Итоги предыдущей лекции

Вторая форма поверхности имеет две ипостаси:

- Координатная $\mathbf{II} = \langle d^2r, n \rangle = -\langle dr, dn \rangle$.
- ullet Бескоординатная $\widehat{f II}$ на T_pM :
 - $oldsymbol{\hat{I}} = \langle \cdot, S(\cdot)
 angle$, где $S = -d_p \widehat{n}$ (оператор Вейнгартена).
 - ② $\widehat{\mathbf{II}}$ второй дифференциал функции на T_pM , графиком которой является поверхность. Задаёт соприкасающийся параболоид.

Задача

Пусть M является прообразом регулярного значения функции $f:\mathbb{R}^{m+1} \to \mathbb{R}$. Тогда в точке $p \in M$

$$\widehat{\mathbf{II}} = \frac{\left(d_p^2 f\right)|_{T_p N}}{|\operatorname{grad} f(p)|}$$

Подсказка: grad f(p) пропорционален нормали поверхности.

1/57

Лекция 11 18 ноября 2020 г.

Добавление: кривизна поверхности по направлению

Определение

Пусть $p \in M$, $v \in T_p M \setminus \{0\}$.

Кривизна M по направлению v — значение квадратичной формы $\widehat{\mathbf{II}}$ на векторе $\frac{v}{|v|}$.

Формулы:

- ullet Кривизна по направлению $v \in T_p M$ равна $\dfrac{\mathbf{II}(v,v)}{|v|^2}$
- Кривизна по направлению с координатами

$$\xi = (\xi_1, \dots, \xi_m) \in \mathbb{R}^m$$
 равна $\dfrac{\mathbf{II}(\xi, \xi)}{\mathbf{I}(\xi, \xi)}$

Информация

Кривизна поверхности по направлению равна кривизне нормального сечения.

Докажем позже.

Лекция 11 18 ноября 2020 г.

Содержание

- - Определение, теоремы Родрига и Эйлера
 - Вычисление главных кривизн
 - Гауссова и средняя кривизна
- 2 Кривые на поверхностях
 - Нормальная кривизна, теорема Менье
 - Специальные кривые
- Некоторые приложения
 - Выпуклые поверхности
 - Гассова кривизна как якобиан
 - Параллельные поверхности

Напоминание из алгебры

Пусть X — евклидово пространство,

 $A: X \to X$ — симметричный оператор,

 $B\colon X imes X o \mathbb{R}$ — соответствующая билинейная форма.

Тогда

 Все собственные числа А вещественны, существует ортонормированный базис из собственных векторов.

② Эквивалентно, существует ортонормированный базис, в котором матрица *В* диагональна.

V

4 / 57

4□ > 4□ > 4□ > 4□ > 4□ > 900

Лекция 11 18 ноября 2020 г.

Определение

Продолжаем рассматривать гиперповерхность $M^m\subset \mathbb{R}^{m+1}$ и точку $p\in M$. Рассмотрим оператор Вейнгартена $S\colon T_pM\to T_pM$, S=-dn.

Определение

Главная кривизна M в точке p — собственное число оператора S.

Главное направление M в точке p — прямая, порождённая собственным вектором оператора S.

Замечание

Для краткости, сами собственные векторы тоже можно называть главными направлениями.

Так как S симметричен, из алгебры следует, что существует m главных кривизн $\kappa_1, \ldots, \kappa_m$ (с учётом кратности), им соответствуют m попарно ортогональных главных направлений.

Вид соприкасающегося параболоида

В ортонормированном базисе из главных направлений матрица второй формы диагональна, на диагонали — главные кривизны.

Добавив нормаль, получаем ортонормированный базис в \mathbb{R}^{m+1} . В этом базисе уравнение соприкасающегося параболоида имеет вид

$$2x_{m+1} = \kappa_1 x_1^2 + \kappa_2 x_2^2 + \dots + \kappa_m x_m^2,$$

где x_1, \ldots, x_{m+1} — координаты в нашем базисе, тока p считается началом отсчёта.

Следствие

Набор главных кривизн (с кратностями) определяет соприкасающийся параболоид с точностью до движения.

◆ロト ◆回 ト ◆ 重 ト ◆ 重 ・ 夕 Q (*)

Лекция 11 18 ноября 2020 г.

Случай m=2

В размерности m=2 есть две главные кривизны κ_1, κ_2 . Возможны два случая:

- ① $\kappa_1 \neq \kappa_2$. Тогда существуют ровно два главных направления, они ортогональны.
- ② $\kappa_1 = \kappa_2$. Тогда все направления главные. В этом случае точка p называется умбилической.

В обоих случаях существует ортонормированный базис (v_1, v_2) из главных направлений.

Замечание

Можно выбрать параметризацию r так, что в данной точке $r_x=v_1$ и $r_y=v_2$. В таких координатах в этой одной точке матрицы $\mathbf I$ и $\mathbf I\mathbf I$ имеют вид:

$$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \mathbf{II} = \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$$

Лекция 11 18 ноября 2020 г.

Теорема Эйлера

По-прежнему m = 2. Все обозначения те же.

Теорема (Эйлер)

Пусть $v \in T_p M$, |v| = 1, $\varphi = \angle(v, v_1)$. Тогда кривизна М по направлению у равна

$$\mathbf{II}(v,v) = \kappa_1 \cos^2 \varphi + \kappa_2 \sin^2 \varphi$$

Доказательство.

 $(\cos \varphi, \sin \varphi)$ — координаты ν в базисе (ν_1, ν_2) . Подставим в матрицу квадратичной формы и получим ответ.

V = cos & v, + sin & v2

(wsy sing) (K, 0) (Siny)=

Теорема Эйлера

По-прежнему m = 2. Все обозначения те же.

Теорема (Эйлер)

Пусть $v \in T_p M$, |v| = 1, $\varphi = \angle(v, v_1)$. Тогда кривизна M по направлению v равна

зна
$$M$$
 по направлению v равна $\mathbf{II}(v,v)=\kappa_1\cos^2\varphi+\kappa_2\sin^2\varphi$

Доказательство.

 $(\cos \varphi, \sin \varphi)$ — координаты ν в базисе (ν_1, ν_2) .

Подставим в матрицу квадратичной формы и получим ответ.

Следствие

 κ_1 и κ_2 — максимум и минимум кривизны по направлению в точке р.

Доказательство.

Из теоремы и тождества $\cos^2 \varphi + \sin^2 \varphi = 1$.

Лекция 11

18 ноября 2020 г.

Теорема Родрига

Теорема

• Бескоординатная формулировка: Вектор $v \in T_p M \setminus \{0\}$ принадлежит главному направлению $\iff dn(v) \parallel v$.

При этом $dn(v) = -\kappa_i v$, где κ_i — главная кривизна.

- Координатная формулировка: Пусть $r \colon U \to M$ локальная параметризация $M, x \in U, p = r(x)$. Тогда для $\xi \in \mathbb{R}^m \setminus \{0\}$ два свойства эквивалентны:
 - ullet координаты касательного вектора, принадлежащего главному направлению.

При этом $d_{x}n(y) = -\kappa_{i}d_{x}r(y)$.

Доказательство.

- 1 определение главного направления.
- 2 то же плюс производная композиции.

20 A 35 M 20 Source namp e

cot then we lescope

dn: TpM = - Ki

S = -dn.

| v= dr (3) | dn = dr o dr

n: U -> 5h

{=(\$1,-, \$m)

Для записей

Содержание

- 🚺 Главные кривизны
 - Определение, теоремы Родрига и Эйлера
 - Вычисление главных кривизн
 - Гауссова и средняя кривизна
- 2 Кривые на поверхностях
 - Нормальная кривизна, теорема Менье
 - Специальные кривые
- Некоторые приложения
 - Выпуклые поверхности
 - Гассова кривизна как якобиан
 - Параллельные поверхности

Вычисление главных кривизн в координатах

Теорема

Пусть I и II — матрицы первой и второй формы в рассматриваемой точке. Тогда главные кривизны — в точности корни уравнения

$$\det(\mathbf{II}-t\mathbf{I})=0$$

относительно неизвестной t.

При этом координаты собственных векторов — такие $\xi \in \mathbb{R}^m$, что $(\mathbf{II} - \kappa \mathbf{I})\xi = 0$, где κ — соответствующий корень, а ξ — столбец координат.

Замечание

Это уравнение — полином степени m.

У него могут быть кратные корни, они соответствуют кратным главным кривизнам.

Это будет видно из доказательства.

$$\det \left(h_{ij} - t \cdot g_{ij} \right).$$

$$\overline{I} - k \overline{I} - b_{orpormol}.$$

$$\left(\overline{I} - k \overline{I} \right) {s_1 \choose s_m} = {0 \choose i}$$

Лекция 11 18 ноября 2020 г.

Случай m=2

Пример

При
$$m=2$$
 для $\mathbf{I}=\begin{pmatrix}E&F\\F&G\end{pmatrix}$ и $\mathbf{II}=\begin{pmatrix}L&M\\M&N\end{pmatrix}$ получаем уравнение

$$\det\begin{pmatrix} L - tE & M - tF \\ M - tF & N - tG \end{pmatrix} = 0$$

После перегруппировки:

$$(\det \mathbf{I})t^2 - (GL + EN - 2FM)t + \det \mathbf{II} = 0$$

Лекция 11 18 ноября 2020 г.

Доказательство теоремы

1 шаг: кривизны. По определению, главные кривизны — собственные числа оператора S.

Вспомним матричную формулу $I = I \cdot [S]$, где [S] — матрица S в базисе (r_{x_i}) .

Характеристический многочлен для [S]:

$$\det([S] - tE) = \det((\mathbf{II} - t\mathbf{I})\mathbf{I}^{-1}) = \det(\mathbf{II} - t\mathbf{I})\det(\mathbf{I}^{-1})$$

Он отличается от $\det(\mathbf{II} - t\mathbf{I})$ умножением на константу \implies корни те же.

$$[S] = \overline{I}^{-1} \underline{T}$$

$$Act([S] - tE) =$$

$$= det(\overline{I}^{-1} \overline{I} - tE)$$

$$= det(\overline{I}^{-1} (\overline{I} - tI))$$

$$(S, E) \xrightarrow{T} (\overline{I}, \overline{I})$$

Лекция 11 18 ноября 2020 г.

Доказательство теоремы

1 шаг: кривизны. По определению, главные кривизны — собственные числа оператора S.

Вспомним матричную формулу $II = I \cdot [S]$, где [S] — матрица S в базисе (r_{x_i}) .

Отсюда $[S] = \mathbf{II} \cdot \mathbf{I}^{-1}$.

Характеристический многочлен для [S]:

$$\det([S] - tE) = \det((\mathbf{II} - t\mathbf{I})\mathbf{I}^{-1}) = \det(\mathbf{II} - t\mathbf{I})\det(\mathbf{I}^{-1})$$

Он отличается от $\det(\mathbf{II}-t\mathbf{I})$ умножением на константу \implies корни те же.

2 шаг: направления. Зафиксируем значение кривизны κ . ξ — координаты главного направления с кривизной κ \iff $[S] \cdot \xi = \kappa \xi$ (где ξ — столбец) \iff $\Pi \cdot I^{-1} \cdot \xi = \kappa \xi$ \iff $\Pi \cdot \xi = \kappa I \xi \iff$ ($\Pi - \kappa I$) $\cdot \xi = 0$.

Лекция 11 18 ноября 2020 г.

Для записей

Содержание

- 🚺 Главные кривизны
 - Определение, теоремы Родрига и Эйлера
 - Вычисление главных кривизн
 - Гауссова и средняя кривизна
- 2 Кривые на поверхностях
 - Нормальная кривизна, теорема Менье
 - Специальные кривые
- 3 Некоторые приложения
 - Выпуклые поверхности
 - Гассова кривизна как якобиан
 - Параллельные поверхности

Определение

Рассматриваем классический случай $M^2\subset\mathbb{R}^3$.

Определение

Пусть $p \in M$, κ_1 и κ_2 — главные кривизны в точке p.

Гауссова кривизна M в точке p — число

$$K = K(p) = \kappa_1 \kappa_2$$

Средняя кривизна M в точке p — число

$$H=H(p)=\frac{\kappa_1+\kappa_2}{2}$$

K и H определяют κ_1 и κ_2 с точностью до перестановки. А именно, κ_1 и κ_2 — корни уравнения $t^2-2Ht+K=0$.

 \implies K и H определяют соприкасающийся параболоид с точностью до движения.

Лекция 11 18 ноября 2020 г.

Гауссова кривизна и тип точки

 \bullet $K > 0 \implies$ эллиптическая точка

• $K < 0 \implies$ гиперболическая (седловая) точка

• $K = 0 \implies$ параболическая точка или точка уплощения (в зависимости оттого, одна главная кривизна обращается в ноль или обе).

Замечание

Знак K равен знаку $\det \mathbf{II}$ (см. следующую страницу). Поэтому тип точки легко определяется по матрице \mathbf{II} (в произвольных координатах).

$$\frac{\mathbb{I} \rightarrow -\mathbb{I}}{k_{1,1}k_{2} \rightarrow -k_{1,1}-k_{2}}$$

18 / 57

Лекция 11 18 ноября 2020 г.

Вычисление в координатах

Вспомним уравнение для κ_1 и κ_2 :

$$(\det \mathbf{I})t^2 - (GL + EN - 2FM)t + \det \mathbf{II} = 0$$

Отсюда по теореме Виета

$$K = \frac{\det \mathbf{II}}{\det \mathbf{I}}$$

$$H = \frac{GL + EN - 2FM}{2 \det \mathbf{I}}$$

Следствие

К и Н — гладкие функции на поверхности

Замечание

 κ_1 и κ_2 не всегда гладкие (могут терять гладкость в умбилических точках).

$$I = \begin{pmatrix} E & F \\ F & E \end{pmatrix}$$

$$J = \begin{pmatrix} L & M \\ M & N \end{pmatrix}$$

$$\det (II - t I)$$

$$\det I > 0$$

Лекция 11 18 ноября 2020 г.

Третья форма (задача)

Вспомним координатные определения І и ІІ:

$$\mathbf{I}=\langle \mathit{dr},\mathit{dr}\rangle$$

$$\mathbf{II} = -\langle dr, dn \rangle$$

Аналогично определим «третью форму»:

$$\mathbf{III} = \langle dn, dn \rangle$$

Задача

III вычисляется по I и II, а именно,

$$III = 2HII - KI$$

r: $U \subset \mathbb{R}^2 \to \mathbb{R}^3$ h: $U \to S^2 \subset \mathbb{R}^3$.

Лекция 11

Для записей

Содержание

- Главные кривизны
 - Определение, теоремы Родрига и Эйлера
 - Вычисление главных кривизн
 - Гауссова и средняя кривизна
- 2 Кривые на поверхностях
 - Нормальная кривизна, теорема Менье
 - Специальные кривые
- Некоторые приложения
 - Выпуклые поверхности
 - Гассова кривизна как якобиан
 - Параллельные поверхности

Нормальная и геодезическая кривизна

Пусть $M^m \subset \mathbb{R}^{m+1}$ — гиперповерхность, $\underline{\gamma} = \underline{\gamma}(\underline{t})$ — натурально параметризованная кривая в M.

Определение

Нормальная кривизна γ в точке t — длина (со знаком) проекции $\gamma''(t)$ на нормаль поверхности в точке t:

$$\widehat{(\kappa_n)} = \langle \gamma'', n_M \rangle$$

где n_M — нормаль M.

Геодезическая кривизна γ в точке t — длина проекции $\gamma''(t)$ на $T_{\gamma(t)}M$. Обозначение κ_g .

Свойства:

•
$$\kappa_n = \kappa_\gamma \cos \angle (n_M, n_\gamma)$$

•
$$\kappa_{\gamma} = \sqrt{\kappa_n^2 + \kappa_g^2}$$
 (по теореме Пифагора). (2)

Замечание: Геодезическую кривизну можно определить у не только в коразмерности 1. При m=2 ей можно приписать знак (из ориентации касательной плоскости).

еме Пифагора). (2) \cdot сривизну можно определить \cdot При m=2 ей можно и касательной плоскости).

Теорема Менье

Теорема (Менье)

Нормальная кривизна γ в точке t равна кривизне поверхности по направлению $\gamma'(t)$.

18 ноября 2020 г.

Теорема Менье

Теорема (Менье)

Нормальная кривизна γ в точке t равна кривизне поверхности по направлению $\gamma'(t)$.

Доказательство.

Пусть $\widehat{n} = n_M = \widehat{n}$.

Дифференцируем равенство $\langle \gamma', n \rangle = 0$. Получаем

$$\langle \gamma'', n \rangle + \langle \gamma', n' \rangle = 0. \tag{4}.$$

Первое слагаемое — нормальная кривизна кривой.

$$\langle \gamma', n' \rangle = \langle \gamma', dn(\gamma') \rangle = -\langle \gamma', S(\gamma') \rangle = -\mathbf{II}(\gamma', \gamma'). \quad (z) \Box$$

$$\langle f(t), n(f(t)) \rangle = 0$$

$$T_{g(t)} M.$$

$$h(f(t))' = dh(f') = -S(f').$$

$$I = \langle \cdot, s(\cdot) \rangle =$$

$$= \langle \cdot, -dh(\cdot) \rangle.$$

24 / 57

4□ > 4□ > 4□ > 4□ > 4□ > 900

Лекция 11 18 ноября 2020 г.

Пример: сечения плоскостями

Определение

Пусть $p \in M$, $v \in T_pM \setminus \{0\}$.

Нормальное сечение M в точке p в направлении v — пересечение M с плоскостью, порождённой v и n(p).

Следствие

Кривизна поверхности в направлении v равна кривизне нормального сечения в точке р в направлении v (как плоской кривой при выборе той же нормали в точке р).

25 / 57

Лекция 11 18 ноября 2020 г.

Пример: сечения плоскостями

Определение

Пусть $p \in M$, $v \in T_pM \setminus \{0\}$.

Нормальное сечение M в точке p в направлении v — пересечение M с плоскостью, порождённой v и n(p).

Следствие

Кривизна поверхности в направлении v равна кривизне нормального сечения в точке р в направлении v (как плоской кривой при выборе той же нормали в точке р).

Следствие

Пусть γ — сечение M плоскостью $\Pi \ni p$, $\varphi = \angle(\Pi, n(p))$, $\varphi \neq \frac{\pi}{2}$ (условие трансверсальности). Тогда в точке p

$$\kappa_{\gamma} = \pm rac{\mathsf{II}(v,v)}{\cos arphi}$$

где $v \in T_pM$ — единичный вектор из $T_pM \cap \overrightarrow{\Pi}$.

17 - apt. mocrosso repy \$ Pi - le mulinare vacos.
(upo coed. mn. noby. l.). 17 & TpM dim m=m

Содержание

- Главные кривизны
 - Определение, теоремы Родрига и Эйлера
 - Вычисление главных кривизн
 - Гауссова и средняя кривизна
- 2 Кривые на поверхностях
 - Нормальная кривизна, теорема Менье
 - Специальные кривые
- Некоторые приложения
 - Выпуклые поверхности
 - Гассова кривизна как якобиан
 - Параллельные поверхности

Геодезические

Определение

Кривая на M — геодезическая, если её геодезическая кривизна равна 0 во всех точках.

Эквивалентная формулировка: $\gamma''(t) \perp T_{\gamma(t)} M$.

Замечание

Понятие геодезической имеет смысл в любых размерностях и коразмерностях.

Информация (анонс)

- Геодезические локально кратчайшие кривые на поверхности.
 - В частности, геодезические относятся к внутренней геометрии.
- Из каждой точки в каждом направлении выходит ровно одна геодезическая.

γ-200 (=) kg=0 (=) γ"(t) ⊥ TγH) M

Лекция 11 18 ноября 2020 г.

Линии кривизны

Теперь рассматриваем только случай $M^2\subset\mathbb{R}^3.$

Определение

Кривая на поверхности $M^2 \subset \mathbb{R}^3$ — линия кривизны, если ее скорость в любой точке принадлежит главному направлению M в этой точке.

Замечание

По теореме Родрига, γ — линия кривизны \iff $(n(\gamma(t))' \parallel \gamma'(t)$ для всех t.

Замечание

Если точка $p\in M$ не умбилическая $(\kappa_1\neq\kappa_2)$ то через p проходит ровно две линий кривизны — по одной в каждом главном направлении.

Это следует из того, что главные направления гладко зависят от точки.

Лекция 11 18 ноября 2020 г.

Асимптотические линии

Определение

Кривая γ на поверхности — асимптотическая линия, если её нормальная кривизна равна 0 во всех точках.

Переформулировки: γ — асимптотическая \iff

- $\mathbf{II}(\gamma', \gamma') = 0 \iff$ во всех точках
- ullet Главная нормаль n_γ лежит в касательной плоскости $T_{\gamma(t)}M$ при всех t.

Свойства:

- Если в данной точке K > 0, то через нее не проходит асимптотических линий.
- ullet Если K < 0, то через данную точку проходит ровно две асимптотические линии (из гладкой зависимости их направлений от точки).

K, cos26 - K = 2 sin = () y = + aretg VK/KZ

[T. Merroe].

Лекция 11

18 ноября 2020 г.

Формулы типа Френе (задача)

Пусть $\gamma=\gamma(t)$ — натурально параметризованная кривая на поверхности $M^2\subset\mathbb{R}^3$. Для каждого t рассмотрим положительно ориентированный ортонормированный базис v,w,n, где $v=\gamma'(t)$, w дополняет w до базиса $T_{\gamma(t)}M$, n — нормаль поверхности в точке $\gamma(t)$.

Тогда

$$\begin{cases} v' = \kappa_g w + \kappa_n n \\ w' = -\kappa_g v + \tau_g n \\ n' = -\kappa_n v - \tau_g w \end{cases}$$

где κ_n и κ_g — нормальная и геодезическая кривизна кривой, $au_g = \mathbf{H}(v,w)$.

Примечание: au_g называется геодезическим кручением.

Функции κ_g , κ_n , τ_g обращаются в 0 тогда и только тогда, когда γ — геодезическая, асимптотическая линия или линия кривизны соответственно.

Лекция 11 18 ноября 2020 г.

Для записей

Содержание

- Главные кривизны
 - Определение, теоремы Родрига и Эйлера
 - Вычисление главных кривизн
 - Гауссова и средняя кривизна
- 2 Кривые на поверхностях
 - Нормальная кривизна, теорема Менье
 - Специальные кривые
- 3 Некоторые приложения
 - Выпуклые поверхности
 - Гассова кривизна как якобиан
 - Параллельные поверхности

Выпуклые поверхности

Пусть $M^m \subset \mathbb{R}^{m+1}$ — компактная гладкая гиперповернхность.

Определение

 М — выпуклая поверхность, если она лежит по одну сторону от любой своей аффинной касательной гиперплоскости.

Задача

Определение эквивалентно тому, что M-(гладкая)граница выпуклого тела.

Кривизна выпуклой поверхности

Для удобства рассматриваем только случай $M^2 \subset \mathbb{R}^3$. В старших размерностях всё аналогично, но формулировки более громоздкие.

Теорема

Пусть $M^2 \subset \mathbb{R}^3$ — компактная связная гиперповерхность, K — её гауссова кривизна (это функция на M). Тогда

- ullet Если M выпуклая, то $K \geq 0$ всюду на M.
- ullet Если K > 0 всюду на M, то M выпуклая.

Замечание

На самом деле вторая часть верна и при $K \geq 0$. Доказывать это не будем.

Выпуклые поверхности с K>0 называются строго выпуклыми.

Общее наблюдение: K не зависит от выбора направления нормали (при замене нормали на противоположную κ_1 и κ_2 обе меняют знак).

Доказываем первую часть.

Пусть M выпуклая, $p \in M$.

Направим нормаль n(p) в то полупространство относительно $T_p M$, которое содержит M.

Для удобства считаем, что p=0. Пусть M в окрестности p — график функции $f\colon T_pM\to \mathbb{R}$.

Тогда f достигает минимума в точке p

- $\implies d_0^2 f$ неотрицательно определена
- \implies (так как $\mathbf{II}=d_0^2f$) \mathbf{II} неотрицательно определена
- $\implies \kappa_1, \kappa_2 \geq 0 \implies K \geq 0.$

Первая часть доказана

 $\mathbb{T} = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix}$

Лекция 11

18 ноября 2020 г.

Доказываем вторую часть

Пусть $M^2\subset \mathbb{R}^3$ — компактная

• Существует глобальное гауссово отображение $n \colon M \to \mathbb{S}^2$ (т.е. M ориентируема).

Доказательство: $K > 0 \implies II$ знакоопределена. Направим нормаль в каждой точке так, чтобы II была положительна.

Доказываем вторую часть

Пусть $M^2\subset \mathbb{R}^3$ — компактная

• Существует глобальное гауссово отображение $n \colon M \to \mathbb{S}^2$ (т.е. M ориентируема).

Доказательство: $K>0 \implies II$ знакоопределена. Направим нормаль в каждой точке так, чтобы II была положительна.

 $K > 0 \implies \mathbf{II}$ невырождена $\implies -S = dn - M$ невырожденный оператор $\implies n - M$ локальный диффеоморфизм.

 $n: M \rightarrow S^2$. $T \sim -S = -dn$. $\forall p \quad d_p n: T_p M \rightarrow T_{n(p)} S^2$

Лекция 11 18 ноября 2020 г.

Доказываем вторую часть

Пусть $M^2\subset\mathbb{R}^3$ — компактная

• Существует глобальное гауссово отображение $n: M \to \mathbb{S}^2$ (т.е. M ориентируема).

Доказательство: $K>0 \implies II$ знакоопределена. Направим нормаль в каждой точке так, чтобы II была положительна.

- ② $K > 0 \implies \mathbf{II}$ невырождена $\implies -S = dn$ невырожденный оператор $\implies n$ локальный диффеоморфизм.

U zamensen ne Br(y):

X-womm + non roacom=) b un rangement Tous,

Доказываем вторую часть

Пусть $M^2\subset\mathbb{R}^3$ — компактная

• Существует глобальное гауссово отображение $n: M \to \mathbb{S}^2$ (т.е. M ориентируема).

Доказательство: $K > 0 \implies II$ знакоопределена. Направим нормаль в каждой точке так, чтобы II была положительна.

- **1** $n: M \to \mathbb{S}^2$ накрытие, \mathbb{S}^2 односвязна $m \to n$ гомеоморфизм.

Muss.ch.

PX: TI (M) >TI (S2) =) I, (M) = deg => M-00mal =) \$\beta-yml. naup. => romesn.

Лекция 11 18 ноября 2020 г.

Так как n — гомеоморфизм, каждое значение n реализуется ровно в одной точке

⇒ для каждого двумерного направления есть ровно две касательные плоскости этого направления

 $\implies M$ лежит по одну сторону от любой касательной плоскости (так же, как в двумерном случае).

Теорема доказана

or hood ware

18 ноября 2020 г.