CBЯТОЙ КПК #BlessRNG

Или как не сдохнуть на 1 семе из-за матана

Разработали

Тимофей Белоусов @imodre Никита Варламов @snitron Тимофей Цорин @thefattestowl

Заметки авторов

В данном конспекте названия всех задач имеют ссылку на своего автора в виде верхнего индекса:

- 1. @imodre
- 2. @snitron
- 3. @thefattestowl

По любым вопросам и предложениям/улучшениям обращаться в телеграмм к соответвующему автору, или создать Pull Request в Git-репозиторий конспекта (click).

Known Issues

В данном конспекте отсутвуют следующие теоремы:

- 1. Метод Ньютона
- 2. Теорема о разложении рациональной функции на простейшие дроби
- 3. Теорема о необходимом и достаточном условиях экстремума

Вы в любой момент можете добавить любую недостающую теорему, затехав её и отправив код (фотографии письменного текста запрещены) в телегу любому из указанных авторов, или создав Pull Request в Git-репозиторий конспекта (click). Ваше авторство также будет указано, с вашего разрешения.

Содержание

1	Пер	оиод 1	(Палеозойский)	7
	1.1	Важн	ые определения	7
		1.1.1	Предел последовательности $(\varepsilon - \delta \text{ определение})^1 \dots \dots \dots \dots$	7
		1.1.2	Метрика, метрическое пространство, подпространство 1	7
		1.1.3	Шар, замкнутый шар, окрестность точки в метрическом пространстве 1	7
		1.1.4	Внутренняя точка множества, открытое множество, внутренность 2	7
		1.1.5	Предельная точка множества ²	8
		1.1.6	Замкнутое множество, замыкание, граница ²	8
		1.1.7	Изолированная точка, граничная точка 2	8
		1.1.8	Верхняя, нижняя границы; супремум, инфимум ²	8
		1.1.9	Последовательность, стремящаяся к бесконечности 1	8
	1.2	Опред	деления	9
		1.2.1	Упорядоченная пара 1	9
		1.2.2	Декартово произведение ¹	9
		1.2.3	Окрестность точки, проколотая окрестность 1	9
		1.2.4	Предел последовательности(на языке окрестностей) 1	9
		1.2.5	Π оследовательность 1	9
		1.2.6	Образ и прообраз множества при отображении ²	9
		1.2.7	Инъекция, сюръекция, биекция ²	9
		1.2.8	Векторнозначная функция, её координатные функции 1	10
		1.2.9	График отображения 2	10
		1.2.10		10
		1.2.11		10
		1.2.12	Описание внутренности множества 2	10
			Описание замыкания множества в терминах пересечений 1	10
		1.2.14	Аксиомы вещественных чисел ¹	11
			1.2.14.1 Аксиомы поля	11
			1.2.14.2 Аксиомы порядка	11
		1.2.15	Аксиома Кантора, аксиома Архимеда ¹	12
			1.2.15.1 Аксиома Кантора	12
			1.2.15.2 Аксиома Архимеда	12
			Пополненное множество вещественных чисел, операции и порядок в нем 2	12
		1.2.17	Техническое описание супремума 1	12
			Линейное пространство ¹	12
			Норма, нормированное пространство 1	13
			Ограниченное множество в метрическом пространстве 1	13
			Скалярное произведение 1	
	1.3		ые теоремы	15
		1.3.1	Теорема о двух городовых 1	
		1.3.2	Теорема Кантора о стягивающихся отрезках ²	
		1.3.3	Теорема об арифметических свойствах предела последовательности в нормиров	
			пространстве и в \mathbb{R}^1	15
		1.3.4	Теорема об арифметических свойствах предела последовательности (в $\overline{\mathbb{R}}$).	
		_	Неопределённости 1	16
	1.4	Teoper	МЫ	18

		1.4.1		
		1.4.2	Единственность предела и ограниченность сходящейся последовательности ¹	18
			1.4.2.1 Единственность предела:	
			1.4.2.2 Ограниченность сходящейся последовательности	19
		1.4.3	Теорема о предельном переходе в неравенствах для последовательностей и	
			для функций ¹	19
		1.4.4	Бесконечно малая последовательность ¹	19
		1.4.5	Открытость открытого шара 2	20
		1.4.6	Теорема о свойствах открытых множеств ²	20
		1.4.7	Теорема о связи открытых и замкнутых множеств	_
		1.1.,	Свойства замкнутых множеств ²	20
			1.4.7.1 Теорема о связи открытых и замкнутых множеств	20
			1.4.7.2 Свойства замкнутых множеств	
		1.4.8	Аксиома Архимеда. Плотность множества рациональных чисел в \mathbb{R}^2	21
		1.4.0	1.4.8.1 Свойства замкнутых множеств	
			1.4.8.2 Плотность множества рациональных чисел в \mathbb{R}	
		1.4.9		
			Теорема о существовании супремума ²	
			Лемма(ы) о свойствах супремума ²	
				20
		1.4.12	Теорема о пределе монотонной последовательности	0.0
		1 4 10	$(Beйeрштрасс in da house)^2$	
			Определение числа e, соответствующий замечательный предел ²	
		1.4.14	Неравенство Коши-Буняковского в линейном пространстве, норма, порождённа	
			скалярным произведением 1	
			1.4.14.1 Неравенство Коши-Буняковского	
			1.4.14.2 Норма, порождённая скалярным произведением	
		1.4.15	Леммы о непрерывности скалярного произведения и покоординатной сходимост	И
			в \mathbb{R}^{n1}	
			1.4.15.1 Непрерывность скалярного произведения	
			$1.4.15.2$ Покоординатная сходимость в \mathbb{R}^n	25
		0	/n /r ບ ບ)	0.5
2			\	27
	2.1		ые определения	
		2.1.1	Определения предела отображения $(3 \text{ шт})^2$	
		2.1.2	Komпaктное множество ²	
		2.1.3	Непрерывное отображение $(4 \text{ определения})^1 \dots \dots$	
		2.1.4	о маленькое ²	
		2.1.6	Функция, дифференцируемая в точке 1	
		2.1.7	Производная 1	
	2.2	_	реления	
		2.2.1	Топологическое пространство, топология ²	
		2.2.2	Топологическое определение предела последовательности 2	
		2.2.3	Метризуемое топологическое пространство ²	
		2.2.4	Секвенциальная компактность 2	30
		2.2.5	Предел по множеству 2	30
		2.2.6	Односторонние пределы 1	
		2.2.7	Непрерывность слева ¹	30
		2.2.8	Разрыв, разрывы первого и второго рода 1	
		2.2.9	O большое 2	
		2.2.10	Асимптотически равные (сравнимые) функции ²	
		2.2.11	1 Асимптотическое разложение 2	

		Наклонная асимптота графика 1
		Замечательные пределы ³
	2.2.14	2.2.14.1 Первый замечательный предел 32
		2.2.14.1 Первый замечательный предел 32 2.2.14.2 Следствия 32
		2.2.14.2 Следствия
		2.2.14.4 Третий замечательный предел
		2.2.14.5 Четвертый замечательный предел
0.0	D	2.2.14.6 Пятый замечательный предел
2.3		ые теоремы
	2.3.1	Teopema о характеристике компактов в \mathbb{R}^{m1}
	2.3.2	Теорема о пределе монотонной функции 1
	2.3.3	Теорема о замене на эквивалентную при вычислении пределов.
	2.2.4	Таблица эквивалентных ²
	2.3.4	Теорема о топологическом определении непрерывности ²
	2.3.5	Теорема Вейерштрасса о непрерывном образе компакта. Следствия ² 37
	2.3.6	Теорема Больцано-Коши о промежуточном значении ¹
	2.3.7	Теорема о непрерывности монотонной функции. Следствие о множестве точек
		разрыва 1
	2.3.8	Теоремы Лагранжа и Коши. Следствия об оценке приращения и о пределе
		производной 2
2.4	Teoper	мы
	2.4.1	Теорема об открытых и замкнутых множествах в пространстве
		и в подпространстве 2
	2.4.2	Теорема о компактности в пространстве и в подпространстве 2 41
	2.4.3	Простейшие свойства компактных множеств 2
	2.4.4	Лемма о вложенных параллелепипедах 1
	2.4.5	Компактность замкнутого параллелепипеда в \mathbb{R}^{m1}
	2.4.6	Эквивалентность определений Гейне и Коши ²
	2.4.7	Единственность предела, локальная ограниченность отображения, имеющего
		предел, теорема о стабилизации знака 2
		2.4.7.1 Единственность предела
		2.4.7.2 Локальная ограниченность отображения, имеющего предел 44
		2.4.7.3 Теорема о стабилизации знака
	2.4.8	Арифметические свойства пределов отображений.
		Φ ормулировка для R с чертой 2
	2.4.9	Принцип выбора Больцано-Вейерштрасса ¹
	2.4.10	Сходимость в себе и её свойства ¹
		Критерий Коши для последовательностей и отображений ¹
		Свойства непрерывных отображений: арифметические, стабилизация знака,
		композиция ¹
		2.4.12.1 Арифметические
		2.4.12.2 Стабилизация знака
		2.4.12.3 Композиция
	2.4.13	Непрерывность композиции и соответствующая теорема для пределов ¹ 48
		2.4.13.1 Непрерывность композиции
		2.4.13.2 Предел композиции
	2 4 14	Теорема единственности асимптотического разложения ²
	2.4.14	Теорема о вписанном n -угольнике максимальной площади ²
	2.4.16	Лемма о связности отрезка 2
	2.4.17	$^{-1}$ Теорема о бутерброде 2
		Γ еорема о сохранении промежутка Γ

		2.4.18.1 Лемма	52
	2.4.19	1	53
	2.4.20	Описание линейно связных множеств в \mathbb{R}^2	53
			54
	2.4.22		
	2.1.22	2.4.22.1 Равносильность определений дифференцируемости	54
		2.4.22.2 Производная сумммы и разности	55
		2.4.22.3 Производная сумммы и разности	55
		2.4.22.4 Производная частного	55
		2.4.22.5 Производная композиции	56
		2.4.22.6 Производная композиции	56
	0.4.02		
		Теорема Ферма (с леммой) ²	56
	2.4.24	Теорема Ролля. Вещественность корней многочлена Лежандра ²	57
		2.4.24.1 Теорема Ролля	57
	2 4 25	i r	57
	2.4.25		
		2.4.25.1 Лемма	58
		2.4.25.2 Непрерывность синуса	58
		2.4.25.3 Первый замечательный предел	58
		2.4.25.4 Производная синуса	59
. TT	0	(T/ U U U)	00
3 Пеј 3.1		(Кайнозойский) ые определения	60 60
3.1		ые определения	
	3.1.1		60
	3.1.2	Разложения Тейлора основных элементарных функций ¹	60
	3.1.3	Выпуклая функция и касательная 1 3	60
	3.1.4	Теорема Дарбу. Следствия ³	60
		3.1.4.1 Теорема Дарбу	60
		3.1.4.2 Лемма о характеристике промежутков	61
		3.1.4.3 Следствие 1	61
		3.1.4.4 Следствие 2	61
3.2	•		62
	3.2.1	Классы функций $C^n([a,b])^1$	62
	3.2.2	Производная n -го порядка 1	62
	3.2.3	Многочлен Тейлора <i>п</i> -го порядка ¹	62
	3.2.4	Счётное множество 1	62
	3.2.5	Выпуклое множество в \mathbb{R}^{m1}	62
	3.2.6	Надграфик ¹	63
	3.2.7	Опорная прямая ¹	63
	3.2.8	Равномерная непрерывность ¹	63
3.3	Важн	ые теоремы	64
	3.3.1	Формула Тейлора с остатком в форме Пеано ²	64
	3.3.2	Формула Тейлора с остатком в форме Лагранжа ¹	64
			65
3.4	Teoper	МЫ	00
3.4	Teoper 3.4.1	мы. Следствие об оценке сходимости многочленов Тейлора к функции. Примеры ³	65
3.4	-		
3.4	-	Следствие об оценке сходимости многочленов Тейлора к функции. Примеры 3	65
3.4	-	Следствие об оценке сходимости многочленов Тейлора к функции. Примеры $3.4.1.1$ Лемма	$65 \\ 65$
3.4	-	Следствие об оценке сходимости многочленов Тейлора к функции. Примеры 3 $3.4.1.1$ Лемма	65 65 65
3.4	-	Следствие об оценке сходимости многочленов Тейлора к функции. Примеры ³ 3.4.1.1 Лемма	65 65 65 65 66
3.4	-	Следствие об оценке сходимости многочленов Тейлора к функции. Примеры ³ 3.4.1.1 Лемма	65 65 65 65 66
3.4	-	Следствие об оценке сходимости многочленов Тейлора к функции. Примеры ³ 3.4.1.1 Лемма	65 65 65 65 66

3.4.3	Континуальность множества бинарных последовательностей ³	67
3.4.4	Теорема о свойствах показательной функции ¹	68
3.4.5	Выражение произвольной показательной функции через экспоненту. Два	
	следствия ³	69
	3.4.5.1 Теорема о показательной функции	69
	3.4.5.2 Выражение произвольной показательной функции через экспоненту.	69
	3.4.5.3 Следствие 1	69
	3.4.5.4 Следствие 2	70
3.4.6	Показательная функция от произведения ³	
3.4.7		
3.4.8	- 0	71
3.4.9		72
3.4.10	Дифференциальные критерии выпуклости ³	72
3.4.11	0	
3.4.12	Лемма о трех хордах ³	73
	Теорема Кантора о равномерной непрерывности ³	
	Иррациональность числа $e^{2 \cdot 3}$	
	Теорема Брауэра ³	
	3.4.15.1 Игра Гекс	
	3.4.15.2 Доказательство теоремы Брауэра	

1 Период 1 (Палеозойский)

1.1 Важные определения

1.1.1 Предел последовательности $(\varepsilon - \delta)$ определение)

 $\exists a$ — предел последовательности $\{x_n\}_{n=1}^{\infty}$ $\forall \varepsilon > 0 \,\exists N \in \mathbb{N} : \forall n > N \quad |x_n - a| < \varepsilon$

Обозначается $\lim_{n\to\infty}x_n=a\ (n\to\infty$ можно опустить, т.к. а куда ещё ему стремиться в натуральных числах?)

1.1.2 Метрика, метрическое пространство, подпространство¹

Метрика — некоторая функция $(\rho: X \times X \to \mathbb{R})$, определяющая расстояние между элементами в метрическом пространстве.

Существуют некоторые аксиомы, которым подчиняется метрика:

- 1. $\rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\rho(x,y) = \rho(y,x)$
- 3. $\rho(x,z) \le \rho(x,y) + \rho(y,z)$

Метрическое пространство — пространство, в котором определена метрика (между любыми двумя элементами можно определить расстояние). Обозначается как пара (X, ρ)

Подпространство метрического пространства — метрическое пространство, в котором множество является подмножеством множества исходного пространства, а метрика - сужение исходной метрики на новое множество:

$$(Y, \rho|_{Y\times Y})$$
, где (X, ρ) - исходное пространство, а $Y\subset X$

1.1.3 Шар, замкнутый шар, окрестность точки в метрическом пространстве 1

Открытый шар - набор всех точек x в метрическом пространстве (X, ρ) , для которых верно $\rho(x, x_0) < r$, где r - радиус шара, x_0 - центр шара (Обозн. $B(x_0, r)$).

Замкнутый шар - то же самое, но вместо < стоит ≤

1.1.4 Внутренняя точка множества, открытое множество, внутренность²

 (X,ρ) — метрическое пространство, $D\subset X, a\in X$

Если $\exists \ V_a \subset D \Rightarrow a - внутренняя точка множества <math>D$

Если $\forall a \in D \ a$ — внутренняя, $\Rightarrow D - om \kappa p \omega moe$ множество (в X)

Внутренностью множества называется Int $D = \{x \mid x \in D \& x -$ внутренняя $\}$

Другими словами, *внутренностью* D является:

1. объединение всех открытых подмножеств D,

2. максимальное по включению открытое подмножество D.

Примечания:

- 1. $\mathrm{Int}D$ открытое множество
- 2. Если D открытое $\Leftrightarrow D = \operatorname{Int} D$

1.1.5 Предельная точка множества²

Если $\forall \ r \ \dot{V}_a(r) \cap D \neq \varnothing$, то точка a называется npedenenoù точной множества

1.1.6 Замкнутое множество, замыкание, граница²

Если D содержит все свои npedenbhue точки, то такое множество называется замкнутым. (Примеры: X,\varnothing)

3амыкание D есть:

- 1. пересечение всех замкнутых множеств, содержащих D
- 2. минимальное по включению замкнутое множество, содержащее D

Граница D - множество граничных точек D

1.1.7 Изолированная точка, граничная точка²

Если $\exists \ r \in \mathbb{R} \ : \ a \in D \ V_a(r) \cap D = \varnothing$, то такая точка a называется uзолuрованной

Если $\forall \ r \in \mathbb{R} \ : \ a \in D \ \dot{V_a(r)}$ сожержит точки как из D, так и не из D, то такая точка называется граничной

1.1.8 Верхняя, нижняя границы; супремум, инфимум²

 $X \subset \mathbb{R}$

Тогда $\exists M \in \mathbb{R} : \forall x \in X \ x \leq M.\ M$ — верхняя граница.

 $\exists m \in \mathbb{R} : \forall x \in X \ x \geq m. \ m$ — нижняя граница.

1.1.9 Последовательность, стремящаяся к бесконечности¹

Называется бесконечно большой.

$$\forall \varepsilon > (<) 0 \,\exists N : \forall n > N \quad x_n > (<) \varepsilon \Leftrightarrow x_n \to +\infty(-\infty)$$

Аналогично, если стремится по модулю, то к беззнаковой бесконечности.

1.2 Определения

1.2.1 Упорядоченная пара¹

Семейство, в котором есть 2 элемента (с учётом порядка)

1.2.2 Декартово произведение¹

Множество упорядоченных пар. Например $X \times Y$ - все упорядоченные пары, где первый элемент $\in X$, а второй $\in Y$

1.2.3 Окрестность точки, проколотая окрестность ¹

Множество элементов, находящихся на "расстоянии" $< \varepsilon$. Проколотая окрестность **не** включает сам элемент. В контексте числовой прямой мы можем говорить, что $\{x: |x-x_0| < \varepsilon|\}$ проколотая окрестность.

Окрестности обозначаются $V_{x_0}(\varepsilon)$

1.2.4 Предел последовательности(на языке окрестностей)

 $\exists a$ — предел последовательности

 $\forall \varepsilon > 0 \,\exists N \in \mathbb{N} : \forall n > N \quad x_n \in V_a(\varepsilon)$

1.2.5 Последовательность¹

Это отображение $D \to Y$, где $D \in \mathbb{N}$

1.2.6 Образ и прообраз множества при отображении²

Отображение - тройка (X,Y,f), где X,Y - множества, а f - некое правило, по которому можно $x\in X$ сопоставить $y\in Y$. Записывается как $f:X\to Y$

Тогда *образом* множества $A \subset X$ при отображении является множество, такое что:

$$f(A) = \{ f(x) \mid x \in A \} \tag{1}$$

А прообразом при $B \subset Y$:

$$f^{-1}(B) = \{x : f(x) \in B \mid x \in X\}$$
 (2)

1.2.7 Инъекция, сюръекция, биекция²

Если $x_1, x_2 \in X; \ x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, то такое отображение называется *инъективным* (инъекция). Другими словами, f(x) = y имеет не более одного решения в X

Если f(X) = Y, то такое отображение называют *сюръективным (сюръекция)*. Другими словами, $\forall y \in Y \ \exists x \in X : f(x) = y$

Если у нас выполняется unzekuux + copzekuux, то такое отображение называют buekmuehum (buekuux). Другими словами, для $\forall y \in Y$ найдётся $x \in X$, причём этот x — единственный.

1.2.8 Векторнозначная функция, её координатные функции¹

"У векторнозначной функции векторные значения" — Капитан Очевидность

$$f: X \to \mathbb{R}^m(\mathbb{C}^m)$$

Также, можно f записать как (f_1, f_2, \dots, f_m) . f_i и есть координатная функция

1.2.9 График отображения²

Пусть дано отображение (X,Y,f). Тогда *графиком* Γ_f будет называться множество упорядоченных пар в декартовой системе координат, таких что:

$$\Gamma_f = \{(x, y) \in X \times Y : f(x) = y\}$$

1.2.10 Композиция отображений²

Пусть дано $f: X \to Y, g: Y \to Z$. Тогда композицией отображений $g \circ f$ будет называться такое отображение $h: X \to Z$, что:

$$\forall x \in X : h(x) = (g \circ f)(x) = g(f(x))$$

1.2.11 Сужение и продолжение отображений²

Пусть задано отображение $f:X\to Y$. Тогда сужением его на $A\subset X$ будет называться отображение $g=f|_A$, такое что:

$$g:A \to Y, \forall a \in A: g(x) = f(x)$$

Однако, теперь f для g будет являться npodonжением (g определена на подмножестве X)

1.2.12 Описание внутренности множества²

Достаточно подробно определено в

Внутренняя точка множества, открытое множество, внутренность²

1.2.13 Описание замыкания множества в терминах пересечений 1

 $\exists G$ — произвольное множество.

$$\overline{G} = \bigcap_{F \supset G, F \text{3amk}} F$$

Эквивалент определения "замыкание - пересечение всех замкнутых надмножеств"

1.2.14 Аксиомы вещественных чисел 1

 $B \mathbb{R}$ есть 2 операции:

1. Сложение: $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

2. Умножение: $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

1.2.14.1 Аксиомы поля

Аксиомы сложения

1. Ассоциативность: (a + b + c = a + (b + c))

2. Коммутативность: a+b=b+a

3. Нейтральный элемент: a + 0 = a

4. "Обратный элемент": $\exists a': a+a'=0$

Аксиомы умножения

1. Ассоциативность a(bc) = (ab)c

2. Коммутативность ab = ba

3. Нейтральный элемент: $1 \cdot a = a$

4. Обратный элемент: $\forall a \neq 0 \exists a' : a \cdot a' = 1$

Ещё их объединяет дистрибутивность: a(b+c) = ab + ac

1.2.14.2 Аксиомы порядка

Когда говорим про порядок, имеем в виду операцию сравнения

Аксиомы

1. Рефлексивность $a \leq a$

2. Транзитивность $a \leq b, b \leq c \Rightarrow a \leq c$

3. Антисимметричность $a \neq b \Rightarrow (a \leq b) \neq (b \leq a)$

4. Связь сложения и порядка $x \leq y \Rightarrow x+z \leq y+z$

5. Связь умножения и порядка $x \ge 0, y \ge 0 \Rightarrow x \cdot y \ge 0$

1.2.15 Аксиома Кантора, аксиома Архимеда¹

1.2.15.1 Аксиома Кантора

$$\exists [a_i, b_i]; [a_{i+1}, b_{i+1}] \subset [a_i, b_i]$$
$$\bigcap_{i=1}^{\infty} [a_i, b_i] \neq \emptyset$$

1.2.15.2 Аксиома Архимеда

$$\forall a, b \in \mathbb{R}, a > 0 \exists n \in \mathbb{N} : a \cdot n > b$$

1.2.16 Пополненное множество вещественных чисел, операции и порядок в нем²

 $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$. Казалось бы, а что ещё? Ну, немного есть.

+	$x \in \mathbb{R}$	$+\infty$	$-\infty$
$y \in \mathbb{R}$	x+y	$+\infty$	$-\infty$
$+\infty$	$+\infty$	$+\infty$	©
$-\infty$	$-\infty$	3	$-\infty$

	x > 0	0	$+\infty$	$-\infty$
y < 0	$\sim xy$	0	$-\infty$	$+\infty$
$+\infty$	$+\infty$	<u> </u>	$+\infty$	$-\infty$
$-\infty$	$-\infty$	©	$-\infty$	$+\infty$

— операция не определена, но в некоторых случаях нам на это пофиг (типа, площадь прямоугольника со сторонами ∞ и 0 равна 0)

Неопределённости: $\frac{0}{0}, \frac{\infty}{\infty}, 1^{\infty}, 0^{0}, \infty^{0}, 0 * \infty$

Причём: $-\infty < \infty$ (и ещё можно перечислить операции из таблички)

1.2.17 Техническое описание супремума¹

$$b = \sup X = \begin{cases} \exists M \in \mathbb{R} : \forall x \in X \ x \le M \\ \forall \varepsilon > 0 \ \exists x \in X : M - \varepsilon < x \end{cases}$$

$$a = \inf X = \begin{cases} \exists m \in \mathbb{R} : \forall x \in X \ x \ge m \\ \forall \varepsilon > 0 \ \exists x \in X : m - \varepsilon > x \end{cases}$$

1.2.18 Линейное пространство¹

Также его называют векторным пространством. Это пространство, в котором определено множество векторов X и поле K.

В этом пространстве определены 2 операции (умножение вектора на число (элемент поля) и сложение векторов):

1.
$$X \times K \to X$$

[—] операция не определена.

2.
$$X \times X \to X$$

и 7 аксиом:

 $\exists x, y, z \in X, \lambda, \gamma \in K$

1.
$$(x+y) + z = x + (y+z)$$

2.
$$x + y = y + x$$

3.
$$0 \cdot x = \theta$$

4.
$$\lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$$

5.
$$(\lambda + \gamma) \cdot x = \lambda \cdot x + \gamma \cdot x$$

6.
$$\lambda \cdot (\gamma \cdot x) = (\lambda \cdot x) \cdot \gamma$$

7.
$$1 \cdot x = x$$

1.2.19 Норма, нормированное пространство¹

Норма - функция, получающая по вектору его "длину". $p:X\to\mathbb{R}_+$, где X - линейное пространство. Часто обозначают как ||x|| Имеет 3 свойства:

1.
$$||x|| = 0 \Leftrightarrow x = \theta$$

$$2. ||\lambda x|| = \lambda ||x||$$

3.
$$||x+y|| \le ||x|| + ||y||$$

Есть ещё полунормы (они не подчиняются 1 свойству). У них есть ещё 4 свойства:

1.
$$p(\sum_{i=1}^{n} \lambda_i \cdot x_i) \leq \sum_{i=1}^{n} |\lambda_i| \cdot p(x_i)$$

2. $p(\theta) = 0$ (в обратную сторону не работает в отличие от нормы)

3.
$$p(-x) = p(x)$$

4.
$$p(x - y) \ge |p(x) - p(y)|$$

Нормированное пространство обозначается парой (X, p)

1.2.20 Ограниченное множество в метрическом пространстве¹

Ограниченное множество X в метрическом пространстве — множество, где $\exists x_0 \exists R \quad X \subset B(x_0,R)$

1.2.21 Скалярное произведение¹

Это отображение $X \times X \to \mathbb{R}$, где X — линейное пространство. Обозначается $(x,y).x,y \in X$ Существует 3 свойства, определяющие скалярное произведение:

- 1. (x,y) = (y,x)
- 2. $(\lambda \cdot x + \gamma \cdot y, z) = \lambda \cdot (x, z) + \gamma \cdot (y, z)$
- 3. $(x,x)=0 \Leftrightarrow x=\theta$, иначе >0

Свойства скалярного произведения:

- 1. (x, y + z) = (x, y) + (x, z)
- 2. $(\lambda \cdot x, y) = \lambda \cdot (x, y)$
- 3. $(\theta, y) = (x, \theta) = 0$
- 4. $|(x,y)|^2 \leq (x,x)(y,y)$ (Неравенство Коши-Буняковского в линейном пространстве, норма, порождённая скалярным произведением¹)
- 5. $\sqrt{(x,x)}$ норма, порождённая скалярным произведением.

1.3 Важные теоремы

1.3.1 Теорема о двух городовы x^1

Формулировка:

$$x_n \to a, z_n \to c, y_n \to b, x_n \le y_n \le z_n, a = c \Rightarrow b = a$$

Доказательство:

По теореме о предельном переходе в неравенствах для последовательностей, $a \le b \le c$.

Допустим $b \neq a$. Тогда $\exists N: \forall n > N \quad |x_n - a| \leq \frac{|a - b|}{2} \& |y_n - b| \leq \frac{|a - b|}{2} \& |z_n - a| \leq \frac{|a - b|}{2} \Rightarrow z_n$ и y_n не пересекаются. Но поскольку $z_n \geq y_n$, а a < b, у нас противоречие.

1.3.2 Теорема Кантора о стягивающихся отрезках²

Формулировка

Пусть дана система вложенных отрезков $[a_1,b_1]\supset [a_2,b_2]\supset \dots$

И при этом $(b_n - a_n) \rightarrow_{n \rightarrow \infty} 0$

Тогда $\exists ! c \in \bigcap_{n=1}^{\infty} [a_n, b_n]$ и при этом $a_n \to c$ и $b_n \to c$

Доказательство

ightarrow Для $\forall n \in \mathbb{N}$ $a_n \le c \le b_n$. Вычтем из обоих сторон $a_n : 0 \le c - a_n \le b_n - a_n$. Слева 0, справа б.м. последовательность, следовательно $c - a_n \to_{n \to \infty} \Rightarrow a_n \to c$. Для b_n аналогично.

Единственность c можно доказать:

- 1. по теореме о единственности предела
- 2. Пусть $c,d\in\bigcap_{n=1}^\infty [a_n,b_n]$. Тогда $\forall n\in\mathbb{N}: a_n\leq c\leq b_n$ и $a_n\leq d\leq b_n$. Вычтем их друг из друга, получим $a_n-b_n\leq c-d\leq b_n-a_n$. Предельно переходим и получаем $0\leq c-d\leq 0\Rightarrow c=d$

 \triangleleft

1.3.3 Теорема об арифметических свойствах предела последовательности в нормированном пространстве и в \mathbb{R}^1

Формулировка:

(X,p) - нормированное пространство $\exists x_n \to x_0, y_n \to y_0. x, y, x_0, y_0 \in X$ $\{\lambda \in \mathbb{R}\}_{n=1}^{\infty}, \lambda_n \to \lambda_0$

1.
$$x_n + y_n \to x_0 + y_0$$

2.
$$x_n - y_n \to x_0 - y_0$$

3.
$$\lambda_n \cdot x_n \to \lambda_0 \cdot x_0$$

4.
$$||x_n|| \to ||x_0||$$

5. Для
$$\mathbb{R}$$
: $\frac{x_n}{y_n} \to \frac{x_0}{y_0}$

Доказательство:

1.

$$\begin{split} &\exists N_1 \in \mathbb{N} : \forall n > N_1 \quad ||x_n - x_0|| < \frac{\varepsilon}{2} \\ &\exists N_2 \in \mathbb{N} : \forall n > N_2 \quad ||y_n - y_0|| < \frac{\varepsilon}{2} \\ &N := \max(N_1, N_2) \\ &||x_n + y_n - (x_0 + y_0)|| = \\ &= ||(x_n - x_0) + (y_n - y_0)|| \underset{\text{h-во треугольника}}{\leq} ||(x_n - x_0)|| + ||(y_n - y_0)|| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

- 2. Банально, сведём к первому+третьему $||x_n-y_n||=||x_m+(-1)y_n||\to x_0+(-1)y_n=x_0-y_n$
- 3. $||\lambda_n x_n \lambda_0 x_0|| = ||\lambda_n x_n + \lambda_n x_0 \lambda_n x_0 \lambda_0 x_0|| = ||\lambda_n (x_n x_0) + x_0 (\lambda_n \lambda_0)|| \to 0$
- 4. ||| x_n || || x_0 ||| \leq Треугольник для полунорм $||x_n x_0|| \to 0$

5.

$$\frac{x_n}{y_n} = x_n \frac{1}{y_n} \to x_0 \frac{1}{y_0} = \frac{x_0}{y_0}$$

Но это не работает, т.к. мы не знаем куда стремится $\frac{1}{y_n}$

 y_n огр., т.к. $y_0 \neq 0$, а y_n сходящаяся (по т. об ограниченности сх. посл.)

$$\left| \frac{1}{y_n} - \frac{1}{y_0} \right| = \left| \frac{y_0 - y_n}{y_n y_0} \right| = \left| \frac{1}{y_n} \frac{1}{y_0} \frac{y_0 - y_n}{1} \right| \to 0$$

1.3.4 Теорема об арифметических свойствах предела последовательности (в $\overline{\mathbb{R}}$). Неопределённости 1

Tеорема об арифметических свойствах предела последовательности (в $\overline{\mathbb{R}}$)

Формулировка

$$a, b \in \overline{\mathbb{R}}, x_n \to a, y_n \to b$$

1.
$$x_n \pm y_n \rightarrow a \pm b$$

2.
$$x_n \cdot y_n \to a \cdot b$$

3.
$$\frac{x_n}{y_n} \to \frac{a}{b}$$
 (Разумеется, $y_n, b \neq 0$)

Это работает только когда пределы не создают неопределённости. Они как раз представлены дальше

Доказательство \rhd Положим $x_n \to +\infty, y_n \to b$

1.
$$\forall \varepsilon>0 \exists N: \forall n>N \quad x_n>\varepsilon-b \Rightarrow x_n+y_n>\varepsilon$$
 (работает т.к. y_n огр. снизу)

2.
$$\forall \varepsilon>0 \exists N: \forall n>N \quad x_n>\frac{\varepsilon}{b}\Rightarrow x_n\cdot y_n>\varepsilon \ ({\rm paботает} \ {\rm т.к.} \ b\neq 0)$$

3. $\forall \varepsilon > 0 \exists N : \forall n > N \quad x_n > \varepsilon \cdot b \Rightarrow \frac{x_n}{y_n} > \varepsilon$

 \triangleleft

Heonpeделённости

 $\mathfrak A$ не понимаю, что тут это делает. Вроде как определение, без доказательств, но записано как теорема...

- 1. $\infty + -\infty$
- $2. \pm \infty \cdot 0$
- $3. \ \ \tfrac{\pm\infty}{\pm\infty}$
- 4. $\frac{0}{0}$

Теоремы 1.4

Законы де Моргана²

Напоминалка

$$\bigcup_{\alpha \in A} X_{\alpha} = \{ x : \exists \alpha \in A \ x \in X_a \}$$
 (3)

$$\bigcup_{\alpha \in A} X_{\alpha} = \{x : \exists \alpha \in A \ x \in X_{a}\}
\bigcap_{\alpha \in A} X_{\alpha} = \{x : \forall \alpha \in A \ x \in X_{a}\}$$
(4)

Формулировка:

 $\{X_{\alpha}\}_{\alpha\in A}$ - семейство множеств, Y - множество. Тогда:

$$Y \setminus \bigcup_{\alpha \in A} X_{\alpha} = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha}) \tag{5}$$

$$Y \setminus \bigcup_{\alpha \in A} X_{\alpha} = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha})$$

$$Y \setminus \bigcap_{\alpha \in A} X_{\alpha} = \bigcup_{\alpha \in A} (Y \setminus X_{\alpha})$$

$$Y \cap \bigcup_{\alpha \in A} X_{\alpha} = \bigcup_{\alpha \in A} (Y \cap X_{\alpha})$$

$$Y \cup \bigcap_{\alpha \in A} X_{\alpha} = \bigcap_{\alpha \in A} (Y \cup X_{\alpha})$$

$$(5)$$

$$(6)$$

$$Y \cap \bigcup_{\alpha \in A} X_{\alpha} = \bigcap_{\alpha \in A} (Y \cap X_{\alpha})$$

$$(8)$$

$$Y \cap \bigcup_{\alpha \in A} X_{\alpha} = \bigcup_{\alpha \in A} (Y \cap X_{\alpha}) \tag{7}$$

$$Y \cup \bigcap_{\alpha \in A} X_{\alpha} = \bigcap_{\alpha \in A} (Y \cup X_{\alpha}) \tag{8}$$

Доказательство:

- 1. \triangleright Рассмотрим закон (1). Обозначим левую часть за \mathbb{L} , а правую за \mathbb{R} . Тогда $x \in \mathbb{L}$ означает, что $x\in Y$ и $x
 otin \cup_{\alpha\in A}X_{\alpha}$. По определению **объединения**, это значит, что $x\in Y$ и $x
 otin X_{\alpha}$ для $\forall \alpha \in A$. Вуаля, по определению **пересечения** получается, что $x \in \mathbb{R}$. \triangleleft (2) доказывается аналогично.
- 2. \triangleright Рассмотрим закон (3). Обозначим левую часть за \mathbb{L} , а правую за \mathbb{R} . Тогда $x \in \mathbb{L}$ означает, что $x\in Y$ и $\exists \alpha_0\in A: x\in X_{\alpha_0}$. Иными словами: $\exists \alpha_0\in A: x\in Y\cap X_{\alpha_0}$. Воу, получилось определение **объединения** для ℝ. ⊲ (4) доказывается аналогично.

Единственность предела и ограниченность сходящейся последовательности¹

Единственность предела:

Формулировка:

 $\exists a$ и b — пределы последовательности $x_n \Rightarrow a = b$

Доказательство:

Положим, $a \neq b$

$$\varepsilon := |a - b|/2$$

$$\exists N_1 : \forall n > N_1 \quad |x_n - a| < \varepsilon$$

$$\exists N_2 : \forall n > N_2 \quad |x_n - b| < \varepsilon$$

$$N := \max(N_1, N_2) + 1$$

$$|x_N-a| & $|x_N-b| , что невозможно, т.к. $V_a(arepsilon)$ и $V_b(arepsilon)$ не пересекаются.$$$

1.4.2.2 Ограниченность сходящейся последовательности

Формулировка:

Сходящаяся последовательность ограничена.

Доказательство:

Тривиально. Возьмём предел (a) последовательности. Возьмём любой ε . Для него мы можем узнать N, для которого все элементы находятся ближе данного ε . Далее возьмём $\max_{i=1}^{N} |x_i - a|$. Это и будет радиусом шара, в котором находятся все элементы последовательности

1.4.3 Теорема о предельном переходе в неравенствах для последовательностей и для функций 1

Формулировка:

$$x_n < y_n, x_n \to a, y_n \to b \Rightarrow a \le b$$

Доказательство:

$$\varepsilon := |a - b|/2$$

$$\exists N_1 : \forall n > N_1 \quad |x_n - a| < \varepsilon$$

$$\exists N_2 : \forall n > N_2 \quad |y_n - b| < \varepsilon$$

$$N := \max(N_1, N_2)$$

$$\forall n>N \quad |x_n-a| & $|y_n-b|, а поскольку эти 2 окрестности не пересекаются и$$$

$$x_n < y_n$$
, to $a < b$

Для функций аналогично

1.4.4 Бесконечно малая последовательность¹

Формулировка:

Произведение бесконечно малой последовательности на ограниченную равно бесконечно малой последовательности.

Доказательство:

$$\exists x_n \to 0, \sup |y_n| = K$$

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} : \forall n > N \quad |x_n| < \frac{\varepsilon}{\max(K, 1)} \Rightarrow |x_n \cdot y_n| < \varepsilon$$

1.4.5 Открытость открытого шара 2

Формулировка:

Открытый шар — открыт.

Доказательство:

$$B(a, r) = \{x \in X : \rho(a, x) < r\}$$
 BASED.

 \triangleright

Пусть $b \in B(a,r)$. Тогда $B(b,r-\rho(a,b)) \subset B(a,r)$ (это надо доказать).

Докажем! Пусть $x \in B(b, r - \rho(a, b))$. Тогда (по определению открытого шара) $\rho(x, b) < r - \rho(a, b)$ $\rho(x, a) \le \rho(x, b) + \rho(b, a) < r$ ВЖУХ, и неравенство треугольника!

Следовательно,
$$\rho(x,a) < r \Rightarrow x \in B(a,r) \Rightarrow B(b,r-\rho(a,b)) \subset B(a,r)$$

Следовательно, для любой (произвольной) точки b существует такая окрестность (шар), что $B(b,r-\rho(a,b))\subset B(a,r)\Rightarrow b$ — внутренняя. Тогда все точки внутри открытого шара— внутренние, и, следовательно, по определению он— открытое множество. \triangleleft

1.4.6 Теорема о свойствах открытых множеств²

Формулировка

$$\bigcup_{\alpha \in A} G_{\alpha} - omкрытое множество \tag{9}$$

$$\bigcap_{k=1}^{n} G_k - omkpыmoe множество$$
 (10)

Доказательство

- (9) \triangleright Возьмём $\alpha \in A$; $x \in G_{\alpha}$. Так как G_{α} открытое, следовательно, $\exists B(x,r) \subset G_{\alpha}$. А раз он содержится в одном множестве, логично, что он уже тем более содержится в их объединении. \triangleleft
- (10) \triangleright Возьмём $x \in \bigcap_{k=1}^n G_k$. Так как этот x содержится в каждом из множеств G_k , существует n шаров $B(x,r_k)$, причём каждый шар является подмножеством G_k . Давайте введём $r=\min_{k=1}^n r_k$. Тогда шар B(x,r) точно содержится в каждом G_k , а, следовательно, и в их пересечении. \triangleleft

Примечание:

Пересечение бесконечного количества открытых множеств не обязательно открыто! Пример:

$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}$$

1.4.7 Теорема о связи открытых и замкнутых множеств Свойства замкнутых множеств²

1.4.7.1 Теорема о связи открытых и замкнутых множеств Формулировка

$$G$$
 — открыто $\Leftrightarrow G^c$ — замкнуто

Доказательство

Всё это верно в силу случайности выбираемых точек!

[] ⇒]⊳ Возьмём x — предельную точку для G^c . То есть, любая $\dot{V}_x \cap G^c \neq \emptyset$. Следовательно, x не является внутренней для G (потому что внутренняя точка входит в множество с какой-то окрестностью полностью, а таких окрестностей нету). Следовательно, $x \notin G$, т.к. оно открыто и содержит только внутренние точки. А раз точка не принадлежит множеству, то точно принадлежит его дополнению. \triangleleft

1.4.7.2 Свойства замкнутых множеств Формулировка

 G_a — замкнутые

$$\bigcap_{\alpha \in A} G_a - \textit{замкнуто} \tag{11}$$

$$\bigcup_{k=1}^{n} G_{a} - \beta a \kappa \kappa n y m o \tag{12}$$

Доказательство

Вуаля, применяем законы де Моргана и предыдущую теорему:

$$X \setminus \bigcup_{\alpha \in A} G_{\alpha}^{c} = \bigcap_{\alpha \in A} X \setminus G_{\alpha}^{c} = \bigcap_{\alpha \in A} G_{\alpha}$$

$$X \setminus \bigcap_{k=1}^{n} G_{\alpha}^{c} = \bigcup_{k=1}^{n} X \setminus G_{\alpha}^{c} = \bigcup_{k=1}^{n} G_{\alpha}$$

Примечание:

Объединение бесконечного числа замкнутых множеств не обязательно замкнуто! Пример:

$$\bigcup_{q\in\mathbb{Q}}\left\{q\right\}=\mathbb{Q}$$
 не замкнуто в \mathbb{R}

1.4.8 Аксиома Архимеда. Плотность множества рациональных чисел в \mathbb{R}^2

1.4.8.1 Свойства замкнутых множеств Формулировка

$$\forall x > 0, y > 0 \in \mathbb{R} \ \exists n \in \mathbb{N} : nx > y$$

(следовательно, существуют сколь угодно большие натуральные числа)

Доказательство (аксиомы, лол) ПОКА НЕ ЗНАЮ, КАК-ТО ЧЕРЕЗ СУПРЕМУМ

1.4.8.2 Плотность множества рациональных чисел в \mathbb{R} Формулировка

Множество $A \subset X$ всюду плотно в X, если $\forall x, y, x < y(x, y) \cap A \neq \varnothing$

 \mathbb{Q} всюду плотно в \mathbb{R}

Доказательство

ho Пусть $x,y\in\mathbb{R},x< y$. Тогда $\frac{1}{y-x}>0$ и (по аксиоме Архимеда) $\exists n\in\mathbb{N}:n>\frac{1}{y-x}\Rightarrow \frac{1}{n}< y-x$. Пусть $c=\frac{[nx]+1}{n}$ $(c\in\mathbb{Q})$

$$c \le \frac{nx+1}{n} = x + \frac{1}{n} < x + y - x < y$$
$$c > \frac{nx+1-1}{n} = x$$

Следовательно $c \in (x,y) \triangleleft$

1.4.9 Неравенство Бернулли²

Формулировка

$$\forall x \in \mathbb{R} > -1 \ n \in \mathbb{N} \ (1+x)^n \ge 1 + nx$$

Доказательство

⊳ По индукции!

База (BASED):

$$n = 1 \Rightarrow 1 + x \ge 1 + x$$

Предположение: $(1+x)^n \ge 1 + nx$

Переход:

$$(1+x)^{(n+1)} = (1+x)(1+x)^n \ge (1+x)(1+nx) = 1+nx+x+nx^2 = 1+(n+1)x+nx^2 \ge 1+(n+1)x$$

1.4.10 Теорема о существовании супремума²

Формулировка

Примечание: тут докажем про ограниченное сверху (супремум) множество, для инфимума аналогично

Всякое непустое ограниченное сверху подмножество $X\subset\mathbb{R}$ имеет верхнюю грань.

Доказательство

ightharpoonup Так как множество ограничено сверху, то $\exists M \in \mathbb{R} : x \in X \ x \leq M$. Супер. Возьмём $x_0 \in X$ и создадим отрезок $[x_0, M] = [a_1, b_1] \ (x_0 \leq M$ по определению верхней грани). Заметим, что этот отрезок удовлетворяет двум свойствам:

1)
$$[a_1,b_1] \cap X \neq \emptyset$$
 и 2) $(b_1,+\infty) \cap X = \emptyset$

Шикарно. Теперь выберем точку $d_i = \frac{a_{i-1} + b_{i-1}}{2}$. Если справа нету элементов множества X, то смещаем b_i в d_i . Если справа элементы есть, то смещаем a_i в d_i . Таким образом, мы бинпоиском подбираемся всё ближе и ближе к супремуму (двигаем отрезочек вправа). Причём все наши отрезки — вложенные! И свойства 1) и 2) так же выполняются.

ACHTUNG! Наши отрезки ещё и стягиваются! И действительно, ведь $\frac{b_i-a_i}{2^{n-1}}$ стремится к 0. Следовательно, по теореме Кантора о стягивающихся отрезках, существует всего одна точка c, к которой стремятся a_n и b_n .

Проверим, что $c-\sup X$. По построению $\forall x\in X: x\leq b_n$ по теореме о предельном переходе в неравенствах $x\leq c$. Значит, c- верхняя граница.

Теперь докажем, что для $\forall \varepsilon > 0 \ \exists x \in X : c - \varepsilon < x$. Так как $a_n \to c$, то $c - a_n < \varepsilon \Rightarrow c - \varepsilon < a_n$. То есть, с некоторого натурального n все члены последовательности будут больше $c - \varepsilon$ при заданном ε . А так как выполнялось свойство 1), то найдётся $x \in [a_n, b_n] \subset X$. \lhd

1.4.11 Лемма(ы) о свойствах супремума 2

Формулировка

$$D \subset E \subset X \Rightarrow \sup D \le \sup E \tag{13}$$

$$\forall \lambda \in \mathbb{R} > 0 : \sup \lambda D = \lambda \sup D \tag{14}$$

$$\sup -D = -\inf D \tag{15}$$

Доказательство

- (13) \triangleright Заметим, что $\sup E$ является верхней гранью для D (т.к. $D \supset E$). Следовательно, $\sup D \le \sup E \lhd$
- $(14) \rhd Для всякого <math display="inline">x \in D$ верно, что $x \leq \sup D$. Домножим на $\lambda \Rightarrow \lambda x \leq \sup \lambda D \Rightarrow \sup \lambda D = \lambda \sup D \lhd$
- $(15)
 ightharpoonup \sup -D: \ \forall x \in -D \ x \leq \sup -D.$ Домножим на $(-1) \Rightarrow -x \geq -\sup -D.$ Тогда $-\sup -D$ является нижней границей для $D \Rightarrow -\sup -D = \inf D \Rightarrow \sup -D = -\inf D \lhd$

1.4.12 Теорема о пределе монотонной последовательности (Вейерштрасс in da house)²

Формулировка

Если последовательность x_n монотонна и ограничена сверху (снизу — аналогично), то она имеет конечный предел

Доказательство ightharpoonup Поскольку x_n ограничена, то $\exists M = \sup E$, причём $\forall \varepsilon > 0 \exists x_n : M - \varepsilon < x_n$. Так как она ещё и монотонна, что $\forall n \in \mathbb{N} \exists N \in \mathbb{N} : x_N \geq x_n$. Mix it!

$$\forall \varepsilon > 0 : M - \varepsilon < x_n \le x_N \le M < M + \varepsilon$$

Получается, что в ε -окрестности точки M лежит бесконечно большое количество элементов $\{x_n\} \Rightarrow M$ — предел последовательности. \triangleleft

1.4.13 Определение числа е, соответствующий замечательный предел²

Формулировка

$$x_n = \left(1 + \frac{1}{n}\right)^n$$
 сходится

Доказательство

Заведём $y_n = \left(1 + \frac{1}{n}\right)^{(n+1)}$. Очевидно, что эта последовательность ограничена снизу единичкой.

Но это ещё не всё! Она ещё и убывающая. Докажем!

$$\frac{y_{n-1}}{y_n} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \left(\frac{\frac{n}{n-1}}{\frac{n+1}{n}}\right)^{n+1} \frac{1}{\frac{n}{n-1}} = \left(\frac{n^2}{n^2-1}\right)^{n+1} \frac{n-1}{n} = \left(1 + \frac{1}{n^2-1}\right)^{n+1} \frac{n-1}{n}$$

$$\geq_{ ext{по неравенству Бернулли}} \left(1 + rac{n+1}{n^2-1}
ight) rac{n-1}{n} = 1$$

Ура, монотонна + ограничена \Rightarrow имеет предел. А по теореме об арифметических свойствах предела $x_n = \frac{y_n}{1+\frac{1}{n}}$ и x_n имеет предел.

$$\lim \left(1 + \frac{1}{n}\right)^n = e$$

1.4.14 Неравенство Коши-Буняковского в линейном пространстве, норма, порождённая скалярным произведением 1

1.4.14.1 Неравенство Коши-Буняковского

Формулировка:

$$|(a,b)|^2 \le (a,a) \cdot (b,b).a, b \in X$$
 (линейное пространство).

Доказательство:

$$(a+\lambda b,a+\lambda b)=\lambda(a,b)+(a,a)+\lambda(b,a)+\lambda^2(b,b)=(a,a)+2\lambda(a,b)+\lambda^2(b,b)$$

$$\exists \lambda = -\frac{(a,b)}{(b,b)}$$

$$(a,a) - \frac{2(a,b)^2}{(b,b)} + \frac{(a,b)^2}{(b,b)} = (a,a) - \frac{(a,b)^2}{(b,b)} = \frac{(a,a)(b,b) - (a,b)^2}{(b,b)}$$

Т.к. $(a + \lambda b, a + \lambda b) \ge 0$ и знаменатель $(b, b) \ge 0$, то и числитель $((a, a)(b, b) - (a, b)^2 \ge 0) \Rightarrow (a, a)(b, b) \ge (a, b)^2$

1.4.14.2 Норма, порождённая скалярным произведением

Формулировка:

$$p(a) = \sqrt{(a,a)}$$
 — норма.

Доказательство:

- 1. $||a||=0 \Leftrightarrow a=\theta$. Очевидно из свойств скалярного произведения.
- 2. $||\lambda a|| = |\lambda|||a||$. Так же очевидно.

3.
$$||a+b|| \le ||a|| + ||b||$$
. $||a+b|| = \sqrt{(a+b,a+b)}.||a+b||^2 = (a+b,a+b) = (a,a) + (a,b) + (b,a) + (b,b) \le (a,a) + \sqrt{(a,a)}\sqrt{(b,b)} + \sqrt{(a,a)}\sqrt{(b,b)} + (b,b) = (a,a) + 2\sqrt{(a,a)}\sqrt{(b,b)} + ($

1.4.15 Леммы о непрерывности скалярного произведения и покоординатной сходимости в \mathbb{R}^{n1}

1.4.15.1 Непрерывность скалярного произведения

Формулировка:

X - линейное пространство со скалярным произведением. \exists норма, порождённая скалярным произведением.

$$x_n \to x_0$$

 $y_n \to y_0$
 $(x_n, y_n) \to (x_0, y_0)$

Доказательство:

$$\begin{split} &|(x_n,y_n)-(x_0,y_0)| = |(x_n,y_n)-(x_0,y_n)+(x_0,y_n)-(x_0,y_0)| \leq \\ &\leq |(x_n,y_n)-(x_0,y_n)|+|(x_0,y_n)-(x_0,y_0)| = |(x_n-x_0,y_n)|+|(x_0,y_n-y_0)| \leq \\ &\leq ||x_n-x_0||\cdot||y_n||+||x_0||\cdot||y_n-y_0|| \to 0 \\ &\leq ||x_n-x_0||\cdot||y_n||+||x_0||\cdot||y_n-y_0|| \to 0 \end{split}$$

1.4.15.2 Покоординатная сходимость в \mathbb{R}^n

Формулировка:

 $x_k^{(n)}$, где (n) - индекс последовательности, $k \in \{1, 2, \dots, m\}$ - номер координаты в \mathbb{R}^m . Метрика Евклилова.

$$x^{(n)} \to a \Leftrightarrow \forall k \quad x_k^{(n)} \to a_k$$

Доказательство:

Common:

$$\forall k | x_k - a_k | \leq \sum_{1 \text{ слагаемое}} \sqrt{\sum_{k=1}^m (x_k - a_k)^2} \leq \sqrt{m} \max_{k=1}^m (x_k - a_k)$$

 \Rightarrow

$$\forall k |x_k - a_k| \leq \sum_{1 \text{ слагаемое}} \sqrt{\sum_{k=1}^m (x_k - a_k)^2} \underset{\text{метрика}}{ o} 0 \Rightarrow \forall k x_k o a_k$$

 \Leftarrow

$$\sqrt{\sum_{k=1}^m (x_k - a_k)^2} \le \sqrt{m} \max_{k=1}^m |x_k - a_k| \underset{\text{все слагаемые} \to 0}{\to} 0$$

2 Период 2 (Мезозойский)

2.1 Важные определения

2.1.1 Определения предела отображения $(3 \text{ mt})^2$

1. По Коши на $\varepsilon - \delta$ языке:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in D \setminus \{a\} : \rho_X(a, x) < \delta : \rho_Y(f(a), A) < \varepsilon$$

2. По Коши на языке окрестностей:

$$\forall V_A \exists \dot{V_a} : F(V_a \cap D) \subset V_A$$

3. По Гейне на языке последовательностей:

$$\forall \{x_n\}, x_n \in D \setminus \{a\}, x_n \to a : f(\{x_n\}) \to A$$

TL;DR отсюда следует и определение предела функции: Пусть $f:D\subset\mathbb{R}\to\mathbb{R}, a\in\mathbb{R}$ предельная точка $D,\,A\in\mathbb{R}.$

Тогда A — предел функции f в точке a.

2.1.2 Компактное множество²

Если множество $K \subset \bigcup_{\alpha \in A} G_{\alpha}$, то семейство множеств $\{G_{\alpha}\}_{\alpha \in A}$ называется *покрытием* множества K. Если при этом все множества G_{α} ещё и открытые, то такое покрытие называют открытым.

Подмножество K метрического пространства X называется k можном, если из любого открытого покрытия можно извлечь конечное подпокрытие.

$$\forall \left\{G_{\alpha}\right\}_{\alpha \in A}: K \subset \bigcup_{\alpha \in A} G_{\alpha}, G_{\alpha} - \textit{omkpumue } \textit{b} X, \quad \exists \alpha_{1}, \alpha_{2} \ldots \alpha_{n}: K \subset \bigcup_{k=1}^{n} G_{\alpha_{k}}$$

${f 2.1.3}$ Непрерывное отображение (4 определения) 1

$$f: D \subset X \to Y$$

- 1. Дешёвое: существует конечный предел в точке x_0 и равен образу в этой точке (работает только для предельных точек)
- 2. $\varepsilon \delta$: $\forall \varepsilon > 0 \exists \delta > 0$: $\forall x \in D \setminus \{x_0\} : \rho_X(x, x_0) < \delta \quad \rho_Y(f(x), f(x_0)) < \varepsilon$
- 3. Окрестности: $\forall V_{f(x_0)} \exists \dot{V}_{x_0} : \forall x \in \dot{V}_{x_0} \quad f(x) \subset V_{f(x_0)}$
- 4. Последовательности: $\forall \{x_n \in D \setminus \{x_0\}\} \to x_0 \quad f(x_n) \to f(x_0)$

2.1.4 о маленькое²

Пусть X — метрическое пространство, $f:D\subset X\to\mathbb{R}(\mathbb{C}).a$ — предельная точка D, и тогда если $\exists \ \varphi:D\to\mathbb{R}(\mathbb{C}): f(x)=\varphi(x)g(x)$, причём $\exists V_a$ такая что $\varphi(V_a\cap D)$ — бесконечно малая при всех допустимых x, то тогда говорят что f(x) бесконечно малая по сравнению с g(x) при $x\to a$.

2.1.5 Эквивалентные функции, таблица эквивалентных²

Пусть X — метрическое пространство, $f:D\subset X\to\mathbb{R}(\mathbb{C}).a$ — предельная точка D, и тогда если $\exists\ \varphi:D\to\mathbb{R}(\mathbb{C}),:f(x)=\varphi(x)g(x),$ — при всех $x\in V_a\cap D$, то тогда говорят что f(x) эквивалентна по сравнению с g(x) при $x\to a.$ $(\varphi(x)\to 1)$

 $\sin x \approx \arcsin x \approx \tan x \approx \arctan x \approx e^x - 1 \approx x$

при $\varphi \to 1$.

2.1.6 Функция, дифференцируемая в точке¹

Пусть $f: \langle a, b \rangle \to \mathbb{R}, x_0 \in \langle a, b \rangle$

Есть 2 определения:

- 1. Если $\exists\lim_{\Delta x\to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=k\in\mathbb{R},$ то f дифференцируема в $x_0,$ а k производная в точке
- 2. Если $\exists A \in \mathbb{R}: f(x) = f(x_0) + A(x-x_0) + o(x-x_0)$, то f дифференцируема в x_0 , а A производная в точке x_0 . $o(x-x_0)$ означает, что при приближении x к x_0 погрешность формулы $\to 0$

2.1.7 Производная 1

Имхо, всё уже определено в Φ ункция, дифференцируемая в точке 1

2.2 Определения

2.2.1 Топологическое пространство, топология²

X — множество, тогда *топологическим пространством* называется пара множество — система его подмножеств (X,W), если выполнены следующий условия $(W\subset 2^X)$:

1.

$$\emptyset, X \in W$$

2.

$$\forall \{G_k\}_{k=1}^n \bigcap_{k=1}^n G_k \in W$$

3.

$$\forall \{G_{\alpha}\}_{\alpha \in A} \bigcup_{\alpha \in A} G_{\alpha} \in W$$

Тогда видно, что элементы W — **открытые множества**.

Примеры:

 $W = \{\varnothing, X\}$ — антидискретная топология

 $W=2^X$ — дискретная топология

 $\it 3adamb\ monoлогию\ 6\ X\Leftrightarrow$ задать систему подмножеств $\it W$, удовлетворяющую вышеприведённым свойствам.

Окрестностью точки в топологическом пространстве называют открытое множество, содержащее эту точку.

${f 2.2.2}$ Попологическое определение предела последовательности 2

Казалось бы, у нас тут определение, но как бы не так! \odot

$$X,Y$$
 — топологические пространства. $f:X o Y,\lim_{x o a}f(x)=L$

Тогда
$$\forall U_L^* \ V_a^* : \forall x \in V_a^* : f(x) \in U_L^*$$

У вас может сложиться ощущение, чем же это отличается от обычного предела отображения по Коши в терминах окрестностей? А вот чем! Тут вместо обычных окрестностей использованы топологические окрестности (открытые множества вокруг точки)!

Но это был бы не матан, если бы мы что-то не доказали. Поэтому докажем эквивалентности этого определения и обычного определения в терминах окрестностей:

$$\forall U_L \ V_a : \forall x \in V_a : f(x) \in U_L$$

 \triangleright

 \Rightarrow

Так как наши окрестности в топологическом определении — просто какие-то открытые множества, мы можем всегда применять логическую подмену: будем считать, что обычные окрестности — просто открытые шарики. Тогда из любого открытого шарика с центром в точке a (внутренней) можно выдрать открытый шарик (т.к. по определению он входит туда с какой-то окрестностью).

Тогда валидно взять $U_L^* = U_L$ и $\forall V_a^* \; \exists V_a \subset V_a^*$ и тогда наше определение сведётся к обычному по Коши.

 \Leftarrow

То же самое: нам даны теперь не открытые множества, а открытые шарики (окрестности). Так давайте возьмём любое открытое множество вокруг нашей окрестности и всё сойдётся.

 \triangleleft

2.2.3 Метризуемое топологическое пространство²

 $Mempuзуемое\ monoлогическое\ npocmpancmso$ — такое пространство, когда можно задать метрику на X и при этом все условия существования топологического пространства останутся валидными (все открытые множества останутся открытыми в смысле этой метрики). (топология которого порождена этой метрикой)

2.2.4 Секвенциальная компактность²

Пространство называется *секвенциально компактным*, если из любой его последовательности можно извлечь сходящуюся подпоследовательность.

K — секвенциально компактно $\Leftrightarrow \forall \{x_n\} \subset K \ \exists k_1, k_2, \ldots (k_i \in \mathbb{N} \ \text{и возрастает}) : x_{k_i} \to_{i \to \infty} x_0 \in K$

2.2.5 Предел по множеству²

 $f:D\subset X\to Y, D_1\subset D, a$ — предельная точка D_1

Тогда предел по множеству D_1 в точке $a:\lim_{x\to a}f|_{D_1}(x)$

2.2.6 Односторонние пределы¹

Это предел при $x\to x_0$ слева (то есть предел на $D\cap(\infty,x_0)$ (note: без самой x_0). Обозначают $\lim_{x\to x_0=0}$

Справа аналогично

2.2.7 Непрерывность слева¹

Это непрерывность, в которой забили на предел справа. То есть отображение непрерывно на $D \cap (-\infty, x_0]$. Сама x_0 тут включена, т.к. всё-таки предел должен быть ей равен для обеспечения непрерывности.

2.2.8 Разрыв, разрывы первого и второго рода¹

Разрыв — нарушение условия непрерывности. Есть разные:

- 1. Устранимые разрывы (1 рода, где просто какая-то точка тупо выколота, а дальше всё непрерывно, без скачков), пределы слева и справа равны, но не равны $f(x_0)$
- 2. Скачки (1 рода, односторонние пределы конечны, но не равны)

3. Атомный пиздец (2 рода, как минимум 1 односторонний предел не существует/бесконечен)

2.2.9 О большое²

Пусть X — метрическое пространство, $f:D\subset X\to \mathbb{R}(\mathbb{C}).a$ — предельная точка D, и тогда если $\exists \ \varphi:D\to \mathbb{R}(\mathbb{C}): f(x)=\varphi(x)g(x)$, причём $\exists V_a$ такая что $\varphi(V_a\cap D)$ — ограничена при всех допустимых x, то тогда говорят что f(x) ограниченна по сравнению с g(x) при $x\to a$.

${f 2.2.10}$ Асимптотически равные (сравнимые) функции 2

Пусть X — метрическое пространство, $f:D\subset X\to \mathbb{R}(\mathbb{C}).x\in D$ или $x\to x_0$

Тогда если f(x) = O(g(x)) и g(x) = O(f(x)), то тогда такие функции называют *сравнимыми* $(f \approx g)$

2.2.11 Асимптотическое разложение²

Пусть X — метрическое пространство, $D\subset X, x_0$ — предельная точка $D, f:D\to \mathbb{R}(\mathbb{C})$ и на ней задана конечная или счётная система функций, каждая из которых бесконечно мала по сравнению с предыдущей.

$$k \in [1,2,\ldots,n]$$
 или $k \in \mathbb{Z}_+$ $g_k = o(g_{k-1}), x o x_0$

$$f(x) = \sum_{k}^{n} c_i g_i(x) + o(g_n(x))$$

Причём, чем больше n, тем точнее разложение.

${f 2.2.12}$ Наклонная асимптота графика 1

Асимптоты бывают вертикальными (когда есть бесконечный предел в конечной точке), горизонтальными (когда есть конечный предел в бесконечности) и наклонными.

Всё определение в том, что наклонные асимптоты можно задать классической функцией вида y = kx + b.

Для общего развития: это можно даже посчитать:

$$k = \lim_{x \to +\infty} \frac{f(x)}{x}$$

$$b = \lim_{x \to +\infty} f(x) - kx$$

2.2.13 Касательная прямая к графику функции¹

Это банально уравнение прямой в точке, где угловой коэффициент — это производная:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

2.2.14 Замечательные пределы 3

2.2.14.1 Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 0$$

Доказательство. см. 2.4.25.3

2.2.14.2 Следствия

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$$

$$\lim_{x \to 0} \frac{\operatorname{arctg} x}{x} = 1$$

2.2.14.3 Второй замечательный предел

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Доказательство. Вспоминаем, что число e определялось как предел последовательности:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Теперь возьмем $\{x_n\}: x_n \to \infty$ и докажем, что

$$f(x_n) \to e.$$
 (16)

- 1. Пусть $\forall n \ x_n \in \mathbb{N}$. Возьмем $\varepsilon > 0$ и по определению e найдем K такое, что $\forall k > K |f(k) e| < \varepsilon$, но, начиная с некоторого номера, $x_n > K$, тогда $|f(x_n) e| < \varepsilon$ означает выполнение (16).
- 2. Пусть $x_n \to +\infty$, тогда, начиная с некоторого номера $x_n \ge 1$, т.е. не умалая общности можно считать, что все $x_n \ge 1$. Уменьшая или увеличивая основание и показатель степени, получим неравенства

$$\left(1 + \frac{1}{[x_n] + 1}\right)^{[x_n]} \le \left(1 + \frac{1}{x_n}\right)^{x_n} \le \left(1 + \frac{1}{[x_n]}\right)^{[x_n] + 1},$$

которые перепишем в виде

$$\frac{f([x_n]) + 1}{1 + \frac{1}{|x_n| + 1}} \le f(x_n) \le \left(1 + \frac{1}{|x_n|}\right) f([x_n])$$

Так как $\{[x_n]\}$ и $\{[x_n]+1\}$ - последовательные натуральные числа, стремящиеся к $+\infty$, то по пункту 1 $f([x_n]) \to e$ и $f([x_n])+1 \to e$. Следовательно, крайние части в неравенстве выше стремятся к e, значит и $f(x_n) \to e$

3. Пусть $x_n \to -\infty$, тогда $y_n = -x_n \to +\infty$ и $y_n - 1 \to +\infty$. Теперь пользуемся предыдущими пунктами

$$f(x_n) = \left(1 + \frac{1}{-y_n}\right)^{-y_n} = \left(\frac{y_n}{y_n - 1}\right)^{y_n} = \left(1 + \frac{1}{y_n - 1}\right)f(y_n - 1) \to e$$

4. Пусть $x_n \notin [-1,0], x_n \to \infty$, а в остальном последовательность произвольна. Если число отрицательных (положительных) членов последовательности конечно, то $x_n \to +\infty(-\infty)$, то уже доказано, что $f(x_n) \to e$. Теперь, если в последовательности бесконечно много и положительных и отрицательных членов, то разобьем натуральный ряд на две подпоследовательности $\{n_k\}$ и $\{m_l\}: x_{n_k} > 0, x_{m_l} < -1$. По доказанному $f(x_{n_k}) \to e, f(x_{m_l}) \to e$. Следовательно, $f(x_n) \to e$.

2.2.14.4 Третий замечательный предел

$$\lim_{x\to 0}\frac{\log_a(1+x)}{x}=\frac{1}{\ln x}, \qquad a>1, a\neq 0$$

В частности,

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

 $\ensuremath{\mathcal{A}\!ora3ameльcm60}$. Т.к. $\log_a(1+x)=\frac{\ln(1+x)}{\ln a}$, достаточно доказать равенство только для натурального логарифма.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{1/x} = \ln\lim_{x \to 0} (1+x)^{1/x} = \ln e = 1$$

2.2.14.5 Четвертый замечательный предел

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha, \qquad \alpha \in \mathbb{R}$$

Доказательство.

 $\alpha = 0$ — тривиально.

 $\alpha \neq 0$. Возьмем последовательность $\{x_n\}: x_n \to 0, x_n \neq 0$. НУО $|x_n| < 1$. В силу непрерывности и строгой монотонности степенной функции $y_n = (1+x_n)^\alpha - 1 \to 0, y_n \neq 0$. При этом

$$\alpha \ln (1 + x_n) = \ln (1 + y_n)$$

Теперь используем доказанный замечательный предел

$$\frac{(1+x_n)^{\alpha}-1}{x_n} = \frac{y_n}{x_n} = \frac{y_n}{\ln(1+y_n)} \alpha \frac{\ln(1+x_n)}{x_n} \to \alpha.$$

2.2.14.6 Пятый замечательный предел

$$\lim_{x \to 0} \frac{a^x - 1}{x} \ln a \qquad a > 0$$

В частности,

$$\lim_{x \to 0} \frac{e^x - 1}{r} = 1$$

П

Доказательство.

a = 0 — тривиально.

 $a \neq 0$. Возьмем последовательность $\{x_n\}: x_n \to 0, x_n \neq 0$. НУО $|x_n| < 1$. В силу непрерывности и строгой монотонности степенной функции $y_n = a^{x_n} - 1 \to 0, y_n \neq 0$. При этом

$$x_n \ln a = \ln \left(1 + y_n \right)$$

Снова врубаем замечательные пределы выше

$$\frac{a^{x_n} - 1}{x_n} = \frac{y_n}{x_n} = \frac{y_n}{\ln(1 + y_n)} \ln a \to \ln a.$$

2.3 Важные теоремы

2.3.1 Теорема о характеристике компактов в \mathbb{R}^{m1}

Формулировка

Эти определения эквивалентны:

- 1. К ограничено и замкнуто
- 2. K компактно
- 3. Из любой последовательности в K можно выделить сходящуюся подпоследовательность, предел которой $\in K$

Доказательство

 $1\Rightarrow 2
ightharpoonup Если <math>K$ ограничено, то существует замкнутый параллелепипед, в который можно его засунуть. По простейшим свойствам компактов, замкнутое подмножество компакта компактно, а сам параллелепипед компактен по лемме. \lhd

 $2 \Rightarrow 3 \rhd \{x_n\}_{n=1}^{\infty} \in K$ - какая-то последовательность. Рассмотрим область значений этой последовательности D. Если она конечна, то мы можем выбрать стационарную подпоследовательность (когда-то же значения начнут повторяться).

Если она бесконечна, то рассмотрим предельные точки K. Если они есть, то они в ней содержатся (remember, K компактно \Rightarrow замкнуто). Пойдём от противного: если их нет (а D бесконечна), то мы имеем дело с бесконечным числом изолированных точек, что уже звучит жестоко.

А теперь главный мув: мы сможем найти такое открытое покрытие множества, что каждая такая изолированная точка будет покрыта своим персональным множеством (оно будет открыто, т.к. окрестность этой точки нам включать можно, но в нём будет только сама эта точка). Поскольку у нас их бесконечное число, то конечного подпокрытия не существует 0₀. Противоречие!

Так, а что если предельные точки есть? Ну так всё просто - уменьшаем ε и в новой уменьшенной окрестности добавляем точку последовательности. Получается, она как раз к этой точке и стремится \lhd

 $3 \Rightarrow 1 \rhd Докажем от противного:$

Пусть K неограниченно. Тогда $\exists \{x_n\} \to \infty$. Мы знаем, что любая подпоследовательность сходящейся последовательности стремится туда же. $\infty \notin x_n$. Противоречие!

Пусть K незамкнуто. Тогда $\exists a$ — предельная точка, $\notin K$. Тогда $\exists \{x_n\}$, стремящаяся к этой предельной точке. Такая же проблема. \lhd

2.3.2 Теорема о пределе монотонной функции¹

Формулировка

 $f:D\subset\mathbb{R}\to\mathbb{R}$

Рассмотрим предельную точку $x_0 \in (-\infty, +\infty]$. Левая не включена, а правая включена, т.к. мы хотим рассмотреть левый предел на \mathbb{R} без черты. (Для правого всё аналогично).

1. Если f возрастающая и ограничена сверху на $(-\infty, x_0) \cap D$, то существует конечный предел $\lim_{x \to x_0 = 0}$.

2. Если f убывающая и ограничена снизу на $(-\infty, x_0) \cap D$, то существует конечный предел $\lim_{x \to x_0 = 0}$.

Доказательство

 \triangleright

$$D_1 := (-\infty, x_0) \cap D$$

На самом деле, то, что мы отрезали всё, что справа от x_0 (левый предел) — это нам сильно поможет, т.к. мы теперь можем тупо взять sup и доказать, что он и является нашим пределом.

$$\exists k := \sup_{x \in D_1} f(x) \Rightarrow \forall \varepsilon > 0 \exists a \in D_1 : f(a) \in (k - \varepsilon, k)$$

Hy а поскольку f монотонно возрастает, $\forall x \in (a,x_0) \quad f(x) \in (k-\varepsilon,k)$

Следим за руками: мы только что для какого-то ε предъявили дельту ($|a-x_0|$), внутри которой выполняется условие предела. Поздравляю всех, мы нашли предел!

 \triangleleft

2.3.3 Теорема о замене на эквивалентную при вычислении пределов. Таблица эквивалентных 2

Формулировка

X — метрическое пространство, $f, \tilde{f}, g, \tilde{g}: D \subset X \to \mathbb{R}(\mathbb{C}), x_0$ — предельная точка D.

$$f(x) \ \tilde{f}(x), \quad g(x) \ \tilde{g}(x) \qquad x \to x_0$$

Тогда справедливо следующее:

1.

$$\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} \tilde{f}(x)\tilde{g}(x)$$

2. Если x_0 — предельная точка области определения $\frac{f}{g}$, то

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{\tilde{f}(x)}{\tilde{g}(x)}$$

Доказательство

 \triangleright

По определению эквивалентности, $f=\varphi \tilde{f}$ и $g=\psi \tilde{g}$, где на неких V_{x_0} и $U_{x_0}:\varphi$ и ψ стремятся к 1. Тогда на $W_{x_0}=V_{x_0}\cap U_{x_0}$ φ и ψ стремятся к 1. Значит, на $W_{x_0}\cap D$ выполняется $fg=(\varphi\psi)\tilde{f}\tilde{g}$. Тогда по теореме об арифметических свойствах предела, предел $\lim_{x\to x_0}fg=A$ (если существует). Аналогично, $\lim_{x\to x_0}\tilde{f}\tilde{g}=A$ (если существует, однако верно и если и там и там не существует). Для частного — то же самое, только $W_0\cap D$ надо ещё сузить, чтобы $\varphi\psi$ не обращалось в 0.

 \triangleleft

${f 2.3.4}$ Пеорема о топологическом определении непрерывности 2

Формулировка

X, Y — топологические пространства, $f: X \to Y$.

Отображение непрерывно \Leftrightarrow прообраз любого открытого множества открыт. $\forall G \in Y : f^{-1}(G)$ — открытое множество в X.

Доказательство

 \triangleright

 \Leftarrow

Если прообраз пуст, то всё ништяк, т.к. открытое множество — открытое. Если же не пустое, то f(x)=y, если $y\in G$, то $x\in f^{-1}(x)$. Значит, по определению непрерывности отображения в точке x в терминах окрестностей $\forall V_y\ \exists \dot{V}_x: f(\dot{V}_x\cap D)\subset V_y)$. Тогда по нашим условиям, $V_y\subset G$, т.к. y — внутренняя, то есть входит с окрестностью. Тогда, $\dot{V}_x\subset f^{-1}(V_y)\subset f^{-1}(G)\Rightarrow f^{-1}(G)$ — открытое.

 \Rightarrow

Пусть $f(x_0)=y$, тогда $\forall V_y$ — открытое, тогда $f^{-1}(V_y)$ — тоже открытое и содержит x_0 (только что доказали). Значит, $\forall V_y \; \exists \dot{V}_{x_0}: f(\dot{V}_{x_0} \cap D) \subset V_y$. Тогда по определению, f — непрерывно.

 \triangleleft

2.3.5 Теорема Вейерштрасса о непрерывном образе компакта. Следствия²

Формулировка

X,Y — метрические пространства. $f:X\to Y,f$ — непрерывно на X. Тогда, если X — компактен, то и f(X) — компакт.

Доказательство

 \triangleright

Пусть $f(X)\subset\bigcup_{\alpha\in A}G_\alpha$, где G_α — открыты в Y. По теореме о топологическом определении непрерывности, $f^{-1}(G_\alpha)$ — открытое. Так как X — компактен, то среди прообразов множеств этого открытого покрытия $f^{-1}(G_\alpha)$ мы сможем выбрать конечное подпокрытие X. А раз сможем выбрать конечное подпокрытие, состоящее из прообразов, то и конечное покрытие из образов тоже сможем. Значит, из первоначального открытого покрытия образа f(X) возможно выбрать конечное подпокрытие. А значит, что f(X) — компактен.

 \triangleleft

Следствия

- 1. Непрерывный образ замкнут и ограничен (а вот и Джонни!) по характеристикам компактов (наверное)
- 2. (1 теорема Вейерштрасса): Функция, непрерывная на отрезке ограничена.
- 3. X компактно. $f: X \to \mathbb{R}, f$ непрерывно на X. Тогда $\exists \min_{x \in X} f(x), \max_{x \in X} f(x)$ Доказатель ство

Ну, во первых, f(X) — компактно, а, следовательно, замкнуто и ограничено. Логично, что $\exists \sup f(X) = b$. Осталось проверить, что $\max = b$. $b \in f(X)$ т.к. оно замкнуто. Теперь

докажем, что супремум равен максимуму. По техническому определению супремума, $\forall n \in \mathbb{N} \exists x_n : b - \frac{1}{n} < x_n \leq b$. (тут мы взяли вместо $\varepsilon : \frac{1}{n}$, видимо, просто для удобства. Раз для этой херни всё сломается — то для произвольного ε уж и подавно). Ну и вот, по построению и по теореме о двух городовых, x_n стремится к b. Получается, что в замкнутом множестве действительно максимум есть и он равен супремуму. Для минимума аналогично.

4. (2 теорема Вейерштрасса): $f:[a,b] \to \mathbb{R}, f$ — непрерывное на $X, \ \exists \min_{x \in X} f(x), \max_{x \in X} f(x)$

2.3.6 Теорема Больцано-Коши о промежуточном значении¹

Формулировка

$$f \in C(\mathbb{R} \to \mathbb{R}), f(a) = A, f(b) = B, A < B$$

$$\forall C \in (A, B) \exists c \in (a, b) : f(c) = C$$

Доказательство

Бинпоиск)

Возьмём $c:=\frac{b-a}{2}$. Рассмотрим [a,c] и [c,b]. Если f(c)=C, то мы выиграли .

Иначе, если f(c) > C, возьмём $c' := \frac{c-a}{2}$, рассмотрим [a, c']

Иначе, если f(c) < C, возьмём $c' := \frac{b-c}{2}$, рассмотрим [c', b]

Продолжим этот процесс рекурсивно. Если мы искомой точки не найдём никогда, мы получим последовательность стягивающихся отрезков $\{[a_n,b_n]\}$. Для каждого из них верно то, что $a_n < c < b_n$ По теореме Кантора, у их пересечения есть единственная общая точка. Следовательно, эта точка и есть искомая c: f(c) = C

2.3.7 Теорема о непрерывности монотонной функции. Следствие о множестве точек разрыва 1

Формулировка

 $f:\langle a,b
angle
ightarrow R$ монотонна

- 1. f не может иметь разрывов второго рода
- 2. $f(\langle a,b\rangle)$ промежуток $\Leftrightarrow f$ непрерывна

Доказательство

1. \triangleright Итак, не умаляя общности положим, что f возрастает, и (также не умаляя общности) докажем существование левого предела в точке $x_0 \in (a,b)$

Возьмём точку $x_1 \in (a, x_0)$. Зачем? Чтобы потом оценить снизу конечным числом, без бесконечностей. +понадобится во 2 пункте.

По теореме о пределе монотонной функции (она у нас ограничена сверху на (a,x_0)), \exists конечный левый предел $\lim_{x\to x_0-0}f(x)=f(x_0-)$

Получается, $f(x_1) \leq f(x_0-) \leq f(x_0)$ (сделали предельный переход). Вообще эта строчка вроде не особо нужна, т.к. мы уже как бы доказали, что есть конечный односторонний предел.

Аналогично доказывается правый предел. ⇒ правого разрыва не существует. ⊲

2. $\triangleright \Leftarrow$ Уже доказано в Теорема о сохранении промежутка 1

 \Rightarrow

Ну, положим она таки не непрерывна. Тогда $\exists x_0 : \lim_{x \to x_0 - 0} f(x) \neq f(x_0)$ (опять не умаляя общности положим, что проблема именно с левым пределом. Для правого всё аналогично.

По монотонности мы знаем, что $\forall x < x_0 \quad f(x) \leq f(x_0)$. Ну а т.к. множество значений — промежуток, то $\forall y \in (f(a), f(x_0)) \exists x \in (a, x_0) : f(x) = y$.

То, что левый предел конечен мы уже знаем. По монотонности, если он не равен $f(x_0)$, то он $< f(x_0)$

Отлично, теперь у нас $f(x_1) < f(x_0-) < f(x_0)$. Возьмём какой-нибудь $y \in (f(x_0-), f(x_0))$ (он существует по аксиоме Архимеда). И теперь давайте проверим, в какой части нашего интервала области значений он лежит:

Попробуем (a,x_0) . Получим промежуток $(f(a),f(x_0-)]$. ОЙ! Но ведь y строго $>f(x_0-)$

Так, у нас осталось попробовать промежуток $[x_0,b\rangle$. Получим $[f(x_0),f(b)\rangle$. **ОЙ!** y снова потерялся, т.к. он $< f(x_0)$

Делаем вывод: мы покрыли всю область определения и значений в виде интервала, но наш y туда не вошёл $\odot\odot$

Получили противоречие, следовательно $f(x_0-)=f(x_0)$. Для правого всё то же самое. \triangleleft

2.3.8 Теоремы Лагранжа и Коши. Следствия об оценке приращения и о пределе производной 2

Формулировка

Лагранж:

 $f:< a,b> o \mathbb{R}$, непрерывна и дифференцируема на (a,b). Тогда $\exists c\in (a,b): rac{f(b)-f(a)}{b-a}=f'(c)$.

Коши:

 $f,g:(a,b)\to\mathbb{R}$, непрерывны и дифференцируемы на $(a,b),g'\neq 0$ на (a,b). Тогда $\exists c\in(a,b): \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}$.

Доказательство

 \triangleright

$$F(x)=f(x)-kg(x)$$
. Подберём k , чтобы $F(a)=F(b)$.

 $f(a)-kg(a)=f(b)-kg(b)\Rightarrow k=rac{f(a)-f(b)}{g(a)-g(b)},$ причём g(a)-g(b) не равно нулю по условию и по теореме Ролля (иначе производная обращалась бы в ноль). Тогда по теореме Ролля для $F\exists c\in (a,b): F'(x)=0\Rightarrow F'(c)=f'(x)-kg'(x)=0\Rightarrow k=rac{f'(c)}{g'(c)}$

 \triangleleft

Следствия

Условия все те же

1. Если $|f'(x)| \leq M$, то $|f(b)-f(a)| \leq M|b-a|$ Доказательство: врубаем Лагранжа: $\frac{|f(b)-f(a)|}{|b-a|} = |f'(c)| \Rightarrow |f(b)-f(a)| = |f'(c)| * |b-a| \leq M*|b-a|$

2. Если $f:[x_0,x_0+h]$, дифференцируема и непрерывна на $[x_0,x_0+h\rangle,\exists \lim_{x\to x_0+0}f'(x)=A\in \mathbb{R},$ тогда $\exists f'_+(x_0)=A$

Доказательство: $\Delta>0$: $f'_+(x_0)=\lim_{\Delta\to+0}\frac{f(x_0+\Delta)-f(x_0)}{\Delta}=\lim_{\Delta\to0}f'(c_\Delta)=A$, где $x_0< c_\Delta< x_0+\Delta$

2.4 Теоремы

2.4.1 Теорема об открытых и замкнутых множествах в пространстве и в подпространстве 2

Формулировка

X, Y - Π POCTPAHCTBA!!!!!

Пусть (X, ρ) — метрическое пространство. $D \subset Y \subset X$.

- 1. D открыто в $Y \Leftrightarrow \exists G$ открытое в $X: D = G \cap Y$
- 2. D замкнуто в $Y \Leftrightarrow \exists F$ замкнутое в $X : F = G \cap Y$

Доказательство

>

 $1) \Leftarrow$

Пусть дано G — открытое в $X:D=G\cap Y$. Возьмём $a\in D$. Так как G открыто в X, получается, что $\exists V_a^X$. Тогда $V_a^Y=V_a^X\cap Y$ — окрестность a в Y. Получается, a — внутренняя в D. А так как мы выбрали точку a случайно, то D — открытое в Y.

 \Rightarrow

 $a\in D, D$ — открыто в Y, следовательно, существует $V^Y_a=B^Y_a\subset D\subset Y$. Тогда давайте обозначим $G=\bigcup_{a\in D}B^X_a$ (пока непонятно зачем, но скоро станет). Заметим, что G — открытое в X, так как объединяются открытые шары, которые, как известно, открыты. Тогда проверим:

$$G\cap Y=\left(igcup_{a\in D}B_a^X
ight)\cap Y \underset{ ext{законы де Моргана}}{=}igcup_{a\in D}B_a^X\cap Y=igcup_{a\in D}B_a^Y=D$$

Ура, получилось, всё канает!

2) По доказанному ранее и по связи замкнутых и открытых множеств, замкнутость D в Y равносильна открытости $Y\setminus D$ в Y.

Тогда по доказанному ранее $\exists F$ — замкнутое в $X: F = G \cap Y \Leftrightarrow \exists G$ — открытое в $X: Y \setminus D = G \cap Y$. Заметим, что $Y \setminus D = G \cap Y \Leftrightarrow D = F \cap Y (G = F^c) \triangleleft$

2.4.2 Теорема о компактности в пространстве и в подпространстве²

Формулировка

Пусть (X,ϱ) — метрическое пространство. $K\subset Y\subset X$, причём K компактно в Y. Тогда компактность K в Y равносильна компактности в X.

Доказательство

 \Leftarrow > Пусть K компактно в X. Тогда возьмём покрытие множествами V_{α} такими, что они открыты в Y. Тогда для каждого такого множества будет верно (по предыдущей теореме) $V_{\alpha} = G_{\alpha} \cap Y$, где G_{α} открыто в X. Тогда:

$$K \subset \bigcup_{\alpha \in A} V_{\alpha} \subset \bigcup_{\alpha \in A} G_{\alpha}$$

Тогда извлечём из G_{α} конечное подпокрытие : $K \subset \bigcup_{k=1}^n G_{\alpha}$ Но, тогда по приведённому выше и т.к. $K \subset Y$:

$$K \subset \bigcup_{k=1}^{n} (G_{\alpha} \cap Y) = \bigcup_{k=1}^{n} V_{\alpha}$$

Значит, существует конечное открытое подпокрытие K в Y. \lhd

⇒ \rhd Возьмём покрытие K в $Y:G_{\alpha}$, причём G_{α} — открытые в X. По предыдущей теореме $V_{\alpha}=G_{\alpha}\cap Y$, причём V_{α} открыты в Y. Тогда выберем конечное подпокрытие $Y_{kk=1}^n$ (в силу компактности K в Y). А так как $V_k\subset G_k$, то существует открытое конечное подпокрытие в X, следовательно, K компактно в X. \lhd

2.4.3 Простейшие свойства компактных множеств²

Формулировка

 (X, ρ) — метрическое пространство, $K \subset X$

- 1) Если K компактно, то оно замкнуто и ограничено.
- 2) Если X компактно, а K замкнуто, K компактно.

Доказательство

1) $ightharpoonup Докажем, что <math>K^c$ — открыто, тогда будет логично, что K — замкнуто. $a \in K^c$, докажем, что a — внутренняя. Для $\forall q \in K$ положим $r = \frac{\rho(a,q)}{2}$ и введём $V_a = B(a,r)$ и $W_q = B(q,r)$. $V_a \cap W_q = \varnothing$. Тогда $\{W_q\}_{q \in K}$ — открытое покрытие компакта K. Извлекаем конечное подпокрытие $\{W_k\}_{k=1}^n, K \subset \bigcup_{k=1}^n = W$, причём $\bigcap_{k=1}^n V_a = V$ — окрестность точки A. Но, $V \cap W = \varnothing$, а уж тем более, $V \cap K = \varnothing$. Значит, a — внутренняя точка K^c .

Теперь докажем, что K — ограничено. Возьмём $a \in X$ и рассмотрим покрытие K открытыми шарами $\{B(a,r_i)\}_{i=1}^{\infty}$. Извлечём из него конечное подпокрытие $\{B(a,r_i)\}_{i=1}^n$. Тогда логично, что K содержится в шаре $B(a,\max_{i=1}^n r_i)$, а, следовательно, ограничено.

⊲

2) ightharpoonup Возьмём открытое покрытие множества $K: \{G_{\alpha}\}_{\alpha \in A}$. Логично, что $G_{\alpha} \cup K^{c}$ образуют открытое покрытие X (т. к. K^{c} — открыто, в силу замкнутости K). Извлечём из него конечное подпокрытие $\{G_{k} \cup K^{c}\}_{k=1}$. Но, оно же и будет конечным открытым покрытием для K! Значит, оно — компактно \lhd

2.4.4 Лемма о вложенных параллелепипедах¹

Формулировка $a,b \in R^m, \{[a^{(i)},b^{(i)}]\}_{i=1}^\infty$ — последовательность вложенных m-мерных параллелепипедов

$$\forall k \in [1, m] \, \forall i \quad a_k^{(i)} \le a_k^{(i+1)} \le \ldots \le b_k^{(i+1)} \le b_k^{(i)}$$

$$\bigcap_{i=1}^{\infty} [a^{(i)}, b^{(i)}] \neq \varnothing$$

Доказательство

⊳ Тривиально. По аксиоме Кантора, пересечение каждого отрезка (мы рассматриваем покоординатно параллелепипеды как набор вложенных отрезков) непусто. Следовательно, пересечение многомерного случая непусто. ⊲

$\mathbf{2.4.5}$ Компактность замкнутого параллелепипеда в \mathbb{R}^{m1}

Формулировка

Замкнутый параллелепипед в \mathbb{R}^m компактен.

Доказательство

Summary: Хотим свести к задаче на вложенные параллелепипеды от противного.

ightharpoonup Положим, он не компактен. Тогда разобъём его покоординатно на пополам (каждое ребро посередине). Получим 2^m параллелепипедов. Верхняя оценка его размеров (диагональ) λ уменьшится в 2 раза.

Поскольку, он некомпактен, существует какая-то из этих частей, не являющаяся компактной. Тогда повторим описанную процедуру с ней рекурсивно и получим бесконечную последовательность вложенных некомпактных параллелепипедов.

Вуаля, предыдущая лемма только что нам говорила, что пересечение этого семейства непусто, а т.к. покрытие его открыто, то любая точка входит вместе с какой-то окрестностью.

А поскольку $\lambda \to 0$, мы можем подобрать такое N, что $\forall n > N$ вложенный параллелепипед будет полностью покрыт одной этой окрестностью. \lhd

2.4.6 Эквивалентность определений Гейне и Коши²

Формулировка

Определения по Коши и Гейне — эквивалентны. (swag)

Доказательство

- 1) Пусть A предел f в точке a по Коши. Тогда докажем, что A также и предел по Гейне. Вспомним определение Коши: $\forall \varepsilon > \exists \delta > 0 : \rho_X(x,a) < \delta : \rho_Y(f(x),A) < \varepsilon$. Тогда давайте подгоним определение по Гейне под условие для δ и тогда по Коши всё будет работать! Таким образом, $\forall \{x_n\}, x_n \in D \setminus \{a\}, x_n \to a$. По определению предела **последовательности** (опять по Коши, bruh), $\forall \varepsilon = \delta > 0 \exists n \in \mathbb{N} : \rho(x_n,a) < \delta$. Ура, всё работает! Значит и условие $\rho_Y(f(x),A) < \varepsilon$ тоже работает, и всё шикарно!
- 2) У нас есть предел по Гейне. Докажем, что он же и по Коши! Докажем это от противного: пусть это не так. Отрицнём определение по Коши, тогда утверждается, что если предела не существует, то $\rho(f(x),A) \geq \varepsilon^*$. Тогда, пусть $\delta = \frac{1}{n}$ для каждого $n \in \mathbb{N}: x_n \in D \setminus \{a\}, \rho_X(x_n,a) < \frac{1}{n}: \rho(f(x_n),A) \geq \varepsilon^*$ (так как мы отрицнули, это обязано так работать, то есть для каждого нашего δ обязательно найдётся такое n). Давайте теперь рассмотрим, собственно говоря, саму $\{x_n\}$. По теореме о 2 городовых $0 < \rho_X(x_n,a) < \frac{1}{n}$ при $: x_n \to_{n \to \infty} a$. Тогда по Гейне, $f(x_n) \to A$. Но тогда по определению предела последовательности $\{f(x_n)\}$ по Коши, для ε^* существует такой $n \in \mathbb{N}$, что $\rho(f(x_n),A) < \varepsilon^*$. Опачки, а мы строили диаметрально противоположно Значит, это туфта, и A таки предел и по Коши!

2.4.7 Единственность предела, локальная ограниченность отображения, имеющего предел, теорема о стабилизации знака 2

BASED: X, Y — метрические пространства, $f: D \subset X \to Y$

2.4.7.1 Единственность предела Формулировка

a — предельная точка D. $A,B\in Y,f(x)\to_{x\to a}A$ и $f(x)\to_{x\to a}B\Rightarrow A=B.$

Доказательство

 \triangleright

По Гейне. $\forall \{x_n\} \subset D \setminus \{a\}, x_n \to a, f(x_n) \to A$. По теореме о единственном пределе для последовательностей $f(x_n) \to A = B$

 \triangleleft

2.4.7.2 Локальная ограниченность отображения, имеющего предел Формулировка

Существует такая окрестность точки $a\ V_a$, что $f(V_a\cap D)\subset B^Y$

Доказательство

 \triangleright

Давайте возьмём $B(A,1)\subset Y$ и рассмотрим 2 случая. Пусть $a\notin D$, тогда по определению на языке окрестностей найдётся такая \dot{V}_a , что $f(\dot{V}_a\cap D=V_a\cap D)\subset B(a,1)$. Если же $a\in D$, тогда просто увеличим радиус до $R=1+\rho(f(a),A)$ и тогда точно $f(V_a\cap D)\subset B(A,R)$

 \triangleleft

2.4.7.3 Теорема о стабилизации знака Формулировка

 $\exists B \neq A \in Y : \forall x \in \dot{V}_a \cap D : f(x) \neq B$

Доказательство

 \triangleright

Ох, хорошо жилось без него, но всё же вспомним старину Коши! $\forall \varepsilon > 0 : \rho(f(x), A) < \varepsilon$. Так возьмём же такой $\varepsilon < \rho(f(x), B)$ и увидим, что всё шикарно работает!

 \triangleleft

Cледcтвие для $\mathbb R$

f(x) > 0 при A > 0 (и наоборот для отрицания!)

2.4.8 Арифметические свойства пределов отображений. Формулировка для ${\bf R}$ с чертой 2

ВАSED: X — метрическое пространство, Y — нормированное пространство, a — предельная точка $D, f, g: D \subset X \to Y; \ A, B \in Y \ f(x) \to A, g(x) \to B$

Формулировка

Все эти пределы существуют при $x \to a$:

1.
$$f(x) + g(x) \rightarrow A + B$$

2.
$$f(x)g(x) \to AB$$

3.
$$f(x) - g(x) \rightarrow A - B$$

4.
$$\lambda(x)f(x) \to \lambda A$$

5.
$$||f(x)|| \to ||A||$$

6. для
$$\mathbb{R} \; |f(x)| \to |A|$$

7. для
$$\mathbb{R}$$
 u $B \neq 0$ $\frac{f(x)}{g(x)} \frac{A}{B}$

Доказательство

0000

По Гейне!!!! (и доказанным для последовательностей свойствам).

Например, для 1: $\forall \{x_n\} \subset D \setminus \{a\}, x_n \to a$. Тогда $f(x_n) \to A, g(x_n) \to B \Rightarrow f(x_n) + g(x_n) \to A + B$

Остальное аналогично.

(Единственное, нужно отметить, что для (7) важно, что функция определена как минимум на $\dot{V}_a \cap D$)

Формулировка для $\overline{\mathbb{R}}$

1, 2, 3, 6, 7 — верны также и в $\overline{\mathbb{R}}$, если это имеет смысл (не возникают неопределённости)

2.4.9 Принцип выбора Больцано-Вейерштрасса¹

Формулировка

В R^m из любой ограниченной последовательности можно выбрать сходящуюся подпоследовательность.

Доказательство

ightharpoonup Поскольку последовательность ограничена, то \exists замкнутый параллелепипед I, в который мы можем её запихать \Rightarrow это параллелепипед компактен (см. Теорема о характеристике компактов в \mathbb{R}^{m1}) $\Rightarrow \forall \{x_n\} \exists \{n_\alpha\} : x_{n_\alpha} \to a \in I \lhd$

2.4.10 Сходимость в себе и её свойства 1

Формулировка

Последовательность сходится в себе, если

$$\forall \varepsilon > 0 \,\exists N : \forall n, l > N \quad \rho(x_n, x_l) < \varepsilon$$

Синонимы: последовательность Коши, фундаментальная последовательность

Свойства:

- 1. В любом метрическом пространстве сходящаяся последовательность сходится в себе
- 2. Но наоборот это работает только в \mathbb{R}^m (сходящаяся в себе сходится)

Доказательство

 \triangleright

1.

$$x_n \to a$$
 $\forall \varepsilon > 0 \,\exists N \,:\, \forall n, \underset{\text{допишем}}{l} > N \quad \rho(x_n, a), \rho(x_l, a) < \frac{\varepsilon}{2}$ $\rho(x_n, x_l) \leq \rho(x_n, a) + \rho(a, x_l) = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

2. Summary: Доказать ограниченность, по Больцано-Вейерштрасса найти сходящуюся подпоследовательность, доказать, что исходная тоже сходится по 2 определениям

$$\forall \varepsilon > 0 \,\exists N : \forall n, l > N \quad |x_n - x_l| < \frac{\varepsilon}{2}$$

$$\varepsilon := 1, \text{ тогда } B(x_{N+1}, \max(1, x_1, x_2, \dots, x_N)) \supset \{x_n\}_{n=1}^{\infty} \Rightarrow x_n \text{ огр. } \underset{\text{ПВБВ}}{\Rightarrow} \exists n_k : x_{n_k} \to a$$

$$\forall \varepsilon > 0 \,\exists K : \forall k > K \quad |x_{n_k} - a| < \frac{\varepsilon}{2}$$

$$M := \max(N+1, K+1)$$

$$(17)$$

Вот здесь важно. Мы выбрали M как индекс ПОДПОСЛЕДОВАТЕЛЬНОСТИ, для которого верно всё-всё-

 Γ .к. n_k возрастает, первые N элементов как минимум покрывают первые N элементов исходной последовательности.

$$n_M \geq n_{N+1} \geq N+1 \Rightarrow (16)$$
 выполняется и для x_{n_M} . Подытожим: $|x_n-a| \leq |x_{n_M}-x_n|+|x_{n_M}-a| < rac{arepsilon}{2} + rac{arepsilon}{2} = arepsilon$

Р.S. ПВБВ — Принцип выбора Больцано-Вейерштрасса¹

 \triangleleft

2.4.11 Критерий Коши для последовательностей и отображений¹

Формулировка

Те же свойства сходимости в себе, но уже про отображения.

 $\exists X, Y$ — метрическое пространство. Y полное (reminder: это значит, что в нём сходимость последовательности в себе равносильна сходимости к конечному пределу (в обе стороны)).

Критерий Коши утверждает, что отображение $f:D\subset X\to Y$ сходится в себе \Leftrightarrow сходится к конечному пределу A. Разумеется, в предельной точке a

Доказательство

 \triangleright

Задача перейти к последовательностям любой ценой. Если бы у нас уже был конечный предел, то сработало бы "по Гейне". Сейчас всё сложнее. Запишем определение "сходимости в себе":

$$\forall \varepsilon > 0 \exists V_a \subset D : \forall x, x' \in V_a \quad \rho(x, x') < \varepsilon$$

Теперь надо как-то получить из этого последовательность прообразов, стремящуюся к a

$$\{x_n\} \to a$$

Для этой последовательности мы можем найти такое N, что все точки будут лежать в любой окрестности V_a , а значит, расстояние между образами любых 2 элементов этой последовательности будет $< \varepsilon$. Другими словами, последовательность образов $f(x_n)$ и будет сходиться в себе, а там уже всё доказано в Сходимость в себе и её свойства $f(x_n)$

$$\exists N: \forall n>N \quad x_n, x_l \in V_a \Rightarrow \rho(f(x_n), f(x_l)) < arepsilon \Rightarrow \{f(x_n)\}$$
 сходится в себе

 \triangleleft

 $\Leftarrow \triangleright$

Вообще по идее можно проще (в 2 слова): по Гейне :)

$$\forall V_A \subset Y \,\exists V_a \subset D : \forall x_n, x_l \in V_a \quad f(x_n), f(x_l) \in \dot{V}_A$$
$$\rho(f(x_n), f(x_l)) \leq \rho(f(x_n), A) + \rho(f(x_l), A) = \varepsilon$$

 \triangleleft

2.4.12 Свойства непрерывных отображений: арифметические, стабилизация знака, композиция 1

2.4.12.1 Арифметические

Формулировка

X — метрическое, Y — нормированное, $\lambda \in \mathbb{R}$

$$f, g: D \subset X \to Y$$

 $f+g, f-g, \lambda \cdot f, ||f||$ непрерывны.

Доказательство

$$\lim_{x \to x_0} f(x) = f(x_0)$$

$$\lim_{x \to \infty} g(x) = g(x_0)$$

Теперь арифметические свойства отображений:

$$\lim_{x \to x_0} f(x) + g(x) = f(x_0) + g(x_0)$$

А это в точности определение непрерывности. Если x_0 предельная — то это всё работает без изменений. А если изолированная, то там вообще можно смотреть тупо на саму точку, т.к. в окрестности всё-равно ничего не определено. Остальная арифметичка аналогично.

2.4.12.2 Стабилизация знака

Формулировка

$$f: D \to \mathbb{R}, \lim_{x \to x_0} f(x) = f(x_0)$$

$$\forall x_0 \in D \setminus \{0\} \exists V_{x_0} : \forall x \in V_{x_0} \quad \operatorname{sign} f(x) = \operatorname{sign} f(x_0)$$

Доказательство

По Гейне
$$x_n \to x_0$$
 $f(x_n) \to f(x_0)$

Далее вставляем определение на окрестностях для сходящейся последовательности. Говорим, что $\varepsilon := f(x_0)/2$ И получаем такую окрестность, что все элементы лежат по одну сторону от нуля в этой окрестности.

ИМХО у Виныча сложнее

2.4.12.3 Композиция

Формулировка

X,Y,Z — метрические пространства. $D\subset X,E\subset Y$

 $f:D\to Y, f(D)\subset E, g:E\to Z, f(x)$ непрерывно в $x_0,g(x)$ непрерывно в точке $f(x_0).$ Тогда g(f(x)) Непрерывно в x_0

Доказательство

 \triangleright

$$\lim_{x \to x_0} f(x) = f(x_0) \Rightarrow x_n \to x_0, \quad f(x_n) \to f(x_0)$$

$$\lim_{x \to f(x_0)} g(x) = g(f(x_0)) \Rightarrow y_n \to f(x_0) \quad g(y_n) \to g(f(x_0))$$

Заметим, что $f(x_n)$ как раз стремится к $f(x_0)$. Тогда мы можем в качестве y_n взять $f(x_n)$ и всё выполнится: $g(f(x_n)) \to g(f(x_0))$. Это как раз определение по Гейне для того, что мы хотим получить. \triangleleft

2.4.13 Непрерывность композиции и соответствующая теорема для пределов¹

2.4.13.1 Непрерывность композиции

см. Композиция

2.4.13.2 Предел композиции

Формулировка

$$f:D\subset X\to Y, g:E\subset Y\to Z$$

$$f(D) \subset E$$

$$\lim_{x \to x_0} f(x) = A$$

$$\lim_{x \to A} g(x) = B$$

 $\exists U_{x_0}: \forall x \in U_{x_0} \quad f(x) \neq A \text{ (а вдруг g(A) не определено?)}$

$$\Rightarrow \lim_{x \to x_0} g(f(x)) = B$$

Доказательство

По Гейне)

 \triangleright

$$x_n \to x_0 \quad f(x_n) \to A$$

$$y_n \to A \quad g(y_n) \to B$$

Действительно, в качестве y_n прекрасно подходит $f(x_n)$, т.к. он $\to A$

$$f(x_n) \to A \quad g(f(x_n)) \to B$$

<1

${f 2.4.14}$ Теорема единственности асимптотического разложения ${f 2}$

Формулировка

Пусть X — метрическое пространство, $f:D\subset X\to\mathbb{R}(\mathbb{C}), x_0\in D$ — предельная точка. $n\in\mathbb{Z}_+, k\in[0:n], g:\to\mathbb{R}(\mathbb{C})$. Задана такая система функций $\{g_k\}$ и $\forall V_{x_0}\ \exists t\in\dot{V}_{x_0}\cap D:g_n(t)\neq$. Тогда если существует асимптотическое разложение по системе функций $\{g_k\}$, то оно единственно. Иными словами, в разложениях

$$f(x) = \sum_{k=0}^{n} c_k g_k(x) + o(g_n(x))$$
(19)

$$f(x) = \sum_{k=0}^{n} d_k g_k(x) + o(g_n(x))$$
 (20)

Тогда $c_k = d_k$.

Доказательство

 \triangleright

Вот тут мы доказываем странную вещь, я её сам до конца ещё не осознал

Во-первых, $\forall l < r : g_r = o(g_l)$ (по индукции). Во-вторых, обозначим за $E_k = \{x \in D, g_k(x) \neq 0\}$. И тогда если бы $g_k(x)$ обращалось бы в тождественный 0, то и её φ тоже бы обращалось в 0 (из определения о-малого) на $\dot{V}_a \cap D$. И раз оно не обращается (противоречит условию), то для всех kx_0 — предельная точка для E_k .

А тут норм доказательство

Пойдём от противного. А пусть это не так. Тогда возьмём самый маленький $k: c_k \neq d_k$ и вычтем соответствующие уравнения (18) и (19).

$$0 = (c_k - d_k)g_k(x) + o(g_k(x))$$

поделим на $g_k(x)$

$$d_k - c_k = \frac{o(g_k(x))}{g_k} = o(1)$$

Следовательно, $c_k = g_k$ (не существует такого индекса).

<

${f 2.4.15}$ Теорема о вписанном n-угольнике максимальной площади 2

Формулировка

Пусть дана окружность радиуса R. Тогда набольшее по площади, что мы туда из фигур с n сможем запихнуть, будет правильный n-многоугольник.

Доказательство

Вот возьмём произвольный вписанный многоугольник. Если его стороны не равны, то проведём хорду через вершины точек и выберем точку, максимально удалённую от форды и лежащую на окружности. По сути, заменим на равные стороны.

Короче, на данном моменте мы убедились, что максмальная площадь вписанного n-угольника достигается при его σ правильности σ . Теперь осталось убедиться, что этот максимум вообще достигается.

Заведём функцию для площади многоугольника через центральные углы:

$$S(x) = S(\alpha_1, \alpha_2 \dots \alpha_n) = \sum_{i=1}^{n} \frac{1}{2} R \sin \alpha_i$$

Тогда, заметим, что $0 \le \alpha_i \le \pi$, а так же функцию мы сотворили путём проведения преобразований над элементарными функциями (непрерывными) $\sin \alpha \to R \sin \alpha \to \sum_{i=1}^n \frac{1}{2} R \sin \alpha_i$ то и наша функция является непрерывной (по арифм. свойствам). Заметим также, что множество наших

векторов аргументов ограничено. Так же оно замкнуто (у нас все ограничения нестрогие). Поэтому множество аргументов — компакт. А значит, его образ — тоже и достигает максимума.

 \triangleleft

2.4.16 Лемма о связности отрезка 2

Формулировка

 $\langle a,b \rangle \subset \mathbb{R}$ — отрезок. Тогда неверно, что $\exists V,U \subset R$ — открытые множества, такие что:

- 1. $U \cap V = \emptyset, U \neq \emptyset, V \neq \emptyset$
- 2. $\langle a, b \rangle \subset U \cup V$
- 3. $\langle a,b\rangle\cap U\neq\varnothing$ и $\langle a,b\rangle\cap V\neq\varnothing$

Доказательство

 \triangleright

От противного. Пусть $\langle a,b \rangle \subset U \cup V, \alpha \in \langle a,b \rangle \cap U, \beta \in \langle a,b \rangle \cap V$. Тогда пусть $\alpha < \beta$ (об не умоляя общностио). Теперь положим $t=\sup y: [\alpha,y) \subset U$. Заметим, что множество, из которого мы берём экстремум непустое $(U \neq \varnothing, U - \text{открытое} \to \exists [\alpha,y) \subset B_\alpha \subset U)$ и ограниченное $(U \cap V = \varnothing, y \in U \Rightarrow y < \beta)$. Причём, раз $t \in [\alpha,\beta) \Rightarrow \langle a,b \rangle$. Если $t \in U \Rightarrow \exists V_t \subset U$, а мы строили множество границ так, что не существует такой окрестности. Если $t \in V$, то $\exists V_t \subset V$. Но тогда не весь промежуток $[\alpha,\beta)$ входит внутрь U, т.к. мешает как раз вот эта V_t . Следовательно, существуют точки, которые не накрываются ни одним отрезком.

 \triangleleft

2.4.17 Теорема о бутерброде²

Формулировка

Кусок колбасы и хлеба (фигуры $A,B\subset\mathbb{R}^2$) можно разрезать ножом (прямой) на части равной площади.

Доказательство

Сформулируем и докажем сначала лемму:

 $A \subset \mathbb{R}^2, \vec{V}$ — произвольный вектор. Тогда существует прямая с направлением вектора V, которая делит прямую на 2 равновеликих фигуры.

 \triangleright

Давайте заведём числовую ось, причём эта ось пусть будет непараллельна V. Тогда $\forall t \in Ox$: $S(x) = S_l - S_r$. Будем через каждую точку числовой прямой t будем проводить прямую, параллельную вектору V, и тогда для каждой такой точки будет определена функция как разность площадей левой и правой части фигуры.

Заметим, что $|S(t_0)-S(t)|=|2S_k|\leq (t-t_0)h_{\rm доски}\Rightarrow S(t)$ — непрерывна, следовательно, между — S и S обязательно найдётся точка, в которой S(t)=0 (по теореме о промежуточном значении).

 \triangleleft

Теперь введём функцию $g(\varphi) = S_l^B(\varphi) - S_r^B(\varphi)$, это такая функция, которая определена на $\varphi \in [0, 2*\pi]$ и проводит линию под углом φ к оси координат, причём эта линия делит фигуру A на равновеликие части.

Тогда, заметим что

- 1. $g(\varphi + \pi) = -g(\varphi)$ (направление меняется, соответственно, меняется понятие лева и права)
- 2. $g(\varphi_1)-g(\varphi_2) \leq 4*\frac{1}{2}*d^2*|\sin\varphi_1-\sin\varphi_2|$ (по сути, тоже площадь кусочка) $\Rightarrow g$ непрерывна.

Тогда по теореме Больцпно-Коши о промежуточном значении всё получается!

2.4.18 Теорема о сохранении промежутка¹

2.4.18.1 Лемма

Формулировка

E выпукло $\Leftrightarrow E$ промежуток

Доказательство

← очевидно

 \Rightarrow

 $\exists M = \sup E, m = \inf E$

По определению sup, в любой окрестности будут элементы множества. Таким образом, $(m,M) \subset E$. Также, поскольку m и M ограничивают выпуклое множество, $E \subset [m,M]$. Таким образом, E - промежуток.

Формулировка

Непрерывный образ промежутка — промежуток.

Доказательство

 $f: C(\langle a, b \rangle \to \mathbb{R})$

 $D := \langle a,b \rangle, f(D) = E$. E выпукло по теореме о промежуточном значении (для любого отрезка на промежутке $\langle a,b \rangle$ теорема работает).

Тогда, очевидно, E — промежуток. (по лемме чуть выше)

2.4.19 Теорема Больцано-Коши о сохранении линейной связности¹

Линейная связность

Множество в метрическом пространстве называется линейно связным, когда межу любыми 2 точками существует путь.

Формулировка

Непрерывный образ линейно-связного множества линейно-связен

Доказательство

 $f:C(X\to Y),\,X,Y$ – метрические пространства.

 $f(D)=E.\ D$ линейно-связно. $\Rightarrow orall a,b\exists$ путь g:C([0,1] o D), при этом g(0)=a,g(1)=b.

Поскольку образ $g\subset D$, то $\forall x\in [0,1]\exists f(g(x))\in E$. При этом f(g(0))=f(a), f(g(1))=f(b), то есть это работает для всех точек в D

2.4.20 Описание линейно связных множеств в ${f R}^2$

Определения

 $\gamma:[a,b]\to Y$ — метрическое пространство. Тогда γ — путь в м.п. Y.

 $E\subset Y$ — метрическое пространство, тогда E называется линейно связным, если $\forall A,B\in E$ $\exists \gamma:[a,b]\to E$ непрерывный, $\gamma(a)=A,\gamma(b)=B$

Формулировка

В $\mathbb{R}E$ — линейно связно $\Leftrightarrow E$ — промежуток.

Доказательство

 \triangleright

(

Очевидно.

Что, не очевидно? А вот так? $t \in [0,1], t(B-A) \subset [A,B] \subset \langle a,b \rangle$

 \Rightarrow

E — не пустое (пустое — тривиальный случай). Пусть $m=\inf E, M=\sup E$. Проверим, что $(m,M)\subset E.$ $t\in (m,M), t\notin E$. Если возьмём $A,B\in E$ такие, что $m\leq < A< t< B\leq M$. Но в таком случае, E не будет линейно связанным, т.к. $\exists c:\gamma:(a,b)\to E, \gamma(c)=t$. Тогда $(m,M)\subset E$.

 \triangleleft

2.4.21 Теорема о существовании и непрерывности обратной функции¹

Формулировка

$$f: C(\langle a, b \rangle \to \mathbb{R})$$

f строго монотонна (положим, возрастает)

Тогда $\exists f^{-1}$ и она строго возрастает и непрерывна

Доказательство

 \triangleright

- 1. По определению обратной функции, f обратима, когда является инъекцией. Поскольку $f(\langle a,b\rangle)=\langle m,M\rangle$, где $m=\inf,\ M=\sup$. Ну по Теорема о сохранении промежутка 1. Поскольку f строго возрастает, каждое значение на $\langle m,M\rangle$ принимает ровно 1 раз. Тогда это инъекция $\Rightarrow f$ обратима.
- 2. Строгая монотонность обратной функции крайне очевидна:

$$\forall x_1 > x_0 \quad f(x_1) > f(x_0) \Rightarrow \forall y_1 > y_0 \exists x_1 = f^{-1}(y_1), x_0 = f^{-1}(y_0)$$

Т.к. f^{-1} — биекция, пара x_1 и y_1 однозначно определена и, следовательно, сохраняется неравенство $x_1>x_0$

3. По определению обратной функции, она является биекцией $\langle m,M\rangle$ в $\langle a,b\rangle$. Так как она монотонна, а её множество определения и значений — промежутки, то она непрерывна (по Теорема о непрерывности монотонной функции. Следствие о множестве точек разрыва 1 , п.2)

 \triangleleft

${f 2.4.22}$ Равносильность двух определений производной. Правила дифференцирования. 3

2.4.22.1 Равносильность определений дифференцируемости

Формулировка:

Определения дифференцируемости (внезапно) равносильны

Доказательство.

 $2\Rightarrow 1$ т.е. $f(x)=f(x_0)+A(x-x_0)+\varphi(x)(x-x_0)$, где $\varphi(x)\xrightarrow[x\to x_0]{}0$ Теперь все это разносим в разные стороны, делим на $x-x_0$ и получаем

$$\frac{f(x) - f(x_0)}{x - x_0} = A + \varphi(x) \xrightarrow[x \to x_0]{} A$$

Что равносильно определению 1.

 $1 \Rightarrow 2$ Обратно, обозначим

$$\varphi(x) = \frac{f(x) - f(x_0)}{x - x_0} - A$$

Тогда $\varphi(x) \xrightarrow[x \to x_0]{} 0$ и выполнено определение 2.

2.4.22.2 Производная сумммы и разности

Формулировка:

$$(f \pm g)' = f' \pm g'$$

Доказательство.

$$(f \pm g)' = \frac{(f+g)(x+\Delta x) - (f+g)(x)}{\Delta x} = \frac{f(x+\Delta x) - f(x)}{\Delta x} + \frac{g(x+\Delta x - g(x))}{\Delta x} \xrightarrow{\Delta x \to 0} f' \pm g'$$

2.4.22.3 Производная сумммы и разности

Формулировка:

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

Доказательство.

$$\frac{(fg)(x + \Delta x) - (fg)(x)}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}g(x + \Delta x) + f(x)\frac{g + \Delta x}{\Delta x} - g(x) \xrightarrow{f}'(x)g(x) + f(x)g'(x)$$

2.4.22.4 Производная частного

Формулировка:

$$\left(\frac{f}{g}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Доказательство.

$$\frac{\frac{f}{g}(x+\Delta x) - \frac{f}{g}(x)}{\Delta x} = \frac{1}{g(x+\Delta x)(g(x))} \left(\frac{f(x+\Delta x) - f(x)}{\Delta x}g(x) - f(x)\frac{g(x+\Delta x) - g(x)}{\Delta x}\right) \xrightarrow[h\to 0]{} \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

2.4.22.5 Производная композиции

Формулировка:

$$(f \circ g)'(x) = g'(f(x)) * f'(x)$$

Доказательство. Из определения 2 можно записать

$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \alpha(\Delta x)\Delta x$$

$$g(y + \Delta y) = g(y) + g'(y)\Delta y + \beta(\Delta y)\Delta y$$

где α и β в нуле непрерывны и равны нулю. Во второе уравнение подставим $\Delta y = f'(x)\Delta x + \alpha(\Delta x)\Delta x = \tau(\Delta x)$

$$g(f(x + \Delta x)) = g(f(x)) + g'(f(x)) (f'(x)\Delta x + \alpha(\Delta x)\Delta x) + \beta(\tau(\Delta x))\tau(\Delta x) =$$

$$= g(f(x)) + g'(f(x))f'(x)\Delta x + \gamma(\Delta x)\Delta x$$

где

$$\gamma(\Delta x) = g'(y)\alpha(\Delta x) + \beta(\tau(\Delta x))(f'(x) + \alpha(\Delta x))$$

Ясно, что $\gamma(0)=0, \gamma$ непрерывна в нуле, следовательно, $f\circ g$ дифференцируема в 0 и выполняется требуемое в условии.

2.4.22.6 Производная обратной функции

Формулировка: $(f^{-1})'(f(x)) = \frac{1}{f'(x)}$

Доказательство. Вот здесь начинается веселье. Из предыдущих теорем курса мы знаем, что f^{-1} существует, определена на P, строго монотонна и непрерывна. Пусть y = f(x), возьмем $\Delta y \neq 0$: $y + \Delta y \in P$, положим $\Delta x = f^{-1}(y + \Delta y) - f^{-1}(y) = \tau(\Delta y)$. Тогда $\Delta x \neq 0$, $x = f^{-1}(y)$, $x + \Delta x = f^{-1}(y + \Delta y)$ и $f(x + \Delta x) - f(x) = \Delta y$. Составим разностное отношение

$$\frac{f^{-1}(y+\Delta y)-f^{-1}(y)}{\Delta y} = \frac{\tau(\Delta y)}{f(x+\tau(\Delta y))-f(x)}$$

и найдем его предел при $\Delta y \to 0$. По условию (f - дифференцируема)

$$\frac{\Delta x}{f(x+\Delta x)-f(x)}\xrightarrow[h\to 0]{}\frac{1}{f'(x)}$$

Но $au(k) \xrightarrow[k \to 0]{} 0$ по непрерывности f^{-1} в точке y . Следовательно, по теореме о пределе композиции

$$\frac{f^{-1}(y + \Delta y) - f^{-1}(y)}{\Delta y} \xrightarrow[k \to 0]{} \frac{1}{f'(x)}$$

2.4.23 Теорема Ферма (с леммой) 2

Формулировка (Лемма)

 $f: \langle a,b \rangle \to \mathbb{R}$, дифференцируема и возрастает в т. $x_0 \in (a,b)$. Тогда $f'(x_0) > 0, \exists \varepsilon > 0: \forall x \in (x_0 - \varepsilon, x_0) \ f(x) < f(x_0)$ и $(x_0, x_0 + \varepsilon) \ f(x) > f(x_0)$ (строго возрастает).

Доказательство (Лемма)

Во-первых,
$$\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0) > 0$$

Тогда, по теореме о стабилизации знака:

$$x \to x_0 + 0$$
 (справа), тогда $f(x) - f(x_0) > 0$

$$x \to x_0 + 0$$
 (слева), тогда $f(x) - f(x_0) < 0$

Сошлось (вблизи x_0).

Формулировка (Теорема)

 $f:\langle a,b \rangle \to \mathbb{R}$, дифференцируема в т. $x_0 \in (a,b), c=\max_{x \in (a,b)} f(x)$. Тогда $f'(x_0)=0$.

Доказательство (Теорема)

 \triangleright

$$f(x) - f(c) \le 0$$

$$f'(x)=\lim_{x\to c}\frac{f(x)-f(c)}{x-c}$$
. Заметим, что $x=c+\Delta x$. Тогда $\lim_{\Delta x\to 0}\frac{f(c+\Delta x)}{\Delta x}=f'(c)$

$$\lim_{x \to c - 0} \frac{f(x) - f(c)}{x - c} \ge 0 \Rightarrow f' \ge 0$$

$$\lim_{x \to c+0} \frac{f(x) - f(c)}{x - c} \le 0 \Rightarrow f'(c) \le 0$$

(Всё дело в знаменателе!!!!)

Тогда
$$0 \le f'(x) \le 0 \Rightarrow f'(c) = 0$$

 \triangleleft

2.4.24 Теорема Ролля. Вещественность корней многочлена Лежандра²

2.4.24.1 Теорема Ролля

Формулировка

 $f:[a,b] \to \mathbb{R}$, дифференцируема на (a,b) и непрерывна на [a,b], f(a)=f(b). Тогда $\exists c:f'(x)=0$

Доказательство

 \triangleright

По теореме Вейерштрасса, $\exists x_0 = \min_{x \in [a,b]} f(x), x_1 = \max_{x \in [a,b]} f(x)$. Тогда, по теореме Ферма, если x_0 или x_1 лежит в (a,b), то нам подходит $c=x_0$ или $c=x_1$. Иначе, если $x_0=x_1 \Rightarrow \text{const.}$ Если не лежит в $(a,b) \Rightarrow x_0=a, x_1=b \Rightarrow \text{const.}$ тривиально.

 \triangleleft

Следствие

 $f:[a,b]\to\mathbb{R}$, непрерывна на $[a,b], f(a)=f(b)=0\Rightarrow\exists c\in(a,b)$

2.4.24.2 Вещественность корней многочлена Лежандра Формулировка

$$L_n(x) = \left((x^2-1)^n\right)^{(n)}$$
 — многочлен Лежандра.

Утверждается, что он имеет n вещественных корней на (-1,1).

Доказательство

 \triangleright

Корень a называется корнем кратности k исходной функции f(x), если $f_1(x) = (x-a)^k f_1(x)$ и $f_1(a) \neq 0$. Заметим, что если a корень кратности k для f(x), то для f'(x) это корень кратности k-1 (доказывается дифференцированием $(x-a)^k f_1(x)$).

Тогда поехали. Для самого многочлена Лежандра существует 2 корня кратности n:1,-1. Если взять производную, то по теореме Ролля $\exists c \in (a,b)$, следовательно, существует ещё один корень. Наши же первоначальные корни остаются корнями уравнения, но их кратность стала по n-1. Тогда всего в сумме у нас получается 2n-2+? корней, где ?=1, т.к. вообще корней у многочлена первой производной существует не более 2n-1. Так продолжаем и дальше, в итоге получаем, что у k-й производной есть k корней. Тогда для производной степени n у многочлена Лежандра n вещественных корней.

 \triangleleft

${f 2.4.25}$ Непрерывность синуса и арксинуса, замечательный предел, производная синуса. ${f ^3}$

2.4.25.1 Лемма

Формулировка:

 $\forall x \in \mathbb{R}$

$$|\sin x| \le |x|$$

2.4.25.2 Непрерывность синуса

Формулировка:

Синус непрерывен на \mathbb{R}

Доказательство. $\forall x + 0 \in \mathbb{R}$

$$\left|\sin x - \sin x_0\right| = \left|2\sin\frac{x - x_0}{2}\cos\frac{x + x_0}{2}\right| \le 2 * \frac{|x - x_0|}{2} * 1 = |x - x_0| \xrightarrow[x \to x_0]{} 0$$

 $\arcsin:[-1,1]\xrightarrow{\text{на}}\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ непрерывна по теореме о непрерывности обратной функции

2.4.25.3 Первый замечательный предел

Формулировка:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство. При $x \in \left(0, \frac{\pi}{2}\right)$

$$\sin x < x < \operatorname{tg} x$$

Делим это все на $\sin x$ и берем обратные, из-за чего неравенство переворачивается, и получаем

$$\cos x < \frac{\sin x}{x} < 1$$

т.к. все части этого неравенства — четные функции, то такой переход легитимен. А т.к. $\cos x$ стремится к 1 при $x \to 0$, то по теореме о зажатой функции — победа.

2.4.25.4 Производная синуса

Формулировка:

$$(\sin x)' = \cos x$$

Доказательство. Пользуемся замечательным пределом выше и непрерывностью косинуса

$$\frac{\sin x + \Delta x - \sin x}{\Delta x} = \frac{2\sin\frac{\Delta x}{2}\cos\left(x + \frac{\Delta x}{2}\right)}{\Delta x} \xrightarrow{\Delta x \to 0} \cos x$$

3 Период 3 (Кайнозойский)

3.1 Важные определения

3.1.1 Множество мощности континуума¹

Множество мощности континуума равномощно $[0,1]\subset\mathbb{R}$

${f 3.1.2}$ Разложения Тейлора основных элементарных функций 1

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots + \binom{\alpha}{n} x^{n} + o(x^{n})$$

3.1.3 Выпуклая функция и касательная ^{1 3}

 $f:\langle a,b \rangle o \mathbb{R}$ - выпуклая \Leftrightarrow

$$\forall x, y \in \langle a, b \rangle \quad \forall \alpha \in (0, 1) \quad f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$$

Вообще это утверждение эквивалентно неравенству Йенсена. Смысл в том, что мы можем зафиксировать любые 2 точки x и y на указанном отрезке, при чём будет верно то, что если мы соединим их прямой (ну то есть получим хорду из (x, f(x) в y, f(y)), то эта хорда будет выше, либо равна нашей функции (ну то есть функция как-то идёт сначала вниз, а потом начинает расти и пересекает хорду только в точке y.

Аналогично, есть "вогнутая" функция (

"выпуклой сверху").

Также, можем ввести "строго выпуклую функцию". Определение такое же, но хорда должна быть строго выше.

3.1.4 Теорема Дарбу. Следствия³

3.1.4.1 Теорема Дарбу

Формулировка: f - дифференцируема на $[a,b] \Rightarrow \forall C \in (f'(a),f'(b)) \exists c \in (a,b): f'(c) = C$

Доказательство.

1. f'(a) и f'(b) разных знаков, C = 0.

НУО f'(a) < 0 < f'(b). Т.к. f непрерывна на [a,b] то по Вейерштрассу $\exists c \in [a,b]: f(c) = \min_{x \in [a,b]} f(x)$. Если $c \in (a,b)$, то из Ферма f'(c) = 0 — победа. Проверим, что $c \neq b$ и $c \neq a$. Если c = a, то $\forall x \in (a,b] \frac{f(x)-f(a)}{x-a} \geq 0 \Rightarrow f'(a) \geq 0$. Противоречие с условием. Аналогично, $c \neq b$

2. Общий случай

НУО f'(a) < C < f'(b). $\varphi(x) = f(x) - Cx$. Тогда

$$\varphi'(a) = f'(a) - C < 0 < f'(b) - C = \varphi'(b)$$

Из 1.
$$\Rightarrow \exists c \in (a,b) : \varphi'(c) = 0$$
, т.е. $f'(c) = C$

3.1.4.2 Лемма о характеристике промежутков

Формулировка:

 $E \subset \mathbb{R}$. Тогда следующие утверждения равносильны.

- 1. Е промежуток
- $2. \ \forall x,y \in E, [x,y] \subset E$

Доказательство.

 $1. \Rightarrow 2.$ Очевидно

 $2. \Rightarrow 1.$ Пусть $E \neq \emptyset$. Обозначим $m = \inf E, M = \sup E.$ Очевидно, $E \subset [m,M]$. Покажем, что $(m,M) \subset E.$ Пусть m < z < M. Тогда из определения граней $\Rightarrow \exists x,y \in E: x < z < y$ По условию $z \in E$

3.1.4.3 Следствие 1

Формулировка:

f — дифференцируема на $\langle a,b \rangle \Rightarrow f'(\langle a,b \rangle)$ — промежуток.

Доказательство. Следует из леммы о характеристике промежутков

3.1.4.4 Следствие 2

 Φ ормулировка: Производная дифференцируемой на промежутке функции не может иметь на нем разрывов второго рода

Доказательство. Аналогично доказательству теоремы о непрерывности монотонной функции

3.2 Определения

3.2.1 Классы функций $C^n([a,b])^1$

f называется n-гладкой, если имеет n непрерывных производных (формально, $\forall i=1\dots n\ \exists\ i$ -ая непрерывная производная)

Класс функций $C^n([a,b])$ - это множество n-гладких функций на [a,b]

3.2.2 Производная n-го порядка¹

Пусть есть натуральное $n.\ f: X \to Y$ (где X и Y - м.п.) - дифференцируема в интервале (a,b). Тогда мы можем взять производную f'(x) в этом интервале. Далее индуктивно мы можем рассуждать о полученной производной как о функции.

Такими темпами мы дойдём до $f^{(n)}$, что и называют "производной n-го порядка"

3.2.3 Многочлен Тейлора n-го порядка¹

$$T_n(f,a)(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

3.2.4 Счётное множество¹

Множество счётно \Leftrightarrow множество равномощно $\mathbb N.$ То есть можно установить биекцию между $\mathbb N$ и множеством

3.2.5 Выпуклое множество в \mathbb{R}^{m1}

 $A \subset \mathbb{R}^m$ - выпуклое множество в \mathbb{R}^m , если

$$\forall x, y \in A, \alpha \in [0, 1] \quad \alpha x + (1 - \alpha)y \in A$$

3.2.6 Надграфик¹

Надграфик функции $f:\langle a,b\rangle \to \mathbb{R}$ это множество $\{(x,y)|x\in \langle a,b\rangle, y\geq f(x)\}$

3.2.7 Опорная прямая¹

 $A\subset\mathbb{R}^2$ - выпуклое $l\subset\mathbb{R}^2$ - прямая

l - опорная прямя для A, когда выполняется:

- 1. A содержится в одной полуплоскости относительно l (лежит полностью по одну сторону от прямой)
- 2. Пересечение прямой и множества непусто $(l \cap A \neq \varnothing)$

3.2.8 Равномерная непрерывность¹

Равномерность непрерывности говорит то, что мы можем для ε найти конкретный δ , который не зависит от аргументов (работает на всей области определения), при котором разность значения функции меньше ε

Формально,

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in \langle a, b \rangle : |x_1 - x_2| < \delta \quad |f(x_1) - f(x_2)| < \varepsilon$$

Аналогично, это работает для метрических пространств:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in \langle a, b \rangle : \rho(x_1 - x_2) < \delta \quad \rho(f(x_1) - f(x_2)) < \varepsilon$$

3.3 Важные теоремы

3.3.1 Формула Тейлора с остатком в форме Пеано²

Формулировка

Пусть f(x) дифференцируема в точке x_0n раз, у неё есть многочлен Тейлора $P_n(x)$), тогда $f(x) = P_n(x) + o((x-x_0))^n$ при $x \to x_0$.

Доказательство

 \triangleright

У нас есть некое основное свойство многочлена Тейлора, которое утверждает, что функция и её многочлен Тейлора n степени, а также их производные до n порядка включительно имеют равное значение в точке x_0 . Запомним. Тогда определим остаток $R_n(x) = f(x) - P_n(x)$. Перефразируя условие, $R_n(x_0) = R_n'(x_0) = \dots = R_n^{(n)}(x_0) = 0$. Из непрерывности в точке x_0 также следует, что пределы функции $R_n(x)$ и её производных до n при $x \to x_0$ порядка равны 0. Супер. Тогда нам по сути нужно доказать, что $R_n(x) = o(x-x_0)^n$ при $x \to x_0 \in \lim_{x\to x_0} \frac{R_n(x)}{(x-x_0)^n}$. По-Лопиталим всё это дело n-1 раз, и получим $\frac{1}{n!}\lim_{x\to x_0} \frac{R_n^{(n-1)}(x)-R_n^{(n-1)}(x_0)(=0)}{(x-x_0)^n}$ — а это определение производной $R_n^{(n)}(x) = 0$

 \triangleleft

3.3.2 Формула Тейлора с остатком в форме Лагранжа¹

Определение:

 $f \in C^n(a,b), (n+1)$ раз дифференцируема на (a,b)

 $x, x_0 \in \langle a, b \rangle$. Тогда $\exists c$ между x и x_0

$$f(x) = f(x_0) + \frac{f'(x_0)(x - x_0)}{1!} + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

Доказательство:

$$\phi(t) = f(x) - T_n(f,t)(x) = f(x) - \left(f(t) + \frac{f'(t)}{1!}(x-t) + \dots + \frac{f^{(n)}(t)}{n!}(x-t)^n\right)$$

$$\phi(x) = 0$$

$$\phi'(t) = -\left(f'(t) + \left(-\frac{f'(t)}{1!} + \frac{f''(t)}{1!}(x-t)\right) + \left(-\frac{f''(t)}{1!}(x-t) + \frac{f'''(t)}{2!}(x-t)^2\right) + \dots\right) =$$

$$= -\frac{f^{(n+1)}(t)}{n!}(x-t)^n$$

 $\psi(t):=(x-t)^{n+1}$. По Т. Коши $\exists c$ между x и x_0 :

$$\frac{-R_n(f,x_0)(x)}{-(x-x_0)^{n+1}} = \frac{\phi(x) - \phi(x_0)}{\psi(x) - \psi(x_0)} = \frac{\phi'(c)}{\psi'(c)} = \frac{-\frac{f^{(n+1)}(c)}{n!}(x-c)^n}{-(n+1)(x-c)^n}$$

Тогда $R_n(f,x_0)(x)=rac{f^{(n+1)}(x_0)+\theta(x-x_0)}{n!}(1-\theta)^n(x-x_0)^{n+1}$ - ост. в форме Коши

3.4 Теоремы

3.4.1 Следствие об оценке сходимости многочленов Тейлора к функции. Примеры³

3.4.1.1 Лемма

Формулировка:

Пусть выполнены условия для существования формулы Тейлора с остатком в форме Лагранжа, $M>0, \forall t\in\langle x,x_0\rangle|f^{(n+1)}(t)|\leq M.$ Тогда

$$|R_{n,x_0}f(x)| \le \frac{M|x - x_0|^{n+1}}{(n+1)!} \tag{21}$$

Доказательство. Прямо следует из формы Лагранжа остаточного члена.

3.4.1.2 Следствие

Формулировка:

Пусть $f \in C^{(\infty)}\langle a,b \rangle$, и существует M>0 : $\forall n \in \mathbb{N}$ и $t \in \langle a,b \rangle$ выполняется неравенство $|f^{(n)}(t)| \leq M$. Тогда $\forall x,x_0 \in \langle a,b \rangle$

$$T_{n,x_0}f(x) \xrightarrow[n \to \infty]{} f(x)$$
 (22)

 $\begin{subarray}{ll} \mathcal{A} оказательство. Т.к. $\forall K \in \mathbb{R}$ $\frac{K^n}{n!}$ $\xrightarrow[n \to \infty]{} 0$ и (27) выполняется для всех <math>n$ одновременно, получаем $R_{n,x_0}f(x) \xrightarrow[n \to \infty]{} 0 \Leftrightarrow (22)$

3.4.1.3 Пример 1

Формулировка:

Остаток для e^x

Доказательство. Так как $(e^x)^{(k)} = e^x; (e^x)^{(k)}|_{x=0} = 1$, верны равенства

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}) = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \dots + \frac{x^{n}}{n!} + o(x^{n}),$$

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \frac{e^{\theta x}}{(n+1)!} x^{n+1}, \quad \theta \in (0,1)$$

B частности при x=1

$$e = \sum_{k=0}^{n} \frac{1}{k!} + \frac{e^{\theta}}{(n+1)!}, \quad \theta \in (0,1)$$

Отсюда получаем оценки

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{\max\{e^x, 1\}}{(n+1)!} |x|^{n+1},$$

$$\frac{1}{(n+1)!} < e - \sum_{k=0}^n \frac{1}{k!} < \frac{e}{(n+1)!} < \frac{3}{(n+1)!}$$

Следовательно, $\forall x \in \mathbb{R}$

$$e^x = \lim_{n \to \infty} \sum_{k=0}^n \frac{x^k}{k!}$$

и, в частности,

$$e = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!}$$

3.4.1.4 Пример 2

Формулировка:

Остаток для $\sin x$

Доказательство. Из формулы

$$(\sin x)^{(m)} = \sin\left(x + \frac{m\pi}{2}\right)$$

при $k \in \mathbb{Z}_+$

$$(\sin x)^{(2k)}|_{x=0} = 0$$
 $(\sin x)^{(2k+1)}|_{x=0} = (-1)^k$

Поэтому

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + o(x^{2n+2}) = x - \frac{x^3}{6} + \frac{x^5}{120} - \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + o(x^{2n+2}),$$

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + \frac{\sin \alpha}{(2n+3)!} x^{2n+3}$$

где $\alpha = \theta x + \frac{(2n+3)\pi}{2}, \theta \in (0,1)$. Отсюда получаем оценку остатка

$$|R_{2n+2,0}(sin,x)| \le \frac{|x|^{2n+3}}{(2n+3!)}$$

Поэтому $\forall x \in \mathbb{R}$

$$\sin x = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

3.4.1.5 Пример 3

Формулировка:

Oстаток для $\cos x$

Доказательство.

$$(\cos x)^{(m)} = \cos\left(x + \frac{m\pi}{2}\right)$$
$$(\cos x^{(2k)}|_{x=0} = (-1)^k, \qquad (\cos x)^{(2k+1)}|_{x=0} = 0$$

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + o(x^{2n+1}) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \dots + \frac{(-1)^n}{(2n)!} x^{2n} + o(x^{2n+1}),$$

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + \frac{\cos \beta}{(2n+2)!} x^{2n+2}$$

где $\beta=\theta x+\frac{(2n+2)\pi}{2}, theta\in(0,1).$ Отсюда

$$|R_{2n+1,0}(\cos,x)| \le \frac{|x|^{2n+2}}{(2n+2)!}$$

Поэтому, $\forall x \in \mathbb{R}$

$$\cos x = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k}$$

3.4.1.6 Пример 4

 Φ ормулировка: Остаток для $\ln(1+x)$

Доказательство. Т.к. $\forall k \in \mathbb{N}$

$$(\ln(1+x))^{(k)} = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k}, \qquad (\ln(1+x))^{(k)}|_{x=0} = (-1)^{k-1}(k-1)!$$

 $a \ln 1 = 0$, получаем

$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + o(x^n) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n-1}}{n} x^n + o(x^n)$$

3.4.2 Несчетность отрезка³

 Φ ормулировка: Отрезок несчетен: $\sharp \varphi : \mathbb{N} \to [0,1]$

Доказательство. От противного. Пусть мы занумеровали все точки отрезка: $x_1, x_2, x_3, \ldots, x_n, \ldots$ Построим последовательность отрезков. $\Delta_0 = [0, 1]$. Делим Δ_0 на три отрезка, пусть Δ_1 — та треть Δ_0 , что не содержит x_1 . Продолжаем делить и брать трети: Δ_n — треть Δ_{n-1} , не содержащая x_n .

Очевидно, что $\Delta_0 \supset \Delta_1 \supset \ldots \supset \Delta_n \supset \ldots$ Но по теореме о стягивающихся отрезках $\cap \Delta_i = \{a\}$, но a не совпадает ни с одним из x_i . Абсурд.

3.4.3 Континуальность множества бинарных последовательностей³

Формулировка:

Bin — множество всех бесконечных последовательностей из 0 и 1. Тогда $\exists \varphi: [0,1] \to Bin$ — биекция.

Доказательство. $x \in [0,1]$ x = 0.1011000010... При отбрасывании целой части получаем бинарную последовательность. Однако существуют x, задающиеся двумя бинарными последовательностями: Те, у которых, начиная с k-й позиции идут только единицы и те, у которых в (k-1)-й позиции 1, а начиная с k-й только нули. Но таких последовательностей, очевидно, счетное число. Понятно, что объединение континуального и счетного множества континуально.

${f 3.4.4}$ Теорема о свойствах показательной функции 1

Напоминалка

Показательная функция $f: \mathbb{R} \to \mathbb{R}$ — по определению: непрерывна, не тождественный 0, не тождественная 1, и $f(x+y) = f(x) \cdot f(y)$

Формулировка:

- 1. $\forall x f(x) > 0; f(0) = 1$
- 2. $\forall r \in \mathbb{Q} \quad f(rx) = (f(x))^r$
- 3. Пусть a:=f(1), тогда $a=1\implies f-const,\,a>1\implies f\text{- возр.},\,a<1\implies f\text{- убыв.}$
- 4. Множество значений $f \to (0, +\infty)$
- 5. $\tilde{f}(1)=f(1)$, тогда $f=\tilde{f}$

Доказательство:

1.
$$\exists x_0 \quad f(x_0) \neq 0$$
 $f(x_0+0) = f(x_0)f(0) \Longrightarrow f(0) = 1$ Если $\exists x_1: f(x_1) = 0 \ \forall x \quad f(x) = f(x-x_1)f(x_1) = 0,$ т.е. $f \equiv 0$ Тогда $\forall x \quad f(x) = f(\frac{x}{2})f(\frac{x}{2}) > 0, f(x) \neq 0$

2. (a)
$$r = 1$$

(b) $r \in \mathbb{N}$

$$f(2x) = f(x+x) = f(x)f(x) = f(x^2)$$
 (23)

Тривиально

$$f((n+1)x) = f(nx+x) = f(nx)f(x) = (f(x))^n f(x) = (f(x))^{n+1}$$
(24)

(c)
$$r \in -\mathbb{N}$$

$$1 = f(0) = f(nx + (-n)x) = f(nx)f(-nx) = (f(x))^n f(-nx)$$

(d)
$$r = 0$$

$$f(rx) = f(0) = 1 = (f(x))^0$$

(e) $r = \frac{1}{n}$

$$f(x) = f(n\frac{x}{n}) = (f(\frac{x}{n}))^n$$
(25)

$$f(\frac{1}{n}x) = (f(x))^{\frac{1}{n}}$$
 (26)

(f)
$$r = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$$
 $f(rx) = f(x\frac{m}{n}) = (f(x))^{\frac{1}{n}})^m = (f(x))^{\frac{1}{n}}$

3.
$$a=1$$
 $f(1)=1$ $\forall r\in \mathbb{Q}\ f(r)=1^r=1$ f - непр. и $f(x)=1$ при $x\in \mathbb{Q}\implies f\equiv 1$ $a>1$. Тогда $\forall x>0$ $f(x)>1$

$$r \in \mathbb{Q}, r > 0$$
 $f(r) = r(r*1) = (f(1))^r = a^r > 1$ Значит $\forall x \in \mathbb{R}, x > 0$ берем $r_k \to x(r_k \in \mathbb{Q})$ $f(r_k) \to f(x)$, значит $f(x) \ge 1$ $f(x) = f((x-r)+r) = f(x-r)*f(r) > 1$ $\exists r \in \mathbb{Q} : 0 < r < x$ Возр. $x \in \mathbb{R}, h > 0$ $f(x+h) = f(x)f(h)$ $f(h) > 1 \implies f(x+h) > f(x)$

4.
$$f(\mathbb{R}) = (\inf f, \sup f)$$

 $\inf f = 0 \quad \sup f = +\infty$
 $f(1) = a > 1$
 $a^n, n \in \mathbb{Z}$

a < 1 аналогично.

5.
$$\tilde{f}(1) = f(1) \Longrightarrow \forall r \quad \tilde{f}(r) = f(r)$$

$$\forall x \quad r_k \to x$$

$$\tilde{f}(r_k) = f(r_k)$$

$$\tilde{f}(r_k) \to \tilde{f}(x); f(r_k) \to f(x) \Longrightarrow f(x) = \tilde{f}(x)$$

3.4.5 Выражение произвольной показательной функции через экспоненту. Два следствия³

3.4.5.1 Теорема о показательной функции

Формулировка:

 $\exists f_0$ — показательная функция, которая удовлетворяет $\frac{f_0(x)-1}{x}\xrightarrow[x\to 0]{}1$

Доказательство. КПК сказал, что будет где-то в третьем семестре просто предъявлена.

3.4.5.2 Выражение произвольной показательной функции через экспоненту. Φ ормилировка:

f — показательная функция, f_0 — функция из прошлой теоремы. Тогда $\exists lpha \in \mathbb{R}: \forall x f(x) = f_0(lpha x)$

Доказательство. $f(1)=a>0, a\neq 1\ \exists \alpha\in\mathbb{R}, \alpha\neq 0: a=f_0(\alpha)$

Осталось проверить, что $g(x) = f(\alpha x)$ — показательная функция, что вполне очевидно: $g \neq const$,

$$g(x+y) = f(\alpha(x+y)) = f(\alpha x) \cdot f(\alpha y) = g(x) \cdot g(y)$$

3.4.5.3 Следствие 1

Формулировка:

 f_0 — единственна

Доказательство. От противного. Пусть f_1 тоже удовлетворяет теореме о показательной функции. Тогда $\exists \alpha: f_1(x) = f_0(\alpha x)$

$$1 = \lim_{x \to 0} \frac{f_1(x) - 1}{x} = \lim_{x \to 0} \frac{f_0(\alpha x) - 1}{\alpha x} \cdot \alpha = \alpha$$

Абсурд.

3.4.5.4 Следствие 2

Обозначим $f_0(x) = exp(x)$ и назовем экспонентой.

Формулировка:

 $\forall a>0, a\neq 1$ $\exists !$ показательная фукнция f:f(1)=a

Доказательство. Для данного $a \; \exists \alpha : exp(\alpha) = a \qquad (\alpha \neq 1).$

Достаточно взять $f(x) := exp(\alpha x)$

3.4.6 Показательная функция от произведения³

Формулировка:

$$\forall x, y \in \mathbb{R} \ \forall a > 0, a \neq 1: \ a^{xy} = (a^x)^y = (a^y)^x$$

Доказательство.

x = 0.

Тривиально

 $x \neq 0, y \in \mathbb{Q}$

 $a^x=b\quad b
eq 1.$ Из пункта 2 теоремы о свойствах показательной функции:

$$(a^{xy}) = (a^x)^y = b^y$$

 $x \neq 0, y \in \mathbb{R}$

Для этого сделаем предельный переход для предыдущего пункта. $y_k \in \mathbb{Q}: y_k \to y$

$$a^{x^{y_k}} = b^{y_k}$$

Ho $a^{x^{y_k}} \to a^{xy}$, a $b^{y_k} \to (a^x)^y \Rightarrow$

$$a^{xy} = (a^x)^y$$

Второе равенство доказывается аналогично.

3.4.7 Теорема о свойствах логарифма³

Формулировка:

 $a, b, c > 0; a, c \neq 1$

1.
$$\log_a(xy) = \log_a(x) + \log_a(y)$$

2.
$$\log_a(b^x) = x \log_a(b)$$

3.
$$\log_a(x) = \log_a(c) \cdot \log_c(x)$$

Доказательство. $n = v \Leftrightarrow a^n = a^v$ Таким образом,

1. ⇔

$$a^{\log_a x + \log_a y} = a^{\log_a x} \cdot a^{\log_a y} = xy = a^{\log_a (xy)}$$

$$2. \Leftrightarrow$$

$$b = a^{\log_a b}$$
 $b^x = \left(a^{\log_a b}\right)^x = a^{x \log_a b}$

$$x = c^{\log_c x}$$
 $\log_a x = \log_a \left(c^{\log_c x}\right) = \log_c x \cdot \log_a c$

3.4.8 Критерий монотонности функции. Следствия³

Формулировка:

Пусть функция f непрерывна на $\langle a,b \rangle$ и дифференцируема на (a,b). Тогда f возастает на $\langle a,b \rangle \Leftrightarrow \forall x \in (a,b)f'(x) \geq 0$

Доказательство.

 \Rightarrow Пусть f возрастает, $x \in (a,b)$, тогда $\forall y \in (x,b) f(y) \geq f(x)$, тогда

$$f'(x) = f'_{+}(x) = \lim_{y \to x+} \frac{f(y) - f(x)}{y - x} \ge 0$$

 \Leftarrow Пусть $\forall x \in \langle a,b \rangle f'(x) \geq 0$. Возьмем $x_1,x_2 \in x \in \langle a,b \rangle$. Покажем, что $f(x_1) \leq f(x_2)$. Из Лагранжа $\exists c \in (x_1,x_2)$:

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \ge 0$$

Для убывающей функции все точно также, только вместо f возьмем (-f)

Формулировка (следствие 1, Критерий постоянства функции):

 $f:\langle a,b
angle o\mathbb{R}$, тогда f постоянна на $\langle a,b
angle\Leftrightarrow f\in C\langle a,b
angle$ и $orall x\in (a,b)f'(x)=0$

Доказательство.

- ⇒ Очевидно.
- \Leftarrow Из теоремы следует, что f одновременно и возрастает и убывает $\Rightarrow f$ постоянна.

Формулировка (следствие 2, Критерий постоянства функции): Пусть функция f непрерывна на(a,b) и дифференцируема на (a,b). Тогда f строго возрастает на $(a,b) \Leftrightarrow$:

- 1. $\forall x \in (a, b) f'(x) > 0$
- $2. \ f'(x)$ не тождественный 0 на любом промежутке

Доказательство.

 \Leftarrow Из следствия 1 условие 2) означает, что f не постоянна ни на каком интервале \Rightarrow из строго возрастания следует 2), из теоремы следует 1)

$$\Rightarrow \forall x \in (a,b)f'(x) \geq 0 \Rightarrow f$$
— возрастает. Если возрастание нестрогое, то $\exists x_1, x_2 \in \langle a,b \rangle : x_1 < x_2, f(x_1) = f(x_2) \Rightarrow f$ постоянна на $[x_1, x_2]$. Противоречие с 2).

3.4.9 Описание выпуклости с помощью касательных³

Формулировка:

Пусть f дифференцируема на $\langle a,b \rangle$. Тогда f выпукла вниз на $\langle a,b \rangle$ в том и только том случае, когда график f лежит не ниже любой своей касательной, то есть $\forall x,x_0 \in \langle a,b \rangle$

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0) \tag{27}$$

Доказательство.

 \Rightarrow Пусть f выпукла вниз, $x_0, x \in \langle a, b \rangle$. Если $x > x_0$, то по лемме о трех хордах $\forall \eta \in (x_0, x)$

$$\frac{f(\eta) - f(x_0)}{\eta - x_0} \le \frac{f(x) - f(x_0)}{x - x_0}$$

Устремим η к x_0 справа, получаем неравенство

$$f'(x_0) \le \frac{f(x) - f(x_0)}{x - x_0}$$

что равносильно (27). Если $x < x_0$, то по лемме о трех хордах $\forall \xi \in (x, x_0)$

$$\frac{f(\xi) - f(x_0)}{\xi - x_0} \ge \frac{f(x) - f(x_0)}{x - x_0}$$

Устремляя ξ к x_0 слева, получаем неравенство

$$f'(x_0) \ge \frac{f(x) - f(x_0)}{x - x_0}$$

равносильное (27)

 \Leftarrow Пусть $\forall x, x_0 \in \langle a, b \rangle$ верно неравенство (27). Возьмем $x_1, x_2 \in \langle a, b \rangle : x_1 < x_2$, и $x \in (x_1, x_2)$. Применяя (27) сначала к точкам x_1 и x, а затем — к x_2 и x, получаем

$$f(x_1) \ge f(x) + f'(x)(x_1 - x), \qquad f(x_2) \ge f(x) + f'(x)(x_2 - x)$$

 \Leftrightarrow

$$\frac{f(x) - f(x_1)}{x - x_1} \le f'(x) \le \frac{f(x_2) - f(x)}{x_2 - x_1}$$

Крайние части равносильны (27)

3.4.10 Дифференциальные критерии выпуклости³

Формулировка:

- 1. Пусть f непрерывна на $\langle a,b\rangle$ и дифференцируема на (a,b). f выпукла вниз на $\langle a,b\rangle\Leftrightarrow f'$ строго возрастает на (a,b).
- 2. Пусть f непрерывна на $\langle a,b\rangle$ и дважды дифференцируема на (a,b). f выпукла вниз на $\langle a,b\rangle \forall x\in (a,b)\Leftrightarrow f''(x)\geq 0$

Доказательство.

1. \Rightarrow Возьмем $x_1, x_2 \in (a, b) : x_1 < x_2$. По теореме о выпуклости и касательных

$$f'(x_1) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le f'(x_2)$$

что и означает возрастание f'

 \Leftarrow Возьмем $x_1, x_2 \in \langle a, b \rangle : x_1 < x_2$, и $x \in (x_1, x_2)$. По теореме Лагранжа $\exists c_1 \in (x_1, x)$ и $c_2 \in (x, x_2)$ такие что

$$\frac{f(x) - f(x_1)}{x - x_1} = f'(c_1) \qquad \frac{f(x_2) - f(x)}{x_2 - x} = f'(c_2)$$

Тогда $x_1 < c_1 < x < c_2 < x_2$, а f' по условию возрастает, поэтому $f'(c_1) \le f'(c_2)$, то есть

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$$

что равносильно определению выпуклости.

2. Выпуклость $f \Leftrightarrow f'$ – возрастает $\Leftrightarrow f'' \geq 0$

3.4.11 Теорема об односторонней дифференцируемости выпуклой функции³

Формулировка:

Пусть f выпукла вниз на $\langle a,b \rangle$. Тогда $\forall x \in (a,b) \exists$ конечные $f_-'(x), f_+'(x),$ причем $f_-'(x) \leq f_+'(x)$

Доказательство. Пусть $x \in (a,b)$. Положим

$$g(\xi) = \frac{f(\xi) - f(x)}{\xi - x}, \xi \in \langle a, b \rangle \setminus \{x\}$$

По лемме о трех хордах g возрастает на $\langle a,b \rangle \setminus \{x\} \Rightarrow$, если $a < \xi < x < \eta < b$, то $g(\xi) \leq g(\eta)$, то есть

$$\frac{f(\xi) - f(x)}{\xi - x} \le \frac{f(\eta) - f(x)}{\eta - x}$$

Что в итоге? g ограничена на $\langle a,x\rangle$ сверху и на (x,b) —снизу, По теореме о пределе монотонной функции $\exists g(x-), g(x+)$ — конечные, которые по определению еще до кучи являются односторонними производными $f_-(x), f_+(x)$ сооветственно. Устремляем ξ к x слева, а η — справа, получаем, что $f_-(x) \leq f_+(x)$ — победа

3.4.12 Лемма о трех хордах 3

Формулировка:

Пусть f выпукла вниз на $\langle a,b \rangle, x_1, x_2, x_3 \in \langle a,b \rangle, x_1 < x_2 < x_3$. Тогда

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2} \tag{28}$$

Доказательство. По определению выпуклости

$$f(x_2) \le t f(x_1) + (1 - t) f(x_3)$$

где $t=\frac{x_3-x_2}{x_3-x_1},\, 1-t=\frac{x_2-x_1}{x_3-x_1}.$ Теперь следим за руками

$$f(x_2) \le f(x_1) + (1-t)(f(x_3) - f(x_1)) = f(x_1) + (x_2 - x_1)\frac{f(x_3) - f(x_1)}{x_3 - x_1}$$

это равносильно левому неравенству в (28). Теперь

$$f(x_2) \le f(x_3) - t(f(x_3) - f(x_1)) = f(x_3) - (x_3 - x_2) \frac{f(x_3) - f(x_1)}{x_3 - x_1}$$

а вот это равносильно правому неравенству в (28).

3.4.13 Теорема Кантора о равномерной непрерывности³

Формулировка:

Непрерывное на компакте отображение равномерно непрерывно

Доказательство. От противного. Пусть отображение f непрерывно на компакте X, но не является равномерно непрерывным, тогда должно выполняться отрицание определения равномерной непрерывности:

$$\exists \varepsilon > 0 \forall \delta \exists x, \bar{x} : \rho(x, \bar{x}) < \delta \Rightarrow \rho(f(x), f(\bar{x})) \ge \varepsilon \tag{29}$$

3афиксируем это arepsilon и возьмем для него $\delta=rac{1}{n}$ По теореме о характеристике компактов в метрических пространствах X — секвенциально компактно (можно выбрать подпоследовательность, имеющую предел в X $\exists \{x_{n_k}\} \rightarrow c \in X$)

$$0 \le \rho(\bar{x}_{n_k}, c) \le \rho(\bar{x}_{n_k}, x_{n_k}) + \rho(x_{n_k}, c) < \frac{1}{n_k} + \rho(x_{n_k}, c) \to 0.$$

T.к. f непрерывна в c, то

$$f(x_{n_h}) \to f(c), f(\bar{x}_{n_h}) \to f(c)$$

Следовательно, $\rho(f(x_{n_k}), f(\bar{x}_{n_k})) \to 0$, что будет противоречить (29)

${f 3.4.14}$ Иррациональность числа $e^{2/3}$ ${f \Phi}$ ормулировка: e^2 — иррационально.

Доказательство. От противного. Пусть $e^2=\frac{2k}{n}\Leftrightarrow ne=2k\cdot e^{-1}$. Домножим все на (2k-1)!:

$$n(2k-1)!e = (2k)! \cdot e^{-1}$$

Докажем, что левая часть чуть больше некоторого целого числа, а правая часть чуть меньше некоторого целого числа.

Вспомним формулу Тейлора с остатком в форме Лагранжа:

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^m}{m!} + \frac{e^c}{(m+1)!} x^{m+1}$$
 $c \in (0, x)$

Теперь будем подставлять в эту формулу x = 1 и x = -1:

$$n(2k-1)!e = n(2k-1)!\left(1+1+\frac{1}{2!}+\cdots+\frac{1}{(2k-1)!}\right)+n(2k-1)!\frac{e^c}{(2k)!} \qquad c \in (0,1)$$

Заметим, что левое слагаемое — целое число. Оценим остаток:

$$n(2k-1)! \frac{e^c}{(2k)!} = \frac{n}{2k} e^c = e^{c-2} < e^{-1} < \frac{1}{2}$$

$$(2k)! \cdot e^{-1} = (2k)! \left(1 - 1 + \frac{1}{2!} + \dots + \frac{1}{(2k)!}\right) - \frac{e^c}{(2k+1)!} \qquad c \in (-1,0)$$

Левое слагаемое, кстати, тоже целое число. $e^2 = \frac{2k}{n}$, тогда, очевидно, k > 1. Оцениваем остаток:

$$\frac{e^c}{(2k+1)!} < \frac{1}{2k+1} < \frac{1}{3}$$

Итого, есть целое число, от которого мы смещаемся вправо меньше, чем на $\frac{1}{2}$ и целое число, от которого мы смещаемся влево меньше, чем на $\frac{1}{3}$ и приходим в одно и то же число. Абсурд. \Box

3.4.15 Теорема Брауэра³

Формулировка:

- 1. $F:B(0,1)\subset\mathbb{R}^m\to B(0,1)\subset\mathbb{R}^m$ непрерывно, тогда $\exists x\in B(0,1):F(x)=x$
- 2. $F:[0,1]^m \to [0,1]^m$ непрерывно, тогда $\exists x \in [0,1]^m F(x) = x$

Более подробно про теорему Брауэра и игру Гекс можно посмотреть тут тык

3.4.15.1 Игра Гекс

Поле для игры состоит из "прямоугольника составленного из правильных шестиугольников (см. рисунок). Две противоположные стороны назовем черными, две другиие — белыми. Игроки ходят по очереди, крася один из шестиугольников в черный или белый цвет, их цель — проложить дорожку либо от черной стороны к черной, либо от белой к белой. Проложивший дорожку, выигрывает.

Лемма.

Формулировка:

Любая раскраска для игры Гекс будет выигрышна для одной из сторон

Доказательство. Накидаем случайную раскраску шестигранников в черный и белый цвета. Рассмотрим точку на "левом нижнем" шестиграннике, которая будет одновременно и на белой и на черной стороне (на рисунке выше — толстая черная точка). Начнем обходить шестиграннике по следующему правилу: черные шестигранники оставляем по левой руке, белые — по правой. Теперь думаем, к чему это нас может привести: мы не можем зайти в цикл, не касающийся сторон из-за выбранного правила обхода. Тогда, т.к. всего конечное число гексов, мы рано или поздно выйдем на границу. Но начинали мы с точки, которая принадлежит и белой, и черной стороне. Значит, мы победили.

Теперь вместо Гексов будем рассматривать граф, вершинами которого являются гексы, а ребрами — наличие соприкосновения между ними. Пусть он имеет размер $n \times n$. Каждому узлу (k,l) будем сопоставлять точку $\left(\frac{k}{n},\frac{l}{n}\right)$. По только что доказанной лемме существует ломаная из одной стороны в противоположную по узлам одного цвета.

3.4.15.2 Доказательство теоремы Брауэра

Доказательство. $F:[0,1]^2 \to [0,1]^2, \ x=(x_1,x_2), \ F(x)=(f_1(x),f_2(x))$ Введем необходимые обозначения: $x,y\in\mathbb{R}^2,\ \|x,y\|$ - расстояние, $\rho(x,y)=\max(|x_1-y_1|,|x_2-y_2|)$ — непрерывна в $\mathbb{R}^2\times\mathbb{R}^2$ Функция $x\in[0,1]^2\to\rho(x,F(x))$ — непрерывна на $[0,1]^2$

Вот только теперь начинается доказательство. Доказывать будем от противного: пусть $\forall x: F(x) \neq x$. По теореме Вейерштрасса:

$$\exists \varepsilon > 0 \forall x \in [0, 1]^2 \rho\left(x, F(x)\right) \ge \varepsilon \tag{30}$$

По теореме Кантора (для F, и $x=[0,1]^2$) F — равномерно непрерывна на $[0,1]^2$, т.е. для этого $\varepsilon \exists \delta > 0$ (НУО $\delta \leq \varepsilon$) $\forall x, \bar{x} \|x - \bar{x}\| < \delta \|F(x) - F(\bar{x})\| < \varepsilon$.

Возьмем $\frac{\sqrt{2}}{n} < \delta$, построим доску HEX(n,n) и начнем ее красить. Но красить будем не от балды. $v = (v_1, v_2), v_1, v_2 \in \mathbb{Z}_+$ — узел доски HEX(n,n).

$$color(V) = min\left\{i \in \{1, 2\} : \left| f_i\left(\frac{v}{n}\right) - \frac{v_i}{n} \right| \ge \varepsilon\right\}$$

это определение корректно в силу (30). По лемме об игре в Гекс существет ломаная I цвета от одной вертикальной стороны квадрата к другой, либо ломаная II цвета от одной горизонтальной стороны квадрата к другой.

 $f_i - i$ -тая координата F.

В т.А:
$$f_i(A) \ge 0, A_1 = 0 \Rightarrow f_1(A) - A_1 \ge \varepsilon$$

В т.В:
$$f_i(B) \le 1, B_1 = 1 \Rightarrow f_1(B) - B \le -\varepsilon$$

То есть, в какой-то момент, мы совершили скачок на $\geq 2\varepsilon$, но при переходе от одного узла к другому каждая координата меняется на $\frac{1}{n} < \delta \leq \varepsilon$, т.е. сумма меняется $< 2\varepsilon$. В случае, когда мы двигаемся по диагонали, мы рассматриваем то же δ , и проводим аналогичные рассуждения.

Противоречие.