ANLIS - Spick

Johanna Koch

Contents

1	Gru	ındlagen	4							
	1.1	Wurzeln	4							
	1.2	Potenzen	4							
	1.3	Brüche	5							
	1.4	Logarithmen	5							
	1.5	Binome	5							
		1.5.1 1. Binom	5							
			5							
			5							
	1.6		5							
	1.7	•	6							
	1.8		7							
		•								
2	\mathbf{SW}		8							
	2.1		8							
	2.2		8							
	2.3	· ·	8							
	2.4	Exponentialfunktion	8							
	2.5	Logarithmusfunktion	8							
3	SW02 Folgen und Reihen 9									
	3.1		9							
			9							
			9							
		3.1.3 Nützliche andere Formeln	0							
	3.2	Geometrische Folgen und Reihen								
	3.3	Rechnen mit Folgen, Eigenschaften								
4	CXX	703 Grenzwerte und Stetigkeit 1	1							
4	4.1	Grenzwert								
	4.1	4.1.1 Linksseitiger Grenzwert	_							
		4.1.1 Elliksseitiger Grenzwert	_							
			_							
			1 1							
		4 L 4 CHEDEULICHE CHEUSWELLE								

		4.1.5 Grundlegende Grenzwerte Theorem	11
		4.1.6 Rechnen mit Grenzwerten	12
		4.1.7 Squeezing-Theorem	13
	4.2	Stetigkeit	13
		4.2.1 Grenzwert einer Funktion von x - Theorem	13
		4.2.2 Rechenregeln	14
		4.2.3 Eigenschaften stetiger Funktionen	14
		4.2.4 Regula Falsi	14
	4.3	Beispiele	15
		4.3.1 Geschickt erweitern	15
		4.3.2 GW Polynom	15
		4.3.3 GW Quotient	15
5	$\mathbf{s}\mathbf{w}$	04 Differentialrechnung I – Tangente und Ableitung	16
	5.1	Die Sekante	16
		5.1.1 Sekante durch P und Q	16
	5.2	Tangente und Ableitung	16
		5.2.1 Beispiel Quadratische Funktion	16
	5.3	Ableitung der Potenzfunktion	17
		5.3.1 Beispiel Tangente	17
		5.3.2 Newton-Raphson Verfahren	17
	5.4	Einige Ableitungsregeln	18
		5.4.1 Theorem Faktorregel	18
		5.4.2 Theorem Produkteregel	18
	5.5	Quotientenregel	18
	5.6	Formeln	18
		5.6.1 Ableitungen	19
6	\mathbf{sw}	05 Differentialrechnung II — Kettenregel	20
	6.1	Einseitige Ableitung	20
	6.2	Kettenregel	20
	6.3	Umkehrfunktion	20
	6.4	Ableitung Logarithmus	20
	6.5	Ableitung Wurzel	21
	6.6	Ableitungen Arkusfunktionen	21
	6.7	Ableitungen Areafunktionen	21
7 SW06 Differentialrechnung III – Diffe		06 Differentialrechnung III – Differential, höhere Ableitun-	
	\mathbf{gen}		22
	7.1	Implizite Ableitung	22
		7.1.1 Beispiel	22
		7.1.2 y nach x	23
	7.2	Differential	23
		7.2.1 Beispiel Differential	24
		7.2.2 Rechenregeln für Differentiale	24
	7.3	Monotonie	24

		7.3.1 Lokale oder relative Extrema
	7.4	Höhere Ableitungen
	7.5	Krümmung
8	\mathbf{sw}	07 Differentialrechnung IV – Kurvendiskussion, Optimierung 26
	8.1	Parameterdarstellung von Kurven
		8.1.1 Beispiel
		8.1.2 Ableitung eines Vektors
		8.1.3 Ableitung einer in Parameterform gegebenen Funktion 27
		8.1.4 Krümmungskreismittelpunkt
	8.2	Kurven in Polarkoordinaten
		8.2.1 Ableitung einer in Polarkoordinaten gegebene Funktion . 28
	8.3	Kurvendiskussion
		8.3.1 Symmetrien Beispiele
		8.3.2 Wende- und Sattelpunkte
		8.3.3 Beispiel
	8.4	Optimierungsproblem - Allgemeines Vorgehen
		8.4.1 Brechungsgesetz
	8.5	Regel von de l'Hôpital
		8.5.1 Theorem - Regel von de l'Hôpital für unbestimmte Ausdrücke
		$ der Form 0/0 \dots 31 $
		8.5.2 Vorgehen
		8.5.3 Vorgehen für weitere unbestimmte Ausdrücke 32
9	\mathbf{SW}	08 Integralrechnung I – Flächenberechnung und Integral 33
	9.1	Stammfunktion
	9.2	Umkehrung der Differentiation
	9.3	Bestimmtes Integral Flächenberechnung
		9.3.1 Beispiel Rechter Rand
		9.3.2 Beispiel Linker Rand
	9.4	Summen vereinfachen

Grundlagen

1.1 Wurzeln

$$\sqrt{x} = x^{\frac{1}{2}}$$

$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$$

$$\sqrt{a} + \sqrt{b} \neq \sqrt{a + b}$$

$$\sqrt{a^2 \times b} = a \times \sqrt{b}$$

$$\sqrt[b]{a^b} = (a^b)^{\frac{1}{b}} = a$$

$$\sqrt[a]{x^b} = x^{\frac{b}{a}}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt{a} - \sqrt{b} \neq \sqrt{a - b}$$

$$\frac{a}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

$$\frac{1}{\sqrt[a]{a}} = a^{-\frac{1}{n}}$$

1.2 Potenzen

$$x^{-a} = \frac{1}{x^a}$$

$$x^a \times x^b = x^{a+b}$$

$$x^{ab} = x^{a \times b}$$

$$\frac{a}{bx^{-c}} = \frac{a}{b}x^{-c}$$
$$\frac{x^a}{x^b} = x^{a-b}$$
$$\frac{a^x}{a^{x+1}} = \frac{1}{a}$$

1.3 Brüche

$$\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{cb}{bd} = \frac{ab+cb}{bd}$$

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{1}{x} = x^{-1}$$

$$\frac{1}{x^3} = x^{-3}$$

$$\frac{x}{5} = \frac{1}{5}x$$

$$\frac{a}{b} - \frac{c}{d} = \frac{ad}{bd} - \frac{cb}{bd} = \frac{ab - cb}{bd}$$

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$$

$$\frac{1}{x^2} = x^{-2}$$

$$\frac{4}{3}x^{-4} = \frac{4}{3x^{-4}}$$

$$\frac{x^4}{9} = \frac{1}{9}x^4$$

1.4 Logarithmen

$$y = log_a(x) <=> x = a^y$$
$$\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)$$

$$\log_b(xy) = \log_b(x) + \log_b(y)$$
$$\log_b(x^y) = y \log_b(x)$$

1.5 Binome

1.5.1 1. Binom

$$(a+b)^2 = a^2 + 2ab + b^2$$

1.5.2 2. Binom

$$(a-b)^2 = a^2 - 2ab + b^2$$

1.5.3 3. Binom

$$(a+b)(a-b) = a^2 - b^2$$

1.6 Quadratische Gleichung

Für:

$$ax^2 + bx + c = 0$$

Dann:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

${\bf 1.7}\quad {\bf Ableitungen/Integrationen}$

Wenn integrieren, +C nicht vergessen!

f(x)	f'(x)
x	1
x^a	ax^{a-1}
$\frac{x^{a+1}}{a+1}$	x^a
$\sqrt[n]{x^m} = x^{\frac{m}{n}}$	$\frac{m}{n}x^{\frac{m}{n}-1}, a \neq -1$
e^x	e^x
a^x	$(\ln(a))a^x(a<0)$
$rac{a^x}{ln(a)}$	a^x
ln(x)	$\frac{1}{x}$
$a \times ln(x)$	$\frac{a}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$
$-\cot x$	$\frac{1}{\sin^2 x}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}} +$
$-\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\arctan x$	$\frac{1}{1+x^2}$
$-\arctan x$	$\frac{1}{1+x^2}$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$\frac{1}{\cosh^2 x} = 1 + \tanh^2 x$
$\operatorname{arsinh} x$	$\frac{1}{\sqrt{1+x^2}}$
$\operatorname{arcosh} x$	$\frac{1}{\sqrt{1-x^2}}$
$\operatorname{artanh} x$	$\frac{1}{1-x^2}$
$\coth x$	$-\frac{1}{\sinh^2 x}$

* falls $x \in (-1,1)$

1.8 Beispiele

$$\frac{2}{3\sqrt[4]{x^5}} = \frac{2}{3x^{-\frac{5}{4}}} = \frac{2}{3}x^{-\frac{5}{4}}$$

SW01 Funktionen

2.1 Lineare Funktion

$$f(x) = ax + b$$

a = Steigung

2.2 Polynomfunktion

Grad der Funktion: Höchster Exponent von x.

Nullstellen: Maximal so viele wie der Grad der Funktion.

$$f(x) = ax^{n} + bx^{n-1} + cx^{n-2}...$$

2.3 Quadratische Funktionen

Polynomfunktion zweites Grades

$$f(x) = ax^2 + bx + c$$

2.4 Exponentialfunktion

$$f(x) = a \times b^x$$

2.5 Logarithmusfunktion

Umkehrfunktion von Exponentialfunktion

$$f(x) = log_b(x)$$

SW02 Folgen und Reihen

3.1 Arithmetische Folgen und Reihen

$$(a_n) = a_1, a_2, a_3, ..., a_n, ...$$

Differenz d
 zweier beliebiger aufeinanderfolgender Glieder a_n, a_{n+1} ist konstant

Eine AF ist eindeutig beschrieben durch zwei Grössen:

- \bullet beliebiges Glied a_n und Differenz d
- zwei beliebige Glieder a_n und a_{n+k}

Bildungsgesetz: Funktionsvorschrift nach welcher aus n das n-Glied (a_n) berechnet werden kann.

3.1.1 Beispiele von Folgen

$$(a_n)=-\frac{1}{2},-\frac{1}{4},-\frac{1}{8},\dots$$
Bildungsgesetz: $a_n=-\frac{1}{2n}$

$$(a_n) = 1^3, 2^3, 3^3, \dots$$
 Bildungsgesetz: $a_n = n^3$

$$(a_n)=0,\frac{1}{2},\frac{2}{3},\frac{3}{4},\dots$$
Bildungsgesetz: $a_n=\frac{n-1}{n}$

3.1.2 Summe der Glieder einer AF

$$\sum_{k=1}^{n} a_k = na_1 + d\frac{n(n-1)}{2} = n\frac{a_1 + a_n}{2}$$

Wobei bei " $n\frac{a_1+a_n}{2}$ " a_1 das erste Glied ist, a_n das letzte, n die Anzahl Glieder und 2 den Mittelwert vom ersten und letzten Glied bildet.

3.1.3 Nützliche andere Formeln

Gegeben:
$$a_n = v$$
, $a_{n+x} = z$

Gesucht
$$d$$
: $d = \frac{z-v}{(n+x)-n}$

3.2 Geometrische Folgen und Reihen

Die geometrische Folge ist dadurch charakterisiert, dass der Quotient q
 zweier beliebiger aufeinanderfolgender Glieder a_n und a_{n+1} konstant ist.

$$a_{n+1} = qa_n, n = 1, 2$$

$$q = \frac{a_{n+1}}{a_n}$$

Eine GF ist eindeutig beschrieben durch zwei Grössen, entweder:

- ullet durch ein beliebiges Glied a_n und den Quotienten q
- ullet durch zwei beliebige Glieder a_n und a_{n+k}

3.3 Rechnen mit Folgen, Eigenschaften

• Folge (a_n) multipliziert man mit einer reellen Zahl λ , indem man jedes Glied der Folge mit dieser Zahl multipliziert:

$$\lambda(a_n) = (\lambda a_n)$$

• Zwei Folgen (a_n) und (b_n) addiert man, indem man entsprechende Glieder addiert:

$$(a_n) + (b_n) = (a_n + b_n)$$

- Eine Folge heisst konstante Folge, falls $a_n = c \in \mathbb{R}, \forall n \in \mathbb{N}$ AF ist konstant wenn d = 0, GF ist konstant wenn q = 1
- Eine Folge (a_n) ist **streng monoton zunehmend/abnehmend** falls $(a_{n+1} > a_n)$ bzw $(a_{n+1} < a_n)$
- Eine Folge (a_n) ist **beschränkt** (höhö) falls eine positive Zahl c existiert mit $|a_n| \leq c, \forall n$: alle Glieder der Folge liegen im Graphen unter einem Teppich der Breite 2c. Anderfalls heisst die Folge (a_n) unbeschränkt

SW03 Grenzwerte und Stetigkeit

4.1 Grenzwert

$$\lim_{x \to a} f(x) = L \text{ oder } f(x) \to L, \text{ falls } x \to a.$$

4.1.1 Linksseitiger Grenzwert

$$\lim_{x \to a^{-}} f(x)$$

4.1.2 Rechtsseitiger Grenzwert

$$\lim_{x \to a^+} f(x)$$

4.1.3 Zweiseitiger Grenzwert

Der zweiseitige Grenzwert existiert genau dann, wenn links- und rechtsseitiger Grenzwert exisitieren und diese gleich sind:

$$\lim_{x\to a}f(x)=L$$
genau dann, wenn $\lim_{x\to a^-}f(x)=L=\lim_{x\to a^+}f(x)$

4.1.4 Uneigentliche Grenzwerte

Grenzwert wächst bis über alle Grenzen wenn man x gegen a gehen lässt:

$$\lim_{x \to a} f(x) = \infty$$

4.1.5 Grundlegende Grenzwerte Theorem

$$\lim_{x \to a} k = k$$

$$\lim_{x\to a} x = a$$

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

4.1.6 Rechnen mit Grenzwerten

Theorem Summe

Falls
$$a \in \mathbb{R} \cup \{-\infty, +\infty\}, \mu, \nu \in \mathbb{R}$$
 und

$$\lim_{x\to a} f(x) = L_1$$
 und $\lim_{x\to a} g(x) = L_2$ dann gilt:

Der GW einer Summe/Differenz ist gleich der Summe/Differenz der GWs; Konstanten kommen vor den GW:

$$\lim_{x \to a} [\mu f(x) \pm \nu g(x)] = \mu \lim_{x \to a} f(x) \pm \nu \lim_{x \to a} g(x) = \mu L_1 \pm \nu L_2$$

Theorem Produkt

Der GW eines Produkts ist gleich dem Produkt der GWs:

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x) = L_1 L_2$$

Theorem Quotient

Ist $L_2 \neq 0$ und g in einer Umgebung von a verschieden von 0, dann ist der **GW** des Quotienten gleich dem Quotienten der **GWs**:

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{\substack{x \to a \\ \lim_{x \to a} g(x)}} f(x) = \frac{L_1}{L_2}$$

Siehe 4.3.3 GW Quotient für Beispiel.

Folgerungen Exponent

$$\lim_{x\to a} x^n = (\lim_{x\to a} x)^n = a^n \qquad \quad \lim_{x\to a} [f(x)]^n = (\lim_{x\to a} f(x))^n$$

Folgerungen Polynom

Für ein Polynom
$$p(x) = c_0 + c_1 x + \dots + c_n x^n = \sum_{k=0}^n c_k x^k$$
 gilt:

$$\lim_{x \to a} p(x) = c_0 + c_1 x + \dots + c_n x^n = p(a)$$

Siehe 4.3.2 GW Polynom für Beispiel.

Folgerungen Quotient

Für eine rationale Funktion $r(x) = \frac{p(x)}{q(x)}$ (dabei sind p(x) und q(x) Polynome) und eine $a \in \mathbb{R}$ gilt:

- (a) Falls $q(a) \neq 0$, dann ist $\lim_{x \to a} r(x) = r(a)$ (b) Falls q(a) = 0 und $p(a) \neq 0$, dann existiert $\lim_{x \to a} r(x)$ nicht.
- (c) Falls q(a) = 0 und p(a) = 0, dann kann der GW existieren, muss aber nicht! Siehe 4.3.3 GW Quotient für Beispiel.

4.1.7Squeezing-Theorem

Gilt für drei Funktionen f, g und h in einer Umgebung von c (evt. mit Ausnahme

$$g(x) \leq f(x) \leq h(x)$$
 und $\lim_{x \rightarrow c} g(x) = \lim_{x \rightarrow c} h(x) = L$

dann gilt auch $\lim_{x\to c} f(x) = L$

4.2 Stetigkeit

Salopp: Eine Funktion f heisst stetig, wenn man deren Graphen zeichnen kann, ohne den Stift absetzen zu müssen

Genauer ist eine Funktion f stetig in a, falls:

- Die Funktion f dort existiert, d.h. falls f(a) definiert ist.
- Links- und rechtsseitiger Grenzwert existieren und gleich sind

$$\lim_{x\to a^-}f(x)=\lim_{x\to a^+}f(x)=\lim_{x\to a}f(x)$$

• Die genannten Grenzwerte mit dem Funktionswert übereinstimmen.

Zusammengefasst: f ist stetig in a, falls

$$\lim_{x \to a} f(x) = f(a)$$

Eine Funktion heisst stetig, falls sie überall, d.h. $\forall x \in D(f)$ stetig ist.

4.2.1 Grenzwert einer Funktion von x - Theorem

Sei $a \in \mathbb{R} \cup \{-\infty, +\infty\}$. Gilt dann $\lim_{x \to c} g(x) = L$ und ist f im Punkt L stetig, dann gilt:

$$\lim_{x\to c} f(g(x)) = f(\lim_{x\to c} g(x))$$

Insbesondere gilt zB

$$\lim_{x\to c}|g(x)|=|(\lim_{x\to c}g(x)|$$

falls $\lim_{x\to c} g(x)$ existiert!

4.2.2 Rechenregeln

- Summe und Differenz stetiger Funktionen sind stetig.
- Der Quotient zweier stetiger Funktionen ist dort stetig, wo der Nenner nicht verschwindet.
- Polynome $p(x) = \sum_{k=0}^{n} a_k x^k$ sind stetig.
- Rationale Funktionen $r(x) = \frac{p(x)}{q(x)}$ sind dort stetig, we das Nennerpolynom q(x) nicht verschwindet.
- Sinus- $(\sin x)$ und Kosinusfunktion $(\cos x)$ sind stetig.
- Der Tangens $(\tan x = \frac{\sin x}{\cos x})$ ist stetig, falls $\cos x \neq 0$, dh falls $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$.
- Exponential- und Logarithmusfunktionen sind in ihrem Definitionsbereichen stetig.
- Zusammensetzung stetiger Funktionen ist stetig.
- Eine zusammegesetzte Funktion kann dort unstetig sein, wo eine der verwendeten Funktionen nicht stetig ist.

4.2.3 Eigenschaften stetiger Funktionen

Theorem Zwischenwertsatz

Ist f im Interval [a, b] stetig, dann nimmt f jeden Wert zwischen f(a) und f(b) (inklusive) mindestens einmal an.

Corollary - Nullstellensatz von Bolzano

Ist f auf [a,b] stetig und gilt f(a)f(b) < 0, dann besitzt f in [a,b] wenigstens eine Nullstelle, dh. $\exists x \in [a,b]$ mit f(x) = 0

In anderen Worten: Wenn eine Funktion im Bereich [a,b] stetig ist und es vom Intervall a zu b einen Vorzeichenwechsel gibt, dann gibt es mindestens eine Nullstelle.

4.2.4 Regula Falsi

Basierend auf dem Nullstellensatz von Bolzano.

Der Schnittpunkt der Sekante (grün) durch (a, f(a)) und (b, f(b)) mit der x-Achse ergibt eine erste Näherung für die Nullstelle (NS) von f:

$$x=a-f(a)\tfrac{b-a}{f(b)-f(a)}=\tfrac{af(b)-bf(a)}{f(b)-f(a)}$$

Gilt dann f(x)f(a) < 0, dann liegt die NS im Intervall [a, x], sonst in [b, x].

Wiederhole die Prozedur mit dem Intervall welches die NS enthält!

4.3 Beispiele

4.3.1 Geschickt erweitern

$$\lim_{x\to 1} \frac{x-1}{\sqrt{x}-1} = \lim_{x\to 1} \frac{x-1}{\sqrt{x}-1} \times \frac{\sqrt{x}+1}{\sqrt{x}+1} = \lim_{x\to 1} \frac{(x-1)(\sqrt{x}+1)}{x-1} =$$

$$\lim_{x\to 1}(\sqrt{x}+1) = \lim_{x\to 1}\sqrt{x} + \lim_{x\to 1}1 = 1+1 = 2$$

4.3.2 GW Polynom

$$\lim_{x \to 1} (x^7 - 2x^5 + 1)^{35} = (1^7 - 2 \times 1^5 + 1)^{35} = 0$$

4.3.3 GW Quotient

$$\lim_{x\to 2}\frac{5x^3+4}{x-3}=\frac{\lim_{x\to 2}5x^3+4}{\lim_{x\to 2}x-3} \text{ und wegen der Regel für Polynome:}$$

$$\lim_{x \to 2} \frac{5x^3 + 4}{x - 3} = \frac{5 \times 2^3 + 4}{2 - 3} = -44$$

SW04 Differentialrechnung I – Tangente und Ableitung

5.1 Die Sekante

Steigung: $m = \frac{\Delta y}{\Delta x}$

Wobei $\Delta x = x_1 - x_0$ und $\Delta y = y_1 - y_0$

5.1.1 Sekante durch P und Q

 $P(x_0|f(x_0)), Q(x_1|f(x_1))$ auf dem Graphen g(f)

Steigung der Sekante durch P und Q:

$$m = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Sekantengleichung (Punkt-Richtungs-Form)

$$(y - y_0) = m(x - x_0)$$

Steigung: $m = \frac{\Delta y}{\Delta x} =$ Differenzquotient von f an der Stelle x_0

5.2 Tangente und Ableitung

5.2.1 Beispiel Quadratische Funktion

Gegeben die Funktion (rot) $f(x) = x^2$. Gesucht der Differenzquotient von f an der Stelle x_0 :

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
$$\frac{(x_0 + \Delta x)^2 - x_0^2}{\Delta x}$$
$$\frac{x_0^2 + 2x_0 \Delta x + \Delta x^2 - x_0^2}{\Delta x}$$
$$\frac{2x_0 \Delta x + \Delta x^2}{\Delta x} = 2x_0 + \Delta x$$

Steigung der Sekante : $2x_0 + \Delta x$

Gleichung der Sekante: $y = x_0^2 + (2x_0 + \Delta x)(x - x_0) = (2x_0 + \Delta x)x - (x_0 + \Delta x)x_0.$

Für die Tangente an der Stelle x_0 geht man mit dem Punkt Q immer näher an Punkt P, bis $\Delta x = 0$ (Weil die Tangente f nur an einer Stelle berührt)

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} 2x_0 + \Delta x = 2x_0 = \text{Steigung der Tangente}$$

Damit Gleichung der Tangente an f:

$$(y - f(x_0)) = 2x_0(x - x_0)$$

$$y = f(x_0) + 2x_0(x - x_0) = x_0^2 + 2x_0(x - x_0) = 2x_0x - x_0^2$$

5.3 Ableitung der Potenzfunktion

$$f(x) = x^n$$
$$f'(x) = nx^{n-1}$$

5.3.1 Beispiel Tangente

Tangente t(x) an der Stelle P(1,1) an der Kurve $f(x) = x^2$?

$$f(x) = x^2, f'(x) = 2x$$

$$P(1,1), P(x_0/f(x_0))$$

$$f'(x_0) = 2x_0 = 2 \times 1 = 2 =$$
Steigung Tangente

$$t(x) = f(x_0) + f'(x_0) \times (x - x_0)$$

$$= 1 + 2(x - 1) = 1 + 2x - 2 = 2x - 1$$

5.3.2 Newton-Raphson Verfahren

Wir wollen die (nichtlineare) Gleichung f(x) = 0 lösen, dh wir wollen ein x_* so finden, dass $f(x_*) = 0$. Idee: Starte mit x_0 , und berechne den Schnittpunkt x_1 der Tangente durch $(x_0, f(x_0))$ mit der x-Achse. Wiederhole diesen Schritt!

$$f'(x_k) = \frac{f(x_k)}{x_k - x_{k+1}} = \frac{x_k}{-\Delta x_k}$$

Ausgehend von x_0 , iterieren wir über k = 1, 2, ...

$$f'(x_k)\Delta x_k = -f(x_k)$$

5.4 Einige Ableitungsregeln

5.4.1 Theorem Faktorregel

Falls f'(x) existiert, dann darf ein konstanter Faktor $c \in \mathbb{R}$ vor die Ableitung gezogen werden.

$$[c\times f(x)]'=c\times f'(x)$$
 auch geschrieben als $\frac{d}{dx}[c\times f(x)]=c\times \frac{d}{dx}[f(x)]$

5.4.2 Theorem Produkteregel

Existieren die Ableitungen u'(x) und v'(x), dann gilt für die Ableitungen des Produkts die Regel:

$$[u(x) \times v(x)]' = u'(x)v(x) + u(x)v'(x)$$

auch geschrieben als

$$\frac{d}{dx}(u(x)v(x)) = \frac{d}{dx}[u(x)]v(x) + u(x) \times \frac{d}{dx}[v(x)]$$

5.5 Quotientenregel

Existieren die Ableitungen u'(x) und v'(x), dann gilt für die Ableitungen des Quotienten von u(x) und $v(x) \neq 0$ die Regel:

$$[\frac{u(x)}{v(x)}]' = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$$
kurz $[\frac{u}{v}]' = \frac{u'v - uv'}{v^2}$

auch geschrieben als

$$\frac{d}{dx}\big[\frac{u(x)}{v(x)}\big] = \frac{\frac{d}{dx}[u(x)]v(x) - u(x)\frac{d}{dx}v(x)}{(v(x))^2} \text{ kurz } \big[\frac{u}{v}\big]' = \frac{u'v - uv'}{v^2}$$

5.6 Formeln

Steigung: $m = \frac{\Delta y}{\Delta x}$

Tangenten Gleichung: $t(x) = f(x_0) + f'(x_0) \times (x - x_0)$

Faktorregel: $[c \times f(x)]' = c \times f'(x)$

Produkteregel: $[u(x) \times v(x)]' = u'(x)v(x) + u(x)v'(x)$

Quotienten
regel: $[\frac{u(x)}{v(x)}]' = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$ kurz $[\frac{u}{v}]' = \frac{u'v - uv'}{v^2}$

5.6.1 Ableitungen

f(x)	f'(x)
x^n	nx^{n-1}
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\frac{1}{\cos^2(x)}$
e^x	e^x $3e^{3x}$
e^{3x}	$3e^{3x}$
$c(c \in \mathbb{R})$	0
x	1
$\sum_{k=0}^{n} c_k x^k$	$\sum_{k=0}^{n} c_k x^{k-1}$

SW05 Differentialrechnung II — Kettenregel

6.1 Einseitige Ableitung

Strebt Δx in der Definition der Ableitung von der positiven Seite gegen Null erhält man die rechtsseitige Ableitung von der f an der Stelle x_0 :

$$f'(x_0^+) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 (analog für die linksseitige Ableitung)

6.2 Kettenregel

Auch kombinierbar mit anderen Regeln:

$$(f(g(x)))' = f'(g(x)) \times g'(x)$$

6.3 Umkehrfunktion

Durch die Abbildung f wird der Punkt x auf f(x) abgebildet. Die Umkehrabbildung f^{-1} bildet diesen Punkt wieder auf x ab, dh. es gilt $f(f^{-1}(x)) = Id(x) = x$ (die identische Abbildung Id bildet x auf x ab.)

Leite $f(f^{-1}(x)) = x$ nach x ab.

$$[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$$

6.4 Ableitung Logarithmus

$$(\ln(x))' = \frac{1}{x}$$
$$(a \times \ln(x))' = \frac{a}{x}$$

6.5 Ableitung Wurzel

$$(\sqrt[n]{x^m})' = (x^{\frac{m}{n}})' = \frac{m}{n} x^{\frac{m}{n} - 1}$$

6.6 Ableitungen Arkusfunktionen

f(x)	f'(x)	
$\sin x$	$\cos x$	
$\cos x$	$-\sin x$	
$\tan x$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}} *$	
$\arccos x$	$\frac{1}{\sqrt{1-x^2}} *$ $-\frac{1}{\sqrt{1-x^2}}$	
$\arctan x$	$\frac{1}{1+x^2}$	
* falls $x \in (-1,1)$		

6.7 Ableitungen Areafunktionen

f(x)	f'(x)
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$\frac{1}{\cosh^2 x} = 1 + \tanh^2 x$
$\operatorname{arsinh} x$	$\frac{1}{\sqrt{1+x2}}$
$\operatorname{arcosh} x$	$\frac{1}{\sqrt{1-x^2}}$
$\operatorname{artanh} x$	$\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1-x^2}$

SW06 Differentialrechnung III – Differential, höhere Ableitungen

7.1 Implizite Ableitung

Explizite Form: y = f(x)

Man kann für jedes x den Funktionswert berechnen und die Kurve zeichnen.

Implizite Form: F(x,y) = 0

Oft ist eine Auflösung nach y nicht möglich. Leite Gliedweise nach x ab, wobei y=y(x) als Funktion von x betrachtet werden muss und mit der Kettenregel ableiten.

7.1.1 Beispiel

$$x^2 + y^2 = R^2$$

$$F(x,y) = x^2 + y^2 - R^2 = 0$$

 $x^2 + (y(x))^2 - R^2 = 0$ | differenzieren nach x, Achtung: Leite sowohl was links als auch rechts vom "=" ist!!

$$2x + 2y(x) \times y'(x) - 0 = 0$$

$$y'(x) \times y(x) = -x$$

$$y'(x) = -\frac{x}{y(x)} = -\frac{x}{\sqrt{R^2 - x^2}}$$

7.1.2 y nach x

Kettenregel

$$y^3 = (y(x))^3$$

 $3y(x)^2y'(x) = 3y^2y'$

Produkteregel Kettenregel

$$2xy^2 = 2x \times y^2$$
 | Produkteregel!

$$(2x)' \times y^2 + 2x \times (y^2)'$$
 | Kettenregel für $(y^2)'$

$$(2x)' \times y^2 + 2x \times (2y^2 \times y')$$

$$2y^2 + 2x \times 2yy' = 2y^2 + 4xyy'$$

7.2 Differential

Um wieviel verändert sich die Funktion y=f(x), wenn man sich von x_0 um Δx entfernt?

Es gilt
$$\Delta y = f(x_0 + \Delta x) - f(x_0)!$$

Steigung der Tangente (blau) in x_0

$$f'(x_0) = \frac{dy}{dx}$$

Die Symbole dx und dy nennt man Differentiale. Das Differential von f an der Stelle x_0 ist

$$dy = f'(x_0)dx$$

Es gilt also approximativ:

$$\Delta y \approx dy = f'(x_0)dx$$

Statt dy und Δy verwendet man auch die Bezeichnung $d\hat{f}$ und Δf .

- Das Differential df = dy = f'(x)dx der Funktion y = f(x) an der Stelle x ist gleich der Änderungen des Ordinaten- oder y-Wertes der Tangente durch P(x, f(x)), wenn man den Abszissen- oder x-Wert um $dx = \Delta x$ ändert.
- Das Differential dy von y = f(x) an der Stelle x wird verwendet, um die wahre Änderung von Δy zu approximieren

$$\Delta y \approx dy = f'(x)dx$$

Diese Approximation ist umso genauer, je kleiner $dx = \Delta x$ ist.

- Das Differential dy ist gleich der Änderung der an der Stelle x linearisierten Funktion, wenn sich x um $dx=\Delta x$ ändert.
- Für eine lineare Funktion gilt somit $dy = \Delta y$
- Vorteil gegenüber der exakten Änderung: die Berechnung für ein anderes $dx = \Delta x$ ist lediglich eine Multiplikation mit f'(x)

7.2.1 Beispiel Differential

Sei $f(x) = x^2 + e^{x-1}$. Um wieviel verändert sich f, wenn x von 1 auf 1.1 erhöht wird?

$$f(x) = x^2 + e^{x-1}$$

$$x_0 = 1, x_1 = 1.1$$

Exakt:

$$f(x_1) - f(x_0) = 1.1^2 + e^{1.1 - 1} - (1^2 + e^{1 - 1}) = 1.21 + e^0.1 - 2 = 0.315$$

Approximativ:

$$f'(x) = 2x + e^{x-1} \times 1$$

$$f'(x_0) = 2 \times 1 + e^{1-1} = 3$$

$$f'(x) = 3 = \frac{dy}{dx}; dy = 3dx \mid \text{Differentialschreibweise}$$

$$\Delta y = f(x_1) - f(x_0); \Delta x = x_1 - x_0$$

$$\Delta y \approx dy = 3dx \approx \Delta x = 3 \times 0.1 = 0.3$$

7.2.2 Rechenregeln für Differentiale

Ableitungsregeln	Regeln für Differentiale
[c]' = 0	d[c] = 0
[cf]' = cf'	d[cf] = cdf
[f+g]' = f' + g'	d[f+g] = df + dg
[fg]' = f'g + fg'	$d[fg] = df \times g + f \times dg$
$[\frac{f}{g}]' = \frac{f'g - fg'}{g^2}$	$d[\frac{f}{g}] = \frac{df \times g - f \times dg}{g^2}$

7.3 Monotonie

- Gilt f'(x) > 0 in einem Intervall I, dann ist f dort streng monoton wachsend.
- Gilt $f'(x) \ge 0$ in einem Intervall I, dann ist f dort monoton wachsend.

- Gilt f'(x) < 0 in einem Intervall I, dann ist f dort streng monoton fallend.
- Gilt $f'(x) \leq 0$ in einem Intervall I, dann ist f dort monoton fallend.

7.3.1 Lokale oder relative Extrema

Notwendige Bedingung für ein lokales Extremum von f in x_0 : $f'(x_0) = 0$ Diese Bedingung ist aber nicht hinreichend, es ist erst ein **kritischer Punkt**

Wenn $f'(x_0) = 0$ und:

 $f''(x_0) > 0$ dann liegt ein lokales (oder relatives) Minimum vor. $f''(x_0) < 0$ dann liegt ein lokales (oder relatives) Maximum vor.

7.4 Höhere Ableitungen

$$y'' = f''(x) = \frac{d}{dx}[f'(x)] = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d^2y}{dx^2}$$

Geometrische Bedeutung: die 2. Ableitung ist positiv wenn die 1. Ableitung (also die Steigung) zunimmt wenn man sich in Richtung zunehmender x entlang der Kurve bewegt.

- Gilt f''(x) > 0 in einem Intervall I, dann weist f dort eine **Linkskrümmung** auf. Wir sagen f ist **konvex**.
- Gilt f''(x) < 0 in einem Intervall I, dann weist f dort eine **Rechtskrümmung** auf. Wir sagen f ist **konkav**.

7.5 Krümmung

Die Krümmung der Kurve y = f(x) an der Stelle x ist:

$$K(x) = \frac{y''(x)}{[1 + (y'(x))^2]^{\frac{3}{2}}}$$
;
 Krümmungskreisradius $p(x) = \frac{1}{|K(x)|}$

Für K > 0 hat man eine Links- und für K < 0 eine Rechtskrümmung.

SW07 DifferentialrechnungIV – Kurvendiskussion,Optimierung

8.1 Parameterdarstellung von Kurven

Neben der Form y=f(x) kann man Kurven auch in der Parameterform beschreiben. Jedem Wert des Parameters t wird dabei ein Punkt $\vec{x}(t)$ in der Ebene (oder auch im Raum) zugeordnet. Man nennt dies auch Parameterdarstellung der Kurve.

Eine Kurve γ ist eine Abb. der Form:

$$\gamma: [a,b] \to \mathbb{R}^2, t \mapsto \vec{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

Für t=a ist man am Kurvenanfang, für ein beliebiges $t\in [a,b]$ an der Stelle $\vec{x}(t)$ und für t=b am Kurvenende.

Für jeden Punkt \vec{x} auf der Kurve gibt es genau ein $t \in [a, b]$ so, dass $\vec{x}(t)$ (und auch die Umkehrung gibt!)

8.1.1 Beispiel

Funktion: $f:[a,b] \to \mathbb{R}, x \mapsto y = f(x)$

Parameter: t = x

Parameterform: $\gamma: [a,b] \to \mathbb{R}^2, t \mapsto \vec{x}(t) = \begin{bmatrix} t \\ f(t) \end{bmatrix}$

Funktion:
$$y = x^2$$

 $f: \mathbb{R} \to \mathbb{R}_0^+, x \mapsto x^2$

Kurve:
$$c: \mathbb{R} \to \mathbb{R} x \mathbb{R}_0^+, t \mapsto \begin{bmatrix} t \\ t^2 \end{bmatrix}$$

8.1.2 Ableitung eines Vektors

Einen Vektor $\vec{x}(t)$ leitet man nach dem Parameter t ab, indem man jede Komponente des Vektors nach t ableitet.

8.1.3 Ableitung einer in Parameterform gegebenen Funktion

Parameterform der Kurve γ

$$\vec{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, a \le t \le b.$$

Ist γ gleich dem Graphen von y = f(x) dann gilt für die Steigung der Tangente

$$y' = \frac{\dot{y}}{\dot{x}}$$

wobei \dot{y} die Ableitung von y(t), bzw \dot{x} von x(t) nach t ist.

Beachte: die Steigung der Tangente an y' ist die selbe wie die Steigung des Vektors $\dot{\vec{x}}(t)$. Und diese lässt sich aus den beiden Komponenten $\dot{y}(t)$ und $\dot{x}(t)$ berechnen.

8.1.4 Krümmungskreismittelpunkt

Punkt auf der Kurve $\vec{x}(t) = [x, y(x)]^T$, Tangente $\vec{t} = [1, y'(x)]^T$, Normale $\vec{n}(x) = [-y'(x), 1]^T$. Mittelpunkt des Krümmungskreises (rot):

$$\vec{x}_M(x) = \vec{x}(x) + \frac{1}{K(x)} \frac{\vec{n}(x)}{|\vec{n}(x)|}$$

Damit hat man für den Krümmungskreismittelpunkt:

$$\vec{x}_M(x) = \begin{bmatrix} x_M(x) \\ y_M(x) \end{bmatrix} = \begin{bmatrix} x - y'(x) \frac{1 + (y'(x))^2}{y''(x)} \\ y(x) + \frac{1 + (y'(x))^2}{y''(x)} \end{bmatrix} \text{ wobei } K(x) = \frac{y''(x)}{(1 + (y'(x))^2)^{\frac{3}{2}}}$$

8.2 Kurven in Polarkoordinaten

Oft verwendet man anstelle der kartesischen Koordinaten (x,y) Polarkoordinaten (r,ϕ) . Für die Koordinatentransformation gilt:

Polar- zu kartesischen Koordinaten:

$$x = r \cos \phi$$

$$y = r \sin \phi$$

Kartesiche zu Polarkoordinaten:

$$r = \sqrt{x^2 + y^2}$$

$$\tan\phi = \tfrac{y}{x}$$

Beachte: Verwendet man $\phi = \arctan(\frac{y}{x})$ erhält man $\phi \in (\frac{-\pi}{2}, \frac{\pi}{2})$. Die Vorzeichen von x und y bestimmen, in welchem Quadranten der Punkt P liegt. Damit kann dann $\phi \in [0, 2\pi]$ bestimmt werden.

Eine in Polarkoordinaten gegebene Kurve γ wird durch folgende Abbildung spezifiziert:

$$\gamma: [\alpha, \beta] \to \mathbb{R}, \phi \mapsto r = r(\phi)$$

Jedem Winkel $\phi \in [\alpha, \beta]$ wird der Abstand der Kurve $r = r(\phi)$ vom Ursprung zugeordnet.

Beachte: Alle Winkel werden von der positiven x-Achse im Gegenuhrzeigersinn gemessen. Hier ist damit $\alpha < 0$ und $\beta > 0$.

8.2.1 Ableitung einer in Polarkoordinaten gegebene Funktion

Die gewöhnliche Ableitung einer Funktion wird bestimmt, indem man die Polarkoordinaten in Parameterform transformiert

$$x = x(\phi) = r(\phi)\cos\phi$$

$$xy = y(\phi) = r(\phi)\sin\phi$$

Hier ist jetzt ϕ der Parameter. Formel $y'(x)=\frac{\dot{y}}{\dot{x}}$

$$y'(x) = \frac{dy}{dx} = \frac{\frac{dy}{d\phi}}{\frac{dx}{d\phi}} = \frac{\dot{r}(\phi)\sin\phi + r(\phi)\cos\phi}{\dot{r}(\phi)\cos\phi - r(\phi)\sin\phi}$$

8.3 Kurvendiskussion

Generelles Vorgehen:

- Definitions- und Wertebereich, Definitionslücken, Unstetigkeitsstellen
- Symmetrien: ist f gerade f(x) = f(-x), ungerade f(x) = -f(-x) oder T-periodisch f(x+T) = f(x).
- Nullstellen f(x) = 0; Schnittpunkte mit y-Achse f(0) = y
- Pole: Nenner verschwindet; senkrechte Asymptoten: Polgeraden
- Ableitungen in der Regel bis zur 3. Ordnung
- Relative Extremwerte (Maxima, Minima): Notwendige Bedingung f'(x) = 0, f''(x) > 0 = Minima, f''(x) < 0 = Maxima.
- Monotonieeigenschaften, Wendepunkte, Krümmung
- Asymptotisches Verhalten für $x \to \pm \infty$
- Krümmungskreismittelpunkt
- Graph G(f) der Funktion f skizzieren

8.3.1 Symmetrien Beispiele

Funktion	Bemerkung
x^{2n}	Gerade: x^2, x^4, x^6
x^{2n-1}	Ungerade: x, x^3, x^5
$\cos 3x$	Periodisch: $T = \frac{2\pi}{3}$
e^{-x^2}	Gerade
$\sin 2x$	Ungerade, Periodisch $T=\pi$
$x^3 \sin x$	Gerade

In Quotient-funktion: Zähler gerade, Nenner ungerade = Funktion ungerade.

8.3.2 Wende- und Sattelpunkte

Notwendige und hinreichende Bedingung für einen Wendepunkt der Funktion y=f(x) in x_0 :

 $f''(x_0) = 0$, und $f'''(x_0) \neq 0$.

Gilt zudem $f'(x_0) = 0$, dann hat man in x_0 einen Sattelpunkt.

8.3.3 Beispiel

Funktion: $y = \frac{-5x^2+5}{x^3}$

Definitions- und Wertebereich:

$$D = \mathbb{R} \setminus \{0\}, W = \mathbb{R}$$

Symmetrie:

Zähler gerade, Nenner ungerade = Funktion ungerade.

Nullstellen:
$$y = \frac{-5x^2 + 5}{x^3} = 5\frac{1 - x^2}{x^3} = 5\frac{(1+x)(1-x)}{x^3}$$

$$x_{1,2} = -1, 1$$

Polstellen bei 0:
$$\lim_{x\to 0^{-}} \frac{-5x^{2}+5}{x^{3}} = \frac{5}{0^{-}} = -\infty$$

$$\lim_{x \to 0^+} \frac{-5x^2 + 5}{x^3} = \frac{5}{0^+} = \infty$$

Ableitungen:
$$y = \frac{-5x^2+5}{x^3}$$

$$y' = 5\frac{x^2 - 3}{x^4}$$

$$y'' = 5\frac{12-2x^2}{x^5}$$

$$y''' = 30 \frac{x^2 - 10}{x^6}$$

Extrema:
$$y' = 5\frac{x^2 - 3}{x^4} = 0; x^2 - 3 = 0; x_{1,2} = \pm \sqrt{3}$$

$$y''(x_1) = y''(\sqrt{3}) = 5\frac{12 - 2\sqrt{3}^2}{\sqrt{3}^5} > 0$$
 Minimum

$$y''(x_2) = y''(-\sqrt{3}) = 5\frac{12-2\times-\sqrt{3}^2}{-\sqrt{3}^5} < 0$$
 Maximum

${\bf Wendepunkte:}$

$$y'' = 5\frac{12 - 2x^2}{x^5} = 0; 12 - 2x^2 = 0; 6 = x^2; x = \pm\sqrt{6}$$

$$y'''(\pm\sqrt{6}) = 30 \frac{(\pm\sqrt{6})^2 - 10}{(\pm\sqrt{6})^6} = 30 \frac{-4}{6^3} \neq 0$$

Wendepunkte bei $-\sqrt{6}$ und $\sqrt{6}$

Asymptotisches Verhalten:
$$\lim_{x\to\infty} \frac{5-5x^2}{x^3} = \lim_{x\to\infty} 5\frac{1-x^2}{x^3} = \lim_{x\to\infty} 5(\frac{1}{x^3}-\frac{1}{x}) = 5(\lim_{x\to\infty} \frac{1}{x^3}-\lim_{x\to\infty} \frac{1}{x}) = 0$$

8.4 Optimierungsproblem - Allgemeines Vorgehen

Bei Extremalwertprobleme (oder Extremwert- oder Extremalaufgaben) sucht man einen Extremwert für ein bestimmtes Problem, zB maximales Volumen, minimale Distanz, etc.

- Zuerst die Funktion bestimmen, welche das Problem beschreibt.
- Aus den Nullstellen der Ableitung (f'(x) = 0) erhält man Kandidaten für Extrempunkte x_0 (mit zugehörigen Extremwerten $f(x_0)$)
- Mit den höheren Ableitungen überprüft man, ob es sich um Minima, Maxima oder Sattelpunkte handelt:

```
Rel. Max in x_0: f^{(n)}(x_0) < 0, n gerade und f^{(k)}(x_0) = 0, für 1 \le k < n Rel. Min in x_0: f^{(n)}(x_0) > 0, n gerade und f^{(k)}(x_0) = 0, für 1 \le k < n Sattelpunkt x_0: f^{(n)}(x_0) \ne 0, n ungerade und f^{(k)}(x_0) = 0, für 2 \le k < n
```

• Die Funktionswerte der gefundenen Maxima (Minima) und die Werte der Funktion an den Rändern werden jetzt verglichen. Das grösste (kleinste) ist der gesuchte Extremwert.

8.4.1 Brechungsgesetz

???

8.5 Regel von de l'Hôpital

8.5.1 Theorem - Regel von de l'Hôpital für unbestimmte Ausdrücke der Form 0/0

Wir nehmen an f und g seien in einer Umgebung von x=a differenzierbar und $\lim_{x\to a} f(x)=0$ und $\lim_{x\to a} g(x)=0$. Dann gilt $\lim_{x\to a} \frac{f(x)}{g(x)}=\lim_{x\to a} \frac{f'(x)}{g'(x)}$ falls die rechte Seite existiert oder $\pm\infty$ ist.

Weiter gilt die Regel auch für die Grenzübergänge $x \to a^-, x \to a^+, x \to +\infty, x \to -\infty$.

8.5.2 Vorgehen

- Überprüfe, ob $\lim_{x \to a} \frac{f(x)}{g(x)}$ ein unbestimmter Ausdruck der Form 0/0 ist.
- Wenn ja, leite f und g separat ab.
- bestimme den Grenzwert $\lim_{x\to a}\frac{f'(x)}{g'(x)}$. Wenn dieser endlich ist oder $\pm\infty$, dann ist dies der gesuchte Grenzwert.

8.5.3 Vorgehen für weitere unbestimmte Ausdrücke

- \bullet Satz gilt entsprechend auch für unbestimmte Ausdrücke der Form $\frac{\infty}{\infty}$
- Unbestimmte Ausdrücke der Form $0 \times \infty$ bringt man mittels der Identität $f(x)g(x) = \frac{f(x)}{\frac{1}{g(x)}}$ auf einen unbestimmten Ausdruck der Form 0/0.
- Unbestimmte Ausdrücke der Form $\infty-\infty$ lassen sich of durch geeignete algebraische Umformungen auf unbestimmte Ausdrücke der Form 0/0 zurückführen.
- Unbestimmte Ausdrücke der Form $0^0, \infty^0, 1^\infty$ schreiben wir in der Form $y = f(x)^{g(x)}$, logarithmieren beide Seiten und erhalten dann mit $lny = g(x) \times ln(f(x))$ einen der oben besprochenen Ausdrücke.

SW08 Integralrechnung I – Flächenberechnung und Integral

Umkehrung der Differenzierung / Ableitung

9.1 Stammfunktion

Eine differenzierbare Funktion F(x) heisst Stammfunktion von f(x) falls: F'(x) = f(x)

Eigenschaften der Stammfunktion:

- Zu jeder stetigen Funktion f(x) gibt es ∞ -viele Stammfunktionen
- Zwei beliebige Stammfunktionen $F_1(x)$ und $F_2(x)$ unterscheiden sich nur durch eine additive Konstante, dh $F_1(x) F_2(x) = const$
- Ist $F_1(x)$ eine beliebige Stammfunktion von f(x), dann ist auch $F_2(x) = F_1(x) + C(C \in \mathbb{R})$ eine Stammfunktion von f(x). Daher ist die Menge aller Stammfunktionen von der Form $F(x) = F_1(x) + C$, wobei C eine beliebige (reelle) Konstante ist.

9.2 Umkehrung der Differentiation

Für Polynomfunktion:

$$f(x) = x^n \to F(x) = \frac{x^{n+1}}{n+1} + C$$

Für alle anderen Funktionen siehe: 5.6.1 Ableitungen Konstante +C dabei nicht vergessen!

9.3 Bestimmtes Integral Flächenberechnung

$$I = \int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x$$

$$\Delta x = \frac{b-a}{n}$$

$$x_k = a + k\Delta x$$

Wenn rechter Rand: f an der Stelle $x_k^* = x_k$

Wenn linker Rand: f an der Stelle $x_k^* = x_{k-1}$

$$S_n = \sum_{k=1}^n f(x_k) \Delta x$$
 auflösen bis alle k weg (siehe 9.4 Summen vereinfachen)

 $\lim_{n\to\infty} S_n$ auflösen, Resultat gleich Fläche im Interval [a,b]

9.3.1 Beispiel Rechter Rand

(siehe 9.4 Summen vereinfachen)

$$y = x^2, [0, 1], a = 0, b = 1$$

$$\Delta x = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n}$$

$$x_k = a + k\Delta x = 0 + k\frac{1}{n} = \frac{k}{n}$$

Rechter Rand: $x_k^* = x_k, f(x_k^*) = f(x_k) = x_k^2 = (\frac{k}{n})^2$

$$S_n = \sum_{k=1}^n f(x_k) \Delta x = \sum_{k=1}^n (\frac{k}{n})^2 \frac{1}{n} = \sum_{k=1}^n \frac{k^2}{n^3} = \frac{1}{n^3} \sum_{k=1}^n k^2$$

$$= \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} = \dots = \frac{1}{6} (1 + \frac{1}{n})(2 + \frac{1}{n})$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1}{6} (1 + \frac{1}{n})(2 + \frac{1}{n}) = \frac{1}{6} \lim_{n \to \infty} (1 + \frac{1}{n})(2 + \frac{1}{n}) = \frac{1}{3}$$

9.3.2 Beispiel Linker Rand

(siehe 9.4 Summen vereinfachen)

$$y = x^3, [0, 2], a = 0, b = 2$$

$$\Delta x = \frac{b-a}{n} = \frac{2-0}{n} = \frac{2}{n}$$

$$x_k = a + k\Delta x = 0 + k\frac{2}{n} = \frac{2k}{n}$$

Linker Rand:
$$x_k^* = x_{k-1}, f(x_k^*) = f(x_{k-1}) = x_{k-1}^3 = (\frac{2(k-1)}{n})^3$$

$$S_n = \sum_{k=1}^n f(x_k) \Delta x = \sum_{k=1}^n \left(\frac{2(k-1)}{n}\right)^3 \frac{2}{n} = \sum_{k=1}^n \left(\frac{2}{n}\right)^3 (k-1)^3 \frac{2}{n} = \sum_{k=1}^n \left(\frac{2}{n}\right)^4 (k-1)^3$$

$$(\frac{2}{n})^4 \sum_{k=1}^n (k-1)^3 = (\frac{2}{n})^4 \sum_{k=1}^{n-1} k^3 = (\frac{2}{n})^4 \frac{(n(n-1))^2}{n^4} = 4(1-\frac{1}{n})^2$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} 4(1-\frac{1}{n})^2 = 4 \lim_{n \to \infty} (1-\frac{1}{n})^2 = 4$$

9.4 Summen vereinfachen

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sum_{k=1}^{n} (k-1)^3 = \sum_{k=1}^{\mathbf{n-1}} k^3 = \left(\frac{n(n-1)}{2}\right)^2$$