SPRING MVC

UP ASI Bureaux E204 | E304

Plan du Cours

- Spring MVC (Définition + Spring web)
- Les architectures physiques et logiques
- Serveur web vs. Serveur d'application
- Postman
- Dépendance web
- Cycle de Vie d'une requête HTTP (Spring Boot + Postman)
- RestController
- TP Spring Boot + Spring Data JPA + Spring MVC (REST) + Postman

Introduction

- Un Conteneur de Servlets (Servlet container en anglais) ou Conteneur Web (web container en anglais) est un logiciel qui exécute des servlets.
- Un ou une **Servlet** est une classe Java qui permet de créer dynamiquement des données au sein d'un serveur HTTP.
- Il existe plusieurs conteneurs de servlets, dont Apache Tomcat ou encore Jetty. Le serveur d'application JBoss Application Server (Wildfly) utilise Apache Tomcat.
- Nous allons nous intéresser au développent de la couche Web (Web Services REST + Contrôleur + Service + Repository) dans ce cours.
- Nous allons aussi pratiquer la consommation des services par Postman.

Introduction

- Plusieurs Projets Spring permettent d'implémenter des applications Web :
- Framework Spring (qui contient Spring MVC)
- Spring Web Flow (Implémenter les navigations Stateful).
- Spring mobile (Détecter le type de l'appareil connecté).
- Spring Social (Facebook, Twitter, LinkedIn).
- •
- Nous allons nous intéresser à Spring MVC.

SPRING MVC

- Spring MVC est un Framework Web basé sur le design pattern MVC (Model / View / Controller).
- Spring MVC fait partie du projet "Spring Framework".
- Spring MVC s'intègre avec les différentes technologies de vue tel que JSF, JSP, Velocity, Thymeleaf...
- Spring MVC n'offre pas une technologie de vue mais permet en revanche de communiquer avec toutes les technologies web les plus performantes tels que Angular, React, etc...
- Spring MVC est construit en se basant sur la spécification JavaEE : Java Servlet.

Architecture Physique

- Tier est un mot anglais qui signifie étage ou niveau.
- Une application peut être 1-Tier, 2-Tiers, 3-Tiers ou N-Tiers.

Architecture Physique - 1-Tiers

- Une application 1-Tier est, par exemple, la Modification d'un document Word sur un ordinateur Local.
- Tout est sur la même machine et les couches sont fortement liées.
- Inconvénients: Risque de perte des données (non sauvegardées à distance), Impossible d'accéder à une même ressource par deux utilisateurs en même temps.

Architecture Physique - 2-Tiers

- Une application 2-Tiers est typiquement une application client lourd.
- Le niveau Présentation (IHM) et le niveau Traitement sont sur la machine de l'utilisateur.
- Le niveau Base de Données est sur un autre serveur.
- C'est une architecture Client / Serveur.
- Client = demandeur de ressource
- Serveur = fournisseur de ressource

Inconvénients

- Toute mise à jour des fonctionnalités nécessitent un déploiement sur toutes les machines des utilisateurs.
- Le serveur ne fait pas appel à une autre application pour fournir le service.

Architecture Physique - 3-Tiers

- Une application 3-Tiers introduit un niveau intermédiaire (middleware) entre le client et le serveur.
- Le niveau intermédiaire est chargé de fournir la ressource en faisant appel à un autre serveur.

Avantages

Centraliser la logique application sur un serveur HTTP

Inconvénients

- Le serveur HTTP (élément principale de l'architecture) est fortement sollicité d'où une charge de demandes provenant à la fois du client et du serveur.
- Bien que cette architecture résout le problème du client lourd de l'architecture deux tiers, le soulagement du client est remplacé par un serveur fortement sollicité.

Architecture Physique - 3-Tiers

- Une application 3-Tiers est typiquement une application Web :
 - Niveau Présentation : IHM (Navigateur sur la machine de l'utilisateur)
 - Niveau Traitement: Un serveur web (Tomcat, ...) qui contient le WAR de notre application.
 - Niveau Base de données : Un serveur de BD qui stocke les données de notre application.

Architecture Physique - N-Tiers

- L'architecture N tiers assure un équilibre de charge entre le client et le serveur par l'introduction de nouvelles couches.
- Voici une architecture 4-Tiers d'une application web développée par un étudiant Esprit pendant son projet de fin d'étude (GUI – Angular sur le Serveur NodeJS – Spring Boot (Serveur Web Tomcat embarqué) – Serveur de base de données MySQL) :

Architecture Physique - N-Tiers

Architecture Physique - N-Tiers

 Voici une architecture n-Tiers, en Micro-Servcies, d'une application web développée par un étudiant Esprit pendant son projet de fin d'étude : GUI /

Architecture logique

- Une application typique utilisant Spring est généralement structurée en trois couches :
 - Couche Présentation : (Web + Contrôleur)
 - Couche Service : interface métier avec mise en œuvre de certaines fonctionnalités.
 - Couche Accès aux Données: recherche et persistance des objets.
- Spring est un Framework utilisé pour créer et injecter les objets requis pour communiquer entre les différentes couches.

Serveur Web vs Serveur d'Application

Serveur Web	Serveur d'application JavaEE Serveur web + container
Héberge que la couche présentation et l'expose qu'à travers le protocole HTTP(S)	Héberge la logique métier et peut aussi héberger la couche présentation (supporte différents protocoles : HTTP, JNDI,).
Ne peut pas inclure un EJB Container.	Doit inclure un EJB Container.
lightweight	Relativement gourmand en ressources (CPU, RAM et Disk).
Exp: Apache HTTP Server, Tomcat, Jetty	Exp : Wildfly, WebSphere

Serveur Web vs Serveur d'Application

Serveur Web vs Serveur d'Application

Spring IOC Container

Dans une application Spring, les objets sont crées, sont liés ensembles et communiquent dans le Spring IOC Container.

Postman

- Parmi les nombreuses solutions pour interroger ou tester les web services et les API, Postman propose de nombreuses fonctionnalités, une prise en main rapide et une interface graphique agréable.
- Postman permet de construire et d'exécuter des requêtes HTTP, de les stocker dans un historique afin de pouvoir les rejouer.

Postman

Dépendance web

```
<dependencies>
    <dependency>
        <groupId>org.springframework.boot
        <artifactId>spring-boot-starter-data-jpa</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
Dependency Hierarchy
       spring-boot-starter-web: 2.2.11.RELEASE [compile]
         spring-webmvc: 5.2.10.RELEASE [compile]
```

 Le starter web permet d'ajouter toutes les dépendances liées à la partie web notamment ceux liées à Spring MVC et l'exposition des web services.

Cycle de Vie d'une requête HTTP (Spring Boot + Postman)

RestController

 Dans ce fichier de properties ajouter les lignes suivantes, pour définir l'url de notre application :

```
#Server configuration
server.port=8082
server.servlet.context-path=/tpFoyer17
```

- Cela permet de créer une partie de l'url que nous allons utiliser sur postman : http://localhost:8082/tpFoyer17/
- Le path complet sera crée au niveau de notre couche controller comme présentée dans le slide suivant :

RestController

```
@RestController
@AllArgsConstructor
@Slf4j
@FieldDefaults(level = AccessLevel.PRIVATE)
@RequestMapping(@~"api/etudiants")
public class EtudiantController {
    IEtudiantService etudiantService;
@GetMapping(@v"/getAllEtudiants")
   public Iterable<Etudiant> getAllEtudiants(){
       return etudiantService.getAllEtudiants();
```

- Nous allons commencer par exposer des Web Service REST :
 Spring Boot Core Data JPA MVC (REST) -Postman
- Vous avez déjà créé un projet : Spring (Boot Core Data JPA) avec un CRUD.
- Nous allons reprendre le même projet (étude de cas gestion_foyer) et exposer ces méthodes (CRUD) avec des Web Servie REST.
- Ces Web Services seront testé avec Postman.

- Installation de Postman :
- L'exécutable est sur le **Drive** du cours Spring (dossier **Outils**), à télécharger et à installer.

 Vérifier que le fichier de properties contient les propriétés nécessaires (web, base de données, log4j, ...):

```
#Server configuration
server.servlet.context-path=/tpFoyer17
server.port=8082
### DATABASE ###

spring.datasource.url=jdbc:mysql://localhost:3306/springdb?useUnicode=true
&useJDBCCompliantTimezoneShift=true&useLegacyDatetimeCode=false&serverTimezone=UTC
spring.datasource.username=root
spring.datasource.password=
### JPA / HIBERNATE ###
spring.jpa.show-sql=true
spring.jpa.hibernate.ddl-auto=update
```

```
#logging configuration
# Spécifier le fichier externe ou les messages sont stockés
  logging.file=D:/spring_log_file.log
# Spécifier la taille maximale du fichier de journalisation
  logging.file.max-size= 100KB
# spécifier le niveau de Log
  logging.level.root=INFO
# Spécifier la forme du message
  logging.pattern.console=%d{yyyy-MM-dd HH:mm:ss} - %-5level - %logger{36} - %msg%n
```

Créer le package tn.esprit.spring.control

Créer le bean Spring EtudiantRestController annoté @RestController

Créer les méthodes nécessaires pour exposer le CRUD (voir pages

suivantes):


```
@RestController
@AllArgsConstructor
@Slf4j
@FieldDefaults(level = AccessLevel.PRIVATE)
@RequestMapping(@>"api/etudiants")
public class EtudiantController {
    IEtudiantService etudiantService;
@PostMapping(@>"/addEtudiant")
    public Etudiant addEtudiant(@RequestBody Etudiant e){
        return etudiantService.addEtudiant(e);
```

```
@GetMapping(@>"/getAllEtudiants")
   public Iterable<Etudiant> getAllEtudiants(){
        return etudiantService.getAllEtudiants();
    }
@GetMapping(@>"/getEtudiantById/{id}")
    public Etudiant getEtudById(@PathVariable long id){
        return etudiantService.getEtudById(id);
    }
```

```
QDeleteMapping(@>"/deleteEtudiant/{id}")
    public void deleteEtudiant(@PathVariable long id){
        etudiantService.deleteEtud(id);
    }
}
```

```
@PutMapping(@>"/updateEtudiant")
public Etudiant updateEtudiant(@RequestBody Etudiant e){
    return etudiantService.updateEtudiant(e);
}
```


Travail à faire

Spring MVC

Exposer les services implémentés dans l'étude de cas **Gestion Foyer** avec Postman pour les tester.

SPRING MVC

Si vous avez des questions, n'hésitez pas à nous contacter :

Département Informatique UP ASI

Bureaux E204 | E304