# Séries Numéricas Cálculo para Engenharia

## Maria Elfrida Ralha



Licenciatura em Engenharia Informática

## Índice

- Séries de termos não negativos
  - Definições & Teorema
  - Critérios de convergência
    - Critério do integral
    - 1.º critério de comparação
    - 2.º critério de comparação
    - Critério da razão (ou de D'Alembert)
    - Critério da raiz (ou de Cauchy)
- 2 Séries de termos com sinal arbitrário
  - Definições & Teorema
  - Convergência Absoluta vs. Convergência Simples
- Séries alternadas
  - Critério de Leibnitz

E. Ralha (DMat) Séries Numéricas LEInf 2023'24 2 / 25

### Definição

 Uma série de termos não negativos é uma série cuja forma geral se expressa na forma

$$\sum_{n\geq 1} u_n,$$
 onde  $u_n\geq 0$  para todo o  $n\in \mathbb{N}.$ 

Neste caso, tem-se que:

- o termo geral da série é, naturalmente,  $u_n$ ;
- a sucessão das somas parciais é monótona crescente pois

$$s_n = s_{n-1} + u_n \ge s_{n-1}$$

## Teorema

Uma série de termos não negativos é convergente se e só se a correspondente sucessão das somas parciais for majorada (limitada superiormente).

## Considere-se a série harmónica

$$\sum_{n=1}^{+\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

Obs:: Embora o termo geral tenda para zero, a série harmónica é divergente!

- [Análise da convergência]
  - Basta constatar que

$$1 + \frac{1}{2} + \underbrace{\left(\frac{1}{3} + \frac{1}{4}\right)}_{> \frac{2}{4} = \frac{1}{2}} + \underbrace{\left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)}_{> \frac{4}{8} = \frac{1}{2}} + \underbrace{\left(\frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{15} + \frac{1}{16}\right)}_{> \frac{8}{16} = \frac{1}{2}} + \dots$$

Ou seja,

A sucessão das somas parciais não é majorada!

Por conseguinte, a série harmónica diverge.

## [Critério do integral]

Seja  $f:[1,+\infty[\longrightarrow \mathbb{R}$  uma função contínua, positiva, decrescente e, para cada  $n\in \mathbb{N}$  seja,  $f(n)=u_n$ . Então

$$\sum_{n>1} u_n \qquad e \qquad \int_1^{+\infty} f(x) \, dx$$

têm a mesma natureza (i. é, são ambos convergentes ou ambos divergentes).

## Nota

Note-se que no caso de serem ambos convergentes, não se estabelece qualquer relação entre a soma da série e o valor do integral impróprio.

Considerem-se as séries de Riemann, definidas por

$$\sum_{r=1}^{+\infty} \frac{1}{n^r} = 1 + \frac{1}{2^r} + \frac{1}{3^r} + \dots + \frac{1}{n^r} + \dots$$

**Obs**:: entre as quais, para r = 1, está a série harmónica!

- [Análise da convergência]
  - Comparam-se, as séries de Riemann, com o integral impróprio

$$\int_1^{+\infty} \frac{1}{x^r} \, dx.$$

- ② A série de Riemann  $\sum_{n\geq 1} \frac{1}{n^r}$  converge quando e só quando r>1.
  - Seja  $f(x) = \frac{1}{x^r}$ . Esta função
    - tem domínio  $[1, +\infty[$
    - é contínua, positiva e decrescente
    - $f(n) = \frac{1}{n^r}$
  - Então

$$\sum_{n \ge 1} \frac{1}{n^r} \qquad \qquad e \qquad \qquad \int_1^{+\infty} \frac{1}{x^r} \, dx$$

têm a mesma natureza.

• O integral impróprio diverge quando  $r \le 1$  e converge quando r > 1 (confira-se!), logo a série de Riemann também diverge quando  $r \le 1$  e converge quando r > 1.

### **Exemplo**

A série de Riemann  $\sum_{n\geq 1} \frac{1}{n^2}$  converge?

Considere-se a função f, definida no intervalo  $[1, +\infty[$ , por  $f(x) = \frac{1}{x^2}$ .

**Obs**:: f é contínua, positiva, decrescente e, para cada  $n \in \mathbb{N}$  temos  $f(n) = u_n$ .

Comparemos  $\sum_{n>1} \frac{1}{n^2} \operatorname{com} \int_{x=1}^{+\infty} \frac{1}{x^2} dx$ .

Note-se que

$$s_n = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$$

$$= f(1) + f(2) + f(3) + \dots + f(n)$$

$$< f(1) + \int_1^{+\infty} \frac{1}{x^2} dx$$

• Uma vez que  $\int_1^{+\infty} \frac{1}{x^2} dx = \dots = 2$ , então a série  $\sum_{n \ge 1} \frac{1}{n^2}$  converge.



## [1.º critério de comparação]

Sejam  $\sum_{n\geq 1} u_n$  e  $\sum_{n\geq 1} v_n$  duas séries de termos não negativos tais que, a partir de certa ordem,  $(0 \leq) u_n \leq v_n$ .

- (a) Se  $\sum_{n\geq 1} v_n$  é convergente então  $\sum_{n\geq 1} u_n$  também converge.
- (b) Se  $\sum_{n\geq 1} u_n$  é divergente então  $\sum_{n\geq 1} v_n$  também diverge.

## Nota

As séries geométricas e as de Riemann, são séries particularmente úteis enquanto séries comparativas de referência.

## Exercício

• Mostre que série  $\sum_{n\geq 1} \frac{1}{3^{n+1}n}$  é convergente.

## [2.º critério de comparação]

Sejam  $\sum u_n$  e  $\sum v_n$  séries de termos positivos tais que  $\ell = \lim_n \frac{u_n}{v_n}$ , onde  $\ell \in [0, +\infty[$ .

- (a)  $\ell \neq 0$  e  $\ell \neq +\infty \implies \sum_{n\geq 1} u_n$  e  $\sum_{n\geq 1} v_n$  têm a mesma natureza.
- (b)  $\ell = 0$ 
  - $\bullet \ \, \sum_{n\geq 1} v_n \ \, \text{converge} \ \, \Longrightarrow \ \, \sum_{n\geq 1} u_n \ \, \text{converge}.$   $\bullet \ \, \sum_{n\geq 1} v_n \ \, \text{diverge} \ \, \Longrightarrow \ \, \sum_{n\geq 1} v_n \ \, \text{diverge}.$
- (c)  $\ell = +\infty$ 
  - $\sum_{n\geq 1} v_n$  diverge  $\implies \sum_{n\geq 1} u_n$  diverge.
  - $\sum_{n=1}^{\infty} u_n$  converge  $\Longrightarrow \sum_{n=1}^{\infty} v_n$  converge.

• Mostre que série  $\sum_{n>1} \frac{1}{n+1}$  é divergente.

2 Mostre que série  $\sum_{n>1} \left( \sin \frac{1}{n} \right)$  é divergente.

## [Critério da razão (ou de D'Alembert)]

Seja u uma sucessão de termos positivos e suponha-se que

$$\ell = \lim_{n} \frac{u_{n+1}}{u_n}$$

- (a) Se  $\ell < 1$ , então  $\sum_{n \ge 1} u_n$  é convergente.
- (b) Se  $\ell > 1$ , então  $\sum_{n \geq 1} u_n$  é divergente.
- (c) Se  $\ell=1$ , então nada se pode concluir sobre a natureza de  $\sum_{n\geq 1}u_n$ .

#### Exercício

• Estude a natureza da série  $\sum_{n\geq 1} \frac{(n!)^2}{(2n)!}$ .

## [Critério da raiz (ou de Cauchy)]

Seja u uma sucessão de termos não negativos e suponha-se que

$$\ell = \lim_{n} \sqrt[n]{u_n}$$
.

- (a) Se  $\ell < 1$ , então  $\sum_{n \geq 1} u_n$  é convergente.
- (b) Se  $\ell > 1$ , então  $\sum_{n \geq 1} u_n$  é divergente.
- (c) Se  $\ell=1$ , então nada se pode concluir sobre a natureza de  $\sum_{n\geq 1}u_n$ .

#### Exercício

• Estude a natureza da série  $\sum_{n\geq 1} \left(\frac{n^2}{n^3+3n}\right)^n$ .

16/25

## Índice

- Séries de termos não negativos
  - Definições & Teorema
  - Critérios de convergência
    - Critério do integral
    - 1.º critério de comparação
    - 2.º critério de comparação
    - Critério da razão (ou de D'Alembert)
    - Critério da raiz (ou de Cauchy)
- Séries de termos com sinal arbitrário
  - Definições & Teorema
  - Convergência Absoluta vs. Convergência Simples
- Séries alternadas
  - Critério de Leibnitz

E. Ralha (DMat) Séries Numéricas LEInf 2023'24 17 / 25

## Definições

 Uma série de termos com sinal arbitrário é uma série cujos termos não têm sinal fixo. Seja

$$\sum_{n\geq 1}u_n$$

• À série

$$\sum_{n\geq 1} |u_n|$$

chama-se série dos módulos associada à série dada.

## Convergência Absouta vs. Convergência Simples

## Teorema

Se a série  $\sum_{n\geq 1} |u_n|$  é convergente, então a série  $\sum_{n\geq 1} u_n$  também é convergente.

- Se  $\sum_{n\geq 1} |u_n|$ 
  - converge, diz-se que  $\sum_{n\geq 1} u_n$  é absolutamente convergente;
  - diverge mas  $\sum_{n\geq 1}u_n$  converge, diz-se que  $\sum_{n\geq 1}u_n$  é simplesmente convergente.

### Nota

Para averiguar se a série de termos com sinal arbitrário,  $\sum_{n\geq 1}u_n$ , é absolutamente convergente, empregam-se na série  $\sum_{n\geq 1}|u_n|$ 

os critérios definidos para as séries de termos não negativos.

#### Exercícios

## Índice

- Séries de termos não negativos
  - Definições & Teorema
  - Critérios de convergência
    - Critério do integral
    - 1.º critério de comparação
    - 2.º critério de comparação
    - Critério da razão (ou de D'Alembert)
    - Critério da raiz (ou de Cauchy)
- Séries de termos com sinal arbitrário
  - Definições & Teorema
  - Convergência Absoluta vs. Convergência Simples
- Séries alternadas
  - Critério de Leibnitz

E. Ralha (DMat) Séries Numéricas LEInf 2023'24 21/25

### Definição

• Uma série alternada é a uma série cuja forma geral é

$$\sum_{n\geq 1} (-1)^n a_n, \quad \text{onde} \quad a_n > 0 \text{ para todo o } n \in \mathbb{N}.$$

Neste caso,

• a sucessão geradora, u , é definida por

$$u_n = (-1)^n a_n, \ \forall n \in \mathbb{N}$$

• a sucessão das somas parciais, s, é definida por

$$s_n = -a_1 + a_2 - a_3 + \cdots + (-1)^n a_n$$

• uma série alternada pode apresentar-se também da forma

$$\sum_{n\geq 1} (-1)^{n+1}\,a_n, \qquad \text{com} \quad a_n>0, \ \forall \, n\in \mathbb{N}.$$

## Teorema (Critério de Leibniz)

Se a é uma sucessão decrescente (eventualmente só a partir de uma determinada ordem), de termos positivos e tal que

$$\lim_{n} a_{n} = 0.$$

então,

a série 
$$\sum_{n>1} (-1)^n a_n$$
 é convergente.

Porque se cumpre o critério de Leibniz.

Uma vez que

$$\sum_{n\geq 1} \left| \frac{(-1)^{n+1}}{n} \right| = \sum_{n\geq 1} \frac{1}{n}$$

é a série harmónica (que é divergente), concluímos que a série

$$\sum_{n\geq 1}\frac{(-1)^n}{n}$$

não é absolutamente convergente, mas é simplesmente convergente.

 As séries alternadas são casos particulares das séries de termos com sinal arbitrário. • Condição Suficiente de Divergência:

A menos que  $a_n \to 0$ , a série  $\sum_{n \ge 1} a_n$  diverge.

Séries Geométricas:

As séries  $\sum_{n\geq 1} a r^n$  convergem quando |r| < 1; nos outros casos, divergem.

Resumo

Séries de Riemann:

As séries  $\sum_{n\geq 1} \frac{1}{n^p}$  convergem quando p>1; nos outros casos, divergem.

Séries de termos não negativos:

Usar o 'critério do Integral', os critérios de 'comparação' (com séries conhecidas), ou ainda os critérios do Limite, da Razão ou da Raíz.

Séries de termos com sinal arbitrário:

Estudar as séries dos módulos e recordar que a convergência absoluta implica a convergência simples.

Séries Alternadas:

Critério de Leibniz.