

ENTITY RELATIONSHIP MODELLING

Fsoft Academy

Lesson Objectives

- Understand an overview of the basic RDBMS Concepts
- Understand an insight into the architecture and components of a Database System.
- Describe how entities, attributes and relationships are used to model data;
- O4 Converting ER Model to relational schema

Agenda

- **SQL** Overview
- **The Relational Database**
- 3. The Relational Database
- 4. ER Model

SQL Overview

What is SQL?

- Which is a computer language for:
 - ✓ storing,
 - ✓ manipulating and
 - ✓ retrieving data stored in relational database.
- ➤ SQL is the standard language for Relation Database System, like MySQL, MS Access, Oracle, Sybase, Informix, Postgres and SQL Server use SQL as standard database language.
- SQL is an ANSI (American National Standards Institute) standard.

SQL Process

SQL

SQL Commands

SQL consists of three components:

- ➤ Data Definition Language (DDL)
- ➤ Data Manipulation Language (DML) and
- ➤ Data Control Language (DCL)

The Relational Database

Relational Database Concepts (1/3)

- "A DBMS that manages data as collection of tables in which all data relationships are represented by common values in related tables."
- "A DBMS that follows all the twelve rules of CODD is called RDBMS"

Relational Database Concepts (2/3)

Relational Database Concepts (3/3)

Schema (1/2)

- ② The name of a relation and the set of attributes for a relation is called a schema.
 - ✓ Example: the schema for previous slide is

Supplier (SCode, SName, Quantity, City)

- Relation schema = name(attributes) + other structure info., e.g., keys, other constraints.
- ② Order of attributes is arbitrary, but in practice we need to assume the (*standard*) order given in the relation schema.
- Relational database schema = collection of relation schemas.

Schema (2/2)

Relation schema example:

Schema versus Instance

Student(studno, name, address)

Course (courseno, lecturer)

Student (123, Bloggs, Woolton)
(321, Jones, Owens)

Instance

sid	Name	Login	age	GPA
53666	Jones	Jones@ca	18	3.4
53444	smith	Smith@ecs	18	3.2
53777	Blake	Blake@aa	19	3.8

số hàng arity: số lượng cột

- → Cardinality = 3, arity = 5, all rows distinct
- → Do all values in each column of a relation instance have to be distinct?

What is RDBMS?

> RDBMS stands for:

Relational Database Management System

- > RDBMS is the basis for SQL, and for all modern database systems like:
 - ✓ MS SQL Server,
 - ✓ IBM DB2,
 - ✓ Oracle,
 - ✓ MySQL,
 - ✓ and Microsoft Access.
- ➤ A Relational database management system (RDBMS) is a database management system (DBMS) that is based on the relational model as introduced by E. F. Codd.

DBMS vs. RDBMS

DBMS	RDBMS	
The concepts of relationships is missing in a DBMS. If it exits it is very less.	It is based on the concept Of relationships	
Speed of operation is very slow	Speed of operation is very Fast	
Hardware and Software requirements are minimum	Hardware and Software requirements are High	
Platform used is normally DOS	Platform used can be any DOS, UNIX,VAX,VMS, etc	
Uses concept of a file	Uses concept of table	
DBMS normally use 3GL	RDBMS normally use a 4GL	
Examples are dBase, FOXBASE, etc	Examples are ORACLE, INGRESS, SQL Server 2000 etc	

ER Model

17

Design Process

Basic E-R Notation

Basic symbols

Entity symbols

Associative entity Strong entity Attribute Weak entity Multivalued attribute Relationship Identifying relationship

A special used to resolve many-many entity that is relationship into 2 one-to-many tables also a relationship

Relationship symbols

Attribute symbols

Derived attribute

ER Model Overview

Cardinality of Relationships (1/2)

 \triangleright One – to – one:

 \triangleright One – to – many:

Cardinality of Relationships (2/2)

➤ Many – to – many:

❖In which:

Binary relationships

Rule 1 - Convert entity type with simple attributes

CUSTOMER entity type with simple attributes

CUSTOMER relation

Rule 2 - Convert Multivalue attribute

Multivalued attribute becomes a separate relation with foreign key

1-to-many relationship between original entity and new relation

Rule 3 - Convert Unary relationship one to one

EMPLOYEE entity with Manages relationship

EMPLOYEE relation with recursive foreign key

■ Rule 4 – Convert binary relationship one to one

Rule 5 – Convert Unary relationship one to many

EMPLOYEE entity with Manages relationship

EMPLOYEE relation with recursive foreign key

Rule 6 – Convert Binary relationship one to many

Again, no null value in the foreign key...this is because of the mandatory minimum cardinality

Rule 7 – Convert Unary relationship many to many

Bill-of-materials relationships (M:N)

ITEM and COMPONENT relations

Rule 8 – Convert Binary relationship many to many

Another - Convert Ternary relationship

Another- Convert Ternary relationship (2)

Summary

- SQL Overview
 - ✓ SQL, SQL Process, SQL Command
- The Relational Database
 - √ Table, Field, Record, Schema
- RDBMS Concepts
 - ✓ RDBMS, RDBMS vs DBMS
- ER Model

✓ Design Process, **Notation**, Converting ER Model to relational schema

THANK YOU!

