Prove the following theorem (terminology is given below):

Suppose X is compact and $f: X \to \mathbb{R}$ is lower semicontinuous. Then f is bounded below on X, and there exists a point $z \in X$ satisfying $f(z) \leq f(x)$ for all $x \in X$.

Recall that in a HTS (X, \mathcal{T}) , a function $f: X \to \mathbb{R}$ is called lower semicontinuous if the following set is closed for every $p \in \mathbb{R}$:

$$f^{-1}((-\infty, p]) = \{x \in X : f(x) \le p\}.$$

(One approach uses the family of closed sets $f^{-1}((-\infty, p])$ satisfying $p > \inf f(x)$.)

Solution. Consider the family of closed sets of $f^{-1}((-\infty,p])$ satisfying $p > \inf f(x)$, call it \mathcal{F} . First, remark that each element in \mathcal{F} is nonempty, otherwise $f^{-1}((-\infty,p])$ is empty, thus there is no $x_0 \in X$ where $f(x_0) \in (-\infty,p]$ and so $p \leq \inf f(x)$, which we assumed not true. Secondly, by the assumption that f is lower semicontinuous, each element in \mathcal{F} is also closed. Finally, note that \mathcal{F} has the finite intersection property: let $N \in \mathbb{N}$ and F_1, \ldots, F_N are sets in \mathcal{F} , which we can write explicitly as $F_i = f^{-1}((-\infty,p_i])$ where $p_i > \inf f(x)$; denote $p_0 = \min_i \{p_i\}$. Then $F_0 = f^{-1}((-\infty,p_0]) \subseteq F_i$ for all $1 \leq i \leq N$, and since we're just minimizing over a finite number of sets, $F_0 \in \{F_1, \ldots, F_n\} \subseteq \mathcal{F}$, thus

$$\bigcap_{i=1}^{N} F_i = f^{-1}((-\infty, p_o]) = F_0 \neq \emptyset$$

so we have the finite intersection property.

Now, since we're in a a HTS and X is compact, any collection of elements of \mathcal{F} has nonempty intersection, by the theorem proven in class (every element is a subset of X and are closed, and any finite collection has the finite intersection property). Notably, $\bigcap \mathcal{F} \neq \emptyset$. This means that there exists some $z \in X$ where $z \in \bigcap \mathcal{F}$. Then, for all $p > \inf f(x)$, we have $z \in f^{-1}((-\infty, p])$. If $x \in X$, then $z \in f^{-1}((-\infty, f(x)])$, thus $f(z) \leq f(x)$. Therefore, f is bounded below on X, specifically by f(z) where $z \in X$, since $f(z) \leq f(x)$ for all $x \in X$.

Let (X,d) be a metric space, with $K \subseteq X$ a compact set. Prove that whenever \mathcal{G} is an open cover for K, there exists r < 0 with this property: for every pair of points $x, y \in K$ obeying d(x,y) < r, some open set $G \in \mathcal{G}$ contains both x and y.

Solution. For the sake of contradiction, assume that for all r>0, there are some $x,y\in K$ such that d(x,y)< r but for any $G\in \mathcal{G}, x,y$ are not both in G. This implies that for any r>0, there is some $x\in K$ such that $\mathbb{B}[x;r)\not\subseteq G$ for any $G\in \mathcal{G}$. Let $r_n=\frac{1}{n}$, which gives us x_n where $\mathbb{B}[x_n;r_n)\not\subseteq G$ for any $G\in \mathcal{G}$. Since K is compact, we can take a subsequence x_{n_k} which converges to some value, call it $x\in K$. Since $x\in K$, there is some $G'\in \mathcal{G}$ where $x\in G'$. Let $\varepsilon>0$ and consider the ball $\mathbb{B}[x;\varepsilon)$. By the Archimedean property, there is some n such that $n\varepsilon>2$. Let j_1 be any integer such that $n_{j_1}>n$ (where n_{j_1} is a term in our subsequence), so $\varepsilon>\frac{2}{n_{j_1}}$. Since $x_{n_k}\to x$, we know there exists some $j>j_1$ such that $d(x_{n_j},x)<\frac{1}{n_{j_1}}$. Thus $d(x_{n_j},x)+\frac{1}{n_j}<\frac{1}{n_{j_1}}+\frac{1}{n_{j_1}}<\varepsilon$. So for any $y\in \mathbb{B}[x_{n_j},\frac{1}{n_j})$, we have $d(x,y)\leq d(x_{n_j},x)+d(x_{n_j},y)\leq d(x_{n_j},x)+d(x_{n_j},y)<\varepsilon$, thus $y\in \mathbb{B}[x;\varepsilon)$. This y was arbitrary in the ball, so $\mathbb{B}[x_{n_j};\frac{1}{n_j})\subseteq \mathbb{B}[x;\varepsilon)$. But recall that our assumption was that $\mathbb{B}[x_{n_j};\frac{1}{n_j})$ is not contained in any open set, specifically G' here. Thus $\mathbb{B}[x;\varepsilon)\not\subseteq G'$. But this is true for any $\varepsilon>0$, so there are no open balls around x within G', even though $x\in G'$, thus G' can't be open. But this violates our assumption that G' is an open set. Hence, contradiction, and we get that there does exist an r>0 where any $x,y\in K$ such that d(x,y)< r does gaurantee that $x,y\in G\in \mathcal{G}$.

Define the set-valued "projection" mapping $p_1: \mathcal{P}(\mathbb{R}^2) \to \mathcal{P}(\mathbb{R})$ by

$$p_1(S) = \{x_1 \in \mathbb{R} : (x_1, x_2) \in S \text{ for some } x_2\}, \qquad S \subseteq \mathbb{R}^2$$

- (a). If S is bounded, must $p_1(S)$ be bounded? (Why or why not?)
- (b). If S is closed, must $p_1(S)$ be closed? (Why or why not?)
- (c). If S is compact, must $p_1(S)$ be compact? (Why or why not?)
- (a). Solution. It must. If S is bounded, then by definition, there exists $x \in S$ and R > 0 such that $S \subseteq \mathbb{B}[x; R)$. Using the standard metric on \mathbb{R}^2 (namely $d(x,y) = \sqrt{(y_1 x_1)^2 + (y_2 x_2)^2}$), this means for any $y \in S$, we have d(x,y) < r, or $\sqrt{(y_1 x_1)^2 + (y_2 x_2)^2} < R$. Consider $x_1 = p_1(x)$. Then for any $y_1 \in p_1(S)$ (using the standard metric on \mathbb{R} , d(x,y) = |y x|), we have

$$d(x_1, y_1) = |y_1 - x_1| = \sqrt{(y_1 - x_1)^2} \le \sqrt{(y_1 - x_1)^2 + (y' - x_2)^2} < R$$

where $y' \in p^{-1}(y_1)$, and so the last inequality follows from the boundedness of S. Thus, $p_1(S) \subseteq \mathbb{B}[x_1; R)$, so $p_1(S)$ is bounded.

(b). Solution. This is not true. We provide the counter-example $S = \{(2^{-n}, 2^n) \in \mathbb{R}^2 : n \in \mathbb{N}\}.$

We first prove that S is closed. Note that $S'=\emptyset$. To see this, for the sake of contradiction, let $s\in S'$. Then for some sequence s_n of distinct elements of S, we have $\lim_{n\to\infty}s_n=s$ (by the proposition proven in class). Unraveling the definition of the limit, this means that for any $\varepsilon>0$, there exists some $N\in\mathbb{N}$ where $\forall n\geq N$, we have $d(s,s_n)<\varepsilon$. For the sake of contradiction, assume that this is true; then let $\varepsilon=\frac{1}{2}$, which gives us some N where $d(s,s_n)<\frac{1}{2}$ when $n\geq N$. But note that for any $s_n,s_{n+1}\in S$, since $s_n\neq s_{n+1}$, we have that $d(s_n,s_{n+1})>2$ (by construction, since $2\leq 2^{n+1}-2^n=y_{s_{n+1}}-y_{s_{n+1}}=\sqrt{(y_{s_{n+1}}-y_{s_{n+1}})^2}\leq \sqrt{(y_{s_{n+1}}-y_{s_{n+1}})^2+(x_{s_{n+1}}-x_{s_{n+1}})^2}=d(s_n,s_n+1)$). Thus $2\leq d(s_{n+1},s_n)\leq d(s,s_n)+d(s,s_{n+1})\leq \frac{1}{2}+d(s,s_{n+1})$ $\Longrightarrow \frac{3}{2}< d(s,s_{n+1})$. But this contradicts our assumption, since $n+1>n\geq N$, but $d(s,s_{n+1}>\frac{3}{2}>\frac{1}{2}=\varepsilon$. Thus, there are no limit points of S, so $S'=\emptyset$.

Now recall the theorem proven in class, $\overline{S} = S \cup S'$. Since $S' = \emptyset$, this leaves us $\overline{S} = S$. But recall that this is true only if S is closed.

We now prove that $p_1(S)$ is not closed. Note that $p_1(S) = \{2^{-n} : n \in \mathbb{N}\}$. See that $0 \in p_1(S)'$ but $0 \notin p_1(S)$. The second of these is obvious, $0 < 2^{-n}$ for all $n \in \mathbb{N}$. To see that 0 is a limit point, we have $\lim_{n \to \infty} 2^{-n} = 0$ (obviously, we are in \mathbb{R}), and $2^{-n} \in p_1(S)$ are distinct points, thus $0 \in p_1(S)'$ (by our proposition in metric spaces). Thus, $p_1(S) \neq p_1(S) \cup p_1(S)' = \overline{p_1(S)}$. But this is true only if $p_1(S)$ is not closed. Hence, S is closed but $p_1(S)$ is not closed.

(c). Solution. Now, assume that S is compact. Consider an open cover \mathcal{G} of $p_1(S)$. If $G \in \mathcal{G}$, extract the "open column" corresponding to G, namely $G^2 = \{(x,y) \in \mathbb{R}^2 : x \in G, y \in \mathbb{R}\}$. Notice two things: each G^2 is open, and \mathcal{G}^2 , the collection of all G^2 such that $G \in \mathcal{G}$, covers S.

To see the first, let $g \in G^2$ and denote $g = (x_0, y_0)$. Since $x_0 \in G$, we have that there exists r such that $\mathbb{B}_1[x_0, r) = \{x \in \mathbb{R} : |x_0 - x| < r\} \subseteq G$ by the fact that G is open. We claim that $\mathbb{B}_2[g, r) \subset G^2$ as well; for the sake of contradiction, assume there is $(x_1, y_1) \in \mathbb{B}_2[g, r)$ but $(x_1, y_1) \notin G^2$. Then $x_1 \notin G$ so $x_1 \notin \mathbb{B}_1[x_0, r)$, which give us $|x_0 - x_1| \ge r$. But then $\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} \ge \sqrt{r^2(y_1 - y_0)^2} \ge \sqrt{r^2} = r$, which contradicts the fact that $(x_1, y_1) \in \mathbb{B}_2[g, r)$. Thus, $\mathbb{B}_2[g, r) \subset G^2$, and since $g \in G$ was arbitrary, this proves that G^2 is open.

To see the second claim, that \mathcal{G}^2 covers S, let $s = (x_0, y_0) \in S$. Then since \mathcal{G} covers $p_1(S)$, we have $p_1(s) = x_0 \in G$ for some $G \in \mathcal{G}$. Then $(x_0, y_0) \in G^2$ by definition, and $G^2 \in \mathcal{G}^2 \subseteq \bigcup_{G^2 \in \mathcal{G}^2} G^2$. Thus $s \in \bigcup_{G^2 \in \mathcal{G}^2} G^2$, so \mathcal{G}^2 covers S since $s \in S$ was arbitrary.

Hence, \mathcal{G}^2 is an open cover of S. By the compactness of S, there exists a finite subcover of \mathcal{G}^2 , which we can denote as $G_1^2, G_2^2, \ldots, G_N^2$. So $S \subseteq \bigcup_i G_i^2$. But recall that each $G_i^2 \in \mathcal{G}^2$ had some corresponding $G \in \mathcal{G}$ by

definition (recall that the x-values of each G^2 were determined by some G), so we have a finite collection of open sets $G_1, G_2, \ldots, G_N \in \mathcal{G}$. We prove that this is a finite subcover of $p_1(S)$. Let $x_0 \in p_1(s)$. Then $\exists y_0$ such that $(x_0, y_0) \in S$. Then $(x_0, y_0) \in G_j^2$ for some $1 \leq j \leq N$. But then by definition of G_j^2 , $x_0 \in G_j$. Therefore, since $x_0 \in p_1(S)$ was arbitrary, $p_1(S) \subseteq \bigcup_i G_i$, hence $G_1, \ldots, G_N \in \mathcal{G}$ is a finite subcover, thus $p_1(S)$ is compact.

Recall the set ℓ^2 from HW07 Q3, and the standard "unit vectors" $\hat{\mathbf{e}}_p = (0, 0, \dots, 0, 1, 0, \dots)$, where the only nonzero entry in $\hat{\mathbf{e}}_p$ occurs in component p. For any x in ℓ^2 and subset $V \subseteq \ell^2$, write

$$\Omega(x; V) = \{ y \in \ell^2 \colon -1 < \langle v, y - x \rangle < 1, \forall v \in V \}.$$

Then define a collection \mathcal{T} of subsets of ℓ^2 by saying $G \in \mathcal{T}$ if and only if every point $x \in G$ has the property that $x \in \Omega(x; V) \subseteq G$ for some finite set $V \subseteq \ell^2$.

- (a). Prove that $\Omega(x;V) \in \mathcal{T}$ for every finite set $V \subseteq \ell^2$ and point $x \in \ell^2$.
- (b). Prove that (ℓ^2, \mathcal{T}) is a Hausdorff Topological Space.
- (c). Let $S = \{\hat{\mathbf{e}}_p \colon p \in \mathbb{N}\}$. Prove that $0 \in S'$. (Here 0 denotes $(0,0,\ldots)$, the "origin in ℓ^2 .) Note: This fact proves that \mathcal{T} is different from the metric topology on ℓ^2 .
- (d). Prove that every G in T has the property: for every x in G, there exists r > 0 such that

$$G \supseteq \mathbb{B}[x; r) = \{ y \in \ell^2 \colon ||y - x|| < r \}.$$

This fact proves that every set considered "open" in \mathcal{T} is also open in the metric topology on ℓ^2 . This explains why \mathcal{T} gets called "the weak topology" and the metric topology is also called "the strong topology."

- (e). Prove that the following set is closed in the weak topology of ℓ^2 : $\mathbb{B}[0;1] = \{y \in \ell^2 : ||y|| \le 1\}$.
- (a). Solution. Note that $\Omega(x;\{v_1,\ldots,v_N\})=\Omega(x;\{v_1\})\cap\cdots\cap\Omega(x;\{v_N\})$ by definition (since y is in the set $\Omega(x;\{v_1,\ldots,v_N\})$ if and only if $|\langle v_i,y-x\rangle|<1\Leftrightarrow y\in\Omega(x;\{v_i\})$ for each $1\leq i\leq N$). If $x'\in\Omega(x;V)$, then for any $v\in V$, we have $x'\in\Omega(x;\{v\})$. Define v' by defining component-wise $v'_n=(1-|\langle v,x'-x\rangle|)^{-1}v_n$. Note that $v'\in\ell^2$ still, since constant multiplication does not change convergence (and also note that $(1-|\langle v,x'-x\rangle|)^{-1}$ is positive). Then we claim that $\Omega(x';\{v'\})\subseteq\Omega(x;\{v\})$. To see this, let $y\in\Omega(x';\{v'\})$. Then $1>|\langle v',y-x'\rangle|=|\langle \frac{1}{1-|\langle v,x'-x\rangle|}v,y-x'\rangle|=\frac{1}{1-|\langle v,x'-x\rangle|}|\langle v,y-x'\rangle|$, so $1-|\langle v,x'-x\rangle|>|\langle v,y-x'\rangle|$. By the triangle inequality, we have

$$|\langle v, y - x \rangle| = |\langle v, y - x' \rangle + \langle v, x' - x \rangle| < |\langle v, y - x' \rangle| + |\langle v, x' - x \rangle| < 1 - |\langle v, x' - x \rangle| + |\langle v, x' - x \rangle| < 1$$

Where we can rearrange our summation (ie. pull out the other inner product) because our series is absolutely convergent on account of all of them being in ℓ^2 . Thus $y \in \Omega(x; \{v\})$. We can repeat this process for each $v \in V$ (since our v was arbitrary) to show that $y \in \Omega(x; \{v_1\}) \cap \cdots \cap \Omega(x; \{v_N\})$ thus $y \in \Omega(x; V)$ as desired.

(b). Solution. We have that $\emptyset \in \mathcal{T}$, since there does not exist $x \in \emptyset$ so it satisfies our condition to be in \mathcal{T} vacuously. We also have $\ell^2 \in \mathcal{T}$, since $\Omega(x; V)$ is composed of elements of ℓ^2 , and so for any $x \in \ell^2$, $\Omega(x; V) \subseteq \ell^2$.

Now consider $\mathcal{G} \subseteq \mathcal{T}$. Consider an arbitrary element $x \in \bigcup \mathcal{G}$. Then for some $G \in \mathcal{G}$, we have $x \in G$. Then $\Omega(x; V) \subseteq G \subseteq \bigcup \mathcal{G}$ for some finite set $V \subseteq \ell^2$ since $G \in \mathcal{T}$, so $\bigcup \mathcal{G} \in \mathcal{T}$ as well.

Now consider $U_1, \ldots, U_N \in \mathcal{T}$ where $N \in \mathbb{N}$. Consider an arbitrary element $x \in \bigcap_i^N U_i$. Then for all $1 \le i \le N$, $x \in U_i$. Then by definition of each U_i being in \mathcal{T} , we have that there exists a finite set $V_i \subseteq \ell^2$ such that $\Omega(x; V_i) \subseteq U_i$. Note that by definition, if $y \in \Omega(x; V_i \cup V_j)$, then $y \in \Omega(x; V_i)$ and $y \in \Omega(x; V_j)$. So let $V = \bigcup_i V_i$. This is still a finite set, since we are just unioning a finite number of finite sets. Then if $y \in \Omega(x; V)$, we have that $y \in \Omega(x; V_i)$ for all $1 \le i \le N$, thus $y \in U_i$. Since $y \in \Omega(x; V)$ was arbitrary, we have that $\Omega(x; V) \subseteq U_i$ for all $1 \le i \le N$, thus $\Omega(x; V) \subseteq \bigcap_i^N U_i$, hence $\bigcap_i^N U_i \in \mathcal{T}$ as well.

Finally, let $x,y\in\ell^2$ such that $x\neq y$. We have that $y_N\neq x_N$ for some $N\in\mathbb{N}$. Let $v\in\ell^2$ be defined by $v_N=2(y_N-x_N)^{-1}$ and $v_n=0$ for all other n. Define $V=\{v\}$. We claim that $x\in\Omega(x;V)$ and $y\in\Omega(y;V)$ are disjoint (and they are open sets by part (a) of this problem). Let $x'\in\Omega(x;V)$. It is sufficient to show $x'\not\in\Omega(y;V)$. We have $-1<\langle v,x'-x\rangle=\sum_n v_n(x'_n-x_n)=2(x'_N-x_N)/(y_N-x_N)<1$, or $0\leq |2(x'_N-x_N)/(y_N-x_N)|<1$, so $0\leq |x'_N-x_N|<\frac12|y_N-x_N|$. Note $|y_N-x_N|\leq |x'_N-y_N|+|x'_N-x_N|<|x'_N-y_N|+\frac12|y_N-x_N|$ thus $\frac12|y_N-x_N|<|x'_N-y_N|$. But then $1<|2(x'_N-y_N)/(y_N-x_N)|$ and $\sum_n v_n(x'_n-y_n)=2(x'_N-y_N)/(y_N-x_N)$. Thus $\sum_n v_n(x'_n-y_n)<-1$ or $\sum_n v_n(x'_n-y_n)>1$, in either case, $x'\not\in\Omega(y;V)$.

This satisfies all the conditions for a HTS, thus (ℓ^2, \mathcal{T}) is a HTS.

(c). Solution. Let $U \in \mathcal{N}(0)$ be an arbitrary open set, ie. $U \in \mathcal{T}$ such that $0 \in U$. We want to show that $(U \setminus \{0\}) \cap S \neq \emptyset$; since $0 \notin S$ anyway, we just need to show $U \cap S \neq \emptyset$.

Since $0 \in U$, there exists a finite set $V \subseteq \ell^2$ such that $\Omega(0;V) \subseteq U$. If $V = \emptyset$, then $\Omega(0;V) = \ell^3$ since $-1 < \langle v,y-x \rangle < 1$ is now vacuously true for all $y \in \ell^2$; then $\Omega(0;V) \cap S$ since $\hat{\mathbf{e}}_1 \in \ell^2 \cap S$, and since $\Omega(0;V) \subseteq U$, $U \cap S \neq \emptyset$. So now assume V is not empty. Denote the elements of V as v^i where $1 \le i \le k$. Then since $v^i \in \ell^2$, we must have that $\lim_n (v^i_n)^2 = 0$ (crude divergence test). Then there exists some N_i where $(v^i_{N_i})^2 < 1$ by the definition of convergence. Let $N = \min_i \{N_i\}$. Then $-1 < v^i_N < 1$ as well. See

$$\langle v^i, \hat{\mathbf{e}}_N \rangle = \sum_{n=1}^{\infty} v_n^i (\hat{\mathbf{e}}_N)_n = v_N^i$$

Thus $\hat{\mathbf{e}}_N \in \Omega(0, V)$ since $-1 < \langle v, \hat{\mathbf{e}}_N - 0 \rangle = v_N < 1$ for all $v \in V$. Thus, $\hat{\mathbf{e}}_N \in \Omega(0, V) \subseteq U$. Since $\hat{\mathbf{e}}_N \in S$, thus shows that $S \cap U \neq \emptyset$, so we are done since U was arbitrary (this works for any open $U \in \mathcal{N}(0)$).

(d). Solution. If $x \in G$, there exists a finite set $V \subseteq \ell^2$ where $\Omega(x;V) \subseteq G$. If there exists some $v_0 \in V$ such that $||v_0|| = 0$, then v_0 must be the zero sequence (otherwise $||v_0|| = \sum_n v_0^2 > 0$), but then regardless of $y \in \ell^2$, $\langle v_0, y - x \rangle = \sum_n 0(y_n - x_n) = 1$, so $G = \ell^2$, and so $\mathbb{B}[x;1) \subseteq \ell^2 = G$ and we are done (note we just made r = 1 > 0 here).

Now consider the remaining case when $0 < \|v_i\|$ where $v_i \in \{v_1, \dots, v_N\} = V$. Let $r = \min_i \{\|v_i\|^{-1}\}$. Note that since is just the minimum of a finite number of values, all greater than zero, we have r > 0 as well. Let $y \in \mathbb{B}[x;r)$. Then $\|y-x\| < r \le \|v\|^{-1}$ for all $v \in V$. Thus $\|v\|\|y-x\| < 1$. Now using Cauchy-Schwartz (which we proved for this norm in homework 7), we have $|\langle v, y-x\rangle \le \|v\|\|y-x\| < 1$, but this is equivalent to $-1 < \langle v, y-x\rangle < 1$, so $y \in \Omega(x;V)$ (since this was true for any $v \in V$), thus $y \in G$. Since $y \in \mathbb{B}[x;r)$ was arbitrary, this means $\mathbb{B}[x;r) \subseteq G$, as desired.

(e). Solution. It is sufficient to show that $\mathbb{B}[0;1]^c$ is open, Let $x \in \mathbb{B}[0;1]^c$. Thus, $||x|| > 1 \implies ||x|| > 1$. Let $0 < \lambda \in \mathbb{R}$ to be chosen later and let $V = \{\lambda x\}$. Consider $y \in \Omega(x;V)$. By the triangle inequality (proven in HW7), we have

$$1 > |\langle \lambda x, y - x \rangle| = |\langle \lambda x, y \rangle - \langle \lambda x, x \rangle| \ge \lambda ||x||^2 - \langle \lambda x, y \rangle$$

Which gives us $\lambda ||x||^2 - 1 < \langle \lambda x, y \rangle$. By Cauchy-Schwartz (also proven in HW7), we have

$$\lambda ||x||^2 - 1 \le \langle \lambda x, y \rangle \le \lambda ||x|| ||y||$$

Now we can fix our λ to be $\frac{1}{\|x\|(\|x\|-1)}$ (this is defined since $\|x\| \neq 1$). Subbing it in, wee arrive at

$$||x||/(||x||-1)-1 \le ||y||/(||x||-1) \implies ||x||-(||x||-1) \le ||y||$$

And so $1 \leq ||y||$ (where we have used the fact that ||x|| > 1 so the inequality was not flipped). Thus, $y \in \mathbb{B}[0;1]^c$, and since y was arbitrary, this implies that $\Omega(x;V) \subseteq \mathbb{B}[0;1]^c$. Since x was any point in $\mathbb{B}[0;1]^c$, this shows that $\mathbb{B}[0;1]^c \in \mathcal{T}$ is open. Thus, $\mathbb{B}[0;1]$ is closed, as desired.