Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО».

Факультет программной инженерии и компьютерной техники

Лабораторная работа №2 Вариант №12 Численное решение нелинейных уравнений и систем

> Выполнил Путинцев Данил Денисович Группа Р3207 Проверил(а) Преподаватель: Рыбаков Степан Дмитриевич

Цель лабораторной работы.

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Порядок выполнения работы.

Уравнение: $x^3 - 4.5 x^2 - 9.21 x - 0.383$

Отделить корни заданного нелинейного уравнения графически

Корни уравнения:

X_1	<i>x</i> ₂	X_3
-1.49	-0.04	6.04

Определить интервалы изоляции корней.

Интервал №1	Интервал №2	Интервал №3
[-2, -1]	[-0.5; 0.5]	[5; 7]

№ варианта	Крайний правый корень	Крайний левый корень	Центральный корень
12	4	5	2

4 — метод секущих, 5 — метод простой итерации, 2 — метод хорд.

Таблица 1: Уточнение корня уравнения методом секущих

№ итерации	$ x_{k-1} $	X_k	X_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1	-2.000	-1.000	-1.29469	1.82791	0.29469
2	-1.000	-1.29469	-1.65402	-1.98553	0.35933
3	-1.29469	-1.65402	-1.46693	0.28729	0.18709
4	-1.65402	-1.46693	-1.49059	0.03509	0.02366
5	-1.46693	-1.49059	-1.49388	-0.00077	0.00329

Рабочая формула метода

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k)$$

Таблица 2: Уточнение корня уравнения методом простых итераций

№ итерации	X_k	X_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
0	0.5	-0.15016	0.89512	0.65016
1	-0.15016	-0.05297	0.09208	0.09719
2	-0.05297	-0.04297	0.00437	0.00998

Приведение уравнения к виду х=ф(х)

$$x = \frac{x^3 - 4.5 \, x^2 - 0.383}{9.21}$$

Проверка условия сходимости

Найдем производную

$$f'(x) = \frac{100(x^2 - 3x)}{307}$$

Условия сходимости есть.

Таблица 3: Уточнение корня методом хорд

№ шага	a	b	X	f(a)	f(b)	f(x)	$ x_{k+1}-x_k $
1	5.000	7.000	5.74106	-33.933	57.647	-12.353	0.74106
2	5.74106	7.000	5.96323	-12.35311	57.647	-3.27173	0.22217
3	5.96323	7.000	6.01891	-3.27173	57.647	-0.79119	0.05568
4	6.01891	7.000	6.03219	-0.79119	57.647	-0.18719	0.0140
5	6.03219	7.000	6.03532	-0.18719	57.647	-0.04413	0.0031

Рабочая формула метода:

$$x_i = a_i - \frac{b_i - a_i}{f(b_i) - f(a_i)} f(a_i)$$

2 часть. Решение системы нелинейных уравнений

12	$[x+\sin y=-0.4]$	Метод простой итерации
	$2y-\cos(x+1)=0$	

Отделить корни заданной системы нелинейных уравнений графически

X	у
-0.87606	0.49616

Используя указанный метод, решить систему нелинейных уравнений с точностью до 0,01

Решение находится в квадрате -1 < x < 0 и 0 < y < 1

Выразим х и у из уравнений

$$x = -0.4 - \sin y$$

$$y = \frac{\cos(x+1)}{2}$$

Проверим условие сходимости

$$\frac{df_1}{dx} = 0 \qquad \frac{df_1}{dy} = -\cos y \qquad \frac{df_2}{dx} = -\sin(x+1)$$

$$\frac{df_2}{dx} = -\sin(x+1)$$

$$\frac{df_2}{dv} = 0$$

$$\left| \frac{df_1}{dx} \right| + \left| \frac{df_2}{dx} \right| = \cos y < 1$$

$$\left|\frac{df_1}{dy}\right| + \left|\frac{df_2}{dy}\right| = \sin(x+1) < 1$$

Следовательно, процесс сходящийся

Выберем начальное приближение $x_0 = 0$ $y_0 = 0$

Шаг 1

$$x_1 = -0.4 - \sin 0 = -0.4$$

$$y_1 = \frac{\cos(1)}{2} = 0.27015$$

Шаг 2

$$x_1 = -0.4 - \sin(0.27015) = -0.66688$$

$$y_1 = \frac{\cos(-0.4+1)}{2} = 0.41267$$

Шаг 3

$$x_1 = -0.4 - \sin(0.41267) = -0.80106$$

$$y_1 = \frac{\cos(1 - 0.66888)}{2} = 0.47284$$

Шаг 4

$$x_1 = -0.4 - \sin(0.47284) = -0.85542$$

$$y_1 = \frac{\cos(1 - 0.80106)}{2} = 0.49014$$

Шаг 5

$$x_1 = -0.4 - \sin(0.49014) = -0.87075$$

$$y_1 = \frac{\cos(1 - 0.85542)}{2} = 0.49478$$

Шаг 6

$$x_1 = -0.4 - \sin(0.49478) = -0.87484$$

$$y_1 = \frac{\cos(1 - 0.87075)}{2} = 0.49583$$

Программная реализация задачи

1	Метод половинного деления
3	Метод Ньютона (для решения нелинейных уравнений)
5	Метод простой итерации
6	Метод Ньютона (для решения систем нелинейных уравнений)

https://github.com/danp1t/ITMO/tree/main/comp math/lab2

Результаты выполнения программы при различных исходных данных.

Лабораторная работа №2

Работа сделана Путинцевым Данилом, ИСУ: 409425

Вариант №12

Численное решение нелинейных уравнений и систем

Список команд доступен по команде /help

- 1. /help вывести список команд с их описанием
- 2. /exit выход из программы
- 3. /info вывести информацию о введеденных данных
- 4. /start запуск программы
- 5. /clear очистка введенных данных
- 6. /choice_system выбор системы
- 7. /choice_equations выбор уравнения
- 8. /input_interval ввод интервала с клавиатуры
- 9. /input_interval_file ввод интервала из файла
- 10. /input_start_value ввод начального приближения с клавиатуры
- 11. /input_start_value_file ввод начального приблежения из файла
- 12. /input_epsilon ввод погрешности с клавиатуры
- 13. /input_epsilon_file ввод погрешности из файла

Введите команду: 4

Выберете, что будем решать

- 1. Нелинейное уравнение
- 2. Систему нелинейных уравнений

1

- $0.2x^3 + 3.41x^2 1.943x + 2.12$
- 1. $\sin(x) + \cos(x) 0.4 = 0.2$
- 2. tg(x) 2.34 = 21
- $3. -3.2x \land 3 3.2x = 2$
- 4. $-33x^3 + 21.23x^2 + 3 = 2.32$

Введите номер нелинейного уравнения: 0

Для построения графика введите интервал.

Введите нижнюю границу интервала: -3

Введите верхнюю границу интервала: -2

График сохранен как 'equation_plot.png'

Выберете способ решения нелинейного уравнения

- 1. Метод половинного деления
- 2. Метод Ньютона
- 3. Метод простой итерации

2

Требуется ввод точности.

Введите точность: 0.0002

Выберите способ вывода результатов:

- 1. Вывести на экран
- 2. Сохранить в файл
- 3. Сделать и то, и другое

Ваш выбор (1-3): 1

——— Результаты =

Метод: Метод Ньютона

Уравнение: $2x^3 + 3.41x^2 - 1.943x + 2.12$

Приближенный корень: -2.32051503

Значение функции в корне: -7.77е-05

Количество итераций: 2

Начальное приближение: -2.3232

Погрешность: 0.0002

Сброс всех значений

Введите команду: 4

Выберете, что будем решать

- 1. Нелинейное уравнение
- 2. Систему нелинейных уравнений

2

Выберите систему нелинейных уравнений

0.
$$(\sin(x - y) - x*y = -1', '0.3x^2 + y^2 = 2')$$

1.
$$(\sin(y) + 2x = 2', y + \cos(x - 1) = 0.7')$$

Введите номер системы: 1

График системы сохранен как 'system_plot.png'

Введите начальные приближения х0 и у0 через пробел:

-24

Введите точность: 0.002

Найденное решение:

x = 1.14288476

y = -0.28980933

Значения функций в решении:

$$f1(x,y) = 2.12e-13$$

$$f2(x,y) = -2.24e-13$$

Общее количество итераций: 6

История итераций:

```
4 | 1.196839 | -0.401808 | -5.23e-02 | 1.11e-01 | 2.59e-03 | -1.21e-01
5 | 1.144515 | -0.290923 | -1.63e-03 | 1.11e-03 | 2.19e-03 | -1.35e-03
6 | 1.142885 | -0.289811 | -6.72e-07 | 1.22e-06 | 1.77e-07 | -1.31e-06
```

Сброс всех значений

Выводы

В рамках лабораторной работы были рассмотрены численные методы решения нелинейных уравнений и их систем с применением языка Python. В ходе исследования удалось вычислить корни заданных уравнений и систем, используя различные подходы, такие как метод Ньютона, метод простых итераций и другие. Для наглядности также были построены графики функций, что позволило лучше визуализировать поведение уравнений на заданных интервалах и точнее определить расположение корней. Полученные результаты подтвердили эффективность изученных методов для решения нелинейных задач.