GNN in KG-based Recommender System

Jingyue Shen, Haochen Li, Boyuan He

Introduction

- Traditional Recommender System
 - Collabrotive Filtering (CF) based approach
 - Content-based approach Factorization Machine
- Issue:
 - CF-based: perform poorly in sparse situations
 - Content-based: do not explore "high-order relations"

Relations

 r_1 : Interact

 r_2 : DirectedBy

 r_3 : ActedBy

 r_4 : Genre

Introduction

- KG-based Recommender System
 - o Goal & challenges: find ways to represent KG information to improve recommendations
 - o One recent trend: use GNN to capture information in KG

User/Item Interaction

Knowledge Graph

Approaches

- How to get context embedding and aggregate with node embedding?
 - o Relation-unaware

- Relation-aware
 - Subgraph aggregation
 - Attentive aggregation
 - Explicit relation aggregation

Relation-unaware

Doesn't distinguish between different types of edges

Focus on how to pick and aggregate node embedding

A GNN of user, item, query interactions

- User search query
- Query guide to items
- User click item

Metapath

- User-item-query
- Query-user-item

Metapath

- User-item-query
- Query-user-item

Aggregate embedding for u2

- Use LSTM to get embedding for user
- User average function for other

Throw

- user embeddings
- query embeddingstatics features
- \Diamond

into MLP layer to predict how likely the user will search the query

Use random walk algorithm to assign importance score

$$A -> B -> C$$

B:1, C:1

A -> C ->E

B:1, C:2, E:1

A -> B -> C

B:2, C:3, E:1

...

B:2, C:3, E:1

Pick top n important node

For example top 2: B, C

Relation-aware

Distinguish between different type of edges

- 1. Subgraph aggregator:
 - a. split the neighborhood graph into multiple subgraphs
 - b. all edges of a subgraph belong to only one of the relation types in R
 - c. Each subgraph has its own parameters

Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation

Similarities with previous paper

- Metapath based approach
- When updating target node embedding, concatenate neighbor aggregate result with old target node embedding

Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation

One aggregator for each type of edge

- user edge
- For user to item edge
- □<-- Item to user edge

...

Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation

Aggregation result from neighbor are multiplied with a weight score weight score for node n from neighbor v:

- 1. feed v's embedding and n's embedding into two learnable matrices that output two vectors
- 2. Dot product these two vectors together
- 3. Put dot product into activation function

STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems

To get the embedding for node n

- 1. Use learnable matrix (edge type specific) to map n's neighbor v to lower dimensional representation
- 2. Multiple neighbor's low dimensional representation are summed together
- Use two-layer feedforward neural network to upscale the low dimension representation

STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems

STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems

Tackle cold start problem

- 1. During training, a portion of the node would be masked, which would have representation of zero vector
- 2. New node that doesn't have any embedding can be represented as zero vector

First order proximity (direct interaction)

User A submit query on shoes => A - shoes have first order

Second order proximity

User B submit query on shoes and bags => B - A have second order

Use auxiliary information to add weighted edge to node who have second order proximity (weight = number of common auxiliary neighbors)

Use auxiliary information to add weighted edge to node who have second order proximity (weight = number of common auxiliary neighbors)

Vector-wise convolution

3 level dense layer ← Learnable vector ← Concatenate
$$h_{N(A)}$$

Learnable vector
$$-$$
 Learnable vector $-$ Learnabl

Relation-aware

- 2. Attentive aggregator:
 - Assign each relation with different weights
 - Convert into a weighted graph

KGCN/KGNN-LS

KGCN/KGNN-LS

• Can alleviate cold-start scenarios where user-item interactions are sparse

r	20%	40%	60%	80%	100%
SVD	0.882	0.913	0.938	0.955	0.963
LibFM	0.902	0.923	0.938	0.950	0.959
LibFM+TransE	0.914	0.935	0.949	0.960	0.966
PER	0.802	0.814	0.821	0.828	0.832
CKE	0.898	0.910	0.916	0.921	0.924
RippleNet	0.921	0.937	0.947	0.955	0.960
KGNN-LS	0.961	0.970	0.974	0.977	0.979

Table 5: AUC of all methods w.r.t. the ratio of training set r.

KGAT: Knowledge Graph Attention Network for Recommendation

Trained end-to-end

$$\mathcal{L}_{KGAT} = \mathcal{L}_{KG} + \mathcal{L}_{CF} + \lambda \|\Theta\|_{2}^{2},$$

KGAT

 Can reason on high-order connectivity to infer the user preferences on the target item, offering explanations.

CGAT: Contextualized Graph Attention Network for Recommendation with Item Knowledge Graph

- Used user-specific graph attention mechanism in KG to capture each entity's local graph context in knowledge graph
 - Local graph context: a set of its first order neighbors
- Include a biased random walk based GRU module to capture non-local context in knowledge graph
 - Non-local context: the set of its most related high order neighbors
 - repeated random walk from h to obtain M path with length L

Relation-aware

- 3. Explicit relation aggregation
 - Explicitly incorporate relation embedding in context embedding

KGIN:Knowledge Graph-based Intent Network

Intent Graph

Model relation embedding into item embedding

attentive combination of relation embeddings + independence constraint

$$\mathbf{e}_p = \sum_{r \in \mathcal{R}} \alpha(r, p) \mathbf{e}_r,$$

$$\alpha(r,p) = \frac{\exp(w_{rp})}{\sum_{r' \in \mathcal{R}} \exp(w_{r'p})}$$

 $\alpha(r, p) = \frac{\exp(w_{rp})}{\sum_{r' \in \mathcal{R}} \exp(w_{r'p})},$ $\mathcal{L}_{\text{IND}} = \sum_{p, p' \in \mathcal{P}, \ p \neq p'} dCor(\mathbf{e}_p, \mathbf{e}_{p'}),$

$$\mathbf{e}_{u}^{(1)} = \frac{1}{|\mathcal{N}_{u}|} \sum_{(p,i) \in \mathcal{N}_{u}} \beta(u,p) \mathbf{e}_{p} \odot \mathbf{e}_{i}^{(0)}$$

$$\beta(u,p) = \frac{\exp(\mathbf{e}_{p}^{\mathsf{T}} \mathbf{e}_{u}^{(0)})}{\sum_{p' \in \mathcal{P}} \exp(\mathbf{e}_{p'}^{\mathsf{T}} \mathbf{e}_{u}^{(0)})}, \qquad \mathbf{e}_{u}^{(l)} = f_{lG}\left(\left\{(\mathbf{e}_{u}^{(l-1)}, \mathbf{e}_{p}, \mathbf{e}_{i}^{(l-1)})|(p,i) \in \mathcal{N}_{u}\right\}\right), \qquad \mathbf{e}_{u}^{*} = \mathbf{e}_{u}^{(0)} + \dots + \mathbf{e}_{u}^{(L)}$$

$$\mathbf{e}_{i}^{(1)} = \frac{1}{|\mathcal{N}_{i}|} \sum_{(r,v) \in \mathcal{N}_{i}} \mathbf{e}_{r} \odot \mathbf{e}_{v}^{(0)}, \qquad \mathbf{L} \text{ layers}$$

$$\mathbf{e}_{i}^{(l)} = f_{\mathrm{KG}} \Big(\{ (\mathbf{e}_{i}^{(l-1)}, \mathbf{e}_{r}, \mathbf{e}_{v}^{(l-1)}) | (r,v) \in \mathcal{N}_{i} \} \Big) \qquad \mathbf{e}_{i}^{*} = \mathbf{e}_{i}^{(0)} + \dots + \mathbf{e}_{i}^{(L)}$$

 $\hat{y}_{ui} = \mathbf{e}_u^* \,^\top \mathbf{e}_i^*.$

$$\mathbf{e}_{i}^{(l)} = \sum_{s \in \mathcal{N}_{i}^{l}} \frac{\mathbf{e}_{r_{1}}}{|\mathcal{N}_{s_{1}}|} \odot \frac{\mathbf{e}_{r_{2}}}{|\mathcal{N}_{s_{2}}|} \odot \cdots \odot \frac{\mathbf{e}_{r_{l}}}{|\mathcal{N}_{s_{l}}|} \odot \mathbf{e}_{s_{l}}^{(0)},$$

Trained end-to-end

$$\mathcal{L}_{KGIN} = \mathcal{L}_{BPR} + \lambda_1 \mathcal{L}_{IND} + \lambda_2 \|\Theta\|_2^2,$$

KGIN

 KGIN creates instance-wise explanations for each interaction — the personalization of a single user

Figure 5: Explanations of user intents and real cases in Amazon-Book (left) and Last-FM (right). Best viewed in color.

Social Network Domain

GraphRec: Graph Neural Network for Social Recommendation

DGRec: Session Based Social Recommendation via Dynamic Graph Attention Networks

the number of iterations of message passing prediction attention-based graph convolutional networks layer 0 item embeddings multi-laver emb 1 convolution probability distribution emb 2 emb 3 item 1 emb 4 item 2 item 3 item 4 emb II $s_k^s = r_{N_{k,T}} = f(i_{T,N_{k,T}}^k, r_{N_{k,T}-1})$ item |I| short-term: long-term: Recommendation session S_{T+1}^{u} : $s_{\nu}^{l} = \mathbf{W}_{u}[k,:]$ $h_n = f(i_{T+1,n}^u, h_{n-1}),$ short-term interests dynamic individual interests friends' interests

Figure 2: A schematic view of our proposed model for dynamic social recommendation.

H_n is representation of user's interest S represents a session which includes all user's actions (clicks) f is LSTM

The number of layers L of the networks corresponds to

DGRec: Session Based Social Recommendation via Dynamic Graph Attention Networks

- (1) similarity between the target user's node representation h
- (I) u and all of its neighbors' representations h (I) k

$$\alpha_{uk}^{(l)} = \frac{exp(f(h_u^{(l)}, h_k^{(l)}))}{\sum_{j \in N(u) \cup \{u\}} exp(f(h_u^{(l)}, h_j^{(l)}))}$$

(4) non-linear transformation

entation h
$$h_u^{(l+1)} = ReLU(\mathbf{W}^{(l)}\tilde{h}_u^{(l)})$$
 (2) include self-connection edge to preserve a user's revealed interests layer l+1 (3) Compute mixture of user u's friend's interest at layer K
$$\tilde{h}_u^{(l)} = \sum_{k \in N(u) \cup \{u\}} \alpha_{uk}^{(l)} h_k^{(l)}$$
 layer l $h_u^{(l)}$ h

Dual Graph Attention Networks

Common Datasets

Scenario	Dataset	# Entities	# (# Connections		# Relation Types	
Book	Amazon-books	95,594	847,733		39		
	Book-crossing	25,787	60,787		18		
Movie	Douban	46,423		331,315		5	
	Flixter	1,049,0	00	26,700,000		-	
	MovieLens	102,569)	499,474		32	
Music	Last-FM	9,336		15,518		60	
POI	Delicious	5,932		15,328		-	
	Yelp	159,426	5	6,818,026		6	
	Dianping	28,115		160,519		7	
Social Network	Epinions	175,000)	508,000		-	

Common Metrics

- Precision@K: (# of recommended items @k that are relevant) / (# of recommended items @k)
- Recall@K: (# of recommended items @k that are relevant) / (total # of relevant items)
- ullet MRR@K (Mean Reciprocal Rank): $\mathrm{MRR} = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{\mathrm{rank}_i}.$
- NDCG@k (Normalized Discounted Cumulative Gain@K): $NDCG@k = \frac{DCG@k}{IDCG@k}$
- AUC
- RMSE

Future Directions

- Dynamic Graphs
 - How to efficiently & incrementally update representations?

Explainable Recommendation

Thank you!

Embed edge instead of node

An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph

An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph Element wise AND 0&1 hop 0&1 hop hop Element wise AND Element wise AND

An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph

Measure importance of each sub-interaction trainable matrices

Importance value and sub-interaction embedding used to train matrix that gives the embedding of the overall interaction