6. Métodos iterativos para resolver sistemas lineales

6.1. Métodos iterativos para la aproximación de soluciones de sistemas lineales

Los métodos iterativos para aproximar soluciones de sistemas lineales se emplean en casos que involucran matrices grandes y con muchas entradas nulas. Esta situación es habitual en muchos problemas prácticos. Presentaremos dos métodos sencillos a modo de ejemplo de este tipo de algortimos.

Un método iterativo para aproximar la solución de un sistema de ecuaciones lineales $A\mathbf{x} = \mathbf{b}$ comienza con una aproximación de la solución $\mathbf{x}^{(0)}$ y genera una sucesión de vectores $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ que converge a la solución \mathbf{x} . Una vez seleccionada la primera aproximación $\mathbf{x}^{(0)}$ se construye la sucesión calculando

$$\mathbf{x}^{(k)} = \Phi\left(\mathbf{x}^{(k-1)}\right) \qquad k = 1, 2, 3, \dots$$

Si el método es convergente la sucesivas soluciones que se obtienen, $\mathbf{x}^{(k)}$, tienden a la solución del sistema. Por tanto, la sucesión de las diferencias entre dos iteraciones consecutivas tiende a cero, es decir

$$\lim_{k \to \infty} \|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\| = 0.$$

Emplearemos esta propiedad para establecer un criterio de parada de las iteraciones.

6.2. Método iterativo: método de Jacobi

El algoritmo iterativo de Jacobi para resolver sistemas lineales $A\mathbf{x} = \mathbf{b}$ consiste en, dada $\mathbf{x}^{(0)}$ solución inicial, formar la sucesión de soluciones $\mathbf{x}^{(k)}$ empleando la iteración componente a componente:

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(-\sum_{\substack{j=1\\i \neq j}}^n a_{ij} x_j^{(k-1)} + b_i \right), \quad i = 1 \dots n$$

donde el índice k indica la interación k-ésima y n es la dimensión del sistema. El fichero llamado jacobi.m contiene este procedimiento con un numero fijo de iteraciones, sin condición de parada

Ejercicios

- 1. Prueba la función para aproximar la solución del primero de los sistemas de ecuaciones lineales en la sección final de la práctica empleando 5, 10 y 100 iteraciones comparándolo con la solución exacta obtenida con OCTAVE.
- 2. Modifica la función añadiendo los siguientes elementos:
 - a) Calcular, después de cada iteración, la norma de la diferencia entre la iteración calculada y la precedente:

$$\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|$$

- b) Incorporar la condición de parada del método de modo que se detenga cuando la norma anterior sea menor que una cantidad pequeña prefijada, TOL, y siempre que no se haya superado el número máximo de iteraciones permitidas, MAXITER. Estas dos cantidades, TOL y MAXITER, deben introducirse entre los argumentos de la función.
- 3. Probar la nueva función con el primero de los sistemas de ecuaciones lineales en la sección final de la práctica con valores de TOL de 10^{-5} , 10^{-10} y 10^{-15} siendo MAXITER=200.

6.3. Programación del método iterativo de Gauss-Seidel

El algoritmo iterativo de Gauss-Seidel para resolver sistemas lineales $A\mathbf{x} = \mathbf{b}$ consiste en, dada $\mathbf{x}^{(0)}$ solución inicial, formar la sucesión de soluciones $\mathbf{x}^{(k)}$ empleando la iteración

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(-\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} + b_i \right), \quad i = 1 \dots n$$

donde el índice k indica la interación k-ésima y n es la dimensión del sistema.

Si el método es convergente la sucesivas soluciones que se obtienen, $\mathbf{x}^{(k)}$, tienden a la solución del sistema. Emplearemos como criterio de parada de las iteraciones la norma de la diferencia entre la iteración calculada y la precedente:

 $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\| < \mathtt{TOL}$

donde TOL es una cantidad pequeña prefijada y siempre que no se haya superado el número máximo de iteraciones permitidas, MAXITER. Estas dos cantidades, TOL y MAXITER, deben introducirse entre los argumentos de la función.

Ejercicios

1. Escribe en un fichero llamado gaussSeidel.m una función de OCTAVE que emplee el método de Gauss—Seidel para aproximar la solución de un sistema de ecuaciones lineales.

6.4. Sistemas lineales

Resolver, empleando el método de Jacobi los sistemas lineales marcados con (J) y con el método de Gauss—Seidel los marcados con G. En todos los casos, empleando como valor inicial el vector nulo.

$$(\mathsf{J}) \begin{cases} 4x_1 - 2x_2 = 0 \\ -2x_1 + 5x_2 - x_3 = 2 \\ -x_2 + 4x_3 + 2x_4 = 3 \\ 2x_3 + 3x_4 = -2 \end{cases}$$

$$(\mathsf{G}) \begin{cases} x - y + x = 2 \\ 2x - 2y - z = -2 \\ 3x - 3y + 3z = 6 \end{cases}$$

$$(\mathsf{G}) \begin{cases} u + 4v + 2w = -2 \\ -2u - 8v + 3w = 32 \\ v + w = 1 \end{cases}$$