Quantum Many-Body Simulations of Double Dot System

Alocias Mariadason

Institute of Physics

Table of contents

- 1. Introduction
- 2. Methods
- 3. Implementation
- 4. Summary and Conclusion

Introduction

Quantum-Dot

- Small semiconductor nanostructures
- ullet 2-10 nanometers with 10-50 particles

- Schrödinger equation
 - $\bullet \ \mathcal{H}\left|\psi\right\rangle = E\left|\psi\right\rangle$

- Schrödinger equation
 - $\mathcal{H} |\psi\rangle = E |\psi\rangle$
- Hamiltonian

•
$$\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) - \frac{1}{2} \sum_{k} \frac{\nabla_{k}^{2}}{M_{k}} + \sum_{k < l} g(\mathbf{R}_{k}, \mathbf{R}_{l}) + V(\mathbf{R}, \mathbf{r})$$

Schrödinger equation

•
$$\mathcal{H} |\psi\rangle = E |\psi\rangle$$

Hamiltonian

•
$$\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) - \frac{1}{2} \sum_{k} \frac{\nabla_{k}^{2}}{M_{k}} + \sum_{k < l} g(\mathbf{R}_{k}, \mathbf{R}_{l}) + V(\mathbf{R}, \mathbf{r})$$

- Born-Oppenheimer Approximation
 - Ignore Nuclei
 - $\sum_{k} \frac{\nabla_k^2}{M_k}$ gone
 - $\sum_{k < l}^{\kappa} g(R_k, R_l)$ constant

- Schrödinger equation
 - $\mathcal{H} |\psi\rangle = E |\psi\rangle$
- Hamiltonian

•
$$\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) - \frac{1}{2} \sum_{k} \frac{\nabla_{k}^{2}}{M_{k}} + \sum_{k < l} g(\mathbf{R}_{k}, \mathbf{R}_{l}) + V(\mathbf{R}, \mathbf{r})$$

- Born-Oppenheimer Approximation
 - Ignore Nuclei
 - $\sum_{k=1}^{\infty} \frac{\nabla_k^2}{M_k}$ gone
 - $\sum_{k=1}^{n} g(R_k, R_l)$ constant
 - $\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) + V(\mathbf{R}, \mathbf{r})$

- Interaction
 - $f(\mathbf{r}_i, \mathbf{r}_j) = \frac{1}{|\mathbf{r}_i \mathbf{r}_j|}$

- Interaction: Coulomb repulsion
 - $f(\mathbf{r}_i, \mathbf{r}_j) = \frac{1}{|\mathbf{r}_i \mathbf{r}_j|}$
- Confinement: Harmonic Oscillator¹, Double-Well²

$$V(\mathbf{r}) = \frac{1}{2}\omega mr^2 \qquad V(\mathbf{R}, \mathbf{r}) = \frac{1}{2}m\omega^2(r^2 - \delta R|\mathbf{x}| + R^2)$$

¹S. Kvaal. "Harmonic Oscillator Eigenfunction Expansions, Quantum dots, and Effective Interactions". In: *Phys. Rev. B* 80 (4 2009), p. 045321.

²M. J. A. Schuetz et al. "Nuclear Spin Dynamics in Double Quantum Dots: Multistability, Dynamical Polarization, Criticality, and Entanglement". In: *Phys. Rev. B* 89 (19 2014), p. 195310.

#NucleiHaveFeelingsTo

Methods

Hartree-Fock Variational Monte-Carlo

Methods: Variational Principle

$$E_0 \leq \frac{\left<\Psi\right|\mathcal{H}\left|\Psi\right>}{\left<\Psi\right|\Psi\right>}$$

Methods: Slater Determinant and Energy Functional

• Pauli Principle

Methods: Slater Determinant and Energy Functional

- Pauli Principle
- Slater Determinant

$$\bullet \ \Psi_{T}^{\mathsf{AS}} = \frac{1}{\sqrt{N!}} \sum_{P} (-1)^{P} \mathscr{P}_{P} \prod_{i} \psi_{i}$$

$$\begin{split} \bullet \ \ \Psi^{\mathsf{AS}}_{T} &= \frac{1}{\sqrt{N!}} \sum_{P} (-1)^{p} \mathscr{P}_{P} \prod_{i} \psi_{i} \\ \bullet \ \ \Psi^{\mathsf{S}}_{T} &= \sqrt{\prod\limits_{i=1}^{N} n_{i}!} \sum_{P} \mathscr{P}_{P} \prod_{i} \psi_{i} \end{split}$$

Methods: Slater Determinant and Energy Functional

- Pauli Principle
- Slater Determinant

$$\bullet \ \Psi_{T}^{\mathsf{AS}} = \frac{1}{\sqrt{N!}} \sum_{P} (-1)^{P} \mathscr{P}_{P} \prod_{i} \psi_{i}$$

•
$$\Psi_T^{S} = \sqrt{\frac{\prod\limits_{i=1}^{N} n_i!}{N!}} \sum_{P} \mathscr{P}_P \prod_i \psi_i$$

$$\bullet \ E\left[\Psi\right] = \frac{\langle\Psi|\mathcal{H}|\Psi\rangle}{\langle\Psi|\Psi\rangle} = \sum_{p} \langle p|\mathcal{H}_{0}|p\rangle + \frac{1}{2} \sum_{p,q} \left[\langle pq|f_{12}|pq\rangle \pm \langle pq|f_{12}|qp\rangle \right]$$

$$\bullet \mathcal{H}_0 = -\frac{1}{2} \sum_i \nabla_i^2 + V(r)$$

- Assumptions
 - The Born-Oppenheimer approximation holds.
 - All relativistic effects are negligible.
 - The wavefunction can be described by a single Slater determinant.
 - The Mean Field Approximation holds.

- Assumptions
 - The Born-Oppenheimer approximation holds.
 - All relativistic effects are negligible.
 - The wavefunction can be described by a single Slater determinant.
 - The Mean Field Approximation holds.

• Constrained minimization

- Constrained minimization
 - ullet Spin orthogonality: $\left\langle \psi_{i} \middle| \psi_{j} \right\rangle = \delta_{ij}$

- Constrained minimization
 - ullet Spin orthogonality: $\langle \psi_i ig| \psi_j
 angle = \delta_{ij}$
 - Lagrange Multiplier method

- Constrained minimization
 - Spin orthogonality: $\langle \psi_i | \psi_j \rangle = \delta_{ij}$
 - Lagrange Multiplier method
 - Fock-operator: $\mathscr{F} \equiv \mathscr{H}_0 + \mathscr{J} \pm \mathscr{K}$

•
$$\mathcal{J} \equiv \sum_{k} \langle \psi_{k}^{*} | f_{12} | \psi_{k} \rangle = \int \psi_{k}^{*}(\mathbf{r}) f_{12} \psi_{k}(\mathbf{r}) d\mathbf{r}$$

•
$$\mathcal{K} \equiv \sum_{k} \langle \psi_{k}^{*} | f_{12} | \psi \rangle = \int \psi_{k}^{*}(\mathbf{r}) f_{12} \psi(\mathbf{r}) d\mathbf{r}$$

•
$$\mathscr{F}|\psi\rangle = \varepsilon|\psi\rangle, \varepsilon = (\varepsilon_0, ..., \varepsilon_N)$$

- Constrained minimization
 - Spin orthogonality: $\langle \psi_i | \psi_j \rangle = \delta_{ij}$
 - Lagrange Multiplier method
 - Fock-operator: $\mathscr{F} \equiv \mathscr{H}_0 + \mathscr{J} \pm \mathscr{K}$

•
$$\mathcal{J} \equiv \sum_{k} \langle \psi_{k}^{*} | f_{12} | \psi_{k} \rangle = \int \psi_{k}^{*}(\mathbf{r}) f_{12} \psi_{k}(\mathbf{r}) d\mathbf{r}$$

•
$$\mathcal{K} \equiv \sum_{k} \langle \psi_{k}^{*} | f_{12} | \psi \rangle = \int \psi_{k}^{*}(\mathbf{r}) f_{12} \psi(\mathbf{r}) d\mathbf{r}$$

•
$$\mathscr{F}|\psi\rangle = \varepsilon|\psi\rangle, \varepsilon = (\varepsilon_0, \dots, \varepsilon_N)$$

ullet N+1 equations to be solved.

- Integrate out spin
- Pair spins as: $\{\psi_{2l-1}, \psi_{2l}\} = \{\phi_l(\mathbf{r})\alpha(s), \phi_l(\mathbf{r})\beta(s)\}$

- Integrate out spin
- Pair spins as: $\{\psi_{2l-1}, \psi_{2l}\} = \{\phi_l(\mathbf{r})\alpha(s), \phi_l(\mathbf{r})\beta(s)\}$
- Expand: $\phi_i(\mathbf{r}) = \sum_{p=1}^{L} C_{pi} \chi_p(\mathbf{r})$

- Integrate out spin
- Pair spins as: $\{\psi_{2l-1}, \psi_{2l}\} = \{\phi_l(\mathbf{r})\alpha(s), \phi_l(\mathbf{r})\beta(s)\}$
- Expand: $\phi_i(\mathbf{r}) = \sum_{p=1}^L C_{pi} \chi_p(\mathbf{r})$
- Roothan-Hall: $FC_i = \varepsilon SC_i$
 - $F_{pq} = h_{pq} + \sum_{pq} \rho_{pq} (2D_{prqs} \pm D_{prsq})$
 - $h_{pq} \equiv \langle p | h | q \rangle$
 - $\bullet \ \rho_{pq} \equiv \sum_{i=1}^{\frac{N}{2}} C_{pi} C_{qi}^*$
 - $D_{pqrs} \equiv \langle pq | f_{12} | rs \rangle$
 - $S_{pq} \equiv \langle p | q \rangle$
- Poople-Nesbet: $F^+C^+ = \varepsilon SC^+$, $F^-C^- = \varepsilon^-SC^-$
 - $F_{pq}^{\pm} = h_{pq} + \sum_{k_{\pm}} \sum_{rs} C_{rk_{\pm}}^{\pm \dagger} C_{sk_{\pm}}^{\pm \dagger} [D_{prqs} D_{prsq}] + \sum_{k_{\mp}} \sum_{rs} C_{rk_{\mp}}^{\mp \dagger} C_{sk_{\mp}}^{\mp \dagger} D_{prqs}$

Implementation

Summary and Conclusion

Questions?

Questions

Questions?