Programmare in C++

A.S. 2015/2016 Alessandro Saltini

Liceo Scientifico Statale "A. Tassoni"

Contenuti

- Cos'è un computer?
 - logica binaria
 - bit come unità di informazione
 - numeri binari (ed hex?)
 - architettura di von Neumann
 - ► CPU (ALU/CU)
 - memorie (primarie / secondarie)
- Linguaggi
 - assembly (1-to-1 con machine code)
 - high-level languages
 - compilation process (preprocessor compiler linker)

L'informatica

- L'informatica non è
 - saper usare un computer
 - saper costruire/riparare un computer
 - usare programmi scritti da altri
- L'informatica è
 - una branca della matematica
 - lo studio dell'informazione
 - ▶ lo studio degli algoritmi
 - lo studio dei linguaggi di programmazione

- L'informazione si misura in bit (binary digit)
- 1 bit è la quantità di informazione necessaria a determinare una quantità che può essere 0 o 1
- Il byte è un multiplo del bit: 1 B = 8 bit
- Due scale di multipli del byte:
 - ightharpoonup decimale: kB (10³), MB (10⁶), GB (10⁹), TB (10¹²), ...
 - ▶ binaria: KiB (2¹⁰), MiB (2²⁰), GiB (2³⁰), TiB (2⁴⁰), ...

Algebra Booleana

- L'algebra Booleana è l'algebra dei bit
- È un modello della logica classica: 1 = vero, 0 = falso
- ▶ Insieme di base $\mathcal{B} = \{0, 1\}$
- ▶ Tre operazioni fondamentali:
 - ▶ not (non): \neg : $\mathcal{B} \to \mathcal{B}$
 - ▶ and (et): \wedge : $\mathcal{B}^2 \to \mathcal{B}$
 - ▶ or (vel): \vee : $\mathcal{B}^2 \to \mathcal{B}$

- ▶ not (non): ¬

 - $\neg 0 = 1$
- ▶ and (et): ∧
 - $1 \wedge 1 = 1$
 - $ightharpoonup 1 \land 0 = 0$
 - $0 \wedge 1 = 0$
 - $ightharpoonup 0 \land 1 = 0$
- or (vel): v
 - $1 \lor 1 = 1$
 - $ightharpoonup 1 \lor 0 = 1$
 - $ightharpoonup 0 \lor 1 = 1$
 - $ightharpoonup 0 \lor 1 = 0$

- Combinando queste tre operazioni si possono ottenere tutte le altre operazioni possibili
- In realtà basta una sola operazione, meno intuitiva:
 - ▶ nand (↑)
 - ▶ nor (↓)
- Esistono circuiti elettrici che realizzano materialmente queste operazioni logiche
 - segnale "alto" = 1
 - segnale "basso" = 0
- Sono l'elemento di base dei computer