III-1 Códigos detetores e corretores de erros

Comunicações (16 de dezembro de 2018)

Sumário

- 1. Aspetos gerais sobre a comunicação digital
 - Comportamento do canal
 - Causas da existência de erros
- 2. Códigos detetores e corretores de erros
 - Códigos de bloco linear (n,k)
 - Caraterísticas dos códigos
 - Capacidades de deteção e correção
 - Códigos de repetição e bit de paridade
 - Código de Hamming
 - CRC Cyclic Redundancy Check
- 3. Deteção e Correção
- 4. Exercícios

1. Cenário de utilização

1. Modelo de canal discreto

- O canal é analisado através de modelo discreto usando variáveis aleatórias (v.a.)
- Do ponto de vista da transmissão, um SCD pode ser visto através de modelo probabilístico
- A probabilidade de erro por troca de bit não é nula

1. Modelo de canal discreto

- O canal é analisado através de modelo discreto usando variáveis aleatórias (v.a.)
- Modelo BSC binary symmetric channel

Probabilidade de erro de bit

$$P_{e} = P(y_{0}, x_{1}) + P(y_{1}, x_{0})$$

$$= P(y_{0}|x_{1})P(x_{1}) + P(y_{1}|x_{0})P(x_{0})$$

$$= \alpha P(x_{1}) + \alpha P(x_{0})$$

$$= \alpha$$

A probabilidade de erro define o **BER** (*Bit Error Rate*) do canal. É a taxa de erros por bit.

1. Cenário de Utilização: detalhe

2. Códigos de controlo de erros

- A deteção e correção são obtidas pela introdução de <u>redundância</u> na mensagem original
- Essa redundância é função da mensagem
- Códigos a analisar: repetição; bit de paridade par;
 Hamming e CRC
- Os códigos de canal são utilizados nos modos:
 - FEC Forward Error Correction
 - ARQ Automatic Repeat ReQuest

2. Modos de funcionamento

- FEC Forward Error Correction
 - Modo de correção de erros
 - O recetor recebe as palavras, deteta eventuais erros e corrige-os
- ARQ Automatic Repeat ReQuest
 - Modo de deteção de erros
 - O recetor recebe as palavras e deteta eventuais erros; em caso de erro, solicita a retransmissão

2. Códigos de bloco (n,k)

- Codificador de bloco
- Cada bloco de k **bits de mensagem** origina uma **palavra de código** com n bits
- k = número de bits de mensagem
- n = número de bits de palavra de código

Bits de mensagem

2. Códigos de bloco (n,k): propriedades

- 1. Code rate (ritmo) $R=rac{k}{n}$, medida de eficiência
- 2. Distância de Hamming (**dH**): número de dígitos em que diferem duas quaisquer palavras do código
- 3. Distância mínima (dmin): é a menor distância de Hamming entre duas quaisquer palavras do código; depende da redundância:

Majorante
$$\dim \leq 1+q, \quad q=n-k$$

- 4. Deteta todos os padrões até "l" erros: $l \leq dmin 1$
- 5. Corrige todos os padrões até "t" erros: $t \leq \lfloor \frac{\text{dmin}-1}{2} \rfloor$
- 6. Deteta "l" erros e corrige "t" erros: dmin $\geq l+t+1$, com l>t

2. Códigos de bloco (n,k): distância

Distância de Hamming entre palavras

2. Códigos lineares de bloco (n,k)

- Bloco: todas as palavras têm a mesma dimensão
- Linear:
 - o vetor nulo pertence ao código
 - a soma modular de quaisquer duas palavras do código é ainda uma palavra do código

n = número de bits da palavra de código
k = número de bits da mensagem
q = n - k, é o número de bits redundantes

2ⁿ palavras possíveis2^k palavras de código

Seja $\mathbf{m} = [m_0 m_1 ... m_{k-1}]$ a mensagem e \mathbf{c} a palavra de código

Podem ser sistemáticos ou não sistemáticos; exemplos destas formas:

• sistemática:
$$\mathbf{c} = [m_0 m_1 ... m_{k-1} b_0 b_1 ... b_{q-1}]$$

• não sistemática:
$$\mathbf{c} = [m_0 \ b_1 \ b_0 \ m_1 \ ... \ m_{k-1} \ ... \ b_{q-1}]$$

2. Código de repetição (3,1)

- Consiste na repetição da mensagem
- Exemplo: código (3,1), na forma (n,k) com k=1 bit de mensagem e n=3 bit na palavra de código

m c 0 000 1 111

Usa $2^k = 2^1 = 2$ palavras de $2^n = 2^3 = 8$ possíveis

2. Código de repetição (3,1)

- Descodificação realizada por maioria
- A distância entre as palavras de código, garante que:
 - Deteta todos os erros de 1 e 2 bit
 - Corrige todos os erros de 1 bit

Considerando um BSC com $\alpha = 10^{-5}$, tem-se que:

$$P(1,3) = C_1^3 \alpha^1 (1 - \alpha)^2 = \frac{3!}{2!1!} \alpha (1 - \alpha)^2$$
$$= 3\alpha - 6\alpha^2 + 3\alpha^3 \approx 3 \times 10^{-5}$$

$$P(2,3) = C_2^3 \ \alpha^2 (1-\alpha)^1 = \frac{3!}{1!2!} \ \alpha^2 (1-\alpha)$$

$$= 3\alpha^2 - 3\alpha^3 \approx 3 \times 4000 = \frac{10}{1!2!} \text{ Comunicações}$$

2. Código bit de paridade (3,2) - paridade par

- Adicionar um bit no final da mensagem; este bit é a soma módulo 2 dos bits da mensagem
- A palavra de código é $\mathbf{c} = [\mathbf{m}_0 \ \mathbf{m}_1 \ \mathbf{m}_0 \oplus \mathbf{m}_1]$

m	C
00	000
01	011
10	101
11	110

- Deteta a presença de 1 e 3 bits errados
 - Não tem capacidade de <u>correção</u>; não realiza FEC

2. Palavras de código: vetores

- Palavras de 3 bit
 - (a) código de repetição (3,1); 3 arestas entre as 2 palavras de código
 - **(b)** código de bit de paridade (3,2); 2 arestas entre 2 palavras de código mais próximas

2. Códigos de Hamming

- Família de códigos lineares de bloco
- Têm dmin=3, logo corrigem todos os erros de 1 bit
- A motivação: $P(2,n) \ll P(1,n)$
- Definidos por um parâmetro inteiro m (≥ 2) tal que:

$$(n,k) = (2^m - 1, 2^m - 1 - m)^{\frac{1}{b_0}}$$

Por exemplo, com m=3 tem-se o código (7,4)

$$\mathbf{c} = [\mathbf{m}_0 \ \mathbf{m}_1 \ \mathbf{m}_2 \ \mathbf{m}_3 \ \mathbf{b}_0 \ \mathbf{b}_1 \ \mathbf{b}_2]$$

Equações de paridade:

$$b_0 = m_1 \oplus m_2 \oplus m_3$$
$$b_1 = m_0 \oplus m_1 \oplus m_3$$
$$b_2 = m_0 \oplus m_2 \oplus m_3$$

2. Hamming (7,4): todas as palavras

Listagem das 16 palavras de código e respetivos pesos de Hamming

Palavra de código			Peso Palavra de código						Peso							
0	0	0	0	0	0	0	0]	l	0	0	0	0	1	1	3
0	0	0	1	1	1	1	4]	1	0	0	1	1	0	0	3
0	0	1	0	1	0	1	3]	1	0	1	0	1	1	0	4
0	0	1	1	0	1	0	3]		0	1	1	0	0	1	4
0	1	0	0	1	1	0	3]		1	0	0	1	0	1	4
0	1	0	1	0	0	1	3]		1	0	1	0	1	0	4
0	1	1	0	0	1	1	4]		1	1	0	0	0	0	3
0	1	1	1	1	0	0	4]		1	1	1	1	1	1	7

O menor peso de Hamming para palavras não nulas é 3, logo:

dmin = 3,
$$l = 2$$
 e $t = 1$

2. Códigos Cíclicos - CRC

- Os códigos cíclicos são uma sub-classe dos códigos lineares de bloco
 - Linear: o vetor nulo pertence ao código; a soma modular de duas palavras do código é ainda uma palavra do código
 - Bloco: todas as palavras têm a mesma dimensão de n bits
- Nos códigos cíclicos tem-se que qualquer rotação cíclica de qualquer ordem sobre uma palavra de código é ainda uma palavra de código
- Exemplo: código de bit de paridade par (3,2)

2. Códigos Cíclicos

- Tem-se c(X) = m(X)g(X) em que:
 - c(x) é a palavra de código polinómio de grau n-1
 - m(x) depende da mensagem polinómio de grau k-1
 - g(x) polinómio gerador de grau q
- As palavras de código $c=[c_{n-1} \ c_{n-2} \ \ c_1 \ c_o]$ podem ser analisadas como polinómios:
 - $c(X) = c_{n-1} X^{n-1} + c_{n-2} X^{n-2} + + c_1 X + c_0$
- O número de bits redundantes (de paridade) corresponde ao grau do polinómio gerador

2. Polinómio Gerador

 Determinado polinómio g(X) de grau q é gerador de um código (n,k), com q=n-k, caso seja factor de Xⁿ+1

• Ser fator de Xⁿ+1 implica que resto
$$\left[\frac{X^n+1}{g(X)}\right]=0$$

- Assim, a fatorização do polinómio Xⁿ+1 é importante, neste contexto
- Através desta fatorização, conseguimos obter polinómios geradores para códigos de diferentes dimensões

2. Polinómios Geradores

Código	Polinómio gerador g(X)
CRC4	$X^4+X^3+X^2+X+1$
CRC7	$X^7 + X^6 + X^4 + 1$
CRC12	$X^{12}+X^{11}+X^3+X^2+X+1$
CRC16	$X^{16}+X^{15}+X^2+1$
CRC-CCITT	$X^{16}+X^{12}+X^{5}+1$
CRC32	$X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$

Num código cíclico sistemático, as palavras têm a seguinte

organização

- Os bits b(X), que constituem um polinómio de grau q-1 designam-se por CRC-Cyclic Redundancy Check
- A palavra de código é dada por

$$c(X) = m(X)X^q + b(X) = m(X)X^q + \text{resto}\left[\frac{m(X)X^q}{g(X)}\right]$$

- O CRC resulta do resto da divisão de polinómios entre:
 - A mensagem deslocada de q bits para a esquerda
 - O polinómio gerador do código

$$CRC = b(X) = \text{resto}\left[\frac{m(X)X^q}{g(X)}\right]$$

- Dado que g(X) tem grau q, resulta que b(X) terá grau q-1, sendo constituído por q bits
- Assim, temos palavra de código com n bits (k de mensagem e q de paridade)

- Exemplo de cálculo do CRC para código (7,4)
 - $m(X)=X^3+1=[1\ 0\ 0\ 1]$
 - $g(X) = X^3 + X^2 + 1 = [1 \ 1 \ 0 \ 1]$

$$CRC = b(X) = \text{resto}\left[\frac{m(X)X^{q}}{g(X)}\right] = \text{resto}\left[\frac{(X^{3} + 1)X^{3}}{X^{3} + X^{2} + 1}\right] = \text{resto}\left[\frac{X^{6} + X^{3}}{X^{3} + X^{2} + 1}\right]$$

= $X + 1$

0 1 1

$$c(X) = m(X)X^{3} + b(X) = (X^{3} + 1)X^{3} + (X + 1).$$

$$= X^{6} + X^{3} + X + 1$$

$$= [1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1]$$

2. Descodificador de canal: caraterísticas

- O descodificador:
 - 1. recebe a palavra y (possivelmente com erros)
 - 2. estima a palavra de código \hat{x} que lhe deu origem
 - 3. estima a mensagem $\,\widehat{m}$

Um critério possível

- Funciona num dos modos:
 - 1. deteção
 - 2. correção
 - 3. deteção e correção

3. Descodificação: deteção

Processo de descodificação em modo deteção (ARQ)

27

- Tabela de síndromas para o código Hamming(7,4)
- O código tem 2³=8 síndromas: síndroma nulo ausência de erro; os outros 7 correspondem aos padrões de um bit em erro por palavra

Síndroma	Padrão de Erro	Observações
000	0000000	Ausência de erro
011	1000000	1.º bit em erro
110	0100000	2.º bit em erro
101	0010000	3.º bit em erro
111	0001000	4.º bit em erro
100	0000100	5.º bit em erro
010	0000010	6.º bit em erro
001 ISEL-ADEETO	0000001 C-Comunicações	7.º bit em erro

- Sejam as palavras de código
 - $\mathbf{c}_1 = [\mathbf{1000} \ 0 \ 1 \ 1]$
 - $\mathbf{c}_2 = [\mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{1} \ 0 \ 1 \ 0]$
- Sejam as palavras recebidas no descodificador

$$y_1 = c_1 + [1000000] = [0000011]$$

$$y_2 = c_2 + [001000] = [0001010]$$

$$y_3 = c_1 + [1 1 0 0 0 0 0] = [\underline{\mathbf{0}} \underline{\mathbf{1}} 0 0 0 1 1]$$

Os síndromas obtidos são

$$\mathbf{s}_1 = [0 \ 1 \ 1]$$

$$\mathbf{s}_2 = [1 \ 0 \ 1]$$

$$s_3 = [1 \ 0 \ 1]$$

Dois erros na palavra

e

Os padrões de erro associados são

$$e_1 = [1000000]$$

$$e_2 = [0 \ 0 \ 1 \ 0 \ 0 \ 0]$$

$$e_3 = [001000]$$

As palavras estimadas são

$$c_1 = y_1 + e_1 = [\underline{\mathbf{0}} \ 0 \ 0 \ 0 \ 0 \ 1 \ 1] + [1 \ 0 \ 0 \ 0 \ 0 \ 0] = [1 \ 0 \ 0 \ 0 \ 1 \ 1]$$

$$c_2 = y_2 + e_2 = [0 \ 0 \ \underline{0} \ 1 \ 0 \ 1 \ 0] + [0 \ 0 \ 1 \ 0 \ 0] = [0 \ 0 \ 1 \ 1 \ 0 \ 10]$$

$$c_3 = y_3 + e_3 = [0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1] + [0 \ 0 \ 1 \ 0 \ 0 \ 0] = [0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1]$$

As mensagens obtidas após correção

$$\mathbf{m}_1 = [1 \ 0 \ 0 \ 0]$$

$$\mathbf{m}_2 = [0 \ 0 \ 1 \ 1]$$

Os dois erros na palavra implicaram erro após correção (t=1)

e

- O descodificador, em modo de deteção calcula o síndroma s(X)
- Dado que c(X)=m(X)g(X), tem-se que qualquer palavra de código é fator do polinómio gerador
- Seja y(X) = c(X) + e(X) a palavra recebida, em que e(X) é o padrão de erro
 - Caso e(X) seja nulo o síndroma é nulo

$$s(X) = \operatorname{resto}\left[\frac{y(X)}{g(X)}\right] = \operatorname{resto}\left[\frac{c(X)}{g(X)}\right] = \operatorname{resto}\left[\frac{m(X)g(X)}{g(X)}\right] = 0$$

 Caso e(X) seja não nulo o síndroma é não nulo e depende do valor de e(X)

$$s(X) = \operatorname{resto}\left[\frac{y(X)}{g(X)}\right] = \operatorname{resto}\left[\frac{m(X)g(X) + e(X)}{g(X)}\right] = \operatorname{resto}\left[\frac{e(X)}{g(X)}\right]$$

- Na descodificador temos divisão de polinómios $s(X) = \text{resto} \left| \frac{c(X)}{g(X)} \right|$
- Recorrendo ao MATLAB, podemos usar a função deconv

• Sejam
$$c(X) = X^6 + X^3 + X + 1$$
 $g(X) = X^3 + X^2 + 1$ $= [1001 \ 011]$ $= [1101]$

```
>> c = [1 0 0 1 0 1 1];

>> g = [1 1 0 1];

>> [q, s] = deconv(c, g);

>> mod(s,2)

ans =

0 0 0 0 0 0 0
```

Síndroma nulo

Ausência de erros

Introduzindo 1 erro no penúltimo bit na palavra c(X) temos

$$y(X) = c(X) + e(X) = (X^{6} + X^{3} + X + 1) + (X)$$

= $X^{6} + X^{3} + 1$
= $[1\ 0\ 0\ 1 \ 0\ 0\ 1]$

$$g(X) = X^3 + X^2 + 1$$
$$= [1101]$$

Síndroma não nulo

Erros detetados

- Tipicamente é utilizado em modo de deteção de erros
- Quando a distância mínima do código for maior ou igual a 3, também pode ser usado em modo correção
- Tipicamente temos um número reduzido de bits de paridade calculado para elevado número de bits de mensagem
 - $n \gg q > 1$
- O CRC tem elevada capacidade de deteção de erros, especialmente de burst de erros (rajada de erros)
- Um burst ou rajada de erros define-se como um bloco contíguo de bits recebidos em erro; o primeiro e último bit distam B bits entre si, sendo B o comprimento do burst

- Elevada capacidade de deteção de erros:
 - todos os burst de dimensão q ou menor
 - uma fração dos burst de dimensão q+1; a fracção é 1-2-(q-1)
 - uma fração dos burst de dimensão superior a q+1; a fracção é 1-2-q
 - todas as combinações de d_{min} ou menos erros
 - todos os padrões com número ímpar de erros, quando o gerador tem número par de coeficientes não nulos
- Por exemplo, para o código CRC7 com $g(X)=X^7+X^6+X^4+1$ temos
 - todos os burst de dimensão 7 ou menor
 - $1-2^{-(q-1)} = 1 2^{-(7-1)} = 98,44 \%$ dos *burst* de dimensão 8
 - $1-2^{-(q)} = 1 2^{-(7)} = 99,22 \%$ dos *burst* de dimensão superior a 8
 - todos os padrões com número ímpar de erros

3. Comparação de códigos

Análise comparativa de códigos: ritmo e capacidades de deteção e correção de erros.

Código	R = k/n	dmin	Deteta l	Corrige t		
Repetição (2,1)	0.500	2	1	0		
Repetição (3,1)	0.333	3	2	1		
Repetição (4,1)	0.250	4	3	1		
Repetição (5,1)	0.200	5	4	2		
Paridade (3,2)	0.666	2	1	0		
Paridade (8,7)	0.875	2	1	0		
Hamming (7,4) m=3	0.571	3	2	1		
Hamming (15,11) m=4	0.733	3	2	1		
Hamming (31,26) m=5	0.838	3	2	1		

Tenha em conta os mecanismos de deteção e correção de erros usados nos códigos de bloco (n, k).

- a) Quais as vantagens e desvantagens da utilização destes códigos? Justifique.
- b) Indique, justificando, quais as técnicas normalmente utilizadas para estabelecer os bits redundantes para proceder à deteção/correção de erros. Exemplifique e relacione o número de bits redundantes com as capacidades de deteção e correção de erros.
- c) Considere que o ficheiro f demorou 5 segundos a ser transmitido, sem a utilização de códigos detetores e corretores de erros. Passando a transmitir o ficheiro f, no mesmo sistema, usando um código (8, 4), quanto tempo demorará essa transmissão?

Solução

a) Vantagens: controlo de erros, diminuição de BER, aumento da qualidade de serviço (QoS).

Desvantagens: maior complexidade, mais tempo necessário para a transmissão (e retransmissão, quando necessário) e correção.

- b) Técnica de repetição e técnica de bits de paridade (XOR) Exemplo de repetição: mensagem=010 -> palavra de código=000 111 000 Exemplo de paridade par: mensagem=0110 -> palavra de código=011 101 As capacidades de deteção e correção de erros são diretamente proporcionais ao número de bits redundantes.
- c) Demorará o dobro do tempo, 10 segundos (no melhor caso).

Considere o código de controlo de erros cujas palavras estão organizadas na forma c = $[m_0 m_1 b_0 b_1]$, tais que $b_0 = m_0 \oplus m_1$ e $b_1 = m_1$.

- a) Apresente todas as palavras de código.
- b) Calcule a distância mínima de Hamming.
- c) Calcule as capacidades de deteção e correção de erros.
- d) Suponha que se transmite a mensagem 01 e que sobre a palavra de código resultante é aplicado o padrão de erro 1010. Qual a mensagem descodificada? Comente.

Solução.

- a) Código (4,2), com 4 palavras de código
- 0000
- 0111
- 1010
- 1101
- b) dmin=2
- c) detecção l=1 bits por bloco, correção t=0 bits (não tem).
- d) m=01 -> c=0111 -> y = c + e = 0111 + 1010 = 1101. A mensagem descodificada é 11 (os dois primeiros bits do bloco).
- Os dois erros introduzidos na transmissão não foram detetados.

Assuma uma transmissão digital com código Hamming (7,4), cujas palavras estão organizadas na forma $c = [m_0 m_1 m_2 m_3 b_0 b_1 b_2]$, com equações de paridade

$$b_0 = m_1 \oplus m_2 \oplus m_3$$
 $b_1 = m_0 \oplus m_1 \oplus m_3$ $b_2 = m_0 \oplus m_2 \oplus m_3$

- a) Sabendo que o número de bits a transmitir antes da aplicação do código é 40000, qual o número de bits a transmitir após a aplicação do código?
- b) Qual a sequência transmitida quando se enviam os bits de informação 10100011?
- c) Caso seja recebida a sequência 1010001, existem erros nesta sequência?

Solução

- a) São transmitidos 40000 + 30000 = 70000 bits, no total.
- b) A sequência transmitida é 1010 110 0011 010.
- c) A palavra 1010 001 não pertence ao código. Logo, existem erros detetados nesta sequência.

Considere o código de bloco linear com palavras definidas por $c = [m_0 m_1 m_2 b_0 b_1 b_2 b_3]$, em que $b_0 = m_0 \oplus m_1$, $b_1 = m_2$, $b_2 = m_1 \oplus m_2$ e $b_3 = m_0 \oplus m_2$.

- a) Indique as dimensões (n,k).
- b) Qual a distância mínima do código e as respetivas capacidades de deteção e correção de erros?
- c) Exemplifique uma deteção de erros.

44

Solução

- a) (n,k) = (7,3).
- b) Listando as 8 palavras de código, conclui-se que a palavra de código com menor peso de Hamming tem peso igual a 3. Logo dmin=3, l=2 e t=1.
- c) Por exemplo, se a palavra de código 0010111 sofrer um erro no último bit, temos que a palavra recebida é 0010110. Esta palavra não pertence à lista de palavras de código, logo temos a presença de erro detetada.

Em alternativa, assumindo que os bits de mensagem recebidos 001 estão corretos, e se recalcularmos os bits de paridade teremos 0111, o que difere da configuração recebida 0110, detetando-se assim o erro

Considere o polinómio gerador $g(X) = X^4 + X^3 + X^2 + X + 1$ de código (10,6).

- a) Apresente a palavra de código c(X), quando a mensagem é 1 0 0 0 0 1.
- b) A palavra 111111111 pertence ao código?

Considere o polinómio gerador $g(X) = X^3 + X + 1$ do código (7,4).

- a) Quais das palavras 0000000, 1011000 e 0000011 pertencem ao código?
- b) Apresente todas as palavras de código.

Solução

- a) c(X) = [1000010000].
- b) Sim. A palavra 1111111111 pertence ao código. Se dividirmos esta palavra pelo polinómio gerador, temos resto nulo. Isto significa que a palavra pertence ao código.

a) As palavras 0000000 e 1011000 pertencem ao código. Se dividirmos estas palavras pelo polinómio gerador, temos resto nulo. Isto significa que estas palavras pertencem ao código. Para a palavra 0000011 não se obtém resto nulo, pelo que não pertence ao código.

Solução (continuação)

b) As 16 palavras de código.

0	0	0	0	0	0	0	1	0	0	0	1	0	1
0	0	0	1	0	1	1	1	0	0	1	1	1	0
0	0	1	0	1	1	0	1	0	1	0	0	1	1
0	0	1	1	1	0	1	1	0	1	1	0	0	0
0	1	0	0	1	1	1	1	1	0	0	0	1	0
0	1	0	1	1	0	0	1	1	0	1	0	0	1
0	1	1	0	0	0	1	1	1	1	0	1	0	0
0	1	1	1	0	1	0	1	1	1	1	1	1	1

Suponha uma transmissão digital em que são enviados os bits de informação 1010. Considere que o controlo de erros é realizado através de CRC com polinómio gerador $g(X) = X^3 + X + 1$.

- a) Apresente a sequência binária transmitida.
- b) Provoque um erro nesta sequência binária e ilustre o funcionamento da deteção de erros.

Quanto tempo demora a transmissão de um ficheiro com 1 024 000 bytes, considerando a utilização de modulação 16-QAM, com tempo de símbolo Ts =10 μs, nos cenários:

- a) Ausência de códigos detetores e corretores de erros?
- b) Deteção de erros com código CRC7, estabelecido por $g(X) = X^7 + X^6 + X^4 + 1$, aplicado a blocos de mensagem com dimensão 1024 bits?

Solução

- a) 1010011
- b) 1010001, é a sequência anterior com erro no penúltimo bit. Se dividirmos esta sequência pelo polinómio gerador obtemos o resto 010. Dado que o resto não é nulo, o descodificador/recetor deteta o erro.

Por outro lado, o resto da divisão de 1010011 pelo polinómio gerador, é nulo.

- a) Demora 20,48 segundos.
- b) Demora 20,62 segundos.

- Exercícios sugeridos (de enunciados de testes de semestres anteriores):
 - Exercício #4, alínea iv), do segundo teste parcial, verão 2016/2017, 6 de junho de 2017
 - Exercício #8, alínea iv), do teste de época normal, verão 2016/2017, 5 de julho de 2017

- Exercícios sugeridos (de enunciados de testes de semestres anteriores):
 - Exercício #8, alínea iv), do teste de época normal, inverno 2016/2017, 30 de janeiro de 2017
 - Exercício #6, alínea iv), do teste de época de recurso, inverno 2016/2017, 16 de fevereiro de 2017

- Exercícios sugeridos (de enunciados de testes de semestres anteriores):
 - Exercício #4, alínea iii), do 2.º teste parcial, verão 2015/2016,
 15 de junho de 2016
 - Exercício #10, alínea iii), do teste de época normal, verão 2015/2016, 30 de junho de 2016
 - Exercício #6, alínea ii), do teste de época de recurso, verão 2015/2016, 19 de julho de 2016
 - Exercício #4, alíneas i), ii), iii), do segundo teste parcial, verão 2014/2015, 18 de junho de 2015

- Exercícios sugeridos (de enunciados de testes de semestres anteriores):
 - Exercício #8, alínea ii), do teste de época normal, verão 2014/2015, 9 de julho de 2015
 - Exercício #6, alínea ii), do teste de época de recurso, verão 2014/2015,
 23 de julho de 2015
 - Exercício #5, alíneas ii) e iii), do segundo teste parcial, inverno 2014/2015, 14 de janeiro de 2015
 - Exercício #6, alínea ii), do teste de época de recurso, inverno 2014/2015, 20 de fevereiro de 2015

