Quiz 3.1 - Entropy

Name: Kon

Carnot cycle

Consider a heat engine based around the Carnot cycle. Sketch this cycle on a p/V diagram, labeling the

states in the process as A, B, C, and D

Tell which direction around this cycle operates as a heat engine, and which direction operates as a heat pump

Fill in the table below for the cycle when operating as a heat engine. Use generic variables (C_V , T_H , T_C , V_A , V_B , etc.)

Step	w	q	ΔU	ΔS
A-B	$\left -nRT_{H}i_{n}\left(\frac{V_{b}}{V_{A}}\right)\right $	+nRTH (N(V)	Ø	nR ln (Va)
В-С	(v (Tc-Tu)	Ø	(V(Tc-TH)	Ø
C-D	-nRT (n(Vp)	+ nRTc In (Vo)	l Ø	InR ln (V)
D-A	Cv (TH-Tc)	Ø	(v(TH-Tc)	Ø
./4.7.65.4)	1 .nf- (18) TI (2)	17 n(-1(B), T, (B)7	OS	10/1 (Va) 11 (Va)

- PR Ln(VB) (TH-Tc) + PR Ln(VB) (TH-Tc)

$$=\emptyset, \ \xi_0 \left(L_n \left(\frac{V_b}{V_c} \right) = - \left(n \left(\frac{V_b}{V_A} \right) \right)$$

A car engine is a type of heat engine, and burns gasoline burns at about $600\,^{\circ}C$. If the ambient temperature is $25\,^{\circ}C$, what is the thermodynamic maximum efficiency a car engine can achieve?

$$77 = 1 - \frac{T_c}{T_H} = 1 - \frac{8298 \, \text{K}}{873 \, \text{K}} = 0.659 - 0.659$$
 efficient

Measuring molar entropy

He has $T_{boil}=4.25~K$ and $\Delta H_{vap}=83\frac{J}{mol}$. The isobaric heat capacity for liquid helium is very complex, but can be approximated as $C_p(l)\approx7.4\times10^{-3}T^3\frac{J}{mol~K^4}$. The isobaric heat capacity for gaseous He is simply $C_p(g)=\frac{5}{2}R$. Use these data to calculate the molar entropy for He gas at room temperature, and compare it to the value given in our textbook appendix.

$$S(248 \text{ K}) = 7.4 \cdot 10^{3} \cdot \frac{7}{3} \cdot \frac{1}{3} \cdot \frac{7}{3} \cdot \frac{1}{9} \cdot \frac{7}{9} \cdot \frac{7}{9} \cdot \frac{1}{9} \cdot \frac{7}{9} \cdot \frac{7}{9} \cdot \frac{1}{9} \cdot \frac{7}{9} \cdot \frac{7}$$

Consider a spring which obeys Hook's law: F=-kx where x is the displacement away from equilibrium and $k = 650 \frac{N}{m}$. The acceleration due to gravity is $9.80665 \frac{m}{c^2}$

 \circ Calculate the equilibrium displacement if a 10 kg weight is placed on the spring

Fspring = Fgravity
$$-650 \frac{N}{m} \times = 10 \text{ kg} = 9.80665 \frac{m}{52} \times = 0.151 \text{ m}$$

Considering the same weight-on-a-spring in Problem 1:

Calculate the work done by the falling weight.

How much work would be done if instead the spring was stretched reversibly to the same equilibrium displacement. Bonus – Explain the discrepancy!

displacement. Bonus - Explain the discrepancy! Spring force = applied force The free-falling weight
$$\int dw = \int F dx$$

$$W = \int -650 \frac{N}{m} x dx = -650 \frac{N}{m} \cdot \frac{1}{a} x \int_{0m}^{-650} = 7.4 \text{ J}$$

The spring-weight system will lose kinetic energy through friction with the air until it rests at its equilibrium position. What is ΔS for both the reversible and irreversible processes if they are done kinetic energy.

librium position. What is $\Delta S_{universe}$ for both the reversible and irreversible processes if they are done at room temperature $(25^{\circ}C)$?

Teversible:
$$Q_{ev} = \emptyset$$
 So $\Delta S_{universe} = \emptyset$, $\Delta S_{sys} = \emptyset$, and $\Delta S_{sun} = \emptyset$
irreversible: $\Delta S_{sys} = \sqrt{\frac{q_{ev}}{T}} = \emptyset$ $\Delta S_{sun} = \frac{q_{evs}}{T} = \frac{7.4J}{2000} = 0.025 \frac{J}{K}$

$$\Delta S_{uviv} = \Delta S_{sys} + \Delta S_{sud} = 0.025 \frac{J}{k}$$