Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Import Data

In [5]: df = pd.read_csv("C:/Lekshmi/DATA ANALYSIS PROJECTS/Blinkit - Python Project/t

View the first and last 10 items

In [88]: df.head(10)

Out[88]:

	Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Type	Visik
0	Regular	FDX32	Fruits and Vegetables	2012	OUT049	Tier 1	Medium	Supermarket Type1	0.100
1	Low Fat	NCB42	Health and Hygiene	2022	OUT018	Tier 3	Medium	Supermarket Type2	300.0
2	Regular	FDR28	Frozen Foods	2010	OUT046	Tier 1	Small	Supermarket Type1	0.025
3	Regular	FDL50	Canned	2000	OUT013	Tier 3	High	Supermarket Type1	0.042
4	Low Fat	DRI25	Soft Drinks	2015	OUT045	Tier 2	Small	Supermarket Type1	0.033
5	Low Fat	FDS52	Frozen Foods	2020	OUT017	Tier 2	Small	Supermarket Type1	0.005
6	Low Fat	NCU05	Health and Hygiene	2011	OUT010	Tier 3	Small	Grocery Store	0.098
7	Low Fat	NCD30	Household	2015	OUT045	Tier 2	Small	Supermarket Type1	0.026
8	Low Fat	FDW20	Fruits and Vegetables	2000	OUT013	Tier 3	High	Supermarket Type1	0.024
9	Low Fat	FDX25	Canned	1998	OUT027	Tier 3	Medium	Supermarket Type3	0.101
4									

In [89]: df.tail(10)

Out[89]:

	Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Type	v
8513	Regular	DRY23	Soft Drinks	1998	OUT027	Tier 3	Medium	Supermarket Type3	0
8514	Low Fat	FDA11	Baking Goods	1998	OUT027	Tier 3	Medium	Supermarket Type3	0
8515	Low Fat	FDK38	Canned	1998	OUT027	Tier 3	Medium	Supermarket Type3	0
8516	Low Fat	FDO38	Canned	1998	OUT027	Tier 3	Medium	Supermarket Type3	0
8517	Low Fat	FDG32	Fruits and Vegetables	1998	OUT027	Tier 3	Medium	Supermarket Type3	0
8518	Low Fat	NCT53	Health and Hygiene	1998	OUT027	Tier 3	Medium	Supermarket Type3	0
8519	Low Fat	FDN09	Snack Foods	1998	OUT027	Tier 3	Medium	Supermarket Type3	0
8520	Low Fat	DRE13	Soft Drinks	1998	OUT027	Tier 3	Medium	Supermarket Type3	0
8521	Regular	FDT50	Dairy	1998	OUT027	Tier 3	Medium	Supermarket Type3	0
8522	Regular	FDM58	Snack Foods	1998	OUT027	Tier 3	Medium	Supermarket Type3	0
1 (_	_	_		_				

In [84]: df.dtypes

Out[84]: Item Fat Content object Item Identifier object Item Type object Outlet Establishment Year int64 Outlet Identifier object Outlet Location Type object Outlet Size object Outlet Type object Item Visibility float64 float64 Item Weight float64 Sales Rating float64 dtype: object

No of rows and Columns

```
In [86]: df.shape
Out[86]: (8523, 12)
In [87]: print('size of data is ',df.shape)
         size of data is (8523, 12)
         Headers
In [11]: df.columns
Out[11]: Index(['Item Fat Content', 'Item Identifier', 'Item Type',
                 'Outlet Establishment Year', 'Outlet Identifier',
                 'Outlet Location Type', 'Outlet Size', 'Outlet Type', 'Item Visibilit
         у',
                 'Item Weight', 'Sales', 'Rating'],
               dtype='object')
         Data Cleaning
In [12]: | print(df['Item Fat Content'].unique())
         ['Regular' 'Low Fat' 'low fat' 'LF' 'reg']
         Normalizing - Converting to Standard Value
In [13]: df['Item Fat Content']=df['Item Fat Content'].replace({'LF':'Low Fat','low fat'
In [14]: | print(df['Item Fat Content'].unique())
```

KPI Requirement

['Regular' 'Low Fat']

```
In [15]: total_sales=df['Sales'].sum()
    avg_sales=df['Sales'].mean()
    no_of_items_sold=df['Sales'].count()
    avg_ratings=df['Rating'].mean()

In [16]: print(f'Total Sales: ${total_sales: ,.1f}')
    print(f'Average Sales: ${avg_sales: ,.0f}')
    print(f'Total no of items sold: {no_of_items_sold: ,.0f}')
    print(f'Average Ratings: {avg_ratings: ,.1f}')
```

Total Sales: \$ 1,201,681.5 Average Sales: \$ 141 Total no of items sold: 8,523 Average Ratings: 4.0

Chart Requirements

Total Sales By Fat Content

```
In [17]: sales_by_fat_content=df.groupby('Item Fat Content')['Sales'].sum()
    plt.pie(sales_by_fat_content,labels=sales_by_fat_content.index,autopct='%.0f%
    plt.title('Sales By Fat Content')
    plt.axis('equal')
    plt.show()
```


Total Sales By Item Type

```
sales_by_type=df.groupby('Item Type')['Sales'].sum().sort_values(ascending=Fal
In [18]:
         plt.figure(figsize=(10,6))
         bars=plt.bar(sales_by_type.index,sales_by_type.values)
         plt.xticks(rotation=90)
         plt.xlabel('Item Type')
         plt.ylabel('Total Sales')
         plt.title('Total Sales By Item Type')
         for bar in bars:
                 x=bar.get_x()+bar.get_width()/2
                 y=bar.get_height()
                 plt.text(
                 Χ,
                 у,
                 f'{y:,.0f}',
                 ha='center',
                 va='bottom',
                 fontsize=8)
         plt.tight_layout()
         plt.show()
```


Fat Content By Outlet Type For Total Sales

Total Sales By Outlet Establishment Year

```
In [42]: sales_by_year=df.groupby('Outlet Establishment Year')['Sales'].sum().sort_index
    plt.figure(figsize=(9,5))
    plt.plot(sales_by_year.index,sales_by_year.values,marker='o',linestyle='-')
    plt.xlabel('Outlet Establishment Year')
    plt.ylabel('Total Sales')
    plt.title('Total Sales By Out Establishment')

for x,y in zip(sales_by_year.index,sales_by_year.values):
        plt.text(x,y,f'{y:,.0f}',ha='center',va='bottom',fontsize=8)

plt.tight_layout()
    plt.show()
```


Sales By Outlet Size

```
In [64]: sales_by_outlet_size=df.groupby('Outlet Size')['Sales'].sum()
    plt.figure(figsize=(4,4))
    plt.pie(sales_by_outlet_size,labels=sales_by_outlet_size.index,autopct='%.0f%
    plt.title('Sales By Outlet Size')
    plt.tight_layout()
    plt.show()
```

Sales By Outlet Size

Sales By Outlet Location

```
In [83]: sales_by_outlet_location=df.groupby('Outlet Location Type')['Sales'].sum()
    sales_by_outlet_location=sales_by_outlet_location.sort_values(ascending=False)
    plt.figure(figsize=(10,3))
    ax=sns.barplot(x='Sales',y='Outlet Location Type',data=sales_by_outlet_location
    plt.title('Sales By Outlet Location Type')
    plt.xlabel('Total Sales')
    plt.ylabel('Outlet Location Type')
    plt.tight_layout()
    plt.show()
```

