V

Exercice d'application

On considère une microcentrale constituée d'une retenue d'eau, d'une première conduite, \mathcal{C}_a , peu inclinée, d'une cheminée d'équilibre, d'une seconde conduite, \mathcal{C}_b , très inclinée, puis d'une turbine.

On note P_0 la pression atmosphérique, aussi bien au niveau de la retenue d'eau qu'au niveau de la sortie de la turbine. La conduite \mathcal{C}_a est de longueur $L_a = 60$ m, de diamètre intérieur $D_a = 0.30$ m, et l'eau y a une vitesse débitante $U_a = 1.2$ m·s⁻¹. La conduite \mathcal{C}_b est de longueur $L_b = 87$ m, de diamètre intérieur $D_b = 0.20$ m, et l'eau y a une vitesse débitante $U_b = 2.7$ m·s⁻¹. On rappelle que le coefficient de perte de charge singulière est défini par $\zeta = \frac{\mu g \Delta \mathcal{H}}{\frac{1}{2}\mu U^2}$. Pour la grille, $\zeta_g = 1.75$. Pour le rétrécissement, $\zeta_r = 0.079$ (ramené à la vitesse débitante de la conduite \mathcal{C}_b). Pour les deux coudes $\zeta_1 = 0.47$ et $\zeta_2 = 0.55$. La

la vitesse débitante de la conduite \mathcal{C}_b). Pour les deux coudes, $\zeta_1 = 0.47$ et $\zeta_2 = 0.55$. La sortie de la turbine comporte un diffuseur. Son diamètre d'entrée est D_b et son diamètre de sortie $D_d = 0.3$ m. Son coefficient de perte de charge singulière ramené à la petite section est $\zeta_d = 0.18$. On donne la différence d'altitude entre la retenue d'eau et la turbine : $z_h - z_0 = 89$ m. On prend pour l'eau $\mu = 1.0.10^3$ kg·m⁻³ et $\eta = 1.0.10^{-3}$ Pl. On donne g = 9.8 m·s⁻².

- 1. Déterminer le débit volumique d'eau D_{ν} dans les conduites. Peut-on utiliser la loi de Hagen-Poiseuille? on prendra pour la suite pour les deux conduites les coefficients de pertes de charge régulière $\lambda_a=15.10^{-3}$ et $\lambda_b=16.10^{-3}$. On rappelle que le coefficient de perte de charge régulière est défini par $\lambda=\frac{\mu g \Delta \mathscr{H}}{\frac{1}{2}\mu U^2 \frac{L}{D}}$.
- 2. Compte tenu des différentes données, déterminer la différence $z_h z_{ch}$ des altitudes de l'eau dans la cheminée.
- 3. La turbine a un rendement $\eta_t = 0,82$. Déterminer la puissance mécanique récupérable sur son arbre.
- 4. Quel est le rôle du diffuseur?

W . .

