

Ourresults will be the sawe. However, in the first party since we did not use a hardware based design but amore software based oney yosys used more gates. While the hardware based oneused less gates in the hardware based oneused less gates in the hardware based design and so we'll have a shorter delay and, simulation speed.

A higher

because yosgs willuse the gates His synthysised while our code will use the computer's

part 1 yesus gates : 223 NAND / 430 NOR/ 162 NOT Totals 815 gates

Part 2 40545 gates; 142 NANO/ 238 NOR/ 138 NOT Total: 518 gates

```
module myALU(input signed [15:0] inM, inN, input [2:0] opc, input inC, output logic signed [15:0] outF, output zer, neg);
always @ (inM,inN,opc,inC) begin
                   outF = 16'b0;
                   case (opc)
                            3'b000: outF = inM + inN + inC;
                            3'b001: outF = inM + (inN >>> 1);
                            3'b010: outF = inM + 1;
                            3'b011: outF = inM + (inM >>> 1);
                            3'bl00: outF = inM & inN;
                            3'b101: outF = inM | inN;
                            3'b110: outF = ~inM;
                            3'bll1: outF = 16'b0;
                            default: outF = 16'b0;
                   endcase
           end
          assign zer = ~|outF;
          assign neg = outF[15];
  endmodule
```

```
`timescale lns/lns
  'timescale lns/lns
module testbench ():
          logic [15:0] INm, INn;
          logic [2:0] OPC;
          logic INc:
          wire [15:0] OUTf1, OUTf2;
          wire ZER1, ZER2, NEG1, NEG2;
          MyALU ALUM (INm, INn, OPC, INc, OUTf1, ZER1, NEG1);
          MyALU2 ALUM2 (INm, INn, OPC, INc, OUTf2, ZER2, NEG2);
          initial begin
          INm = $random();
          INn = $random();
          INc = $random();
                   for(int i=0;i<8;i=i+1) begin
                           OPC = i:
                           repeat(2) #100 begin
                                    INm = $random();
                                    INn = $random();
                                    INc = $random();
                           end
                  end
          $stop;
          end
  endmodule
```

=== myALU ===

Number of	wires:	466
Number of	wire bits:	513
Number of	public wires:	7
Number of	public wire bits:	54
Number of	memories:	0
Number of	memory bits:	0
Number of	processes:	0
Number of	cells:	476
\$_AND_		61
\$_A0I3_		57
\$ A014		2
\$ MUX		16
\$ NAND		20
\$_NOR_		60
\$_NOT_		64
\$_OAI3_		52
\$_OAI4_		17
\$_OR_		22
\$_XNOR_		82
\$_XOR_		23

```
4.1.2. Re-integrating ABC results.
                        NAND cells:
ABC RESULTS:
                                         223
ABC RESULTS:
                         NOR cells:
                                         430
ABC RESULTS:
                         NOT cells:
                                         162
                   internal signals:
ABC RESULTS:
                                         459
                                      36
                     input signals:
ABC RESULTS:
                     output signals:
                                          17
ABC RESULTS:
```

```
module MUX4(input signed [15:0] a.b.c.d. input f0.fl. output signed [15:0] w);
          assign w = ((fl==0) & (f0==0)) ? a:
                     ((f1==0) & (f0==1)) ? b:
                     ((f1==1)&(f0==0)) ? c:
                     ((f1==1) & (f0==1)) ? d: 16'b0;
endmodule
module ADDER(input signed [15:0] a,b, input cin, output signed [15:0] w);
          assign w = a + b + cin:
endmodule
module SHIFTER RIGHT ARTH(input signed [15:0] a, output signed [15:0] w);
          assign w = a >>> 1;
endmodule
module BITAND(input signed [15:0] a,b, output signed [15:0] w);
          assign w = asb;
endmodule
module BITOR(input signed [15:0] a,b, output signed [15:0] w);
          assign w = a|b:
endmodule
module BITINV(input signed [15:0] a, output signed [15:0] w);
          assign w = ~a;
endmodule
module MUX2(input signed [15:0] a,b, input f, output signed [15:0] w);
          assign w = f ? b : a;
endmodule
module MyALU(input signed [15:0] inM, inN, input [2:0] opc, input inC, output signed [15:0] outF, output zer, neg);
          wire signed [15:0] adder, second input, or and, shiftn, shiftm, andl, orl, invm;
          wire cin, ctrl0, ctrl1, opcl not, i;
          assign opcl not = ~opc[1];
          assign cin = inCs(~opc[0])sopcl nots(~opc[2]);
          SHIFTER RIGHT ARTH shifterl (inM, shiftm);
          SHIFTER RIGHT ARTH shifter2 (inN, shiftn);
          MUX4 mux40 (inN, shiftn, 1, shiftm, opc[0], opc[1], second input);
          ADDER Adder (inM, second input, cin, adder);
          BITAND AND (inM, inN, and1);
          BITOR OR (inM, inN, orl);
          MUX2 mux2(and1,or1,opc[0],or and);
          BITINV inv(inM, invm);
          assign ctrl0 = (opc[0]|opcl not)&opc[2];
          assign ctrl1 = opc[1]sopc[2];
          MUX4 mux41 (adder, or and, invm, 16'b0, ctrl0, ctrl1, outF);
          assign i = outf[0]|outf[1]|outf[2]|outf[3]|outf[4]|outf[5]|outf[6]|outf[7]|outf[9]|outf[9]|outf[10]|outf[11]|outf[12]|outf[13]|outf[14]|outf[15];
          assign zer = ~i;
          assign neg = outF[15];
endmodule
```

```
=== ADDER ===
  Number of wires:
                                  79
  Number of wire bits:
                                 124
  Number of public wires:
                                  4
  Number of public wire bits:
                                 49
  Number of memories:
                                  0
  Number of memory bits:
                                  0
  Number of processes:
                                  0
  Number of cells:
                                  91
    $ AND
                                  14
    $ A013
                                  11
                                  14
    $ NAND
                                  2
    $ NOR
    $ NOT
                                   5
    $ OAI3
                                   8
                                   4
    $ OR
                                  16
    $ XNOR
    $ XOR
                                  17
=== BITAND ===
  Number of wires:
  Number of wire bits:
                                  48
  Number of public wires:
                                  3
  Number of public wire bits:
                                  48
  Number of memories:
                                  0
  Number of memory bits:
                                  0
  Number of processes:
                                  0
  Number of cells:
                                  16
    $ AND
                                  16
=== BITINV ===
  Number of wires:
                                  2
  Number of wire bits:
                                  32
  Number of public wires:
                                  2
  Number of public wire bits:
                                  32
  Number of memories:
                                  0
  Number of memory bits:
                                   0
  Number of processes:
                                  0
  Number of cells:
                                  16
    $ NOT
                                  16
=== BITOR ===
  Number of wires:
                                   3
  Number of wire bits:
                                  48
  Number of public wires:
                                  3
  Number of public wire bits:
                                  48
  Number of memories:
                                  0
  Number of memory bits:
                                  0
  Number of processes:
                                  0
  Number of cells:
                                  16
                                  16
    $ OR
```

```
=== MUX2 ===
  Number of wires:
                                       4
   Number of wire bits:
  Number of public wires:
                                      4
  Number of public wire bits:
                                     49
  Number of memories:
                                      0
  Number of memory bits:
                                      0
  Number of processes:
                                      0
  Number of cells:
                                      16
     $ MUX
                                      16
=== MUX4 ===
  Number of wires:
                                      76
  Number of wire bits:
                                     151
  Number of public wires:
Number of public wire bits:
                                     82
  Number of memories:
  Number of memory bits:
                                      0
  Number of processes:
                                      0
  Number of cells:
                                      85
     $ MUX
                                      48
    $ NAND
                                       2
                                      16
    $ NOR
    $ NOT
                                      17
                                       2
     $ OR
=== MvALU ===
   Number of wires:
                                      36
  Number of wire bits:
                                     203
  Number of public wires:
                                     18
  Number of public wire bits:
Number of memories:
                                     185
                                       0
  Number of memory bits:
                                       0
  Number of processes:
                                       0
  Number of cells:
                                      31
    $ AND
    $ A013
                                       1
    $ NAND
                                       3
                                       6
    $ NOR
     $ NOT
                                       2
     $ OR
                                       9
     ADDER
                                       1
     BITAND
                                       1
     BITINV
                                       1
     BITOR
                                       1
    MUX2
    MUX4
     SHIFTER RIGHT ARTH
=== SHIFTER_RIGHT_ARTH ===
  Number of wires:
                                       2
  Number of wire bits:
                                      32
  Number of public wires:
                                      2
  Number of public wire bits:
                                      32
  Number of memories:
                                      0
  Number of memory bits:
                                       0
  Number of processes:
Number of cells:
                                       0
                                       0
```

=== design hierarchy ===

MyALU		1
ADDER		1
BITAND		1
BITINV		1
BITOR		1
MUX2		1
MUX4		2
SHIFTER	RIGHT_ARTH	2
Number of	wires:	283
Number of	wire bits:	870
Number of	public wires:	52
Number of	public wire bits:	639
Number of	memories:	0
Number of	memory bits:	0
Number of	processes:	0
Number of	cells:	347
\$_AND_		31
\$_A0I3_		12
\$_MUX_		112
\$ NAND		21
\$_NOR_		40
\$_NOT_		57
\$ OAI3		8
\$_OR_		33
\$ XNOR		16
\$_XOR_		17

```
4.1.2. Re-integrating ABC results.
ABC RESULTS:
                       NAND cells:
                                  37
                        NOR cells: 110
ABC RESULTS:
ABC RESULTS:
                        NOT cells:
                                       48
           internal signals:
                                  75
ABC RESULTS:
                                  33
                    input signals:
ABC RESULTS:
                   output signals:
ABC RESULTS:
                                        16
Removing temp directory.
```

```
4.2.2. Re-integrating ABC results.
ABC RESULTS:
                           NOR cells:
                                             16
ABC RESULTS:
                           NOT cells:
                                             32
            internal signals:
ABC RESULTS:
                       input signals:
ABC RESULTS:
                                             32
                      output signals:
ABC RESULTS:
                                             16
Removing temp directory.
```

4.3.2. Re-inte	grating ABC res	sults.	
ABC RESULTS:	NO	T cells:	16
ABC RESULTS:	internal	signals:	9
ABC RESULTS:	input	signals:	16
ABC RESULTS:	output	signals:	16
Removing temp	directory.		

```
4.4.2. Re-integrating ABC results.

ABC RESULTS: NAND cells: 16

ABC RESULTS: NOT cells: 32

ABC RESULTS: internal signals: 0

ABC RESULTS: input signals: 32

ABC RESULTS: output signals: 16

Removing temp directory.
```

```
4.5.2. Re-integrating ABC results.

ABC RESULTS: NOR cells: 48

ABC RESULTS: NOT cells: 1

ABC RESULTS: internal signals: 0

ABC RESULTS: input signals: 33

ABC RESULTS: output signals: 16

Removing temp directory.
```

4.6.2. Re-integr	rating ABC results.	
ABC RESULTS:	NAND cells:	81
ABC RESULTS:	NOR cells:	51
ABC RESULTS:	NOT cells:	2
ABC RESULTS:	internal signals:	69
ABC RESULTS:	input signals:	66
ABC RESULTS:	output signals:	16
Removing temp di	irectory.	

```
4.7.2. Re-integrating ABC results.
                         NAND cells:
ABC RESULTS:
ABC RESULTS:
                          NOR cells:
                                          13
ABC RESULTS:
                          NOT cells:
ABC RESULTS: internal signals:
                                          18
ABC RESULTS:
                      input signals:
                                          20
ABC RESULTS:
                     output signals:
Removing temp directory.
```

+/INm	0011010100100100	0011010100100100	0101011001100011	1000010001100101	1100110100001101	0101011111101101	0010010011000110	11110111111100101	1101101110001111	01111010111101000	0010100010111101
+	0101111010000001	0101111010000001	0111101100001101	0101001000010010	1111000101110110	1111011110001100	1000010011000101	0111001001110111	0110100111110010	0100111011000101	0101100000101101
∓ -∜ /testbench/OPC	000	000		001		010		011		100	
🥠 /testbench/INc	1										
+-/> /testbench/0UTf1	100 100 1110 100 110	1001001110100110	1101000101110001	(1010110101101110	1100010111001000	0101011111101110	0010010011000111	1111001111010111	1100100101010110	0100101011000000	0000100000101101
⊞ - ∜ /testbench/0UTf2	1001001110100110	1001001110100110	1101000101110001	1010110101101110	1100010111001000	0101011111101110	0010010011000111	1111001111010111	11001001010101110	0100101011000000	0000100000101101
/testbench/ZER1	St0										
/testbench/ZER2	St0										
/testbench/NEG1	St1										
/testbench/NEG2	St1										
	**										

<u> </u>		Msgs										
+-4	/testbench/INm	0011010100100100	11110111111100	1101101110001111	0111101011101000	0010100010111101	0110001001100011	00 10000 100 100000	0011111010010110	1101011001010011	0100101000000010	0111001011001111
-	/testbench/INn	0101111010000001	0111001001110	0110100111110010	0100111011000101	0101100000101101	1000011100001010	0100010110101010	1011100000010011	1101110101101011	00111110101011110	0100100100100011
B-4	/testbench/OPC	000	011		100		101		110		111	
4	/testbench/INc	1										
H -4	/testbench/OUTf1	1001001110100110	1111001111010	1100100101010101	0100101011000000	0000100000101101	1110011101101011	0110010110101010	1100000101101001	0010100110101100	(0000000000000000	
-	/testbench/OUTf2	1001001110100110	1111001111010	1100100101010110	0100101011000000	0000100000101101	1110011101101011	0110010110101010	1100000101101001	0010100110101100	(0000000000000000	
4	/testbench/ZER1	St0										
- 🥎 i	/testbench/ZER2	St0										
-	/testbench/NEG1	St1										
1	/testbench/NEG2	St1										

0011010100100100	0101011001100011	1000010001100101	1100110100001101	0101011111101101	0010010011000110	1111011111100101	1101101110001111	0111101011101000	0010100010111101
101111010000001	0111101100001101	0101001000010010	1111000101110110	1111011110001100	1000010011000101	0111001001110111	0110100111110010	0100111011000101	0101100000101101
000		001		010		011		100	
001001110100110	1101000101110001	1010110101101110	1100010111001000	0101011111101110	0010010011000111	11110011110101111	1100100101010110	0100101011000000	0000100000101101
1001001110100110	1101000101110001	1010110101101110	1100010111001000	0101011111101110	0010010011000111	1111001111010111	1100100101010110	0100101011000000	0000100000101101
					_			-	

& i -		Msgs																
-	/testbench/INm	-No Data-	001001001	111101111110	101	1101101110001	111	0111101011101	000	0010100010111101	0110001	01100011	001000010010	0000	001111101001	0110	1101011001010011	0 100 10 10000000 10
H-4	/testbench/INn	-No Data-	100001001	011100100111	111	0110100111110	10	0100111011000	101	0101100000101101	1000011	00001010	010001011010	1010	101110000001	10011	1101110101101011	0011111010101110
B -4	/testbench/OPC	-No Data-	010	011				100			101				110			111
4	/testbench/INc	-No Data-																
H -4	/testbench/OUTf1	-No Data-	001001001	1111001111010	111	1100100101010	10	0100101011000	000	0000100000101101	1110011	01101011	011001011010	1010	110000010110	1001	0010100110101100	(00000000000000000000000000000000000000
-	/testbench/OUTf2	-No Data-	001001001	11110011111010	111	1100100101010	10	0100101011000	000	0000100000101101	1110011	01101011	011001011010	1010	110000010110	1001	0010100110101100	0000000000000000
4	/testbench/ZER1	-No Data-						1										
-	/testbench/ZER2	-No Data-																
- 4	/testbench/NEG1	-No Data-		10														
	/testbench/NEG2	-No Data-																