偏振光学实验报告

徐浩博 软件02 2020010108

摘要

本实验主要通过旨在通过探究涉及偏振光的若干现象与性质,使我们对偏振光学的相关概念、定律有更深一步的认识和理解. 具体而言,通过观测布儒斯特角,相继确定了起偏器水平方位角、玻璃板折射率与检偏器竖直方位角; 通过改变起偏器与检偏器夹角,验证马吕斯定律; 继而确定波片 C_0 的快轴方向,并通过探究组合波片性质判断波片 C_x 的快轴方向; 最后分析线偏振光通过已知1/4玻片形成的椭圆偏振光性质.

偏振 偏振片 菲涅耳公式 布儒斯特角 马吕斯定律 波片 相延 椭圆偏振光

1 实验仪器

本实验用到的主要仪器有:

- 1) 半导体激光器、硅光电池、电阻箱、数字电压表
- 2) 分光仪、起偏器椭偏盘及与之内圈联动的扣盘、检偏器椭偏盘
- 3) 玻璃板、带有透光孔的纸片或金属片
- 4) 1/4定波片 C_0 、1/4定待测波片 C_x

2 实验原理及实验数据

A. 准备工作

1) 开启激光电源

将激光打在纸上观察,可看到出射激光呈椭圆形,这是由于发射的激光并不为严格的线偏振光,而是部分偏振光,椭圆长轴方向为光源本应产生的线偏方向.为了使得实验过程中光强不会过低影响现象观察,应根据光源偏振方向,尝试改变起偏器的方向,使得在一定范围内光源的亮度不会过低.

2) 调整检偏器

调整检偏器旋转角度使得电压表示数为极大值,此时检偏器完全透光. 微调检偏器光管的方位,使得电压表示数也达到最大值,以确保激光束通过起偏器、检偏器,能够近似正入射到硅光电池上产生电压示数. 这也意味着各光学元件等高地位于光轴上.

3) 调节小平台

在小平台上放置玻璃板至近似与光轴垂直,用带有透光孔的纸片或金属片遮住检偏管,使得激光光束从小孔中透射,此时可以看到纸片/金属片上还有激光在玻璃片平面上反射形成的光点. 此时旋转小平台,并调节小平台下方三个俯仰螺丝,使得反射光点近似与透光小孔重合. 记录此时平台方位角 $\alpha_{i=0}=123^{\circ}53^{\circ}$

事实上,对于1)-3)描述的步骤,我们可以采用分光计常规调整方法替代:即利用玻璃板,采用渐进法调整光管垂直于分光计主轴;再调节检偏管,使得检偏管垂直于分光计主轴.但考虑到此实验具有较大误差(将会在以后详细说明),故无需采用较为复杂的常规调整方法,以步骤1)-3)代替即可.

B. 观测布儒斯特角和检偏器的特性

4) 观测布儒斯特角

下图展示了光在介质表面反射和折射后电矢量的示意图,其中光线1为入射光,光线1'为反射光,光线2为折射光; s为垂直于纸面向外方向,p为平行于纸面方向.

由菲涅尔公式,各个光线的电矢量间满足如下关系:

$$\begin{cases}
\widetilde{E}'_{1p} = \frac{n_2 \cos i_1 - n_1 \cos i_2}{n_2 \cos i_1 + n_1 \cos i_2} \widetilde{E}_{1p} = \frac{\tan(i_1 - i_2)}{\tan(i_1 + i_2)} \widetilde{E}_{1p} \\
\widetilde{E}_{2p} = \frac{2n_1 \cos i_1}{n_2 \cos i_1 + n_1 \cos i_2} \widetilde{E}_{1p} \\
\widetilde{E}'_{1s} = \frac{n_1 \cos i_1 - n_2 \cos i_2}{n_1 \cos i_1 + n_2 \cos i_2} \widetilde{E}_{1s} = \frac{\sin(i_1 - i_2)}{\sin(i_1 + i_2)} \widetilde{E}_{1s} \\
\widetilde{E}_{2s} = \frac{2n_1 \cos i_1}{n_1 \cos i_1 + n_2 \cos i_2} \widetilde{E}_{1s}
\end{cases} \tag{1}$$

可以看出,如果光线1电矢量仅有平行于光路平面方向的分量,那么

$$\widetilde{E}'_{1p} = \frac{\tan(i_1 - i_2)}{\tan(i_1 + i_2)} \widetilde{E}_{1p}$$

$$\widetilde{E}'_{1s} = 0$$

则由此有 $\tilde{E}_1' = \tilde{E}_{1p}' = \frac{\tan(i_1 - i_2)}{\tan(i_1 + i_2)}\tilde{E}_{1p}$,而光强与电矢量振幅的平方成正比,设光强反射率为 R_p ,则有 $R_p = \frac{|\tilde{E}_1'|^2}{|\tilde{E}_1|^2}$,因此有

$$R = \left[\frac{\tan(i_1 - i_2)}{\tan(i_1 + i_2)} \right]^2 \tag{2}$$

可以看出,当 $i_1 + i_2 = \frac{\pi}{2}$ 时,R = 0,即反射光消失,此时入射角称为布儒斯特角 θ_B . 若从真空入射,结合折射定律 $\sin i_1 = n \sin i_2$,得到:

$$\theta_B = i_1 = \arctan n \tag{3}$$

若要观测布儒斯特角,则需要测算入射角. 玻璃折射率为 $n \approx 1.5$,估算出的入射角大约为56°,因此需要在3)的基础上旋转小平台大约56°. 之后,调整起偏器的方位角;每次调整起偏管,都让小平台围绕原位置中心左右大幅旋转,并在周围用纸遮挡,在纸上观察光点在某处是否会明显减弱(光强极小值). 若开始出现明显的光强极小值,则减小对于起偏器的调整幅度;若光强极小值又开始增大,则更加缓慢地反向调节起偏器,最终选取现象最为明显的点固定,记录此时起偏器偏振片方位角 P_{\leftrightarrow} ;同时找到此条件下的最小光强点,记录此时平台方位角转过的角度 α_B ,此时 $\alpha_B - \alpha_{i=0}$ 可视为布儒斯特角 θ_B ,而透过偏振片射出的激光的偏振方向也可以被视为平行于光轴.

之后,取下玻璃板并重新放置,重复3)和上述步骤;一共记录三次数据,以其平均值作为布儒斯特角的测量值,并由(3)式计算折射率 $n = \tan \theta_B$.

表 1: 测量布儒斯特角的原始数据表格

光束正入射玻璃表面时平台方位角 $\alpha_{i=0}=123^{\circ}53'$

测量次数	1	2	3	平均		
α_B	68°9'	68°10'	68°15'	68°11'		
P_{\leftrightarrow}	81.3°	81.6°	81.9°	81.6°		

计算得: 入射角为布儒斯特角时平台方位角平均值 $\alpha_B=68^\circ 11'$,布儒斯特角 $\theta_B=\alpha_B-\alpha_{i=0}=55^\circ 428$. 由此计算出玻璃折射率 $n=\tan\theta_B=1.47$.

我们假定玻璃折射率的约定真值为1.50,为了衡量相对误差的大小,设理论值为 μ ,实验值为x,则可定义相对误差:

$$E = \left| \frac{x - \mu}{\mu} \right| \times 100\% \tag{4}$$

则计算玻璃折射率时相对误差 $E = \left| \frac{1.47-1.50}{1.50} \right| \times 100\% = 2\%$,可见相对误差比较小,理论值与实验值吻合得较好.

5) 定偏振器透射轴方向

由4)步骤,观察到布儒斯特角现象时起偏器偏振片方位角 $P_{\leftrightarrow} = 81.6^{\circ}$,此时可以认为激光通过起偏器产生平行光.转动检偏器A,使得电压表示数为最小值(约为0,完全消光),此时检偏器的透射轴和起偏器的透射轴正交,检偏器透射轴垂直于光轴.记录此时检偏器方位角 $a_{\pm} = 187.5^{\circ}$.

这时还有一个问题,即完全消光后,光强探测器存在本底信号: 电压表示数为 $I_{bg} = -0.007mV$,因此下面利用电压表示数计算光强时,应该减去本底值.

6) 测量透射光强 I_m 和两个偏振器夹角 θ 间的关系

理想偏振片沿透射轴的光强透射率为 T_1 ,沿消光轴的光强透射率为 T_2 ,由马吕斯定律,设偏振方向与透射轴夹角为 θ 的线偏光总光强透射率为 T_{θ} ,则有

$$T_{\theta} = (T_1 - T_2)\cos^2\theta + T_2 \tag{5}$$

设原光强为I,透射后光强为 I_{θ} ,那么有 $I_{\theta} = T_{\theta}I = (T_1 - T_2)I\cos^2\theta + T_2I$. 若令 I_{θ} 的最大值为 $I_{max} = T_1I$,最小值为 $I_{min} = T_2$,则有

$$I_{\theta} = (I_{max} - I_{min})\cos^2\theta + I_{min} \tag{6}$$

由此可得:

$$\cos^2 \theta = \frac{I_\theta - I_{min}}{I_{max} - I_{min}} \tag{7}$$

下面我们将转动检偏器. 将检偏器透射轴由5)步骤中的垂直于桌面开始旋转,并保持起偏器透射轴仍与桌面平行,使得两个偏振器透射轴成一定夹角 θ ,并记录此时的电压表示数 I_m ,考虑到电压表示数与透射光强成正比,故可用电压表示数代替光强,研究透射光强和两个偏振器夹角 θ 间的关系. 数据记录见下表

表 2: 探究透射光强和两个偏振器夹角间的关系原始数据表格 电阻箱电阻 $R=100\Omega$ 起偏器方位角 $p_{\leftrightarrow}=81.6^{\circ}$ 检偏器初始方位角 $a_{\uparrow}=187.5^{\circ}$ 电压表本底信号 $I_{bg}=-0.007mV$

偏振器透射轴夹角θ/°	0.0	15.0	30.0	45.0	60.0
检偏器方位角 $a = (a_{\updownarrow} + 90^{\circ} + \theta)/^{\circ}$	277.5	292.5	307.5	322.5	337.5
电压表测量值 I_m^\prime/mV	4.192	4.009	3.310	2.255	1.210
消除本底干扰的光强测量值 $I_m = (I_m' - I_{bg})/mV$	4.199	4.016	3.317	2.262	1.217
偏振器透射轴夹角θ/°	75.0	80.0	84.0	87.0	90.0
检偏器方位角 $a = (a_{\updownarrow} + 90^{\circ} + \theta)/^{\circ}$	352.5	357.5	1.5	4.5	7.5
电压表测量值 I_m^\prime/mV	0.356	0.158	0.052	0.007	-0.006
消除本底干扰的光强测量值 $I_m = (I_m' - I_{bg})/mV$	0.363	0.165	0.059	0.014	0.001

利用 $\theta=0$ °时的光强测量值作为 I_{max} , $I_{max}=4.199mV$; $\theta=90$ °时的光强测量值作为 I_{min} , $I_{min}=0.001mV$;以此分别计算上述数据中 $\cos^2\theta$ 和 $\frac{I_m-I_{min}}{I_{max}-I_{min}}$ 的值,来验证(7)式.

表 3:
$$\cos^2\theta$$
和 $\frac{I_m-I_{min}}{I_{max}-I_{min}}$ 的关系数据表格

θ/°	0.0	15.0	30.0	45.0	60.0	75.0	80.0	84.0	87.0	90.0
$\cos^2 \theta$	1.000	0.933	0.750	0.500	0.250	0.067	0.030	0.011	0.003	0.000
$(I_m - I_{min})/(I_{max} - I_{min})$	1.000	0.956	0.790	0.539	0.290	0.086	0.039	0.014	0.003	0.000

绘制关系图如下:

可以看出,理论值和实验值吻合得较好.然而,二者间仍存在偏差,简要地来说我们可以将误差归结为(在思考与讨论中我们还会针对此问题进行讨论):

- 1) 3)光路调节不够精确,我们采用的是较为粗糙的调节方法,光学仪器并不一定平行等高.
- 4)对于布儒斯特角的判定不精准,导致起偏器透光轴不一定水平.
- 5)是否消光判断不够精确,因此检偏器透光轴是否竖直也不一定.
- 6)可以看到我们忽略了理想偏振片本身沿消光轴的光强透射率 T_2 ,这也会产生误差;同时偏振片也不一定是理想偏振片,肯定会有各方面的误差影响.
- · 实验测光强采用的是测量电压表示数,然而除了本底噪音外(我们已经尽量在计算中消除),还有反应背景光、光电池暗电流、其他噪声、寄生电势、电压表示数显示延迟等诸多因素影响.

综合以上误差,我们认为,在一定程度内,实验结果已经与预期吻合得比较好了.

C. 波片的特性研究

7) 定波片 C_0 的快轴方向

对于理想的偏振片,若一束偏振方向与偏振片透光轴夹角为 θ 的线偏振光正射入偏振片,则透出的光沿 透光轴的电矢量衰减为原来的 $c_1 = \sqrt{T_1}$,沿消光轴的电矢量衰减为原来的 $c_2 = \sqrt{T_2}$.用Jones Matrix表示,

分别以偏振片的透光轴和消光轴为正交基方向,原线偏光可表示为 $\tilde{E} = E\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$,经过偏振片后可表示为 $\tilde{E}' = E\begin{pmatrix} c_1 \cos \theta \\ c_2 \sin \theta \end{pmatrix}$,故光强变为原来的 $c_1 \cos^2 \theta + c_2 \sin^2 \theta$,这也是马吕斯定律 $T_\theta = (T_1 - T_2) \cos^2 \theta + T_2$ 的

对于理想的波片,设光经过快轴和慢轴后电矢量相位相差 ϕ ,那么如果分别以快轴和慢轴为正交基方 向,原线偏光可表示为 $\widetilde{E}=\begin{pmatrix}E_1\\E_2\end{pmatrix}$,经波片后线偏光变为 $\widetilde{E}'=E\begin{pmatrix}E_1\\E_2e^{i\phi}\end{pmatrix}$;对于1/4波片来说,就是 $\widetilde{E}'=E$

回到本题,如下图所示,P、A是已经正交消光的偏振器,一束光强为Lo的光线依次通过P、A. 将C插 入P、A之间.

设C的快轴和P的透光轴夹角为 $\theta(0 \le \theta \le 90^{\circ})$,则C的快轴和A的透光轴夹角必然是 $90^{\circ} - \theta$

在C快轴与慢轴构成的基下,设经过P的线偏光可表示为 $\widetilde{E} = E\begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}$,那么经过C后,这束光可表示 为 $\widetilde{E}_1 = E\begin{pmatrix} \cos\theta \\ i\sin\theta \end{pmatrix}$;这在A的透光轴和消光轴构成的基下转化为 $\widetilde{E}_1' = E\begin{pmatrix} \cos\theta\cos(90^\circ - \theta) - i\sin\theta\sin(90^\circ - \theta) \\ \cos\theta\sin(90^\circ - \theta) + i\sin\theta\cos(90^\circ - \theta) \end{pmatrix} = E\begin{pmatrix} \cos\theta\sin\theta - i\sin\theta\cos\theta \\ \cos^2\theta + i\sin^2\theta \end{pmatrix}$.那么经过A后,这束光就会变为 $\widetilde{E}_2 = E\begin{pmatrix} c_1(\cos\theta\sin\theta - i\sin\theta\cos\theta) \\ c_2(\cos^2\theta + i\sin^2\theta) \end{pmatrix}$,光强为 $I_m = \widetilde{E}_2^*\widetilde{E}_2 = E^2(2T_1\sin^2\theta\cos^2\theta + T_2^2(\sin^4\theta + \cos^4\theta))$,老库到一般停息上海来以上,不仅 $E^2(2T_1\sin^2\theta\cos^2\theta+T_2^2(\sin^4\theta+\cos^4\theta))$. 考虑到一般偏振片消光

即 $T_2 \ll T_1$, 因此

$$I_2 \approx 2T_1 E^2 \sin^2 \theta \cos^2 \theta$$

由此式可以看出,只有 $\theta = 0$ °或90°时才有 $I_2 \approx 0$,这说明了只有插入的C的快轴或慢轴与P的透光重合,才能使得光线再次被消光.

实验时,将 C_0 插入起偏管联动扣盘上. 结合以上原理,我们能够很快定出给定波片 C_0 的长轴方向. 题目要求使得 C_0 的快轴在竖直方向,则此时慢轴位于水平方向;而由于以上步骤已经记录了P透光轴保持水平时的方位角和A保持竖直的方位角,因此若P水平A竖直而 C_0 慢轴水平,则会完全消光. 考虑到此题 C_0 长轴方向已经大致给出,那么我们只需保持P方位角为 p_{\leftrightarrow} ,A方位角为 a_{\updownarrow} ,转动联动盘,大致让 C_0 长轴竖直,并以此为中心左右缓慢微调 C_0 的方位角直到完全消光,电压表示数为本底值-0.007mV,那么此时 C_0 的快轴就处于竖直方向了. 记录此时内盘的方位角 C_0

以下是调整 C_0 快轴至水平的原始数据:

电阻箱电阻 $R=100\Omega$ 起偏器方位角 $p_{\leftrightarrow}=81.6^{\circ}$ 检偏器方位角 $a_{\updownarrow}=187.5^{\circ}$ 波片 C_0 在竖直方向时,度盘示数为 $C_0=256.7^{\circ}$

8) 定待测波片 C_x 的轴方向

定待测波片 C_x 的轴方向的方法与6)步骤大致类似,与之不同的是, C_x 缺少大致给出的长轴方向,因此快轴/慢轴与P的透光轴重合时,都会存在消光现象,因此只能定出某个轴的方向,而并不知道该轴是快轴还是慢轴.

具体到实验中,延续6)的步骤,我们取下定波片 C_0 ,继续保持P透光轴水平而A透光轴数值,在载物台上垂直于光轴放置待测波片 C_x ,调节待测波片的方向角直至电压表示数接近本底信号,说明此时完全消光,这时待测波片 C_x 的一个轴已处于水平.

以下是测量调整 C_r 某个轴至水平的原始数据:

电阻箱电阻 $R=100\Omega$ 起偏器方位角 $p_{\leftrightarrow}=81.6^{\circ}$ 检偏器方位角 $a_{\updownarrow}=187.5^{\circ}$ 波片 C_r 某个轴在水平方向时,度盘示数为 $C_r=247^{\circ}$

9) 观察偏振光通过1/2波片或全波片的现象

在8)的基础上,我们想进一步区分 C_0 的快慢轴,于是我们采用这样一种方法: C_0 与 C_x 均为1/4波片,现将二者轴对轴叠加在一起. 以 C_0 的快轴和慢轴作为正交基的方向,令射入光为 $\widetilde{E} = \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$.

假设将二者快轴与快轴叠加 那么经过 C_0 后,光可表示为 $\widetilde{E}'=\begin{pmatrix}E_1\\E_2e^{i\frac{\pi}{2}}\end{pmatrix}$,再经过 c_x 0光可表示为 $\widetilde{E}''=\begin{pmatrix}E_1\\E_2e^{i\frac{\pi}{2}+i\frac{\pi}{2}}\end{pmatrix}=\begin{pmatrix}E_1\\E_2e^{i\frac{\pi}{2}}\end{pmatrix}$,这说明此时二者等效为一个1/2波片.

假设将二者快轴与慢轴叠加 那么经过 C_0 后,光可表示为 $\widetilde{E}'=\begin{pmatrix}E_1\\E_2e^{i\frac{\pi}{2}}\end{pmatrix}$;再经过 c_x 0光可表示为 $\widetilde{E}''=\begin{pmatrix}E_1\\E_2e^{i\frac{\pi}{2}-i\frac{\pi}{2}}\end{pmatrix}=\begin{pmatrix}E_1\\E_2\end{pmatrix}$,这说明此时二者并不对光的偏振方向产生影响,即二者等效为一个全波片.

在此基础上,我们只需将两个波片叠加等效为C,再辨别C是1/2波片还是全波片即可. 辨别这一点可以借鉴7)中的方法:

如下图放置仪器

C某个轴(无论是全波片还是1/2波片,快慢轴事实上对于两个电矢量分量的影响是等效的)与P的透光轴夹角为β,与A透光轴夹角为α. 设光经过快轴和慢轴后电矢量相位相差φ,在C快轴与慢轴构成的基下,设经过P的线偏光可表示为 $\widetilde{E} = E\begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix}$,那么经过C后,这束光可表示为 $\widetilde{E}_1 = E\begin{pmatrix} \cos \beta \\ e^{i\phi} \sin \beta \end{pmatrix}$;这在A的透光轴和消光轴构成的基下转化为 $\widetilde{E}_1' = E\begin{pmatrix} \cos \beta \cos \alpha - e^{i\phi} \sin \beta \sin \alpha \\ \cos \beta \sin \alpha + e^{i\phi} \sin \beta \cos \alpha \end{pmatrix}$.那么经过A后,这束光就会变为 $\widetilde{E}_2 = E\begin{pmatrix} c_1(\cos \beta \cos \alpha - e^{i\phi} \sin \beta \sin \alpha \\ c_2(\cos \beta \sin \alpha + e^{i\phi} \sin \beta \cos \alpha \end{pmatrix}$,光强为 $I_m = \widetilde{E}_2^*\widetilde{E}_2 = E^2(T_1(\cos^2\beta \cos^2\alpha + \sin^2\beta \sin^2\alpha - 2\sin\beta\cos\beta\sin\alpha\cos\alpha\cos\alpha\cos\beta) + T_2(\sin^2\beta\cos^2\alpha + \cos^2\beta\sin^2\alpha + 2\sin\beta\cos\beta\sin\alpha\cos\alpha\cos\alpha\cos\beta)$).考虑到一般偏振片消光比 $e = T_2/T_1 \ll 1$,即 $T_2 \ll T_1$,因此

$$I_2 \approx T_1 E^2 (\cos^2 \beta \cos^2 \alpha + \sin^2 \beta \sin^2 \alpha - 2 \sin \beta \cos \beta \sin \alpha \cos \alpha \cos \phi)$$

由此式可以看出

i)若C为全波片 $\phi = 0$, $I_m = T_1 E^2 (\cos^2 \beta \sin^2 \alpha + \sin^2 \beta \cos^2 \alpha - 2 \sin \beta \cos \beta \sin \alpha \cos \alpha)$,此时若 $\alpha = \beta$ 或90°- β ,则 $I_m = 0$ 完全消光. 我们取 $\alpha = 90$ °- β 的情况研究:若一开始起偏器和检偏器透光轴相互垂直,且起偏器透光轴与C某个轴重合,那么当起偏器(沿激光传播方向)旋转 β 度的情况下,只有检偏器(沿激光传播方向)旋转 $-\beta$ 才能使 $\alpha = 90$ °- β ,从而完全消光.

ii) 若C为1/2波片 $\phi = \pi$, $I_m = T_1 E^2 (\cos^2 \beta \sin^2 \alpha + \sin^2 \beta \cos^2 \alpha + 2 \sin \beta \cos \beta \sin \alpha \cos \alpha)$,此时若 $\alpha = -\beta$ 或90° + β ,则 $I_m = 0$ 完全消光. 我们取 $\alpha = 90$ ° + β 的情况研究: 若一开始起偏器和检偏器透光轴相互垂直,且起偏器透光轴与C某个轴重合,那么当起偏器(沿激光传播方向)旋转 β 度的情况下,只有检偏器(沿激光传播方向)旋转+ β 才能使 $\alpha = 90$ ° + β ,从而完全消光.

综合以上两点,我们可以进行如下实验分别全波片和1/2波片: 首先令起偏器P方位角处于 p_{\leftrightarrow} ,保持起偏器透射轴水平; 再令检偏器A方位角处于 a_{\downarrow} ,保持检偏器透射轴竖直; 然后将 C_0 , C_x 的方位角分别调至 c_0 , c_x 从而保证轴与轴重合组合成全波片或1/2波片. 然后我们将P分别旋转 $\beta=15.0,30.0,45.0$ 度,然后调整A的方位角,使得激光被完全消光,电压表示数接近本底信号; 分别记录三种情况下A的方位角,用上述方法判断组合出的波片C是全波片还是1/2波片. 记录的原始数据如下:

表 4: 消光时a随p变化的数据表格

 C_x 某轴在竖直方向时,度盘示数 $c_x = 247^\circ$

$$p_{\leftrightarrow} = 81.6^{\circ} \ a_{\uparrow} = 187.5^{\circ}$$

$\Delta p = p - p_{\leftrightarrow}/^{\circ}$	15.0	30.0	45.0
p/°	96.6	116.6	126.6
a/°	201.3	218.7	231.7
$\Delta a = a - a_{\uparrow}/^{\circ}$	13.8	31.2	44.2

由以上数据可以看出 $\Delta a \approx \Delta p$. 由图可知,p的方位角增大方向与激光方向相反,故 $\beta = \Delta p$; 而a的方位角增大的旋转方向与激光方向相同,但初始时两个偏振片有90°夹角,故 $\alpha = 90 + \Delta a$. 综合两者,可以得到 $\alpha = 90^\circ + \beta$,这符合上述"ii)C为1/2波片"条件,故此时 C_0, C_x 构成了一个半波片(快轴与快轴平行).

10) 观察偏振光通过1/2波片或全波片的另一种现象

9)中已验证,当 C_0 , C_x 方位角分别为 c_0 , c_x 时(C_0 的快轴与 C_x 的快轴平行),组成的波片为半波片;那么我们将 C_0 的方向角旋转90°,此时 C_0 的慢轴与 C_x 的快轴平行,由9)中的推导,此时组成全波片. 下面我们用实验来验证全波片的现象.

实验时,与9)类似,令起偏器P方位角处于 p_{\leftrightarrow} ,保持起偏器透射轴水平;再令检偏器A方位角处于 a_{\downarrow} ,保持检偏器透射轴竖直;然后将 C_0 , C_x 的方位角分别调至 c_0 ±, c_x 从而保证轴与轴重合组合成全波片. 然后我们将P分别旋转 $\beta=15.0,30.0,45.0$ 度,然后调整A的方位角,使得激光被完全消光,电压表示数接近本底信号;分别记录三种情况下A的方位角,

记录的原始数据如下:

表 5: 消光时a随p变化的数据表格

 C_x 某轴在竖直方向时,度盘示数 $c_x = 247^\circ$

$$p_{\leftrightarrow} = 81.6^{\circ} \ a_{\uparrow} = 187.5^{\circ}$$

$\Delta p = p - p_{\leftrightarrow}/^{\circ}$	15.0	30.0	45.0
$p/^{\circ}$	96.6	116.6	126.6
$a/^{\circ}$	170.1	156.9	141.2
$\Delta a = a - a_{\uparrow}/^{\circ}$	-17.4	-30.6	-46.3

由以上数据可以看出 $\Delta a \approx -\Delta p$. 由图可知,p的方位角增大方向与激光方向相反,故 $\beta = \Delta p$; 而a的方位角增大的旋转方向与激光方向相同,但初始时两个偏振片有90°夹角,故 $\alpha = \pm 90 + \Delta a$. 综合两者,可以得到 $\alpha = 90^\circ - \beta$,这符合9)中"i)C为全波片"条件. 这样的实验结果进一步验证了我们在9)中的判断,也进一步证明了理论的正确性.

11) 线偏振光经过1/4波片的现象

对于椭圆偏振光,如下图,将其表示为电矢量运动的形式. 设椭圆半长轴和半短轴分别为a,b,长轴方位角为 Ψ ,并设 E_u 与 \tilde{E}_x 相位差为 ϕ ,而 $\tan\beta=A_u/A_x$,则有以下关系式(推导见思考与讨论):

$$\begin{cases}
\Psi = \frac{1}{2}\arctan(\tan 2\beta \cdot \cos \delta) \\
\frac{b^2}{a^2} = \frac{2}{1 + \sqrt{1 - (\sin \delta \cdot \sin 2\beta)^2}} - 1
\end{cases}$$
(8)

由(8b)式可知

$$|\sin \delta| = \frac{2\sqrt{b^2/a^2}}{(1 + b^2/a^2)\sin(2\beta)} \tag{9}$$

而事实上,对于理想偏振片,设透光轴光强透过率为 T_1 ,消光轴 T_2 . 对于一束偏振光 $\widetilde{E} = \begin{pmatrix} a \\ \pm ib \end{pmatrix} (a \ge b)$,假设透光轴与原偏振光的长轴夹角为 $\alpha(0 \le \alpha < pi/2)$,则在偏振片构成的基下,光表示为 $\widetilde{E}' = \begin{pmatrix} a\cos\alpha \mp ib\sin\alpha \\ a\sin\alpha \pm ib\cos\alpha \end{pmatrix}$,

透过后变为
$$\widetilde{E}'' = \begin{pmatrix} \sqrt{T_1}(a\cos\alpha \mp ib\sin\alpha) \\ \sqrt{T_2}(a\sin\alpha \pm ib\cos\alpha) \end{pmatrix}$$
,光强为

$$I_m = \widetilde{E}_2^* \widetilde{E}_2 = (T_1 a^2 + T_2 b^2) \cos^2 \alpha + (T_1 b^2 + T_2 a^2) \sin^2 \alpha$$

求导得

$$I_m = (T_2 - T_1)(a^2 - b^2)\sin\alpha\cos\alpha \le 0$$

故 $\alpha=0$ 时有最大值 $I_{max}=T_1a^2+T_2b^2$; $\alpha=\pi/2$ 时有最大值 $I_{min}=T_1b^2+T_2a^2$; 故

$$\frac{I_{min}}{I_{max}} = \frac{T_1b^2 + T_2a^2}{T_1a^2 + T_2b^2} = \frac{b^2 + ea^2}{a^2 + eb^2}$$

考虑到 $e=T_2/T_1\ll 1$,则可利用泰勒公式展开至一阶为 $I_{min}/I_{max}=b^2/a^2(1+e(1-b^2/a^2))$. 若更加粗糙,忽略e的一次项,则有 $I_{min}/I_{max}=b^2/a^2$. 代入(9)式有:

$$|\sin \delta| = \frac{2\sqrt{I_{min}/I_{max}}}{(1 + I_{min}/I_{max})\sin(2\beta)}$$

$$\tag{10}$$

具体到实验过程中: 我们保持 C_0 慢轴水平,改变起偏器方位角,令起偏器与 p_{\leftrightarrow} 夹角分别为为 $\beta = p - p_{\leftrightarrow} = 22.5°$, 45.0°和67.5°(注意: 这里的 β 与(8)式含义不同,但考虑到这里是线偏振光入射波片,产生的椭圆偏振光一定有 $\tan \beta = A_y/A_x$,故可认为这里的夹角和(8)式中的 β 等效). 由此可以产生三种不同状态的椭圆偏振光. 旋转检偏器,检测所有角度下电压表示数的最大值和最小值,分别记为 I_{max} 和 I_{min} ,以此利用(8)式和(10)式计算波片产生的相延 δ_r ,并与理论值进行比较;同时我们还能通过此式计算出椭圆偏振光长轴方位角 ψ_2 ,并与实际测量的最大光强方位计算出的长轴方位角 ψ_1 作比较. 以下为实验测量的原始数据表格:

表 6: 线偏振光经过1/4波片现象的实验数据表格

 C_0 慢轴在水平方向方位角 $c_0 = 256.7^{\circ}$ 电阻 $R = 100\Omega$ 本底信号 $I_0 = -0.007mV$

测量次数	1	2	3
起偏器透光轴与波片慢轴夹角β/°	22.5	45.0	67.5
此时起偏器方位角p/°	104.1	126.6	149.1
检偏器探测到 I'_{max} 时的方位角 $a_i/^\circ$	81.3	39.3	16.3
最大光强 I_{max}^{\prime}/mV	3.223	3.016	3.695
最小光强 I_{min}^{\prime}/mV	0.707	2.056	0.474
$\Delta a = a_i - a_{\uparrow}/^{\circ}$	-106.2	-148.2	-171.2
长轴方位角 $(\psi_1 = (90 \pm 180k)^\circ - \Delta a)/^\circ$	16.2	58.2	81.2
考虑本底信号的最大光强 $(I_{max} = I_{max} - I_0)/mV$	3.230	3.023	3.702
考虑本底信号的最小光强 $(I_{min} = I_{min} - I_0)/mV$	0.714	2.063	0.481
半长轴与半短轴平方比 $b^2/a^2 = I_{min}/I_{max}$	0.219	0.682	0.128
利用 (10) 式计算 $\sin\delta$	1.085	0.982	0.897
利用 $\sin\delta$ 计算出的相延 δ	\	79.1	63.8
利用(8a)式计算 $\psi_2 = \frac{1}{2}\arctan(\tan 2\beta \cdot \cos \delta)$	_	45.0	78.1

注意: 这里利用利用(8a)式计算时,反正切函数的取值范围要进行判断.

- i) 若 $\tan \beta = A_y/A_x \le 1$ 即 $\beta \le \pi/4$ 时, $\psi \in [-\pi/4, \pi/4]$.
- ii) 若 $\tan \beta = A_y/A_x > 1$ 即 $\beta > \pi/4$ 时, $\psi \in (-\pi/2, -\pi/4) \cup (\pi/4, \pi/2)$.

分析表格中的数据:

- i) 计算θ的角度并与理论值90°, 我们发现有一组数据因为sin值大于1而无法计算角度,不过从计算出的两组数据来看,二者都存在波片相延误差;二者大体还是接近的,这可以部分验证实验的正确性.而误差产生的原因,我将在思考与讨论中详细分析.
- ii) 比较 ψ_1 与 ψ_2 ,我们发现,除了一组数据无法计算出 ψ_2 外,剩下的两组数据还是较为接近的. 考虑到函数 $\Phi = 1/2 \arctan(\tan 2\beta \cos \delta)$ 在定义域内的导数值非常大(可以以理解为正切函数的导数值,在接近90° 时区域正无穷), ϕ_1,ϕ_2 误差仅在10°左右,因此符合得还是不错的. 这验证了实验的正确性.

3 思考与讨论

1. 对9)&10)判断 C_0 快慢轴的另一种实验思路

如下图,令P与A透光轴正交,C某个轴(无论是全波片还是1/2波片,快慢轴事实上对于两个电矢量分量的影响是等效的)与P的透光轴夹角为 θ ,那么与A透光轴夹角就为90° $-\theta$. 设光经过快轴和慢轴后电矢量相位相差 ϕ ,在C快轴与慢轴构成的基下,设经过P的线偏光可表示为 $\widetilde{E}=E\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}$,那么经过C后,这束光可表示为 $\widetilde{E}_1=E\begin{pmatrix}\cos\theta\\e^{i\phi}\sin\theta\end{pmatrix}$;这在A的透光轴和消光轴构成的基下转化为 $\widetilde{E}_1'=E\begin{pmatrix}\cos\theta\sin\theta-e^{i\phi}\sin\theta\cos\theta\\\cos^2\theta+e^{i\phi}\sin^2\theta\end{pmatrix}$. 那么经过A后,这束光就会变为 $\widetilde{E}_2=E\begin{pmatrix}c_1(\cos\theta\sin\theta-e^{i\phi}\sin\theta\cos\theta)\\c_2(\cos^2\theta+e^{i\phi}\sin^2\theta)\end{pmatrix}$,光强为 $I_m=\widetilde{E}_2^*\widetilde{E}_2=E^2(2T_1\sin^2\theta\cos^2\theta(1-\phi)+T_2(\cos^4\theta+\sin^4\theta+2\sin^2\cos^2\cos\phi))$.考虑到一般偏振片消光比 $e=T_2/T_1\ll 1$,即 $T_2\ll T_1$,因此

$$I_2 \approx 2T_1 E^2 \sin^2 \theta \cos^2 \theta (1 - \cos \phi)$$

由此式可以看出,若要在任何 θ 下均有 $I_2 \approx 0$ 消光,只能取 $\phi = 0$ ($0 \le \phi < \pi/2$),这说明只有全波片能够使得此光路在两个偏振片为任意值时都消光,由此可以辨别C是1/2波片还是全波片.

具体到实验中,我们首先将起偏器P的方位角调整至 p_{\leftrightarrow} ,将检偏器A的方位角调整至 a_{\uparrow} ,使得二者透光轴正交消光,现在我们将 C_x 的某个轴与 C_0 快轴相对,使之叠加等效为一个波片,我们来验证此波片的性质.

由以上分析,若波片快轴与正交的两个透光轴成任意夹角时都消光的为全波片,反之半波片;由于同时调整两个波片有困难,不如让起偏器和检偏器同时、反向旋转一定角度β,既使二者仍然正交,又使波片与二者透光轴产生一定夹角.在此状态下观察电压表示数,检查是否消光.

此方法存在的问题是:

1)由于实验为半定量实验,故存在较大误差,判断是否消光存在一定难度.解决此问题的办法是,在成一定的夹角时,同时对比 C_x 某个轴与 C_0 快轴和慢轴两种情况下电压表示数,有光强均有明显减弱的为全波片

3 思考与讨论 16

情况.

2)出射的激光为部分偏振光,故在透光轴旋转过程中,某些范围内可能光强极弱,无法判断是否是因为透光轴无法穿过起偏器而消光.解决该问题的办法是,尽量减小起偏器透光轴与水平位置的夹角,在较小的范围内调整.实验前,在还未安装波片时,还可以提前旋转起偏器,在后方用纸或用电压表来检测光强是否充分大,以此提前计划好旋转的夹角.

2. 11)中(8)式的理论推导过程

将光波的电矢量 \widetilde{E} 分解到两个方向,获得分量 E_x, E_y ,它们是同频率的. 设后者相对于前者相位差为 δ ,那么可以写出下列式子:

$$\begin{cases}
E_x = A_x \cos \omega t \\
E_y = A_y \cos(\omega t + \delta)
\end{cases}$$
(11)

那么有

$$\begin{cases} \frac{E_x}{A_x} = \cos \omega t \\ \frac{E_y}{A_y} = \cos \omega t \cos \delta - \sin \omega t \sin \delta \end{cases}$$

将前式代入后式得:

$$\frac{E_y}{A_y} = \frac{E_x}{A_x} \cos \delta - \sqrt{1 - (\frac{E_x}{A_x})^2} \sin \delta$$

化简得:

$$\frac{E_x^2}{A_x^2} + \frac{E_y^2}{A_y^2} - \frac{2E_x E_y}{A_x A_y} \cos \delta = \sin^2 \delta$$
 (12)

我们关心的是x,y交叉项,此项关系到旋转的角度. 类比于标准方程 $ax^2+bxy+cy^2+dx+ey+f=0$,我们可以非常直接地比较出 $a=\frac{1}{A_x^2},b=\frac{2\cos\delta}{A_xA_y},c=\frac{1}{A_y^2},d=e=0.$

如果我们将坐标系逆时针旋转 α ,则有 $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$,即

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases}$$

而将 $ax^2 + bxy + cy^2 + dx + ey + f = 0$ 改写成 $a'x'^2 + b'x'y' + c'y'^2 + d'x' + e'y' + f = 0$,可以得到

$$b' = b\cos 2\alpha + (c - a)\sin 2\alpha$$

i) 将一个斜的椭圆通过顺时针旋转坐标轴 α ,变换为正的椭圆,那么得到的椭圆交叉项系数b'=0,因此 $\Rightarrow b'=0$ 得到

$$b\cos 2\alpha + (c-a)\sin 2\alpha = 0$$

3 思考与讨论 17

$$\tan 2\alpha = \frac{b}{a - c} = \frac{\frac{2\cos\delta}{A_x A_y}}{\frac{1}{A_x^2} - \frac{1}{A_y^2}} = \frac{2A_x A_y \cos\delta}{A_x^2 - A_y^2}$$

令 $\tan \beta = A_y/A_x$, 此式可化为:

$$\alpha = \frac{1}{2}\arctan(\frac{2\tan\beta}{1-\tan^2\beta}\cos\delta) = \frac{1}{2}\arctan(\tan2\beta\cdot\cos\delta)$$

ii) 旋转 α 后,椭圆的系数 $a' = a\cos^2\alpha + b\sin\alpha\cos\alpha + c\sin^2\alpha, b' = a\sin^2\alpha - b\sin\alpha\cos\alpha + c\cos^2\alpha$,设椭圆半长轴和半短轴长分别为A, B,那么有 $a'A^2 = b'B^2$,因此

$$\begin{split} \frac{B^2}{A^2} &= \frac{a'}{b'} \\ &= \frac{a\cos^2\alpha + b\sin\alpha\cos\alpha + c\sin^2\alpha}{a\sin^2\alpha - b\sin\alpha\cos\alpha + c\cos^2\alpha} \\ &= \frac{A_y^2\cos^2\alpha + 2A_xA_y\sin\alpha\cos\alpha\cos\delta + A_x^2\sin^2\alpha}{A_y^2\sin^2\alpha - 2A_xA_y\sin\alpha\cos\alpha\cos\delta + A_x^2\cos^2\alpha} \\ &= \frac{A_x^2 + A_y^2}{A_y^2\sin^2\alpha - 2A_xA_y\sin\alpha\cos\alpha\cos\delta + A_x^2\cos^2\alpha} - 1 \\ &= \frac{A_x^2 + A_y^2}{(A_x^2 - A_y^2)\cos2\alpha/2 - A_xA_y\sin2\alpha\cos\delta + (A_x^2 + A_y^2)/2} - 1 \\ &= \frac{A_x^2 + A_y^2}{\frac{A_x^2 - A_y^2}{\sqrt{1 - \tan^22\alpha}} - \frac{A_xA_y\cos\delta\tan2\alpha}{\sqrt{1 - \tan^22\alpha}} + \frac{A_x^2 + A_y^2}{2}} - 1 \end{split}$$

代入 $\tan 2\alpha = \tan 2\beta \cdot \cos \delta \operatorname{Attan} \beta = A_u/A_x$, 化简得:

$$\frac{B^2}{A^2} = \frac{2}{1+\sqrt{1-(\sin\delta\cdot\sin2\beta)^2}} - 1$$

以上就证明了(8)式.

3. 实验误差分析

本实验结果均较好地符合了实验的预期,然而我们依旧看到存在不少误差,在这里我将分别做以归纳.

总括本实验采用的光强测量方法 实验测光强采用的是测量电压表示数,然而除了本底噪音外(我们已经尽量在计算中消除),还有反应背景光、光电池暗电流、其他噪声、寄生电势、电压表示数显示延迟等诸多因素影响.

总括本实验中的光路调整步骤 首先我们回顾此实验的前序步骤:利用电压表示数极大值调整检偏器是否等高平行,利用带孔纸片或金属片调整小平台上的玻璃板等高平行——这与我们较为精确地使用分光计时一系列复杂的调整过程是迥然不同的;因此,光学仪器只是达到了大致等高平行的程度,但仍存在一定误差.

4 实验结论 18

观察布儒斯特角并计算折射率实验 布儒斯特角观测时,采用的是同时调整平台和起偏器方位角,此种方法 固然能找到双变量下的极小值,但考虑到实际试验过程,肯定会存在误差. 除此之外,肉眼观察布儒斯特角,我们仅能根据光强较弱这一现象将布儒斯特角锁定在一个范围内,但无法准确找到布儒斯特角的方位,这使 得起偏器透光轴并不一定平行.

验证马吕斯定律 在起偏器方位判断不够精确的基础上,5)中利用消光判断两个偏振片透光轴是否正交也存在误差. 判断是否消光时,能够明显看出在一定范围内,仪器均检测不到光强,这意味着对于检偏器透光轴是否数值判断不够精确,同时,可以看到我们忽略了理想偏振片本身沿消光轴的光强透射率 T_2 ,这也会产生误差;同时偏振片也不一定是理想偏振片,肯定会有各方面的误差影响.

定波片的轴和利用波片观察现象 在起偏器、检偏器方位判断不够精确的基础上,这里还利用了消光现象来定轴,而如上叙述,消光的观察只能得到一个大致的范围,因此定出的轴的方位也不够精确. 在此基础上,波片叠加观察到的现象都存在误差.

总结 综合以上,我们发现,实验的每一步都是较为粗糙的,许多实验测量都是近似半定量的. 层层累加下来,误差已经非常明显,然而在此基础上,我们还是观察到了较为符合预期的实验现象,因此总结起来,我们认为实验取得了较为不错的实验结果.

4 实验结论

本次实验中,我们首先调节光路,利用布儒斯特角产生的现象调节起偏器透射轴平行,并测出玻璃折射率为n=1.47,这与理论值吻合得很好。然后在我们调整检偏器竖直之后,旋转检偏器测光强,作出 $(I_m-I_{min})/(I_{max}-I_{min})$ 随 $\theta(\cos^2\theta)$ 变化关系图线,实验值与理论值较为接近,验证了马吕斯定律。最后,我们对波片的特性进行研究。先定出定波片 C_0 快轴和待测波片 C_x 的一条轴,然后将二者叠加,通过判断组合波片是半波片还是全波片定出待测波片的轴,在此期间还验证了半波片和全波片的性质,然后我们又通过1/4波片产生椭圆偏振光,计算出相延,并对比两种方法计算出的偏振角,两种方法计算出的结果吻合得不错,这进一步验证了实验的正确性。

在进行本次试验过程中,我掌握了偏振片、波片等的调节与使用方法,进一步巩固了进行物理实验的步骤和基本方法.在后续处理数据、撰写实验报告的过程中,我还进一步对光的偏振、偏振片、波片以及相关定律等相关理论知识有了进一步理解,同时回顾了实验误差的分析等知识.

5 原始数据

偏振	姓名:水	轮法 t	学号: 2	10100CB	8班号:	次402	座位号:	<u>3</u> ∃	期: 203	1.10.4
是示: a:检偏器	A(盘)的方位角	; p: 起偏器	器P(盘)的方	位角。						
4 观测布儒 光束正入射棱	斯特角、起 競表面时平台	偏器P的 方位角角α _i	透射轴在 -0=/23°!	E水平方 53'入射角	向的方位 为布氏角	Z角 寸平台方位	角α _{Β1} =_ 6.	$\alpha_{B}-\alpha_{i}$	₌₀ =_55°4	D.'
	3;α _{B2} = <u>68</u>	<u>°/0,</u> ′	P _{↔2} = 8	1.60:	$\alpha_{B3} = \underline{\ell}$	8°15'	P _{↔3} =	81.9	<u>.</u> .	
平均值o	_{lB} = <u>68°11</u> ;	布氏角的测	N量值 ∂ B =	<u>55°42</u> :	折射率n	= 1.4	7.			
偏振器透			表4的3次						54	
^{记偏器P} 的透射轴	在水平方向的方	位角P↔(度)	81.	6°	检偏器A	和P正交配	t, A的方	立角a↑	187	, 5 °
透射光强	I _m 与两偏振	器夹角θ	的关系	R=/υΩ:	p=p↔(平:	均值)=87	.b°: a₁=_	187.5	' /	and the control of the
夹角 θ (度)	0.0	15.0	30.0	45.0	60.0	75.0	80.0	84.0	67.0	90.0
$a = a_{\uparrow} + 90 + \theta$ (292.5						1.5	4.5	7.5
m(mV) 测量值		4.009	3.310	2.255	1.210	0.356	D.158	.0.052	0.00/	-0.006
定波片C ₀ 的	快轴的方向()	度)	R = /000	; p=p↔(平均值)=	\$1.6	a=a _↑ =_	18/.5	a maken a resident	
	波片℃快	轴在竖直							Cyman	The state of the s
定波片C _x 的	轴的方向(度)					81.6	; a=a _↑ =_	(X/. Z.		1
		1个轴在竖直		度盘示值Cx	= <u> </u>			/		ļ
	光通过1/2 直方向,度盘表			轴在竖直方	' '向。	10)C.方位	不变,C₀快	轴在水平プ	方向,C₀=	166.7
	B=p-p↔(度)		30.0	45. 0		15. 0	30.0	45.0		r
		96.6	116.6	1>6.6	•	96.6	116.6	126.6		
消光时A盘度	E盘读数a _i (度)				•	170.1	156.9	141.	2	
	ι=a _i −a↑(度)		31.2		1-115	-17.4	-30.6		3	
	角测量前: A盘		台化到a↑。	. 72	water the second	/ '				
11线偏振为	6经过1/4波	片	C ₀ = >3		R= /00	Ω ,		个β测量前	J: A盘方	37
£	ß=p-p↔(度)		45.0	67.5			角初始化		-00	
		104.1		[4].	J			换到[-9	and the second second	
	曲方向时的a;(度)	9112	1	16.3				背景光、 噪声、寄		
	(最大光强)	67 7	3.01t	7	.			^{未尸、司} 点漂移等		
	(最小光強)	-	2.056	0.474	P		响。	***************************************		
o	ι=a _i −a↑(度)	-106.2	-148.7	-171.7	10(挡住	光源时)	-0.00	7mV		
	曲方位角 ₡ (度)			8/12		1000				
b ²	/a²≈I _{min} /I _{max}	0.219	0.682	0.128	***************************************	1				
利用(13)式i	+算 sinδ _r	1.085	0.982	0.897)					
	$\delta_{r}(g)$		79.1	63.8	***************************************					
			· · · ·							

龙A 2021-10.04