ADM equations in isotropic Schwarzschild metric

D.C. Kim

March 10, 2023

This article is based on the p.49 in [2].

What we want to prove is the following theorem.

Theorem 1. For the isotropic Schwarzschild metric, the numerically computed solutions from the ADM equations are static and stable when lapse and shift are chosen as follows:

$$\alpha = \frac{1 - M/(2r)}{1 + M/(2r)}, \quad \beta^i = 0.$$
 (1)

Proof. Assume that Proposition 2 holds. Then $\Sigma_0 = \Sigma_1$ for the initial condition $\Sigma_0 = (\gamma_{ij}, K_{ij})$ and for any t, Σ_t is entirely determined by Σ_{t-1} , so $\Sigma_t = \Sigma_0$.

Here, the spatial metric is given by

$$\gamma_{ij} = \left(1 + \frac{M}{2r}\right)^4 \operatorname{diag}(1, r^2, r^2 \sin^2 \theta). \tag{2}$$

As initial data, K_{ij} is determined by the equation for the evolution of the spatial metric in the following ADM equation:

$$\partial_t \gamma_{ij} = -2\alpha K_{ij} + D_i \beta_j + D_j \beta_i. \tag{3}$$

Since γ_{ij} is time independent as in Eq. (2), and $\beta^i = 0$, we can see that K_{ij} is obviously zero.

Now let's prove the following proposition:

Proposition 2. Analytically, as t increases, K_{ij} can always have a value of zero, even if the evolution scheme proceeds.

Proof. The non-trivial three-dimensional Ricci tensor computed from a given spatial metric:

$$R_{rr} = -\frac{8rM}{(2r^2 + Mr)^2}, \quad R_{\theta\theta} = \frac{4r^3M}{(2r^2 + Mr)^2}, \quad R_{\phi\phi} = \sin^2\theta R_{\theta\theta}.$$
 (4)

By taking the trace from them, we get R = 0. Thus, we see that the first equation in the ADM equations, the Hamiltonian constraint

$$R + K^2 - K_{ii}K^{ij} = 16\pi\rho, (5)$$

is satisfied. The second equation in the ADM equations, the momentum constraint

$$D_i(K^{ij} - \gamma^{ij}K) = 8\pi S^i, \tag{6}$$

is self-evident. The third equation, the evolution equation for the spatial metric, is a obviously true since we constructed the initial conditions here. Now the non-trivial, fourth equation

$$\partial_t K_{ij} = \alpha (R_{ij} - 2K_{ik}K_j^k + KK_{ij}) - D_i D_j \alpha - 8\pi \alpha \left(S_{ij} - \frac{1}{2}\gamma_{ij}(S - \rho)\right) + \beta^k \text{(some terms)}, \quad (7)$$

is simplified to

$$\partial_t K_{ij} = \alpha R_{ij} - D_i D_j \alpha. \tag{8}$$

Using $D_a D_b \alpha = \partial_a \partial_b \alpha - \partial_c \alpha \Gamma^c{}_{ba}$, we can see that the second term has a specific form. Significant Christoffel symbol is

$$\Gamma^{r}_{rr} = -\frac{M}{r^2 \left(1 + \frac{M}{2r}\right)},\tag{9}$$

$$\Gamma^r{}_{\theta\theta} = \frac{r(M-2r)}{M+2r},\tag{10}$$

$$\Gamma^{r}{}_{\phi\phi} = \frac{r(M-2r)\sin^2\theta}{M+2r}.$$
(11)

And we get

$$D_r D_r \alpha = \frac{8M(M - 2r)}{r(M + 2r)^3},\tag{12}$$

$$D_{\theta}D_{\theta}\alpha = -\frac{4Mr(M-2r)}{(M+2r)^{3}},$$

$$D_{\phi}D_{\phi}\alpha = -\frac{4Mr(M-2r)\sin^{2}\theta}{(M+2r)^{3}}.$$
(13)

$$D_{\phi}D_{\phi}\alpha = -\frac{4Mr(M-2r)\sin^{2}\theta}{(M+2r)^{3}}.$$
(14)

Substituting this into Eq. (8) along with Eq. (4), we see that $\partial_t K_{ij} = 0$.

In the numerical calculation, the second term is always constant regardless of t, so a fixed value is used, and the first term is calculated as a simple second-order derivative. Now, in a simulation where $\partial_t K_{ij}$ is computed to be zero with sufficient precision, (γ_{ij}, K_{ij}) for all t will be consistent with the initial value.

If we write $\partial_t K_{ij}$ in the form of a second-order derivative, we have

$$\partial_{t}K_{ij} = \frac{\alpha}{2}\gamma^{kl}(\partial_{i}\partial_{j}\gamma_{kj} + \partial_{k}\partial_{j}\gamma_{il} - \partial_{i}\partial_{j}\gamma_{kl} - \partial_{k}\partial_{l}\gamma_{ij}) + \alpha\gamma^{kl}(\Gamma^{m}{}_{il}\Gamma_{mkj} - \Gamma^{m}{}_{ij}\Gamma_{mkl}) - \partial_{i}\partial_{j}\alpha + \partial_{c}\alpha\Gamma^{c}{}_{ij}.$$
(15)

According to the p.168 in [1], 1) the momentum constraints can be guaranteed to be identically satisfied, and 2) either the densitized lapse $\tilde{\alpha} := \alpha/\sqrt{\gamma}$ is assumed to be a known function of spacetime (but not the lapse itself), or we use a slicing condition of the Bona–Masso family, then the ADM system would be strongly hyperbolic.

References

- [1] Miguel Alcubierre. Introduction to 3+ 1 numerical relativity, volume 140. OUP Oxford, 2008.
- [2] Thomas W Baumgarte and Stuart L Shapiro. *Numerical relativity: solving Einstein's equations on the computer*. Cambridge University Press, 2010.