MATH 689 - Physics for Mathematicians

Seth Hoisington

September 26, 2023

Theorem 1 (Equivalence of E-L equation and Hamiltonian system). The curve q(t) in M is a solution of the E-L equation $\frac{d}{dt}\frac{\partial L}{\partial \dot{q}}(q(t),\dot{q}(t))=\frac{\partial L}{\partial q}(q(t),\dot{q}(t))$ if and only if the curve (p(t),q(t)) in T^*M , with $p(t)=\frac{\partial L}{\partial \dot{q}}(q(t),\dot{q}(t))$ is the solution to the following system:

$$\begin{cases} \dot{q}_i(t) = \frac{\partial H}{\partial p_i}(p(t), q(t)) \\ \dot{p}_i(t) = -\frac{\partial H}{\partial q_i}(p(t), q(t)) \end{cases}$$

where $(p_1, \ldots, p_n, q^1, \ldots, q^n)$ are the canonical coordinates on T^*M near $q \in M$, and where H is related to L via the Legendre transform:

$$H(p,q) = \max_{v \in T_q M} (p(v) - L(q,v))$$

Proof. By strong convexity of $v \mapsto L(q,v)$ for all q, the maximum of $v \mapsto h(p,q,v)$, if attained is attained at a unique v := v(p,q) and H(p,q) = h(p,q,v(p,q)). For v = v(p,q):

$$0 = \frac{\partial}{\partial v^{i}} h(p, q, v) \big|_{v=v(p,q)}$$

$$= \frac{\partial}{\partial v^{i}} \left(p_{i} v^{i} - L(q, v) \right) \big|_{v=v(p,q)}$$

$$= p_{i} - \frac{\partial}{\partial v^{i}} L(q, v) \big|_{v=v(p,q)}$$

$$\Leftrightarrow p_{i} = \frac{\partial}{\partial v^{i}} L(q, v) \big|_{v=v(p,q)}$$

$$(1)$$

Hence by the uniqueness of v(p,q), we find that $v(p(t),q(t)) = \dot{q}(t)$ since

$$\left.\frac{\partial L}{\partial v}\right|_{(q,v)=(q(t),\dot{q}(t))}=p(t)=\left.\frac{\partial L}{\partial v}\right|_{(q,v)=(q(t),v(p(t),q(t)))}$$

Therefore, $H(p(t),q(t))=h(p(t),q(t),\dot{q}(t)),$ we see that

$$\begin{split} \frac{\partial H}{\partial p_i}(p(t),q(t)) &= \frac{\partial}{\partial p_i} h(p,q,v(p,q))\big|_{(p,q)=(p(t),q(t))} \\ &= \frac{\partial}{\partial p_i} h(p,q,v)\big|_{(p,q,v)=(p(t),q(t),v(p(t),q(t))} \\ &+ \frac{\partial}{\partial v} h(p,q,v)\big|_{(p,q,v)=(p(t),q(t),v(p(t),q(t))} \frac{\partial}{\partial p_i} v(p,q)\big|_{(p,q)=(p(t),q(t))} \end{split}$$

Since $\frac{\partial h}{\partial v}=0$ at (p,q,v)=(p,q,v(p,q)), in local coordinates, we have

$$\begin{split} \frac{\partial H}{\partial p_i}(p(t),q(t)) &= \frac{\partial}{\partial p_i} h(p,q,v) \big|_{(p,q,v) = (p(t),q(t),v(p(t),q(t))} \\ &= \frac{\partial}{\partial p_i} \left(\sum_{i=1}^n p_i v^i - L(q,v) \right) \big|_{(p,q,v) = (p(t),q(t),v(p(t),q(t))} \\ &= v^i \big|_{(p,q,v) = (p(t),q(t),v(p(t),q(t))} \\ &= \dot{q}^i(t) \end{split}$$

Therefore, we have that, for all i,

$$\dot{q}^{i}(t) = \frac{\partial H}{\partial p^{i}}(p(t), q(t)).$$

Now, we will verify the second set of equations:

$$\begin{split} \frac{\partial H}{\partial q^i}(p(t),q(t)) &= \frac{\partial}{\partial q^i}h(p,q,v(p,q))\big|_{(p,q)=(p(t),q(t))} \\ &= \frac{\partial}{\partial q^i}h(p,q,v)\big|_{(p,q,v)=(p(t),q(t),v(p(t),q(t))} \\ &\quad + \frac{\partial h}{\partial v}\big|_{(p(t),q(t),v(p(t),q(t))}\frac{\partial}{\partial q^i}v(p,q)\big|_{(p(t),q(t))} \\ &= \frac{\partial}{\partial q^i}h(p,q,v)\big|_{(p,q,v)=(p(t),q(t),v(p(t),q(t))} + 0\frac{\partial v}{\partial q^i}\big|_{(p(t),q(t))} \\ &= \frac{\partial}{\partial q^i}\left(\sum_i p_i v^i - L(q,v)\right)\big|_{(p,q,v)=(p(t),q(t),\dot{q}(t))} \\ &= -\frac{\partial L}{\partial q^i}\big|_{(p,q,v)=(p(t),q(t),\dot{q}(t))} \\ &= -\frac{\partial L}{\partial q^i}\big|_{(q,v)=(q(t),\dot{q}(t))} \end{split}$$

By Euler-Lagrange, we have that

$$\dot{p}(t) = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}}(q(t), \dot{q}(t))$$

$$= \frac{\partial L}{\partial q}(q(t), \dot{q}(t))$$

$$= -\frac{\partial H}{\partial q^{i}}(p(t), q(t))$$

Therefore, H is a solution to the Hamiltonian system.

1 Canonical Symplectic Structure and Coordinate-free Construction of Hamiltonian vector fields in T^*M

1.1 The tautological (Liouville) 1-form on T^*M

Let $\lambda=(p,q)\in T^*M$ where $q\in M, p\in T_q^*M$. Then let $\pi:T^*M\to M$ be the canonical projection: $\pi(p,q)=q$. We want to define a 1-form on T^*M (which is a manifold itself). For some $w\in T_\lambda(T^*M)$. We define

$$S(\lambda)(w) = p(\pi_{*,\lambda}(w))$$

Note that $\pi_{*,\lambda}: T_{\lambda}(T^*M) \to T_qM$, so p indeed acts upon $\pi_{*,\lambda}(w)$.

Lemma 1. In canonical coordinates $(p_1, \ldots, p_n, q^1, \ldots, q^n) \in T^*M$,

$$S = p^1 dq^1 + \dots + p_n dq^n.$$

Proof. In our coordinates, $\pi(p_1,\ldots,p_n,q^1,\ldots,q^n)=(q^1,\ldots,q^n)$. Let $w=v^1\frac{\partial}{\partial q^1}+\cdots+v^n\frac{\partial}{\partial q^n}$. Then,

$$\begin{split} s(w) &= p(d\pi(w)) \\ &= \sum_i p_i dq^i \left(\sum_j v^j \frac{\partial}{\partial q^j} \right) \\ &= \sum_i p_i v^i \end{split}$$

On the other hand,

$$\sum_{i} p_{i} dq^{i}(w) = \sum_{i} p_{i} dq^{i} \left(\sum_{j} v^{i} \frac{\partial}{\partial q^{j}} + \sum_{j} \xi_{j} \frac{\partial}{\partial p_{j}} \right) = \sum_{i} p_{i} v^{i}$$

Let $\sigma = ds$ (the exterior derivative of the Liouville form).

Properties of σ :

• σ is exact (and thus closed)

•

Lemma 2. σ is a nondegenerate 2-form. (For every $\lambda \in T^*M$, if for some $w \in T_{\lambda}(T^*M)$ we have $\iota_w \sigma(\lambda) = 0$, then w = 0.)

Proof. By Lemma 1, in canonical coordinates, $s = p_1 dq^1 + \dots + p_n dq^n$, so $ds = dp_1 \wedge dq^1 + \dots + dp_n \wedge dq^n$.

In the basis $\left(\frac{\partial}{\partial p_1}, \dots, \frac{\partial}{\partial p_n}, \frac{\partial}{\partial q^1}, \dots, \frac{\partial}{\partial q^n}\right)$ of $T_{\lambda}(T^*M)$, the bilinear form corresponds to the matrix

 $\begin{pmatrix} 0 & I \\ \hline -I & 0 \end{pmatrix}$

since $\sigma(\frac{\partial}{\partial p_i}, \frac{\partial}{\partial p_j}) = 0$, $\sigma(\frac{\partial}{\partial p_i}, \frac{\partial}{\partial q^j}) = \delta_{ij}$, and $\sigma(\frac{\partial}{\partial q^i}, \frac{\partial}{\partial q^j}) = 0$. Since this matrix is nonsingular, the form is nondegenerate.

Definition 1. A closed, non-degenerate 2-form ω on a manifold M is called a symplectic form (or symplectic structure). If such a form exists on M, then the pair (M,ω) is a symplectic manifold. For any such symplectic manifold, it can be shown that $\dim(M)$ is even.

Therefore, (T^*M, σ) is a symplectic manifold for any smooth manifold M.

Any smooth function $H:T^*M\to\mathbb{R}$ is called an (autonomous) Hamiltonian.

Lemma 3. For any Hamiltonian $H: T^*M \to \mathbb{R}$, there exists a unique vector field, denoted by \vec{H} such that $\iota_{\vec{H}}\sigma = -dH$. Moreover, in the canonical coordinates $(p_1, \ldots, p_n, q^1, \ldots, q^n) \in T^*M$,

$$\vec{H} = \frac{\partial H}{\partial p_1} \frac{\partial}{\partial q^1} + \dots + \frac{\partial H}{\partial p_n} \frac{\partial}{\partial q^n} - \frac{\partial H}{\partial q^1} \frac{\partial}{\partial p_1} + \dots + \frac{\partial H}{\partial q^n} \frac{\partial}{\partial p_n} = \sum_i \frac{\partial H}{\partial p_i} \frac{\partial}{\partial q^i} - \frac{\partial H}{\partial q^i} \frac{\partial}{\partial p_i}.$$

Thus, a curve $\lambda(t)$ in T^*M satisfies $\lambda(t) = \vec{H}(\lambda(t))$ if and only if

$$\begin{cases} \dot{q}^i(t) = \frac{\partial H}{\partial p_i}(p(t), q(t)) \\ \dot{p}^i(t) = -\frac{\partial H}{\partial q^i}(p(t), q(t)) \end{cases}$$

Proof. The existence and uniqueness of \vec{H} follows from nondegeneracy. We claim that the interior product, as a map $\iota: T_{\lambda}(T^*M) \to T_{\lambda}^*(T^*M)$ given by $Y \mapsto \iota_Y \sigma$, is injective. Indeed, if $\iota_Y \sigma = 0$ for some $Y \in T_{\lambda}(T^*M)$. However, by nondegeneracy, if $\iota_Y \sigma(X) = \sigma(Y, X) = 0$ for all vectors $X \in T_{\lambda}(T^*M)$, it follows that Y = 0. Surjectivity follows from rank-nullity given that $\dim T_{\lambda}(T^*M) = \dim T_{\lambda}^*(T^*M) = 2n$. Therefore, we may let $\vec{H} = \iota^{-1}(-dH)$. (Proof continued in the next lecture)