DON'T OPTIMIZE MY QUERIES, ORGANIZE MY DATA!

Julian Hyde (Apache Calcite)

TELUQ, Montréal, 2018/09/24

A "simple" query

Data

- 2010 U.S. census
- 100 million records
- 1KB per record
- 100 GB total

System

- 4x SATA 3 disks
- Total read throughput 1 GB/s

Query

SELECT SUM(householdSize)
FROM CensusHouseholds;

Goal

 Compute the answer to the query in under 5 seconds

Solutions

Sequential scan Query takes 100 s (100 GB at 1 GB/s)

Parallelize Spread the data over 40 disks in 10 machines

Query takes 10 s

Cache Keep the data in memory

2nd query: 10 ms

3rd query: 10 s

Materialize Summarize the data on disk

All queries: 100 ms

Materialize + As above, building summaries on demand

cache + adapt

Lazy > Smart + Fast

(Lazy + adaptive is even better)

Relational algebra

Based on set theory, plus operators: Project, Filter, Aggregate, Union, Join, Sort

Requires: declarative language (SQL), query planner

Original goal: data independence

Enables: query optimization, new algorithms and data structures

Apache Calcite

Apache top-level project

Query planning framework used in many projects and products

Also works standalone: embedded federated query engine with SQL / JDBC front end

Apache community development model

https://calcite.apache.org https://github.com/apache/calcite

1. Organizing data

Ways of organizing data

Format (CSV, JSON, binary)

Layout: row- vs. column-oriented (e.g. Parquet, ORC), cache friendly (e.g. Arrow)

Storage medium (disk, flash, RAM, NVRAM, ...)

Non-lossy copy: sorted / partitioned

Lossy copies of data: project, filter, aggregate, join

Combinations of the above

Logical optimizations >> physical optimizations

Index

A sorted, projected materialized view

Accelerates queries that use ranges, correlated lookups, sorting,

aggregate, distinct

CREATE TABLE Emp (empno INT,
name VARCHAR(20), deptno INT);

CREATE INDEX I_Emp_Deptno
ON Emp (deptno, name);

SELECT DISTINCT deptno FROM Emp WHERE deptno BETWEEN 20 AND 40 ORDER BY deptno;

empno	name	deptno
100	Fred	20
110	Barney	10
120	Wilma	30
130	Dino	10

	deptno	name	rowid
	10	Barney	af5634.0001
•	10	Dino	af5634.0003
	20	Fred	af5634.0000
	30	Wilma	af5634.0002

Covering index

Add the remaining columns

No longer need "rowid"

Lossless

During planning, treat indexes as tables, and index lookups as joins

```
        empno
        name
        deptno

        100
        Fred
        20

        110
        Barney
        10

        120
        Wilma
        30

        130
        Dino
        10
```

```
CREATE INDEX I_Emp_Deptno2 (
   deptno INTEGER,
   name VARCHAR(20))
COVER (empno);
```


Materialized view

As a materialized view, an index is now just another table

Several tables contain the information necessary to answer the query - just pick the best

CREATE MATERIALIZED
 VIEW EmpsByDeptno AS
SELECT deptno, name, deptno
FROM Emp
ORDER BY deptno, name;

empno	name	deptno
100	Fred	20
110	Barney	10
120	Wilma	30
130	Dino	10

deptno	name	empno
10	Barney	100
10	Dino	130
20	Fred	20
30	Wilma	30

Spatial query

Find all restaurants within 1.5 distance units of where I am:

```
SELECT *
FROM Restaurants AS r
WHERE ST_Distance(
   ST_MakePoint(r.x, r.y),
   ST_MakePoint(6, 7)) < 1.5</pre>
```


restaurant	x	У
Zachary's pizza	3	1
King Yen	7	7
Filippo's	7	4
Station burger	5	6

Hilbert space-filling curve

- A space-filling curve invented by mathematician David Hilbert
- Every (x, y) point has a unique position on the curve
- Points near to each other typically have Hilbert indexes close together

Using Hilbert index

Add restriction based on h, a restaurant's distance along the Hilbert curve

Must keep original restriction due to false positives

```
SELECT *
FROM Restaurants AS r
WHERE (r.h BETWEEN 35 AND 42
        OR r.h BETWEEN 46 AND 46)
AND ST_Distance(
   ST_MakePoint(r.x, r.y),
   ST_MakePoint(6, 7)) < 1.5</pre>
```


restaurant	х	у	h
Zachary's pizza	3	1	5
King Yen	7	7	41
Filippo's	7	4	52
Station burger	5	6	36

Telling the optimizer

- 1. Declare h as a generated column
- 2. Sort table by h

Planner can now convert spatial range queries into a range scan

Does not require specialized spatial index such as r-tree

Very efficient on a sorted table such as HBase

```
CREATE TABLE Restaurants (
   restaurant VARCHAR(20),
   x DOUBLE,
   y DOUBLE,
   h DOUBLE GENERATED ALWAYS AS
      ST_Hilbert(x, y) STORED)
SORT KEY (h);
```

restaurant	x	у	h
Zachary's pizza	3	1	5
Station burger	5	6	36
King Yen	7	7	41
Filippo's	7	4	52

Summary - data optimization via materialized views

Many forms of data optimization can be modeled as materialized views:

- Blocks in cache
- B-tree indexes
- Summary tables
- Spatial indexes
- History of streams

Allows the optimizer to "understand" the optimization and use it (if beneficial)

But who designs the optimizations?

2. Learning

How do data systems learn?

Goals

Improve response time, throughput, storage cost

Predictable, adaptive (short and long term), allow human

queries

DML

statistics

recommender

adaptations

intervention

How?

- Humans
- Adaptive systems
- Smart algorithms

Example adaptations

- Cache disk blocks in memory
- Cached query results
- Data organization, e.g. partition on a different key
- Secondary structures, e.g. b-tree and r-tree indexes

Tiled, in-memory materialized views

in-memory materializations

tables on disk

A vision for an adaptive data system (we're not there yet)

Building materialized views

Challenges:

- Design Which materializations to create?
- **Populate** Load them with data
- Maintain Incrementally populate when data changes
- Rewrite Transparently rewrite queries to use materializations
- Adapt Design and populate new materializations, drop unused ones
- Express Need a rich algebra, to model how data is derived

Initial focus: summary tables (materialized views over star schemas)

Designing summary tables via lattices

```
CREATE MATERIALIZED VIEW SalesYearZipcode AS

SELECT t.year, c.state, c.zipcode,

COUNT(*), SUM(units)

FROM Sales AS s

JOIN Time AS t USING (timeId)

JOIN Customers AS c USING (customerId)

GROUP BY 1, 2, 3;
```



```
CREATE LATTICE Sales AS
SELECT t.*, c.*, COUNT(*), SUM(s.units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
JOIN Products AS p USING (productId);
```

Many possible summary tables

(z) 43k (s) 50 (z, s) 43.4k

Fewer than you would expect,

because state

depends on zipcode

() 1 (y) 5 (g) 2 (g, y) 10

(g, y, m) 120

(y, m)

60

(m) 12

m) 6k

Fewer than you would

expect, because 5m

(z, s, g, y, m) 912k

combinations cannot occur in 1m row table

Key

z zipcode (43k) s state (50) g gender (2) y year (5) m month (12)

raw 1m

Algorithm: Design summary tables

Given a database with 30 columns, 10M rows. Find X summary tables with under Y rows that improve query response time the most.

AdaptiveMonteCarlo algorithm [1]:

- Based on research [2]
- Greedy algorithm that takes a combination of summary tables and tries to find the table that yields the greatest cost/benefit improvement
- Models "benefit" of the table as query time saved over simulated query load
- The "cost" of a table is its size
- [1] org.pentaho.aggdes.algorithm.impl.AdaptiveMonteCarloAlgorithm
- [2] Harinarayan, Rajaraman, Ullman (1996). "Implementing data cubes efficiently"

Summary

Learning systems = manual tuning + adaptive + smart algorithms

Query history + data profiling→ lattices → summary tables

We have discussed summary tables (materialized views based on join/aggregate in a star schema) but the approach can be applied to other kinds of materialized views

Relational algebra, incorporating materialized views, is a powerful language that allows us to combine many forms of data optimization

Thank you! Questions?

Extra slides

Architecture

Conventional database

Calcite

Planning queries

select p.productName, count(*) as c
from splunk.splunk as s
 join mysql.products as p
 on s.productId = p.productId
where s.action = 'purchase'
group by p.productName
order by c desc

Optimized query

select p.productName, count(*) as c
from splunk.splunk as s
 join mysql.products as p
 on s.productId = p.productId
where s.action = 'purchase'
group by p.productName
order by c desc

Key: productName
Agg: count

Group

Sort

Calcite framework

Relational algebra

RelNode (operator)

- TableScan
- Filter
- Project
- Union
- Aggregate
- ...

RelDataType (type)

RexNode (expression)

RelTrait (physical property)

- RelConvention (calling-convention)
- RelCollation (sortedness)
- RelDistribution (partitioning)

RelBuilder

SQL parser

SqlNode

SqlParser

SqlValidator

Metadata

Schema

Table

Function

- TableFunction
- TableMacro

Lattice

JDBC driver

Transformation rules

RelOptRule

- FilterMergeRule
- AggregateUnionTransposeRule
- 100+ more

Global transformations

- Unification (materialized view)
- Column trimming
- De-correlation

Cost, statistics

RelOptCost

RelOptCostFactory

RelMetadataProvider

- RelMdColumnUniquensss
- RelMdDistinctRowCount
- RelMdSelectivity

Materialized views, lattices, tiles

Materialized view - A table whose contents are guaranteed to be the same as executing a given query.

Lattice - Recommends, builds, and recognizes summary materialized views (tiles) based on a star schema.

A query defines the tables and many:1 relationships in the star schema.

Tile - A summary materialized view that belongs to a lattice. A tile may or may not be materialized. Might be:

- Declared in lattice, or
- Generated via recommender algorithm, or
- Created in response to query.

CREATE MATERIALIZED VIEW t AS SELECT * FROM emps WHERE deptno = 10;

CREATE LATTICE star AS
SELECT *
FROM sales_fact_1997 AS s
JOIN product AS p ON ...
JOIN product_class AS pc ON ...
JOIN customer AS c ON ...
JOIN time_by_day AS t ON ...;

CREATE MATERIALIZED VIEW zg IN star SELECT gender, zipcode, COUNT(*), SUM(unit_sales) FROM star GROUP BY gender, zipcode;

Combining past and future

```
select stream *
from Orders as o
where units > (
   select avg(units)
   from Orders as h
   where h.productId = o.productId
   and h.rowtime > o.rowtime - interval '1' year)
```

- > Orders is used as both stream and table
- > System determines where to find the records
- Query is invalid if records are not available

Controlling when data is emitted

Early emission is the defining characteristic of a streaming query.

The emit clause is a SQL extension inspired by Apache Beam's "trigger" notion. (Still experimental... and evolving.)

A relational (non-streaming) query is just a query with the most conservative possible emission strategy.

```
select stream productId,
  count(*) as c
from Orders
group by productId,
  floor(rowtime to hour)
emit at watermark,
  early interval '2' minute,
  late limit 1;
```

```
select *
from Orders
emit when complete;
```

Data profiling

Algorithm needs count (distinct a, b, ...) for each combination of attributes:

- Previous example had 2⁵ = 32 possible tables
- Schema with 30 attributes has 2³⁰ (about 10⁹) possible tables
- Algorithm considers a significant fraction of these
- Approximations are OK

Attempts to solve the profiling problem:

- 1. Compute each combination: scan, sort, unique, count; repeat 230 times!
- 2. Sketches (HyperLogLog)
- 3. Sketches + parallelism + information theory [CALCITE-1616]

Sketches

HyperLogLog is an algorithm that computes approximate distinct count. It can estimate cardinalities of 10⁹ with a typical error rate of 2%, using 1.5 kB of memory. [3][4]

With 16 MB memory per machine we can compute 10,000 combinations of attributes each pass.

So, we're down from 10⁹ to 10⁵ passes.

[3] Flajolet, Fusy, Gandouet, Meunier (2007). "Hyperloglog: The analysis of a near-optimal cardinality estimation algorithm" [4] https://github.com/mrjgreen/HyperLogLog

Combining probability & information theory

Given	Expected cardinality	Actual cardinality	Surprise
(gender): 2 (state): 50	(gender, state): 100.0	100	0.000
(month): 12 (zipcode): 43,000	(month, zipcode): 441,699.3	442,700	0.001
(state): 50 (zipcode): 43,000	(state, zipcode): 799,666.7	43,400	0.897
(state, zipcode): 43,400 (gender, state): 100 (gender, zipcode): 85,995	(gender, state, zipcode): 86,799 = min(86,799, 892,234, 892,228)	83,567	0.019

- Surprise = abs(actual expected) / (actual + expected)
- $E(card(x, y)) = n \cdot (1 ((n 1) / n) ^ p) \quad n = card(x) * card(y), p = row count$

Algorithm

Three ways "surprise" can help:

- If a cardinality is not surprising, we don't need to store it -- we can derive it
- If a combination's cardinality is not surprising, it is unlikely to have surprising children
- If we're not seeing surprising results, it's time to stop

```
surprise_threshold := 1
queue := {singleton combinations} // (a), (b), ...
while queue is not empty {
 batch := remove first 10,000 entries in queue
compute cardinality of each combination in batch
for each actual (computed) cardinality a {
  e := expected cardinality of combination
  s := surprise(a, e)
  if s > surprise_threshold {
   store combination and its cardinality
   add child combinations to queue // (x, a), (x, b), ...
  increase surprise_threshold
```

Algorithm progress and "surprise" threshold

Singleton combinations are have surprise = 1

Surprise threshold rises after we have completed the first batch

Data profiling - summary

The algorithm defeats a combinatorial search space using sketches + information theory + parallelism

Recommending data structures is an optimization problem; profiling provides the cost & benefit function

As a by-product, the algorithm discovers unique keys, "almost" keys, and foreign keys

But which tables are actually joined together in practice?

Other applications of data profiling

Query optimization:

- Planners are poor at estimating selectivity of conditions after N-way join (especially on real data)
- New join-order benchmark: "Movies made by French directors tend to have French actors"
- Predict number of reducers in MapReduce & Spark

"Grokking" a data set

Identifying problems in normalization, partitioning, quality

Applications in machine learning?

Further improvements to data profiling

- Build sketches in parallel
- Run algorithm in a distributed framework (Spark or MapReduce)
- Compute histograms
 - o For example, Median age for male/female customers
- Seek out functional dependencies
 - Once you know FDs, a lot of cardinalities are no longer "surprising"
 - o FDs occur in denormalized tables, e.g. star schemas
- Smarter criteria for stopping algorithm
- Skew/heavy hitters. Are some values much more frequent than others?
- Conditional cardinalities and functional dependencies
 - Does one partition of the data behave differently from others? (e.g. year=2005, state=LA)

Designing summary tables via lattices (2)

```
CREATE MATERIALIZED VIEW SalesYearZipcode AS

SELECT t.year, c.state, c.zipcode,
   COUNT(*), SUM(units)

FROM Sales AS s

JOIN Time AS t USING (timeId)

JOIN Customers AS c USING (customerId)

GROUP BY 1, 2, 3;
```


The lattice generates the summary tables. But who writes the lattice?

```
CREATE LATTICE Sales AS
SELECT t.*, c.*, COUNT(*), SUM(s.units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
JOIN Products AS p USING (productId);
```

Designing summary tables via lattices (3)

```
CREATE MATERIALIZED VIEW SalesYearZipcode AS
SELECT t.year, c.state, c.zipcode,
   COUNT(*), SUM(units)
FROM Sales AS s
JOIN Time AS t USING (timeId)
JOIN Customers AS c USING (customerId)
GROUP BY 1, 2, 3;
```



```
CREATE LATTICE Sales AS

SELECT t.*, c.*, COUNT(*), SUM(s.units)

FROM Sales AS s

JOIN Time AS t USING (timeId)

JOIN Customers AS c USING (customerId)

JOIN Products AS p USING (productId);
```

Growing and evolving lattices based on queries

See: [CALCITE-1870] "Lattice suggester"

