

Capstone Project-3 Bank Marketing Effectiveness Prediction

Team Members:

V. Bhavya Reddy

Problem Solution Brief

Our model predicts whether someone will make a deposit based on the given attributes. We will try to build five models using different algorithms - Logistic Regression, Decision Tree, Random Forest, Naive Bayes, and K-Nearest Neighbors. The hyperparameters will then be tuned using GridSearch to optimise the model. Our next step will be to evaluate the metrics and compare each model to determine which model is most effective.

Approach

Data Set Overview	EDA	Feature Engineering	Modelling	Model Comparison
In this first step we will load our dataset, observe the dataset shape, brief analysis of the dataset, removing the NaN values, observe the variables data types, etc.	Target distribution, importance of various numeric and categorical features, heatmap for correlation, vif, etc.	Drop unnecessary features, removing unwanted observations, encoding, and train test split.	Several models are designed using Logistic regression, Decision Tree, Random Forest Classifier, K Nearest Neighbours, Naive Bayes algorithms. Several hyperparameters are tuned to optimise the performance.	In model comparison section, we try to find the most suitable model by comparing the evaluation metrics of various models.

Data Set Overview

Exploratory Data Analysis

These are highly imbalanced dataset!!

Target Variable - Term Deposit

probability('yes')= 8 x probability('no')

Numeric feature

Age:

Exploratory Data Analysis Cont..

Categorical feature

Job:

Exploratory Data Analysis Cont..

Marital:

Exploratory Data Analysis Cont...

Those with housing loans over personal loans are most likely to be influenced by the campaign.

Feature Engineering

Feature Engineering Cont...

	age	default	balance	housing	loan	contact	pdays	previous	job_admin.	Job_blue- collar	 JUU_SelT- employed	job_services	job_student	job_technician	poutcome_failure
										COTTAL	етртоуеа				
31160	35		2823												
34803	40		-606												
40055	42		2665												
40103	34		303					3							
44773	31		147					5							
36698	48		162					4							
30525	30		436					8							
33978	57		478												
42827	65		1973					3							
43224	30	0	201	1	0	1	1	13	0	1	 0	0	0	0	0

Train- Test split: This is train data.

Train Set: (6273, 24) Test set: (1569, 24) Response: 0/1

During train-test split the term deposit was stratified.

Evaluation Metrics

Let's have a brief idea on the several evaluation metrics used in the project.

- Accuracy = (TP+TN)/(TP+FP+TN+TP)
- 2. Precision = TP/(TP+FP)
- 3. Recall = TP/(TP+FN)
- 4. F1_Score = 2*Recall*Precision/(Recall + Precision)

I consider AUC metric to be the most reliable metric to predict term deposit performance. This is because we have more 'no's than 'yes'es in our data, so both TPR and FPR are taken into account.

Logistic Regression

Based on the plot, we can see that age, married people, self-employed, housemaid, admin, balance, etc., have very little effect on term deposits.

The coefficients- w0, w1, w2, ... for every feature.

Logistic Regression Cont..

Those who are likely to subscribe term deposit are predicted to be unwilling. So, recall will be poor.

Logistic Regression Cont..

Evaluation Metrics Value Train Accuracy: 0.8260800255061375 Train Precision: 0.6886160714285714 Train Recall: 0.43177046885934217 Train F1 Score: 0.530752688172043 Train Confusion Matrix: | [[4565 279] [812 617]] Test Accuracy 0.8253664754620778 Test Precision: 0.6912442396313364 Test Recall: 0.42016806722689076 Test F1 Score: 0.5226480836236934 Test Confusion Matrix: | [[1145 67] 150]]

Test AUC: 0.796 Train AUC: 0.813 Although it appears that the model did a good job predicting non-subscribers, it failed to get the correct number of predictions for subscribers.

Recall of 0.42 indicates that the model failed to predict subscribers properly. The train data or the test data do not differ greatly in their metrics.

Decision Tree

Best estimators:

Criterion : 'entropy'

2. Max depth: 5

Test AUC: 0.786 Train AUC: 0.817

OBSERVATION:

- Recall for decision tree has surely improved over logistic regression. However, precision has reduced.
- 2. Decision trees still outperforms logistic regression models even though precision has decreased because recall has improved and I believe recall should be more important than precision.

Random Forest Classifier

BEST PARAMETERS:

criterion: entropy max_depth: 6 n estimators: 200

Test AUC: 0.796 Train AUC: 0.836

- 1. While AUC is the same as decision tree, other metrics such as recall and precision have decreased.
- 2. Random Forest is surely not the right model for this project.

Evaluation Metrics	Value
Train Accuracy:	
Train Precision:	0.7230576441102757
Train Recall:	0.40377886634009796
Train F1 Score:	0.5181859003143242
Train Confusion Matrix:	[[4623 221] [852 577]]
Test Accuracy	0.8183556405353728
Test Precision:	0.6836734693877551
Test Recall:	0.3753501400560224
Test F1 Score:	0.484629294755877
Test Confusion Matrix:	[[1150 62]

KNN

Best parameter:

N_neighbors = 40

Test AUC: 0.611 Train AUC: 0.672

- 1. As we know that our data is imbalanced and this is a classic example to show that the performance of k-NN classifiers will be significantly impacted by the imbalanced class distributions of data.
- 2. This model is worst one so far.

+ Evaluation Metrics	+			
+=====================================	======================================			
Train Precision:	1.0			
Train Recall:	0.0013995801259622112			
Train F1 Score:	0.0027952480782669456			
Train Confusion Matrix: 	[[4844 0] [1427 2]]			
Test Accuracy	0.7724665391969407			
Test Precision:	0.0			
Test Recall:	0.0			
Test F1 Score:	0.0			
Test Confusion Matrix: +	[[1212 0] [357 0]]			

Naive Bayes

Test AUC: 0.766 Train AUC: 0.786

Even though AUC has not improved, we see an improvement in recall and precision which makes Naive Bayes the best model.

```
Evaluation Metrics
                       Value
Train Accuracy:
                       0.779212498007333
Train Precision:
                       0.5126728110599078
Train Recall:
                       0.622813156053184
Train F1 Score:
                       0.5624012638230647
Train Confusion Matrix: |
                       [[3998
                        [ 539 890]]
Test Accuracy
                       0.7807520713830465
Test Precision:
                       0.5158150851581509
Test Recall:
                       0.5938375350140056
Test F1 Score:
                       0.55208333333333334
Test Confusion Matrix:
                       [[1013 199]
                        [ 145 212]]
```


Comparison among several models using evaluation metrics

Models	Accuracy	Precision	Recall	F1 Score
Logistic Regression	✓	✓	×	✓
Decision Tree	✓	✓	×	✓
Random Forest	1	1	×	×
KNN	1	X	X	X
Naive Bayes	✓	✓	✓	✓

^{✓ -} acceptable

x - not acceptable

L			L		4
Evaluation Metrics	Logistic Regression	Decision Tree	Random Forest	KNN +	Naive Bayes
Train Accuracy:	0.8260800255061375	0.8300653594771242	0.8289494659652479	0.7725171369360753	0.779212498007333
Train Precision:	0.6886160714285714	0.667590027700831	0.7230576441102757	 1.0	0.5126728110599078
Train Recall:	0.43177046885934217	0.5059482155353394	0.40377886634009796	0.0013995801259622112	0.622813156053184
Train F1 Score:	0.530752688172043	0.5756369426751592	0.5181859003143242	0.0027952480782669456	0.5624012638230647
Train Confusion Matrix: 	[[4565 279] [812 617]]	[[4484 360] [706 723]]	[[4623 221] [852 577]]	[[4844 0] [1427 2]]	[[3998 846] [539 890]]
Test Accuracy	0.8253664754620778	0.8234544295729764	0.8183556405353728	0.7724665391969407	0.7807520713830465
Test Precision:	0.6912442396313364	0.6515151515151515	0.6836734693877551	0.0	0.5158150851581509
Test Recall:	0.42016806722689076	0.48179271708683474	0.3753501400560224	0.0	0.5938375350140056
Test F1 Score:	0.5226480836236934	0.5539452495974235	0.484629294755877	0.0	0.55208333333333334
Test Confusion Matrix: 	[[1145 67] [207 150]]	[[1120 92] [185 172]]	[[1150 62] [223 134]]	[[1212 0] [357 0]]	[[1013 199] [145 212]]
1				1	

The KNN model has the lowest AUC score, and the other models exhibit similar results.

Challenge

- Huge chunk of data was to be handled keeping in mind not to miss anything of even little relevance.
- Feature engineering was quite challenging.
- Certain models took a long time to optimize hyperparameters.

Conclusion

- 1. The key features or attributes that helped in the prediction of the term deposit were poutcome, age, balance, previous, loan.
- 2. KNN's prediction is heavily influenced by the majority class, so it seems to be the poorest model for our imbalanced data.
- 3. As for this project, I have considered the AUC parameter to be significant over other metrics since it considers TPR and FPR. Except for KNN model, AUC scores are similar for other models. AUC for Naive Bayes is slightly lower than that of logistic regression, decision trees, and random forests.
- 4. Naive Bayes remains the right fit for term deposits due to the recall score (59.4%) being quite high compared to other models.
- 5. In this project, I considered recall to be more significant than precision. This assumption was made based on intuition.