Archaeological Spatial Structure

- what we see in the archaeological record.
- horizontal spatial patterning in:
 - -Features (e.g. structures,, fences pits, etc): "site structure"
 - -Artifacts (e.g. secondary refuse)
- Culture historians : sites are "homogeneous artifact mines"
- Binford and the new archaeologists: within-site spatial variation is cool.

1. Systemic context processes

- 1.1 Spatial organization of activities and the facilities with which they are associated
- 1.2 Spatial organization of discard

2. Post-abandonment processes

- plowing, etc.

1.1 Spatial organization of activities and the facilities with which they are associated: a simple model.

The extent to which one activity will be spatial segregated from others is a function of

- benefits of moving ~ scales inversely with interference potential:
 - -activities take up lots of space
 - -activities are dangerous
 - -activities require uninterrupted time
- costs of moving the offending activity ~ scales with distance moved, access frequency

General vs. Special Activity Areas

General Activity Areas

- -sleeping, eating, socializing, cooking
- -sleeping, cooking often separate within them
- -Family (kin based)
- -Communal (cross cut kin lines
- e.g. gender based)
- a.k.a, "nuclear" (John Yellen)
 - "intensive" (Lewis Binford"
 - "household" (O'Connell)

Special Activity Areas

- -ecologically variable
- -e.g. kangaroo roasting, car repair
- -cooking for large numbers (signals)
- -bulk processing and storage of agricultural produce
- -lots of refuse, space, time

Implications for Site Structure

Figure 1. Plan of Alyawara household activity area, adjacent roasting pits, and refuse disposal zone.

Dist anc

	anc				
Context	e Length	Width	Depth	Phase	
305A_G	78	10.7	9.7	1.8	1
304A_C	93	7.3	3.5	1.1	1
346A_D_362A_C	84	8.2	5	0.9	1
351B_H	69	10.2	3	1.3	1
356A_C	77	3.7	1.5	0.3	1
390M_N	65	6.2	4.2	8.0	1
360A	81	2	2	0.3	1
290A_D	89	3.5	3	0.6	1
289A_H	84	10.5	5.5	1.7	1
250D_E	21	7.5	6.4	0.7	2
273A_C	15	10	8	1.2	2
274A_B_E_G	22	11	7	1.2	2
295A	11	4.1	2.3	1	2
205G_M	4.5	4	3.1	0.6	3
240F_G	31	4.5	3.1	0.6	3
259A_D	56	5.5	4.5	0.7	3
288C_R	60	12	8.5	1.3	3
288S_AD	59	13.5	4.4	1.2	3
255A_E_Z_AH	50	13.5	10.5	1.1	3
255F_Y	56	5.6	4.5	2	3
309A	56	5.5	5	0.6	3
226B	7.5	4	3	0.3	4
277A_C	41	11.5	4.7	0.5	4
280A_H	39	10	7.4	1.1	4
383A_B	5	3.9	3	0.5	4
345A_D	85	5.4	4.4	1.1	4

Clifts Plantation

Distances of pits from the main house

Effect of variable pit size

25 **Total Cost** 20 15 Cost **Transport Costs** 10 5 *Interference Costs* 0 3 5 15 **Distance**

Big Hole – high interference costs.

Small hole – lower interference costs.

On the basis of this model, what to we expect the size-distance relationship to look like?

Clifts Plantation

Pit Distances vs. Pit Size (log scale)

- 1.1 Spatial organization of activities and the facilities with which they are associated: a simple model.
- -Extent to which one activity will be spatial segregated from others is a function of
 - 1. benefits of moving ~ scale inversely with interference potential:
 - -activities take up lots of space
 - -activities are dangerous
 - -activities require uninterrupted time
 - 2. costs of moving the offending activity ~ scales with distance moved, access frequency

1.2 Spatial organization discard.

- "The Pompeii Premise"
- primary refuse vs. secondary refuse (Mike Schiffer)
- cleaning up (creates some patterns, but destroys others)
- *interference potential* of primary refuse
 - amount (size, frequency, duration)
 - hazards (e.g. glass)
- how far stuff is transported
 effects spatial scale at which spatial
 pattern can be interpreted.
- secondary refuse nearly always has useful spatial pattern at some informative scale!!

Site 8 Example

1.2 Spatial organization discard.

- "The Pompeii Premise"
- primary refuse vs. secondary refuse(Mike Schiffer)
- *cleaning up* (creates some patterns, but destroys others)
- interference potential of primary refuse
 -amount (size, frequency, duration)
 -hazards (e.g. glass)
- how far stuff is transported
 effects spatial scale at which spatial
 pattern can be interpreted.
- secondary refuse nearly always has useful spatial pattern at some informative scale!!

1.2 Spatial organization discard.

- How to recognize cleaning up?
- Ethnoarchaeological evidence: Alyawara men's camp (O'Connell 1987)

Figure 11. Contour map of refuse density at Bendaijerum *apulla* men's household activity area. Contours computed on refuse distribution data summarized by 2 m square. Total number of refuse items = 972. See Table 7 for description.

Figure 12. Contour map of median length of non-cloth objects at Bendaijerum apulla men's household activity area. Contours computed on data summarized by 2 m square.

The Artifact Size Index

A tool to recognize the size sorting that results from cleaning up.

$$ASI_i = \frac{(x_i - pN_i)}{\sqrt{p - (1 - p)N_i}}$$

 x_i = Number of large artifacts from the I'th quadrat

p = Site-wide proportion of large artifacts

 N_i = Total artifacts from the *i'th* quadrat

So...

 pN_i = Expected number of large artifacts in the i'th quadrat, if all quads had the site-wide proportion

 $\sqrt{p-(1-p)N_i}$ = Standard deviation of the *Gaussian approximation* to the binomial distribution, which is a simple statistical model of the chance of getting 0, 1, 2, 3 ... larger artifacts in a sample of size N_i when the underlying probability of getting a large artifact is p.

More secret sauce:

- Krige continuous surfaces

Site 8

Creamware (1762-1820)

0.5 - 1.3 1.3 - 2.2 2.2 - 3.1 3.1 - 4.1 4.1 - 5.2 5.2 - 6.3 6.3 - 7.5 7.5 - 8.7 8.7 - 10.1 10.1 - 11.5

Chinese Porcelain (post 1600)

American Stoneware

Pearlware (1775-1830)

Site 6

Nail Density

Nail Completeness