К 155-й годовщине со дня рождения В.И. Ульянова-Ленина — «основоположника советской статистической теории, которая представляет собой новый этап в развитии статистики»

ТЕОРИЯ ВЕРОЯТНОСТЕЙ и МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Часть III. Математическая статистика

Основные понятия, связанные с проверкой статистических гипотез
Проверка гипотезы о равенстве дисперсий, критерий Фишера
Проверка гипотезы о равенстве математических ожиданий, критерий Стьюдента
Понятие о критериях согласия и о других непараметрических критериях
Проверка гипотезы о нормальном законе распределения

ЛИТЕРАТУРА

- 1. Карасев В.А., Богданов С.Н., Лёвшина Г.Д. Теория вероятностей и математическая статистика: Разд. 2. Математическая статистика: Учеб.-метод. Пособие. М. МИСиС, 2005. 117 с. № 1855. [печ.]
- 2. Карасев В.А., Лёвшина Г.Д. Теория вероятностей и математическая статистика: математическая статистика: практикум». М. Изд. Дом МИСиС, 2016. № 2770. [электрон.]
- 3. Данченков И.В., Карасев В.А. Математическая статистика: проверка гипотезы о виде закона распределения: практикум. М.: Изд. Дом НИТУ «МИСиС», 2017. 54 с. № 2976
- 3. Гмурман В.Е. Теория вероятностей и математическая статистика: учебное пособие для вузов. М.: Изд-во Юрайт, 2015.
- 4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: учебное пособие для вузов. М.: Изд-во Юрайт, 2015.
 - 5. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ-ДАНА, 2004. 573 с.
- 6. Лебедев А.В., Фадеева Л.Н. Теория вероятностей и математическая статистика. М., 2018. 480 с. [электрон.], Фадеева Л. Н., Лебедев А.В. 2011 [печ.]
 - 7. Севастьянов Б.А. Курс теории вероятностей и математической статистики. М.: Наука, 1982. 256 с.
- 8. Ефимов А.В., Поспелов А.С. и др. Сборник задач по математике для втузов. Специальные курсы (ТВ. МС. МО. УрЧП). М., 1984. 608 с. [печ.]; В 4 ч. Ч. 4 (ТВ. МС). М., 2003. 432 с. [электрон., печ.]
 - 9. Фёрстер Э., Рёнц Б. Методы корреляционного и регрессионного анализа. М., 1983. 304 с.
 - 10. Лагутин М.Б. Наглядная математическая статистика. М., 2009. 472 с.

Квантили, процентные точки, критические точки и критические границы Квантиль и процентная точка по Кремеру

О пределение. **Квантилем уровня** q (или q-квантилем) называется такое значение x_q случайной величины, при котором функция ее распределения принимает значение, равное q, т.е.

$$F(x_q) = P(X < x_q) = q.$$
 (3.29)

Некоторые квантили получили особое название. Очевидно, что введенная выше медиана случайной величины есть квантиль уровня 0,5, т.е. $Me(X) = x_{0,5}$. Квантили $x_{0,25}$ и $x_{0,75}$ получили название соответственно нижнего и верхнего квартилей¹.

С понятием квантиля тесно связано понятие *процентной точки*. Под 100q%-ной точкой подразумевается квантиль x_{1-q} , т.е. такое значение случайной величины X, при котором $P(X \ge x_{1-q}) = q$.

 \triangleright Пример 3.16. По данным примера 3.15 найти квантиль $x_{0,3}$ и 30%-ную точку случайной величины X.

Решение. По формуле (3.23) функция распределения

$$F(x) = \int_{-\infty}^{x} \varphi(x) dx = \int_{-\infty}^{0} 0 \cdot dx + \int_{0}^{x} 3x^{2} dx = x^{3}.$$

Квантиль $x_{0,3}$ найдем из уравнения (3.29), т.е. $x_{0,3}^3 = 0,3$, откуда $x_{0,3} \approx 0,67$. Найдем 30%-ную точку случайной величины X, или квантиль $x_{0,7}$, из уравнения $x_{0,7}^3 = 0,7$, откуда $x_{0,7} \approx 0,89$.

Квантиль и критическая точка по Ефимову-Поспелову

Kвантилью порядка p (симметричной квантилью порядка p) распределения случайной величины X непрерывного типа называется действительное число t_p (действительное число \hat{t}_p), удовлетворяющее урав-

нению

$$P\{X < t_p\} = p \quad (P\{|X| < \hat{t}_p] = p).$$

В частности, из определения медианы следует, что $h_X = t_{0,5}$.

Kритической точкой порядка p (симметричной критической точкой порядка p) распределения случайной величины X непрерывного типа называется действительное число \varkappa_p ($\hat{\varkappa}_p$), удовлетворяющее уравнению

$$P\{X \geqslant \varkappa_p\} = p \quad (P\{|X| \geqslant \hat{\varkappa}_p] = p).$$

Квантиль и критическая точка одного и того же распределения связаны простым соотношением:

$$\varkappa_p = t_{1-p} \quad (\hat{\varkappa}_p = \hat{t}_{1-p}).$$

По Фадеевой-Лебедеву

Квантилью уровня p или p-квантилью непрерывной случайной величины ξ с функцией распределения F(x) называется такое возможное значение x_p этой случайной величины, для которого вероятность события $\xi < x_p$ равна заданной величине p: $P(\xi < x_p) = p$, $0 , т.е. <math>x_p$ есть решение уравнения $F(x_p) = p$, 0 . Если функция распределения строго возрастает, это решение единственно. Если оно не единственно, то выбирается наименьшее из множества решений (когда функция впервые достигает уровня <math>p).

Геометрически x_p есть такое значение случайной величины ξ , при котором площадь криволинейной трапеции, ограниченная графиком плотности распределения и осью абсцисс и лежащая левее x_p равна p (рис. 12.2).

Процентной точкой уровня q или q%-ной точкой (при $0 \le q \le 100$) для непрерывной случайной величины ξ с функцией распределения F(x) называется такое значение v_q случайной величины, что вероятность события $\xi \ge v_q$ равна q/100, т.е. $1-F(v_q)=P(\xi \ge v_q)=q/100$.

Геометрически q%-ная точка — это значение случайной величины, при котором площадь криволинейной трапеции, ограниченной графиком плотности распределения, осью абсцисс и лежащая правее v_q , равна q/100.

На рис. 12.3 показана квантиль уровня 0,8 (она же 20%-ная точка) для стандартного нормального распределения (на графиках плотности и функции распределения).

Рис. 12.3.

К понятию процентной точки близко понятие **критической точки**, широко используемое в задачах проверки гипотез. Критические точки для заданного распределения определяют границы, за пределы которых случайная величина выходит достаточно редко. Например, если интересуют большие положительные значения случайной величины ξ , тогда критическая точка $t_{\rm kp}$ может быть определена из условия $P(\xi > t_{\rm kp}) = \alpha$, где α мало. Если же интересуют значения, большие по абсолютной величине (как положительные, так и отрицательные), то можно определить критическую точку из условия $P(|\xi| > t_{\rm kp}) = \alpha$. Если распределение симметрично относительно нуля, то последнее условие оказывается эквивалентно $P(\xi > t_{\rm kp}) = \alpha/2$.

Конкретные значения критических точек для различных распределений и уровней значимости α можно найти в соответствующих таблицах (см. приложение T).

Нижней критической границей \underline{u}_{α} и верхней критической границей \overline{u}_{α} , соответствующими заданному уровню значимости α , называются значения случайной величины, для которых выполнены условия:

$$P(\xi < \underline{u}_{\alpha}) = F(u_{\alpha}) = \alpha/2;$$

$$P(\underline{u}_{\alpha} \le \xi < \overline{u}_{\alpha}) = F(\overline{u}_{\alpha}) - F(\underline{u}_{\alpha}) = 1 - \alpha;$$

$$P(\xi \ge \overline{u}_{\alpha}) = 1 - F(\overline{u}_{\alpha}) = \alpha/2.$$

Между критическими границами и квантилями для симметричного распределения существуют следующие соотношения $\underline{u}_{\alpha} = x_{\frac{\alpha}{2}}$; $u_{\alpha} = x_{1-\frac{\alpha}{2}}$ (рис. 12.4).

Конкретные значения критических точек для различных распределений и уровней значимости можно найти в таблицах. Эмпирическими аналогами теоретических квантилей будут члены вариационного ряда (?!).

$$X_p - p$$
-квантиль:
$$P(U < x_p) = p$$

$$V_q - q$$
%-ая точка: $P(U \ge v_q) = q/100$

$$\varkappa_r$$
 – критическая точка: $P(U \ge \varkappa_r) = r$

$$\underline{u}_{\alpha}$$
 – нижняя критическая граница: $P(U < \underline{u}_{\alpha}) = \alpha / 2$

$$\overline{u}_{\alpha}$$
 – верхняя критическая граница: $P(U \ge \overline{u}_{\alpha}) = \alpha/2$

Упражнения. 1. Верны ли равенства

$$x_p = v_{100(1-p)} = \varkappa_{1-p}, \quad v_q = x_{1-q/100}, \quad \varkappa_r = x_{1-r},$$

$$\underline{u}_{\alpha} = x_{\alpha/2}, \quad u_{\alpha} = x_{1-\alpha/2}?$$

Предполагают ли последние два равенства, что $\alpha/2 < 1 - \alpha/2$?

2. Определите двусторонние аналоги введенных выше величин и проверьте для них аналоги выписанных соотношений.

Статистическая проверка статистических гипотез

Основные сведения

Статистической называют гипотезу о виде неизвестного распределения или о параметрах известных распределений.

Hулевой (основной) называют выдвинутую гипотезу H_0 . Конкурирующей (альтернативной) называют гипотезу H_1 , которая противоречит нулевой.

Различают гипотезы, которые содержат одно и более одного предположений.

Простой называют гипотезу, содержащую только одно предположение.

Сложной называют гипотезу, которая состоит из конечного или бесконечного числа простых гипотез.

Ошибки первого и второго рода

В итоге проверки гипотезы могут быть допущены ошибки двух родов.

Ошибка первого рода состоит в том, что будет отвергнута правильная нулевая гипотеза. Вероятность ошибки первого рода называют уровнем значимости и обозначают через а.

Ошибка второго рода состоит в том, что будет принята неправильная нулевая гипотеза. Вероятность ошибки второго рода обозначают через β.

$$\alpha = P(H_1 | H_0)$$
 – уровень значимости = размер критерия

$$\boldsymbol{\beta} = \boldsymbol{P}(H_0 \mid H_1)$$

$$1 - \beta$$
 — мощность критерия

Статистический критерий

Статистическим критерием (или просто критерием) называют случайную величину K, которая служит для проверки гипотезы. Наблюдаемым (эмпирическим) значением $K_{\text{набл}}$ называют то зна-

чение критерия, которое вычислено по выборкам.

Критической областью называют совокупность значений крите-

рия, при которых нулевую гипотезу отвергают.

Областью принятия гипотэзы (областью допустимых эначений) называют совокупность значений критерия, при которых нулевую гипотезу принимают.

Основной принцип проверки статистических гипотез: если наблюдаемое значение критерия принадлежит критической области, то нулевую гипотезу отвергают; если наблюдаемое значение критерия принадлежит сбласти принятия гипотезы, то гипотезу принимают.

(Раньше говорили: K – это критерий, сейчас говорят: K – это статистика, а критерий – это правило, устанавливающее условия, при которых проверяемая гипотеза либо отвергается, либо нет оснований ее отвергнуть.)

Критическая область и область принятия гипотезы

Kритическими точками (границами) $k_{\rm kp}$ называют точки, отделяющие критическую область от области принятия гипотезы.

Правосторонней называют критическую область, определяемую неравенством $K > k_{\rm kp}$, где $k_{\rm kp}$ —положительное число.

Левосторонней называют критическую область, определяемую неравенством $K < k_{\rm kp}$, где $k_{\rm kp}$ —отрицательное число.

Двусторонней называют критическую область, определяемую неравенством $K < k_1$, $K > k_2$, где $k_2 > k_1$. В частности, если критические точки симметричны относительно нуля, то двусторонняя критическая область определяется неравенствами (в предположении, что $k_{\rm KP} > 0$)

$$K < -k_{kp}, \quad K > k_{kp},$$

или равносильным неравенством

$$|K| > k_{\rm kp}$$
.

Для отыскания критической области задаются уровнем значимости α и ищут критические точки, исходя из следующих соотношений:

а) для правосторонней критической области

$$P(K > k_{\kappa p}) = \alpha \qquad (k_{\kappa p} > 0);$$

б) для левосторонней критической области

$$P(K < k_{\rm Kp}) = \alpha(k_{\rm Kp} < 0);$$

в) для двусторонней симметричной сбласти

$$P(K > k_{\text{kp}}) = (\alpha/2) (k_{\text{kp}} > 0), P(K < -k_{\text{kp}}) = \alpha/2.$$

Постановку из Гмурмана уместно сравнить со следующей постановкой из [ФаЛеб] (2011, с. 313):

Пример. Пусть определена статистика критерия K и пусть функция плотности вероятностей выборочной статистики K при условии исгинности нулевой гипотезы H_0 равна $p(K|H_0)$, медиана K равна K_0 . По заданному уровню значимости α определяют квантили $K_{\alpha/2}$ и $K_{1-\alpha/2}$ из условия

$$P(K \le K_{\alpha/2}) = \int_{-\infty}^{K_{\alpha}} p(K|H_0) dK = \alpha/2;$$

$$P(K \ge K_{1-\alpha/2}) = \int_{K_{1-\alpha/2}}^{\infty} p(K|H_0) dK = \alpha/2,$$

где α полагают достаточно малым, чтобы попадание случайной величины K за пределы интервала ($K_{\alpha/2}$; $K_{1-\alpha/2}$) можно было считать маловероятным событием. Область ($K_{\alpha/2}$; $K_{1-\alpha/2}$) и является областью допустимых значений, т.е. областью принятия нулевой гипотезы. Промежутки ($-\infty$; $K_{\alpha/2}$) и ($K_{1-\alpha/2}$; $+\infty$) образуют критическую область критерия, при попадании в которую наблюдаемого значения K нулевую гипотезу отвергают. Точки, отделяющие критические области от области принятия гипотезы, называются *критическими точками* (рис. 15.1).

Критическая область называется двусторонней, если она располагается слева и справа от медианы K_0 (см. рис. 15.1), правосторонней, если $P(K > K_{1-\alpha}) = \alpha$, и левосторонней, если $P(K < K_{\alpha}) = \alpha$ (рис. 15.2).

T a б л и ц a II 1. Функция распределения $\Phi(x)$ нормального закона N(0, 1);

$$\Phi \left(-x
ight) =1-\Phi \left(x
ight) ,\,\Phi \left(x
ight) =rac{1}{\sqrt{2\pi }}\int\limits_{-\infty }^{x}e^{-t^{2}/2}\,dt$$

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0.4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0.7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0.8023	0.8051	0.8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0.8238	0.8264	0,8289	0.8315	0.8340	0.8365	0,8389
1,0	0.8413	0,8438	0,8461	0,8485	0,8508	0,8531	0.8554	0,8577	0,8599	0.8621
1,1	0.8643	0.8665	0,8686	0,8708	0.8729	0.8749	0,8770	0,8790	0,8810	0.8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0.8997	0,9015
1,3	0,9032	0,9049	0,9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0,9177
1,4	0.9192	0,9207	0.9222	0.9236	0.9251	0.9265	0,9279	0.9292	0.9306	0,9319
1,5	0,9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
-10										
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8 1,9	0,9641	0,9649 0,9719	0,9656 0,9726	0,9664 0,9732	0.9671 0.9738	0,9678	0,9686 0,9750	0.9693 0.9756	0,9699 0,9761	0.9706 0.9767
2,0	0.9772	0,9778	0,9783	0,9788	0,9793	0.9798	0,9803	0,9808	0,9812	0,9817
2,1	0.9821	0,9826	0,9830	0.9834	0,9838	0.9842	0,9846	0,9850	0.9854	0.9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920 0,9940	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5 2,6	0,9938 0,9953	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948 0,9961	0,9949	0,9951 0,9963	0,9952 0,9964
2,7	0.9965	0,9966	0,9967	0.9968	0,9969	0.9970	0,9971	0,9972	0.9973	0.9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1 3,2	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992 0,9994	0,9992	0,9993	0,9993
3,3	0,9995	0,9995	0,9994	0.9996	0,9994 0,9996	0.9994	0,9994	0,9995 0,9996	0,9995 0,9996	0,9995 0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0.9997	0,9997	0.9997	0,9997	0,9997	0.9998
-	-			7,000	7,117.	21222		2,1000	-1	

Квантили u_p нормального распределения N(0, 1):

p	0,90						0,9995	
u_p	1,282	1,645	1,960	2,326	2,576	3,090	3,291	_

Проверка гипотез: сводная таблица; версия ЕП-КЛ: [1], [8]

Гипотеза <i>Н</i> о	Гипотеза <i>H</i> 1	Критерий	Гипотеза <i>H</i> ₀ принимается
TWIIOTESA 220	TAILUTES III	Критерии	с уровнем значимость α,
			если
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$Z = \frac{kS^2}{\sigma_0^2}$	$\chi_{\frac{\alpha}{2}}^{2}(k) < Z < \chi_{1-\frac{\alpha}{2}}^{2}(k)$
Мат. Ожидание	$\sigma^2 < \sigma_0^2$	σ_0^2	$Z > \chi_{\alpha}^{2}(k)$
неизвестно	_	1	$Z < x_{1-\alpha}^2(k)$
$\sigma^2 = \sigma_0^2$	$\sigma^2 > \sigma_0^2$ $\sigma^2 \neq \sigma_0^2$	$Z = \frac{nS_0^2}{\sigma_0^2}$	$\chi_{\frac{\alpha}{2}}^2(n) < Z < \chi_{1-\frac{\alpha}{2}}^2(n)$
Мат.	$\sigma^2 < \sigma_0^2$	$z = \frac{1}{\sigma_0^2}$	$Z > \chi_{\alpha}^{2}(n)$
Ожидание известно	$\sigma^2 > \sigma_0^2$	$S_0^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \alpha)^2$	
	$\sigma^{-} > \sigma_{0}^{-}$	$n \underset{l=1}{\overset{\sim}{\sim}}$	$Z < \chi^2_{1-\alpha}(n)$
$\sigma_{1}^{2} = \sigma_{2}^{2}$ Mat.	$\sigma_1^2 \neq \sigma_2^2$	$F = \frac{S_{60,n}^2}{S_{Ma,n}^2}$	$F < F_{1-\frac{\alpha}{2}}(k_{S_{60A}}; k_{S_{MAA}})$
Ожидания неизвестны	$\sigma_1^2 > \sigma_2^2$	$F = \frac{S_1^2}{S_2^2}$ $F = \frac{S_2^2}{S_1^2}$	$F < F_{1-\alpha}(k_1; k_2)$
	$\sigma_1^2 < \sigma_2^2$	$F = \frac{S_2^2}{S_1^2}$	$F < F_{1-\alpha}(k_2; k_1)$
$\sigma_{1}^{2} = \sigma_{2}^{2}$ Mat.	$\sigma_1^2 \neq \sigma_2^2$	$F = \frac{S_{0 \text{ for } n}^2}{S_{0 \text{ man}}^2}$	$F < F_{1-\frac{\alpha}{2}}(n_{s_{0 \text{ fox}}}; n_{s_{0 \text{ max}}})$
Ожидания известны	$\sigma_1^2 > \sigma_2^2$	$F = \frac{S_{01}^2}{S_{02}^2}$	$F < F_{1-\alpha}(n_1; n_2)$
	$\sigma_1^2 < \sigma_2^2$	$F = \frac{S_{02}^2}{S_{01}^2}$	$F < F_{1-\alpha}(n_2; n_1)$
$\alpha = \alpha_0$	$\alpha \neq \alpha_0$	$t = \frac{(\bar{x} - \alpha_0)\sqrt{n}}{c}$	$ t < t_{1-\frac{\alpha}{2}}(k)$
Дисперсия неизвестна	$\alpha < \alpha_0$	s	$t > t_{\alpha}(k)$
	$\alpha > \alpha_0$		$t < t_{1-\alpha}(k)$
$\alpha = \alpha_0$	$\alpha \neq \alpha_0$	$U = \frac{(\bar{x} - \alpha_0)\sqrt{n}}{\sigma}$	$ U < u_{1-\frac{\alpha}{2}}$
Дисперсия известна	$\alpha < \alpha_0$	σ	$U > u_{\alpha}$
	$\alpha > \alpha_0$		$U < u_{1-\alpha}$
$a_1 = a_2$	$\alpha_1 \neq \alpha_2$	$t = \frac{\overline{x_1} - \overline{x_2}}{S_{CB}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$ t < t_{1-\frac{\alpha}{2}}(k_{CB})$
Дисперсии неизвестны	$\alpha_1 < \alpha_2$	$S_{CB} \sqrt{\frac{1}{n_s} + \frac{1}{n_s}}$	$t > t_{\alpha}(t_{CB})$
	$\alpha_1 > \alpha_2$	V-12	$t < t_{1-\alpha}(k_{CB})$
		$S_{CB}^2 = \frac{S_1^2 k_1 + S_2^2 k_2}{k_1 + k_2}$	
		$k_{CB} = k_1 + k_2$	
$a_1 = a_2$	$\alpha_1 \neq \alpha_2$	$U = \frac{K_{CB} = k_1 + k_2}{\bar{x}_1 - \bar{x}_2}$ $U = \frac{\sigma_1^2}{\sigma_{11}^2 + \sigma_2^2}$	$ U < u_{1-\frac{\alpha}{2}}$
Дисперсии известны	$\alpha_1 < \alpha_2$	σ_1^2 , σ_2^2	$U > u_a$
rissectino.	$\alpha_1 > \alpha_2$	$\sqrt{n_1} + \overline{n_2}$	$U < u_{1-\alpha}$
СВ имеет	СВ не принадлежит к	$(n_i - np_i)^2$	$\chi^2 < \chi_\alpha^2 (r-s-1)$
заданное	проверяемому закону	$\chi^2 = \sum_i \frac{(n_i - np_i)^2}{np_i}$	r – число групп выборки,
распределение	распределения		s - число параметров
			проверяемого распределения
		l .	распределения

Ещё раз и крупнее: равенство дисперсий

Гипотеза H_0	Гипотеза H_1	Критерий	Гипотеза H_0 принимается с уровнем значимость $lpha$,
$\sigma^2 = \sigma_0^2$ Мат. Ожидание неизвестно	$\sigma^2 \neq \sigma_0^2$ $\sigma^2 < \sigma_0^2$ $\sigma^2 > \sigma_0^2$	$Z = \frac{kS^2}{\sigma_0^2}$	если $\chi_{\frac{\alpha}{2}}^2(k) < Z < \chi_{1-\frac{\alpha}{2}}^2(k)$ $Z > \chi_{\alpha}^2(k)$ $Z < \chi_{1-\alpha}^2(k)$
$\sigma^2 = \sigma_0^2$ Мат. Ожидание известно	$\sigma^2 > \sigma_0^2$ $\sigma^2 \neq \sigma_0^2$ $\sigma^2 < \sigma_0^2$ $\sigma^2 > \sigma_0^2$	$Z = \frac{nS_0^2}{\sigma_0^2}$ $S_0^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \alpha)^2$	$\frac{\chi_{\frac{\alpha}{2}}^{2}(n) < Z < \chi_{1-\frac{\alpha}{2}}^{2}(n)}{Z > \chi_{\alpha}^{2}(n)}$ $Z < \chi_{1-\alpha}^{2}(n)$
$\sigma_1^2 = \sigma_2^2$ Мат.	$\sigma_1^2 \neq \sigma_2^2$	$F = \frac{S_{6o\pi}^2}{S_{Ma\pi}^2}$	$F < F_{1-rac{lpha}{2}} ig(k_{s_{ ext{fon}}}; k_{s_{ ext{man}}} ig)$
Ожидания неизвестны	$\sigma_1^2 > \sigma_2^2$	$F = \frac{S_1^2}{S_2^2}$	$F < F_{1-\alpha}(k_1; k_2)$
	$\sigma_1^2 < \sigma_2^2$	$F = \frac{S_{60\pi}^{2}}{S_{Ma\pi}^{2}}$ $F = \frac{S_{1}^{2}}{S_{2}^{2}}$ $F = \frac{S_{2}^{2}}{S_{1}^{2}}$	$F < F_{1-\alpha}(k_2; k_1)$
$\sigma_1^2 = \sigma_2^2$ Мат.	$\sigma_1^2 \neq \sigma_2^2$	$F = \frac{S_{0 \text{ бол}}^2}{S_{0 \text{ мал}}^2}$	$F < F_{1-rac{lpha}{2}}ig(n_{s_0{ m fo}_{\pi}};n_{s_0{ m ma}_{\pi}}ig)$
Ожидания известны	$\sigma_1^2 > \sigma_2^2$	$F = \frac{S_{01}^{3}}{S_{02}^{2}}$ $F = \frac{S_{02}^{2}}{S_{01}^{2}}$	$F < F_{1-\alpha}(n_1; n_2)$
	$\sigma_1^2 < \sigma_2^2$	$F = \frac{S_{02}^2}{S_{01}^2}$	$F < F_{1-\alpha}(n_2; n_1)$

Ещё раз и крупнее: равенство мат. ожиданий и критерий согласия

$\alpha = \alpha_0$	$\alpha \neq \alpha_0$	$(\bar{x} - \alpha_0)\sqrt{n}$	$ t < t_{1 - \frac{\alpha}{2}}(k)$
Дисперсия	$\alpha < \alpha_0$	$t = \frac{(\bar{x} - \alpha_0)\sqrt{n}}{S}$	$t > t_{\alpha}(k)$
неизвестна	$\alpha > \alpha_0$		$t < t_{1-\alpha}(k)$
$\alpha = \alpha_0$	$\alpha \neq \alpha_0$	$U = \frac{(\bar{x} - \alpha_0)\sqrt{n}}{\sigma}$	$ U < u_{1-\frac{\alpha}{2}}$
Дисперсия	$\alpha < \alpha_0$	$U = \frac{\sigma}{\sigma}$	$U > u_{\alpha}$
известна	$\alpha > \alpha_0$		$U < u_{1-\alpha}$
$\alpha_1 = \alpha_2$	$\alpha_1 \neq \alpha_2$	$t = \frac{\overline{x_1} - \overline{x_2}}{\overline{x_1} - \overline{x_2}}$	$ t < t_{1-\frac{\alpha}{2}}(k_{CB})$
Дисперсии	$\alpha_1 < \alpha_2$	$t = \frac{x_1 - x_2}{S_{CB} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$t > t_{\alpha}(t_{CB})$
неизвестны	$\alpha_1 > \alpha_2$	n_1 n_2	$t < t_{1-\alpha}(k_{CB})$
		$S_{\rm CB}^2 = \frac{S_1^2 k_1 + S_2^2 k_2}{k_1 + k_2}$	
		$k_{CB} = k_1 + k_2$	
$\alpha_1 = \alpha_2$	$\alpha_1 \neq \alpha_2$	$k_{CB} = k_1 + k_2$ $U = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$ U < u_{1-\frac{\alpha}{2}}$
Дисперсии известны	$\alpha_1 < \alpha_2$	σ_1^2 , σ_2^2	$U > u_a$
известны	$\alpha_1 > \alpha_2$	$\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$U < u_{1-\alpha}$
СВ имеет	СВ не принадлежит к	$(n-nn)^2$	$\chi^2 < \chi^2_{\alpha}(r-s-1)$
заданное	проверяемому закону	$\chi^2 = \sum_{i} \frac{(n_i - np_i)^2}{np_i}$	r – число групп выборки,
распределение	распределения	i np _i	s - число параметров
			проверяемого
			распределения

Понятие о критериях согласия...

Критерии проверки гипотезы о предполагаемом виде закона распределения случайной величины называют критериями согласия.

Следует понимать, что проверяют не тот факт, что случайная величина действительно имеет определенный закон распределения (например, нормальный), а проверяется лишь, достаточно ли хорошо наблюдаемые данные согласуются с некоторым законом распределения, чтобы можно было использовать этот закон для прогнозирования поведения рассматриваемой случайной величины.

Гипотезы могут быть как простыми, так и сложными. Гипотеза называется *простой*, если проверяется соответствие некоторому закону распределения с заданными параметрами. Гипотеза называется *сложной*, если проверяется соответствие некоторому закону распределения с произвольными параметрами. В этом случае параметры оценивают по выборке.

Наиболее часто используемые критерии согласия — это критерии Пирсона, Фишера и Колмогорова.

...и других непараметрических критериях

Критерий согласия Колмогорова предназначен для проверки гипотезы о принадлежности выборки некоторому закону распределения. **Критерий однородности Смирнова** используется для проверки гипотезы о принадлежности двух независимых выборок одному закону распределения.

Таблица квантилей распределения χ^2 по Ефимову–Поспелову таблица П5. Квантили χ -квадрат распределения $\chi^2_{\bf p}(k)$

k	P														
	0.005	0.10	0.025	0.05	0.10	0.20	0.30	0.70	0.80	0.90	0.95	0.975	0.990	0.995	0.999
1 2 3 4 5 6 7 8 9 10 11 12 13	0.0 ⁴ 393 0.0108 0.0717 0.207 0.412 0.676 0.989 1.34 1.73 2.16 2.60 3.07 3.57 4.07	0.0 ³ 157 0.201 0.115 0.297 0.554 0.872 1.24 1.65 2.09 2.56 3.05 3.57 4.11 4.66	0.0 ³ 982 0.0506 0.21b 0.484 0.831 1.24 1.69 2.18 2.70 3.25 3.82 4.40 5.01 5.63	0.0 ² 393 0.103 0.352 0.711 1.15 1.64 2.17 2.73 3.33 3.94 4.57 5.23 5.89 6.57	0.0158 0.211 0.584 1.06 1.61 2.20 2.83 3.49 4.17 4.87 5.58 6.30 7.04 7.79	0.0642 0.446 1.00 1.65 2.34 3.07 3.82 4.59 5.38 6.18 6.99 7.81 8.63 9.47	0.148 0.713 1.42 2.19 3.00 3.83 4.67 5.53 6.39 7.27 8.15 9.03 9.93 10.8	0.07 2.41 3.67 4.88 6.06 7.23 8.38 9.52 10.7 11.8 12.9 14.0 15.1 16.2	1.64 3.22 4.64 5.99 7.29 8.56 9.80 11.0 12.2 13.4 14.6 15.8 17.0 18.2	2.71 4.61 6.25 7.78 9.24 10.6 12.0 13.4 14.7 16.0 17.3 18.5 19.08 21.1	3.84 5.99 7.81 9.49 11.1 12.6 14.1 15.5 16.9 18.3 19.7 21.0 22.4 23.7	5.02 7.38 9.35 11.1 12.8 14.4 16.0 17.5 19.0 20.5 21.9 23.3 24.7 26.1	6.63 9.21 11.3 13.3 15.1 16.8 18.5 20.1 21.7 23.2 24.7 26.2 27.7 29.1	7.88 10.6 12.8 14.9 16.7 18.5 20.3 22.0 23.6 25.2 26.8 28.3 29.8 31.3	10.8 13.8 16.3 18.5 20.5 22.5 24.3 26.1 27.9 29.6 31.3 32.9 34.5 36.1

] k								p							
	0.005	0.10	0.025	0.05	0.10	0.20	0.30	0.70	0.80	0.90	0.95	0.975	0.990	0.995	0.999
16		5.81	6.91	7.96	9.31	11.2	12.6	18.4	20.5	23.5	26.3	28.8	32.0	34.3	39.3
17	5.70	6.41	7.56	8.67	10.1	12.0	13.5	19.5	21.6	24.8	27.6	30.2	33.4	35.7	40.8
18	6.26	7.01	8.23	9.39	10.9	12.9	14.4	20.6	22.8	26.0	28.9	31.5	34.8	37.2	42.3
19	6.84	7.63	8.91	10.1	11.7	13.7	15.4	21.7	23.9	27.2	30.1	32.9	36.2	38.6	43.8
20	7.43	8.26	9.59	10.9	12.4	14.6	16.3	22.8	25.0	28.4	31.4	34.2	37.6	40.0	45.3
21	8.03	8.90	10.3	11.6	13.2	15.4	17.2	23.9	26.9	29.6	32.7	35.5	38.9	41.4	46.8
22	8.64	9.54	11.0	12.3	14.0	16.3	18.1	24.9	27.3	30.8	33.9	36.8	40.3	42.8	48.3
23	9.26	10.2	11.7	13.1	14.8	17.2	19.0	26.0	28.4	32.0	35.2	38.1	41.6	44.2	49.7
24	9.89	10.9	12.4	13.8	15.7	18.1	19.9	27.1	29.6	33.2	36.4	39.4	43.0	45.6	51.2
25	10.5	11.5	13.1	14.6	16.5	18.9	20.9	28.2	30.7	34.4	37.7	40.6	44.3	46.9	52.6
26	11.2	12.2	13.8	15.4	17.3	19.8	21.8	29.2	31.8	35.6	38.9	41.9	45.6	48.3	54.1
27	11.8	12.9	14.6	16.2	18.1	20.7	22.7	30.3	32.9	36.7	40.1	43.2	47.0	49.6	55.5
28	12.5	13.6	15.3	16.9	18.9	21.6	23.6	31.4	34.0	37.9	41.3	44.5	48.3	51.0	56.9
29	13.1	14.3	16.0	17.7	19.8	22.5	24.6	32.5	35.1	39.1	42.6	45.7	49.6	52.3	58.3
30	13.8	15.0	16.8	18.5	20.6	23.4	25.5	33.5	36.3	40.3	43.8	47.0	50.9	53.7	59.7
35	17.2	18.5	20.6	22.5	24.8	27.8	30.2	38.9	41.8	46.1	49.8	53.2	57.3	60.3	66.6
40	20.7	22.2	24.4	26.5	29.1	32.3	34.9	44.2	47.3	51.8	55.8	59.3	63.7	66.8	73.4
45	24.3	25.9	28.4	30.6	33.4	36.9	39.6	49.5	52.7	57.5	61.7	65.4	70.0	73.2	80.1
50	28.0	29.7	32.4	34.8	37.7	41.4	44.3	54.7	58.2	63.2	67.5	71.4	76.2	79.5	86.7
75	47.2	49.5	52.9	56.1	59.8	64.5	68.1	80.9	85.1	91.1	96.2	100.8	106.4	110.3	118.6
100	67.3	70.1	74.2	77.9	82.4	87.9	92.1	106.9	111.7	118.5	124.3	129.6	135.6	140.2	149.4

Если в изложении $\mathbf{E}\mathbf{\Pi} - \mathbf{K}\mathbf{J}$ сначала идут дисперсии, потом мат. ожидания, то в изложении $\mathbf{\Gamma} - \mathbf{\Phi}\mathbf{J}$ идут сначала одновыборочные, потом двухвыборочные критерии. Но это еще полбеды. По-настоящему мешающим фактором являются два варианта выбора уровня значимости и соответствующие варианты записи таблиц квантилей, получающиеся друг из друга симметрией относительно срединной вертикали.

Число			Уровень зн	ачимости а		
степеней - свободы <i>k</i>	0,01	0,025	0,05	0,95	0,975	0,99
1	6,6	5,0	3,8	0,0039	0,00098	0,00016
2	9,2	7,4	6,0	0,103	0,051	0,020
3	11,3	9,4	7,8	0,352	0,216	0,115
4	13,3	10,1	9,5	0,711	0,484	0,297
5	15,1	12,8	11,1	1,15	0,831	0,554
6	16,8	14,4	12,6	1,64	1,24	0,872
7	18,5	16,0	14.1	2,17	1,69	1,24
8	20,1	17,5	15,5	2,73	2,18	1,65
9	21,7	19,0	16,9	3,33	2,70	2,09
10	23,2	20,5	18,3	3,94	3,25	2,56
11	24,7	21,9	19,7	4,57	3,82	3,05
12	26,2	23,3	21,0	5,23	4,40	3,57
13	27,7	24,7	22,4	5,89	5,01	4,11
14	29,1	26,1	23,7	6,57	5,63	4,66
15	30,6	27,5	25,0	7,26	6,26	5,23
16	32,0	28,8	26,3	7,96	6,91	5,8!
17	33,4	30,2	27,6	8,67	7,56	6,41
18	34,8	31,5	28,9	9,39	8,23	7,01
19	36,2	32,9	30,1	10,1	8,91	7,63
20	37,6	34,2	31,4	10,9	9,59	8,26
21	38,9	35,5	32,7	11,6	10,3	8,90
22	40,3	36,8	33,9	12,3	11,0	9,54
23	41,6	38,1	35,2	13,1	11,7	10,2
24	43,0	39,4	36,4	13,8	12,4	10,9
25	44,3	40,6	37,7	14,6	13,1	11,5
26	45,6	41,9	38,9	15,4	13,8	12,2
27	47,0	43,2	40,1	16,2	14,6	12,9
28	48,3	44.5	41,3	16,9	15,3	13,6
29	49.6	45,7	42,6	17,7 16,0		14,3
30	50,9	47,0	43,8	18,5	16,8	15,0

Проверка гипотез: сводные таблицы; версия Г – ФЛ [3], [6]

H_0	Предположения	Статистика критерия	H_1	Область принятия H_0
$a=a_0$	σ ² известно	$U = \frac{\overline{x} - a_0}{\sigma} \sqrt{n}$	<i>a</i> > <i>a</i> ₀	$U < u_{\text{kp}}, \Phi_0(u_{\text{kp}}) = 1/2 - \alpha;$
		σ	a <a<sub>0</a<sub>	$U > -\mathbf{u}_{\kappa p}, \ \Phi_0(u_{\kappa p}) = 1/2 - \alpha;$ $ U < u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = (1 - \alpha)/2.$
			a≠a ₀	$ U \le u_{\text{KP}}, \ \Phi_0(u_{\text{KP}}) = (1-\alpha)/2.$
$a=a_0$	σ ² не известно	$T = \frac{\overline{x} - a_0}{s} \sqrt{n}$	<i>a</i> > <i>a</i> ₀	$T < t_{\text{одност}}(\alpha, n-1);$
		S	a <a<sub>0</a<sub>	$T > -t_{\text{одност}}(\alpha, n-1);$ $ T < t_{\text{двуст}}(\alpha, n-1);$
$\sigma^2 = \sigma_0^2$	а не известно	$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$	$\sigma^2 > \sigma_0^2$	$\chi^2 < \chi^2_{\alpha;n-1};$
		0	$\sigma^2 < \sigma_0^2$	$\chi^{2} < \chi^{2}_{\alpha;n-1};$ $\chi^{2} > \chi^{2}_{1-\alpha;n-1};$ $\chi^{2}_{1-\alpha/2;n-1} < \chi^{2} < \chi^{2}_{\alpha/2;n-1};$
			$\sigma^2 \neq \sigma_0^2$	$\chi^2_{1-\alpha/2;n-1} < \chi^2 < \chi^2_{\alpha/2;n-1};$

H_0	Предположения	Статистика критерия	H_1	Область принятия H_0
$a_x = a_y$	σ_x^2 и σ_y^2	$II = \frac{\overline{x} - \overline{y}}{}$	$a_x > a_y$	$U \leq u_{\kappa p}, \Phi_0(u_{\kappa p}) = 1/2 - \alpha;$
	известны	$U = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}}$	$a_x < a_y$	$U > -u_{\text{kp}}, \Phi_0(u_{\text{kp}}) = 1/2 - \alpha;$
			$a_x \neq a_y$	$ U \le u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = (1-\alpha)/2;$
$a_x = a_y$	σ_x^2 и σ_y^2	$T = \frac{\overline{x} - \overline{y}}{\overline{y}}$	$a_x > a_y$	$T < t_{\text{одност}}(\alpha, n+m-2);$
	не известны, но равны	$T = \frac{\overline{x} - \overline{y}}{s\sqrt{\frac{1}{n} + \frac{1}{m}}}$, где	$a_x < a_y$	$T > -t_{\text{одност}}(\alpha, n+m-2);$
		$s^{2} = \frac{(n-1)s_{x}^{2} + (m-1)s_{y}^{2}}{n+m-2}$	$a_x \neq a_y$	$ T < t_{\text{двуст}}(\alpha, n+m-2);$
$\sigma_x^2 = \sigma_y^2$	a_x н a_y не известны	$F = \frac{s_x^2}{s_y^2},$	$\sigma_x^2 > \sigma_y^2$	$F \leq F_{\kappa p}(\alpha, n-1, m-1);$
		$F = \frac{s_{\text{max}}^2}{s_{\text{min}}^2}$	$\sigma_x^2 \neq \sigma_y^2$	$F < F_{\text{kp}}(\alpha/2, n_{\text{max}}-1, n_{\text{min}}-1);$

В силу вышеизложенного дальнейшая стратегия будет состоять в работе с конкретным задачником, указанными там правилами и приведенными там таблицами.

Начнем с Гмурмана.

§ 3. Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсией нормальной совокупности

Обозначим через n объем выборки, по которой найдена исправленная дисперсия s^2 .

Правило 1. Для того чтобы при заданном уровне значимости α проверить нулевую гипотезу H_0 : $\sigma^2 = \sigma_0^2$ о равенстве неизвестной генеральной дисперсии σ^2 гипотетическому (предполагаемому) значению σ_0^2 при конкурирующей гипотезе H_1 : $\sigma^2 > \sigma_0^2$, надо вычислить наблюдаемое значение критерия

$$\chi^2_{\text{набл}} = \frac{(n-1) s^2}{\sigma_0^2}$$

и по таблице критических точек распределения χ^2 , по заданному уровню значимости α и числу степеней свободы k=n-1 найти критическую точку $\chi^2_{\rm kp}(\alpha;\ k)$. Если $\chi^2_{\rm Ha6\pi} < \chi^2_{\rm kp}$ — нет оснований отвергнуть нулевую гипотезу. Если $\chi^2_{\rm Ha6\pi} > \chi^2_{\rm kp}$ — нулевую гипотезу отвергают.

Правнло 2. При конкурирующей гипотезе H_1 : $\sigma^2 \neq \sigma_0^2$ находят левую $\chi^2_{\text{лев. Kp}} (1-\alpha/2;\ k)$ и правую $\chi^2_{\text{прав. Kp}} (\alpha/2;\ k)$ критические точки. Если $\chi^2_{\text{лев. Kp}} < \chi^2_{\text{набл}} < \chi^2_{\text{прав. Kp}}$ —нет оснований отвергнуть нулевую гипотезу. Если $\chi^2_{\text{набл}} < \chi^2_{\text{лев. Kp}}$ или $\chi^2_{\text{набл}} > \chi^2_{\text{прав. Kp}}$ —нулевую гипотезу отвергают.

Правнло 3. При конкурирующей гипотезе H_1 : $\sigma^2 < \sigma_0^2$ находят критическую точку $\chi^2_{\rm KP}$ ($1-\alpha$; k). Если $\chi^2_{\rm Ha6n} > \chi^2_{\rm KP}$ ($1-\alpha$; k)— нет оснований отвергнуть нулевую гипотезу. Если $\chi^2_{\rm Ha6n} < \chi^2_{\rm KP}$ ($1-\alpha$; k)— нулевую гипотезу отвергают.

560. Из нормальной генеральной совокупности извлечена выборка объема n=21 и по ней найдена исправленная выборочная дисперсия $s^2=16,2$. Требуется при уровне значимости 0,01 проверить нулевую гипотезу H_0 : $\sigma^2=\sigma_0^2=15$, приняв в качестве конкурирующей гипотезы H_1 : $\sigma_0^2>15$.

Решение. Найдем наблюдаемое значение критерия:

$$\chi^2_{\text{Ha6}} = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(21-1)\cdot 16,2}{15} = 21,6.$$

По условию, конкурирующая гипотеза имеет вид $\sigma^2 > 15$, поэтому критическая область — правосторонняя (правило 1). По таблице приложения 5, по уровню значимости 0,01 и числу степеней свободы k=n-1=21-1=20 находим критическую точку $\chi^2_{\rm KP}$ (0,01; 20)=37,6.

Так как $\chi^2_{\text{набл}} < \chi^2_{\text{кр}}$ — нет оснований отвергнуть нулевую гипотезу о равенстве генеральной дисперсии гипотетическому значению $\sigma_0^2 = 15$. Другими словами, различие между исправленной дисперсией (16,2) и гипотетической генеральной дисперсией (15) незначимо.

Вот она – таблица Приложения 5:

Критические точки распределения х²

					~	
Число степеней			Уровень зн	ачимости о		
свободы k	0,01	0,025	0,05	0,95	0,975	0,99
1	6,6	5,0	3,8	0,0039	0,00098	0,00016
2	9,2	7,4	6,0	0,103	0,051	0,020
3	11,3	9,4	7,8	0,352	0,216	0,115
4	13,3	11,1	9,5	0,711	0,484	0,297
. 5	15,1	12,8	11,1	1,15	0,831	0,554
6	16,8	14,4	12,6	1,64	1,24	0,872
7	18,5	16,0	14,1	2,17	1,69	1,24
8	20,1	17,5	15,5,	2,73	2,18	1,65
9	21,7	19,0	16,9	3,33	2,70	2,09
10	23,2	20,5	18,3	3,94	3,25	2,56
11	24,7	21,9	19,7	4,57	3,82	3,05
12	26,2	23,3	21,0	5,23	4,40	3,57
13	27,7	24,7	22,4	5,89	5,01	4,11
14	29,1	26,1	23,7	6,57	5,63	4,66
15	30,6	27,5	25,0	7,26	6,26	5,23
16	32,0	28,8	26,3	7,96	6,91	5,81
17	33,4	30,2	27,6	8,67	7,56	6,41
18	34,8	31,5	28,9	9,39	8,23	7,01
19	36,2	32,9	30,1	10,1	8,91	7,63
20	37,6	34,2	31,4	10,9	9,59	8,26
21	38,9	35,5	32,7	11,6	10,3	8,90
22	40.3	36,8	33,9	12,3	11,0	9,54
23	41,6	38,1	35,2	13,1	11,7	10,2
24	43,0	39,4	36,4	13,8	12,4	10,9
25	44,3	40,6	37,7	14,6	13,1	11,5
26	45,6	41,9	38,9	15,4	13,8	12,2
27	47,0	43,2	40,1	16,2	14,6	12,9
28	48,3	44,5	41,3	16,9	15,3	13,6
29	49,6	45,7	42,6	17,7	16,0	14,3
30	50,9	47,0	43,8	18,5	16,8	15,0
		•				

§ 4. Сравнение двух средних генеральных совокупностей, дисперсии которых известны [большие независимые выборки]

Обозначим через n и m объемы больших (n > 30, m > 30) независимых выборок, по которым найдены соответствующие выборочные средние x и y. Генеральные дисперсии D(X) и D(Y) известны.

Правило 1. Для того чтобы при задинном уровне значимости проверить нулевую гипотезу H_0 : M(X) = M(Y) о равенстве математических ожиданий (генеральных средних) двух нормальных генеральных совокупностей с известными дисперсиями (в случае больших выборок) при конкурирующей гипотезе H_1 : $M(X) \neq M(Y)$, надо

вычислить наблюдаемое значение критерия

$$Z_{\text{Ha6s}} = \frac{\bar{x} - \bar{y}}{\sqrt{D(X)/n + D(Y)/m}}$$

и по таблице функции Лапласа найти критическую точку г_{кр} из равенства

 $\Phi(z_{kp}) = (1-\alpha)/2.$

Если $|Z_{\text{Ha6,I}}| < z_{\text{Kp}}$ — нет оснований отвергнуть нулевую гипотезу. Если $|Z_{\text{Ha6,I}}| > z_{\text{Kp}}$ — нулевую гипотезу отвергают.

Правило 2. При конкурирующей гипотезе H_1 : M(X) > M(Y) находят критическую точку $z_{\rm kp}$ по таблице функции Лапласа из равенства

 $\Phi(z_{\kappa p}) = (1-2\alpha)/2.$

Если $Z_{\text{набл}} < z_{\text{кр}}$ — нет оснований отвергнуть нулевую гипотезу. Если $Z_{\text{набл}} > z_{\text{кр}}$ — нулевую гипотезу отвергают.

Правило 3. При конкурирующей гипотезе H_1 : M(X) < M(Y) находят «вспомогательную точку» $z_{\rm KP}$ по правилу 2. Если $Z_{\rm Ha6A} > -z_{\rm KP} -$ нет оснований отвергнуть нулевую гипотезу. Если $Z_{\rm Ha6A} < -z_{\rm KP} -$ нулевую гипотезу отвергают.

567. По двум независимым выборкам, объемы которых n=40 и m=50, извлеченным из нормальных генеральных совокупностей, найдены выборочные средние: $\overline{x}=130$ и $\overline{y}=140$. Генеральные дисперсии известны: D(X)=80, D(Y)=100. Требуется при уровне значимости 0,01 проверить нулевую гипотезу H_0 : M(X)=M(Y) при конкурирующей гипотезе H_1 : $M(X)\neq M(Y)$.

Решение. Найдем наблюдаемое значение критерия:

$$Z_{\text{Ha6J}} = \frac{\bar{x} - \bar{y}}{\sqrt{D(X)/n + D(Y)/m}} = \frac{130 - 140}{\sqrt{80/40 + 100/50}} = -5.$$

По условию, конкурирующая гипотеза имеет вид $M(X) \neq M(Y)$, поэтому критическая область — двусторонняя.

Найдем правую критическую точку из равенства

$$\Phi(z_{KD}) = (1-\alpha)/2 = (1-0.01)/2 = 0.495.$$

По таблице функции Лапласа (см. приложение 2) находим $z_{\kappa_0} = 2.58$.

Так как $|Z_{\text{набл}}| > z_{\text{кр}}$, то в соответствии с правилом 1 нулевую гипотезу отвергаем. Другими словами, выборочные средние различаются значимо.

Ну, и так далее...

Посмотрим некоторые задачи из пособия Карасев – Богданов – Левшина [1].

Раздел 1.7.2. Проверка гипотез о дисперсии нормального распределения.

Задача 1.13. В двух сериях независимых экспериментов (в двух выборках из нормальных генеральных совокупностей) получены несмещенные оценки дисперсии: $S_1^2 = 1,95$ с $k_1 = 15$ степенями свободы и $S_2^2 = 0,75$ с $k_2 = 20$ степенями свободы. Проверить гипотезу о равенстве дисперсий при альтернативной гипотезе $\sigma_1^2 \neq \sigma_2^2$ с уровнем значимости $\alpha = 0,05$.

Решение

Вычислим значение критерия Фишера по формуле (1.33): F = 1,95/0,75 = 2,60, и сравним его с квантилью распределения Фишера, взятой из табл. П5 приложения (двусторонний критерий): $F_{0,975}(15; 20) = 2,57$. Так как F = 2,60 > 2,57, то гипотезу о равенстве дисперсий в двух сериях экспериментов следует отвергнуть.

«Подоплёка» (**[1]**, с. 31) Пусть заданы две независимые выборки из двух нормальных генеральных совокупностей. Первая выборка имеет объем n_1 , элементы выборки $X_i^{(1)} \sim N(a_1, \sigma_1)$, вторая – объем n_2 , элементы выборки $X_i^{(2)} \sim N(a_2, \sigma_2)$. Необходимо проверить *гипотезу о равенстве дисперсий* этих двух генеральных совокупностей, т.е. H_0 : $\sigma_1^2 = \sigma_2^2$. Математические ожидания a_1 и a_2 неизвестны.

В этом случае по каждой выборке находят несмещенные выборочные оценки дисперсий

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i^{(1)} - \overline{X}^{(1)}) \quad \text{if} \quad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (X_i^{(2)} - \overline{X}^{(2)})$$

с числами степеней свободы $k_1 = n_1 - 1 \ (= 15)$ и $k_2 = n_2 - 1 \ (= 20)$ соответственно.

Нам надо проверить гипотезу H_0 : $\sigma_1^2 = \sigma_2^2$ при альтернативной гипотезе H_1 : $\sigma_1^2 \neq \sigma_2^2$.

Гипотезу H_0 проверяют по критерию Фишера, функция критерия в данном случае строится как отношение большей выборочной дисперсии к меньшей:

$$F = \frac{S_{\text{max}}^2}{S_{\text{min}}^2} = \frac{S_{\text{бол}}^2}{S_{\text{мен}}^2} =$$
(в нашем случае) $= \frac{S_1^2}{S_2^2} = \frac{1,95}{0,75} = 2,60$

Функция F сравнивается с квантилью

$$F_{1-\alpha/2}(k_{S_{507}},k_{S_{100}})=$$
 (в нашем случае) = $F_{0.975}(15,20)=2,57$

распределения Фишера; в [1] это таблица П5 на с. 109–110; там как раз p = 0.975 (см. ниже).

Гипотеза принимается при выполнении неравенства

$$F < F_{1-lpha/2}(k_{S_{501}}, k_{S_{MEH}})$$
, т.е. в нашем случае $F < F_{1-lpha/2=0.975}(k_{S_{501}}=15, k_{S_{MEH}}=20)$,

в противоположном случае гипотеза отвергается. Здесь $k_{S_{603}}$ — число степеней свободы большей оценки дисперсии, $k_{S_{\text{мен}}}$ — число степеней свободы меньшей оценки дисперсии.

Вот она – таблица П5:

 $\label{eq:Tabnaya} {\it H5}$ Квантили распределения Фишера ${\it F}_{\sigma}(k_{_1},k_{_2}),\, p=0{,}975$

	, , , , , , , , , , , , , , , , , , , ,																	
k_1	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120
1	647,8	799,5	864,2	899,6	921,8	937,1	948,2	956,7	963,3	968,6	976,7	984,9	993,1	997,2	1001	1006	1010	1014
2	38,51	39,00	39,17	39,25	39,30	39,33	39,36	39,37	39,39	39,40	39,41	39,43	39,45	39,46	39,46	39,47	39,48	39,49
3	17,44	16,04	15,44	15,10	14,88	14,73	14,62	14,54	14,47	14,42	14,34	14,25	14,17	14,12	14,08	14,04	13,99	13,95
4	12,22	10,65	9,98	9,60	9,36	9,20	9,07	8,98	8,90	8,84	8,75	8,66	8,56	8,51	8,46	8,41	8,36	8,31
5	10,01	8,43	7,76	7,39	7,15	6,98	6,85	6,76	6,68	6,62	6,52	6,43	6,33	6,28	6,23	6,18	6,12	6,07
6	8,81	7,26	6,60	6,23	5,99	5,82	5,70	5,60	5,52	5,46	5,37	5,27	5,17	5,12	5,07	5,01	4,96	4,90
7	8,07	6,54	5,89	5,52	5,29	5,12	4,99	4,90	4,82	4,76	4,67	4,57	4,47	4,42	4,36	4,31	4,25	4,20
8	7,57	6,06	5,42	5,05	4,82	4,65	4,53	4,43	4,36	4,30	4,20	4,10	4,00	3,95	3,89	3,84	3,78	3,73
9	7,21	5,71	5,08	4,72	4,48	4,32	4,20	4,10	4,03	3,96	3,87	3,77	3,67	3,61	3,56	3,51	3,45	3,39
10	6,94	5,46	4,83	4,47	4,24	4,07	3,95	3,85	3,78	3,72	3,62	3,52	3,42	3,37	3,31	3,26	3,20	3,14
11	6,72	5,26	4,63	4,28	4,04	3,88	3,76	3,66	3,59	3,53	3,43	3,33	3,23	3,17	3,12	3,06	3,00	2,94
12	6,55	5,10	4,47	4,12	3,89	3,73	3,61	3,51	3,44	3,37	3,28	3,18	3,07	3,02	2,96	2,91	2,85	2,79
13	6,41	4,97	4,35	4,00	3,77	3,60	3,48	3,39	3,31	3,25	3,15	3,05	2,95	2,89	2,84	2,78	2,72	2,66
14	6,30	4,86	4,24	3,89	3,66	3,50	3,38	3,29	3,21	3,15	3,05	2,95	2,84	2,79	2,73	2,67	2,61	2,55
																		l l
15	6,20	4,77	4,15	3,80	3,58	3,41	3,29	3,20	3,12	3,06	2,96	2,86	2,76	2,70	2,64	2,59	2,52	2,46
16	6,12	4,69	4,08	3,73	3,50	3,34	3,22	3,12	3,05	2,99	2,89	2,79	2,68	2,63	2,57	2,51	2,45	2,38
17	6,04	4,62	4,01	3,66	3,44	3,28	3,16	3,06	2,98	2,92	2,82	2,72	2,62	2,56	2,50	2,44	2,38	2,32
18	5,98	4,56	3,95	3,61	3,38	3,22	3,10	3,01	2,93	2,87	2,77	2,67	2,56	2,50	2,44	2,38	2,32	2,26
19	5,92	4,51	3,90	3,56	3,33	3,17	3,05	2,96	2,88	2,82	2,72	2,62	2,51	2,45	2,39	2,33	2,27	2,20
20	5,87	4.46	3.86	2.51	2.20	2.12	2.01	2.01	2.84	2,77	2.00	2,57	2,46	2.41	225	2.20	2,22	216
20	5,83	4,46 4.42	3,80	3,51 3,48	3,29 3,25	3,13	3,01 2,97	2,91 2,87	2,84	2,77	2,68 2,64		2,40	2,41 2,37	2,35	2,29	2.18	2,16 2,11
22	5,79	4,42	3.78	3,44	3,22	3.05	2,93	2,84	2,76	2.70	2,60	2,50	2,39	2,33	2,31	2,21	2.14	2,08
23	5,75	4,35	3,75	3,41	3,18	3.02	2,90	2,84	2,73	2,67	2,57	2,47	2,36	2,30	2,24	2,18	2,14	2,04
24	5,72	4,32	3,72	3,38	3,15	2.99	2.87	2,78	2,70	2.64	2.54	2,44	2,33	2,27	2,24	2,15	2.08	2,04
	1974	1976	357.6	5576	0,10	2,77	m,07	25,70	2510	mp7**	With Lake	2,44	Agoto	Aga /	20,61	a,1.7	2,00	2001

В нашем случае $F = 2,60 > 2,57 = F_{0,975}(15,20)$. Следовательно, в соответствии с критерием, гипотезу о равенстве дисперсий в двух сериях экспериментов следует отвергнуть.

Задача 1.14. Партия чугунных отливок принимается, если дисперсия контролируемого размера не превышает 0,15 с уровнем значимости 0,01. Из партии отливок произвели случайную выборку объемом n=46. Оценка дисперсии получилась равной 0,23. Можно ли принять эту партию отливок, если генеральная совокупность имеет нормальное распределение?

В решении там опечатка, поэтому пишем «от руки» сразу с комментариями.

Решение. Объем выборки n=46; $S^2=0.23$; $\alpha=0.01$; $\sigma_0^2=0.15$. Условие задачи требует, чтобы было $\sigma^2 \leq \sigma_0^2 \ (=0.15)$, т.е. должна быть исключена ситуация $\sigma^2 > \sigma_0^2$. Поэтому проверим гипотезу H_0 : $\sigma^2 = \sigma_0^2$ при альтернативной гипотезе H_1 : $\sigma^2 > \sigma_0^2$. Математическое ожидание неизвестно.

Критерий односторонний (правосторонний). Значение критерия (здесь k = n - 1):

$$Z = \frac{kS^2}{\sigma_0^2} = \frac{(n-1)S^2}{\sigma_0^2} = \frac{45 \cdot 0,23}{0,15} = 69.$$

Сравним его с критическим значением $\chi^2_{1-\alpha}(k) = \chi_{0,99}(45) \approx 70$, найденным по таблице квантилей χ^2 распределения (см. табл. П3 приложения).

Вот таблица П3 приложения:

Квантили хи-квадрат распределения $\chi^{z}_{o}(k)$

Окончание табл. ПЗ

k P	0,005	0,100	0,025	0,05	0,10	0,20	0,30	0,70	0,80	0,90	0,95	0,975	0,990	0,995	0,999
24	9,89	10,9	12,4	13,8	15,7	18,1	19,9	27,1	29,6	33,2	36,4	39,4	43,0	45,6	51,2
25	10,5	11,5	13,1	14,6	16,5	18,9	20,9	28,2	30,7	34,4	37,7	40,6	44,3	46,9	52,6
26	11.2	12.2	13.8	15.4	17.3	19.8	21.8	29.2	31.8	35.6	38.9	41.9	45.6	48.3	54.1
27	11.8	12.9	14,6	16.2	18,1	20.7	22,7	30,3	32,9	36,7	40,1	43.2	47,0	49,6	55.6
28	12,5	13,6	15,3	16,9	18,9	21,6	23,6	31,4	34,0	37,9	41,3	44,5	48,3	51,0	56,9
29	13,1	14,3	16,0	17,7	19,8	22,5	24,6	32,5	35,1	39,1	42,6	45,7	49,6	52,3	58,3
30	13,8	15,0	16,8	18,5	20,6	23,4	25,5	33,5	36,3	40,3	43,8	47,0	50,9	53,7	59,7
3.5	17,2	18,5	20,6	22,5	24,8	27,8	30,2	38,9	41,8	46,1	49,8	53,2	57,3	60,3	66,6
40	20,7	22,2	24,4	26,5	29,1	32,3	34.9	44.2	47,3	51,8	55,8	59,3	63.7	66,8	73.1
45	24,3	25,9	28,4	30,6	33,4	36,9	39,6	49,5	52,7	57,5	61,7	65,4	70.0	73,2	80,1
50	28,0	29,7	32,4	34,8	37,7	41,4	44,3	54,7	58,2	63,2	67,5	71,4	76,2	79,5	86,7
75	47.2	49,5	52,9	56,1	59,8	64,5	68,1	80,9	85,1	91,1	96,2	100,8	106,4	110,3	118,6
100	67,3	70,1	74,2	77,9	82,4	87,9	92,1	106,9	111,7	118,5	124,3	129,6	135,6	140,2	149,4

H_0 -гипотеза принимается при выполнении неравенства

$$Z < \chi_{1-\alpha}^2(k),$$

в противном случае гипотезу отвергают ([1], с. 30). В нашем случае $Z = 69 < 70 \approx \chi_{0,99}^2$ (45). Поэтому гипотеза H_0 принимается с уровнем значимости $\alpha = 0,01$, следовательно, данную партию отливок можно принять.

Только что рассмотренную задачу уместно сравнить со следующей задачей из [ФаЛеб]-2011, с. 324:

Задача 5. Точность работы станка-автомата проверяется по дисперсии размеров изделий, которая не должна превышать $\sigma_0^2 = 0.01 \; (\text{мм}^2)$. По выборке из 25 изделий получена исправленная выборочная дисперсия $s^2 = 0.02 \; (\text{мм}^2)$. На уровне значимости $0.05 \; \text{проверить}$, обеспечивает ли станок необходимую точность.

Решение. Найдем значение статистики критерия:

$$\chi^2 = \frac{24 \cdot 0,02}{0,01} = 48.$$

Альтернативной гипотезой в данном случае является H_1 : $\sigma^2 > \sigma_0^2$.

По таблице находим критическую точку распределения хиквадрат: $\chi^2_{0.05;24} = 36,4$.

Поскольку 48 > 36,4, то основная гипотеза отвергается. Следовательно, станок не обеспечивает необходимой точности.

 \mathcal{NB} . Выделяется проблема, отмеченная на с. 22 выше. В предыдущем примере (из [1]) мы считали $\chi^2_{1-\alpha}(k) = \chi^2_{1-\alpha}(n-1) = \chi^2_{1-0,01=0,99}(45)$. В настоящем же примере мы считаем $\chi^2_{\alpha}(n-1) = \chi^2_{0,05}(24) = \chi^2_{0,05;24}$ ([6] = [ФаЛеб], 2011) Т.е. было $\chi^2_{1-\alpha}(n-1)$, стало $\chi^2_{\alpha}(n-1)$: оба подхода приводят к одному ответу за счет симметричного изменения таблицы (относительно срединной вертикали).

Мораль: от решения задач мы переходим к изучению инструкций!

А вот и таблица, на с. 22 выше она уже была:

Таблица 4. Критические точки распределения хи-квадрат

Число степеней	Уровень значимости а										
свободы k	0,01	0,025	0,05	0,95	0,975	0,99					
1	6,6	5,0	3,8	0,0039	0,00098	0,00016					
2	9,2	7,4	6,0	0,103	0,051	0,020					
3	11,3	9,4	7.8	0,352	0,216	0,115					
4	13,3	10,1	9,5	0,711	0,484	0,297					
5	15,1	12,8	11,1	1,15	0,831	0,554					
6	16,8	14,4	12,6	1,64	1,24	0,872					
7	18,5	16,0	14.1	2,17	1,69	1,24					
8	20,1	17,5	15,5	2,73	2,18	1,65					
9	21,7	19,0	16,9	3,33	2,70	2,09					
10	23,2	20,5	18,3	3,94	3,25	2,56					
11	24,7	21,9	19,7	4,57	3,82	3,05					
12	26,2	23,3	21,0	5,23	4,40	3,57					
13	27,7	24,7	22,4	5,89	5,01	4,11					
14	29,1	26,1	23,7	6,57	5,63	4,66					
15	30,6	27,5	25,0	7,26	6,26	5,23					
16	32,0	28,8	26,3	7,96	6,91	5,8!					
17	33,4	30,2	27,6	8,67	7,56	6,41					
18	34,8	31,5	28,9	9,39	8,23	7,01					
19	36,2	32,9	30,1	10,1	8,91	7,63					
20	37,6	34,2	31,4	10,9	9,59	8,26					
21	38,9	35,5	32,7	11,6	10,3	8,90					
22	40,3	36,8	33,9	12,3	11,0	9,54					
23	41,6	38,1	35,2	13,1	11,7	10,2					
24	43,0	39,4	36,4	13,8	12,4	10,9					
25	44,3	40,6	37,7	14,6	13,1	11,5					
26	45,6	41,9	38,9	15,4	13,8	12,2					
27	47,0	43,2	40,1	16,2	14,6	12,9					
28	48,3	44.5	41,3	16,9	15,3	13,6					
29	49.6	45,7	42,6	17,7	16,0	14,3					
30	50,9	47,0	43,8	18,5	16,8	15,0					

Самостоятельно разобрать все оставшиеся случаи!

Проверка гипотезы о нормальном законе распределения остается на практику...

ФОТО НА ЛЕКЦИИ

