Hierarchical View-Frustum Culling for Z-buffer Rendering

Tomáš Bubeníček

Contents

- What is view frustum culling
- Algorithms used
- How to speed it up

What is frustum culling

- Used with rasterization
- Removing objects that are outside the visible volume from the rendering process
- Saves vertex shader work on the GPU
- Visible volume = View frustum

Example

Source: Horizon Zero Dawn – The making of the game (2017)

Hierarchical approach

- Using bounding volume hierarchy
- 3 options when checking a BV vs frustum:
 - Inside render the entire subtree
 - Outside discard the entire subtree
 - Intersects traverse the subtree, render if leaf
- We require a fast BV-frustum intersection predicate

Node-Frustum intersection

- One approach:
 - Transform all vertices of the node with the projection transform
 - Test AABB of the transformed envelope with AABB of the transformed frustum (tested in perspective coordinate system)
 - Relatively expensive
 - Transform requires 72 multiplications (sped up with SIMD)
 - Test requires only 6 comparisons

Node-Frustum intersection

- Different approach:
 - Consider frustum as six separate planes
 - Requires fast box-plane intersection predicate
 - Calculated in world space
 - If object is inside the frustum, it is inside all six planes
 - Test can correctly end if object is outside just one plane

Box-plane intersection

- Conservative approximation Sphere-plane intersection
- Fast box plane intersection
 - Compare only 2 points instead of 8
 - n-vertex (negative-far point)
 - p-vertex (positive-far point)
 - The points are selected as the points on the diagonal that is closest to the plane normal
 - When using AABB, the selection can be done with a lookup table
 - Comparing the distances of points from the plane
 - If n positive, then outside
 - If p negative, then inside
 - Else intersects

Order of plane tests

- The order of planes tested can affect performance
- We first want to test planes with high chance of the object being outside
- Temporal coherency
 - Object is outside a plane in one frame chance of happening again
 - Start the next test with that plane

Number of plane tests

- When traversing the hierarchy, we don't need to always check all planes
- Plane-masking
 - Only check the planes that the parent node intersects
 - When recursively traversing, keep a bit mask of which planes to check

Other possible speedups

- Octant test
 - If radius of a bounding sphere around the AABB is smaller than smallest distance from frustum center to plane, we can discard three plane tests

Other possible speedups

- Rotation coherency
 - Frustum only rotates by less than 180° on x/y/z axis between frames
 - For each BV, we can return outside if outside in last frame and their distance to plane increased
- Translation coherency
 - Frustum only moves between frames
 - For each plane, the distance to each BV changes by d
 - We compare the distance in last frame with d, if d > dist,
 then intersection has to be computed

Recap

- View frustum culling is a way of speeding up rasterization
- Can be sped up by using hierarchical data structures
- Frustum-volume intersection can be computed both in world coordinates and projection coordinates
- During the plane intersection tests
 - Order of planes matters
 - Some planes don't need to be always tested

Sources

- [1] Ulf Assarsson, and Tomas Moller. "Optimized view frustum culling algorithms for bounding boxes." Journal of graphics tools 5.1 (2000): 9-22. Online: http://www.cse.chalmers.se/~uffe/vfc_bbox.pdf
- [2] Daniel Sýkora, and Josef Jelínek. "Efficient View Frustum Culling." Central European Seminar on Computer Graphics. 2002. Online: http://old.cescg.org/CESCG-2002/DSykoraJJelinek/index.html
- Horizon Zero Dawn The making of the game (2017). vpro documentary.
 Online: https://www.youtube.com/watch?v=A0eaGRcdwpo