מבוא למחשבים

Lecture 5

arithmetic

Dr. Ron Shmueli

חלק נכבד מהשקפים מבוסס על הספר:

·Heuring and Jordan: "Computer System Design and Architecture", **Prentice Hall**, 2004 ·Chapter 6

2013 Dr. Ron Shmueli

Ripple carry adder

Fig. 3. A 8-bits carry ripple adder.

- חישוב זמן ביצוע.
- (Fan In למימוש כל פונקציה לוגית (בהתעלמות מ 2dt
- מעבר למסכם בבסיס גבוה יותר 2^k שיפור זמן ביצוע -

Two Level Logic Design of a Base 4 Digit Adder

- The base 4 digit x is represented by the 2 bits x_b x_a, y by y_b y_a, and s by s_b s_a
- s_a is independent of x_b and y_b, c₁ is given by y_by_ac₀+x_ay_bc₀+x_bx_ac₀+x_by_ac₀+x_bx_ay_a+x_ay_by_a+x_by_b, while s_b is a 12 input OR of 4 input ANDs

2013 Dr. Ron Shmueli

■ Typical cell produces $s_j = (x_j + y_j + c_j) \mod b$ and $c_{j+1} = \lfloor (x_j + y_j + c_j)/b \rfloor$

Fig. 6.3 2's Complement Adder/Subtracter

A multiplexer to select y or its complement becomes an exclusive OR gate

2013 Dr. Ron Shmueli

Speeding Up Addition With CSA Carry Select Adder

:זמן ביצוע

Extending Carry-select to multiple blocks

- גודל קבוצה אופטימלי:
- r − dt , מס ביטים בבלוק, n- מס ביטים כולל adt , מס בלוקים n/b , מס ביטים בבלוק, n- מס ביטים בבלוק, n- מס ביטים כולל
- T=2(dt)b+2(dt)(n-b)/b $dT/db=2dt+2ndt/(b^2)=0$ \rightarrow b=sqrt(n) : גודל קבוצה אופטימלי:

Speeding Up Addition With CLA Carry Lookahead Adder

Xi	Yi	Ci+1
0	0	
0	1	
1	0	
1	1	

$$G_j = x_j \cdot y_j$$

 $P_j = x_j \times y_j = x_j + y_j$

Dr. Ron Shmueli

2013

CLA - Carry Look Ahead adder

Recursive Carry Lookahead Scheme

Carry Lookahead Adder for Group Size k = 2

- $c1 = G_0 + P_0 c_0$
- $c2 = G_1 + P_1G_0 + P_1P_0c_0 = G_0^1 + P_0^1c_0$
- G_0^1 P_0^1
- $c4 = G_1^1 + P_1^1 G_0^1 + P_1^1 P_0^1 c_0 = G_0^2 + P_0^2 c_0$

מספר הרמות:

k עבור מסכם של M סיביות וגודל קבוצה מספר רמות = $log_k M$

לדוגמא: מסכם 8 סיביות בגודל קבוצה 2 מספר הרמות = 3

חישוב זמן ביצוע

2013 Dr. Ron Shmueli

11

Fig. 6.4 Carry Lookahead Adder for Group Size k = 2

[זמן ביצוע] = 1dt + [$\log_k M$ (2) - 1] 2dt+2dt= [1 + 4 $\log_k M$]dt

PG #levels רמה אחרונה עולים רק עלייה (ויורדים) סר, Ron Shmueli

12

אמסכם 16 סיביות K=4

. השוואת זמן ביצוע עם מסכם גלי.

2013 Dr. Ron Shmueli 13

דוגמא

■ לרשותך יחידות לסיכום 4 סיביות משני סוגים CLA ו- Ripple - נדרש
 ■ לתכנן מסכם 16 סיביות – מה זמן הביצוע בכל אחד מהמקרים?

Fig. 6.5 Digital Multiplication Schema

Fig. 6.7 Unsigned Series-Parallel Multiplication Hardware

לתאר כתיבת תוכנית לביצוע כפל

2013 Dr. Ron Shmueli 17

Steps for Using the Unsigned Series-Parallel Multiplier

- 1) Clear product shift register p.
- 2) Initialize multiplier digit number j=0.
- 3) Form the partial product xy_i.
- 4) Add partial product to upper half of p.
- 5) Increment j=j+1, and if j=m go to step 8.
- 6) Shift p right one digit.
- 7) Repeat from step 3.
- 8) The 2m digit product is in the p register.

Signed Multiplication

- TINXY ATIN The sign of the product can be computed immediately from the signs of the operands
 - For complement numbers, negative operands can be complemented, their magnitudes multiplied, and the product recomplemented if necessary
 - A complement representation multiplicand can be handled by a b's complement adder for partial products and sign extension for the shifts
 - A 2's complement multiplier is handled by the formula for a 2's complement value: add all PP's except last, subtract it.

value(x) =
$$-x_{m-1}2^{m-1} + \sum_{i=0}^{m-2} x_{i}2^{i}$$
 Eq. 6.25

2013

Tomplement Signed Multiplier Hardware

Step Oor Using the 2's Complement **Multiplier Hardware**

- UNXN Y 1) Clear the bit counter and partial product accumulator register.
 - 2) Add the product (AND) of the multiplicand and rightmost multiplier bit.
 - 3) Shift accumulator and multiplier registers right one bit.
 - 4) Count the multiplier bit and repeat from 2 if count less than m-1.
 - 5) Subtract the product of the multiplicand and bit m-1 of the multiplier.

Note: bits of multiplier used at rate product bits produced

2013 Dr. Ron Shmueli

Fig 6.9 Unsigned Binary Division Hardware

Use of Division Hardware for Integer Division

- Put dividend in lower half of register and clear upper half. Put divisor in divisor register. Initialize quotient bit counter to zero.
- 2) Shift dividend register left one bit.
- 3) If difference positive, shift 1 into quotient and replace upper half of dividend by difference. If negative, shift 0 into quotient.
- 4) If fewer than m quotient bits, repeat from 2.
- 5) m bit quotient is an integer, and an m bit integer remainder is in upper half of dividend register.

2013 Dr. Ron Shmueli 23

Integer Binary Division Example: D=45, d=6, q=7, r=3

```
D
            000000101101
      d
            000110
Init.
      D
            00000101101-
      d
            000110
diff(-)
      D
            0000101101 --
                                             0
      d
            000110
diff(-)
      D
            000101101 -- -
                                           0 0
      d
            000110
diff(-)
      D
            00101101 -- - -
                                          000
      d
            000110
diff(+)
      D
            0010101 -- - -
                                        0001
      d
            000110
diff(+)
      D
            001001 - - - - -
                                       00011
                               q
      d
            000110
                                     000111
diff(+)
      rem.
            000011
                               q
```

יישום shifter בעזרת מרבבים

2013 Dr. Ron Shmueli 25

Fig 6.12 Barrel Shifter with a Logarithmic Number of Stages

Fig 6.11 A 6 Bit Crossbar Barrel Rotator for Fast Shifting

2013 Dr. Ron Shmueli

Floating Point Numbers

- נקודה קבוע והשוואה עם נקודה צפה
 - ישר המספרים וגודל שגיאה •

Fig 6.14 Floating Point Numbers Include Scale & Number in One Word

- All floating-point formats follow a scheme similar to the one above
- s is sign, e is exponent, and f is significand
- We will assume a fraction significand, but some representations have used integers

2013 Dr. Ron Shmueli 29

Signs in Floating Point Numbers Normalized Floating Point Numbers Comparison of Normalized Floating Point Numbers

Normalized Floating Point Numbers

- There are multiple representations for a FP #
- If f_1 and $f_2 = 2^d f_1$ are both fractions & $e_2 = e_1$ -d, then (s, f_1, e_1) & (s, f_2, e_2) have same value
- Scientific notation example: .819×10³ = .0819×10⁴
- A normalized floating point number has a leftmost digit nonzero (exponent small as possible)
- Zero cannot fit this rule; usually written as all 0s
- In norm. base 2 left bit =1, so it can be left out
 - So called hidden bit

Normalized FP numbers can be compared for $<, \le, >, \ge, =, \ne$ as if they were integers. This is the reason for the s,e,f ordering

Fig 6.15 IEEE Single-Precision Floating Point Format

s	ign	exponent	fraction	
	s	ê	f ₁ f ₂ f ₂₃	
	0 1	R	9	31

ê	е	Value	Type
255	none	none	Infinity or NaN
254	127	$(-1)^{s} \times (1.f_1f_2) \times 2^{127}$	Normalized
		•••	
_2	-125	$(-1)^{s} \times (1.f_1f_2) \times 2^{-125}$	Normalized
1	-126	$(-1)^{s} \times (1.f_1f_2) \times 2^{-126}$	Normalized
0	-126	$(-1)^{s} \times (0.f_1f_2) \times 2^{-126}$	Denormalized

Exponent bias is 127 for normalized #s

Special Numbers in IEEE Floating Point

- An all zero number is a normalized 0
- Other numbers with biased exponent e = 0 are called denormalized
- Denorm numbers have a hidden bit of 0 and an exponent of -126; they may have leading 0s
- Numbers with biased exponent of 255 are used for ±∞ and other special values, called NaN (not a number)
- For example, one NaN represents 0/0

2013 Dr. Ron Shmueli 33

דוגמאות

- (-1.5)₁₀=(?)_{IEEE}
 - $(3825 \times 10^2)_{10} = (?)_{IFFF}$
 - (00111111001000000000000000000000)_{IEEE}=

IPlay Store - floating point app. Ron Shmueli

Fig 6.16 IEEE Standard Double Precision Floating Point

S	ign	exponent	fraction	
	S	ê	f ₁ f ₂ f ₅ 2	
	$\overline{0}$	1 1	112	63

- Exponent bias for normalized #s is 1023
- The denorm biased exponent of 0 corresponds to an unbiased exponent of -1022
- Infinity and NaNs have a biased exponent of 2047
- Range increases from about 10⁻³⁸≤|x|≤10³⁸ to about 10⁻³⁸≤|x|≤10³⁰⁸

37