Завдання 2 з премету Спецкурс для ОМ-3

Коломієць Микола

8 травня 2023 р.

Зміст

1	Завдання 1	2
2	Завдання 2	4
3	Завдання 3	5
4	Завдання 4	6
5	Завдання 5	7
6	Завдання 6	8
7	Завдання 7	9
8	Завдання 8	10
9	Завдання 9	11
10	Завдання 10	12

Завдання

Нехай $x \in [0, 1], n \in N$. Доведіть тотожність

$$\sum_{k=0}^{n} (\frac{k}{n} - x)^{2} C_{n}^{k} x^{k} (1 - x)^{n-k} = \frac{x(1 - x)}{n}$$

Розв'язання:

Біном Ньютона

$$1^n = (1-x+x)^n = \sum_{k=0}^n C_n^k x^k (1-x)^{n-k}$$
 Позначимо за $f(x) = \sum_{k=0}^n C_n^k x^k (1-x)^{n-k} = 1$ Тоді $\frac{df(x)}{dx} = \sum_{k=0}^n k C_n^k x^{k-1} (1-x)^{n-k} - \sum_{k=0}^n (n-k) C_n^k x^k (1-x)^{n-k-1} = 0$
$$\sum_{k=0}^n k C_n^k x^{k-1} (1-x)^{n-k-1} - \sum_{k=0}^n k C_n^k x^k (1-x)^{n-k-1} - \sum_{k=0}^n n C_n^k x^k (1-x)^{n-k-1} + \sum_{k=0}^n k C_n^k x^k (1-x)^{n-k-1} = 0$$

$$\sum_{k=0}^n k C_n^k x^{k-1} (1-x)^{n-k-1} - \sum_{k=0}^n n C_n^k x^k (1-x)^{n-k-1} = 0$$

$$\sum_{k=0}^n (k-nx) C_n^k x^{k-1} (1-x)^{n-k-1} = \sum_{k=0}^n (\frac{k}{n}-x) C_n^k x^k (1-x)^{n-k} = 0$$

$$\sum_{k=0}^n (\frac{k}{n}-x) C_n^k x^k (1-x)^{n-k} = \sum_{k=0}^n (\frac{k}{n}-x) C_n^k x^k (1-x)^{n-k} = 0$$

$$\sum_{k=0}^n \frac{k}{n} (\frac{k}{n}-x) C_n^k x^k (1-x)^{n-k} = \sum_{k=0}^n \frac{k}{n} (\frac{k}{n}-x) C_n^k x^k (1-x)^{n-k} = 0$$

$$= \frac{1}{n} \sum_{k=0}^{n} k(\frac{k}{n} - x) C_n^k x^k (1 - x)^{n-k} =$$

$$\frac{1}{n} \left(\sum_{k=0}^{n} \frac{k^2}{n} C_n^k x^k (1 - x)^{n-k} - \sum_{k=0}^{n} kx C_n^k x^k (1 - x)^{n-k} \right)$$

Завдання

Доведіть, що якщо функція f зростає на [0,1], то поліном Бернштейна $B_n(f,\cdot)$ теж зростає на [0,1].

Завдання

Доведіть, що якщо функція f опукла на [0,1], то поліном Бернштейна $B_n(f,\cdot)$ теж опуклий на [0,1].

Завдання

Нехай $f \in C([0,1])$ задовольняє умову: існує L>0 таке, що

$$|f(x_1) - f(x_2)| \le L|x_1 - x_2|, \quad \forall x_1, x_2 \in [0, 1]$$

Доведіть, що для всіх $n \in N$ вірна нерівність

$$\max_{x \in [0,1]} |f(x) - B_n(f,x)| \le \frac{L}{2\sqrt{n}}$$

Завдання

Нехай $f\in C([0,1]^2)$. Покладемо для $x,y\in [0,1],$

$$B_n(x,y) = \sum_{k=0}^n \sum_{i=0}^n f(\frac{k}{n}, \frac{i}{n}) C_n^k C_n^i x^k y^i (1-x)^{n-k} (1-y)^{n-i}$$

Доведіть, що $B_n \to f$ рівномірно на $[0,1]^2$.

Завдання

Нехай функція $f\in C([0,1])$ така, що $\int_0^1 f(x)x^ndx=0, n=0,1,2,\dots$ Доведіть, що f(x)=0 на [0,1].

Завдання

Нехай $f\in C([0,1]).$ Знайти границю

$$\lim_{n\to\infty}\underbrace{\int_0^1\int_0^1\cdots\int_0^1}_{\mathbf{n}}f(x_1,x_2\ldots x_n)dx_1dx_2\ldots dx_n$$

Теорема Л.Фейєра

Нехай $f\in C_{2\pi}, S_n$ - часткова сума ряду Фур'є функції f по основній тригонометричній системі. Тоді послідовність середніх Чезаро

$$\frac{S_0 + S_1 + \ldots + S_{n-1}}{n}$$

рівномірно на $\mathbb R$ збігається до f.

Завдання

Нехай X,Y - компакти, $f\in C(X\times Y)$. Доведіть, що

$$\forall \varepsilon > 0 \quad \exists \{a_1, a_2, \dots, a_n\} \subseteq C(X), \exists \{b_1, b_2, \dots, b_n\} \subseteq C(Y) :$$

$$\sup_{x \in X, y \in Y} |f(x, y) - \sum_{k=1}^{n} a_k(x)b_k(y)| < \varepsilon$$

Завдання

Нехай виконано всі умови теореми Стоуна, крім третьої. А замість третьої умови виконується: $\forall x \in X \quad \exists f \in A : f(x) \neq 0.$

Доведіть, що тоді також $\operatorname{cl} A = C(X).$