

【总结】图像语义分割之FCN和CRF

首发于 **智能单元**

三 写文章

登录

知

(呕血制作啊!)前几天刚好做了个图像语义分割的汇报,把最近看的论文和一些想法讲了一下。所以今天就把它总结成文章啦,方便大家一起讨论讨论。本文只是展示了一些比较经典和自己觉得比较不错的结构,毕竟这方面还是有挺多的结构方法了。

介绍

图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分类

从图像上来看,就是我们需要将实际的场景图分割成下面的分割图:

知

三写文章

不同颜色代表不同类别。 经过我阅读"大量"论文(羞涩)和查看PASCAL VOC Challenge performance evaluation server, 我发现图像语义分割从深度学习引入这个任务(FCN)到现在而言,一个通用的框架已经大概确定了。即:

- FCN-全卷积网络
- CRF-条件随机场
- MRF-马尔科夫随机场

前端使用FCN进行特征粗提取,后端使用CRF/MRF优化前端的输出,最后得到分割图。

接下来,我会从前端和后端两部分进行总结。

44411

为什么需要FCN?

我们分类使用的网络通常会在最后连接几层全连接层,它会将原来二维的矩阵(图片)压扁成一维的,从而丢失了空间信息,最后训练输出一个标量,这就是我们的分类标签。

而图像语义分割的输出需要是个分割图,且不论尺寸大小,但是至少是二维的。所以,我们需要丢弃全连接层,换上全卷积层,而这就是全卷积网络了。具体定义请参看论文:Fully Convolutional Networks for Semantic Segmentation

前端结构

FCN

此处的FCN特指Fully Convolutional Networks for Semantic Segmentation论文中提出的结构,而非广义的全卷积网络。

作者的FCN主要使用了三种技术:

- 卷积化 (Convolutional)
- 上采样 (Upsample)
- 跳跃结构 (Skip Layer)

卷积化

三写文章

上采样

此处的上采样即是反卷积(Deconvolution)。当然关于这个名字不同框架不同,Caffe和Kera 里叫Deconvolution,而tensorflow里叫conv_transpose。CS231n这门课中说,叫 conv_transpose更为合适。

众所诸知,普通的池化(为什么这儿是普通的池化请看后文)会缩小图片的尺寸,比如 VGG16 五次池化后图片被缩小了32倍。为了得到和原图等大的分割图,我们需要上采样/反卷 积。

知

三写文章

反卷积和卷积类似,都是相乘相加的运算。只不过后者是多对一,前者是一对多。而反卷积的前向和后向传播,只用颠倒卷积的前后向传播即可。所以无论优化还是后向传播算法都是没有问题。图解如下:

但是,虽然文中说是可学习的反卷积,但是作者实际代码并没有让它学习,可能正是因为这个一对多的逻辑关系。代码如下:

```
layer {
name: "upscore"
type: "Deconvolution"
bottom: "score_fr"
top: "upscore"
param {
   lr_mult: 0
}
convolution_param {
   num_output: 21
   bias_term: false
   kernel_size: 64
```


三 写文章

```
}
```

可以看到Ir_mult被设置为了0.

跳跃结构

(这个奇怪的名字是我翻译的,好像一般叫忽略连接结构)这个结构的作用就在于优化结果,因为如果将全卷积之后的结果直接上采样得到的结果是很粗糙的,所以作者将不同池化层的结果进行上采样之后来优化输出。具体结构如下:

知

三 写文章

而不同上采样结构得到的结果对比如下:

三 写文章

当然,你也可以将pool1 ,pool2的输出再上采样输出。不过,作者说了这样得到的结果提升并不大。

这是第一种结构,也是深度学习应用于图像语义分割的开山之作,所以得了CVPR2015的最佳 论文。但是,还是有一些处理比较粗糙的地方,具体和后面对比就知道了。

SegNet/DeconvNet

这样的结构总结在这儿,只是我觉得结构上比较优雅,它得到的结果不一定比上一种好。

SegNet

三 写文章

DeconvNet

这样的对称结构有种自编码器的感觉在里面,先编码再解码。这样的结构主要使用了反卷积和 上池化。即:

首发于 **智能单元**

三 写文章

反卷积如上。而上池化的实现主要在于池化时记住输出值的位置,在上池化时再将这个值填回原来的位置,其他位置填0即OK。

DeepLab

接下来介绍一个很成熟优雅的结构,以至于现在的很多改进是基于这个网络结构的进行的。

首先这里我们将指出一个第一个结构FCN的粗糙之处:为了保证之后输出的尺寸不至于太小, FCN的作者在第一层直接对原图加了100的padding,可想而知,这会引入噪声。

而怎样才能保证输出的尺寸不会太小而又不会产生加100 padding这样的做法呢?可能有人会说减少池化层不就行了,这样理论上是可以的,但是这样直接就改变了原先可用的结构了,而

DRITHLE FREEZONDIA FILLENTA AND A FILLENT A

三写文章

非常优雅的做法:将pooling的stride改为1,再加上1padding。这样池化后的图片尺寸并未减 小,并且依然保留了池化整合特征的特性。

但是,事情还没完。因为池化层变了,后面的卷积的感受野也对应的改变了,这样也不能进行 fine-tune了。所以, Deeplab提出了一种新的卷积, 带孔的卷积: Atrous Convolution.即:

(b) Dense feature extraction

而具体的感受野变化如下:

a为普通的池化的结果,b为"优雅"池化的结果。我们设想在a上进行卷积核尺寸为3的普通卷积,则对应的感受野大小为7.而在b上进行同样的操作,对应的感受野变为了5.感受野减小了。但是如果使用hole为1的Atrous Convolution则感受野依然为7.

所以, Atrous Convolution能够保证这样的池化后的感受野不变, 从而可以fine tune, 同时也能保证输出的结果更加精细。即:

知

三写文章

总结

这里介绍了三种结构:FCN, SegNet/DeconvNet, DeepLab。当然还有一些其他的结构方法, 比如有用RNN来做的, 还有更有实际意义的weakly-supervised方法等等。

后端

终于到后端了,后端这里会讲几个场,涉及到一些数学的东西。我的理解也不是特别深刻,所以欢迎吐槽。

全连接条件随机场(DenseCRF)

首发于 **智能单元**

三 写文章

对于每个像素 i 具有类别标签 x_i 还有对应的观测值 y_i ,这样每个像素点作为节点,像素与像素间的关系作为边,即构成了一个条件随机场。而且我们通过观测变量 y_i 来推测像素 i 对应的类别标签 x_i 。条件随机场如下:

条件随机场符合吉布斯分布: (此处的x即上面说的观测值)

$$P(\mathbf{X} = \mathbf{x}|\mathbf{I}) = \frac{1}{Z(\mathbf{I})} \exp(-E(\mathbf{x}|\mathbf{I}))$$

其中的 $E(\mathbf{x}|\mathbf{I})$ 是能量函数,为了简便,以下省略全局观测 \mathbf{I} :

$$E(\mathbf{x}) = \sum_i \Psi_u(x_i) + \sum_{i < j} \Psi_p(x_i, x_j)$$

其中的一元势函数 $\sum_i \Psi_u(x_i)$ 即来自于前端FCN的输出。而二元势函数如下:

知

三写文章

二元势函数就是描述像素点与像素点之间的关系,鼓励相似像素分配相同的标签,而相差较大的像素分配不同标签,而这个"距离"的定义与颜色值和实际相对距离有关。所以这样CRF能够使图片尽量在边界处分割。

而全连接条件随机场的不同就在于,二元势函数描述的是每一个像素与其他所有像素的关系, 所以叫"全连接"。

关于这一堆公式大家随意理解一下吧……而直接计算这些公式是比较麻烦的(我想也麻烦), 所以一般会使用平均场近似方法进行计算。而平均场近似又是一堆公式,这里我就不给出了 (我想大家也不太愿意看),愿意了解的同学直接看论文吧。

CRFasRNN

最开始使用DenseCRF是直接加在FCN的输出后面,可想这样是比较粗糙的。而且在深度学习中,我们都追求end-to-end的系统,所以CRFasRNN这篇文章将DenseCRF真正结合进了FCN中。

这篇文章也使用了平均场近似的方法,因为分解的每一步都是一些相乘相加的计算,和普通的加减(具体公式还是看论文吧),所以可以方便的把每一步描述成一层类似卷积的计算。这样即可结合进神经网络中,并且前后向传播也不存在问题。

当然,这里作者还将它进行了迭代,不同次数的迭代得到的结果优化程度也不同(一般取10以内的迭代次数),所以文章才说是as RNN。优化结果如下:

知

三 写文章

马尔科夫随机场(MRF)

在Deep Parsing Network中使用的是MRF,它的公式具体的定义和CRF类似,只不过作者对二元势函数进行了修改:

$$\Psi(y_i^u, y_i^v) = \sum_{k=1}^K \lambda_k u_k(i, u, j, v) \sum_{orall z \in N_j} d(j, z) p_z^v$$

其中,作者加入的 λ_k 为label context,因为 u_k 只是定义了两个像素同时出现的频率,而 λ_k 可以对一些情况进行惩罚,比如,人可能在桌子旁边,但是在桌子下面的可能性就更小一些。所以这个量可以学习不同情况出现的概率。而原来的距离 d(i,j) 只定义了两个像素间的关系,作者在这儿加入了个triple penalty,即还引入了 j 附近的 z,这样描述三方关系便于得到更充足

首发于 **智能单元**

三写文章

这个结构的**优点**在于:

- 将平均场构造成了CNN
- 联合训练并且可以one-pass inference,而不用迭代

高斯条件随机场(G-CRF)

这个结构使用CNN分别来学习一元势函数和二元势函数。这样的结构是我们更喜欢的:

知

三 写文章

而此中的能量函数又不同于之前:

$$E(\mathbf{x}) = rac{1}{2}\mathbf{x}^T(\mathbf{A} + \lambda \mathbf{I})\mathbf{x} - \mathbf{B}\mathbf{x}$$

而当 $(\mathbf{A} + \lambda \mathbf{I})$ 是对称正定时,求 $E(\mathbf{x})$ 的最小值等于求解:

$$(\mathbf{A} + \lambda \mathbf{I})\mathbf{x} = \mathbf{B}$$

而G-CRF的优点在于:

• 二次能量有明确全局

47 / IV tot ## /= /0 4

首发于

智能单元

三 写文章

感悟

- FCN更像一种技巧。随着基本网络(如VGG, ResNet)性能的提升而不断进步。
- 深度学习+概率图模型(PGM)是一种趋势。其实DL说白了就是进行特征提取,而PGM 能够从数学理论很好的解释事物本质间的联系。
- 概率图模型的网络化。因为PGM通常不太方便加入DL的模型中,将PGM网络化后能够 是PGM参数自学习,同时构成end-to-end的系统。

完结撒花

引用

- [1]Fully Convolutional Networks for Semantic Segmentation
- [2]Learning Deconvolution Network for Semantic Segmentation
- [3] Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
- [4] Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
- [5] Conditional Random Fields as Recurrent Neural Networks
- [6]DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

知

[8]Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussi an CRFs

[9]SegNet

转载须全文转载且注明作者和原文链接,否则保留维权权利

「真诚赞赏,手留余香」

赞赏

2人赞赏

深度学习(Deep Learning)

Caffe (深度学习框架)

semantic segmentation

文章被以下专栏收录

智能单元 聚焦通用人工智能

进入专栏

Semantic Segmentation Paper Reading

紧随图像语义分割的进展

进入专栏

86 条评论

写下你的评论...

御宅暴君

文章的引用太乱,我重新整理成保持与文章小章节顺序一致,且所有超链接尽可能指向当前最新的 arxiv 且被格式化完整的 paper title. FCN:

[1605.06211] Fully Convolutional Networks for Semantic Segmentation SegNet:

A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation DeconvNet:

[1505.04366] Learning Deconvolution Network for Semantic Segmentation DeepLab:

知

三写文章

全连接条件随机场(DenseCRF):

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials CRFasRNN:

[1502.03240] Conditional Random Fields as Recurrent Neural Networks 马尔科夫随机场(MRF):

[1509.02634] Semantic Image Segmentation via Deep Parsing Network 高斯条件随机场(G-CRF):

[1603.08358] Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation

with Deep Gaussian CRFs

9 个月前 12 赞

以上为精选评论

Xenophon Tony

好棒~谢谢作者~~

1年前

ycszen(作者) 回复 Xenophon Tony

② 查看对话

有用就好~

1年前

ICOZ

非常感谢 ,请问您写过关于cnn的文章吗 或者推荐的文章

ycszen(作者)回复 ICOZ

② 查看对话

就是普通的CNN吗?这个可以看看三巨头合出的nature的论文:Deep Learning

柴云

好棒~~

1年前

Jianping Shi

总结的不错,有兴趣来商汤实习么?会有非常多实际中需要用segmentation解决的问题,也会有不少适合research的topic 有兴趣可以私聊⊜

1年前

crackhopper

BTW, 概率图应该是PGM。probablistic graph model,如果我没记错。

1年前

ycszen(作者) 回复 crackhopper

② 查看对话

呃.....对。我的失误

1年前

我找时间翻译到julia语言里…… 1年前

1 2 3 4 ... 9 下一页

推荐阅读

财务尽调过程中如何"防雷"

作者: 刘嘟-VC2017年8月12日星期六由于IPO审核进程加快,不少公司准备加快冲击IPO的进程,如... 查看全文 >

投行小兵 · 13 天前 · 编辑精选 · 发表于 小兵研究精华

被告存在"不适格"吗?

*本文经授权发布,谢绝无授权转载*在一些诉讼案件中,常常会听到被告答辩主张不是"适格被告... 查看全文 >

建纬(北京)律师事务所 · 6 天前 · 编辑精选

首发于 **智能单元**

三写文章

这两年,我关注了很多关于保险的微信公众号,个人感觉在众多保险理念和保险知识科普文章之外... 查看全文 >

sky·12 天前·编辑精选

这锅红烧牛腩是我不外传的撩男大杀器

我的文章都 先在公众号发布的,拒绝任何没有告知过我的抄袭和转载。公共号:食色信也。很不... 查看全文 >

村姑信 · 5 个月前 · 编辑精选 · 发表于 食色信也