MATH239 Tutorial 2

1. (a) Determine $[x^n]x(1+2x)^{-2}$.

Solution. Use Theorem 1.6.5 to determine $(1+2x)^{-2}$. The theorem states:

$$(1-y)^{-k} = \sum_{n>0} \binom{n+k-1}{k-1} y^n$$

We set y = -2x and k = 2 to get:

$$(1+2x)^{-2} = \sum_{n>0} {n+2-1 \choose 2-1} (-2x)^n = \sum_{n>0} (n+1)(-2)^n x^n$$

So $x(1+2x)^{-2} = \sum_{n\geq 0} (n+1)(-2)^n x^{n+1}$ and thus $[x^n]x(1+2x)^{-2} = n(-2)^{n-1}$.

(b) Determine $[x^n] \frac{1}{(1+x)(1-x)}$.

Solution.

$$\begin{split} \frac{1}{(1+x)(1-x)} &= \left(\frac{1}{1-x}\right) \left(\frac{1}{1+x}\right) \\ &= \left(\sum_{i \geq 0} x^i\right) \left(\sum_{j \geq 0} (-1)^j x^j\right) \\ &= \sum_{i \geq 0} \sum_{j \geq 0} (-1)^j x^{i+j} \\ &= \sum_{n \geq 0} \left(\sum_{j = 0}^n (-1)^j\right) x^n, \text{ substituting } i = n-j. \end{split}$$

So we have

$$[x^n] \frac{1}{(1-x)(1+x)} = \sum_{j=0}^n (-1)^j$$
$$= \begin{cases} 1 & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$$

2. Find the inverse of $Q(x) = 1 + 2x + 3x^2 + \dots = \sum_{n \ge 0} (n+1)x^n$.

Solution. We want to find a solution Q(x) to Q(x)A(x) = 1. We will write $q_i = [x^i]Q(x)$; then we have $q_i = i + 1$.

Note that $q_0=1$, so we can apply Theorem 1.5.2 which states that the unique solution to Q(x)A(x)=P(x) for given P and Q is $a_n=p_n-q_1a_{n-1}-q_2a_{n-2}-\cdots-q_na_0$. For us, $p_0=1$ and $p_n=0$ for $n\geq 1$. We get $a_0=p_0=1$. Next we get $a_1=p_1-q_1a_0=0-2\cdot 1=-2$, and then $a_2=p_2-q_1a_1-q_2a_0=0+4-3=1$.

1

We will now use induction to show that $a_n = 0$ for $n \ge 3$. Using the induction hypothesis, we get that

$$a_n = p_n - q_1 a_{n-1} - q_2 a_{n-2} - \dots - q_n a_0$$

= 0 - 0 - \dots - q_{n-2} - q_{n-1}(-2) - q_n
= -(n-1) + 2n - (n+1) = 0.

So $A(x) = 1 - 2x + x^2 = (x - 1)^2$ is the inverse of Q(x).

As an exercise, we check that the inverse of $(x-1)^{-2}$ is indeed Q(x). By using the formula for the inverse again, we get that $(x-1)^{-1} = \sum_{n\geq 0} x^n$. Using the product formula, we get that

$$(x-1)^{-2} = \left(\sum_{n\geq 0} x^n\right)^2 = \sum_{n\geq 0} \left(\sum_{i=0}^n 1 \cdot 1\right) x^n = \sum_{n\geq 0} (n+1)x^n = Q(x)$$

- 3. Let $A(x) = \frac{1}{1-x}$, $B(x) = \sum_{i>0} ix^i$. State whether the following are well-defined formal power series:
 - (a) $\frac{A(x)}{B(x)}$
 - (b) A(B(x))

Solution

- (a) Another way to write B(x) is $B(x) = 0x + x + 2x^2 + \cdots$, i.e. the constant term of B(x) is zero. By Thm 1.5.7, B(x) has no inverse. So $\frac{A(x)}{B(x)}$ is not a formal power series.
- (b) Again, the constant term of B(x) is zero. Then Thm 1.5.9 tells us A(B(x)) is a formal power series.
- 4. Let S be the set of all subsets of \mathbb{N} . Let the weight w of a set $A \in S$ be the largest element in A. (Ex. If $A = \{1, 4, 5, 9\}$ then w(A) = 9.) We define $w(\emptyset) = 0$.
 - (a) Determine the number of elements of S with weight k.
 - (b) Find $\Phi_S(x)$, and explain why it is a formal power series.

Solution

- (a) Let A be a subset of \mathbb{N} with weight k. If k=0, then we must have $A=\emptyset$, i.e. there is only one choice for A. Otherwise, $A=\{k\}\cup B$, where B is some subset of $\{1,2,...,k-1\}$. Since there are 2^{k-1} choices for B, there are also 2^{k-1} choices for A. So there are 2^{k-1} subsets of \mathbb{N} that have weight k>0.
- (b) Applying the definition of the generating function and using the work from part (a), we get

$$\Phi_S(x) = 1 + \sum_{k \ge 1} 2^{k-1} x^k.$$

Since every coefficient $[x^k]\Phi_S(x)$ is finite and rational, $\Phi_S(x)$ is a formal power series.

- 5. (a) Let S be the set of all subsets of $\{1, 2, ..., n\}$. Let w be the weight function on S such that for each $A \in S$, w(A) is the number of elements of A. Determine the generating series $\Phi_S(x)$ with respect to w
 - (b) Let w' be the weight function on S such that for each $A \in S$, w'(A) is twice the number of elements of A. Determine the generating series $\Phi'_S(x)$ with respect to w'. (Note that here, $\Phi'_S(x)$ is not the derivative of $\Phi_S(x)$.)

(c) What is the relationship between $\Phi_S(x)$ and $\Phi_S'(x)$?

Solution

(a) First, note that the number of subsets of $\{1, 2, ..., n\}$ having weight k is $\binom{n}{k}$. Also, notice that $\binom{n}{k} = 0$ for k > n. Then the definition of a generating function gives

$$\Phi_S(x) = \sum_{k=0}^n \binom{n}{k} x^k.$$

By the binomial theorem,

$$\Phi_S(x) = (1+x)^n.$$

(b) With the new weight function, the number of subsets with weight 2k is $\binom{n}{k}$, and there are no subsets with odd weight. Then we have

$$\Phi'_{S}(x) = \sum_{i \ge 0} \binom{n}{k} x^{2k}$$
$$= \sum_{i=0}^{n} \binom{n}{k} x^{2k}$$
$$= (1+x^{2})^{n}.$$

(c) Comparing the expressions we found above, it's easy to see that $\Phi_S'(x) = \Phi_S(x^2)$.