

COMP30026 Models of Computation

Cezary Kaliszyk and William Umboh

Lecture 4

Resolution

Propositional Logic is Decidable

Valid/contingent/unsatisfiable? Decide with truth table.

Propositional Logic is Decidable

Valid/contingent/unsatisfiable? Decide with truth table.

Finite, but huge!

 2^n rows where n is number of variables.

If it is raining, I will bring an umbrella. If it is not raining, I will have ice cream.

٠.

If it is raining, I will bring an umbrella. If it is not raining, I will have ice cream.

:. I will either bring an umbrella or have ice cream.

Either-Or Reasoning, Symbolically

$$P \to F$$

$$\neg P \to G$$

$$F \lor G$$

$$P \to \bot$$

$$P \to \bot$$

$$\bot$$

Rewrite " \rightarrow " in terms of " \neg " and " \vee ":

$$\begin{array}{ccc}
\neg P \lor F & \neg F \\
\hline
P \lor G & \hline
F \lor G & \bot
\end{array}$$

This is resolution.

Rewrite " \rightarrow " in terms of " \neg " and " \vee ":

$$\begin{array}{ccc}
\neg P \lor F & \neg P \\
\hline
P \lor G & \hline
F \lor G & \hline
\end{array}$$

This is resolution.

Exercise: check this is sound!

$$B \vee \neg A \qquad B \vee A$$

$$B \vee A$$

$$\neg B$$

Graphical representation of proof:

A refutation of $(B \lor \neg A) \land (B \lor A) \land \neg B$

Graphical representation of proof:

A refutation of $(B \lor \neg A) \land (B \lor A) \land \neg B$ Showing that it is not true; deriving contradiction

How to Use Refutations

To show that F is valid, refute $\neg F$.

Theorem

$$\models F \text{ iff } \neg F \models \bot.$$

How to Use Refutations

To show that F is valid, refute $\neg F$.

Theorem

$$\models F \text{ iff } \neg F \models \bot.$$

To prove $F \models G$, refute $F \land \neg G$.

Theorem

$$F \models G \text{ iff } F \land \neg G \models \bot.$$

Resolution

$$P \vee \neg Q$$
 $\neg P$ $Q \vee \neg R$ $Q \vee R \vee S$ $\neg Q$

Derive *R* from the premises:

$$P \vee Q \qquad \neg P \vee R \qquad \neg Q \vee R$$

Derive *R* from the premises:

Do not cancel multiple variables at once!

Do not cancel multiple variables at once!

 $(P \lor Q) \land (\neg P \lor \neg Q)$ is **satisfiable**!!!

If you could cancel both, you would get \bot !!!

Do not cancel multiple variables at once!

 $(P \lor Q) \land (\neg P \lor \neg Q)$ is **satisfiable**!!!

If you could cancel both, you would get \bot !!!

This would not be sound!!!

Propositional Resolution Formally

Definition

A resolution proof of C_m from wffs P_1, \ldots, P_n is a string of the form

$$P_1,\ldots,P_n\vdash C_1,\ldots,C_m$$

where each C_i is either a copy of some P_j , or otherwise follows by resolution from any two wffs earlier in the string.

Propositional Resolution Formally

Definition

A resolution proof of C_m from wffs P_1, \ldots, P_n is a string of the form

$$P_1,\ldots,P_n\vdash C_1,\ldots,C_m$$

where each C_i is either a copy of some P_j , or otherwise follows by resolution from any two wffs earlier in the string.

Examples:

- *"P ⊢ P"*
- **"***P*, ¬*P* ⊢ ⊥"
- " $(P \lor Q), \neg P \vdash Q$ "

Resolution System is Sound

We write " $\Sigma \vdash_R F$ " to mean "there is a resolution proof of F from the set of premises Σ ".

Resolution System is Sound

We write " $\Sigma \vdash_R F$ " to mean "there is a resolution proof of F from the set of premises Σ ".

Theorem (Soundness)

If $\Sigma \vdash_R F$, then $\Sigma \models F$.

Resolution System is Sound

We write " $\Sigma \vdash_R F$ " to mean "there is a resolution proof of F from the set of premises Σ ".

Theorem (Soundness)

If $\Sigma \vdash_R F$, then $\Sigma \models F$.

Proof (sketch).

Let x be a proof of F from Σ .

Let ν be a model of Σ .

Let C_1, \ldots, C_n be the wffs after the \vdash in x.

Prove by induction that ν satisfies each C_i .

Conjunctive Normal Form (CNF)

Literal: a propositional atom or its negation.

(Disjunctive) clause: disjunction (V) of literals.

CNF: conjunction (\wedge) of disjunctive clauses.

Conjunctive Normal Form (CNF)

Literal: a propositional atom or its negation.

(Disjunctive) clause: disjunction (V) of literals.

CNF: conjunction (\wedge) of disjunctive clauses.

Example

$$(A \lor \neg B) \land (B \lor C \lor D) \land A$$

Conjunctive Normal Form (CNF)

Literal: a propositional atom or its negation.

(Disjunctive) clause: disjunction (V) of literals.

CNF: conjunction (\wedge) of disjunctive clauses.

Example

$$(A \lor \neg B) \land (B \lor C \lor D) \land A$$

Theorem

Every propositional formula has an equivalent CNF.

Negation Normal Form (NNF) to CNF

NNF: Only connectives are \neg , \wedge and \vee . \neg only in front of variables.

Example

$$(\neg A \lor (B \land \neg C)) \lor (C \land (B \lor D))$$

Negation Normal Form (NNF) to CNF

NNF: Only connectives are \neg , \wedge and \vee . \neg only in front of variables.

Example

$$(\neg A \lor (B \land \neg C)) \lor (C \land (B \lor D))$$

To get NNF:

- 1. Eliminate \leftrightarrow (rewrite using \rightarrow and \land).
- 2. Eliminate \rightarrow (rewrite using \lor and \neg).
- 3. Push ¬ inward (use de Morgan's laws).
- 4. Eliminate ¬¬.

Negation Normal Form (NNF) to CNF

NNF: Only connectives are \neg , \wedge and \vee . \neg only in front of variables.

Example

$$(\neg A \lor (B \land \neg C)) \lor (C \land (B \lor D))$$

To get NNF:

- 1. Eliminate \leftrightarrow (rewrite using \rightarrow and \land).
- 2. Eliminate \rightarrow (rewrite using \lor and \neg).
- 3. Push ¬ inward (use de Morgan's laws).
- 4. Eliminate ¬¬.

To get CNF from NNF, distribute \lor over \land .

$$(\neg P \land (\neg Q \rightarrow R)) \longleftrightarrow S$$

$$(\neg P \land (\neg Q \to R)) \longleftrightarrow S$$

$$\equiv ((\neg P \land (\neg Q \to R)) \to S) \land (S \to (\neg P \land (\neg Q \to R)))$$
(1)

$$(\neg P \land (\neg Q \rightarrow R)) \longleftrightarrow S$$

$$\equiv ((\neg P \land (\neg Q \rightarrow R)) \rightarrow S) \land (S \rightarrow (\neg P \land (\neg Q \rightarrow R)))$$

$$\equiv (\neg (\neg P \land (\neg Q \rightarrow R)) \lor S) \land (\neg S \lor (\neg P \land (\neg Q \rightarrow R)))$$
(2)

$$(\neg P \land (\neg Q \to R)) \longleftrightarrow S$$

$$\equiv ((\neg P \land (\neg Q \to R)) \to S) \land (S \to (\neg P \land (\neg Q \to R)))$$

$$\equiv (\neg (\neg P \land (\neg Q \to R)) \lor S) \land (\neg S \lor (\neg P \land (\neg Q \to R)))$$
(2)

$$\equiv (\neg(\neg P \land (\neg \neg Q \lor R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \tag{2}$$

$$(\neg P \land (\neg Q \to R)) \leftrightarrow S$$

$$\equiv ((\neg P \land (\neg Q \to R)) \to S) \land (S \to (\neg P \land (\neg Q \to R))) \qquad (1)$$

$$\equiv (\neg (\neg P \land (\neg Q \to R)) \lor S) \land (\neg S \lor (\neg P \land (\neg Q \to R))) \qquad (2)$$

$$\equiv (\neg (\neg P \land (\neg \neg Q \lor R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (2)$$

$$\equiv ((\neg \neg P \lor (\neg \neg \neg Q \land \neg R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (3)$$

$$(\neg P \land (\neg Q \rightarrow R)) \leftrightarrow S$$

$$\equiv ((\neg P \land (\neg Q \rightarrow R)) \rightarrow S) \land (S \rightarrow (\neg P \land (\neg Q \rightarrow R))) \qquad (1)$$

$$\equiv (\neg (\neg P \land (\neg Q \rightarrow R)) \lor S) \land (\neg S \lor (\neg P \land (\neg Q \rightarrow R))) \qquad (2)$$

$$\equiv ((\neg P \land (\neg \neg Q \lor R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (2)$$

$$\equiv ((\neg P \lor (\neg \neg \neg Q \land \neg R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (3)$$

$$\equiv ((P \lor (\neg Q \land \neg R)) \lor S) \land (\neg S \lor (\neg P \land (Q \lor R))) \qquad (4)$$

Resolution

$$(\neg P \land (\neg Q \rightarrow R)) \leftrightarrow S$$

$$\equiv ((\neg P \land (\neg Q \rightarrow R)) \rightarrow S) \land (S \rightarrow (\neg P \land (\neg Q \rightarrow R))) \qquad (1)$$

$$\equiv (\neg (\neg P \land (\neg Q \rightarrow R)) \lor S) \land (\neg S \lor (\neg P \land (\neg Q \rightarrow R))) \qquad (2)$$

$$\equiv ((\neg P \land (\neg \neg Q \lor R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (2)$$

$$\equiv (((\neg P \lor (\neg \neg \neg Q \land \neg R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (3)$$

$$\equiv ((P \lor (\neg Q \land \neg R)) \lor S) \land (\neg S \lor (\neg P \land (Q \lor R))) \qquad (4)$$

$$\equiv (((P \lor \neg Q) \land (P \lor \neg R)) \lor S) \qquad ((\neg S \lor \neg P) \land (\neg S \lor (O \lor R))) \qquad (5)$$

$$(\neg P \land (\neg Q \rightarrow R)) \leftrightarrow S$$

$$\equiv ((\neg P \land (\neg Q \rightarrow R)) \rightarrow S) \land (S \rightarrow (\neg P \land (\neg Q \rightarrow R))) \qquad (1)$$

$$\equiv (\neg (\neg P \land (\neg Q \rightarrow R)) \lor S) \land (\neg S \lor (\neg P \land (\neg Q \rightarrow R))) \qquad (2)$$

$$\equiv (\neg (\neg P \land (\neg \neg Q \lor R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (2)$$

$$\equiv ((\neg \neg P \lor (\neg \neg \neg Q \land \neg R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (3)$$

$$\equiv ((P \lor (\neg Q \land \neg R)) \lor S) \land (\neg S \lor (\neg P \land (Q \lor R))) \qquad (4)$$

$$\equiv (((P \lor \neg Q) \land (P \lor \neg R)) \lor S) \qquad (((\neg S \lor \neg P) \land (\neg S \lor (Q \lor R))) \qquad (5)$$

$$\equiv (P \lor \neg Q \lor S) \land (P \lor \neg R \lor S) \qquad ((\neg S \lor \neg P) \land (\neg S \lor O \lor R) \qquad (5)$$

$$(\neg P \land (\neg Q \rightarrow R)) \leftrightarrow S$$

$$\equiv ((\neg P \land (\neg Q \rightarrow R)) \rightarrow S) \land (S \rightarrow (\neg P \land (\neg Q \rightarrow R))) \qquad (1)$$

$$\equiv (\neg (\neg P \land (\neg Q \rightarrow R)) \lor S) \land (\neg S \lor (\neg P \land (\neg Q \rightarrow R))) \qquad (2)$$

$$\equiv (\neg (\neg P \land (\neg \neg Q \lor R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (2)$$

$$\equiv ((\neg \neg P \lor (\neg \neg \neg Q \land \neg R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (3)$$

$$\equiv ((P \lor (\neg Q \land \neg R)) \lor S) \land (\neg S \lor (\neg P \land (Q \lor R))) \qquad (4)$$

$$\equiv (((P \lor \neg Q) \land (P \lor \neg R)) \lor S) \qquad (((\neg S \lor \neg P) \land (\neg S \lor (Q \lor R))) \qquad (5)$$

$$\equiv (P \lor \neg Q \lor S) \land (P \lor \neg R \lor S) \qquad (5)$$

The result is in conjunctive normal form.

Resolution is Refutation-Complete

Theorem

Every unsatisfiable set of clauses has a resolution refutation.

In other words:

Theorem

Let Σ be a set of clauses.

If $\Sigma \models \bot$ *, then* $\Sigma \vdash_R \bot$ *.*

This gives us an algorithm:

- 1. Convert formula into suitable form.
- 2. Repeatedly apply resolution.
 - Derive ⊥? Report unsatisfiable.
 - Cannot derive anything new? Report satisfiable.

Common redundancies:

- Duplicate variables (e.g. $P \lor P$)
- Tautologies (e.g. $P \lor \neg P \lor Q$)
- Subsumptions (e.g. $(P \lor \neg Q \lor R) \land (P \lor R)$)

Common redundancies:

- Duplicate variables (e.g. $P \lor P$)
- Tautologies (e.g. $P \lor \neg P \lor Q$)
- Subsumptions (e.g. $(P \lor \neg Q \lor R) \land (P \lor R)$)

Exercise: simplify this formula:

$$(P \lor \neg P \lor Q) \land (P \lor \neg Q \lor R) \land (P \lor R) \land (P \lor P)$$

Common redundancies:

- Duplicate variables (e.g. $P \lor P$)
- Tautologies (e.g. $P \lor \neg P \lor Q$)
- Subsumptions (e.g. $(P \lor \neg Q \lor R) \land (P \lor R)$)

Exercise: simplify this formula:

$$(P \lor \neg P \lor Q) \land (P \lor \neg Q \lor R) \land (P \lor R) \land (P \lor P)$$

Note that CNF is **not** unique!

Clausal Form

Represent CNF as set of sets of literals.

Example

CNF:

$$(P \vee \neg Q \vee S) \wedge (P \vee \neg R \vee S) \wedge (\neg S \vee \neg P) \wedge (\neg S \vee Q \vee R)$$

Clausal form:

$$\{\{P, S, \neg Q\}, \{P, S, \neg R\}, \{\neg P, \neg S\}, \{Q, R, \neg S\}\}$$

We shall often treat these interchangeably.

Resolution

Why? Simplifies reasoning.

- $\{A, B\}$ represents the clause $A \vee B$.
- {*A*} represents the clause *A*.

- $\{A, B\}$ represents the clause $A \vee B$.
- {*A*} represents the clause *A*.

What disjunctive clause does $\{\}$ represent? $(\{\}$ sometimes written \emptyset)

- $\{A, B\}$ represents the clause $A \vee B$.
- {*A*} represents the clause *A*.

What disjunctive clause does $\{\}$ represent? $(\{\}$ sometimes written \emptyset)

Natural choice: ⊥.

- $\{A, B\}$ represents the clause $A \vee B$.
- {*A*} represents the clause *A*.

What disjunctive clause does $\{\}$ represent? $(\{\}$ sometimes written \emptyset)

Natural choice: ⊥.

Disjunction is true iff at least one disjunct is true.

Let C_1 and C_2 be clauses.

- $\{C_1, C_2\}$ represents the CNF formula $C_1 \wedge C_2$.
- $\{C_1\}$ represents the CNF C_1 .

What CNF does {} represent?

Let C_1 and C_2 be clauses.

- $\{C_1, C_2\}$ represents the CNF formula $C_1 \wedge C_2$.
- $\{C_1\}$ represents the CNF C_1 .

What CNF does {} represent?

Natural choice: \top .

Let C_1 and C_2 be clauses.

- $\{C_1, C_2\}$ represents the CNF formula $C_1 \wedge C_2$.
- $\{C_1\}$ represents the CNF C_1 .

What CNF does {} represent?

Natural choice: T.

Conjunction is true iff every conjunct is true.

Empty Clauses and Formulas

- Empty conjunction (∧) is valid.
- Empty disjunction (∨) is unsatisfiable.

Empty Clauses and Formulas

- Empty conjunction (∧) is valid.
- Empty disjunction (V) is unsatisfiable.

Thus:

- The empty set of clauses is valid.
- A set of clauses containing the empty clause is unsatisfiable.

Propositional Resolution for Clausal Form

Let *P* be a propositional variable.

Let C_1 , C_2 be clauses without P or $\neg P$.

$$\frac{C_1 \cup \{P\}}{C_2 \cup \{\neg P\}}$$
$$\frac{C_1 \cup C_2}{C_1 \cup C_2}$$