Solutions to worksmeet 4:
Problemset!: definition definition of scalar product.
Problemset: 1.1. Du f(xiy.z) = 78 · u = 178 / ul·cos(0) = 1781·cos(0)
where O is the angle between = 1 of and u.
We used
(1) the definition of Du (2) the definition of a scalar product (3) that u =1
1.2. This equality above can be used to make observations:
Duf(x,y,z) is largest when cos(a)=1, ie. u= vf,
is smallest if $\cos(\Theta) = -1$, i.e $u = -\nabla f$, and, finally,
$Duf(x,y, z) = 0 \text{if } \cos(6) = 0, \text{i-c} \text{u.b.} \text{v.}$
1.3. Determine $\forall g(x,y,z)$. By 2, we know that $u=\pm \nabla f$ maximizes the rate of change.
$\nabla g(x,y,z) = \frac{1}{2\sqrt{x^2+y^2+z^2}} \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix} \implies u^* = \frac{1}{\sqrt{x^2+y^2+z^2}} \begin{pmatrix} (x) \\ (y) \\ (z) \end{pmatrix}$
In the point (1,2,2):
$u^{*} = \frac{1}{\sqrt{9}} \left(\frac{1}{2} \right) = \frac{1}{3} \left(\frac{1}{2} \right)$
1.4. u = = = [(1) u2== [(1) u3= [(1)]
The state of the s
Just looking at the archimated action with three directions unusus. But can we do the slope is largest among the three directions unusus. But can we do better? From: 1.2, we know that we find the stapest inverses in direction
Detter : + FOM: 1. 2, we so is a fine of almospheres:
we use the adjuntour of allect.
(1) -2= Duit= Pf. U1 = (38). (1/2) = 1/2 3xf + 1/2 3yf
(2) *2=Du2 = D1 · 12= ================================
Because (1), (2) are equivalent, solve (1,3) for $\frac{2}{3}$ solve $\frac{2}{3}$ so
3x = 15 + 212; 3y = -412-15 and hence of = (-4) = right direction

1.5. Define
$$g(x_1y_1, z) = x^2 + y^2 + z^2$$
.

Then, g' is constant along the surface (x) $g(x_1y_1, z) = x^2 + y^2 + z^2 = r^2$.

From 1.2, we know that of points perpendicular off the level set, For a given point (x_0, y_0, z_0) on (x) of $(x_0, y_0, z_0) = 2^{\circ}(x_0)$.

The normal line is given by

l(x,y,z) = (0) for t=-1, ietherrigin is intersected by the line l.

Problemset 2

$$Q(0) = 2 \cdot 2 - 0^2 = 4 \times 0$$
 and $f_{xx}(0,0) = 2 > 0 = 0$ local min.

But ? is constant in x and y=0 movement of glasgi = y?.
Mence, (0,0) a local maximum.

2.2 By solving for z as oblain z(xy) = - =x + y + 2

. We want to minimize the distance to the organist (0,7,1), which is given by

We first need to find these x,y that where the gradient vanishes 09(x,y)=0

(1) $\frac{\partial}{\partial x} g(x,y) = 2x + 2 \cdot \left(-\frac{2}{3}x + y + 1\right) \left(-\frac{2}{3}\right) = 2x + \frac{26}{3}x - \frac{4}{3}y - \frac{4}{3} = 0$

(2) $\frac{\partial}{\partial y} g(x,y) = +2y + 2(-\frac{2}{3}x + y + 1)$ (1) = $2y - \frac{4}{3}x + 2y + 2 = -\frac{4}{3}x + 4y + 2 = 0$ (2) $y = \frac{1}{4} \cdot (+\frac{4}{3} \times -2) = \frac{1}{3} \times -\frac{1}{2}$

(1) (3) $\frac{26}{9} \times -\frac{4}{3} \left(\frac{1}{3} \times -\frac{1}{2} \right) - \frac{4}{3} = 0$ (3) $\frac{22}{3} \times = \frac{4}{6}$ (3) $\times = \frac{3}{2} \cdot \frac{9}{22} = \frac{6}{22} = \frac{3}{11}$ $4^{\frac{C}{2}} \frac{1}{3} \times -\frac{1}{2} = \frac{1}{3} \cdot \left(\frac{6}{22}\right)^{-\frac{1}{2}} = \frac{1}{11} - \frac{1}{2} = \frac{2-11}{22} = -\frac{9}{22}$

Hence, $x = \frac{3}{11}$, $y = -\frac{9}{11}$ is a candidate for a minimum.

Then, $\frac{\partial}{\partial x}(\frac{\partial}{\partial x}g(x,y)) = \frac{26}{9}$, $\frac{\partial}{\partial y}(\frac{\partial}{\partial x}g(x,y)) = -\frac{4}{3}$ $\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} g(x, y) \right) = 4$

 $D(3,3) = \frac{26}{9} \cdot 4 - (-\frac{4}{3})^2 = \frac{108}{9} \cdot \frac{16}{9} > 0$ and $\frac{3^2}{3x^2}g(x,y) = \frac{26}{9} > 0$

=> local minimum.

Intuition tells us that it has to be the global minimum.

2.3. First, we look for all loc. min/max in $\hat{D} = \{(x,y) : |x|<1, |y|<1\}$ $J(x,y) = x^2 + y^2 + x^2y + 3$

 $\frac{\partial}{\partial x} f(x,y) = 2x + 2xy = 2x(1+y) \quad j \quad \frac{\partial}{\partial y} f(x,y) = 2y + x^2$

 \Rightarrow [x=0 and y=0] or [y=-1 and x= $\sqrt{2}$]

Because &= 12>1 => = 0 and y=0 is the only relatent loc. extremum in

2 f(0,0) = 2 f(1+y)/y=0 = 2 ; 2 f(0,0) = 2x/x=0 =0

 $\Rightarrow D_{(0,0)} = 2.2 - 0^2 = 4 > 0, \frac{2^2}{2x^2} p(0,0) = 2.50$

(0,0) is a loc. minimum with grown=3

Now, we need to check the four boundaries:

For |x|=1: $f(x,y) = 1+y^2+y+3$ with f'(y) = 2y+1=0 iff $y=-\frac{1}{2}$, f''(y) = 2>0 (min) $f(x,y) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 3 = \frac{11}{4}$

 $f(x_i-1) = 1+1-1+3=4$; $f(x_i,1) = 1+1+1+3=6$

For
$$g=11$$
: $g(x_1+1) = x^2+1 \neq 1+3 = x^2+5$ $g'(x) = 2x = 0$ $g''(a) = 0 \rightarrow saddle$ $y=-1$: $g(x_1-1) = x^2+3$

As a consequence, (0,0) is the minimizer and the maximum is attained on the boundary in (1,1) and (-1,1) with a value of 6.

, Problemset 3:

1.
$$\nabla g(x,y) = \lambda \nabla g(x,y) = \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 2y \\ 2x \end{pmatrix} \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 2x \\ 2x \end{pmatrix} \begin{pmatrix} 2x \\ 2x$$

(2)
$$x_1y \neq 0$$
 as $xy = 1$: $\lambda = \frac{2x}{y}$ (1) $\lambda = \frac{2y}{y}$ (2) $\lambda = \frac{2y}{y}$ (2) $\lambda = \frac{2y}{y}$ (2)

Hence, (1,1); (-1,-1) are condidates for a max/min. $g(1_{11}) = 2$; f(-1,-1) = 2

As
$$x = \frac{1}{y} = y^2 + y^2 = \frac{1}{y^2} + \frac{1}{y^2} +$$

The minimum is 2 Lby comparing the two values.

2. Find all min/max of f(x,y, =) = xy = subject to x2+2y2+3ze=6

What I usually
$$y = 1 \forall y \Leftrightarrow \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} = \begin{pmatrix} 2 \cdot 2x \\ 2 \cdot 4y \\ 1 \cdot 6x \end{pmatrix}$$

$$(2)$$

$$x^2 + 2y^2 + 3t^2 = 6 \quad (4)$$

 $||\cos (-x \neq 0)|| = \frac{4^2}{2x} ||\omega|| ||\cos (z)|| = \frac{4^2}{2x} ||\omega|| ||\cos (z)|| = \frac{4^2}{2x} ||\omega|| ||\cos (z)|| = \frac{4^2}{2x} ||\omega|| ||\omega|| = \frac{4^2}{2x} ||\omega|| ||\omega|| = \frac{4^2}{2x} ||\omega|| ||\omega|| = \frac{4^2}{2x} ||\omega|| = \frac{4$ Phose 1:

hase 2:
$$|x - 2x|^{-1/2}$$
 (5)

Let $x = 2y^2$ (5)

 $x = 2y^2$ (5)

 $x = 2y^2$ (5)

 $x = 2y^2$ (6)

Case $y \neq 0$: $x^2 = 3 \cdot z^2$ (6)

Into (4): x2+2y2+322 = 3x2=6 => x2=12 =) [y=1; |z===], i.e |x|= 12; |y|=/i/=/=

Phase 2: Use 2 to Sind constraints on xiyis

Phase 3: Use coustraints

in g(x,y, 7) = @ 11

Phoise 4 Clacar up the

xyz
. •
eter
-
-
esen,
-

At last, we need to deal with the case where x=0 pr y=0 or z=0:

In all these cases, $g(x_1y_1z_2)=0$ with $-\frac{2}{\sqrt{3}} \ne 0$ $=\frac{2}{\sqrt{3}}$ (neither min or mar).

The minimum is $-\frac{2}{\sqrt{2}}$ and maximum $=\frac{2}{\sqrt{3}}$.