Билет номер 3:

Предел последовательности:

Опр. Если каждому числу $n\in \mathbb{N}$ поставлено в соответствие некоторое число a_n , то говорим что задана числовая последовательность $a_n = 1$.

Опр. Говорят. что последовательность ${a_n}^\infty$ $_{n=1}$ сходится к числу a , если для каждого ε > 0 найдется такое натуральное число(номер) $N_{(\varepsilon)} \in \mathbb{N}$, что $\left|a_n - a\right| < \varepsilon$ при каждом $n > N_{(\varepsilon)}$

Если переписать в кванторах:

$$\forall \, \varepsilon \! > \! 0 \ \exists \ ^{N}(\varepsilon) \ \in \mathbb{N} \, \colon \, \forall \mathsf{n} \! > \! ^{N}(\varepsilon) \ | \ ^{a}{}_{n} \, \text{-} \, a \, | \! < \! \varepsilon$$

Объяснение. (Всю эту муть предложил Коши)

Рассмотрим некоторую точку(a) и её произвольную ε окрестность:

! Значение ε > 0 всегда, Мы вправе выбрать его самостоятельно.

Предположим что в этой окрестностности находится множество членов(не обязательно все) некоторой последовательности $^{x}{}_{n}$. Предположим что $^{x}{}_{10}$ попал в окресность: Тогда расстояние между точками a и $^{x}{}_{10}$: $^{x}{}_{10}$ - a < ε и чтобы избежать отрицательного расстояния $|^{x}{}_{10}$ - a | < ε

Число a будет называться пределом последовательности $^{X}{}_{n}$, если для любой его окрестности($\forall \ \varepsilon > 0$)(заранее выбранной) существует натуральный номер($\exists \ ^{N}(\ \varepsilon) \in \mathbb{N}$) такой что все члены последовательности с бОльшими номерами ($\forall \ n > ^{N}(\ \varepsilon)$) окажутся внутри окрестности.

!!! Иными словами: какое бы малое arepsilon мы бы не взяли рано или поздно "бесконечный хвост" последовательности полностью окажется в этой окрестности!!! Пример.

$$\lim_{\Lambda\to\infty}\left(\frac{1}{n+3}\right)=0$$

Решение:

Рассмотрим произвольную ε окрестность точки a=0. Проверим найдётся ли номер($\exists \ ^N(\varepsilon) \in \mathbb{N})$ - такой что все члены с бОльшими номерами(\forall n > N

$$\begin{vmatrix} x_n - a \end{vmatrix} < \varepsilon$$

$$\frac{1}{|n+3|} - 0 | < \varepsilon$$

$$\frac{1}{|n+3|} | < \varepsilon$$

Чтобы показать существование искомого номера $N(\varepsilon)$ выразим n через ε $\frac{1}{n+3} > 0 =>$ можем убрать модуль

$$\frac{1}{\varepsilon} < n+3 \Rightarrow n > \frac{1}{\varepsilon} - 3 \Rightarrow n > \left[\frac{1}{\varepsilon} - 3\right]$$
 (скобки так как внутри может получиться дробь)

Единственность предела

Доказательство.

Пусть
$$\lim_{n \to \infty} (a_n) = a u \lim_{n \to \infty} (a_n) = b \Rightarrow a = b$$

Если $a \neq b \Rightarrow |a - b| = \varepsilon_0 > 0$. Но по опредилению:

Найдётся номер
$$N_1$$
 для которого $\left|a_n-a\right|<\frac{\varepsilon_0}{2}$ и $\exists N_2$: $\left|a_n-b\right|<\frac{\varepsilon_0}{2}$

$$npu \ n > N_2 \Rightarrow npu \ n > max(N_1 N_2)$$
:

$$\varepsilon_0 = |a-b| = |a-a_n+a_n-b| \le |a-a_n| + |a_n-b| < \varepsilon_0$$
. - противоречие

Арифметические свойства предела

Теорема 14 (арифметика предела). Пусть $\lim_{n\to\infty} a_n = a \ u \lim_{n\to\infty} b_n = b$. Тогда

- 1) $\lim (\alpha a_n + \beta b_n) = \alpha a + \beta b \ \forall \alpha, \beta \in \mathbb{R};$
- 2) $\lim_{n \to \infty} a_n b_n = ab;$ 3) $ecnu b \neq 0, b_n \neq 0, mo \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}.$

Доказательство. Пусть $\varepsilon > 0$ — произвольное число. Тогда найдется номер N_1 , для которого $|a_n - a| < \varepsilon$, и найдется номер N_2 , для которого $|b_n - b| < \varepsilon$.

1) Получаем, что при $n > N = \max\{N_1, N_2\}$ выполнено

$$|\alpha a_n + \beta b_n - (\alpha a + \beta b)| = |\alpha(a_n - a) + \beta(b_n - b)| \le |\alpha||a_n - a| + |\beta||b_n - b| < (|\alpha| + |\beta|)\varepsilon.$$

- 2) Замечаем, что $|a_nb_n-ab|=|a_nb_n-ab_n+ab_n-ab|\leq |b_n||a_n-a|+|a||b_n-b|$. Т.к. сходящаяся последовательность ограничена, то найдется число M>0, для которого $|b_n|\leq M$, поэтому
- при $n>N=\max\{N_1,N_2\}$ выполнено $|a_nb_n-ab|\leq (M+|a|)\varepsilon.$ 3) Достаточно проверить, что $\frac{1}{b_n}\to \frac{1}{b}$ при $n\to\infty.$ Заметим, что по условию $b\neq 0,$ поэтому найдется номер $N_3 \in \mathbb{N}$, для которого, при $n > N_3$, выполнено $|b_n| > \frac{|b|}{2}$. Тогда при $n > \max\{N_2, N_3\}$ выполнено

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \frac{|b_n - b|}{|b_n||b|} \le \frac{2}{|b|^2} \cdot \varepsilon.$$

Ограниченность сходящейся последовательности

Предложение 12. Сходящаяся последовательность ограничена.

 \mathcal{A} оказательство. Если $\lim_{n\to\infty}a_n=a$, то для некоторого $N\in\mathbb{N}$ выполнено $|a_n-a|<1$ при n > N. Отсюда $|a_n| = |a_n - a + a| \le |a_n - a| + |a| < 1 + |a|$ при n > N. Значит,

$$|a_n| \le M = \max\{1 + |a|, |a_1|, \dots, |a_N|\},\$$

T.e.
$$-M = c \le a_n \le C = M$$
.

Отделимость

Лемма 13 (об отделимости). *Если* $a_n \to a$ u $a \neq 0$, то найдется номер $N \in \mathbb{N}$, для которого $|a_n| > \frac{|a|}{2} > 0$ при n > N.

Доказательство. Действительно, взяв $\varepsilon = \frac{|a|}{2}$ в определении сходимости последовательности к числу a, получаем номер $N \in \mathbb{N}$, для которого $|a_n - a| < \frac{|a|}{2}$ при n > N. Тогда, при n > N, выполнено $|a| - |a_n| \le |a_n - a| < \frac{|a|}{2}$, что равносильно доказываемому утверждению.