PROJECT MINERVA

Accelerated Deployment of MFEM Based Solvers in Large Scale Industrial Problems Topic: 2/a

MINERVA

- Minerva is intended to be a secure, cloud deployable platform based on the MFEM software
 - The goal of Minerva is to accelerate HPC finite element research and application development for a wide variety of computational environments
 - It is anticipated that through collaboration, organizations in academia and industry will be early adopters of this platform to support a customer ecosystem focused on accelerating enhancements to MFEM

CONCEPT

- Leverage mature, commercially available CAD and FE pre/post software to develop MFEM models
- Disrupt current commercial software/hardware models for HPC FEA

SOFTWARE LAYER

- RE LOGIC RESEARCH
- The current layer translates an Abaqus input file into a MFEM mesh file and a MFEM model file
- The layer currently supports:
 - 3D solid continuum elements (tet, hex)
 - Essential BCs (surfaces not nodes)
 - Surface loads (pressure, traction, etc.)
 - Multiple isotropic materials definitions
 - Static, linear analysis
- The MFEM mesh file (*.mesh) is generated completely by the layer
- The MFEM model file (*.cpp) is generated by automatically populating fields in a template for static analysis
 - Serial
 - Parallel
 - Parallel + AMR

DATABASE TRANSLATOR

- The VTK output from MFEM is converted to Abaqus results file formats that are read by Hypermesh, FEMAP, Abaqus/CAE, etc.
 - A similar approach can be implemented in Phase II to support ANSYS pre/post software
- Currently supports:
 - 3D solid continuum elements (tet, hex)
 - Displacements
 - Stress tensors
 - Strain tensors

EXAMPLES

- MFEM Example-2
 - Model created in Abaqus/CAE
 - Run in MFEM
 - Visualized in Abaqus/CE

Example 2: Linear Elasticity

This example code solves a simple linear elasticity problem describing a multi-material cantilever beam. Specifically, we approximate the weak form of

$$-\operatorname{div}(\sigma(\mathbf{u})) = 0$$

where

$$\sigma(\mathbf{u}) = \lambda \operatorname{div}(\mathbf{u}) I + \mu \left(
abla \mathbf{u} +
abla \mathbf{u}^T
ight)$$

is the stress tensor corresponding to displacement field ${\bf u}$, and ${\boldsymbol \lambda}$ and ${\boldsymbol \mu}$ are the material Lame constants. The boundary conditions are ${\bf u}=0$ on the fixed part of the boundary with attribute 1, and $\sigma({\bf u})\cdot n=f$ on the remainder with f being a constant pull down vector on boundary elements with attribute 2, and zero otherwise. The geometry of the domain is assumed to be as follows:

material 1

1 material 2

boundary attribute 2 (pull down)

EXAMPLES

Multi-Material + Multi-Load + AMR

EXAMPLES

Complex-ish Part

MFEM ENHACEMENTS

- The current effort is supporting the following MFEM enhancements:
 - Stress/strain coefficients allowing easy VTK output
 - ASCII VTK output fix
 - Local and Non-local elastoplastic solver
 - Explicit integration
 - Implicit integration
 - Support for different materials for the solver
 - Elastic-perfectly plastic
 - Orthotropic
 - Thermo-elasticity
 - Distributed loads

NON-LOCAL PLASTICITY

Governing equations:

$$-\nabla \boldsymbol{\sigma} = \mathbf{f} + \mathrm{BC}$$
$$-\nabla^{\mathsf{T}} r^{2} \nabla \overline{\varepsilon_{p}} + \overline{\varepsilon_{p}} = \varepsilon_{p}$$
$$\nabla \overline{\varepsilon_{p}} \cdot \mathbf{n} = 0 \quad \text{on} \quad \partial \mathbf{\Omega}$$

 $\overline{\varepsilon_p}$ - regularized accumulated plastic strain Constitutive behaviour:

$$egin{aligned} f\left(oldsymbol{\sigma},\overline{arepsilon_{p}}
ight) &= \sigma_{e}\left(oldsymbol{\sigma}
ight) - \sigma_{y}\left(\overline{arepsilon_{p}}
ight) \ \sigma_{e}\left(oldsymbol{\sigma}
ight) &= \sqrt{rac{3}{2}oldsymbol{\sigma}^{\mathrm{D}}}:oldsymbol{\sigma}^{\mathrm{D}} \ \sigma_{e}\left(oldsymbol{\sigma}
ight) &= \sqrt{rac{3}{2}oldsymbol{\varepsilon}_{p}}\left(\sigma_{y,0} + Harepsilon_{p}
ight) \ \dot{arepsilon}_{p} &= \sqrt{rac{2}{3}oldsymbol{\varepsilon}_{p}}:oldsymbol{\varepsilon}_{p} \ \sigma_{e}\left(oldsymbol{\sigma}^{\mathrm{D}} + Harepsilon_{p}
ight) \ \dot{arepsilon}_{p} &= \sigma_{e}\left(oldsymbol{\sigma}^{\mathrm{D}} + Harepsilon_{p}\right) \ \dot{arepsilon}_{p} &= \sigma_{e}\left(oldsymbol{\sigma}^{\mathrm{D}} + H$$

- Highly desirable feature for structural analysis that is not available in commercial solvers
- Length scale, r, for mesh independent analysis directly relates to fracture criteria
- Currently being implemented and verified
 - Add to next MFEM release

CLOUD-BASED PLATFORM

- The team is currently evaluating Amazon Web Services (AWS) and platforms that provide frontends to manage AWS for software deployment
- The scalability study is performed on five different AWS 64-virtual CPU machines with ARM and x86 architectures
 - The ARM machines are with Amazon's CPUs Graviton 2 and 3 with 64 cores, i.e., every virtual CPU corresponds to one CPU core
 - The x86 machines are multithreaded, and two virtual CPUs are mapped to one physical core
- The test code is an example from MFEM, executed on four times refined hex mesh with a total of 7.2M DOFs

HPC PERFORMACE

- The scalability study is performed on five different AWS 64-virtual CPU machines with ARM and x86 architectures
 - The ARM machines are with Amazon's CPUs Graviton 2 and 3 with 64 cores, i.e., every virtual CPU corresponds to one CPU core
 - The x86 machines are multithreaded, and two virtual CPUs are mapped to one physical core
- On all platforms, the scalability is close to perfect, except for the x86 architectures
 - At 32 processes, the curve for the x86 machines is flattening, a well-known behavior on CPU with enabled multi-threading
- Commercial solvers do not offer such nice scalability
 - In comparison to MFEM, we can observe a factor of two differences in performance
- In addition, we are not aware of any major commercial solver available for ARM architectures

HPC COST

- At 64 CPUs, the Graviton 3 machine is approximately four times cheaper than any of the x86 machines, and the Graviton 2 machine is around two times cheaper
- Compared to an equivalent simulation with commercial software, the difference will be a factor of eight which clearly demonstrates the possibilities for cost saving in addition to proven parallel scalability
- Of course, to lower the cost, one can select smaller machines for runs on a smaller number of processes than 64
 - However, the available memory on such machines will limit the size of the problem
- Currently, commercial solver licenses are priced per CPU and cloud-based deployments are priced to more than annual licenses

PROJECT TEAM:

Devlin Hayduke, ReLogic (PI)

FE research:

Material models and element formulations for analyses of composite structures

Topology optimization for advanced manufacturing applications

Miguel Agulio, ReLogic

FE research:

Former developer of the Plato optimization software at SNL Uncertainty quantification

Steve Pilz, ReLogic

FE product development:

Former Lead Product Manger at ANSYS

Adept at building coalitions and cooperative relationships between businesses and academia

Boyan Lazarov, LLNL

FE research:

MFEM development team

Optimization, computational mechanics, non-linear mechanics, structural reliability, etc.

Thank you! relogicresearch.com

Chandler Wicks, CEO chandler.wicks@relogicresarch.com

Devlin Hayduke, CTO devlin.hayduke@relogicresearch.com