

جبر خطی کاربردی نیمسال اول ۹۸-۹۷ مدرس دکتر ناظر فرد

تمرین سری ۵

توجه:

پاسخ تمرین را در یک فایل PDF با الگوی نام گذاری زیر آپلود کنید:

9531000_Claude_Makélélé_HW5.pdf

مهلت تحویل تمارین ساعت ۲۳:۵۵ روز شنبه ۹۷/۱۰/۲۲ خواهد بود.

ا) مقدار h را ماتریس زیر طوری بیابید که فضای ویژه آن به ازای $\lambda=5$ دو بعدی باشد.

$$\begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

.det $A = \det B$ نشان دهید اگر دو ماتریس A و B متشابه باشند، آنگاه (۲

۳) صحیح یا غلط بودن هریک عبارات زیر را مشخص کنید و برای هرکدام علت را توضیح دهید .

در تمامی قسمت ها A و B ماتریسهای n imes nهستند مگر اینکه جداگانه مشخص شده باشند.

لف) برای هر اسکالر a,b,c می توان نتیجه گرفت ماتریس های زیر همگی متشابه اند و اگر AB = BC باشد آنگاه A دو مقدار ویژه صفر دارد.

$$A = \begin{bmatrix} b & c & a \\ c & a & b \\ a & b & c \end{bmatrix}, B = \begin{bmatrix} c & a & b \\ a & b & c \\ b & c & a \end{bmatrix}, C = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$

ب) عملیات مقدماتی سطری دترمینان را عوض نمی کند.

ج) نشان دهید اگر $A^2=0$ انگاه تنها مقدار ویژه A صفر است

- د) اگر 5+3 فاکتوری از چندجملهای مشخصه A باشد، آنگاه Δ یک مقدار ویژه A است.
 - ه) اگر A متشابه B باشد آنگاه A^2 مشابه B است.
- ۴) A یک ماتریس 5×5 با دو مقدار ویژه باشد، یک فضای ویژه T بعدی و فضای ویژه دیگر T بعدی است. آیا A قطری شدنی است؟ چرا؟
- ۵) فرض کنید Aماتریس $n \times n$ باشد که مجموع درایه های تمام سطر های آن $n \times n$ باشد ثابت کنید $n \times n$ ویژه ای از $n \times n$ است.
- \mathbb{R}^n هستند) درستی یا نادرستی عبارات زیر را با ذکر دلیل نشان دهید. (همهی بردارها و زیرفضاها عضو \mathbb{R}^n
 - $z\,\in W^{\perp}$ انگاه $W=Span\{u_1.u_2\}$ و متعامد باشد و u_2 متعامد باشد و الف
 - ب) برای هر y و هر زیرفضای W، بردار $y-proj_W$ نسبت به y متعامد است.
 - ج) اگر $y \in W$ نگاه تصویر متعامد y بر روی y خواهد بود.
- د) اگر ستونهای ماتریس y متعامد یکه باشند، آنگاه UU^Ty تصویر متعامد $U_{n imes p}$ متعامد یکه باشند، $U_{n imes p}$ تصویر متعامد بود.
 - $UU^Tx=\mathcal{U}_{n imes p}$ ه) اگر ستونهای ماتریس $U_{n imes p}$ متعامد یکه باشند، آنگاه برای هر $x\in\mathbb{R}^n$ داریم: x
 - و) اگر W زیرفضایی از $\mathbb{R}^{ ext{n}}$ باشد و با فرض اینکه W^{\perp} آنگاه $v \in W$ بردار صفر خواهد بود.
 - ز) اگر $W \in \mathcal{Y}$ و $z_1 \in \mathcal{Z}_2$ و $z_1 + z_2$ آنگاه z_1 تصوير متعامد y بر y خواهد بود.
- ۷) اگر $U_{n \times n}$ و $U_{n \times n}$ ماتریسهای متعامد باشند، چرایی متعامد بودن U_n را نشان دهید. (برای این کار کافی است معکوسپذیر بودن U_n را نشان دهید و همچنین ثابت کنید که مقدار آن برابر است با U_n را نشان دهید و U_n را نشان دهید و همچنین ثابت کنید که مقدار آن برابر است با U_n را نشان دهید و همچنین ثابت کنید که مقدار آن برابر است با U_n را نشان دهید و همچنین ثابت کنید که مقدار آن برابر است با U_n را نشان دهید و همچنین ثابت کنید که مقدار آن برابر است با U_n را نشان دهید و همچنین ثابت کنید که مقدار آن برابر است با U_n را نشان دهید و همچنین ثابت کنید که مقدار آن برابر است با U_n
 - باشد و مجموعه \mathbb{R}^n باشد و مجموعه M فرض کنید زیرفضای W باشد و بایه های متعامد W باشد. $\{v_1,v_2,\dots,v_a\}$
 - الت) توضیح دهید چرا مجموعه $\{w_1,\dots,w_p,v_1,\dots,v_q\}$ یک مجموعه متعامد است.
 - ب) توضيح دهيد چرا مجموعه برداري قسمت الف فضاي \mathbb{R}^n را Span مي كند.
 - ج) نشان دهید:

 $\dim W + \dim W^{\perp} = n$

9) داده های حاصل از یک آزمایش به این شرح است: $(9 \cdot 9) \cdot (2.5,4) \cdot (2.5,4) \cdot (2.5,4)$ مدلی توصیف کنید که با استفاده از تابع زیر از لحاظ کمترین مربعات با داده های داده شده متناسب شود.

$$y = A\cos x + B\sin x$$
: باشد: \mathbb{R}^n باشد: $\{v_1, ..., v_n\}$ باشد:) فرض کنید که

: با استفاده از استقراء نشان دهید که با استفاده از استقراء نشان دهید که $oldsymbol{x} = c_1 oldsymbol{v_1} + ... + c_p oldsymbol{v_p}$

$$||x||^2 = |c_1|^2 + \dots + |c_p|^2$$

 $x \in \mathbb{R}^n$ معروف است ، به ازای هر (Bessel) بنامساوی زیر را که به نا مساوی بسل

$$||x||^2 \ge |x.v_1|^2 + |x.v_2|^2 + \dots + |x.v_p|^2$$
 ثبات کنید.

$$m{x_2} = egin{bmatrix} 1/3 \\ 1/3 \\ -2/3 \end{bmatrix}$$
 و $m{x_1} = egin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ منید که $m{w} = Span\{m{x_1}.m{x_2}\}$ و $m{x_1}.m{x_2}$ هناید که $m{w} = Span\{m{x_1}.m{x_2}\}$ متعامد برای $m{w}$ بیابید.