Medical Image Processing for Diagnostic Applications

Fan Beam – Super Short Scan

Online Course – Unit 40 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Super Short Scan

Summary

Take Home Messages
Further Readings

Figure 1: Weight profile

Figure 2: Redundant areas and ranges

Figure 1: Weight profile

Figure 2: Redundant areas and ranges

Figure 3: Super short scan reconstruction showing an artifact

• Apply Parker weight $w_{\text{Parker}}(t,\beta)$ in reconstruction formula:

$$f(r,\varphi) = \frac{1}{2} \int_{0}^{2\pi} \frac{1}{U^2} \int_{-\infty}^{\infty} \frac{D}{\sqrt{D^2 + t^2}} (w_{\mathsf{Parker}}(t,\beta)g(t,\beta)) h(t'-t) dt d\beta,$$

(cf. Unit 38).

- It is not possible to pull $w_{\text{Parker}}(t,\beta)$ after the convolution without introducing artifacts.
- There is a solution that can solve this problem, but it is not covered in this course.
- This reconstruction method is known as *super short scan*.

Topics

Super Short Scan

Summary

Take Home Messages Further Readings

Take Home Messages

- A super short scan with a lesser angular sampling range than required from theory can be feasible in practice.
- Parker weights are also important if a super short scan is acquired.

Further Readings

Helpful reads for the current unit:

Frédéric Noo et al. "Image Reconstruction from Fan-Beam Projections on Less Than a Short Scan". In: *Physics in Medicine and Biology* 47.14 (July 2002), pp. 2525–2546. DOI: 10.1088/0031-9155/47/14/311

Dennis L. Parker. "Optimal Short Scan Convolution Reconstruction for Fan Beam CT". In: *Medical Physics* 9.2 (Mar. 1982), pp. 254–257. DOI: 10.1118/1.595078

Gengsheng Lawrence Zeng. *Medical Image Reconstruction – A Conceptual Tutorial*. Springer-Verlag Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-05368-9