import pickle import seaborn as sns import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestClassifier Step 2 : Load Dataset dataset = pd.read_excel("Dataset/Sample.xlsx") dataset.head() Out[74]: S. **Sub Section** Spec Target Spec Name Para **Submittal Type Submittal Description Subcontractor** Heading **Date** No. 03 10 CONCRETE Where the SUBMITTALS section of this Manufacturers 220 **SUBMITTALS** 1.8-A NaN NaN **FORMWORK** 00 Instructions 03 10 CONCRETE 1.8-Submittal Schedule: See Section 03 221 SUBMITTALS Submittal Schedule NaN NaN FORMWORK A-1 03 10 CONCRETE Formwork Shop Drawings:\na. Submit 1.8-222 **SUBMITTALS Shop Drawings** NaN NaN **FORMWORK** for Record:... A-2 03 10 CONCRETE 1.8-Shoring/Reshoring Calculations: 223 SUBMITTALS **Product Data** NaN NaN **FORMWORK** 00 A-3 Submit for Rec... CONCRETE 03 10 1.8-Samples - At request of Architect, 224 **SUBMITTALS** NaN Samples NaN **FORMWORK** submit samp... Step 3: General Information Of Dataset In [48]: dataset.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1314 entries, 0 to 1313 Data columns (total 9 columns): # Column Non-Null Count Dtype ----0 S. No. 1314 non-null int64 1314 non-null object 1314 non-null object Spec # Spec Name 1313 non-null object Para Sub Section Heading 1314 non-null object 1314 non-null object Submittal Type Submittal Description 1314 non-null object Target Date 0 non-null float64 Subcontractor float64 0 non-null dtypes: float64(2), int64(1), object(6) memory usage: 92.5+ KB **Step 4 : Preprocess Dataset** A. Remove features and Rearrange features In [49]: ## Get All Feature Names dataset.columns Out[49]: Index(['S. No.', 'Spec #', 'Spec Name', 'Para', 'Sub Section Heading', 'Submittal Type', 'Submittal Description', 'Target Date', 'Subcontractor'], dtype='object') ## Remove Unwanted Features dataset = dataset.drop(columns = dataset.columns[[0, 1, 2, 3, 4, 7, 8]]) ## Interchange Features dataset = dataset[["Submittal Description", "Submittal Type"]] dataset.head() **Submittal Description Submittal Type** Where the SUBMITTALS section of this specifica... Manufacturers Instructions Submittal Schedule: See Section 03 3000. Submittal Schedule Formwork Shop Drawings:\na. Submit for Record:... **Shop Drawings** 3 Shoring/Reshoring Calculations: Submit for Rec... **Product Data** Samples - At request of Architect, submit samp... Samples Visualize count before filter plt.figure(figsize = (20,8))sns.countplot(data = dataset, x = 'Submittal Type')plt.xticks(rotation = 90)plt.show() 140 120 100 60 40 20 Manufacturers Instructions -Submittal Schedule -Shop Drawings -Product Data -Samples -Reports -LEED Data -Certificates -Submittal Process . SER Submittal Review Request For Information (RFI) . Warranty . Extreme Weather Procedures Manufacturers Warranty Special Warranty Mix Design Hot And Cold Weather Procedures Resubmittals Concrete Joint Locations Qualification Data Test Reports O&M Manuals Hazardous Materials Notification Copy Of Manufacturer's ISO 9001 Notice Of Award Installer QA / QC Manual Tests And Inspections General Preconstruction Survey As-Builts Quality Control Program Welding Procedures Specification (WPS) Cold-Weather And Hot-Weather Procedures Submittal Type

options = ['Attic Stock', 'Calculations', 'Certificates', 'Color', 'Chart Delivery', 'Leed Requirements', 'Mair

dataset = dataset[dataset['Submittal Type'].isin(options)]

2 Formwork Shop Drawings:\na. Submit for Record:...

Shoring/Reshoring Calculations: Submit for Rec...

Samples - At request of Architect, submit samp...

Asbestos and PCB Certification: Submit for rec...

Form tie holes shall be filled as per approved...

O Submittal Description 748 non-null object

x = 'Submittal Type')

Mix Design

Submittal Type

Schedules Mockups Maintenance Data

Calculations

dataset['Submittal Type'] = labelencoder.fit_transform(dataset['Submittal Type'])

Submittal Description Submittal Type

Attic Stock

11

9

9

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.25, random_state = 0)

<class 'pandas.core.frame.DataFrame'> Int64Index: 748 entries, 2 to 1313 Data columns (total 2 columns):

Submittal Description Submittal Type

Non-Null Count Dtype

748 non-null object

Shop Drawings

Product Data

Certifications

Samples

Samples

'Mix Design', 'Mockups', 'MSDS', 'Owner Training', 'Product Data', 'Pre-Install Meeting Minutes', 'Reports', 'Samples', 'Schedules', 'Shop Drawings', 'Test Data', 'Warranty', 'Certifications']

Step 1: Load Libraries

from sklearn.svm import LinearSVC

from sklearn import metrics

from sklearn.model selection import train test split

from sklearn.preprocessing import LabelEncoder

from sklearn.feature extraction.text import TfidfVectorizer

Load Libraries

import numpy as np import pandas as pd

12

dataset.head()

See the count

dataset.info()

Column

plt.show()

140

120

100

60

40

20

Product Data

B. Encoding Feature

C. Matrix of Feature

D. Split Dataset

A. Training

Out[62]: LinearSVC()

Linear SVC

B. Prediction

Prediction

Export Results

C. Accuracy

Accuracy

0.9251336898395722

In [64]:

classifier = LinearSVC()

dataset.head()

12

labelencoder = LabelEncoder()

2 Formwork Shop Drawings:\na. Submit for Record:...

Shoring/Reshoring Calculations: Submit for Rec...

Samples - At request of Architect, submit samp...

Asbestos and PCB Certification: Submit for rec...

Form tie holes shall be filled as per approved...

X = dataset['Submittal Description']

Y = dataset['Submittal Type']

E. Vectorization Encoding

vectorizer = TfidfVectorizer()

X_train_tfidf = vectorizer.fit_transform(X_train)

Step 5: Model Training and Prediction

X_test_tfidf = vectorizer.transform(X_test)

classifier.fit(X_train_tfidf, y_train)

predictions = classifier.predict(X_test_tfidf)

result dataframe['Test'] = X_test.tolist()

result_dataframe.to_excel("Result.xlsx")

result dataframe['Predicted'] = predictions.tolist()

print(metrics.accuracy score(y test, predictions))

jupyter-nbconvert --to PDFviaHTML example.ipynb

!jupyter nbconvert --to PDFviaHTML "type_classification_v1.ipynb"

[NbConvertApp] Writing 420832 bytes to type_classification.pdf

 $[\verb|NbConvertApp|] Converting notebook type_classification.ipynb to \verb|PDFviaHTML||$

result dataframe['Original'] = labelencoder.inverse transform(y test.to list())

result dataframe['Predicted_Label'] = labelencoder.inverse_transform(predictions)

result dataframe = pd.DataFrame()

Certifications

Warranty

count 80

1 Submittal Type dtypes: object(2) memory usage: 17.5+ KB

Visualize count

sns.countplot(data = dataset,

plt.xticks(rotation = 90)