¿Qué es un iBeacon?

- Resumiendo, una puta marca de posición
- Apple, finales de 2013
- Specs, má o menos:
 - Bluetooth 4.0
 - Rango de unos 50 m.
 - ¡Barato! ~ 30\$
- Compatible con iOS 7
 - BLE (about fucking time)
 - Permisos de "ejecución en background".
 Guiño, guiño.

¿Y por qué no NFC?

Porque Apple y GSMA están a hóstias

• Toda excusa es buena para mover el mercado!

Los primeros en mojar: Estimote (pero hay

más)

Y esta broza... ¿cómo funciona?

- Está permanentemente en fase de advertising
- Intervalo: suele ser 300-1000ms
- Envía info adicional
 - Proximity UUID (16 bytes)
 - Major (2 bytes)
 - Minor (2 bytes)

¿Really? ¿Un puto ID?

- Really. Peero...
- Protocolo Bluetooth
 - Broadcasting Power
 - RSSI (signal strength)
 - Measured Power
- Estimación de la distancia
 - Repito. Estimación.

Resumiendo. Un iBeacon es un...

- Sensor de proximidad
- Completamente autónomo
- Utiliza una interfaz de comunicación estándar
- Nos da una aproximación de la distancia

¿Cómo interactuar con eso?

- iOS: CoreLocation.framework
 - iOS 7: dos modos
 - Range beacons: foreground (t=1s)
 - Region monitoring: background (t=10-15s)
 - iOS 8: modo foreground, dos permisos
 - Always range: activo incluso en background
 - Range on foreground: pos eso
- Android: NPI. Ni Puta Idea.

Experimento 1: proximidad

• Starring:

CAYETANA

Posibles aplicaciones

- Alertas por proximidad
 - Acerca tu móvil aquí y... ¡SPAM! ¡Oferta!
 ¡Enlarge your penis! ¡Get a russian gf!
- "Pequeño problema": solo tenemos 20 bytes.
 - Pregunta: se puede mandar más info a través del beacon?
 - Respuesta: no. Peeero...

Solución: ¡Al ataque, BackEnds!

- Ponemos toda la info en un BK
- Cuando detectamos un beacon...
 - Transformamos UUID, Major y Minor en un id
 - Se lo pasamos al BK
 - Y el BK nos devuelve la info
 - Desde el cliente, tratamos la info
 - ???
 - PROFIT!!

Experimento 2: Integración WS

- Soluciones de los años 90 a problemas de 2013
- Dos endpoints: get.cgi y post.cgi
- El receptor consume la API de POST
- Código: CUCUMBER

Y ojo: nuevo cliente

- Aplicación WEB (javascript)
- Mapa de la sala en la que nos encontramos
- Mediciones realizadas con técnicas modernas
- Una rachola: 60cm x 60cm
- Funcionalidades:
 - Modo scanner para llamar automáticamente a get.cgi (t=1s)
 - Modo de reconocimiento de área
- Filtramos por dispositivo y por distáncia

Ahora si, Experimento 2

- Experimento 1: detectar si estamos cerca de algun receptor, el que sea.
- Experimento 2: detectar si estamos cerca de un receptor concreto.
 - Cada receptor tiene asociado un JSON con:
 - Id
 - Distancia
 - Url (¿?)
 - Area (¿?)
 - Posición x, y... (¿?)
- Cliente: HTML, y cutre

Repasemos la infraestructura

I el móbil no puede consumir GET?

- Vamos con el Experimento 3
- Código: MARHUENDA
- El móbil se conecta contra GET
- Aparte, sigue atacando contra POST

Y la pregunta del millón

¿Podemos determinar la posición en el mapa?

Triangulación

Triangulación

Dado que
$$h^2 = c_1^2 + c_2^2$$

 $d_1^2 = (x-x_1)^2 + (y-y_1)^2$

Dado que
$$(a - b)^2 = a^2 - 2ab - b^2$$

 $d_1^2 = x^2 - 2x_1x + x_1^2 + y^2 - 2y_1y + y_1^2$

Y por lo tanto:

$$d_1^2 = x^2 - 2x_1x + x_1^2 + y^2 - 2y_1y + y_1^2$$

$$d_2^2 = x^2 - 2x_2x + x_2^2 + y^2 - 2y_2y + y_2^2$$

$$d_3^2 = x^2 - 2x_3x + x_3^2 + y^2 - 2y_3y + y_3^2$$

Tiene buena pinta, ¿no?

- Quizá, pero tiene tela
- 2 incógnitas, si, pero 9 parámetros
 - Algoritmo del infierno
- Problemas de indefinición
 - Divisor x1 x2
 - Division by zero cuando dos puntos estan a distancias muy parecidas del eje X

¿Hay alguna alternativa?

¡Eso parece!

Restricciones del algoritmo

- Los tres puntos están en el plano Z=0
 - Estamos en 2D, no aplica. Next!
- El punto P1 es 0,0
 - Solución: traslación de eje de coordenadas
- Los puntos P1 y P2 estan en el eje X=0
 - Solucion: rotación del eje de coordenadas
 - Problema: me daba palo implementarlo
 - Solucion alternativa: busco los dos puntos con x mas cercanas, y esos son
 - Más impreciso, pero más facil de picar

Resultados del experimento

- A riesgo de equivocarme, FRACASO ABSOLUTO
- Motivo: la estimación de la distancia
 - Atenuación de señal
 - Beacons de chichinabo

¿Alternativas?

- La más común: método empírico
 - Se mide la señal por toda la habitación
 - Algoritmo "k-vecinos más cercanos" (p. ej.)
 - Lo dominan bastante: indoo.rs
- Ventajas:
 - No hace falta conocer la fuente de la señal
 - El margen de error es más pequeño
- Inconvenientes:
 - Dificil de implementar
 - Aún más difícil de mantener

Conclusiones del lab

- Mal del todo no pinta, pero falta un cacho
- Muchas posibilidades
 - Mercado de proximidad
 - Gran hermano
 - Etc.
- De regalo: Code MACAULAY

Dudas, preguntas y cervezas

