Höhere Mathematik I

G. Herzog, C. Schmoeger

Wintersemester 2016/17

Karlsruher Institut für Technologie

Inhaltsverzeichnis

1	Reelle Zahlen	3
2	Folgen und Konvergenz	11
Stichwortverzeichnis		17

1 Reelle Zahlen

Grundmenge der Analysis is die Menge \mathbb{R} , die Menge der **reellen Zahlen**. Diese führen wir **axiomatisch** ein, d.h. wir nehmen \mathbb{R} als gegeben an und **fordern** in den folgenden 15 **Axiomen** Eigenschaften von \mathbb{R} aus denen sich alle weiteren Rechenregeln herleiten lassen.

Körperaxiome: in \mathbb{R} seien zwei Verknüpfungen "+" und "·" gegeben, die jedem Paar $a, b \in \mathbb{R}$ genau ein $a + b \in \mathbb{R}$ und genau ein $ab \coloneqq a \cdot b \in \mathbb{R}$ zuordnen. Dabei soll gelten:

(A1)
$$\forall a, b, c \in \mathbb{R}$$
 $a + (b + c) = (a + b) + c$ (Assoziativgesetz)

$$(A5) \ \forall a, b, c \in \mathbb{R} \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

(A2)
$$\exists 0 \in \mathbb{R} \text{ mit } \forall a \in \mathbb{R} \ a + 0 = a \text{ (Null)}$$

(A6)
$$\exists 1 \in \mathbb{R} \text{ mit } \forall a \in \mathbb{R} \ a \cdot 1 = a \text{ und } 1 \neq 0 \text{ (Eins)}$$

$$(A3) \ \forall a \in \mathbb{R} \ \exists -a \in \mathbb{R} \ a + (-a) = 0$$

$$(A7) \ \forall a \in \mathbb{R} \setminus \{0\} \ \exists a^{-1} \in \mathbb{R} \ a \cdot a^{-1} = 1$$

(A4)
$$\forall a, b \in \mathbb{R} \ a + b = b + a$$
 (Kommutativgesetz)

(A8)
$$\forall a, b \in \mathbb{R} \ a \cdot b = b \cdot a \ (\text{Kommutativgesetz})$$

(A9)
$$\forall a, b, c \in \mathbb{R} \ a \cdot (b+c) = a \cdot b + a \cdot c$$
 (Distributivgesetz)

Schreibweisen:

für
$$a,b \in \mathbb{R}$$
: $a-b \coloneqq a + (-b)$ und für $b \neq 0$: $\frac{a}{b} \coloneqq a \cdot b^{-1}$.

Alle bekannten Regeln der Grundrechnungsarten lassen sich aus (A1) - (A9) herleiten. Diese Regeln seien von nun an bekannt.

Beispiele

a) Beh.:
$$\exists_1 0 \in \mathbb{R} \text{ mit } \forall a \in \mathbb{R} \ a + 0 = a$$

Beweis

Sei
$$\tilde{0} \in \mathbb{R}$$
 mit $\forall a \in \mathbb{R}$ $a + \tilde{0} = a$. Mit $a = 0$ folgt: $0 + \tilde{0} = 0$. Mit $a = \tilde{0}$ in (A2) folgt: $\tilde{0} + 0 = \tilde{0}$. Dann $0 = 0 + \tilde{0} = (A4)$ $\tilde{0} + 0 = \tilde{0}$

b) Beh.: $\forall a \in \mathbb{R} \ a \cdot 0 = 0$

Beweis

Sei
$$a \in \mathbb{R}$$
 und $b := a \cdot 0$. Dann: $b = (A2) a(0+0) = (A9) a \cdot 0 + a \cdot 0 = b + b$.
 $0 = (A3) b + (-b) = (b+b) + (-b) = (A1) b + (b+(-b)) = b + 0 = (A2) b$

Anordnungsaxiome: in \mathbb{R} ist eine Relation $, \leq$ "gegeben.

Dabei sollen gelten:

(A10) für
$$a, b \in \mathbb{R}$$
 gilt $a \leq b$ oder $b \leq a$

(A11) aus
$$a \le b$$
 und $b \le a$ folgt $a = b$

(A12) aus
$$a \le b$$
 und $b \le c$ folgt $a \le c$

(A13) aus
$$a \leq b$$
 folgt $\forall c \in \mathbb{R} \ a + c \leq b + c$

(A14) aus
$$a \le b$$
 und $0 \le c$ folgt $ac \le bc$

Schreibweisen:

$$b \ge a : \iff a \le b; \ a < b : \iff a \le b \text{ und } a \ne b; \ b > 0 : \iff a < b$$

Aus (A1) - (A14) lassen sich alle Regeln für Ungleichungen herleiten. Diese Regeln seien von nun an bekannt.

Beispiele (ohne Beweis)

- a) aus a < b und 0 < c folgt ac < bc
- b) aus $a \le b$ und $c \le 0$ folgt $ac \ge bc$
- c) aus $a \le b$ und $c \le d$ folgt $a + c \ge b + d$

Intervalle: Seien $a, b \in \mathbb{R}$ und a < b

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$
 (abgeschlossenes Intervall)

$$(a,b) := \{x \in \mathbb{R} : a < x < b\}$$
 (offenes Intervall)

$$(a,b] := \{x \in \mathbb{R} : a < x \le b\}$$
 (halboffenes Intervall)

$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}$$
 (halboffenes Intervall)

$$[a,\infty) := \{x \in \mathbb{R} : x \ge a\}, (a,\infty) := \{x \in \mathbb{R} : x > a\}$$

$$(-\infty, a] := \{x \in \mathbb{R} : x \le a\}, (-\infty, a) := \{x \in \mathbb{R} : x < a\}$$

$$(-\infty,\infty)\coloneqq \mathbb{R}$$

Der Betrag

Für
$$a \in \mathbb{R}$$
 heißt $|a| \coloneqq \begin{cases} a, & \text{falls } a \ge 0 \\ -a, & \text{falls } a < 0 \end{cases}$ der Betrag von a .

Beispiele

$$|1| = 1, |-7| = -(-7) = 7.$$

$$|a| =$$
, Abstand " von 0 und a

$$|a-b| =$$
 ", Abstand " von a und b

Es ist
$$|-a| = |a|$$
 und $|a - b| = |b - a|$

Regeln:

- a) $|a| \ge 0$
- b) $|a| = 0 \iff a = 0$
- c) |ab| = |a||b|
- d) $\pm a \leq |a|$
- e) $|a+b| \le |a| + |b|$ (Dreiecksungleichung)
- f) $||a| |b|| \le |a b|$

Beweis

- (a) d) leichte Übung
- e) Fall 1: $a+b \ge 0$. Dann: $|a+b| = a+b \le_{d} |a| + |b|$. Fall 2: a+b < 0. Dann: $|a+b| = -(a+b) = -a + (-b) \le_{d} |a| + |b|$.

f)
$$c := |a| - |b|$$
; $|a| = |a - b + b| \le_{d}$, $|a - b| + |b|$
 $\Rightarrow c = |a| - |b| \le |a - b|$. Analog: $-c = |b| - |a| \le |b - a| = |a - b|$
Also: $\pm c \le |a - b|$.

Definition

Sei $\emptyset \neq M \subseteq \mathbb{R}$.

- a) M heißt nach oben beschränkt : $\iff \exists \gamma \in \mathbb{R} \ \forall x \in M \ x \leq \gamma$ In diesem Fall heißt γ eine obere Schranke
- b) Ist γ eine obere Schranke von M und gilt $\gamma \leq \delta$ für jede weitere obere Schranke δ von M, so heißt γ das **Supremum** von M (kleinste obere Schranke von M)
- c) M heißt nach unten beschränkt : $\iff \exists \gamma \in \mathbb{R} \ \forall x \in M \ \gamma \leq x$ In diesem Fall heißt γ eine untere Schranke (US)
- d) Ist γ eine untere Schranke von M und gilt $\gamma \geq \delta$ für jede weitere untere Schranke δ von M, so heißt γ das **Infimum** von M (größte untere Schranke von M)

Bez.: in dem Fall: $\gamma = \sup M$ bzw. $\gamma = \inf M$.

Aus (A11) folgt: ist sup M bzw. inf M vorhanden, so ist sup M bzw. inf M eindeutig bestimmt.

Ist sup M bzw. inf M vorhanden und gilt sup $M \in M$ bzw. inf $M \in M$, so heißt sup M das Maximum bzw. inf M das Minimum von M und wird mit max M bzw. min M bezeichnet.

Beispiele

- a) M = (1,2). sup $M = 2 \notin M$, inf $M = 1 \notin M$. M hat kein Maximum und kein Minimum.
- b) M = (1, 2]. $\sup M = 2 \in M$, $\max M = 2$
- c) $M = (3, \infty)$. M ist nicht nach oben beschränkt, $3 = \inf M \notin M$.
- d) $M = (-\infty, 0]$. M ist nach unten unbeschränkt, $0 = \sup M = \max M$.

Vollständigkeitsaxiom:

(A15) Ist $\emptyset \neq M \subseteq \mathbb{R}$ und ist M nach oben beschränkt, so ist sup M vorhanden.

Satz 1.1

Ist $\emptyset \neq M \subseteq \mathbb{R}$ und ist M nach unten beschränkt, so ist inf M vorhanden.

Beweis

i. d. Übungen. $\hfill\Box$

Definition

Sei $\emptyset \neq M \subseteq \mathbb{R}$. M heißt beschränkt : $\iff M$ ist nach oben und nach unten beschränkt ($\iff \exists c \geq 0 \ \forall x \in M \ |x| \leq c \iff \exists c \geq 0 \ \forall x \in M \ -c \leq x \leq c$)

Satz 1.2

Es sei $\emptyset \neq B \subseteq A \subseteq \mathbb{R}$

- a) Ist A bechränkt \Rightarrow inf $A \leq \sup A$
- b) Ist A nach oben bzw. unten beschränkt $\Rightarrow B$ ist nach oben beschränkt und sup $B \le \sup A$ bzw. nach unten beschränkt und inf $B \ge \inf A$
- c) A sei nach oben bzw. unten beschränkt und γ eine obere bzw. untere Schranke von A. Dann

$$\gamma = \sup A \iff \forall \epsilon > 0 \ \exists x = x(\epsilon) \in A : x > \gamma - \epsilon$$

bzw.

$$\gamma = \inf A \iff \forall \epsilon > 0 \ \exists x = x(\epsilon) \in A : x < \gamma + \epsilon$$

Beweis

a)
$$A \neq \emptyset \Rightarrow \exists x \in \mathbb{R} : x \in A$$
. Dann inf $A \leq x, x \leq \sup A$ (A12)

$$\Rightarrow \inf A \le \sup A$$

b) Sei $x \in B$. Dann: $x \in A$, also $x \leq \sup A$. B ist also nach oben beschränkt und $\sup A$ ist eine obere Schranke von B

$$\Rightarrow \sup B \le \sup A$$

Analog der Fall für A nach unten beschränkt.

c) " \Rightarrow " Sei $\gamma=\sup A$ und $\epsilon>0. Dann: \gamma-\epsilon<\epsilon.$ $\gamma-\epsilon$ ist also keine obere Schranke von A. Also: $\exists x \in A : x > \gamma - \epsilon$ " \Leftarrow " Sei $\tilde{\gamma} \leq \gamma$. Annahme: $\gamma \neq \tilde{\gamma}$. Dann $\tilde{\gamma} < \gamma$, also $\epsilon \coloneqq \gamma - \tilde{\gamma} > 0$. $\Rightarrow_{Vor.} \exists x \in A : x > \gamma - \epsilon = \gamma - (\gamma - \tilde{\gamma}) = \tilde{\gamma}$. Widerspruch zu $x \leq \tilde{\gamma}$.

Natürliche Zahlen

Definition

efinition
a) $A \subseteq \mathbb{R}$ heißt eine Induktionsmenge (IM): $\iff \begin{cases} 1. & 1 \in A; \\ 2. & \text{aus } x \in A \text{ folgt stets } x+1 \in A \end{cases}$

Beispiele: $\mathbb{R}, [1, \infty), \{1\} \cup [2, \infty)$ sind Induktionsmengen

b) $\mathbb{N} := \{x \in \mathbb{R} : x \text{ gehört zu jeder IM }\} = \text{Durchschnitt aller IMn}$ Also: $\mathbb{N} \subseteq A$ für jede Induktionsmenge A.

Satz 1.3

- a) N ist eine Induktionsmenge
- b) N ist nicht nach oben beschränkt
- c) Ist $x \in \mathbb{R}$, so ex. ein $n \in \mathbb{N} : N > x$

Von nun an sei $\mathbb{N} = \{1, 2, 3, \dots\}$ bekannt.

Proposition 1.4 (Prinzip der vollständigen Induktion)

Ist $A \subseteq \mathbb{N}$ und A eine Induktionsmenge, so ist A = N.

Beweis

 $A \subseteq \mathbb{N}$ (nach Vor.) und $\mathbb{N} \subset A$ (nach Def.), also $A = \mathbb{N}$

Beweisverfahren durch vollständige Induktion

A(n) sei eine Aussage, die für jedes $n \in \mathbb{N}$ definiert ist. Für A(n) gelte:

$$\begin{cases} (I) & A(1) \text{ ist wahr;} \\ (II) & \text{ist } n \in \mathbb{N} \text{ und } A(n) \text{ wahr, so ist auch A(n + 1) wahr;} \end{cases}$$

Dann ist A(n) wahr für **jedes** $n \in \mathbb{N}!$

Beweis

Sei $A := \{n \in \mathbb{N} : A(n) \text{ ist wahr } \}$. Dann:

 $A \subseteq \mathbb{N}$ und, wg. (I), (II), A ist eine Induktionsmenge, (1.4) $\Rightarrow A = \mathbb{N}$

Beispiel

Beh.:
$$\underbrace{1+2+\ldots+n=\frac{n(n+1)}{2}}_{A(n)}, \quad \forall n \in \mathbb{N}$$

Beweis (induktiv)

I.A.: $1 = \frac{1(1+1)}{2} \checkmark$, A(1) ist also wahr.

I.V.: Für ein $n \in \mathbb{N}$ gelte $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$

I.S.: $n \curvearrowright n+1$:

$$1 + 2 + \ldots + n + (n+1) =_{I.V.} \frac{n(n+1)}{2} + (n+1)$$
$$= (n+1)\left(\frac{n}{2} + 1\right)$$
$$= \frac{(n+1)(n+2)}{2}$$

 $\Rightarrow A(n+1)$ ist wahr.

Definition

a)
$$\mathbb{N}_0 := \mathbb{N} \cup \{0\}$$

b)
$$\mathbb{Z} := \mathbb{N}_0 \cup \{-n : n \in \mathbb{N}\}$$
 (ganze Zahlen)

c)
$$\mathbb{Q} := \{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \}$$
 (rationale Zahlen)

Satz 1.5

Sind $x, y \in \mathbb{R}$ und $x < y \Rightarrow \exists r \in \mathbb{Q}$:

Beweis

i. d. Übungen.

Einige Definitionen und Formeln

- a) Für $a \in \mathbb{R}$ und $n \in \mathbb{N}$: $a^n \coloneqq \underbrace{a \cdot \ldots \cdot a}_{n \text{ Faktoren}}$, $a^0 \coloneqq 1$ und ist $a \neq 0$: $a^{-n} \coloneqq \frac{1}{a^n}$ Es gelten die bekannten Rechenregeln.
- b) Für $n \in \mathbb{N} : n! := 1 \cdot 2 \cdot \ldots \cdot n$, 0! := 1 (Fakultäten)
- c) Binomialkoeffizienten: für $n \in \mathbb{N}_0, k \in \mathbb{N}_0$ und $k \leq n$:

$$\binom{n}{k} \coloneqq \frac{n!}{k!(n-k)!}$$

z.B. $\binom{n}{0} = 1 = \binom{n}{n}$. Es gilt (nachrechnen!):

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \quad \text{für } 1 \le k \le n$$

d) Für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$a^{n+1} - b^{n+1} = (a - b) \left(a^n + a^{n-1}b + a^{n-2}b^2 + \dots + ab^{n-1} + b^n \right)$$
$$= (a - b) \sum_{k=0}^{n} a^{n-k}b^k$$

- e) Binomischer Satz: $a, b \in \mathbb{R} \ \forall n \in \mathbb{N} : (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ Beweis i. d. Übungen.
- f) Bernoullische Ungleichung: Sei $x \in \mathbb{R}$ und $x \ge -1$. Dann:

$$(1+x)^n \ge 1 + nx$$

Beweis (induktiv)

I.A.: n = 1: $1 + x \ge 1 + x$

I.V.: Für ein $n \in \mathbb{N}$ gelte $(1+x)^n \ge 1 + nx$

I.S.: $n \curvearrowright n+1$: $\Rightarrow_{I.V.} (1+x)^n \ge 1 + nx$ und da $1+x \ge 0$:

$$(1+x)^{n+1} \ge (1+nx)(1+x)$$

$$= 1+nx+x+\underbrace{nx^n}_{\ge 0}$$

$$\ge 1+nx+x$$

$$= 1+(n+1)x$$

Hilfssatz (HS)

Für $x, y \ge 0$ und $n \in \mathbb{N}$ gilt: $x \le y \iff x^n \le y^n$

Beweis

i. d. Übungen.

Satz 1.6

Sei $a \ge 0$ und $n \in \mathbb{N}$. Dann gibt es genau ein $x \ge 0$ mit: $x^n = a$. Dieses x heißt **n-te Wurzel aus a**; Bez.: $x = \sqrt[n]{a}$. $(\sqrt[n]{a} =: \sqrt{a})$

Beweis

Existenz: später in §7.

Eindeutigkeit: seien $x, y \ge 0$ und $x^n = a = y^n$. $\Rightarrow_{HS} x = y$

Bemerkungen

- a) $\sqrt{2} \notin \mathbb{Q}$ (s. Schule)
- b) Fpr $a \ge 0$ ist $\sqrt[n]{a} \ge 0$. Bsp.: $\sqrt{4} = 2$, $\sqrt{4} \ne -2$. Die Gleichung $x^2 = 4$ hat zwei Lösungen: $x = \pm \sqrt{4} = \pm 2$.

c) $\sqrt{x^2}|x| \ \forall x \in \mathbb{R}$

Rationale Exponenten

a) Sei zunächste a>0 und $r\in\mathbb{Q}, r>0$. Dann ex. $m,n\in\mathbb{N}: r=\frac{m}{n}$. Wir wollen definieren:

$$a^r \coloneqq \left(\sqrt[n]{a}\right)^m \quad (*)$$

Problem: gilt auch noch $r = \frac{p}{q}$ mit $p, q \in \mathbb{N}$, gilt dann $(\sqrt[q]{a})^m = (\sqrt[q]{a})^p$? Antwort: ja (d.h. obige Def. (*) ist sinnvoll).

Beweis

 $x := (\sqrt[n]{a})^m$, $y := (\sqrt[q]{a})^p$, dann: $x, y \ge 0$ und mq = np, also

$$x^{q} = \left(\sqrt[n]{a}\right)^{mq} = \left(\sqrt[n]{a}\right)^{np} = \left(\left(\sqrt[n]{a}\right)^{m}\right)^{p} = a^{p}$$
$$= \left(\left(\sqrt[q]{a}\right)^{q}\right)^{p} = \left(\left(\sqrt[q]{a}\right)^{p}\right)^{q} = y^{q}$$

 $\Rightarrow_{HS} x = y.$

b) Sei $a>0, r\in\mathbb{Q}$ und r<0. $a^r:=\frac{1}{a^{-r}}.$ Es gelten die bekannten Rechenregeln:

$$(a^r a^s = a^{r+s}, (a^r)^s = a^{rs}, \dots)$$

2 Folgen und Konvergenz

Definition

Es sei X eine Menge, $X \neq \emptyset$. Eine Funktion $a: \mathbb{N} \to X$ heißt eine **Folge in X**. Ist $X = \mathbb{R}$, so heißt a eine **reelle Folge**.

Schreibweisen:

 a_n statt a(n) (n-tes Folgenglied) (a_n) oder $(a_n)_{n=1}^{\infty}$ oder (a_1, a_2, \dots) statt a

Beispiele

- a) $a_n := \frac{1}{n} \ (n \in \mathbb{N}), \text{ also } (a_n) = (1, \frac{1}{2}, \frac{1}{3}, \dots)$
- b) $a_{2n} := 0, a_{2n-1} := 1 \ (n \in \mathbb{N}), \text{ also } (a_n) = (1, 0, 1, 0, \dots)$

Bemerkung

Ist $p \in \mathbb{Z}$ und $a: \{p, p+1, \ldots\} \to X$ eine Funktion, so spricht man ebenfalls von einer Folge in X. Bez.: $(a_n)_{n=p}^{\infty}$. Meist p=0 oder p=1.

Definition

Sei X eine Menge, $X \neq \emptyset$.

- a) X heißt abzählbar : $\iff \exists \text{ Folge } (a_n) \text{ in } X \colon X = \{a_1, a_2, a_3, \dots\}$
- b) X heißt **überabzählbar** : $\iff X$ ist nicht abzählbar

Beispiele

- a) Ist X endlich, so ist X abzählbar.
- b) \mathbb{N} ist abzählbar, denn $\mathbb{N} = \{a_1, a_2, a_3, \dots\}$ mit $a_n \coloneqq n \ (n \in \mathbb{N})$
- c) \mathbb{Z} ist abzählbar, denn $\mathbb{Z}=\{a_1,a_2,a_3,\dots\}$ mit $a_1:=0,a_2:=1,a_3:=-1,a_4:=2,a_5:=-2,\dots$ also

$$a_{2n} := n, \quad a_{2n+1} := -n \quad (n \in \mathbb{N})$$

d) Q ist abzählbar!

Durchnummerieren in Pfeilrichtung liefert

$${x \in \mathbb{Q} : x > 0} = {a_1, a_2, a_3, \dots}$$

 $b_1 := 0, b_{2n} := a_n, b_{2n+1} := -a_n \ (n \in \mathbb{N}).$ Dann:

$$\mathbb{Q} = \{b_1, b_2, b_3, \dots\}$$

e) \mathbb{R} ist überabzählbar (Beweis in §5).

Vereinbarung:

Solange nichts anderes gesagt wird, seien alle vorkommenden Folgen stets Folgen in \mathbb{R} . c Die folgenden Sätze und Definitionen formulieren wir nur für Folgen der Form $(a_n)_{n=1}^{\infty}$. Sie gelten sinngemäß für Folgen der Form $(a_n)_{n=p}^{\infty}$ $(p \in \mathbb{Z})$.

Definition

Sei (a_n) eine Folge und $M := \{a_1, a_2, \dots\}$.

- a) (a_n) heißt nach oben beschränkt : $\iff M$ ist nach oben beschränkt. I.d. Fall: $\sup_{n\in\mathbb{N}}a_n\coloneqq\sup_{n=1}^\infty a_n\coloneqq\sup M.$
- b) (a_n) heißt nach unten beschränkt : $\iff M$ ist nach unten beschränkt. I.d. Fall: $\inf_{n\in\mathbb{N}} a_n := \inf_{n=1}^\infty a_n := \inf M$.

c) (a_n) heißt **beschränkt** : $\iff M$ ist beschränkt

$$\iff \exists c \ge 0 : |a_n| \le c \ \forall n \in \mathbb{N}$$

Definition

Sei A(n) eine für jedes $n \in \mathbb{N}$ definierte Aussage.

A(n) gilt für fast alle (ffa) $n \in \mathbb{N} : \iff \exists n_0 \in \mathbb{N} : A(n)$ ist wahr $\forall n \geq n_0$

Definition

Sei $a \in \mathbb{R}$ und $\epsilon > 0$

$$U_{\epsilon}(a) := (a - \epsilon, a + \epsilon) = \{x \in \mathbb{R} : |x - a| < \epsilon\}$$

heißt ϵ -Umgebung von a.

Definition

Eine Folge (a_n) heißt konvergent

$$:\iff \exists a\in\mathbb{R}: \begin{cases} \text{zu jedem }\epsilon>0 \text{ ex. } n_0=n_0(\epsilon)\in\mathbb{N}:\\ |a_n-a|<\epsilon \ \forall n\geq n_0 \end{cases}$$

I. d. Fall heißt a Grenzwert (GW) oder Limes von (a_n) und man schreibt

$$a_n \to a \ (n \to \infty)$$
 oder $a_n \to a$ oder $\lim_{n \to \infty} a_n = a$

Ist (a_n) nicht konvergent, so heißt (a_n) divergent

Beachte:
$$a_n \to a \ (n \to \infty) \iff \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} : a_n \in U_{\epsilon}(a) \ \forall n \ge n_0$$

 $\iff \forall \epsilon > 0 \ \text{gilt:} \ a_n \in U_{\epsilon}(a) \ \text{ffa} \ n \in \mathbb{N}$
 $\iff \forall \epsilon > 0 \ \text{gilt:} \ a_n \notin U_{\epsilon}(a) \ \text{für höchstens endlich viele} \ n \in \mathbb{N}$

Satz 2.1

 (a_n) sei konvergent und $a = \lim a_n$

- a) Gilt auch noch $a_n \to b$, so sit a = b
- b) (a_n) ist beschränkt

Beweis

a) Annahme $a \neq b$. Dann ist $\epsilon := \frac{|a-b|}{2} > 0$.

$$\exists n_0 \in \mathbb{N} : |a_{n_0} - a| < \epsilon \quad \forall n \ge n_0 \text{ und } \exists n_1 \in \mathbb{N} : |a_n - b| < \epsilon \quad \forall n \ge n_1$$

 $N := \max\{n_0, n_1\}$. Dann:

$$2\epsilon = |a - b| = |a - a_N + a_N - b| \le |a_N - a| + |a_N - b| < 2\epsilon$$

Widerspruch! Also a = b

b) Zu $\epsilon=1 \ \exists n_0 \in \mathbb{N} : |a_n-a|<1 \ \forall n \geq n_0.$ Dann:

$$|a_n| = |a_n - a + a| \le |a_n - a| + |a| \le 1 + |a| \quad \forall n \ge n_0$$

$$c := \max\{1 + |a|, |a_1|, \dots, |a_{n_0-1}|\}$$
. Dann: $|a_n| \le \epsilon \ \forall n \ge 1$.

Beispiele

a) Sei $c \in \mathbb{R}$ und $a_n := c \ \forall n \in \mathbb{N}$. Dann:

$$|a_n - c| = 0 \quad \forall n \in \mathbb{N}$$

Also: $a_n \to c$.

b) $a_n := \frac{1}{n} \ (n \in \mathbb{N})$. Beh: $a_n \to 0 \ (n \to \infty)$.

Beweis

Sei $\epsilon > 0$: $|a_n - 0| = |a_n| = \frac{1}{n} < \epsilon \iff n > \frac{1}{\epsilon}$

$$\xrightarrow{1.3 \text{ c}} \exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\epsilon}$$

Für $n \ge n_0$ ist $n > \frac{1}{\epsilon}$, also $\frac{1}{n} < \epsilon$. Somit $|a_n - 0| < \epsilon \ \forall n \ge n_0$

c) $a_n := (-1)^n$. Es ist $|a_n| = 1 \ \forall n \in \mathbb{N}$, (a_n) ist also beschränkt. Behauptung: (a_n) ist divergent.

Beweis

 $\forall n \in \mathbb{N} : |a_n - a_{n+1}| = |(-1)^n - (-1)^{n+1}| = |(-1)^n| (1 - (-1)) = 2.$

Annahme: (a_n) konvergiert. Definiere $a := \lim a_n$, dann

$$\exists n_0 \in \mathbb{N}: |a_n - a| < \frac{1}{2} \quad \forall n \ge n_0$$

Für $n \ge n_0$ gilt dann aber:

$$2 = |a_n - a_{n+1}| = |a_n - a + a - a_{n+1}| \le |a_n - a| + |a_{n+1} - a| < \frac{1}{2} + \frac{1}{2} = 1$$

Widerspruch!

d) $a_n := n \ (n \in \mathbb{N}). \ (a_n)$ ist nicht beschränkt $\stackrel{2.1b}{\Longrightarrow} (a_n)$ ist divergent.

e)
$$a_n := \frac{1}{\sqrt{n}} (n \in \mathbb{N})$$
. Beh.: $a_n \to 0$

Beweis

Sei $\epsilon > 0$.

$$|a_n - 0| = \frac{1}{\sqrt{n}} < \epsilon \iff \sqrt{n} > \frac{1}{n} \iff n > \frac{1}{\epsilon^2}$$

$$\xrightarrow{1.3c}$$
 $\exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\epsilon^2}$. Ist $n \geq n_0 \Rightarrow n > \frac{1}{\epsilon^2} \Rightarrow \frac{1}{\sqrt{n}} < \epsilon \Rightarrow |a_n - 0| < \epsilon$

f)
$$a_n := \sqrt{n+1} - \sqrt{n}$$
.

Beweis

$$a_n = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}}$$

 $\Rightarrow |a_n - 0| \le \frac{1}{\sqrt{n}} \ \forall n \in \mathbb{N}$. Sei $\epsilon > 0$, nach Beispiel e) folgt:

$$\exists n_0 \in \mathbb{N}: \ \frac{1}{\sqrt{n}} < \epsilon \quad \forall n \ge n_0 \Rightarrow |a_n - 0| < \epsilon \quad \forall n \ge n_0$$

Also
$$a_n \to 0$$
.

Definition

 (a_n) und (b_n) seien Folgen und $\alpha \in \mathbb{R}$

$$(a_n) \pm (b_n) \coloneqq (a_n \pm b_n); \ \alpha(a_n) \coloneqq (\alpha a_n); \ (a_n)(b_n) \coloneqq (a_n b_n)$$

Gilt $b_n \neq 0 \ \forall n \geq m$, so ist die Folge $\left(\frac{a_n}{b_n}\right)_{n=m}^{\infty}$ definiert.

Satz 2.2

 $(a_n),(b_n),(c_n)$ und (α_n) seien Folge und $a,b,\alpha\in\mathbb{R}$

a)
$$a_n \to a \iff |a_n - a| \to 0$$

b) Gilt
$$|a_n - a| \le \alpha_n$$
 ffa $n \in \mathbb{N}$ und $\alpha_n \to 0$, so gilt $a_n \to a$

c) Es gelte $a_n \to a$ und $b_n \to b$. Dann:

(i)
$$|a_n| \rightarrow |a|$$

(ii)
$$a_n + b_n \rightarrow a + b$$

(iii)
$$\alpha a_n \to \alpha a$$

(iv)
$$a_n b_n \to ab$$

(v) ist $a \neq 0$, so ex. ein $m \in \mathbb{N}$:

$$a_n \neq 0 \ \forall n \geq m \text{ und für die Folge } \left(\frac{1}{a_n}\right)_{n=m}^{\infty} \text{ gilt: } \frac{1}{a_n} \to \frac{1}{a}$$

- d) Es gelte $a_n \to a, \, b_n \to b$ und $a_n \le b_n$ ffa $n \in \mathbb{N} \Rightarrow a \le b$
- e) Es gelte $a_n \to a$, $b_n \to a$ und $a_n \le c_n \le b_n$ ffa $n \in \mathbb{N}$. Dann $c_n \to a$.

Beispiele

- a) Sei $p \in \mathbb{N}$ und $a_n := \frac{1}{n^p}$. Es ist $n \le n^p \ \forall n \in \mathbb{N}$. Dann: $0 \le a_n \le \frac{1}{n} \ \forall n \in \mathbb{N} \xrightarrow{2.2e} a_n \to 0$, also $\frac{1}{n^p} \to 0$.
- b) $a_n := \frac{5n^2 + 3n + 1}{4n^2 n + 2} = \frac{5 + \frac{3}{n} + \frac{1}{n2}}{4 \frac{1}{n} + \frac{2}{n^2}} \to \frac{5}{4}$

Beweis (von 2.2)

- a) folgt aus der Definition der Konvergenz
- b) $\exists m \in \mathbb{N} : |a_n a| \le \alpha_m \ \forall n \ge m$. Sei $\epsilon > 0$

$$\exists n_1 \in \mathbb{N} : \alpha_n < \epsilon \ \forall n \ge n_1.$$

$$n_0 := \max\{m, n_1\}$$
. Für $n \ge n_0$: $|a_n - a| \le \alpha_n < \epsilon$

- c) (i) $||a_n| |a|| \leq_{\S 1} |a_n a| \ \forall n \in \mathbb{N} \xrightarrow[a]{b} |a_n| \to |a|$
 - (ii) Sei $\epsilon > 0$. $\exists n_1, n_2 \in \mathbb{N}; |a_n a| < \frac{\epsilon}{2} \ \forall n \ge n_1, |b_n b| < \frac{\epsilon}{2} \ \forall n \ge n_2$ $n_0 \coloneqq \max\{n_1, n_2\}.$ Für $n \ge n_0$:

$$|a_n + b_n - (a+b)| = |a_n - a + b_n - b| \le |a_n - a| + |b_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

- (iii) Übung
- (iv) $c_k := |a_n b_n ab|$. z. z.: $c_n \to 0$

$$c_n = |a_n b_n - a_n b + a_n b - ab| = |an(b_n - b) + (a_n - a)b|$$

$$\leq |a_n||b_n - b| + |b||a_n - a|$$

 $\stackrel{\mathbf{2.1b})}{\Longrightarrow} \exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N} \text{ und } c \geq |b|. \text{ Dann:}$

$$c_n \le c(|b_n - b| + |a_n - a|) \implies \alpha_n \xrightarrow[c)(ii),c)(iii)} \alpha_n \to 0$$

Also: $|c_n - 0| = c_n \le \alpha_n \ \forall n \in \mathbb{N} \ \text{und} \ \alpha_n \to 0 \xrightarrow{b} c_n \to 0.$

(v) $\epsilon := \frac{|a|}{2}$; (aus (i): $|a_n| \to |a| \Rightarrow \exists n \in N$:

$$\Rightarrow |a_n| > \frac{|a|}{2} > 0 \ \forall n \ge m \Rightarrow a_n \ne 0 \ \forall n \ge m.$$

Stichwortverzeichnis

abzählbar, 11	Umgebung, 13
Axiome	vollständige Induktion, 7
Anordnungs-, 4	vonstandige induktion,
Körper-, 3	Wurzel, 10
Vollständigkeits-, 6	
Bernoullische Ungleichung, 9	
beschränkt, 6	
Folge, 12	
Menge, 5	
Betrag, 4	
Binomialkoeffizient, 9	
Binomischer Satz, 9	
divergent, 13	
für fast alle, 13	
Fakultäten, 9	
Folge, 11	
reelle, 11	
ganze Zahlen, 8	
Grenzwert, 13	
Induktionsmenge, 7	
Infimum, 5	
Intervalle, 4	
intervane, 4	
konvergent, 13	
Limes, 13	
Natürliche Zahlen, 7	
rationale Zahlen, 8	
Schranke, 5	
Supremum, 5	
überabzählbar, 11	