Stat C131A: Statistical Methods for Data Science

Lecture 12: Confidence Intervals

Oct 7 2025

Today

→ Wrap up hypothesis testing with completing Confidence Intervals

Confidence Interval

- ♦ We know that most of the time, the standardized statistic lies between -t* and +t*
- → P($-t^* \le (\bar{X} \mu)/(s/\sqrt{n}) \le t^*$) = 0.95
- → Here:
 - ★ t* = critical value from t distribution,
 - \rightarrow Depends on confidence level (e.g., 95%) and df = n 1.

Confidence Interval

$$-t \le \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} \le t$$

$$-t \cdot \frac{s}{\sqrt{n}} \le \overline{X} - \mu \le t \cdot \frac{s}{\sqrt{n}}$$

$$\overline{X} - t \cdot \frac{s}{\sqrt{n}} \le \mu \le \overline{X} + t \cdot \frac{s}{\sqrt{n}}$$

CI for the difference in the means (of 2 groups)

- Central question: Are two groups truly different on average, or could the observed difference be random noise?
- ◆ Examples:
 - ◆ Airline A vs Airline B average delay times
 - Fitness app A vs Fitness app B effectiveness (increase in steps walked)
 - **+** ...
- Confidence intervals quantify the uncertainty around (μ1 − μ2)

Why This Matters

- ♦ We often compare two populations: schools, drugs, airlines, treatments.
- ♦ Observed difference in sample means may not equal true difference.
- CI provides a plausible range for the difference in means.
- Not just: 'is there a difference?' but 'how large might it be?'

Hypotheses Context

- Hypotheses
 - \rightarrow Null hypothesis (H₀): $\mu 1 = \mu 2$ (no difference)
 - ♦ Alternative hypothesis (H_1): $\mu 1 \neq \mu 2$ (difference exists)
- ◆ CI provides more than yes/no decision, it shows the magnitude
- ♦ If 0 is inside CI → no evidence of difference.

Mathematically

$$\bar{X} - \bar{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

$$P((\bar{X} - \bar{Y}) - 1.96\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le \mu_1 - \mu_2 \le (\bar{X} - \bar{Y}) + 1.96\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}) = 0.95$$

$$\bar{X} - \bar{Y} \pm 1.96 \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Variance

$$T = \frac{|\bar{X} - \bar{Y}|}{\sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}}}.$$

$$P((\bar{X} - \bar{Y}) - t_{0.975} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le \mu_1 - \mu_2 \le (\bar{X} - \bar{Y}) - t_{0.025} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}) = 0.95$$

General Formula

- ightharpoonup CI formula: $(\bar{x}1 \bar{x}2) \pm t^* \times SE(\bar{x}1 \bar{x}2)$
 - \star $\bar{x}1$ and $\bar{x}2$ are sample means.
 - ★ t* is the critical value from t distribution
- \bullet SE, the Standard Error, is the 'typical random wobble' in $(\bar{x}1 \bar{x}2)$

Degrees of Freedom

- \rightarrow For pooled test: df = n1 + n2 2.
- → For Welch's test: df ≈ complex adjustment formula.
- → df controls cutoff t* and thus width of CI.

Worked Example: Airlines

- → Airline A mean delay = 22 min (n1 = 30)
- → Airline B mean delay = 14 min (n2 = 28)
- ♦ Observed difference = 8 min
- ightharpoonup Compute SE and CI \rightarrow example CI = (5, 11)

Interpretation of Example

- ◆ 95% CI (5, 11) means true difference plausibly lies between 5.08—11.92 minutes
- Since 0 not included → significant difference
- CI tells **both** significance and effect size

Key Takeaways (Two Means)

- → Cl gives a range, not just reject/not reject
- lacktriangle If CI includes 0 \rightarrow no strong evidence of difference.
- Width of CI reflects uncertainty
 - larger n → narrower Cl
- Always check assumptions before using formula

BOOTSRAPPING CONFIDENCE INTERVALS

3.8 Bootstrap Confidence Intervals

- Motivation:
 - What if we were interested in comparing medians?
 - Why should we compare medians?
 - ♦ What about proportions across 2 groups
 - ♦ What is that statistic ?
- ♦ Now, formula-based CI relies on strong assumptions
 - → normality, equal variances, ...
- → Real data may be skewed, heavy-tailed, or small n.

Bootstrap

- ◆ Bootstrap:
 - resampling method
 - "assumption-light"
- Uses the observed sample to approximate the population

Bootstrapping: the practical need

- Hypothesis testing requires knowing the sampling distribution of the test statistic to construct confidence intervals or compute p-values
- For means, the Central Limit Theorem (CLT) guarantees approximate normality of the difference in means, even for non-normal data
- The CLT's robustness is unique to the mean, it does not apply directly to medians or most other statistics
- Testing medians, proportions, or other summaries requires distinct mathematical theory to derive their null distributions
- Proportions can be treated as means of binary data, allowing modified t-type parametric tests.
- Using statistics beyond the mean typically demands stronger distributional assumptions and may lack known theory.
- Bootstrap methods offer a practical alternative: estimate the statistic's distribution empirically via resampling, bypassing analytical derivations.
- Thus, bootstrapping generalizes inference to settings where theoretical distributions are unknown or intractable

Core Idea of Bootstrapping

- ◆ Treat your sample as a stand-in for the population
- Draw many bootstrap samples with replacement
- Each bootstrap sample has same size as original
- Compute statistic of interest for each resample.

Step-by-Step Bootstrap Procedure

- ◆ 1. Start with observed dataset.
- ♦ 2. Resample with replacement, size = n.
- \rightarrow 3. Compute statistic (e.g., $\bar{x}1 \bar{x}2$).
- ◆ 4. Repeat thousands of times (1000–10,000).
- ♦ 5. Use bootstrap distribution to form CI.

. . .

Types of Bootstrap Cls

- Percentile method: middle 95% of bootstrap statistics.
- ◆ SE method: estimate bootstrap SE, use ± z* cutoff.
- → Bias-Corrected and Accelerated (BCa): adjusts for skew and bias.

$$\bullet 0.95 = P(\hat{\delta} - w_1 \le \delta \le \hat{\delta} + w_2)$$

$$(V_1 = \hat{\delta} - w_1, V_2 = \hat{\delta} + w_2)$$

$$P(\delta - w_2 \le \hat{\delta} \le \delta + w_1)$$

Bootstrap: difference of means

Mathematically

$$P(|\hat{\delta} - \delta| > 1) \approx P(|\hat{\delta}^* - \hat{\delta}| > 1)$$

$$\bullet 0.95 = P(\hat{\delta} - W_2^* \le \hat{\delta}^* \le \hat{\delta} + W_1^*)$$

$$\bullet \quad 0.95 \approx P(\delta - W_2^* \le \hat{\delta} \le \delta + W_1^*) = P(\hat{\delta} - W_1^* \le \delta \le \hat{\delta} + W_2^*)$$

$$\bullet \ (\mathring{\delta} - W_1^*, \mathring{\delta} + W_2^*)$$

Bootstrap Example: Airlines

- Resample Airline A delays 1000 times, Airline B delays 1000 times.
- \bullet Each time compute mean difference ($\bar{x}1 \bar{x}2$).
- Form distribution of bootstrap differences.
- → 95% CI = central 95% of bootstrap distribution.

Comparing Bootstrap-based CI with Formula-based CI

- → Formula CI: fast, assumption-heavy.
- → Bootstrap CI: slower, assumption-light, more flexible.
- Large n, normal data → similar results.
- ◆ Small n or skewed data → bootstrap more reliable.

Why Bootstrap Works

- Bootstrap mimics repeated sampling.
- → Empirical distribution approximates true sampling distribution.
- Assumes observed sample is representative.
- Leverages the data you already have to quantify uncertainty.

Key Takeaways (Bootstrap)

- CI for two means estimates how different groups are.
- → Bootstrap extends CI to messy/non-normal data.
- Both approaches quantify uncertainty.
- ◆ Always report both estimate and CI → communicates effect size + precision.

Specific Statistics, and Distributions (or lack thereof)

Statistic	Known Distribution	Туре	Method of Derivation
Mean	Normal (exact/asymptotic)	CLT	Analytical
Difference of means	t / Normal	CLT + estimated variance	Analytical
Variance	χ^2	Exact under Normality	Analytical
Ratio of variances	F	Derived from χ^2	Analytical
Proportion	Binomial / Normal	CLT	Analytical
Correlation	t / Normal (Fisher z)	Transform theory	Analytical
Rank-based tests	Normal (large n)	Asymptotic	Approximate
Median / Percentiles	No simple form	Depends on F	Requires bootstrap

Bootstrapping: Perspective

- ◆Bootstrapping estimates a statistic's sampling distribution by resampling with replacement, it works numerically for any statistic, linear or not.
- ◆ A closed-form (mathematical) solution for variance or confidence intervals exists only when the statistic is a smooth / differentiable functional of the population distribution.
- ★Linear or differentiable statistics (for example, the mean or regression coefficients):
 - The statistic changes smoothly with small perturbations in the data.
- ◆ Non-smooth statistics (for example, the median or quantiles):
 - Bootstrap works only if the density at that point is positive and continuous
 - +f(m) > 0
 - ightharpoonup If f(m) = 0 or the distribution is discrete or flat, the bootstrap becomes inconsistent.
- → Highly non-smooth or non-local functionals (for example, the mode):
 - The mapping F → mode(F) is discontinuous.
 - The ordinary bootstrap fails and requires smoothed or specialized variants.
- → Bootstrapping is always computable, but only smooth, differentiable statistics have a valid mathematical limit law