

PyCon 2017 Delhi, India

Applying Transfer Learning on Your Data

Amita Kapoor, Associate Professor,
Shaheed Rajguru College of Applied Sciences for Women,
University of Delhi- India

Narotam Singh , Meteorologist - A,
ICT Centre, India Meteorological Department,
Ministry of Earth Sciences, Delhi, India

Email: dr.amita.Kapoor@ieee.org

A little About Amita Kapoor

- 20+ years of experience of teaching Neural Networks and Artificial Intelligence.
- Masters in Electronics from Jamia Milia Islamia in the year 1996,
- PhD from the University of Delhi in the year 2011.
 - Joint Co-Supervision:
 - Prof Wolfgang Freude, IPQ, KIT, Karlsruhe, Germany
 - Prof Enakshi K Sharma, UDSC, Delhi, India.
 - Awarded the prestigious DAAD fellowship.
 - Awarded best Presentation Award at International Conference Photonics 2008.
- At present I am Associate Professor in University of Delhi College.
- Supervises PhD students in the area of Artificial Intelligence, Machine Learning, and Robotics.
- Have more than 40 publication in the international journals and conferences.
- Recently co-Authored a book <u>Tensorflow 1.x Deeplearning Cookbook</u> (More than 90 recipes, and we go from basic MLP, CNN, RNN, LSTMs, GANs, AE, RBMs, SOMs, DBN, DQN, Policy Gradients)

 https://www.amazon.in/TensorFlow-1-x-Deep-Learning-Cookbook-ebook/dp/B0753KP6S4

Key Features

- Develop your skills to implement advance techniques in deep learning using Google's Tensorflow 1.x
- Implement real-world and practical examples to illustrate deep learning techniques.
- Hands-on recipes to learn how to design and train a multi-layer neural network with TensorFlow 1.x

A little About Narotam Singh

- Narotam Singh has been with India Meteorological Department,
 Ministry of Earth Sciences, India since 1996.
- He has been actively involved with various technical programs and training of officers of GOI in the field of Information Technology and Communication.
- He did his post-graduation in the field of Electronics in 1996 and both Post graduate diploma and Diploma in the field of Computer Engineering, in 1997 and 1994 respectively.
- He is currently working in the enigmatic field of Neural Networks.

Bio-inspired Machine Learning

- Convolutional Neural Networks (CNNs) -> Visual Neo Cortex
- Learning Paradigms:
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
- Transfer Learning

What is Transfer Learning?

- Transfer knowledge to new conditions.
- Reuse of some or all of the training (data) of a prior model:
 - feature representations
 - neural-node layering
 - Weights
 - training method
 - loss function
 - learning rate etc.
- Tap into the knowledge gained on prior projects: Supervised, Unsupervised, Reinforcement Learning
- Extracts knowledge from one or more source tasks and apply the knowledge to a target task.

What is Transfer Learning?

- People can intelligently apply knowledge learned previously to solve new problems.
- Not a new concept:
 - NIPS-95 Learning to Learn: Need for lifelong machine learning methods that retain and reuse previously learned knowledge.
 - DARPA 2005: The ability of a system to recognize and apply knowledge and skills learned in previous task to novel tasks.

Transfer Learning

Transfer learning will become a key driver of Machine Learning success in industry.

-Andrew Ng (NIPS 2016)

Transfer Learning- ML Commercial Success-Key?

- Traditional Models have reported Super human performance in certain tasks.
- Yet, when they are used in production, the performance deteriorates.
- Real world is very different from the structured data used for training and testing.
- Individual users can have slightly different preferences.
- Transfer Learning can help deal with these and allow us to use ML beyond tasks and domains where
 - labelled data is plentiful,
 - data is outdated
- Boost productivity by reducing time to implement new projects

Applications of Transfer Learning

- Learning from simulations and then applying to real world:
 - Real world data is hard to come by. Generate data using simulator: Data has similar feature space, slightly different in marginal probability distributions, and different in conditional probability distributions.
 - E.g.: Self driving Car, Robots, AGI Agents
- Data becoming outdated:
 - Wi-Fi Localization: Locating a mobile device in an indoor environment, position of device changes
- Sentiment Classification:
 - Learn sentiment classification on one topic and apply the model learned on other topics
- Cross Domain Activity Recognition
 - Knowledge about activity learned in one domain (Cleaning Indoor) can be applied to other domain (Doing Laundry).

Transfer Learning: Formal Definition¹

- **Domain** D consists of two components: Feature Space χ and marginal Probability Distribution P(X) where $X = \{x_1, ..., x_n\} \in \chi$ $D = \{\chi, P(X)\}$
- Task T also consists of two components: a Label Space Y and an objective predictive function f(.)

$$T = \{Y, f(\cdot)\}\$$

- In terms of probability the objective predictive function f(x) can be written as P(y|x).
- Consider one source domain D_s and corresponding source task T_s and one target domain D_T and target task T_T

Transfer Learning: Formal Definition¹

- Consider one source domain D_s and corresponding source task T_s and one target domain D_T and target task T_T
- Traditional Machine Learning:

$$D_s = D_T$$
 and $T_s = T_T$

Transfer Learning:

$$D_S \neq D_T$$
 or $T_S \neq T_T$

Source and target conditions can vary in four ways => Four Scenarios

Traditional vs Transfer Learning

Training and Evaluation on same task/domain

Training and Evaluation on same task/domain

Transductive Transfer Learning

Source Domain and Target Domain different: $D_S \neq D_T$

- $\chi_S \neq \chi_T$: Heterogenous Transfer Learning
 - E.g. Source and Target languages are different
- $P(X_S) \neq P(X_T)$: Frequency Feature Bias/Domain Adaption
 - E.g. Source and target documents are on different topics.

Inductive Transfer Learning

Source Task and Target Task different: $T_s \neq T_T$

- $Y_S \neq Y_T$: Main focus of this talk
 - E.g. Source documents had with binary classification and Target documents have multiple classification.
- $P(Y_S|X_S) \neq P(Y_T|X_T)$: Context Feature Bias:

Feature-based approach:

Source and target have some overlapping features

Parameter-based approach

Parameter-based approach

Parameter-based approach

Parameter-based approach:

Source and target tasks are related, and so what has been learned from source can be transferred to target.

Parameter-based approach:

Source and target tasks are related, and so what has been learned from source can be transferred to target.

Relational Approach:

If two relational domains are related, they may share similar relations among Objects.

Transfer Learning Techniques

Using pre-trained models: Useful when new task has different label space.

 Training an entire convolutional neural network from scratch requires a very large dataset and time, instead use a pretrained CNN

Learn domain-invariant representations:
Useful for Heterogenous transfer
learning and Domain Adaptation.

• Use models to learn representations that do not change based on the domain: Find a Common Latent Feature Space. Use Denoised Autoencoders

Make representations more similar

• Pre-process such that representations of both domains become more similar to e/o

Domain Confusion

Add an objective function to existing model that confuses the two domains.

Pre-trained Models

Pre-trained CNN as feature extractor:

Take a pre-trained CNN model, remove the last fully connected layers, use the remaining CNN as feature extractor for the new dataset. The output of this CNN feature extractor is fed to a classifier. The classifier is trained for the new dataset.

Fine tune pretrained CNN:

The weights of both the pre-trained CNN layers (all or some) and fully connected classifier layer/s are fine tuned using backpropagation.

Which method to employ?

Train the network from scratch Fine Tune the whole network Target Dataset Size Freeze the initial layers (n) of pre-Use pre-trained CNN as feature trained CNN, train the remaining extractor, train only the fully layers. connected layers. In CNN initial layers capture low-level image features, while top layers capture complex details.

Source-Target Feature Similarity

Pre-trained Models in Keras/Tensorflow

Models for Image classification with weights trained on ImageNet

- Xception
- VGG16
- VGG19
- ResNet50
- InceptionV3
- MobileNet

Import Models:

from keras.applications.model_name import model_name From keras.applications.model_name import preprocess_input, decode_predictions

from keras.applications.vgg16 import VGG16

Predicting Dog Breed Using Xception

Prediction Using the Model

Wow, Wow you are a Dog! And your breed is Labrador retriever

Correct breed is Chesapeake bay retriever

Wow, Wow you are a Dog! And your breed is English_cocker_spaniel

Correct breed is English_cocker_spaniel

Wow, Wow you are a Dog!
And your breed is
Greater_swiss_mountain_dog

Correct breed is Greater_swiss_mountain_dog

Wow, Wow you are a Dog! And your breed is Chihuahua

Correct breed is Chihuahua

Further Research

One/Zero shot learning

Aim to learn from only a few/one/zero shot learning.

Multi Task learning

Learn more than one task. Use knowledge acquired by learning from related tasks to do well on target. Source and Target are jointly trained.

References

- Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." *IEEE Transactions on knowledge and data engineering* 22.10 (2010): 1345-1359.
- Weiss, Karl, Taghi M. Khoshgoftaar, and DingDing Wang. "A survey of transfer learning." Journal of Big Data 3.1 (2016): 9.
- Ruder, Sebastian. "Transfer Learning Machine Learning's Next Frontier". Medium. March 2017. Web. 13 Aug 2017
- Chen, Minmin, et al. "Marginalized denoising autoencoders for domain adaptation." arXiv preprint arXiv:1206.4683 (2012).
- https://keras.io/applications/
- Hu, Derek Hao, and Qiang Yang. "Transfer learning for activity recognition via sensor mapping." IJCAI Proceedings-International Joint Conference on Artificial Intelligence. Vol. 22. No. 3. 2011.
- Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

References

- Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach. Proceedings of the 28th International Conference on Machine Learning, 513–520.
- Daumé III, H. (2007). Frustratingly Easy Domain Adaptation. Association for Computational Linguistic (ACL), (June), 256–263.
- Thrun, S., & Pratt, L. (1998). Learning to learn. Springer Science & Business Media
- Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., & Wierstra, D. (2016). Matching Networks for One Shot Learning. NIPS 2016.
- Ravi, S., & Larochelle, H. (2017). Optimization as a Model for Few-Shot Learning.
- Yu, J., & Jiang, J. (2016). Learning Sentence Embeddings with Auxiliary Tasks for Cross-Domain Sentiment Classification. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP2016), 236–246.