The basics of clustering

A: *K*-means clustering

The *k*-means optimization problem

- Input: Points $x_1, \ldots, x_n \in \mathbb{R}^d$; integer k
- Output: "Centers", or representatives, $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$
- Goal: Minimize average squared distance between points and their nearest representatives:

$$cost(\mu_1, ..., \mu_k) = \sum_{i=1}^n \min_j ||x_i - \mu_j||^2$$

Centers carve \mathbb{R}^d into k **convex** regions: μ_j 's region consists of points for which it is the closest center.

Lloyd's *k*-means algorithm

NP-hard optimization problem. Heuristic: "k-means algorithm".

- Initialize centers μ_1, \ldots, μ_k in some manner.
- Repeat until convergence:
 - Assign each point to its closest center.
 - Update each μ_i to the mean of the points assigned to it.

Each iteration reduces the cost \Rightarrow convergence to a local optimum.

Initialization matters

Initializing the *k*-means algorithm

Typical practice: choose k data points at random as the initial centers.

Another common trick: start with extra centers, then prune later.

A particularly good initializer: k-means++

- Pick a data point x at random as the first center
- Let $C = \{x\}$ (centers chosen so far)
- Repeat until desired number of centers is attained:
 - Pick a data point x at random from the following distribution:

$$\Pr(x) \propto \operatorname{dist}(x, C)^2$$
,

where
$$dist(x, C) = min_{z \in C} ||x - z||$$

• Add x to *C*

B: Two uses of clustering

Two common uses of clustering

Vector quantization

Find a finite set of representatives that provides good coverage of a complex, possibly infinite, high-dimensional space.

 Finding meaningful structure in data Finding salient grouping in data.

Representing images using k-means codewords

How to represent a collection of images as fixed-length vectors?

- Take all $\ell \times \ell$ patches in all images. Extract features for each.
- Run k-means on this entire collection to get k centers.
- Now associate any image patch with its nearest center.
- Represent an image by a histogram over $\{1, 2, \dots, k\}$.

Looking for natural groups in data

"Animals with attributes" data set

- 50 animals: antelope, grizzly bear, beaver, dalmatian, tiger, ...
- 85 attributes: longneck, tail, walks, swims, nocturnal, forager, desert, bush, plains, . . .
- Each animal gets a score (0-100) along each attribute
- 50 data points in \mathbb{R}^{85}

Apply k-means with k = 10 and look at grouping obtained.

- zebra
- 2 spider monkey, gorilla, chimpanzee
- 3 tiger, leopard, wolf, bobcat, lion
- 4 hippopotamus, elephant, rhinoceros
- **(5)** killer whale, blue whale, humpback whale, seal, walrus, dolphin
- 6 giant panda
- 7 skunk, mole, hamster, squirrel, rabbit, bat, rat, weasel, mouse, raccoon
- antelope, horse, moose, ox, sheep, giraffe, buffalo, deer, pig, cow
- 9 beaver, otter
- grizzly bear, dalmatian, persian cat, german shepherd, siamese cat, fox, chihuahua, polar bear, collie

- zebra
- 2 spider monkey, gorilla, chimpanzee
- 3 tiger, leopard, fox, wolf, bobcat, lion
- hippopotamus, elephant, rhinoceros, buffalo, pig
- 5 killer whale, blue whale, humpback whale, seal, otter, walrus, dolphin
- 6 dalmatian, persian cat, german shepherd, siamese cat, chihuahua, giant panda, collie
- beaver, skunk, mole, squirrel, bat, rat, weasel, mouse, raccoon
- **8** antelope, horse, moose, ox, sheep, giraffe, deer, cow
- hamster, rabbit
- u grizzly bear, polar bear

C: Beyond *k*-means

K-means: the good and the bad

The good:

- Fast and easy.
- Effective in quantization.

The bad:

• Geared towards data in which the clusters are spherical, and of roughly the same radius.

Is there is a similarly-simple algorithm in which clusters of more general shape are accommodated?

Preview: Mixtures of Gaussians

Each of the k clusters is specified by:

- ullet a Gaussian distribution $P_j = \mathcal{N}(\mu_j, \Sigma_j)$
- a mixing weight π_j

Overall distribution over \mathbb{R}^d : a **mixture of Gaussians**

$$Pr(x) = \pi_1 P_1(x) + \dots + \pi_k P_k(x)$$

D: Hierarchical clustering

Hierarchical clustering

Choosing the number of clusters (k) is difficult.

Often: no single right answer, because of multiscale structure.

Hierarchical clustering avoids these problems.

Example: gene expression data

The single linkage algorithm

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two clusters with the closest pair of points
- Disregard singleton clusters

Linkage methods

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
 - Merge the two "closest" clusters

How to measure distance between two clusters C and C'?

Single linkage

$$\operatorname{dist}(C,C') = \min_{x \in C, x' \in C'} \|x - x'\|$$

Complete linkage

$$\operatorname{dist}(C,C') = \max_{x \in C, x' \in C'} \|x - x'\|$$

Average linkage

Three commonly-used variants:

1 Average pairwise distance between points in the two clusters

$$dist(C, C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C} \sum_{x' \in C'} \|x - x'\|$$

2 Distance between cluster centers

$$dist(C, C') = ||mean(C) - mean(C')||$$

3 Ward's method: the increase in *k*-means cost occasioned by merging the two clusters

$$\mathsf{dist}(C,C') = \frac{|C| \cdot |C'|}{|C| + |C'|} \|\mathsf{mean}(C) - \mathsf{mean}(C')\|^2$$