PH107 WP FT and HUP

Utkarsh

Autumn Semester 2020-21

Q1

- (b) $x = \pm \frac{\ln 2}{\alpha}$
- (e) $k = \pm \alpha$

Q4

- $y = 2\frac{A}{x}\sin(\frac{kx}{2})\cos(k_ox \omega t)$
- ullet $y1=2rac{A}{x}\sin{(rac{kx}{2})}$ is the envelope and $\cos{(k_ox-\omega t)}$ is the oscillatory part.
- ullet y1 has central maximum at x=0.
- ullet For first minimum, $rac{\mathrm{d}y1}{\mathrm{d}x}=0$ gives $rac{\Delta kx}{2}= anrac{\Delta kx}{2}$
- $\Delta x \Delta k = 8.986 >= 0.5$

Q7

- When slit width is large compared to wavelength, then spot size = slit width.(Why?)
- Spot radius = $2\frac{\lambda D}{w}$.
- \bullet Minimum spot radius when $w=2\frac{\lambda D}{w}$

§ 2

Q8

• (b)
$$E = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

•
$$\langle E \rangle = \frac{\langle p^2 \rangle}{2m} + \frac{1}{2} k \langle x^2 \rangle$$

•
$$\langle E \rangle = \frac{(\Delta p)^2}{2m} + \frac{1}{2}k(\Delta x)^2$$

•
$$\Delta x = \frac{\hbar}{2\Delta p}$$

•
$$\langle E \rangle = \frac{(\Delta p)^2}{2m} + \frac{1}{2} \frac{k\hbar^2}{(\Delta p)^2}$$

$$\bullet \ \langle E \rangle$$
 is min when $\frac{\mathrm{d} \langle E \rangle}{\mathrm{d} \Delta p} = 0$

• (c)
$$\langle E \rangle = \frac{\langle p^2 \rangle}{2m} - \frac{Ze^2}{r}$$

$$\bullet \ \Delta x = r$$

Q10

• (b)
$$\Delta t = 10^{-8} s$$

• Use
$$\Delta E \Delta t = \frac{\hbar}{2}$$

$$\bullet$$
 Spectral width $2\Delta E\,=\,6.6\times 10^{-8} eV$

• (c) Search resonant absorption.

Tut 8 Wave function and Operators

Q5

•
$$\hat{G}\phi(x)=ih\frac{\mathrm{d}\phi(x)}{\mathrm{d}x}+Ax\phi(x)=\lambda\phi(x)$$
 (Let!)

• solve the above differential equation to get the required eigenfunction.

Q₆

•
$$x = 2ato2a + dx \implies \phi(x) = \phi(2a) = Aexp(-(2a)^2/a^2) = \frac{100}{N}$$

$$\bullet \ x = atoa \, + \, dx \implies \phi(x) = \phi(a) = Aexp(-(a)^2/a^2) \, = \, \tfrac{100e^3}{N} \text{ (Why?)}$$

Q7

• Ans.:
$$\frac{(0.25)^2}{(0.25)^2 + (0.75)^2}$$