Review Def. The process { X(4), t > 0] is a continuous time Markov chain if  $\forall s, t \geq 0$  and  $i, j \in \mathcal{F}_+$  (non neg link gers), x(u)  $0 \leq u \leq s$  $P \left\{ X \left( t+s \right) = j \mid X(s) = i, X(u) = \infty(u), 0 = u < s = i \right\}$  $= P \left\{ \times (t+s) = J \setminus \times (s) = i \right\}$ How can we define MC. Another approach to define continuous time MC. It is a stochastic process such that each time it (i) The amount of time it spends in that State defore making a transition into a different state T; ~ Exp (vi)  $ET_i = \frac{1}{v_i}$ (ii) Pij - probability that process enters state of after the state i : 1) Pii=0  $2) \stackrel{\leq}{\underset{\text{V}}{=}} P_{ij} = 1$   $V_i$ The confinuous time MC can be de sind by: P= (Pij)ijes and Vi - the rate to leave state

Another way is to define a rate matrix R.  $g_{ij} = v_i P_{ij} - v_{ale} + o go from state c'$   $R = \left(R_{ij}\right)_{i,j \in S}$   $R_{ij} = \begin{cases} B_{ij} \\ -v_{ij} \end{cases}$ Vi = \( \bar{Z} \q i \) Birth and death process. Suppose there are n people in the system

(i) New arrivals enter system at exponentsal

(ii) People leave the system at exponentsal Ta v Exp (2n) E Ta = In TB - time until next departure

TB ~ Exp (Mn) E TB = 1/4n TA and TB are independent Parameters: 1 / m 3 n = 0 birth rate

| 1 ma 3 n = 0 death rate

A pirth and death process is a continuous-time MC States: {0,1,2,-...}  $P_{0,i} = 1$   $P_{1,i+1} = \frac{\lambda_i}{\lambda_i + \lambda_{1,i}}$  $\sigma_{o} = \lambda_{o}$  $P_{i+1,i} = \frac{p_i}{\lambda_i + p_i}$ Vi = 2; + Mi L > 0 i>0 The rate matrix  $g_{i,i+1} = \lambda i$   $g_{i,i-1} = \mu i$ ν<sub>0</sub>=λο ν<sub>i</sub> = λ; + μ; Let pro = 0 Ti - time starting from state i it takes for process to enter state i+1  $ET_{i} = \frac{1}{\lambda_{i}} + \frac{\mu_{i}}{\lambda_{i}} E(T_{i-1}) \qquad ET_{o} = \frac{1}{\lambda_{o}}$ Var (Ti)= (hi+ >i)2 + hi [Var (Ti-1)+ Var ITi)] T  $\frac{1}{2} \left( \frac{1}{2} \right) \left( \frac{1$ 

$$V_{ar}(T_{i}) = \frac{1}{2i} (\lambda_{i} + \mu_{i}) + \frac{\mu_{i}}{\lambda_{i}} V_{ar}(T_{i-1}) + \frac{\mu_{i}}{\lambda_{i}} \left[ E(T_{i-1}) + ET_{i} \right]^{2}$$

$$V_{ar}(T_{o}) = \frac{1}{2^{2}} \quad \text{we can get } V_{ar}(T_{i})$$

$$E(t_{i}) = \frac{1}{2^{2}} \quad \text{we can get } V_{ar}(T_{i})$$

$$E(t_{i}) = \frac{1}{2^{2}} \quad \text{we can get } V_{ar}(T_{i}) = \frac{1}{2^{2}} \cdot E(T_{i}) = \frac{1}{2^{2}} \cdot E(T_{i}$$

Backward kolmogorov equation.

$$P_{ij}'(t) = \sum_{k \neq i} q_{ik}(t) - v_i P_{ij}(t) \quad q_i$$
 $P(t) = (P_{ij}(t)) \quad R = (R_{ij})$ 
 $R_{ij} = \begin{cases} P_{ij}(t) \\ P_{ij}(t) \end{cases} \quad q_i = \begin{cases} P_{$ 

6.5. Limiting Probabilities. The probability that a continuous

MC will be in State j at time to

often converges to a limiting

value that independent of initial State
P; = lim
p; (+)
+>= Cim
p; (+). Balance equation  $v_j P_j = \sum_{k \neq j} q_{kj} P_k$ & Pj = 1 Matrix form  $\vec{P}^T R = 0 \quad (*)$   $\vec{R} \begin{bmatrix} P & -0 \\ p \end{bmatrix} - 0 \quad \xi P = 1$ P = Stationary distribution is a solution of P(t) = P





Exit distribution Het VD = min / t: X(t) & D 3 T = min (Va, VB) Suppose C = S (AVB) is shrite P. (7 40) > 0 probability to start at i and come back to i at Ishite time t is t if t we have h(a) = 1 a t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t A t $h(i) = \sum_{j \neq i} P_{ij} h(j)$   $\forall i \in C$ Then  $h(i) = P_i (V_A \subseteq V_B)$  probability to visit set A before 18; you start at i.
In turns of rate matrix it is 2 g., h(s) - V. h(c)=0  $\sum R_{ij} h(j) = 0$  (1)

Het 
$$r = (rij)_{ij \in C}$$
 $rij = R_{ij}$   $i,j \in C$ 

Het  $w_i = \sum_{j \in A} R_{ij}$ 

Het  $h(a) = 1$ 
 $h(b) = 0$ 

(1) Can be written as  $\sum_{j \in C} r_{ij} h(j) = -w_{ij}$ 
 $-\sum_{j \in A} r_{ij} h(j) = w(i) - Rh = w$ 
 $h = (-r)^{-1} w$ 

Exit time

Het  $C = S \cap A'$  be finite

 $Pi(V_A \circ \infty) > 0$  if  $C$ 

probability to start at  $C$  and  $C$  is it  $C$ 

in a finite time.

 $g(i) = V_i + \sum_{j \in C} g_{ij} g_{jj}$ 
 $g(i) = E_i V_A$  (expected time to start

 $V_i = S(i) = 1 + \sum_{j \in C} g_{ij} g_{jj}$ 
 $f(i) = 1 + \sum_{j \in C} g_{ij} g_{jj}$ 
 $f(i) = 1 + \sum_{j \in C} g_{ij} g_{jj}$ 
 $f(i) = 1 + \sum_{j \in C} g_{ij} g_{jj}$ 

Renewal process. Lest (N(t), t >0 } be a counting process Let Xn be the time between (n-1) and ntheoren + x1 x2 x3 N(0)=0 N(t,)=1 N/t-1=2 Def. If the sequence of nonnegative r. v. f X1, X2 .. I is ied then the counting process { N(t), t ≥ 0} is said to be a renewal process. Sn= Z Xx  $N(t) > n \iff S_n \leq t$ 1  $P(N(t)=n)=P(N(t)\geq n)-P(N(t)\geq n+1)$  $= P(S_n \subseteq +) - P(S_{n+1} \subseteq +)$ There fore  $P \{ N(t) = n \} = F_n(t) - F_{n+1}(t)$   $P(N(t) = n) - \int P(N(t) = n / S_n = y) + (y) dy$ 

$$m(t) = \int_0^t [1 + m(t - x)] f(x) dx$$
  
=  $F(t) + \int_0^t m(t - x) f(x) dx$  (7.5)

Eq. (7.5) is called the *renewal equation* and can sometimes be solved to obtain the renewal function.



