

Основы электротехники

Отчет по лабораторной работе №3 Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока

Группа Р3332 Вариант 83

Выполнил: Чмурова Мария Владиславовна

Дата сдачи отчета: 21.10.2024

Дата защиты: 23.10.2024

Контрольный срок защиты: 23.10.2024

Количество баллов:

Оглавление

Цель работы	2
Часть 1	3
Часть 1. Полученная таблица.	12
Часть 1. Вывод	13
Часть 2. Последовательная схема RCL	14
Часть 2. Полученная таблица для схемы №6	16
Часть 2. Графики характеристик для схемы №6	17
Часть 2. Векторная диаграмма для схемы №6	18
Часть 2. Полученная таблица для схемы №9	21
Часть 2. Графики характеристик для схемы №9	22
Часть 2. Векторная диаграмма для схемы №9	23
Вывол по части 2	24

Цель работы

Исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов.

Часть 1.

Дано:

$$U=8$$
 [В]; $f=63,662$ [Гц]; $R_k=15$ [Ом]; $L_k=53,556$ [Гн]; $C=33,308$ [мк Φ]; $\psi_u=0^\circ; R_1=35$ [Ом];

1. Схема исследуемой цепи:

Рисунок 1. Схема исследуемой цепи 1

Расчёты:

$$I = \frac{U}{Z} = \frac{U}{R_1} = \frac{8}{35} = 0,229 \text{ [A]}$$

$$\varphi = arctg\left(\frac{0}{R_1}\right) = 0^{\circ}$$

Рисунок 2. Векторная диаграмма 1

Рисунок 3. Схема исследуемой цепи 2

Расчёты:

$$I = \frac{U}{Z} = \frac{U}{X_c} = U\omega C = U2\pi fC = 0,107 \text{ [A]}$$

 $\varphi = -\frac{\pi}{2} = -90^{\circ}$

Рисунок 4. Векторная диаграмма 2

Рисунок 5. Схема исследуемой цепи 3

Расчёты:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}} = \frac{U}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}} = \frac{U}{\sqrt{R^2 + \frac{1}{(2\pi f C)^2}}} = 0,097 \text{ [A]}$$

$$\varphi = arctg\left(\frac{X}{R}\right) = arctg\left(-\frac{1}{\omega CR}\right) = arctg\left(-\frac{1}{2\pi f CR}\right) = -65^{\circ}$$

Рисунок 6. Векторная диаграмма 3

Рисунок 7. Схема исследуемой цепи 4

Расчёты:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}} = \frac{U}{\sqrt{R^2 + (\omega L)^2}} = \frac{U}{\sqrt{R^2 + (2\pi f L)^2}} = 0,306 \text{ [A]}$$

$$\varphi = \arctan\left(\frac{X}{R}\right) = \arctan\left(\frac{2\pi f L}{R}\right) = 55^{\circ}$$

Рисунок 8. Векторная диаграмма 4

Рисунок 9. Схема исследуемой цепи 5

Расчёты:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}} = \frac{U}{\sqrt{R^2 + (\omega L)^2}} = \frac{U}{\sqrt{(R_1 + R_k)^2 + (2\pi f L)^2}} = 0,147[A]$$

$$\varphi = arctg\left(\frac{X}{R}\right) = arctg\left(\frac{2\pi f L}{R_1 + R_k}\right) = 23^{\circ}$$

Рисунок 10. Векторная диаграмма 5

Рисунок 11. Схема исследуемой цепи 6

Расчёты:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}} = \frac{U}{\sqrt{(R_1 + R_k)^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} = 0,109 \text{ [A]}$$

$$\varphi = \arctan\left(\frac{X}{R}\right) = \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R_1 + R_k}\right) = -47^{\circ}$$

$$\varphi = arctg\left(\frac{X}{R}\right) = arctg\left(\frac{\omega L - \frac{1}{\omega C}}{R_1 + R_k}\right) = -47^{\circ}$$

Рисунок 12. Векторная диаграмма 6

Рисунок 13. Схема исследуемой цепи 7

Расчёты:

$$I = UY = U\sqrt{(\frac{1}{R_1})^2 + (\omega C)^2} = 0.252 \text{ [A]}$$

$$\varphi = arctg\left(\frac{-\omega C}{\frac{1}{R}}\right) = -25^{\circ}$$

Рисунок 14. Векторная диаграмма 7

Рисунок 15. Схема исследуемой цепи 8

Расчёты:

$$X_{L} = \omega L = 21,422$$

$$G = G_{1} + G_{k} = \frac{1}{R_{1}} + \frac{R_{k}}{R_{k}^{2} + X_{L}^{2}} = 0,051$$

$$B = B_{k} - B_{1} = \frac{X_{L}}{R_{k}^{2} + X_{L}^{2}} - 0 = 0,031$$

$$I = UY = U\sqrt{G^{2} + B^{2}} = 0,477 \text{ [A]}$$

$$\varphi = arctg\left(\frac{B}{G}\right) = 31^{\circ}$$

Рисунок 16. Векторная диаграмма 8

Рисунок 17. Схема исследуемой цепи 9

Расчёты:

$$\begin{split} X_C &= \frac{1}{\omega C} = 75,05702 \\ X_L &= \omega L = 21,422 \\ G &= G_1 + G_k = \frac{R_1}{{R_1}^2 + X_C^2} + \frac{R_k}{R_k^2 + X_L^2} = 0,027 \\ B &= B_k - B_1 = \frac{X_L}{R_k^2 + X_L^2} - \frac{X_C}{R_1^2 + X_C^2} = 0,020 \\ I &= UY = U\sqrt{G^2 + B^2} = 0,269 \text{ [A]} \\ \varphi &= arctg\left(\frac{B}{G}\right) = 36^\circ \end{split}$$

Рисунок 18. Векторная диаграмма 9

Часть 1. Полученная таблица.

Таблица 1. Результаты части 1

11								Результ	аты
Номер	I	Тарам	иетры двухполн	осников	Результа	аты измере	вычислений		
схемы	R1	Rk	L	С	U	I	φ	I	φ
цепи	Ом		Гн	мкФ	B A		0	A	0
1	35	15	0,053556	33,308	8,073	0,231	0	0,229	0
2	35	15	0,053556	33,308	8,071	0,106	-90	0,106	-90
3	35	15	0,053556	33,308	8,072	0,094	-66	0,097	-65
4	35	15	0,053556	33,308	7,931	0,315	55	0,306	55
5	35	15	0,053556	33,308	7,931	0,146	24	0,147	23
6	35	15	0,053556	33,308	7.931	0,103	-44	0,109	-47
7	35	15	0,053556	33,308	7,931	0,251	-26	0,252	-25
8	35	15	0,053556	33,308	7,931	0,488	32	0,477	31
9	35	15	0,053556	33,308	7,931	0,285	36	0,269	37

Часть 1. Вывод

В ходе 1 части было проведено исследование действующих значений входного напряжения, тока и фазового сдвига для линейных двухполюсников.

Проведенные эксперименты позволили продемонстрировать свойства различных двухполюсников при воздействии синусоидального тока. Измерение фазовых сдвигов показало зависимость от типа элементов цепи: ёмкостных двухполюсниках сдвиги составляют +90°, что согласуется с теоретическими данными.

Часть 2. Последовательная схема RCL

Дано:

$$U=8$$
 [В]; $f=63,662$ [Гц]; $R_k=15$ [Ом]; $L_k=53,556$ [Гн]; $C=33,308$ [мк Φ]; $\psi_u=-60^\circ; R_1=40$ [Ом];

6. Схема исследуемой цепи:

Рисунок 19. Схема исследуемой цепи - Схема 6

Графики для измерений:

Рисунок 20. Графики - Схема 6

Расчёты:

$$\begin{split} f_0 &= \frac{1}{2\pi\sqrt{LC}} = 119,163 \ [\Gamma\text{II}] \\ I &= \frac{U}{\sqrt{(R_1^2 + R_k^2) + \left(\omega L - \frac{1}{\omega C}\right)^2}} = 0,145 \ [\text{A}] \\ U_{R1} &= IR_1 = 5,818 \ [\text{B}] \\ U_k &= I\sqrt{R_k^2 + (2\pi f_0 L)^2} = 6,227 \ [\text{B}] \\ U_C &= I\frac{1}{2\pi f_0 C} = 5,833 \ [\text{B}] \\ \varphi &= arctg\left(\frac{X_L - X_C}{R_1 + R_k}\right) = arctg\left(\frac{2\pi f_0 L - \frac{1}{2\pi f_0 C}}{R_1 + R_k}\right) = 0^\circ \end{split}$$

Используя вышеуказанные формулы с использованием программы выполняются расчёты для 20 точек со значением частоты в диапазоне от $0.1f_0$ до $2f_0$.

Пример расчёта экспериментального значения φ для первой точки: 0,1 f_0 :

$$\varphi=180^\circ\cdot \frac{\Delta h}{h}=180^\circ\cdot \frac{0,182-0,163}{0,224-0,182}=-81^\circ$$
 ($\phi<0$, т.к. ток опережает напряжение)

Аналогичные расчёты выполняются для всех 20 частот. По итогам расчетам получается таблица.

Часть 2. Полученная таблица для схемы №6

Таблица 2. Заполненная таблица

	U=8 [B]; R1=40 [Ом]; Rk=15 [Ом]; L=53,53						56 [мГн]; C=33,308 [мкФ]; f0=119,163 [Гц]					
c ·	Расчёт						Эксперимент					
f	Qp=0,729						Qe=0,779					
	φ	I	Ur1	Uk	Uc	φ	I	Ur1	Uk	Uc		
Гц	0	A		В		0	A		В			
11,916	-82	0,02	0,798	0,31	8,004	-81	0,02	0,799	0,308	8,002		
23,833	-74	0,04	1,599	0,68	8,013	-75	0,039	1,553	0,7	8,233		
35,749	-66	0,06	2,397	1,152	8,01	-66	0,059	2,353	1,131	8,156		
47,665	-57	0,08	3,182	1,747	7,974	-56	0,08	3,183	1,707	7,97		
59,582	-48	0,098	3,926	2,458	7,872	-47	0,096	3,834	2,484	7,761		
71,498	-38	0,115	4,593	3,255	7,674	-38	0,11	4,387	3,197	7,662		
83,414	-28	0,128	5,138	4,088	7,359	-28	0,125	5,001	4,024	7,422		
95,330	-18	0,138	5,528	4,894	6,927	-20	0,134	5,389	4,838	7,027		
107,247	-9	0,144	5,75	5,618	6,405	-5	0,141	5,654	5,551	6,519		
119,163	0	0,145	5,818	6,227	5,833	0	0,142	5,702	6,309	5,964		
131,079	8	0,144	5,763	6,712	5,252	11	0,141	5,701	6,586	5,533		
142,996	15	0,141	5,621	7,083	4,696	14	0,141	5,65	6,903	5,045		
154,912	21	0,136	5,426	7,358	4,184	20	0,137	5,479	7,231	4,553		
166,828	27	0,13	5,204	7,56	3,726	27	0,132	5,298	7,448	4,141		
178,745	31	0,124	4,972	7,706	3,323	32	0,127	5,096	7,617	3,786		
190,661	35	0,119	4,742	7,811	2,971	36	0,123	4,952	7,766	2,967		
202,577	39	0,113	4,52	7,887	2,665	40	0,12	4,849	7,904	2,69		
214,493	42	0,108	4,309	7,941	2,4	43	0,1	4,488	7,918	2,309		
226,410	45	0,103	4,111	7,98	2,169	45	0,101	4,387	7,98	2,156		
238,326	48	0,098	3,926	8,008	1,968	48	0,107	3,944	7,989	1,911		

Часть 2. Графики характеристик для схемы №6

График характеристик $\varphi(f)$ и I(f):

Рисунок 21. График характеристик - Схема 6

График характеристик U_{R1} , U_k и U_C :

Рисунок 22. График характеристик - Схема 6

Часть 2. Векторная диаграмма для схемы №6

Векторная диаграмма напряжений:

Рисунок 23. Векторная диаграмма - Схема 6

Демонстрация выполнения правила Кирхгоффа для векторной диаграммы:

Рисунок 24. Правило Кирхгоффа - Схема 6

Рисунок 25. Схема 9 исследуемой цепи

Графики для измерений:

Рисунок 26. Графики для измерений

Расчёты:

$$f_0` = \frac{1}{2\pi\sqrt{LC}} \cdot \sqrt{\frac{\rho^2 - R_k^2}{\rho^2 - R_1^2}} = 1576,409 [\Gamma \text{ц}]$$

$$G = G_1 + G_k = \frac{R_1}{R_1^2 + X_C^2} + \frac{R_k}{R_k^2 + X_L^2}$$

$$B = B_k - B_1 = \frac{X_L}{R_k^2 + X_L^2} - \frac{X_C}{R_1^2 + X_C^2}$$

$$I = U\sqrt{G^2 + B^2} = 0,199 [A]$$

$$I_1 = \frac{U}{\sqrt{R_k^2 + X_L^2}} = 0,015 [A]$$

$$I_2 = \frac{U}{\sqrt{R_1^2 + X_C^2}} = 0,199 [A]$$

$$\varphi = acrtg\left(\frac{B}{G}\right) = 0^\circ$$

Используя вышеуказанные формулы с использованием программы выполняются расчёты для 20 точек со значением частоты в диапазоне от $0.1f_0$ ` до $2f_0$ `.

Получается таблица:

Часть 2. Полученная таблица для схемы №9

	U=8 [B]; R1=40 [Ом]; Rk=15 [Ом]; L=53,556 [мГн]; C=33,308 [мкФ]; f0`=1576,409 [Гц]									
f		Расч			Эксперимент					
	φ	I	I1	I2	φ	I	I1	I2		
Гц	0		A		0	A				
157,641	14,598	0,172	0,145	0,159	14	0,172	0,146	0,159		
315,282	2,367	0,186	0,075	0,187	2	0,185	0,074	0,187		
472,923	0,695	0,193	0,050	0,194	0,6	0,191	0,049	0,194		
630,564	0,275	0,196	0,038	0,197	0,3	0,195	0,039	0,197		
788,205	0,127	0,197	0,030	0,198	0,1	0,197	0,3	0,198		
945,845	0,063	0,198	0,025	0,198	0,06	0,198	0,025	0,198		
1103,49	0,032	0,199	0,022	0,199	0,028	0,199	0,022	0,199		
1261,13	0,015	0,199	0,019	0,199	0,02	0,199	0,019	0,199		
1418,77	0,006	0,199	0,017	0,199	0,005	0,201	0,016	0,2		
1576,41	0,000	0,199	0,015	0,199	0	0,203	0,015	0,203		
1734,05	-0,003	0,199	0,014	0,200	-0,003	0,2	0,014	0,201		
1891,69	-0,005	0,200	0,013	0,200	-0,004	0,2	0,013	0,2		
2049,33	-0,007	0,200	0,012	0,200	-0,006	0,2	0,012	0,199		
2206,97	-0,007	0,200	0,011	0,200	-0,007	0,2	0,012	0,2		
2364,61	-0,008	0,200	0,010	0,200	-0,008	0,2	0,01	0,198		
2522,25	-0,008	0,200	0,009	0,200	-0,008	0,2	0,009	0,2		
2679,9	-0,008	0,200	0,009	0,200	-0,008	0,2	0,009	0,199		
2837,54	-0,008	0,200	0,008	0,200	-0,008	0,2	0,008	0,2		
2995,18	-0,008	0,200	0,008	0,200	-0,008	0,2	0,008	0,2		
3152,82	-0,008	0,200	0,008	0,200	-0,008	0,2	0,008	0,2		

Часть 2. Графики характеристик для схемы №9

График характеристик I(f), $I_1(f)$, $I_2(f)$ и $\varphi(f)$:

Рисунок 27. Диаграмма характеристик

Часть 2. Векторная диаграмма для схемы №9

Векторная диаграмма для токов:

Рисунок 28. Векторная диаграмма

Демонстрация работы закона Кирхгоффа:

Рисунок 29. Законы Кирхгоффа - Схема 9

Вывод по части 2.

В ходе лабораторной работы были исследованы цепи с параллельным и последовательным соединением индуктивных и ёмкостных элементов.

Для последовательного соединения на резонансной частоте напряжения на индуктивности и ёмкости компенсируют друг друга, что приводит к максимальному току в цепи. Угол сдвига фаз также стремится к нулю, и напряжение в резонансном режиме максимально. Для параллельного соединения на резонансной частоте полный ток в цепи минимален, а угол сдвига фаз между током и напряжением равен нулю.

Построенные векторные диаграммы как для последовательного, так и для параллельного соединений подтвердили теоретические предположения относительно фазовых соотношений между током и напряжениями на различных элементах цепи.

Таким образом, эксперимент подтвердил основные теоретические положения о работе цепей в режиме резонанса.