Geometry and Topology

Solve every problem.

Problem 1. The topological space *X* is obtained by gluing two tetrahedra as illustrated by the figure. There is a unique way to glue the faces of one tetrahedron to the other so that the arrows are matched. The resulting complex has 2 tetrahedra, 4 triangles, 2 edges and 1 vertex.

Show that X can not have the homotopy type of a compact manifold without boundary.

Problem 2. Suppose (M, h) is a closed (*i.e.*, compact without boundary) Riemannian manifold, and h is a metric on M with $\sec(h) \le -1$, where $\sec(h)$ is the sectional curvature. Suppose Σ is a closed minimal surface with genus g in (M, h). Show that

Area(
$$\Sigma$$
) $\leq 4\pi(g-1)$.

Remark: A minimal surface is an immersed surface with constant mean curvature 0.

Problem 3. For any topological space X, the n-th symmetric product of X is the quotient of the Cartesian product $(X)^n$ by the action of the symmetric group S_n , which permutes the factors in $(X)^n$. This space is denoted by $SP^n(X)$, and the topology is the natural quotient topology induced from $(X)^n$.

Show that $SP^n(\mathbb{CP}^1)$ is homeomorphic to \mathbb{CP}^n . Here \mathbb{CP}^1 and \mathbb{CP}^n are equipped with the manifold topology.

Problem 4. Let M be a complete noncompact Riemannian manifold. M is said to have the *geodesic loops to* infinity property if for any $[\alpha] \in \pi_1(M)$ and any compact subset $K \subset M$, there is a geodesic loop $\beta \subset M \setminus K$, such that β is homotopic to α .

Show that if a complete noncompact Riemannian manifold M does not have the geodesic loops to infinity property, then there is a line in the universal cover \widetilde{M} .

Remark: A line is a geodesic $\gamma: (-\infty, \infty) \to M$ such that $\operatorname{dist}(\gamma(s), \gamma(t)) = |s - t|$; a geodesic loop is a curve $\beta: [0, 1] \to M$ that is a geodesic and $\beta(0) = \beta(1)$.

Problem 5. A topological space *X* is called an *H-space* if there exist $e \in X$ and $\mu : X \times X \to X$ such that $\mu(e, e) = e$ and the maps $x \to \mu(e, x)$ and $x \to \mu(x, e)$ are both homotopic to the identity map.

- (a) Show that the fundamental group of an H-space is Abelian.
- **(b)** Show that the sphere S^{2022} is not an H-space.

Historic Remark: "H" was suggested by Jean-Pierre Serre in recognition of the contributions in Topology by Heinz Hopf.

Problem 6. A hypersurface $\Sigma \subset \mathbb{R}^{n+1}$ is called a *shrinker* if it satisfies the equation

$$H(x) = \frac{1}{2}\langle x, \vec{n} \rangle.$$

Here H is the mean curvature, which is $-\langle \operatorname{tr}_A, \vec{n} \rangle$ where A is the second fundamental form, x is the position vector, and \vec{n} is outer unit normal vector.

- (a) Show that $S^n(\sqrt{2n})$, the sphere with radius $\sqrt{2n}$, is a shrinker.
- **(b)** Show that any compact shrinker without boundary must intersect with $S^n(\sqrt{2n})$.