#### DSC 441 – FUNDAMENTAL OF DATA SCIENCE

#### **HOMEWORK 4**

NAME – Goutham Selvakumar

#### **PROBLEM 1**

For this problem, you will tune and apply kNN and compare it to other classifiers. We will use the wine quality data, which has a number of measurements about chemical components in wine, plus a quality rating. There are separate files for red and white wines, so the first step is some data preparation

a. For this problem, you will tune and apply kNN and compare it to other classifiers. We will use the wine quality data, which has a number of measurements about chemical components in wine, plus a quality rating. There are separate files for red and white wines, so the first step is some data preparation.

```
```{r}
# Importing the datasets and separating them with a semicolon
winequality_white <- read.csv("winequality-white.csv", sep = '
winequality_red <- read.csv("winequality-red.csv", sep = ";")</pre>
summary(winequality_white)
  fixed.acidity
                      volatile.acidity citric.acid
  Min. : 3.800
1st Qu.: 6.300
                                                                                   Min. :0.00900
1st Qu.:0.03600
                      Min. :0.0800
1st Qu.:0.2100
                                          Min. :0.0000
1st Qu.:0.2700
                                                               Min. : 0.600
1st Qu.: 1.700
  Min.
  Median : 6.800
                      Median :0.2600
                                           Median :0.3200
                                                               Median : 5.200
                                                                                    Median :0.04300
                                                                                            :0.04577
  Mean
          : 6.855
                      Mean
                              :0.2782
                                           Mean
                                                   :0.3342
                                                               Mean
                                                                       : 6.391
                                                                                    Mean
  3rd Qu.: 7.300
                      3rd Qu.:0.3200
                                           3rd Qu.:0.3900
                                                                3rd Qu.: 9.900
                                                                                    3rd Qu.:0.05000
                                                   :1.6600
                                                                                           :0.34600
          :14.200
                      Max.
                               :1.1000
                                          Max.
                                                              Max.
                                                                       :65.800
                                                                                   Max.
                                                                       pH
Min.
  free.sulfur.dioxide total.sulfur.dioxide
                                                      density
                                                                                             sulphates
                                                   Min.
  Min.
              2.00
                         Min.
                                                           :0.9871
                                                                                :2.720
                                                                                           Min.
                                                   1st Qu.:0.9917
Median :0.9937
                                                                                           1st Qu.:0.4100
  1st Qu.: 23.00
                          1st Qu.:108.0
                                                                        1st Qu.:3.090
  Median: 34.00
                          Median :134.0
                                                                        Median :3.180
                                                                                           Median :0.4700
  Mean
          : 35.31
                          Mean
                                  :138.4
                                                  Mean
                                                           :0.9940
                                                                        Mean
                                                                                :3.188
                                                                                           Mean
  3rd Qu.: 46.00
                          3rd Qu.:167.0
                                                   3rd Qu.:0.9961
                                                                        3rd Qu.:3.280
                                                                                           3rd Qu.:0.5500
          :289.00
                          Max.
  Max.
                                  :440.0
                                                  Max.
                                                           :1.0390
                                                                        Max.
                                                                                :3.820
                                                                                           Max.
     alcohol
                         quality
         : 8.00
  Min. : 8.00
1st Qu.: 9.50
                     Min. :3.000
1st Qu.:5.000
  Median:10.40
                     Median :6.000
                             :5.878
  Mean
          :10.51
                     Mean
  3rd Ou.:11.40
                     3rd Ou.:6.000
```

```
summary (winequality_red)
                     volatile.acidity citric.acid
Min. :0.1200 Min. :0.000
1st Qu.:0.3900 1st Qu.:0.090
  fixed.acidity
                                                               residual.sugar
                                                                                      chlorides
 Min. : 4.60
1st Qu.: 7.10
Median : 7.90
Mean : 8.32
                                                              Min. : 0.900
1st Qu.: 1.900
                     Min. :0.1200
1st Qu.:0.3900
                                                                                   Min. :0.01200
1st Qu.:0.07000
                     Median :0.5200
                                                               Median : 2.200
                                                                                   Median :0.07900
                                           Median :0.260
  Mean
                             :0.5278
                     Mean
                                          Mean
                                                               Mean
                                                                                   Mean
  3rd Qu.: 9.20
                     3rd Qu.:0.6400
                                          3rd Qu.:0.420
                                                               3rd Qu.: 2.600
                                                                                    3rd Qu.:0.09000
                   Max.
                             :1.5800 Max.
          :15.90
                                                              Max. :15.500
  Max.
                                                   :1.000
                                                                                   Max. :0.61100
                                                                        pH
Min. :?
  free.sulfur.dioxide total.sulfur.dioxide
                                                        density
                                                                                                sulphates
 Min.
                          Min. : 6.00
1st Qu.: 22.00
                                                            :0.9901
                                                                                  :2.740
  Min. : 1.00
1st Qu.: 7.00
                                                    Min. :0.9901
1st Qu.:0.9956
                                                                                            Min. :0.3300
1st Qu.:0.5500
                                                                          1st Qu.:3.210
  Median :14.00
                           Median : 38.00
                                                    Median :0.9968
                                                                          Median :3.310
                                                                                             Median :0.6200
                                                Median :0.3355
Mean :0.9967
3rd Qu::0.9978
  Mean :15.87
3rd Qu.:21.00
                          Mean : 46.47
3rd Qu.: 62.00
  Mean
                                                                         Mean :3.311
                                                                                             Mean
                                                                                                     :0.6581
                                                                          3rd Qu.:3.400
                                                                                              3rd Qu.:0.7300
                                  :289.00
                                                  Max. :1.0037
  Max.
                     quality
Min. :3.000
1st Qu.:5.000
     alcohol
  Min.
         : 8.40
  1st Qu.: 9.50
  Median :10.20
                     Median :6.000
          :10.42
                             :5.636
  Mean
                     Mean
  3rd Qu.:11.10
                      3rd Qu.:6.000
 Max.
         :14.90
                     Max.
                             :8.000
```

Now, check the type of data in the columns of the wines dataset

```
> typeof(winequality_red$chlorides)
[1] "double"
> typeof(winequality_red$citric.acid)
[1] "double"
> typeof(winequality_red$residual.sugar)
[1] "double"
> typeof(winequality_red$alcohol)
[1] "double"
```

Note that there is no NAs in the dataset. Now, let's add a column for the types of wines.

```
# Add the column for type of wine
winequality_red$type <- c('red')
winequality_white$type <- c('white')
# Now combine both tables using the full_join
wines <- full_join(winequality_red, winequality_white)
head(wines)</pre>
```

|   | fixed.acidity<br>«dbl> | volatile.acidity<br>«dbl» | citric.acid<br><dbl></dbl> | residual.sugar<br><dbl></dbl> | chlorides<br>«dol» | free.sulfur.dioxide | total.sulfur.dioxide<br><dbl></dbl> | density<br>«dbl» | <dbl></dbl> |
|---|------------------------|---------------------------|----------------------------|-------------------------------|--------------------|---------------------|-------------------------------------|------------------|-------------|
| 1 | 7.4                    | 0.70                      | 0.00                       | 1.9                           | 0.076              | 11                  | 34                                  | 0.9978           | 3.51        |
| 2 | 7.8                    | 0.88                      | 0.00                       | 2.6                           | 0.098              | 25                  | 67                                  | 0.9968           | 3.20        |
| 3 | 7.8                    | 0.76                      | 0.04                       | 2.3                           | 0.092              | 15                  | 54                                  | 0.9970           | 3.26        |
| 4 | 11.2                   | 0.28                      | 0.56                       | 1.9                           | 0.075              | 17                  | 60                                  | 0.9980           | 3.16        |
| 5 | 7.4                    | 0.70                      | 0.00                       | 1.9                           | 0.076              | 11                  | 34                                  | 0.9978           | 3.51        |
| 6 | 7.4                    | 0.66                      | 0.00                       | 1.8                           | 0.075              | 13                  | 40                                  | 0.9978           | 3.51        |

b. Use PCA to create a projection of the data to 2D and show a scatterplot with color showing the wine type.

```
fraction of the dataset
dummy <- dummyVars(type ~ ., data = wines)
dummies <- as.data.frame(predict(dummy, newdata = wines))
set.seed(123)
# Calculate PCA
pca = prcomp(dummies)
# Save as data frame
rotated_data = as.data.frame(pca$x)
# Add the original label 'type' as a reference
rotated_data$Color <- wines$type
# Plot and color the labels based on wine type red (or) white
ggplot(data = rotated_data, aes(x = PC1, y = PC2, col = Color)) + geom_point(alpha = 0.3)</pre>
```



# c. We are going to try kNN, SVM and decision trees on this data. Based on the 'shape' of the data in the visualization from (b), which do you think will do best and why?

I think the best method in this case may be to use KNN. The wines dataset is somewhat large so KNN may be faster and more efficient solution. Also, the non-linear relationship will allow for a more accurate prediction by using the nearest K neighbour to predict the type of wine. I've performed some sample work below that helped me also get to this conclusion, although SVM and KNN performed similarly in regards to accuracy. However, SVM's patterns may be limited in this case (we can discover this later).

#### Finding the K nearest neighbour:

```
k-Nearest Neighbors

6497 samples
12 predictor
2 classes: 'red', 'white'

Pre-processing: centered (12), scaled (12)
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 5848, 5847, 5847, 5848, 5847, 5848, ...
Resampling results across tuning parameters:

k Accuracy Kappa
5 0.9923051 0.9792070
7 0.9929205 0.9808827
9 0.9930741 0.9813154

Accuracy was used to select the optimal model using the largest value. The final value used for the model was k = 9.
```

#### **SVM:**

```
# Fit the Model
svm1 <- train(type ~., data = wines, method = "svmLinear")
# Evaluate the Fit
svm1

Support Vector Machines with Linear Kernel

6497 samples
12 predictor
2 classes: 'red', 'white'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 6497, 6497, 6497, 6497, 6497, ...
Resampling results:
   Accuracy Kappa
   0.994937   0.9862915

Tuning parameter 'C' was held constant at a value of 1</pre>
```

#### **Decision Tree:**

```
# Evaluation Method
train control = trainControl(method = "cv", number = 10)
# Fit the Model
tree1 <- train(type ~., data = wines, method = "rpart", trControl = train control)
tree1
       CART
       6497 samples
        12 predictor
          2 classes: 'red', 'white'
       No pre-processing
       Resampling: Cross-Validated (10 fold)
       Summary of sample sizes: 5847, 5848, 5847, 5848, 5847, ...
       Resampling results across tuning parameters:
         cp Accuracy Kappa
0.06253909 0.9465933 0.8498495
         0.06754221 0.9348963 0.8147365
         0.70043777 0.7855788 0.1500825
       Accuracy was used to select the optimal model using the largest value.
       The final value used for the model was cp = 0.06253909.
```

d. Use kNN (tune k), use decision trees (basic rpart method is fine), and SVM (tune C) to predict type from the rest of the variables. Compare the accuracy values – is this what you expected? Can you explain it? Note: you will need to fix the columns names for rpart because it is not able to handle the underscores. This code will do the trick (assuming you called your data wine\_quality): colnames(wine\_quality) <- make.names(colnames(wine\_quality)).</p>

#### KNN:

```
k-Nearest Neighbors
6497 samples
  12 predictor
   2 classes: 'red', 'white'
Pre-processing: centered (12), scaled (12)
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 5847, 5847, 5848, 5849, 5847, 5847, ...
Resampling results across tuning parameters:
     Accuracy
                 Kappa
      0.9936890
      0.9933813
                 0.9821286
  11
      0.9927659 0.9805034
      0.9926121
                 0.9801038
      0.9923044 0.9792783
      0.9927659
                 0.9804950
  19
      0.9926116
                 0.9800879
      0.9929198
                 0.9809104
      0.9924582
                 0.9796711
      0.9923044
                 0.9792539
      0.9923044 0.9792539
  31
      0.9916885 0.9776041
  33 0.9918428 0.9780181
Accuracy was used to select the optimal model using the largest value.
```

#### For k = 7:

```
fit <- kmeans(dummies, centers = 7, nstart = 25) # Display the kmeans object information fit
```

The final value used for the model was k = 7.

```
K-means clustering with 7 clusters of sizes 856, 910, 354, 717, 1382, 1131, 1147
                                                                                                                                                                                                                                       425 426 427 428 44 4 2 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5
                                                                                                                                                                                                                                                                                                                                                      429
2
448
2
467
4
486
2
505
2
524
                                                                                                                                                                                                                                                                                                                                                                  430
2
449
2
468
2
487
2
506
                                                                                                                                                                                                                                                                                                                                                                            431
2
450
2
469
2
488
2
507
                                                                                                                                                                                                                                                                                                                                                                                       432
451
2
470
4
489
4
508
                                                                                                                                                                                                                                                                                                                                                                                                              434
2
453
2
472
4
491
4
510
4
529
                                                                                                                                                                                                                                                                                                                                                                                                                                    452
                                                                                                                                                                                                                                                                                                                                                                                                                                                471
4
490
2
509
                                                                                                                                                                                                                                                                                                                                                                           525
                                                                                                                                                                                                                                                                                               2 538 2 2 5577 2 2 5587 4 595 5 2 6114 4 652 2 709 2 2 747 4 6 6 4 785 6 804 823
                                                                                                                                                                                                                                                                                                                                                                  5
544
4
563
                                                                                                                                                                                                                                                                                                                                                                                                              4 548 2 5866 2 605 4 4 624 4 4 681 2 700 2 719 2 776 2 2 776 2 2 833
                                                                                                                                                                                                                                                                                                                                                       7
543
                                                                                                                                                                                                                                                                                                                                                       2
562
5
581
2
600
2
619
2
638
                                                                                                                                                                                                                                                                                  2
575
6
594
2
613
2
632
2
651
2
670
2
689
                                                                                                                                                                                                                                                                                                                                                                  5
582
2
601
2
620
2
639
2
658
4
677
2
696
                                 17
6
36
2
55
4
74
4
93
5
112
6
131
5
                                                                                                                                                                                                                                                 610
2
629
2
648
2
667
                                                                                                                                                                                                                                                             16 7 7 35 4 4 54 4 54 4 55 4 4 1300 2 2 1499 2 2 225 4 2 2 263 3 2 2 282 2
              4
40
6
59
4
78
2
97
2
                                                                                                                                                                                                                                        4
628
2
647
2
666
                                                                                                                                                                                                                                                                                                                                                      7
657
2
676
2
695
5
714
4
733
2
752
2
771
6
790
5
809
828
                                                                                                                                                                                                                                        685
                                                                                                                                                                                                                                                   686
                                                                                                                                                                                                                                                  2
705
2
724
5
743
2
762
2
781
4
800
2
819
                                                                                                                                                                                                                                                                                                                                                                  715
4
734
4
753
4
772
               4
135
                                                                                                                                                                                                                                                                                   746
2
765
4
784
2
803
6
                                                                                                                                                                                                                                        169
4
188
2
207
2
226
             2
154
6
173
2
192
4
211
2
230
2
                                                                                                                                                                                                                                                                                                                                                                  7
791
6
810
2
829
                                                                                                                                                                                                                                                                                                                              245
245
264
                                                                                                                                                                                                                                                 838
6857
46876
2895
6914
2933
4952
2971
2990
                                                                                                                                                                                                                                                                                  4
841
2
860
2
879
4
898
4
917
4
936
4
955
2
974
2
                                                                                                                                                                                                                                                                                               2
842
2
861
6
880
6
899
4
918
4
937
4
956
2
975
2
                                                                                                                                                                                                                                                                                                                                                                                                              4
852
2
871
4
890
6
909
4
928
4
947
2
966
4
985
                                                                                                                                                                         282 283

2 4

301 302

4 2

320 321

4 4

339 340

6 2

358 359

2 2

377 378

4 2

396 397

2 5

415 416

5 5
              2
287
4
306
2
325
4
344
2
363
2
382
4
                                       Within cluster sum of squares by cluster:

[1] 330867.7 108090.8 367269.3 147020.0 301721.7 206162.7 340030.8

(between_SS / total_SS = 92.2 %)
                                       Available components:
                                       [1] "cluster"
[7] "size"
                                                                                                                                                                          "totss"
                                                                                                                    "centers"
                                                                                                                                                                                                                                     "withinss"
                                                                                                                                                                                                                                                                                             "tot.withinss" "betweenss"
SVM:
                    # I decided to use the Grid Search here to try different values of C
                   grid \leftarrow expand.grid(C = 10^seq(-5, 2, 0.5))
                                   Fit the Model
                   svm_grid <- train(type ~., data = wines, method = "svmLinear",
                                                                                                                          trControl = train_control, tuneGrid = grid)
                    # View grid search result
                   svm grid
                                                                                       Support Vector Machines with Linear Kernel
                                                                                       6497 samples
                                                                                             12 predictor
2 classes: 'red', 'white'
                                                                                      No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 5847, 5847, 5847, 5848, 5847, 5847, ...
Resampling results across tuning parameters:
                                                                                                                                                Accuracy
0.7538866
0.7541943
                                                                                               1.000000e-05
3.162278e-05
                                                                                                                                                                                          0.000000000
0.001878654
                                                                                                                                                 0.9302726
0.9839943
                                                                                                                                                                                          0.792017114
0.956278082
                                                                                               1.000000e-04
                                                                                                3.162278e-04
                                                                                               1.000000e-03
                                                                                                                                                 0.9906118
                                                                                                                                                                                           0.974623044
                                                                                              3.162278e-03
1.000000e-02
3.162278e-02
                                                                                                                                                  0.9915354
0.9926128
                                                                                                                                                                                           0.977177217
                                                                                                                                                  0.9938435
                                                                                                                                                                                            0.983410595
                                                                                              1.000000e-01
3.162278e-01
                                                                                                                                                  0.9946132
0.9947671
```

0.985887888

0.987123844

0.986706680

Accuracy was used to select the optimal model using the largest value. The final value used for the model was  $C\,=\,1.$ 

0.9950750 0.986706680 0.9950750 0.986706680

0.9952289

0.9950750

**Decision Trees:** 

1.000000e+00 3.162278e+00

1.000000e+01

3.162278e+01 1.000000e+02

```
# Evaluation Method
train_control = trainControl(method = "cv", number = 10)
# Fit the Model
tree1 <- train(type ~., data = wines, method = "rpart", trControl = train_control)
# Evaluate the Fit
tree1</pre>
```

```
CART

6497 samples
12 predictor
2 classes: 'red', 'white'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 5847, 5847, 5847, 5848, 5847, ...
Resampling results across tuning parameters:

cp Accuracy Kappa
0.06253909 0.9448994 0.8427741
0.06754221 0.9344300 0.8125794
0.70043777 0.8370148 0.3857512

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.06253909.
```

Accuracy seems to be comparable in SVM and KNN, although not decision trees. I think the dataset may be too complex/large for a decision tree to handle. However, SVM and KNN seem to perform better. Although, due to the non-linear nature of this dataset, probably a KNN solution may be the best.

e. Use the same already computed PCA again to show a scatter plot of the data and to visualize the labels for kNN, decision tree and SVM. Note that you do not need to recreate the PCA projection, you have already done this in 1b. Here, you just make a new visualization for each classifier using its labels for color (same points but change the color). Map the color results to the classifier, that is use the "predict" function to predict the class of your data, add it to your data frame and use it as a color. This is done for KNN in the tutorial, it should be similar for the others. Consider and explain the differences in how these classifiers performed.

#### **Using PCA:**

```
# Plot and color the labels based on Wine type red (or) white
ggplot(data = rotated_data, aes(x = PC1, y = PC2, col = Color)) + geom_point(alpha = 0.3)
```



#### **Using KNN:**





PCA seemed to depict the clusters into two uneven clusters, although we are aware that there is far more white wine samples than there is red wine in the dataset. The KNN clustering method provided an interesting distribution, although I prefer PCA as it seems to make more sense with the predicting of the red (or) white wine type. I think trying a different K value, perhaps smaller, may provide us with the better results. For the sake of testing it, I will try k=2 below, which seems to cluster the data more realistically:

```
fit2 <- kmeans(dummies, centers = 2, nstart = 25)
# Assign clusters as a new column
rotated data$Clusters = as.factor(fit2$cluster)
# Plot and color by the labels
ggplot(data = rotated_data, aes(x = PC1, y = PC2, col = Clusters)) + geom_point()
        150
        100
                                                                         Clusters
      PC2
                                                                         • 1
                                                                         • 2
         -50
              -100
                                    100
                                               200
                                                          300
                                       PC1
```

#### PROBLEM - 2

In this question we will use the Sacramento data, which covers available housing in the region of that city. The variables include numerical information about the size of the housing and its price, as well as categorical information like zip code (there are a large but limited number in the area), and the type of unit (condo vs house (coded as residential))

```
'``{r}
data("Sacramento")
# Remove the Zipcode, and lon for simplicity
cpsacramento <- Sacramento %>% select(-c("latitude", "longitude", "zip"))
'``
```

a. Load the data from the tidyverse library with the data ("Sacramento") command and you should have a variable Sacramento. Because we have categoricals, convert them to dummy variables.

```
# Type is the largest variable to predict
dummy <- dummyVars(type ~., data = cpsacramento)
dummies <- as.data.frame(predict(dummy, newdata = cpsacramento))
head(dummies)</pre>
```



b. With kNN, because of the high dimensionality, which might be a good choice for the distance function?

It's hard to tell without actually trying the different metrics, although using Minkowski is a fairly common in high dimensional data.

c. Use kNN to classify this data with type as the label. Tune the choice of k plus the type of distance function. Report your results – what values for these parameters were tried, which were chosen, and how did they perform with accuracy?

```
# Move the Type back to the dataset
# Move the type back to the dataset
sacramento_dummies <- dummies
sacramento_dummies@type <- Sacramento@type
library(kknn)
library(kknn)  
# Setup a tuneGrid with the tuning parameters  
tuneGrid <- expand.grid(kmax = 3:7,  # Test a range of k values 3 to 7  
kernel = c("rectangular","cos"), # Regular and cosine-based distance funtions  
distance = 1:3)  # Powers of Minkowski 1 to 3
 * Italia and It the model with 10-1010 cross valid

* Standardization, and our specialized tune grid

kknn_fit <- train(type ~.,

data = sacramento_dummies,
                                           method = 'kknn',
trControl = ctrl,
preProcess = c('center', 'scale'),
tuneGrid = tuneGrid)
 # Printing trained model provides report
                               k-Nearest Neighbors
                               932 samples
                                    1 predictor
3 classes: 'Condo', 'Multi_Family', 'Residential'
                               Pre-processing: centered (41), scaled (41)
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 838, 839, 839, 838, 838, 840, ...
Resampling results across tuning parameters:
                                                                             distance Accuracy
1 0.9367516
2 0.9367631
                                    kmax kernel
                                                                                                                             Kappa
0.3884981
0.3763622
0.3763622
0.4495401
0.4298051
0.4205730
0.3884981
0.3763622
0.3763622
0.4619788
                                                 rectangular 1
rectangular 2
                                                                                                     0.9367631
0.93567631
0.9355756
0.9335256
0.9324500
0.9367516
0.9367631
0.9367631
0.9388907
0.9399660
                                                  rectangular 3
                                                 COS
                                                 cos
                                                                                                      0.9399889
                                                                                                                              0.4391495
0.3360441
                                                 rectangular 1
                                                                                                     0.9346011
                                                                                                     0.9346011
0.9303458
0.9303458
0.9388907
0.9356992
0.9378612
0.9346011
0.9303458
                                                 rectangular
rectangular
cos
                                                                                                                              0.2866676
                                                 cos
rectangular
                                                                                                                              0.2866676
                                                 rectangular
                                                 rectangular
                                                                                                     0.9303458
                                                                                                                              0.2866676
                                                 cos
                                                                                                      0.9367631
                                                                                                                              0.4273555
                                                                                                     0.9346240 0.3705842
0.9378612 0.3943742
0.9324620 0.3059469
0.9335716 0.2803458
0.9346354 0.2835647
0.9367631 0.4273555
0.9346240 0.3705842
0.9389482 0.4006952
                                                 rectangular 1
rectangular 2
rectangular 3
                                                 COS
                               Accuracy was used to select the optimal model using the largest value. The final values used for the model were kmax = 4, distance = 3 and kernel = cos.
```

Here we tried different Minkowski distances from 1 to 3, and tested regular and cosine distance functions. K-max of 6, with a distance of 2 (Euclidean), and a cosine based distance function were the results. The cosine's distance function kappa value generally performed better, although accuracy was comparable on both.

#### PROBLEM - 3

In this problem we will continue with the wine quality data from Problem 1, but this time we will use clustering. Do not forget to remove the type variable before clustering because that would be cheating by using the label to perform clustering.

```
# Copy wines dataset and remove type cpwines <- wines cpwines <- cpwines %>% select(-c("type"))
```

a. Use k-means to cluster the data. Show your usage of silhouette and the elbow method to pick the best number of clusters. Make sure it is using multiple restarts.

```
df <- cpwines
# Set seed
set.seed(123)
# Center scale allows us to standardize the data
preproc <- preProcess(df, method = c("center", "scale"))
# We have to call predict to fit our data based on preprocessing
predictors <- predict(preproc, df)
Find the knee
fviz nbclust(predictors, kmeans, method = "wss")
        Optimal number of clusters
   80000
   70000
 Total Within Sum of Square
   60000
   50000
   40000
                 2
                                    5
                                          6
                                                      8
                                                                  10
                                Number of clusters k
   fviz nbclust(predictors, kmeans, method = "silhouette")
```



The silhouette method suggests a k = 4, and the elbow method also suggests a k = 4 may be reasonable.

```
# Fit the Data
  fit <- kmeans(predictors, centers = 4, nstart = 25)
  # Display the k means object information
K-means clustering with 4 clusters of sizes 661, 1935, 1066, 2835
   fixed.acidity volatile.acidity citric.acid residual.sugar chlorides free.sulfur.dioxide

1.95495218 0.4048784 1.02423958 -0.5697395 1.2673641 -0.89472554

-0.19278454 -0.3500900 0.24718059 1.1555186 -0.1081800 0.82522737

0.05693398 1.5882171 -1.20795561 -0.6076496 0.6266271 -0.76925628
                                                                                          1.1525186 -0.1081800
-0.6076496 0.6266271
-0.4253161 -0.4572783
         -0.34563560
                                        -0.4526420 0.04668919
                                                                                                                                                 -0.06538772
   -0.33263500 pH

total.sulfur.dioxide density pH

-1.24231768 0.9050474 -0.11205327

0.95020983 0.7315214 -0.38723328

-1.03454506 0.4579506 0.88616595

0.03010265 -0.8825064 -0.04277873
                                                                                   -0.425324 -0.4371265 -0.4371265 -0.4251265 -0.425126 -0.23647183 -0.2693766 -0.80429691 -0.29268305 -0.3628512 -0.29754458 -0.57836111 -0.2700050 0.64611743 0.40873607
Within cluster sum of squares by cluster:
[1] 8421.783 13176.504 7011.810 17841.974
(between_SS / total_SS = 40.4 %)
Available components:
[1] "cluster"
[7] "size"
                                  "centers"
"iter"
                                                                                          "withinss"
                                                                                                                     "tot.withinss" "betweenss'
```

b. Use hierarchical agglomerative clustering (HAC) to cluster the data. Try at least 2 distance functions and at least 2 linkage functions (cluster distance functions), for a total of 4 parameter combinations. For each parameter combination, perform the clustering.

#### **Euclidean and complete linkage:**

```
dist_mat <- dist(predictors, method = 'euclidean')
# Determine assembly/agglomeration method and run hclust
hfit1 <- hclust(dist_mat, method = 'complete')
hfit1

Call:
    hclust(d = dist_mat, method = "complete")

Cluster method : complete
    Distance : euclidean
    Number of objects: 6497</pre>
```

#### **Euclidean and average linkage:**

```
dist_mat <- dist(predictors, method = 'euclidean')
# Determine assembly/agglomeration method and run hclust
hfit2 <- hclust(dist_mat, method = 'average')
hfit2

Call:
    hclust(d = dist_mat, method = "average")

Cluster method : average
    Distance : euclidean
    Number of objects: 6497</pre>
```

#### Manhattan and complete linkage:

```
dist_mat <- dist(predictors, method = 'manhattan')
# Determine assembly/agglomeration method and run hclust (average uses mean)
hfit3 <- hclust(dist_mat, method = 'complete')
hfit3

Call:
    hclust(d = dist_mat, method = "complete")

Cluster method : complete
    Distance : manhattan
    Number of objects: 6497</pre>
```

#### Manhattan and average linkage:

```
dist_mat <- dist(predictors, method = 'manhattan')
# Determine assembly/agglomeration method and run hclust (average uses mean)
hfit4 <- hclust(dist_mat, method = 'average')
hfit4

Call:
    hclust(d = dist_mat, method = "average")

Cluster method : average
    Distance : manhattan
    Number of objects: 6497

# Build the new model
    h1 <- cutree(hfit1, k=4)
    h2 <- cutree(hfit2, k=4)
    h3 <- cutree(hfit3, k=4)
    h4 <- cutree(hfit4, k=4)</pre>
```

### c. Compare the k-means and HAC clusterings by creating a crosstabulation between their labels.

```
#Redefining the fit (I think I missed it previously)
   fit <- kmeans(predictors, centers = 4, nstart = 25)
   #Create a dataframe for the results
   result1 <- data.frame(WineType = wines$type, HAC1 = h1, Kmeans = fit$cluster)
   result2 <- data.frame (WineType = wines$type, HAC2 = h2, Kmeans = fit$cluster) result3 <- data.frame(WineType = wines$type, HAC3 = h3, Kmeans = fit$cluster)
   result4 <- data.frame(WineType = wines$type, HAC4 = h4, Kmeans = fit$cluster)
   #Crosstab for HAC
   result1 %>% group_by(HAC1) %>% select(HAC1, WineType) %>% table()
                                WineType
                            HAC1 red white
                               1 1597 4896
                                     2
                                             0
                               3
                                     0
                                             1
                                4
                                     0
                                             1
result2 %>% group_by(HAC2) %>% select(HAC2, WineType) %>% table()
                                 WineType
                            HAC2 red white
                                1 1575 4895
                                    24
                                3
                                     0
                                             1
                                      0
                                             1
result3 %>% group_by(HAC3) %>% select(HAC3, WineType) %>% table()
                                 WineType
                            HAC3 red white
                                1 1595 4889
                                            0
                                3
                                     0
                                             8
                                4
                                     0
                                             1
result4 %>% group_by(HAC4) %>% select(HAC4, WineType) %>% table()
                                 WineType
                            HAC4 red white
                                1 1576 4896
                                2
                                    23
                                             0
                                             1
                                3
                                      0
                                      0
 #Crosstab for K Means
 result <- data.frame(Type = wines$type, Kmeans = fit$cluster)
 result %>% group by (Kmeans) %>% select(Kmeans, Type) %>% table()
                                  Type
                           Kmeans red white
                                      3 1932
                                 2 609
                                           52
                                 3
                                   927
                                           139
                                     60 2775
```

d. For comparison – use PCA to visualize the data in a scatterplot. Create 3 separate plots: use the color of the points to show (1) the type label, (2) the kmeans cluster labels and (3) the HAC cluster labels.

#### PCA:

```
#Recreating the PCA scatter plot
#Create Dummies
dummy <- dummyVars(type ~ ., data = wines)
dummies <- as.data.frame(predict(dummy, newdata = wines))
set.seed(123)
#Calculate PCA
pca = prcomp(dummies)
#Save as data frame
rotated_data = as.data.frame(pca$x)
#Add original label 'type' as a reference
rotated_data$Color <- wines$type
#Plot and color the labels based on wine type red (or) white
ggplot(data = rotated_data, aes(x = PC1, y = PC2, col = Color)) + geom_point(alpha = 0.3)</pre>
```



#### H3:

```
rotated_data$Clusters = as.factor(h3)
# Plot and color by labels
ggplot(data = rotated_data, aes(x = PC1, y = PC2, col = Clusters)) + geom_point()
```



#### K-means:

```
rotated_data$Clusters = as.factor(fit$cluster)
# Plot and color by labels
ggplot(data = rotated data, aes(x = PC1, y = PC2, col = Clusters)) + geom point()
```



## e. Consider the results of C and D and explain the differences between the clustering results in terms of how the algorithms work.

K-means uses a pre-specified K value, while HAC doesn't. We can see that the clustering method seems to be less random in the K-means method. Since HAC is arranged more like a 'tree', it seemed to struggling with clustering the data. K-means divided the data into non-overlapping clusters, which provided a more reasonable look at the dataset. Regardless, I still find PCA to be more sensible visually in this

case, even though I don't think it performed as well as k-means did in this case as it didn't handle the complexity of the dataset as well.

#### PROBLEM – 4

Back to the Starwars data from a previous assignment! Remember that the variable that lists the actual names and the variables that are actually lists will be a problem, so remove them (name, films, vehicles, starships). Make sure to double check the types of the variables, i.e., that they are numerical or factors as you expect.

```
data("starwars")
#Copy Starwars
cpstarwars <- starwars
#Remove some columns
cpstarwars <- cpstarwars %>% select(-c("name", "vehicles", "starships", "films"))
#Remove NAs
cpstarwars <- na.omit(cpstarwars)
summary(cpstarwars)</pre>
```

```
height mass hair_color skin_color eye_color birth_year
Min.: 88 Min.: 20.00 Length:29 Length:29 Length:29 Min.: 8.00
1st Qu.:170 1st Qu.: 75.00 Class: character Class: character Class: character 1st Qu.: 31.00
Median: 180 Median: 79.00 Mode: character Mode: character Mode: character Median: 46.00
Mean: 178 Mean: 77.77
3rd Qu.:188 3rd Qu.: 83.00 3rd Qu.: 57.00
Max.: 228 Max.: 136.00 Max.: 238 Max.: 136.00
sex gender homeworld species
Length:29 Length:29 Length:29 Length:29
Class: character Class: character Class: character
Mode: character Mode: character Mode: character
Mode: character Mode: character Mode: character
```

a. Use hierarchical agglomerative clustering to cluster the Starwars data. This time we can leave the categorical variables in place, because we will use the gower metric from daisy in the cluster library to get the distances. Use average linkage. Determine the best number of clusters.

I had some trouble trying to run this without converting the categoricals to dummies, so I decided to proceed using the dummy variables.

```
library(cluster)
#Pass dataframe directly with mertic = gower
dist_mat <- daisy(dummies, metric = "gower")
#Center scale allows us to standardize the data
preproc <- predict(preproc, cpstarwars)
#Silhouette score comparison to find K
fviz_nbclust(predictors, FUN = hcut, method = "silhouette")</pre>
```



#### **Clusters:**

```
#Determine the assembly/agglomeration method and run hclust
hfit <- hclust(dist_mat, method = 'average')
#Build the new model
h2 <- cutree(hfit, k=2)
summary(h2)

Min. 1st Qu. Median Mean 3rd Qu. Max.</pre>
```

1 1

b. Produce the dendogram for (a). How might an anomaly show up in a dendogram? Do you see a Starwars character who does not seem to fit in easily? What is the advantage of considering anomalies this way as opposed to looking for unusual values relative to the mean and standard deviations, as we considered earlier in the course? Disadvantages?

1

1

```
hfit <- hclust(dist_mat, method = 'average')
plot(hfit)</pre>
```



dist\_mat hclust (\*, "average")

Own branch with no relationship to other members of the dataset. Based on this dataset, 21, 9, and 18 may have anomalous features. The advantages of this dendogram is the ability to view anomalies directly without reviewing the actual dataset in a tabulation. However, we're only able to view the anomalies here based on height, which may be lacking in regards to other features like eye color (or) mass.

c. Use dummy variables to make this data fully numeric and then use k-means to cluster. Choose the best number of clusters.







#### K=2 will be the distance we are using here,

```
#Fit the data

fit <- kmeans (predictors, centers = 2, nstart = 25)

#Display the kmeans object information

fit

K-means clustering with 2 clusters of sizes 9, 20

Cluster means:
    height mass hair colorauburn, white hair colorblack hair colorblond hair colorbrown hair colorbrown, greys 1, 6126686 0,6114774 - 0.1356953 -0.532706 -0.2674319 -0.297273 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.1356953 -0.13569
```

### d. Compare the HAC and k-means clusterings with a crosstabulation.

```
"``{r}

#Create a dataframe for results
result <- data.frame(Gender = cpstarwars$gender, HAC2 = h2, Kmeans = fit$cluster)
#Create a cross tab for HAC
result %>% group_by(HAC2) %>% select(HAC2, Gender) %>% table()
"``
```