贪心法的例子: 活动选择问题

活动选择问题

输入: $S = \{1, 2, ..., n\}$ 为n 项活动的集合, s_i , f_i 分别为活动 i 的开始和结束时间.

活动 i 与 j 相容 $\Leftrightarrow s_i \ge f_j$ 或 $s_j \ge f_i$.

求: 最大的两两相容的活动集 A

输入实例:

i	1	2	3	4	5	6	7	8	9	10
S_i	1	3	2	5	4	5	6	8	8	2
f_i	4	5	6	7	9	9	10	11	12	13

解: {1, 4, 8}

贪心算法

挑选过程是多步判断,每步依据某种"短视"的策略进行活动选择, 选择时注意满足相容性条件.

策略1: 开始时间早的优先 排序使 $s_1 \le s_2 \le ... \le s_n$,从前向后挑选

策略2: 占用时间少的优先 排序使得 $f_1-s_1 \le f_2-s_2 \le \ldots \le f_n-s_n$, 从前向后挑选

策略3: 结束早的优先 排序使 $f_1 \le f_2 \le ... \le f_n$,从前向后挑选

策略1的反例

策略1: 开始早的优先

反例:
$$S = \{1,2,3\}$$

 $s_1 = 0, f_1 = 20, s_2 = 2, f_2 = 5, s_3 = 8, f_3 = 15$

策略2的反例

策略2: 占时少的优先

反例:
$$S = \{1, 2, 3\}$$

 $s_1=0, f_1=8, s_2=7, f_2=9, s_3=8, f_3=15$

算法 Greedy Select 策略3份码

输入:活动集S, s_i , f_i , $i = 1, 2, ..., n, f_1 \le ... \le f_n$ 输出: $A \subseteq S$, 选中的活动子集 1. $n \leftarrow length[S]$ 2. $A \leftarrow \{1\}$ 3. $j \leftarrow 1$ 4. for $i \leftarrow 2$ to n do 5. if $s_i \ge f_i$ 6. then $A \leftarrow A \cup \{i\}$

 $j \leftarrow i$

8. return A

完成时间 $t = \max\{f_k: k \in A\}$

运行实例

输入: $S = \{1, 2, ..., 10\}$

i	1	2	3	4	5	6	7	8	9	10
S_i	1	3	0	5	3	5	6	8	8	2
f_i	4	5	6	7	8	9	10	11	12	13

解: $A = \{1, 4, 8\}, t = 11$

时间复杂度

$$O(n\log n) + O(n) = O(n\log n)$$

如何证明该算法对所有的实例都得到正确的解?

贪心算法的特点

设计要素:

- (1) 贪心法适用于组合优化问题.
- (2) 求解过程是多步判断过程,最终的判断序列对应于问题的最优解.
- (3) 依据某种"短视的"贪心选择性质判断,性质好坏决定算法的成败.
- (4) 贪心法必须进行正确性证明.
- (5) 证明贪心法不正确的技巧: 举反例.

贪心法的优势:算法简单,时间和空间复杂性低 8