课程编号: MTH17003

北京理工大学 2013-2014 学年第一学期

工科数学分析期中试题 (信二学习部整理)

班级_	学号							_	姓名				
(本试卷共7页,十一个大题. 解答题必须有解题过程. 试卷不得拆散.)													
题号	_		111	四	五.	六	七	八	九	十	+ -	总分	
得分													
一. 填空题(每小题 2 分,共 10 分) 1. 设 $y = f^2(a^x) + \arcsin g(x)$, f,g 是可导函数,则 $dy = $													
5. 已知 $xe^{-x} - \sin x = ax^2 + bx^3 + o(x^3)$, 则 $a =$, $b =$.													

常区学

二. (8 分) 设
$$\begin{cases} x = \arctan t \\ y = \ln(t + \sqrt{t^2 + 1}), \quad \stackrel{\text{dy}}{=} \frac{d^2 y}{dx}, \frac{d^2 y}{dx^2}. \end{cases}$$

信息与电子二学部学生会 学习部

四. (9 分) 设
$$f(x) = \begin{cases} \frac{\ln(1+x^2)}{x} & x > 0 \\ a & x = 0 \end{cases}$$
 是连续函数,求 a 的值,并求 $f'(x)$.

五. (8 分) 求极限 $\lim_{x\to 0} \frac{e^x - e^{\sin x}}{\ln(1 + \tan^3 x)}$.

信息与电子二学部学生会 学习部

六. (9分) 已知曲线 $xy^3 = 2y + 1$ 与 $y = ax^2 + bx$ 在点 (1,-1)相切, 试确定 a和 b的值.

七. (9 分) 设 $y_1 = \frac{1}{3}, y_n = \frac{1}{3} + \frac{y_{n-1}^2}{3}$ $(n \ge 2)$, 证明数列 $\{y_n\}$ 有极限, 并求此极限.

信息与电子二学部学生会 学习部

八. $(9\, \%)$ 如图,从南至北的铁路经过 B 城,某工厂 A 距此铁路的 最短距离 AC 为 a(千米), BC 为 b(千米)($b \neq 0$),为了从 A 到 B 运输货物最经济,要从工厂修一条侧轨 AD,若每吨货物运输 价格沿侧轨为 p(元/千米),而沿主轨为 q(元/千米),且 (p>q), A 问侧轨的角度 φ ($0 < \varphi < \frac{\pi}{2}$)为多少时最经济. (用微积分的方法)

九. (9 分) 证明不等式 $x + \ln(1-x) \ge x \ln(1-x)$ (x < 1).

常区学

十. (13 分) 设 $y = \frac{x^3}{x^2 - 1}$, 研究函数的性态, 并作出函数的图形.

信息与电子二学部学生会 学习部

十一. (8 分) 设 f(x) 在区间[0,2]上连续,在 (0,2) 内可导,且 f(1)=1, f(2)=-1, 证明在 (0,2) 内存在 ξ ,使得 $f'(\xi)=-\frac{2f(\xi)}{\xi}$.

信息与电子二学部学生会 学习部