

REALTIME DIGITAL SIGNATURES FOR NAMED DATA NETWORKING

Charalampos Katsis

ckatsis@purdue.edu

Ankush Singla

asingla@purdue.edu

Elisa Bertino

bertino@purdue.edu

Named Data Networking

Data authenticity in NDN

- Merely for integrity protection
- Some supported schemes:
 - Digest SHA-256
 - SHA-256 with RSA
 - SHA-256 with ECDSA
 - HMAC SHA-256
- Integrity and provenance protection

- Partially supported in NDN-CXX.
- Short-lived symmetric keys.
 - Memory-based TPM.

Named Data Networking

What is the problem with the current signature schemes??

- Introduce significant computational overhead.
 - Latency in the communication.
 - Include costly mathematical operations.

- Unsuitable for time-critical applications, such as video conferencing, streaming etc.
 - Low latency requirement.

OUR GOAL

Provide secure and cost-effective authentication for NDN packets.

STRUCTURE-FREE AND COMPACT REAL-TIME AUTHENTICATION (SCRA)

A highly-parallelizable offline-online signature scheme

SCRA

Divide the work into offline and online phases.

- Do most of the heavy lifting in the offline phase.
 - Calculate signature for all possibilities.
 - Store these signatures in a table.
- Do efficient operations in the online phase.
 - Use this pre-computed table to calculate the actual signature.
- SCRA-C-RSA instantiation.

SCRA – OFFLINE PHASE

We choose the parameters L and d such that:

Number of bits per chunk

Number of chunks we divide the message hash

SCRA – OFFLINE PHASE

SCRA – ONLINE PHASE

SCRA – VERIFICATION PHASE

Real-time Application Optimizations

- Signing a bundle of k packets:
 - This reduces the signature size by a factor of k.
 - Costly exponentiation occur one every k packets.
- Probabilistic signing.
- Different values of the parameter L.
- Inherent parallelizability of SCRA.

Performance evaluation

Message authentication with 100-packet signature aggregation

	ECDSA- 256	RSA-3072	SCRA-C-RSA [L=32]	SCRA-C-RSA [L=16]
Public key size	91	422	422	422
Average signature size	71	384	5.82	5.82
Average signing time	0.059	1.49	0.22	0.11
Average verification time	0.10	0.063	0.040	0.02
End-to-end delay	0.35	1.85	0.46	0.30

Performance evaluation

Real-time conferencing (NDN-RTC)

	ECDSA-256	RSA-3072	SCRA-C-RSA [L=32]	SCRA-C-RSA [L=16]
Public key size	91	422	422	422
Signature size	71	384	384	384
Average signing time	0.13	3.17	0.50	0.26
Total packets signed	7665	7733	7637	7686
Average verification time	0.30	0.12	0.16	0.12
Total packets verified	1492	1485	1488	1489

REALTIME DIGITAL SIGNATURES FOR NAMED DATA NETWORKING

Charalampos Katsis

ckatsis@purdue.edu

Ankush Singla

asingla@purdue.edu

Elisa Bertino

bertino@purdue.edu

