SUPPORT AND LOCOMOTION EXPECTED RESPONSES

1. (a) Explain the need for support in plants

(09 marks)

- Hold leaves in position; to receive sunlight; for photosynthesis;
- Hold flowers in position; to receive pollinating agents; for reproduction;
- Hold fruits in position; for dispersal; to colonise new areas; (1 mark @)

(b) Describe how support in plants is achieved

(20 marks)

- Use of parenchyma cells; take up water by osmosis; become turgid; and rigid; in non-woody plants and plant parts;
- Using collenchyma tissues; with cell walls thickened; with cellulose; in plant parts where secondary thickening does not occur;
- Use of sclerenchyma tissues; whose walls are thickened; with lignin;, interlocking end walls;, and occur in bundles; increasing their strength;
- Use of xylem tissues; in which cell walls are strengthened; with deposition of lignin; separate rods run through the stem; and it is central in the root;

(1 mark @)

2. (a) Describe the structure of the following plant tissues

(i) Xylem

(06 marks)

- Has vessel elements; which are open ended; cylindrical;
- Tracheids; which are narrower; elongated; perforated; tapering end walls;.
- The cells are connected end to end; to form continuous tubes;
- Other cells include fibres; and parenchyma;

(½ mark @)

(ii) Sclerenchyma

(06 marks)

- Occurs in two forms fibres; and sclereids;
- Both cell types are polygonal in cross section; have thickened; lignified cell walls; with simple pits; empty lumens; occur singly; or in bundles;
- Fibres are elongated; with tapering; interlocking end walls;
- Sclereids are spherical;

(½ mark @)

(iii) Collenchyma

(04 marks)

- Living cells; with large vacuole in centre; and prominent nucleus;
- Polygonal cells in cross section; cell walls thickened; with cellulose; at the corners; no intercellular spaces; (½ mark @)

(b) Explain the distribution of the following plant tissues

(i) Xylem

(08 marks)

- Arranged in the centre in roots; where they counteract the pull of shoots; as they are blown from side to side;
- Are in bundles; around the periphery of stems; where they resist the compression; and extension; as stems are bent; (1 mark @)

(ii) Sclerenchyma

(08 marks)

- Fibres occur in bundles; around the vascular bundles; in stems and leaf stalks; where they add to the rigidity of the xylem;
- Sclereids occur singly; in the epicarp; and mesocarp of fruits; where their rigidity confers firmness; and protection to the organ; (1 mark @)

(iii) Collenchyma

(07 marks)

- In stems and petioles; towards the periphery of the organ; just below the epidermis;
- In the midrib of dicotyledonous plant leaves; it's a solid mass around the vascular bundles; where they resist compression; and tension; (1 mark @)

3. (a) Describe how support is achieved in the following groups of organisms (i) Cartilaginous fish (10 marks)

- Support from swimming; caudal fin plunges downwards at the end of each sweep; This generates an up thrust which supports the posterior part;
- Anterior part is supported; by the up thrust generated when the pectoral fins thrust against the surrounding water;
- Pectoral fins are held with leading edge raised above the trailing edge; water passing over it flows faster than that below it; pressure above the fin is lesser than that below it; this creates a life force;
- Some have bodies containing oils; which reduces on the density of the body; (1 mark @)

(ii) Bony fish

(06 marks)

• Use air filled swim bladders; open; or closed; that can be filled with air; to change their density; and stay at a given depth/ have neutral buoyance;.

(1 mark @)

(iii) Mammals

(09 marks)

- Supported off the ground by limbs; made of rigid bones; with high tensile; and compressional strength;
- Vertebral column; supports the body weight in the abdominal region;
- Tails; provide additional support for tetrapods; when they stand on two legs;

4. (a) Describe the structure of the hydrostatic skeleton. (07 marks)

- Comprises of a fluid-filled cavity; called coelom; divided into compartments;
 by septum; surrounded by layers of circular; and longitudinal muscles;
 which are antagonistic; (1 mark @)
- (b) Explain the advantages and disadvantages associated with the hydrostatic skeleton (13 marks)

Advantages

Segmented; which allows swift locomotion;

- Thin flexible cuticle; does not limit growth of an organism;
- Offers some protection to the organisms;

Disadvantages

- Offers less protection to the organism;
- Has limited area for muscle attachment;
- Cannot support large body weight;
- Thin cuticle limits the organisms to damp areas; to prevent desiccation; Thick cuticle would prevent efficient gaseous exchange flexible;
- Little support causes the organism to crawl on ground; which slows down locomotion;
- Does not contribute to the formation of locomotory structures; (1 mark @)

5. (a) Describe how locomotion occurs in earthworms (11 marks)

- Extension of the anterior end occurs when chaetae retract in the body; circular muscles contract; exerting a pressure on the coelomic fluid; longitudinal muscles relax; body part narrows and extends forward;
- In this extended part, chaetae extend; the longitudinal muscles contract; circular muscles relax; body shortens and bulges here;
- The rear end is brought forward by contraction of the longitudinal muscles; and relaxation of circular muscles; (1 mark @)

(b) Explain how the hydrostatic skeleton in earthworms is suited for its functions (10 marks)

- Longitudinal and circular muscles; operate antagonistically to move different body segments;
- Segmentation; increases flexibility during locomotion;
- Coelomic fluid is incompressible; transmits the pressure exerted to it by the muscles effectively;
- Septa separate segments of the body; prevent loss off the fluid;
- Chaetae; for anchorage;

(1 mark @)

6. (a) How is a bony fish able to propel itself forward (10 marks)

- Fish swims by undulatory/ wavelike movements; caused by the alternating contraction; and relaxation; of antagonistic muscles/myotomes on either side of the vertebral column;
- Tail thrusts against water; and the reaction of water; on the body provides the forward thrust; which moves the fish forward; and lateral drag; which is cancelled out; by the general massiveness of the head;
- Speed of movement increases with speed of action; surface area; angle with which the body/tail is held with respect to direction of motion;. (1 mark @)

(b) Explain why terrestrial organisms need more supportive structures than aquatic organisms. (05 marks)

• Water is more denser than air; provides more support to the organisms than air; hence less supportive tissues are developed; Terrestrial organisms need

more supportive tissues to keep their bodies off the ground in a medium that provides little support; (1 mark @)

(c) What instabilities does a fish experience during swimming and how are they counteracted? (06 marks)

Instability			Counteraction	
•	Pitching; tendency of the nose to	•	Horizontally; held pectoral and	
	plunge vertically downwards;		pelvic (paired) fins;	
•	Yawing; lateral deflection of the anterior part of the body due to propulsive action of the tail;	•	General massiveness of the head; and vertical/ median/ dorsal and ventral fins;	
•	Rolling; rotation of the body about	Paired and unpaired fins; acting		
	its longitudinal axis;		as stabilisers; (½ mark @)	

7. (a) Explain how the swim bladder has contributed to the efficient swimming in bony fish compare to cartilaginous fish. (10 marks)

- Bladder provides neutral buoyance in bony fish; while fins do so in cartilaginous fish;
- Without the need to provide support, pectoral and pelvic fins are reduced in size; pressed against the body during locomotion; which reduces drag;
- Pectoral fins can also be operated independently to act as pivots for the fish to swim; or brakes for it to stop;
- Tail is symmetrical; and energy is used in only in providing forwards force; while in cartilaginous fish some of it goes to support; (1 mark @)

(b) How is a fish suited for efficient swimming (10 marks)

- Streamlined body; through tapering body; scales overlap facing backwards; to reduce drag;
- Layer of mucus; smoothens body surface;
- Tail/caudal fin; moves side to side to produce forward thrust;
- Paired and unpaired fins; counteract instabilities; such as yawing;
- Lateral line; for sensitivity during locomotion;
- Swim bladder in bony fish; provides neutral buoyance;
- Antagonistic muscles on each side of the vertebral column; to move tail;
- Heterocercal tail in cartilaginous fish; provides more support;
- Vertebral column is jointed; for flexibility;

(1/2 mark @)

8. (a) Describe the structure of the exoskeleton in insects (08 marks)

• It is a hollow skeleton covering organs; composed of mainly chitin; which is tough; light; and flexible; it is strengthened by tanned proteins; unmodified at the joints; and covered with a layer of wax; (1 mark @)

(b) Explain the advantages and disadvantages of an exoskeleton (12 marks) Advantages

- Forms limbs and wings for locomotion;
- Offers more protection; due to its hardness;
- Camouflage; due to dull colour;

- Forms other body structures like mouth parts;
- Prevents desiccation; due to presence of waxy cuticle;
- Offers sufficient support in small organisms;

Disadvantages

- Its hardness/rigidity; does not allow continuous growth; moulting leaves organisms vulnerable to predators; and water loss;
- Limits the size and insect can attain; because the skeleton is only efficient in small organisms; In large organism, the skeleton would be too heavy to allow locomotion;
 (½ mark @)

9. (a) Distinguish between synchronous and asynchronous flight muscles in insects (04 marks)

- Synchronous muscle contracts once for every nerve impulse reaching it;
 while asynchronous muscles contract more than once for every nerve impulse reaching it;
- Synchronous muscles operate wings beating at lower frequency; while Asynchronous muscles operate wings beating at a higher frequency;

(1 mark @)

(b) How is flight in insects brought about by

(i) Direct flight muscles

(08 marks)

- Muscles attached to the base of the wing; elevator and depressor muscles;
 Upstroke;
- Elevator muscle contracts; depressor muscle relaxes; wings pulled upwards;
 Down stroke;
- Depressor muscle contracts; elevator muscle relaxes; wings pulled downwards; thrust against air; air reaction on the wings; provides lift force; and forward force; (½ mark @)

(ii) Indirect flight muscles

(09 marks)

• Muscles not attached directly to the wing; dorso-ventral and longitudinal muscles; wings attached to the pleuron; and tergum;

Upstroke;

 Dorso-ventral muscles contract; longitudinal muscles relax; the tergal wing attachment is pulled downwards relative to the pleural attachment; wing is raised/moves upwards;

Down stroke;

• Longitudinal muscles contract; dorso-ventral muscles relax; thorax tergum becomes dome-shaped; pulling the tergal wing attachment upwards relative to the pleural attachment; wing is lowered; reaction of air on the wing; provides the lift force; and forward force; (½ mark @)

10. (a) How is the exoskeleton suited for its function in arthropods (08 marks)

- Hollow; to reduce weight of the animal; which allows swift locomotion; by walking; and flying;
- Waxy cuticle; prevents excessive water loss;
- Unmodified at joints; flexibility at joints allows movement;

- Hardened; by tanned proteins and calcium carbonate; to provide protection; and rigidity; for support;
- Dull coloured; for camouflage e.g. in cockroaches;

(½ mark @)

(b) Compare flight in insects and birds Similarities

(12 marks)

Both

- Use wing;
- Wings attached to the skeleton;
- Wings are attached to the thoracic region;
- Have muscles that move wings;
- Streamlined bodies for swift flight;
- Can fly actively and passively;

(any 4; 1 mark @)

Differences

Flight in insects	Flight in birds
Use membranous wings	Use feathery wings
Thin wings	Thick wings
Faster wing beat rate	Slower wing beat rate
Wings made of chitin	Wings made of bones, cartilage collagen and feathers
Use both direct and indirect flight muscles	Uses only direct flight muscles attached to the wings
No bastard wing to prevent turbulence/some use haltares for balance	Has bastard wing which prevent turbulence
Muscles lack myoglobin	Muscles have myoglobin
Oxygen is delivered by tracheal system	Oxygen is delivered by RBCs in blood circulatory system
Wings attached to exoskeleton	Wings attached to endoskeleton

(any 8; 1 mark @)

11. (a) Describe how active flight occurs in birds

(10 marks)

- Occurs by direct flight muscles; pectoralis minor; and pectoralis mojor; acting of the wings to cause flapping;
- Upstroke;
- Pectoralis minor contracts; pectoralis major relaxes; humerus bones pulled upwards; wings are raised; while bent;
- Down stroke;
- Pectoralis major contracts; pectoralis minor relaxes; humerus bones pulled downwards; wings moved downwards; and backwards; thrusting against air; whose reaction; provides lift; and forwards force; (½ mark @)

(b) Explain how the bird's wing acts an aerofoil.

(10 marks)

- Bird's wing is made of quill feathers; arranged such that the upper surface is convex; while the lower surface is concave;
- The wing is moved through air such that the leading edge is raised above its trailing edge;

- Air flowing over the upper surface meets less resistance; than air flowing over the lower surface;. Hence air flowing over the wing moves with greater velocity than that flowing below it;
- Air pressure above the wing decreases below that under the wing;
- The pressure difference generates the lift force;

12. (a) What is gliding in birds

(01 marks)

• Gradual loss of height in birds without flapping/ thrust;

(b) Explain the factors that determine the speed of glide

(06 marks)

- Fast gliders; have small body size; long; and narrow wings;
- Slow gliders; are heavy birds; with short; and broad wings;

(c) How is a bird adapted for flight?

(12 marks)

- Well-developed pectoral girdles; provides firm base for the wings;
- Sizeable keeled sternum; for attachment of flight muscles;
- Fusion of forelimb bones; forming a large wingspan;
- Rigid skeleton in some places of vertebral and pelvic girdle fused; transmits the force of the wings more efficiently and provide better lift;
- Hind limbs are lengthened; easy take off;
- Streamlined body; through compact skull; pointed bill; feathers placed over facing backwards; short tail; legs retracted/ tucked up; lack of external ears; to reduce air resistance;
- Hollow spongy bones; toothless jaws; and small sex organs; reduce weight;
- High constant body temperature for high metabolic rate; to produce enough energy flight; feathers provides good insulation; ensures efficient muscle contraction;
- Good visual acuity; to judge distances accurately
- Nictating membrane; protects the eye during flight;
- Bustard wing; prevents turbulence;
- Powerful flight muscles; to move the wings;

(any 24; ½ mark @)

13. (a) Explain advantages and disadvantages of an endoskeleton. (09 marks) Advantages

- Does not restrict growth;
- Allows faster locomotion since body is supported off the ground;
- Can support larger organisms;
- Provides more area for muscle attachment;
- Offers maximum protection to delicate body parts because of its rigidity;
- Offers other physiological roles like storage of calcium and phosphate ions and production of red blood cells;

Disadvantages

- Rigidity offers limited flexibility;
- Does not protect organisms from water loss;
- Some parts of the body are protected;

(1 mark @)

(b) Explain how the structure of the mammalian skeleton is suited for locomotion (12 marks)

- Rigid; to resist tension and compression forces developed during locomotion;
- Bones are hollow; to reduce weight without reducing mechanical efficiency;
- Spongy bones at the head of the long bones; maintains bone rigidity with minimum weight;
- Cartilage; cushions the articulating surfaces of bones and reduces friction;
- Elastic ligaments connect bone to bone; which allow movement;
- Tough, inelastic tendons connect bones to muscles; which transfer the pull of muscles directly the bones;
- Jointed; for flexibility;
- Has muscles; which move the bones;

(any 12; 1 mark @)

14. (a) Describe the structure of the different vertebrae in mammals (10 marks)

Cervical (atlas)	Thoracic	Lumbar
Small centrum	• Long, backwardly pointing neural spine	Short, wide centrum
Short neural spine	Short transverse processes	Wide neural arch
Vertebrarterial canal	Transverse processes have small tubercular facets	 Long, wide transverse processes projecting downwards
• Wide, flat transverse processes	Small centrum	 Extra processes like the mate-, ana- and hypapophyses
Large neural canal	• Demi-facets on each side of the centrum	Short, broad neural spine
Small neural arch	Small neural canal	Wide neural canal

(b) Relate the structure of the vertebral column to its function (10 marks)

- Vertebral bones connected by ligaments which prevent dislocation; but permit movement so that the vertebral column is flexible;
- Flexibility allows locomotion by arching the back in many organisms
- Bones have longs processes; for muscle attachment;
- Bones are rigid; to withstand stress;
- Neural canal for passage and protection of spinal card;
- Intervertebral discs hold adjacent vertebral bones together;
- Articulating facets of the vertebral bones are smooth; to prevent wearing away; (any 10; 1 mark @)

15. (a) Describe how the structure of the skeletal muscle relates to its function. (12 marks)

- Muscle fibres are elongated; to which can contract and relax;
- Well supplied with blood vessels; to bring it metabolites and carry away waste products;
- Myoglobin; to store oxygen;
- Mitochondria; to provide energy;

- Well supplied with nerves; for proper coordination of muscles;
- Sarcoplasmic reticulum; stored calcium which activates muscle contraction;
- Fibres are parallel; to transmit the contraction in the same direction
- Motor end plate; for innervation and excitation of the muscles;

(any 24; ½ marks @)

(b) Describe the different energy sources for an active muscle (08 marks)

- Aerobic respiration glucose, and fats; using oxygen from haemoglobin and myoglobin to produce ATP during the first few minutes of the exercise;
- Generation of ATP from the phosphocreatine system when ATP generated from aerobic respiration is used up.
- Anaerobic respiration of glucose during intense activity; occurs fast enough to generate required energy; lactate builds up in muscles to contribute muscle cramp

16. (a) Describe the fine structure of a striated muscle (15 marks)

- Contains numerous parallel muscle fibres; enclosed in a connective tissue;
- Each muscle fibre is long;, cylindrical; with many nuclei; enclosed by a membrane called the sarcolemma;.
- Within the fibre are protein myofibrils, thick myosin; and thin actin filaments:
- Fibre has light and dark bands; only actin filaments occur in the light band; myosin and actin filaments occur in the dark band;
- In the middle of the light band is the Z-line; while in the middle of the dark band is the M-line;
- The distance between two successive Z-lines is the sarcomere;.
- In the middle of the dark band is a region occupied only by the myosin filaments called the H-zone;.

(b) What changes occur in the sarcomere when the muscle contracts (04 marks)

- Sarcomere length decreases
- H-zone reduces/ disappears
- Light band decreases
- Dark band remains the same

17. (a) Describe the events that occur during muscle contraction (12 marks)

Activation/excitation

- Arrival of an impulse at the neuromuscular junction via the motor neuron;
 acetyl choline is released into the cleft;
- Acetyl choline diffuses across the cleft and attaches to the post synaptic membrane/sarcolemma; depolarising the of the motor endplate;
- The depolarisation is propagated through the transverse tubules as an action potential;
- This causes the sarcoplasmic reticulum to release calcium ions;

Contraction

- Calcium ions bind to troponin; displacing tropomyosin from the myosin binding site on actin;
- The myosin heads now become attached to the actin filament (actin binds to myosin); and changes position so that the actin filament slides past the myosin filaments in a ratchet mechanism;
- ATP attaches to myosin head; causing it to detach from the actin filament;
- The myosin head has ATPase activity which catalyses the hydrolysis of ATP to provide energy for activation of the myosin head; and the process is repeated

Relaxation

- When excitation of the muscle by nerve impulses stops, calcium ions are actively pumped back into the sarcoplasmic reticulum;
- Troponin returns to its original site allowing troponin to block actin filament;
- The muscle relaxes

(b) Distinguish between tonic and twitch muscles

(08 marks)

bistinguish between tonic and twitch muscles (00 ma					
Tonic/slow muscles	Twitch/fast muscles				
Many mitochondria	• Fewer mitochondria				
• Poorly developed sarcoplasmic	• Well-developed sarcoplasmic				
reticulum	reticulum				
Much myoglobin and cytochrome	• Little myoglobin and cytochrome				
pigments	pigments				
Low in glycogen content	High glycogen content				
Deep lying muscles	Close to the surface of limbs				
Associated with small nerves	Associated with large nerves				
Many motor end-plates per fibre	One or two end-plates per fibre				
Membrane is electrically inexcitable	Membrane is electrically excitable				
Slow graded muscular contraction	Faster contraction				
Fatigue occurs very slowly	Fatigue occurs quickly				
ATP from aerobic respiration	ATP from anaerobic respiration				
Oxygen debt slowly builds up	Oxygen debt quickly builds up				
Heat is transported away from the	• Heat is not immediately removed by				
muscle as soon as it is produced	the circulatory system				
Used in maintenance of posture	Used during locomotion				

(any8; 1 mark @)

18. (a) Describe the properties of a skeletal muscle

(12 marks)

- Excitability; when stimulated, a skeletal muscle becomes depolarised;
- Contractibility; muscles when stimulated respond by shortening;
- Extensibility; under tension, skeletal muscles can stretch;
- Elasticity; the muscle can return to its original/ normal resting length once it has been stretched
- Summation of stimuli; reaching it quick succession to give a larger and longer contraction;
- Tetanus; can remain in s state of contraction if stimulated at high frequencies;

- Obeys the all-or-nothing law; only stimulations of a high enough. Above the threshold intensity can cause a contraction;
- Refractory period; a skeletal muscle undergoes a brief inexcitability after a contraction;
- Fatigue; muscle response declines and soon disappears when the stimulation is maintained for a long time (1½ @ point; 12 marks)

(b) Explain the role of the following in muscle contraction

- (i) ATP (06 marks)
- Attachment of the ATP molecule on the myosin head; allows the myosin filament to detach from the actin filament;
- Hydrolysis of ATP; provides energy for activation the myosin head;
- Used in the active pumping of calcium ions; back into the sarcoplasmic reticulum for the muscle to relax; (1 mark @)
 - (ii) Ca^{2+} (04 marks)
- Released from the sarcoplasmic reticulum; upon the arrival of an impulse; and attach to troponin; which displaces tropomyosin from the myosin binding site on actin; (1 mark @)

19. (a) What are the effects of exercise on the muscles and muscle performance? (12 marks)

- Number and size of mitochondria in the muscle increases;
- Processes occurring the mitochondria occur more rapidly;
- More myoglobin; which stores more oxygen;
- More glycogen, fat and phosphocreatine are stored;
- Lower rate of lactic acid accumulation; due to presence of more stored oxygen;
- Muscle strength increases; as it adapts to the load/resistance it's working against;
- Increased number of blood vessels supplying blood to the muscles; providing more oxygen and glucose to the muscles; while removing waste products rapidly;
- Coordination between antagonistic muscles improves; (1 mark @)

(b) Explain why splinters generally run on their toes (04 marks)

• It increases the effective length of the limb; longer strides are taken; propelling the body over a greater distance; sprinter moves forwards at a faster pace; (1 mark @)

(c) Give problems faced by organisms during locomotion on land (04 marks)

- Less support provided by air due to its low density;
- The pull of gravity;
- Supporting the weight of the body off the ground;
- Air resistance; (1 mark @)

20. (a) Give the three classes of muscular tissue

(03 marks)

- Cardiac muscle;
- Involuntary/ smooth/ unstriated/ muscle;
- Voluntary/ striated/ striped/ skeletal muscle; (1 mark @)

(b) Outline the distinguishing features of each type of muscular tissue.

(17 marks)

Distinguishing features of the cardiac muscle

- Composed of muscle fibres with one or two nuclei
- Each muscle fibre contains numerous myofibrils
- It is striped
- Intercalated discs between individual muscle cells
- Has branching fibres that connect different muscle fibres
- Contracts more slowly
- Does not fatigue easily
- It is myogenic
- Occurs only in the heart

(any five; 1 mark @)

Distinguishing features of smooth muscles

- Has short, spindle shaped cells
- Not striped
- Found in internal body organs,
- Concerned with movement of materials through the organs
- Controlled by autonomic nervous system
- Each muscle cell has one nucleus
- Not under conscious control of the brain
- Contracts slowly
- Does not fatigue
- Have low energy requirement

(any six; 1 mark @)

Distinguishing features of skeletal muscles

- Has long, cylindrical muscle fibres
- Striated/ striped
- Attached to skeleton/ bones
- Used in locomotion / movement of bones
- Regulated by somatic nervous system
- Under conscious control of the brain
- Faster contractions
- Fatigues easily
- Each muscle fibre has many nuclei
- Has a high energy requirement

(any six; 1 mark @)

21. (a) In mammals, there is a flexible connection between pectoral girdle and the vertebral column. Explain the significance of this arrangement. (07 marks)

- Allows free movement of the rib cage; which is important during breathing;
- Animal can withstand shock sustained by forelimbs; when the organism lands at the end of a jump;
- Forelimbs remain relatively free; and can have wide range of movement; to carry out other activities such as climbing; (1 mark @)

(b) What is muscle fatigue?

• This is the inability of a skeletal muscle to contract; when given sufficient stimulation; (02 marks)

(c) Explain why muscle fatigue occurs in skeletal muscles and not in cardiac muscles. (12 marks)

- The skeletal muscles have shorter absolute refractory periods than cardiac muscles;
- Longer refractory period in cardiac muscles allows it recover fully before it can respond to another stimulus; During this time, the neurotransmitter can be resynthesized; to allow passage of other impulses; complete oxidation of metabolites occurs; which prevents accumulation of lactic acid; that contribute to muscle fatigue;.
- In skeletal muscles there are shorter refectory periods, rapid stimulation causes faster exhaustion of the neurotransmitter; at the neuromuscular junction; so that subsequent impulses cannot be transmitted;. In addition, rapid stimulation causes tetanus; anaerobic respiration occurs to supply the required energy; lactic acid accumulates in the muscles which contributes to fatigue;.

 (1 mark @)

22. Describe the structural adaptations of vascular tissues for support. (14 marks)

- Xylem parenchyma; has polygonal cells; that form medullary rays for support;
- Parenchyma tissue has flexible membrane; that allow the cells to expand and become turgid; with cells closely packed; offering hydrostatic support;
- Collenchyma tissue; has polygonal cells; with thick cellulose cell walls; to offer tensile strength; and compressional support; for extra support
- Sclereids are form of sclerenchyma; which are lignified; spherical; arranged in groups; to offer firmness;
- Xylem comprises of tracheids; and vessel elements; that are lignified to offer strength;
- Tracheids have tapering ends; that interlock with neighbouring tracheids to increase support;
- Mature xylem has annular; spiral; or reticulate lignification for support;
- Xylem fibres are long; lignified; and occur in bundles to increase their tensile strength; (any 28 ½ mark @)