

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15070052904

FCC REPORT (WIFI)

Applicant: Shenzhen Rainbow Time Technology Co.,Ltd.

Address of Applicant:

Room 905, ChangHong Technology Building, Science and

Technology Park, Nanshan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: VP5003A, Q1

Trade mark: Vulcan, UBTEL

FCC ID: 2AFC6-VP5003A

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 01 Jul., 2015

Date of Test: 02 Jul., to 28 Jul., 2015

Date of report issued: 28 Jul., 2015

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	28 Jul., 2015	Original

Prepared by: Sent Yim Date: 28 Jul., 2015

Report Clerk

Reviewed by: GAVEN Date: 28 Jul., 2015

Project Engineer

3 Contents

			Page
1	CO/	/ER PAGE	1
2	VER	RSION	2
3	CON	NTENTS	3
4		ST SUMMARY	
5		NERAL INFORMATION	
O	GEN	NEKAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	8
	5.5	LABORATORY LOCATION	8
	5.6	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	19
	6.5	POWER SPECTRAL DENSITY	28
	6.6	BAND EDGE	
	6.6.	1 Conducted Emission Method	33
	6.6.2	2 Radiated Emission Method	36
	6.7	Spurious Emission	
	6.7.	1 Conducted Emission Method	53
	6.7.2	2 Radiated Emission Method	60
7	TES	ST SETUP PHOTO	68
Ω	FIIT	CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Rainbow Time Technology Co.,Ltd.
Address of Applicant:	Room 905, ChangHong Technology Building, Science and Technology Park, Nanshan District, Shenzhen, China
Manufacturer:	Shenzhen Rainbow Time Technology Co., Ltd.
Address of Manufacturer:	Room 905, ChangHong Technology Building, Science and Technology Park, Nanshan District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	VP5003A, Q1
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.0 dBi
AC adapter:	Model:HJ-0501000 Input:100-240V AC,50/60Hz 0.15A Output:5.0V DC MAX 1000mA
Power supply:	Rechargeable Li-ion Battery DC3.7V-1900mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
		4	2427MHz	7	2442MHz			
5 2432MHz 8 2447MHz								
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS15070052904

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS15070052904

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207					
Test Method:	ANSI C63.4: 2009	ANSI C63.4: 2009				
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Francisco de (MILE)	Limit (c	dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 * Decreases with the logarithn	60	50			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 					
Test setup:	LISN 40cm		er — AC power			
Test Instruments:	Refer to section 5.6 for details	3				
Test mode:	Refer to section 5.3 for details	3				
Test results:	Passed					

Measurement Data

Neutral:

Trace: 17

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL Site Condition

Pro : 529RF

EUT : Mobile phone
Model : VP5003A
Test Mode : WIFI MODE
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

:							
	Read	LISN	Cable		Limit	Over	
Freq	Level	Factor	Loss	Level	Line	Limit	Remark
MHz	dBu∀	<u>dB</u>	dB	dBu₹	dBu∀	dB	
0.277	20.69	0.26	10.74	31.69	60.90	-29.21	QP
0.299	13.93	0.26	10.74	24.93	50.28	-25.35	Average
0.471	22.41	0.28	10.75	33.44	46.49	-13.05	Average
0.486	28.35	0.29	10.76	39.40	56.23	-16.83	QP
0.582	11.82	0.24	10.77	22.83	46.00	-23.17	Average
0.679	20.61	0.19	10.77	31.57	56.00	-24.43	QP
0.739	10.81	0.19	10.79	21.79	46.00	-24.21	Average
1.049	10.09	0.22	10.88	21.19	46.00	-24.81	Average
1.077	17.72	0.23	10.88	28.83	56.00	-27.17	QP
1.456	9.75	0.26	10.92	20.93	46.00	-25.07	Average
3.123	17.20	0.29	10.92	28.41	56.00	-27.59	QP
24.142	21.80	0.48	10.88	33.16	60.00	-26.84	QP
	0.277 0.299 0.471 0.486 0.582 0.679 0.739 1.049 1.077 1.456 3.123	Freq Level MHz dBuV 0.277 20.69 0.299 13.93 0.471 22.41 0.486 28.35 0.582 11.82 0.679 20.61 0.739 10.81 1.049 10.09 1.077 17.72 1.456 9.75 3.123 17.20	MHz dBuV dB 0.277 20.69 0.26 0.299 13.93 0.26 0.471 22.41 0.28 0.486 28.35 0.29 0.582 11.82 0.24 0.679 20.61 0.19 0.739 10.81 0.19 1.049 10.09 0.22 1.077 17.72 0.23 1.456 9.75 0.26 3.123 17.20 0.29	MHz dBuV dB dB 0.277 20.69 0.26 10.74 0.299 13.93 0.26 10.74 0.471 22.41 0.28 10.75 0.486 28.35 0.29 10.76 0.582 11.82 0.24 10.77 0.679 20.61 0.19 10.77 0.739 10.81 0.19 10.79 1.049 10.09 0.22 10.88 1.077 17.72 0.23 10.88 1.456 9.75 0.26 10.92 3.123 17.20 0.29 10.92	MHz dBuV dB dB dB dBuV 0.277 20.69 0.26 10.74 31.69 0.299 13.93 0.26 10.74 24.93 0.471 22.41 0.28 10.75 33.44 0.486 28.35 0.29 10.76 39.40 0.582 11.82 0.24 10.77 22.83 0.679 20.61 0.19 10.77 31.57 0.739 10.81 0.19 10.79 21.79 1.049 10.09 0.22 10.88 21.19 1.077 17.72 0.23 10.88 28.83 1.456 9.75 0.26 10.92 20.93 3.123 17.20 0.29 10.92 28.41	MHz dBuV dB dB dBuV dBuV 0.277 20.69 0.26 10.74 31.69 60.90 0.299 13.93 0.26 10.74 24.93 50.28 0.471 22.41 0.28 10.75 33.44 46.49 0.486 28.35 0.29 10.76 39.40 56.23 0.582 11.82 0.24 10.77 22.83 46.00 0.679 20.61 0.19 10.77 31.57 56.00 0.739 10.81 0.19 10.79 21.79 46.00 1.049 10.09 0.22 10.88 21.19 46.00 1.077 17.72 0.23 10.88 28.83 56.00 1.456 9.75 0.26 10.92 20.93 46.00 3.123 17.20 0.29 10.92 28.41 56.00	Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB dB

Line:

Trace: 15

Site : CCIS Shielding Room Condition : FCC CLASS-B QP LISN LINE

Pro : 529RF
EUT : Mobile phone
Model : VP5003A
Test Mode : WIFI MODE
Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Carey

Remark

CHAIR	•	Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	dB	dB	dBu₹	dBu∜	dB	
1	0.277	20.43	0.26	10.74	31.43	60.90	-29.47	QP
1 2 3	0.299	13.78	0.26	10.74	24.78	50.28	-25.50	Average
	0.474	21.08	0.29	10.75	32.12	56.45	-24.33	QP
4 5 6 7 8 9	0.479	10.23	0.29	10.75	21.27	46.36	-25.09	Average
5	0.739	8.02	0.22	10.79	19.03	46.00	-26.97	Average
6	0.759	20.86	0.23	10.80	31.89	56.00	-24.11	QP
7	1.060	17.78	0.25	10.88	28.91	56.00	-27.09	QP
8	1.197	3.50	0.25	10.89	14.64	46.00	-31.36	Average
9	3.025	18.27	0.27	10.92	29.46	56.00	-26.54	QP
10	3.207	6.23	0.27	10.91	17.41	46.00	-28.59	Average
11	24.142	23.73	0.49	10.88	35.10	60.00	-24.90	QP
12	24.142	6.60	0.49	10.88	17.97	50.00	-32.03	Average

Notes

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r03 section 9.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 9.2 Maximum conducted (average) output power.		

Measurement Data

Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesuit
Lowest	14.88	11.93	11.92	10.03		
Middle	14.74	12.96	12.28	12.02	30.00	Pass
Highest	14.81	12.25	13.04	10.18		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Page 15 of 69

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH		6dB Emission	Limit(kHz)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	Rosult
Lowest	9.76	15.28	16.08	35.52		
Middle	10.24	15.84	15.28	35.52	>500	Pass
Highest	10.24	16.00	15.28	35.52		

Test CH		99% Occupy	Limit(kHz)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iZ)	result
Lowest	12.56	16.48	17.60	35.84		
Middle	12.80	16.48	17.60	35.84	N/A	N/A
Highest	12.88	16.48	17.60	35.84		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 2.JUL.2015 21:57:44

Lowest channel

Date: 2..TIT..2015 22:20:01

Middle channel

Date: 2.JUL.2015 22:20:45

Highest channel

Date: 2.JUL.2015 21:58:35

Lowest channel

Date: 2.JUL.2015 22:17:55

Middle channel

Date: 2..TII..2015 22:23:10

Highest channel

Date: 2.JUL.2015 22:00:50

Lowest channel

Date: 2.JUL.2015 22:07:39

Middle channel

Date: 2..TII..2015 22:24:06

Highest channel

Test mode: 802.11n(H40)

Date: 2.JUL.2015 22:01:42

Lowest channel

Date: 2.JUL.2015 22:04:07

Middle channel

Date: 2..MIT..2015 22:05:00

Highest channel

99% OBW

Test mode: 802.11b

Date: 2.JUL.2015 21:56:55

Lowest channel

Date: 2..TIIT..2015 22:19:13

Middle channel

Date: 2.JUL.2015 22:21:05

Highest channel

Test mode: 802.11g

Date: 2.JUL.2015 21:59:03

Lowest channel

Date: 2.JUL.2015 22:18:12

Middle channel

Date: 2..TIII..2015 22:22:14

Highest channel

Test mode: 802.11n(H20)

Date: 2.JUL.2015 22:00:13

Lowest channel

Date: 2.JUL.2015 22:06:43

Middle channel

Date: 2..TIIT..2015 22:24:30

Highest channel

Test mode: 802.11n(H40)

Date: 2.JUL.2015 22:02:13

Lowest channel

Date: 2.JUL.2015 22:03:31

Middle channel

Date: 2..TIII..2015 22:05:26

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r03 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Toot CH		Power Spec	Limit(dBm)	Result		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(abin)	Result
Lowest	5.59	0.20	0.20	-5.28		
Middle	5.52	1.11	1.35	-3.12	8.00	Pass
Highest	5.76	0.30	0.27	-5.08		

Test plot as follows:

Test mode: 802.11b

Date: 2.JUL.2015 21:56:35

Lowest channel

Date: 2.JUL.2015 22:18:53

Middle channel

Date: 2.JUL.2015 22:21:28

Highest channel

Date: 2.JUL.2015 21:59:35

Lowest channel

Date: 2.JUL.2015 22:18:31

Middle channel

Date: 2..TUT..2015 22:21:58

Highest channel

Test mode: 802.11n(H20)

Date: 2.JUL.2015 21:59:57

Lowest channel

Date: 2.JUL.2015 22:06:23

Middle channel

Date: 2..TUT..2015 22:24:51

Highest channel

Test mode: 802.11n(H40)

Date: 2.JUL.2015 22:02:39

Lowest channel

Date: 2.JUL.2015 22:02:58

Middle channel

Date: 2..TUT..2015 22:05:48

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074v03r03 section 13			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
	Spectrum Analyzer			
	E.U.T			
	Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Date: 2.JUL.2015 21:49:57

Lowest channel

Date: 2.JUL.2015 21:55:47

Highest channel

802.11g

Date: 2.JUL.2015 21:50:40

Lowest channel

Date: 2..TIIT..2015 21:55:06

Highest channel

802.11n(H20)

Date: 2.JUL.2015 21:51:47

Lowest channel

Date: 2.JUL.2015 21:54:16

Highest channel

802.11n(H40)

Date: 2.JUL.2015 21:52:37

Lowest channel

Date: 2.JUL.2015 22:39:16

Highest channel

6.6.2 Radiated Emission Method

	SSIOII MICHIO						
Test Requirement	: FCC	FCC Part 15 C Section 15.209 and 15.205					
Test Method:	ANS	ANSI C63.10: 2013 and KDB 558074v03r03 section 12.1					
Test Frequency R	ange: 2.3G	2.3GHz to 2.5GHz					
Test site:	Mea	Measurement Distance: 3m					
Receiver setup:							
	Fr	equency	Detector	RBW	VBW	Remark	
	Abo	ove 1GHz	Peak	1MHz	3MHz	Peak Value	
Limit:			Average Valu	lue 1MHz 10Hz		Average Value	
LIIIII.		Frequency		Limit (dBuV/m @3m)		Remark	
		Above 1		54.00		Average Value	
				74.0		Peak Value e 0.8 meters above	
Tast sature	2. 3. 4. 5. 6.	 antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 					
Test setup:		AE EUT Horn Antenna Tower Ground Reference Plane Test Receiver					
Test Instruments:	Refe	Refer to section 5.6 for details					
Test mode:	Refe	Refer to section 5.3 for details					
Test results:	Pass	sed					

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 529 Pro

EUT : Mobile phone Model : VP5003A Test mode : B-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

Remark

a,	LK .								
	Freq		Antenna Factor				Limit Line	Remark	
	MHz	dBu∜	dB/m		<u>d</u> B	dBuV/m	dBuV/m	 	
	2390.000 2390.000	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6.63 6.63		54.22 41.97		Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Site

Condition

Pro

: Mobile phone EUT : VP5003A Model Test mode : B-L Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey Remark :

aı	. K.									
			Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	dB		
	2390.000	19.77	27.58	6.63	0.00	53.98	74.00	-20.02	Peak	
	2390, 000	7.67	27.58	6, 63	0.00	41.88	54, 00	-12.12	Average	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 529 Condition

Pro

EUT : Mobile phone Model : VP5003A
Test mode : B-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

Remark

CMAIL	3		Antenna Factor				Limit Line		Remark	
-	MHz	dBu∜	$-\overline{dB}/\overline{m}$	d₿	dB	dBuV/m	dBuV/m	<u>dB</u>		-
	2483.500 2483.500	F 200 Selection 1 (12 To 12 To	THE PARTY OF THE P			53.38 43.09			Peak Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

529 Pro

: Mobile phone : VP5003A EUT Model Test mode : B-H Mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey Remark :

rk :	7007 50	0.50	2010/04/2015	50		(2.4)	122	
	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
					TD_TT/	TD T77		
MHZ	dbuy	dB/m	ab	ab.	apa v/m	abuv/m	аb	
2483.500	18.88	27.52	6.85	0.00	53.25	74.00	-20.75	Peak
2483, 500								

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

529 Pro : Mobile phone EUT Model

: VP5003A : G-L Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

Remark

Freq			Cable Loss						
 MHz	dBu∇	<u>d</u> B/π		<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>		
90.000 90.000		27.58 27.58		0.00 0.00				Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 529 Pro

EUT : Mobile phone Model : VP5003A Test mode : G-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey Remark :

ıar.	к :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
•	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
S	2390.000	18.41	27.58	6.63	0.00	52.62	74.00	-21.38	Peak
2	2390.000	7.87	27.58	6.63	0.00	42.08	54.00	-11.92	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

Condition

Pro

: Mobile phone **EUT** : VP5003A Model Test mode : G-H Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Carey Remark :

arı	к :									
			Antenna				Limit			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
Ī	MHz	dBu∜	-dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
	2483.500	21.42	27.52	6.85		55.79	74.00	-18.21	Peak	
	2483, 500	10.19	27.52	6.85	0.00	44.56	54.00	-9.44	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 529 Pro

EUT : Mobile phone Model : VP5003A Test mode : G-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

Remark

aı	. A.								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
	2483.500	24.18	27.52	6.85	0.00	58.55	74.00	-15.45	Peak
	2483, 500	10. 28	27, 52	6, 85	0.00	44.65	54,00	-9.35	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 529

EUT : Mobile phone : VP5003A Model Test mode : N20-L Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

Remark

رما			Antenna Factor						Remark	
	MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	dB		
	2390.000 2390.000					52.96 42.92				

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: 529 Pro

EUT : Mobile phone Model : VP5003A
Test mode : N20-L Mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

Rema

narr	:								
			Antenna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB	
	2390.000	20.28	27.58	6.63	0.00	54.49	74.00	-19.51	Peak
)	2390 000	8 39	27 58	6 63	0.00	42 60	54 00	-11 40	Amerage

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Pro : 529

EUT : Mobile phone
Model : VP5003A
Test mode : N20-H Mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

Remark

	1 13	Read	Antenna	Cable	Preamp		Limit	Over		
	Freq		Factor						Remark	
ō	MHz	dBu∜	—dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB		-
	2483.500			200 THE RESERVE		58.21				
-3	2483.500	11.32	27.52	6.85	0.00	45.69	54.00	-8.31	Average	

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

Condition

Pro

: Mobile phone EUT : VP5003A Model : N20-H Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

Remark

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
7	MHz	dBu₹	dB/m	āB	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	dB	
1 2	2483.500 2483.500				0.00 0.00				Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 529

: Mobile phone EUT Model : VP5003A Test mode : N40-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

Remark

	Read	Antenna	Cable	Preamp		Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBu₹	dB/m	₫B	dB	dBuV/m	dBu√/m	dB		
2390.000 2390.000	736 (mile 94) 776 (mile	27.58 27.58		0.00					
2390.000	8.99	21.00	0.00	0.00	43.20	54.00	-10.80	Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 529 Condition

Pro

EUT Mobile phone Model : VP5003A
Test mode : N40-L Mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

Remark

	SI		Antenna Factor			Limit		Remark	
	100000000	and the second	dB/m	<u>d</u> B	Granden Adam Ale		- Annual Control of the Control of t		
1	2390.000 2390.000				52.95 43.10			Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

529 Pro

EUT : Mobile phone Model VP5003A : N40-H Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey

Remark

nari	к :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	26.38	27.52	6.85	0.00	60.75	74.00	-13.25	Peak
2	2483.500	11.69	27.52	6.85	0.00	46.06	54.00	-7.94	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 529 Condition

Pro

EUT : Mobile phone VP5003A Model Test mode : N40-H Mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey

Remark

aı	IK :									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	dB	d <u>B</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2483.500	26.87	27.52	6.85	0.00	61.24	74.00	-12.76	Peak	
	2483, 500	10, 12	27.52	6.85	0.00	44.49	54.00	-9.51	Average	

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	NSI C63.10:2013 and KDB558074 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Mario Model of Monte.							
	Spectrum Analyzer							
	E.U.T							
	Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

Test mode: 802.11g Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

Test mode: 802.11n(H40) Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205										
Test Method:	ANSI C63.10:2013										
Test Frequency Range:	9kHz to 25GHz										
Test site:	Measurement D	Measurement Distance: 3m									
Receiver setup:	Frequency Detector RBW VBW Remark										
·	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value										
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value										
	Above 1GHz Peak 1MHz 3MHz Peak Value										
	Above 1G112 Average Value 1MHz 10Hz Average Value										
Limit:		-	1: :(ID)/	/ 60)	Б						
	Freque		Limit (dBuV/		Remark						
	30MHz-8 88MHz-2		40.0 43.5		Quasi-peak Value Quasi-peak Value						
	216MHz-9		46.0		Quasi-peak Value						
	960MHz-		54.0		Quasi-peak Value						
			54.0		Average Value						
	Above 1	GHz	74.0)	Peak Value						
Test Procedure:	the ground to determing the EUT wantenna, watower. 3. The antennathe ground Both horizon make the rance of the EUT wantennathe ground Both horizon make the rance of the test-results of the state of the EUT have 10dB	at a 3 meter cane the position of was set 3 meters which was mount of the position of the posi	amber. The tape of the highest away from the don the to the defendence of the maximum all polarization, the EUT awas turned the was turned from the EUT in peasiting could be tred. Otherwood the control of the tested the second of the tested the second of the tested of	able was ro st radiation. the interfer op of a varia a meter to for a value of the ons of the an T was arran to heights to from 0 degr eak Detect old Mode. ak mode wa be stopped a vise the emi one by one	able-height antenna our meters above he field strength. Intenna are set to higher to its worst from 1 meter to 4 hees to 360 degrees						

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: 529 Pro

: Mobile phone : VP5003A : WIFI Mode EUT Model Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Carey Remark :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
1000 1000	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	31.955	41.36	12.32	0.45	29.97	24.16	40.00	-15.84	QP
1 2 3	75.711	43.73	7.91	0.82	29.67	22.79	40.00	-17.21	QP
3	94.098	44.61	12.67	0.93	29.55	28.66	43.50	-14.84	QP
4	151.597	49.28	8.32	1.32	29.21	29.71	43.50	-13.79	QP
4 5	188.413	40.55	10.40	1.37	28.91	23.41	43.50	-20.09	QP
6	387 992	47 90	14 78	2.08	28 73	36 03	46.00	-9 97	OP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Pro : 529

: Mobile phone : VP5003A EUT Model Test mode : WIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey

Re

	Remark
-	
1	QP
2	QP
2	QP
4	QP
5	QP
6	QP
4 5	69 62

Above 1GHz

Test mode: 802.11b			Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polar.	
(1411 12)	(dBuV)	(dB/m)	(dB)	(dB)	,	(aBa (/iii)	(dB)		
4824.00	44.79	31.53	8.90	40.24	44.98	74.00	-29.02	Vertical	
4824.00	46.11	31.53	8.90	40.24	46.30	74.00	-27.70	Horizontal	
Test mode: 80	02.11b		Test channel: Lowest			Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	34.01	31.53	8.90	40.24	34.20	54.00	-19.80	Vertical	
4824.00	36.95	31.53	8.90	40.24	37.14	54.00	-16.86	Horizontal	

Test mode: 80	Test mode: 802.11b			nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.90	31.58	8.98	40.15	45.31	74.00	-28.69	Vertical	
4874.00	44.95	31.58	8.98	40.15	45.36	74.00	-28.64	Horizontal	
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	34.99	31.58	8.98	40.15	35.40	54.00	-18.60	Vertical	
4874.00	34.86	31.58	8.98	40.15	35.27	54.00	-18.73	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	44.43	31.69	9.08	40.03	45.17	74.00	-28.83	Vertical	
4924.00	34.95	31.69	9.08	40.03	35.69	74.00	-38.31	Horizontal	
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	34.33	31.69	9.08	40.03	35.07	54.00	-18.93	Vertical	
4924.00	34.86	31.69	9.08	40.03	35.60	54.00	-18.40	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	44.55	31.53	8.90	40.24	44.74	74.00	-29.26	Vertical	
4824.00	44.07	31.53	8.90	40.24	44.26	74.00	-29.74	Horizontal	
Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	34.41	31.53	8.90	40.24	34.60	54.00	-19.40	Vertical	
4824.00	34.34	31.53	8.90	40.24	34.53	54.00	-19.47	Horizontal	

Test mode: 80	Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	43.98	31.58	8.98	40.15	44.39	74.00	-29.61	Vertical	
4874.00	45.59	31.58	8.98	40.15	46.00	74.00	-28.00	Horizontal	
Test mode: 80)2.11g		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	33.73	31.58	8.98	40.15	34.14	54.00	-19.86	Vertical	
4874.00	35.90	31.58	8.98	40.15	36.31	54.00	-17.69	Horizontal	

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.84	31.69	9.08	40.03	45.58	74.00	-28.42	Vertical
4924.00	43.60	31.69	9.08	40.03	44.34	74.00	-29.66	Horizontal
Test mode: 8	02.11g		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	34.20	31.69	9.08	40.03	34.94	54.00	-19.06	Vertical
4924.00	33.50	31.69	9.08	40.03	34.24	54.00	-19.76	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	45.21	31.53	8.90	40.24	45.40	74.00	-28.60	Vertical	
4824.00	44.48	31.53	8.90	40.24	44.67	74.00	-29.33	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	35.03	31.53	8.90	40.24	35.22	54.00	-18.78	Vertical	
4824.00	34.57	31.53	8.90	40.24	34.76	54.00	-19.24	Horizontal	

Test mode: 80	02.11n(H20)	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	45.90	31.58	8.98	40.15	46.31	74.00	-27.69	Vertical		
4874.00	44.00	31.58	8.98	40.15	44.41	74.00	-29.59	Horizontal		
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	35.83	31.58	8.98	40.15	36.24	54.00	-17.76	Vertical		
4874.00	34.88	31.58	8.98	40.15	35.29	54.00	-18.71	Horizontal		

Test mode: 80	Test mode: 802.11n(H20)		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.18	31.69	9.08	40.03	44.92	74.00	-29.08	Vertical
4924.00	44.87	31.69	9.08	40.03	45.61	74.00	-28.39	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	34.67	31.69	9.08	40.03	35.41	54.00	-18.59	Vertical
4924.00	34.16	31.69	9.08	40.03	34.90	54.00	-19.10	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	45.22	31.53	8.90	40.24	45.41	74.00	-28.59	Vertical	
4844.00	45.26	31.53	8.90	40.24	45.45	74.00	-28.55	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	35.05	31.53	8.90	40.24	35.24	54.00	-18.76	Vertical	
4844.00	35.16	31.53	8.90	40.24	35.35	54.00	-18.65	Horizontal	

Test mode: 80	02.11n(H40)	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	44.13	31.58	8.98	40.15	44.54	74.00	-29.46	Vertical		
4874.00	45.50	31.58	8.98	40.15	45.91	74.00	-28.09	Horizontal		
Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Ave	rage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	34.21	31.58	8.98	40.15	34.62	54.00	-19.38	Vertical		
4874.00	35.92	31.58	8.98	40.15	36.33	54.00	-17.67	Horizontal		

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	44.72	31.69	9.08	40.03	45.46	74.00	-28.54	Vertical
4904.00	44.55	31.69	9.08	40.03	45.29	74.00	-28.71	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	34.10	31.69	9.08	40.03	34.84	54.00	-19.16	Vertical
4904.00	34.79	31.69	9.08	40.03	35.53	54.00	-18.47	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.