Übungsblatt LA 2

Computational and Data Science FS2025

Lösungen Mathematik 2

Lernziele:

- Sie kennen die Begriffe Gaußsche Zahlenebene, arithmetische und trigonometrische Form einer komplexen Zahl und Arg-Funktion und deren Eigenschaften.
- > Sie können komplexe Zahlen in der Gaußschen Zahlenebene darstellen.
- > Sie können komplexe Zahlen von der arithmetischen in die trigonometrische Form und umgekehrt umwandeln.
- Sie können einfache Brüche und Potenzen von komplexen Zahlen durch Anwenden der Rechenregeln vereinfachen.
- Sie können quadratische Gleichungen mit reellen Koeffizienten lösen.

1. Aussagen über die Gaußsche Zahlenebene

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Die Gaußsche Zahlenebene wurde im 20. Jahrhundert eingeführt.		X
b)	Jede komplexe Zahl wird durch einen Punkt in der Gaußschen Zahlenebene dargestellt.	Х	
c)	Die x-Achse der Gaußschen Zahlenebene entspricht der Re- Achse.	X	
d)	Die komplexe Zahl $z = 2 + 3i$ entspricht dem Punkt $(2; 3i)$ in der Gaußschen Zahlenebene.		X
e)	Die komplexen Zahlen z , für welche gilt $z^2 = -3$, liegen auf der Im-Achse.	Х	
f)	Die komplexen Zahlen $z \in \mathbb{C}$ mit $ z = 1$ bilden den Einheitskreis in der Gaußschen Zahlenebene.	Х	

2. Komplexe Zahlen in der Gaußschen Zahlenebene

Zeichnen Sie die gegebenen Zahlen in der Gaußschen Zahlenebene ein.

b)
$$3 + i$$

c)
$$-2$$

d)
$$-1 + 2i$$

e)
$$-2 - 2i$$

f)
$$3-2i$$

3. Aussagen über die trigonometrische Form komplexer Zahlen

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Jede komplexe Zahl lässt sich in trigonometrischer Form	X	
darstellen.		
b) Jede komplexe Zahl lässt sich eindeutig in trigonometrischer		Χ
Form darstellen.		
c) Der Term $2cis(\pi/2)$ ist eine trigonometrische Form von $2i$.	X	
d) Der Term $2cis(-3\pi/2)$ ist eine trigonometrische Form von $2i$. X	
e) Der Term $2cis(5\pi/2)$ ist eine trigonometrische Form von $2i$.	X	
f) Der Term $-2cis(\pi/2)$ ist eine trigonometrische Form von $2i$.		X

4. Darstellung der Arg-Funktion

- a) Prüfen Sie nach, dass die Funktion $f(z) = \arctan \frac{Im(z)}{Re(z)}$ keine vollständige Darstellung der Arg-Funktion ist.
- b) Finden Sie den Funktionsterm der Arg-Funktion in der Variante $arg: \mathbb{C} \to]-\pi;\pi[$.
- c) Finden Sie den Funktionsterm der Arg-Funktion in der Variante $arg: \mathbb{C} \to [0; 2\pi[.$

a)

Offensichtlich ist der Funktionswert

$$f(i) = \arctan\left(\frac{1}{0}\right) = ?$$

nicht definiert. Ferner gilt

$$f(-1+i) = \arctan\left(\frac{1}{-1}\right) = \arctan(-1) = -\frac{\pi}{4}$$
$$\arg(-1+i) = \frac{3\pi}{4} \neq f(-1+i).$$

Daraus schliessen wir, dass f keine vollständige Darstellung der Arg-Funktion ist.

b) Es muss gelten:

$$\arg(z) = \begin{cases} 0 & |\operatorname{Im}(z) = 0 \land \operatorname{Re}(z) \ge 0 \\ \operatorname{arccot}\left(\frac{\operatorname{Re}(z)}{\operatorname{Im}(z)}\right) & |\operatorname{Im}(z) > 0 \\ \\ \pi & |\operatorname{Im}(z) = 0 \land \operatorname{Re}(z) < 0 \\ \\ -\pi + \operatorname{arccot}\left(\frac{\operatorname{Re}(z)}{\operatorname{Im}(z)}\right) & |\operatorname{Im}(z) < 0. \end{cases}$$

Es muss gelten:

$$\arg(z) = \begin{cases} 0 & \operatorname{Re}(z) \geq 0 \wedge \operatorname{Im}(z) = 0 \\ \operatorname{arctan}\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right) & \operatorname{Re}(z) > 0 \wedge \operatorname{Im}(z) > 0 \\ \pi/2 & \operatorname{Re}(z) = 0 \wedge \operatorname{Im}(z) > 0 \\ \pi + \operatorname{arctan}\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right) & \operatorname{Re}(z) < 0 \\ 3\pi/2 & \operatorname{Re}(z) = 0 \wedge \operatorname{Im}(z) < 0 \\ 2\pi + \operatorname{arctan}\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right) & \operatorname{Re}(z) > 0 \wedge \operatorname{Im}(z) < 0. \end{cases}$$

5. Konversion in die arithmetische Form

Geben Sie die jeweilige komplexe Zahl in arithmetischer Form an.

a)
$$4cis(\pi/2)$$

b)
$$2cis(-\pi/3)$$

c)
$$cis(3\pi/4)$$

d)
$$2cis(3\pi)$$

b)
$$2cis(-\pi/3)$$
 c) $cis(3\pi/4)$
e) $\frac{1}{2}cis(75^{\circ})$ f) $\sqrt{2}cis(-105^{\circ})$

f)
$$\sqrt{2}$$
cis (-105°)

$$\underline{4\ \mathrm{cis}(\pi/2)} = 4\cdot\mathrm{cos}(\pi/2) + 4\cdot\mathrm{i}\cdot\mathrm{sin}(\pi/2) = 4\cdot0 + 4\cdot\mathrm{i}\cdot1 = \underline{4\mathrm{i}}.$$

b)

$$\underline{2 \operatorname{cis}(-\pi/3)} = 2 \cdot \cos(-\pi/3) + 2 \cdot \mathbf{i} \cdot \sin(-\pi/3) = 2 \cdot \cos(\pi/3) - 2 \cdot \mathbf{i} \cdot \sin(\pi/3)$$

$$=2\cdot\frac{1}{2}-2\cdot\mathbf{i}\cdot\frac{\sqrt{3}}{2}=\underline{1-\sqrt{3}\ \mathbf{i}.}$$

c)

$$\underline{\operatorname{cis}(3\pi/4)} = \cos(3\pi/4) + i \cdot \sin(3\pi/4) = -\frac{\sqrt{2}}{2} + i \cdot \frac{\sqrt{2}}{2} = \underline{-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}} \text{ i.}$$

d)

$$2 \operatorname{cis}(3\pi) = 2 \cdot \cos(3\pi) + 2 \cdot i \cdot \sin(3\pi) = 2 \cdot \cos(\pi) + 2 \cdot i \cdot \sin(\pi)$$

$$= 2 \cdot (-1) + 2 \cdot i \cdot 0 = -2 + 0 = \underline{-2}$$

Additionstheoreme wurden genutzt, um

$$cos(75^\circ) = cos(45^\circ + 30^\circ) = cos(45^\circ) cos(30^\circ) - sin(45^\circ) sin(30^\circ)$$

$$sin(75^\circ) = sin(45^\circ) cos(30^\circ) + sin(30^\circ) cos(45^\circ)$$
 umzuschreiben.

$$\frac{\frac{1}{2} \operatorname{cis}(75^{\circ})}{= \frac{1}{2} \cdot \operatorname{cos}(75^{\circ}) + \frac{1}{2} \cdot \operatorname{i} \cdot \operatorname{sin}(75^{\circ}) = \frac{1}{2} \cdot \frac{\sqrt{3} - 1}{2 \cdot \sqrt{2}} + \frac{1}{2} \cdot \operatorname{i} \cdot \frac{\sqrt{3} + 1}{2 \cdot \sqrt{2}}$$

$$= \frac{\sqrt{3} - 1}{4\sqrt{2}} + \frac{\sqrt{3} + 1}{4\sqrt{2}} \operatorname{i}.$$

f)

Additionstheoreme wurden genutzt, um

$$\cos(-105^\circ) = \cos(105^\circ) = \cos(60^\circ + 45^\circ) = \cos(60^\circ)\sin(45^\circ) - \sin(60^\circ)\sin(45^\circ)$$
 und

 $\sin(-105^\circ) = -\sin(105^\circ) = -\sin(60^\circ + 45^\circ) = -\sin(60^\circ)\cos(45^\circ) - \sin(45^\circ)\cos(60^\circ)$ umzuschreiben.

$$\underline{\frac{\sqrt{2} \operatorname{cis}(-105^{\circ})}{\sqrt{2} \operatorname{cis}(-105^{\circ})}} = \sqrt{2} \cdot \operatorname{cos}(-105^{\circ}) + \sqrt{2} \cdot \operatorname{i} \cdot \operatorname{sin}(-105^{\circ})
= \sqrt{2} \cdot \operatorname{cos}(105^{\circ}) - \sqrt{2} \cdot \operatorname{i} \cdot \operatorname{sin}(105^{\circ}) = \sqrt{2} \cdot \frac{1 - \sqrt{3}}{2 \cdot \sqrt{2}} - \sqrt{2} \cdot \operatorname{i} \cdot \frac{1 + \sqrt{3}}{2 \cdot \sqrt{2}}
= \underline{\frac{1 - \sqrt{3}}{2} - \frac{1 + \sqrt{3}}{2} \operatorname{i}}.$$

6. Konversion in die trigonometrische Form

Geben Sie die jeweilige komplexe Zahl in trigonometrischer Form an.

b)
$$-5$$

$$d) -3i$$

f)
$$-12 + 5i$$

$$\underline{\underline{3}} = |3| \cdot \operatorname{cis}(\operatorname{arg}(3)) = \underline{3 \cdot \operatorname{cis}(0)}.$$

b)

$$\underline{-5} = |-5| \cdot \operatorname{cis}(\operatorname{arg}(-5)) = \underline{5 \cdot \operatorname{cis}(\pi)}.$$

c)

$$\underline{\underline{2i}} = |2i| \cdot \mathrm{cis} \big(\mathrm{arg}(2i)\big) = 2 \cdot \mathrm{cis}(\pi/2).$$

d)

$$-3i = |-3i| \cdot cis(arg(-3i)) = 3 \cdot cis(3\pi/2)$$

e)

$$\underline{3-4i} = |3-4i| \cdot cis(arg(3-4i)) = \sqrt{3^2 + (-4)^2} \cdot cis(2\pi + arctan(-4/3))$$

$$= \sqrt{25} \cdot \operatorname{cis}(2\pi + \arctan(-4/3)) \approx 5 \cdot \operatorname{cis}(2\pi - 0.927) \approx 5 \cdot \operatorname{cis}(1.70 \,\pi).$$

f)

$$\underline{-12 + 5i} = |-12 + 5i| \cdot \operatorname{cis}(\operatorname{arg}(-12 + 5i))$$

$$= \sqrt{(-12)^2 + 5^2} \cdot \operatorname{cis}(\operatorname{arctan}(-5/12) + \pi) = \sqrt{169} \cdot \operatorname{cis}(\operatorname{arctan}(-5/12) + \pi)$$

$$\approx 13 \cdot \operatorname{cis}(-0.395 + \pi) \approx \underline{13 \cdot \operatorname{cis}(0.874 \pi)}.$$

7. Trigonometrische Zahlen mit Python/Numpy

Berechnen Sie die Konversionen aus Aufgabe 5 und 6 mit Python/Numpy.

Aufgabe 5a:

```
# Initialisieren
import numpy as np;
# Parameter
r=2; phi=-np.pi/3;
# Berechnung
z=r*(np.cos(phi)+1j*np.sin(phi));
# Ausgabe
print('z=', f"{z:.3f}");
```

Aufgabe 5b) – 5f) analog.

Aufgabe 6a:

```
# Initialisieren
import numpy as np;
# Parameter
z=3;
# Berechnung
r=np.abs(z); phi=np.angle(z); # Betrag und Winkel (arg(z)) der
komplexen Zahl
# Ausgabe
print('z=',z,'=',r,'*cis(',f"{phi/np.pi:.3f}",'pi)');
```

Aufgabe 6b) - 6f) analog.

8. Aussagen über quadratische Gleichungen

Gegeben sei die allgemeine quadratische Gleichung $ax^2 + bx + c = 0$ mit $a, b, c \in \mathbb{R}$ und $a \neq 0$.

Welche der folgenden Aussagen sind wahr und welche falsch?

	<u> </u>	wahr	falsch
a) D	lie Koeffizienten a, b, c können so gewählt werden, dass es	Χ	
ke	eine Lösung in ℝ gibt.		
b) D	lie Koeffizienten a, b, c können so gewählt werden, dass es		Χ
ke	eine Lösung in ℂ gibt.		
c) F	ür jede Wahl der Koeffizienten <i>a, b, c</i> liegen zwei verschiedene		Χ
L	ösungen in C vor.		
d) D	lie Koeffizienten a, b, c können so gewählt werden, dass $x_1 = 1$		Χ
uı	nd $x_2 = i$ die beiden Lösungen sind.		
e) G	Sibt es 2 Lösungen x_1 und x_2 , dann gilt entweder $x_2 = x_1^*$ oder	Χ	
\boldsymbol{x}_1	$x_1, x_2 \in \mathbb{R}$.		
f) D	ie Anzahl der Lösungen kann anhand der Diskriminante	Χ	
b	eurteilt werden.		

9. Quadratische Gleichungen

Bestimmen Sie die Lösungen der quadratischen Gleichung in $\mathbb C$ mit Hilfe der Mitternachtsformel.

a)
$$x^2 + 1 = 0$$

b)
$$x^2 - 10x + 74 = 0$$

c)
$$2x^2 + 4 = x$$

d)
$$3t^2 = -30t - 507$$

e)
$$w = 2 + w^2$$

f)
$$s(s+1) = 2s^2 + 1$$

a)
$$a = 1, b = 0, c = 1$$

Diskriminante: $D = b^2 - 4ac = -4$

Es ergeben sich die Lösungen

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-0 \pm \sqrt{-4}}{2 \cdot 1} = \frac{\pm 2i}{2} = \pm i.$$

$$\underline{\mathbb{L} = \{-i, \ i\}.}$$

$$a = 1, b = -10, c = 74$$

Diskriminante: $D = b^2 - 4ac = -196$

Es ergeben sich die Lösungen

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-10) \pm \sqrt{-196}}{2 \cdot 1} = \frac{10 \pm 14i}{2} = 5 \pm 7i.$$

$$\mathbb{L} = \{5 - 7i, 5 + 7i\}.$$

$$2x^2 + 4 = x \Leftrightarrow 2x^2 - x + 4 = 0$$

$$a = 2, b = -1, c = 4$$

Diskriminante: $D = b^2 - 4ac = -31$

Es ergeben sich die Lösungen

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-1) \pm \sqrt{-31}}{2 \cdot 2} = \frac{1 \pm \sqrt{31}}{4} \, \mathrm{i} = \frac{1}{4} \pm \frac{\sqrt{31}}{4} \, \mathrm{i}.$$

$$\mathbb{L} = \left\{ \frac{1}{4} - \frac{\sqrt{31}}{4} \, \mathbf{i}, \; \frac{1}{4} + \frac{\sqrt{31}}{4} \, \mathbf{i} \right\}.$$

$$3t^2 = -30t - 507 \Leftrightarrow 3t^2 + 30t + 507 = 0 \Leftrightarrow t^2 + 10t + 169 = 0$$

$$a = 1, b = 10, c = 169$$

Diskriminante: $D = b^2 - 4ac = -576$

$$t_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-10 \pm \sqrt{-576}}{2 \cdot 1} = \frac{-10 \pm 24i}{2} = -5 \pm 12i.$$

$$\mathbb{L} = \{-5 - 12i, -5 + 12i\}.$$

$$w = 2 + w^2 \Leftrightarrow w^2 - w + 2 = 0$$

$$a = 1, b = -1, c = 2$$

Diskriminante: $D = b^2 - 4ac = -7$

$$w_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-1) \pm \sqrt{-7}}{2 \cdot 1} = \frac{1 \pm \sqrt{7} i}{2} = \frac{1}{2} \pm \frac{\sqrt{7}}{2} i.$$

$$\mathbb{L} = \left\{ \frac{1}{2} - \frac{\sqrt{7}}{2}i, \ \frac{1}{2} + \frac{\sqrt{7}}{2}i \right\}.$$

f)
$$s(s+1) = 2s^2 + 1 \Leftrightarrow s^2 - s + 1 = 0$$
 $a = 1, b = -1, c = 1$ Diskriminante: $D = b^2 - 4ac = -3$
$$s_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-1) \pm \sqrt{-3}}{2 \cdot 1} = \frac{1 \pm \sqrt{3} \text{ i}}{2} = \frac{1}{2} \pm \frac{\sqrt{3}}{2} \text{ i}.$$

$$\mathbb{L} = \left\{ \frac{1}{2} - \frac{\sqrt{3}}{2} \text{ i}, \ \frac{1}{2} + \frac{\sqrt{3}}{2} \text{ i} \right\}.$$