Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

"САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, **МЕХАНИКИ И ОПТИКИ**"

Факультет

Факультет_	сис	тем управления и робото	отехники	
Направлени	е(специально	ость) мехатроника и	робототех	ника
Квалификац	ция(степень)	магистр		
Специализа	ция 15.04.0	06 интеллектуальное тех	нологии в	робототехнике
Кафедра с	систем управ	ления и информатики	Группа_	P4135
ПОЛО			O 1 T	TTT 6 T7 4
пояс	HUL	ЕЛЬНАЯ	3AI	ІИСКА
IZ 10.00I				205020
к расч	NAODIA	исследовател	ьскои	раооте
	Maine	странтов по	курсу	
Интеллектуа	льное уп	равление в услов	иях нео	пределенности
Annon DIADM		Потрамараму И. В.		(=======)
Автор РИРМ	-	Петраневский И.В.	.o.)	(подпись)
Руководитель	_	Ушаков А.В.		(подпись)
		(фамилия, и	.o.)	
	20 17 г.	Санкт-Пете	ербург,	20 17 г.
Dacuerus-нее полова:	roni evag naf	ота выполнена с оценкой	, 1	
т асчетно-исследова.	гельская рао	ота выполнена с оценког		
Дата защиты ""		20 <u>17</u> Γ.		

САНКТ – ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

КАФЕДРА СИСТЕМ УПРАВЛЕНИЯ И ИНФОРМАТИКИ

«УТВЕРЖДАЮ» Зав.кафедрой А.А.Бобцов

ЗАДАНИЕ

на расчетно – исследовательскую работу (РИРМ)магистрантов по дисциплине ИНТЕЛЛЕКТУАЛЬНОЕ УПРАВЛЕНИЕ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

СТУДЕНТУ: И.В. Петраневскому
РУКОВОДИТЕЛЬ: д.т.н., профессор А.В.Ушаков
1.ТЕМА РИРМ: ИССЛЕДОВАНИЕ ПАРАМЕТРИЧЕСКОЙ ЧУВСТВИТЕЛЬНОСТИ ОБЪЕКТОВ И СИСТЕМ, СИНТЕЗ НЕАДАПТИВНЫХ И АДАПТИВНЫХ АЛГОРИТМОВ, ОБЕСПЕЧИВАЮЩИХ НЕОБХОДИМУЮ РОБАСТНОСТЬ ИХ ДИНАМИЧЕСКИХ ПОКАЗАТЕЛЕЙ
2.СРОКИ выполнения РИРМ 17 – я неделя семестра (30 мая 2017 года)
3.СОДЕРЖАНИЕ ЗАДАНИЯ:

- 3.1. Построить МТЧ **непрерывного ОУ(НОУ)**; с использованием матрицы управляемости агреги-рованной системы ранжировать параметры q_j по потенцииальной чувствительности 3.2. Построить МТЧ **дискретного ОУ(ДОУ)** к вариации интервала дискретности.
- 3.3. Построить МТЧ спроектированной непрерывной системы(СНС) по каждому из параметров и для значения $\left|\Delta q_j\right|=0.3$; выделить доминирующие параметры по степени их влияния на величину σ перерегулирования и длительность t_n переходного процесса;
- 3.4. Построить матрицу функций модальной чувствительности (МФМЧ) и выделить неблагоприятное сочетание вариаций параметров.
- 3.5. Методом модального управления (МУ), базовый алгоритм которого дополняется контролем нормы $\|F_o\|$ медианной составляющей интервальной матрицы [F] спроектированной системы для целей вычисления оценки $\delta_I F$ ее относительной интервальности. Исследовать свойство робастностной устойчивости полученной системы с помощью метода В.Л. Харитонова.
- 3.6. Оценить алгебраическую реализуемость неадаптивного и адаптивного управления, обеспечивающего параметрическую инвариантность выхода системы, и синтезировать их.
- 3.7.ВАРИАНТ ЗАДАНИЯ (ВПИСАТЬ СВОЙ) 1.1Б-1.2Б-2.1Б-2.2А-3А-4-5А-6А-7А
- 4.СОДЕРЖАНИЕ пояснительной записки (перечень подлежащих разработке вопросов):

4.1.Введение.Постановка задачи
4.2.Построение МТЧ НОУи результаты ее исследования
4.3.Построение МТЧ ДОУи и результаты ее исследования
4.4.Построение МТЧ СНС и результаты ее исследования
4.5.Построение МФМЧ и результаты ее исследования
4.6.Построение медианного МУ НОУ и оценка его результатов
4.7.Синтез неадаптивного и адаптивного управления, обеспечивающего
параметрическую инвариантность выхода СНС относительно неопределенности НОУ
4.8.Заключение
4.9.Литература
4.10.Приложение
5.ИСХОДНЫЕ материалы и пособия к РИРМ:
5.1.Никифоров В.О., Слита О.В., Ушаков А.В. Интеллектуальное управление в условиях неопределенности: учебное пособие. СПб.: СПбГУИТМО, 2011.
5.2. Никифоров В.О., Ушаков А.В. Управление в условиях неопределенности: чувствительность адаптация и робастность. СПб.: СПбГИТМО(ТУ), 2002.
5.3. Никифоров В.О. Адаптивное и робастное управление с компенсацией возмущенийСПб.: Наука, 2003.
5.4. Дударенко Н.А., Слита О.В., Ушаков А.В. Математические основы современной
теории управления: аппарат метода пространства состояний: учебное пособие. / Под ред
Ушакова А.В. – СПб: СПбГУ ИТМО, 2008. – 323 с.
7 makoba 71.D. C1101 7 1111110, 2000. 323 C.
6.ДАТА выдачи задания на
РИРМ
РУКОВОДИТЕЛЬ
Т УКОВОДИТЕЛЬ
7.ДАТА начала выполнения
РИРМ
1 III III
СТУДЕНТ

Содержание

ВВЕДІ	ВВЕДЕНИЕ 5						
Исходн	ные данные для выполнения расчетной работы	6					
1 Пос	строение модели траекторной чувствительности непрерывного						
объ	екта управления и результаты ее исследования	7					
1.1	Непрерывный объект управления в форме вход-состояние-выход .	7					
1.2	Модель траекторной чувствительности непрерывного объекта						
	управления	8					
1.3	Ранжирование параметров	9					

Подп. и дата									
Инв. № дубл.									
Взам. инв. №									
Подп. и дата									
ДОП	Изм.	Лист	№ докум.	Подп.	Дата	КСУИ.204.Р4135	.001 1	ПЗ	
дл.	Разр		Петраневский И.В.			Расчётно-исследовательская работа	Лит.	Лист	Листов
<u>о</u> по,	Проі	В.	Ушаков А.В.			магистрантов	Viiii	4 верситет	11 ИТМО
Инв. № подл.	Н. ка	онтр.				_	унин Ка	зерситет афедра С	ттио СУиИ
Ин	У _{ТВ.}	p.				Пояснительная записка	144	гр. Р41.	35
			•			Копировал			Формат А

ВВЕДЕНИЕ

Расчётно-исследовательская работа магистранта представляет результатотчёт дисциплины "Интеллектуальное управление в условиях неопределенностей. Основная часть аналитических расчётов, а так же математическое моделирование выполненны в пакете программ Matlab.

В ходе выполнения работы, необходимо:

- а) Построить модель траекторной чувствительности (МТЧ) непрерывного объекта управления (НОУ). С использованием матрицы управляемости агрегированной системы, ранжировать параметр q_j по потенциальной чувствительности к ним выхода ОУ;
- б) Построить модель траекторной чувствительности (МТЧ) дискретного объекта управления (ДОУ) к вариации интервала дискретности;
- в) Построить модель траекторной чувствительности (МТЧ) спроектированной непрерывной системы по каждому из полученных параметров и для значения $|\Delta q_i|=0.3$. Выделить доминирующие параметры по степени их влияния на величину σ и длительность t_p переходного процесса;
- г) Построить матрицу функций модальной чувствительности (МФМЧ) и выделить неблагоприятное сочетание вариаций параметров;
- д) Методом модального управления, базовый алгоритм которого дополняется контролем нормы $\|F_0\|$ медианной составляющей интервальной матрицы [F] спроектированной системы для целей вычисления оценки $\delta_1 F$ ее относительной интервальности Исследовать свойство робастной устойчивости полученной системы с помощью метода В.Л. Харитонова;
- е) Оценить алгебраическую реализуемость неадаптивного и адаптивного управления, обеспечивающего параметрическую инвариантность выхода системы, и синтезировать их.

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

КСУИ.204.Р4135.001 ПЗ

Исходные данные для выполнения расчетной работы

Задан непрерывный объект управления (НОУ) с помощью передаточной функции (П Φ) «вход-выход (ВВ)»

$$\Phi(s,q) = \frac{b_0(1+q_1)s + b_1(1+q_2)}{[a_0(1+q_3)s + a_1(1+q_4)][a_2(1+q_5)s^2 + a_3(1+q_6)s + a_4(1+q_7)]}$$
(1)

где $q_{10}=q_{20}=q_{30}=q_{40}=q_{50}=q_{60}=q_{70}=0$ — номинальные значения параметров $q_{j0},j=\overline{1,7}.$

Необходимо проделать работу в соответствии с заданием на расчетноисследовательскую работу магистранта (РИРМ). Исходные данные для варианта №17 БББААААА указаны в таблице 1.

Таблица 1 – Исходные данные

Подп. и дата

Инв. № дубл.

Взам. инв. №

1.1. Значения параметров ПФ	$b_0 = 0; b_1 = 0.67; a_0 = 0; a_1 =$
	$1; a_2 = 16; a_3 = 3; a_4 = 10$
1.2. Базис описания НОУ	канонический наблюдаемый
2.1. Интервал дискретности	$\Delta t = 0.03c$
2.2. Метод перехода к ДОУ	заменой производной отноше-
	нием конечных малых
3. Характеристическая частота	$\omega_0 = 3c^{-1}$
5. Граничные (угловые) значения пара-	$q_{\underline{j}} = -0.2; \overline{q_{\overline{j}}} = 0.2$
метра q_j	
6. Относительная интервальность мат-	$\delta_{IR}F = 0.02$
рицы состояния системы	
7. Величина параметрической неопреде-	$\underline{q_j} = -0.2; \overline{q_j} = 0.2$
ленности	

Изм.	Лист	№ докум.	Подп.	Дата

1 Построение модели траекторной чувствительности непрерывного объекта управления и результаты ее исследования

1.1 Непрерывный объект управления в форме вход-состояние-выход

Передаточная функция заданного объекта управления имеет следующий вид:

$$\Phi(s,q) = \frac{0.67(1+q_2)}{(1+q_4)(16(1+q_5)s^2+3(1+q_6)s+10(1+q_7))}.$$
 (1.1)

Для составления векторно-матричного описания ОУ запишем ПФ в форме

$$\Phi(s,q) = \frac{\frac{0.67(1+q_2)}{16(1+q_5)(1+q_4)}}{s^2 + \frac{3(1+q_6)}{16(1+q_5)}s + \frac{5(1+q_7)}{8(1+q_5)}}.$$

В каноническом управляемом базисе, векторно-матричное представление объекта управления имеет следующий вид:

$$\begin{cases} \dot{x}(t,q) = A(q)x(t,q) + Bu(t) \\ y(t,q) = C(q)x(t,q) \end{cases}, \tag{1.2}$$

где

Подп. и дата

$$A(q) = \begin{bmatrix} 0 & -\frac{5(1+q_7)}{8(1+q_5)} \\ 1 & -\frac{3(1+q_6)}{16(1+q_5)} \end{bmatrix},$$
(1.3)

$$B = \begin{bmatrix} 0.67(1+q_2) \\ \overline{16(1+q_5)(1+q_4)} \\ 0 \end{bmatrix}, \tag{1.4}$$

$$C(q) = \begin{bmatrix} 0 & 1 \end{bmatrix}. \tag{1.5}$$

Изм.	Лист	№ докум.	Подп.	Дата

КСУИ.204.Р4135.001 ПЗ

1.2 Модель траекторной чувствительности непрерывного объекта управления

Передаточная функция номинального объекта управления при $q_{1_0}=\ldots=q_{7_0}=0$ имеет следующий вид:

$$\Phi(s,0) = \frac{\frac{0.67}{16}}{s^2 + \frac{3}{16}s + \frac{5}{8}}.$$
(1.6)

Матрицы модели вход-состояние-выход номинального объекта управления имеют следующие реализации:

$$A = \begin{bmatrix} 0 & -\frac{5}{8} \\ 1 & -\frac{3}{16} \end{bmatrix}; B = \begin{bmatrix} 0.67 \\ 16 \\ 0 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$$

Введем обозначения

Подп. и дата

Инв. № дубл.

Взам. инв. №

$$A_{q_j} = \frac{\partial A(q)}{\partial q_j} \bigg|_{q=q_0}, B_{q_j} = \frac{\partial B(q)}{\partial q_j} \bigg|_{q=q_0}, C_{q_j} = \frac{\partial C(q)}{\partial q_j} \bigg|_{q=q_0},$$

$$A(q)|_{q=q_0} = A, B(q)|_{q=q_0} = B, C(q)|_{q=q_0} = C,$$

$$x(t,q)|_{q=q_0} = x(t), y(t,q)|_{q=q_0} = y(t),$$

$$\frac{\partial x(t,q)}{\partial q_j} \bigg|_{q=q_0} = \sigma_j(t), \frac{\partial y(t,q)}{\partial q_j} \bigg|_{q=q_0} = \eta_j(t)$$

Теперь для j-й модели траекторной чувствительности получим представление модели траекторной чувствительности:

$$\begin{cases} \dot{\sigma}_{j}(t) = A\sigma_{j}(t) + A_{q_{j}}x(t) + B_{q_{j}}u(t); \sigma_{j}(0) = 0\\ \eta_{j}(t) = C\sigma_{j}(t) + C_{q_{j}}x(t) \end{cases}$$
(1.7)

Модель траекторной чувствительности будет генерировать функции траекторной чувствительности $\sigma_j(t)$ по состоянию и $\eta_j(t)$ по выходу, если ее дополнить моделью номинального объекта управления 1.2.

Иэм	Лист	№ докум.	Подп.	Лата
F151VI.	JIHCI	л≥ докум.	тюди.	дата

КСУИ.204.Р4135.001 ПЗ

На состояние заданного объекта управления влияют p=5 (далее, под записью $j=\overline{1,p}$ будет подразумеваться, что j=1,2,3,4,6,7) параметров: q_2,q_4,q_5,q_6,q_7 . Вычислим матрицы моделей траекторной чувствительности используя выше введенные обозначения:

$$A_{q_2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}; B_{q_2} = \begin{bmatrix} 0.67 \\ 16 \\ 0 \end{bmatrix}; C_{q_2} = \begin{bmatrix} 0 & 0 \end{bmatrix};$$
 (1.8)

$$A_{q_4} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}; B_{q_4} = \begin{bmatrix} -\frac{0.67}{16} \\ 0 \end{bmatrix}; C_{q_4} = \begin{bmatrix} 0 & 0 \end{bmatrix};$$
 (1.9)

$$A_{q_5} = \begin{bmatrix} 0 & \frac{5}{8} \\ 0 & \frac{3}{16} \end{bmatrix}; B_{q_5} = \begin{bmatrix} -\frac{0.67}{16} \\ 0 \end{bmatrix}; C_{q_5} = \begin{bmatrix} 0 & 0 \end{bmatrix};$$
 (1.10)

$$A_{q_6} = \begin{bmatrix} 0 & 0 \\ 0 & -\frac{3}{16} \end{bmatrix}; B_{q_6} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; C_{q_6} = \begin{bmatrix} 0 & 0 \end{bmatrix};$$
 (1.11)

$$A_{q_7} = \begin{bmatrix} 0 & -\frac{5}{8} \\ 0 & 0 \end{bmatrix}; B_{q_7} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; C_{q_7} = \begin{bmatrix} 0 & 0 \end{bmatrix};$$
 (1.12)

1.3 Ранжирование параметров

Оценка управляемости системы, состоящей из моделей номинальной и траекторной чувствительности параметром q_i :

$$\tilde{x}_j = \begin{bmatrix} x \\ \sigma_j \end{bmatrix}, dim(\tilde{x}) = 2n, \ \dot{\tilde{x}}_j(t) = \tilde{A}_j \tilde{x}_j(t) + \tilde{B}_j u(t), \ \dot{\tilde{x}}_j(0) = \begin{bmatrix} x(0) \\ 0 \end{bmatrix},$$
 (1.13)

$$x(t) = \tilde{C}_{xj}\tilde{x}_j(t), \sigma_j(t) = \tilde{C}_{\sigma j}\tilde{x}_j(t), \eta_j(t) = \tilde{C}_{\eta j}\tilde{x}(t). \tag{1.14}$$

где

Подп. и дата

Инв. № дубл.

Взам. инв. №

Изм.	Лист	№ докум.	Подп.	Дата

КСУИ.204.Р4135.001 ПЗ

Лист 9

$$\tilde{A}_{j} = \begin{bmatrix} A & 0 \\ A_{qj} & A \end{bmatrix}, \tilde{B}_{j} = \begin{bmatrix} B \\ B_{qj} \end{bmatrix}, \tilde{C}_{xj} = \begin{bmatrix} I_{n \times n} & 0_{n \times n} \end{bmatrix},$$
$$\tilde{C}_{\sigma j} = \begin{bmatrix} 0_{n \times n} & I_{n \times n} \end{bmatrix}, \tilde{C}_{\eta j} = \begin{bmatrix} C_{qj} & C \end{bmatrix}$$

$$\tilde{A}_{2,4} = \begin{bmatrix} 0 & -\frac{5}{18} & 0 & 0 \\ 1 & -\frac{3}{16} & 0 & 0 \\ 0 & 0 & 0 & -\frac{5}{8} \\ 0 & 0 & 1 & -\frac{3}{16} \end{bmatrix}, \tilde{A}_5 = \begin{bmatrix} 0 & -\frac{5}{8} & 0 & 0 \\ 1 & -\frac{3}{16} & 0 & 0 \\ 0 & \frac{5}{8} & 0 & -\frac{5}{8} \\ 0 & \frac{3}{16} & 1 & -\frac{3}{16} \end{bmatrix}, \tilde{A}_6 = \begin{bmatrix} 0 & -\frac{5}{8} & 0 & 0 \\ 1 & -\frac{3}{16} & 0 & 0 \\ 1 & -\frac{3}{16} & 0 & 0 \\ 0 & 0 & 0 & -\frac{5}{8} \\ 0 & \frac{3}{16} & 1 & -\frac{3}{16} \end{bmatrix},$$

$$\tilde{A}_{7} = \begin{bmatrix} 0 & -\frac{5}{8} & 0 & 0 \\ 1 & -\frac{3}{16} & 0 & 0 \\ 0 & -\frac{5}{8} & 0 & -\frac{5}{8} \\ 0 & 0 & 1 & -\frac{3}{16} \end{bmatrix}, \tilde{B}_{2} = \begin{bmatrix} \frac{0.67}{16} \\ 0 \\ 0.67 \\ \frac{16}{16} \\ 0 \end{bmatrix}, \tilde{B}_{4,5} = \begin{bmatrix} \frac{0.67}{16} \\ 0 \\ 0 \\ -\frac{0.67}{16} \\ 0 \end{bmatrix}, \tilde{B}_{6,7} = \begin{bmatrix} \frac{0.67}{16} \\ 0 \\ 0 \\ 0 \end{bmatrix},$$

$$\tilde{C}_{x2,4,5,6,7} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \tilde{C}_{2,4,5,6} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}, \tilde{C}_{\sigma_{2,4,5,6,7}} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\tilde{C}_{\eta_{2,4,5,6,7}} = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$$

Требования к ресурсам управления заметно снижаются, если изначально ограничиться задачей обеспечения траекторной нечувствительности выхода проектируемой системы. На уровне требований к структурным свойствам агрегированной системы задача сводится к контролю управляемости тройки матриц

				·
Изм.	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

КСУИ.204.Р4135.001 ПЗ

Лист 10 $(\tilde{C}_{\eta_j}, \tilde{A}_j, \tilde{B}_j)$ и количественной оценке эффекта управления по переменной η_j при приложении управления u(t) фиксированной нормы с помощью сингулярных чисел матрицы управляемости

Для оценки управляемости по выходу проверим матрицы $\tilde{C}_{\eta j}, \tilde{A}_{j}, \tilde{B}_{j}$:

$$\tilde{W}_{y\eta_j} = \begin{bmatrix} \tilde{C}_{\eta_j} \tilde{B}_j & \tilde{C}_{\eta_j} \tilde{A}_j \tilde{B}_j & \tilde{C}_{\eta_j} \tilde{A}_j^2 \tilde{B}_j & \cdots & \tilde{C}_{\eta_j} \tilde{A}_j^{2n-1} \tilde{B}_j \end{bmatrix}$$
(1.15)

Рассчитаем матрицы управляемости \tilde{W}_{η_i}

$$\begin{split} \tilde{W}_{y\eta_2} &= \begin{bmatrix} 0 & 0.041875 & 0.0078516 & 0.0246997 \end{bmatrix}, \\ \tilde{W}_{y\eta_4} &= \begin{bmatrix} 0 & 0.041875 & 0.0078516 & 0.0246997 \end{bmatrix}, \\ \tilde{W}_{y\eta_5} &= \begin{bmatrix} 0 & 0.041875 & 0.0157031 & 0.0479272 \end{bmatrix}, \\ \tilde{W}_{y\eta_6} &= \begin{bmatrix} 0 & 0 & 0.0078516 & 0.0029443 \end{bmatrix}, \\ \tilde{W}_{y\eta_7} &= \begin{bmatrix} 0 & 0 & 0 & 0.0261719 \end{bmatrix}. \end{split}$$

Вычислим для полученных матриц управляемости сингулярные числа

$$\alpha\{\tilde{W}_{y\eta_2}\} = 0.0492467, \alpha\{\tilde{W}_{y\eta_4}\} = 0.0492467, \tag{1.16}$$

$$\alpha\{\tilde{W}_{y\eta_5}\} = 0.0655525, \alpha\{\tilde{W}_{y\eta_6}\} = 0.0083855, \tag{1.17}$$

$$\alpha\{\tilde{W}_{y\eta_7}\} = 0.0261719. \tag{1.18}$$

Ранжирование параметров q_j осуществляется по значению сингулярных чисел матриц управляемости. Чем эти числа меньше, тем большими по норме управлениями достигается асимптотическая траекторная нечувствительность компонента yj(t) вектора выхода y(t). Отсюда следует, что асимптотическая сходимость к нулю дополнительного движения будет требовать все меньшего количества затрат при следующем расположении qj : q6, q7, q2, q4, q5.

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

КСУИ.204.Р4135.001 ПЗ

Лист