UNIVERSIDAD DE GUADALAJARA

Centro Universitario de Ciencias Exactas e Ingenierías Ingeniería en Computación

7^{mo} semestre

Tema: Funciones de prueba para optimización multimodal, multiobjetivo y multidimensional

Materia

Seminario de Inteligencia Artificial I

Sección

D01

Código:

217565958

Carrera

Ingeniería en Computación.

PRESENTA

Daniel Martínez Martínez

Docente

Alma Yolanda Alanis García

Fecha de entrega:

Jueves, 31 de Agosto de 2023

Funciones de prueba para optimización multimodal, multiobjetivo y multidimensional

Instrucciones

Investiga y grafica en tres dimensiones las funciones de prueba ("benchmark") planteadas en la sección de trabajos de Google Classroom.

A. Esfera (Unimodal)

La función para este modelo está dada como:

$$f(x) = \sum_{i=1}^{n} x^2$$

Para 3D:

$$f(x,y) = \sum_{i=1}^{n} x_i^2 + y_i^2$$

Para esta prueba se emplearon dos arreglos de datos (x,y) con 50 valores equidistantes dado el rango [-10,10]. A continuación, se muestran los resultados...

```
Código
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # Importa la herramienta 3D de Matplotlib
# Crear datos de ejemplo: genera arreglos de valores X e Y, y crea una malla (grid) X-Y
x = \text{np.linspace}(-10, 10, 50) \# \text{Crea } 50 \text{ valores equidistantes } \text{en el rango } -10 \text{ a } 10
y = np.linspace(-10, 10, 50)
x, y = np.meshgrid(x, y) # Crea una malla de valores X e Y para usar en la gráfica
z = x**2 + y**2 \# Coordenada z en función de theta
# Crea una figura en 3D
fig = plt.figure() # Crea una figura para la gráfica
ax = fig.add_subplot(111, projection='3d') # Agrega un subplot 3D a la figura
# Crear la gráfica de la esfera
surface = ax.plot_surface(x, y, z, cmap='viridis') # Crea la gráfica de superficie con colores viridis
# Agregar etiquetas y título
ax.set_xlabel('X') # Agrega etiqueta al eje X
ax.set_ylabel('Y') # Agrega etiqueta al eje Y
ax.set_zlabel('Z') # Agrega etiqueta al eje Z
ax.set_title('Gráfica de la esfera unimodal en 3D') # Agrega un título a la gráfica
# Mostrar la gráfica
plt.show() # Muestra la gráfica en una ventana emergente
```

Gráfica de la esfera unimodal en 3D

Gráfica de la esfera unimodal en 3D

B. Step Function

La función para este modelo está dada como:

$$f(x) = \sum_{i=1}^{n} (floor(x_i + 0.5))^2$$

Para 3D:

$$f(x,y) = \sum_{i=1}^{n} (floor(x_i))^2 + (floor(y_i))^2$$

Para esta simulación se emplearon dos arreglos de datos (x,y) con 70 valores equidistantes, abarcando el rango [-10,10]. A continuación, se muestran los resultados...

```
Código
import numpy as np
import matplotlib.pyplot as plt
# Crear datos de ejemplo: genera arreglos de valores X e Y, y crea una malla (grid) X-Y
x = np.linspace(-10, 10, 50) # Crea 50 valores equidistantes en el rango -10 a 10
y = np.linspace(-10, 10, 50)
x, y = np.meshgrid(x, y) # Crea una malla de valores X e Y para usar en la gráfica
z = np.floor(x)**2+np.floor(y)**2
fig = plt.figure() # Crea una figura para la gráfica
ax = fig.add_subplot(111, projection='3d') # Agrega un subplot 3D a la figura
surface = ax.plot_surface(x, y, z, cmap='viridis') # Crea la gráfica de superficie con colores viridis
ax.set_xlabel('X') # Agrega etiqueta al eje X
ax.set_ylabel('Y') # Agrega etiqueta al eje Y
ax.set\_zlabel('Z') # Agrega etiqueta al eje Z
ax.set_title('Gráfica de la función Step en 3D') # Agrega un título a la gráfica
plt.show() # Muestra la gráfica en una ventana emergente
```

Gráfica de la función Step en 3D

Gráfica de la función Step en 3D

C. Absolute Function

La función para este modelo está dada como:

$$f(x) = \sum_{i=1}^{n} |x_i|$$

Para 3D:

$$f(x, y) = \sum_{i=1}^{n} |x_i| + |y_i|$$

Para esta simulación se emplearon dos arreglos de datos (x,y) con 20 valores equidistantes, abarcando el rango [-10,10]. A continuación se muestran los resultados...

Código

import numpy as np # Importa la biblioteca NumPy para manipulación numérica import matplotlib.pyplot as plt # Importa la biblioteca Matplotlib para visualización

Crear datos de ejemplo: genera arreglos de valores X e Y, y crea una malla (grid) X-Y

x = np.linspace(-10, 10, 20) # Crea 20 valores equidistantes en el rango -10 a 10

y = np.linspace(-10, 10, 20)

x, y = np.meshgrid(x, y) # Crea una malla de valores X e Y para usar en la gráfica

z = np.abs(x)+np.abs(y)

fig = plt.figure() # Crea una figura para la gráfica

ax = fig.add_subplot(111, projection='3d') # Agrega un subplot 3D a la figura

surface = ax.plot_surface(x, y, z, cmap='viridis') # Crea la gráfica de superficie con colores viridis

ax.set_xlabel('X') # Agrega etiqueta al eje X

ax.set_ylabel('Y') # Agrega etiqueta al eje Y

ax.set_zlabel('Z') # Agrega etiqueta al eje Z

ax.set_title('Gráfica de la función Absolute en 3D') # Agrega un título a la gráfica

plt.show() # Muestra la gráfica en una ventana emergente

Gráfica de la función Absolute en 3D

Gráfica de la función Absolute en 3D

D. Michalewicz Function

La función para este modelo está dada como:

$$f(x) = -\sum_{i=1}^{n} sin(x_i) \left[sin(\frac{ix_i^2}{\pi}) \right]^{2m}$$

Para 3D:

$$f(x,y) = -\left\{\sum_{i=1}^{n} \sin(x_{i}) \left[\sin(\frac{x_{i}^{2}}{\pi})\right]^{2m} + \sin(y_{i}) \left[\sin(\frac{2y_{i}^{2}}{\pi})\right]^{2m}\right\}$$

Para esta simulación se emplearon dos arreglos de datos (x,y) con 100 valores equidistantes, abarcando el rango $[0,\pi]$. A continuación se muestran los resultados...

Código

import numpy as np # Importa la biblioteca NumPy para manipulación numérica import matplotlib.pyplot as plt # Importa la biblioteca Matplotlib para visualización x = np.linspace(0, np.pi, 100) # Crea 100 valores equidistantes en el rango 0 a pi

y = np.linspace(0, np.pi, 100) x, y = np.meshgrid(x, y) # Crea una malla de valores X e Y para usar en la gráfica

M=10# Parámetro de ajuste para la función de Michalewicz

z = -((np.sin(x)*np.sin((1*x**2) / np.pi)**(2*M)) + (np.sin(y)*np.sin((2*y**2) / np.pi)**(2*M)))

fig = plt.figure() # Crea una figura para la gráfica

ax = fig.add_subplot(111, projection='3d') # Agrega un subplot 3D a la figura

surface = ax.plot_surface(x, y, z, cmap='viridis') # Crea la gráfica de superficie con colores viridis

ax.set_xlabel('X') # Agrega etiqueta al eje X

ax.set_ylabel('Y') # Agrega etiqueta al eje Y

ax.set_zlabel('Z') # Agrega etiqueta al eje Z

ax.set_title('Gráfica de la función Michalewicz en 3D') # Agrega un título a la gráfica

plt.show() # Muestra la gráfica en una ventana emergente

Gráfica de la función Michalewicz en 3D

Gráfica de la función Michalewicz en 3D

E. EggHolder Function

La función para este modelo 3D está dada como:

$$f(x,y) = -\left\{\sum_{i=1}^{n} (y+47) * \sin(\sqrt{|\frac{x}{2}+(y+47)|}) + x * \sin(\sqrt{|x-(y+47)|})\right\}$$

Para esta simulación se emplearon dos arreglos de datos (x,y) con 100 valores equidistantes, abarcando el rango [-512,512]. A continuación se muestran los resultados...

Código

```
import numpy as np # Importa la biblioteca NumPy para manipulación numérica import matplotlib.pyplot as plt # Importa la biblioteca Matplotlib para visualización

x = np.linspace(-512, 512, 100) # Crea 100 valores equidistantes en el rango -5 a 5
y = np.linspace(-512, 512, 100)
x, y = np.meshgrid(x, y) # Crea una malla de valores X e Y para usar en la gráfica

z = -(y + 47) * np.sin(np.sqrt(np.abs(y + x/2 + 47))) - x * np.sin(np.sqrt(np.abs(x - (y + 47))))

fig = plt.figure() # Crea una figura para la gráfica
ax = fig.add_subplot(111, projection='3d') # Agrega un subplot 3D a la figura

surface = ax.plot_surface(x, y, z, cmap='viridis') # Crea la gráfica de superficie con colores viridis

ax.set_xlabel('X') # Agrega etiqueta al eje X
ax.set_ylabel('Y') # Agrega etiqueta al eje Y
ax.set_zlabel('Z') # Agrega etiqueta al eje Z
ax.set_title('Gráfica de la función EggHolder en 3D') # Agrega un título a la gráfica
```

plt.show() # Muestra la gráfica en una ventana emergente

Gráfica de la función EggHolder en 3D

Gráfica de la función EggHolder en 3D

F. Weierstrass Function

La función para este modelo está dada como:

$$f_{\text{Weierstrass}}(\mathbf{x}) = \sum_{i=1}^{n} \left[\sum_{k=0}^{kmax} a^k \cos\left(2\pi b^k (x_i + 0.5)\right) - n \sum_{k=0}^{kmax} a^k \cos(\pi b^k) \right]$$

Para 3D:

$$f(x,y) = \sum_{i=1}^{n} a^{k} cos(2\pi b^{k}(x_{i} + 0.5)) - a^{k} cos(\pi b^{k}) + a^{k} cos(2\pi b^{k}(y_{i} + 0.5)) - a^{k} cos(\pi b^{k})$$

Para esta simulación se emplearon dos arreglos de datos (x,y) con 150 valores equidistantes, abarcando el rango [-0.5,0.5], además de los valores a=0.5, b=3, kmax=20. A continuación se muestran los resultados...

```
import numpy as np
import matplotlib.pyplot as plt
def wierstrass(x, y, a, b, k_max):
    result = 0
    for k in range(k_max):
        result += (a**k * np.cos(2 * np.pi * b**k * (x + 0.5)) - a**k*np.cos(np.pi*b**k)) + (a**k * np.cos(2 * np.pi * b**k * (y + 0.5)) - a**k*np.cos(np.pi*b**k))
    return result
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

x = np.linspace(-0.5, 0.5, 150)
```

```
y = np.linspace(-0.5, 0.5, 150)
x, y = np.meshgrid(x, y)
z = wierstrass(x, y, a=0.5, b=3, k_max=20)
ax.plot_surface(x, y, z, cmap='viridis')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('Función de Weierstrass en 3D')
plt.show()
```

Función de Weierstrass en 3D

Función de Weierstrass en 3D

