Relation Schema

STUDENT

SID	LName	Name	Class	Major	Schema
123	Smith	John	3	CS	
395	Aiken	Mary	4	CS	

- What is the meaning?
- A relation schema R specifies
 - The name of the relation
 - the attribute names A_i of R
 - the domain D_i (data type + format) for each attribute A_i
- data type is a set of atomic data values:
 - no attribute is a set-valued (1st Normal Form, 1-NF)
 - no attribute is composite
- format specifies the representation of a data value

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

Example Table Schema

Schema of STUDENT(SID, Name, Major, GPA)

```
CREATE TABLE STUDENT
( SID INTEGER,
 Name CHAR(20),
 Major CHAR(4),
 GPA DEC(3,2)
);
```

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

40

Creating a Schema

- □ Corresponding database is at an **empty** state!
- □ Initial state when the database is **populated** (loaded)
- Domain (type) of each field is specified and enforced by the DBMS whenever tuples are <u>added</u> or <u>modified</u>

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

14

Example: Domain Constraints

SID	Name	Login	Age	GPA
546007	Jones	jones@cs	18	3.4
546100	Smith	smith@ee	18	3.2
546500	Smith	smith@math	19	3.8

□ Example of IC Violation:

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

15

Useful Terms

- Cardinality of a relation r(R): # of tuples in r(R) (denoted by |r(R)|)
- Arity or degree of r(R): # of attributes in R (denoted by |R|)

|R| = 4

|r(R)| = 3

SID	Degree	Major	Year
123	BS	Math	1992
064	BA	History	1991
445	PhD	CS	1999

- |R| > 0 and $|r(R)| \ge 0$
- Cardinality is property of a relation
- Arity is property of relation schema or a relation

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

16

Relational Database Schema

 A database schema is a set of relation schemas and a set of integrity constraints

Integrity Constraints

- *Structural* Integrity Constraints
 - key constraints: uniqueness of keys
 - entity integrity constraint:no primary key value can be **NULL**
 - referential integrity constraint
- Semantic Integrity ConstraintsE.g., ??

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

17

Integrity Constraints (ICs)

- □ IC: condition that must be true for *any* instance of the database (e.g., domain constraints)
 - A legal instance of a relation is one that satisfies all specified ICs
 - ICs are specified when schema is defined
 - ICs are enforced when tables are modified

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

Primary Key Constraint

 $\hfill \Box$ A set of fields is a $\hfill key$ for a relation if :

- No two distinct tuples can have same values in all key fields
- ☐ If there is more than one key for a relation:

- Each is called a candidate key
- One candidate key is designated as the primary key
- Other candidate key(s) are designated as alternative or unique key(s)

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

19

Example of Keys

SID	Name	Login	Age	GPA
546007	Jones	jones@cs	18	3.4
546100	Smith	smith@ee	18	3.2
546500	Smith	smith@math	19	3.8

□ Candidate Keys: SID, and Login

□ Primary Key: SID□ Unique Key: Login

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

Example Table Schema in SQL

```
CREATE TABLE STUDENT
( SID INTEGER NOT NULL,
   Login CHAR(15),
   Name CHAR(20),
   Major CHAR(4),
   GPA DEC(3,2),
   CONSTRAINT STUDENT_PK
   PRIMARY KEY (SID),
   CONSTRAINT STUDENT_UN
   UNIQUE (Login) -- UNIQUE can take NULL values
);
```

Example Table Schema in SQL (2) Example

```
Schema of STUDENT(SID, Login, Name, SSN, GPA)

CREATE TABLE STUDENT

( SID INTEGER NOT NULL,
    Login CHAR(15),
    Name CHAR(20),
    SSN CHAR(9),
    GPA DEC(3,2),

CONSTRAINT STUDENT_PK PRIMARY KEY (SID),
    CONSTRAINT STUDENT_UN_SSN
    UNIQUE (SSN),
    CONSTRAINT STUDENT_UN_Login
    UNIQUE (Login)

);

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh
```

Identifying the Key

□ What is the key in relation GRADUATE=(SID, Degree, Major, Year)?

SID	Degree	Major	Year
123	BS	CS	1992
123	MS	CS	1993
064	BA	History	1991
445	PhD	CS	1999
123	BS	Math	1992
123	MS	Math	1992

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

Referential Integrity Enforcement

- What are the alternatives when a "Students" tuple is deleted?
 - 1. Delete all Enrolled tuples that refer to it
 - Disallow deletion of a Students tuple that is referred to
 - 3. **Set** *SID* in Enrolled tuples that refer to it to some "default" *SID* (e.g., 000000)
 - 4. If SID was not part of the primary key, Set SID to a special value "NULL", denoting "unknown" or "inapplicable"

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

32

Referential Integrity in SQL

- SQL/92 and SQL/99 support all 4 options on <u>delete</u> and <u>update</u>:
 - NO ACTION (default)
 - delete/update is rejected
 - CASCADE
 - also delete all tuples that refer to deleted tuple
 - SET NULL / SET DEFAULT
 - sets foreign key value of referencing tuple

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

33

RI Trigger Actions in SQL SID CID Grade Name Major GPA CID Name **Enrolled** Students Courses □ CREATE TABLE Enrolled (SID CHAR (20), CID CHAR (20), Grade CHAR (2), CONSTRAINT Enrolled PK PRIMARY KEY (SID, CID), CONSTRAINT Enrolled FK sid FOREIGN KEY (SID) REFERENCES Students (SID), CONSTRAINT Enrolled FK cid FOREIGN KEY (C/D) REFERENCES Courses ON UPDATE CASCADE ON DELETE NO ACTION

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

Enforcing Integrity Constraints [Poll]

- What would be the outcome?
 - Insert (585811, 'Jie', 19, 3.95) into Students ✓
 - Insert (585811, NULL, NULL) into Enrollment *
 - Insert (546100, 'CS 1555', NULL) into Enrollment ✓
 - Insert (546100, 'Mary', 18, 3.65) into Students x
 - Delete ('CS 1530') from Courses ×

SID	Name	Age	GPA
546007	Susan	18	3.8
546100	Bob	19	3.65
546500	Bill	20	3.7

CID	Name
CS1555	DB
CS1530	SW
CS1550	os

SID	CID	Grade
546007	CS1550	Α
546007	CS1530	B+
546100	CS1550	В

Students

Courses

Enrollment

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

35