Generalized Linear Models

Let Y be a response variable, and X_1, \dots, X_p , predictor variables.

For linear models, the conditional mean of Y given $\mathbf{X} = \mathbf{x}$ is given by

$$\mu_{Y|\mathbf{x}} = \beta_o + \beta_1 X_1 + \dots + \beta_p X_p$$

Basic assumptions:

- $Var(Y \mid \mathbf{x})$ is constant, and
- Y is Guassian
- Error terms uncorrelated.

More generally, assume that there is a function g such that

$$g(\mu) = \beta_o + \beta_1 X_1 + \dots + \beta_p X_p$$

and that

$$Var(Y \mid \mathbf{x}) = \phi \nu(\mu)$$

The function g is known as a link function.

 ϕ is a dispersion parameter.

• Linear regression

$$g(\mu) = \mu$$
, the identity function, $\nu(\mu) = 1$.

• Log linear model

Used to model count data, with Poisson family of distributions.

Link function: $g(\mu) = \ln(\mu)$, and

$$\nu(\mu) = \mu$$

• Logistic regression

Used to model binomial data.

The link function is given by

$$g(\mu) = \ln\left(\frac{\mu}{1-\mu}\right)$$

and is known as logit.

$$\nu(\mu) = \mu(1-\mu)/n.$$

Interpretation of Coefficients

Suppose we are interested in determining the relationship between smoking status and occurrence of lung cancer.

$$X_1 = \begin{cases} 1, & \text{Smoker} \\ 0, & \text{Non-smoker} \end{cases}$$

$$Y = \begin{cases} 1, & \text{Cancer} \\ 0, & \text{No Cancer} \end{cases}$$

Let p_x denote the probability of cancer given the smoking status of the individual. Then

$$p_x = \frac{e^{\beta_0 + \beta_1 X_1}}{1 + e^{\beta_0 + \beta_1 X_1}}$$

In terms of the link function

$$logit(p_x) = \beta_0 + \beta_1 x$$

Now, when x = 0, $logit(p_0) = \beta_0$, which gives

$$\exp\{\beta_0\} = \frac{p_0}{1 - p_0}$$

i.e., the odds of cancer for a smoker.

Similarly, when x = 1, we see that

$$\beta_1 = l \circ git(p_1) - \beta_0$$

Oï

$$\beta_1 = \ln \frac{p_1}{1 - p_1} - \ln \frac{p_0}{1 - p_0}$$

 β_1 is the $log\ odds\ ratio$ of having cancer for a smoker relative to a non-smoker.

Crude OR: 13*26/(38*4) **2.22**

> fit1 <-glm(Y~ Age60,family="binomial")

> summary(fit1)

Coefficients:

Value Std. Error t value (Intercept) -1.8718019 0.5369109 -3.486243 Age60 0.7991651 0.6257093 1.277215

> exp(0.8)

[1] 2.225541

$$X_2 = \begin{cases} 1, & \text{Old} \\ 0, & \text{Young} \end{cases}$$

$$logit(p \mid x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

When
$$x_1 = 0$$
, $logit(p \mid x_1 = 0, x_2) = \beta_0 + \beta_2 x_2$.

Similarly, when $x_1 = 1$,

$$logit(p \mid x_1 = 1, x_2) = \beta_0 + \beta_1 + \beta_2 x_2$$

By subtraction, β_1 is the log odds ratio of having cancer for a smoker relative to a non-smoker, for $any \ age$ group.

Suppose there is interaction between age and smoking status.

Then the logit becomes:

$$logit(p \mid x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

When $x_1 = 0$,

$$logit(p \mid x_1 = 0, x_2) = \beta_0 + \beta_2 x_2$$

Similarly, when $x_1 = 1$, we note that

$$logit(p \mid x_1 = 1, x_2) = \beta_0 + \beta_1 + \beta_2 x_2 + \beta_3 x_2$$

Odds ratio of having cancer for a smoker relative to a nonsmoker is a function of the age group.

When X is *polytomous*, suitably defined design variables may be used.

Example. Suppose smoking has three categories:

Never Smoked, Current Smoker, and Smoked in the Past.

Take "Never Smoked" as the reference group and define the design variables as follows:

$$D_1 = \begin{cases} 1, & \text{Current Smoker} \\ 0, & \text{Otherwise} \end{cases}$$

$$D_2 = \begin{cases} 1, & \text{Past Smoker} \\ 0, & \text{Otherwise} \end{cases}$$

The logit is now given by

$$logit(p \mid D_1, D_2) = \beta_0 + \beta_1 D_1 + \beta_2 D_2$$

When $D_1 = 0$ and $D_2 = 0$, i.e., corresponding to Never Smoked,

$$logit(p) = \beta_o,$$

which is the log odds of cancer for someone who never smoked.

When $D_1 = 1$ and $D_2 = 0$,

$$logit(p) = \beta_o + \beta_1$$
.

By subtraction, β_1 is the log odds ratio of cancer for a "Current Smoker" relative to someone who never smoked.

Similarly, β_2 is seen to be the log odds ratio of cancer for a Past Smoker relative to the reference group.

It is easy to see that the odds ratio of cancer for a Current Smoker relative to a Past Smoker is

$$e^{\beta_1 - \beta_2} = \frac{e^{\beta_1}}{e^{\beta_2}}$$

When X is continuous, e.g., Age in Years.

 e^{β} may be interpreted as the odds ratio of cancer for someone of a given age relative to another who is 1 year younger.

Likelihood Inference

Suppose $y \sim f(y; \theta)$. The log likelihood is given by

$$L(\theta) = \sum_{j=1}^{n} \ln f(y_j; \theta)$$

The deviance is defined as

$$D(y;\theta) = 2\phi[L(y) - L(\theta)]$$

where L(y) is the saturated model.

In the Gaussian case, when $\hat{\theta}$ is the m.l.e., the deviance corresponds to the RSS.

Analysis of Deviance

Sums of squares for non-normal data are not appropriate measures of contributions of a sum to total variation.

Suppose θ_1 and θ_2 correspond to two competing models.

Difference in deviance is given by

$$D(\theta_1; \theta_2) = D(y; \theta_1) - D(y; \theta_2)$$

Under θ_1 , $D(\theta_1; \theta_2)$ is approximately χ^2_{ν} , where $\nu = \nu_1 - \nu_2$, the difference in the corresponding model degrees of freedom.

For model selection, one would reject the θ_1 model, if the difference is too large, i.e., the model based on θ_2 fits better.

Residuals

Deviance residuals

Let d_j denote the contribution of the j'th observation to the deviance. Then

$$r_j^D = sgn(y_j - \hat{\mu}_j)\sqrt{d_j}$$

indicates the influence of the j'th observation to the fit.

• Working residuals

Let

$$r_j^W = (y_j - \hat{\mu}_j) \frac{\partial \hat{\eta}_j}{\partial \hat{\mu}_j}$$

• Pearson residuals

$$r_j^P = \frac{(y_j - \hat{\mu}_j)}{\sqrt{Var(\hat{\mu}_j)}}$$

• Response residuals

$$r_j^R = (y_j - \hat{\mu}_j)$$

Goodness-of-fit: Logistic Regression

Let Y_1, \dots, Y_n be the observed response, and $\hat{Y}_1, \dots, \hat{Y}_n$ be the expected values under the model.

Given the vector of covariates $\mathbf{X} = (X_1, \dots X_p)'$, let m_j be the number of subjects with $\mathbf{X} = \mathbf{x_j}$, $j = 1, \dots, J < n$, and $\Sigma_j m_j = n$. Let

$$\hat{p}_j = \frac{e^{\mathbf{x}_j'\hat{\beta}}}{1 + e^{\mathbf{x}_j'\hat{\beta}}}$$

so that $\hat{Y}_j = m_j \hat{p}_j$

• Pearson residuals

Let

$$r_j^P = \frac{(Y_j - m_j \hat{p}_j)}{\sqrt{m_j \hat{p}_j (1 - \hat{p}_j)}}$$

Then $X^2 = \sum_{j}^{J} (r_j^P)^2$ has an approximate χ_{J-p}^2 distribution under the model.

Deviance residuals

Let

$$r_j^D = \pm \left\{ 2(y_j \ln(\frac{Y_j}{m_j \hat{p}_j}) + (m_j - Y_j) \ln \frac{m_j - Y_j}{m_j (1 - \hat{p}_j)}) \right\}^2$$

Then $D = \sum_{j=1}^{J} r_{j}^{D}$ has an approximate $\chi_{J-(p+1)}^{2}$ distribution under the model. The approximation may not be reliable if $J \approx n$.

• Hosmer-Lemshow Tests

These tests require grouping the data based on estimated probabilities.

- Group data based on percentiles of estimated probabilities

For n subjects, form 10 groups, each of size $m \approx n/10$. The lowest group then contains those observations having the smallest ten \hat{p}_j 's, etc.

Collapse the data based on fixed values of estimated probabilities.

Use as cutpoints, the probabilities $\frac{k}{g}$, $k = 1, 2, \dots, g - 1$, where g is a suitably defined number of groups.

Having determined the g classes, let n_k be the number of covariate patterns in the k'th group,

Let o_k be the number of successes among the n_k covariate patterns of /Hosmer the k'th group.

Denote the average estimated probability for the k'th group by \tilde{p}_k .

Then the Hosmer-Lemshow goodness-of-fit test is given by

$$T_{HL} = \sum_{k=1}^{g} \frac{(\phi_k - n_k \tilde{p}_k)^2}{n_k \tilde{p}_k (1 - \tilde{p}_k)}$$

and has an approximate χ^2_{q-2} distribution under the model.

Model Selection in GLM

The S-PLUS function glm() provides parameter estimates and other inferential results for generalized linear models. S-PLUS also provides several routines for computing the various residuals, e.g., resid().

The step.glm() and step() functions allow model selection in glm.

- Start with a glm object
- Compute selection criterion for entering or removing variables, e.g., C_p .
- Compute the model criterion: e.g., Akaike Information Criterion (AIC)

AIC = Deviance + 2 * scale * df.resid.

Choose model with the smallest AIC.

• Stop when no step will decrease the criterion or a model boundary is reached.

```
glm1 _ glm(Y ~ .)
glm.model _ step(glm1, ~.^3)
```

In R: step()
Library(MASS)
stepAIC

Problem Set 8

Read Chapter 20: Ramsey & Schafer

Consider the Muscular Dystrophy, Exercise 12, page 604:

- 1) Define "High CK" to have a value of 1 if the value of CK > 60, and 0, otherwise. Fit a logistic regression of "Carrier" on "High CK".
 - a) Estimate the parameters of the regression, and give the associated 95% confidence intervals.
 - b) Interpret what the estimated parameters denote.
- 2) Do Problem 12.