Sistemas Inteligentes

Sistemas Basados en Reglas

Tema 6

Objetivos

- Conocer el paradigma de representación del conocimiento mediante Reglas de Producción y los mecanismos de Inferencia asociados
- Conocer una herramienta de diseño de Sistemas Basados en Reglas (SBR)
- Ser capaz de modelar conocimiento de algunos dominios en los que el modelo de Reglas de Producción es adecuado

Contenidos

3/40

- Introducción a los Sistemas Basados en Reglas (SBR)
- Componentes de un SBR
 - Base de Hechos
 - Base de Reglas
 - Motor de Inferencia
- Ejercicios

Introducción

- Un Sistema Experto, o Sistema de Ayuda a la Decisión, es un sistema capaz de resolver o asistir en la resolución de problemas en un dominio concreto y especializado
- Para ello utiliza conocimiento sobre el dominio expresado normalmente en forma de Reglas de Producción (Sistemas Basados en Reglas)
- Se utilizan con frecuencia en distintos campos
 - Ingeniería (diseño, detección de fallos)
 - Análisis científico
 - Diagnóstico médico
 - Análisis financiero
 - Configuración de componentes
 - Educación (Intelligent Tutoring Systems)
 - Planificación de actuaciones

Reglas de Producción

 Las Reglas de Producción, o simplemente Reglas, son un modelo de representación del conocimiento. Una regla tiene la forma

SI (Antecedente) ENTONCES (Consecuente)

- Tienen la apariencia de la Lógica, pero no son lo mismo, ya que además de poder expresar implicaciones lógicas, pueden expresar también convicciones de un experto en un problema
 - El Antecedente es una condición que se debe cumplir para que la regla se pueda aplicar
 - El Consecuente expresa el resultado de la aplicación de la regla. Puede consistir en
 - Establecer nuevos hechos
 - Retractar hechos que se suponían ciertos
 - Establecer nuevas hipótesis o metas
 - Realizar determinadas acciones

Reglas de Producción Ejemplos

6/40

- SI (temperatura > 37°) ENTONCES (paciente con fiebre)
- SI (desagüe bloqueado) Y (grifo abierto) ENTONCES (suelo se moja)
- SI (nubes por el oeste) Y (viento aumenta) Y (relámpagos)
 ENTONCES (buscar refugio)
- SI (luz encendida) ENTONCES (habitación iluminada)
- SI (El envío es urgente) ENTONCES (Se incrementa el coste en un 10%)

Sistemas Basados en Reglas Características generales

Ventajas

- Simulan bastante bien la forma de razonar y de resolver problemas de los expertos humanos en dominios específicos
- Son capaces de explicar las decisiones que toman
- Es fácil introducir nuevo conocimiento (nuevas reglas)
- Se pueden aplicar en muchos dominios
- El proceso de inferencia es en principio simple y eficiente

Inconvenientes

- El razonamiento no es monótono
- Puede haber problemas de consistencia (contradicciones, encadenamientos infinitos)
- No tienen propiedades de completitud
- El proceso de razonamiento puede ser ineficiente si el número de reglas es muy grande
- No es fácil introducir conocimiento sobre el dominio en la inferencia

Sistemas Basados en Reglas Arquitectura

8/40

La Base de Conocimiento

- Es una componente estática durante el proceso de inferencia
- El conocimiento que contiene es, en principio, declarativo: el conjunto de reglas
- No obstante, las reglas pueden estar organizadas de algún modo (orden, módulos, etc.) que puede influir en cómo se aplican (conocimiento operativo)
- La BC se puede crear
 - De forma manual a partir del conocimiento que expresa el experto
 - Ingeniería del Conocimiento (Elicitación del Conocimiento)
 - De forma automática (lo más deseable)
 - Aprendizaje Automático

La Base de Conocimiento Tipos de reglas

10/40

- Las reglas pueden contener distintos niveles de detalle y pueden ser de distintos tipos. Hay dos tipos fundamentales de reglas
 - Sin variables: Los Antecedentes contienen hechos que pueden estar en la BH

```
SI (medicina indicada penicilina) Y no(alergia a
penicilina) ENTONCES (prescripción penicilina)
```

- Permiten el "encaje" de las reglas en tiempo de diseño: Redes de Inferencia
- Con variables: Los Antecedentes contienen patrones que pueden casar con hechos de la BH

```
SI (medicina indicada ?m ) Y no(alergia a
                        ENTONCES (prescripción ? m)
(m<sup>2</sup>;
```

Requieren mecanismos de equiparación más o menos sofisticados en función de cómo se representen los patrones

La Base de Conocimiento Diseño de Reglas

11/40

Las reglas deben incluir las premisas y consecuentes apropiados

```
SI (hielo-en-la-carretera)

ENTONCES (reducir-velocidad)

SI (coche-en-marcha) Y (hielo-en-la-carretera) Y (velocidad > 70)

ENTONCES (reducir-velocidad)
```

No deben dar lugar a encadenamientos infinitos . . .

```
Regla 1 5: SI (A) Y (B) ENTONCES (C)
Regla 3 4: SI (D) Y (E) ENTONCES (A)
Regla 3 0: SI (F) Y (C) ENTONCES (D)
```

12/40

La Base de Conocimiento Diseño de Reglas

... ni a contradicciones

```
Regla107: SI (Ilueve)
ENTONCES no (soleado)

Regla109: SI (localización Almería)
ENTONCES no (nuboso)

Regla96: SI (atardecer)
ENTONCES (soleado) o (nuboso)

Hechos: (atardecer) Y (localización Almería)

Regla120: SI (atardecer) Y (localización Almería)

ENTONCES (Ilueve)
```


La Base de Conocimientos Diseño de Reglas. Corrección

13/40

Ejemplo

Regla302: SI (enfermedad estreptococo) O (enfermedad gonorrea)

ENTONCES (prescripción penicilina)

Problema!!: ¿Si el paciente es alérgico a la penicilina?

Solución:

Regla302A: SI (enfermedad estreptococo) O (enfermedad gonorrea)

ENTONCES (medicamento penicilina)

Regla302B: SI (medicamento penicilina) Y desconocido(alergia_a penicilina)

ENTONCES preguntar(alergia_a penicilina)

Regla302C: SI (medicamento penicilina) Y no (alergia_a penicilina)

ENTONCES (prescripción penicilina)

La Base de Hechos

14/40

- Es una estructura dinámica que contiene toda la información necesaria durante el proceso de inferencia
 - Hechos y datos iniciales
 - Metas iniciales
 - Hechos probados y datos introducidos durante la inferencia
 - Subproblemas e hipótesis planteados durante la inferencia (encadenamiento hacia atrás)
 - La AGENDA: Reglas activas, es decir que su antecedente casa con los hechos y datos probados.

El Motor de Inferencia

15/40

- Es el módulo responsable de decidir el orden en el que se aplican las reglas
 - Comprueba las reglas que casan con la situación actual de la Base de Hechos. Genera las reglas activas y las almacena en la Agenda
 - Resuelve los conflictos cuando hay varias reglas aplicables en la Agenda
 - Dispara la regla activa elegida y modifica el estado (Base de Hechos) añadiendo o eliminando hechos
- Puede implementar distintas estrategias de razonamiento, las más típicas son
 - Razonamiento hacia delante
 - Razonamiento hacia atrás
- Es responsable de mantener la consistencia del razonamiento
 - Controla dependencias reversibles/irreversibles entre los hechos probados

El Motor de Inferencia Dependencias reversibles/irreversibles

16/40

- El SBR debe registrar junto a cada afirmación la forma en que ha sido deducida, para mantenerla o no en función del tipo de reglas que hayan intervenido
- Ejemplo

SI (bombilla encendida) ENTONCES (habitación iluminada)

SI (bombilla encendida) ENTONCES (película velada)

Si se retracta bombilla encendida, hay que retractar habitación iluminada, pero no película velada

El Motor de Inferencia Resolución de conflictos

17/40

- Se pueden utilizar distintos criterios para elegir la siguiente regla a aplicar entre las de la Agenda
 - Ordenar las reglas al declararlas (no muy recomendable)
 - Asociar costes a la aplicación de la acción del consecuente (p.e. en diagnóstico médico, el coste de una prueba)
 - Número de antecedentes
 - La más reciente en la Agenda (profundidad), la menos reciente (anchura)
 - Asignar prioridades a las reglas
 - Búsqueda
 - Utilizar la primera regla que se pueda utilizar

El Motor de Inferencia Esquema de funcionamiento [P&M, Cap. 3]

Algoritmo genérico de funcionamiento del motor de inferencias.

- 1: BH = HechosIniciales;
- 2: mientras NoVerificaCondiciónFinalización(BH) o NoseEjecutaAccióndeParada hacer
- 3: ConjuntoConflicto = Equiparar(BC,BH);
- 4: R=Resolver(ConjuntoConflicto);
- 5: NuevosHechos = Aplicar(R,BH);
- 6: Actualizar(BH, NuevosHechos);
- 7: fin mientras

- Parte de los hechos iniciales y va "disparando" reglas de una en una hasta que se cumple la condición de parada
- La acción 3: puede ser muy costosa si BC y BH son muy grandes. Además los conjuntos conflicto de dos iteraciones sucesivas suelen ser muy similares
- El algoritmo de inferencia es independiente del conocimiento almacenado en la BC

El Motor de Inferencia Encadenamiento hacia delante [P&M, Cap. 3]

19/40

- Equiparación
 - Selección de reglas cuyo antecedente es verdadero
- Resolución de conflictos
 - Selección de una regla del conjunto conflicto (si hay más de una)
 - Resultado: Regla a aplicar
- Ejecución de regla
 - Se ejecutan las acciones especificadas en el consecuente de la regla
- Principio de refracción
 - Cada regla ejecutada no vuelve a aplicarse hasta que no desaparezca alguno de los hechos que hicieron posible su aplicación y vuelva a afirmarse
- No es obligatorio establecer una meta a priori

El Motor de Inferencia Encadenamiento hacia delante [P&M, Cap. 3]

```
Algoritmo de encadenamiento hacia delante.
1: BH = HechosIniciales, ConjuntoConflicto = ExtraeCualquierRegla(BC);
2: mientras NoContenida(Meta,BH) y NoVacío(ConjuntoConflicto) hacer
3:
     ConjuntoConflicto = Equiparar(Antecedente(BC),BH);
4:
     si NoVacío(ConjuntoConflicto) entonces
        R=Resolver(ConjuntoConflicto);
 5:
        NuevosHechos = Aplicar(R,BH);
 6:
        Actualizar(BH, NuevosHechos);
     fin si
9: fin mientras
10: si Contenida(Meta,BH) entonces
     devolver "éxito":
11:
12: fin si
```

- Busca el conjunto de objetivos que se verifican a partir de los hechos iniciales
- Dispara reglas cuyo antecedente se cumple
- La acción 3: puede ser muy costosa

21/40

	Regla 1:	b&d&e → f
	Regla 2:	d&g→a
	Regla 3:	c&f→a
	Regla 4: (b x
ВС	Regla 5:	d→e
	Regla 6:	a&x→h
	Regla 7:	c) d
	Regla 8:	x&c→a
	Regla 9:	x&b→d

BH: {b,c}

Meta a alcanzar: h

Conjunto Conflicto={4,7}

Estrategia de selección:

Regla de menor número

22/40

BC

Regla 1:	b&d&e → f
Regla 2:	d&g→a
Regla 3:	c&f→a
Regla 4:	b → x
Regla 5:	d→e
Regla 6:	a&x→h
Regla 7:	c→ð
Regla 8:	x&c⇒a
Regla 9:	(x&b ' →d

```
BH: {x,b,c}

Meta a alcanzar: h
```

Conjunto Conflicto={7,8,9}

Estrategia de selección:

Regla de menor número

23/40

	Regla 1:	b&d&e → f
	Regla 2:	d&g→a
	Regla 3:	c&f→a
	Regla 4:	$b \rightarrow x$
C	Regla 5: (d) e
	Regla 6:	a&x→h
	Regla 7:	c→d
	Regla 8:	x&c → a
	Regla 9:	x&b *> d

BH: {d,x,b,c}

Meta a alcanzar: h

Conjunto Conflicto={5,8,9}

Estrategia de selección: Regla de menor número

24/40

	Regla 1:	b&d&e → f
	Regla 2:	d&g→a
	Regla 3:	c&f→a
	Regla 4:	b → x
BC	Regla 5:	d→e
	Regla 6:	a&x→h
	Regla 7:	c→d
	Regla 8:	x&c→a
	Regla 9:	x&b *> d

BH: {e, d,x,b,c}

Meta a alcanzar: h

Conjunto Conflicto={1,8,9}

Estrategia de selección:

Regla de menor número

25/40

	Regla 1:	b&d&e → f
	Regla 2:	d&g→a
	Regla 3:	c&f a
	Regla 4:	b → x
ВС	Regla 5:	d→e
	Regla 6:	a&x→h
	Regla 7:	c→d
	Regla 8:	x&c→a
	Regla 9:	x&b ×> d

BH: {f, e, d,x,b,c}

Meta a alcanzar: h

Conjunto Conflicto={3,8,9}

Estrategia de selección:

Regla de menor número

26/40

BC

Regla 1:	b&d&e → f
Regla 2:	d&g→a
Regla 3:	c&f→a
Regla 4:	b → x
Regla 5:	d→e
Regla 6:	a&x→h
Regla 7:	c→d
Regla 8:	x&c⇒a
Regla 9:	x&b⇔d

BH: {a, f, e, d, x, b, c}

Meta a alcanzar: h

Conjunto Conflicto={6, 8,9}

Estrategia de selección:

Regla de menor número

27/40

Regla 1:	b&d&e → f
Regla 2:	d&g→a
Regla 3:	c&f→a
Regla 4:	b → x
Regla 5:	d→e
Regla 6:	a&x→h
Regla 7:	c→d
Regla 8:	x&c→a
Regla 9:	x&b⇔d

BH: {h, a, f, e, d, x, b, c}

Meta a alcanzar: h

Meta alcanzada: STOP

28/40

	Regla 1:	b&d&e → f
	Regla 2:	d&g→a
	Regla 3:	c&f→a
	Regla 4: (b x
ВС	Regla 5:	d→e
	Regla 6:	a&x→h
	Regla 7:	c -) d
	Regla 8:	x&c→a
	Regla 9:	x&b→d

BH: {b,c}
Meta a alcanzar: h

Conjunto Conflicto={4,7}

Estrategia de selección:

Regla con mayor número de antecedentes

Empate: La de menor número

29/40

BC

Regla 1:	b&d&e → f
Regla 2:	d&g→a
Regla 3:	c&f→a
Regla 4:	b → x
Regla 5:	d→e
Regla 6:	a&x→h
Regla 7:	c→ð
Regla 8:	x&c⇒a
Regla 9:	(x&b⇔d

BH: {x,b,c}

Meta a alcanzar: h

Conjunto Conflicto={7,8,9}

Estrategia de selección:

Regla con mayor número de antecedentes

Empate: La de menor número

30/40

BC

Regla 1:	b&d&e → f
Regla 2:	d&g→a
Regla 3:	c&f→a
Regla 4:	b → x
Regla 5:	d→e
Regla 6:	(a&x -> h
Regla 7:	c) d
Regla 8:	x&c→a
Regla 9:	(x&b ' →d

BH: {a,x,b,c}
Meta a alcanzar: h

 \mathcal{L} onjunto Conflicto= $\{6,7,9\}$

Estrategia de selección:

Regla con mayor número de antecedentes

Empate: La de menor número

31/40

	Regla 1:	b&d&e → f
	Regla 2:	d&g→a
	Regla 3:	c&f→a
	Regla 4:	b → x
ВС	Regla 5:	d→e
	Regla 6:	(a&x -> h
	Regla 7: (c) d
	Regla 8:	x&c→a
	Regla 9:	(x&b→d

BH: {h, a,x,b,c}
Meta a alcanzar: h

Meta alcanzada: STOP

El Motor de Inferencia Encadenamiento hacia atrás [P&M, Cap. 3]

Algoritmo de encadenamiento hacia atrás.

```
1: BH = HechosIniciales;
2: si Verificar (Meta,BH) entonces
3: devolver "éxito";
4: si no
5: devolver "fracaso";
6: fin si
```

- Determina si se verifica una determinada meta a partir de los hechos iniciales
- Dada una meta, busca reglas que la contienen en su consecuente

33/40

El Motor de Inferencia Encadenamiento hacia atrás [P&M, Cap. 3]

Procedimiento Verificar: comprueba si existe un conjunto de reglas

```
verificando una meta.
```

```
1: Verificado=Falso;
 2: si Contenida (Meta, BH) entonces
      devolver Verdadero;
 3:
 4: si no
 5:
      ConjuntoConflicto = Equiparar(Consecuentes(BC), Meta);
 6:
      mientras NoVacío(ConjuntoConflicto) y No(Verificado) hacer
 7:
        R=Resolver(ConjuntoConflicto);
 8:
        Eliminar(R,ConjuntoConflicto);
9:
        NuevasMetas=ExtraerAntecedentes(R), Verificado=Verdadero;
10:
        mientras NoVacío(NuevasMetas) y Verificado hacer
11:
           Meta=SeleccionarMeta(NuevasMetas);
12:
           Eliminar(Meta, NuevasMetas);
13:
           Verificado=Verificar(Meta,BH);
           si Verificado entonces
14:
15:
             Añadir(Meta,BH);
                                                         La acción 5: es menos
16:
           fin si
                                                         costosa que las acciones 3:
17:
        fin mientras
                                                         de los algoritmos anteriores
18:
      fin mientras
19:
      devolver(Verificado);
20: fin si
```


El Motor de Inferencia Encadenamiento hacia atrás [P&M, Cap. 3]

34/40

Equiparación

■ Búsqueda de reglas cuya conclusión se corresponde con la meta M en curso

Resolución de conflictos

- Selección de una regla del conjunto conflicto (si hay más de una)
- Resultado: Regla a aplicar

Ejecución de regla

- Reemplazamiento de la meta M por la conjunción de las condiciones del antecedente de la regla seleccionada
- Obligatorio incluir un objetivo inicial

35/40

BC

Regla 1:	b&d&e → f
Regla 2:	d&g-∳a
Regla 3:	c&f→a
Regla 4:	b → x
Regla 5:	d→e
Regla 6:	a&x → h
Regla 7:	c→d
Regla 8:	x&c 🗡 a
Regla 9:	x&b→d

Para que se cumpla h, se deben cumplir a y x

Nuevas metas= $\{a,x\}$

- Exploramos meta a
 - Conjunto conflicto={2,3,8}

Estrategia de selección: Regla de menor número

36/40

BC

Regla 1:	b&d&e → f
Regla 2:	d&g 🗘 a
Regla 3:	c&f→a
Regla 4:	b → x
Regla 5:	d→e
Regla 6:	a&x→h
Regla 7:	c -) d
Regla 8:	x&c→a
Regla 9:	x&b→d

Nuevas metas={d,g}

- Exploramos meta d
 - Conjunto conflicto={7,9}

Estrategia de selección: Regla de menor número

Aplicamos Regla 7

Está c en BH, así que aplicando regla 7, se verifica d

BH: {d,b,c}

Meta d alcanzada

37/40

BC

Regla 1:	b&d&e → f
Regla 2:	d&g 🗘 a
Regla 3:	c&f→a
Regla 4:	b → x
Regla 5:	d→e
Regla 6:	a&x→h
Regla 7:	c→d
Regla 8:	x&c→a
Regla 9:	x&b → d

BH: {d,b,c}
Submeta a alcanzar: a

Nuevas $metas = \{g\}$

- Exploramos meta g
 - Conjunto conflicto={Ø}

Regla 2 no se puede verificar

38/40

BC

Regla 1:	b&d&e → f
Regla 2:	d&g→a
Regla 3:	c&f→a
Regla 4:	b → x
Regla 5:	d e
Regla 6:	a&x→h
Regla 7:	c→d
Regla 8:	x&c→a
Regla 9:	x&b→d

Para alcanzar la meta a, debemos explorar otra regla

- Exploramos meta a
 - Conjunto conflicto={3,8}

Estrategia de selección: Regla de menor número

- Aplicamos Regla 3: Tiene dos antecedentes:
 - c ya está verificado
 - f no. Debemos verificarlo.

BH: {a,f,e,d,b,c}

39/40

BC

Regla 1:	b&d&e → f
Regla 2:	d&g→a
Regla 3:	c&f→a
Regla 4:	b -) x
Regla 5:	d→e
Regla 6:	a&x→h
Regla 7:	c→d
Regla 8:	x&c→a
Regla 9:	x&b→d

- Exploramos meta x
 - Conjunto conflicto={4}

BH: {h,x,a,f,e,d,b,c}

Bibliografía y Software

40/40

 Palma&Marín. Inteligencia Artificial. Técnicas, Métodos y Aplicaciones. Capítulo 3. Sistemas basados en reglas

