1

PROPERTY TABLES AND CHARTS (SI UNITS)

TABLE A-1	Molar mass, gas constant, and ideal-gas specific heats of some substances 866
TABLE A-2	Boiling and freezing point properties 867
TABLE A-3	Properties of solid metals 868–870
TABLE A-4	Properties of solid nonmetals 871
TABLE A-5	Properties of building materials 872–873
TABLE A-6	Properties of insulating materials 874
TABLE A-7	Properties of common foods 875–876
TABLE A-8	Properties of miscellaneous materials 877
TABLE A-9	Properties of saturated water 878
TABLE A-10	Properties of saturated refrigerant–134a 879
TABLE A-11	Properties of saturated ammonia 880
TABLE A-12	Properties of saturated propane 881
TABLE A-13	Properties of liquids 882
TABLE A-14	Properties of liquid metals 883
TABLE A-15	Properties of air at 1 atm pressure 884
TABLE A-16	Properties of gases at 1 atm pressure 885–886
TABLE A-17	Properties of the atmosphere at high altitude 887
TABLE A-18	Emissivities of surfaces 888–889
TABLE A-19	Solar radiative properties of materials 890
FIGURE A-20	The Moody chart for friction factor for fully developed flow in circular pipes 891

TABLE A-1

Molar mass, gas constant, and ideal-gas specific heats of some substances

			Speci	Specific Heat Data at 25°C			
Substance	Molar Mass <i>M</i> , kg/kmol	Gas Constant R, kJ/kg·K*	c_p , kJ/kg·K	c, kJ/kg⋅K	$k = c_p/c_0$		
Air	28.97	0.2870	1.005	0.7180	1.400		
Ammonia, NH ₃	17.03	0.4882	2.093	1.605	1.304		
Argon, Ar	39.95	0.2081	0.5203	0.3122	1.667		
Bromine, Br ₂	159.81	0.05202	0.2253	0.1732	1.300		
Isobutane, C_4H_{10}	58.12	0.1430	1.663	1.520	1.094		
<i>n</i> -Butane, C ₄ H ₁₀	58.12	0.1430	1.694	1.551	1.092		
Carbon dioxide, CO ₂	44.01	0.1889	0.8439	0.6550	1.288		
Carbon monoxide, CO	28.01	0.2968	1.039	0.7417	1.400		
Chlorine, Cl ₂	70.905	0.1173	0.4781	0.3608	1.325		
Chlorodifluoromethane (R-22), CHCIF ₂	86.47	0.09615	0.6496	0.5535	1.174		
Ethane, C ₂ H ₆	30.070	0.2765	1.744	1.468	1.188		
Ethylene, C ₂ H ₄	28.054	0.2964	1.527	1.231	1.241		
Fluorine, F ₂	38.00	0.2187	0.8237	0.6050	1.362		
Helium, He	4.003	2.077	5.193	3.116	1.667		
<i>n</i> -Heptane, C ₇ H ₁₆	100.20	0.08297	1.649	1.566	1.053		
n -Hexane, C_6H_{14}	86.18	0.09647	1.654	1.558	1.062		
Hydrogen, H ₂	2.016	4.124	14.30	10.18	1.405		
Krypton, Kr	83.80	0.09921	0.2480	0.1488	1.667		
Methane, CH ₄	16.04	0.5182	2.226	1.708	1.303		
Neon, Ne	20.183	0.4119	1.030	0.6180	1.667		
Nitrogen, N ₂	28.01	0.2968	1.040	0.7429	1.400		
Nitric oxide, NO	30.006	0.2771	0.9992	0.7221	1.384		
Nitrogen dioxide, NO ₂	46.006	0.1889	0.8060	0.6171	1.306		
Oxygen, O_2	32.00	0.2598	0.9180	0.6582	1.395		
<i>n</i> -Pentane, C ₅ H ₁₂	72.15	0.1152	1.664	1.549	1.074		
Propane, C ₃ H ₈	44.097	0.1885	1.669	1.480	1.127		
Propylene, C ₃ H ₆	42.08	0.1976	1.531	1.333	1.148		
Steam, H ₂ O	18.015	0.4615	1.865	1.403	1.329		
Sulfur dioxide, SO ₂	64.06	0.1298	0.6228	0.4930	1.263		
Tetrachloromethane, CCI ₄	153.82	0.05405	0.5415	0.4875	1.111		
Tetrafluoroethane (R-134a), C ₂ H ₂ F ₄	102.03	0.08149	0.8334	0.7519	1.108		
Trifluoroethane (R-143a), C ₂ H ₃ F ₃	84.04	0.09893	0.9291	0.8302	1.119		
Xenon, Xe	131.30	0.06332	0.1583	0.09499	1.667		

^{*}The unit kJ/kg·K is equivalent to kPa·m³/kg·K. The gas constant is calculated from $R = R_U/M$, where $R_U = 8.31447$ kJ/kmol·K is the universal gas constant and M is the molar mass.

Source: Specific heat values are obtained primarily from the property routines prepared by The National Institute of Standards and Technology (NIST), Gaithersburg, MD.

TABLE A-2

Boiling and freezing point properties

	Boiling D	oata at I atm	Freez	zing Data	Liquid Properties			
	Normal L	atent Heat of		Latent Heat			Specific	
	Boiling	Vaporization	Freezing	of Fusion	Temperature	Density	Heat	
Substance	Point, °C	h_{fg} , kJ/kg	Point, °C	h_{if} , kJ/kg	°C	$ ho$, kg/m 3	c_p , kJ/kg·k	
Ammonia	-33.3	1357	-77.7	322.4	-33.3	682	4.43	
					-20	665	4.52	
					0	639	4.60	
					25	602	4.80	
Argon	-185.9	161.6	-189.3	28	-185.6	1394	1.14	
Benzene	80.2	394	5.5	126	20	879	1.72	
Brine (20% sodium								
chloride by mass)	103.9	_	-17.4	_	20	1150	3.11	
<i>n</i> -Butane	-0.5	385.2	-138.5	80.3	-0.5	601	2.31	
Carbon dioxide	-78.4*	230.5 (at 0°C)	-56.6		0	298	0.59	
Ethanol	78.2	838.3	-114.2	109	25	783	2.46	
Ethyl alcohol	78.6	855	-156	108	20	789	2.84	
Ethylene glycol	198.1	800.1	-10.8	181.1	20	1109	2.84	
Glycerine	179.9	974	18.9	200.6	20	1261	2.32	
Helium	-268.9	22.8	_	_	-268.9	146.2	22.8	
Hydrogen	-252.8	445.7	-259.2	59.5	-252.8	70.7	10.0	
Isobutane	-11.7	367.1	-160	105.7	-11.7	593.8	2.28	
Kerosene	204-293	251	-24.9	_	20	820	2.00	
Mercury	356.7	294.7	-38.9	11.4	25	13,560	0.139	
Methane	-161.5	510.4	-182.2	58.4	-161.5	423	3.49	
					-100	301	5.79	
Methanol	64.5	1100	-97.7	99.2	25	787	2.55	
Nitrogen	-195.8	198.6	-210	25.3	-195.8	809	2.06	
J					-160	596	2.97	
Octane	124.8	306.3	-57.5	180.7	20	703	2.10	
Oil (light)					25	910	1.80	
Oxygen	-183	212.7	-218.8	13.7	-183	1141	1.71	
Petroleum	_	230-384			20	640	2.0	
Propane	-42.1	427.8	-187.7	80.0	-42.1	581	2.25	
'					0	529	2.53	
					50	449	3.13	
Refrigerant-134a	-26.1	216.8	-96.6	_	-50	1443	1.23	
0					-26.1	1374	1.27	
					0	1295	1.34	
					25	1207	1.43	
Water	100	2257	0.0	333.7	0	1000	4.22	
	200	,	0.0		25	997	4.18	
					50	988	4.18	
					75	975	4.19	
					100	958	4.22	

^{*} Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -56.5° C.)

TABLE A-3

Properties of solid metals

	Melting		Proper	ties at 300	K	Properties at Various Temperatures (K), $k(W/m\cdot K)/c_p(J/kg\cdot K)$					
Composition	Point, K	$\frac{\rho}{ ho}$ kg/m ³	<i>c_p</i> J/kg⋅K	<i>k</i> W/m⋅K	$\alpha \times 10^6$ m ² /s	100	200	400	600	800	1000
Aluminum: Pure	933	2702	903	237	97.1	302 482	237 798	240 949	231 1033	218 1146	
Alloy 2024-T6 (4.5% Cu, 1.5% Mg	775	2770	875	177	73.0	65	163	186	186	1140	
0.6% Mn) Alloy 195, Cast	,	2700	002	160	60.0	473	787	925	1042		
(4.5% Cu) Beryllium	1550	2790 1850	883 1825	168 200	68.2 59.2	990	301	174 161	185 126	106	90.8
Bismuth	545	9780	122	7.86	6.59	203 16.5	1114	2191	2604		3018
Boron	2573	2500	1107	27.0	9.76	112 190	120 55.5	127 16.8	10.6	9.6	
Cadmium	594	8650	231	96.8	48.4	128 203 198	600 99.3 222	1463 94.7 242	1892	2160	2338
Chromium	2118	7160	449	93.7	29.1	159 192	111 384	90.9 484	80.7 542	71.3 581	65.4 616
Cobalt	1769	8862	421	99.2	26.6	167 236	122 379	85.4 450	67.4 503	58.2 550	
Copper: Pure	1358	8933	385	401	117	482 252	413 356	393 397	379 417	366 433	352 451
Commercial bronze (90% Cu, 10% AI)	1293	8800	420	52	14		42 785	52 160	59 545		
Phosphor gear bronze (89% Cu, 11% Sn)	1104	8780	355	54	17		41	65 —	74 —		
Cartridge brass (70% Cu, 30% Zn)	1188	8530	380	110	33.9	75	95 360	137 395	149 425		
Constantan (55% Cu, 45% Ni) Germanium	1493 1211	8920 5360	384	23 59.9	6.71	17 237 232	19 362 96.8	43.2	27.3	19.8	17.4
Gold	1336	19,300	129	317	127	190 327	290 323	337 311	348 298	357 284	375 270
Iridium	2720	22,500	130	147	50.3	109 172 90	124 153 122	131 144 133	135 138 138	140 132 144	145 126 153
Iron: Pure	1810	7870	447	80.2	23.1	134 216	94.0 384	69.5 490	54.7 574	43.3 680	32.8 975
Armco (99.75% pure)		7870	447	72.7	20.7	95.6 215	80.6 384	65.7 490	53.1 574	42.2 680	
Carbon steels: Plain carbon (Mn ≤ 1 Si $\leq 0.1\%$)	%	7854	434	60.5	17.7	210	304	56.7 487	48.0 559	39.2 685	30.0
SI ≤ 0.1%) AISI 1010		7832	434	63.9	18.8		487	58.7 559	48.8 685	39.2 1168	
Carbon–silicon (Mn ≤ 1 0.1% $<$ Si \leq 0.6%)	%	7817	446	51.9	14.9		707	49.8 501	44.0 582	37.4 699	29.3 971

TABLE A-3
Properties of solid metals (Continued)

	Melting		Proper	ties at 300	0 K	,	Properties at Various Temperatures (K), $k(W/m\cdot K)/c_p(J/kg\cdot K)$				
Composition	Point, K	$\frac{\rho}{ ho}$ kg/m ³	<i>c_p</i> J/kg⋅K	<i>k</i> W/m∙K	$ m \alpha \times 10^6$ m ² /s	100	200	400	600	800	1000
Carbon-manganese-s (1% < Mn < 1.65% 0.1% < Si < 0.6%	6	8131	434	41.0	11.6			42.2 487	39.7 559	35.0 685	27.6 1090
Chromium (low) steels: $\frac{1}{2}$ Cr- $\frac{1}{4}$ Mo-Si (0.18% 0.65% Cr, 0.23% Mo		7822	444	37.7	10.9			38.2	36.7	33.3	26.9
0.6% Si) 1 Cr $-\frac{1}{2}$ Mo (0.16% C, 1% Cr, 0.54% Mo,		7858	442	42.3	12.2			492 42.0	575 39.1	688 34.5	969 27.4
0.39% Si) 1 Cr–V (0.2% C, 1.02% Cr,		7836	443	48.9	14.1			492 46.8	575 42.1	688 36.3	969 28.2
0.15% V) Stainless steels:								492	575	688	969
AISI 302	1670	8055	480	15.1	3.91	0.2	10.0	17.3 512	20.0 559	22.8 585	25.4 606
AISI 304	1670	7900	477	14.9	3.95	9.2 272	12.6 402	16.6 515	19.8 557	22.6 582	25.4 611
AISI 316		8238	468	13.4	3.48			15.2	18.3	21.3	24.2
AISI 347		7978	480	14.2	3.71			504 15.8 513	550 18.9 559	576 21.9 585	602 24.7 606
Lead	601	11,340	129	35.3	24.1	39.7 118	36.7 125	34.0 132	31.4 142		
Magnesium	923	1740	1024	156	87.6	169 649	159 934	153 1074	149 1170	146 1267	
Molybdenum Nickel:	2894	10,240	251	138	53.7	179 141	143 224	134 261	126 275	118 285	112 295
Pure	1728	8900	444	90.7	23.0 232	164 383	107 485	80.2 592	65.6 530	67.6 562	71.8
Nichrome (80% Ni, 20% Cr)	1672	8400	420	12	3.4			14 480	16 525	21 545	
Inconel X-750 (73% Ni, 15% Cr,	1665	8510	439	11.7	3.1	8.7	10.3	13.5	17.0	20.5	24.0
6.7% Fe) Niobium	2741	8570	265	53.7	23.6	55.2	372 52.6	473 55.2	510 58.2	546 61.3	626 64.4
						188	249	274	283	292	301
Palladium Platinum:	1827	12,020	244	71.8	24.5	76.5 168	71.6 227	73.6 251	79.7 261	86.9 271	94.2 281
Pure	2045	21,450	133	71.6	25.1	77.5 100	72.6 125	71.8 136	73.2 141	75.6 146	78.7 152
Alloy 60Pt-40Rh (60% Pt, 40% Rh)	1800	16,630	162	47	17.4			52 —	59 —	65 —	69 —
Rhenium	3453	21,100	136	47.9	16.7	58.9 97	51.0 127	46.1 139	44.2 145	44.1 151	44.6 156
Rhodium	2236	12,450	243	150	49.6	186 147	154 220	146 253	136 274	127 293	121 311

TABLE A-3

Properties of solid metals (Concluded)

	Melting	Properties at 300 K					Properties at Various Temperatures (K), $k(W/m \cdot K)/c_p(J/kg \cdot K)$					
Composition	Point, K	$ ho$ kg/m 3	<i>c_p</i> J/kg∙K	<i>k</i> W/m∙K	$lpha imes 10^6$ m²/s	100	200	400	600	800	1000	
Silicon	1685	2330	712	148	89.2	884 259	264 556	98.9 790	61.9 867	42.4 913	31.2 946	
Silver	1235	10,500	235	429	174	444 187	430 225	425 239	412 250	396 262	379 277	
Tantalum	3269	16,600	140	57.5	24.7	59.2 110	57.5 133	57.8 144	58.6 146	59.4 149	60.2 152	
Thorium	2023	11,700	118	54.0	39.1	59.8 99	54.6 112	54.5 124	55.8 134	56.9 145	56.9 156	
Tin	505	7310	227	66.6	40.1	85.2 188	73.3 215	62.2 243				
Titanium	1953	4500	522	21.9	9.32	30.5 300	24.5 465	20.4 551	19.4 591	19.7 633	20.7 675	
Tungsten	3660	19,300	132	174	68.3	208 87	186 122	159 137	137 142	125 146	118 148	
Uranium	1406	19,070	116	27.6	12.5	21.7 94	25.1 108	29.6 125	34.0 146	38.8 176	43.9 180	
Vanadium	2192	6100	489	30.7	10.3	35.8 258	31.3 430	31.3 515	33.3 540	35.7 563	38.2 597	
Zinc	693	7140	389	116	41.8	117 297	118 367	111 402	103 436			
Zirconium	2125	6570	278	22.7	12.4	33.2 205	25.2 264	21.6 300	20.7 332	21.6 342	23.7 362	

From Frank P. Incropera and David P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed., 1990. This material is used by permission of John Wiley & Sons, Inc.

TABLE A-4

Properties of solid nonmetals

	Melting		Proper	ties at 30	0 K	_	Properties at Various Temperatures (K), $k \text{ (W/m\cdot K)/} c_p \text{(J/kg\cdot K)}$					
Composition	Point, K	ρ kg/m	c_p 3 J/kg \cdot k	<i>k</i> < W/m⋅K	lpha imes 10 m ² /s	100	200	400	600	800	1000	
Aluminum oxide, sapphire	2323	3970	765	46	15.1	450 —	82 —	32.4 940	18.9 1110	13.0 1180	10.5 1225	
Aluminum oxide, polycrystalline	2323	3970	765	36.0	11.9	133	55 —	26.4 940	15.8 1110	10.4 1180	7.85 1225	
Beryllium oxide	2725	3000	1030	272	88.0			196 1350	111 1690	70 1865	47 1975	
Boron	2573	2500	1105	27.6	9.99	190	52.5 —	18.7 1490	11.3 1880	8.1 2135	6.3 2350	
Boron fiber epoxy (30% vol.) composite	590 e	2080		0.00		0.10	0.00	0.00				
k , \parallel to fibers k , \perp to fibers c_p			1122	2.29 0.59		2.10 0.37 364	2.23 0.49 757	2.28 0.60 1431				
Carbon Amorphous	1500	1950	_	1.60	_	0.67	1.18	1.89	21.9 —	2.37 —	2.53 —	
Diamond, type Ila insulator	_	3500	509	2300	:	10,000 21	4000 194	1540 853				
Graphite, pyrolytic k , II to layers k , \perp to layers $c_{\scriptscriptstyle D}$	2273	2210	709	1950 5.70		4970 16.8 136	3230 9.23 411	1390 4.09 992	892 2.68 1406	667 2.01 1650	534 1.60 1793	
Graphite fiber epoxy (25% vol.) composite	450	1400	, 05			100		332	1.00	1000	1,50	
k , heat flow II to fibe k , heat flow \perp to fibe c_p			0.8 935	11.1 37	0.46	5.7 0.68 337	8.7 1.1 642	13.0 1216				
Pyroceram, Corning 9606	1623	2600	808	3.98	1.89	5.25 —	4.78 —	3.64 908	3.28 1038	3.08 1122	2.96 1197	
Silicon carbide	3100	3160	675	490	230			— 880	 1050	 1135	87 1195	
Silicon dioxide, crystalline (quartz)	1883	2650										
k , II to c -axis k , \perp to c -axis c_p			745	10.4 6.21		39 20.8	16.4 9.5 —	7.6 4.70 885	5.0 3.4 1075	4.2 3.1 1250		
Silicon dioxide, polycrystalline	1883	2220	745	1.38	0.834	1 0.69	1.14	1.51	1.75	2.17	2.87	
(fused silica) Silicon nitride	2173	2400	691	16.0	9.65	_		905	1040	9.88	8.76	
Sulfur	392	2070	708	0.206	5 0.14			778	937	1063	1155	
Thorium dioxide	3573	9110	235	13	6.1	403	606	10.2 255	6.6	4.7	3.68	
Titanium dioxide, polycrystalline	2133	4157	710	8.4	2.8			7.01 805	274 5.02 880	285 8.94 910	295 3.46 930	

TABLE A-5

Properties of building materials (at a mean temperature of 24°C)

Material	Thickness,	Density, ρ kg/m³	Thermal Conductivity, <i>k</i> W/m·K	Specific Heat, c_p kJ/kg·K	R-value (for listed thickness, L/k), K⋅m²/W
Building Boards Asbestos-cement board Gypsum of plaster board	6 mm 10 mm	1922 800		1.00 1.09	0.011 0.057
Plywood (Douglas fir)	13 mm — 6 mm 10 mm 13 mm	800 545 545 545 545	0.12 — — —	1.21 1.21 1.21 1.21	0.078 — 0.055 0.083 0.110
Insulated board and sheating (regular density) Hardboard (high density, standard	20 mm 13 mm 20 mm	545 288 288	_ _ _	1.21 1.30 1.30	0.165 0.232 0.359
tempered) Particle board: Medium density Underlayment	 16 mm	1010 800 640	0.14	1.34 1.30 1.21	
Wood subfloor Building Membrane Vapor-permeable felt Vapor-seal (2 layers of mopped 0.73 kg/m² felt)	20 mm —	_	_	1.38	0.166 0.011 0.021
Flooring Materials Carpet and fibrous pad Carpet and rubber pad Tile (asphalt, linoleum, vinyl)	_ _ _ _	_ _ _ _		1.42 1.38 1.26	0.367 0.217 0.009
Masonry Materials Masonry units: Brick, common Brick, face Brick, fire clay		1922 2082 2400 1920 1120	0.72 1.30 1.34 0.90 0.41	 0.79 	
Concrete blocks (3 oval cores, sand and gravel aggregate)	100 mm 200 mm 300 mm		0.77 1.0 1.30		0.13 0.20 0.23
Concretes: Lightweight aggregates, (including expanded shale, clay, or slate; expanded slags; cinders; pumice; and scoria)	940	1920 1600 1280 960 0.18	1.1 0.79 0.54 0.33	0.84 0.84 —	_ _ _ _
Cement/lime, mortar, and stucco Stucco		1920 1280 1857	1.40 0.65 0.72		

TABLE A-5

Properties of building materials (Concluded) (at a mean temperature of 24°C)

Material	Thickness, <i>L</i> mm	Density, ρ kg/m³	Thermal Conductivity, <i>k</i> W/m·K	Specific Heat, <i>c_p</i> kJ/kg·K	R -value (for listed thickness, L/k), $K \cdot m^2/W$
Roofing					
Asbestos-cement shingles		1900	_	1.00	0.037
Asphalt roll roofing		1100	_	1.51	0.026
Asphalt shingles	1.0	1100	_	1.26	0.077
Built-in roofing	10 mm	1100	_	1.46	0.058
Slate Wood shingles (plain and	13 mm	_	_	1.26	0.009
plastic/film faced)		_	_	1.30	0.166
				1.50	0.100
Plastering Materials	1.0	1000	0.70	0.04	0.006
Cement plaster, sand aggregate	19 mm	1860	0.72	0.84	0.026
Gypsum plaster: Lightweight aggregate	13 mm	720	_		0.055
Sand aggregate	13 mm	1680	0.81	0.84	0.016
Perlite aggregate	—	720	0.22	1.34	—
Siding Material (on flat surfaces) Asbestos-cement shingles		1900			0.037
Hardboard siding	 11 mm	1900	_	1.17	0.037
Wood (drop) siding	25 mm	_	_	1.30	0.139
Wood (plywood) siding lapped	10 mm	_	_	1.21	0.111
Aluminum or steel siding (over					
sheeting):					
Hollow backed	10 mm	_	_	1.22	0.11
Insulating-board backed	10 mm	_	_	1.34	0.32
Architectural glass	_	2530	1.0	0.84	0.018
Woods					
Hardwoods (maple, oak, etc.)	_	721	0.159	1.26	_
Softwoods (fir, pine, etc.)	_	513	0.115	1.38	_
Metals					
Aluminum (1100)	_	2739	222	0.896	_
Steel, mild	_	7833	45.3	0.502	_
Steel, Stainless	_	7913	15.6	0.456	_

Source: Table A–5 and A–6 are adapted from ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 1993), Chap. 22, Table 4. Used with permission.

TABLE A-6

Properties of insulating materials (at a mean temperature of 24°C)

Material	Thickness, <i>L</i> mm	Density, <i>ρ</i> kg/m ³	Thermal Conductivity, <i>k</i> W/m·K	Specific Heat, c_p kJ/kg·K	R-value (for listed thickness, L/k), $K \cdot m^2/W$
Blanket and Batt Mineral fiber (fibrous form processed from rock, slag, or glass)	50 to 70 mm 75 to 90 mm 135 to 165 mm	4.8–32 4.8–32 4.8–32	_ _ _	0.71–0.96 0.71–0.96 0.71–0.96	1.23 1.94 3.32
Board and Slab Cellular glass Glass fiber (organic bonded) Expanded polystyrene (molded beads) Expanded polyurethane (<i>R</i> -11 expanded) Expanded perlite (organic bonded) Expanded rubber (rigid) Mineral fiber with resin binder Cork		136 64-144 16 24 16 72 240 120	0.055 0.036 0.040 0.023 0.052 0.032 0.042 0.039	1.0 0.96 1.2 1.6 1.26 1.68 0.71 1.80	
Sprayed or Formed in Place Polyurethane foam Glass fiber Urethane, two-part mixture (rigid foam) Mineral wool granules with asbestos/ inorganic binders (sprayed)		24–40 56–72 70	0.023–0.026 0.038–0.039 0.026	 1.045 	_ _ _ _
Loose Fill Mineral fiber (rock, slag, or glass) Silica aerogel Vermiculite (expanded) Perlite, expanded Sawdust or shavings Cellulosic insulation (milled paper or wood	~75 to 125 mm ~165 to 222 mm ~191 to 254 mm ~185 mm	9.6–32 9.6–32 — — 122 122 32–66 128–240 37–51	 0.025 0.068 0.039-0.045 0.065 0.039-0.046	0.71 0.71 0.71 0.71 - - 1.09 1.38	1.94 3.35 3.87 5.28 — — — —
Roof Insulation Cellular glass Preformed, for use above deck	 13 mm 25 mm 50 mm	144 — — —	0.058 — — —	1.0 1.0 2.1 3.9	 0.24 0.49 0.93
Reflective Insulation		160	0.0017		
Silica powder (evacuated) Aluminum foil separating fluffy glass mats (evacuated); for cryogenic applications (2)		160 40	0.0017	_	_
Aluminum foil and glass paper laminate; 7 layers (evacuated); for cryogenic applications		120	0.000017	_	_

Properties of common foods (a) Specific heats and freezing-point properties

Sources: *Water content and freezing-point data are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chap. 30. Table 1. Used with permission. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

⁶Specific heat data are based on the specific heat values of a water and ice at 0°C and are determined from Siebel's formulas: c_{p, fresh} = 3.35 × (Water content) + 0.84, above freezing, and $c_{p, \, frozen} = 1.26 \times ({
m Water \, content}) + 0.84, \, {
m below \, freezing}.$

The latent heat of fusion is determined by multiplying the heat of fusion of water (334 kJ/kg) by the water content of the food.

TABLE A-7

Properties of common foods (Concluded) (b) Other properties

Food	Water Content, % (mass)	Temperature, <i>T</i> °C	Density, <i>ρ</i> kg/m³	Thermal Conductivity, <i>k</i> W/m·K	Thermal Diffusivity, α m²/s	Specific Heat, <i>c_p</i> kJ/kg·K
Fruits/Vegetables Apple juice Apples Apples, dried Apricots, dried Bananas, fresh Broccoli Cherries, fresh Figs Grape juice Peaches Plums Potatoes Raisins	87 85 41.6 43.6 76 — 92 40.4 89 89 — 78 32	20 8 23 23 27 -6 0-30 23 20 2-32 -16 0-70 23	1000 840 856 1320 980 560 1050 1241 1000 960 610 1055 1380	0.559 0.418 0.219 0.375 0.481 0.385 0.545 0.310 0.567 0.526 0.247 0.498 0.376	$\begin{array}{c} 0.14\times10^{-6}\\ 0.13\times10^{-6}\\ 0.096\times10^{-6}\\ 0.11\times10^{-6}\\ 0.14\times10^{-6}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	3.86 3.81 2.72 2.77 3.59 — 3.99 2.69 3.91 3.91 — 3.64 2.48
Meats Beef, ground Beef, lean Beef fat Beef liver Cat food Chicken breast Dog food Fish, cod Fish, salmon Ham Lamb Pork, lean Turkey breast Veal	67 74 0 72 39.7 75 30.6 81 67 71.8 72 72 74	6 3 35 35 23 0 23 3 3 20 20 4 3 20	950 1090 810 — 1140 1050 1240 1180 — 1030 1030 1030 1050 1060	0.406 0.471 0.190 0.448 0.326 0.476 0.319 0.534 0.531 0.480 0.456 0.456 0.496 0.470	$\begin{array}{c} 0.13 \times 10^{-6} \\ 0.13 \times 10^{-6} \\ 0.13 \times 10^{-6} \\$	3.36 3.54 — 3.49 2.68 3.56 2.45 3.71 3.36 3.48 3.49 3.49 3.54 3.56
Other Butter Chocolate cake Margarine Milk, skimmed Milk, whole Olive oil Peanut oil Water White cake	16 31.9 16 91 88 0 0 100 100	4 23 5 20 28 32 4 0 30 23	340 1000 — — 910 920 1000 995 450	0.197 0.106 0.233 0.566 0.580 0.168 0.168 0.569 0.618 0.082	$\begin{array}{c} -\\ 0.12\times 10^{-6}\\ 0.11\times 10^{-6}\\ -\\ -\\ -\\ 0.14\times 10^{-6}\\ 0.15\times 10^{-6}\\ 0.10\times 10^{-6} \end{array}$	2.08 2.48 2.08 3.96 3.89 — 4.217 4.178 2.49

Source: Data obtained primarily from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chap. 30, Tables 7 and 9. Used with permission.

Most specific heats are calculated from $c_p = 1.68 + 2.51 \times$ (Water content), which is a good approximation in the temperature range of 3 to 32°C. Most thermal diffusivities are calculated from $\alpha = k/\rho c_p$. Property values given here are valid for the specific water content.

TABLE A-8

Properties of miscellaneous materials

(Values are at 300 K unless indicated otherwise)

Material	Density, ρ kg/m³	Thermal Conductivity, <i>k</i> W/m·K	Specific Heat, c_p J/kg·K	Material	Density, ρ kg/m ³	Thermal Conductivity, <i>k</i> W/m·K	Specific Heat, c_p J/kg·K
Asphalt Bakelite Brick, refractory	2115 1300	0.062 1.4	920 1465	Ice 273 K 253 K	920 922	1.88 2.03	2040 1945
Chrome brick 473 K 823 K	3010	2.3 2.5	835 —	173 K Leather, sole Linoleum	928 998 535	3.49 0.159 0.081	1460 — —
1173 K Fire clay, burnt	_	2.0	_	Mica	1180 2900	0.186 0.523	_
1600 K 773 K 1073 K	2050	1.0 1.1	960 —	Paper Plastics Plexiglass	930 1190	0.180	1340 1465
1373 K Fire clay, burnt 1725 K	_	1.1	_	Teflon 300 K	2200	0.35	1050
773 K 1073 K	2325 —	1.3 1.4	960 —	400 K Lexan Nylon	1200 1145	0.45 0.19 0.29	 1260
1373 K Fire clay brick 478 K	— 2645	1.4	— 960	Polypropylene Polyester	910 1395	0.12 0.15	1925 1170
922 K 1478 K	— —	1.5 1.8	_ _ _	PVC, vinyl Porcelain Rubber, natural	1470 2300 1150	0.1 1.5 0.28	840 — —
Magnesite 478 K 922 K 1478 K Chicken meat,		3.8 2.8 1.9	1130 _	Rubber, vulcanized Soft Hard Sand	1100 1190 1515	0.13 0.16 0.2–1.0	2010 — 800
white (74.4% water content) 198 K	_	1.60	_	Snow, fresh Snow, 273 K Soil, dry	100 500 1500	0.60 2.2 1.0	 1900
233 K 253 K 273 K	_ _ _	1.49 1.35 0.48	_ _ _	Soil, wet Sugar Tissue, human	1900 1600	2.0 0.58	2200 —
293 K Clay, dry Clay, wet Coal, anthracite	— 1550 1495 1350	0.49 0.930 1.675 0.26	 1260	Skin Fat layer Muscle Vaseline	_ _ _	0.37 0.2 0.41 0.17	_ _ _
Concrete (stone mix) Cork Cotton Fat	2300 86 80	1.4 0.048 0.06 0.17	880 2030 1300	Wood, cross-grain Balsa Fir Oak White pine	140 415 545 435	0.055 0.11 0.17 0.11	2720 2385 —
Glass Window Pyrex Crown Lead	2800 2225 2500 3400	0.7 1-1.4 1.05 0.85	750 835 — —	Yellow pine Wood, radial Oak Fir Wool, ship	640 545 420 145	0.15 0.19 0.14 0.05	2805 2385 2720 —

Source: Compiled from various sources.

TABLE A-9

Properties of saturated water

Temp.	Saturation Pressure		ensity kg/m³	Enthalpy of Vaporization	Specif Hea $c_{\rm p}$, J/k	it	The Condu- k, W			: Viscosity g/m·s		ndtl nber r	Volume Expansion Coefficient β , 1/K
T, °C	$P_{\rm sat}$, kPa	Liquid	Vapor	$h_{\rm fg}$, kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid
0.01	0.6113	999.8	0.0048	2501	4217	1854	0.561	0.0171	1.792×10^{-3}	0.922×10^{-5}	13.5	1.00	-0.068×10^{-3}
5	0.8721	999.9	0.0068	2490	4205	1857	0.571	0.0173	1.519×10^{-3}	0.934×10^{-5}	11.2	1.00	0.015×10^{-3}
10	1.2276	999.7	0.0094	2478	4194	1862	0.580	0.0176	1.307×10^{-3}	0.946×10^{-5}	9.45	1.00	0.733×10^{-3}
15	1.7051	999.1	0.0128	2466	4185	1863	0.589	0.0179	1.138×10^{-3}	0.959×10^{-5}	8.09	1.00	0.138×10^{-3}
20	2.339	998.0	0.0173	2454	4182	1867	0.598	0.0182	1.002×10^{-3}	0.973×10^{-5}	7.01	1.00	0.195×10^{-3}
25	3.169	997.0	0.0231	2442	4180	1870	0.607	0.0186	0.891×10^{-3}	0.987×10^{-5}	6.14	1.00	0.247×10^{-3}
30	4.246	996.0	0.0304	2431	4178	1875	0.615	0.0189	0.798×10^{-3}	1.001×10^{-5}	5.42	1.00	0.294×10^{-3}
35	5.628	994.0	0.0397	2419	4178	1880	0.623	0.0192	0.720×10^{-3}	1.016×10^{-5}	4.83	1.00	0.337×10^{-3}
40	7.384	992.1	0.0512	2407	4179	1885	0.631	0.0196	0.653×10^{-3}	1.031×10^{-5}	4.32	1.00	0.377×10^{-3}
45	9.593	990.1	0.0655	2395	4180	1892	0.637	0.0200	0.596×10^{-3}	1.046×10^{-5}	3.91	1.00	0.415×10^{-3}
50	12.35	988.1	0.0831	2383	4181	1900	0.644	0.0204	0.547×10^{-3}	1.062×10^{-5}	3.55	1.00	0.451×10^{-3}
55	15.76	985.2	0.1045	2371	4183	1908	0.649	0.0208	0.504×10^{-3}	1.077×10^{-5}	3.25	1.00	0.484×10^{-3}
60	19.94	983.3	0.1304	2359	4185	1916	0.654	0.0212	0.467×10^{-3}	1.093×10^{-5}	2.99	1.00	0.517×10^{-3}
65	25.03	980.4	0.1614	2346	4187	1926	0.659	0.0216	0.433×10^{-3}	1.110×10^{-5}	2.75	1.00	0.548×10^{-3}
70	31.19	977.5	0.1983	2334	4190	1936	0.663	0.0221	0.404×10^{-3}	1.126×10^{-5}	2.55	1.00	0.578×10^{-3}
75	38.58	974.7	0.2421	2321	4193	1948	0.667	0.0225	0.378×10^{-3}	1.142×10^{-5}	2.38	1.00	0.607×10^{-3}
80	47.39	971.8	0.2935	2309	4197	1962	0.670	0.0230	0.355×10^{-3}	1.159×10^{-5}	2.22	1.00	0.653×10^{-3}
85	57.83	968.1	0.3536	2296	4201	1977	0.673	0.0235	0.333×10^{-3}	1.176×10^{-5}	2.08	1.00	0.670×10^{-3}
90 95	70.14 84.55	965.3 961.5	0.4235 0.5045	2283 2270	4206 4212	1993 2010	0.675 0.677	0.0240	0.315×10^{-3} 0.297×10^{-3}	1.193×10^{-5} 1.210×10^{-5}	1.96 1.85	1.00	0.702×10^{-3} 0.716×10^{-3}
		957.9			4212	2010	0.677	0.0246		1.210×10^{-5} 1.227×10^{-5}	1.85	1.00	0.716×10^{-3} 0.750×10^{-3}
100 110	101.33 143.27	957.9	0.5978 0.8263	2257 2230	4217	2029	0.679	0.0251		1.261×10^{-5}	1.75	1.00	0.750×10^{-3} 0.798×10^{-3}
120	143.27	943.4	1.121	2230	4244	2120	0.683	0.0262	0.232×10^{-3}	1.296×10^{-5}	1.36	1.00	0.798×10^{-3} 0.858×10^{-3}
130	270.1	934.6	1.121	2174	4244	2177	0.684	0.0275	0.232×10^{-3} 0.213×10^{-3}	1.330×10^{-5}	1.33	1.00	0.838×10^{-3} 0.913×10^{-3}
140	361.3	934.6	1.496	21/4	4286	2244	0.683	0.0200	0.213×10^{-3} 0.197×10^{-3}	1.365×10^{-5}	1.24	1.01	0.913×10^{-3} 0.970×10^{-3}
150	475.8	916.6	2.546	2143	4311	2314	0.682	0.0301	0.197×10^{-3} 0.183×10^{-3}	1.303×10^{-5} 1.399×10^{-5}	1.16	1.02	1.025×10^{-3}
160	617.8	907.4	3.256	2083	4340	2420	0.680	0.0310	0.183×10^{-3} 0.170×10^{-3}	1.434×10^{-5}	1.09	1.05	1.145×10^{-3}
170	791.7	897.7	4.119	2050	4370	2420	0.677	0.0331	0.170×10^{-3} 0.160×10^{-3}	1.468×10^{-5}	1.03	1.05	1.178×10^{-3}
180	1,002.1	887.3	5.153	2015	4410	2590	0.673	0.0347	0.150×10^{-3} 0.150×10^{-3}	1.502×10^{-5}	0.983	1.03	1.178×10^{-3} 1.210×10^{-3}
190	1,254.4	876.4	6.388	1979	4460	2710	0.669	0.0382	0.130×10^{-3} 0.142×10^{-3}	1.532×10^{-5} 1.537×10^{-5}	0.947	1.09	1.210×10^{-3} 1.280×10^{-3}
200	1,553.8	864.3	7.852	1941	4500	2840	0.663	0.0302	0.142×10^{-3} 0.134×10^{-3}	1.577×10^{-5} 1.571×10^{-5}	0.910	1.11	1.350×10^{-3}
220	2,318	840.3	11.60	1859	4610	3110	0.650	0.0401	0.134×10^{-3} 0.122×10^{-3}	1.641×10^{-5}	0.865	1.15	1.520×10^{-3}
240	3,344	813.7	16.73	1767	4760	3520	0.632	0.0442	0.1122×10^{-3} 0.111×10^{-3}	1.712×10^{-5}	0.836	1.24	1.720×10^{-3}
260	4,688	783.7	23.69	1663	4970	4070	0.609	0.0540	0.102×10^{-3}	1.712×10^{-5} 1.788×10^{-5}	0.832	1.35	2.000×10^{-3}
280	6,412	750.8	33.15	1544	5280	4835	0.581	0.0605	0.102×10^{-3} 0.094×10^{-3}	1.870×10^{-5}	0.854	1.49	2.380×10^{-3}
300	8,581	713.8	46.15	1405	5750	5980	0.548	0.0695	0.086×10^{-3}	1.965×10^{-5}	0.902	1.69	2.950×10^{-3}
320	11,274	667.1	64.57	1239	6540	7900	0.509	0.0836	0.078×10^{-3}	2.084×10^{-5}	1.00	1.97	
340	14,586	610.5	92.62	1028	8240	11,870	0.469	0.110	0.070×10^{-3}	2.255×10^{-5}	1.23	2.43	
360	18,651	528.3			14,690	25,800	0.427	0.178	0.060×10^{-3}	2.571×10^{-5}	2.06	3.73	
	22,090	317.0		0	_	_	_	_	0.043×10^{-3}	4.313×10^{-5}			

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = kl\rho c_{\rho} = \nu/Pr$. The temperatures 0.01°C, 100°C, and 374.14°C are the triple-, boiling-, and critical-point temperatures of water, respectively. The properties listed above (except the vapor density) can be used at any pressure with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg·°C for specific heat is equivalent to kJ/kg·K, and the unit W/m·°C for thermal conductivity is equivalent to W/m·K.

Source: Viscosity and thermal conductivity data are from J. V. Sengers and J. T. R. Watson, Journal of Physical and Chemical Reference Data 15 (1986), pp. 1291–1322. Other data are obtained from various sources or calculated.

TABLE A-10

Properties of saturated refrigerant-134a

Temp.	Saturation Pressure P, kPa	1	ensity kg/m ³ Vapor	Enthalpy of Vaporizatio $h_{\rm fg}$, kJ/kg	Ė	ecific Heat J/kg·K Vapor	Cond	ermal uctivity V/m·K Vapor	,	c Viscosity g/m·s	Nι	randtl umber Pr Vapor	Volume Expansion Coefficient \$\beta\$, I/K Liquid	
		<u> </u>	<u> </u>	.6 -			<u> </u>		<u> </u>	<u>'</u>	<u> </u>	<u> </u>	<u> </u>	
-40	51.2	1418	2.773	225.9	1254	748.6	0.1101	0.00811	4.878×10^{-4}	2.550×10^{-6}	5.558	0.235	0.00205	0.01760
-35	66.2	1403	3.524	222.7	1264	764.1	0.1084	0.00862	4.509×10^{-4}	3.003×10^{-6}	5.257	0.266	0.00209	0.01682
-30	84.4	1389	4.429	219.5	1273	780.2	0.1066	0.00913	4.178×10^{-4}	3.504×10^{-6}	4.992	0.299	0.00215	0.01604
-25	106.5	1374	5.509	216.3	1283	797.2	0.1047	0.00963	3.882×10^{-4}	4.054×10^{-6}	4.757	0.335	0.00220	0.01527
-20	132.8	1359	6.787	213.0	1294	814.9	0.1028	0.01013	3.614×10^{-4}	4.651×10^{-6}	4.548	0.374	0.00227	0.01451
-15	164.0	1343	8.288	209.5	1306	833.5	0.1009	0.01063	3.371×10^{-4}	5.295×10^{-6}	4.363	0.415	0.00233	0.01376
-10	200.7	1327	10.04	206.0	1318	853.1	0.0989	0.01112	3.150×10^{-4}	5.982×10^{-6}	4.198	0.459	0.00241	0.01302
-5	243.5	1311	12.07	202.4	1330	873.8	0.0968	0.01161	2.947×10^{-4}	6.709×10^{-6}	4.051	0.505	0.00249	0.01229
0	293.0	1295	14.42	198.7	1344	895.6	0.0947	0.01210	2.761×10^{-4}	7.471×10^{-6}	3.919	0.553	0.00258	0.01156
5	349.9	1278	17.12	194.8	1358	918.7	0.0925	0.01259	2.589×10^{-4}	8.264×10^{-6}	3.802	0.603	0.00269	0.01084
10	414.9	1261	20.22	190.8	1374	943.2	0.0903	0.01308	2.430×10^{-4}	9.081×10^{-6}	3.697	0.655	0.00280	0.01014
15	488.7	1244	23.75	186.6	1390	969.4	0.0880	0.01357	2.281×10^{-4}	9.915×10^{-6}	3.604	0.708	0.00293	0.00944
20	572.1	1226	27.77	182.3	1408	997.6	0.0856	0.01406	2.142×10^{-4}	1.075×10^{-5}	3.521	0.763	0.00307	0.00876
25	665.8	1207	32.34	177.8	1427	1028	0.0833	0.01456	2.012×10^{-4}	1.160×10^{-5}	3.448	0.819	0.00324	0.00808
30	770.6	1188	37.53	173.1	1448		0.0808	0.01507	1.888×10^{-4}	1.244×10^{-5}	3.383	0.877	0.00342	0.00742
35	887.5	1168	43.41	168.2		1098	0.0783	0.01558	1.772×10^{-4}	1.327×10^{-5}	3.328	0.935	0.00364	0.00677
40	1017.1	1147	50.08	163.0		1138	0.0757	0.01610	1.660×10^{-4}	1.408×10^{-5}	3.285	0.995	0.00390	0.00613
45	1160.5	1125	57.66	157.6		1184	0.0731	0.01664	1.554×10^{-4}	1.486×10^{-5}	3.253	1.058	0.00420	0.00550
50	1318.6	1102	66.27	151.8		1237	0.0704		1.453×10^{-4}	1.562×10^{-5}	3.231	1.123	0.00455	0.00489
55	1492.3	1078	76.11	145.7		1298	0.0676		1.355×10^{-4}	1.634×10^{-5}	3.223	1.193	0.00500	0.00429
60	1682.8	1053	87.38	139.1		1372	0.0647	0.01838	1.260×10^{-4}	1.704×10^{-5}	3.229	1.272	0.00554	0.00372
65	1891.0	1026	100.4	132.1		1462	0.0618	0.01902	1.167×10^{-4}	1.771×10^{-5}	3.255	1.362	0.00624	0.00315
70	2118.2	996.2	115.6	124.4		1577	0.0587	0.01972	1.077×10^{-4}	1.839×10^{-5}	3.307	1.471	0.00716	0.00261
75	2365.8	964	133.6	115.9	1907		0.0555	0.02048	9.891×10^{-5}	1.908×10^{-5}	3.400	1.612	0.00843	0.00209
80	2635.2	928.2	155.3	106.4	2056	1948	0.0521	0.02133	9.011×10^{-5}	1.982×10^{-5}	3.558	1.810	0.01031	0.00160
85	2928.2	887.1	182.3	95.4	2287	2281	0.0484	0.02233	8.124×10^{-5}	2.071×10^{-5}	3.837	2.116	0.01336	0.00114
90	3246.9	837.7	217.8	82.2	2701	2865	0.0444	0.02357	7.203×10^{-5}	2.187×10^{-5}	4.385	2.658	0.01911	0.00071
95	3594.1	772.5	269.3	64.9	3675	4144	0.0396	0.02544	6.190×10^{-5}	2.370×10^{-5}	5.746	3.862	0.03343	0.00033
100	3975.1	651.7	376.3	33.9	7959	8785	0.0322	0.02989	4.765×10^{-5}	2.833×10^{-5}	11.77	8.326	0.10047	0.00004

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = k/\rho c_\rho = \nu/\text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg.°C for specific heat is equivalent to kJ/kg.K, and the unit W/m.°C for thermal conductivity is equivalent to W/m.K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: R. Tillner-Roth and H. D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa," J. Phys. Chem, Ref. Data, Vol. 23, No. 5, 1994; M.J. Assael, N. K. Dalaouti, A. A. Griva, and J. H. Dymond, "Viscosity and Thermal Conductivity of Halogenated Methane and Ethane Refrigerants," IJR, Vol. 22, pp. 525–535, 1999; NIST REFPROP 6 program (M. O. McLinden, S. A. Klein, E. W. Lemmon, and A. P. Peskin, Physical and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO 80303, 1995).

TABLE A-11

Properties of saturated ammonia

Temp.		η ρ,	ensity kg/m³	Enthalpy of Vaporizatio	н с _р , .	cific eat J/kg·K	Cond <i>k</i> , \	ermal luctivity N/m·K	Dynamic \ μ, kg/	′m·s	Nur	ndtl mber Pr	Volume Expansion Coefficient β , I/K	Surface Tension,
T, °C	<i>P</i> , kPa	Liquid	Vapor	h _{fg} , kJ/kg	Liquic	vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
-40	71.66	690.2	0.6435	1389	4414	2242	_	0.01792	2.926×10^{-4}	7.957×10^{-6}	_	0.9955	0.00176	0.03565
-30	119.4	677.8	1.037	1360	4465	2322	_	0.01898	2.630×10^{-4}	8.311×10^{-6}	_	1.017	0.00185	0.03341
-25	151.5	671.5	1.296	1345	4489	2369	0.5968	0.01957	2.492×10^{-4}	8.490×10^{-6}	1.875	1.028	0.00190	0.03229
-20	190.1	665.1	1.603	1329	4514	2420	0.5853	0.02015	2.361×10^{-4}	8.669×10^{-6}	1.821	1.041	0.00194	0.03118
-15	236.2	658.6	1.966	1313	4538	2476	0.5737	0.02075	2.236×10^{-4}	8.851×10^{-6}	1.769	1.056	0.00199	0.03007
-10	290.8	652.1	2.391	1297	4564	2536	0.5621	0.02138	2.117×10^{-4}	9.034×10^{-6}	1.718	1.072	0.00205	0.02896
-5	354.9	645.4	2.886	1280	4589	2601	0.5505	0.02203	2.003×10^{-4}	9.218×10^{-6}	1.670	1.089	0.00210	0.02786
0	429.6	638.6	3.458	1262	4617	2672	0.5390	0.02270	1.896×10^{-4}	9.405×10^{-6}	1.624	1.107	0.00216	0.02676
5	516	631.7	4.116	1244	4645	2749	0.5274	0.02341	1.794×10^{-4}	9.593×10^{-6}	1.580	1.126	0.00223	0.02566
10	615.3	624.6	4.870	1226	4676	2831	0.5158	0.02415	1.697×10^{-4}	9.784×10^{-6}	1.539	1.147	0.00230	0.02457
15	728.8	617.5	5.729	1206	4709	2920	0.5042	0.02492	1.606×10^{-4}	9.978×10^{-6}	1.500	1.169	0.00237	0.02348
20	857.8	610.2	6.705	1186	4745	3016	0.4927	0.02573	1.519×10^{-4}	1.017×10^{-5}	1.463	1.193	0.00245	0.02240
25	1003	602.8	7.809	1166	4784	3120	0.4811	0.02658	1.438×10^{-4}	1.037×10^{-5}	1.430	1.218	0.00254	0.02132
30	1167	595.2	9.055	1144	4828	3232	0.4695	0.02748	1.361×10^{-4}	1.057×10^{-5}	1.399	1.244	0.00264	0.02024
35	1351	587.4	10.46	1122	4877	3354	0.4579	0.02843	1.288×10^{-4}	1.078×10^{-5}	1.372	1.272	0.00275	0.01917
40	1555	579.4	12.03	1099	4932	3486	0.4464	0.02943	1.219×10^{-4}	1.099×10^{-5}	1.347	1.303	0.00287	0.01810
45	1782	571.3	13.8	1075	4993	3631	0.4348	0.03049	1.155×10^{-4}	1.121×10^{-5}	1.327	1.335	0.00301	0.01704
50	2033	562.9	15.78	1051	5063	3790	0.4232	0.03162	1.094×10^{-4}	1.143×10^{-5}	1.310	1.371	0.00316	0.01598
55	2310	554.2	18.00	1025	5143	3967	0.4116	0.03283	1.037×10^{-4}	1.166×10^{-5}	1.297	1.409	0.00334	0.01493
60	2614	545.2	20.48	997.4	5234	4163	0.4001	0.03412	9.846×10^{-5}	1.189×10^{-5}	1.288	1.452	0.00354	0.01389
65	2948	536.0	23.26	968.9	5340	4384	0.3885	0.03550	9.347×10^{-5}	1.213×10^{-5}	1.285	1.499	0.00377	0.01285
70	3312	526.3	26.39	939.0	5463	4634	0.3769	0.03700	8.879×10^{-5}	1.238×10^{-5}	1.287	1.551	0.00404	0.01181
75	3709	516.2	29.90	907.5	5608	4923	0.3653	0.03862	8.440×10^{-5}	1.264×10^{-5}	1.296	1.612	0.00436	0.01079
80	4141	505.7	33.87	874.1	5780	5260	0.3538	0.04038	8.030×10^{-5}	1.292×10^{-5}	1.312	1.683	0.00474	0.00977
85	4609	494.5	38.36	838.6	5988	5659	0.3422	0.04232	7.646×10^{-5}	1.322×10^{-5}	1.338	1.768	0.00521	0.00876
90	5116	482.8	43.48	800.6	6242	6142	0.3306	0.04447	7.284×10^{-5}	1.354×10^{-5}	1.375	1.871	0.00579	0.00776
95	5665	470.2	49.35	759.8	6561	6740	0.3190	0.04687	6.946×10^{-5}	1.389×10^{-5}	1.429	1.999	0.00652	0.00677
100	6257	456.6	56.15	715.5	6972	7503	0.3075	0.04958	6.628×10^{-5}	1.429×10^{-5}	1.503	2.163	0.00749	0.00579

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu / \rho$ and $\alpha = k / \rho c_{\rho} = \nu / \text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg.°C for specific heat is equivalent to kJ/kg.K, and the unit W/m.°C for thermal conductivity is equivalent to W/m.K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Tillner-Roth, Harms-Watzenberg, and Baehr, "Eine neue Fundamentalgleichung fur Ammoniak," DKV-Tagungsbericht 20:167–181, 1993; Liley and Desai, "Thermophysical Properties of Refrigerants," ASHRAE, 1993, ISBN 1-1883413-10-9.

TABLE A-12

Properties of saturated propane

Temp <i>T</i> , °C	Saturation . Pressure P, kPa	Den ρ, kş Liquid	,	Enthalpy of Vaporization $h_{\rm fg}$, kJ/kg	Spector C_p , J_p	eat	Cond	ermal uctivity //m·K Vapor	,	c Viscosity g/m·s Vapor	Prai Num P Liquid	nber	Volume Expansion Coefficient β , I/K Liquid	Surface Tension, N/m
	,		<u> </u>				<u> </u>		'	· · ·			'	
-120			0.01408	498.3	2003	1115	0.1802	0.00589	6.136×10^{-4}	4.372×10^{-6}	6.820	0.827	0.00153	0.02630
-110		654.5	0.03776	489.3	2021	1148	0.1738	0.00645	5.054×10^{-4}	4.625×10^{-6}		0.822	0.00157	0.02486
-100		644.2	0.08872	480.4	2044	1183	0.1672	0.00705	4.252×10^{-4}	4.881×10^{-6}		0.819	0.00161	0.02344
-90	6.406	633.8	0.1870	471.5	2070	1221	0.1606	0.00769	3.635×10^{-4}	5.143×10^{-6}	4.686	0.817	0.00166	0.02202
-80	12.97	623.2	0.3602	462.4	2100	1263	0.1539	0.00836	3.149×10^{-4}	5.409×10^{-6}	4.297	0.817	0.00171	0.02062
-70	24.26	612.5	0.6439	453.1	2134	1308	0.1472	0.00908	2.755×10^{-4}	5.680×10^{-6}	3.994	0.818	0.00177	0.01923
-60	42.46	601.5	1.081	443.5	2173	1358	0.1407	0.00985	2.430×10^{-4}	5.956×10^{-6}		0.821	0.00184	0.01785
-50	70.24	590.3	1.724	433.6	2217	1412	0.1343	0.01067	2.158×10^{-4}	6.239×10^{-6}		0.825	0.00192	0.01649
-40	110.7	578.8	2.629	423.1	2258	1471	0.1281	0.01155	1.926×10^{-4}	6.529×10^{-6}	3.395	0.831	0.00201	0.01515
-30	167.3	567.0	3.864	412.1	2310	1535	0.1221	0.01250	1.726×10^{-4}	6.827×10^{-6}	3.266	0.839	0.00213	0.01382
-20	243.8	554.7	5.503	400.3	2368	1605	0.1163	0.01351	1.551×10^{-4}	7.136×10^{-6}	3.158	0.848	0.00226	0.01251
-10	344.4	542.0	7.635	387.8	2433	1682	0.1107	0.01459	1.397×10^{-4}	7.457×10^{-6}	3.069	0.860	0.00242	0.01122
0	473.3	528.7	10.36	374.2	2507	1768	0.1054	0.01576	1.259×10^{-4}	7.794×10^{-6}	2.996	0.875	0.00262	0.00996
5	549.8	521.8	11.99	367.0	2547	1814	0.1028	0.01637	1.195×10^{-4}	7.970×10^{-6}	2.964	0.883	0.00273	0.00934
10	635.1	514.7	13.81	359.5	2590	1864	0.1002	0.01701	1.135×10^{-4}	8.151×10^{-6}	2.935	0.893	0.00286	0.00872
15	729.8	507.5	15.85	351.7	2637	1917	0.0977	0.01767	1.077×10^{-4}	8.339×10^{-6}	2.909	0.905	0.00301	0.00811
20	834.4	500.0	18.13	343.4	2688	1974	0.0952	0.01836	1.022×10^{-4}	8.534×10^{-6}	2.886	0.918	0.00318	0.00751
25	949.7	492.2	20.68	334.8	2742	2036	0.0928	0.01908	9.702×10^{-5}	8.738×10^{-6}	2.866	0.933	0.00337	0.00691
30	1076	484.2	23.53	325.8	2802	2104	0.0904	0.01982	9.197×10^{-5}	8.952×10^{-6}	2.850	0.950	0.00358	0.00633
35	1215	475.8	26.72	316.2	2869	2179	0.0881	0.02061	8.710×10^{-5}	9.178×10^{-6}	2.837	0.971	0.00384	0.00575
40	1366	467.1	30.29	306.1	2943	2264	0.0857	0.02142	8.240×10^{-5}	9.417×10^{-6}	2.828	0.995	0.00413	0.00518
45	1530	458.0	34.29	295.3	3026	2361	0.0834	0.02228	7.785×10^{-5}	9.674×10^{-6}	2.824	1.025	0.00448	0.00463
50	1708	448.5	38.79	283.9	3122	2473	0.0811	0.02319	7.343×10^{-5}	9.950×10^{-5}	2.826	1.061	0.00491	0.00408
60	2110	427.5	49.66	258.4	3283	2769	0.0765	0.02517	6.487×10^{-5}	1.058×10^{-5}	2.784	1.164	0.00609	0.00303
70	2580	403.2	64.02	228.0	3595	3241	0.0717	0.02746	5.649×10^{-5}	1.138×10^{-5}	2.834	1.343	0.00811	0.00204
80	3127	373.0	84.28	189.7	4501	4173	0.0663	0.03029	4.790×10^{-5}	1.249×10^{-5}	3.251	1.722	0.01248	0.00114
90	3769	329.1	118.6	133.2	6977	7239	0.0595	0.03441	3.807×10^{-5}	1.448×10^{-5}	4.465	3.047	0.02847	0.00037

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = k/\mu c_\rho = \nu/\text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg.°C for specific heat is equivalent to kJ/kg.K, and the unit W/m.°C for thermal conductivity is equivalent to W/m.K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Reiner Tillner-Roth, "Fundamental Equations of State," Shaker, Verlag, Aachan, 1998; B. A. Younglove and J. F. Ely, "Thermophysical Properties of Fluids. II Methane, Ethane, Propane, Isobutane, and Normal Butane," J. Phys. Chem. Ref. Data, Vol. 16, No. 4, 1987; G.R. Somayajulu, "A Generalized Equation for Surface Tension from the Triple-Point to the Critical-Point," International Journal of Thermophysics, Vol. 9, No. 4, 1988.

TABLE A-13

Properties of liquids

rropert	les of fiquic	12						
Temp. <u><i>T</i>,</u> °C	Density ρ , kg/m ³	Specific Heat c_p , J/kg·K	Thermal Conductivity <i>k</i> , W/m·K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ, kg/m·s	Kinematic Viscosity ν, m²/s	Prandtl Number Pr	Volume Expansion Coeff. β , 1/K
				Methan	e [CH ₄]			
-160 -150 -140 -130 -120 -110 -100 -90	420.2 405.0 388.8 371.1 351.4 328.8 301.0 261.7	3492 3580 3700 3875 4146 4611 5578 8902	0.1863 0.1703 0.1550 0.1402 0.1258 0.1115 0.0967 0.0797	1.270×10^{-7} 1.174×10^{-7} 1.077×10^{-7} 9.749×10^{-8} 8.634×10^{-8} 7.356×10^{-8} 5.761×10^{-8} 3.423×10^{-8}	$\begin{array}{c} 1.133 \times 10^{-4} \\ 9.169 \times 10^{-5} \\ 7.551 \times 10^{-5} \\ 6.288 \times 10^{-5} \\ 5.257 \times 10^{-5} \\ 4.377 \times 10^{-5} \\ 3.577 \times 10^{-5} \\ 2.761 \times 10^{-5} \end{array}$	2.699×10^{-7} 2.264×10^{-7} 1.942×10^{-7} 1.694×10^{-7} 1.496×10^{-7} 1.331×10^{-7} 1.188×10^{-7} 1.055×10^{-7}	2.126 1.927 1.803 1.738 1.732 1.810 2.063 3.082	0.00352 0.00391 0.00444 0.00520 0.00637 0.00841 0.01282 0.02922
				Methanol	[CH ₃ (OH)]			
20 30 40 50 60 70	788.4 779.1 769.6 760.1 750.4 740.4	2515 2577 2644 2718 2798 2885	0.1987 0.1980 0.1972 0.1965 0.1957 0.1950	1.002×10^{-7} 9.862×10^{-8} 9.690×10^{-8} 9.509×10^{-8} 9.320×10^{-8} 9.128×10^{-8}	5.857×10^{-4} 5.088×10^{-4} 4.460×10^{-4} 3.942×10^{-4} 3.510×10^{-4} 3.146×10^{-4}	7.429×10^{-7} 6.531×10^{-7} 5.795×10^{-7} 5.185×10^{-7} 4.677×10^{-7} 4.250×10^{-7}	7.414 6.622 5.980 5.453 5.018 4.655	0.00118 0.00120 0.00123 0.00127 0.00132 0.00137
				Isobutane	e (R600a)			
-100 -75 -50 -25 0 25 50 75 100	683.8 659.3 634.3 608.2 580.6 550.7 517.3 478.5 429.6	1881 1970 2069 2180 2306 2455 2640 2896 3361	0.1383 0.1357 0.1283 0.1181 0.1068 0.0956 0.0851 0.0757 0.0669	1.075×10^{-7} 1.044×10^{-7} 9.773×10^{-8} 8.906×10^{-8} 7.974×10^{-8} 7.069×10^{-8} 6.233×10^{-8} 5.460×10^{-8} 4.634×10^{-8}	9.305×10^{-4} 5.624×10^{-4} 3.769×10^{-4} 2.688×10^{-4} 1.993×10^{-4} 1.510×10^{-4} 1.155×10^{-4} 8.785×10^{-5} 6.483×10^{-5}	1.360×10^{-6} 8.531×10^{-7} 5.942×10^{-7} 4.420×10^{-7} 3.432×10^{-7} 2.743×10^{-7} 1.836×10^{-7} 1.509×10^{-7}	12.65 8.167 6.079 4.963 4.304 3.880 3.582 3.363 3.256	0.00142 0.00150 0.00161 0.00177 0.00199 0.00232 0.00286 0.00385 0.00628
				Glvc	cerin			
0 5 10 15 20 25 30 35 40	1276 1273 1270 1267 1264 1261 1258 1255 1252	2262 2288 2320 2354 2386 2416 2447 2478 2513	0.2820 0.2835 0.2846 0.2856 0.2860 0.2860 0.2860 0.2860 0.2863	9.773 × 10 ⁻⁸ 9.732 × 10 ⁻⁸ 9.662 × 10 ⁻⁸ 9.576 × 10 ⁻⁸ 9.484 × 10 ⁻⁸ 9.388 × 10 ⁻⁸ 9.291 × 10 ⁻⁸ 9.195 × 10 ⁻⁸ 9.101 × 10 ⁻⁸	10.49 6.730 4.241 2.496 1.519 0.9934 0.6582 0.4347 0.3073	8.219×10^{-3} 5.287×10^{-3} 3.339×10^{-3} 1.970×10^{-3} 1.201×10^{-3} 7.878×10^{-4} 5.232×10^{-4} 3.464×10^{-4} 2.455×10^{-4}	84,101 54,327 34,561 20,570 12,671 8,392 5,631 3,767 2,697	
				Engine Oi	l (unused)			
0 20 40 60 80 100 120 140 150	899.0 888.1 876.0 863.9 852.0 840.0 828.9 816.8 810.3	1797 1881 1964 2048 2132 2220 2308 2395 2441	0.1469 0.1450 0.1444 0.1404 0.1380 0.1367 0.1347 0.1330 0.1327	$\begin{array}{c} 9.097 \times 10^{-8} \\ 8.680 \times 10^{-8} \\ 8.391 \times 10^{-8} \\ 7.934 \times 10^{-8} \\ 7.599 \times 10^{-8} \\ 7.330 \times 10^{-8} \\ 7.042 \times 10^{-8} \\ 6.798 \times 10^{-8} \\ 6.708 \times 10^{-8} \end{array}$	3.814 0.8374 0.2177 0.07399 0.03232 0.01718 0.01029 0.006558 0.005344	$\begin{array}{c} 4.242\times10^{-3}\\ 9.429\times10^{-4}\\ 2.485\times10^{-4}\\ 8.565\times10^{-5}\\ 3.794\times10^{-5}\\ 2.046\times10^{-5}\\ 1.241\times10^{-5}\\ 8.029\times10^{-6}\\ 6.595\times10^{-6} \end{array}$	46,636 10,863 2,962 1,080 499.3 279.1 176.3 118.1 98.31	0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070

TABLE A-14

Properties of liquid metals

Temp.	Density ρ, kg/m³	Specific Heat c _p , J/kg·K	Thermal Conductivity k, W/m·K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ, kg/m·s	Kinematic Viscosity ν, m ² /s	Prandtl Number Pr	Volume Expansion Coeff. β , 1/K
					elting Point: –39°C	•		
0 25 50 75 100 150 200 250 300	13595 13534 13473 13412 13351 13231 13112 12993 12873	140.4 139.4 138.6 137.8 137.1 136.1 135.5 135.3 135.3	8.18200 8.51533 8.83632 9.15632 9.46706 10.07780 10.65465 11.18150 11.68150	$\begin{array}{c} 4.287\times10^{-6}\\ 4.514\times10^{-6}\\ 4.734\times10^{-6}\\ 4.956\times10^{-6}\\ 5.170\times10^{-6}\\ 5.595\times10^{-6}\\ 5.996\times10^{-6}\\ 6.363\times10^{-6}\\ 6.705\times10^{-6} \end{array}$	1.687×10^{-3} 1.534×10^{-3} 1.423×10^{-3} 1.316×10^{-3} 1.245×10^{-3} 1.126×10^{-3} 1.043×10^{-3} 9.820×10^{-4} 9.336×10^{-4}	1.241×10^{-7} 1.133×10^{-7} 1.056×10^{-7} 9.819×10^{-8} 9.326×10^{-8} 8.514×10^{-8} 7.959×10^{-8} 7.558×10^{-8} 7.252×10^{-8}	0.0289 0.0251 0.0223 0.0198 0.0180 0.0152 0.0133 0.0119 0.0108	1.810×10^{-4} 1.815×10^{-4} 1.829×10^{-4} 1.854×10^{-4}
				Bismuth (Bi) Me	elting Point: 271°C			
350 400 500 600 700	9969 9908 9785 9663 9540	146.0 148.2 152.8 157.3 161.8	16.28 16.10 15.74 15.60 15.60	$\begin{array}{c} 1.118 \times 10^{-5} \\ 1.096 \times 10^{-5} \\ 1.052 \times 10^{-5} \\ 1.026 \times 10^{-5} \\ 1.010 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.540 \times 10^{-3} \\ 1.422 \times 10^{-3} \\ 1.188 \times 10^{-3} \\ 1.013 \times 10^{-3} \\ 8.736 \times 10^{-4} \end{array}$	1.545×10^{-7} 1.436×10^{-7} 1.215×10^{-7} 1.048×10^{-7} 9.157×10^{-8}	0.01381 0.01310 0.01154 0.01022 0.00906	
				Lead (Pb) Melting I	Point: 327°C			
400 450 500 550 600 650 700	10506 10449 10390 10329 10267 10206 10145	158 156 155 155 155 155 155	15.97 15.74 15.54 15.39 15.23 15.07 14.91	9.623×10^{-6} 9.649×10^{-6} 9.651×10^{-6} 9.610×10^{-6} 9.568×10^{-6} 9.526×10^{-6} 9.483×10^{-6}	2.277×10^{-3} 2.065×10^{-3} 1.884×10^{-3} 1.758×10^{-3} 1.632×10^{-3} 1.505×10^{-3} 1.379×10^{-3}	2.167×10^{-7} 1.976×10^{-7} 1.814×10^{-7} 1.702×10^{-7} 1.589×10^{-7} 1.475×10^{-7} 1.360×10^{-7}	0.02252 0.02048 0.01879 0.01771 0.01661 0.01549 0.01434	
				Sodium (Na) M	lelting Point: 98°C			
100 200 300 400 500 600	927.3 902.5 877.8 853.0 828.5 804.0	1378 1349 1320 1296 1284 1272	85.84 80.84 75.84 71.20 67.41 63.63	6.718×10^{-5} 6.639×10^{-5} 6.544×10^{-5} 6.437×10^{-5} 6.335×10^{-5} 6.220×10^{-5}	6.892×10^{-4} 5.385×10^{-4} 3.878×10^{-4} 2.720×10^{-4} 2.411×10^{-4} 2.101×10^{-4}	7.432×10^{-7} 5.967×10^{-7} 4.418×10^{-7} 3.188×10^{-7} 2.909×10^{-7} 2.614×10^{-7}	0.01106 0.00898 0.00675 0.00495 0.00459	7 1 3 3
				Potassium (K) Meltir	ng Point: 64°C			
200 300 400 500 600	795.2 771.6 748.0 723.9 699.6	790.8 772.8 754.8 750.0 750.0	43.99 42.01 40.03 37.81 35.50	6.995×10^{-5} 7.045×10^{-5} 7.090×10^{-5} 6.964×10^{-5} 6.765×10^{-5}	3.350×10^{-4} 2.667×10^{-4} 1.984×10^{-4} 1.668×10^{-4} 1.487×10^{-4}	4.213×10^{-7} 3.456×10^{-7} 2.652×10^{-7} 2.304×10^{-7} 2.126×10^{-7}	0.00602 0.00490 0.00374 0.00330 0.00314	9
			Sodium-P	otassium (%22Na-%7	8K) Melting Point: -	−11°C		
100 200 300 400 500 600	847.3 823.2 799.1 775.0 751.5 728.0	944.4 922.5 900.6 879.0 880.1 881.2	25.64 26.27 26.89 27.50 27.89 28.28	3.205×10^{-5} 3.459×10^{-5} 3.736×10^{-5} 4.037×10^{-5} 4.217×10^{-5} 4.408×10^{-5}	5.707×10^{-4} 4.587×10^{-4} 3.467×10^{-4} 2.357×10^{-4} 2.108×10^{-4} 1.859×10^{-4}	6.736×10^{-7} 5.572×10^{-7} 4.339×10^{-7} 3.041×10^{-7} 2.805×10^{-7} 2.553×10^{-7}	0.02102 0.01611 0.01161 0.00753 0.00665 0.00579	

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.

TABLE A-15

Properties of air at 1 atm pressure

Temp. <i>T</i> , °C	Density $ ho$, kg/m 3	Specific Heat c_p , J/kg·K	Thermal Conductivity <i>k</i> , W/m·K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ , kg/m·s	Kinematic Viscosity ν , m ² /s	Prandtl Number Pr
-150	2.866	983	0.01171	4.158×10^{-6}	8.636×10^{-6}	3.013×10^{-6}	0.7246
-100	2.038	966	0.01582	8.036×10^{-6}	1.189×10^{-5}	5.837×10^{-6}	0.7263
-50	1.582	999	0.01979	1.252×10^{-5}	1.474×10^{-5}	9.319×10^{-6}	0.7440
-40	1.514	1002	0.02057	1.356×10^{-5}	1.527×10^{-5}	1.008×10^{-5}	0.7436
-30	1.451	1004	0.02134	1.465×10^{-5}	1.579×10^{-5}	1.087×10^{-5}	0.7425
-20	1.394	1005	0.02211	1.578×10^{-5}	1.630×10^{-5}	1.169×10^{-5}	0.7408
-10	1.341	1006	0.02288	1.696×10^{-5}	1.680×10^{-5}	1.252×10^{-5}	0.7387
0	1.292	1006	0.02364	1.818×10^{-5}	1.729×10^{-5}	1.338×10^{-5}	0.7362
5	1.269	1006	0.02401	1.880×10^{-5}	1.754×10^{-5}	1.382×10^{-5}	0.7350
10	1.246	1006	0.02439	1.944×10^{-5}	1.778×10^{-5}	1.426×10^{-5}	0.7336
15	1.225	1007	0.02476	2.009×10^{-5}	1.802×10^{-5}	1.470×10^{-5}	0.7323
20	1.204	1007	0.02514	2.074×10^{-5}	1.825×10^{-5}	1.516×10^{-5}	0.7309
25	1.184	1007	0.02551	2.141×10^{-5}	1.849×10^{-5}	1.562×10^{-5}	0.7296
30	1.164	1007	0.02588	2.208×10^{-5}	1.872×10^{-5}	1.608×10^{-5}	0.7282
35	1.145	1007	0.02625	2.277×10^{-5}	1.895×10^{-5}	1.655×10^{-5}	0.7268
40	1.127	1007	0.02662	2.346×10^{-5}	1.918×10^{-5}	1.702×10^{-5}	0.7255
45	1.109	1007	0.02699	2.416×10^{-5}	1.941×10^{-5}	1.750×10^{-5}	0.7241
50	1.092	1007	0.02735	2.487×10^{-5}	1.963×10^{-5}	1.798×10^{-5}	0.7228
60	1.059	1007	0.02808	2.632×10^{-5}	2.008×10^{-5}	1.896×10^{-5}	0.7202
70	1.028	1007	0.02881	2.780×10^{-5}	2.052×10^{-5}	1.995×10^{-5}	0.7177
80	0.9994	1008	0.02953	2.931×10^{-5}	2.096×10^{-5}	2.097×10^{-5}	0.7154
90	0.9718	1008	0.03024	3.086×10^{-5}	2.139×10^{-5}	2.201×10^{-5}	0.7132
100	0.9458	1009	0.03095	3.243×10^{-5}	2.181×10^{-5}	2.306×10^{-5}	0.7111
120	0.8977	1011	0.03235	3.565×10^{-5}	2.264×10^{-5}	2.522×10^{-5}	0.7073
140	0.8542	1013	0.03374	3.898×10^{-5}	2.345×10^{-5}	2.745×10^{-5}	0.7041
160	0.8148	1016	0.03511	4.241×10^{-5}	2.420×10^{-5}	2.975×10^{-5}	0.7014
180	0.7788	1019	0.03646	4.593×10^{-5}	2.504×10^{-5}	3.212×10^{-5}	0.6992
200	0.7459	1023	0.03779	4.954×10^{-5}	2.577×10^{-5}	3.455×10^{-5}	0.6974
250	0.6746	1033	0.04104	5.890×10^{-5}	2.760×10^{-5}	4.091×10^{-5}	0.6946
300	0.6158	1044	0.04418	6.871×10^{-5}	2.934×10^{-5}	4.765×10^{-5}	0.6935
350	0.5664	1056	0.04721	7.892×10^{-5}	3.101×10^{-5}	5.475×10^{-5}	0.6937
400	0.5243	1069	0.05015	8.951×10^{-5}	3.261×10^{-5}	6.219×10^{-5}	0.6948
450	0.4880	1081	0.05298	1.004×10^{-4}	3.415×10^{-5}	6.997×10^{-5}	0.6965
500	0.4565	1093	0.05572	1.117×10^{-4}	3.563×10^{-5}	7.806×10^{-5}	0.6986
600	0.4042	1115	0.06093	1.352×10^{-4}	3.846×10^{-5}	9.515×10^{-5}	0.7037
700	0.3627	1135	0.06581	1.598×10^{-4}	4.111×10^{-5}	1.133×10^{-4}	0.7092
800	0.3289	1153	0.07037	1.855×10^{-4}	4.362×10^{-5}	1.326×10^{-4}	0.7149
900	0.3008	1169	0.07465	2.122×10^{-4}	4.600×10^{-5}	1.529×10^{-4}	0.7206
1000	0.2772	1184	0.07868	2.398×10^{-4}	4.826×10^{-5}	1.741×10^{-4}	0.7260
1500	0.1990	1234	0.09599	3.908×10^{-4}	5.817×10^{-5}	2.922×10^{-4}	0.7478
2000	0.1553	1264	0.11113	5.664×10^{-4}	6.630×10^{-5}	4.270×10^{-4}	0.7539

Note: For ideal gases, the properties c_p , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by P and by dividing ν and α by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Keenan, Chao, Keyes, Gas Tables, Wiley, 1984; and Thermophysical Properties of Matter. Vol. 3: Thermal Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena, and P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.

TABLE A-16

Properties of gases at 1 atm pressure

Temp. <i>T</i> , °C	Density $ ho$, kg/m ³	Specific Heat c _p , J/kg⋅K	Thermal Conductivity <i>k</i> , W/m·K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ , kg/m·s	Kinematic Viscosity ν , m ² /s	Prandtl Number Pr
			Carbon L	Dioxide, CO_2			
-50	2.4035	746	0.01051	5.860×10^{-6}	1.129×10^{-5}	4.699×10^{-6}	0.8019
0	1.9635	811	0.01456	9.141×10^{-6}	1.375×10^{-5}	7.003×10^{-6}	0.766
50	1.6597	866.6	0.01858	1.291×10^{-5}	1.612×10^{-5}	9.714×10^{-6}	0.7520
100	1.4373	914.8	0.02257	1.716×10^{-5}	1.841×10^{-5}	1.281×10^{-5}	0.7464
150	1.2675	957.4	0.02652	2.186×10^{-5}	2.063×10^{-5}	1.627×10^{-5}	0.744
200	1.1336	995.2	0.03044	2.698×10^{-5}	2.276×10^{-5}	2.008×10^{-5}	0.744
300	0.9358	1060	0.03814	3.847×10^{-5}	2.682×10^{-5}	2.866×10^{-5}	0.745
400	0.7968	1112	0.04565	5.151×10^{-5}	3.061×10^{-5}	3.842×10^{-5}	0.745
500	0.6937	1156	0.05293	6.600×10^{-5}	3.416×10^{-5}	4.924×10^{-5}	0.7450
1000	0.4213	1292	0.03293	1.560×10^{-4}	4.898×10^{-5}	1.162×10^{-4}	0.745
		1356		2.606×10^{-4}	6.106×10^{-5}	2.019×10^{-4}	
1500 2000	0.3025 0.2359	1387	0.10688 0.11522	3.521×10^{-4}	7.322×10^{-5}	3.103×10^{-4}	0.7745 0.8815
				on Monoxide, CO			
-50	1.5297	1081	0.01901	1.149×10^{-5}	1.378×10^{-5}	9.012×10^{-6}	0.7840
0	1.2497	1048	0.02278	1.739×10^{-5}	1.629×10^{-5}	1.303×10^{-5}	0.7499
50	1.0563	1039	0.02641	2.407×10^{-5}	1.863×10^{-5}	1.764×10^{-5}	0.732
100	0.9148	1041	0.02992	3.142×10^{-5}	2.080×10^{-5}	2.274×10^{-5}	0.7239
150	0.8067	1049	0.03330	3.936×10^{-5}	2.283×10^{-5}	2.830×10^{-5}	0.719
200	0.7214	1060	0.03656	4.782×10^{-5}	2.472×10^{-5}	3.426×10^{-5}	0.716
300	0.5956	1085	0.04277	6.619×10^{-5}	2.812×10^{-5}	4.722×10^{-5}	0.713
400	0.5071	1111	0.04860	8.628×10^{-5}	3.111×10^{-5}	6.136×10^{-5}	0.7111
500	0.4415	1135	0.05412	1.079×10^{-4}	3.379×10^{-5}	7.653×10^{-5}	0.7087
1000	0.2681	1226	0.07894	2.401×10^{-4}	4.557×10^{-5}	1.700×10^{-4}	0.7080
1500	0.1925	1279	0.10458	4.246×10^{-4}	6.321×10^{-5}	3.284×10^{-4}	0.7733
2000	0.1502	1309	0.13833	7.034×10^{-4}	9.826×10^{-5}	6.543×10^{-4}	0.9302
			Λ	Methane, CH₄			
-50	0.8761	2243	0.02367	1.204×10^{-5}	8.564×10^{-6}	9.774×10^{-6}	0.8116
0	0.7158	2217	0.03042	1.917×10^{-5}	1.028×10^{-5}	1.436×10^{-5}	0.7494
50	0.6050	2302	0.03766	2.704×10^{-5}	1.191×10^{-5}	1.969×10^{-5}	0.7282
100	0.5240	2443	0.04534	3.543×10^{-5}	1.345×10^{-5}	2.567×10^{-5}	0.724
150	0.4620	2611	0.05344	4.431×10^{-5}	1.491×10^{-5}	3.227×10^{-5}	0.728
200	0.4132	2791	0.06194	5.370×10^{-5}	1.630×10^{-5}	3.944×10^{-5}	0.734
300	0.3411	3158	0.07996	7.422×10^{-5}	1.886×10^{-5}	5.529×10^{-5}	0.745
400	0.2904	3510	0.09918	9.727×10^{-5}	2.119×10^{-5}	7.297×10^{-5}	0.750
500	0.2529	3836	0.11933	1.230×10^{-4}	2.334×10^{-5}	9.228×10^{-5}	0.750
1000	0.1536	5042	0.22562	2.914×10^{-4}	3.281×10^{-5}	2.136×10^{-4}	0.733
1500	0.1103	5701	0.31857	5.068×10^{-4}	4.434×10^{-5}	4.022×10^{-4}	0.793
2000	0.0860	6001	0.36750	7.120×10^{-4}	6.360×10^{-5}	7.395×10^{-4}	1.038
				Hydrogen, H ₂			
-50	0.11010	12635	0.1404	1.009×10^{-4}	7.293×10^{-6}	6.624×10^{-5}	0.6562
0	0.08995	13920	0.1404	1.319×10^{-4}	8.391×10^{-6}	9.329×10^{-5}	0.707
	0.08993	14349	0.1881	1.724×10^{-4}	9.427×10^{-6}	9.329×10^{-3} 1.240×10^{-4}	0.707
50				1.724×10^{-4} 2.199×10^{-4}	9.427×10^{-5} 1.041×10^{-5}	1.240×10^{-4} 1.582×10^{-4}	0.719
100	0.06584	14473	0.2095		1.041×10^{-5} 1.136×10^{-5}		
150	0.05806	14492	0.2296	2.729×10^{-4} 3.306×10^{-4}		1.957×10^{-4}	0.7174
200	0.05193	14482	0.2486	3.300 X 10 ⁴	1.228×10^{-5}	2.365×10^{-4}	0.715

TABLE A-16

Properties of gases at 1 atm p	oressure i	(Concluaea)	1
--------------------------------	------------	-------------	---

Temp. <u>7,</u> °C	Density $ ho$, kg/m ³	Specific Heat c _p , J/kg⋅K	Thermal Conductivity <i>k</i> , W/m·K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ , kg/m·s	Kinematic Viscosity ν , m ² /s	Prandtl Number Pr
300	0.04287	14481	0.2843	4.580×10^{-4}	1.403×10^{-5}	3.274×10^{-4}	0.7149
400	0.03650	14540	0.3180	5.992×10^{-4}	1.570×10^{-5}	4.302×10^{-4}	0.7179
500	0.03178	14653	0.3509	7.535×10^{-4}	1.730×10^{-5}	5.443×10^{-4}	0.7224
1000	0.01930	15577	0.5206	1.732×10^{-3}	2.455×10^{-5}	1.272×10^{-3}	0.7345
1500	0.01386	16553	0.6581	2.869×10^{-3}	3.099×10^{-5}	2.237×10^{-3}	0.7795
2000	0.01081	17400	0.5480	2.914×10^{-3}	3.690×10^{-5}	3.414×10^{-3}	1.1717
			ı	Nitrogen, N ₂			
-50	1.5299	957.3	0.02001	1.366×10^{-5}	1.390×10^{-5}	9.091×10^{-6}	0.6655
0	1.2498	1035	0.02384	1.843×10^{-5}	1.640×10^{-5}	1.312×10^{-5}	0.7121
50	1.0564	1042	0.02746	2.494×10^{-5}	1.874×10^{-5}	1.774×10^{-5}	0.7114
100	0.9149	1041	0.03090	3.244×10^{-5}	2.094×10^{-5}	2.289×10^{-5}	0.7056
150	0.8068	1043	0.03416	4.058×10^{-5}	2.300×10^{-5}	2.851×10^{-5}	0.7025
200	0.7215	1050	0.03727	4.921×10^{-5}	2.494×10^{-5}	3.457×10^{-5}	0.7025
300	0.5956	1070	0.04309	6.758×10^{-5}	2.849×10^{-5}	4.783×10^{-5}	0.7078
400	0.5072	1095	0.04848	8.727×10^{-5}	3.166×10^{-5}	6.242×10^{-5}	0.7153
500	0.4416	1120 1213	0.05358	1.083×10^{-4} 2.440×10^{-4}	3.451×10^{-5} 4.594×10^{-5}	7.816×10^{-5} 1.713×10^{-4}	0.7215 0.7022
1000	0.2681		0.07938	4.839×10^{-4}	4.594×10^{-5} 5.562×10^{-5}	2.889×10^{-4}	
1500 2000	0.1925 0.1502	1266 1297	0.11793 0.18590	9.543×10^{-4}	6.426×10^{-5}	4.278×10^{-4}	0.5969 0.4483
				Oxygen, O ₂			
-50	1.7475	984.4	0.02067	1.201×10^{-5}	1.616×10^{-5}	9.246×10^{-6}	0.7694
0	1.4277	928.7	0.02472	1.865×10^{-5}	1.916×10^{-5}	1.342×10^{-5}	0.7198
50	1.2068	921.7	0.02867	2.577×10^{-5}	2.194×10^{-5}	1.818×10^{-5}	0.7053
100	1.0451	931.8	0.03254	3.342×10^{-5}	2.451×10^{-5}	2.346×10^{-5}	0.7019
150	0.9216	947.6	0.03637	4.164×10^{-5}	2.694×10^{-5}	2.923×10^{-5}	0.7019
200	0.8242	964.7	0.04014	5.048×10^{-5}	2.923×10^{-5}	3.546×10^{-5}	0.7025
300	0.6804	997.1	0.04751	7.003×10^{-5}	3.350×10^{-5}	4.923×10^{-5}	0.7030
400	0.5793	1025	0.05463	9.204×10^{-5}	3.744×10^{-5}	6.463×10^{-5}	0.7023
500	0.5044	1048	0.06148	1.163×10^{-4}	4.114×10^{-5}	8.156×10^{-5}	0.7010
1000	0.3063	1121	0.09198	2.678×10^{-4}	5.732×10^{-5}	1.871×10^{-4}	0.6986
1500	0.2199	1165	0.11901	4.643×10^{-4}	7.133×10^{-5}	3.243×10^{-4}	0.6985
2000	0.1716	1201	0.14705	7.139×10^{-4}	8.417 × 10 ⁻⁵	4.907 × 10 ⁻⁴	0.6873
			Wa	ater Vapor, H₂O			
-50	0.9839	1892	0.01353	7.271×10^{-6}	7.187×10^{-6}	7.305×10^{-6}	1.0047
0	0.8038	1874	0.01673	1.110×10^{-5}	8.956×10^{-6}	1.114×10^{-5}	1.0033
50	0.6794	1874	0.02032	1.596×10^{-5}	1.078×10^{-5}	1.587×10^{-5}	0.9944
100	0.5884	1887	0.02429	2.187×10^{-5}	1.265×10^{-5}	2.150×10^{-5}	0.9830
150	0.5189	1908	0.02861	2.890×10^{-5}	1.456×10^{-5}	2.806×10^{-5}	0.9712
200	0.4640	1935	0.03326	3.705×10^{-5}	1.650×10^{-5}	3.556×10^{-5}	0.9599
300	0.3831	1997	0.04345	5.680×10^{-5}	2.045×10^{-5}	5.340×10^{-5} 7.498×10^{-5}	0.9401
400	0.3262	2066	0.05467	8.114×10^{-5}	2.446×10^{-5}		0.9240
500	0.2840	2137	0.06677	1.100×10^{-4}	2.847×10^{-5}	1.002×10^{-4}	0.9108 0.8639
1000	0.1725	2471	0.13623 0.21301	3.196×10^{-4} 6.288×10^{-4}	4.762×10^{-5} 6.411×10^{-5}	2.761×10^{-4} 5.177×10^{-4}	
1500 2000	0.1238 0.0966	2736 2928	0.21301	6.288×10^{-3} 1.032×10^{-3}	6.411×10^{-5} 7.808×10^{-5}	5.177×10^{-4} 8.084×10^{-4}	0.8233 0.7833
		4340	U. (7 I O.)	1.U.)/ A 1U 1	7.0U0 A 1U		

Note: For ideal gases, the properties c_p , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by ρ and by dividing ν and α by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.

TABLE A-17

Properties of the atmosphere at high altitude

	·			Speed of			Thermal
Altitude,	Temperature,	Pressure,	Gravity	Sound,	Density,	Viscosity	Conductivity,
<i>z</i> , m	T, °C	<i>P</i> , kPa	g, m/s ²	<i>c</i> , m/s	ρ , kg/m ³	μ, kg/m·s	k, W/m⋅K
0	15.00	101.33	9.807	340.3	1.225	1.789×10^{-5}	0.0253
200	13.70	98.95	9.806	339.5	1.202	1.783×10^{-5}	0.0252
400	12.40	96.61	9.805	338.8	1.179	1.777×10^{-5}	0.0252
600	11.10	94.32	9.805	338.0	1.156	1.771×10^{-5}	0.0251
800	9.80	92.08	9.804	337.2	1.134	1.764×10^{-5}	0.0250
1000	8.50	89.88	9.804	336.4	1.112	1.758×10^{-5}	0.0249
1200	7.20	87.72	9.803	335.7	1.090	1.752×10^{-5}	0.0248
1400	5.90	85.60	9.802	334.9	1.069	1.745×10^{-5}	0.0247
1600	4.60	83.53	9.802	334.1	1.048	1.739×10^{-5}	0.0245
1800	3.30	81.49	9.801	333.3	1.027	1.732×10^{-5}	0.0244
2000	2.00	79.50	9.800	332.5	1.007	1.726×10^{-5}	0.0243
2200	0.70	77.55	9.800	331.7	0.987	1.720×10^{-5}	0.0242
2400	-0.59	75.63	9.799	331.0	0.967	1.713×10^{-5}	0.0241
2600	-1.89	73.76	9.799	330.2	0.947	1.707×10^{-5}	0.0240
2800	-3.19	71.92	9.798	329.4	0.928	1.700×10^{-5}	0.0239
3000	-4.49	70.12	9.797	328.6	0.909	1.694×10^{-5}	0.0238
3200	-5.79	68.36	9.797	327.8	0.891	1.687×10^{-5}	0.0237
3400	-7.09	66.63	9.796	327.0	0.872	1.681×10^{-5}	0.0236
3600	-8.39	64.94	9.796	326.2	0.854	1.674×10^{-5}	0.0235
3800	-9.69	63.28	9.795	325.4	0.837	1.668×10^{-5}	0.0234
4000	-10.98	61.66	9.794	324.6	0.819	1.661×10^{-5}	0.0233
4200	-12.3	60.07	9.794	323.8	0.802	1.655×10^{-5}	0.0232
4400	-13.6	58.52	9.793	323.0	0.785	1.648×10^{-5}	0.0231
4600	-14.9	57.00	9.793	322.2	0.769	1.642×10^{-5}	0.0230
4800	-16.2	55.51	9.792	321.4	0.752	1.635×10^{-5}	0.0229
5000	-17.5	54.05	9.791	320.5	0.736	1.628×10^{-5}	0.0228
5200	-18.8	52.62	9.791	319.7	0.721	1.622×10^{-5}	0.0227
5400	-20.1	51.23	9.790	318.9	0.705	1.615×10^{-5}	0.0226
5600	-21.4	49.86	9.789	318.1	0.690	1.608×10^{-5}	0.0224
5800	-22.7	48.52	9.785	317.3	0.675	1.602×10^{-5}	0.0223
6000	-24.0	47.22	9.788	316.5	0.660	1.595×10^{-5}	0.0222
6200	-25.3	45.94	9.788	315.6	0.646	1.588×10^{-5}	0.0221
6400	-26.6	44.69	9.787	314.8	0.631	1.582×10^{-5}	0.0220
6600	-27.9	43.47	9.786	314.0	0.617	1.575×10^{-5}	0.0219
6800	-29.2	42.27	9.785	313.1	0.604	1.568×10^{-5}	0.0218
7000	-30.5	41.11	9.785	312.3	0.590	1.561×10^{-5}	0.0217
8000	-36.9	35.65	9.782	308.1	0.526	1.527×10^{-5}	0.0212
9000	-43.4	30.80	9.779	303.8	0.467	1.493×10^{-5}	0.0206
10,000	-49.9	26.50	9.776	299.5	0.414	1.458×10^{-5}	0.0201
12,000	-56.5	19.40	9.770	295.1	0.312	1.422×10^{-5}	0.0195
14,000	-56.5	14.17	9.764	295.1	0.228	1.422×10^{-5}	0.0195
16,000	-56.5	10.53	9.758	295.1	0.166	1.422×10^{-5}	0.0195
18,000	-56.5	7.57	9.751	295.1	0.122	1.422×10^{-5}	0.0195

Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=101.325 kPa, $T=15^{\circ}$ C, $\rho=1.2250$ kg/m³, g=9.80665 m²/s.

TABLE A-18

Emissivities of surfaces (a) Metals

Material	Temperature, K	Emissivity, $arepsilon$	Material	Temperature, K	Emissivity, ϵ
Aluminum	200,000	0.04.0.06	Magnesium, polished	300–500	0.07-0.13
Polished Commercial sheet	300–900 400	0.04–0.06 0.09	Mercury Molybdenum	300–400	0.09–0.12
Heavily oxidized Anodized	400–800 300	0.20–0.33 0.8	Polished Oxidized	300–2000 600–800	0.05–0.21 0.80–0.82
Bismuth, bright Brass	350	0.34	Nickel Polished	500–1200	0.07–0.17
Highly polished Polished Dull plate	500–650 350 300–600	0.03–0.04 0.09 0.22	Oxidized Platinum, polished Silver, polished	450–1200 450–1000 500–1500 300–1000	0.07-0.17 0.37-0.57 0.06-0.18 0.02-0.07
Oxidized Chromium, polished Copper	450–800 300–1400	0.6 0.08–0.40	Stainless steel Polished Lightly oxidized	300–1000 600–1000	0.17–0.30 0.30–0.40
Highly polished Polished	300 300–500	0.02 0.04–0.05	Highly oxidized Steel	600–1000	0.70–0.80
Commercial sheet Oxidized Black oxidized	300 600–1000 300	0.15 0.5–0.8 0.78	Polished sheet Commercial sheet Heavily oxidized	300–500 500–1200 300	0.08-0.14 0.20-0.32 0.81
Gold	200 1000	0.02.0.00	Tin, polished	300	0.05
Highly polished Bright foil Iron	300–1000 300	0.03–0.06 0.07	Tungsten Polished Filament	300–2500 3500	0.03–0.29 0.39
Highly polished Case iron Wrought iron Rusted	300–500 300 300–500 300	0.05–0.07 0.44 0.28 0.61	Zinc Polished Oxidized	300–800 300	0.02–0.05 0.25
Oxidized	500–900	0.64–0.78			
Lead Polished Unoxidized, rough Oxidized	300–500 300 300	0.06–0.08 0.43 0.63			

TABLE A-18

Emissivities of surfaces (Concluded)

(b) Nonmetals

Temperature, Emissivity, Material K $arepsilon$	Material	Temperature, K	Emissivity, ε
Material K ε Alumina 800–1400 0.65–0.45 Aluminum oxide 600–1500 0.69–0.41 Asbestos 300 0.96 Asphalt pavement 300 0.85–0.93 Brick 0.75 0.75 Common 300 0.75–0.90 Fireclay 1200 0.75 Carbon filament 2000 0.53 Cloth 300 0.75–0.90 Concrete 300 0.88–0.94 Glass Window 300 0.90–0.95 Pyrex 300–1200 0.82–0.62 Pyrex 300–1500 0.85–0.57 Ice 273 0.95–0.99 Magnesium oxide 400–800 0.69–0.55 Masonry 300 0.80 Paints Aluminum 300 0.40–0.50 Black, lacquer, shiny 300 0.92–0.96 Oils, all colors 300 0.92–0.96 Red primer 300 0.93	Paper, white Plaster, white Porcelain, glazed Quartz, rough, fused Rubber Hard Soft Sand Silicon carbide Skin, human Snow Soil, earth Soot Teflon Water, deep Wood Beech Oak	K 300 300 300 300 300 300 300 300 300 600–1500 300 273 300 300–500 273–373 300 300–300 273–373	ε 0.90 0.93 0.92 0.93 0.93 0.86 0.90 0.87–0.85 0.95 0.80–0.90 0.93–0.96 0.95 0.85–0.92 0.95–0.96 0.94 0.90

TABLE A-19

Solar radiative properties of materials

Description/composition	Solar Absorptivity, $lpha_s$	Emissivity, ε , at 300 K	Ratio, $lpha_s/arepsilon$	Solar Transmissivity, $ au_s$
Aluminum				
Polished	0.09	0.03	3.0	
Anodized	0.14	0.84	0.17	
Quartz-overcoated	0.11	0.37	0.30	
Foil	0.15	0.05	3.0	
Brick, red (Purdue)	0.63	0.93	0.68	
Concrete	0.60	0.88	0.68	
Galvanized sheet metal				
Clean, new	0.65	0.13	5.0	
Oxidized, weathered	0.80	0.28	2.9	
Glass, 3.2-mm thickness				
Float or tempered				0.79
Low iron oxide type				0.88
Marble, slightly off-white (nonreflective)	0.40	0.88	0.45	
Metal, plated				
Black sulfide	0.92	0.10	9.2	
Black cobalt oxide	0.93	0.30	3.1	
Black nickel oxide	0.92	0.08	11	
Black chrome	0.87	0.09	9.7	
Mylar, 0.13-mm thickness				0.87
Paints	0.00	0.00	1.0	
Black (Parsons)	0.98	0.98	1.0	
White, acrylic	0.26	0.90	0.29	
White, zinc oxide	0.16	0.93	0.17	
Paper, white Plexiglas, 3.2-mm thickness	0.27	0.83	0.32	0.90
Porcelain tiles, white (reflective glazed surface)	0.26	0.85	0.30	0.90
Roofing tiles, bright red	0.26	0.63	0.30	
Dry surface	0.65	0.85	0.76	
Wet surface	0.88	0.83	0.76	
Sand, dry	0.00	0.91	0.90	
Off-white	0.52	0.82	0.63	
Dull red	0.73	0.86	0.82	
Snow	0.70	0.00	0.02	
Fine particles, fresh	0.13	0.82	0.16	
Ice granules	0.33	0.89	0.37	
Steel				
Mirror-finish	0.41	0.05	8.2	
Heavily rusted	0.89	0.92	0.96	
Stone (light pink)	0.65	0.87	0.74	
Tedlar, 0.10-mm thickness				0.92
Teflon, 0.13-mm thickness				0.92
Wood	0.59	0.90	0.66	

Source: V. C. Sharma and A. Sharma, "Solar Properties of Some Building Elements," Energy 14 (1989), pp. 805–810, and other sources.

The Moody chart for the friction factor for fully developed flow in circular pipes for use in the head loss relation $\Delta P_L = f \frac{L}{D} \frac{\rho V^2}{2}$. Friction factors in the turbulent flow are evaluated from the Colebrook equation $\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\epsilon/D}{3.7} + \frac{2.51}{Re\sqrt{f}}\right)$ FIGURE A-20