Московский физико-технический институт (государственный университет)

ДЕПАРТАМЕНТ МОЛЕКУЛЯРНОЙ И БИОЛОГИЧЕСКОЙ ФИЗИКИ

Лабораторная работа

Электрокапиллярные явления. Свойства электродов

Авторы: Светлана ФРОЛОВА 6113 группа Анатолий КИСЕЛЁВ 6113 группа

г. Долгопрудный 2018 г.

1 Цели работы

- 1. Определение зависимости поверхностного натяжения на границе ртуть-раствор электролита от электрического потенциала;
- 2. Определение потенциала нулевого заряда и емкости двойного электрического слоя на поверхности ртутного электрода в растворе;
- 3. Исследование влияния природы электролита на потенциал нулевого заряда;
- 4. Получение хлорсеребряного электрода;
- 5. Исследование поляризуемости различных электродов. Выявление электродных процессов, ограниченных стадией массопереноса и стадией переноса заряда.

2 Теоретическая часть

Суть электрокапиллярных явлений заключается в изменении межфазного натяжения на поверхности раздела в результате ее заряжения. При постоянном составе электролита зависимость натяжения σ от разности потенциалов E определяется уравнением Липпмана:

$$q = -\left(\frac{d\sigma}{dE}\right)_{\mu_i} \tag{1}$$

Очевидно, что максимальное натяжение соответствует потенциалу, при котором поверхность электрода не заряжена, так называемому потенциалу нулевого заряда.

Если на поверхность ртути или другого металла нанести каплю органической жидкости, нерастворимой в воде, то на трехфазной границе устанавливается равновесие сил поверхностного натяжения в соответствии с уравнением Юнга:

$$\sigma_{31} = \sigma_{32} + \sigma_{12} \cdot \cos \theta \tag{2}$$

Это и позволяет исследовать изменение поверхностного натяжения на границе раздела ртутный электрод-раствор электролита в зависимости от потенциала электрода с помощью измерения краевого угла смачивания органической жидкости θ (декана).

Поляризуемые и неполяризуемые границы раздела фаз

Цели исследовании электродных процессов в электрохимии могут быть направлены на измерение как заряда, так и протекающего тока. Различия наглядно объясняются с помощью эквивалентнойй схемы Эршлера-Релндса

Она включает в себя три элемента: параллельно соединенные емкость двойного электрического слоя $C_{\rm д.c.}$ и сопротивление фарадеевской реакции Θ , последовательно к которым подключено омическое сопротивление в объеме раствора $R_{\rm p}$. Величина фарадеевского сопротивления Θ обусловлена тем, что для протекания любого электрохимического процесса на электроде существует определенный энергетический барьер, подобный энергии активации для химических реакций. Для протекания заметного электрического тока и преодоления этого барьера необходимо прикладывать к электроду определенную величину так называемого перенапряжения. Если реакция идет трудно, величина сопротивления Θ велика и при незначительных приложенных напряжениях электрод ведет себя как конденсатор. Все приложенное напряжение идет на заряжение емкости двойного электрического слоя. В

этом идеальном случае эквивалентная электрическая схема электрода представляет собой конденсатор $C_{\rm д.c.}$ последовательно соединенный с резистором. Именно на таких, идеально поляризуемых, электродах принято изучать электрокапиллярные явления, описываемые уравнением Липпмана.

Другой крайний случай — электроды с очень низким сопротивлением реакции разряда Θ . Они находятся в равновесии с продуктами электрохимической реакции и зарядить их поверхность с помощью внешних источников напряжения практически невозможно. В ответ на такую попытку возникает электрический ток, сбрасывающий «лишний» заряд. Такие, идеально неполяризуемые, электроды можно описать одним сопротивлением раствора $R_{\rm p}$. Типичными представителями таких электродов, обладающих высокой плотностью тока обмена, являются все электроды сравнения. Их потенциал изменить с помощью внешнего напряжения практически невозможно.

3 Обработка результатов

3.1 Электроды

По измеренным данным (таблица 1) вычислим σ_{31} :

Таблица 1

V, м B	d, пиксели	h, пиксели	$\cos \alpha$	σ_{31} ,м $H/$ м
200	1261,051	366,488745	0,494943	400,2421
100	1240,404	391,369391	0,430405	396,9506
0	1257,955	361,864616	0,502635	400,6344
-100	1285,172	363,309785	0,515539	401,2925
-200	1377,192	307,470324	0,667531	409,0441
-300	1479,684	267,226496	0,76919	414,2287
-400	1523,607	255,237145	0,79815	415,7057
-500	1521,316	255,158774	0,797715	415,6835
-600	1452,697	255,237145	0,780183	414,7893
-700	1483,683	277,218326	0,754934	413,5016
-800	1431,294	287,294274	0,722416	411,8432
-900	1379,192	311,04019	0,661898	408,7568
-1000	1287,206	351,115366	0,541282	402,6054
-1100	1261,032	365,034245	0,497928	400,3943
-1200	1141,127	451,134126	0,230634	386,7624

По формуле (2) найдем σ и построим график $\sigma(E)$.

Рис. 1

По графику определим п.н.з $= -500 \, \text{мB}$.

Из уравнения Липмана (1) и второй производной $\frac{d^2\sigma}{dE^2}$ находим емкость двойного электрического слоя:

$$C_{\rm g.c.} = 0.3 \cdot 10^{-3} \frac{\Phi}{{}_{
m M}^2}$$

Толщина двойного электрического слоя равна:

$$d = 5.9 \cdot 10^{-8}$$
 HM

3.2 Электрокапиллярность

Получение и проверка работы хлорсеребряных электродов

Рис. 2

Рис. 3

Определение диффузионного потенциала

U_{HCl}	=	$\lambda_{\rm K} = 73.5$	I	$U_{\rm диф}$
$U_{\rm KCl}$	=	$\lambda_{\text{Cl}} = 76,35$	0,1	-0,00112
ΔU	=	$\lambda_{\rm H} = 349.8$	1	0,037934

Циклическая вольт-амперометрия

Рис. 4

Рис. 5

Рис. 6

Рис. 7

Рис. 8

Поляризуемые и неполяризуемые электроды, стационарные кривые поляризации для Ox-Red электрода

Рис. 9

Коррозия

Рис. 10

4 Вывод

Мы определили зависимость поверхностного натяжения на границе ртуть-раствор электролита от электрического потенциала, нашли потенциал нулевого заряда и емкость двойного электрического слоя на поверхности ртутного электрода в растворе. Также исследовали влияние природы электролита на потенциал нулевого заряда, получили хлорсеребряный электрод и исследовали поляризуемости различных электродов.