monomial $(x, y) \to xy$ using a ReLU network. From there one then shows that ReLU networks suitably approximate products $x \to x_1 \cdots x_d$ as well as more general monomials. From monomials one can easily approximate polynomials by combining networks, and now one can connect to the first part of the argument, by constructing a network that approximates the piecewise polynomial function mentioned above, that itself approximates f_0 .

Approximation, Step 1. In order to approximate a function $f \in \mathcal{C}_d^{\beta}([0,1]^d, K)$, we define a grid of $[0,1]^d$ as, for $M \ge 1$ an integer to be chosen below,

$$D(M) = \left\{ x_l = \left(\frac{l_j}{M} \right)_{j=1,\dots,d}, \quad l = (l_1,\dots,l_d) \in \{0,1,\dots,M\}^d \right\}.$$

Around a given point $\mathbf{a} \in [0,1]^d$, the function f can be approximated by its Taylor polynomial: in dimension d its expression is, for $\mathbf{a} = (a_1, \dots, a_d)$, denoting $\alpha! = \alpha_1 \cdots \alpha_d$, and $u^{\alpha} = u_1^{\alpha_1} \cdots u_d^{\alpha_d}$ for $u \in \mathbb{R}^d$,

$$P_{\boldsymbol{a}}^{\beta}f(x) := \sum_{0 \le |\alpha| < \beta} (\partial^{\alpha}f)(\boldsymbol{a}) \frac{(x-\boldsymbol{a})^{\alpha}}{\alpha!}.$$
 (4.6)

Taylor's expansion with Lagrange remainder gives, for any $f \in \mathcal{C}^{\beta}_{d}([0,1]^{d},K)$

$$|f(x) - P_{\boldsymbol{a}}^{\beta} f(x)| \le K ||x - \boldsymbol{a}||_{\infty}^{\beta}.$$
 (4.7)

Let us check (4.7). By Taylor's formula there exists $\xi \in [0,1]$ such that

$$f(x) = \sum_{0 \le |\alpha| < \beta - 1} (\partial^{\alpha} f)(\boldsymbol{a}) \frac{(x - \boldsymbol{a})^{\alpha}}{\alpha!} + \sum_{\beta - 1 \le |\alpha| < \beta} (\partial^{\alpha} f) (\boldsymbol{a} + \xi(x - \boldsymbol{a})) \frac{(x - \boldsymbol{a})^{\alpha}}{\alpha!},$$

so subtracting (4.6) and using the triangle inequality gives

$$\begin{split} |f(x) - P_{\boldsymbol{a}}^{\beta}f(x)| &\leq \sum_{\beta - 1 \leq |\alpha| < \beta} \left| (\partial^{\alpha}f) \left(\boldsymbol{a} + \xi(x - \boldsymbol{a}) \right) - (\partial^{\alpha}f) (\boldsymbol{a} \right| \frac{\|x - \boldsymbol{a}\|_{\infty}^{|\alpha|}}{\alpha!} \\ &\leq K |\xi| \|x - \boldsymbol{a}\|_{\infty}^{\beta - \lfloor \beta \rfloor} \sum_{\beta - 1 \leq |\alpha| < \beta} \frac{1}{\alpha!} \|x - \boldsymbol{a}\|_{\infty}^{\lfloor \beta \rfloor} \leq K \|x - \boldsymbol{a}\|_{\infty}^{\beta}, \end{split}$$

using the fact that f is β -Hölder.

Define, again for any $f \in \mathscr{C}_d^{\beta}([0,1]^d, K)$ and $x = (x_1, ..., x_d)$,

$$P^{\beta}f(x) := \sum_{x_l \in D(M)} (P_{x_l}^{\beta}f)(x) \prod_{j=1}^{d} (1 - M|x_j - x_{l,j}|)_+.$$
(4.8)

Inside the hypercubes defined by consecutive gridpoints, $P^{\beta}f(x)$ is a polynomial, so the overall function $P^{\beta}f$ is piecewise–polynomial.

Lemma 4.7 (Approximation of f by a piecewise–polynomial function). For any $f \in \mathscr{C}_d^{\beta}([0,1]^d,K)$, define $P^{\beta}f$ as in (4.8). Then

$$||f - P^{\beta} f||_{\infty} \le K M^{-\beta}.$$

Proof. Observe the following sum-product formula (expand the middle term)

$$\sum_{x_l = (l_1/M, \dots, l_d/M)} \prod_{j=1}^d (1-M|x_j - x_{l,j}|)_+ = \prod_{j=1}^d \sum_{l=0}^M (1-M|x_j - l/M|)_+ = 1.$$

Indeed, if $l^* = \lfloor Mx_j \rfloor$, then $(1 - M|x_j - l/M|)_+$ is possibly non-zero only for $j = l^*, l^* + 1$ and

$$(1 - M|x_i - l^*/M|)_+ + (1 - M|x_i - (l^* + 1)/M|)_+ = 1 - M(x_i - l^*/M) + 1 - M((l^* + 1)/M - x_i) = 1.$$

One notes that the terms of the sum in the definition (4.8) are nonzero only at a given x for x_l such that $\|x - x_l\|_{\infty} \le 1/M$ – the corners of the hypercube of radius 1/M the point x belongs to –, otherwise the product in (4.8) is zero. Denoting by $\mathcal{H}_{x_l}(x) = \prod_{j=1}^d (1 - M|x_j - x_{l,j}|)_+$,

$$\left| f(x) - P^{\beta} f(x) \right| \leq \sum_{x_l} |f(x) - (P^{\beta}_{x_l} f)(x)| \mathcal{H}_{x_l}(x) \leq \max_{\|x - x_l\|_{\infty} \leq 1/M} |f(x) - (P^{\beta}_{x_l} f)(x)| \sum_{\|x - x_l\|_{\infty} \leq 1/M} \mathcal{H}_{x_l}(x) \leq KM^{-\beta},$$

using Taylor's approximation (4.7), which concludes the proof.

Approximation, Step 2 (specific to ReLU activation).

Lemma 4.8 (Approximating x(1-x) with piecewise affine functions). Let $T^1:[0,1] \to [0,1/4]$ and more generally $T^k:[0,2^{-2(k-1)}] \to [0,2^{-2k}]$, $k \ge 1$, be the maps

$$T^{1}(x) = \frac{x}{2} \wedge \left(\frac{1}{2} - \frac{x}{2}\right), \quad T^{k}(x) = \frac{x}{2} \wedge \left(\frac{1}{2^{2k-1}} - \frac{x}{2}\right).$$

Let us set $R^k := T^k \circ T^{k-1} \circ \cdots \circ T^1$, for $k \ge 1$. Then for any $m \ge 1$,

$$\left| x(1-x) - \sum_{k=1}^{m} R^k(x) \right| \le 4^{-m-1}.$$

Proof. Let C(x) = x(1-x). The key is to observe the 'fractal'-like property

$$C(x) = T^{1}(x) + \frac{1}{4}C(4T^{1}(x)).$$

This can be seen on a picture or just checking algebraically. Next note that by definition $T^2(y) = \frac{1}{4}T^1(4y)$ and more generally $T^{k+1}(y) = \frac{1}{4^k}T^1(4^ky)$. By recursion one immediately obtains

$$C(x) = T^{1}(x) + T^{2} \circ T^{1}(x) + \dots + T^{k} \circ \dots \circ T^{1}(x) + \frac{1}{4^{k}} C(4^{k} T^{k} \circ \dots \circ T^{1}(x)).$$

The result follows by applying this with k = m and noting that $C(\cdot)$ is bounded by 1/4 on [0,1].

Lemma 4.9 (Approximating $(x, y) \to xy$ by a DNN). Let $m \ge 1$. There exists a DNN, $Mult_m(x, y)$, with

$$Mult_m \in \mathcal{F}(m+4,(2,6,\cdots,6,2,2,2,1)),$$

such that for any $x, y \in [0,1]$ it holds $Mult_m(x,y) \in [0,1]$, $Mult_m(0,y) = Mult_m(x,0) = 0$ and

$$\left| Mult_m(x,y) - xy \right| \le 4^{-m}.$$

Proof. In order to approximate $(x, y) \to xy$, we use a 'polarisation' formula. The most classical polarisation writes xy in terms of squares as $xy = (x+y)^2/4 - (x-y)^2/4$. Here we rather use, since from Lemma 4.8 we have access to x(1-x) = C(x), the formula

$$xy = C\left(\frac{x-y+1}{2}\right) - C\left(\frac{x+y}{2}\right) + \frac{x+y}{2} - \frac{1}{4}$$

(verify it!) where we know how to approximate every element on the right hand–side by affine functions. Denoting $C_m := \sum_{k=1}^m R^k$, Lemma 4.9 gives $\|C_m - C\|_{\infty} \le 4^{-m-1}$. Let us further denote

$$Z_m(x,y) := \left(C_m\left(\frac{x-y+1}{2}\right) + \frac{x+y}{2} - C_m\left(\frac{x+y}{2}\right) - \frac{1}{4}\right)_+ \land 1.$$
 (4.9)

Then, since the map $(u, v) \rightarrow \Delta(u, v) := (u - v)_+ \land 1$ is 1-Lipschitz, we have

$$|Z_m(x, y) - xy| \le 2||C - C_m||_{\infty} \le 4^{-m}/2.$$

Let us set $\operatorname{Mult}_m(x, y) := Z_m(x, y)$ and see how to practically implement this into a ReLU network.

Basic networks for T_+ , T_-^k ,

$$T^{k}(x) = T_{+}(x) - T_{-}^{k}(x), \qquad T_{+}(x) := (x/2)_{+}, \quad T_{-}^{k}(x) := (x-2^{1-2k})_{+}.$$

So, the functions T_+, T_- and T^k for $k \ge 1$ can all be written with a shallow network using only one neuron, as shown in Figure 4.1. Finally, using that $\Delta(u, v) = 1 \wedge (u - v)_+ = 1 - (1 - (u - v)_+)_+$, one can easily encode Δ using a ReLU network with two hidden layers.

$$T_{+}: x \xrightarrow{\frac{1}{2}} \xrightarrow{1}$$

$$(x - \frac{1}{2})_{+}$$

$$T_{-}: x \xrightarrow{\frac{1}{2}} \xrightarrow{1}$$

$$(x - 2^{1-1k})_{+}$$

$$(x - 2^{1-1k})_{+}$$

Figure 4.1: DNN representation of basic *T* functions encoding (on top of arrows: matrix coefficients; below arrows in green: non-zero translations; circle: neuron pass)

Combining basic networks to compute $Z_m(x,y)$. The basic networks can then be combined according to the network depicted in Figure 4.2, which taking as input $(T_+(x), h(x), T_-(x))$, computes $C_m(x) + h(x)$, where $h: [0,1] \to [0,\infty)$ is a given function taking nonnegative values. Note that the neuron pass on the middle row in Figure 4.2 is just the identity, as the input is always nonnegative.

Figure 4.2: Encoding approximation of h(x) + C(x), with C(x) = x(1-x) with ReLU (on top of arrows: matrix coefficients; below arrows in green: non-zero translations; formulas display computed quantity just after neuron pass, except last one for final output, for which we do not apply a neuron)

It is then enough to run two sub-networks in parallel: a first computes

$$(x,y) \rightarrow \left(T_+\left(\frac{x-y+1}{2}\right), \frac{x+y}{2}, T_-\left(\frac{x-y+1}{2}\right)\right)$$

and applies the network N_m from Figure 4.2, thus computing $C_m\left(\frac{x-y+1}{2}\right) + \frac{x+y}{2}$. A second sub-network does the same after first computing

$$(x, y) \rightarrow \left(T_+\left(\frac{x-y}{2}\right), \frac{1}{4}, T_-\left(\frac{x+y}{2}\right)\right),$$

thus computing $C_m(\frac{x+y}{2}) + \frac{1}{4}$. Finally applying Δ to the two sub-results provides a computation of $Z_m(x,y)$ as required.

To conclude the proof, one checks that the number of parameters is as required, and that the function $\operatorname{Mult}_m(x, y)$ is indeed 0 for inputs of the form (x, 0) and (0, y) (this is checked on successive functions R^1, R^2, \ldots, R^m and left as an exercise).

More generally, the next lemma shows, first, how to construct a DNN approximating the product $x_1 \cdots x_r$. Second, one can similarly approximate any monomial, that is a polynomial of the form $x_1^{\alpha_1} \cdots x_r^{\alpha_r}$, and by synchronising the resulting networks, all monomials up to a certain degree γ *simultaneously*. Let us write, for f a \mathbb{R}^{N_L} -valued function, $\|f\|_{\infty}$ as a shorthand for $\||f|_{\infty}\|_{\infty}$.

Lemma 4.10 (Approximating products and monomials by a DNN). Let $m, r \ge 1$ two integers. There exists a DNN, $Mult_m^r : [0,1]^r \to [0,1]$, with depth $L \le m \log r$ and maximum width 6r such that for

$$x = (x_1, \dots, x_r) \in [0, 1]^r$$
,

$$\left| Mult_m^r(x) - \prod_{i=1}^r x_i \right| \le r^2 4^{-m},$$

and $\operatorname{Mult}_m^r(x) = 0$ if one of the x_i 's is zero. More generally, let $m, \gamma, d \ge 1$ three integers. Let $C_{d,\gamma}$ denote the number of monomials over d variables with degree $|\alpha| < \gamma$. There exists a DNN, $\operatorname{Mon}_{m,\gamma}^d : [0,1]^d \to [0,1]^{C_{d,\gamma}}$ with depth $L \lesssim m \log \gamma$ and maximum width $12\gamma C_{d,\gamma}$, that approximates all monomials of degree less than γ simultaneously

$$\|Mon_{m,\gamma}^d(x) - (x^{\alpha})_{|\alpha| < \gamma}\|_{\infty} \le \gamma^2 4^{-m}.$$

Remark. The number $C_{d,\gamma}$ of monomials of degree less than γ is less than $(\gamma + 1)^d$.

Proof. We start by the network Mult_m^r and notice that one can always assume that r is a power of 2. If this is not the case, one just artificially extends the product by multiplying by a number of 1's. So, let us set $r = 2^q$. An approximation to the product of x_i 's is computed recursively as follows: first compute

$$(Mult_m(x_1, x_2), Mult_m(x_3, x_4), ..., Mult_m(x_{r-1}, x_r)),$$

which gives 2^{q-1} terms left, and then repeat the same operation until there is only one term left, with an output that we define as $\operatorname{Mult}_m^r(x)$. By Lemma 4.9 and the triangle inequality, for $a,b,c,d\in[0,1]$,

$$|\text{Mult}_m(a,b) - cd| \le |\text{Mult}_m(a,b) - ab| + |(a-c)b + (b-d)c| \le 4^{-m} + |a-c| + |b-d|.$$

An immediate recursion then gives, as announced,

$$\left| \text{Mult}_{m}^{r}(x) - (x_{1} \cdots x_{r}) \right| \le 3^{q-1} 4^{-m} \le 4^{q} 4^{-m} = r^{2} 4^{-m}.$$

Now turning to the network computing all monomials, one notes that for a degree of at most 1, one can just use a shallow network, with the later computing exactly a constant or a linear function (recall the identity can be obtained as such a network). More generally, one uses the same argument as for Mult_m^r to compute a given monomial $x_1^{\alpha_1} \cdots x_r^{\alpha_r}$, up to an error, recalling $|\alpha| = \sum_{i=1}^r \alpha_i < \gamma$, bounded from above by $\gamma^2 4^{-m}$. In a last step, we stack all obtained networks in parallel (using depth synchronisation to have the same given depth for all networks, meaning we take the largest depth).

End of the proof of Theorem 4.5. Now that we have constructed a network computing all monomials, one can go back to the local polynomial (4.8) approximating f, namely

$$P^{\beta}f(x) := \sum_{x_l \in D(M)} (P^{\beta}_{x_l}f)(x) \prod_{j=1}^d (1 - M|x_j - x_{l,j}|)_+.$$

Let us define M as the largest integer such that

$$(M+1)^d \le \mathcal{N}. \tag{4.10}$$

To conclude the proof, one constructs the final network in three steps.

Step (i), hat function network. One constructs a network Hat^d approximating the hat functions $\prod_{j=1}^d (M^{-1} - |x_j - x_{l,j}|)_+$ (note the specific normalisation, in order to have an easy construction with weights bounded by 1) *simultaneously* for all x_ℓ on the grid D(M).

Since $|x| = x_+ + (-x)_+$, we have the formula, for a, b, c in [0, 1],

$$(a-|b-c|)_+ = (a-(b-c)_+ - (c-b)_+)_+.$$

One can use a first hidden layer with width $2d(M+1)^d$ to compute all functions $(x_j - \ell/M)_+$ and $(\ell/M - x_j)_+$ (for j in 1, ..., d and x_ℓ in D(M) of cardinality $(M+1)^d$), and a second hidden layer to compute all functions $(1/M - |x_j - \ell/M|)_+$ using the formula in the last display, using this time a width $d(M+1)^d$. All these functions take values in [0,1]. Also, the overall sparsity is proportional to the width, as all computations are done in parallel.

If d=1 we are done (the network computes the function exactly). For d>1, one uses the networks Mult_m^d from Lemma 4.10 to compute the desired products. Each one of these products requires (recalling Mult_m^d has width less than Cd, depth at most $Cm\log d$) at most $Cmd^2\log d$ nonzero parameters. We have of $(M+1)^d$ of these products in parallel which gives sparsity $C'm(M+1)^d d^2\log d \lesssim m\mathcal{N}$ in total (adding also the non-zero parameters of the first two layers from the previous paragraph, which require only Cd(M+1) non-zero weights). The resulting network verifies

$$\left| \operatorname{Hat}^{d}(x) - \left(\prod_{i=1}^{d} (M^{-1} - |x_{j} - x_{l,j}|)_{+} \right)_{x_{l} \in D(M)} \right|_{\infty} \le d^{2} 4^{-m}. \tag{4.11}$$

Step (ii), networks Q_1 *and* Q_2 . We now build two networks verifying the following. For $B = 3Ke^d$, we have $Q_1(x) \in [0,1]^{(M+1)^d}$ and

$$\left| Q_1(x) - \left(\frac{P_{x_l}^{\beta} f(x)}{B} + \frac{1}{2} \right)_{x_l \in D(M)} \right| \le \beta^2 4^{-m}. \tag{4.12}$$

The role of the constant B is to keep the approximated quantity in the last display between 0 and 1, thanks to Lemma 4.11. Next, the network Q_2 verifies

$$\left| Q_2(x) - \sum_{x_l \in D(M)} \left(\frac{P_{x_l}^{\beta} f(x)}{B} + \frac{1}{2} \right) \prod_{j=1}^{d} (M^{-1} - |x_j - x_{l,j}|)_+ \right| \le (1 + d^2 + \beta^2) 4^{d-m}. \tag{4.13}$$

The construction of Q_1 is immediate by forming the weighted sum of the joint network of monomials $\operatorname{Mon}_{m,\gamma}^d$ for every point $x_l \in D(M)$ in parallel (thus getting an output dimension $(M+1)^d$), noting with Lemma 4.11 that the weights are smaller than 1 thanks to the division by B. By Lemma 4.10, the depth of Q_1 is bounded by Cm. The sparsity of Q_1 is bounded by that of $\operatorname{Mon}_{m,\gamma}^d$ plus $C_{d,\beta}(M+1)^d$, that is by $Cm + C(M+1)^d \leq C(m+\mathcal{N})$, where C depends only on d,β .

To build Q_2 , one proceeds in two steps: first, one stacks in parallel the networks Q_1 and the Hat d network (which simultaneously outputs all hat functions). Next, one notes that both Q_1 and Hat d have outputs indexed by x_l . One pairs these outputs two-by-two and applies to them the Mult $_m$ network. There are $(M+1)^d \leq \mathcal{N}$ pairs, and recall that Mult $_m$ has of order m active (nonzero) parameters (depth m and constant width). So this part of the network has sparsity at most $m\mathcal{N}$. Finally, one adds all results using a final layer, leading to the term approximating Q_2 in (4.13), except that hat functions and local polynomial are replaced by their approximations. Combining (4.11) with (4.12) now gives (4.13). In passing we note that building C_2 uses at most $Cm\mathcal{N}$ nonzero parameters, with depth of order m.

Step (iii), shifting and rescaling the entries in (4.13). Finally, we build a network Q_3 that verifies

$$\left| Q_3(x) - \sum_{x_l \in D(M)} P_{x_l}^{\beta} f(x) \prod_{j=1}^d (1 - M|x_j - x_{l,j}|)_+ \right| \le (2K + 1)(1 + d^2 + \beta^2)(2e)^d \mathcal{N} 4^{-m}. \tag{4.14}$$

The construction of Q_3 is based on shifting/rescaling Q_2 . One needs to pay attention that we wish to keep weights between 0 and 1. Note that to compute Q_3 by putting Q_2 'on the right scale', it suffices to build a network computing the scaling $x \to BM^r x =: \mathcal{K} x$. To do so, one may use a network with a weight matrix having all entries equal to 1 and zero shift vectors, which uses $C\mathcal{K} \lesssim \mathcal{N}$ active parameters. The overall network Q_3 thus keeps up to a constant the same sparsity (at most $Cm\mathcal{N}$) and depth as Q_2 . The approximation (4.14) directly follows from (4.13).

Putting (4.14) together with Lemma 4.7, one obtains that the network Q_3 verifies

$$||f - Q_3||_{\infty} \lesssim \mathcal{N}4^{-m} + M^{-\beta} \lesssim \mathcal{N}4^{-m} + \mathcal{N}^{-\beta/d},$$

with a sparsity $Cm\mathcal{N}$ (we omit the precise dependence of the constants on K, d given in the statement, which can easily be tracked in the above arguments) which concludes the proof of Theorem 4.5.

Lemma 4.11. Let $P_{\alpha}^{\beta}f$ the polynomial defined in (4.6). Writing $P_{\alpha}^{\beta}f(x) = \sum_{0 \le |\gamma| \le \beta} c_{\gamma}x^{\gamma}$, for any $f \in \mathscr{C}_{d}^{\beta}([0,1]^{d},K)$,

$$\sup_{x \in [0,1]^d} \left| (P_{\alpha}^{\beta} f)(x) \right| \le \sum_{0 \le |\gamma| \le \beta} |c_{\gamma}| \le Ke^d.$$

Proof. Left as an exercise, see [SH20a], page 6.

4.3.2 Ingredient 2: entropy and error propagation in DNNs

Let ρ be the ReLU activation, or more generally a 1–Lip function with $\rho(0) = 0$. Considering the class of functions $\mathcal{F}(L, N, s)$, let us denote

$$V = V(N) := \prod_{l=0}^{L} (N_l + 1). \tag{4.15}$$

Since ρ is fixed throughout, we write R(W) for $R(\Phi)$. The next lemma quantifies how much small errors in network parameters propagate into a global error for the network realisation.

Lemma 4.12. Suppose f = R(W) and $f^* = R(W^*)$ belong to $\mathcal{F}(L,N)$ with $W = (A_k, b_k)_{k=1,\dots,L}$ and $W^* = (A_k^*, b_k^*)_{k=1,\dots,L}$. Suppose that individual entries of A_k 's and b_k 's are at most $\varepsilon > 0$ away from the corresponding entries of A_k^* and b_k^* . Then for V as in (4.15),

$$||f - f^*||_{\infty} \le \varepsilon LV.$$

Proof. Recall $f = T_L \circ \rho \circ \cdots \circ \rho \circ T_1$ with $T_k(x) = A_k x + b_k$ and define, for $k = 1, \dots, L$,

$$B_k f = \rho \circ T_k \circ \cdots \circ \rho \circ T_1,$$

$$E_k f = T_k \circ \rho \circ \cdots \circ T_{k+1} \circ \rho,$$

and set $E_L f = B_0 f = \text{Id}$. We first prove two basic facts about $B_k f$, $E_k f$.

Fact 1. If
$$f \in \mathcal{F}(L, N)$$
, then $|(B_k f)(x)|_{\infty} \le \prod_{l=1}^k (N_{l-1} + 1)$ for $x \in [0, 1]^d$.

Let us check first that $|(\rho \circ T_i)(y)|_{\infty} \le N_{i-1}|y|_{\infty} + 1$ for any integer i. Indeed, $|\rho(y)|_{\infty} \le |y|_{\infty}$ and $|T_k y|_{\infty} \le |A_k y|_{\infty} + |b_k|_{\infty} \le N_{k-1}|y|_{\infty} + 1$, using $||A_k||_{\infty} \le 1$, $|b_k|_{\infty} \le 1$. In particular, if $|y|_{\infty} \ge 1$ we have $|(\rho \circ T_i)(y)|_{\infty} \le (N_{i-1} + 1)|y|_{\infty}$ for any i.

The result follows by recursion: for i=1 we get $|(\rho \circ T_1)(x)|_{\infty} \le N_0|x|_{\infty}+1 \le N_0+1$. Since $N_0+1 \ge 1$ it suffices feeds this bound into the previous inequality in terms of y.

Fact 2. The map
$$x \to (E_k f)(x)$$
 is Λ_k -Lipschitz, with $\Lambda_k \le \prod_{l=k+1}^L N_{l-1}$.

The composition of an L_1 -Lip by an L_2 -Lip function is an L_1L_2 -Lip function. By definition ρ is 1-Lip, while T_i is N_{i-1} -Lip for any i, from which the fact follows.

Now let us write the difference $f - f^*$ as the telescopic sum

$$f(x) - f^*(x) = \sum_{k=1}^{L} \left[(E_k f) \circ T_k \circ (B_{k-1} f^*)(x) - (E_k f) \circ T_k^* \circ (B_{k-1} f^*)(x) \right].$$

Combining the triangle inequality with Fact 2 above,

$$|f(x) - f^*(x)| \le \sum_{k=1}^{L} \Lambda_k \left| (T_k - T_k^*) \circ (B_{k-1} f^*)(x) \right|_{\infty}$$

$$\le \sum_{k=1}^{L} \Lambda_k \left[||A_k - A_k^*||_{\infty} |(B_{k-1} f^*)(x)|_1 + |b_k - b_k^*|_{\infty} \right]$$

$$\le \sum_{k=1}^{L} \Lambda_k \left[\varepsilon N_{k-1} |(B_{k-1} f^*)(x)|_{\infty} + \varepsilon \right].$$

The term under brackets in the last display is at most, using Fact 1,

$$\varepsilon N_{k-1} \prod_{l=1}^{k-1} (N_{l-1}+1) + 1 \le \varepsilon \prod_{l=1}^{k} (N_{l-1}+1).$$

One deduces the announced result

$$|f(x) - f^*(x)| \le \varepsilon \sum_{k=1}^{L} \prod_{l=1}^{L} (N_{l-1} + 1) \le \varepsilon LV.$$

The previous lemma allows for a "quantisation" of the set of neural network realisations: in the next result we explicitly construct a finite set of functions (themselves NNs) that cover it.

Lemma 4.13. *For V as in* (4.15) *and any* $\delta > 0$,

$$\log \mathrm{N}(\delta,\mathcal{F}(L,N,s),\|\cdot\|_{\infty}) \leq (s+1)\log\left(\frac{2LV^2}{\delta}\right).$$

In particular if $L \lesssim \log n$ and $N_l \leq n$ for any integer l, we have

$$\log N(\delta, \mathcal{F}(L, N, s), \|\cdot\|_{\infty}) \lesssim s \left[(\log n)^2 + \log(1/\delta) \right].$$

The proof has been given in Chapter 3.

П

4.3.3 A generic oracle inequality for the prediction risk

Let us now prove Theorem 4.6. It is helpful to relate the prediction risk $R(\hat{f}, f_0) = E[(\hat{f}(X) - f_0(X))^2]$ to the empirical risk (4.3). The proof will be complete once we show

$$R(\hat{f}, f_0) \le (1 + \varepsilon)\hat{R}(\hat{f}, f_0) + \frac{1 + \varepsilon}{\varepsilon^2} 3 \frac{F^2}{n} \log \mathcal{N}_n + (1 + \varepsilon)\delta \frac{F}{n}, \tag{4.16}$$

as well as the following direct bound on the empirical risk, for $F \ge 1$,

$$\hat{R}(\hat{f}, f_0) \le (1 + \varepsilon) \left\{ \inf_{f \in \mathscr{F}} R(f, f_0) + 3 \frac{1 + \varepsilon}{\varepsilon} \frac{F^2}{n} \log \mathscr{N}_n + F\delta \right\}. \tag{4.17}$$

As follows from the proofs below, the upper-bound (4.16) of the prediction risk by the 'empirical' risk holds for *any* estimator \hat{f} , not necessarily the ERM. The bound (4.17) uses crucially that \hat{f} is the ERM.

Proof of (4.16). (a) Let us cover \mathscr{F} by $N:=\mathscr{N}_n$ balls of radius δ and centers f_1,\ldots,f_N . One may assume $\|f_i\|_{\infty} \leq F$ (otherwise consider balls centered at $\bar{f}_i = (f_i \wedge F) \vee (-F)$ instead).

Let j^* be a random integer such that $\|\hat{f} - f_{j^*}\|_{\infty} \le \delta$. For $\Delta = \hat{f} - f_{j^*}$ (so $\|\Delta\|_{\infty} \le \delta$), let us write

$$\hat{f} - f_0 = (\hat{f} - f_{i^*}) + f_{i^*} - f_0 = \Delta + f_{i^*} - f_0,$$

(b) In order to more easily compare the risks, let us note that the prediction risk may be written

$$R(\hat{f}, f_0) = E\left[\frac{1}{n}\sum_{i=1}^{n}(\hat{f} - f_0)^2(T_i)\right],$$

where T_i are iid variables with law $\mathcal{L}(X_i) = \mathcal{L}(X_1)$ (recall the X_i are iid). One may now write

$$R(\hat{f}, f_0) - \hat{R}(\hat{f}, f_0) = E\left[\frac{1}{n} \sum_{i=1}^{n} (f_{j^*} - f_0)^2 (T_i) - (f_{j^*} - f_0)^2 (X_i)\right] + \mathcal{R}_1,$$

where the remainder term \mathcal{R}_1 verifies $|\mathcal{R}_1| \le 2\delta^2 + 2 \times 4\delta F \le 10\delta F$ for small δ , which is obtained by expanding the squares and using Cauchy–Schwarz' inequality. Deduce

$$|R(\hat{f}, f_0) - \hat{R}(\hat{f}, f_0)| \le E \left| \frac{1}{n} \sum_{i=1}^n g_{j^*}(X_i, T_i) \right| + 10\delta F,$$

where we have set, for any integer $j \leq \mathcal{N}_n$,

$$g_i(X_i, T_i) := (f_i - f_0)^2 (T_i) - (f_i - f_0)^2 (X_i).$$

(c) Let us set, for j = 1, ..., N, and $a \lor b = \max(a, b)$,

$$r_j^2 = \frac{\log \mathcal{N}_n}{n} \vee E_T[(f_j - f_0)^2(T)],$$

where E_T means that one takes the expectation with respect to T (only). Let us further set

$$\mathscr{U}^2 := E_T[(\hat{f} - f)^2(T)], \qquad \mathscr{T} := \max_j \left| \sum_{i=1}^n \frac{g_j(X_i, T_i)}{r_j F} \right|.$$

Since T is independent of $(X_i, Y_i)_i$, one has $E_T[(f_j - f_0)^2(T)] = E_T[(f_j - f_0)^2(T) | (X_i, Y_i)_i]$, which allows to define r_{j^*} as r_j with j replaced by the (random) quantity j^* . Namely,

$$r_{j^*}^2 = \frac{\log \mathcal{N}_n}{n} \vee E_T[(f_{j^*} - f_0)^2(T)],$$

where the last display is random (via j^*). One may bound, using $(a+b)^2 \le 2a^2 + 2b^2$,

$$r_{j^*}^2 \leq \frac{\log \mathcal{N}_n}{n} + 2E_T[(f_{j^*} - \hat{f})^2(T)] + 2\mathcal{U}^2 \leq \frac{\log \mathcal{N}_n}{n} + 2\delta^2 + 2\mathcal{U}^2,$$

using that f_{j^*} is uniformly at most δ away from f_0 . Then

$$\left| \sum_{i=1}^{n} g_{j^*}(X_i, T_i) \right| = \left| \sum_{i=1}^{n} \frac{g_{j^*}(X_i, T_i)}{r_{j^*} F} \right| r_{j^*} F \le \max_{j} \left| \sum_{i=1}^{n} \frac{g_{j}(X_i, T_i)}{r_{j} F} \right| r_{j^*} F = \mathcal{T} r_{j^*} F.$$

Combining with the above bound on r_{j^*} and since by definition of the prediction risk $E[\mathcal{U}^2] = R(\hat{f}, f_0)$,

$$\begin{split} \left| \sum_{i=1}^n g_{j^*}(X_i, T_i) \right| / F &\leq E \left[\mathcal{T} \cdot \sqrt{\frac{\log \mathcal{N}_n}{n} + 2\delta^2 + 2\mathcal{U}^2} \right] \leq \sqrt{2} E[\mathcal{T} \cdot \mathcal{U}] + \left\{ \sqrt{\frac{\log \mathcal{N}_n}{n}} + \sqrt{2}\delta \right\} E[\mathcal{T}] \\ &\leq \sqrt{2E[\mathcal{T}^2]} \sqrt{R(\hat{f}, f_0)} + \left\{ \sqrt{\frac{\log \mathcal{N}_n}{n}} + \sqrt{2}\delta \right\} E[\mathcal{T}]. \end{split}$$

(d) Let us now provide bounds for $E[\mathcal{T}]$, $E[\mathcal{T}^2]$. We start by deriving a deviation bound $P[\mathcal{T} > t]$ for t > 0 to be chosen later. A union bound gives, setting $Z_{ij} := g_j(X_i, T_i)/(r_i F)$,

$$P[\mathcal{T} > t] \le \sum_{i=1}^{\mathcal{N}_n} P\left[\left| \sum_{i=1}^n Z_{ij} \right| \ge t \right].$$

The variables Z_{ij} are centered and bounded in absolute value by $[(2F)^2 + (2F)^2]/(r_jF) \le 8F/r_j =: M_j$. Also, using the definition of r_j ,

$$\operatorname{Var}[Z_{ij}] \leq \frac{2}{r_i^2 F^2} E[(f_j - f_0)(X_1)^4] \leq \frac{2(2F)^2}{r_i^2 F^2} E[(f_j - f_0)(X_1)^2] \leq 8 =: \nu_{ij}.$$

An application of Bernstein's inequality to the independent variables Z_{ij} gives

$$P[\mathcal{F} > t] \le \sum_{j=1}^{\mathcal{N}_n} 2 \exp\left(-\frac{t^2}{2M_j t/3 + 2\sum_{i=1}^n v_{ij}}\right) \le 2\mathcal{N}_n \exp\left(-\frac{t^2}{\frac{16Ft}{3r_j} + 16n}\right).$$

Using that $r_j \ge \sqrt{\log \mathcal{N}_n/n}$ by definition and choosing $t \ge t_1 := C_F \sqrt{n \log \mathcal{N}_n}$ for some large enough $C_F = C(F)$ leads to

$$P[\mathcal{F} > t] \le 2\mathcal{N}_n \exp\left(-Ct\sqrt{\frac{\log \mathcal{N}_n}{n}}\right).$$

From this one easily sees that \mathcal{T} is of order $\sqrt{n\log\mathcal{N}_n}$. More precisely, using the formulas $E\mathcal{T}=\int_0^\infty P[\mathcal{T}\geq t]dt$ and $E\mathcal{T}^2=\int_0^\infty P[\mathcal{T}^2\geq t]dt$, one obtains (check it as an exercise)

$$E\mathcal{T} \lesssim \sqrt{n\log \mathcal{N}_n}, \qquad E[\mathcal{T}^2] \lesssim n\log \mathcal{N}_n.$$

(e) Combining the points (b), (c), (d) above leads to

$$|\underbrace{R(\hat{f}, f_0)}_{a} - \underbrace{\hat{R}_n(\hat{f}, f_0)}_{b}| \leq \underbrace{\frac{F}{n} \sqrt{2n \log \mathcal{N}_n}}_{2c} \underbrace{\sqrt{R(\hat{f}, f_0)}}_{\sqrt{a}} + \underbrace{\frac{F}{n} \left\{ \sqrt{\frac{\log \mathcal{N}_n}{n}} + \sqrt{2}\delta \right\} \sqrt{n \log \mathcal{N}_n} + 10\delta F}_{d}.$$

Inequality (4.16) is obtained upon noting the following: for reals b, c, d and a > 0 such that $|a - b| \le 2\sqrt{ac} + d$, for any $\varepsilon > 0$ it holds

$$a \le (1+\varepsilon)(b+d) + \frac{(1+\varepsilon)^2}{\varepsilon}c^2$$

obtained by using the inequality $\sqrt{ac} \le \frac{\varepsilon}{1+\varepsilon} a + \frac{1+\varepsilon}{\varepsilon} c^2$ (itself a variant of $ac \le (a^2 + c^2)/2$).

Proof of (4.17). In the sequel we write Y to mean the vector of observed Y_i 's, and in slight abuse of notation also interpret it as the function that takes values Y_i 's at X_i 's (so as to evaluate it under the empirical norm $\|\cdot\|_n$). For any $f \in \mathcal{F}$, using the definition of the ERM,

$$\begin{aligned} \|\hat{f} - f_0\|_n^2 &= \|\hat{f} - Y\|_n^2 + \|Y - f_0\|_n^2 + 2\langle Y - f_0, \hat{f} - Y\rangle_n \\ &\leq \|f - Y\|_n^2 + \|Y - f_0\|_n^2 + 2\langle Y - f_0, \hat{f} - Y\rangle_n, \end{aligned}$$

where $\langle \cdot, \cdot \rangle_n$ is the inner–product associated to the empirical norm. Now using the definition of the model, $Y = f_0 + \varepsilon$, so that

$$\begin{split} \|f - Y\|_{n}^{2} + \|Y - f_{0}\|_{n}^{2} + 2\langle Y - f_{0}, \hat{f} - Y \rangle_{n} &= \|f - f_{0}\|_{n}^{2} - 2\langle f - f_{0}, \varepsilon \rangle_{n} + \|\varepsilon\|_{n}^{2} + \|\varepsilon\|_{n}^{2} + 2\langle \varepsilon, \hat{f} - f_{0} - \varepsilon \rangle_{n} \\ &= \|f - f_{0}\|_{n}^{2} - 2\langle f, \varepsilon \rangle_{n} + 2\langle \varepsilon, \hat{f} \rangle_{n}. \end{split}$$

Combining the above inequalities, taking expectations and using $E \| f - f_0 \|_n^2 = E[(f - f_0)(X_1)^2] = R(f, f_0)$,

$$\hat{R}_n(\hat{f}, f_0) = E \|\hat{f} - f_0\|_n^2 \le R(f, f_0) + 2E\langle \varepsilon, \hat{f} \rangle_n,$$

where we have used that $\langle f, \varepsilon \rangle_n$ is centered, as $E[f(X_1)\varepsilon_1] = E[f(X_1)]E[\varepsilon_1] = 0$. To derive (4.17), it suffices to bound $E\langle \varepsilon, \hat{f} \rangle_n$, that is the expectation of an empirical process. We will bound this classically by replacing the quantity \hat{f} by a maximum over a finite set of functions given to us by the entropy covering. We then conclude using a bound on the maximum in expectation (something sometimes called a "maximal inequality").

Let j^* be a random index such that $\|\hat{f} - f_j\|_{\infty} \le \delta$. Let us denote, for an integer $j \le \mathcal{N}_n$,

$$\xi_j = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{\varepsilon_i (f_j - f_0)(X_i)}{\|f_j - f_0\|_n}.$$

This is a centered variable, whose distribution given the X_i 's is standard normal. By writing

$$E\left[\max_{1\leq j\leq \mathcal{N}_n} \xi_j^2\right] = E\left[E\left[\max_{1\leq j\leq \mathcal{N}_n} \xi_j^2 | (X_i)_i\right]\right],$$

we see that to bound the first expectation it is enough to bound the conditional expectation on the right hand side, that is the expectation of the maximum of chi-squared(1) variables, so that using Lemma 4.14 below, the last display is at most $3\log \mathcal{N}_n + 1$.

Recalling the definition of j^* and using the triangle inequality,

$$\begin{split} \left| E\langle \varepsilon, \hat{f} \rangle_n \right| &= \left| \frac{1}{n} E \sum_{i=1}^n \varepsilon_i (\hat{f}(X_i) - f_0(X_i)) \right| \\ &\leq \delta E \frac{1}{n} \sum_{i=1}^n |\varepsilon_i| + \left| \frac{1}{n} E \sum_{i=1}^n \varepsilon_i (f_{j^*}(X_i) - f_0(X_i)) \right| \\ &\leq \delta + \frac{1}{\sqrt{n}} E \left[\|\xi_{j^*}\| \|f_{j^*} - f_0\|_n \right]. \end{split}$$

One further bounds $||f_{j^*} - f_0||_n \le ||f_{j^*} - \hat{f}||_n + ||\hat{f} - f_0||_n \le \delta + ||\hat{f} - f_0||_n$ and via Cauchy-Schwarz,

$$\begin{split} E\left[\|\xi_{j^*}\|\|f_{j^*} - f_0\|_n\right] &\leq \sqrt{2E\|\hat{f} - f_0\|_n^2 + 2\delta^2} \sqrt{E\left[\max_{1\leq j\leq \mathcal{N}_n} \xi_j^2\right]} \\ &\leq \sqrt{2}\left[\sqrt{\hat{R}(\hat{f}, f_0)} + \delta\right] \sqrt{3\log \mathcal{N}_n + 1}, \end{split}$$

where we have used the property on maxima mentioned above. Deduce

$$\left| E\langle \varepsilon, \hat{f} \rangle_n \right| \leq \delta + \sqrt{2} \frac{\sqrt{4n}}{\sqrt{n}} \delta + \sqrt{2} \sqrt{\hat{R}(\hat{f}, f_0) \cdot \frac{4 \log \mathcal{N}_n}{n}} \leq 5\delta + 4 \sqrt{\hat{R}(\hat{f}, f_0) \frac{\log \mathcal{N}_n}{n}},$$

where we use the assumption $1 \le \log \mathcal{N}_n \le n$. One obtains

$$\hat{R}(\hat{f}, f_0) \le R(f, f_0) + 4\sqrt{\hat{R}(\hat{f}, f_0) \frac{\log \mathcal{N}_n}{n}} + 5\delta.$$

To conclude, one uses a similar argument as at the end of the proof of (4.16), so that one moves both $\hat{R}(\hat{f}, f_0)$ terms to the left hand side of the inequality, which concludes the proof of (4.17).

Lemma 4.14. Let $\xi_1, ..., \xi_N$ be standard normal variables (but not necessarily independent). Then, for all $N \ge 1$,

$$E\left[\max_{1\leq j\leq N}\xi_{j}^{2}\right]\leq 3\log N+1.$$

This is standard (see [SH20a], Lemma C.1, or e.g. [BLM13] Corollary 2.6 for a more general result for sub-exponential variables); the way to understand it: for Gaussian variables the maximum is of order at most $\sqrt{\log N}$ so the squares of N Gaussians have their maximum at most of size (log N).

4.4 Compositional structures: towards solving the curse of dimensionality

Discovering a hidden 'structure'. The 'raw' regression data collected by the statistician takes the form, in the setting model (4.1), of n vectors of size d+1: the n pairs (X_i^T, Y_i) with $X_i \in [0,1]^d$ and Y_i a real, with the dimension d possibly large (think for instance of e.g. d=10 or 20). The unknown regression function $f_0(x_1,\ldots,x_d)$ depends on d of variables, and we have seen that if d is larger than a few units this may lead to a slow uniform convergence rate of the form $n^{-2\beta/(2\beta+d)}$ for the prediction risk. It is often the case though that the problem is effectively of smaller dimension than d. We give a number of frequently encountered examples