Network Working Group Request for Comments: 3636 Obsoletes: 2668, 1515 Category: Standards Track

J. Flick **Hewlett-Packard Company** September 2003

Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)

### Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

# Copyright Notice

Copyright (C) The Internet Society (2003). All Rights Reserved.

#### Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines objects for managing IEEE 802.3 Medium Attachment Units (MAUs). This memo obsoletes RFC 2668. This memo extends that specification by including management information useful for the management of 10 gigabit per second (Gb/s) MAUs. This memo also obsoletes RFC 1515.

Standards Track [Page 1] Flick

## Table of Contents

| 1.   | Introduction                                  | 2  |
|------|-----------------------------------------------|----|
| 2.   | The Internet-Standard Management Framework    | 3  |
| 3.   | Overview                                      | 3  |
|      | 3.1. Relationship to RFC 2668                 | 3  |
|      | 3.2. Relationship to RFC 2239                 | 4  |
|      | 3.3. Relationship to RFC 1515                 | 4  |
|      | 3.4. Relationship to Other MIBs               | 4  |
|      | 3.4.1. Relationship to the Interfaces MIB     | 4  |
|      | 3.4.2. Relationship to the 802.3 Repeater MIB | 5  |
|      | 3.5. Management of Internal MAUs              | 5  |
|      | 3.6. Mapping of IEEE 802.3 Managed Objects    | 6  |
| 4    | Definitions                                   | 7  |
| 5.   | Intellectual Property Statement               | 5  |
| 6.   |                                               | 6  |
| 7.   |                                               | 7  |
| 8.   | Informative References                        |    |
|      |                                               |    |
| 9.   |                                               | 8  |
| Α.   | Change Log                                    | _  |
|      | A.1. Changes since RFC 2668                   | _  |
|      | A.2. Changes between RFC 2239 and RFC 2668 6  | _  |
|      | hor's Address                                 |    |
| Full | l Copyright Statement                         | .2 |

#### 1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines objects for managing IEEE 802.3 Medium Attachment Units (MAUs).

This memo also includes a MIB module. This MIB module extends the list of managed objects specified in the earlier version of this MIB module, RFC 2668 [RFC2668].

Ethernet technology, as defined by the 802.3 Working Group of the IEEE, continues to evolve, with scalable increases in speed, new types of cabling and interfaces, and new features. This evolution may require changes in the managed objects in order to reflect this new functionality. This document, as with other documents issued by this working group, reflects a certain stage in the evolution of Ethernet technology. In the future, this document might be revised, or new documents might be issued by the Ethernet Interfaces and Hub MIB Working Group, in order to reflect the evolution of Ethernet technology.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

## 2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

#### Overview

Instances of these object types represent attributes of an IEEE 802.3 MAU. Several types of MAUs are defined in the IEEE 802.3 CSMA/CD standard [IEEE802.3]. These MAUs may be connected to IEEE 802.3 repeaters or to 802.3 (Ethernet-like) interfaces. For convenience this document refers to these devices as "repeater MAUs" and "interface MAUs."

The definitions presented here are based on Section 30.5, "Layer Management for 10 Mb/s, 100 Mb/s, 1000 Mb/s and 10 Gb/s Medium Attachment Units (MAUs)", Section 30.6, "Management for link Auto-Negotiation", and Annex 30A, "GDMO Specifications for 802.3 managed object classes" of IEEE Std. 802.3, 2002 edition [IEEE802.3], as amended by IEEE Std. 802.3ae-2002 [IEEE802.3ae]. That specification includes definitions for 10 Mb/s, 100 Mb/s, 1000 Mb/s and 10 Gb/s devices. This specification is intended to serve the same purpose: to provide for management of all types of Ethernet/802.3 MAUs.

#### 3.1. Relationship to RFC 2668

This MIB is intended to be a superset of that defined by RFC 2668 [RFC2668]. This MIB includes all of the objects contained in that MIB, with new and updated definitions which provide support for additional capabilities. Implementors are encouraged to support all applicable conformance groups in order to make the best use of the new functionality provided by this MIB. The new and updated definitions provide management support for 10 Gb/s devices.

## 3.2. Relationship to RFC 2239

RFC 2668 was a replacement for RFC 2239 [RFC2239]. RFC 2668 defined a superset of that defined by RFC 2239, which contained all of the objects defined in RFC 2239, plus several new ones which provide additional capabilities. The new objects provided management support for:

- o management of 1000 Mb/s devices
- o management of PAUSE negotiation
- o management of remote fault status

# 3.3. Relationship to RFC 1515

RFC 2239 was a replacement for RFC 1515 [RFC1515]. RFC 2239 defined a superset of RFC 1515 which contained all of the objects defined in RFC 1515, plus several new ones which provided additional capabilities. The new objects in RFC 2239 provided management support for:

- o management of 100 Mb/s devices
- o auto-negotiation on interface MAUs
- o jack management

## 3.4. Relationship to Other MIBs

It is assumed that an agent implementing this MIB will also implement (at least) the 'system' group defined in the SNMPv2 MIB [RFC3418]. The following sections identify other MIBs that such an agent should implement.

## 3.4.1. Relationship to the Interfaces MIB.

The sections of this document that define interface MAU-related objects specify an extension to the Interfaces MIB [RFC2863]. An agent implementing these interface-MAU related objects MUST also implement the relevant groups of the ifCompliance3 MODULE-COMPLIANCE statement of the Interface MIB. The value of the object ifMauIfIndex is the same as the value of 'ifIndex' used to instantiate the interface to which the given MAU is connected.

It is REQUIRED that an agent implementing the interface-MAU related objects in this MIB will also fully comply with the dot3Compliance2 MODULE-COMPLIANCE statement of the Ethernet-like Interfaces MIB,

[RFC3635]. Furthermore, when the interface-MAU related objects are used to manage a 10GBASE-W PHY -- i.e., when ifMauType is equal to dot3MauType10GigBaseW or any other 10GBASE-W variant -- then the agent MUST also support the Ethernet WAN Interface Sublayer (WIS) MIB [RFC3637] and must follow the interface layering model specified therein. In that case the value of the object ifMauIfIndex is the same as the value of 'ifIndex' for the layer at the top of the stack, i.e., for the ifTable entry that has 'ifType' equal to ethernetCsmacd(6). If the interface-MAU related objects are used to manage a PHY that allows the MAU type to be changed dynamically, then the agent SHALL create ifTable, ifStackTable, and ifInvStackTable entries that pertain to the WIS when ifMauDefaultType is changed to a 10GBASEW variant (i.e., one of dot3MauType10GigBaseW, dot3MauType10GigBaseEW, dot3MauType10GigBaseEW, or dot3MauType10GigBaseEW to a non-10GBASE-W type. The agent SHALL also change the values of 'ifConnectorPresent' and 'ifHighSpeed' in the ifTable entry indexed by ifMauIfIndex as specified in [RFC3635] and [RFC3637] when ifMauDefaultType is manipulated in this way but SHALL NOT otherwise alter that entry.

(Note that repeater ports are not represented as interfaces in the Interface MIB.)

# 3.4.2. Relationship to the 802.3 Repeater MIB

The section of this document that defines repeater MAU-related objects specifies an extension to the 802.3 Repeater MIB defined in [RFC2108]. An agent implementing these repeater-MAU related objects MUST also comply with the snmpRptrModCompl compliance statement of the 802.3 Repeater MIB.

The values of 'rpMauGroupIndex' and 'rpMauPortIndex' used to instantiate a repeater MAU variable SHALL be the same as the values of 'rptrPortGroupIndex' and 'rptrPortIndex' used to instantiate the port to which the given MAU is connected.

#### 3.5. Management of Internal MAUs

In some situations, a MAU can be "internal" -- i.e., its functionality is implemented entirely within a device. For example, a managed repeater may contain an internal repeater-MAU and/or an internal interface-MAU through which management communications originating on one of the repeater's external ports pass in order to reach the management agent associated with the repeater. Such internal MAUs may or may not be managed. If they are managed, objects describing their attributes should appear in the appropriate

MIB subtree: dot3RpMauBasicGroup for internal repeater-MAUs and dot3IfMauBasicGroup for internal interface-MAUs.

# 3.6. Mapping of IEEE 802.3 Managed Objects

IEEE 802.3 Managed Object Corresponding SNMP Object oMAU .aMAUID rpMauIndex or ifMauIndex or broadMauIndex .aMAUType rpMauType or ifMauType ifMauTypeListBits .aMAUTypeList rpMauMediaAvailable or .aMediaAvailable ifMauMediaAvailable .aLoseMediaCounter rpMauMediaAvailableStateExits or ifMauMediaAvailableStateExits .aJabber rpMauJabberState and rpMauJabberingStateEnters or ifMauJabberState and **ifMauJabberingStateEnters** .aMAUAdminState rpMauStatus or ifMauStatus .aBbMAUXmitRcvSplitType broadMauXmtRcvSplitType .aBroadbandFrequencies broadMauXmtCarrierFreq and broadMauTranslationFreq .aFalseCarriers rpMauFalseCarriers or ifMauFalseCarriers .acResetMAU rpMauStatus or ifMauStatus .acMAUAdminControl rpMauStatus or ifMauStatus rpMauJabberTrap or .nJabber ifMauJabberTrap oAutoNegotiation .aAutoNegID ifMauIndex **ifMauAutoNegAdminStatus** .aAutoNegAdminState .aAutoNegRemoteSignalling **ifMauAutoNegRemoteSignalling** .aAutoNegAutoConfig ifMauAutoNegConfig .aAutoNegLocalTechnologyAbility ifMauAutoNegCapabilityBits .aAutoNegAdvertisedTechnologyAbility ifMauAutoNegAdvertisedBits and ifMauAutoNegRemoteFaultAdvertised .aAutoNegReceivedTechnologyAbility ifMauAutoNegReceivedBits and **ifMauAutoNegRemoteFaultReceived** .acAutoNegRestartAutoConfig ifMauAutoNegRestart

.acAutoNegAdminControl

**ifMauAutoNegAdminStatus** 

The following IEEE 802.3 managed objects have not been included in this MIB for the following reasons.

IEEE 802.3 Managed Object

Corresponding SNMP Object

oMAU

.aIdleErrorCount

Only useful for 100BaseT2, which is not widely

implemented.

oAutoNegotiation

.aAutoNegLocalSelectorAbility

.aAutoNegAdvertisedSelectorAbility .aAutoNegReceivedSelectorAbility

Only needed for support of isoethernet (802.9a), which is not supported by this MIB.

#### **Definitions** 4.

MAU-MIB DEFINITIONS ::= BEGIN

**IMPORTS** 

Counter32, Integer32, Counter64.

OBJECT-TYPE, MODULE-IDENTITY, NOTIFICATION-TYPE,

OBJECT-IDENTITY, mib-2

FROM SNMPv2-SMI

TruthValue, AutonomousType, TEXTUAL-CONVENTION

FROM SNMPv2-TC

OBJECT-GROUP, MODULE-COMPLIANCE, NOTIFICATION-GROUP

FROM SNMPv2-CONF

InterfaceIndex

FROM IF-MIB;

mauMod MODULE-IDENTITY

LAST-UPDATED "200309190000Z" -- September 19, 2003 ORGANIZATION "IETF Ethernet Interfaces and Hub MIB

Working Group"

CONTACT-INFO

"WG E-mail: hubmib@ietf.org

To subscribe: hubmib-request@ietf.org Chair: Dan Romascanu

Postal: Avaya Inc.

Atidim Technology Park, Bldg. 3

Tel Aviv 61131

Israel

Tel: +972 3 645 8414

E-mail: dromasca@avaya.com

Editor: John Flick

Postal: Hewlett-Packard Company

8000 Foothills Blvd. M/S 5557

**Roseville**, CA 95747-5557

**USA** 

Tel: +1 916 785 4018 Fax: +1 916 785 1199 E-mail: johnf@rose.hp.com"

DESCRIPTION "Management information for 802.3 MAUs.

The following reference is used throughout this MIB module:

[IEEE 802.3 Std] refers to:
 IEEE\_Std 802.3, 2002 Edition: 'IEEE Standard for Information technology -Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements -Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications', as amended by IEEE Std 802.3ae-2002: 'Amendment: Media Access Control (MAC) Parameters, Physical Layer, and Management Parameters for 10 Gb/s Operation', August, 2002.

Of particular interest is Clause 30, '10Mb/s, 100Mb/s, 1000Mb/s and 10 Gb/s Management'.

Copyright (C) The Internet Society (2003). This version of this MIB module is part of RFC 3636; see the RFC itself for full legal notices."

**REVISION** 

"200309190000Z" -- September 19, 2003 DESCRIPTION "Updated to include support for 10 Gb/s MAUs. This resulted in the following revisions:

- Added OBJECT-IDENTITY definitions for 10 gigabit MAU types
- Added fiberLC jack type to JackType TCExtended ifMauTypeListBits with bits for the 10 gigabit MAU types
- Added enumerations to ifMauMediaAvailable, and updated its DESCRIPTION to reflect
- behaviour at 10 Gb/sAdded 64-bit version of ifMauFalseCarriers and added mauIfGrpHCStats object group to

contain the new object

```
- Deprecated mauModIfCompl2 and replaced it
                    with mauModIfCompl3, which includes the new
                    object group
                   This version published as RFC 3636."
    REVISION "199908240400Z" -- August 24, 1999 DESCRIPTION "This version published as RFC 2668.
                                                             Updated
                  to include support for 1000 Mb/sec
                  MAUs and flow control negotiation."
                  "199710310000Z" -- October 31, 1997
    REVISION
    DESCRIPTION "Version published as RFC 2239."
    REVISION
                  "199309300000Z" -- September30, 1993
    DESCRIPTION "Initial version, published as RFC 1515."
    ::= { snmpDot3MauMgt 6 }
snmpDot3MauMgt OBJECT IDENTIFIER ::= { mib-2 26 }
-- textual conventions
JackType ::= TEXTUAL-CONVENTION
    STATUS
                  current
    DESCRIPTION "Common enumeration values for repeater
                  and interface MAU jack types.'
                  INTEGER {
    SYNTAX
                      other(1),
                      rj45(2),
rj45S(3), -- rj45 shielded
                      db9(4),
                      bnc(5),
fAUI(6), -- female aui
-- male aui
                      mAUI(7), -
fiberSC(8),
                      fiberMIC(9),
                      fiberST(10),
                      telco(11),
                      mtrj(12), -- fiber MT-RJ
hssdc(13), -- fiber channel style-2
                      fiberLC(14)
                  }
dot3RpMauBasicGroup
    OBJECT IDENTIFIER ::= {    snmpDot3MauMgt 1 }
dot3IfMauBasicGroup
```

```
OBJECT IDENTIFIER ::= { snmpDot3MauMgt 2 }
dot3BroadMauBasicGroup
    OBJECT IDENTIFIER ::= { snmpDot3MauMgt 3 }
dot3IfMauAutoNegGroup
    OBJECT IDENTIFIER ::= { snmpDot3MauMgt 5 }
-- object identities for MAU types
-- (see rpMauType and ifMauType for usage)
    OBJECT IDENTIFIER ::= { snmpDot3MauMqt 4 }
dot3MauTypeAUI OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "no internal MAU, view from AUI" REFERENCE "[IEEE 802.3 Std.], Section 7"
    ::= { dot3MauType 1 }
dot3MauType10Base5 OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "thick coax MAU"
    REFERENCE "[IEEE 802.3 Std.], Section 7"
    ::= { dot3MauType 2 }
dot3MauTypeFoirl OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "FOIRL MAU"
               "[IEEE 802.3 Std.], Section 9.9"
    REFERENCE
    ::= { dot3MauType 3 }
dot3MauType10Base2 OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "thin coax MAU"
                "[IEEE 802.3 Std.], Section 10"
    REFERENCE
    ::= { dot3MauType 4 }
dot3MauType10BaseT OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "UTP MAU.
                 Note that it is strongly recommended that
                 agents return either dot3MauType10BaseTHD or dot3MauType10BaseTFD if the duplex mode is
                          However, management applications should
                 be prepared to receive this MAU type value from
                 older agent implementations."
                 "[IEEE 802.3 Std.], Section 14"
    REFERENCE
    ::= { dot3MauType 5 }
```

```
dot3MauType10BaseFP OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "passive fiber MAU"
REFERENCE "[IEEE 802.3 Std.], Section 16"
    ::= { dot3MauType 6 }
dot3MauType10BaseFB OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "sync fiber MAU"
REFERENCE "[IEEE 802.3 Std.], Section 17"
    ::= { dot3MauType 7 }
dot3MauType10BaseFL OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "async fiber MAU.
                 Note that it is strongly recommended that
                 agents return either dot3MauType10BaseFLHD or
                 dot3MauType10BaseFLFD if the duplex mode is
                          However, management applications should
                 known.
                 be prepared to receive this MAU type value from
                 older agent implementations."
                 "[IEEE 802.3 Std.], Section 18"
    REFERENCE
    ::= { dot3MauType 8 }
dot3MauType10Broad36    OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "broadband DTE MAU.
                 Note that 10BROAD36 MAUs can be attached to
                 interfaces but not to repeaters.
                 "[IEEE 802.3 Std.], Section 11'
    REFERENCE
    ::= { dot3MauType 9 }
----- new since RFC 1515:
dot3MauTvpe10BaseTHD OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "UTP MAU, half duplex mode"
                 "[IEEE 802.3 Std.], Section 14"
    REFERENCE
    ::= { dot3MauType 10 }
dot3MauType10BaseTFD OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "UTP MAU, full duplex mode" REFERENCE "[IEEE 802.3 Std.], Section 14"
    ::= { dot3MauType 11 }
dot3MauType10BaseFLHD OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "async fiber MAU, half duplex mode"
```

```
REFERENCE "[IEEE 802.3 Std.], Section 18"
    ::= { dot3MauType 12 }
dot3MauType10BaseFLFD OBJECT-IDENTITY
    STATUS
                   current
    DESCRIPTION "async fiber MAU, full duplex mode" REFERENCE "[IEEE 802.3 Std.], Section 18"
    ::= { dot3MauType 13 }
dot3MauType100BaseT4 OBJECT-IDENTITY
                   current
    DESCRIPTION "4 pair category 3 UTP"
    REFERENCE "[IEEE 802.3 Std.], Section 23"
    ::= { dot3MauType 14 }
dot3MauType100BaseTXHD OBJECT-IDENTITY
    STATUS
                   current
    DESCRIPTION "2 pair category 5 UTP, half duplex mode" REFERENCE "[IEEE 802.3 Std.], Section 25"
    ::= { dot3MauType 15 }
dot3MauType100BaseTXFD OBJECT-IDENTITY
                   current
    STATÚS
    DESCRIPTION "2 pair category 5 UTP, full duplex mode"
                 "[IEEE 802.3 Std.], Section 25"
    REFERENCE
    ::= { dot3MauType 16 }
dot3MauType100BaseFXHD OBJECT-IDENTITY
    STATUS
                   current
    DESCRIPTION "X fiber over PMT, half duplex mode" REFERENCE "[IEEE 802.3 Std.], Section 26"
    REFERENCE
    ::= { dot3MauType 17 }
dot3MauTvpe100BaseFXFD OBJECT-IDENTITY
                   current
    STATUS
    DESCRIPTION "X fiber over PMT, full duplex mode" REFERENCE "[IEEE 802.3 Std.], Section 26"
    ::= { dot3MauType 18 }
dot3MauType100BaseT2HD OBJECT-IDENTITY
    STATUS
                   current
    DESCRIPTION "2 pair category 3 UTP, half duplex mode" REFERENCE "[IEEE 802.3 Std.], Section 32"
    ::= { dot3MauType 19 }
dot3MauType100BaseT2FD OBJECT-IDENTITY
    STATUS
                  current
    DESCRIPTION "2 pair category 3 UTP, full duplex mode"
```

```
REFERENCE "[IEEE 802.3 Std.], Section 32"
    ::= { dot3MauType 20 }
---- new since RFC 2239:
dot3MauType1000BaseXHD OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "PCS/PMA, unknown PMD, half duplex mode" REFERENCE "[IEEE 802.3 Std.], Section 36"
    ::= { dot3MauType 21 }
dot3MauType1000BaseXFD OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "PCS/PMA, unknown PMD, full duplex mode" REFERENCE "[IEEE 802.3 Std.], Section 36"
    ::= { dot3MauType 22 }
dot3MauType1000BaseLXHD OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "Fiber over long-wavelength laser, half duplex
                 mode"
    REFERENCE
                 "[IEEE 802.3 Std.], Section 38"
    ::= { dot3MauType 23 }
dot3MauType1000BaseLXFD OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "Fiber over long-wavelength laser, full duplex
                 mode"
                 "[IEEE 802.3 Std.], Section 38"
    REFERENCE
    ::= { dot3MauType 24 }
dot3MauType1000BaseSXHD OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "Fiber over short-wavelength laser, half duplex mode"
                 "[IEEE 802.3 Std.], Section 38"
    REFERENCE
    ::= { dot3MauType 25 }
dot3MauType1000BaseSXFD OBJECT-IDENTITY
                 current
    STATUS
    DESCRIPTION "Fiber over short-wavelength laser, full duplex mode"
                 "[IEEE 802.3 Std.], Section 38"
    REFERENCE
    ::= { dot3MauType 26 }
dot3MauType1000BaseCXHD OBJECT-IDENTITY
                 current
    STATUS
    DESCRIPTION "Copper over 150-0hm balanced cable, half
```

```
duplex mode"
"[IEEE 802.3 Std.], Section 39"
    REFERENCE
    ::= { dot3MauType 27 }
dot3MauType1000BaseCXFD OBJECT-IDENTITY
    STATUS
                  current
    DESCRIPTION "Copper over 150-0hm balanced cable, full
                  duplex mode"
                  "[IEEE 802.3 Std.], Section 39"
    REFERENCE
    ::= { dot3MauType 28 }
dot3MauType1000BaseTHD OBJECT-IDENTITY
                  current
    STATUS
    DESCRIPTION "Four-pair Category 5 UTP, half duplex mode" REFERENCE "[IEEE 802.3 Std.], Section 40"
    ::= { dot3MauType 29 }
dot3MauType1000BaseTFD OBJECT-IDENTITY
    STATUS
                  current
    DESCRIPTION "Four-pair Category 5 UTP, full duplex mode" REFERENCE "[IEEE 802.3 Std.], Section 40"
    ::= { dot3MauType 30 }
---- new since RFC 2668:
dot3MauType10GigBaseX OBJECT-IDENTITY
    STATUS
                  current
    DESCRIPTION "X PCS/PMA, unknown PMD."
REFERENCE "[IEEE 802.3 Std.], Section 48"
    ::= { dot3MauType 31 }
dot3MauType10GigBaseLX4 OBJECT-IDENTITY
    STATUS
                  current
    DESCRIPTION "X fiber over WWDM optics"
                "[IEEE 802.3 Std.], Section 53"
    REFERENCE
    ::= { dot3MauType 32 }
dot3MauType10GigBaseR OBJECT-IDENTITY
                  current
    STATUS
    DESCRIPTION "R PCS/PMA, unknown PMD."
                "[IEEE 802.3 Std.], Section 49"
    REFERENCE
    ::= { dot3MauType 33 }
dot3MauType10GigBaseER OBJECT-IDENTITY
    STATUS
                  current
    DESCRIPTION "R fiber over 1550 nm optics"
               "[IEEE 802.3 Std.], Section 52"
    REFERENCE
    ::= { dot3MauType 34 }
```

```
dot3MauType10GigBaseLR OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "R fiber over 1310 nm optics"
                "[IEEE 802.3 Std.], Section 52"
    REFERENCE
    ::= { dot3MauType 35 }
dot3MauType10GigBaseSR OBJECT-IDENTITY
                 current
    STATUS
    DESCRIPTION "R fiber over 850 nm optics"
    REFERENCE "[IEEE 802.3 Std.], Section 52"
    ::= { dot3MauType 36 }
dot3MauType10GigBaseW OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "W PCS/PMA, unknown PMD."
REFERENCE "[IEEE 802.3 Std.], Section 49 and 50"
    ::= { dot3MauType 37 }
dot3MauType10GigBaseEW OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "W fiber over 1550 nm optics"
               "[IEEE 802.3 Std.], Section 52"
    REFERENCE
    ::= { dot3MauType 38 }
dot3MauType10GigBaseLW OBJECT-IDENTITY
    STATUS
                 current
    DESCRIPTION "W fiber over 1310 nm optics" REFERENCE "[IEEE 802.3 Std.], Section 52"
    ::= { dot3MauType 39 }
dot3MauType10GigBaseSW OBJECT-IDENTITY
                 current
    STATUS
    DESCRIPTION "W fiber over 850 nm optics"
    REFERENCE "[IEEE 802.3 Std.], Section 52"
    ::= { dot3MauType 40 }
-- The Basic Repeater MAU Table
rpMauTable OBJECT-TYPE
                 SEQUENCE OF RpMauEntry
    SYNTAX
    MAX-ACCESS not-accessible
    STATUS
                 current
    DESCRIPTION "Table of descriptive and status information
                 about the MAU(s) attached to the ports of a
                 repeater."
    ::= { dot3RpMauBasicGroup 1 }
```

```
rpMauEntry OBJECT-TYPE
    SYNTAX
                RpMauEntry
                not-accessible
    MAX-ACCESS
    STATUS
                current
    DESCRIPTION "An entry in the table, containing information
                about a single MAU."
                { rpMauGroupIndex,
    INDEX
                  rpMauPortIndex,
                  rpMauIndex
    ::= { rpMauTable 1 }
RpMauEntry ::=
    SEQUENCE {
        rpMauGroupIndex
                                             Integer32,
        rpMauPortIndex
                                             Integer32,
        rpMauIndex
                                             Integer32,
                                             AutonomousType,
        rpMauType
        rpMauStatus
                                             INTEGER,
        rpMauMediaAvailable
                                             INTEGER
        rpMauMediaAvailableStateExits
                                             Counter32,
                                             INTEGER,
        rpMauJabberState
        rpMauJabberingStateEnters
                                             Counter32,
                                             Counter32
        rpMauFalseCarriers
}
rpMauGroupIndex OBJECT-TYPE
    SYNTAX
                Integer32 (1..2147483647)
    MAX-ACCESS
                read-only -- read-only since originally an
                           -- SMIv1 index
    STATUS
                current
    DESCRIPTION "This variable uniquely identifies the group
                containing the port to which the MAU described
                by this entry is connected.
                       In practice, a group will generally be
                Note:
                a field-replaceablé unit (i.e., module, card,
                or board) that can fit in the physical system
                enclosure, and the group number will correspond
                to a number marked on the physical enclosure.
                The group denoted by a particular value of this
                object is the same as the group denoted by the
                same value of rptrGroupIndex.
                "Reference RFC 2108, rptrGroupIndex."
    ::= { rpMauEntry 1 }
rpMauPortIndex OBJECT-TYPE
```

```
SYNTAX
                  Integer32 (1..2147483647)
    MAX-ACCESS
                  read-only -- read-only since originally an
                               -- SMIv1 index
    STATUS
                  current
    DESCRIPTION "This variable uniquely identifies the repeater
                  port within group rpMauGroupIndex to which the MAU described by this entry is connected." "Reference RFC 2108, rptrPortIndex."
    REFERENCE
    ::= { rpMauEntry 2 }
rpMauIndex OBJECT-TYPE
    SYNTAX
                  Integer32 (1..2147483647)
    MAX-ACCESS
                  read-only -- read-only since originally an
                               -- SMIv1 index
    STATUS
                  current
    DESCRIPTION
                  "This variable uniquely identifies the MAU
                  described by this entry from among other
                  MAUs connected to the same port
                  (rpMauPortIndex)."
                  "[IEEE 802.3 Std], 30.5.1.1.1, aMAUID."
    REFERENCE
    ::= { rpMauEntry 3 }
rpMauType OBJECT-TYPE
                  AutonomousType
    SYNTAX
    MAX-ACCESS
                  read-only
    STATUS
                  current
    DESCRIPTION "This object identifies the MAU type. Values for standard IEEE 802.3 MAU types are defined above.
                  If the MAU type is unknown, the object identifier
                  unknownMauType OBJECT IDENTIFIER ::= { 0 0 }
                  is returned. Note that unknownMauType is a
                  syntactically valid object identifier, and any conformant implementation of ASN.1 and the BER
                  must be able to generate and recognize this
                  value."
                  "[IEEE 802.3 Std], 30.5.1.1.2, aMAUType."
    REFERENCE
    ::= { rpMauEntry 4 }
rpMauStatus OBJECT-TYPE
                  INTEGER {
    SYNTAX
                       other(1)
                       unknown(Ź),
                       operational(3),
                       standby(4)
                       shutdown(5),
                       reset(6)
```

MAX-ACCESS STATUS DESCRIPTION } read-write current

DESCRIPTION "The current state of the MAU. This object MAY be implemented as a read-only object by those agents and MAUs that do not implement software control of the MAU state. Some agents may not support setting the value of this object to some of the enumerated values.

The value other(1) is returned if the MAU is in a state other than one of the states 2 through 6.

The value unknown(2) is returned when the MAU's true state is unknown; for example, when it is being initialized.

A MAU in the operational(3) state is fully functional, operates, and passes signals to its attached DTE or repeater port in accordance to its specification.

A MAU in standby(4) state forces DI and CI to idle and the media transmitter to idle or fault, if supported. Standby(4) mode only applies to link type MAUs. The state of rpMauMediaAvailable is unaffected.

A MAU in shutdown(5) state assumes the same condition on DI, CI, and the media transmitter as though it were powered down or not connected. The MAU MAY return other(1) value for the rpMauJabberState and rpMauMediaAvailable objects when it is in this state. For an AUI, this state will remove power from the AUI.

Setting this variable to the value reset(6) resets the MAU in the same manner as a power-off, power-on cycle of at least one-half second would. The agent is not required to return the value reset (6).

Setting this variable to the value operational(3), standby(4), or shutdown(5) causes the MAU to assume the respective state except that setting a mixing-type MAU or an AUI to standby(4) will cause the MAU to enter the

```
shutdown state."
    REFERENCE
                 "[IEEE 802.3 Std], 30.5.1.1.7, aMAUAdminState,
                 30.5.1.2.2, acMAŪÁdminControl, and 30.5.1.2.1,
                 acResetMAU.
    ::= { rpMauEntry 5 }
rpMauMediaAvailable OBJECT-TYPE
                 INTEGER {
    SYNTAX
                     other(1), unknown(2)
                      available(3),
                     notAvailable(4),
                      remoteFault(5)
                      invalidSignal(6),
                      remoteJabber(7)
                      remoteLinkLoss(8),
                      remoteTest(9),
                      offline(10),
                      autoNegError(11)
                 read-only
    MAX-ACCESS
    STATUS
                 current
    DESCRIPTION "If the MAU is a link or fiber type (FOIRL,
                 10BASE-T, 10BASE-F) then this is equivalent to
                 the link test fail state/low light function.
                 For an AUI or a coax (including broadband) MAU
                 this indicates whether or not loopback is detected on the DI circuit. The value of this
                 attribute persists between packets for MAU types
                 AUI, 10BASE5, 10BASE2, 10BROAD36, and 10BASE-FP.
                 The value other(1) is returned if the
```

mediaAvailable state is not one of 2 through 11.

The value unknown(2) is returned when the MAU's true state is unknown; for example, when it is being initialized. At power-up or following a reset, the value of this attribute will be unknown for AUI, coax, and 10BASE-FP MAUs. these MAUs loopback will be tested on each transmission during which no collision is detected. If DI is receiving input when DO returns to IDL after a transmission and there has been no collision during the transmission then loopback will be detected. The value of this attribute will only change during non-collided transmissions for AUI, coax, and 10BASE-FP MAUs.

For 100Mbps and 1000Mbps MAUs, the enumerations match the states within the respective link integrity state diagrams, fig 32-16, 23-12 and 24-15 of sections 32, 23 and 24 of [IEEE802.3]. Any MAU which implements management of auto-negotiation will map remote fault indication to remote fault.

The value available(3) indicates that the link, light, or loopback is normal. The value notAvailable(4) indicates link loss, low light, or no loopback.

The value remoteFault(5) indicates that a fault has been detected at the remote end of the link. This value applies to 10BASE-FB, 100BASE-T4 Far End Fault Indication and non-specified remote faults from a system running auto-negotiation. The values remoteJabber(7), remoteLinkLoss(8), and remoteTest(9) SHOULD be used instead of remoteFault(5) where the reason for remote fault is identified in the remote signaling protocol.

The value invalidSignal(6) indicates that an invalid signal has been received from the other end of the link. invalidSignal(6) applies only to MAUs of type 10BASE-FB.

Where an IEEE Std 802.3-2002 clause 22 MII is present, a logic one in the remote fault bit (reference section 22.2.4.2.8 of that document) maps to the value remoteFault(5), and a logic zero in the link status bit (reference section 22.2.4.2.10 of that document) maps to the value notAvailable(4). The value notAvailable(4) takes precedence over the value remoteFault(5).

Any MAU that implements management of clause 37 Auto-Negotiation will map the received Remote Fault (RF1 and RF2) bit values for Offline to offline(10), Link Failure to remoteFault(5) and Auto-Negotiation Error to autoNegError(11)."

REFERENCE "[IEEE 802.3 Std], 30.5.1.1.4, aMediaAvailable."
::= { rpMauEntry 6 }

rpMauMediaAvailableStateExits OBJECT-TYPE SYNTAX Counter32

```
MAX-ACCESS
                 read-only
    STATUS
                 current
    DESCRIPTION "A count of the number of times that
                 rpMauMediaAvailable for this MAU instance leaves
                 the state available(3).
                 Discontinuities in the value of this counter can
                 occur at re-initialization of the management
                 system, and at other times as indicated by the
                 value of rptrMonitorPortLastChange."
    REFERENCE
                 "[IEEE 802.3 Std], 30.5.1.1.5,
                 aLoseMediaCounter.
                 RFC 2108, rptrMonitorPortLastChange"
    ::= { rpMauEntry 7 }
rpMauJabberState OBJECT-TYPE
    SYNTAX
                 INTEGER {
                     other(1),
unknown(2)
                     noJabber(3)
                     jabbering(4)
    MAX-ACCESS
                 read-only
    STATUS
                 current
    DESCRIPTION "The value other(1) is returned if the jabber
                 state is not 2, 3, or 4. The agent MUST always
                 return other(1) for MAU type dot3MauTypeAUI.
                 The value unknown(2) is returned when the MAU's
                 true state is unknown; for example, when it is
                 being initialized.
                 If the MAU is not jabbering the agent returns
                 noJabber(3). This is the 'normal' state.
                 If the MAU is in jabber state the agent returns
                 the jabbering(4) value.
    REFERENCE "[IEEE 802.3 Std], 30.5.1.1.6, aJabber.jabberFlag."
    ::= { rpMauEntry 8 }
rpMauJabberingStateEnters OBJECT-TYPE
    SYNTAX
                 Counter32
    MAX-ACCESS
                 read-only
    STATUS
                 current
    DESCRIPTION "A count of the number of times that
                 mauJabberState for this MAU instance enters the state jabbering(4). For MAUs of type
```

dot3MauTypeAUI, dot3MauType100BaseT4,
dot3MauType100BaseTX, dot3MauType100BaseFX and all 1000Mbps types, this counter will always indicate zero.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of rptrMonitorPortLastChange."

REFERENCE

"[IEEE 802.3 Std], 30.5.1.1.6,

aJabber.jabberCounter.

RFC 2108, rptrMonitorPortLastChange"

::= { rpMauEntry 9 }

rpMauFalseCarriers OBJECT-TYPE

SYNTAX Counter32 MAX-ACCESS read-only STATUS current

DESCRIPTION "A count of the number of false carrier events during IDLE in 100BASE-X links. This counter does not increment at the symbol rate. It can increment after a valid carrier completion at a maximum rate of once per 100 ms until the next carrier event.

> This counter increments only for MAUs of type dot3MauType100BaseT4, dot3MauType100BaseTX, and
> dot3MauType100BaseFX and all 1000Mbps types.

For all other MAU types, this counter will always indicate zero.

The approximate minimum time for rollover of this counter is 7.4 hours.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of rptrMonitorPortLastChange."

REFERENCE

"[IEEE 802.3 Std], 30.5.1.1.10, aFalseCarriers. RFC 2108, rptrMonitorPortLastChange"

::= { rpMauEntry 10 }

-- The rpJackTable applies to MAUs attached to repeaters -- which have one or more external jacks (connectors).

rpJackTable OBJECT-TYPE SYNTAX **SEQUENCE OF RpJackEntry** 

```
MAX-ACCESS
                  not-accessible
    STATUS
                  current
    DESCRIPTION "Information about the external jacks attached
                  to MAUs attached to the ports of a repeater."
    ::= { dot3RpMauBasicGroup 2 }
rpJackEntry OBJECT-TYPE
    SYNTAX
                  RpJackEntry
                  not-accessible
    MAX-ACCESS
    STATUS
                  current
    DESCRIPTION "An entry in the table, containing information about a particular jack."
    INDEX
                  { rpMauGroupIndex,
                    rpMauPortIndex,
                    rpMauIndex,
                    rpJackIndex
    ::= { rpJackTable 1 }
RpJackEntry ::=
    SEQUENCE {
         rpJackIndex
                                                 Integer32,
                                                 JackType
         rpJackType
    }
rpJackIndex OBJECT-TYPE
                  Integer32 (1..2147483647)
    SYNTAX
    MAX-ACCESS
                  not-accessible
    STATUS
                  current
    DESCRIPTION "This variable uniquely identifies the jack described by this entry from among other jacks
                  attached to the same MAU (rpMauIndex)."
    ::= { rpJackEntry 1 }
rpJackType OBJECT-TYPE
    SYNTAX
                  JackType
    MAX-ACCESS
                  read-only
    STATUS
                  current
    DESCRIPTION "The jack connector type, as it appears on the
                  outside of the system.
    ::= { rpJackEntry 2 }
-- The Basic Interface MAU Table
ifMauTable OBJECT-TYPE
                  SEQUENCE OF IfMauEntry
    SYNTAX
```

```
MAX-ACCESS
                not-accessible
    STATUS
                current
    DESCRIPTION "Table of descriptive and status information
                about MAU(s) attached to an interface."
    ::= { dot3IfMauBasicGroup 1 }
ifMauEntry OBJECT-TYPE
    SYNTAX
                IfMauEntry
    MAX-ACCESS
                not-accessible
    STATUS
                current
    DESCRIPTION "An entry in the table, containing information
                about a single MAU."
    INDEX
                { ifMauIfIndex,
                  ifMauIndex
    ::= { ifMauTable 1 }
IfMauEntry ::=
    SEQUENCE {
        ifMauIfIndex
                                              InterfaceIndex,
                                              Integer32,
        ifMauIndex
                                              AutonomousType,
        ifMauType
        ifMauStatus
                                              INTEGER,
        ifMauMediaAvailable
                                              INTEGER.
        ifMauMediaAvailableStateExits
                                              Counter32,
        ifMauJabberState
                                              INTEGER,
        ifMauJabberingStateEnters
                                              Counter32,
        ifMauFalseCarriers
                                              Counter32,
        ifMauTypeList
                                              Integer32,
        ifMauDefaultType
                                              AutonomousType,
                                             TruthValue,
        ifMauAutoNegSupported
        ifMauTypeListBits
                                             BITS,
        ifMauHCFalseCarriers
                                             Counter64
    }
ifMauIfIndex OBJECT-TYPE
                InterfaceIndex
    SYNTAX
    MAX-ACCESS
                read-only -- read-only since originally an
                            -- SMIv1 index
    STATUS
                current
    DESCRIPTION "This variable uniquely identifies the interface
                to which the MAU described by this entry is connected."
    REFERENCE
                "RFC 2863, ifIndex"
    ::= { ifMauEntry 1 }
ifMauIndex OBJECT-TYPE
                Integer32 (1..2147483647)
    SYNTAX
```

```
MAX-ACCESS read-only -- read-only since originally an
                                 -- SMIv1 index
    STATUS
                    current
    DESCRIPTION "This variable uniquely identifies the MAU described by this entry from among other MAUs
                    connected to the same interface (ifMauIfIndex)." "[IEEE 802.3 Std], 30.5.1.1.1, aMAUID."
    REFERENCE
     ::= { ifMauEntry 2 }
ifMauType OBJECT-TYPE
                   AutonomousType
     SYNTAX
    MAX-ACCESS
                   read-only
     STATUS
                    current
    DESCRIPTION "This object identifies the MAU type. Values for standard IEEE 802.3 MAU types are defined above.
                    If the MAU type is unknown, the object identifier
                    unknownMauType OBJECT IDENTIFIER ::= { 0 0 }
                    is returned. Note that unknownMauType is a
                   syntactically valid object identifier, and any conformant implementation of ASN.1 and the BER
                    must be able to generate and recognize this
                    value.
                    This object represents the operational type of
                   the MAU, as determined by either (1) the result of the auto-negotiation function or (2) if auto-negotiation is not enabled or is not
                    implemented for this MAU, by the value of the
                   object ifMauDefaultType. In case (2), a set to
                    the object ifMauDefaultType will force the MAU
                    into the new operating mode."
                    "[IEEE 802.3 Std], 30.5.1.1.2, aMAUType."
    REFERENCE
     ::= { ifMauEntry 3 }
ifMauStatus OBJECT-TYPE
                    INTEGER {
     SYNTAX
                         other(1)
                         unknown(2)
                         operational(3),
                         standby(4)
                         shutdown(5),
                         reset(6)
    MAX-ACCESS
                  read-write
                    current
     STATUS
    DESCRIPTION "The current state of the MAU. This object MAY
```

be implemented as a read-only object by those agents and MAUs that do not implement software control of the MAU state. Some agents may not support setting the value of this object to some of the enumerated values.

The value other(1) is returned if the MAU is in a state other than one of the states 2 through 6.

The value unknown(2) is returned when the MAU's true state is unknown; for example, when it is being initialized.

A MAU in the operational(3) state is fully functional, operates, and passes signals to its attached DTE or repeater port in accordance to its specification.

A MAU in standby(4) state forces DI and CI to idle and the media transmitter to idle or fault, if supported. Standby(4) mode only applies to link type MAUs. The state of ifMauMediaAvailable is unaffected.

A MAU in shutdown(5) state assumes the same condition on DI, CI, and the media transmitter as though it were powered down or not connected. The MAU MAY return other(1) value for the ifMauJabberState and ifMauMediaAvailable objects when it is in this state. For an AUI, this state will remove power from the AUI.

Setting this variable to the value reset(6) resets the MAU in the same manner as a power-off, power-on cycle of at least one-half second would. The agent is not required to return the value reset (6).

Setting this variable to the value operational(3), standby(4), or shutdown(5) causes the MAU to assume the respective state except that setting a mixing-type MAU or an AUI to standby(4) will cause the MAU to enter the shutdown state."

REFERENCE

"[IEEE 802.3 Std], 30.5.1.1.7, aMAUAdminState, 30.5.1.2.2, acMAUAdminControl, and 30.5.1.2.1, acResetMAU."

::= { ifMauEntry 4 }

```
ifMauMediaAvailable OBJECT-TYPE
                  INTEGER {
    SYNTAX
                       other(1),
                       unknown(2)
                       available(3)
                       notAvailable(4),
                       remoteFault(5),
                       invalidSignal(6),
                       remoteJabber(7),
                       remoteLinkLoss(8),
                       remoteTest(9),
                       offline(10),
                       autoNegError(11),
                       pmdLinkFault(12),
                       wisFrameLoss(13)
                       wisSignalLoss(14),
                       pcsLinkFault(15),
                       excessiveBER(16),
                       dxsLinkFault(17),
                       pxsLinkFault(18)
    MAX-ACCESS
                  read-only
    STATUS
                  current
    DESCRIPTION "If the MAU is a link or fiber type (FOIRL,
                  10BASE-T, 10BASE-F) then this is equivalent to the link test fail state/low light function.
                  For an AUI or a coax (including broadband) MAU
                  this indicates whether or not loopback is
                  detected on the DI circuit.
                                                   The value of this
                  attribute persists between packets for MAU types
                  AUI, 10BASE5, 10BASE2, 10BROAD36, and 10BASE-FP.
                  The value other(1) is returned if the
                  mediaAvailable state is not one of 2 through 18.
                  The value unknown(2) is returned when the MAU's
                  true state is unknown; for example, when it is being initialized. At power-up or following a
                  reset, the value of this attribute will be
                  unknown for AUI, coax, and 10BASE-FP MAUs. these MAUs loopback will be tested on each
                  transmission during which no collision is
```

detected. If DI is receiving input when DO returns to IDL after a transmission and there has been no collision during the transmission then loopback will be detected. The value of

this attribute will only change during non-collided transmissions for AUI, coax, and 10BASE-FP MAUs.

For 100Mbps and 1000Mbps MAUs, the enumerations match the states within the respective link integrity state diagrams, fig 32-16, 23-12 and 24-15 of sections 32, 23 and 24 of [IEEE802.3]. Any MAU which implements management of auto-negotiation will map remote fault indication to remote fault.

The value available(3) indicates that the link, light, or loopback is normal. The value notAvailable(4) indicates link loss, low light, or no loopback.

The value remoteFault(5) indicates that a fault has been detected at the remote end of the link. This value applies to 10BASE-FB, 100BASE-T4 Far End Fault Indication and non-specified remote faults from a system running auto-negotiation. The values remoteJabber(7), remoteLinkLoss(8), and remoteTest(9) SHOULD be used instead of remoteFault(5) where the reason for remote fault is identified in the remote signaling protocol. The value invalidSignal(6) indicates that an invalid signal has been received from the other end of the link. invalidSignal(6) applies only to MAUs of type 10BASE-FB.

Where an IEEE Std 802.3-2002 clause 22 MII is present, a logic one in the remote fault bit (reference section 22.2.4.2.8 of that document) maps to the value remoteFault(5), and a logic zero in the link status bit (reference section 22.2.4.2.10 of that document) maps to the value notAvailable(4). The value notAvailable(4) takes precedence over the value remoteFault(5).

Any MAU that implements management of clause 37 Auto-Negotiation will map the received RF1 and RF2 bit values for Offline to offline(10), Link Failure to remoteFault(5) and Auto-Negotiation Error to autoNegError(11).

For 10 Gb/s, the enumerations map to the states within the Reconciliation Sublayer state diagram

```
as follows:
                     NoFault maps to the enumeration 'available(3)'
                     LocalFault maps to the enumeration
                        notAvailable(4)'
                    RemoteFault maps to the enumeration 'remoteFault(5)'
                  The enumerations 'pmdLinkFault(12)',
'wisFrameLoss(13)', 'wisSignalLoss(14)',
'pcsLinkFault(15)', 'excessiveBER(16)', and
'dxsLinkFault(17)' and 'pxsLinkFault(18)' should
                  be used instead of the enumeration
                   'notAvailable(4)' where the reason for the local
                  fault can be identified through the use of the
                  MDIO Interface. Where multiple reasons for the local fault state can be identified only the
                  highest precedence error should be reported.
                  The precedence in descending order is as
                  follows:
                       pxsLinkFault
                       pmdLinkFault
                       wisFrameLoss
                       wisSignalLoss
                       pcsLinkFault
                       excessiveBER
                       dxsLinkFault"
    REFERENCE
                  "[IEEE 802.3 Std], 30.5.1.1.4, aMediaAvailable."
    ::= { ifMauEntry 5 }
ifMauMediaAvailableStateExits OBJECT-TYPE
    SYNTAX
                  Counter32
    MAX-ACCESS
                  read-only
    STATUS
                  current
    DESCRIPTION "A count of the number of times that
                  ifMauMediaAvailable for this MAU instance leaves
                  the state available(3).
                  Discontinuities in the value of this counter can
                  occur at re-initialization of the management
                  system, and at other times as indicated by the
                  value of ifCounterDiscontinuityTime.
                  "[IEEE 802.3 Std], 30.5.1.1.5,
    REFERENCE
                  aLoseMediaCounter.
                  RFC 2863, ifCounterDiscontinuityTime."
    ::= { ifMauEntry 6 }
ifMauJabberState OBJECT-TYPE
    SYNTAX
                  INTEGER {
```

```
other(1),
unknown(2)
                      noJabber(3)
                      iabbering(4)
                  }
    MAX-ACCESS
                  read-only
    STATUS
                  current
    DESCRIPTION "The value other(1) is returned if the jabber
                  state is not 2, 3, or 4. The agent MUST always return other(1) for MAU type dot3MauTypeAUI.
                  The value unknown(2) is returned when the MAU's
                  true state is unknown; for example, when it is
                  being initialized.
                  If the MAU is not jabbering the agent returns
                  noJabber(3). This is the 'normal' state.
                  If the MAU is in jabber state the agent returns
                  the jabbering(4) value."
"[IEEE 802.3 Std], 30.5.1.1.6,
aJabber.jabberFlag."
    REFERENCE
    ::= { ifMauEntry 7 }
ifMauJabberingStateEnters OBJECT-TYPE
    SYNTAX
                  Counter32
    MAX-ACCESS
                  read-only
    STATUS
                  current
    DESCRIPTION "A count of the number of times that
                  mauJabberState for this MAU instance enters the state jabbering(4). This counter will always
                  indicate zero for MAUs of type dot3MauTypeAUI
                  and those of speeds above 10Mbps.
                  Discontinuities in the value of this counter can
                  occur at re-initialization of the management
                  system, and at other times as indicated by the
                  value of ifCounterDiscontinuityTime."
                  "[IEEE 802.3 Std], 30.5.1.1.6,
    REFERENCE
                  aJabber.jabberCounter.
                  RFC 2863, ifCounterDiscontinuityTime."
    ::= { ifMauEntry 8 }
ifMauFalseCarriers OBJECT-TYPE
    SYNTAX
                  Counter32
    MAX-ACCESS read-only
    STATUS
                  current
    DESCRIPTION "A count of the number of false carrier events
```

during IDLE in 100BASE-X and 1000BASE-X links.

For all other MAU types, this counter will always indicate zero. This counter does not increment at the symbol rate.

It can increment after a valid carrier completion at a maximum rate of once per 100 ms for 100BASE-X and once per 10us for 1000BASE-X until the next CarrierEvent.

This counter can roll over very quickly. A management station is advised to poll the ifMauHCFalseCarriers instead of this counter in order to avoid loss of information.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ifCounterDiscontinuityTime."

REFERENCE

"[IEEE 802.3 Std], 30.5.1.1.10, aFalseCarriers. RFC 2863, ifCounterDiscontinuityTime."

::= { ifMauEntry 9 }

ifMauTvpeList OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only

**STATUS** deprecated

DESCRIPTION "\*\*\*\*\*\*\* THIS OBJECT IS DEPRECATED \*\*\*\*\*\*\*

This object has been deprecated in favour of ifMauTypeListBits.

A value that uniquely identifies the set of possible IEEE 802.3 types that the MAU could be. The value is a sum which initially takes the value zero. Then, for each type capability of this MAU, 2 raised to the power noted below is added to the sum. For example, a MAU which has the capability to be only 10BASE-T would have a value of 512 (2\*\*9). In contrast, a MAU which supports both 10Base-T (full duplex) and 100BASE-TX (full duplex) would have a value of ((2\*\*11) + (2\*\*16)) or 67584.

The powers of 2 assigned to the capabilities are these:

```
Power
       Capability
  0
          other or unknown
  1
          AUI
  2
3
          10BASE-5
          FOIRL
  4
          10BASE-2
  5
6
7
          10BASE-T duplex mode unknown
          10BASE-FP
          10BASE-FB
  8
          10BASE-FL duplex mode unknown
  9
          10BR0AD36
                    half duplex mode
 10
          10BASE-T
          10BASE-T
 11
                     full duplex mode
          10BASE-FL half duplex mode
10BASE-FL full duplex mode
 12
 13
 14
          100BASE-T4
 15
          100BASE-TX half duplex mode
          100BASE-TX full duplex mode
 16
          100BASE-FX half duplex mode
 17
          100BASE-FX full duplex mode
 18
          100BASE-T2 half duplex mode
 19
 20
          100BASE-T2 full duplex mode
```

If auto-negotiation is present on this MAU, this object will map to ifMauAutoNegCapability. ::= { ifMauEntry 10 }

```
ifMauDefaultType OBJECT-TYPE
```

SYNTAX **AutonomousType** MAX-ACCESS read-write

**STATUS** current

DESCRIPTION "This object identifies the default administrative baseband MAU type, to be used in conjunction with the operational MAU type denoted by ifMauType.

> The set of possible values for this object is the same as the set defined for the ifMauType object.

This object represents the administratively-configured type of the MAU. Ιf auto-negotiation is not enabled or is not implemented for this MAU, the value of this object determines the operational type of the MAÚ. In this case, a set to this object will force the MAU into the specified operating mode.

If auto-negotiation is implemented and enabled for this MĂU, the operational type of the MAU is determined by auto-negotiation, and the value of this object denotes the type to which the MAU will automatically revert if/when auto-negotiation is later disabled.

NOTE TO IMPLEMENTORS: It may be necessary to provide for underlying hardware implementations which do not follow the exact behavior specified In particular, when ifMauAutoNegAdminStatus transitions from enabled to disabled, the agent implementation MUST ensure that the operational type of the MAU (as reported by ifMauType) correctly transitions to the value specified by this object, rather than continuing to operate at the value earlier determined by the auto-negotiation function." "[IEEE 802.3 Std], 30.5.1.1.1, aMAUID, and

REFERENCE

22.2.4.1.4."

::= { ifMauEntry 11 }

```
ifMauAutoNegSupported OBJECT-TYPE
                TruthValue
    SYNTAX
   MAX-ACCESS
                read-only
    STATUS
                current
```

DESCRIPTION "This object indicates whether or not auto-negotiation is supported on this MAU." ::= { ifMauEntry 12 }

ifMauTypeListBits OBJECT-TYPE

```
BITS {
SYNTAX
     b0ther(0),
                               -- other or unknown
     bAUI(1),
b10base5(2),
                               -- AUI
                             -- 10BASE-5
     bFoirl(3),
                               -- FOIRL
     b10base2(4),
b10baseT(5),
                             -- 10BASE-2
                             -- 10BASE-T duplex mode unknown
     b10baseFP(6),
b10baseFB(7),
                             -- 10BASE-FP
                               -- 10BASE-FB
     b10baseFL(8),
                               -- 10BASE-FL duplex mode unknown
     b10broad36(9)
                               -- 10BR0AD36
     b10baseTHD(10), -- 10BASE-T half duplex mode
b10baseFLHD(12), -- 10BASE-FL half duplex mode
b10baseFLFD(13), -- 10BASE-FL full duplex mode
```

```
b100baseT4(14),
b100baseTXHD(15),
                                  -- 100BASE-T4
                                  -- 100BASE-TX half duplex mode
          b100baseTXFD(16),
                                  -- 100BASE-TX full duplex mode
          b100baseFXHD(17),
                                  -- 100BASE-FX half duplex mode
          b100baseFXFD(18),
                                  -- 100BASE-FX full duplex mode
          b100baseT2HD(19),
                                  -- 100BASE-T2 half duplex mode
          b100baseT2FD(20),
                                  -- 100BASE-T2 full duplex mode
          b1000baseXHD(21),
                                  -- 1000BASE-X half duplex mode
          b1000baseXFD(22),
                                  -- 1000BASE-X full duplex mode
          b1000baseLXHD(23), -- 1000BASE-LX half duplex mode
          b1000baseLXFD(24), -- 1000BASE-LX full duplex mode
          b1000baseSXHD(25), -- 1000BASE-SX half duplex mode
b1000baseSXFD(26), -- 1000BASE-SX full duplex mode
b1000baseCXHD(27), -- 1000BASE-CX half duplex mode
b1000baseCXFD(28), -- 1000BASE-CX full duplex mode
          b1000baseTHD(29),
                                  -- 1000BASE-T half duplex mode
          b1000baseTFD(30),
                                  -- 1000BASE-T full duplex mode
          b10GbaseX(31),
b10GbaseLX4(32),
                                  -- 10GBASE-X
                                  -- 10GBASE-LX4
          b10GbaseR(33),
                                  -- 10GBASE-R
          b10GbaseER(34),
                                -- 10GBASE-ER
          b10GbaseLR(35), -- 10GBASE-LR
b10GbaseSR(36), -- 10GBASE-SR
b10GbaseW(37), -- 10GBASE-W
          b10GbaseW(37),
          b10GbaseEW(38), -- 10GBASE-EW
b10GbaseLW(39), -- 10GBASE-LW
b10GbaseSW(40) -- 10GBASE-SW
                                  -- 10GBASE-SW
          b10GbaseSW(40)
     MAX-ACCESS read-only
     STATUS
                    current
     DESCRIPTION "A value that uniquely identifies the set of
                    possible IEEE 802.3 types that the MAU could be. If auto-negotiation is present on this MAU, this
                    object will map to ifMauAutoNegCapabilityBits.
                    Note that this MAU may be capable of operating
                    as a MAU type that is beyond the scope of this
                    MIB. This is indicated by returning the
                    bit value b0ther in addition to any bit values for capabilities that are listed above."
     ::= { ifMauEntry 13 }
ifMauHCFalseCarriers OBJECT-TYPE
               Counter64
     SYNTAX
     MAX-ACCESS read-only
     STATUS current
```

DESCRIPTION "A count of the number of false carrier events during IDLE in 100BASE-X and 1000BASE-X links.

For all other MAU types, this counter will always indicate zero. This counter does not increment at the symbol rate.

This counter is a 64 bit version of ifMauFalseCarriers. Since the 32 bit version of this counter can roll over very quickly, management stations are advised to poll the 64 bit version instead in order to avoid loss of information.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ifCounterDiscontinuityTime."

REFERENCE "[IEEE 802.3 Std], 30.5.1.1.10, aFalseCarriers.

RFC 2863, ifCounterDiscontinuityTime."

::= { ifMauEntry 14 }

-- The ifJackTable applies to MAUs attached to interfaces -- which have one or more external jacks (connectors).

ifJackTable OBJECT-TYPE **SEQUENCE OF IfJackEntry** SYNTAX MAX-ACCESS not-accessible **STATUS** current DESCRIPTION "Information about the external jacks attached to MAUs attached to an interface. ::= { dot3IfMauBasicGroup 2 } ifJackEntry OBJECT-TYPE **IfJackEntry** SYNTAX MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the table, containing information about a particular jack." INDEX { ifMauIfIndex, ifMauIndex, ifJackIndex ::= { ifJackTable 1 } IfJackEntry ::=

```
ifJackType
                                                JackType
    }
ifJackIndex OBJECT-TYPE
                 Integer32 (1..2147483647)
    SYNTAX
    MAX-ACCESS
                 not-accessible
    STATUS
                 current
    DESCRIPTION "This variable uniquely identifies the jack described by this entry from among other jacks
                 attached to the same MAU."
    ::= { ifJackEntry 1 }
ifJackType OBJECT-TYPE
                 JackType
    SYNTAX
    MAX-ACCESS
                 read-only
    STATUS
                 current
    DESCRIPTION "The jack connector type, as it appears on the
                 outside of the system.
    ::= { ifJackEntry 2 }
-- The MAU Auto-Negotiation Table
ifMauAutoNegTable OBJECT-TYPE
                 SEQUENCE OF IfMauAutoNegEntry
    SYNTAX
                 not-accessible
    MAX-ACCESS
    STATUS
                 current
    DESCRIPTION "Configuration and status objects for the
                 auto-negotiation function of MAUs attached to
                 interfaces.
                 The ifMauAutoNegTable applies to systems in
                 which auto-negotiation is supported on one or
                 more MAUs attached to interfaces.
                                                        Note that if
                 auto-negotiation is present and enabled, the ifMauType object reflects the result of the
                 auto-negotiation function."
    ::= { dot3IfMauAutoNegGroup 1 }
ifMauAutoNegEntry OBJECT-TYPE
    SYNTAX
                 IfMauAutoNegEntry
    MAX-ACCESS
                 not-accessible
    STATUS
                 current
    DESCRIPTION "An entry in the table, containing configuration
                 and status information for the auto-negotiation
                 function of a particular MAU.'
    INDEX
                 { ifMauIfIndex,
```

```
ifMauIndex
    ::= { ifMauAutoNegTable 1 }
IfMauAutoNegEntry ::=
    SEQUENCE {
         ifMauAutoNegAdminStatus
                                                 INTEGER,
         ifMauAutoNegRemoteSignaling
                                                 INTEGER,
         ifMauAutoNegConfig
                                                 INTEGER,
         ifMauAutoNegCapability
                                                 Integer32,
         ifMauAutoNegCapAdvertised
                                                 Integer32,
         ifMauAutoNegCapReceived
                                                 Integer32,
         ifMauAutoNegRestart
                                                 INTEGER,
         ifMauAutoNegCapabilityBits
                                                 BITS,
                                                 BITS,
         ifMauAutoNegCapAdvertisedBits
         ifMauAutoNegCapReceivedBits
                                                 BITS.
         ifMauAutoNegRemoteFaultAdvertised
                                                 INTEGER,
         ifMauAutoNegRemoteFaultReceived
                                                 INTEGER
    }
ifMauAutoNegAdminStatus OBJECT-TYPE
                  INTEGER {
    SYNTAX
                      enabled(1).
                      disabled(2)
    MAX-ACCESS
                  read-write
    STATUS
                  current
    DESCRIPTION "Setting this object to enabled(1) will cause
                  the interface which has the auto-negotiation
                  signaling ability to be enabled.
                  If the value of this object is disabled(2) then
                  the interface will act as it would if it had no
                  auto-negotiation signaling. Under these conditions, an IEEE 802.3 MAU will immediately
                  be forced to the state indicated by the value of
                  the object ifMauDefaultType.
                  NOTE TO IMPLEMENTORS: When
                 ifMauAutoNegAdminStatus transitions from enabled to disabled, the agent implementation MUST ensure that the operational type of the MAU (as
                  reported by ifMauType) correctly transitions to
                  the value specified by the ifMauDefaultType
                  object, rather than continuing to operate at the
                  value earlier determined by the auto-negotiation
                  function."
                  "[IEEE 802.3 Std], 30.6.1.1.2,
    REFERENCE
```

```
aAutoNegAdminState and 30.6.1.2.2, acAutoNegAdminControl."
    ::= { ifMauAutoNegEntry 1 }
ifMauAutoNegRemoteSignaling OBJECT-TYPE
    SYNTAX
                 INTEGER {
                      detected(1)
                      notdetected(2)
    MAX-ACCESS
                 read-only
    STATUS
                 current
    DESCRIPTION "A value indicating whether the remote end of
                 the link is using auto-negotiation signaling. It
                 takes the value detected(1) if and only if,
                 during the previous link negotiation, FLP Bursts
                 were received."
                 "[IEEE 802.3 Std], 30.6.1.1.3,
    REFERENCE
                 aAutoNegRemoteSignaling."
    ::= { ifMauAutoNegEntry 2 }
ifMauAutoNegConfig OBJECT-TYPE
                 INTEGER {
    SYNTAX
                      other(1),
                      configuring(2),
                      complete(3),
                      disabled(4),
                      parallelDetectFail(5)
    MAX-ACCESS
                 read-only
    STATUS
                 current
                 "A value indicating the current status of the
    DESCRIPTION
                 auto-negotiation process. The enumeration
                 parallelDetectFail(5) maps to a failure in
                 parallel detection as defined in 28.2.3.1 of [IEEE 802.3 Std]."
"[IEEE 802.3 Std], 30.6.1.1.4,
aAutoNegAutoConfig."
    REFERENCE
    ::= { ifMauAutoNegEntry 4 }
ifMauAutoNegCapability OBJECT-TYPE
                 Integer32
    SYNTAX
    MAX-ACCESS
                 read-only
    STATUS
                 deprecated
    DESCRIPTION "****** THIS OBJECT IS DEPRECATED *******
                 This object has been deprecated in favour of
                 ifMauAutoNegCapabilityBits.
```

A value that uniquely identifies the set of capabilities of the local auto-negotiation entity. The value is a sum which initially takes the value zero. Then, for each capability of this interface, 2 raised to the power noted below is added to the sum. For example, an interface which has the capability to support only 100Base-TX half duplex would have a value of 32768 (2\*\*15). In contrast, an interface which supports both 100Base-TX half duplex and and 100Base-TX full duplex would have a value of 98304 ((2\*\*15) + (2\*\*16)).

The powers of 2 assigned to the capabilities are these:

```
Power
         Capability
           other or unknown
 (1-9)
           (reserved)
           10BASE-T half duplex mode
10BASE-T full duplex mode
 10
 11
           10BASE-T
 12
           (reserved)
 13
           (reserved)
 14
           100BASE-T4
 15
           100BASE-TX half duplex mode
 16
           100BASE-TX full duplex mode
 17
           (reserved)
 18
           (reserved)
 19
          100BASE-T2 half duplex mode
 20
          100BASE-T2 full duplex mode
```

Note that interfaces that support this MIB may have capabilities that extend beyond the scope of this MIB."

```
REFERENCE "[IEEE 802.3 Std], 30.6.1.1.5,

aAutoNegLocalTechnologyAbility."
::= { ifMauAutoNegEntry 5 }
```

ifMauAutoNegCapAdvertised OBJECT-TYPE

```
SYNTAX Integer32
MAX-ACCESS read-write
STATUS deprecated
DESCRIPTION "********** THIS OBJECT IS DEPRECATED ********
```

This object has been deprecated in favour of

ifMauAutoNegCapAdvertisedBits.

A value that uniquely identifies the set of

```
capabilities advertised by the local
                auto-negotiation entity. Refer to
                ifMauAutoNegCapability for a description of the
                possible values of this object.
                Capabilities in this object that are not
                available in ifMauAutoNegCapability cannot be
                enabled."
                "[IEEE 802.3 Std], 30.6.1.1.6,
    REFERENCE
                aAutoNegAdvertisedTechnologyAbility."
    ::= { ifMauAutoNegEntry 6 }
ifMauAutoNegCapReceived OBJECT-TYPE
                Integer32
    SYNTAX
    MAX-ACCESS read-only
    STATUS
                deprecated
    DESCRIPTION "******* THIS OBJECT IS DEPRECATED *******
                This object has been deprecated in favour of
                ifMauAutoNegCapReceivedBits.
                A value that uniquely identifies the set of capabilities received from the remote
                auto-negotiation entity. Refer to
                ifMauAutoNegCapability for a description of the
                possible values of this object.
                Note that interfaces that support this MIB may
                be attached to remote auto-negotiation entities
                which have capabilities beyond the scope of this
                MIB."
                "[IEEE 802.3 Std], 30.6.1.1.7
    REFERENCE
                aAutoNegReceivedTechnologyAbility."
    ::= { ifMauAutoNegEntry 7 }
ifMauAutoNegRestart OBJECT-TYPE
    SYNTAX
                INTEGER {
                     restart(1)
                     norestart(2)
                }
    MAX-ACCESS
                read-write
    STATUS
                current
    DESCRIPTION "If the value of this object is set to
                restart(1) then this will force auto-negotiation
                to begin link renegotiation. If auto-negotiation
                signaling is disabled, a write to this object
```

has no effect.

```
Setting the value of this object to norestart(2)
                  has no effect.
                  "[IEEE 802.3 Std], 30.6.1.2.1,
    REFERENCE
                  acAutoNegRestartAutoConfig."
    ::= { ifMauAutoNegEntry 8 }
ifMauAutoNegCapabilityBits OBJECT-TYPE
                  BITS {
    SYNTAX
         b0ther(0),
                              -- other or unknown
         b10baseT(1),
                              -- 10BASE-T half duplex mode
         b10baseTFD(2),
                              -- 10BASE-T full duplex mode
         b100baseT4(3),
                              -- 100BASE-T4
                             -- 100BASE-TX half duplex mode

-- 100BASE-TX full duplex mode

-- 100BASE-T2 half duplex mode

-- 100BASE-T2 full duplex mode
         b100baseTX(4)
         b100baseTXFD(5),
         b100baseT2(6).
         b100baseT2FD(7),
         bfdxPause(8),
                              -- PAUSE for full-duplex links
                              -- Asymmetric PAUSE for full-duplex
         bfdxAPause(9),
                                      links
         bfdxSPause(10),
                              -- Symmetric PAUSE for full-duplex
                                      links
         bfdxBPause(11),
                              -- Asymmetric and Symmetric PAUSE for
                                      full-duplex links
                              --
                              -- 1000BASE-X, -LX, -SX, -CX half
         b1000baseX(12).
                                      duplex mode
         b1000baseXFD(13), -- 1000BASE-X, -LX, -SX, -CX full
                             -- duplex mode
-- 1000BASE-T half duplex mode
         b1000baseT(14),
         b1000baseTFD(15) -- 1000BASE-T full duplex mode
    MAX-ACCESS read-only
    STATUS
                  current
    DESCRIPTION "A value that uniquely identifies the set of
                  capabilities of the local auto-negotiation entity. Note that interfaces that support this
                  MIB may have capabilities that extend beyond the
                  scope of this MIB.
                  Note that the local auto-negotiation entity may
                  support some capabilities beyond the scope of
                  this MIB. This is indicated by returning the
                  bit value b0ther in addition to any bit values for capabilities that are listed above."
                  "[IEEE 802.3 Std], 30.6.1.1.5,
    REFERENCE
                  aAutoNegLocalTechnologyAbilitý."
    ::= { ifMauAutoNegEntry 9 }
```

ifMauAutoNegCapAdvertisedBits OBJECT-TYPE

```
SYNTAX
                 BITS {
        b0ther(0),
                            -- other or unknown
        b10baseT(1)
                            -- 10BASE-T half duplex mode
        b10baseTFD(2),
                                           full duplex mode
                            -- 10BASE-T
        b100baseT4(3),
                            -- 100BASE-T4
        b100baseTX(4),
                            -- 100BASE-TX half duplex mode
                            -- 100BASE-TX full duplex mode

-- 100BASE-T2 half duplex mode

-- 100BASE-T2 full duplex mode
        b100baseTXFD(5),
        b100baseT2(6),
        b100baseT2FD(7),
        bFdxPause(8),
                            -- PAUSE for full-duplex links
        bFdxAPause(9),
                            -- Asymmetric PAUSE for full-duplex
                                    links
                            -- Symmetric PAUSE for full-duplex
        bFdxSPause(10),
                                    links
        bFdxBPause(11),
                            -- Asymmetric and Symmetric PAUSE for
                                    full-duplex links
                            --
        b1000baseX(12),
                            -- 1000BASE-X, -LX, -SX, -CX half
                                    duplex mode
        b1000baseXFD(13), -- 1000BASE-X, -LX, -SX, -CX full
                                    duplex mode
                            -- 1000BASE-T half duplex mode
        b1000baseT(14),
        b1000baseTFD(15) -- 1000BASE-T full duplex mode
    MAX-ACCESS
                 read-write
    STATUS
                 current
    DESCRIPTION "A value that uniquely identifies the set of
                 capabilities advertised by the local
                 auto-negotiation entity.
                 Capabilities in this object that are not
                 available in ifMauAutoNegCapabilityBits cannot
                 be enabled.
                 Note that the local auto-negotiation entity may
                 advertise some capabilities beyond the scope of
                 this MIB. This is indicated by returning the
                 bit value b0ther in addition to any bit values
                 for capabilities that are listed above.
    REFERENCE
                 "[IEEE 802.3 Std], 30.6.1.1.6,
                 aAutoNegAdvertisedTechnologyAbilitv."
    ::= { ifMauAutoNegEntry 10 }
ifMauAutoNegCapReceivedBits OBJECT-TYPE
    SYNTAX
                 BITS {
         b0ther(0),
                             -- other or unknown
         b10baseT(1), -- 10BASE-T half duplex mode
b10baseTFD(2), -- 10BASE-T full duplex mode
b100baseT4(3), -- 100BASE-T4
```

```
-- 100BASE-TX half duplex mode
-- 100BASE-TX full duplex mode
          b100baseTX(4),
          b100baseTXFD(5),
                                -- 100BASE-T2 half duplex mode
          b100baseT2(6),
          b100baseT2FD(7),
                                -- 100BASE-T2 full duplex mode
          bFdxPause(8),
                                -- PAUSE for full-duplex links
                                -- Asymmetric PAUSE for full-duplex
          bFdxAPause(9).
                                        links
                                -- Symmetric PAUSE for full-duplex
          bFdxSPause(10),
                                --
                                        links
                                -- Asymmetric and Symmetric PAUSE for
          bFdxBPause(11),
                                        full-duplex links
                                --
          b1000baseX(12),
                                -- 1000BASE-X, -LX, -SX, -CX half
                                        duplex mode
                                --
          b1000baseXFD(13), -- 1000BASE-X, -LX, -SX, -CX full
                                -- duplex mode -- 1000BASE-T half duplex mode
          b1000baseT(14),
          b1000baseTFD(15) -- 1000BASE-T full duplex mode
    MAX-ACCESS
                   read-only
    STATUS
                   current
    DESCRIPTION "A value that uniquely identifies the set of capabilities received from the remote
                   auto-negotiation entity.
                   Note that interfaces that support this MIB may
                   be attached to remote auto-negotiation entities
                   which have capabilities beyond the scope of this
                  MIB. This is indicated by returning the bit value b0ther in addition to any bit values for capabilities that are listed above."
                   "[IEEE 802.3 Std], 30.6.1.1.7
    REFERENCE
                   aAutoNegReceivedTechnologyAbility."
    ::= { ifMauAutoNegEntry 11 }
ifMauAutoNegRemoteFaultAdvertised OBJECT-TYPE
                   INTEGER {
    SYNTAX
                       noError(1),
                       offline(2),
                       linkFailure(3)
                       autoNegError(4)
                   }
    MAX-ACCESS
                   read-write
    STATUS
                   current
    DESCRIPTION "A value that identifies any local fault
                   indications that this MAU has detected and will
                   advertise at the next auto-negotiation
                  interaction for 1000Mbps MAUs."
"[IEEE 802.3 Std], 30.6.1.1.6,
aAutoNegAdvertisedTechnologyAbility."
    REFERENCE
```

```
::= { ifMauAutoNegEntry 12 }
ifMauAutoNegRemoteFaultReceived OBJECT-TYPE
    SYNTAX
                 INTEGER {
                     noError(1),
                     offline(2).
                     linkFailuré(3),
autoNegError(4)
    MAX-ACCESS
                read-only
    STATUS
                 current
    DESCRIPTION "A value that identifies any fault indications
                 received from the far end of a link by the
                 local auto-negotiation entity for 1000Mbps
                 MAUs.
    REFERENCE
                 "[IEEE 802.3 Std], 30.6.1.1.7
                 aAutoNegReceivedTechnologyAbility."
    ::= { ifMauAutoNegEntry 13 }
-- The Basic Broadband MAU Table
broadMauBasicTable OBJECT-TYPE
                SEQUENCE OF BroadMauBasicEntry
    SYNTAX
    MAX-ACCESS not-accessible
    STATUS
                 deprecated
    DESCRIPTION "******* THIS OBJECT IS DEPRECATED *******
                 This entire table has been deprecated. There
                 have been no reported implementations of this
                table, and it is unlikely that there ever will be. IEEE recommends that broadband MAU types
                 should not be used for new installations.
                 Table of descriptive and status information
                 about the broadband MAUs connected to
                 interfaces."
    ::= { dot3BroadMauBasicGroup 1 }
broadMauBasicEntry OBJECT-TYPE
               BroadMauBasicEntry
    SYNTAX
    MAX-ACCESS not-accessible
    STATUS
                 deprecated
    DESCRIPTION "******* THIS OBJECT IS DEPRECATED *******
                 An entry in the table, containing information
```

```
about a single broadband MAU."
{ broadMauIfIndex,
    INDEX
                   broadMauIndex
    ::= { broadMauBasicTable 1 }
BroadMauBasicEntry ::=
    SEQUENCE {
        broadMauIfIndex
                                              InterfaceIndex,
        broadMauIndex
                                              Integer32,
        broadMauXmtRcvSplitType
                                              INTEGER.
        broadMauXmtCarrierFreq
                                              Integer32,
        broadMauTranslationFreq
                                              Integer32
    }
broadMauIfIndex OBJECT-TYPE
    SYNTAX
                InterfaceIndex
    MAX-ACCESS
                read-only
                            -- read-only since originally an
                            -- SMIv1 index
    STATUS
                deprecated
    DESCRIPTION "******* THIS OBJECT IS DEPRECATED *******
                This variable uniquely identifies the interface
                to which the MAU described by this entry is
                connected.'
    REFERENCE
                "Reference RFC 2863, ifIndex."
    ::= { broadMauBasicEntry 1 }
broadMauIndex OBJECT-TYPE
    SYNTAX
                Integer32 (1..2147483647)
                read-only -- read-only since originally an
    MAX-ACCESS
                            -- SMIv1 index
    STATUS
                deprecated
    DESCRIPTION "******* THIS OBJECT IS DEPRECATED *******
                This variable uniquely identifies the MAU
                connected to interface broadMauIfIndex that is
                described by this entry."
"[IEEE 802.3 Std], 30.5.1.1.1, aMAUID."
    REFERENCE
    ::= { broadMauBasicEntry 2 }
broadMauXmtRcvSplitType OBJECT-TYPE
    SYNTAX
                INTEGER {
                     other(1).
                     single(2),
                     dual(3)
    MAX-ACCESS read-only
```

```
STATUS
                  deprecated
    DESCRIPTION "****** THIS OBJECT IS DEPRECATED *******
                  This object indicates the type of frequency
                  multiplexing/cabling system used to separate the
                  transmit and receive paths for the 10BROAD36
                  MAU.
                  The value other(1) is returned if the split type
                  is not either single or dual.
                  The value single(2) indicates a single cable
                 system. The value dual(3) indicates a dual cable system, offset normally zero."
[IEEE 802.3 Std], 30.5.1.1.8,
    REFERENCE
                  aBbMAUXmitRcvSplitType.
    ::= { broadMauBasicEntry 3 }
broadMauXmtCarrierFreq OBJECT-TYPE
    SYNTAX
                  Integer32
                 read-only
    MAX-ACCESS
                  deprecated
    STATUS
    DESCRIPTION "******* THIS OBJECT IS DEPRECATED *******
                  This variable indicates the transmit carrier
                 frequency of the 10BROAD36 MAU in MHz/4; that is, in units of 250 kHz."
"[IEEE 802.3 Std], 30.5.1.1.9,
    REFERENCE
                  aBroadbandFrequencies.xmitCarrierFrequency."
    ::= { broadMauBasicEntry 4 }
broadMauTranslationFreq OBJECT-TYPE
                 Integer32
    SYNTAX
    MAX-ACCESS
                 read-only
    STATUS
                  deprecated
    DESCRIPTION "******* THIS OBJECT IS DEPRECATED *******
                  This variable indicates the translation offset
                  frequency of the 10BROAD36 MAU in MHz/4; that is, in units of 250 kHz."
                  "[IEEE 802.3 Std], 30.5.1.1.9,
    REFERENCE
                  aBroadbandFrequencies.translationFrequency."
    ::= { broadMauBasicEntry 5 }
-- Notifications for use by 802.3 MAUs
snmpDot3MauTraps OBJECT IDENTIFIER ::= { snmpDot3MauMqt 0 }
```

```
rpMauJabberTrap NOTIFICATION-TYPE
    OBJECTS
                 { rpMauJabberState }
                 current
    STATUS
    DESCRIPTION "This trap is sent whenever a managed repeater
                 MAU enters the jabber state.
                 The agent MUST throttle the generation of
                 consecutive rpMauJabberTraps so that there is at least a five-second gap between them."
    REFERENCE
                 "[IEEE 802.3 Mgt], 30.5.1.3.1, nJabber
                 notification."
    ::= { snmpDot3MauTraps 1 }
ifMauJabberTrap NOTIFICATION-TYPE
                 { ifMauJabberState }
    OBJECTS
    STATUS
                 current
    DESCRIPTION "This trap is sent whenever a managed interface
                 MAU enters the jabber state.
                 The agent MUST throttle the generation of
                 consecutive ifMauJabberTraps so that there is at least a five-second gap between them."
    REFERENCE
                 "[IEEE 802.3 Mgt], 30.5.1.3.1, nJabber
                 notification.'
    ::= { snmpDot3MauTraps 2 }
-- Conformance information
mauModConf
        OBJECT IDENTIFIER ::= { mauMod 1 }
  mauModCompls
        OBJECT IDENTIFIER ::= { mauModConf 1 }
  mauModObjGrps
        OBJECT IDENTIFIER ::= { mauModConf 2 }
  mauModNotGrps
        OBJECT IDENTIFIER ::= { mauModConf 3 }
-- Object groups
mauRpGrpBasic OBJECT-GROUP
    OBJECTS
                 { rpMauGroupIndex,
                   rpMauPortIndex,
                   rpMauIndex,
                   rpMauType,
                   rpMauStatus,
                   rpMauMediaAvailable,
                    rpMauMediaAvailableStateExits.
```

```
rpMauJabberState,
                   rpMauJabberingStateEnters
    STATUS
                 current
    DESCRIPTION "Basic conformance group for MAUs attached to
                 repeater ports. This group is also the conformance specification for RFC 1515
                 implementations."
    ::= { mauModObjGrps 1 }
mauRpGrp100Mbs OBJECT-GROUP
    OBJECTS
                 { rpMauFalseCarriers }
    STATUS
                 current
    DESCRIPTION "Conformance group for MAUs attached to
                 repeater ports with 100 Mb/s or greater
                 capability."
    ::= { mauModObjGrps 2 }
mauRpGrpJack OBJECT-GROUP
    OBJECTS
                 { rpJackType }
    STATUS
                 current
    DESCRIPTION "Conformance group for MAUs attached to
                 repeater ports with managed jacks."
    ::= { mauModObjGrps 3 }
mauIfGrpBasic OBJECT-GROUP
                 { ifMauIfIndex,
    OBJECTS
                   ifMauIndex,
                   ifMauType,
                   ifMauStatus,
                   ifMauMediaAvailable,
                   ifMauMediaAvailableStateExits,
                   ifMauJabberState,
                   ifMauJabberingStateEnters
                 current
    STATUS
    DESCRIPTION "Basic conformance group for MAUs attached to
                 interfaces. This group also provides a
                 conformance specification for RFC 1515
                 implementations."
    ::= { mauModObjGrps 4 }
mauIfGrp100Mbs OBJECT-GROUP
    OBJECTS
                 { ifMauFalseCarriers,
                   ifMauTypeList,
                   ifMauDefaultType,
                   ifMauAutoNegSupported
```

```
STATUS
                 deprecated
    DESCRIPTION "******* THIS GROUP IS DEPRECATED *******
                 Conformance group for MAUs attached to
                 interfaces with 100 Mb/s capability.
                 This object group has been deprecated in favor of mauIfGrpHighCapacity."
    ::= { mauModObjGrps 5 }
mauIfGrpJack OBJECT-GROUP
    OBJECTS
                 { ifJackType }
    STATUS
                 current
    DESCRIPTION "Conformance group for MAUs attached to interfaces with managed jacks."
    ::= { mauModObjGrps 6 }
mauIfGrpAutoNeg OBJECT-GROUP
    OBJECTS
                 { ifMauAutoNegAdminStatus,
                   ifMauAutoNegRemoteSignaling,
                   ifMauAutoNegConfig,
ifMauAutoNegCapability,
                   ifMauAutoNegCapAdvertised,
                   ifMauAutoNegCapReceived.
                   ifMauAutoNegRestart
    STATUS
                 deprecated
    DESCRIPTION "******* THIS GROUP IS DEPRECATED *******
                 Conformance group for MAUs attached to
                 interfaces with managed auto-negotiation.
                 This object group has been deprecated in favor
                 of mauIfGrpAutoNeg2."
    ::= { mauModObjGrps 7 }
mauBroadBasic OBJECT-GROUP
                 { broadMauIfIndex,
    OBJECTS
                   broadMauIndex,
                   broadMauXmtRcvSplitType,
                   broadMauXmtCarrierFreq,
                   broadMauTranslationFreq
    STATUS
                 deprecated
    DESCRIPTION "******* THIS GROUP IS DEPRECATED *******
                 Conformance group for broadband MAUs attached
                 to interfaces.
```

```
This object group is deprecated. There have been no reported implementations of this group,
                  and it was felt to be unlikely that there will be any future implementations."
    ::= { mauModObjGrps 8 }
mauIfGrpHighCapacity OBJECT-GROUP
    OBJECTS
                   { ifMauFalseCarriers,
                     ifMauTypeListBits,
                     ifMauDefaultType,
                     ifMauAutoNegSupported
                   }
    STATUS
                   current
    DESCRIPTION "Conformance group for MAUs attached to interfaces with 100 Mb/s or greater capability."
    ::= { mauModObjGrps 9 }
mauIfGrpAutoNeg2 OBJECT-GROUP
    OBJECTS
                   { ifMauAutoNegAdminStatus,
                     ifMauAutoNegRemoteSignaling,
                     ifMauAutoNegConfig,
ifMauAutoNegCapabilityBits,
                     ifMauAutoNegCapAdvertisedBits,
                     ifMauAutoNegCapReceivedBits.
                     ifMauAutoNegRestart
                   }
    STATUS
                   current
    DESCRIPTION "Conformance group for MAUs attached to interfaces with managed auto-negotiation."
    ::= { mauModObjGrps 10 }
mauIfGrpAutoNeg1000Mbps OBJECT-GROUP
    OBJECTS
                   { ifMauAutoNegRemoteFaultAdvertised,
                     ifMauAutoNegRemoteFaultReceived
                   current
    STATUS
    DESCRIPTION "Conformance group for 1000Mbps MAUs attached to
                   interfaces with managed auto-negotiation."
    ::= { mauModObjGrps 11 }
mauIfGrpHCStats OBJECT-GROUP
    OBJECTS
                   { ifMauHCFalseCarriers }
                   current
    STATUS
    DESCRIPTION "Conformance for high capacity statistics for
                   MAUs attached to interfaces"
    ::= { mauModObjGrps 12 }
-- Notification groups
```

```
rpMauNotifications NOTIFICATION-GROUP
    NOTIFICATIONS { rpMauJabberTrap }
    STATUS
                current
    DESCRIPTION "Notifications for repeater MAUs."
    ::= { mauModNotGrps 1 }
ifMauNotifications NOTIFICATION-GROUP
    NOTIFICATIONS { ifMauJabberTrap }
    STATUS
                current
    DESCRIPTION "Notifications for interface MAUs."
    ::= { mauModNotGrps 2 }
-- Compliances
mauModRpCompl MODULE-COMPLIANCE
    STATUS
                deprecated
    DESCRIPTION "******* THIS COMPLIANCE IS DEPRECATED *******
                Compliance for MAUs attached to repeater
                ports.
                This compliance is deprecated and replaced by
                mauModRpCompl2, which corrects an oversight by allowing rpMauStatus to be implemented
                read-only.
    MODULE -- this module
        MANDATORY-GROUPS { mauRpGrpBasic }
        GROUP
                     mauRpGrp100Mbs
        DESCRIPTION "Implementation of this optional group is
                     recommended for MAUs which have 100Mb/s or
                     greater capability."
        GROUP
                     mauRpGrpJack
        DESCRIPTION "Implementation of this optional group is
                     recommended for MAUs which have one or more
                     external jacks."
        GROUP
                     rpMauNotifications
        DESCRIPTION "Implementation of this group is recommended
                     for MAUs attached to repeater ports.'
    ::= { mauModCompls 1 }
mauModIfCompl MODULE-COMPLIANCE
    STATUS
                deprecated
    DESCRIPTION "******* THIS COMPLIANCE IS DEPRECATED *******
                Compliance for MAUs attached to interfaces.
```

This compliance is deprecated and replaced by mauModIfCompl2.

**MODULE -- this module** 

MANDATORY-GROUPS { mauIfGrpBasic }

mauIfGrp100Mbs

DESCRIPTION "Implementation of this optional group is

recommended for MAUs which have 100Mb/s

capability."

GROUP mauIfGrpJack

DESCRIPTION "Implementation of this optional group is

recommended for MAUs which have one or more external jacks."

**GROUP** mauIfGrpAutoNeg

DESCRIPTION "Implementation of this group is mandatory

for MAUs which support managed

auto-negotiation.

GROUP mauBroadBasic

DESCRIPTION "Implementation of this group is mandatory

for broadband MAUs."

**ifMauNotifications** GROUP

DESCRIPTION "Implementation of this group is recommended for MAUs attached to interfaces."

::= { mauModCompls 2 }

mauModIfCompl2 MODULE-COMPLIANCE

deprecated STATUS

DESCRIPTION "\*\*\*\*\*\*\* THIS COMPLIANCE IS DEPRECATED \*\*\*\*\*\*\*

Compliance for MAUs attached to interfaces.

This compliance is deprecated and replaced by

mauModIfCompl3."

**MODULE -- this module** 

MANDATORY-GROUPS { mauIfGrpBasic }

mauIfGrpHighCapacity **GROUP** 

DESCRIPTION "Implementation of this optional group is

recommended for MAUs which have 100Mb/s

or greater capability."

**GROUP** mauIfGrpJack **DESCRIPTION** "Implementation of this optional group is recommended for MAUs which have one or more external jacks."

**GROUP** mauIfGrpAutoNeg2

DESCRIPTION "Implementation of this group is mandatory

for MAUs which support managed

auto-negotiation.

**GROUP** mauIfGrpAutoNeg1000Mbps

DESCRIPTION "Implementation of this group is mandatory

for MAUs which have 1000Mb/s or greater

capability and support managed

auto-negotiation.

**GROUP ifMauNotifications** 

DESCRIPTION "Implementation of this group is recommended

for MAUs attached to interfaces.

**OBJECT** ifMauStatus MIN-ACCESS read-only

DESCRIPTION "Write access is not required."

::= { mauModCompls 3 }

mauModRpCompl2 MODULE-COMPLIANCE

STATUS current

DESCRIPTION "Compliance for MAUs attached to repeater ports.

> Note that compliance with this compliance statement requires compliance with the

snmpRptrModCompl MODULE-COMPLIANCE statement of

the SNMP-REPEATER-MIB (RFC 2108)."

**MODULE -- this module** 

MANDATORY-GROUPS { mauRpGrpBasic }

GROUP mauRpGrp100Mbs

DESCRIPTION "Implementation of this optional group is

recommended for MAUs which have 100Mb/s or

greater capability."

**GROUP** mauRpGrpJack

DESCRIPTION "Implementation of this optional group is

recommended for MAUs which have one or more

external jacks."

**GROUP** rpMauNotifications DESCRIPTION "Implementation of this group is recommended for MAUs attached to repeater ports."

rpMauStatus OBJECT MIN-ACCESS read-only DESCRIPTION "Write access is not required." ::= { mauModCompls 4 }

#### mauModIfCompl3 MODULE-COMPLIANCE

STATUS current

DESCRIPTION "Compliance for MAUs attached to interfaces.

Note that compliance with this compliance statement requires compliance with the ifCompliance3 MODULE-COMPLIANCE statement of the IF-MIB (RFC 2863) and the dot3Compliance2 MODULE-COMPLIANCÉ statement of the EtherLike-MIB (RFC3635)."

# **MODULE -- this module**

MANDATORY-GROUPS { mauIfGrpBasic }

**GROUP** mauIfGrpHighCapacity

DESCRIPTION "Implementation of this optional group is recommended for MAUs which have 100Mb/s or greater capability."

mauIfGrpHCStats GROUP

**DESCRIPTION** "Implementation of this group is mandatory

for MAUs which have 1000Mb/s capacity, and is recommended for MAUs which have 100Mb/s

capacity."

**GROUP** mauIfGrpJack

DESCRIPTION "Implementation of this optional group is

recommended for MAUs which have one or more

external jacks."

GROUP mauIfGrpAutoNeg2

DESCRIPTION "Implementation of this group is mandatory

for MAUs which support managed

auto-negotiation.

**GROUP** mauIfGrpAutoNeg1000Mbps

**DESCRIPTION** "Implementation of this group is mandatory

for MAUs which have 1000Mb/s or greater

capability and support managed auto-negotiation."

GROUP ifMauNotifications
DESCRIPTION "Implementation of this group is recommended for MAUs attached to interfaces."

OBJECT ifMauStatus
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."
::= { mauModCompls 5 }

**END** 

## 5. Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

### 6. Acknowledgements

This document was produced by the IETF Ethernet Interfaces and Hub MIB Working Group, whose efforts were greatly advanced by the contributions of the following people:

Mike Ayers Mike Héard Chuck Black John Flick Jeff Johnson Kam Lam Leon Leong Mike Lui Kerry McDonald K.C. Norseth Dave Perkins Dan Romascanu **Andrew Smith** Kaj Tesink Geoff Thompson Maurice Turcotte Paul Woodruff

This document is based on the Proposed Standard MAU MIB, RFC 2668 [RFC2668], edited by John Flick of Hewlett-Packard and Andrew Smith, then of Extreme Networks, and produced by the Ethernet Interfaces and Hub MIB Working Group. It extends that document by providing support for 10 Gb/s MAUs as defined in [IEEE802.3ae].

RFC 2668, in turn, was based on the Proposed Standard MAU MIB, RFC 2239 [RFC2239], edited by Kathryn de Graaf, then of 3Com, and Dan Romascanu, then of Madge Networks, and produced by the Ethernet Interfaces and Hub MIB Working Group. It extended that document by providing support for 1000 Mb/sec MAUs as defined in [IEEE802.3].

RFC 2239, in turn, was based on the Proposed Standard MAU MIB, RFC 1515 [RFC1515], edited by Donna McMaster, then of SynOptics Communications, Keith McCloghrie, then of Hughes LAN Systems, and Sam Roberts, then of Farallon Computing, and produced by the Hub MIB Working Group. It extends that document by providing support for 100 Mb/sec MAUs, full duplex MAUs, and auto-negotiation, as defined in [IEEE802.3].

## 7. Normative References

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirements Levels", BCP 14, RFC 2119, March 1997.
- [RFC2578] McCloghrie, K., Perkins, D. and J. Schoenwaelder, "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
- [RFC2579] McCloghrie, K., Perkins, D. and J. Schoenwaelder, "Textual Conventions for SMIv2", STD 58, RFC 2579, April 1999.
- [RFC2580] McCloghrie, K., Perkins, D. and J. Schoenwaelder, "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999.
- [IEEE802.3] IEEE, IEEE Std 802.3, 2002 Edition: "Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications", March 2002.
- [IEEE802.3ae] IEEE, IEEE Std 802.3ae-2002, "Amendment: Media Access Control (MAC) Parameters, Physical Layers, and Management Parameters for 10 Gb/s Operation", August, 2002.
- [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB using SMIv2", RFC 2863, June 2000.
- [RFC2108] de Graaf, K., Romascanu, D., McMaster, D. and K.
  McCloghrie, "Definitions of Managed Objects for IEEE
  802.3 Repeater Devices using SMIv2", RFC 2108, February
  1997.
- [RFC3635] Flick, J., "Definitions of Managed Objects for the Ethernet-like Interface Types", RFC 3635, September 2003.

#### 8. Informative References

[RFC3410] Case, J., Mundy, R., Partain, D. and B. Stewart, "Introduction and Applicability Statements for Internet-Standard Network Management Framework", RFC 3410, December 2002.

| [RFC3418] | Presuhn, R., Ed., "Management Information Base (MIB)    |
|-----------|---------------------------------------------------------|
|           | for the Simple Network Management Protocol (SNMP)", STD |
|           | 62, RFC 3418, December 2002.                            |

- [RFC2668] Smith, A., Flick, J., deGraaf, K., Romascanu, D., McMaster, D., McCloghrie, K. and S. Roberts, "Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)", RFC 2668, August 1999.
- [RFC2239] de Graaf, K., Romascanu, D., McMaster, D., McCloghrie, K. and S. Roberts, "Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs) using SMIv2", RFC 2239, November 1997.
- [RFC1515] McMaster, D., McCloghrie, K. and S. Roberts, "Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)", RFC 1515, September 1993.
- [RFC3637] Heard, C. M., Ed., "Definitions of Managed Objects for the Ethernet WAN Interface Sublayer", RFC 3637, September 2003.

## 9. Security Considerations

There are a number of management objects defined in this MIB that have a MAX-ACCESS clause of read-write. Setting these objects can have a serious effect on the operation of the network, including:

- o enabling or disabling a MAU
- o changing a MAU's default type
- o enabling, disabling or restarting autonegotiation
- o modifying the capabilities that a MAU advertizes during autonegotiation.

Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. In some environments it may be undesirable to allow unauthorized parties to access statistics or status information about individual links in a network. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is recommended that the implementors consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Furthermore, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

## A. Change Log

### A.1. Changes since RFC 2668

This section enumerates changes made to RFC 2668 to produce this document.

- (1) Updated references to the IEEE 802.3 standard to refer to the 2002 edition.
- (2) Added reference to 802.3ae.
- (3) Updated WG e-mail address.
- (4) The following DESCRIPTION clauses have been updated to reflect behavior on 10 Gb/s interfaces: ifMauMediaAvailable.
- (5) OBJECT-IDENTITY definitions have been added for 10 gigabit MAU types.
- (6) Enumerations for 'pmdLinkFault', 'wisFrameLoss', 'wisSignalLoss', pcsLinkFault', excessiveBER', 'dxsLinkFault' and 'pxsLinkFault' have been added for the ifMauMediaAvailable object.
- (7) ifMauTypeListBits has been extended with bits for the 10 Gb/s MAU types.
- (8) The MODULE-IDENTITY clause has been updated to reflect the changes in the MIB module.
- (9) MIB boilerplate in section 2 has been updated to the latest approved text.
- (10) Added 64-bit version of ifMauFalseCarriers, and updated compliances accordingly.
- (11) Added section on mapping of IEEE managed objects to the objects in this MIB module.

#### A.2. Changes between RFC 2239 and RFC 2668

This section enumerates the changes made to RFC 2239 to produce RFC 2668.

(1) The MODULE-IDENTITY has been updated to reflect the changes in the MIB.

Flick Standards Track [Page 60]

- (2) OBJECT-IDENTITY definitions have been added for gigabit MAU types.
- (3) The ifMauTypeList, ifMauAutoNegCapability, ifMauAutoNegCapAdvertised and ifMauAutoNegCapReceived objects have been deprecated and replaced by ifMauTypeListBits, ifMauAutoNegCapabilityBits, ifMauAutoNegCapAdvertisedBits and ifMauAutoNegCapReceivedBits.
- (4) Two new objects, ifMauAutoNegRemoteFaultAdvertised and ifMauAutoNegRemoteFaultReceived have been added.
- (5) Enumerations for 'offline' and 'autoNegError' have been added for the rpMauMediaAvailable and ifMauMediaAvailable objects.
- (6) The broadMauBasicTable and mauBroadBasic object group have been deprecated.
- (7) The maulfGrp100Mbs and maulfGrpAutoNeg object groups have been deprecated and replaced by maulfGrpHighCapacity and maulfGrpAutoNeg2.
- (8) A new object group, mauIfGrpAutoNeg1000Mbps, has been added.
- (9) The mauModIfCompl and mauModRpCompl compliances have been deprecated and replaced by mauModIfCompl2 and mauModRpCompl2.
- (10) Added section on relationship to RFC 2239.
- (11) Updated the SNMP Network Management Framework boilerplate.
- (12) Refer to the Interfaces MIB, rather than the interfaces group of MIB-II.
- (13) Updated references to refer to latest edition of IEEE 802.3.
- (14) An intellectual property notice was added, as required by RFC 2026.

# **Author's Address**

John Flick Hewlett-Packard Company 8000 Foothills Blvd. M/S 5557 Roseville, CA 95747-5557

Phone: +1 916 785 4018 EMail: johnf@rose.hp.com

### Full Copyright Statement

Copyright (C) The Internet Society (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assignees.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

#### **Acknowledgement**

Funding for the RFC Editor function is currently provided by the Internet Society.