Complexité et Algorithmique

- ISIMA, 2F2 & 2F3
- Christophe Duhamel & Philippe Lacomme

Plan du Cours

- Complexité algoritmique
- Conception d'algorithmes
- Problèmes combinatoires
- Problèmes d'ordonnancement
- Problèmes de transport

Planning du cours

- Complexité : 1 cours
- Ordonnancement : 4 cours, 4 TP
- Transport : 4 cours, 4 TP

	Cours	thème	TP 2F2	TP 2F3	thème
S37	14/09/10	complexité			
S38	21/09/10	ordo			
S39	28/09/10	ordo	28/09/10	01/10/10	ordo
S40	05/10/10	ordo	05/10/10	08/10/10	ordo
S41	12/10/10	ordo	12/10/10	15/10/10	ordo
S42	19/10/10	transport	19/10/10	22/10/10	ordo
S43			Toussaint		
S44	02/11/10	transport	02/11/10	05/11/10	transport
S45	09/11/10	transport	09/11/10	12/11/10	transport
S46	16/11/10	transport	16/11/10	19/11/10	transport
S47			23/11/10	26/11/10	transport
S49			30/11/09	02/12/09	transport

1. Complexité Algorithmique

- Motivations
- Définitions
- Principales classes de complexité
- Calcul de complexité

- Concevoir un algorithme, c'est bien
- Connaître les limites de l'algo, c'est mieux !

- Limites:
 - Préconditions
 - Postconditions
 - Temps de calcul
 - Taille mémoire
 - Communications

- Efficacité d'un algorithme
 - Les performances sont importantes lorsque l'algo constitue un goulot d'étranglement du système
 - Volumétrie importante (grande taille de données)
 - Nombre élevé d'appels (algo utilisé souvent)
 - Contraintes sur le temps de réponse
 - Contextes typiques
 - Systèmes embarqués, temps-réel
 - Logiciels de calcul
 - Fouille de données

- Comparaison d'algorithmes
 - Plusieurs algos pour résoudre le même problème
 - Lequel est le meilleur ?
 - Selon quel critère ?
 - Dans quel contexte ?
 - Sur quel type de données ?

- Analyse a priori
 - Formulation mathématique pour le critère
 - + meilleure compréhension de l'algo
 - obtention parfois complexe
- Analyse a postériori
 - Outils de profilage, de tests (unitaires, couverture...)
 - + utilisation simple
 - algorithme = boîte noire, délai d'obtention
- Ici, analyse a priori

- Trouver des critères d'analyse pertinents
 - Indépendants de la plateforme, du langage
 - Discriminants
 - Permettant une analyse rigoureuse
- Possibilité d'analyse multicritères
 - Dominance
 - Front de Pareto
 - Agrégation de critères...

В

C

e

- Critères d'analyse
 - Temps de calcul → nombre d'opérations effectuées
 - Taille mémoire → quantité de mémoire consommée
 - Communications → nombre d'octets émis/reçus

- Typiquement : temps de calcul
- On va s'intéresser à la complexité temporelle des algorithmes

1.2 Définitions

- Analyse du temps de calcul : complexité temps
 - Nombre d'opérations élémentaires effectuées en fonction des données du problème
- Nécessite de définir
 - Une opération élémentaire
 - La taille du problème

1.2 Définition

- Opération élémentaire
 - Opération caractéristique de l'algorithme étudié
 - Exemples
 - Recherche dans un tableau (ZZ1): accès, comparaison
 - Tri d'un tableau (ZZ1) : comparaison, déplacement
 - Produit scalaire : multiplication
 - Minimisation : évaluation d'un point, calcul du gradient
 - Calcul du PGCD : division, modulo
 - Enveloppe convexe : test d'un point

1.2 Définition

- Taille du problème
 - Grandeur caractéristique utilisée par l'algorithme
 - Exemples
 - Recherche dans un tableau (ZZ1): taille du tableau
 - Tri d'un tableau (ZZ1) : taille du tableau
 - Produit scalaire : dimension
 - Minimisation: -
 - Calcul du PGCD : taille des nombres
 - Enveloppe convexe : dimension, nombre de points

1.2 Définition

- Trois types de complexité
 - Dans le pire des cas
 - Instance pathologique pour l'algo
 - Utilisé le plus souvent car donne une borne supérieure
 - Dans le meilleur des cas
 - Instance "parfaite" pour l'algo
 - En moyenne
 - Pas d'hypothèse sur l'instance
 - Plus compliquée à calculer
 - Donne une idée plus proche du comportement réel

1.2 Définitions

- La complexité est donc une formule en fonction de la taille du problème
- Elle peut être compliquée
 - **Exemple**: $f(n,m)=3n+m^2-5m/n+2\log(n+3)+m^{5/n}$
 - Précis mais peu pratique

- Ordre de grandeur
 - Expression simplifiée, montrant l'évolution
 - Même comportement limite que la formule
 - Simplifie les comparaisons et analyses

- Ordre de grandeur
 - Notation o : f(x) = o(g(x)) si $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$
 - f croît plus lentement que g
 - Exemples
 - $\sin(x) = o(x)$ $17x^2 + \sqrt{3x-4} = o(x^4)$
 - Notation O: f(x) = O(g(x)) si $\exists k tq \forall x > x_0, f(x) < kg(x)$
 - f dominée par g à partir d'un certain point
 - Exemples
 - $\sin(x) = O(x) \qquad \sin(x) = O(1)$
 - O moins précis et plus simple à obtenir que o
 - O est suffisant en général

Notations

- Notation ~: $f(x) \sim g(x)$ si $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$
 - f et g sont globalement similaires
 - Exemples $17x^2 + \sqrt{3x-4} \sim 17x^2$
 - on se concentre sur le terme dominant
 - ne fonctionne pas pour les fonctions trigonométriques (Taylor!)

Autres notations

- Notation Θ
- Notation Ω

On va rester sur O

- On va chercher la fonction g la plus "approchante"
 - $\exists k tq \ \forall x > x_0, f(x) < kg(x) \ \text{et} \ \lim_{x \to \infty} \frac{f(x)}{g(x)} = k$
 - on se concentre sur le terme dominant dans f^x
 - on essaie de l'approcher au mieux

Exemple

- $17x^2 + \sqrt{3x 4} = O(x^2)$
- $= \sin(x) = O(1)$

Principales classes de complexité

- O(1)

 $O(\log x)$

O(x)

 $O(x \log x)$

 $O(x^2)$

 $O(x^3)$

 $O(2^x)$

O(x!)

constante

superlinéaire (logarithmique, etc.)

linéaire

n-log-n

quadratique

cubique

exponentielle

factorielle

Évolution de la quantité de calculs

n	$\log n$	n	$n \log n$	n^2	n^3	2 ⁿ	n!
10	3,3	10	$3,3\times10$	10^2	10^3	10^3	$3,6\times10^{6}$
						$1,3 \times 10^{30}$	$9,3 \times 10^{157}$
10^3	10	10^3	$1,0 \times 10^{4}$	10^6	10 ⁹		
10^4	13	10^4	$1,3 \times 10^{5}$	10^8	10^{12}		
10^5	17	10^5	$1,7 \times 10^{6}$	10^{10}	10^{15}		
10^6	20	10^6	$2,0\times10^{7}$	10 ¹²	10^{18}		

- Évolution du temps de calcul
 - Un problème de taille n
 - Un ordinateur d'une puissance de 10⁹ flops

n	10 ²	10 ³	10^6
O(n)	<1 s	<1 s	<1 s
$O(n^3)$	<1 s	1 <i>s</i>	32 ans
$O(n^5)$	10 s	11 jours	3.10^{13} ans
$O(2^n)$	$3.10^{14} ans$	10 ²⁸¹ siècles	$10^{3.10^5}$ siècles

Remarques

- Pour des problèmes de petite taille, les termes constants ne doivent pas être négligés
- Exemple
 - $-0.00001 n^3$ vs. n^2
- Mais on compare toujours sur l'asymptotique...

Conséquence

- Rechercher l'algo offrant la meilleure complexité
- Techniques pour réduire la complexité

- Calcul de la complexité
 - Évaluer le nombre d'opérations élémentaires
 - Considérer chaque étape de l'algorithme
 - Faire la somme des appels
 - Déduire l'ordre de grandeur

- Nécessite de connaître quelques formules
 - Sommations
 - Récurrences
 - Limites

Rappels sur les séries

Rappels sur les relations de récurrence

Rappels sur les limites

- Exercices
 - Addition, multiplication matricielle
 - Recherche linéaire, dichotomique, interpolation
 - Tri insertion, sélection, rapide, histogramme

2. Conception d'Algorithmes

- Complexité d'un problème
 - Souvent plusieurs algorithmes possibles
 - Complexité du meilleur algorithme associé
 - Exemples :
 - Recherche dans un tableau
 - O(n) si pas trié
 - O(log n) si trié
 - Tri dans un tableau
 - O(n lon g)
 - Résolution de systèmes linéaires
 - O(n²)

- Complexité d'un problème
 - Permet de connaître la classe d'un problème
 - Prouver qu'on ne peut faire mieux est complexe
 - Beaucoup de problèmes ouverts
 - Multiplication matricielle
 - Test de primalité
 - Programmation linéaire
 - Problèmes combinatoires...

- Au final, 2 catégories de problèmes
 - Les problèmes "faciles"
 - faible complexité : O(1) → O(n^k)
 - existence d'algorithmes efficaces (pour k petit !)
 - Les problèmes "difficiles"
 - forte complexité : O(2ⁿ), O(n!)
 - absence d'algorithmes efficaces
 - souvent avec une structure combinatoire

- Problèmes de décision
 - Leur réponse est oui / non
 - Utilisés pour la définition des classes P et NP
 - Exemples
 - PREMIER(a): le nombre a est-il un premier?
 - CONNEXE(G): G est-il connexe?
 - PCC(G,p): le chemin p est-il le plus court ?
 - Problèmes d'optimisation traités "par la bande"

- Classe P (polynômial)
 - Problèmes de décision qui peuvent être résolus par un algorithme fortement polynômial
 - Fortement polynômial = indépendant de la grandeur
 - Exemples
 - CONNEXE(G): algo de parcours BFS
 - CHEMIN(G,o,d): algo de parcours BFS
 - PREMIER(a): algo de Aggarwal et al.

- Classe NP (polynômial non-déterministe)
 - Problèmes de décision qui peuvent être résolu par un algorithme non-déterministe fortement polynômial
 - Définition plus compliquée que pour P
 - À chaque étape, l'algorithme a plusieurs choix
 - Réponse "oui" : il existe une séquence de branchements tels que l'algorithme trouve
 - Réponse "non" : quelque soit la séquence de branchements, l'algorithme ne trouve pas

Classe NP

- Exemples
 - HAMILTONIEN(G,o,d): existe-t-il un chemin hamiltonien de o à d dans G?
 - COLORATION(G,k) : G peut-il être colorié avec k couleurs ?
 - SAT(f,x): existe-t-il un vecteur x satisfaisant f?
- De petites modifications peuvent changer la classe
 - 3-SAT est de classe NP, 2-SAT est de classe P
 - EULERIEN(G,o,d) est de classe P

- Relation P → NP
 - Trivialement P dans NP
 - "qui peut le plus, peut le moins"
 - Question ouverte : P = NP ?
 - on cherche depuis 30 ans
 - un des 7 problèmes du Millennium Prize
 - à vous de répondre !

Classe Indécidable

- Problèmes pour lesquels on ne connait pas on ne connaît pas d'algorithme qui réponde en un nombre fini d'étape
- Exemple
 - HALT(P) : le programme P se termine-t-il ?
 - DIOPHANTE(E): l'équation diophantienne E a-telle une solution ?

Classe Co-NP

- Étant donné un problème, son complémentaire consiste à échanger les réponses
- Exemple
 - COMPOSE(a) : le nombre a est-il composé ?
 - PREMIER(a): le nombre a est-il premier?
 - change radicalement la nature de la question (il existe / quelque soit)
- Un problème est dans Co-NP si le complémentaire est dans NP

- Réduction
 - Deux problèmes A et P₂
 - Une tranformation f : A → B
 - un algorithme pour B résoud les instances de A
 - Si f est polynômiale
 - réduction polynômiale
 - si B est P alors A est P
- Classe NP-difficile
 - Si tout problème NP peut se réduire poly à A

- Classe NP-complet
 - Problème NP-difficile qui est dans NP
 - Intérêt
- un algo pour un problème NP-complet peut, de fait, résoudre tous les problèmes NP
- s'il existe un algo polynômial pour un problème
 NP-complet, alors P = NP
- Théorème de Cook (1971) : SAT est NP-complet
- Karp (1972) : 21 problèmes NP-complets

- Classe NP-complet
 - Karp (1972) : 21 problèmes NP-complets
 - Garey & Johnson (1979) : livre-référence

SAT(f)

- Une formule booléenne est une expression (à base de AND, OR, NOT et ()) de variables booléennes
- Forme Normale Conjonctive
 - conjonction de clauses (disjonctions de litéraux)
 - ex : $f = (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4) \land (\neg x_2 \lor x_5) \land (\neg x_3 \lor x_4 \lor \neg x_5)$
- Existe-t-il un vecteur satisfaisant la formule ?
 - ex:(FFFVV)
- Problème fondamental de la classe NP-complet
- Applications pratiques (logique, électronique...)

- 3-SAT(f)
 - Idem à SAT avec des clauses d'au plus 3 litéraux
 - Exemple : $f(x) = (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$
 - Existe-t-il un vecteur satisfaisant la formule ?
 - Exemple : (F F V)
 - Par contre 2-SAT est dans la classe P

- CLIQUE(G,k)
 - On considère un graphe non orienté G=(V,E)
 - Sous-graphe complet

- Existe-t-il une clique de cardinalité k ?
- Par la suite, trouver une clique de card. maximum

- STABLE(G,k)
 - On considère un graphe non orienté G=(V,E)
 - Ensemble de sommets 2 à 2 non adjacents

- Existe-t-il un stable de cardinalité k?
- Aussi, trouver un stable de cardinalité maximum
- Le stable et la clique sont complémentaires

- COLORATION(G,k)
 - On considère un graphe non orienté G=(V,E)
 - Affecter une couleur à chaque sommet
 - deux sommets adjacents ont une couleur ≠

- Existe-t-il une coloration avec k couleurs ?
- Aussi, trouver le nombre minimal de couleurs
- Note: 4 couleurs suffisent pour un graphe planaire

- PLNE 0-1
 - On considère un PL avec des variables de décision

- Le système admet-il une solution ?
- Par la suite, trouver une solution optimale
- PL est P, PLNE 0-1 est NP-complet

SUBSET-SUM

- On a un ensemble de n entiers E={e₁..e_n}
- On a un entier S
- Existe-t-il une partie de E non vide de somme S ?
- Exemple : E={-3, -1, 2, 6}
 - pour S=0, pas de solution
 - pour S =1, E'={-1,2}
 - pour S=2, E'={2} ou {-3,-1,6}

- SAC-A-DOS(c,p,P)
 - On considère n objets d'intérêt ci et de poids pi
 - On a une limite de poids total P
 - Existe-t-il une combinaison d'objets de poids P?
 - Aussi, trouver un ensemble viable d'intérêt max
 - Exemple : $O=\{(1,2)(8,10)(7,3)(4,1)\}$
 - P=12, O'= $\{(1,2)(7,3)(4,1)\}$, intérêt = 12, poids = 6

- Liens entre SUBSET-SUM et SAC-A-DOS
 - SAC-A-DOS peut résoudre SUBSET-SUM
 - On garde la contrainte de capacité
 - L'intérêt d'un entier est sa valeur
 - Si la solution de SAC-A-DOS sature la contrainte alors c'est une solution de SUBSET-SUM
 - Sinon SUBSET-SUM n'a pas de solution
 - SUBSET-SUM est un problème d'existence
 - SAC-A-DOS est un problème d'optimisation

- Méthodes d'énumération
 - Forte complexité
 - Limitées à certains problèmes et à certaines tailles

- Programmation Linéaire en Nombres Entiers
 - Reprend le formalisme de la PL
 - Considère des variables entières, modélisant
 - des quantités entières
 - des décisions

- Variables de décision $x_i \in \{0, 1\}$
 - Ne peuvent prendre que deux valeurs : 0 ou 1
 - x_i=1 on prend la décision i
 - x_i=0 on ne prend pas la décision i
 - Modélise "simplement" des situations booléennes
 - Toute variable entière peut s'exprimer en décision

•
$$x \in \mathbb{N} \to x = \sum_{i=1...k} 2^i y_i$$
 avec $y_i \in \{0,1\}$

- Résolution d'un PLNE
 - Branch & Bound (séparation / évaluation)
 - On relâche le problème des contraintes d'intégrité
 - On résoud le problème relâché
 - Si la solution est fractionnaire
 - il existe au moins une variable fractionnaire
 - on effectue un branchement dessus
 - stratégie récursive

- Stratégies évoluées
 - Branch & Cut (génération de coupes)
 - Branch & Price (génération de colonnes)
 - Relaxation lagrangienne
 - Méthodes de décomposition
 - Dantzig-Wolfe
 - Benders
 - décomposition lagrangienne, ...
- Programmation dynamique, ...

3.2 Méthodes approchées

- Les problèmes sont de classe NP
 - Temps de calcul explose sur les grosses instances
 - Se tourner vers des méthodes approchées
 - on ne garantit plus l'optimalité de la solution
 - on réduit fortement les temps de calcul
 - compromis entre le temps et la qualité

4. Problèmes d'ordonnancement

Transport de biens / personnes

Composante essentielle de la société moderne

- Charbon puis pétrole : essor du transport moderne
 - plus rapide : réduction des délais de transport
 - plus loin : accès à de nouveaux marchés, délocalisation
 - plus sûr : maîtrise des aléas
 - davantage : augmentation des quantités transportées
- Massification des transports

- Environnement fortement concurrentiel
 - Mécanisme de bourse au transport
 - Répondre aux offres de transport
 - Offrir les meilleures prestations de transport
 - Délais, coûts
 - Savoir rapidement si une offre est intéressante
 - Augmentation du bénéfice
 - Respect de la nouvelle demande
 - Respect des demandes existantes

- Trois entités en jeu
 - Client : quantité, origine, destination, dates...
 - Véhicule : capacité, vitesse...
 - Réseau : urbain / routier, distances
- Dimensions
 - Nombre de demandes, de véhicules
- Prétraitement
 - Calcul du chemin entre chaque point
 - Réduction au sous-graphe des points

- Exemples de problématiques
 - Organiser des tournées de transport (ex : la Poste)
 - collecte, livraison, collecte + livraison
 - gestion de la flotte de véhicules
 - satisfaire tous les clients
 - Organiser des lignes régulières (ex : bus, train)
 - point d'arrêt, fréquence
 - gestion de la flotte de véhicules
 - satisfaire le plus de clients possible

- Problèmes de transport en Aide à la Décision
 - De problèmes simples
 - Plus court chemin
 - Problème de transport
 - Flot maximal, flot de coût minimal
 - À des problèmes difficiles
 - Voyageur de commerce
 - Tournées de véhicules
 - Transport à la demande

- Plus Court Chemin (PCC)
 - Étant donné un graphe G=(S,A) muni de coût sur les arcs, trouver le plus court chemin d'un sommet origine o à un sommet destination d

- coût positifs : Dijsktra, Bellman
- coût négatifs (sans cycle) : Bellman
- problème polynômial

- PCC : Dijsktra
 - 2 ensembles de sommets
 - S₁: sommets validés
 - S₂: sommets non traités
 - labels de distance : π

on peut ajouter une structure pour stocker le sommet qui connecte chaque sommet dans l'arbre des PCC

```
// initialisation
          S_1 \leftarrow \{\}
       S_2 \leftarrow S
\pi_s \leftarrow 0
         \pi_i \leftarrow \infty, \forall i \neq s
7. // boucle d'expansion
8. tant que
                                S_2 \neq \{\}
9.
10. i \leftarrow \operatorname{argmin}_{j \in S_2} \{ \pi_j \}
11. S_1 \leftarrow S_1 \cup |i|
12.
                S_2 \leftarrow S_2 - \{i\}
                \forall \dot{i}, j \in A
13.
                                                   alors
14.
             \begin{array}{c} \pi_{j} > \pi_{i} + c_{ij} \\ \text{fin} \quad \pi_{j} \leftarrow \pi_{i} + c_{ij} \\ \text{fin forall} \end{array}
15.
16.
17. fin tant que
```

- PCC : Bellman
 - L liste des sommets modif
 - propage le label aux voisins
 - labels de distance : π

on peut ajouter une structure pour stocker le sommet qui connecte chaque sommet dans l'arbre des PCC

```
// initialisation
     \pi_s \leftarrow 0

\pi_i \leftarrow \infty, \forall i \neq s
       L \leftarrow \{s\}
6. // boucle de correction
7. tant que
8. choisir L \neq \{\}
          \forall \mathbf{j_i} \mathbf{j} \in A
                                      alors
10.
11.
            \pi_i > \pi_i + c_{ii}
                oldsymbol{\pi_i} \overset{j}{\leftarrow} \pi_i + oldsymbol{a_{ij}} \text{ors} j 
otin L oldsymbol{in} L \cup \{j\}
12.
13.
14.
15. fin si
16. fin forall
17. fin tant que
```

- Présence de cycle négatif : pas d'optimalité
 - rechercher un PCC élémentaire
 - NP-difficile

- Méthodes exactes
 - Programme linéaires en nombres entiers
 - Programmation dynamique

- Problème de Transport
 - Étant donné un graphe biparti G=(S1,S2,A) muni de quantités sur les sommets et de coûts unitaires sur les arcs, trouver le flot de coût minimal permettant de router les entités de S1 vers S2

- Problème de Flot Maximal
 - Étant donné un graphe G=(S,A) muni de capacité sur les arcs, trouver le flot maximal d'un sommet origine o à un sommet destination d
 - oroblème polynomial
 - algorithme de Ford-Fulkerson
 - algorithme de push-relabel

- Problème de Flot de Coût Minimal
 - Étant donné un graphe G=(S,A) muni de capacité et de coût unitaire sur les arcs, trouver le flot de coût minimal routant q unités d'un sommet origine o à un sommet destination d
 - problème polynomial
 - algorithme de suppression de cycle négatif
 - algorithme de plus courts chemins successifs

- Problème du Voyageur de Commerce
 - Travelling Salesman Problem (TSP)
 - Étant donné un graphe G=(S,A) muni de coût sur les arcs, trouver un cycle hamiltonien de coût minimal
 - problème NP-complet
 - méthodes exactes
 - programmation linéaire en nombres entiers, coupes
 - méthodes approchées
 - heuristiques, métaheuristiques

Le TSP

- Un des problèmes phares de la RO
 - Presque toutes les méthodes exactes et approchées ont été testées dessus
 - Permet donc de connaître le potentiel d'une nouvelle méthodes
 - Intérêt multiple
 - industriel : au coeur de presque toutes les problèmatiques de transport
 - académique : un des problèmes complexes le plus simples
 - ludique : simple à comprendre / visualiser

Le TSP

- Exemple
 - Concours dans les années 50

Le TSP

- À la base de nombreuses variantes
 - sur les distances
 - euclidiennes ou non
 - normes L₁, L₂, L_∞
 - symétrique, asymétrique
 - complet ou non
 - sur les contraintes
 - possibilité ou non de virages
 - précédence entre certains noeuds

- Problème des Tournées de Véhicules
 - Étant donné un graphe G=(S,A) muni de coût sur les arcs,

- Problème de Transport à la Demande
 - Étant donné un graphe G=(S,A) muni de coût sur les arcs,