| Experiment No | ) |
|---------------|---|
|---------------|---|

Determination of Standard Electrode Potential and Verification of Nerst Equation.

<u>Aim:</u> To set up the Galvanic Cell and Record the Potential of the cell.

<u>Requirements:</u>

- i) Construct and write your Procedure.
- ii) Potential obtained in Volts.
- iii) Cell reactions and representation.

Conclusion:

11 -

## PADRE CONCEICAO COLLEGE OF ENGINEERING

## EXPERIMENT NO: 2

## CONDUCTOMETRIC TITRATION

AIM: To determine the conductance of strong acid (HCl), and weak base (NH<sub>4</sub>OH).

<u>REQUIREMENTS:</u> 0.1N NH<sub>4</sub>OH, 0.1N HCl, distilled water, pipette, burette, conductometer, conductivity cell.

THEORY: When a strong acid (HCl) is titrated against a weak base NH4OH

 $H^+Cl^- + NH_4^+OH^- \rightarrow NH_4^+Cl^- + H_2O$ 

The conductivity first decreases because of the replacement of the H<sup>+</sup> ions by NH<sub>4</sub><sup>+</sup> ions. After the equivalence point is reached, further the addition of NH<sub>4</sub>OH does not change the resultant conductivity because NH<sub>4</sub>OH being a weak electrolyte, has a very small conductivity as compared with the HCl or NH<sub>4</sub>Cl.

PROCEDURE: Fill the burette with 0.1N NH<sub>4</sub>OH. Pipette out 10 ml of acid in the beaker and add 25 ml of distilled water. Dip the electrode in it. Add 0.5 ml of NH<sub>4</sub>OH solution from the burette, continue till 16 ml. Plot a graph of conductivity against volume of NH<sub>4</sub>OH added.

## **OBSERVATION**:

| Volume of      | Conductivity | Volume of                   | Conductivity |
|----------------|--------------|-----------------------------|--------------|
| NH₄OH added in |              | NH <sub>4</sub> OH added in |              |
| (ml)           |              | (ml)                        |              |
| 0.0            | 11.3         | 8.5                         | 3.9          |
| 0.5            | 10.8         | 9.0                         | 3.6          |
| 1.0            | 10:2         | 9.5                         | 3.3          |
| 1.5            | 9.7          | 10.0                        | 3.0          |
| 2.0            | 9.2          | 10.5                        | 3.0          |
| 2.5            | 8.7          | 11.0                        | 3.0          |
| 3.0            | 8.3          | 11.5                        | 3.0          |
| 3.5            | F-8          | 12.0                        | 3.0          |
| 4.0            | 7.4          | 12.5                        | 2.9          |
| 4.5            | 7.0          | 13.0                        | 2.9          |
| 5.0            | 6:6          | 13.5                        | 2.9          |
| 5.5            | 6.2          | 14.0                        | 2.9          |
| 6.0            | 5.8          | 14.5                        | 2.8          |
| 6.5            | 5.4          | 15.0                        | 2.8          |
| 7.0            | 5.0          | 15.5                        | 2.8          |
| 7.5            | H 6          | 16.0                        | 2.8          |
| 8.0            | H-3          |                             |              |

RESULT: Volume of NH<sub>4</sub>OH required for equivalence point = \_\_\_\_ ml.

