Problem Set #2

Econ 103

Part I – Problems from the Textbook

Chapter 2: 1, 3, 5, 7, 13, 15, 17 [in part (b) skip MAD and MSD], 21 23, 27, 35.

Part II – Additional Problems

- 1. For each variable indicate whether it is nominal, ordinal, or numeric.
 - (a) Grade of meat: prime, choice, good.
 - (b) Type of house: split-level, ranch, colonial, other.
 - (c) Income
- 2. A drive-time radio show frequently holds call-in polls during the evening rush hour. Explain in no more than two sentences why such polls are likely to be biased.
- 3. Which of these studies are based on experimental data? Which are based on observational data?
 - (a) A biologist examines fish in a river to determine the proportion that show signs of disease due to pollutants poured into the river upstream.
 - (b) In a pilot phase of a fund-raising campaign, a university randomly contacts half of a group of alumni by phone and the other half by a personal letter to determine which method results in higher contributions.
 - (c) To analyze possible problems from the by-products of gas combustion, people with with respiratory problems are matched by age and sex to people without respiratory problems and then asked whether or not they cook on a gas stove.
 - (d) An industrial pump manufacturer monitors warranty claims and surveys customers to assess the failure rate of its pumps.
- 4. An emergency room institutes a new screening procedure to identify people suffering from life-threatening heart problems so that treatment can be initiated quickly. The procedure is credited with saving lives because in the first year after its initiation, there

is a lower death rate due to heart failure compared to the previous year among patients seen in the emergency room. Do you agree? Explain.

- 5. Suppose that x_i is measured in centimeters and y_i is measured in feet. What are the units of the following quantities?
 - (a) Interquartile Range of x
 - (b) Covariance between x and y
 - (c) Correlation between x and y
 - (d) Skewness of x
 - (e) Variance of y
- 6. The *mean deviation* is a measure of dispersion that we did not cover in class. It is defined as follows:

$$MD = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

- (a) Explain why this formula averages the absolute value of deviations from the mean rather than the deviations themselves.
- (b) Which would you expect to be more sensitive to outliers: the mean deviation or the variance? Explain.
- 7. Consider a dataset x_1, \ldots, x_n . Suppose I multiply each observation by a constant d and then add another constant c, so that x_i is replaced by $c + dx_i$.
 - (a) How does this change the sample mean? Prove your answer.
 - (b) How does this change the sample variance? Prove your answer.
 - (c) How does this change the sample standard deviation? Prove your answer.
 - (d) How does this change the sample z-scores? Prove your answer.