Gf =
$$k_f \frac{\gamma_1 s+1}{T_2 s+1}$$

2- Tustins metade) $s = \frac{2(z-1)}{T(z+1)}$

$$\Rightarrow G_{f} = K_{f} \frac{27_{1}(z-1) + T(z+1)}{27_{2}(z-1) + T(z+1)}, G_{f} = \frac{y}{x}$$

$$Y(z)$$
 [2722-272+T2+T] = K_F [2712-271+T2+T] $X(z)$

$$Y(z)[(27z+T)z+T-27z]=k_{f}[(27z+T)z+T-27z]\times(z)$$

$$Y(z) \left[(27z+T) + \overline{z}'(T-27z) \right] = k_f \left[(27z+T) + \overline{z}'(T-27z) \right] x_{z}$$

$$\Rightarrow (27z+T)y[n]+(T-27z)y[n-1]= \\ k_{f}(27_{1}+T)x[n]+k_{f}(T-27_{1})x[n-1]$$