Math 611 Homework 2

Paul Hacking

September 28, 2015

- (1) Let G be a group and $H \leq G$ a subgroup of G of index 2. Prove that H is normal. Give an example to show that a subgroup of index 3 need not be normal.
- (2) (a) Describe the partition of the symmetric group S_4 into conjugacy classes.
 - (b) In class we explained (briefly) that the group G of rotational symmetries of the cube is isomorphic to S_4 . (The isomorphism is obtained by considering the action of G on the set of pairs of opposite vertices of the cube.) Determine the geometric interpretation of the conjugacy classes in S_4 under this isomorphism.
- (3) (a) Determine the conjugacy classes in the alternating group A_4 . Check your answer using the fact that the order of a conjugacy class divides the order of the group.
 - (b) Show that A_4 does not have a subgroup of order 6.
- (4) Let G be a group and $a \in G$ an element. Determine the centralizer Z(a) of a in G and the size of the conjugacy class C(a) of a in G in the following cases.
 - (a) $(123) \in S_5$.
 - (b) $(123)(456) \in S_7$.
 - (c) $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \in GL_2(\mathbb{Z}/5\mathbb{Z}).$
 - $(d) \ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}/3\mathbb{Z}).$

- (5) A group G of order 21 contains a conjugacy class C(x) of size 3. What is the order of x in G?
- (6) Determine the conjugacy classes in the group

$$G = \langle a, b \mid a^3 = b^4 = e, \quad ba = a^{-1}b \rangle.$$

Here you may assume without proof that |G| = 12 so that the elements of G can be expressed uniquely as $a^i b^j$ for $0 \le i < 3$ and $0 \le j < 4$.

[Note: This group was studied in HW1Q9.]

- (7) (a) Consider the action of $\operatorname{PGL}_2(\mathbb{Z}/3\mathbb{Z})$ on $\mathbb{P}^1_{\mathbb{Z}/3\mathbb{Z}} = \mathbb{Z}/3\mathbb{Z} \cup \{\infty\}$ by Mobius transformations (See Q11(a) for more details.) Use this action to prove that $\operatorname{PGL}_2(\mathbb{Z}/3\mathbb{Z})$ is isomorphic to the symmetric group S_4 .
 - (b) Show that the subgroup $\operatorname{PSL}_2(\mathbb{Z}/3\mathbb{Z})$ of $\operatorname{PGL}_2(\mathbb{Z}/3\mathbb{Z})$ is isomorphic to the alternating group A_4 .
- (8) Classify finite groups G with at most 3 conjugacy classes.
- (9) For each of the following statements, give a proof or a counterexample.
 - (a) If $H \triangleleft G$ and $K \triangleleft H$ then $K \triangleleft G$.
 - (b) If $H \triangleleft G$ and $K \leq G$ then $H \cap K \triangleleft K$.
- (10) Let G be a finite group and $H \triangleleft G$ a normal subgroup. Let $a \in H$ be an element. Let $C_H(a)$ denote the conjugacy class of a in H and $C_G(a)$ the conjugacy class of a in G. Let $Z_H(a)$ denote the centralizer of a in H and $Z_G(a)$ the centralizer of a in G. (Then $Z_H(a) = Z_G(a) \cap H$.) Let $g: G \to G/H$ be the quotient homomorphism.
 - (a) Show that $gC_H(a)g^{-1} = C_H(gag^{-1})$ for all $g \in G$.
 - (b) Show that $C_G(a)$ is a union of $[G/H:q(Z_G(a))]$ distinct conjugacy classes in H of equal size (the orbit of the conjugacy class $C_H(a)$ under conjugation by elements of G).
 - (c) Now suppose $G = S_n$, the symmetric group on n objects $(n \ge 2)$, and $H = A_n$, the alternating group. Deduce that if $Z_{S_n}(a)$ is not contained in A_n then $C_{S_n}(a) = C_{A_n}(a)$, while if $Z_{S_n}(a)$ is contained in A_n then $C_{S_n}(a) = C_{A_n}(a) \cup C_{A_n}((12)a(12))$ is a union of two

distinct conjugacy classes in A_n . Give examples showing that both cases occur.

(11) (This question is optional and will not be graded). Let F be a field and n a non-negative integer. Define an equivalence relation \sim on $F^{n+1}\setminus\{0\}$ by

$$(a_0, \dots, a_n) \sim (b_0, \dots, b_n) \iff$$

 $(a_0, \dots, a_n) = \lambda(b_0, \dots, b_n) \text{ for some } 0 \neq \lambda \in F.$

The projective space \mathbb{P}_F^n over F is the set of equivalence classes for this equivalence relation, $\mathbb{P}_F^n = (F^{n+1} \setminus \{0\}) / \sim$. (Equivalently, \mathbb{P}_F^n is the set of 1-dimensional subspaces of the vector space F^{n+1} .) The action of $\mathrm{GL}_{n+1}(F)$ on F^{n+1} by left multiplication, $(A, \mathbf{x}) \to A\mathbf{x}$, induces a faithful action of $\mathrm{PGL}_{n+1}(F)$ on \mathbb{P}_F^n .

(a) Show that if n=1 then we have a bijection $\mathbb{P}^1_F \to F \cup \{\infty\}$ given by

$$(a_0, a_1) \mapsto \frac{a_1}{a_0}.$$

Show that under this bijection the action of $\operatorname{PGL}_2(F)$ on \mathbb{P}^1_F corresponds to its action on $F \cup \{\infty\}$ by Möbius transformations: for

$$A = \begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{bmatrix} \in \mathrm{PGL}_2(F)$$

and $z \in F \cup \{\infty\}$,

$$A \cdot z = \frac{az+b}{cz+d}.$$

[Note: Usually the term Möbius transformation is used only in the case $F = \mathbb{C}$; we are using it more generally here.]

(b) Show more generally that there is a bijection

$$\mathbb{P}_F^n \to F^n \cup \mathbb{P}_F^{n-1}$$

given by

$$[(a_0, \dots, a_n)] \mapsto \begin{cases} (\frac{a_1}{a_0}, \dots, \frac{a_n}{a_0}) \in F^n & \text{if } a_0 \neq 0. \\ [(a_1, \dots, a_n)] \in \mathbb{P}_F^{n-1} & \text{if } a_0 = 0. \end{cases}$$

(c) (For those who have studied point set topology.) Suppose that $F = \mathbb{R}$ or $F = \mathbb{C}$, give F^{n+1} the usual (Euclidean) topology, and give \mathbb{P}_F^n the quotient topology. Prove that \mathbb{P}_F^n is compact. (This is one of the main reasons projective space is important.)

Review of definitions and notation for matrix groups

Let F be a field and $n \in \mathbb{N}$. The general linear group $\operatorname{GL}_n(F)$ denotes the group of invertible $n \times n$ matrices with entries in the field F, and group law given by matrix multiplication. The special linear group $\operatorname{SL}_n(F) \triangleleft \operatorname{GL}_n(F)$ is the normal subgroup consisting of matrices with determinant 1. The center $Z := Z(\operatorname{GL}_n(F))$ of $\operatorname{GL}_n(F)$ is the normal subgroup consisting of scalar matrices λI where $0 \neq \lambda \in F$ and Idenotes the identity matrix (compare HW1Q6a). The projective general linear group $\operatorname{PGL}_n(F)$ is the quotient group $\operatorname{GL}_n(F)/Z$. The projective special linear group $\operatorname{PSL}_n(F)$ is the quotient group $\operatorname{SL}_n(F)/Z \cap \operatorname{SL}_n(F)$. In particular $\operatorname{PSL}_n(F)$ is a normal subgroup of $\operatorname{PGL}_n(F)$.

Hints:

- (1) Identify the left and right cosets of H in G.
- (3) (b) By Q1, a subgroup of A_4 of order 6 is normal. Equivalently, it is a union of conjugacy classes of G.
- (7) (a) $\operatorname{PGL}_2(\mathbb{Z}/3\mathbb{Z})$ acts faithfully on $\mathbb{P}^1_{\mathbb{Z}/3\mathbb{Z}} = \mathbb{Z}/3\mathbb{Z} \cup \{\infty\}$ (why?). (More generally, $\operatorname{PGL}_{n+1}(F)$ acts faithfully on \mathbb{P}^n_F for any field F and $n \in \mathbb{N}$.) (b) Note first that by its definition $\operatorname{PSL}_n(F)$ is a subgroup of $\operatorname{PGL}_n(F)$. Compute $|\operatorname{PSL}_2(\mathbb{Z}/3\mathbb{Z})| = 12$ and prove that S_4 has a unique subgroup of index 2.
- (8) Consider the class equation of such a group.
- (9) (a) Try to construct a counterexample. (b) Recall that we say a subgroup H of a group G is normal (and write $H \triangleleft G$) if $gHg^{-1} = H$ for all $g \in G$. In fact, to show that H is normal it suffices to check that $gHg^{-1} \subset H$ for all $g \in G$ (why?).
- (11) (c) Show that \mathbb{P}_F^n is the image of a sphere (of some dimension depending on n and F) under a continuous map.