

3.1 状态反馈3.2 闭环极点器置问题

3.3 线性定常; 统的镇定问题

第3章 状态反馈与极点配置

程龙, 薛文超

中国科学院自动化研究所 中国科学院数学与系统科学研究院

- 3.1 状态反馈 3.2 闭环极点配 置问题
- 3.3 线性定常系统的镇定问题

- 1 3.1 状态反馈
 - 3.1.1 状态反馈的构成形式
 - 3.1.2 状态反馈系统的能控性
- ② 3.2 闭环极点配置问题
 - 3.2.1 问题的描述
 - 3.2.2 单输入系统的极点配置
 - 3.2.3 多输入系统的极点配置
 - 3.2.4 状态反馈对传递函数零点的影响
- 3 3.3 线性定常系统的镇定问题

第3章 状态反馈与极点配置

第3章

3.1 状态反馈

3.2 闭环极点的 置问题

3.3 线性定常. 统的镇定问题

- 状态反馈,是实现被控系统综合问题目标的手段之一
 - 输出反馈
 - 动态反馈

第3章 状态反馈与极点配置

第3章

- 3.2 闭环极点面
- 3.3 线性定常 统的镇定问题

- 状态反馈, 是实现被控系统综合问题目标的手段之一
 - 输出反馈
 - 动态反馈
- 极点配置,是被控系统的基本综合问题之一
 - 镇定问题
 - 解耦问题
 - 跟踪问题
 - 线性二次型(LQ)最优控制问题

3.1 状态反馈

3.1.1 状态反馈的构成 形式 3.1.2 状态反馈系统的

3.2 闭环极点i 置问题

3.3 线性定常; 统的镇定问题

1 3.1 状态反馈

- 3.1.1 状态反馈的构成形式
- 3.1.2 状态反馈系统的能控性

2 3.2 H 26 K 5. 50 H 14 K

- 3.2.1 问题的描述
- 3.2.2 单输入系统的极点配置
- 3.2.3 多输入系统的极点配置
- 3.2.4 状态反馈对传递函数零点的影响
- 3 33 英性关带系统的特定问题

3.1 状态反馈 3.1.1 状态反馈的构成 形式 3.1.2 状态反馈系统的

3.2 闭环极点i 置问题

3.3 线性定常; 统的镇定问题

- 1 3.1 状态反馈
 - 3.1.1 状态反馈的构成形式
 - 3.1.2 状态反馈系统的能控性

- 3.2.1 问题的描述
 - 3.2.2 单输入系统的极点配置
 - 3.2.3 多输入系统的极点配置
 - 3.2.4 状态反馈对传递函数零点的影响

第3章

3.1 状态反馈 3.1.1状态反馈的构成 形式 3.1.2状态反馈系统的 份款性

3.2 闭环极点面 置问题

3.3 线性定常 统的镇定问题 考虑线性定常系统

$$\dot{x} = Ax + Bu, \ y = Cx,\tag{1}$$

其中,x为n维状态向量,u为p维控制向量,y为q维输出向量,A,B,C分别为 $n \times n$, $n \times p$, $q \times n$ 阶常阵

第3章

$$\dot{x} = Ax + Bu, \ y = Cx,\tag{1}$$

其中,x为n维状态向量,u为p维控制向量,y为q维输出向量,A,B,C分别为 $n \times n$, $n \times p$, $q \times n$ 阶常阵

● 当将系统的控制u取为状态x的线性函数

$$u = Kx + v, (2)$$

时, 称其为线性的直接状态反馈, 简称为状态反馈

● 其中, K为p×n阶常阵, 称为状态反馈矩阵, v为参考输入向量

第3章

$$\dot{x} = Ax + Bu, \ y = Cx,\tag{1}$$

其中,x为n维状态向量,u为p维控制向量,y为q维输出向量,A,B,C分别为 $n \times n$, $n \times p$, $q \times n$ 阶常阵

● 当将系统的控制u取为状态x的线性函数

$$u = Kx + v, (2)$$

时, 称其为线性的直接状态反馈, 简称为状态反馈

● 其中, K为p×n阶常阵, 称为状态反馈矩阵, v为参考输入向量

注: 在有的教材中, 控制u取为状态x的如下线性函数

$$u = -Kx + v, (3)$$

但,(3)与(2)没有实质区别,只是信号x的反馈形式不同

第3章

3.1 状态反馈 3.1.1 状态反馈的构成 形式

3.2 闭环极点[

3.3 线性定常 统的镇定问题 ● 将(2)代入(1)所导出的闭环结构的控制系统(简称闭环系统)

$$\dot{x} = (A + BK)x + Bv, y = Cx \tag{4}$$

称为状态反馈系统

第3章

 3.1.1 状态反馈的构成形式
 3.1.2 状态反馈系统创 能控性

3.2 闭环极点面 置问题

3.3 线性定常 统的镇定问题 ● 将(2)代入(1)所导出的闭环结构的控制系统(简称闭环系统)

$$\dot{x} = (A + BK)x + Bv, y = Cx \tag{4}$$

称为状态反馈系统

• 闭环系统的传递函数为

$$G_c(s) = C(sI - A - BK)^{-1}B.$$
(5)

第3章

3.1.1 状态反馈的构成 3.1.1 状态反馈的构成 形式 3.1.2 张太石镜系统的

3.2 闭环极点配 置问题

3.3 线性定常系统的镇定问题

● 将(2)代入(1)所导出的闭环结构的控制系统(简称闭环系统)

$$\dot{x} = (A + BK)x + Bv, y = Cx \tag{4}$$

称为状态反馈系统

• 闭环系统的传递函数为

$$G_c(s) = C(sI - A - BK)^{-1}B.$$
 (5)

• 状态反馈的构成形式如下图3.1

3.1 状态反馈 3.1.1 状态反馈的构成 形式

3.2 闭环极点 置问题

3.3 线性定常 统的镇定问题

- 1 3.1 状态反馈
 - 3.1.1 状态反馈的构成形式
 - 3.1.2 状态反馈系统的能控性
 - (2)
 - 3.2.1 问题的描述
 - 3.2.2 单输入系统的极点配置
 - 3.2.3 多输入系统的极点配置
 - 3.2.4 状态反馈对传递函数零点的影响
- (3) 3.3 ×2.12 × 17 × × × × × 11 × 11 × 11

第3章

状态反馈 状态反馈的构成

3.1.2 状态反馈系统 能控性

3.2 闭环极点面 置问题

3.3 线性定常 统的镇定问是 从(4)(即, 闭环系统 $\dot{x} = (A + BK)x + Bv, y = Cx$)可以看出, 状态反馈可以改变系统矩阵

第3章

从(4)(即, 闭环系统 $\dot{x} = (A + BK)x + Bv, y = Cx$)可以看出, 状态反馈可以改变系统矩阵

● 那么, 状态反馈的引入, 对系统的能控性会有什么影响呢? 对此, 有如下结论

定理

定理3.1 状态反馈的引入不改变系统的能控性. 即系统(A + BK, B)能控的充分必要条件是系统(A, B)能控.

第3章

从(4)(即, 闭环系统 $\dot{x} = (A + BK)x + Bv, y = Cx$)可以看出, 状态反馈可以改变系统矩阵

● 那么, 状态反馈的引入, 对系统的能控性会有什么影响呢? 对此, 有如下结论

定理

定理3.1 状态反馈的引入不改变系统的能控性. 即系统(A + BK, B)能控的充分必要条件是系统(A, B)能控.

证明: 因为

$$\begin{bmatrix} sI - A - BK & B \end{bmatrix} = \begin{bmatrix} sI - A & B \end{bmatrix} \begin{bmatrix} I & 0 \\ -K & I \end{bmatrix},$$

第3章

从(4)(即, 闭环系统 $\dot{x} = (A + BK)x + Bv, y = Cx$)可以看出, 状态反馈可以改变系统矩阵

● 那么, 状态反馈的引入, 对系统的能控性会有什么影响呢? 对此, 有如下结论

定理

定理3.1 状态反馈的引入不改变系统的能控性. 即系统(A+BK,B)能控的充分必要条件是系统(A,B)能控.

证明: 因为

$$\begin{bmatrix} sI - A - BK & B \end{bmatrix} = \begin{bmatrix} sI - A & B \end{bmatrix} \begin{bmatrix} I & 0 \\ -K & I \end{bmatrix},$$

• 故可推得

$$rank[sI - A - BK \quad B] = rank[sI - A \quad B], \forall s \in \mathbb{C}.$$

第3章

从(4)(即, 闭环系统 $\dot{x} = (A + BK)x + Bv, y = Cx$)可以看出, 状态反馈可以改变系统矩阵

那么,状态反馈的引入,对系统的能控性会有什么影响呢?对此,有如下结论

定理

定理3.1 状态反馈的引入不改变系统的能控性. 即系统(A + BK, B)能控的充分必要条件是系统(A, B)能控.

证明: 因为

$$\begin{bmatrix} sI - A - BK & B \end{bmatrix} = \begin{bmatrix} sI - A & B \end{bmatrix} \begin{bmatrix} I & 0 \\ -K & I \end{bmatrix},$$

• 故可推得

$$rank [sI - A - BK \quad B] = rank [sI - A \quad B], \forall s \in \mathbb{C}.$$

• 由PBH判据知定理结论成立

3.1 状态反馈

3.2 闭环极点面 置问题

3.2.1 问题的描述 3.2.2 单输入系统的极 点配置

3.2.3 多输入系统的标点配置 2.2.4 收太后榜对任证

3.2.4 状态反馈对传递 函数零点的影响

3.3 线性定常 统的镇定问题

- ①31 状态反馈
 - 3.1.1 状态反馈的构成形式
 - 3.1.2 状态反馈系统的能控性
- 2 3.2 闭环极点配置问题
 - 3.2.1 问题的描述
 - 3.2.2 单输入系统的极点配置
 - 3.2.3 多输入系统的极点配置
 - 3.2.4 状态反馈对传递函数零点的影响
- ③ 33 经性差常系统的维定问题

3.1 状态反馈

3.2 闭环极点 置问题

3.2.1 问题的描述 3.2.2 单输入系统的极 点配置

3.2.3 多输入系统的板 点配置 3.2.4 状态反馈对传递 函数宏占的影响

3.3 线性定常 统的镇定问题

- (1)
 - 3.1.1 状态反馈的构成形式
 - 3.1.2 状态反馈系统的能控性
- ② 3.2 闭环极点配置问题
 - 3.2.1 问题的描述
 - 3.2.2 单输入系统的极点配置
 - 3.2.3 多输入系统的极点配置
 - 3.2.4 状态反馈对传递函数零点的影响

第3章

3.1 状态反馈

3.2 闭环极点面 置问题

3.2.2 单输入系统的标点配置

3.2.3 多输入系统的标点配置 3.2.4 状态反馈对传动

3.3 线性定常 统的镇定问题 • 给定线性定常系统

$$\dot{x} = Ax + Bu,\tag{6}$$

其中,x为n维状态向量,u为p维控制向量,A,B分别为n×n,n×p阶常阵

第3章

3.1 状态反馈

3.2 门外放 从 3.2.1 问题的描述 3.2.2 華榆八系統的板 点配置 3.2.3 多榆八系统的板 点配置 3.2.4 状态反馈对传递 高载客点的影响

3.3 线性定常, 统的镇定问题 • 给定线性定常系统

$$\dot{x} = Ax + Bu,\tag{6}$$

其中,x为n维状态向量,u为p维控制向量,A,B分别为 $n\times n,n\times p$ 阶常阵

● 再给定n个所期望的闭环系统的极点

$$\alpha_1, \alpha_2, \cdots, \alpha_n,$$
 (7)

其中,若有复数,则以共轭复数对的形式出现

第3章

● 给定线性定常系统

$$\dot{x} = Ax + Bu,\tag{6}$$

其中,x为n维状态向量,u为p维控制向量,A,B分别为 $n\times n,n\times p$ 阶常阵

● 再给定n个所期望的闭环系统的极点

$$\alpha_1, \alpha_2, \cdots, \alpha_n,$$
 (7)

其中, 若有复数, 则以共轭复数对的形式出现

▶ 所谓状态反馈闭环极点配置问题, 就是对于给定的受控系统(6), 确定状态反馈u = Kx + v, v为参考输入, 使得所导出的闭环系统

$$\dot{x} = (A + BK)x + Bv,\tag{8}$$

的极点(特征值)为 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$

第3章

J.1 4人心人(列

3.2 闭环极点 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多輸入系統的 点配置 3.2.4 状态反馈对传; 函数零点的影响

3.3 线性定常; 统的镇定问题 • 简单的说, 就是确定状态反馈矩阵K, 使得A+BK的特征值为 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$

第3章

- 3.1 状态反馈 3.2 闭环极点配置问题 32.1 网络的格地 32.2 单输入系统的板 点配置 32.3 多输入系统的板 点配置 32.4 状态反馈对传递 南数字系统的影响 3.3 线特·字索系
- 简单的说, 就是确定状态反馈矩阵K, 使得A + BK的特征值为 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$
- 系统(A,B)满足什么条件矩阵K才存在,使得A+BK有任意指定的特征值呢?如何去求K呢?

—这正是我们将要解决的极点配置问题

五.2 內外似点日 置问题 3.2.1 问题的描述

3.2.2 单输入系统的初 点配置 3.2.3 多输入系统的初 占数 8

点配置 3.2.4 状态反馈对传递 函数零点的影响

3.3 线性定常 统的镇定问题

- (1) 3.
 - 3.1.1 状态反馈的构成形式
 - 3.1.2 状态反馈系统的能控性
- ② 3.2 闭环极点配置问题
 - 3.2.1 问题的描述
 - 3.2.2 单输入系统的极点配置
 - 3.2.3 多输入系统的极点配置
 - 3.2.4 状态反馈对传递函数零点的影响

第3章

3.1 状态反复

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 占配置

3.2.3 多输入系统的 点配置

点配至 3.2.4 状态反馈对传: 函数零点的影响

3.3 线性定常 统的镇定问题 考虑单输入系统(A,b), 其中, A为 $n \times n$, b为 $n \times 1$ 的常阵

第3章

ri m

定理

定 理3.2 若 单 输 入 系 统(A,b)能 控,则 对 于 任 意 给 定 的n个数{ $\alpha_1,\alpha_2,\cdots,\alpha_n$ } (复数共轭出现), 必存在矩阵K, 使得经状态反馈u=Kx+v构成的闭环系统(A+bK,b)以此n个数为极点.

考虑单输入系统(A,b), 其中, $A \rightarrow n \times n$, $b \rightarrow n \times 1$ 的常阵

点配置
3.2.3 多输入系统的表态配置
3.2.4 状态反馈对传运函数零点的影响

3.3 线性定常 统的镇定问题

第3章

考虑单输入系统(A,b), 其中, $A \rightarrow n \times n$, $b \rightarrow n \times 1$ 的常阵

定理

定 理3.2 若 单 输 入 系 统(A,b)能 控,则 对 于 任 意 给 定 的n个数 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ (复数共轭出现),必存在矩阵K,使得经状态反馈u=Kx+v构成的闭环系统(A+bK,b)以此n个数为极点.

证明: 若(A,b)为单输入能控,则一定存在非奇异矩阵T,

$$T = \begin{bmatrix} A^{n-1}b & \cdots & Ab & b \end{bmatrix} \begin{bmatrix} 1 \\ a_{n-1} & \ddots \\ \vdots & \ddots & \ddots \\ a_1 & \cdots & a_{n-1} & 1 \end{bmatrix}$$
(9)

第3章

3.1 状态反馈

3.2 闭环极点的

3.2.1 问题的描述 3.2.2 单输入系统的标

3.2.3 多输入系统的扩点配置

点配置 3.2.4 状态反馈对传》 函数需占的影响

3.3 线性定常 统的镇定问题

➡ 使得

$$\hat{A} = T^{-1}AT = \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ 0 & & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix}, \ \hat{b} = T^{-1}b = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$
(10)

为能控规范型

第3章

3.1 状态反馈

3.2 闭环极点置问题

3.2.1 问题的描述 3.2.2 单输入系统的标

然配量 3.2.3 多输入系统的极 点配置

点配置 3.2.4 状态反馈对传递 函数零点的影响

3.3 线性定常, 统的镇定问题

➡ 使得

$$\hat{A} = T^{-1}AT = \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ 0 & & & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix}, \ \hat{b} = T^{-1}b = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$
 (10)

为能控规范型

注: 其中, a_0 , a_1 , \cdots , a_{n-1} 为A的特征多项式的系数, 即

$$\det(sI - A) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$$
 (11)

第3章

3.1 状态反馈

3.2 闭环极点 置问题

3.2.1 问题的描述 3.2.2 单输入系统的标

3.2.3 多输入系统的极 点配置

3.2.4 状态反馈对传递 函数零点的影响

3.3 线性定常; 统的镇定问题

⇒ 使得

$$\hat{A} = T^{-1}AT = \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ 0 & & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix}, \ \hat{b} = T^{-1}b = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$
(10)

为能控规范型

注: 其中, $a_0, a_1, \cdots, a_{n-1}$ 为A的特征多项式的系数,即

$$\det(sI - A) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$$
 (11)

• 令

$$\hat{K} = KT = \begin{bmatrix} k_0 & k_1 & \cdots & k_{n-1} \end{bmatrix}, \tag{12}$$

第3章

3.1 状态及项
 3.2 闭环极点配

3.2.1 问题的描述 3.2.2 单输入系统的极 占配置

点配置 3.2.4 状态反馈对传递 函数零点的影响

统的镇定问题

➡ 使得

$$\hat{A} = T^{-1}AT = \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ 0 & & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix}, \ \hat{b} = T^{-1}b = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$
(10)

为能控规范型

注: 其中, $a_0, a_1, \cdots, a_{n-1}$ 为A的特征多项式的系数,即

$$\det(sI - A) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$$
 (11)

令

$$\hat{K} = KT = \begin{bmatrix} k_0 & k_1 & \cdots & k_{n-1} \end{bmatrix}, \tag{12}$$

则由

$$\hat{A} + \hat{b}\hat{K} = T^{-1}AT + T^{-1}bKT$$
$$= T^{-1}(A + bK)T$$

知: $\hat{A} + \hat{b}\hat{K}$ 与A + bK有相同的特征值

第3章

3.1 状态反馈

3.2 闭环极点面

3.2.1 问题的描述 3.2.2 单输入系统的机

3.2.3 多输入系统的核

点配置 3.2.4 状态反馈对传动

3.3 线性定常 统的镇定问题 • 由(10),(12)得

$$\hat{A} + \hat{b}\hat{K} = \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ 0 & & 1 \\ -(a_0 - k_0) & -(a_1 - k_1) & \cdots & -(a_{n-1} - k_{n-1}) \end{bmatrix}. \quad (13)$$

第3章

3.1 状态反馈

3.2 闭环极点面 置问题

3.2.1 问题的描述 3.2.2 单输入系统的标

3.2.3 多输入系统的极点配置 3.2.4 状态反馈对传递

3.3 线性定常系统的镇定问题

• 由(10),(12)得

$$\hat{A} + \hat{b}\hat{K} = \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ 0 & & 1 \\ -(a_0 - k_0) & -(a_1 - k_1) & \cdots & -(a_{n-1} - k_{n-1}) \end{bmatrix}. \quad (13)$$

• 容易看出, $\hat{A} + \hat{b}\hat{K}$ 的特征多项式为

$$\det(sI - \hat{A} - \hat{b}\hat{K})$$

$$= s^{n} + (a_{n-1} - k_{n-1})s^{n-1} + \dots + (a_{1} - k_{1})s + (a_{0} - k_{0})$$
(14)

第3章

3.1 状态及领

置问题

3.2.2 单输入系统的极 点配置

3.2.3 多輸入系統的极 点配置 3.2.4 状态反馈对传递 函数零点的影响

3.3 线性定常系统的镇定问题

• 由(10),(12)得

$$\hat{A} + \hat{b}\hat{K} = \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ 0 & & 1 \\ -(a_0 - k_0) & -(a_1 - k_1) & \cdots & -(a_{n-1} - k_{n-1}) \end{bmatrix}. \quad (13)$$

• 容易看出, $\hat{A} + \hat{b}\hat{K}$ 的特征多项式为

$$\det(sI - \hat{A} - \hat{b}\hat{K})$$

$$= s^{n} + (a_{n-1} - k_{n-1})s^{n-1} + \dots + (a_{1} - k_{1})s + (a_{0} - k_{0})$$
(14)

• 又 $\hat{A} + \hat{b}\hat{K}$ 的特征值为 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$

第3章

3.1 状态反馈

置问题

3.2.2 单输入系统的极 点配置

3.2.3 多輸入系統的极 点配置 3.2.4 状态反馈对传递 函数零点的影响

3.3 线性定常系 统的镇定问题 • 由(10),(12)得

$$\hat{A} + \hat{b}\hat{K} = \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ 0 & & 1 \\ -(a_0 - k_0) & -(a_1 - k_1) & \cdots & -(a_{n-1} - k_{n-1}) \end{bmatrix}. \quad (13)$$

• 容易看出, $\hat{A} + \hat{b}\hat{K}$ 的特征多项式为

$$\det(sI - \hat{A} - \hat{b}\hat{K})$$

$$= s^{n} + (a_{n-1} - k_{n-1})s^{n-1} + \dots + (a_{1} - k_{1})s + (a_{0} - k_{0})$$
(14)

• 又 $\hat{A} + \hat{b}\hat{K}$ 的特征值为 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$, 令

$$\alpha(s) = (s - \alpha_1)(s - \alpha_2) \cdots (s - \alpha_n) \triangleq s^n + \bar{a}_{n-1}s^{n-1} + \cdots + \bar{a}_1s + \bar{a}_0,$$
 (15)

第3章

3.1 状态反馈 3.2 闭环极点面

3.2.2 单输入系统的极 点配置 3.2.3 多输入系统的极

3.3 线性定常系 统的镇定问题 • 由(10),(12)得

$$\hat{A} + \hat{b}\hat{K} = \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ 0 & & 1 \\ -(a_0 - k_0) & -(a_1 - k_1) & \cdots & -(a_{n-1} - k_{n-1}) \end{bmatrix}. \quad (13)$$

• 容易看出, $\hat{A} + \hat{b}\hat{K}$ 的特征多项式为

$$\det(sI - \hat{A} - \hat{b}\hat{K})$$

$$= s^{n} + (a_{n-1} - k_{n-1})s^{n-1} + \dots + (a_{1} - k_{1})s + (a_{0} - k_{0})$$
(14)

• 又 $\hat{A} + \hat{b}\hat{K}$ 的特征值为 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$, 令

$$\alpha(s) = (s - \alpha_1)(s - \alpha_2) \cdots (s - \alpha_n)$$

$$\triangleq s^n + \bar{a}_{n-1}s^{n-1} + \cdots + \bar{a}_1s + \bar{a}_0.$$
(15)

• 故, 由 $\det(sI - \hat{A} - \hat{b}\hat{K}) = \alpha(s)$ 可得

$$a_{n-1} - k_{n-1} = \bar{a}_{n-1}, \dots, a_1 - k_1 = \bar{a}_1, a_0 - k_0 = \bar{a}_0.$$
 (16)

第3章

3.1 状态反馈

3.2 闭环极点 置问题

3.2.1 回巡的福送 3.2.2 単輸入系統的 占配置

3.2.3 多输入系统的 占配置

点配置 3.2.4 状态反馈对传:

3.3 线性定常 统的镇定问题

• 于是推得

$$k_{n-1} = a_{n-1} - \bar{a}_{n-1}, \dots, k_1 = a_1 - \bar{a}_1, k_0 = a_0 - \bar{a}_0.$$
 (17)

第3章

3.1 状态反馈

3.2 闭环极点配置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多输入系统的标点配置

点配至 3.2.4 状态反馈对传送 基础专与码影响

3.3 线性定常 统的镇定问题 • 于是推得

$$k_{n-1} = a_{n-1} - \bar{a}_{n-1}, \dots, k_1 = a_1 - \bar{a}_1, k_0 = a_0 - \bar{a}_0.$$
 (17)

→ 从而可得

$$\hat{K} = \begin{bmatrix} a_0 - \bar{a}_0 & a_1 - \bar{a}_1 & \cdots & a_{n-1} - \bar{a}_{n-1} \end{bmatrix}$$
 (18)

第3章

3.2 闭环极点配

3.2.2 单输入系统的极 点配置 3.2.3 多输入系统的极 点配置 3.2.4 状态反馈对传递 函数零点的影响

3.3 线性定常系 统的镇定问题 • 于是推得

$$k_{n-1} = a_{n-1} - \bar{a}_{n-1}, \dots, k_1 = a_1 - \bar{a}_1, k_0 = a_0 - \bar{a}_0.$$
 (17)

➡ 从而可得

$$\hat{K} = \begin{bmatrix} a_0 - \bar{a}_0 & a_1 - \bar{a}_1 & \cdots & a_{n-1} - \bar{a}_{n-1} \end{bmatrix}$$
 (18)

• 由上述推导知(18)给出的 \hat{K} 使得 $\hat{A}+\hat{b}\hat{K}$ 的特征值为 $\alpha_1,\alpha_2,\cdots,\alpha_n$

第3章

3.1 状态及项
 3.2 闭环极点配置问题

3.2.2 单输入系统的极 点配置 3.2.3 多输入系统的极 点.3.3 多输入系统的极 点.3.3 多输入系统的极 点.3.4 状态反馈对传递 函数家点的影响

3.3 线性定常系 统的镇定问题 • 于是推得

$$k_{n-1} = a_{n-1} - \bar{a}_{n-1}, \dots, k_1 = a_1 - \bar{a}_1, k_0 = a_0 - \bar{a}_0.$$
 (17)

➡ 从而可得

$$\hat{K} = \begin{bmatrix} a_0 - \bar{a}_0 & a_1 - \bar{a}_1 & \cdots & a_{n-1} - \bar{a}_{n-1} \end{bmatrix}$$
 (18)

- 由上述推导知(18)给出的 \hat{K} 使得 $\hat{A}+\hat{b}\hat{K}$ 的特征值为 $\alpha_1,\alpha_2,\cdots,\alpha_n$
- 令

$$K = \hat{K}T^{-1} = \begin{bmatrix} a_0 - \bar{a}_0 & a_1 - \bar{a}_1 & \cdots & a_{n-1} - \bar{a}_{n-1} \end{bmatrix} T^{-1}, \quad (19)$$

则A + BK的特征值为 $\alpha_1, \alpha_2, \cdots, \alpha_n$

第3章

• 于是推得

$$k_{n-1} = a_{n-1} - \bar{a}_{n-1}, \dots, k_1 = a_1 - \bar{a}_1, k_0 = a_0 - \bar{a}_0.$$
 (17)

➡ 从而可得

$$\hat{K} = \begin{bmatrix} a_0 - \bar{a}_0 & a_1 - \bar{a}_1 & \cdots & a_{n-1} - \bar{a}_{n-1} \end{bmatrix}$$
 (18)

- 由上述推导知(18)给出的 \hat{K} 使得 $\hat{A}+\hat{b}\hat{K}$ 的特征值为 $\alpha_1,\alpha_2,\cdots,\alpha_n$
- 令

$$K = \hat{K}T^{-1} = \begin{bmatrix} a_0 - \bar{a}_0 & a_1 - \bar{a}_1 & \cdots & a_{n-1} - \bar{a}_{n-1} \end{bmatrix} T^{-1}, \quad (19)$$

则A + BK的特征值为 $\alpha_1, \alpha_2, \cdots, \alpha_n$

● 故K存在. 定理结论得证

第3章

3.1 状态反馈

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的

3.2.3 多输入系统的 点配置

点配置 3.2.4 状态反馈对传

3.3 线性定常 统的镇定问题 注: 定理3.2 说明, 单输入能控系统可通过状态反馈任意配置闭环系统的极点

第3章

- 注: 定理3.2 说明, 单输入能控系统可通过状态反馈任意配置闭环系统的极点
 - 同时, 定理3.2也给出了单输入极点配置问题的算法:
 - 求A的特征多项式,即(11);
 - ② 计算α(s),即闭环系统的期望特征多项式(15);
 - ⑤ 由(18)计算
 Â;
 - 由(9)计算变换矩阵T,并求出T⁻¹;
 - ⑤ 由(19), 计算状态反馈矩阵K.

第3章

例3.2.1 给定单输入线性定常系统为

$$\dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -6 & 0 \\ 0 & 1 & -12 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u,$$

闭环特征值为

$$\alpha_1 = -2, \ \alpha_{2,3} = -1 \pm j,$$

第3章

5.1 状态及项

3.2 闭环极点 置问题

3.2.1 问题的描述 3.2.2 单输入系统的机

3.2.3 多输入系统的标点配置

点配置 3.2.4 状态反馈对传动

3.3 线性定常, 统的镇定问题 例3.2.1 给定单输入线性定常系统为

$$\dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -6 & 0 \\ 0 & 1 & -12 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u,$$

闭环特征值为

$$\alpha_1 = -2, \ \alpha_{2,3} = -1 \pm j,$$

解: 首先, 易知系统为能控

例3.2.1 给定单输入线性定常系统为

第3章

3.1 状态反馈 2.2 闭环机よ高

3.2 闭环做点目置问题 3.2.1 问题的描述

5.2.2 平輔八亦統的級 点配置 3.2.3 多输入系统的级 点配置

函数零点的影响 3.3 线性定常系

点配置
3.2.4 状态反馈对传递

闭环特征值为

$$\dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -6 & 0 \\ 0 & 1 & -12 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u,$$

$$\alpha_1 = -2, \ \alpha_{2,3} = -1 \pm j,$$

解: 首先, 易知系统为能控

1) 计算系统的特征多项式

$$\det(sI - A) = s^3 + 18s^2 + 72s,$$

第3章

3.2.1 网题的描述 3.2.2 单输入系统的极 点配置 3.2.3 多输入系统的极 点配置

3.3 线性定常系统的镇定问题

例3.2.1 给定单输入线性定常系统为

$$\dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -6 & 0 \\ 0 & 1 & -12 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u,$$

闭环特征值为

$$\alpha_1 = -2, \ \alpha_{2,3} = -1 \pm j,$$

解: 首先, 易知系统为能控

1) 计算系统的特征多项式

$$\det(sI - A) = s^3 + 18s^2 + 72s,$$

2) 求得闭环系统的期望特征多项式

$$\alpha(s) = (s+2)(s+1-j)(s+1+j) = s^3 + 4s^2 + 6s + 4$$

第3章

3.2 闭环极,点目置问题 3.2.1 问题的描述

3.2.2 平輔八示統的級 点配置
3.2.3 多輪八系統的級 点配置
3.2.4 状态反馈对传送
高薪金点的影响

3.3 线性定常系 统的镇定问题 例3.2.1 给定单输入线性定常系统为

$$\dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -6 & 0 \\ 0 & 1 & -12 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u,$$

闭环特征值为

$$\alpha_1 = -2, \ \alpha_{2,3} = -1 \pm j,$$

解: 首先, 易知系统为能控

1) 计算系统的特征多项式

$$\det(sI - A) = s^3 + 18s^2 + 72s,$$

2) 求得闭环系统的期望特征多项式

$$\alpha(s) = (s+2)(s+1-j)(s+1+j) = s^3 + 4s^2 + 6s + 4$$

3) 于是, 可推得

$$\hat{K} = [-4 \ 66 \ 14].$$

第3章

3.1 状态反馈

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的标

3.2.3 多输入系统的i 点配置

点配直 3.2.4 状态反馈对传: 基础专与的影响

3.3 线性定常 统的镇定问是

4) 再计算变换阵

$$T = \begin{bmatrix} A^2b & Ab & b \end{bmatrix} \begin{bmatrix} 1 & & \\ a_2 & 1 & \\ a_1 & a_2 & 1 \end{bmatrix} = \begin{bmatrix} 72 & 18 & 1 \\ 12 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

并, 求其逆

$$T^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -12 \\ 1 & -18 & 144 \end{bmatrix},$$

第3章

3.1 状态反馈

3.2 闭环极点i 置问题

3.2.2 单输入系统的表 点配置

5.2.3 多输入系统的极 点配置 5.2.4 状态反馈对传递

3.3 线性定常; 统的镇定问题 4) 再计算变换阵

$$T = \begin{bmatrix} A^2b & Ab & b \end{bmatrix} \begin{bmatrix} 1 \\ a_2 & 1 \\ a_1 & a_2 & 1 \end{bmatrix} = \begin{bmatrix} 72 & 18 & 1 \\ 12 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

并, 求其逆

$$T^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -12 \\ 1 & -18 & 144 \end{bmatrix},$$

5) 确定反馈增益阵K为

$$K = \hat{K}T^{-1} = \begin{bmatrix} -4 & 66 & 14 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -12 \\ 1 & -18 & 144 \end{bmatrix}$$
$$= \begin{bmatrix} 14 & -186 & 1220 \end{bmatrix}$$

第3章

3.1 状态反馈

置问题
3.2.1 问题的描述
3.2.2 单数 A 医结合的

3.2.3 多輸入系統的极 点配置 3.2.4 状态反馈对传递

3.3 线性定常系 统的镇定问题 4) 再计算变换阵

$$T = \begin{bmatrix} A^2b & Ab & b \end{bmatrix} \begin{bmatrix} 1 & & \\ a_2 & 1 & \\ a_1 & a_2 & 1 \end{bmatrix} = \begin{bmatrix} 72 & 18 & 1 \\ 12 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

并, 求其逆

$$T^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -12 \\ 1 & -18 & 144 \end{bmatrix},$$

5) 确定反馈增益阵K为

$$K = \hat{K}T^{-1} = \begin{bmatrix} -4 & 66 & 14 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -12 \\ 1 & -18 & 144 \end{bmatrix}$$
$$= \begin{bmatrix} 14 & -186 & 1220 \end{bmatrix}$$

● 则, A + BK的特征值为-2,-1±j

第3章

3.1 状态反馈

3.2 闭环极点

3.2.1 问题的描述 3.2.2 单输入系统的极 点配置

3.2.3 多输入系统的极 点配置 3.2.4 状态反馈对传递 亚斯雷占的影响

3.3 线性定常; 统的镇定问题

- (1)
 - 3.1.1 状态反馈的构成形式
 - 3.1.2 状态反馈系统的能控性
- ② 3.2 闭环极点配置问题
 - 3.2.1 问题的描述
 - 3.2.2 单输入系统的极点配置
 - 3.2.3 多输入系统的极点配置
 - 3.2.4 状态反馈对传递函数零点的影响

第3章

3.1 状态反负

3.2 闭环极点 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多輸入系統的 点配置 3.2.4 状态反馈对传

3.3 线性定常 统的镇定问题 考虑多输入系统(A,B),其中A为 $n\times n$ 阶常阵,B为 $n\times p$ 阶常阵,且(A,B)为能控

第3章

3.1 状态反负

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多輸入系統的表点配置
 3.2.4 状态反馈对传送

3.3 线性定常 统的镇定问题 考虑多输入系统(A,B), 其中A为 $n\times n$ 阶常阵, B为 $n\times p$ 阶常阵, 且(A,B)为能控

● 对于多输入系统,情形要比单输入系统复杂得多,下面我们分 两种情形进行讨论

第3章

3.1 状态反馈

3.2 闭环极点的 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 少輸入系統的基 点配置 3.2.4 状态反馈对传送 函数零点的影响

3.3 线性定常 统的镇定问题 考虑多输入系统(A,B), 其中A为 $n\times n$ 阶常阵, B为 $n\times p$ 阶常阵, $\mathbb{E}(A,B)$ 为能控

- 对于多输入系统,情形要比单输入系统复杂得多,下面我们分两种情形进行讨论
- (1). A为循环矩阵

第3章

3.2 闭环极点面

直 问 翅 3.2.1 问题的描述 3.2.2 单输入系统的扩 点配置

点配置 3.2.4 状态反馈对传送 函数零点的影响

函数零点的影响 3.3 线性定常 统的镇定问题 考虑多输入系统(A,B), 其中A为 $n\times n$ 阶常阵, B为 $n\times p$ 阶常阵, 且(A,B)为能控

对于多输入系统,情形要比单输入系统复杂得多,下面我们分两种情形进行讨论

(1). A为循环矩阵

引理

引理3.1 若(A,B)能控, A为循环矩阵, 则必有向量 $\alpha \in \mathbb{R}^{p \times 1}$, 使得 $(A,B\alpha)$ 单输入能控.

第3章

3.1 扒芯及坝
3.2 闭环极点面置问题

匪 [^{2]} 建 3.2.1 问题的描述 3.2.2 单输入系统的极 点配置

3.2.3 多輸入系統的 点配置 3.2.4 状态反馈对传 函数零点的影响 3.3. 线料 宏 党: 考虑多输入系统(A,B), 其中A为 $n\times n$ 阶常阵, B为 $n\times p$ 阶常阵, 且(A,B)为能控

对于多输入系统,情形要比单输入系统复杂得多,下面我们分两种情形进行讨论

(1). A为循环矩阵

引理

引理3.1 若(A,B)能控, A为循环矩阵, 则必有向量 $\alpha \in \mathbb{R}^{p \times 1}$, 使得 $(A,B\alpha)$ 单输入能控.

证明:因为A为循环矩阵,故A的互异特征根各自对应一个若尔当块

第3章

3.1 状态及项3.2 闭环极点面置问题

性 [^{2]} 天型 3.2.1 问题的描述 3.2.2 单输入系统的极 点配置

考虑多输入系统(A,B), 其中A为 $n\times n$ 阶常阵, B为 $n\times p$ 阶常阵, 且(A,B)为能控

● 对于多输入系统,情形要比单输入系统复杂得多,下面我们分两种情形进行讨论

(1). A为循环矩阵

引理

引理3.1 若(A,B)能控, A为循环矩阵, 则必有向量 $\alpha \in \mathbb{R}^{p \times 1}$, 使得 $(A,B\alpha)$ 单输入能控.

证明: 因为A为循环矩阵,故A的互异特征根各自对应一个若尔当块

• 设 $\lambda_1, \lambda_2, \cdots, \lambda_{\sigma}$ 为A的互异特征根

第3章

3.1 状态反馈

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多输入系统的表点配置
3.2.4 状态反馈对传送

3.3 线性定常; 统的镇定问题 对(A,B)进行非奇异线性变换,令

$$J = T^{-1}AT, \ \hat{B} = T^{-1}B, \tag{20}$$

其中,T为 $n \times n$ 非奇异矩阵,J为若尔当标准型,

$$J = \begin{bmatrix} J_1 & & & \\ & \ddots & & \\ & & J_{\sigma} \end{bmatrix}, \ J_j = \begin{bmatrix} \lambda_j & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_j \end{bmatrix}_{n_j \times n_j}$$

$$\hat{B} = \begin{bmatrix} B_1 \\ \vdots \\ B_{\sigma} \end{bmatrix}, B_j = \begin{bmatrix} b_{j1} \\ \vdots \\ b_{jn_i} \end{bmatrix}_{n \times n}$$
(21)

且
$$\sum_{j=1}^{\sigma} n_j = n$$

第3章

3.1 状态反馈

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 少输入系统的基 点配置 3.2.4 状态反馈对传送

3.3 线性定常; 统的镇定问题 对(A,B)进行非奇异线性变换,令

$$J = T^{-1}AT, \ \hat{B} = T^{-1}B, \tag{20}$$

其中,T为 $n \times n$ 非奇异矩阵,J为若尔当标准型,

$$J = \begin{bmatrix} J_1 & & & \\ & \ddots & & \\ & & J_{\sigma} \end{bmatrix}, \ J_j = \begin{bmatrix} \lambda_j & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_j \end{bmatrix}_{n_j \times n_j}$$

$$\hat{B} = \begin{bmatrix} B_1 \\ \vdots \\ B_{\sigma} \end{bmatrix}, B_j = \begin{bmatrix} b_{j1} \\ \vdots \\ b_{jn_i} \end{bmatrix}_{n \times n}$$
(21)

且
$$\sum_{j=1}^{\sigma} n_j = n$$

第3章

3.1 状态反馈

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.4 状态反馈对传送

3.3 线性定常系统的镇定问题

对(A,B)进行非奇异线性变换,令

$$J = T^{-1}AT, \ \hat{B} = T^{-1}B, \tag{20}$$

其中,T为 $n \times n$ 非奇异矩阵,J为若尔当标准型,

$$J = \begin{bmatrix} J_1 & & & \\ & \ddots & & \\ & & J_{\sigma} \end{bmatrix}, \ J_j = \begin{bmatrix} \lambda_j & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_j \end{bmatrix}_{n_j \times n_j}$$

$$\hat{B} = \begin{bmatrix} B_1 \\ \vdots \\ B_{\sigma} \end{bmatrix}, B_j = \begin{bmatrix} b_{j1} \\ \vdots \\ b_{in_i} \end{bmatrix}_{n \to \infty}$$
(21)

且
$$\sum_{j=1}^{\sigma} n_j = n$$

因为(A, B)能控,故(J, B)能控

第3章

3.1 状态反复

3.2 闭环极点 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多輸入系統的 点配置 3.2.4 状态反馈对传

3.3 线性定常 统的镇定问题 • 由定理2.10可得: $b_{jn_j} \in \mathbb{R}^{1 \times p} \neq 0, j = 1, 2, \dots, \sigma$

第3章

J.1 1/4/6/6/J.4/9/

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的表 点配置

3.2.3 多输入系统的标点配置

3.3 线性定常. 经的结实问题

• 由定理2.10可得: $b_{jn_j} \in \mathbb{R}^{1 \times p} \neq 0, j = 1, 2, \dots, \sigma$

● 从而存在 $\alpha \in \mathbb{R}^{p \times 1}$ 使得

$$b_{jn_j}\alpha \in \mathbb{R} \neq 0, j = 1, 2, \cdots, \sigma. \tag{22}$$

第3章

J.1 7(10)X 19

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.4 状态反馈对传送 函数零点的影响

3.3 线性定常 统的镇定问题 • 由定理2.10可得: $b_{jn_j} \in \mathbb{R}^{1 \times p} \neq 0, j = 1, 2, \dots, \sigma$

• 从而存在 $\alpha \in \mathbb{R}^{p \times 1}$ 使得

$$b_{jn_j}\alpha \in \mathbb{R} \neq 0, j = 1, 2, \cdots, \sigma. \tag{22}$$

同样由定理2.10知,式(22)等价于(J, βα)能控

第3章

3.2 闭环极点

3.2.1 问题的描述 3.2.2 单输入系统的: 点配置

3.2.3 多输入系统的极 点配置 3.2.4 状态反馈对传递

3.3 线性定常. 统的镇定问题 • 由定理2.10可得: $b_{jn_j} \in \mathbb{R}^{1 \times p} \neq 0, j = 1, 2, \dots, \sigma$

• 从而存在 $\alpha \in \mathbb{R}^{p \times 1}$ 使得

$$b_{jn_j}\alpha \in \mathbb{R} \neq 0, j = 1, 2, \cdots, \sigma.$$
 (22)

- 同样由定理2.10知,式(22)等价于(J, βα)能控
- 又由(20)可得

$$J = T^{-1}AT, \ \hat{B}\alpha = T^{-1}B\alpha,$$

故 $(A, B\alpha)$ 能控. 结论得证

第3章

(2) 钢钉机 占

3.2.1 问题的描述 3.2.2 单输入系统的引点配置

3.2.3 多輸入系統的模点配置
3.2.4 状态反馈对传递
3.3.5 计宏点的影响

3.3 线性定常; 统的镇定问题 • 由定理2.10可得: $b_{jn_j} \in \mathbb{R}^{1 \times p} \neq 0, j = 1, 2, \dots, \sigma$

• 从而存在 $\alpha \in \mathbb{R}^{p \times 1}$ 使得

$$b_{jn_j}\alpha \in \mathbb{R} \neq 0, j = 1, 2, \cdots, \sigma.$$
 (22)

- 同样由定理2.10知,式(22)等价于(J, βα)能控
- 又由(20)可得

$$J = T^{-1}AT, \ \hat{B}\alpha = T^{-1}B\alpha,$$

故 $(A, B\alpha)$ 能控. 结论得证

注: 事实上, 因为使得

$$b_{jn_j}\alpha=0, j=1,2,\cdots,\sigma$$

的实向量 α 是 \mathbb{R}^p 的有限维子空间, 故对几乎任意的 $p \times 1$ 实向量 α , 引理3.1都是成立的

第3章

3.1 状态反负

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多輸入系統的 点配置 3.2.4 状态反馈对传》

3.3 线性定常 统的镇定问题 • 引理3.1将多输入能控系统(A, B)的闭环极点配置问题转化成单输入能控系统(A, Bα)的闭环极点配置问题

第3章

- 3.1 状态反馈
 3.2 闭环极点百置问题
 3.2.1 问题的描述
 3.2.2 单输入系统的标
- 3.2.3 多輸入系統的极 点配置 3.2.4 状态反馈对传递 函数零点的影响
- 3.3 线性定常, 统的镇定问题

- 引理3.1将多输入能控系统(A, B)的闭环极点配置问题转化成单输入能控系统(A, Bα)的闭环极点配置问题
- 直接由定理3.2可知, 若 $(A, B\alpha)$ 能控, 一定存在矩阵 K_0 使得 $A+B\alpha K_0$ 以任意指定的n个数 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 为特征值

第3章

- 3.1 状态反馈
 3.2 闭环极点配置问题
 3.2.1 问题的描述
 3.2.2 单输入系统的极
- 3.2.3 多輸入系統的极 点配置 3.2.4 状态反馈对传递
- 3.3 线性定常系统的镇定问题

- 引理3.1将多输入能控系统(A, B)的闭环极点配置问题转化成单输入能控系统(A, Bα)的闭环极点配置问题
- 直接由定理3.2可知, 若 $(A, B\alpha)$ 能控, 一定存在矩阵 K_0 使得 $A + B\alpha K_0$ 以任意指定的n个数 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 为特征值
- 记 $K = \alpha K_0$, 从而A + BK以 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 为特征值

第3章

- 引理3.1将多输入能控系统(A, B)的闭环极点配置问题转化成单输入能控系统(A, Bα)的闭环极点配置问题
- 直接由定理3.2可知, 若 $(A, B\alpha)$ 能控, 一定存在矩阵 K_0 使得 $A + B\alpha K_0$ 以任意指定的n个数 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 为特征值
- 记 $K = \alpha K_0$, 从而A + BK以 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 为特征值
- 于是, 我们有下面的结论

定理

定理3.3 若多輸入系統(A,B)能控,A为循环矩阵,则必存在状态反馈矩阵K,使得A+BK有任意指定的特征值.

第3章

3.1 状态反负

3.2 闭环极, 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多緒人系統的 点配置 3.2.4 状态反馈对传

3.3 线性定常 统的镇定问题 (2) A不是循环矩阵

第3章

3.1 状态反馈

3.2.1 问题的描述 3.2.1 问题的描述 3.2.2 单输入系统的

3.2.3 多输入系统的极 点配置 3.7.4 提本后偿对任道

3.2.4 状态反馈对传送 函数零点的影响

3.3 线性定常 统的镇定问题

(2) A不是循环矩阵

• 此种情形较为复杂,我们不加以证明给出下面的引理

引理

引理3.2 若(A,B)能控, A不是循环矩阵, 则存在矩阵 $K \in \mathbb{R}^{p \times n}$, 使得A + BK为循环矩阵.

第3章

3.2 闭环极点配置问题 3.2.1 问题的描述 3.2.2 学输入系统的板点配置

3.2.3 多輸入系統的极 点配置 3.2.4 状态反馈对传递 函数零点的影响

3.3 线性定常系统的镇定问题

(2) A不是循环矩阵

• 此种情形较为复杂, 我们不加以证明给出下面的引理

引理

引理3.2 若(A,B)能控, A不是循环矩阵, 则存在矩阵 $K \in \mathbb{R}^{p \times n}$, 使得A + BK为循环矩阵.

注:事实上,对几乎任意 $p \times n$ 阶矩阵K,引理3.2的结论成立

第3章

(2) A不是循环矩阵

● 此种情形较为复杂, 我们不加以证明给出下面的引理

引理

引理3.2 若(A,B)能控, A不是循环矩阵, 则存在矩阵 $K \in \mathbb{R}^{p \times n}$, 使 得A + BK为循环矩阵.

注:事实上,对几乎任意 $p \times n$ 阶矩阵K,引理3.2的结论成立

• 基于此, 再由定理3.3可得下面的结论

定理

定理3.4 若多输入系统(A,B)能控,则必存在反馈矩阵K,使得A+BK有任意指定的特征值.

第3章

3.1 状态反馈

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多输入系统的表 点配置 3.2.4 状态反馈对传》

3.3 线性定常。

注: 通过上面的讨论可以看到, 对于多输入系统(A,B), 不管A是不是循环阵, 只要(A,B)能控, 就一定存在状态反馈 $u=Kx+\nu$, 使得闭环系统(A+BK,B)有任意指定的极点

第3章

- 3.1 状态反项
 3.2 闭环极点配置问题
- 3.2.2 单输入系统的极 点配置 3.2.3 多输入系统的极 点配置
- 点配置 3.2.4 状态反馈对传》 函数零点的影响
- 3.3 线性定常系统的镇定问题

注: 通过上面的讨论可以看到, 对于多输入系统(A,B), 不管A是不是循环阵, 只要(A,B)能控, 就一定存在状态反馈u=Kx+v, 使得闭环系统(A+BK,B)有任意指定的极点

再联系到单输入系统情形,我们可以得到下面的结论

能控系统可通过状态反馈任意配置极点, 反之, 也是成立的

第3章

- 注:通过上面的讨论可以看到,对于多输入系统(A,B),不管A是不是循环阵,只要(A,B)能控,就一定存在状态反馈u=Kx+v,使得闭环系统(A+BK,B)有任意指定的极点
 - 再联系到单输入系统情形,我们可以得到下面的结论能控系统可通过状态反馈任意配置极点.反之,也是成立的
 - 于是,有如下定理

定理

定理3.5 系统(A,B)能控的充要条件是存在反馈矩阵K, 使得A+BK有任意指定的特征值.

第3章

- 注:通过上面的讨论可以看到,对于多输入系统(A,B),不管A是不是循环阵,只要(A,B)能控,就一定存在状态反馈u=Kx+v,使得闭环系统(A+BK,B)有任意指定的极点
 - 再联系到单输入系统情形,我们可以得到下面的结论能控系统可通过状态反馈任意配置极点.反之,也是成立的
 - 于是,有如下定理

定理

定理3.5 系统(A,B)能控的充要条件是存在反馈矩阵K, 使得A+BK有任意指定的特征值.

证明: 必要性: 即定理3.4

第3章

3.1 状态反负

3.2 闭环极点 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多輸入系統的 点配置 3.2.4 状态反馈对传

3.3 线性定常 统的镇定问题 • 充分性: 用反证法

第3章

3.2 闭环极点 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多输入系统的数点配置 3.2.4 状态反馈对传动

3.3 线性定常

• 充分性: 用反证法. 设(A,B)不完全能控,则对其进行能控性分解

$$\hat{A} = T^{-1}AT = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \ \hat{B} = T^{-1}B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}, \tag{23}$$

其中, (A_{11},B_1) 为完全能控

第3章

3.1 状态反馈3.2 闭环极点配

置问题 3.2.1 问题的描述 3.2.2 单输入系统的级 点配置 3.2.3 多输入系统的极

3.2.4 状态反馈对传递 函数零点的影响 3.3 线性定常系 ● 充分性: 用反证法. 设(A, B)不完全能控,则对其进行能控性分解

$$\hat{A} = T^{-1}AT = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \ \hat{B} = T^{-1}B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}, \tag{23}$$

其中, (A₁₁, B₁)为完全能控

• 则对任一状态反馈矩阵K,令 $\hat{K} = KT = [K_1 \ K_2]$,有

$$\det(sI - A - BK) = \det(sI - \hat{A} - \hat{B}\hat{K})$$

$$= \det\begin{bmatrix} sI - A_{11} - B_1K_1 & -A_{12} - B_1K_2 \\ 0 & sI - A_{22} \end{bmatrix}$$

$$= \det(sI - A_{11} - B_1K_1) \det(sI - A_{22}).$$
(24)

这表明状态反馈不能改变系统不能控部分的特征值

第3章

解 $\hat{A} = T^{-1}AT = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A \end{bmatrix}, \ \hat{B} = T^{-1}B = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A \end{bmatrix}$

$$\hat{A} = T^{-1}AT = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \ \hat{B} = T^{-1}B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix},$$
 (23)

• 充分性: 用反证法. 设(A,B)不完全能控,则对其进行能控性分

其中, (A_{11},B_1) 为完全能控

• 则对任一状态反馈矩阵K,令 $\hat{K} = KT = [K_1 \ K_2]$,有

$$\det(sI - A - BK) = \det(sI - \hat{A} - \hat{B}\hat{K})$$

$$= \det\begin{bmatrix} sI - A_{11} - B_1K_1 & -A_{12} - B_1K_2 \\ 0 & sI - A_{22} \end{bmatrix}$$

$$= \det(sI - A_{11} - B_1K_1) \det(sI - A_{22}).$$
(24)

这表明状态反馈不能改变系统不能控部分的特征值

● 故,不能随意配置系统的特征值,此与已知前提矛盾,故反设不成立,也就是(A,B)能控. 充分性得证

第3章

3.1 状态反馈

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的极 点配置 3.2.3 多输入系统的极 点配置

3.2.4 状态反馈对传: 函数零点的影响

3.3 线性定常 统的镇定问题

- (1)
 - 3.1.1 状态反馈的构成形式

- 2 3.2 闭环极点配置问题
 - 3.2.1 问题的描述
 - 3.2.2 单输入系统的极点配置
 - 3.2.3 多输入系统的极点配置
 - 3.2.4 状态反馈对传递函数零点的影响

第3章

a a state to b

置问题
3.2.1 问题的描述
3.2.2 学输入系统的表点配置
3.2.3 多输入系统的表点配置
3.2.4 状态反馈对传动高数零点的影响

3.3 线性定常 统的镇定问题 ● 若系统(A,B)能控,则通过引入状态反馈,可以任意配置闭环系统的特征值,或者等价地说可以任意配置闭环系统传递函数的极点

第3章

3.2 闭环极点 置问题 3.2.1 问题的描述

3.2.1 网题的描述 3.2.2 单输入系统的板点配置 3.2.3 多输入系统的板点配置 3.2.4 状态反馈对传递函数零点的影响

3.3 线性定常 统的镇定问题

- 若系统(A,B)能控,则通过引入状态反馈,可以任意配置闭环系统的特征值,或者等价地说可以任意配置闭环系统传递函数的极点
- ⇒ 与此同时, 一个有待进一步研究的问题是, 状态反馈在改变系统的极点的同时, 是否也对系统的传递函数的零点有影响

第3章

3.1 状态反馈

3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多输入系统的 点配置 3.2.4 状态反馈对传

3.3 线性定常

首先,讨论单输入系统的情形. 给定能控线性定常系统

$$\dot{x} = Ax + bu, \ y = Cx, \tag{25}$$

其中,x为n维状态向量,u为1维控制向量,y为q维输出向量,A,b,C分别为 $n \times n$, $n \times 1$, $q \times n$ 阶常阵

第3章

3.1 状态反馈

3.2 闭环极点 置问题

3.2.1 问题的描述 3.2.2 单输入系统的极点配置 3.2.3 多输入系统的极点配置

3.2.4 状态反馈对传 函数零点的影响

3.3 线性定常统的镇定问题

首先,讨论单输入系统的情形. 给定能控线性定常系统

$$\dot{x} = Ax + bu, \ y = Cx, \tag{25}$$

其中,x为n维状态向量,u为1维控制向量,y为q维输出向量,A,b,C分别为 $n \times n$, $n \times 1$, $q \times n$ 阶常阵

• 其传递函数矩阵为

$$G_o(s) = C(sI - A)^{-1}b$$
 (26)

第3章

3.1 状态反馈
 3.2 闭环极点的
 置问题

3.2.1 內之的物效 3.2.2 单输入系统的极 点配置 3.2.3 多输入系统的极 点配置 3.2.4 状态反馈对传递

3.3 线性定常: 统的镇定问题 首先, 讨论单输入系统的情形. 给定能控线性定常系统

$$\dot{x} = Ax + bu, \ y = Cx, \tag{25}$$

其中,x为n维状态向量,u为1维控制向量,y为q维输出向量,A,b,C分别为 $n \times n$, $n \times 1$, $q \times n$ 阶常阵

• 其传递函数矩阵为

$$G_o(s) = C(sI - A)^{-1}b$$
 (26)

• 对系统(25)作状态反馈

$$u = Kx + v, (27)$$

其中, $K为1 \times n$ 阶反馈增益阵,v为参考输入,则闭环系统为

$$\dot{x} = (A + bK)x + bv, \ y = Cx. \tag{28}$$

第3章

 3.1 状态反馈
 3.2 闭环极点i 置问题

3.2.1 问题的描述 3.2.2 单输入系统的极点配置 3.2.3 多输入系统的极点配置 3.2.4 状态反馈对传递 高数家点的影响

3.3 线性定常. 统的镇定问题 首先, 讨论单输入系统的情形. 给定能控线性定常系统

$$\dot{x} = Ax + bu, \ y = Cx, \tag{25}$$

其中,x为n维状态向量,u为1维控制向量,y为q维输出向量,A,b,C分别为 $n \times n$, $n \times 1$, $q \times n$ 阶常阵

• 其传递函数矩阵为

$$G_o(s) = C(sI - A)^{-1}b$$
 (26)

• 对系统(25)作状态反馈

$$u = Kx + v, (27)$$

其中, $K为1 \times n$ 阶反馈增益阵,v为参考输入,则闭环系统为

$$\dot{x} = (A + bK)x + bv, \ y = Cx. \tag{28}$$

• 闭环系统的传递函数为

$$G_c(s) = C(sI - (A + bK))^{-1}b$$
 (29)

首先,讨论单输入系统的情形. 给定能控线性定常系统

$$\dot{x} = Ax + bu, \ y = Cx, \tag{25}$$

其中,x为n维状态向量,u为1维控制向量,y为q维输出向量,A,b,C分别为 $n \times n$, $n \times 1$, $q \times n$ 阶常阵

• 其传递函数矩阵为

$$G_o(s) = C(sI - A)^{-1}b$$
 (26)

• 对系统(25)作状态反馈

$$u = Kx + v, (27)$$

其中, $K为1 \times n$ 阶反馈增益阵,v为参考输入,则闭环系统为

$$\dot{x} = (A + bK)x + bv, \ y = Cx. \tag{28}$$

• 闭环系统的传递函数为

$$G_c(s) = C(sI - (A + bK))^{-1}b$$
 (29)

 \rightarrow 对于传递函数 $G_o(s)$ 和 $G_c(s)$ 的零点,有下面的结论

3.2 闭环极点

3.2.1 问题的描述 3.2.2 单输入系统的极 点配置 3.2.3 多输入系统的极 点配置

函数零点的影响 3.3 线性定常系统的镇定问题

第3章

3.1 状态反负

3.2 闭环极点

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多输入系统的 点配置

3.2.4 状态反馈对传 函数震点的影响

3.3 线性定常。 统的镇定问题

定理

定理3.6 若单输入系统(A,b,C)能控,则状态反馈不改变传递函数的零点.

第3章

3.1 状态及项
 3.2 闭环极点

置问题
3.2.1 问题的描述
3.2.2 单输入系统的极点配置
3.2.3 多输入系统的极点配置
3.2.3 多输入系统的极点配置
3.2.4 收本后被对体法

3.3 线性定常; 统的镇定问题 定理

定理3.6 若单输入系统(A,b,C)能控,则状态反馈不改变传递函数的零点.

证明:因为(A,b)能控,对系统(25)引进非奇异线性变换 $x = T\hat{x}$,其中

$$T = \begin{bmatrix} A^{n-1}b & \cdots & Ab & b \end{bmatrix} \begin{vmatrix} 1 & & & \\ a_{n-1} & \ddots & & \\ \vdots & \ddots & \ddots & \\ a_1 & \cdots & a_{n-1} & 1 \end{vmatrix}, \quad (30)$$

第3章

3.2 闭环极点面置问题 3.2.1 问题的描述 3.2.2 单输入系统的标 点配置 3.2.3 多输入系统的标 点配置

3.3 线性定常: 统的镇定问题

定理

定理3.6 若单输入系统(A,b,C)能控,则状态反馈不改变传递函数的零点.

证明:因为(A,b)能控,对系统(25)引进非奇异线性变换 $x = T\hat{x}$,其中

$$T = \begin{bmatrix} A^{n-1}b & \cdots & Ab & b \end{bmatrix} \begin{bmatrix} 1 & & & & \\ a_{n-1} & \ddots & & & \\ \vdots & \ddots & \ddots & & \\ a_1 & \cdots & a_{n-1} & 1 \end{bmatrix}, (30)$$

• 则系统(25)化成能控规范型

$$\dot{\hat{x}} = \hat{A}\hat{x} + \hat{b}u,
y = \hat{C}\hat{x},$$
(31)

第3章

3.1 状态反馈

3.2 闭环极点

3.2.1 问题的描述 3.2.2 单输入系统的标点配置

3.2.3 多输入系统的 点配置 3.2.4 状态反馈对传

3.3 线性定常 统的镇定问题

其中

$$\hat{A} = T^{-1}AT = \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ \vdots & & & \ddots \\ 0 & & & 1 \\ -a_0 & -a_1 & \cdots & & -a_{n-1} \end{bmatrix}$$

$$\hat{b} = T^{-1}b = \begin{bmatrix} 0 \\ \cdots \\ 0 \\ 1 \end{bmatrix}$$

$$\hat{C} = CT = \begin{bmatrix} C_0 & C_1 & \cdots & C_{n-1} \end{bmatrix}.$$
(32)

第3章

• 其中

$$\hat{A} = T^{-1}AT = \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ \vdots & & & \ddots \\ 0 & & & 1 \\ -a_0 & -a_1 & \cdots & \cdots & -a_{n-1} \end{bmatrix}$$

$$\hat{b} = T^{-1}b = \begin{bmatrix} 0 \\ \cdots \\ 0 \end{bmatrix}$$
(32)

$$\hat{b} = T^{-1}b = \begin{bmatrix} 0 \\ \dots \\ 0 \\ 1 \end{bmatrix}$$

$$\hat{C} = CT = \begin{bmatrix} C_0 & C_1 & \cdots & C_{n-1} \end{bmatrix}.$$

且 $a_0, a_1, \cdots, a_{n-1}$ 为A的特征多项式的系数,即

$$\det(sI - A) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$$
 (33)

第3章

3.1 状态反馈

3.2 闭环极

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多输入系统的 点配置

函数零点的影响 33线性定常

$$\hat{K} = KT = \begin{bmatrix} k_0 & k_1 & \cdots & k_{n-1} \end{bmatrix}, \tag{34}$$

第3章

3.1 状态反馈

3.2 闭环极点 置问题

3.2.2 单输入系统的 点配置

3.2.3 多输入系统的 点配置

3.3 线性定常 统的镇定问题 令

$$\hat{K} = KT = \begin{bmatrix} k_0 & k_1 & \cdots & k_{n-1} \end{bmatrix}, \tag{34}$$

➡ 下面分别计算 $G_o(s)$ 和 $G_c(s)$

第3章

3.1 状态反馈

3.2 闭环极点图

3.2.1 问题的描述 3.2.2 单输入系统的初点配置 3.2.3 多输入系统的初

3.2.3 多輸入系統的表 点配置 3.2.4 状态反馈对传运

3.3 线性定常 统的镇定问题 令

$$\hat{K} = KT = \begin{bmatrix} k_0 & k_1 & \cdots & k_{n-1} \end{bmatrix}, \tag{34}$$

- \rightarrow 下面分别计算 $G_o(s)$ 和 $G_c(s)$
- 为此,先计算(sI −Â)⁻¹b̂

第3章

5.1 状念及领

3.2.1 问题的描述

点配置 3.2.3 多输入系统的机 点配置

点配置 3.2.4 状态反馈对传; 函数零点的影响

3.3 线性定常. 统的镇定问题 令

$$\hat{K} = KT = \begin{bmatrix} k_0 & k_1 & \cdots & k_{n-1} \end{bmatrix}, \tag{34}$$

- ightharpoons 下面分别计算 $G_o(s)$ 和 $G_c(s)$
- 为此, 先计算(sI Â)-1 b. 考虑

$$(sI-\hat{A})(sI-\hat{A})^{-1}=I$$

邸

其中, z_1, z_2, \cdots, z_n 为 $(sI - \hat{A})^{-1}$ 的最后一列元素

第3章

a a mare la ki

3.2 闭坏极点 置问题

3.2.1 问题的描述 3.2.2 单输入系统的表 点配置

3.2.3 多输入系统的 点配置 3.2.4 状态反馈对传

3.3 线性定常 统的镇定问是 • 由上式(35), 可得

$$sz_1 - z_2 = 0,$$

 $sz_2 - z_3 = 0,$
..... (36)

$$sz_{n-1} - z_n = 0$$

及

$$a_0z_1 + a_1z_2 + \dots + a_{n-2}z_{n-1} + (s + a_{n-1})z_n = 1,$$
 (37)

第3章

5.1 状态及项

3.2 闭环极点i 置问题

3.2.2 单输入系统的标点配置 3.2.3 多输入系统的标

点配置 3.2.4 状态反馈对传 函数零点的影响

3.3 线性定常 统的镇定问题 • 由上式(35), 可得

$$sz_1 - z_2 = 0,$$

 $sz_2 - z_3 = 0,$
.....
(36)

及

$$a_0z_1 + a_1z_2 + \dots + a_{n-2}z_{n-1} + (s + a_{n-1})z_n = 1,$$
 (37)

 $sz_{n-1} - z_n = 0$

• 由(36), 容易看出

$$z_2 = sz_1,$$

 $z_3 = sz_2 = s^2z_1,$
 $.....$
 $z_n = sz_{n-1} = s^{n-1}z_1,$
(38)

第3章

3.1 状态反馈

3.2 闭环极;

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多輸入系統的 点配置 3.2.4 状态反馈对传:

3.3 线性定常 统的镇定问题

$$a_0 z_1 + a_1 s z_1 + \dots + a_{n-2} s^{n-1} z_1 + s^n z_1 = 1,$$
 (39)

第3章

3.1 状态反馈

3.2 闭环极点配置问题

3.2.1 问题的描述 3.2.2 单输入系统的 点配置

3.2.3 多输入系统的标点配置 3.2.4 状态反馈对传动

3.3 线性定常 统的镇定问题 • 将上式(38)代入(37), 可得

$$a_0 z_1 + a_1 s z_1 + \dots + a_{n-2} s^{n-1} z_1 + s^n z_1 = 1,$$
 (39)

• 于是

$$z_1 = \frac{1}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} = \frac{1}{\det(sI - A)}.$$
 (40)

第3章

3.1 状态反馈

3.2 闭环极点图

3.2.1 问题的描述 3.2.2 单输入系统的:

5.2.2 平相八示統的 点配置 3.2.3 多翰八系統的

点配置 3.2.4 状态反馈对传送

3.3 线性定常. 统的镇定问题 • 将上式(38)代入(37), 可得

$$a_0 z_1 + a_1 s z_1 + \dots + a_{n-2} s^{n-1} z_1 + s^n z_1 = 1,$$
 (39)

• 于是

$$z_1 = \frac{1}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} = \frac{1}{\det(sI - A)}.$$
 (40)

• 由(38), (40), 得

$$(sI - \hat{A})^{-1}\hat{b} = \begin{bmatrix} z_1 \\ z_2 \\ * \vdots \\ z_n \end{bmatrix} \cdot \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix}$$

$$= \frac{1}{\det(sI - A)} \begin{bmatrix} 1 \\ s \\ \vdots \\ s^{n-1} \end{bmatrix}, \tag{41}$$

第3章

3.1 状态反馈

3.2 闭环极点 置问题

3.2.1 问题的描述 3.2.2 单输入系统的极点配置 3.2.3 多输入系统的极

3.2.3 多輸入系統的 点配置 3.2.4 状态反馈对传: 函数零点的影响

3.3 线性定常 统的镇定问题 ● 从而可得开环传递函数G₀(s)为

$$G_{o}(s) = \hat{C}(sI - \hat{A})^{-1}\hat{b}$$

$$= \begin{bmatrix} C_{0} & C_{1} & \cdots & C_{n-1} \end{bmatrix} \begin{bmatrix} 1 \\ s \\ \vdots \\ s^{n-1} \end{bmatrix} \frac{1}{(\det sI - A)}$$

$$= \frac{1}{\det (sI - A)} (C_{n-1}s^{n-1} + \cdots + C_{1}s + C_{0}).$$
(42)

第3章

3.7 国红超占商

置问题 3.2.1 问题的描述 3.2.2 单输入系统的初点配置

3.2.3 多输入系统的标点配置 3.2.4 状态反馈对传送

3.3 线性定常 统的镇定问题 • 同理, 可得闭环传递函数 $G_c(s)$ 为

$$G_{c}(s) = \hat{C}(sI - (\hat{A} + \hat{b}\hat{K}))^{-1}\hat{b}$$

$$= \frac{C_{n-1}s^{n-1} + \dots + C_{1}s + C_{0}}{s^{n} + (a_{n-1} - k_{n-1})s^{n-1} + \dots + (a_{1} - k_{1})s + (a_{0} - k_{0})}$$

$$= \frac{1}{\det(sI - (A + bK))}(C_{n-1}s^{n-1} + \dots + C_{1}s + C_{0}).$$
(43)

第3章

3.2 闭环极点配

置问题
3.2.1 问题的描述
3.2.2 单输入系统的极点配置
3.2.3 多输入系统的极点配置

点配置 3.2.4 状态反馈对传递 函数零点的影响

3.3 线性定常系统的镇定问题

• 同理, 可得闭环传递函数 $G_c(s)$ 为

$$G_{c}(s) = \hat{C}(sI - (\hat{A} + \hat{b}\hat{K}))^{-1}\hat{b}$$

$$= \frac{C_{n-1}s^{n-1} + \dots + C_{1}s + C_{0}}{s^{n} + (a_{n-1} - k_{n-1})s^{n-1} + \dots + (a_{1} - k_{1})s + (a_{0} - k_{0})}$$

$$= \frac{1}{\det(sI - (A + bK))}(C_{n-1}s^{n-1} + \dots + C_{1}s + C_{0}).$$
(43)

● 显然, Go(s)和Gc(s)有相同的分子矩阵

第3章

3.2 闭环极点配 置问题 3.2.1 问题的描述 3.2.2 单输入系统的极

3.2.3 多输入系统的极 点配置 3.2.4 状态反馈对传递 函数零点的影响

3.3 线性定常系 统的镇定问题 \bullet 同理,可得闭环传递函数 $G_c(s)$ 为

$$G_{c}(s) = \hat{C}(sI - (\hat{A} + \hat{b}\hat{K}))^{-1}\hat{b}$$

$$= \frac{C_{n-1}s^{n-1} + \dots + C_{1}s + C_{0}}{s^{n} + (a_{n-1} - k_{n-1})s^{n-1} + \dots + (a_{1} - k_{1})s + (a_{0} - k_{0})}$$

$$= \frac{1}{\det(sI - (A + bK))}(C_{n-1}s^{n-1} + \dots + C_{1}s + C_{0}).$$
(43)

- 显然, $G_o(s)$ 和 $G_c(s)$ 有相同的分子矩阵
- 故 $G_o(s)$ 和 $G_c(s)$ 有相同的零点. 定理结论得证

第3章

3.2 闭环极点配置问题
32.1 问题的描述
32.1 问题的描述
32.2 单价人系统的权点配置
32.3 多价人系统的权点配置
32.4 次色度增移逐

同理,可得闭环传递函数G_c(s)为

$$G_{c}(s) = \hat{C}(sI - (\hat{A} + \hat{b}\hat{K}))^{-1}\hat{b}$$

$$= \frac{C_{n-1}s^{n-1} + \dots + C_{1}s + C_{0}}{s^{n} + (a_{n-1} - k_{n-1})s^{n-1} + \dots + (a_{1} - k_{1})s + (a_{0} - k_{0})}$$

$$= \frac{1}{\det(sI - (A + bK))}(C_{n-1}s^{n-1} + \dots + C_{1}s + C_{0}).$$
(43)

- 显然, $G_o(s)$ 和 $G_c(s)$ 有相同的分子矩阵
- 故 $G_o(s)$ 和 $G_c(s)$ 有相同的零点. 定理结论得证
- 注: 定理3.6说明, 对于单输入系统(A, b, C)来说, 若(A, b)能控, 则经 状态反馈后的闭环系统的传递函数具有开环传递函数的零点
- ▶ 故,此定理称作传递函数的零点不变定理

第3章

3.2 闭环极点面 置问题 3.2.1 问题的描述 3.2.2 单输入系统的极 点配置

3.2.2 平辖人系统的权 点配置 3.2.3 多翰人系统的极 点配置 3.2.4 状态反馈对传递 函数零点的影响

3.3 线性定常:统的镇定问题

对于一般的多输入系统(A,B,C), 其中A,B,C分别是 $n\times n,n\times p,q\times n$ 阶 常阵

• 若(A,B)能控, 也有同样的结果, 即状态反馈的引入不影响传递函数 $G(s) = C(sI - A)^{-1}B$ 的零点

第3章

对于一般的多输入系统(A,B,C), 其中A,B,C分别是 $n\times n,n\times p,q\times n$ 阶常阵

- 若(A,B)能控,也有同样的结果,即状态反馈的引入不影响传递函数 $G(s) = C(sI-A)^{-1}B$ 的零点
- 但是,并不意味着G(s)的每个元的分子不受状态反馈的影响. 对于多输入系统, G(s)的每一个元的零点是受状态反馈的影响的, 此与单输入系统不同

第3章

3.1 状态反馈 3.2 闭环极点面 署问题

3.3 线性定常; 统的镇定问题

- **企**31 状态方错。
 - 3.1.1 状态反馈的构成形式
 - 3.1.2 状态反馈系统的能控性
- 2 3.2 H FARE & BC E FI AL
 - 3.2.1 问题的描述
 - 3.2.2 单输入系统的极点配置
 - 3.2.3 多输入系统的极点配置
 - 3.2.4 状态反馈对传递函数零点的影响
- 3 3.3 线性定常系统的镇定问题

第3章

3.1 状态反馈

3.3 线性定常系统的镇定问题

考虑线性定常系统

$$\dot{x} = Ax + Bu,\tag{44}$$

其中,x为n维状态向量,u为p维控制向量,EA,B分别为 $n \times n$, $n \times p$ 阶常阵

第3章

3.1 状态反馈 3.2 闭环极点面

3.3 线性定常系统的镇定问题

考虑线性定常系统

$$\dot{x} = Ax + Bu, (44)$$

其中,x为n维状态向量,u为p维控制向量,EA,B分别为 $n \times n$, $n \times p$ 阶常阵

定义

定义3.1 称线性定常系统(A,B)是能稳的, 若存在状态反馈矩阵K, 使得A+BK的特征值全在左半平面.

第3章

3.1 状态反馈 3.2 闭环极点 置问题

3.3 线性定常; 统的镇定问题 考虑线性定常系统

$$\dot{x} = Ax + Bu, (44)$$

其中,x为n维状态向量,u为p维控制向量,且A,B分别为 $n \times n$, $n \times p$ 阶常阵

定义

定义3.1 称线性定常系统(A,B)是能稳的, 若存在状态反馈矩阵K, 使得A+BK的特征值全在左半平面.

注: 显然, 若(A,B) 能控, 则存在状态反馈矩阵K, 使得A+BK 的特征值任意配置, 当然包含了A+BK 的特征值全部落在左半平面的情形

⇒ 故, 若(A, B) 能控, 则其必能稳

第3章

3.1 状态反馈 3.2 闭环极点唇 署问题

3.3 线性定常系统的镇定问题

• 当(A, B)不完全能控时,对(A, B)进行能控性分解:

$$\hat{A} = T^{-1}AT = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$$

$$\hat{B} = T^{-1}B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$$

其中, (A_{11}, B_1) 完全能控

第3章

 3.1 状态反馈
 3.2 闭环极点面 罗问题

3.3 线性定常系统的镇定问题

● 当(A,B)不完全能控时,对(A,B)进行能控性分解:

$$\hat{A} = T^{-1}AT = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$$

$$\hat{B} = T^{-1}B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$$

其中, (A_{11}, B_1) 完全能控

• 对任意状态反馈增益阵K, 令 $\hat{K} = KT = [K_1 \ K_2]$, 则有

$$\det(sI - A - BK) = \det(sI - \hat{A} - \hat{B}\hat{K})$$

$$= \det\begin{bmatrix} sI - A_{11} - B_1K_1 & -A_{12} - B_1K_2 \\ 0 & sI - A_{22} \end{bmatrix}$$

$$= \det(sI - A_{11} - B_1K_1) \det(sI - A_{22}),$$
(45)

第3章

3.1 状态反馈

3.2 闭环极点i 置问题

3.3 线性定常系统的镇定问题

由上式(45), 可以看出

A + BK 的特征值为A₁₁ + B₁K₁ 的特征值和A₂₂ 特征值

第3章

3.1 状态及项
 3.2 闭环极点

3.3 线性定常系统的镇定问题

由上式(45), 可以看出

- A + BK 的特征值为A₁₁ + B₁K₁ 的特征值和A₂₂ 特征值
- A + BK 的特征值全位于左半平面等价于 $A_1 + B_1K_1$ 和 A_{22} 的特征值全在左半平面

第3章

3.1 状态反馈
 3.2 闭环极点面器问题

3.3 线性定常系统的镇定问题

由上式(45), 可以看出

- A + BK 的特征值为A₁₁ + B₁K₁ 的特征值和A₂₂ 特征值
- A + BK 的特征值全位于左半平面等价于 $A_1 + B_1K_1$ 和 A_{22} 的特征值全在左半平面
- (A_{11},B_1) 能控, 存在 K_1 使得 $A_{11}+B_1K_1$ 的特征值全在左半平面, 只要 A_{22} 的特征根全在左半平面, 总存在 $K=[K_1\ K_2]T^{-1}$ 使得A+BK 的特征值全部落在左半平面

第3章

3.1 状态反馈
 3.2 闭环极点器

3.3 线性定常; 统的镇定问题

由上式(45), 可以看出

- A + BK 的特征值为A₁₁ + B₁K₁ 的特征值和A₂₂ 特征值
 - A + BK 的特征值全位于左半平面等价于 $A_1 + B_1K_1$ 和 A_{22} 的特征值全在左半平面
- (A_{11},B_1) 能控, 存在 K_1 使得 $A_{11}+B_1K_1$ 的特征值全在左半平面, 只要 A_{22} 的特征根全在左半平面, 总存在 $K=[K_1\ K_2]T^{-1}$ 使得A+BK 的特征值全部落在左半平面
- 于是,有如下结论

定理

定理3.7 (A,B)能稳的充要条件是不能控部分的特征值全部落在左半平面.

第3章

3.1 状态反馈 3.2 闭环极点图

3.3 线性定常系 统的镇定问题

• 再由

$$rank \begin{bmatrix} sI - A & B \end{bmatrix} = rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix}$$

$$= rank \begin{bmatrix} sI - A_{11} & -A_{12} & B_1 \\ 0 & sI - A_{22} & 0 \end{bmatrix}$$

$$= rank \begin{bmatrix} sI - A_{11} & B_1 & -A_{12} \\ 0 & 0 & sI - A_{22} \end{bmatrix}$$
(46)

可得下面的结论

定理

定理3.8 (A,B)能稳的充要条件是

$$rank \begin{bmatrix} sI - A & B \end{bmatrix} = n, \forall s \in \mathbb{C}, Res \ge 0$$
 (47)

下面考虑系统(44)的状态反馈镇定问题

第3章

3.1 状态反馈

3.2 闭环极点i 置问题

3.3 线性定常。 统的镇定问题

第3章

3.1 状态反馈 3.2 闭环极点 置问题

3.3 线性定常系 统的镇定问题 下面考虑系统(44)的状态反馈镇定问题

• 若可以找到状态反馈控制律

$$u = Kx + v \tag{48}$$

使得通过状态反馈构成的闭环系统

$$\dot{x} = (A + BK)x + Bv \tag{49}$$

是渐近稳定的,即其特征值全部落在左半平面,则称系统(44) 实现了状态反馈镇定.或说系统(44)是通过状态反馈可镇定的

第3章

3.1 状态反馈 3.2 闭环极点图 罗问题

3.3 线性定常; 统的镇定问题 下面考虑系统(44)的状态反馈镇定问题

• 若可以找到状态反馈控制律

$$u = Kx + v \tag{48}$$

使得通过状态反馈构成的闭环系统

$$\dot{x} = (A + BK)x + Bv \tag{49}$$

是渐近稳定的,即其特征值全部落在左半平面,则称系统(44) 实现了状态反馈镇定.或说系统(44)是通过状态反馈可镇定的

● 由上面对(A, B)能稳的讨论知, 若(A, B)能稳, 则系统(44)通过状态反馈可镇定. 反之, 亦然

第3章

3.1 状态反馈 3.2 闭环极点:

3.3 线性定常系统的镇定问题

下面考虑系统(44)的状态反馈镇定问题

• 若可以找到状态反馈控制律

$$u = Kx + v \tag{48}$$

使得通过状态反馈构成的闭环系统

$$\dot{x} = (A + BK)x + Bv \tag{49}$$

是渐近稳定的,即其特征值全部落在左半平面,则称系统(44) 实现了状态反馈镇定.或说系统(44)是通过状态反馈可镇定的

- 由上面对(A, B)能稳的讨论知, 若(A, B)能稳, 则系统(44)通过状态反馈可镇定. 反之, 亦然
- 故有下面的结论

定理

定理3.9 系统(44)是由状态反馈可镇定的, 当且仅当(A, B)是能稳的.

第3章

3.1 状态反馈

3.2 闭环极点的 置问题

3.3 线性定常, 统的镇定问题

• 教材:

程兆林, 马树萍. 线性系统理论. 北京: 科学出版社, pp. 68-79