Development and evaluation of a Kubernetes cluster simulator based on Batsim

Presented by: Théo Larue

Supervised by: Olivier Richard & Michael Mercier

Université Grenoble Alpes

August 31, 2020

Table of contents

- 1 Introduction
- 2 Literature review
- Integrating Kubernetes schedulers to Batsim
- 4 Study of the simulator
- 5 Discussion and future work

Introduction

Computer infrastructure

TODO: definition of a computer infrastructure

Placeholder (from michael thesis). TODO: my own illustration

Resource and Jobs Management System

TODO: the RJMS is at the core of the hpc cluster. def or diagram illustrating a RJMS (without much details). Show that the scheduler is part of the RJMS. Examples: OAR, Apache Mesos, hadoop YARN, SLURM

Kubernetes

Explain containers real quick.

Container orchestration software, description based.

Studying computer infrastructures

Objects of studies

- Workloads
- Applications
- System size
- Network topology
- Scheduling policies

How?

- Analytical study
- Real experiments
- Emulation
- Simulation

Batsim

Aimed at studying RJMS. Strong decoupling decision process / simulator.

The scheduling problem

Scheduling is the act of allocating tasks to resources.

Contribution

TODO: Our contribution is Batkube, an interface between Batsim and Kubernetes schedulers

Literature review

Domain specific simulators

refs on domain specific simulators

Software specific simulators

YARNSim, SLURM simulator

Publication specific simulators

"Publish and perish" - Milian Poquet

SimGrid

SimGrid: Versatile, scalable, accurate.

Cpu = a computation speed.

Storage = a seek time and a data transfert rate.

Network = a flow model, modeling bandwith sharing behaviors.

Simple models but thoroughly validated.

Related work

GridSim

Alea: modular, extensible.

Accasim: supports additional information (temperature, power consuption). Very efficient in terms of simulation time and memory usage.

Kubernetes cluster simulation

k8s-cluster-simulator: open source, student project, delay jobs. Schedulers provided via a Go interface. joySim: closed-source, fully fledged kubernetes cluster simulator, service oriented (mock nodes).

Integrating Kubernetes schedulers to Batsim

Technical challenges

Challenges to tackle

1 Integration with Kubernetes.

Technical challenges

Challenges to tackle

- Integration with Kubernetes.
- 2 Intercepting scheduler time.

Technical challenges

Challenges to tackle

- Integration with Kubernetes.
- 2 Intercepting scheduler time.
- 3 Time synchronization between Batsim and the scheduler.

Batsim concepts

source https://batsim.readthedocs.io

Batsim events and protocol. User defined workloads. (insert json examples?)

Kubernetes concepts

source: https://kubernetes.io/docs/concepts/overview/components/

Kubernetes components.

Kubernetes concepts

source: https://kubernetes.io/docs/concepts/overview/components/

Kubernetes components.

Different paradigms

Batsim: event based, simulation time.

Kubernetes scheduler: asynchronous calls to the API, machine time.

The goal is to make the scheduler event based and relying on simulation time for Batsim, and make Batsim a kube-api-server to the scheduler.

Batkube integration with Kubernetes

Reimplementation of a custom API.

Architeture of Batkube

Global architecture of Batkube.

Time interception

Schedulers are patched to redirect their time.

Time synchronization I

TODO: explain CML

Time synchronization II

Time synchronization between Batsim and the scheduler

Parameters of the synchronization I

Timeout value

Parameters of the synchronization II

Simulation time step \in [base-simulation-timestep, max-simulation-timestep]

Time synchronization breakdown

Time synchronization between Batsim and the scheduler

Study of the simulator

Experimental design

TODO: Scheduler used, platforms and workloads tested, what experiments (parameters, metrics studied, repetitions)

Timeout I

Timeout II

Maximum simulation timestep I

Maximum simulation timestep II

Experimentation on a real cluster

Deviation with reality

	makespan				mean waiting time			
workload	emulated		simulated		emulated		simulated	
	μ	σ	μ	σ	μ	σ	μ	σ
burst	2467	28.3	2215 (-252)	0.508	1077	10.6	970 (-107)	12.6
spaced	2468	5.14	2257 (-211)	16.9	146	1.67	48.1 (-97.9)	9.44
realistic	32556	-	32555 (-1)	1.30	2884	-	2020 (-864)	950

Conclusion

Deviation with reality: can be fixed with some work on the api. Need experiments to measur and quantify this deviation. max timestep: studying max timestep alone is not enough, need to study it with backoff multiplier. base time step: need an experiment on it. Too much importance was credited to max timestep, the base timestep might have importance.

Discussion and future work

Capabilities and limitations of Batkube

Capabilities

- Delay jobs
- Cpu and memory requests
- Can patch any kubernetes scheduler written in Go
- The api only supports the default scheduler

Limitations

- Memory hungry (in fact, the scheduler is memory hungry)
- Some problems with the scheduler
- Not scalable

Perspectives for future work

- parallel jobs
- storage
- more complete api: support for more schedulers but also tools (monitoring tools)

References I