

FCC PART 15C/ IC RSS-210 TEST REPORT

No. I14Z45243-SRD01

for

VSN Technologies Inc.

Quad GSM/Dual WCDMA Smart Phone

Model Name: V2001

Marketing Name: R.45

FCC ID: 2AA9WV2001

IC No.: 11665A-V2001

With

Hardware Version: P3

Software Version: TBW972323_898B_V007253

Issued Date: 2014-03-11

Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China, 100191

Tel:+86(0)10-62304633-2046, Fax:+86(0)10-62304633-2063 Email:welcome@emcite.com. www.emcite.com

CONTENTS

CONTI	ENTS	2
1.	TEST LABORATORY	7
1.1.	TESTING LOCATION	
1.2.	PROJECT DATA	
1.3.	Signature	
2.	CLIENT INFORMATION	8
2.1.	APPLICANT INFORMATION	8
2.2.	Manufacturer Information	8
3.	EQUIPMENT UNDER TEST(EUT) AND ANCILLARY EQUIPMENT(AE)	9
3.1.	Авоит ЕИТ	9
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	9
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	9
4.	REFERENCE DOCUMENTS	9
4.1.	DOCUMENTS SUPPLIED BY A PPLICANT	9
4.2.	REFERENCE DOCUMENTS FOR TESTING	
5.	LABORATORY ENVIRONMENT	10
6.	SUMMARY OF TEST RESULTS	10
6.1.	SUMMARY OF TEST RESULTS	10
6.2.	STATEMENTS	11
6.3.	Test Conditions	11
7.	TEST EQUIPMENTS UTILIZED	12
ANNE	X A: MEASUREMENT RESULTS	13
A.1.	Measurement Method	13
A.2.	MAXIMUM OUTPUT POWER	14
	1. MAXIMUM PEAK OUTPUT POWER-CONDUCTED	
	2. MAXIMUM AV ERAGE OUTPUT POWER-CONDUCTED	
	PEAK POWER SPECTRAL DENSITY	
FIG. A		
	A.3.2 Power Spectral Density (802.11B, CH6)	
	A.3.4 Power Spectral Density (802.11g, CH1)	
	A.3.5 Power Spectral Density (802.11g, Ch 6)	
	A.3.6 Power Spectral Density (802.11g, Ch 11)	
Fig. A	A.3.7 POWER SPECTRAL DENSITY (802.11n-HT20, Ch1)	
Fig. A	A.3.8 POWER SPECTRAL DENSITY (802.11 N-HT20, CH6)	20
Fig. A	A.3.9 Power Spectral Density (802.11n-HT20, Ch11)	21
A.4.	Occupied 6dB Bandwidth	22

Fig. A.4.1	OCCUPIED 6DB BANDWIDTH (802.11B, CH1)	.23
Fig. A.4.2	OCCUPIED 6DB BANDWIDTH (802.11B, CH6)	.23
Fig. A.4.3	OCCUPIED 6DB BANDWIDTH (802.11B, CH11)	.24
Fig. A.4.4	OCCUPIED 6DB BANDWIDTH (802.11G, CH1)	.24
Fig. A.4.5	OCCUPIED 6DB BANDWIDTH (802.11G, CH6)	.25
Fig. A.4.6	OCCUPIED 6DB BANDWIDTH (802.11G, CH11)	.25
Fig. A.4.7	OCCUPIED 6DB BANDWIDTH (802.11N-20MHz, CH1)	.26
Fig. A.4.8	Occupied 6 dB Bandwidth (802.11n-HT20, Ch6)	.26
Fig. A.4.9	OCCUPIED 6DB BANDWIDTH (802.11N-HT20, CH11)	.27
A.5. 99% C	OCCUPIED CHANNEL BANDWIDTH	.28
Fig. A.5.1	99% Occupied Bandwidth: (802.11B, Ch1)	.29
Fig. A.5.2	99% OCCUPIED BANDWIDTH: (802.11B, CH6)	.29
Fig. A.5.3	99% OCCUPIED BANDWIDTH: (802.11B, CH 11)	.30
Fig. A.5.4	99% Occupied Bandwidth: (802.11g, Ch1)	.30
Fig. A.5.5	99% Occupied Bandwidth: (802.11g, Ch6)	.31
Fig. A.5.6	99% Occupied Bandwidth: (802.11G, Ch 11)	.31
Fig. A.5.7	99% OCCUPIED BANDWIDTH: (802.11n-HT20, CH1)	.32
Fig. A.5.8	99% OCCUPIED BANDWIDTH: (802.11n-HT20, CH6)	.32
Fig. A.5.9	99% Occupied Bandwidth: (802.11n-HT20, Ch11)	.33
A.6. BAND	EDGES COMPLIANCE	.34
Fig. A.6.1	BAND EDGES (802.11B, CH 1)	.35
Fig. A.6.2	BAND EDGES (802.11B, CH 11)	.35
Fig. A.6.3	BAND EDGES (802.11G, CH 1)	.36
Fig. A.6.4	BAND EDGES (802.11G, CH 11)	.36
Fig. A.6.5	BAND EDGES (802.11n-HT20, CH1)	.37
Fig. A.6.6	BAND EDGES (802.11n-HT20, CH11)	.37
A.7. TRANS	MITTER SPURIOUS EMISSION	.38
A.7.1 TRAN	SMITTER SPURIOUS EMISSION - CONDUCTED	.38
Fig. A.7.1.1	CONDUCTED SPURIOUS EMISSION (802.11B, CH1, CENTER FREQUENCY)	.41
Fig. A.7.1.2	CONDUCTED SPURIOUS EMISSION (802.11B, CH1, 30 MHz-1 GHz)	.41
Fig. A.7.1.3	CONDUCTED SPURIOUS EMISSION (802.11B, CH1, 1 GHz-2.5 GHz)	.42
Fig. A.7.1.4	CONDUCTED SPURIOUS EMISSION (802.11B, CH1, 2.5 GHz-7.5 GHz)	.42
Fig. A.7.1.5	CONDUCTED SPURIOUS EMISSION (802.11B, CH1, 7.5 GHz-10 GHz)	.43
Fig. A.7.1.6	CONDUCTED SPURIOUS EMISSION (802.11B, CH1, 10 GHz-15 GHz)	.43
Fig. A.7.1.7	CONDUCTED SPURIOUS EMISSION (802.11B, CH1, 15 GHz-20 GHz)	.44
Fig. A.7.1.8	CONDUCTED SPURIOUS EMISSION (802.11B, CH1, 20 GHz-26 GHz)	.44
Fig. A.7.1.9	CONDUCTED SPURIOUS EMISSION (802.11B, CH6, CENTER FREQUENCY)	.45
Fig. A.7.1.1	O CONDUCTED SPURIOUS EMISSION (802.11B, CH6, 30 MHz-1 GHz)	.45
Fig. A.7.1.1	CONDUCTED SPURIOUS EMISSION (802.11B, CH6, 1 GHz-2.5 GHz)	.46
Fig. A.7.1.1	2 CONDUCTED SPURIOUS EMISSION (802.11B, CH6, 2.5 GHz-7.5 GHz)	.46
Fig. A.7.1.1	3 CONDUCTED SPURIOUS EMISSION (802.11B, CH6, 7.5 GHz-10 GHz)	.47
Fig. A.7.1.1	4 Conducted Spurious Emission (802.11B, Ch6, 10 GHz-15 GHz)	.47
Fig. A.7.1.1	5 CONDUCTED SPURIOUS EMISSION (802.11B, CH6, 15 GHz-20 GHz)	.48
Fig. A.7.1.1	6 CONDUCTED SPURIOUS EMISSION (802.11B, CH6, 20 GHz-26 GHz)	.48

FIG. A.7.1.17	CONDUCTED SPURIOUS EMISSION (802.11B, CH11, CENTER FREQUENCY)	.49
Fig. A.7.1.18	CONDUCTED SPURIOUS EMISSION (802.11B, CH11, 30 MHz-1 GHz)	.49
Fig. A.7.1.19	CONDUCTED SPURIOUS EMISSION (802.11B, CH11, 1 GHz-2.5 GHz)	.50
Fig. A.7.1.20	CONDUCTED SPURIOUS EMISSION (802.11B, CH11, 2.5 GHz-7.5 GHz)	.50
Fig. A.7.1.21	CONDUCTED SPURIOUS EMISSION (802.11B, CH11, 7.5 GHz-10 GHz)	.51
Fig. A.7.1.22	CONDUCTED SPURIOUS EMISSION (802.11B, CH11, 10 GHz-15 GHz)	.51
Fig. A.7.1.23	CONDUCTED SPURIOUS EMISSION (802.11B, CH11, 15 GHz-20 GHz)	.52
Fig. A.7.1.24	CONDUCTED SPURIOUS EMISSION (802.11B, CH11, 20 GHz-26 GHz)	.52
Fig. A.7.1.25	CONDUCTED SPURIOUS EMISSION (802.11G, CH1, CENTER FREQUENCY)	.53
Fig. A.7.1.26	CONDUCTED SPURIOUS EMISSION (802.11G, CH1, 30 MHz-1 GHz)	.53
Fig. A.7.1.27	CONDUCTED SPURIOUS EMISSION (802.11G, CH1, 1 GHz-2.5 GHz)	.54
Fig. A.7.1.28	CONDUCTED SPURIOUS EMISSION (802.11G, CH1, 2.5 GHz-7.5 GHz)	.54
Fig. A.7.1.29	CONDUCTED SPURIOUS EMISSION (802.11G, CH1, 7.5 GHz-10 GHz)	.55
Fig. A.7.1.30	CONDUCTED SPURIOUS EMISSION (802.11G, CH1, 10 GHz-15 GHz)	.55
Fig. A.7.1.31	CONDUCTED SPURIOUS EMISSION (802.11G, CH1, 15 GHz-20 GHz)	.56
Fig. A.7.1.32	CONDUCTED SPURIOUS EMISSION (802.11G, CH1, 20 GHz-26 GHz)	.56
Fig. A.7.1.33	CONDUCTED SPURIOUS EMISSION (802.11G, CH6, CENTER FREQUENCY)	.57
Fig. A.7.1.34	CONDUCTED SPURIOUS EMISSION (802.11G, CH6, 30 MHz-1 GHz)	.57
Fig. A.7.1.35	CONDUCTED SPURIOUS EMISSION (802.11G, CH6, 1 GHz-2.5 GHz)	.58
Fig. A.7.1.36	CONDUCTED SPURIOUS EMISSION (802.11G, CH6, 2.5 GHz-7.5 GHz)	.58
Fig. A.7.1.37	CONDUCTED SPURIOUS EMISSION (802.11G, CH6, 7.5 GHz-10 GHz)	.59
Fig. A.7.1.38	CONDUCTED SPURIOUS EMISSION (802.11G, CH6, 10 GHz-15 GHz)	.59
Fig. A.7.1.39	CONDUCTED SPURIOUS EMISSION (802.11G, CH6, 15 GHz-20 GHz)	.60
Fig. A.7.1.40	CONDUCTED SPURIOUS EMISSION (802.11G, CH6, 20 GHz-26 GHz)	.60
Fig. A.7.1.41	CONDUCTED SPURIOUS EMISSION (802.11G, CH11, CENTER FREQUENCY)	.61
Fig. A.7.1.42	CONDUCTED SPURIOUS EMISSION (802.11G, CH11, 30 MHz-1 GHz)	.61
Fig. A.7.1.43	CONDUCTED SPURIOUS EMISSION (802.11G, CH11, 1 GHz-2.5 GHz)	.62
Fig. A.7.1.44	CONDUCTED SPURIOUS EMISSION (802.11G, CH11, 2.5 GHz-7.5 GHz)	.62
Fig. A.7.1.45	CONDUCTED SPURIOUS EMISSION (802.11G, CH11, 7.5 GHz-10 GHz)	.63
Fig. A.7.1.46	CONDUCTED SPURIOUS EMISSION (802.11G, CH11, 10 GHz-15 GHz)	.63
Fig. A.7.1.47	CONDUCTED SPURIOUS EMISSION (802.11G, CH11, 15 GHz-20 GHz)	.64
Fig. A.7.1.48	CONDUCTED SPURIOUS EMISSION (802.11G, CH11, 20 GHz-26 GHz)	.64
Fig. A.7.1.49	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH1, CENTER FREQUENCY).	.65
Fig. A.7.1.50	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH1, 30 MHz-1 GHz)	.65
Fig. A.7.1.51	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH1, 1 GHz-2.5 GHz)	.66
Fig. A.7.1.52	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH1, 2.5 GHz-7.5 GHz)	.66
Fig. A.7.1.53	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH1, 7.5 GHz-10 GHz)	.67
Fig. A.7.1.54	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH1, 10 GHz-15 GHz)	.67
Fig. A.7.1.55	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH1, 15 GHz-20 GHz)	.68
Fig. A.7.1.56	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH1, 20 GHz-26 GHz)	.68
Fig. A.7.1.57	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH6, CENTER FREQUENCY).	.69
Fig. A.7.1.58	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH6, 30 MHz-1 GHz)	.69
Fig. A.7.1.59	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH6, 1 GHz-2.5 GHz)	.70
Fig A 7 1 60	CONDUCTED SPURIOUS EMISSION (802 11N-HT20 CH6 2.5 GHz-7.5 GHz)	70

Fig. A.7.1.61	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH6, 7.5 GHz-10 GHz)	71
Fig. A.7.1.62	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH6, 10 GHz-15 GHz)	71
Fig. A.7.1.63	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH6, 15 GHz-20 GHz)	72
Fig. A.7.1.64	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH6, 20 GHz-26 GHz)	72
Fig. A.7.1.65	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH11, CENTER FREQUENCY)	73
Fig. A.7.1.66	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH11, 30 MHz-1 GHz)	73
Fig. A.7.1.67	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH11, 1 GHz-2.5 GHz)	74
Fig. A.7.1.68	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH11, 2.5 GHz-7.5 GHz)	74
Fig. A.7.1.69	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH11, 7.5 GHz-10 GHz)	75
Fig. A.7.1.70	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH11, 10 GHz-15 GHz)	75
Fig. A.7.1.71	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH11, 15 GHz-20 GHz)	76
Fig. A.7.1.72	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH11, 20 GHz-26 GHz)	76
A.7.2 TRANSMI	TTER SPURIOUS EMISSION - RADIATED	77
Fig. A.7.2.1	RADIATED SPURIOUS EMISSION (POWER): 802.11B, CH1, 2.38 GHz – 2.45GHz	82
Fig. A.7.2.2	RADIATED SPURIOUS EMISSION (802.11B, CH1, 30 MHz-1 GHz)	82
Fig. A.7.2.3	RADIATED SPURIOUS EMISSION (802.11B, CH1, 1 GHz-3 GHz)	83
Fig. A.7.2.4	RADIATED SPURIOUS EMISSION (802.11B, CH1, 3 GHz-18 GHz)	83
Fig. A.7.2.5	RADIATED SPURIOUS EMISSION (802.11B, CH6, 30 MHz-1 GHz)	84
Fig. A.7.2.6	RADIATED SPURIOUS EMISSION (802.11B, CH6, 1 GHz-3 GHz)	84
Fig. A.7.2.7	RADIATED SPURIOUS EMISSION (802.11B, CH6, 3 GHz-18 GHz)	85
Fig. A.7.2.8	RADIATED SPURIOUS EMISSION (POWER): 802.11B, CH11, 2.45 GHz - 2.50GHz.	85
Fig. A.7.2.9	RADIATED SPURIOUS EMISSION (802.11B, CH11, 30 MHz-1 GHz)	86
Fig. A.7.2.10	RADIATED SPURIOUS EMISSION (802.11B, CH11, 1 GHz-3 GHz)	86
Fig. A.7.2.11	RADIATED SPURIOUS EMISSION (802.11B, CH11, 3 GHz-18 GHz)	87
Fig. A.7.2.12	RADIATED SPURIOUS EMISSION (POWER): 802.11G, CH1, 2.38 GHz - 2.45GHz	87
Fig. A.7.2.13	RADIATED Spurious Emission (802.11G, CH1, 30 MHz-1 GHz)	88
Fig. A.7.2.14	RADIATED SPURIOUS EMISSION (802.11G, CH1, 1 GHz-3 GHz)	88
Fig. A.7.2.15	RADIATED Spurious Emission (802.11G, CH1, 3 GHz-18 GHz)	89
Fig. A.7.2.16	RADIATED SPURIOUS EMISSION (802.11G, CH6, 30 MHz-1 GHz)	89
Fig. A.7.2.17	RADIATED SPURIOUS EMISSION (802.11G, CH6, 1 GHz-3 GHz)	90
Fig. A.7.2.18	RADIATED SPURIOUS EMISSION (802.11G, CH6, 3 GHz-18 GHz)	90
Fig. A.7.2.19	RADIATED SPURIOUS EMISSION (POWER): 802.11G, CH11, 2.45 GHz - 2.50GHz	91
Fig. A.7.2.20	RADIATED Spurious Emission (802.11G, CH11, 30 MHz-1 GHz)	91
Fig. A.7.2.21	RADIATED SPURIOUS EMISSION (802.11G, CH11, 1 GHz-3 GHz)	92
Fig. A.7.2.22	RADIATED Spurious Emission (802.11G, CH11, 3 GHz-18 GHz)	92
Fig. A.7.2.23	RADIATED SPURIOUS EMISSION (POWER): 802.11N-HT20, CH1, 2.38 GHz -	
2.45GHz	93	
Fig. A.7.2.24	RADIATED Spurious Emission (802.11n-HT20, Ch1, 30 MHz-1 GHz)	93
Fig. A.7.2.25	RADIATED SPURIOUS EMISSION (802.11 N-HT20, CH1, 1 GHz-3 GHz)	94
Fig. A.7.2.26	RADIATED SPURIOUS EMISSION (802.11 N-HT20, CH1, 3 GHz-18 GHz)	94
Fig. A.7.2.27	RADIATED SPURIOUS EMISSION (802.11 N-HT20, CH6, 30 MHz-1 GHz)	95
Fig. A.7.2.28	RADIATED SPURIOUS EMISSION (802.11 N-HT20, CH6, 1 GHz-3 GHz)	95
Fig. A.7.2.29	RADIATED SPURIOUS EMISSION (802.11 N-HT20, CH6, 3 GHz-18 GHz)	96
Fig. A.7.2.30	RADIATED SPURIOUS EMISSION (POWER): 802.11n-HT20, CH11, 2.45 GHz -	

2.50GHz	96	
Fig. A.7.2.31	RADIATED SPURIOUS EMISSION (802.11 N-HT20, CH11, 30 MHz-1 GHz)	97
Fig. A.7.2.32	RADIATED SPURIOUS EMISSION (802.11 N-HT20, CH11, 1 GHz-3 GHz)	97
Fig. A.7.2.33	RADIATED SPURIOUS EMISSION (802.11 N-HT20, CH11, 3 GHz-18 GHz)	98
Fig. A.7.2.34	RADIATED SPURIOUS EMISSION (ALL CHANNELS): 18GHz – 26.5GHz	98
A.8. Spurious	EMISSIONS RADIATED < 30MHz	99
FIG. A.8.1 RAI	DIATED SPURIOUS EMISSION (802.11B, 9 KHz ~30 MHz)	99
FIG. A.8.2 RAI	DIATED SPURIOUS EMISSION (IDLE, 9 kHz ~30 MHz)	100
A.9. AC Power	RLINE CONDUCTED EMISSION	101
Fig. A.9.1 AC	POWERLINE CONDUCTED EMISSION-802.11B	102
Fig. A.9.2 AC	POWERLINE CONDUCTED EMISSION-IDLE	103

1. TEST LABORATORY

1.1. Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT

Address: No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China

Postal Code: 100191

Telephone: 008610623046332046 Fax: 008610623046332063

1.2. Project Data

Testing Start Date: 2014-03-06 Testing End Date: 2014-03-10

1.3. Signature

Xu Zhongfei

(Prepared this test report)

Jiang Afang

(Reviewed this test report)

Xiao Li

Deputy Director of the laboratory (Approved this test report)

2. CLIENT INFORMATION

2.1. Applicant Information

Company Name: VSN Technologies Inc.

Address / Post: 1975 E. Sunrise Blvd., #400 Fort Lauderdale, FL

City: fort lauderdale

Postal Code: 33323

Country: United States
Contact Person: Donghailun

Contact Email amit.verma@vsnmobil.com

Telephone: 9546094912 Fax: 9543068450

2.2. Manufacturer Information

Company Name: Beijing Benywave Technology Co. Ltd.

NO.55 Jiachang 2 Road, OPTO-Mechatronics

Industrial Park, Tongzhou District

City: Beijing
Postal Code: 100111
Country: China

Telephone: +86-10-58928917

Fax: /

Address /Post:

3. <u>EQUIPMENT UNDER TEST(EUT) AND ANCILLARY</u> EQUIPMENT(AE)

3.1. About EUT

Description Quad GSM/Dual WCDMA Smart Phone

Model neme V2001 Marketing Name R.45

FCC ID 2AA9WV2001 IC ID 11665A-V2001

With WLAN Function Yes

Frequency Range ISM 2400MHz~2483.5MHz

Type of Modulation DSSS/CCK/OFDM

Number of Channels 11

Antenna Integral Antenna
MAX Conducted Power 22.53dBm(OFDM)
Power Supply 3.8V DC by Battery

3.2. Internal Identification of EUT Used During the Test

EUT ID*	IMEI	HW Version	SW Version
EUT1	354694028010710	P3	TBW972323_898B_V007253
EUT2	354694028010694	P3	TBW972323_898B_V007253
*EUT ID: is use	ed to identify the test sa	mple in the lab internally.	

3.3. Internal Identification of AE Used During the Test

AE ID*	Description	Туре	SN				
AE1	Battery	TBT9608	/				
*AE ID: is used to identify the test sample in the lab internally.							

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. REFERENCE DOCUMENTS FOR TESTING

The following documents listed in this section are referred for testing.

Reference	Title	Version	
	FCC CFR 47, Part 15, Subpart C:		
	15.205 Restricted bands of operation;	Oot	
FCC Part15	15.209 Radiated emission limits, general requirements;	Oct,	
	15.247 Operation within the bands 902-928MHz,	2012	
	2400-2483.5 MHz, and 5725-5850 MHz.		
	Methods of Measurement of Radio-Noise Emissions from		
ANSI C63.4	Low-Voltage Electrical and Electronic Equipment in the	2003	
	Range of 9 kHz to 40 GHz		
	Guidance for Performing Compliance Measurements on		
KDB558074	Digital Transmission Systems (DTS) Operating Under §15.247	2012	
	Spectrum Management and Telecommunications - Radio		
RSS-GEN	Standards Specification	Issue 3	
NSS-GEN	General Requirements and Information for the Certification	issue 3	
	of Radiocommunication Equipment		
	Spectrum Management and Telecommunications - Radio		
RSS-210	Standards Specification	Issue 8	
1.00-210	Low-power Licence-exempt Radiocommunication Devices	13300 0	
	(All Frequency Bands): Category I Equipment		

5. LABORATORY ENVIRONMENT

Conducted RF performance testing is performed in shielding room.

EMC performance testing is performed in Semi-anechoic chamber.

6. SUMMARY OF TEST RESULTS

6.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15C	Sub-clause of IC	Verdict
Maximum Peak Output Power	15.247 (b)	A8	Р
Peak Power Spectral Density	15.247 (e)	A8	Р
Occupied 6dB Bandwidth	15.247 (a)	A8	Р
99% Occupied Bandwidth	1	RSS-Gen 4.6.1	Р
Band Edges Compliance	15.247 (d)	A8	Р
Transmitter Spurious Emission - Conducted	15.247 (d)	A8	Р
Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	A8	Р
Transmitter Spurious Emission - Radiated<30MHz	15.247, 15.209	A8	Р
AC Powerline Conducted Emission	15.107, 15.207	7.2	Р

Please refer to ANNEX A for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.			
NP	Not Perform, The test was not performed by TMC			
NA	Not Applicable, The test was not applicable			
F	Fail, The EUT does not comply with the essential requirements in the			
	standard			

6.2. Statements

TMC has evaluated the test cases requested by the client/manufacturer as listed in section 6.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.1.

This report only deals with the WLAN function among the features described in section 3.

6.3. Test Conditions

For this report, all the test cases are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

Temperature 26°C

Voltage 3.8V (By battery)

Humidity 44%

7. TEST EQUIPMENTS UTILIZED

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration date	Calibration Due date
1	Vector Signal Analyzer	FSQ40	200089	Rohde & Schwarz	2013-07-08	2014-07-07
2	Test Receiver	ESS	847151/015	Rohde & Schwarz	2013-12-29	2014-10-30
3	LISN	ESH2-Z5	829991/012	Rohde & Schwarz	2013-4-15	2014-08-12
4	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

itau	Naulateu elilission test system							
No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibratio		
	Equipment	Wiodei	Number	Walturacturer	date	n Due date		
_	Took Doooliyar	FOLIOC	400070	Rohde &	2042 44 0	2044 44 7		
1	Test Receiver	ESU26	100376	Schwarz	2013-11-8	2014-11-7		
2	BiLog Antenna	VULB9163	9163-514	Schwarzbeck	2011-11-11	2014-11-10		
	Dual-Ridge							
3	Waveguide	3117	00119024	ETS-Lindgren	2014-2-2	2017-2-1		
	Horn Antenna							
	Dual-Ridge							
4	Waveguide	3116	2661	EMCO	2011-7-1	2014-06-30		
	Horn Antenna							
5	Loop antonno	HFH2-Z2	829324/007	Rohde &	2011-12-21	2014-12-20		
5	Loop antenna		029324/007	Schwarz	2011-12-21	2014-12-20		
6	Semi-anechoic	,	CT000332-1	Frankonia	,	1		
	Ö	chamber	/	074	German	/	/	

ANNEX A: MEASUREMENT RESULTS

A.1. Measurement Method

A.1.1. Conducted Measurements

Connect the EUT to the test system as Fig.A.1.1.1 shows.

Set the EUT to the required work mode.

Set the EUT to the required channel.

Set the Vector Signal Analyzer and start measurement.

Record the values. Vector Signal Analyzer

Fig.A.1.1.1: Test Setup Diagram for Conducted Measurements

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

Fig.A.1.2.1: Test Setup Diagram for Radiated Measurements

A.2. Maximum Output Power

Measurement Limit and Method:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)	< 30

The measurement is made according to KDB558074, and section 9.1.2 is used for peak power measurement.

Note: The Duty cycle of EUT is 98.2%, so all measurements of maximum conducted output power will be performed with the EUT transmitting continuously.

EUT ID: EUT2

A.2.1. Maximum Peak Output Power-conducted

Measurement Results:

802.11b/g mode

	Data Rate -		Test Result (dBm)	
Mode	Mode	2412MHz	2437M Hz	2462 MHz
	(Mbps)	(Ch1)	(Ch6)	(Ch11)
	1	16.78	/	/
000 116	2	17.07	/	/
802.11b	5.5	18.43	/	/
	11	19.93	20.22	20.49
	6	20.82	/	/
	9	20.65	/	/
	12	20.51	/	/
802.11g	18	20.54	/	/
602.11g	24	21.05	22.51	21.54
	36	20.78	/	/
	48	20.82	/	/
	54	20.89	/	/

The data rate 11Mbps and 24Mbps are selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

	Data Bata	Test Result (dBm)		
Mode	Data Rate	2412MHz	2437M Hz	2462 MHz
	(Index)	(Ch1)	(Ch6)	(Ch11)
	MCS0	20.87	/	/
	MCS1	20.49	/	/
	MCS2	20.46	/	/
802.11n	MCS3	21.01	22.53	21.54
(20MHz)	MCS4	20.76	/	/
	MCS5	20.86	/	/
	MCS6	20.91	/	/
	MCS7	20.79	/	/

The data rate MCS3 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: Pass

A.2.2. Maximum Average Output Power-conducted

The measurement is made according to KDB558074, and Method AVGSA-1 Alternative of section 9.2.1.3 is used for peak power measurement.

802.11b/g mode

	Test Result (dBm)		
Mode	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)
802.11b	13.41	13.44	13.79
802.11g	12.01	13.36	12.61

802.11n-HT20 mode

		Test Result (dBm)	
Mode	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)
802.11n (20MHz)	11.88	13.35	12.54

Conclusion: Pass

Measurement Uncertainty:

Measurement Uncertainty	0.75dB
-------------------------	--------

A.3. Peak Power Spectral Density

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247(e)	< 8 dBm/3 kHz

The measurement is made according to KDB558074.

Modulation type and data rate tested:

802.11b	802.11g	802.11n-HT20
11Mbps(CCK)	24Mbps(OFDM)	MCS3(OFDM)

Measurement Results:

802.11b/g mode

Mode	Channel	-	ctral Density /3 kHz)	Conclusion
	1	Fig.A.3.1	-10.75	Р
802.11b	6	Fig.A.3.2	-10.60	Р
	11	Fig.A.3.3	-8.10	Р
	1	Fig.A.3.4	-12.40	Р
802.11g	6	Fig.A.3.5	-10.41	Р
	11	Fig.A.3.6	-12.29	Р

802.11n-HT20 mode

Mode	Channel	-	ctral Density /3 kHz)	Conclusion
802.11n	1	Fig.A.3.7	-12.58	Р
(HT20)	6	Fig.A.3.8	-11.28	Р
(11120)	11	Fig.A.3.9	-11.57	Р

Conclusion: Pass

Measurement Uncertainty:

Measurement Uncertainty	0.75dB
-------------------------	--------

Test graphs as below:

Fig.A.3.1 Power Spectral Density (802.11b, Ch 1)

Fig.A.3.2 Power Spectral Density (802.11b, Ch 6)

Fig.A.3.3 Power Spectral Density (802.11b, Ch 11)

Fig.A.3.4 Power Spectral Density (802.11g, Ch 1)

Fig.A.3.5 Power Spectral Density (802.11g, Ch 6)

Fig.A.3.6 Power Spectral Density (802.11g, Ch 11)

Fig.A.3.7 Power Spectral Density (802.11n-HT20, Ch 1)

Fig.A.3.8 Power Spectral Density (802.11n-HT20, Ch 6)

Fig.A.3.9 Power Spectral Density (802.11n-HT20, Ch 11)

A.4. Occupied 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

The measurement is made according to KDB558074.

EUT ID: EUT2

Modulation type and data rate tested:

802.11b	802.11g	802.11n-HT20
11Mbps(CCK)	24Mbps(OFDM)	MCS3(OFDM)

Measurement Result:

802.11b/g mode

Mode	Channel	-	Occupied 6dB Bandwidth (kHz)	
	1	Fig.A.4.1	9300	Р
802.11b	6	Fig.A.4.2	9200	Р
	11	Fig.A.4.3	9150	Р
	1	Fig.A.4.4	15900	Р
802.11g	6	Fig.A.4.5	15750	Р
	11	Fig.A.4.6	16250	Р

802.11n-HT20 mode

Mode	Channel	Occupied 6dB Bandwidth (kHz)		conclusion
802.11n	1	Fig.A.4.7	17200	Р
(HT20)	6	Fig.A.4.8	17500	Р
(11120)	11	Fig.A.4.9	16550	Р

Conclusion: Pass

Measurement Uncertainty:

Measurement Uncertainty	60.80Hz

Test graphs as below:

Fig.A.4.1 Occupied 6dB Bandwidth (802.11b, Ch 1)

Fig.A.4.2 Occupied 6dB Bandwidth (802.11b, Ch 6)

Fig.A.4.3 Occupied 6dB Bandwidth (802.11b, Ch 11)

Fig.A.4.4 Occupied 6dB Bandwidth (802.11g, Ch 1)

Fig.A.4.5 Occupied 6dB Bandwidth (802.11g, Ch 6)

Fig.A.4.6 Occupied 6dB Bandwidth (802.11g, Ch 11)

Fig.A.4.7 Occupied 6dB Bandwidth (802.11n-20MHz, Ch 1)

Fig.A.4.8 Occupied 6dB Bandwidth (802.11n-HT20, Ch 6)

Fig.A.4.9 Occupied 6dB Bandwidth (802.11n-HT20, Ch 11)

A.5. 99% Occupied Channel Bandwidth

Reference: RSS-Gen 4.6.1

EUT ID: EUT2

Modulation type and data rate tested:

802.11k)	802.11g	802.11n-HT20
11Mbps(C	CK) 24N	Mbps(OFDM)	MCS3(OFDM)

Measurement Result:

802.11b/g mode

Mode	Channel	•	Occupied Bandwidth (MHz)	
	1	Fig.A.5.1	12.88	Р
802.11b	6	Fig.A.5.2	12.79	Р
	11	Fig.A.5.3	12.88	Р
	1	Fig.A.5.4	17.60	Р
802.11g	6	Fig.A.5.5	17.79	Р
	11	Fig.A.5.6	17.69	Р

802.11n-HT20 mode

Mode	Channel	Occupied E (MF		conclusion
000 44 =	1	Fig.A.5.7	18.46	Р
802.11n (HT20)	6	Fig.A.5.8	18.56	Р
(11120)	11	Fig.A.5.9	18.46	Р

Conclusion: PASS

Measurement Uncertainty:

Measurement Uncertainty	60.80Hz
-------------------------	---------

Date: 11.MAR.2014 16:29:23

Fig.A.5.1 99% Occupied Bandwidth: (802.11b, Ch 1)

Date: 11.MAR.2014 16:29:49

Fig.A.5.2 99% Occupied Bandwidth: (802.11b, Ch 6)

Date: 11.MAR.2014 16:30:14

Fig.A.5.3 99% Occupied Bandwidth: (802.11b, Ch 11)

Date: 11.MAR.2014 16:30:45

Fig.A.5.4 99%Occupied Bandwidth: (802.11g, Ch 1)

Date: 11.MAR.2014 16:31:14

Date: 11.MAR.2014 16:31:38

Fig.A.5.5 99% Occupied Bandwidth: (802.11g, Ch 6)

Fig.A.5.6 99% Occupied Bandwidth: (802.11g, Ch 11)

Date: 11.MAR.2014 16:32:08

Fig.A.5.7 99% Occupied Bandwidth: (802.11n-HT20, Ch 1)

Date: 11.MAR.2014 16:32:33

Fig.A.5.8 99% Occupied Bandwidth: (802.11n-HT20, Ch 6)

Date: 11.MAR.2014 16:32:57

Fig.A.5.9 99% Occupied Bandwidth: (802.11n-HT20, Ch 11)

A.6. Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

The measurement is made according to KDB558074.

EUT ID: EUT2

Modulation type and data rate tested:

802.11b	802.11g	802.11n-HT20
11Mbps(CCK)	24Mbps(OFDM)	MCS3(OFDM)

Measurement Result:

802.11b/g mode

Mode	Channel	Test Results	Conclusion
802.11b	1	Fig.A.6.1	Р
002.110	11	Fig.A.6.2	Р
902.44a	1	Fig.A.6.3	Р
802.11g	11	Fig.A.6.4	Р

802.11n-HT20 mode

Mode	Channel	Test Results	Conclusion
802.11n	1	Fig.A.6.5	Р
(HT20)	11	Fig.A.6.6	P

Conclusion: Pass

Measurement Uncertainty:

Measurement Uncertainty	0.75dB
-------------------------	--------

Test graphs as below: