SANJAY SESHAN

🖾 seshan@mit.edu | 🌴 http://www.mit.edu/~seshan | 🗘 sanjayseshan | in sanjayseshan

Education

Massachusetts Institute of Technology (MIT)

Cambridge, MA

Bachelor of Science, Course 6-2 Electrical Engineering and Computer Science

Sep. 2021 - May 2025

GPA: 4.9/5.0

Relevant Coursework

6.175 Constructive Computer Architecture, 6.111 Digital System Laboratory (FPGA), 6.012 Nanoelectronics Systems, 6.2080 Semiconductor Electronics, 6.039 Operating Systems Engineering, 6.115 Microcomputer Systems, 6.823 Computer System Architecture (F24)

Work Experience & Research

EPFL - Verification and Computer Architecture Lab

Lausanne, Switzerland May 2024 - Aug. 2024

Research Intern

- Contributed to development of SMT-based architecture that can scale to very large number of computation threads
- Extended RISC-V ISA to support thread creation, thread termination and inter-thread communication
- Implemented extensions to RISC-V design for "token"-based approach to managing inter-thread communication using Bluespec SystemVerilog HDL
- Verified design using a tandem verification system
- Expected to submit for publication in Fall 2024

MIT Computer Architecture 6.1920[6.175] Teaching Staff

Cambridge, MA

Undergraduate Teaching Assistant

Feb. 2024 - May 2024

- Supervised final projects for 30 students and developed course materials including lab assignments and course notes
- Hosted office hours and delivered multiple course lectures and recitations

Imperial College London - Adaptive Emergent Systems Engineering Group Research Intern

London, United Kingdom Jun. 2023 - Aug. 2023

• Evaluated numerous sensors (i.e. accelerometers, magnetometers) and embedded development boards for use in system

to monitor freight shipments over the course of several months, without any maintenance

- Developed, implemented and programmed proof-of-concept design incorporating core sensing elements to demonstrate low-power capabilities
- Designed a custom PCB design containing of all the desired sensors, CPU, and interfacing chips, that was subsequently printed, assembled and tested with expectations to deploy sensor onto a freight ship in the near future

MIT CSAIL - Computation Structures Group

Cambridge, MA

Undergraduate Research Assistant

Jan. 2023 - May 2024

- Designed an application-specific accelerator for graph pattern mining and graph vector search
- Synthesized accelerator for Xilinx FPGA using Vivado and evaluated correctness and efficiency of implementation
- Evaluated performance of processing in memory (PIM) and parallelization techniques in the implementation

Emerald Innovations

Cambridge, MA

Software Engineering Intern

May 2022 - Aug. 2022

- Designed algorithm to extract common paths that a single person takes from raw position data (calculated from the RF signal feedback)
- Implemented algorithm as part of an in-house python package used to calculate a person's walking speed and detect changes that could indicate the progression of disease

Technical Skills

- C/C++, Bluespec, SystemVerilog, Python, Embedded Systems design and programming (e.g. Zephyr), Cadence simulation and layout, Xilinx FPGA toolchain (vivado)
- Photoshop & DSLR Photography, LATEX, Machine Learning (pytorch), Signal Processing, PCB Circuit layout & Design (KiCad, Altium), Java, HTML/JS/CSS

Significant Projects

- Silicon Differential Amplifier (MIT 6.2080): Completed layout and tapeout preparation process for a CMOS-based differential amplifier in Cadence.
- Embedded Oscilloscope (MIT 6.115): Designed and implemented a PSoC (programmable system on chip) based oscilloscope, with two analog inputs and one analog output, including full frequency analysis and user customizability.
- 2D MoS₂-based Transistors (MIT 6.s059): Fabricated a nano-scale 2D MOSFET-style transistor using MoS₂ channels for use in developing logic gates, working from design to physical tapeout. Work was accepted to Microsystems Annual Research Conferences (MARC), Jan. 2024.
- Multicore RISC-V Implementation (MIT 6.175): Designed and implemented a pipelined, dual-core RISC-V 32-bit processor with a shared cache hierarchy in Bluespec SystemVerilog. Synthesized design to work on AWS-based FPGA.

Leadership and Community Activities

• MIT SPARK/SPLASH Instructor:

 Taught Graph Algorithms course to 30 high school students and Gravitation and Electrostatics to 30 middle school students.

• Maseeh Hall Dorm Executive:

- Representative for Spring 2022. Managed a budget of \$800 for 100 students.
- Chair for Campus Preview Weekend (CPW) for incoming freshmen for the 2022-2023 and 2023-2024 school years.
 Organized dozens of events for several hundred incoming freshman, introducing them to MIT academics and culture.
- Chair for REX (Freshman Orientation events) Fall 2023. Ran events to introduce the 1100 new Freshman to their new home at MIT, including 150+ to the dorm. Supported students during move-in.
- Official photographer for several events, including Maseeh formal and boat cruise.

• K-12 Youth Robotics Volunteer:

- Wrote introductory programming lessons for youth robotics students used by 100k+ per year.
- Developed Web-based tournament management system for FIRST events with support to manage team submissions, judging, and scoring.
- Alpha and beta-tested both hardware and software products under NDA for the LEGO Group in Billund, Denmark.
 Designed three robots for the official LEGO MINDSTORMS App released in 2021.