30100: Mathematical Statistics I

Winter 2022

Homework 1

Lecturer: Chao Gao

The homework is due on Jan 20.

- 1. Read the general proof of factorization theorem in Lehmann and Romano (Page 45).
- 2. Consider i.i.d. $X_1, \dots, X_n \sim \text{Uniform}(0, \theta)$ and the statistic $T = \max_{1 \leq i \leq n} X_i$. Derive the conditional distribution $(X_1, \dots, X_n)|T$ and show it is independent of θ . Hint: You may first guess the answer and check it is correct according to the definition of conditional distribution. Or you can first solve Problem Problem 6.2 of Chapter 1 in Lehmann and Casella.
- 3. Is it true that a one-dimensional sufficient statistic must be minimal? Either prove it or construct a counter example.
- 4. Suppose there exists a one-dimensional minimal sufficient statistic. Does that imply any two-dimensional sufficient statistic to be non-minimal? Either prove it or construct a counter example.
- 5. Chapter 1, Problem 6.4 in Lehmann and Casella.
- 6. Chapter 1, Problem 6.7 in Lehmann and Casella.
- 7. For an exponential family of canonical form $\exp(\sum_{j=1}^d \eta_j T_j(x) A(\eta))h(x)$, show $A(\eta)$ is a convex function and the natural parameter space $H = \{\eta : -\infty < A(\eta) < \infty\}$ is a convex set.
- 8. Consider a linear model $y|X \sim N(X\beta, I_n)$, where $X \in \mathbb{R}^{n \times p}$ is a random design matrix whose marginal distribution is arbitrary. Show it is an exponential family and write down a $p + p^2$ dimensional sufficient statistic for $\beta \in \mathbb{R}^p$.
- 9. Chapter 1, Problem 5.6 in Lehmann and Casella.
- 10. Chapter 1, Problem 5.25 (a) (b) in Lehmann and Casella.