Assignment, Week 4 Due date: 10 Feb 2024

- 1. The closed-form solution for linear regression for multiple independent variables is: $(X^TX)^{-1} X^T y$
 - Derive the expressions for slope and intercept for the special case of y = mx + c.
- 2. Assignment from notebook Lec4 LinReg from scratch.ipynb:
 - a. Increase the number of epochs (n_epoch) to 50 in the stochastic gradient descent optimization method. Plot the resulting Θ vs. n_epoch.
 - b. Repeat the same for the mini-batch gradient descent method.
 - c. How does the evolution in Θ as a function of n_epoch differ between the two methods above
- 3. Assignment from notebook HO-4-1-house price-3 include categorical features.ipynb:
 - a. Correct some of the mistakes in the notebook
 - b. Use of imputers other than SimpleImputer
 - i. KNNImputer
 - ii. IterativeImputer
 - c. How does transforming one of the features which have a long tail distribution (eg. total bedrooms) to a bell curve impact RMSE (train and test)
- 4. Assignment from notebook <u>HO-4-2-house_price-4_pipeline.ipynb</u>: How does not performing feature scaling affect the resulting regression fit?
- 5. Assignment from notebook https://github.com/raHO-4-5-polynomial_regression_sklearn.ipynb: Find the optimal regularization parameters (λ) for (a) Ridge Regression and (b) Lasso Regression. Make sure to cover a wide range of λ for this exercise.
- 6. Go through every Google Colab notebook for <u>week 4</u> and refer to the suggested resources. No need to submit any answer for this.