Numerical Methods Runtime Table

Mohamed Emary Mohamed Abdelfattah Abdelfattah Zakaria

Shrouk Elsayed Dalia Abdallah Sara Reda

November 2, 2023

Contents

1	Equ	Equations						
	1.1	Our Equations						
	1.2	Equations From Paper						
2	Resi	ults						
	2.1	False Position						
	2.2	Bisection Method						
	2.3	Hybrid Method						
	2.4	Final Results						
		2.4.1 Iterations						
		2.4.2 CPU Time						
		2.4.3 Function Value						
L	ist o	of Figures						
	1	Iterations Comparison						
	2	CPU Time Comparison						
	3	Function Value Comparison						

1 Equations

We have used the same 25 equations with each method and run each method (Bisection, False Position, and Hybrid) 500 times for each problem and then we have calculated the average time. We have also calculated the number of iterations each method have taken for each problem.

We have also used the same tolerance for each method which is 10^{-14}

These are the equations that we have used with each method:

1.1 Our Equations

In these equations we have tried to use different types of functions and intervals to test our methods.

Equation No **Equation Code** Interval $f(x) = x^3 + 4x^2 - 10 = 0$ P1x**3 + 4*x**2 - 10[0, 4] $f(x) = x^2 - 4$ P2x**2 - 4 [0, 4] $f(x) = e^x - 2$ P3math.exp(x) - 2[0, 2] P4 $f(x) = \sin(x)$ math.sin(x) [2, 6] $f(x) = x^3 - 6x^2 + 11x - 6$ P5x**3 - 6*x**2 + 11*x - 6[1, 2.5] $f(x) = x^2 + 3x + 2$ P6x**2 + 3*x + 2[-2.5, -1.5]P7 $f(x) = \cos(x) - x$ [0, 1] math.cos(x) - x $f(x) = 2^x - 8$ P82**x - 8 [2,4]P9 $f(x) = \tan(x)$ [-1, 1]math.tan(x)f(x) =P10x**4 - 8*x**3 + 18*x**2 - 9*x + 1[2, 4] $x^{4} - 8x^{3} + 18x^{2} - 9x + 1$

Table 1: Our Equations Table

1.2 Equations From Paper

We got these equations from this paper and we have used the same intervals too.

No Equation Code

No	Equation	Equation Code	Interval	Reference
P11	$f(x) = x^2 - 3$	x**2 - 3	[1,2]	Harder [18]
P12	$f(x) = x^2 - 5$	x**2 - 5	[2,7]	Srivastava[9]
P13	$f(x) = x^2 - 10$	x**2 - 10	[3,4]	Harder [18]
P14	$f(x) = x^2 - x - 2$	x**2 - x - 2	[1,4]	Moazzam [10]
P15	$f(x) = x^2 + 2x - 7$	x**2 + 2*x - 7	[1,3]	Nayak[11]
P16	$f(x) = x^3 - 2$	x**3 - 2	[0,2]	Harder [18]
P17	$f(x) = xe^x - 7$	x * math.exp(x) - 7	[0,2]	Callhoun [19]
P18	$f(x) = x - \cos(x)$	x - math.cos(x)	[0,1]	Ehiwario [6]

Table 2: Equations From Paper Table

No	Equation	Equation Code	Interval	Reference
P19	$f(x) = x\sin(x) - 1$	x * math.sin(x) - 1	[0,2]	Mathews [20]
P20	$f(x) = x\cos(x) + 1$	x * math.cos(x) + 1	[-2,4]	Esfandiari [21]
P21	$f(x) = x^{10} - 1$	x**10 - 1	[0,1.3]	Chapra [17]
P22	$f(x) = x^2 + e^{x/2} - 5$	x**2 + (2.71828**(x/2)) - 5	[1,2]	Esfandiari [21]
P23	$f(x) = \sin(x)\sinh(x) + 1$	<pre>math.sin(x) * math.sinh(x) + 1</pre>	[3,4]	Esfandiari [21]
P24	$f(x) = e^x - 3x - 2$	(2.71828**x) - 3*x - 2	[2,3]	Hoffman [22]
P25	$f(x) = \sin(x) - x^2$	math.sin(x) - x**2	[0.5,1]	Chapra[17]

2 Results

These are the results we got with each method. We have run each method 500 times on each equation and took the average time to get the highest accuracy possible.

2.1 False Position

These are the results we got with False Position method:

Table 3: False Position Table

	Bisection Algorithm							
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound		
P1	80	0.000229008	1.3652300134140964	-7.11E-15	1.3652300134140964	4		
P2	33	4.399728775024414e-05	1.999999999999978	-8.88E-15	1.999999999999978	4		
P3	51	5.6000232696533204e-05	0.6931471805599422	-6.22E-15	0.6931471805599422	2		
P4	8	6.000041961669922e-06	3.141592653589793	1.2246467991473532e-16	3.141592653589793	3.1415926535899232		
P5	2	0	1	0	1	2.5		
P6	31	4.800844192504883e-05	-2	-5.33E-15	-2.5	-2		
P7	12	1.101541519165039e-05	0.7390851332151551	9.2148511043888e-15	0.7390851332151551	1		
P8	30	4.401159286499024e-05	2.999999999999987	-7.11E-15	2.999999999999987	4		
P9	2	1.991748809814453e-06	0	0	0	1		
P10	13	4.0007591247558594e-05	3.1117486563092474	0	3.1117486563092474	3.1117486563092482		
P11	14	1.7997264862060548e-05	1.732050807568876	-4.00E-15	1.732050807568876	2		
P12	50	6.600427627563476e-05	2.2360679774997876	-9.77E-15	2.2360679774997876	7		
P13	17	2.2464752197265626e-05	3.162277660168379	-1.78E-15	3.162277660168379	4		
P14	38	5.301380157470703e-05	1.999999999999971	-8.66E-15	1.999999999999971	4		
P15	21	3.1998634338378904e-05	1.8284271247461896	-2.66E-15	1.8284271247461896	3		
P16	41	5.600643157958984e-05	1.2599210498948719	-6.22E-15	1.2599210498948719	2		
P17	30	3.40123176574707e-05	1.5243452049841437	-7.99E-15	1.5243452049841437	2		
P18	12	1.2005805969238282e-05	0.7390851332151551	-9.21E-15	0.7390851332151551	1		
P19	7	7.99846649169922e-06	1.1141571408719306	8.881784197001252e-16	1.0997501702946164	1.1141571408719306		
P20	13	1.1332988739013672e-05	2.0739328090912146	7.771561172376096e-16	2.0739328090912146	2.5157197710146586		
P21	139	0.000183961	0.999999999999991	-8.88E-15	0.999999999999991	1.3		
P22	16	3.3281803131103514e-05	1.6490135532979475	-1.78E-15	1.6490135532979475	2		
P23	45	7.994651794433594e-05	3.2215883990939416	6.328271240363392e-15	3.2215883990939416	4		
P24	45	6.818151473999023e-05	2.1253934262332246	-9.77E-15	2.1253934262332246	3		
P25	17	2.703714370727539e-05	0.8767262153950554	7.882583474838611e-15	0.8767262153950554	1		

2.2 Bisection Method

These are the results we got with Bisection method:

Table 4: Bisection Table

	Bisection Algorithm							
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound		
P1	50	7.303380966186524e-05	1.3652300134140951	-2.84E-14	1.3652300134140916	1.3652300134140987		
P2	1	0	2	0	0	4		
P3	49	4.200363159179687e-05	0.6931471805599436	-3.33E-15	0.6931471805599401	0.6931471805599472		
P4	50	3.406333923339844e-05	3.141592653589793	1.2246467991473532e-16	3.1415926535897896	3.1415926535897967		
P5	48	7.496118545532227e-05	2.00000000000000018	0	1.999999999999964	2.0000000000000007		
P6	1	1.9011497497558594e-06	-2	0	-2.5	-1.5		
P7	48	3.201484680175781e-05	0.7390851332151591	2.55351295663786e-15	0.7390851332151556	0.7390851332151627		
P8	1	1.9893646240234374e-06	3	0	2	4		
P9	1	1.991748809814453e-06	0	0	-1	1		
P10	49	9.199857711791992e-05	3.111748656309249	1.0658141036401503e-14	3.1117486563092456	3.1117486563092527		
P11	48	4.000377655029297e-05	1.7320508075688785	4.440892098500626e-15	1.732050807568875	1.732050807568882		
P12	50	3.901958465576172e-05	2.2360679774997854	-1.95E-14	2.236067977499781	2.236067977		
P13	48	3.7988662719726566e-05	3.1622776601683817	1.5987211554602254e-14	3.162277660168378	3.1622776601683853		
P14	50	4.400014877319336e-05	1.999999999999991	-2.66E-15	1.999999999999964	2.00000000000000018		
P15	49	5.607509613037109e-05	1.828427124746188	-1.15E-14	1.8284271247461845	1.8284271247461916		
P16	49	3.8086414337158205e-05	1.2599210498948743	5.329070518200751e-15	1.2599210498948707	1.2599210498948779		
P17	49	3.905820846557617e-05	1.5243452049841473	3.375077994860476e-14	1.5243452049841437	1.5243452049841508		
P18	48	2.9998779296875e-05	0.7390851332151591	-2.55E-15	0.7390851332151556	0.7390851332151627		
P19	49	0.000136974	1.114157140871928	-3.00E-15	1.1141571408719244	1.1141571408719315		
P20	51	5.606412887573242e-05	2.0739328090912155	-1.33E-15	2.073932809091213	2.073932809091218		
P21	48	4.004716873168945e-05	1.0000000000000001	1.1102230246251565e-14	0.999999999999966	1.00000000000000058		
P22	44	5.988311767578125e-05	1.649013553297948	0	1.6490135532978911	1.6490135532980048		
P23	48	6.889772415161133e-05	3.2215883990939425	-5.55E-15	3.221588399093939	3.221588399093946		
P24	48	4.5994281768798825e-05	2.1253934262332272	5.329070518200751e-15	2.1253934262332237	2.125393426233231		
P25	47	6.799602508544923e-05	0.8767262153950632	-8.88E-16	0.8767262153950597	0.8767262153950668		

2.3 Hybrid Method

These are the results we got with hybrid method:

Table 5: Hybrid Table

	Bisection Algorithm						
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound	
P1	10	3.6006927490234375e-05	1.3652300134140964	-7.11E-15	1.365230013413779	1.3675001980274413	
P2	1	1.9969940185546874e-06	2	0	0	4	
P3	10	1.399993896484375e-05	0.6931471805599453	0	0.6931471805599334	0.695162706	
P4	6	1.006174087524414e-05	3.141592653589793	1.2246467991473532e-16	3.1415903579556947	3.141592653604888	
P5	1	3.940105438232422e-06	1	0	1	2.5	
P6	1	1.9888877868652345e-06	-2	0	-2.5	-1.5	
P7	8	1.1938095092773438e-05	0.7390851332151606	1.1102230246251565e-16	0.739085133	0.7422270732175922	
P8	1	2.0036697387695312e-06	3	0	2	4	
P9	1	2.0928382873535157e-06	0	0	-1	1	
P10	8	2.4066925048828126e-05	3.1117486563092474	0	3.1085379927858856	3.1117486563092536	
P11	8	1.7096519470214843e-05	1.7320508075688772	-4.44E-16	1.7320508075688001	1.7350578402209837	
P12	10	1.4061450958251953e-05	2.236067977499789	-3.55E-15	2.236067977499364	2.243929153983615	
P13	8	1.393747329711914e-05	3.1622776601683795	1.7763568394002505e-15	3.16227766	3.1672187190124017	

	Bisection Algorithm						
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound	
P14	2	2.0089149475097657e-06	2	0	1.5	2.5	
P15	5	8.056163787841797e-06	1.828427125	0	1.8284271247430004	1.8284271247493797	
P16	9	1.2000083923339844e-05	1.2599210498948723	-4.00E-15	1.259921049893984	1.2611286403176987	
P17	11	1.3935565948486329e-05	1.5243452049841444	0	1.5243452049841386	1.526033337108763	
P18	8	1.0064601898193359e-05	0.7390851332151606	-1.11E-16	0.739085133	0.7422270732175922	
P19	6	8.002758026123047e-06	1.1141571408719302	2.220446049250313e-16	1.1132427327642702	1.1141571408719768	
P20	10	1.5938282012939452e-05	2.073932809091215	-2.22E-16	2.0739328090911866	2.078935003337393	
P21	12	1.6058921813964842e-05	0.999999999999999	-1.11E-15	0.999999999999305	1.000343363282986	
P22	8	2.393531799316406e-05	1.6490135532979473	-3.55E-15	1.6490135532974015	1.6531560376633945	
P23	9	1.7997264862060548e-05	3.221588399093942	3.3306690738754696e-16	3.2215883990939242	3.2224168881395068	
P24	9	1.2019157409667969e-05	2.125393426233225	-7.11E-15	2.1253934262325003	2.1275213330097245	
P25	7	1.1998653411865234e-05	0.8767262153950581	4.773959005888173e-15	0.8767262153886713	0.8772684454348731	

As we see from the table above the hybrid method tend to be faster and take much less iterations than both Bisection and False Position methods.

2.4 Final Results

2.4.1 Iterations

Figure 1: Iterations Comparison

2.4.2 CPU Time

Figure 2: CPU Time Comparison

2.4.3 Function Value

Figure 3: Function Value Comparison