

红外遥控发射电路

SC9012是一块用于红外遥控系统中的专用发射集成电路,采用CMOS工艺制造。它具有32个功能键,若配合用户编码的变化则可提供256种不同的发射码,另外SC9012还提供6种双重按键功能。SC9012的管脚设置和外围应用线路都进行了优化,以方便PCB版的布图和低成本的要求。SC9012的封装形式为SOP-20-300-1.27。

主要特点:

- ★ 高性能的CMOS工艺, 低功耗
- ★ 内置振荡电路
- ★ 外围元件少
- ★ 32个功能按键, 8种用户编码(相当于可提供256种 不同的发射码)
- ★ 6种双重按键功能
- ★ 发射信号的LED指示

应用:

- ★ 红外线发射遥控设备
- ★ 电视机遥控器
- ★ 录像机遥控器
- ★ VCD、音响遥控器

管脚排列

内部框图

杭州士兰微电子股份有限公司 -

极限参数 (除非特别说明, Tamb=25°C)

1X1 X > XX (120 11 12 22)	00); Tamb=20 0)		
参 数	符号	参数范围	单 位
电源电压	VDD	-0.3 ~ 5.0	V
输入电压	VIN	VSS-0.3~VDD+0.3	V
输出电流	IOUT (REO)	-20	mA
功耗	PD	300	mW
贮存温度	Tstg	-40~+125	°C
工作温度	Topr	-20~+75	°C

电气参数(除非特别说明,Tamb=25°C,VDD=3.0V)

		,				
参数	符号	测 试 条 件	最小值	典型值	最大值	单 位
电源电压	VDD	全部功能	2		4	V
工作电流	IDD	fosc=455kHz		-	1	mA
静态电流	ISB	停 振		1	1	μΑ
高电平输入电压(KI)	VIH	VDD=3V	0.7VDD	I	VDD	V
低电平输入电压(KI)	VIL	VDD=3V	0	1	0.3VDD	V
高电平输出电流(Dout)	ЮН	VOH=1.5V, VDD=3V	-10	I	1	mA
低电平输出电流(LMP)	loL	VoL=1.5V, VDD=3V	5	1	1	mA
振荡频率	Fosc		400	455	600	kHz
输入下拉电阻 (KI)	Ron	VDD=3V	100	300	500	ΚΩ

管脚说明

管脚号	符号	输入/输出	功能描述
1~4	KI0~KI3	I	键扫描输入端(内置下拉电阻)。
5	Dout	0	发射码输出管脚。
6	VDD		电源正端。
7	NC		空脚。建议在使用时接电源正端。
8	OSCO	0	振荡器输出管脚。
9	OSCI	I	振荡器输入管脚。
10	Vss		电源接地端。
11	LMP	0	输出LED指示。
12~19	KO1~KO8	0	键扫描输出管脚。
20	SEL	Ī	用户编码选择管脚。

功能说明

1. 振荡线路部分

SC9012的振荡线路由OSCO与OSCI间接一只455kHz的陶瓷谐振器及2个100pf的接地电容所组成,其振荡频率为455kHz。没有按键操作时,该振荡电路停振处于待机状态以减少功率消耗。当有按键操作时,振荡电路开始起振,有发射码输出,按键释放后,电路停振重新处于待机状态,请参考下图。

2. 振荡频率部分

SC9012的振荡频率为455kHz,经内部的12分频电路,得到频率为37.9~39.2kHz,占空比为1/3的调制载波。455kHz的振荡频率另经256分频,得到系统的基本工作时钟为1.78kHz。调制载波的频率(fc)及内部工作时钟周期(Tm)与振荡频率(fosc)的对应关系如下式表示:

fc= (1/12) X fosc (占空比: 1/3);

Tm=256/fosc。 (Tm: 一个高电平脉冲的宽度)。

3. 按键线路部分

SC9012的键扫描输入端 "KI0~KI3"内置有下拉电阻,它与键扫描输出端 "KO0~KO7"可构成一32个按键的键盘矩阵。除了规定的6种双重按键组合外,其他按键组合同时按下将不会产生发射码的输出。SC9012的键盘输入矩阵请参考下图。

· 杭州士兰微电子股份有限公司 -

4. 用户编码部分

SC9012的用户编码一共有8种,可利用"SEL"脚与"KO0~KO1"中的任一脚相连接来进行选择。见下图:

与SEL相接	系统码(S2	S1 S0)
KO0	0	0 0
KO1	0 () 1
KO2	0 ′	1 0
КО3	0	1 1
KO4	1 (0 0
KO5	1 () 1
KO6	1 '	1 0
KO7	1 ′	1 1

SC9012共有8位用户编码:

Γ							1	
	S0	S1	S2	S3	S4	S5	S6	S7

其中S0, S1, S2由SEL与KO0~KO7的连接来选择; S3固定为"1"; S4~S7固定为"0"。

5. 发射码部分

如上图所示,SC9012一帧完整的发射码由引导码、用户编码和键数据码三部分组成。引导码由一个4.5ms的高电平脉冲及4.5ms的低电平脉冲组成;八位的用户编码被连续发送两次;八位的键数据码也被连续发送两次,第一次发送的是键数据码的原码,第二次发送的是键数据码的反码。

SC9012的发射码采用脉冲位置调制方式(PPM)来进行编码。这样的编码方式效率高,抗干扰性能好。

引导码及位"0"和位"1"的波形见下图:

— 杭州士兰微电子股份有限公司 ——————

6. 双重按键操作

SC9012的双重按键操作已共有6种,即K21键与K22键 ~ K24键配合,K25键与K26键 ~ K28键配合,如下表:

首按键	组合键	D0	D1	D2	D3	D4	D5	D6	D7
K21	K22	1	0	1	0	1	1	0	0
	K23	0	1	1	0	1	1	0	0
	K24	1	1	1	0	1	1	0	0
K25	K26	1	0	0	1	1	1	0	0
	K27	0	1	0	1	1	1	0	0
	K28	1	1	0	1	1	1	0	0

除这六种之外的双键或多键按下都将被确认为无效操作,无发射码输出。

另外,双重按键的操作是分按键先后顺序的,必须先按**K21**键或**K23**键,再按其它组合键。请参阅下图:

(1) 有效的双重按键操作

杭州士兰微电子股份有限公司 -

(2) 无效的双重按键操作

7. 发射码的波形

杭州士兰微电子股份有限公司 -

8. SC9012的键数据码

键数据码如下表所示:

按键	矩阵接点					键数据码							
号.	K0	K1	K2	К3	KI/O	D0	D1	D2	D3	D4	D5	D6	D7
K1	•					0	0	0	0	0	0	0	0
K2		•			KO0	1	0	0	0	0	0	0	0
K3			•		KOU	0	1	0	0	0	0	0	0
K4				•		1	1	0	0	0	0	0	0
K5	•					0	0	1	0	0	0	0	0
K6		•			KO1	1	0	1	0	0	0	0	0
K7			•		KOI	0	1	1	0	0	0	0	0
K8				•		1	1	1	0	0	0	0	0
K9	•					0	0	0	1	0	0	0	0
K10		•			KO2	1	0	0	1	0	0	0	0
K11			•		NO2	0	1	0	1	0	0	0	0
K12				•		1	1	0	1	0	0	0	0
K13	•					0	0	1	1	0	0	0	0
K14		•			KO3	1	0	1	1	0	0	0	0
K15			•		I NOS	0	1	1	1	0	0	0	0
K16				•		1	1	1	1	0	0	0	0
K17	•					0	0	0	0	1	0	0	0
K18		•			KO4	1	0	0	0	1	0	0	0
K19			•		1.04	0	1	0	0	1	0	0	0
K20				•		1	1	0	0	1	0	0	0
K21	•					0	0	1	0	1	0	0	0
K22		•			KO5	1	0	1	0	1	0	0	0
K23			•			0	1	1	0	1	0	0	0
K24				•		1	1	1	0	1	0	0	0
K25	•					0	0	0	1	1	0	0	0
K26		•			KO6	1	0	0	1	1	0	0	0
K27			•			0	1	0	1	1	0	0	0
K28				•		1	1	0	1	1	0	0	0
K29	•					0	0	1	1	1	0	0	0
K30		•			KO7	1	0	1	1	1	0	0	0
K31			•			0	1	1	1	1	0	0	0
K32				•		1	1	1	1	1	0	0	0

典型应用电路

封装外形图

杭州士兰微电子股份有限公司 -