1 Definir ciertas cosas

Lo que definiremos aqui son algunas generalizaciones que vamos a utilizar en ambos modelos:

- 1. $r \to \text{Rutas}$
- 2. $i,j \rightarrow$ Arcos donde $j=< j_s, j_e >$ y j_s es el nodo inicial del arcojy j_f el final
- 3. $G = \{V, E\} \rightarrow \text{Grafo dirigido y ponderado donde para todo } v \in V$ se cumple que v es un cliente de nuestro sistema y si $\langle v_1, v_2 \rangle \in E$ hay un arco de v_1 a v_2 . G es conexo y v_0 es el unico punto de acumulacion por lo que todo nodo pertenece a un ciclo que empieza y termina en v_0 . Si eliminamos v_0 entonces se forman varias Componentes Conexas (CC para los amigos), cada CC representa una ruta distinta en nuestro sistema. Luego podemos enumerarlas.
- 4. Se puede establecer una especie de orden entre los arcos definiendo que i < j si i aparece primero en una ruta que j

Hasta aqui lo que tienen en comun ambos modelos.

2 Modelo (X)

2.1 Variables del sistema

- 1. $X_{r_1j_1j_2r_2i} = \begin{cases} 1 & \text{si eliminamos } j_1, j_2 \text{ de } r_1 \text{ e insertamos en } i \text{ de } r_2 \ (j_1 < j_2) \\ 0 & \text{si no} \end{cases}$
- 2. $c_{rj} \to \text{Peso de } j \text{ en } r$
- 3. $S_{rij_1} \to$ Suma de los pesos de los arcos a partir de i+1 hasta j-1 ($S_{rij_1} = \sum_{j_2=i+1}^{j_1-1} c_{rj_2}$)
- 4. $K_{r_1ir_2j} \to \text{Peso del arco} < j_s, i_e > \text{donde } i$ se encuentra en la ruta r_1 y j en la ruta r_2
- 5. $L_{r_1ir_2j} \to \text{Peso del arco} < i_s, j_e > \text{donde } i$ se encuentra en la ruta r_1 y j en la ruta r_2
- 6. $P_r o \text{Peso total de } r \text{ para esta solucion } (P_r = \sum_{j=1}^n c_{rj})$
- 7. $Eliminar = \sum_{r_1=1}^{n_r} \sum_{j_1=1}^{n_{j_1}} \sum_{j_2=1}^{n_{j_2}} \sum_{r_2=1}^{n_r} \sum_{i=1}^{n_i} X_{r_1 j_1 j_2 r_2 i} * (P_{r_1} S_{r_1 j_1 j_2} c_{r_1 j_1} c_{r_1 j_2} + L_{r_1 j_1 r_1 j_2})$

8.
$$Sumar = \sum_{r_1=1}^{n_r} \sum_{j_1=1}^{n_{j_1}} \sum_{j_2=1}^{n_{j_2}} \sum_{r_2=1}^{n_r} \sum_{i=1}^{n_i} X_{r_1 j_1 j_2 r_2 i} * (P_{r_2} - c_{r_2 i} + S_{r_1 j_1 j_2} + K_{r_1 j_1 r_2 i} + L_{r_1 j_2 r_2 i})$$

2.2 El modelo

Funcion objetivo y restricciones propias del VRP. Las que añadimos nosotros:

1.
$$\sum_{i=j_1}^{j_2} X_{rj_1j_2ri} = 0 \ \forall r, \forall j_1 < j_2$$

2.
$$\sum P_r > Eliminar + Sumar$$

3.
$$\sum_{r_1=1}^{n_r} \sum_{j_1=1}^{n_{j_1}} \sum_{j_2=1}^{n_{j_2}} \sum_{r_2=1}^{n_r} \sum_{i=1}^{n_i} X_{r_1 j_1 j_2 r_2 i} = 1$$