Definições básicas

Dados conjuntos A e B, uma **relação binária** R de A para B é um subconjunto do produto cartesiano $A \times B$.

Habitualmente,

em vez de escrever $(a,b) \in R$, escrevemos a R b, e, em vez de $(a,b) \notin R$, escrevemos a R b.

Ex.:

Sejam P_1 o conjunto de todas as pessoas e P_2 o conjunto dos países do mundo. Podemos definir a relação N (de "naturalidade") como

$$N = \{(x,y) \in P_1 \times P_2 \mid x \text{ nasceu em } y\}$$

Se o João nasceu em Portugal, (João, Portugal) $\in N$; o que podemos escrever como João N Portugal.

No caso de A = B, isto é, de $R \subseteq A \times A$, dizemos que R é uma **relação** binária em A.

Exemplo:

 $\{(x,y) \in \mathbb{N}^2 \mid x < y\}$ é uma relação binária em \mathbb{N} , mais precisamente, a relação "menor que" (<) em \mathbb{N} .

Outro exemplo:

Qualquer que seja o conjunto A, podemos definir a relação de igualdade (=) em A (também chamada identidade em A) como $\{(x,x) \mid x \in A\}$

[Nota: Também se definem relações ternárias, como subconjuntos de produtos cartesianos $A \times B \times C$.

Mais geralmente, uma relação de aridade n é um subconjunto de $A_1 \times A_2 \times ... \times A_n$.]

O conjunto de todas as relações binárias de A para B é o conjunto $\mathcal{P}(A \times B)$.

 \emptyset é a **relação vazia**.

 $A \times B$ é a **relação universal** de A para B.

Seja R uma relação de A para B.

- 1. O domínio de R é o conjunto $Dom(R) = \{ \alpha \in A \mid \exists_{b \in B} : (\alpha, b) \in R \}$
- 2. O contradomínio de R é o conjunto $CDom(R) = \{b \in B \mid \exists_{a \in A} : (a,b) \in R\}$

Ex.:

Sejam
$$A = \{1, 2, 3, 4\}$$
, $B = \{-1, 0, 1\}$ e $R = \{(1, 1), (2, -1), (2, 1), (3, -1)\}$.
Então $Dom(R) = \{1, 2, 3\}$ e $CDom(R) = \{1, -1\}$.

Sejam A, B e C conjuntos, R uma relação de A para B e S uma relação de B para C.

- 1. A relação inversa de R é a relação de B para A $R^{-1} = \{(b, a) \mid a R b\}.$
- 2. A composta de $S \in R$ ("S após R") é a relação de A para C $S \circ R = \{(\alpha, c) \mid \exists_{b \in B} : (\alpha R b \wedge b S c)\}.$

Sejam
$$A = \{1, 2, 3, 4\}, B = \{-1, 0, 1\}, C = \{8, 9, 10, 11\},$$

 $R = \{(1, 1), (2, -1), (2, 1), (3, -1)\}$ e $S = \{(-1, 8), (-1, 11), (0, 9), (1, 10)\}.$
Então $R^{-1} = \{(1, 1), (-1, 2), (1, 2), (-1, 3)\}$
e $S \circ R = \{(1, 10), (2, 8), (2, 11), (2, 10), (3, 8), (3, 11)\}$

Algumas propriedades

Sejam R uma relação de A para B, S uma relação de B para C e T uma relação de C para D. Então

- 1. $(R^{-1})^{-1} = R$
- $2. \ \mathsf{Dom}(R^{-1}) = \mathsf{CDom}(R)$
- 3. $CDom(R^{-1}) = Dom(R)$
- 4. $T \circ (S \circ R) = (T \circ S) \circ R$
- 5. $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

Seja R uma relação binária no conjunto A. Dizemos que

- ► R é **reflexiva em A** se $\forall_{\alpha \in A}, \alpha R \alpha$ [se não houver perigo de confusão, dizemos só **reflexiva**]
- ► R é simétrica se $\forall_{a \in A} \forall_{b \in A} (a R b \Rightarrow b R a)$ [nesse caso, $\forall_{a \in A} \forall_{b \in A} (a R b \Leftrightarrow b R a)$]
 - ▶ R é anti-simétrica se $\forall_{a \in A} \forall_{b \in A} ((a R b \land b R a) \Rightarrow a = b)$
 - ► R é transitiva se $\forall_{a \in A} \forall_{b \in A} \forall_{c \in A} ((a R b \land b R c) \Rightarrow a R c)$

Exemplo

Consideremos as seguintes relações no conjunto $A = \{1, 2, 3\}$:

$$R = \{(1,1), (2,2), (2,3), (3,1)\}$$

$$S = \{(1,1), (1,2), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

$$T = \{(1,1), (1,2), (2,1), (2,3), (3,2), (3,3)\}$$

$$U = \{(1,1), (1,3), (2,1), (2,2), (2,3), (3,3)\}$$

S e U são reflexivas em A; R e T não.

T é simétrica; R, S e U não são. R e U são anti-simétricas; S e T não.

U é transitiva; R, S e T não são.

Relações de equivalência

Uma **relação de equivalência** num conjunto *A* é uma relação binária em *A* reflexiva, simétrica e transitiva.

Ex.:

- Seja R a relação no conjunto P das pessoas definida por:
 α R b se e só se α e b fazem anos no mesmo dia.
- Seja S a relação em A = {1,2,3} definida por S = {(1,1), (1,2), (2,1), (2,2), (3,3)}.
- Seja ~ a relação em Z definida por: a ~ b se e só se a − b é divisível por 3.

R, S e ~ são relações de equivalência.

Uma **partição** de um conjunto não vazio X é uma família \mathcal{D} de subconjuntos de X ($\mathcal{D} \subseteq \mathcal{P}(X)$) tal que

- 1. $\emptyset \notin \mathcal{D}$;
- 2. os elementos de \mathcal{D} são disjuntos dois a dois $(\forall_{A \in \mathcal{D}} \forall_{B \in \mathcal{D}}, (A \neq B \Rightarrow A \cap B = \emptyset))$
- 3. $\bigcup \mathcal{D} = X$

Ex.:

- ► {{1,2}, {3}} é uma partição de A = {1,2,3}
- {T₀, T₁, T₂} é uma partição de Z, onde
 T₀ = {n ∈ Z | n é divisível por 3},
 T₁ = {n ∈ Z | o resto da divisão de n por 3 é 1} e
 T₂ = {n ∈ Z | o resto da divisão de n por 3 é 2}.

Sejam E uma relação de equivalência no conjunto A e $x \in A$. A classe de equivalência de x relativamente a E (ou classe de equivalência de x módulo E) é o conjunto

$$[x]_E = \{ y \in A \mid y E x \}$$

Se não houver perigo de confusão, escreveremos [x] em vez de $[x]_E$.

Ex. (usando as relações de equivalência R, S e \sim definidas anteriormente):

- Se o José faz anos no dia 19 de novembro,
 [José]_R = {pessoas que fazem anos no dia 19 de novembro}.
- $[1]_S = \{1,2\} = [2]_S; [3]_S = \{3\}.$
- ► $[13]_{\sim} = \{3k+1 \mid k \in \mathbb{Z}\}.$

Ao conjunto de todas as classes de equivalência módulo *E*, que representamos por *A/E*, chamamos **conjunto quociente** de *A* por *E* (ou **conjunto quociente** *A* **módulo** *E*):

$$A/E = \{[x]_E \mid x \in A\}$$

Ex.:

Para a relação de equivalência S em A = {1,2,3} definida anteriormente,

$$A/S = \{[1]_S, [3]_S\} = \{\{1, 2\}, \{3\}\}$$

Para a relação de equivalência ~ em Z definida anteriormente,
 Z/~ = {T₀, T₁, T₂}
 (estes T₀, T₁, T₂ foram também definidos num exemplo atrás).

Seja A um conjunto não vazio.

Qualquer que seja a relação de equivalência *E* em *A*, *A/E* é uma partição de *A*.

Qualquer que seja a partição \mathcal{D} de A, a relação binária E em A definida por: x E y se e só se x e y pertencem ao mesmo elemento de \mathcal{D} é uma relação de equivalência e $A/E = \mathcal{D}$.

Logo, definir uma relação de equivalência em A é "o mesmo" que definir uma partição de A.

Relações de ordem (parcial)

Uma **ordem parcial**, ou **relação de ordem parcial**, num conjunto *A* é uma relação binária em *A* reflexiva, anti-simétrica e transitiva.

Ex.:

- A relação ≤ em Z é uma ordem parcial [é também uma ordem total].
- A relação | ("divide") em N definida por a | b se e só ∃_{k∈N} : b = α × k é uma ordem parcial.
- ▶ Sendo X um conjunto qualquer, a relação \subseteq em $\mathcal{P}(X)$ é uma ordem parcial.

Quando R é uma ordem parcial em A, chama-se conjunto parcialmente ordenado (c.p.o.) ao par (A,R) ou ao conjunto A, munido da relação R. (\mathbb{Z},\leq) , $(\mathbb{N},|)$, $(\mathcal{P}(X),\subseteq)$ são c.p.o.s.

É frequente representar uma ordem parcial pelo símbolo \leq , mesmo quando essa ordem parcial não é uma das relações "menor ou igual" habituais (em \mathbb{N} , \mathbb{Z} , \mathbb{R} ,...).

Ainda mais habitual é, tendo uma qualquer ordem parcial \leq , ler $a \leq b$ como "a é menor ou igual a b".

Se R é uma ordem parcial, R^{-1} também é (diz-se que cada uma destas é **dual** da outra). Assim, por exemplo (\mathbb{Z}, \geq) e $(\mathcal{P}(X), \supseteq)$ são c.p.o.s (duais de (\mathbb{Z}, \leq) e $(\mathcal{P}(X), \subseteq)$, respetivamente).

Se A for um conjunto finito, um c.p.o. (A, \leq) pode ser representado por um diagrama de Hasse:

- 1. pontos representando os elementos de A, colocados de forma que, se $a \le b$ e $a \ne b$, o ponto relativo a a fica mais abaixo do que o relativo a b;
- 2. linhas ligando elementos consecutivos do c.p.o. (isto é, elementos a,b tais que $a \le b$ e não existe c tal que $a \le c \le b$).

O diagrama de Hasse de $(\mathcal{P}(\{1,2\}),\subseteq)$ é o seguinte:

Outro exemplo:

a relação | ("divide") em $\{2,3,4,6,9,10,12,20\}$ é uma ordem parcial; o seu diagrama de Hasse é

Por outro lado, se soubermos que o diagrama de Hasse de (A, \leq) é

podemos concluir que a ordem parcial \leq em A é $\{(a,a),(b,b),(c,c),(d,d),(e,e),(a,c),(a,d),(a,e),(b,d),(b,e),(d,e)\}$

Sejam (A, \leq) um c.p.o., $X \subseteq A$ e $\alpha \in A$; dizemos que

- ▶ $a \in \mathbf{maximo}$ de X se $a \in X$ e $\forall_{x \in X}, x \leq a$;
- ▶ α é **mínimo** de X se $\alpha \in X$ e $\forall_{x \in X}, \alpha \leq x$;
- ▶ α é majorante de X se $\forall_{x \in X}, x \leq \alpha$;
- ▶ α é minorante de X se $\forall_{x \in X}, \alpha \leq x$;
- α é supremo de X se α é mínimo do conjunto dos majorantes de X;
- α é ínfimo de X se α é máximo do conjunto dos minorantes de X;
- ▶ α é elemento maximal de X se $\alpha \in X$ e $\sim \exists_{x \in X} : (\alpha \neq x \land \alpha \leq x)$;
- ▶ α é elemento minimal de X se $\alpha \in X$ e $\sim \exists_{x \in X} : (\alpha \neq x \land x \leq \alpha)$.

[Máximo e mínimo são conceitos duais: α é máximo de X para uma ordem parcial sse for mínimo para a sua ordem parcial dual; analogamente, majorante e minorante, supremo e ínfimo, elemento maximal e elemento minimal são conceitos duais.]

Exemplo

Seja $A = \{2, 3, 4, 6, 9, 10, 12, 20\}$ e consideremos o c.p.o. (A, |)

- 20, 12 e 9 são elementos maximais de A; 2 e 3 são elementos minimais de A; não existem majorantes nem minorantes (nem supremo, ínfimo, máximo ou mínimo) de A.
- Se X = {2,4,6}, 4 e 6 são elementos maximais e 2 é elemento minimal de X; 12 é majorante e 2 é minorante de X; 12 é supremo e 2 é infimo de X: 2 é mínimo de X e não existe máximo de X.
- Se Y = {2,4}, 4, 20 e 12 são majorantes de Y; 4 é supremo e máximo de Y.

Sejam (A, \leq) um c.p.o. e $X \subseteq A$.

Caso existam.

- o máximo de X é único:
- o mínimo de X é único;
- ▶ o supremo de X é único;
- ▶ o ínfimo de X é único.

Notação:

Representa-se por

- máxX o máximo de X;
- mínX o mínimo de X:
- ▶ sup *X* o supremo de *X*;
- inf X o infimo de X.

 $\max X$ existe se e só se $\sup X$ existe e $\sup X \in X$; nesse caso, $\max X = \sup X$.

 $\min X$ existe se e só se $\inf X$ existe e $\inf X \in X$;

nesse caso, min X = inf X.

Um **reticulado** é um c.p.o. (A, \leq) tal que, para quaisquer dois elementos a, b de A, existem $\sup\{a, b\}$ e $\inf\{a, b\}$.

Neste caso, é habitual representar $\sup\{a,b\}$ por $a \lor b$ e $\inf\{a,b\}$ por $a \land b$.

Ex.:

- ▶ (\mathbb{Z}, \leq) é um reticulado.
- ► Sendo X um conjunto qualquer, $(\mathcal{P}(X), \subseteq)$ é um reticulado $(A \lor B = A \cup B \ e \ A \land B = A \cap B)$.
- ▶ $(\mathbb{N},|)$ é um reticulado $(a \lor b = mmc(a,b))$ e $a \land b = mdc(a,b)$.
- ({2,3,4,6,9,10,12,20},|) não é um reticulado (p. ex., não existe 6 ∨ 9).

Uma cadeia, ou conjunto totalmente ordenado, é um c.p.o. (A, \leq) tal que, para todos os $a, b \in A$, $a \leq b$ ou $b \leq a$. Nesse caso, a ordem parcial \leq é uma ordem total.

Ex.:

- ▶ (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{R}, \leq) ,... são cadeias.
- ▶ (\mathbb{N}, \geq) , (\mathbb{Z}, \geq) , (\mathbb{R}, \geq) ,... são cadeias.

Toda a cadeia é um reticulado (mas nem todo o reticulado é uma cadeia).

Um conjunto bem ordenado é uma cadeia (A, \leq) tal que todo o subconjunto não vazio de A tem mínimo (este mínimo é habitualmente designado primeiro elemento).

- ▶ (\mathbb{N}, \leq) é um conjunto bem ordenado.
- ▶ (\mathbb{Z}, \leq) não é um conjunto bem ordenado $(\mathbb{Z}^-$ não tem primeiro elemento).