

(An Autonomous Institution)

Regulations: A17

Code No: 6HC18 Date: 04-Aug-zuzu (FN)

B.Tech II-Year II- Semester External Examination, Aug - 2023 (Supplementary) PROBABILITY AND STATISTICS (CIVIL, EEE, ME, CSE, IT and BT)

Time: 3 Hours Max.Marks:75

Note: a) No additional answer sheets will be provided.

- b) All sub-parts of a question must be answered at one place only, otherwise it will not be valued.
- c) Missing data can be assumed suitably.

Bloom's Cognitive Levels of Learning (BCLL)

		•			
Remember	L1	Apply	L3	Evaluate	L5
Understand	L2	Analyze	L4	Create	L6

Part - A Max.Marks:25

ANSWER ALL QUESTIONS

	ANOTHER ALL GOLDHOITS										
		BCLL	CO(s)	Marks							
1	Define Random variable	L1	CO1	[2M]							
2	Define Normal distribution.	L1	CO2	[2M]							
3	State Central limit theorem.	L2	CO3	[2M]							
4	Write Karl Pearson's formulae.	L1	CO4	[2M]							
5	Write Type-I and Type-II Error.	L1	CO5	[2M]							
6	Write the control line and three - sigma limits for the range chart.	L2	CO6	[3M]							
7	State Conditional Probability theorem	L1	CO1	[3M]							
8	Write the Positive and Negative correlation.	L1	CO3	[3M]							
9	Define ANOVA one way	L1	CO5	[3M]							
10	What is the purpose of control charts	L1	CO6	[3M]							

Part – B Max.Marks:50 ANSWER ANY FIVE QUESTIONS. EACH QUESTION CARRIES 10 MARKS.

- 11. a) Determine (i) $P\left(\frac{B}{A}\right)$ (ii) $P\left(\frac{B}{A^c}\right)$ if A and B are events with $P(A) = \frac{1}{3}$, $P(A \cup B) = \frac{1}{4}$. $P(A \cup B) = \frac{1}{4}$
 - b) A businessman goes to hotels X, Y, and Z, 20%,50%, and 30% of the L2 CO1 [5M] time respectively. It is known that 5%, 4%, and 8% of the rooms in X, Y, and Z hotels have faulty plumbing. What is the probability that the businessman's room having faculty plumbing is assigned to hotel Z?
- 12. a) Out of 800 families with 5 children each, how many would you expect to L2 CO2 [5M] have (a) 3 boys (b) 5 girls (c) Either 2 or 3 boys (d) at least one boy?

 Assume equal Probability for boys and girls
 - b) If X is normally distributed with mean 2 and variance 0.1, then find L3 CO2 [5M] $P(|X-2| \ge 0.01)$?
- 13. A population consists of six numbers 5,10,14,13,18,24. Consider size two L3 ^{CO3} [10M] which can be drawn from this population. Find
 - i. The mean of the population
 - ii. The population S.D.
 - iii. The mean of the sampling distribution of mean

iv. The S.D of the sampling distribution of means.

14.	a)	Obtain the rank correlation coefficient for the following data										L2	CO4	[5M]		
			Х	68	64	75	50	64	80	75	40	55				

- b) Find the mean values of the variables X and Y and the correlation L2 CO4 [5M] coefficient from the following regression equations 2y-x-50=0, 3y-2x-10=0
- 15. a) In two large populations, there is 30%, and 25% respectively of fair- L3 ^{CO5} [5M] haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations
 - b) The numbers of automobile accidents per week in a certain community L3 CO5 are as follows: 12,8,20,2,14,10,15,6,9,4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10-week period?
- 16. a) Explain in detail the mean and R charts. L2 ^{CO6} [5M]
 - b) what is Latin Square Design? Give the assumptions and applications of L2 ^{CO6} [5M] an LSD in field experimentations.
- 17. a) If a random variable has the probability density function f(x) as L3 $^{\text{CO1}}$ [4M]

$$f(x) = \begin{cases} 2e^{-2x}, & \text{for } x > 0\\ 0, & \text{if } x \le 0 \end{cases}$$

Find the probabilities that it will take on a value

- (i) Between 1 and 3 (ii) greater than 0.5
- b) If a random variable has a Poisson distribution such that P (1) =P (2). L2 CO2 [3M] Find P(1<x<4).
- c) When a sample is taken from an infinite population, what happens to the L2 CO3 standard error of the mean if the sample size is decreased from 800 and 200.
- 18. a) Find the coefficient of correlation between X and Y for the following data L3 CO4 [4M]

X	10	12	18	24	23	27
У	13	18	12	25	30	10

- b) Write the Properties of t- distribution.
- c) Write the control line and three sigma limits for the fraction-defective L2 ^{CO6} [3M] chart.

CO₅

L2

[5M]

[3M]

[3M]