Ministério da Ciência, Tecnologia e Inovações

Centro Brasileiro de Pesquisas Físicas

Métodos para Análise de grande volume de dados e Astroinformática

Clécio Roque De Bom - debom@cbpf.br

clearnightsrthebest.com

Error Theory

O mensurando i é a grandeza a ser determinada num processo de medição. Como regra geral, valor verdadeiro do mensurando é uma quantidade sempre desconhecida, Isto é, mesmo após a medição, o valor verdadeiro do mensurando só pode ser conhecido aproximadamente, devido a erros de medição.

Se y_v é o valor verdadeiro de um mensurando e y é o resultado de uma medição, o erro em y é definido por

$$\eta = y - y_v \,. \tag{3.1}$$

Error Theory

Geralmente, o erro η em um valor experimental y tem diversas causas⁴. Isto significa que o erro total η pode ser escrito como uma soma de q erros elementares η_1 , η_2 , \cdots , η_q :

$$\eta = \eta_1 + \eta_2 + \cdots + \eta_q. \tag{3.2}$$

Figura 3.1. Função gaussiana de probabilidades. A probabilidade ΔP_i de obter uma medida y no intervalo Δy é a área ΔS . A área total sob a curva é 1, devido à condição de normalização 2.11.

Error Theory

A distribuição de Laplace-Gauss ou distribuição gaussiana de erros é definida pela função de densidade de probabilidade⁵ dada por

$$G(y) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{y-\mu}{\sigma})^2}, \qquad (3.3)$$

Teorema do Limite Central

Erros aleatórios independentes η_1 , η_2 , \cdots e η_q são admitidos como tendo distribuições de probabilidade quaisquer com variâncias finitas e tais que nenhum η_i particular é muito maior que os demais. Nestas condições, se o erro total é $\eta = \eta_1 + \eta_2 + \cdots + \eta_q$, então, a distribuição de erros para η converge para uma distribuição gaussiana, no limite $q \to \infty$.

Fundamental Concepts

Average

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2},$$

Standard Deviation

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Uncertainty

Se y_v é o valor verdadeiro de um mensurando e y é o resultado de um processo de medição, a probabilidade $P(\delta)$ de se obter um resultado y no intervalo

$$y_v - \delta < y < y_v + \delta \tag{4.2}$$

pode ser obtida integrando-se a função densidade de probabilidade (Equação 2.10). Admitindo uma distribuição gaussiana para os erros,

$$P(\delta) = \frac{1}{\sigma_{\nu}\sqrt{2\pi}} \int_{y_{\nu}-\delta}^{y_{\nu}+\delta} e^{-\frac{1}{2}(\frac{y-y_{\nu}}{\sigma_{\nu}})^{2}} dy, \qquad (4.3)$$

Confidence Levels

Confidence Levels

Incerteza		Intervalo de confiança	Confiança
Incerteza padrão	σ_v	$(y - \sigma_v) < y_v < (y + \sigma_v)$	68,27 %
δ	$2\sigma_v$	$(y - 2\sigma_v) < y_v < (y + 2\sigma_v)$	95,45%
δ	$3\sigma_v$	$(y - 3\sigma_v) < y_v < (y + 3\sigma_v)$	99,73%
δ	$1,645\sigma_v$	$(y-\delta) < y_v < (y+\delta)$	90 %
δ	$2,576\sigma_v$	$(y-\delta) < y_y < (y+\delta)$	99%
Erro provável	Δ	$(y-\Delta) < y_v < (y+\Delta)$	50 %

Tensions?

Confidence Levels - Percentil

Confidence Levels - Percentil

Probabilities

$$p(A \cap B) = p(A|B)p(B) = p(B|A)p(A)$$

Probabilities

$$p(A \cap B) = p(A|B)p(B) = p(B|A)p(A)$$

A = hit head on door frame, B = $\{$ is tall, is average, is short $\}$ P(A) = P(A|is tall) + P(B|is average) + P(C|is short)

if A and B are independent, then

$$p(A, B) = p(A)p(B)$$

Types of Errors

Physics ML	Aleatoric	Epistemic
Statistical	noise in data, stdev of measurements (noise in period T)	
Systematic	noise in data, not stdev of measurements (noise in length L)	model fidelity, not stdev of measurements (far from training set)

Expected Values

$$\mathrm{E}[X] = \int_{\mathbb{R}} x f(x) \, dx,$$

$$\mathrm{E}[g(X)] = \int_{\mathbb{R}} g(x) f(x) \, dx.$$

Ministério da Ciência, Tecnologia e Inovações

Centro Brasileiro de Pesquisas Físicas

Métodos para Análise de grande volume de dados e Astroinformática

Clécio Roque De Bom - debom@cbpf.br

clearnightsrthebest.com

