Universidade Federal do Rio Grande do Sul (UFRGS) Programa de Pós-Graduação em Engenharia Civil (PPGEC)

PEC00144: Experimental Methods in Civil Engineering

Trabalho Final: Shear Building

- 1. Introdução
- 2. Características do Modelo Reduzido
- 2.1. Cálculo da Frequencia Natural do Modelo
- 3. Estrutura Real
- 4. Análise de Propagação de Erro
- 5. Intrumentação
- 6. Análise do Sinal
- 7. Conclusões

Flávio Antônio Ferreira, Doutorando José Lucas Silva Borges, Mestrando Porto Alegre, RS, Brazil

In [345]:

```
# Importing Python modules required for this notebook
# (this cell must be executed with "shift+enter" before any other Python cell)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.linalg as sc
import scipy.stats as st
from MRPy import *

# Importing pandas dataframe with dimension exponents for relevant quantities
DimData = pd.read_excel('resources/DimData.xlsx', sheet_name='DimData', index_col=0)
pi = np.pi;
#print(DimData)
```

1. Introdução

Este trabalho no consiste no ensaio de um modelo reduzido existente, feito em alumínio, que representa um Shear Building de 2 pavimentos, onde será utilizado um servo-motor para excitar a estrutura em sua frequência natural. Na sequencia serão realizados os cálculos de uma estrutura real em concreto armado que poderia ser representada por esse modelo.

2. Características do Modelo Reduzido

Para a construção do modelo, utilizou-se tiras de chapa de alumínio, de seção $20 \times 0.5mm$. O comprimento destas tiras é 40 cm. Para representar as massas dos pavimentos, serão utilizadas cantoneiras de alumínio, de massa por comprimento linear igual a 4.1g/cm. Para representar os engastes, serão utilizadas 12 presilhas(6

em cada pavimento) junto a 4 suportes de alumínio (2 por pavimento) feitos com a mesma cantoneira que representa a laje do pavimento.

O modelo reduzido a ser utilizado tem as seguintes caracterísitcas:

• Dimensões das Colunas:

$$B \times H = 5 \times 20$$
mm

· Altura das Colunas:

$$L_1 = 160 \text{mm}$$

• Propriedades da Seção Transversal:

$$A = 10 \text{mm}^2 \text{ e } I = 208, 3 \times 10^{-3} \text{mm}^4$$

• Peso Específico do Alumínio:

$$\rho_{\rm al} = 7850 \text{kg/m}^3$$

• Módulo de Elasticidade do Alumínio: $E_{\rm al} = 71 \times 10^9 {\rm N/m^2}$

$$E_{\rm al} = 71 \times 10^9 {\rm N/m^2}$$

• Rigidez à flexão:

$$E_{\rm al} \times I = 4.27 \times 10^{-2} Nm^2$$

• Massa do Pavimento Superior:

$$m_1 = 114g$$

• Massa do Pavimento Inferior:

$$m_2 = 104g$$

2.1 Cálculo da Frenquencia Natural do Modelo

2.1.1 Parâmetros Iniciais

```
In [346]:

L = 0.16
EI = 71e9*(0.02*0.0006**3)/12
k = 12*EI/L/L/L

m1 = 0.128
m2 = 0.105
```

2.1.2 Matrizes de Rigidez e de Massa

In [347]:

2.1.3 Frequencias e Modos de Vibração

In [348]:

```
# Uses scipy to solve the standard eigenvalue problem
w2, Phi = sc.eig(K, M)
# Ensure ascending order of eigenvalues
iw = w2.argsort()
w2 = w2[iw]
Phi = Phi[:,iw]
# Eigenvalues to vibration frequencies
wk = np.sqrt(np.real(w2))
fk = wk/2/np.pi
print('First vibration mode: {0:5.2f}Hz, [{1:6.3f} {2:6.3f}]'.format(fk[0], *Phi[:,0]))
print('Second vibration mode: {0:5.2f}Hz, [{1:6.3f} {2:6.3f}]'.format(fk[1], *Phi[:,1]))
## Plotagem dos 3 primeiros modos de vibração da estrutura
plt.figure(1, figsize=(16,6))
x = np.linspace(0, 2*L, 3)
for k in range(2):
    pk = np.zeros(3)
    pk[1:] = Phi[::-1,k]
    pk /=np.max(np.abs(pk))
    plt.subplot(1,2,k+1)
    ## Linhas Horizontais
    for n in range(2):
        o = np.linspace(pk[n+1],pk[n+1]+.5,2)
        y1 = np.ones(2)*n*L+L
        plt.plot(o, y1, 'b')
    ## Pontos
    plt.plot(pk[1:],x[1:],'bo')
    plt.plot(pk[1:]+.5, x[1:], 'bo')
    ## Linhas Verticais
    plt.plot(pk,x,'b')
    plt.plot(pk+.5, x,'b')
    plt.xlim(-1.5, 1.5); plt.ylabel("Altura [cm]");
    plt.ylim( 0.0, 2*L+.01);
    plt.title('f= {0:3.2f}Hz'.format(fk[k]));
    plt.grid(True)
```

First vibration mode: 3.45Hz, [0.858 0.514] Second vibration mode: 9.49Hz, [-0.441 0.898]

3. Estrutura Real

Para efeturar os cálculos da estrutura real será necessário definir as 3 grandezas que formarão a nova base da matriz dimensional. Para o ensaio de excitar o modelo com suas frequências naturais, utiliza-se como nova base as grandezas de comprimento, aceleração e rigidez à flexão. Partiremos do premissa que os pavimentos do edifífio real tem massa de 30000kg

In [349]:

```
ABC = ['L', 'a', 'm']

LMT = ['L', 'M', 'T']

base = DimData.loc[ABC, LMT]

i_base = np.linalg.inv(base)

print(base)

#print(i_base)
```

```
L M T
L 1 0 0
a 1 0 -2
m 0 1 0
```

As escalas para as grandezas adotadas para a nova base são:

In [350]:

```
λ_L = 25/1  # Escala de comprimento do modelo real
λ_a = 1/1  # Escala de aceleração (gravidade)
λ_m = 30*10**6/114  # Escala de massa
```

Agora calcula-se as escalas para quantidades adicionais relevantes para construir a estrutura real e interpretar os resultados. Eles podem ser frequencias, f, rigidez à flexão, El e a massa de cada pavimento, m. Primeiramente, preparamos a matriz dimensional para as quantidades selecionadas:

In [351]:

```
par = ['f', 'EI', 'm']  # selected scales to be calculated
npar = len(par)  # number of quantities
DimMat = DimData.loc[par, LMT]  # the dimensional matrix

print(DimMat)
#print(i_base)

L M T
```

```
f 0 0 -1
EI 3 1 -2
m 0 1 0
```

Em seguida, altera-se a base da matriz dimensional:

In [352]:

```
L a m
f -0.5 0.5 0.0
EI 2.0 1.0 1.0
m 0.0 0.0 1.0
```

E finalmente, calcula-se as correspondentes escalas:

In [353]:

```
 [\lambda_{f}, \lambda_{EI}, \lambda_{m}] = \text{np.prod(scales**NewMat, axis=1);}   \text{print('Escala de Frequencia: } \lambda_{f} = 1:\{0:4.2f\}'.\text{format}(1/\lambda_{f}), \text{ '\n'} \\ \text{'Escala de Rigidez: } \lambda_{EI} = 1:\{0:4.10f\}'.\text{format}(1/\lambda_{EI}), \text{'\n'} \\ \text{'Escala de Massa: } \lambda_{m} = 1:\{0:4.10f\}'.\text{format}(1/\lambda_{m}))   \#print(\lambda_{\mu}L)
```

Escala de Frequencia: $\lambda_f = 1:5.00$

Escala de Rigidez: $\lambda_{EI} = 1:0.000000000061$ Escala de Massa: $\lambda_{m} = 1:0.0000038000$

In [354]:

Massa do Pavimento: 3840000kg Rigidez da Estrutura: 4203947Nm² Comprimento da Coluna: 4.0m Primeira Frequencia: 0.69Hz Segunda Frequencia: 1.90Hz A seguir calcula-se as dimensões da coluna da estrutura real em concreto armado:

· Altura das Colunas:

$$L_1 = 4.0 \text{m}$$

• Peso Específico do Concreto:

$$\rho_{\rm c} = 2500 {\rm kg/m^3}$$

• Módulo de Elasticidade do Concreto:

$$E_{\rm c} = 30 \times 10^9 \text{N/m}^2$$

Supondo uma coluna de 15cm de lado, descobriremos a outra dimensão da coluna de concreto:

$$E_{c} \times I_{c} = E_{c} \times \left(\frac{b \times h^{3}}{12}\right)$$
$$b = \frac{12 \times E_{c} \times I_{c}}{E_{c} \times h^{3}}$$

In [355]:

```
Ec = 30*10**9
h = 15
b = 12*EI*λ_EI/(Ec*(h/100)**3)
print('Largura da coluna: {0:5.0f}cm'.format(b*100))
```

Largura da coluna: 50cm

4. Análise de Propagação de Erro

XXX

5. Instrumentação

XXXX

5. Análise do Sinal

XXX

7. Conclusões

XXX

In []:

In []: