Lecture 8 Reactions of Ferrocene

Reactions of Metal Carbonyls

Nucleophilic addition to CO

Migratory insertion of CO

Fischer Carbene

Carbenes are catalysts for olefin metathesis

Metal-Sandwich compounds

Hapticity of sandwich compounds varies from 1-8

A transition-metal complex in which a metal atom or ion is 'sandwiched' between two rings of atoms.

Why metal – sandwich compounds are important?

- 1. Transition metal/ metal ion embedded inside an organic matrix: Makes a metal ion soluble even in hydrocarbon solvents. E.g. Ferrocene is soluble in hexane while Fe²⁺ as such is not. Outcome: a hydrocarbon soluble additive/catalyst
- 2. Coordination to an electropositive metal often changes the reactivity and electronic properties of the π system bound to it (benzene vs ferrocene)
- 3. Metal sandwich compounds are excellent substrates to make planar chiral compounds. Applications as chiral catalysts in asymmetric catalysis

Planr chirality:

Non- super-imposable mirror images

Cyclopentadienyl (Cp-)

•Cyclopentadienyl (Cp–) the most important of all the polyenyl ligands

Complex	Electron Count	ΔH for M ²⁺ -C ₅ H ₅ ⁻ Dissociation (kJ/mol)
$(\eta^5 - C_5 H_5)_2 Fe$	18	1470
$(\eta^5 - C_5 H_5)_2 Co$	19	1400
$(\eta^5$ -C ₅ H ₅) ₂ Ni	20	1320

$$(\eta^5$$
-Cp) $(\eta^3$ -Cp)W(CO)₂

Ferrocene shows much more chemical stability than cobaltocene and nickelocene; many of the chemical reactions of the latter are characterized by a tendency to yield 18-electron products.

Synthesis of ferrocene and other metallocenes

- •Neutral cyclopentadiene (C₅H₆) is a weak acid with a pKa of around 15
- •Deprotonated with strong base or alkali metals to generate the anionic Cp-

$$\begin{array}{c|c}
 & H & H \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$MCI_2 + 2 Na[Cp] \longrightarrow (\eta^5-Cp)_2M + 2 NaCI$$

$$M = Cr, Mn, Fe, Co, Ni and Zn$$

In a sandwich complex, the metal centre lies between two π -bonded hydrocarbon (or derivative) ligands. Complexes of the type $(\eta^5\text{-Cp})_2\text{M}$ are called *metallocenes*.

$$MCI_2 + 2 C_5H_6 + 2 Et_2NH$$
 \longrightarrow $(\eta^5-Cp)_2M + 2 [Et_2NH_2]CI$ $M = Fe, Ni$

Reactions of Ferrocene

Ferrocene undergoes electrophilic substitution reactions. Many of its reactions are faster than similar reactions of benzene

Necessary requirement: The electrophile should not be oxidizing in nature

The oxidized Cp₂Fe⁺, ferrocenium cation, will repel the electrophile away. Therefore direct nitration, halogenation and similar reactions cannot be carried out on ferrocene.

Acetylation

Chloromercuration (hazardous)

109 times faster than benzene

Lithiation reaction

Does not happen with benzene; only with bromobenzene

Lithiation and 1,1'-di-lithiation – access to range of new derivatives

Polymers with ferrocene in the backbone

Problem solving - synthesis

Starting from ferrocene show minimum number of steps for preparing 1,1'- ferrocene dicarboxylic acid

Organometallic Reaction Mechanism

Common paths in organometallic reactions

- 1. Oxidative addition
- 2. Reductive elimination
- 3. Migratory Insertion
- 4. β-hydrogen elimination
- 5. σ -bond metathesis

Oxidative addition

When addition of ligands is accompanied by oxidation of the metal, it is called an oxidative addition reaction

$$L_nM^n + XY \longrightarrow L_n(X)(Y)M^{n+2}$$

OX state of metal increases by 2 units

Coordination number increases by 2 units

2 new anionic ligands are added to the metal

Requirements for oxidative addition

- Availability of nonbonded electron density on the metal
- Two vacant coordination sites on the reacting complex (L_nM), that is, the complex must be coordinatively unsaturated
- A metal with stable oxidation states separated by two units; the higher oxidation state must be energetically accessible and stable.

Examples of Oxidative addition : Cis or trans?

Homonuclear systems (H_2, Cl_2, O_2, C_2H_2) Cis

Heteronuclear systems (MeI) Cis or trans

An important step in many homogeneous catalytic cycles

Hydrogenation of alkenes- Wilkinson catalyst

Methanol to acetic acid conversion- Cativa process

Often the first step of the mechanism

Pd catalyzed Cross coupling of $Ar-B(OH)_2$ and Ar-X - Suzuki Coupling

$$\begin{bmatrix} Ph_3P - Pd - PPh_3 \end{bmatrix} \qquad \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

The more electron rich the metal, more easy is the oxidative addition

Oxidative addition involving C-H bonds and cyclo/ortho metallation

Orthometallations, oxidative additions in which an ortho position of an aromatic ring becomes attached to the metal, are quite common.

Oxidative addition at a binuclear complex

$$(CO)_5Mn$$
 — $Mn(CO)_5$ + Br_2 — \longrightarrow 2 $Mn(CO)_5Br$

For a binuclear complex oxidative addition increases oxidation state of metal by one each.

Reductive elimination

Almost the exact reverse of Oxidative Addition

Oxidation state of metal decreases by 2 units

Coordination number decreases by 2 units

2 cis oriented anionic ligands form a stable σ bond and leave the metal

Factors which facilitate reductive elimination

- A high formal positive charge on the metal,
- The presence of bulky groups on the metal, and
- An electronically stable organic product.

Cis orientation of the groups taking part in reductive elimination is a MUST

Final step in many catalytic cycles

Hydroformylation (conversion of an alkene to an aldehyde)

Sonogashira Coupling (coupling of a terminal alkyne to an aryl group

$$R' \longrightarrow Pd \longrightarrow PR_3 \xrightarrow{\text{reductive elimination}} R' \longrightarrow Ar + \begin{bmatrix} R_3P - Pd - PR_3 \end{bmatrix}$$

$$PR_3$$

Mechanism of trans to cis conversion

$$H_3C_{N_1}$$
 Pd
 CH_3
 CH_3
 $S = Solvent$
 $S = Solvent$

Migratory Insertion

No change in the formal oxidation state of the metal

A vacant coordination site is generated during a migratory insertion (*which gets occupied by the incoming ligand*)

The groups undergoing migratory insertion must be *cis* to one another

These reactions are enthalpy driven and although the reaction is entropy prohibited the large enthalpy term dominates

Types of Migratory Insertion

