CSE 230

The λ-Calculus

Background

Developed in 1930's by Alonzo Church

Studied in logic and computer science

Test bed for procedural and functional PLs

Simple, Powerful, Extensible

"Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus." (Landin '66)

Syntax

Syntax

Three kinds of expressions (terms):

e ::= x Variables

 $\lambda x.e$ Functions (λ -abstraction)

| e₁ e₂ Application

Application associates to the left

x y z means (x y) z

Abstraction extends as far right as possible:

 $\lambda x. x \lambda y. x y z \text{ means } \lambda x.(x (\lambda y. ((x y) z)))$

Examples of Lambda Expressions

Scope of an Identifier (Variable)

Identity function

$$I =_{def} \lambda x. x$$

A function that always returns the identity fun

$$\lambda y. (\lambda x. x)$$

A function that applies arg to identity function:

$$\lambda f. f(\lambda x. x)$$

Free and Bound Variables

λx . E Abstraction binds variable x in E

x is the newly introduced variable

E is the scope of x

x is bound in λx . E

"part of program where variable is accessible"

Free and Bound Variables

y is free in E if it occurs not bound in E

 $Free(x) = \{x\}$

Free($E_1 E_2$) = Free(E_1) \cup Free(E_2)

Free(λx . E) = Free(E) - { x }

e.g: Free($\lambda x. x (\lambda y. x y z)$) = { z }

Renaming Bound Variables

Substitution

α -renaming

 λ -terms after renaming bound variables Considered identical to original

Example: λx . $x == \lambda y$. $y == \lambda z$. z

Rename bound variables so names unique

 $\lambda x. x (\lambda y.y) x instead of <math>\lambda x. x (\lambda x.x) x$

Easy to see the scope of bindings

[E'/x] E : Substitution of E' for x in E

- 1. Uniquely rename bound vars in E and E'
- 2. Do textual substitution of E' for x in E

Example: $[y (\lambda x. x)/x] \lambda y. (\lambda x. x) y x$

- 1. After renaming: [y (λv . v)/x] λz . (λu . u) z x
- 2. After substitution: λz . (λu . u) z (y (λv . v))

Semantics ("Evaluation")

Semantics: Beta-Reduction

The evaluation of $(\lambda x. e) e'$

- 1. binds x to e'
- 2. evaluates e with the new binding
- 3. yields the result of this evaluation

$$(\lambda x. e) e' \rightarrow [e'/x]e$$

Semantics ("Evaluation")

Another View of Reduction

The evaluation of $(\lambda x. e) e'$

- 1. binds x to e'
- 2. evaluates e with the new binding
- 3. yields the result of this evaluation

Example: $(\lambda f. f (f e)) g \rightarrow g (g e)$

Terms can grow substantially by reduction

Examples of Evaluation

Examples of Evaluation

Identity function

$$\rightarrow$$
 [E / x] x

... yet again

$$(\lambda f. f (\lambda x. x)) (\lambda x. x)$$

$$\rightarrow$$
 [$\lambda x. x / f$] f ($\lambda x. x$)

=
$$[(\lambda x. x) / f] f (\lambda y. y)$$

=
$$(\lambda x. x) (\lambda y. y)$$

$$\rightarrow$$
 [λy . y/x] x

$$= \lambda y. y$$

Examples of Evaluation

Review

$$(\lambda x. x x)(\lambda y. y y)$$

$$\rightarrow$$
 [λ y. y y / x] x x

=
$$(\lambda y. y y)(\lambda y. y y)$$

=
$$(\lambda x. x x)(\lambda y. y y)$$

$$\rightarrow$$
 ...

A non-terminating evaluation!

A calculus of functions:

$$e := x \mid \lambda x. e \mid e_1 e_2$$

Eval strategies = "Where to reduce"?

Normal, Call-by-name, Call-by-value

Church-Rosser Theorem

Regardless of strategy, upto one "normal form"

Programming with the λ -calculus

Local Variables (Let Bindings)

λ -calculus vs. "real languages" ?

Local variables?

Bools , If-then-else ?

Records?

Integers?

Recursion?

Functions: well, those we have ...

$$(\lambda x. e_2) e_1$$

Programming with the λ -calculus

Encoding Booleans in λ -calculus

λ -calculus vs. "real languages" ?

Local variables (YES!)

Bools, If-then-else?

Records?

Integers?

Recursion?

Functions: well, those we have ...

Bool is a *fun* that takes *two* choices, returns *one*

How can you view this as a "function"?

What can we do with a boolean?

Make a binary choice

Encoding Booleans in λ -calculus

Bool = fun, that takes two choices, returns one

true = $_{def} \lambda x. \lambda y. x$ false =_{def} λx . λy . y

if E_1 then E_2 else $E_3 =_{def} E_1 E_2 E_3$

Example: "if true then u else v" is

 $(\lambda x. \lambda y. x) u v \rightarrow (\lambda y. u) v \rightarrow u$

Boolean Operations: Not, Or

Boolean operations: not

Function takes b:

returns "opposite" of b's return

not =_{def} λ b.(λ x. λ y. b y x)

Boolean operations: or

Function takes b_1 , b_2 :

returns function takes x,y:

returns function takes x,y:

returns (if b_1 then x else (if b_2 then x else y))

or = $_{def} \lambda b_1 . \lambda b_2 . (\lambda x. \lambda y. b_1 x (b_2 x y))$

Programming with the λ -calculus

Encoding Pairs (and so, Records)

λ -calculus vs. "real languages" ?

Local variables (YES!)

Bools, If-then-else (YES!)

Records?

Integers?

Recursion?

Functions: well, those we have ...

What can we do with a pair?

Select one of its elements

Pair = function takes a bool,

returns the left or the right element

mkpair $e_1 e_2 =_{def} \lambda b. b e_1 e$

= "function-waiting-for-bool"

 $fst p =_{def} p true$

 $snd p =_{def} p false$

Encoding Pairs (and so, Records)

Programming with the λ -calculus

mkpair $e_1 e_2 =_{def} \lambda b$. $b e_1 e$ fst $p =_{def} p$ true snd $p =_{def} p$ false

Example

fst (mkpair x y) \rightarrow (mkpair x y) true \rightarrow true x y \rightarrow x

λ -calculus vs. "real languages" ?

Local variables (YES!)

Bools, If-then-else (YES!)

Records (YES!)

Integers?

Recursion?

Functions: well, those we have ...

Encoding Natural Numbers

Operating on Natural Numbers

What can we do with a natural number?

Iterate a number of times over some function

n = function that takes fun f, starting value s,
returns: f applied to s "n" times

$$0 =_{def} \lambda f. \ \lambda s. \ s$$

$$1 =_{def} \lambda f. \ \lambda s. \ f \ s$$

$$2 =_{def} \lambda f. \ \lambda s. \ f \ (f \ s)$$

:

Called Church numerals (Unary Representation)

 $(n f s) = apply f to s "n" times, i.e. <math>f^n(s)$

Testing equality with 0

iszero n =
$$_{def}$$
 n (λ b. false) true
iszero = $_{def}$ λ n.(λ b.false) true

Successor function

succ n =
$$_{def} \lambda f. \lambda s. f (n f s)$$

succ = $_{def} \lambda n. \lambda f. \lambda s. f (n f s)$

Addition

add
$$n_1 n_2 =_{def} n_1 \operatorname{succ} n_2$$

add $=_{def} \lambda n_1 . \lambda n_2 . n_1 \operatorname{succ} n_2$

Multiplication

mult
$$n_1 n_2 =_{def} n_1 \text{ (add } n_2) 0$$

mult $=_{def} \lambda n_1 . \lambda n_2 . n_1 \text{ (add } n_2) 0$

Example: Computing with Naturals

Example: Computing with Naturals

What is the result of add 0?

```
(\lambda n_1. \lambda n_2. n_1 \operatorname{succ} n_2) 0 \Rightarrow

\lambda n_2. 0 \operatorname{succ} n_2 =

\lambda n_2. (\lambda f. \lambda s. s) \operatorname{succ} n_2 \Rightarrow

\lambda n_2. n_2 =

\lambda x. x
```

mult 2 2

- → 2 (add 2) 0
- → (add 2) ((add 2) 0)
- →2 succ (add 2 0)
- → 2 succ (2 succ 0)
- → succ (succ (succ 0)))
- \rightarrow succ (succ ($\lambda f. \lambda s. f(0 f s)$)))
- \rightarrow succ (succ ($\lambda f. \lambda s. f s$)))
- \rightarrow succ (succ (λg . λy . g ((λf . λs . f s) g y)))
- \rightarrow succ (succ (λg . λy . g (g y)))
- →* λg. λy. g (g (g (g y)))
- = 4

```
Programming with the \lambda-calculus
```

Encoding Recursion

λ-calculus vs. "real languages"? Local variables (YES!) Bools , If-then-else (YES!) Records (YES!) Integers (YES!)

Write a function find:

IN: predicate P, number n

OUT: smallest num >= n s.t. P(n)=True

Functions: well, those we have ...

Encoding Recursion

The Y-Combinator

```
find satisfies the equation:
```

Recursion?

- Define: $F = \lambda f. \lambda p. \lambda n. (p n) n (f p (succ n))$
- A fixpoint of F is an x s.t. x = F x
- find is a fixpoint of F!
 as find p n = F find p n
 - 03 <u>1110</u> p 11 = <u>1 11110</u> p 1
 - so find = F find
- Q: Given λ -term F, how to write its fixpoint ?

$Y = \frac{\lambda}{\lambda} E(\lambda y E(y y)) (\lambda x E(x y))$

$$Y =_{def} \lambda F. (\lambda y.F(y y)) (\lambda x. F(x x))$$

Earns its name as ...

Fixpoint Combinator

$$Y F \rightarrow (\lambda y.F(y y)) (\lambda x.F(x x))$$

$$\rightarrow$$
 F $((\lambda x.F(x x))(\lambda z.F(z z)))$ \leftarrow F $(Y F)$

So, for any λ -calculus function F get Y F is fixpoint!

$$YF = F(YF)$$

Whoa!

Define: $F = \lambda f.\lambda p.\lambda n.(p n) n (f p (succ n))$

and: find = Y F

Y-Combinator in Practice

```
Whats going on ?

find p n

=_{\beta} Y F p n
=_{\beta} F (Y F) p n
=_{\beta} F find p n
=_{\beta} (p n) n (find p (succ n))

Many other fixpoint combinators
```

All Recursion Factored Into Y

Expressiveness of λ -calculus

Encodings are fun

Including Klop's Combinator:

Programming in pure λ -calculus is not!

```
\mathbf{Y}_{\mathbf{k}} =_{\mathsf{def}} (\mathsf{L} \; \mathsf{L} \; \mathsf{L}
```

We know λ -calculus encodes them

where:

 $\mathbf{L} =_{\mathsf{def}} \lambda \mathsf{abcdefghIjkImnopqstuvwxyzr}.$

So add 0,1,2,...,true,false,if-then-else to PL

r (this is a fix point combinator)

Next, types...