presented by Jason-TOKO

### Outline

- Generalized Computation Graphs(GCG)
  - Background
  - Framework
  - Experiment
- Generalization through Simulation(GtS)
  - Background
  - Algorithm
  - Experiment
- Conlusion
- Reference

#### Background

- Model-free VS Model-based: sample efficiency, stability, and final performance.
- These three metrics suffer when the state space is high-dimensional (e.g.image).

#### • Idea:

 Subsume both value-based model-free methods and model-based algorithms.

#### Framework

- the computation graph:  $G_{\theta}(\mathbf{s}_t, \mathbf{A}_t^H)$
- input:  $\mathbf{S}_t$

$$\mathbf{A}_t^H = (\mathbf{a}_t, ..., \mathbf{a}_{t+H-1})$$

• output:  $\hat{Y}_t^H = (\hat{y}_t, ..., \hat{y}_{t+H-1})$ 

$$\hat{b}_{t+H}$$

- error function:  $\mathcal{E}_t(\theta)$
- policy evaluation function:  $J(\mathbf{s}_t, \mathbf{A}_t^H)$



**Algorithm 1** Reinforcement learning with generalized computation graphs

```
1: input: computation graph G_{\theta}(\mathbf{s}_t, \mathbf{A}_t^H), error function
     \mathcal{E}_t(\theta), and policy evaluation function J(\mathbf{s}_t, \mathbf{A}_t^H)
 2: initialize dataset \mathcal{D} \leftarrow \emptyset
 3: for t=1 to T do
       get current state s_t
                                                                        e.g. MPC, CEM
      \mathbf{A}_t^H \leftarrow \operatorname{arg\,max}_{\mathbf{A}} J(\mathbf{s}_t, \mathbf{A})
      execute first action \mathbf{a}_t
       receive labels y_t and b_t
         add (\mathbf{s}_t, \mathbf{a}_t, y_t, b_t) to dataset \mathcal{D}
         update G_{\theta} by \theta \leftarrow \arg\min_{\theta} \mathcal{E}_{t'}(\theta) using \mathcal{D}
10: end for
```

- GCG instantiation:
  - Model: deep RNN
  - Output:
    - $\hat{Y}_t^H$ : reward;  $\hat{b}_{t+H}$ : future value-to-go
    - $\hat{Y}_t^H$ : probability of collision;  $\hat{b}_{t+H}$ : the best-case future likelihood of collision
  - Policy evaluation function:
    - $J(\mathbf{s}_t, \mathbf{A}_t^H) = \sum_{h=0}^{H-1} \gamma^h \hat{y}_{t+h} + \gamma^H \hat{b}_{t+H}$
    - $J(\mathbf{s}_t, \mathbf{A}_t^H) = \sum_{h=0}^{H-1} -\hat{y}_{t+h} \hat{b}_{t+H}$
  - Policy evaluation: MPC, CEM ......
  - Model horizon:
    - H = 1 --> fully model-free
    - H = ∞ --> fully model-based
    - H = constant --> interpolating between model-free and model-based

- GCG instantiation
  - Boostrapping: can increase H but cause bias and instability
  - Loss function: Bellman error / cross entropy loss
  - Network struture:





- Experiment:
  - 4. Comparion to prior work



#### • Background:

- Complex realworld physical and visual phenomena are difficult to simulate accurately.
- The systematic differences between simulation and reality are typically impossible to eliminate.

#### • Idea:

• use real-world experience to learn how to fly(control) and use simulated experience to learn how to generalize(perception).

#### The main contribution:

 Combining large amounts of simulated data with small amounts of real-world experience to train real-world collision avoidance policies for autonomous flight with DRL

Network Struture



- Learning a task-specific model:
  - Train a DNN Q-function  $Q_{\theta}(s_t, a_t)$  using Q-learning:
    - ① We have access to large amounts of data in simulation, which is a requirement for deep Q-learning.
    - ② Q-learning can learn long-horizon tasks, which may improve the visual features that it learns.



- Visual perception system transfer:
  - Initialize the weights of real-world policy 's perception layers using the layers from the Q-function learned in simulation.
  - Hold these perception layers fixed during real-world policy training.



- Real-world policy learning:
  - Action-conditioned reward predictor:  $G_{\theta}(\mathbf{s}_t, \mathbf{A}_t^H)$ 
    - input:  $S_t \& A_t^H = (a_t, ..., a_{t+H-1})$
    - output:  $\hat{R}_{t}^{H} = (\hat{r}_{t}, ..., \hat{r}_{t+H-1})$
  - At training time, minimize the loss (supervised learning):

$$\theta^* = \arg\min_{\theta} \sum_{(\mathbf{s}_t, \mathbf{A}_t^H, R_t^H) \in \mathcal{D}^{\text{RW}}} \|G_{\theta}(\mathbf{s}_t, \mathbf{A}_t^H) - R_t^H\|^2$$

• At test time, solve the optimal action sequence(MPC, CEM etc):

$$\mathbf{A}^* = \arg\max_{\mathbf{A}} \sum_{h=0}^{H-1} \gamma^h \hat{r}_{t+h}$$



- Algorithm overview:
  - First, train a DQN in a visually diverse set of simulated environments.
  - Then, transfer the perception layers from the DQN to the action-conditioned reward predictor(ACRP).
  - Next, train the ACRP using real-world data gathered by the robot(hold the perception layers fixed).
  - At test time, use the learned ACRP by MPC etc to select an optimal action sequence, and executing the first action.

#### • Expreiment:

- Does including real-world data improve performance?
- Does the ACRP lead to better real-world policies compared to Q-learning?
- Is a task-specific or task-agnostic simulation-trained model better for real-world transfer?
- Does transferring the perception module from the simulation-trained model improve real-world performance?

|                                 | Simulation<br>Model | Perception<br>System<br>Transferred | Real-World<br>Learned Model | Uses Real-<br>World Data | Perception Layers Trained with Real-World Data | Time Until Collision (seconds, max 86) | Percentage<br>Hallway<br>Traversed |
|---------------------------------|---------------------|-------------------------------------|-----------------------------|--------------------------|------------------------------------------------|----------------------------------------|------------------------------------|
| sim only                        | Task-specific       | N/A                                 | N/A                         | X                        | N/A                                            | 16.5 (0.5)                             | 19                                 |
| sim fine-tuned                  | Task-specific       | X                                   | Q-function                  | 1                        | ✓                                              | 6.0 (28.5)                             | 7                                  |
| sim fine-tuned perception fixed | Task-specific       | X                                   | Q-function                  | /                        | Х                                              | 6.5 (66.5)                             | 8                                  |
| real-world only                 | N/A                 | X                                   | ACRP                        | /                        | <b>✓</b>                                       | 7.8 (30.0)                             | 9                                  |
| supervised (ImageNet) transfer  | N/A                 | /                                   | ACRP                        | /                        | Х                                              | 9.5 (4.5)                              | 11                                 |
| unsupervised (VAE) transfer     | Task-agnostic       | /                                   | ACRP                        | ✓                        | Х                                              | 21.0 (19.3)                            | 24                                 |
| GtS (ours)                      | Task-specific       | /                                   | ACRP                        | <b>✓</b>                 | Х                                              | 85.8 (2.5)                             | 100                                |

### Conclusion

#### • GCG:

- A generalized framework that is suited for MB & MF.
- Avoid predicting (high dimensional) future state, make it easier to learn.
- The main limitation is horizon(H)

#### • GtS:

- Reduce the real-world learning to supervised learning which need less data.
- Simulation learning with Q-learning may improve the visual (task-relevant) features that it learns.
- Hold the perception layers fixed to prevent overfitting to the real-world data.

### Reference

- Self-Supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation
- Generalization through Simulation: Integrating Simulated and Real Data into Deep Reinforcement Learning for Vision-Based Autonomous Flight