Практическая работа $N_{2}5$

Вариант 2

Задание 1

График

Минимизировать:

$$f(x_1, x_2) = -x_1 - x_2 \to \min$$

при условиях:

$$\begin{cases} x_1 + x_2 \le 1 \\ x_1 - x_2 \ge 2 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Обозначим:

$$x = x_1, \quad y = x_2, \quad f(x, y) = -x - y$$

Построим ограничения:

$$x + y = 1 \Rightarrow y = 1 - x$$

$$x - y = 2 \Rightarrow y = x - 2$$

$$x = 0$$

$$y = 0$$

Целевая функция:

$$f(x,y) = -x - y = C \Rightarrow -x - y = C$$

Градиент:

$$\nabla f(x,y) = (-1,-1), \quad -\nabla f = (1,1)$$

Вывод:

При параллельном переносе линии уровня -x-y=C вдоль направления вектора $\vec{e}=(1,1)$ она всегда пересекает допустимую область x, задананная границами многоугольника, а целевая функция неограниченно убывает без ограничения, следователно задача не имеет решения.

Задание 2

0.1 Исходные данные

• Вектор коэффициентов целевой функции:

$$c = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \\ -3 \end{pmatrix}$$

• Целевая функция:

$$f(x) = c^T x = 0x_1 + 2x_2 + 0x_3 + 1x_4 - 3x_5$$

• Вектор ограничений:

$$b = \begin{pmatrix} 6\\1\\24 \end{pmatrix}$$

• Матрица ограничений:

$$A = \begin{pmatrix} 4 & 1 & 1 & 0 & 1 \\ -1 & 3 & -1 & 0 & 3 \\ 8 & 4 & 12 & 4 & 12 \end{pmatrix}$$

0.2 Система ограничений

$$\begin{cases} 4x_1 + x_2 + x_3 + x_5 = 6 \\ -7x_1 + 5x_2 + 7x_3 + 5x_5 = 1 \\ 8x_1 + 4x_2 + 12x_3 + 4x_4 + 12x_5 = 24 \end{cases}$$

0.3 Решение

Расширенная матрица системы:

$$\begin{pmatrix}
4 & 1 & 1 & 0 & 1 & 6 \\
-7 & 5 & 7 & 0 & 5 & 1 \\
8 & 4 & 12 & 4 & 12 & 24
\end{pmatrix}$$

1. Первый шаг преобразований:

$$\begin{pmatrix} 4 & 1 & 1 & 0 & 1 & 6 \\ 3 & 4 & 0 & 0 & 4 & 7 \\ 8 & 4 & 12 & 4 & 12 & 24 \end{pmatrix}$$

2. Второй шаг преобразований:

$$\begin{pmatrix}
4 & 1 & 1 & 0 & 1 & 6 \\
3 & 4 & 0 & 0 & 4 & 7 \\
-40 & -8 & 0 & 4 & 0 & -48
\end{pmatrix}$$

3. Третий шаг преобразований:

$$\begin{pmatrix}
3.25 & 0 & 1 & 0 & 0 & 4.25 \\
-40 & -8 & 0 & 4 & 0 & 48 \\
8 & 4 & 0 & 0 & 4 & 7
\end{pmatrix}$$

4. Итоговая матрица:

$$\begin{pmatrix}
-\frac{13}{4} & 0 & 1 & 0 & 0 & \frac{17}{4} \\
10 & 2 & 0 & 1 & 0 & -12 \\
-\frac{3}{4} & 1 & 0 & 0 & 1 & \frac{7}{4}
\end{pmatrix}$$

Из предыдущих преобразований имеем:

$$x_3 = -\frac{13}{4}x_1 + \frac{17}{4}$$

$$x_4 = 10x_1 + 2x_2 - 12$$

$$x_5 = -\frac{3}{4}x_1 - x_2 + \frac{7}{4}$$

Преобразованная целевая функция:

$$f = 2x_2 + x_4 - 3x_5 = \frac{49}{4}x_1 + 7x_2 - \frac{69}{4}$$

Базис	x_1	x_2	Своб. член	
x_3	$-\frac{13}{4}$	0	$\frac{17}{4}$	
x_4	10	2	12	$\triangle_1 > 0, \triangle_2 > 0$
x_5	$-\frac{3}{4}$	-1	$\frac{7}{4}$	
f	$\frac{49}{4}$	7	$-\frac{69}{4}$	

Выбор разрешающего элемента Минимальное отношение:

$$\min\left(\left|\frac{17}{4}\frac{-4}{13}\right|,\left|\frac{12}{10}\right|,\left|\frac{7}{4}\frac{-4}{3}\right|\right)=1.2$$

Разрешающий элемент: 10 в строке x_4 , столбце x_1 .

Новый базис:

Выражаем x_1 через x_2 и x_4 :

$$x_1 = \frac{1}{10}x_4 - \frac{1}{5}x_2 + \frac{12}{10}$$

Подставляем в другие уравнения:

$$x_3 = -\frac{13}{4} \left(\frac{1}{10} x_4 - \frac{1}{5} x_2 + \frac{12}{10} \right) + \frac{17}{4}$$

$$= \frac{13}{20} x_2 - \frac{13}{40} x_4 + \frac{7}{20}$$

$$x_5 = -\frac{3}{4} \left(\frac{1}{10} x_4 - \frac{1}{5} x_2 + \frac{12}{10} \right) - x_2 + \frac{7}{4}$$

$$= -\frac{17}{20} x_2 - \frac{3}{40} x_4 + \frac{17}{20}$$

Новая целевая функция:

$$f = \frac{91}{20}X_2 - \frac{49}{40}X_4 - \frac{51}{20}$$

0

Базис	X_2	X_4	Своб. член	
$\begin{array}{c c} X_3 \\ X_1 \\ X_5 \end{array}$	$ \begin{array}{c c} \frac{13}{40} \\ \frac{1}{10} \\ -\frac{3}{40} \end{array} $	$ \begin{array}{r} \frac{13}{20} \\ -\frac{1}{5} \\ -\frac{17}{20} \end{array} $	$ \begin{array}{r} \frac{7}{20} \\ \frac{12}{10} \\ \frac{17}{20} \end{array} $	$\triangle_1 > 0, \triangle_2 >$
f	$\frac{91}{20}$	$\frac{49}{40}$	$-\frac{51}{20}$	

Выбор разрешающего элемента Минимальное отношение:

$$\min\left(\left|\frac{17}{20} - \frac{40}{13}\right|, \left|\frac{-17}{20} - \frac{40}{3}\right|\right) = \frac{14}{13}$$

Разрешающий элемент: $\frac{13}{40}$ в строке x_3 , столбце x_4 . Новый базис:

Выражаем x_4 через x_1 и x_5 :

$$x_4 = 2x_2 - \frac{40}{13}x_2 + \frac{14}{13}$$

Подставляем в другие уравнения:

$$x_1 = -\frac{4}{13}x_3 + \frac{17}{13}$$
$$x_5 = -x_2 + \frac{3}{13}x_3 + \frac{10}{13}$$

Новая целевая функция:

$$f = 7x_2 - \frac{49}{13}x_3 - \frac{16}{13}$$

Базис	x_1	x_2	Своб. член	
x_4	$-\frac{40}{13}$	2	$\frac{14}{13}$	
x_1	$-\frac{4}{13}$	0	$\frac{17}{13}$	$\triangle_1 < 0, \triangle_2 > 0$
x_5	$-\frac{3}{13}$	-1	$\frac{10}{13}$	
f	$-\frac{49}{13}$	7	$-\frac{16}{13}$	

Выбор разрешающего элемента Минимальное отношение:

$$\min\left(\left|\frac{10}{13} - \frac{1}{1}\right|\right) = \frac{10}{13}$$

Разрешающий элемент: -1 в строке x_5 , столбце x_2 .

Новый базис:

Выражаем x_2 через x_4 и x_1 :

$$x_2 = \frac{3}{13}x_3 - x_5 + \frac{10}{13}$$

Подставляем в другие уравнения:

$$x_4 = -\frac{34}{13}x_3 - 2x_5 + \frac{34}{13}$$
$$x_1 = -\frac{4}{13}x_3 + \frac{17}{13}$$

Новая целевая функция:

$$f = 7x_2 - \frac{28}{13}x_3 - 7x_5 + \frac{54}{13}$$

Базис	x_3	x_5	Своб. член
x_4	$-\frac{34}{13}$	-2	$\frac{34}{13}$
x_1	$-\frac{4}{13}$	0	$\frac{17}{13}$
x_2	$\frac{3}{13}$	-1	$\frac{10}{13}$
f	$-\frac{28}{13}$	-7	<u>54</u>

$$\triangle_1 < 0, \triangle_2 < 0$$

$$F_{max} = \frac{54}{13}$$

$$X^* = (\frac{17}{13}; \frac{10}{13}; 0; \frac{34}{13}, 0)$$

0.4 Ответ:

$$F_{max}=rac{54}{13},$$
при $x_1=rac{17}{13}; x_2=rac{10}{13}; x_3=0; x_4=rac{34}{13}, x_5=0$