Série Nº 1

Exercice 1

Déterminer la charge Q d'un disque de rayon R, chargé avec une densité surfacique uniforme σ , en utilisant l'élément de surface ds.

Exercice 2

Une sphère de rayon R est chargée avec une densité volumique homogène ρ tel que

$$\begin{cases} \rho(r) = \rho_0 \left(1 - \frac{r^2}{R^2} \right) & \text{si } r < R \\ \rho(r) = 0 & \text{si } r > R \end{cases}$$

r et ρ_0 désignent respectivement la distance du point considéré au centre O de la sphère et la densité de charge en O.

Déterminer la charge électrique totale de la sphère.

Exercice 3

Trois corps ponctuels portant la même quantité d'électricité q=+10 μ C sont placés aux sommets A, B et C d'un triangle équilatéral de côté a=10 cm. On donne $\varepsilon_0 = 8,85.10^{-12}$ SI.

- 1°- Donner l'expression littérale de la force d'interaction électrique entre deux charges. Calculer la valeur de cette force.
- 2°- Déterminer la force $\vec{F}(C)$ qui résulte de l'action des charges q_A et q_B sur la charge q_C .

Exercice 4

Un disque de rayon R et de centre O est uniformément chargé avec une densité positive σ . Un point M situé sur son axe est repéré par la distance OM=z.

Déterminer la force électrique $\vec{F}(M)$ exercée par le disque sur une charge q positive placée en ce point.

Exercice 5

Dans un repère orthonormé (OXY), on place à chacun des points A(-d,0) et B(d,0) une charge ponctuelle (q>0).

Déterminer le champ électrique $\vec{E}(M)$ créé au point M(0,y).

Exercice 6

Soit une circonférence chargée positivement avec une densité linéaire et homogène λ , de rayon R et de centre O.

- 1°- Déterminer le champ électrostatique $\vec{E}(M)$ créé par cette distribution en un point M sur son axe de révolution, à la distance z de O?
- 2° Déterminer la position M pour que ce champ électrique soit à sa valeur maximale.