湛江一中 2023 届高三卓越班 NLXF2023-17

高三数学限时训练 44——数列求和 1

学号: 姓名:	
---------	--

一、单选题

1. 艾萨克·牛顿(1643年1月4日——1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学

上也有许多杰出贡献,牛顿用"作切线"的方法求函数 f(x) 零点时给出一个数列 $\{x_n\}$: 满足 $x_{n+1}=x_n-\frac{f\left(x_n\right)}{f'\left(x_n\right)}$,我

们把该数列称为牛顿数列. 如果函数 $f(x) = ax^2 + bx + c$ (a > 0) 有两个零点1, 2, 数列 $\{x_n\}$ 为牛顿数列, 设

$$a_n = \ln \frac{x_n - 2}{x_n - 1}$$
, 已知 $a_1 = 1$, $x_n > 2$, $\{a_n\}$ 的前 n 项和为 S_n , 则 $S_{2018} + 1$ 等于

- **A**. 2018
- **B.** 2019
- **C.** 2^{2018}
- **D.** 2^{2019}

2. 已知 x = 1 是函数 $f(x) = a_{n+1}x^3 - a_nx^2 - a_{n+2}x + 1$ $(n \in \mathbb{N}^*)$ 的极值点,数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_2 = 2$,记 $b_n = \log_2 a_{n+1}$,

若[x]表示不超过x的最大整数,则
$$\left[\frac{2018}{b_1b_2} + \frac{2018}{b_2b_3} + \dots + \frac{2018}{b_{2018}b_{2019}}\right] = ($$
)

- A. 2017
- **B.** 2018
- **C.** 2019
- **D.** 2020

3. 设 [x] 表示不超过 x 的最大整数,已知数列 $\{a_n\}$ 中, $a_1=2$,且 $a_{n+1}=a_n(a_n+1)$,若 $[\frac{a_1}{a_1+1}+\frac{a_2}{a_2+1}+L+\frac{a_n}{a_n+1}]=100$,则整数 n=

- A. 99
- B. 100
- C. 101
- D. 102

二、填空题

- **4.** 已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,且满足 $a_n + S_n = 1$,则 $\frac{S_1}{a_1} + \frac{S_2}{a_2} + \cdots + \frac{S_8}{a_9} = \underline{\hspace{1cm}}$.
- 5. 已知数列 $\{a_n\}$ 的前n 项和为 S_n ,点 $\left(n, \frac{S_n}{3n+1}\right)$ 在直线 $y = \frac{1}{2}x$ 上.若 $b_n = (-1)^n a_n$,数列 $\{b_n\}$ 的前n 项和为 T_n ,则满足 $|T_n| \le 20$ 的n的最大值为______.
- **6.** 已知正项数列 $\{a_n\}$ 的前n项和为 S_n , $a_1=1$, 且 $S_n+S_{n-1}=a_n^2 (n \ge 2)$, 设 $b_n=\frac{\left(-1\right)^n \left(2a_n+1\right)}{S_n}$, 则数列 $\{b_n\}$ 前n项

和的取值范围为_____.

7. 已知数列 $\{a_n\}$ 满足: $a_1=1$, $a_2=\frac{1}{3}$, $\frac{b_1}{a_1}+\frac{b_2}{a_2}+\cdots+\frac{b_n}{a_n}=\frac{b_{n+1}}{a_{n-1}}+6$ $(n\geq 2$ 且 $n\in \mathbb{N}_+$),等比数列 $\{b_n\}$ 公比q=2,令

$$c_n = \begin{cases} \frac{1}{a_n}, n$$
为奇数,**则数列** $\{c_n\}$ 的前 n 项和 $S_{2n} =$ ______. b_n, n 为偶数

- 8. 已知数列 $\{a_n\}$ 与 $\{b_n\}$ 前 n 项和分别为 S_n , T_n ,且 $a_n>0,2S_n=a_n^2+a_n,n\in {\bf N}^*$, $b_n=\frac{2^n+1}{\left(2^n+a_n\right)\left(2^{n+1}+a_{n+1}\right)}$,则 $T_6=\frac{2^n+1}{\left(2^n+a_n\right)\left(2^{n+1}+a_{n+1}\right)}$,则 $T_6=\frac{2^n+1}{\left(2^n+a_n\right)\left(2^{n+1}+a_{n+1}\right)}$
- 9. 已知数列 $\{a_n\}$ 满足: $a_1=1$, $a_2=\frac{1}{3}$, $\frac{b_1}{a_1}+\frac{b_2}{a_2}+L+\frac{b_n}{a_n}=\frac{b_{n+1}}{a_{n-1}}+6$ ($n\geq 2$ 且 $n\in \mathbb{N}_+$),等比数列 $\{b_n\}$ 公比 q=2,则数列 $\left\{\frac{b_n}{a_n}\right\}$ 的前n项和 $S_n=$ ______.
- **10.** 各项均为正数的等比数列 $\{a_n\}$,满足 $\lg a_2 + \lg a_3 = \lg a_4$,且 a_2 , $a_3 + 1$, a_4 成等差数列,数列 $\{b_n\}$ 满足 $b_1 = 1$,数列 $\{(b_{n+1} b_n)a_n\}$ 的前 n 项和 $S_n = n^2$,则 $b_n =$ _____.
- 11. 已知公差不为零的等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,且满足 a_1 , a_2 , a_5 成等比数列, $S_5=a_3^2$,数列 $\{b_n\}$ 满足 $b_n=\left(-1\right)^{n+1}\frac{2\left(1+a_n\right)}{a_na_{n+1}}$,前 n 项和为 T_n ,则 $T_5+T_{10}=$ ______.
- **12.** 已知 S_n 是等差数列 $\left\{a_n\right\}$ 的前 n 项和,若 $S_{2018} < S_{2020} < S_{2019}$,设 $b_n = a_n a_{n+1} a_{n+2}$,则数列 $\left\{\frac{1}{b_n}\right\}$ 的前 n 项和 T_n 取最大值时 n 的值为______
- **13.** 已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,数列 $\{b_n\}$ 的前 n 项和为 T_n ,满足 $a_1=1$, $3S_n=(n+m)a_n(m\in R)$,且 $a_nb_n=\frac{1}{5}$.若 对 $\forall n\in N^*$, $\lambda>T_n$ 恒成立,则实数 λ 的最小值为_______.
- **14.** 已知函数 $f(x) = \begin{cases} \sqrt{1 (x 1)^2}, & 0 \le x < 2, \\ f(x 2), & x \ge 2 \end{cases}$ 若对于正数 $k_n(n \in N^*)$,直线 $y = k_n x$ 与函数 y = f(x) 的图象恰有 2n + 1

个不同的交点,则数列 $\{k_n^2\}$ 的前 n 项和为______.

- **15.** 数列 $\{a_n\}$ 满足 $a_1 = \frac{3}{2}$, $a_{n+1} = a_n^2 a_n + 1$ $(n \in \mathbb{N}_+)$,则 $m = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{2019}}$ 的整数部分是______.
- **16.** 设 P(n) 表示正整数 n 的个位数字,记 $\psi(n) = P(n^3) P(n^2)$,M 是 $\{\psi(n)\}$ 的前 **4038** 项的和,函数 $f(x) = \ln x + \frac{1}{x} + 1$,

若函数 g(x)满足 $f\left[g(x) - \frac{8 - Mx^2 - Mx}{Mx^2 + Mx}\right] = 2$,则数列 $\{g(n)\}$ 的前 2020 项的和为_____.

17. 已知正项数列 $\{a_n\}$ 满足 $2(n+1)a_n^2+(n+2)a_n\cdot a_{n+1}-na_{n+1}^2=0$, $a_n=4$,则数列 $\left\{\frac{a_n}{(n+1)\cdot (n+2)}\right\}$ 的前 n 项和为