南京林业大学试卷(A卷)

课程 高等数学 A(2)

2015~2016 学年第 2 学期

题号	_	 =	四	五	六	总分
得分						

袙

世

ᄳ

壯

一、填空题(每题4分,共20分)

1.设向量 \vec{a} 与 \vec{b} 的夹角为 60° ,且 $|\vec{a}|=3, |\vec{b}|=2$,则 $|\vec{a}+\vec{b}|=$ ______.

2.设级数 $\sum_{n=0}^{\infty} (3+3u_n)$ 收敛,则 $\lim_{n\to\infty} u_n =$ _______.

3.已知曲线 $x = \frac{t}{1+t}$, $y = \frac{1+t}{t}$, $z = t^2$, 则曲线在 t = 1 处的切线为______.

4.设 L 为球面 $x^2 + y^2 + z^2 = a^2$ 与平面 x + y + z = 0 的交线,则 $\int_{L} (x^2 + y^2 + z^2) ds =$ ______.

5.平面 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ (a,b,c>0) 被三个坐标面所截部分的面积 S =_______.

二、选择题(每题4分,共20分)

1.函数 $z = x^2 + y^2$ 在点(1,2)处沿从点(1,2)到点(2,2+ $\sqrt{3}$)方向的方向导数为().

(A)
$$1+\sqrt{3}$$
 (B) $1-\sqrt{3}$ (C) $1+2\sqrt{3}$ (D) $1-2\sqrt{3}$

2.XOZ 面上的抛物线 $z^2 = 5x$ 绕 X 轴旋转所成的旋转曲面的方程是 ()。

(A)
$$y^2 + z^2 = 5x$$
 (B) $x^2 + z^2 = 5y$ (C) $y^2 - z^2 = 5x$ (D) $x^2 - z^2 = 5y$

中

3.函数 f(x,y) 在点 (x_0,y_0) 处连续是函数 f(x,y) 在该点处存在偏导数的 () 条件

(A) 充分 (B) 必要 (C) 充要 (D) 既非充分也非必要

4.一个形如 $\sum_{n=1}^{\infty} b_n \sin nx$ 的级数,其和函数 S(x) 在 $(0, \pi)$ 上的表达式为 $\frac{1}{2}(\pi - x)$,则 S(x) 在

$$x = \frac{3\pi}{2} \text{ 处的值 } S(\frac{3\pi}{2}) = ($$

$$(A)\frac{\pi}{4}$$

$$(B)-\frac{\pi}{4}$$

$$(C)\frac{\pi}{2}$$

(A)
$$\frac{\pi}{4}$$
 (B) $-\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) $-\frac{\pi}{2}$

5.交换积分次序 $\int_{1}^{2} dx \int_{\frac{1}{2}}^{x} f(x, y) dy = ($)

$$(A) \int_{\frac{1}{2}}^2 dy \int_y^2 f(x,y) dx$$

(A)
$$\int_{\frac{1}{2}}^{2} dy \int_{y}^{2} f(x, y) dx$$
 (B) $\int_{\frac{1}{2}}^{1} dy \int_{\frac{1}{y}}^{2} f(x, y) dx + \int_{1}^{2} dy \int_{y}^{2} f(x, y) dx$

$$(C) \int_{\frac{1}{2}}^{2} dy \int_{\frac{1}{y}}^{2} f(x, y) dx$$

(C)
$$\int_{\frac{1}{2}}^{2} dy \int_{\frac{1}{y}}^{2} f(x, y) dx$$
 (D) $\int_{\frac{1}{2}}^{1} dy \int_{y}^{2} f(x, y) dx + \int_{1}^{2} dy \int_{\frac{1}{y}}^{2} f(x, y) dx$

三、计算题(每题8分,共16分)

1.设
$$f(x, y, z) = \left(\frac{x}{y}\right)^{\frac{1}{z}},$$
求 $df(1,1,1)$.

2.设 z = f(xy, y), 其中 f 具有连续二阶偏导数, 求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y^2}$

四. (每题6分,共18分)

1.计算
$$\iint_{D} \frac{\sin x}{x} d\sigma$$
, 其中 D 是由 $y = x$, $y = \frac{x}{2}$, $x = 2$ 所围成的闭区域。

2.计算
$$\iint_{\Omega} e^{|z|} dv$$
, 其中 $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$.

3.计算 $\oint_{ABOA} (e^x \sin y - y) dx + (e^x \cos y - 1) dy$, 其中A(0,a), B(a,0), O(0,0), ABOA 是折线,

五. (每题6分,共12分)

1.求微分方程 $(x^2+1)y'+2xy=4x^2$ 的通解。

2.已知 $y'' + y' = e^x$ 的特解为 $y_1^* = \frac{1}{2}e^x$, $y'' + y' = \cos x$ 的特解为 $y_2^* = -\frac{1}{2}\cos x + \frac{1}{2}\sin x$, 试求

微分方程 $y'' + y' = e^x + \cos x$ 的通解。

六. 计算与证明(共14分)

1.
$$(8 \, \mathcal{G})$$
 (1) 求 $\sum_{n=0}^{\infty} (n+1)x^n$ 的收敛域及和函数; (2) 求级数 $\sum_{n=0}^{\infty} \frac{n+1}{2^{n+1}}$ 的和。

2. (6 分)设 f(x) 在 x = 0 的某一邻域内具有二阶连续导数,且 $\lim_{x \to 0} \frac{f(x)}{x} = 0$. 证明:级数

$$\sum_{n=1}^{\infty} \sqrt{n} f(\frac{1}{n})$$
 绝对收敛。