Hw3

Исследуем ряд ехр(х)

```
hw2.py 💥
1
      x=1
      eps=10**(-2)
 2
 3
      s=x
 4
      t=x
 5
      i=1
     □while abs(t/s)>eps:
 6
 7
          t=(x/i)*t
 8
          s=s+t
 9
          i=i+1
10
     import math
11
      a=math.fabs(s-math.exp(x))/math.exp(x)
12
      print ('s=',s, 'tmax=',t, 'a=',a, 'i=', i)
13
14
      C:\windows\SYSTEM32\cmd.exe
15
     s= 2.7166666666666666 tmax= 0.00833333333333333 a= 0.0005941848175817597 i= 6
     (program exited with code: 0)
     Для продолжения нажмите любую клавишу . . .
```

sum	t max	ошибка	степен ь ерѕ
2.71666666666666666666666666666666666666	0.008333333333333333	0.000594184817581759 7	-2
2.71805555555555 4	0.0013888888888888888	8.324114928800986e- 05	-3
2.718253968253968 4	0.0001984126984126983 9	1.125202597843745e- 06	-4

sum	t max	ошибка	степен ь ерѕ
2.718281828446759 4	1.605904383682161e-10	2.220446049250313e- 16	-8
2.718281828459045 5	1.561920696858622e-16	1.6337129034990842e- 16	-16

- Из данной таблицы мы видим, что при значениях x=1 алгоритм сходится к 2.7182(e). Значение тем ближе к e, чем больше точность.
- Количество точных знаков меньше ожидаемого, так как мы привысили точность.
- После того, как наша точность превысила машинную, значение суммы ряда остается постоянным(при x=1 s=2.7182818284590455).

Используем "плохую" версию алгоритма.

```
dz1.py 🕱 hw.py 🛣 kvad2.py 🛣 hw3.py 🛣 hw2.py 🛣 67.py 🛣 hw2.2.py 🛣
      import math
 2
      x=1
      eps=10**(-5)
 3
 4
      s=x
 5
      t=x
 6
      i=1
 7
     Dwhile abs(t/s)>eps:
 8
           import math
 9
           t=x**i/math.factorial(i)
10
          s=s+t
11
          i=i+1
      import math
12
      a=math.fabs(s-math.exp(x))/math.exp(x)
13
      print ('s=',s, 'tmax=',t, 'a=',a, 'i=', i)
14
15
      C:\windows\SYSTEM32\cmd.exe
      s= 2.71827876984127 tmax= 2.48015873015873e-05 a= 1.125202597843745e-06 i= 9
      (program exited with code: 0)
      Для продолжения нажмите любую клавишу . . .
```

"Хороший"	"Плохой"
2.71827876984127	2.71827876984127
7.38905609893089	8.389046015712681
21.476989610413156	22.08553692318766

Используем встроенную функцию math.exp(x). И сравним с суммой ряда при дольшой точности

math.exp(x)	Сумма ряда
2.718281828459045	2.7182818284590455
7.38905609893065	8.389056098930649
20.085536923187668	21.476989610413156

• Из данной таблицы мы видим, что ряд не совсем точно сходится к истинному значению.

```
hw2.py 💥 hw2.2.py 💥
       1 2 3 4 5 6 7
              x=10
              eps=10**(-6)
              s=x
              t=x
              i=1
              import math
              b=math.exp(x)
            □while abs(t/s)>eps:
                   t=(x/i)*t
       9
      10
                   s=s+t
      11
                   i=i+1
      12
              import math
              a=math.fabs(s-math.exp(x))/math.exp(x)
      13
      14
              print ('s=',s, 'tmax=',t, 'a=',a, 'i=', i, 'b', b)
      15
         C:\windows\SYSTEM32\cmd.exe
         s= 22035.46579480671 tmax= 5.391340061957266e-47 a= -40505.79908543065 i= 89 b 22026.465794806718
         (program exited with code: 0)
        Для продолжения нажмите любую клавишу . . .
1.2x10<sup>-5</sup>
                                                                                                                    '2.dat' using 1:2
                                                                                                                               f(x)
 1x10<sup>-5</sup>
 8x10<sup>-6</sup>
 6x10<sup>-6</sup>
 4x10<sup>-6</sup>
 2x10<sup>-6</sup>
      0
 -2x10<sup>-6</sup>
                              5
                                                   10
                                                                         15
                                                                                              20
                                                                                                                    25
                                                                                                                                          30
```

 При больших точностях функция ошибок от количества слагаемых выходит на константу.