Υπολογιστική Νοημοσύνη

Εργασία 1 Satellite 9

Ηλιάνα Κόγια (AEM: 10090) ilianakogia@ece.auth.gr

1 Σχεδίαση Γραμμικού ελεγκτή ΡΙ

σήμα αναφοράς της γωνίας προσανατολισμού ανήκει στο [0, 60] (μοίρες)

1.1 Tuning

Προδιαγραφές:

Χρόνος ανόδου < 1.2s και υπερύψωση < 10%

Επιλέχθηκαν τα κέρδη με τη βοήθεια του γεωμετρικού τόπου ριζών:

$$Ki = 2.2$$

$$Kp = 2$$

και αντίστοιχα το μηδενικό είναι: c=1.1

1.1. Tuning 3

2 Σχεδίαση Fuzzy PI ελεγκτή

2.1 Σχεδίαση Βάσης Κανόνων

είσοδοι: E, \dot{E}

έξοδος: \dot{U}

Περιγράφονται από 9 λεχτιχές τιμές όλες οι συναρτήσεις συμμετοχής με εύρος [-1,1]:

Βάση Κανόνων ασαφούς ελεγκτή με τους μετα-κανόνες σωστής λειτουργίας:

Ė	NV	NL	NM	NS	$\mathbf{z}\mathbf{R}$	PS	PM	PL	PV
PV	ZR	PS	PM	PL	PV	PV	PV	PV	PV
PL	NS	ZR	PS	PM	PL	PV	PV	PV	PV
\mathbf{PM}	NM	NS	ZR	PS	PM	PL	PV	PV	PV
PS	NL	NM	NS	ZR	PS	PM	PL	PV	PV
ZR	NV	NL	NM	NS	ZR	PS	PM	PL	PV
NS	NV	NV	NL	NM	NS	ZR	PS	PM	PL
NM	NV	NV	NV	NL	NM	NS	ZR	PS	PM
NL	NV	NV	NV	NV	NL	NM	NS	ZR	PS
NV	NV	NV	NV	NV	NV	NL	NM	NS	ZR

Με βάση τις λεχτιχές τιμές ZR της διαγωνίου συμπληρώθηχαν χαι οι υπόλοιπες τιμές του παραπάνω πίναχα. Ο συλλογισμός σε αυτό είναι ότι όταν το σφάλμα χαι η μεταβολή του σφάλματος είναι αντίθετα τότε το σύστημα τείνει στην χατάσταση ισορροπίας, που είναι χαι η επιθυμητή, χαι έτσι δεν μεταβάλλουμε το σήμα ελέγχου.

5 2.2. Σενάριο 1

Σενάριο 1 2.2

Υλοποίηση σε Simulink του διαχριτού ελεγχτή Fuzzy-PI

T = 0.01s

α) Για τις αρχικές τιμές χρησιμοποιώντας τα κέρδη του γραμμικού ελεγκτή:

$$Ke = 1$$

$$\alpha = K_p/K_i = 2/2.2 = 0.9$$

$$Kd = aKe = 0.9$$

$$K = \frac{\kappa p}{\alpha Ke} = 2/0.9 = 2.2$$

Kd = aKe = 0.9 $K = \frac{Kp}{\alpha Ke} = 2/0.9 = 2.2$ Η απόχριση του συστήματος για r = 60 είναι:

2.2. Σενάριο **1**

Παρατηρούμε παραπάνω ότι το σύστημα είναι πιο αργό και δεν επιτυγχάνονται οι προδιαγραφές (χρόνος ανόδου προκύπτει 2.042s > 1

Tuning:

Ke = 1

 $\alpha = 0.5$ (μειώθηκε)

Kd = aKe = 0.5

K = 6 (αυξήθηκε)

Παρατηρούμε παραχάτω ότι επιτυγχάνονται οι προδιαγραφές: χρόνος ανόδου = 0.75 s < 0.8 s και ποσοστό υπερύψωσης 1.5 % < 7

Όσο μειώνεται το a αυξάνεται η υπερύψωση ενώ όσο αυξάνεται το κέρδος K το σύστημα γίνεται πιο γρήγορο.

β)

 Δ ιέγερση e is PS and Δ e is PS

2.2. Σενάριο **1**

 Δ ιεγείρεται ένας κανόνας, διότι οι είσοδοι που δόθηκαν είναι στο κέντρο και προκύπτει αποτέλεσμα 0.5 δηλαδή (M) όπως ήταν αναμενόμενο.

2.3. Σενάριο **2**

γ) Τρισδιάστατη Επιφάνεια της εξόδου του ασαφούς ελεγκτή σε σχέση με τις εισόδους του:

 Δ ιαπιστώνουμε ότι η επιφάνεια κλιμακώνεται ομαλά στο χώρο και αυτό προκύπτει από την συγκεκριμένη επιλογή της βάσης κανόνων.

2.3 Σενάριο 2

Εξετάζουμε 2 διαφορετικά προφίλ σήματος αναφοράς και προκύπτουν οι παρακάτω αποκρίσεις:

2.3. Σενάριο **2**

Συμπεραίνουμε ότι το σύστημα αποκρύνεται καλύτερα στην δεύτερη είσοδο αναφοράς (ράμπα), ενώ στην πρώτη περίπτωση δυσκολεύεται να προσαρμοστεί στις απότομες αλλαγές.