

南京宇微电子科技有限公司 ESP32-S3-Mini 开发板 V1.0

2025年10月22日修订

作者: 付坤

目录

版本修订	
客户须知	2
一、概览	3
二、板卡分区介绍	4
2.1 ESP32-S3 模组	4
2.2 电源	4
2.3 LED	
2.4 RESET (EN)	6
2.5 BOOT (GPIO0)	6
2.6 UART	6
2.7 USB	7
三、应用	c
3.1 AI 视觉识别	
3.2 语音唤醒与智能音频	g
3.3 图形界面与人机交互设备	
3.4 无线物联网与边缘网关	C
四、原理图与 PCB 布线	10
五、编程指南	11
5.1 Hello World	11
5.1.1 代码总览	11
5.1.2 代码简析	12
六、联系我们	19

版本修订

客户须知

本文档为产品使用参考所编写,文档版本可能随时更新,恕不另行通知。本文中提供的所有使用方法、说明及建议仅供参考,不构成任何承诺或保证。使用本产品及本文档内容所产生的结果,由用户自行承担风险。本公司对因使用本文档或产品而导致的任何直接或间接损失,不承担任何责任。

一、概览

ESP32-S3-DevKitC-1 是 Espressif (乐鑫) 推出的 ESP32-S3 系列开发板,专为 AIoT 和边缘计算设计,我们根据其开源的资料复刻了这块开发板。核心采用 ESP32-S3-N16R8 模组,搭载双核 Xtensa LX7 处理器 (主频最高 240MHz)、512KB SRAM、8MB PSRAM、16MB Flash。支持 2.4GHz Wi-Fi (802.11 b/g/n) 和蓝牙 5 (LE),新增 AI 加速引擎 (向量指令) 和 USB OTG 接口,提升机器学习任务效率。

板载 36 个 GPIO,支持丰富外设,体积紧凑(约 69×25.5mm),支持 Arduino IDE、ESP-IDF、MicroPython 等环境。通过 MicroUSB 接口连接 CP2102 USB 转串口芯片,通过 MicroUSB 接口直接连接 ESP32 模块的 USB OTG 接口,均可用于对系统供电。双排 2×22 针脚设计,22.86mm 间距兼容面包板,板载复位/引导按键和 RGB LED。

参数	
核心主控	ESP32-S3
天线规格	2.4Ghz ISM 波段 PIFA 天线
输入电压	3.3~5.5V
引脚数量	2×22, 22.86mm 间距
引脚间距	2.54mm
板载外设	USB 转串口、256 级 LED
物理接口	MicroUSB 接口、杜邦插针
无线接口	WIFI/BLE
工作温度	-40°C~+85°C
存储温度	-40°C~+85°C

二、板卡分区介绍

2.1 ESP32-S3 模组

ESP32-S3 模组是基于 Espressif (乐鑫) 推出的高性能 Wi-Fi+Bluetooth LE MCU, 专为 AIoT (AI + 物联网) 的应用而设计。核心搭载 ESP32-S3R8 芯片,采用双核 Xtensa 32 位 LX7 处理器 (主频高达 240 MHz),内置 512 KB SRAM 和 384 KB ROM,支持神经网络计算和信号处理加速(如向量指令)。

- 无线能力: 2.4 GHz Wi-Fi(802.11 b/g/n)和 Bluetooth 5(LE),集成 PCB 天线,传输速率高达 150 Mbps。
- 硬件规格: 尺寸 18×25.5×3.1 mm, 供电 3.0-3.6 V, 工作温度 -40~+85°C。安全特性包括 RSA 安全启动、AES-XTS Flash 加密、数字签名和 HMAC 外设。

2.2 电源

通过 MicroUSB 接口供电,标识为 UART 和 USB 的 USB 接口均可接受 5V 直流供电,经过板载 5V 转 3.3V LDO 稳压后供给模块和板载其它外设。两个 MicroUSB 接口的输入电源 VBUS 经由一对防 倒灌二极管连接,因此可以同时连接这两个 MicrosUSB 接口使用,而不必担心电流倒灌问题。

开发板两侧接口有 5V 标识的,约 4.4V 可供取电,同时也可作为 5V 的输入端口。开发板两侧接口有 3.3V 标识的,约 3.3V 可供取电,同时也可以作为 3.3V 的输入端口。

2.3 LED

SK68XXMINI-HS 是由 P&A (OPSC) 公司推出的智能可寻址 SMD LED 芯片,形状为 3535 (3.5×3.7×1.95 mm),功率 0.1/0.2W, MSL 5a 级别。集成 HD107S IC 驱动电路,支持数字 RGB 控制(24 位灰度,每通道 256 级),工作电压 DC 5V, PWM 刷新率 >26kHz,数据传输速率 >30MHz。采用单线串行协议(DIN/DOUT),兼容 WS2812/SK6812,支持级联(最多 1024 像素)。

每个 LED 接收 24 位 RGB 数据(8位红 +8位绿 +8位盛), 共 256 级灰度。RZ 编码(Return-to-Zero), 即高电平表示"1", 短高电平+低电平表示"0"。

- 逻辑"1": 高电平 ~0.8μs + 低电平 ~0.4μs (总周期 ~1.2μs)
- 逻辑"0": 高电平 ~0.4μs + 低电平 ~0.8μs
- 复位信号: 低电平持续 >50μs (RESET), 表示一帧数据结束。

这颗 LED 可以级联,如灯带场景使用(本开发板是单颗)。第一颗 LED 接收前 24 位数据,锁存为自己颜色。剩余数据通过 DOUT 引脚 转发给下一颗。所有 LED 串联,数据像"接力"一样传递。

MCU 输出一段控制代码,经过第一个 LED 时取第一组 24bit 数据转为色彩显示,然后输出剩余所有数据,以此类推控制一串 LED。

	ı		r	eset cod			reset	code ı
	Data	a refresh cy	cle 1——		——Data refresh cycle 2——			
D1	first 24 bit	second 24 blt	third 24 bit		first 24 bit	second 24 blt	third 24 bit	
D2		second 24 blt	third 24 bit			second 24 blt	third 24 bit	
D3			third 24 bit				third 24 bit	
D4								

2.4 RESET (EN)

芯片使能/复位引脚。低电平有效,拉低 >50µs 触发复位。

2.5 BOOT (GPIO0)

启动模式选择引脚。上电时采样电平决定 ROM 启动方式。

模式	引脚电平 (上电时)	启动行为
SPI Boot(正常运行)	高电平(按键保持松开状	从 SPI Flash 启动用户固件 (默认)
	态)	
Download Boot(下载模	低电平(按键保持按下状	进入 USB/UART 下载模式,等待 esptool.py
式)	态)	烧录
保留/调试	其他	特殊用途 (不常用)

进入正常运行的条件是 RESET 上升沿,或者系统上电时 BOOT 为高电平,对于本开发板来说就是不做任何操作。

进入下载模式的条件是 RESET 上升沿时 BOOT 为低电平,鉴于按键松开为高电平,按下为低电平。所以手动下载时,需要按键配合

- 1. 按下 RESET 和 BOOT 按键,均为低电平
- 2. 松开 RESET,保持 BOOT 按下状态,等待一定时间,MS 级
- 3. 松开 BOOT,全部为高电平

2.6 UART

自动下载功能,其一对关键的输入引脚是 DTS 和 RTS,均由 CP2102 芯片提供,ESP32 之固件通

过芯片的串口引脚进行通信下载。

板载有自动下载电路(CP2102 + 晶体管),通过 DTR 和 RTS 引脚控制 CHIP_PU(RESET)和 BOOT(GPIO0),模拟与手动按键相同的下载时序。下图是部分原理图,CHIP_PU 和 GPIO0 均通过电阻上拉至 VCC,我们列出 DTR 与 RTS 配合输入和 CHIP PU(RESET)与 GPIO0 输出的映射表为

DTR	RTS	CHIP_PU (RESET)	BOOT(GPIO0)
1	1	1	1
0	0	1	1
1	0	0	1
0	1	1	0

CP2102 除了负责串口固件下载,还可单独作为串口调试端口,在代码端通过类似"printf"等打印输出命令执行串口的打印指令。

2.7 USB

ESP32-S3 支持 USB OTG (On-The-Go),是其 USB 功能中的核心亮点,允许芯片在主机 (Host)和设备 (Device)两种角色间动态切换,无需外挂 USB 控制器芯片,即可实现 U 盘读写、键盘/鼠标输入、串口通信、充电检测 等高级功能。

内置即插即用的 USB 串口下载功能,无需外部 USB-to-UART 芯片(如 CP2102),即可实现高速串口通信、固件下载、调试输出。其内置 USB 2.0 全速控制器(12 Mbps),支持 CDC-ACM(虚拟串口)和 JTAG 调试,极大简化开发板设计。

引脚	功能	备注

GPIO19	USB D-	必须连接 USB 数据线
GPIO20	USB D+	必须连接 USB 数据线
VBUS	5V 检测	自动检测 USB 插入
GND	地	共地

与 2.6 传统的 UART 串口下载和调试的对比

项目	USB CDC(ESP32-S3)	UART+CP2102
芯片需求	无需外挂	需要 CP2102
引脚占用	2 个 (D+/D-)	2 个 (D+/D-) +电源
最高速率	3Mbps	2Mbps
下载方式	插入即用	需按键或自动电路
驱动兼容	需要 inf(Win7)	通用
成本	更低	更高

三、应用

3.1 AI 视觉识别

ESP32-S3 是 Espressif 首款带有向量加速指令的芯片,能够在本地执行轻量级神经网络模型,因此非常适合做人脸识别、手势检测或物体识别等任务。搭配 OV2640、OV5640 等摄像头模块,它可以在边缘侧快速识别人脸、手势或运动目标,并通过 Wi-Fi 将结果上传到云端,常用于门禁系统、智能考勤、家庭安防摄像头等。

3.2 语音唤醒与智能音频

凭借 I'S 音频接口、PDM 麦克风支持和 AI 指令加速, ESP32-S3 能够在本地完成语音唤醒和关键词识别。它可以作为智能语音助手的核心,识别如"打开灯"或"播放音乐"等指令;也能作为 BLE/Wi-Fi 音频终端,在无线音箱或语音控制面板中实现实时语音交互。

3.3 图形界面与人机交互设备

凭借丰富的 GPIO 与 LCD 接口支持, ESP32-S3 能驱动彩色显示屏与触控面板, 运行基于 LVGL 的轻量级图形界面。它常被用作智能家电控制面板、便携终端、3D 打印机屏幕控制器等设备的主控芯片, 提供流畅、低功耗的图形交互体验。

3.4 无线物联网与边缘网关

集成 Wi-Fi 与 BLE 双模无线通信能力,使 ESP32-S3 成为理想的 IoT 中枢节点。它可以将多个蓝牙传感器的数据汇聚后,通过 Wi-Fi 上传至云平台,也能作为家庭自动化或工业监控系统的边缘网关,连接温湿度、光照、气体等各种传感器,构建可靠的无线监控网络。

四、原理图与 PCB 布线

五、编程指南

5.1 Hello World

这段代码是 ESP-IDF 官方"Hello World"示例程序的主函数 app_main(),用于验证 ESP32/ESP32-S3 等芯片的基本运行环境。

5.1.1 代码总览

```
* SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-License-Identifier: CC0-1.0
#include <stdio.h>
#include <inttypes.h>
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp chip info.h"
#include "esp flash.h"
#include "esp_system.h"
void app main(void)
   printf("Hello world!\n");
   /* Print chip information */
   esp chip info t chip info;
   uint32 t flash size;
   esp chip info(&chip info);
   printf("This is %s chip with %d CPU core(s), %s%s%s%s,",
           CONFIG IDF TARGET,
           chip_info.cores,
            (chip info.features & CHIP FEATURE WIFI BGN)? "WiFi/": "",
           (chip info.features & CHIP FEATURE BT)? "BT": "",
           (chip info.features & CHIP FEATURE BLE)? "BLE": "",
            (chip info.features & CHIP FEATURE IEEE802154)?", 802.15.4 (Zigbee/Thread)": "");
   unsigned major rev = chip info.revision / 100;
   unsigned minor rev = chip info.revision % 100;
   printf("silicon revision v%d.%d, ", major rev, minor rev);
   if(esp_flash_get_size(NULL, &flash_size) != ESP_OK) {
        printf("Get flash size failed");
```

5.1.2 代码简析

功能	函数代码	注解
主体	void app_main(void)	ESP-IDF 中, app_main()
结构	1 - 1	是程序的入口函数(相
		当于传统 C 程序的
		main())。RTOS 启动后
		会自动创建一个任务来
		运行 app_main()。
打印	printf("Hello world!\n")	打印 "Hello world!",测
欢迎		试串口输出是否正常。
信息		
获取	esp_chip_info_t chip_info;	esp_chip_info_t 是结构体
芯片	uint32_t flash_size;	类型,保存芯片核心
信息	esp_chip_info(&chip_info);	数、支持特性(Wi-Fi、
		BT、BLE 等)
		esp_chip_info(&chip_info)
		调用 SDK 函数获取当
		前芯片的详细信息。
打印	printf("This is %s chip with %d CPU core(s), %s%s%s%s, ",	根据 chip_info.features
芯片	CONFIG_IDF_TARGET,	打印出当前芯片的功能
信息	chip_info.cores,	
	(chip_info.features & CHIP_FEATURE_WIFI_BGN) ?	
	"WiFi/": "",	
	(chip_info.features & CHIP_FEATURE_BT)? "BT": "",	
	(chip_info.features & CHIP_FEATURE_BLE) ? "BLE" : "",	

		1
	(chip_info.features & CHIP_FEATURE_IEEE802154)? ",	
	802.15.4 (Zigbee/Thread)": "");	
打印	unsigned major_rev = chip_info.revision / 100;	解析芯片版本号
版本	unsigned minor_rev = chip_info.revision % 100;	
号	printf("silicon revision v%d.%d, ", major_rev, minor_rev);	
读取	if(esp_flash_get_size(NULL, &flash_size) != ESP_OK) {	esp_flash_get_size(NULL,
Flash	printf("Get flash size failed");	&flash_size) 读取 Flash
容量	return;	大小 (以字节为单位)
	}	若失败则打印错误并退
		出。
打印	printf("%" PRIu32 "MB %s flash\n", flash size / (uint32 t)(1024 *	输出 flash 的容量和类
Flash	1024),	型:
信息	(chip info.features & CHIP FEATURE EMB FLASH)?	"embedded" 表示片上
	"embedded" : "external");	flash
		"external" 表示外挂
		flash
打印	printf("Minimum free heap size: %" PRIu32 " bytes\n",	打印当前最小空闲堆大
堆内	esp get minimum free heap size());	小,用于检测内存是否
存状		充足。
态		
倒计	for (int $i = 10$; $i \ge 0$; $i - i$) {	每秒打印一次倒计时
时并	printf("Restarting in %d seconds\n", i);	vTaskDelay() 是
重启	vTaskDelay(1000 / portTICK_PERIOD_MS);	FreeRTOS 的延时函数
]}	倒计时结束后刷新输出
	printf("Restarting now.\n");	缓冲区(fflush)
	fflush(stdout);	调用 esp restart() 复位
	esp restart();	芯片

六、联系我们

若需任何帮助,请邮件联系我们: info@fukunlab.com

样品购买: 淘宝店铺-字微电子

产品介绍: