https://colab.research.google.com/github/ageron/handson-ml3/blob/main/math_differential_calculus.ipynb#scrollTo=Vev7qaj1ZLBB

Differential Calculus:

As you probably know, the slope of a (non-vertical) straight line can be calculated by taking any two points A and B on the line, and computing the "rise over run":

$$slope = rise / run = \Delta y / \Delta x = (y_B - y_A) / (x_B - x_A)$$

In this example, the rise is 3, and the run is 6, so the slope is 3/6 = 0.5.

Defining the slope of a curve

But what if you want to know the slope of something other than a straight line? For example, let's consider the curve defined by y = f(x) = x2:

Differentiation rules

One very important rule is that **the derivative of a sum is the sum of the derivatives**. More precisely, if we define f(x)=g(x)+h(x), then f'(x)=g'(x)+h'(x). This is quite easy to prove:

Similarly, it is possible to show the following important rules (I've included the proofs at the end of this notebook, in case you're curious):

	Function f	Derivative f
Constant	f(x)=c	f(x)=0
Sum	f(x)=g(x)+h(x)	f'(x)=g'(x)+h'(x)
Product	f(x)=g(x)h(x)	f'(x)=g(x)h'(x)+g'(x)h(x)

	Function f	Derivative f
Quotient	f(x)=g(x)h(x)	$f(x)=g'(x)h(x)-g(x)h'(x)h_2(x)$
Power	$f(x)=xr$ with $r\neq 0$	$f(x)=rx_{r-1}$
Exponentia	$If(x) = \exp(x)$	$f(x) = \exp(x)$
Logarithm	$f(x)=\ln(x)$	f(x)=1x
Sin	$f(x)=\sin(x)$	$f(x) = \cos(x)$
Cos	$f(x) = \cos(x)$	$f(x) = -\sin(x)$
Tan	$f(x)=\tan(x)$	$f(x)=1\cos_2(x)$
Chain Rule	f(x)=g(h(x))	f'(x)=g'(h(x))h'(x)