Due: 2013/12/06

Homework 9

Problem 1. For a fixed $0 , consider the probability space of random graphs <math>\mathcal{G}_{n,p}$. Let E be the event that the graph contains the Petersen graph as an induced subgraph. Prove that

$$\lim_{n\to\infty} Pr(E) \to 1.$$

Definition 1. An independent set of a hypergraph $\mathcal{H} = (V, E)$ is a set $S \subseteq V$ such that S does not contain any hyperedge, i.e. $E \cap 2^S = \emptyset$. Define $\alpha(\mathcal{H})$ to be the size of the largest independent set in \mathcal{H} .

Problem 2. What is $\alpha(\mathcal{H})$ when \mathcal{H} is the Fano configuration?

Problem 3. Prove that, for any r and n (for simplicity, r|n), there is a r-uniform hypergraph \mathcal{H} on [n] with at least $\binom{n}{r}/e^r$ hyperedges, and

$$\alpha(\mathcal{H}) \ge n(1 - \frac{1}{r}).$$

Problem 4. Prove that, for any constant $c_1 > 0$, there is another constant $c_2 > 0$, such that for any 3-uniform hypergraph \mathcal{H} with n vertices and m hyperedges where $m \geq c_1 n$,

$$\alpha(\mathcal{H}) \ge \frac{c_2 n \sqrt{n}}{\sqrt{m}}.$$

Problem 5. Let A be a set of 2r + 1 points

$$A = \{a_1, ..., a_r, b_1, ..., b_r, c\}.$$

Uniformly pick a random permutation σ of A. Define the random variables

$$x := |\{a_i | a_i \prec_{\sigma} c\}|,$$

$$y := |\{b_i | b_i \prec_{\sigma} c\}|.$$

Let $0 \le p \le 1$ be fixed.

- (a) When r = 1 and r = 2, compute $\mathsf{E}_{\sigma}[(1+p)^x(1-p)^y]$.
- (b) Prove that $\mathsf{E}_{\sigma}[(1+p)^x(1-p)^y] \leq 1$. (Hint: Let c_i be the number of elements in $\{a_i,b_i\}$ that are before $c,\ (c_1,...,c_r)$ is a sequence of 0-1-2 of length r. Partition all the outcomes by conditioning on such sequences.)