Schrodinger for charged particle

Derive the Schrodinger equation for a charged particle

$$i\hbar \frac{\partial \psi}{\partial t} = \frac{1}{2m} \left(\frac{\hbar}{i} \nabla - \frac{q}{c} \mathbf{A} \right)^2 \psi + q \phi \psi$$

from the Lagrangian

$$L(\mathbf{x}, \dot{\mathbf{x}}, t) = \frac{m\dot{\mathbf{x}}^2}{2} + \frac{q}{c}\dot{\mathbf{x}} \cdot \mathbf{A}(\mathbf{x}, t) - q\phi(\mathbf{x}, t)$$

Start with the path integral for an action S.

$$\psi(\mathbf{x}_b, t_b) = C \int_{\mathbb{R}^3} \exp\left(\frac{i}{\hbar} S(b, a)\right) \psi(\mathbf{x}_a, t_a) d\mathbf{x}_a, \quad \int_{\mathbb{R}^3} \equiv \int_{-\infty}^{\infty} \int_{-\infty}^$$

For a small time interval $\epsilon = t_b - t_a$ we can use the approximation

$$S = \epsilon L$$

and write the path integral as

$$\psi(\mathbf{x}_b, t + \epsilon) = C \int_{\mathbb{R}^3} \exp\left[\frac{i}{\hbar} \epsilon L\left(\frac{\mathbf{x}_b - \mathbf{x}_a}{\epsilon}, \frac{\mathbf{x}_b + \mathbf{x}_a}{2}, t\right)\right] \psi(\mathbf{x}_a, t) d\mathbf{x}_a$$

Substitute for L.

$$\psi(\mathbf{x}_b, t + \epsilon) = C \int_{\mathbb{R}^3} \exp\left[\frac{im(\mathbf{x}_b - \mathbf{x}_a)^2}{2\hbar\epsilon} + \frac{iq}{\hbar c}(\mathbf{x}_b - \mathbf{x}_a) \cdot \mathbf{A} \left(\frac{\mathbf{x}_b + \mathbf{x}_a}{2}, t\right) - \frac{iq\epsilon}{\hbar} \phi \left(\frac{\mathbf{x}_b + \mathbf{x}_a}{2}, t\right)\right] \psi(\mathbf{x}_a, t) d\mathbf{x}_a$$

Let

$$\mathbf{x}_a = \mathbf{x}_b + \boldsymbol{\eta}, \quad d\mathbf{x}_a = d\boldsymbol{\eta}$$

and write

$$\psi(\mathbf{x}_b, t + \epsilon) = C \int_{\mathbb{R}^3} \exp\left[\frac{im\boldsymbol{\eta}^2}{2\hbar\epsilon} - \frac{iq}{\hbar c}\boldsymbol{\eta} \cdot \mathbf{A}\left(\mathbf{x}_b + \frac{\boldsymbol{\eta}}{2}, t\right) - \frac{iq\epsilon}{\hbar}\phi\left(\mathbf{x}_b + \frac{\boldsymbol{\eta}}{2}, t\right)\right] \psi(\mathbf{x}_b + \boldsymbol{\eta}, t) d\boldsymbol{\eta}$$

Substitute **x** for \mathbf{x}_b .

$$\psi(\mathbf{x}, t + \epsilon) = C \int_{\mathbb{R}^3} \exp\left[\frac{im\boldsymbol{\eta}^2}{2\hbar\epsilon} - \frac{iq}{\hbar c}\boldsymbol{\eta} \cdot \mathbf{A}\left(\mathbf{x} + \frac{\boldsymbol{\eta}}{2}, t\right) - \frac{iq\epsilon}{\hbar}\phi\left(\mathbf{x} + \frac{\boldsymbol{\eta}}{2}, t\right)\right] \psi(\mathbf{x} + \boldsymbol{\eta}, t) d\boldsymbol{\eta}$$

Because the exponential is highly oscillatory for large $|\eta|$, most of the contribution to the integral is from small $|\eta|$. Hence use the approximation $\mathbf{x} + \frac{1}{2}\eta \approx \mathbf{x}$ for small $|\eta|$.

$$\psi(\mathbf{x}, t + \epsilon) = C \int_{\mathbb{R}^3} \exp\left(\frac{im\boldsymbol{\eta}^2}{2\hbar\epsilon} - \frac{iq}{\hbar c}\boldsymbol{\eta} \cdot \mathbf{A}(\mathbf{x}, t) - \frac{iq\epsilon}{\hbar}\phi(\mathbf{x}, t)\right) \psi(\mathbf{x} + \boldsymbol{\eta}, t) d\boldsymbol{\eta}$$

Use the approximation $\exp(y) \approx 1 + y$ for the exponential of ϕ .

$$\psi(\mathbf{x}, t + \epsilon) = C \left(1 - \frac{iq\epsilon}{\hbar} \phi(\mathbf{x}, t) \right) \int_{\mathbb{R}^3} \exp \left(\frac{im\boldsymbol{\eta}^2}{2\hbar\epsilon} - \frac{iq}{\hbar c} \boldsymbol{\eta} \cdot \mathbf{A}(\mathbf{x}, t) \right) \psi(\mathbf{x} + \boldsymbol{\eta}, t) d\boldsymbol{\eta}$$

Expand $\psi(\mathbf{x} + \boldsymbol{\eta}, t)$ as the power series

$$\psi(\mathbf{x} + \boldsymbol{\eta}, t) \approx \psi(\mathbf{x}, t) + \boldsymbol{\eta} \cdot \nabla \psi + \frac{1}{2} \boldsymbol{\eta} \cdot \nabla (\boldsymbol{\eta} \cdot \nabla \psi)$$

to obtain

$$\psi(\mathbf{x}, t + \epsilon) = C \left(1 - \frac{iq\epsilon}{\hbar} \phi(\mathbf{x}, t) \right) \int_{\mathbb{R}^3} \exp\left(\frac{im\boldsymbol{\eta}^2}{2\hbar\epsilon} - \frac{iq}{\hbar c} \boldsymbol{\eta} \cdot \mathbf{A}(\mathbf{x}, t) \right) \times \left(\psi(\mathbf{x}, t) + \boldsymbol{\eta} \cdot \nabla \psi + \frac{1}{2} \boldsymbol{\eta} \cdot \nabla (\boldsymbol{\eta} \cdot \nabla \psi) \right) d\boldsymbol{\eta}$$

Rewrite as

$$\psi(\mathbf{x}, t + \epsilon) = C \left(1 - \frac{iq\epsilon}{\hbar} \phi(\mathbf{x}, t) \right) \sum_{k} I_{k}$$

where

$$I_{1} = \int_{\mathbb{R}^{3}} \exp\left(\frac{im\boldsymbol{\eta}^{2}}{2\hbar\epsilon} - \frac{iq}{\hbar c}\boldsymbol{\eta}\cdot\mathbf{A}(\mathbf{x},t)\right)\psi\,d\boldsymbol{\eta}$$

$$I_{2} = \int_{\mathbb{R}^{3}} \exp\left(\frac{im\boldsymbol{\eta}^{2}}{2\hbar\epsilon} - \frac{iq}{\hbar c}\boldsymbol{\eta}\cdot\mathbf{A}(\mathbf{x},t)\right)\boldsymbol{\eta}\cdot\nabla\psi\,d\boldsymbol{\eta}$$

$$I_{3} = \int_{\mathbb{R}^{3}} \exp\left(\frac{im\boldsymbol{\eta}^{2}}{2\hbar\epsilon} - \frac{iq}{\hbar c}\boldsymbol{\eta}\cdot\mathbf{A}(\mathbf{x},t)\right)\frac{1}{2}\boldsymbol{\eta}\cdot\nabla(\boldsymbol{\eta}\cdot\nabla\psi)\,d\boldsymbol{\eta}$$

The solutions are

$$I_{1} = \left(\frac{2\pi i\hbar\epsilon}{m}\right)^{\frac{3}{2}} \exp\left(-\frac{iq^{2}\epsilon}{2\hbar mc^{2}}\mathbf{A}^{2}\right)\psi$$

$$I_{2} = \left(\frac{2\pi i\hbar\epsilon}{m}\right)^{\frac{3}{2}} \exp\left(-\frac{iq^{2}\epsilon}{2\hbar mc^{2}}\mathbf{A}^{2}\right) \frac{q\epsilon}{mc}\mathbf{A} \cdot \nabla\psi$$

$$I_{3} = \left(\frac{2\pi i\hbar\epsilon}{m}\right)^{\frac{3}{2}} \exp\left(-\frac{iq^{2}\epsilon}{2\hbar mc^{2}}\mathbf{A}^{2}\right) \left(\frac{i\hbar\epsilon}{2m}\nabla^{2}\psi + \frac{q\epsilon}{2mc}\mathbf{A} \cdot \nabla\psi + O(\epsilon^{2})\right)$$

Use the approximation $\exp(y) \approx 1 + y$ to write the integrals this way.

$$I_{1} = \left(\frac{2\pi i\hbar\epsilon}{m}\right)^{\frac{3}{2}} \left(1 - \frac{iq^{2}\epsilon}{2\hbar mc^{2}}\mathbf{A}^{2}\right)\psi$$

$$I_{2} = \left(\frac{2\pi i\hbar\epsilon}{m}\right)^{\frac{3}{2}} \left(1 - \frac{iq^{2}\epsilon}{2\hbar mc^{2}}\mathbf{A}^{2}\right) \frac{q\epsilon}{mc}\mathbf{A} \cdot \nabla\psi$$

$$I_{3} = \left(\frac{2\pi i\hbar\epsilon}{m}\right)^{\frac{3}{2}} \left(1 - \frac{iq^{2}\epsilon}{2\hbar mc^{2}}\mathbf{A}^{2}\right) \left(\frac{i\hbar\epsilon}{2m}\nabla^{2}\psi + \frac{q\epsilon}{2mc}\mathbf{A} \cdot \nabla\psi + O(\epsilon^{2})\right)$$

Discarding terms of order ϵ^2 we have

$$\sum_{k} I_{k} = \left(\frac{2\pi i\hbar\epsilon}{m}\right)^{\frac{3}{2}} \left(\psi - \frac{iq^{2}\epsilon}{2\hbar mc^{2}} \mathbf{A}^{2}\psi + \frac{q\epsilon}{mc} \mathbf{A} \cdot \nabla \psi + \frac{i\hbar\epsilon}{2m} \nabla^{2}\psi + \frac{q\epsilon}{2mc} \mathbf{A} \cdot \nabla \psi\right)$$