Mobile용 PMIC 설계

2010년도 AIPRC Power IC 설계 기술 Workshop

2010년 12월 9일

서울시립대학교 최 중 호 jchoi@uos.ac.kr

Power Sources for Mobile Devices

Typical Battery Characteristics

✓ Multiple Cells Required

- ✓ Regulation Required
- Various Power Supply Voltages for ICs
 - O Supply Voltage Values (Even Negative Polarity)
 - O Load Current Amount to be Used
 - O Noise Immunity
 - Sensitivity to Load and Line Variations
 - For Different Functional Blocks

PMIC for Mobile Applications

- Small Form-Factor
 - → External Inductors, Capacitors, Resistors ...
 - → Increased Operating Frequency & Bandwidth
- Reducing The Number of External Off-Chip Components
 - → Proper Topology to be Adopted
 - → New Techniques to be Studied
- Integration of Various Power Sources into Single Chip
 - → Complexity & Interference
 - → Proper IC Fabrication Technology

Difficulties in IP Integration

- Longer Battery Time : Low-Power Design
- Multi-Channel Application : Matching Important
- Multi-Functions Available Through Digital Control

Apple iPhone 3G Example

Main Board (Side 1 IC Identification)

© Copyright 2010 UBM LLC, All Rights Reserved.

Comments about costing? Email us at feedback@ubmtechinsights.com

Apple 3G iPhone 11000-080711-BCg - Page 2

http://www.umbtechinsights.com

Apple iPhone 4 Example

http://www.umbtechinsights.com

DA9502 (Dialog-Semi) Example

Features

- Switched DC/USB Charger with power path management
- 4 DVS Buck Converters 0.5V-3.6V up to 1Amp
- 10 Programmable LDO's High PSRR, 1% ассигасу.
- Low power Backup Charger 1.1-3.1V up to 6mA
- 32kHz RTC Oscillator
- General Purpose ADC with touch screen interface
- High voltage White LED driver 24V/50Ma Boost, 3 strings
- 16 bit GPIO bus for enhanced wakeup and peripheral control
- Dual serial control interfaces
- Unique ID code capability with OTP memory

MAX8662 (Maxim) Example

 Two 95%-Efficient 1MHz DC-DC Buck Converters

• Main: 0.98V to VIN at 1200mA

O Core: 0.98V to VIN at 900mA

1MHz Boost WLED Driver

O Up to 7 White LEDs at 30mA (max)

O PWM and Analog Dimming Control

▶ Four Low-Dropout Linear Regulators

O 1.7V to 5.5V Input Range

O 15µA Quiescent Current

Single-Cell Li+ Charger

O Adapter or USB Input

O Thermal-Overload Protection

Smart Power Selector (SPS)

• AC Adapter/USB or Battery Source

• Charger-Current and System-Load Sharing

TPS65011 (TI) Example

- Linear Charger Management for Single Li-Ion or Li-Polymer Cells
- Dual Input Ports for Charging From USB or Wall Plug, (100/500-mA USB Req.)
- 1-A, 95% Efficient Step-Down Converter for I/O and Peripheral Components (VMAIN)
- 400-mA, 90% Efficient Step-Down Converter for Processor Core
- 2x 200-mA LDOs for I/O and Peripheral Components
- Serial Interface Compatible w/ I²C
- 100-kHz, 400-kHz Operation
- ◆ 70-µA Quiescent Current
- 1% Reference Voltage
- Thermal Shutdown Protection

Typical Power Source Options

	Applications	Efficiency	Cost	Noise
LDO* Linear Regulator	$V_{OUT} < V_{IN}$	С	А	А
Charge Pump Converter**	$V_{OUT} > < V_{IN}$	В	С	С
DC-DC Boost Converter	$V_{OUT} > V_{IN}$	А	C-	C-
DC-DC Buck Converter	$V_{OUT} < V_{IN}$	А	C-	C-
DC-DC Buck/Boost Converter	$V_{OUT} > < V_{IN}$	A-	C-	C-

^{*} LDO: Low-Drop Out

Optimum Power Management Required

^{**} Limited Output Voltage Values & Load Current

LDO Linear Regulator

Linear Regulator Basic Principle

- Error Amplifier, Pass Transistor (Output Transistor), Voltage
 Reference, Feedback Network
- V_{GS} of Pass Transistor Controlled by Error Amplifier for Defined V_{DS}
- Output Voltage Regulated w.r.t. Varying V_{IN} and I_{LOAD}
- Stable Operation Required
- Efficiency η (ideal) = $(V_{IN}-V_{OUT})/V_{IN}$

Low-Drop Out Design Restriction

OUTPUT NMOSFET

OUTPUT PMOSFET

- More Stable Operation
- Difficult for LDO Design

- Easy for LDO Design
- Less Stable Operation

Static Performance

Feedback Gain

$$\beta \equiv \frac{R_1}{R_1 + R_2}$$

Loop Gain

$$A_{LG} = A_{ERR} \cdot A_{M_{OUT}} \cdot \beta$$

• Transfer Function
$$\frac{V_{OUT}}{V_{REF}} = \frac{A_{ERR} \cdot A_{M_{OUT}}}{1 + A_{LG}} \approx \frac{1}{\beta} = 1 + \frac{R_2}{R_1}$$

$$\frac{\Delta V_{OUT}}{\Delta I_{OUT}} = R_{OUT} = \frac{r_{out}|_{M_{OUT}}}{1 + A_{LG}} \approx \frac{1}{A_{ERR} \cdot g_{m}|_{M_{OUT}}} \cdot \beta$$

• Line Regulation
$$\frac{\Delta V_{OUT}}{\Delta V_{IN}} = g_{m} \big|_{M_{OUT}} \cdot R_{OUT} = g_{m} \big|_{M_{OUT}} \cdot \frac{r_{out} \big|_{M_{OUT}}}{1 + A_{I,G}} \approx \frac{1}{A_{ERR} \cdot \beta}$$

Poles of LDO Regulator

- Error Amp Output → Related w/ Large C_{GS} & C_{GD}
- Output Node \rightarrow Related w/ Varied R_0 & Very Large C_{OUT}
- Other Parasitic Capacitance Related Poles (High-Frequency)
- For Easiest Frequency Compensation, Use the Capacitor ESR (Equivalent Series Resistance)

$$\omega_{\rm ZERO} = \frac{1}{R_{\rm ESR} C_{\rm OUT}}$$

Limited Usage of ESR

- As R_{ESR} Smaller (Zero Increased)
 - → Unstable
- Limited Value of R_{ESR} for Fixed C_{OUT}
- As R_{ESR} Increased
 - → Larger Perturbation during Transient

3-Stage LDO Regulator

- Pole @ Error Amp Output
- $1/(r_{oERR}C_{IB}) > 1/(r_{oERR}C_{MOUT})$
- → Helpful for Large Zero (Smaller R_{ESR})
- Pole @ Buffer Output

 $1/(R_{OB}C_{MOUT}) \rightarrow Large Enough$

• Pole @ LDO Output

 $1/(R_{OUT}C_{OUT})$

Parasitic Pole

Compensation w/ Differentiator

$$\omega_{P2} \approx \left[R_{par} \left\{ C_{par} + g_{mpass} \left(r_{ds} || (R_1 + R_2) || R_L \right) C_{gdpass} \right\} \right]^{-1}$$

☐ IEEE TCAS-I, pp.1041-1050, 2004 (Texas A&M Univ.)

Design Considerations

- Non-Idealities
 - O Limited Loop Gain for Stability
 - Accuracy of Reference Voltage
 - O Offset Voltage of Error Amplifier → Severe for Low V_{REF}
 - Temperature Variation
- High-Performance Required
 - Reduced Standby Current Consumption
 - Fast Transient Operation
 - Improved Line/Load Regulation
 - O Large Output Transistor for Higher Current Capability
 - O Handling of Large Dynamic Switching Load Current
 - O Possible Lack of External Capacitor

DC-DC Converter

DC-DC Converter Basic

Buck (Step-Down) Converter

$$\begin{cases} s_{off} & c = \frac{1}{T} \\ v_{OUT} & c = \frac{T_{ON}}{T} \\ v_{BAT} & c = \frac{T_{ON}}{T} \end{cases}$$

Boost (Step-Up) Converter

$$V_{OUT} = \frac{1}{1-D} V_{BAT} = \frac{T}{T_{OFF}} V_{BAT}$$

Buck/Boost Converter

$$V_{OUT} = \frac{D}{1-D} V_{BAT} = \frac{T_{ON}}{T_{OFF}} V_{BAT}$$

Boost Converter Basic

On-Time : DT

$$\Delta I_L|_{ON} = \frac{1}{L} \int_{DT} V_L(t) dt = \frac{V_{IN}}{L} DT$$

- → Store Energy in Inductor
- Off-Time: (1-D)T

$$\Delta I_{L}|_{OFF} = \frac{1}{L} \int_{(1-D)T} V_{L}(t) dt = \frac{V_{IN} - V_{OUT}}{L} (1-D)T$$

- → Provide I_{OUT}
- → Maintain V_{OUT}
- @ Steady Stage

$$V_{OUT} = \frac{1}{1 - D} V_{IN}$$

Buck Converter @ Steady State

$$2\Delta I_{L} = \frac{V_{IN} - V_{OUT}}{L} \cdot T_{ON} = \frac{V_{IN} - V_{OUT}}{L} \cdot DT$$
$$\therefore \Delta I_{L} = \frac{V_{IN} - V_{OUT}}{2L} \cdot DT$$

Architecture

- Large MOSFET Switches \rightarrow R_{ON} << 100m Ω
- Timing Control Circuit for Frequency / Duty-Cycle Programming
- Negative Feedback Circuit to Maintain a Output Voltage
- Frequency Compensation for Stable Operation
- Driver Circuits for Driving Large MOSFET Switches
- Protection & Start Up Circuitry

Efficiency η

• Efficiency η : $P_{\text{output}} / P_{\text{battery}} = (P_{\text{battery}} - P_{\text{loss}}) / P_{\text{battery}}$

Power Loss

- ✓ Conduction Loss
 - → Load Current Dependent
 - → On-Switch Resistance, DCR of Inductor, ESR of Capacitor
 - → Large MOSFET Switches, Good External Components

✓ Switching Loss

- → Frequency Dependent
- → Switching Active Devices, Charging Capacitors
- → Low-Frequency Desirable (Limited by I_{PEAK})

✓ Fixed Loss

- → Bias Current, Leakage Current
- → Low-Power Design

PWM vs. PFM

Preferred Approach of Combining Both Modulations

Switching Frequency

Inductor Current Ripple

$$\Delta I_{L} = \frac{V_{IN}}{L}DT = \frac{V_{IN} - V_{OUT}}{L}(1-D)T$$

For CCM Operation

$$I_{OUT} > \frac{\Delta I_L}{2} \Longrightarrow L > \frac{1}{2} \frac{R_{OUT}}{f} D(1-D)$$

Output Voltage Ripple

$$\Delta V_{\text{OUT}} \cong \frac{D(1-D)V_{\text{OUT}}}{8LC} \frac{1}{f^2}$$

- Higher Switching Frequency
 - → Smaller L & C Needed
 - → Preferred for Mobile
 - → High-Speed Switching FETs?

Voltage-Mode PWM Controller (1)

- Output Voltage Used for Generating PWM Signal
- Advantage : Simplicity
- Control-to-Output Transfer Function (Boost)

$$H_{C}(s) = \left(\frac{V_{OUT}}{1-D}\right) \frac{1 - \frac{L}{(1-D)^{2}R}s}{1 + \frac{L}{(1-D)^{2}R}s + \frac{(1-D)^{2}}{LC}s^{2}}$$

- Unstable When Used in Feedback
 - → Elaborate Frequency Compensation Required

Voltage-Mode PWM Controller (2)

PID Frequency Compensation

Current-Mode PWM Controller (1)

- Inductor Current Used for Generating PWM Signal
- Control-to-Output Transfer Function (Boost)

$$H_{C}(s) \approx \frac{(1-D)R}{2} \frac{1 - \frac{L}{(1-D)^{2}R}s}{1 + \frac{RC}{2}s}$$

Simple Compensation → Useful for Mobile Application

$$\frac{1}{1 - sRC} = g_m \frac{1 + sRC}{sC}$$

Current-Mode PWM Controller (2)

- Simple
- Degraded Efficiency
- Off-Chip Resistor

- Current-Mirroring
- On-Chip Current Sensing
- Mismatch Problem?
 - ☐ *IEEE JSSC*, 2004
- Inductor Current Simulation
- On-Chip Current Sensing
- Tuning & Calibration ?
 - ☐ *IEEE JSSC*, 2007

Integrated Power Switch Transistors

- Conduction Power Loss \rightarrow P = I^2R
- If Possible, Synchronous Two Switches to be Integrated
- R_{ON}: Transistor ON Resistance
 - \rightarrow Large Size : W>100,000µm for Several 10m Ω
 - → Preferred Structure : High Width-to-Area Ratio

PMIC + α

□ DA9057

DC/USB Chrg, 4 Bucks, 10 LDOs, w-LED, 16-b Stereo CODEC, 5-band EQ

☐ TPS65950

DC/USB Chrg, 3 Bucks, 10 LDOs, w-LED, Voice/Linear CODECs, 16-b ADC/DAC, Audio I/O, USB Tx/Rx

Digital PWM Controller Approach

- Digital Controller to Simulate Analog Frequency Compensator
 - → External R & C Components to be Removed
- ◆ Hardware Minimization → 2-bit ADC, Look-Up Table Approach
 Digital PWM w/ Error Feedback Loop
- Digital Versatility?

Digital PMIC Example

□ UCD9240 of TI

- Digital Power Control/Management
- Digital Power Control
 - Reference Setting
 - Compensation Algorithm
 - O DPWM Control
- DPWM w/ Various Operating Modes
- V/I/Temp Sensing w/ ADCs
- V/I/Temp Protection
- PMBus for External Interfacing

감사합니다.

Q & A

