

Az előadás során megismerjük

- · az állapottényezők hatását;
- a törések alapvető fajtáit, mechanikai és fraktográfiai jellemzőit;
- a lineárisan rugalmas, illetve a képlékeny törésmechanika elméletét;
- a törésmechanikai tervezés koncepcióját.

Bevezetés

Törés: az anyagban folytonossági hiány jön létre, amitől darabokra eshet szét.

Törés folyamata:

- · Repedés keletkezése;
- Repedés terjedése és a törés létrejötte.

Képlékeny (szívós) **törés:** a törést megelőzően jelentős mértékű képlékeny alakváltozás lép fel.

Ridegtörés: hirtelen bekövetkező jelenség, minimális képlékeny alakváltozás előzi meg. A kis hőmérséklet, a bonyolult, húzó feszültségi állapot és a nagy terhelési sebesség elősegíti a ridegtörés fellépését.

Repedés mindig van az anyagban, legfeljebb nem tudjuk kimutatni.

Káresetek

- 2700 db Liberty típusú hegesztett hajó gyártása a második világháború során. 400 db-on törés jelentkezett, amelyből 90 komolynak számított. 10 hajó kettétörött.
- A hegesztett kötések rossz minőségű (félig-csillapított) acélból készültek, repedésszerű hibákat tartalmaztak (anyaghiba).
- A törések feszültséggyűjtő helyekből indultak ki (konstrukciós hiba).
- Az acélok szívóssága kicsi volt, az utólagos Charpy vizsgálat ezt mutatta.

Repedés keletkezése az üzemelés során

- · Időleges túlterhelés, illetve környezeti tényezők hatása
- Korróziós fáradás
- Feszültségkorrózió
- Hidrogén okozta elridegedés
- Hőmérséklet és mechanikai terhelés együttes hatása, kúszási repedés
- Hősokk okozta repedés.

Repedések kimutatása:

roncsolásmentes anyagvizsgálati módszerekkel.

Repedés keletkezése a gyártás során

Öntészet: pórusok, lunkerek, zárványok, melegrepedések keletkezhetnek a technológiai paraméterektől függően.

Melegalakítás: az alakváltozási képesség csökken, pl. szemcsehatármenti kiválásoknál.

Ausztenit szemcsehatár károsodása anizotrop szerkezet következtében.

Hidegalakítás: az alakváltozó képesség kimerülése miatt. Hidrogén hatására bekövetkező repedés, pelyhesedés.

Hőkezelés: edzési repedés.

Hegesztés: meleg- és hidegrepedés, relaxációs repedés. **Forgácsolás:** életlen szerszám vagy túl nagy terhelés

esetén.

A szerkezeti anyagaink tönkremenetelének két szélsőséges típusa a ridegtörés illetve a szívós (képlékeny) törés. A rideg illetve képlékeny viselkedést az adott anyagon végzett szakítóvizsgálat is jól szemlélteti

Szívós törés I.

Jelentős mértékű képlékeny alakváltozás a törés előtt.

A ridegtörés mechanikai sémája szakításnál

Állapottényezők

Az anyag szívós (képlékeny) vagy rideg viselkedése az anyagnak nem tulajdonsága, hanem állapota, és annak szerkezetén kívül az állapottényezők befolyásolják.

Feszültségi állapot

• σ

A többtengelyű húzófeszültségek a rideg állapot felé, a többtengelyű nyomófeszültségek a képlékeny állapot felé viszik el az anyag viselkedését.

Hőmérséklet

Növekvő hőmérséklet hatására az anyag képlékenyebben, csökkenő hőmérséklet esetén ridegebben viselkedik.

Igénybevétel sebessége

Nővekvő sebesség hatására az anyag ridegebben, csökkenő sebesség esetén képlékenyebben viselkedik.

1

Feszültségi állapot hatása

Névleges feszültség

$$\sigma_n = \frac{F}{\Lambda}$$

Maximális feszültség

$$\boldsymbol{\sigma}_{max} = \boldsymbol{\sigma}_n \cdot \boldsymbol{\alpha}_k$$

$$\alpha_{\mathbf{k}}\left(\mathbf{K}_{\mathbf{t}}\right)$$
 – formatényező

$$\alpha_{k} = \frac{\sigma_{max}}{\sigma}$$

Rugalmas megoldás

Az alakváltozási sebesség hatása Acél statikus és dinamikus szakítása Dinamikus szakítás $(\mathbf{v} = \mathbf{4.10}^4 \text{ mm/perc})$ $\dot{\varepsilon} = \frac{v}{l} \frac{1}{s}$ Statikus szakítás $(\mathbf{v} = \mathbf{1} \text{ mm/perc})$ $v_k = \int_0^{\varepsilon_m} \sqrt{\frac{d\sigma/d\varepsilon}{\rho}} d\varepsilon$ A sebesség növekedése kontrakció mentes szakadást eredményez (v_k)

A hőmérséklet és a bemetszés érzékenység együttes vizsgálata Charpy-féle ütvehajlító vizsgálat KV [J] -70 °C -20 °C Hőmérséklet

Töretfelületek vizsgálata

Ridegtörés: a törési energia új felületek képződésére fordítódik, a törés pedig:

I. Transzkrisztallin, vagy

II. Interkrisztallin lehet.

Szívós törés: a törési energia képlékeny alakváltozásra és új felületek képződésére fordítódik. Üregek keletkezése, növekedése és összenövése a jellemző.

23

Transzkrisztallin (hasadásos) törés

A repedés a szemcséken keresztül, meghatározott atomsíkokon terjed.

24

Interkrisztallin törés

A törés a szemcsék között, a szemcsehatárokon történik.

Szívós törés

A töretfelület gödrös, tompa fényű. A törést a csúsztatófeszültségek hatására bekövetkező elnyíródás okozza.

Üregek összenövése

Üregek képződése második fázis körül

Ridegtörés diszlokációs értelmezése

Repedés keletkezésének feltétele: képlékeny alakváltozás. Képlékeny alakváltozáskor megnő a diszlokációsűrűség, ami üregeket, repedéseket eredményez.

Repedésterjedés fajtái

Stabil repedésterjedés: állandó energiát fogyaszt, a repedés csúcsa előtt üregek keletkeznek, majd egyesülnek.

Instabil repedésterjedés: állandó energiafelszabadulás közben megy végbe nagy sebességgel, így makroszkopikusan ridegtörést okoz.

Fokozatos repedésterjedés: a stabil repedésterjedés hosszabb időtartamra kiterjedő változata, jellemző a fáradásos törés, a kúszás és a feszültségkorrózió okozta törés esetében.

29

Törésmechanikai elméletek σ 2a 2W2Wb) d) a) c) a) Lineáris rugalmas alakváltozásb) Kis területre korlátozódó c) Rugalmas-képlékeny alakváltozás d) Képlékeny alakváltozás képlékeny alakváltozás az egész testben

A törés energetikai modellje 1.) $\sigma_{trit} = \sqrt{\frac{2E\gamma_k}{\pi a}}$, E – rugalmassági modulusz, γ_k – fajlagos rugalmas felületi energia I – t repedés t hossz 2.) $\sigma_{trit} = \sqrt{\frac{2E\gamma_k}{\pi a(1-v^2)}}$, v – Poisson tényező, Griffith elmélet t 3.) $\sigma_{trit} = \sqrt{\frac{2E\gamma_p(1+\gamma_k/\gamma_p)}{\pi a}}$, γ_p – fajlagos képlékeny felületi energia $\gamma_k << \gamma_p$, Oroma elmélet 4.) $\sigma_{trit} = \sqrt{\frac{2E\gamma_p}{\pi a}}$ 1. Rugalmas test, sík feszültségi állapot, 2. Rugalmas test sík alakváltozási állapot, 3. - 4. Rugalmas-képlékeny test sík feszültségi állapot

Feszültségintenzitási elmélet Egy általános alakú test belsejében lévő repedés csúcsánál kialakuló feszültségmező $\sigma_{ij} = \frac{1}{\sqrt{2\pi r}} \Big(K_I f_{ij}^I + K_{II} f_{ij}^{II} + K_{III} f_{ij}^{III} \Big)$ ahol K_P K_{II} , K_{III} – feszültségintenzitási tényezők a különböző terhelési módoknál, $f_{ij}^I, f_{ij}^{II}, f_{ij}^{III}$ – dimenziónélküli függvények. I. terhési módra σ_{yy}

$$\sigma_{xx} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3}{2} \theta \right)$$

$$\sigma_{yy} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3}{2} \theta \right)$$

$$\sigma_{xy} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \sin \frac{3}{2} \theta$$

Síkbeli feszültségi állapotban

Síkbeli alakváltozási állapotban $\sigma_z = v(\sigma_x + \sigma_y)$

Instabil repedésterjedéskor $K_I = K_c$. Ha ez a repedésterjedés síkbeli alakváltozási állapotban lép fel, akkor $K_I = K_{Ic}$, amely anyagjellemző (törési szivósság).

Feszültségintenzitási tényező

$$K_I = \sigma \sqrt{\pi a} \sqrt{\sec \frac{\pi a}{2W}} \left(1 - 0.025 \left(\frac{a}{W} \right)^2 + 0.06 \left(\frac{a}{W} \right)^4 \right)$$

 $W \to \infty, \ K_I = \sigma \sqrt{\pi a}$

Képlékeny zóna meghatározása

$$\sigma_{1} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \right)$$

$$\sigma_{2} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \right)$$

$$\sigma_{2} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \right)$$

$$\sigma_{3} = 0, \text{ sik feszültség}$$

$$\sigma_{3} = v \left(\sigma_{1} + \sigma_{3} \right), \text{sik alakváltozás}$$

$$\sigma_3 = 0$$
, sík feszültség

$$\sigma_3 = v(\sigma_1 + \sigma_3)$$
, sík alakváltozás

$$\sigma_{eq} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2}$$

$$r_{p}(\theta) = \frac{1}{4\pi} \left(\frac{K_{I}}{R_{e}}\right)^{2} \left[1 + \cos\theta + \frac{3}{2}\sin^{2}\theta\right] - \text{sik feszültségi állapot}$$

$$r_{_{p}}\left(\theta\right) = \frac{1}{4\pi} \left(\frac{K_{_{I}}}{R_{_{e}}}\right)^{2} \left[\left(1 - 2\nu\right)^{2}\left(1 + \cos\theta\right) + \frac{3}{2}\sin^{2}\theta\right] - \text{sík alakváltozási állapot}$$

Kis képlékeny tartományú LRTM

A képlékeny zóna síkbeli feszültségállapot esetén:

$$r_p = \frac{1}{2\pi} \left(\frac{K_I}{R_e} \right)^2$$

Síkbeli alakváltozási állapot esetén:

$$r_p = \frac{1}{6\pi} \left(\frac{K_I}{R_e} \right)^2$$

A módosított repedéshosszal számolva a rugalmas anyagra vonatkozó törési elmélet alkalmazható:

$$a_{\rm egyen\acute{e}rt\acute{e}k\~u}=a+r_p$$

Képlékeny zóna változása a próbatest vastagsága mentén

Feszültségintenzitási tényező korrekciója

$$K_I = Y\sigma\sqrt{\pi a}, \ r_p = \frac{1}{6\pi} \left(\frac{K_I}{R_e}\right)^2$$

$$K_{I} = Y\sigma\sqrt{\pi\left(a+r_{p}\right)},$$

$$K_I^2 = Y^2 \sigma^2 \pi \left(a + \frac{1}{6\pi} \left(\frac{K_I}{R_e} \right)^2 \right) \rightarrow$$

$$K_{I} = Y\sigma\sqrt{\pi a}\sqrt{\frac{1}{1 - \frac{Y^{2}}{6}\left(\frac{\sigma}{R_{e}}\right)^{2}}}$$

Törésmechanikai ellenőrzés

Adott geometriájú és terhelésű tartály falában roncsolás mentes vizsgálattal megállapították hogy 2ax2b méretű elliptikus repedés van. A mértékadó feszültség:

 $\sigma = \frac{pr}{2t}$

Szilárdsági számítással meghatározható a repedés csúcsánál a feszültség intenzitási tényező.

 $K_I = Y \sigma \sqrt{\pi a} \le K_{Ic} \rightarrow a$ szerkezet működőképes

Fogalmak

- · Törés fogalma
- Ridegtörés
- Szívóstörés
- Repedések a gyártás során Repedések a szerkezet üzemelése során
- Állapottényezők
- Ridegtörési felületek mikroszkópi jellemzői
- Szívóstörési felületek mikroszkópi jellemzői
- Ridegtörés diszlokációs elmélete
- Stabil repedésterjedés

- · Instabil repedésterjedés
- Fokozatos repedésterjedés
- Terhelési esetek
- Feszültség intenzitási
- A K_c falvastagság függése
- Törési szívósság
- Képlékeny zóna
- Törésmechanikai méretezés alapegyenlete
- Kritikus hőmérsékletek

A tananyag részletesen megtalálható

William D. Callister, Jr. Materials Science and Engineering An Introduction, 7th edition, 2006

Chapter 8 Failure 207-226 pp.