Matemática IV Autovalores y Autovectores

A. Ridolfi (PT), M. Saromé (JTP)

UNCUYO - FCAI

Ingeniera Mecánica

2018

Contenido

- Autovalores y Autovectores
- Digonalización de una Matiz
- Transformaciones de Semejanza
- Ortogonalidad
- Mínimos cuadrados
- Bases ortogonales y Gran Schmidt
- Factorización A=QR
- Bibliografía

Autovalores y Autovectores

Definición

Sea V un espacio vectorial sobre K y sea T un operador lineal sobre V, Un autovalor (o valor propio) de T es un escalar λ de K tal que existe un vector no nulo $\mathbf{x} \in V$ con $T(\mathbf{x}) = \lambda \mathbf{x}$. Si λ es un autovalor de T entonces:

- a) Cualquier **x** no nulo tal que $T(\mathbf{x}) = \lambda \mathbf{x}$ se llama autovector (o vector propio) de T asociado al autovalor λ .
- b) La colección de todos los **x** tal que $T(\mathbf{x}) = \lambda \mathbf{x}$ se llama espacio propio asociado a λ .

En particular, λ es un autovalor de una matriz $A_{n \times n}$ si y sólo si $A - \lambda I$ es singular:

$$det(A - \lambda I) = 0$$
 Ecuación Característica

Cada λ está asociada con vectores caracteríticos **x**:

$$(A - \lambda I)\mathbf{x} = 0$$
 o bien

 $A\mathbf{x} = \lambda \mathbf{x}$

Propiedades

Si $A\mathbf{x} = \lambda \mathbf{x}$ entonces, para el mismo \mathbf{x} ,

- El autovector x está en la misma línea que Ax;
- A^n **x** = λ^n **x**, $n \in \mathbb{N}$;
- $A^{-1}\mathbf{x} = \lambda^{-1}\mathbf{x}$ (si A es inversible)
- $\bullet (A+cI)\mathbf{x} = (\lambda+c)\mathbf{x}.$

Además

- La ecuación $det(A \lambda I) = 0$ nos otorga n autovalores.
- $det(A) = (\lambda_1)(\lambda_2)...(\lambda_n)$.
- Traza de $A = a_{11} + a_{22} + ... + a_{nn} = \lambda_1 + \lambda_2 + ... + \lambda_n$.
- Las proyecciones tienen $\lambda = 1$ o $\lambda = 0$.
- Las reflexiones tienen $\lambda = 1$ o $\lambda = -1$.
- Las rotaciones tienen autovalores complejos: $\lambda = e^{i\theta}$ o $\lambda = e^{-i\theta}$.

Ejemplos

• A Identidad
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• A Diagonal
$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

• A Triangular
$$A = \begin{bmatrix} 1 & 4 & 5 \\ 0 & \frac{3}{4} & 6 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$$
.

Si A = LU los autovalores de U están en la diagonal pero **NO** son los autovalores de A

Diagonalización

Los vectores característicos diagonalizan una matriz

Propiedad

Suponga que $A_{n \times n}$ tiene n autovectores linealmente independientes. Si estos vectores son las columnas de una matriz S, entonces $S^{-1}AS$ es una matriz diagonal y los autovalores de A esatn sobre la diagonal:

Diagonalización
$$S^{-1}AS = \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

Demostración:

Probar que $AS = S\Lambda$

- Nota 1 Si los autovectores $\mathbf{x}_1, ..., \mathbf{x}_k$ corresponden a k autovalores distintos entonces estos autovectores son linelamente independientes.
- Nota 2 Si los *n* autovalores son distintos, entonces: **La matriz puede diagonalizarse**.
- Nota 3 La matriz de diagonalizacin *S* no es única. Las columnas de *S* pueden multiplicarse por constantes no nulas.
- Nota 4 Matrices S que no contengan los autovectores, no producen una diagonal. El oreden de los autovectores en S es el mismo que el de los autovalores en Λ .
- Nota 5 No todas las matrices son diagonalizables. autovalores repetidos pueden o NO dar autovectores linealmente independientes.
- Nota 6 La invertibilidad de A depende de los autovalores no nulos.

Si A es diagonalizable y S diagonaliza a A, entonces S también diagonaliza a A^k y

$$\Lambda^k = (S^{-1}AS)(S^{-1}S)...(S^{-1}AS) = S^{-1}A^kS$$

La solución de una ecuación en diferencias $\mathbf{u}_{k+1} = A\mathbf{u}_k$ es

$$\mathbf{u}_k = A^k \mathbf{u}_0$$

Matriz exponencial
$$e^{At} = I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + ...$$

La solución de la ecuación diferencial (SEDO) $\frac{\mathbf{u}}{dt} = A\mathbf{u}$ es

$$\mathbf{u}(t) = e^{At}\mathbf{u}_0$$

Si
$$A$$
 es diagonalizable: $\mathbf{u}(t) = Se^{\Lambda t}S^{-1}\mathbf{u}_0 = c_1e^{\lambda_1t}\mathbf{v}_1 + ... + c_ne^{\lambda_nt}\mathbf{v}_n$

Dos matrices diagonalizables A y B comparten los mismos autovectores (la misma matriz S) si y solo si AB = BA.

En este caso: Qué relación tienen los autovalores de *AB* con los autovalores de *A* y *B*?

Definición

Se dice que dos matrices A y B de $n \times n$ sobre el cuerpo K son semejantes si existe una matriz inversible M de $n \times n$ sobre K tal que: $B = M^{-1}AM$.

- A y B tienen los mismos autovalores.
- el autovector \mathbf{x} de A corresponde al autovector $M^{-1}\mathbf{x}$ de B.
- A y B representan la misma transformación T respecto a bases diferentes:

$$[T]_{B'aB'} = [I]_{BaB'} [A]_{BaB} [I]_{BaB'}$$

Orotgonalidad

Dos vectores $\mathbf{u} \vee \mathbf{v}$ de \mathbb{R}^n son **ortogonales** si

$$\mathbf{u}^T \mathbf{v} = u_1 v_1 + ... + u_n v_n = 0$$

Además si $\|\mathbf{u}\| = \mathbf{v} = 1$ se dicen que son **ortonormales**.

Designaldad de Schwarz $|\mathbf{u}^T\mathbf{v}| < \|\mathbf{u}\| \|\mathbf{v}\|$

$$|\mathbf{u}^T\mathbf{v}| \leq \|\mathbf{u}\| \|\mathbf{v}\|$$

- Si los vectores no nulos $\mathbf{v}_1, \dots, \mathbf{v}_n$ son mutuamente ortogonales, entonces son linealmente independientes.
- $A\mathbf{x} = \mathbf{b}$ es resoluble si y slo si $\mathbf{y}^T \mathbf{b} = 0$ siempre que $\mathbf{y}^T A = \mathbf{0}$

Problema de mínimos cuadrados

Propiedad

Cuando Ax = b es inconsistente, su solución por mínimos cuadrados que minimiza $||Ax - b||^2$:

Ecuaciones normales $A^T A \hat{x} = A^T b$.

 $A^{T}A$ es invertible cuando las columnas de A son linealmente independientes. Así,

Mejor estimación:
$$\hat{x} = (A^T A)^{-1} A^T b$$
.

La proyección de b sobre el espacio columna es el punto más próximo $A\hat{x}$:

Proyección
$$p = A\hat{x} = Pb = A(A^TA)^{-1}A^Tb$$
.

- A^TA tiene el mismo espacio nulo que A.
- Si A tiene columnas independientes, entonces A^TA es cuadrada, simtrica e inversible.

La matriz proyección $P = A (A^T A)^{-1} A^T$ tiene dos propiedades fundamentales:

- a) Es igual a su cuadrado: $P^2 = P$.
- b) Es igual a su traspuesta: $P^T = P$.

Al revés, cualquier matriz simétrica con $P^2 = P$ representa una proyección.

Bases ortogonales

Los vectores $q_1, ..., q_n$ son ortonormales si

$$q_i^T q_j = \begin{cases} 0 & \text{si } i \neq j, \\ 1 & \text{si } i = j. \end{cases}$$

Una matriz con columnas ortonormales se denomina Q.

Propiedad

Si Q (cuadrada o rectangular) tiene columnas ortonormales, entonces $Q^TQ=I$:

$$\begin{bmatrix} \dots q_1^T \dots \\ \dots q_2^T \dots \\ \dots \\ \dots \\ \dots q_n^T \dots \end{bmatrix} \begin{bmatrix} | & | & | \\ q_1 & q_2 & q_n \\ | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 1 \end{bmatrix} = I.$$

Una matriz ortogonal es una matriz cuadrada con columnas ortonormales. Por tanto, Q^T es Q^{-1} . Para matrices cuadradas ortogonales, la traspuesta es la inversa.

Example (rotación)

$$Q = egin{bmatrix} \cos heta & -sen heta \ sen heta & cos heta \end{bmatrix}$$
, $Q^T = Q^{-1} = egin{bmatrix} \cos heta & sen heta \ -sen heta & cos heta \end{bmatrix}$

Example (permutación)

Si
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 entonces $P^{-1} = P^{T} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

Observar que las filas también son ortonormales ya que $QQ^T = I$.

La multiplicación por Q preserva las longitudes:

$$\|Q\mathbf{x}\| = \|\mathbf{x}\|$$
 para todo \mathbf{x} .

También preserva productos internos y ángulos, ya que

$$(Q\mathbf{x})^T(Q\mathbf{y}) = \mathbf{x}^T Q^T Q\mathbf{y} = \mathbf{x}^T \mathbf{y}.$$

Dada Q ortogonal y $\mathbf{b} \in \mathbb{R}^n$,

$$\mathbf{b} = x_1 \mathbf{q}_1 + x_2 \mathbf{q}_2 + ... + x_n \mathbf{q}_n. \tag{1}$$

Multiplicando la ecuación (??) por q_i^T se obtiene que

$$x_j = \mathbf{q}_j^T \mathbf{b},$$

para j = 1, ..., n. Así

$$\mathbf{b} = \left(\mathbf{q}_1^T \mathbf{b}\right) \mathbf{q}_1 + \left(\mathbf{q}_2^T \mathbf{b}\right) \mathbf{q}_2 + ... + \left(\mathbf{q}_n^T \mathbf{b}\right) \mathbf{q}_n.$$

El proceso de Gram-Schmid

Propiedad

El proceso de Gram-Schmidt empieza con vectores independientes $\mathbf{a}_1, ..., \mathbf{a}_n$ y termina con vectores ortonormales $\mathbf{q}_1, ..., \mathbf{q}_n$. En el paso j resta de a_j sus componentes en las direcciones $\mathbf{q}_1, ..., \mathbf{q}_{j-1}$ que ya están establecidas:

$$\mathbf{c}_j = \mathbf{a}_j - \left(\mathbf{q}_1^T \mathbf{a}_j\right) \mathbf{q}_1 - ... - \left(\mathbf{q}_{j-1}^T \mathbf{a}_j\right) \mathbf{q}_{j-1}.$$

Luego, \mathbf{q}_j es el vector unitario $\mathbf{c}_j / \|\mathbf{c}_j\|$.

Factorización A=QR

$$A = \begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} q_1^T a & q_1^T b & q_1^T c \\ & q_2^T b & q_2^T c \\ & & q_3^T c \end{bmatrix} = QR$$

Propiedad

Toda matriz $A_{m \times n}$ con columnas independientes puede factorizarse en A = QR. Las columnas de Q son ortonormales y R es triangular superior e inversible. Cuando A es cuadrada, Q y R también lo son y Q es ortogonal.

Bibliografía

- Strang, G. Algebra lineal y sus aplicaciones, 4a Ed, Thomson, 2006.
- Hoffman, K., Kunze, R. Algebra Lineal. 1Ed, Prentice-Hall Hispanoamericana, S. A. 1973.

GRACIAS POR SU ATENCIÓN!!

