GEL-2003 ÉLECTROTECHNIQUE	EXAMEN FINAL Le 30 avril 2018 De 10h30 à 12h20 Local VCH-3860
-------------------------------------	---

Document autorisé	- Une feuille format lettre (8.5 po. x 11 po.) manuscrite recto-verso
Remarques	- Écrivez proprement et lisiblement - La démarche de votre solution doit être clairement explicitée - Les erreurs d'inattention et de transcription ne sont pas acceptées

Problème no. 1 (25 points)

a) Un transformateur monophasé 60 Hz, 50 kVA, 2400 V/240 V possède les paramètres suivants:

$$R_1 = 1.2 \Omega$$

$$X_1 = 2.3 \Omega$$

$$R_2 = 0.012 \Omega$$

$$X_2 = 0.023 \Omega$$
 $R_c = 12 k\Omega$

$$R_a = 12 \text{ k}\Omega$$

$$X_m = 27 \text{ k}\Omega$$

Une charge inductive est connectée au secondaire.

L'ampèremètre indique 18 A. Le wattmètre indique 34 kW.

- Calculer la tension V₂ (valeur efficace) au secondaire et le facteur de puissance à la charge (6 points)
- Calculer les pertes Fer et les pertes Cuivre dans le transformateur (6 points)
- Calculer le rendement du transformateur dans ces conditions de fonctionnement (3 points)
- b) Pour la suite du problème, on suppose que le transformateur T_1 est idéal.

On utilise les deux enroulements de ce transformateur monophasé pour câbler un autotransformateur élévateur de tension de rapport 2400 V / 2640 V.

- Tracer le schéma de câblage de l'autotransformateur. (5 points)

Une source de tension 2400 V, 60 Hz est connectée au primaire et une charge $Z_2 = (10 + j15) \Omega$ est connectée au secondaire de l'autotransformateur.

- Calculer la valeur efficace du courant I_s débité par la source et la puissance active P_s fournie par la source. (5 points)

Problème no. 2 (25 points)

Trois transformateurs monophasés identiques 60 Hz, 50 kVA, 2400V/240V sont connectés en Δ -Y pour former un transformateur triphasé.

Les paramètres (ramenés au primaire) d'un transformateur monophasé sont:

$$R_{eq} = 2.40 \Omega$$
 $X_{eq} = 3.30 \Omega$ $X_{m} = 25 k\Omega$ $R_{c} = 15 k\Omega$

a) Le primaire du transformateur triphasé est relié à une source triphasée de 2400 V (ligne-ligne). Le secondaire alimente une charge équilibrée composée de trois impédances identiques connectées en Δ.

- Tracer le circuit monophasé équivalent du système. (Bien indiquer les valeurs des éléments) (6 points)
- Calculer:
 - . le courant de ligne au primaire (valeur efficace) (4 points)
 - . la tension ligne-ligne au secondaire (valeur efficace) (4 points)
 - . le rendement du transformateur triphasé dans ces conditions de fonctionnement (4 points)
- b) Un banc de condensateurs triphasé est connecté en parallèle avec la charge pour amener le facteur de puissance de la charge à 1.0.

- Calculer le courant de ligne au primaire (valeur efficace). (7 points)

Problème no. 3 (25 points)

Soit le convertisseur à thyristors triphasé suivant.

La tension en conduction des thyristors est égale à V_F = 1.5 V. L'inductance de fuite par phase du transformateur est égale à L_s = 3 mH. L'angle d'amorçage α est maintenu constant. L'ampèremètre DC indique 18.7 A.

- a) Calculer la valeur moyenne de V_{cc} lorsque la charge est déconnectée. (6 points)
- b) **Déterminer** l'angle d'amorçage α (en degré). (4 points) **Déterminer** l'angle de commutation μ (en degré). (4 points)
- c) Calculer les quantités suivantes:
 - la puissance P_{cc} dissipée dans la charge (3 points)
 - les pertes par conduction dans les six thyristors (3 points)
 - le facteur de la puissance à l'entrée du convertisseur (5 points)

Remarques

- On peut utiliser l'approximation suivante: $P_{src} = P_{cc} + Pertes par conduction dans les thyristors$
- Pour calculer la valeur efficace du courant i_a, on peut utiliser sa forme d'onde idéale (sans commutation)

Problème no. 4 (25 points)

On utilise un hacheur dévolteur (convertisseur buck) pour produire une tension continue de 12 V à partir d'une source continue de 24 V.

La chute de tension en conduction de l'IGBT est $V_{CE}(on) = 1.0$ V. La chute de tension en conduction de la diode est $V_F = 0.5$ V. Les temps de commutation de l'IGBT et de la diode sont de 1.0 μs pour la montée et 1.0 μs pour la descente. La fréquence de hachage est de 20 kHz.

- a) **Déterminer** le rapport cyclique α du hacheur. (4 points)
- b) Tracer en fonction du temps la tension v_L aux bornes de l'inductance, le courant i_L dans l'inductance, le courants i_T dans l'IGBT, le courants i_D dans la diode D, le courant i_C dans le condensateur C et la tension v_C aux bornes du condensateur C. (9 points)

Remarques:

- Utiliser la feuille graphique ci-jointe pour tracer les formes d'ondes (sans tenir compte de la commutation).
- Il est suffisant de tracer un cycle de fonctionnement du hacheur.
- c) Calculer l'ondulation du courant i_L et l'ondulation de la tension v_C. (5 points)
- d) Calculer les pertes par conduction et les pertes par commutation dans l'IGBT et dans la diode. (5 points) **Déduire** le rendement du hacheur (2 points).