β -REDEX

A term of the form $(\lambda x. M)N$ is called a β -redex and we say that M[N/x] is the **contraction** of the redex.

ONE-STEP β -REDUCTION

The *one-step* β -reduction relation:

$$\frac{1}{(\lambda x. M)N \to_{\beta} M[N/x]} \text{ (Redex)}$$

$$\frac{M \to_{\beta} M'}{MN \to_{\beta} M'N} \text{ (AppL)} \qquad \frac{N \to_{\beta} N'}{MN \to_{\beta} MN'} \text{ (AppR)}$$

$$\frac{M \to_{\beta} N}{\lambda x. M \to_{\beta} \lambda x. N} \text{ (Abs)}$$

If $M \to_{\beta} N$ then we say that N is a **reduct** of M. A term M is said to be in β -**normal form** just if there is no term N for which $M \to_{\beta} N$.

β -REDUCTION

Whenever there is a possibly empty sequence of consecutive one-step reductions:

$$M_0 \rightarrow_{\beta} M_1 \rightarrow_{\beta} \cdots \rightarrow_{\beta} M_{k-1} \rightarrow_{\beta} M_k$$

for $k\geq 0$, we say that M_0 β -reduces to M_k and write $M_0 \twoheadrightarrow_{\beta} M_k$. Note, we include the case that k=0 and hence $M_0=M_k$ (i.e. we include 0-step reductions).