

Modern CNNs

Industrial AI Lab.

Prof. Seungchul Lee

ImageNet

• Human performance = 5.1 %

ImageNet

LeNet

- CNN = Convolutional Neural Networks = ConvNet
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition.
- All are still the basic components of modern ConvNets!

Yann LeCun

AlexNet

 Simplified version of Krizhevsky, Alex, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

- LeNet-style backbone, plus:
 - ReLU [Nair & Hinton 2010]
 - "RevoLUtion of deep learning"*
 - Accelerate training
 - Dropout [Hinton et al 2012]
 - In-network ensembling
 - Reduce overfitting
 - Data augmentation
 - Label-preserving transformation
 - Reduce overfitting

VGG-16/19

• Simonyan, Karen, and Zisserman. "Very deep convolutional networks for large-scale image recognition." (2014)

- Simply "Very Deep"!
 - Modularized design
 - 3x3 Conv as the module
 - Stack the same module
 - Same computation for each module
 - Stage-wise training
 - VGG-11 → VGG-13 → VGG-16
 - We need a better initialization...

3x3 conv, 64

GoogleNet/Inception

- Multiple branches
 - e.g., 1x1, 3x3, 5x5, pool
- Shortcuts
 - stand-alone 1x1, merged by concat.
- Bottleneck
 - Reduce dim by 1x1 before expensive 3x3/5x5 conv

ResNet (Deep Residual Learning)

- He, Kaiming, et al. "Deep residual learning for image recognition."
 CVPR. 2016.
- Plane net

H(x) is any desired mapping, hope the small subnet fit H(x)

ResNet (Deep Residual Learning)

- He, Kaiming, et al. "Deep residual learning for image recognition."
 CVPR. 2016.
- Residual net
- Skip connection

H(x) is any desired mapping, hope the small subnet fit H(x)hope the small subnet fit F(x)Let H(x) = F(x) + x

identity

 χ

- A direct connection between 2 non-consecutive layers
- No gradient vanishing

ResNet (Deep Residual Learning)

- Parameters are optimized to learn a residual, that is the difference between the value before the block and the one needed after.
- F(x) is a residual mapping w.r.t. identity

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

Skip Connection

- A skip connection is a connection that bypasses at least one layer.
- Here, it is often used to transfer local information by concatenating or summing feature maps from the downsampling path with feature maps from the upsampling path.
- Merging features from various resolution levels helps combining context information with spatial information.

Residual Net

```
def residual_net(x):
 conv1 = tf.layers.conv2d(inputs = x,
                          filters = 32,
                          kernel_size = [3, 3],
                          padding = "SAME",
                          activation = tf.nn.relu)
 conv2 = tf.layers.conv2d(inputs = conv1,
                          filters = 32,
                          kernel_size = [3, 3],
                          padding = "SAME",
                          activation = tf.nn.relu)
 maxp2 = tf.layers.max pooling2d(inputs = x + conv2,
                                 pool size = [2, 2],
                                 strides = 2)
flat = tf.layers.flatten(maxp2)
 hidden = tf.layers.dense(inputs = flat,
                          units = n_hidden,
                          activation = tf.nn.relu)
 output = tf.layers.dense(inputs = hidden,
                          units = n output)
 return output
```


DensNets

Densely Connected Convolutional Networks

U-Net

U-Net

- The U-Net owes its name to its symmetric shape
- The U-Net architecture is built upon the Fully Convolutional Network and modified in a way that it yields better segmentation in medical imaging.
- Compared to FCN-8, the two main differences are
 - U-net is symmetric and
 - the skip connections between the downsampling path and the upsampling path apply a concatenation operator instead of a sum.
- These skip connections intend to provide local information to the global information while upsampling. Because of its symmetry, the network has a large number of feature maps in the upsampling path, which allows to transfer information.