On the Origin of Symmetry

Symplectic geometry & Noether's theorem

Aditya Dwarkesh

DMS Day 2024

Table of contents

1. Manifolds

- 2. Symplectic Geometry
- 3. Dynamics

4. Conservation & Symmetry

The Concept of a Manifold

Examples

Examples

Non-examples

Non-examples

Structures on Manifolds

Lengths and Areas

A manifold with a metric allows us to measure lengths and angles, and is called a Riemannian manifold.

Lengths and Areas

A manifold with a metric allows us to measure lengths and angles, and is called a Riemannian manifold.

A manifold with a symplectic form allows us to measure oriented areas, and is called a symplectic manifold.

Classical mechanics on symplectic manifolds

Phase space: 3 position coordinates + 3 momentum coordinates + dynamical laws

Classical mechanics on symplectic manifolds

Phase space: 3 position coordinates + 3 momentum coordinates + dynamical laws Generalization from $(\mathbb{R}^6)^n$: A smooth manifold M, with some additional structure encoding dynamics.

Classical mechanics on symplectic manifolds

Phase space: 3 position coordinates + 3 momentum coordinates + dynamical laws Generalization from $(\mathbb{R}^6)^n$: A smooth manifold M, with some additional structure encoding dynamics.

Question: How does a symplectic form produce dynamical laws on the manifold?

Dynamics

Vector fields

A vector field on a manifold.

Vector fields

A vector field on a manifold.

The integral curve of a vector field.

Flow

The flow of a vector field.

Through the following equation, a given function $f: M \to \mathbb{R}$ is associated to a vector field X_f :

Through the following equation, a given function $f: M \to \mathbb{R}$ is associated to a vector field X_f :

$$i_{X_f}(\omega)+df=0$$

Through the following equation, a given function $f: M \to \mathbb{R}$ is associated to a vector field X_f :

$$i_{X_f}(\omega) + df = 0$$

Question: How does a symplectic form produce dynamical laws on the manifold?

Through the following equation, a given function $f: M \to \mathbb{R}$ is associated to a vector field X_f :

$$i_{X_f}(\omega) + df = 0$$

Question: How does a symplectic form produce dynamical laws on the manifold?

Answer: Given a Hamiltonian function f, the symplectic form ω associates to it a vector field X_f , whose flow describes the time-evolution of the system.

Function.

Function.

Hamiltonian vector field.

Function.

Hamiltonian vector field.

Integral curve.

Hamiltonian vector field.

Integral curve.

Flow.

Noether's Theorem

Conserved quantities

•
$$\frac{df}{dt} = 0$$

Conserved quantities

$$\cdot \frac{df}{dt} = 0$$

•
$$\{f,H\}=0$$

Conserved quantities

•
$$\frac{df}{dt} = 0$$

•
$$\{f, H\} = 0$$

•
$$f \circ \gamma_H = C$$

- (M, ω, H) : Hamiltonian system
- \cdot V: Vector field with flow ho_t

- (M, ω, H) : Hamiltonian system
- V: Vector field with flow ρ_{t}

Two things must remain unchanged under the flow's deformation:

- (M, ω, H) : Hamiltonian system
- V: Vector field with flow $\rho_{\rm t}$

Two things must remain unchanged under the flow's deformation:

$$\mathcal{L}_V\omega=0$$

- (M, ω, H) : Hamiltonian system
- V: Vector field with flow $\rho_{\rm t}$

Two things must remain unchanged under the flow's deformation:

$$\mathcal{L}_V\omega=0$$

$$H|_{\rho_t(M)} = C$$

Noether's theorem

Theorem: Let (M, ω, H) be a Hamiltonian system. If f is a conserved quantity, its Hamiltonian vector field is an infinitesimal symmetry.

Emmy Noether, 1882-1935.

