BIMU2004 Olasılık Teorisi ve İstatistik Vize Sınavı

İstanbul Üniversitesi - Cerrahpaşa Bilgisayar Mühendisliği Bölümü - Güz 2022

8 Kasım 2022 15:20-16:30

LÜTFEN OKUYUN:

- Sınava sizin için belirlenen sınıfta giriniz.
- Bu sınavın süresi 70 dakikadır. Süre bittiğinde cevap kağıdını doldurmaya devam edenler kopya çekmiş sayılır.
- Lütfen soruları kurşun kalemle, TÜRKÇE, kısa ve anlaşılır olarak cevaplayınız. **Anlaşılmayan, muğlak ifadeler kullanmak**, kötü yazı yazmak notunuza negatif olarak etki edecektir.
- Sınavda 1 adet hesap makinasi kullanabilirsiniz. Bunların dışında her türlü defter, kitap, notlar, sözlük ve elektronik sözlük vasaktır.
- Hesap makinası ve silgi paylaşmak kopya sayılacaktır!
- Bilgisayar, PDA, cep telefonu türünden elektronik cihazlar kullanmak yasaktır.
- Soruları çözmeye başlamadan lütfen okuyun.
- Soru ve cevap kağıtlarına isim ve numaranızı yazınız.
- Soru ve cevap kağıtlarınızı çıkarken cevap kağıdınızla beraber teslim ediniz.
- Bu sınavda toplam 100 puanlık soru vardır.
- SINAVDA KOPYA ÇEKENLER, KOPYA VERENLER VE BUNLARA TEŞEBBÜS EDENLER SINAVDAN "0" ALACAKTIR VE DEKANLIĞA ŞİKAYET EDİLECEKLERDİR!.
- Çözümlerinizi ondalık sayı olarak verecekseniz noktadan sonra en az 3 basamak hassasiyet olmalıdır.
- Çözümleriniz kesirli ise sadeleştirin, mesela sonuç $\frac{2}{4}$ ise $\frac{1}{2}$ yapılmalıdır.

Başarılar. (Mustafa Dağtekin)

Birikimli Standard Normal Dağılım Tablosu. $\phi(\mathbf{z})$										
z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7793	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Bazı formüller

$$\int x e^{-\alpha x} dx = \frac{-1}{\alpha^2} (\alpha x + 1) e^{-\alpha x} + c \qquad \left| \text{ Gama Fonksiyonu} : \Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx \right|$$

SORULAR

S1: Bir sürekli rastgele degişken olan X'in Olasılık Yoğunluk Fonksiyonu aşağıdaki gibi verilmiştir.

$$f(x) = \begin{cases} \alpha x e^{-x/2}, & 0 < x, x \in \mathbb{R}^+ \\ 0, & \text{diğer} \end{cases}$$

- (a) (10 puan) α 'nın değerini açıklayarak bulunuz
- (b) (10 puan) X'in 5'ten büyük bir değer alma olasılığını bulunuz.
- (c) (10 puan) X'in bir fonksiyonu $g(X) = X^3 + X^2 + X$ olarak verilmişse, g(X)'in beklenen değerini açıklayarak bulunuz. (İpucu: Gama Fonksiyonundan faydalanabilirsiniz.)
- S2: Alıcı ve vericiden oluşan bir dijital haberleşme sisteminde verici 1 ve 0 işaretleri gönderiyor. Gönderilen işaretin karşı taraftan doğru olarak algılanma ihtimalini artırmak için verici 1 işaretini göndermek için "11111" (5 defa 1 biti) ve 0 işaretini göndermek için "00000" (5 defa 0 biti) gönderiyor. Gönderilen 1 bitin alıcı tarafından doğru algılanma ihtimali 0.8 olsun. Alıcı her mesajda gelen bitleri sayıp en çok hangi bit geldiyse mesajın o işareti gösterdiğine karar verdiğini varsayalım. (Gönderilen 5 bitin 1 işareti olarak sayılması için en az üçünün 1 olarak algılanması gerekiyor.).
 - (a) (10 puan) Bu durumda gönderilmek istenilen 1 işaretin yanlış algılanma ihtimali nedir?
 - (b) (10 puan) Bu kanaldan gönderilen 5000 işaretten (5000 işareti yukardaki metodla 25000 bit ile gönderiyoruz) en az 1045 tanesinin yanlış gönderilmiş olma ihtimali nedir?

Örneğin 5000 tane 1 işareti göndermek için:

$$\underbrace{11111\ 11111\ \cdots\ 11111\ 11111}_{5000\times 5}$$

- S3: (10 puan) X, ortalaması 0.5 olan üssel dağılımlı bir rastgele değişken olsun. P(X>c)=0.25 olmasını sağlayan c değerini bulunuz.
- S4: Bir halter sporcusu en fazla 100kg ağırlık kaldırabiliyor. Bu sporcu, $1 \le m \le 100$ olmak şartıyla, kütlesi m kg olan bir ağırlığı seçtikten sonra bunu tekrar tekrar kaldırdığını düşünelim. Kaldırmayı başaramadığı denemeye kadar yapılan tekrar sayısı R rastgele değişkeni ile gösterilsin ve R, geometrik bir rastgele değişken olup, $E[R] = \frac{100}{m}$ olsun.
 - (a) (10 puan) R'nin olasılık kütle fonksiyonunu m cinsinden bulunuz.
 - (b) (10 puan) Bu haltercinin bir deneyde harcadığı toplam enerji'yi W ile gösterirsek , harcanan toplam enerji $W = 5 \cdot m \cdot R$ Joule olur. Bu haltercinin harcadığı enerjinin beklenen değeri nedir?
- **S5:** Bir mağazaya gelen müşteri sayısı Poisson dağılımını takip etmektedir ve ortalamada mağazaya 3 saat içinde 1 müşteri gelmektedir. Aşağıdaki soruları cevaplayınız.
 - (a) (10 puan) Bu mağazaya 4 saat içinde 2'den fazla müşteri gelme olasılığı nedir?
 - (b) (10 puan) Mağaza açılışından başlayarak 4. müşteri gelinceye kadar geçen zamana T dersek, T'in varyansı ne olur?

LÜTFEN SINAV KAĞITLARINIZA İSİM YAZARAK CEVAP KAĞIDIYLA BERABER TESLİM EDİNİZ.