Detect Potential Loan Default Customers

Home Credit Indonesia

Data Scientist Virtual Internship Program

Andi Eka Nugraha

PROFIL

Created by:
Andi Eka Nugraha
an.ekanugraha@gmail.com
linkedin.com/in/andi-eka-nugr
aha

Bachelor in Physics with major expertise in Instrumentation & Robotics and has attended a Datascience bootcamp for 4 months. Experienced in programming microcontrollers and machine learning to process data or images, as well as creating robotic systems that can support human work. Able to understand business, especially for data analysis, studying statistics and machine learning, as well as the ability to create regression models, classification, and clustering. Skills in identifying and analyzing patterns in data and presenting analytical results well.

Dataset:

https://www.kaggle.com/competitions/home-credit-default-risk

Code:

https://github.com/AnCodingML/Home-Credit-Default-Risk

Click:

Current Issue

Home Credit is currently using various statistical methods and Machine Learning to make credit score predictions from customers who apply for loans.

As a data scientist, you are tasked with creating a model that can detect customers who are able to make payments and not be rejected when applying for a loan

What is the Problems?

Goals

Early identification of credit risk and taking appropriate action to reduce possible losses.

Objectives

- Create machine learning that can detect defaulting customers
- Reducing company losses due to customer credit defaults

Business Metrics

Credit Loss Ratio

Dataset

installments_payments.csv

Repayment history for the previously disbursed credits in Home Credit related to the loans.

credit_card_balance.csv

Monthly balance snapshots of previous credit cards that the applicant has with Home Credit.

POS_CASH_balance.csv

Monthly balance snapshots of previous POS (point of sales) and cash loans that the applicant had with Home Credit.

previous_application.csv

All previous applications for Home Credit loans of clients who have loans

Dataset

bureau.csv

All client's previous credits provided by other financial institutions that were reported to Credit Bureau

application_{train|test}.csv

Static data for all applications

EXPLORATORY DATA ANALYSIS: installments payments.csv

Analysis of total customers who have not made payment transactions in the last few months

Of the 339,587 total customers who made loans, there were several customers who had not made payments in the last few months

Total losses due to customers making loan payments amounted to \$47322631.35, and losses in the last month amounted were \$11504.25.

There were a total of 1149574 late payments from all customers and there were 26450 late payments in the last month.

EXPLORATORY DATA ANALYSIS : credit_card_balance.csv

Analysis of the condition of the customer income on credit debt

From a total of 103558 customers, groups were divided based on the financial condition of each customer

There are **11248** customers who must receive special attention because of their financial condition whose income is lower than credit debt

EXPLORATORY DATA ANALYSIS: POS_CASH_balance.csv

Analysis of customers making credit bill payments beyond the time limit/tolerance limit

out of a total of 337252 customer payments, there were 7% of transactions that exceeded the time limit or tolerance period

EXPLORATORY DATA ANALYSIS: previous_application.csv

EXPLORATORY DATA ANALYSIS: bureau.csv

Analysis of customer payment installment conditions out of a total of 305811 customers, 29.1% of them have completed their installment payments

Measure the feature importance of the category column using chi-square

Measure the feature importance of the numeric column using regression

Features that are selected and considered influential based on select k-best and dataset analysis:

The AMT_ANNUITY, AMT_CREDIT, AMT_GOODS_PRICE features have a left skew data distribution indicating that there is data accumulation in a low class. This type of data has the potential to contain outliers.

The AMT_ANNUITY, AMT_CREDIT,
AMT_GOODS_PRICE features have outlier values so
they need further processing

Features AMT_ANNUITY, AMT_CREDIT,
AMT_GOODS_PRICE have a high correlation so
they are potentially redundant

Feature Enginering installments_payments.csv

	SK_ID_CURR	NUM_INSTALMENT_VERSION	DAYS_INSTALMENT	DAYS_ENTRY_PAYMENT	AMT_INSTALMENT	AMT_PAYMENT
0	100001	1.200000	2886.0	2875.0	33262.875	33262.875
1	100002	1.000000	475.0	498.0	46258.875	46258.875
2	100003	1.000000	2310.0	2324.0	216925.920	216925.920
3	100004	1.333333	784.0	795.0	21288.465	21288.465
4	100005	1.000000	676.0	711.0	24066.000	24066.000

Aggregate based on the last 5 data on each customer to get data distribution and insight in a wider timeframe but still efficient

Feature Enginering credit_card_balance.csv

```
credit_card_balance.fillna(0)
credit_card_balance['max_current'] = credit_card_balance['AMT_BALANCE'] + credit_card_balance['AMT_CREDIT_LIMIT_ACTUAL']
credit_card_balance
pd.set_option('display.max_columns', None)
x = ['SK_ID_PREV', 'SK_ID_CURR', 'MONTHS_BALANCE', 'CNT_INSTALMENT_MATURE_CUM', 'AMT_BALANCE',
     'AMT_CREDIT_LIMIT_ACTUAL', 'max_current', 'AMT_INST_MIN_REGULARITY', 'AMT_PAYMENT_TOTAL_CURRENT',
                                         'AMT_TOTAL_RECEIVABLE', 'CNT_DRAWINGS_CURRENT', 'SK_DPD', 'SK_DPD_DEF']
credit card balance = credit card balance[x]
credit_card_balance_agg = credit_card_balance.groupby('SK_ID_CURR').tail(1).groupby('SK_ID_CURR').agg({'MONTHS_BALANCE': 'min', 'CNT_INSTALMENT_MATURE_CUM': 'max',})
sorted_data = credit_card_balance.sort_values('MONTHS_BALANCE')
# Group by 'SK_ID_CURR' and calculate minimum 'MONTHS_BALANCE' and maximum 'CNT_INSTALMENT_MATURE_CUM'
grouped_data = sorted_data.groupby('SK_ID_CURR').agg({
    'MONTHS_BALANCE': 'min',
    'CNT_INSTALMENT_MATURE_CUM': 'max'
# Get the last row for each group based on the sorted order
last_row_indices = sorted_data.groupby('SK_ID_CURR').tail(1).index
# Get the last values for other columns based on the last row indices
last_values = sorted_data.loc[last_row_indices]
# Merge the grouped data and last values
credit_card_balance_agg = pd.merge(grouped_data, last_values, on='SK_ID_CURR').abs()
drop = ['MONTHS_BALANCE_y', 'CNT_INSTALMENT_MATURE_CUM_y']
credit_card_balance_agg = credit_card_balance_agg.drop(drop, axis=1)
credit_card_balance_aqg['unpaid_invoice_amount'] = credit_card_balance_aqg['AMT_TOTAL_RECEIVABLE'] - credit_card_balance_aqg['AMT_PAYMENT_TOTAL_CURRENT']
```

```
Column
                                Non-Null Count
                                                Dtvpe
   SK ID CURR
                                103558 non-null int64
   MONTHS BALANCE x
                                103558 non-null int64
   CNT INSTALMENT MATURE CUM x 103558 non-null float64
   SK ID PREV
                                103558 non-null int64
   AMT BALANCE
                                103558 non-null float64
   AMT CREDIT LIMIT ACTUAL
                                103558 non-null int64
   max current
                                103558 non-null float64
   AMT INST MIN REGULARITY
                                103558 non-null float64
   AMT PAYMENT TOTAL CURRENT
                                103558 non-null float64
   AMT TOTAL RECEIVABLE
                                103558 non-null float64
10 CNT DRAWINGS CURRENT
                                103558 non-null int64
11 SK DPD
                                103558 non-null int64
12 SK DPD DEF
                                103558 non-null int64
13 unpaid invoice amount
                                103558 non-null float64
```


Feature Enginering POS_CASH_balance.csv

```
POS_CASH_balance_agg = POS_CASH_balance.groupby(['SK_ID_CURR']).agg({'SK_DPD': 'sum', 'SK_DPD_DEF':'sum',}).reset_index()
POS_CASH_balance_agg['DIF_SK_DPD_SK_DPD_DEF'] = POS_CASH_balance_agg['SK_DPD'] - POS_CASH_balance_agg['SK_DPD_DEF']
```

	SK_ID_CURR	SK_DPD	SK_DPD_DEF	DIF_SK_DPD_SK_DPD_DEF
0	100001	7	7	0
1	100002	0	0	0
2	100003	0	0	0
3	100004	0	0	0
4	100005	0	0	0

Feature Enginering previous_application.csv

```
previous_application['PREV_COUNT'] = previous_application.groupby('SK_ID_CURR').cumcount() + 1

# Menggabungkan data untuk 5 aplikasi terakhir

df_last_5 = previous_application[previous_application['PREV_COUNT'] <= 5].groupby('SK_ID_CURR').agg({
    'AMT_ANNUITY': 'mean',
    'AMT_APPLICATION': 'sum',
    'AMT_CREDIT': 'sum',
    'NAME_CONTRACT_STATUS': lambda x: x.mode().iat[0]

SK_ID_CURR AMT_ANN
}).reset_index()</pre>
```

	SK_ID_CURR	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	NAME_CONTRACT_STATUS
0	100001	3951.0000	24835.5	23787.0	Approved
1	100002	9251.7750	179055.0	179055.0	Approved
2	100003	56553.9900	1306309.5	1452573.0	Approved
3	100004	5357.2500	24282.0	20106.0	Approved
4	100005	4813.2000	44617.5	40153.5	Approved

Feature Enginering bureau.csv

	SK_ID_CURR	AMT_CREDIT_SUM	AMT_CREDIT_SUM_DEBT	DAYS_CREDIT_UPDATE
0	100001	1453365.000	596686.500	-6
1	100002	865055.565	245781.000	-7
2	100003	1017400.500	0.000	-43
3	100004	189037.800	0.000	-382
4	100005	657126.000	568408.500	-11

Merge Datasets

merged_df = merged_df.drop(drop, axis =1)

Merge Datasets Feature Importance

Merge Datasets Feature Importance

Merge Datasets Feature Enginering

Fill in the empty category data with the mode and numeric data with the average.

```
for col in num:
    mean_value = merged_df[col].mean()
    merged_df[col].fillna(mean_value, inplace=True)

for col in cat:
    mode_value = merged_df[col].mode()[0]
    merged_df[col].fillna(mode_value, inplace=True)
```

Redundant data aggregation

```
merged_df['DAYS_BIRTH'] = merged_df['DAYS_BIRTH']/-365

merged_df['credit_downpayment'] = merged_df['AMT_GOODS_PRICE'] - merged_df['AMT_CREDIT_x']
merged_df['credit_goods_price_ratio'] = merged_df['AMT_CREDIT_x']/merged_df['AMT_GOODS_PRICE']
merged_df['credit_annuity_ratio'] = merged_df['AMT_CREDIT_x']/merged_df['AMT_ANNUITY_x']

drop = ['AMT_GOODS_PRICE', 'AMT_CREDIT_x', 'AMT_ANNUITY_x']
merged_df = merged_df.drop(drop, axis = 1)
```


Label Encoding

```
label_col = ['REG_CITY_NOT_WORK_CITY', 'NAME_EDUCATION_TYPE', 'CODE_GENDER', 'ORGANIZATION_TYPE']
label_encoder = LabelEncoder()
for col in label_col:
    merged_df[col] = label_encoder.fit_transform(merged_df[col])
    label_names = label_encoder.classes_ # Mendapatkan nama label yang diubah
    print(f"Nama label yang diubah pada kolom {col}:")
    print(label_names)
    print()
```

One Hot Encoding

```
x = pd.get_dummies(merged_df['NAME_INCOME_TYPE'], prefix = 'INCOME_TYPE_')
y = pd.get_dummies(merged_df['HOUSETYPE_MODE'], prefix = 'HOUSETYPE_')
z = pd.get_dummies(merged_df['NAME_CONTRACT_STATUS'], prefix = 'STATUS')

merged_df = pd.concat([merged_df, x], axis=1)
merged_df = pd.concat([merged_df, y], axis=1)
merged_df = pd.concat([merged_df, z], axis=1)
drop = ['NAME_INCOME_TYPE', 'HOUSETYPE_MODE', 'NAME_CONTRACT_STATUS']
merged_df = merged_df.drop(drop, axis = 1)
```


Transform data

```
dataset_train = pd.DataFrame()
# Mengambil nama kolom dalam dataset
merged = merged_df.drop('SK_ID_CURR', axis =1)
columns = merged.columns

# Membuat objek MinMaxScaler
scaler = MinMaxScaler()

# Melakukan normalisasi pada semua kolom
dataset_train[columns] = scaler.fit_transform(merged_df[columns])
```

	22222		
0	TARGET	72793 non-null	float64
1	ORGANIZATION TYPE	72793 non-null	float64
2	CODE GENDER	72793 non-null	float64
3	NAME EDUCATION TYPE	72793 non-null	float64
4	REG CITY NOT WORK CITY	72793 non-null	float64
5	DAYS BIRTH	72793 non-null	float64
6	EXT_SOURCE_1	72793 non-null	float64
7	EXT_SOURCE_2	72793 non-null	float64
8	EXT_SOURCE_3	72793 non-null	float64
9	CNT_INSTALMENT_MATURE_CUM_x	72793 non-null	float64
10	AMT_BALANCE	72793 non-null	float64
11	AMT_CREDIT_LIMIT_ACTUAL	72793 non-null	float64
12	max_current	72793 non-null	float64
13	AMT_INST_MIN_REGULARITY	72793 non-null	float64
14	AMT_PAYMENT_TOTAL_CURRENT	72793 non-null	float64
15	AMT_TOTAL_RECEIVABLE	72793 non-null	float64
16	unpaid_invoice_amount	72793 non-null	float64
17	DAYS_INSTALMENT	72793 non-null	float64
18	AMT_APPLICATION	72793 non-null	float64
19	credit_downpayment	72793 non-null	
20	credit_goods_price_ratio	72793 non-null	float64
21	credit_annuity_ratio	72793 non-null	
22	<pre>INCOME_TYPECommercial associate</pre>	72793 non-null	float64
23	INCOME_TYPEPensioner	72793 non-null	float64
24	INCOME_TYPEPensioner INCOME_TYPEState servant	72793 non-null	float64
25	INCOME_TYPEStudent	72793 non-null	
26	INCOME_TYPEWorking	72793 non-null	
27	HOUSETYPE_block of flats	72793 non-null	float64
28	HOUSETYPEspecific housing	72793 non-null	float64
29		72793 non-null	
30	STATUS_Approved	72793 non-null	float64
31	STATUS_Canceled	72793 non-null	float64
	STATUS_Refused	72793 non-null	float64
33	STATUS_Unused offer	72793 non-null	float64
	ca . ca/aa)		

DATA MODELING

Evaluation Metrics : Receiver Operating Characteristic Area Under the Curve

Ket.	Logistic Regression	Light Gradien Boosting Machine
AUC	0.75	0.77
roc_auc (crossval train)	0.74	0.86
roc_auc (crossval test)	0.74	0.75

Based on testing result, model that has best performance is Logistic Regression

DATA MODELING

The features that have the most impact on machine learning models are **AMT_BALANCE**, **EXT_SOURCE_3**, and **AMT_CREDIT_LIMIT_ACTUAL**

MODEL TESTING

Comparative analysis of the results of predicting the total customers at risk of default for each model with real data

The logistic regression model can detect 393 people who are now defaulted.

logistic regression can reduce default rating by:

44.8%

MODEL TESTING

The logistic Regression Model reduced the total loss of \$2574634.68 from defaulted customers.

Logistic regression can reduce rating losses by:

20.6%

BUSINESS RECOMMENDATION

- Pay special attention to the AMT_BALANCE,
 AMT_PAYMENT_TOTAL_CURRENT,
 AMT_LIMIT_CREDIT_ACTUAL features for the amount of funds submitted.
- Provide notification of payment deadlines to customers to avoid customers being late in making payments.
- Provide warnings to customers who cross the payment limit to be followed up on discussing payment scheme solutions.

Thanks

HOME CREDIT

