

Marine Environmental Data Analysis

Hailong Liu

April 12 2022

Now you may have two questions already?

- 1. Why English?
- 2. What is Marine Environmetnal Data Analysis?

For example:
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Correlation $r = \frac{\sum_{i=1}^{n} ((x_i - \overline{x})(y_i - \overline{y}))}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$

Correlation
$$r = \frac{\sum_{i=1}^{n} \left((x_i - \overline{x})(y_i - \overline{y}) \right)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Olonscheck, D., Mauritsen, T. & Notz, D. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. *Nat. Geosci.* **12**, 430–434 (2019).

Bruijin et al.

Correlation
$$r = \frac{\sum_{i=1}^{n} \left((x_i - \overline{x})(y_i - \overline{y}) \right)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Olonscheck, D., Mauritsen, T. & Notz, D. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. *Nat. Geosci.* **12**, 430–434 (2019).

Correlation
$$r = \frac{\sum_{i=1}^{n} ((x_i - \overline{x})(y_i - \overline{y}))}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Data analysis has a broad application in different fields

Office: 121

Telephone: 15901724935 e-mail: hailong.liu@sjtu.edu.cn

Follow the textbook:

Data Analysis Methods in Physical Oceanography

Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University

Press

Hans von Storch and Francis W. Zwiers., Statistical Analysis in Climate Research.

Grading:

20% attendance rate

30% homework

50% final exam (project)

Textbook 6 chapters

My expectation

- 1. Interactive (different students have different background)
- 2. Practical (linked with your research)

Data

Matlab

In the end this semester if all of you can play with data and benefit from this course, I feel acomplished.

Observation Platforms

- Ships
- Moorings
- Autonomous Platform
- Satellite

Chinese Icebreakers Xuelong1 and Xuelong2

Stations: Poking Holes in the Ocean CTD Rosette CTD Samples

CTD: conductivity, temperature, and depth

Underway Profilers

uCTD

Vertical Profiles

Sections (Spatial Pattern)

Towed Instrument: SeaSoar

Horizontal Profiles

Acoustic Doppler Current Profiler (Station or Underway Observation)

Mechanical Current Meters

Velocity Profiles

Platforms

- Ships
- Moorings
- Autonomous Platform
- Satellite

Moorings

Mooring Data (Temporal Pattern)

Platforms

- Ships
- Moorings
- Autonomous Platform
- Satellite

Autonomous Platform

Table 1. Platforms and their characteristics				
Platform	Mode of operation	Typical deployment duration	Spatial scales	Sensor payload
Surface drifter	Floats on surface, sometimes drogued at depth	Weeks to years	Regional to global	Moderate, power-limited
Float	Neutrally buoyant, sometimes profiling	Weeks to years	Regional to global	Moderate, power-limited
Glider	Profiles, controls horizontal position by gliding	Weeks to months	Regional	Light, power and size-limited
Autonomous Underwater Vehicle	Powered with propeller	Hours to days	Small	Heavy

Surface Drifters

Ocean Currents at 15m Depth

By L Laurindo

Underwater Gliders

Gliders along the US Coast

Autonomous Platform

Autonomous Underwater Vehicles (AUVs)

Platforms

- Ships
- Moorings
- Autonomous Platform
- Satellite

Satellite Data

Sea Surface Temperature

Sea Surface Height Anomaly

Sea Surface Temperature

More Satellite Data

Wind Color

Sea Surface Salinity (SMOS, Aquarius, SMAP)

Numercal Models (Regional, Global)

Today class is over

