PLSC 503 – Spring 2025 Dichotomous Covariates and Transformations

February 10, 2025

"Dummies" ...

"Dummy" variables may be:

- ... "naturally" dichotomous, including
 - · Structural breaks
 - · Proper nouns
- "Factors":

$$\mathtt{partyid} = \begin{cases} 0 = \mathsf{Labor} \\ 1 = \mathsf{Liberal} \\ 2 = \mathsf{Conservative} \end{cases}$$

- Ordinal variables...
- Continuous variables...

Coding Dummies

"Dummy coding":

$$\mathtt{female} = \begin{cases} 0 \text{ if male} \\ 1 \text{ if female} \end{cases}$$

vs. "Effect coding":

$$female = \begin{cases} -1 \text{ (or } -0.5) \text{ if male} \\ 1 \text{ (or } 0.5) \text{ if female} \end{cases}$$

TL;DR: (generally) use the former.

Dichotomous Xs: Regression

For

$$Y_i = \beta_0 + \beta_1 D_i + u_i$$

we have

$$\mathsf{E}(Y|D=0)=\beta_0$$

and

$$\mathsf{E}(Y|D=1)=\beta_0+\beta_1.$$

Dichotomous X, Graphically (No!)

Dichotomous X, Graphically (Yes!)

Many Dummies

For:

$$Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \dots + \beta_{\ell}D_{\ell i} + u_{i}$$

- $\mathsf{E}(Y|D_k=0)\,\forall\,k\in\ell=\beta_0$,
- Otherwise, $E(Y) = \beta_0 + \sum_{k=1}^{\ell} \beta_k \forall k \ s.t. \ D_k = 1.$

Note that where the D_{ℓ} are mutually exclusive and exhaustive:

- The expected values are the same as the within-group means.
- Identification requires that we either
 - · omit a "reference category," or
 - · omit β_0 .

Many Dummies: Toy Example

```
> labs<-c(rep("A",3),rep("B",3),rep("C",3)) # Three groups
> D<-as.factor(labs)
                                            # "Factor" variable
> Y<-c(12,16,8,25,27,23,38,42,40)
                                            # Y
> df<-data.frame(D=D,Y=Y)
> df
 D Y
1 A 12
2 A 16
3 A 8
4 B 25
5 B 27
6 B 23
7 C 38
8 C 42
9 C 40
> # Means of Y by group:
> aggregate(df$Y,list(df$D),FUN=mean)
  Group.1 x
        A 12
        B 25
```

C 40

Many Dummies Example (continued)

```
> # Create binary indicators "by hand":
> df$DA<-ifelse(df$D=="A",1,0)
> df$DB<-ifelse(df$D=="B",1,0)
> df$DC<-ifelse(df$D=="C".1.0)
> df
  D Y DA DB DC
1 A 12 1 0 0
3 A 8 1 0 0
4 B 25 0 1
5 B 27 0 1 0
6 B 23 0 1
7 C 38 0 0 1
8 C 42 0 0 1
9 C 40 0 0 1
> # Same thing, using fastDummies:
> df2<-dummy_cols(df[,1:2],select_columns=c("D"))
> df2
 D Y D_A D_B D_C
1 A 12
2 A 16
3 A 8
4 B 25
5 B 27
6 B 23
7 C 38
8 C 42
9 C 40
```

Many Dummies: Regression

```
> # Regressions:
> summary(lm(Y~D,data=df))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
              12.00
                         1.63 7.35 0.00032 ***
                          2.31 5.63 0.00134 **
DR
              13.00
DC
              28.00
                          2.31 12.12 0.000019 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.83 on 6 degrees of freedom
Multiple R-squared: 0.961, Adjusted R-squared: 0.948
F-statistic: 73.6 on 2 and 6 DF. p-value: 0.00006
> summarv(lm(Y~DA+DB+DC.data=df))
Coefficients: (1 not defined because of singularities)
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
            40.00
                        1.63 24.5 0.0000003 ***
             -28.00
                         2.31 -12.1 0.0000191 ***
DA
DR
             -15.00
                          2.31 -6.5 0.00063 ***
DC:
                 NΑ
                            NΑ
                                   NΑ
                                             NΑ
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.83 on 6 degrees of freedom
Multiple R-squared: 0.961, Adjusted R-squared: 0.948
F-statistic: 73.6 on 2 and 6 DF. p-value: 0.00006
```

Many Dummies: Regression (continued)

Dummies and Ordinal Xs

Suppose we have:

$$\text{PID} = \begin{cases} 1 = \text{Strong Democrat} \\ 2 = \text{Weak Democrat} \\ 3 = \text{Independent} \\ 4 = \text{Weak Republican} \\ 5 = \text{Strong Republican} \end{cases}$$

We might estimate:

Thermometer_i =
$$\beta_0 + \beta_1(PID_i) + u_i$$

Alternatively, we could "dummy out" PID:

$$\texttt{Thermometer}_i = \beta_1(\mathtt{SD}_i) + \beta_2(\mathtt{WD}_i) + \beta_3(\mathtt{Ind}_i) + \beta_4(\mathtt{WR}_i) + \beta_5(\mathtt{SR}_i) + u_i$$

Ordinal, Illustrated

Dummies and Ordinal Xs

```
> # Regressions:
> fit1<-lm(Therm~as.numeric(PID))
> summary(fit1)
Coefficients:
               Estimate Std. Error t value
                                                      Pr(>|t|)
               -2.233
                            1.575 -1.42
                                                          0.16
(Intercept)
as.numeric(PID) 17.067 0.476 35.88 < 0.000000000000000 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 9.56 on 198 degrees of freedom
Multiple R-squared: 0.867, Adjusted R-squared: 0.866
F-statistic: 1.29e+03 on 1 and 198 DF, p-value: <0.00000000000000000
> fit2<-lm(Therm~PTD-1)
> summarv(fit2)
Coefficients:
       Estimate Std. Error t value
                                             Pr(>|t|)
PIDSD
        9 949
                    0.792 12.6 < 0.0000000000000000 ***
PIDWD 43.227 0.854 50.6 <0.00000000000000000 ***
PIDInd 50.132 0.866 57.9 <0.00000000000000000 ***
PTDWR 55.380 0.758 73.1 <0.000000000000000 ***
PIDSR 89.855 0.854 105.2 < 0.000000000000000 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.19 on 195 degrees of freedom
Multiple R-squared: 0.991, Adjusted R-squared: 0.991
F-statistic: 4.5e+03 on 5 and 195 DF, p-value: <0.00000000000000000
```

Ordinal X (continued)

Dichotomous + Continuous X

E.g.,

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + u_i$$

we have

$$\mathsf{E}(Y|X,D=0) = \beta_0 + \beta_2 X_i$$

and

$$E(Y|X, D = 1) = (\beta_0 + \beta_1) + \beta_2 X_i$$

$\mathsf{Dichotomous} + \mathsf{Continuous}\ X$

Examples: SCOTUS (OT1953-1985)

From the "Phase II" SCOTUS database...

> summary(SCOTUS) id Namici lctdiss multlaw term Min. .53.00 . 0.000 .0.0000-0.0000Min. Min Min Min. 1st Qu.:1791 1st Qu.:64.00 1st Qu.: 0.000 1st Qu.:0.0000 1st Qu.:0.0000 Median:3581 Median :72.00 Median : 0.000 Median :0.0000 Median :0.0000 Mean .3581 Mean :71.12 Mean : 0.842 Mean :0.1509 Mean :0.1490 3rd Qu.:5371 3rd Qu.:79.00 3rd Qu.:0.0000 3rd Qu.: 1.000 3rd Qu.:0.0000 :7161 :85.00 :39.000 Max. Max. Max. Max. :1.0000 Max. :1.0000 NA's . 4 00 NA's :4.0000 NA's .5.0000 lctlib civlibs constit econs :0.0000 : 0.0000 Min. Min. :0.0000 Min. :0.0000 Min. 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.: 0.0000 Median :1.0000 Median :0.0000 Median :0.0000 Median: 0.0000 : 0.3742 Mean :0.5009 Mean :0.1709 Mean :0.2536 Mean 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.: 1.0000 :1.0000 :1.0000 .1.0000 : 1.0000 Max Max. Max Max NA's :120.0000

Creating Dummies

All civil rights & economics cases:

> SCOTUS\$civil.econ<-SCOTUS\$civlibs + SCOTUS\$econs

Factors:

- > SCOTUS\$termdummies<-factor(SCOTUS\$term)
- > is.factor(SCOTUS\$termdummies)
- [1] TRUE
- > summary(SCOTUS\$termdummies)

53	54	55	56	57	58	59	60	61	62	63	64	65	66	67
126	109	128	162	196	165	157	160	148	189	223	156	187	201	285

68	69	70	71	72	73	74	75	76	77	78	79	80	81
207	185	227	262	269	267	223	253	254	244	244	221	255	269

82 83 84 85 NA's 277 298 301 309 4

Regressions (vs. *t*-tests...)

```
> fit1<-with(SCOTUS, lm(Namici~civlibs))
> summarv(fit1)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.91774 0.03661 25.069 < 2e-16 ***
civlibs
        -0.15136 0.05173 -2.926 0.00344 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.189 on 7159 degrees of freedom
Multiple R-squared: 0.001195, Adjusted R-squared: 0.001055
F-statistic: 8.563 on 1 and 7159 DF, p-value: 0.003442
> with(SCOTUS, t.test(Namici~civlibs))
Welch Two Sample t-test
data: Namici by civlibs
t = 2.9258, df = 7114.116, p-value = 0.003446
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.04995001 0.25277126
sample estimates:
mean in group 0 mean in group 1
     0.9177392
                  0.7663786
```

Effect Coding

Dummy vs. effect coding:

```
> SCOTUS$civlibeffect<-SCOTUS$civlibs
> SCOTUS$civlibeffect[SCOTUS$civlibs==0]<-(-1)
> fit2<-with(SCOTUS, lm(Namici~SCOTUS$civlibeffect))
> summarv(fit2)
Call:
lm(formula = Namici ~ SCOTUS$civlibeffect)
Residuals:
  Min
        10 Median
                      30
                           Max
-0.918 -0.918 -0.766 0.082 38.234
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                  0.84206 0.02586 32.559 < 2e-16 ***
(Intercept)
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.189 on 7159 degrees of freedom
Multiple R-squared: 0.001195, Adjusted R-squared: 0.001055
F-statistic: 8.563 on 1 and 7159 DF, p-value: 0.003442
```

Many D_i s

```
> fit3<-with(SCOTUS, lm(Namici~lctdiss+multlaw+civlibs+
                       econs+constit+lctlib))
> summary(fit3)
Call:
lm(formula = Namici ~ lctdiss + multlaw + civlibs + econs + constit +
   lctlib)
Residuals:
  Min
         10 Median 30
                            Max
-2.582 -0.976 -0.472 -0.260 37.086
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.47245 0.05273 8.960 < 2e-16 ***
lctdiss
         0.36760 0.07173 5.125 3.06e-07 ***
multlaw 0.61306 0.07445 8.235 < 2e-16 ***
civlibs -0.21255 0.06022 -3.530 0.000419 ***
econs 0.08772 0.07652 1.146 0.251691
constit 0.53793 0.06372 8.442 < 2e-16 ***
           0.50309 0.05396 9.323 < 2e-16 ***
lctlib
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.15 on 7033 degrees of freedom
 (121 observations deleted due to missingness)
Multiple R-squared: 0.05013, Adjusted R-squared: 0.04932
F-statistic: 61.86 on 6 and 7033 DF, p-value: < 2.2e-16
```

Change Over Time: Linear Trend

```
> fit4<-with(SCOTUS, lm(Namici~lctdiss+multlaw+civlibs+
                        econs+constit+lctlib+term))
> summarv(fit4)
Call:
lm(formula = Namici ~ lctdiss + multlaw + civlibs + econs + constit +
   lctlib + term)
Residuals:
  Min
          10 Median
                             Max
                       30
-2.968 -0.906 -0.428 0.143 36.958
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.726962  0.202367 -13.475  < 2e-16 ***
lctdiss
            0.359494 0.070415 5.105 3.39e-07 ***
multlaw
          0.649932 0.073109 8.890 < 2e-16 ***
civlibs -0.289314 0.059295 -4.879 1.09e-06 ***
       0.199464 0.075419 2.645 0.00819 **
econs
constit. 0.515435 0.062559 8.239 < 2e-16 ***
lctlib
           0.339891 0.053901 6.306 3.04e-10 ***
            0.046142 0.002821 16.354 < 2e-16 ***
term
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.11 on 7032 degrees of freedom
  (121 observations deleted due to missingness)
Multiple R-squared: 0.08493, Adjusted R-squared: 0.08402
F-statistic: 93.24 on 7 and 7032 DF, p-value: < 2.2e-16
```

Change Over Time: Using factor

```
> fit5<-with(SCOTUS, lm(Namici~lctdiss+multlaw+civlibs+
                     econs+constit+lctlib+as.factor(term)))
> summary(fit5)
Call:
lm(formula = Namici ~ lctdiss + multlaw + civlibs + econs + constit +
   lctlib + as.factor(term))
Residuals:
   Min
          1Q Median
                            Max
-3.064 -0.920 -0.384 0.106 36.831
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                -0.16153 0.19530 -0.827 0.408200
lctdiss
                 0.34558    0.07067    4.890    1.03e-06 ***
multlaw
                 -0.27137 0.05967 -4.548 5.51e-06 ***
civlibs
                 0.20039 0.07581 2.643 0.008232 **
econs
                 0.54280 0.06297 8.620 < 2e-16 ***
constit
lctlib
                 0.33863
                           0.05458 6.205 5.80e-10 ***
```

Using factor (continued)

```
0.27934
as.factor(term)54 0.26276
                                        0.941 0.346918
as.factor(term)55
                   0.20958
                              0.26804
                                        0.782 0.434309
as.factor(term)56
                  0.12536
                              0.25126
                                        0.499 0.617859
as.factor(term)57
                  0.06432
                              0.24227
                                        0.265 0.790654
as.factor(term)58 0.08353
                              0.25274
                                        0.331 0.741025
as.factor(term)71 0.62313
                              0.23019
                                        2.707 0.006806 **
as.factor(term)72
                  0.59503
                              0.22929
                                        2.595 0.009476 **
                  0.78179
                              0.22918
as.factor(term)73
                                        3.411 0.000650 ***
as.factor(term)74
                  0.53254
                              0.23636
                                        2.253 0.024287 *
as.factor(term)75
                  0.80353
                              0.23118
                                        3.476 0.000513 ***
as.factor(term)76
                              0.23138
                  0.49269
                                        2.129 0.033262 *
as.factor(term)77
                  1.07725
                              0.23265
                                        4.630 3.72e-06 ***
as.factor(term)78
                  1.04335
                              0.23243
                                        4.489 7.27e-06 ***
as.factor(term)79
                  0.85363
                              0.23696
                                        3.602 0.000318 ***
as.factor(term)80
                  1.21205
                              0.23183
                                        5 228 1 76e-07 ***
as.factor(term)81
                  1.49347
                              0.22925
                                        6.515.7.80e-11 ***
as.factor(term)82
                  1.46004
                              0.22858
                                        6.388 1.79e-10 ***
as.factor(term)83
                  1.29417
                              0.22549
                                        5.739 9.90e-09 ***
as.factor(term)84
                  1.23434
                              0.22517
                                        5.482 4.36e-08 ***
as.factor(term)85
                  1.59037
                              0.22491
                                        7.071 1.68e-12 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
Residual standard error: 2.108 on 7001 degrees of freedom
  (121 observations deleted due to missingness)
Multiple R-squared: 0.0914, Adjusted R-squared: 0.08647
```

F-statistic: 18.53 on 38 and 7001 DF, p-value: < 2.2e-16

factor results, plotted (1953 = 0)

Transformations

Why Transform?

- Normality (of u_i s)
- Linearity
- Additivity
- Interpretation / Model Specification

What Difference Does It Make? (Part I)

Residuals Are Still (Pretty) Normal...

What Difference Does It Make? (Part II)

```
N <- 20 # pretty small sample size
u \leftarrow rnorm(N,0,2) \# mean zero, s.d = 2
# Exponentiate:
eu \leftarrow exp(u)
eu <- eu-mean(eu) # new residuals are mean-zero
eu \leftarrow (eu/sd(eu))*2 \# and also sd = 2
X \leftarrow runif(N,-4,4)
Y1 <- 0 + 1*X + 1*11
Y2 <- 0 + 1*X + 1*eu # same Xs in both
```

What Difference Does It Make? (Part II)

Little Effect On $\hat{\beta}$

Important Differences in Inference

With N = 200? Not So Much...

Examples

This:

$$Y_i = \beta_0 X_i^{\beta_1} u_i$$

becomes this:

$$ln(Y_i) = ln(\beta_0) + \beta_1 X_i + ln(u_i)$$

And this:

$$\exp(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

becomes this:

$$Y_i = \ln(\beta_0) + \beta_1 \ln(X_i) + \ln(u_i)$$

Monotonic Transformations

The "Ladder of Powers":

Transformation	р	f(X)	Fox's $f(X)$
Cube	3	X^3	$\frac{X^3-1}{3}$
Square	2	X^2	$\frac{X^2-1}{2}$
(None/Identity)	(1)	(X)	(\bar{X})
Square Root	$\frac{1}{2}$	\sqrt{X}	$2(\sqrt{X}-1)$
Cube Root	1 1 3	$\sqrt[3]{X}$	$3(\sqrt[3]{X}-1)$
Log	0 (sort of)	ln(X)	ln(X)
Inverse Cube Root	$-\frac{1}{3}$	$\frac{1}{\sqrt[3]{X}}$	$\frac{\left(\frac{1}{\sqrt[3]{X}}-1\right)}{-\frac{1}{3}}$
Inverse Square Root	$-\frac{1}{2}$	$\frac{1}{\sqrt{X}}$	$\frac{\left(\frac{1}{\sqrt{X}}-1\right)}{-\frac{1}{2}}$
Inverse	-1	$\frac{1}{X}$	$\frac{\left(\frac{1}{X}-1\right)}{-1}$
Inverse Square	-2	$\frac{1}{X^2}$	$\frac{\left(\frac{1}{X^2}-1\right)}{-2}$
Inverse Cube	-3	$\frac{1}{X^3}$	$\frac{\left(\frac{1}{X^3}-1\right)}{-3}$

A General Rule

Using higher-order power transformations (e.g. squares, cubes, etc.) "inflates" large values and "compresses" small ones; conversely, using lower-order power transformations (logs, etc.) "compresses" large values and "inflates" (or "expands") smaller ones.

Power Transformations: Two Issues

1. X must be positive; so:

$$X^* = X + (|X_I| + \epsilon)$$

with (CZ's Rule of Thumb):

$$\epsilon = \frac{X_{l+1} - X_l}{2}$$

2. Power transformations generally require that:

$$\frac{X_h}{X_l} > 5$$
 (or so)

Which Transformation?

Mosteller and Tukey's "Bulging Rule":

Transformed Xs: Interpretation

For:

$$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i,$$

then:

$$\mathsf{E}(Y) = \exp(\beta_0 + \beta_1 X_i)$$

and so:

$$\frac{\partial \mathsf{E}(Y)}{\partial X} = \exp(\beta_1).$$

Transformed Xs: Interpretation

Similarly, for:

$$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

we have:

$$\frac{\partial \mathsf{E}(Y)}{\partial \ln(X)} = \beta_1.$$

So doubling X (say, from X_{ℓ} to $2X_{\ell}$):

$$\Delta E(Y) = E(Y|X = 2X_{\ell}) - E(Y|X = X_{\ell})$$

$$= [\beta_{0} + \beta_{1} \ln(2X_{\ell})] - [\beta_{0} + \beta_{1} \ln(X_{\ell})]$$

$$= \beta_{1}[\ln(2X_{\ell}) - \ln(X_{\ell})]$$

$$= \beta_{1} \ln(2)$$

Log-Log Regressions

Specifying:

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + ... + u_i$$

means:

Elasticity
$$_{YX}\equiv \frac{\%\Delta Y}{\%\Delta X}=\beta_1.$$

IOW, a one-percent change in X leads to a $\hat{\beta}_1$ -percent change in Y.

An Example: Cell Phones and Wealth

Data are from the World Development Indicators (2018 only)...

- Region The geographical region of the country
- country The name of the country (useful for labeling, etc.)

.

- GDPPerCapita GDP per capita (constant 2010 \$US)
- MobileCellSubscriptions Mobile / cellular subscriptions per 100 people

"Ladder of Powers": Wealth / GDP

"Ladder of Powers": Mobile Subscriptions

Scatterplots

Untransformed (linear-linear):

```
> linlin <- with(WDI, lm(MobileCellSubscriptions~I(GDPPerCapita/1000)))</pre>
> summary(linlin)
Residuals:
   Min
            10 Median
                                  Max
                        30
-114.17 -20.99 -0.76 19.38 196.73
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   101.541 3.282 30.94 < 2e-16 ***
I(GDPPerCapita/1000) 0.567 0.120 4.74 0.0000043 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 36.6 on 181 degrees of freedom
  (32 observations deleted due to missingness)
Multiple R-squared: 0.111, Adjusted R-squared: 0.106
F-statistic: 22.5 on 1 and 181 DF, p-value: 0.00000426
```

Logging X:

```
> linlog <- with(WDI, lm(MobileCellSubscriptions~log(GDPPerCapita/1000)))</pre>
> summary(linlog)
Residuals:
  Min 10 Median 30 Max
 -72.6 -17.7 -3.9 15.5 198.5
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       84.33 4.00 21.08 < 2e-16 ***
log(GDPPerCapita/1000) 14.15 1.72 8.23 3.6e-14 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 33.1 on 181 degrees of freedom
  (32 observations deleted due to missingness)
Multiple R-squared: 0.272, Adjusted R-squared: 0.268
F-statistic: 67.7 on 1 and 181 DF, p-value: 3.63e-14
```

Logging Y:

```
> loglin <- with(WDI, lm(log(MobileCellSubscriptions)~I(GDPPerCapita/1000)))</pre>
> summary(loglin)
Residuals:
   Min
            10 Median 30
                                  Max
-1.2519 -0.1540 0.0554 0.2192 0.8560
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 4.56082 0.03157 144.47 < 2e-16 ***
I(GDPPerCapita/1000) 0.00516 0.00115 4.48 0.000013 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.352 on 181 degrees of freedom
  (32 observations deleted due to missingness)
Multiple R-squared: 0.0998, Adjusted R-squared: 0.0949
F-statistic: 20.1 on 1 and 181 DF, p-value: 0.0000132
```

Logging X and Y:

```
> loglog <- with(WDI, lm(log(MobileCellSubscriptions)~log(GDPPerCapita/1000)))</pre>
> summary(loglog)
Residuals:
   Min
            10 Median 30
                                  Max
-0.9364 -0.1502 0.0114 0.1873 0.8311
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     4.3752 0.0372 117.52 < 2e-16 ***
log(GDPPerCapita/1000) 0.1444 0.0160
                                            9.02 2.6e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.308 on 181 degrees of freedom
  (32 observations deleted due to missingness)
```

Multiple R-squared: 0.31, Adjusted R-squared: 0.306 F-statistic: 81.4 on 1 and 181 DF, p-value: 2.64e-16

Density Plots of \hat{u}_i s

Nonmonotonicity

(One) simple solution: Polynomials...

• First-order / linear (P = 1):

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• Second-order / quadratic (P = 2):

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$$

• Third-order / cubic (P = 3):

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}^{2} + \beta_{3}X_{i}^{3} + u_{i}$$

• ...pth-order (P = p):

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}^{2} + \beta_{3}X_{i}^{3} + \dots + \beta_{p}X_{i}^{p} + u_{i}$$

Understanding Polynomials

Read coefficients "left to right." So, for the quadratic:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$$

then:

	\hat{eta}_2				
\hat{eta}_1	< 0	= 0	> 0		
< 0	E(Y) decreases in X at an increasing rate	E(Y) decreases linearly in X	E(Y) decreases in X at low values of X , but increases in X at high values of X		
= 0	$E(Y)$ decreases in X^2	E(Y) is (quadratically) unrelated to X	$E(Y)$ increases in X^2		
> 0	E(Y) increases in X at low values of X , but decreases in X at high values of X	E(Y) increases linearly in X	E(Y) increases in X at an increasing rate		

Polynomials: Simulated Example

- > N<-500
- > set.seed(7222009)
- > X<-runif(N,3,17)
- > Y<-8+2*sin(X)+rnorm(N)

Some Polynomial Regressions

"Raw" vs. Orthogonal Polynomials

Check out the P = 12 regression:

```
> summarv(R.12)
Call:
lm(formula = Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^5) + I(X^6) +
    T(X^{7}) + T(X^{8}) + T(X^{9}) + T(X^{10}) + T(X^{11}) + T(X^{12})
Coefficients: (1 not defined because of singularities)
                  Estimate
                                Std. Error t value Pr(>|t|)
(Intercept) -92.9216900503 816.2489413571 -0.11
                                                      0.91
            149.4055086103 1212.1158531764
                                            0.12
                                                      0.90
I(X^2)
           -104.6855472388 788.3527710495
                                            -0.13
                                                     0.89
T(X^3)
             46.9192208616 296.7267961681
                                            0.16
                                                      0.87
T(X^4)
            -14.5570311719 71.9111574249
                                            -0.20
                                                      0.84
I(X^5)
              3.1175787785
                           11.8013895994
                                            0.26
                                                      0.79
T(X^6)
            -0.4537511003 1.3406553442
                                            -0.34
                                                      0.74
I(X^7)
             0.0442854569
                              0.1056218156
                                            0.42
                                                      0.68
I(X^8)
             -0.0028398562
                              0.0056659448
                                            -0.50
                                                      0.62
I(X^9)
                                            0.58
                                                      0.56
             0.0001145568
                              0.0001974535
T(X^10)
             -0.0000026340
                              0.0000040301
                                            -0.65
                                                      0.51
I(X^11)
              0.0000000263
                              0.0000000366
                                             0.72
                                                      0.47
I(X^12)
                        NΑ
                                               NA
                                                        NΑ
                                        NA
```

Residual standard error: 0.986 on 488 degrees of freedom Multiple R-squared: 0.669, Adjusted R-squared: 0.662 F-statistic: 89.7 on 11 and 488 DF, p-value: <2e-16

"Raw" vs. Orthogonal Polynomials (continued)

What's going on?

• The "raw" polynomial terms are (often strongly) correlated with each other...

```
> cor(X,I(X^2))
[1] 0.984
```

- ullet \rightarrow large standard errors / imprecision in the estimates
- Can also lead to numerical instability in estimation...

Orthogonal Polynomials

An alternative is to use orthogonal polynomials...

- Think of these as orthogonal (uncorrelated) versions of the polynomials above
- There are many of them; probably the most commonly-used are the Legendre polynomials:

• The math is a bit complex; the R command is poly()

Our Example

"Raw" polynomials using poly():

Multiple R-squared: 0.669, Adjusted R-squared: 0.662 F-statistic: 89.7 on 11 and 488 DF, p-value: <2e-16

```
> P.12R<-lm(Y~poly(X,degree=12,raw=TRUE))
> summary(P.12R)
Call:
lm(formula = Y ~ poly(X, degree = 12, raw = TRUE))
Coefficients: (1 not defined because of singularities)
                                        Estimate
                                                     Std. Error t value Pr(>|t|)
                                                 816.2489413571
                                                                 -0.11
(Intercept)
                                  -92.9216900503
                                                                           0.91
polv(X, degree = 12, raw = TRUE)1 149.4055086103 1212.1158531764 0.12
                                                                           0.90
poly(X, degree = 12, raw = TRUE)2 -104.6855472388 788.3527710495 -0.13
                                                                        0.89
poly(X, degree = 12, raw = TRUE)3
                                 46.9192208616
                                                 296.7267961681 0.16
                                                                          0.87
polv(X, degree = 12, raw = TRUE)4
                                                 71.9111574249 -0.20
                                  -14.5570311719
                                                                          0.84
poly(X, degree = 12, raw = TRUE)5
                                    3.1175787785
                                                 11.8013895994 0.26
                                                                        0.79
poly(X, degree = 12, raw = TRUE)6
                                  -0.4537511003
                                                1.3406553442 -0.34
                                                                          0.74
polv(X, degree = 12, raw = TRUE)7
                                  0.0442854569
                                                 0.1056218156
                                                                0.42
                                                                          0.68
poly(X, degree = 12, raw = TRUE)8
                                                0.0056659448 -0.50
                                                                           0.62
                                   -0.0028398562
poly(X, degree = 12, raw = TRUE)9
                                  0.0001145568 0.0001974535
                                                                 0.58
                                                                        0.56
polv(X, degree = 12, raw = TRUE)10
                                                 0.0000040301 -0.65
                                   -0.0000026340
                                                                          0.51
polv(X, degree = 12, raw = TRUE)11
                                    0.0000000263
                                                   0.0000000366
                                                                  0.72
                                                                           0.47
poly(X, degree = 12, raw = TRUE)12
                                                                    NA
                                             NA
                                                            NA
                                                                             NA
Residual standard error: 0.986 on 488 degrees of freedom
```

Our Example (continued)

Orthogonal polynomials:

```
> P.12<-lm(Y~poly(X,degree=12))</pre>
> summarv(P.12)
Call:
lm(formula = Y ~ polv(X, degree = 12))
Coefficients:
                     Estimate Std. Error t value
                                                   Pr(>|t|)
(Intercept)
                      7.7989
                                0.0441 176.80
                                                    < 2e-16 ***
poly(X, degree = 12)1
                    4.7901 0.9863 4.86 0.00000161352 ***
poly(X, degree = 12)2
                     -6.2379 0.9863 -6.32 0.00000000058 ***
polv(X, degree = 12)3
                    2.5039 0.9863 2.54
                                                     0.011 *
poly(X, degree = 12)4
                     -9.5937 0.9863 -9.73 < 2e-16 ***
poly(X, degree = 12)5
                     -21.5763
                              0.9863 -21.87
                                               < 2e-16 ***
                                               < 2e-16 ***
polv(X, degree = 12)6
                    12.0295
                              0.9863 12.20
poly(X, degree = 12)7
                    12.4067
                               0.9863 12.58
                                               < 2e-16 ***
poly(X, degree = 12)8
                    -5.2176
                              0.9863 -5.29 0.00000018541 ***
poly(X, degree = 12)9
                     -1.4389
                              0.9863
                                        -1.46
                                                     0.145
poly(X, degree = 12)10
                     2.0529
                              0.9863
                                        2.08
                                                     0.038 *
poly(X, degree = 12)11
                      0.7097
                              0.9863 0.72
                                                     0.472
poly(X, degree = 12)12
                     -0.3987
                               0.9863
                                         -0.40
                                                     0.686
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.986 on 487 degrees of freedom
Multiple R-squared: 0.669, Adjusted R-squared: 0.661
F-statistic: 82.1 on 12 and 487 DF, p-value: <2e-16
```

What Degree Polynomial?

```
> for(degree in 1:12) {
   fit <- lm(Y~poly(X,degree))</pre>
   assign(paste("P", degree, sep = "."), fit)
+ }
> anova(P.1,P.2,P.3,P.4,P.5,P.6,P.7,P.8,P.9,P.10,P.11,P.12)
Analysis of Variance Table
Model 1: Y ~ poly(X, degree)
Model 2: Y ~ poly(X, degree)
Model 3: Y ~ poly(X, degree)
Model 4: Y ~ poly(X, degree)
Model 5: Y ~ poly(X, degree)
Model 6: Y ~ poly(X, degree)
     7: Y ~ poly(X, degree)
Model
Model
      8: Y ~ poly(X, degree)
Model 9: Y ~ poly(X, degree)
Model 10: Y ~ poly(X, degree)
Model 11: Y ~ poly(X, degree)
Model 12: Y ~ poly(X, degree)
   Res.Df RSS Df Sum of Sq
                                         Pr(>F)
     498 1409
     497 1370 1
                        39 40.00 0.0000000058 ***
     496 1364
                        6 6.44
                                          0.011 *
     495 1272 1
                        92 94.60
                                        < 2e-16 ***
     494 807
                       466 478.51
                                        < 2e-16 ***
     493 662
                       145 148.74
                                        < 2e-16 ***
     492 508
                       154 158.22
                                        < 2e-16 ***
     491
          481
                        27 27.98 0.00000018541 ***
     490
         479
                         2 2.13
                                          0.145
     489 474
                            4.33
                                          0.038 *
11
     488 474
                             0.52
                                          0.472
12
     487 474 1
                             0.16
                                          0.686
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

What Degree Polynomial?

Plotting R_{adi}^2 for different polynomial degrees...

Polynomial Tips

Good things...

- Polynomials are <u>flexible</u> functional forms for nonlinear marginal associations
- They are also easy to fit, and easily interpretable

Cautions...

- Polynomials can be prone to overfitting, which...
- ...can lead to poor out-of-sample generalizability / predictive power
- This is especially true outside the observed values of the data (extrapolation)

Transformation Tips

- Theory is valuable.
- Try different things.
- Look at plots.
- It takes practice.