OPERAÇÕES UNITÁRIAS I

PROF° KASSIA G SANTOS 2020/1- CURSO REMOTO DEPARTMENTO DE ENGENHARIA QUÍMICA UFTM

AULA 18

7 Transporte Pneumático de Sólidos

Se refere ao movimento de partículas sólidas em um fluxo de gás através de tubos horizontais e/ou verticais. Ocorre quando a vazão de um gás excede a velocidade de sedimentação livre das partículas, arrastando as partículas sólidas.

CARACTERÍSTICAS PRINCIPAIS:

- ☐ Os baixos custos de manutenção e operação
- ☐ A grande variabilidade de produtos transportados
- □ A alta flexibilidade dos projetos, podendo haver o transporte
- □ vertical e/ou horizontal, além de diversos sistemas de alimentação de sólidos.
- □ podem ser usados para partículas que variam de pós finos a pelotas, com densidades aparentes de 16 a 3200 kg/m³.
- ☐ Muito utilizado na exaustão de pós e alimentação de separadores sólido-gás.
- □ Devido ao excelente contato gás-partícula, podem ser utilizados em operações, como secagem, adsorção, congelamento, reatores.

FASE DENSA

- ☐ A definição de transporte pneumático em fase densa significa uma pequena quantidade de ar para movimentar uma grande quantidade de sólidos a granel de forma pulsante em porções através da linha de transporte.
- ☐ Altas frações volumétricas de sólidos
- □ Pode ser o método mais confiável e eficiente para a manipulação de uma grande variedade de sólidos a granel.
- ☐ Ocorre a alta pressão (>43psi)
- Baixas velocidades (0,2-5 m/s).

FASE DILUÍDA

- Utilizam grande quantidade de ar para remover quantidades relativamente pequenas de material
- □ Baixas frações volumétricas de sólidos (<1%)</p>
- □ Operam a baixa pressão (≅14psi, <50mmCA) (por causa do atrito da partícula com a parede)</p>
- ☐ Altas velocidades de gás (10-30 m/s), utilizam sopradores e/ou ventiladores.

REGIMES DE ESCOAMENTO

Shibo Kuang, Mengmeng Zhou, Aibing Yu, CFD-DEM modelling and simulation of pneumatic conveying – A review. Powder Technology 365 (2020) 186–207

Slug flow (U=9.65 m/s)

Stratified flow (U=9.65 m/s)

Transition flow (U=9.65 m/s)

Dispersed flow (U=9.65 m/s)

Fig. 10. Snapshots showing representative particle flow patterns at different gas velocities in horizontal pneumatic conveying [54].

REGIMES DE ESCOAMENTO Lean-phase conveying Strand-phase conveying Unstable area Dense-phase conveying

Fig. 9. Snapshots showing representative particle flow patterns at different gas velocities in vertical pneumatic conveying [50]: (a) $U_g = 10.0$ m/s, (b), $U_g = 13.0$ m/s, (c), $U_g = 18.5$ m/s, (d) $U_g = 30.5$ m/s, and (e), $U_g = 30.5$ m/s, corresponding to different times.

TRANSPORTAR EM QUAL REGIME

Klizing et al (1997): razão mássica do sólido e do fluído (X)

Fig. 86 – Fase diluída: operação sob pressão

A Classificação de Geldart

Os grupos A e D na classificação de Geldart são mais apropriados para transporte em fase densa, enquanto os Grupos B e C são mais adequados para transporte diluído.

Recomendações

PNEUMATIC CONVEYING/BLENDING SELECTION CHART

http://www.nol-tecasia.com.sg/dense-phase-pneumatic-conveying-systems.html

SYSTEMS	DENSE PHASE PRESSURE	DENSE PHASE VACUUM	DENSE PHASE "SLOW FLOW"	PRESSURE	VACUUM	PNEUMATIC BLENDING
MATERIAL						
CHARACTERISTICS						
Bulk Density (>75 PCF)	1	2	2	3	3	2
Bulk Density (25-75 PCF)		Commission Columns				1
Bulk Density (<25 PCF)	1	1	1	1		1
Soft Particles	2	2	2	2	2	2
Cohesive Materials	2	2	2	2	1	2
Hot Materials	2	2	2	2	2	2
Fragile/Friable Materials	1	1	1	3	3	1
Mildly Abrasive		1	1	1		
Moderately Abrasive	1	1	2	2	2	1
Highly Abrasive			3	3	3	CUAL TAL BASE
Blended Batch (Minimum Segregation)	1	1	1	3	3	1
PARTICLE SIZE/SHAPE						
Very Fine (<.010")		1	1		1	1
Fine (.010"024")	1	1	1	1	1	1
Granular (.025"-,050")		1				
Pellets (.06"25")	1	1	1	1	1	2
Coarse (>.25")	2	3	2			3
Fibrous	3	2	3	2	1	2 .
umpy/Irregular	SPECIAL APPLICATION					
FEATURES						
Continuous Conveying	Yes	Yes	Yes	Yes	Yes	n/a
ine Purge or Clean Out	Yes	Yes	Yes	Yes	Yes	Yes
Solids:Air Ratio	15-70:1	15-50:1	15-50:1	<15:1	<12:1	30-60:1
Closed Loop System Available	2	NAME OF TAXABLE PARTY.		Marian Residence		2
Sanitary Design Available	Yes	Yes	Yes	Yes	Yes	Yes
Typical Conveying Pressure	15-65 PSI	9"-14" Hg.	15-35 PSI	<12 PSI	<14" Hg.	20-40 PSI
Velocity Range (Feet Per Minute)	< 2,000	< 2,000	< 2,000	< 7,500	< 9,000	n/a
Long Distance (Up to 1,000')	TOTAL TRANSPORT	3		2	3	n/a

Ex: Cimento

Figure 11.6 Analysis of data from the conveying of cement in 81 mm bore pipeline: (a) material flow rate data and (b) pressure drop data.

DIMENSIONAMENTO DA LINHA

Método 1: (Gomide, pg168)

Calcular V de transporte

Calcular Diâmetro do duto Perda de carga na linha dP Calcular Vazão e taxa sólidos

Potência do soprador

$$V = 37\sqrt{\rho_s}$$

Flotronics (0,15<p<2 t/m3)

$$V_h = 8,45 \frac{\rho_s}{\rho_s + 1} D_p^{0,4}$$
 Dalla Valle (1

$$V_{v} = 1,07 D_{p}^{0,2} V_{h}$$

Vh é a velocidade para transporte na horizontal (m/s)

Vv é a velocidade para transporte na vertical (m/s)

Dp é o diâmetro da partícula (mm)

ps é a densidade bulk do sólido (t/m3)

Tabela IV-20

Material	V (m/s)
Algodão	22,9
Areia	35,6
Areia de jato	20,3
Borracha em pó	22,9
Café em grãos	17,8
Calcáreo moído	25,4
Carvão fino	20,3
Cereais em grãos	28,4
Cimento	35,6
Cortiça	15,2
Lā	20,3
Papel	25,4
Poeiras metálicas	9,1
Pó de chumbo	22,4
Pós de fundição	22,9
Raspas de metal	25,4
Serragem seca	15,2
Trigo	29,5

DIMENSIONAMENTO DA LINHA

Método 1: (Gomide, pg168)

Calcular V de transporte

Calcular Diâmetro do duto Perda de carga na linha dP

Calcular Vazão e Taxa sólidos

Potência do soprador

Chutar D

Tabela IV-21 Curvas

D (mm)	$L_e = \text{comprimento equivalente (m)}$		
	R = 2D	R = 3D	
50	1,4	1,4	
100	2,6	2,6	
125	3,6	3,0	
150	4,4	3,6	
175	5,4	4,4	
200	6,2	5,0	
250	8,6	6,6	
• 300	10,4	8,6	
400	14,0	12,0 ·	

R = raio de curvatura médio da curva

D = diâmetro do duto (v. Fig. VI-36 e IV-37)

Cálculo da Perda de Carga: Perda de carga distribuída (comprimento da tubulação L) e localizada (acidentes, Le, função de D)

Equipamentos de coleta (perdas em mm CA*)

Câmara gravitacional 20 a 40 Ciclone comum 30 a 60 Ciclone de alta eficiência 70 a 150 Câmaras de impactação 40 a 100 Filtros de tecido 80 a 150 Calcular Diâmetro do duto Perda de carga na linha dP

Calcular Vazão e Taxa sólidos Potência do soprador

Vazão Ábaco I

$$Q = \frac{VD^2}{1,27 \cdot 10^6}$$

Concentração X Ábaco II

$$X = \frac{C}{4,29Q}$$

Fig. IV-39 (Gomide)

DIMENSIONAMENTO DA LINHA

Método 2: (Gomide, pg178)

Calcular V de transporte

Calcular Diâmetro do duto

Perda de carga na linha dP

Potência do soprador

$$V = 4.11\sqrt[3]{\rho}\sqrt{D_p} + 23.4\sqrt{\rho}$$

Dp é o diâmetro da partícula (mm)

- é a densidade bulk do sólido (t/m³)
- C é a capacidade (t/h)
- V é a velocidade em m/s
- D é o diâmetro do tubo (mm)

$$D = 3016 \frac{\sqrt{C}}{V^{0.98}}$$

$$P = 131,51Q\Delta P_t$$

$$\Delta P_{t} = \left(1,68L_{t}\left(X+3,5\right)\frac{V^{1,8}}{D^{1,22}}+0,138\varphi XV^{2}+\Delta P_{e}\right)\cdot10^{-4}$$

△Pt é a queda de pressão em kg/cm2

- X é razão mássica kg solido/kg ar; Lt é o comprimento total (m)
- φ Fator de redução (partícula alimentada após o ventilador (φ =0,5)
- △Pe é a perda de carga em outros equipamentos silos, etc...)

$$L_t = L_H + 2L_V + L_e$$

AULA 19

Exercícios de Transporte Pneumático

EX33: (Gomide, Aplicação 1, pg 181): Dimensionar um transportador pneumático (sistema direto) para transportar 10t/h de um sólido com densidade bulk de 1,12t/m3 e Dp=2,5 mm. Há 46m de dutos horizontais e 3,4m de verticais, 3 cotovelos na entrada do ventilador e 1 na alimentação. O sólido é coletado em um ciclone.

Método 2

1º- Calcular Velocidade de transporte:

$$V = 4.11\sqrt[3]{\rho}\sqrt{D_p} + 23.4\sqrt{\rho}$$

$$V = 4.11\sqrt[3]{1,12}\sqrt{2,5} + 23.4\sqrt{1,12} = 31.5\frac{m}{s}$$

2º- Calcular a Diâmetro do duto:

$$D = 3016 \frac{\sqrt{C}}{V^{0.98}} = 3016 \frac{\sqrt{10}}{31,5^{0.98}} = 324 mm$$

3º- Calcular a Perda de Carga:

$$\Delta P_{t} = \left(1,68L_{t}\left(X+3,5\right)\frac{V^{1,8}}{D^{1,22}}+0,138\varphi XV^{2}+\Delta P_{e}\right)\cdot10^{-4}$$

Comprimento total:

$$L_t = L_H + 2L_V + L_e = 46 + 2 \cdot 3, 4 + 4 \cdot (10, 4) = 94, 4m$$

Vazão Q:

$$Q = \frac{\pi \cdot 0,324^2}{4} 31,51 = 2,6 \frac{m^3}{s}$$

Razão mássica X:

$$X = \frac{C}{4,29Q} = \frac{10}{4,29 \cdot 2,6} = 0,897 \frac{kg \ s\acute{o}l}{kg \ ar}$$

ΔPe no ciclone (Tab IV-21):

$$\Delta P_e = 60 mmCA$$

4º- Cálculo da Potência:

$$P = 131,51Q\Delta P_t = 131,51\cdot 2,6\cdot 0,0429 = 14,7HP$$

Sistema direto:+25% de potência:

$$P = 18HP$$

Se o ventilador tiver 70% de rendimento:

$$BHP = 18HP/0, 7 = 26$$

EX34: (Gomide, Aplicação 2, pg 182): Projetar um m transportador pneumático do tipo venturi deverá transportar 3t/h de um material com densidade bulk de 0,64t/m3 e Dp=7,6 mm. Há 12,2m de dutos horizontais e 2,4m de verticais, com 2 cotovelos no sistema. O sólido é coletado em uma câmara de separação gravitacional.

1º- Calcular Velocidade de transporte:

$$V = 4,11\sqrt[3]{0,64}\sqrt{7,6} + 23,4\sqrt{0,64} = 28,5\frac{m}{s}$$

2º- Calcular a Diâmetro do duto:

$$D = 3016 \frac{\sqrt{C}}{V^{0.98}} = 3016 \frac{\sqrt{3}}{28,5^{0.98}} = 196 mm$$

3º- Calcular a Perda de Carga:

$$\Delta P_{t} = \left(1,68L_{t}\left(X+3,5\right)\frac{V^{1,8}}{D^{1,22}}+0,138\varphi XV^{2}+\Delta P_{e}\right)\cdot10^{-4}$$

Comprimento total:

$$L_t = L_H + 2L_V + L_e = 12, 2 + 2 \cdot 2, 4 + 2 \cdot (6, 2) = 29, 4m$$

Vazão Q:
$$Q = \pi \cdot 0.196^2 / 428.5 = 0.86 \, m^3 / s$$

 $\Delta \mathsf{Pe}\ \mathsf{venturi}\ (\mathsf{Tab}\ \mathsf{IV-21})$:

$$\Delta P_{e} = 40 mmCA$$

Razão mássica X:

$$X = \frac{3}{4,29 \cdot 0,86} = 0.81 \frac{kg \ s\acute{o}l}{kg \ ar}$$

Pressão a jusante. Na garganta: *1,5+ altura de velocidade

$$\Delta P_t = 0.023 kg / cm^2 = 231 mmCA$$

$$\Delta P_G = 1.5 \cdot 231 + \left(\frac{28.5}{4.043}\right)^2 = 393 mmCA$$

$$\Delta P_G = \left(\frac{V_g}{4,043}\right)^2 \rightarrow V_g = 80.5 \frac{m}{s}$$

$$\Delta P_G = \left(\frac{V_g}{4,043}\right)^2 \to V_g = 80.5 \frac{m}{s}$$
 $S_g = \frac{0.86}{80.5} = 0.0107 m^2 \to D_G = 117 mm$

Livro sugere considerar um aumento de 5% devido à perda de caga entre a garganta do venturi e o ventilador

$\Delta P = 417 \text{mm} = 0.0417 \text{kg/cm}^2$

4º- Cálculo da Potência:

Se o ventilador tiver 70% de rendimento:

$$P = 131,51 \cdot 0,86 \cdot 0,0417 = 4,7HP$$

BHP = 6,7

EX35: Projetando um sistema para operar com fase diluída. Admita um sistema com os seguintes parâmetros: L= 200 ft de tubo reto; 2 cotovelos 90 graus; Densidade bulk: 60 lb/ft3 (960 kg/m3) e C=25.000 lb/h (cerca de 11.340 kg/h).

1º- Calcular Velocidade:

V= 2.179 m/min=36,3 m/s

2º- Chutar D e calcular o comprimento equivalente total:

1º chute:

D=4 in=101,6mm

Nos cotovelos de 90°: Le=2*25ft=50 ft

 L_t = 200 ft + 2 (25 ft) = 250 ft L_t =76,2m

Densidade bulk		Velocidade do Ar		
lb/ft ³	kg/m³	ft/min	m/min	
10	160	2900	884	
15	240	3590	1094	
20	320	4120	1256	
25	400	4600	1402	
30	480	5050	4539	
35	560	5500	1676	
40	640	5840	1780	
45	720	6175	1882	
50	800	6500	1981	
55	880	6800	2072	
60	960	7150	2179	
65	1040	7450	2270	
70	1120	7700	2347	
75	1200	8000	2438	
80	1280	8250	2515	
85	1360	8500	2591	
90	1440	8700	2652	
95	1520	9000	2743	
100	1600	9200	2804	
105	1680	9450	2880	
110	1760	9700	2957	
115	1840	9900	3118	
120	1920	10500	3200	

3º- Encontar a vazão volumétrica de ar (Ábaco I):

Do Ábaco I: Q=0,32 m³/s

EX35: Projetando um sistema para operar com fase diluída. Admita um sistema com os seguintes parâmetros: L= 200 ft de tubo reto; 2 cotovelos 90 graus; Densidade bulk: 60 lb/ft3 (960 kg/m3) e C=25.000 lb/h (cerca de 11.340 kg/h).

4º- Com a vazão de ar e a capacidade, encontar X (Ábaco II):

X= 8,5 kg sol/kg ar

X<15 (diâmetro ok)

Se a relação de sólidos estiver acima de 15, reinicie os cálculos para um diâmetro de tubulação superior ao escolhido anteriormente.

5°- Fator de Projeto (Ábaco III):

F=100

EX35: Projetando um sistema para operar com fase diluída. Admita um sistema com os seguintes parâmetros: L= 200 ft de tubo reto; 2 cotovelos 90 graus; Densidade bulk: 60 lb/ft3 (960 kg/m3) e C=25.000 lb/h (cerca de 11.340 kg/h).

Perda de Carga Ábaco IV

 $L_{t}=76,2 \text{ m}$

Do Ábaco IV: dP=0,9 kg/cm² dP=12,8psi

Se dP>12 psi para sistemas de pressão (diluida ou densa) ou 5 psi para sistemas de vácuo, reinicie os cálculos com outro valor de diâmetro.

Do Ábaco V: P= 55 BHP

EX36: Projetar linha de TP para transportar 50 t/h de um minério a 50 m de distância. Densidade bulk 1,39t/m³ e Dp=2mm

1º- Calcular a velocidade

$$V = 4.11\sqrt[3]{\rho}\sqrt{D_p} + 23.4\sqrt{\rho} = 34.1 \text{ m/s}$$

2º- Chutar D : 250 mm

3º- Calcular o comprimento equivalente total

Nos cotovelos de 90°:

	Curvas		
D (mm)	L_e = comprimento equivalente (m)		
	R = 2D	R = 3D	
50	1,4	1,4	
100	2,6	2,6	
125	3,6	3,0	
150	4,4	3,6	
175	5,4	4,4	
200	6,2	5,0	
250	8,6	6,6	
• 300	10,4	8,6	
400	14,0	12,0	

$$L_t = 50m + 2 (8.6 m) = 67.2m$$

4º- Encontar a vazão volumétrica de ar (Ábaco I):

Do Ábaco I: Q=2,1 m³/s

EX36: Projetar linha de TP para transportar 50 t/h de um minério a 50 m de distância. Densidade bulk 1,39t/m³ e Dp=2mm

Perda de Carga Ábaco IV

 L_{t} =67,2 m

Do Ábaco IV: dP=0,28 kg/cm²

Do Ábaco V: P= 110 BHP

