实验五 栅格数据空间分析

专业: 地理信息科学 学号: 109092023XXX 姓名: 许愿寻找最佳路径

实验背景:

随着社会经济的发展,公路的重要性日益提高。在一些交通欠发达的地区,公路建设迫在眉睫。如何根据实际地形情况设计出比较合理的公路,是一个值得研究的问题。

实验目的:

通过练习,熟悉 ArcGIS 栅格数据距离制图、表面分析、成本权重距离、数据重分类、最短路径等空间分析功能,熟练掌握利用上述 ArcGIS 空间分析功能,分析和处理类似寻找最佳路径的实际应用问题。

实验数据:

- (1) dem(高程数据):
- (2) startPot(路径源点数据);
- (3) endPot (路径终点数据);
- (4) river(小流域数据)。

所有原始数据存放于 Chp8\Ex2\目录下。

实验要求:

- (1) 新建路径成本较少;
- (2) 新建路径为较短路径;
- (3) 新建路径的选择应该避开主干河流,以减少成本;

- (4) 新建路径的成本数据计算时,考虑到河流成本是路径成本中较关键的因素,先将坡度数据和起伏度数据按照 0.6:0.4 权重合并,然后与河流成本进行等权重的加和合并,公式描述如下:cost=reclass river+(reclass slope*0.6+reclass rough*0.4)
- (5) 寻找最短路径的实现需要运用 ArcGIS 的空间分析中距离制图中的成本路径及最短路径、表面分析中的坡度计算及起伏度计算、重分类及栅格计算器等功能完成;
 - (6) 提交寻找到的最短路径路线图。

实验步骤:

- 1. 运行 ArcMap,如果 Spatial Analyst 模块未能激活,单击【自定义】【扩展模块】,勾选 Spatial Analyst,点击【关闭】。
- 2. 打开地图文档。在 ArcMap 主菜单上选择【文件】【打开】,选择Chp8\Ex2\road. mxd。

3. 设置空间分析环境。在 ArcToolbox 中选中 ArcToolbox, 右键选择【环境】,设置相关参数:①展开【工作空间】,设置工作路径为:Chp8\Ex2\Result\;②展开【处理范围】,在范围下拉框中选择"与

图层 dem 相同"; ③展开【栅格分析】,在像元大小下拉框中选择"与图层 dem 相同"。④创建成本数据集。

考虑到山地坡度、起伏度对修建公路的成本影响比较大,其中尤其山地坡度更是人们首先关注的对象,则在创建成本数据集时,可考虑分配其权重比为 0.6:0.4。但是在有流域分布的情况下,河流对成本影响不可低估。因此,成本数据集为合并山地坡度和起伏度之后的成本,再加上河流对成本的影响。

(1) 坡度成本数据集

使用 DEM 数据层,选择【Spatial Analyst 工具】【表面分析】 【坡度】,生成坡度数据集,记为 Slope_dem1。

使用 Slope_deml 数据层,选择【Spatial Analyst 工具】【重分类】【重分类】,选择【分类】命令实施重分类。重分类的基本原则是:采用等间距分为 10 级,坡度最小一级赋值为 1,最大一级赋

值为10,得到如图所示的坡度成本数据(Reclass_Slope)。

(2) 起伏度成本数据集

选择【Spatial Analyst 工具】【邻域分析】【焦点统计】,参数设置如图所示,单击【确定】,生成起伏度数据层,记为 rough2。

輸入栅格							
dem						▼ 6	3
输出栅格							
		\ARCGIS应用\Chp8		gh2.tif			3
邻域分析(可选)	- 4						
矩形	~						
邻域设置							
高度:	11						
ate ata	11						
宽度:	11						
单位:	○像元	○地图					
	NoData(可选)						
		-	VI 6	o The		2000	
					4		
④ ✓ endPot ⊕ ✓ startPot □ ✓ rough2.tif					4	1	
⊕ ✓ endPot ⊕ ✓ startPot □ ✓ rough2.tif 值 高:58.96 任:0 □ ✓ Reclass_Slope.tif						1	
● ☑ endPot ● ☑ startPot □ ☑ rough2.tif 值 高:58.96 任:0 □ ☑ Reclass_Slope.tif □ 1 □ 2					4.5		
● ☑ endPot ● ☑ startPot □ ☑ rough2.tif 值 高:58.96 任:0 □ ☑ Reclass_Slope.tif							
● ☑ endPot ■ ☑ startPot □ ☑ rough2.tif 信 高:58.96 低:0 □ ☑ Reclass_Slope.tif □ 1 □ 2 □ 3					A STATE OF THE PARTY OF THE PAR	とのが	
⊕ ✓ endPot ⊕ ✓ startPot □ ✓ rough2.tif 值 高: 58.96 任: 0 □ ✓ Reclass_Slope.tif □ 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7							
⊕ ✓ endPot ⊕ ✓ startPot □ ✓ rough2.tif					The state of the s	との対対	
● ☑ endPot ● ☑ startPot □ ☑ rough2.tif 値 高: 58.96 低: 0 ☑ Reclass_Slope.tif □ 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9 □ 10 □ ☑ Slope_dem1.tif							
⊕ ✓ startPot ☐ ✓ rough2.tif 值 高: 58.96 ☐ 低: 0 ☐ 以 Reclass_Slope.tif ☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 ☐ 6 ☐ 7 ☐ 8 ☐ 9 ☐ 10 ☐ ☑ Slope_dem1.tif ☐ 0 - 5.617787231 ☐ 5.617787231 -	10.					というない	
 ★ ✓ endPot ★ ✓ startPot ★ ☐ rough2.tif ★ 高: 58.96 ★ 任: 0 ★ Reclass_Slope.tif 1 2 3 4 5 6 7 8 9 10 ✓ Slope_dem1.tif 0 - 5.61778723 	10.						
● ☑ endPot ● ☑ startPot □ ☑ rough2.tif 值 高: 58.96	10. 13. 17. 20.						
● ☑ endPot ● ☑ startPot □ ☑ rough2.tif 值 高: 58.96	10. 13. 17. 20. 24.						

选择【Spatial Analyst 工具】【重分类】【重分类】,输入rough2数据层,选择【分类】命令,按10级等间距实施重分类,地形越起伏,级数赋值越高,最小一级赋值为1,最大一级赋值为10,得到如图所示地形起伏度成本数据(Reclass_rough21)。

(3) 河流成本数据集

选择【Spatial Analyst 工具】【重分类】【重分类】,选择river数据层,按照河流等级进行分类: 4 级为 10,如此依次为 8、5、2、1;生成如图所示河流成本(Reclass river1)。

(4) 加权合并单因素成本数据,生成最终成本数据集

选择【Spatial Analyst 工具】【地图代数】【栅格计算器】工具合并数据集,计算公式如下: cost=reclass_river(重分类河流成本数据) +[reclass_slope (重分类坡度成本数据) * 0.4]

根据以上公式得到如图所示最终成本数据集 reclass_riv1, 其

中深色表示成本高的部分。

(5) 计算成本权重距离函数

选择【Spatial Analyst 工具】【距离】【成本距离】,设置参数如图所示,单击【确定】,生成如图所示的成本距离图,其中三角形为源点;图为回溯链接图,三角形为源点。

(6) 求取最短路径

选择【Spatial Analyst 工具】【距离】【成本路径】,参数设置及最终的最短路径图如图所示,其中绿线部分为确定的路径。

熊猫分布密度制图

实验背景:

大熊猫是我国国家级珍稀保护动物,熊猫的生存必须满足一定槽

域(独占的猎食与活动范围)条件。因此,科学准确地分析熊猫的分布情况,对合理制定保护措施和评价保护成效具有重要的意义。

实验目的:

通过练习,熟悉 ArcGIS 密度制图函数的原理及差异性,掌握如何根据实际采样数据特点,结合 ArcGIS 提供的密度制图和其他空间分析功能,制作符合要求的密度图。

实验数据:

野外实采的熊猫活动足迹数据,一个足迹代表一个熊猫曾在此处活动过,相同足迹只记载一次。数据存放于 Chp8\Ex3\目录下。

实验要求:

- (1) 熊猫活动具有一定的槽域范围,一个槽域范围只有一个或一对 熊猫,在此练习中,假设熊猫槽域半径为 5km。
- (2) 虽然一个采样点代表一个熊猫,但由于熊猫的生存具有确定槽域特征,不同的采样点具有不同的空间控制面积。假定熊猫活动范围分布满足以采样点为中心的泰森多边形,如何将这一信息加入密度分布图是本练习的重点。
- (3) 在野外实采的熊猫活动足迹数据的基础上,以每个熊猫槽域范围为权重,运用 ArcGIS 中的区域分配功能和密度制图功能制作该地区熊猫分布密度图。

实验步骤:

(1) 运行 ArcMap, 如果 Spatial Analyst 模块未能激活,单击【自定义】【扩展模块】,勾选 Spatial Analyst。

(2) 打开地图文档。ArcMap 主菜单上选择【文件】【打开】,选择Chp8\Ex3\Xmpoint.mxd。

(3) 设置空间分析环境。单击【地理处理】,选择【环境】,工作空间设置"E: \Chp8\Ex3\Result\",处理范围选择"与显示相同"。

《工作空间			
当前工作空间	arad Mid ole ole 1		
C:\Users\Xuan\Desktop\24-25-2\ARG	JGIS <u>ly</u> 用 \Chp8\Ex3\KesuIt		
临时工作空间	rerect Wiel our our li		-4
C:\Users\Xuan\Desktop\24-25-2\ARG	CGT2[M H /CVbc/Ex3/Ve2ATt		
※ 輸出坐标系			
☆ 处理范围			
范围			
与显示相同		~	r in the second
	Ł		
左	-20783. 586612	右	
在 15081134.633144		/□ 15292771.402371	
	7		
	-220402.201354		
捕捉栅格			
			r in the second
× XY 分辨率及容差			
× M 值		*	
× M 值			
×M值 ×Z值			
ジ M 値 ジ Z 値 ジ 地理数据库			
※ M 値 ※ Z 値 ※ 地理数据库 ※ 高级地理数据库			

(4) 生成槽域范围。选择【Spatial Analyst 工具】【距离】【欧氏分配】,输入熊猫活动足迹数据图层 XMpoint,参数设置及其输出结果如图所示,输出文件名记为 FP,槽域范围图中的白色区域表示没有熊猫出现。

(5) 选择 FP 数据层,单击鼠标右键并选择【打开属性表】,打开 FP

属性表,如图所示。

(6) 该表中 VALUE 字段值来自 XMpoint 点文件的 ID 字段,表示槽域的编号; COUNT 为每个槽域的栅格数,因此每个槽域的面积可以通过栅格数与栅格单元面积乘积获得。具体操作如下:点击表选项按钮,在下拉菜单中选择【添加字段】,打开对话框;设置字段名称为 AREA,类型为"长整型",点击【确定】,该字段添加到属性表中。选中该字段右键选择【字段计算器】,在字段计算器中设置表达式为"COUNT*500*500",500为栅格单元边长,如图所示。

(7) 选择熊猫活动足迹数据图层(XMPoint),右键单击选择【连接和关联】【连接】,弹出【连接数据】对话框,参数设置如图所示,单击【确定】,完成熊猫采样数据与槽域范围数据的连接。

(8) 选择熊猫活动足迹数据图层(XMPoint),单击鼠标右键并选择【打开属性表】,打开 XMPoint 属性表,可看到属性表中已经出现了 AREA 字段,接下来要新建一个字段用于计算槽域的权重,操作如下:点击表选项按钮,选择【添加字段】,设置字段的名称为 power,类型为"浮点型",点击【确定】,在属性表中出现 Xmpoint. power字段。选中该字段右键选择【字段计算器】,在【字段计算器】对话框中输入计算公式: 3.1415926*5000*5000/[fp.vat: AREA],其中3.1415926*5000*5000 为假定的最大槽域面积,计算每个采样点的权重值,作为计算密度的权重值。

FID	Shape *	ID	power	Rowid	VALUE *	COUNT	AREA
0	点	46	3. 73999	0	46	84	21000000
1	Á	70	2.99199	5	70	105	26250000
2	点	176	1.28754	21	176	244	61000000
3	Á	71	2. 43534	6	71	129	32250000
4	Á	110	1.496	14	110	210	52500000
5	Á	133	1.19	19	133	264	66000000
6	点	64	1.40879	3	64	223	55750000
7	Á	117	1.58666	16	117	198	49500000
8	Á	127	1.85893	18	127	169	42250000
9	Á	113	1. 2719	15	113	247	61750000
10	点	83	1. 26168	7	83	249	62250000
11	Á	257	1.07222	24	257	293	73250000
12	点	90	2. 19692	10	90	143	35750000
13	Á	175	1. 24666	20	175	252	63000000
14	Á	97	2. 02683	12	97	155	38750000
15	Á	216	1.09463	22	216	287	71750000
16	点	242	0.991039	23	242	317	79250000
17	Á	93	0.991039	11	93	317	79250000
18	点	58	3. 07999	1	58	102	25500000
19	Á	68	2. 51327	4	68	125	31250000
20	点	62	2. 66237	2	62	118	29500000
21	Á	126	1.69816	17	126	185	46250000
22	Á	94	0	〈空〉	〈空〉	〈空〉	〈空〉
23	Á	84	2. 19692	8	84	143	35750000
24	Á	109	1.57869	13	109	199	49750000
25	Á	87	2.80499	9	87	112	28000000

(9) 单击【Spatial Analyst 工具】【密度分析】【核密度分析】, 参数设置如图所示,提取密度。

(10) 上述密度以平方米为面积单位,数据值太小。单击【Spatial Analyst 工具】【地图代数】【栅格计算器】,输入计算公式: XMDensity100 = "XMDensity1"*10000000,将面积单位换算为 10 km²,结果如图所示。

实验心得:

通过本次实验,我深入学习了ArcGIS 栅格数据空间分析的核心功能与应用技巧。在寻找最佳路径实验中,我掌握了如何综合考虑坡度、起伏度和河流等多重成本因素,通过权重分配与栅格计算构建成本数据集,并运用成本距离与回溯链接功能实现最优路径分析。这一过程让我深刻认识到实际工程规划中地理要素的复杂关联性,以及科

学量化各因素权重的重要性。在熊猫分布密度制图实验中,我理解了 泰森多边形在生物空间分析中的独特价值,学会了通过欧氏分配模拟 动物槽域范围,并创新性地将槽域面积转化为核密度分析的权重参数, 使密度图更符合熊猫生态习性特征。整个实验不仅提升了我的软件操 作能力,更培养了我将地理学原理与空间分析技术相结合的思维能力, 让我意识到 GIS 在生态保护与交通规划等领域的强大应用潜力,为今 后解决复杂空间问题奠定了扎实基础。