Supplementary Material

Experiments on round-reduced key-recovery attacks.

Since according to Eq. (12) the data to collect and store is at least $2^{n/2}/pq$. In the case where block size n=64 and distinguisher with probability 1, the complexity of 2^{32} is usually hard for our computers. So due to the limited computing power, we make experiments on round-reduced Simon32, whose block size is 32. We give an example on Simon32/64 using a 6-round distinguisher with probability 2^{-2} in single-key setting. Appending 1-round E_b and 3-round E_f , we attack 10-round Simon32/64 as Table 1, where ΔX_r is the input difference in round r.

Table 1: The 10-round rectangle attack on Simon32/64.

	0100 0000 0000 0000 ?000 0000 0?00 0001
$\Delta X_1(\alpha)$	0000 0000 0000 0000 0100 0000 0000 0000
$\Delta X_7(\delta)$	0100 0000 0000 0000 0000 0000 0000 0000
ΔX_8	?000 0000 0?00 0001 0100 0000 0000 0000
ΔX_9	0?00 000? ?000 01?? ?000 0000 0?00 0001
ΔX_{10}	?000 0??? 0?01 ???? 0?00 000? ?000 01??

In total, the data complexity is 2^{18} and the memory complexity is $\cdot 2^{18} + 2^{15} \approx 2^{18.17}$. The time complexity is $2^{18} + 2^{18} + 2^{14} + 2^{7} \approx 2^{19.04}$ (We don't make experiments on the exhaustive search process). Set h = 4, and the success probability is 97.6%.

Experiments result. Testing with 100 different mater keys, if the right key candidate is in the top 2^{15-h} key counters, we consider the attack succeeds to gain a h = 4-bit advantage than the exhaustive search. The experiment need

about 1 minutes on one computer and the success rate is 100%. The code of the experiment can be found in https://github.com/key-guess-rectangle/key-guess-rectangle