

FROM
THE LIBRARY
OF
SIR WILLIAM OSLER, BART.
OXFORD

7666 f

Notes on

Lectures on
Embryology
by

E. Klein

delivered at the

Brown Institution

January 1873

J. M. A. C.

in conditi*n*

predilectus

missi

ad conditi*n*

conditi*n*

8/1/13

Lecture I

Fecundation

Fecundation produces a series of changes on the ovum, the nature and consequence of which we shall examine in these lectures and we shall follow them up to the time when in the embryo, the rudiment of organs shall have completely differentiated. This constitutes General Embryology. The morphological changes will not be dealt with, but we shall speak of the transformation of the primary tissues into the permanent which constitute Histogenesis. First as regards the nature of the act. This axiom may be laid down viz "that the action of the sperm is one of contact". We shall now notice some of the various theories

Nature

which have been advanced. Some
magnetic naturalists thought that
the action of the sperm consisted in
an influence of the male sex in the
female organs, resulting in a re-
flex action on the ovaries and womb.
Others said that the sperm acts solely
on the blood of the female and it on
the ovary. A third series of authors
held that the sperm acted on the
ovary by means of an aura semini-
alis. The first experimental proof of the
above axiom was given by Sp
who demonstrated that the sperm of
a frog when brought in contact with
the ova fertilized them, but if only
suspended over them or separated by
a thin membrane no fertilization re-
sulted. Another experimenter showed that
of one corner of the uterus of a mammal

was ligated, or a never developed in it
or if the oviduct was severed or the
whole uterus ligatured

The second axiom is that the spermatozoa form the essential ingredient
of the seminal fluid not the liquor
seminalis. Numerous observers have
found the spermatozoa along the whole
genital tract, in the oviduct even
in the ovary itself. They have been
found in the albuminous layer which
envelops the ovum in the Fallopian
tubes of mammals. has seen them
inside the zona pellucida in lively
mollusca and even in the yolk itself;
also bundles of filaments - the tails
of the spermatozoa have been detected
in the ovum. When the ovum is in the
uterus nothing can be found of the sperm
either inside or outside. Some have

even asserted that the spermatozoa take a part in the development of the ovum & that their function does not cease with contact. In this manner the inheritance of faculties from the father may be well explained

Circumstances. There differ in the various kingdoms. In the lower vertebrates and Anoplithia fertilization is outside the body. In Birds & Mammals it takes place inside, but where was long disputed. In Birds it does not take place in the ovary but as shown by at the abdominal extremity of the oviduct where a kind of receptaculum seminis exists and the ova are fertilized as they pass. Home showed that in the human female even without coitus ova were discharged and that at each menstrual period. The same

was demonstrated for the lower animals when in heat. Where fecundation takes place in Mammals is still disputed, but the vertebrates hold that it may take place anywhere from the ovary to the uterus, depending particularly at what point the sperm meets the卵. The phenomena of ovarian and abdominal pregnancy shows its occurrence at & about the ovary.

Morphological value of the unfertilized ovum
In Teleostean fishes the ovum consists of (1) the vitelline membrane, inside which two bodies exist - one, large, round consisting of fat - the yolk, the other, discoid placed in a depression at one pole - the germ, consisting of protoplasm, which is capable of spontaneous movement. This germ lying on the yolk is called the Blastoderm. The same an analogous

ovaries in Birds or vitelline membrance, yolk and air the same

Yolk This consists of two parts 1st the cortical portion & 2nd beneath where the yolk lies is a thick blunt process extending down into the cortical portion, called the white yolk

Germ consists entirely of protoplasm & is the only part of importance it contains a germinal vesicle & inside it a germinal spot. The ova of Reptiles are like those of the Birds, but in the Anomphibia it is different. Here there is a thin vitelline membrane and all inside it is yolk through which the yolk is distributed in the form of rectangular crystals or yolk plates and pigment granules. Near the centre the vesicle and spot exist. This condition is also

met in Mammals, i.e. a thick vitelline membrane or zona pellucida enclosing the contents, which in Amphibia are all yolk, the yolk being distributed through it

Vesicle formed usually in the centre, contains a clear fluid and a spot which in mammals is often multiple

We thus see that the ova of vertebrates may be divided into two classes; the first comprising Teleostean Fishes, Birds, Reptiles, in all of which the yolk is distinct from the yolk and secondly the Amphibia and Mammals in which the yolk contains the yolk as granules &c. In Fishes no vesicle or spot is formed. We have thus seen the relations which the parts of the unperfertilized ovum bear to one another. The yolk consisting of protoplasm

- which possesses the power of motility;
the vesicle and spot may be con-
sidered physiologically as a "cell".
The yolk has merely a nutritive
value. The difference between the
ova in the two classes is expressed
by the terms *Macroblastic* which in-
cludes the first class. *Holoembryonic*
& *Holoblastic* comprising the second.

14/15

Lecture II

Segm- The first change which the ovum under-
ent at gives after fertilization is a division of
ion the germ into two halves, each of which
divide again & so on, till the whole is
split up into a number of elements,
called embryonic cells. By what means
does it segment? It does it by the inher-
ent power possessed by protoplasm in
virtue of which it not only can attain its

W

shape - more but also divide. All cells that undergo division are anærobolous. This movement may be seen after fecundation & before cleavage begins, though many embryologists consider that the anærobolous movements are the first visible effect of segmentation.

Some consider the first effect of fecundation to be the development of the germinal vesicle, which, in the ripe ova of Birds, Reptiles, Batracians & Mammals is found peripherally.

Some hold that the vesicle disappears before segmentation, but getting more & more peripheral. Purkinje held that the fluid which resulted from the rupture of the vesicle played an important part in development. The power of rupture in escaping from the ovum is supposed by some to be connected

with the animal movements, but no observer has seen this movement before fecundation. Another class of authors among whom are van-Beneden & Lubbock believe & Klein think rightly, that the germinal vesicle remains and gives origin^{to} the embryonal cells. The high authority of the supporters of this view as well as the difficulty of otherwise accounting for the embryonal cells, give great weight to this supposition.

Segmentation is easily observed in Rana. It remains. About the end of March R. temporaria deposits its spawn, or a pigmented mass enveloped in a gelatinous mass. In April the common toad deposits its spawn in strings. Immediately after the deposition the ova may be seen to be not spherical but looking as if they had been slightly pressed. After this it goes

through a series of contractions & expansions
the oscillations continue and becomes
smaller 6-7 hours after the deposit and
more extensive. From the ganges up a
slab which is retracted, again protrudes
perhaps in another place. Soon a notch
appears at once place & about the oscil-
lations continue. It may & does retreat
often but finally gets fixed. Shortly after
a similar one appears on the opposite
pole goes through the same changes.
On looking now at the upper surface a
furrow or groove may be seen from which
secondary furrow may be observed, also
branched, called "corona plicale". One often
secondary furrow is or becomes larger &
deeper than the other.

Later in ^{changes} manna, over first amniotic may we are
Bickoffs, he stated when manna over ^{occultly} exp. of R. D.,
entirely ^{absent} individual, the germ gradually retreat from
S. pellucid said that in ripe manna over the S. pell
entirely ^{reduced} to itself enough in others surround the
germ. The retraction of it from zone is the first visible
change another amniotic not expand till now
is that germ after retraction perform rotat.
ions. He attrib. it to give cilia wh. project accor
dingly from the germ. he only in one case saw
this rotation still now not seen by anyone else
in man after stage as when germ has contract
its membrane not to be seen but that does not prove
non-existence. It divides itself into halves
each is also provided with several ^{large} nuclei
these ^{may be} regarded as the matrix from which
nuclei of all future embryo cells derive. Van
Bemm ^{den} & Wils saw two nuclei also in germ
after that culture ^{and} before it had undergone
stage of cleavage. In this stage when

gum in two halves then with below glass
substance & g. pellu. one or two or 3 pale pine grain
size spherical bodies. Bulk off took them
as gum vesicle wh had left the gum by
cleavage. but before it up afterward. Col-
oh also now then thought likewise. Then
body not w^t found in this stage but also
in later wh gum had regenerated in many
cells, similar ones seen between. lump of the
& cell & g. pellu. Bladder, mallet, one of them
slab of the slate he is trying to know that
before ^{up} clean ^{on} fitel the tree to get rid
of the gum vesicle. Signif of these bodies is
not yet clear. During ^{up} passage the ^{up} voided the
gum divides & subdivides till consist of
16 elem each of which has a nucleus when
it finds the gum when then clean ^{out are} arranged
within g. pell so as to surround a cavity
to form a vesicle what price? Ball & call
bes. blastodermus, cortex. Bulk slate that on
one after entering the uterus show a vesicle wh of
the em. yolked out cells & looks like mortise

from the surface. In one place a mass of opaque
clay project into the cavity of the vessel; these
masses are regarded by all as offspring of the gum
while the bulk of the gum vessel is not yet made
out what cause of these. But though this
medium ^{is} probably owing its origin to them, it does
not consist the same. But in his last work
allied that he says he can not certain
what had much to do with it. However
and does not anything do with the
development of the embryo. Clementina
for wall of gum vessel arrange themselves
in one coat while whole vessel is growing
in later stage two coats are opaque spot
the - part. & repeat the arrangement in which
the embryo appears. This an ^{atav.} gum even
ext elongated & shows a contrast between
central clear air ^{atav.} pell & a periph opaque .
ing the a. opaca. In the center of air pell
an opaque stripe appear ^{atav.} wh repeat the same
thing wh in child the "pinuti" ^{atav.} "tibi" or axial
end

In what relation stand this a. gem to
the layer of the germ venule? His. state
that the elements we have arranged there
previoudly in mecanah separate at this
spot as in an. gemm. into 2 coats & that
this second coat goes inwards the upper
one all round the venule & that smaller
wall consists of 2 coats. A. gem is marked
from the main part of the venule & at this
spot looks up slender coats on thickened
app. of a. pel & a op. in the a. germination
is due to presence of fat tissue in middle which
is much thinner in central than in per-
ipheral parts. At the time when a. pel is
det. a op. - 3rd - may be found, when
louvre as well as middle coat opens pro-
- nut quite made out. It has now arrived
in man at the point when coat are den-
- sely ^{many} firmly so appened. After removal
the traces of the nut or a cyl. of organ
must remain. This is the a. gem cha-

of the 4 class of vert in the pinct d. they
differ 1st. seen that the gem of any vertebrate
are. when ^{aid} ^{and} move before segments
that it can in contraction spreading out
so gem units may grow 2 seen that
segment may be reg ^{and} a directly influence
or in turn ^{ale} ⁱⁿ relat to the anabolism
3 seen that mode of segment is in all
vert on the same ex. in tri. 4-6-8-12
but while gem has segment intracytoblast
cells 7 is mode called regular segmentation
seen that org. of fish Rep & Nerv
contain gem as a reper bid from theyself
while in Amphi or manum gem contain
theyself a granule cytol ex. called the
1. Mesoblastie 2. clad Heteroblastie.

In former seen that only gem segment. in
latter. all the lie with vital membrane
segments. say in one hand that only gem
segment in that all the arm.

2 may reg that Meso bl called muscle with pos.
holob ovule under total ecto

There point from one vein ^{between} channel
2 series from point opening to the vein cavity
seen that a ^{part} of segment goes on, that is made
be one vein is raised ^{above} well & a cliff &
it into a true cavity, as in Holobl there does
not exist a separ ^{between} between ^{the} segments
cavities established inside the vein, but in
both cases a distinct ^{line} made between that
part of the vein which remains over the segmental
cav & the other wh is formed in floor ^{below} vein
cav - either from beginning or wh has become
to be on floor while cavity is developed
in Marsh ^{water} no elements of the vein remain
in the floor of the cavity, these called ^{water} ^{sed}
elements. In Holobl ^{the} ^{water} ^{sed} elements
inside the elements wh are below the cavity
& project up to the other pole called also from
them ^{water} ^{sed} Similar things may be looked for in Marsh
over ^{the} ^{water} ^{sed} in bottom of first large element
wh resemble ^{analogous} to the pneumatic ves-
icles their position are not quite evident. In Marsh
there ^{are} in Nahr the form also play an imp-

In fishes fish otoliths
inflit of deg. easily migrate toward periphery &
from the 3rd & 4th layer, i.e. the Neuro-ganglion & or
epithelial glandular. In ramenay in Ratra
or from elements often ^{peripheral}, are displaced & from
3 epithelial layer. In Rana see that also the development
of tel fish there is differ ⁱⁿ ^{the} primitive
elements which migrate toward periphery
and from a 3rd & 4th but from the middle middle
layer. These lower & mid layers in Rana
and some from we don't know, may be
that, this mass of epine element in manu-
ra, are important for develop either the
middle or lower layer. Chief difference
as reg ^{and} the coat in the 4 clape area
below. In tel fish & Rhabdus ^{area} & coat
in Randa manu 3 coat. Upper & ² nd coat
of tel fish that come ^{and} to up of Randa
mannus. And in tel fish that from central
part of upper coat the central part of nervous system
in main part the epid. ^{area} & the epithelial gland

In older fish skin ^{the} center ^{is} thin, eyes & gills &
lips ^{are} ^{also} thin, ^{but} the 2nd part - white epidermis ^{is} ^{thin}
the upper. 3 of tele fish & 8 of ^{adult} ^{fish} & ^{much}
Wundermann is the most skin layer
but muscular connection & recognized
again. 4 in Tel fish skin ^{which} = lower in
thick in Birds & man - Epithel of glands
^{epithelial} ^{and} ^{inner} ^{epithel} of the gland
layer as ^{inner} ^{membrane} epithel of the gland
Tremors of old fish may not troubled with human
layer of ^{inner} ^{membrane} the same layer. The skin
layer will much thicker than the skin membrane.
Remark is followed in terminology. A well
diff in oral flabby trigeminal cavity
in Tel & 8 of ^{adult} does not develop and
oral but peripherally (the cleft of nose gives
water pulse for a) In lateral pulse embryonal
peripherally the peripheral thickening, while in adult
upper right in the center over segmental carotid
gives appear to be the case in mammals but
in all the vein via embolus had same that ⁱⁿ
main part of Plants, i.e. the Bladderwort ^{which} on
a Tel fish all gives ^{inner} ^{membrane} peripherally

the yellow is colourless - so that it - the embryo - in
short it has a sac - the yellow sac - In Rana
the a similar thing is the case, but it does not
surround the yolk. In manuel also a sac
- the amniotic - it surrounds the yolk
but part of it has transformed itself into the
yellow sac

Lecture

First deal of the dev organs will begin with
the nervous system. Remember and that is
that the dorsal pialys are that few
it is by the ^{or hypomorphous} dorsal canal. it is parallel
to the longitudinal axis of the body. Thus they
are off the body in thickness of the
two nervous layers. In a certain trans-
verse section you see the dorsal pialys and
at same time seen the dorsal spine a dor-
sal column which borders. The pialys lined
by either of the upper layer. Dorsal pialys
grow toward each other & finally coalesce
as a canal this is the central canal of
the central nervous system. It wall up the central

venous system. The central canal does not close all along at the same time, & part which rises up to a place between fulcrum head & neck, but more in the neck from the point the fold evaginates toward the tail & head just before the neck then remains a point when central canal does not close & that point up the proboscis & orifice of vent. & at the last part remains a long time undivided. That part which is called brain is soon transferred into a vesicle the canal gets distended, wall thickened & from this vesicle becomes divided - upper - 3rd curve into 3, in 1st upper anterior column & the middle & 3rd the posterior column. This is all known about it in Balrachia. Develops better known in Birds & mammals

Now about 14 hours after hatching app. in A. pallidus in the yolk shell are of aque type (1) when one pole below the other

From the apex of the anal end due to
development of the central part of the middle
layer. Somewhat smaller, cubic part of up-
per layer thickened or, element mixed
with those peripheral parts of the middle. This
process plays important part in the destruc-
tion of the tissue of the pre-genital tract.
Abundant & older process cubic part of upper
by several processes extend from it. The
anal end stellate gives rise to two
bands of two clear & dark areas. They
gradually become & finally coalesce. In
the young dorsal geno-stem the small irregular
tissue system only diffused. In old
adults - lined of the upper layer & the com-
posed of a large cells which are derived
from the upper layer. In bud each anal
has not a lining of special cells, in Bal-
in Bal super the epithelium of the central canal
the central cavity is closed in most
anterior part small, cubic & that portion is very
open at the base rhomboidal & surrounded

Anterior central venule from a curvature in
such a way that the muscle may be closing
for ~~the~~, put a nerve the ante-bran + gen
organ to get the capillary spirit. The put
put of anter venules is called. Informed.
by brain + gen organ to the ^{anterior} open after
middle central venule. Middle central
ves give organ of Clapier Quadrigeance
Post central venule closed into Anterior spirit
from primary posterior brain or organ the cent-
rallum spars varolio. Post part of Post venu-
le organ to medulla oblongata. At that time when
venule diff'nt ^{the} curv of the head is
like this the middle central venule is
the highest point in the curve, & that between
the middle & anterior is the vertebral curvature.
Same process as in this is in mammals
as Barn. Renal as in dogs rabbit etc.

1. ^{central}

]^⑧ C ² the wall. In the middle of the cell
the lie muscle become elongated
+ tense at the eye spell partial
cane. While other acting

sublum of Cen. ne. & rem put pul by Cen.
de 87. wh app it ha expanded upon the gan-
glia of first spinal cord from the ant
part of the body of C. h. I. a cliff past from wh it
springs out films = the root of the mitrione-
m. & Ant. n. system give right organ of
spine to one & Ant. cerebellum slender un-
equal n. to organ of right ear. The
Post cent or 3rd m. n. in n. of organ of
hearing two other organs in modern com-
wall C. h. system

The Eye

studied in Chick & man & in the
same in both. In a chick the ant cere-
bellum & optic lobe of 2nd day meet
in all the wall of eye forms a
process into wh the lumen of the central
nerve extends. This process goes up behind
spinal & can clearly see a nucleus body
in it. It says the prim eye muscle & the
one also up the corner. Eyes also spread

W^o eye vein like get thickened on stages
in upper border of prominence. other gins
will then pass h^o go toward & get pushed up
anted the thicker part like up to the
lens ^{able}. Then put thicker like eye vein like
a depth in except the thicker gins
as the thicker part be more separated & then
transformed into the secondary eye vein
"secondary eye vein". The middle central eye vein
3 3 ^{with} give way like this. the ex-
central give way to the lower or second. The second eye
vein connected with the central vein like a neck
& I open the new opening.
Some diff in Balrach. Not a single layer. It
over the primary vein as in Balrach there are
two. The Cen. N. & ^{the} a lot deal from a special
layer which escape from the upper one = the new
layer. They do not come in the Water the
upper but from the new layer. The growth
of the field in the eye vein.

In Balrach the lens. In But. A deal from nervous
tissue. The shape of the second in the primary
eye vein like the same in Balrach include

Lecture VI

that the hump of the eye is round at first and then
curved & the coat darker = passing over. Then it
= the retina. Now the lens develop from the cornea-
l layer in the frog like in Batrach. Lens has
a vascular shape, while the post-mid-line part
is cartil. soon after this extends on the corneal
layer. The cartil disappears & the post-vitreal walls
coalesce. By the 8th day the lens is
made up of polyhedral cells arranged in columns with elongated
ones, which become transparent lens fibers. The poly-
hedral ones = the epithel of the anterior capillary
of the lens. At the poles of the membrane are the
points at which the polyhedral cells transform into
lens fibers. A point mentioned by Nollekken. Said that
when developed it can turn a lens. Remove them,
and let after it. Muller who studied the development
before him found that transplants young eyes
into the secondary one due to the develop of the old

in water

17

humour. After the dark eye it has filled out
that space. The C. internum divides. It divides little
all other parts from the middle out.
From the element which surrounds the primary secondary
venule all other develops of corpus vitrum a process
from them all grows the the end of the secondary
eye vesicle a peduncle passing thru a cleft in the secondary
eye vesicle sprouts out its uterum. It divides
itself out the whole comes in the Corpus vitrum
then has been cut specimen & given oblique
to the Corpus vitrum. The cleft projects from the
inner side to middle vein
Choroides ^{developed} next element of middle coat. From
and part of that new joined membrane grows up
a process between two successive layers, these represent
the iris. folded up grows upon it = Corp. albey
I do think Corp. to be given name as a cleft
cannot be produced in it or it develops much
later. Its stylulated like the pale lips found in
lower up of eye full greatly is a cleft. Bar and
lens not a cleft in a lot more pigmented colour
the Capillium rugosum, abnormally & cut in the eye

as coloboma but doubtful if it has anything
to do with it. In every eye you let around a
thin layer at lower surface of eyeball & expose
the choroidal cleft of the embryo. After choroi-
d is separated, there remains another coat ab-
ove the sclera & the anterior part of this in the
same size as iris below covers lens & the lens
& the proper centre of the eye. The capsule splits
off the cornea except that part of cornea which lies
over the lens. When does the capsule often
develop? I know only the middle layer
but capsule almost always found when in. nothing
middle layer can be seen. In earlier stages
of the development of lens it may be found & is easily
excised from it.

Ear older only last prepared that contains
a capsule from centre nervous system. Nervous
system. That I put in is in a vesicle = auditory
nerve. The size: about put with C. N. S. but from
the cornea layer. At first you find only upper in the
well when put from vesicle. after a small time

and at that time already, several anchor
formed saline height even around
such a pit - seen. It get deeper & extends on
the country gradually. But a deep

Remark described the pit. And vehicle can
not enter until remains a vehicle. After
then, just in C. H. S. a and who is bottom
- the new account, who drive for the part
of the position vehicle, or after train. And vehicle
say I fm. elongated club shaped is its pointed
part directed close together, from the upper part
up - supports a process which is the mid-
men of the vertebral & the other end the mid. front
vertebrae. Vehicle get close in fiber process
in canals develop further vertebral. Cobble
process length sand stuff is as far as a piece
ball of sand which is of all the part elongated
upon of the epithelium of the the meat & small
from the surrounding element of the middle.
In Batrachian dent. sand vehicle closest called plan
for corner but from the nerve cap as the bus

I understand that Mr. Farmer says ^{recently} that what
is found in the Ammon layer

Olfactory organ

when I made a section ^{through} just below it a small opening into the olfactory pit.
It does not communicate with a ventrally placed pit.
The latter spike is a thick one derived from the upper layer. set up against the epithel. Found the pit a condensation from the anterior brain.
A slight diff between Lind & Katschka. In them
there was also a pit lined by a thick granular
mass near & of the corn layer, the pit thicker.
appeared they got fused so far away that the
membrane lies the pit. Also in the corn layer
to bend and come all from the mid dh and
by 3 points near head of each of which goes
down. There lie the pit dorsal eye vein and the eye vein
deeply buried of brain spike & then a second, more
so to explain the phenomenon of Cyclops."

Tilapia Fischer

a want of knowledge. Some animals
seen in same way as Red. of stage than nothing

Even C. H. Lyell said that fate. Some of all the animals. About 17-18 day upper in action the mid.
finch jaw bone below too to dental. But first median
appears as a solid process according to Klein
and that the posterior canal sloped in this process
as a cleft.

Lecture vii

Third layer in skin of fins comes from the elements of
the end of 1st day dentifacial granular layer
formed which belongs to a. pell. 24-30 time purple
purple mudd layer is formed. How? The formation of
that part of skin ^{which} call ^{purple} dentifacial granular layer
in development of that part this bares his theory
a. pell.

a. opal — — — — — —
— — — — — — —
candy — — —

The part of yolk in the bl. lies = yellow ring
1st day first imp. changes in colour and in white
yolk. In 1st day eyes can spread out get broader.
by raising a part of the yolk on which the blots
lies

This gives the dome of egg caps. We find now that the matrix has certain reticular like elements & string bodies... & they remain always the same. & the granules, they cannot stand between pure album & fat. These elements look like reticular structures, a membrane, clear cut but & clear at my side. but they are not cells. Before egg caps run up it was all the ordinary white yolk no void that they are cells, as this regards their size that the Bladders will lie smooth upon the "dome" of egg caps but is closely mixed up with clear pale yolk. This says that Bl of one layer and sub-gen procs. like we must give in breadth second layer is formed in this way. This is A. pellus. In A. opaca when the sub-gen per given in the white yolk and then become united & in their meshes white yolk lies. Then following get turned pull out fine cells & fully developed, the former part migrate farther & form a small lymph gland etc. this is what another aspect Paraclastics the whole yolk

30th

This has failed to show that the albumen cells
are not much more numerous element of a. opus
+ yolk my. Kl. mma always separated from
the yolk. In embryo process goes into the yolk
~~down~~ the peripheral part of the middle part
of it develops? It develops from the numerous el-
ement at the floor segmenting

Peripherally round cell same as independent
from formative element derivative of it.
Bloodidium after peripherally round cell
from 12.30 hours after incubation there appears
in a. opus a ^{thin} ^{called} ^{inner} red line appear which
is an ~~out~~ ^{inner} that probably lies near the
lumen is a vessel... outside is the a. vole-
lum or yolk area

we have
In C. P. 3 coal - In a. var. upper cut & part
of middle. in a. vitell. of upper cut.
Called A. var. for most of it to venet dev.
of in it.

Now the organ develop from middle coal,
but mud. pink. comb in a thicker upper
part of up cut. In that central part of bl -
are found in it a differentia calles pleo-
mud cut. the part of it diff into the
central and the nota cord and prolo-ven-
& lamina lateralis. The pink bend the nota-
and on the prolovent. & after further the
main part of middle coal of a. pellucida
is called Lamina lateralis. Some pale velvets
are upon the prolo-ven appear projecting
the main part of middle cut. The Protoveli
have separated above the cuticle in long.
as is. These produce appear so called protoveli
from the surface they will hexagonal bodies said
put four new protoveli head one off. behind
these other appear. These called protoveli. They
are never separate from main part. Middle layer

The Chorda dentata here is dep't app' an
int sp'l curving. ~~This~~ It is the first organ
wh' has differ. in the embryo. It is lateral
sw'ng up into the lam. & between a cl'st. wh' n'g
meets the p'lio-pentined can'. the part abt'
is the p'lio. & the p'lio = the pentined can'.
that part wh' lies abt' the cl'st = called the
m'ntel platt. (sp'lin. m'mule can'). Men call
it ventral cannia. that part abt' lies below
in the h. Rema. interst'li films laye
not p'nted as.

Men call it Lam
sev'a canniat: that down at an
upper thin slurr' thick'le. not as broad
to the a. p'ell. but also in the part broad
in a. var. & other an upp time & dep'ne
thicker which npe the proper vascular.
great run as t' what is vascular.
all round (which is acc'nt'ly less by mea'
in the middle cut. His then averted, that
The right part of the sev'a can' - the var also
cannia

When put on land one touch the land colored
a slight green. With little or no limonite
^{from} ~~from~~ ^{of a part important for the very} surf. the development, irregular tract to
the Wolphus duct. Remained put a week. This
in the sun a end when after he was separated
super the Wolphus duct. Not yet settled when
I leveled for the middle coal at all. The Wolf
dugger ought to be diligent eyes & kidney
he knew that there are spalled structures & know
that spalls do not develop in middle
coal. He therefore was in a long tray that
this coal clings for the upper layer. He changed
his eyes and I leveled for the middle.
Walden says also that it does not for the
middle explains its spalled nature. However
one has upper layer was mixed up with
central part of middle layer. The are about
my curtain in cliff depths not only upon
them upper sand layer & they are to be
well to the upper layer because

The chief part - that will - and develop, p. now
all day

Lecture VII

Last dorsal mid layer in cheek + ar. gen. opercularis. Ch dor
posterior, lame lateralis. wh. labell. gl. not Z. oral. + lower
Z. servia. below them a cleft - pluri-punctured cleft. When
Z. lateralis comes out protus in the end. up enveloped
by. The lam. ventrals with common layer + transfix out
the arm. wh. Z. servia close layer keeps its position toward
the yell. If the Z. late comes from up like a fold - an - wh. Serv.
+ pluteus - gland keeps on surface of yell. Ch dorsal end
a wavy & wavy in neck with another. + ch. wavy polyhedra
close closely packed, when chord gives in the strength
the cells become transfix out vacuole element will
be transacted then ch. grid smooth like a reticula
arrangement. wh. above part possess a nucleus.

Smooth part - Proto-vertebrates. Now - after their appearance
not a central clear part, in cent. clear were, in periphery
small + nuclei comp. this central part. get trans
into a ^{oxygen} cavity tissue in this stage seen as if they would
contain a heart. the den ex. lame called Muscles

long, & give origin to all muscles of the skeleton. Remen
always had muscular mer. cross common layer. While the
den with a ^{oxygen} lame grows hard takes place. Then the
not o. mer. part grows on denum over the central nerve and

beneath corner layer this npr. Lam. m. superior
= the skin of the dorsum, besides from that Lam. origin
the membranous part of the vertebral column especially
the primary vertebral arches from that part of Pro-
tent. wh. lie beside the cent. & synt. develop. the root of
the nerves spinal and spinal. & the spinal ganglion. The
P. vert. also grows also all round the dorsum & that
wh. has grown round represents the bodies of the vent.
bones see that from the P. vert. dev. ^{up} _{cerv.} Spinae Laminae, vert.
arches bodies stretched. spinal ganglia & roots opp.
and nerves. Lam. lateralis, split in 2. ant & Lam.
the part of L. vert & L. sac. being t. cunig. all while
the in appelle the bone into a part of the osseum
have in h. deal what been will that part wh. belongs
to the sinf. If imagine at the stage wh. sufficed for
Hart-dens. the L. key my. annual of vertebral column
and part of corner layer wh. covers it. When L. R. infra
an imp. small tables place out it shows us again
in the P. vert. wh. began to grow in all all part of the emb.
also into the L. cerebralis. the sp. vert. upper in 2. by
extremal & interval. wh. under the plex. - pecten cleft-shells
does two clear. the proto. dent. prove.

From these four layers, fold develops, & 1 layer granular.
- bone skin - gl obular fold. Membrane, soft muscle
of skin & body. 3 layers wh origin of int p of P. v
= Cartilages, bones and to the nerves. From 4 th layer
lens in chart the P. costalis in abd, the Peritoneum
pancreatic. Arched until the skin & nerves of dor develop
in front of that membrane of P. v given together wth. with
C. ver syst & arch the sun back wards. but is suspended. it
develops from L. ren superior. Ren sproutd layer
behind the Wolff n & serous lamina. Wolffian body
fold in neck first part a end opp wh P. v branch the
L. laterals. 1 closed. soft transm in a tube like
body. that = Wolffian body. n of left leg part fur = Wool
duct. As Ren fold develops. co exch veins also & other
genitalia P. v & 2 vent grooves. & wool body get
now toward the median line. From this is an evagination
of the wool body but has the same structure as the adult
ones. It has only a transm of Vater as the line that develops
again from a different layer, the pen one from the epithelial
cylindrical layer. Keeps the skin down during the growth
of Wool body poster the way on the testicle. besides the
wool duct another one opp. Muller duct in male it does not

while the wool dud - was of several scumulus
& parapidymis. In few null dud upon the web
was part of vagina. Also a male I do not draw
in - the venae prorsat as the man of Miller dud
in the male. Head or pulpular is very
separately from part of Bl. Then the tail & then
also that the head part & sort of curvatures
after then back down I tend with a small addition
so - curved - joined. Cephalic lumen - P. be off.
head but do not up in the Za. lumen & this
part before goes down ^{and} forward so that there is
joined a part down the curv head but also the bend
of the cephalic lumen down forward. Then comes - the troph
anterior carpal - anterior to it called. fore carpal
aca a in the the head appears

that deal as a card which hold their hair of ab
a tube. See in when does the history. how the idea on
of the head develops. now call it all it is a solid
that is surrounded by the serous layer. The left
can goes down spin in the neck part here cephalic
comes you in media line as well as the Z. very inf. join
for the sake of the head extensio n. abrupt line of dis-

durl... As the vein lies in the chelv. ab or the Chelv.
you don the spull gla. goes in a gen. way deeper
deeper till a closed canal is formed, then the miles
canal closed full but closed so at the end & e. close
when the heat appears, & at first heat which is
pr. blyf the walls of the chelv is formed, said that the
heat develops as stage of the serum lamina. like a
atom point.

2 6/2/73.

Lecture.

1834 Schu said that all tissues der. fr. cell. schmid had
antennal cells get elongated and after split off mi-
fibrilla tissue - connective tissue. Heule. opposed
he said that fibrilla lie. devel. fr. inter. cells subl
we find such. cells also in clear inter. cell substance
wh. give origin to conn. tissue. (that in 48.) In 47. Bahm
he said. in certain stage cell dev. at spindle &
branched cell. when prunes upon one single
part of the fibrilla tissue. so these doctors. with
pr. a number point time surround. with each other
it is not yet rolled. until. so many monograph
which always in Brichow in 1850 came from with
his doctor. the center below this scutular layer.

now moved which changed his opinion 2-3 times
but afterward he concluded Schröter's & became like
Kreile that it did for multi-cell.. Donders thought that
the power of the branched syncytial cells became
slighter and caused time delay. In 61 Schultze
in Müller's Archiv. of wh. in 1909 published title "Growth
epithelium should be called a cell" in this he put down
that "every intercell space is a cell from cell - protoplasm"
he says that even this fails as well as any rubber
sheet or transparent paper. but not in case a
protoplasm itself becomes after some time but in case
of the protoplasm element passes the form ^{radioactive} action
by means of which a tissue is formed from the protoplasm
lamin. So fibroblast tissue not only in the surface but also
within cells. Any cell may produce any quantity of fibro-
blast tissue without a haematoxylin supplied with nut-
rient. Brücke did not agree. And I him even com-
monly that derived from one cell. Skins embry.
or other kind of epidermal cell can be traced to origin
spherical stem. At first time ends ^{air} - spindleshaped
cell. Each lengthens till all protoplasm forms
out wh. uneven length. Along a wall elongated
one prot. Nuclei disappears. Kreile changed in 67 years
Brücke - right. There went one protoplasm and

says that. for tissue level for intercellular spaces
that has often been described as layer of connective cells &
into which in myomatous tissue becomes a
bundle of rings. he says that they develop as small
spindle shaped between them. Against that Shattock
says in myxoma of lymphocytic cells to many
not bundle of spindle tissue each one with a bundle
of pl. . . . Wald. says same as Shattock. Schwan
makes a comparison between the cat & cobra. Stein
says he now of Nollert. finds that all all profunda
of all cells are not strong enough to disrupt what is
seen that a clear intercellular space between the cells
& appears a fibrillar band. Prof. (other) is in rabb.
say big and pull 3 in front of a rod & myxoma
tissue is superior to clearly profunda tissue in the
you find large cells which appear spindle shaped
many seen found the spindle they are only
the profunda tissue of larger flat plates of profunda
which is fibrillar structure. The power of these
cells unite. (2) The numerous tubular areas of
which sponge like in pregn. found in it many
cells. gland like embedded in a basal matrix. hardly
can see bundle & he even but spindle shaped
and branched cell group about the nuclei. about other
parts spindle like all form a net - work. Proven

19 Aug. 1888 - 10 AM

can be followed for a short distance and always ends again with a process of small nerve fibers in our hair bases. Some in secondary reflexes. Little cell & fiber processes from a network. (3) A very young tend shows very small cells gradually blend older ones between them delicate pale bands of connective tissue. Tendons of young animals over hair bundle below all have a certain thickness which is uniform to an area 2-3 mm. apart both from hair part clear till they get full thickness back along the same. Cells flattened. Nucleus plate lying in this bundle. Keratohyalin granules scattered in the spaces in between & all remain resting plate.

Cartilage developing in muscle in. Cartilage cells becoming sharper outlined & sahper below them & delicate hyaline substance. over = hyaline matrix, all cartilaginous hyaline over. Inertia is a. to organic matrix. 2 densities. I think that the matter which runs round the cell is only the thickened

ment of the cub cell cell to ancretin of the cells

(2) is that the hyal is outbrang cellular nucleus
Part of it, that all intercellular humus cell
substance made the cancer, that then profited all
for this. Quality of the of mle cell matrix is derived
from intercellular mle cell matrix is derived
as one v. the size of cells remains always the
same. Also, so called mle vent cartilage is in
close contact with the perich & pemph. especially
prox of tail in rodents. Then you find cub cell
in hyal matrix & this can be found open to
the vomit st cupus. be same contact with
the cartilage cells, as there is a direct continuity
between the matrix & the mle cell sub of the cubular
cells. If you follow this stage, the cub of the
cells cell remain in same condition. Bone
der mle cart. membran. or subperitoneal
most closely intra cartilaginous, as shown, that
will come for membranes. Nam yam not
membrane. What mle cart or intra membrane
always grows in thicker subperitoneally. Develops
of cub little place as follows. Matrix of cart
table esp inorganic elements for results wh
is depend on the mle cell matrix as 1

In the lime deposits - cubic or square
cells proliferate, divide when as at same time, deposit
is again absorbed & another may come, and former
wh contain along a vascularizing cell. Opposite each
cell is also similar to vessels, and as this goes on the
whole calcareous mass of the sponge sub. will be
filled with too vascular element & that calcified
partly by an opacified calcareous cellulose & cellular
does not go on with same rapidity as the vessel. The
sub. wh fills the lacunae a medullary sub. There
cells in the lacunae, be more or less regular in the
habitat of the spongey sub. given polyhedral cells
with one or two or more nuclei & these called spherulites
for they play an imp.

Histogenesis

shift from main part of the tissue
the upper one - is separ. wh represents the
vascular lamina & that they appear as cords fall
in that vascular coat the cell wall are derived
from the yolk at first solid. soon a clear space
under the lumens of future vessels. The theory in
wh the new app as cords feels is not generally
assumed. Schwann in 1838 gave a system of cells
& said that capill. develops from embry. cells which
are branched & unite from tube of coalescing.
But now Protoplasm all cells gain over. now al
the tuba. Schwann's theory upset & Stoeber modified
as follows. He said in Carl Glad. in cell formation
& compa. diff stages of develop. we find in later by
the yolk process. spindle shaped branched. This cell
become hollowed vacuolated other yolk protoplasm
cells wh contain granules & smaller clear cavity filled
with a fluid. Branched cell form a net. until such
vacuole nearly become continuous the process
of a network of tube with dilat & constri. the wall
- protopl. & - form protop's of cell body. This aneroid
contains of the other there will collect nuclei or

could not agree that. Except when *Obelia* - anemone
could show it was made up of nucleated plates. So I had
could not be right according to *Obelia* anemone. who showed
I show that the cells form a number of cells. Strictly
right shall return to it again. We know ^{now} from Remak
+ his as to cups developed first. As an. says in
blast of shell in 1st day, or 2. on surface over.
in a shell. venule. after a few days + shape. the walls
when made up of cells. should show overall +
import 1st for walls. 2. no cups. 3 inter-
vascular tissue. The space below the venule. no open
wall they represent the fulum. vessels. 1. And over
develop will out wall in the tissue. all small ves-
icles out to cups. Others grow toward cup. After
venules. + a network. = after intervals of time
Take stage. Vanuxem agrees with Remak
Klein's views. Would try to form clean wh-
be in form of eggs. early. older. younger. Then form
cl. of same class at that stage. in surface over
in a shell the following ① large slanted with
cavities. ② other form, gran. less like an
egg. ③ others are just with many nuclei.
But often both such which are mixed get diffus-
tention ④ cut which cross the nuclei at but yellow

capill v; distinctly yellow. In the peripat pale.
when central part diff. not darker cell, then a periph
pale protopl. filled with cohered os. wh have dev
eloped endogonium. Other branches or spindle
shaped cell in wh same changes occur in. The
vesicle called Endothelial vesicle. The walls
develop as foll. (Figures given for the protopl. of the vesicle)
In an earlier stage such endothelial elements. Wall of
these capillary tubes is nucleated protoplasm
^{to} They all develop endogonium, the walls of which vesicle remain
as wall of the vesicle. It is to be noticed that in inflam. circ. at a certain stage that large
cysts filled with yellowish blood elements?
the walls become continuous with new primed to vesicle.
Blood cysts accord, Ruthless my form. pathognom.
New form in given in adult of caps. vesic. always
capit clebs from cells. solid elements of vacuolation
occupied for all parts. How is that wall of
adult caps - number of elements. ~~number~~
When prot. cell has developed into a vacuol. cell
will have nuclei wh finally become irregularly
arranged. In some instances was vacuolous
they became more apart. till in regular interval
in the protopl. substance a diff. latter place, one

manni albinius. If so, then it does live in the
I examined the blood of common white inflamed with this, a
paw always clear & the lymphatic vessels never in
the centre an protoplasm & an solid, & the bases
of the vessels project out these masses, &
In the intercell. solid different has been shown (Am.
Capillæ) an then always developed from solid protoplasm
the wall of which after a division into cells called the
endothelial cells. and in such state to cap. develop
endogenously or it alls a new cell after leaving
it colured cells. All vessels at first little capillaries
one to even my hands not a no. of capillaries, in
same was as young cap. has formed from solid pro-
toplasm growing out from their walls & a hollow
hollowing. & also hangs out a loop. / division
performed then. I give a length already. - a second
growth vessels. - Not necessary that all vessels in celo
that have developed from me has perhaps
and all others of growth of alveoli formed tubes
from them. also & muscle special development from
inner part of middle coat. Lymphatic
seems me a vessel of Koller in tadpole tail
they do not have a capill. sac to him they develop
from a muscle cell she told that for the last

may a person assume that this is the case for lymph
is. Whether or not vessels, Klein says in adult state
in some part always a new form of lymph vessels
same in inflamed. as the other veins are. The
devel. of lymph vessels in the tissue same as emb.
of blood. viz. cells of connective tissue become vascular
the wall much protoplasm which fills the body
of the branched all. a m. which enlarges. get prom.
nence, & they elongate so as to a little the
wall of which = protoplasm. Develop new form
& dev. lymph vessels in adult in infl. state
is. or capill. give ~~develop~~ harpoon
the begin an elong. pr. while ly. capill. for
long posse a vesicular form. Gland. 2 acute
brach. said that develops when a number of lymph
vessels found, upon the wall of the vessels.
adhered turn grow up. a nucleated tissue cap
of cells. Recently. Salvi says they develop on
walls of vessels especially arteries. a nucleus
grows out from their wall the nucleus which
an occupied by lymph corpuscles

