Uczenie ze wzmocnieniem

Piotr Duch

pduch@iis.p.lodz.pl Instytut Informatyki Stosowanej Politechnika Łódzka

Zima 2022

Plan wykładu

- 1 Wprowadzenie
- 2 Algorytmy w systemach wieloagentowych
- 3 Podstawowe pojęcia
- 4 Uczenie pasywne
- 5 Uczenie aktywne
- 6 Aproksymacja funkcji wartości stanu

Informacje ogólne:

- Materiały wykładowe oraz laboratoryjne dostępne są na stronie (pduch.iis.p.lodz.pl).
- Literatura podstawowa:
 - Richard S. Sutton, and Andrew G. Barto. *Reinforcement learning: An introduction*. MIT press, 2018.
 - Morales, Miguel. *Grokking deep reinforcement learning*. Simon and Schuster, 2020.
- Wykłady uzupełniające:
 - RL Course by David Silver https://www.youtube.com
 - CS 188: Artificial Intelligence by Pieter Abbeel (wykład 10 i 11)https://www.youtube.com/watch?v=IXuHxkpO5E8
- Materialy dodatkowe:
 - Practical RL Course by Yandex School of Data Analysis https://github.com/yandexdataschool/Practical_RL
 - CS 188: Introduction to Artificial Intelligence by Berkeley University of California https://inst.eecs.berkeley.edu/cs188/fa19/project3/

Informacje ogólne - zaliczenie:

- Projekt:
 - Zadania do wykonania w Pythonie (3 notebooki pythonowe, jeden projekt),
 - Projekt własnej gry w Pythonie wraz z implementacja wybranych algorytmów.
 - Rozbudowa projektu Pacman (implementacja algorytmu aproksymacji funkcji wartości stanu),
 - Ocena końcowa:
 - Część I 66% 73% ocena 3, 73% 80% ocena 3.5, 80% 87% ocena 4, 87% 94% ocena 4.5, 94% i wyżej 5.
 - Część II ocena projektu.
 - Część III ocena na podstawie turnieju botów.
 - Ocena końcowa jest oceną ważoną z każdej części (30%, 40%, 40%).
 Konieczne jest uzyskanie pozytywnej oceny z każdej części.
- Wykład ??.
- Kontakt:
 - poprzez platformę MS Teams na chacie indywidualnym,
 - mailowo: pduch@iis.p.lodz.pl.

Informacje szczegółowe - plan działania:

- Minimax, Alpha-Beta, Expectimax *Project 2: Multi-Agent Search, Berkeley*.
- MCTS *Monet Carlo Tree Search* implementacja we własnym projekcie.
- Uczenie pasywne (Policy Evaluation, Policy Improvement, Policy Iteration, Value Iteration) Notebook Pythonowy 1 + implementacja wybranego algorytmu we wsłasnym projekcie (Pliki dodatkowe do notebooków).
- Uczenie aktywne (*Q-Learning*, *Sarsa*, *Expected Sarsa*, *Sarsa* (λ), *Double Q-Learning*) Notebook Pythonowy 2 i Notebook Pythonowy 3 + implementacja wybranego algorytmu we wsłasnym projekcie.
- Aproksymacja funkcji wartości implementacja we własnym projekcie
 + implementacja w pacmanie (link zostanie dodany później).

Wprowadzenie

Wprowadzenie

Wprowadzenie

- Uczenie z nadzorem:
 - Klasyfikacja.
 - Regresja (predykcja).

Wprowadzenie

- Uczenie z nadzorem:
 - Klasyfikacja.
 - Regresja (predykcja).
- Uczenie bez nadzoru:
 - Grupowanie (m.in. klasteryzacja, analiza skupień).
 - Redukcja wymiarów.
 - Uzupełnianie wartości.

Wprowadzenie

- Uczenie z nadzorem:
 - Klasyfikacja.
 - Regresja (predykcja).
- Uczenie bez nadzoru:
 - Grupowanie (m.in. klasteryzacja, analiza skupień).
 - Redukcja wymiarów.
 - Uzupełnianie wartości.
- Uczenie ze wzmocnieniem.

Wprowadzenie

Wprowadzenie

Co odróżnia uczenie ze wzmocnieniem od innych działów uczenia maszynowego:

■ Nie potrzebna jest baza danych - agent uczy się na podstawie informacji o nagrodach otrzymywanych ze środowiska.

Wprowadzenie

- Nie potrzebna jest baza danych agent uczy się na podstawie informacji o nagrodach otrzymywanych ze środowiska.
- Nagroda może być odłożona w czasie.

Wprowadzenie

- Nie potrzebna jest baza danych agent uczy się na podstawie informacji o nagrodach otrzymywanych ze środowiska.
- Nagroda może być odłożona w czasie.
- Czas ma znaczenie.

Wprowadzenie

- Nie potrzebna jest baza danych agent uczy się na podstawie informacji o nagrodach otrzymywanych ze środowiska.
- Nagroda może być odłożona w czasie.
- Czas ma znaczenie.
- Działanie agenta ma wpływ na dane, jakie otrzymuje ze środowiska.

Wprowadzenie

Co to jest:

- **Agent** wchodzi w interakcję ze **środowiskiem**, w którym chce osiągnąć określony **cel**.
- **Akcje** podjęte przez agenta są oceniane przez środowisko.
- W wyniku wykonania wybranej akcji, agent otrzymuje **nagrodę** (może być pozytywna lub negatywna).

- Uczenie pasywne:
 - Ocena strategii (ang. Policy Evaluation)
 - Polepszanie strategii (ang. *Policy Improvement*)
 - Iteracyjne doskonalenie strategii (ang. *Policy Iteration*)
 - Iteracyjne obliczanie funkcji wartości (ang. Value Iteration)

Uczenie ze wzmocnieniem - wprowadzenie Metody cd.

- Uczenie aktywne:
 - Metody różnic czasowych (ang. Temporal Difference Learning)
 - Monte Carlo
 - Q-Learning
 - SARSA
 - Metody aproksymacyjne
 - Aproksymacja funkcji wartości (ang. Approximate Q-Learning)
 - Metody wykorzystujące głebokie sieci neuronowe
 - Deep Q-Learning
 - Double Q-Learning
 - Actor-Critic
 - REINFORCE
 - Policy Gradient

Przykłady

Rysunek 1: Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." (2013).

Przykłady cd.

Pan, Xinlei, et al. "Virtual to real reinforcement learning for autonomous driving." arXiv preprint arXiv:1704.03952 (2017).

Przykłady cd.

A: Where are you going? (1)

B: I'm going to the police station. (2)

A: I'll come with you. (3)

B: No, no, no, no, you're not going anywhere. (4)

A: Why? (5)

B: I need you to stay here. (6)

A: I don't know what you are talking about. (7)

A: How old are you? (1)

B: I'm 16. Why are you asking? (2)

A I thought you were 12. (3)

B: What made you think so? (4)

A: I don't know what you are talking about. (5)

B: You don't know what you are saying. (6)

Li, Jiwei, et al. "Deep reinforcement learning for dialogue generation." (2016).

Przykłady cd.

Obrót akcjami:

- Dempster, Michael AH, and Vasco Leemans. "An automated FX trading system using adaptive reinforcement learning." Expert Systems with Applications 30.3 (2006): 543-552.
- Xiong, Zhuoran, et al. "Practical deep reinforcement learning approach for stock trading." arXiv preprint arXiv:1811.07522 (2018).
- Carapuço, João, Rui Neves, and Nuno Horta. "Reinforcement learning applied to Forex trading." Applied Soft Computing 73 (2018): 783-794.

Przykłady cd.

Rysunek 3: Od AlphaGo do MuZero

Przykłady cd.

Rysunek 4: AlphaStar

Algorytmy w systemach wieloagentowych (ang. *Multi-agent search algorithms*)

Algorytmy

- Minimax
- Alpha-Beta
- Monte Carlo Tree Search (MCTS)

Algorytmy

Minimax

Rysunek 5: Minimax

Algorytmy

Alpha-Beta

Rysunek 6: Alpha-Beta - Wikipedia

(Reinforcement Learning)

Algorytmy MCTS

Rysunek 7: Monte-Carlo Tree Search in Board Games

(Reinforcement Learning)

Algorytmy MCTS

 Selekcja - wybieramy ścieżkę od początkowego węzła do najbardziej obiecującego liści.

Algorytmy MCTS

 Selekcja - wybieramy ścieżkę od początkowego węzła do najbardziej obiecujacego liści.

$$UCB(node_i) = \frac{w_i}{n_i} + c\sqrt{\frac{logN}{n_i}}$$
 (1)

- Ekspansja rozwinięcie, wybieramy losowy węzeł z ostatniego liścia.
- Symulacja (Roll-out) rozgrywamy wiele gier losowo zapamiętując wyniki.
- Propagacja wsteczna aktualizujemy wartości wcześniejszych węzłów.

(Reinforcement Learning)

Algorytmy Projekt

- Minimax, Alpha-Beta, Expectimax Project 2: Multi-Agent Search, Berkeley.
- MCTS implementacja we własnym projekcie.

Uczenie ze wzmocnieniem Podstawowe pojęcia

Podstawowe pojęcia

Interakcja agent - środowisko

(Reinforcement Learning)

Podstawowe pojęcia

Środowisko (ang. Environment, np. plansza do gry Pacman):

- Opisuje świat, z którym agent wchodzi w interakcję
- Wejście:
 - Akcja
- Wyjście:
 - Stan
 - Nagroda

Agent (ang. Agent):

- Poprzez interakcję ze środowiskiem uczy się, jak osiągnąć założony cel
- Wejście:
 - Stan
 - Nagroda
- Wyjście:
 - Akcja

Nagroda (ang. Reward):

- Wartość zwracana przez środowisko w momencie wykonania akcji wybranej przez agenta.
- Reprezentuje cel, lub cele, jakie agent ma osiągnąć.
- Oznaczenie: r_t nagroda otrzymana w chwili czasu t.

(Reinforcement Learning)

Oczekiwana nagroda (ang. Return):

- Oczekiwana nagroda po zakończeniu bieżącego epizodu.
- Celem uczenia za wzmocnieniem jest maksymalizacja nagrody oczekiwanej.
- lacktriangle Oznaczenie: G_t oczekiwana nagroda w chwili czasu t.

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$
 (2)

(Reinforcement Learning)

Akcja (ang. Action):

- Dyskretna (1 z N dostępnych w danym środowisku).
- Ciągła (wartość lub wektor wartości).

Strategia (ang. Policy):

- Zasady, według których wybierana jest akcja w danym stanie.
- Może być deterministyczna lub stochastyczna.
- \blacksquare Oznaczenie: π .

Funkcja wartości (oceny, ang. Value function):

- Określa, jak dobrze być w danym stanie.
- Oczekiwana suma nagród, jaką możemy otrzymać, rozpoczynając w stanie s i działając zgodnie ze strategią π .
- Rodzaje:
 - Funkcja wartości stanu $V^{\pi}(s)$ jak dobrze być w stanie s, działając zgodnie ze strategią π .
 - Funkcja wartości stanu-akcji $Q^{\pi}(s, a)$ jak dobrze będąc w stanie s jest wykonać akcję a, działając zgodnie ze strategią π .

(Reinforcement Learning)

Stan (ang. State):

- Zbiór wartości opisujących aktualną sytuację.
- Jest podstawą wyboru akcji przez agenta zgodnie z jego strategią.

Proces decyzyjny Markowa

Własność Markowa

Własność procesów stochastycznych polegająca na tym, że warunkowe rozkłady prawdopodobieństwa przyszłych stanów procesu są zdeterminowane wyłącznie przez jego bieżący stan, bez względu na przeszłość.

Wikipedia

Proces decyzyjny Markowa

Proces decyzyjny Markowa (ang. Markov Decision Process (MDP))

Ciąg zdarzeń, w którym prawdopodobieństwo każdego zdarzenia zależy jedynie od wyniku poprzedniego. W ujęciu matematycznym, procesy Markowa to takie procesy stochastyczne, które spełniają własność Markowa.

Wikipedia

Proces decyzyjny Markowa

Proces decyzyjny Markowa

- Stany:
 - S zbiór wszystkich możliwych stanów.
 - s pojedynczy stan ($s \in S$).
 - s_0 stan początkowy ($s_0 \in S$).

Proces decyzyjny Markowa

- Stany:
 - S zbiór wszystkich możliwych stanów.
 - s pojedynczy stan ($s \in S$).
 - s_0 stan początkowy ($s_0 \in S$).
- Akcje:
 - A zbiór wszystkich możliwych akcji.
 - *a* pojedyncza akcja.
 - \blacksquare A(s) zbiór akcji możliwych do wykonania w stanie s.

Proces decyzyjny Markowa

- Stany:
 - S zbiór wszystkich możliwych stanów.
 - s pojedynczy stan ($s \in S$).
 - s_0 stan początkowy ($s_0 \in S$).
- Akcje:
 - A zbiór wszystkich możliwych akcji.
 - *a* pojedyncza akcja.
 - \blacksquare A(s) zbiór akcji możliwych do wykonania w stanie s.
- Model środowiska:
 - P(s'|s,a) prawdopodobieństwo przejścia ze stanu s do stanu s', wykonując akcję a.
 - P(s', r|s, a) prawdopodobieństwo przejścia ze stanu s do stanu s' otrzymania nagrody r, wykonując akcję a.

Proces decyzyjny Markowa

- Stany:
 - S zbiór wszystkich możliwych stanów.
 - s pojedynczy stan ($s \in S$).
 - s_0 stan początkowy ($s_0 \in S$).
- Akcje:
 - A zbiór wszystkich możliwych akcji.
 - *a* pojedyncza akcja.
 - \blacksquare A(s) zbiór akcji możliwych do wykonania w stanie s.
- Model środowiska:
 - P(s'|s,a) prawdopodobieństwo przejścia ze stanu s do stanu s', wykonując akcję a.
 - P(s', r|s, a) prawdopodobieństwo przejścia ze stanu s do stanu s' otrzymania nagrody r, wykonując akcję a.
- Funkcja nagrody R(s).

Proces decyzyjny Markowa

(Reinforcement Learning)

Funkcje wartości

■ Funkcja wartości stanu dla strategii π .

$$v_{\pi}(s) \doteq \mathbb{E}[G_t|S_t = s] \tag{3}$$

Funkcje wartości

■ Funkcja wartości stanu dla strategii π .

$$\nu_{\pi}(s) \doteq \mathbb{E}[G_t | S_t = s] \tag{3}$$

■ Funkcja wartości stanu-akcji dla strategii π .

$$q_{\pi}(s,a) \doteq \mathbb{E}[G_t|S_t=s,A_t=a] \tag{4}$$

(Reinforcement Learning)

Funkcje wartości

■ Funkcja wartości stanu dla strategii π .

$$\nu_{\pi}(s) \doteq \mathbb{E}[G_t | S_t = s] \tag{3}$$

■ Funkcja wartości stanu-akcji dla strategii π .

$$q_{\pi}(s,a) \doteq \mathbb{E}[G_t|S_t=s,A_t=a] \tag{4}$$

■ Fukcje wartości mogą być obliczane na podstawie doświadczenia.

Równanie Bellmana

$$\begin{aligned} v_{\pi}(s) &\doteq \mathbb{E}[G_t | S_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma \mathbb{E}[G_{t+1} | S_{t+1} = s]] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma v_{\pi}(s')], \text{dla wszystkich } s \in S. \end{aligned}$$

Równanie Bellmana

$$v_{\pi}(s) \doteq \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Równanie Bellmana

akcji a w stanie
$$s$$
 zgodnie z założoną stategią π
$$V_{\pi}(s) \doteq \sum_{a} \frac{\pi(a|s)}{s'} \sum_{r} p(s',r|s,a)[r+\gamma v_{\pi}(s')]$$

Równanie Bellmana

Prawdopodobieństwo wyboru

akcji a w stanie s zgodnie z założoną stategią π $V_{\pi}(s) \doteq \sum_{a} \frac{\pi(a|s)}{\pi(a|s)} \sum_{s'} \sum_{r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$ Prawdopodobieństwo przejścia do stanu s', i otrzymania nagrody r, ze stanu s

wybierając akcję a zgodnie z założona stategia π

(Reinforcement Learning)

Równanie Bellmana

(Reinforcement Learning

Równanie Bellmana

z założona stategia π

Materiały uzupełniające

- Książka Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, wydanie drugie, 2018.
 - Rozdział 1 Introduction.
 - Rozdział 3 Finite Markov Decision Processes.
- Książka Grokking Deep Reinforcement Learning, Miguel Morales, 2020.
 - Rozdział 2 Mathematical foundations of reinforcement learning.
- Video RL Course by David Silver Lecture 1: Introduction to Reinforcement Learning.

Uczenie pasywne (ang. *model based learning*)

Algorytmy:

- Ocena strategii (ang. Policy Evaluation).
- Polepszanie strategii (ang. Policy Improvement).
- Iteracyjne doskonalenie strategii (ang. Policy Iteration).
- Iteracyjne obliczanie funkcji wartości (ang. Value Iteration).

(Reinforcement Learning)

Uczenie pasywne Ocena strategii

Ocena strategii (ang. Policy Evaluation)

Cele:

- Oszacowanie wartości dla każdego stanu, dla założonej strategii.
- Wyznaczenie $v_{\pi}(s)$ dla każdego $s \in S$, dla założonej strategii π .

Ocena strategii (ang. Policy Evaluation)

Cele:

- Oszacowanie wartości dla każdego stanu, dla założonej strategii.
- Wyznaczenie $v_{\pi}(s)$ dla każdego $s \in S$, dla założonej strategii π .

Rozwiązanie:

■ Metoda iteracyjna:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V_k(s')]$$

Ocena strategii (ang. Policy Evaluation)

Cele:

- Oszacowanie wartości dla każdego stanu, dla założonej strategii.
- Wyznaczenie $v_{\pi}(s)$ dla każdego $s \in S$, dla założonej strategii π .

Rozwiązanie:

■ Metoda iteracyjna:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V_k(s')]$$

Warianty:

- Dwie macierze.
- Obliczenia w miejscu.

Ocena strategii (ang. Policy Evaluation)

Ocena strategii

Wejście:

- \blacksquare π strategia, która ma zostać oszacowana.
- \blacksquare θ dokładność szacowania strategii.

Wyjście:

lacktriangle V(s) - funkcja wartości stanów wyznaczona dla strategii π .

Inicjalizacja tablicy wartości stanów V(s) losowymi wartościami, za wyjątkiem stanu końcowego, któremu przypisana jest wartość 0.

Licz:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Dla każdego } s \in \mathcal{S}: \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma v_{\pi}(s')] \\ \Delta \leftarrow \max \left(\Delta, |v - V(s)\right) \end{array}$$

Dopóki $\Delta > \theta$

Ocena strategii (ang. Policy Evaluation)

Iterative Policy Evaluation

Input π , the policy to be evaluated

Algorithm parameter: a small threshold θ ξ 0 determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathcal{S} \colon \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma v_{\pi}(s')] \\ \Delta \leftarrow \max\left(\Delta, |v - V(s)\right) \end{array}$$

until $\Delta > \theta$

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy

Model środowiska:

Strategia:

W każdym stanie prawdopodobieństwo wyboru każdej z możliwych akcji jest takie samo.

50 / 100

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Wejście:

- Stany:
 - $S = \{s_0, s_1, s_2\}.$
- Akcje:
 - $A_{s_0} = \{a_0, a_1\}.$
 - $\blacksquare A_{s_1} = \{a_0, a_1\}.$
 - $\blacksquare A_{s_0} = \{a_0, a_1\}.$
- Funkcja wartości:
 - - $V(s_0) = 0, V(s_1) = 0, V(s_2) = 0.$
- Strategia:
 - $\pi(a_0|s_0) = \pi(a_1|s_0) = 0.5.$
 - $\pi(a_0|s_1) = \pi(a_1|s_1) = 0.5.$
 - $\pi(a_0|s_2) = \pi(a_1|s_2) = 0.5.$

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Wejście:

- Prawdopodobieństwo przejścia:
 - $p(s_2|s_0,a_0)=0.5$, $p(s_0|s_0,a_0)=0.5$, $p(s_2|s_0,a_1)=1$.
 - $p(s_0|s_1, a_0) = 0.7, \ p(s_1|s_1, a_0) = 0.1, \ p(s_2|s_1, a_0) = 0.2,$ $p(s_1|s_1, a_1) = 0.95, \ p(s_2|s_1, a_1) = 0.05.$
 - $p(s_0|s_2, a_0) = 0.4$, $p(s_2|s_2, a_0) = 0.6$, $p(s_0|s_2, a_1) = 0.3$, $p(s_1|s_2, a_1) = 0.3$, $p(s_2|s_2, a_1) = 0.4$.
- Nagroda:
 - $r(s_1, a_0, s_0) = 5.$
 - $r(s_2, a_1, s_0) = -1.$
 - W pozostałych przypadkach: r = 0.
- Discount factor:
 - $\gamma = 0.9$.

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Dla każdego $s \in S$:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V_k(s')]$$

Krok 1 (dla stanu s_0):

Potrzebne dane:

- $\pi(a_0|s_0) = \pi(a_1|s_0) = 0.5.$
- $p(s_2|s_0, a_0) = 0.5$, $p(s_0|s_0, a_0) = 0.5$, $p(s_2|s_0, a_1) = 1$.
- r = 0.
- $V_0(s_0) = V_0(s_1) = V_0(s_2) = 0$

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Krok 1 (dla stanu s_0):

$$V_1(s_0) = \pi(a_0|s_0) * [p(s_2|s_0, a_0) * (r + \gamma * V_0(s_2)) + p(s_0|s_0, a_0) * (r + \gamma * V_0(s_0))] + \pi(a_1|s_0) * [p(s_2|s_0, a_1) * (r + \gamma * V_0(s_2))]$$

Po podstawieniu wartości otrzymujemy:

$$V_1(s_0) = 0.5 * [0.5*(0+0.9*0)+ 0.5*(0+0.9*0)]+ 0.5 * [1*(0+0.9*0)]$$

Ostatecznie otrzymujemy:

$$V_1(s_0)=0$$

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Dla każdego $s \in S$:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V_k(s')]$$

Krok 1 (dla stanu s_1):

Potrzebne dane:

- $\pi(a_0|s_1) = \pi(a_1|s_1) = 0.5.$
- $p(s_0|s_1, a_0) = 0.7$, $p(s_1|s_1, a_0) = 0.1$, $p(s_2|s_1, a_0) = 0.2$, $p(s_1|s_1, a_1) = 0.95$, $p(s_2|s_1, a_1) = 0.05$.
- $r(s_1, a_0, s_0) = 5, r = 0.$
- $V_0(s_0) = V_0(s_1) = V_0(s_2) = 0$

Ocena strategii (ang. *Policy Evaluation*) - przykład liczbowy cd. Krok 1 (dla stanu s_1):

$$V_{1}(s_{1}) = \pi(a_{0}|s_{1}) * [p(s_{0}|s_{1}, a_{0}) * (r(s_{1}, a_{0}, s_{0}) + \gamma * V_{0}(s_{0})) + p(s_{1}|s_{1}, a_{0}) * (r + \gamma * V_{0}(s_{1})) + p(s_{2}|s_{1}, a_{0}) * (r + \gamma * V_{0}(s_{2}))] + \pi(a_{1}|s_{1}) * [p(s_{1}|s_{1}, a_{1}) * (r + \gamma * V_{0}(s_{1})) + p(s_{2}|s_{1}, a_{1}) * (r + \gamma * V_{0}(s_{2}))]$$

Po podstawieniu wartości otrzymujemy:

$$V_1(s_1) = 0.5 * [0.7*(5+0.9*0)+ \\ 0.1*(0+0.9*0)+ \\ 0.2*(0+0.9*0)]+ \\ 0.5 * [0.95*(0+0.9*0)+ \\ 0.05*(0+0.9*0)]$$

Ostatecznie otrzymujemy:

$$V_1(s_1) = 1.75$$

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Dla każdego $s \in S$:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V_k(s')]$$

Krok 1 (dla stanu s_2):

Potrzebne dane:

- $\pi(a_0|s_2) = \pi(a_1|s_2) = 0.5.$
- $p(s_0|s_2, a_0) = 0.4$, $p(s_2|s_2, a_0) = 0.6$, $p(s_0|s_2, a_1) = 0.3$, $p(s_1|s_2, a_1) = 0.3$, $p(s_2|s_2, a_1) = 0.4$.
- $r(s_2, a_1, s_0) = -1, r = 0.$
- $V_0(s_0) = V_0(s_1) = V_0(s_2) = 0$

Ocena strategii (ang. *Policy Evaluation*) - przykład liczbowy cd. Krok 1 (dla stanu s_2):

$$V_{1}(s_{2}) = \pi(a_{0}|s_{2}) * [p(s_{0}|s_{2}, a_{0}) * (r + \gamma * V_{0}(s_{0})) + p(s_{2}|s_{2}, a_{0}) * (r + \gamma * V_{0}(s_{2}))] +$$

$$\pi(a_{1}|s_{2}) * [p(s_{0}|s_{2}, a_{1}) * (r(s_{2}, a_{1}, s_{0}) + \gamma * V_{0}(s_{0})) +$$

$$p(s_{1}|s_{2}, a_{1}) * (r + \gamma * V_{0}(s_{1})) +$$

$$p(s_{2}|s_{2}, a_{1}) * (r + \gamma * V_{0}(s_{2}))]$$

Po podstawieniu wartości otrzymujemy:

$$V_1(s_2) = 0.5 * [0.4 * (0 + 0.9 * 0) + 0.6 * (0 + 0.9 * 0)] + 0.5 * [0.3 * (-1 + 0.9 * 0) + 0.4 * (0 + 0.9 * 0) + 0.3 * (0 + 0.9 * 0)]$$

Ostatecznie otrzymujemy:

$$V_1(s_2) = -0.15$$

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Wartości funkcji dla poszczególnych stanów wyznaczone po $\it n$ krokach algorytmu szacowania strategii.

Stan	Start	Krok 1	Krok 5	Krok 25	Krok 73
$V(s_0)$	0	0	0.24	1.32	1.47
$V(s_1)$	0	1.75	3.31	4.40	4.55
$V(s_2)$	0	-0.15	0.46	1.54	1.69

Ocena strategii (ang. Policy Evaluation) - przykład liczbowy cd.

Wartości funkcji dla poszczególnych stanów wyznaczone po n krokach algorytmu szacowania strategii - implementacja in-place.

_	Stan	Start	Krok 1	Krok 5	Krok 25	Krok 53
	$V(s_0)$	0	0	0.49	1.42	1.47
	$V(s_1)$	0	1.75	3.56	4.51	4.55
	$V(s_2)$	0	0.09	0.76	1.64	1.69

Ocena strategii (ang. Policy Evaluation) - ćwiczenie

Implementacja algorytmu oceny strategii w pliku PolicyEvaluation.py:

- implemtentacja algorytmu z wykorzystaniem dwóch osobnych macierzy do obliczeń (funkcja policy_eval_two_arrays),
- implemtentacja algorytmu z wykorzystaniem obliczeń w miejscu (funkcja *policy_eval_in_place*).

Uczenie pasywne Poprawa strategii

Poprawa strategii (ang. Policy Improvement)

Problem:

■ Jak można poprawić aktualną strategię?.

Twierdzenie o poprawie strategii (ang. Policy Improvement Theorem)

$$q_{\pi}(s, a) \doteq \sum_{s', r} p(s', r|s, a)[r + \gamma v_{\pi}(s')]$$
 (6)

$$\forall s \in S, q_{\pi}(s, \pi'(s)) \geqslant \nu_{\pi}(s) \rightarrow \nu'_{\pi}(s) \geqslant \nu_{\pi}(s)$$
 (7)

(Reinforcement Learning)

Poprawa strategii (ang. Policy Improvement)

Zgodnie z twierdzeniem o poprawie strategii, zastosowanie zachłannej strategii zawsze będzie lepsze, bądź równe obecnej strategii:

$$\pi'(s) = \operatorname{argmax}_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma v_{\pi}(s')]$$
 (8)

Uczenie pasywne Iteracyjne doskonalenie strategii

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Cel:

■ Określenie optymalnej strategii.

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Cel:

■ Określenie optymalnej strategii.

Rozwiązanie:

- Oszacowanie aktualnej strategii (algorytm *Policy Evaluation*).
- Poprawienie aktualnej strategii (algorytm Policy Improvement).

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Cel:

■ Określenie optymalnej strategii.

Rozwiązanie:

- Oszacowanie aktualnej strategii (algorytm Policy Evaluation).
- Poprawienie aktualnej strategii (algorytm Policy Improvement).

Optymalna strategia:

Jeżeli zastosowanie algorytmu Policy Improvement na aktualnej strategii jej nie zmieni, to oznacza, że aktualna strategia jest optymalna.

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Wyjście:

- $V \approx v_*$ optymalna funkcja wartości stanów.
- $\pi \approx \pi_*$ optymalna strategia.

Inicjalizacja tablicy strategii losowymi akcjami $\pi(s) \in A(s)$ dla $s \in S$.

Licz:

```
strategia\_stabilna \leftarrow true
V \leftarrow ocena\_strategii(\pi)
Dla każdego s \in S:
poprzednia\_akcja \leftarrow \pi(s)
\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s'} \sum_r p(s', r|s, a)[r + \gamma V(s')]
Jeżeli poprzednia\_akcja \neq \pi(s) ustaw strategia\_stabilna \leftarrow false
Dopóki strategia\_stabilna == false
```

STEEN -

Iteracyjne doskonalenie strategii (ang. Policy Iteration)

Policy Iteration

```
1. Initialization
```

```
V(s) \in \mathbb{R} and \pi(s) \in \mathbf{A}(s) arbitrarily for all s \in S.
```

- 2. Policy Evaluation
- 3. Policy Improvement

Licz:

```
\begin{aligned} \textit{policy\_stable} &\leftarrow \textit{true} \\ \textit{For each } s &\in \textit{S}: \\ &\textit{old\_action} \leftarrow \pi(s) \\ &\pi(s) \leftarrow \text{argmax}_{a} \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma V(s')] \\ &\textit{If old\_action} \neq \pi(s), \text{ then } \textit{policy\_stable} \leftarrow \textit{false} \end{aligned}
```

If $policy_stable == false$, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

(Reinforcement Learning)

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy

Model środowiska:

Strategia:

W każdym stanie wybieramy akcję a_0 .

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Wejście:

■ Stany:

$$S = \{s_0, s_1, s_2\}.$$

- Akcje:
 - $A_{s_0} = \{a_0, a_1\}.$
 - $A_{s_1} = \{a_0, a_1\}.$
 - $A_{s_2} = \{a_0, a_1\}.$
- Strategia:
 - $\pi(s_0) = a_0.$
 - $\pi(s_1)=a_0.$
 - $\pi(s_2) = a_0.$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Wejście:

- Prawdopodobieństwo przejścia:
 - $p(s_2|s_0, a_0) = 0.5, p(s_0|s_0, a_0) = 0.5, p(s_2|s_0, a_1) = 1.$
 - $p(s_0|s_1, a_0) = 0.7, \ p(s_1|s_1, a_0) = 0.1, \ p(s_2|s_1, a_0) = 0.2,$ $p(s_1|s_1, a_1) = 0.95, \ p(s_2|s_1, a_1) = 0.05.$
 - $p(s_0|s_2, a_0) = 0.4$, $p(s_2|s_2, a_0) = 0.6$, $p(s_0|s_2, a_1) = 0.3$, $p(s_1|s_2, a_1) = 0.3$, $p(s_2|s_2, a_1) = 0.4$.
- Nagroda:
 - $r(s_1, a_0, s_0) = 5.$
 - $r(s_2, a_1, s_0) = -1.$
 - W pozostałych przypadkach: r = 0.
- Discount factor:
 - $\gamma = 0.9$.

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Funkcja wartości obliczona dla strategii π_0 (za pomocą algorytmu *Policy Evaluation*):

- $v_{\pi_0}(s_0) = 0.$
- $v_{\pi_0}(s_1) = 3.87.$
- $v_{\pi_0}(s_2) = 0.$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Poprawa strategii w stanie s₀:

$$\pi_1(s_0) = \operatorname{argmax}_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi_0}(s')]$$

Potrzebne dane:

- $\pi(s_0) = a_0.$
- $p(s_2|s_0, a_0) = 0.5$, $p(s_0|s_0, a_0) = 0.5$, $p(s_2|s_0, a_1) = 1$.
- r = 0.
- $\mathbf{v}_{\pi_0}(s_0) = 0.0, \ v_{\pi_0}(s_1) = 3.87, \ v_{\pi_0}(s_2) = 0.0$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Poprawa strategii w stanie *s*₀:

$$\pi_1(s_0) = \operatorname{argmax}_a(p(s_2|s_0, a_0)[r + \gamma v_{\pi_0}(s_2)] + p(s_0|s_0, a_0)[r + \gamma v_{\pi_0}(s_0)],$$

$$p(s_2|s_0, a_1)[r + \gamma v_{\pi_0}(s_2)])$$

Po podstawieniu wartości otrzymujemy:

$$\begin{array}{ll} \pi_1(s_0) = & \operatorname{argmax}_a(0.5[0+0.9*0] + \\ & 0.5[0+0.9*0], \\ & 1[0+0.9*0]) \\ = & \operatorname{argmax}_a(0,0) \end{array}$$

Ostatecznie nową akcją wybraną dla stanu s_0 jest akcja a_0 , czyli:

 $\pi_1(s_0)=a_0$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Poprawa strategii w stanie s_1 :

$$\pi_1(s_0) = \operatorname{argmax}_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi_0}(s')]$$

Potrzebne dane:

- $\pi(s_1) = a_0.$
- $p(s_0|s_1, a_0) = 0.7$, $p(s_1|s_1, a_0) = 0.1$, $p(s_2|s_1, a_0) = 0.2$, $p(s_1|s_1, a_1) = 0.95$, $p(s_2|s_1, a_1) = 0.05$.
- $r(s_1, a_0, s_0) = 5, r = 0.$
- $\mathbf{v}_{\pi_0}(s_0) = 0.0, \ v_{\pi_0}(s_1) = 3.87, \ v_{\pi_0}(s_2) = 0.0$

lteracyjne doskonalenie strategii (ang. *Policy Iteration*) - przykład liczbowy cd. Poprawa strategii w stanie s_1 :

$$\begin{split} \pi_1(s_1) &= \mathsf{argmax}_{\textit{a}}(\rho(s_0|s_1, a_0)[r + \gamma v_{\pi_0}(s_0)] + \\ & \rho(s_1|s_1, a_0)[r + \gamma v_{\pi_0}(s_1)] + \\ & \rho(s_2|s_1, a_0)[r + \gamma v_{\pi_0}(s_2)], \\ & \rho(s_1|s_1, a_1)[r + \gamma v_{\pi_0}(s_1)] + \\ & \rho(s_2|s_1, a_1)[r + \gamma v_{\pi_0}(s_2)]) \end{split}$$

Po podstawieniu wartości otrzymujemy:

$$\begin{split} \pi_1(s_1) = & & \operatorname{argmax}_a(0.7[5+0.9*0] + \\ & & & 0.1[0+0.9*3.87] + \\ & & 0.2[0+0.9*0], \\ & & 0.95[0+0.9*3.87] + \\ & & 0.05[0+0.9*0]) \\ = & & & \operatorname{argmax}_a(3.85, 3.31) \end{split}$$

Ostatecznie nową akcją wybraną dla stanu s_1 jest akcja a_0 , czyli:

$$\pi_1(s_1)=a_0$$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Poprawa strategii w stanie s₂:

$$\pi_1(s_0) = \operatorname{argmax}_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi_0}(s')]$$

Potrzebne dane:

- $\pi(s_2) = a_0.$
- $p(s_0|s_2, a_0) = 0.4$, $p(s_2|s_2, a_0) = 0.6$, $p(s_0|s_2, a_1) = 0.3$, $p(s_1|s_2, a_1) = 0.3$, $p(s_2|s_2, a_1) = 0.4$.
- $r(s_2, a_1, s_0) = -1, r = 0.$
- $\mathbf{v}_{\pi_0}(s_0) = 0.0, \ v_{\pi_0}(s_1) = 3.87, \ v_{\pi_0}(s_2) = 0.0$

Iteracyjne doskonalenie strategii (ang. *Policy Iteration*) - przykład liczbowy cd. Poprawa strategii w stanie s_2 :

$$\begin{split} \pi_1(s_2) &= \mathsf{argmax}_{\mathsf{a}}(\rho(s_0|s_2,a_0)[r + \gamma v_{\pi_0}(s_0)] + \\ & \quad \rho(s_2|s_2,a_0)[r + \gamma v_{\pi_0}(s_2)], \\ & \quad \rho(s_0|s_2,a_1)[r + \gamma v_{\pi_0}(s_0)] + \\ & \quad \rho(s_1|s_2,a_1)[r + \gamma v_{\pi_0}(s_1)] + \\ & \quad \rho(s_2|s_2,a_1)[r + \gamma v_{\pi_0}(s_2)]) \end{split}$$

Po podstawieniu wartości otrzymujemy:

$$\begin{array}{ll} \pi_1(s_2) = & \operatorname{argmax}_a(0.4[0+0.9*0] + \\ & 0.6[0+0.9*0], \\ & 0.3[-1+0.9*0] + \\ & 0.3[0+0.9*3.87] + \\ & 0.4[0+0.9*0]) \\ = & \operatorname{argmax}_a(0,0.741) \end{array}$$

Ostatecznie nową akcją wybraną dla stanu s2 jest akcja a1, czyli:

$$\pi_1(s_2)=a_1$$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Wyniki działania algorytmu iteracji strategii po 1 kroku:

- Strategia:
 - $\pi_1(s_0) = a_0.$
 - $\pi_1(s_1) = a_0.$
 - $\pi_1(s_2) = a_1.$
- Wartość funkcji:
 - $v_{\pi_1}(s_0) = 2.83.$
 - $v_{\pi_1}(s_1) = 6.49.$
 - $v_{\pi_1}(s_2) = 3.47.$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - przykład liczbowy cd.

Wyniki działania algorytmu iteracji strategii po 3 kroku:

- Optymalna strategia:
 - $\pi_3(s_0) = a_1.$
 - $\pi_3(s_1) = a_0.$
 - $\pi_3(s_2) = a_1.$
- Wartość funkcji:
 - $v_{\pi_3}(s_0) = 3.79.$
 - $\mathbf{v}_{\pi_3}(s_1) = 7.3.$
 - $v_{\pi_3}(s_2) = 4.21.$

Iteracyjne doskonalenie strategii (ang. Policy Iteration) - ćwiczenie

Implementacja algorytmu iteracyjnego doskonalenia strategii w pliku *Policylteration.py*:

- implemtentacja algorytmu oceny strategii z wyokrzystaniem obliczeń w miejscu (funkcja policy_eval_in_place),
- implemtentacja algorytmu poprawy strategii (funkcja policy_improvement),
- implemtentacja algorytmu iteracyjnego doskonalenia strategii (funkcja policy_iteration).

Uczenie pasywne Iteracja funkcji wartości

Iteracja funkcji wartości (ang. Value Iteration)

Cel:

■ Optymalizacja wyznaczania najlepszej strategii.

Iteracja funkcji wartości (ang. Value Iteration)

Cel:

Optymalizacja wyznaczania najlepszej strategii.

Rozwiązanie:

■ Połączenie algorytmów oceny strategii i poprawy strategii w pojedynczej aktualizacji funkcji wartości stanu.

Iteracja funkcji wartości (ang. Value Iteration)

Cel:

Optymalizacja wyznaczania najlepszej strategii.

Rozwiązanie:

 Połączenie algorytmów oceny strategii i poprawy strategii w pojedynczej aktualizacji funkcji wartości stanu.

Optymalna strategia:

■ Strategia określana jest tylko jeden raz, na końcu działania algorytmu, na podstawie otrzymanej funkcji wartości.

Iteracja funkcji wartości (ang. Value Iteration)

Iteracja wartości (ang. Value Iteration)

Wejście:

 \blacksquare θ - dokładność obliczania funkcji wartości.

Wyjście:

 \blacksquare $\pi(\mathbf{s})$ - optymalna strategia π .

Inicjalizacja tablicy wartości stanów V(s) losowymi wartościami, za wyjątkiem stanu końcowego, któremu przypisana jest wartość 0.

Licz:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Dla każdego } s \in \mathcal{S} \text{:} \\ v \leftarrow V(s) \\ V(s) \leftarrow \max_{a} \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma V(s')] \\ \Delta \leftarrow \max\left(\Delta, |v - V(s)\right) \end{array}$$

Dopóki $\Delta > \theta$

(Reinforcement Learning)

Iteracja funkcji wartości (ang. Value Iteration)

Iteracja wartości (ang. Value Iteration)

Wyznaczenie optymalnej strategii, $\pi \approx \pi_*$, na podstawie obliczonej funkcji wartości, z wykorzystaniem algorytmu zachłannego:

$$\pi(s) = \operatorname{argmax}_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$
 (9)

(Reinforcement Learning)

Iteracja funkcji wartości (ang. Value Iteration)

Value Iteration

Algorithm parameter: a small threshold $\theta>0$ determining accuracy of estimation Initialize V(s), for all $s\in S^+$, arbitrarily except that V(terminal)=0 Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:
 $v \leftarrow V(s)$
 $V(s) \leftarrow \max_{s} \sum_{s} \sum_{s} \sum_{s} V(s) \leftarrow \max_{s} \sum_{s} \sum_{s} V(s)$

$$V(s) \leftarrow \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a)[r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s))$$

Until $\Delta > \theta$

Output a deterministic policy, $\pi \approx \pi_*$, such that

$$\pi(s) = \operatorname{argmax}_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$
 (10)

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy

Model środowiska:

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Wejście:

■ Stany:

$$S = \{s_0, s_1, s_2\}.$$

- Akcje:
 - $A_{s_0} = \{a_0, a_1\}.$
 - $A_{s_1} = \{a_0, a_1\}.$
 - $A_{s_2} = \{a_0, a_1\}.$
- Funkcja wartości:
 - $V(s_0) = 0.$
 - $V(s_1) = 0.$
 - $V(s_2) = 0.$

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Wejście:

- Prawdopodobieństwo przejścia:
 - $p(s_2|s_0, a_0) = 0.5$, $p(s_0|s_0, a_0) = 0.5$, $p(s_2|s_0, a_1) = 1$.
 - $p(s_0|s_1, a_0) = 0.7, \ p(s_1|s_1, a_0) = 0.1, \ p(s_2|s_1, a_0) = 0.2, \\ p(s_1|s_1, a_1) = 0.95, \ p(s_2|s_1, a_1) = 0.05.$
 - $p(s_0|s_2, a_0) = 0.4, \ p(s_2|s_2, a_0) = 0.6, \ p(s_0|s_2, a_1) = 0.3, \ p(s_1|s_2, a_1) = 0.3, \ p(s_2|s_2, a_1) = 0.4.$
- Nagroda:
 - $r(s_1, a_0, s_0) = 5.$
 - $r(s_2, a_1, s_0) = -1.$
 - W pozostałych przypadkach: r = 0.
- Discount factor:
 - $\gamma = 0.9$

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Aktualizowanie funkcji wartości w stanie s_0 :

$$V(s_0) = \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$

Potrzebne dane:

$$p(s_2|s_0, a_0) = 0.5$$
, $p(s_0|s_0, a_0) = 0.5$, $p(s_2|s_0, a_1) = 1$.

$$r = 0.$$

$$V(s_0) = 0.0, V(s_1) = 0.0, V(s_2) = 0.0$$

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Aktualizowanie funkcji wartości w stanie so:

$$V(s_0) = \max_{a} (p(s_2|s_0, a_0)[r + \gamma V(s_2)] + p(s_0|s_0, a_0)[r + \gamma V(s_0)],$$

$$p(s_2|s_0, a_1)[r + \gamma V(s_2)])$$

Po podstawieniu wartości otrzymujemy:

$$V(s_0) = \max_{a}(0.5[0 + 0.9 * 0] + 0.5[0 + 0.9 * 0],$$

$$1[0 + 0.9 * 0])$$

$$= \max_{a}(0,0)$$

Ostatecznie:

$$V(s_0) = 0$$

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Aktualizowanie funkcji wartości w stanie s₁:

$$V(s_1) = \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$

Potrzebne dane:

- $p(s_0|s_1, a_0) = 0.7, \ p(s_1|s_1, a_0) = 0.1, \ p(s_2|s_1, a_0) = 0.2, \\ p(s_1|s_1, a_1) = 0.95, \ p(s_2|s_1, a_1) = 0.05.$
- $r(s_1, a_0, s_0) = 5, r = 0.$
- $V(s_0) = 0.0, V(s_1) = 0.0, V(s_2) = 0.0$

Iteracja funkcji wartości (ang. $Value\ Iteration$) - przykład liczbowy cd. Poprawa strategii w stanie s_1 :

$$\begin{split} V(s_1) &= \mathsf{max}_a(\rho(s_0|s_1,a_0)[r+\gamma V(s_0)] + \\ & \rho(s_1|s_1,a_0)[r+\gamma V(s_1)] + \\ & \rho(s_2|s_1,a_0)[r+\gamma V(s_2)], \\ & \rho(s_1|s_1,a_1)[r+\gamma V(s_1)] + \\ & \rho(s_2|s_1,a_1)[r+\gamma V(s_2)]) \end{split}$$

Po podstawieniu wartości otrzymujemy:

$$\begin{split} V(s_1) = & \quad \mathsf{max_a}(0.7[5+0.9*0] + \\ & \quad 0.1[0+0.9*0] + \\ & \quad 0.2[0+0.9*0], \\ & \quad 0.95[0+0.9*0] + \\ & \quad 0.05[0+0.9*0]) \\ = & \quad \mathsf{max_a}(3.5,0) \end{split}$$

Ostatecznie:

$$V(s_1)=3.5$$

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Aktualizowanie funkcji wartości w stanie s2:

$$V(s_2) = \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$

Potrzebne dane:

- $p(s_0|s_2, a_0) = 0.4$, $p(s_2|s_2, a_0) = 0.6$, $p(s_0|s_2, a_1) = 0.3$, $p(s_1|s_2, a_1) = 0.3$, $p(s_2|s_2, a_1) = 0.4$.
- $r(s_2, a_1, s_0) = -1, r = 0.$
- $V(s_0) = 0.0, V(s_1) = 3.5, V(s_2) = 0.0$

Iteracja wartości - przykład liczbowy cd.

Poprawa strategii w stanie s2:

$$\begin{split} V(s_2) &= \mathsf{argmax}_a(\rho(s_0|s_2, a_0)[r + \gamma V(s_0)] + \\ & \quad \rho(s_2|s_2, a_0)[r + \gamma V(s_2)], \\ & \quad \rho(s_0|s_2, a_1)[r + \gamma V(s_0)] + \\ & \quad \rho(s_1|s_2, a_1)[r + \gamma V(s_1)] + \\ & \quad \rho(s_2|s_2, a_1)[r + \gamma V(s_2)]) \end{split}$$

Po podstawieniu wartości otrzymujemy:

$$\begin{split} V(s_2) = & \quad \mathsf{max_a}(0.4[0+0.9*0] + \\ & \quad 0.6[0+0.9*0], \\ & \quad 0.3[-1+0.9*0] + \\ & \quad 0.3[0+0.9*3.5] + \\ & \quad 0.4[0+0.9*0]) \\ = & \quad \mathsf{max_a}(0,0.645) \end{split}$$

Ostatecznie:

$$V(s_2) = 0.645$$

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Wartości funkcji dla poszczególnych stanów wyznaczone po n krokach algorytmu iteracji wartości.

Stan	Start	Krok 1	Krok 5	Krok 25	Krok 37
$\overline{V(s_0)}$	0	0	1.96	3.75	3.79
$V(s_1)$	0	3.5	5.6	7.26	7.3
$V(s_2)$	0	0.65	2.52	4.17	4.21

Iteracja funkcji wartości (ang. Value Iteration) - przykład liczbowy cd.

Po zakończeniu obliczania funkcji wartości, następnym krokiem jest wyznaczenie optymalnej strategii dla każdego ze stanów za pomocą wzoru:

$$\pi(s) = \operatorname{argmax}_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma V(s')]$$

Wyznaczona optymalna strategia wygląda następująco:

- $\pi(s_0) = a_1.$
- $\blacksquare \ \pi(s_1)=a_0.$
- $\pi(s_2) = a_1.$

Iteracja funkcji wartości (ang. Value Iteration) - ćwiczenie

Implementacja algorytmu iteracyjnego obliczania funkcji wartości *Valuelte-ration.py*:

■ implementacja algorytmu iteracyjnego obliczania funkcji wartości (funkcja *value_iteration*).

Materiały uzupełniające

- Książka Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, wydanie drugie, 2018.
 - Rozdział 4 Dynamic Programming.
- Książka Grokking Deep Reinforcement Learning, Miguel Morales, 2020.
 - Rozdział 3 Balancing immediate and long-term goals.
- Video RL Course by David Silver Lecture 3: Planning by Dynamic Programming.
- Video Artificial Intelligence Course by Pieter Abbeel Lecture 8: Markov Decision Processes (MDPs).

Aproksymacja funkcji wartości stanu

