Aprendizaje por refuerzo

Clase 6: Control libre de modelo

Para el día de hoy...

- Control en política
 - Monte Carlo
 - Diferencia temporal
- Fuera de política
 - Diferencia temporal

Evaluación de política libre de modelo

$$v_{n+1}(S_t) = v_n(S_t) + \alpha(G_t - v_n(S_t))$$

- Variantes para una política π dada:
 - MC: $G_t^{MC} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = R_{t+1} + \gamma G_{t+1}^{MC}$
 - TD(0): $G_t^{(1)} = R_{t+1} + \gamma v_t(S_{t+1})$
 - TD(n): $G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^n v_t(S_{t+n}) = R_{t+1} + \gamma G_{t+1}^{(n-1)}$
 - $TD(\lambda)$: $G_t^{\lambda} = R_{t+1} + \gamma[(1-\lambda)v_t(S_{t+1}) + \lambda G_{t+1}^{\lambda}]$

Control en política y fuera de política

- Aprendizaje en política
 - Aprender en el trabajo
 - Aprender de la política π con la experiencia muestreada de π
- Aprendizaje fuera de política
 - Supervisar a alguien
 - Aprender de la política π con la experiencia muestreada de μ

Iteración de política

- Evaluación de política:
 - Estimar v_{π}
 - Ejemplo evaluación iterativa de política
- Mejora de política:
 - Generar $\pi' \geq \pi$
 - Mejora voraz de política

Iteración de política libre de modelo usando la función de acción valor

• La mejora voraz de la política sobre v(s) requiere el modelo del MDP

$$\pi'(s) = \operatorname{argmax}_{a} \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}|S_{t} = s, A_{t} = a)]$$

- La mejora voraz de política sobre q(s,a) es libre de modelo $\pi'(s) = argmax_a q(s,a)$
- Esto hace a los valores de acción convenientes

Control con aprendizaje de Monte Carlo (segundo intento)

- Evaluación de política
 - Evaluación de política de Monte Carlo, $q \approx q_{\pi}$
- Mejora de política
 - Mejora voraz de política
- ¿Será todo?

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

Ejemplo de la selección voraz de una acción

- Existen dos puertas en frente de ustedes
 - Abren la puerta de la izquierda y obtienen 0. v(left) = 0
 - Abren la puerta de la derecha y obtienen +1 . v(right) = 1
 - Abren la puerta de la derecha y obtienen +3 . v(right) = 2
 - Abren la puerta de la derecha y obtienen +2 . v(right) = 2
 - •
 - ¿Eligieron correctamente?

Exploración ϵ -voraz

- Es la idea más simple para asegurarse de exploración continua
- ullet Todas las m acciones tienen probabilidad positiva
- Con probabilidad 1ϵ elegimos la acción voraz
- Con probabilidad ϵ elegimos una acción aleatoriamente

$$\pi(a|s) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{m} & si \ a^* = argmax_{a \in A}q(s, a) \\ \frac{\epsilon}{m} & de \ lo \ contrario \end{cases}$$

Mejora de política ϵ -voraz

• Teorema: para cualquier política ϵ -voraz π , la política ϵ -voraz π' con respecto a q_π es una mejora, $v_{\pi'} \geq v_\pi(s)$

Control con aprendizaje de Monte Carlo (tercer intento)

- Evaluación de política
 - Evaluación de política de Monte Carlo, $q \approx q_{\pi}$
- Mejora de política
 - Mejora ϵ -voraz de política
- ¿Por fin?

Control con aprendizaje de Monte Carlo (nintento)

- Para cada episodio
- Evaluación de política
 - Evaluación de política de Monte Carlo, $q \approx q_{\pi}$
- Mejora de política
 - Mejora ϵ -voraz de política

Voraz en el límite con exploración infinita (GLIE)

 Todos los pares de estado acción son explorados un número infinito de veces

$$\lim_{k\to\infty} N_k(s,a) = \infty$$

• La política converge a una política voraz

$$\lim_{k \to \infty} \pi_k(a|s) = 1(a = \operatorname{argmax}_{a' \in A} q_k(s, a'))$$

• Por ejemplo, ϵ -voraz es GLIE si ϵ se reduce a cero en $\epsilon_k = \frac{1}{k}$

Control GLIE de Monte Carlo

- Muestrar el k-esimo episodio usando π : $\{S_1, A_1, R_2, \dots, S_T\} \sim \pi$
- Para cada estado S_t y acción A_t en el episodio
 - $N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$
 - $q(S_t, A_t) \leftarrow q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t q(S_t, A_t))$
- Mejorar la política basada en la nueva función acción valor
 - $\epsilon = \frac{1}{k}$
 - $\pi \leftarrow \epsilon$ -voraz(q)

Control MC vs TD

- El aprendizaje de diferencia temporal (TD) tiene varias ventajas sobre Monte Carlo (MC)
 - Baja varianza
 - En línea
 - Secuencias incompletas
- Idea: usar TD en lugar de MC en nuestro ciclo de control
 - Aplicar TD a q(S, A)
 - Utilizar la mejora de política ϵ -voraz
 - Actualizar en cada paso

Actualizar la función de acción valor con SARSA

•
$$q_{t+1}(S_t, A_t) = q_t(S_t, A_t) + \alpha_t(R_{t+1} + \gamma q_t(S_{t+1}, A_{t+1}) - q_t(S_t, A_t))$$

Control en política con SARSA

- Cada paso
- Evaluar la política SARSA, $q \approx q_{\pi}$
- Mejora de política ϵ -voraz

El algoritmo SARSA

• Teorema: SARSA tabular converge a la función optima de acción valor, $q(s,a) \rightarrow q_*(s,a)$ si la política es GLIE

```
Sarsa (on-policy TD control) for estimating Q \approx q_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)]
S \leftarrow S'; A \leftarrow A';

until S is terminal
```

Aprendizaje fuera de política

- Evaluar la política objetivo $\pi(a|s)$ para calcular $v_{\pi}(s)$ o $q_{\pi}(s,a)$
- Mientras seguimos la política $\mu(a|s)$ $\{S_1, A_1, R_2, ..., S_T\} \sim \mu$
- ¿Por qué es importante?
 - Aprender de humanos u otros agentes
 - Reutilizar experiencia generada de antiguas políticas
 - Aprender la política optima mientras exploramos políticas
 - Aprender de múltiples políticas siguiendo una política

Aprendizaje Q

- La siguiente acción es elegida usando la política $A_{t+1}{\sim}\mu(\cdot,S_t)$
- Se considera una acción sucesor alternativa $A' \sim \pi(\cdot, S_t)$
- Actualizamos $q(S_t, A_t)$ hacía la acción alternativa $q(S_t, A_t) \leftarrow q(S_t, A_t) + \alpha(R_{t+1} + \gamma q(S_{t+1}, A') q(S_t, A_t))$

Control fuera de política con aprendizaje Q

- Ahora permitimos que tanto el comportamiento como la política objetivo mejoren
- La política objetivo π es voraz con respecto a q(s,a) $\pi(S_{t+1}) = argmax_{a'}q(S_{t+1},a')$
- La política μ es ϵ -voraz con respecto a q(s,a)
 - $R_{t+1} + \gamma q(S_{t+1}, A')$
 - = $R_{t+1} + \gamma q(S_{t+1}, argmax_{a'}q(S_{t+1}, a'))$
 - = $R_{t+1} + \gamma argmax_{a'}q(S_{t+1}, a')$

Algoritmo de control de aprendizaje Q

•
$$q_{t+1}(S_t, A_t) \leftarrow q_t(S_t, A_t) + \alpha_t(R_{t+1} + \gamma \max_{a'} q_t(S_{t+1}, a') - q_t(S_t, A_t)$$

- Teorema
 - Control con aprendizaje Q converge a la función acción valor óptima $\mathbf{q} \to q^*$ en el limite

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma \max_{a} Q(S',a) - Q(S,A)]$$

 $S \leftarrow S'$

until S is terminal

Los algoritmos de programación dinámica

- Evaluación de política
 - $v_{k+1}(s) = \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t \sim \pi(S_t)]$
- Iteración de valor
 - $v_{k+1}(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a]$
- Evaluación de política
 - $q_{k+1}(s,a) = \mathbb{E}[R_{t+1} + \gamma q_k(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$
- Iteración de política
 - $q_{k+1}(s,a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_k(S_{t+1},a') | S_t = s, A_t = a]$

Los algoritmos de diferencia temporal

- TD ~ evaluación de política con función de valor
 - $v_{t+1}(S_t) = v_t(S_t) + \alpha_t(R_{t+1} + \gamma v_t(S_{t+1}) v_t(S_t))$
- Iteración de valor
 - ;?
- SARSA ~ iteración de política con función de acción valor
 - $q_{t+1}(S_t, A_t) = q_t(S_t, A_t) + \alpha_t(R_{t+1} + \gamma q(S_{t+1}, A_{t+1}) q(S_t, A_t))$
- Aprendizaje Q ~ iteración de valor con función de acción valor
 - $q_{t+1}(S_t, A_t) \leftarrow q_t(S_t, A_t) + \alpha_t(R_{t+1} + \gamma \max_{a'} q_t(S_{t+1}, a') q_t(S_t, A_t)$

La relación entre DP y TD

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$	
Equation for $v_{\pi}(s)$	Iterative Policy Evaluation	TD Learning
Bellman Expectation	$q_{\pi}(s, a) \leftrightarrow s, a$ r s' $q_{\pi}(s', a') \leftrightarrow a'$	S,A R S' A'
Equation for $q_{\pi}(s, a)$	Q-Policy Iteration	Sarsa
Bellman Optimality Equation for $q_*(s, a)$	$q_*(s,a) \leftrightarrow s,a$ $q_*(s',a') \leftrightarrow a'$ Q-Value Iteration	Q-Learning

Para la otra vez...

• Funciones de aproximación

