0	A		N.Al.
Question	Answer		Mark
Number	Haraff D/A	(4)	
18(a)	Use of I = P / A	(1)	
	$A = 4\pi r^2$ with $r = 1.50 \times 10^{11}$ (m)	(1)	
	Solar intensity at the solar panel = 1350 W m ⁻²	(1)	3
	Example of calculation		
	For intensity of sunlight at the panel:		
	$I = P / A = (3.83 \times 10^{26} \text{ W}) / 4\pi (1.50 \times 10^{11} \text{ m})^2 = 1355 \text{ W m}^{-2}$		
10/h)	Use of $v = f\lambda$ with $v = 3.00 \times 10^8 \text{m s}^{-1}$	(1)	
18(b)		(1)	
	Use of $E = hf$	(1)	3
	Energy of photon = 3.7×10^{-19} (J)	(1)	3
	(Correct substitution into E = hc/λ can score both MP1 & MP2)		
	(correct substitution into E Tierre can score both with a will 2)		
	Example of calculation		
	$v = f\lambda$, $(3.00 \times 10^8 \text{ m s}^{-1}) = f \times (532 \times 10^{-9} \text{ m})$, $f = 5.64 \times 10^{14} \text{ Hz}$		
	$E = hf = (6.63 \times 10^{-34} \text{ J s}) \times (5.64 \times 10^{14} \text{ Hz}) = 3.74 \times 10^{-19} \text{ J}$		
18(c)(i)	Use of speed = distance / time with $v = 3.00 \times 10^8$ m s ⁻¹	(1)	
	Height of orbit = 4.8×10^5 m	(1)	2
		` ,	
	(Allow MP1 for candidates who fail to halve the time)		
	Example of calculation		
	Distance = speed × time = $(3.00 \times 10^8 \text{ m s}^{-1}) \times (3.20 \times 10^{-3} \text{ s / 2})$		
	Height of orbit = 480 km		
18(c)(ii)	Photons from other/unknown sources also arrive at the satellite		
	Or only photons emitted (by the laser) should be recorded		
	Or other (wavelengths of) photons are not emitted (by the laser)	(1)	1
	(Allow 'light' or 'waves' for 'photons')		
18(d)	(For a flat surface) measurements give the same time/distance	(1)	
	(Higher elevation means that) photografiabt will return in last time		
	(Higher elevation means that) photons/light will return in less time		
	Or $s = vt/2$ gives smaller distance to the ice	(1)	2
	Total for question 18		11
	Total for question 18		11