Roll	No.:		

National Institute of Technology, Delhi

Name of the Examination: B. Tech.

Mid-Semester Examination September, 2019

Branch

: EEE

Semester

: 3rd

Title of the Course

: Electromagnetic Field Theory

Course Code

: EEL 203

Time: 2 Hours

Maximum Marks: 25

Note: 1. All the 5 questions are compulsory. Make suitable assumptions wherever required.

2. All the symbols have their usual meaning.

- Q1. In Cartesian coordinates, vector \vec{A} points from the origin to the point $P_1 = (2, 3, 3)$ and vector \vec{B} is directed from P_1 to point $P_2 = (1, -2, 2)$. Find:
 - (a) vector \overrightarrow{A} , its magnitude A and the unit vector \widehat{a} .
 - (b) the angle between \vec{A} and the y-axis.
 - (c) vector \vec{B} .
 - (d) the angle θ between \vec{A} and \vec{B} .
 - (e) perpendicular distance from the origin to the vector \vec{B} .

(5M)

- Q2. Consider the separation vector $\overrightarrow{r_s}$ from a fixed point (x_0, y_0, z_0) to the point (x, y, z). Let the length of $\overrightarrow{r_s}$ be denoted by r_s . Find the gradient of $\frac{1}{r_s}$. (5M)
- Q3. Evaluate $(\vec{v}_1, \nabla)\vec{v}_2$ where \vec{v}_1 and \vec{v}_2 are the vector functions: $\vec{v}_1 = x^2\hat{x} + 3xz^2\hat{y} 2xz\hat{z} \quad \text{and} \quad \vec{v}_2 = xy\hat{x} + 2yz\hat{y} + 3xz\hat{z}$ (5M)
- Q4. Find the potential inside and outside a uniformly charged solid sphere whose radius is R and whose total charge is q. Use infinity as the reference point. Also, compute the gradient of the potential in each region.

 (5M)
- Q5. An inverted hemispherical bowl of radius R carries a uniform surface charge density σ . Find the potential difference between the north pole of the bowl and the center of the bowl. (5M)