

Compilation Principle 编译原理

第13讲: 语义分析(3)

张献伟

xianweiz.github.io

DCS290, 04/13/2021

Review Questions (1)

What is Syntax Directed Translation?

The parsing process and parse trees are to direct semantic analysis and the translation of the program (a.k.a., CFG-driven translation)

- How to augment grammar for semantic analysis?
 Semantic attributes for symbols, rules/actions for productions
- What are SDD and SDT?
 SDD = Syntax Directed Definitions, SDT = SD Translation Schemes
- What are the differences between SDD and SDT?

```
SDD = attributes + rules, SDT = attributes + actions.
SDT is an executable specification of the SDD.
```

What is an synthesized attribute?
 Defined by attribute values of node N's children and N itself

Review Questions (2)

- What is inherited attribute?
 - Defined only by attribute values of N's parent, N itself and siblings.
- Can a grammar symbol have both syn and inh attributes?
 Non-terminal: yes; Terminal: only synthesized attributes from lexer.
- What's the usage of dependence graph?
 To decide the evaluation order of attributes.
- Can we always have an evaluation order of the attrs?
 NO. There can be circular dependencies (i.e., cycles in graph).
- What are S-Attributed Definitions (S-SDD)?
 Every attribute is synthesized.

S-Attributed Definitions[S-属性定义]

- An SDD is **S-attributed** if every attribute is <u>synthesized</u>[只 具有综合属性]
- If an SDD is S-attributed (S-SDD)
 - We can evaluate its attributes in any bottom-up order of the nodes of the parse-tree[任何自底向上的顺序计算属性值]
 - Can be implemented during bottom-up parsing [LR分析中实现]

Production Rules	Semantic Rules
(1) L -> E	print(E. <i>val</i>)
(2) E -> E ₁ + T	$E.val = E_1.val + T.val$
(3) E -> T	E.val = T.val
(4) T -> T ₁ * F	$T.val = T_1.val \times F.val$
(5) T -> F	T.val = F.val
(6) F -> (E)	F.val = E.val
(7) F -> digit	F.val = digit.lexval

L-Attributed Definitions[L-属性定义]

- An SDD is L-attributed (L-SDD) if
 - Between the attributes associated with a production body, dependency-graph edges can go from left to right, but not from right to left [依赖图的边只能从左到右]
 - More precisely: each attribute must be either **synthesized**, or **inherited** but with the rules limited as follows: suppose A -> X₁X₂...X_n, the inherited attribute X_i.a only depends on Why not synthesized?

 Inherited attributes associated with A Cycle: X_i depends on A, A.s depends on X_i

 - \blacksquare Either syn or inh attributes of X_1 , X_2 , ..., X_{i-1} located to the left of X_i
 - □ Either syn or inh attributes of X_i itself, but no cycles formed by the attributes of this X_i
- Can be implemented during top-down parsing [LL分析中]

S-SDD or L-SDD?

Production Rules Semantic Rules

A -> B C

A.s = B.b

B.i = f(C.c)(A.s)

Not L-SDD: A.s is syn attr

Syntax Directed Trans. Impl.[实现]

- Learnt how to specify translation: SDD and SDT[定义]
 - SDT is an executable specification of the SDD
 - CFG with <u>semantic actions</u> embedded in production bodies
- SDT can be implemented in two ways[具体实现]
 - Using a parse tree or AST[基于预先构建的分析树]
 - First build a parse tree, and then apply rules or actions at each node while traversing the tree
 - All SDDs (without cycles) and SDTs can be implemented
 - Since the tree can be traversed freely, implements any ordering
 - During parsing, without building a parse tree[语法分析过程中]
 - Apply rules or actions at each production while parsing
 - Only a subset of SDDs and SDTS can be implemented
 - Evaluation ordering restricted to parser derivation order

Syntax Directed Trans. Impl. (cont.)

- Typically, SDT is implemented <u>during parsing</u>[更为高效]
 - Allows compiler to skip parse tree generation
 - Saves time and memory
- Two important classes of SDD's[两个关键子类]
 - SDD is <u>S-attributed</u>, the underlying grammar is <u>LR-parsable</u>
 - SDD is *L-attributed*, the underlying grammar is *LL-parsable*,
 - For both classes, semantic rules in an SDD can be converted into an SDT with actions that are executed at the right time[允许SDD到SDT的转换]
 - During parsing, an action in a production body is executed as soon as all the grammar symbols to the left of the action have been matched

== Implement S-SDD ==

- Convert S-attributed SDD to SDT by[SDD->SDT的转换]
 - Placing each action at the end of the production[将每个语义动作都放在产生式的最后]
 - SDTs with all actions at the right ends of the production bodies are called **postfix SDT's** [后缀/尾部SDT]

S-SDD

SDT

Production Rules	Semantic Rules
(1) L -> E	print (E. <i>val</i>)
(2) $E \rightarrow E_1 + T$	$E.val = E_1.val + T.val$
(3) E -> T	E.val = T.val
(4) T -> $T_1 * F$	$T.val = T_1.val \times F.val$
(5) T -> F	T.val = F.val
(6) F -> (E)	F.val = E.val
(7) F -> digit	F.val = digit.lexval

CFG with actions
(1) L -> E { print (E.val) }
(1) L -> E { print (E. val) } (2) E -> E ₁ + T { E. val = E ₁ . val + T. val }
(3) E -> T { E.val = T.val } (4) T -> T ₁ * F { T.val = T ₁ .val x F.val }
(4) $T \rightarrow T_1 * F \{ T.val = T_1.val \times F.val \}$
(5) $T \rightarrow F \{ T.val = F.val \}$
(6) $F \rightarrow (E) \{ F.val = E.val \}$
(5) T -> F { T.val = F.val } (6) F -> (E) { F.val = E.val } (7) F -> digit { F.val = digit.lexval }

Implement S-SDD (cont.)

- If the underlying grammar of S-SDD is <u>LR parsable</u>
 - Then the SDT can be implemented during LR parsing
- Implement the converted SDT by[借助归约实现]
 - Executing the action along with the reduction of head <- body

SDT

(1) L -> E { print (E.val) } (2) E -> E₁ + T { E.val = E₁.val + T.val } (3) E -> T { E.val = T.val } (4) T -> T₁ * F { T.val = T₁.val x F.val } (5) T -> F { T.val = E.val } (6) F -> (E) { F.val = E.val } (7) F -> digit { F.val = digit.lexval }

SLR Automaton

Extend LR Parse Stack[扩展分析栈]

- Save synthesized attributes into the stack[栈中额外存放综合属性值]
 - Place the attributes along with the grammar symbols (or LR states that associated with these symbols) in records on stack
 - If there are multiple attributes
 - □ Make the records large enough or by putting pointers to records on the stack [栈记录足够大,或栈记录中存放指针]
- Example: A -> XYZ
 - x, y, z are attributes of X, Y, Z respectively
 - After the action, A and its attributes are at the top (i.e., m-2)

Stack Manipulation[栈操作]

- Rewrite the actions to manipulate the parser stack
 - The manipulation can be done automatically by the parser

```
stack[top-2].symbol = A
stack[top-2].val = f( stack[top-2].val, stack[top-1].val, stack[top].val )
top = top -2
                                                                        A.a
          A \rightarrow XYZ \{ A.a = f(X.x, Y.y, Z.z) \}
                                                             X.x
       state \rightarrow S<sub>0</sub> ··· S<sub>m-2</sub> S<sub>m-1</sub> S<sub>m</sub>
                                                              state \rightarrow S_0
     symbol → $ ··· X Y Z
                                                            symbol → $ ····
    attribute \rightarrow - ... X.x Y.y Z.z
                                                           attribute → - ····
                                                                                  A.a
                                            top
                                                                                   top
```


- Rewrite the actions to manipulate the parser stack
 - The manipulation can be done automatically by the parser

Productions	Semantic Rules	Semantic Actions
(1) L -> E	print (E. <i>val</i>)	{ print(stack[top].val); }
(2) E -> E ₁ +T	$E.val = E_1.val + T.val$	{ stack[top-2].val = stack[top-2].val + stack[top].val; top = top -2; }
(3) E -> T	E.val = T.val	
(4) T -> T ₁ *F	$T.val = T_1.valxF.val$	{ stack[top-2].val = stack[top-2].val x stack[top].val; top = top -2; }
(5) T -> F	T.val = F.val	
(6) F -> (E)	F.val = E.val	{ stack[top-2]. <i>val</i> = stack[top-1]. <i>val</i> ;
		top = top -2; }
(7) F -> digit	F.val = digit.lexval	

		r d
Productions	Semantic Actions	$\begin{vmatrix} I_{\theta} : & E' \to E \\ E' \to E \end{vmatrix} \xrightarrow{I_1} \begin{vmatrix} E' \to E \\ E \to E + \cdot T \end{vmatrix} \xrightarrow{I_6} \begin{vmatrix} I_{\theta} : & I_{\theta} \\ E \to E + \cdot T \end{vmatrix}$
(1) L -> E	{ print(stack[top].val); }	$ \begin{bmatrix} E \to \cdot E + T \\ E \to \cdot T \end{bmatrix} $ $ T \to \cdot T * F $
(2) E -> E ₁ +T	{ stack[top-2].val = stack[top-2].val + stack[top].val; top = top -2; }	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(3) E -> T		$ F \rightarrow d \nearrow I_{7} \rightarrow F $
(4) T -> T ₁ *F	{ stack[top-2].val = stack[top-2].val x stack[top].val; top = top -2; }	$ \begin{array}{c c} \hline d & (F) \\ \hline I_{f}: \\ F \to \cdot (E) \\ F \to \cdot d \end{array} $ $ I_{g}: $
(5) T -> F		$ I_5: $ d $ E \rightarrow E \rightarrow T E $] (d $ F \rightarrow (E \rightarrow E) F \rightarrow E \rightarrow T E $
(6) F -> (E)	{ stack[top-2].val = stack[top-1].val;	$ \begin{array}{c c} \hline F \rightarrow d \cdot \\ \hline T \rightarrow \cdot T * F \\ \hline T \rightarrow \cdot F \end{array} $
	top = top -2; }	$\left[\begin{array}{c}F\rightarrow\cdot(E)\\F\rightarrow\cdot\mathbf{d}\end{array}\right]$
(7) F -> digit		$F \rightarrow \cdot d$ $F \rightarrow (E) \cdot$

state
$$\rightarrow$$
 S₀ S₃ S₇ S₅₀ symbol \rightarrow \$ \neq * \neq attribute \rightarrow - 3 - 5

Example (cont.)

Productions	Semantic Actions	$\begin{bmatrix} I_0: \\ E' \to \cdot E \end{bmatrix} \xrightarrow{E} \begin{bmatrix} I_1: \\ E' \to E \cdot \end{bmatrix} \xrightarrow{+} \begin{bmatrix} I_6: \\ E \to E + \cdot T \end{bmatrix}$
(1) L -> E	{ print(stack[top].val); }	$ \begin{bmatrix} E \to \cdot E + T \\ E \to \cdot T \end{bmatrix} $ $ \begin{bmatrix} E \to E \cdot + T \\ I_{2} \cdot \end{bmatrix} $ $ \begin{bmatrix} F \\ T \to \cdot T * F \end{bmatrix} $ $ T \to F T \to F $ $ T \to F T \to F $
(2) E -> E ₁ +T	{ stack[top-2].val = stack[top-2].val + stack[top].val;	$T \rightarrow T^*F$ $E \rightarrow T \cdot $ $*$ $F \rightarrow \cdot (E)$ $*$ $T \rightarrow T \cdot *F$ $*$
(2) 5	top = top -2; }	$F \rightarrow \cdot (E)$ F
(3) E -> T		$F \rightarrow \cdot d$ $T \rightarrow F$.
(4) T -> T ₁ *F	{ stack[top-2].val = stack[top-2].val x stack[top].val;	$ \begin{array}{c c} \hline \\ d \end{array} \left(\begin{array}{c} F & \hline \\ I_{f} & \hline \\ \end{array} \right) \left(\begin{array}{c} F & \hline \\ F \rightarrow \cdot \cdot (E) \end{array} \right) $
	top = top -2; }	$F \rightarrow (\cdot E)$ $F \rightarrow \cdot d$ I_8 :
(5) T -> F		$\begin{bmatrix} I_5: \\ I_5: \end{bmatrix}$ d $\begin{bmatrix} E \rightarrow \cdot T \\ E \rightarrow E \cdot + T \end{bmatrix}$
(6) F -> (E)	{ stack[top-2].val = stack[top-1].val;	$F \to d \cdot \qquad \qquad T \to T \star F$ $T \to \cdot F$
	top = top -2; }	
(7) F -> digit		$F \rightarrow \cdot d$ $F \rightarrow (E) \cdot$

state
$$\rightarrow$$
 S₀ S₂ S₇ S₁₀ symbol \rightarrow \$ T * F attribute \rightarrow - 5

== Implement L-SDD ==

- We have examined S-SDD -> SDT
 - S-SDD can be converted to SDT with actions at production ends
 - The SDT can be parsed and translated <u>bottom-up</u>, as long as the underlying grammar is LR-parsable
- What about the more-general L-attributed SDD?
 - Rule for turning L-SDD into an SDT
 - Embed the action that computes the inherited attributes for a nonterminal A immediately before that occurrence of A in the production body

[将计算某个非终结符A的继承属性的动作插入到产生式右部中<u>紧靠在</u>A的本次出现之前的位置上]

Place the actions that compute a synthesized attribute for the head of a production at the end of the body of that production

将计算一个产生式左部符号的<u>综合属性</u>的动作放在这个产生式右部的 末尾]

A -> B C

- C的继承属性: 出现之前
- A的综合属性: 末尾

Production Rules	Semantic Rules
(1) T -> F T'	T'.inh = F.val
	T.val = T'.syn
(2) T' -> * FT_1'	$T_1'.inh = T'.inh \times F.val$
	$T'.syn = T_1'.syn$
(3) T' -> ε ←	T'.syn = T'.inh
(4) F -> digit ←	-F. <i>val =</i> digit. <i>lexval</i>

SDT

(1)
$$T \rightarrow F \{ T'.inh = F.val \} T' \{ T.val = T'.syn \}$$

(2)
$$T' \rightarrow F \{ T_1'.inh = T'.inh \times F.val \} T_1' \{ T'.syn = T_1'.syn \}$$

- (3) $T' -> \varepsilon \{ T'.syn = T'.inh \}$
- (4) F -> digit { F.val = digit.lexval }

Implement the SDT of L-SDD

• If the underlying grammar is <u>LL-parsable</u>, then the SDT can be implemented during <u>LL or LR parsing</u> [若文法是LL可解析的,则可在LL或LR语法分析过程中实现]

- Semantic translation during **LL parsing**, using[LL方式]
 - A predictive parser[非递归的预测分析]
 - Extend the parse stack to hold actions and certain data items needed for attribute evaluation
 - A recursive-descent parser[递归的预测分析]
 - Augment non-terminal functions to both parse and handle attributes
 - A LR parser[LR分析]
 - Involve marker to rewrite grammars

L-SDD in Recursive Decent Parsing

- A recursive-descent parser has a function A for each nonterminal A
 - Non-terminal expansion implemented by a function call
 - (Recursive) calls to functions for non-terminals in RHS

- Synthesized attributes: evaluate at end of function
 - All calls for RHS would have done by then
- Inherited attributes: pass as argument to function
 - Values may come from parent or sibling
 - L-attributed guarantees they have been computed (can only come from already computed portion of RHS)

- Function arguments and return
 - Inherited: arguments
 - Synthesized: return
- Use local variables
- Embed semantic actions

```
    (1) T -> F { T'.inh = F.val } T' { T.val = T'.syn }
    (2) T' -> * F { T<sub>1</sub>'.inh = T'.inh x F.val } T<sub>1</sub>' { T'.syn = T<sub>1</sub>'.syn }
    (3) T' -> ε { T'.syn = T'.inh }
    (4) F -> digit { F.val = digit.lexval }
```



```
T'syn T'(token, T'inh) {
  D: Fval, T<sub>1</sub>'inh, T<sub>1</sub>'syn
  if token = "*", then {
    Getnext(token);
    Fval = F(token);
    T_1'inh = T'inh \times Fval
    Getnext(token);
    T_1'syn = T_1'(token, T_1'inh);
    T'syn = T_1'syn
    return T'syn
  } else if token = "$", then {
    T'syn = T'inh
    return T'syn
  } else
  Error;
```


L-SDD in LL Parsing[非递归预测]

- Extend the parse stack to hold **actions** and certain **data items** needed for attribute evaluation[扩展语法分析栈]
 - Action-record[动作记录]: represent the actions to be executed
 - Synthesize-record[综合记录]: hold synthesized attributes for non-terminals
 - Typically, the data items are copies of attributes[属性备份]
- Manage attributes on the stack[管理属性信息]
 - The inherited attributes of a nonterminal A are placed in the stack record that represents that terminal[符号位放继承属性]
 - Action-record to evaluate these attributes are immediately <u>above</u> A
 - The synthesized attributes of a nonterminal A are placed in a separate synthesize-record that is immediately <u>below</u> A[综合属

性另存放]

A Inh Attr.

A.syn Syn Attr.

