DEFINICION

Se dice que una ecuación diferencial lineal es **NO HOMOGENEA** si presenta la siguiente forma:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

SOLUCIÓN GENERAL

Para resolver una ecuación de estas características, es necesario formar una solución general(y), es decir una solución que este compuesta por la solución particular (y_p) y la solución complementaria (y_c).

$$y = y_p + y_c$$

METODOLOGIA DUMMIE

Cambiar ecuación a su forma estandar.

- Cambiar ecuación a su forma estandar.
- 2 Igualar g(x) = 0.

- 1 Cambiar ecuación a su forma estandar.
- ② Igualar g(x) = 0.
- Resolver la ecuación como si fuera de coeficientes constantes.

- 1 Cambiar ecuación a su forma estandar.
- ② Igualar g(x) = 0.
- Resolver la ecuación como si fuera de coeficientes constantes.
- Proponer la solución complementaria de acuerdo a las raíces.

- 1 Cambiar ecuación a su forma estandar.
- ② Igualar g(x) = 0.
- Resolver la ecuación como si fuera de coeficientes constantes.
- Proponer la solución complementaria de acuerdo a las raíces.
- **5** Observar la forma de g(x).

- Cambiar ecuación a su forma estandar.
- 2 Igualar g(x) = 0.
- Resolver la ecuación como si fuera de coeficientes constantes.
- Proponer la solución complementaria de acuerdo a las raíces.
- **5** Observar la forma de g(x).
- **o** Proponer una solución particular y_p de acuerdo a la forma de g(x).
- O Derivar dependiendo el grado de la ecuación principal.
- Sustituir las derivadas obtenidas en la ecuación original.
- Obtener los coeficientes por el método de coeficientes indeterminados
- \odot Escribir la ecuacion final y obtener los valores de C_n

SOLUCIONES PARTICULARES

	g(x)	Forma de y_p
1.	1 (cualquier constante)	A
2.	5x + 7	Ax + B
3.	$3x^2 - 2$	$Ax^2 + Bx + C$
4.	$x^3 - x + 1$	$Ax^3 + Bx^2 + Cx + E$
5.	sen 4x	$A\cos 4x + B\sin 4x$
6.	$\cos 4x$	$A\cos 4x + B\sin 4x$
7.	e^{5x}	Ae^{5x}
8.	$(9x-2)e^{5x}$	$(Ax+B)e^{5x}$
9.	x^2e^{5x}	$(Ax^2 + Bx + C)e^{5x}$
10.	e^{3x} sen $4x$	$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$
11.	$5x^2 \sin 4x$	$(Ax^2 + Bx + C)\cos 4x + (Ex^2 + Fx + G)\sin 4x$
12.	$xe^{3x}\cos 4x$	$(Ax + B)e^{3x}\cos 4x + (Cx + E)e^{3x}\sin 4x$

EJEMPLOS(TRABAJO II)

1.
$$y'' + 3y' + 2y = 6$$

2.
$$4y'' + 9y = 15$$

3.
$$y'' - 10y' + 25y = 30x + 3$$

4.
$$y'' + y' - 6y = 2x$$

5.
$$\frac{1}{4}y'' + y' + y = x^2 - 2x$$

6.
$$y'' - 8y' + 20y = 100x^2 - 26xe^x$$

7.
$$y'' + 3y = -48x^2e^{3x}$$

8.
$$4y'' - 4y' - 3y = \cos 2x$$

9.
$$y'' - y' = -3$$

10.
$$y'' + 2y' = 2x + 5 - e^{-2x}$$

11.
$$y'' - y' + \frac{1}{4}y = 3 + e^{x/2}$$

12.
$$y'' - 16y = 2e^{4x}$$

13.
$$y'' + 4y = 3 \operatorname{sen} 2x$$

$$y(0) = 6$$
 $y'(0) = 2$

CRAMFR

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$
(1)

tiene la solución

$$x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}} \quad y \quad x_2 = \frac{a_{11} b_2 - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}$$
(2)

siempre y cuando $a_{11}a_{22} - a_{12}a_{21} \neq 0$. Puede reconocerse que los numeradores y denominadores mostrados en (2) son determinantes. Esto es, el sistema (1) tiene una única solución,

$$x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, \quad x_{2} = \frac{\begin{vmatrix} a_{11} & b_{1} \\ a_{21} & b_{2} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$
(3)