Plan:
Idag: Repetere matriser.
Imagen: Oppgaver om gradienter etc
Torsdag: Repetere velice
Mandag: Gå gjennom proce eksamen.
lingday: Kepetere Hervariavel and the
Onsdos: Oppgaver om topp/bumpt
torsdag: Gå gjennom dir elegamner.
1 , 11

Matrison	er	Sirk	rantc	med	tall
3/12	3	7 5 1	4		3x4

Vi kan .

Plusse to matriser ar samme størvelse element for element.

. Cange tall med matrise, tallet ganges med hvert donard.

Gange sammen to matrish, hois antall kolonner i venstre matrisen lik antall rader i høgre.

nxm omxk = nxk

Matrise og likningssett: x + 2y = -1 2x - 3y = 5Skrive på matrise Sorm: $\left(\frac{1}{2}, \frac{2}{3}\right)\left(\frac{x}{3}\right) = \left(\frac{-1}{5}\right)$

Vektore: V: vil helst skrive vektorer som kolonner

Utvidede matrisen

(1 2 -1)

(2 -3 5)

Kan badedusere den utvide de matrisen, og vesultatet er et system med samme løsningen

Radreduksjon: 1) Rad ganget med tall (ikke null) @ Bgtt plass på to vader (3) Rad + fall ganget annen vad $\begin{pmatrix}
1 & 2 & -1 \\
2 & -3 & 5
\end{pmatrix}
\begin{pmatrix}
2 & -1 \\
7 & 7
\end{pmatrix}$ $=\frac{1}{2}R_{2}\left(1 - 1\right)R_{1}-2\cdot R_{2}\left(1 - 1\right)$ 4 = - /

> x + 2y - 2 = 1 2x - y + 2z = 5x - 3y + 3z = 4

$$\begin{pmatrix}
1 & 2 & -1 & 1 & 3 \\
2 & -1 & 5 & 4 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & -1 & 3 \\
2 & -1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & -1 & 3 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & -1 & 3 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & -1 & 3 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & -1 & 3 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & -1 & 3 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & 4 \\
-1 & 3$$

Determinanter:

$$\begin{bmatrix} 3.5 \\ 7 \end{bmatrix} = 3.9 - 5.7$$

2 x 2-det.

$$\frac{910203}{040506} = 1. | 56 | -2. | 46 | 79 |$$

$$\frac{43. | 45 | 79 |$$

$$= -2. | 46 | +5. | 79 |$$

$$-8. | 46 |$$

Totriks:
1) Velg en vad eller ledonne med
Slest mulig nuller.
(a) vaddeduserl.
- DI I da valle - em over Jor ago par
-) (during tall gangle de med
iii) Red duss tall ganget rad andrew
iii) Rad pluss tall ganget rad andrew ihke det.
1123 R-4-R, 191723
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
7 8 9 R3-7-R, 100-6-124
1 2 -Cl mt. Ait
1. -3 -6 -0. +0. +0.

[-(36-36)=1.0=0.

Pastander:

("En matrise er invertibel kan hvis det(A) \$\pm 0\$

("En matrise er invertibel kan hvis det(A) \$\pm 0\$

("Likninga A\foresize = \overline{O} har kun løgninga

("Likninga A\foresize = \overline{O} har kun løgninga

("En matrise er invertibel kan hvis det A \$\pm 0\$

("Likninga A\foresize = \overline{O} hvis og bare hvis det A \$\pm 0\$

("Red multiplisitet)

er lik det A

("A kan rad ved useres til identiteten

hvis og bare hvis det A \$\pm 0\$.

[Identitet og invers:

Identitets matriser
$$T_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T_{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T_{m} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Har at In A = A A en mxnmatrise A:In = A

Hvis A en kvadratisk, så en A' matrisen slihat A'. A = In og A. A'= In

$$A\overrightarrow{z} = \overrightarrow{b}$$

$$A'A\overrightarrow{z} = A'\overrightarrow{b}$$

$$T_{x}\overrightarrow{z} = A'\overrightarrow{b}$$

$$\overrightarrow{z} = A'\overrightarrow{b}$$

Finne ihouser:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$A^{-1} = \overline{det} A \begin{pmatrix} d - b \\ -c q \end{pmatrix}$$

Stowe matrisa:

$$A^{-1} = \frac{1}{\det A} \cdot (\cos A)$$

Generell metode Sor à Sinne inversa (A) In (In A) $A^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$

Egenvedier og egenvektører:
Vil 189e likninga, for Z +0?
$A\vec{z}=\lambda\vec{z}$ $A\vec{z}-\lambda\cdot\vec{x}=0$
$(A - \lambda I_n) \overrightarrow{z} = \overrightarrow{o}$
Vil ha løgning som ikke er $\vec{z} = \vec{\partial}$.
det B + O Sinner lean Z= 0 - lorgninga.
$Max ex det(A-\lambda L_n) = 0$
Dette er én libering med én ukjert. Er et polynom av grad lik dim til so
Evet polynom av grad lik dim til x
Finne da n > -vedile.
Vil na losse (A-)I). Sc=0 Antall Svie variable vil alltid være vil alltid være mindre eller like mindre eller like
(A-)I). Sc= 0
Softer inn for 1, 10 mattiples
(A-XI ?) ~ (00.0) (må være lik Sor alle eganv (Må være lik Sor alle eganv (Må være lik Sor at diagonal
(Må være lik Sordlie egent
il la la equiveletor per 5
(Antal) Svie variable = antalloader med kan O-er.

L'agonali sering.
A er diagonaliserbar hvis vi kan
skrive A=P.D.P. hoor Der diagonal.
Viser seg at vi må ha $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$ $P = \begin{pmatrix} \overline{V}_1 & \overline{V}_2 & \overline{V}_3 \\ \overline{V}_1 & \overline{V}_2 & \overline{V}_3 \end{pmatrix}$
Hoor li er egenverdier og i egenveldorer.
Dissersiallikninger Homogen dissersiallikning.
Generalle Bringa: SC(+) = C, V, e + C, V, e + C, V, e + C, V, e
$\vec{z}(0) = \vec{l}$ \Rightarrow $P.(\frac{c_1}{c_2}) = \vec{l}$

Inhomogene differensiallikninge: え」= A元+レ Losuinga: Losa Soust Sc=Asce (Huis D'en konstant) Genael (ogning: $\vec{\chi}(4) = \vec{\chi}_{c}(4) - \vec{A} \vec{b}$ Spesiell logning: $\frac{1}{2}(0) = \frac{1}{2} = \frac{1}{2}(0) - A^{T}$ $\frac{1}{2}(0) = \frac{1}{2}(0) - A^{T}$