CS 203

Design & Analysis of Algorithms

Instructors: Dr. Ashish Phophalia ashish_p@iiitvadodara.ac.in

TIMING ANALYSIS WITH STEP COUNT METHOD: INSERTION SORT

An example analysis of a sorting algorithm

Sorting

- Output: - A permutation of $\langle a_1, a_2, ..., a_n \rangle$ such that $a_i \leq a_{i+1}, 0 \leq i \leq n-1$

IDEM

- Idea: like sorting a hand of playing cards
 - Start with an empty left hand and the cards facing down on the table.
 - Remove one card at a time from the table, and insert it into the correct position in the left hand
 - compare it with each of the cards already in the hand, from right to left
 - The cards held in the left hand are sorted

IDEM

 Place (insert) the first (blue) unsorted element in the sorted (pink) subarray

- for j = 2 to n
 - place (insert) A[j] in the sorted subarray A[1:j-1]

EXAMPLE

13 34 6 57 63 7

INSERTION SORT ANALYSIS: STEP COUNT METHOD

IN	SERTION-SORT (A)	cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	$/\!\!/$ Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	C_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = kev	C_{\aleph}	n-1

t_j: # of times the while statement is executed at iteration j

INSERTION SORT ANALYSIS: STEP COUNT METHOD

Best Case [Sorted]

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

• T(n) = dn + e

INSERTION SORT ANALYSIS: STEP COUNT METHOD

Worst Case [Reverse Sorted]

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$= \sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$= \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \left(\frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2} + \frac{c_7}{2}\right) n^2 + \frac{c_7}{2} + \frac$$

•
$$T(n) = an^2 + bn+c$$

ANALYSIS OF ALGORITHM

- In general, we are not so much interested in the time and space complexity for small inputs.
- For example, while the difference in time complexity between linear and binary search is meaningless for a sequence with n=10, but it is significant for $n=2^{30}$

EXAMPLE

Consider two algorithms A and B that solve the same class of problems.

- The time complexity of A is 5,000n, the one for B is $\lceil 1.1^{n_{1}} \rceil$ for an input with n elements.
- For n = 10, A requires
 50,000 steps, but B only
 3, so B seems to be
 superior to A.
- For n = 1000, however, A requires 5,000,000 steps, while B requires
 2.5x10⁴¹³⁹²

Input Size (n)	Algorithm A=(5000n)	Algorithm B = \(\pi 1.1^n \)
10	50000	3
100	5 × 10 ⁵	13,781
1000	5 × 10 ⁶	2.5×10 ⁴¹
1000 000	5 × 10 ⁹	2.5×10 ⁴¹³⁹²

ANALYSIS OF ALGORITHM

- During design we are interested to measure the (relative) performance of algorithms for sufficiently larger input size
- Try to approximate the growth of running time as input size increases
 - More specifically, $n \rightarrow \infty$

Asymptotic Analysis

Asymptotic Analysis

WHY NOT PRECISE COMPUTATION TIME ANALYSIS?

Need to implement

 Machine/Input/Programming Support specific

WHY NOT STEP COUNT METHOD?

- Consider Linear Search O(an) and Binary Search (b log n).
- We run the Linear Search on a fast computer A and Binary Search on a slow computer B.
- Let's say the constant for **A** is 0.2 and constant for **B** is 1000.

n	0.2*n	1000 log n
10	2 sec	~38 min
100	20 sec	~1 hr
106	5.5 hr	~4 hr
109	6.3 years	~5 hr

Concepts of order of growth and Asymptotic Notations are essential to understand.

- Lower order terms and constant terms does not impact much for sufficiently large input
- Overhead of considering all the terms

ORDER OF GROWTH

- Focus on the dominating terms
 - Ignore lower order terms: Does not matter much for significantly large input
 - Ignore constant multiplier: Exact value differs by a constant factor
- For insertion sort: $an^2 + bn+c$
 - Ignore lower order terms=> an2
 - Ignore constant multiplier => n²
- Meaningful (but inexact) analysis
- Specifically, worst-case running time $(an^2 + bn+c)$ is not equal to n^2 , rather it grows like n^2
- Running time is n^2 captures the notion that the order of growth is n^2
- Efficient way of analyzing (in fact, comparing the relative) performance of an algorithm

ASYMPTOTIC ANALYSIS

- Considering the order of growth for the larger input, we are studying the asymptotic efficiency of algorithms.
- It measure of the efficiency of algorithms that don't depend on machine-specific constants and doesn't require algorithms to be implemented and time taken by programs to be compared.
- · How the running time of an algorithm increases with the size of the input.

ASYMPTOTIC NOTATIONS: 0 (BIG 0H)

- Asymptotic Upper Bound => Asymptotic "less than or equal to"
 - $f(n) = O(g(n)) \Rightarrow f(n) \le g(n)$
- O(g(n)) = {f(n) : there exist positive constants c and n0such that 0 ≤ f (n) ≤ cg(n) for all n≥n0}

g(n) is an asymptotic upper bound of f (n)

O (BIG OH) NOTATION

- $3n^2 = O(n^3)$:
 - $3n^2 \le cn^3 \Rightarrow 3 \le cn \Rightarrow c = 1$ and n0=3(Also c = 3 and n0=1 or c = 3.5 and n0=1)
- $n^2 = O(n^2)$:
 - $-n^2 \le cn^2 => c \ge 1 => c = 1$ and n0 = 1
- $150n^2 + 200n = O(n^2)$:
 - $150n^2+200n \le 150n^2+n^2=151n^2$ (for $n \ge 200$)
 - \Rightarrow c=151 and n0 = 200
- $3n = O(n^2)$:
 - $3n \le cn^2 => cn \ge 3 => c = 1$ and n0=3

- no unique pair of n0 and c
- To prove upper bound, find some n0 and c

ASYMPTOTIC NOTATIONS: Ω (BIG OMEGA)

- Asymptotic Lower Bound
- Asymptotic "greater than or equal to f(n) = $\Omega(q(n))$
- => f(n) "≥" g(n)
- $\Omega(g(n))$ is a set of functions that are asymptotically "greater than" or "equal to" q(n)
- $\Omega(q(n)) = \{f(n) : \text{there} \}$ exist positive constants c and no such that 0's $cq(n) \le f(n)$ for all n≥n0}

bound of f (n)

Ω (BIG OMEGA) NOTATION

- $3n^2 = \Omega(n^2)$: $3n^2 \ge cn^2 => 3 \ge c => c = 1$ and n0 = 1
- $2n^2 = \Omega(n)$: $2n^2 \ge cn \Rightarrow c \le 2 \Rightarrow c = 1$ and n0 = 1
- $150n^2 + 200n = \Omega(n^3)$:
 - $-150n^2+200n \le 150n^2+200n^2 \le 350n^2$
 - $-cn^3 \le 150n^2 + 200n \le 350n^2 \Rightarrow n \le 350/c$
 - (n cannot be smaller than a constant)

ASYMPTOTIC NOTATIONS: 0 (THETA)

- Asymptotic Tight Bound
- Asymptotic "equal to"
- $f(n) = \Theta(g(n)) \Rightarrow f(n) = g(n)$
- $\theta(g(n))$ is a set of functions that are asymptotically "equal to" g(n)
- $f(n) \in \Theta(g(n))$, however, we say $f(n) = \Theta(g(n))$
- Θ(g(n)) = {f(n) : there exist positive constants c1, c2 and n0 such that 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n≥n0}

g(n) is an asymptotic tight bound for f (n)

O (THETA) NOTATION

- $3/2 n^2 = \Theta(n^2)$:
 - 1) $3/2 n^2 \ge c1 n^2$ $\Rightarrow 3/2 \ge c1$ $\Rightarrow c1 = 1 \text{ and } n0 = 1$ 2) $3/2 n^2 \le c2 n^2$ $\Rightarrow 3/2 \le c2$ $\Rightarrow c1 = 2 \text{ and } n0 = 1$
- $n \neq \theta(n^2)$: =>c1 $n^2 \le n \le c2 n^2$ => $n \le 1/c1$ and $n \ge 1/c2$

- $4n^3 \neq \Theta(n^2)$: => $c1 \ n^2 \leq 4 \ n^3 \leq c2 \ n^2$
- => only true for: $n \le c2/4$

- n ≠ θ(logn):
- =>c1 logn ≤ n ≤ c2 logn
- =>c2 ≥ n/log n
- \Rightarrow c2 \geq n
- ⇒ n cannot be smaller than a constant