The template

for ACM ICPC

诶,我和你讲这比赛超休闲的

Edited by

неуинин Теам 万物静默如谜 ат Sicau

> 2019.10 NANCHONG

目录

第一章	图论	1
1.1	最短路	1
	1.1.1 堆优化 Dijkstra	1
	1.1.2 spfa	1
1.2	网络流	2
	1.2.1 Dinic	2
	1.2.2 费用流	3
1.3	连通性	5
	1.3.1 有向图强连通分量	5
	1.3.2 2-sat	6
1.4	生成树	7
	1.4.1 Kruskal 算法	7
	1.4.2 次小生成树	8
	1.4.3 最小有向生成树	8
	1.4.4 最小生成树计数	10
1.5	割点及桥	10
	1.5.1 求出割点及桥	10
	1.5.2 无向图缩点成树	11
1.6	二分图	12
	1.6.1 最大匹配	12
1.7	最大团	12
1.8	支配树	13
p.p	and the	
第二章		17
2.1	~ ~ ~	17
	2.1.1 线性筛	17
	2.1.2 Miller-Rabin 素数测试	17
2.2	欧几里得算法	18
	2.2.1 扩展欧几里得	18
	2.2.2 类欧几里得	19

	2.3	线性递推求逆元	19
	2.4	高斯消元	19
	2.5	欧拉函数	20
		$2.5.1$ $\Re \varphi(n)$	20
		2.5.2 线性筛	20
	2.6	莫比乌斯函数	21
	2.7	整除分块	21
	2.8	杜教筛	22
	2.9	min25 筛	22
	2.10	中国剩余定理	24
	2.11	BSGS	25
	2.12	二次剩余	26
	2.13	欧拉降幂	26
	2.14	FFT	27
		NTT	
	2.16	蔡勒公式	28
	2.17	原根	29
	2.18	二次剩余	29
	2.19	拉格朗日插值	31
	2.20	BM 线性递推	32
第	三章	字符串	37
第	三章 3.1	字符串 KMP	37 37
第	三章 3.1 3.2	字符串 KMP	37 37 37
第	三章 3.1 3.2 3.3	字符串 KMP	37 37 38
第	三章 3.1 3.2 3.3	字符串 KMP 扩展 KMP 马拉车算法 Trie 树	37 37 37 38 38
第	三章 3.1 3.2 3.3 3.4 3.5	字符串 KMP	37 37 38 38 39
第	三章 3.1 3.2 3.3 3.4 3.5 3.6	字符串 KMP 扩展 KMP 马拉车算法 Trie 树 AC 自动机 字符串 hash 字符串 hash 以上、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	37 37 38 38 39 40
第	三章 3.1 3.2 3.3 3.4 3.5	字符串 KMP 扩展 KMP 马拉车算法 Trie 树 AC 自动机 字符串 hash 回文自动机	37 37 38 38 39 40 41
第	三章 3.1 3.2 3.3 3.4 3.5 3.6	字符串 KMP. 扩展 KMP. 马拉车算法 Trie 树. AC 自动机 字符串 hash 回文自动机 后缀数组	37 37 38 38 39 40 41 42
第	三章 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	字符串 KMP. 扩展 KMP. 马拉车算法 Trie 树. AC 自动机 字符串 hash 回文自动机 后缀数组 后缀自动机	37 37 38 38 39 40 41 42 43
第	三章 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	字符串 KMP. 扩展 KMP. 马拉车算法 Trie 树. AC 自动机 字符串 hash 回文自动机 后缀数组	37 37 38 38 39 40 41 42 43
	三章 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	字符串 KMP. 扩展 KMP. 马拉车算法 Trie 树. AC 自动机 字符串 hash 回文自动机 后缀数组 后缀自动机 最小表示法	37 37 38 39 40 41 42 43
	三章 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	字符串 KMP. 扩展 KMP. 马拉车算法 Trie 树. AC 自动机 字符串 hash 回文自动机 后缀数组 后缀自动机 最小表示法	37 37 38 38 39 40 41 42 43 45
	三章 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	字符串 KMP. 扩展 KMP. 马拉车算法 Trie 树. AC 自动机 字符串 hash 回文自动机 后缀数组 后缀自动机 最小表示法 数据结构 笛卡尔树	37 37 38 39 40 41 42 43 45
	三章 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 四章 4.1 4.2	字符串 KMP. 扩展 KMP. 马拉车算法 Trie 树. AC 自动机 字符串 hash 回文自动机 后缀数组 后缀自动机 最小表示法 数据结构 笛卡尔树 线性基	37 37 38 39 40 41 42 43 45
	三章 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 四章 4.1 4.2 4.3	字符串 KMP 扩展 KMP 马拉车算法 Trie 树 AC 自动机 字符串 hash 回文自动机 后缀数组 后缀自动机 最小表示法 数据结构 笛卡尔树 线性基 李超树	37 37 38 39 40 41 42 43 45 47 48 50
	三章 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 四章 4.1 4.2	字符串 KMP. 扩展 KMP. 马拉车算法 Trie 树. AC 自动机 字符串 hash 回文自动机 后缀数组 后缀自动机 最小表示法 数据结构 笛卡尔树 线性基	37 37 38 39 40 41 42 43 45 47 48 50 52

4.6	kd-tree	56
第五章	其它	61
5.1	莫队算法	61
5.2	点分治	61
5.3	随机数	63
5.4	最大子矩阵	63
5.5	快速读入/输出	64
5.6	二进制函数	65
5.7	第三章	65
	5.7.1 第一节 新民主主义到社会主义的转变	65

第一章 图论

1.1 最短路

1.1.1 堆优化 Dijkstra

```
1
  void Dijkstra(int s){
2
        priority_queue <node> q;
3
     memset(d, INF, sizeof(d));
       memset(vis, 0, sizeof(vis)); d[s]=0;
4
5
       q.push(node{0, s});
6
       while(!q.empty()){
7
            node cur = q.top(); q.pop();
8
            int u = cur.u;
9
            if(vis[u]) continue;
10
            vis[cur.u] = 1;
11
            for(int i = head[u]; i != -1; i = e[i].next){
12
                int v = e[i].v;
                if(d[v] > d[u] + e[i].w){
13
14
                    d[v] = d[u] + e[i].w;
15
                    q.push(node{d[v], v});
16
                }
17
            }
18
       }
19 | }
```

1.1.2 spfa

```
1 //c:判断有无负环
2
   int spfa(int s){
3
       queue <int> q;
       memset(d, INF, sizeof(d));
4
       memset(vis, 0, sizeof(vis));
5
6
       memset(c, 0, sizeof(c));
7
       q.push(s);
       vis[s] = 1; d[s] = 0; c[s] = 1;
8
9
       while(!q.empty()){
10
           int u = q.front(); q.pop(); vis[u]=0;
```

```
11
             \textbf{if}(c[u] > n)\{
12
                 return -1;
13
             }
14
             for(int i = head[u];i != -1;i = e[i].next){
15
                 int v = e[i].v;
                 if(d[v] > d[u] + e[i].w){
16
17
                      d[v] = d[u] + e[i].w;
18
                      fa[v] = u;
19
                      if(!vis[v]){
20
                          vis[v] = 1;
21
                          q.push(v);
22
                          c[v]++;
23
                      }
24
                 }
25
             }
26
27
        return d[n];
28 }
```

1.2 网络流

1.2.1 Dinic

复杂度玄学

```
#define INF 0x3f3f3f3f
   template <class T> //模板, 可处理double类型
 3
   struct Dinic{
 4
        struct Edge{
 5
            int v, next;
 6
            T flow;
 7
            Edge(){}
 8
            Edge(int v, int next, T flow) : v(v), next(next), flow(flow) {}
 9
        }e[N << 1];
10
        int head[N], tot;
11
        int dep[N];
        void init() {
12
13
            memset(head, -1, sizeof(head)); tot = 0;
14
15
        void adde(int u, int v, T w, T rw = 0) {
            e[tot] = Edge(v, head[u], w);
16
17
            head[u] = tot++;
18
            e[tot] = Edge(u, head[v], rw);
19
            head[v] = tot++;
20
21
       bool BFS(int _S, int _T) {
            memset(dep, 0, sizeof(dep));
22
```

```
23
            queue <int> q; q.push(_S); dep[_S] = 1;
            while(!q.empty()) {
24
                int u = q.front(); q.pop();
25
                for(int i = head[u]; ~i; i = e[i].next) {
26
27
                    int v = e[i].v;
                    if(!dep[v] && e[i].flow > 0) {
28
29
                         dep[v] = dep[u] + 1;
30
                         q.push(v);
31
                    }
32
                }
33
34
            return dep[_T] != 0;
35
36
        T dfs(int _S, int _T, T a) {
            T flow = 0, f;
37
            if(_S == _T || a == 0) return a;
38
            for(int i = head[_S]; ~i; i = e[i].next) {
39
                int v = e[i].v;
40
41
                if(dep[v] != dep[_S] + 1) continue;
42
                f = dfs(v, _T, min(a, e[i].flow));
43
                if(f) {
                    e[i].flow -= f;
44
                    e[i ^ 1].flow += f;
45
46
                    flow += f;
47
                    a -= f;
                    if(a == 0) break;
48
                }
49
50
            }
51
            if(!flow) dep[_S] = -1;
52
            return flow;
53
        T dinic(int _S, int _T) {
54
55
            T max flow = 0;
56
            while(BFS(_S, _T)) max_flow += dfs(_S, _T, INF);
57
            return max_flow;
58
        }
59 };
```

1.2.2 费用流

势优化过后的 dijkstra, 可以处理负边权。

```
#define INF 0x3f3f3f3f
truct edge {
   int to, capacity, cost, rev;
   edge() {}
   edge(int to, int _capacity, int _cost, int _rev) :to(to), capacity(_capacity),
```

```
cost(_cost), rev(_rev) {}
6
   };
7
   struct Min Cost Max Flow {
8
      int V, H[N << 1], dis[N << 1], PreV[N << 1], PreE[N << 1];</pre>
9
      vector<edge> G[N << 1];</pre>
10
     void Init(int n) {
       V = n;
11
12
        for (int i = 0; i <= V; ++i)G[i].clear();</pre>
13
14
     void Add_Edge(int from, int to, int cap, int cost) {
15
        G[from].push_back(edge(to, cap, cost, G[to].size()));
16
       G[to].push_back(edge(from, 0, -cost, G[from].size() - 1));
17
     }
18
   //flow是自己传进去的变量,就是最后的最大流,返回的是最小费用,f=INF
19
     int Min_cost_max_flow(int s, int t, int f, int& flow) {
20
        int res = 0; fill(H, H + 1 + V, 0);
        while (f) {
21
          priority_queue <pair<int, int>, vector<pair<int, int>>, greater<pair<int,</pre>
22
              int>> > q;
23
         fill(dis, dis + 1 + V, INF);
          dis[s] = 0; q.push(pair<int, int>(0, s));
24
25
         while (!q.empty()) {
26
            pair<int, int> now = q.top(); q.pop();
27
            int v = now.second;
28
            if (dis[v] < now.first)continue;</pre>
            for (int i = 0; i < G[v].size(); ++i) {</pre>
29
30
              edge& e = G[v][i];
              if (e.capacity > 0 \& dis[e.to] > dis[v] + e.cost + H[v] - H[e.to]) {
31
32
                dis[e.to] = dis[v] + e.cost + H[v] - H[e.to];
33
                PreV[e.to] = v;
                PreE[e.to] = i;
34
                q.push(pair<int, int>(dis[e.to], e.to));
35
36
              }
37
            }
38
          if (dis[t] == INF)break;
39
          for (int i = 0; i <= V; ++i)H[i] += dis[i];</pre>
40
          int d = f;
41
42
         for (int v = t; v != s; v = PreV[v])d = min(d, G[PreV[v]][PreE[v]].capacity
              );
         f -= d; flow += d; res += d*H[t];
43
         for (int v = t; v != s; v = PreV[v]) {
44
            edge& e = G[PreV[v]][PreE[v]];
45
46
            e.capacity -= d;
47
            G[v][e.rev].capacity += d;
48
         }
49
```

```
50
        return res;
51
     int Max_cost_max_flow(int s, int t, int f, int& flow) {
52
        int res = 0;
53
54
        fill(H, H + 1 + V, 0);
55
        while (f) {
          priority_queue <pair<int, int>> q;
56
          fill(dis, dis + 1 + V, -INF);
57
58
          dis[s] = 0;
          q.push(pair<int, int>(0, s));
59
60
          while (!q.empty()) {
61
            pair<int, int> now = q.top(); q.pop();
            int v = now.second;
62
63
            if (dis[v] > now.first)continue;
64
            for (int i = 0; i < G[v].size(); ++i) {</pre>
65
              edge& e = G[v][i];
              if (e.capacity > 0 \& dis[e.to] < dis[v] + e.cost + H[v] - H[e.to]) {
66
                dis[e.to] = dis[v] + e.cost + H[v] - H[e.to];
67
68
                PreV[e.to] = v;
69
                PreE[e.to] = i;
70
                q.push(pair<int, int>(dis[e.to], e.to));
71
              }
            }
72
73
74
          if (dis[t] == -INF)break;
          for (int i = 0; i <= V; ++i)H[i] += dis[i];</pre>
75
76
          int d = f;
          for (int v = t; v != s; v = PreV[v])d = min(d, G[PreV[v]][PreE[v]].capacity
77
              );
78
          f -= d; flow += d;
          res += d*H[t];
79
80
          for (int v = t; v != s; v = PreV[v]) {
            edge& e = G[PreV[v]][PreE[v]];
81
82
            e.capacity -= d;
83
            G[v][e.rev].capacity += d;
          }
84
85
        }
86
        return res;
87
88 | }sol;
```

1.3 连通性

1.3.1 有向图强连通分量

Tarjan 算法, 复杂度 O(n), 能够求出有向图的极大强连通分量。

```
stack <int> s;
1
2
   int T, num;
3
   int scc[N], dfn[N], low[N], vis[N];
4
   void Tarjan(int u){
5
        dfn[u] = low[u] = ++T; vis[u] = 1;
6
        s.push(u);
7
        for(int i = head[u]; i != -1;i = e[i].next){
8
            int v = e[i].v;
9
            if(!vis[v]){
10
                Tarjan(v);
                low[u] = min(low[u], low[v]);
11
12
            }else if(!scc[v]){
13
                low[u] = min(low[u], dfn[v]);
14
            }
15
        }
16
        if(low[u] == dfn[u]){
17
            num++; int now;
            do{
18
19
                now = s.top(); s.pop();
20
                scc[now] = num;
21
            }while(!s.empty() && now!=u);
22
        }
23 | }
```

1.3.2 2-sat

通过在反图上求强连通分量, 优先选择序号较大者。

```
1 vector<int> G[N], rG[N], vs;
   int used[N], bel[N];
 2
 3
   void adde(int from, int to) {
 4
 5
        G[from].push_back(to);
 6
        rG[to].push_back(from);
 7
   }
 8
   void dfs(int v) {
 9
10
        used[v] = true;
11
        for(int u: G[v]) {
12
            if(!used[u])
13
                dfs(u);
14
15
        vs.push_back(v);
16
   }
17
18
   void rdfs(int v, int k) {
19
       used[v] = true;
```

```
20
        bel[v] = k;
        for(int u: rG[v])
21
22
            if(!used[u])
23
                rdfs(u, k);
24
   }
25
26
   int scc() {
27
        memset(used, 0, sizeof(used));
28
        vs.clear();
29
        for(int v = 0; v < n; ++v)
30
            if(!used[v]) dfs(v);
        memset(used, 0, sizeof(used));
31
32
        int k = 0;
33
        for(int i = (int) vs.size() - 1; i >= 0; --i)
            if(!used[vs[i]]) rdfs(vs[i], k++);
34
        return k;
35
36 | }
```

1.4 生成树

1.4.1 Kruskal 算法

```
struct Edge{
1
2
        int u,v,w;
3
        bool operator < (const Edge &A)const{</pre>
            return w<A.w;
4
5
        }
6
   }e[N*N];
7
   int f[N];
8
   int find(int x){
9
        return f[x]==x?f[x]:f[x]=find(f[x]);
10
   }
11
   int Kruskal(){
12
        int ans=0;
        for(int i=0;i<=n+1;i++) f[i]=i;</pre>
13
        for(int i=1;i<=m;i++){</pre>
14
            int fx=find(e[i].u),fy=find(e[i].v);
15
16
            if(fx==fy) continue ;
17
            f[fx]=fy;
18
            ans+=e[i].w;
19
        }
20
        return ans;
21 | }
```

1.4.2 次小生成树

复杂度为 $O(n^2)$, 貌似可以通过树上倍增优化到 O(nlogn)。 严格次小生成树则需要同时维护最大值和次大值来比较。

```
struct Edge{
 2
        int u,v,w;
 3
        bool operator < (const Edge &A)const{</pre>
 4
            return w<A.w;
 5
        }
 6 }e[N*N];
   int f[N], check[N];
   int d[N][N],dis[N][N],mp[N][N];
   int find(int x){
9
10
        return f[x]==x?f[x]:f[x]=find(f[x]);
11
   int Kruskal(){
12
13
        int ans=0;
14
        for(int i=0;i<=n+1;i++) f[i]=i;</pre>
        for(int i=1;i<=m;i++){</pre>
15
16
            int u=e[i].u,v=e[i].v;
17
            int fx=find(u),fy=find(v);
18
            if(fx==fy) continue ;
19
            f[fx]=fy;
20
            mp[u][v]=mp[v][u]=1;
21
            ans+=e[i].w;
22
        }
23
        return ans ;
24
25
   void dfs(int u,int fa){
26
        for(int x=1;x<=n;x++){</pre>
27
             if(check[x]) d[x][u]=d[u][x]=max(d[x][fa],dis[u][fa]);
28
        }
29
        check[u]=1;
        for(int v=1;v<=n;v++){
30
            if(mp[v][u] && v!=fa) dfs(v,u);
31
32
        }
33 }
```

1.4.3 最小有向生成树

朱刘算法,复杂度 O(nm)。

```
1 | struct Edge{
2         int u,v,w;
3         }e[M];
4         int pre[N]; //记录前驱.
5         int id[N],vis[N],in[N];
```

```
6
    int dirMst(int root){
7
        int ans=0;
        while(1){
8
9
            memset(in,INF,sizeof(in));
10
            memset(id,-1,sizeof(id));
            memset(vis,-1,sizeof(vis));
11
            for(int i=1;i<=m;i++){</pre>
12
13
                 int u=e[i].u,v=e[i].v,w=e[i].w;
14
                 if(w<in[v] && v!=u){</pre>
15
                     pre[v]=u;
16
                     in[v]=w;
17
                }
            }
                         //求最小入边集
18
19
            in[root]=0;
20
            pre[root]=root;
21
            for(int i=0;i<n;i++){</pre>
                 if(in[i]==INF) return -1;
22
23
                 ans+=in[i];
24
            }
            int idx = 0; //新标号
25
26
            for(int i=0;i<n;i++){</pre>
27
                 if(vis[i] == -1 ){
28
                     int u = i;
29
                     while(vis[u] == -1){
30
                         vis[u] = i;
31
                         u = pre[u];
32
                     }
                     if(vis[u]!=i || u==root) continue;
                                                               //判断是否形成环
33
34
                     for(int v=pre[u];v!=u;v=pre[v] )
35
                         id[v]=idx;
36
                     id[u] = idx++;
                }
37
38
39
            if(idx==0) break;
40
            for(int i=0;i<n;i++){</pre>
                 if(id[i]==-1) id[i]=idx++;
41
42
            }
43
            for(int i=1;i<=m;i++){</pre>
44
                 e[i].w-=in[e[i].v];
                 e[i].u=id[e[i].u];
45
                 e[i].v=id[e[i].v];
46
            }
47
48
            n = idx;
49
            root = id[root];//给根新的标号
50
51
        return ans;
52 | }
```

1.4.4 最小生成树计数

b 为基尔霍夫矩阵,即度数矩阵-邻接矩阵,注意要考虑重边,重复的边只算一次。

```
1 | 11 Det(int n){
2
        int i,j,k;
3
        11 \text{ ret} = 1;
4
        for(i=2;i<=n;i++){</pre>
5
             for(j = i+1;j <= n;j++){</pre>
6
                  while(b[j][i]){
7
                      11 tmp=b[i][i]/b[j][i];//不存在除不尽的情况
8
                      for(k = i;k \leftarrow n;k++)
9
                           b[i][k] -= tmp*b[j][k];
10
                      for(k=i;k<=n;k++)</pre>
11
                           swap(b[i][k],b[j][k]);
                      ret = -ret;
12
13
                  }
14
15
             if(!b[i][i]) return 0;
16
             ret *= b[i][i];
17
18
        if(ret < 0) ret = -ret;</pre>
19
        return ret;
20 | }
```

1.5 割点及桥

1.5.1 求出割点及桥

```
void init(){
 1
 2
       T=0;tot=0;
 3
        memset(head,-1,sizeof(head));
        memset(cut,0,sizeof(cut));
 4
 5
        memset(dfn,0,sizeof(dfn));
 6
        memset(bri,0,sizeof(bri));
 7
   void Tarjan(int u,int pre){
 9
        dfn[u]=low[u]=++T;
10
        int son=0;
        for(int i=head[u];i!=-1;i=e[i].next){
11
12
            int v=e[i].v;
13
            if(v==pre) continue ;
14
            if(!dfn[v]){
15
                son++;//起点有效儿子
16
                Tarjan(v,u);
17
                low[u]=min(low[u],low[v]);
18
                if(low[v]>=dfn[u]&&u!=pre)cut[u]=1;
```

1.5.2 无向图缩点成树

核心思想、保留割点、其余用并查集联通、最终树上的点一定由割点和环构成。

```
int T, tot, cnt;
1
2
   int dfn[N],low[N],cut[N],num[N],f[N];
3
   void adde(int u,int v){
        e[tot].u=u;e[tot].v=v;e[tot].next=head[u];head[u]=tot++;
4
   }
5
   void init(){
6
7
       T=0; tot=0; cnt=0;
            return f[x]==x?f[x]:f[x]=find(f[x]);
8
9
10
       void Union(int x,int y){
11
            int fx=find(x),fy=find(y);
12
            if(fx!=fy) f[fx]=fy;
13
       }
        void Tarjan(int u,int pre){
14
15
            dfn[u]=low[u]=++T;
16
            int k=0;
            for(int i=head[u];i!=-1;i=e[i].next){
17
18
       memset(head,-1,sizeof(head));
       memset(cut,0,sizeof(cut));
19
20
       memset(dfn,0,sizeof(dfn));
21
       memset(num,0,sizeof(num));
22
       for(int i=0;i<=n+1;i++) f[i]=i;</pre>
23
   int find(int x){
24
25
            int v=e[i].v;
26
            if(v==pre && !k){//处理重边, 重边会考虑
27
                k=1;
28
                continue;
29
            }
30
            if(!dfn[v]){
31
                Tarjan(v,u);
32
                low[u]=min(low[u],low[v]);
33
            }else{
```

1.6 二分图

1.6.1 最大匹配

最大匹配 = 最小点覆盖 = 最小路径覆盖 = 顶点数-最大独立集 二分图的最大团 = 补图的最大独立集(图不一定是二分图) 以下是匈牙利算法,也可以网络流做,效率更高:

```
1 | int match[N], check[N];
2
   int dfs(int x,int nown){
3
        for(int i=1;i<=nown;i++){</pre>
4
            if(!check[i] && link[x][i]){
5
                 check[i]=1;
6
                 if(match[i]==-1 || dfs(match[i],nown)){
7
                     match[i]=x;
8
                     return 1;
9
                 }
10
            }
11
        }
12
        return 0;
13
14
   int hungry(int n1,int m1){
        memset(match,-1,sizeof(match));
15
16
        int ans=0;
17
        for(int i=1;i<=n1;i++){</pre>
18
            memset(check,0,sizeof(check));
19
            ans+=dfs(i,m1);
20
        }
21
        return ans ;
22 | }
```

1.7 最大团

一般图的做法就是爆搜 + 减枝,这是个 NPC 问题。 注意独立集和团的转换。

```
int link[N][N],vis[N],group[N],cnt[N];
int ans;
```

```
3
    int dfs(int x,int tot){
4
        for(int i=x+1;i<=n;i++){</pre>
            if(cnt[i]+tot<=ans) return 0;//剪枝1
5
6
            if(link[x][i]){
7
                 int flag = 0;
8
                 for(int j=0;j<tot;j++){</pre>
9
                     if(!link[i][vis[j]]) flag=1;
10
11
                 if(!flag){
                     vis[tot]=i;
12
13
                     if(dfs(i,tot+1)) return 1;//剪枝2
14
                 }
15
            }
16
17
        if(tot>ans){
18
            ans=tot;
19
            for(int i=0;i<tot;i++) group[i]=vis[i];</pre>
20
            return 1;
21
22
        return 0;
23
   }
24
    void maxclique(){
25
        ans=-1;
26
        memset(cnt,0,sizeof(cnt));
27
        for(int i=n;i>=1;i--){
28
            vis[0]=i;
29
            dfs(i,1);
30
            cnt[i]=ans;
31
        }
32 | }
```

1.8 支配树

在 DAG 中,可以直接利用性质来构造,一个点的支配点就为所有能到达它的点在支配树上的 LCA,比较好理解。

下面给出一般图构造支配树的算法

```
#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

const int N = 2e5 + 5, M = 3e5 + 5;

namespace LT{
   vector <int> G[N], rG[N];
   vector <int> dt[N]; //dominant tree
   int fa[N], best[N], T, n;
```

```
10
        int semi[N], idom[N], dfn[N], idx[N], f[N];
11
        void init() {
12
            T = 0;
13
            for(int i = 1; i <= n; i++) semi[i] = f[i] = best[i] = i;</pre>
            for(int i = 1; i <= n; i++) dt[i].clear();</pre>
14
15
        }
16
        void dfs(int u) {
17
            dfn[u] = ++T; idx[T] = u;;
18
            for(auto v : G[u]) {
                if(!dfn[v]) {
19
                     fa[v] = u; dfs(v);
20
21
                }
22
            }
23
        }
24
        int find(int x) {
            if(f[x] == x) return x;
25
26
            int fx = find(f[x]);
27
            if(dfn[semi[best[f[x]]]] < dfn[semi[best[x]]]) best[x] = best[f[x]];</pre>
28
            return f[x] = fx;
29
        }
30
        void Tarjan(int rt) {
31
            dfs(rt);
32
            for(int i = T; i >= 2; i--) {
33
                 int x = idx[i];
34
                for(int &u : rG[x]) {
                     if(!dfn[u]) continue; //可能原图不能到达
35
                     find(u);
36
                     if(dfn[semi[x]] > dfn[semi[best[u]]]) semi[x] = semi[best[u]];
37
38
                }
                f[x] = fa[x];
39
                dt[semi[x]].push_back(x);
40
41
                x = fa[x];
                for(int &u : dt[x]) {
42
43
                     find(u);
44
                     if(semi[best[u]] != x) idom[u] = best[u];
                     else idom[u] = x;
45
46
47
                dt[x].clear();
48
            }
            for(int i = 2; i <= T; i++) {</pre>
49
                int x = idx[i];
50
                if(idom[x] != semi[x]) idom[x] = idom[idom[x]];
51
52
                dt[idom[x]].push_back(x);
53
            }
54
        }
55
56 | int n, m;
```

```
57
  int sz[N];
   void dfs(int u, int fa) {
58
59
       sz[u] = 1;
60
       for(auto v : LT::dt[u]) {
           if(v == fa) continue;
61
62
           dfs(v, u);
63
           sz[u] += sz[v];
64
       }
65
   }
66
   int main() {
67
       ios::sync_with_stdio(false); cin.tie(0);
68
       cin >> n >> m;
69
       LT::n = n;
70
       LT::init();
       for(int i = 1; i <= m; i++) {</pre>
71
72
           int u, v; cin >> u >> v;
73
           LT::G[u].push_back(v);
74
           LT::rG[v].push_back(u);
75
       }
76
       LT::Tarjan(1);
77
       dfs(1, -1);
78
       79
       return 0;
80 }
```

第二章 数学

2.1 素数

2.1.1 线性筛

线性筛,每个数都只被其最小质因子筛一次,复杂度O(n)。

```
for(int i = 2; i <= n; i++) {</pre>
1
2
       if(!chk[i]) {
3
           prime[++tot] = i;
4
5
       for(int j = 1; j <= tot && 1ll * i * prime[j] <= n; j++) {</pre>
           chk[i * prime[j]] = 1;
6
7
           if(i % prime[j] == 0) break;
8
       }
9 }
```

2.1.2 Miller-Rabin 素数测试

```
1
  //记得初始化随机种子
   11 mul(ll a, ll b, ll p) {
3
       a %= p, b %= p;
4
       11 \text{ ans } = 0;
       while(b) {
5
6
            if(b & 1) {
7
                ans = ans + a;
8
                if(ans > p) ans -= p;
9
10
            a = a + a;
11
            if(a > p) a -= p;
12
            b >>= 1;
13
        }
14
       return ans;
15 | }
16
   11 qp(ll a, ll b, ll p) {
       ll ans = 1; a %= p;
17
       while(b) {
18
            if(b & 1) ans = mul(ans, a, p);
19
```

```
a = mul(a, a, p);
20
21
            b >>= 1;
22
23
        return ans;
24
   bool check(ll a, ll n, ll x, ll t) {
25
26
        ll ans = qp(a, x, n);
27
        11 last = ans;
28
        for(int i = 1; i <= t; i++) {</pre>
            ans = mul(ans, ans, n);
29
            if(ans == 1 && last != 1 && last != n - 1) return true;
30
31
            last = ans;
32
33
        if(ans != 1) return true;
        return false;
34
35
   bool Miller_Rabin(ll n) {
36
        if(n == 1 || (n & 1) == 0) return false;
37
38
        if(n == 2) return true;
        11 x = n - 1, t = 0;
39
40
        while((x \& 1) == 0) \{x >>= 1, ++t;\}
        srand(time(NULL));
41
        for(int i = 0; i < 8; i++) {</pre>
42
43
            ll a = rand() % (n - 1) + 1;
            if(check(a, n, x, t)) return false;
44
45
        }
46
        return true;
47 | }
```

2.2 欧几里得算法

2.2.1 扩展欧几里得

求解 ax+by=c, gcd(a,b)|c 的整数解 x,y, 设 g=gcd(a,b), 通解为 $x=x+k*\frac{b}{g}, y=y-k*\frac{a}{g}$, 最后的解 x=x*c/g, y=y*c/g。

```
1
   void exgcd(ll a, ll b, ll &x, ll &y) {
2
       if(b == 0) {
3
            x = 1, y = 0;
            return ;
4
5
       }
6
       exgcd(b,a%b,x,y);
7
       11 z = x;
8
       x = y;
       y = z - y * (a / b);
10 | }
```

2.2.2 类欧几里得

求解 $\sum_{i=0}^{n} \lfloor \frac{ai+b}{c} \rfloor$ 。

形象来说,问题转换为求直线下方整点数,然后不断坐标变换,让直线斜率变得更平缓。 复杂度为 O(logn)。

```
const int MOD = 1000000007, inv2 = (MOD + 1) / 2;
2
   ll f(ll n, ll a, ll b, ll c) {
3
     //sum_{i=0}^n (ai+b)/c
       if(a <= 0) return 0;
4
       if(a >= c || b >= c) {
5
           return (n * (n + 1) % MOD * inv2 % MOD * (a / c) % MOD
6
           + (n + 1) * (b / c) % MOD + f(n, a % c, b % c, c)) % MOD;
7
8
       }
       11 m = (a * n + b) / c;
       return (m * n % MOD - f(m - 1, c, c - b - 1, a) + MOD) % MOD;
10
11 | }
```

求解最小的 x, y, 使得 $\frac{a}{b} \leq \frac{x}{y} \leq \frac{c}{d}$.

类欧几里得的一个应用,详细证明见:https://www.cnblogs.com/heyuhhh/p/11310342.html

```
| void gao(11 a, 11 b, 11 c, 11 d, 11 &x, 11 &y) { // a/b < x/y < c/d
1
2
       11 t = (a + b - 1) / b;
       if(c / d >= t) {
3
4
           y = 1; x = t;
5
            return;
6
       }
       a -= (t - 1) * b;
7
       c = (t - 1) * d;
8
       gao(d, c, b, a, y, x);
9
       x += (t - 1) * y;
10
11 | }
```

2.3 线性递推求逆元

求 $1, \ldots, p-1$ 模 p 的所有逆元,有公式: inv[i] = (p-p/i)*inv[p%i]%m 证明: 设 $t = \frac{p}{i}, k = p\%i$,就有 $t*i+k \equiv 0(\%p)$ 即 $t*i \equiv -k(\%p)$,两边同时除以 i*k 就出来了。

代码略。

2.4 高斯消元

若秩小于 n,则有无穷多组解,但首先排除无解的情况。 以下给出高斯消元求同余模方程组的代码。

```
int now = 1;
 1
 2
   for(int i = 1 ; i <= n ; i++) {</pre>
 3
        int j = now ;
 4
        while(j <= m && !a[j][i]) j++;</pre>
 5
        if(j > m) continue;
        if(j != now) {
 6
            for(int k = 1; k \le n + 1; k++) {
                 swap(a[now][k] , a[j][k]) ;
 9
            }
10
        for(int j = now + 1 ; j <= m ; j++)</pre>
11
12
            if(a[j][i]) {
13
                 int t = a[j][i] * inv[a[now][i]] % MOD;
14
                 for(int k = i ; k <= n + 1 ; k++) {
                     a[j][k] = (((a[j][k] - t * a[now][k]) % MOD) + MOD) % MOD;
15
16
                 }
17
            }
18
        now++;
19 }
```

2.5 欧拉函数

```
\varphi(x) = x \prod_{i=1}^{n} (1 - \frac{1}{p_i})
\varphi * I = id
phi(p^k) = p^k - p^{k-1}
```

2.5.1 求 $\varphi(n)$

```
int getphi(int x) {
1
2
        int ans = x;
        for(int i = 2; 111 * i * i <= x; i++) {</pre>
3
            if(x % i == 0) {
4
                 ans = ans / i * (i - 1);
5
6
                while(x \% i == 0) x /= i;
7
            }
8
9
        if(x > 1) ans = ans / x * (x - 1);
10
        return ans;
11 }
```

2.5.2 线性筛

```
int p[N], phi[N], tot;
bool chk[N];
void Euler() {
```

```
4
        phi[1] = 1;
        for(int i = 2; i < N; i++) {</pre>
5
            if(!chk[i]) p[++tot] = i, phi[i] = i - 1;
6
7
            for(int j = 1; j <= tot && i * p[j] < N; j++) {</pre>
8
                 chk[i * p[j]] = 1;
                 if(i % p[j] == 0) {
9
                     phi[i * p[j]] = phi[i] * p[j];
10
11
                     break;
12
                 phi[i * p[j]] = phi[i] * (p[j] - 1);
13
14
            }
15
        }
16 }
```

2.6 莫比乌斯函数

```
\mu = 
\begin{cases}
0, 存在平方因子 \\
-1, 奇数个质因子 \\
1, 偶数个质因子
\end{cases}
```

```
\sum_{d|n} \mu(d) = [n=1]
    莫比乌斯反演:
    形式一: 已知 g(n) = \sum_{d|n} f(d), 则 f(n) = \sum_{d|n} \mu(d) \cdot g(\frac{n}{d})
    形式二: 已知 g(n) = \sum_{n|d} f(d), 则 f(n) = \sum_{d|n} \mu(\frac{d}{n}) \cdot g(d) 线性筛:
1 | int mu[N], p[N];
2
   bool chk[N];
    void init() {
3
4
        mu[1] = 1;
5
         int cnt = 0;
6
        for(int i = 2; i < N; i++) {</pre>
7
             if(!chk[i]) p[++cnt] = i, mu[i] = -1;
             for(int j = 1; j <= cnt && i * p[j] <= k; j++) {</pre>
8
                  chk[i * p[j]] = 1;
10
                  if(i % p[j] == 0) {mu[i * p[j]] = 0; break;}
                  mu[i * p[j]] = -mu[i];
11
12
             }
13
        }
14 }
```

2.7 整除分块

求解 $\sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor$ 。

```
1  int ans = 0;
2  for(int i = 1, j; i <= n; i = j + 1) {
3     j = n / (n / i);
4     ans += (j - i + 1) * (n / i);
5  }</pre>
```

2.8 杜教筛

求解 $S(n) = \sum_{i=1}^{n} f(i), f$ 为积性函数。

构造 h=f*g,最后有 $g(1)\cdot S(n)=\sum_{i=1}^n (f*g)(i)-\sum_{d=2}^n g(d)S(\lfloor \frac{n}{d} \rfloor)$ 暴力递归即可。可预处理前 $\frac{1}{3}$ 项,复杂度 $O(n^{\frac{2}{3}})$,注意记忆化。

下面给出筛欧拉函数和莫比乌斯函数的代码。

```
11 djs_mu(int n) {
        if(n <= 5000000) return mu[n];</pre>
 3
        if(mp1[n]) return mp1[n];
        11 \text{ ans} = 1;
        for(int i = 2, j; i <= n; i = j + 1) {
            j = n / (n / i);
            ans -= (j - i + 1) * djs_mu(n / i);
        return mp1[n] = ans;
10
11
   ll djs_phi(int n) {
12
        if(n <= 5000000) return phi[n];</pre>
13
        if(mp2[n]) return mp2[n];
        ll ans = 1ll * (n + 1) * n / 2;
14
        for(int i = 2, j; i <= n; i = j + 1) {
15
            j = n / (n / i);
16
            ans -= (j - i + 1) * djs_phi(n / i);
17
18
        return mp2[n] = ans;
19
20 | }
```

2.9 min25 筛

求解一类积性函数的前缀和,此类积性函数满足在 p^k 处的值容易计算,并且 f(p) 为一个与 p 有关的简单多项式。

$$g(n,j) = g(n,j-1) - f(p_j) * (g(\frac{n}{p_j}, j-1) - sum_{j-1})$$

$$S(i,j) = g(i,|P|) - sum_{j-1} + \sum_{k \ge j} \sum_{e} F(p_k^e) (S(\frac{i}{p_k^e}, k+1) + [e \ne 1])$$

$$22 / 65$$

 $g(n,j):1\cdots n$ 中,全为质数或者最小质因子大于第 j 个质数的数之和; $S(i,j):1\cdots i$ 中,最小质因子大于等于第 j 个质数的数之和。

最终答案为 S(n,1) + f(1)。

```
1 //注意1单独考虑
2 //g应为完全积性函数, 在质数处与f相等
3 #include <bits/stdc++.h>
4 using namespace std;
5 typedef long long 11;
6 | const int N = 2e6 + 5, MOD = 1e9 + 7, inv3 = 333333336;
7 | 11 n;
8 | 11 sum1[N], sum2[N], prime[N];
  10 | 11 g1[N], g2[N];
11
  bool chk[N];
12
   int tot, cnt;
   void pre(int n) { // \sqrt
13
14
        chk[1] = 1;
       for(int i = 1; i <= n; i++) {</pre>
15
16
           if(!chk[i]) {
17
                prime[++tot] = i;
                sum1[tot] = (sum1[tot - 1] + i) % MOD;
18
19
                sum2[tot] = (sum2[tot - 1] + 1ll * i * i % MOD) % MOD;
20
           }
21
           for(int j = 1; j <= tot && prime[j] * i <= n; j++) {</pre>
22
                chk[i * prime[j]] = 1;
23
                if(i % prime[j] == 0) break;
24
           }
25
       }
26
27
   void calc_g() {
28
       int z = sqrt(n);
       for(11 i = 1, j; i \leftarrow n; i = j + 1) {
29
30
           j = n / (n / i);
31
           w[++cnt] = n / i;
32
           g1[cnt] = w[cnt] \% MOD;
           g2[cnt] = g1[cnt] * (g1[cnt] + 1) / 2 % MOD * (2 * g1[cnt] + 1) % MOD *
33
                inv3 % MOD - 1;
           g1[cnt] = g1[cnt] * (g1[cnt] + 1) / 2 % MOD - 1;
34
           if(n / i <= z) ind1[n / i] = cnt;
35
           else ind2[n / (n / i)] = cnt;
36
37
38
       for(int i = 1; i <= tot; i++) {</pre>
39
           for(int j = 1; j <= cnt && prime[i] * prime[i] <= w[j]; j++) {</pre>
40
                ll tmp = w[j] / prime[i], k;
41
                if(tmp <= z) k = ind1[tmp]; else k = ind2[n / tmp];</pre>
                (g1[j] -= prime[i] * (g1[k] - sum1[i - 1] + MOD) % MOD) % = MOD;
42
```

```
43
                 (g2[j] -= prime[i] * prime[i] % MOD * (g2[k] - sum2[i - 1] + MOD) %
                     MOD) %= MOD;
                 if(g1[j] < 0) g1[j] += MOD;</pre>
44
45
                 if(g2[j] < 0) g2[j] += MOD;</pre>
46
            }
        }
47
48
49
   11 S(11 x, int y) { // 2 \sim x >= P_y
50
        if(x \leftarrow 1 \mid | prime[y] > x) return 0;
        11 z = sqrt(n);
51
52
        11 k = x <= z ? ind1[x] : ind2[n / x];
53
        ll ans = (g2[k] - g1[k] + MOD - (sum2[y - 1] - sum1[y - 1]) + MOD) % MOD;
        for(int i = y; i <= tot && prime[i] * prime[i] <= x ; i++) {</pre>
54
            11 pe = prime[i], pe2 = prime[i] * prime[i];
55
            for(int e = 1; pe2 <= x; ++e, pe = pe2, pe2 *= prime[i]) {</pre>
56
                 ans = (ans + pe \% MOD * ((pe - 1) \% MOD) \% MOD * S(x / pe, i + 1) +
57
                     pe2 % MOD * ((pe2 - 1) % MOD) % MOD) % MOD;
58
            }
59
60
        return ans % MOD;
61
62
   int main() {
63
        cin >> n;
64
        int tmp = sqrt(n);
65
        pre(tmp);
66
        calc_g();
        cout << (S(n, 1) + 1) % MOD;
67
68
        return 0;
69 }
```

2.10 中国剩余定理

```
1
   struct CRT{
 2
        void exgcd(ll a, ll b, ll &g, ll &x, ll &y) {
 3
            if(b == 0) {
 4
                x = 1, y = 0, g = a;
 5
                return ;
 6
            exgcd(b, a % b, g, x, y);
 7
 8
            int t = x;
 9
            x = y;
10
            y = t - (a / b) * y;
11
        }
        11 china(ll m[], ll a[], int n) {
12
13
            11 M, Mi, d, X, Y, ans;
            M = 1; ans = 0;
14
```

```
15
             for(int i = 1; i <= n; i++) M *= m[i];</pre>
16
             for(int i = 1; i <= n; i++) {</pre>
                 Mi = M / m[i];
17
                 exgcd(Mi, m[i], d, X, Y);
18
                 ans = (ans + Mi * X * a[i]) % M;
19
20
21
             if(ans < 0) ans += M;
22
             return ans;
23
        }
24 | }crt;
```

扩展中国剩余定理可以处理模数不互质的情况,直接类似于数学归纳法合并解即可。

2.11 BSGS

求解高次同余方程 $a^x \equiv b \mod m$ 令 $x = i * t + j, t = \sqrt{m}$, 分块处理即可。

```
1 //预处理$a^j$,之后将逆元乘过去
2
   //v=$\frac{1}{a^t}$
3
   struct B{
        const int mod = 524287; // (1 << 19) - 1;</pre>
4
5
        int tot;
6
        int h[524288], next[524288], L[524288], v[524288];
7
        int Find(ll x) {
            int k = h[x \& mod];
8
            while(k != 0) {
9
10
                if(L[k] == x) return v[k];
11
                else k = next[k];
12
            }
            return -1;
13
14
       void Add(int e, int i) {
15
16
            tot++;
17
            next[tot] = h[e & mod];
18
            L[tot] = e; v[tot] = i;
19
            h[e \& mod] = tot;
20
21
        void init(int a, int n) {
22
            memset(h, 0, sizeof(h)); memset(L, 0, sizeof(L));tot = 0;
            memset(next, 0, sizeof(next)); memset(v, 0, sizeof(v));
23
24
            11 t, e = 1;
25
            t = (int) sqrt(n) + 1;
26
            for(int i = 0; i < t; i++) {</pre>
                if(Find(e) == -1) Add(e, i);
27
                e = e * a % n;
28
            }
29
```

```
30
        }
        ll BSGS(int a, int b, int n, ll v, ll t) { // a ^ x = b (mod n)
31
            for(int i = 0; i < t; i++) {</pre>
32
33
                 if(Find(b) != -1) return i * t + Find(b);
                 b = b * v % n;
34
35
36
            return -1;
37
        }
38 | S;
```

2.12 二次剩余

若 $a^{\frac{p-1}{2}} \equiv 1 \mod p$,那么 a 为模 p 的二次剩余。若 $a^{\frac{p-1}{2}} \equiv -1 \mod p$,则 a 为模 p 的非二次剩余。若 $a^{\frac{p-1}{2}} \equiv 0 \mod p$,则 p|a。

2.13 欧拉降幂

```
a^b \equiv \begin{cases} a^{b\%\varphi(p)}, & \gcd(a,p) = 1 \\ a^b, & \gcd(a,p) \neq 1, b < \varphi(p) \\ a^{\varphi(p) + b\%\varphi(p)}, & \gcd(a,p) \neq 1, b > = \varphi(p) \end{cases} \pmod{p}
```

求 $a^{a^{a^{\dots a}}}$ %p 代码如下: (注意快速幂部分,如果指数大于 p 了,应当保留一个 p)

```
11 Mod(11 a, 11 b) { //可以直接避免分类讨论
2
       return a < b ? a : a % b + b;
3
   int qp(ll a, ll b, ll p) {
4
       int ans = 1;
5
6
       while(b) {
           if(b & 1) ans = Mod(ans * a, p);
7
8
           a = Mod(a * a, p);
9
           b >>= 1;
10
       }
11
       return ans;
12
   int calc(ll a, ll b, ll m) {
13
       if(m == 1 || !b) return 1;
14
       int p = phi[m];
15
16
       int x = calc(a, b - 1, p);
17
       return qp(a, x, m);
18 }
```

2.14 FFT

```
const double pi = acos(-1.0);
1
2
   struct C{
        double x, y;
3
4
        C (double xx = 0, double yy = 0) {x = xx, y = yy;}
5
   }a[N], b[N], c[N];
   C operator + (C a, C b) {return C(a.x + b.x, a.y + b.y);}
6
   C operator - (C a, C b) {return C(a.x - b.x, a.y - b.y);}
7
   C operator * (C a, C b) {return C(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);}
   int 1, r[N];
9
  int lim = 1;
10
11
    void solve(C *A, int type) {
        for(int i = 0; i < lim; i++) if(i < r[i]) swap(A[i], A[r[i]]);
12
        for(int mid = 1; mid < lim; mid <<= 1) {</pre>
13
14
            C Wn(cos(pi / mid), type * sin(pi / mid));
15
            for(int R = mid << 1, j = 0; j < \lim; j += R) {
16
                C w(1, 0);
                for(int k = 0; k < mid; k++, w = w * Wn) {
17
                    C x = A[j + k], y = w * A[j + mid + k];
18
19
                    A[j + k] = x + y;
20
                    A[j + mid + k] = x - y;
21
                }
22
            }
23
24
25
    void FFT(C *a, C *b) {
26
        while(lim <= n + m) lim <<= 1, l++;</pre>
        for(int i = 0; i < lim; i++) {</pre>
27
28
            r[i] = (r[i >> 1] >> 1) | ((i & 1) << (1 - 1));
29
30
        for(int i = n + 1; i < lim; i++) a[i] = C();</pre>
        for(int i = m + 1; i < lim; i++) b[i] = C();</pre>
31
32
        solve(a, 1); solve(b, 1);
        for(int i = 0; i <= lim; i++) c[i] = a[i] * b[i];</pre>
33
34
        solve(c, -1);
35
        for(int i = 0; i \le n + m; i++) c[i].x = (c[i].x / lim + 0.5);
36 | }
```

2.15 NTT

有模数版 FFT,模数一般为 998244353。

```
const int N = 4e5 + 5, M = 2e6 + 5, P = 998244353, G = 3, Gi = 332748118;
int n, m, lim = 1, L, r[N];
ll a[N], b[N];
ll qp(ll a, ll k) {
```

```
5
        ll ans = 1;
 6
        while(k) {
 7
            if(k & 1) ans = (ans * a ) % P;
 8
            a = (a * a) \% P;
 9
            k \gg 1;
10
11
        return ans;
12
13
   void NTT(ll *A, int type) {
        for(int i = 0; i < lim; i++)</pre>
14
15
             if(i < r[i]) swap(A[i], A[r[i]]);</pre>
16
        for(int mid = 1; mid < lim; mid <<= 1) {</pre>
            ll Wn = qp( type == 1 ? G : Gi , (P - 1) / (mid << 1)); //Wn = g ^ ((p -
17
                 1) / n) (mod p)
18
            for(int j = 0; j < lim; j += (mid << 1)) {</pre>
19
                 11 w = 1;
20
                 for(int k = 0; k < mid; k++, w = (w * Wn) % P) {
                      int x = A[j + k], y = w * A[j + k + mid] % P;
21
22
                      A[j + k] = (x + y) \% P,
                      A[j + k + mid] = (x - y + P) \% P;
23
24
                 }
25
            }
26
        }
27
28
   void solve(ll *a, ll *b) {
29
        while(lim <= n + m) lim <<= 1, L++;</pre>
        for(int i = 0; i < lim; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));
30
        for(int i = n + 1; i < lim; i++) a[i] = 0; //a,b need init</pre>
31
32
        for(int i = m + 1; i < lim; i++) b[i] = 0;</pre>
33
        NTT(a, 1); NTT(b, 1);
        for(int i = 0; i < lim; i++) a[i] = (a[i] * b[i]) % P;</pre>
34
35
        NTT(a, -1);
        ll inv = qp(\lim, P - 2);
36
37
        for(int i = 0; i < lim; i++) a[i] = a[i] * inv % P;</pre>
38 }
```

2.16 蔡勒公式

快速判断一天为星期几。

```
bool check(int k) {
   int y = 0, m = 0, d = 0;
   for(int i = 0; i < 4; i++) y = y * 10 + (a[s[k][i] - 'A']);

for(int i = 5; i < 7; i++) m = m * 10 + (a[s[k][i] - 'A']);

for(int i = 8; i < 10; i++) d = d * 10 + (a[s[k][i] - 'A']);

if(y < 1600 || y > 9999 || m > 12 || d > 31) return false;
```

```
      7
      if((m == 2 && d > 28 + (y % 4 == 0 && (y % 100 != 0 || y % 400 == 0))))

      return false;

      if(m != 2 && d > days[m]) return false;

      if(m < 3) y--, m += 12;</td>

      return (y + y / 4 - y / 100 + y / 400 + d + 1 + 2 * m + 3 * (m + 1) / 5) % 7

      == 5; //年份大于1582

      return (y + y / 4 + 5 + 3 * (m + 1) / 5 + d + 2 * m) % 7 //年份小于1582

      12
```

2.17 原根

```
11 qp(ll a, ll b) {
1
2
        ll ans = 1;
3
        while(b) {
4
            if(b & 1) ans = ans * a % p;
5
            a = a * a % p;
6
            b >>= 1;
7
        }
8
        return ans;
9
   }
10
   int work(ll P) { //p - 1
        vector <int> div;
11
12
        for(int i = 2; 111 * i * i <= P; i++) {</pre>
            if(P % i == 0) {
13
14
                div.push_back(i);
                while(P \% i == 0) P /= i;
15
16
            }
17
        }
18
        if(P > 1) div.push_back(P);
19
        for(int i = 2;; i++) {
20
            bool ok = true;
21
            for(auto x : div) {
22
                if(qp(i, (p - 1) / x) \% p == 1) {
23
                     ok = false; break;
24
                }
25
            }
26
            if(ok) return i;
27
28 | }
```

2.18 二次剩余

```
4
 5
   struct field2{
 6
        int x, y, a, p;
 7
 8
        field2():x(0), y(0), a(0), p(0){}
 9
        field2(int x, int y, int a, int p):x(x), y(y), a(a), p(p){}
10
11
        field2 operator *(const field2 &f)const{
12
            int retx = (111 * x * f.x + 111 * y * f.y % p * a) % p;
            int rety = (1ll * x * f.y + 1ll * y * f.x) % p;
13
14
            return field2(retx, rety, a, p);
15
        }
16
17
        field2 powermod(int exp)const{
18
            field2 ret(1, 0, a, p), aux = *this;
            for ( ; exp > 0; exp >>= 1){
19
                if (exp & 1){
20
                     ret = ret * aux;
21
22
23
                aux = aux * aux;
24
            }
25
            return ret;
26
        }
27
   };
28
29
   int powermod(int a, int exp, int moder){
30
        int ret = 1;
        for ( ; exp; exp >>= 1){
31
32
            if (exp & 1){
                ret = 1ll * ret * a % moder;
33
34
            a = 111 * a * a % moder;
35
36
37
        return ret;
38
   }
39
   int randint(int n){
40
41
        return rand() % n;
42
   vector \langle int \rangle remain2(int a, int p){ //x^2 = a \pmod{p}
43
        if (!a || p == 2){ //特判
44
            return {a, a};
45
46
47
        if (powermod(a, p - 1 >> 1, p) != 1){ //欧拉准则
48
            return {};
49
50
        while (true){
```

```
field2 f(randint(p - 1) + 1, randint(p - 1) + 1, a, p);
51
52
            f = f.powermod(p - 1 >> 1);
            if (f.x){
53
                continue;
54
55
56
            int ret = powermod(f.y, p - 2, p);
57
            return {ret, p - ret};
58
       }
59 }
```

2.19 拉格朗日插值

对于一个 n 次多项式,如果已知其 n+1 项,那么就可以快速求解其他项,若那 n+1 项连续,则可以通过预处理阶乘,复杂度达到 O(n)。

常见应用就为求解 $\sum_{i=1}^{n} i^k$,这是一个以 n 为自变量的 k+1 次多项式,应用拉格朗日插值 复杂度为 O(k)。

```
2 2 2 2 2 2 ...
   定义 2 给定函数 P(x),依次求出函数 P(x) 的各阶差
                                                      0 0 0 0 0
\mathcal{H}^k P(x), 分别将 x = 0,1,2,3,\Lambda 代入每一 \Delta^k P(x) 中, 再将
                                                于是 S(n,2)=1^2+2^2+\Lambda+n^2
所得数列依 k = 0,1,2,3,\Lambda 的次序排成各行,这里要求下面每
                                                            =0C_{n+1}^1+1C_{n+1}^2+2C_{n+1}^3=\frac{n(n+1)(2n+1)}{\kappa}
一行的数字都恰排在上面一行两个数字的中间,即
P(0) P(1) P(2) P(3) P(4) P(5) P(6) ...
  \Delta P(0) \Delta P(1) \Delta P(2) \Delta P(3) \Delta P(4) \Delta P(5) ...
                                                  例 3 前 n 个正整数的立方和公式
                                                  解 令 P(x)=x3, 则得差分表
    \Delta^2 P(0) \Delta^2 P(1) \Delta^2 P(2) \Delta^2 P(3) \Delta^2 P(4) ...
       \Delta^3 P(0) \Delta^3 P(1) \Delta^3 P(2) \Delta^3 P(3) ...
                                                  0 1 8 27 64 125 216 343...
       .....
                                                   1 7 19 37 61 91 127
                                                       6 12 18 24 30 36 ...
   称上面的表为函数 P(x) 的差分表。
   定理 1 着多项式 P(x) 的次数为 n ,则对于任何的
                                                          0 0 0 0
k \ge n+1,多项式 P(x) 的 k 阶差分恒等于 0.
   定理 2 若多项式 P(x) 的差分表左斜列中各元素依次
                                                于是 S(n,3)=1^3+2^3+\Lambda+n^3
为d_0, d_1, d_2, …, d_m, 0, 0, 0, …, 则对任何正整数
                                                             =0.C_{n+1}^{1}+1.C_{n+1}^{2}+6C_{n+1}^{3}+6C_{n+1}^{4}
n 都有
                                                             =\frac{n^2(n+1)^2}{4}=(1+2+3+\Lambda+n)^2
    \sum_{k=0}^{n} P(k) = d_0 C_{n+1}^1 + d_1 C_{n+1}^2 + \Lambda + d_m C_{N+1}^{m+1}
2 利用差分表计算前 n 个正整数的 k 次方幂之和
                                                  例 4 前 n 个正整数的四次方和公式
                                                   解 \phi P(x)=x^4, 则得差分表
   例 1 前 n 个正整数的求和公式
   1 16 81 256 625 1296 ...
      1 2 3 4 5 6 7 ...
                                                    1 15 65 175 369 671 ...
     1 1 1 1 1 1 1 ...
                                                      14 50 110 194 302 ...
       0 0 0 0 0 0 ...
                                                        36 60 84 108 ...
   于是 S(n,1)=1+2+\Lambda+n
                                                          24 24 24 ...
                                                              0 0
             = 0 \cdot C_{n+1}^1 + 1 \cdot C_{n+1}^2 = \frac{(n+1)n}{2}
```

```
struct Lagrange {
static const int SIZE = 110;
ll f[SIZE], fac[SIZE], inv[SIZE], pre[SIZE], suf[SIZE];
int n;
inline void add(int &x, int y) {
    x += y;
    if(x >= MOD) x -= MOD;
```

```
8
      }
 9
      void init(int _n) {
        n = _n;
10
        fac[0] = 1;
11
12
        for (int i = 1; i < SIZE; ++i) fac[i] = fac[i - 1] * i % MOD;</pre>
13
          inv[SIZE - 1] = qp(fac[SIZE - 1], MOD - 2);
        for (int i = SIZE - 1; i >= 1; --i) inv[i - 1] = inv[i] * i % MOD;
14
        //设置f初值, 可以根据需要修改
15
16
        f[0] = 0;
        for (int i = 1; i <= n; ++i)</pre>
17
18
          f[i] = (f[i - 1] + qp(i, K)) % MOD;
19
      }
20
      11 calc(ll x) {
21
        if (x <= n) return f[x];</pre>
22
        pre[0] = x \% MOD;
        for (int i = 1; i \le n; ++i) pre[i] = pre[i - 1] * ((x - i) % MOD) % MOD;
23
        suf[n] = (x - n) \% MOD;
24
        for (int i = n - 1; i >= 0; --i) suf[i] = suf[i + 1] * ((x - i) % MOD) % MOD;
25
26
        11 \text{ res} = 0;
27
        for (int i = 0; i <= n; ++i) {
          11 tmp = f[i] * inv[n - i] % MOD * inv[i] % MOD;
29
          if (i) tmp = tmp * pre[i - 1] % MOD;
          if (i < n) tmp = tmp * suf[i + 1] % MOD;</pre>
30
31
          if ((n - i) \& 1) tmp = MOD - tmp;
32
          add(res, tmp);
33
34
        return res;
35
      }
36 | }lagrange;
```

2.20 BM 线性递推

若递推式由前 k 项推出,我们只需要求出前 2k 项,然后传入就行,能够快速求解第 n 项,复杂度为 O(klogn)。

```
#include<bits/stdc++.h>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define SZ(x) ((int)(x).size())

const int MAXN = 2e5 + 5, INF = 0x3f3f3f3f, MOD = 1e9 + 7;

using namespace std;
#define lson o<<1,1,m
#define rson o<<1|1,m+1,r
#define mid 1 + ((r-1)>>1)
#define pb push_back

typedef vector<int> VI;
```

```
12
   typedef long long 11;
13
   11 powMOD(ll a, ll b) {
14
15
       ll ans = 1;
16
       for (; b; b >>= 1, a = a * a%MOD)if (b & 1)ans = ans * a%MOD;
17
        return ans;
18
   }
19
   11 n;
20
   namespace linear_seq {
21
        const int N = 10010;
22
       11 res[N], base[N], _c[N], _md[N];
23
       vector<int> Md;
24
25
       void mul(ll *a, ll *b, int k) {
26
            rep(i, 0, k + k) _c[i] = 0;
            rep(i, 0, k) if (a[i]) rep(j, 0, k) _c[i + j] = (_c[i + j] + a[i] * b[j])
27
                 % MOD;
            for (int i = k + k - 1; i >= k; i--) if (_c[i])
28
29
                rep(j, 0, SZ(Md)) _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] *
                    md[Md[j]]) % MOD;
            rep(i, 0, k) a[i] = _c[i];
30
31
        int solve(ll n, VI a, VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
32
33
            11 \text{ ans} = 0, \text{ pnt} = 0;
34
            int k = SZ(a);
35
            assert(SZ(a) == SZ(b));
            rep(i, 0, k) _md[k - 1 - i] = -a[i]; _md[k] = 1;
36
37
            Md.clear();
38
            rep(i, 0, k) if (_md[i] != 0) Md.push_back(i);
39
            rep(i, 0, k) res[i] = base[i] = 0;
40
            res[0] = 1;
41
            while ((111 << pnt) <= n) pnt++;</pre>
42
            for (int p = pnt; p >= 0; p--) {
43
                mul(res, res, k);
44
                if ((n >> p) & 1) {
                    for (int i = k - 1; i \ge 0; i--) res[i + 1] = res[i]; res[0] = 0;
45
46
                    rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]])
                         % MOD;
47
                }
48
            rep(i, 0, k) ans = (ans + res[i] * b[i]) % MOD;
49
            if (ans < 0) ans += MOD;
50
            return ans;
51
52
       VI BM(VI s) {
53
            VI C(1, 1), B(1, 1);
54
55
            int L = 0, m = 1, b = 1;
```

```
rep(n, 0, SZ(s)) {
56
57
                 11 d = 0;
                 rep(i, 0, L + 1) d = (d + (ll)C[i] * s[n - i]) % MOD;
58
                 if (d == 0) ++m;
59
                 else if (2 * L <= n) {
60
                     VI T = C;
61
                     11 c = MOD - d * powMOD(b, MOD - 2) % MOD;
62
63
                     while (SZ(C) < SZ(B) + m) C.pb(0);
64
                     rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % MOD;
                     L = n + 1 - L; B = T; b = d; m = 1;
65
66
                 }
                 else {
67
                     11 c = MOD - d * powMOD(b, MOD - 2) % MOD;
68
69
                     while (SZ(C) < SZ(B) + m) C.pb(0);
70
                     rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % MOD;
71
                     ++m;
72
                 }
73
             }
74
             return C;
75
76
         int gao(VI a, ll n) {
77
             VI c = BM(a);
             c.erase(c.begin());
78
79
             rep(i, 0, SZ(c)) c[i] = (MOD - c[i]) % MOD;
80
             return solve(n, c, VI(a.begin(), a.begin() + SZ(c)));
81
        }
82
    };
83
    inline void add(int &x, int y) {
84
        x += y;
        if (x >= MOD)x -= MOD;
85
86
87
    int t, k, dp[MAXN];
88
    vector<int> v;
89
    int main() {
90
         ios::sync_with_stdio(false); cin.tie(0);
91
         cin >> t;
         while (t--) {
92
93
            v.clear();
94
             cin >> k >> n;
             if (n == -1) {
95
                 cout << 2 * powMOD(k + 1, MOD - 2) % MOD << '\n';
96
                 continue;
97
             }
98
             11 inv = powMOD(k, MOD - 2);
99
100
             dp[1] = 1; v.push_back(1);
             for (int i = 2; i <= 2 * k; i++) {
101
102
                 dp[i] = 0;
```

```
103
                 for (int j = max(1, i - k); j < i; j++) {
104
                     add(dp[i], dp[j]);
105
                 }
                 dp[i] = dp[i] * inv%MOD;
106
                 v.push_back(dp[i]);
107
108
             cout << linear_seq::gao(v, n) << '\n';</pre>
109
110
         }
111
         return 0;
112 }
```

第三章 字符串

3.1 KMP

```
void Get_next(char *s) {
2
       int j, L = strlen(s + 1);
3
       nxt[1] = j = 0;
4
       for(int i = 2; i <= L; i++) {</pre>
            while(j && s[i] != s[j + 1]) j = nxt[j];
5
            if(s[i] == s[j + 1]) j++;
6
7
            nxt[i] = j;
8
       }
9
10
   int L1 = strlen(s1 + 1), L2 = strlen(s2 + 1);
   for(int i = 1, j = 0; i <= L1; i++) {</pre>
12
       while(j > 0 && (j == L2 || s1[i] != s2[j + 1])) j = nxt[j];
13
       if(s1[i] == s2[j + 1]) j++;
       //if(j == L2) 此时位于末尾
14
15 }
```

3.2 扩展 KMP

求出一个串的所有后缀与另外一个串的最长公共前缀。

```
struct ExKmp{
1
2
        int Next[N];
3
        int extend[N];
4
        void get next(char *s) {
5
            int len = strlen(s + 1), p = 1, pos;
6
            Next[1] = len;
7
            while(p + 1 \le len \&\& s[p] == s[p + 1]) p++;
            Next[pos = 2] = p - 1;
8
9
            for(int i = 3; i <= len; i++) {</pre>
10
                int 1 = Next[i - pos + 1];
11
                if(i + 1 < p + 1) Next[i] = 1;
12
                else {
13
                    int j = max(p - i + 1, 0);
                    while(i + j <= len && s[j + 1] == s[i + j]) ++j;
14
```

```
15
                    p = i + (Next[pos = i] = j) - 1;
16
               }
17
            }
18
       }
19
       void work(char *s, char *t) {
20
            get_next(t);
            int lens = strlen(s + 1), lent = strlen(t + 1), p = 1, pos;
21
22
            while(p \leftarrow lent \&\& s[p] == t[p]) ++p;
23
            p = extend[pos = 1] = p - 1;
            for(int i = 2; i <= lens; i++) {</pre>
24
                int len = Next[i - pos + 1];
25
26
                if(len + i 
27
                else {
28
                    int j = max(p - i + 1, 0);
29
                    while(i + j <= lens && j <= lent && t[j + 1] == s[i + j]) j++;
                    p = i + (extend[pos = i] = j) - 1;
30
31
                }
32
            }
33
34 | }exkmp;
```

3.3 马拉车算法

```
1
   struct Manacher{
2
        char ch[N << 1];</pre>
3
        int p[N << 1];</pre>
        void work(char *s) {
4
            int 1 = 0;
5
            ch[1++] = '&'; ch[1++] = '#';
6
7
            for(int i = 0; s[i]; i++) {
8
                 ch[l++] = s[i];
                 ch[1++] = '#';
9
10
            }
            ch[1] = ' \ 0';
11
            int mx = 0, id = 0;
12
            for(int i = 0; i < 1; i++) {</pre>
13
                 p[i] = i < mx ? min(p[2 * id - i], mx - i) : 1;
14
                 while(ch[i + p[i]] == ch[i - p[i]]) p[i]++;
15
16
                 if(i + p[i] > mx) mx = i + p[i], id = i;
17
            }
18
19 | }Man;
```

3.4 Trie 树

```
struct Trie{
1
2
        int ch[N * 30][2], cnt[N * 30];
3
        int tot;
4
        void init() {
5
            tot = 0;
            ch[tot][0] = ch[tot][1] = 0;
6
7
        }
8
        int New_node() {
9
            ch[++tot][0] = ch[tot][1] = 0;
            return tot;
10
11
12
        void Insert(int x) {
            int u = 0;
13
14
            for(register int i = 29; ~i; --i) {
15
                int p = ((x >> i \& 1) ? 1 : 0);
                if(!ch[u][p]) ch[u][p] = New_node();
16
17
                u = ch[u][p];
                ++cnt[u];
18
19
            }
20
21 | }t1, t2;
```

3.5 AC 自动机

```
queue <int> q;
2
    struct ACAM{
3
        int sz;
4
        int ch[N][MAX];
        int cnt[N], fail[N];
5
        void init() {
6
7
            sz = -1;
8
            newnode();
9
10
        int newnode() {
11
            memset(ch[++sz], 0, sizeof(ch[sz]));
            cnt[sz] = fail[sz] = 0;
12
13
            return sz;
14
        void insert(char *s) {
15
            int u = 0;
16
17
            for(int i = 1; s[i]; i++) {
18
                int idx = s[i] - 'a';
19
                if(!ch[u][idx]) ch[u][idx] = newnode();
20
                u = ch[u][idx];
21
            }
22
            cnt[u]++;
```

```
23
        }
24
        void build() {
25
             while(!q.empty()) q.pop();
26
             for(int i = 0; i < 26; i++) {</pre>
27
                 if(ch[0][i]) q.push(ch[0][i]);
28
             }
29
             while(!q.empty()) {
30
                 int cur = q.front(); q.pop();
31
                 for(int i = 0; i < 26; i++) {</pre>
                      if(ch[cur][i]) {
32
33
                          fail[ch[cur][i]] = ch[fail[cur]][i];
34
                          q.push(ch[cur][i]);
                      } else {
35
36
                          ch[cur][i] = ch[fail[cur]][i];
37
                      }
                 }
38
39
             }
40
        }
41 | }ac;
```

3.6 字符串 hash

hash 方式有多种,可以视情况来设计 hash 函数,下面给出最常见的一种:

```
typedef unsigned long long ull;
   template <unsigned mod, unsigned base>
 3
   struct rolling hash {
        unsigned int pg[N], val[N]; // val:1,2...n
 4
 5
        rolling_hash() {
 6
            pg[0] = 1;
 7
            for(int i = 1; i < N; i++) pg[i] = 1ull * pg[i - 1] * base % mod;</pre>
 8
            val[0] = 0;
 9
        }
10
        void build(const char *str) {
11
            for(int i = 0; str[i]; i++) {
12
                val[i + 1] = (str[i] + 1ull * val[i] * base) % mod;
13
            }
14
        unsigned int operator() (int 1, int r) {
15
16
            ++r; //
            return (val[r] - 1ull * val[l] * pg[r - 1] % mod + mod) % mod;
17
18
        }
19
   };
20
   struct dm_hasher {
21
        //str:0,1...len-1
22
        rolling_hash<997137961, 753> h1;
        rolling_hash<1003911991, 467> h2;
23
```

3.7 回文自动机

一般用来求解本质不同的回文串相关问题,每个结点到根都代表一个回文后缀。 与 AC 自动机有点类似。

```
namespace PAM{
1
2
        int ch[N][26], fail[N], len[N], st[N], cnt[N];
3
       int sz, n, last;
        int New(int 1, int f) {
4
            memset(ch[++sz], 0, sizeof(ch[sz]));
5
            len[sz] = 1, fail[sz] = f;
6
7
            return sz;
8
        }
9
       void init() {
10
            sz = -1;
            New(0, 1); last = New(-1, 0);
11
12
            st[n = 0] = -1;
            memset(cnt, 0, sizeof(cnt));
13
14
        }
15
        int getf(int x) {
16
            while(st[n - len[x] - 1] != st[n]) x = fail[x];
            return x;
17
18
        }
        bool Insert(int c) { //int
19
20
            st[++n] = c;
21
            int x = getf(last);
22
            bool F = 0;
23
            if(!ch[x][c]) {
24
                F = 1;
25
                int f = getf(fail[x]);
26
                ch[x][c] = New(len[x] + 2, ch[f][c]);
27
            }
28
            last = ch[x][c];
29
            cnt[last]++;
30
            return F;
31
32
       void count() {
            for(int i = sz; i >= 1; i--) cnt[fail[i]] += cnt[i];
33
```

```
34 }
35 };
```

3.8 后缀数组

```
1 | struct SA{
                                                          //sa:1...n Rank:0...n-1
 2
        int x[N], y[N], sa[N], c[N], height[N], Rank[N];
 3
        int f[N][20], lg[N];
        int n;
 4
                                                             //Length
        void da(char *s, int m){
 5
 6
 7
             for(int i = 0; i < m; i++) c[i] = 0;
 8
             for(int i = 0; i < n; i++) c[x[i] = s[i]]++;
 9
             for(int i = 1; i < m; i++) c[i] += c[i - 1];
10
             for(int i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i;
            for(int k = 1; k <= n; k <<= 1) {</pre>
11
12
                 int p = 0;
                 for(int i = n - k; i < n; i++) y[p++] = i ;</pre>
13
                 for(int i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
14
                 for(int i = 0; i < m; i++) c[i] = 0;</pre>
15
                 for(int i = 0; i < n; i++) c[x[y[i]]]++;</pre>
16
17
                 for(int i = 1; i < m; i++) c[i] += c[i - 1];</pre>
18
                 for(int i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i] ;
19
                 swap(x , y); p = 1; x[sa[0]] = 0;
20
                 for(int i = 1; i < n; i++)</pre>
                     x[sa[i]] = y[sa[i - 1]] == y[sa[i]] && y[sa[i-1] + k] == y[sa[i]]
21
                         + k] ? p - 1 : p++;
22
                 if(p >= n) break;
23
                 m = p;
24
            }
25
            n--;
26
            int k = 0;
27
            for(int i = 0; i <= n; i++) Rank[sa[i]] = i;</pre>
28
            for(int i = 0; i < n; i++) {</pre>
29
                 if(k) k--;
30
                 int j = sa[Rank[i] - 1];
31
                 while(s[i + k] == s[j + k]) k++;
32
                 height[Rank[i]] = k;
33
            }
34
        }
35
        11 count() {
36
            11 \text{ ans} = 0;
37
             for(int i = 1; i <= n; i++) ans += n - sa[i] - height[i];</pre>
38
             return ans;
39
        }
        void init() {
40
```

```
for(int i = 2; i < N; i++) lg[i] = lg[i >> 1] + 1;
41
42
            for(int i = 2; i <= n; i++) f[i][0] = height[i];</pre>
            for(int j = 1; j < 20; j++)</pre>
43
                for(int i = 2; i + (1 << j) - 1 <= n; i++)
44
                     f[i][j] = min(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
45
46
        }
47
        int get lcp(int l, int r) {
            if(Rank[1] > Rank[r]) swap(1, r);
48
            1 = Rank[1] + 1, r = Rank[r];
49
            int k = \lg[r - 1 + 1];
50
51
            return min(f[1][k], f[r - (1 << k) + 1][k]);
52
        }
53 }
```

3.9 后缀自动机

以一道例题为例,做法是 dp+ 后缀自动机,用后缀自动机维护最远的那个位置来进行转移。

```
1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long 11;
   const int N = 4e5 + 5;
   int p, q;
   char s[N];
7
   struct SAM{
        struct node{
8
           int ch[26];
9
10
           int len, fa;
11
           node(){memset(ch, 0, sizeof(ch)), len = 0;}
12
       }dian[N];
       int last, tot, now; //now为在后缀自动机上跑的一个指针
13
       void init(int n) {
14
           last = tot = now = 1;
15
16
           for(int i = 1; i <= 2 * n; i++) {</pre>
17
                for(int j = 0; j < 26; j++) dian[i].ch[j] = 0;
18
                dian[i].len = 0;
19
           }
20
21
       void add(int c) { //核心部分
22
           int p = last;
23
           int np = last = ++tot;
24
           dian[np].len = dian[p].len + 1;
25
           for(; p && !dian[p].ch[c]; p = dian[p].fa) dian[p].ch[c] = np;
26
           if(!p) dian[np].fa = 1;
27
           else {
28
                int q = dian[p].ch[c];
29
                if(dian[q].len == dian[p].len + 1) dian[np].fa = q;
```

```
30
                else {
31
                     int nq = ++tot; dian[nq] = dian[q];
32
                     dian[nq].len = dian[p].len + 1;
33
                     dian[q].fa = dian[np].fa = nq;
34
                     for(; p \&\& dian[p].ch[c] == q; p = dian[p].fa) dian[p].ch[c] = nq
35
                }
36
            }
37
        }
        void withdraw(int lens) { //越短个数越多
38
39
            while(now && dian[dian[now].fa].len >= lens) now = dian[now].fa;
40
            if(now == 0) now = 1;
41
        }
42
        void trans(int t, int lens) {
            now = dian[now].ch[t];
43
            withdraw(lens);
44
45
        }
        bool match(int t) {
46
47
            return dian[now].ch[t];
48
        }
49
   }A;
50
   11 dp[N];
   int main() {
51
52
        ios::sync_with_stdio(false); cin.tie(0);
53
        while(cin >> s + 1) {
            int n = strlen(s + 1);
54
55
            cin >> p >> q;
56
            A.init(n);
57
            int 1 = 2, r = 1;
            A.add(s[1] - 'a'); dp[1] = p;
58
            for(int i = 2; i <= n; i++) {</pre>
59
60
                ++r; int tmp = s[i] - 'a';
61
                dp[i] = dp[i - 1] + p;
62
                while((!A.match(tmp) | | r - 1 + 1 > i / 2) && 1 <= r) {
63
                     A.add(s[1++] - 'a');
                     A.withdraw(r - 1);
64
65
                }
66
                A.trans(tmp, r - l + 1);
67
                dp[i] = min(dp[i], dp[1 - 1] + q);
68
69
            cout << dp[n] << '\n';</pre>
70
        }
71
        return 0;
72 | }
```

3.10 最小表示法

```
int getmin(char *s){
1
2
        int n=strlen(s);
3
        int i=0,j=1,k=0,t;
        while(i<n && j<n && k<n){</pre>
4
5
            t=s[(i+k)%n]-s[(j+k)%n];
6
            if(!t) k++;
7
            else{
                 if(t>0) i+=k+1;
8
9
                 else j+=k+1;
10
                 if(i==j) j++;
11
                 k=0;
12
            }
13
        }
14
        return i<j?i:j;</pre>
15 }
```

第四章 数据结构

4.1 笛卡尔树

```
pii b[N];
1
2
    struct Cartesian_Tree{
3
        struct node{
            int id, val, fa;
4
5
            int son[2];
6
            node(){}
7
            node(int id, int val, int fa) : id(id), val(val), fa(fa) {
                son[0] = son[1] = 0;
8
            }
9
10
        }tr[N];
11
        int rt;
12
        void init() {
            tr[0] = node(0, 1e9, 0);
13
14
        }
        void build(int n, int *a) {
15
16
            for(int i = 1; i <= n; i++) tr[i] = (i, a[i], 0);</pre>
17
            for(int i = 1; i <= n; i++) {</pre>
18
                int k = i - 1;
19
                while(tr[k].val < tr[i].val) k = tr[k].fa;</pre>
20
                tr[i].son[0] = tr[k].son[1];
21
                tr[k].son[1] = i;
22
                tr[i].fa = k;
                tr[tr[i].son[0]].fa = i;
23
24
            rt = tr[0].son[1];
25
26
27
        int dfs(int u) {
28
            if(!u) return 0;
29
            int lsz = dfs(tr[u].son[0]);
            int rsz = dfs(tr[u].son[1]);
30
31
            b[tr[u].id].fi = lsz;
32
            b[tr[u].id].se = rsz;
33
            return lsz + rsz + 1;
34
        }
35 \}CT;
```

4.2 线性基

普通线性基就不说了,给出线性基求交集的模板。

求交的话大概就是对于两个基集合 B_1 , B_2 , 枚举 B_2 中的基,如果与 B_1 线性无关,那么就插在 B_1 里面去;否则就对于当前的基,异或掉 B_1 中之前插进去的 B_2 的基,然后将其插入交集里面就行了。

线段树维护线性基交:

```
1 #include <bits/stdc++.h>
 2 using namespace std;
   typedef long long 11;
   typedef unsigned int ui;
   const int N = 50005;
   int n, m;
   struct node{
 7
 8
        ui r[32], f[32];
9
        bool ins(ui x) {
10
            for(int i = 31; i >= 0; i--) {
                if(x \gg i) {
11
12
                     if(!r[i]) {r[i] = x; return 1;}
13
                     else x ^= r[i];
14
                }
15
16
            return 0;
17
18
        bool ins2(ui x) {
            ui tmp = x;
19
20
            for(int i = 31; i >= 0; i--) {
21
                if(x \gg i) {
22
                     if(!r[i]) {r[i] = x; f[i] = tmp; return 1;}
23
24
                         x ^= r[i]; tmp ^= f[i];
25
                     }
26
                }
27
            }
28
            return 0;
29
        void clear() {
30
31
            for(int i = 0; i \le 31; i++) r[i] = f[i] = 0;
32
33
        bool find(ui x) {
34
            for(int i = 31; i >= 0; i--) {
35
                if(x \gg i) {
36
                     if(!r[i]) return 0;
37
                     x ^= r[i];
38
                }
            }
39
```

```
40
             return x == 0;
41
        }
        int calc(ui x) {
42
             int ans = 0;
43
44
             for(int i = 31; i >= 0; i--) {
45
                 if(x \gg i) {
46
                      x ^= r[i];
47
                      ans ^= f[i];
48
                 }
49
             }
50
             return ans;
51
        }
52
    };
53
    node _merge(node u, node v) {
54
        node tmp, res; res.clear();
55
        tmp = u;
        for(int i = 31; i >= 0; i--) {
56
             ui x = v.r[i];
57
58
             if(tmp.find(x)) {
59
                 res.ins(x ^ tmp.calc(x));
60
             } else tmp.ins2(x);
61
62
        return res;
63
   }
64
   ui a[N][33];
65
    node b[N << 2];
    void build(int o, int l, int r) {
66
67
        if(1 == r) {
68
             b[o].clear();
69
             for(int j = 1; j <= 32; j++) b[o].ins(a[l][j]);</pre>
70
             return ;
71
        }
72
        int mid = (1 + r) >> 1;
73
        build(o \langle\langle 1, 1, mid\rangle\rangle; build(o \langle\langle 1|1, mid + 1, r\rangle\rangle;
74
        b[o] = _merge(b[o << 1], b[o << 1|1]);
75
    bool query(int o, int l, int r, int L, int R, ui v) {
76
77
        if(L <= 1 && r <= R) {
78
             return b[o].find(v);
79
        }
80
        int mid = (1 + r) >> 1;
        bool ans = 1;
81
82
        if(L <= mid) ans &= query(o << 1, 1, mid, L, R, v);</pre>
        if(R > mid) ans &= query(o << 1|1, mid + 1, r, L, R, v);
83
84
        return ans;
85
   }
86 | int main() {
```

```
87
          ios::sync_with_stdio(false); cin.tie(0);
88
          cin >> n >> m;
          for(int i = 1; i <= n; i++) {</pre>
89
90
              int k; cin >> k;
91
              for(int j = 1; j <= k; j++) cin >> a[i][j];
92
          }
93
          build(1, 1, n);
94
          for(int i = 1, l, r; i <= m; i++) {</pre>
95
              ui x; cin \Rightarrow 1 \Rightarrow r \Rightarrow x;
              if(query(1, 1, n, l, r, x)) cout << "YES" << '\n';</pre>
96
              else cout << "NO" << '\n';
97
98
          }
99
          return 0;
100 | }
```

4.3 李超树

题意:现在需要维护两种操作,一种是插入一条线段,另一种是询问 x = k 时,最上方线段的编号,如有多个线段处于最大值状态,那么就输出编号最小的。强制在线。

李超树模板题,注意其标记可持久化。

```
1 #include <bits/stdc++.h>
 2 using namespace std;
   typedef long long 11;
   const int N = 1e5 + 5, MAX = 50005;
 5
   int n;
 6
 7
   struct node{
 8
        bool sign; int id;
 9
        double k, b;
        void upd(int _id, double _k, double _b) {
10
            id = _id, k = _k, b = _b;
11
12
13
   }tr[MAX << 3];</pre>
14
   void update(int o, int l, int r, int id, double k, double b) {
15
16
        if(!tr[o].sign) {
17
            tr[o].sign = 1;
            tr[o].upd(id, k, b);
18
            return;
19
20
21
        double 11 = 1 * tr[o].k + tr[o].b, 12 = 1 * k + b;
22
        double r1 = r * tr[o].k + tr[o].b, r2 = r * k + b;
23
        if(12 <= 11 && r2 <= r1) return;</pre>
        if(12 > 11 && r2 > r1) {
24
            tr[o].upd(id, k, b); return;
25
```

```
26
        }
        int mid = (1 + r) >> 1;
27
        double x = (tr[o].b - b) / (k - tr[o].k);
28
        if(x <= mid) {
29
30
            if(11 > 12) update(o << 1, l, mid, tr[o].id, tr[o].k, tr[o].b), tr[o].upd</pre>
                (id, k, b);
31
            else update(o << 1, 1, mid, id, k, b);</pre>
32
        } else {
33
            if(11 > 12) update(o << 1|1, mid + 1, r, id, k, b);
            else update(0 << 1|1, mid + 1, r, tr[o].id, tr[o].k, tr[o].b), tr[o].upd(
34
                id, k, b);
35
        }
36
   }
37
38
    void update(int o, int l, int r, int L, int R, int id, double k, double b) {
        if(L <= 1 && r <= R) {
39
            update(o, l, r, id, k, b); return;
40
41
42
        int mid = (1 + r) >> 1;
        if(L <= mid) update(o << 1, 1, mid, L, R, id, k, b);</pre>
        if(R > mid) update(o << 1|1, mid + 1, r, L, R, id, k, b);
44
45
   }
46
47
    void chk(int &res, int o1, int o2, int x) {
48
        double y1, y2;
        y1 = x * tr[o1].k + tr[o1].b;
49
        y2 = x * tr[o2].k + tr[o2].b;
50
        if(y1 > y2 && tr[o1].sign) res = o1;
51
52
        else if(y1 < y2 && tr[o2].sign) res = o2;</pre>
53
        else if(y1 == y2){
54
            if(tr[o1].id < tr[o2].id && tr[o1].sign) res = o1;</pre>
55
            else if(tr[o1].id > tr[o2].id && tr[o2].sign) res = o2;
56
57
        return;
58
   }
59
   int query(int o, int 1, int r, int p) {
60
61
        if(1 == r) return o;
62
        int mid = (1 + r) >> 1, res = 0;
        if(p <= mid) chk(res, query(o << 1, 1, mid, p), o, p);</pre>
63
        else chk(res, query(o \langle\langle 1|1, mid + 1, r, p\rangle, o, p);
64
        return res;
65
66
   }
67
68
   int main() {
          freopen("input.in", "r", stdin);
69
70
        scanf("%d", &n);
```

```
71
        int lastans = 0, cnt = 0;
72
        for(int i = 1; i <= n; i++) {</pre>
            int op; scanf("%d", &op);
73
74
            if(op == 0) {
75
                 int k; scanf("%d", &k);
76
                 int x = (k + lastans - 1) % 39989 + 1;
77
                 int o = query(1, 1, MAX, x);
78
                lastans = tr[o].id;
79
                 printf("%d\n", lastans);
            } else {
80
81
                int x1, x2, y1, y2; ++cnt;
82
                scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
                x1 = (x1 + lastans - 1) \% 39989 + 1;
83
84
                y1 = (y1 + lastans - 1) \% 1000000000 + 1;
85
                x2 = (x2 + lastans - 1) \% 39989 + 1;
                y2 = (y2 + lastans - 1) \% 1000000000 + 1;
86
                if(x1 > x2) swap(x1, x2), swap(y1, y2);
87
                double k = 1.0 * (y1 - y2) / (x1 - x2), b = y1 - k * x1;
88
89
                update(1, 1, MAX, x1, x2, cnt, k, b);
90
            }
91
        }
92
        return 0;
93 | }
```

4.4 CDQ 分治

题意:现有两种操作,插入和查询,插入操作则插入一个点(x,y,z),查询操作给出两个点(x1,y1,z1),(x2,y2,z2),回答满足x1xx2y1yy2,z1zz2的(x,y,z)的个数为多少。带修改的四维偏序,四维分别为时间、x、y、z,直接cdq套cdq3fo

```
1 #include <bits/stdc++.h>
   using namespace std;
   typedef long long 11;
 4
   const int N = 50005;
 5
 6
   int T, q;
 8
   struct node{
 9
        int x, y, z, op, id, part;
   }a[N * 10], b[N * 10], d[N * 10];
10
11
12
   int hs[N << 2];</pre>
13
14
   bool isq[N];
   int ans[N];
15
16
```

```
17
    int c[N << 2];</pre>
18
    int lowbit(int x) {return x & (-x);}
19
20
   void update(int x, int v) {
21
        for(; x < N << 2; x += lowbit(x)) c[x] += v;
22
   }
23
24
   int query(int x) {
25
        int ans = 0;
        for(; x; x -= lowbit(x)) ans += c[x];
26
27
        return ans;
28
   }
29
30
   void cdq2(int 1, int r) {
31
        if(1 == r) return ;
        int mid = (1 + r) >> 1;
32
33
        cdq2(1, mid); cdq2(mid + 1, r);
        int t1 = 1, t2 = mid + 1;
34
35
        for(int i = 1; i <= r; i++) {</pre>
36
            if(t2 > r \mid \mid (t1 \le mid \&\& b[t1].y \le b[t2].y)) {
37
                 if(b[t1].part == 0 \&\& b[t1].op == 0) {
                     update(b[t1].z, 1);
38
39
                 }
40
                 d[i] = b[t1++];
41
            } else {
                 if(b[t2].part && b[t2].op != 0) {
42
                     ans[b[t2].id] += b[t2].op * query(b[t2].z);
43
44
                 }
                 d[i] = b[t2++];
45
46
            }
47
        for(int i = 1; i <= mid; i++) {</pre>
48
49
            if(b[i].part == 0 && b[i].op == 0) update(b[i].z, -1);
50
51
        for(int i = 1; i <= r; i++) b[i] = d[i];</pre>
52
   }
53
54
    void cdq(int 1, int r) {
55
        if(l == r) return ;
        int mid = (1 + r) >> 1;
56
        cdq(l, mid); cdq(mid + 1, r);
57
        int t1 = 1, t2 = mid + 1;
58
        for(int i = 1; i <= r; i++) {</pre>
59
            if(t2 > r || (t1 <= mid && a[t1].x <= a[t2].x)) {</pre>
60
61
                 b[i] = a[t1++];
62
                 b[i].part = 0;
63
            } else {
```

```
64
                  b[i] = a[t2++];
65
                  b[i].part = 1;
66
             }
67
         }
68
         for(int i = 1; i <= r; i++) a[i] = b[i];</pre>
69
         cdq2(1, r);
70
    }
71
72
    int main() {
73
           freopen("input.in", "r", stdin);
    //
74
         ios::sync_with_stdio(false); cin.tie(0);
75
         cin >> T;
76
         while(T--) {
77
             cin >> q;
78
             for(int i = 1; i \leftarrow q; i++) ans[i] = 0, isq[i] = false;
             int cnt = 0; hs[0] = 0;
79
80
             for(int i = 1; i <= q; i++) {</pre>
                  int op; cin >> op;
81
82
                  if(op == 1) {
83
                      int x, y, z; cin >> x >> y >> z;
                      a[++cnt] = \{x, y, z, 0, i, -1\};
84
                      hs[++hs[0]] = z;
85
                  } else {
86
87
                      isq[i] = true;
88
                      int x1, y1, z1, x2, y2, z2;
                      cin >> x1 >> y1 >> z1 >> x2 >> y2 >> z2;
89
                      --x1, --y1, --z1;
90
                      a[++cnt] = \{x1, y1, z1, -1, i, -1\};
91
                      a[++cnt] = \{x1, y2, z1, 1, i, -1\};
92
93
                      a[++cnt] = \{x2, y2, z1, -1, i, -1\};
                      a[++cnt] = \{x2, y1, z1, 1, i, -1\};
94
95
                      a[++cnt] = \{x1, y1, z2, 1, i, -1\};
                      a[++cnt] = \{x1, y2, z2, -1, i, -1\};
96
97
                      a[++cnt] = \{x2, y2, z2, 1, i, -1\};
98
                      a[++cnt] = \{x2, y1, z2, -1, i, -1\};
                      hs[++hs[0]] = z1, hs[++hs[0]] = z2;
99
100
                  }
101
             }
102
             sort(hs + 1, hs + hs[0] + 1);
             hs[0] = unique(hs + 1, hs + hs[0] + 1) - hs - 1;
103
             for(int i = 1; i \le cnt; i++) a[i].z = lower_bound(hs + 1, hs + hs[0] +
104
                 1, a[i].z) - hs;
105
             cdq(1, cnt);
             for(int i = 1; i <= q; i++) {
106
107
                  if(isq[i]) cout << ans[i] << '\n';</pre>
108
             }
109
         }
```

```
110 return 0;
111 }
```

4.5 并查集

线段树维护可撤销并查集。

因为可撤销, 所以不能路径压缩, 注意启发式合并。

```
1 #include <bits/stdc++.h>
2 | #define MP make_pair
3 using namespace std;
4 typedef long long 11;
  typedef pair<int, int> pii;
  const int N = 2e5 + 5;
7
   int n, m;
8
   struct node{
9
        int u, v, 1, r;
  }a[N];
10
11
  int b[N], D;
12 | vector <int> c[N << 2];
   vector <pair<int, int> > d[100];
13
14
   ll ans;
15
   void insert(int o, int l, int r, int L, int R, int id) {
16
       if(L <= 1 && r <= R) {
17
            c[o].push_back(id);
            return;
18
19
       }
20
        int mid = (1 + r) >> 1;
21
       if(L <= mid) insert(o << 1, 1, mid, L, R, id);</pre>
22
       if(R > mid) insert(o << 1|1, mid + 1, r, L, R, id);</pre>
23
24
   int f[N], sz[N];
25
   int find(int x) {
26
        return f[x] == x ? x : find(f[x]);
27
28
   void merge(int x, int y, int dep) {
29
        int fx = find(x), fy = find(y);
30
       if(fx == fy) return;
31
       if(sz[fx] > sz[fy]) swap(fx, fy);
        int tmp = 0;
32
33
       f[fx] = fy;
34
       if(sz[fx] == sz[fy]) tmp++;
35
        sz[fy] += tmp;
36
       d[dep].push_back(MP(fx, tmp));
37
38 | void del(int dep) {
```

```
39
        for(auto it : d[dep]) {
40
            sz[f[it.first]] -= it.second;
            f[it.first] = it.first;
41
42
43
        d[dep].clear();
44
   void dfs(int o, int l, int r, int dep) {
45
46
        for(auto it : c[o]) {
            merge(a[it].u, a[it].v, dep);
47
48
49
        if(find(1) == find(n)) {
50
            ans += b[r + 1] - b[1];
        } else if(1 < r) {</pre>
51
52
            int mid = (1 + r) >> 1;
53
            dfs(o << 1, 1, mid, dep + 1);
            dfs(o << 1|1, mid + 1, r, dep + 1);
54
55
        }
        del(dep);
56
57
58
   int main() {
59
        ios::sync_with_stdio(false); cin.tie(0);
60
        cin >> n >> m;
        for(int i = 1; i <= m; i++) {</pre>
61
62
            cin >> a[i].u >> a[i].v >> a[i].l >> a[i].r;
63
            b[++D] = a[i].l, b[++D] = a[i].r + 1;
64
        }
        sort(b + 1, b + D + 1);
65
        D = unique(b + 1, b + D + 1) - b - 1;
66
        for(int i = 1; i <= m; i++) {</pre>
67
68
            a[i].l = lower_bound(b + 1, b + D + 1, a[i].l) - b;
            a[i].r = lower_bound(b + 1, b + D + 1, a[i].r + 1) - b - 1;
69
70
            insert(1, 1, D, a[i].l, a[i].r, i);
71
72
        for(int i = 1; i <= n; i++) f[i] = i, sz[i] = 1;</pre>
73
        dfs(1, 1, D, 1);
74
        cout << ans;</pre>
        return 0;
75
76 | }
```

4.6 kd-tree

一种多维二叉搜索树,每一层有不同的排序规则。

寻找最近点、最远点之类的复杂度为 O(logn) O(n),而矩阵查询、修改之类的复杂度一般为 $O(n\sqrt{n})$ 。

矩阵查询,单点修改,复杂度都为 $O(\sqrt{n})$

```
int D;
1
2
    struct Point {
3
        int d[2];
        Point(int x = 0, int y = 0) {
4
5
            d[0] = x, d[1] = y;
6
        }
        int& operator[] (int x) {return d[x];}
   }p[N];
    struct Node{
        int mn[2], mx[2];
10
11
        int 1, r, col;
12
        bool lz;
13
        Point t;
14
   }tr[N];
15
    bool operator < (const Point &A, const Point &B) {</pre>
        return A.d[D] < B.d[D];</pre>
16
17
    bool operator == (const Point &A, const Point &B) {
18
19
        return A.d[0] == B.d[0] && A.d[1] == B.d[1];
20
   }
21
   int rt;
22
    struct kdtree {
23
        void push_up(int o) {
24
            int ls = tr[o].1, rs = tr[o].r;
25
            for(int i = 0; i < 2; i++) {</pre>
26
                tr[o].mn[i] = tr[o].mx[i] = tr[o].t[i];
27
                if(ls) {
                     tr[o].mn[i] = min(tr[o].mn[i], tr[ls].mn[i]);
28
29
                     tr[o].mx[i] = max(tr[o].mx[i], tr[ls].mx[i]);
30
                }
                if(rs) {
31
                     tr[o].mn[i] = min(tr[o].mn[i], tr[rs].mn[i]);
32
33
                     tr[o].mx[i] = max(tr[o].mx[i], tr[rs].mx[i]);
34
                }
35
            }
36
37
        void push_down(int o) {
38
            if(tr[o].lz) {
39
                if(tr[o].1) {
40
                     tr[tr[o].1].lz = true;
                     tr[tr[o].1].col = tr[o].col;
41
42
                if(tr[o].r) {
43
                     tr[tr[o].r].lz = true;
44
45
                     tr[tr[o].r].col = tr[o].col;
46
47
                tr[o].lz = false;
```

```
48
            }
49
        }
       int build(int 1, int r, int now) {
50
            D = now;
51
52
            int mid = (1 + r) >> 1;
53
            nth_element(p + l, p + mid, p + r + 1);
54
            tr[mid].t = p[mid];
55
            tr[mid].lz = false;
56
            tr[mid].col = 1;
            if(1 < mid) tr[mid].1 = build(1, mid - 1, now ^ 1);</pre>
57
58
            else tr[mid].l = 0;
59
            if(r > mid) tr[mid].r = build(mid + 1, r, now ^ 1);
            else tr[mid].r = 0;
60
61
            push_up(mid);
62
            return mid;
63
        }
64
        int query(int o, Point T, int now) {
            if(o == 0) return 0;
65
66
            if(tr[o].t == T) return tr[o].col;
67
            push down(o);
68
            D = now;
69
            if(T.d[D] < tr[o].t.d[D]) return query(tr[o].1, T, now ^ 1);
70
            else return query(tr[o].r, T, now ^ 1);
71
        }
72
        void update(int o, int l, int r, int d, int u, int c) {
73
            if(tr[o].mn[0] >= 1 \&\& tr[o].mx[0] <= r \&\& tr[o].mn[1] >= d \&\& tr[o].mx
                [1] <= u) {
74
                tr[o].col = c; tr[o].lz = true;
75
                return;
76
77
            if(tr[o].mn[0] > r || tr[o].mx[0] < l || tr[o].mn[1] > u || tr[o].mx[1] <
                 d) return;
78
            push down(o);
79
            if(tr[0].t[0] >= 1 \&\& tr[0].t[0] <= r \&\& tr[0].t[1] >= d \&\& tr[0].t[1] <=
                 u) {
80
                tr[o].col = c;
81
            }
82
            if(tr[o].1) update(tr[o].1, 1, r, d, u, c);
83
            if(tr[o].r) update(tr[o].r, 1, r, d, u, c);
84
        }
85 | }kd;
矩阵查询,支持修改和树的重构(设立一个阀值),区间查询,动态开点。
 1 | int n;
2 | int D;
 3 | struct Point {
       int d[2], val;
 4
```

```
}tmp[N], T;
5
6
    struct Node {
7
        int mn[2], mx[2];
        int 1, r, sumv, sz;
8
        Point t;
9
10
   }tr[N];
11
    bool operator < (const Point &A, const Point &B) {</pre>
12
        return A.d[D] < B.d[D];</pre>
13
   }
  int rt;
14
15
   int rub[N], top, tot;
16
   struct kdtree {
17
        const double E = 0.75;
18
        int ans;
        int new_node() {
19
20
            if(top) return rub[top--];
21
            return ++tot;
22
23
        void push_up(int o) {
24
            int ls = tr[o].1, rs = tr[o].r;
25
            for(int i = 0; i < 2; i++) {</pre>
26
                tr[o].mn[i] = tr[o].mx[i] = tr[o].t.d[i];
27
                if(ls) {
28
                     tr[o].mn[i] = min(tr[o].mn[i], tr[ls].mn[i]);
29
                    tr[o].mx[i] = max(tr[o].mx[i], tr[ls].mx[i]);
30
                }
                if(rs) {
31
32
                    tr[o].mn[i] = min(tr[o].mn[i], tr[rs].mn[i]);
                     tr[o].mx[i] = max(tr[o].mx[i], tr[rs].mx[i]);
33
34
                }
            }
35
36
            tr[o].sumv = tr[ls].sumv + tr[rs].sumv + tr[o].t.val;
37
            tr[o].sz = 1 + tr[ls].sz + tr[rs].sz;
38
39
        void pia(int o, int num) {
            int ls = tr[o].1, rs = tr[o].r;
40
41
            if(ls) pia(ls, num);
42
            tmp[tr[ls].sz + num + 1] = Point[tr[o].t.d[0], tr[o].t.d[1], tr[o].t.val
                };
43
            rub[++top] = o;
            if(rs) pia(rs, tr[ls].sz + num + 1);
44
45
        int rebuild(int 1, int r, int now) {
46
            if(1 > r) return 0;
47
48
            D = now;
49
            int mid = (1 + r) \gg 1;
50
            nth element(tmp + 1, tmp + mid, tmp + r + 1);
```

```
51
            int node = new_node();
            tr[node].t = tmp[mid];
52
            tr[node].l = rebuild(l, mid - 1, now ^ 1);
53
            tr[node].r = rebuild(mid + 1, r, now ^ 1);
54
55
            push_up(node);
56
            return node;
57
        }
58
        void chk(int &o, int now) {
59
            if(tr[o].sz * E <= tr[tr[o].1].sz || tr[o].sz * E <= tr[tr[o].r].sz) {</pre>
60
                pia(o, 0);
61
                o = rebuild(1, tr[o].sz, now);
62
            }
63
        }
64
        void insert(int &o, int now) {
65
            if(!o) {
66
                tr[o = new_node()].t = T;
67
                tr[o].l = tr[o].r = 0;
68
                push_up(o);
69
                return;
70
            }
71
            D = now;
72
            if(tr[o].t.d[D] < T.d[D]) insert(tr[o].r, now ^ 1);
73
            else insert(tr[o].l, now ^ 1);
74
            push_up(o);
75
            chk(o, now);
76
        }
77
        bool in(int x, int y, int x1, int y1, int x2, int y2) {
            return x >= x1 && x <= x2 && y >= y1 && y <= y2;
78
79
        }
80
        void query(int o, int x1, int y1, int x2, int y2) {
            if(o == 0) return;
81
            if(tr[o].mn[0] >= x1 && tr[o].mx[0] <= x2 && tr[o].mn[1] >= y1 && tr[o].
82
                mx[1] <= y2) {
83
                ans += tr[o].sumv;
84
                return;
85
            if(tr[o].mn[0] > x2 || tr[o].mx[0] < x1 || tr[o].mn[1] > y2 || tr[o].mx
86
                [1] < y1) return;
87
            if(in(tr[o].t.d[0], tr[o].t.d[1], x1, y1, x2, y2)) ans += tr[o].t.val;
            query(tr[o].l, x1, y1, x2, y2);
88
89
            query(tr[o].r, x1, y1, x2, y2);
90
        }
91 | }kd;
```

第五章 其它

5.1 莫队算法

对区间问题离线处理,按照一定规则排序,之后指针暴力移动就行。核心代码:

```
for(; r < q[i].r; r++) add(r + 1, 1);
for(; r > q[i].r; r--) add(r, -1);
for(; l < q[i].l; l++) add(l, -1);
for(; l > q[i].l; l--) add(l - 1, 1);
for(; t < q[i].k; t++) Update(upd[t + 1]);
for(; t > q[i].k; t--) Update(upd[t]);
```

5.2 点分治

优雅的暴力,对于一颗无根树每次以树的重心为根容斥计算答案,本质相当于枚举每一个结点作为路径上面的必经点然后来考虑。复杂度一般为O(nlogn)。

寻找两点之间路径为3的倍数的代码:

```
1 #include <bits/stdc++.h>
2 #define MP make pair
3 #define fi first
4 #define se second
5 | #define INF 0x3f3f3f3f
6 using namespace std;
7 typedef long long 11;
8 | typedef pair<int, int> pii;
9 const int N = 20005;
10 | int n;
11 | vector <pii> g[N];
12 | int sz[N], mx[N], tsz;
13 | int d[N];
14 int rt, ans, cnt;
15 | bool vis[N];
16 | void getrt(int u, int fa) {
17
       sz[u] = 1; mx[u] = 0;
       for(auto it : g[u]) {
18
           int v = it.fi;
19
            if(v == fa || vis[v]) continue;
20
```

```
21
             getrt(v, u);
22
             sz[u] += sz[v];
23
             if(sz[v] > mx[u]) mx[u] = sz[v];
24
25
        mx[u] = max(mx[u], tsz - sz[u]);
        if(mx[u] < mx[rt]) rt = u;
26
27
28
    void dfs2(int u, int D, int fa) {
29
        d[++cnt] = D;
30
        for(auto it : g[u]) {
31
             int v = it.fi, w = it.se;
32
             if(vis[v] || v == fa) continue;
33
             dfs2(v, D + w, u);
34
        }
35
    int calc() {
36
37
        for(int i = 1; i <= cnt; i++) d[i] %= 3;</pre>
        int tmp[3] = \{0, 0, 0\};
38
39
        for(int i = 1; i <= cnt; i++) ++tmp[d[i]];</pre>
40
        int ans = tmp[0] * (tmp[0] - 1) + 2 * (tmp[1] * tmp[2]);
41
        return ans;
42
    void dfs(int u) {
43
44
        vis[u] = 1;
45
        cnt = 0; dfs2(u, 0, 0);
        int tmp = calc();
46
47
        ans += tmp;
        \quad \textbf{for}(\textbf{auto} \ \textbf{it} \ : \ \textbf{g[u]}) \ \{
48
49
             int v = it.fi, w = it.se;
50
             if(vis[v]) continue;
             cnt = 0, dfs2(v, w, 0);
51
52
             ans -= calc();
53
             tsz = sz[v], rt = 0, getrt(v, u);
54
             dfs(rt);
55
        }
56
57
    int gcd(int a, int b) {
58
        return b == 0 ? a : gcd(b, a % b);
59
60
    int main() {
61
        ios::sync_with_stdio(false); cin.tie(0);
62
        cin >> n;
63
        for(int i = 1; i < n; i++) {</pre>
             int u, v, w; cin >> u >> v >> w;
64
65
             g[u].push_back(MP(v, w)); g[v].push_back(MP(u, w));
66
67
        tsz = n, mx[0] = INF, getrt(1, 0);
```

5.3 随机数

```
1 mt19937 rnd(time(NULL));
2 rnd()%n;
```

5.4 最大子矩阵

```
int a[N][N];
1
2
   int n, m;
  #define mp make_pair
   #define se second
4
5
   #define fi first
6
    namespace max_matrix{
7
        int vis[N], f[N], sz[N];
        int t[N][N];
8
        int mx = 0, mx2 = 0;
9
        pair<int, int> h[N];
10
11
        int find(int x) {
12
            return f[x] == x ? x : f[x] = find(f[x]);
13
        void Union(int x, int y) {
14
            int fx = find(x), fy = find(y);
15
16
            f[fx] = fy;
17
            sz[fy] += sz[fx];
18
        void solve(int a, int b) {
19
20
            int area = a * b;
21
            if(area > mx) mx2 = mx, mx = area;
22
            else if(area > mx2) mx2 = area;
23
        }
        int work(int n, int m, int a[][N]) {
24
25
            for(int i = 1; i <= n; i++)</pre>
26
                for(int j = 1; j <= m; j++) {</pre>
                    t[i][j] = (a[i][j] == 1) ? t[i - 1][j] + 1 : 0;
27
28
            for(int i = 1; i <= n; i++) {</pre>
29
```

```
30
                 for(int j = 1; j <= m; j++) {</pre>
31
                     f[j] = j, vis[j] = 0, h[j] = mp(t[i][j], j), sz[j] = 1;
                 }
32
33
                 sort(h + 1, h + m + 1);
34
                 for(int j = m; j >= 1; j--) {
35
                     int k = h[j].se; vis[k] = 1;
36
                     if(vis[k - 1]) Union(k - 1, k);
37
                     if(vis[k + 1]) Union(k + 1, k);
38
                     int len = sz[find(k)];
39
                     solve(len, h[j].fi);
40
                     solve(len - 1, h[j].fi);
41
                     solve(len, h[j].fi - 1);
                }
42
43
            }
44
            return mx2;
        }
45
46 | };
```

5.5 快速读入/输出

```
1
   struct Istream {
2
      template <class T>
3
      Istream &operator >>(T &x) {
4
        static char ch; static bool neg;
        for(ch=neg=0;ch<'0' || '9'<ch;neg|=ch=='-',ch=getchar());</pre>
5
6
        for(x=0;'0'<=ch && ch<='9';(x*=10)+=ch-'0',ch=getchar());
7
        x=neg?-x:x;
8
        return *this;
9
     }
10
   }fin;
11
12
   struct Ostream {
13
     template <class T>
14
      Ostream & operator <<(T x) {
15
        x<0 && (putchar('-'),x=-x);</pre>
16
        static char stack[233];static int top;
17
        for(top=0;x;stack[++top]=x%10+'0',x/=10);
        for(top==0 && (stack[top=1]='0');top;putchar(stack[top--]));
18
        return *this;
19
20
     }
21
22
     Ostream &operator <<(char ch) {
23
        putchar(ch);
        return *this;
24
25
     }
26 | }fout;
```

5.6 二进制函数

```
1 __builtin_popcount(); //1的个数
2 __builtin_parity(); //1个数的奇偶
3 __builtin_ffs(); //最后一个1的位置
```

5.7 第三章

5.7.1 第一节 新民主主义到社会主义的转变

kkkk

latex