Computing gradients

Logistic regression

Andrew Ng

Neural network gradients $W^{[2]}$

$$b^{[2]}$$

$$W^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}x + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$b^{[1]}$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

Andrew Ng

Summary of gradient descent

$$\begin{split} dz^{[2]} &= a^{[2]} - y \\ dW^{[2]} &= dz^{[2]} a^{[1]^T} \\ db^{[2]} &= dz^{[2]} \\ dz^{[2]} &= \frac{1}{m} dz^{[2]} A^{[1]^T} \\ dz^{[2]} &= \frac{1}{m} np. \, sum(dZ^{[2]}, axis = 1, keepdims = True) \\ dz^{[1]} &= W^{[2]T} dz^{[2]} * g^{[1]'}(z^{[1]}) \\ dW^{[1]} &= dz^{[1]} x^T \\ db^{[1]} &= dz^{[1]} \end{split} \qquad \qquad \begin{aligned} dz^{[1]} &= \frac{1}{m} dz^{[1]} x^T \\ db^{[1]} &= \frac{1}{m} np. \, sum(dZ^{[1]}, axis = 1, keepdims = True) \end{aligned}$$

Andrew Ng