Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Team ID	PNT2022TMID34819
Project Name	University Admit Eligibility Predictor
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story/ Task	Story Points	Priority	Team Members
Sprint-1	Exploratory Data Analysis	US1	Perform initial investigations on data so as to discover pattern ,to spot anomalies and to check assumptions with sample data	1	Low	Athira.J
Sprint-1	Analysis of different regression models	US2	The R2 scores of different fundamental regression models like Decision Trees, Random Forest, Multiple Linear Regression, Logistic Regression, etc are compared and determine which model has the highest R^2 score.	2	Medium	Bernosha .S.B ,Dharshini.S
Sprint-2	Web App Development and model integration using pickle file	US3	Using Streamlit develop the web app to predict the probability of acceptance given a test data for a candidate. Persist the model with highest R^2 score as a pickle file and integrate it with the web app.	3	High	Bernosha .S.B, Darsha Gayathri.K
Sprint-3	Deploying the model in IBM cloud.	US4	Register in IBM cloud. Use IBM Watson ML service and IBM Watson Studio to deploy the Multiple Linear Regression Model.	3	High	Athira.J, Dharshini.S

Sprint-4	Integrate the web app with the deployed model.	US5	Use the deployed model in IBM Watson through the scoring endpoint by making an API call with the IBM cloud API key.	2	Medium	Athira.J ,Darsha Gayathri.K
Sprint-4	Hosting the web app in Streamlit cloud platform.	US6	Connect the respective Github repo and branch to Streamlit cloud platform and set up CI-CD to automatically deploy new changes that's pushed to the repo.	1	Low	Bernosha.S.B

PROJECT TRACKER, VELOCITY & BURNDOWN CHART: (4 MARKS)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story points completed (as on planned date)	Sprint release date (Actual)
Sprint-1	3	6 days	24 Oct 2022	29 Oct 2022	3	11 Nov 2022
Sprint-2	3	6 days	31 Oct 2022	05 Nov 2022	3	15 Nov 2022
Sprint-3	3	6 days	07 Nov 2022	12 Nov 2022	3	17 Nov 2022
Sprint-4	3	6 days	14 Nov 2022	19 Nov 2022	3	17 Nov 2022

Velocity:

Imagine we have a 6-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

AV=Sprint duration/velocity=20/6=3.3

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

