

DISTRIBUTED MEMORY ALLOCATION TECHNIQUE FOR SYNCHRONOUS DATAFLOW GRAPHS

Karol Desnos, Maxime Pelcat, Jean-François Nezan, Slaheddine Aridhi

SiPS - Dallas (TX), USA - Oct. 26th 2016

Introduction > Motivations

Architects: Distributed is the new shared!

Embedded Software Engineer: Distribu-what?

- Shared memory parallel APIs:
 (P)threads, OpenMP, Cilk, Threading Building Blocks, ...
- Distibuted memory APIs
 MPI, Go lang
 Mostly for HPC

Contribution > Objectives

New distributed memory allocation technique:

- Parallel: Application described with SDF graphs.
- Simple: Fully automated.
- Flexible: Shared / heterogeneous / distributed architectures.
- Efficient: Memory footprint minimization with memory reuse.
- Performant: Improve application performance.

Synchronous Dataflow (SDF) Graph

- Actors and data ports
- Fifo Queues

Equivalent single-rate SDF graph

Memory Reuse > SDF Graph-Level

Memory Reuse > Actor Level

Distribution > Distributed Archi.

Distribution > Overview

Experiments > Setup

- PREESM
 - Rapid prototyping framework
 - Open-source Reproducibility

- Texas Instruments C6678
 - 8 DSP cores
 - Heterogeneous memories:
 - Optional L1 caches: 32 kBytes / core
 - Distributed memories: 512 kBytes / core
 - Shared memory: 512 Mbytes
- Computer vision algorithms
 - Sobel & morphological operations
 - Stereo Matching:
 - 28 actors, 42 Fifos, 1067 buffers

Left Right

Depth map

Experiments > Memory Footprints

Experiments > Performance Impact

Distributed

Distributed code generation: Future work

Conclusion

New distributed memory allocation technique:

- Parallel: SDF Graph
- Simple: Automated
- Flexible: Memory architectures
- Efficient: Memory reuse
- Performant: Applications

Future work

- Code generation for distributed architecture (W.I.P)
- Memory aware mapping/scheduling

http://preesm.sf.net

@PreesmProject

