Topología I. Convocatoria ordinaria Doble grado en ingeniería informática y matemáticas 9 de febrero de 2022

1.– En \mathbb{R} se considera la topología:

$$T = \{ U \subset \mathbb{R} : U \cap [-1, 1] = \emptyset \} \cup \{ \mathbb{R} \}.$$

- a) Describir los cerrados de (\mathbb{R}, T) . Dado $x \in \mathbb{R}$, encontrar una base de entornos mínima de x en (\mathbb{R}, T) .
- b) ¿Es (\mathbb{R} , T) un espacio Hausdorff? ¿Verifica (\mathbb{R} , T) el segundo axioma de numerabilidad?
- c) Calcular la clausura, el interior y la frontera de (-2,3) en (\mathbb{R},T) .
- d) En (\mathbb{R}, T) se considera la relación de equivalencia R dada por xRy si y solo si x = y ó $x, y \in [-1, 1]$. Probar que $(\mathbb{R}/R, T/R)$ es homeomorfo a (\mathbb{R}, T') donde $T' = \{U \subset \mathbb{R} : 0 \notin U\} \cup \{\mathbb{R}\}$.
- e) Encontrar dos subconjuntos compactos en (\mathbb{R}, T) cuya intersección no sea compacto en (\mathbb{R}, T) .
- 2.- Definir un subespacio compacto de un espacio topológico y probar las siguientes afirmaciones:
 - a) Un subespacio cerrado de un espacio topológico compacto es compacto.
 - b) Todo subespacio compacto de un espacio topológico Hausdorff es cerrado.
- 3.- Estudiar de forma razonada las siguientes cuestiones:
 - a) Sean A_1 y A_2 dos subespacios propios (distintos del espacio total) de un espacio topológico (X,T) que son homeomorfos. ¿Es cierto que los subespacios $X\setminus A_1$ y $X\setminus A_2$ son también homeomorfos?
 - b) Estudiar la conexión del siguiente subconjunto de (\mathbb{R}^2 , T_u):

$$X = \{ \{x\} \times [0,1] : x \in \mathbb{Q} \} \cup \{ \{x\} \times [-1,0] : x \in \mathbb{R} \setminus \mathbb{Q} \}.$$

c) Para i=1,2 se consideran los espacios topológicos (X_i,T_i) e (Y_i,T_i') , con $X_i \neq \emptyset$, y las aplicaciones $f_i:(X_i,T_i) \rightarrow (Y_i,T_i')$. Probar que si $f_1 \times f_2:(X_1 \times X_2,T_1 \times T_2) \rightarrow (Y_1 \times Y_2,T_1' \times T_2')$ definida por:

$$(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2))$$

es cerrada entonces f_i es cerrada para i = 1, 2.

Primera pregunta: 4.5 puntos **Segunda pregunta:** 2.5 puntos

Tercera pregunta: 3 puntos

Todos los apartados tienen la misma valoración

Duración del examen: 3 horas

1.-

a) Si $U \in T$ y $U \neq \mathbb{R}$ entonces $U \cap [-1,1] = \emptyset$, lo que es equivalente a que $[-1,1] \subset U^c$. Por tanto, la familia de conjuntos cerrados de (X,T) está formada por los conjuntos que contienen a [-1,1] y el conjunto vacío:

$$C_T = \{ F \subset \mathbb{R} : [-1, 1] \subset F \} \cup \{ \emptyset \}.$$

Cuando $x \in [-1, 1]$, el único conjunto abierto que contiene a x es \mathbb{R} . Por tanto, $\mathcal{B}_x = \{\mathbb{R}\}$ es la única base de entornos de x. Si $x \notin [-1, 1]$ entonces el conjunto $\{x\}$ es abierto. Por tanto, $\mathcal{B}_x = \{\{x\}\}$ es una base de entornos de x.

- b) (\mathbb{R}, T) no es Hausdorff porque el único entorno de cada punto de [-1, 1] es \mathbb{R} . Por tanto dos puntos de [-1, 1] no pueden separarse por entornos disjuntos.
- (\mathbb{R},T) no verifica el segundo axioma de numerabilidad porque, al ser el conjunto $\{x\}$ abierto cuando $x \notin [-1,1]$, la familia no numerable $\{\{x\}: x \notin [-1,1]\}$ estaría incluida en cualquier base de la topología.
 - c) Como $[-1,1] \subset (-2,3)$, el conjunto (-2,3) es cerrado. Por tanto $\overline{(-2,3)} = (-2,3)$.

Si $x \in (-2,3) \cap [-1,1]$, como el único entorno de x es \mathbb{R} , que no está contenido en (-2,3), se tiene que $x \notin \operatorname{int}((-2,3))$. Si $x \in (-2,3) \setminus [-1,1]$, como $\{x\}$ es entorno de x, se tiene que $x \in \{x\} \subset (-2,3)$. Por tanto $x \in \operatorname{int}(-2,3)$. Concluimos que $\operatorname{int}(-2,3) = (-2,3) \setminus [-1,1]$.

Por último,
$$\partial(-2,3) = \overline{(-2,3)} \setminus \text{int}(-2,3) = (-2,3) \setminus \{(-2,3) \setminus [-1,1]\} = [-1,1].$$

d) Consideramos la aplicación $f: \mathbb{R} \to \mathbb{R}$ definida por:

$$f(x) = \begin{cases} x+1, & x \le -1 \\ 0, & -1 \le x \le 1, \\ x-1, & x \ge 1. \end{cases}$$

La aplicación f es sobreyectiva. La relación de equivalencia inducida por f es xR_fy si y sólo si f(x)=f(y), que es equivalente a que x=y o que f(x)=f(y)=0, que a su vez es equivalente a que x=y o que $x,y\in [-1,1]$. Concluimos que $R_f=R$. Si probamos que $f:(\mathbb{R},T)\to (\mathbb{R},T')$ es una identificación, entonces $\tilde{f}:(\mathbb{R}/R,T/R)\to (\mathbb{R},T')$, definida como $\tilde{f}([x])=f(x)$, será un homeomorfismo.

Para probar que f es identificación, solo hay que ver que f es continua y casi-abierta.

Veamos que f es continua: sea $V \in T'$. Entonces $V = \mathbb{R}$ ó $0 \notin V$. En el primer caso, $f^{-1}(\mathbb{R}) = \mathbb{R} \in T$. En el segundo, $f^{-1}(V) \cap [-1, 1] = \emptyset$ y, por la definición de T, se tiene que $f^{-1}(V) \in T$.

Como la preimagen por f de todo abierto de T' pertenece a T, concluimos que la aplicación $f:(\mathbb{R},T)\to(\mathbb{R},T')$ es continua.

Veamos por último que f es abierta (por lo que será casi-abierta). Sea $U \in T$. Entonces $U = \mathbb{R}$ ó $U \cap [-1,1] = \emptyset$. En el primer caso, como f es sobreyectiva, se tiene que $f(\mathbb{R}) = \mathbb{R} \in T'$. En el segundo caso, se tiene que $0 \notin f(U)$. Por tanto $f(U) \in T'$. Como la imagen de cada conjunto abierto de T es abierto en T', concluimos que f es abierta.

e) Observamos en primer lugar que, si $K \subset \mathbb{R}$ y $K \cap [-1,1] \neq \emptyset$, entonces K es compacto. Para probarlo, tomamos un recubrimiento abierto $\{U_i\}_{i\in I}$ de K. Sea $x\in K\cap [-1,1]$, entonces existe U_{i_0} en el recubrimiento tal que $x\in U_{i_0}$. Como el único abierto que contiene algún punto de [-1,1] es \mathbb{R} , tenemos que $U_{i_0}=\mathbb{R}$. Por tanto $\{U_{i_0}\}=\{\mathbb{R}\}$ es un subrecubrimiento finito de K.

Tomamos ahora los conjuntos $K_1 = (-\infty, -1] \cup (1, +\infty)$ y $K_2 = (-\infty, -1) \cap [1, +\infty)$. El primer conjunto es compacto porque contiene a -1 y el segundo porque contiene a 1. Su intersección es $K_1 \cap K_2 = (-\infty, -1) \cup (1, +\infty)$, que no es compacto porque es un subconjunto de (\mathbb{R}, T) no numerable cuya topología inducida es la discreta.

3.-

- a) No es cierto que si A_1, A_2 son homeomorfos, entonces $X \setminus A_1, X \setminus A_2$ lo sean también. Sean $A_1 = (0,1), A_2 = (0,+\infty)$ en (\mathbb{R}, T_u) , que son homeomorfos por ser intervalos abiertos. Pero $\mathbb{R} \setminus A_1$ y $\mathbb{R} \setminus A_2$ no son homeomorfos porque $\mathbb{R} \setminus (0,1) = (-\infty,0] \cup [1,+\infty)$ no es conexo y $\mathbb{R} \setminus (0,+\infty) = (-\infty,0]$ sí lo es.
 - b) El conjunto X se puede expresar como la unión $A_0 \cup (\bigcup_{x \in \mathbb{R}} A_x)$, donde

$$A_0 = \mathbb{R} \times \{0\},\,$$

y

$$A_x = \{x\} \times [0,1] \text{ si } x \in \mathbb{Q}, \text{ y } A_x = \{x\} \times [-1,0] \text{ si } x \in \mathbb{R} \setminus \mathbb{Q}.$$

Los conjuntos A_0 , A_x son conexos para todo $x \in \mathbb{R}$ por ser homeomorfos a intervalos de \mathbb{R} . Como $A_0 \cap A_x = \{(x,0)\} \neq \emptyset$ para todo $x \in \mathbb{R}$, X se puede expresar como la unión de una familia $\{A_0\} \cup \{A_x : x \in \mathbb{R}\}$ de conjuntos conexos donde todos los elementos de la familia cortan a uno de ellos (el conjunto A_0). Por un resultado de clase, X es conexo.

c) Sean C_1 , C_2 cerrados en (X_1, T_1) , (X_2, T_2) , respectivamente. Entonces $C_1 \times C_2$ es cerrado en $(X_1 \times X_2, T_1 \times T_2)$ (porque $\overline{C_1 \times C_2} = \overline{C_1} \times \overline{C_2}$). Por la definición de $f_1 \times f_2$, se tiene que $(f_1 \times f_2)(C_1 \times C_2) = f_1(C_1) \times f_2(C_2)$, que es cerrado en $(Y_1 \times Y_2, T_1' \times T_2')$ puesto que $f_1 \times f_2$ es una aplicación cerrada por hipótesis. Por tanto:

$$f_1(C_1) \times f_2(C_2) = \overline{f_1(C_1) \times f_2(C_2)} = \overline{f_1(C_1)} \times \overline{f_2(C_2)},$$

y se tiene que $f_1(C_1) = \overline{f_1(C_1)}$ y que $f_2(C_2) = \overline{f_2(C_2)}$. Por tanto, $f_1(C_1)$, $f_2(C_2)$ son cerrados y concluimos que las aplicaciones f_1 , f_2 son cerradas.