# **E2E** forecasting flow overview

**Forecast** 

hybridization

Forecast dis-

aggregation

**Considering** 

Products

Customers

Locations

Lifecycles

Data pre-processing Core analytical tasks Post-processing Reports about forecast Types of the forecasts: Base Promo 10 types of Total alerts **Forecast** Alerts output calculation generation **Forecast** transfer to downstream



**ML** models

training

**Time Series** 

model training

Daily or Weekly: SKU, Store level

**ML** forecasts calculation

**Time Series** 

forecasts

calculation

- 3+ year historical data

#### **Including:** Demand restoration

Forecast Flag calculation

**Customer data** 

loading and

parameters

initialization

Demand driver preprocessing

#### **Hierarchical Forecasting:**

Input data

preprocessing

- High level forecast at category/region level and weekly or monthly granularity
- 3-year historical data

#### Various statistical models depending on time series properties:

- **ESM**
- ARIMA
- Regression

#### **Interactive Modeling:**

Ability to choose manually another model

#### Hybrid model, consolidation

rules depend on:

- Forecast horizon
- SKU history length
- **Demand class**
- Promo or non-promo

#### **Granularity:**

- day
- week
- split-week using weekmonth transformation

#### Forecast dis-Autoaccumulation correction

#### Statistical algorithms

Parameters to control adjustments logic

#### Weekly release:

84 days (operational) 104 weeks (tactical)

# **Definition of data entities**

| IA Table name      | Description                                                                                                                                                  | Type      |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| PRODUCT            | Stores basic information about products, including product hierarchy.                                                                                        | Mandatory |
| LOCATION           | Stores information about locations (location hierarchy).                                                                                                     | Mandatory |
| CUSTOMER           | Stores basic information about customers (distributors, retailers etc.), including customer hierarchy.                                                       | Mandatory |
| DISTR_CHANNEL      | Stores basic information about distribution channel, including distribution channels hierarchy.                                                              | Mandatory |
| SELL_IN            | Stores information about historical sales (e.g. shipment data).                                                                                              | Mandatory |
| SELL_OUT           | Stores information about historical sales of the customers (POS data).                                                                                       | Mandatory |
| ASSORT_MATRIX      | Stores information about product matrix, to define assortments that should be forecasted by the solution.                                                    | Critical  |
| PRODUCT_LIFE       | Stores information about products lifecycle. Aimed at covering the situations when the history of sales should be inherited by one product from the other.   | Critical  |
| LOCATION_LIFE      | Stores information about locations lifecycle. Aimed at covering the situations when the history of sales should be inherited by one location from the other. | Critical  |
| CUSTOMER_LIFE      | Stores information about customers lifecycle. Aimed at covering the situations when the history of sales should be inherited by one customer from the other. | Critical  |
| EVENTS             | Stores information about calendar events.                                                                                                                    | Optional  |
| PRODUCT_ATTR       | Stores information about product attributes.                                                                                                                 | Optional  |
| LOCATION_ATTR      | Stores information about location attributes.                                                                                                                | Optional  |
| CUSTOMER_ATTR      | Stores information about customer attributes.                                                                                                                | Optional  |
| DISTR_CHANNEL_ATTR | Stores information about distribution channel attributes.                                                                                                    | Optional  |
| STOCK              | Stores historical information about inventories.                                                                                                             | Optional  |
| PROMO_TYPE         | Stores information about types of promo events.                                                                                                              | Optional  |
| PROMO              | Stores information about planned and historical promotions events.                                                                                           | Optional  |
| PROMO_ATTR         | Stores information about promo attributes.                                                                                                                   | Optional  |
| PRICE              | Stores information about planned and historical prices.                                                                                                      | Optional  |
| CROSS_ATTRIBUTES   | Stores information about cross attributes. Aimed at covering the cases when the same product can have country                                                | Optional  |
|                    | or region or location specific attributes.                                                                                                                   |           |

# DQ examples

# Check values range def check\_val\_range(data\_quality\_output, table, target\_col, th=0): result = table[table[target\_col] < th] if not result.empty: data\_quality\_output = pd.concat([data\_quality\_output, result]) return data\_quality\_output data\_quality\_output = check\_val\_range(data\_quality\_output, promo, 'PROMO\_PRICE') PRODUCT\_ID LOCATION\_ID CUSTOMER\_ID DISTR\_CHANNEL\_ID PERIOD\_START\_DT PERIOD\_END\_DT PRICE\_TYPE N</pre>

#### Check cross consistency

# Forecast output structure (real case)

#### out forecast details out forecast FORECAST ID FORECAST ID PERIOD DT PARENT FORECAST ID DIM1 LVL ID TARGET VARIABLE NM FORECAST TYPE DIM5 LVL ID PERIOD TYPE FORECAST VALUE FORECAST PERIOD START DT FORECAST LOWER FORECAST\_PERIOD\_END\_DT FORECAST HORIZON FORECAST UPPER FORECAST SOURCE UOM CD ML FORECAST VALUE PROCESS START DTTM VF FORECAST VALUE PROCESS END DTTM ENSEMBLE FORECAST VALUE BF AUTOCOR FORECAST VALUE out dimension DEMAND TYPE

DIMENSION\_ID DIMENSION NM

Out\_forecast\_attributes

FORECAST\_ID
DIM1\_LVL\_ID
...
DIM5\_LVL\_ID
ASSORTMENT\_TYPE
FORECAST\_VARIANCE

# **Demand Restoration**



## **Sales VS Demand**

#### Item 1

Daily Sales



#### Item 2

Daily Sales



## **Sales VS Demand**



Daily Sales

Daily Stock

#### Item 2

Daily Sales

Daily Stock





## **Poisson Model**

#### Key Assumptions

- The number of sales in different periods of time is a random variable
- Probability to sell k pieces in t days (in case of infinite stock) is Poisson distribution

$$P_{\infty}(x=k) = \frac{\lambda^k}{k!}e^{-\lambda}$$



Model of birth and death

- m number of pieces in stock
- *k* sales amount
- $P_m(x=k)$  probability to sell k pieces having m pieces in stock

$$P_m(x = k) = \begin{cases} 1, & k = m = 0, \\ 0, & k > m \text{ or } k < 0 \end{cases}$$

Model of birth and death

- m number of pieces in stock
- *k* sales amount
- $P_m(x=k)$  probability to sell k pieces having m pieces in stock

$$P_{m}(x = k) = \begin{cases} 1, & k = m = 0, \\ 0, & k > m \text{ or } k < 0 \\ \frac{(\lambda)^{k}}{k!} e^{-\lambda}, & 0 \le k < m, \end{cases}$$

Model of birth and death

- m number of pieces in stock
- *k* sales amount
- $P_m(x=k)$  probability to sell k pieces having m pieces in stock

$$P_{m}(x = k) = \begin{cases} 1, & k = m = 0, \\ 0, & k > m \text{ or } k < 0 \\ \frac{(\lambda)^{k}}{k!} e^{-\lambda}, & 0 \le k < m, \\ 1 - \sum_{l=0}^{m-1} \frac{(\lambda)^{l}}{l!} e^{-\lambda}, & k = m > 0 \end{cases}$$

How to estimate  $\lambda$  for each item:

- Long history of data
- Find proper estimation method

Estimation of  $\lambda$ 

 There is a sample realization of a random variable for a two parameters

$$(k_1, m_1), (k_2, m_2), \dots, (k_T, m_T)$$

Likelihood

$$L = P_{m_1}(x = k_1) \cdot P_{m_2}(x = k_2) \cdot \dots \cdot P_{m_T}(x = k_{m_T}) =$$

$$= \prod_{i:0 \le k_i < m_i} \frac{(\lambda)^{k_i}}{k_i!} e^{-\lambda} \cdot \prod_{i:k_i = m_i > 0} \left( 1 - \sum_{l=0}^{m_i - 1} \frac{(\lambda)^l}{l!} e^{-\lambda} \right) \cdot \prod_{i:k_i = m_i = 0} 1$$

Estimation of  $\lambda$ 

• Log likelihood

$$\ln L = \ln \left( \prod_{i:0 \le k_i < m_i} \frac{(\lambda)^{k_i}}{k_i!} e^{-\lambda} \cdot \prod_{i:k_i = m_i > 0} \left( 1 - \sum_{l=0}^{m_i - 1} \frac{(\lambda)^l}{l!} e^{-\lambda} \right) \cdot \prod_{i:k_i = m_i = 0} 1 \right) = 0$$

$$= \sum_{i:0 \le k_i < m_i} \ln \left( \frac{(\lambda)^{k_i}}{k_i!} e^{-\lambda} \right) + \sum_{i:k_i = m_i > 0} \ln \left( 1 - \sum_{l=0}^{m_i - 1} \frac{(\lambda)^l}{l!} e^{-\lambda} \right) = 0$$

$$= \ln \lambda \cdot \sum_{i:0 \le k_i < m_i} k_i - \lambda \cdot \sum_{i:0 \le k_i < m_i} 1 + \sum_{i:k_i = m_i > 0} \ln \left( 1 - \sum_{l=1}^{m_i} \frac{(\lambda)^t}{l!} e^{-\lambda} \right)$$

#### Estimation of $\lambda$

- $m_i$  stock in a day i
- $\sum_{i:k_i>0} k_i$  sum of sales within observed days
- $n_{0 \le k < m}$  number of days, when sales less than stock
- $n_{k=m>0}$  number of days, when sales are equal to stock

$$\ln L = \ln \lambda \cdot \sum_{i:0 \le k_i < m_i} k_i - \lambda \cdot n_{0 \le k < m} + \sum_{i:k_i = m_i > 0} \ln \left( 1 - \sum_{l=1}^{m_i} \frac{(\lambda)^l}{l!} e^{-\lambda} \right) \to \max_{\lambda > 0} \left( 1 - \sum_{l=1}^{m_i} \frac{(\lambda)^l}{l!} e^{-\lambda} \right) \to \max_{\lambda > 0} \left( 1 - \sum_{l=1}^{m_i} \frac{(\lambda)^l}{l!} e^{-\lambda} \right)$$

#### Estimation of $\lambda$

- $m_i$  stock in a day i
- $\sum_{i:k_i>0} k_i$  sum of sales within observed days
- $n_{0 \le k < m}$  number of days, when sales less than stock
- $n_{k=m>0}$  number of days, when sales are equal to stock

$$\ln L = \ln \lambda \cdot \sum_{i:0 \le k_i < m_i} k_i - \lambda \cdot n_{0 \le k < m} + \sum_{i:k_i = m_i > 0} \ln \left( 1 - \sum_{l=1}^{m_i} \frac{(\lambda)^l}{l!} e^{-\lambda} \right) \to \max_{\lambda > 0} \left( 1 - \sum_{l=1}^{m_i} \frac{(\lambda)^l}{l!} e^{-\lambda} \right) \to \max_{\lambda > 0} \left( 1 - \sum_{l=1}^{m_i} \frac{(\lambda)^l}{l!} e^{-\lambda} \right)$$

MLE for  $\lambda$  estimation

Taylor series for exponent

$$1 - \sum_{l=0}^{m_i-1} \frac{(\lambda)^l}{l!} e^{-\lambda} = e^{-\lambda} \left( e^{\lambda} - \sum_{l=0}^{m_i-1} \frac{(\lambda)^l}{l!} \right) = e^{-\lambda} \left( \sum_{l=0}^{\infty} \frac{(\lambda)^l}{l!} - \sum_{l=0}^{m_i-1} \frac{(\lambda)^l}{l!} \right) = e^{-\lambda} \sum_{l=m_i}^{\infty} \frac{(\lambda)^l}{l!} = \frac{(\lambda)^{m_i}}{m_i!} e^{\theta_{m_i,\lambda} \cdot \lambda} e^{-\lambda}$$

Log likelihood

$$\ln L = \ln \lambda \cdot \sum_{i:0 \le k_i < m_i} k_i - \lambda \cdot n_{0 \le k < m} + \sum_{i:k_i = m_i > 0} \ln \left( \frac{(\lambda)^{m_i}}{m_i!} e^{\theta_{m_i,\lambda} \cdot \lambda} e^{-\lambda} \right) =$$

$$= \ln \lambda \cdot \sum_{i:0 \le k_i < m_i} k_i - \lambda \cdot n_{0 \le k_i < m_i} + \sum_{i:k_i = m_i > 0} \left( k_i \cdot \ln \lambda + \left( \theta_{m_i, \lambda} - 1 \right) \cdot \lambda \right) + C =$$

$$= \ln \lambda \cdot \sum_{i:0 \le k_i \le m_i} k_i - \lambda \cdot \left( n_{0 \le k < m} + \sum_{i:k_i = m_i > 0} \left( 1 - \theta_{m_i, \lambda} \right) \right) + C$$

MLE for  $\lambda$  estimation

Necessary condition:

$$\frac{\partial \ln L}{\partial \lambda} = \frac{\sum_{i:0 \le k_i \le m_i} k_i}{\lambda} - \left( n_{0 \le k < m} + \sum_{i:k_i = m_i > 0} \left( 1 - \theta_{m_i, \lambda} \right) \right) = 0$$

$$\lambda = \frac{\sum_{i:0 \le k_i \le m_i} k_i}{n_{0 \le k < m} + \sum_{i:k_i = m_i > 0} (1 - \theta_{m_i, \lambda})} = \frac{\sum k_i}{n_{0 \le k < m} + \alpha \cdot n_{k = m > 0}},$$

MLE for  $\lambda$  estimation

 $m_i$  - stock in a day i  $\sum_{i:k_i>0} k_i$  - sum of sales within observed days  $n_{0\leq k < m}$ - number of days, when sales less than stock  $n_{k=m>0}$ - number of days, when sales are equal to stock

$$\ln L = \ln \lambda \cdot \sum_{i:0 \le k_i < m_i} k_i - \lambda \cdot n_{0 \le k < m} + \sum_{i:k_i = m_i > 0} \ln \left( 1 - \sum_{l=1}^{m_i} \frac{(\lambda)^l}{l!} e^{-\lambda} \right) \to \max_{\lambda > 0} \left( 1 - \sum_{l=1}^{m_i} \frac{(\lambda)^l}{l!} e^{-\lambda} \right) \to \max_{\lambda > 0} \left( 1 - \sum_{l=1}^{m_i} \frac{(\lambda)^l}{l!} e^{-\lambda} \right)$$

Solution:

$$\lambda = \frac{\sum k_i}{n_{0 \le k < m} + \alpha \cdot n_{k=m > 0}},$$

where  $\alpha \in [0,1]$ 

## Lambda vs Mean Sales

Lambda is significantly higher than Mean Sales for low-demand items



#### **Demand Restoration results**

Several approaches to restore demand

10%-20%
Realistic Uplift

Sales

Optimistic demand

Conservative demand

Pessimistic demand

