Control Theory Intro: Home Assignment #4

October 28, 2021

Yogev Hadadi

Introduction

The purpose of this home assignment is to base your understanding in second order systems, system response and basic control.

Your solutions should be presented in a PDF (not Word!) file. You should submit also a .m file. The first line should print your ID.

>> disp('ID_STUDENT_1 ID_STUDENT_2') % disp('ID_STUDENT_1') if only one student is submitting.

For clarity of the script, you can separate the different sections of the script with a %%. This will automatically create a block in your script. In order to run specifically this block of code press 'Ctrl+Enter'. To run the entire script press 'F5'.

1 Second-order system mesh plot

Create a 3D mesh plot, where, x axis is the value of $\zeta \in [0.2, 2]$, y axis is the value of $\omega_n t \in [2, 14]$, and the z axis is the unit step output response $y(t) \in [0, 2]$.

2 Inverted pendulum on a cart

Fig. 1 shows the inverted pendulum on a cart. We will assume that M >> m and the angle of rotation θ and $\dot{\theta}$ is small so that the equations are linearizable.

Figure 1: Inverted pendulum on a cart.

1. (optional) derive the equations of motion. If you do not wish to derive the equations you can use the following equations:

$$(M+m)\ddot{y} + ml\cos(\theta)\ddot{\theta} - ml\dot{\theta}^{2}\sin\theta - u(t) = 0$$

$$ml\ddot{y}\cos\theta + ml\ddot{\theta} - mgl\sin\theta = 0$$
 (1)

- 2. Linearize the model and write the state-space equations.
- 3. Is the model controlable and observable? (assume $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$).
- 4. Is the system stable?

3 Race-car speed control

The engine, body, and tires of a racing vehicle affect the acceleration and speed attainable. The speed control of the car is represented by the model shown in Fig. 2. (a) Calculate the steady-state error of the car to a step command in speed, (b) Calculate overshoot of the speed to a step command.

Figure 2: Racing car speed control.

4 DC motor control

The block diagram model of an armature-current-controlled DC motor is shown in Fig. 3.

Figure 3: armature-current-controlled DC motor block diagram.

- 1. Determine the steady-state tracking error to a ramp input $r(t) = t, t \ge 0$, in terms of K, K_b , and K_m .
- 2. Let $K_m = 10$ and $K_b = 0.05$, and select K so that steady-state tracking error is equal to 1.
- 3. Plot the response to a unit step input and a unit ramp input for 20 seconds. Are the responses acceptable?