Mathématiques Généralités

Révision de certaines notions de mathématiques.

Antoine Lucsko

Le but de ce chapitre est de vous rappelez le calcul algébrique et certaines notions de mathématiques du Lycée qui nous semble important pour la suite.

Un peu de calcul algébrique

Nous allons commencer par un peu de calcul algébrique.

Calculs

01.c développer des expressions littérales

Développez les expressions suivantes :

$$a \times (c + ab)$$

$$ab \times ((ac - ab) + a \times (ac + b))$$

$$c \times (c + ac)$$

$$-c \times (c - ac)$$

$$-c \times (d + ac)$$

$$-c \times (c - ac) \times (a + c)$$

02.c calculer & développer avec fraction

Mettre sur la même barre de fraction les expressions suivantes & développez si besoin :

$$\frac{a}{7} + \frac{2b}{3}$$

$$\frac{a}{5} - \frac{2b}{10}$$

$$\frac{a}{5} \times (a+2b)$$

$$\frac{5}{ab} \times (a+2b)$$

03.c Simplifiez les expressions suivantes

$$s_1 = 7\sqrt{20} - 11\sqrt{45} + 3\sqrt{80}$$

$$s_2 = 2\sqrt{18} - 5\sqrt{8} + 4\sqrt{50}$$

$$s_3 = (2\sqrt{3} + 1)^2 - (\sqrt{3} + 2)(\sqrt{3} - 2) + (3\sqrt{3} + 2)(3\sqrt{3} + 6)$$

Le symbole somme

$$\sum_{n=1}^{3} 2^n = 2 + 2^1 + 2^2 + 2^3$$

La lettre n=1 jusqu'à 3 et le symbole

$$\sum$$

représente une somme.

Parfois on écrira des choses comme :

$$\sum_{n=1}^{n} 2^{n} = 2 + 2^{1} + \dots + 2^{n}$$

01.s Exercice Calculer

Simplifiez la somme ci-dessous en une somme :

$$S_1 = \sum_{n=1}^{3} 2^n + \sum_{h=1}^{3} 2^{3+h}$$

Même question mais avec des lettres :

$$S_2 = \sum_{n=1}^{k} 2^n + \sum_{h=1}^{k} 2^{k+h}$$

Calculez la somme suivante challenge suivante :

$$S_3 = \sum_{k=0}^{3} \sum_{h=0}^{2} 2^{k+h}$$

 $Calcul\ classique\ en\ statistique.\ .\ .$

Vérifiez que vous pouvez permuter le symbole somme.

Formule célèbre

$$\sum_{k=1}^{n} k = 1 + 2... + n = \frac{n \times (n+1)}{2}$$

On peut démontrer cette formule avec ce rectangle disons de dimension

$$n \times (n+1)$$

largeur et longueur.

Figure 1: formule rectangle