Problem Set 1 Real Analysis II

Bennett Rennier barennier@gmail.com

January 15, 2018

Ex 8.5 Suppose f is a non-negative integrable function on a measurable space (X, \mathcal{A}, μ) . Prove that

$$\lim_{t \to \infty} t\mu(\{x \mid f(x) \ge t\}) = 0$$

Proof. Let $A_t = \{x \mid f(x) \geq t\}$. We clearly see that $A_t \downarrow \emptyset$. We also see that

$$t\mu(\{x \mid f(x) \ge n\}) = t\mu(A_t) = t \int \chi_{A_t} d\mu = \int t\chi_{A_t} d\mu \le \int_{A_t} f d\mu$$

Since f is integrable, by the dominated convergence theorem

$$\lim_{t \to \infty} t \int_{A_t} d\mu = \int \lim_{t \to \infty} t \chi_{A_t} d\mu = \int 0 d\mu = 0$$

This proves that $\lim_{n\to\infty} n\mu(\{x\mid f(x)\geq n\})=0$.

Ex 11.5 Prove the equality

$$\int_{-\infty}^{\infty} |f(x)| dx = \int_{0}^{\infty} m(\lbrace x \mid |f(x)| \ge t \rbrace) dt$$

where m is Lebesgue measure.

Proof. Similar to the proof in Problem 8.5, we see that

$$\int_0^\infty m(\{x \mid |f(x)| \ge t\}) \, dt = \int_0^\infty \int_{-\infty}^\infty \chi_{A_t} \, dx \, dt = \int_0^\infty \int_{-\infty}^\infty \chi_{A_t} \, dx \, dt$$

where $A_t = \{x \mid |f(x)| \geq t\}$. Since |f| is nonnegative and we are dealing with σ -finite measures, by Fubini's theorem, we can interchange the limits. We thus see that

$$\int_0^\infty \int_{-\infty}^\infty \chi_{A_t} \, dx \, dt = \int_{-\infty}^\infty \int_0^\infty \chi_{A_t} \, dt \, dx$$

If we fix x, then

$$\int_0^\infty \chi_{A_t} \, dt = 1 \cdot |f(x)|$$

which proves that

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} \chi_{A_{t}} dt dx = \int_{-\infty}^{\infty} |f(x)| dx$$

Ex 11.15 Let $X = \{1, 2, ...\}$ and let μ be the counting measure on X. Define $f: X \times X \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} 1, & x = y \\ -1, & x = y + 1 \\ 0, & \text{otherwise} \end{cases}$$

Show that

$$\int_X \int_X f(x,y) \, \mu(dx) \, \mu(dy) \neq \int_X \int_X f(x,y) \, \mu(dy) \, \mu(dx)$$

Why is this not a contradiction to the Fubini Theorem?

Proof. We see that $\int_X f(x,y) \, \mu(dx) = g(y) = \begin{cases} 1, & y=1 \\ 0, & \text{otherwise} \end{cases}$. If we integrate again we get that $\int_X g(y) \, \mu(dy) = 1$. We also see that $\int_X f(x,y) \, \mu(dy) = 0$, which means that $\int_X \int_X f(x,y) \, \mu(dy) \, \mu(dx) = 0$. This proves the inequality. This is not a contradiction to the Fubini Theorem as the function is neither nonnegative nor is it integrable in the product measure.

Ex 11.16 Let $\{a_n\}$ and $\{r_n\}$ be two sequences of real numbers such that $\sum_{n=1}^{\infty} |a_n| < \infty$. Prove that

$$\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{|x - r_n|}}$$

converges absolutely for almost every $x \in \mathbb{R}$.

Proof. Let

$$f(x) = \sum_{n=1}^{\infty} \frac{|a_n|}{\sqrt{|x - r_n|}}$$

Now let $k \in \mathbb{N}$ be a fixed number. We see that

$$\int_{k}^{k+1} f(x) \, dx = \sum_{n=1}^{\infty} \int_{k}^{k+1} \frac{|a_n|}{\sqrt{|x - r_n|}} \, dx = \sum_{n=1}^{\infty} |a_n| \int_{k}^{k+1} \frac{1}{\sqrt{|x - r_n|}} \, dx$$

which we can do as the counting measure and the Lebesgue measure are both σ -finite and the terms are all nonnegative. [Incomplete]

Ex 13.12 Suppose μ is a σ -finite measure and ν is a finite measure. Prove that if $\nu \ll \mu$ and $\nu \perp \mu$, then ν is the zero measure.

Proof. Since μ and ν are mutually singular, this means that there exists a set E such that $\mu(E) = \nu(E^c) = 0$. Let A be an arbitrary measurable set. We see that

$$\nu(A) = \nu(A \cap E) + \nu(A \cap E^c) \le \nu(E) + \nu(E^c) = 0 + \nu(E) = \nu(E)$$

However, since $\nu \ll \mu$ and $\mu(E) = 0$, this means that $\nu(E) = 0$. Thus $\nu(A) = 0$ for all measurable sets $A \in \mathcal{A}$. This does not require that μ be σ -finite nor that ν be finite. (I believe that it doesn't even require that they be positive, but I'm not sure if mutually singular is even used with signed measures.)

Ex 13.13 Prove the decomposition in the Lebesgue decomposition theorem is unique.

Proof. Let μ be σ -finite and let ν be finite. Suppose Lebesgue decomposition wasn't unique, that is $\nu = \lambda + \rho = \alpha + \beta$, where $\lambda \perp \mu$, $\alpha \perp \mu$, $\rho \ll \mu$, and $\beta \ll \mu$. Since $\lambda \perp \mu$ and $\alpha \perp \mu$, then there exist measurable sets E and F such that $\lambda(E^c) = \mu(E) = \alpha(F^c) = \mu(F) = 0$. Let $G = E \cup F$. We now see that $\mu(G) = \mu(E \cup F) \leq \mu(E) + \mu(F) = 0$ and that $\lambda(G^c) = \lambda(E^c \cap F^c) \leq \lambda(E^c) = 0$. Similarly, $\alpha(G^c) = 0$.

Let $A \subseteq G$ be a measurable set. Since $\rho \ll \mu$, $\beta \ll \mu$, and $\mu(G) = 0$, this means that $\rho(A) \leq \rho(G) = 0$ and that $\beta(A) \leq \beta(G) = 0$. This means that $\nu(A) = \lambda(A) + 0 = \alpha(A) + 0$. Thus, $\lambda = \alpha$ on G. Since $\lambda(G^c) = \alpha(G^c) = 0$, we see that $\lambda = \alpha$ on all of X. Since $\lambda = \alpha$ on all of X and $\lambda + \rho = \alpha + \beta$, this proves that $\rho = \beta$. Thus, the decomposition in the Lebesgue decomposition theorem is unique.