In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression,LogisticRegressio
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_per
df

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	ı
0	2005- 11-01 01:00:00	NaN	0.77	NaN	NaN	NaN	57.130001	128.699997	NaN	14.720000	
1	2005- 11-01 01:00:00	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000	
2	2005- 11-01 01:00:00	NaN	0.40	NaN	NaN	NaN	46.119999	53.000000	NaN	30.469999	
3	2005- 11-01 01:00:00	NaN	0.42	NaN	NaN	NaN	37.220001	52.009998	NaN	21.379999	
4	2005- 11-01 01:00:00	NaN	0.57	NaN	NaN	NaN	32.160000	36.680000	NaN	33.410000	
236995	2006- 01-01 00:00:00	1.08	0.36	1.01	NaN	0.11	21.990000	23.610001	NaN	43.349998	
236996	2006- 01-01 00:00:00	0.39	0.54	1.00	1.00	0.11	2.200000	4.220000	1.00	69.639999	
236997	2006- 01-01 00:00:00	0.19	NaN	0.26	NaN	0.08	26.730000	30.809999	NaN	43.840000	
236998	2006- 01-01 00:00:00	0.14	NaN	1.00	NaN	0.06	13.770000	17.770000	NaN	NaN	
236999	2006- 01-01 00:00:00	0.50	0.40	0.73	1.84	0.13	20.940001	26.950001	1.49	48.259998	

237000 rows × 17 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 237000 entries, 0 to 236999
Data columns (total 17 columns):

Date		(totat 17 cotumns	•
#	Column	Non-Null Count	Dtype
0	date	237000 non-null	object
1	BEN	70370 non-null	float64
2	CO	217656 non-null	float64
3	EBE	68955 non-null	float64
4	MXY	32549 non-null	float64
5	NMHC	92854 non-null	float64
6	N0_2	235022 non-null	float64
7	N0x	235049 non-null	float64
8	0XY	32555 non-null	float64
9	0_3	223162 non-null	float64
10	PM10	232142 non-null	float64
11	PM25	69407 non-null	float64
12	PXY	32549 non-null	float64
13	S0_2	235277 non-null	float64
14	TCH	93076 non-null	float64
15	T0L	70255 non-null	float64
16	station	237000 non-null	int64
dtyp	oes: float	:64(15), int64(1),	object(1)
memo	ory usage:	30.7+ MB	

In [4]: df1=df.dropna()
df1

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3
5	2005- 11-01 01:00:00	1.92	0.88	2.44	5.14	0.22	90.309998	207.699997	2.78	13.760000
22	2005- 11-01 01:00:00	0.30	0.22	0.25	0.59	0.11	18.540001	19.020000	0.67	46.799999
25	2005- 11-01 01:00:00	0.67	0.49	0.94	3.44	0.17	48.740002	74.349998	1.57	23.430000
31	2005- 11-01 02:00:00	3.10	0.84	3.21	6.82	0.22	89.919998	224.199997	3.72	12.390000
48	2005- 11-01 02:00:00	0.39	0.20	0.29	0.68	0.11	16.639999	17.080000	0.40	47.689999
236970	2005- 12-31 23:00:00	0.37	0.39	1.00	1.00	0.10	4.500000	5.550000	1.00	57.779999
236973	2005- 12-31 23:00:00	0.92	0.45	1.26	3.42	0.14	37.250000	49.060001	2.57	31.889999
236979	2006- 01-01 00:00:00	1.00	0.38	1.11	2.35	0.04	35.919998	59.480000	1.39	35.810001
236996	2006- 01-01 00:00:00	0.39	0.54	1.00	1.00	0.11	2.200000	4.220000	1.00	69.639999
236999	2006- 01-01 00:00:00	0.50	0.40	0.73	1.84	0.13	20.940001	26.950001	1.49	48.259998

20070 rows × 17 columns

In [5]: df1=df1.drop(["date"],axis=1)

In [6]: sns.heatmap(df1.corr())

Out[6]: <Axes: >


```
In [7]: plt.plot(df1["EBE"],df1["NMHC"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x7fe2492811e0>]


```
In [8]: data=df[["EBE","NMHC"]]
```

```
In [9]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [10]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[10]: v LinearRegression LinearRegression()

```
In [11]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[11]: <matplotlib.collections.PathCollection at 0x7fe22a96a0b0>


```
In [12]: lis=li.score(x_test,y_test)
```

```
In [13]: df1["TCH"].value_counts()
```

```
Out[13]: 1.31
                  845
          1.33
                  820
          1.28
                  812
          1.30
                  806
          1.34
                  794
          2.99
                     1
          3.37
                     1
          3.38
                     1
          3.22
                     1
          2.48
          Name: TCH, Length: 198, dtype: int64
```

```
In [14]: df1.loc[df1["TCH"]<1.40,"TCH"]=1
    df1.loc[df1["TCH"]>1.40,"TCH"]=2
    df1["TCH"].value_counts()
```

Out[14]: 1.0 12093 2.0 7977

Name: TCH, dtype: int64

Lasso

```
In [15]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[15]: v Lasso
Lasso(alpha=5)

```
In [16]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[16]: <matplotlib.collections.PathCollection at 0x7fe2491a3d90>


```
In [17]: las=la.score(x_test,y_test)
```

Ridge

```
In [18]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

```
In [19]: prediction2=rr.predict(x_test)
   plt.scatter(y_test,prediction2)
```

Out[19]: <matplotlib.collections.PathCollection at 0x7fe2596c59f0>


```
In [20]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [21]: en=ElasticNet()
    en.fit(x_train,y_train)
```

Out[21]:
▼ ElasticNet

ElasticNet()

In [22]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)

Out[22]: <matplotlib.collections.PathCollection at 0x7fe2596ec1c0>

In [23]: ens=en.score(x_test,y_test)

In [24]: print(rr.score(x_test,y_test))
 rr.score(x_train,y_train)

0.9292398466663178

Out[24]: 0.9224085235667279

Logistic

```
In [25]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[25]: Low
                 12093
                  7977
         High
         Name: TCH, dtype: int64
In [26]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [27]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [27]:
          ▼ LogisticRegression
          LogisticRegression()
In [28]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[28]: <matplotlib.collections.PathCollection at 0x7fe22abef970>
          Low
                                                                       High
                Low
In [29]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [30]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [31]: |q1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [32]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [33]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[33]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [34]: |parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators': [10,20,30,40,50]
         }
In [35]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid search.fit(x train,y train)
Out[35]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [36]: rfcs=grid_search.best_score_
In [37]: rfc_best=grid_search.best_estimator_
```

```
In [38]: from sklearn.tree import plot_tree
                           plt.figure(figsize=(80,40))
                           plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out[38]: [Text(0.5346467391304348, 0.9285714285714286, '0_3 <= 16.915\ngini</pre>
                           = 0.478 \times = 8844 \times = [8489, 5560] \times = Yes'),
                              Text(0.2717391304347826, 0.7857142857142857, 'PM25 <= 17.745 \ngin
                           i = 0.344 \setminus samples = 3169 \setminus subseteq = [1107, 3911] \setminus subseteq = [1
                              Text(0.14945652173913043, 0.6428571428571429, 'PM10 <= 17.95 \ngin
                           i = 0.495 \setminus samples = 917 \setminus samples = [794, 651] \setminus samples = Yes'),
                              Text(0.08152173913043478, 0.5, 'OXY \le 2.185 \neq 0.353 \
                           es = 370 \setminus value = [448, 133] \setminus class = Yes'),
                              Text(0.043478260869565216, 0.35714285714285715, 'PM10 <= 10.22 \ng
                           ini = 0.309 \setminus samples = 248 \setminus samples = [322, 76] \setminus samples = Yes'),
                              Text(0.021739130434782608, 0.21428571428571427, 'NMHC <= 0.125 \ng
                           ini = 0.057 \setminus samples = 63 \setminus samples = [99, 3] \setminus samples = Yes'),
                              Text(0.010869565217391304, 0.07142857142857142, 'gini = 0.0 \nsamp
                           les = 37\nvalue = [56, 0]\nclass = Yes'),
                              Text(0.03260869565217391, 0.07142857142857142, 'gini = 0.122\nsam
                           ples = 26\nvalue = [43, 3]\nclass = Yes'),
                              Text(0.06521739130434782, 0.21428571428571427, 'NOx <= 74.02 \ngin
                           i = 0.372 \setminus s = 185 \setminus s = [223, 73] \setminus s = Yes'),
                              Text(0.05434782608695652, 0.07142857142857142, 'gini = 0.462 \nsam
                          print("Linear:",lis)
print("Lasso:",las)
In [39]:
                           print("Ridge:", rrs)
                           print("ElasticNet:",ens)
                           print("Logistic:",los)
                           print("Random Forest:",rfcs)
```

Linear: 0.9292382757190922 Lasso: 0.7070213696894748 Ridge: 0.9292398466663178

ElasticNet: 0.9076959882566026 Logistic: 0.5992360073077562

Random Forest: 0.9078939720652729

Best Model is Random Forest

In [40]: df2=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_pe
df2

Out [40]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3
0	2006- 02-01 01:00:00	NaN	1.84	NaN	NaN	NaN	155.100006	490.100006	NaN	4.880000
1	2006- 02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04	7.100000
2	2006- 02-01 01:00:00	NaN	1.25	NaN	NaN	NaN	66.800003	192.000000	NaN	4.430000
3	2006- 02-01 01:00:00	NaN	1.68	NaN	NaN	NaN	103.000000	407.799988	NaN	4.830000
4	2006- 02-01 01:00:00	NaN	1.31	NaN	NaN	NaN	105.400002	269.200012	NaN	6.990000
230563	2006- 05-01 00:00:00	5.88	0.83	6.23	NaN	0.20	112.500000	218.000000	NaN	24.389999
230564	2006- 05-01 00:00:00	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61	48.410000
230565	2006- 05-01 00:00:00	0.96	NaN	0.69	NaN	0.19	135.100006	179.199997	NaN	11.460000
230566	2006- 05-01 00:00:00	0.50	NaN	0.67	NaN	0.10	82.599998	105.599998	NaN	NaN
230567	2006- 05-01 00:00:00	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01	17.730000

230568 rows × 17 columns

In [41]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 230568 entries, 0 to 230567
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype		
0	date	230568 non-null	object		
1	BEN	73979 non-null	float64		
2	CO	211665 non-null	float64		
3	EBE	73948 non-null			
4	MXY	33422 non-null	float64		
5	NMHC	90829 non-null	float64		
6	N0_2	228855 non-null	float64		
7	N0×	228855 non-null	float64		
8	0XY	33472 non-null	float64		
9	0_3	216511 non-null	float64		
10	PM10	227469 non-null	float64		
11	PM25	61758 non-null	float64		
12	PXY	33447 non-null	float64		
13	S0_2	229125 non-null	float64		
14	TCH	90887 non-null	float64		
15	T0L	73840 non-null	float64		
		230568 non-null	int64		
dtype	es: float	64(15), int64(1),	object(1)		

In [42]: df3=df2.dropna()
df3

Out[42]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	
5	2006- 02-01 01:00:00	9.41	1.69	9.98	19.959999	0.44	142.199997	453.500000	11.31	5.99
22	2006- 02-01 01:00:00	1.69	0.79	1.24	2.670000	0.17	59.910000	120.199997	1.11	2.45
25	2006- 02-01 01:00:00	2.35	1.47	2.64	9.660000	0.40	117.699997	346.399994	5.15	4.78
31	2006- 02-01 02:00:00	4.39	0.85	7.92	17.139999	0.25	92.059998	237.000000	9.24	5.92
48	2006- 02-01 02:00:00	1.93	0.79	1.24	2.740000	0.16	60.189999	125.099998	1.11	2.28
230538	2006- 04-30 23:00:00	0.42	0.40	0.37	0.430000	0.10	49.259998	51.689999	1.00	64.59
230541	2006- 04-30 23:00:00	1.63	0.94	1.53	2.200000	0.33	63.220001	211.399994	1.35	17.67
230547	2006- 05-01 00:00:00	3.99	1.06	3.71	7.960000	0.26	202.399994	343.500000	3.92	11.13
230564	2006- 05-01 00:00:00	0.76	0.32	0.48	1.090000	0.08	51.900002	54.820000	0.61	48.41
230567	2006- 05-01 00:00:00	1.95	0.74	1.99	4.000000	0.24	107.300003	160.199997	2.01	17.73

24758 rows × 17 columns

In [43]: df3=df3.drop(["date"],axis=1)

```
In [44]: sns.heatmap(df3.corr())
```

Out[44]: <Axes: >


```
In [45]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [46]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[46]:
▼ LinearRegression
LinearRegression()

```
In [47]: prediction=li.predict(x_test)
         plt.scatter(y test,prediction)
Out[47]: <matplotlib.collections.PathCollection at 0x7fe24a2ce800>
           2.75
           2.50
           2.25
           2.00
           1.75
           1.50
In [48]: |lis=li.score(x_test,y_test)
In [49]: df3["TCH"].value_counts()
Out[49]: 1.35
                  921
          1.30
                  916
         1.36
                  914
          1.33
                  909
          1.31
                  908
         3.08
                    1
         3.25
                    1
         2.91
                    1
          2.43
         0.72
         Name: TCH, Length: 188, dtype: int64
In [50]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[50]: 1.0
                 14706
         2.0
                 10052
         Name: TCH, dtype: int64
```

Lasso

```
In [51]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

In [52]: prediction1=la.predict(x_test)
 plt.scatter(y_test,prediction1)

Out[52]: <matplotlib.collections.PathCollection at 0x7fe24a343c40>

In [53]: las=la.score(x_test,y_test)

Ridge

In [54]: rr=Ridge(alpha=1)
 rr.fit(x_train,y_train)

```
In [55]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[55]: <matplotlib.collections.PathCollection at 0x7fe24a3b3c40>

In [56]: rrs=rr.score(x_test,y_test)

ElasticNet

```
In [57]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[57]: ▼ ElasticNet ElasticNet()

```
In [58]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[58]: <matplotlib.collections.PathCollection at 0x7fe24a31eb60>

In [59]: ens=en.score(x_test,y_test)

In [60]: print(rr.score(x_test,y_test))
 rr.score(x_train,y_train)

0.6705159604191635

Out[60]: 0.6767940774302723

Logistic

In [61]: g={"TCH":{1.0:"Low",2.0:"High"}}
 df3=df3.replace(g)
 df3["TCH"].value_counts()

Out[61]: Low 14706 High 10052

Name: TCH, dtype: int64

```
In [62]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [63]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [63]:
          ▼ LogisticRegression
          LogisticRegression()
In [64]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[64]: <matplotlib.collections.PathCollection at 0x7fe259e04550>
          Low
                                                                       High
                Low
```

In [65]: los=lo.score(x_test,y_test)

Random Forest

In [66]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV

```
In [67]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df3=df3.replace(q1)
In [68]: |x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [69]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out [69]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [70]:
         parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators':[10,20,30,40,50]
In [71]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid_search.fit(x_train,y_train)
Out[71]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [72]: | rfcs=grid_search.best_score_
In [73]: | rfc_best=grid_search.best_estimator_
```

```
In [74]: from sklearn.tree import plot_tree
                              plt.figure(figsize=(80,40))
                              plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out[74]: [Text(0.5373831775700935, 0.9285714285714286, 'NOx <= 92.36\ngini</pre>
                              = 0.484 \setminus samples = 10940 \setminus samples = [10226, 7104] \setminus samples = Yes'),
                                 Text(0.28154205607476634, 0.7857142857142857, 'TOL <= 2.805\ngini
                              = 0.315 \times = 5779 \times = [7333, 1786] \times = Yes'),
                                 Text(0.14953271028037382, 0.6428571428571429, '0_3 \le 26.12 
                              = 0.21 \times = 3607 \times = [5030, 681] \times = Yes')
                                 Text(0.07476635514018691, 0.5, 'NMHC <= 0.135 \setminus gini = 0.476 \setminus g
                              les = 457\nvalue = [423, 271]\nclass = Yes'),
                                 Text(0.037383177570093455, 0.35714285714285715, 'BEN <= 0.615\ngi
                              ni = 0.274 \setminus samples = 235 \setminus samples = [286, 56] \setminus samples = Yes'),
                                 Text(0.018691588785046728, 0.21428571428571427, 'NO 2 <= 47.57 \ng
                              ini = 0.349 \setminus samples = 142 \setminus samples = [155, 45] \setminus samples = Yes'),
                                 Text(0.009345794392523364, 0.07142857142857142, 'gini = 0.271\nsa
                              mples = 115\nvalue = [140, 27]\nclass = Yes'),
                                 Text(0.028037383177570093, 0.07142857142857142, 'gini = 0.496 \nsa
                              mples = 27\nvalue = [15, 18]\nclass = No'),
                                 Text(0.056074766355140186, 0.21428571428571427, 'NMHC <= 0.115 \ng
                              ini = 0.143 \setminus samples = 93 \setminus value = [131, 11] \setminus samples = Yes'),
                                 Text(0.04672897196261682, 0.07142857142857142, 'gini = 0.026 \nsam
                             print("Linear:", lis)
print("Lasso:", las)
In [75]:
                              print("Ridge:", rrs)
                              print("ElasticNet:",ens)
                              print("Logistic:",los)
                              print("Random Forest:",rfcs)
```

Linear: 0.6704000731025829 Lasso: 0.4481089030955524 Ridge: 0.6705159604191635

ElasticNet: 0.5331870062979789 Logistic: 0.5965266558966075

Random Forest: 0.8661858049624929

Best model is Random Forest