Arithmetic Progression - 1

Sequences & Series

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **⊘ 10+** years Teaching experience
- Taught 1 Million+ Students
- **100+** Aspiring Teachers Mentored

Q Search

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt** Solving
- **+ LIVE** Interaction

Performance Analysis

Weekly Test Series DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

LET'S BEGIN!!

Sequences & Series

Can you find the next number?

Arithmetic Progression

Arithmetic Progression (A.P.)

AP is a sequence whose terms increase or decrease by a fixed number. This fixed number is called the common difference.

g: 1, 4, 7, 10, 13.....

Eg: 4, 2, 0, -2, -4,

Eg: 3, 3, 3, 3, 3......

General term of A.P.

If a is the first term and d the common difference, of AP

$$a$$
, $(a+d)$, $(a+2d)$, $(a+3d)$

$$T_3$$

$$T_5$$

$$T_6$$

$$T_8$$

If 9 times the 9th term of an AP is equal to 13 times the 13th term, then the 22nd term of the AP is

$$9\left(T_{9}\right) = 13\left(T_{13}\right)$$

$$\Rightarrow$$
 9(a+8d) = 13(a+12d)

jee

$$a + 2 \cdot 1 d = 0$$

Now.

 $T_{22} = a + (22 - 1)d$
 $= a + 2 \cdot 1 d$

Find the number of terms in the sequence 4, 12, 20, 108

$$\lambda$$
. 12

$$4, 12, 20, ----, 10$$

 $a = 4; d = 8$
 $T_{n} = a + (n-1)d$
 $108 = 4 + (n-1)8$

$$\frac{104}{8} = (n-1)$$

The number of numbers lying between 100 and 500 that are divisible by 7 but not by 21 is

Tjee

$$= \int_{0}^{\infty} \int_$$

$$=\frac{1}{3}(57)=19$$

If a_1 , a_2 , a_3 ,, a_n are in A.P., where $a_i > 0$ for all i, then

$$(\sqrt{a_1 + \sqrt{a_2}}) + \frac{1}{\sqrt{a_2 + \sqrt{a_3}}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} =$$

$$\frac{1}{\sqrt{a_1} + \sqrt{a_n}}$$

$$\frac{n}{\sqrt{a_1} + \sqrt{a_n}}$$

$$\frac{n-3}{\sqrt{a_1}+\sqrt{a_1}}$$

$$=\frac{\left(\sqrt{\alpha_{1}}-\sqrt{\alpha_{2}}\right)}{\left(\sqrt{\alpha_{1}}+\sqrt{\alpha_{2}}\right)\left(\sqrt{\alpha_{1}}-\sqrt{\alpha_{2}}\right)}+\frac{\left(\sqrt{\alpha_{2}}-\sqrt{\alpha_{3}}\right)}{\left(\alpha_{2}-\alpha_{3}\right)}$$

$$= \left(\frac{\int \alpha_1 - \int \alpha_2}{\alpha_1 - \alpha_2}\right) + \left(\frac{\int \alpha_2 - \int \alpha_3}{-\lambda}\right) + - - -$$

$$= \frac{\int a_{1} - Ja_{2}}{a_{1} - a_{2}} + \frac{\int a_{2} - Ja_{3}}{-Ja_{2}} + ---$$

$$= \frac{\int a_{1} - Ja_{2}}{(-Ja_{2})} + \frac{\int a_{1} - Ja_{2}}{-Ja_{3}} + \frac{\int a_{1} -$$

Now.

$$= \frac{\int a_{1} - \int a_{2}}{-d} + \frac{\int a_{2} - \int a_{3}}{-d} + - - - + \frac{\int a_{n-1} - \int a_{n}}{-d}$$

$$= \left(\frac{1}{-d}\right) \left[\sqrt{a_1} - \sqrt{a_2} + \sqrt{a_2} - \sqrt{a_3} + \sqrt{1 + \sqrt{a_{n-1}}} - \sqrt{a_n} \right]$$

$$= \left(\frac{1}{-d}\right) \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$$

The number of terms common to two A.P.s 3, 7, 11, ..., 407 and 2, 9, 16,, 709 is

iee

d=4: 3,7,11,15,19,(23),27,31,35,39,43,

d2=7:2,9,16(23),30,37,44(51),58,...

Common term ka A.P : |d = L.(M.(d,dz))

Non

$$T_{n} < 407$$

$$\frac{(n-1)}{28} < \frac{389}{28}$$

$$\frac{(n-1)}{\sqrt{96}} < \frac{96}{\sqrt{3}}$$

$$\frac{7}{\sqrt{3}}$$

Sum of n terms of A.P.

$$S_{n} = (a) + (a+d) + (a+2d) + --- + (a+(r-1)d)$$

$$S_{n} = (a+(r-1)d) + (a+(r-1)d) + --- + a$$

$$S_{n} = (a+(r-1)d) + (a+(r-1)d) + --- + a$$

$$2S_{n} = [2a + (n-1)x] + [2a + (n-1)x] + - - - - + [2a + (n-1)x]$$

$$2S_{n} = N[2a+(n-1)d]$$

$$S_n = \frac{n}{2} \left(2a + (n-1)d \right)$$

$$S_n = \frac{9}{2} \left(a + \underbrace{a + (n-1)d} \right)$$

$$S_n = \frac{n}{2}(\alpha + 1)$$

The sum of all two digit numbers which when divided by 4, yield unity as remainder, is

one

13, 17, 21, ----, 97
$$a = 13, d = 4; T_n = 97$$

$$T_n = 13 + (n-1) = 97$$

None of these

$$(n-1) = \frac{84}{4}$$

$$S_{22} = \frac{22}{5}(13 + 97)$$

The S_n denote the sum of the first n terms of an AP, if $S_{2n} = 3S_n$, then $S_{3n} : S_n$ is equal to

yjee

A. 4

J. 6

(. 8

D. 10

$$\frac{24}{(2a+(2n-1)d)} = 3 + (2a+(n-1)d)
4a + 4nd-2d = 6a + 3nd-3d
\Rightarrow 2a-nd-d=0 \Rightarrow (2a-d)=nd-($$

$$\frac{S_{3n}}{S_{n}} = \frac{(37)(2a+(3n-1)d)}{(2a+(n-1)d)}$$

$$= 3((2a-d)+3nd)$$

$$((2a-d)+nd)$$

$$\frac{3(nd+3nd)}{(nd+nd)}$$

$$= 6$$

If the sum of first n terms of two A.P.'s are in the ratio

Ţ jee

3n + 8:7n + 15, then the ratio of their 12th term is

$$\begin{cases} 1 & \text{StAP}: a_1, d_1, (S_n)_1 \\ 2^{nd} & \text{AP}: a_2, d_2, (S_n)_2 \end{cases}$$

$$\frac{(Sn)_{1}}{(Sn)_{2}} = \frac{(\chi)(2a_{1}+(n-1)d_{1})}{(\chi)(2a_{2}+(n-1)d_{2})} = \frac{(\chi)(2a_{1}+(n-1)d_{2})}{(\chi)(2a_{2}+(n-1)d_{2})} = \frac{(\chi)(2a_{1}+(n-1)d_{2})}{(\chi)(2a_{2}+(n-1)d_{2})} = \frac{(\chi)(2a_{1}+(n-1)d_{2})}{(\chi)(2a_{2}+(n-1)d_{2})} = \frac{(\chi)(2a_{1}+(n-1)d_{2})}{(\chi)(2a_{2}+(n-1)d_{2})} = \frac{(\chi)(2a_{1}+(n-1)d_{2})}{(\chi)(2a_{2}+(n-1)d_{2})} = \frac{(\chi)(2a_{2}+(n-1)d_{2})}{(\chi)(2a_{2}+(n-1)d_{2})} = \frac{(\chi)(2a_{2}+(n-1)d_{2})}{(\chi)(2a_{2}+(n-1)d_$$

T jee

$$\frac{\left(T_{12}\right)_{1}}{\left(T_{12}\right)} = \frac{\left(\alpha_{1} + \Pi \alpha_{1}\right)}{\left(\alpha_{2} + \Pi \alpha_{2}\right)} = \frac{\left(\alpha_{1} + \Pi \alpha_{1}\right)}{\left(\alpha_{2} + \Pi \alpha_{2}\right)}$$

$$\frac{a_1 + \frac{n-1}{2}a_1}{a_2 + \frac{n-1}{2}a_1} = \frac{3n+8}{7n+15}$$

Tjee

$$= \frac{a_1 + 11d_1}{a_2 + 11d_2} = \frac{3 \times 23 + 8}{7 \times 23 + 15}$$

$$= \frac{69+8}{161+15}$$

$$= \frac{77}{176} = \frac{7}{16}$$

The sum of integers from 1 to 100 that are divisible by 2 or 5 is

#JEELiveDaily Schedule

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

9:00 - 10:30 PM

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

Step 1

Test Series 2022

Test Series 2023

9th & 23rd June | 9 AM to 12 PM

EMERGE 3.0 BATCH

JEE Main & Advanced 2023 Started on 12th May

All Stars Batch: JEE Main 2021

Upcoming Batches in June

Evolve Batch (Class 12th): JEE Main & Advanced 2022 Starts on 2nd June 2021

Emerge Batch (Class 11th): JEE Main & Advanced 2023 Starts on 8th June 2021

Evolve Batch (Class 12th): JEE Main & Advanced 2022 Starts on 9th June 2021

Starts on 9th June 2021

Emerge Batch (Class 11th): JEE Main & Advanced 2023 Starts on 16th June 2021

INDIA'S BIGGEST WEEKLY SCHOLARSHIP TEST

SCAN NOW TO ENROLL

For IIT-JEE Aspirants

Enroll for Free

Win Scholarship from a pool of

₹ 4 Crore
Terms and conditions apply

Take it live from android

IIT-JEE COMBAT

Every Sunday at 11 AM

To unlock, use code

SAMEERLIVE

Thank you

#JEE Live Daily

Download Now!