Homework 8: Equivalence Relations and Quotient Sets

- 1. Let X be a nonempty set. A relation R on X is said to be **circular** if, for all $x, y, z \in X$, x R y and y R z implies z R x. Prove that a relation R on X is an equivalence relation if and only if R is reflexive and circular.
- 2. Let X be the set of directed line segments PQ (with initial point P and terminal point Q) in \mathbb{R}^2 . Give an equivalence relation \sim for which X/\sim is the usual set of vectors in \mathbb{R}^2 .
- 3. Consider \mathbb{R} with relation $Q = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x y \in \mathbb{Z}\}.$
 - (a) Verify that Q is an equivalence relation.
 - (b) Find the equivalence classes.
 - (c) Identify \mathbb{R}/Q with an interval in \mathbb{R} .
 - (d) Identify \mathbb{R}/Q with S^1 .
- 4. Consider \mathbb{R}^2 with relation $(a,b) \sim (c,d)$ if a+2d=c+2b.
 - (a) Verify that \sim is an equivalence relation.
 - (b) What are the equivalence classes?
- 5. Let $X = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid b \neq 0\}$. Define relation \sim on X by $(a, b) \sim (c, d)$ if ad = bc.
 - (a) Verify that \sim is an equivalence relation.
 - (b) Give three elements in [(1,2)].
 - (c) X/\sim is sometimes used to define a set with which you are familiar. Give the set.
- 6. (Number Theory) Consider \mathbb{Z} with relation $a \sim b$ if $5 \mid a b$.
 - (a) Verify that \sim is an equivalence relation.
 - (b) Find the equivalence classes.
 - (c) What is the cardinality of \mathbb{Z}/\sim ?
- 7. (Linear Algebra) Let V be a vector space and W a subspace. Consider the relation \sim on V defined by $\mathbf{u} \sim \mathbf{v}$ if $\mathbf{u} \mathbf{v} \in W$.
 - (a) Verify that \sim is an equivalence relation. The corresponding quotient V/\sim is usually denoted by V/W.
 - (b) Let $V = \mathbb{R}^2$ and $W = \text{Span}\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, a subspace of V. What are the equivalence classes? What is V/W?