ElGamal cryptography

ElGamal Cryptography

- ElGamal encryption is a public-key cryptosystem.
 - It uses asymmetric key encryption for communicating between two parties and encrypting the message.
- Public-key cryptosystem related to D-H
- uses exponentiation in a finite field
- with security based difficulty of computing discrete logarithms, as in D-H

ElGamal Digital Signature

Global elements q and a (a is primitive root of q)

A generates Private/Public Key:

- each user generates their key
 - chooses a secret key (Private): 1< x_A < q−1</p>
 - o computes their public key: $y_A = a^{x_A} \mod q$

ElGamal Message Exchange

- Bob encrypts a message to send to A computing
 - message M in range 0 <= M <= q-1</p>
 - o longer messages must be sent as blocks
 - chose random integer k, 1 <= k <= q-1</p>
 - o compute one-time key $K = y_A^k \mod q$
 - encrypt \mathbf{M} as a pair of integers $(\mathbf{C_1}, \mathbf{C_2})$ where
 - $C_1 = a^k \mod q$ // like D-H public key
 - \circ $C_2 = KM \mod q$ // encrypted msg

ElGamal Message Exchange

- encrypt M as a pair of integers (C₁, C₂) where
 C₁ = a^k mod q ; C₂ = KM mod q
- A then recovers message by
 - o recovering key K as $K = C_1^{xA} \mod q$ [computing M as $M = C_2 K^{-1} \mod q$] or
 - ∘ To Recover $M = C2(C1)^{q-1-xA} \mod q$
- a unique **k** must be used each time
 - otherwise result is insecure

ElGamal Example

- use field GF(19) q=19 and a=10
- Alice computes her key: a xa mod q
 - $_{\circ}$ A chooses $x_A=5$ & computes $y_A=10^5 \mod 19=3$

- Bob send message m=17 as (11,5) by
 - choosing random k=6
 - \circ computing $K = y_A^k \mod q = 3^6 \mod 19 = 7$
 - o computing $C_1 = a^k \mod q = 10^6 \mod 19 = 11$;
 - $_{\circ}$ $C_{2} = KM \mod q = 7*17 \mod 19 = 5$

ElGamal Example ...

Alice recovers original message by computing:

```
orecover M = C2(C1)^{q-1-xA} \mod q

= 5(11)^{19-1-5} \mod 19

= 5 * (11)^{13} \mod 19

= 17
```

Message retrieved = 17