Open and other kinds of extensions over zero-dimensional local compactifications

Georgi Dimov*

Dept. of Math. and Informatics, Sofia University, Blvd. J. Bourchier 5, 1164 Sofia, Bulgaria

Abstract

Generalizing a theorem of Ph. Dwinger [7], we describe the partially ordered set of all (up to equivalence) zero-dimensional locally compact Hausdorff extensions of a zero-dimensional Hausdorff space. Using this description, we find the necessary and sufficient conditions which has to satisfy a map between two zero-dimensional Hausdorff spaces in order to have some kind of extension over arbitrary given in advance Hausdorff zero-dimensional local compactifications of these spaces; we regard the following kinds of extensions: continuous, open, quasi-open, skeletal, perfect, injective, surjective. In this way we generalize some classical results of B. Banaschewski [1] about the maximal zero-dimensional Hausdorff compactification. Extending a recent theorem of G. Bezhanishvili [2], we describe the local proximities corresponding to the zero-dimensional Hausdorff local compactifications.

MSC: primary 54C20, 54D35; secondary 54C10, 54D45, 54E05.

Keywords: Locally compact (compact) Hausdorff zero-dimensional extensions; Banaschewski compactification; Zero-dimensional local proximities; Local Boolean algebra; Admissible ZLB-algebra; (Quasi-)Open extensions; Perfect extensions; Skeletal extensions.

Introduction

In [1], B. Banaschewski proved that every zero-dimensional Hausdorff space X has a zero-dimensional Hausdorff compactification $\beta_0 X$ with the following remarkable property: every continuous map $f: X \longrightarrow Y$, where Y is a zero-dimensional Hausdorff compact space, can be extended to a continuous map $\beta_0 f: \beta_0 X \longrightarrow Y$; in

^{*}This paper was supported by the project no. 005/2009 "General and Categorical Topology" of the Sofia University "St. Kl. Ohridski".

¹E-mail address: gdimov@fmi.uni-sofia.bg

particular, $\beta_0 X$ is the maximal zero-dimensional Hausdorff compactification of X. As far as I know, there are no descriptions of the maps f for which the extension $\beta_0 f$ is open or quasi-open. In this paper we solve the following more general problem: let $f: X \longrightarrow Y$ be a map between two zero-dimensional Hausdorff spaces and $(lX, l_X), (lY, l_Y)$ be Hausdorff zero-dimensional locally compact extensions of X and Y, respectively; find the necessary and sufficient conditions which has to satisfy the map f in order to have an "extension" $g: lX \longrightarrow lY$ (i.e. $g \circ l_X = l_Y \circ f$) which is a map with some special properties (we regard the following properties: continuous, open, perfect, quasi-open, skeletal, injective, surjective). In [10], S. Leader solved such a problem for continuous extensions over Hausdorff local compactifications (= locally compact extensions) using the language of local proximities (the later, as he showed, are in a bijective correspondence (preserving the order) with the Hausdorff local compactifications regarded up to equivalence). Hence, if one can describe the local proximities which correspond to zero-dimensional Hausdorff local compactifications then the above problem will be solved for continuous extensions. Recently, G. Bezhanishvili [2], solving an old problem of L. Esakia, described the Efremovič proximities which correspond (in the sense of the famous Smirnov Compactification Theorem [16]) to the zero-dimensional Hausdorff compactifications (and called them zero-dimensional Efremovič proximities). We extend here his result to the Leader's local proximities, i.e. we describe the local proximities which correspond to the Hausdorff zero-dimensional local compactifications and call them zero-dimensional local proximities (see Theorem 3.2). We do not use, however, these zero-dimensional local proximities for solving our problem. We introduce a simpler notion (namely, the admissibe ZLB-algebra) for doing this. Ph. Dwinger [7] proved, using Stone Duality Theorem [17], that the ordered set of all, up to equivalence, zero-dimensional Hausdorff compactifications of a zero-dimensional Hausdorff space is isomorphic to the ordered by inclusion set of all Boolean bases of X (i.e. of those bases of X which are Boolean subalgebras of the Boolean algebra CO(X) of all clopen (= closed and open) subsets of X). This description is much simpler than that by Efremovič proximities. It was rediscovered by K. D. Magill Jr. and J. A. Glasenapp [11] and applied very successfully to the study of the poset of all, up to equivalence, zero-dimensional Hausdorff compactifications of a zero-dimensional Hausdorff space. We extend the cited above Dwinger Theorem [7] to the zero-dimensional Hausdorff local compactifications (see Theorem 2.3 below) with the help of our generalization of the Stone Duality Theorem proved in [5] and the notion of "admissible ZLB-algebra" which we introduce here. We obtain the solution of the problem formulated above in the language of the admissible ZLB-algebras (see Theorem 4.8). As a corollary, we characterize the maps $f: X \longrightarrow Y$ between two Hausdorff zero-dimensional spaces X and Y for which the extension $\beta_0 f: \beta_0 X \longrightarrow \beta_0 Y$ is open or quasi-open (see Corollary 4.9). Of course, one can pass from admissible ZLB-algebras to zero-dimensional local proximities and conversely (see Theorem 3.4 below; it generalizes an analogous result about the connection between Boolean bases and zero-dimensional Efremovič proximities obtained in [2]).

We now fix the notations.

If \mathcal{C} denotes a category, we write $X \in |\mathcal{C}|$ if X is an object of \mathcal{C} , and $f \in \mathcal{C}(X,Y)$ if f is a morphism of \mathcal{C} with domain X and codomain Y. By $Id_{\mathcal{C}}$ we denote the identity functor on the category \mathcal{C} .

All lattices are with top (= unit) and bottom (= zero) elements, denoted respectively by 1 and 0. We do not require the elements 0 and 1 to be distinct. Since we follow Johnstone's terminology from [9], we will use the term pseudolattice for a poset having all finite non-empty meets and joins; the pseudolattices with a bottom will be called $\{0\}$ -pseudolattices. If B is a Boolean algebra then we denote by Ult(B) the set of all ultrafilters in B.

If X is a set then we denote the power set of X by P(X); the identity function on X is denoted by id_X .

If (X, τ) is a topological space and M is a subset of X, we denote by $\operatorname{cl}_{(X,\tau)}(M)$ (or simply by $\operatorname{cl}(M)$ or $\operatorname{cl}_X(M)$) the closure of M in (X,τ) and by $\operatorname{int}_{(X,\tau)}(M)$ (or briefly by $\operatorname{int}(M)$ or $\operatorname{int}_X(M)$) the interior of M in (X,τ) .

The closed maps and the open maps between topological spaces are assumed to be continuous but are not assumed to be onto. Recall that a map is *perfect* if it is closed and compact (i.e. point inverses are compact sets).

For all notions and notations not defined here see [7, 8, 9, 14].

1 Preliminaries

We will need some of our results from [5] concerning the extension of the Stone Duality Theorem to the category **ZLC** of all locally compact zero-dimensional Hausdorff spaces and all continuous maps between them.

Recall that if (A, \leq) is a poset and $B \subseteq A$ then B is said to be a dense subset of A if for any $a \in A \setminus \{0\}$ there exists $b \in B \setminus \{0\}$ such that $b \leq a$.

Definition 1.1 ([5]) A pair (A, I), where A is a Boolean algebra and I is an ideal of A (possibly non proper) which is dense in A, is called a *local Boolean algebra* (abbreviated as LBA). Two LBAs (A, I) and (B, J) are said to be LBA-isomorphic (or, simply, isomorphic) if there exists a Boolean isomorphism $\varphi : A \longrightarrow B$ such that $\varphi(I) = J$.

Let A be a distributive $\{0\}$ -pseudolattice and Idl(A) be the frame of all ideals of A. If $J \in Idl(A)$ then we will write $\neg_A J$ (or simply $\neg J$) for the pseudocomplement of J in Idl(A) (i.e. $\neg J = \bigvee \{I \in Idl(A) \mid I \land J = \{0\}\}$). Recall that an ideal J of A is called simple (Stone [17]) if $J \lor \neg J = A$ (i.e. J has a complement in Idl(A)). As it is proved in [17], the set Si(A) of all simple ideals of A is a Boolean algebra with respect to the lattice operations in Idl(A).

Definition 1.2 ([5]) An LBA (B, I) is called a ZLB-algebra (briefly, ZLBA) if, for every $J \in Si(I)$, the join $\bigvee_B J(= \bigvee_B \{a \mid a \in J\})$ exists.

Let **ZLBA** be the category whose objects are all ZLBAs and whose morphisms are all functions $\varphi:(B,I)\longrightarrow(B_1,I_1)$ between the objects of **ZLBA** such that $\varphi:B\longrightarrow B_1$ is a Boolean homomorphism satisfying the following condition: (ZLBA) For every $b\in I_1$ there exists $a\in I$ such that $b\leq \varphi(a)$; let the composition between the morphisms of **ZLBA** be the usual composition

Example 1.3 ([5]) Let B be a Boolean algebra. Then the pair (B, B) is a ZLBA.

Notations 1.4 Let X be a topological space. We will denote by CO(X) the set of all clopen (= closed and open) subsets of X, and by CK(X) the set of all clopen compact subsets of X. For every $x \in X$, we set $u_x^{CO(X)} = \{F \in CO(X) \mid x \in F\}$. When there is no ambiguity, we will write " u_x^C " instead of " $u_x^{CO(X)}$ ".

The next assertion follows from the results obtained in [15, 5].

between functions, and the **ZLBA**-identities be the identity functions.

Proposition 1.5 Let (A, I) be a ZLBA. Set $X = \{u \in Ult(A) \mid u \cap I \neq \emptyset\}$. Set, for every $a \in A$, $\lambda_A^C(a) = \{u \in X \mid a \in u\}$. Let τ be the topology on X having as an open base the family $\{\lambda_A^C(a) \mid a \in I\}$. Then (X, τ) is a zero-dimensional locally compact Hausdorff space, $\lambda_A^C(A) = CO(X)$, $\lambda_A^C(I) = CK(X)$ and $\lambda_A^C(A) = CO(X)$ is a Boolean isomorphism; hence, $\lambda_A^C(A, I) = (X, T)$.

Theorem 1.6 ([5]) The category ZLC is dually equivalent to the category ZLBA. In more details, let Θ^a : ZLBA \longrightarrow ZLC and Θ^t : ZLC \longrightarrow ZLBA be two contravariant functors defined as follows: for every $X \in |\text{ZLC}|$, we set $\Theta^t(X) = (CO(X), CK(X))$, and for every $f \in \text{ZLC}(X,Y)$, $\Theta^t(f) : \Theta^t(Y) \longrightarrow \Theta^t(X)$ is defined by the formula $\Theta^t(f)(G) = f^{-1}(G)$, where $G \in CO(Y)$; for the definition of $\Theta^a(B,I)$, where (B,I) is a ZLBA, see 1.5; for every $\varphi \in \text{ZLBA}((B,I),(B_1,J))$, $\Theta^a(\varphi) : \Theta^a(B_1,J) \longrightarrow \Theta^a(B,I)$ is given by the formula $\Theta^a(\varphi)(u') = \varphi^{-1}(u')$, $\forall u' \in \Theta^a(B_1,J)$; then $t^C : Id_{\text{ZLC}} \longrightarrow \Theta^a \circ \Theta^t$, where $t^C(X) = t_X^C$, $\forall X \in |\text{ZLC}|$ and $t_X^C(X) = u_X^C$, for every $X \in X$, is a natural isomorphism (hence, in particular, $t_X^C : X \longrightarrow \Theta^a(\Theta^t(X))$ is a homeomorphism for every $X \in |\text{ZLC}|$; also, $\lambda^C : Id_{\text{ZLBA}} \longrightarrow \Theta^t \circ \Theta^a$, where $\lambda^C(B,I) = \lambda_B^C$, $\forall (B,I) \in |\text{ZLBA}|$, is a natural isomorphism.

Finally, we will recall some definitions and facts from the theory of extensions of topological spaces, as well as the fundamental Leader's Local Compactification Theorem [10].

Let X be a Tychonoff space. We will denote by $\mathcal{L}(X)$ the set of all, up to equivalence, locally compact Hausdorff extensions of X (recall that two (locally compact Hausdorff) extensions (Y_1, f_1) and (Y_2, f_2) of X are said to be *equivalent* iff there exists a homeomorphism $h: Y_1 \longrightarrow Y_2$ such that $h \circ f_1 = f_2$). Let $[(Y_i, f_i)] \in$

 $\mathcal{L}(X)$, where i=1,2. We set $[(Y_1,f_1)] \leq [(Y_2,f_2)]$ if there exists a continuous mapping $h:Y_2 \longrightarrow Y_1$ such that $f_1=h \circ f_2$. Then $(\mathcal{L}(X),\leq)$ is a poset (=partially ordered set).

Let X be a Tychonoff space. We will denote by $\mathcal{K}(X)$ the set of all, up to equivalence, Hausdorff compactifications of X.

- **1.7** Recall that if X is a set and P(X) is the power set of X ordered by the inclusion, then a triple (X, δ, \mathcal{B}) is called a *local proximity space* (see [10]) if \mathcal{B} is an ideal (possibly non proper) of P(X) and δ is a symmetric binary relation on P(X) satisfying the following conditions:
- (P1) $\emptyset(-\delta)A$ for every $A \subseteq X$ (" $-\delta$ " means "not δ ");
- (P2) $A\delta A$ for every $A \neq \emptyset$;
- (P3) $A\delta(B \cup C)$ iff $A\delta B$ or $A\delta C$;
- (BC1) If $A \in \mathcal{B}$, $C \subseteq X$ and $A \ll C$ (where, for $D, E \subseteq X$, $D \ll E$ iff $D(-\delta)(X \setminus E)$) then there exists a $B \in \mathcal{B}$ such that $A \ll B \ll C$;
- (BC2) If $A\delta C$, then there is a $B \in \mathcal{B}$ such that $B \subseteq C$ and $A\delta B$.

A local proximity space (X, δ, \mathcal{B}) is said to be *separated* if δ is the identity relation on singletons. Recall that every separated local proximity space (X, δ, \mathcal{B}) induces a Tychonoff topology $\tau_{(X,\delta,\mathcal{B})}$ in X by defining $\mathrm{cl}(M) = \{x \in X \mid x\delta M\}$ for every $M \subseteq X$ ([10]). If (X,τ) is a topological space then we say that (X,δ,\mathcal{B}) is a *local proximity space on* (X,τ) if $\tau_{(X,\delta,\mathcal{B})} = \tau$.

The set of all separated local proximity spaces on a Tychonoff space (X, τ) will be denoted by $\mathcal{LP}(X, \tau)$. An order in $\mathcal{LP}(X, \tau)$ is defined by $(X, \beta_1, \mathcal{B}_1) \leq (X, \beta_2, \mathcal{B}_2)$ if $\beta_2 \subseteq \beta_1$ and $\mathcal{B}_2 \subseteq \mathcal{B}_1$ (see [10]).

A function $f: X_1 \longrightarrow X_2$ between two local proximity spaces $(X_1, \beta_1, \mathcal{B}_1)$ and $(X_2, \beta_2, \mathcal{B}_2)$ is said to be an *equicontinuous mapping* (see [10]) if the following two conditions are fulfilled:

- (EQ1) $A\beta_1 B$ implies $f(A)\beta_2 f(B)$, for $A, B \subseteq X$, and
- (EQ2) $B \in \mathcal{B}_1$ implies $f(B) \in \mathcal{B}_2$.
- **Theorem 1.8** (S. Leader [10]) Let (X, τ) be a Tychonoff space. Then there exists an isomorphism Λ_X between the ordered sets $(\mathcal{L}(X, \tau), \leq)$ and $(\mathcal{LP}(X, \tau), \leq)$. In more details, for every $(X, \rho, \mathcal{B}) \in \mathcal{LP}(X, \tau)$ there exists a locally compact Hausdorff extension (Y, f) of X satisfying the following two conditions:
- (a) $A \rho B$ iff $\operatorname{cl}_Y(f(A)) \cap \operatorname{cl}_Y(f(B)) \neq \emptyset$;
- (b) $B \in \mathcal{B}$ iff $cl_Y(f(B))$ is compact.

Such a local compactification is unique up to equivalence; we set $(Y, f) = L(X, \rho, \mathcal{B})$ and $(\Lambda_X)^{-1}(X, \rho, \mathcal{B}) = [(Y, f)]$. The space Y is compact iff $X \in \mathcal{B}$. Conversely, if (Y, f) is a locally compact Hausdorff extension of X and ρ and \mathcal{B} are defined by (a) and (b), then (X, ρ, \mathcal{B}) is a separated local proximity space, and we set $\Lambda_X([(Y, f)]) = (X, \rho, \mathcal{B})$.

Let $(X_i, \beta_i, \mathcal{B}_i)$, i = 1, 2, be two separated local proximity spaces and $f : X_1 \longrightarrow X_2$ be a function. Let $(Y_i, f_i) = L(X_i, \beta_i, \mathcal{B}_i)$, where i = 1, 2. Then there exists a continuous map $L(f) : Y_1 \longrightarrow Y_2$ such that $f_2 \circ f = L(f) \circ f_1$ iff f is an equicontinuous map between $(X_1, \beta_1, \mathcal{B}_1)$ and $(X_2, \beta_2, \mathcal{B}_2)$.

Recall that a subset F of a topological space (X,τ) is called regular closed if $F = \operatorname{cl}(\operatorname{int}(F))$. Clearly, F is regular closed iff it is the closure of an open set. For any topological space (X,τ) , the collection $RC(X,\tau)$ (we will often write simply RC(X)) of all regular closed subsets of (X,τ) becomes a complete Boolean algebra $(RC(X,\tau),0,1,\wedge,\vee,^*)$ under the following operations: $1=X,0=\emptyset,F^*=\operatorname{cl}(X\setminus F),F\vee G=F\cup G,F\wedge G=\operatorname{cl}(\operatorname{int}(F\cap G))$. The infinite operations are given by the following formulas: $\bigvee\{F_\gamma\mid\gamma\in\Gamma\}=\operatorname{cl}(\bigcup\{F_\gamma\mid\gamma\in\Gamma\})$ and $\bigwedge\{F_\gamma\mid\gamma\in\Gamma\}=\operatorname{cl}(\operatorname{int}(\bigcap\{F_\gamma\mid\gamma\in\Gamma\}))$. We denote by $CR(X,\tau)$ the family of all compact regular closed subsets of (X,τ) . We will often write CR(X) instead of $CR(X,\tau)$.

We will need a lemma from [3]:

Lemma 1.9 Let X be a dense subspace of a topological space Y. Then the functions $r: RC(Y) \longrightarrow RC(X)$, $F \mapsto F \cap X$, and $e: RC(X) \longrightarrow RC(Y)$, $G \mapsto \operatorname{cl}_Y(G)$, are Boolean isomorphisms between Boolean algebras RC(X) and RC(Y), and $e \circ r = id_{RC(Y)}$, $r \circ e = id_{RC(X)}$.

2 A Generalization of Dwinger Theorem

Definition 2.1 Let X be a zero-dimensional Hausdorff space. Then:

- (a) A ZLBA (A, I) is called *admissible for* X if A is a Boolean subalgebra of the Boolean algebra CO(X) and I is an open base of X.
- (b) The set of all admissible for X ZLBAs is denoted by $\mathcal{ZA}(X)$.
- (c) If $(A_1, I_1), (A_2, I_2) \in \mathcal{ZA}(X)$ then we set $(A_1, I_1) \leq_0 (A_2, I_2)$ if A_1 is a Boolean subalgebra of A_2 and for every $V \in I_2$ there exists $U \in I_1$ such that $V \subseteq U$.

Notation 2.2 The set of all (up to equivalence) zero-dimensional locally compact Hausdorff extensions of a zero-dimensional Hausdorff space X will be denoted by $\mathcal{L}_0(X)$.

Theorem 2.3 Let X be a zero-dimensional Hausdorff space. Then the ordered sets $(\mathcal{L}_0(X), \leq)$ and $(\mathcal{Z}\mathcal{A}(X), \leq_0)$ are isomorphic; moreover, the zero-dimensional compact Hausdorff extensions of X correspond to ZLBAs of the form (A, A).

Proof. Let (Y, f) be a locally compact Hausdorff zero-dimensional extensions of X. Set

(1)
$$A_{(Y,f)} = f^{-1}(CO(Y))$$
 and $I_{(Y,f)} = f^{-1}(CK(Y))$.

Note that $A_{(Y,f)} = \{F \in CO(X) \mid \operatorname{cl}_Y(f(F)) \text{ is open in } Y\}$ and $I_{(Y,f)} = \{F \in A_{(Y,f)} \mid \operatorname{cl}_Y(f(F)) \text{ is compact}\}$. We will show that $(A_{(Y,f)}, I_{(Y,f)}) \in \mathcal{Z}A(X)$. Obviously, the map $r_{(Y,f)}^0 : (CO(Y), CK(Y)) \longrightarrow (A_{(Y,f)}, I_{(Y,f)}), G \mapsto f^{-1}(G)$, is a Boolean isomorphism such that $r_{(Y,f)}^0(CK(Y)) = I_{(Y,f)}$. Hence $(A_{(Y,f)}, I_{(Y,f)})$ is a ZLBA and $r_{(Y,f)}^0$ is an LBA-isomorphism. It is easy to see that $I_{(Y,f)}$ is a base of X (because Y is locally compact). Hence $(A_{(Y,f)}, I_{(Y,f)}) \in \mathcal{Z}A(X)$. It is clear that if (Y_1, f_1) is a locally compact Hausdorff zero-dimensional extensions of X equivalent to the extension (Y, f), then $(A_{(Y,f)}, I_{(Y,f)}) = (A_{(Y_1,f_1)}, I_{(Y_1,f_1)})$. Therefore, a map

(2)
$$\alpha_X^0: \mathcal{L}_0(X) \longrightarrow \mathcal{Z}\mathcal{A}(X), \ [(Y,f)] \mapsto (A_{(Y,f)}, I_{(Y,f)}),$$

is well-defined.

Let $(A, I) \in \mathcal{ZA}(X)$ and $Y = \Theta^a(A, I)$. Then Y is a locally compact Hausdorff zero-dimensional space. For every $x \in X$, set

(3)
$$u_{x,A} = \{ F \in A \mid x \in F \}.$$

Since I is a base of X, we get that $u_{x,A}$ is an ultrafilter in A and $u_{x,A} \cap I \neq \emptyset$, i.e. $u_{x,A} \in Y$. Define

$$(4) f_{(A,I)}: X \longrightarrow Y, \ x \mapsto u_{x,A}.$$

Set, for short, $f = f_{(A,I)}$. Obviously, $\operatorname{cl}_Y(f(X)) = Y$. It is easy to see that f is a homeomorphic embedding. Hence (Y, f) is a locally compact Hausdorff zero-dimensional extension of X. We now set:

(5)
$$\beta_X^0: \mathcal{Z}\mathcal{A}(X) \longrightarrow \mathcal{L}_0(X), \ (A, I) \mapsto [(\Theta^a(A, I), f_{(A, I)})].$$

We will show that $\alpha_X^0 \circ \beta_X^0 = id_{\mathcal{Z}A(X)}$ and $\beta_X^0 \circ \alpha_X^0 = id_{\mathcal{L}_0(X)}$.

Let $[(Y,f)] \in \mathcal{L}_0(X)$. Set, for short, $A = A_{(Y,f)}$, $I = I_{(Y,f)}$, $g = f_{(A,I)}$, $Z = \Theta^a(A,I)$ and $\varphi = r_{(Y,f)}^0$. Then $\beta_X^0(\alpha_X^0([(Y,f)])) = \beta_X(A,I) = [(Z,g)]$. We have to show that [(Y,f)] = [(Z,g)]. Since φ is an LBA-isomorphism, we get that $h = \Theta^a(\varphi) : Z \longrightarrow \Theta^a(\Theta^t(Y))$ is a homeomorphism. Set $Y' = \Theta^a(\Theta^t(Y))$. By Theorem 1.6, the map $t_Y^C : Y \longrightarrow Y'$, $y \mapsto u_y^{CO(Y)}$ is a homeomorphism. Let $h' = (t_Y^C)^{-1} \circ h$. Then $h' : Z \longrightarrow Y$ is a homeomorphism. We will prove that $h' \circ g = f$ and this will imply that [(Y,f)] = [(Z,g)]. Let $x \in X$. Then $h'(g(x)) = h'(u_{x,A}) = (t_Y^C)^{-1}(h(u_{x,A})) = (t_Y)^{-1}(\varphi^{-1}(u_{x,A}))$. We have that $u_{x,A} = \{f^{-1}(F) \mid F \in CO(Y), x \in f^{-1}(F)\} = \{\varphi(F) \mid F \in CO(Y), x \in f^{-1}(F)\}$. Thus $\varphi^{-1}(u_{x,A}) = \{F \in CO(Y) \mid f(x) \in F\} = u_{f(x)}^{CO(Y)}$. Hence $(t_Y)^{-1}(\varphi^{-1}(u_{x,A})) = f(x)$. So, $h' \circ g = f$. Therefore, $\beta_X^0 \circ \alpha_X^0 = id_{\mathcal{L}_0(X)}$.

Let $(A,I) \in \mathcal{ZA}(X)$ and $Y = \Theta^a(A,I)$. Set $f = f_{(A,I)}$, $B = A_{(Y,f)}$ and $J = I_{(Y,f)}$. Then $\alpha_X^0(\beta_X^0(A,I)) = (B,J)$. By Theorem 1.6, we have that $\lambda_A^C : (A,I) \longrightarrow (CO(Y),CK(Y))$ is an LBA-isomorphism. Hence $\lambda_A^C(A) = CO(Y)$ and $\lambda_A^C(I) = CK(Y)$. We will show that $f^{-1}(\lambda_A^C(F)) = F$, for every $F \in A$. Recall that $\lambda_A^C(F) = \{u \in Y \mid F \in u\}$. Now we have that if $F \in A$ then $f^{-1}(\lambda_A^C(F)) = \{x \in A\}$.

 $X \mid f(x) \in \lambda_A^C(F)\} = \{x \in X \mid u_{x,A} \in \lambda_A^C(F)\} = \{x \in X \mid F \in u_{x,A}\} = \{x \in X \mid x \in F\} = F$. Thus

(6)
$$B = f^{-1}(CO(Y)) = A \text{ and } J = f^{-1}(CK(Y)) = I.$$

Therefore, $\alpha_X^0 \circ \beta_X^0 = id_{\mathcal{ZA}(X)}$.

We will now prove that α_X^0 and β_X^0 are monotone maps.

Let $[(Y_i, f_i)] \in \mathcal{L}_0(X)$, where i = 1, 2, and $[(Y_1, f_1)] \leq [(Y_2, f_2)]$. Then there exists a continuous map $g: Y_2 \longrightarrow Y_1$ such that $g \circ f_2 = f_1$. Set $A_i = A_{(Y_i, f_i)}$ and $I_i = I_{(Y_i, f_i)}$, i = 1, 2. Then $\alpha_X^0([(Y_i, f_i)]) = (A_i, I_i)$, where i = 1, 2. We have to show that $A_1 \subseteq A_2$ and for every $V \in I_2$ there exists $U \in I_1$ such that $V \subseteq U$. Let $F \in A_1$. Then $F' = \operatorname{cl}_{Y_1}(f_1(F)) \in CO(Y_1)$ and, hence, $G' = g^{-1}(F') \in CO(Y_2)$. Thus $(f_2)^{-1}(G') \in A_2$. Since $(f_2)^{-1}(G') = (f_2)^{-1}(g^{-1}(F')) = (f_2)^{-1}(g^{-1}(\operatorname{cl}_{Y_1}(f_1(F)))) = (f_1)^{-1}(\operatorname{cl}_{Y_1}(f_1(F))) = F$, we get that $F \in A_2$. Therefore, $A_1 \subseteq A_2$. Further, let $V \in I_2$. Then $V' = \operatorname{cl}_{Y_2}(f_2(V)) \in CK(Y_2)$. Thus g(V') is a compact subset of Y_1 . Hence there exists $U \in I_1$ such that $g(V') \subseteq \operatorname{cl}_{Y_1}(f_1(U))$. Then $V \subseteq (f_2)^{-1}(g^{-1}(g(\operatorname{cl}_{Y_2}(f_2(V))))) = (f_1)^{-1}(g(V')) \subseteq (f_1)^{-1}(\operatorname{cl}_{Y_1}(f_1(U))) = U$. So, $\alpha_X^0([(Y_1, f_1)]) \preceq_0 \alpha_X^0([(Y_2, f_2)])$. Hence, α_X^0 is a monotone function.

Let now $(A_i, I_i) \in \mathcal{ZA}(X)$, where i = 1, 2, and $(A_1, I_1) \preceq_0 (A_2, I_2)$. Set, for short, $Y_i = \Theta^a(A_i, I_i)$ and $f_i = f_{(A_i, I_i)}$, i = 1, 2. Then $\beta_X^0(A_i, I_i) = [(Y_i, f_i)]$, i = 1, 2. We will show that $[(Y_1, f_1)] \leq [(Y_2, f_2)]$. We have that, for i = 1, 2, $f_i : X \longrightarrow Y_i$ is defined by $f_i(x) = u_{x,A_i}$, for every $x \in X$. We also have that $A_1 \subseteq A_2$ and for every $V \in I_2$ there exists $U \in I_1$ such that $V \subseteq U$. Let us regard the function $\varphi : (A_1, I_1) \longrightarrow (A_2, I_2)$, $F \mapsto F$. Obviously, φ is a **ZLBA**-morphism. Then $g = \Theta^a(\varphi) : Y_2 \longrightarrow Y_1$ is a continuous map. We will prove that $g \circ f_2 = f_1$, i.e. that for every $x \in X$, $g(u_{x,A_2}) = u_{x,A_1}$. So, let $x \in X$. We have that $u_{x,A_2} = \{F \in A_2 \mid x \in F\}$ and $g(u_{x,A_2}) = \varphi^{-1}(u_{x,A_2})$. Clearly, $\varphi^{-1}(u_{x,A_2}) = \{F \in A_1 \cap A_2 \mid x \in F\}$. Since $A_1 \subseteq A_2$, we get that $\varphi^{-1}(u_{x,A_2}) = \{F \in A_1 \mid x \in F\} = u_{x,A_1}$. So, $g \circ f_2 = f_1$. Thus $[(Y_1, f_1)] \leq [(Y_2, f_2)]$. Therefore, β_X^0 is also a monotone function. Since $\beta_X^0 = (\alpha_X^0)^{-1}$, we get that α_X^0 (as well as β_X^0) is an isomorphism.

Definition 2.4 Let X be a zero-dimensional Hausdorff space. A Boolean algebra A is called admissible for X (or, a Boolean base of X) if A is a Boolean subalgebra of the Boolean algebra CO(X) and A is an open base of X. The set of all admissible Boolean algebras for X is denoted by $\mathcal{BA}(X)$.

Notation 2.5 The set of all (up to equivalence) zero-dimensional compact Hausdorff extensions of a zero-dimensional Hausdorff space X will be denoted by $\mathcal{K}_0(X)$.

Corollary 2.6 (Ph. Dwinger [7]) Let X be a zero-dimensional Hausdorff space. Then the ordered sets $(\mathfrak{K}_0(X), \leq)$ and $(\mathfrak{BA}(X), \subseteq)$ are isomorphic. *Proof.* Clearly, a Boolean algebra A is admissible for X iff the ZLBA (A, A) is admissible for X. Also, if A_1, A_2 are two admissible for X Boolean algebras then $A_1 \subseteq A_2$ iff $(A_1, A_1) \preceq_0 (A_2, A_2)$. Since the admissible ZLBAs of the form (A, A) and only they correspond to the zero-dimensional compact Hausdorff extensions of X, it becomes obvious that our assertion follows from Theorem 2.3.

3 Zero-dimensional Local Proximities

Definition 3.1 A local proximity (X, δ, \mathcal{B}) is called *zero-dimensional* if for every $A, B \in \mathcal{B}$ with $A \ll B$ there exists $C \subseteq X$ such that $A \subseteq C \subseteq B$ and $C \ll C$.

The set of all separated zero-dimensional local proximity spaces on a Tychonoff space (X, τ) will be denoted by $\mathcal{LP}_0(X, \tau)$. The restriction of the order relation \leq in $\mathcal{LP}(X, \tau)$ (see 1.7) to the set $\mathcal{LP}_0(X, \tau)$ will be denoted again by \leq .

Theorem 3.2 Let (X, τ) be a zero-dimensional Hausdorff space. Then the ordered sets $(\mathcal{L}_0(X), \leq)$ and $(\mathcal{LP}_0(X, \tau), \leq)$ are isomorphic (see 3.1 and 2.3 for the notations).

Proof. Having in mind Leader's Theorem 1.8, we need only to show that if $[(Y, f)] \in \mathcal{L}(X)$ and $\Lambda_X([(Y, f)]) = (X, \delta, \mathcal{B})$ then Y is a zero-dimensional space iff $(X, \delta, \mathcal{B}) \in \mathcal{LP}_0(X)$.

So, let Y be a zero-dimensional space. Then, by Theorem 1.8, $\mathcal{B} = \{B \subseteq X \mid \operatorname{cl}_Y(f(B)) \text{ is compact}\}$, and for every $A, B \subseteq X$, $A\delta B$ iff $\operatorname{cl}_Y(f(A)) \cap \operatorname{cl}_Y(f(B)) \neq \emptyset$. Let $A, B \in \mathcal{B}$ and $A \ll B$. Then $\operatorname{cl}_Y(f(A)) \cap \operatorname{cl}_Y(f(X \setminus B)) = \emptyset$. Since $\operatorname{cl}_Y(f(A))$ is compact and Y is zero-dimensional, there exists $U \in CO(Y)$ such that $\operatorname{cl}_Y(f(A)) \subseteq U \subseteq Y \setminus \operatorname{cl}_Y(f(X \setminus B))$. Set $V = f^{-1}(U)$. Then $A \subseteq V \subseteq \operatorname{int}_X(B)$, $\operatorname{cl}_Y(f(V)) = U$ and $\operatorname{cl}_Y(f(X \setminus V)) = Y \setminus U$. Thus $V \ll V$ and $A \subseteq V \subseteq B$. Therefore, $(X, \delta, \mathcal{B}) \in \mathcal{LP}_0(X)$.

Conversely, let $(X, \delta, \mathcal{B}) \in \mathcal{LP}_0(X)$ and $(Y, f) = L(X, \delta, \mathcal{B})$ (see 1.8 for the notations). We will prove that Y is a zero-dimensional space. We have again, by Theorem 1.8, that the formulas written in the preceding paragraph for \mathcal{B} and δ take place. Let $y \in Y$ and U be an open neighborhood of y. Since Y is locally compact and Hausdorff, there exist $F_1, F_2 \in CR(Y)$ such that $y \in F_1 \subseteq \operatorname{int}_Y(F_2) \subseteq F_2 \subseteq U$. Let $A_i = f^{-1}(F_i)$, i = 1, 2. Then $\operatorname{cl}_Y(f(A_i)) = F_i$, and hence $A_i \in \mathcal{B}$, for i = 1, 2. Also, $A_1 \ll A_2$. Thus there exists $C \in \mathcal{B}$ such that $A_1 \subseteq C \subseteq A_2$ and $C \ll C$. It is easy to see that $F_1 \subseteq \operatorname{cl}_Y(f(C)) \subseteq F_2$ and that $\operatorname{cl}_Y(f(C)) \in CO(Y)$. Therefore, Y is a zero-dimensional space.

By Theorem 1.8, for every Tychonoff space (X, τ) , the local proximities of the form $(X, \delta, P(X))$ on (X, τ) and only they correspond to the Hausdorff compactifications of (X, τ) . The pairs (X, δ) for which the triple $(X, \delta, P(X))$ is a local proximity are called *Efremovič proximities*. Hence, Leader's Theorem 1.8 implies the famous Smirnov Compactification Theorem [16]. The notion of a zero-dimensional

proximity was introduced recently by G. Bezhanishvili [2]. Our notion of a zero-dimensional local proximity is a generalization of it. We will denote by $\mathcal{P}_0(X)$ the set of all zero-dimensional proximities on a zero-dimensional Hausdorff space X. Now it becomes clear that our Theorem 3.2 implies immediately the following theorem of G. Bezhanishvili [2]:

Corollary 3.3 (G. Bezhanishvili [2]) Let (X,τ) be a zero-dimensional Hausdorff space. Then there exists an isomorphism between the ordered sets $(\mathcal{K}_0(X), \leq)$ and $(\mathcal{P}_0(X,\tau), \preceq)$ (see 3.1 and 2.3 for the notations).

The connection between the zero-dimensional local proximities on a zero-dimensional Hausdorff space X and the admissible for X ZLBAs is clarified in the next result:

Theorem 3.4 Let (X, τ) be a zero-dimensional Hausdorff space. Then:

- (a) Let $(A, I) \in \mathcal{ZA}(X, \tau)$. Set $\mathcal{B} = \{M \subseteq X \mid \exists B \in I \text{ such that } M \subseteq B\}$, and for every $M, N \in \mathcal{B}$, let $M\delta N \iff (\forall F \in I)[(M \subseteq F) \to (F \cap N \neq \emptyset)]$; further, for every $K, L \subseteq X$, let $K\delta L \iff [\exists M, N \in \mathcal{B} \text{ such that } M \subseteq K, N \subseteq L \text{ and } M\delta N]$. Then $(X, \delta, \mathcal{B}) \in \mathcal{LP}_0(X, \tau)$. Set $(X, \delta, \mathcal{B}) = L_X(A, I)$.
- (b) Let $(X, \delta, \mathcal{B}) \in \mathcal{LP}_0(X, \tau)$. Set $A = \{F \subseteq X \mid F \ll F\}$ and $I = A \cap \mathcal{B}$. Then $(A, I) \in \mathcal{ZA}(X, \tau)$. Set $(A, I) = l_X(X, \delta, \mathcal{B})$.
- (c) $\beta_X^0 = (\Lambda_X)^{-1} \circ L_X$ and, for every $(X, \delta, \mathcal{B}) \in \mathcal{LP}_0(X, \tau)$, $(\beta_X^0 \circ l_X)(X, \delta, \mathcal{B}) = (\Lambda_X)^{-1}(X, \delta, \mathcal{B})$ (see 1.8, (5), as well as (a) and (b) here for the notations);
- (d) The correspondence $L_X: (\mathcal{ZA}(X,\tau), \preceq_0) \longrightarrow (\mathcal{LP}_0(X,\tau), \preceq)$ is an isomorphism (between posets) and $L_X^{-1} = l_X$.

Proof. It follows from Theorems 2.3, 3.2 and 1.8.

The above assertion is a generalization of the analogous result of G. Bezhanishvili [2] concerning the connection between the zero-dimensional proximities on a zero-dimensional Hausdorff space X and the admissible for X Boolean algebras.

4 Extensions over Zero-dimensional Local Compactifications

Theorem 4.1 Let (X_i, τ_i) , where i = 1, 2, be zero-dimensional Hausdorff spaces, (Y_i, f_i) be a zero-dimensional Hausdorff local compactification of (X_i, τ_i) , $(A_i, I_i) = \alpha_X^0(Y_i, f_i)$ (see (2) and (1) for $\alpha_{X_i}^0$), where i = 1, 2, and $f : X_1 \longrightarrow X_2$ be a function. Then there exists a continuous function $g = L_0(f) : Y_1 \longrightarrow Y_2$ such that $g \circ f_1 = f_2 \circ f$ iff f satisfies the following conditions:

(ZEQ1) For every $G \in A_2$, $f^{-1}(G) \in A_1$ holds;

(ZEQ2) For every $F \in I_1$ there exists $G \in I_2$ such that $f(F) \subseteq G$.

Proof. (\Rightarrow) Let there exists a continuous function $g: Y_1 \longrightarrow Y_2$ such that $g \circ f_1 = f_2 \circ f$. By Lemma 1.9 and (6), we have that the maps

(7)
$$r_i^c: CO(Y_i) \longrightarrow A_i, \ G \mapsto (f_i)^{-1}(G), \ e_i^c: A_i \longrightarrow CO(Y_i), \ F \mapsto \operatorname{cl}_{Y_i}(f_i(F)),$$

where i = 1, 2, are Boolean isomorphisms; moreover, since $r_i^c(CK(Y_i)) = I_i$ and $e_i^c(I_i) = CK(Y_i)$, we get that

(8)
$$r_i^c: (CO(Y_i), CK(Y_i)) \longrightarrow (A_i, I_i) \text{ and } e_i^c: (A_i, I_i) \longrightarrow (CO(Y_i), CK(Y_i)),$$

where i = 1, 2, are LBA-isomorphisms. Set

(9)
$$\psi_q: CO(Y_2) \longrightarrow CO(Y_1), \ G \mapsto g^{-1}(G), \ \text{and} \ \psi_f = r_1^c \circ \psi_q \circ e_2^c$$

Then $\psi_f: A_2 \longrightarrow A_1$. We will prove that

(10)
$$\psi_f(G) = f^{-1}(G), \text{ for every } G \in A_2.$$

Indeed, let $G \in A_2$. Then $\psi_f(G) = (r_1^c \circ \psi_g \circ e_2^c)(G) = (f_1)^{-1}(g^{-1}(\operatorname{cl}_{Y_2}(f_2(G)))) = \{x \in X_1 \mid (g \circ f_1)(x) \in \operatorname{cl}_{Y_2}(f_2(G))\} = \{x \in X_1 \mid f_2(f(x)) \in \operatorname{cl}_{Y_2}(f_2(G))\} = \{x \in X_1 \mid f(x) \in (f_2)^{-1}(\operatorname{cl}_{Y_2}(f_2(G)))\} = \{x \in X_1 \mid f(x) \in G\} = f^{-1}(G).$ This shows that condition (ZEQ1) is fulfilled. Since, by Theorem 1.6, $\psi_g = \Theta^t(g)$, we get that ψ_g is a **ZLBA**-morphism. Thus ψ_f is a **ZLBA**-morphism. Therefore, for every $F \in I_1$ there exists $G \in I_2$ such that $f^{-1}(G) \supseteq F$. Hence, condition (ZEQ2) is also checked. (\Leftarrow) Let f be a function satisfying conditions (ZEQ1) and (ZEQ2). Set $\psi_f : A_2 \longrightarrow A_1$, $G \mapsto f^{-1}(G)$. Then $\psi_f : (A_2, I_2) \longrightarrow (A_1, I_1)$ is a **ZLBA**-morphism. Put $g = \Theta^a(\psi_f)$. Then $g : \Theta^a(A_1, I_1) \longrightarrow \Theta^a(A_2, I_2)$, i.e. $g : Y_1 \longrightarrow Y_2$ and g is a continuous function (see Theorem 1.6 and (5)). We will show that $g \circ f_1 = f_2 \circ f$. Let $x \in X_1$. Then, by (4) and Theorem 1.6, $g(f_1(x)) = g(u_{x,A_1}) = (\psi_f)^{-1}(u_{x,A_1}) = \{G \in A_2 \mid \psi_f(G) \in u_{x,A_1}\} = \{G \in A_2 \mid x \in f^{-1}(G)\} = \{G \in A_2 \mid f(x) \in G\} = u_{f(x),A_2} = f_2(f(x))$. Thus, $g \circ f_1 = f_2 \circ f$.

It is natural to write $f:(X_1,A_1,I_1)\longrightarrow (X_2,A_2,I_2)$ when we have a situation like that which is described in Theorem 4.1. Then, in analogy with the Leader's equicontinuous functions (see Leader's Theorem 1.8), the functions $f:(X_1,A_1,I_1)\longrightarrow (X_2,A_2,I_2)$ which satisfy conditions (ZEQ1) and (ZEQ2) will be called 0-equicontinuous functions. Since I_2 is a base of X_2 , we obtain that every 0-equicontinuous function is a continuous function.

Corollary 4.2 Let (X_i, τ_i) , i = 1, 2, be two zero-dimensional Hausdorff spaces, $A_i \in \mathcal{BA}(X_i)$, $(Y_i, f_i) = \beta_{X_i}^0(A_i, A_i)$ (see (5) for $\beta_{X_i}^0$), where i = 1, 2, and $f : X_1 \longrightarrow X_2$ be a function. Then there exists a continuous function $g = L_0(f) : Y_1 \longrightarrow Y_2$ such that $g \circ f_1 = f_2 \circ f$ iff f satisfies condition (ZEQ1).

Proof. It follows from Theorem 4.1 because for ZLBAs of the form (A_i, A_i) , where i = 1, 2, condition (ZEQ2) is always fulfilled.

Clearly, Theorem 2.6 implies (and this is noted in [7]) that every zero-dimensional Hausdorff space X has a greatest zero-dimensional Hausdorff compactification which corresponds to the admissible for X Boolean algebra CO(X). This compactification was discovered by B. Banaschewski [1]; it is denoted by $(\beta_0 X, \beta_0)$ and it is called Banaschewski compactification of X. One obtains immediately its main property using our Corollary 4.2:

Corollary 4.3 (B. Banaschewski [1]) Let (X_i, τ_i) , i = 1, 2, be two zero-dimensional Hausdorff spaces and (cX_2, c) be a zero-dimensional Hausdorff compactification of X_2 . Then for every continuous function $f: X_1 \longrightarrow X_2$ there exists a continuous function $g: \beta_0 X_1 \longrightarrow cX_2$ such that $g \circ \beta_0 = c \circ f$.

Proof. Since $\beta_0 X_1$ corresponds to the admissible for X_1 Boolean algebra $CO(X_1)$, condition (ZEQ1) is clearly fulfilled when f is a continuous function. Now apply Corollary 4.2.

If in the above Corollary 4.3 $cX_2 = \beta_0 X_2$, then the map g will be denoted by $\beta_0 f$.

Recall that a function $f: X \longrightarrow Y$ is called *skeletal* ([13]) if

(11)
$$\operatorname{int}(f^{-1}(\operatorname{cl}(V))) \subseteq \operatorname{cl}(f^{-1}(V))$$

for every open subset V of Y. Recall also the following result:

Lemma 4.4 ([4]) A function $f: X \longrightarrow Y$ is skeletal iff $\operatorname{int}(\operatorname{cl}(f(U))) \neq \emptyset$, for every non-empty open subset U of X.

Lemma 4.5 A continuous map $f: X \longrightarrow Y$, where X and Y are topological spaces, is skeletal iff for every open subset V of Y such that $\operatorname{cl}_Y(V)$ is open, $\operatorname{cl}_X(f^{-1}(V)) = f^{-1}(\operatorname{cl}_Y(V))$ holds.

Proof. (\Rightarrow) Let f be a skeletal continuous map and V be an open subset of Y such that $\operatorname{cl}_Y(V)$ is open. Let $x \in f^{-1}(\operatorname{cl}_Y(V))$. Then $f(x) \in \operatorname{cl}_Y(V)$. Since f is continuous, there exists an open neighborhood U of x in X such that $f(U) \subseteq \operatorname{cl}_Y(V)$. Suppose that $x \notin \operatorname{cl}_X(f^{-1}(V))$. Then there exists an open neighborhood W of x in X such that $W \subseteq U$ and $W \cap f^{-1}(V) = \emptyset$. We obtain that $\operatorname{cl}_Y(f(W)) \cap V = \emptyset$ and $\operatorname{cl}_Y(f(W)) \subseteq \operatorname{cl}_Y(f(U)) \subseteq \operatorname{cl}_Y(V)$. Since, by Lemma 4.4, $\operatorname{int}_Y(\operatorname{cl}_Y(f(W))) \neq \emptyset$, we get a contradiction. Thus $f^{-1}(\operatorname{cl}_Y(V)) \subseteq \operatorname{cl}_X(f^{-1}(V))$. The converse inclusion follows from the continuity of f. Hence $f^{-1}(\operatorname{cl}_Y(V)) = \operatorname{cl}_X(f^{-1}(V))$.

(\Leftarrow) Suppose that there exists an open subset U of X such that $\operatorname{int}_Y(\operatorname{cl}_Y(f(U))) = \emptyset$ and $U \neq \emptyset$. Then, clearly, $V = Y \setminus \operatorname{cl}_Y(f(U))$ is an open dense subset of Y. Hence $\operatorname{cl}_Y(V)$ is open in Y. Thus $\operatorname{cl}_X(f^{-1}(V)) = f^{-1}(\operatorname{cl}_Y(V)) = f^{-1}(Y) = X$ holds. Therefore $X = \operatorname{cl}_X(f^{-1}(V)) = \operatorname{cl}_X(f^{-1}(Y \setminus \operatorname{cl}_Y(f(U)))) = \operatorname{cl}_X(X \setminus f^{-1}(\operatorname{cl}_Y(f(U))))$. Since $U \subseteq f^{-1}(\operatorname{cl}_Y(f(U)))$, we get that $X \setminus U \supseteq \operatorname{cl}_X(X \setminus f^{-1}(\operatorname{cl}_Y(f(U)))) = X$, a contradiction. Hence, f is a skeletal map.

Note that the proof of Lemma 4.5 shows that the following assertion is also true:

Lemma 4.6 A continuous map $f: X \longrightarrow Y$, where X and Y are topological spaces, is skeletal iff for every open dense subset V of Y, $\operatorname{cl}_X(f^{-1}(V)) = X$ holds.

Lemma 4.7 Let (X_i, τ_i) , i = 1, 2, be two topological spaces, (Y_i, f_i) be some extensions of (X_i, τ_i) , i = 1, 2, $f : X_1 \longrightarrow X_2$ and $g : Y_1 \longrightarrow Y_2$ be two continuous functions such that $g \circ f_1 = f_2 \circ f$. Then g is skeletal iff f is skeletal.

Proof. (\Rightarrow) Let g be skeletal and V be an open dense subset of X_2 . Set $U = Ex_{Y_2}(V)$, i.e. $U = Y_2 \setminus \operatorname{cl}_{Y_2}(f_2(X_2 \setminus V))$. Then U is an open dense subset of Y_2 and $f_2^{-1}(U) = V$. Hence, by Lemma 4.6, $g^{-1}(U)$ is a dense open subset of Y_1 . We will prove that $f_1^{-1}(g^{-1}(U)) \subseteq f^{-1}(V)$. Indeed, let $x \in f_1^{-1}(g^{-1}(U))$. Then $g(f_1(x)) \in U$, i.e. $f_2(f(x)) \in U$. Thus $f(x) \in f_2^{-1}(U) = V$. So, $f_1^{-1}(g^{-1}(U)) \subseteq f^{-1}(V)$. This shows that $f^{-1}(V)$ is dense in X_1 . Therefore, by Lemma 4.6, f is a skeletal map.

(\Leftarrow) Let f be a skeletal map and U be a dense open subset of Y_2 . Set $V = f_2^{-1}(U)$. Then V is an open dense subset of X_2 . Thus, by Lemma 4.6, $f^{-1}(V)$ is a dense subset of X_1 . We will prove that $f^{-1}(V) \subseteq f_1^{-1}(g^{-1}(U))$. Indeed, let $x \in f^{-1}(V)$. Then $f(x) \in V = f_2^{-1}(U)$. Thus $f_2(f(x)) \in U$, i.e. $g(f_1(x)) \in U$. So, $f^{-1}(V) \subseteq f_1^{-1}(g^{-1}(U))$. This implies that $g^{-1}(U)$ is dense in Y_1 . Now, Lemma 4.6 shows that g is a skeletal map.

We are now ready to prove the following result:

Theorem 4.8 Let (X_i, τ_i) , where i = 1, 2, be zero-dimensional Hausdorff spaces. Let, for i = 1, 2, (Y_i, f_i) be a zero-dimensional Hausdorff local compactification of (X_i, τ_i) , $(A_i, I_i) = \alpha_X^0(Y_i, f_i)$ (see (2) and (1) for $\alpha_{X_i}^0$), $f : (X_1, A_1, I_1) \longrightarrow (X_2, A_2, I_2)$ be a 0-equicontinuous function and $g = L_0(f) : Y_1 \longrightarrow Y_2$ be the continuous function such that $g \circ f_1 = f_2 \circ f$ (its existence is guaranteed by Theorem 4.1). Then:

- (a) g is skeletal iff f is skeletal;
- (b) g is an open map iff f satisfies the following condition:
- (ZO) For every $F \in I_1$, $\operatorname{cl}_{X_2}(f(F)) \in I_2$ holds;
- (c) g is a perfect map iff f satisfies the following condition:
- (ZP) For every $G \in I_2$, $f^{-1}(G) \in I_1$ holds (i.e., briefly, $f^{-1}(I_2) \subseteq I_1$);
- (d) $\operatorname{cl}_{Y_2}(g(Y_1)) = Y_2 \text{ iff } \operatorname{cl}_{X_2}(f(X_1)) = X_2;$
- (e) g is an injection iff f satisfies the following condition:
- (ZI) For every $F_1, F_2 \in I_1$ such that $F_1 \cap F_2 = \emptyset$ there exist $G_1, G_2 \in I_2$ with $G_1 \cap G_2 = \emptyset$ and $f(F_i) \subseteq G_i$, i = 1, 2;
- (f) g is an open injection iff $I_1 \subseteq f^{-1}(I_2)$ and f satisfies condition (ZO);
- (g) g is a closed injection iff $f^{-1}(I_2) = I_1$;
- (h) g is a perfect surjection iff f satisfies condition (ZP) and $cl_{X_2}(f(X_1)) = X_2$;
- (i) g is a dense embedding iff $\operatorname{cl}_{X_2}(f(X_1)) = X_2$ and $I_1 \subseteq f^{-1}(I_2)$.

Proof. Set $\psi_g = \Theta^t(g)$ (see Theorem 1.6). Then $\psi_g : CO(Y_2) \longrightarrow CO(Y_1)$, $G \mapsto g^{-1}(G)$. Set also $\psi_f : A_2 \longrightarrow A_1$, $G \mapsto f^{-1}(G)$. Then, (9), (7) and (10) imply that $\psi_f = r_1^c \circ \psi_g \circ e_2^c$.

- (a) It follows from Lemma 4.7.
- (b) First Proof. Using [6, Theorem 2.8(a)] and (8), we get that the map g is open iff there exists a map $\psi^f: I_1 \longrightarrow I_2$ satisfying the following conditions:
- (OZL1) For every $F \in I_1$ and every $G \in I_2$, $(F \cap f^{-1}(G) = \emptyset) \to (\psi^f(F) \cap G = \emptyset)$; (OZL2) For every $F \in I_1$, $f^{-1}(\psi^f(F)) \supseteq F$.

Obviously, condition (OZL2) is equivalent to the following one: for every $F \in I_1$, $f(F) \subseteq \psi^f(F)$. We will show that for every $F \in I_1$, $\psi^f(F) \subseteq \operatorname{cl}_{X_2}(f(F))$. Indeed, let $y \in \psi^f(F)$ and suppose that $y \notin \operatorname{cl}_{X_2}(f(F))$. Since I_2 is a base of X_2 , there exists a $G \in I_2$ such that $y \in G$ and $G \cap f(F) = \emptyset$. Then $F \cap f^{-1}(G) = \emptyset$ and condition (OZL1) implies that $\psi^f(F) \cap G = \emptyset$. We get that $y \notin \psi^f(F)$, a contradiction. Thus $f(F) \subseteq \psi^f(F) \subseteq \operatorname{cl}_{X_2}(f(F))$. Since $\psi^f(F)$ is a closed set, we obtain that $\psi^f(F) = \operatorname{cl}_{X_2}(f(F))$. Obviously, conditions (OZL1) and (OZL2) are satisfied when $\psi^f(F) = \operatorname{cl}_{X_2}(f(F))$. This implies that g is an open map iff for every $F \in I_1$, $\operatorname{cl}_{X_2}(f(F)) \in I_2$.

Second Proof. We have, by (1), that $I_i = (f_i)^{-1}(CK(Y_i))$, for i = 1, 2. Thus, for every $F \in I_i$, where $i \in \{1, 2\}$, we have that $\operatorname{cl}_{Y_i}(f_i(F)) \in CK(Y_i)$.

Let g be an open map and $F \in I_1$. Then, $G = \text{cl}_{Y_1}(f_1(F)) \in CK(Y_1)$. Thus $g(G) \in CK(Y_2)$. Since G is compact, we have that $g(G) = \text{cl}_{Y_2}(g(f_1(F))) = \text{cl}_{Y_2}(f_2(f(F))) = \text{cl}_{Y_2}(f_2(f(F)))$. Therefore, $\text{cl}_{X_2}(f(F)) = (f_2)^{-1}(g(G))$, i.e. $\text{cl}_{X_2}(f(F)) \in I_2$.

Conversely, let f satisfies condition (ZO). Since $CK(Y_1)$ is an open base of Y_1 , for showing that g is an open map, it is enough to prove that for every $G \in CK(Y_1)$, $g(G) = \operatorname{cl}_{Y_2}(f_2(\operatorname{cl}_{X_2}(f(F))))$ holds, where $F = (f_1)^{-1}(G)$ and thus $F \in I_1$. Obviously, $G = \operatorname{cl}_{Y_1}(f_1(F))$. Using again the fact that G is compact, we get that $g(G) = g(\operatorname{cl}_{Y_1}(f_1(F))) = \operatorname{cl}_{Y_2}(g(f_1(F))) = \operatorname{cl}_{Y_2}(f_2(f(F))) = \operatorname{cl}_{Y_2}(f_2(\operatorname{cl}_{X_2}(f(F))))$. So, g is an open map.

- (c) Since Y_2 is a locally compact Hausdorff space and $CK(Y_2)$ is a base of Y_2 , we get, using the well-known [8, Theorem 3.7.18], that g is a perfect map iff $g^{-1}(G) \in CK(Y_1)$ for every $G \in CK(Y_2)$. Thus g is a perfect map iff $\psi_g(G) \in CK(Y_1)$ for every $G \in CK(Y_2)$. Now, (8) and (9) imply that g is a perfect map $\iff \psi_f(G) \in I_1$ for every $G \in I_2 \iff f$ satisfies condition (ZP).
- (d) This is obvious.
- (e) Having in mind (8) and (9), our assertion follows from [6, Theorem 3.5].
- (f) It follows from (b), (8), (9), and [6, Theorem 3.12].
- (g) It follows from (c), (8), (9), and [6, Theorem 3.14].
- (h) It follows from (c) and (d).
- (i) It follows from (d) and [6, Theorem 3.28 and Proposition 3.3]. We will also give a second proof of this fact. Obviously, if g is a dense embedding then $g(Y_1)$ is an

open subset of Y_2 (because Y_1 is locally compact); thus g is an open mapping and we can apply (f) and (d). Conversely, if $\operatorname{cl}_{X_2}(f(X_1)) = X_2$ and $I_1 \subseteq f^{-1}(I_2)$, then, by (d), $g(Y_1)$ is a dense subset of Y_2 . We will show that f satisfies condition (ZO). Let $F_1 \in I_1$. Then there exists $F_2 \in I_2$ such that $F_1 = f^{-1}(F_2)$. Then, obviously, $\operatorname{cl}_{X_2}(f(F_1)) \subseteq F_2$. Suppose that $G_2 = F_2 \setminus \operatorname{cl}_{X_2}(f(F_1)) \neq \emptyset$. Since G_2 is open, there exists $x_2 \in G_2 \cap f(X_1)$. Then there exists $x_1 \in X_1$ such that $f(x_1) = x_2 \in F_2$. Thus $x_1 \in F_1$, a contradiction. Therefore, $\operatorname{cl}_{X_2}(f(F_1)) = F_2$. Thus, $\operatorname{cl}_{X_2}(f(F_1)) \in I_2$. So, condition (ZO) is fulfilled. Hence, by (b), g is an open map. Now, using (f), we get that g is also an injection. All this shows that g is a dense embedding.

Recall that a continuous map $f: X \longrightarrow Y$ is called *quasi-open* ([12]) if for every non-empty open subset U of X, $\operatorname{int}(f(U)) \neq \emptyset$ holds. As it is shown in [4], if X is regular and Hausdorff, and $f: X \longrightarrow Y$ is a closed map, then f is quasi-open iff f is skeletal. This fact and Theorem 4.8 imply the following two corollaries:

Corollary 4.9 Let X_1 , X_2 be two zero-dimensional Hausdorff spaces and $f: X_1 \longrightarrow X_2$ be a continuous function. Then:

- (a) $\beta_0 f$ is quasi-open iff f is skeletal;
- (b) $\beta_0 f$ is an open map iff f satisfies the following condition:
- (ZOB) For every $F \in CO(X_1)$, $\operatorname{cl}_{X_2}(f(F)) \in CO(X_2)$ holds;
- (c) $\beta_0 f$ is a surjection iff $\operatorname{cl}_{X_2}(f(X_1)) = X_2$;
- (d) $\beta_0 f$ is an injection iff $f^{-1}(CO(X_2)) = CO(X_1)$.

Corollary 4.10 Let X_1 , X_2 be two zero-dimensional Hausdorff spaces, $f: X_1 \longrightarrow X_2$ be a continuous function, \mathcal{B} be a Boolean algebra admissible for X_2 , (cX_2, c) be the Hausdorff zero-dimensional compactification of X_2 corresponding to \mathcal{B} (see Theorems 2.3 and 2.6) and $g: \beta_0 X_1 \longrightarrow cX_2$ be the continuous function such that $g \circ \beta_0 = c \circ f$ (its existence is guaranteed by Theorem 4.3). Then:

- (a) g is quasi-open iff f is skeletal;
- (b) g is an open map iff f satisfies the following condition:
- (ZOC) For every $F \in CO(X_1)$, $\operatorname{cl}_{X_2}(f(F)) \in \mathcal{B}$ holds;
- (c) g is a surjection iff $\operatorname{cl}_{X_2}(f(X_1)) = X_2$;
- (d) g is an injection iff $f^{-1}(\mathfrak{B}) = CO(X_1)$.

References

- [1] B. Banaschewski, Über nulldimensionale Räume, Math. Nachr. 13 (1955) 129-140.
- [2] G. Bezhanishvili, Zero-dimensional proximities and zero-dimensional compactifications, Topology Appl. 156 (2009) 1496-1504.
- [3] W. Comfort, S. Negrepontis, Chain Conditions in Topology, Cambridge Univ. Press, Cambridge, 1982.

- [4] G. Dimov, Some generalizations of Fedorchuk Duality Theorem I, Topology Appl. 156 (2009) 728-746.
- [5] G. Dimov, A De Vries-type Duality Theorem for Locally Compact Spaces II, arXiv:0903.2593v4, 1-37.
- [6] G. Dimov, A De Vries-type Duality Theorem for Locally Compact Spaces III, arXiv:0907.2025v1, 1-31.
- [7] Ph. Dwinger, Introduction to Boolean Algebras, Physica Verlag, Würzburg, 1961.
- [8] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [9] P. T. Johnstone, Stone Spaces, Cambridge Univ. Press, Cambridge, 1982.
- [10] S. Leader, Local proximity spaces, Math. Annalen 169 (1967) 275–281.
- [11] K. D. Magill Jr. and J. A. Glasenapp, 0-dimensional compactifications and Boolean rings, J. Aust. Math. Soc. 8 (1968) 755–765.
- [12] S. Mardešic, P. Papic, Continuous images of ordered compacta, the Suslin property and dyadic compacta, Glasnik mat.-fis. i astronom. 17 (1-2) (1962) 3–25.
- [13] J. Mioduszewski, L. Rudolf, H-closed and extremally disconected Hausdorff spaces, Dissert. Math. (Rozpr. Mat.) 66 (1969) 1–52.
- [14] S. A. Naimpally, B. D. Warrack, Proximity Spaces, Cambridge University Press, Cambridge, 1970.
- [15] P. Roeper, Region-based topology, Journal of Philosophical Logic 26 (1997) 251–309.
- [16] J. M. Smirnov, On proximity spaces, Mat. Sb. 31 (1952) 543–574.
- [17] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937) 375-481.