

BIOFUELS FOR MARINE SHIPPING: A LIFE-CYCLE AND SECTORAL LEVEL ANALYSIS

JAXON STUHR SULI Intern Energy Systems Division **GEORGE G. ZAIMES** Energy Systems Analyst **TROY HAWKINS**Fuels and Products Group Lead

April 26th, 2021

MARINE SHIPPING SECTOR: ENVIRONMENTAL **CHALLENGES AND OPPORTUNITIES**

MARINE SHIPPING SECTOR:

Environmental Impacts and Emissions Reductions Targets

- Marine shipping accounts for over 2% of worldwide GHG emissions (> 900 tons CO₂ per year)
 - Increasing regulatory focus on Maritime decarbonization
 - IMO has set target for 50% reduction in GHG emissions from International Shipping by 2050 relative to 2008
- Marine Shipping one of single largest producers of anthropogenic SOx
 - In 2020, IMO put into place restrictions on Marine Fuel to 0.5% Sulfur by weight
 - Carriage ban on non-compliant fuel

BIOFUELS VS. ALTERNATIVES:

Potential for CO₂ Emission Reduction

- In 2017, Bouman et al. assessed the potential of difference technologies and efficiency improvements for CO₂ emission reduction
- Biofuels demonstrated the highest potential for reducing CO₂ emissions across all considered measures

Bouman et al. (2017) https://doi.org/10.1016/j.trd.2017.03.022

Argonne 📤

Fuel Sample, Analysis, & Testing Fuel Properties and Material Compatibility Assessment An integrated modelling framework to assess the feasibility of fuels in the marine shipping sector

Techno-economic

Analysis

Life Cycle Assessment

GREET

Feedstock-to-Fuel

Logistics

Process Modeling

Stakeholders and

External Advisory

Board

MARINE BIOFUELS ANALYSIS

Life-Cycle Assessment

- Life-Cycle inventories are derived from process model simulation provided by PNNL and NREL
- Process models estimate material/energy balances, and utility requirements for biofuel conversion and upgrading
- LCA conducted using Argonne's GREET model

RESEARCH OBJECTIVES

- Evaluate Life-Cycle impacts of novel biofuel pathways using Argonne's GREET model and process simulation from partners at NREL, PNNL
 - Catalytic Fast Pyrolysis: Woody Blend
 - Hydrothermal Liquefaction: Waste Streams
 - Fischer-Tropsch Synthesis: Landfill Gas
- Forecast the global environmental impacts of international shipping across the 2020 to 2050 time horizon
 - IEA international shipping projections
 - Time-series GREET analysis of fuel impacts
 - > Methanol
 - ➤ Pyrolysis Oil

LIFE-CYCLE ANALYSIS OF 18 NOVEL MARINE **BIOFUEL PATHWAYS**

Pathway ID	Feedstock	Process	SOT/Target	Final Fuel Product	Co-Products	
1	Landfill Gas	Fischer-Tropsch (FT) Synthesis	-	FT - Diesel	Jet Fuel, Gasoline, Wax, Hydrogen, Electricity	
2	Woody Blend	CFP w/ Pi/TiO2	SOT	Whole Oil	MEK, Acetone, Electricity	
3	Woody Blend	CFP w/ Pi/TiO2	SOT	Heavy Oil	'Light Cut', MEK, Acetone, Electricity	
4	Woody Blend	CFP w/ ZSM5	SOT	Whole Oil	MEK, Acetone, Electricity	
5	Woody Blend	CFP w/ ZSM5	SOT	Heavy Oil	'Light Cut', MEK, Acetone, Electricity	
6	Woody Blend	CFP w/ Pi/TiO2	Target	Whole Oil	MEK, Acetone, Electricity	
7	20% FOG	HTL	Target	HTL - Biocrude	No Coproducts	
8	Swine Manure	HTL	-	HTL - Biocrude	No Coproducts	
9	Wet Waste Sludge	HTL	Target	HTL - Biocrude	No Coproducts	
10	Food Waste	HTL	-	HTL - Biocrude	No Coproducts	
11	Manure-Food-Sludge-FOG Blend	HTL	-	HTL - Biocrude	No Coproducts	
12	Food-Sludge-FOG Blend	HTL	-	HTL - Biocrude	No Coproducts	
13	20% FOG	HTL/Catalytic Hydro-treating	Target	HTL - Diesel	Naphtha, Residue	
14	Swine Manure	HTL/Catalytic Hydro-treating	-	HTL - Diesel	Naphtha, Residue	
15	Wet Waste Sludge	HTL/Catalytic Hydro-treating	Target	HTL - Diesel	Naphtha, Residue	
16	Food Waste	HTL/Catalytic Hydro-treating	-	HTL - Diesel	Naphtha, Residue	
17	Manure-Food-Sludge-FOG Blend	HTL/Catalytic Hydro-treating	-	HTL - Diesel	Naphtha, Residue	
18	Food-Sludge-FOG	HTL/Catalytic Hydro-treating	-	HTL - Diesel	Naphtha, Residue	

LANDFILL GAS FISCHER-TROPSCH SYNTHESIS

Block flow diagram

 Landfill Gas is modelled assuming a composition of 60% CH4 and 40% CO2 by mass

Figure provided by Eric Tan, NREL

CATALYTIC FAST PYROLYSIS (CFP)

Block flow diagram

 Woody biomass is 50/50 blend of clean pine, forest residues

Projected feedstock rate is 2,000 ton/day

Figure provided by Eric Tan, NREL

HYDROTHERMAL LIQUEFACTION (HTL)

Block flow diagram

- Pathways consider both Biocrude and Diesel endproducts
- 1000 Tons-Per-Day Throughput

Figure adapted from Cai et al 2020

Cai, Hao, Ou, Longwen, Wang, Michael, Tan, Eric, Davis, Ryan, Dutta, Abhijit, Tao, Ling, Hartley, Damon, Roni, Mohammad, Thompson, David N., Snowden-Swan, Lesley, and Zhu, Yunhua. Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2019 State-of-Technology Cases. United States: N. D. 2020. Web. doi:10.2172/1616516.

FORECASTED ENVIRONMENTAL IMPACTS OF **GLOBAL INTERNATIONAL SHIPPING OVER THE** 2020 TO 2050 TIME HORIZON

IEA Global energy consumption from international shipping: Sustainable Development Scenario (SDS) 2020-2050

Source: IEA, Global energy consumption and CO2 emissions in international shipping in the Sustainable Development Scenario, 2019-2070, IEA, Paris

Maritime AGE: Scenario Matrix

Case ID	HFO	LNG	Bio- Methanol	Pyrolysis Oil	Fossil Ammonia	Low Carbon Ammonia	Fossil Hydrogen	Low Carbon Hydrogen
Business As Usual [BAU]	√	√	-	-	-	-	-	-
Bio-Methanol [Low Carbon H2/NH3]	√	✓	\checkmark	-	-	√	-	√
Bio-Methanol [Fossil H2/NH3]	√	√	√	-	√	-	√	-
Pyrolysis Oil [Low Carbon H2/NH3]	√	✓	-	√	-	√	-	√
Pyrolysis Oil [Fossil H2/NH3]	√	√	-	√	√	-	√	-

Time-Series Emissions, Energy, and Water Intensity of International Shipping: Comparison of SDS and BAU Cases

Emissions, Energy, and Water Use: Methanol-Low Carbon vs. BAU Case

Methanol [Low Carbon H2/NH3]: Fuel Contribution Analysis

CONCLUSIONS AND TAKEAWAYS

- Waste-to-fuel biofuel pathways present significant GHG reduction potential with all 18 considered pathways meeting BETO and IMO emissions targets
- SDS with "Low-Carbon" Ammonia and Hydrogen can nearly meet IMO reduction goals by 2050 (42% vs. 50%) but is heavily reliant on fuel supply chains
- Without consideration of fuels' life-cycles, there is potential for emissions to be shifted from fuel combustion to supply chain (primarily in the cases of Ammonia and Hydrogen)
- Biofuels can play a significant role in decarbonizing marine shipping both as blending fuels and via biomass to liquid fuels, however large emissions reductions come with increased energy demand

FUTURE WORK AND ACKNOWLEDGEMENTS

FUTURE WORK

- For Waste-to-Energy (WtE) systems perform *Consequential LCA* by considering the counterfactual waste management practice and associated avoided emissions and resource consumption
- Analysis resource limitations of biofuel pathways and their potential to constrain sectoral level biofuel adoption
- Synthesis of environmental (LCA), economic (TEA), and technical performance metrics to guide R&D
- Technical recommendations and engagement with maritime stakeholders

