Sujet 1 – corrigé

| Equilibre chimique

1. Compléter le tableau d'avancement (en $\operatorname{mol} \cdot \operatorname{L}^{-1}$) ci-dessous. On note x l'avancement volumique.

Équation	Cu _(s)	$+ 2 \operatorname{Fe_{(aq)}^{3+}} =$	$= Cu_{(aq)}^{2+} -$	+ 2 Fe ²⁺ _(aq)	$K = 10^{-5}$
État initial $(\text{mol}\cdot L^{-1})$	excès	0,3	0	0,1	
En cours $(\text{mol} \cdot L^{-1})$	excès	0,3-2x	x	0,1+2x	
État final (mol·L ⁻¹)	excès	0,3	9×10^{-5}	0,1	

Réponse:

Voir tableau.

2. La réaction est-elle a priori très avancée ? très peu avancée ? Justifier.

Réponse:

Comme K < 1, elle est à priée très peu avancée. Comme $K < 10^{-4}$, elle est à priée très peu avancée, voire quasi-nulle.

3. Faire une hypothèse sur l'avancement final. En déduire les concentrations à l'équilibre.

Réponse :

Comme $Q_{r,i}=0$ (pas de Cu²⁺ au début = activité nulle), la réaction se fait dans le sens direct ; on suppose que $0.3-2x\approx0.3$ et que $0.1+2x\approx0.1$. Dans ce cas, l'écriture de la constante d'équilibre grâce à la loi d'action des masses est :

$$K = \frac{[\text{Fe}_{(\text{aq})}^{2+}]^2[\text{Cu}_{(\text{aq})}^{2+}]}{[\text{Fe}_{(\text{aq})}^{3+}]^2 c^{\circ}} \Leftrightarrow K = \frac{(0.1 + 2x_{\text{eq}})^2 x_{\text{eq}}}{(0.3 - 2x_{\text{eq}})^2 c^{\circ}} \Leftrightarrow K = \frac{0.1^2 x_{\text{eq}}}{0.3^2 c^{\circ}}$$
$$\Leftrightarrow 0.09Kc^{\circ} = 0.01x \Leftrightarrow \boxed{x_{\text{eq}} = 9Kc^{\circ}} \quad \text{avec} \quad \begin{cases} K = 10^{-5} \\ c^{\circ} = 1 \text{ mol} \cdot \text{L}^{-1} \end{cases}$$
$$A.N. : \quad \boxed{x_{\text{eq}} = 9 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}}$$

On vérifie l'hypothèse de départ : $0.3 - 2x_{\rm eq} = 0.299\,91 \approx 0.3$ et $0.1 + 2x_{\rm eq} = 0.100\,01 \approx 0.1$. On trouve donc l'état final de la troisième ligne du tableau d'avancement.

Sujet 2 – corrigé

I Détermination d'une constante d'équilibre

On introduit $n_0 = 50 \,\mathrm{mmol}$ de $\mathrm{N_2O_{4(g)}}$ dans un récipient initialement vide de volume $V = 3 \,\mathrm{L}$ dont la température est maintenue constante à $T = 300 \,\mathrm{K}$. On considère la réaction

$$N_2O_{4(g)} = 2 NO_{2(g)}$$

1. Sachant que la pression finale est $P_f=0.6$ bar, calculer l'avancement final ξ_f .

Réponse :

Hyp: GP

$$\xi_f = \frac{P_f V}{RT} - n_0 = 25 \,\mathrm{mmol}$$

2. Exprimer la constante d'équilibre K° à la température 300 K en fonction de ξ_f et des données du problème. Faire l'application numérique. Commenter.

Réponse :

$$K^{\circ} = Q_{eq} = \frac{P_f}{p^{\circ}} \frac{4\xi^2}{(n_0 + \xi_f)(n_0 - \xi_f)} = 0.8$$

En accord avec une réaction "équilibrée"

Donn'ees: on prendra $R=8\,\mathrm{SI}.$

Formation du monoxyde d'azote

On introduit $17\,\mathrm{g}$ d'ammoniac $\mathrm{NH_3}$ avec $32\,\mathrm{g}$ de dioxygène pour former de l'eau et du monoxyde d'azote NO. On suppose la réaction totale.

1. Déterminer les masses des différents composés à l'état final. On donne les masses molaires :

$$M(H) = 1.0 \,\mathrm{g \cdot mol^{-1}} \quad ; \quad M(N) = 14 \,\mathrm{g \cdot mol^{-1}} \quad ; \quad M(O) = 16 \,\mathrm{g \cdot mol^{-1}}$$

Réponse:

Tableau d'avancement en quantité de matière

Réactif limitant $O_2: \xi_f = 0.4 \,\mathrm{mol}$

Masses finales:

- $m(NH_3) = 3.4 g$
- m(NO) = 24 g

•

• $m(H_2O) = 21.6 g$

Sujet 3 – corrigé

On étudie en phase gazeuse l'équilibre de dimérisation de FeCl₃, de constante d'équilibre $K^{\circ}(T)$ à une température T donnée et d'équation-bilan

$$2 \operatorname{FeCl}_{3_{(g)}} = \operatorname{Fe}_2 \operatorname{Cl}_{6_{(g)}}$$

La réaction se déroule sous une pression totale constante $p_{\text{tot}} = 2p^{\circ} = 2$ bars. À la température $T_1 = 750 \,\text{K}$, la constante d'équilibre vaut $K^{\circ}(T_1) = 20,8$. Le système est maintenu à la température $T_1 = 750 \,\text{K}$. Initialement le système contient n_0 moles de FeCl₃ et de Fe₂Cl₆. Soit n_{tot} la quantité totale de matière d'espèces dans le système.

1. Exprimer la constante d'équilibre en fonction des pressions partielles des constituants à l'équilibre et de p° .

Réponse :

On peut dresser le tableau d'avancement initial dans cette situation :

Équation	$2 \text{FeCl}_{3_{(g)}}$ =	$= \operatorname{Fe_2Cl_6}_{(g)}$	$n_{ m tot,gaz}$
Initial $\xi = 0$	n_0	n_0	$2n_0$

Par la loi d'action des masses et les activités de constituants gazeux :

$$K^{\circ} = \frac{p_{\text{Fe}_2\text{Cl}_6} p^{\circ}}{p_{\text{Fe}\text{Cl}_3}^2}$$

2. Exprimer le quotient de réaction Q_r en fonction de la quantité de matière de chacun des constituants, de la pression totale p_{tot} et de p° . Calculer la valeur initial $Q_{r,0}$ du quotient de réaction.

Réponse:

Pour passer des pressions partielles aux quantités de matière, on utilise la loi de Dalton :

Rappel: loi de Dalton -

Soit un mélange de gaz parfaits de pression P. Les pressions partielles P_i de chaque constituant X_i s'exprime

$$P_i = x_i P$$

avec x_i la fraction molaire du constituant :

$$x_i = \frac{n_i}{n_{\text{tot}}}$$

On écrit donc

$$p_{\mathrm{Fe_2Cl_6}} = \frac{n_{\mathrm{Fe_2Cl_6}}}{n_{\mathrm{tot}}} \times p_{\mathrm{tot}} \qquad p_{\mathrm{FeCl_3}} = \frac{n_{\mathrm{FeCl_3}}}{n_{\mathrm{tot}}} \times p_{\mathrm{tot}}$$

Pour simplifier l'écriture, on peut séparer les termes de pression totale des termes de matière en comptant combien vont arriver « en haut » et combien « en bas » : 1 en haut contre 2 en bas, on se retrouvera avec p_{tot} au dénominateur, ce qui est logique par homogénéité vis-à-vis de p° qui reste au numérateur. Comme n_{tot} apparaît le même nombre de fois que p_{tot} mais avec une puissance -1, on sait aussi qu'il doit se retrouver au numérateur, là aussi logiquement pour avoir l'homogénéité vis-à-vis de la quantité de matière. Ainsi,

$$Q_r = \frac{n_{\rm Fe_2Cl_6}/p_{\rm tot} \times p_{\rm tot}}{n_{\rm FeCl_3}^2/n_{\rm tot}^2 \times p_{\rm tot}^2} p^{\circ} = \frac{n_{\rm Fe_2Cl_6}n_{\rm tot}}{n_{\rm FeCl_3}^2} \frac{p^{\circ}}{p_{\rm tot}}$$

Avec $p_{\text{tot}} = 2p^{\circ}$ et $n_{\text{Fe}_2\text{Cl}_6} = n_0 = n_{\text{Fe}\text{Cl}_3}$, on a $n_{\text{tot}} = 2n_0$ (cf. tableau d'avancement), d'où

$$Q_{r,0} = \frac{n_0 \times 2n_0}{n_0^2} \frac{1}{2} \Leftrightarrow Q_{r,0} = 1$$

3. Le système est-il initialement à l'équilibre thermodynamique ? Justifier la réponse. Si le système n'est pas à l'équilibre, dans quel sens se produira l'évolution ?

Réponse :

Le système serait à l'équilibre si $Q_{r,0} = K^{\circ}$; or, ici $Q_{r,0} \neq K^{\circ}$, donc l'équilibre n'est pas atteint. De plus, $Q_{r,0} < K^{\circ}$ donc le système évoluera dans le sens direct.

On considère désormais une enceinte indéformable, de température constante $T_1 = 750 \,\mathrm{K}$, initialement vide. On y introduit une quantité n de FeCl₃ gazeux et on laisse le système évoluer de telle sorte que la pression soit maintenu constante et égale à $p = 2p^{\circ} = 2$ bars. On désigne par ξ l'avancement de la réaction.

4. Calculer à l'équilibre la valeur du rapport $z = \xi/n$.

Réponse :

On dresse le tableau d'avancement pour effectuer un bilan de matière dans cette nouvelle situation :

Équa	ation	2FeCl _{3(g)} =	$= \operatorname{Fe_2Cl}_{6_{(g)}}$	$n_{ m tot,gaz}$
Initial	$\xi = 0$	n	0	n
Final	$\xi = \xi_f$	$n-2\xi$	ξ	$n-\xi$

On reprend l'expression du quotient réactionnel initial en remplaçant les quantités de matière par leur expression selon ξ pour déterminer l'avancement à l'équilibre, décrit par K° :

$$K^{\circ} = \frac{\xi(n-\xi)}{(n-2\xi)^2} \underbrace{\frac{p^{\circ}}{p_{\text{tot}}}}_{=\frac{1}{2}} \Leftrightarrow K^{\circ} = \underbrace{\frac{n^{2}}{n^{2}}}_{=1} \underbrace{\frac{\xi/n(1-\xi/n)}{(1-2\xi/n)^{2}}}_{1} \frac{1}{2}$$

Pour simplifier les calculs, posons $z = \frac{\xi}{n}$. L'équation précédente devient :

$$K^{\circ} = \frac{1}{2} \frac{z(1-z)}{(1-2z)^2}$$

$$\Leftrightarrow 2K^{\circ}(1-2z)^2 = z(1-z)$$

$$\Leftrightarrow 2K^{\circ}(1-4z+4z^2) = z-z^2$$

$$\Leftrightarrow z^2(8K^{\circ}+1) - z(8K^{\circ}+1) + 2K^{\circ} = 0$$

On trouve un polynôme du second degré. Soit Δ son discriminant :

$$\Delta = (8K^{\circ} + 1)^{2+} - 4(8K^{\circ} + 1) \times 2K^{\circ}$$

$$\Leftrightarrow \Delta = (8K^{\circ} + 1)(8K^{\circ} + 1 - 8K^{\circ})$$

$$\Leftrightarrow \Delta = 8K^{\circ} + 1 \quad \text{avec} \quad \{ K^{\circ} = 20, 8 \}$$
A.N. : $\Delta = 167, 4$

Les racines sont $\begin{cases} z_1 = 0.54 \\ z_2 = 0.46 \end{cases}$

Étant donné qu'on part de $\xi=0$ et que ξ augmente, la valeur que prendrait $z_{\rm eq}$ serait $z_{\rm eq}=0.46$. On doit cependant vérifier que cette valeur est bien possible, en déterminant $z_{\rm max}$: pour cela, on résout $n-2\xi=0$, ce qui donne $z_{\rm max}=0.5$. On a bien $z_{\rm eq}< z_{\rm max}$, donc l'équilibre est atteint et on a $\xi/n=0.46$.

Sujet 4 – corrigé

I | Utilisation du quotient de réaction (**)

Un récipient de volume $V_0=2,00$ ·l contient initialement 0,500·mol de $COBr_2$, qui se décompose à une température de $T_0=300$ ·K selon la réaction :

$$COBr_2(g) = CO(g) + Br_2(g).$$

Tous les gaz sont supposés parfaits. La réaction se fait à température et à volume constants.

1. Déterminer la pression initiale du système en Pa, puis en bar.

Réponse :

D'après la loi des gaz parfaits :

$$P_{\text{init}} = \frac{n_{\text{init}}RT_0}{V_0} = 6,24.10^5 \cdot \text{Pa} = 6,24 \cdot \text{bar}$$

2. Déterminer le quotient de réaction initial de ce système chimique. En déduire le sens d'évolution de ce système.

Réponse :

Comme il n'y a aucun produit, le quotient réactionnel initial est nul. D'après la loi d'action de masse, la réaction va donc s'effectuer dans le **sens direct**.

3. Exprimer la pression totale du système à l'équilibre en fonction de l'avancement à l'équilibre x, T_0 et V_0 .

Réponse:

Espèce	$COBr_2$	CO	Br_2
État initial (mol)	0,5	0	0
État final (mol)	0.5 - x	x	x

D'après la loi de Dalton et la loi des gaz parfaits :

$$P_{\text{tot}} = \frac{(0.5 - x + x + x) RT_0}{V_0} = P_{\text{init}} + \frac{xRT_0}{V_0}.$$

4. Quelle est la composition du système à l'équilibre, sachant que la constante d'équilibre de la réaction précédemment citée vaut $K^{\circ} = 5$ à 300·K ?

Réponse :

D'après la loi d'action de masse : $Q_{\rm r,eq} = K^{\circ}$. On a alors :

$$K^{\circ} = \frac{x^2}{0.5 - x} \times \frac{RT_0}{P^{\circ}V_0}$$

On pose pour alléger les notations :

$$\alpha = \frac{RT_0}{P^{\circ}V_0}.$$

On trouve alors une équation de degré 2 :

$$\alpha x^2 + K^{\circ} x - 0.5 K^{\circ} = 0.$$

Le discriminant est :

$$\Delta = (K^{\circ})^2 + 4 \times \alpha \times 0.5K^{\circ} = 150.$$

Les solutions sont :

$$x = \frac{-5 \pm \sqrt{\Delta}}{2\alpha}.$$

En ne gardant que la solution positive :

$$x = 0.29 \cdot \text{mol}$$

La composition finale du système est donc :

Espèce	$COBr_2$	СО	Br_2
État final (mol)	0,31	0,29	0,29

5. Calculer le pourcentage de $COBr_2(g)$ décomposé à cette température. Conclure.

Réponse:

La fraction est:

$$\frac{31}{50} = 62\%$$

6. L'équilibre précédent étant réalisé, on ajoute 2,00·mol de monoxyde de carbone CO, sans modifier la température ni le volume du système. Calculer le quotient de réaction $Q_{r,int}$ juste après l'introduction du monoxyde de carbone et conclure quant à l'évolution ultérieure du système.

Réponse:

Le quotient de réaction initial est :

$$Q_{r,int} = \frac{2,29 \times 0,29 \times \alpha}{0.21} = 39,4.$$

Puisque $Q_{r,int} > K^{\circ}$, alors d'après la loi d'action de masse, la réaction va s'effectuer dans le sens indirecte.