Jadavpur University Session 2022-2023, Odd Semester Computer Programming and Numerical Methods

1. Find $\frac{dy}{dx}$ using forward, backward and central differencing schemes for $y = Sin \, x$ using (i) $\Delta x = 0.1$ (ii) $\Delta x = 0.01$ for $0 \le x \le \pi$ and determine the relative percentage error, defined as $\left|\frac{\frac{dy}{dx}|_{numerical} - \frac{dy}{dx}|_{exact}}{\frac{dy}{dx}|_{exact}}\right| \times 100 \text{ in each case with the exact derivative given by } \frac{dy}{dx}|_{exact} = cos(x).$

Comment on the result.

- 2. Write a function to find the integration of a function f within the limits a and b by Trapezoidal and Simpson's $1/3^{rd}$ integration method. f, a and b should be provided as arguments of the function integrate. Write the main function to take the name of the integrand function and the limits of integration as command line arguments.
- 3. Write a program to solve the following differential equations by (i) Euler method, (ii) Runge-Kutta second order method. Compare your solutions. In each method estimate the truncation error and choose an appropriate step size.

$$\frac{dy}{dx} = 2xy, y(0) = 0.5, solution for 1 \ge x \ge 0$$

$$\frac{dy}{dx} = x^2 + y^2, y(0) = 1, solution for 1 \ge x \ge 0$$