Hamilton Jacobi

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

3 de diciembre de 2024

Agenda

🚺 Ecuación de Hamilton Jacobi

Pamilton-Jacobi y el Principio de Mínima Acción

Sección

• Una transformación canónica $Q_i = Q_i(q_j, p_j, t)$, $P_i = P_i(q_j, p_j, t)$, permite encontrar las soluciones de las ecuaciones de Hamilton.

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t)$, $P_i = P_i(q_j, p_j, t)$, permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \to \mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual una (o varias) coordenada Q_i o/y P_i son cíclicas

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t), P_i = P_i(q_j, p_j, t),$ permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \to \mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual una (o varias) coordenada Q_i o/y P_i son cíclicas
- Supongamos una transformación canónica $\{q_i, p_i, t\} \rightarrow \{P_i, Q_i, t\}$ tal que, (P_i, Q_i) , las 2s nuevas coordenadas y momentos son constantes.

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t)$, $P_i = P_i(q_j, p_j, t)$, permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \to \mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual una (o varias) coordenada Q_i o/y P_i son cíclicas
- Supongamos una transformación canónica $\{q_i, p_i, t\} \rightarrow \{P_i, Q_i, t\}$ tal que, (P_i, Q_i) , las 2s nuevas coordenadas y momentos son constantes.
- Esas 2s constantes Q_i y P_i pueden expresarse en función de las 2s condiciones iniciales: $Q_i = q(q_j(0), p_j(0)), P_i = p(q_j(0), p_j(0)).$

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t)$, $P_i = P_i(q_j, p_j, t)$, permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \to \mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual una (o varias) coordenada Q_i o/y P_i son cíclicas
- Supongamos una transformación canónica $\{q_i, p_i, t\} \rightarrow \{P_i, Q_i, t\}$ tal que, (P_i, Q_i) , las 2s nuevas coordenadas y momentos son constantes.
- Esas 2s constantes Q_i y P_i pueden expresarse en función de las 2s condiciones iniciales: $Q_i = q(q_j(0), p_j(0)), P_i = p(q_j(0), p_j(0)).$
- La transformación canónica que relacionan las nuevas y viejas variables proporcionan directamente la solución del problema del movimiento, $q_i = q(q_j(0), p_j(0), t)$, $p_i = p(q_j(0), p_j(0), t)$.

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t)$, $P_i = P_i(q_j, p_j, t)$, permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \to \mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual una (o varias) coordenada Q_i o/y P_i son cíclicas
- Supongamos una transformación canónica $\{q_i, p_i, t\} \rightarrow \{P_i, Q_i, t\}$ tal que, (P_i, Q_i) , las 2s nuevas coordenadas y momentos son constantes.
- Esas 2s constantes Q_i y P_i pueden expresarse en función de las 2s condiciones iniciales: $Q_i = q(q_j(0), p_j(0)), P_i = p(q_j(0), p_j(0)).$
- La transformación canónica que relacionan las nuevas y viejas variables proporcionan directamente la solución del problema del movimiento, $q_i = q(q_j(0), p_j(0), t)$, $p_i = p(q_j(0), p_j(0), t)$.
- Si la transformación canónica conduce a nuevos momentos y coordenadas constantes, $P_i \equiv \alpha_i = \text{cte}$, $Q_i \equiv \beta_i = \text{cte}$, tal que $\mathcal{H}'\left(Q_i,P_i\right)=0$, entonces existe una función generadora \mathcal{F} tal que $\frac{\partial \mathcal{F}}{\partial t}+H=0$

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t)$, $P_i = P_i(q_j, p_j, t)$, permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \to \mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual una (o varias) coordenada Q_i o/y P_i son cíclicas
- Supongamos una transformación canónica $\{q_i, p_i, t\} \rightarrow \{P_i, Q_i, t\}$ tal que, (P_i, Q_i) , las 2s nuevas coordenadas y momentos son constantes.
- Esas 2s constantes Q_i y P_i pueden expresarse en función de las 2s condiciones iniciales: $Q_i = q(q_j(0), p_j(0)), P_i = p(q_j(0), p_j(0)).$
- La transformación canónica que relacionan las nuevas y viejas variables proporcionan directamente la solución del problema del movimiento, $q_i = q(q_j(0), p_j(0), t)$, $p_i = p(q_j(0), p_j(0), t)$.
- Si la transformación canónica conduce a nuevos momentos y coordenadas constantes, $P_i \equiv \alpha_i = \text{cte}$, $Q_i \equiv \beta_i = \text{cte}$, tal que $\mathcal{H}'\left(Q_i,P_i\right)=0$, entonces existe una función generadora \mathcal{F} tal que $\frac{\partial \mathcal{F}}{\partial t}+H=0$
- Esta condición es la ecuación de Hamilton-Jacobi, para una F. ■

• Consideremos la acción $S = \int_{t_1}^{t_2} L(q_i, \dot{q}_i, t) dt$

- Consideremos la acción $S = \int_{t_1}^{t_2} L(q_i, \dot{q}_i, t) dt$
- ullet El valor de la acción S (como integral definida) depende del conjunto de trayectorias $\{q_i(t)\}$

- Consideremos la acción $S = \int_{t_1}^{t_2} L(q_i, \dot{q}_i, t) dt$
- ullet El valor de la acción S (como integral definida) depende del conjunto de trayectorias $\{q_i(t)\}$
- Las trayectorias que satisfacen la ecuaciones de Lagrange corresponden al valor mínimo (extremo) de *S*.

- Consideremos la acción $S = \int_{t_1}^{t_2} L(q_i, \dot{q}_i, t) dt$
- El valor de la acción S (como integral definida) depende del conjunto de trayectorias $\{q_i(t)\}$
- Las trayectorias que satisfacen la ecuaciones de Lagrange corresponden al valor mínimo (extremo) de *S*.
- Supongamos que el tiempo t_2 es variable, i.e, $t_2 = t$.

- Consideremos la acción $S = \int_{t_1}^{t_2} L(q_i, \dot{q}_i, t) dt$
- ullet El valor de la acción S (como integral definida) depende del conjunto de trayectorias $\{q_i(t)\}$
- Las trayectorias que satisfacen la ecuaciones de Lagrange corresponden al valor mínimo (extremo) de *S*.
- Supongamos que el tiempo t_2 es variable, i.e, $t_2 = t$.
- ullet La acción dependerá de las trayectorias y del tiempo, $S=S\left(q_{i},t
 ight)$.

- Consideremos la acción $S = \int_{t_1}^{t_2} L(q_i, \dot{q}_i, t) dt$
- ullet El valor de la acción S (como integral definida) depende del conjunto de trayectorias $\{q_i(t)\}$
- Las trayectorias que satisfacen la ecuaciones de Lagrange corresponden al valor mínimo (extremo) de *S*.
- Supongamos que el tiempo t_2 es variable, i.e, $t_2 = t$.
- La acción dependerá de las trayectorias y del tiempo, $S = S(q_i, t)$.

• La derivada temporal de la acción es $\frac{dS}{dt} = \sum_{i=1}^{s} \frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial t}$.

Título transparencia

