Laboratorio di Sistemi Operativi: Prof.ssa A. Rescigno Anno Acc. 2004-2005 Esercizi di Verifica Aprile 2005 Università di Salerno

Nome e Cognome:

Matricola:

Classe 1	Classe 2
p-p	p-d

ſ	1	2	3	4	5	6	7	tot
	/10	/20	/12	/10	/17	/18	/13	/100

Spazio riservato alla correzione

1. 10 punti

Scrivere il comando Bash per gestire le seguenti situazioni:

Descrizione	Comando
visualizzare i nomi dei file presenti	
nella directory root	
richiamare l'ultimo comando dato che	
inizia per ls	
visualizzare la lista di tutti gli	
alias definiti	
ridirigere in un file di nome FF il contenuto	
di un file EE dopo averlo ordinato	
stampare i nomi di tutti i file presenti	
nella directory padre	!

Descrivere quale é l'effetto dei seguenti comandi Bash:

Comando	Descrizione
ls *[!0-9][0-9]	
!!	
PS2='\w'	
alias readtxt='cat *.txt'	
alias readtxt	
echo \$PATH:	

2. 20 punti Sia

```
ssize_t read9(void *buff, size_t nbytes);
```

una funzione che legge solo da files con file descriptor uguale a 9, cioé read9(buff, nbytes) si comporta in maniera identica a read(9, buff, nbytes).

Allo stesso modo sia

```
ssize_t write9(const void *buff, size_t nbytes);
```

una funzione che scrive solo su files con file descriptor uguale a 9, cioé write9(buff, nbytes) si comporta in maniera identica a write(9, buff, nbytes).

Sia FILE1 un file di testo presente nella cwd.

Scrivere un programma C che utilizzando esclusivamente system calls (tranne read e write) e le funzioni read9 e write9 faccia quanto segue:

- 1. (6 punti) crei un file di nome FILE2 in cui sia possibile scrivere solo alla fine e che abbia gli stessi permessi di FILE1;
- 2. (14 punti) legga gli ultimi 512 bytes di FILE1 e li scriva in FILE2.

,010	azi di vermea
3.	12 punti 1) Illustare con un disegno la struttura di un File System mettendo in evidenza la directory /home, che contiene: un solo file di nome pippo.txt;
	2) Mostrare sempre con un disegno che cosa accade nel File System se nella directory /home si creano due nuovi file: pluto.txt link simbolico a pippo.txt, e paperino.txt hard link a pippo.txt.
	3) Mostrare sempre con un disegno che cosa accade nel File System se cancelliamo il file $pluto.txt$.

4) Mostrare sempre con un disegno che cosa accade nel File System se cancelliamo il file

pippo.txt.

4. 10 punti

cat file

Si assuma di compilare ed eseguire i seguenti programmi:

```
a) int main(void) {
        char buf[]="Ho finito il main\n";
        printf("Ho iniziato il main\n");
        write(1,buf,10);
    Dire quale e' l'output nei due casi sottostanti, giustificando le risposte.
    a) a.out
    b) a.out > file
        cat file
b) int main(void) {
        char buf[]="Ho finito il main\n";
        printf("Ho iniziato il main\n");
        fflush(1);
        write(1,buf,10);
    }
    Dire quale e' l'output nei due casi sottostanti, giustificando le risposte.
    a) a.out
    b) a.out > file
```

5. 17 punti

Si consideri il seguente programma e si supponga di compilarlo.

```
#include<sys/types.h>
#include<fcntl.h>
#include<unistd.h>
#include"ourhdr.h"
int main(){
        if (access("prova.txt", R_OK)<0)</pre>
                        err_ret("access error per prova.txt");
        else printf("access OK\n");
        if (open("prova.txt", O_RDONLY)<0)</pre>
                         err_ret("open error per prova.txt");
        else printf("open OK\n");
        if (open("prova.txt", O_WRONLY)<0)</pre>
                        err_ret("open error per prova.txt");
        else printf("open OK\n");
        exit(0);
}
Se fosse
-r-xr-xr-x 1 rescigno 10932 Jun 4 10:45 a.out
-r---- 1 rescigno 1891 Jun 4 09:45 prova.txt
```

ed assumendo che il real user ID sia studente rispondere alle domande seguenti

- 1) puó studente mandare in esecuzione a.out?
- 2) che cosa succede dando a.out.
- 3) assumndo ora di settare a 1 il set-user-id di a.out, dire se ci sono cambiamenti dando a.out. In tutti i casi la risposta va giustificata.

6. 18 punti

Si dica, giustificando la risposta, che cosa accade quando si compila e si manda in esecuzione il seguente programma.

```
#include
             <stdio.h>
int main(void)
pidi_t
        pid1,pid2;
 int s;
        s=0;
        pid1=fork();
       if (pid1==0) { atexit(ex-1); s=s+1;
                      printf("user: %d\n",s);
                      return(0);
                    }
               { pid2=fork();
        else
                 if (pid2==0) { atexit(ex-1); s=s+2;
                                printf("user: %d\n",s);
                                 _exit(0);
                        }
                else {
                     atexit(ex-1); atexit(ex-2);
                     wait();
                     wait();
                     printf("user: %d\n",s);
                     exit(0);
               }
    }
static void ex-1(void)
     printf("student\n");
static void ex-2(void)
     printf("prof ");
```

7. 13 punti

Scrivere un programma C in cui:

 $\bullet\,$ un processo padre manda ad un processo figlio il segnale SIGALRM ed esce senza aspettare che il figlio termina;

ullet il processo figlio resta in attesa di un qualche segnale e cattura il segnale SIGALRM scrivendo sullo standard output il proprio pid.