Lecture Notes for **Machine Learning in Python**

Professor Eric Larson **Data Quality and Imputation**

Class Logistics and Agenda

- Agenda:
 - Data Quality
 - Data Representations
 - Imputation methods
- Needing some more help?
 - fast.ai has great, free resources

Class Overview, by topic

Data Quality

programmers commenting their code

Review of Feature Data

Data Quality Problems

- Missing
 - Easy to find, NaNs
- Duplicated
 - Easy to find, hard to verify
- Noise or Outlier
 - Hard to define
 - Hard to catch

Information is not collected (e.g., people decline to give their age and weight)

Features **not applicable** (e.g., annual income for children)

UCI ML Repository: 90% of repositories have missing data

TID	Hair Color	Height	Age	Arrested
1	Brown	5'2"	23	no
2	Hazel	1.5m	12	no
3	Bl	5	999	no
4	Brown	5'2"	23	no

Handling Issues with Data Quality

- Eliminate Instance or Feature
- Ignore the Missing Value During Analysis Replace with all possible values (talk about later)
- Impute Missing Values How?

stats? mean median mode

Imputation

- When is it probably fine to impute missing data:
 - (A) When there is not much missing data
 - (B) When the missing feature is mostly predictable from another feature
 - (C) When there is not much missing data for each subgroup of the data
 - (D) When it is the class you want to predict

Split-Impute-Combine

TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	33.6	41-50	positive
2	Ν	26.6	31-40	negative
3	Υ	23.3	?	positive
4	Ν	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Y	31.0	21-30	positive
8	Υ	35.3	?	negative
9	N	30.5	51-60	positive
10	Υ	37.6	51-60	positive

split: pregnant

split: BMI > 32

TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	>32	41-50	positive
8	Υ	>32	?	negative
10	Υ	>32	51-60	positive

Mode: none, can't impute

TID	Pregnant	ВМІ	Age	Diabetes
3	Υ	<32	?	positive
6	Υ	<32	21-30	negative
7	Υ	<32	21-30	positive

Mode: 21-30

K-Nearest Neighbors Imputation

TID	Pregnant	ВМІ	Age	Diabetes
1	Y	33.6	41-50	positive
2	Ν	26.6	31-40	negative
3	Υ	23.3	?	positive
4	?	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Y	31.0	21-30	positive
8	Υ	35.3	?	negative
9	N	30.5	51-60	positive
10	Υ	37.6	51-60	positive

For K=3, find 3 closest neighbors

	TID	Preg nant	ВМІ	Age	Diabetes	Distance
1	3	Y	23.3	?	positive	0
	6	Υ	25.6	21-30	negative	(0 + 2.3 + 1)/3
	2	Ν	26.6	31-40	negative	(1 + 3.3 + 1)/3
	4	?	28.1	21-30	negative	(4.8 + 1)/2

Imputed Age: 21-30

How to calculate distance?

- Difference for valid features only
- May need to normalize ranges
- Or weight neighbors differently
- Or have min # of valid features
- Euclidean, city-block, etc.

Data Representation and Documents

Feature Type Representation Review

	Attribute	Representation Transformation	Comments
te	Nominal	Any permutation of values one hot encoding or hash function	If all employee ID numbers were reassigned, would it make any difference?
Discrete	Ordinal	An order preserving change of values, i.e., new_value = f(old_value) where f is a monotonic function. integer	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Continuous	Interval	new_value =a * old_value + b where a and b are constants float	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Ŏ	Ratio	new_value = a * old_value float	Length can be measured in meters or feet.

Data Tables as Variable Representations

	TID	Pregnant	BMI	Age	Eye Color	Diabetes
	1	Y	33.6	41-50	brown	positive
<u>e</u>	2	N	26.6	31-40	hazel	negative
<u>a</u>	3	Y	23.3	31-40	blue	positive
	4	Ν	28.1	21-30	brown	inconclusive
	5	N	43.1	31-40	blue	positive
	6	Υ	25.6	21-30	hazel	negative

Internal Rep. 3

TID

6

Data Tables as Variable Representations

TID	Pregnant	ВМІ	Age	Eye Color	Diabetes
1	Υ	33.6	41-50	brown	positive
2	N	26.6	31-40	hazel	negative
3	Υ	23.3	31-40	blue	positive
4	N	28.1	21-30	brown	inconclusive
5	N	43.1	31-40	blue	positive
6	Υ	25.6	21-30	hazel	negative
TID	Binary	Float	Ordinal	Object	Diabetes

Rep	1
<u>Ш</u>	2
Па	3
iternal	4
Int	5
	6

TID	Binary	Float	Ordinal	Object	Diabetes
1	1	33.6	2	hash(0)	1
2	0	26.6	1	hash(1)	0
3	1	23.3	1	hash(2)	1
4	0	28.1	0	hash(0)	2
5	0	43.1	1	hash(2)	1
6	1	25.6	0	hash(1)	0

Bag of words model

TID	Pregnant	BMI	Chart Notes	Diabetes
1	Υ	33.6	Complaints of fatigue wh	positive
2	Ν	26.6	Sleeplessness and some	negative
3	Υ	23.3	First saw signs of rash o	positive
4	Ν	28.1	Came in to see Dr. Steve	inconclusive
5	Ν	43.1	First diagnosis for hospit	positive
6	Υ	25.6	N/A	negative

Bag of Words

Vocabulary

TID	Sleep	Fatigue	Weight	Rash	First	Sight
1	0	1	0	0	2	0
2	1	1	0	0 Imbor o	1 of occur	1 rences
3	1	1	0	2	1	1

Feature Hashing

what happens when we get more words?

TID	Slee	Fati	Wei	Ras	First	Sigh	Why	Fox	Bro	Lazy	Dog	Etc	Stev
1	0	1	0	0	2	0	0	0	0	1	0	2	0
2	1	1	0	0	1	1	0	0	4	0	1	3	0
3	1	1	0	2	1	1	1	0	1	0	0	1	0

or we could have a hashing function, h(x) = y

	h(x)=1	h(x)=2	h(x)=3	h(x)=4	h(x)=5	h(x)=6
1	0	1	0	1	2	0
2	1	1	4	0	2	1
3	2	1	1	2	1	1

multiple words mapped to one hash:

(want to (1) minimize collisions or (2) make collisions meaningful)

Term-Frequency, Inverse-Document-Frequency

Demo

Pandas and Imputation Scikit-Learn

Start the following:

03. Data Visualization.ipynb

Other Tutorials:

http://vimeo.com/59324550

http://pandas.pydata.org/pandas-docs/version/0.15.2/tutorials.html

For Next Lecture

- Before next class:
 - verify installation of seaborn, plotly, (and/or bokeh if you want)
 - look at pandas table data and additional tutorials
- Next time: Data Visualization

Lecture Notes for **Machine Learning in Python**

Professor Eric Larson **Data Quality and Imputation**