Calculus stuff: The function $f(x)=(x-3)^2+\frac{1}{2}$ has domain $\mathcal{D}_f:(-\infty,\infty)$ and range

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

$$\int_{a}^{b} \sin dx = -\cos x + C$$

$$\int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \left[\frac{x^{3}}{3} \right]_{a}^{b} = \frac{b^{3}}{3} - \frac{a^{3}}{3}$$

$$\sum_{n=1}^{\infty} ar^{n} = a + ar + ar^{2} + \dots + ar^{n}$$

$$\int_{a}^{b} f(x) dx = \lim_{x \to \infty} \sum_{k=1}^{n} f(x_{k}) \cdot \Delta x$$

$$\vec{v} = v_{1}\vec{i} + v_{2}\vec{j} = \langle v_{1}, v_{2} \rangle$$