Duality

Example for notivertian

max
$$4x_1 + x_2 + 3x_3$$

s.t. $x_1 + 4x_2$ ≤ 1
 $3x_1 - x_2 + x_3 \leq 3$
 $x_i \geq 0, i = 1, 2, 3$

In prectice our is interested in an upper and a lower bound for the optimed Obj. f. value

Choose any fearible point:

(b) is fearible. $\overline{c^{T}}x = 4.1+1.0+3.0$ = 4 $\Rightarrow 4 \leq 9^*$

another point:

4 is a bower bound

 $\binom{0}{0}$ is fearible. $c^{T}x = 9 \le 9^{*}$ lower bound

 $3\left(3x_1-x_2+x_3\right)\leq 3.3$

How to get an upper bound: combine linearly the constraints "2.(1) +3(2)"; $2(x_1 + 4x_2) \leq 2 \cdot |$

$$||\chi_1 + 5\chi_2 + 3\chi_3 \leq ||$$

Since $x_i = 0$, i = 1, 2, 3

$$4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11$$

(2.(1)+3.(2))

choice of the linear comb.

was done in such a way that

we get an upper vermel (coeff

are greater and eq than those in

y).

However, was this (11) the lightest/ best combination to get an upper bound.2

More generally: Search for coeff. $y_1 y_2 s.t.$ $y_1, y_2 \ge 0$: $y_1(x_1 + y_2) \le y_1 \cdot 1$ $+ y_2(3x_1 + x_2 + x_3) \le y_2 \cdot 3$

"y1(1) + y2(2)":

 $(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2 \cdot x_3$ $\leq y_1 + 3y_2$

Comparing this comb. with I chiver upper bound for 9*.

 $S = 4x_1 + x_2 + 3x_3 \le$ $(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le$ $y_1 + 3y_2$.

Wanteel: upper bound should be nearest to 9* as possible.

min
$$y_1 + 3y_2$$

s.t. $y_1 + 3y_2 \ge 4$
 $4y_1 - y_2 \ge 1$
 $y_2 \ge 3$
 $y_1, y_2 \ge 0$
(D)
chuel pr.

How to get the dual problem (D) from (P): (using a formula)

max.
$$y_{x_1 + 1} x_2 + 3x_3$$

s.t. $y_{x_1 + 2} x_2 + 6x_3 \le 1$
 $y_{x_1 - 2} x_2 + 1x_3 \le 3$
 $y_{x_1 \ge 0} i = 1, 2, 3$ (P)

min.
$$|y_1 + 3y_2|$$

S.t. $|y_1 + 3y_2| \ge |y_1|$
 $|y_1| + |y_2| \ge |y_1|$
 $|y_1| + |y_2| \ge |y_1|$
 $|y_1| \ge 0, i = 1, 2$

In general:

max
$$c^{T}x$$

s.t. $Ax \le G$ (P)
 $x \ge O$

min
$$G^{T}y$$

s.t. $A^{T}y \ge C$ (D)
 $Y \ge 0$
notice A becomes transposed

min
$$(13)$$
 (y_1)
 y_2
 y_3
 y_4
 y_1
 y_2
 y_1
 y_2
 y_2
 y_1
 y_2
 y_1
 y_2
 y_2
 y_1
 y_2
 y_1
 y_2

Note that the dual of the dual is the original problem.

The dual problem into its std. form:

(D) min.
$$L^{T}y$$
 $\geq C$ \Rightarrow -max- $L^{T}y$ $\leq C$ \Rightarrow -max- $L^{T}y$ $\leq C$ \Rightarrow s.t. $-A^{T}y \leq C$ \Rightarrow \Rightarrow 0 \Rightarrow 1 \Rightarrow 2 \Rightarrow 0 \Rightarrow 1 \Rightarrow 2 \Rightarrow 1 \Rightarrow 2 \Rightarrow 1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 2 \Rightarrow 2 \Rightarrow 3 \Rightarrow 2 \Rightarrow 2 \Rightarrow 3 \Rightarrow 2 \Rightarrow 3 \Rightarrow 2 \Rightarrow 3 \Rightarrow 3 \Rightarrow 4 \Rightarrow 3 \Rightarrow 4 \Rightarrow 6 \Rightarrow 7 \Rightarrow 7 \Rightarrow 6 \Rightarrow 6 \Rightarrow 6 \Rightarrow 6 \Rightarrow 7 \Rightarrow 7 \Rightarrow 8 \Rightarrow 9 \Rightarrow 9 \Rightarrow 9 \Rightarrow 9 \Rightarrow 1 \Rightarrow

what is the dual problem (\bar{D}) of (D)?

-min -
$$c^{T}x$$
 std. form max $c^{T}x$ s.t. $Ax \le b$ s.t. $Ax \le b$ $x \ge 0$ our original problem (P) . $\rightarrow * holds$.

General rules for (P) and (D): # of variables of (P) = # of constr. of (D)

of constraints of (P) = # of variables of (D)

Using SM, you will get both the solution to (P) and (D).

(P)

max. in (P)

≤ - coustr.

 $y = c^T x$

RHS of the constr.

A

(D)

min in (D)

≥ - coustr.

c becomes RHS of the constraints.

by becomes obj.f. of (D).

A

Example:

max.
$$3x_1 + 2x_2$$

s.t. $x_1 + 2x_2 \le 4$
 $2x_1 + x_2 \le 4$
 $x_i \ge 0, i = 1, 2$

min
$$4y_1 + 4y_2$$

s.t. $|y_1 + 2y_2| \ge 3$
 $2y_1 + y_2 \ge 2$
 $y_i \ge 0, i = 1, 2$

sobre this at home!

Optimal dictionary:

$$S = 6\frac{2}{3} - 7\frac{1}{3}w_2 - \frac{1}{3}w_1$$

$$X_2 = \frac{4}{3} + \frac{1}{3}w_2 - \frac{2}{3}w_1$$

$$X_1 = \frac{4}{3} - \frac{2}{3}w_2 + \frac{1}{3}w_1$$

$$\chi^* = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \end{pmatrix}, \quad \varphi^* = 6\frac{2}{3}$$

for any upper bound peachle point of (D).

of (P).

Weah duality theorem:

Let $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ be feasible points of (P) and (D) respectively.

Then:

ctx & bty

$$(AB)^{T} = A^{T}B^{T}$$

$$A^{T}y \ge C$$

$$y^{T}A \ge c^{T}$$

off (D) is inbounded, (P) is infeasible.

Strong duality theorem

If (P) has an optimal solution $x^* \in \mathbb{R}^n$, then (D) has an optimal sol. $y^* \in \mathbb{R}^n$ with:

$$C^{T}x^* = C^{T}y^*$$

o Both (P) and (D) have a corresponding solution (X* and y*, respectively) or none of them how a solution.

o we will see that SM clilices both solutions in the dictionary.

elf solutions of (P) and (D) exist then there is no durality gap; that is, (P) and (D) have the same optimal obj. punc. value.

