LAPORAN TUGAS BESAR I IF4021 PEMODELAN DAN SIMULASI

Oleh:

Doddy Aditya Wiranugraha 13517008

PROGRAM STUDI TEKNIK INFORMATIKA SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG

2021

I. Deskripsi Persoalan dan Solusi

1. Event Kedatangan Orang

2. Event Keberangkatan Bis

3. Event Kedatangan Bis

4. Event Penumpang Menaiki Bis

5. Event Penumpang Turun dari Bis

II. Source Code

a. car_rental.in

```
3 2 80
14 10 24
30
0.583 1.00
16 24
15 25
0 1 0
0 0 4.5
4.5 0 0
5
```

b. car_rental.c

```
#include "simlib.h"

#define EVENT_PERSON_ARRIVAL 1
#define EVENT_BUS_ARRIVAL 2
#define EVENT_BUS_DEPARTURE 3
#define EVENT_UNLOADING 4
#define EVENT_LOADING 5
#define EVENT_END_SIMULATION 6

#define STREAM_INTERARRIVAL_1 1
```

```
#define STREAM_INTERARRIVAL_2 2
#define STREAM INTERARRIVAL 3 3
#define STREAM_UNLOADING 4
#define STREAM_LOADING 5
#define STREAM_DESTINATION 6
#define LIST_TERMINAL_1 1
#define LIST_CAR_RENTAL 3
#define LIST_TO_TERMINAL_1 4
#define LIST_TO_CAR_RENTAL 6
#define VARIABLE_TERMINAL_1 1
#define VARIABLE TERMINAL 2 2
#define VARIABLE_CAR_RENTAL 3
#define VARIABLE_DELAY_TERMINAL_1 4
#define VARIABLE_DELAY_TERMINAL_2 5
#define VARIABLE_DELAY_CAR_RENTAL 6
#define VARIABLE_BUS 7
#define VARIABLE_PERSON 8
#define VARIABLE_BUS_STOP_TERMINAL_1 9
#define VARIABLE_BUS_STOP_TERMINAL_2 10
#define VARIABLE_BUS_STOP_CAR_RENTAL 11
#define VARIABLE BUS LOOP 12
#define TERMINAL_1 1
#define TERMINAL_2 2
#define CAR_RENTAL 3
#define MAX_NUM_LOCATION 3
#define MAX_RANGE 2
#define MAX_BUS_CAPACITY 20
int num_location, num_terminal, bus_capacity, bus_start_location, bus_stop_location;
double person_first_arrival, bus_last_arrival, bus_last_departure, bus_speed, bus_last_arrival,
bus_min_time_process, length_simulation, prob_distrib_terminal[26], interarrival_time[MAX_NUM_
LOCATION + 1],
       load_uniform_distrib_terminal[MAX_RANGE + 1], unload_uniform_distrib_terminal[MAX_RANGE
       route_distance[MAX_NUM_LOCATION + 1][MAX_NUM_LOCATION + 1];
FILE *infile, *outfile;
int recent_bus_capacity()
 return (list_size[LIST_TO_TERMINAL_1] + list_size[LIST_TO_TERMINAL_2] + list_size[LIST_TO_CAR
_RENTAL]);
```

```
void person_arrive(void)
 if (transfer[3] == TERMINAL_1)
   list_file(LAST, LIST_TERMINAL_1);
   timest(list_size[LIST_TERMINAL_1], VARIABLE_TERMINAL_1);
   transfer[3] = TERMINAL_1;
    event_schedule(sim_time + expon(1 / interarrival_time[TERMINAL_1], STREAM_INTERARRIVAL_1),
EVENT_PERSON_ARRIVAL);
 else if (transfer[3] == TERMINAL_2)
   list_file(LAST, LIST_TERMINAL_2);
   timest(list_size[LIST_TERMINAL_2], VARIABLE_TERMINAL_2);
   transfer[3] = TERMINAL_2;
    event_schedule(sim_time + expon(1 / interarrival_time[TERMINAL_2], STREAM_INTERARRIVAL_2),
EVENT_PERSON_ARRIVAL);
    if (random_integer(prob_distrib_terminal, STREAM_DESTINATION) == 1)
      transfer[3] = TERMINAL_1;
      transfer[3] = TERMINAL_2;
   list_file(LAST, LIST_CAR_RENTAL);
   timest(list_size[LIST_CAR_RENTAL], VARIABLE_CAR_RENTAL);
   transfer[3] = CAR_RENTAL;
    event_schedule(sim_time + expon(1 / interarrival_time[CAR_RENTAL], STREAM_INTERARRIVAL_3),
EVENT_PERSON_ARRIVAL);
void bus_arrive(void)
 bus_last_arrival = transfer[1];
 if (transfer[3] == TERMINAL_1)
   transfer[3] = TERMINAL_1;
   if (list_size[LIST_TO_TERMINAL_1] > 0)
      event_schedule(sim_time + uniform(unload_uniform_distrib_terminal[1], unload_uniform_dist
rib_terminal[2], STREAM_UNLOADING), EVENT_UNLOADING);
    else if (list_size[LIST_TERMINAL_1] > 0 && recent_bus_capacity() < MAX_BUS_CAPACITY)
```

```
event_schedule(sim_time + uniform(load_uniform_distrib_terminal[1], load_uniform_distrib_
terminal[2], STREAM_LOADING), EVENT_LOADING);
      event_schedule(bus_last_arrival + bus_min_time_process / 60, EVENT_BUS_DEPARTURE);
  else if (transfer[3] == TERMINAL_2)
    transfer[3] = TERMINAL_2;
   if (list_size[LIST_TO_TERMINAL_2] > 0)
      event_schedule(sim_time + uniform(unload_uniform_distrib_terminal[1], unload_uniform_dist
rib_terminal[2], STREAM_UNLOADING), EVENT_UNLOADING);
    else if (list_size[LIST_TERMINAL_2] > 0 && recent_bus_capacity() < MAX_BUS_CAPACITY)</pre>
      event_schedule(sim_time + uniform(load_uniform_distrib_terminal[1], load_uniform_distrib_
terminal[2], STREAM_LOADING), EVENT_LOADING);
      event_schedule(bus_last_arrival + bus_min_time_process / 60, EVENT_BUS_DEPARTURE);
    transfer[3] = CAR_RENTAL;
    if (list_size[LIST_TO_CAR_RENTAL] > 0)
      event_schedule(sim_time + uniform(unload_uniform_distrib_terminal[1], unload_uniform_dist
rib_terminal[2], STREAM_UNLOADING), EVENT_UNLOADING);
   else if (list_size[LIST_CAR_RENTAL] > 0 && recent_bus_capacity() < MAX_BUS_CAPACITY)</pre>
      event_schedule(sim_time + uniform(load_uniform_distrib_terminal[1], load_uniform_distrib_
terminal[2], STREAM_LOADING), EVENT_LOADING);
      event_schedule(bus_last_arrival + bus_min_time_process / 60, EVENT_BUS_DEPARTURE);
 void bus_depart(void)
```

```
if (transfer[3] == TERMINAL_1)
    sampst(sim_time - bus_last_arrival, VARIABLE_BUS_STOP_TERMINAL_1);
    transfer[3] = TERMINAL_2;
    event_schedule(sim_time + route_distance[TERMINAL_1][TERMINAL_2] / bus_speed, EVENT_BUS_ARR
IVAL);
  else if (transfer[3] == TERMINAL_2)
    sampst(sim_time - bus_last_arrival, VARIABLE_BUS_STOP_TERMINAL_2);
   transfer[3] = CAR_RENTAL;
    event_schedule(sim_time + route_distance[TERMINAL_2][CAR_RENTAL] / bus_speed, EVENT_BUS_ARR
IVAL);
    sampst(sim_time - bus_last_departure, VARIABLE_BUS_LOOP);
   bus_last_departure = sim_time;
    sampst(sim_time - bus_last_arrival, VARIABLE_BUS_STOP_CAR_RENTAL);
   transfer[3] = TERMINAL_1;
    event_schedule(sim_time + route_distance[CAR_RENTAL][TERMINAL_1] / bus_speed, EVENT_BUS_ARR
IVAL);
void unload(void)
  if (transfer[3] == TERMINAL_1)
    list_remove(FIRST, LIST_TO_TERMINAL_1);
    sampst(sim_time - transfer[1], VARIABLE_PERSON);
    timest(recent_bus_capacity(), VARIABLE_BUS);
    transfer[3] = TERMINAL_1;
    if (list_size[LIST_TO_TERMINAL_1] > 0)
      event_schedule(sim_time + uniform(unload_uniform_distrib_terminal[1], unload_uniform_dist
rib_terminal[2], STREAM_UNLOADING), EVENT_UNLOADING);
    else if (list_size[LIST_TERMINAL_1] > 0 && recent_bus_capacity() < MAX_BUS_CAPACITY)</pre>
      event_schedule(sim_time + uniform(load_uniform_distrib_terminal[1], load_uniform_distrib_
terminal[2], STREAM_LOADING), EVENT_LOADING);
      if ((sim_time - bus_last_arrival) < (bus_min_time_process / 60))</pre>
```

```
event_schedule(bus_last_arrival + bus_min_time_process / 60, EVENT_BUS_DEPARTURE);
     else
       event_schedule(sim_time, EVENT_BUS_DEPARTURE);
 else if (transfer[3] == TERMINAL_2)
   list_remove(FIRST, LIST_TO_TERMINAL_2);
   sampst(sim_time - transfer[1], VARIABLE_PERSON);
   timest(recent_bus_capacity(), VARIABLE_BUS);
   transfer[3] = TERMINAL_2;
   if (list_size[LIST_TO_TERMINAL_2] > 0)
     event_schedule(sim_time + uniform(unload_uniform_distrib_terminal[1], unload_uniform_dist
rib_terminal[2], STREAM_UNLOADING), EVENT_UNLOADING);
   else if (list_size[LIST_TERMINAL_2] > 0 && recent_bus_capacity() < MAX_BUS_CAPACITY)</pre>
      event_schedule(sim_time + uniform(load_uniform_distrib_terminal[1], load_uniform_distrib_
terminal[2], STREAM_LOADING), EVENT_LOADING);
     if ((sim_time - bus_last_arrival) < (bus_min_time_process / 60))</pre>
       event_schedule(bus_last_arrival + bus_min_time_process / 60, EVENT_BUS_DEPARTURE);
       event_schedule(sim_time, EVENT_BUS_DEPARTURE);
   list_remove(FIRST, LIST_TO_CAR_RENTAL);
   sampst(sim_time - transfer[1], VARIABLE_PERSON);
   timest(recent_bus_capacity(), VARIABLE_BUS);
   transfer[3] = CAR_RENTAL;
   if (list_size[LIST_TO_CAR_RENTAL] > 0)
      event_schedule(sim_time + uniform(unload_uniform_distrib_terminal[1], unload_uniform_dist
rib_terminal[2], STREAM_UNLOADING), EVENT_UNLOADING);
   else if (list_size[LIST_CAR_RENTAL] > 0 && recent_bus_capacity() < MAX_BUS_CAPACITY)
```

```
event_schedule(sim_time + uniform(load_uniform_distrib_terminal[1], load_uniform_distrib_
terminal[2], STREAM_LOADING), EVENT_LOADING);
      if ((sim_time - bus_last_arrival) < (bus_min_time_process / 60))</pre>
        event_schedule(bus_last_arrival + bus_min_time_process / 60, EVENT_BUS_DEPARTURE);
        event_schedule(sim_time, EVENT_BUS_DEPARTURE);
void load(void)
  if (transfer[3] == TERMINAL_1)
    list_remove(FIRST, LIST_TERMINAL_1);
    person_first_arrival = transfer[1];
    timest(list_size[LIST_TERMINAL_1], VARIABLE_TERMINAL_1);
    sampst(sim_time - transfer[1], VARIABLE_DELAY_TERMINAL_1);
    transfer[1] = person_first_arrival;
    list_file(LAST, LIST_TO_CAR_RENTAL);
    timest(recent_bus_capacity(), VARIABLE_BUS);
    transfer[3] = TERMINAL_1;
    if (list_size[LIST_TERMINAL_1] > 0 && recent_bus_capacity() < MAX_BUS_CAPACITY)</pre>
      event_schedule(sim_time + uniform(load_uniform_distrib_terminal[1], load_uniform_distrib_
terminal[2], STREAM_LOADING), EVENT_LOADING);
     if ((sim_time - bus_last_arrival) < (bus_min_time_process / 60))</pre>
        event_schedule(bus_last_arrival + bus_min_time_process / 60, EVENT_BUS_DEPARTURE);
        event_schedule(sim_time, EVENT_BUS_DEPARTURE);
  else if (transfer[3] == TERMINAL_2)
```

```
list_remove(FIRST, LIST_TERMINAL_2);
   person_first_arrival = transfer[1];
    timest(list_size[LIST_TERMINAL_2], VARIABLE_TERMINAL_2);
    sampst(sim_time - transfer[1], VARIABLE_DELAY_TERMINAL_2);
    transfer[1] = person_first_arrival;
    list_file(LAST, LIST_TO_CAR_RENTAL);
    timest(recent_bus_capacity(), VARIABLE_BUS);
    transfer[3] = TERMINAL_2;
   if (list_size[LIST_TERMINAL_2] > 0 && recent_bus_capacity() < MAX_BUS_CAPACITY)</pre>
     event_schedule(sim_time + uniform(load_uniform_distrib_terminal[1], load_uniform_distrib_
terminal[2], STREAM_LOADING), EVENT_LOADING);
     if ((sim_time - bus_last_arrival) < (bus_min_time_process / 60))</pre>
       event_schedule(bus_last_arrival + bus_min_time_process / 60, EVENT_BUS_DEPARTURE);
       event_schedule(sim_time, EVENT_BUS_DEPARTURE);
    list_remove(FIRST, LIST_CAR_RENTAL);
    int destination = transfer[3];
   person_first_arrival = transfer[1];
   timest(list_size[LIST_CAR_RENTAL], VARIABLE_CAR_RENTAL);
    sampst(sim_time - transfer[1], VARIABLE_DELAY_CAR_RENTAL);
    transfer[1] = person_first_arrival;
    if (destination == 1)
     list_file(LAST, LIST_TO_TERMINAL_1);
     list_file(LAST, LIST_TO_TERMINAL_2);
   timest(recent_bus_capacity(), VARIABLE_BUS);
    transfer[3] = CAR_RENTAL;
    if (list_size[LIST_CAR_RENTAL] > 0 && recent_bus_capacity() < MAX_BUS_CAPACITY)</pre>
      event_schedule(sim_time + uniform(load_uniform_distrib_terminal[1], load_uniform_distrib_
:erminal[2], STREAM_LOADING), EVENT_LOADING);
```

```
if ((sim_time - bus_last_arrival) < (bus_min_time_process / 60))</pre>
       event_schedule(bus_last_arrival + bus_min_time_process / 60, EVENT_BUS_DEPARTURE);
       event_schedule(sim_time, EVENT_BUS_DEPARTURE);
void report(void)
 fprintf(outfile, "\n\n------STATISTIC REPORT IN HOUR-----
 ----\n\n");
 fprintf(outfile, "a. Average and maximum number in each queue\n");
 fprintf(outfile, "Location");
 fprintf(outfile, "Average number
 fprintf(outfile, "Maximum number\n");
 for (int i = VARIABLE_TERMINAL_1; i <= VARIABLE_CAR_RENTAL; i++)</pre>
   timest(0.0, -i);
   if (i < MAX_NUM_LOCATION)</pre>
     fprintf(outfile, "Terminal %d%17.3f%23.3f\n", i, transfer[1], transfer[2]);
     fprintf(outfile, "Car rental %16.3f%23.3f\n", transfer[1], transfer[2]);
 fprintf(outfile, "\nb. Average and maximum delay in each queue\n");
 fprintf(outfile, "Location
 fprintf(outfile, "Average delay
 fprintf(outfile, "Maximum delay\n");
 for (int i = VARIABLE_DELAY_TERMINAL_1; i <= VARIABLE_DELAY_CAR_RENTAL; i++)</pre>
   sampst(0.0, -i);
   if (i < VARIABLE_DELAY_CAR_RENTAL)</pre>
     fprintf(outfile, "Terminal %d%17.3f%23.3f\n", j, transfer[1], transfer[3]);
```

```
fprintf(outfile, "Car rental %16.3f%23.3f\n", transfer[1], transfer[3]);
    j++;
  fprintf(outfile, "\nc. Average and maximum number on the bus\n");
  fprintf(outfile, "Average number ");
  fprintf(outfile, "Maximum number\n");
  timest(0.0, -VARIABLE_BUS);
  fprintf(outfile, "%.3f%22.3f\n", transfer[1], transfer[2]);
  fprintf(outfile, "\nd. Average, maximum, and minimum time the bus stopped in each location\n"
);
  fprintf(outfile, "Location
  fprintf(outfile, "Average time
  fprintf(outfile, "Maximum time
  fprintf(outfile, "Minimum time\n");
  for (int i = VARIABLE_BUS_STOP_TERMINAL_1; i <= VARIABLE_BUS_STOP_CAR_RENTAL; i++)</pre>
    sampst(0.0, -i);
   if (i < VARIABLE_BUS_STOP_CAR_RENTAL)</pre>
      fprintf(outfile, "Terminal %d%17.3f%23.3f%21.3f\n", j, transfer[1], transfer[3], transfer
[4]);
      fprintf(outfile, "Car rental %16.3f%23.3f%21.3f\n", transfer[1], transfer[3], transfer[4]
    j++;
  fprintf(outfile, "\ne. Average, maximum, and minimum the bus to make a loop\n");
  fprintf(outfile, "Average time
  fprintf(outfile, "Maximum time
  fprintf(outfile, "Minimum time\n");
  sampst(0.0, -VARIABLE_BUS_LOOP);
  fprintf(outfile, "%.3f%22.3f%23.3f\n", transfer[1], transfer[3], transfer[4]);
  fprintf(outfile, "\nf. Average, maximum, and minimum time person is in the system\n");
  fprintf(outfile, "Average time
  fprintf(outfile, "Maximum time
  fprintf(outfile, "Minimum time\n");
  sampst(0.0, -VARIABLE_PERSON);
  fprintf(outfile, "%.3f%22.3f%23.3f\n", transfer[1], transfer[3], transfer[4]);
void log_event()
```

```
switch (next_event_type)
 case EVENT_PERSON_ARRIVAL:
   printf("%.21f EVENT_ARRIVAL_PERSON %f\n", sim_time, transfer[3]);
   break;
 case EVENT_BUS_ARRIVAL:
   printf("%.21f EVENT_ARRIVAL_BUS %f\n", sim_time, transfer[3]);
 case EVENT_BUS_DEPARTURE:
   printf("%.21f EVENT_DEPARTURE_BUS %f\n", sim_time, transfer[3]);
   break;
 case EVENT UNLOADING:
   printf("%.21f EVENT_UNLOADING %f\n", sim_time, transfer[3]);
   break;
 case EVENT_LOADING:
   printf("%.21f EVENT_LOADING %f\n", sim_time, transfer[3]);
   break;
int main()
 infile = fopen("car_rental.in", "r");
 outfile = fopen("car_rental.out", "w");
 fscanf(infile, "%d %d %lg", &num_location, &num_terminal, &length_simulation);
 for (int i = 1; i <= num_location; i++)</pre>
   fscanf(infile, "%lg", &interarrival_time[i]);
 fscanf(infile, "%lg %d", &bus_speed, &bus_start_location);
 for (int i = 1; i <= num_terminal; i++)</pre>
   fscanf(infile, "%lg", &prob_distrib_terminal[i]);
 for (int i = 1; i <= MAX_RANGE; i++)</pre>
   fscanf(infile, "%lg", &unload_uniform_distrib_terminal[i]);
 for (int i = 1; i <= MAX_RANGE; i++)</pre>
   fscanf(infile, "%lg", &load_uniform_distrib_terminal[i]);
 for (int i = 1; i <= MAX_NUM_LOCATION; i++)</pre>
    for (int j = 1; j <= MAX_NUM_LOCATION; j++)</pre>
      fscanf(infile, "%lg", &route_distance[i][j]);
```

```
fscanf(infile, "%lg", &bus_min_time_process);
  fprintf(outfile, "Car Rental Model\n\n");
  fprintf(outfile, "Number of location%31d\n\n", num_location);
  fprintf(outfile, "Number of terminal%31d\n\n", num_terminal);
  fprintf(outfile, "Route distance from 1 to 2%25.1f mile\n\n", route_distance[1][2]);
  fprintf(outfile, "Route distance from 2 to 3%25.1f miles\n\n", route_distance[2][3]);
  fprintf(outfile, "Route distance from 3 to 1%25.1f miles\n\n", route_distance[3][1]);
  fprintf(outfile, "Bus speed%43.1f miles per hour\n\n", bus_speed);
  fprintf(outfile, "Minimum time spent by bus%26.1f minutes\n\n", bus_min_time_process);
  fprintf(outfile, "Distribution function of unloading
  for (int i = 1; i <= num_terminal; i++)</pre>
    i == 2 ? fprintf(outfile, "%7.1f", prob_distrib_terminal[i]) : fprintf(outfile, "%9.3f", pr
ob_distrib_terminal[i]);
 fprintf(outfile, "\n");
  fprintf(outfile, "in each terminal\n\n");
  fprintf(outfile, "Interarrival rate per hour on each location");
  for (int i = 1; i <= num_location; i++)</pre>
    i == 1 ? fprintf(outfile, "%9.1f", interarrival_time[i]) : fprintf(outfile, "%9.1f", intera
rrival_time[i]);
 fprintf(outfile, "\n\n");
 fprintf(outfile, "Uniform distribution of unloading time range");
 for (int i = 1; i <= MAX_RANGE; i++)</pre>
   i == 1 ? fprintf(outfile, "%8.1f - ", unload_uniform_distrib_terminal[i]) : fprintf(outfile
 "%.1f seconds each person", unload_uniform_distrib_terminal[i]);
  fprintf(outfile, "\n\n");
  fprintf(outfile, "Uniform distribution of loading time range ");
 for (int i = 1; i <= MAX_RANGE; i++)</pre>
    i == 1 ? fprintf(outfile, "%8.1f - ", load uniform distrib terminal[i]) : fprintf(outfile,
"%.1f seconds each person", load_uniform_distrib_terminal[i]);
 fprintf(outfile, "\n\n");
 fprintf(outfile, "Length of simulation%32.1f hours", length_simulation);
 init_simlib();
  for (int i = 1; i <= MAX_RANGE; i++)</pre>
   unload_uniform_distrib_terminal[i] = unload_uniform_distrib_terminal[i] / 3600;
```

```
load_uniform_distrib_terminal[i] = load_uniform_distrib_terminal[i] / 3600;
for (int i = 1; i <= num_location; i++)</pre>
  transfer[3] = i;
  event_schedule(expon(1 / interarrival_time[i], i), EVENT_PERSON_ARRIVAL);
transfer[3] = TERMINAL_1;
event_schedule(route_distance[CAR_RENTAL][TERMINAL_1] / bus_speed, EVENT_BUS_ARRIVAL);
event_schedule(length_simulation, EVENT_END_SIMULATION);
  timing();
  switch (next_event_type)
  case EVENT_PERSON_ARRIVAL:
   person_arrive();
  case EVENT_BUS_ARRIVAL:
    bus_arrive();
  case EVENT_BUS_DEPARTURE:
    bus_depart();
    break;
  case EVENT_UNLOADING:
    unload();
    break;
  case EVENT_LOADING:
   load();
   break;
  case EVENT_END_SIMULATION:
    report();
    break;
} while (next_event_type != EVENT_END_SIMULATION);
fclose(infile);
fclose(outfile);
```

III. Output Program

Terminal 2

Car rental

0.091

0.190

output i logium				
Car Rental Model				
Number of location			3	
Number of terminal			2	
Route distance from 1 to 2			1.0 mile	
Route distance from 2 to 3			4.5 miles	
Route distance from 3 to 1			4.5 miles	
Bus speed			30.0 miles per hour	
bus speed			30.0 filles per flour	
Minimum time spent by bus			5.0 minutes	
			0.500	
Distribution function of unloading in each terminal			0.583 1.0	
in cach term	IIIai			
Interarrival rate per hour on each location			14.0 10.0 24.0	
Uniform distribution of unleading time			16.0. 34.0 seconds seek novem	
Uniform distribution of unloading time range 16.0 - 24.0 seconds each person				
Uniform distribution of loading time range			15.0 - 25.0 seconds each person	
Length of simulation			80.0 hours	
STATISTIC REPORT IN HOUR				
a. Average and maximum number in each queue				
Location Average number Maximum number				
Terminal 1	7.588	27.0		
Terminal 2	4.927	17.0		
Car rental	9.387	30.0	00	
b. Average and maximum delay in each queue				
_	Location Average delay Maximum (
Terminal 1	0.539	1.633		
Terminal 2	0.501		2.214	
Car rental	0.405	1.123		
c. Average and maximum number on the bus				
Average number Maximum number				
13.855	20.000			
d. Average, maximum, and minimum time the bus stopped in each location				
Location Average time Maximum time Minimum time Minimum time				
Terminal 1	0.112	0.170	0.083	

0.155

0.229

0.083

0.098

e. Average, maximum, and minimum the bus to make a loop

Average time Maximum time Minimum time 0.726 0.793 0.600

f. Average, maximum, and minimum time person is in the system

Average time Maximum time Minimum time 0.761 2.476 0.183