Лекция 7

Ilya Yaroshevskiy

17 марта 2021 г.

Содержание

1	l Критерии Сильвестра		
	1.1	Достаточный условия	1
	1.2	Необходимые условия	1
2	Соб	ственные значения	1
3	В Общие прицнипы многмерной оптимизации		
	3.1	Выпуклые квадратичные функции	1
	3.2	Принципы многмерной оптимизации	4
		3.2.1 Скорость сходимости(минизирующих последовательностей)	
		3.2.2 Критерии окончания итерационного процесса	

1 Критерии Сильвестра

1.1 Достаточный условия

- 1. $H(x^*)>0$ и x^* локальный минимум $\Leftrightarrow \Delta_1>0, \Delta_2>0, \ldots, \Delta_n>0$
- $2. \ H(x^*) < 0$ и x^* локальный максимум $\Leftrightarrow \Delta_1 < 0, \Delta_2 > 0, \ldots, (-1)^n \Delta_n > 0$

, где Δ_i — угловой минор

1.2 Необходимые условия

- 1. $H(x^*) \ge 0$ и x^* может быть локальный минимум $\Leftrightarrow \Delta_1 \ge 0, \Delta_2 \ge 0, \dots, \Delta_n \ge 0$
- 2. $H(x^*) \leq 0$ и x^* может быть локальный максимум $\Leftrightarrow \Delta_1 \leq 0, \Delta_2 \geq 0, \ldots, (-1)^n \Delta_n \geq 0$

, где Δ_i — главный минор

2 Собственные значения

Определение. Собственные значения λ_i (i=1..n) $H(x^*)_{n\times n}$ находятся как корни характеристического уравнения $|H(x^*)-\lambda E|=0$. Если H(x) — вещественная, симметричная матрица, то λ_i — вещественные

3 Общие прицнипы многмерной оптимизации

3.1 Выпуклые квадратичные функции

$$f(x) = \frac{1}{2}ax^2 + bx + c$$

Определение. Функция вида

$$f(x) = \sum_{i=1}^{n} a_{ij} x_i x_j + \sum_{j=1}^{n} b_j x_j + c$$
 (1)

Называется квадратичной функией п перменных

Положим $a_{ij} = a_{ij} + a_{ji}$?? \Rightarrow симметрия. матрица A

$$f(x) = \frac{1}{2}(Ax, x) + (b, x) + c$$

, где $b=(b_1,\dots b_n)^T\in E_n$ — вектор коэффицентов, $x=(x_1,\dots,x_n)^T$. x,y — скалярное произведение Свойства квадратичных функций:

1. $\nabla f(x) = Ax + b$

$$\frac{\partial f}{\partial x_k} = \frac{\partial}{\partial x_k} \left(\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j + \sum_{j=1}^n b_j x_j + c \right) =$$

$$\frac{1}{2} \sum_{i=1}^n (a_{ik} + a_{ki}) x_i + b_k = \sum_{i=1}^n a_{ki} x_i + b_k$$

2. H(x) = A, где $H(x) - \Gamma$ ессиан???

$$\frac{\partial^2 f}{\partial x_l \partial x_k} = \frac{\partial}{\partial x_k} \left(\frac{\partial f}{\partial x_k} \right) = \frac{\partial}{\partial x_l} \left(\sum_{i=1}^n a_{ki} x_i + b_k \right)$$

3. Квадратичная функция f(x) с положительно определенной матрицей A сильно выпукла

$$A = \begin{vmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{vmatrix}$$

$$A - lE = \begin{vmatrix} \lambda_1 - l & 0 & \dots & 0 \\ 0 & \lambda_2 - l & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n - l \end{vmatrix}$$

В этом базисе все угловые миноры матрцы A и матрицы A-lE — положительны при достаточно малом $l:0 < l < \lambda_{\min \Rightarrow f(x)}$ — сильно выпукла

3.2 Принципы многмерной оптимизации

$$f(x) \to \min, \ x \in E_n$$

 $x^{k+1} = \Phi(x^k, x^{k+1}, \dots x)^0, \ x^0 \in E_n$ (2)

— итериционная процедура (общего вида)

 $\{x^k\}$:

$$\lim_{k \to \infty} f(x^k) = f^* = \min_{E_n} f(x),$$
 если $U^* \neq \emptyset$

$$\lim_{k \to \infty} f(x^k) = f^* = \inf_E f(x)$$
, если $U^* = \emptyset$

, где U^* – множестве точек глобального минимума функции f(x) $\{x^k\}$ + условие 2 = минимизирующая последовательность для f(x) Если для $U^* \neq \emptyset$ выполняется условие

$$\lim_{k \to \infty} \rho(x^k, U^*) = 0$$

, то x^k сходится к множеству U^* . Если U^* содежит единственную точку x^* , то для $\{x^k\}$ сходящейся к U^* будет справедливо $\lim_{k\to\infty} x^k = x^*$

Определение. $\rho(x,U)=\inf_{y\in U}\rho(x,y)$ — растояние от точки x до множества U

Примечание. Минимизирующая последовательность $\{x^k\}$ может и не сходится к точке минимума

Теорема 3.1 (Вейерштрасса). Если f(x) непрерывна в E_n и множество $U^{\alpha} = x : f(x) \le \alpha$ для некоторого α непусто и ограничено, то f(x) достигает глобального минимума в E_n

3.2.1 Скорость сходимости (минизирующих последовательностей)

Определение. $\{x^k\}$ сходится к точке x^* **линейно** (со скоростью геометрической последовательности), если $\exists q \in (0,1)$:

$$\rho(x^k, x^*) \le q\rho(x^{k-1}, x^*)$$

$$\rho(x^k, x^*) \le q^k \rho(x^0, x^*)$$
(3)

Определение. Сходимость называется сверхлинейной если

$$\rho(x^k, x^*) \le q_k \rho(x^{k-1}, x^*)$$

, и
$$q_k \xrightarrow[k\to\infty]{} +0$$

Определение. Квадратичная сходимость:

$$\rho(x^k, x^*) \le \left[c\rho(x^{k-1}, x^*)\right]^2, \ c > 0$$

3.2.2 Критерии окончания итерационного процесса

$$\rho(x^{k+1}, x^*) < \varepsilon_1$$

$$|f(x^{k+1}) - f(x^k)| < \varepsilon_2$$

$$||\nabla f(x^k)|| < \varepsilon_3$$
(4)

, где ε_i — заранее заданные точности

$$x^{k+1} = x^k + \alpha_k p^k, \ k = 0, 1, \dots$$
 (5)

, где p^k — направление поиска из x^k в x^{k+1} , α_k — величина шага

$$f(x^{k+1}) < f(x^k)$$

— условие выбора α_k

Определение. В итерационном процессе 5 производится **исчерпывающий спуск**, если величина шага α_k находится из решения одномерной задачи минизации:

$$\Phi_k(\alpha) \to \min_{\alpha}, \ \Phi_k(\alpha) = f(x^k + \alpha p^k)$$
(6)

Теорема 3.2. Если функция f(x) дифференцируема в пространстве E_n , то в итерационном процессе 5 с выбором шага с ичерпывающим спуском для любого $k \ge 1$:

$$(\nabla f(x^{k+1}), p^k) = 0 \tag{7}$$

— это значит что эти два вектора ортогональны

для $\Phi_k(\alpha)$ необходимое условие минимума функции:

$$\frac{d\Phi_k(\alpha)}{d\alpha} = \sum_{i=1}^n \frac{\partial f(x^{k+1})}{\partial x_j} \cdot \frac{dx_j^{k+1}}{d\alpha} = 0$$

учитывая $x_j^{k+1} = x_j^k + \alpha p_j^k \Rightarrow \frac{dx_j^k}{d\alpha} = p_j^k$

Теорема 3.3. Для квадратичной функции $f(x) = \frac{1}{2}(Ax,x) + (b,x) + c$ величина α_k исчерпывающего спуска в итерационном процессе

$$x^{k+1} = x^k + \alpha_k p^k, =0, 1, \dots$$

равна

$$\alpha_k = -\frac{(\nabla f(x^k), p^k)}{(Ap^k, p^k)} = -\frac{(Ax^k + b, p^k)}{(Ap^k, p^k)}$$
(8)