2019 電子商務技術 期末考

- ** 考試時間共3小時
- ** 若遇計算,請四捨五入取至小數點第3位
- 1. 試說明 SRSWR 與 Reservoir sampling 不同的地方,以及各自的使用時機。(10%)
- 2. 參考下圖 weather 資料回答以下問題:
 - (a) 當" Attribute Evaluator=ChiSquaredAttributeEval and Search Method=Ranker" 時,Weka 會如何找出重要的屬性?(10%)
 - (b) 當" Attribute Evaluator=CfsSubsetEval and Search Method=BestFirst D 1 N 5 (forward and after 5 node expansions" 時,Weka 會如何找出重要的屬性?(10%)

Relation: weather					
No.	outlook Nominal	temperature Numeric	humidity Numeric	windy Nominal	play Nominal
1	sunny	85.0	85.0	FALSE	no
2	sunny	80.0	90.0	TRUE	no
3	overcast	83.0	86.0	FALSE	yes
4	rainy	70.0	96.0	FALSE	yes
5	rainy	68.0	80.0	FALSE	yes
6	rainy	65.0	70.0	TRUE	no
7	overcast	64.0	65.0	TRUE	yes
8	sunny	72.0	95.0	FALSE	no
9	sunny	69.0	70.0	FALSE	yes
10	rainy	75.0	80.0	FALSE	yes
11	sunny	75.0	70.0	TRUE	yes
12	overcast	72.0	90.0	TRUE	yes
13	overcast	81.0	75.0	FALSE	yes
14	rainy	71.0	91.0	TRUE	no

3. 下圖為一 FFNN, x₁, x₂是輸入層屬性, node1-4 為隱藏層節點, node5 是輸出節點, sigmode function 為 node1-5 的 activation function。假設 cost function c=0.5*(y-y'), 其中 y 為預測值; y'為實際值。試輸入訓練資料: x₁=1, x₂=0, y=1,以更新所有的權重值。(20%)

- 4. 採 J48 為分類方法,詳細說明 Bagging 如何訓練一個分類模型,以及如何利用它來分類。 (10%)
- 5. Random Forest 如何訓練一個分類模型?如何做預測?(10%)
- 6. 試依據下述 Keras 程式回答問題:

model.add(LSTM(50))
model.add(Dropout(0.5))

model.add(Dense(unit=1, activation=' sigmoid'))

(a) 試繪圖說明 CNN 網路的架構,並標示各層的節點數。(10%)
(b) 就第一個卷積層,說明權重分享的做法。(5%)
(c) 說明 softmax 如何預測輸出結果。(5%)

model = Sequential()

model.add(Conv2D(32, kernel_size(3,3), activation=' relu', input_shap=(28,28,1)))

model.add(MaxPooling2D(pool-size=(2,2)))

model.add(Flatten())

model.add(Dense(128, activation=' relu'))

model.add(Dropout(0.5))

model.add(Dense(10, activation=' softmax'))

7. 試根據下述 Keras 程式,描繪網路架構,並說明它的使用方式。 (10%)

model = Sequential()

model.add(Embedding(input_dim=5000, output_dim=128, input_length=400))