Math 230A Notes

 $\mathrm{Fall},\ 2024$

Contents

T	реп	ining the Reals	·
2	$2.1 \\ 2.2$	ic Topology Compactness	ć
3	Nur	nerical Sequences and Series	17
	3.1	Sequences and Convergence	17
	3.2	Subsequences	20
	3.3	Diameter of a Set	24
	3.4	Divergence of a Sequence	27
	3.5	The Extended Real Numbers	30
	3.6	Series	36
	3.7	Tests for Convergence of Series	40

Chapter 1

Defining the Reals

Chapter 2

Basic Topology

2.1 Compactness

Definition 2.1.1. (Compact) Let (X,d) be a metric space and let $K \subseteq X$. K is said to be compact if every open cover of K has a finite subcover. That is, if $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ is any open cover of K, then

$$\exists \alpha_1, ..., \alpha_n \text{ such that } K \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n}$$

Example 2.1.1. Let (X, d) be a metric space and let $E \subseteq X$. If E is finite, then E is compact.

Proof. The reason is as follows:

Let $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ be any open cover of E. Our goal is to show that this open cover has a finite subcover. If $E=\emptyset$, there is nothing to prove.

If $E \neq \emptyset$, denote the elements of E by $x_1, ...x_n$:

$$E = \{x_1, ..., x_n\}$$

. We have:

$$x_1 \in E \subseteq \bigcup_{\alpha \in \Lambda} O_\alpha \implies \exists \alpha_1 \in \Lambda \text{ such that } x_1 \in O_{\alpha_1}$$

$$x_2 \in E \subseteq \bigcup_{\alpha \in \Lambda} O_\alpha \implies \exists \alpha_2 \in \Lambda \text{ such that } x_2 \in O_{\alpha_2}$$

$$\vdots$$

$$x_n \in E \subseteq \bigcup_{\alpha \in \Lambda} O_\alpha \implies \exists \alpha_n \in \Lambda \text{ such that } x_n \in O_{\alpha_n}$$

Hence,

$$E = x_1, ..., x_n \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n}$$

So, $O_{\alpha_1}, ..., O_{\alpha_n}$ is a finite subcover of E.

Example 2.1.2. Consider $(\mathbb{R}, ||)$ and let $E = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$. Prove that E is compact. (In general, if $a_n \to a$ in \mathbb{R} then $F = \{a_n : n \in \mathbb{N}\} \cup \{a\}$ is compact.)

Proof. Let $\{O_{\alpha}\}_{alpha\in\Lambda}$ be any open cover of E. Our goal is to show that this open cover has a finite subcover.

$$\begin{cases}
0 \in E \\
E \subseteq \bigcup_{\alpha \in \Lambda} O_{\alpha}
\end{cases} \implies 0 \in \bigcup_{\alpha \in \Lambda} O_{\alpha} \implies \exists \alpha_{0} \in \Lambda \text{ such that } 0 \in O_{\alpha_{0}}$$

$$\begin{cases}
0 \in O_{\alpha_{0}} \\
O_{\alpha_{0}} \text{ is open}
\end{cases} \implies \exists \epsilon > 0 \text{ such that } (-\epsilon, \epsilon) \subseteq O_{\alpha_{0}}$$
(I)

2.1. COMPACTNESS 5

By the archimedean property of \mathbb{R} ,

 $\exists m \in \mathbb{N} \text{ such that } \frac{1}{n} < \epsilon$

so

$$\forall n \ge m \quad \frac{1}{n} < \epsilon.$$

Hence

$$\forall n \ge m \quad \frac{1}{n} \in (-\epsilon, \epsilon) \subseteq O_{\alpha_0} \tag{II}$$

Notice that $E = \{0, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{m-1}, \frac{1}{m}, \frac{1}{m+1}, \frac{1}{m+2}, ...\}$ for $m \in \mathbb{N}$. All that remains is to find a subcover for the elements $\frac{1}{1}, ..., \frac{1}{m-1}$:

By (I), (II), and (III), we have

$$E \subseteq O_{\alpha_0} \cup \ldots \cup O_{\alpha_{m-1}}$$

Thus, $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ has a finite subcover. Therefore E is compact.

Remark. If X itself is compact, we say (X,d) is a compact metric space. If $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ is any collection of open sets such that $X=\bigcup_{\alpha\in\Lambda}O_{\alpha}$, then

$$\exists \alpha_1, ..., \alpha_n \in \Lambda \text{ such that } X = O_{\alpha_1} \cup ... \cup O_{\alpha_n}.$$

Theorem 2.1.1. Compact subsets of metric spaces are closed.

Proof. Let (X, d) be a metric space and let $K \subseteq X$ be compact. We want to show that K is closed. It is enough to show that K^c is open. To this end, we need to show that every point of K^c is an interior point. Let $a \in K^c$. Our goal is to show that

$$\exists \epsilon > 0 \text{ such that } N_{\epsilon}(a) \subseteq K^c.$$

That is, we want to show that

$$\exists \epsilon > 0 \text{ such that } N_{\epsilon}(a) \cap K = \emptyset.$$

We have

$$a \in K^c \implies a \notin K$$

 $\implies \forall x \in K \ d(x, a) > 0.$

For all $x \in K$, let

$$\epsilon_x = \frac{1}{4}d(x, a).$$

Clearlly,

$$\forall x \in K \ N_{\epsilon_x}(x) \cap N_{\epsilon_x}(a) = \emptyset.$$

Notice that

$$\{N_{\epsilon_x}(x)\}_{x\in K}$$
 is an open cover of K .

Since K is compact, there is a finite subcover

$$\exists x_1, ..., x_n \in K \text{ such that } K \subseteq N_{\epsilon_{x_1}}(x_1) \cup ... \cup N_{\epsilon_{x_n}}(x_n)$$

and of course

$$\begin{cases} N_{\epsilon_{x_1}}(x_1) \cap N_{\epsilon_{x_n}}(a) = \emptyset \\ \vdots \\ N_{\epsilon_{x_n}}(x_n) \cap N_{\epsilon_{x_n}}(a) = \emptyset \end{cases}$$

Let $\epsilon = \min\{\epsilon_{x_1}, ..., \epsilon_{x_n}\}$. Clearly,

$$N_{\epsilon}(a) \subseteq N_{\epsilon_{x_i}}(a) \ \forall 1 \le i \le n.$$

Hence

$$\begin{cases} N_{\epsilon_{x_1}}(x_1) \cap N_{\epsilon}(a) = \emptyset \\ \vdots \\ N_{\epsilon_{x_n}}(x_n) \cap N_{\epsilon}(a) = \emptyset \end{cases}$$

Therefore

$$N_{\epsilon}(a) \cap [N_{\epsilon_{x_1}}(x_1) \cup \ldots \cup N_{\epsilon_{x_n}}(x_n)] = \emptyset.$$

So,

$$N_{\epsilon}(a) \cap K = \emptyset.$$

Note. So, it has been shown that compact \implies closed and bounded \checkmark . However, it is not necessarily the case that closed and bounded \implies compact.

Theorem 2.1.2. Let (X, d) be a metric space and let $K \subseteq X$ be compact. Let $E \subseteq K$ be closed. Then E is compact.

Proof. Let $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ be an open cover of E. Our goal is to show that this cover has a finite subcover. Not that

 $E \text{ is closed} \implies E^c \text{ is open.}$

We have

$$E \subseteq K \subseteq X = E \cup E^c \subseteq \left(\bigcup_{\alpha \in \Lambda} O_\alpha\right) \cup E^c$$

Therefore, E^c together with $\{O_\alpha\}_{\alpha\in\Lambda}$ is an open cover for the compact set K. Since K is compact, this open cover has a finite subcover:

 $\exists \alpha_1, ..., \alpha_n \in \Lambda \text{ such that } K \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n} \cup E^c.$

Considering $E \subseteq K$, we can write

$$E \subseteq O_{\alpha_1} \cup \dots \cup O_{\alpha_n} \cup E^c.$$

However, $E \cap E^c = \emptyset$, so

$$E \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n}$$
.

So, $O_{\alpha_1},...,O_{\alpha_n}$ can be considered as the finite subcover that we were looking for.

Corollary 2.1.1. If F is closed and K is compact, then $F \cap K$ is compact. $(F \cap K)$ is a closed subset of the compact set K)

Consider $X = \mathbb{R}$ and $Y = [0, \infty)$ (Y is a subspace of X). Then

$$[0,\epsilon)$$
 is open in Y because $[0,\epsilon)=(-\epsilon,\epsilon)\cap Y$.

Theorem 2.1.3. Let (X, d) be a metric space and let $K \subseteq Y \subseteq X$ with $Y \neq \emptyset$. K is compact relative to X if and only if K is compact relative to Y.

Proof. (\Leftarrow) Suppose K is compact relative to Y. We want to show K is compact relative X. Let $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ be a collection of open sets in X that covers K. Our goal is to show that this cover has a finite subcover. Note that

$$K = K \cap Y \subseteq \left(\bigcup_{\alpha \in \Lambda} O_{\alpha}\right) \cap Y = \bigcup_{\alpha \in \Lambda} \left(O_{\alpha} \cap Y\right).$$

By Theorem 2.30, for each $\alpha \in \Lambda$, $O_{\alpha} \cap Y$ is an open set in the metric space (Y, d^Y) . So, $\{O_{\alpha} \cap Y\}_{\alpha \in \Lambda}$ is a collection of open sets in (Y, d^Y) that covers K. Since K is compact relative to Y, there exists a finite

2.1. COMPACTNESS 7

subcover:

$$\begin{split} \exists \alpha_1,...,\alpha_n \in \Lambda \text{ such that } K \subseteq (O_{\alpha_1} \cap Y) \cup ... \cup (O_{\alpha_n} \cap Y) \\ \subseteq (O_{\alpha_1} \cup ... \cup O_{\alpha_n}) \cap Y \\ \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n} \\ \Longrightarrow K \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n} \text{(we have a finite subcover)} \end{split}$$

 (\Rightarrow) Now suppose K is compact relative to X. We want to show K is compact relative to Y. Let $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$ be a collection of open sets in (Y,d^Y) that covers K. Our goal is to show that this cover has a finite subcover. It follows from Theorem 2.30 that

$$\forall \alpha \in \Lambda \ \exists O_{\alpha_{\text{open}}} \subseteq X \text{ such that } G_{\alpha} = O_{\alpha} \cap Y.$$

We have

$$K\subseteq\bigcup_{\alpha\in\Lambda}G_\alpha=\bigcup_{\alpha\in\Lambda}\left(O_\alpha\cap Y\right)=\left(\bigcup_{\alpha\in\Lambda}O_\alpha\right)\cap Y\subseteq\bigcup_{\alpha\in\Lambda}O_\alpha.$$

So, $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ is an open cover for K in the metric space (X,d). Since K is compact,

$$\exists \alpha_1, ..., \alpha_n \in \Lambda \text{ such that } K \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n}.$$

Therefore,

$$K = K \cap Y \subseteq (O_{\alpha_1} \cup \ldots \cup O_{\alpha_n}) \cap y = (O_{\alpha_1} \cap Y) \cup \ldots \cup (O_{\alpha_n} \cap Y) = G_{\alpha_1} \cup \ldots \cup G_{\alpha_n}.$$

(We have found the finite subcover we were looking for)

Consider $X = \mathbb{R}$ and $Y = (0, \infty)$.

(0,2] is closed and bounded in Y, but it is not closed and bounded in \mathbb{R} .

$$(0,2] = [-2,2] \cap Y$$

Theorem 2.1.4. If E is an infinite subset of a compact set K, then E has a limit point in K. $E' \cap K \neq \emptyset$.

Proof. Assume foolishly that $E' \cap K = \emptyset$; for every point you select in K, that point will not be a limit point of E. That is,

$$\begin{cases} \forall a \in E & a \notin E' \\ \forall b \in K \backslash E & b \notin E' \end{cases}$$

Therefore,

$$\begin{cases} \forall a \in E \ \exists \epsilon_a > 0 \text{ such that } N_{\epsilon_a}(a) \cap (E \setminus \{a\}) = \emptyset \\ \forall b \in K \setminus E \ \exists \delta_b > 0 \text{ such that } N_{\delta_b}(b) \cap (E \setminus \{b\}) = \emptyset \end{cases}$$

Thus

$$\begin{cases} \forall a \in E \ \exists \epsilon_a > 0 \text{ such that } N_{\epsilon_a}(a) \cap E = \{a\} \\ \forall b \in K \backslash E \ \exists \delta_b > 0 \text{ such that } N_{\epsilon_b}(b) \cap E = \emptyset \end{cases}$$

Clearly,
$$K \subseteq \left(\bigcup_{a \in E} N_{\epsilon_a}(a)\right) \cup \left(\bigcup_{b \in K \setminus E} N_{\delta_b}(b)\right)$$
. Since K is compact,

 $\exists a_1,...,a_n \in E, b_1,...,b_n \in K \backslash E \text{ such that } E \subseteq K \subseteq \left(N_{\epsilon_{a_1}}(a_1) \cup ... \cup N_{\epsilon_{a_n}}(a_n)\right) \cup \left(N_{\delta_{b_1}}(b_1) \cup ... \cup N_{\delta_{b_n}}(b_n)\right)$

Since for all $b \in K \setminus E$, $N_{\delta_b}(b) \cap E = \emptyset$, we can conclude that

$$E \subseteq (N_{\epsilon_{a_1}}(a_1) \cup \dots \cup N_{\epsilon_{a_n}}(a_n))$$

Hence,

$$\begin{split} E &= E \cap \left[N_{\epsilon_{a_1}} a_1 \cup \ldots \cup N_{\epsilon_{a_n}} a_n \right] \\ &= \left[E \cap N_{\epsilon_{a_1}} (a_1) \right] \cup \ldots \cup \left[E \cap N_{\epsilon_{a_n}} (a_n) \right] \\ &= \left\{ a_1 \right\} \cup \ldots \cup \left\{ a_n \right\} \\ &= \left\{ a_1, \ldots, a_n \right\}. \end{split}$$

This contradicts the assumption that E is infinite.

Remark. 1. *K* is compact

- 2. Every infinite subset of K has a limit point in K
- 3. Every sequence in K has a subsequence that converges to a point in K

$$\stackrel{A_1}{[1,\infty]}, \stackrel{A_2}{[2,\infty]}, \stackrel{A_3}{[3,\infty]}, \stackrel{A_4}{[4,\infty]}, \dots$$

$$A_2 \cap A_3 \cap A_4 = [4, \infty) = A_4$$

$$A_1 \cap A_3 \cap A_4 = A_4$$

$$\bigcap_{n=1}^{\infty} A_n = \emptyset$$

Theorem 2.1.5. Let (X,d) be a metric space , and let $\{K_{\alpha}\}_{{\alpha}\in\Lambda}$ be a collection of compact sets. Every finite intersection is nonempty.

Proof. Assume for contradiction that $\bigcap_{\alpha \in \Lambda} K_{\alpha} = \emptyset$. Let $\alpha_0 \in \Lambda$. We have

$$K_{\alpha_0} \cap \left(\bigcap_{\alpha \neq \alpha_0} K_a lpha\right) = \emptyset$$

So,

$$k_{alpha_0} \subseteq \left(\bigcup_{\alpha \in \Lambda, \alpha \neq \alpha_0} K_{\alpha}\right)^c \implies K_{\alpha_0} \subseteq \bigcup_{a\alpha \in Lambda, \alpha \neq \alpha_0} K_{\alpha}^c$$

So, $\{K_{\alpha}^c\}_{\alpha\in\Lambda,\alpha\neq\alpha_0}$ is an open cover of K_{α_0} . Since K_{α_0} is compact,

$$\exists \alpha_1, ..., \alpha_n \text{ such that } K_{\alpha_0} \subseteq K_{\alpha_1}^c \cap ... \cap K_{\alpha_n}^c \subseteq \left(\bigcap_{i=1}^n K_{\alpha_i}\right)^c$$

So,

$$K_{\alpha_0} \cap \left(\bigcap_{i=1}^n K_{\alpha_i}\right) = \emptyset.$$

This contradicts the assumption that every finite intersection is nonempty.

2.2. K-CELLS 9

2.2 K-Cells

Last time, we talked about:

- 1. Compact \implies closed and bounded.
- 2. Closed subsets of compact sets are compact.
- 3. If $\{K_{\alpha}\}_{{\alpha}\in\Lambda}$ is compact and every finite intersection is nonempty, then $\bigcap_{{\alpha}\in\Lambda}K_{\alpha}\neq\emptyset$

Corollary 2.2.1. If $K_1 \supseteq K_2 \supseteq K_3 \supseteq K_4 \supseteq ...$ is a sequence of nonempty compact sets, then $\bigcap_{i=1}^{\infty} K_n$ is nonempty.

Property 2.2.1. (Nested Interval Property) If $I_n = [a_n, b_n]$ is a sequence of closed intervals in \mathbb{R} such that $I_1 \supseteq I_2 \supseteq I_3 \supseteq ...$, then $\bigcap_{n=1}^{\infty} I_n$ is nonempty.

In \mathbb{R}^k , closed and bounded implies compactness.

Definition 2.2.1. (K-Cell) The set $I = [a_1, b_1] \times ... \times [a_k, b_k]$ is called a k-cell in \mathbb{R}^k .

For example, $I = [a_1, b_1] \times [a_2, b_2]$ in \mathbb{R}^2

Theorem 2.2.1. (Nested Cell Property) If $I_1 \supseteq I_2 \supseteq I_3 \supseteq ...$ is a nested sequence of k-cells, then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof. For each $n \in \mathbb{N}$, let

$$I_n = [a_1^{(1)}, b_1^{(1)}] \times \dots \times [a_k^{(k)}, b_k^{(k)}].$$

Also, let

$$\forall n \in \mathbb{N} \ \forall 1 \leq i \leq k \ A_i^{(i)} = [a_i^{(n)}, b_i^{(n)}].$$

So,

$$\forall n \in \mathbb{N} \ I_n = A_1^{(n)} \times ... \times A_k^{(n)}.$$

Since for each $n \in \mathbb{N}$, $I_n \supseteq I_{n+1}$, we have

$$\forall 1 \leq i \leq k \ A_i^{(n)} \supseteq A_i^{(n+1)}$$

That is,

$$I_{1} = A_{1}^{(1)} \times ... \times A_{k}^{(1)}$$

$$I_{2} = A_{2}^{(2)} \times ... \times A_{k}^{(2)}$$

$$\vdots$$

$$I_{n} = A_{n}^{(1)} \times ... \times A_{n}^{(n)}$$

$$\vdots$$

Hence, it follows from the nested interval property that

$$\exists x_1 \in \bigcap_{n=1}^{\infty} A_1^{(n)}, \exists x_2 \in \bigcap_{n=1}^{\infty} A_2^{(n)}, ... \exists x_k \in \bigcap n = 1^{\infty} A_k^{(n)}$$

Thus,

$$(x_1, ..., x_n) \in \left[\bigcap_{n=1}^{\infty} A_1^{(n)}\right] \times \left[\bigcap_{n=1}^{\infty} A_2^{(n)}\right] \times ... \times \left[\bigcap_{n=1}^{\infty} A_k^{(n)}\right]$$

$$\subseteq \bigcap_{n=1}^{\infty} \left[A_1^{(1)} \times ... \times A_k^{(n)}\right]$$

$$= \bigcap_{n=1}^{\infty} I_n$$

So,
$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset$$
.

Theorem 2.2.2. Every k-cell in \mathbb{R}^k is compact.

Proof. Here we will prove the claim for 2-cells. The proof for a general k-cell is completely analogous. Let $I = [a_1, b_1] \times [a_2, b_2]$ be a 2-cell. Let $\overrightarrow{a} = (a_1, a_2)$ and $\overrightarrow{b} = (b_1, b_2)$. Let $\delta = d(\overrightarrow{a}, \overrightarrow{b}) = ||\overrightarrow{a} - \overrightarrow{b}||_2 = sqrt(a_1 - b_1)^2 + (a_2 - b_2)^2$. Noe that if $\overrightarrow{x} = (x_1, x_2)$ and $\overrightarrow{y} = (y_1, y_2)$ are any two points in I, then

$$\begin{cases} x_1, y_1 \in [a_1, b_1] & \Longrightarrow |x_1 - y_1| \le |b_1 - a_1| \\ x_2, y_2 \in [a_2, b_2] & \Longrightarrow |x_2 - y_2| \le |b_2 - a_2| \end{cases} \Longrightarrow \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2} \le \sqrt{|a_1 - b_1|^2 + |a_2 - b_2|^2} = \delta$$
So

$$d(\overrightarrow{x}, \overrightarrow{y}) \leq \delta.$$

Let's assume for contradiction that I is not compact. So, there exists an open cover $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$ of I that does not have a finite subcover. For each $1 \leq i \leq 2$, divide $[a_i, b_i]$ into two subintervals of equal length:

$$c_i = \frac{a_i + b_i}{2}, \quad [a_i, b_i] = [a_i, c_i] \cup [c_i, b_i]$$

These subintervals determine four 2-cells. There is at least one of these four 2-cells that is not covered by any finite subcollection of $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$. Let's call it I_1 . Notice that

$$\forall \overrightarrow{x}, \overrightarrow{y} \in I_1 \ ||\overrightarrow{x}, \overrightarrow{y}||_2 \leq \frac{\delta}{2}$$

Now, subdivide I_1 into four 2-cells and continue this process. We will obtain a sequence of 2-cells

$$I_1, I_2, I_3, \dots$$

such that

$$(i)I\supseteq I_1\supseteq I_2\supseteq ...$$

$$(ii) \forall \overrightarrow{x}, \overrightarrow{y} \in I_n \ ||\overrightarrow{x} - \overrightarrow{y}|| \le \frac{\delta}{2^n}$$

 $(iii) \forall n \in \mathbb{N}, I_n \text{ cannot be covered by a finite subcollection of } \{G_\alpha\}_{\alpha \in \Lambda}.$

By the nested cell property,

$$\exists \overrightarrow{x}^* \in I \cap I_1 \cap I_2 \cap ...$$

In particular,

$$\overrightarrow{x}^* \in I \subseteq \{G_\alpha\}_{\alpha \in \Lambda} \implies \exists \alpha_0 \text{ such that } \overrightarrow{x}^* \in G_{\alpha_0}$$

We have

$$\left. \begin{array}{l} \overrightarrow{x}^* \in G_{\alpha_0} \\ G_{\alpha_0} \text{ is open} \end{array} \right\} \implies \exists r > 0 \text{ such that } N_r(\overrightarrow{x}^*) \subseteq G_{\alpha_0}$$

Choose $n \in \mathbb{N}$ such that $\frac{\delta}{2^n} < r$. We claim that $I_n \in N_r(\overrightarrow{x}^*)$. Indeed, suppose $\overrightarrow{y} \in I_n$, we have

$$\begin{cases} \overrightarrow{y} \in I_n \\ \overrightarrow{x}^* \in I_n \end{cases}$$

so $||\overrightarrow{y} - \overrightarrow{x}|| \le \frac{\delta}{2^n} < r$. Hence $\overrightarrow{y} \in N_r(\overrightarrow{x}^*)$. We have

$$\left. \begin{array}{l}
I_n \subseteq N_r(\overrightarrow{x}^*) \\
N_r(\overrightarrow{x}^*) \subseteq G_{\alpha_0}
\end{array} \right\} \implies I_n \subseteq G_{\alpha_0}$$

This contradicts (iii).

2.2. K-CELLS 11

Theorem 2.2.3. (Heine-Borel Theorem) Let $E \subseteq \mathbb{R}^k$. The following statements are equivalent:

- 1. E is closed and bounded.
- 2. E is compact.
- 3. Every infinite subset of E has a limit point in E.

Proof. We will show 1. \implies 2. \implies 3. \implies 1.

1. \implies 2. : Suppose E is closed and bounded. We want to show that E is compact. Since E is bounded, there exists a k-cell, I, that containes E. We have

$$\left. \begin{array}{l} E \subseteq I \\ I \text{ is compact} \\ E \text{ is closed} \end{array} \right\} \implies E \text{ is compact.}$$

2. \implies 3. : Supposed E is compact. We want to show E is limit point compact. This was proved last time, in Theorem 2.37.

3. \implies 1. Suppose E is limit point compact. We want to show that E is closed and bounded. This will be done in HW 6.

Theorem 2.2.4. (Bolzano-Weierstrass Theorem) If $E \subseteq \mathbb{R}^k$, E is infinite, and E is bounded, then $E' \neq \emptyset$.

Proof. If E is bounded, then there exists a k-cell I such that $E \subseteq I$. By Theorem 2.40, I is compact. By Theorem 2.41, I is limit point compact. So every infinite set in I has a limit point in I. In particular, E has a limit point in I. So, $E' \neq \emptyset$.

2.3 Separated Sets, Disconnected Sets, and Connected Sets

Definition 2.3.1. (Separated, Disconnected, Connected) Let (X, d) be a metric space.

- (i) Two sets $A, B \subseteq X$ are said to be disjoint if $A \cap B = \emptyset$.
- (ii) Two sets $A, B \subseteq X$ are said to be separated if $\overline{A} \cap B = \emptyset = A \cap \overline{B}$.
- (iii) A set $E \subseteq X$ is said to be disconnected if it can be written as a union of two nonempty separated sets A and B ($E = A \cup B$).
- (iv) A set $E \subseteq X$ is said to be connected if it is not disconnected.

Example 2.3.1. Consider \mathbb{R} with the standard metric.

*) A = (1,2) and B = (2,5) are serparated.

$$\overline{A} \cap B = [1,2] \cap (2,5) = \emptyset$$

$$A \cap \overline{B} = (1,2) \cap [2,5] = \emptyset$$

$$\Longrightarrow E = A \cup B \text{ is disconnected.}$$

*) C = (1, 2] and D - (2, 5) are disjoint but not separated.

$$C \cap \overline{D} = (1,2] \cap [2,5] = \{2\}$$

 $C \cup D = (1,5)$ is indeed connected.

Theorem 2.3.1. The following are equivalent:

- (i) A nonempty subset of \mathbb{R} is connected \iff it is a singleton or an interval.
- (ii) Let $E \subseteq \mathbb{R}$. E is connected \iff if $x, y \in E$ and x < z < y, then $z \in E$.

Proof. HW 6

So, in \mathbb{R} , connected \iff interval \iff path connected.

Definition 2.3.2. (Perfect Set) Let (X, d) be a metric space and let $E \subseteq X$..

- (i) E is said to be perfect if E' = E.
- (ii) E is said to be perfect if $E' \subseteq E$ and $E \subseteq E'$.
- (iii) E is said to be perfect if E is closed and every point of E is a limit point.
- (iv) E is said to be perfect if E is closed and E does not have isolated points.

Example 2.3.2.

- *) $E = [0,1] \implies E' = [0,1]$, so $E = E' \implies E$ is perfect.
- *) $E = [0,1] \cup \{2\} \implies 2$ is an isolated point of $E \implies E$ is not perfect.
- *) $E = \{\frac{1}{n} : n \in \mathbb{N}\} \implies E' = 0 \text{ so } E \neq E', \text{ so } E \text{ is not perfect. Is } E' \text{ perfect?}$

$$E' = 0 \implies (E')' = \emptyset$$
, so E' is not perfect.

Theorem 2.3.2. Let P be a nonempty perfect set in \mathbb{R}^k . Then P is uncountable. (An exmaple of an immediate consequence: [0,1] is uncountable)

Proof. In our proof, we will use the following Lemmas:

Lemma 2.3.1. Let (X,d) be a metric space and let $E \subseteq X$ be perfect. If V is any open set in X such that $V \cap E \neq \emptyset$, then $V \cap E$ is an infinite set.

Proof. Let $q \in V \cap E$. Then

$$\begin{cases} q \in V \implies \exists \delta > 0 \text{ such that } N_{\delta}(a) \subseteq V \\ q \in E \implies q \in E' \end{cases}$$
 (1)

$$q \in E' \implies N_{\delta}(q) \cap E$$
 is an infinite set. (2)

$$(1),(2) \implies V \cap E$$
 is infinite.

Lemma 2.3.2. Let $q \in \mathbb{R}^k$. Let r > 0. Then

$$\overline{N_r(q)} = \overline{\{z \in \mathbb{R}^k : \|z - q\|_2 < r\}} = \{z \in \mathbb{R}^k : \|z - q\|_2 \le r\} = C_r(q).$$

Notice that

Assume for contradiction P is countable. Let's denote the distinct elements of P by x_1, x_2, x_3, \dots :

$$P = \{x_1, x_2, x_3, ...\}$$

In what follows, we will construct a sequence of neighborhoods $V_1, V_2, V_3, ...$ such that

- $(i) \ \forall n \in \mathbb{N} \ \overline{V} \subseteq V_n$
- (ii) $\forall n \in \mathbb{N} \ x_n \notin \overline{V_{n+1}}$
- (iii) $\forall n \in \mathbb{N} \ V_n \cap P \notin \emptyset$

First, let's assume we have constructed these neighborhoods. Then for each $n \in \mathbb{N}$, let

$$K_n = \overline{V_n} \cap P \neq \emptyset$$

Note that

- (I) $\overline{V_{n+1}} \subseteq V_n \subseteq \overline{V_n}$ so $\overline{V_{n+1}} \cap P \subseteq \overline{V_n} \cap P \implies K_{n+1} \subseteq K_n$ for each n.
- $(II) \begin{array}{c} \overline{V} \text{ is a closed and bounded set in } \mathbb{R}^k \implies \overline{V_n} \text{ is compact.} \\ P \text{ is perfect} \implies P \text{ is closed.} \end{array} \right\} \implies K_n = \overline{V_n} \cap P \text{ is compact.}$

$$(I), (II) \stackrel{Thm2.36}{\Longrightarrow} \bigcap_{n=1}^{\infty} K_n \neq \emptyset$$
 (*)

Recall that $\forall n, K_n \subseteq P$, so

$$\bigcap_{n=1}^{\infty} K_n \subseteq P$$

However, if $b \in P$ then $b \notin \bigcap_{n=1}^{\infty} K_n$; indeed

$$b \in P \implies b = x_m \text{ for some } m \in \mathbb{N}$$

But $x_m \notin \overline{V_{m+1}}$ so $x_m \notin \overline{V_{m+1} \cap P} = K_{m+1}$. So $x_m \notin \bigcap_{n=1}^{\infty} K_n$. This tells us

$$\bigcap_{n=1}^{\infty} K_n = \emptyset \tag{**}$$

$$(*), (**) \implies \text{contradiction}.$$

It remains to show that there exists a seequence of neighborhoods $V_1, V_2, V_3, ...$ satisfying (i), (ii), (iii). We construct these sequences inductively.

Step 1: Fix $r_1 > 0$. Let $V_1 = N_{r_1}(x_1)$. Clearly, $V_1 \cap P \neq \emptyset$.

Step 2: Our goal is to construct a neighborhood V_2 such that

- $(i) \ \overline{V_2} \subseteq V_1$
- (ii) $x_1 \notin V_2$
- (iii) $V_2 \cap P \neq \emptyset$

We can do this just by using the fact that $V_1 \cap P \neq \emptyset$..

$$V_1 \cap P \neq \emptyset \stackrel{\text{lem2.3.1}}{\Longrightarrow} \exists y_1 \in V_1 \cap P \text{ such that } y_1 \neq x_1$$

 $y_1 \in V_1 \stackrel{V \text{ is open}}{\Longrightarrow} \exists \delta_1 > 0 \text{ such that } N_{\delta_1}(y_1) \subseteq V_1.$

Let $r_2 = \frac{1}{2} \min\{d(x_1, y_1), \delta_1\}$. Let $V_2 = N_{r_2}(y_1)$. We claim V_2 has all the desired properties. Indeed,

(i)
$$\overline{V_2} = \overline{N_{r_2}(y_1)} = \{z \in \mathbb{R}^k : ||z - y_1||_2 \le r_2\}$$

 $\subseteq \{z \in \mathbb{R}^k : ||z - y_1||_2 < \delta_1\} = N_{\delta_1}(y_1) \text{ since } r_2 < \delta_1$
 $\subseteq V_1$

(ii)
$$d(x_1, y_1) > r_2 \implies x_1 \notin \overline{N_{r_2}(y_1)} = \{ z \in \mathbb{R}^k : ||z - y_1||_2 \le r_2 \}$$

(iii)
$$y_1 \in V_2$$
 and $y_1 \in P \implies V_2 \cap P \neq \emptyset$

Step 3: Repeat the process to find V_3 :

- $(i) \ \overline{V_3} \subseteq V_2$
- (ii) $x_2 \notin \overline{V_3}$
- (iii) $V_3 \cap P \neq \emptyset$

Similarly, for each $k \geq 3$, we can construct V_{k+1} using only the fact that $V_k \cap P \neq \emptyset$.

Consider the following construction:

Stage 0:

Let $E_0 = [0, 1]$.

Stage 1:

Remove the segment $(\frac{1}{3}, \frac{2}{3})$. That is, remove the middle third of the interval, and define $E_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$.

Stage 2:

Take each of the intervals $[0, \frac{1}{3}]$ and $[\frac{2}{3}, 1]$ and remove the middle third of each those, and define

$$E_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{3}{9}\right] \cup \left[\frac{6}{9}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$

•

Continuing this process, we will obtain a sequence of compact sets:

$$E_1, E_2, E_3, \dots$$

such that

- 1. $E_1 \supseteq E_2 \supseteq E_3 \supseteq \dots$
- 2. For each $n \in \mathbb{N}$, E_n is the union of 2^n intervals of length $\frac{1}{3^n}$.

Definition 2.3.3. (The Cantor Set) The Cantor set is the set

$$P = \bigcap_{n=1}^{\infty} E_n$$

where each E_n is defined from above.

Observation. Notice that in order to obtain E_n , we remove intervals of the form $(\frac{3k+1}{3^n}, \frac{3k+2}{3^n})$.

Theorem 2.3.3. (Properties of the Cantor set) Let P denote the Cantor set. Then

- (i) P is compact
- (ii) P is nonempty
- (iii) P contains no segment
- (iv) P is perfect (and so uncountable)
- (v) P has measure zero

Proof. (i) P is an intersection of compact sets

- (ii) By Theorem 2.1.5, the intersection of a sequence of nested, nonempty, compact sets is nonempty
- (iii) Our goal is to show that P does not contain any set of the form (α, β) (where $0 \le \alpha, \beta \le 1$). Note that, by construction of P, the intervals of the form

$$I_{k,n}=(\frac{3k+1}{3^n},\frac{3k+2}{3^n}) \ \ n\in\mathbb{N},\ 0\leq k \text{ such that } 3k+2<3^n$$

have no intersection with P. However, (α, β) contains at least one of $I_{k,n}$'s. Indeed,

$$(\alpha,\beta) \text{ contains } (\frac{3k+1}{3^n}, \frac{3k+2}{3^n})$$

$$\iff \alpha < \frac{3k+1}{3^n} \text{ and } \frac{3k+2}{3^n} < \beta$$

$$\iff \frac{3^n\alpha - 1}{3} < k < \frac{3^n\beta - 2}{3}.$$

So, to ensure (α, β) contains aty least one of $I_{k,n}$, it is enough to choose $n \in \mathbb{N}$ such that

- $(1) \left(\frac{3^n \beta 2}{3}\right) \left(\frac{3^n \alpha 1}{3}\right) > 1$
- (2) $\frac{3^n \beta 2}{3} > 1$

We have

- $(1) \iff \frac{3^n(\beta-\alpha)-1}{3} > 4 \iff 3^n(\beta-\alpha) > 4 \iff 3^{-n} < \frac{\beta-\alpha}{4}$
- $(2) \iff 3^n\beta 2 > 3 \iff 3^n\beta > 5 \iff 3^{-n} < \tfrac{\beta}{5}$

So, if we choose $n \in \mathbb{N}$ such that $\frac{1}{3^n} < \min\{\frac{\beta - \alpha}{4}, \frac{\beta}{5}\}$, then we can be sure that (α, β) contains $I_{k,n}$ for some positive integer k.

(iv) P is perfect. We know that P is closed (because it's an intersection of closed sets). So, in order to prove that P is perfect, it is enough to show that every point of P is a limit point of P. Let $x \in P$. We want to show $x \in P'$. That is,

$$\forall \epsilon > 0 \ N_{\epsilon}(x) \cap (P \setminus \{x\}) \neq \emptyset.$$

We have

$$x \in P = \bigcap_{n=1}^{\infty} E_n \implies \forall n \in \mathbb{N} \ x \in E_n \implies \forall n \in \mathbb{N} \ \exists I_n \subseteq E_n \text{ such that } x \in I_n.$$

Choose n large enough—such that $|I_n| < \frac{\epsilon}{2}$. We have

$$x \in I_n \text{ and } |I_n| < \frac{\epsilon}{2} \implies I_n \subseteq (x - \epsilon, x + \epsilon).$$

At least one of these endpoints of I_n is not x, let's call it y. Then

$$y \in P, \ y \neq x, \ y \in I_n \subseteq (x - \epsilon, x + \epsilon).$$

So,

$$y \in (x - \epsilon, x + \epsilon) \cap (P \setminus \{x\}).$$

Therefore,

$$(x - \epsilon, x + \epsilon) \cap (P \setminus \{x\}) \neq \emptyset.$$

Chapter 3

Numerical Sequences and Series

3.1 Sequences and Convergence

Definition 3.1.1. (Convergence of a Sequence) Let (X,d) be a metric space and let (x_n) be a sequence in X. (x_n) converges to a limit $x \in X$ if and only if for every $\epsilon > 0$, we can find $N \in \mathbb{N}$ such that if n > N, $d(x_n, x) < \epsilon$.

Notation .

- 1. $x_n \to x$ as $n \to \infty$
- $2. x_n \to x$
- 3. $\lim_{x\to\infty} x_n = x$

Remark. (i) $x_n \to x \iff \forall \epsilon > 0 \ \exists N \in \mathbb{Z} \text{ such that } \forall n > N \ d(x_n, x) < \epsilon$.

- (ii) If (x_n) does not converge, we say it diverges.
- (iii) $x_n \to x \iff \forall \epsilon > 0 \ \exists N \in \mathbb{Z} \text{ such that } \forall n > N \ d(x_n, x) < \epsilon$ $x_n \to x \iff \forall \epsilon > 0 \ \exists N \in \mathbb{R} \text{ such that } \forall n > N \ d(x_n, x) < \epsilon$

Definition 3.1.2. (Bounded Sequence) Let (X, d) be a metric space and let (x_n) be a sequence in X. (x_n) is said to be bounded if the set $\{x_n : n \in \mathbb{N}\}$ is a bounded set in the metric space X.

$$(x_n)$$
 is bounded $\iff \exists q \in X \ \exists r > 0 \text{ such that } \{x_n : n \in \mathbb{N}\} \subseteq N_r(q)$
 $\iff \exists q \in X \ \exists r > 0 \text{ such that } d(x,q) < r$

Example 3.1.1. Consider \mathbb{R} equipped with the standard metric.

- (i) $x_n = (-1)^n$: this sequence is bounded, has a finite range $\{-1,1\}$, and diverges.
- (ii) $x_n = \frac{1}{n}$: this sequence is bounded, has an infinite range, and converges to 0.
- (iii) $x_n = 1$: this sequence is bounded, has a finite range, and converges to 1.
- (iv) $x_n = n^2$: this sequence is undbounded, has an infinite range, and diverges.

Example 3.1.2. Consider $Y = (0, \infty)$ with the induced metric from \mathbb{R} . $x_n = \frac{1}{n}$: this sequence is bounded, has infinite range, and diverges.

Theorem 3.1.1. (An equivalent characterization of convergence) Let (X, d) be a metric space.

 $x_n \to x \iff \forall \epsilon > 0 \ N_{\epsilon}(x)$ contains x_n for all but at most finitely many n.

Proof.

$$\begin{array}{lll} x_n \to x &\iff \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \text{such that} \ \forall n > N \ d(x_n,x) < \epsilon \\ &\iff \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \text{such that} \ \forall n > N \ x_n \in N_\epsilon(x) \\ &\iff \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \text{such that} \ N_\epsilon(x) \ \text{contains} \ x_n \ \forall n > N \\ &\iff \forall \epsilon > 0 \ N_\epsilon(x) \ \text{contains} \ x_n \ \text{for all but at most finitely many} \ n. \end{array}$$

Theorem 3.1.2. (Uniqueness of a Limit) Let (X, d) be a metric space and let (x_n) be a sequence in X. If $x_n \to x$ in X and $x_n \to \overline{x}$ in X, then $x = \overline{x}$.

To prove this theorem, we make use of the following lemma:

Lemma 3.1.1. Suppose $a \ge 0$. If $a < \epsilon \ \forall \epsilon > 0$, then a = 0.

Proof. In order to prove that $x = \bar{x}$, it is enough to show that $d(x, \bar{x}) = 0$. To this end, according to Lemma 3.1.1, it is enough to show that

$$\forall \epsilon > 0 \ d(x, \bar{x}) < epsilon.$$

Let $\epsilon > 0$ be given.

$$x_n \to x \implies \exists N_1 \text{ such that } \forall n > N_1 \ d(x_n, x) < \frac{\epsilon}{2}$$

 $x_n \to \bar{x} \implies \exists N_2 \text{ such that } \forall n > N_2 \ d(x_n, \bar{x}) < \frac{\epsilon}{2}$

Let $N = \max\{N_1, N_2\}$. Pick any n > N. We have

$$d(x, \bar{x}) \le d(x, x_n) + d(x_n, \bar{x})$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Theorem 3.1.3. (Convergent \Longrightarrow bounded) Let (X,d) be a metric space and let (x_n) be a sequence in X. If $x_n \to x$ in X, then (x_n) is bounded.

Proof. By definition of convergence with $\epsilon = 1$, we have

$$\exists N \in \mathbb{N} \text{ such that } \forall n > N \ x_n \in N_1(x).$$

Now, let $r = \max\{1, d(x_1, x), d(x_2, x), ..., d(x_n, x)\} + 1$. Then, clearly,

$$\forall n \in \mathbb{N} \ d(x_n, x) < r$$

Hence,

$$\forall n \in \mathbb{N} \ x_n \in N_r(x).$$

Therefore, (x_n) is bounded.

Corollary 3.1.1. (contrapositive) If (x_n) is NOT bounded in X, then (x_n) diverges in X.

Theorem 3.1.4. (Limit Point is a Limit of a Sequence) Let (X, d) be a metric space and let $E \subseteq X$. Suppose $x \in E'$. Then there exists a sequence $x_1, x_2, ...$ of distinct points in $E \setminus \{x\}$ that converges to x.

Proof. Since $x \in E'$,

$$\forall \epsilon > 0 \ N_{\epsilon}(x) \cap (E \setminus \{x\})$$
 is infinite.

In particular,

for
$$\epsilon=1$$
 $\exists x_1\in E\backslash\{x\}$ such that $d(x_1,x)<1$ for $\epsilon=\frac{1}{2}$ $\exists x_2\in E\backslash\{x\}$ such that $x_2\neq x_1\wedge d(x_2,x)<\frac{1}{2}$ for $\epsilon=\frac{1}{3}$ $\exists x_3\in E\backslash\{x\}$ such that $x_3\neq x_2\wedge d(x_3,x)<\frac{1}{3}$ \vdots for $\epsilon=\frac{1}{n}$ $\exists x_n\in E\backslash\{x\}$ such that $x_n\neq x_1,x_2,x_3,\ldots\wedge d(x_n,x)<\frac{1}{n}$ \vdots

In this way we obtain a sequence x_1, x_2, x_3, \ldots of distinct points in $E \setminus \{x\}$ that converges to x. Let $\epsilon > 0$ be given. We need to find N such that if n > N then $d(x_n, x) < \epsilon$. Let N be such that $\frac{1}{N} < \epsilon$ (archimedean property). Then $\forall n > N$ $d(x_n, n) < \frac{1}{n} < \frac{1}{N} < \epsilon$ as desired.

3.2 Subsequences

Definition 3.2.1. (Subsequences) Let (X, d) be a metric space and let (x_n) be a sequence in X. Let $n_1 < n_2 < n_3 < ...$ be a strictly increasing sequence of natural numbers. Then $(x_{n_1}, x_{n_2}, x_{n_3}, ...)$ is called a subsequence of $(x_1, x_2, x_3, ...)$, and is denoted by (x_{n_k}) , where $k \in \mathbb{N}$ indexes the subsequence.

Example 3.2.1. Let $(x_n) = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...)$.

- (i) $(1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, ...)$ is a subsequence.
- (ii) $(\frac{1}{100}, \frac{1}{1000}, \frac{1}{10000}, ...)$ is a subsequence.
- (iii) $(1, \frac{1}{5}, \frac{1}{3}, \frac{1}{7}, \frac{1}{2}, ...)$ is not a subsequence (we do not have $n_1 < n_2 < n_3 < ...$).

Remark. Suppose $(x_{n_1}, x_{n_2}, x_{n_3}, ...)$ is a subsequence of $(x_1, x_2, x_3, ...)$. Notice that $n_i \in \mathbb{N}$ and $n_1 < n_2 < n_3 < ...$ so

- (i) $n_1 \ge 1$
- (ii) For each $k \geq 2$, there are at least k-1 natural numbers, namely $n_1, ..., n_{k-1}$, strictly less than n_k , so $n_k \geq k$.

Theorem 3.2.1. Let (X,d) be a metric space and let (x_n) be a sequence in X. If $\lim_{n\to\infty} x_n = x$, then every subsequence of (x_n) converges to x.

Proof. Let (x_{n_k}) be a subsequence of (x_n) . Our goal is to show that $\lim_{k\to\infty} x_{n_k} = x$. That is, we want to show

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall k > N \ d(x_{n_k}, x) < \epsilon.$$

Let $\epsilon > 0$ be given. Our goal is to find N such that

if
$$k > N$$
, then $d(x_{n_k}, x) < \epsilon$ (I)

Since $x_n \to x$, we have

$$\exists \hat{N} \text{ such that } \forall n > \hat{N} \ d(x_n, x) < \epsilon$$
 (II)

We claim that this \hat{N} can be used as the N we are looking for. Indeed, if we let $N = \hat{N}$, then if k > N we can conclude that $n_k \ge k > N$ and so, by (II)

$$d(x_{n_k}, x) < \epsilon$$

Corollary 3.2.1. (contrapositive)

- (i) If a subsequence of (x_n) does not converge to x, then (x_n) does not converge to x.
- (ii) If (x_n) has a pair of subsequences converging to different limits, then (x_n) does not converge.

Example 3.2.2. Let $x_n = (-1)^n$ in \mathbb{R} .

- 1. The subsequence $(x_1, x_3, x_5, ...) = (-1, -1, -1, ...)$ converges to -1.
- 2. The subsequence $(x_2, x_4, x_6, ...) = (1, 1, 1, ...)$ converges to 1.

By (i) and (ii), (x_n) does not converge.

Theorem 3.2.2. Let (X, d) be a metric space and let (x_n) be a sequence in X. The subsequential limits of (x_n) form a closed set in X.

Proof. Let $E = \{b \in X : b \text{ is a limit of a subsequence of } x_n\}$. Our goal is to show that $E' \subseteq E$. To this end, we pick an arbitrary element $a \in E'$ and we will prove that $a \in E$. That is, we will show that there is a subsequence of (x_n) that converges to a. We may consider two cases:

Case 1: $\forall n \in \mathbb{N} \ x_n = a$. In this case, (x_n) and any subsequence of (x_n) converges to a. So $a \in E$.

Case 2: $\exists n_1 \in \mathbb{N} \text{ such that } x_{n_1} \neq a. \text{ Let } \delta = d(a, x_{n_1}) > 0. \text{ Since } a \in E', N_{\frac{\delta}{2^2}}(a) \cap (E \setminus \{a\}) \neq \emptyset. \text{ So,}$

$$\exists b \in E \setminus \{a\} \text{ such that } d(b,a) < \frac{\delta}{2^2}$$

Since $b \in E$, b is a limit of a subsequence of (x_n) , so

$$\exists n_2 > n_1 \text{ such that } d(x_{n_2}, b) < \frac{\delta}{2^2}.$$

Now note that

$$d(x_{n_2}, a) \le d(x_{n_2}, b) + d(b, a) < \frac{\delta}{2^2} + \frac{\delta}{2^2} = \frac{\delta}{2}.$$

Since $a \in E'$, $N_{\frac{\delta}{23}}(a) \cap (E \setminus \{a\}) \neq \emptyset$. So,

$$\exists b \in E \backslash \{a\} \text{ such that } d(b,a) < \frac{\delta}{2^3}.$$

Since $b \in E$, b is a limit of a subsequence of (x_n) , so

$$\exists n_3 > n_2 \text{ such that } d(x_{n_3}, b) < \frac{\delta}{2^3}.$$

Now note that

$$d(x_{n_3}, a) \le d(x_{n_3}, b) + d(b, a) < \frac{\delta}{2^3} + \frac{\delta}{2^3} = \frac{\delta}{2^2}.$$

In this way, we obtain a subsequence $x_{n_1}, x_{n_2}, x_{n_3}, \dots$ of (x_n) such that

$$\forall k \ge 2 \ d(x_{n_k}, a) < \frac{\delta}{2^{k-1}}$$

so, clearly, $x_{n_k} \to a$. Hence, $a \in E$.

Theorem 3.2.3. (Compactness \implies Sequential Compactness) Let (X, d) be a compact metric space. Then every sequence in X has a convergent subsequence.

Proof. Let (x_n) be a sequence in the compact metric space X. Let $E = \{x_1, x_2, ...\}$. If E is infinite, then there exists $x \in X$ and $n_1 < n_2 < n_3 < ...$ such that

$$x_{n_1} = x_{n_2} = x_{n_3} = \dots = x.$$

Clearly, the subsequence $(x_{n_1}, x_{n_2}, ...)$ converges to x. If E is infinite, then since X is compact, by Theorem 2.37, E has a limit point $x \in X$. Since $x \in E'$,

$$\forall \epsilon > 0 \ N_{\epsilon}(x) \cap (E \setminus \{x\})$$
 is infinite.

In particular,

for
$$\epsilon=1, \ \exists n_1\in\mathbb{N}$$
 such that $d(x_{n_1},x)<1$
for $\epsilon=2, \ \exists n_2\in\mathbb{N}$ such that $d(x_{n_2},x)<\frac{1}{2}$
for $\epsilon=3, \ \exists n_3\in\mathbb{N}$ such that $d(x_{n_3},x)<\frac{1}{3}$
:

for $\epsilon = m$, $\exists n_m \in \mathbb{N}$ such that $d(x_{n_m}, x) < \frac{1}{m}$

In this way, we obtain a subsequence $x_{n_1}, x_{n_2}, x_{n_3}, \dots$ of (x_n) that converges to x.

Corollary 3.2.2. (Bolzano-Weierstrass) Every bounded sequence in \mathbb{R}^k has a convergent subsequence.

Proof. Let (x_n) be a bounded sequence in \mathbb{R}^k .

$$\implies \exists q \in \mathbb{R}^k \text{ and } r > 0 \text{ such that } \{x_1, x_2, x_3, ...\} \subseteq N_r(q).$$

Note that $N_r(q)$ is bounded and so $\overline{N_r(q)}$ is closed and bounded. So, $\overline{N_q(r)}$ is a compact subset of \mathbb{R}^k . So, $\overline{N_q(r)}$ is a compact metric space and (x_n) is a sequence in $\overline{N_q(r)}$. By Theorem 3.2.3, there exists a subsequence (x_{n_k}) of (x_n) that converges in the metric space $\overline{N_r(q)}$. Since the distance function in $\overline{N_r(q)}$ is the same as the distance function in \mathbb{R}^k , we can conclude that (x_{n_k}) converges in \mathbb{R}^k as well.

Recall:

$$x_n \to x \iff \forall \epsilon > 0 \ \exists N \text{ such that } \forall n > N \ d(x_n, x) < \epsilon.$$

This is useful IF we know that a sequence converges. How do we first determine that a sequence converges? Perhaps, given a sequence (x_n) , we can determine convergence by comparing two consecutive terms:

If
$$\forall \epsilon > 0 \ \exists N \ \text{such that} \ d(x_{n+1}, x_n) < \epsilon$$
, then the sequence converges.

Unfortunately, this will not do. Consider $\mathbb{R}: x_n = \sqrt{n}$ diverges (it is unbounded) yet

$$x_{n+1} - x_n = \sqrt{n+1} - \sqrt{n} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \to 0.$$

Cauchy proposed that instead of comparing the distance between two consecutive terms, we compare the distance between any two terms after a certain index:

If $\forall \epsilon > 0 \; \exists N \text{ such that } \forall n, m > N \; d(x_m, d_n) < \epsilon$, then the sequence converges.

Definition 3.2.2. (Cauchy Sequence) Let (X, d) be a metric space A sequence (x_n) in X is said to be a Cauchy Sequence if

$$\forall \epsilon > 0 \; \exists N \; \text{such that} \; \; \forall n, m > N \; d(x_m, x_n) < \epsilon.$$

Theorem 3.2.4. (Convergent \implies Cauchy) Let (X, d) be a metric space and let (x_n) be a sequence in X. Then

$$(x_n)$$
 converges \implies (x_n) is a Cauchy sequence

Proof. Assume there exists $x \in X$ such that $x_n \to x$. Our goal is to show that

$$\forall \epsilon > 0 \; \exists N \; \text{such that} \; \forall n, m > N \; d(x_n, x_m) < \epsilon$$
 (I)

Informal Discussion

We want to make $d(x_n, x_m)$ less than ϵ using the fact that $d(x_n, x)$ and $d(x_m, x)$ can be made as small as we like for large enough m and n. It would be great if we could bound $d(x_n, x_m)$ with a combination of $d(x_n, x)$ and $d(x_m, x)$. Note that

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m)$$

so it is enough to make each piece on the RHS less than $\epsilon/2$

We have

$$x_n \to x \implies \exists \hat{N} \text{ such that } \forall n > \hat{N} \ d(x_n, x) < \epsilon/2.$$

We claim that this \hat{N} can be used as the N that we were looking for. Indeed, if we let $N = \hat{N}$, (I) will hold because $\forall n, m > \hat{N}$,

$$d(x_m, x_n) \le d(x_m, x) + d(x, x_n)$$

$$< \epsilon/2 + \epsilon/2$$

$$= \epsilon,$$

as desired.

Remark. The converse in general is not true. Eg, consider \mathbb{Q} as a subspace of \mathbb{R} . In \mathbb{Q} , it is not true that every Cauchy sequence is convergent. For example, let (q_n) be a sequence in \mathbb{Q} such that $q_n \to \sqrt{2}$.

$$q_n \to \sqrt{2}$$
 in $\mathbb{R} \implies (q_n)$ is convergent in \mathbb{R}
 $\implies (q_n)$ is Cauchy in \mathbb{R}
 $\implies (q_n)$ is Cauchy in \mathbb{Q}

but (q_n) does not converge in Q.

It is desirable to define a metric space in which Cauchy sequences imply convergence.

Definition 3.2.3. (Complete Metric Space) A metric space in which every Cauchy sequence is convergent is called a complete metric space.

3.3 Diameter of a Set

Definition 3.3.1. (Diameter of a Set) Let (X, d) be a metric space and let E be a nonempty subset in X. The diameter of E, denoted by diamE, is defined as follows:

$$diam E = \sup \{d(a,b): a,b \in E\}$$

Remark. Note that if $\neq A \subseteq B \subseteq X$, then

$${d(a,b): a,b \in A} \subseteq {d(a,b): a,b \in B}.$$

Hence,

$$sup\{d(a,b): a,b \in A\} \subseteq sup\{d(a,b): a,b \in B\}$$

. That is,

$$diam A \leq diam B$$
.

Observation. Let (x_n) be a sequence in X. $\forall n \in \mathbb{N}$ let $E_n = \{x_{n+1}, x_{n+2}, ...\}$. Then

$$(x_n)$$
 is Cauchy $\iff \lim_{n\to\infty} diam E_n = 0.$

Proof. Note that

$$E_1 = \{x_2, x_3, x_4, \ldots\}$$

$$E_2 = \{x_3, x_4, x_5, \ldots\}$$

$$E_3 = \{x_4, x_5, x_6, \ldots\}$$
:

Clearly, $E_1 \supseteq E_2 \supseteq E_3 \supseteq ...$, so

$$diam E_1 \supseteq diam E_2 \supseteq diam E_3 \supseteq \dots$$

 (\Longrightarrow) Supposed (x_n) is Cauchy. Our goal is to show that

$$\forall \epsilon > 0 \; \exists N \; \text{such that} \; \forall n > N \; |diam E_n - 0| < \epsilon.$$

Let $\epsilon > 0$ be given. Our goal is to find a number N such that if n > N, then $diam E_n < \epsilon$ (*). For the given $\epsilon > 0$, since (x_n) is Cauchy, there exists \hat{N} such that

$$\forall n, m > \hat{N} \ d(x_n, x_m) < \epsilon/2.$$

We claim that this \hat{N} can be used as the N that we were looking for. Indeed, if we let $N = \hat{N}$, then (*) will hold because:

$$E_{\hat{N}} = \{x_{\hat{N}+1}, x_{\hat{N}+2}, x_{\hat{N}+3}\}$$

so $\forall a, b \in E_{\hat{N}} \ d(a, b) < \epsilon/2$. Then

$$diam E_{\hat{N}} = \sup \{d(a,b): a,b \in E_{\hat{N}}\} \leq \epsilon/2 < \epsilon$$

so if $n > \hat{N}$, then

$$diam E_n \le diam E_{\hat{N}} < \epsilon$$

as desired.

(\iff) Suppose $\lim_{n\to\infty} diam E_n = 0$. Our goal is to show that

$$\forall \epsilon > 0 \; \exists N \; \text{such that} \; \forall n, m > N \; d(x_m, x_n) < \epsilon.$$

Let $\epsilon > 0$ be given. Our goal is to find a number N such that

if
$$n, m > N$$
, then $d(x_n, x_m) < \epsilon$. (*)

Since $\lim_{n\to\infty} diam E_N = 0$, for this ϵ , there exists \hat{N} such that

$$\forall n > \hat{N} \ diam E_n < \epsilon$$

We claim that $N = \hat{N} + 1$ can be used as the N that we were looking for. Indeed, if we let $N = \hat{N} + 1$, then (*) will hold:

if
$$n, m > \hat{N} + 1$$
, then $x_n, x_m \in E_{\hat{N}+1}$

and so

$$d(x_m, x_n) \le diam E_{\hat{N}+1} < \epsilon$$

Theorem 3.3.1. (diam $\overline{E} = \text{diam } E$) Let (X, d) be a metric space and let $\emptyset \neq E \subseteq X$. Then

$$\mathrm{diam}\overline{E} = \mathrm{diam}\ E$$

Proof. Note that since $E\subseteq \overline{E}$, we have $\mathrm{diam}E\leq \mathrm{diam}\overline{E}$. In what follows, we will prove that $\mathrm{diam}\overline{E}\leq \mathrm{diam}E$ by showing that

$$\forall \epsilon > 0 \operatorname{diam} \overline{E} \leq \operatorname{diam} E + \epsilon.$$

Let $\epsilon > 0$ be given. Our goal is to show that

$$\sup\{d(a,b): a,b \in \overline{E}\} \le \text{diam}E + \epsilon.$$

To this end, it is enough to show that $\operatorname{diam} E + \epsilon$ is an upper bound for $\{d(a,b): a,b \in \overline{E}\}$. Suppose $a,b \in \overline{E}$. We have

$$\begin{split} a \in \overline{E} &\implies N_{\epsilon/2}(a) \cap E \neq \emptyset \implies \exists x \in E \text{ such that } d(x,a) < \frac{\epsilon}{2} \\ b \in \overline{E} &\implies N_{\epsilon/2}(b) \cap E \neq \emptyset \implies \exists y \in E \text{ such that } d(y,b) < \frac{\epsilon}{2}. \end{split}$$

Therefore,

$$d(a,b) \le d(a,x) + d(x,y) + d(y,b)$$

$$< \frac{\epsilon}{2} + d(x,y) + \frac{\epsilon}{2}$$

$$\le \frac{\epsilon}{2} + \text{diam}E + \frac{\epsilon}{2}$$

$$= \epsilon + \text{diam}E$$

Theorem 3.3.2. Let (X,d) be a metric space and let $K_1 \supseteq K_2 \supseteq K_3 \supseteq ...$ be a nested sequence of nonempty compact sets.

Proof. Let $K = \bigcap_{n=1}^{\infty} K_n$. By Theorem 2.36, we know that $K \neq \emptyset$. In order to show that K has only one element, we suppose $a, b \in K$ and we will prove a = b. In order to show a = b, we will prove d(a, b) = 0 and to this end show

$$\forall \epsilon > 0 \ d(a,b) < \epsilon.$$

Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} \operatorname{diam} K_n = 0$, there exists N such that

$$\forall n > N \operatorname{diam} K_n < \epsilon.$$

In particular, diam $K_{N+1} < \epsilon$. Now we have

$$a \in \bigcap_{n=1}^{\infty} K_n \implies a \in K_{N+1}$$

$$b \in \bigcap_{n=1}^{\infty} K_n \implies b \in K_{N+1}$$

$$\Rightarrow d(a,b) \le \operatorname{diam} K_{N+1} < \epsilon$$

Theorem 3.3.3. (Compact Space ⇒ Complete Space) Any compact metric space is complete.

Proof. Let (X,d) be a compact metric space. Let (x_n) be a Cauchy sequence in X. Our goal is to show that (x_n) converges in X. For each $n \in \mathbb{N}$, let $E_n = \{x_{n+1}, x_{n+2}, x_{n+3}, ...\}$. We know that

- (1) $E_1 \supseteq E_2 \supseteq E_3 \supseteq \dots$
- (2) (x_n) is Cauchy $\Longrightarrow \lim_{n\to\infty} \operatorname{diam} E_n = 0$

It follows from (1) that

$$\overline{E_1} \supseteq \overline{E_2} \supseteq \overline{E_3} \supseteq \dots$$
 (I)

Since closed subsets of a compact space are compact, (I) is a nested sequence of nonempty compact sets. Since $\operatorname{diam} E_n = \operatorname{diam} \overline{E_n}$, it follows from (2) that $\lim_{n\to\infty} \operatorname{diam} \overline{E_n} = 0$. Hence, by Theorem 3.3.2, $\bigcap_{n=1}^{\infty} \overline{E_n}$ has exactly one point. Let's call this point "a":

$$\bigcap_{n=1}^{\infty} \overline{E_n} = \{a\}$$

In what follows, we will prove that $\lim_{n\to\infty} x_n = a$. To this end, it's enough to show that

$$\forall \epsilon > 0 \; \exists N \; \text{such that} \; \forall n > N \; d(a_n, a) < \epsilon.$$

Let $\epsilon > 0$ be given. Our goal is to find N such that

if
$$n > N$$
, then $d(x_n, a) < \epsilon$ (*)

Since $\lim_{n\to\infty} \operatorname{diam} \overline{E} = 0$, for this given ϵ there exists \hat{N} such that

$$\forall n > \hat{N} \operatorname{diam} \overline{E_n} < \epsilon.$$

We claim that $\hat{N} + 1$ can be used as the N that we are looking for. Indeed, if we let $N = \hat{N} + 1$, then (*) holds:

If
$$n > \hat{N} + 1$$
, then $\begin{cases} x_n \in E_{\hat{N}+1} \implies x_n \in \overline{E_{\hat{N}+1}} \\ a \in \bigcap_{n=1}^{\infty} \overline{E_n}, \text{ so } a \in \overline{E_{\hat{N}+1}} \end{cases} \implies d(x_n, a) \leq \text{diam} \overline{E_{\hat{N}+1}} < \epsilon$

Theorem 3.3.4. (\mathbb{R}^k is Complete) \mathbb{R}^k is a complete metric space.

Proof. Let (x_n) be a Cauchy sequence in \mathbb{R}^k .

$$\overset{\mathrm{HW}}{\Longrightarrow}^{7}(x_{n}) \text{ is bounded}$$

$$\implies \exists p \in \mathbb{R}^{k}, \ \epsilon > 0 \text{ such that } \forall n \in \mathbb{N} \ x_{n} \in N_{\epsilon}(p).$$

Note that $\overline{N_{\epsilon}(p)}$ is closed and bounded in \mathbb{R}^k , so it's compact.

$$\overline{N_{\epsilon}(p)} \text{ is a compact metric space } \left\{ (x_n) \text{ is Cauchy in } \overline{N_{\epsilon}(p)} \right\} \implies (x_n) \text{ converges to a point } x \in \overline{N_{\epsilon}(p)}.$$

Since the distance function in $\overline{N_{\epsilon}(p)}$ is exactly the same as the distance function in \mathbb{R}^k , we can conclude that $x_n \to x$ in \mathbb{R}^k .

3.4 Divergence of a Sequence

Theorem 3.4.1. (Algebraic Limit Theorem) Suppose (a_n) and (b_n) are sequences of real numbers, and $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Then

- $(i) \lim_{n \to \infty} (a_n + b_n) = a + b$
- $(ii) \lim_{n\to\infty} (ca_n) = ca$
- (iii) $\lim_{n\to\infty} (a_n b_n) = ab$
- (iv) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$, provided $b \neq 0$

So far, we have studied limits of sequences that were convergent. We now discuss what it means to not converge.

Definition 3.4.1. (Divergence of a Limit) Consider \mathbb{R} with its standard metric. Let (x_n) be a sequence of real numbers. If (x_n) does not converge, we say (x_n) diverges. Divergence appears in three forms:

(i) (x_n) becomes arbitrarily large as $n \to \infty$. More precisely,

$$\forall M > 0 \; \exists N \in \mathbb{N} \text{ such that } \forall n > N \; x_n > M$$

In this case, we say (x_n) diverges to ∞ .

Notation .
$$x_n \to \infty$$
 or $\lim_{x\to\infty} x_n = \infty$.

(ii) $-x_n$ becomes arbitrarily large as $n \to \infty$. More precisely,

$$\forall M > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n > N \ -x_n > M.$$

In this case, we say (x_n) diverges to $-\infty$.

Notation .
$$x_n \to -\infty$$
 or $\lim_{n\to\infty} x_n = -\infty$.

(iii) (x_n) is not convergent and does not diverge to $\pm \infty$.

Example 3.4.1. The following are examples of the different types of divergence in \mathbb{R} :

- (i) $x_n = n^2, x_n \to \infty$
- (ii) $x_n = -n, x_n \to \infty$
- (iii) $(x_n) = ((-1)^n) = (-1, 1, -1, 1, ...)$

Definition 3.4.2. (Increasing, Decreasing, Monotone) Consider \mathbb{R} with the standard metric.

- (i) (a_n) is said to be increasing if and only if for all $n, a_n \leq a_{n+1}$
- (ii) (a_n) is said to be decreasing if and only if for all $n, a_n \geq a_{n+1}$
- (iii) (a_n) is said to be monotone if and only if it is increasing or decreasing, or both
- (iv) (a_n) is said to be strictly increasing if and only if for all $n, a_n < a_{n+1}$
- (v) (a_n) is said to be strictly decreasing if and only if for all $n, a_n > a_{n+1}$

Theorem 3.4.2. (Monotone Convergence Theorem) Consider \mathbb{R} with its standard metric.

- (i) If (a_n) is increasing and bounded, then (a_n) converges to $\sup\{a_n:n\in\mathbb{N}\}$
- (ii) If (a_n) is decreasing and bounded, then (a_n) converges to $\inf\{a_n : n \in \mathbb{N}\}$
- (iii) If (a_n) is increasing and unbounded, then $(a_n) \to \infty$
- (iv) If (a_n) is decreasing and unbounded, then $(a_n) \to -\infty$

Proof. Here, we will prove item (i). Suppose (a_n) is increasing and bounded. We want to show $a_n \to S$ where $S = \sup\{a_1, a_2, a_3, ...\}$. First, note that since $\{a_1, a_2, a_3, ...\}$ is a bounded set, $\sup\{a_1, a_2, a_3, ...\} = S$ exists and is a real number. Our goal is to prove that

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n > N \ |a_n - S| < \epsilon.$$

Let $\epsilon > 0$ be given. We want to find N such that

if
$$n > N$$
, then $S - \epsilon < a_n < S + \epsilon$

$$S = \sup\{a_1, a_2, a_3, ...\} \implies S - \epsilon \text{ is not an upper bound of } \{a_n : n \in \mathbb{N}\}$$

$$\implies \exists a_i \in \{a_n : n \in \mathbb{N}\} \text{ such that } a_i > S - \epsilon$$

$$\implies \exists \hat{N} \in \mathbb{N} \text{ such that } a_{\hat{N}} > S - \epsilon$$

Let $N = \hat{N}$, then

- (1) If $n > \hat{N}$, then $a_n \ge a_N > S \epsilon$ since (a_n) is increasing.
- (2) If $n > \hat{N}$, then $a_n \le S < S + \epsilon$ since (a_n) is bounded.

$$(1),(2) \implies \text{if } n > N, \text{ then } S - \epsilon < a_n < S + \epsilon \text{ as desired.}$$

Example 3.4.2. Define the sequence (a_n) recursively by $a_1 = 1$ and

$$a_{n+1} = \frac{1}{2}a_n + 1.$$

- (i) Show that $a_n \leq 2$ for every n.
- (ii) Show that (a_n) is an increasing sequence.
- (iii) Explain why (i) and (ii) prove that (a_n) converges.
- (iv) Prove $(a_n) \to 2$.

Proof. (i) We proceed by induction.

Base Case: Clearly, $a_1 = 1 \le 2$.

Inductive Step: Suppose $a_k \leq 2$ for some $k \in \mathbb{N}$. Then

$$a_{k+1} = \frac{1}{2}a_k + 1$$

$$\leq \frac{1}{2}(2) + 1$$

$$= 2.$$

By mathematical induction, $a_n \leq 2$ for every $n \in \mathbb{N}$.

(ii) We proceed by induction.

Base Case: $a_1 = 1$ and $a_2 = \frac{1}{2}(1) + 1 = \frac{3}{2} \implies a_1 \le a_2$.

Inductive Step: Suppose $a_k \leq a_{k+1}$ for some $k \in \mathbb{N}$. Then

$$a_{k+2} = \frac{1}{2}(a_{k+1}) + 1$$

$$\geq \frac{1}{2}a_k + 1$$

By mathematical induction, $a_n \leq a_n + 1 \ \forall n \geq 1$.

(iii) By the Monotone Convergence Theorem (MCT), (i), $(ii) \implies (a_n)$ converges.

(iv) Let $A = \lim_{n \to \infty} a_n$. We have

$$A = \lim_{n \to \infty} a_{n+1}$$

$$= \lim_{n \to \infty} \left[\frac{1}{2} a_n + 1 \right]$$

$$= \frac{1}{2} \left(\lim_{n \to \infty} a_n \right) + 1$$

$$= \frac{1}{2} (A) + 1$$

$$\implies A = 2.$$

Therefore,
$$a_n \to 2$$

3.5 The Extended Real Numbers

Definition 3.5.1. (The Extended Real Numbers) The set of extended real numbers, denoted by $\overline{\mathbb{R}}$, consists of all real numbers and two symbols, $-\infty, +\infty$:

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$$

*) $\overline{\mathbb{R}}$ is equipped with an order. We preserve the original order in \mathbb{R} and we define

$$\forall x \in \mathbb{R} - \infty < x < \infty$$

*) $\overline{\mathbb{R}}$ is not a field, but it is customary to make the following conventions:

$$\forall x \in \mathbb{R} \text{ with } x > 0 : \qquad \qquad x \cdot (+\infty) = +\infty \qquad \qquad x \cdot (-\infty) = -\infty$$

$$\forall x \in \mathbb{R} \text{ with } x < 0 : \qquad \qquad x \cdot (+\infty) = -\infty \qquad \qquad x \cdot (-\infty) = +\infty$$

$$\forall x \in \mathbb{R} \qquad \qquad x + \infty = +\infty$$

$$\forall x \in \mathbb{R} \qquad \qquad x - \infty = -\infty$$

$$+\infty + \infty = +\infty$$

$$-\infty - \infty = -\infty$$

$$\forall x \in \mathbb{R} \qquad \qquad \frac{x}{+\infty} = \frac{x}{-\infty} = 0$$

Please note that we did not define the following:

$$-\infty + \infty, +\infty - \infty, \frac{\infty}{\infty}, \frac{-\infty}{-\infty}, ..., 0 \cdot \infty, \infty \cdot 0, 0 \cdot -\infty, -\infty \cdot 0$$

*) If $A \subset \overline{\mathbb{R}}$,

 $\sup A = \text{least upper bound}$ inf A = greatest lower bound

- *) $\sup A = +\infty \iff \text{ either } +\infty \in A \text{ or } A \subseteq \mathbb{R} \cup \{-\infty\} \text{ and } A \text{ is not bounded above in } \mathbb{R} \cup \{-\infty\}$
- *) inf $A = -\infty$ \iff either $-\infty \in A$ or $A \subseteq \mathbb{R} \cup \{+\infty\}$ and A is not bounded below in $\mathbb{R} \cup \{+\infty\}$
- *) $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$

Remark. Let (a_n) be a sequence in $\overline{\mathbb{R}}$. Let $a \in \mathbb{R}$.

- (i) $\lim_{n\to\infty} a_n = a \iff \forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n > N \ |a_n a| < \epsilon$
- (ii) $\lim_{n\to\infty} a_n = +\infty \iff \forall M>0 \; \exists N\in\mathbb{N} \text{ such that } \forall n>N \; a_n>M$
- (iii) $\lim_{n\to\infty} a_n = -\infty \iff \forall M > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n > N a_n > M$

Limits in $\overline{\mathbb{R}}$ have theorems that are analogous to the limit theorems in \mathbb{R} .

Theorem 3.5.1. (Algebraic Limit Theorem in $\overline{\mathbb{R}}$) Suppose $a_n \to a$ in $\overline{\mathbb{R}}$ and $b_n \to b$ in $\overline{\mathbb{R}}$. Then

- (i) If $c \in \mathbb{R}$, then $ca_n \to ca$
- (ii) $a_n + b_n \to a + b$, provided $\infty \infty$ does not appear
- (iii) $a_n b_n \to ab$, provided $(\pm \infty) \cdot 0$ or $0 \cdot (\pm \infty)$ does not appear
- (iv) If $a = \pm \infty$, then $\frac{1}{a_n} \to 0$
- (v) If $a_n \to 0$ and $a_n > 0$ (or $a_n < 0$), then $\frac{1}{a_n} \to \infty$ (or $\frac{1}{a_n} \to -\infty$)

Theorem 3.5.2. (Order Limit Theorem in $\overline{\mathbb{R}}$) Suppose $a_n \to a$ in $\overline{\mathbb{R}}$ and $b_n \to b$ in $\overline{\mathbb{R}}$. Then

(i) If $a_n \leq b_n$, then $a \leq b$

- (ii) If $a_n \leq e_n$ and $a_n \to \infty$, then $e_n \to \infty$.
- (iii) If $e_n \leq a_n$ and $a_n \to -\infty$, then $e_n \to -\infty$

Theorem 3.5.3. (Monotone Convergence Theorem in $\overline{\mathbb{R}}$) Let (a_n) be a sequence in $\overline{\mathbb{R}}$.

- (i) If (a_n) is increasing, then $a_n \to \sup\{a_n : n \in \mathbb{N}\}\$
- (ii) If (a_n) is decreasing, then $a_n \to \inf\{a_n : n \in \mathbb{N}\}$

Remark. $\overline{\mathbb{R}}$ can be equipped with the following metric:

$$f(x) = \begin{cases} -\frac{\pi}{2} & x = -\infty \\ \arctan x & -\infty < x < \infty \\ \frac{\pi}{2} & x = +\infty \end{cases}$$

Define $\overline{d}(x,y) = |f(x) - f(y)| \ \forall x, y \in \overline{\mathbb{R}}$.

- 1) The closure of \mathbb{R} in $(\overline{\mathbb{R}}, \overline{d})$ is $\overline{\mathbb{R}}$.
- 2) If (a_n) is a sequence in \mathbb{R} , then $a_n \to a \in \overline{\mathbb{R}} \iff (a_n)$ converges to a in the metric space $(\overline{\mathbb{R}}, \overline{d})$.
- 3) The closure of $\overline{\mathbb{R}}$ in the metric space $(\overline{\mathbb{R}}, \overline{d})$ is $\overline{\mathbb{R}}$.
- 4) Every set in $(\overline{\mathbb{R}}, \overline{d})$ is bounded:

$$\forall x, y \in \overline{\mathbb{R}} \ \overline{d}(x, y) \le \pi.$$

Definition 3.5.2. (Characterization of \limsup and \liminf 1) Let (x_n) be a sequence of real numbers. Let

$$S = \{x \in \overline{\mathbb{R}} : \exists (x_{n_k}) \text{ of } (x_n) \text{ such that } x_{n_k} \to x\}$$

We define

$$\limsup x_n = \sup S$$
$$\liminf x_n = \inf S$$

Definition 3.5.3. (Characterization of \limsup and \liminf 2) Let (x_n) be a sequence of real numbers. For each $n \in \mathbb{N}$, let $F_n = \{x_k : k \ge n\}$. Clearly,

$$F_1 \supseteq F_2 \supseteq F_3 \supseteq \dots$$

So,

$$\sup F_1 > \sup F_2 > \sup F_3 > \dots$$

and

$$\inf F_1 \le \inf F_2 \le \inf F_3 \le \dots$$

By the MCT (in $\overline{\mathbb{R}}$), we know that $\lim_{n\to\infty} \sup F_n$ and $\lim_{n\to\infty} \inf F_n$ exist in $\overline{\mathbb{R}}$. We define

$$\limsup x_n = \lim_{n \to \infty} (\sup F_n)$$
$$\liminf x_n = \lim_{n \to \infty} (\inf F_n).$$

That is,

$$\limsup x_n = \lim_{n \to \infty} \sup \{x_k : k \ge n\} = \inf (\sup F_n)$$
$$\liminf x_n = \lim_{n \to \infty} \inf \{x_k : k \ge n\} = \sup (\inf F_n)$$

Notation .

$$\limsup_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = \overline{\lim} x_n$$

$$\liminf_{n \to \infty} x_n = \underline{\lim} x_n$$

Example 3.5.1. $x_n = (-1)^n$

$$\limsup x_n = \lim_{n \to \infty} \sup \{x_k : k \ge n\} = \lim_{n \to \infty} \sup \{x_1, x_2, x_3, \ldots\} = \lim_{n \to \infty} \sup \{1, -1\} = 1$$
$$\liminf x_n = \lim_{n \to \infty} \inf \{x_k : k \ge n\} = \lim_{n \to \infty} \inf \{x_1, x_2, x_3, \ldots\} = \lim_{n \to \infty} \inf \{-1, 1\} = -1$$

$$(a_n) = (-1, 2, 3, -1, 2, 3, -1, 2, 3, \dots)$$

$$\limsup a_n = \lim_{n \to \infty} \sup\{-1, 2, 3\} = 3$$
$$\liminf a_n = \lim_{n \to \infty} \inf\{-1, 2, 3\} = -1$$

 $b_n = n$

$$\limsup b_n = \lim_{n \to \infty} \sup\{b_k : k \ge n\} = \lim_{n \to \infty} \sup\{b_n, b_{n+1}, b_{n+2}, \ldots\} = \lim_{n \to \infty} \sup\{n, n+1, n+2, \ldots\} = +\infty$$

$$\liminf b_n = \lim_{n \to \infty} \inf\{b_k : k \ge n\} = \lim_{n \to \infty} \inf\{n, n+1, n+2, \ldots\} = \lim_{n \to \infty} n = +\infty$$

Theorem 3.5.4. Let (a_n) be a sequence of real numbers. Then

$$\lim\inf a_n \le \lim\sup a_n$$

Proof. We want to show $\lim_{n\to\infty}\inf\{a_k:k\geq n\}\leq \lim_{n\to\infty}\sup\{a_k:k\geq n\}$. It is enough to show $\exists n_0$ such that $\forall n\geq n_0$ inf $\{a_k:k\geq n\}\leq \sup\{a_k:k\geq n\}$. Notice that for all $n\in\mathbb{N}$

$$\inf\{a_k : k \ge n\} \le \sup\{a_k : k \ge n\}$$

Since we already proved that the limits of both sides exist in $\overline{\mathbb{R}}$, it follows from the order limit theorem (OLT, in $\overline{\mathbb{R}}$) that

$$\lim_{n \to \infty} \inf \{ a_k : k \ge n \} \le \lim_{n \to \infty} \sup \{ a_k : k \ge n \}$$

That is,

$$\lim\inf a_n \le \lim\sup a_n$$

Theorem 3.5.5. Let (a_n) be a sequence of real numbers. Then

$$\lim_{n\to\infty} a_n$$
 exists in $\overline{\mathbb{R}} \iff \limsup a_n = \liminf a_n$

Moreover, in this case, $\lim a_n = \lim \sup a_n = \lim \inf a_n$.

Proof. (\iff) Suppose $\limsup a_n = \liminf a_n$. Let $A = \limsup a_n = \liminf a_n$ ($A \in \overline{\mathbb{R}}$). In what follows, we will show that $\lim a_n = A$. We consider three cases:

Case 1: $A \in \mathbb{R}$

Note that $\forall n \in \mathbb{N}$

$$\inf\{a_k : k \ge n\} \le a_n \le \sup\{a_k : k \ge n\}$$

Since $\lim_{n\to\infty} \sup\{a_k : k \ge n\} = \lim_{n\to\infty} \inf\{a_k : k \ge n\} = A$, it follows from the squeeze theorem that $\lim_{n\to\infty} a_n = A$.

Case 2: $A = \infty$

$$\forall n \in \mathbb{N} \quad \inf\{a_k : k \ge n\} \le a_n$$

$$\lim_{\{a_k : k \ge n\} = \infty} a_n = \infty$$

Case 3: $A = -\infty$

$$\forall n \in \mathbb{N} \ a_n \le \sup\{a_k : k \ge n\}$$

$$\lim_{n \to \infty} \sup\{a_k : k \ge n\}$$

$$\implies \lim_{n \to \infty} a_n = -\infty$$

 (\Longrightarrow) Suppose $\lim_{n\to\infty} a_n$ exists in $\overline{\mathbb{R}}$. Let $A=\lim_{n\to\infty} a_n$ $(A\in\overline{\mathbb{R}})$. In what follows, we will show that $\limsup a_n=A=\liminf a_n$. We consider three cases:

Case 1: $A \in \overline{\mathbb{R}}$

We will show $A \leq \liminf a_n$ and $\limsup a_n \leq A \implies A \leq \liminf a_n \leq \limsup a_n \leq A$. To do this, it is enough to show that

$$\forall \epsilon > 0 \ A - \epsilon \le \liminf a_n$$
$$\forall \epsilon > 0 \ \limsup a_n \le A + \epsilon$$

Let $\epsilon > 0$ be given. Since $a_n \to A$, there exists N such that

$$\forall n > N \ |a_n - A| < \epsilon$$

so,

*)
$$\forall n > N \ a_n < A + \epsilon \implies \forall n > N \ A + \epsilon \in UP\{a_k : k \ge n\}$$

$$\implies \forall n > N \ \sup\{a_k : k \ge n\} \le A + \epsilon$$

$$\stackrel{OLT}{\Longrightarrow} \lim_{n \to \infty} \sup\{a_k : k \ge n\} \le \lim_{n \to \infty} A + \epsilon$$

$$\implies \limsup a_n \le A + \epsilon$$
*) $\forall n > N \ A - \epsilon < a_n \implies \forall n > N \ A - \epsilon \in LO\{a_k : k \ge n\}$

$$\implies \forall n > N \ \inf\{a_k : k \ge n\} \le A - \epsilon$$

$$\stackrel{OLT}{\Longrightarrow} \lim_{n \to \infty} \inf\{a_k : k \ge n\} \ge \lim_{n \to \infty} A - \epsilon$$

$$\implies \liminf a_n > A - \epsilon$$

$$\implies \liminf a_n > A - \epsilon$$

Case 2: $A = \infty$

In order to show $\liminf a_n = \infty$, it's enough to show that

$$\forall M > 0 \ M < \liminf a_n$$

Let M > 0 be given. Since $a_n \to \infty$, $\exists N$ such that $\forall n > N$

$$\begin{array}{l} a_n > M \\ \Longrightarrow \ \forall n > N \quad \inf\{a_k : k \geq n\} \geq M \\ \Longrightarrow \lim_{n \to \infty} \inf\{a_k : k \geq n\} \geq \lim_{n \to \infty} M \\ \Longrightarrow \lim\inf a_n \geq M \end{array}$$

Case 3: $A = -\infty$

Analogous to case 2.

Theorem 3.5.6. Let (a_n) and (b_n) be two sequences of \mathbb{R} . Then

$$\lim \sup (a_n + b_n) \le \lim \sup a_n + \lim \sup b_n$$

provided that $\infty - \infty$ or $-\infty + \infty$ does not appear.

Proof.

Informal Discussion

Our goal is to show $\lim_{n\to\infty} \sup\{a_k + b_k : k \ge n\} \le \lim_{n\to\infty} \sup\{a_l : l \ge n\} + \lim_{n\to\infty} \sup\{b_m : m \ge n\}$. Considering the algebraic limit theorem (ALT) and the OLT it is enough to show that there exists n_0 such that

$$\forall n \ge n_0 \quad \sup\{a_k + b_k : k \ge n\} \le \sup\{a_l : l \ge n\} + \sup\{b_m : m \ge n\}$$

It is enough to show that if $n \ge n_0$, $\sup\{a_l : l \ge n\} + \sup\{a_m : m \ge n\}$ is an upper bound for $\{a_k + b_k : k \ge n\}$. That is, we want to show

$$\forall k \ge n \ a_k + b_k \le \sup\{a_l : l \ge n\} + \sup\{b_m : m \ge n\}$$

First, note that since by assumption $\limsup a_n + \liminf a_n$ is not of the form $\infty - \infty$ or $-\infty + \infty$, so there exists n_0 such that

$$\forall n \geq n_0 \quad \sup\{a_k : k \geq n\} + \sup\{b_m : m \geq n\} \text{ is not of the form } \infty - \infty \text{ or } -\infty + \infty$$

For each $n \geq n_0$, we have

$$\forall k \ge n \ a_k \le \sup\{a_l : l \ge n\}$$

$$\forall k \ge n \ b_k \le \sup\{b_m : m \ge n\}$$

Hence.

$$\forall k \ge n \ a_k + b_k \le \sup\{a_l : l \ge n\} + \sup\{b_m : m \ge b\}$$

Therefore,

$$\forall n \ge n_0 \quad \sup\{a_k + b_k : k \ge n\} \le \sup\{a_l : l \ge n\} + \sup\{b_m : m \ge n\}$$

Passing to the limit $n \to \infty$, we get $\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$.

Theorem 3.5.7. If |x| < 1, then $\lim_{n \to \infty} x^n = 0$.

Proof. Clearly, if x = 0 the claim holds. Supposed $x \in (-1,1)$ and $x \neq 0$. Our goal is to show that

$$\forall \epsilon > 0 \; \exists N \text{ such that } \forall n > N \; |x^n - 0| < \epsilon.$$

Let $\epsilon > 0$ be given. Our goal is to find N such that

if
$$n > N$$
 then $|x^n| < \epsilon$ (*)

Since 0 < |x| < 1, there exists y > 0 such that $|x| = \frac{1}{1+y}$. Note that

$$|x^n| < \epsilon \iff \frac{1}{(1+y)^n} < \epsilon$$

Also, by the binomial theorem $((1+y)^n \ge 1 + ny)$

$$\frac{1}{(1+y)^n} \leq \frac{1}{1+ny} < \frac{1}{ny}$$

Therefore, in order to ensure that $|x^n| < \epsilon$, we just need to choose n large enough so that $1/ny < \epsilon$. To this end, it is enough to choose n larger than 1/ny. (We can take N = 1/ny in (*))

Theorem 3.5.8. If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.

Proof. If p = 1, the claim obviously holds. If $p \neq 1$, we consider two cases:

Case 1: p > 1

Let $x_n = \sqrt[n]{p} - 1$. It is enough to show that $\lim_{n \to \infty} x_n = 0$. Note that since p > 1, $x_n \ge 0$. Also,

$$\sqrt[n]{p} = 1 + x_n \implies p = (1 + x_n)^n \ge 1 + nx_n$$

$$\implies x_n \le \frac{p - 1}{n}$$

Thus

$$0 \le x_n \le \frac{p-1}{n}.$$

It follows from the squeeze theorem that $\lim_{n\to\infty} x_n = 0$.

Case 2: 0

Since $0 , we have <math>1 < \frac{1}{p}$. So, by case 1,

$$\lim_{n \to \infty} \sqrt[n]{\frac{1}{p}} = 1.$$

By the ALT, we know that if $b_n \to b$ and $b \neq 0$, then $\frac{1}{b_n} \to \frac{1}{b}$. Hence

$$\lim_{n \to \infty} \sqrt[n]{p} = 1.$$

Theorem 3.5.9. $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Proof. Let $x_n = \sqrt[n]{n} - 1$. Clearly, $x_n \ge 0$. We have, for $n \ge 2$,

$$\sqrt[n]{n} = 1 + x_n \implies n = (1 + x_n)^n \ge \binom{n}{k} x_n^2 = \frac{n(n-1)}{2} x_n^2$$

$$\implies \frac{2n}{n(n-1)} \ge x_n^2$$

$$\implies x_n \le \sqrt{\frac{2}{n-1}}.$$

Thus,

$$0 \le x_n \le \sqrt{\frac{2}{n-1}}.$$

It follows from the squeeze theorem that $x_n \to 0$ and so $\sqrt[n]{n} \to 1$.

3.6 Series

Definition 3.6.1. (Infinite Series)

Let $(X, \|\cdot\|)$ be a normed vector space, and let (x_n) be a sequence in X.

(i) An expression of the form

$$\sum_{n=1}^{\infty} x_n = x_1 + x_2 + x_3 + \dots$$

is called an infinite series.

- (ii) x_1, x_2, x_3, \dots are called the terms of the infinite series.
- (iii) The corresponding sequence of partial sums is defined by

$$\forall m \in \mathbb{N} \quad s_1 = x_1 \\ s_2 = x_1 + x_2 \\ s_3 = x_1 + x_2 + x_3 \\ \vdots \\ s_m = x_1 + \dots + x_m$$

- (iv) We say that the infinite series $\sum_{n=1}^{\infty} x_n$ converges to $L \in X$ (and we write $\sum_{n=1}^{\infty} x_n = L$) if $\lim_{m\to\infty} s_m = L.$
- (v) We say that the infinite series diverges if (s_m) diverges.

If
$$X = \mathbb{R}$$
 and $s_m \to \infty$, we write $\sum_{n=1}^{\infty} x_n = \infty$.
If $X = \mathbb{R}$ and $s_m \to -\infty$, we write $\sum_{n=1}^{\infty} x_n = -\infty$.

Example 3.6.1. $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$ Clearly, $x_n = \frac{1}{n} - \frac{1}{n+1}$. The corresponding sequence of partial sums is

$$s_{1} = 1 - \frac{1}{2}$$

$$s_{2} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) = 1 - \frac{1}{3}$$

$$s_{3} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) = 1 - \frac{1}{4}$$

$$\vdots$$

$$s_{m} = \sum_{n=1}^{m} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= \left(\sum_{n=1}^{\infty} \frac{1}{n}\right) + \left(\sum_{n=1}^{\infty} \frac{1}{n+1}\right)$$

$$= \left(1 + \dots + \frac{1}{m}\right) - \left(\frac{1}{2} + \dots + \frac{1}{m} + \frac{1}{m+1}\right)$$

$$= 1 - \frac{1}{m+1}$$

Clearly,

$$\lim_{m \to \infty} s_m = \lim_{m \to \infty} \left[1 - \frac{1}{m+1} \right] = 1.$$

3.6. SERIES 37

Hence, $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$ converges to 1.

In general, a telescoping series is an infinite series whose partial sums eventually have a finite number of terms after cancellation. For example, if (y_n) is a sequence in the normed space $(X, \|\cdot\|)$, then $\sum_{n=1}^{\infty} (y_n - y_{n+1})$ is a telescoping series:

$$s_m = \sum_{n=1}^m (y_n - y_{n+1}) = \left(\sum_{n=1}^m y_n\right) - \left(\sum_{n=1}^m y_{n+1}\right)$$
$$= (y_1 + y_2 + \dots + y_m) - (y_2 + y_3 + \dots + y_m + y_{m+1})$$
$$= y_1 - y_{m+1}.$$

Definition 3.6.2. (Geometric Series)

Let k be a fixed integer and let $r \neq 0$ be a fixed real number. The infinite series $\sum_{n=k}^{\infty} r^n = r^k + r^{k+1} + r^{k+2} + \dots$ is called a geometric series with common ratio "r."

For example,

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \text{ is a geometric series with common ratio } \frac{1}{2}$$

$$\sum_{n=1}^{\infty} \left(\frac{7}{29}\right)^n \text{ is a geometric series with common ratio } \frac{7}{29}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is NOT a geometric series.}$$

We can easily find a formula for the m^{th} partial sum of $\sum_{n=k}^{\infty} r^k$:

$$s_{1} = r^{k}$$

$$s_{2} = r^{k} + r^{k+1}$$

$$s_{3} = r^{k} + r^{k+1} + r^{k+2}$$

$$\vdots$$

$$s_{m} = r^{k} + r^{k+1} + \dots + r^{k+m-1}$$
(*)

Case 1: r = 1 $s_m = 1 + 1 + ... + 1 = m$

Case 2: $r \neq 0$

Multiply both sides of (*) by r:

$$rs_m = r^{k+1} + r^{k+2} + \dots + r^{k+m} \tag{**}$$

Subtract (**) from (*):

$$s_m - rs_m = r^k - r^{k+m}$$

Therefore, (note $r \neq 1$)

$$s_m = \frac{r^k - r^{k+m}}{1-r} = \frac{r^k \left(1 - r^m\right)}{1-r}$$

Note.

*) If |r| < 1, then $\lim r^m = 0$

*) Exercise: if |r| > 1 or r = -1, then $\lim_{m \to \infty} r^m = DNE$

Hence,

$$\lim_{m \to \infty} s_m = \begin{cases} \frac{r^k}{1-r} & \text{if } |r| < 1\\ DNE & \text{if } |r| \ge 1 \end{cases}$$

so,

$$\sum_{n=1}^{\infty} r^n = \begin{cases} \frac{r^k}{1-r} & \text{if } |r| < 1\\ DNE & \text{if } |r| \ge 1 \end{cases}.$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{\left(\frac{1}{2}\right)^n}{1-\frac{1}{2}} = \frac{1}{2} \cdot 2 = 1.$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{\left(\frac{1}{2}^{1}\right)}{1-\frac{1}{2}} = \frac{1}{2} \cdot 2 = 1.$$

$$\sum_{n=4}^{\infty} \left(\frac{1}{2}\right)^n = \frac{\left(\frac{1}{2}^{4}\right)}{1-\frac{1}{2}} = \left(\frac{1}{2}\right)^4 \cdot 2 = \frac{1}{8}.$$

Theorem 3.6.1. (Algebraic Limit Theorem for Series)

Let $(X, \|\cdot\|)$ be a normed space. Let (a_n) amd (b_n) be two sequences in X. Suppose that

$$\sum_{n=1}^{\infty} a_n = A \in X \text{ and } \sum_{n=1}^{\infty} b_n = B \in X.$$

Then

- (i) For any scalar λ , $\sum_{n=1}^{\infty} (\lambda a_n) = \lambda A$
- $(ii) \sum_{n=1}^{\infty} a_n + b_n = A + B$

Theorem 3.6.2.

Let $(X, \|\cdot\|)$ be a normed space. Let (x_n) be a sequence in X. If $\sum_{n=1}^{\infty} x_n$ converges, then $\lim_{n\to\infty} x_n = 0$.

Proof. Let $s_n = x_1 + ... + x_n$. Let $L = \sum_{n=1}^{\infty} x_n$. Note that

$$\sum_{n=1}^{\infty} x_n = L \implies \lim_{n \to \infty} s_n = L.$$

Also, note that

$$\forall n \ge 2 \quad x_n = s_n - s_{n-1}.$$

Therefore,

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} (s_n - s_{n-1}) = L - L = 0.$$

Corollary 3.6.1. (Divergence Test) If $\lim x_n \neq 0$, then $\sum_{n=1}^{\infty} x_n$ does not converge.

- *) $\sum_{n=1}^{\infty} (-1)^n$ diverges because $\lim_{n\to\infty} (-1)^n = DNE$.
- *) $\sum_{n=1}^{\infty} \frac{3n+1}{7n-4}$ diverges because $\lim_{n\to\infty} \frac{3n+1}{7n-4} = \frac{3}{7} \neq 0$.

Theorem 3.6.3. (Cauchy Criterion for Series)

Let $(X, \|\cdot\|)$ be a complete normed space (also known as a Banach space). Let (x_n) be a sequence in X. Then

$$\sum_{k=1}^{\infty} x_k \text{ converges } \iff \forall \epsilon > 0 \ \exists N \text{ such that } \forall n > m > N \quad \left| \left| \sum_{k=m+1}^n \right| \right| < \epsilon.$$

Proof. Let $s_k = x_1 + ... + x_k$.

$$\sum_{k=1}^{\infty} x_k \text{ converges} \iff (s_k) \text{ converges}$$

$$\iff (s_k) \text{ is Cauchy}$$

$$\iff \forall \epsilon > 0 \ \exists N \text{ such that } \forall n, m > N \quad \|s_n - s_m\| < \epsilon$$

$$\iff \forall \epsilon > 0 \ \exists N \text{ such that } \forall n > m > N \quad \|s_n - s_m\| < \epsilon$$

$$\iff \forall \epsilon > 0 \ \exists N \text{ such that } \forall n, m > N \quad \|x_{m+1} + \dots + x_m\| < \epsilon$$

$$\iff \forall \epsilon > 0 \ \exists N \text{ such that } \forall n, m > N \quad \left\|\sum_{k=m+1}^{\infty} x_k\right\| < \epsilon$$

3.6. SERIES 39

Theorem 3.6.4. (Absolute Convergence Theorem)

Let $(X, \|\cdot\|)$ be a Banach space. Let (x_n) be a sequence in X. If $\sum_{n=1}^{\infty} \|x_n\|$ converges, then $\sum_{n=1}^{\infty} x_n$ converges.

Proof. By the Cauchy Criterion for Series, it is enough to show that

$$\forall \epsilon > 0 \; \exists N \text{ such that } \forall n > m > N \quad \left\| \sum_{k=m+1}^{\infty} x_k \right\| < \epsilon.$$

Let $\epsilon > 0$ be given. Our goal is to find N such that

If
$$n > m > N$$
 then $\left\| \sum_{k=m+1}^{\infty} x_k \right\| < \epsilon$

Since $\sum_{k=1}^{\infty} ||x_k||$ converges, and since \mathbb{R} is complete, it follows from the Cauchy Criterion for Series there exists \hat{N} such that

$$\forall n > m > \hat{N} \quad \left| \sum_{k=m+1}^{\infty} \|x_k\| \right| < \epsilon$$

We claim that we can use this \hat{N} as the N we were looking for. Indeed, if $n > m > \hat{N}$, then

$$\left\| \sum_{k=m+1}^{\infty} x_k \right\| \le \sum_{k=m+1}^{\infty} \|x_k\| = \left| \sum_{k=m+1}^{\infty} \|x_k\| \right| < \epsilon$$

as desired.

Definition 3.6.3. (Absolute Convergence and Conditional Convergence)

Absolute convergence $\iff \sum ||x_n||$ converges and $\sum x_n$ converges.

Conditional convergence $\iff \sum ||x_n||$ converges and $\sum x_n$ converges.

3.7 Tests for Convergence of Series

Theorem 3.7.1. (Cauchy Condensation Test) Assume $a_n \geq 0$ for all n, and (a_n) is a decrasing sequence.

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \sum_{n=0}^{\infty} 2^n a_{2^n} = a_1 + 2a_2 + 4a_4 + 8a_8 + 16a_{16} + \dots \text{ converges}$$

Proof. Let $s_m = a_1 + ... + a_m$, $t_m = a_1 + 2a_2 + 4a_4 + ... + 2^{m-1}a_{2^{m-1}}$. Note that

$$\begin{split} s_{2^k} &= a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \dots + (a_{2^{k-1}+1} + \dots + a_{2^k}) \\ &\geq a_1 + a_2 + (a_4 + a_4) + (a_8 + a_8 + a_8 + a_8) + \dots + (a_{2^k} + \dots + a_{2^k}) \\ &= a_1 + a_2 + 2a_4 + 4a_8 + \dots + 2^{k-1}a_{2^k} \\ &= a_1 + \frac{1}{2}[2a_2 + 4a_4 + 8a_8 + \dots + 2^k a_{2^k}] \\ &= a_1 + \frac{1}{2}[t_{k+1} - a_1] \\ &= \frac{1}{2}a_1 + \frac{1}{2}t_{k+1} \\ &\geq \frac{1}{2}t_{k+1}. \end{split}$$

So,

$$s_{2^k} \ge \frac{1}{2} t_{k+1}.$$

Similarly,

$$\begin{split} s_{2^{k+1}} &= a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \ldots + (a_{2^{k-1}} + \ldots + a_{2^{k-1}}) \\ &\leq a_1 + (a_2 + a_2) + (a_4 + a_4 + a_4 + a_4) + \ldots + (a_{2^{k-1}} + \ldots + a_{2^{k-1}}) \\ &= a_1 + 2a_2 + 4a_4 + \ldots + 2^{k-1}a_{2^{k-1}} \\ &= t_k. \end{split}$$

So,

$$s_{2^k-1} \le t_k.$$

(\Leftarrow) Suppose $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges ((t_m) converges). We want to show $\sum_{n=1}^{\infty} a_n$ converges ((s_m) converges). Note that since $a_n \geq 0$, both (s_m) and (t_m) are increasing sequences. It follows from the MCT that in order to prove (s_m) converges, it is enough to show that (s_m) is bounded.

$$(t_m)$$
 converges $\implies (t_m)$ is bounded $\implies \exists R > 0$ such that $\forall m \ t_m \leq R$.

In what follows we will show that R is an upper bound for (s_m) as well. Indeed, let $m \in \mathbb{N}$ be given. Choose k large enough so that $m < 2^k - 1$. Then

$$s_m \le s_{2^k - 1} \le t_k \le R.$$

So for all $m, 0 \le s_m \le R$. Hence (s_m) is bounded.

(\Longrightarrow) Suppose $\sum_{n=1}^{\infty} a_n$ converges ((s_m) converges). We want to show that $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges ((t_m) converges). We will prove the contrapositive: we will show that if (t_m) diverges, then (s_m) diverges. Suppose (t_m) diverges. Let R>0 be given. We will show that there is a term in the nonnegative sequence (s_m) that is larger than R.

$$(t_m)$$
 diverges (t_m) is increasing $\stackrel{MCT}{\Longrightarrow}(t_m)$ is not bounded above $\implies \exists k \text{ such that } t_{k+1} > 2R$

Now we have

$$s_{2^k} \ge \frac{1}{2}t_{k+1} > \frac{1}{2}(2R) = R.$$

So, (s_m) is unbounded.

Example 3.7.1. P-Series

Let p > 0. Then $\left(a_n = \frac{1}{n^p}\right)_{n \ge 1}$ is decreasing and nonnegative.

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges } \iff p > 1$$

Proof.

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \iff \sum_{n=0}^{\infty} 2^n \frac{1}{(2^n)^p} \text{ converges}$$

$$\iff \sum_{n=0}^{\infty} \frac{1}{2^{np-n}} \text{ converges}$$

$$\iff \sum_{n=0}^{\infty} \left(\frac{1}{2^{p-1}}\right)^n \text{ converges}$$

$$\iff \left|\frac{1}{2^{p-1}}\right| < 1$$

$$\iff 1 < 2^{p-1}$$

$$\iff 0 < p-1$$

$$\iff 1 < p$$

Example 3.7.2. Let p > 0. $\left(a_n = \frac{1}{n(\ln n)^p}\right)_{n \ge 2}$ is a decreasing nonnegative sequence.

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \text{ converges } \iff p > 1.$$

Proof.

$$\begin{split} \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \text{ converges } &\iff \sum_{n=1}^{\infty} 2^{\mathbb{Z}} \frac{1}{2^{\mathbb{Z}} (\ln 2^n)^p} \text{ converges} \\ &\iff \sum_{n=1}^{\infty} \frac{1}{(n \ln 2)^p} \text{ converges} \\ &\iff \frac{1}{(\ln 2)^p} \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges} \\ &\iff p > 1. \end{split}$$

Theorem 3.7.2. (Comparison Test) Assume there exists an integer n_0 such that $0 \le a_n \le b_n$ for all $n \ge n_0$:

- (i) If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges
- (ii) If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

Proof. (ii) is the contrapositive of (i); we only need to prove (i). By the Cauchy Criterion for Convergence of Series, it is enough to show that

$$\forall \epsilon > 0 \; \exists N \; \text{such that} \; \forall n > m > N \quad \left| \sum_{k=m+1}^{\infty} a_k \right| < \epsilon.$$

Let $\epsilon > 0$ be given. Our goal is to find N —such that

if
$$n > m > N$$
, then $\left| \sum_{k=m+1}^{\infty} a_k \right| < \epsilon$

Since $\sum_{n=1}^{\infty} b_n$ converges, it follows from the Cauchy criterion for series that

$$\exists \hat{N} \text{ such that } \forall n > m > \hat{N} \quad \left| \sum_{k=m+1}^{\infty} b_k \right| < \epsilon.$$

Let $N = \max\{n_0, \hat{N}\}$. For n > m > N we have

$$\left| \sum_{k=m+1}^{\infty} a_k \right| = \sum_{k=m+1}^{\infty} a_k \le \sum_{k=m+1}^{\infty} b_k = \left| \sum_{k=m+1}^{\infty} b_k \right| < \epsilon.$$

Example 3.7.3. Does $\sum_{n=1}^{\infty} \frac{1}{n+5^n}$ converge?

 $\forall n \in \mathbb{N},$

$$\frac{\frac{1}{n+5^n} \le \frac{1}{5^n}}{\sum_{n=1}^{\infty} \frac{1}{5^n} \text{ converges (geometric series)}} \right\} \implies \sum_{n=1}^{\infty} \frac{1}{n+5^n} \text{ converges}$$

Example 3.7.4. Suppose $a_n \ge 0$ and $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\sum_{n=1}^{\infty} a_n^2$ converges.

Proof.

$$\sum_{n=1}^{\infty} a_n \text{ converges } \implies \lim a_n = 0 \implies \exists n_0 \forall n \ge n_0 \ 0 \le a_n < 1 \implies \forall n \ge n_0 \ 0 \le a_n^2 \le a_n$$

It follows from the comparison test that $\sum_{n=1}^{\infty} a_n$ converges.

Theorem 3.7.3. (Useful Theorem 1)

Let (a_n) be a sequence of real numbers.

(i) Suppose $\beta \in \mathbb{R}$ is such that $\limsup a_n < \beta$. Then

$$\exists N \text{ such that } \forall n > N \ a_n < \beta$$

(ii) Suppose $\alpha \in \mathbb{R}$ is such that $\liminf a_n > \alpha$. Then

$$\exists N \text{ such that } \forall n > N \ a_n > \alpha$$

Proof. Here we will prove (i). Since $\limsup a_n < \beta$, clearly, $\limsup a_n \neq \infty$. We may consider two cases:

Case 1: $\limsup a_n = -\infty$

Since $\liminf a_n \leq \limsup a_n$, we conclude that $\liminf a_n = -\infty$. Therefore, $\lim a_n = -\infty$. The claim follows directly from the definition of $a_n \to -\infty$.

Case 2: $\limsup a_n \in \mathbb{R}$

Let $A = \limsup a_n$ and let $r = \frac{\beta - A}{2}$. Since $\lim_{n \to \infty} \sup\{a_k : k \ge n\} = A$, there exists N such that

$$\forall n > N \ \sup\{a_k : k \ge n\} < A + r$$

In particular,

$$\forall n > N \sup\{a_k : k > n\} < \beta$$

Therefore,

$$\forall n > N \ a_n < \beta$$

Theorem 3.7.4. (Useful Theorem 2)

Let (a_n) be a sequence of real numbers.

(i) Suppose $\limsup a_n > \beta$. Then, for infinitely many $k, a_k > \beta$. That is,

 $\forall n \in \mathbb{N} \ \exists k > n \text{ such that } a_k > \beta.$

(ii) Suppose $\liminf a_n < \alpha$. Then, for infinitely many $k, a_k < \alpha$. That is,

 $\forall n \in \mathbb{N} \ \exists k \geq n \text{ such that } a_k < \alpha.$

Proof. Here we will prove (i). Assume for contradiction that only for finitely many $k, a_k > \beta$. Then

$$\exists N \ \forall k > N \ a_k \leq \beta$$

. Therefore

$$\limsup a_k \le \limsup \beta = \lim \beta = \beta$$

which contradicts the assumption that $\limsup a_k > \beta$.

Theorem 3.7.5. (Root Test)

Let (a_n) be a sequence of real numbers. Let $\alpha = \limsup \sqrt[n]{|a_n|}$.

- (i) If $\alpha < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $\alpha > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof. (i) Choose a number β such that $\alpha < \beta < 1$. We have

$$\limsup \sqrt[n]{|a_n|} < \beta \overset{\text{Useful Theorem 1}}{\Longrightarrow} \exists N \text{ such that } \forall n > N \ \sqrt[n]{|a_n|} < \beta$$

Hence,

$$\frac{\forall n > N \ 0 \le |a_n| < \beta^n}{\sum_{n=1}^{\infty} \beta^n \text{ converges (geometric series)}} \right\} \stackrel{\text{comparison test}}{\Longrightarrow} \sum_{n=1}^{\infty} \sqrt[n]{|a_n|} \text{ converges.}$$

(ii) Choose a number β such that $1 < \beta < \alpha$. We have $\beta < \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. By the Useful Theorem 2, we have $\beta < \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. By the Useful Theorem 2

$$\forall n \in \mathbb{N} \ \exists k \geq n \text{ such that } \sqrt[k]{|a_k|} > \beta$$

$$\implies \forall n \in \mathbb{N} \ \exists k \geq n \text{ such that } |a_k| > \beta^k$$

$$\implies \forall n \in \mathbb{N} \ \exists k \geq n \text{ such that } \sup\{|a_m| : m \geq n\} > \beta^k$$

$$\implies \forall n \in \mathbb{N} \ \sup\{|a_m| : m \geq n\} > \beta^n.$$

Since $\lim_{n\to\infty} \beta^n = \infty$ $(\beta > 1)$, it follows from the OLT in $\overline{\mathbb{R}}$ that $\lim_{n\to\infty} \sup\{|a_m| : m \ge n\} = \infty$. So, $\limsup |a_n| = \infty$. This tells us that $\lim a_n \ne 0$. So, $\sum a_n$ diverges by the Divergence Test.

Theorem 3.7.6. (Ratio Test)

Let (a_n) be a sequence of real numbers.

- (i) If $\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- (ii) If $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for all $n \ge n_0$, then $\sum_{n=1}^{\infty} a_n$ diverges.
- (iii) If $\liminf \left| \frac{a_{n+1}}{a_n} \right| > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof. Let $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$.

(i) Choose a number β such that $\rho < \beta < 1$. We have

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\implies \exists N\text{ such that }\forall n\geq N\quad \left|\frac{a_{n+1}}{a_n}\right|<\beta$$

So,

$$|a_{N+1}| < \beta |a_N|$$

 $|a_{N+2}| < \beta |a_{N+1}| < \beta^2 |a_N|$
 $|a_{N+3}| < \beta |a_{N+2}| < \beta^3 |a_N|$
:

So $\forall n \in N$, $|a_{N+n}| < \beta^n |a_N|$. Now, notice that $\sum_{n=1}^{\infty} \beta^n |a_N| = |a_N| \sum_{n=1}^{\infty} \beta^n$ converges (geometric series). It follows from the comparison test that $\sum_{n=1}^{\infty} |a_{N+n}|$ converges. This immediately implies that $\sum_{n=1}^{\infty} |a_n|$ converges.

(ii) Choose a number β such that $1 < \beta < \rho$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho \implies \exists N \text{ such that } \forall n \ge N \ \left| \frac{a_{n+1}}{a_n} \right| > \beta.$$

So,

$$|a_{n+1}| > \beta |a_N|$$

 $|a_{n+2}| > \beta |a_{N+1}| > \beta^2 |a_N|$
 $|a_{n+3}| > \beta |a_{N+2}| > \beta^3 |a_N|$
:

Thus, $\forall n \in \mathbb{N} \ |a_{N+n}| > \beta^n |a_N|$. Since $\beta > 1$,

$$\lim_{n\to\infty}\beta^n|a_N|=\infty.$$

So, $\lim_{n\to\infty} |a_{N+n}| = \infty$. Therefore, $\lim_{n\to\infty} a_n \neq 0$. Thus $\lim_{n\to\infty} a_n \neq 0$. So, $\sum_{n=1}^{\infty} a_n$ diverges by the divergence test.

Example 3.7.5. Let $R \neq 0$ be a fixed number. Prove that the series $\sum_{n=1}^{\infty} \frac{R^n}{n!}$ converges.

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{R^{n+1}}{(n+1)!}}{\frac{R^n}{n!}} \right| = \lim_{n \to \infty} \left| \frac{R^{n+1}n!}{R^n(n+1)!} \right|$$
$$= \lim_{n \to \infty} \left| \frac{R}{n+1} \right|$$
$$= |R| \lim_{n \to \infty} \frac{1}{n+1}$$
$$= 0.$$

 $\rho = 0 < 1 \implies \sum_{n=1}^{\infty} \frac{R^n}{n!}$ is absolutely convergent.

Theorem 3.7.7. (Dirichlet's Test)

Consider Sequences (a_n) and (b_n) such that

- (i) Partial sums of $\sum_{n=1}^{\infty} a_n$ are bounded
- (ii) (b_n) is a decreasing sequence of nonnegative numbers: $b_1 \geq b_2 \geq b_3 \geq ... \geq 0$
- (iii) $\lim_{n\to\infty} b_n = 0$

Then $\sum_{n=1}^{\infty} a_n b_n$ converges.

Example 3.7.6. Consider the infinite sum

$$1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\dots$$

(i) What is (s_n) ?

$$s_1 = 1$$

$$s_2 = 1 - 1 = 0$$

$$s_3 = 1 - 1 + \frac{1}{2} = \frac{1}{2}$$

$$s_4 = 1 - 1 + \frac{1}{2} - \frac{1}{2} = 0$$

$$s_5 = 1 - 1 + \frac{1}{2} - \frac{1}{2} + \frac{1}{3} = \frac{1}{3}$$
:

 $s_{2k} = 0, \ s_{2k-1} = \frac{1}{k}$

(ii) What is $\lim_{n\to\infty} s_n$?

$$\lim_{k \to \infty} s_{2k} = 0 = \lim_{k \to \infty} s_{2k-1}$$

$$\implies \lim_{n \to \infty} s_n = 0.$$

Remark. Consider the following rearrangement:

$$1 + \frac{1}{2} - 1 + \frac{1}{3} + \frac{1}{4} - \frac{1}{2} + \frac{1}{5} + \frac{1}{6} - \frac{1}{3} + \dots$$

Here is the corresponding sequence of partial sums:

$$s_2 = \frac{3}{2}$$

$$s_3 = \frac{1}{2}$$

$$\vdots$$

$$s_{3 \times 10^2 + 2} \approx 0.6939$$

$$s_{3 \times 10^4 + 2} \approx 0.6931$$

$$\vdots$$

It can be shown that $s_n \to \ln 2 \approx 0.6931$.

Theorem 3.7.8. If a series converges absolutely, then any rearrangement of the series converges to the same limit.

Theorem 3.7.9. (Riemann Rearrangement Theorem) If a series $\sum_{n=1}^{a_n}$ converges conditionally, then for any $L \in \mathbb{R}$ there exists some rearrangement of $\sum_{n=1}^{\infty} a_n$ which converges to L.