Chapter 6

参数估计

6.2 设总体X服从几何分布, 概率函数为

$$p(x; p) = p(1-p)^{1-x}, \quad x = 1, 2, 3, \dots$$

如果取得样本观测值为 x_1, x_2, \cdots, x_n , 求参数p的矩估计值与最大似然估计值。

6.3 设总体X的概率密度为

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1, \\ 0, & \sharp \dot{\mathbf{c}}, \end{cases}$$

其中 $\theta > 0$ 。如果取得样本观测值为 x_1, x_2, \cdots, x_n ,求参数 θ 的矩估计值与最大似然估计值。

6.5 设总体X服从Γ分布, 概率密度为

$$f(x;\lambda) = \begin{cases} \frac{1}{\lambda^2} x e^{-x/\lambda}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

其中参数 $\lambda > 0$ 。已知 X_1, X_2, \cdots, X_n 为取自总体X的一组样本,

- (1) 求参数\的最大似然估计值;
- (2) 你得到的估计量是不是λ的无偏估计量?请说明理由。

- 6.9 设总体X服从指数分布 $e(\frac{1}{\lambda})$, 其中 $\lambda > 0$, 抽取样本 X_1, X_2, \cdots, X_n , 证明:
 - (1) 虽然样本均值 \overline{X} 是 λ 的无偏估计量,但 \overline{X}^2 却不是 λ^2 的无偏估计量;
 - (2) 统计量 $\frac{n}{n+1}\overline{X}^2$ 是 λ^2 的无偏估计量。
- 6.11 从总体X中抽取样本 X_1, X_2, \cdots, X_n ,设 c_1, c_2, \cdots, c_n 为常数,且 $\sum_{i=1}^n c_i = 1$,证明:
 - (1) $\hat{\mu} = \sum_{i=1}^{n} c_i X_i$ 是总体均值 μ 的无偏估计量;
 - $(2) \ \ \text{在所有这些无偏估计量} \hat{\mu} = \sum_{i=1}^n c_i X_i \ \ \text{中,样本均值} \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \text{的方差最小}.$
- 6.13 某工厂生产滚珠,从某日生产的产品中随机抽取9个,测得直径(单位: mm)如下:

 $14.6 \qquad 14.7 \qquad 15.1 \qquad 14.9 \qquad 14.8 \qquad 15.0 \qquad 15.1 \qquad 15.2 \qquad 14.8$

设滚珠直径服从正态分布 $N(\mu, \sigma^2)$, 求直径均值 μ 的置信水平为0.95的置信区间, 如果

- (1) 已知直径标准差 $\sigma = 0.15$;
- (2) 未知σ。
- 6.14 设总体X服从整天分布 $N(\mu, \sigma_0^2)$, 其中 σ_0 为已知数。需要抽取容量n为多大的样本,才能使总体均值 μ 的置信水平为 $1-\alpha$ 的置信区间的长度不大于l?
- 6.16 测得16个零件的长度(单位: mm)如下:

12.15 12.12 12.01 12.08 12.09 12.16 12.03 12.01 12.06 12.13 12.07 12.11 12.08 12.01 12.03 12.06

设零件长度服从正态分布 $N(\mu, \sigma^2)$, 求零件长度的标准差 σ 的置信水平为0.99的置信区间, 如果

- (1) 已知零件长度的均值 $\mu = 12.08$;
- (2) 未知µ。
- 6.17 进行30次独立测试,测得零件加工时间(单位: s)的样本均值 $\bar{x}=5.5$,样本标准差s=1.7。设零件加工时间服从正态分布 $N(\mu,\sigma^2)$,求零件加工时间的均值 μ 及标准差 σ 的置信水平为0.95的置信区间。
- 6.18 两批导线, 从第一批中抽取4根, 从第二批中抽取5根, 测得其电阻 (单位: Ω) 如下:

第一批导线: 0.143 0.142 0.143 0.137 第二批导线: 0.140 0.142 0.136 0.138 0.140

设这两批导线的电阻分别服从正态分布 $N(\mu_1, \sigma_1^2)$ 及 $N(\mu_2, \sigma_2^2)$,其中 μ_1, μ_2 及 σ_1, σ_2 都是未知参数,求这两批导线电阻的均值差 $\mu_1 - \mu_2$ (假定 $\sigma_1 = \sigma_2$)及方差 比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信水平为0.95的置信区间。

6.23 从汽车轮胎厂生产的某种轮胎中抽取10个样品进行磨损试验,直至轮胎行驶到磨坏为止,测得它们的行驶路程(单位: km)如下:

41250	41010	42650	38970	40200
42550	43500	40400	41870	39800

设汽车轮胎行驶路程服从正态分布 $N(\mu, \sigma^2)$, 求:

- (1) μ 的置信水平为0.95的单侧置信下限;
- (2) σ的置信水平为0.95的单侧置信上限。