MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Hard-core predicate based on Decisional Diffie-Hellman problem). A predicate π is a (t, ε) -unpredictable for a function $f: \mathcal{S} \to \mathcal{X}$ if for any t-time adversary

Such predicates are also known as (t, ε) -hardcore predicates. Let \mathbb{G} be a q-element (t, ε_1) -secure Decisional Diffie-Hellman group with a generator g. Let $\rho: \mathbb{G} \to \{0,1\}$ be ε_2 -regular:

$$|\Pr[h \leftarrow \mathbb{G} : \rho(h) = 0] - \Pr[h \leftarrow \mathbb{G} : \rho(h) = 1]| \le \varepsilon_2$$
.

Show that the function $f: \mathbb{Z}_q \times \mathbb{Z}_q \to \mathbb{G} \times \mathbb{G}$ and the predicate $\pi: \mathbb{Z}_q \times \mathbb{Z}_q \to \{0,1\}$ defined as follows

$$f(x,y) = (g^x, g^y)$$
$$\pi(x,y) = \rho(g^{xy})$$

gives a rise to an hard-core predicate. Find exact security quantifications. When does this imply that the individual bits of g^{xy} are unpredictable for the adversaries in the Diffie-Hellman key exchange protocol.

Solution.