

# معماری و سازمان کامپیوتر

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر امیر خورسندی

بهار ۹۹

## زبان انتقال ثبات ها

#### ثبات

- تعدادی فلیپ فلاپ مرتبط به هم
  - ذخیره بیت های یک داده
    - سريع ترين حافظه
- همگام با مدارهای منطقی و محاسباتی



## انواع ثبات

... ،R2 ،R1 :General Purpose •

... ،MAR ،PC :Special Purpose •

• معماری بهتر است که تعداد ثبات Special Purpose آن کمتر باشد.

## بلوک دیاگرام ثبات



#### ريزعمليات

• یک عملکرد پایه که بر روی داده درون ثبات صورت می گیرد.

- بارگذاری
  - افزایش
  - شیفت
- پاک کردن
  - جمع
    - •••

• یک ریز عملیات یک یا چند کار را در یک پالس ساعت انجام می دهد.

## تعریف کامپیوتر بر اساس ثبات ها

- تعداد ثبات ها و نحوه ارتباط آن ها
- مجموعه ریزعملیات های ممکن بر روی ثبات ها
  - منطق كنترل توالى ريزعمليات ها

۷ امیر خورسندی

#### **زبان** RTL

- زبان نمادین برای تشریح کار ثبات ها
  - تبدیل ها
  - انتقال ها
- استفاده از حروف بزرگ و شماره برای نمایش ثبات ها
  - MAR IR PC R2 R1 •

## انواع ريزعمليات

- انتقال اطلاعات

  - شیفت منطقی ریاضی

امیر خورسندی

#### انتقال ثبات

• انتقال و بارگذاری یک کپی از اطلاعات ثبات مبدا به ثبات مقصد

• نمایش با استفاده از عملگر ←

R2 ← R1

## انتقال جزيي

• انجام یک ریزعملیات بر روی بخشی از ثبات

• نمایش با استفاده از عملگر ()

 $R2(15-8) \leftarrow R1(7-0)$ 

## انتقال شرطي

• انجام انتقال در صورت تحقق یک شرط مشخص

• نمایش با استفاده از عملگر :

P: R2 ← R1

#### انتقال شرطی (ادامه)

• شرط می تواند حاصل یک عملیات ترکیبی (بیت Carry) یا یک برش زمانی مشخص (T2) باشد.



#### انتقال شرطی (ادامه)

• شرط می تواند حاصل یک عملیات ترکیبی (بیت Carry) یا یک برش زمانی مشخص (T2) باشد.



## عملیات همزمان

• انجام چند انتقال به صورت همزمان

• نمایش با استفاده از عملگر ،

P: R2  $\leftarrow$  R1, R3  $\leftarrow$  R2

• مقصد عمليات همزمان حتماً بايد متفاوت باشد.

## انتقال بر روی گذرگاه

- برای انتقال بین ثبات ها نیاز به تعداد قابل توجهی سیم هست.
  - به جای این کار از گذرگاه استفاده می شود.
  - برای تعیین مبدا و مقصد نیاز به منطق کنترلی هست.
    - انتقال بر روی گذرگاه با استفاده از مالتی پلکسر



## انتقال بر روی گذرگاه

- برای انتقال بین ثبات ها نیاز به تعداد قابل توجهی سیم هست.
  - به جای این کار از گذرگاه استفاده می شود.
  - برای تعیین مبدا و مقصد نیاز به منطق کنترلی هست.
    - انتقال بر روی گذرگاه با استفاده از مالتی پلکسر
    - انتقال بر روی گذرگاه با استفاده از بافر سه حالته



#### انتقال بر روی گذرگاه (ادامه)

• دریافت داده از گذرگاه با استفاده از دیکدر



۱۸

## انتقال بر روی گذرگاه (ادامه)

• نمایش به صورت صریح

 $R2 \leftarrow Bus$ ,  $Bus \leftarrow R1$ 

• نمایش به صور<mark>ت ضمنی</mark>

R2 ← R1

#### انتقال حافظه

- از دید RTL حافظه مجموعه ای از ثبات ها به همراه یک مدار کنترلی است.
  - این ثبات ها با آدرس های متوالی از صفر تا k-1 از هم متمایز می شوند.
    - نیاز به log(k) خط آدرس در مدار کنترلی هست.



۲۰ امیر خورسندی

## انتقال حافظه (ادامه)

• خواندن از حافظه

 $R1 \leftarrow M[MAR]$ 

• نوشتن در حافظه

 $M[MAR] \leftarrow R2$ 

## ريزعمليات شيفت

- Shift (به سمت چپ و راست)
  - منطقی
  - رياضي
- Rotate (به سمت چپ و راست)
  - بدون بیت نقلی
  - به همراه بیت نقلی

long television

## ريزعمليات منطقي

And, Or, Xor, Not •



| S <sub>1</sub> | S <sub>0</sub> | Output |
|----------------|----------------|--------|
| 0              | 0              | АЛВ    |
| 0              | 1              | AVB    |
| 1              | 0              | А⊕В    |
| 1              | 1              | A'     |

## ريزعمليات رياضي

• جمع

$$R_3 \leftarrow R_2 + R_1$$

• تفریق

$$R_3 \leftarrow R_2 - R_1$$

$$R_3 \leftarrow R_2 + \overline{R_1} + 1$$

• ضرب و تقسیم؟

## ریزعملیات ریاضی (ادامه)



| S <sub>1</sub> | S <sub>0</sub> | C <sub>in</sub> | Output |
|----------------|----------------|-----------------|--------|
| 0              | 0              | 0               | A+B    |
| 0              | 0              | 1               | A+B+1  |
| 0              | 1              | 0               | A+B'   |
| 0              | 1              | 1               | A+B'+1 |
| 1              | 0              | 0               | Α      |
| 1              | 0              | 1               | A+1    |
| 1              | 1              | 0               | A-1    |
| 1              | 1              | 1               | Α      |

## كار با 0/١

• مشابه حافظه (Memory Mapped)

• دستورات اختصاصی (I/O Mapped)

امير خورسندي امير خورسندي

## واحد محاسبه و منطق

• تنها با استفاده از ریزعملیات شیفت، Not ،And و جمع می توان هر محاسبه دیگری را انجام داد.

