Introducción a los Sistemas Operativos

Entrada / Salida

I.S.O.

- ✓ Versión: Noviembre 2013
- ☑Palabras Claves: Entrada, Salida, Dispositivos, Interrupciones, DMA, driver

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts). También se incluyen diapositivas cedidas por Microsoft S.A.

Variedad en los dispositivos de I/O

✓ Legible por el Hombre

- ✓ Usados para comunicarse con el usuario
 - Impresoras, Terminales: Pantalla, Teclado, Mouse

✓ Legible por la Máquina

- ✓ Utilizados para comunicarse con los componentes electrónicos
 - Discos, Cintas, Sensores, etc.

☑ Comunicación

- ✓ Usados para comunicarse con dispositivos remotos
 - Líneas Digitales, Modems, Etc.

Problemas que surgen

- ✓ Amplia Variedad
 - ✓ Manejan diferentes cantidad de datos
 - ✓ En Velocidades Diferentes
 - ✓ En Formatos Diferentes
- ✓ La gran mayoría de los dispositivos de E/S son más lentos que la CPU y la RAM

Hardware y software involucrado

- **☑**Buses
- ✓Controladores
- **☑**Dispositivos
- ☑Puertos de E/S Registros
- **☑**Drivers
- ☑Comunicación con controlador del dispositivo: I/O Programada, Interrupciones, DMA

Estructura de Bus de una PC

Comunicación: CPU - Controladora

- ☑¿Cómo puede la CPU ejecutar comandos o enviar/recibir datos de una controladora de un dispositivo?
 - ✓ La controladora tiene uno o mas registros:
 - Registros para señales de control
 - Registros para datos
- ☑La CPU se comunica con la controladora escribiendo y leyendo en dichos registros

Comandos de I/O

- **☑**CPU emite direcciones
 - ✓ Para identificar el dispositivo
- **☑**CPU emite comandos
 - ✓ Control Que hacer?
 - Ej. Girar el disco
 - ✓ Test Controlar el estado
 - Ej. power? Error?
 - ✓ Read/Write
 - Transferir información desde/hacia el dispositivo

Mapeo de la E/S (I/O Mapping)

- ☑ Correspondencia en memoria (Memory mapped I/O)
 - ✓ Dispositivos y memoria comparten el espacio de direcciones.
 - ✓ I/O es como escribir/leer en la memoria.
 - ✓ No hay instrucciones especiales para I/O
 - Ya se dispone de muchas instrucciones para la memoria
- ☑ Isolated I/O (Aislada, uso de Puertos de E/S)
 - ✓ Espacio separado de direcciones
 - ✓ Se necesitan líneas de I/O. Puertos de E/S
 - ✓ Instrucciones especiales
 - Conjunto Limitado

Memory Mapped and Isolated I/O

ADDRESS	INSTRUCTION	OPERAND	COMMENT
200	Load AC	"1"	Load accumulator
	Store AC	517	Initiate keyboard read
202	Load AC	517	Get status byte
	Branch if Sign = 0	202	Loop until ready
	Load AC	516	Load data byte
			_

(a) Memory-mapped I/O

ADDRESS	INSTRUCTION	OPERAND	COMMENT			
200	Load I/O	5	Initiate keyboard read			
201	Test I/O	5	Check for completion			
	Branch Not Ready	/ 201	Loop until complete			
	In	5	Load data byte			
(b) Isolated I/O						

Técnicas de I/O - Programada

- ☑ CPU tiene control directo sobre la I/O
 - ✓ Controla el estado
 - ✓ Comandos para leer y escribir
 - ✓ Transfiere los datos
- ☑ CPU espera que el componente de I/O complete la operación
- ☑ Se desperdician ciclos de CPU

Polling

- ☑En la I/O Programada, es necesario hacer polling del dispositivo para determinar el estado del mismo
 - ✓ Listo para recibir comandos
 - ✓ Ocupado
 - ✓ Error
- ☑Ciclo de "Busy-wait" para realizar la I/O
- ☑Puede ser muy costoso si la espera es muy larga

Técnicas de I/O - Manejada por Interrupciones

- ☑ Soluciona el problema de la espera de la CPU
- ☑ La CPU no repite el chequeo sobre el dispositivo
- ☑ El procesador continúa la ejecución de instrucciones
- ☑ El componente de I/O envía una interrupción cuando termina

Técnicas de I/O - DMA

DMA (Direct Memory Access)

- ✓ Un componente de DMA controla el intercambio de datos entre la memoria principal y el dispositivo
- ☑ El procesador es interrumpido luego de que el bloque entero fue transferido.

Pasos para una transferencia DMA

Interfaz de I/O - Metas

- ☑Es deseable manejar todos los dispositivos de I/O de una manera uniforme, estandarizada.
- ☑Ocultar la mayoría de los detalles del dispositivo en las rutinas de niveles más "bajos" para que los procesos vean a los dispositivos, en términos de operaciones comunes como: read, write, open, close, lock, unlock

Subsistema de I/O

