

Figure 51.9: Let $\varphi \colon \mathbb{R} \to \mathbb{R}$ be the affine form $\varphi(x) = x + 1$. Let $\omega \colon \mathbb{R}^2 \to \mathbb{R}$ be the affine form $\omega(x,\alpha) = x + 1 - \alpha$. The hyperplane $\mathcal{H} = \omega^{-1}(0)$ is the red line with equation $x - \alpha + 1 = 0$.

We say that \mathcal{H} is the hyperplane (in \mathbb{R}^{n+1}) induced by the affine form $\varphi \colon \mathbb{R}^n \to \mathbb{R}$. Also recall the notion of supporting hyperplane to a convex set.

Definition 51.12. If C is a nonempty convex set in \mathbb{R}^n and x is a vector in C, an affine hyperplane H is a supporting hyperplane to C at x if

- (1) $x \in H$.
- (2) Either $C \subseteq H_+$ or $C \subseteq H_-$.

See Figure 51.10. Equivalently, there is some nonconstant affine form φ such that $\varphi(z) = \langle z, u \rangle - c$ for all $z \in \mathbb{R}^n$, for some nonzero $u \in \mathbb{R}^n$ and some $c \in \mathbb{R}$, such that

- $(1) \langle x, u \rangle = c.$
- (2) $\langle z, u \rangle \leq c$ for all $z \in C$

The notion of vector normal to a convex set is defined as follows.

Definition 51.13. Given a nonempty convex set C in \mathbb{R}^n , for any $a \in C$, a vector $u \in \mathbb{R}^n$ is normal to C at a if

$$\langle z - a, u \rangle \le 0$$
 for all $z \in C$.

In other words, u does not make an acute angle with any line segment in C with a as endpoint. The set of all vectors u normal to C is called the *normal cone* to C at a and is denoted by $N_C(a)$. See Figure 51.11.

It is easy to check that the normal cone to C at a is a convex cone. Also, if the hyperplane H defined by an affine form $\varphi(z) = \langle z, u \rangle - c$ with $u \neq 0$ is a supporting hyperplane to C at