# Úvod

# Atomické formuly

1. prednáška

Logika pre informatikov a Úvod do matematickej logiky

Ján Kľuka, Ján Mazák Letný semester 2022/2023

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

### Obsah 1. prednášky

Úvod

O logike

O kurzoch LPI a UdML

Atomické formuly

Syntax atomických formúl

Sémantika atomických formúl

**Zhrnutie** 

# Úvod

# Úvod

O logike

# Čo je logika

Logika je vedná disciplína, ktorá študuje usudzovanie.

Správne, racionálne usudzovanie je základom vedy a inžinierstva.

Vyžaduje rozoznať správne úsudky z predpokladaných princípov a pozorovania od chybných úvah a špekulácií.

Správnosť úsudkov, zdá sa, nie je iba vec konvencie a dohody.

Logika skúma, aké sú zákonitosti správneho usudzovania a prečo sú zákonitosťami.

### Ako logika študuje usudzovanie

### Logika má dva hlavné predmety záujmu:

Jazyk zápis pozorovaní, definície pojmov, formulovanie teórií
Syntax pravidlá zápisu tvrdení
Sémantika význam tvrdení

#### Usudzovanie (inferencia)

odvodzovanie nových <mark>logických dôsledkov</mark> z doterajších poznatkov.

Aký má vzťah s jazykom, štruktúrou tvrdení?

# Jazyk, poznatky a teórie

Jazyk slúži na formulovanie tvrdení, ktoré vyjadrujú poznatky o svete (princípy jeho fungovania aj pozorované fakty).

Súboru poznatkov, ktoré považujeme za pravdivé, hovoríme *teória*.

#### Príklad 0.1 (Party time!)

Máme troch nových známych — Kim, Jima a Sarah.

Organizujeme párty a PO: chceme na ňu pozvať niekoho z nich.

Od spoločných kamarátov sme sa ale dozvedeli o ich požiadavkách:

P1: Sarah nepôjde na párty, ak pôjde Kim.

P2: Jim pôjde na párty, len ak pôjde Kim.

P3: Sarah nepôjde bez Jima.

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "V akých zostavách môžu noví známi prísť na párty tak, aby boli všetky podmienky splnené?"

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

| K | J | S | P0 | P1 | P2 | Р3 | P0: Niekto z Kim, Jima, Sarah |
|---|---|---|----|----|----|----|-------------------------------|
| n | n | n |    |    |    |    | príde na párty.               |
| n | n | р |    |    |    |    | P1: Sarah nepôjde na párty,   |
| n | р | n |    |    |    |    | ak pôjde Kim.                 |
| n | р | р |    |    |    |    | P2: Jim pôjde na párty,       |
| р | n | n |    |    |    |    | len ak pôjde Kim.             |
| р | n | р |    |    |    |    | P3: Sarah nepôjde bez Jima.   |
| р | р | n |    |    |    |    |                               |
| р | р | р |    |    |    |    |                               |

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "V akých zostavách môžu noví známi prísť na párty tak, aby boli všetky podmienky splnené?"

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

| K | J | S | P0 | P1 | P2 | Р3 | P0: Niekto z Kim, Jima, Sarah |
|---|---|---|----|----|----|----|-------------------------------|
| n | n | n | n  |    |    |    | príde na párty.               |
| n | n | р |    |    |    |    | P1: Sarah nepôjde na párty,   |
| n | р | n |    |    |    |    | ak pôjde Kim.                 |
| n | р | р |    |    |    |    | P2: Jim pôjde na párty,       |
| р | n | n |    |    |    |    | len ak pôjde Kim.             |
| р | n | р |    |    |    |    | P3: Sarah nepôjde bez Jima.   |
| р | р | n |    |    |    |    |                               |
| р | p | р |    |    |    |    |                               |

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "V akých zostavách môžu noví známi prísť na párty tak, aby boli všetky podmienky splnené?"

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

| K | J | S | P0 | P1 | P2 | P3 | P0: Niekto z Kim, Jima, Sarah |
|---|---|---|----|----|----|----|-------------------------------|
| n | n | n | n  |    |    |    | príde na párty.               |
| n | n | р | р  | р  | р  | n  | P1: Sarah nepôjde na párty,   |
| n | р | n |    |    |    |    | ak pôjde Kim.                 |
| n | р | р |    |    |    |    | P2: Jim pôjde na párty,       |
| р | n | n |    |    |    |    | len ak pôjde Kim.             |
| р | n | р |    |    |    |    | P3: Sarah nepôjde bez Jima.   |
| р | р | n |    |    |    |    |                               |
| р | р | p |    |    |    |    |                               |

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "V akých zostavách môžu noví známi prísť na párty tak, aby boli všetky podmienky splnené?"

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

| K | J | S | P0 | P1 | P2 | Р3 | PO: Niekto z Kim, Jima, Sarah |
|---|---|---|----|----|----|----|-------------------------------|
| n | n | n | n  |    |    |    | príde na párty.               |
| n | n | р | р  | р  | р  | n  | P1: Sarah nepôjde na párty,   |
| n | р | n | р  | p  | n  |    | ak pôjde Kim.                 |
| n | р | р | р  | p  | n  |    | P2: Jim pôjde na párty,       |
| р | n | n |    |    |    |    | len ak pôjde Kim.             |
| р | n | р |    |    |    |    | P3: Sarah nepôjde bez Jima.   |
| р | р | n |    |    |    |    |                               |
| р | р | р |    |    |    |    |                               |

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "V akých zostavách môžu noví známi prísť na párty tak, aby boli všetky podmienky splnené?"

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

| K | J | S | P0 | P1 | P2 | Р3 | P0: Niekto z Kim, Jima, Sarah |
|---|---|---|----|----|----|----|-------------------------------|
| n | n | n | n  |    |    |    | príde na párty.               |
| n | n | р | р  | р  | р  | n  | P1: Sarah nepôjde na párty,   |
| n | р | n | р  | р  | n  |    | ak pôjde Kim.                 |
| n | р | р | р  | р  | n  |    | P2: Jim pôjde na párty,       |
| р | n | n | р  | p  | р  | р  | len ak pôjde Kim.             |
| р | n | р |    |    |    |    | P3: Sarah nepôjde bez Jima.   |
| р | p | n |    |    |    |    |                               |
| р | р | р |    |    |    |    |                               |

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "V akých zostavách môžu noví známi prísť na párty tak, aby boli všetky podmienky splnené?"

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

| K | J | S | P0 | P1 | P2 | Р3 | P0: Niekto z Kim, Jima, Sarah |
|---|---|---|----|----|----|----|-------------------------------|
| n | n | n | n  |    |    |    | príde na párty.               |
| n | n | р | р  | р  | р  | n  | P1: Sarah nepôjde na párty,   |
| n | р | n | р  | р  | n  |    | ak pôjde Kim.                 |
| n | р | р | р  | р  | n  |    | P2: Jim pôjde na párty,       |
| p | n | n | р  | p  | p  | p  | len ak pôjde Kim.             |
| p | n | р | р  | n  |    |    | P3: Sarah nepôjde bez Jima.   |
| p | р | n | р  | p  | p  | p  |                               |
| р | р | р | р  | n  |    |    |                               |

Teória rozdeľuje možné stavy sveta (interpretácie) na:

🗲 stavy, v ktorých je nepravdivá.

Tvrdenie aj teória môžu mať viacero modelov, ale aj žiaden.

#### Príklad 0.2

Modelmi teórie P0, P1, P2, P3 sú dve situácie: keď Kim príde na párty a ostatní noví známi nie, a keď Kim a Jim prídu na párty a Sarah nie.



# Logické dôsledky

Často je zaujímavá iná otázka o teórii — musí byť nejaké tvrdenie pravdivé vždy, keď je pravdivá teória?

V našom príklade:

Kto musí a kto nesmie prísť na párty, aby boli podmienky PO, ..., P3 splnené?



### Logické dôsledky

Logickými dôsledkami teórie sú tvrdenia,

ktoré sú pravdivé vo všetkých modeloch teórie.

#### Príklad 0.3

Logickými dôsledkami teórie PO, P1, P2, P3 sú napríklad:

- Kim príde na párty.
- Sarah nepríde na párty.

Logických dôsledkov je nekonečne veľa, môžu nimi byť ľubovoľne zložité tvrdenia:

- Na party príde Kim alebo Jim.
- Ak príde Sarah, tak príde aj Jim.
- Ak príde Jim, tak nepríde Sarah.

:

# Logické usudzovanie

Preskúmať všetky stavy sveta je často nepraktické až nemožné.

Logické dôsledky ale môžeme odvodzovať usudzovaním (inferovať).

Pri odvodení vychádzame z *premís* (predpokladov) a postupnosťou správnych úsudkov dospievame k *záverom*.

#### Príklad 0.4

Vieme, že ak na párty pôjde Kim, tak nepôjde Sarah (P1), a že ak pôjde Jim, tak pôjde Kim (P2).

- 1. Predpokladajme, že na párty pôjde Jim.
- 2. Podľa 1. a P2 pôjde aj Kim.
- 3. Podľa 2. a P1 nepôjde Sarah.

Teda podľa uvedenej úvahy:

Ak na párty pôjde Jim, tak nepôjde Sarah.

#### Dedukcia

Úsudok je správny (*korektný*) vtedy, keď vždy, keď sú pravdivé jeho premisy, je pravdivý aj jeho záver.

Ak sú všetky úsudky v odvodení správne, záver je logickým dôsledkom premís a odvodenie je jeho *dôkazom* z premís.

Dedukcia je usudzovanie, pri ktorom sa používajú iba správne úsudky.

Logika študuje dedukciu, ale aj niektoré nededuktívne úsudky, ktoré sú vo všeobecnosti nesprávne, ale sú správne v *špeciálnych* prípadoch alebo sú *užitočné*:

- indukcia zovšeobecnenie;
- abdukcia odvodzovanie možných príčin z následkov;
- usudzovanie na základe analógie (podobnosti).

### Kontrapríklady

Ak úsudok nie je správny, vieme nájsť *kontrapríklad* — stav sveta, v ktorom sú predpoklady pravdivé, ale záver je nepravdivý.

#### Príklad 0.5

Nesprávny úsudok:

Ak platia tvrdenia teórie o party, na party príde Jim.

Kontrapríklad:

Stav, kedy príde Kim, nepríde Jim, nepríde Sarah.

Teória je pravdivá, výrok "na party príde Jim" nie je pravdivý.

### Matematická logika

#### Matematická logika

- modeluje jazyk, jeho sémantiku a usudzovanie ako matematické objekty (množiny, postuposti, zobrazenia, stromy);
- rieši logické problémy matematickými metódami.

Rozvinula sa koncom 19. a v prvej polovici 20. storočia vďaka snahám vybudovať základy matematiky bez sporov a paradoxov, mechanizovať overovanie dôkazov alebo priamo matematických viet.

# Matematická logika a informatika

Informatika sa vyvinula z matematickej logiky (von Neumann, Turing, Church, ...)

Väčšina programovacích jazykov obsahuje logické prvky:

• all(x > m for x in arr),

fragmenty niektorých sú priamo preložiteľné na logické formuly:

 select T1.x, T2.y from T1 inner join T2 on T1.z = T2.z where T1.z > 25,

niektoré (Prolog) sú podmnožinou logických jazykov.

Metódami logiky sa dá presne špecifikovať, čo má program robiť, popísať, čo robí, a dokázať, že robí to, čo bolo špecifikované.

Vo výpočtovej logike a umelej inteligencii sa metódy logiky používajú na riešenie rôznych ťažkých problémov (plánovanie, rozvrh, hľadanie a overovanie dôkazov matematických tvrdení, hľadanie vysvetlení, ...).

### Matematická logika a informatika

Veľa otázok v logike je algoritmických.

- Možno usudzovanie pre danú triedu jazykov automatizovať?
- Dá sa nájsť dôkaz pre tvrdenia s takouto štruktúrou dostatočne rýchlym algoritmom?

Logika umožňuje hľadať všeobecné odpovede.

 Ak možno vlastnosť grafu popísať prvorádovou formulou s najviac dvomi kvantifikátormi a zároveň ..., existuje pomerne rýchly algoritmus, ktorý rozhodne, či daný graf túto vlastnosť má.

Automatizované dokazovače: napr. v r. 1996 počítač dokázal Robbins Conjecture, ktorá odolávala ľudskej snahe 60 rokov.

# Formálne jazyky a formalizácia

Matematická logika nepracuje s prirodzeným jazykom, ale s jeho zjednodušenými modelmi — formálnymi jazykmi.

- Presne definovaná, zjednodušená syntax a sémantika.
- Obchádzajú problémy prirodzeného jazyka:
   viacznačnosť slov, nejednoznačné syntaktické vzťahy, zložitá
   syntaktickú analýzu, výminky, obraty s ustáleným významom, ...
- Niekoľko formálnych jazykov už poznáte: aritmetika, jazyky fyzikálnych a chemických vzorcov, programovacie jazyky, ...

Problémy z reálneho sveta opísané v prirodzenom jazyku musíme najprv sformalizovať, a potom naň môžeme použiť aparát matematickej logiky.

Formalizácia vyžaduje cvik — trocha veda, trocha umenie.

# Formalizácia poznatkov

S formalizáciou ste sa už stretli — napríklad pri riešení slovných úloh:

Karol je trikrát starší ako Mária. 
$$k=3\cdot m$$
 Súčet Karolovho a Máriinho veku je 12 rokov.  $\Leftrightarrow$  Koľko rokov majú Karol a Mária?  $k=12$ 

Stretli ste sa už aj s formálnym jazykom výrokovej logiky.

#### Príklad 0.6

Sformalizujme náš párty príklad:

P0: Niekto z trojice Kim, Jim, Sarah pôjde na párty.

P1: Sarah nepôjde na párty, ak pôjde Kim.

P2: Jim pôjde na párty, len ak pôjde Kim.

P3: Sarah nepôjde bez Jima.

### Schéma riešenia problémov pomocou logiky



### Logika prvého rádu

Jazyk logiky prvého rádu (FOL) je jeden zo základných formálnych jazykov, ktorým sa logika zaoberá.

Do dnešnej podoby sa vyvinul koncom 19. a v prvej polovici 20. storočia — G. Frege, G. Peano, C. S. Peirce.

Výrokové spojky + kvantifikátory ∀ a ∃.

Dá sa v ňom vyjadriť veľa zaujímavých tvrdení, bežne sa používa v matematike.

$$\forall \varepsilon > 0 \; \exists \delta > 0 \ldots$$

### Kalkuly — formalizácia usudzovania

Pre mnohé logické jazyky sú známe kalkuly — množiny usudzovacích pravidiel, ktoré sú

```
korektné – odvodzujú iba logické dôsledky,úplné – umožňujú odvodiť všetky logické dôsledky.
```

#### Kalkuly sú bežné v matematike

- na počítanie s číslami, zlomkami (kalkul elementárnej aritmetiky),
- riešenie lineárnych rovníc (kalkul lineárnej algebry),
- derivovanie, integrovanie, riešenie diferenciálnych rovníc (kalkul matematickej analýzy)

Sú korektné, ale nie vždy úplné.

Poznáte už aj jeden logický kalkul — ekvivalentné úpravy.

# Úvod

O kurze

### Prístup k logike na tomto predmete

Stredoškolský prístup príliš neoddeľuje jazyk výrokov od jeho významu a vlastne ani jednu stránku nedefinuje jasne.

Prevedieme vás základmi matematickej a výpočtovej logiky pre (postupne čoraz zložitejšie) fragmenty jazykov logiky prvého rádu.

Pojmy z logiky (výrok, model, logický dôsledok, dôkaz, ...) budeme definovať matematicky (ako množiny, postupnosti, funkcie, ...) zdanlivo budeme o iednoduchých veciach hovoriť zložito.

na praktických cvičeniach ako dátové štruktúry.

Budeme dokazovať ich vlastnosti a programovať algoritmy podľa konštruktívnych dôkazov.

Budeme vyjadrovať výpočtové problémy v logických jazykoch a hľadať ich riešenia pomocou hotových nástrojov na riešenie logických problémov. Organizácia kurzu – rozvrh, kontakty, pravidlá

Organizácia predmetu — rozvrh, kontakty a pravidlá absolvovania — sú popísané na oficiálnej webovej stránke predmetov:

**1-AIN-412** https://dai.fmph.uniba.sk/w/Course:Logic\_for\_CS

1-INF-210 http://www.dcs.fmph.uniba.sk/~mazak/vyucba/udml/

# Atomické formuly

# Jazyky logiky prvého rádu

Logika prvého rádu je trieda (rodina) formálnych jazykov.

### Zdieľajú:

- časti abecedy logické symboly (spojky, kvantifikátory)
- pravidlá tvorby formúl (slov)

Líšia sa v mimologických symboloch — časť abecedy, pomocou ktorej sa tvoria najjednoduchšie — atomické formuly (atómy).

# Atomické formuly a výroky v prirodzenom jazyku

Atomické formuly logiky prvého rádu zodpovedajú pozitívnym jednoduchým vetám o vlastnostiach, stavoch, vzťahoch a rovnosti jednotlivých pomenovaných objektov.

#### Príklady 1.1

- Milo beží.
- Jarka vidí Mila.
- Milo beží, ale Jarka ho nevidí.
- Jarka vidí všetkých.
- Jarka dala Milovi Bobíka v sobotu.
- Jarka nie je doma.
- Niekto je doma.
- Súčet 2 a 2 je 3.
- Prezidentkou SR je Zuzana Čaputová.

# Atomické formuly a výroky v prirodzenom jazyku

Atomické formuly logiky prvého rádu zodpovedajú pozitívnym jednoduchým vetám o vlastnostiach, stavoch, vzťahoch a rovnosti jednotlivých pomenovaných objektov.

#### Príklady 1.1

- Milo beží.
- Jarka vidí Mila.
- 😆 Milo beží, ale Jarka ho nevidí.
- Jarka vidí všetkých.
- Jarka dala Milovi Bobíka v sobotu.
- Jarka nie je doma.
- 😢 Niekto je doma.
- Súčet 2 a 2 je 3.
- Prezidentkou SR je Zuzana Čaputová.

### Indivíduové konštanty

*Indivíduové konštanty* sú symboly jazyka logiky prvého rádu, ktoré pomenúvajú jednotlivé, pevne zvolené objekty.

Zodpovedajú *približne* vlastným menám, jednoznačným pomenovaniam, niekedy zámenám; konštantám v matematike a programovacích jazykoch.

#### Príklady 1.2

Jarka, 2, Zuzana\_Čaputová, sobota,  $\pi, \dots$ 

# Indivíduové konštanty a objekty

#### Indivíduová konštanta

- vždy pomenúva skutočný, existujúci objekt (na rozdiel od vlastného mena Zeus);
- nikdy nepomenúva viac objektov (na rozdiel od vlastného mena Jarka).

#### Objekt

- môže byť pomenovaný aj viacerými indivíduovými konštantami (napr. Prezidentka\_SR a Zuzana\_Čaputová);
- nemusí mať žiadne meno.

## Predikátové symboly

Predikátové symboly sú symboly jazyka logiky prvého rádu, ktoré vyjadrujú vlastnosti alebo vzťahy.

Jednoduché vety v slovenčine majú podmetovú (subjekt) a prísudkovú časť (predikát):

Jarka vidí Mila. podmet prísudok predmet podmetová časť prísudková časť

Do logiky prvého rádu prekladáme takéto tvrdenie pomocou predikátového symbolu vidí, ktorý má dva *argumenty* ("podmety"): indivíduové konštanty Jarka a Milo.

Úloha argumentu v predikáte je daná jeho poradím (podobne ako pozičné argumenty funkcií/metód v prog. jazykoch).

## Arita predikátového symbolu

Predikátový symbol má pevne určený počet argumentov — *aritu*.

Vždy musí mať práve toľko argumentov, aká je jeho arita.

### Dohoda 1.3

Aritu budeme niekedy písať ako horný index symbolu.

Napríklad beží $^1$ , vidí $^2$ , dal $^4$ ,  $<^2$ .

## Zamýšľaný význam predikátových symbolov

*Unárny* predikátový symbol (teda s aritou 1) zvyčajne označuje vlastnosť, druh, rolu, stav.

```
Príklady 1.4 \operatorname{pes}(x) \quad x \text{ je pes} \operatorname{\check{cierne}}(x) \quad x \text{ je \check{cierne}} \operatorname{be\check{z}\acute{ı}}(x) \quad x \text{ be\check{z}\acute{i}}
```

*Binárny*, *ternárny*, ... predikátový symbol (s aritou 2, 3, ...) zvyčajne označuje vzťah svojich argumentov.

```
Príklady 1.5  \begin{array}{ccc} \text{vid}\textsc{i}(x,y) & x \text{vid}\textsc{i} y \\ & \text{dal}(x,y,z,t) & x \text{dal(a/o) objekt} \ y \text{ objekt} \ z \text{ v čase} \ t \end{array}
```

## Kategorickosť významu predikátových symbolov

V bežnom jazyku často nie je celkom jasné, či objekt má alebo nemá nejakú vlastnosť — kedy je niekto *mladý*?

Predikátové symboly predstavujú *kategorické* vlastnosti/vzťahy — pre každý objekt sa dá jednoznačne rozhodnúť, či má alebo nemá túto vlastnosť/vzťah s iným objektom či inými objektmi.

Význam predikátového symbolu preto často zodpovedá rovnakému slovenskému predikátu iba približne.

### Príklad 1.6

Predikát mladší  $^2$ môže označovať vzťah "x je mladší ako y" presne.

Predikát  $mladý^1$  zodpovedá vlastnosti "x je mladý" iba približne.

Nekategorickými vlastnosťami sa zaoberajú fuzzy logiky. Predikáty v nich zachytávajú význam týchto vlastností presnejšie.

### Atomické formuly

### Atomické formuly majú tvar

$$predik \acute{a}t(argument_1, argument_2, ..., argument_k),$$

alebo

$$argument_1 \doteq argument_2$$
,

pričom k je arita  $predik \acute{a}t$ u,

a  $argument_1, ..., argument_k$  sú (nateraz) indivíduové konštanty.

Atomická formula zodpovedá (jednoduchému) výroku v slovenčine,

t.j. tvrdeniu, ktorého pravdivostná hodnota (pravda alebo nepravda) sa dá iednoznačne určiť.

sa da jednoznačne určit

lebo predikát označuje kategorickú vlastnosť/vzťah

a indivíduové konštanty jednoznačne označujú objekty.

## Formalizácia jednoduchých výrokov

Formalizácia je preklad výrokov z prirodzeného jazyka do formálneho logického jazyka.

Nie je to jednoznačný proces.

Vopred daný prvorádový jazyk (konštanty a predikáty) sa snažíme využiť čo najlepšie.

## Príklad 1.7

Sformalizujme v jazyku s konštantami Evka, Jarka a Milo a predikátom vyšší $^2$  výroky:

 $A_1$ : Jarka je vyššia ako Milo.

 $A_2$ : Evka je nižšia ako Milo.

## Formalizácia jednoduchých výrokov

Formalizácia je preklad výrokov z prirodzeného jazyka do formálneho logického jazyka.

Nie je to jednoznačný proces.

Vopred daný prvorádový jazyk (konštanty a predikáty) sa snažíme využiť čo najlepšie.

### Príklad 1.7

Sformalizujme v jazyku s konštantami Evka, Jarka a Milo a predikátom vyšší $^2$  výroky:

 $A_1$ : Jarka je vyššia ako Milo.  $\rightsquigarrow$  vyšší(Jarka, Milo)

 $A_2$ : Evka je nižšia ako Milo.  $\rightsquigarrow$  vyšší(Milo, Evka)

Zanedbávame nepodstatné detaily — pomocné slovesá, predložky, skloňovanie, rod, ...: x je vyšší/vyššia/vyššie ako  $y \rightsquigarrow vyšší(x, y)$ .

Formalizácia spojená s návrhom vlastného jazyka je iteratívna:

Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

### Príklady 1.8

 $A_1$ : Jarka dala Milovi Bobíka.

Formalizácia spojená s návrhom vlastného jazyka je iteratívna: Postupne zisťujeme, aké predikáty a konštanty potrebujeme.

upravujeme predchádzajúce formalizácie.

### Príklady 1.8

 $A_1$ : Jarka dala Milovi Bobíka.

→ d(Jarka)

Formalizácia spojená s návrhom vlastného jazyka je iteratívna: Postupne zisťujeme, aké predikáty a konštanty potrebujeme,

upravujeme predchádzajúce formalizácie.

### Príklady 1.8

 $A_1$ : Jarka dala Milovi Bobíka.

→ d(Jarka)

 $A_2$ : Evka dostala Bobíka od Mila.

Formalizácia spojená s návrhom vlastného jazyka je iteratívna:

Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

### Príklady 1.8

 $A_1$ : Jarka dala Milovi Bobíka.

→ d(Jarka) dalBobíka(Jarka,Milo)

 $A_2$ : Evka dostala Bobíka od Mila.

→ dalBobíka(Milo, Evka)

Formalizácia spojená s návrhom vlastného jazyka je iteratívna:

Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

### Príklady 1.8

 $A_1$ : Jarka dala Milovi Bobíka.

→ d(Jarka) dalBobíka(Jarka,Milo)

 $A_2$ : Evka dostala Bobíka od Mila.

→ dalBobíka(Milo, Evka)

 $A_3$ : Evka dala Jarke Cilku.

Formalizácia spojená s návrhom vlastného jazyka je iteratívna:

Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

### Príklady 1.8

 $A_1$ : Jarka dala Milovi Bobíka.

→ d(Jarka) dalBobíka(Jarka, Milo)

 $A_2$ : Evka dostala Bobíka od Mila.

→ dalBobíka(Milo, Evka)

A<sub>3</sub>: Evka dala Jarke Cilku.

→ dalCilku(Evka, Jarka)

Formalizácia spojená s návrhom vlastného jazyka je iteratívna:

Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

### Príklady 1.8

```
    A<sub>1</sub>: Jarka dala Milovi Bobíka.

        » d(Jarka) dalBobíka(Jarka, Milo) dal(Jarka, Milo, Bobík)
```

 $A_2$ : Evka dostala Bobíka od Mila.

```
→ dalBobíka(Milo, Evka) dal(Milo, Evka, Bobík)
```

A<sub>3</sub>: Evka dala Jarke Cilku.

```
→ dalCilku(Evka, Jarka) dal(Evka, Jarka, Cilka)
```

 $A_4$ : Bobík je pes.

Formalizácia spojená s návrhom vlastného jazyka je iteratívna:

Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

### Príklady 1.8

```
A<sub>1</sub>: Jarka dala Milovi Bobíka.

→ d(Jarka) dalBobíka(Jarka, Milo) dal(Jarka, Milo, Bobík)
```

 $A_2$ : Evka dostala Bobíka od Mila.

```
→ dalBobíka(Milo, Evka) dal(Milo, Evka, Bobík)
```

A<sub>3</sub>: Evka dala Jarke Cilku.

```
→ dalCilku(Evka, Jarka) dal(Evka, Jarka, Cilka)
```

 $A_4$ : Bobík je pes.

→ pes(Bobík)

Minimalizujeme počet predikátov, uprednostňujeme flexibilnejšie, viacúčelovejšie (dal³ pred dalBobíka² a dalCilku²).

### Dosiahneme

- expresívnejší jazyk (vyjadrí viac menším počtom prostriedkov),
- zrejmejšie logické vzťahy výrokov.

Podobné normalizácii databázových schém.

# Atomické formuly

Syntax atomických formúl

\_\_\_\_

### Presné definície

Cieľom logiky je uvažovať o jazyku, výrokoch, vyplývaní, dôkazoch.

Výpočtová logika sa snaží automaticky riešiť konkrétne problémy vyjadrené v logických jazykoch.

Spoľahlivé a overiteľné úvahy a výpočty vyžadujú presnú dohodu na tom, o čom hovoríme — definíciu logických pojmov (jazyk, výrok, pravdivosť, ...).

Pojmy (napr. atomická formula) môžeme zadefinovať napríklad

- matematicky ako množiny, n-tice, relácie, funkcie, postupnosti,...;
- informaticky tým, že ich naprogramujeme,
   napr. zadefinujeme triedu AtomickaFormula v Pythone.

Matematický jazyk je univerzálnejší ako programovací — abstraktnejší, menej nie až tak podstatných detailov.

## Syntax atomických formúl logiky prvého rádu

Najprv sa musíme dohodnúť na tom, aká je syntax atomických formúl logiky prvého rádu:

- z čoho sa skladajú,
- čím vlastne sú,
- akú majú štruktúru.

# Symboly jazyka atomických formúl logiky prvého rádu

Z čoho sa skladajú atomické formuly?

# Symboly jazyka atomických formúl logiky prvého rádu

Z čoho sa skladajú atomické formuly?

### Definícia 1.9

Symbolmi jazyka  $\mathcal L$  atomických formúl logiky prvého rádu sú mimologické, logické a pomocné symboly, pričom:

## Mimologickými symbolmi sú

- indivíduové konštanty z nejakej neprázdnej spočítateľnej množiny  $\mathcal{C}_{\mathcal{L}}$
- Jediným logickým symbolom je ≐ (symbol rovnosti).

# Pomocnými symbolmi sú (, ) a , (ľavá, pravá zátvorka a čiarka).

• a predikátové symboly z nejakej spočítateľnej množiny  $\mathcal{P}_{\mathcal{L}}$ .

Množiny  $\mathcal{C}_{\mathcal{L}}$  a  $\mathcal{P}_{\mathcal{L}}$  sú disjunktné.

Pomocné symboly sa nevyskytujú v symboloch z  $\mathcal{C}_{\mathcal{L}}$  ani  $\mathcal{P}_{\mathcal{L}}$ . Každému symbolu  $P \in \mathcal{P}_{\mathcal{L}}$  je priradená arita  $\mathrm{ar}_{\mathcal{L}}(P) \in \mathbb{N}^+$ .

## Abeceda jazyka atomických formúl logiky prvého rádu

Na Úvode do teoretickej informatiky/Formálnych jazykoch a automatoch by ste povedali, že *abecedou* jazyka  $\mathcal L$  atomických formúl logiky prvého rádu je  $\Sigma_{\mathcal L} = \mathcal C_{\mathcal L} \cup \mathcal P_{\mathcal L} \cup \{ \dot= ,$  (, ), , }.

V logike sa väčšinou pojem *abeceda* nepoužíva, pretože potrebujeme rozlišovať rôzne druhy symbolov.

Namiesto abeceda jazyka  $\mathcal L$  hovoríme množina všetkých symbolov jazyka  $\mathcal L$  alebo len symboly jazyka  $\mathcal L$ .

Na zápise množiny  $\Sigma_{\mathcal{L}}$  však ľahko vidíme, čím sa rôzne jazyky atomických formúl logiky prvého rádu od seba líšia a čo majú spoločné.

# Príklady symbolov jazykov atomických formúl logiky prvého rádu

### Príklad 1.10

Príklad o deťoch a zvieratkách sme sformalizovali v jazyku  $\mathcal{L}_{\text{dz}},$  v ktorom

$$\mathcal{C}_{\mathcal{L}_{dz}} = \{ \text{Bobík, Cilka, Evka, Jarka, Milo} \},$$

$$\mathcal{P}_{\mathcal{L}_{dz}} = \{ \text{dal, pes} \}, \quad \text{ar}_{\mathcal{L}_{dz}}(\text{dal}) = 3, \quad \text{ar}_{\mathcal{L}_{dz}}(\text{pes}) = 1.$$

### Príklad 1.11

Príklad o návštevníkoch party by sme mohli sformalizovať v jazyku  $\mathcal{L}_{\text{party}}$ , kde

$$\begin{split} \mathcal{C}_{\mathcal{L}_{\mathsf{party}}} &= \{ \texttt{Kim}, \texttt{Jim}, \texttt{Sarah} \}, \\ \mathcal{P}_{\mathcal{L}_{\mathsf{party}}} &= \{ \texttt{pride} \}, \quad \text{ar}_{\mathcal{L}_{\mathsf{party}}}(\texttt{pride}) = 1. \end{split}$$

## Označenia symbolov

Keď budeme hovoriť o ľubovoľnom jazyku  $\mathcal{L}$ , často budeme potrebovať nejak označiť niektoré jeho konštanty alebo predikáty, aj keď nebudeme vedieť, aké konkrétne symboly to sú.

Na označenie symbolov použijeme *meta premenné*: premenné v (matematickej) slovenčine, pomocou ktorých budeme hovoriť o (po grécky *meta*) týchto symboloch.

#### Dohoda 1.12

Indivíduové konštanty budeme spravidla označovať meta premennými a,b,c,d s prípadnými dolnými indexmi.

Predikátové symboly budeme spravidla označovať meta premennými P, Q, R s prípadnými dolnými indexmi.

# Atomické formuly jazyka

Čo sú atomické formuly?

## Atomické formuly jazyka

Čo sú atomické formuly?

### Definícia 1.13

Nech  $\mathcal L$  je jazyk atomických formúl logiky prvého rádu.

*Rovnostný atóm* jazyka  $\mathcal L$  je každá postupnosť symbolov  $c_1 \doteq c_2$ , kde  $c_1$  a  $c_2$  sú indivíduové konštanty z  $\mathcal C_{\mathcal L}$ .

**Predikátový atóm** jazyka  $\mathcal L$  je každá postupnosť symbolov  $P(c_1,\ldots,c_n)$ , kde P je predikátový symbol z  $\mathcal P_{\mathcal L}$  s aritou n a  $c_1,\ldots,c_n$  sú indivíduové konštanty z  $\mathcal C_{\mathcal L}$ .

**Atomickými formulami** (skrátene **atómami**) jazyka  $\mathcal L$  súhrnne nazývame všetky rovnostné a predikátové atómy jazyka  $\mathcal L$ .

Množinu všetkých atómov jazyka  $\mathcal L$  označujeme  $\mathcal A_{\mathcal L}.$ 

## Slová jazyka atomických formúl logiky prvého rádu

Na Úvode do teoretickej informatiky by ste povedali, že jazyk  $\mathcal L$  atomických formúl logiky prvého rádu nad abecedou  $\Sigma_{\mathcal L} = \mathcal C_{\mathcal L} \cup \mathcal P_{\mathcal L} \cup \{\doteq, \textbf{(,)}, ,\}$  je množina slov

$$\begin{split} \{\, c_1 &\doteq c_2 \mid c_1 \in \mathcal{C}_{\mathcal{L}}, c_2 \in \mathcal{C}_{\mathcal{L}} \,\} \\ &\quad \cup \{\, P(c_1, \dots, c_n) \mid P \in \mathcal{P}_{\mathcal{L}}, \operatorname{ar}_{\mathcal{L}}(P) = n, c_1 \in \mathcal{C}_{\mathcal{L}}, \dots, c_n \in \mathcal{C}_{\mathcal{L}} \,\}. \end{split}$$

V logike sa jazyk takto nedefinuje, pretože potrebujeme rozlišovať rôzne druhy slov.

## Príklady atómov jazyka

### Príklad 1.14

 $\mbox{V jazyku } \mathcal{L}_{\mbox{dz}}, \mbox{kde } \mathcal{C}_{\mathcal{L}_{\mbox{dz}}} = \{\mbox{Bobik}, \mbox{Cilka}, \mbox{Evka}, \mbox{Jarka}, \mbox{Milo}\},$ 

 $\mathcal{P}_{\mathcal{L}_{dz}} = \{ dal, pes \}, ar_{\mathcal{L}_{dz}}(dal) = 3, ar_{\mathcal{L}_{dz}}(pes) = 1,$ sú *okrem iných* rovnostné atómy:

Bobík  $\doteq$  BobíkCilka  $\doteq$  BobíkEvka  $\doteq$  JarkaBobík  $\doteq$  Cilka

a predikátové atómy:

pes(Cilka) dal(Cilka, Milo, Bobík) dal(Jarka, Evka, Milo).

## Atómy ako triedy



## Atomické formuly

Sémantika atomických formúl

## Vyhodnotenie atomickej formuly

Ako zistíme, či je atomická formula pes(Bobík) pravdivá v nejakej situácii (napríklad u babky Evky, Jarky a Mila na dedine)?

Pozrieme sa na túto situáciu a zistíme:

- 1. aký objekt b pomenúva konštanta Bobík;
- 2. akú vlastnosť p označuje predikát pes;
- 3. či objekt b má vlastnosť p.



## Vyhodnotenie atomickej formuly

Ako môžeme tento postup matematicky alebo informaticky modelovať?

### Potrebujeme:

- matematický/informatický model situácie (stavu vybranej časti sveta),
- postup na jeho použitie pri vyhodnocovaní pravdivosti formúl.

Ako môžeme matematicky popísať nejakú situáciu tak, aby sme pomocou tohto popisu mohli vyhodnocovať atomické formuly v nejakom jazyku logiky prvého rádu  $\mathcal{L}$ ?

Potrebujeme vedieť:

• ktoré objekty sú v popisovanej situácii prítomné,

### Potrebujeme vedieť:

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;

### Potrebujeme vedieť:

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka  $\mathcal L$

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka  $\mathcal L$
- interpretačná funkcia;

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka  $\mathcal L$
- interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka  $\mathcal L$
- interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka  $\mathcal{L}$ , ktoré objekty z domény majú vlastnosť označenú predikátom P,

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka  $\mathcal L$
- interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka £,
   ktoré objekty z domény majú vlastnosť označenú predikátom P,
- tvoria podmnožinu domény;

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka  $\mathcal L$
- interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka £,
   ktoré objekty z domény majú vlastnosť označenú predikátom P,
- tvoria podmnožinu domény;
- pre každý n-árny predikát R z jazyka £, n > 1,
   ktoré n-tice objektov z domény sú vo vzťahu ozn. pred. R,

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka  $\mathcal L$
- interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka £,
   ktoré objekty z domény majú vlastnosť označenú predikátom P,
- tvoria podmnožinu domény;
- pre každý n-árny predikát R z jazyka £, n > 1,
   ktoré n-tice objektov z domény sú vo vzťahu ozn. pred. R,
- tvoria n-árnu reláciu na doméne.

# Štruktúra pre jazyk

#### Definícia 1.15

Nech  $\mathcal L$  je jazyk atomických formúl logiky prvého rádu. **Štruktúrou** pre jazyk  $\mathcal L$  (niekedy *interpretáciou* jazyka  $\mathcal L$ ) nazývame dvojicu  $\mathcal M=(D,i)$ , kde D je ľubovoľná neprázdna množina nazývaná *doména* štruktúry  $\mathcal M$ ; i je zobrazenie, nazývané *interpretačná funkcia* štruktúry  $\mathcal M$ , ktoré

- každej indivíduovej konštante c jazyka  $\mathcal{L}$  priraďuje prvok  $i(c) \in D$ ;
- každému predikátovému symbolu P jazyka  $\mathcal L$  s aritou n priraďuje množinu  $i(P)\subseteq D^n$ .

### Dohoda 1.16

Štruktúry označujeme veľkými písanými písmenami  $\mathcal{M}, \mathcal{N}, \dots$ 

# Príklad štruktúry



#### Príklad 1.17

$$\mathcal{M} = (D, i), \quad D = \left\{ \begin{array}{cccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

# Štruktúra ako informatický objekt

Štruktúru sme definovali pomocou matematických objektov.

Aký **informatický** objekt sa podobá na štruktúru?

# Štruktúra ako informatický objekt

Štruktúru sme definovali pomocou matematických objektov.

Aký informatický objekt sa podobá na štruktúru?

#### Databáza:

Predikátové symboly jazyka  $\sim$  veľmi zjednodušená schéma DB (arita  $\sim$  počet stĺpcov)

Interpretácia predikátových symbolov  $\sim$  konkrétne tabuľky s dátami

| $\iota(pes^*)$ |
|----------------|
| 1              |
|                |
| Ħ              |
| Ħ              |
|                |

.. 15



# Štruktúry – upozornenia

Štruktúr pre daný jazyk je nekonečne veľa.

### Doména štruktúry

- môže mať ľubovoľné prvky;
- nijak nesúvisí s intuitívnym významom interpretovaného jazyka;
- môže byť nekonečná.

### Interpretácia symbolov konštánt:

- každej konštante je priradený objekt domény;
- nie každý objekt domény musí byť priradený nejakej konštante;
- rôznym konštantám môže byť priradený rovnaký objekt.

Interpretácie predikátových symbolov môžu byť nekonečné.

### Príklad 1.18 (Štruktúra s nekonečnou doménou)

$$\mathcal{M} = (\mathbb{N}, i) \quad i(\texttt{pes}) = \{2n \mid n \in \mathbb{N}\} \quad i(\texttt{dal}) = \{(n, m, n + m) \mid n, m \in \mathbb{N}\}$$
 
$$i(\texttt{Bobik}) = 0 \quad i(\texttt{Cilka}) = 1 \quad i(\texttt{Evka}) = 3 \quad i(\texttt{Jarka}) = 5 \quad i(\texttt{Milo}) = 0$$

# Pravdivosť atomickej formuly v štruktúre

Ako zistíme, či je atomická formula pravdivá v štruktúre?

### Definícia 1.19

Nech  $\mathcal{M}=(D,i)$  je štruktúra pre jazyk  $\mathcal L$  atomických formúl jazyka logiky prvého rádu.

Rovnostný atóm  $c_1 \doteq c_2$  jazyka  $\mathcal{L}$  je *pravdivý v štruktúre*  $\mathcal{M}$  vtedy a len vtedy, keď  $i(c_1) = i(c_2)$ .

Predikátový atóm  $P(c_1, \dots, c_n)$  jazyka  $\mathcal{L}$  je pravdivý v štruktúre  $\mathcal{M}$  vtedy a len vtedy, keď  $(i(c_1), \dots, i(c_n)) \in i(P)$ .

Vzťah  $atóm\ A$  je  $pravdivý\ v\ štruktúre\ \mathcal{M}\ skrátene\ zapisujeme\ \mathcal{M} \models A.$ Hovoríme aj, že  $\mathcal{M}$  je  $modelom\ A.$ 

Vzťah atóm A nie je pravdivý v štruktúre  $\mathcal M$  zapisujeme  $\mathcal M \not\models A$ . Hovoríme aj, že A je nepravdivý v  $\mathcal M$  a  $\mathcal M$  nie je modelom A. Príklad 1.20 (Určenie pravdivosti atómov v štruktúre)

 $i(pes) = \{ \Rightarrow \Rightarrow \}$  $i(\mathrm{dal}) = \left\{ \left( \mathring{\P}, \overset{\bullet}{\Im}, \overset{\bullet}{\maltese} \right), \left( \overset{\bullet}{\clubsuit}, \overset{\bullet}{\clubsuit} \right), \left( \overset{\bullet}{\Im}, \overset{\bullet}{\clubsuit} \right) \right\}$ 

Atóm pes(Bobík) je pravdivý v štruktúre  $\mathcal{M}$ , t.j.,  $\mathcal{M} \models \text{pes}(\text{Bobík})$ ,

lebo objekt  $i(Bobík) = \forall$  je prvkom množiny  $\{\forall i \in S\}$  = i(pes). Atóm dal(Evka, Jarka, Cilka) je pravdivý v  $\mathcal{M}$ .

t.i.,  $\mathcal{M} \models dal(Evka, Jarka, Cilka)$ .

lebo  $i(Cilka) = \mathbb{K} \neq \mathbb{K} = i(Bobík).$ 

Atóm Cilka  $\doteq$  Bobík nie je pravdivý v  $\mathcal{M}$ , t.j.,

 $\mathcal{M} \not\models Cilka \doteq Bobík$ 

# Atomické formuly

Zhrnutie

#### **Zhrnutie**

- Logika prvého rádu je rodina formálnych jazykov.
- Každý jazyk logiky prvého rádu je daný neprázdnou množinou indivíduových konštánt a množinou predikátových symbolov.
- Atomické formuly sú základnými výrazmi prvorádového jazyka.
  - Postupnosti symbolov  $P(c_1, ..., c_n)$  (predikátové) a  $c_1 \doteq c_2$  (rovnostné).
  - Zodpovedajú pozitívnym jednoduchým výrokom o vlastnostiach, stavoch, vzťahoch, rovnosti jednotlivých pomenovaných objektov.
- Význam jazyku dáva štruktúra matematický opis stavu sveta
  - Skladá sa z neprázdnej domény a z interpretačnej funkcie.
  - Konštanty interpretuje ako prvky domény.
  - Predikáty interpretuje ako podmnožiny domény/relácie na doméne.
- Pravdivosť atómu určíme interpretovaním argumentov a zistením, či je výsledná n-tica objektov prvkom interpretácie predikátu, resp. pri rovnostnom atóme, či sa objekty rovnajú.