

Synchronization Between Sensors and Cameras in Movement Data Labeling Frameworks

Jacob Kamminga, Michael Jones, Kevin Seppi, Nirvana Meratnia, Paul Havinga

Introduction

Obtaining labeled data is a tedious and daunting task

 Ground truth often collected using video that record subjects wearing sensors

 During labeling sensor-data preferably synchronized with video and displayed simultaneously

Approach Comparison

Approach A: Synchronization using visual key

Approach B: Synchronization using real-time clocks

.

Approach A

20,000-0,000-0,000-0,000-

Approach A: Synchronization using visual key

Data logger emits flash and timestamps sensor-data stream

The first video frame that contains flash is marked by user

1 subject per recording

Synchronization must be repeated for each video

Approach B: Synchronization using real-time clocks

- Assumes camera and datalogger both contain RTC
- RTC coarsely synchronized prior to experiments

Approach B: Synchronization using real-time clocks

- Synchronize on distinctive event in the video and adjust offset $\sigma^{(l)}_{m,n}$ between a given camera m and sensor n on day l
- shake sensors before camera during syncrecording

Comparison

Approach	Advantages	Disadvantages
A: visual key	High accuracy	Only one subject per recording Each video must be synchronized individually
B: RTC	Sync only once Multiple subjects in one video • Easier to collect more data in parallel • Higher chance to record rare activity Easier to use multiple cameras simultaneously	Lower accuracy Susceptive to clock drift
	Dataloggers can be post-synchronized among each-other	

Conclusion

 Timestamped visual keys on the datalogger result in accurate synchronization between sensors data and video

 Using RTC for synchronization allows to monitor multiple subjects simultaneously on same video

Ideas

Best idea seems to combine both approaches

 Use visual keys on datalogger for both sensor identification and synchronization

 Automatic synchronization by encoding time information in blinking pattern

Thanks for your attention

Synchronization Between Sensors and Cameras in Movement Data Labeling Frameworks