[1]:	original variables.
	<pre>import Python libraries import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)</pre>
	<pre># import libraries for plotting import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline # ignore warnings import warnings warnings.filterwarnings('ignore')</pre>
	<pre>import os # Any results you write to the current directory are saved as output.</pre>
[3]:	<pre>Import dataset %%time file = ('Churn_Modelling.csv')</pre>
[4]:	<pre>df = pd.read_csv(file, encoding='latin-1') Wall time: 72.9 ms Check shape of dataset df.shape</pre>
t[4]:	(10000, 14) We can see that there are 32561 instances and 15 attributes in the data set. Preview dataset
[5]: t[5]:	df.head() RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited 1 15634602 Hargrave 619 France Female 42 2 0.00 1 1 1 1 101348.88 1
	1 2 15647311 Hill 608 Spain Female 41 1 83807.86 1 0 1 112542.58 0 2 3 15619304 Onio 502 France Female 42 8 159660.80 3 1 0 113931.57 1 3 4 15701354 Boni 699 France Female 39 1 0.00 2 0 0 93826.63 0 4 5 15737888 Mitchell 850 Spain Female 43 2 125510.82 1 1 1 79084.10 0
[6]:	<pre>View summary of dataframe df.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns): # Column Non-Null Count Dtype</class></pre>
	0 RowNumber 10000 non-null int64 1 CustomerId 10000 non-null int64 2 Surname 10000 non-null object 3 CreditScore 10000 non-null int64 4 Geography 10000 non-null object 5 Gender 10000 non-null object
	6 Age 10000 non-null int64 7 Tenure 10000 non-null int64 8 Balance 10000 non-null int64 9 NumOfProducts 10000 non-null int64 10 HasCrCard 10000 non-null int64 11 IsActiveMember 10000 non-null int64 12 EstimatedSalary 10000 non-null int64 13 Exited 10000 non-null int64
[7]: t[7]:	<pre>dtypes: float64(2), int64(9), object(3) memory usage: 1.1+ MB df.isnull().sum() RowNumber 0 CustomerId 0 Surname 0 CreditScore 0</pre>
	Geography Gender O Age Tenure Balance NumOfProducts HasCrCard O
[13]:	IsActiveMember 0 EstimatedSalary 0 Exited 0 dtype: int64 df.drop(columns=['Surname'], inplace=True) Now we can see that there are no missing values in the dataset.
[14]:	Setting feature vector and target variable X = df.drop(['Exited'], axis=1) y = df['Exited']
[15]: [15]:	RowNumber CustomerId CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary 0 1 15634602 619 France Female 42 2 0.00 1 1 1 101348.88 1 2 15647311 608 Spain Female 41 1 83807.86 1 0 1 112542.58
[10]:	2 3 15619304 502 France Female 42 8 159660.80 3 1 0 113931.57 3 4 15701354 699 France Female 39 1 0.00 2 0 0 93826.63 4 5 15737888 850 Spain Female 43 2 125510.82 1 1 1 79084.10 from sklearn.model_selection import train_test_split
[21]:	<pre>X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 0)</pre> <pre>Encode categorical variables</pre> from sklearn import preprocessing
[22]:	<pre>categorical = ['Geography', 'Gender'] for feature in categorical: le = preprocessing.LabelEncoder() X_train[feature] = le.fit_transform(X_train[feature]) X_test[feature] = le.transform(X_test[feature])</pre> X_train
[22]:	RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary 7681 7682 15633608 Black 641 0 1 33 2 146193.60 2 1 1 55796.83 9031 9032 15742323 Barese 541 0 1 39 7 0.00 2 1 0 19823.02 3691 3692 15760244 Ives 590 0 0 76 5 160979.68 1 0 1 13848.58
	202 203 15600974 He 516 2 1 50 5 0.00 1 0 1 146145.93 5625 5626 15663234 Bishop 508 0 0 60 7 143262.04 1 1 1 129562.74
	3264 3265 15574372 Hoolan 738 0 1 35 5 161274.05 2 1 0 181429.87 9845 9846 15664035 Parsons 590 2 0 38 9 0.00 2 1 1 1 148750.16 2732 2733 15592816 Udokamma 623 1 0 48 1 108076.33 1 1 0 0 118855.26 7000 rows × 13 columns
[23]: [28]: [29]:	<pre>X_train.drop(columns=['Surname'], inplace=True) X_test.drop(columns=['Surname'], inplace=True) from sklearn.preprocessing import StandardScaler scaler = StandardScaler()</pre>
[30]:	<pre>X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X.columns) X_test = pd.DataFrame(scaler.transform(X_test), columns = X.columns) X_train.head()</pre>
[30]:	RowNumber CustomerId CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary 0 0.927821 -0.811550 -0.097921 -0.892383 0.922958 -0.557598 -1.036351 1.132494 0.810394 0.641985 0.966835 -0.768624 1 1.394577 0.706821 -1.126120 -0.892383 0.922958 0.017259 0.697009 -1.199755 0.810394 0.641985 -1.034302 -1.393599 2 -0.451701 0.957115 -0.622303 -0.892383 -1.083473 3.562216 0.003665 1.368379 -0.929716 -1.557669 0.966835 -1.497393 3 -1.658005 -1.267334 -1.383170 1.520395 0.922958 1.071165 0.003665 -1.199755 -0.929716 -1.557669 0.966835 0.801015
[31]:	4 0.216970 -0.397778 -1.465426 -0.892383 -1.083473 2.029262 0.697009 1.085727 -0.929716 0.641985 0.966835 0.512914 Logistic Regression model with all features from sklearn.linear_model import LogisticRegression
	<pre>from sklearn.metrics import accuracy_score logreg = LogisticRegression() logreg.fit(X_train, y_train) y_pred = logreg.predict(X_test) print('Logistic Regression accuracy score with all the features: {0:0.4f}'. format(accuracy_score(y_test, y_pred)))</pre>
	Logistic Regression accuracy score with all the features: 0.4507 Logistic Regression with PCA Scikit-Learn's PCA class implements PCA algorithm using the code below. Before diving deep, I will explain another important concept called explained variance ratio.
	Explained Variance Ratio A very useful piece of information is the explained variance ratio of each principal component. It is available via the explained_variance_ratio_ variable. It indicates the proportion of dataset's variance that lies along the axis of each principal component. Now, let's get to the PCA implementation.
[32]:	Now, let's get to the PCA implementation.
[32]:	<pre>from sklearn.decomposition import PCA pca = PCA() X_train = pca.fit_transform(X_train) pca.explained_variance_ratio_ array([0.11087033, 0.09331212, 0.08651874, 0.08539552, 0.08454592,</pre>
[32]: [34]:	<pre>from sklearn.decomposition import PCA pca = PCA() X_train = pca.fit_transform(X_train) pca.explained_variance_ratio_</pre>
	<pre>from sklearn.decomposition import PCA pca = PCA() X_train = pca.fit_transform(X_train) pca.explained_variance_ratio_ array([0.11087033, 0.09331212, 0.08651874, 0.08539552, 0.08454592,</pre>
	<pre>from sklearn.decomposition import PCA pca = PCA() X_train = pca.fit_transform(X_train) pca.explained_variance_ratio. array([0.11087033, 0.09331212, 0.08651874, 0.08539552, 0.08454592,</pre>
	<pre>from sklearn.decomposition import PCA pca = PCA() X_train = pca.fit_transform(X_train) pca.explained_variance_ratio_ array([0.11087033, 0.09331212, 0.08651874, 0.08539552, 0.08454592,</pre>
	<pre>from sklearn.decomposition import PCA pca = PCA() X.train = poa.fit_transform(X train) pca.explained_variance_ratio_ array([0.11807033, 0.09331212, 0.08651874, 0.09539552, 0.08454592,</pre>
[34]:	from sklearn.decomposition import PCA pca = PCA() X train = pca.fit transform(X train) pca.explained_variance_ratio_ arroy([8.1168203. e.0803172). 0.00651874, 0.08650562, 0.08464892, 0.0836787, 0.0827877, 0.0827878, 0.0827878, 0.0897880, 0.08782818, 0.08062819, 0.08062819. LOgistic Regression with first l1 features X = of drop(['Exited', 'EstimatedSalary'], axis=1) y = of['Exited'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 0) categorical = ['Geography', 'Gender'] for feature in categorical:
[34]:	prom sklarn.decomposition import PCA pca = PCA() X_train = pca.fi_Ltransform(X_train) pca.explained variance ratio. urruy([0.118783, 0.08331212, 0.88651274, 0.88639852, 0.8865492, 0.08357877, 0.06774778, 0.06176223, 0.8865485, 0.88637866, 0.077423108, 0.06022451)) Logistic Regression with first 11 features X = df.drop(['Esited', 'EstimatedSalary'], axis=1) y = df['Esited'] X_train, X_test, y_train, y_test = train_test.split(X, y, test_size = 0.3, random_state = 0) categorical = ['Geography', 'Geoger'] for resture in categorical:
[34]:	from skleam.decomposition import PCA pos = PCA() X.train = pos - Note - Not
[34]:	from sxhoarn.decomposition import PCA pcx = PCA() ktrim hard or interest ratio ktrim hard or interest r
[34]:	From silvern decomposition import PEA (no. s. PEA) (no. s
[34]:	From allocars, occaroosation aspert RO. X. Fallow aspecials, transferricy, Frain; page 15, transferricy, Frain; page 15, transferricy, 10.00000000000000000000000000000000000
[34]:	From Nations, description and the protection of the Authority of the State of the S
[34]:	Comment To any and a state of the transformation of the state of the
[34]:	Transplant deconsciolation supers PSC **Intelligent plant (Extraction Contents) **Intelligent plant (Extraction C
[34]:	Transition of the content of the con
[34]:	From a finite distance (i.m. square 506, Seption 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[34]:	The special content conference in a content of the content is a content of the co
[34]:	The content purpose protection around the content of the content o
[34]:	The state and the state of the
[34]:	The state of the s
[34]:	por PRESENTATION OF THE PR
[34]:	power professional content of the Co
[34]:	The above and a contract of the contract of th
[34]:	The above Account on Systems (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
[34]:	The second content and the second content of