—— 计算数 —— 概述数 —— 舒蒼 Clinical	Trial		
2024	2023	2022	202
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	Randomisation	军級(激)	
最后总共需要 2N人 (向4取整)	Double - blind	Phrase IV	
实践中人不够?患者可能退出(withdraw),估计退出等,	Placebo-controlled	Control group?	
相应扩大规模。	4 Stages to design clinical trial	Randomisation	
Meta分析的四个主要目标:①一致、客观地展示不同试验的数据	展放(連集). (20 ² (本) は、ましい) ²	oR	
②测试总传鉴假设	$N = \frac{2\sigma^2}{(\nu_A - \nu_B)^2} \left[\overline{\Phi}(1 - \frac{\omega}{\Sigma}) + \underline{\Phi}(1 - \beta) \right]^2$ Meta 分析: 应用统计传生 <u>间数</u>		
③佐计科均治疗效果	of 語分结果 from 不同临床试验		
heterogeneity ④语查试验证间是否存在统计异质性。	of 图-1-15疗意果 记号 Publication Bias		
Meta $\hat{\mathcal{G}}$ If $\hat{\mathcal{T}}$ Fixed effect: $\hat{\mu}_{fE} = \frac{\sum W_c \hat{Y}_c}{\sum W_c}$, where $W_c = \frac{1}{Var[\hat{Y}_c]}$	95% CI of cold ratio 含1不足 Odd ratio 皇祖の odd z 代.		
$\Rightarrow Var[\hat{\mu}_{FE}] = \frac{1}{\sum W_c}$	t与为失败人成功 or desease/no desease		
⇒ 95% CI: ÂFE ± 1.96√Var[ÂFE] 含O不显著.	risk no risk		
Publication bias 发表偏差:指大型或显著治疗效应会发展在医学期刊上,那么较小或非显着影响更容易被看到的现象。			
通伤来讲. 1007团队只有5个成功3发表, 而另外95个都失败3——"管中窥豹"			
即并非真相而是被游选后与真相 Symmetric (对较→录	bias		
判斷(依括: 据計图 (Funnel plot) (对称→元 graphical diagnostic asymmetric ⇒铁泉: 图形污纸纸 角轮并不清晰 interpretation	bios		
⇒記集: 图形为线纸 解释并未清晰 interpretation (X=11)			
12.10 Random Effect: if $\hat{Y}_c \sim N(\mu, \frac{1}{W_c} + \tau^2)$. $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$			
$\Rightarrow l(\mu \mid \tau^{2}) = l_{\text{og}} L(\mu \mid \tau^{2}) = l_{\text{og}} \left[\frac{c}{1} \frac{1}{\sqrt{2\pi (\frac{1}{W_{c}} + \tau^{2})}} \exp\left(-\frac{L\hat{Y}_{c}}{2(\frac{1}{W_{c}})}\right) - \frac{c}{2} \right]$ $= \sum_{c=1}^{c} \left(-\frac{1}{2} l_{\text{og}} \left(2\pi (\frac{1}{W_{c}} + \tau^{2})\right) - \frac{c}{2} \right)$	(+++++++++++++++++++++++++++++++++++++		
$\Rightarrow \frac{d}{dt} \left[u_t t^2 = \frac{c}{2} \frac{2(\hat{y}_c - \mu)}{2(\hat{y}_c - \mu)} \right] = \frac{c}{2} \frac{\hat{y}_c - \mu}{2(\hat{y}_c - \mu)} = 0$	(1/Wc + T'))		
$\Rightarrow \frac{d}{d\mu} l(\mu \tau) = \frac{c}{c} = \frac{2(\hat{Y}_{c} - \mu)}{2(\hat{Y}_{c} - \mu)} = \frac{c}{c} = \frac{\hat{Y}_{c} - \mu}{2(\hat{Y}_{c} - \mu)} = 0$ $\Rightarrow \hat{\mu}_{RE} = \frac{c}{c} = \frac{1}{2(\hat{Y}_{c} - \mu)} = 0$			
THE STATE OF THE S			

2024 Sensitivity = Specificity =	101221	diseased people who		Epidemiolog	y				
Sensitivity =	101221	diseased people who		Lpidewiloug	3				
Sensitivity =	101221	diseased people who							
Sensitivity =	101221	diseased people who							
	101221	diseased people who							
	101221	number of diseased	screen positive						
Specificity =	4	Thursday 5	perpu						
		healthy I number of heat							
		12 . #2 . 4 - 0 .	1301 4 10610 20 40	1.28 6 2 3:					
Direct Stand	ardisation: 12	公本代发2 不18]人	中部十岁野公的多数 $IR) = \frac{\sum_{n_i} \times N_i}{\sum_{n_i} N_i}$	2/52 1×10 6	$\sum \frac{y_i}{n_i^2} \times N_i^2$	Assumption: y;	~ Poisson (ni, 0;)		
⇒ Aae stan	dardised mor	tality rate (ASI	$AR = \frac{\sum y_i}{n_i} \times N_i$	Var LASMA	$\left(\sum_{i}N_{i}\right)^{2}$) = É	$\theta_{MLE} = \frac{y_i}{n_i}$		
	7		ΣN;		1.5表 =	study populations	λċ3:		
Indirect Star	dardisation:	在参考体中特別	建和经产量下.计算	展研究群体头往		evence population			
		外后车的下路路	· 转发扬馨	' '	h. 111) (A)5MR-1 txle	η.		
⇒ Standardi	sed mortalit	y rate (SMR)	_ Observed death Expected death	_ = <u> </u>	<u>4 ð;</u> _] ∑ N;-r;				
		# z	为的下挥群体, 或内居伯/思约疾病 中侧重要协变量数据	Jan Vari	SMR) =	(含1不显著)			
Spatial ecol	gical study:	发了小比级区的公司 此便名4-14/21夕区f	成功是行为要约5克主	かんえる	2	(31/4 Ass	unption.		
还有很多。	区分7岁世里.	李钧暴器北至和	中心重要ta变量数据	5	75% CL : SMR ±	170 VE2 Y.	\		
		→通过比较公园	经间单之内居住的名	练,译估暴客对	获新生人群北京上	33/060 R	~ Poisson (ER).		
2023									
Dise	ace Ino Dise	are (at risk)							
$OR = \frac{Dise}{Dise}$	ase no Dise	ase (at risk) =	Var[log(OR)] =	1 + 1 + C + C	= 95% C1: 6	op (OR) ± 1.96 SVar	\Rightarrow (exp(·), exp	·(·)).	
			wi ORi	, .	1 a bici	B 124217			
Mantel - 170	lenszel 1/3.	ORMH — —	wi ORi	where w; = -	(logor) ~ ni	BIPARTEX).			
Sensitivity	Specificity								
	7								
2022		risk of diseas	19 19 19 19 19 19 19 19 19 19 19 19 19 1						
		$ \bigvee \swarrow $	o risk disease : }						
		=P,-P2 =	A+B - C+D	基面包					
Paulati	adh all and d	101. ls D4.b	= (A+C) NP2 <- A+C	总人数的预期的	雪星				
1 opulation	ciin butable	MISK: PAK =	A+ C						
Relative vi	sk : RR :	$=\frac{P_1}{P_2}=.$	A A+B ⇒	Var[log(RR)] = -	1 - 1 + C - c	1			
		Fz	<u>C</u> +D	0	A ATTIS C C				
2024	1								
	Stidy1	-							
OR. ORM	1 . 3								
	-	-							
		1 OR (95% CI)							

	Survival Analy	sis							
		'							
2024	A9 (4) - 7 0 ()								
Kaplan - Meier 住村 : $\hat{S}_{KM}(t) = \frac{n}{1-1} \frac{S_i}{r_i}$ $S_i = r_i - d_i$	减去当天绝的 (不包	括 Censor)							
Naplan - Meier 167 : Skm(t) = .11 - t:前还活	的(当天死码不算)								
275 1+, 2, 2, 5, 6, 6+, 7, 9+, 10+, 12. Here	are 5 distict t	ime: 2,5,	6, 7, 12						
从这个时间直往后查人数处了									
Event time Number at risk at time t(i) No t(i)	umber of Surviving	at time tii)) Esti	mate Survi			ime tci)		
- 共10人	21				Ś(;	(đ)			
2 10 10 10 10 10 10 10 10 10 10 10 10 10	$9-2=7^{t=2}$	时先327			7/	9			
5 71t2,2963	$7-1=6^{t=5}$ $6-1=5^{6+3}$	iof ze 3 17				/ ₇ = 2/3			
6 6	6 - 1 = 5 6 7	₹ \			2/3 x 5/				
7 4	3				5/9 x 3/	$y = \frac{5}{12}$			
That I was to be a table of the last of the control to a	to the time		/0		C				
那村大三、和大三年即是还没到大三、当时间、民心	6) 85 2 W/M [= 2	-4, ls 7,	/9.						
⇒ €7. E. Kaplan Meier estimator is a step function. 🖻	入学 t=3 まo t=4 -t	善 用滑	E (smoother	・) , 俊某不	整-913	梯級	<u>(</u>		
							١,	n	
Assumption. Si ~ Binomial $(r_i, o_i) \Rightarrow \hat{\theta}_{i, \text{MLE}} = \frac{S_i}{r_i} \Rightarrow \Rightarrow i$							Skm(t)	<u> </u>	
(ox proportional hazards model (PHM): $> \exp\left(-\int_{0}^{t} M\right)$	$(u,z_i)du = \exp\left(-\frac{1}{u}\right)$	^t ho(u) du ·	exp (={\beta}(\beta))	2023 基	本-祥.				
	$= \exp\left(-\int_{c}$								
				$\Rightarrow H(t, z)$) = (x)	H(t, Zz)			
	$\Rightarrow S(t,z_i) = S_0(t)$) editip)		=) - lg[S(:)	
with covariate vector $z = (z_{i1}, \dots, z_{ip})$				> bg {- lg	[Slt, Z1)]) = light	(c) + log	{-l=[SH	[,22]]
where $h_0(t)$ is baseline hazard function, β is a set of unknown	un parameters		$\longrightarrow \longleftarrow$, ·		U	, v		
> Hazard ratio, exp(ĝ) → 9tcI, ĵ±1.96·SE[ŝ] ⇒ exp	(Ŝ±196SE(Ř)) A	1不显著		$\Rightarrow \chi_i(t) = $			1 0		paralle
				$\lambda_2(t) =$					
表码:公文: Survival function, S(t)= (-F(t) = exp(-	Stundu) -		(2)	$\chi^2 = \frac{\{o_1 \cdot e_2\}}{E}$	-E1) +	(02-E2)) ~	/2(1-d))
hazard function, $h(t) = \int_{-\infty}^{\infty} \frac{Pr(T=t+\Delta t)}{\Delta t}$	[>t) /2 20							٠,	
hazard function. $h(t) = \frac{1}{100} $	(3×ŝtæ	·).					$E_{Ai} = 2$	Ai ri	
	$t = \int_0^t h(u) du$		A B	: 2 3· : 4 5	+ 5+	7 8+	7 11	†	
		tii) d	la de	da+dB	r _A	re	rat ro	EA;	Esi
$\Rightarrow \log S(t) = -\int_{s}^{t} \operatorname{hu}_{1} du \qquad \Rightarrow S(t) = \exp(-H(t)) \Rightarrow H(t) = \operatorname{hu}_{1}^{t} \operatorname{hu}_{2}^{t} du$	$=-\log(S(t))$	2 1	1 0		6	6	12	6×412	6 × 1/12
		4	0 1		¥ У	6	10	4×1/10	6 ×1/10
2022 . 未删	110)		0 1		3	<i>y</i>	7	4 x /9 3 x /5	5 ×1/9
Joint likelihood: $L(t, \dots, t_n, S_1, \dots, S_n) = \prod_{i=1}^n \left\{ \left[f(t_i \mid z_i) \right]^{S_i} \right\} $	(t; z;)] - {; }		2 6	2	3	3	6	3 × 46	3 22/6
	J.	η	1 0	l	1	t	2_	X /2	
log-likelihood: log L		O _A =	= 4 OB=3					E _A =	EB=
202\									
	のたみな(3知)-)2								
Nelson and Aalen: $\hat{H}_{NA}(t) = \sum \frac{di}{r_i}$, χ^2 the	\$ 12711 (280) 9X	-21							