С.А.Лифиц

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА

Материалы к урокам по теме: "Дифференциальные уравнения"

Поурочное планирование (23 часа)

Урок 1. Понятие дифференциального уравнения. Дифференциальные уравнения вида $y^{(n)} = f(x)$.

Урок 2. Дифференциальные уравнения с разделяющимися переменными. Дифференциальные уравнения вида y' = f(ax + by).

Урок 3. Однородные дифференциальные уравнения.

Урок 4. Дифференциальные уравнения вида $y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$.

Урок 5. Метод неопределенных коэффициентов сведения дифференциальных уравнений к однородным.

Урок 6. *Самостоятельная работа* по теме: "Дифференциальные уравнения с разделяющимися переменными".

Урок 7. Линейные дифференциальные уравнения первого порядка.

Урок 8. Уравнение Бернулли.

Урок 9. Решение уравнений, сводящихся к линейным дифференциальным уравнениям первого порядка.

Урок 10. *Самостоятельная работа* по теме: "Линейные дифференциальные уравнения первого порядка".

Урок 11. Общие понятия теории линейных дифференциальных уравнений.

Урок 12. Однородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения. Уравнение гармонических колебаний.

Урок 13. Однородные линейные дифференциальные уравнения произвольного порядка с постоянными коэффициентами.

Урок 14. Нахождение частного решения неоднородного линейного дифференциального уравнения с постоянными коэффициентами методом вариации произвольных постоянных.

Урок 15. Нахождение частных решений неоднородных линейных дифференциальных уравнений с постоянными коэффициентами с правыми частями вида $e^{\alpha x}$, $P(x) e^{\alpha x}$, $e^{\alpha x} (P(x) \cos \beta x + Q(x) \sin \beta x)$.

Урок 16. Решение неоднородных линейных дифференциальных уравнений второго порядка с постоянными коэффициентами.

Урок 17. *Самостоятельная работа* по теме: "Линейные дифференциальные уравнения с постоянными коэффициентами".

Урок 18. Замена переменных как метод решения дифференциальных уравнений.

Урок 19. Обобщающий урок.

Урок 20. Контрольная работа (90 мин.).

Урок 22. Зачет по теории.

Урок 1. Понятие дифференциального уравнения

Домашнее задание

1) Докажите, что при всех допустимых значениях C функция

$$y(x) = \sqrt{x^2 + 2x + C}$$

является решением дифференциального уравнения yy' = x + 1.

2) Докажите, что при всех допустимых значениях C функция

$$y(x) = (1, 5(C - \cos x))^{2/3}$$

является решением дифференциального уравнения $y'\sqrt{y} = \sin x$.

- 3) Докажите, что при всех допустимых значениях постоянных C_1 , C_2 и C_3 функция $y(x) = \frac{1}{3} (C_1 2x)^{3/2} + C_2 x + C_3$ является решением дифференциального уравнения $y''' = (y'')^3$.
- 4) Докажите, что при всех допустимых значениях постоянных C_1 , C_2 и C_3 функция $y(x) = C_1 + \sqrt{C_2 (x C_3)^2}$ является решением дифференциального уравнения $y'''\left(1 + (y')^2\right) = 3y'\left(y''\right)^2$.
- 5) Проверьте, что функция $y(x) = -\frac{1}{x+C}$ является решением дифференциального уравнения $y'=y^2$, и найдите значение C по начальному условию y(0)=1.
- 6) Проверьте, что функция $x(t) = C_1 \cos \omega t + C_2 \sin \omega t$ является решением дифференциального уравнения $x'' + \omega^2 x = 0$, и найдите частное решение, соответствующее начальному условию $x(0) = x_0$, $x'(0) = v_0$.
- 7) Решите дифференциальные уравнения:

$$(1) \ \frac{d^2x}{dt^2} = -g;$$

$$(2) \frac{d^2y}{dx^2} = x^3.$$

Урок 2. Уравнения с разделяющимися переменными

3

1)
$$y' = y^2$$
;

$$2) \ y' = -\frac{x}{y};$$

3)
$$y' = \alpha \frac{y}{x}$$
;

4)
$$y' = (1+x^2)(1+y^2);$$

$$5) \ x^2y^2y' + 1 = y;$$

6)
$$xy dx + (x+1) dy = 0$$
;

7)
$$y' = \cos(y - x)$$
.

1) Решите дифференциальные уравнения:

(1)
$$y' = 4 + y^2$$
;

$$(2) y' = \frac{x^3}{\sin 5y};$$

(3)
$$\sqrt{1-x^2}y' = 2\sqrt{y}$$
;

(4)
$$z' = 10^{x+z}$$
;

(5)
$$\sqrt{y^2 + 1} \, dx = xy \, dy;$$

(6)
$$y' - y = 2x - 3$$
.

2) Найдите решение дифференциального уравнения $y' \operatorname{ctg} x + y = 2$, удовлетворяющее начальному условию y(0) = -1.

3) Найдите решение дифференциального уравнения $xy' + y = y^2$, удовлетворяющее начальному условию y(1) = 0, 5.

Урок 3. Однородные уравнения

1)
$$y^2 + x^2y' = xyy';$$

2)
$$xy' - y = (x+y) \ln \frac{x+y}{x}$$
;

3)
$$(x+2y) dx - x dy = 0;$$

4)
$$(y + \sqrt{xy}) dx = x dy;$$

$$5) \ y'\sqrt{x} = \sqrt{y-x} + \sqrt{x}.$$

Решите дифференциальные уравнения:

1)
$$2x^3y' = y(2x^2 - y^2);$$

2)
$$(x^2 + y^2) y' = 2xy;$$

$$3) xy' = y \cos \ln \frac{y}{x};$$

$$4) x dy = (x+y) dx;$$

5)
$$(x-y) dx + (x+y) dy = 0$$
;

6)
$$xy' = \sqrt{x^2 - y^2} + y$$
.

Урок 4. Уравнения вида
$$y'=f\left(rac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}
ight)$$

Решите дифференциальные уравнения:

1)
$$x - y - 1 + (y - x + 2)y' = 0$$
;

2)
$$y' = 2\left(\frac{y+2}{x+y-1}\right)^2$$
;

Домашнее задание

Решите дифференциальные уравнения:

1)
$$(2x + y + 1) dx - (4x + 2y - 3) dy = 0;$$

2)
$$y' = \frac{y+2}{x+1} + \operatorname{tg} \frac{y-2x}{x+1}$$
;

3)
$$(y+2) dx - (2x+y-4) dy = 0$$
.

Урок 5. Метод неопределенных коэффициентов сведения дифференциальных уравнений к однородным

1)
$$x^3(y'-x)=y^2$$
;

2)
$$2x dy + (x^2y^4 + 1) y dx = 0;$$

3)
$$\frac{2}{3}xyy' = \sqrt{x^6 - y^4} + y^2$$
.

Решите дифференциальные уравнения:

1)
$$y dx + x (2xy + 1) dy = 0;$$

2)
$$2y' + x = 4\sqrt{y}$$
;

3)
$$2xy' + y = y^2 \sqrt{x - x^2y^2}$$
.

Урок 6. Самостоятельная работа №1: "Разделение переменных. Однородные уравнения"

Домашнее задание

Решите дифференциальные уравнения:

1)
$$y' - xy^2 = 2xy$$
;

$$2) e^{-s} \left(1 + \frac{ds}{dt} \right) = 1;$$

3)
$$(2x-4y+6) dx + (x+y-3) dy = 0$$
;

4)
$$(x + 4y) y' = 2x + 3y - 5;$$

5)
$$y' = y^2 - \frac{2}{x^2}$$
;

6)
$$2y + (x^2y + 1)xy' = 0$$
.

Урок 7. Линейные уравнения первого порядка

1)
$$xy' - 2y = 2x^4$$
;

2)
$$x(x-1)y' + 2xy = 1$$
;

3)
$$(xy + e^x) dx - x dy = 0;$$

4)
$$y = x (y' - x \cos x)$$
.

- 1) Даны два различных решения $y_1(x)$ и $y_2(x)$ линейного дифференциального уравнения первого порядка. Выразите через них общее решение этого уравнения.
- 2) Решите дифференциальные уравнения:
 - (1) (2x+1)y' = 4x + 2y;
 - (2) $y' + y \operatorname{tg} x = \cos^{-1} x$;
 - (3) $xy' + (x+1)y = 3x^2e^{-x}$;
 - (4) x(x+1)(y'-1) = y;
 - (5) $2x(x^2 + y) dx = dy;$
 - (6) $3x^2 y = y'\sqrt{x^2 + 1}$.

Урок 8. Уравнения Бернулли

Решите дифференциальные уравнения:

- 1) $y' + 2y = y^2 e^x$;
- $2) xy' = 2x\sqrt{y}\cos x 2y;$
- 3) $\frac{xy'}{y} + 2xy \ln x + 1 = 0;$
- 4) $y' = y^4 \cos x + y \operatorname{tg} x;$
- $5) \ 2y' \frac{x}{y} = \frac{xy}{x^2 1}.$

Домашнее задание

- 1) $(x+1)(y'+y^2) = -y;$
- 2) $xy^2y' = x^2 + y^3$;
- 3) $yy' + y^2 \operatorname{ctg} x = \cos x$;
- 4) $y' 8x\sqrt{y} = \frac{4xy}{x^2 1}$;
- 5) $y^2 = (xyy' + 1) \ln x$;
- 6) $(1-x^2)y'-2xy^2=xy$.

Урок 9. Уравнения, сводящиеся к линейным заменой переменных

Решите дифференциальные уравнения:

$$1) \left(x + y^2\right) dy = y dx;$$

2)
$$(x \cos y + \sin 2y) y' = 1;$$

3)
$$y'x^3 \sin y = xy' - 2y$$
;

4)
$$(x+1)(yy'-1) = y^2$$
;

5)
$$x(e^y - y') = 2;$$

6)
$$x dx = (x^2 - 2y + 1) dy$$
.

Домашнее задание

Решите дифференциальные уравнения:

1)
$$(2e^y - x)y' = 1$$
;

2)
$$(2x + y) dy = y dx + 4 \ln y dy$$
;

3)
$$(4xy - 3)y' + y^2 = 1$$
;

4)
$$xy' = x^2e^{-y} + 2;$$

5)
$$x dx + (x^2 \operatorname{ctg} y - 3 \cos y) dy = 0;$$

6)
$$y' = \frac{3x^2}{x^3 + y + 1}$$
.

Урок 10. Самостоятельная работа №2: "Линейные уравнения первого порядка"

Домашнее задание

1)
$$2x^3yy' + 3x^2y^2 + 7 = 0$$
;

2)
$$dy + (xy - xy^3) dx = 0$$
;

3)
$$y' = \frac{1}{x - y^2}$$
;

4)
$$(2xe^y + y^4) y' = ye^y;$$

5)
$$\frac{dx}{x} = \left(\frac{1}{y} - 2x\right) dy;$$

6)
$$6x^5y dx + (y^4 \ln y - 3x^6) dy = 0.$$

Урок 11. Общие понятия теории линейных дифференциальных уравнений

Домашнее задание

1) (∂on .) а) Докажите формулу дифференцирования определителей:

$$\frac{d}{dx} \begin{vmatrix} f_{11} & f_{12} & \dots & f_{1n} \\ f_{21} & f_{22} & \dots & f_{2n} \\ \dots & \dots & \dots & \dots \\ f_{n1} & f_{n2} & \dots & f_{nn} \end{vmatrix} = \begin{vmatrix} f'_{11} & f'_{12} & \dots & f'_{1n} \\ f_{21} & f_{22} & \dots & f_{2n} \\ \dots & \dots & \dots & \dots \\ f_{n1} & f_{n2} & \dots & f_{nn} \end{vmatrix} + \begin{vmatrix} f_{11} & f_{12} & \dots & f_{1n} \\ f'_{21} & f'_{22} & \dots & f'_{2n} \\ \dots & \dots & \dots & \dots \\ f_{n1} & f_{n2} & \dots & f_{nn} \end{vmatrix} + \dots + \begin{vmatrix} f_{11} & f_{12} & \dots & f_{1n} \\ f_{21} & f_{22} & \dots & f_{2n} \\ \dots & \dots & \dots & \dots \\ f'_{n1} & f'_{n2} & \dots & f'_{nn} \end{vmatrix}.$$

б) Дано уравнение $y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_n(x)y = 0$. Докажите, что определитель Вронского $\Delta(y_1, y_2, \ldots, y_n)$ решений y_1, y_2, \ldots, y_n можно найти по формуле Ocmporpadckoro-Лиувилля:

$$\Delta(y_1, y_2, \dots, y_n) = Ce^{-\int p_1(x) dx}.$$

2) (∂on .) Докажите, что решения y_1, y_2, \ldots, y_n уравнения

$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_n(x)y = 0$$

линейно зависимы тогда и только тогда, когда их определитель Вронского $\Delta(y_1, y_2, \dots, y_n)$ равен нулю.

- 3) Являются ли данные функции линейно независимыми:
 - a) $y_1 = \sin x, y_2 = \cos x;$
 - 6) $y_1 = 1, y_2 = x, y_3 = x^2$;
 - B) $y_1 = 4 x$, $y_2 = 2x + 3$, $y_3 = 6x + 8$;
 - $y_1 = x^2 x + 3, y_2 = 2x^2 + x, y_3 = 2x 4;$
 - д) $y_1 = e^x$, $y_2 = e^{2x}$, $y_3 = e^{3x}$;
 - e) $y_1 = e^x$, $y_2 = xe^x$, $y_3 = x^2e^x$, $y_4 = x^3e^x$?

4) Пусть f(x) – комплекснозначная функция вещественного переменного x: $f(x) = \varphi(x) + i \psi(x)$, где $\varphi(x)$ и $\psi(x)$ – вещественные функции. Положим по определению $f'(x) = \varphi'(x) + i \psi'(x)$. Докажите, что $\left(e^{\lambda x}\right)' = \lambda e^{\lambda x}$ при любом $\lambda \in \mathbb{C}$.

Урок 12. Линейные уравнения второго порядка с постоянными коэффициентами

Решите дифференциальные уравнения:

1)
$$y'' - 3y' - 18y = 0$$
;

2)
$$y'' + 10y' + 41y = 0$$
;

3)
$$9y'' - 12y' + 4y = 0$$
.

Домашнее задание

Решите дифференциальные уравнения:

1)
$$y'' + y' - 2y = 0$$
;

2)
$$y'' - 2y' = 0$$
;

3)
$$2y'' - 5y' + 2y = 0$$
;

4)
$$y'' - 4y' + 5y = 0$$
;

5)
$$y'' + 4y = 0;$$

6)
$$4y'' + 4y' + y = 0$$
;

7)
$$y'' - 6y' + 3y = 0$$
;

8)
$$2y'' + 7y' + 11y = 0$$
.

Урок 13. Линейные однородные уравнения с постоянными коэффициентами высших порядков

1)
$$y^{(V)} - 10y''' + 9y' = 0;$$

2)
$$y''' - y'' - y' + y = 0$$
;

3)
$$y^{(V)} - 2y^{(IV)} - 16y' + 32y = 0$$
;

4)
$$y^{(IV)} + 2y'' + y = 0;$$

5)
$$y^{(VI)} - 64y = 0;$$

6)
$$y^{(VI)} + 64y = 0$$
.

Решите дифференциальные уравнения:

1)
$$y^{(IV)} - 5y'' + 4y = 0;$$

2)
$$y^{(V)} - 6y^{(IV)} + 9y''' = 0;$$

3)
$$y''' - 8y = 0;$$

4)
$$y^{(IV)} + 4y = 0$$
;

5)
$$y^{(IV)} + 4y'' + 3y = 0$$
;

6)
$$y^{(V)} + 8y''' + 16y' = 0$$
.

Урок 14. Метод вариации произвольных постоянных

Решите дифференциальные уравнения методом вариации произвольных постоянных:

1)
$$y'' - 2y' + y = \frac{e^x}{x}$$
;

2)
$$y''' + y' = f(x)$$
.

Домашнее задание

Решите дифференциальные уравнения методом вариации произвольных постоянных:

1)
$$y'' + 3y' + 2y = \frac{1}{e^x + 1}$$
;

2)
$$y'' + 4y = 2 \operatorname{tg} x$$
;

3)
$$y'' + 2y' + 5y = e^{-x} (\cos^2 x + \operatorname{tg} x);$$

4)
$$y^{(IV)} + y'' = f(x)$$
.

Урок 15. Метод неопределенных коэффициентов

- 1) Решите дифференциальные уравнения, используя метод неопределенных коэффициентов:
 - $(1) y'' 2y' 3y = e^{4x};$
 - (2) $y'' + 4y' + 4y = 6e^{-2x}$;
 - (3) $y'' + y = 4xe^x$;
 - $(4) \ y'' + y = 4\sin x.$
- 2) Выпишите решение уравнения $y^{(IV)} + y'' = 2\cos x + x\sin x$ с неопределенными коэффициентами (числовые значения коэффициентов частного решения находить не надо).

Домашнее задание

- 1) Решите дифференциальные уравнения, используя метод неопределенных коэффициентов:
 - $(1) y''' 3y' 2y = 9e^{2x};$
 - (2) $y'' 9y = e^{3x} \cos x$;
 - (3) $y'' 2y' + y = 6xe^x$;
 - $(4) y'' + 2y' 3y = x^2 e^x;$
 - $(5) y'' 3y' + 2y = x \cos x.$
- 2) Выпишите решение уравнения $y'' 8y' + 20y = e^{4x} (5\cos 2x + x\sin 2x)$ с неопределенными коэффициентами (числовые значения коэффициентов частного решения находить не надо).

Урок 16. Решение неоднородных линейных уравнений с постоянными коэффициентами

Решите дифференциальные уравнения, используя метод неопределенных коэффициентов:

1)
$$y'' - y = 2e^x - x^2$$
;

2)
$$y'' - 4y' + 8y = e^{2x} + \sin 2x$$
;

3)
$$y''' - 6y'' + 9y' = xe^{3x} + e^{3x}\cos 2x$$
;

4)
$$y'' - 2y' + 2y = x \cos x$$
.

1) Решите дифференциальные уравнения, используя метод неопределенных коэффициентов:

(1)
$$y'' + 3y' - 4y = e^{-4x} + xe^{-x}$$
;

(2)
$$y'' - 5y' = 3x^2 + \sin 5x$$
;

(3)
$$y'' + 6y' + 10y = 3xe^{-3x} - 2e^{3x}\cos x$$
.

2) Выпишите решение уравнения $y^{(IV)} - 2y''' + 2y'' - 2y' + y = x \sin x$ с неопределенными коэффициентами (числовые значения коэффициентов частного решения находить не надо).

Урок 17. Самостоятельная работа №3: "Линейные уравнения с постоянными коэффициентами"

Домашнее задание

Решите дифференциальные уравнения:

1)
$$y' = \operatorname{tg}(y - 2x);$$

2)
$$y(y - xy') = \sqrt{x^4 + y^4}$$
;

3)
$$yy' = 4x + 3y - 2$$
;

4)
$$(\sin^2 y + x \operatorname{ctg} y) y' = 1;$$

5)
$$(y' - x\sqrt{y})(x^2 - 1) = xy;$$

6)
$$2x^2y' = y^2(2xy' - y)$$
.

Урок 18. Метод замены переменных

1)
$$x dy - y dx = x \sqrt{x^2 + y^2} dx$$
;

2)
$$yy' + x = \frac{1}{2} \left(\frac{x^2 + y^2}{x} \right)^2$$
;

3)
$$xyy' - x^2\sqrt{y^2 + 1} = (x+1)(y^2 + 1);$$

4)
$$x^2y'' - 3xy' + 5y = 3x^2$$
.

Решите дифференциальные уравнения:

1)
$$(\cos x - x \sin x) y dx + (x \cos x - 2y) dy = 0;$$

2)
$$(x^2 + y^2 + 1)yy' + (x^2 + y^2 - 1)x = 0;$$

3)
$$(x^2-1)y'+y^2-2xy+1=0;$$

4)
$$y' \operatorname{tg} y + 4x^3 \cos y = 2x$$
;

5)
$$2xy' + 1 = y + \frac{x^2}{y-1}$$
;

6)
$$x^2y'' - 2y = \frac{3x^2}{x+1}$$
.

Урок 19. Обобщающий урок

Домашнее задание

1)
$$\left(x - y\cos\frac{y}{x}\right) dx + x\cos\frac{y}{x} dy = 0;$$

2)
$$y' = \left(\frac{3x + y^3 - 1}{y}\right)^2$$
;

3)
$$(xy^4 - x) dx + (y + xy) dy = 0;$$

4)
$$(2x + y + 5) y' = 3x + 6$$
;

$$5) x - \frac{y}{y'} = \frac{2}{y};$$

6)
$$y' = \frac{x}{y}e^{2x} + y;$$

7)
$$\left(x\sqrt{y^2+1}+1\right)\left(y^2+1\right)\,dx = xy\,dy;$$

8)
$$y'' - 5y' + 4y = 4x^2e^{2x}$$
.

Вопросы к зачету

- **1.** Понятие дифференциального уравнения. Дифференциальные уравнения с разделяющимися переменными. Дифференциальные уравнения вида y' = f(ax + by).
- **2.** Однородные дифференциальные уравнения. Дифференциальные уравнения вида $y'=f\left(\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}\right)$. Метод неопределенных коэффициентов сведения дифференциальных уравнений к однородным.
- **3.** Линейные дифференциальные уравнения первого порядка. Нахождение частного решения неоднородного линейного дифференциального уравнения первого порядка методом вариации произвольных постоянных.
- 4. Уравнение Бернулли.
- **5.** Линейные однородные дифференциальные уравнения. Линейно зависимые и линейно независимые решения. Теорема существования и единственности решения. Определитель Вронского. Общее решение уравнения.
- **6.** Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения. Уравнение гармонических колебаний.
- 7. Линейные однородные дифференциальные уравнения произвольного порядка с постоянными коэффициентами. Вид общего решения. Определитель Вандермонда.
- **8.** Нахождение частного решения неоднородного линейного дифференциального уравнения с постоянными коэффициентами методом вариации произвольных постоянных.
- **9.** Нахождение частных решений неоднородных линейных дифференциальных уравнений с постоянными коэффициентами с правыми частями вида $e^{\alpha x}$, $P(x) e^{\alpha x}$, $e^{\alpha x} (P(x) \cos \beta x + Q(x) \sin \beta x)$.