Q1: Let A_1, A_2, \cdots be a sequence of events. Define

$$B_n = \bigcup_{m=n}^{\infty} A_m, \qquad C_n = \bigcap_{m=n}^{\infty} A_m.$$

Clearly $C_n \subset A_n \subset B_n$. The sequences $\{B_n\}$ and $\{C_n\}$ are decreasing and increasing respectively with limits

$$\lim B_n = B = \cap_n B_n = \cap_n \cup_{m \ge n} A_m, \qquad \lim C_n = C = \cup_n C_n = \cup_n \cap_{m \ge n} A_m.$$

The events B and C are denoted $\limsup_{n\to\infty} A_n$ and $\liminf_{n\to\infty} A_n$, respectively. Show that (a) $B = \{\omega \in \Omega : \omega \in A_n \text{ for infinitely many values of } n\}$,

(b) $C = \{ \omega \in \Omega : \omega \in A_n \text{ for all but finitely many values of } n \},$

We say that the sequence $\{A_n\}$ converges to a limit $A = \lim A_n$ if B and C are the same set A. Suppose that $A_n \to A$ and show that

(c) $\mathbb{P}(A_n) \to \mathbb{P}(A)$.

Proof:

: B= | WEA: WE An for infinitely many values of n]

From

· linsup P(An) = IP (linsup An)

Similarly, we have into P(An) ZIP (into An)

-: lim mf IP(An) = lin sup IP(An)

: An -> A

Q2: Let \mathcal{F} be a σ -field, and let $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$ be two sub σ -fields.

- (i) Give one example which shows that $\mathcal{G} \cup \mathcal{H}$ is not a σ -field.
- (ii) Prove that $\mathcal{G} \cap \mathcal{H}$ is a σ -field.
- (iii) $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \cdots$ is a sequence of sub σ -fields, prove that $\bigcup_{i=1}^{\infty} \mathcal{F}_i$ is a field. Give an example to show that $\bigcup_{i=1}^{\infty} \mathcal{F}_i$ is not necessarily a σ -field.

Solution:

Obviously, G and H are o-fields since they satisfy the definition.

However, [a]U(b) = la,b) & Guff

(ii) Since G and H are both o-fields.

From the definition, we have

 $S \mathcal{L} \in \mathcal{G}$ $A \in \mathcal{G} \Rightarrow A^{C} \in \mathcal{G}$ $A_{1}, A_{2}, \dots \in \mathcal{G} \Rightarrow \mathcal{D}_{1} \land A_{n} \in \mathcal{G}$ $S \mathcal{L} \in \mathcal{H}$ $A \in \mathcal{H} \Rightarrow A^{C} \in \mathcal{H}$ $A_{1}, A_{2}, \dots \in \mathcal{H} \Rightarrow \mathcal{D}_{1} \land A_{n} \in \mathcal{H}$

Then

- · NEG. NEH > NEG TH
- AEGNH ⇒ AEG. AEH
 ⇒ A^cEG, A^cEH
 ⇒ A^cEGNH
- AI, AZ, ... EGNH > AI, AZ ... EG, AI, AZ ... EH > DI AN EG, DI AN EH > DI AN EGNH

Therefore, GNH is a o-freld.

(iii) FIEFIE ... are sub o-fields.

- · LETT for any i > DE P. Fi
- A E; Ü Fi => 3j REFj => A C E F; F;
- A,,..., An 三点中i ラヨj, A,..., An こすj ⇒ 口Ai モギj ⇒ 口Ai モビれた

: is a field

Define $f_1 = \{1\}$, $f_2 = \{1,2\}$, ..., $f_i = \{1,2,...,i\}$. Let $Ai = \{2i\}$.

Each Ai is in illifi, however, la Ai is not in illifi. Thus, illifi is not a offield.

Q3: Suppose that X and Y are random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ and let $A \in \mathcal{F}$. We set $Z(\omega) = X(\omega)$ for all $\omega \in A$ and $Z(\omega) = Y(\omega)$ for all $\omega \in A^c$. Prove that Z is a random variable.

Proof:

:: X, Y are random variables

$$Z^{\dagger}(B) = \begin{cases} X(\omega) & \omega \in A^{c} \\ Y(\omega) & \omega \in A^{c} \end{cases}$$

$$Z^{\dagger}(B) = Z^{\dagger}(AnB) U(A^{c}nB)$$

$$= Z^{\dagger}(AnB) U Z^{\dagger}(A^{c}nB)$$

$$= X^{\dagger}(AnB) U Y^{\dagger}(A^{c}nB)$$

: Z B a random variable

E\$

Q4: Prove the following two definitions of random vector are equivalent.

Def. 1: $X = (X_1, \ldots, X_d) : (\Omega, \mathcal{F}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ is a random vector if it is \mathcal{F} -measurable. Def. 2: $X = (X_1, \ldots, X_d)$ is a random vector if $X_i : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is \mathcal{F} -measurable for all $i = 1, \ldots, d$.

Proof:

$$X:(\Lambda, \mathcal{F}) \longrightarrow (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$$

$$Xi: (\Omega, \mathcal{F}) \rightarrow (R, \mathcal{B}(R))$$

-; $IR^d = \widehat{R} \times \cdots \times \widehat{IR}$

Given BIB(IRd). B can be decomposed as BIX --- XBd

$$Y''(B) = X^{-1}(B_1 \times \cdots \times B_d)$$

$$= X_1^{-1}(B_1) \cap X_2^{-1}(B_2) \cap \cdots \cap X_d^{-1}(B_d)$$

$$= \prod_{i=1}^d X_i^{-1}(B_i)$$

.. X is +-measurable ⇒ X'(B) = + > Xi(Bi) = + > Xi Bi is measurable Xi is measurable => Xi (Bi) =F => X'(B) =F => X is F-measurable

Q5: Prove the following reverse Fatou's lemma: Let f_1, f_2, \ldots be a sequence of Lebesgue integrable functions on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that there exists a non-negative integrable function g on Ω such that $f_n \leq g$ for all n. Prove

$$\limsup_{n\to\infty} \int f_n d\mu \le \int \limsup_{n\to\infty} f_n d\mu.$$

Proof:

.. We can apply Fatou's lemma on the sequence { 9-fn}

From Fatur's lemma.

$$\int \underset{n\to\infty}{\text{limf}} (g-f_n) d\mu \leq \underset{n\to\infty}{\text{limf}} \int (g-f_n) d\mu$$

$$\int g d\mu + \int \underset{n\to\infty}{\text{limf}} (-f_n) d\mu \leq \int g d\mu + \underset{n\to\infty}{\text{limf}} \int (-f_n) d\mu$$

$$\therefore \int g d\mu \neq \pm \infty$$