1 To Do

1.1 Major

- 1. Extend proposition 3. It currently describes projections onto elliptical log-concave densities only when Σ and μ are fixed. Σ and μ should be variables to be optimized by the projection.
- 2. Derive the rate of convergence of the MLE for spherically symmetric distributions. The steps to accomplish this follow that of KS 2016.
- 3. Strengthen the continuity of log-concave projection result from DSS to account for error of estimating Σ and μ .

1.2 Minor

- 1. Put the finishing touch on proposition 3. Use DSS 2011 to show existence.
- 2. Finish identifiability proof.

2 Introduction

2.1 Notation

For a vector $x \in \mathbb{R}^p$, ||x||, $||x||_2$ both denotes the l_2 norm. For a matrix A, $||A||_2$ denotes the operator norm. We represent positive definiteness of a matrix A as $A \succ 0$, and semidefiniteness as $A \succeq 0$. Given a vector x and a matrix $A \succ 0$, $||x||_A = \sqrt{x^\top A^{-1}x}$ denotes the Mahalanobis distance.

2.2 Elliptical Density

A p-dimensional random vector has the Elliptical density if the pdf is of the form

$$f(x; \mu, \Sigma) = |\Sigma|^{-1/2} g_p(||x - \mu||_{\Sigma})$$

where Ω is a positive definite matrix and $||x||_{\Sigma}$ is the Mahalanobis distance, $||x||_{\Sigma}^2 = x^{\top} \Sigma^{-1} x$.

where $g_p: \mathbb{R}^+ \to \mathbb{R}^+$ is a generator function with the property

$$\int_{\mathbb{D}_p} g_p(\|x\|_2) dx = 1$$

2.3 Identifiability

There is one degree of non-identifiability. Let a>0, let $\Sigma'=\frac{\Sigma}{a}$, then we have that

$$f(x; \mu, \Sigma) = \left| \frac{\Sigma}{a} \right|^{-1/2} a^{-p/2} g_p \left(\sqrt{\frac{1}{a}} \sqrt{x^{\top} \left(\frac{\Sigma}{a}\right)^{-1} x} \right)$$
$$= |\Sigma'|^{-1/2} g_p' (\sqrt{x^{\top} \Sigma'^{-1} x})$$

where $g_p'(r) = a^{-p/2}g_p(r/\sqrt{a})$. It is easy to check that $\int_{\mathbb{R}^p} g_p'(\|x\|_2)dx = 1$. Thus, without loss of generality, we may assume that $\|\Sigma\|_2 = 1$.

To prove identifiability, we note the following lemma:

Lemma 1. Suppose $A, B \succ 0$. Let a, b > 0, the sets $\{x : x^{\top}Ax = a\}$ and $\{x : x^{\top}Bx = b\}$ are equal iff (bA)/a = B.

Proof. Let $S = \{x : x^{\top}Ax = a\}$. We have that for any $x \in S$, $x^{\top}((bA/a) - B)x = 0$. Since S contains p independent vectors, namely the elementary basis appropriately scaled, we have that (bA/a) - B = 0.

Now suppose (Σ, g_p) and (Σ', g'_p) induce the same density f. We have then that $g_p(\sqrt{x^\top \Sigma^{-1} x}) = cg'_p(\sqrt{x^\top \Sigma'^{-1} x}) = f(x)$ for some c > 0.

[TODO:finish, intuition: we look at the level sets of g_p and g'_p , i.e., $g_p^{-1}(\{a\})$ for some a > 0. If the level sets are singletons, this is easy. If the level sets are bounded, this is easy too. If the level sets are unbounded, what to do?

2.4 Characterizations

Let X follow a centered elliptical distribution. Then, we have that

$$X = \Omega^{1/2} \Phi Y$$

where Φ is random vector from \mathbb{S}^{p-1} and Y is a non-negative random variable that follows the density

$$f_Y(y) = c_p y^{p-1} g_p(y)$$

$$c_p = 2 \frac{\pi^{p/2}}{\Gamma(p/2)}.$$

3 Log-Concavity

A related lemma in [TODO:cite Bhattacharyya] states that f is unimodal iff g_p is non-increasing.

Lemma 2. f is log-concave iff g_p is log-concave and non-increasing.

Proof. Without loss of generality, suppose that $\mu = 0$.

Suppose g_p is log-concave and non-increasing. Then, we have that

$$\log f(\lambda x + (1 - \lambda)y) = (-1/2) \log |\Sigma| + \log g_p(\|\lambda x + (1 - \lambda)y\|_{\Sigma})$$

$$\geq (-1/2) \log |\Sigma| + \log g_p(\lambda \|x\|_{\Sigma} + (1 - \lambda)\|y\|_{\Sigma})$$

$$\geq (-1/2) \log |\Sigma| + \lambda \log g_p(\|x\|_{\Sigma}) + (1 - \lambda) \log g_p(\|y\|_{\Sigma})$$

$$= \lambda \log f(x) + (1 - \lambda) \log f(y)$$

The first inequality follows because $\|\lambda x + (1-\lambda)y\|_{\Sigma} \le \lambda \|x\|_{\Sigma} + (1-\lambda)\|y\|_{\Sigma}$; since $\|\cdot\|_{\Sigma}$ is a norm, it is convex. The first inequality follows also because $\log g_p$ is a non-increasing function. The second inequality follows from the log-concavity of g_p .

Now we turn to the converse. If g_p is increasing at any point, then it is clear that f is no longer unimodal and hence not log-concave. If g_p is not log-concave, then for some $t, s \in \mathbb{R}^+$, $\log g_p(\lambda t + (1 - \lambda)s) < \lambda \log g_p(t) + (1 - \lambda) \log g_p(s)$. Let $z \in \mathbb{R}^p$ satisfy $||z||_{\Sigma} = 1$, then

$$\log f(\lambda tz + (1 - \lambda)sz) = \log g_p(\lambda t + (1 - \lambda)s)$$

$$< \lambda \log g_p(t) + (1 - \lambda) \log g_p(s)$$

$$= \lambda \log f(tz) + (1 - \lambda) \log f(sz)$$

and thus $\log f$ is concave either.

3.1 Projection Operator

Define $\mathcal{F} = \{\phi(\mathbb{R}^+, \mathbb{R}^+) : \phi \text{ is concave, decreasing}\}$. We describe projection onto the class of p-variate densities of the form $f(x) = |\Sigma|^{-1/2} \exp(\phi(\|x\|_{\Sigma}))$ where ϕ is such that $\exp(\phi(r))r^{p-1}c_p$ is a density over $[0, \infty)$.

First, we fix $\Sigma \succ 0$. We can without loss of generality assume that $\|\Sigma\|_2 = 1$ as we have discussed in the section on identifiability.

Definition Let $\Sigma \succ 0$ be fixed. For a probability measure P over \mathbb{R}^p and a function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$, we define

$$L_{\Sigma}(\phi, P) = \int \phi(\|x\|_{\Sigma})dP - \int_{0}^{\infty} \exp(\phi(r))r^{p-1}c_{p}dr$$

The projection of P is $\phi^* \in \mathcal{F}$ such that

$$L_{\Sigma}(\phi^*, P) = \sup_{\phi \in \mathcal{F}} L_{\Sigma}(\phi, P)$$

Note 1:

First, we check that if ϕ^* exists, then $\exp(\phi^*(r))r^{p-1}c_p$ is indeed a density. To see this, note that

$$\partial_c L_{\Sigma}(\phi^* + c, P) = 1 - e^c \int_0^\infty \exp(\phi^*(r)) r^{p-1} c_p dr$$

By definition of ϕ^* , c=0 implies that $\partial_c L_{\Sigma}(\phi^*+c,P)=0$, implying further that $\exp(\phi^*(r))r^{p-1}c_p$ is indeed a valid density.

Note 2:

It is clear that $L_{\Sigma}(\phi, P)$ is concave in ϕ .

Proposition 3. Let $\Sigma \succ 0$ be fixed. Define $\mathcal{P}_d = \{P : \int ||x|| dP < \infty, P(\{0\}) < 1\}$. Then, we have,

- 1. If $\int ||x|| dP = \infty$, then $L_{\Sigma}(\phi, P) = -\infty$ for all $\phi \in \mathcal{F}$.
- 2. If $P({0}) = 1$, then $\sup_{\phi \in \mathcal{F}} L_{\Sigma}(\phi, P) = \infty$
- 3. If $P(\{0\}) < 1$ and $\int ||x|| dP < \infty$, then $\sup_{\phi \in \mathcal{F}} L_{\Sigma}(\phi, P) < \infty$ and there exists a maximizer $\phi^* \in \mathcal{F}$ which achieves this value.

Proof. Suppose that $\int \|x\| dP = \infty$. Then $\int \|x\|_{\Sigma} dP \ge \int \frac{\|x\|_2}{\|\Sigma\|_2} dP = \infty$.

First, suppose that $\lim_{r\to\infty}\phi(r)=c>-\infty$. Then $L(\phi,P)\leq\phi(0)-\int_0^\infty r^{p-1}e^cc_pdr=-\infty$. Thus, we may consider only ϕ such that $\lim_{r\to\infty}\phi(r)=-\infty$. For any such ϕ , there exists a,b>0 such that $\phi(r)\leq a-b|r|$.

Hence, $L(\phi, P) \leq \int \phi dP \leq \int a - b \|x\|_{\Sigma} dP \leq -\infty$. This proves claim 1.

For claim 2, suppose $P(\{0\}) = 1$. Let $\phi_n(r) = n - e^n r$. Then, we have that

$$L(\phi_n, P) = n - \int e^n \exp(-e^n r) r^{p-1} c_p dr$$
$$= n - e^n \int e^{-s} \left(\frac{s}{e^n}\right)^{p-1} \frac{ds}{e^n}$$
$$= n - (e^n)^{1-p} \Gamma(p)$$

Thus, we have that $\lim_{n\to\infty} L(\phi_n, P) = \infty$. This proves the second claim.

Onto the third claim. We will first prove that if $P(\{0\}) < 1$ and $\int ||x|| dP < \infty$, then $-\infty < \sup_{\phi \in \mathcal{F}} L_{\Sigma}(\phi, P) < \infty$. Then we will prove that the maximizer exists.

By plugging in $\phi(r) = -r$, we have that $L_{\Sigma}(\phi, P) = -\int ||x||_{\Sigma} dP - \int e^{-r} r^{p-1} c_p dr = -\int ||x||_{\Sigma} dP - c_p \Gamma(p/2)$. Since $\int ||x||_{\Sigma} dP \leq \int ||x|| ||\Sigma^{-1}||_2 dP < \infty$, we have shown that $L_{\Sigma} > -\infty$ for some ϕ .

Define $b^* = \inf\{b : P(B_{\Sigma}(0;b)) \ge \frac{P(\{0\})}{2} + \frac{1}{2}\}$. $b^* > 0$ since $P(\{0\}) < 1$. Let $b = b^*/2$, $c = P(B_{\Sigma}(0;b))$, then we have that 0 < c < 1.

Suppose $\phi(0) = M$ and $\phi(b) = M'$, because ϕ is non-increasing, $M = \sup_r \phi(r)$ and $M' = \inf_{r \in [0,b]} \phi(r) = \sup_{r \in [b,\infty)} \phi(r)$.

$$\int \phi dP \le \int_{B_{\Sigma}(0;b)} \phi dP + \int_{B_{\Sigma}(0;b)^{c}} \phi dP \le Mc + M'(1-c) = (M-M')c + M'$$

Then, we have that

$$L_{\Sigma}(\phi, P) = \int \phi dP - \int e^{\phi(r)} r^{p-1} c_p dr$$

$$\leq \int \phi dP - \int_0^b e^{\phi(r)} r^{p-1} c_p dr$$

$$\leq (M - M')c + M' - \int_0^b \exp(M - \frac{r}{b}(M - M'))r^{p-1} c_p dr$$

$$\leq \Delta(c - 1) + M - e^M \int_0^b \exp(-\frac{r}{b}\Delta)r^{p-1} c_p dr$$

where we have used the notation $\Delta = M - M'$.

First, let us suppose that $\Delta(1-c) \leq 2M$. Then, we have that

$$L_{\Sigma}(\phi, P) \le M - e^{M} \int_{0}^{b} \exp(-\frac{r}{b} \frac{2M}{1 - c}) r^{p-1} c_{p} dr$$

$$\le M - e^{M} \int_{0}^{2M/(1 - c)} e^{-s} s^{p-1} c_{p} ds \left(\frac{b}{2M/(1 - c)}\right)^{p}$$

Which is bounded since the RHS goes to $-\infty$ as M goes to ∞ . Now, let us suppose that $\Delta(1-c) > 2M$, then we have that

$$L_{\Sigma}(\phi, P) \leq -M$$

Thus, we see that $L_{\Sigma}(\phi, P)$ is bounded and, furthermore, there exists a constant M^* such that $\sup\{L(\phi, P) : \phi \in \mathcal{F}\} = \sup\{L(\phi, P) : \phi \in \mathcal{F}, \|\phi\|_{\infty} \leq M^*\}.$

Let
$$r^* = \sup\{r : P(B_{\Sigma}(0;r)) < 1\}$$
, Then

Suppose P(H)=1 for some hyperplane, then let $\Sigma_n \to A$ where H is the nullspace of A. Suppose interior(csupp(P)) is non-empty, then its Lebesgue measure is some c>0. The Lebesgue measure of $B_{\Sigma}(0;b)$ is at $c_p \frac{b^p}{p} |\Sigma|^{1/2}$. We assume that $||\Sigma||_2 = 1$.

4 Algorithm

Let $X_1, ..., X_n \sim P$ be the samples and let μ be zero and Σ be fixed. The log-likelihood is

$$l(g_p; X_1, ..., X_n) = \sum_{i=1}^n \log g_p(||X_i||_{\Sigma})$$

where g_p is decreasing, log-concave, and satisfies $\int_0^\infty g_p(r)r^{p-1}c_pdr=1$. If we reparametrize the problem by writing $\phi(r)=\log g_p(r)$, $Y_i=\|X_i\|_{\Sigma}$ and also put the integral constraint in the Lagrangian form, we get an equivalent optimization

$$\max_{\phi \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \phi(Y_i) - \int_0^\infty \exp(\phi(r)) r^{p-1} c_p dr$$

where $\mathcal{F} = \{\phi : \phi \text{ decreasing and concave }\}$. We use the notation from the previous section and denote $L_{\Sigma}(\phi, P_n) = \frac{1}{n} \sum_{i=1}^n \phi(Y_i) - \int_0^{\infty} \exp(\phi(r)) r^{p-1} c_p dr$.

Lemma 4. Let $\phi \in \mathcal{F}$ and let $\bar{\phi}$ be the piecewise linear function with the property that $\bar{\phi}(Y_i) = \phi(Y_i)$ for all i = 1, ..., n and $\bar{\phi}(0) = \phi(0)$. Then, we have that $\bar{\phi} \in \mathcal{F}$ and

$$L_{\Sigma}(\bar{\phi}, P_n) \ge L_{\Sigma}(\phi, P_n)$$

The implication is that we need only optimize over piecewise linear functions whose knots are placed at $\{Y_1, ..., Y_n\} \cup \{0\}$.

Proof. It is clear that $\bar{\phi} \in \mathcal{F}$ and that $\phi \geq \bar{\phi}$.

Therefore,

$$\sum_{i=1}^{n} \phi(Y_i) = \sum_{i=1}^{n} \bar{\phi}(Y_i)$$
$$\int_{0}^{\infty} \exp(\phi(r)) r^{p-1} c_p dr \ge \int_{0}^{\infty} \exp(\bar{\phi}(r)) r^{p-1} c_p dr$$

4.1 Piecewise Linear Parametrization

Let $\bar{\mathcal{F}} = \{ \phi : \phi \text{ is p.w. linear, decreasing, concave} \}.$

Given samples $Y_1, ..., Y_n \in \mathbb{R}^+$, any $\phi \in \bar{\mathcal{F}}$ can be parametrized by a vector $(\phi_1, ..., \phi_n)$,

$$\phi(r) = \sum_{i=1}^{n-1} \left[\left(\frac{Y_{i+1} - r}{Y_{i+1} - Y_i} \right) \phi_i + \left(\frac{r - Y_i}{Y_{i+1} - Y_i} \right) \phi_{i+1} \right] \mathbf{1}_{r \in [Y_i, Y_{i+1}]} + \phi_1 \mathbf{1}_{r \in [0, Y_1]}$$

Thus, we can write the full optimization as

$$\begin{aligned} \max_{\phi_1,\dots,\phi_n} \ \frac{1}{n} \sum_{i=1}^n \phi_i - \sum_{i=1}^{n-1} \int_{Y_i}^{Y_{i+1}} \exp\left(\frac{Y_{i+1} - r}{Y_{i+1} - Y_i} \phi_i + \frac{r - Y_i}{Y_{i+1} - Y_i} \phi_{i+1}\right) r^{p-1} c_p dr - \int_0^{Y_1} \exp(\phi_1) r^{p-1} c_p dr \\ \text{subject to } \frac{\phi_{i+1} - \phi_i}{Y_{i+1} - Y_i} \geq \frac{\phi_{i+2} - \phi_{i+1}}{Y_{i+2} - Y_{i+1}} \quad \text{for all } i = 1, \dots, n-2 \\ \frac{\phi_2 - \phi_1}{Y_2 - Y_1} \leq 0 \end{aligned}$$

4.1.1 Derivatives

Define the F function as the objective

$$F(\phi_1, ..., \phi_n) = \frac{1}{n} \sum_{i=1}^n \phi_i - \sum_{i=1}^{n-1} \int_{Y_i}^{Y_{i+1}} \exp\left(\frac{Y_{i+1} - r}{Y_{i+1} - Y_i} \phi_i + \frac{r - Y_i}{Y_{i+1} - Y_i} \phi_{i+1}\right) r^{p-1} c_p dr - \int_0^{Y_1} \exp(\phi_1) r^{p-1} c_p dr$$

We will rewrite F to facilitate the differentiation.

$$F(\phi) = \frac{1}{n} \mathbf{1}^{\top} \phi - \sum_{i=1}^{n-1} \int_{Y_i}^{Y_{i+1}} \exp(a_i(r)^{\top} \phi) r^{p-1} c_p dr - \int_0^{Y_1} \exp(\phi_1) r^{p-1} c_p dr$$

where $a_i(r) \in \mathbb{R}^n$ is the following form: $(0, ..., 0, \frac{Y_{i+1}-r}{Y_{i+1}-Y_i}, \frac{r-Y_i}{Y_{i+1}-Y_i}, 0, ..., 0)$ where the two non-zero coordinates are i, i+1. Then, we have that

$$\nabla F = \frac{1}{n} \mathbf{1} - \sum_{i=1}^{n-1} \int_{Y_i}^{Y_{i+1}} a_i(r) \exp(a_i(r)^\top \phi) r^{p-1} c_p dr - \int_0^{Y_1} e_1 \exp(\phi_1) r^{p-1} c_p dr$$

$$H F = -\sum_{i=1}^{n-1} \int_{Y_i}^{Y_{i+1}} a_i(r) a_i(r)^\top \exp(a_i(r)^\top \phi) r^{p-1} c_p dr - \int_0^{Y_1} e_1 e_1^\top \exp(\phi_1) r^{p-1} c_p dr$$

For a given ϕ , these can be evaluated by numerical integration.

4.1.2 Active Set

Let us express the constraints as $v_i^{\top} \phi \leq 0$ for i = 1, ..., n - 1, where

$$v_{1} = \left(-\frac{1}{Y_{2} - Y_{1}}, \frac{1}{Y_{2} - Y_{1}}, 0, \dots, 0\right)$$

$$v_{2} = \left(\frac{1}{Y_{2} - Y_{1}}, -\frac{1}{Y_{3} - Y_{2}} - \frac{1}{Y_{2} - Y_{1}}, \frac{1}{Y_{3} - Y_{2}}, 0, \dots 0\right)$$

$$\dots$$

$$v_{i} = \left(0, \dots, 0, \frac{1}{Y_{i} - Y_{i-1}}, -\frac{1}{Y_{i+1} - Y_{i}} - \frac{1}{Y_{i} - Y_{i-1}}, \frac{1}{Y_{i+1} - Y_{i}}, 0, \dots 0\right)$$

$$\dots$$

Define the active set $A \subset \{1,...,n-1\}$ as $A = \{i \; ; \; v_i^\top \phi = 0\}$. Define $I = \{1,...,n-1\} - A$.

Proposition 5. Define $V \in \mathbb{R}^{n \times n}$ such that the *i*-th row $V_i = v_i$ for i = 1, ..., n - 1 and the *n*-th row $V_n = \mathbf{1}_n$.

Then, define $B^{\top} = -V^{-1}$ and let b_i be the *i*-th row of B. We have that $b_i^{\top}v_i = -1$ and $b_i^{\top}v_j = 0$ for $j \neq i$.

The proof follows from the observation that V is invertible and that $B^{\top}V = -I$.

4.1.3 Optimization over an Active Set

In this section, we solve

$$\min_{\phi} F(\phi)$$
 s.t. $v_i^{\mathsf{T}} \phi = 0$ for all $i \in A$

Given the active set A, let us define $I = \{1, ..., n\} - A$. We index the elements of I by $i_1, ..., i_T$ where T denotes the cardinality of I. By definition, $n \in I$ always.

Proposition 6. The subspace $\{\phi : v_A^\top \phi = 0\}$ is equal to the subspace of ϕ where

- 1. $\phi_I \in \mathbb{R}^T$
- 2. For $j \in A$ where $j < i_1, \phi_j = \phi_{i_1}$
- 3. For $j \in A$ where $j > i_1$, $\phi_j = \frac{Y_{i_{t+1}} Y_j}{Y_{i_{t+1}} Y_{i_t}} \phi_{i_t} + \frac{Y_j Y_{i_t}}{Y_{i_{t+1}} Y_{i_t}} \phi_{i_{t+1}}$, $i_t < j < i_{t+1}$

Given the proposition, we can solve the optimization over an active set with an unconstrained optimization.

We let $F(\phi_I)$ denote the objective function. Again, we can simplify the notation with vector representation.

$$F(\phi_I) = \frac{1}{n} w^{\top} \phi_I + \sum_{t=1}^{T} \int_{Y_{i_t}}^{Y_{i_{t+1}}} \exp(a_t(r)^{\top} \phi_I) r^{p-1} c_p dr - \int_0^{Y_{i_1}} \exp(\phi_{i_1}) r^{p-1} c_p dr$$

where $w \in \mathbb{R}^T$ is of the form $w_1 = i_1 + \sum_{j=i_1+1}^{i_2} \frac{Y_{i_2} - Y_j}{Y_{i_2} - Y_{i_1}}$ and $w_t = \sum_{j=i_{t-1}+1}^{i_t} \frac{Y_j - Y_{i_{t-1}}}{Y_{i_t} - Y_{i_{t-1}}} + \sum_{j=i_t+1}^{i_{t+1}} \frac{Y_{i_{t+1}} - Y_j}{Y_{i_{t+1}} - Y_i}$.

And, $a_t(r) \in \mathbb{R}^T$ is of the form $(0, ..., 0, \frac{Y_{i_{t+1}} - r}{Y_{i_{t+1}} - Y_{i_t}}, \frac{r - Y_{i_t}}{Y_{i_{t+1}} - Y_{i_t}}, 0,, 0)$ where the two non-zero coordinates are t, t+1.

5 Envelope bounds

Let Φ denote the class of decreasing, concave functions $\phi: [0, \infty) \to [-\infty, \infty)$, let $\mathcal{G} := \{e^{\phi}: \phi \in \Phi\}$, and let \mathcal{H} denote the class of functions $h: [0, \infty) \to [0, \infty)$ of the form $h(r) = c_p r^{p-1} g(r)$ for some $g \in \mathcal{G}$, where

$$c_p \int_0^\infty r^{p-1} g(r) dr = 1 \tag{1}$$

$$c_p \int_0^\infty r^{p+1} g(r) dr = p. \tag{2}$$

Thus \mathcal{H} consists of densities of random variables ||X||, where X has a spherically symmetric, log-concave density on \mathbb{R}^p , and $\mathbb{E}(||X||^2) = p$.

The following result provides crude upper bounds for \mathcal{H} .

Lemma 7. For all $r \in [0, \infty)$, we have

$$\sup_{h \in \mathcal{H}} h(r) \le \begin{cases} \min(\sqrt{2}, 1/r) & \text{if } p = 1\\ \min\left\{\frac{(p+1)^{p/2}}{(p-1)!} r^{p-1}, 24r, \frac{p}{r}\right\} & \text{if } p \ge 2. \end{cases}$$
 (3)

Remark: The only difference between the cases p=1 and $p\geq 2$ is that the bound $\sup_{h\in\mathcal{H}}h(r)\leq 24r$ does not hold when p=1. The bounds $\frac{(p+1)^{p/2}}{(p-1)!}r^{p-1}$ and p/r are sharp when r=0 and $r=(p+2)^{1/2}$ respectively. The first of these facts is trivial unless p=1, but in that case one can observe that if we define $h:[0,\infty)\to[0,\infty)$ by $h(r):=\sqrt{2}e^{-\sqrt{2}r}$ then $h\in\mathcal{H}$ and $h(0)=\sqrt{2}$. The second fact follows because if we define $h:[0,\infty)\to[0,\infty)$ by $h(r):=\frac{p}{(p+2)^{p/2}}r^{p-1}\mathbb{1}_{\{r\in[0,(p+2)^{1/2}]\}}$, then $h\in\mathcal{H}$ and $h(\sqrt{p+2})=p/(p+2)^{1/2}$.

Remark for us: The second bound in (3) seems to be unnecessary.

Proof. For the first bound in (3) (treating the cases p = 1 and $p \ge 2$ simultaneously), for $r \in [0, \infty)$, let

$$g_0^*(r) := \frac{(p+1)^{p/2}}{c_p(p-1)!} e^{-(p+1)^{1/2}r},$$

so $g_0^* \in \mathcal{G}$, and let $h_0^*(r) := c_p r^{p-1} g_0^*(r)$. Then h_0^* is the $\Gamma(p, (p+1)^{1/2})$ density, so $h_0^* \in \mathcal{H}$. Suppose for a contradiction that $g \in \mathcal{G}$ satisfies the conditions the function $h : [0, \infty) \to [0, \infty)$ given by $h(r) := c_p r^{p-1} g(r)$ belongs to \mathcal{H} , and $g(0) > g_0^*(0)$. Then since $\log g_0^*$ is an affine function and h is a log-concave density, there exists $r_0 \in (0, \infty)$ such that $g(r) > g_0^*(r)$ for $r < r_0$ and $g(r) < g_0^*(r)$ for $r > r_0$. But then $h <_{\text{st}} h^*$, so $c_p \int_0^\infty r^{p+1} g(r) \, dr < p$, which establishes our desired contradiction. But since every $\phi \in \Phi$ is decreasing, it follows that $r \mapsto \sup_{g \in \mathcal{G}} g(r)$ is decreasing, so

$$\sup_{h \in \mathcal{H}} h(r) = c_p \sup_{g \in \mathcal{G}} r^{p-1} g(r) \le c_p r^{p-1} \sup_{g \in \mathcal{G}} g(0) = c_p r^{p-1} g_0^*(0) = \frac{(p+1)^{p/2}}{(p-1)!} r^{p-1}.$$

Next we establish the third bound in (3), again treating p=1 and $p\geq 2$ simultaneously. For $a\in (0,\infty)$ and $r\in (0,\infty)$, consider the function

$$g_a(r) := \frac{p}{c_p a^p} \mathbb{1}_{\{r \in [0,a]\}}.$$

Then $g_a \in \mathcal{G}$ and $c_p \int_0^\infty r^{p-1} g_a(r) dr = 1$. Thus if $g \in \mathcal{G}$ satisfies $g(a) > g_a(a)$, then $g(r) > g_a(r)$ for all $r \in [0, a]$ and $g(r) \geq g_a(r)$ for all $r \in [0, \infty)$. But then $c_p \int_0^\infty r^{p-1} g(r) dr > 1$, so the function $h : [0, \infty) \to [0, \infty)$ given by $h(r) := c_p r^{p-1} g(r)$ does not belong to \mathcal{H} . We deduce that for every $r \in (0, \infty)$,

$$\sup_{h \in \mathcal{H}} h(r) \le c_p r^{p-1} g_r(r) = \frac{p}{r}.$$

Finally, we prove the second bound in (3) in the case $p \geq 2$. To this end, fix $M \geq \log 16$, and $m \in (-\infty, M-2]$. Suppose that $h \in \mathcal{H}$ satisfies $\log h(r_0) \geq M$ for some $r_0 \in (1/4, p^{1/2}]$, and for $t \in [m, M]$, let $D_t := \{r \in [0, \infty) : \log h(r) \geq t\}$. First note that for any $t \in [m, M]$ and $r \in D_m$, we have

$$\log h\left(\frac{t-m}{M-m}r_0 + \frac{M-t}{M-m}r\right) \ge \frac{(t-m)M}{M-m} + \frac{(M-t)m}{M-m} = t.$$

Hence, writing μ for Lebesgue measure on \mathbb{R} ,

$$\mu(D_t) \ge \mu\left(\frac{t-m}{M-m}r_0 + \frac{M-t}{M-m}D_m\right) = \frac{M-t}{M-m}\mu(D_m).$$

Using Fubini's theorem, we can now compute

$$1 \ge \int_{D_m} h(r) - e^m dr \ge \int_{D_m} \int_m^M e^s \mathbb{1}_{\{\log h(r) \ge s\}} ds dr$$

$$= \int_m^M e^s \mu(D_s) ds \ge \frac{\mu(D_m)}{M - m} \int_m^M (M - s) e^s ds = \frac{\mu(D_m) e^M}{M - m} \int_0^{M - m} t e^{-t} dt$$

$$\ge \frac{\mu(D_m) e^M}{2(M - m)}.$$

Since D_m is an interval containing r_0 , we conclude that $\log h(r) \leq m$ whenever $|r - r_0| \geq 2(M - m)e^{-M}$. Thus

$$\log h(r) \le M - \frac{|r - r_0|e^M}{2}$$

for $|r-r_0| \ge 4e^{-M}$. Noting that $r_0 - 4e^{-M} > 0$ and using the bound $h(r) \le p/r$, it now

follows that

$$p = \int_0^\infty r^2 h(r) dr \le \int_0^{r_0 - 4e^{-M}} r^2 \exp\left\{M - \frac{(r_0 - r)e^M}{2}\right\} dr + p \int_{r_0 - 4e^{-M}}^{r_0 + 4e^{-M}} r dr + \int_{r_0 + 4e^{-M}}^\infty r^2 \exp\left\{M - \frac{(r - r_0)e^M}{2}\right\} dr$$
$$\le 2 \int_2^\infty \left(r_0 - \frac{2s}{e^M}\right)^2 e^{-s} ds + 8e^{-M} r_0 p + 2 \int_2^\infty \left(r_0 + \frac{2s}{e^M}\right)^2 e^{-s} ds$$
$$= 4e^{-2} r_0^2 + 32e^{-2M} + 8e^{-M} r_0 p \le p \left(\frac{2}{3} + 8e^{-M} r_0\right).$$

We deduce that $e^{-M}r_0 \ge 1/24$, so $h(r) \le \min(16, 24r)$ for $r \in (1/4, p^{1/2}]$. But our first bound in (3) is at most 5r for $r \le 1$ and $p \ge 2$, and the conclusion follows.

Corollary 8. Let $Z \sim h \in \mathcal{H}$. Then there exists a universal constant $c_0 > 0$ such that $Var(Z) \geq c_0 p^{-1}$.

Remark: Define $h:[0,\infty)\to [0,\infty)$ by $h(r):=\frac{p}{(p+2)^{p/2}}r^{p-1}\mathbb{1}_{\{r\in[0,(p+2)^{1/2}]\}}$. Then it can be shown that $h\in\mathcal{H}$, and if $Z\sim h$, then $\mathrm{Var}(Z)=p/(p+1)^2$. Thus the bound given in Corollary 8 is sharp in terms of its dependence on p.

Proof. From the first bound in Lemma 7, we have

$$\sup_{h \in \mathcal{H}} \sup_{r \in [0,\infty)} h(r) \le \sqrt{2}$$

for $r \leq p^{1/2}/e$. Write $\mu := \mathbb{E}(Z)$ and $\sigma^2 := \operatorname{Var}(Z)$. By Lovász and Vempala [2007, Theorem 5.14(d)], we have

$$\frac{1}{128\sigma} \le h(\mu) \le \sup_{h \in \mathcal{H}} \sup_{r \in [0,\infty)} h(r) \le ep^{1/2}.$$

The result follows.

An upper bound on the variance of $Z \sim h \in \mathcal{H}$ is readily available.

Lemma 9. Bobkov [2003, Lemma 1] Suppose h is a density of the form $r^{p-1}g(r)c_p$ for some log-concave function g(r), suppose $Z \sim h$, then,

$$\operatorname{Var}(Z) \le \frac{1}{p} (\mathbb{E}Z)^2$$

Under our constraint on $h \in \mathcal{H}$, we have that $(\mathbb{E}Z)^2 \leq \mathbb{E}[Z^2] = p$. This gives us the following corollary:

Corollary 10. Let $h \in \mathcal{H}$ and suppose $Z \sim h$. Then,

$$Var(Z) \leq 1$$

The upper bound is also tight. If we let $g(r) = e^{-ar}c$ where $a = \sqrt{\frac{(p+2)(p+1)}{p}}$ and c be chosen such that $cc_p = \frac{a^p}{\Gamma(p)}$, then we have that the mean is $\sqrt{\frac{p^3}{(p+2)(p+1)}}$ and the variance is $\frac{p^2}{(p+2)(p+1)}$. Thus, the variance of our chosen g(r) gets arbitrarily close to 1 for increasing p. We need one more ingredient before we can state our envelope bound.

Lemma 11. Let $\mathcal{F}^{\mu,\sigma^2} = \{f \text{ log-concave density } : \mu_f = \mu, \sigma_f^2 = \sigma^2\}$. Then, there exists universal constants A, B such that

$$\sup_{f \in \mathcal{F}^{\mu,\sigma^2}} f(x) \le \frac{A}{\sigma} \exp\left(-B \frac{|x - \mu|}{\sigma}\right)$$

Proof. This follows directly from Kim et al. [2016b, Theorem 2] by specializing to d = 1 and performing a change of variables.

The following theorem gives an envelope bound for the density class \mathcal{H} .

Theorem 12. For any absolute constant $c_1, c_2 > 0$, there exists constants C_1, C_2 such that

$$\sup_{f \in \mathcal{H}} f(x) \le \begin{cases} \frac{A'}{c_0} \sqrt{p} & \left| x - \sqrt{p} \right| \le \frac{c_0}{B\sqrt{p}} \\ \frac{A'}{eB} \frac{1}{\left| x - \sqrt{p} \right|} & \frac{c_0}{B\sqrt{p}} \le \left| x - \sqrt{p} \right| \le \frac{1}{B} \\ A'e^{-B\left| x - \sqrt{p} \right|} & \frac{1}{B} \le \left| x - \sqrt{p} \right| \end{cases}$$

Proof. Define $\mathcal{H}_{\sigma} = \{ f \in \mathcal{H} : \sigma_f = \sigma \}$ as the sub-class of \mathcal{H} in which the densities have standard deviation σ . It is clear that $\mathcal{H}_{\sigma} = \emptyset$ for $\sigma \notin \left[\frac{c_0}{\sqrt{p}}, 1\right]$ by our upper and lower bounds on the variance of densities in \mathcal{H} (Corollary 8, 10).

First, we observe

$$\sup_{f \in \mathcal{H}} f(x) = \sup_{\sigma \in \left[\frac{c_0}{\sqrt{p}}, 1\right]} \sup_{f \in \mathcal{H}_{\sigma}} f(x)$$

And, by Lemma 11 and by the fact that $\mu = \sqrt{\mathbb{E}Z^2 - \sigma^2} = \sqrt{p - \sigma^2}$,

$$\sup_{f \in \mathcal{H}_{\sigma}} f(x) \leq \frac{A}{\sigma} \exp\left(-B \frac{|x - \sqrt{p - \sigma^2}|}{\sigma}\right)$$

$$\leq \frac{A}{\sigma} \exp\left(-B \frac{|x - \sqrt{p}| - (\sqrt{p} - \sqrt{p - \sigma^2})}{\sigma}\right)$$

$$\leq \frac{A}{\sigma} \exp\left(-B \frac{|x - \sqrt{p}|}{\sigma} + B \frac{\frac{\sigma^2}{2\sqrt{p - \sigma^2}}}{\sigma}\right)$$

$$= \frac{A}{\sigma} \exp\left(-B \frac{|x - \sqrt{p}|}{\sigma} + B \frac{\sigma}{2\sqrt{p - \sigma^2}}\right)$$

$$\leq \frac{A}{\sigma} \exp\left(-B \frac{|x - \sqrt{p}|}{\sigma} + B \frac{1}{2\sqrt{p - 1}}\right)$$

$$\leq \frac{A'}{\sigma} \exp\left(-B \frac{|x - \sqrt{p}|}{\sigma}\right)$$

The second inequality follows from triangle inequality. The third inequality follows because $\sqrt{p} - \sqrt{p - \sigma^2} \le \frac{d\sqrt{p - \sigma^2}}{dp} \sigma^2$ by concavity of the square root function. The fourth inequality follows because $\sigma \le 1$. And, in the last inequality, we define A' to be a constant since $B_{\frac{1}{2\sqrt{p-1}}}$ is bounded by a constant for all p.

Let
$$H_{\sigma}(x) = \frac{A'}{\sigma} \exp\left(-B\frac{|x-\sqrt{p}|}{\sigma}\right)$$
.

If we write $\nu = \frac{1}{\sigma}$, then $\log H_{\sigma}(x)$ is a concave function of ν . We solve for the optimal and get that $\sigma = \frac{1}{\sqrt{p}}$ if $B|x - \sqrt{p}| \leq \sqrt{c_0}\sqrt{p}$, $\sigma = B|x - \sqrt{p}|$ if $\frac{c_0}{\sqrt{p}} \leq B|x - \sqrt{p}| \leq 1$, and $\sigma = 1$ if $1 \leq B|x - \sqrt{p}|$.

Thus, if $B|x-\sqrt{p}| \leq \frac{c_0}{\sqrt{p}}$, we have that $\sup_{\sigma \in [c_0/\sqrt{p},1]} H_{\sigma}(x) \leq A' \frac{\sqrt{p}}{c_0}$. If $\frac{c_0}{\sqrt{p}} \leq B|x-\sqrt{p}| \leq 1$, we have that $\sup_{\sigma \in [c_0/\sqrt{p},1]} H_{\sigma}(x) \leq \frac{A'}{eB|x-\sqrt{p}|}$. If $1 \leq B|x-\sqrt{p}|$, then $\sup_{\sigma \in [c_0/\sqrt{p},1]} H_{\sigma}(x) \leq A' \exp(-B|x-\sqrt{p}|)$.

6 Bracketing Entropy

We start with a proposition from Kim et al. [2016a]. Let $\mathcal{F}([a,b], -\infty, B)$ be the set of log-concave functions f such that f is supported on [a,b] and that $\log f(x) \leq B$.

Proposition 13. (Kim et al. [2016a, Proposition 14])

There exists a universal constant C > 0 such that

$$H_{\parallel}(\epsilon, \mathcal{F}([a, b], -\infty, B), d_H, [a, b]) \le C(1 + B^{1/2}) \frac{e^{B/4}(b - a)^{1/4}}{\epsilon^{1/2}}$$

We can slightly improve the result through a scaling argument.

Corollary 14. There exists a universal constant C > 0 such that

$$H_{[]}(\epsilon, \mathcal{F}([a, b], -\infty, B), d_H, [a, b]) \le C \frac{e^{B/4}(b - a)^{1/4}}{\epsilon^{1/2}}$$

Proof. Let $\sigma > 0$. For $f \in \mathcal{F}([a, b], -\infty, B)$, define $f_{\sigma}(x) = \frac{1}{\sigma} f(\frac{x}{\sigma})$ and define $\mathcal{F}_{\sigma}([a, b], -\infty, B) = \{f_{\sigma} : f \in \mathcal{F}([a, b], -\infty, B)\}.$

Since the Hellinger distance d_H is affine invariant, we have that

$$H_{\mathbb{I}}(\epsilon, \mathcal{F}([a, b], -\infty, B), d_H, [a, b]) = H_{\mathbb{I}}(\epsilon, \mathcal{F}_{\sigma}([a, b], -\infty, B), d_H, [a, b])$$

However, we also know that $\mathcal{F}_{\sigma}([a,b],-\infty,B) \subset \mathcal{F}([\sigma a,\sigma b],-\infty,B+\log\sigma)$. Thus,

$$H_{[]}(\epsilon, \mathcal{F}([a, b], -\infty, B), d_H, [a, b]) \le H_{[]}(\epsilon, \mathcal{F}([\sigma a, \sigma b], -\infty, B + \log \sigma), d_H, [a, b])$$

$$\le C(1 + (B + \log \sigma)^{1/2}) \frac{e^{B/4}(b - a)^{1/4}}{\epsilon^{1/2}}$$

Since this holds true for all $\sigma > 0$, the corollary follows.

References

Sergey G Bobkov. Spectral gap and concentration for some spherically symmetric probability measures. In *Geometric aspects of functional analysis*, pages 37–43. Springer, 2003.

Arlene KH Kim, Adityanand Guntuboyina, and Richard J Samworth. Adaptation in log-concave density estimation. arXiv preprint arXiv:1609.00861, 2016a.

Arlene KH Kim, Richard J Samworth, et al. Global rates of convergence in log-concave density estimation. *The Annals of Statistics*, 44(6):2756–2779, 2016b.

László Lovász and Santosh Vempala. The geometry of logconcave functions and sampling algorithms. Random Structures & Algorithms, 30(3):307–358, 2007.