

GINGER On-Site Training Day 1: Refresher

GINGER Program 2022 University of Cape Town

Teaching Fellows:
Kumar Veerapen, Ph.D.
Senior Expert I Data Science

Kumar.Veerapen@Novartis.com

Carla Marquez-Luna, Ph.D.

Postdoctoral Research Fellow carlamarquezluna@gmail.com

	Monday, April 4	Tuesday, April 5	Wednedsay, April 6	Thursday, April 7	Friday, April 8
9:00-10:30	Training Welcome and Introduction 9:00-9:30 - Training Overview 9:30-10:00 - Professor Dan Stein Welcome 10:00-11:00 - Begin Kampala Refresher	Plink Tutorial	Excursion to Robben Island (weather dependent)	9:00-10:00 am TBD 10:00 am NeuroGAP Site Visit	Step-by-Step GWAS
10:30-10:45	Tea Break	Tea Break			Tea Break
10:45-1:00	Kampala Refresher continued	11:00-12:00 - Professor Colett Dandara 12:00-1:00 - Intro to Plink			11:00 - Guest Lectures: Drs. Shareefa Dalvie and Nastassja Koen 12:00-1:00 - Step-by-Step GWAS
1:00-2:00	Lunch	Lunch	Lunch at the V&A Waterfront (weather dependent)	Lunch	Lunch
2:00-3:30	Intro to UNIX Fundamental Commands Genetic Data Formats and Conversion	Plink Tutorial		Step-by-Step GWAS	Step-by-Step GWAS
3:30-3:45	Tea Break	Tea Break	Group Project Work	Tea Break	Tea Break
3:45-5:00	GINGER group projects intro	Plink Tutorial Step-by-Step GWAS		Step-by-Step GWAS	4:00-4:30 - Step by Step GWAS 4:30-5:00 - Group Project Presentations

Outline

Cloud Computing

Rstudio on the Cloud

But first... Let's reintroduce ourselves You have 30 seconds

- 1) Name
- 2) Where are you from?
- 3) What is your genetics training?
- 4) What do you want from this week in UCT?

Cloud Computing Refresher

Learning objectives:

Be able to set up virtual machines

Be able to spin up Rstudio instance for analytical purposes

But... Y'all have used this. Why do **you** think we should switch to cloud computing resources for analytics?

Technological Growth in Genetics and Genomics

Generally speaking...!

•Cloud computing: storing and accessing data and programs over the Internet instead of your computer's hard drive

•Why is it "the cloud"?: A metaphor for the internet

•Goes back to presentations showing connections going in and out of a

cloud

Server

Cloud (remote servers)

What do we know of this now?

Internet-based computing services

- Remotely hosted: data and compute are hosted on remote infrastructure
- •Commodified: pay-as-you-go, like other utilities (e.g. electricity)
 - •What happens if you don't use it?
- Tends to be cheaper
 - Broad Prem cluster \$75/TB/month vs \$25/TB/month
 - Cheaper if cold storage

INSERT HAIL CLOUD SLIDE

Most offer the same set of products with slightly different configurations, pros/cons

We use Google Cloud Platform (GCP)

- Hundreds of products (it can be overwhelming!)
 - •All of these are "the cloud" you may talk to someone about the cloud and they may be referring to an entirely different ecosystem
- Most fundamental ones (most "infrastructure"-like)
 - Google Compute Engine
 - Google Cloud Storage

Google Cloud Platform	Amazon Web Services ^[12]	Microsoft Azure ^[13]	
Google Compute Engine	mazon EC2	Azure Virtual Machines	
Google App Engine	AWS Elastic Beanstalk	Azure App Services	
Google Kubernetes Engine	Amazon Elastic Kubernetes Service	Azure Kubernetes Service	
Google Cloud Bigtable	Amazon DynamoDB	Azure Cosmos DB	
Google BigQuery	Amazon Redshift	Azure Synapse Analytics	
Google Cloud Functions	AWS Lambda	Azure Functions	
Google Cloud Datastore	Amazon DynamoDB	Azure Cosmos DB	
Google Cloud Storage	mazon S3	Azure Blob Storage	

Google Compute Engine a.k.a Virtual Machine

- •A.k.a. computers
 - •CPU,
 - some memory,
 - some disk space, and
 - an operating system (OS)
- You get a VM from a pool of machines
- •When you delete your VM, they go back into the pool

Google Compute Engine a.k.a. Virtual Machine

- •Fully customizable (e.g. number of CPUs, memory, disk space)
- •Rule of thumb: a CPU costs about \$0.04 or \$1 per day

4 GB

1 shared core

•There is a way to get this down to \$0.01/hour (pre-emptible)

Pricing: https://gcpinstances.doit-intl.com/

Google Cloud Storage

- •Files are stored on a distributed system ("object store") rather than a traditional file system (*I found out the hard way*)
- Different storage types
 - •Multi-regional (accessible quickly in multiple regions) most expensive
 - Regional (normal)
 - •Nearline, Coldline, Archive: cheaper per month, but costs \$ to access

Google Cloud Storage

•Bucket list:

Name ↑	Created	Location type	Location
neurogap_phenos_genos	Oct 26, 2021, 10:19:49 AM	Region	us-central1 (Io

•Files within buckets:

How do you pay for the cloud?

- •Compute engine:
 - \$0.04/CPU-hour
 - Very easy to rack up large bills
 - •1,000 CPUs running for a week = \$7,000
 - •10 CPUs running for a year = \$3,500
- •Storage:
 - •\$0.02/GB/month
 - Harder to rack up large bills at these prices, but still possible with huge datasets
 - •\$25/TB/month

The cloud is awesome (Karczewski, 2017)

- Pay for the hardware you use
 - •Be careful about spending!
 - Stop/delete your VMs, and be careful of storage!
- Scale analyses to thousands of machines
- Easier reproducible and shareable workflows

Word of Advice

Tasks for today's refresher. You do, we help!: GCP

- Pair up! Preferably someone who is computationally savvy with someone who feels less savvy
- •Link to cloud console: console.cloud.google.com
- 1. Check your project that it is listed as gingeriimak
- 2. Create your own VM

Name: [your first name]
Zone: us-central1-b
In Boot disk, please change:
 Operating system: Ubuntu
 Version (if not already selected): Ubuntu 18.04 LTS

Access scopes: Allow full access to all cloud APIs

3. What's in your current cloud storage on the API? Clue: https://github.com/atgu/GINGER_cloud/blob/main/Console.md

How do you code?

Looking at programming memes

Actually coding

- •There are many ways to code.
- •Beginners, don't worry about how short your code is. As long as IT WORKS!

 Later, get someone who is more experienced to do code review with you.

google that shit

Tasks for today's refresher. You do, we help!: RStudio

- 1. Create an Rstudio instance. You remember how to do this right...? https://github.com/atgu/GINGER_cloud/blob/main/RStudio.md
- 1. Get your data. Using your Rstudio instance:
 - Click Terminal
 - Here we have our gsutil program already installed and it is already set up with permissions
 - •Let's see what files we can use:
 - •qsutil ls
 - •Let's grab the phenotype files:
 - •gsutil cp gs://neurogap_phenos_genos/NeuroGAP-P_Release5_*.csv .

Rstudio Exercise

But first:

Load in R library tidyverse and the NeuroGAP dataset we have been using You may or may not need tidyverse but you will need the data. Obvi

```
library(tidyverse)
data = read.csv('NeuroGAP-P_Release5_AllSites.csv')
theme_set(theme_classic())
```

Rstudio Exercise Items

- 1. What were the top consent languages by country?
- 2. What is the proportion of cases by language + country
- 3. Number of HIV+ patients

There are many ways to code.
You do you, boo!

- 4. Number of missing data from the HIV+ column
 - 1. By country, what's the distribution and plot out a histogram

GINGER On-Site Training Day 1: Refresher QUESTIONS? ©

GINGER Program 2022 University of Cape Town

Teaching Fellows: Kumar Veerapen, Ph.D.

Senior Expert I Data Science Kumar.Veerapen@Novartis.com Carla Marquez-Luna, Ph.D.

Postdoctoral Research Fellow carlamarquezluna@gmail.com