

Department of Computer Engineering

CLASS: S.E.COMP SUBJECT:DEL

EXPT. NO.:1 DATE:

TITLE : BINARY ADDER AND SUBTRACTOR CIRCUITS

OBJECTIVE :

 Design and Implement Full adder circuit using basic gates and universal logic gates

2. Design and Implement Full Subtractor circuit using basic gates and universal logic gates

APPARATUS:

Digital-Board, GP-4Patch-Cords, IC-74LS86, IC-74LS32, IC-74LS08 / IC-74LS04 and IC-74LS00 and Required Logic gates if any.

THEORY :

Binary Adder and subtractor are a combinational logic circuit which is used to perform binary addition and subtraction .Full adder is a little more difficult to implement than a half-adder. The full-adder has three inputs and two outputs. The first two inputs are A and B and the third input is an input carry designated as CIN. When full adder logic is designed we will be able to string eight of them together to create a byte-wide adder and cascade the carry bit from one adder to the next

The full subtractor is a combinational circuit with three inputs A,B,C and two output D and C'. A is the 'minuend', B is 'subtrahend', C is the 'borrow' produced by the previous stage, D is the difference output and C' is the borrow output.

Department of Computer Engineering

PIN DIAGRAM:

PROCEDURE:

- 1. Make the connections as per the Logic circuit of Full adder circuit and Verify its Truth Table.
- 2. Make the connections as per the Logic circuit of Full subtractor circuit and Verify its
 Truth Table

Design of Full adder circuit

Dec.Equ.	INPUT		OUTPUT		
	Α	В	Cin	Sum	Carry

P:F-LTL_UG/03/R1 1.2 DEL

Department of Computer Engineering

K-Map Simplification for Sum and Carry

Logic Diagram:

P:F-LTL_UG/03/R1 1.3 DEL

Department of Computer Engineering

Design of Full subtractor circuit

Dec.	INPUT			ОИТРИТ	
Equ.	A	В	Cin	Difference	Borrow

Department of Computer Engineering

K-Map Simplification for Difference and Borrow

Logic Diagram:		
Logic Diagram:		

P:F-LTL_UG/03/R1 1.5 DEL

Department of Computer Engineering

Logic Gates / MSI Device required for Implementation:

Sr.No.	Title	Name of the IC	Number of Gates required	IC Required
	Full adder circuit using Basic logic gates			
01	Full adder circuit using Universal logic gates			

Department of Computer Engineering

02	Full subtractor circuit using Basic logic gates		
	Full subtractor circuit using		
	Universal logic gates		
CONCLU	SION:		

REFFRENCE:

- 1. R.P.Jain "Modern Digital Electronics" TMH 4th Edition
- 2. D.Leach, Malvino, Saha, "Digital Principles and Applications", TMH

Subject teacher Sign with Date

Remark