76			min	2.246	15	-453.55	1	7.87	15	006	3	.013	15	0	3
77	M15	1	max	-2.368	15	530.548	2	-7.868	15	.01	1	.326	1	0	2
78			min	-57.162	1	-219.53	3	-191.052	1	005	3	.013	15	0	15
79		2	max	-2.368	15	378.382	2	-6.106	15	.01	1	.128	1	.22	3
80			min	-57.162	1	-157.64	3	-148.213		005	3	.005	15	53	2
81		3	max	-2.368	15	226.215	2	-4.344	15	.01	1	0	3	.368	3
82			min	-57.162	1	-95.749	3	-105.374		005	3	02	1	883	2
83		4	max	-2.368	15	74.049	1	-2.583	15	.01	1	004	12	.443	3
_00			παλ	2.000	10	1 T.UTU		2.000	LIU	.01		.007	-14		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-57.162	1	-33.858	3	-62.536	1	005	3	118	1	-1.058	2
85		5	max	-2.368	15	28.033	3	821	15	.01	1	007	12	.447	3
86			min	-57.162	1	-78.118	2	-19.697	1	005	3	166	1	-1.056	2
87		6	max	-2.368	15	89.924	3	23.141	1	.01	1	007	15	.378	3
88			min	-57.162	1	-230.284	2	.533	12	005	3	164	1	876	2
89		7	max	-2.368	15	151.815	3	65.98	1	.01	1	005	15	.237	3
90			min	-57.162	1	-382.451	2	2.295	12	005	3	112	1	518	1
91		8	max	-2.368	15	213.706	3	108.819	1	.01	1	0	10	.024	3
92		T .	min	-57.162	1	-534.617	2	4.056	12	005	3	01	1	003	9
93		9	max	-2.368	15	275.597	3	151.657	1	.01	1	.142	1	.729	2
94		1 3	min	-57.162	1	-686.784	2	5.818	12	005	3	.004	12	262	3
95		10		-2.368	15	337.488	3	194.496	1	.01	1	.344	1	1.619	2
96		10	max	-57.162	1		2	7.579	12	005	3	.012	12		3
		4.4	min			-838.95								619	
97		11	max	-2.368	15	686.784	2	-5.818	12	.005	3	.142	1	.729	2
98		40	min	-57.162	1_	-275.597	3	-151.657	1	01	1	.004	12	262	3
99		12	max	-2.368	15	534.617	2	-4.056	12	.005	3	0	10	.024	3
100			min	-57.162	1_	-213.706	3	-108.819	1_	01	1	01	_1_	003	9
101		13	max	-2.368	15	382.451	2	-2.295	12	.005	3	005	15	.237	3
102			min	-57.162	1	-151.815	3	-65.98	1	01	1	112	1_	518	1
103		14	max	-2.368	15	230.284	2	533	12	.005	3	007	15	.378	3
104			min	-57.162	1	-89.924	3	-23.141	1	01	1	164	1_	876	2
105		15	max	-2.368	15	78.118	2	19.697	1	.005	3	007	12	.447	3
106			min	-57.162	1	-28.033	3	.821	15	01	1	166	1_	-1.056	2
107		16	max	-2.368	15	33.858	3	62.536	1	.005	3	004	12	.443	3
108			min	-57.162	1	-74.049	1	2.583	15	01	1	118	1	-1.058	2
109		17	max	-2.368	15	95.749	3	105.374	1	.005	3	0	3	.368	3
110			min	-57.162	1	-226.215	2	4.344	15	01	1	02	1	883	2
111		18	max	-2.368	15	157.64	3	148.213	1	.005	3	.128	1	.22	3
112		1.0	min	-57.162	1	-378.382	2	6.106	15	01	1	.005	15	53	2
113		19	max	-2.368	15	219.53	3	191.052	1	.005	3	.326	1	0	2
114		15	min	-57.162	1	-530.548	2	7.868	15	01	1	.013	15	0	15
115	M16	1	max	-5.315	15	510.141	2	-7.649	15	.01	1	.289	1	0	2
116	IVITO		min	-128.396	1	-205.91	3	-185.785	1	008	3	.012	15	0	3
117		2		-5.315	15	357.975	2	-5.888	15	.01	1	.012	1	.204	3
118			max		1	-144.019	3	-142.946	1		3				2
		2	min	-128.396 -5.315	_					008		.004	15	506	
119		3	max		15	205.809	2	-4.126	15	.01	1	0	12	.336	3
120		-	min	-128.396	1_	-82.128	3	-100.108	1_	008	3	045	1_	835	2
121		4	max	-5.315	15	53.642	2	-2.364	15	.01	1	005	12	.396	3
122		-	min	-128.396	1	-20.237	3	-57.269	1_	008	3	136	1_	987	2
123		5	max	-5.315	15	41.654	3	603	15	.01	1	007	12	.383	3
124		_		-128.396	1	-98.524		-14.43	1_	008	3	178	_1_	96	2
125		6	max		15	103.544	3	28.408	1	.01	1	007	<u>15</u>	.299	3
126			min	-128.396	1	-250.691	2	.832	12	008	3	17	1_	757	2
127		7	max		15	165.435	3	71.247	1	.01	1	005	15	.142	3
128			min		1	-402.857	2	2.593	12	008	3	112	1	375	2
129		8	max		15	227.326	3	114.086	1	.01	1	0	10	.185	1
130			min	-128.396	1	-555.024	2	4.355	12	008	3	004	1	087	3
131		9	max	-5.315	15	289.217	3	156.924	1	.01	1	.154	1	.92	2
132			min	-128.396		-707.19	2	6.116	12	008	3	.005	12	389	3
133		10	max		15	351.108	3	199.763	1	.008	3	.362	1	1.833	2
134				-128.396		-859.357	2	7.878	12	01	1	.013	12	762	3
135		11	max		15	707.19	2	-6.116	12	.008	3	.154	1	.92	2
136			min		1	-289.217	3	-156.924		01	1	.005	12	389	3
137		12	max		15	555.024	2	-4.355	12	.008	3	0	10	.185	1
138		14	min			-227.326	3	-114.086		01	1	004	1	087	3
139		13	max		15	402.857	2	-2.593	12	.008	3	004	15	.142	3
140		13							1		1	112	1		2
140			min	-128.396	1	-165.435	3	-71.247		01		112		375	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
141		14	max	-5.315	15	250.691	2	832	12	.008	3	007	15	.299	3
142			min	-128.396	1	-103.544	3	-28.408	1	01	1	17	1	757	2
143		15	max	-5.315	15	98.524	2	14.43	1	.008	3	007	12	.383	3
144			min	-128.396	1	-41.654	3	.603	15	01	1	178	1	96	2
145		16	max	-5.315	15	20.237	3	57.269	1	.008	3	005	12	.396	3
146			min	-128.396	1	-53.642	2	2.364	15	01	1	136	1	987	2
147		17	max	-5.315	15	82.128	3	100.108	1	.008	3	0	12	.336	3
148			min	-128.396	1	-205.809	2	4.126	15	01	1	045	1	835	2
149		18	max	-5.315	15	144.019	3	142.946	1	.008	3	.097	1	.204	3
150			min	-128.396	1	-357.975	2	5.888	15	01	1	.004	15	506	2
151		19	max	-5.315	15	205.91	3	185.785	1	.008	3	.289	1	0	2
152			min	-128.396	1	-510.141	2	7.649	15	01	1	.012	15	0	3
153	M2	1	max	966.965	1	1.92	4	.775	1	0	5	0	3	0	1
154			min	-992.307	3	.452	15	.032	15	0	1	0	1	0	1
155		2	max	967.394	1	1.864	4	.775	1	0	5	0	1	0	15
156		_	min	-991.985	3	.439	15	.032	15	Ö	1	0	15	0	4
157		3	max	967.822	1	1.807	4	.775	1	0	5	0	1	0	15
158			min	-991.664	3	.426	15	.032	15	0	1	0	15	001	4
159		4	max	968.25	1	1.75	4	.775	1	0	5	0	1	0	15
160			min	-991.342	3	.412	15	.032	15	0	1	0	15	002	4
161		5	max	968.679	1	1.693	4	.775	1	0	5	0	1	0	15
162			min	-991.021	3	.399	15	.032	15	0	1	0	15	002	4
163		6	max	969.107	1	1.636	4	.775	1	0	5	.001	1	0	15
164			min	-990.7	3	.386	15	.032	15	0	1	0	15	003	4
165		7	max	969.536	1	1.58	4	.775	1	0	5	.001	1	0	15
166			min	-990.378	3	.372	15	.032	15	0	1	0	15	003	4
167		8	max	969.964	1	1.523	4	.775	1	0	5	.002	1	0	15
168			min	-990.057	3	.359	15	.032	15	0	1	0	15	003	4
169		9	max		1	1.466	4	.775	1	0	5	.002	1	0	15
170			min	-989.736	3	.345	15	.032	15	0	1	0	15	004	4
171		10	max	970.821	1	1.409	4	.775	1	0	5	.002	1	001	15
172		10	min	-989.414	3	.332	15	.032	15	0	1	0	15	004	4
173		11	max	971.25	1	1.353	4	.775	1	0	5	.002	1	001	15
174			min	-989.093	3	.319	15	.032	15	0	1	0	15	005	4
175		12	max	971.678	1	1.296	4	.775	1	0	5	.002	1	001	15
176		12	min	-988.771	3	.305	15	.032	15	0	1	0	15	005	4
177		13	max		1	1.239	4	.775	1	0	5	.003	1	001	15
178		10	min	-988.45	3	.292	15	.032	15	0	1	0	15	006	4
179		14	max		1	1.182	4	.775	1	0	5	.003	1	001	15
180			min	-988.129	3	.279	15	.032	15	0	1	0	15	006	4
181		15		972.964	1	1.125	4	.775	1	0	5	.003	1	001	15
182			min		3	.265	15	.032	15	0	1	0	15	006	4
183		16	max		1	1.069	4	.775	1	0	5	.003	1	002	15
184		10		-987.486	_	.252	15	.032	15	0	1	0	15	002	4
185		17		973.821	1	1.012	4	.775	1	0	5	.004	1	007	15
186		17	min		3	.239	15	.032	15	0	1	0	15	002	4
187		18		974.249	1	.955	4	.775	1	0	5	.004	1	007	15
188		10	min	-986.843	3	.22	12	.032	15	0	1	0	15	002	4
189		19		974.678	1	.898	4	.775	1	0	5	.004	1	007	15
190		13	min	-986.522	3	.198	12	.032	15	0	1	0	15	002	4
191	M3	1		415.793	2	7.882	4	.173	1	0	5	0	1	.007	4
192	IVIO		min		3	1.853	15	.007	15	0	1	0	15	.007	15
193		2	max		2	7.114	4	.173	1	0	5	0	1	.002	4
194			min		3	1.673	15	.007	15	0	1	0	15	0	12
195		3	max		2	6.347	4	.173	1	0	5	0	1	.002	2
196		<u> </u>	min			1.493	15	.007	15	0	1	0	15	0	3
197		4		415.282	2	5.58	4	.173	1	0	5	0	1	0	2
131		_ +	πιαλ	T10.202		J.J0		.113		U	J	U	1		

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

199		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
200	198			min	-556.006	3	1.312	15	.007	15	0	1	0	15	002	3
201			5	max	415.112	2	4.813		.173	1	0	5	0	1	0	15
202	200			min		3	1.132	15	.007	15	0	1	0	15	003	4
203			6	max	414.942	2		4	.173	1	0	5	0		001	15
204	202			min	-556.261	3	.952	15	.007	15	0	1	0	15	005	4
205	203		7	max	414.771	2	3.278		.173		0	5	0	_		15
Dec Principal Color Prin				min	-556.389	3		15	.007	15	0	1	0	15	007	4
207	205		8	max	414.601				.173		0	5	0		002	15
Description	206			min	-556.517	3	.591	15	.007	15	0	1	0	15	008	4
209			9	max		2	1.744		.173	1	0	5	.001	<u> </u>	002	15
210	208			min		3	.41	15	.007	15	0	1	0	15	009	4
211	209		10	max	414.26						0	5	.001			15
212				min	-556.772	3				15	0			15	009	4
213			11	max		2	.292		.173	1	0	5	.001	1	002	15
214	212			min	-556.9	3	053	3	.007	15	0	1	0	15	01	4
215	213		12	max	413.919	2	131	15	.173	1	0	5	.001	1	002	15
216	214			min	-557.028	3	558		.007	15	0	1	0	15	01	4
217	215		13	max	413.749	2	311	15	.173		0	5	.001		002	15
218	216			min	-557.156	3	-1.325	4	.007	15	0	1	0	15	009	4
219	217		14	max	413.579	2	491	15	.173	1	0	5	.001	1	002	15
220	218			min	-557.283	3		4	.007	15	0	1	0	15		4
221	219		15	max	413.408	2	672	15	.173	1	0	5	.001	1	002	15
1	220			min	-557.411	3	-2.86	4	.007	15	0	1	0	15	007	4
17	221		16	max	413.238	2	852	15	.173	1	0	5	.002	1	001	15
18 max 412.897 2 -1.213 15 .173 1 0 5 .002 1 0 15 .004 4 225 min -557.667 3 -4.394 4 .007 15 0 1 0 5 .002 1 0 15 .266 min -557.794 3 -5.161 4 .007 15 0 1 0 15 .002 1 0 15 .277 19 max 412.727 2 -1.393 15 .173 1 0 5 .002 1 0 1 .228 min -557.922 3 -5.928 4 .007 15 0 1 0 15 0 1 .229 M4 1 max 1109.058 1 0 1 503 15 0 1 .001 1 0 1 .230 min -86.233 3 0 1 -12.195 1 0 1 0 15 0 1 .231 2 max 1109.228 1 0 1 503 15 0 1 0 1 0 3 0 1 .232 min -86.105 3 0 1 -12.195 1 0 1 0 1 0 1 .234 min -85.977 3 0 1 -12.195 1 0 1 002 1 0 1 .235 3 4 max 1109.569 1 0 1 503 15 0 1 0 15 0 1 .235 3 4 max 1109.739 1 0 1 503 15 0 1 0 15 0 1 .237 .238 min -85.849 3 0 1 -12.195 1 0 1 003 1 0 1 .238 min -85.721 3 0 1 -12.195 1 0 1 004 1 0 1 .239 6 max 1109.739 1 0 1 503 15 0 1 0 15 0 1 .240 min -85.849 3 0 1 -12.195 1 0 1 004 1 0 1 .241 .242 min -85.566 3 0 1 -12.195 1 0 1 004 1 0 1 .241 .242 min -85.566 3 0 1 -12.195 1 0 1 007 1 0 1 .244 min -85.338 3 0 1 -12.195 1 0 1 007 1 0 1 .245 .244 min -85.338 3 0 1 -12.195 1 0 1 007 1 0 1 .246 min -85.838 3 0 1 -12.195 1 0 1 001 1 0 1 .246 min -85.833 3 0 1 -12.195 1 0 1 001 1 0 1 .248 min -85.083 3 0 1 -12.195 1 0 1 001 1 0 1 .249 .249 11 max 1110.761 1 0 1 503 15 0 1 0 1 011 1 0 1 .251 .251 1 0 1 013 1 0 1 .251 .251 .251 1 0 1 011 1	222			min	-557.539	3	-3.627	4	.007	15	0	1	0	15	006	4
225	223		17	max	413.068	2	-1.032	15	.173	1	0	5	.002	1	001	15
19	224			min		3	-4.394	4	.007	15	0	1	0	15	004	4
19	225		18	max	412.897	2	-1.213	15	.173	1	0	5	.002	1	0	15
19	226				-557.794	3	-5.161	4	.007	15	0	1	0	15	002	4
M4	227		19	max	412.727	2	-1.393	15	.173	1	0	5	.002	1		1
230	228			min	-557.922	3			.007	15	0	1	0	15	0	1
231	229	M4	1	max	1109.058	1	0	1	503	15	0	1	.001	1	0	1
232	230			min	-86.233	3	0	1	-12.195	1	0	1	0	15	0	1
232	231		2	max	1109.228	1	0	1	503	15	0	1	0	3	0	1
234	232					3	0	1	-12.195	1	0	1	0	1	0	1
235 4 max 1109.569 1 0 1 503 15 0 1 0 15 0 1 236 min -85.849 3 0 1 -12.195 1 0 1 003 1 0 1 237 5 max 1109.739 1 0 1 503 15 0 1 0 15 0 1 238 min -85.721 3 0 1 -12.195 1 0 1 -0.04 1 0 1 239 6 max 1109.909 1 0 1 -503 15 0 1 0 1 0 1 204 1 0 1 -0.04 1 0 1 206 1 0 1 0 1 206 1 0 1 0 1 0 1 20 1 0 1 0 <t< td=""><td>233</td><td></td><td>3</td><td>max</td><td>1109.398</td><td>1</td><td>0</td><td>1</td><td>503</td><td>15</td><td>0</td><td>1</td><td>0</td><td>15</td><td>0</td><td>1</td></t<>	233		3	max	1109.398	1	0	1	503	15	0	1	0	15	0	1
236	234			min	-85.977	3	0	1	-12.195	1	0	1	002	1	0	1
237 5 max 1109.739 1 0 1 503 15 0 1 0	235		4	max	1109.569	1	0	1	503	15	0	1	0	15	0	1
238 min -85.721 3 0 1 -12.195 1 0 1 004 1 0 1 239 6 max 1109.909 1 0 1 503 15 0 1 0 15 0 1 240 min -85.594 3 0 1 -12.195 1 0 1 006 1 0 1 241 7 max 1110.08 1 0 1 503 15 0 1 0 1 0 1 242 min -85.466 3 0 1 -12.195 1 0 1 007 1 0 1 243 8 max 1110.25 1 0 1 503 15 0 1 0 15 0 1 244 min -85.338 3 0 1 -12.195 <td< td=""><td>236</td><td></td><td></td><td>min</td><td>-85.849</td><td>3</td><td>0</td><td>1</td><td>-12.195</td><td>1</td><td>0</td><td>1</td><td>003</td><td>1</td><td>0</td><td>1</td></td<>	236			min	-85.849	3	0	1	-12.195	1	0	1	003	1	0	1
238 min -85.721 3 0 1 -12.195 1 0 1 004 1 0 1 239 6 max 1109.909 1 0 1 503 15 0 1 0	237		5	max	1109.739	1	0	1	503	15	0	1	0	15	0	1
240 min -85.594 3 0 1 -12.195 1 0 1 006 1 0 1 241 7 max 1110.08 1 0 1 503 15 0 1 0 15 0 1 242 min -85.466 3 0 1 -12.195 1 0 1 007 1 0 1 243 8 max 1110.25 1 0 1 503 15 0 1 0 1 244 min -85.338 3 0 1 -12.195 1 0 1 009 1 0 1 245 9 max 1110.42 1 0 1 503 15 0 1 0 1 009 1 0 1 246 min -85.21 3 0 1 -12.195 <t< td=""><td>238</td><td></td><td></td><td>min</td><td>-85.721</td><td>3</td><td>0</td><td>1</td><td></td><td>1</td><td>0</td><td>1</td><td>004</td><td>1</td><td>0</td><td>1</td></t<>	238			min	-85.721	3	0	1		1	0	1	004	1	0	1
240 min -85.594 3 0 1 -12.195 1 0 1 006 1 0 1 241 7 max 1110.08 1 0 1 503 15 0 1 0 15 0 1 242 min -85.466 3 0 1 -12.195 1 0 1 007 1 0 1 243 8 max 1110.25 1 0 1 503 15 0 1 0 1 244 min -85.338 3 0 1 -12.195 1 0 1 009 1 0 1 245 9 max 1110.42 1 0 1 503 15 0 1 0 1 009 1 0 1 246 min -85.21 3 0 1 -12.195 <t< td=""><td>239</td><td></td><td>6</td><td></td><td></td><td>1</td><td>0</td><td>1</td><td>503</td><td>15</td><td>0</td><td>1</td><td>0</td><td>15</td><td>0</td><td>1</td></t<>	239		6			1	0	1	503	15	0	1	0	15	0	1
241 7 max 1110.08 1 0 1 503 15 0 1 0 15 0 1 242 min -85.466 3 0 1 -12.195 1 0 1 007 1 0 1 243 8 max 1110.25 1 0 1 503 15 0 1 0 15 0 1 244 min -85.338 3 0 1 -12.195 1 0 1 009 1 0 1 245 9 max 1110.42 1 0 1 503 15 0 1 0 1 0 1 246 min -85.21 3 0 1 -12.195 1 0 1 01 1 0 1 247 10 max 1110.591 1 0 1 503 15 0 1 0 15 0 1 248 min <td>240</td> <td></td> <td></td> <td>min</td> <td>-85.594</td> <td>3</td> <td>0</td> <td>1</td> <td>-12.195</td> <td>1</td> <td>0</td> <td>1</td> <td>006</td> <td></td> <td>0</td> <td>1</td>	240			min	-85.594	3	0	1	-12.195	1	0	1	006		0	1
242 min -85.466 3 0 1 -12.195 1 0 1 007 1 0 1 243 8 max 1110.25 1 0 1 503 15 0 1 0 1 0 1 244 min -85.338 3 0 1 -12.195 1 0 1 009 1 0 1 245 9 max 1110.42 1 0 1 503 15 0 1 0 1 0 1 246 min -85.21 3 0 1 -12.195 1 0 1 01 1 0 1 247 10 max 1110.591 1 0 1 -5.503 15 0 1 0 1 011 1 0 1 248 min -85.083 3 0 1 </td <td></td> <td></td> <td>7</td> <td></td> <td></td> <td>1</td> <td>0</td> <td>1</td> <td></td> <td>15</td> <td>0</td> <td>1</td> <td></td> <td>15</td> <td>0</td> <td>1</td>			7			1	0	1		15	0	1		15	0	1
243 8 max 1110.25 1 0 1 503 15 0 1 0 15 0 1 244 min -85.338 3 0 1 -12.195 1 0 1 009 1 0 1 245 9 max 1110.42 1 0 1 503 15 0 1 0 15 0 1 246 min -85.21 3 0 1 -12.195 1 0 1 01 1 0 1 247 10 max 1110.591 1 0 1 503 15 0 1 0 15 0 1 248 min -85.083 3 0 1 -12.195 1 0 1 011 1 0 1 249 11 max 1110.761 1 0 1 503 15 0 1 0 1 013 1 0 1 250 min -84.955 3 0 1 -12.195 1 0 1 013 1 0 1 <tr< td=""><td>242</td><td></td><td></td><td></td><td></td><td>3</td><td>0</td><td>1</td><td></td><td></td><td>0</td><td>1</td><td>007</td><td></td><td>0</td><td>1</td></tr<>	242					3	0	1			0	1	007		0	1
245 9 max 1110.42 1 0 1 503 15 0 1 0 15 0 1 246 min -85.21 3 0 1 -12.195 1 0 1 01 1 0 1 247 10 max 1110.591 1 0 1 503 15 0 1 0 15 0 1 248 min -85.083 3 0 1 -12.195 1 0 1 011 1 0 1 249 11 max 1110.761 1 0 1 503 15 0 1 0 15 0 1 250 min -84.955 3 0 1 -12.195 1 0 1 013 1 0 1 251 12 max 1110.931 1 0 1 503 15 0 1 0 15 0 1	243		8	max	1110.25	1	0	1	503	15	0	1	0	15	0	1
246 min -85.21 3 0 1 -12.195 1 0 1 01 1 0 1 247 10 max 1110.591 1 0 1 503 15 0 1 0 15 0 1 248 min -85.083 3 0 1 -12.195 1 0 1 011 1 0 1 249 11 max 1110.761 1 0 1 503 15 0 1 0 15 0 1 250 min -84.955 3 0 1 -12.195 1 0 1 013 1 0 1 251 12 max 1110.931 1 0 1 503 15 0 1 0 15 0 1	244			min	-85.338	3	0	1	-12.195	1	0	1	009	1	0	1
247 10 max 1110.591 1 0 1503 15 0 1 0 15 0 1 248 min -85.083 3 0 1 -12.195 1 0 1011 1 0 1 249 11 max 1110.761 1 0 1503 15 0 1 0 15 0 1 250 min -84.955 3 0 1 -12.195 1 0 1503 15 0 1 0 1 251 12 max 1110.931 1 0 1503 15 0 1 0 15 0 1	245		9	max	1110.42	1	0	1	503	15	0	1	0	15	0	1
247 10 max 1110.591 1 0 1503 15 0 1 0 15 0 1 248 min -85.083 3 0 1 -12.195 1 0 1011 1 0 1 249 11 max 1110.761 1 0 1503 15 0 1 0 15 0 1 250 min -84.955 3 0 1 -12.195 1 0 1503 15 0 1 0 1 251 12 max 1110.931 1 0 1503 15 0 1 0 15 0 1						3		1				1				1
248 min -85.083 3 0 1 -12.195 1 0 1 011 1 0 1 249 11 max 1110.761 1 0 1 503 15 0 1 0 15 0 1 250 min -84.955 3 0 1 -12.195 1 0 1 013 1 0 1 251 12 max 1110.931 1 0 1 503 15 0 1 0 15 0 1			10					1		15		1		15		1
249 11 max 1110.761 1 0 1 503 15 0 1 0 15 0 1 250 min -84.955 3 0 1 -12.195 1 0 1 013 1 0 1 251 12 max 1110.931 1 0 1 503 15 0 1 0 15 0 1						3		1				1				1
250 min -84.955 3 0 1 -12.195 1 0 1 013 1 0 1 251 12 max 1110.931 1 0 1 503 15 0 1 0 1 0 1			11				0	1		15	0	1		15	0	1
251 12 max 1110.931 1 0 1503 15 0 1 0 15 0 1								1				1				1
			12			_		1				1		15	_	1
								-				<u> </u>	_			1
253 13 max 1111.102 1 0 1503 15 0 1 0 15 0 1			13					1								_
254 min -84.699 3 0 1 -12.195 1 0 1016 1 0 1												1				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255		14		1111.272	1	0	1	503	<u>15</u>	0	<u>1</u> 1	0	<u>15</u> 1	0	1
256 257		15	min	-84.572 1111.443	<u>3</u>	0	1	-12.195 503	<u>1</u> 15	0	1	017 0	15	0	1
258		13		-84.444	3	0	1	-12.195	1	0	1	018	1	0	1
259		16		1111.613	_ <u></u>	0	1	503	15	0	1	0	15	0	1
260		10	min		3	0	1	-12.195	1	0	1	02	1	0	1
261		17		1111.783	1	0	1	503	15	0	1	0	15	0	1
262		- '	min	-84.188	3	0	1	-12.195	1	0	1	021	1	0	1
263		18		1111.954	1	0	1	503	15	0	1	0	15	0	1
264			min	-84.061	3	0	1	-12.195	1	0	1	023	1	0	1
265		19		1112.124	1	0	1	503	15	Ö	1	0	15	0	1
266			min	-83.933	3	0	1	-12.195	1	0	1	024	1	0	1
267	M6	1	max	3119.372	1	2.189	2	0	1	0	1	0	1	0	1
268				-3259.5	3	.258	12	0	1	0	1	0	1	0	1
269		2	max	3119.801	1	2.144	2	0	1	0	1	0	1	0	12
270			min	-3259.179	3	.236	12	0	1	0	1	0	1	0	2
271		3		3120.229	1	2.1	2	0	1	0	1	0	1	0	12
272			min	-3258.858	3	.214	12	0	1	0	1	0	1	001	2
273		4	max	3120.658	1	2.056	2	0	1	0	1	0	1	0	12
274			min	-3258.536	3	.192	12	0	1	0	1	0	1	002	2
275		5	max	3121.086	_1_	2.012	2	0	_1_	0	_1_	0	1	0	12
276			min	-3258.215	3	.169	12	0	1	0	1	0	1	002	2
277		6		3121.515	_1_	1.967	2	0	_1_	0	_1_	0	1	0	12
278				-3257.893	3	.138	3	0	1_	0	1	0	1	003	2
279		7		3121.943	1_	1.923	2	0	_1_	0	_1_	0	1	0	12
280			min		3	.105	3	0	1_	0	1	0	1	004	2
281		8		3122.371	_1_	1.879	2	0	1_	0	1	0	1	0	12
282			min		3	.071	3	0	_1_	0	1	0	1	004	2
283		9	max		1	1.835	2	0	1_	0	1	0	1	0	12
284		40	min	-3256.929	3	.038	3	0	<u>1</u> 1	0	<u>1</u> 1	0	1	005	2
285		10		3123.228 -3256.608	1	1.79	3	0	1	0	1	0	1	0	3
286 287		11	min	3123.657	<u>3</u> 1	.005 1.746	2	0	1	0	1	0	1	005 0	3
288				-3256.287	3	028	3	0	1	0	1	0	1	006	2
289		12		3124.085	<u> </u>	1.702	2	0	1	0	1	0	1	000 0	3
290		12	min		3	061	3	0	1	0	1	0	1	006	2
291		13	_	3124.514	1	1.658	2	0	1	0	1	0	1	0	3
292		10		-3255.644	3	094	3	0	1	0	1	0	1	007	2
293		14		3124.942	1	1.613	2	0	1	0	1	0	1	0	3
294				-3255.323	3	128	3	0	1	0	1	0	1	007	2
295		15		3125.371	1	1.569	2	0	1	0	1	0	1	0	3
296				-3255.001	3	161	3	0	1	0	1	0	1	008	2
297		16		3125.799	1	1.525	2	0	1	0	1	0	1	0	3
298				-3254.68	3	194	3	0	1	0	1	0	1	008	2
299		17	max	3126.228	1	1.481	2	0	1	0	1	0	1	0	3
300			min	-3254.358	3	227	3	0	1	0	1	0	1	009	2
301		18		3126.656	1_	1.436	2	0	1_	0	1	0	1	0	3
302				-3254.037	3	26	3	0	1_	0	1	0	1	009	2
303		19		3127.085	1_	1.392	2	0	1_	0	1	0	1	0	3
304				-3253.716	3	294	3	0	1	0	1	0	1	009	2
305	<u>M7</u>	1		1684.626	2	7.919	4	0	_1_	0	1	0	1	.009	2
306			min	-1745.026	3	1.859	15	0	1	0	1	0	1	0	3
307		2		1684.456	2	7.152	4	0	_1_	0	1	0	1	.007	2
308				-1745.154	3	1.678	15	0	_1_	0	1	0	1	002	3
309		3		1684.285	2	6.385	4	0	1	0	1	0	1	.004	2
310				-1745.281	3	1.498	15	0	1_	0	1	0	1	003	3
311		4	max	1684.115	2	5.618	4	0	<u>1</u>	0	_1_	0	1	.002	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
312			min	-1745.409	3	1.318	15	0	1	0	1	0	1	004	3
313		5	max	1683.944	2	4.85	4	0	1	0	_1_	0	1	0	2
314			min	-1745.537	3	1.137	15	0	1	0	1	0	1	005	3
315		6		1683.774	2	4.083	4	0	1	0	_1_	0	1	001	15
316		_	min	-1745.665	3	.957	15	0	1	0	1	0	1	006	3
317		7		1683.604	2	3.316	4	0	1	0	1	0	1	002	15
318		_	min	-1745.793	3	.777	15	0	1	0	1	0	1	007	3
319		8		1683.433	2	2.549	4	0	1	0	1	0	1	002	15
320			min	-1745.92	3	.596	15	0	1	0	1	0	1	008	4
321		9		1683.263 -1746.048	2	1.839	2 12	0	1	0	1	0	1	002	15 4
323		10	min	1683.093	<u>3</u> 2	.34 1.241	2	0	1	0	1	0	1	009 002	15
324		10	min	-1746.176	3	.004	3	0	1	0	1	0	1	002	4
325		11		1682.922	2	.643	2	0	1	0	1	0	1	002	15
326		1 1	min	-1746.304	3	445	3	0	1	0	1	0	1	002	4
327		12		1682.752	2	.045	2	0	1	0	1	0	1	002	15
328		1-	min	-1746.431	3	893	3	0	1	0	1	0	1	009	4
329		13		1682.582	2	305	15	0	1	0	1	0	1	002	15
330		10	min	-1746.559	3	-1.342	3	0	1	0	1	0	1	009	4
331		14		1682.411	2	486	15	0	1	0	1	0	1	002	15
332			min	-1746.687	3	-2.055	4	0	1	0	1	0	1	008	4
333		15	max	1682.241	2	666	15	0	1	0	1	0	1	002	15
334			min	-1746.815	3	-2.822	4	0	1	0	1	0	1	007	4
335		16	max	1682.071	2	846	15	0	1	0	1	0	1	001	15
336			min	-1746.942	3	-3.589	4	0	1	0	1	0	1	006	4
337		17	max	1681.9	2	-1.027	15	0	1	0	1	0	1	001	15
338			min	-1747.07	3	-4.356	4	0	1	0	1	0	1	004	4
339		18	max		2	-1.207	15	0	1	0	1	0	1	0	15
340			min	-1747.198	3	-5.123	4	0	1	0	1	0	1	002	4
341		19	max		2	-1.387	15	0	1	0	_1_	0	1	0	1
342			min	-1747.326	3_	-5.891	4	0	1	0	1	0	1	0	1
343	<u>M8</u>	1_		2970.307	1_	0	1	0	1	0	1	0	1	0	1
344			min	-361.008	3	0	1_	0	1	0	1	0	1	0	1
345		2		2970.477	1	0	1	0	1	0	1	0	1	0	1
346		3	min	-360.88 2970.647	3	0		0	1	0	<u>1</u> 1	0		0	1
347		3			<u>1</u> 3	0	1	0	1	0	1	0	1	0	1
348 349		4	min	-360.752 2970.818	<u>ာ</u> 1	0	1	0	1	0	1	0	1	0	1
350		4	min	-360.624	3	0	1	0	1	0	1	0	1	0	1
351		5		2970.988	<u> </u>	0	1	0	1	0	1	0	1	0	1
352				-360.497	3	0	1	0	1	0	1	0	1	0	1
353		6		2971.158	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		2971.329	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		2971.499	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	0	1	0	1	0	1	0	1
359		9		2971.67	1	0	1	0	1	0	1	0	1	0	1
360			min	-359.986	3	0	1	0	1	0	1	0	1	0	1
361		10	max		1	0	1	0	1	0	1	0	1	0	1
362			min	-359.858	3	0	1	0	1	0	1	0	1	0	1
363		11	max		_1_	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		2972.181	_1_	0	1_	0	1	0	1	0	1	0	1
366			min		3	0	1	0	1	0	1	0	1	0	1
367		13		2972.351	1_	0	1	0	1	0	1	0	1	0	1
368			min	-359.475	3	0	1	0	1	0	1	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
369		14		2972.521	_1_	0	1	0	1	0	1	0	1	0	1
370				-359.347	3	0	1	0	1	0	1	0	1	0	1
371		15		2972.692	_1_	0	1	00	1	0	1	0	1	00	1
372				-359.219	3	0	1	0	1	0	1	0	1	0	1
373		16		2972.862	1_	0	1	0	1	0	1	0	1	0	1
374		47		-359.091	3	0	1	0	1	0	1	0	1	0	1
375		17		2973.032	1	0	1	0	1	0	1	0	1	0	1
376		10		-358.964	3_	0	1	0	1	0	1	0	1	0	1
377		18		2973.203	1	0	1	0 0	1	0	1	0	1	0	1
378 379		19	min	-358.836 2973.373	<u>3</u> 1	0	1	0	1	0	1	0	1	0	1
380		19	min	-358.708	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	966.965	<u> </u>	1.92	4	032	15	0	1	0	1	0	1
382	IVITO			-992.307	3	.452	15	032 775	1	0	5	0	3	0	1
383		2	max	967.394	_ <u></u>	1.864	4	032	15	0	1	0	15	0	15
384		_	min		3	.439	15	775	1	0	5	0	1	0	4
385		3	max		1	1.807	4	032	15	0	1	0	15	0	15
386		Ŭ	min	-991.664	3	.426	15	775	1	0	5	0	1	001	4
387		4	max	968.25	1	1.75	4	032	15	0	1	0	15	0	15
388			min	-991.342	3	.412	15	775	1	0	5	0	1	002	4
389		5	max	968.679	1	1.693	4	032	15	0	1	0	15	0	15
390			min	-991.021	3	.399	15	775	1	0	5	0	1	002	4
391		6	max	969.107	1	1.636	4	032	15	0	1	0	15	0	15
392			min	-990.7	3	.386	15	775	1	0	5	001	1	003	4
393		7	max	969.536	1	1.58	4	032	15	0	1	0	15	0	15
394			min	-990.378	3	.372	15	775	1	0	5	001	1	003	4
395		8	max	969.964	1	1.523	4	032	15	0	1	0	15	0	15
396			min	-990.057	3	.359	15	775	1	0	5	002	1	003	4
397		9	max		1_	1.466	4	032	15	0	1	0	15	0	15
398			min	-989.736	3	.345	15	775	1	0	5	002	1	004	4
399		10	max		_1_	1.409	4	032	15	0	1	0	15	001	15
400			min	-989.414	3	.332	15	775	1	0	5	002	1	004	4
401		11	max	971.25	1_	1.353	4	032	15	0	1	0	15	001	15
402		1.0	min	-989.093	3_	.319	15	<u>775</u>	1	0	5	002	1	005	4
403		12	max	971.678	1	1.296	4	032	15	0	1	0	15	001	15
404		40		-988.771	3	.305	15	<u>775</u>	1	0	5	002	1	005	4
405		13	max		1	1.239	4	032	15	0	1	0	15	001	15
406		4.4	min	-988.45	3	.292	15	<u>775</u>	1	0	5	003	1	006	4
407		14	max	972.535	1	1.182	4	032	15	0	1	0	15	001	15
408 409		15	min	<u>-988.129</u> 972.964	<u>3</u>	.279 1.125	1 <u>5</u>	775 032	15	0	<u>5</u>	003 0	1 15	006 001	15
		10			3	.265	15	032 775	1	0	5	003	1	001	4
410		16		<u>-987.807</u> 973.392	<u>ა</u> 1	1.069	4	<i>0</i> 32	15	0	1	003 0	15	006 002	15
412		10		-987.486	3	.252	15	032 775	1	0	5	003	1	002	4
413		17		973.821	_ <u>3_</u> 1	1.012	4	032	15	0	1	003 0	15	007	15
414		17		-987.165	3	.239	15	032 775	1	0	5	004	1	002	4
415		18		974.249	1	.955	4	032	15	0	1	0	15	002	15
416		'0		-986.843	3	.22	12	775	1	0	5	004	1	007	4
417		19		974.678	1	.898	4	032	15	0	1	0	15	002	15
418		1.0		-986.522	3	.198	12	775	1	0	5	004	1	007	4
419	M11	1		415.793	2	7.882	4	007	15	0	1	0	15	.007	4
420				-555.622	3	1.853	15	173	1	0	5	0	1	.002	15
421		2		415.623	2	7.114	4	007	15	0	1	0	15	.004	4
422				-555.75	3	1.673	15	173	1	0	5	0	1	0	12
423		3		415.453	2	6.347	4	007	15	0	1	0	15	.002	2
424				-555.878	3	1.493	15	173	1	0	5	0	1	0	3
425		4	max	415.282	2	5.58	4	007	15	0	1	0	15	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
426			min	-556.006	3	1.312	15	173	1	0	5	0	1	002	3
427		5	max		2	4.813	4	007	15	0	_1_	0	15	0	15
428			min	-556.133	3	1.132	15	173	1	0	5	0	1	003	4
429		6	max	414.942	2	4.045	4	007	15	0	1	0	15	001	15
430			min	-556.261	3	.952	15	173	1	0	5	0	1	005	4
431		7	max	414.771	2	3.278	4	007	15	0	1	0	15	002	15
432			min	-556.389	3	.771	15	173	1	0	5	0	1	007	4
433		8	max	414.601	2	2.511	4	007	15	0	1	0	15	002	15
434			min	-556.517	3	.591	15	173	1	0	5	0	1	008	4
435		9	max	414.43	2	1.744	4	007	15	0	1	0	15	002	15
436			min	-556.644	3	.41	15	173	1	0	5	001	1	009	4
437		10	max	414.26	2	.977	4	007	15	0	_1_	0	15	002	15
438			min	-556.772	3	.23	15	173	1	0	5	001	1	009	4
439		11	max	414.09	2	.292	2	007	15	0	1	0	15	002	15
440			min	-556.9	3	053	3	173	1	0	5	001	1	01	4
441		12	max	413.919	2	131	15	007	15	0	1	0	15	002	15
442			min	-557.028	3	558	4	173	1	0	5	001	1	01	4
443		13	max	413.749	2	311	15	007	15	0	1	0	15	002	15
444			min	-557.156	3	-1.325	4	173	1	0	5	001	1	009	4
445		14	max	413.579	2	491	15	007	15	0	1	0	15	002	15
446			min	-557.283	3	-2.092	4	173	1	0	5	001	1	008	4
447		15	max	413.408	2	672	15	007	15	0	1	0	15	002	15
448			min	-557.411	3	-2.86	4	173	1	0	5	001	1	007	4
449		16	max	413.238	2	852	15	007	15	0	1	0	15	001	15
450			min	-557.539	3	-3.627	4	173	1	0	5	002	1	006	4
451		17	max	413.068	2	-1.032	15	007	15	0	1	0	15	001	15
452			min	-557.667	3	-4.394	4	173	1	0	5	002	1	004	4
453		18	max	412.897	2	-1.213	15	007	15	0	1	0	15	0	15
454			min	-557.794	3	-5.161	4	173	1	0	5	002	1	002	4
455		19	max	412.727	2	-1.393	15	007	15	0	1	0	15	0	1
456			min	-557.922	3	-5.928	4	173	1	0	5	002	1	0	1
457	M12	1	max	1109.058	1	0	1	12.195	1	0	1	0	15	0	1
458			min	-86.233	3	0	1	.503	15	0	1	001	1	0	1
459		2	max		1	0	1	12.195	1	0	1	0	1	0	1
460			min	-86.105	3	0	1	.503	15	0	1	0	3	0	1
461		3	max	1109.398	1	0	1	12.195	1	0	1	.002	1	0	1
462			min	-85.977	3	0	1	.503	15	0	1	0	15	0	1
463		4	max	1109.569	1	0	1	12.195	1	0	1	.003	1	0	1
464			min	-85.849	3	0	1	.503	15	0	1	0	15	0	1
465		5	max	1109.739	1	0	1	12.195	1	0	1	.004	1	0	1
466			min	-85.721	3	0	1	.503	15	0	1	0	15	0	1
467		6		1109.909	1	0	1	12.195	1	0	1	.006	1	0	1
468			min	-85.594	3	0	1	.503	15	0	1	0	15	0	1
469		7	max		1	0	1	12.195	1	0	1	.007	1	0	1
470			min	-85.466	3	0	1	.503	15	0	1	0	15	0	1
471		8		1110.25	1	0	1	12.195	1	0	1	.009	1	0	1
472			min	-85.338	3	0	1	.503	15	0	1	0	15	0	1
473		9		1110.42	1	0	1	12.195	1	0	1	.01	1	0	1
474			min	-85.21	3	0	1	.503	15	0	1	0	15	0	1
475		10		1110.591	1	0	1	12.195	1	0	1	.011	1	0	1
476			min	-85.083	3	0	1	.503	15	0	1	0	15	0	1
477		11		1110.761	1	0	1	12.195	1	0	1	.013	1	0	1
478			min		3	0	1	.503	15	0	1	0	15	0	1
479		12		1110.931	1	0	1	12.195	1	0	1	.014	1	0	1
480		12	min	-84.827	3	0	1	.503	15	0	1	0	15	0	1
481		13		1111.102	1	0	1	12.195	1	0	1	.016	1	0	1
482		T.	min		3	0	1	.503	15	0	1	0	15	0	1
102			1111111	01.000				.000		•				•	

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
483		14	max	1111.272	1	0	1	12.195	1	0	1_	.017	1	0	1
484			min	-84.572	3	0	1	.503	15	0	1	0	15	0	1
485		15	max	1111.443	1	0	1	12.195	1	0	1	.018	1	0	1
486			min	-84.444	3	0	1	.503	15	0	1	0	15	0	1
487		16	max	1111.613	1	0	1	12.195	1	0	1	.02	1	0	1
488			min	-84.316	3	0	1	.503	15	0	1	0	15	0	1
489		17		1111.783	1	0	1	12.195	1	0	1	.021	1	0	1
490			min	-84.188	3	0	1	.503	15	0	1	0	15	0	1
491		18		1111.954	1	0	1	12.195	1	0	1	.023	1	0	1
492		1	min	-84.061	3	0	1	.503	15	0	1	0	15	0	1
493		19		1112.124	1	0	1	12.195	1	0	1	.024	1	0	1
494			min	-83.933	3	0	1	.503	15	0	1	0	15	0	1
495	M1	1	max		1	551.139	3	-4.973	15	0	1	.287	1	0	3
496			min	7.643	15	-429.983	1	-120.177	1	0	3	.012	15	011	1
497		2	max	186.17	1	550.165	3	-4.973	15	0	1	.224	1	.216	1
498			min	7.825	15	-431.282	1	-120.177	1	0	3	.009	15	291	3
499		3	max		3	479.052	1	-4.942	15	0	3	.161	1	.433	1
500		<u> </u>	min	-203.282	2	-389.716	3	-119.666	1	0	1	.007	15	569	3
501		4	max	339.03	3	477.754	1	-4.942	15	0	3	.007	1	.18	1
502		4	min	-202.677	2	-390.689	3	-119.666	1	0	1	.004	15	363	3
503		5	max	339.484	3	476.456	1	-4.942	15	0	3	.034	1	003	15
504		5	min	-202.071	2	-391.663	3	-119.666	1	0	1	.001	15	157	3
505		6		339.938		475.158	1	-4.942	15	0	3	001	15	.05	3
506		-	max	-201.466	<u>3</u>	-392.637	3	-119.666	1	0	<u> </u>	029	1	323	1
		7	min				_			_					
507			max	340.392	3	473.859	3	-4.942	15	0	<u>3</u>	004	15	.257	3
508			min	-200.861	2	-393.61		-119.666	1_	0		092	1	573	1
509		8	max		3_	472.561	1	-4.942	15	0	3	006	15	.465	3
510			min	-200.255	2	-394.584	3	-119.666	1_	0	1_	155	1	823	1
511		9	max	353.837	3_	34.922	2	-7.188	15	0	9	.091	1	.545	3
512		40	min	-122.476	2	.396	15	-173.93	1_	0	3	.004	15	938	1
513		10	max		3	33.623	2	-7.188	15	0	9	0	15	.529	3
514		4.4	min	-121.87	2	.004	15	-173.93	1_	0	3	001	1	947	1
515		11	max		3	32.325	2	-7.188	15	0	9	004	15	.514	3
516		40	min	-121.265	2	-1.583	4	-173.93	1_	0	3	093	1	956	1
517		12	max	367.677	3	248.888	3	-4.82	15	0	2	.153	1	.447	3
518		4.0	min	-70.649	10	-509.321	1	-116.844	1_	0	3	.006	15	845	1
519		13	max		3	247.915	3	-4.82	15	0	2	.091	1	.316	3
520			min	-70.145	<u>10</u>	-510.619	1	-116.844	1_	0	3	.004	15	575	1
521		14	max	368.585	3	246.941	3	-4.82	15	0	2	.03	1	.186	3
522		4.5	min	-69.64	10	-511.917	1	-116.844	1_	0	3	.001	15	306	1
523		15		369.039	3	245.967	3	-4.82	15	0	2	001	15	.055	3
524		4.0	min		<u>10</u>	-513.216		-116.844		0	3	032	1	035	1
525		16	max		3_	244.994	3	-4.82	15	0	2	004	15	.253	2
526			min	-68.631	10	-514.514	1	-116.844		0	3	094	1	074	3
527		17	max		3_	244.02	3	-4.82	15	0	2	006	15	.519	2
528		10	min	-68.127	10	-515.812	1	-116.844		0	3	155	1	203	3
529		18	max		<u> 15</u>	511.908	2	-5.315	15	0	3	009	15	.261	2
530			min		_1_	-204.985	3	-128.547		0	2	221	1	101	3
531		19	max		<u>15</u>	510.609	2	-5.315	15	0	3	012	15	.008	3
532	3.45	4	min	-185.781	1_	-205.959	3	-128.547	1	0	2	289	1	01	1
533	M5	1	max		1_	1835.721	3	0	1	0	1	0	1	.023	1
534			min		12	-1451.675	1	0	1	0	1_	0	1	0	3
535		2	max		1	1834.747	3	0	1	0	1	0	1	.789	1
536			min	15.83	12	-1452.973	1	0	1	0	1_	0	1	968	3
537		3		1089.801	3_	1470.892	1	0	1	0	1_	0	1	1.521	1
538		4	min		2	-1260.853	3	0	1	0	1_	0	1	-1.899	3
539		4	max	1090.255	3_	1469.594	_1_	0	1	0	_1_	0	1	.745	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

540	Member	Sec	min	Axial[lb]	LC 2	y Shear[lb]	LC 3	z Shear[lb]	LC 1	Torque[k-ft]	LC 1	y-y Mome	LC 1	z-z Mome	LC 3
541		5		1090.709	3	1468.295	1	0	1	0	1	0	1	.006	9
542			min	-737.485	2	-1262.8	3	0	1	0	1	0	1	568	3
543		6	max	1091.163	3	1466.997	1	0	1	0	1	0	1	.099	3
544			min	-736.879	2	-1263.774	3	0	1	0	1	0	1	804	1
545		7	max	1091.617	3	1465.699	1	0	1	0	1	0	1	.766	3
546			min	-736.274	2	-1264.748	3	0	1	0	1	0	1	-1.578	1
547		8	max	1092.071	3	1464.401	1	0	1	0	1	0	1	1.434	3
548			min	-735.669	2	-1265.722	3	0	1	0	1	0	1	-2.351	1
549		9	max	1115.01	3	115.731	2	0	1	0	1_	0	1	1.654	3
550			min	-576.176	2	.393	15	0	1	0	1	0	1	-2.66	1
551		10	max	1115.464	3	114.433	2	0	1	0	1	0	1	1.598	3
552			min	-575.571	2	.001	15	0	1	0	1_	0	1	-2.693	1
553		11	max	1115.918	3	113.135	2	0	1	0	1	0	1	1.543	3
554			min	-574.965	2	-1.422	4	0	1	0	1	0	1	-2.725	1
555		12	max	1138.974	3_	795.005	3	0	1	0	_1_	0	1	1.353	3
556			min	-415.491	2	-1588.571	1_	0	1	0	1_	0	1	-2.429	1
557		13		1139.428	3_	794.031	3	0	1	0	<u>1</u>	0	1	.934	3
558				-414.885	2	-1589.87	1_	0	1	0	1	0	1	-1.59	1
559		14	max	1139.882	3_	793.057	3	0	1	0	1_	0	1	.515	3
560			min	-414.28	2	-1591.168	1_	0	1	0	1	0	1	751	1
561		15	max	1140.336	3	792.084	3	0	1	0	1	0	1	.148	2
562			min	-413.675	2	-1592.466	_1_	0	1	0	1_	0	1	004	13
563		16	max	1140.79	3	791.11	3	0	1	0	_1_	0	1	.972	2
564			min	-413.069	2	-1593.764	1_	0	1	0	1	0	1	321	3
565		17	max	1141.244	3_	790.136	3	0	1	0	_1_	0	1	1.796	2
566			min	-412.464	2	-1595.063	1_	0	1	0	1	0	1	738	3
567		18	max	-16.057	12	1722.74	2	0	1	0	<u>1</u>	0	1	.926	2
568			min	-400.139	1_	-701.551	3	0	1	0	1_	0	1	386	3
569		19	max	-15.755	12	1721.442	2	0	1	0	_1_	0	1_	.02	1
570			min	-399.534	1_	-702.525	3	0	1	0	1_	0	1	016	3
571	M9	1	max	185.565	_1_	551.139	3	120.177	1	0	3	012	15	0	3
572			min	7.643	15	-429.983	1_	4.973	15	0	1_	287	1	011	1
573		2	max	186.17	_1_	550.165	3	120.177	1	0	3	009	15	.216	1
574			min	7.825	15	-431.282	1_	4.973	15	0	1_	224	1	291	3
575		3	max	338.576	3_	479.052	_1_	119.666	1	0	_1_	007	15	.433	1
576			min	-203.282	2	-389.716	3	4.942	15	0	3	161	1	569	3
577		4	max	339.03	3	477.754	_1_	119.666	1	0	_1_	004	15	.18	1
578			min	-202.677	2	-390.689	3	4.942	15	0	3	097	1	363	3
579		5	max		3_	476.456	_1_	119.666	1	0	_1_	001	15	003	15
580				-202.071	2_	-391.663	3	4.942	15	0	3	034	1	157	3
581		6	max		3_	475.158	_1_	119.666	1	0	_1_	.029	1_	.05	3
582				-201.466	2	-392.637	3_	4.942	15	0	3	.001	15	323	1
583		7		340.392	3_	473.859	_1_	119.666	1	0	1_	.092	1	.257	3
584				-200.861	2	-393.61	3	4.942	15	0	3	.004	15	573	1
585		8		340.846	3	472.561	_1_	119.666	1	0	1_	.155	1	.465	3
586				-200.255	2	-394.584	3	4.942	15	0	3	.006	15	823	1
587		9		353.837	3_	34.922	2	173.93	1	0	3	004	15	.545	3
588				-122.476	2	.396	15	7.188	15	0	9	091	1	938	1
589		10		354.291	3_	33.623	2	173.93	1	0	3	.001	1	.529	3
590				-121.87	2	.004	15	7.188	15	0	9	0	15	947	1
591		11		354.745	3	32.325	2	173.93	1	0	3	.093	1	.514	3
592				-121.265	2	-1.583	4	7.188	15	0	9	.004	15	956	1
593		12		367.677	3	248.888	3	116.844	1	0	3	006	15	.447	3
594			min	-70.649	10	-509.321	1_	4.82	15	0	2	153	1_	845	1
595		13		368.131	3	247.915	3	116.844	1	0	3	004	15	.316	3
596			min	-70.145	10	-510.619	1_	4.82	15	0	2	091	1	575	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	368.585	3	246.941	3	116.844	1	0	3	001	15	.186	3
598			min	-69.64	10	-511.917	1	4.82	15	0	2	03	1	306	1
599		15	max	369.039	3	245.967	3	116.844	1	0	3	.032	1	.055	3
600			min	-69.136	10	-513.216	1	4.82	15	0	2	.001	15	035	1
601		16	max	369.493	3	244.994	3	116.844	1	0	3	.094	1	.253	2
602			min	-68.631	10	-514.514	1	4.82	15	0	2	.004	15	074	3
603		17	max	369.947	3	244.02	3	116.844	1	0	3	.155	1	.519	2
604			min	-68.127	10	-515.812	1	4.82	15	0	2	.006	15	203	3
605		18	max	-7.832	15	511.908	2	128.547	1	0	2	.221	1	.261	2
606			min	-186.386	1	-204.985	3	5.315	15	0	3	.009	15	101	3
607		19	max	-7.649	15	510.609	2	128.547	1	0	2	.289	1	.008	3
608			min	-185.781	1	-205.959	3	5.315	15	0	3	.012	15	01	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.094	1	.006	3	7.556e-3	1_	NC	1_	NC	1
2			min	0	15	009	3	003	2	-8.747e-4	3	NC	1	NC	1
3		2	max	.001	1	.293	3	.049	1	8.732e-3	1	NC	5	NC	2
4			min	0	15	123	1	.002	15	-8.801e-4	3	833.167	3	5329.631	1
5		3	max	0	1	.538	3	.118	1	9.908e-3	1	NC	5	NC	3
6			min	0	15	296	1	.005	15	-8.855e-4	3	460.301	3	2166.908	1
7		4	max	0	1	.687	3	.178	1	1.108e-2	1	NC	5	NC	3
8			min	0	15	393	1	.007	15	-8.909e-4	3	361.849	3	1429.201	1
9		5	max	0	1	.722	3	.21	1	1.226e-2	1	NC	5	NC	3
10			min	0	15	402	1	.009	15		3	344.594	3	1214.467	1
11		6	max	0	1	.646	3	.203	1	1.344e-2	1_	NC	5	NC	3
12			min	0	15	325	1	.009	15	-9.017e-4	3	384.955	3	1254.958	1
13		7	max	0	1	.48	3	.16	1	1.461e-2	1	NC	5	NC	3
14			min	0	15	18	1	.007	15	-9.071e-4	3	514.8	3	1594.293	1
15		8	max	0	1	.271	3	.094	1	1.579e-2	1	NC	4	NC	3
16			min	0	15	01	9	.004	10	-9.125e-4	3	901.175	3	2740.534	1
17		9	max	0	1	.156	2	.028	1	1.696e-2	1	NC	4	NC	2
18			min	0	15	.005	15	004	10	-9.179e-4	3	2823.844	3	9695.748	1
19		10	max	0	1	.224	1	.019	3	1.814e-2	1	NC	3	NC	1
20			min	0	1	006	3	012	2	-9.233e-4	3	1934.873	1	NC	1
21		11	max	0	15	.156	2	.028	1	1.696e-2	1	NC	4	NC	2
22			min	0	1	.005	15	004	10	-9.179e-4	3	2823.844	3	9695.748	
23		12	max	0	15	.271	3	.094	1	1.579e-2	1	NC	4	NC	3
24			min	0	1	01	9	.004	10	-9.125e-4	3	901.175	3	2740.534	1
25		13	max	0	15	.48	3	.16	1	1.461e-2	1	NC	5	NC	3
26			min	0	1	18	1	.007	15	-9.071e-4	3	514.8	3	1594.293	1
27		14	max	0	15	.646	3	.203	1	1.344e-2	1	NC	5	NC	3
28			min	0	1	325	1	.009	15	-9.017e-4	3	384.955	3	1254.958	
29		15	max	0	15	.722	3	.21	1	1.226e-2	1	NC	5	NC	3
30			min	0	1	402	1	.009	15	-8.963e-4	3	344.594	3	1214.467	1
31		16	max	0	15	.687	3	.178	1	1.108e-2	1_	NC	5	NC	3
32			min	0	1	393	1	.007	15	-8.909e-4	3	361.849	3	1429.201	1
33		17	max	0	15	.538	3	.118	1	9.908e-3	1_	NC	5	NC	3
34			min	0	1	296	1	.005	15	-8.855e-4	3	460.301	3	2166.908	1
35		18	max	0	15	.293	3	.049	1	8.732e-3	1	NC	5	NC	2
36			min	001	1	123	1	.002	15	-8.801e-4	3	833.167	3	5329.631	1
37		19	max	0	15	.094	1	.006	3	7.556e-3	1	NC	1_	NC	1
38			min	001	1	009	3	003	2	-8.747e-4	3	NC	1	NC	1
39	M14	1	max	0	1	.161	3	.005	3	4.723e-3	1	NC	1	NC	1
40			min	0	15	308	1	002	2	-2.905e-3	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
41		2	max	0	1	.441	3	.035	1	5.687e-3	1	NC	5	NC	2
42			min	0	15	638	1	.002	15	-3.554e-3		763.547	1	7752.541	1_
43		3	max	0	1	.676	3	.096	1	6.651e-3	1		15	NC	3
44			min	0	15	92	1	.004		-4.203e-3		411.49	1_	2688.902	1
45		4	max	0	1	.836	3	.154	1	7.615e-3	1_	NC 000 454	<u>15</u>	NC 4000 000	3
46		_	min	0	15	-1.122	1	.006	15	-4.852e-3	3	309.451	1_	1663.069	1
47		5	max	0	1	.907	3	.187	1	8.579e-3	1		15	NC 4004 coo	3
48			min	0	15	-1.227	1	.008		-5.501e-3		274.109	1_	1364.629	1
49		6	max	0	1	.889	3	.185	1	9.543e-3	1		<u>15</u>	NC	3
50		7	min	0	15 1	<u>-1.235</u>	3	.008	15	-6.15e-3 1.051e-2	3	271.8 NC	<u>1</u> 15	1379.195 NC	3
51 52			max	0	15	.798		.148	15		1	295.155	1	1724.794	1
		8	min	<u> </u>	1	<u>-1.162</u> .665	3	.006 .088	1	-6.799e-3 1.147e-2	3		15	NC	3
53 54		0	max	0	15	-1.04	1	.004	10	-7.448e-3	<u>1</u> 3	344.49	1 <u>0</u>	2926.578	
		9		0	1	.538	3	.004	1	1.243e-2	<u>ာ</u> 1	NC	15	NC	1
55 56		9	max min	0	15	<u>.536</u> 917	1	004	10	-8.097e-3	3	413.884	1	NC NC	1
57		10	max	0	1	.479	3	.017	3	1.34e-2	1	NC	5	NC	1
58		10	min	0	1	859	1	011	2	-8.746e-3		457.661	1	NC NC	1
59		11	max	0	15	.538	3	.027	1	1.243e-2	1	NC	15	NC	1
60			min	0	1	917	1	004	10	-8.097e-3	3	413.884	1	NC NC	1
61		12	max	0	15	.665	3	.088	1	1.147e-2	1		15	NC	3
62		12	min	0	1	-1.04	1	.004	10	-7.448e-3	3	344.49	1	2926.578	1
63		13	max	0	15	.798	3	.148	1	1.051e-2	1		15	NC	3
64			min	0	1	-1.162	1	.006	15	-6.799e-3		295.155	1	1724.794	1
65		14	max	0	15	.889	3	.185	1	9.543e-3	1		15	NC	3
66			min	0	1	-1.235	1	.008	15	-6.15e-3	3	271.8	1	1379.195	1
67		15	max	0	15	.907	3	.187	1	8.579e-3	1		15	NC	3
68			min	0	1	-1.227	1	.008		-5.501e-3		274.109	1	1364.629	1
69		16	max	0	15	.836	3	.154	1	7.615e-3	1		15	NC	3
70			min	0	1	-1.122	1	.006	15	-4.852e-3	3	309.451	1	1663.069	1
71		17	max	0	15	.676	3	.096	1	6.651e-3	1	NC	15	NC	3
72			min	0	1	92	1	.004	15	-4.203e-3	3	411.49	1	2688.902	1
73		18	max	0	15	.441	3	.035	1	5.687e-3	1	NC	5	NC	2
74			min	0	1	638	1	.002	15	-3.554e-3	3	763.547	1	7752.541	1
75		19	max	0	15	.161	3	.005	3	4.723e-3	1	NC	1	NC	1
76			min	0	1	308	1	002	2	-2.905e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.165	3	.005	3	2.443e-3	3	NC	1_	NC	1_
78			min	0	1	307	1	002	2	-4.842e-3	1	NC	1	NC	1
79		2	max	0	15	.333	3	.035	1	2.993e-3	3	NC	5	NC	2
80			min	0	1	675	1	.002	15	-5.838e-3	1_	686.117	1	7716.62	1_
81		3	max	0	15	.478	3	.096	1	3.544e-3			15		3
82			min	0	1	987	1	.004		-6.833e-3			1_	2681.615	
83		4	max	0	15	.584	3	.154	1	4.094e-3	3		<u>15</u>	NC	3
84		_	min	0	1	-1.207	1	.006		-7.828e-3		280.025	1_	1659.585	1
85		5	max	0	15	.643	3	.187	1	4.645e-3	3		<u>15</u>	NC 4000 040	3
86			min	0	1	<u>-1.316</u>	1	.008		-8.823e-3	1	249.756	1_	1362.049	1
87		6	max	0	15	.654	3	.185	1	5.195e-3	3		15	NC	3
88		7	min	0	1	<u>-1.314</u>	1	.008		-9.818e-3	1_	250.238	1_	1376.501	1
89		7	max	0	15 1	.626	3	.149	1	5.745e-3	3		<u>15</u> 1	NC	3
90		0	min	0	15	-1.22 572	3	.006	15	-1.081e-2	<u>1</u>	276.02	15	1720.677	3
91		8	max	0	15	.572 -1.072	1	.089	15	6.296e-3	3	NC 329.628	1	NC 2915.272	1
93		9	min max	0	15	.516	3	.004	1	-1.181e-2 6.846e-3	<u>1</u> 3		15	NC	1
94		3	min	0	1	925	1	003	10	-1.28e-2	<u>3</u>	407.692	1	NC NC	1
95		10	max	0	1	<u>925</u> .489	3	.016	3	7.397e-3	3	NC	5	NC NC	1
96		10	min	0	1	857	1	011	2	-1.38e-2	1	458.892	1	NC NC	1
97		11	max	0	1	.516	3	.027	1	6.846e-3	3		15	NC	1
JI.			παλ	U	1	.010	J	.021		0.0406-3	J	INO	IU	INC	

Model Name

Schletter, Inc. HCV

: Standard DVMs

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

00	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
98		40	min	0	15	925	1	003	10	-1.28e-2	1_	407.692	1_	NC NC	1
99		12	max	0	1	.572	3	.089	1	6.296e-3	3	NC 200 con	<u>15</u>	NC 0045 070	3
100		40	min	0	15	-1.072	1	.004		-1.181e-2	1_	329.628	1_	2915.272	•
101		13	max	0	1	.626	3	.149	1	5.745e-3	3	NC 270.00	<u>15</u>	NC	3
102		4.4	min	0	15	-1.22	1	.006		-1.081e-2	1_	276.02	1_	1720.677	1
103		14	max	0	1	.654	3	.185	1	5.195e-3	3	9573.332	<u>15</u>	NC	3
104		4.5	min	0	15	<u>-1.314</u>	1	.008	15	-9.818e-3	1_	250.238	1_	1376.501	1
105		15	max	0	1	.643	3	.187	1	4.645e-3	3	9606.535	<u>15</u>	NC	3
106		10	min	0	15	-1.316	1	.008	15	-8.823e-3	1_	249.756	1_	1362.049	
107		16	max	0	1	.584	3	.154	1	4.094e-3	3	NC 200 025	<u>15</u>	NC 1650 505	3
108		47	min	0	15	-1.207	1	.006	15	-7.828e-3	1_	280.025	1_	1659.585	1
109		17	max	0	1	.478	3	.096	1	3.544e-3	3	NC 070.744	<u>15</u>	NC OCO4 C45	3
110		10	min	0	15	987	1	.004	15		1_	370.711	1_	2681.615	
111		18	max	0	1	.333	3	.035	1	2.993e-3	3_	NC	5	NC	2
112		10	min	0	15	675	1	.002	15	-5.838e-3	1_	686.117	1_	7716.62	1
113		19	max	0	1	<u>.165</u>	3	.005	3	2.443e-3	3_	NC	_1_	NC NC	1
114		-	min	0	15	307	1	002	2	-4.842e-3	1_	NC	1_	NC	1
115	M16	1	max	0	15	.092	1	.004	3	4.313e-3	3	NC	1_	NC	1
116			min	001	1	054	3	002	2	-7.046e-3	1_	NC	1_	NC	1
117		2	max	0	15	.045	3	.049	1	5.123e-3	3_	NC	_5_	NC	2
118			min	001	1	182	2	.002	15	-8.096e-3	<u>1</u>	957.004	2	5366.209	1
119		3	max	0	15	.123	3	.118	1_	5.932e-3	3	NC	5	NC	3
120			min	0	1	392	2	.005	15		1_	532.155	2	2174.255	
121		4	max	0	15	.165	3	.178	1	6.742e-3	3	NC	5	NC	3
122			min	0	1	514	2	.007	15	-1.02e-2	1_	423.422	2	1431.385	1
123		5	max	0	15	.165	3	.209	1	7.552e-3	3	NC	5	NC	3
124			min	0	1	53	2	.009	15	-1.125e-2	1_	411.907	2	1214.511	1
125		6	max	0	15	.124	3	.203	1	8.361e-3	3	NC	5	NC	3
126			min	0	1	445	2	.009	15	-1.23e-2	1	478.825	2	1252.872	1
127		7	max	0	15	.052	3	.161	1	9.171e-3	3	NC	5	NC	3
128			min	0	1	279	2	.007	15	-1.335e-2	1_	698.736	2	1587.265	1
129		8	max	0	15	.001	13	.095	1	9.98e-3	3	NC	3	NC	3
130			min	0	1	074	2	.004	15	-1.44e-2	1_	1614.802	2	2710.129	1
131		9	max	0	15	.137	1	.029	1	1.079e-2	3	NC	4	NC	2
132			min	0	1	112	3	003		-1.545e-2	1_	4299.317	3	9243.092	1
133		10	max	0	1	.218	1	.014	3	1.16e-2	3	NC	5	NC	1
134			min	0	1	147	3	01	2	-1.65e-2	1	1987.07	1	NC	1
135		11	max	0	1	.137	1	.029	1	1.079e-2	3	NC	4	NC	2
136			min	0	15	112	3	003	10	-1.545e-2	1	4299.317	3	9243.092	1
137		12	max	0	1	.001	13	.095	1	9.98e-3	3	NC	3	NC	3
138			min	0	15	074	2	.004	15	-1.44e-2	1	1614.802	2	2710.129	1
139		13	max	0	1	.052	3	.161	1	9.171e-3	3	NC	5	NC	3
140			min	0	15	279	2	.007	15	-1.335e-2	1_	698.736	2	1587.265	1
141		14	max	0	1	.124	3	.203	1	8.361e-3	3	NC	5	NC	3
142			min	0	15	445	2	.009	15	-1.23e-2	1	478.825	2	1252.872	1
143		15	max	0	1	.165	3	.209	1	7.552e-3	3	NC	5	NC	3
144			min	0	15	53	2	.009	15	-1.125e-2	1	411.907	2	1214.511	1
145		16	max	0	1	.165	3	.178	1	6.742e-3	3	NC	5	NC	3
146			min	0	15	514	2	.007	15	-1.02e-2	1	423.422	2	1431.385	1
147		17	max	0	1	.123	3	.118	1	5.932e-3	3	NC	5	NC	3
148			min	0	15	392	2	.005	15	-9.147e-3	1	532.155	2	2174.255	
149		18	max	.001	1	.045	3	.049	1	5.123e-3	3	NC	5	NC	2
150		1.0	min	0	15	182	2	.002		-8.096e-3	1	957.004	2	5366.209	
151		19	max	.001	1	.092	1	.004	3	4.313e-3	3	NC	1	NC	1
152		1.0	min	0	15	054	3	002	2	-7.046e-3	1	NC	1	NC	1
153	M2	1	max	.006	1	.005	2	.002	1	-1.065e-5	15	NC	1	NC	2
154			min	006	3	009	3	0		-2.581e-4	1	NC	1	6753.038	
TUT			111/1111	.000	U	.000	U	<u> </u>	10	2.0010 4		110		0100.000	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
155		2	max	.006	1	.004	2	.009	1_	-9.988e-6	<u>15</u>	NC	_1_	NC	2
156			min	006	3	008	3	0	15		_1_	NC	1_	7366.755	1
157		3	max	.005	1	.003	2	.008	1	-9.328e-6		NC	1_	NC	2
158			min	005	3	008	3	0	15		_1_	NC	1_	8098.472	1
159		4	max	.005	1	.002	2	.007	1	-8.669e-6	<u>15</u>	NC	1_	NC	2
160		_	min	005	3	008	3	0	15	-2.101e-4	1_	NC	1_	8979.558	1
161		5	max	.005	1	.002	2	.006	1	-8.009e-6	<u>15</u>	NC	1	NC NC	1
162			min	005	3	008	3	0	15	-1.941e-4	1_	NC	1_	NC NC	1
163		6	max	.004	1	.001	2	.006	1	-7.349e-6	<u>15</u>	NC	1	NC NC	1
164		7	min	004	3	007	3	0	15	-1.781e-4	1_	NC NC	1_	NC NC	1
165		7	max	.004	1	0	2	.005	1	-6.689e-6	<u>15</u>	NC NC	1	NC NC	1
166			min	004	3	007	3	0	15	-1.621e-4	1_	NC NC	1_	NC NC	1
167		8	max	.004	1	0	2	.004	1	-6.03e-6	<u>15</u>	NC	1	NC NC	1
168			min	004	3	007	3	0	15		1_	NC	1_	NC NC	1
169		9	max	.003	1	0	2	.003	1	-5.37e-6	<u>15</u>	NC NC	1	NC NC	1
170		40	min	003	3	006	3	0	15		1_	NC NC	1_	NC NC	1
171		10	max	.003	1	0	15	.003	1	-4.71e-6	<u>15</u>	NC NC	1_	NC NC	1
172		4.4	min	003	3	006	3	0	15	-1.141e-4	1_	NC	1_	NC NC	1
173		11	max	.003	1	0	15	.002	1	-4.05e-6	<u>15</u>	NC NC	1	NC NC	1
174		40	min	003	3	005	3	0	15	-9.808e-5	1_	NC NC	1_	NC NC	1
175		12	max	.002	1	0	15	.002	1	-3.391e-6	<u>15</u>	NC NC	1_	NC NC	1
176		40	min	002	3	005	3	0	15	-8.208e-5	1_	NC NC	1_	NC NC	1
177		13	max	.002	1	0	15	.001	1	-2.731e-6	<u>15</u>	NC NC	1	NC NC	1
178		4.4	min	002	3	004	3	0	15		1_	NC NC		NC NC	1
179		14	max	.002	3	0 004	15	<u> </u>	1	-2.071e-6	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
180		15	min	002			3		15	-5.008e-5	1_		_		
181 182		15	max	.001	3	0	15	0	1	-1.411e-6	<u>15</u>	NC NC	1	NC NC	1
		16	min	<u>001</u>	1	003		0	1 <u>5</u>	-3.408e-5	1_	NC NC	1	NC NC	1
183 184		16	max	0 0	3	0	15	0 0		-7.517e-7	<u>15</u> 1	NC NC	1	NC NC	1
185		17	min max	0	1	003 0	15	0	1 <u>5</u>	-1.808e-5 -9.195e-8	15	NC NC	1	NC NC	1
186		17		0	3	002	4	0	15	-9.195e-6	1	NC NC	1	NC NC	1
187		18	min	0	1	<u>002</u> 0	15	0	1	1.392e-5	1	NC NC	1	NC NC	1
188		10	max min	0	3	001	4	0	15	4.923e-7	12	NC NC	1	NC NC	1
189		19	max	0	1	<u>001</u> 0	1	0	1	2.992e-5	1	NC	1	NC	1
190		19	min	0	1	0	1	0	1	1.228e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-4.053e-7	15	NC	1	NC	1
192	IVIO		min	0	1	0	1	0	1	-9.869e-6	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	1.699e-5	1	NC	1	NC	1
194			min	0	2	002	4	0	15	7.011e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0				NC	1	NC NC	1
196			min	0	2	004	4	0	15		15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	7.071e-5	1	NC	1	NC	1
198			min	0	2	006	4	0		2.914e-6	15	NC	1	NC	1
199		5	max	.001	3	002	15	0	1	9.757e-5	1	NC	1	NC	1
200			min	0	2	007	4	0	15		15	NC	1	NC	1
201		6	max	.001	3	002	15	.001	1	1.244e-4	1	NC	1	NC	1
202			min	001	2	009	4	0	15		15	NC	1	NC	1
203		7	max	.002	3	003	15	.001	1	1.513e-4	1	NC	1	NC	1
204			min	001	2	011	4	0	15	6.233e-6		8604.047	4	NC	1
205		8	max	.002	3	003	15	.002	1	1.781e-4	1	NC	1	NC	1
206			min	001	2	012	4	0	15	7.34e-6		7724.871	4	NC	1
207		9	max	.002	3	003	15	.002	1	2.05e-4	1	NC	2	NC	1
208			min	002	2	013	4	0	15			7205.067	4	NC	1
209		10	max	.002	3	003	15	.002	1	2.319e-4	1	NC	3	NC	1
210			min	002	2	013	4	0	15	9.552e-6		6954.083	4	NC	1
211		11	max	.003	3	003	15	.003	1	2.587e-4	1	NC	3	NC	1
	_														

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
212			min	002	2	014	4	0	15	1.066e-5		6934.947	4	NC	1
213		12	max	.003	3	003	15	.003	1	2.856e-4	_1_	NC	3	NC	1
214			min	002	2	013	4	0	15	1.177e-5	15	7150.082	4	NC	1
215		13	max	.003	3	003	15	.004	1_	3.124e-4	_1_	NC	_1_	NC	1
216			min	002	2	012	4	0	15	1.287e-5	15	7644.059	4	NC	1
217		14	max	.004	3	003	15	.005	1_	3.393e-4	_1_	NC	_1_	NC	1
218			min	003	2	011	4	0	15	1.398e-5	15	8526.697	4	NC	1
219		15	max	.004	3	002	15	.005	1	3.662e-4	<u>1</u>	NC	<u>1</u>	NC	1
220			min	003	2	01	4	0	15	1.508e-5	15	NC	1_	NC	1
221		16	max	.004	3	002	15	.006	1	3.93e-4	_1_	NC	1_	NC	1
222			min	003	2	008	4	0	15	1.619e-5	15	NC	1_	NC	1
223		17	max	.004	3	001	15	.007	1	4.199e-4	1_	NC	_1_	NC	1
224			min	003	2	006	1	0	15	1.73e-5	15	NC	1_	NC	1
225		18	max	.005	3	0	15	.008	1	4.467e-4	1_	NC	1_	NC	1_
226			min	003	2	004	1	0	15	1.84e-5	15	NC	1	NC	1
227		19	max	.005	3	0	15	.009	1	4.736e-4	1	NC	1	NC	1
228			min	004	2	003	1	0	15	1.951e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.003	2	0	15	6.44e-5	1	NC	1	NC	3
230			min	0	3	005	3	009	1	2.664e-6	15	NC	1	2806.748	1
231		2	max	.003	1	.003	2	0	15	6.44e-5	1	NC	1	NC	3
232			min	0	3	005	3	008	1	2.664e-6	15	NC	1	3051.755	1
233		3	max	.002	1	.003	2	0	15	6.44e-5	1	NC	1	NC	3
234			min	0	3	004	3	007	1	2.664e-6	15	NC	1	3343.374	1
235		4	max	.002	1	.003	2	0	15	6.44e-5	1	NC	1	NC	3
236			min	0	3	004	3	007	1	2.664e-6	15	NC	1	3693.709	1
237		5	max	.002	1	.002	2	0	15	6.44e-5	1	NC	1	NC	2
238			min	0	3	004	3	006	1	2.664e-6	15	NC	1	4119.209	1
239		6	max	.002	1	.002	2	0	15	6.44e-5	1	NC	1	NC	2
240			min	0	3	004	3	005	1	2.664e-6	15	NC	1	4642.689	1
241		7	max	.002	1	.002	2	0	15	6.44e-5	1	NC	1	NC	2
242			min	0	3	003	3	005	1	2.664e-6	15	NC	1	5296.53	1
243		8	max	.002	1	.002	2	0	15	6.44e-5	1	NC	1	NC	2
244			min	0	3	003	3	004	1	2.664e-6	15	NC	1	6127.96	1
245		9	max	.001	1	.002	2	0	15	6.44e-5	1	NC	1	NC	2
246			min	0	3	003	3	003	1	2.664e-6	15	NC	1	7208.077	1
247		10	max	.001	1	.002	2	0	15	6.44e-5	1	NC	1	NC	2
248			min	0	3	002	3	003	1	2.664e-6	15	NC	1	8648.02	1
249		11	max	.001	1	.001	2	0	15	6.44e-5	1	NC	1	NC	1
250			min	0	3	002	3	002	1	2.664e-6	15	NC	1	NC	1
251		12	max	.001	1	.001	2	0	15	6.44e-5	1	NC	1	NC	1
252		T	min	0	3	002	3	002	1	2.664e-6			1	NC	1
253		13	max	0	1	.001	2	0	15		1	NC	1	NC	1
254			min	0	3	002	3	001	1	2.664e-6	15	NC	1	NC	1
255		14	max	0	1	0	2	0	15	6.44e-5	1	NC	1	NC	1
256			min	0	3	001	3	001	1	2.664e-6	15	NC	1	NC	1
257		15	max	0	1	0	2	0	15	6.44e-5	1	NC	1	NC	1
258		10	min	0	3	001	3	0	1	2.664e-6	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	6.44e-5	1	NC	1	NC	1
260		10	min	0	3	0	3	0	1	2.664e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	6.44e-5	1	NC	1	NC	1
262		17	min	0	3	0	3	0	1	2.664e-6	15	NC NC	1	NC NC	1
263		18	max	0	1	0	2	0	15	6.44e-5	1 <u>15</u>	NC NC	1	NC NC	1
264		10	min	0	3	0	3	0	1	2.664e-6	15	NC NC	1	NC NC	1
265		10		0	1	0	1	0	1	6.44e-5	<u>15</u> 1	NC NC	1	NC NC	1
266		19	max min	0	1	0	1	0	1	2.664e-6	15	NC NC	1	NC NC	1
267	M6	1		.019	1	.019	2	0	1		<u>15</u> 1	NC NC	3	NC NC	1
	IVIO		max		3		3		1	0	1		2		1
268			min	02	3	027	3	0		0		3286.919		NC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
269		2	max	.018	1	.017	2	0	1	0	_1_	NC	3	NC	1
270			min	019	3	025	3	0	1	0	1_	3614.534	2	NC	1
271		3	max	.017	1	.016	2	0	1	0	1	NC	3	NC	1
272			min	017	3	024	3	0	1	0	1_		2	NC	1
273		4	max	.016	1	.014	2	0	1	0	_1_	NC	3	NC	1
274		_	min	016	3	023	3	0	1	0	1_	4497.042	2	NC	1
275		5	max	.015	1	.012	2	0	1	0	_1_	NC	1_	NC	1
276			min	015	3	021	3	0	1	0	<u>1</u>	5100.218	2	NC	1
277		6	max	.014	1	.011	2	0	1	0	_1_	NC	1_	NC	1
278			min	014	3	02	3	0	1	0	1_	5861.364	2	NC	1
279		7	max	.013	1	.009	2	0	1	0	1	NC	1	NC	1
280			min	013	3	<u>018</u>	3	0	1	0	1_	6840.748	2	NC	1
281		8	max	.012	1	.008	2	0	1	0	1	NC	1_	NC	1
282			min	012	3	017	3	0	1	0	1	8130.994	2	NC	1
283		9	max	.01	1	.006	2	0	1	0	1	NC	1_	NC NC	1
284		40	min	011	3	015	3	0	1	0	1	9880.61	2	NC	1
285		10	max	.009	1	.005	2	0	1	0	1	NC NC	1_	NC NC	1
286		4.4	min	01	3	014	3	0	1	0	1_	NC NC	1_	NC NC	1
287		11	max	.008	1	.004	2	0	1	0	1	NC NC	1_	NC NC	1
288		40	min	009	3	012	3	0	1	0	1_	NC NC	1_	NC NC	1
289		12	max	.007	1	.003	2	0	1	0	1	NC NC	1	NC NC	1
290		40	min	008	3	011	3	0	1	0	1_	NC NC	1_	NC NC	1
291		13	max	.006	1	.002	2	0	1	0	1	NC NC	1_	NC NC	1
292		4.4	min	007	3	009	3	0	1	0	1_	NC NC	1_	NC NC	1
293		14	max	.005	1	.001	2	0	1	0	1	NC NC	1	NC NC	1
294		4.5	min	005	3	008	3	0		0	1_	NC NC		NC NC	1
295		15	max	.004	3	0	2	0	1	0	1	NC NC	1_	NC NC	1
296		4.0	min	004		006	3	0	1	0	1_	NC NC	1_	NC NC	1
297		16	max	.003	1	0	2	0	1	0	1	NC NC	1_	NC NC	1
298		47	min	003	3	005	3	0	1	0	<u>1</u> 1	NC NC	1_	NC NC	1
299		17	max	.002	3	0	2	0	1	0		NC	<u>1</u> 1	NC NC	1
300		40	min	002		003	3	0	1	0	1_	NC NC		NC NC	
301		18	max	.001	3	002	3	0	1	0	1	NC NC	1	NC NC	1
		19	min	001	1				1		1	NC NC	1		1
303		19	max	0	1	<u>0</u> 	1	0	1	0	1	NC NC	1	NC NC	1
	M7	1	min		1		1		1		1	NC NC	1	NC NC	1
305 306	IVI7		max	<u>0</u> 	1	<u> </u>	1	0	1	0	1	NC NC	1	NC NC	1
307		2			3	<u> </u>	15		1	0	+	NC NC	+	NC NC	1
307			max	<u> </u>	2	002	3	0	1	0	1	NC NC	1	NC NC	1
308		3	max	.002	3	<u>002</u> 0	15	0	1	0	1	NC NC	1	NC NC	1
310		3	min	002	2	004	3	0	1	0	1	NC NC	1	NC NC	1
311		4	max	.002	3	004 001	15	0	1	0	+	NC NC	+	NC NC	1
312		+	min	002	2	001 006	3	0	1	0	1	NC NC	1	NC NC	1
313		5	max	.002	3	006 002	15	0	1	0	+	NC NC	1	NC NC	1
314		J	min	003	2	002	3	0	1	0	1	NC NC	1	NC NC	1
315		6	max	.004	3	002	15	0	1	0	+	NC	+	NC	1
316		U	min	004	2	002 01	3	0	1	0	1	NC NC	1	NC NC	1
317		7	max	.005	3	003	15	0	1	0	+	NC NC	+	NC NC	1
318			min	005	2	003 011	3	0	1	0	1	8817.992	4	NC NC	1
319		8	max	.005	3	003	15	0	1	0	1	NC	1	NC	1
320		0	min	006	2	003 012	3	0	1	0	1	7902.837	4	NC NC	1
321		9	max	.007	3	012	15	0	1	0	+	NC	1	NC NC	1
322		3	min	007	2	003 013	4	0	1	0	1	7360.144	4	NC NC	1
323		10	max	.007	3	013	15	0	1	0	+	NC	1	NC NC	1
324		10	min	007	2	003 014	4	0	1	0	1	7094.951	4	NC	1
325		11	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
UZU		111	шал	.000	J	003	IJ	U		U		INO		INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

127		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
328	326			min	008	2		4			_		7068.048	4	NC	•
1399			12	max					0		0	1		1_		1
1330												•				-
331			13							-						_
1332			1.4									_		_		•
333			14													
334			45													
335			15							_						
336			40													
337			16													_
338			17									_		-		•
339			17													
340			10									•		_		
341			10													•
342			10									_				•
343 M8			13													
344		M8	1			_										
346		IVIO								_						1
346			2		_							•		1		1
347						-										_
348			3							1		1		1		1
349										1		1		1		1
350			4		.006	1			0	1	0	1		1		1
351						3			0	1	0	1		1		1
353			5		.006	1			0	1	0	1	NC	1	NC	1
354	352			min	0	3	012	3	0	1	0	1	NC	1	NC	1
355	353		6	max	.005	1	.01	2	0	1	0	1	NC	1	NC	1
356	354			min	0	3	011	3	0	1	0	1	NC	1	NC	1
357			7		.005	-			0			1_		1_		1
358				min								1		-		•
359			8	max							0	1		1_		1
360				min					0			•		1_		1
361			9													•
Min O 3 008 3 O 1 O 1 NC 1 NC 1					•							_				•
363 11 max .003 1 .006 2 0 1 0 1 NC 1 NC 1 364 min 0 3 007 3 0 1 0 1 NC 1 NC 1 365 12 max .003 1 .005 2 0 1 0 1 NC 1 NC 1 366 min 0 3 006 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1			10													
364 min 0 3 007 3 0 1 0 1 NC 1 NC 1 365 12 max .003 1 .005 2 0 1 0 1 NC 1 NC 1 366 min 0 3 006 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1						_										
365 12 max .003 1 .005 2 0 1 0 1 NC 1 NC 1 366 min 0 3 006 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 <td></td> <td></td> <td>11</td> <td></td> <td>_1_</td> <td></td> <td>1</td>			11											_1_		1
366 min 0 3 006 3 0 1 0 1 NC 1			40		_						_			1_		1
367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 <td>365</td> <td></td> <td>12</td> <td>max</td> <td>.003</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	365		12	max	.003			2								
368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1			40													
369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 1 NC 1 1 NC 1 370 min 0 3004 3 0 1 0 1 NC 1 NC 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 NC 1 372 min 0 3003 3 0 1 0 1 NC 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 NC 1 374 min 0 3003 3 0 1 0 1 NC 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 NC 1 376 min 0 3002 3 0 1 0 1 NC 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 NC 1 378 min 0 3 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1			13													-
370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1			1.1									•		•		-
371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC <td></td> <td></td> <td>14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>			14							-						_
372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 1 0 1 0 1 NC			15									_		_		•
373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC <td></td> <td></td> <td>13</td> <td></td>			13													
374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC			16													
375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1			10													
376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1			17													•
377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1			''			-										_
378 min 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1			18		_							_		_		•
379 19 max 0 1 0 1 0 1 0 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1			1.5	_	_											-
380 min 0 1 0 1 0 1 NC 1 NC 1			19						-			•		•		-
			T Š				-							1		_
381 M10 1 Max .006 1 .005 2 0 15 2.581e-4 1 NC 1 NC 2	381	M10	1	max	.006	1	.005	2	0	15	2.581e-4	1	NC	1	NC	2
382 min006 3009 3009 1 1.065e-5 15 NC 1 6753.038 1						3			009			15		1		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.006	1	.004	2	0	15	2.421e-4	1	NC	1	NC	2
384			min	006	3	008	3	009	1	9.988e-6	15	NC	1	7366.755	1
385		3	max	.005	1	.003	2	0	15	2.261e-4	1	NC	1	NC	2
386			min	005	3	008	3	008	1	9.328e-6	15	NC	1	8098.472	1
387		4	max	.005	1	.002	2	0	15	2.101e-4	1	NC	1	NC	2
388			min	005	3	008	3	007	1	8.669e-6	15	NC	1	8979.558	
389		5	max	.005	1	.002	2	0	15	1.941e-4	1	NC	1	NC	1
390		J	min	005	3	008	3	006	1	8.009e-6	15	NC	1	NC	1
		_													-
391		6	max	.004	1	.001	2	0	15	1.781e-4	1_	NC	1	NC NC	1
392		-	min	004	3	007	3	006	1_	7.349e-6	15	NC	1_	NC	1
393		7	max	.004	1	0	2	0	15	1.621e-4	1_	NC	1	NC	1
394			min	004	3	007	3	005	1	6.689e-6	15	NC	1_	NC	1
395		8	max	.004	1	0	2	0	15	1.461e-4	<u>1</u>	NC	<u>1</u>	NC	1
396			min	004	3	007	3	004	1	6.03e-6	15	NC	1	NC	1
397		9	max	.003	1	0	2	0	15	1.301e-4	1	NC	1	NC	1
398			min	003	3	006	3	003	1	5.37e-6	15	NC	1	NC	1
399		10	max	.003	1	0	15	0	15	1.141e-4	1	NC	1	NC	1
400			min	003	3	006	3	003	1	4.71e-6	15	NC	1	NC	1
401		11	max	.003	1	0	15	0	15	9.808e-5	1	NC	1	NC	1
402			min	003	3	005	3	002	1	4.05e-6	15	NC	1	NC	1
403		12		.002	1	<u>005</u> 0	15	<u>002</u> 0	15	8.208e-5	1	NC	1	NC	1
		12	max												
404		40	min	002	3	005	3	002	1_	3.391e-6	<u>15</u>	NC NC	1_	NC NC	1
405		13	max	.002	1	0	15	0	15	6.608e-5	_1_	NC	1_	NC NC	1
406			min	002	3	004	3	001	1	2.731e-6	15	NC	1_	NC	1
407		14	max	.002	1	0	15	0	15	5.008e-5	_1_	NC	_1_	NC	1
408			min	002	3	004	3	0	1	2.071e-6	15	NC	1	NC	1
409		15	max	.001	1	0	15	0	15	3.408e-5	1_	NC	1	NC	1
410			min	001	3	003	3	0	1	1.411e-6	15	NC	1	NC	1
411		16	max	0	1	0	15	0	15	1.808e-5	1	NC	1	NC	1
412			min	0	3	003	4	0	1	7.517e-7	15	NC	1	NC	1
413		17	max	0	1	0	15	0	15	2.083e-6	1	NC	1	NC	1
414			min	0	3	002	4	0	1	9.195e-8	15	NC	1	NC	1
415		18	max	0	1	0	15	0	15	-4.923e-7	12	NC	1	NC	1
416		10		0	3	001	4	0	1		1	NC	1	NC	1
		40	min						-	-1.392e-5					•
417		19	max	0	1	0	1	0	1	-1.228e-6	<u>15</u>	NC	1	NC NC	1
418			min	0	1	0	1	0	1	-2.992e-5	1_	NC	1_	NC	1
419	<u>M11</u>	1_	max	0	1	0	1	0	1	9.869e-6	_1_	NC	_1_	NC	1
420			min	0	1	0	1	0	1	4.053e-7	<u> 15</u>	NC	1_	NC	1
421		2	max	0	3	0	15	0	15	-7.011e-7	15	NC	1_	NC	1
422			min	0	2	002	4	0	1	-1.699e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0	15	-1.807e-6	15	NC	1	NC	1
424			min	0	2	004	4	0	1	-4.385e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0	15			NC	1	NC	1
426			min	0	2	006	4	0	1	-7.071e-5	1	NC	1	NC	1
427		5	max	.001	3	002	15	0	15	-4.02e-6	15	NC	1	NC	1
428		J		0	2	002	4	0	1	-9.757e-5	1	NC	1	NC	1
		e	min							5.1016-0					
429		6	max	.001	3	002	15	0	15		<u>15</u>	NC	1	NC NC	1
430			min	001	2	009	4	001	1_	-1.244e-4	1_	NC	1_	NC	1
431		7	max	.002	3	003	15	0	15	-6.233e-6		NC	_1_	NC	1
432			min	001	2	011	4	001	1	-1.513e-4	1_	8604.047	4	NC	1
433		8	max	.002	3	003	15	0	15	-7.34e-6	15	NC	_1_	NC	1
434			min	001	2	012	4	002	1	-1.781e-4	1	7724.871	4	NC	1
435		9	max	.002	3	003	15	0	15		15	NC	2	NC	1
436			min	002	2	013	4	002	1	-2.05e-4	1	7205.067	4	NC	1
437		10	max	.002	3	003	15	0		-9.552e-6	15	NC	3	NC	1
438		0	min	002	2	013	4	002	1	-2.319e-4	1	6954.083	4	NC	1
439		11			3		15	<u>002</u> 0		-1.066e-5		NC	3	NC	1
438			max	.003	⊥ວ_	003	LIO	U	10	C-9000.1-	10	INC	<u>ა</u>	INC	$\perp \perp \perp$

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	002	2	014	4	003	1	-2.587e-4	1_	6934.947	4	NC	1
441		12	max	.003	3	003	15	0	15		15	NC	3	NC	1
442			min	002	2	013	4	003	1	-2.856e-4	1_	7150.082	4	NC	1
443		13	max	.003	3	003	15	0	15		15	NC	_1_	NC	1
444			min	002	2	012	4	004	1	-3.124e-4	1_	7644.059	4	NC	1
445		14	max	.004	3	003	15	0	15	-1.398e-5	<u>15</u>	NC	_1_	NC	1
446			min	003	2	011	4	005	1	-3.393e-4	<u>1</u>	8526.697	4_	NC	1
447		15	max	.004	3	002	15	0	15		<u>15</u>	NC	_1_	NC	1
448			min	003	2	01	4	005	1	-3.662e-4	1_	NC	1_	NC	1
449		16	max	.004	3	002	15	0	15	-1.619e-5	<u>15</u>	NC	_1_	NC	1_
450			min	003	2	008	4	006	1	-3.93e-4	<u>1</u>	NC	1_	NC	1
451		17	max	.004	3	001	15	00	15	-1.73e-5	15	NC	_1_	NC	1
452			min	003	2	006	1	007	1	-4.199e-4	<u>1</u>	NC	<u>1</u>	NC	1
453		18	max	.005	3	0	15	0	15	-1.84e-5	<u>15</u>	NC	_1_	NC	1
454			min	003	2	004	1	008	1	-4.467e-4	1_	NC	1_	NC	1
455		19	max	.005	3	0	15	0	15		<u>15</u>	NC	_1_	NC	1
456			min	004	2	003	1	009	1	-4.736e-4	<u>1</u>	NC	<u>1</u>	NC	1
457	M12	1_	max	.003	1	.003	2	.009	1	-2.664e-6	<u>15</u>	NC	_1_	NC	3
458			min	0	3	005	3	0	15	-6.44e-5	1_	NC	1_	2806.748	1
459		2	max	.003	1	.003	2	.008	1	-2.664e-6	<u>15</u>	NC	_1_	NC	3
460			min	0	3	005	3	0	15	-6.44e-5	<u>1</u>	NC	1_	3051.755	1
461		3	max	.002	1	.003	2	.007	1	-2.664e-6	15	NC	_1_	NC	3
462			min	0	3	004	3	0	15	-6.44e-5	1_	NC	1_	3343.374	1
463		4	max	.002	1	.003	2	.007	1	-2.664e-6	<u>15</u>	NC	_1_	NC	3
464			min	0	3	004	3	0	15	-6.44e-5	1_	NC	1_	3693.709	1
465		5	max	.002	1	.002	2	.006	1	-2.664e-6	<u>15</u>	NC	_1_	NC	2
466			min	0	3	004	3	0	15	-6.44e-5	1_	NC	1_	4119.209	1
467		6	max	.002	1	.002	2	.005	1	-2.664e-6	15	NC	_1_	NC	2
468			min	0	3	004	3	0	15	-6.44e-5	1_	NC	1_	4642.689	
469		7	max	.002	1	.002	2	.005	1_	-2.664e-6	<u>15</u>	NC	_1_	NC	2
470			min	0	3	003	3	0	15	-6.44e-5	<u>1</u>	NC	1_	5296.53	1
471		8	max	.002	1	.002	2	.004	1	-2.664e-6	15	NC	_1_	NC	2
472			min	0	3	003	3	0	15	-6.44e-5	<u>1</u>	NC	<u>1</u>	6127.96	1
473		9	max	.001	1	.002	2	.003	1	-2.664e-6	<u>15</u>	NC	_1_	NC	2
474			min	0	3	003	3	0	15	-6.44e-5	1_	NC	1_	7208.077	1
475		10	max	.001	1	.002	2	.003	1	-2.664e-6	15	NC	1_	NC	2
476		ļ.,,	min	0	3	002	3	0	15	-6.44e-5	_1_	NC	1_	8648.02	1
477		11	max	.001	1	.001	2	.002	1	-2.664e-6	<u>15</u>	NC	_1_	NC	1
478			min	0	3	002	3	0	15	-6.44e-5	1_	NC	1_	NC	1
479		12	max	.001	1	.001	2	.002	1	-2.664e-6	15	NC	1_	NC	1
480			min	0	3	002	3	0		-6.44e-5		NC	1	NC	1
481		13	max	0	1	.001	2	.001	1	-2.664e-6	<u>15</u>	NC	1_	NC	1
482		.	min	0	3	002	3	0	15	-6.44e-5	_1_	NC	_1_	NC	1
483		14	max	0	1	0	2	.001	1	-2.664e-6		NC	1_	NC	1
484			min	0	3	001	3	0	15	-6.44e-5	_1_	NC	_1_	NC	1
485		15	max	0	1	0	2	0	1	-2.664e-6		NC	1_	NC	1
486			min	0	3	001	3	0	15	-6.44e-5	_1_	NC	1_	NC	1
487		16	max	0	1	0	2	0	1	-2.664e-6	<u>15</u>	NC	1_	NC	1
488			min	0	3	0	3	0	15		1_	NC	1_	NC	1
489		17	max	0	1	0	2	0	1		<u>15</u>	NC	1	NC	1
490			min	0	3	0	3	0	15	-6.44e-5	1_	NC	1_	NC	1
491		18	max	0	1	0	2	0	1	-2.664e-6	<u>15</u>	NC	1_	NC	1
492			min	0	3	0	3	0	15	-6.44e-5	1_	NC	1_	NC NC	1
493		19	max	0	1	0	1	0	1	-2.664e-6		NC		NC NC	1
494	* * * *		min	0	1	0	1	0	1	-6.44e-5	1_	NC	1_	NC	1
495	M1	1	max	.006	3	.094	1	.001	1	1.613e-2	1_	NC	1_	NC	1
496			min	003	2	009	3	0	15	-2.241e-2	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio		(n) L/z Ratio	LC
497		2	max	.006	3	.046	1	0	15	7.825e-3	1	NC	3	NC	1
498			min	003	2	003	3	006	1	-1.109e-2	3	2375.192	1	NC	1
499		3	max	.006	3	.009	3	0	15	1.353e-5	10	NC	5	NC	1
500			min	003	2	008	2	009	1	-1.911e-4	1	1136.3	1	NC	1
501		4	max	.006	3	.031	3	0	15	4.333e-3	1_	NC	5	NC	1
502			min	003	2	067	1	009	1	-3.904e-3	3	709.898	1	NC	1
503		5	max	.006	3	.061	3	0	15	8.857e-3	1		15	NC	1
504			min	002	2	131	1	006	1	-7.699e-3	3	507.901	1	NC	1
505		6	max	.006	3	.094	3	0	15	1.338e-2	1	NC	15	NC	1
506			min	002	2	194	1	003	1	-1.149e-2	3	397.361	1	NC	1
507		7	max	.006	3	.126	3	0	1	1.79e-2	1	NC	15	NC	1
508			min	002	2	25	1	0	12	-1.529e-2	3	332.469	1	NC	1
509		8	max	.006	3	.153	3	.001	1	2.243e-2	1	8907.858	15	NC	1
510			min	002	2	294	1	0	15	-1.908e-2	3	294.239	1	NC	1
511		9	max	.005	3	.17	3	0	15	2.475e-2	1	8323.05	15	NC	1
512			min	002	2	323	1	0	1	-1.905e-2	3	274.394	1	NC	1
513		10	max	.005	3	.176	3	0	1	2.561e-2	1	8145	15	NC	1
514			min	002	2	332	1	0	12	-1.647e-2	3	268.455	1	NC	1
515		11	max	.005	3	.172	3	0	1	2.648e-2	1	8322.798	15	NC	1
516			min	002	2	322	1	0	15	-1.389e-2	3	274.755	1	NC	1
517		12	max	.005	3	.158	3	0	15	2.504e-2	1	8907.329	15	NC	1
518			min	002	2	293	1	001	1	-1.143e-2	3	295.371	1	NC	1
519		13	max	.005	3	.134	3	0	15	2.015e-2	1	NC	15	NC	1
520			min	002	2	248	1	0	1	-9.149e-3	3	335.278	1	NC	1
521		14	max	.005	3	.104	3	.002	1	1.527e-2	1	NC	15	NC	1
522			min	002	2	19	1	0	15	-6.866e-3	3	403.426	1	NC	1
523		15	max	.005	3	.071	3	.006	1	1.038e-2	1		15	NC	1
524			min	002	2	127	1	0	15	-4.583e-3	3	520.462	1	NC	1
525		16	max	.005	3	.036	3	.008	1	5.49e-3	1	NC	5	NC	1
526			min	002	2	063	1	0	15	-2.3e-3	3	736.489	1	NC	1
527		17	max	.004	3	.003	3	.009	1	6.016e-4	1	NC	5	NC	1
528			min	002	2	004	2	0	15	-1.745e-5	3	1196.744	1	NC	1
529		18	max	.004	3	.047	1	.006	1	9.763e-3	2	NC	4	NC	1
530			min	002	2	026	3	0	15	-3.628e-3	3	2529.177	1	NC	1
531		19	max	.004	3	.092	1	0	15	1.955e-2	2	NC	1	NC	1
532			min	002	2	054	3	001	1	-7.377e-3	3	NC	1	NC	1
533	M5	1	max	.019	3	.224	1	0	1	0	1	NC	1	NC	1
534			min	012	2	006	3	0	1	0	1	NC	1	NC	1
535		2	max	.019	3	.108	1	0	1	0	1	NC	5	NC	1
536		_	min	013	2	.002	3	0	1	0	1	982.175	1	NC	1
537		3	max	.019	3	.028	3	0	1	0	1	NC	5	NC	1
538			min	013	2	025	2	0	1	0	1	459.721	1	NC	1
539		4	max	.019	3	.091	3	0	1	0	1		15	NC	1
540			min	012	2	185	1	0	1	0	1	279.42	1	NC	1
541		5	max	.018	3	.178	3	0	1	0	1		15	NC	1
542			min	012	2	36	1	0	1	Ö	1	195.574	1	NC	1
543		6	max	.018	3	.276	3	0	1	0	1		15	NC	1
544		Ť	min	012	2	535	1	0	1	0	1	150.552	1	NC	1
545		7	max	.018	3	.373	3	0	1	0	1		15	NC	1
546			min	012	2	693	1	0	1	0	1	124.527	1	NC	1
547		8	max	.017	3	.454	3	0	1	0	1		15	NC	1
548			min	011	2	82	1	0	1	0	1	109.386	1	NC	1
549		9	max	.017	3	.506	3	0	1	0	1		15	NC	1
550			min	011	2	9	1	0	1	0	1	101.621	1	NC NC	1
551		10	max	.016	3	.525	3	0	1	0	1		15	NC NC	1
552		10	min	011	2	926	1	0	1	0	1	99.311	1	NC NC	1
553		11	max	.016	3	.512	3	0	1	0	1		15	NC	1
UUU		111	πιαλ	.010	⊥ ט	.012	J	U	<u> </u>	U		0440.023	IJ	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratic	LC_
554			min	011	2	899	1	0	1	0	1	101.767	1	NC	1
555		12	max	.016	3	.468	3	0	1	0	1_	3708.923	15	NC	1
556			min	011	2	817	1	0	1	0	1	109.868	1	NC	1
557		13	max	.015	3	.397	3	0	1	0	1_		15	NC	1
558			min	01	2	686	1	0	1	0	1	125.78	1	NC	1
559		14	max	.015	3	.307	3	0	1_	0	_1_		15	NC	1
560			min	01	2	523	1	0	1	0	1	153.367	1	NC	1
561		15	max	.015	3	.207	3	0	1	0	1_	6622.584	15	NC	1
562			min	01	2	346	1	0	1	0	1	201.67	1	NC	1
563		16	max	.014	3	.105	3	0	1	0	1_	9460.148	15	NC	1
564			min	01	2	17	1	0	1	0	1	293.043	1	NC	1
565		17	max	.014	3	.009	3	0	1	0	1	NC	5	NC	1
566			min	01	2	014	2	0	1	0	1	492.753	1	NC	1
567		18	max	.014	3	.112	1	0	1	0	1	NC	5	NC	1
568			min	01	2	073	3	0	1	0	1	1070.48	1	NC	1
569		19	max	.014	3	.218	1	0	1	0	1	NC	1	NC	1
570			min	01	2	147	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.006	3	.094	1	0	15	2.241e-2	3	NC	1	NC	1
572			min	003	2	009	3	001	1	-1.613e-2	1	NC	1	NC	1
573		2	max	.006	3	.046	1	.006	1	1.109e-2	3	NC	3	NC	1
574			min	003	2	003	3	0	15	-7.825e-3	1	2375.192	1	NC	1
575		3	max	.006	3	.009	3	.009	1	1.911e-4	1	NC	5	NC	1
576			min	003	2	008	2	0	15	-1.353e-5	10	1136.3	1	NC	1
577		4	max	.006	3	.031	3	.009	1	3.904e-3	3	NC	5	NC	1
578			min	003	2	067	1	0	15	-4.333e-3	1	709.898	1	NC	1
579		5	max	.006	3	.061	3	.006	1	7.699e-3	3	NC	15	NC	1
580			min	002	2	131	1	0	15	-8.857e-3	1	507.901	1	NC	1
581		6	max	.006	3	.094	3	.003	1	1.149e-2	3		15	NC	1
582			min	002	2	194	1	0	15	-1.338e-2	1	397.361	1	NC	1
583		7	max	.006	3	.126	3	0	12	1.529e-2	3	NC	15	NC	1
584			min	002	2	25	1	0	1	-1.79e-2	1	332.469	1	NC	1
585		8	max	.006	3	.153	3	0	15	1.908e-2	3	8907.858	15	NC	1
586			min	002	2	294	1	001	1	-2.243e-2	1	294.239	1	NC	1
587		9	max	.005	3	.17	3	0	1	1.905e-2	3	8323.05	15	NC	1
588			min	002	2	323	1	0	15	-2.475e-2	1	274.394	1	NC	1
589		10	max	.005	3	.176	3	0	12	1.647e-2	3		15	NC	1
590			min	002	2	332	1	0	1	-2.561e-2	1	268.455	1	NC	1
591		11	max	.005	3	.172	3	0	15	1.389e-2	3		15	NC	1
592			min	002	2	322	1	0	1	-2.648e-2	1	274.755	1	NC	1
593		12	max	.005	3	.158	3	.001	1	1.143e-2	3		15	NC	1
594			min		2	293	1	0	15	-2.504e-2	1	295.371	1	NC	1
595		13	max	.005	3	.134	3	0	1	9.149e-3	3		15	NC	1
596			min	002	2	248	1	0	15	-2.015e-2	1	335.278	1	NC	1
597		14	max	.005	3	.104	3	0	15		3		15	NC	1
598			min	002	2	19	1	002	1	-1.527e-2	1	403.426	1	NC	1
599		15	max	.005	3	.071	3	0	15	4.583e-3	3		15	NC	1
600			min	002	2	127	1	006	1	-1.038e-2	1	520.462	1	NC	1
601		16	max	.005	3	.036	3	0	15	2.3e-3	3	NC	5	NC	1
602			min	002	2	063	1	008	1	-5.49e-3	1	736.489	1	NC	1
603		17	max	.004	3	.003	3	0	15	1.745e-5	3	NC	5	NC	1
604			min	002	2	004	2	009	1	-6.016e-4	1	1196.744	1	NC	1
605		18	max	.004	3	.047	1	0	15	3.628e-3	3	NC	4	NC	1
606			min	002	2	026	3	006	1	-9.763e-3	2	2529.177	1	NC	1
607		19	max	.004	3	.092	1	.001	1	7.377e-3	3	NC	1	NC	1
608			min	002	2	054	3	0		-1.955e-2	2	NC	1	NC	1
		_					_	_							

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	,N $\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle extstyle NA} arPhi_{ extstyle ec,Na} arPhi_{ extstyle p,Na} extstyle N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} C_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.