

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

FIG.1

FIG.2

FIG.3

FIG.4

FIG. 5

FIG. 6

FIG. 7

Rank	Estimated amino acid sequences (N-terminal ← → C-terminal)							
1	Arg	Tyr	Val	Leu	His	Met	Leu	
2	Arg	Tyr	Val	Leu	His	Met	Leu	
3	Arg	Tyr	Val	Ile	His	Met	Leu	
4	Arg	Tyr	Val	Leu	His	Met	Ile	
5	Arg	Tyr	Val	Ile	His	Met	Ile	
6	Arg	Tyr	Val	Ile	His	Met	Ile	
7	Arg	Val	Tyr	Ile	His	Met	Leu	
8	Arg	Val	Tyr	Leu	His	Met	Ile	
9	Arg	Val	Tyr	Leu	His	Met	Leu	
10	Arg	Val	Tyr	Leu	His	Met	Leu	
11	Arg	Val	Tyr	Ile	His	Met	Ile	
12	Arg	Val	Tyr	Ile	His	Met	Ile	
13	Arg	Tyr	Val	Leu	His	Asp	Glu	
14	Arg	Tyr	Val	Ile	His	Asp	Glu	
15	Arg	Tyr	Val	Leu	His	Pro	Phe	
16	Arg	Tyr	Val	Ile	His	Pro	Phe	
17	Arg	Val	Tyr	Leu	His	Asp	Glu	
18	Arg	Val	Tyr	Ile	His	Asp	Glu	
19	Arg	Val	Tyr	Leu	His	Pro	Phe	
20	Arg	Val	Tyr	Ile	His	Pro	Phe	

FIG. 8

Rank	Estimated amino acid sequences (N-terminal ← → C-terminal)							Ranking resulting from the method of invention
1	Arg	Tyr	Val	Leu	His	Met	Leu	6
2	Arg	Tyr	Val	Leu	His	Met	Leu	7
3	Arg	Tyr	Val	Ile	His	Met	Leu	13
4	Arg	Tyr	Val	Leu	His	Met	Ile	8
5	Arg	Tyr	Val	Ile	His	Met	Ile	19
6	Arg	Tyr	Val	Ile	His	Met	Ile	20
7	Arg	Val	Tyr	Ile	His	Met	Leu	12
8	Arg	Val	Tyr	Leu	His	Met	Ile	5
9	Arg	Val	Tyr	Leu	His	Met	Leu	3
10	Arg	Val	Tyr	Leu	His	Met	Leu	4
11	Arg	Val	Tyr	Ile	His	Met	Ile	17
12	Arg	Val	Tyr	Ile	His	Met	Ile	18
13	Arg	Tyr	Val	Leu	His	Asp	Glu	16
14	Arg	Tyr	Val	Ile	His	Asp	Glu	14
15	Arg	Tyr	Val	Leu	His	Pro	Phe	10
16	Arg	Tyr	Val	Ile	His	Pro	Phe	2
17	Arg	Val	Tyr	Leu	His	Asp	Glu	15
18	Arg	Val	Tyr	Ile	His	Asp	Glu	11
19	Arg	Val	Tyr	Leu	His	Pro	Phe	9
20	Arg	Val	Tyr	Ile	His	Pro	Phe	1

Arg-Val-Tyr-Ile-His-Pro-Phe

17

FIG. 9

Arg-Val-Tyr-Ile-His-Pro-Phe

FIG. 10

DECOMPOSING REACTION OF RECERPINE

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

3

Derivation and displaying of strength of bonding with molecular orbital analysis

Displaying with colors

Low ← Strength of bonding → High

FIG. 17

FIG. 18

Arg-Val-Tyr-Ile-His-Pro-Phe

FIG. 19

FIG. 20

Three-dimensional displaying of the structure of a protein including
the predicted amino acid sequence

FIG.21

FIG.22

FIG. 23

FIG. 24

FIG.25

FIG.26

FIG. 27

Combination of a single amino acid and a pair of amino acids having the same or close mass number

1 Single amino acid	2 A pair of amino acids	Difference of mass number
Trp (186.213) ,	Glu-Gly (186.168)	$\Delta m=0.0458$
Trp (186.213) ,	Ala-Asp (186.168)	$\Delta m=0.0458$
Trp (186.213) ,	Ser-Val (186.211)	$\Delta m=0.0024$
Trp (186.213) ,	Lys-Gly (185.226)	$\Delta m=0.9872$
Trp (186.213) ,	Gln-Gly (185.183)	$\Delta m=1.0305$
Trp (186.213) ,	Asn-Ala (185.183)	$\Delta m=1.0305$
Asn (114.104) ,	Gly-Gly (114.104)	$\Delta m=0$
Lys (128.174) ,	Gly-Ala (128.131)	$\Delta m=0.0434$
Gln (128.131) ,	Gly-Ala (128.131)	$\Delta m=0$
Arg (156.188) ,	Val-Gly (156.185)	$\Delta m=0.0031$
Glu (129.116) ,	Gly-Ala (128.131)	$\Delta m=0.9847$

$$|\Delta m| < 1.0$$

():Mass number without N and C terminals