

N-63-4-3

CATALOGED BY DDC
AS AD No. 410050

EXAMINATION OF AN INVENTORY MODEL
INCORPORATING PROBABILITIES OF OBSOLESCENCE

E. W. Barankin and J. Denny

Statistical Laboratory, University of California, Berkeley,
ONR 18 Technical Report to the Office of Naval Research
Prepared under Contract Nonr-222(43) (NR 042-036)

This is a working paper. Comments and suggestions are invited

This paper may be reproduced in whole or in part
for any purpose of the United States Government.

410050

EXAMINATION OF AN INVENTORY MODEL
INCORPORATING PROBABILITIES OF OBSOLESCENCE

E.W. BARANKIN and J. DENNY

University of California, Berkeley

1. Introduction and description of the models. This paper is devoted to the numerical study of two models of the inventory problem. The first model is called the ordinary model. The second is called the obsolescence model, and describes an extension of the ordinary model in which the items in the inventory may become obsolescence at any stage. "Obsolescence" will mean that the item in question is no longer to be used and the stock on hand is to be disposed of. It will be seen that the ordinary model is a special case of the obsolescence model.

The intention of this piece of work is the modest one of providing an explicit comparison, in one particular case, of optimal inventory policies with and without the presence of obsolescence probabilities. Additional numerical studies will lend further insight into our obsolescence model, but above all, analytic studies are needed.

In Section 2 we set up the recursion relation for the ordinary model, and specify numerically the constants and component cost functions. In Section 3 we do the corresponding work for the obsolescence model, introducing there a specific probability distribution of time of obsolescence. The solutions of the problems of finding the optimal policies and optimum total cost functions in these two models are presented in Section 4.

On both models the same number N of time periods is fixed (N will be taken as 5 in our numerical work). These periods will be designated as J_1, J_2, \dots, J_N , and the convention will be adopted that period N is the earliest in time, period $N - 1$ the succeeding period and period 1 the last period. Thus, the pertinent time diagram is as follows, if we label the inventory points from N to 0 with increasing time:

FIGURE I

The ordinary N -period model begins a period J_N with a primal stock of items in the inventory. Denote by x_N the size of the primal stock, which may be any real number in general but may be assumed to be nonnegative for this discussion. The primal stock can be increased by $y_N - x_N$ units where $y_N \geq x_N$. The quantity of item in the inventory after ordering, namely y_N , is called the starting stock for period N . During period N there will be a demand for ξ_N units and it will be assumed that the demand, which may be zero, always occurs after any replenishment $y_N - x_N$ to the primal stock x_N . For the following period, J_{N-1} , there will be a (possibly vanishing) left over stock from J_N , called the initial stock for period J_{N-1} , which will equal $y_N - \xi_N$, if this quantity is ≥ 0 . But this quantity may be negative, and

if so it will represent a shortage in the preceding period. If indeed $y_N - \xi_N$ is negative, it will be assumed that any additional items obtained to replenish the initial stock in period J_{N-1} will first be consigned to the $-(y_N - \xi_N)$ unfilled units of demand from the preceding period. The starting stock y_{N-1} for period J_{N-1} will be the initial stock $y_N - \xi_N$ plus $y_{N-1} - (y_N - \xi_N)$, the amount by which the inventory is increased in period J_{N-1} . This procedure continues to period J_1 where the initial stock is $y_2 - \xi_2$, the remainder from period 2 and where the starting stock y_1 is initial stock $y_2 - \xi_2$ plus $y_1 - (y_2 - \xi_2)$, the replenishment to the inventory. If items remain in the inventory after the demand in period 1, i.e., if $y_1 - \xi_1 > 0$, the remainder will be sold for salvage.

There are various costs associated with the models. The cost of ordering quantities of the item to augment the primal and starting stocks is called the ordering cost. For both the regular model and the obsolescence model the ordering cost will consist of the cost of the items ordered plus a cost for placing the order, the latter being called the setup cost. The cost of failing to have an inventory at a fixed period large enough to meet the demand of that period is called the penalty cost. The cost of having a surplus at the end of a period after the demand of that period is called the holding cost. These costs also appear in the same fashion in the ordinary and obsolescence models. Salvage cost, which is a negative cost, is, in the ordinary model, the value of the remaining items if any at the end of period 1. This definition of salvage cost for the ordinary model will be modified for the obsolescence model. Finally, there is a discount factor.

On both the ordinary and obsolescence models the demands in the successive periods are assumed to be independent and to be identically distributed according to a known probability distribution. Demand is nonnegative.

The obsolescence model for N periods begins initially like the ordinary model. The primal stock x_N is increased to the starting stock y_N and subsequently there is a nonnegative demand ξ_N . After the demand ξ_N in period J_N but before the beginning of period J_{N-1} , obsolescence may occur according to some known probability. When this occurs, any remaining items are sold for salvage and no further orders or demands occur--the process stops. If obsolescence does not occur, then at the beginning of period J_{N-1} the initial stock $y_N - \xi_N$ is increased to the starting stock y_{N-1} . After the demand ξ_{N-1} in period J_{N-1} but before the beginning of period J_{N-2} obsolescence may occur with a certain probability. If obsolescence does occur here, then any remaining goods are sold for salvage. And so on, similarly.

It is clear from the above that salvage cost enters directly in each period in which the probability of obsolescence is not zero. When all probabilities of obsolescence are zero except for period 1, the obsolescence model becomes the ordinary model.

The component cost functions and the distribution of demand being known, the inventory problem is then to find an ordering policy for the N periods which will minimize the total expected discounted cost (but see Section 3). In the ordinary and obsolescence models the "optimal" policies are of the (s, S) type.

2. The recursion relation for the ordinary model. Let H_n denote the total discounted cost function for the n -period case, $n = 1, 2, \dots$. The total cost sustained will depend on the primal stock, x_n , the successive demands in the n periods, $\xi_n, \xi_{n-1}, \dots, \xi_1$, and the several starting stocks, y_n, y_{n-1}, \dots, y_1 . (As usual, the "initial stock," x_k , at t_k is the stock level resulting at the end of period J_{k+1} , before stock-replenishment at t_k , and the "starting stock," a_{j_k} , at t_k is the stock level at the beginning of J_k , after stock-replenishment at t_k ; thus, $y_k - x_k$ is the amount ordered for stock-replenishment at t_k .) Hence, the dependence of H_n is explicitly represented by $H_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; y_n, y_{n-1}, \dots, y_1)$.

If C denotes the replenishment cost function and l denotes the holding-shortage cost function--which two functions are the same for all periods--then evidently we have

$$(2.1) \quad H_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; y_n, y_{n-1}, \dots, y_1) = C(y_n - x_n) + l(y_n - \xi_n) + \alpha H_{n-1}(y_n - \xi_n; \xi_{n-1}, \xi_{n-2}, \dots, \xi_1; y_{n-1}, y_{n-2}, \dots, y_1)$$

for $n = 2, 3, \dots$

where α is the discount factor. For every period J_a , $k = 1, 2, \dots, n$, the functions C and l are given by

$$(2.2) \quad C(z) = C_0 \cdot z + \begin{cases} K, & \text{if } z > 0 \\ 0, & \text{if } z = 0 \end{cases},$$

$$(2.3) \quad l(z) = \begin{cases} h \cdot z & \text{for } z \geq 0, \\ p \cdot (-z) & \text{for } z < 0, \end{cases}$$

where C_0 , h and p are constant unit costs, and K is the setup cost for ordering.

The function H_1 , the total cost function for the temporally last period, J_1 , is determined with the assumption of disposal of left over items for a specified salvage value. If w denotes the salvage gain function, then we have

$$(2.4) \quad H_1(x_1; \xi_1; y_1) = C(y_1 - x_1) + l(y_1 - \xi_1) - w(y_1 - \xi_1).$$

We take the function w to be characterized by a constant salvage value per unit of left over item, say w_0 ; thus, w is given by

$$(2.5) \quad w(z) = \begin{cases} w_0 \cdot z, & z \geq 0, \\ 0, & z < 0. \end{cases}$$

Now (as usual) we consider the y_1, y_2, \dots, y_n in (2.1) replaced by functions $Y_1(x_1), Y_2(x_2), \dots, Y_n(x_n)$ of the respective x_k , these functions to be determined according to an optimal principle, and thereby constituting the optimal policy. If we make this replacement, and for brevity set

$$(2.6) \quad \begin{aligned} \mathcal{Y}_n &= (Y_n, Y_{n-1}, \dots, Y_1), \\ H_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \mathcal{Y}_n) &= H_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; Y_n(x_n), \\ &\quad Y_{n-1}(x_{n-1}), \dots, Y_1(x_1)), \end{aligned}$$

then from (2.1) we get--on regarding the ξ_k as random variables--

$$(2.7) \quad \mathcal{E} H_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; y_n) = \mathcal{E} [C(Y_n(x_n) - x_n)] + \mathcal{E} [1(Y_n(x_n) - \xi_n)] + \mathcal{E}^{\xi_n} \left\{ \mathcal{E}^{\xi_n} [H_{n-1}(Y_n(x_n) - \xi_n; \xi_{n-1}, \xi_{n-2}, \dots, \xi_1; y_{n-1})] \right\}$$

where \mathcal{E} denotes expectation, and \mathcal{E}^{ξ_n} denotes conditional expectation given ξ_n .

The optimum principle is that (2.7) shall be minimized by suitable choice of y_n . If we denote this minimum by $C_n(x_n)$, then the customary argument gives, from (2.7),

$$(2.8) \quad C_n(x_n) = \min_{y \geq x_n} \left\{ \mathcal{E} [C(y - x_n)] + \mathcal{E} [1(y - \xi_n)] + \alpha \mathcal{E} [C_{n-1}(y - \xi_n)] \right\}$$

for $n = 2, 3, \dots$

and the minimizing value of y in (2.8) is the value of the optimal component function $Y_n(x_n)$.

The determination of $C_1(x_1)$ comes from (2.4); we find

$$(2.9) \quad C_1(x_1) = \min_{y \geq x_1} \left\{ \mathcal{E} [C(y - x_1)] + \mathcal{E} [1(y - \xi_1)] - \mathcal{E} [w(y - \xi_1)] \right\}$$

Together, (2.8) and (2.9) enable us to determine, successively for $n = 1, 2, \dots$, the optimal component functions $Y_k(x_k)$ and the optimal expected cost functions $C_k(x_k)$.

In our case at hand we are concerned with a five-period interval, and therefore we are interested in (2.9) and in (2.8) for $n = 2, 3, 4$ and 5.

In the present numerical study we specialize to the following values for the constants characterizing our total cost function:

$$(2.10) \quad \left\{ \begin{array}{ll} C_0 = \text{replenishment cost per unit of item} & = \frac{5}{6} \\ K = \text{set-up cost for ordering} & = 1 \\ h = \text{holding cost per unit of item} & = \frac{1}{2} \\ p = \text{penalty cost per unit of item} & = 6 \\ w_0 = \text{salvage value per unit of item} & = \frac{1}{3} \\ \alpha = \text{discount factor} & = 1 \end{array} \right.$$

and we take the demands in the several periods to be independent and identically distributed, with density function ϕ given by

$$(2.11) \quad \phi(\xi) = \begin{cases} e^{-\xi}, & \xi \geq 0 \\ 0, & \xi < 0. \end{cases}$$

We then have

$$(2.12) \quad E[C(y - x)] = C(y - x) = \frac{5}{6}(y - x) + I_x(y)$$

where

$$(2.13) \quad I_x(y) = \begin{cases} 1 & \text{if } y > x \\ 0 & \text{if } y \leq x, \end{cases}$$

and

$$(2.14) \quad E[1(y-\xi_k)] = \begin{cases} \frac{1}{2} \int_0^y (y-\xi) e^{-\xi} d\xi + 6 \int_y^\infty (\xi-y) e^{-\xi} d\xi, & y > 0, \\ 6 \int_0^\infty (\xi-y) e^{-\xi} d\xi, & y \leq 0 \\ \frac{1}{2} (-1 + y + 13e^{-y}), & y > 0, \\ 6(1 - y), & y \leq 0, \end{cases} \quad (\text{any } k)$$

and

$$(2.15) \quad \sum [c_{n-1}(y-\xi_n)] = \int_0^\infty c_{n-1}(y-\xi) e^{-\xi} d\xi,$$

and finally,

$$(2.16) \quad \begin{aligned} E[w(y-\xi_1)] &= \begin{cases} \frac{1}{3} \int_0^y (y-\xi) e^{-\xi} d\xi, & y > 0, \\ 0, & y \leq 0, \end{cases} \\ &= \begin{cases} \frac{1}{3}(-1 + y + e^{-y}), & y > 0, \\ 0, & y \leq 0. \end{cases} \end{aligned}$$

Inserting these evaluations into (2.9) we get

$$(2.17) \quad c_1(x) = \min_{y \geq x} \left[\frac{5}{6} (y-x) + I_x(y) + \begin{cases} \frac{1}{6}(-1 + y + 37e^{-y}), & y > 0 \\ 6(1-y), & y \leq 0 \end{cases} \right]$$

and inserting them into (2.8) gives

$$(2.18) \quad \begin{aligned} c_n(x) &= \min_{y \geq x} \left[\frac{5}{6} (y-x) + I_x(y) + \begin{cases} \frac{1}{2}(-1+y+13e^{-y}), & y > 0 \\ 6(1-y), & y \leq 0 \end{cases} \right] \\ &\quad + \int_0^\infty c_{n-1}(y-\xi) e^{-\xi} d\xi \quad . \end{aligned}$$

With (2.17) we may now determine the optimum policy component y_1 and the optimum expected cost function c_1 . Then, iteratively, with (2.18) we determine $y_2, c_2, \dots, y_5, c_5$. By well-known arguments it follows that the optimum policy is an (s, S) -policy in each period. In Section 4 we give the results of our calculations, and we have there tabulated the optimal s_k and S_k , $k = 1, 2, \dots, 5$.

3. The recursion relation for the obsolescence model. Let N denote the number of periods in which we are interested. This is specifically, in our present study, the number 5. For $n = 1, 2, \dots, N$, let π_n denote the probability that obsolescence occurs in the interval J_n . The latter eventualities are disjoint, by the nature of obsolescence. Furthermore since our inventory process comes to an end in any case after period J_1 , we can consider the definition of obsolescence to be such that obsolescence certainly occurs in J_1 if it does not occur before. (Or, equivalently, we may be given the datum that obsolescence, priorly defined, certainly occurs within N periods, and thereby N is defined.) Thus, we have

$$(3.1) \quad \sum_{n=1}^N \pi_n = 1.$$

Let ω be a variable denoting the index of the period in which obsolescence occurs. For $n = 1, 2, \dots, N$, let \hat{H}_n denote the total discounted (to the inventory point n) cost function for the periods J_n, J_{n-1}, \dots, J_1 . This function depends on the variables described in Section 2, but as well on the variable ω . And indeed the value of $\hat{H}_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; y_n, y_{n-1}, \dots, y_1; \omega)$ is determined by the values of $x_n, \xi_n, \xi_{n-1}, \dots, \xi_\omega, y_n, y_{n-1}, \dots, y_\omega$ only.

The functions C , l and w , and the discount factor α are the same as in the ordinary model. Recalling that when obsolescence occurs in a particular period, any left-over quantity of the item is sold for salvage, we see that in the present case the relation between \hat{H}_n and \hat{H}_{n-1} is of the following form:

$$(3.2) \quad \hat{H}_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; y_n, y_{n-1}, \dots, y_1; \omega) =$$

$$= \begin{cases} 0, & \text{if } \omega > n, \\ c(y_n - x_n) + l(y_n - \xi_n) + \begin{cases} -w(y_n - \xi_n), & \text{if } \omega = n, \\ \alpha \hat{H}_{n-1}(y_n - \xi_n; \xi_{n-1}, \\ \xi_{n-2}, \dots, \xi_1; y_{n-1}, y_{n-2}, \dots, y_1; \omega), & \text{if } \omega \leq n-1. \end{cases} \end{cases}$$

for $n = 2, 3, \dots, N$

For $n = 1$, we have simply:

$$(3.3) \quad \hat{H}_1(x_1; \xi_1; y_1; \omega) = \begin{cases} 0, & \text{if } \omega > 1, \\ c(y_1 - x_1) + l(y_1 - \xi_1) - w(y_1 - \xi_1), & \text{if } \omega = 1. \end{cases}$$

Let us denote the policy functions--to be determined by an optimality principle--by $\hat{Y}_1(x_1), \hat{Y}_2(x_2), \dots, \hat{Y}_N(x_N)$, and set

$$(3.4) \quad \begin{cases} \hat{\gamma}_n = (\hat{Y}_n, \hat{Y}_{n-1}, \dots, \hat{Y}_1), \\ \hat{H}_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \hat{\gamma}_n; \omega) = \hat{H}_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \\ \quad \hat{Y}_n(x_n), \hat{Y}_{n-1}(x_{n-1}), \dots, \hat{Y}_1(x_1); \omega). \end{cases}$$

Now, for the present model the question presents itself whether the optimization principle should be to minimize, as is usual, the expectation

$$(3.5) \quad \mathcal{E} \hat{H}_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \hat{\gamma}_n; \omega)$$

for $n = 1, 2, \dots, N$, or alternatively, to minimize the conditional expectation

$$(3.6) \quad \mathcal{E} \left[\hat{H}_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \hat{Y}_n; \omega) \mid \omega \leq n \right]$$

for each n . On general grounds the latter principle seems the more pertinent, the argument being that optimality considerations for the periods J_n, J_{n-1}, \dots, J_1 ought not to give any positive weighting to eventualities which, because they entail obsolescence before the period J_n , involve no behavior within the periods J_n, J_{n-1}, \dots, J_1 . But in fact, in our specific model there is no difference between the two principles. This is so because the obsolescence probabilities π_k are fixed and the quantities which would get positive weighting under the first principle and not under the second are in fact all 0, so that the weighting is irrelevant. To see this more precisely, notice that by (3.2) and (3.3) we have, for all $n = 1, 2, \dots, N$, that $\hat{H}_n = 0$ for $\omega > n$, and therefore (looking on the ξ_k and ω as random variables)

$$\begin{aligned} (3.7) \quad \mathcal{E} \hat{H}_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \hat{Y}_n; \omega) &= \sum_{r=1}^N \pi_r \mathcal{E} \hat{H}_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \hat{Y}_n; r) \\ &= \sum_{r=1}^n \pi_r \mathcal{E} \hat{H}_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \hat{Y}_n; r) \\ &= \left(\sum_{k=1}^n \pi_k \right) \cdot \sum_{r=1}^n \frac{\pi_r}{\left(\sum_{k=1}^n \pi_k \right)} \mathcal{E} \hat{H}_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \hat{Y}_n; r) \\ &= \left(\sum_{k=1}^n \pi_k \right) \mathcal{E} [H_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \hat{Y}_n; \omega \mid \omega \leq n)] \end{aligned}$$

for $n = 1, 2, \dots, N$.

Thus, for each n , the expressions (3.5) and (3.6) differ only by a constant factor, and therefore the minimization of one is equivalent to the minimization of the other. (We are, of course, tacitly assuming in all our deliberations here that the π_k are suitably nonvanishing.)

Replacing the y_k by $\hat{Y}_k(x_k)$ in (3.2) and taking expectations, we get

$$(3.8) \quad \mathcal{E}^{\hat{H}_n}(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \hat{Y}_n; \omega) = (\sum_{k=1}^n \pi_k) \left\{ C(\hat{Y}_n(x_n) - x_n) + \mathcal{E}[1(\hat{Y}_n(x_n) - \xi_n)] \right\} - \pi_n \mathcal{E}[\omega(\hat{Y}_n(x_n) - \xi_n)] + \alpha \sum_{r=1}^{n-1} \pi_r \mathcal{E}^{\hat{H}_{n-1}}(\hat{Y}_n(x_n) - \xi_n; \xi_{n-1}, \xi_{n-2}, \dots, \xi_1; \hat{Y}_{n-1}; r),$$

$$\underline{n = 2, 3, \dots, N.}$$

This relation takes on a much more convenient form when expressed in terms of the conditional expectations (3.6). For brevity, let $\mathcal{E}^{(n)}$ denote the conditional expectation operator given $\omega \leq n$. Then, on dividing (3.8) through by $(\sum_{k=1}^n \pi_k)$ and utilizing (3.7)--both as it stands and with n replaced by $n - 1$ --we find that (3.8) is equivalently expressed as:

$$(3.9) \quad \mathcal{E}^{(n)} \hat{H}_n(x_n; \xi_n, \xi_{n-1}, \dots, \xi_1; \hat{Y}_n; \omega) = C(\hat{Y}_n(x_n) - x_n) + \mathcal{E}[1(\hat{Y}_n(x_n) - \xi_n)] - \mu_n \mathcal{E}[\omega(\hat{Y}_n(x_n) - \xi_n)] + \alpha(1 - \mu_n) \mathcal{E}^{(n-1)} \hat{H}_{n-1}(\hat{Y}_n(x_n) - \xi_n; \xi_{n-1}, \xi_{n-2}, \dots, \xi_1; \hat{Y}_{n-1}; \omega),$$

for $n = 2, 3, \dots, N,$

where

$$(3.10) \quad \mu_n \stackrel{\text{def}}{=} \frac{\pi_n}{\sum_{k=1}^n \pi_k} .$$

Then, if $\hat{C}_n(x)$ denotes the minimum of (3.9), we have:

$$(3.11) \quad \hat{C}_n(x) = \min_{y \geq x} \left\{ C(y-x) + \xi [l(y-\xi_n)] - \mu_n \xi [w(y-\xi_n)] + \alpha(1-\mu_n) \xi \hat{C}_{n-1}(y-\xi_n) \right\}$$

for $n = 2, 3, \dots, N$.

For $n = 1$, we obtain

$$(3.12) \quad \hat{C}_1(x) = \min_{y \geq x} \left\{ C(y-x) + \xi [l(y-\xi_1)] - \xi [w(y-\xi_1)] \right\} .$$

For each n , the minimizing y for a given x is the optimal policy value $\hat{Y}_n(x)$.

Substituting into (3.11) and (3.12) the detailed functions and constants as specified in Section 2, we get:

$$(3.13) \quad \hat{C}_1(x) = \min_{y \geq x} \left[\frac{5}{6}(y-x) + I_x(y) + \begin{cases} \frac{1}{6}(-1+y+37e^{-y}), & y > 0 \\ 6(1-y), & y \leq 0 \end{cases} \right]$$

(notice that \hat{C}_1 is identical with C_1 , given in (2.17)), and

$$(3.14) \quad \hat{C}_n(x) = \min_{y \geq x} \left[\frac{5}{6}(y-x) + I_x(y) + \begin{cases} \frac{1}{2}(-1+y+13e^{-y}) - \frac{\mu_n}{3}(-1+y+e^{-y}), & y > 0 \\ 6(1-y), & y \leq 0 \end{cases} \right] + (1-\mu_n) \int_0^\infty \hat{C}_{n-1}(y-\xi) e^{-\xi} d\xi .$$

We see that the form of the problem here is the same as in the case of the ordinary model, there being simply the changes in coefficients in the recursion relation (3.14) due to the μ_n . Again the optimal policy is of the (s, S) -type for each period, and in Section 4 we present the optimal s_k and S_k .

We shall carry out our numerical study for the set of values of the π_k as tabulated below; we tabulate also the μ_k and the quantities

(3.15) $\lambda_k \stackrel{\text{def}}{=} \sum_{n=k}^5 \pi_n = \text{probability that obsolescence occurs in one of the periods } J_5, J_4, \dots, J_k.$

TABLE I

k	π_k	μ_k	λ_k
1	$\frac{3}{8}$	1	1
2	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{5}{8}$
3	$\frac{1}{16}$	$\frac{1}{9}$	$\frac{1}{2}$
4	$\frac{1}{8}$	$\frac{2}{11}$	$\frac{7}{16}$
5	$\frac{5}{16}$	$\frac{5}{16}$	$\frac{5}{16}$

graphically, these quantities look as follows:

4. The computational results. The results of carrying out the minimizations in (2.17), (2.18) and in (3.13), (3.14) are the following:

ORDINARY MODEL

$$(s_1, s_1) = (0.67295, 1.81915)$$

$$c_1(x) = \begin{cases} 3.65249 - \frac{5}{6}x & x < 0.67295 \\ -\frac{1}{6} + \frac{1}{6}x + 6\frac{1}{6}e^{-x} & x \geq 0.67295 \end{cases}$$

$$(s_2, s_2) = (1.36731, 2.61030)$$

$$c_2(x) = \begin{cases} 6.03523 - \frac{5}{6}x & x < 1.36731 \\ -\frac{5}{6} + \frac{2}{3}x + 10.47669 e^{-x} + 6\frac{1}{6}xe^{-x} & x \geq 1.36731 \end{cases}$$

-17-

$$(s_3, s_3) = (1.52891, 3.06648)$$

$$8.52142 - \frac{5}{6}x \quad x < 1.52891$$

$$C_3(x) = \begin{aligned} -2 + \frac{7}{6}x + 11.20586 e^{-x} + 10.47669 e^{-x}x \\ + 3.08333 e^{-x}x^2 \quad x \geq 1.52891 \end{aligned}$$

$$(s_4, s_4) = (1.51388, 3.34470)$$

$$11.04205 - \frac{5}{6}x \quad x < 1.51388$$

$$C_4(x) = \begin{aligned} 8.85475 - \frac{1}{3}x + 6\frac{1}{2} e^{-x} \quad 1.51388 \leq x < 1.52891 \\ - \frac{32}{3} + 1\frac{2}{3}x + 17.10608 e^{-x} + 11.20586 e^{-x}x \\ + 5.23834 e^{-x}x^2 + 1.02776 e^{-x}x^3 \\ 1.52891 \leq x \end{aligned}$$

$$(s_5, s_5) = (1.42970, 3.77837)$$

$$13.64619 - \frac{5}{6}x \quad x < 1.42970$$

$$11.37537 - \frac{1}{3}x + 6\frac{1}{2} e^{-x} \quad 1.42970 \leq x < 1.5.388$$

$$8.68808 + \frac{1}{6}x + 5.4319 e^{-x}$$

$$C_5(x) = \begin{aligned} + 6\frac{1}{2} e^{-x}x \quad 1.51388 \leq x < 1.52891 \\ - \frac{5}{6} + 2\frac{1}{3}x \quad 21.35778 e^{-x} + 17.10608 e^{-x}x \\ + 5.60293 e^{-x}x^2 + 1.74609 e^{-x}x^3 \\ + 0.25694 e^{-x}x^4 \quad 1.52891 \leq x \end{aligned}$$

OBSOLESCENCE MODEL

$$(\hat{s}_1, \hat{s}_1) = (0.67295, 1.81915)$$

$$\hat{c}_1(x) = \begin{cases} 3.65249 - \frac{5}{6}x & x < 0.67295 \\ -\frac{1}{6} + \frac{1}{5}x + 6\frac{1}{6}e^{-x} & x \geq 0.67295 \end{cases}$$

$$(\hat{s}_2, \hat{s}_2) = (1.19718, 2.4649)$$

$$\hat{c}_2(x) = \begin{cases} 5.49071 - \frac{5}{6}x & x < 1.19718 \\ -\frac{2}{3} + \frac{13}{24}x + 9.39913e^{-x} + 4.625e^{-x}x & x \geq 1.19718 \end{cases}$$

$$(\hat{s}_3, \hat{s}_3) = (1.4024, 2.8852)$$

$$\hat{c}_3(x) = \begin{cases} 7.49881 - \frac{5}{6}x & x < 1.4024 \\ -1.53702 + 0.94443x + 10.83690e^{-x} \\ + 8.35474e^{-x}x + 2.05553e^{-x}x^2 & x \geq 1.4024 \end{cases}$$

$$(\hat{s}_4, \hat{s}_4) = (1.26515, 3.0228)$$

$$\hat{c}_4(x) = \begin{cases} 8.94219 - \frac{5}{6}x & x < 1.26515 \\ 6.37780 - 0.24270x + 6.43936e^{-x} \\ -2.46966 + 1.21183x + 13.40940e^{-x} \\ + 8.86653e^{-x}x + 3.41784e^{-x}x^2 \\ + 0.56059e^{-x}x^3 & x \geq 1.26515 \end{cases}$$

-19-

$$(\hat{s}_5, \hat{s}_5) = (1.11243, 2.82610)$$

$$9.15756 - \frac{5}{6}x \quad x < 1.11243$$

$$6.5284 + 0.65624x + 6.39585 e^{-x}$$

$$1.11243 \leq x < 1.26515$$

$$\begin{aligned}\hat{c}_5(x) = & 4.15577 + 1.062304 + 6.66088e^{-x} \\ & + 4.42706 e^{-x} x \quad 1.26515 \leq x < 1.4024 \\ & -2.92635 + 2.06232x + 14.50318 e^{-x} \\ & + 0.21396 e^{-x} x + 3.04787e^{-x} x^2 \quad x > 1.4024 \\ & + 0.78525 e^{-x} x^3 + 0.09635 e^{-x} x^4\end{aligned}$$

We summarize the critical numbers in the following table and graph:

TABLE II

k	Ordinary Model		Obsolescence Model	
1	0.67295	1.81915	0.67295	1.81915
2	1.36731	2.61030	1.19718	2.46490
3	1.52891	3.06648	1.40240	2.88520
4	1.51388	3.34470	1.26515	3.02280
5	1.42970	3.77837	1.11243	2.82610

NOTATION

1) Ordinary model

s_k : —————

s_k : - - - - -

2) Obsolescence model

\hat{s}_k :

\hat{s}_k : x x x x

FIGURE III

The domination of \hat{S}_k by S_k and \hat{s}_k by s_k for $k = 2, 3, 4, 5$ reflect the possibility of termination of the obsolescence model before period 1 and hence the need for smaller inventories. The agreement of the costs functions $C_1(x)$ and $\hat{C}_1(x)$ was noted in (3.13) and is the reason for the agreement of \hat{S}_1 with S_1 and of \hat{s}_1 with s_1 . The concave properties of the s_k -curve and the \hat{s}_k -curve are a consequence of the fact the ordering cost function $C(\cdot)$ is not convex (see (2.2)). The concavity of the \hat{S}_k -curve is reflected in part by the relatively high conditional probability of obsolescence in period 5 (see Table I).

UNIVERSITY OF CALIFORNIA - STATISTICAL LABORATORY
Distribution List for Unclassified Technical Reports

Contract Nonr-222(43)
Project (NR 042-036)

Head, Logistics and Mathematical Statistics Branch Office of Naval Research Washington 25, D.C.	Dr. John W. Cell Department of Mathematics North Carolina State College 3 Raleigh, North Carolina	1
Commanding Officer Office of Naval Research Branch Office Navy No. 100 Fleet Post Office New York, New York	Professor Herman Chernoff Applied Mathematics and Statistics Lab. Stanford University 2 Stanford, California	1
ASTIA Document Service Center Arlington Hall Station Arlington 12, Virginia	Professor W. G. Cochran Department of Statistics 5 Harvard University Cambridge, Massachusetts	1
Office of Technical Services Department of Commerce Washington 25, D.C.	Dr. C. Clark Cockerham 1 Institute of Statistics North Carolina State College Raleigh, North Carolina	1
Technical Information Officer Naval Research Laboratory Washington 25, D.C.	6 Professor Cyrus Derman Dept. of Industrial Engineering Columbia University New York 27, New York	1
Professor T. W. Anderson Department of Mathematical Statistics Columbia University New York 27, New York	Professor Benjamin Epstein 1 Applied Mathematics and Statistics Lab. Stanford University Stanford, California	1
Professor Z. W. Birnbaum Laboratory of Statistical Research Department of Mathematics University of Washington Seattle 5, Washington	Professor W. T. Federer 1 Cornell University Department of Plant Breeding Biometrics Units Ithaca, New York	1
Professor A. H. Bowker Applied Mathematics and Statistics Lab. Stanford University Stanford, California	Dr. R. J. Freund 1 Department of Statistics and Statistical Lab. Virginia Polytechnic Institute Blacksburg, Virginia	1
Professor Ralph A. Bradley Department of Statistics Florida State University Tallahassee, Florida		

Professor H. P. Goode Dept. of Industrial and Engineering Administration Cornell University Ithaca, New York	1	Professor H. Rubin Department of Statistics Michigan State University East Lansing, Michigan	1
Professor W. Hirsch Institute of Mathematical Sciences New York University New York 3, New York	1	Professor I. R. Savage School of Business Administration University of Minnesota Minneapolis, Minnesota	1
Professor Harold Hotelling Associate Director Institute of Statistics University of North Carolina Chapel Hill, North Carolina	1	Professor L. J. Savage Statistical Research Laboratory Chicago University Chicago 37, Illinois	1
Professor Oscar Kempthorne Statistics Laboratory Iowa State College Ames, Iowa	1	Professor W. L. Smith Statistics Department University of North Carolina Chapel Hill, North Carolina	1
Professor Gerald J. Lieberman Applied Mathematics and Statistics Lab. Stanford University Stanford, California	1	Professor Frank Spitzer Department of Mathematics University of Minnesota Minneapolis, Minnesota	1
Dr. Arthur E. Mace Battelle Memorial Institute 505 King Avenue Columbus 1, Ohio	1	Dr. H. Teicher Statistical Laboratory Engineering Administration Bldg. Purdue University Lafayette, Indiana	1
Professor J. Neyman Department of Statistics University of California Berkeley 4, California	1	Professor M. B. Wilk Statistics Center Rutgers-The State University New Brunswick, New Jersey	1
Dr. F. Oberhettinger Department of Mathematics Oregon State College Corvallis, Oregon	1	Professor S. S. Wilks Department of Mathematics Princeton University Princeton, New Jersey	1
Professor Herbert Robbins Mathematical Statistics Dept. Fayerweather Hall Columbia University New York 27, New York	1	Professor J. Wolfowitz Department of Mathematics Lincoln Hall Cornell University Ithaca, New York	1
Professor Murray Rosenblatt Department of Mathematics Brown University Providence 12, Rhode Island	1		

BASIC DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS

(LOGISTICS)

*Head, Logistics and Mathematical Statistics Branch Office of Naval Research Washington 25, D. C.	3	Professor G. L. Bach Carnegie Institute of Technology Planning and Control of Industrial Operations Schenley Park Pittsburgh 13, Pennsylvania	1
*Commanding Officer Office of Naval Research Branch Office Navy No. 100 Fleet Post Office New York, New York	2	Professor A. Charnes Mathematics Department The Technological Institute Northwestern University Evanston, Illinois	1
*ASTIA Document Service Center Arlington Hall Station Arlington 12, Virginia	10	Dr. David Gale Department of Mathematics Brown University Providence 12, Rhode Island	1
*Office of Technical Services Department of Commerce Washington 25, D. C.	1	Professor Warren M. Hirsch New York University 25 Waverly Place New York, New York	1
*Technical Information Officer Naval Research Laboratory Washington 25, D. C.	6	Dr. James R. Jackson Management Sciences Research Project University of California Los Angeles 24, California	1
Commanding Officer Office of Naval Research Branch Office 346 Broadway New York 13, New York Attn: J. Laderman	1	Professor Samuel Karlin Department of Mathematics Stanford University Stanford, California	1
Commanding Officer Office of Naval Research Branch Office 1030 East Green Street Pasadena 1, California Attn: Dr. A. R. Laufer	1	Dr. C. E. Lemke Mason Laboratory Department of Mathematics Rensselaer Polytechnic Institute Troy, New York	1
Professor Russell Ackoff Operations Research Group Case Institute of Technology Cleveland 6, Ohio	1	Dr. W. H. Marlow Logistics Research Project The George Washington University 707 22nd Street, N. W. Washington 7, D. C.	1
Professor Kenneth J. Arrow Serra House Applied Mathematics and Statistics Lab. Stanford University Stanford, California	1		

*Names with asterisk also appear on ONR list.

Professor Oskar Morgenstern Economics Research Project Princeton University 92 A Nassau Street Princeton, New Jersey	Dr. George Suzuki Navy Management Office Navy Department Washington 25, D. C.	1
Dr. R. Radner Department of Economics University of California Berkeley, California	LCDR Carl Dughi Ordnance Supply Office Mechanicsburg, Pennsylvania	1
Professor Stanley Reiter Department of Economics Purdue University Lafayette, Indiana	1 Dr. Edward Berman Operations Evaluation Group Chief of Naval Operations Navy Department Washington 25, D. C.	1
Professor A. W. Tucker Department of Mathematics Princeton University Princeton, New Jersey	1 Mrs. Marianne Smith Office of the Director of Logistics Plans U. S. Air Force	1
*Professor J. Wolfowitz Department of Mathematics Lincoln Hall Cornell University Ithaca, New York	1 Pentagon Washington 25, D. C.	1
Professor L. Hurwicz School of Business Administration University of Minnesota Minneapolis 14, Minnesota	Mr. Bernard Rosenman Frankford Arsenal Philadelphia, Pennsylvania	1
Mr. R. Simpson Code W3 Bureau of Supplies and Accounts Navy Department Washington 25, D. C.	1 Mr. Edward E. Oppenheim Office, Assistant Secretary of Defense (Supply and Logistics) Department of Defense Washington 25, D. C.	1
LCDR H. F. Mills, SC, USN Ships Parts Control Center Mechanicsburg, Pennsylvania	1 Mr. Robert Brown Apt. 106H Eagle Heights Madison 5, Wisconsin	1
Mr. Robert Fickes Aviation Supply Office 700 Robbins Avenue Philadelphia 11, Pennsylvania	1 Professor Robert Solow Massachusetts Institute of Technology Cambridge, Massachusetts	1
Mrs. Jane Olmer Electronics Supply Office Great Lakes, Illinois	1 Professor R. M. Thrall University of Michigan Ann Arbor, Michigan	1
	1 Professor Max Woodbury School of Engineering New York University New York, New York	1

Professor Herbert Galliher Army Ordnance Research Project Massachusetts Institute of Technology Cambridge, Massachusetts	1	Professor Howard Raiffa Harvard University Boston 63, Massachusetts	1
Professor Herbert Simon Carnegie Institute of Technology Pittsburgh, Pennsylvania	1	Professor Ronald W. Shephard University of California Berkeley, California	1
Mr. Peter Winters Carnegie Institute of Technology Pittsburgh, Pennsylvania	1	Captain Charles Stein, SC, USN (Ret) United Research, Inc. 808 Memorial Drive Cambridge, Massachusetts	1
Professor T. M. Whitin School of Business Administration University of California Berkeley 4, California	1	Dr. Francis Dresch Stanford Research Institute Menlo Park, California	1
Dr. Michel L. Balinski Department of Mathematics Princeton University Princeton, New Jersey	1	Dr. Tibor Fabian Lybrand, Ross Bros. and Montgomery 2 Broadway New York 4, New York	1
Professor William J. Baumol Princeton University Princeton, New Jersey	1	Dr. Alan J. Hoffman General Electric Company 570 Park Avenue New York 22, New York	1
Professor Martin J. Beckmann Brown University Providence, Rhode Island	1	Mr. Robert G. Brown Arthur D. Little, Inc. 35 Acorn Park Cambridge 40, Massachusetts	1
Dr. C. B. Tompkins University of California Berkeley, California	1	Dr. Charles Zwick RAND Corporation Santa Monica, California	1
Professor Herbert Solomon Department of Statistics Stanford University Palo Alto, California	1	Dr. Ralph E. Gomory IEM Research Center Yorktown Heights, New York	
Professor William Feller Fine Hall, Department of Mathematics Princeton University Princeton, New Jersey	1	Dr. Richard Bellman RAND Corporation 1700 Main Street Santa Monica, California	1
Professor Merrill Flood University of Michigan 231 W. Engineering Bldg. Ann Arbor, Michigan	1	Director, Weapons System Evaluation Group Attn: Mr. Bernard Sabin Department of Defense Pentagon Washington 25, D. C.	

Chief, Ordnance Supply Analysis Agency Headquarters, Raritan Arsenal Metuchen, New Jersey	Operations Research Office Attn: Dr. Ellis Johnson Johns Hopkins University 1 6935 Arlington Road Bethesda 14, Maryland	1
Systems Research Group, Inc. 244 Mineola Blvd. Mineola, L. I., New York	The Mitre Corporation 1 P. O. Box 31 Lexington, Massachusetts	1
Corporation for Economic and Industry Research General Analysis Division 11753 Wilshire Blvd. Los Angeles 25, California	George Washington University Logistics Research Project 707 22nd Street, N. W. 1 Washington 7, D. C.	1
Technical Military Planning Operations General Electric Company Attn: Mr. Theodore Slattery Santa Barbara, California	Chief, Bureau of Supplies and Accounts Director, Advanced Logistics Research Division (Code W 3) 1 Navy Department Washington 25, D. C.	20
Planning Research Corporation 1333 Westwood Blvd. Los Angeles 24, California	1	
Stanford Research Institute Menlo Park, California	1	
MATHEMATICA Inc. 92 A Nassau Street Princeton, New Jersey	1	
United Research Incorporated 808 Memorial Drive Cambridge, Massachusetts	1	
Dunlap and Associates 429 Atlantic Street Stamford, Connecticut	1	
American Power Jet Company Attn: Dr. George Chernowitz 705 Grand Avenue Ridgefield, New Jersey	1	
Cowles Foundation for Research in Economics Yale University Box 2125 Yale Station New Haven, Connecticut	1	