Recall: Let u be a unit in Z_n . The smallest positive integer k satisfying $u^k \equiv 1 \pmod{n}$ is called the <u>order</u> of u modulo n, denoted by ord $n \in \mathbb{R}$ (u).

Let p be a prime and g be a unit in \mathbb{Z}_p . The followings are equivalent:

1. g generates all the units of
$$\mathbb{Z}_p$$
, i.e.
$$\{1,2,3,...,p^{-1}\} \equiv \{g,g^2,g^3,...,g^{p-1}\} \pmod{p}$$
 primitive
$$2. \text{ ord}_p(g) = p-1$$

We proved for a primitive root g modulo p that $k\geqslant 0 \text{ and } q^k\equiv 1 \pmod{p} \iff p-1\mid k$

Take a unit modulo p, it can be written g^{a} in \mathbb{Z}_{p} for some $1 \le a \le p-1$. What is ord $p (g^{a})$? $(g^{a})^{k} \equiv 1 \pmod{p} \iff g^{ak} \equiv 1 \pmod{p}$ $\iff p-1 \mid ak \implies ak \equiv 0 \pmod{p-1}$ $\iff \frac{ak}{a} \equiv \frac{Q}{a} \pmod{\frac{p-1}{(p-1,a)}}$ $\iff \frac{p-1}{(p-1,a)} \mid k \implies k \equiv 0 \pmod{\frac{p-1}{(p-1,a)}}$

Theorem: ord
$$p(g^a) = \frac{p-1}{(p-1,a)}$$
.

Example: • In
$$\mathbb{Z}_3$$
: $\{2, 2^2\}$ (mod 3)

orders: 2 1

• In
$$\mathbb{Z}_5$$
: {2,2²,2³,2⁴} (mod 5)

orders: 4 2 4 1

• In
$$\mathbb{Z}_7$$
: {3,3²,3³,3⁴,3⁵,3⁶} (mod 7)

orders: 6 3 2 3 6 1

Remark: Order of a unit modulo p always divides p-1.

Theorem: Let d be a positive divisor of p-1, then there are exactly $\phi(d)$ units modulo p of order d.

$$\frac{\text{Proof:}}{\text{ord}_{P}(g^{\alpha})} = d \iff \frac{P-1}{(p-1,\alpha)} = d$$

$$1 \le \alpha \le p-1 \iff (p-1,\alpha) = \frac{P-1}{d}.$$

We should have $a = n \cdot \frac{P-1}{d}$ for that $(p-1, n \cdot \frac{P-1}{d}) = \frac{P-1}{d} \iff (d, n) = 1$

There are $\phi(d)$ values of n such that (d, n) = 1 and $1 \le n \le d$.

Corollary: There are $\phi(p-1)$ primitive roots modulo p.

Corollary: $\sum_{d|p-1} \phi(d) = p-1$. (Both sides give the number of units mod p).

We have the following more general results regarding the order of units in \mathbb{Z}_n .

Theorem: We have

k%0 and $u^k \equiv 1 \pmod{n} \iff \text{ord}_n(u) \mid k$.

In particular, ord, $(u) \mid \phi(n)$.

Proof: Write k= ordn(u)·m +r, 0<r<ordn(u)

Then, $u^k \equiv 1 \pmod{n} \iff (u^{ord_n(u)})^m \cdot u^r \equiv 1 \pmod{n}$

Theorem:
$$\operatorname{ord}_{n}(u^{\alpha}) = \frac{\operatorname{ord}_{n}(u)}{\left(\operatorname{ord}_{n}(u), \alpha\right)}$$

Proof: Exercise.

Now, we'll prove the existence of a primitive root modulo p.

Strategy: to prove a stronger result: "There are $\phi(d)$ units of order d modulo p when $d \mid p-1$ ". (and O units when $d \nmid p-1$)

We'll prove by induction on d.

If d=1: ord $_p(u)=1 \iff u=1 \pmod{p}$.

Assume our claim is true up to d, where d|p-1.

ord_p(u) = d
$$\Rightarrow$$
 u^d = 1 (mod p)
 \Rightarrow u^d - 1 = 0 (mod p)

How many u satisfies this congruence? Answer is d by QI of PS4. If $u^d \equiv I \pmod{p}$, then $ord_p(u) \mid d$. We should subtract the units of order d' such that

d' | d but $d' \neq d$. (and d' > 0)

 \Rightarrow There are $d - \sum_{d' \mid d} \phi(d')$ units of $0 < d' \neq d$

order d by induction hypothesis.