LDA Topicmodel

Riccardo Ruta riccardo.ruta@studenti.unimi.it

06/05/2022

Contents

PART I - CREATE THE DTM	1
PART II - FIND THE BEST NUMBER OF TOPICS K	
PART III - ANALISYS OF THE TOPICS	15
PART IV - RE-ANALISYS OF THE TOPICS as GENRE	17

PART I - CREATE THE DTM

1) Import and clean dataset

```
# import the data
tw <- read_csv("data/large_files/politicians_all_final_tweets.csv", show_col_types = FALSE)</pre>
# Adjust datetime (Run code in this order!)
Sys.setlocale("LC_TIME", "C")
tw$date <- as.Date(strptime(tw$creato_il,"%a %b %d %H:%M:%S %z %Y", tz = "CET"))</pre>
tw$date <- na.replace(tw$date, as.Date(tw$creato_il))</pre>
# Create week variable
tw <- tw %>% mutate(week = cut.Date(date, breaks = "1 week", labels = FALSE))
# Create month variable
tw <- tw %>% mutate(month = cut.Date(date, breaks = "1 month", labels = FALSE))
# Remove missing from tweets column (using remove_na tidyverse)
tw <- tw %>% drop_na(tweet_testo)
# Remove space from genere variable
a <- unique(tw$genere)</pre>
tw$genere <- gsub(a[3],"male",tw$genere)</pre>
# Select variables for the analysis
dataset <- tw %>% select(nome, tweet_testo, genere, party_id,chamber,status, date, week, month )
```

2) Create the corpus

```
corp <- corpus(dataset, text = "tweet_testo")</pre>
```

3) Create the Dfm removing stopwords and trimming

topfeatures(rev_dfm, 20)

##	governo	grazie	lavoro	paese	<u+0001f1ee><</u+0001f1ee>	U+0001F1F9>	presidente
##	25991	20760	18274	16444	15196	14215	
##	grande	italiani	italia	l'italia	via	politica	
##	13606	11993	11955	11728	11495	9930	
##	cittadini	forza	ministro	insieme	mondo	legge	
##	9331	8474	8411	8139	7664	7383	
##	donne	solidarietà					
##	7103	6685					

kable(topfeatures(rev_dfm, 20),col.names = "topfeature")

	topfeature
governo	25991
grazie	20760
lavoro	18274
paese	16444
<u+0001f1ee><u+0001f1f9></u+0001f1f9></u+0001f1ee>	15196
presidente	14215
grande	13606
italiani	11993
italia	11955
l'italia	11728
via	11495
politica	9930
cittadini	9331
forza	8474
ministro	8411
insieme	8139
mondo	7664
legge	7383
donne	7103
solidarietà	6685

4) Convert the Document Feature Matrix (Dfm) in a Topic Model (Dtm)

```
dtm <- quanteda::convert(rev_dfm, to = "topicmodels")</pre>
```

PART II - FIND THE BEST NUMBER OF TOPICS K

1) First try K = 20:80

```
## Finding the best K
top1 <- c(20:80)

## let's create an empty data frame
results1 <- data.frame(first=vector(), second=vector(), third=vector())

system.time(
   for (i in top1)
   {
       set.seed(123)
       lda1 <- LDA(dtm, method= "Gibbs", k = (i), control=list(verbose=50L, iter=100))
       topic <- (i)
       coherence <- mean(topic_coherence(lda1, dtm))
       exclusivity <- mean(topic_exclusivity(lda1))
       results1 <- rbind(results1, cbind(topic, coherence, exclusivity))
   }
}

# save(results1, file="data/results1.Rda")</pre>
```

topic	coherence	exclusivity
20	0.1674464	9.352493
21	0.8376643	9.386225
22	0.7783789	9.396400
23	0.3991629	9.420433
24	0.2202299	9.457425
25	-3.0470840	9.470567

	topic	coherence	exclusivity
59	78	-3.9815896	9.821740
60	79	-2.6484726	9.807149
61	80	-3.8557027	9.840021
62	20	0.1674464	9.352493
63	21	0.8376643	9.386225
64	22	0.7783789	9.396400

Scatterplot K=20:80

From this first try it's seems that the correct number of K is $\dots\dots$

2) Second try K = 70:90

```
top2 <- c(70:90)
top2

results2 <- data.frame(first=vector(), second=vector(), third=vector())
results2</pre>
```

```
system.time(
  for (i in top2)
{
    set.seed(123)
    lda2 <- LDA(dtm, method= "Gibbs", k = (i), control=list(verbose=50L, iter=100))
    topic <- (i)
    coherence <- mean(topic_coherence(lda2, dtm))
    exclusivity <- mean(topic_exclusivity(lda2))
    results2 <- rbind(results2, cbind(topic, coherence, exclusivity))
}

# save(results2, file="data/results2.Rda")</pre>
```

topic	coherence	exclusivity
70	-2.340422	9.801467
71	-3.353960	9.784454
72	-3.287822	9.802082
73	-4.087261	9.806496
74	-3.828622	9.811291
75	-4.152354	9.815591
76	-4.241225	9.796804
77	-3.437873	9.807368
78	-3.981590	9.821740
79	-2.648473	9.807149
80	-3.855703	9.840021
81	-3.323339	9.823939
82	-2.967526	9.832096
83	-3.621427	9.830621
84	-2.488446	9.834195
85	-2.582846	9.835661
86	-3.278275	9.824218
87	-3.419067	9.829809
88	-3.341212	9.835939
89	-3.142610	9.830824
90	-3.718580	9.841006

Scatterplot K=70:90

In this case \dots seems better than \dots

3) Third try K = 10:40 with iteration = 1000

```
## Finding the best K
top_k <- c(10:40)
## let's create an empty data frame
results1 <- data.frame(first=vector(), second=vector(), third=vector())
system.time(
   for (i in top_k)
   {
      set.seed(123)
      lda1 <- LDA(dtm, method= "Gibbs", k = (i), control=list(verbose=50L, iter=1000))
      topic <- (i)
      coherence <- mean(topic_coherence(lda1, dtm))
      exclusivity <- mean(topic_exclusivity(lda1))
      results1 <- rbind(results1, cbind(topic, coherence, exclusivity))
   }
}

## Finding the best K
top_k <- c(10:40)
## control=list(verbose=50L, iter=1000))
      topic <- (i)
      coherence <- mean(topic_coherence(lda1, dtm))
      exclusivity <- mean(topic_exclusivity(lda1))
      results1 <- rbind(results1, cbind(topic, coherence, exclusivity))
   }
}</pre>
```

10 -275.8193 9.792377 11 -277.1995 9.799585 12 -276.6176 9.825317 13 -282.0491 9.836170 14 -277.2525 9.847386 15 -278.0818 9.841498 16 -278.9036 9.865459 17 -275.7004 9.866774 18 -281.7319 9.875940 19 -278.8529 9.871439 20 -278.6834 9.880872 21 -286.9793 9.880067 22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.89581 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.904841 32 -281.1614 9.908701	topic	coherence	exclusivity
11 -277.1995 9.799585 12 -276.6176 9.825317 13 -282.0491 9.836170 14 -277.2525 9.847386 15 -278.0818 9.841498 16 -278.9036 9.865459 17 -275.7004 9.866774 18 -281.7319 9.875940 19 -278.8529 9.871439 20 -278.6834 9.880872 21 -286.9793 9.880067 22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.89581 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701		-275.8193	
13 -282.0491 9.836170 14 -277.2525 9.847386 15 -278.0818 9.841498 16 -278.9036 9.865459 17 -275.7004 9.866774 18 -281.7319 9.875940 19 -278.8529 9.871439 20 -278.6834 9.880872 21 -286.9793 9.880067 22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.885981 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4707 9.910822 35 -282.2445 9.913325 <td< td=""><td></td><td></td><td></td></td<>			
14 -277.2525 9.847386 15 -278.0818 9.841498 16 -278.9036 9.865459 17 -275.7004 9.866774 18 -281.7319 9.875940 19 -278.8529 9.871439 20 -278.6834 9.880872 21 -286.9793 9.880067 22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.885981 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 <td< td=""><td>12</td><td>-276.6176</td><td>9.825317</td></td<>	12	-276.6176	9.825317
15 -278.0818 9.841498 16 -278.9036 9.865459 17 -275.7004 9.866774 18 -281.7319 9.875940 19 -278.8529 9.871439 20 -278.6834 9.880872 21 -286.9793 9.880067 22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.89581 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821	13	-282.0491	9.836170
16 -278.9036 9.865459 17 -275.7004 9.866774 18 -281.7319 9.875940 19 -278.8529 9.871439 20 -278.6834 9.880872 21 -286.9793 9.880067 22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.895891 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.913895 39 -287.0217 9.913895	14	-277.2525	9.847386
17 -275.7004 9.866774 18 -281.7319 9.875940 19 -278.8529 9.871439 20 -278.6834 9.880872 21 -286.9793 9.880067 22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.885981 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.913895 39 -287.0217 9.913895	15	-278.0818	9.841498
18 -281.7319 9.875940 19 -278.8529 9.871439 20 -278.6834 9.880872 21 -286.9793 9.880067 22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.885981 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	16	-278.9036	9.865459
19 -278.8529 9.871439 20 -278.6834 9.880872 21 -286.9793 9.880067 22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.885981 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	17	-275.7004	9.866774
20 -278.6834 9.880872 21 -286.9793 9.880067 22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.885981 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	18	-281.7319	9.875940
21 -286.9793 9.880067 22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.885981 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	19	-278.8529	9.871439
22 -279.0147 9.881363 23 -278.5099 9.887750 24 -275.5894 9.885981 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	20	-278.6834	9.880872
23 -278.5099 9.887750 24 -275.5894 9.885981 25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	21	-286.9793	9.880067
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	-279.0147	9.881363
25 -281.1725 9.891572 26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	23	-278.5099	9.887750
26 -280.6034 9.896865 27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	24	-275.5894	9.885981
27 -276.5881 9.893478 28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895		-281.1725	9.891572
28 -274.0393 9.900883 29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	26	-280.6034	9.896865
29 -278.8082 9.899531 30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	27	-276.5881	9.893478
30 -279.4444 9.903447 31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	28	-274.0393	9.900883
31 -281.9744 9.904841 32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	29	-278.8082	9.899531
32 -281.1614 9.906131 33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	30	-279.4444	9.903447
33 -281.2734 9.908701 34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895		-281.9744	9.904841
34 -281.4107 9.910822 35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	32	-281.1614	9.906131
35 -282.2445 9.913325 36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	33	-281.2734	9.908701
36 -280.0098 9.911821 37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	34	-281.4107	9.910822
37 -279.6674 9.911934 38 -281.1443 9.912321 39 -287.0217 9.913895	35	-282.2445	9.913325
38 -281.1443 9.912321 39 -287.0217 9.913895		-280.0098	9.911821
39 -287.0217 9.913895	37	-279.6674	9.911934
	38	-281.1443	9.912321
40 -281.9565 9.915620	39	-287.0217	9.913895
	40	-281.9565	9.915620

Scatterplot k=10:40

4) Fourth try k = 5:20 iteration n = 2000

```
## Finding the best K
top1234 \leftarrow c(5:20)
top1234
## let's create an empty data frame
results1 <- data.frame(first=vector(), second=vector(), third=vector())</pre>
results1
system.time(
 for (i in top1234)
    set.seed(123)
    lda1 <- LDA(dtm, method= "Gibbs", k = (i), control=list(verbose=50L, iter=2000))</pre>
    topic <- (i)
    coherence <- mean(topic_coherence(lda1, dtm))</pre>
    exclusivity <- mean(topic_exclusivity(lda1))</pre>
    results1 <- rbind(results1 , cbind(topic, coherence, exclusivity ))</pre>
  }
)
# save(results1,file="data/k_5-20.Rda")
```

topic	coherence	exclusivity
5	1.2703475	8.797794
6	-0.2513313	8.815796
7	1.4315439	9.002518
8	0.2889243	9.217023
9	0.4171350	9.025830
10	-1.0321615	9.281054
11	-2.7934947	9.319961
12	-1.7284863	9.338250
13	-4.4400630	9.478833
14	-3.7067269	9.487235
15	-2.5113135	9.514924
16	-5.1962084	9.550672
17	-5.3668034	9.555340
18	-6.0324648	9.600086
19	-4.7693042	9.596540
20	-5.1799566	9.582518

Scatterplot k=5:20

Scatterplot K=20:80

Scatterplot K=70:90

Scatterplot k=10:40

Top terms 01	Top terms 02	Top terms 03	Top terms 04	Top terms 05	Top terms 06	Top terms 07	Top terms 08	Top terms 09	Top terms 10
#afghanistan	president	forza	governo		#iostoconsalvini	#draghi	maggio	the	guerra
#tokyo2020	#quirinal	grand	italiani	donn	governo	draghi	governo	@fratelliditalia	#ucraina
talebani	repubblica	buon	+	via	luglio	governo	#decretorilancio	of	pace
	#presidentedellarepubblica	pd	lavoro	violenza	#recoveryfund	#governodraghi	#fase2	to	ucraina
agosto	#quirinale2022	l'italia	#covid19	giornata	president	lavoro	lavoro	and	putin
pass	draghi	politica	crisi		#cont	paes	ministro	violenza	donn
	gennaio		impres	minacc	#salvini	president	#bonafed	donn	marzo
@stampasgarbi	quirinal	c'è	diretta		legg	@fratelliditalia	#silviaromano	novembr	
grazi	grand	casa	momento	mondo	cont	buon	#recoveryfund	covid	russia
afghanistan	#mattarella	@pdnetwork	l'italia	pensiero	l'italia	l'italia	ripartir	#morradimett	ucraino

Scatterplot k=5:20

After this try i can state that 30(81) is the best choice

PART III - ANALISYS OF THE TOPICS

```
system.time(lda <- LDA(dtm, method= "Gibbs", k = 30, control = list(seed = 123)))
# save(lda, file = "data/lda_k_30.Rda")</pre>
```

Top terms 11	Top terms 12	Top terms 13	Top terms 14	Top terms 15	Top terms 16	Top terms 17	Top terms 18	Top terms 19	Top terms 20
#dpcm	pass	maggio	pass	giugno	giugno	governo	governo	#coronavirus	lavoro
governo	sindaco	april	draghi	#2giugno	#primalitalia	ministro	cont	#mes	paes
#iostoconsalvini	green	vaccinal	natal	scuola	roma	paes	#crisidigoverno	#covid19	italia
ottobr	#greenpass	coprifuoco	green	minacc	bocca	c'è	crisi	#cont	donn
#cont	settembr	@stampasgarbi	vaccinati	+	luglio	cittadini	#cont	april	giornata
#mes	candidato	@fratelliditalia	dicembr	governo	piazza	president	paes	#forzalombardia	commission
covid	città	#nocoprifuoco		#cont	@stampasgarbi	bene	maggioranza	mes	l'italia
@fratelliditalia	draghi	#pnrr	@fratelliditalia	paes	forza		president	liquidità	italiani
de	piazza	pandemia	covid	@luigidimaio		grazi	#governo	ripartir	#lega
jole	roma	draghi	@fattoquotidiano	cont	draghi	parlamento	@fratelliditalia	#fase2	insiem

Top terms 21	Top terms 22	Top terms 23	Top terms 24	Top terms 25	Top terms 26	Top terms 27	Top terms 28	Top terms 29	Top terms 30
settembr	governo	#sanremo2022	#coronavirus	grazi	natal	vaccini	governo	pass	#referendumgiustizia
	0	11	#COLOHAVII US	grazi	natai	vaccini	0	pass	
#iovotono	#iostoconsalvini	febbraio	grazi	anni	cont	donn	agosto	green	giustizia
elettoral	#oggivotolega	draghi	misur	lavoro	governo	buon	anni	ottobr	pass
#processateanchem	#salvini	green	l'emergenza	grand	bilancio	@pdnetwork	vittim	#ddlzan	luglio
#referendum	salvini	pass	momento	diritti	@fratelliditalia	marzo	settembr	roma	#greenpass
parlamentari	#borgonzonipresident	#ucraina	emergenza	via	dicembr	@fratelliditalia	#iovotono	sindaco	gazebo
voto	#prescrizion	parlamento	coronavirus	legg	#mes	auguri	@fratelliditalia	legg	#ddlzan
@fratelliditalia	@fratelliditaiia	@fratelliditalia	casa	president	#natal	draghi	covid		riforma
scuola	#emiliaromagna	guerra	decreto	giovani	italiani	vaccinal	bonus	+	firm
referendum	#m5s	#greenpass	#iorestoacasa	città	mes	vaccino	scuola	@forza_italia	draghi

	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9	Topic 10
titles	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10pic 2	2 10pic 3	4 4	F .		7	o c	0	10pic 10
tities	1	2	3	4	9	0	1	0	Э	10
	#afghanistan	president	forza	governo		#iostoconsalvini	#draghi	maggio	the	guerra
	#tokyo2020	#quirinal	grand	italiani	donn	governo	draghi	governo	@fratelliditalia	#ucraina
	talebani	repubblica	buon	+	via	luglio	governo	#decretorilancio	of	pace
		#presidentedellarepubblica	pd	lavoro	violenza	#recoveryfund	#governodraghi	#fase2	to	ucraina
	agosto	#quirinale2022	l'italia	#covid19	giornata	president	lavoro	lavoro	and	putin
	pass	draghi	politica	crisi		#cont	paes	ministro	violenza	donn
		gennaio		impres	minacc	#salvini	president	#bonafed	donn	marzo
	@stampasgarbi	quirinal	c'è	diretta		legg	@fratelliditalia	#silviaromano	novembr	
	grazi	grand	casa	momento	mondo	cont	buon	#recoveryfund	covid	russia
	afghanistan	#mattarella	@pdnetwork	l'italia	pensiero	l'italia	l'italia	ripartir	#morradimett	ucraino

	Topic 11	Topic 12	Topic 13	Topic 14	Topic 15	Topic 16	Topic 17	Topic 18	Topic 19	Topic 20
titles	11	12	13	14	15	16	17	18	19	20
	#dpcm	pass	maggio	pass	giugno	giugno	governo	governo	#coronavirus	lavoro
	governo	sindaco	april	draghi	#2giugno	#primalitalia	ministro	cont	#mes	paes
	#iostoconsalvini	green	vaccinal	natal	scuola	roma	paes	#crisidigoverno	#covid19	italia
	ottobr	#greenpass	coprifuoco	green	minacc	bocca	c'è	crisi	#cont	donn
	#cont	settembr	@stampasgarbi	vaccinati	+	luglio	cittadini	#cont	april	giornata
	#mes	candidato	@fratelliditalia	dicembr	governo	piazza	president	paes	#forzalombardia	commission
	covid	città	#nocoprifuoco		#cont	@stampasgarbi	bene	maggioranza	mes	l'italia
	@fratelliditalia	draghi	#pnrr	@fratelliditalia	paes	forza		president	liquidità	italiani
	de	piazza	pandemia	covid	@luigidimaio		grazi	#governo	ripartir	#lega
	jole	roma	draghi	@fattoquotidiano	cont	draghi	parlamento	@fratelliditalia	#fase2	insiem

	Topic 21	Topic 22	Topic 23	Topic 24	Topic 25	Topic 26	Topic 27	Topic 28	Topic 29	Topic 30
titles	21	22	23	24	25	26	27	28	29	30
	settembr	governo	#sanremo2022	#coronavirus	grazi	natal	vaccini	governo	pass	#referendumgiustizia
	#iovotono	#iostoconsalvini	febbraio	grazi	anni	cont	donn	agosto	green	giustizia
	elettoral	#oggivotolega	draghi	misur	lavoro	governo	buon	anni	ottobr	pass
	#processateanchem	#salvini	green	l'emergenza	grand	bilancio	@pdnetwork	vittim	#ddlzan	luglio
	#referendum	salvini	pass	momento	diritti	@fratelliditalia	marzo	settembr	roma	#greenpass
	parlamentari	#borgonzonipresident	#ucraina	emergenza	via	dicembr	@fratelliditalia	#iovotono	sindaco	gazebo
	voto	#prescrizion	parlamento	coronavirus	legg	#mes	auguri	@fratelliditalia	legg	#ddlzan
	@fratelliditalia	@fratelliditaiia	@fratelliditalia	casa	president	#natal	draghi	covid		riforma
	scuola	#emiliaromagna	guerra	decreto	giovani	italiani	vaccinal	bonus	+	firm
	referendum	#m5s	#greenpass	#iorestoacasa	città	mes	vaccino	scuola	@forza_italia	draghi

Top terms 01	Top terms 02	Top terms 03	Top terms 04	Top terms 05	Top terms 06	Top terms 07	Top terms 08	Top terms 09	Top terms 10
anni	grazie	#coronavirus	imprese	forza	solidarietà	italia	paese	via	governo
grande	lavoro	#covid19	milioni	lega	libertà	ministro	politica	diretta	italiani
storia	buon	covid	euro	roma	diritti	l'italia	presidente	domani	legge
mondo	donne	scuola	governo	@matteosalvinimi	rispetto	presidente	bene	de	conte
vittime	nazionale	sicurezza	lavoratori	@forza_italia	parole	the	futuro	intervista	parlamento
famiglia	importante	salute	decreto	#lega	democrazia	commissione	momento	intervento	@fratelliditalia
coraggio	giornata	pass	sostegno	salvini	giustizia	italiani	dobbiamo	sera	pd
presto	grande	dati	piano	#salvini	@stampasgarbi	consiglio	cittadini		draghi
italiano	auguri	emergenza	famiglie	regione	diritto	to	dare	parlare	voto
pensiero	mondo	green	risorse	sindaco	violenza	crisi	serve	appena	vuole

	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9	Topic 10
titles	1	2	3	4	5	6	7	8	9	10
	anni	grazie	#coronavirus	imprese	forza	solidarietà	italia	paese	via	governo
	grande	lavoro	#covid19	milioni	lega	libertà	ministro	politica	diretta	italiani
	storia	buon	covid	euro	roma	diritti	l'italia	presidente	domani	legge
	mondo	donne	scuola	governo	@matteosalvinimi	rispetto	presidente	bene	de	conte
	vittime	nazionale	sicurezza	lavoratori	@forza_italia	parole	the	futuro	intervista	parlamento
	famiglia	importante	salute	decreto	#lega	democrazia	commissione	momento	intervento	@fratelliditalia
	coraggio	giornata	pass	sostegno	salvini	giustizia	italiani	dobbiamo	sera	pd
	presto	grande	dati	piano	#salvini	@stampasgarbi	consiglio	cittadini		draghi
	italiano	auguri	emergenza	famiglie	regione	diritto	to	dare	parlare	voto
	pensiero	mondo	green	risorse	sindaco	violenza	crisi	serve	appena	vuole

Here i extract the most important terms from the model

Using 30 topics I imagined that..... COMMENT HERE

This method turns out to be cumbersome and not very informative because for many "topics" it is difficult for me to find a label.

So, I also decided to repeat the search using a much lower K.

```
system.time(lda_k_10 <- LDA(dtm, method= "Gibbs", k = 10, control = list(seed = 123)))
# save(lda, file = "data/lda_k_30.Rda")</pre>
```

Titles:

PART IV - RE-ANALISYS OF THE TOPICS as GENRE

I produced this pdf by filling out an R-Markdown, here i paste my complete script:

```
## EXERCISE 4 --> TOPIC MODEL ##
####################################
library(quanteda.textmodels)
library(quanteda)
library(topicmodels)
library(topicdoc)
library(cowplot)
library(ggplot2)
library(ggplotify)
library(knitr)
library(tibble)
library(kableExtra)
getwd()
setwd("C:/Users/Riccardo/Documents/UNIVERSITA'/MAGISTRALE/Big Data Analysis/LAB4/assignment_4")
getwd()
## Open the file with movie reviews inside the quanteda.textmodels package
data("data_corpus_moviereviews",
     package ="quanteda.textmodels")
## Create the corpus
corp <- tail(data_corpus_moviereviews,500) +</pre>
  head(data corpus moviereviews, 500)
## Extract the actual texts of the movie reviews and adding them as docvars in the corpus
docvars(corp, "texts") <- texts(corp)</pre>
## Create the Dfm removing stopwords
rev_dfm <- dfm(corp, remove =c(stopwords("english"), ("+"), ("<"), (">"),
                               ("rt"), ("00*"),("="),
                               ("`"), ("d"), ("r"), ("t"), ("m"), ("l"),
                               ("b"), ("g"), ("$"), ("j"), ("o"), ("u"),
                               ("e")), tolower = TRUE, stem = FALSE,
                remove_punct = TRUE, remove_numbers=TRUE)
## Timming the Dfm
rev_dfm <-
            dfm_trim(rev_dfm, min_termfreq = 0.95, termfreq_type = "quantile",
                       max docfreq = 0.1, docfreq type = "prop")
kable(topfeatures(rev_dfm, 20))
```

```
## Keeping only documents with number of tokens >0
rev_dfm[ntoken(rev_dfm) == 0,]
rev_dfm <- rev_dfm[ntoken(rev_dfm) > 0,]
str(rev_dfm@docvars)
## Convert the Document Feature Matrix (Dfm) in a Topic Model (Dtm)
dtm <- convert(rev_dfm, to = "topicmodels")</pre>
## Finding the best K
top1 \leftarrow c(20:80)
top1
## let's create an empty data frame
results1 <- data.frame(first=vector(), second=vector(), third=vector())</pre>
results1
system.time(
 for (i in top1)
   set.seed(123)
   lda1 <- LDA(dtm, method= "Gibbs", k = (i), control=list(verbose=50L,</pre>
                                                         iter=100))
   topic <- (i)
   coherence <- mean(topic_coherence(lda1, dtm))</pre>
   exclusivity <- mean(topic exclusivity(lda1))</pre>
   results1 <- rbind(results1 , cbind(topic, coherence, exclusivity ))</pre>
 }
# save(results1, file="data/results1.Rda")
# load("data/results1.Rda")
kable(head(results1))
kable(tail(results1))
str(results1)
plot1 <- as.ggplot(~plot(results1$coherence, results1$exclusivity, main="Scatterplot K=20:80",
    xlab="Semantic Coherence", ylab="Exclusivity ", pch=19, col=ifelse(results1$coherence<=-155.8,"bla
      text(results1$coherence, results1$exclusivity,
           labels=results1$topic, cex= 1, pos=4))
# ggsave("figs/plot1.png", plot = plot1)
plot1
## From this first try it's seems that the correct number of K is close to 71
## Now i repeat the procedure with 70:90
top2 \leftarrow c(70:90)
top2
```

```
results2 <- data.frame(first=vector(), second=vector(), third=vector())</pre>
results2
system.time(
  for (i in top2)
    set.seed(123)
    lda2 <- LDA(dtm, method= "Gibbs", k = (i), control=list(verbose=50L,</pre>
                                                             iter=100))
    topic <- (i)
    coherence <- mean(topic_coherence(lda2, dtm))</pre>
    exclusivity <- mean(topic_exclusivity(lda2))</pre>
    results2 <- rbind(results2 , cbind(topic, coherence, exclusivity ))</pre>
  }
)
# save(results2, file="data/results2.Rda")
# load("data/results2.Rda")
kable(results2)
str(results2)
plot2 <- as.ggplot(~plot(results2$coherence, results2$exclusivity, main="Scatterplot K=70:90",
                         xlab="Semantic Coherence", ylab="Exclusivity ", pch=19,
                         col=ifelse(results2$coherence > -155.3, "red", "black")) +
                     text(results2$coherence, results2$exclusivity, labels=results2$topic, cex= 1, pos
# ggsave("figs/plot2.png", plot = plot2)
plot2
## 81 seems better than 71
## now i repeat the cycle with the correct number of iteration (2000) for 75:85
top3 \leftarrow c(75:95)
top3
results3 <- data.frame(first=vector(), second=vector(), third=vector())</pre>
results3
system.time(
 for (i in top3)
    set.seed(123)
    lda3 <- LDA(dtm, method= "Gibbs", k = (i), control=list(verbose=50L,</pre>
                                                            iter=2000))
    topic <- (i)
    coherence <- mean(topic_coherence(lda3, dtm))</pre>
    exclusivity <- mean(topic_exclusivity(lda3))</pre>
    results3 <- rbind(results3 , cbind(topic, coherence, exclusivity ))</pre>
  }
)
```

```
# save(results3, file="data/results3.Rda")
# load("data/results3.Rda")
kable(results3)
str(results3)
## k=81
plot3 <- as.ggplot(~plot(results3$coherence, results3$exclusivity, main="Scatterplot k=75:95",
     xlab="Semantic Coherence", ylab="Exclusivity ", pch=19, col=ifelse(results3$coherence<=-153.9 | re
      text(results3$coherence, results3$exclusivity,
           labels=results3$topic, cex= 1, pos=4))
plot3
#ggsave("figs/plot3.png", plot = plot3)
grid <- plot_grid(plot1, plot2, plot3, labels = list("k=20:80", "k=70:90",
                                                   "k=75:95"),
                 label x = .15, nrow = 3)
grid
# ggsave("figs/plot_grid.png", plot = grid)
## After this try i can state that 81 is the best choice
load("data/lda.Rda")
\# system.time(lda <- LDA(dtm, method= "Gibbs", k=81, control = list(seed = 123)))
# save(lda, file = "data/lda.Rda")
## Here i extract the most important terms from the model
terms <- get_terms(lda, 10)
dt1 <- terms[,1:10]
dt2 <- terms[,11:20]
dt3 <- terms[,21:30]
dt4 <- terms[,31:40]
dt5 \leftarrow terms[,41:50]
dt6 <- terms[,51:60]
dt7 <- terms[,61:70]
dt8 <- terms[,71:81]
knitr::kable(dt1, col.names = c("Top terms 01", "Top terms 02", "Top terms 03",
                        "Top terms 04", "Top terms 05", "Top terms 06", "Top terms 07", "Top terms 08", "To
 kable_styling(latex_options = "scale_down")
knitr::kable(dt2, col.names = c("Top terms 11", "Top terms 12", "Top terms 13",
                        "Top terms 14", "Top terms 15", "Top terms 16", "Top terms 17", "Top terms 18", "To
  kable_styling(latex_options = "scale_down")
knitr::kable(dt3, col.names = c("Top terms 21", "Top terms 22", "Top terms 23",
                        "Top terms 24", "Top terms 25", "Top terms 26", "Top terms 27", "Top terms 28", "To
```

```
kable_styling(latex_options = "scale_down")
knitr::kable(dt4, col.names = c("Top terms 31", "Top terms 32", "Top terms 33",
                          "Top terms 34", "Top terms 35", "Top terms 36", "Top terms 37", "Top terms 38", "To
  kable_styling(latex_options = "scale_down")
knitr::kable(dt5, col.names = c("Top terms 41", "Top terms 42", "Top terms 43",
                          "Top terms 44", "Top terms 45", "Top terms 46", "Top terms 47", "Top terms 48", "To
  kable_styling(latex_options = "scale_down")
knitr::kable(dt6, col.names = c("Top terms 51", "Top terms 52", "Top terms 53",
                          "Top terms 54", "Top terms 55", "Top terms 56", "Top terms 57", "Top terms 58", "To
  kable styling(latex options = "scale down")
knitr::kable(dt7, col.names = c("Top terms 61", "Top terms 62", "Top terms 63",
                          "Top terms 64", "Top terms 65", "Top terms 66", "Top terms 67", "Top terms 68", "To
  kable_styling(latex_options = "scale_down")
knitr::kable(dt8, col.names = c("Top terms 71", "Top terms 72", "Top terms 73",
                          "Top terms 74", "Top terms 75", "Top terms 76", "Top terms 77", "Top terms 78", "To
  kable_styling(latex_options = "scale_down")
titles <- c("shakespeare", "armageddon", "3", "the usual sospects", "seven", "shrek", "7", "8", "9", "1
            "11", "austin powers", "griffin", "14", "15", "16", "the batman", "18", "19", "20",
            "godzilla", "22", "the grat lebowski", "24", "25", "26", "27", "28", "29", "wonderful christ
            "patch adams", "32", "tommy lee jones", "34", "35", "36", "37", "38", "39", "40",
            "mission impossible", "42", "ted", "teen", "45", "eddie murphy", "47", "48", "49", "50",
            "the truman show", "52", "song", "special effect", "55", "56", "disney cartoon", "john travo
            "61", "62", "bill campbell", "64", "Saving private Ryan", "pulp fiction", "67", "aliens", "6
            "rocky", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81"
table_titles <- rbind (titles, terms)</pre>
t1 <- table_titles[,1:10]</pre>
t2 <- table_titles[,11:20]
t3 <- table_titles[,21:30]
t4 <- table_titles[,31:40]
t5 <- table_titles[,41:50]
t6 <- table_titles[,51:60]
t7 <- table_titles[,61:70]
t8 <- table_titles[,71:81]
kable(t1)%>%
  kable_styling(latex_options = "scale_down")
kable(t1)%>%
  kable_styling(latex_options = "scale_down")
kable(t1)%>%
  kable_styling(latex_options = "scale_down")
```

```
kable(t1)%>%
  kable_styling(latex_options = "scale_down")
kable(t1)%>%
  kable_styling(latex_options = "scale_down")
kable(t1)%>%
  kable styling(latex options = "scale down")
kable(t1)%>%
  kable_styling(latex_options = "scale_down")
kable(t1)%>%
  kable_styling(latex_options = "scale_down")
## Repeat the procedure with K = 3:15 looking for film genre
genere <- c(3:15)
results.genere <- data.frame(first=vector(), second=vector(), third=vector())
system.time(
  for (i in genere)
    set.seed(123)
    lda.genere <- LDA(dtm, method= "Gibbs", k = (i), control=list(verbose=50L, iter=100))</pre>
    topic <- (i)
    coherence <- mean(topic_coherence(lda.genere, dtm))</pre>
    exclusivity <- mean(topic_exclusivity(lda.genere))</pre>
    results.genere <- rbind(results.genere , cbind(topic,</pre>
                                                   coherence, exclusivity ))
  }
)
# save(results.genere, file="data/results_genere.Rda")
# load("data/results_genere.Rda")
plot.genere <- as.ggplot(~plot(results.genere$coherence,</pre>
                               results.genere$exclusivity, main="Scatterplot K=3:9",xlab="Semantic Cohe
                         col=ifelse(results.genere$coherence > -155.3, "red", "black")) + text(results.genere$coherence > -155.3, "red", "black"))
                                                                                              labels=res
# ggsave("figs/plot_genere.png", plot = plot.genere)
plot.genere
compar <- plot_grid(plot3, plot.genere, label_x = .15, ncol = 2 )</pre>
# ggsave("figs/plot_compar.png", plot = compar)
```