Redes de computadoras

Capa de aplicación

Las diapositivas están basadas en en libro: "Redes de Computadoras – Un enfoque descendente" de James F. Kurose & Keith W. Ross

Capa de Aplicación Temario

Aplicaciones de red

Web y HTTP

DNS

FTP

E-Mail

P₂P

Programación de sockets

DNS

Identificación

- C.I., nombre, pasaporte

Equipos en internet

- Direcciones IP (v4 32bit)
- nombre www.example.com

¿cómo se relaciona la dirección IP y el nombre?

Domain Name System

- Base de datos distribuída Implementada en una jerarquía de muchos servidores de
- Protocolo de capa de aplicación

nombres

Usado para resolver nombres

DNS

Servicios DNS

Traducción de nombre a dirección IP

Host alias

Alias servidor de correo

Distribución de carga

Servidores replicados

¿Por qué no DNS centralizado?

- Punto de falla único
- Volumen de tráfico
- Base de datos centralizada distante
- Mantenimiento
- No escala

DNS - Base de datos distribuída jerárquicamente

Cliente quiere la dirección IP de www.example.com

- Cliente consulta servidor DNS raíz para obtener servidor DNS .com
- Cliente consulta servidor DNS com para obtener el servidor DNS example
- Se consulta al servidor DNS example para obtener la dirección IP de www.example.com

DNS - Servidores raíz

Servidor de nombres raíz Contactados por servidores de nombre locales

- Consulta servidor autoritativo si no conoce el mapeo de nombres
- Obtiene el mapeo
- Devuelve el mapeo al servidor de nombres local

DNS - Servidores raíz

DNS - Servidores raíz

http://root-servers.org/ 2019

DNS - TLD y Servidores autoritativos

Servidores Top-level domain (TLD)

- Responsables de com, org, net, edu, etc. Y de todos los dominios de países, uy, uk, fr, ca, jp, ar, sw, etc.
- Verising administra los servidores .com
- Educause mantiene los servidores .edu

Servidores autoritativos

- Servidores DNS de organizaciones, proveen mapeos autoritativos
- Puede ser mantenido por la organización o el proveedor de servicio

DNS - Servidor de nombres local

- No pertenece a la jerarquía
- Cada ISP (Residencial, compañía, universidad) tiene uno.

Se llama "default name server"

Cuando un equipo hace una consulta DNS, se envía al servidor local

- Actúa como proxy, reenvía la consulta a la jerarquía de ser necesario.

DNS - Ejemplo de resolución

Equipo en cis.poly.edu quiere acceder a gaia.cs.umass.edu

Consulta iterativa:

El servidor responde con el servidor al cual contactar

Se consulta al:

Root server por TLD para .edu TLD por el autoritativo Autoritativo por el host destino

DNS - Ejemplo de resolución

Equipo en cis.poly.edu quiere acceder a gaia.cs.umass.edu

Consulta recursiva:

El servidor responde con el servidor al cual contactar

Se consulta al:

Root server por el host destino

DNS - Caching y actualizar registros

Una vez que el servidor aprende un mapeo, lo cachea

- Las entradas vencen después de cierto tiempo
- TLD típicamente cacheados en servidores locales

Servidores raíz no son visitados frecuentemente

Mecanismos de actualización y notificación diseñados por IETF (Internet Engineering Task Force)

RFC 2136

DNS - Mensajes

Protocolo DNS:

Consulta y respuesta, mismo formato.

Cabezal

Identificador (16 bit)

Flags

Consulta o respuesta

Si se usa recursiva

Si la respuesta es autoritativa

DNS - Registros

Registros de recursos (RR)

Formato RR: (nombre, valor, tipo, ttl)

Tipo A

Nombre: el del equipo

Valor: dirección IP

Tipo NS

Nombre: el dominio

valor: El nombre del servidor autoritativo para el dominio.

...Y Otros: PTR - SOA - HINFO -

LOC - WKS - SRV - SPF

Tipo CNAME

Nombre: alias para un nombre "canónico" real.

www.ibm.com es realmente servereast.backup2.ibm.com

Valor: el nombre canónico real

Tipo MX

Valor: el nombre del servidor de correo asociado con el nombre.

DNS - Registros

TTL (Time To Live)

Cantidad de tiempo en que un registro se mantendrá en cache.

(En resolvedores de nameservers, navegadores, etc.)

Es representado en segundos

 $60 \rightarrow 1 \text{ minuto} / 1800 \rightarrow 30 \text{ minutos}$

Sistemas con IP estática usualmente mantienen un TTL de 1800 o más,

mientras que con IP dinámica deberían manejar valores de

1800name	TTL	TYPE	DATA	MX LEVEL
mail1.example.com.	1800	А	192.168.1.2	
example.com.	1800	MX	mail1.example.com.	10

FTP

Protocolo de transferencia de archivos

Basado en arquitectura cliente ser

FTP

- El cliente FTP se conecta al servidor FTP en el puerto 21, utilizando TCP como protocolo de transporte
- El cliente es autorizado en la conexión de control
- El cliente navega en el sistema de directorios, enviando comandos en la conexión de control.
- Cuando el servidor recibe un comando de transferencia de archivo inicia una conexión TCP en el puerto 20
- Se cierra la conexión al transferir el archivo.

Se mantiene estado: directorio actual, autenticación.

FTP - File Transfer Protocol

Se transfieren archivos desde y hacia el equipo remoto

- Arquitectura cliente/servidor
 - Cliente: Inicia la conexión
 - Servidor: Host remoto
- RFC 959
- puerto predeterminado 21

FTP

La conexión de control se encuentra fuera de la transferencia de datos.

FTP - Comandos y respuestas

Comandos: (texto ASCII)

- USER username
- PASS password
- LIST (retorna la lista de archivos en el directorio actual)
- RETR filename (obtiene un archivo)
- STOR filename (guarda un archivo)

Códigos de retorno

- 331 Username OK, password required
- 125 data connection already open transfer starting
- 425 Can't open data connection
- 452 Error writing file

FTP - Clientes

Free FTP Upload Manager F->IT net2ftp Web FTP.co.uk Web-Ftp Jambai FTP ftp4net **PHP FTP Client Asuk PHP FTP Weeble File Manager FileZilla**

Correo electrónico

Tres componentes:

- Usuarios
- Servidores
- SMTP:

Simple Mail Transfer Protocol

Usuarios

Aplicación para leer correo

- Eudora
- Outlook
- Mozilla Thunderbird

Correo electrónico

Servidores

- Casilla de correo (mailbox) contiene los mensajes entrantes.

 Cola de mensajes (message queue) mensajes salientes.

Protocolo SMTP
 Entre usuarios y servidores

- Cliente envía mail
- Servidor recibe mail

SMTP (RFC 2821)

Utiliza TCP para enviar mensajes en forma confiable del cliente al servidor en el puerto 25

- Tres fases de transferencia---
 - Saludo (handshaking)
 - Transferencia de mensajes
 - Finalización

Conexión directa servidor - servidor se

- Comandos: texto ASCII
- Respuesta: código de estado y descripción

Ejemplo

- 1) Alicia usa una aplicación para crear un mensaje
- 2) Envía el mensaje a su servidor de correo. El mensaje es puesto en una cola de mensajes
- 3) El servidor de Alicia abre una conexión TCP con el de Bob

- 4) El servidor SMTP de Alicia envía el mensaje por la conexión TCP
- 5) El servidor de Bob coloca el mensaje en la casilla de Bob
- 6) Bob usa su aplicación para leer el mensaje.

Comandos SMTP

Comando SMTP	Función del comando
HELO	Lo envía un cliente para identificarse a sí mismo, normalmente con un nombre de dominio.
MAIL FROM	Identifica al remitente del mensaje; se utiliza con el formato MAIL FROM:.
RCPT TO	Identifica a los destinatarios del mensaje; se utiliza con el formato RCPT TO:.
TURN	Permite que el cliente y el servidor intercambien las funciones, y envíen correo en la dirección contraria sin tener que establecer una conexión nueva.
DATA	Lo envía un cliente para iniciar la transferencia del contenido del mensaje.

Prueba práctica

Telnet adinet.com.uy 25

Esperar respuesta 220

Ingresar comandos HELO, MAIL FROM, RCPT TO, DATA, QUIT

SMTP

- SMTP usa conexiones persistentes
- requiere que el mensaje (cabezal y cuerpo) este en ASCII 7 bit
- SMTP usa CRLF.CRLF para determinar el fin de mensaje.

Comparación con HTTP

HTTP: se extraen datos del servidor

SMTP se envian datos

Ambos tienen comandos ASCII con estados

HTTP cada objeto esta encapsulado en su propio mensaje

SMTP muchos objetos en un solo mensaje

Formato del mensaje

El estándar para el formato del mensaje se establece en los RFC

822 (1982) con actualizaciones hasta actualmente la 6531 (2012)

Cabezal (header)

To:

From:

Subject:

Cuerpo (body)

El mensaje, ASCII

Formato del mensaje: extensiones multimedia

MIME: multimedia mail extension

RFC 2045, 2056

Líneas adicionales declaran el tipo de contenido MIME

```
MIME-version: 1.0
Content-type: multipart/mixed; boundary="frontera"

This is a multi-part message in MIME format.
--frontera
Content-type: text/plain

Este es el cuerpo del mensaje
--frontera
Content-type: application/octet-stream
Content-type: application/octet-stream
Content-transfer-encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+RXN0ZSBlcyBlbCBjdWVy
cG8gZGVsIG1lbnNhamU8L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cic=\
--frontera--
```

Protocolos de acceso a correo

SMTP Envío / almacenamiento

Protocolos de acceso a correo

POP (Post Office Protocol)

IMAP (Internet Mail Access Protocol)

HTTP

POP3

Autorización:

Comandos del cliente:

User: <nombre de usuario>

pass: <password>

Respuestas del servidor

+OK -FRR

Interacción

- list: número de mensajes

- retr: obtiene mensaje por número

- dele: borra mensaje

- quit

S: +OK POP3 server ready

C: user peteco

S: +OK

C: pass ocetep

S: +OK user successfully logged on

C: list

S: 1 498

S: 2 912

S: .

C: retr 1

S: <contenido del mensaje>

S: .

C: dele 1

C: retr 2

S: <contenido del mensaje>

S: .

C: dele 2

C: quit

S: +OK POP3 server signing off

POP3 e IMAP

POP3

En el ejemplo se obtiene y borra el mensaje

El usuario no puede volver a leer el mensaje en otro cliente de correo

Se puede obtener el mensaje sin borrar el del servidor

POP3 no tiene estado entre sesiones

IMAP

Se guardan todos los mensajes en el servidor

Se pueden organizar los mensajes en directorios así como realizar busquedas por criterios.

IMAP mantiene estado entre sesiones:

Nombres de directorios, mensajes y directorios

Enlaces de interés

DNS

Root servers

http://root-servers.org

Consultas recursivas e iterativas

https://technet.microsoft.com/en-us/library/cc961401.aspx