SAME RETURNS, LOWER RISK

How a High-Dividend Strategy Matched the S&P 500 with 41% Less Volatility

Faisal Al-Tuwaijri
Data Analytics Expert

THE INVESTMENT CHALLENGE

The Problem:

Can we achieve market-level returns while experiencing less volatility?

The Approach:

Backtesting a high-dividend, low-volatility strategy

Backtesting Explained:

Applying a strategy to historical data to see how it would have performed

The Goal:

Find the optimal parameters that maximize risk-adjusted returns

STRATEGY OVERVIEW

What:

A systematic approach to select high-dividend, low-volatility stocks

Why High Dividends:

Companies with stable cash flows that can better withstand market swings

Why Low Volatility:

To avoid "dividend traps" - stocks with high yields due to falling prices

Investment Universe & Benchmark:

S&P 500 index (representing the broader US stock market)

THE STRATEGY FRAMEWORK

Start with the Stock Universe (S&P500) in 2015 to Avoid Look-ahead Bias

Filter for High Dividend Yield (e.g. 4%) Filter for Low 6-Month Volatility to Avoid Yield Traps (e.g. 30th Percentile)

Collect
Dividends
Automatically
& Update
Portfolio's
Value

Rebalance
Quarterly
(repeat
previous steps
to update the
portfolio)

Create an
Equal-Weight
Portfolio

Repeat for 10
Years &
Monitor
Performance
vs.
\$&P500

Optimize the
Sharpe Ratio
by varying
Dividend and
Voltaility
Thresholds

Simulate the Strategy with the Optimized Parameters

QUARTER EXAMPLE (2016Q3)

- Liquidate the portfolio on 2016-09-30, so the Total Cash = Dividends in Last Quarter + Cash
- Calculate Dividend Yields for all Stocks in the S&P500 by Dividing Trailing 12-Month Dividends by Date's Price, then Filter for a Yield Threshold (e.g. >=4%).

 Result: 43 Stocks
- Calculate Trailing 6 Month Volatility for the 43 Stocks, then Filter for a Volatility Threshold (e.g. bottom 30%). Result: 13 Stocks
- Buy the 13 Stocks using the Total Cash, each stock would be allocated 1/13 of the Total Cash

5 Repeat the steps 1-4 on 2016-12-31 (Next Quarter)

FINDING THE OPTIMAL PARAMETERS

Yield/Volatilty Thresholds	10%	20%	30%	40%	50%
2%	0.67	0.7	0.73	0.72	0.73
3%	0.61	0.65	0.71	0.72	0.74
4%	0.66	0.70	0.77	0.75	0.75
5%	0.63	0.72	0.76	0.73	0.72
6%	0.36	0.41	0.6	0.62	0.66

Best Sharpe ratio (0.77) achieved with 4% yield threshold and 30% volatility percentile

Sharpe Ratio measures risk-adjusted returns, i.e., excess return (above the risk-free rate) per unit of volatility

Backtest Results (2015-2024)

The strategy matched S&P500 returns while experiencing significantly less volatility

PERFORMANCE METRICS

Metric	Optimal Portfolio	S&P500	
Total Return	131.17%	131.67%	
Annualized Return	9.4%	9.4%	
Volatility	9.5%	18.0%	
Maximum Drawdown (Both at COVID)	-25.2%	-34.0%	

Nearly identical returns with substantially lower risk

MOST SELECTED STOCKS

Out of 102 unique stocks selected over the decade

KEY INSIGHTS & LIMITATIONS

- Matched market returns with significantly reduced volatility
- Volatility thresholds were introduced to avoid dividend traps, since a sharp price movement will dramatically affect a stock's dividend yield
- Used S&P500 2015 constituents to avoid look-ahead bias
- Simplified approach requiring only quarterly attention
- Sector concentration thresholds weren't introduced
- Transaction costs were neglected (Rebalancing each quarter might affect the performance)

Faisal Al-Tuwaijri
Data Analytics Expert