Notes - 22 April

HW 6 - question 2 does have a limiting distribution.

(Recall we are talking about birth processes.)

Definition 4.2.1 - N(t) (continuous-time birth process). Assume: (a) $N(0) \ge 0$, (b) $s < t \Rightarrow N(s) \le N(t)$, (c) $P(N(t+h) = n + m | N(t) = m) = \{\lambda_n h + O(h) \text{ for } m = 1, O(h) \text{ for } m > 1, 1 - \lambda_n h + O(h) \text{ for } m = 0, 1, 1 - \lambda_n h + O($ (d) If s < t then (conditional on the value of N(s), the increment N(t) - N(s) is independent of the times of arrivals prior to s.

Transition probabilities: $P_{ij}(t) = P(N(t) = j|N(0) = i) = P(N(s+t) = j|N(s) = i), s \le t.$

Forward System - Assume $\lambda_{-1} = 0$, $P_{ij}(0) = \delta_{ij}$, then (4.2.1) $P'_{ij}(t) = \lambda_{j-1}P_{ij-1}(t) - \lambda_j P_{ij}(t)$. Backward System - (4.2.2) $P'_{ij}(t) = \lambda_i$, $P_{i+1j}(t) - \lambda_i P_{ij}(t)$, $j \ge i$. (Yes, that is P_{i+1j} . I asked in class and verified it. I don't understand why...)

Theorem 4.2.3 - The forward system has a unique solution that also satisfies the backward system. Proof: First note that (4.2.3) $P_{ij}(t) = 0$ if j < i. We solve the forward problem with j = i, so $P'_{ii}(t) = 0$ $\lambda_{i-1}P_{ii-1}(t) - \lambda_i P_{ii}(t)$ (first term after equals goes to zero), so (4.2.4) $P_{ii}(t) = e^{-\lambda_i t}$. We substitute into the forward equation with j = i + 1 to find that $P_{ii+1}(t)$ exists (using standard ODE theory). By induction, we conclude the solution of the forward system exists and is unique. We use the Laplace transform: $\widehat{P}_{ij}(\theta) =$ $\int_0^\infty e^{-\theta t} P_{ij}(t) dt, P_{ij}(t) \widehat{\rightarrow} = \widehat{P_{ij}}(\theta).$ This transforsm derivatives with respect to t to products in the θ variable domain. If we transform both sides of the forward equation, we get $(\theta + \lambda_j)\widehat{P_{ij}}(\theta) = \delta_{ij} + \lambda_{j-1}\widehat{P_{ij-1}}(\theta)$. This difference equation can be solved: (4.2.5) $\widehat{P_{ij}}(\theta) = \frac{1}{\lambda_j} \frac{\lambda_i}{\theta + \lambda_i} \frac{\lambda_{i+1}}{\theta + \lambda_{i+1}} \dots \frac{\lambda_j}{\theta + \lambda_j}, j \geq i$. Using the inverse Laplace transform gives $P_{ij}(t)$.

To show the claim about the backward equations, we also take the Laplace transform in the same way but now with the backward equation to find that any solution (call it Π —it may be P, may not be) with $\widehat{\Pi_{ij}}(\theta) = \int_0^\infty e^{-\theta t} \Pi_{ij}(t) dt$ satisfies $(\theta + \lambda_j) \widehat{\Pi_{ij}}(\theta) = \delta_{ij} + \lambda_i \widehat{\Pi_{i+1j}}(\theta)$. Note that \widehat{P}_{ij} satisfies this equation, but so can other functions. (TeX note: the widehat change here is meaningless.)

Theorem 4.2.4 - If $\{P_{ij}(t)\}\$ is the unique solution of the forward system then any solution $\{\Pi_{ij}\}\$ of the backwards system satisfies $P_{ij}(t) \leq \Pi_{ij}(t)$ for all t. Proof not given.

Observe: if (4.2.6) $\Sigma_j P_{iJ}(t) \equiv 1$ (for all t), then Thm 4.2.4 would imply that $\{P_{ij}\}$ is the unique solution of the backward system that is a probability distribution. However (4.2.6) may not hold.

Definition 4.2.5 - An explosion occurs if the birth rates λ_n increase sufficiently quickly that there is a positive probability that the process N can pass through all finite states in finite (bounded) time.

Definition 4.2.6 - Let $T_{\infty} = \lim_{n \to \infty} T_n$ be the limit of the arrival times. We say N is honest if $P(T_{\infty} =$ ∞) = 1 and dishonest otherwise.

Theorem 4.2.5 - (4.2.6) holds (for each $i\{P_{ij}(t)\}\$ is a probability distribution in j) if and only if N is honest. Proof: (4.2.6) is equivalent to $P(T_{\infty} > t) = 1$, any t, why? Exercise.

Theorem 4.2.6 - N is honest $\iff \sum_{n} \lambda_{n}^{-1} = \infty$. This says that if the birth rates are sufficiently small (increase sufficiently slowly) then N is honest. $\Sigma a_n = \infty, a_n$ decreases sufficiently slowly, e.g. $\Sigma_n \frac{1}{n} = \infty$. If the λ_n increase sufficiently quickly that $\Sigma_n \lambda_n^{-1}$ converges, then N is dishonest. We can think of the deficit as $1 - \Sigma_j P_{ij}(t)$ as the probability $P(T_\infty \le t)$ of escaping to infinity at time t starting from state i.

Theorem 4.2.6 follows from:

Theorem 4.2.7 - Let X_1, X_2, \ldots be independent random variables with X_n having the exponential distribution with parameter λ_{n-1} and let $T_{\infty} = \Sigma_n X_n$. Then $P(T_{\infty} < \infty) = \{0 \text{ for } \Sigma_n \lambda_n^{-1} = \infty, 1 \text{ for } \Sigma_n \lambda_n^{-1} < \infty.$ Proof in notes. When the rates vary, the situation becomes more complicated.

Last topic in this section: what does the condition (d) mean? Recall that a sequence of random variables $\{X_n, n \geq 0\}$ satisfies the Markov property if, conditional on the event $\{X_n = i\}$ events related to the collection $\{X_m, m > n\}$ are independent of events related to the collection $\{X_m, m < n\}$.

Theorem 4.2.8 - Weak Markov Property - Let N(t) be a birth process and T a fixed time. Conditional on the event $\{N(T)=i\}$ the evolution of the process after T is independent of the evolution before T. Proof: definition 4.2.1(a).