Breast Cancer Research

Tarek El-Hajjaoui Sheldon Gu Michael Strand

Background

Data Background:

- sample a small amount of breast tissue
- sample is checked for cancer cells
- digitized image
- computing variable

Fine needle aspiration using ultrasound

32 Variables:

ID, Diagnosis (M = malignant, B = benign)

mean, se, worst

- a) radius (mean of distances from center to points on the perimeter)
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter^2 / area 1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" 1)

EDA

Preliminary Screening

- raw data
- missing value
- remove unused column (id, X)
- distribution

distribution

as.factor

Number of Benign and Malignant Samples

Correlation

- all correlations
- arrange with order = "FPC"
- upper half

Correlation

- too many variables can cause: increased computation, complex for visualization, and interpretation
- remove highly correlated variables (cut off = 0.9)
- library(caret)
- absolute value is considered

- standardization is typically recommended before PCA
- summary

```
## Importance of components:
##
                            PC1
                                   PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                          PC7
## Standard deviation
                          3.053 2.1105 1.456 1.21994 1.09673 0.75004 0.66893
## Proportion of Variance 0.444 0.2121 0.101 0.07087 0.05728 0.02679 0.02131
## Cumulative Proportion 0.444 0.6561 0.757 0.82791 0.88519 0.91197 0.93328
##
                              PC8
                                      PC9
                                             PC10
                                                     PC11
                                                             PC12
                                                                     PC13
                                                                              PC14
## Standard deviation
                          0.56454 0.53543 0.45639 0.41367 0.34423 0.26012 0.24137
## Proportion of Variance 0.01518 0.01365 0.00992 0.00815 0.00564 0.00322 0.00277
## Cumulative Proportion 0.94846 0.96211 0.97203 0.98018 0.98582 0.98904 0.99182
##
                             PC15
                                     PC16
                                             PC17
                                                     PC18
                                                             PC19
                                                                     PC20
                                                                             PC21
## Standard deviation
                          0.22045 0.20547 0.17791 0.15094 0.13695 0.08384 0.02885
## Proportion of Variance 0.00231 0.00201 0.00151 0.00108 0.00089 0.00033 0.00004
## Cumulative Proportion 0.99413 0.99614 0.99765 0.99873 0.99963 0.99996 1.00000
```

- variance explained
- 6 PCs

- what variable?
- get_pca_var

contrib: contributions of the individuals/variables

##		Dim.1	Dim.2	Dim.3	Dim.4
##	perimeter_mean	6.52835229	7.6741170	3.713654e-02	0.008162087
##	area_mean	6.08218595	8.7868389	3.523792e-02	0.073009228
##	smoothness_mean	3.57123398	4.1008720	5.569493e-01	16.129061050
##	concave.points_mean	9.49181386	0.6196138	5.268898e-03	0.323929042
##	symmetry_mean	3.29916722	4.2690418	7.396811e-04	7.693565172
##	fractal_dimension_mean	0.98961096	15.8499742	6.566177e-02	0.079450777
##	radius_se	5.43189229	2.8083614	8.518307e+00	3.437975050
##	area_se	5.20087098	4.7028132	5.271109e+00	2.793003983
##	smoothness_se	0.06680881	4.5148553	1.642257e+01	7.320387078
##	compactness_se	4.45307501	4.4692656	5.761075e+00	10.694968762
##	concavity_se	3.63423824	2.9124347	7.506142e+00	15.280775265
##	concave.points_se	4.98886476	0.8719787	1.059585e+01	4.246613061
##	symmetry_se	0.34136964	3.6538722	1.428490e+01	4.762308037
##	radius_worst	6.62893811	7.7001559	5.199705e-01	0.067623666
##	area_worst	6.42998687	7.8098453	1.171750e-01	0.307135795
##	smoothness_worst	3.02028633	4.2091834	6.831158e+00	10.799498587
##	compactness_worst	6.86784733	2.0953073	5.515787e+00	3.910123154
##	concavity_worst	7.88869866	0.6996878	2.484502e+00	6.434395806
##	concave.points_worst	9.17119726	0.1282285	2.729402e+00	0.422373485
##	symmetry_worst	2.75482705	3.1245773	7.138170e+00	3.010585616
##	fractal dimension worst	3.15873438	8.9989756	5.602894e+00	2.205055300

Hotelling T²

Hotelling T²: Research Question

- Is there a significant difference between the mean vectors of the Benign and Malignant groups?
 - Null Hypothesis (H₀)
 - No significant difference between the mean vectors of the Benign and Malignant groups.
 - $\blacksquare \qquad \mu_{\mathsf{M}} = \mu_{\mathsf{B}}$
 - \circ Alternative Hypothesis (H_A)
 - The Null Hypothesis is not true.
 - \blacksquare $\mu_{\mathsf{M}} \neq \mu_{\mathsf{B}}$

Hotelling T²: Multivariate Normality Assumption

Variables are marginally and jointly Normally distributed.

Scatter Plot Matrix - Benign Samples

Scatter Plot Matrix - Malignant Samples

Hotelling T²: Homoscedasticity Assumption

• The variances of the variables within each population should be equal.

Hotelling T^2 Test: Conclusion

- Results:
 - P-value $\approx 0 \Rightarrow \text{Reject H}_0$
- Conclusion: There is a significant difference between mean vectors of Benign population and Malignant population.
 - \circ $\mu_{\mathsf{M}} \neq \mu_{\mathsf{B}}$

Clustering: KMeans

Accuracy Score: 85.413 %

Discriminant Analysis

FLDA classification

- Supervised learning
 - Maximizes class separability
 - Project data onto line
- Assume equal class covariance
 - Relaxed in QDA

Image source: Analytics Steps

- Feature selection informed by PCA
- Want a model which avoids predicting Benign for a Malignant tumor

FLDA decision boundary

Let \bar{X}_M and \bar{X}_B be the two class means. Then LDA seeks a discriminant function

$$f(x) = (\bar{X}_M - \bar{X}_B)^T S_p^{-1} x$$

and uses the decision rule for new observation x_0

Malignant if
$$f(x_0) > (\bar{X}_M - \bar{X}_B)^T S_p^{-1} \frac{X_M + X_B}{2}$$

Benign if
$$f(x_0) < (\bar{X}_M - \bar{X}_B)^T S_p^{-1} \frac{X_M + X_B}{2}$$

Classification metrics

$$\mathbf{Accuracy} \ = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\mathbf{Precision} = \frac{TP}{TP + FP}$$

$$\mathbf{Recall} = \frac{TP}{TP + FN}$$

Other Models

Comparison to logistic regression & random forest

	Random forest (all 14 predictors)	Logistic regression (all 14 predictors)	Discriminant analysis (any # predictors)
Accuracy	0.971	0.965	0.956 (QDA)
Precision	0.968	0.955	0.965 (QDA)
Recall	0.952	0.991	0.992 (LDA)

Thank You