Package 'ECmexico2012'

May 24, 2012

Type Package

Title Ecole-Chercheur Mexico 2012

Version 1.0-0
Date 2012-05-24
Author EC-Mexico-2012
Maintainer Herve Monod herve.monod@jouy.inra.fr>
Depends R (>= 1.8.0), sensitivity, akima, car, evd, lhs, mgcv, rgl, triangle
Suggests orthopolynom
Description ECmexico2012
License GPL
LazyLoad yes
Collate 'ECmexico2012-package.R' 'TPLibModels.R' 'TPLibUtile.R' 'TPLibData.R'
Encoding latin1
ECmexico2012-package 2 convertfrom.basep 3 convertU2N 4 copyright 4 crossing 5 fungus.factors 5 fungus.model 6 inverses.basep 3 ishigami.factors 8 ishigami.model 8 ishigami.simule 9 lhs.plan 9 lhs2intervalle 10

	loiGeneriqueTronquee	11
	loiGumbelTronquee	12
	loiLogNormaleTronquee	12
	loiNormaleTronquee	13
	morris.mexico	14
	perspPlus	14
	planor.kernelcheck.basep	15
	regular.fraction	16
	representative.basep	17
	samplingLHS	17
	samplingOptLHS	19
	samplingSimple	20
	TP1.ICmorris	21
	TP1corr	
	TP1histo	22
	TP1indices.aov	
	TP1pavage	
	TP1tirage	23
	weed.decision	
	weed.factors	24
	weed.fun	
	weed.model	
	weed.simule	
	wwdm.climates	
	wwdm.factors	
	wwdm.model	
	wwdm.simule	28
Index		30

ECmexico2012-package

Librairie R de l'ECOLE-CHERCHEURS MEXICO, ECULLY, 4-8 juin 2012

Description

Librairie R de l'ECOLE-CHERCHEURS MEXICO, ECULLY, 4-8 juin 2012

Details

Package: ECmexico2012 Type: Package Version: 0.0-1 Date: 2012-05-24

Depends: R (>= 1.8.0), sensitivity, akima, car, evd, lhs, mgcv, rgl, triangle

License: GPL LazyLoad: yes

Collate: 'ECmexico2012.R' 'TPLibModels.R' 'TPLibUtile.R' 'TPLibData.R'

Encoding: latin1

convertfrom.basep 3

Author(s)

ec-mexico, maintainer: Hervé Monod

convertfrom.basep Utilitaire plans fractionnaires: conversion base p vers base 10...

Description

Utilitaire plans fractionnaires: conversion base p vers base 10

Usage

```
convertfrom.basep(x, p)
```

Arguments

- x matrice dont les lignes forment des nombres en base p
- p un nombre entier premier

Value

vecteur des valeurs en base 10

Note

les coefficients sont supposés ordonnés par puissances croissantes de p

Examples

```
conv.into2 <- convertinto.basep( x=c(0:16), p=2 ) convertfrom.basep(x=conv.into2, p=2)
```

convertinto.basep Utilitaire plans fractionnaires: conversion base 10 vers base p...

Description

Utilitaire plans fractionnaires: conversion base 10 vers base p

Usage

```
convertinto.basep(x, p)
```

Arguments

- x vecteur des valeurs en base 10
- p un nombre entier premier

4 copyright

Value

matrice dont les lignes forment des nombres en base p

Note

les coefficients sont ordonnés par puissances croissantes de p

Examples

```
convertinto.basep(x=c(0:16), p=2)
convertinto.basep(x=c(0:16), p=3)
```

convertU2N

Transformation d'un échantillon d'une loi uniforme vers une loi normale...

Description

Transformation d'un échantillon d'une loi uniforme vers une loi normale de même moyenne et d'écart.type assurant que la loi uniforme couvre une probabilité égale à l'argument couverture de la loi normale

Usage

```
convertU2N(x, param, couverture=0.95)
```

Arguments

x échantillon d'une loi considérée uniforme
param ligne d'un data.frame de type xxx.factors

couverture une probabilité entre 0 et 1

Examples

```
convertU2N(seq(8,10,length=11),fungus.factors["Topt",])
```

copyright

Copyright(c) INRA 2012

Description

Copyright(c) INRA 2012

crossing 5

crossing

Génération d'un plan factoriel complet á partir des nombres de modalités de...

Description

Génération d'un plan factoriel complet à partir des nombres de modalités de s facteurs

Usage

```
crossing(n, start=1)
```

Arguments

n vecteur des nombres de modalités

start valeur du 1er chiffre utilisé pour les modalités des facteurs

Value

matrice à 1 ligne par combinaison et 1 colonne par facteur

Examples

```
crossing(c(2,3,4), start=0)
```

fungus.factors

Facteurs d'entrée de l'AS du modéle "fungus"

Description

Facteurs d'entrée du modèle "fungus" (croissance champignon selon l'humidité)

Value

```
data.frame à 5 lignes (facteurs) et 4 colonnes (spécifs)
```

Note

Les valeurs dans fungus.factors correspondent à Alternaria Brassicae, ravageur du colza (Magarey et al, 2005)

6 fungus.simule

fungus.model

Modéle "fungus" (croissance champignon selon l'humidité)...

Description

Modèle "fungus" (croissance champignon selon l'humidité)

Usage

```
fungus.model(param=fungus.factors$nominal, temperature=10)
```

Arguments

param vecteur de longueur 5 comprenant un jeu de valeurs de Tmin, Topt, Tmax,

Wmin, Wmax

temperature scalaire ou vecteur de temperatures

Value

scalaire ou vecteur de longueur egale au nombre de temperatures

Note

Des valeurs min, max et nominales des paramètres sont donnees dans fungus.factors. Elles correspondent à Alternaria Brassicae, ravageur du colza (Magarey et al, 2005).

References

Magarey RD, Sutton TB, Thayer CL (2005). A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95, 92-100.

Examples

```
fungus.model( fungus.factors$nominal, temperature=c(10,15,18,21,30) )
```

fungus.simule

Simulation du modéle "fungus"...

Description

Simulation du modèle "fungus"

Usage

```
fungus.simule(X, temperature=10, tout=FALSE)
```

inverses.basep 7

Arguments

x vecteur de longueur 5 ou matrice N x 5 comprenant un ou plusieurs jeux de

valeurs de Tmin, Topt, Tmax, Wmin, Wmax

temperature scalaire ou vecteur de temperatures

tout TRUE si l'on veut les entrées ET les sorties dans le tableau de sortie

Value

Data.frame a N lignes et p colonnes, ou p est la longueur de 'temperature'

Note

Des valeurs min, max et nominales des paramètres sont donnees dans fungus.factors. Elles correspondent à Alternaria Brassicae, ravageur du colza (Magarey et al, 2005).

References

Magarey RD, Sutton TB, Thayer CL (2005). A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95, 92-100.

Examples

```
scenarios <- rbind(fungus.factors$binf,fungus.factors$nominal,fungus.factors$bsup)
fungus.simule( scenarios, temperature=c(10,15,18,21,30) )</pre>
```

inverses.basep

Calcul basique des inverses modulo p...

Description

Calcul basique des inverses modulo p

Usage

```
inverses.basep(p)
```

Arguments

p un nombre entier premier

Value

vecteur des inverses

```
inverses.basep(5)
(inverses.basep(17) * (1:16)) %%17
```

8 ishigami.model

ishigami.factors

Facteurs d'entrée du modéle Ishigami

Description

Facteurs d'entrée du modèle Ishigami, décrit dans Saltelli et al., 2000

Value

data.frame à 3 lignes (facteurs) et 4 colonnes (spécifs)

ishigami.model

Modéle d'Ishigami, décrit dans Saltelli et al., 2000

Description

Modèle d'Ishigami

Usage

```
ishigami.model(param=ishigami.factors$nominal)
```

Arguments

param

vecteur de longueur 3 ou matrice N x 3 des paramètres chacun des paramètres doit varier entre -pi et +pi

Value

scalaire, ou vecteur de longueur N

Note

Appelle la fonction ishigami.fun de la librairie sensitivity

```
ishigami.model( c(-1,0,-1) ) ishigami.model( rbind(c(1,1,1),c(-1,0,-1) )
```

ishigami.simule 9

ishigami.simule

Simulation du modéle d'Ishigami, décrit dans Saltelli et al., 2000

Description

Simulation du modèle d'Ishigami

Usage

```
ishigami.simule(X, tout=FALSE)
```

Arguments

X matrice ou dataframe N x 3 des valeurs d'entrée, comprises entre -pi et +pi tout TRUE si l'on veut les entrées ET les sorties dans le tableau de sortie

Value

matrice ou dataframe si 'tout==TRUE', un vecteur sinon

Note

Appelle la fonction ishigami.fun de la librairie sensitivity

Examples

```
ishigami.simule( c(-1,0,-1) ) ishigami.simule( rbind( c(1,1,1),c(-1,0,-1) )
```

lhs.plan

Tire selon le plan hyper-cube latin un échantillon de valeurs de paramétres...

Description

Tire selon le plan hyper-cube latin un échantillon de valeurs de paramètres

Usage

```
lhs.plan(taille, plage, repet, tout=FALSE)
```

Arguments

taille	de l'échantillon
plage	objet de type .factors
repet	NULL ou une ligne d'un objet de type .factors
tout	TRUE si l'on veut conserver l'échantillon de base dans $[0,1]^p$

10 lhs2intervalle

Value

la matrice $N \times p$ de l'échantillon si tout=FALSE ou une liste à 2 composantes, plan et lhs.tirage, si tout=TRUE

Note

L'objet .factors donné dans l'argument plage sert à spécifier le nom des facteurs et les bornes de leurs intervalles d'incertitude. L'argument repet permet d'inclure un facteur supplémentaire qualitatif, dont les modalités sont obtenues par des tirages aléatoires indépendants avec remise.

Examples

lhs2intervalle

Projection de valeurs tirées entre 0 et 1 sur une autre plage de variation...

Description

Projection de valeurs tirées entre 0 et 1 sur une autre plage de variation

Usage

```
lhs2intervalle(matrice, minAmax)
```

Arguments

matrice matrice ou data.frame 0-1 à N lignes et p colonnes minAmax vecteur des bornes de l'intervalle cible

Value

matrice

Note

Utilisé dans lhs.plan.

```
## Not run: TODO
```

loiGeneriqueTronquee 11

```
loiGeneriqueTronquee
```

Fonctions génériques pour loi tronquée

Description

Fonctions génériques pour loi tronquée

Usage

```
d.trunc.distr(x, distr, trunc.int, ...)
p.trunc.distr(q, distr, trunc.int, ...)
q.trunc.distr(p, distr, trunc.int, ...)
r.trunc.distr(n, distr, trunc.int, ...)
```

Arguments

X	vecteur de quantiles
q	vecteur de quantiles
р	vecteur de probabilités
n	taille de l'échantillon aléatoire à générer
distr	intitulé de la loi à tronquer
trunc.int	bornes de la troncature
	paramètres de la loi à tronquer

Value

densités, probabilités, quantiles, échantillon aléatoire

loiGumbelTronquee The Truncated Gumbel distribution

Description

Fonctions associées à la loi de Gumbel tronquée

Usage

```
dtgumbel(x, loc = 0, scale = 1, min = -1e6, max = 1e6)
ptgumbel(q, loc = 0, scale = 1, min = -1e6, max = 1e6)
qtgumbel(p, loc = 0, scale = 1, min = -1e6, max = 1e6)
rtgumbel(n, loc = 0, scale = 1, min = -1e6, max = 1e6)
```

Arguments

X	vecteur de quantiles
q	vecteur de quantiles
р	vecteur de probabilités
n	taille de l'échantillon aléatoire à générer
loc	paramètre de position de la loi à tronquer
scale	paramètre d'échelle de la loi à tronquer
min	borne inférieure de la troncature
max	borne supérieure de la troncature

Value

densités, probabilités, quantiles, échantillon aléatoire

```
loiLogNormaleTronquee
```

The Truncated LogNormal distribution

Description

Fonctions associées à la loi LogNormale tronquée

Usage

loiNormaleTronquee 13

Arguments

X	vecteur de quantiles
q	vecteur de quantiles
р	vecteur de probabilités
n	taille de l'échantillon aléatoire à générer
meanlog	moyenne de la loi à tronquer
sdlog	écart-type de la loi à tronquer
min	borne inférieure de la troncature
max	borne supérieure de la troncature

Value

densités, probabilités, quantiles, échantillon aléatoire

```
\verb|loiNormaleTronquee| \textit{The Truncated Normal distribution}
```

Description

Fonctions associées à la loi Normale tronquée

Usage

```
dtnorm(x, mean = 0, sd = 1, min = -1e6, max = 1e6)
ptnorm(q, mean = 0, sd = 1, min = -1e6, max = 1e6)
qtnorm(p, mean = 0, sd = 1, min = -1e6, max = 1e6)
rtnorm(n, mean = 0, sd = 1, min = -1e6, max = 1e6)
```

Arguments

Х	vecteur de quantiles
q	vecteur de quantiles
р	vecteur de probabilités
n	taille de l'échantillon aléatoire à générer
mean	moyenne de la loi à tronquer
sd	écart-type de la loi à tronquer
min	borne inférieure de la troncature
max	borne supérieure de la troncature

Value

densités, probabilités, quantiles, échantillon aléatoire

14 perspPlus

morri	c m	ovi	\sim

Méthode de Morris á la sauce mexicaine

Description

Adaptation de la méthode de Morris pour l'EC Mexico

Usage

```
morris.mexico(model, factors, r, design, binf=0, bsup=1, scale=TRUE, ...)
```

Arguments

model	voir la méthode morris de la librairie sensitivity
factors	voir la méthode morris de la librairie sensitivity
r	voir la méthode morris de la librairie sensitivity
design	voir la méthode morris de la librairie sensitivity
binf	voir la méthode morris de la librairie sensitivity
bsup	voir la méthode morris de la librairie sensitivity
scale	voir la méthode morris de la librairie sensitivity
	voir la méthode morris de la librairie sensitivity

Value

voir la méthode morris de la librairie sensitivity

Note

Corrige un problème détecté dans la version 1.0 de sensitivity en normalisant les facteurs d'entrée avant les calculs principaux

perspPlus

Interface conviviale pour des graphiques pour 3 variables...

Description

Interface conviviale pour des graphiques pour 3 variables

Usage

```
perspPlus(x, y, z, pcol=c("blue", "green"), pphi=30, ptheta=-30,
    nomx=deparse(substitute(x)), nomy=deparse(substitute(y)),
    nomz=deparse(substitute(z)), type=1)
```

Arguments

X	voir la doc de persp
У	voir la doc de persp
Z	voir la doc de persp
pcol	code pour le dégradé de couleurs
pphi	angle de vue (colatitude, argument phi de persp)
ptheta	angle de vue (direction azimutale, argument theta de persp)
nomx	chaine de caractère
nomy	chaine de caractère
nomz	chaine de caractère

Value

invisible()

type

Examples

```
#perspPlus(x=Tmax,y=Tmin,z = Y10, pcol=c("blue", "green"), pphi=30, ptheta=-30,
# nomx=deparse(substitute(x)),nomy=deparse(substitute(y)),
# nomz=deparse(substitute(z)),type=1)
```

un chiffre. 1: perspective; 2: image; 3: contour; 4: perspective 3D

```
planor.kernelcheck.basep
```

Vérification des confusions d'effets en cours de construction...

Description

Vérification des confusions d'effets en cours de construction d'un plan factoriel fractionnaire

Usage

```
planor.kernelcheck.basep(PhiStar, admissible, IneligibleSet, p)
```

Arguments

```
PhiStar matrice clé en cours

admissible matrice codant les caractères a priori admissibles

IneligibleSet ensemble des caractères non éligibles

p un nombre entier premier
```

Value

vecteur logique

16 regular.fraction

regular.fraction *Construction de plans factoriels fractionnaires symétriques entre les facteurs.*

Description

Construction de plans factoriels fractionnaires symétriques entre les facteurs. Cette fonction permet de générer une fraction de résolution donnée pour s facteurs à p modalités en p^r unités

Usage

```
regular.fraction(s, p, r, resolution)
```

Arguments

S	le nombre de facteurs
р	un nombre entier premier égal au nombre de modalités par facteur
r	un nombre entier définissant la taille du plan, égale à p^r

resolution la résolution de la fraction

Value

liste à deux composantes, plan (le plan en base p) et matrice.cle (la matrice clé contenant les relations de définition), ou NULL si aucune solution n'été trouvée. Le plan est sous la forme d'une matrice composée d'entiers modulo p

Note

This is a simplified version of a more general library in preparation. In this version, all factors must have the same prime number of levels and only fractions with a given resolution can be constructed. The first q factors are used as basic factors. The first solution is kept although it may not be the most interesting one (no control of aberration). This function is programmed entirely in R and so it is not efficient with respect to computer time. There is no explicit check on the arguments and so it is up to the user to restrict p to a prime number such as 2, 3, 5 or 7.

```
regular.fraction(s=8, p=2, r=4, resolution=4)
regular.fraction(s=9, p=2, r=4, resolution=4)
```

representative.basep 17

```
representative.basep
```

Fonction générant l'ensemble minimal de représentants des colonnes...

Description

Fonction générant l'ensemble minimal de représentants des colonnes d'une matrice, en base p

Usage

```
representative.basep(mat, p)
```

Arguments

mat une matrice d'entiers modulo p un nombre entier premier

Value

une matrice d'entiers modulo p

samplingLHS

Tirage aléatoire LHS de N jeux de paramétres...

Description

Tirage aléatoire LHS de N jeux de paramètres (possibilite d'imposer une matrice de corrélations sur les rangs)

Usage

```
samplingLHS(dim_x, nom=c(NA), N=1, lois=rep(0, dim_x),
    paramlois=array(0, dim =c(4, dim_x)),
    correl=0, tronq=rep(FALSE, dim_x),
    paramtronq=array(0, dim = c(2, dim_x)))
```

Arguments

dim_x	nombre de paramètres d'entrée dans le modèle
nom	$vecteur\ des\ noms\ des\ parametres\ simules\ (defini\ comme:\ c("V1","V2","V3",))$
N	nombre de jeux de simulations
lois	vecteur contenant les types de distribution de proba pour chaque entrée: 0=uniforme ; 1=normale ; 2=lognormale ; 3=weibull 4=exponentielle ; 5=beta ; 6=triangulaire ; 7=trapezoidale 10=gumbel. Par defaut, on prend la loi uniforme

18 samplingLHS

paramlois tableau avec les parametres de chaque loi (max=4) pour chaque entree (range par

colonne): (min,max,0,0) pour uniforme (par défaut : min=0, max=1) (moy,ecart-type,0,0) pour normale, (moy du log, ecart-type du log,0,0) pour lognormale, (forme,echelle,0,0) pour Weibull, (lambda,0,0,0) pour exponentielle, (shape1, shape2,0,0) pour beta, (min,mode,max,0) pour triangulaire, (min,mode1,mode2,max)

pour trapezoidale, (mode,echelle,0,0) pour Gumbel

correl $0 \rightarrow \text{pas}$ de correlation entre parametres; $1 \rightarrow \text{pas}$ de correlation, on supprime

les correlations indesirables par la methode des permutations circulaires $2 \rightarrow$ introduction d'une matrice de correlations sur les rangs des parametres via le

fichier 'matcorrelrank.dat'

trong vecteur pour sélectionner ou non une loi tronquée: TRUE pour loi tronquée,

FALSE sinon

paramtrong tableau avec les paramètres de troncature de chaque loi: (min,max) range par

colonne

Value

la matrice des N simulations des dim_x parametres

Note

!!! WARNING !!!!: le LHS et la la troncature ne s'appliquent pas a la loi trapezoidale

FONCTION UTILISEE:

truncated.R (fonctions pour lois tronquees)

LIBRAIRIES REQUISES (A INSTALLER)

library(triangle)

library(evd) # Gumbel

Author(s)

B. Iooss

References

Stein, M. 1987. Technometrics 29:143-151

Iman and Conover. 1982. Commun. Stat. Simul. Comput. 11(3):311-334

McKay, Conover and Beckman. 1979. Technometrics 21: 239-245

samplingOptLHS 19

samplingOptLHS	Tirage aleatoire d'un plan LHS optimal de N jeux de parametres

Description

Tirage aleatoire d'un plan LHS optimal de N jeux de parametres Le plan peut etre maximin, distance-optimal ou S-optimal

Usage

```
samplingOptLHS(dim_x, nom=c(NA), N=1, lois=rep(0, dim_x),
    paramlois=array(0, dim =c(4, dim_x)), tronq=rep(FALSE, dim_x),
    paramtronq=array(0, dim =c(2, dim_x)),
    optimal="maximin", dup=1, pop=100, gen=4, pMut=0.1)
```

Arguments

dim_x	nombre de parametres d'entree dans le modele
nom	vecteur des noms des parametres simules (defini comme : c ("V1 " , "V2 " , "V3 " ,))
N	nombre de jeux de simulations
lois	vecteur contenant les types de distribution de proba pour chaque entree 0=uni- forme; 1=normale; 2=lognormale; 3=weibull 4=exponentielle; 5=beta; 6=tri- angulaire; 7=trapezoidale 10=gumbel Par defaut, on prend la loi uniforme
paramlois	tableau avec les parametres de chaque loi (max=4) pour chaque entree (range par colonne): (min,max,0,0) pour uniforme (par défaut: min=0, max=1) (moy,ecart-type,0,0) pour normale, (moy du log, ecart-type du log,0,0) pour lognormale, (forme,echelle,0,0) pour Weibull, (lambda,0,0,0) pour exponentielle, (shape1, shape2,0,0) pour beta, (min,mode,max,0) pour triangulaire, (min,mode1,mode2,max) pour trapezoidale, (mode,echelle,0,0) pour Gumbel
tronq	TODO
paramtronq	TODO
optimal	type d'optimalite pour le LHS (par defaut 'maximin') 'distance' pour distance- optimal, 'S' pour S-optimal
dup	facteur pour le nb de points candidats dans les fcts maximinLHS (plan maximin) et improvedLHS (plan dist-optimal)
pop	option de la fct geneticLHS (plan S-optimal) Taper help(geneticLHS) pour en savoir plus
gen	option de la fct geneticLHS (plan S-optimal) Taper help(geneticLHS) pour en savoir plus
pMut	option de la fct geneticLHS (plan S-optimal) Taper help(geneticLHS) pour en

Value

la matrice des N simulations des dim_x parametres

20 samplingSimple

Note

```
!!! WARNING !!!! : le LHS et la la troncature ne s'appliquent pas a la loi trapezoidale
***************************
FONCTION UTILISEE :
truncated.R (fonctions pour lois tronquees)
*******************************
LIBRAIRIES REQUISES (A INSTALLER)
library(triangle)
library(lhs)
library(evd) # Gumbel
```

Author(s)

B. Iooss

samplingSimple

Tirage aleatoire simple de N jeux de parametres...

Description

Tirage aleatoire simple de N jeux de parametres

Usage

```
samplingSimple(dim_x, nom=c(NA), N=1, lois=rep(0, dim_x),
    paramlois=array(0, dim = c(4, dim_x)), tronq=rep(FALSE, dim_x),
    paramtronq=array(0, dim =c(2, dim_x)))
```

Arguments

dim_x	nombre de parametres d'entree dans le modele
nom	: vecteur des noms des parametres simules (defini comme : $c("V1","V2","V3",)$)
N	nombre de jeux de simulations
lois	vecteur contenant les types de distribution de proba pour chaque entree 0=uni- forme; 1=normale; 2=lognormale; 3=weibull 4=exponentielle; 5=beta; 6=tri- angulaire; 7=trapezoidale 10=gumbel Par defaut, on prend la loi uniforme
paramlois	tableau avec les parametres de chaque loi (max=4) pour chaque entree (range par colonne) : (min,max,0,0) pour uniforme (par défaut : min=0, max=1) (moy,ecart-type,0,0) pour normale, (moy du log, ecart-type du log,0,0) pour lognormale, (forme,echelle,0,0) pour Weibull, (lambda,0,0,0) pour exponentielle, (shape1, shape2,0,0) pour beta, (min,mode,max,0) pour triangulaire, (min,mode1,mode2,max) pour trapezoidale, (mode,echelle,0,0) pour Gumbel
tronq	vecteur pour selectionner ou non une loi tronquee TRUE pour loi tronquee, FALSE sinon (par défaut)
paramtronq	tableau avec les parametres de troncature de chaque loi : (min,max) range par colonne

TP1.ICmorris 21

Value

la matrice des N simulations des dim_x parametres

Note

Author(s)

B. Iooss

TP1.ICmorris

Calcul d'intervalles de confiance pour la méthode Morris...

Description

Calcul d'intervalles de confiance pour la méthode Morris

Usage

```
TP1.ICmorris(etude.morris)
```

Arguments

etude.morris structure issue de la fonction morris du package sensitivity

TP1corr

Graphiques de corrélation entre facteurs X et sortie y de la FC...

Description

Graphiques de corrélation entre facteurs X et sortie y de la FC issus d'une anova

Usage

```
TP1corr(etude.morris, transfo=TRUE, binf, bsup)
```

22 TP1indices.aov

Arguments

etude.morris structure issue de la fonction morris du package sensitivity
transfo si TRUE, recodage de la matrice X codée dans [0,1]
binf vecteur des bornes inférieures des gammes des facteurs
bsup vecteur des bornes supérieures des gammes des facteurs

TP1histo

Diagramme des fréquences des valeurs des facteurs échantillonnées...

Description

Diagramme des fréquences des valeurs des facteurs échantillonnées issus d'une anova

Usage

```
TP1histo(etude.morris)
```

Arguments

etude.morris structure issue de la fonction morris du package sensitivity

TP1indices.aov

Calcul et représentation graphique des indices principaux et totaux...

Description

Calcul et représentation graphique des indices principaux et totaux issus d'une anova

Usage

```
TPlindices.aov(table.aov, noms, modeleAOV, titre="")
```

Arguments

table.aov table d'anova issue de la fonction aov()

noms vecteur des labels des facteurs

modeleAOV modèle d'anova créé avec formula()

titre du graphique

TP1pavage 23

TP1pavage	Construction du plan avec tirage dans les pavés défini par un plan P

Description

Construction du plan avec tirage dans les pavés défini par un plan P

Usage

```
TP1pavage(P, nrep=3, Nbclass=2, binf, bsup)
```

Arguments

P matrice à Nbfac colonnes codée par des entiers de 1 à Nbclass

nrep nbre de tirages par pavé [entier]

Nbclass niveau de discrétisation des gammes des facteurs
binf vecteur des bornes inf des gammes des facteurs
bsup = vecteur des bornes sup des gammes des facteurs

Value

liste contenant les matrices des coordonnées entières (Plan.rep) et réelles (xx) des points tirés au hasard

Examples

```
\label{eq:total_parameter} \texttt{TP1pavage(rbind(1:3,c(2,2,2)),binf=c(-10,0,100),bsup=c(10,5,600),Nbclass=5)}
```

TP1tirage Uniforme dans un pavé de R^K...

Description

Tirage uniforme dans un pavé de R^K

Usage

```
TP1tirage(PAV, binf, bsup, Nbclass)
```

Arguments

PAV vecteur des coordonnées entières d'un pavé codées de 1 à Nbclass

binf vecteur des bornes inf des gammes des facteurs
bsup vecteur des bornes sup des gammes des facteurs
Nbclass niveau de discrétisation des gammes des facteurs

Value

vecteur à K éléments

24 weed.fun

Examples

```
 \texttt{TP1tirage(PAV=c(1,2,3),binf=c(-10,0,100),bsup=c(10,5,600),Nbclass=5)} \\
```

weed.decision

Décisions par défaut pour le modèle "Weed"

Description

Dataframe des décisions par défaut pour le modèle "Weed"

Value

data.frame à 8 lignes (années) et 3 colonnes (facteurs)

weed.factors

Facteurs d'entrée du modéle "Weed"

Description

Facteurs d'entrée du modèle "Weed" (ou "mauvaises herbes")

Value

data.frame à 20 lignes (facteurs) et 4 colonnes (spécifs)

weed.fun

Fonction de base du modéle "Weed"

Description

Fonction de base du modèle "Weed": calcul sur 1 année du modèle "Weed".

Usage

```
weed.fun(decision, param)
```

Arguments

decision data.frame à 1 ligne et 3 colonnes Soil, Crop, Herb

param vecteur des paramètres: mu, v, phi, beta.1, beta.0, chsi.1, chsi.0, delta.new,

delta.old, mh, mc, Smax.1, Smax.0, Ymax, rmax, gamma et des variables d'état

initiales d.im1, S.im1, SSBa.im1, DSBa.im1 (d,S,SSBa,DSBa)

weed.model 25

Value

un vecteur de longueur 5 composé de:

- Sproduction de graines par eqn(m^2)
- ddensité d'adventices à l'émergence (plantes par eqn(m^2))
- SSBabanque de graines en surface après travail du sol (graines par eqn(m^2))
- DSBabanque de graines en profondeur après travail du sol (graines par eqn(m^2))
- Yieldrendement (t par ha)

weed.model

Modéle "Weed" pour un jeu de paramétres et un jeu de décisions

Description

Modèle "Weed" pour un jeu de paramètres et un jeu de décisions sur n années

Usage

```
weed.model(param, decision=weed.decision, tout=FALSE)
```

Arguments

param	vecteur des paramètres: mu, v, phi, beta.1, beta.0, chsi.1, chsi.0, delta.new, delta.old, mh, mc, Smax.1, Smax.0, Ymax, rmax, gamma et des variables d'état initiales d.im1, S.im1, SSBa.im1, DSBa.im1 (d,S,SSBa,DSBa)
decision	data.frame à 3 colonnes Soil, Crop, Herb de valeurs 0-1 et n lignes, où n est le nombre d'années simulées
† 011†	TRUE si l'on veut les entrées ET les sorties dans le tableau de sortie

Value

une matrice n x 5 composée de:

- Sproduction de graines par eqn(m^2)
- ddensité d'adventices à l'émergence (plantes par eqn(m^2))
- SSBabanque de graines en surface après travail du sol (graines par eqn(m^2))
- DSBabanque de graines en profondeur après travail du sol (graines par eqn(m^2))
- Yieldrendement (t par ha)

Note

Voir weed.factors pour les valeurs min, max et nominal des parametres

```
decision <- data.frame(Soil=c(0,1),Crop=c(0,1),Herb=c(0,1)) weed.model( weed.factorsnominal, decision=decision)
```

26 weed.simule

weed.simule	Simulations en série du modéle "Weed"
-------------	---------------------------------------

Description

Simulations en série du modèle "Weed"

Usage

Arguments

X	matrice ou data.frame des jeux de paramètres: mu, v, phi, beta.1, beta.0, chsi.1, chsi.0, delta.new, delta.old, mh, mc, Smax.1, Smax.0, Ymax, rmax, gamma et des variables d'état initiales d.im1, S.im1, SSBa.im1, DSBa.im1 (d,S,SSBa,DSBa)
decision	data.frame à 3 colonnes Soil, Crop, Herb et n lignes, où n est le nombre d'années simulées
sortie	fonction ou mot-clé donnant la nature de la ou des variables en sortie de chaque simulation (voir DETAILS)
nom.sortie	noms de la ou des variables de sortie retenues
tout	TRUE si l'on veut les entrées ET les sorties dans le tableau de sortie

Value

un data frame incluant en colonnes la ou les sorties retenues. Suivant la valeur de 'tout', les entrées sont restituées ou non.

Note

Le paramètre 'sortie' peut être:

- soit une fonction calculant la ou les variables de sortie de chaque simulation à partir du tableau n x 5 des sorties de 'weed.model';
- soit un mot-cle pré-défini:
 - annee.finalepour avoir les 5 sorties de la dernière année;
 - rdt.totalpour avoir la somme des rendements sur les n annees (defaut);
 - banque.finalepour avoir la banque de graines en derniere annee.

Pour rappel, les 5 sorties de 'weed.model' sont:

- Sproduction de graines par eqn(m^2)
- ddensité d'adventices à l'émergence (plantes par eqn(m^2))
- SSBabanque de graines en surface après travail du sol (graines par eqn(m^2))
- DSBabanque de graines en profondeur après travail du sol (graines par eqn(m^2))
- Yieldrendement (t par ha)

wwdm.climates 27

Examples

```
jeux.param <- rbind(weed.factors$binf, weed.factors$nominal, weed.factors$bsup)
weed.simule( jeux.param, sortie=function(x){sum(x[,5])}, nom.sortie="rdt.total")
weed.simule( jeux.param, sortie="annee.finale", nom.sortie="rdt.total")</pre>
```

wwdm.climates

Séries climatiques sur 14 années, utilisées par le modéle wwdm

Description

Séries climatiques sur 14 années, utilisées par le modèle wwdm

Value

data.frame à N lignes (1 par jour) et 4 colonnes (ANNEE, RG, Tmin, Tmax)

wwdm.factors

Facteurs d'entrée du modéle "wwdm"

Description

Facteurs d'entrée du modèle "wwdm"

Value

data.frame à 8 lignes (facteurs) et 4 colonnes (spécifs)

wwdm.model

Modéle "wwdm" pour un jeu de paramétres

Description

Modèle wwdm (winter wheat dry matter) de croissance du blé, modèle de culture très simple, dynamique à pas de temps journalier

Usage

```
wwdm.model(param, year, climate=wwdm.climates)
```

Arguments

param vecteur de paramètres de wwdm de longueur 7 ou 8
year soit NULL soit un nombre compris entre 1 et 14
climate nom du data.frame contenant les données climatiques

Value

vecteur des 223 gains journaliers de biomasse calculés par WWDM

28 wwdm.simule

Note

Le modèle a deux variables d'état, l'indice de surface foliaire (LAI) et la biomasse aérienne du blé d'hiver. La sortie de la fonction est le gain de poids journalier de la matière sèche en 'g per m2 per day'. Une simulation correspond à une année climatique. Par défaut, les données climatiques sont lues dans le data.frame wwdm.climates, qui contient 14 années climatiques, et l'année doit être spécifiée par un nombre entre 1 et 14. Il y a deux façons de faire cela, soit par l'argument year, soit par la 8ème coordonnée de l'argument param si year=NULL. Lorsque year=NULL et qu'il n'y a que 7 coordonnées dans param, l'année utilisée est l'année numéro 3

References

Makowski, D., Jeuffroy, M.-H., Guérif, M., 2004 Bayesian methods for updating crop model predictions, applications for predicting biomass and grain protein content. In: Bayesian Statistics and Quality Modelling in the Agro-Food Production Chain (van Boeakel et al. eds), pp. 57-68. Kluwer, Dordrecht.

Monod, H., Naud, C., Makowski, D., 2006 Uncertainty and sensitivity analysis for crop models. In: Working with Dynamic Crop Models (Wallach D., Makowski D. and Jones J. eds), pp. 55-100. Elsevier, Amsterdam

Examples

```
#data()
#wwdm.model()
#sum( wwdm.model() )  #biomasse cumulee
#wwdm.model(param=wwdm.factors$nominal, year=NULL, climate=wwdm.climates)
#wwdm.model(param=wwdm.factors$nominal, year=5)
```

wwdm.simule

Simulations en série du modéle "wwdm"

Description

Fonction gérant une série de simulations de wwdm, modèle de culture dynamique à pas de temps journalier, pour le blé

Usage

```
wwdm.simule(X, year, tout=FALSE, transfo=FALSE,
b1=wwdm.factors$binf[1:Nbfac], b2=wwdm.factors$bsup[1:Nbfac])
```

Arguments

X	dataframe à 7 ou 8 colonnes de valeurs des paramètres de wwdm
year	soit NULL, soit une valeur unique entre 1 et 14
tout	TRUE si l'on veut les entrées ET les sorties dans le tableau de sortie
transfo	TRUE si X contient des valeurs codées entre 0 et 1
b1	vecteur des 7 ou 8 bornes inférieures des paramètres si transfo=TRUE
b2	vecteur des 7 ou 8 bornes supérieures des paramètres si transfo=TRUE

wwdm.simule 29

Value

Biomasse aérienne accumulée avant la récolte, en g per m2

Note

Le modèle a deux variables d'état, l'indice de surface foliaire (LAI) et la biomasse aérienne du blé d'hiver. La fonction wwdm.simule ne donne en sortie que la biomasse aérienne accumulée avant la récolte, en 'g per m2'. Une simulation correspond à une année climatique. Il est possible de préciser l'année climatique, soit simulation par simulation en ajoutant une colonne 'year' à 'X', soit globalement en utilisant l'argument 'year'

References

Makowski, D., Jeuffroy, M.-H., Guérif, M., 2004 Bayseian methods for updating crop model predictions, applications for predicting biomass and grain protein content. In: Bayseian Statistics and Quality Modelling in the Agro-Food Production Chain (van Boeakel et al. eds), pp. 57-68. Kluwer, Dordrecht

Monod, H., Naud, C., Makowski, D., 2006 Uncertainty and sensitivity analysis for crop models. In: Working with Dynamic Crop Models (Wallach D., Makowski D. and Jones J. eds), pp. 55-100. Elsevier, Amsterdam

Index

convertirom.basep, 3	q.trunc.alstr
convertinto.basep, 3	(loiGeneriqueTronquee), 1
convertU2N, 4	qtgumbel(loiGumbelTronquee), 12
copyright, 4	qtlnorm(loiLogNormaleTronquee)
crossing, 5	12
5.	qtnorm(loiNormaleTronquee), 13
d.trunc.distr	- · ·
(loiGeneriqueTronquee), 11	r.trunc.distr
dtgumbel(loiGumbelTronquee), 12	(loiGeneriqueTronquee), 1
dtlnorm(loiLogNormaleTronquee),	regular.fraction, 16
12	representative.basep, 17
dtnorm(loiNormaleTronquee), 13	rtgumbel(loiGumbelTronquee), 12
	rtlnorm(loiLogNormaleTronquee)
ECmexico2012	12
(ECmexico2012-package), 2	rtnorm(loiNormaleTronquee), 13
ECmexico2012-package, 2	· · · · · · · · · · · · · · · · · · ·
	samplingLHS, 17
fungus.factors,5	samplingOptLHS, 19
fungus. $model, 6$	samplingSimple, 20
fungus.simule, 6	
	TP1.ICmorris, 21
inverses.basep,7	TP1corr, 21
ishigami.factors, 8	TP1histo, 22
ishigami.model, 8	TP1indices.aov, 22
ishigami.simule,9	TP1pavage, 23
	TP1tirage, 23
lhs.plan,9	
lhs2intervalle, 10	weed.decision, 24
LoiGeneriqueTronquee	weed.factors, 24
(loiGeneriqueTronquee), 11	weed.fun, 24
loiGeneriqueTronquee, 11	weed.model, 25
loiGumbelTronquee, 12	weed.simule, 26
loiLogNormaleTronquee, 12	wwdm.climates,27
loiNormaleTronquee, 13	wwdm.factors,27
	wwdm.model, 27
morris.mexico, 14	wwdm.simule, 28
p.trunc.distr	
(loiGeneriqueTronquee), 11	
perspPlus, 14	
planor.kernelcheck.basep, 15	
ptgumbel(loiGumbelTronquee), 12	
<pre>ptlnorm(loiLogNormaleTronquee),</pre>	
12	
ptnorm(loiNormaleTronquee) 13	