Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 (1)

1 Vectors

parameters	values	description	
m ₁	$\begin{pmatrix} 4 \\ 0 \end{pmatrix}$	AB	
m ₂	$\begin{pmatrix} -6 \\ 2 \end{pmatrix}$	ВС	
m ₃	$\begin{pmatrix} 2 \\ -2 \end{pmatrix}$	CA	
A - B	4	length of AB	
B-C	6.32	length of BC	
C - A	2.83	length of CA	
$ \begin{bmatrix} \operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} $	3	non collinear	
\mathbf{n}_1	$\begin{pmatrix} 0 \\ -4 \end{pmatrix}$	AB	
c_1	4		
n ₂	$\begin{pmatrix} 2 \\ 6 \end{pmatrix}$	ВС	
c_2	4		
n ₃	$\begin{pmatrix} -2 \\ -2 \end{pmatrix}$	CA	
c_3	0		
Area	4	Area of Triangle	
∠A	135°		
∠B	18.43°	Angles	
∠C	26.57°		

TABLE 1: Vectors.

Fig. 1: triangle plotted using python

2 Median

parameters	value	description	
D	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	BC midpoint	
Е	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	CA midpoint	
F	$\begin{pmatrix} 3 \\ -1 \end{pmatrix}$	AB midpoint	
m ₄	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	AD	
n ₄	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$		
c_4	2		
\mathbf{m}_5	$\begin{pmatrix} -5 \\ 1 \end{pmatrix}$	BE	
\mathbf{n}_5	$\begin{pmatrix} 1 \\ 5 \end{pmatrix}$	BE	
c_5	0		
\mathbf{m}_{6}	$\begin{pmatrix} 4 \\ -2 \end{pmatrix}$	CF	
\mathbf{n}_6	$\begin{pmatrix} -2 \\ -4 \end{pmatrix}$	CF	
c_6	-2		
G	$\begin{pmatrix} 1.67 \\ -0.33 \end{pmatrix}$	Centroid	
BG GE CG			
$\frac{CG}{GF}$	2	Division ratio by G	
$\frac{AG}{GD}$		·	
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix}$	2	collinear	
	-	555	
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{pmatrix}$			
(C I G)			

TABLE 2: Median.

Fig. 2: medians plotted using python

Fig. 3: altitudes plotted using python

4 Perpendicular Bisector

description

value

parameters

3 ALTITUDE

			parameters	varae	description
			m ₁₀	$\begin{pmatrix} 2 \\ 6 \end{pmatrix}$	4.0
	1		n ₁₀	$\begin{pmatrix} -6 \\ 2 \end{pmatrix}$	AD_1
parameters	value	description	_		-
\mathbf{D}_1	$\begin{pmatrix} 1.4 \\ 0.2 \end{pmatrix}$	Foot of altitude from A	C ₁₀	-12 (2)	
$\mathbf{E_1}$	(3)	Foot of altitude from B	m ₁₁	$\begin{pmatrix} 2 \\ 2 \end{pmatrix}$	BE_1
L ₁	(-3)	Toot of annual from B	n ₁₁	$\begin{pmatrix} -2 \\ 2 \end{pmatrix}$	
$\mathbf{F_1}$	$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$	Foot of altitude from C	c ₁₁	0	
m ₇	$\begin{pmatrix} 0.4 \\ 1.2 \end{pmatrix}$	AD_1	m ₁₂	$\begin{pmatrix} 0 \\ 4 \end{pmatrix}$	CF
n ₇	$\begin{pmatrix} 1.2 \\ -0.4 \end{pmatrix}$		n ₁₂	$\begin{pmatrix} -4 \\ 0 \end{pmatrix}$	CF_1
<i>c</i> ₇	1.6		c_{12}	-12	
m_8	$\begin{pmatrix} -2 \\ -2 \end{pmatrix}$	BE_1	О	$\begin{pmatrix} 3 \\ 3 \end{pmatrix}$	Circumcentre
n ₈	$\begin{pmatrix} -2\\2 \end{pmatrix}$		O - A O - B	4.48	OA = OB = OC = R
<i>c</i> ₈	-12		O - C		
m ₉	$\left(\begin{array}{c}0\end{array}\right)$		R		
	(-2)	CF_1	∠BOC	90°	$\angle BOC = 2\angle BAC$
n ₉	$\left(-2\right)$	Ci i	∠BAC	135°	LBOC - ZLBAC
119	(0)		∠AOC	36.8°	.40G 2.4BG
<i>C</i> 9	2		∠ABC	18.4°	$\angle AOC = 2\angle ABC$
Н	$\left(-1\right)$	Orthocentre	∠AOB	306.9°	$\angle AOB = 2\angle BCA$
	(-7)	Orthocolitic	∠BCA	26.6°	

TABLE 3: Altitude.

TABLE 4: Perpendicular Bisector.

Fig. 4: perpendicular bisectors plotted using python

5 Angle Bisector

parameters	value	description	
m ₁₃	$\begin{pmatrix} -0.29 \\ -0.7 \end{pmatrix}$	AI	
n ₁₃	$\begin{pmatrix} -0.7 \\ 0.29 \end{pmatrix}$		
c_{13}	-1		
m ₁₄	$\begin{pmatrix} -1.95 \\ 0.32 \end{pmatrix}$		
n ₁₄	$\begin{pmatrix} -0.32 \\ -1.95 \end{pmatrix}$	BI	
c_{14}	0.37		
m ₁₅	$\begin{pmatrix} -1.66 \\ 1.02 \end{pmatrix}$		
n ₁₅	$\begin{pmatrix} -1.02 \\ -1.66 \end{pmatrix}$	CI	
c_{15}	-0.63		
I	$\begin{pmatrix} 1.26 \\ -0.39 \end{pmatrix}$	Incentre	
\mathbf{D}_3	$\begin{pmatrix} 1.44 \\ 0.19 \end{pmatrix}$	Point of contact with BC	
$\mathbf{E_3}$	$\begin{pmatrix} 0.82 \\ -0.82 \end{pmatrix}$	Point of contact with AC	
$\mathbf{F_3}$	$\begin{pmatrix} 1.25 \\ -1 \end{pmatrix}$	Point of contact with AB	
$ \mathbf{I}-\mathbf{D}_3 $			
$ \mathbf{I} - \mathbf{E}_3 $	0.61	$ID_3 = IE_3 = IF_3 = r$	
$ I-F_3 $	0.61		
r			
∠BAI	67.5°	$\angle BAI = \angle CAI$	
∠CAI	07.3	LDAI – LCAI	
∠ABI	9.21°	$\angle ABI = \angle CBI$	
∠CBI	7.21	21101 - 2001	
∠ACI	13.28°	$\angle ACI = \angle BCI$	
∠BCI	15.20		

TABLE 5: Angle Bisectors.

Fig. 5: Angle bisectors plotted using python