SÉRIE DE EXERCÍCIOS

Parâmetros de uma Onda Senoidal

na de		\wedge	A

 $e(t) = E_{(m)} \operatorname{sen}(\omega t + \varphi) [V]$

Forma de Onda			$\wedge \wedge$	
Valor Médio	0	$\frac{E_{(m)}}{\pi}$	$\frac{2\mathbf{E}_{(m)}}{\pi}$	0
Valor Eficaz	<u>E_(m)</u> √2	E _(m) 2	<u>E_(m)</u> √2	<u>E_(m)</u> √3

1. Considere a forma de onda de uma tensão senoidal mostrada.

a) Escreva a equação da tensão senoidal, calculando todos os seus parâmetros.

Resposta: $e(t) = 179,61 \times sen(120 \pi t)$ (V)

2. Para cada uma das tensões variáveis no tempo dadas a seguir, calcule o valor médio, o valor eficaz e a potência dissipada quando aplicada num resistor de $1\,\Omega$.

a) 2 e(t) (V)

Resposta:
$$E_{(m)} = 2 \text{ (V)}$$
 $E_{(av)} = 0 \text{ (V)}$
 $E_{(rms)} = 1,41 \text{ (V)}$
 $P_{R(rms)} = 2 \text{ (W)}$

ωt [rad]

Resposta:
$$E_{(m)} = 2 \text{ (V)}$$

$$E_{(av)} = 636,62 \text{ (mV)}$$

$$E_{(rms)} = 1 \text{ (V)}$$

$$P_{R(rms)} = 1 \text{ (W)}$$

2. Para cada uma das tensões variáveis no tempo dadas a seguir, calcule o valor médio, o valor eficaz e a potência dissipada quando aplicada num resistor de $1\,\Omega$.

Resposta:
$$E_{(m)} = 2 \text{ (V)}$$

$$E_{(av)} = 1,27 \text{ (V)}$$

$$E_{(rms)} = 1,41 \text{ (V)}$$

$$P_{R(rms)} = 2 \text{ (W)}$$

Resposta:
$$E_{(m)} = 2 \text{ (V)}$$

$$E_{(av)} = 0 \text{ (V)}$$

$$E_{(rms)} = 1,15 \text{ (V)}$$

$$P_{R(rms)} = 1,33 \text{ (W)}$$

3. A Figura a seguir apresenta a tela de um osciloscópio que está ajustado na escala vertical para 9V/div e na escala horizontal de 5ms/div.

Em cada item a seguir, para a onda de tensão indicada na tela desse osciloscópio, determine os seguintes parâmetros: Valor de pico, calor médio, valor eficaz, período e frequência.

Resposta:
$$E_{(m)} = 18 \text{ (V)}$$

$$E_{(av)} = 0 \text{ (V)}$$

$$E_{(rms)} = 12,73 \text{ (V)}$$

$$T = 20 \text{ (ms)}$$

$$f = 50 \text{ (Hz)}$$

Resposta:
$$E_{(m)} = 18$$
 (V)

$$E_{(av)} = 5,73 \text{ (V)}$$

$$E_{(rms)} = 9$$
 (V)

$$T = 20 \text{ (ms)}$$

$$f = 50 \text{ (Hz)}$$

Resposta:
$$E_{(m)} = 18$$
 (V)

$$E_{(av)} = 11,46 \text{ (V)}$$

$$E_{(rms)} = 12,73 \text{ (V)}$$

$$T = 10 \text{ (ms)}$$

$$f = 100 (Hz)$$

Resposta:
$$E_{(m)} = 27 \text{ (V)}$$

 $E_{(av)} = 0 \text{ (V)}$
 $E_{(rms)} = 15,59 \text{ (V)}$
 $T = 40 \text{ (ms)}$
 $f = 25 \text{ (Hz)}$

Transformadores

Relação de Transformação

$$\frac{N_p}{N_s} = \frac{V_p}{V_s} = \frac{I_s}{I_p}$$

Especificação

Tensão Primária

Relação de Espiras ou Tensão Secundária

Potência

4. Dado o transformado a seguir:

Pede-se:

- a) A tensão eficaz no secundário do trafo.
- b) A corrente eficaz no secundário do trafo.
- c) A corrente eficaz no primário do trafo.
- d) A potência entregue pelo trafo no resistor de 1Ω .
- e) Dê a especificação do trafo.

Resposta: a) $V_s = 10 V_{(rms)}$ b) $I_s = 10 mA_{(rms)}$ c) $I_p = 787,4 mA_{(rms)}$

d) $P_{R} = 100 \text{ (W)}$

e) Tensão Primária: 127 V_(rms)/60 (Hz)

Tensão Secundária: 10 $V_{(rms)}$ ou Relação de Espiras: 12,7/1

Potência: 100 (W)

5. Dado o transformado com center tap (CT) a seguir:

Pede-se:

- a) A relação de transformação do trafo.
- b) Desenhe as formas de onda das tensões AT1-CT e AT2-CT.

Resposta: a)
$$\frac{N_p}{N_s} = \frac{V_p}{V_{S(AT-AT)}} = 18,33$$

b) Frequência: 60 (Hz) - Padrão Brasil

Valor Eficaz: = 6 (V)

Valor de Pico: $E_{(m)} = \sqrt{2} \times E_{(rms)} = \sqrt{2} \times 6 = 8,49$ (V)

