Measurement #3 (Review)

Metric Prefixes					
k	kilo-	10^{3}			
_	(base)	10^{0}			
\mathbf{c}	centi-	10^{-2}			
\mathbf{m}	milli-	10^{-3}			
μ	micro-	10^{-6}			
n	nano-	10^{-9}			

- 1. Complete the following unit conversions.
 - (a) $2500 \, \mu \text{m} = ? \, \text{m}$

0.002 5m

(c) $4.8 \,\mathrm{m} = ? \,\mathrm{mm}$

4800 mm

(b) $326\,000\,\text{mg} = ?\,\text{kg}$

0.326 kg

(d) 2.1 s = ? ms

2100 ms

- 2. Express each of these measurements in MKS units:
 - (a) 9.1 km

9100 m

(b) 53 cm

053m

0.320 kg
(d) 1.2h
4320 sec

- 3. Express these numbers in scientific notation.
 - (a) 0.025

25×10-2

(b) 1150000

1.15×106

(c) 0.000 077 1 7-71 x 10-5

(d) 6070

6.07 x 103

- 4. Express these numbers in standard form.
 - (a) 2.96×10^7

29600000

(b) 6.02×10^{-3}

0.006 02

(c) 6.67×10^{-11}

0.000 000 000 066 7

(d) 9.8×10^5

980,000

5. Use your calculator to perform the following calculations:

(a)
$$(5.95 \times 10^{15}) \div (7.35 \times 10^{-20}) =$$
 8.10×10^{-20}

(b)
$$(1.23 \times 10^9) \times (4.23 \times 10^{-8}) =$$

6. You perform an experiment to measure the density of aluminum. After performing five trials, you get the following results:

Trial	Result (g/mL)	-		
1	2.5	-	Λ	2.849/mL
2	3.2	D	Hug -	a.0 1)
3	2.9	-		
4	3.0			
5	2.6			

(a) Are your measurements precise? Explain.

yes because they are not too for apart from each other.

(b) The widely accepted value for the density of aluminum is 2.7 g/mL. Are your measurements accurate? Explain.

 $o/o error = \frac{|mew - exp|}{exp} \times 100$ = 12.84-2.7) x100 Yes, because
= 12.84-2.7) x100 He % error
is less

(c) Calculate the percent error based upon your average measurement. Is your percent error reasonable? Explain.

See above