Math 462 Homework 2

Paul Hacking

February 5, 2015

In the problems below we consider the sphere S^2 of radius R=1 in \mathbb{R}^3 with center the origin O. Justify your answers carefully.

- (1) Let ABC be a spherical triangle with angles a, b, c and side lengths α , β , γ . (Here α denotes the length of the side opposite A, etc.) Suppose angle a is a right angle, i.e., $a = \pi/2$.
 - (a) Prove the spherical Pythagorean formula: $\cos(\alpha) = \cos(\beta)\cos(\gamma)$.
 - (b) Check the formula in part (a) for triangles ABC for which C is the north pole and A and B lie on the equator.
 - (c) Suppose now the spherical triangle ABC is very small. Use the approximation $\cos(x) \approx 1 x^2/2$ for x small to show that the formula in part (a) is approximately equivalent to the usual Pythagorean formula in \mathbb{R}^2 in this case.
- (2) Let ABC be a spherical triangle.
 - (a) Prove that $Area(ABC) < 2\pi$.
 - (b) Show that the area can be arbitrarily close to 2π (so that the bound in part (a) is sharp).

[Hint for part (b): Draw the lune given by two sides of the triangle. How does the area vary as you move the position of the third side?]

- (3) Let ABC be a spherical triangle.
 - (a) Show that there is a unique spherical circle passing through the vertices A, B, C. This is called the circumcircle of the spherical triangle.

- (b) Find the spherical center and spherical radius of the circumcircle of the triangle ABC with vertices A = (1,0,0), B = (0,1,0), C = (0,0,1).
- (c) Find a formula for the spherical center of the circumcircle in the general case using the cross product.

[Hints: A spherical circle is obtained as the intersection of the sphere S^2 with a plane Π (not necessarily passing through the origin O). If P is the spherical center of the spherical circle then \overrightarrow{OP} is a normal vector to the plane Π .]

- (4) Let ABC be a spherical triangle, with angles a, b, c and side lengths α, β, γ . We can define the polar spherical triangle A'B'C' as follows: Let Π_{BC} be the plane passing through the points O, B and C. (So $S^2 \cap \Pi_{BC}$ is the spherical line passing through B and C.) The position vector $\overrightarrow{OA'}$ of A' is the normal vector to the plane Π_{BC} which has length 1 and lies on the same side of Π_{BC} as A. We define B' and C' analogously.
 - (a) Show that the side lengths of the polar spherical triangle A'B'C' are given by $\alpha' = \pi a$, $\beta' = \pi b$, $\gamma' = \pi c$.
 - (b) Show that the polar spherical triangle of A'B'C' is ABC. (That is, if we apply the polar construction twice we recover the original spherical triangle.)
 - (c) Deduce that the angles of the polar spherical triangle are given by $a' = \pi \alpha$, $b' = \pi \beta$, $c' = \pi \gamma$.