Data collection

Importing libraries

In [1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Importing dataset

In [2]:

data=pd.read_csv(r"C:\Users\user\Downloads\15_Horse Racing Results.CSV - 15_Horse Racin
data

Out[2]:

		Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Country	•••
	0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sverige	
	1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	СҮНо	52	Sverige	
	2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	СҮНо	52	Sverige	
	3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sverige	
	4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	СҮНо	52	Sverige	
	•••		•••			•••			•••			
27	003	14.06.2020	Sha Tin	11	1200	Gress	1450000	6	A Hamelin	59	Australia	
27	004	21.06.2020	Sha Tin	2	1200	Gress	967000	7	K C Leung	57	Australia	
27	005	21.06.2020	Sha Tin	4	1200	Gress	967000	6	Blake Shinn	57	Australia	
27	006	21.06.2020	Sha Tin	5	1200	Gress	967000	14	Joao Moreira	57	New Zealand	
27	007	21.06.2020	Sha Tin	11	1200	Gress	1450000	7	C Schofield	55	New Zealand	

27008 rows × 21 columns

head

In [3]:

to display first 8 dataset values
da=data.head(8)
da

Out[3]:

0		Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Country	•••	Tra
	0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sverige		
	1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	СҮНо	52	Sverige		
	2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	СҮНо	52	Sverige		
	3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sverige		
	4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	СҮНо	52	Sverige		
	5	10.12.2017	Sha Tin	1	1800	Gress	1310000	4	СҮНо	52	Sverige		
	6	01.01.2018	Sha Tin	9	1800	Gress	1310000	9	C Schofield	54	Sverige		
	7	04.02.2018	Sha Tin	5	1800	Gress	1310000	6	Joao Moreira	57	Sverige		

8 rows × 21 columns

info

In [4]:

to identify missing values
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27008 entries, 0 to 27007
Data columns (total 21 columns):

Data	COTAMINS (COCAT ZI	COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	Dato	27008 non-null	object
1	Track	27008 non-null	object
2	Race Number	27008 non-null	int64
3	Distance	27008 non-null	int64
4	Surface	27008 non-null	object
5	Prize money	27008 non-null	int64
6	Starting position	27008 non-null	int64
7	Jockey	27008 non-null	object
8	Jockey weight	27008 non-null	int64
9	Country	27008 non-null	object

```
27008 non-null int64
 10 Horse age
 11 TrainerName
                      27008 non-null object
 12 Race time
                      27008 non-null object
                      27008 non-null int64
 13 Path
                      27008 non-null int64
 14 Final place
 15 FGrating
                      27008 non-null int64
 16 Odds
                      27008 non-null object
 17 RaceType
                      27008 non-null object
18 HorseId
                      27008 non-null int64
19 JockeyId
                      27008 non-null int64
 20 TrainerID
                      27008 non-null int64
dtypes: int64(12), object(9)
memory usage: 4.3+ MB
```

describe

```
In [5]: # to display summary of the dataset
     data.describe()
```

Out[5]:		Race Number	Distance	Prize money	Starting position	Jockey weight	Horse age	Pat
	count	27008.000000	27008.000000	2.700800e+04	27008.000000	27008.000000	27008.000000	27008.00000
	mean	5.268624	1401.666173	1.479445e+06	6.741447	55.867373	5.246408	1.67802
	std	2.780088	276.065045	2.162109e+06	3.691071	2.737006	1.519880	1.63178
	min	1.000000	1000.000000	6.600000e+05	1.000000	47.000000	2.000000	0.00000
	25%	3.000000	1200.000000	9.200000e+05	4.000000	54.000000	4.000000	0.00000
	50%	5.000000	1400.000000	9.670000e+05	7.000000	56.000000	5.000000	1.00000
	75%	8.000000	1650.000000	1.450000e+06	10.000000	58.000000	6.000000	3.00000
	max	11.000000	2400.000000	2.800000e+07	14.000000	63.000000	12.000000	11.00000
	4							>

columns

Jockey Out[7]: Race **Prize Starting Distance Surface Dato Track** Jockey Country ... Number position weight money Sha K C 0 03.09.2017 10 1400 1310000 52 Sverige ... Gress 6 Tin Leung Sha **1** 16.09.2017 10 1400 Gress 1310000 14 C Y Ho 52 Sverige Tin Sha 2 14.10.2017 10 1400 1310000 8 C Y Ho 52 Gress Sverige Tin Sha Brett 9 **3** 11.11.2017 1600 Gress 1310000 13 54 Sverige Tin Prebble Sha 26.11.2017 9 1600 1310000 9 C Y Ho Gress 52 Sverige Tin Sha Α **27003** 14.06.2020 1200 11 Gress 1450000 Australia Hamelin Tin K C Sha **27004** 21.06.2020 2 1200 Gress 967000 7 57 Australia ... Tin Leung Sha Blake **27005** 21.06.2020 1200 Gress 967000 57 Australia Shinn Tin Sha Joao New **27006** 21.06.2020 5 1200 57 967000 14 Gress Tin Moreira Zealand Sha C New **27007** 21.06.2020 11 1200 Gress 1450000 55 Tin Schofield Zealand 27008 rows × 21 columns In [8]: a.columns Out[8]: Index(['Dato', 'Track', 'Race Number', 'Distance', 'Surface', 'Prize money', 'Starting position', 'Jockey', 'Jockey weight', 'Country', 'Horse age', 'TrainerName', 'Race time', 'Path', 'Final place', 'FGrating', 'Odds', 'RaceType', 'HorseId', 'JockeyId', 'TrainerID'], dtype='object')

EDA and Visualization

In [9]: sns.pairplot(a)

Out[9]: <seaborn.axisgrid.PairGrid at 0x213150e8340>

distribution plot

```
In [10]: sns.displot(a["Dato"])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x2132e8649a0>

correlation

Out[11]: <AxesSubplot:>

To train the model-Model Building

```
In [12]:
          x=a[['Race Number']]
          y=a['Jockey weight']
In [13]:
           # to split my dataset into training and test data
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [14]:
          from sklearn.linear_model import LinearRegression
          lr= LinearRegression()
          lr.fit(x_train,y_train)
Out[14]: LinearRegression()
In [15]:
          print(lr.intercept_)
          56.323449552130036
In [16]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
                       Co-efficient
Out[16]:
                        -0.088941
          Race Number
In [17]:
           prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[17]: <matplotlib.collections.PathCollection at 0x213313cb100>
          56.2
          56.0
          55.8
          55.6
          55.4
                                         56
                  48
                        50
                             52
                                   54
                                              58
                                                    60
                                                          62
In [18]:
          print(lr.score(x_test,y_test))
         0.009166214993581279
In [19]:
          lr.score(x_train,y_train)
```

from sklearn.linear_model import Ridge,Lasso

```
Out[19]: 0.008152390365023354
```

In [20]:

Ridge regression

```
In [21]:
          rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
          rr.score(x_test,y_test)
Out[21]:
         0.009166134006036497
In [22]:
          rr.score(x train,y train)
         0.00815239032721482
Out[22]:
         Lasso regression
In [23]:
          la=Lasso(alpha=10)
          la.fit(x train,y train)
          la.score(x_train,y_train)
Out[23]: 0.0
In [24]:
          la.score(x_test,y_test)
         -0.00020686868170693984
Out[24]:
In [25]:
          from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[25]: ElasticNet()
In [26]:
          print(en.coef_)
         [-0.02307813]
In [27]:
          print(en.intercept_)
         55.97703112464968
In [28]:
          predict=en.predict(x_test)
```