Recitation #4

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

recall: norm and inner product

Inner product

Let V be a vector space. An inner product on V is a function \langle , \rangle from pairs of vectors $V \times V$ to $\mathbb R$ that holds the following points

- **①** Symmetry: $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$
- 2 Linearity: $\langle u+w,v\rangle=\langle u,v\rangle+\langle w,v\rangle$ and same for scalar multiplication.
- **3** Positive-defined: $\langle v, v \rangle \geq 0$ with equality if and only if v = 0

practice: inner product

Exercise 1

Explain why the following functions $\langle \cdot, \cdot \rangle$ are not an inner product if $x, y \in \mathbb{R}^3!!$

practice: inner product

Exercise 1

Explain why the following functions $\langle\cdot,\cdot\rangle$ are not an inner product

practice: inner product

Exercise 1

Explain why the following functions $\langle\cdot,\cdot\rangle$ are not an inner product

recall: Norm

Norm induced by inner product

(Proposition) If $\langle \cdot, \cdot \rangle$ is an inner product on V then $\|v\| = \sqrt{\langle v, v \rangle}$ is its induced norm.

Exercise 2

Compute ||ax|| for $a \in \mathbb{R}$ scalar and $x \in \mathbb{R}^n$ vector.

practice: norm

Exercise 3

When does ||x + y|| = ||x|| + ||y|| for $x, y \in \mathbb{R}^n$?

practice: norm and inner product

Exercise 4

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $x \in \mathbb{R}^n$ a vector. Show that

$$||Ax|| \le ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2}$$

Hint: Cauchy-Schwarz inequality $\|\langle u, v \rangle\|^2 \le \langle u, u \rangle \cdot \langle v, v \rangle$

practice: norm and inner product

Exercise 4

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $x \in \mathbb{R}^n$ a vector. Show that

$$||Ax|| \le ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2}$$

recall: orthogonal projection

Orthogonality

Two vectors $u, v \in \mathbb{R}^n$ are orthogonal if and only if $\langle u, v \rangle = 0$

Projection

Let S be a subspace of \mathbb{R}^n . The orthogonal projection of a vector x onto S is defined as the vector $P_S(x) \in S$ such that minimizes the distance to x:

$$P_S(x) = \operatorname{argmin}_{y \in S} ||x - y||$$

practice: orthogonality

Exercise 5

Prove that if $v_1,...,v_k \in \mathbb{R}^n$ are orthogonal vectors then they also are linearly independent.

practice: orthogonal projection

Exercise 6

Show that if $P_S(x)$ denotes the orthogonal projection onto subspace S then

- **1** $||P_S(x)|| \le ||x||$
- 2 $x P_S(x)$ is orthogonal to S

Recall: if $v_1,...,v_k$ is an orthonormal basis of S then the projection onto S can be written as $P_S(x) = \langle x, v_1 \rangle v_1 + ... + \langle x, v_k \rangle v_k$ (Exercise: prove it).

practice: orthogonal projection

Exercise 6

Show that if $P_S(x)$ denotes the orthogonal projection onto subspace S then

- **1** $||P_S(x)|| \le ||x||$
- 2 $x P_S(x)$ is orthogonal to S

Recall: if $v_1, ..., v_k$ is an orthonormal basis of S then the projection onto S can be written as $P_S(x) = \langle x, v_1 \rangle + ... + \langle x, v_k \rangle$.

Exercise 7

Let S, U be subspaces of a vector space V. Prove the following statement: $S \subset U \longrightarrow U^{\perp} \subset S^{\perp}$

Exercise 8

Let $A \in \mathbb{R}^{n \times m}$ be a matrix. Assume the Euclidean inner product. Prove that

$$Im(A^T) = ker(A)^{\perp}$$

Hint: This is an equality between sets so you need to prove that one is inside the other and viceversa. Start with \subset and use Ex. 6 for the other.

Exercise 8

Let $A \in \mathbb{R}^{n \times m}$ be a matrix. Assume the Euclidean inner product. Prove that

$$Im(A^T) = ker(A)^{\perp}$$

Hint: This is an equality between sets so you need to prove that one is inside the other and viceversa. Start with \subset and use Ex. 7 for the other.

Exercise 8

Let $A \in \mathbb{R}^{n \times m}$ be a matrix. Assume the Euclidean inner product. Prove that

$$Im(A^T) = ker(A)^{\perp}$$

Hint: This is an equality between sets so you need to prove that one is inside the other and viceversa. Start with \subset and use Ex. 7 for the other.

Questions

Questions