NMR

Ian Hunt-Isaak Partner: Pete Sinn

1

2

3

$$\frac{dM_z}{dt} = \frac{M_0 - M_Z}{T_1} \tag{1}$$

$$M_Z = M_0 - Ke^{\frac{-t}{T_1}} \tag{2}$$

With initial conditions $t=0, M_z=-M_0$ this becomes:

$$M_Z = M_0 (1 - 2e^{\frac{-t}{T_1}}) (3)$$

3.1 Uncertainty Budget

Source	Quantity	Error in Quantity	Propagated Error
Temperature Sensor	stuff	stuff	Negligible
Current Measurement	I	2 ma	35%

4

5