BIO-101.1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ

Φυλλάδιο Ασκήσεων 5

Δεν παραδίνετε ασκήσεις.

Άσκηση 5.1 Θεωρούμε τις βάσεις $\mathcal{B} = \{(1,0,0),(0,1,0),(0,0,1)\}$ και $\mathcal{C} = \{(1,0,-1),(1,2,0),(1,1,2)\}$ του \mathbb{R}^3 .

- (i) Υπολογίστε τους πίνακες αλλαγής βάσης από την ${\cal B}$ στην ${\cal C}$ και αντίστροφα.
- (ii) Έστω $L:\mathbb{R}^3 \to \mathbb{R}^3$ η γραμμική απεικόνιση τέτοια ώστε

$$[L]_{\mathcal{B}}^{\mathcal{C}} = \begin{pmatrix} -1 & 1 & 3\\ 1 & -2 & 0\\ 0 & 1 & -3 \end{pmatrix}.$$

Υπολογίστε το L(1, 1, 1).

Άσκηση 5.2 Δίνονται τα σύνολα $\mathcal{A}=\{(1,1,0),(0,1,1),(1,0,1)\}$ και $\mathcal{B}=\{(1,-1,0),(2,-1,1),(0,1,2)\}$ και η γραμμική απεικόνιση με πίνακα $L:\mathbb{R}^3\to\mathbb{R}^3$

$$[L]_{\mathcal{A}}^{\mathcal{B}} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

- (i) Δείξτε ότι τα σύνολα \mathcal{A} και \mathcal{B} είναι βάσεις του \mathbb{R}^3 .
- (ii) Δείξτε ότι η L είναι ισομορφισμός.
- (iii) Βρείτε τον τύπο της L^{-1} .

Άσκηση 5.3 Θεωρείστε τη βάση \mathcal{B} του \mathbb{R}^3 που ορίζεται από τα διανύσματα $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}=\{(1,0,1),(1,1,3),(1,-2,2)\}$. Θεωρείστε επίσης τη γραμμική απεικόνιση $L:\mathbb{R}^3\to\mathbb{R}^3$ που ορίζεται ως $L(\mathbf{v}_1)=\mathbf{v}_2-\mathbf{v}_3,L(\mathbf{v}_2)=-\mathbf{v}_2,L(\mathbf{v}_3)=\mathbf{v}_1+\mathbf{v}_2$.

Να υπολογίσετε τον πίνακα της L ως προς την βάση \mathcal{B} καθώς και ως προς την κανονική βάση του \mathbb{R}^3 .

Άσκηση 5.4 Έστω A ένας 3×3 πίνακας με $\det(A) = -1$. Υπολογίστε την ορίζουσα καθενός από τους παρακάτω πίνακες: $\frac{1}{2}A$, A^3 , AA^t , A^{-1} .

Άσκηση 5.5 Έστω $A \in \mathbb{R}^{n \times n}$, με $\det(A) = D$. Υπολογίστε τις $\det(2A)$, $\det(A^2)$, $\det(-A)$, $\det(A^t)$.

Άσκηση 5.6 Για καθένα από τους παρακάτω πίνακες, εξετάστε εάν είναι διαγωνίσιμος και εφόσον είναι διαγωνιοποιήστε τον.

$$\left(\begin{array}{ccc} 7 & -10 \\ 5 & -8 \end{array}\right), \quad \left(\begin{array}{ccc} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{array}\right), \quad \left(\begin{array}{ccc} 2 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{array}\right), \quad \left(\begin{array}{ccc} 0 & 2 \\ 2 & 0 \end{array}\right)$$

Άσκηση 5.7 Δίνεται ο πίνακας

$$A = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in \mathbb{R}^{4 \times 4}.$$

Τπολογίστε τον πίνακα A^{1821} .

Άσκηση 5.8

(i) Δείξτε ότι για κάθε $x_1,\ldots,x_n,y_1,\ldots,y_n\in\mathbb{R}$ ισχύει

$$\left(\frac{x_1y_1}{1} + \frac{x_2y_2}{2} + \dots + \frac{x_ny_n}{n}\right)^2 \le \left(\frac{x_1^2}{1} + \frac{x_2^2}{2} + \dots + \frac{x_n^2}{n}\right) \left(\frac{y_1^2}{1} + \frac{y_2^2}{2} + \dots + \frac{y_n^2}{n}\right).$$

(ii) Δείξτε ότι για κάθε $x_1,\ldots,x_n\in\mathbb{R}$ ισχύει

$$(x_1 + x_2 + \dots + x_n)^2 \le n(x_1^2 + x_2^2 + \dots + x_n^2).$$

Άσκηση 5.9 Στο χώρο \mathbb{R}^3 , με το συνηθισμένο εσωτερικό γινόμενο, βρείτε την ορθοκανονική βάση που προκύπτει από την εφαρμογή της διαδικασίας Gram-Schmidt στη βάση (1,1,0),(2,1,0),(0,1,2).

Άσκηση 5.10 Βρείτε μία ορθοκανονική βάση για τον υπόχωρο $V=\{(x,y,z)\in\mathbb{R}^3:5x-y+2z=0\}.$

Άσκηση 5.11 Δίνεται η γραμμική απεικόνιση $L:\mathbb{R}^4 \to \mathbb{R}^3$ με τύπο

$$L(x_1, x_2, x_3, x_4) = (x_1 - x_2 + 2x_4, -2x_1 + 2x_2 + x_3 - 3x_4, -x_1 + x_2 + x_3 - x_4).$$

- (i) Υπολογίστε μία ορθογώνια βάση του $\ker(L)$.
- (ii) Υπολογίστε μία βάση του $\ker(L)^{\perp}$.

Άσκηση 5.12 Δίνεται ο υπόχωρος $U=\mathrm{Span}(\{(1,1,-1,0),(0,-1,2,1)\})$ του \mathbb{R}^4 . Υπολογίστε την ορθογώνια προβολή του διανύσματος (1,1,-1,1) στον U.