Leakage Resilient Non-Malleable Secret Sharing

Gianluca Brian

Sapienza University of Rome Rome, Italy

> 12-13 october 2020 Part 1

Secret Sharing

Secret Sharing

- **Correctness:** at least *t* parties are required to reconstruct the secret.
- *t* is the *threshold*.

Secret Sharing

- **Correctness:** at least t parties are required to reconstruct the secret.
- **Privacy:** less than t parties should not be able to learn any information about the secret.
- t is the threshold.

Homomorphic Secret Sharing

Homomorphic Secret Sharing

Homomorphic Secret Sharing

- Homomorphic Secret Sharing
- Verifiable Secret Sharing

- Homomorphic Secret Sharing
- Verifiable Secret Sharing

- Homomorphic Secret Sharing
- Verifiable Secret Sharing
- Proactive Secret Sharing

- Homomorphic Secret Sharing
- Verifiable Secret Sharing
- Proactive Secret Sharing

- Homomorphic Secret Sharing
- Verifiable Secret Sharing
- Proactive Secret Sharing

- Homomorphic Secret Sharing
- Verifiable Secret Sharing
- Proactive Secret Sharing
- Robust Secret Sharing

- Homomorphic Secret Sharing
- Verifiable Secret Sharing
- Proactive Secret Sharing
- Robust Secret Sharing

- Homomorphic Secret Sharing
- Verifiable Secret Sharing
- Proactive Secret Sharing
- Robust Secret Sharing

- Homomorphic Secret Sharing
- Verifiable Secret Sharing
- Proactive Secret Sharing
- Robust Secret Sharing
- Leakage Resilient Secret Sharing
- Non-Malleable Secret Sharing

LATER IN THE TALK...

• Secure & reliable storage

sk

- Secure & reliable storage
- Threshold Cryptography

- Secure & reliable storage
- Threshold Cryptography
- Multi-Party Computation

- Secure & reliable storage
- Threshold Cryptography
- Multi-Party Computation

- Secure & reliable storage
- Threshold Cryptography
- Multi-Party Computation

- Secure & reliable storage
- Threshold Cryptography
- Multi-Party Computation

- Secure & reliable storage
- Threshold Cryptography
- Multi-Party Computation

A *t*-out-of-*n* secret sharing scheme a tuple of algorithms $\Pi = (Share, Rec)$:

A t-out-of-n secret sharing scheme a tuple of algorithms $\Pi = (Share, Rec)$:

ullet Share takes as input a message $\mu \in \mathcal{M}$ and outputs n shares $\sigma_1, \dots, \sigma_n$;

A t-out-of-n secret sharing scheme a tuple of algorithms $\Pi = (Share, Rec)$:

- ullet Share takes as input a message $\mu \in \mathcal{M}$ and outputs n shares $\sigma_1, \dots, \sigma_n$;
- Rec takes as input a set of shares $(\sigma_i)_{i\in\mathcal{I}}$, where $|\mathcal{I}|\geq t$, and outputs a message μ' .

A *t*-out-of-*n* secret sharing scheme a tuple of algorithms $\Pi = (Share, Rec)$:

- Share takes as input a message $\mu \in \mathcal{M}$ and outputs n shares $\sigma_1, \ldots, \sigma_n$;
- Rec takes as input a set of shares $(\sigma_i)_{i\in\mathcal{I}}$, where $|\mathcal{I}|\geq t$, and outputs a message μ' .

Main properties

• Correctness: For any message $\mu \in \mathcal{M}$ and any subset \mathcal{I} of at least t indices, if $(\sigma_1, \dots, \sigma_n) \leftarrow$ s Share (μ) , then $\operatorname{Rec}((\sigma_i)_{i \in \mathcal{I}}) = \mu$ with probability 1 over the randomness of Share.

A *t*-out-of-*n* secret sharing scheme a tuple of algorithms $\Pi = (Share, Rec)$:

- Share takes as input a message $\mu \in \mathcal{M}$ and outputs n shares $\sigma_1, \ldots, \sigma_n$;
- Rec takes as input a set of shares $(\sigma_i)_{i\in\mathcal{I}}$, where $|\mathcal{I}|\geq t$, and outputs a message μ' .

Main properties

- Correctness: For any message $\mu \in \mathcal{M}$ and any subset \mathcal{I} of at least t indices, if $(\sigma_1, \ldots, \sigma_n) \leftarrow$ s Share (μ) , then $\operatorname{Rec}((\sigma_i)_{i \in \mathcal{I}}) = \mu$ with probability 1 over the randomness of Share.
- **Privacy:** For any two messages $\mu_0, \mu_1 \in \mathcal{M}$ and any subset \mathcal{U} of at most t-1 indices, let, for all $b \in \{0,1\}$, $(\Sigma_1^b, \ldots, \Sigma_n^b) = \operatorname{Share}(\mu_b)$. Then, $(\Sigma_1^0)_{i \in \mathcal{U}} \equiv (\Sigma_1^1)_{i \in \mathcal{U}}$.

A *t*-out-of-*n* secret sharing scheme a tuple of algorithms $\Pi = (Share, Rec)$:

- Share takes as input a message $\mu \in \mathcal{M}$ and outputs n shares $\sigma_1, \ldots, \sigma_n$;
- Rec takes as input a set of shares $(\sigma_i)_{i\in\mathcal{I}}$, where $|\mathcal{I}|\geq t$, and outputs a message μ' .

Main properties

- Correctness: For any message $\mu \in \mathcal{M}$ and any subset \mathcal{I} of at least t indices, if $(\sigma_1, \dots, \sigma_n) \leftarrow$ s Share (μ) , then $\operatorname{Rec}((\sigma_i)_{i \in \mathcal{I}}) = \mu$ with probability 1 over the randomness of Share.
- **Perfect privacy:** For any two messages $\mu_0, \mu_1 \in \mathcal{M}$ and any subset \mathcal{U} of at most t-1 indices, let, for all $b \in \{0,1\}$, $(\Sigma_1^b, \dots, \Sigma_n^b) = \operatorname{Share}(\mu_b)$. Then, $(\Sigma_1^0)_{i \in \mathcal{U}} \equiv (\Sigma_1^1)_{i \in \mathcal{U}}$.

Formal definition

A *t*-out-of-*n* secret sharing scheme a tuple of algorithms $\Pi = (Share, Rec)$:

- Share takes as input a message $\mu \in \mathcal{M}$ and outputs n shares $\sigma_1, \ldots, \sigma_n$;
- Rec takes as input a set of shares $(\sigma_i)_{i\in\mathcal{I}}$, where $|\mathcal{I}|\geq t$, and outputs a message μ' .

Main properties

- Correctness: For any message $\mu \in \mathcal{M}$ and any subset \mathcal{I} of at least t indices, if $(\sigma_1, \dots, \sigma_n) \leftarrow$ s Share (μ) , then $\operatorname{Rec}((\sigma_i)_{i \in \mathcal{I}}) = \mu$ with probability 1 over the randomness of Share.
- **Perfect privacy:** For any two messages $\mu_0, \mu_1 \in \mathcal{M}$ and any subset \mathcal{U} of at most t-1 indices, let, for all $b \in \{0,1\}$, $(\Sigma_1^b, \dots, \Sigma_n^b) = \operatorname{Share}(\mu_b)$. Then, $(\Sigma_i^0)_{i \in \mathcal{U}} \equiv (\Sigma_i^1)_{i \in \mathcal{U}}$.
- Statistical privacy: ... Then, $(\Sigma_i^0)_{i\in\mathcal{U}}\approx_{\varepsilon} (\Sigma_i^1)_{i\in\mathcal{U}}$.

Formal definition

A *t*-out-of-*n* secret sharing scheme a tuple of algorithms $\Pi = (Share, Rec)$:

- Share takes as input a message $\mu \in \mathcal{M}$ and outputs n shares $\sigma_1, \ldots, \sigma_n$;
- Rec takes as input a set of shares $(\sigma_i)_{i\in\mathcal{I}}$, where $|\mathcal{I}|\geq t$, and outputs a message μ' .

Main properties

- **Correctness:** For any message $\mu \in \mathcal{M}$ and any subset \mathcal{I} of at least t indices, if $(\sigma_1, \dots, \sigma_n) \leftarrow$ s Share (μ) , then $\operatorname{Rec}((\sigma_i)_{i \in \mathcal{I}}) = \mu$ with probability 1 over the randomness of Share.
- **Perfect privacy:** For any two messages $\mu_0, \mu_1 \in \mathcal{M}$ and any subset \mathcal{U} of at most t-1 indices, let, for all $b \in \{0,1\}$, $(\Sigma_1^b, \dots, \Sigma_n^b) = \operatorname{Share}(\mu_b)$. Then, $(\Sigma_i^0)_{i \in \mathcal{U}} \equiv (\Sigma_i^1)_{i \in \mathcal{U}}$.
- Statistical privacy: ... Then, $(\Sigma_i^0)_{i\in\mathcal{U}}\approx_{\varepsilon} (\Sigma_i^1)_{i\in\mathcal{U}}$.
- Computational privacy: ... Then, $(\Sigma_i^0)_{i\in\mathcal{U}}pprox_{\mathbb{C}}(\Sigma_i^1)_{i\in\mathcal{U}}$.

Formal definition

A *t*-out-of-*n* secret sharing scheme a tuple of algorithms $\Pi = (Share, Rec)$:

- Share takes as input a message $\mu \in \mathcal{M}$ and outputs n shares $\sigma_1, \ldots, \sigma_n$;
- Rec takes as input a set of shares $(\sigma_i)_{i\in\mathcal{I}}$, where $|\mathcal{I}|\geq t$, and outputs a message μ' .

Main properties

- Correctness: For any message $\mu \in \mathcal{M}$ and any subset \mathcal{I} of at least t indices, if $(\sigma_1, \dots, \sigma_n) \leftarrow$ s Share (μ) , then $\operatorname{Rec}((\sigma_i)_{i \in \mathcal{I}}) = \mu$ with probability 1 over the randomness of Share.
- **Perfect privacy:** For any two messages $\mu_0, \mu_1 \in \mathcal{M}$ and any subset \mathcal{U} of at most t-1 indices, let, for all $b \in \{0,1\}$, $(\Sigma_1^b, \dots, \Sigma_n^b) = \operatorname{Share}(\mu_b)$. Then, $(\Sigma_i^0)_{i \in \mathcal{U}} \equiv (\Sigma_i^1)_{i \in \mathcal{U}}$.
- Statistical privacy: ... Then, $(\Sigma_i^0)_{i\in\mathcal{U}} \approx_{\varepsilon} (\Sigma_i^1)_{i\in\mathcal{U}}$.
- Computational privacy: ... Then, $(\Sigma_i^0)_{i\in\mathcal{U}}pprox_{\mathsf{C}}(\Sigma_i^1)_{i\in\mathcal{U}}.$

Access structure

A monotone class \mathcal{A} of subsets of [n]. Defines the *authorized* subsets $\mathcal{I} \in \mathcal{A}$ and the *unauthorized* subsets $\mathcal{U} \notin \mathcal{A}$. The t-out-of-n threshold access structure is the access structure $\mathcal{A} = \{\mathcal{I} : |\mathcal{I}| \geq t\}$.

For simplicity, in the rest of these slides, all access structures will be threshold access structures unless stated otherwise.

Based on polynomial interpolation.

- Based on polynomial interpolation.
- $\bullet \ \ \textbf{Message:} \ \ \text{a value} \ \mu \in \mathbb{F} \ \text{in a finite field} \ \mathbb{F}.$

- Based on polynomial interpolation.
- Message: a value $\mu \in \mathbb{F}$ in a finite field \mathbb{F} .
- Algorithm Share:
 - Upon input a message $\mu \in \mathbb{F}$, randomly sample a t-1 degree polynomial $p \in \mathbb{F}[X]$ such that $p(0) = \mu$.

- Based on polynomial interpolation.
- Message: a value $\mu \in \mathbb{F}$ in a finite field \mathbb{F} .
- Algorithm Share:
 - Upon input a message $\mu \in \mathbb{F}$, randomly sample a t-1 degree polynomial $p \in \mathbb{F}[X]$ such that $p(0) = \mu$.
 - For all $i \in [n]$, compute $\sigma_i = p(i)$.

- Based on polynomial interpolation.
- Message: a value $\mu \in \mathbb{F}$ in a finite field \mathbb{F} .
- Algorithm Share:
 - Upon input a message $\mu \in \mathbb{F}$, randomly sample a t-1 degree polynomial $p \in \mathbb{F}[X]$ such that $p(0) = \mu$.
 - For all $i \in [n]$, compute $\sigma_i = p(i)$.
 - Output the shares $(\sigma_1, \ldots, \sigma_n)$.

- Based on polynomial interpolation.
- Message: a value $\mu \in \mathbb{F}$ in a finite field \mathbb{F} .
- Algorithm Share:
 - ullet Upon input a message $\mu\in\mathbb{F}$, randomly sample a t-1 degree polynomial $p\in\mathbb{F}[X]$ such that $p(0)=\mu$.
 - For all $i \in [n]$, compute $\sigma_i = p(i)$.
- Output the shares $(\sigma_1, \ldots, \sigma_n)$.
- Algorithm Rec:
 - Upon input at least t shares $(\sigma_i)_{i \in \mathcal{I}}$, interpolate the shares in order to find the only t-1 degree polynomial p such that, for all $i \in \mathcal{I}$, $\sigma_i = p(i)$.

- Based on polynomial interpolation.
- **Message:** a value $\mu \in \mathbb{F}$ in a finite field \mathbb{F} .
- Algorithm Share:
 - ullet Upon input a message $\mu\in\mathbb{F}$, randomly sample a t-1 degree polynomial $p\in\mathbb{F}[X]$ such that $p(0)=\mu$.
 - For all $i \in [n]$, compute $\sigma_i = p(i)$.
 - Output the shares $(\sigma_1, \ldots, \sigma_n)$.
- Algorithm Rec:
 - Upon input at least t shares $(\sigma_i)_{i \in \mathcal{I}}$, interpolate the shares in order to find the only t-1 degree polynomial p such that, for all $i \in \mathcal{I}$, $\sigma_i = p(i)$.
 - Compute and output $\mu = p(0)$.

- Based on polynomial interpolation.
- **Message:** a value $\mu \in \mathbb{F}$ in a finite field \mathbb{F} .
- Algorithm Share:
 - ullet Upon input a message $\mu\in\mathbb{F}$, randomly sample a t-1 degree polynomial $p\in\mathbb{F}[X]$ such that $p(0)=\mu$.
 - For all $i \in [n]$, compute $\sigma_i = p(i)$.
 - Output the shares $(\sigma_1, \ldots, \sigma_n)$.
- Algorithm Rec:
 - Upon input at least t shares $(\sigma_i)_{i \in \mathcal{I}}$, interpolate the shares in order to find the only t-1 degree polynomial p such that, for all $i \in \mathcal{I}$, $\sigma_i = p(t)$.
 - Compute and output $\mu = p(0)$.
- Correctness: follows immediately.

- Based on polynomial interpolation.
- Message: a value $\mu \in \mathbb{F}$ in a finite field \mathbb{F} .
- Algorithm Share:
 - Upon input a message $\mu \in \mathbb{F}$, randomly sample a t-1 degree polynomial $p \in \mathbb{F}[X]$ such that $p(0) = \mu$.
 - For all $i \in [n]$, compute $\sigma_i = p(i)$.
 - Output the shares $(\sigma_1, \ldots, \sigma_n)$.
- Algorithm Rec:
 - Upon input at least t shares $(\sigma_i)_{i \in \mathcal{I}}$, interpolate the shares in order to find the only t-1 degree polynomial p such that, for all $i \in \mathcal{I}$, $\sigma_i = p(i)$.
 - Compute and output $\mu = p(0)$.
- Correctness: follows immediately.
- **Privacy:** follows from the following alternative sharing algorithm.
 - Given any two messages μ_0, μ_1 and any subset $\mathcal U$ of t-1 indices, randomly sample $\sigma_i \in \mathbb F$ for all $i \in \mathcal U$.
 - For a secret sharing of μ_0 , obtain a polynomial p by interpolating the values μ_0 , $(\sigma_i)_{i\in\mathcal{U}}$.
 - For a secret sharing of μ_1 , obtain a polynomial p by interpolating the values $\mu_1, (\sigma_i)_{i \in \mathcal{U}}$.
 - Obtain all the remaining shares by computing $\sigma_i = p(i)$ for all $i \in [n] \setminus \mathcal{U}$.

- Based on polynomial interpolation.
- **Message:** a value $\mu \in \mathbb{F}$ in a finite field \mathbb{F} .
- Algorithm Share:
 - Upon input a message $\mu \in \mathbb{F}$, randomly sample a t-1 degree polynomial $p \in \mathbb{F}[X]$ such that $p(0) = \mu$.
 - For all i ∈ [n], compute σ_i = p(i).
 Output the shares (σ₁,...,σ_n).
- Algorithm Rec:
 - Upon input at least t shares $(\sigma_i)_{i \in \mathcal{I}}$, interpolate the shares in order to find the only t-1 degree polynomial p such that, for all $i \in \mathcal{I}$, $\sigma_i = p(t)$.
 - Compute and output $\mu = p(0)$.
- Correctness: follows immediately.
- **Privacy:** follows from the following alternative sharing algorithm.
 - Given any two messages μ_0 , μ_1 and any subset \mathcal{U} of t-1 indices, randomly sample $\sigma_i \in \mathbb{F}$ for all $i \in \mathcal{U}$.
 - For a secret sharing of μ_0 , obtain a polynomial p by interpolating the values μ_0 , $(\sigma_i)_{i \in \mathcal{U}}$.
 - For a secret sharing of μ_1 , obtain a polynomial p by interpolating the values $\mu_1, (\sigma_i)_{i \in \mathcal{U}}$.
 - Obtain all the remaining shares by computing $\sigma_i = p(i)$ for all $i \in [n] \setminus \mathcal{U}$.
 - Since the distribution of all the shares in \mathcal{U} is the same for both μ_0 and μ_1 , the scheme achieves perfect privacy.

• Based on finite groups; only *n*-out-of-*n* access structure.

- Based on finite groups; only *n*-out-of-*n* access structure.
- $\bullet \ \ \textbf{Message:} \ \ \text{a value} \ \mu \in \mathbb{G} \ \ \text{in a finite group} \ \mathbb{G}.$

- Based on finite groups; only *n*-out-of-*n* access structure.
- **Message:** a value $\mu \in \mathbb{G}$ in a finite group \mathbb{G} .
- Algorithm Share:
 - $\bullet \ \ \text{Upon input a message } \mu \in \mathbb{G} \text{, randomly sample a } n-1 \text{ group elements } \sigma_1, \ldots, \sigma_{n-1} \in \mathbb{G}.$

- Based on finite groups; only *n*-out-of-*n* access structure.
- **Message:** a value $\mu \in \mathbb{G}$ in a finite group \mathbb{G} .
- Algorithm Share:
 - ullet Upon input a message $\mu\in\mathbb{G}$, randomly sample a n-1 group elements $\sigma_1,\ldots,\sigma_{n-1}\in\mathbb{G}$.
 - Let $\sigma_n = \mu \sum_{i=1}^{n-1} \sigma_i$.

- Based on finite groups; only *n*-out-of-*n* access structure.
- **Message:** a value $\mu \in \mathbb{G}$ in a finite group \mathbb{G} .
- Algorithm Share:
 - ullet Upon input a message $\mu\in\mathbb{G}$, randomly sample a n-1 group elements $\sigma_1,\ldots,\sigma_{n-1}\in\mathbb{G}$.
 - Let $\sigma_n = \mu \sum_{i=1}^{n-1} \sigma_i$.
 - Output the shares $(\sigma_1, \ldots, \sigma_n)$.

- Based on finite groups; only *n*-out-of-*n* access structure.
- **Message:** a value $\mu \in \mathbb{G}$ in a finite group \mathbb{G} .
- Algorithm Share:
 - Upon input a message $\mu\in\mathbb{G}$, randomly sample a n-1 group elements $\sigma_1,\ldots,\sigma_{n-1}\in\mathbb{G}$.
 - Let $\sigma_n = \mu \sum_{i=1}^{n-1} \sigma_i$.
 - Output the shares $(\sigma_1, \ldots, \sigma_n)$.
- Algorithm Rec:
 - Upon input all the shares $(\sigma_1,\ldots,\sigma_n)$, compute and output $\mu=\sum_{i=1}^n\sigma_i$.

- Based on finite groups; only *n*-out-of-*n* access structure.
- $\bullet \ \, \textbf{Message:} \ \, \text{a value} \, \mu \in \mathbb{G} \, \, \text{in a finite group} \, \mathbb{G}.$
- Algorithm Share:
 - Upon input a message $\mu\in\mathbb{G}$, randomly sample a n-1 group elements $\sigma_1,\ldots,\sigma_{n-1}\in\mathbb{G}$.
 - Let $\sigma_n = \mu \sum_{i=1}^{n-1} \sigma_i$.
 - Output the shares $(\sigma_1, \ldots, \sigma_n)$.
- Algorithm Rec:
 - Upon input all the shares $(\sigma_1,\ldots,\sigma_n)$, compute and output $\mu=\sum_{i=1}^n\sigma_i$.
- Correctness: follows immediately.

- Based on finite groups; only *n*-out-of-*n* access structure.
- **Message:** a value $\mu \in \mathbb{G}$ in a finite group \mathbb{G} .
- Algorithm Share:
 - ullet Upon input a message $\mu\in\mathbb{G}$, randomly sample a n-1 group elements $\sigma_1,\ldots,\sigma_{n-1}\in\mathbb{G}$.
 - Let $\sigma_n = \mu \sum_{i=1}^{n-1} \sigma_i$.
 - Output the shares $(\sigma_1, \ldots, \sigma_n)$.
- Algorithm Rec:
 - Upon input all the shares $(\sigma_1,\ldots,\sigma_n)$, compute and output $\mu=\sum_{i=1}^n\sigma_i$.
- Correctness: follows immediately.
- **Privacy:** follows from the following alternative sharing algorithm.
 - Given any two messages μ_0, μ_1 and any subset $\mathcal U$ of n-1 indices, randomly sample $\sigma_i \in \mathbb G$ for all $i \in \mathcal U$ and let $i^* \in [n] \setminus \mathcal U$.
 - For a secret sharing of μ_0 , let $\sigma_{i^*} := \mu_0 \sum_{i \in \mathcal{U}} \sigma_i$.
 - For a secret sharing of μ_1 , let $\sigma_{i^*}:=\mu_1-\sum_{i\in\mathcal{U}}\sigma_i$.

- Based on finite groups; only *n*-out-of-*n* access structure.
- **Message:** a value $\mu \in \mathbb{G}$ in a finite group \mathbb{G} .
- Algorithm Share:
 - ullet Upon input a message $\mu\in\mathbb{G}$, randomly sample a n-1 group elements $\sigma_1,\ldots,\sigma_{n-1}\in\mathbb{G}$.
 - Let $\sigma_n = \mu \sum_{i=1}^{n-1} \sigma_i$.
 - Output the shares $(\sigma_1, \ldots, \sigma_n)$.
- Algorithm Rec:
 - Upon input all the shares $(\sigma_1, \ldots, \sigma_n)$, compute and output $\mu = \sum_{i=1}^n \sigma_i$.
- Correctness: follows immediately.
- **Privacy:** follows from the following alternative sharing algorithm.
 - Given any two messages μ_0, μ_1 and any subset $\mathcal U$ of n-1 indices, randomly sample $\sigma_i \in \mathbb G$ for all $i \in \mathcal U$ and let $i^* \in [n] \setminus \mathcal U$.
 - For a secret sharing of μ_0 , let $\sigma_{i^*} := \mu_0 \sum_{i \in \mathcal{U}} \sigma_i$.
 - For a secret sharing of μ_1 , let $\sigma_{i^*}:=\mu_1-\sum_{i\in\mathcal{U}}\sigma_i$.
 - Since the distribution of all the shares in $\mathcal U$ is the same for both μ_0 and μ_1 , the scheme achieves perfect privacy.

Side channel attacks: partial information from all the shares may reveal some information about the message!

SECURITY BREACH!

Side channel attacks: partial information from all the shares may reveal some information about the message! SECURITY BREACH!

Leakage Resilient Secret Sharing [KMS18] : Λ reveals nothing about μ for a restricted family $\mathcal G$ of leakage functions.

Side channel attacks: partial information from all the shares may reveal some information about the message! SECURITY BREACH!

Leakage Resilient Secret Sharing [KMS18]: Λ reveals nothing about μ for a restricted family $\mathcal G$ of leakage functions. **Limitations:** Impossible for arbitrary families $\mathcal G$ of leakage functions.

Tampering attacks: μ' may be related to $\mu!$

SECURITY BREACH!

Tampering attacks: μ' may be related to $\mu!$

SECURITY BREACH!

Non-Malleable Secret Sharing [GK18]: μ' is unrelated to μ for a restricted family $\mathcal F$ of tampering functions.

Tampering attacks: μ' may be related to $\mu!$

SECURITY BREACH!

Non-Malleable Secret Sharing [GK18]: μ' is unrelated to μ for a restricted family $\mathcal F$ of tampering functions. **Limitations:** Impossible for arbitrary families $\mathcal F$ of tampering functions.

Tampering attacks: μ' may be related to $\mu!$

SECURITY BREACH!

Non-Malleable Secret Sharing [GK18]: μ' is unrelated to μ for a restricted family $\mathcal F$ of tampering functions. **Limitations:** Impossible for arbitrary families $\mathcal F$ of tampering functions.

Often, leakage resilience and non-malleability are considered together.

[GK18] "Non-Malleable Secret Sharing", Vipul Goyal, Ashutosh Kumar, 50th STOC 2018

Why is it impossible to obtain leakage resilience or non malleability for arbitrary families of functions?

• Because, in particular, it is impossible to achieve security against functions taking as input t or more shares.

- Because, in particular, it is impossible to achieve security against functions taking as input t or more shares.
- Leakage resilience: the attacker may use the following leakage function.
 - Upon input the shares $\sigma_{i_1},\ldots,\sigma_{i_t}$, compute $\mu=\mathsf{Rec}(\sigma_{i_1},\ldots,\sigma_{i_t})$.
 - $\bullet \ \ {\rm Output} \ {\rm the} \ {\rm first} \ {\rm bit} \ {\rm of} \ \mu.$

- Because, in particular, it is impossible to achieve security against functions taking as input t or more shares.
- Leakage resilience: the attacker may use the following leakage function.
 - Upon input the shares $\sigma_{i_1},\ldots,\sigma_{i_t}$, compute $\mu=\mathsf{Rec}(\sigma_{i_1},\ldots,\sigma_{i_t})$.
 - Output the first bit of μ .
- Non-malleability: the attacker may apply the following tampering function.
 - ullet Upon input the shares $\sigma_{i_1},\ldots,\sigma_{i_t}$, compute $\mu=\mathsf{Rec}(\sigma_{i_1},\ldots,\sigma_{i_t})$.
 - ullet Flip all the bits of μ and call $ilde{\mu}$ the resulting value.
 - Replace the shares $\sigma_{i_1}, \ldots, \sigma_{i_t}$ with a secret sharing of $\tilde{\mu}$.

- Because, in particular, it is impossible to achieve security against functions taking as input t or more shares.
- Leakage resilience: the attacker may use the following leakage function.
 - Upon input the shares $\sigma_{i_1}, \ldots, \sigma_{i_t}$, compute $\mu = \text{Rec}(\sigma_{i_1}, \ldots, \sigma_{i_t})$.
 - Output the first bit of μ .
- Non-malleability: the attacker may apply the following tampering function.
 - Upon input the shares $\sigma_{i_1},\ldots,\sigma_{i_t}$, compute $\mu=\mathsf{Rec}(\sigma_{i_1},\ldots,\sigma_{i_t})$.
 - ullet Flip all the bits of μ and call $ilde{\mu}$ the resulting value.
 - Replace the shares $\sigma_{i_1},\ldots,\sigma_{i_t}$ with a secret sharing of $\tilde{\mu}.$
- Usually, schemes achieve security against a certain class of leakage or tampering functions.

Limitations for leakage resilience and non-malleability

Why is it impossible to obtain leakage resilience or non malleability for arbitrary families of functions?

- Because, in particular, it is impossible to achieve security against functions taking as input t or more shares.
- Leakage resilience: the attacker may use the following leakage function.
 - Upon input the shares $\sigma_{i_1}, \ldots, \sigma_{i_t}$, compute $\mu = \text{Rec}(\sigma_{i_1}, \ldots, \sigma_{i_t})$.
 - Output the first bit of μ .
- **Non-malleability:** the attacker may apply the following tampering function.
 - Upon input the shares $\sigma_{i_1},\ldots,\sigma_{i_t}$, compute $\mu=\mathsf{Rec}(\sigma_{i_1},\ldots,\sigma_{i_t})$.
 - ullet Flip all the bits of μ and call $\tilde{\mu}$ the resulting value.
 - Replace the shares $\sigma_{i_1}, \ldots, \sigma_{i_t}$ with a secret sharing of $\tilde{\mu}$.
- Usually, schemes achieve security against a certain class of leakage or tampering functions.
- Leakage function have a further limitation on the amount of tolerated leakage (otherwise, they could leak all the shares and achieving security would be impossible).

Limitations for leakage resilience and non-malleability

Why is it impossible to obtain leakage resilience or non malleability for arbitrary families of functions?

- Because, in particular, it is impossible to achieve security against functions taking as input t or more shares.
- Leakage resilience: the attacker may use the following leakage function.
 - ullet Upon input the shares $\sigma_{i_1},\ldots,\sigma_{i_t}$, compute $\mu=\mathsf{Rec}(\sigma_{i_1},\ldots,\sigma_{i_t})$.
 - Output the first bit of μ .
- **Non-malleability:** the attacker may apply the following tampering function.
 - ullet Upon input the shares $\sigma_{i_1},\ldots,\sigma_{i_t}$, compute $\mu=\mathsf{Rec}(\sigma_{i_1},\ldots,\sigma_{i_t})$.
 - ullet Flip all the bits of μ and call $ilde{\mu}$ the resulting value.
 - Replace the shares $\sigma_{i_1}, \ldots, \sigma_{i_t}$ with a secret sharing of $\tilde{\mu}$.
- Usually, schemes achieve security against a certain class of leakage or tampering functions.
- Leakage function have a further limitation on the amount of tolerated leakage (otherwise, they could leak all the shares and achieving security would be impossible).
- Admissible adversaries: the class of adversaries against which a scheme is leakage resilient and/or non-malleable.

 σ_1 σ_2 σ_3 σ_4 σ_5 σ_6 σ_7 σ_8 σ_9 ... σ_n

• The two most common kind of leakage resilient secret sharing schemes are against *independent* leakage attacks and *joint* leakage attacks.

- The two most common kind of leakage resilient secret sharing schemes are against *independent* leakage attacks and *joint* leakage attacks.
- **Partitioning:** a k-sized partition of [n] is a family \mathcal{B} of disjoint subsets $(\mathcal{B}_1, \dots, \mathcal{B}_m)$ of [n] such that $\bigcup_{i=1}^m \mathcal{B}_i = [n]$ and, for all $i \in [m]$, $|\mathcal{B}_i| \le k$.

- The two most common kind of leakage resilient secret sharing schemes are against *independent* leakage attacks and *joint* leakage attacks.
- Partitioning: a k-sized partition of [n] is a family \mathcal{B} of disjoint subsets $(\mathcal{B}_1, \dots, \mathcal{B}_m)$ of [n] such that $\bigcup_{i=1}^m \mathcal{B}_i = [n]$ and, for all $i \in [m]$, $|\mathcal{B}_i| \leq k$.
- Leakage queries: a leakage query is a tuple of functions (g_1, \ldots, g_m) such that, for all $i \in [m]$, g_i takes as input all the shares $(\sigma_i)_{i \in \mathcal{B}_i}$ and outputs a binary string $\Lambda \in \{0, 1\}^{\ell_i}$.

- The two most common kind of leakage resilient secret sharing schemes are against *independent* leakage attacks and *joint* leakage attacks.
- Partitioning: a k-sized partition of [n] is a family \mathcal{B} of disjoint subsets $(\mathcal{B}_1, \dots, \mathcal{B}_m)$ of [n] such that $\bigcup_{i=1}^m \mathcal{B}_i = [n]$ and, for all $i \in [m]$, $|\mathcal{B}_i| \leq k$.
- Leakage queries: a leakage query is a tuple of functions (g_1, \ldots, g_m) such that, for all $i \in [m]$, g_i takes as input all the shares $(\sigma_j)_{j \in \mathcal{B}_i}$ and outputs a binary string $\Lambda \in \{0, 1\}^{\ell_i}$.
- Admissible adversaries: an adversary A is (k,ℓ) -admissible if, fixed any k-partition, it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as $|\Lambda^{(1)}| + \ldots + |\Lambda^{(q)}| \le \ell$, where $\Lambda^{(i)}$ is the output of the i-th leakage query.

- The two most common kind of leakage resilient secret sharing schemes are against *independent* leakage attacks and *joint* leakage attacks.
- Partitioning: a k-sized partition of [n] is a family \mathcal{B} of disjoint subsets $(\mathcal{B}_1, \dots, \mathcal{B}_m)$ of [n] such that $\bigcup_{i=1}^m \mathcal{B}_i = [n]$ and, for all $i \in [m]$, $|\mathcal{B}_i| \leq k$.
- Leakage queries: a leakage query is a tuple of functions (g_1, \ldots, g_m) such that, for all $i \in [m]$, g_i takes as input all the shares $(\sigma_j)_{j \in \mathcal{B}_i}$ and outputs a binary string $\Lambda \in \{0, 1\}^{\ell_i}$.
- Admissible adversaries: an adversary A is (k,ℓ) -admissible if, fixed any k-partition, it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as $|\Lambda^{(1)}| + \ldots + |\Lambda^{(q)}| \le \ell$, where $\Lambda^{(i)}$ is the output of the i-th leakage query.
- Leakage resilience: a secret sharing scheme is k-joint ℓ -bounded ε -leakage-resilient against selective partitioning if, for all messages μ_0, μ_1 , any (k, ℓ) -admissible adversary cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .

Bounded leakage resilience — adaptive partitioning

• Leakage queries: a leakage query is a pair (\mathcal{B},g) , where \mathcal{B} is a k-sized partition of [n] and $g=(g_1,\ldots,g_m)$ is a tuple of functions such that, for all $i\in[m]$, g_i takes as input all the shares $(\sigma_j)_{j\in\mathcal{B}_i}$ and outputs a binary string $\Lambda\in\{0,1\}^{\ell_i}$.

Bounded leakage resilience — adaptive partitioning

- Leakage queries: a leakage query is a pair (\mathcal{B},g) , where \mathcal{B} is a k-sized partition of [n] and $g=(g_1,\ldots,g_m)$ is a tuple of functions such that, for all $i\in[m]$, g_i takes as input all the shares $(\sigma_j)_{j\in\mathcal{B}_i}$ and outputs a binary string $\Lambda\in\{0,1\}^{\ell_i}$.
- Admissible adversaries: an adversary A is (k,ℓ) -admissible if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as $|\Lambda^{(1)}| + \ldots + |\Lambda^{(q)}| \le \ell$, where $\Lambda^{(i)}$ is the output of the *i*-th leakage query.

Bounded leakage resilience — adaptive partitioning

- Leakage queries: a leakage query is a pair (\mathcal{B},g) , where \mathcal{B} is a k-sized partition of [n] and $g=(g_1,\ldots,g_m)$ is a tuple of functions such that, for all $i\in[m]$, g_i takes as input all the shares $(\sigma_j)_{j\in\mathcal{B}_i}$ and outputs a binary string $\Lambda\in\{0,1\}^{\ell_i}$.
- Admissible adversaries: an adversary A is (k, ℓ) -admissible if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as $|\Lambda^{(1)}| + \ldots + |\Lambda^{(q)}| \le \ell$, where $\Lambda^{(l)}$ is the output of the *i*-th leakage query.
- Leakage resilience: a secret sharing scheme is k-joint ℓ -bounded ε -leakage-resilient against adaptive partitioning if, for all messages μ_0, μ_1 , any (k, ℓ) -admissible adversary cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .

• Conditional average min-entropy [DORS08]: defined as $\tilde{\mathbb{H}}_{\infty}\left(X|Y\right):=-\log\left(\mathbb{E}_{y\in\mathcal{Y}}\left[\max_{x\in\mathcal{X}}\mathbb{P}\left[X=x\mid Y=y\right]\right]\right)$.

[DORS08] "Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data", Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, Adam D. Smith, SIAM Journal on Computing, Vol. 38, 2008

13/19

- $\bullet \ \ \textbf{Conditional average min-entropy [DORS08]:} \ \ \text{defined as} \ \tilde{\mathbb{H}}_{\infty}\left(X|Y\right) := -\log\left(\mathbb{E}_{y \in \mathcal{Y}}\left[\max_{x \in \mathcal{X}}\mathbb{P}\left[X = x \mid Y = y\right]\right]\right).$
- Informally, this value represents the best chanche to predict *X* by knowing *Y*, or, in a leakage perspective, the worst case for the min-entropy of *X* when an adversary knows *Y*.

- $\bullet \ \ \textbf{Conditional average min-entropy [DORS08]:} \ \ \text{defined as} \ \tilde{\mathbb{H}}_{\infty}\left(X|Y\right) := -\log\left(\mathbb{E}_{y \in \mathcal{Y}}\left[\max_{x \in \mathcal{X}}\mathbb{P}\left[X = x \mid Y = y\right]\right]\right).$
- Informally, this value represents the best chanche to predict *X* by knowing *Y*, or, in a leakage perspective, the worst case for the min-entropy of *X* when an adversary knows *Y*.
- Admissible adversaries: an adversary A is (k, ℓ) -admissible, in the *noisy leakage* model, if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as, for all $i \in [m]$,

$$\tilde{\mathbb{H}}_{\infty}\left((\boldsymbol{\Sigma}_{j})_{j\in\mathcal{B}_{i}}\mid\boldsymbol{\Lambda}_{i}\right)\geq\mathbb{H}_{\infty}\left((\boldsymbol{\Sigma}_{j})_{j\in\mathcal{B}_{i}}\right)-\ell$$

- Conditional average min-entropy [DORS08]: defined as $\tilde{\mathbb{H}}_{\infty}\left(X|Y\right):=-\log\left(\mathbb{E}_{y\in\mathcal{Y}}\left[\max_{x\in\mathcal{X}}\mathbb{P}\left[X=x\mid Y=y\right]\right]\right)$.
- Informally, this value represents the best chanche to predict *X* by knowing *Y*, or, in a leakage perspective, the worst case for the min-entropy of *X* when an adversary knows *Y*.
- Admissible adversaries: an adversary A is (k, ℓ) -admissible, in the *noisy leakage* model, if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as, for all $i \in [m]$,

$$ilde{\mathbb{H}}_{\infty}\left((\mathbf{\Sigma}_i)_{i\in\mathcal{B}_i}\mid\mathbf{\Lambda}_i
ight)\geq\mathbb{H}_{\infty}\left((\mathbf{\Sigma}_i)_{i\in\mathcal{B}_i}
ight)-\ell$$

• Leakage resilience: a secret sharing scheme is k-joint ℓ -noisy ε -leakage-resilient against selective partitioning if, for all messages μ_0 , μ_1 , any (k,ℓ) -admissible adversary cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .

- Conditional average min-entropy [DORS08]: defined as $\tilde{\mathbb{H}}_{\infty}\left(X|Y\right):=-\log\left(\mathbb{E}_{y\in\mathcal{Y}}\left[\max_{x\in\mathcal{X}}\mathbb{P}\left[X=x\mid Y=y\right]\right]\right)$.
- Informally, this value represents the best chanche to predict *X* by knowing *Y*, or, in a leakage perspective, the worst case for the min-entropy of *X* when an adversary knows *Y*.
- Admissible adversaries: an adversary A is (k, ℓ) -admissible, in the *noisy leakage* model, if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as, for all $i \in [m]$,

$$\tilde{\mathbb{H}}_{\infty}\left((\boldsymbol{\Sigma}_{j})_{j\in\mathcal{B}_{i}}\mid\boldsymbol{\Lambda}_{i}\right)\geq\mathbb{H}_{\infty}\left((\boldsymbol{\Sigma}_{j})_{j\in\mathcal{B}_{i}}\right)-\ell$$

• **Leakage resilience:** a secret sharing scheme is k-joint ℓ -noisy ε -leakage-resilient against selective partitioning if, for all messages μ_0, μ_1 , any (k, ℓ) -admissible adversary cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .

Advantages of noisy leakage

• The output of the leakage functions can be longer.

- Conditional average min-entropy [DORS08]: defined as $\tilde{\mathbb{H}}_{\infty}\left(X|Y\right):=-\log\left(\mathbb{E}_{y\in\mathcal{Y}}\left[\max_{x\in\mathcal{X}}\mathbb{P}\left[X=x\mid Y=y\right]\right]\right)$.
- Informally, this value represents the best chanche to predict *X* by knowing *Y*, or, in a leakage perspective, the worst case for the min-entropy of *X* when an adversary knows *Y*.
- Admissible adversaries: an adversary A is (k, ℓ) -admissible, in the *noisy leakage* model, if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as, for all $i \in [m]$,

$$ilde{\mathbb{H}}_{\infty}\left((\mathbf{\Sigma}_{j})_{j\in\mathcal{B}_{i}}\mid\mathbf{\Lambda}_{i}
ight)\geq\mathbb{H}_{\infty}\left((\mathbf{\Sigma}_{j})_{j\in\mathcal{B}_{i}}
ight)-\ell$$

• **Leakage resilience:** a secret sharing scheme is k-joint ℓ -noisy ε -leakage-resilient against selective partitioning if, for all messages μ_0, μ_1 , any (k, ℓ) -admissible adversary cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .

Advantages of noisy leakage

- The output of the leakage functions can be longer.
- The maximum number of leakage gueries is not bounded.

- Conditional average min-entropy [DORS08]: defined as $\tilde{\mathbb{H}}_{\infty}\left(X|Y\right):=-\log\left(\mathbb{E}_{y\in\mathcal{Y}}\left[\max_{x\in\mathcal{X}}\mathbb{P}\left[X=x\mid Y=y\right]\right]\right)$.
- Informally, this value represents the best chanche to predict *X* by knowing *Y*, or, in a leakage perspective, the worst case for the min-entropy of *X* when an adversary knows *Y*.
- Admissible adversaries: an adversary A is (k, ℓ) -admissible, in the *noisy leakage* model, if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as, for all $i \in [m]$,

$$ilde{\mathbb{H}}_{\infty}\left((\mathbf{\Sigma}_{\!j})_{\!j\in\mathcal{B}_{\!i}}\mid\mathbf{\Lambda}_{\!i}
ight)\geq\mathbb{H}_{\infty}\left((\mathbf{\Sigma}_{\!j})_{\!j\in\mathcal{B}_{\!i}}
ight)-\ell$$

• **Leakage resilience:** a secret sharing scheme is k-joint ℓ -noisy ε -leakage-resilient against selective partitioning if, for all messages μ_0, μ_1 , any (k, ℓ) -admissible adversary cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .

Advantages of noisy leakage

- The output of the leakage functions can be longer.
- The maximum number of leakage gueries is not bounded.
- It is possible to ask the same leakage queries without wasting them.

 $\sigma_1 \qquad \sigma_2 \qquad \sigma_3 \qquad \sigma_4 \qquad \sigma_5 \qquad \sigma_6 \qquad \sigma_7 \qquad \sigma_8 \qquad \sigma_9 \qquad \cdots \qquad \sigma_n$

• The two most common kind of non-malleable secret sharing schemes are against *independent* tampering attacks and *joint* tampering attacks.

- The two most common kind of non-malleable secret sharing schemes are against *independent* tampering attacks and *joint* tampering attacks.
- Tampering queries: a tampering query is a pair (\mathcal{T}, f) , where $\mathcal{T} \subseteq [n], |\mathcal{T}| \ge t$ and $f = (f_1, \dots, f_m)$ is a tuple of functions such that, for all $i \in [m]$, f_i takes as input all the shares $(\sigma_j)_{j \in \mathcal{B}_i}$ and outputs modified shares $(\tilde{\sigma_j})_{j \in \mathcal{B}_i}$. The result of a tampering query is the reconstructed secret $\tilde{\mu} = \text{Rec}((\tilde{\sigma_j})_{j \in \mathcal{T}})$.

- The two most common kind of non-malleable secret sharing schemes are against *independent* tampering attacks and *joint* tampering attacks.
- Tampering queries: a tampering query is a pair (\mathcal{T}, f) , where $\mathcal{T} \subseteq [n], |\mathcal{T}| \ge t$ and $f = (f_1, \dots, f_m)$ is a tuple of functions such that, for all $i \in [m]$, f_i takes as input all the shares $(\sigma_j)_{j \in \mathcal{B}_i}$ and outputs modified shares $(\tilde{\sigma_j})_{j \in \mathcal{B}_i}$. The result of a tampering query is the reconstructed secret $\tilde{\mu} = \text{Rec}((\tilde{\sigma_j})_{j \in \mathcal{T}})$.
- **Non-malleability:** a secret sharing scheme is k-joint one-time ε -non-malleable if, for all messages μ_0, μ_1 and all k-sized partitions of [n], any adversary performing one tampering query cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .

- The two most common kind of non-malleable secret sharing schemes are against *independent* tampering attacks and *joint* tampering attacks.
- Tampering queries: a tampering query is a pair (\mathcal{T}, f) , where $\mathcal{T} \subseteq [n], |\mathcal{T}| \ge t$ and $f = (f_1, \dots, f_m)$ is a tuple of functions such that, for all $i \in [m]$, f_i takes as input all the shares $(\sigma_j)_{j \in \mathcal{B}_i}$ and outputs modified shares $(\tilde{\sigma_j})_{j \in \mathcal{B}_i}$. The result of a tampering query is the reconstructed secret $\tilde{\mu} = \text{Rec}((\tilde{\sigma_j})_{j \in \mathcal{T}})$.
- **Non-malleability:** a secret sharing scheme is k-joint one-time ε -non-malleable if, for all messages μ_0, μ_1 and all k-sized partitions of [n], any adversary performing one tampering query cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .
- To avoid trivial attacks, $\tilde{\mu}$ is set to a special symbol \clubsuit whenever $\tilde{\mu} \in \{\mu_0, \mu_1\}$.

• p-time non-malleability: a secret sharing scheme is k-joint p-time ε -non-malleable if, for all messages μ_0 , μ_1 and all k-sized partitions of [n], any adversary performing up to p tampering queries cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .

- p-time non-malleability: a secret sharing scheme is k-joint p-time ε -non-malleable if, for all messages μ_0 , μ_1 and all k-sized partitions of [n], any adversary performing up to p tampering queries cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .
- **Continuous non-malleability:** a secret sharing scheme is k-joint continuously non-malleable if, for all messages μ_0 , μ_1 and all k-sized partitions of [n], any PPT adversary performing any polynomial number of tampering queries cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with more than negligible advantage.

- p-time non-malleability: a secret sharing scheme is k-joint p-time ε -non-malleable if, for all messages μ_0 , μ_1 and all k-sized partitions of [n], any adversary performing up to p tampering queries cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .
- **Continuous non-malleability:** a secret sharing scheme is k-joint continuously non-malleable if, for all messages μ_0 , μ_1 and all k-sized partitions of [n], any PPT adversary performing any polynomial number of tampering queries cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with more than negligible advantage.

Limitations of continuous non-malleability

• Mandatory self-destruct feature [FV19]: once a tampering query yields an invalid value $\tilde{\mu} = \bot$, the tampering oracle self-destructs and no more tampering queries are allowed.

- p-time non-malleability: a secret sharing scheme is k-joint p-time ε -non-malleable if, for all messages μ_0 , μ_1 and all k-sized partitions of [n], any adversary performing up to p tampering queries cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .
- **Continuous non-malleability:** a secret sharing scheme is k-joint continuously non-malleable if, for all messages μ_0 , μ_1 and all k-sized partitions of [n], any PPT adversary performing any polynomial number of tampering queries cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with more than negligible advantage.

Limitations of continuous non-malleability

- Mandatory self-destruct feature [FV19]: once a tampering query yields an invalid value $\tilde{\mu}=\pm$, the tampering oracle self-destructs and no more tampering queries are allowed.
- Otherwise, it would be possible to indefinitively query the tampering oracle with functions that reads one bit at a time, thus recovering all the shares in clear.

- p-time non-malleability: a secret sharing scheme is k-joint p-time ε -non-malleable if, for all messages μ_0 , μ_1 and all k-sized partitions of [n], any adversary performing up to p tampering queries cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .
- **Continuous non-malleability:** a secret sharing scheme is k-joint continuously non-malleable if, for all messages μ_0 , μ_1 and all k-sized partitions of [n], any PPT adversary performing any polynomial number of tampering queries cannot distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with more than negligible advantage.

Limitations of continuous non-malleability

- Mandatory self-destruct feature [FV19]: once a tampering query yields an invalid value $\tilde{\mu}=\bot$, the tampering oracle self-destructs and no more tampering queries are allowed.
- Otherwise, it would be possible to indefinitively query the tampering oracle with functions that reads one bit at a time, thus recovering all the shares in clear.
- Only achievable against computationally bounded adversaries [FV19]: next slide.

[FV19] "Non-Malleable Secret Sharing in the Computational Setting: Adaptive Tampering, Noisy-Leakage Resilience, and Improved Rate", Antonio Faonio, Daniele Venturi, CRYPTO 2019

Definition

A t-out-of-n secret sharing scheme satisfies shared-value uniqueness if, for all subsets $\{i_1,\ldots,i_t\}\subseteq [n]$ of indices, there exists j^* such that, for all shares $\sigma_{i_1},\ldots,\sigma_{i_{j^*-1}},\sigma_{i_{j^*+1}},\ldots,\sigma_{i_t}$ and for all $\sigma_{i_{j^*}},\sigma'_{i_{j^*}}$, either

$$\mu = \mathsf{Rec}(\sigma_{i_1}, \dots, \sigma_{i_{j^*}}, \dots, \sigma_{i_t}) = \mathsf{Rec}(\sigma_{i_1}, \dots, \sigma'_{i_{j^*}}, \dots, \sigma_{i_t}) = \mu',$$

with $\mu, \mu' \in \mathcal{M}$, or at least one of μ, μ' is invalid.

Definition

A t-out-of-n secret sharing scheme satisfies shared-value uniqueness if, for all subsets $\{i_1,\ldots,i_t\}\subseteq [n]$ of indices, there exists j^* such that, for all shares $\sigma_{i_1},\ldots,\sigma_{i_{j^*-1}},\sigma_{i_{j^*+1}},\ldots,\sigma_{i_t}$ and for all $\sigma_{i_{j^*}},\sigma'_{i_{j^*}}$, either

$$\mu = \mathsf{Rec}(\sigma_{i_1}, \dots, \sigma_{i_{j^*}}, \dots, \sigma_{i_t}) = \mathsf{Rec}(\sigma_{i_1}, \dots, \sigma'_{i_{j^*}}, \dots, \sigma_{i_t}) = \mu',$$

with $\mu, \mu' \in \mathcal{M}$, or at least one of μ, μ' is invalid.

• **Theorem [BS19]:** Any *independent* (i.e. 1-joint) continuously non-malleable secret sharing scheme must satisfy shared-value uniqueness.

Definition

A t-out-of-n secret sharing scheme satisfies shared-value uniqueness if, for all subsets $\{i_1,\ldots,i_t\}\subseteq [n]$ of indices, there exists j^* such that, for all shares $\sigma_{i_1},\ldots,\sigma_{i_{j^*-1}},\sigma_{i_{j^*+1}},\ldots,\sigma_{i_t}$ and for all $\sigma_{i_{j^*}},\sigma'_{i_{j^*}}$, either

$$\mu = \mathsf{Rec}(\sigma_{i_1}, \dots, \sigma_{i_{j^*}}, \dots, \sigma_{i_t}) = \mathsf{Rec}(\sigma_{i_1}, \dots, \sigma'_{i_{j^*}}, \dots, \sigma_{i_t}) = \mu',$$

with $\mu, \mu' \in \mathcal{M}$, or at least one of μ, μ' is invalid.

- **Theorem [BS19]:** Any *independent* (i.e. 1-joint) continuously non-malleable secret sharing scheme must satisfy shared-value uniqueness.
- *Proof idea.* If the above does not hold, then there exist a set of indices \mathcal{I} such that, for all $j^* \in \mathcal{I}$, it is possible to find shares $\sigma_{i_1}, \ldots, \sigma_{i_{j^*-1}}, \sigma_{i_{j^*+1}}, \ldots, \sigma_{i_t}$ for which the reconstructed values μ and μ' are both valid and distinct. Therefore, any adversary may exploit this fact in order to learn, for all $j^* \in [t]$, the shares $\sigma^*_{i_{j^*}}$ of the target secret sharing.

Definition

A t-out-of-n secret sharing scheme satisfies shared-value uniqueness if, for all subsets $\{i_1,\ldots,i_t\}\subseteq [n]$ of indices, there exists j^* such that, for all shares $\sigma_{i_1},\ldots,\sigma_{i_{i^*-1}},\sigma_{i_{i^*+1}},\ldots,\sigma_{i_t}$ and for all $\sigma_{i_{j^*}},\sigma'_{i_{j^*}}$, either

$$\mu = \mathsf{Rec}(\sigma_{i_1}, \dots, \sigma_{i_{i^*}}, \dots, \sigma_{i_t}) = \mathsf{Rec}(\sigma_{i_1}, \dots, \sigma'_{i_{i^*}}, \dots, \sigma_{i_t}) = \mu',$$

with $\mu, \mu' \in \mathcal{M}$, or at least one of μ, μ' is invalid.

- **Theorem [BS19]:** Any *independent* (i.e. 1-joint) continuously non-malleable secret sharing scheme must satisfy shared-value uniqueness.
- *Proof idea.* If the above does not hold, then there exist a set of indices $\mathcal I$ such that, for all $j^* \in \mathcal I$, it is possible to find shares $\sigma_{i_1}, \ldots, \sigma_{i_{j^*-1}}, \sigma_{i_{j^*+1}}, \ldots, \sigma_{i_t}$ for which the reconstructed values μ and μ' are both valid and distinct. Therefore, any adversary may exploit this fact in order to learn, for all $j^* \in [t]$, the shares $\sigma_{i_{j^*}}^*$ of the target secret sharing.
- On the other side, any secret sharing scheme satisfying statistical privacy must violate the above property, otherwise there would exist a setting in which the distribution $(\Sigma_{i_1},\ldots,\Sigma_{i_{j^*}},\ldots,\Sigma_{i_t})$ only assumes valid values for at most one single message μ .

• *n*-split-state non-malleable code [DPW09]: encodes a message μ into a codeword $(\sigma_1, \ldots, \sigma_n)$.

- *n*-split-state non-malleable code [DPW09]: encodes a message μ into a codeword $(\sigma_1, \ldots, \sigma_n)$.
- **Tampering:** a tampering query is a tuple of functions (f_1, \ldots, f_n) such that, for each $i \in [n]$, $f_i(\sigma_i) = \tilde{\sigma}_i$. The result of a tampering query is the reconstructed message $\tilde{\mu} = \text{Rec}(\tilde{\sigma}_1, \ldots, \tilde{\sigma}_n)$.

- *n*-split-state non-malleable code [DPW09]: encodes a message μ into a codeword $(\sigma_1, \ldots, \sigma_n)$.
- **Tampering:** a tampering query is a tuple of functions (f_1, \ldots, f_n) such that, for each $i \in [n]$, $f_i(\sigma_i) = \tilde{\sigma}_i$. The result of a tampering query is the reconstructed message $\tilde{\mu} = \text{Rec}(\tilde{\sigma}_1, \ldots, \tilde{\sigma}_n)$.
- Non-malleability: the result $\tilde{\mu}$ of the tampering either equals μ or it is completely unrelated.

• Often used to construct non-malleable secret sharing schemes.

- Often used to construct non-malleable secret sharing schemes.
- May have leakage-resilience as well.

- Often used to construct non-malleable secret sharing schemes.
- May have leakage-resilience as well.
- Commonly obtained from efficiently-invertible *n*-source non-malleable randomness extractors.

- Often used to construct non-malleable secret sharing schemes.
- May have leakage-resilience as well.
- Commonly obtained from efficiently-invertible *n*-source non-malleable randomness extractors.
- 2-split-state non-malleable codes are 2-out-of-2 non-malleable secret sharing schemes.

- Often used to construct non-malleable secret sharing schemes.
- May have leakage-resilience as well.
- Commonly obtained from efficiently-invertible n-source non-malleable randomness extractors.
- 2-split-state non-malleable codes are 2-out-of-2 non-malleable secret sharing schemes.
- *Proof.* Correctness and non-malleability follow immediately; privacy follows because, for a tampering query (f_1, f_2) , the function f_1 may distinguish between an encoding of μ_0 and an encoding of μ_1 from the codeword portion σ_1 and may act as the identity function if the encoded message is μ_0 or replace σ_1 with a random string otherwise.

- Often used to construct non-malleable secret sharing schemes.
- May have leakage-resilience as well.
- Commonly obtained from efficiently-invertible n-source non-malleable randomness extractors.
- 2-split-state non-malleable codes are 2-out-of-2 non-malleable secret sharing schemes.
- *Proof.* Correctness and non-malleability follow immediately; privacy follows because, for a tampering query (f_1, f_2) , the function f_1 may distinguish between an encoding of μ_0 and an encoding of μ_1 from the codeword portion σ_1 and may act as the identity function if the encoded message is μ_0 or replace σ_1 with a random string otherwise.
- n-split-state non-malleable codes for n > 2 are **not** n-out-of-n non-malleable secret sharing schemes.

- Often used to construct non-malleable secret sharing schemes.
- May have leakage-resilience as well.
- Commonly obtained from efficiently-invertible n-source non-malleable randomness extractors.
- 2-split-state non-malleable codes are 2-out-of-2 non-malleable secret sharing schemes.
- *Proof.* Correctness and non-malleability follow immediately; privacy follows because, for a tampering query (f_1, f_2) , the function f_1 may distinguish between an encoding of μ_0 and an encoding of μ_1 from the codeword portion σ_1 and may act as the identity function if the encoded message is μ_0 or replace σ_1 with a random string otherwise.
- n-split-state non-malleable codes for n > 2 are **not** n-out-of-n non-malleable secret sharing schemes.
- *Proof.* Consider a 2-split-state non-malleable code Share(μ) = (σ_1 , σ_2) and construct the algorithm Share*(μ) = (σ_1^* , σ_2^* , σ_3^*), where σ_1^* = σ_1 , σ_2^* = σ_2 and σ_3^* = μ . Then, Share* is a 3-split-state non-malleable code, but it is not a 3-out-of-3 non-malleable secret sharing scheme (privacy does not hold).

- Sometimes, it is useful that security holds even when an attacker is able to see in full all the shares in a subset \mathcal{B}_i of the k-sized partition \mathcal{B} after the leakage/tampering phase.
- When leakage is allowed after the last tampering query, this property comes at the cost of only 1 extra bit of leakage.

- Sometimes, it is useful that security holds even when an attacker is able to see in full all the shares in a subset \mathcal{B}_i of the k-sized partition \mathcal{B} after the leakage/tampering phase.
- When leakage is allowed after the last tampering query, this property comes at the cost of only 1 extra bit of leakage.
- Proof. By reduction to security of the same scheme without the augmented property.
 - Suppose that there exists an adversary $A^+ = (A_1^+, A_2^+)$ that is able to distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .

- Sometimes, it is useful that security holds even when an attacker is able to see in full all the shares in a subset \mathcal{B}_i of the k-sized partition \mathcal{B} after the leakage/tampering phase.
- When leakage is allowed after the last tampering query, this property comes at the cost of only 1 extra bit of leakage.
- Proof. By reduction to security of the same scheme without the augmented property.
 - Suppose that there exists an adversary $A^+ = (A_1^+, A_2^+)$ that is able to distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .
 - Consider the reduction A that forwards all the leakage (and tampering) queries of A₁⁺, returning the corresponding answer to A₁⁺.

- Sometimes, it is useful that security holds even when an attacker is able to see in full all the shares in a subset \mathcal{B}_i of the k-sized partition \mathcal{B} after the leakage/tampering phase.
- When leakage is allowed after the last tampering query, this property comes at the cost of only 1 extra bit of leakage.
- *Proof.* By reduction to security of the same scheme without the augmented property.
 - Suppose that there exists an adversary $A^+ = (A_1^+, A_2^+)$ that is able to distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .
 - ullet Consider the reduction A that forwards all the leakage (and tampering) queries of A_1^+ , returning the corresponding answer to A_1^+ .
 - When A_1^+ outputs the index i^* of the subset of shares he wants to see, construct the leakage query that takes as input all the shares in \mathcal{B}_{i^*} , feeds them into the algorithm A_2^+ and outputs the same distinguishing bit as A_2^+ .

- Sometimes, it is useful that security holds even when an attacker is able to see in full all the shares in a subset \mathcal{B}_i of the k-sized partition \mathcal{B} after the leakage/tampering phase.
- When leakage is allowed after the last tampering query, this property comes at the cost of only 1 extra bit of leakage.
- Proof. By reduction to security of the same scheme without the augmented property.
 - Suppose that there exists an adversary $A^+ = (A_1^+, A_2^+)$ that is able to distinguish between a secret sharing of μ_0 and a secret sharing of μ_1 with advantage more than ε .
 - Consider the reduction A that forwards all the leakage (and tampering) queries of A_1^+ , returning the corresponding answer to A_1^+ .
 - When A_1^+ outputs the index i^* of the subset of shares he wants to see, construct the leakage query that takes as input all the shares in \mathcal{B}_{i^*} , feeds them into the algorithm A_2^+ and outputs the same distinguishing bit as A_2^+ .
 - Send the above leakage query to the oracle and, upon receiving an answer $b \in \{0,1\}$, output the same b.