Approximation par balayage

2.5

1.5

0.5

On considère la fonction f définie sur $[0; +\infty[$ par $f(x)=x^2$.

On admet que la fonction f est croissante sur $[0; +\infty[$ et que l'équation f(x)=2 a une unique solution sur $[0; +\infty[$, notée $\sqrt{2}$.

Le but de l'exercice est d'obtenir des valeurs approchées de $\sqrt{2}$.

- 1) Ecrire une fonction Python f qui reçoit une valeur x en argument et renvoie l'image de x par la fonction f.
- 2) La fonction ci-dessous permet d'obtenir des images successives par la fonction f sur l'intervalle [1;2], avec un pas de $10^{-1}=0,1$.

```
# (pour fonctionner, necessite que la fonction f soit creee au prealable)
def balayage():
    x=1
```

```
x=1
while x<2:
    print("f(",x,")=",f(x))
    x = x+0.1
return None</pre>
```

a) Utiliser cette fonction pour compléter le tableau :

х	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2
f(x)											

- **b)** Pour quelle valeur x_1 du tableau a-t-on $x_1 \le \sqrt{2} \le x_1 + 0.1$? Justifier.
- c) Modifier la fonction précédente pour qu'elle renvoie cette valeur x_1 .

Aides : On pourra, entre autres, modifier la condition de la boucle while.

On pourra supprimer les affichages réalisés avec l'instruction print.

3) Compléter la fonction pour qu'elle effectue, à partir de cette valeur x_1 , un nouveau balayage de pas $10^{-2} = 0.01$.

La fonction renverra une valeur x_2 telle que $x_2 \le \sqrt{2} \le x_2 + 0.01$.

- **4)** Compléter la fonction pour qu'elle renvoie une valeur x_3 telle que $x_3 \le \sqrt{2} \le x_3 + 0.001$.
- 5) a) En ajoutant une boucle, modifier la fonction précédente pour qu'elle renvoie une valeur x_n telle que $x_n \le \sqrt{2} \le x_n + 10^{-n}$, où n est une valeur donnée en argument de la fonction.
 - **b)** Donner une valeur approchée de $\sqrt{2}$ à 10^{-7} près.
- 6) Prolongement:

On admet que l'équation $x^3=5$ admet une unique solution sur $[0;+\infty[$, notée $\sqrt[3]{5}$. Déterminer une valeur approchée de $\sqrt[3]{5}$ à 10^{-8} près.

CHEVRIER Franck – 2019 – Formation : Enseigner le langage de programmation Python