Nuša Zidarič

supervisors:

Mark Aagaard, Guang Gong University of Waterloo

13.01.2017

- (L)FSR
 - what is a feedback shift register
 - properties of (L)FRS sequences
- LFSR in GAP
- WG stream ciphers
- WG in GAP
- Some WG-16 implementation details

Part I: (L)FSR

WHAT IS A FEEDBACK SHIFT REGISTER

n-stage FSR consists of 3 components:

- n memory units (stages)
- feedback function (in n variables)
- regular clock: with each step the register contents are shifted and a new value is computed

output sequence: $\underline{a} = \{a_k\} = a_0, a_1, \ldots$, where $a_i \in \mathcal{F}$

WHAT IS A FEEDBACK SHIFT REGISTER

feedback function = polynomial function in n variables

$$f: \mathcal{F}^n \to \mathcal{F}$$

$$f(x_0, x_1, \dots, x_{n-1}) = \sum_{i=1}^n c_{i_0 i_1 \dots i_{n-1}} x_0^{i_0} x_1^{i_1} \dots x_{n-1}^{i_{n-1}}$$

where the sum runs over all possible n-tuples $(i_0, i_1, \dots, i_{n-1}) \in \mathcal{F}^n$ and $c_t \in \mathcal{F} \forall t$

 $\mathcal{F} = \mathbb{F}_q$ (a finite field with q elements) where q=prime or prime power

- if q=2: $\mathcal{F}=\mathbb{F}_2$, f is boolean function , sequence is binary
- ullet otherwise: $\mathcal{F}=\mathbb{F}_q$, f is polynomial function over \mathbb{F}_q , sequence is q-ary

note: q-ary simply means having q possible values

example: for $q=2^m$ we need the shift register stages to be able to hold any of the q possible elements, meaning each stage consists of an m-bit register

note:
$$i_t \in \mathbb{F}_q = \{0, 1, \dots, q-1\} \to x_i^{i_t}$$
 and $x^q = x \ \forall x \in \mathbb{F}_q$

WHAT IS A FEEDBACK SHIFT REGISTER

feedback function
$$= f(x_0, x_1, \dots, x_{n-1}) = \sum c_{i_0 i_1 \dots i_{n-1}} x_0^{i_0} x_1^{i_1} \dots x_{n-1}^{i_{n-1}}$$

 $\mathcal{F} = \mathbb{F}_2$: how many boolean functions in n variables exist?

i_0	i_1	i_2	 i_{n-1}	monomial	corresp. c_t
0	0	0	 0	1	c_0
0	0	0	 1	x_{n-1}	c_1
1	1	0	 1	x_0x_1	
1	1	1	 1	$x_0x_1\ldots x_{n-1}$	$c_{2^{n}-1}$

- number of monomials $= 2^n$
- ullet of them has its own coefficient c_t
- $(c_0, c_1, \dots, c_{2^n-1}) \in \mathbb{F}_2^{2^n} \Rightarrow$ there are 2^{2^n} possible vectors \Rightarrow number of boolean functions $= 2^{2^n}$

 $\mathcal{F} = \mathbb{F}_q$: how many polynomial functions in n variables exist fro general case?

- number of monomials = q^n
- number of polynomial functions over $\mathbb{F}_q = q^{q^n}$

WHAT IS A FEEDBACK SHIFT REGISTER

degree of monomial = $\sum_{t=0}^{n-1} i_t$ for monomial $x_0^{i_0} x_1^{i_1} \dots x_{n-1}^{i_{n-1}}$

note: for boolean functions over \mathbb{F}_2 = number of variables present in monomial

			q=2 - Boolean functions		q eq 2 - Polynomial functions			
	deg.	general		n = 3	general	n = 3		
	d	n	nr of mon. monomials		n	nr of mon.	monomials	
const	0	$\binom{n}{0} = 1$	$\binom{3}{0} = 1$	с	$\binom{n}{0} = 1$	$\binom{3}{0} = 1$	с	
lin	1	$\binom{n}{1} = n$	$\binom{3}{1} = 3$	x_0, x_1, x_2	$\binom{n}{1} = n$	$\binom{3}{1} = 3$	x_0, x_1, x_2	
quad.	2	$\binom{n}{2}$	$\binom{3}{2} = 3$	x_0x_1, x_0x_2, x_1x_2	$\binom{n+2-1}{2}$	$\binom{4}{2} = 6$	x_0x_1, x_0x_2, x_1x_2	
		` ´					x_0^2, x_1^2, x_2^2	
cubic	3	$\binom{n}{3}$	$\binom{3}{3} = 1$	$x_0x_1x_2$	$\binom{n+3-1}{3}$	$\binom{5}{3} = 10$	$x_0x_1x_2, x_0^2x_1, x_0x_1^2$	
							$\begin{array}{c} x_0^2 x_2, x_0 x_2^2, x_1^2 x_2 \\ x_1 x_2^2, x_0^3, x_1^3, x_2^3 \end{array}$	
quad.	4	-	-	=	$\binom{n+4-1}{4}$	$\binom{6}{4} = 15$	$x_0^2 x_1 x_2, x_0 x_1^2 x_2,$	
							$x_0 x_1 x_2^2, x_0^2 x_1^2, x_0^2 x_2^2,$	
							$x_1^2 x_2^2, x_0^3 x_1, x_0^3 x_2, x_1^3 x_2, x_0 x_1^3, x_1 x_2^3, x_0^3 x_1^3, x_1 x_2^3, x_0^3 x_0^3, x_1^4, x_1^4$	
							$x_0 x_2^3, x_0^4, x_1^4, x_2^4$	

 $\mathbf{degree} \ \mathbf{of} \ \mathbf{function} = \max_{\forall \text{monomials in } f} \{ \mathbf{degree} \ \mathbf{of} \ \mathbf{monomial} \}$

examples of linear, quadratic and cubic functions:

$$f(x_0, x_1, x_2) = x_0 + x_1$$

$$f(x_0, x_1, x_2) = x_0 x_1 + x_2$$

 $f(x_0, x_1, x_2, x_3) = x_0 + x_1 + x_1 x_2 x_3 + 1$

WHAT IS A FEEDBACK SHIFT REGISTER

degree of the feedback function:

- linear \to LFSR: n possible linear monomials, 2 possible constants for each $\Rightarrow 2^n$ possible LFSRs over \mathbb{F}_2
- nonliner \to NLFSR: n=4 stages over \mathbb{F}_{2^4} : even if limited to monomials of max degree 4, there are $\binom{7}{4}=35$ such monomials, and for q=16 that amounts to $16^{35}=2^{140}$ different Boolean functions

WHAT IS A FEEDBACK SHIFT REGISTER

state = contents of the FSR at a given moment, as vector: $(a_0, a_1, \ldots, a_{n-1}) \in \mathcal{F}^n$

- initial state $(a_0, a_1, \ldots, a_{n-1})$
- state transition: $(a_0,a_1,\ldots,a_{n-1}) o (a_1,a_2,\ldots,a_n)$ where $a_n=f(a_0,a_1,\ldots,a_{n-1})$

recursive relation:
$$a_{k+n} = f(a_k, a_{k+1}, ..., a_{k+n-1}), k = 0, 1, ...$$

any consecutive n elements of the FSR sequence represent a state :

$$\underline{a} = \overbrace{a_0, a_1, \dots a_{n-1}, a_n, \dots, a_{k, a_{k+1}, \dots, a_{k+n-1}, a_{k+n}, \dots}}$$

state diagram = directed graph with states as vertices and transitions as edges

state
$$0 \rightarrow \text{state } 1 \rightarrow \ldots \rightarrow \text{state } k \rightarrow \text{state } k+1 \rightarrow \ldots$$

output sequence a is completely defined by the feedback and the initial state

WHAT IS A FEEDBACK SHIFT REGISTER

example 1: reducible polynomial

PROPERTIES OF (L)FSR SEQUENCES

FSR sequence \underline{a} is

- ultimately periodic: diff. states have the same successor (previous example)
- periodic: diff. states always have diff successors (no branches)
- least period = smallest $r \ni : a_{i+r} = a_i \forall i \ge u$ previous example: u=2, r=3
- if u = 0: \underline{a} is periodic with r: $r \ni : a_{i+r} = a_i \forall i$
- \bullet any q-ary FSR sequence is ultimately periodic with period $r \leq q^n = \mathsf{number}$ of different states
 - note: if the LFSR (homogeneous) reaches the all 0 state it can no longer exit this state \Rightarrow max period of LFSR = q^n-1
- a sequence that has maximum period is called max. length sequence or m-sequence

PROPERTIES OF (L)FSR SEQUENCES

example 2: m-sequence

PROPERTIES OF (L)FSR SEQUENCES

characteristic polynomials of LFSR's

 $\begin{array}{ccc} \text{feedback} & \text{characteristic} \\ \text{function} & \text{polynomial} \\ f(x_0, x_1, \dots, x_{n-1}) = \sum_{i=0}^{n-1} c_i x_i & \Leftrightarrow & f(x) = x^n + \sum_{i=0}^{n-1} c_i x^i \end{array}$

period of the output sequence is completely determined by the period of the characteristic polynomial:

period(f(x)) = r if r is the smallest integer for which $f(x)|x^r + 1$

minimal polynomial is the characteristic polynomial with smallest **degree** (yielding the shortest LFSR), which generates the sequence \underline{a} and period of the sequence equals the **period** of its minimal polynomial:

period of sequence
$$\underline{a} = \mathsf{period}(m(x))$$

If f(x)= characteristic polynomial of \underline{a} and m(x)= minimal polynomial of the same sequence, then m(x)|f(x). Note that an LFSR with char. poly x^r+1 will generate a sequence with period r.

If a characteristic polynomial can be decomposed to irreducible factors as $f(x) = \prod_{i \in I} f_i(x)$ then $\operatorname{period}(f(x)) = \operatorname{lcm}\{\operatorname{period}(f_i); \forall i \in I\}.$

PROPERTIES OF (L)FSR SEQUENCES

example 3: reducible polynomial

PROPERTIES OF (L)FSR SEQUENCES

example 3 - continued: the LFSR belonging to a factor of the reducible polynomial producing the same sequence

PROPERTIES OF (L)FSR SEQUENCES

If sequence \underline{a} is ultimately periodic with (u, r):

$$m(x) = x^u m_1(x)$$
, where $m_1(0) \neq 0$ and $m_1(x) | x^r + 1$

then \underline{a} can be generated with an LFSR. Linear span of \underline{a} is defined as $\deg(m(x))$

recall example 1:
$$f(x) = x^2(x^2 + x + 1)$$
 where $u = 2, r = 3$

what can we learn from the polynomial?

- f(x) is primitive \Rightarrow one long cycle: m-sequence (period q^n-1) recall example 2
- f(x) is irreducible \Rightarrow distinct cycles with period $\leq q^n-1$ example 4
- f(x) is reducible \Rightarrow distinct cycles with period $\leq q^n-1$ are found in each graph examples 1,3

PROPERTIES OF (L)FSR SEQUENCES

example 4: irreducible polynomial

Part III: LFSR in GAP

LFSR in GAP

LFSR(args)

creating the LFSR: 3 different constructors, versions with optional output-tap selection (marked with [])

```
LFSR(K, charpol [, tap])
LFSR(K, fieldpol, charpol[, tap]) K must be a prime field
LFSR(p, m, n [, tap])
```

- inputs
 - K underlying field
 - charpol LFSR defining polynomial
 - fieldpol defining polynomial of the extension field (must be irreducible)
 - p characteristic
 - m degree of extension , ie. degree of fieldpol
 - n length of LFSR , ie. degree of charpol
 - tap OPTIONAL the output tap, changed to the default S₀ if the number specified falls out of the LFSR
- outputs: an empty LFSR object with 3 components: init, state, numsteps

LFSR in GAP

LFSR(args)

```
LFSR(K, charpol [, tap])
LFSR(K, fieldpol, charpol[, tap]) K must be a prime field
LFSR(P, M, N [, tap])
```

returns an empty LFSR object with:

three components:

- init FFE vector of length $n = \deg(charpol)$ to store initial state (with indices $n-1,\ldots,0$)
- state FFE vector of length $n = \deg(charpol)$ to store current state (with indices $n-1,\ldots,0$)
- numsteps the number of steps (initialized to -1, set to 0 when loaded with call to LoadLFSR, incremented by 1 with each step StepLFSR)

components can be accessed as obj_name!.component_name

LFSR in GAP

LFSR(args)

```
LFSR(K, charpol [, tap])
LFSR(K, fieldpol, charpol[, tap]) K must be a prime field
LFSR(p, m, n [, tap])
```

attributes set at the time of constructor call:

- FieldPoly to store the defining polynomial fieldpol of the underlying field
- CharPoly to store the LFSR polynomial *charpol*
- FeedbackVec the *charpol* without its leading coefficient, stored as a FFE vector of length $n=\deg(charpol)$ to speed up the StepLFSR computation (with indices $n-1,\ldots,0$, ie the first element of this vector corresponds to the coefficient of the term x^{n-1})
- ullet Length the length of the LFSR (which is equal to $n=\deg(charpol)$)
- ullet OutputTap the list of LFSR stages that are outputting the sequences (default is S₀, but user can choose different stage or even more then one stage, in this case the OutputTap just stores the user-defined taps)

properties:

• IsLinearFeedback - true if charpol is a polynomial in one indeterminate

LFSR in GAP

Other attributes and properties:

InternalStateSize(lfsr)
Attribute: size of the LFSR in bits ("length \times width")

IsPeriodic(Ifsr)

Property: true if the LFSR poly (charpol) has a nonzero constant term.

Period (Ifsr)

Attribute: returns period of LFSR poly (charpol)

IsMaxSeqLFSR(Ifsr)

Property: true if the LFSR outputs an m-sequence (LFSR poly (charpol) is primitive)

methods:

Display/View/Print/PrintAll(Ifsr)

Different detail on the created LFSR:

- Display/View show the CharPoly and wheter or not the LFSR is empty
- Print is the same as Display/View if LFSR is empty, otherwise it also shows the values
 of the three components init, state, numsteps.
- PrintAll shows the characteristic, the underlying field, the values of the three components and the tap positions

NOTE: added Print/PrintAll([B],lfsr) with given basis B

LFSR in GAP

Functionality

- LoadLFSR(Ifsr, ist)
- StepLFSR(Ifsr [, elm])
- RunLFSR(Ifsr [, ist] [, num] [, pr])

Writing to a file

- WriteAllLFSR(output, [B,] Ifsr)
- WriteRunLFSR(output, [B,] Ifsr, ist, num)
- WriteRunLFSRTEX(output, [B,] Ifsr, ist, num)

Drawing functions

- Tikz_LFSR(output, Ifsr)
- Tikz_nLFSR(output, Ifsr)

LFSR in GAP

LoadLFSR(Ifsr, ist)

Loading the LFSR Ifsr with the initial state ist

- inputs
 - Ifsr an empty LFSR
 - ist a vector of the same length as LFSR, containing FFEs that must lie in the underlying field given by FieldPoly (with indices $n-1,\ldots,0$)
- outputs the first sequence element
- errors:

```
Error("initial state length doesnt match")
```

Error("initial state element at index i is not an element of the underlying field !!!")

LFSR in GAP

StepLFSR(Ifsr [, elm])

Perform one step the LFSR *lfsr*, ie. compute the new state and update the numsteps, then output the elements denoted by OutputTap.

- inputs
 - Ifsr a loaded LFSR
 - elm OPTIONAL a FFEs that must lie in the underlying field given by FieldPoly to break the linearity of the feedback
- outputs
 - seq the next sequence element (thats a FFE(or vector of FFEs) from the state(s) given by OutputTap)
- errors:

Error("the LFSR is NOT loaded !!!");

LFSR in GAP

RunLFSR(*Ifsr* [, *elm*][, *ist*] [, *num*] [, *pr*])

RunLFSR(Ifsr, num, pr) - run Ifsr for num steps with/without output

RunLFSR(Ifsr, num) - run Ifsr for num steps without output

RunLFSR(Ifsr, pr) - run Ifsr for threshold steps with/without output

linear versions with initial state: load then run (seq₀ is a part of the output sequence)

RunLFSR(Ifsr, ist, num, pr) - load with initial state ist and run Ifsr for num steps (output sequence will be num or threshold elements long) with/without output

RunLFSR(Ifsr, ist, num) - load with initial state ist and run Ifsr for num steps (output sequence will be num or threshold elements long) without output

RunLFSR(Ifsr, ist) - load with initial state ist and run Ifsr for threshold steps (output sequence will be threshold elements long) without output

LFSR in GAP

```
RunLFSR(Ifsr [, ist] [, num] [, pr])
```

 $\begin{aligned} & \textbf{RunLFSR}(\textit{lfsr, num, pr}) - \text{run } \textit{lfsr} \text{ for } \textit{num} \text{ steps with/without output} \\ & \textbf{RunLFSR}(\textit{lfsr, num}) - \text{run } \textit{lfsr} \text{ for } \textit{num} \text{ steps without output} \\ & \textbf{RunLFSR}(\textit{lfsr, pr}) - \text{run } \textit{lfsr} \text{ for threshold steps with/without output} \end{aligned}$

"nonlinear" versions: with an extra element added to feedback

RunLFSR(Ifsr, elm, num, pr) - run Ifsr for num steps, whereby the SAME element elm is added to the feedback at each step, with/without output

 $RunLFSR(\mathit{lfsr, elm, num})$ - run lfsr for num steps, whereby the SAME element elm is added to the feedback at each step, without output

"nonlinear" versions with initial state: load then run (seq_0 is a part of the output sequence)

RunLFSR(Ifsr , ist , elmvec , pr) - oad with initial state ist and run Ifsr for Length(elmvec) steps, whereby one element of elmvec is added to the feedback at each step (starting with elmvec[1]), with/without output

LFSR in GAP

RunLFSR(Ifsr [, ist] [, num] [, pr])

- inputs
 - Ifsr LFSR
 - ist OPTIONAL initial state if we want to (re)load the LFSR first
 - num OPTIONAL number of steps
 - elm OPTIONAL a FFEs that must lie in the underlying field given by FieldPoly to break the linearity of the feedback - the SAME FFE is added at each step
 - elmvec OPTIONAL a list of FFEs that must lie in the underlying field given by FieldPoly to break the linearity of the feedback - different FFE is added at next step
 - pr OPTIONAL print switch
- outputs
 - sequence of length ≤ threshold
 - Length(OutputTap) = $1 \Rightarrow$ sequence of FFEs : seq_0 , seq_1 , seq_2 , ...
 - Length(OutputTap) = t \Rightarrow sequence of vectors, each of them with t FFEs : seq_0 , seq_1 , seq_2 , ..., where $seq_i = (seq_{i1}, ..., seq_{it})$
- notes: calling StepLFSR and LoadLFSR

LFSR in GAP

WriteAllLFSR(output, [B,] Ifsr)

writes the (some) details about the *Ifsr* to a file given by *output* (with/without basis B for representation of field elements)

```
example output:
```

```
LFSR over GF(2^1) defined by FieldPoly=x+Z(2)^0 given by CharPoly = x^7+x^6+x^5+x^4+Z(2)^0 with feedback coeff =[ 1, 1, 1, 0, 0, 0, 1 ] with initial state =[ 1, 0, 0, 1, 0, 1, 0 ] with current state =[ 0, 0, 0, 0, 1, 0, 1 ] after 19 steps with output from stages S_[ 0, 6 ]
```

LFSR in GAP

```
WriteRunLFSR(output, [B,] Ifsr, ist, num)
```

writes the run (num steps) of the Ifsr to a file given by output: it prints the characteristic polynomial followed by the stage indices and

output taps, and then each step in a new line, showing both, the internal sate and the output. At the end it writes the output sequence(s) of this LFSR run.

```
example output:
Empty LFSR given by CharPoly = x^7+x^6+x^5+x^4+Z(2)^0
[ 6,....,0 ] with taps [ 0, 6 ]
[ 1, 0, 0, 1, 0, 1, 0 ]
                              [0,1]
                              [1, 1]
[1, 1, 0, 0, 1, 0, 1]
                              [0,1]
[ 1, 1, 1, 0, 0, 1, 0 ]
                              [1,1]
[ 1, 1, 1, 1, 0, 0, 1 ]
[ 0, 1, 1, 1, 1, 0, 0 ]
                              [0, 0]
[ 0, 0, 1, 1, 1, 1, 0 ]
                              [0,0]
[ 1, 0, 0, 1, 1, 1, 1]
                              [1,1]
[ 0, 1, 0, 0, 1, 1, 1 ]
                              [1,0]
[ 0, 0, 1, 0, 0, 1, 1 ]
                              [1,0]
[0, 0, 0, 1, 0, 0, 1]
                              [1,0]
[ 1, 0, 0, 0, 1, 0, 0 ]
                              [0,1]
The whole sequences:
```

 $seq from S_0: 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1$ seq from S_6: 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0

LFSR in GAP

WriteRunLFSRTEX(output, [B,] Ifsr, ist, num) latex equivalent of WriteRunLFSR ??, which produces the following output directly copied into this file :

step	state						sequence		
num	S_6	S_5	\mathcal{S}_4	S_3	\mathcal{S}_2	S_1	\mathcal{S}_0	\mathcal{S}_0	\mathcal{S}_6
0	1	0	0	1	0	1	0	0	1
1	1	1	0	0	1	0	1	1	1
2	1	1	1	0	0	1	0	0	1
3	1	1	1	1	0	0	1	1	1
4	0	1	1	1	1	0	0	0	0
5	0	0	1	1	1	1	0	0	0
6	1	0	0	1	1	1	1	1	1
7	0	1	0	0	1	1	1	1	0
8	0	0	1	0	0	1	1	1	0
9	0	0	0	1	0	0	1	1	0

Table: LFSR with feedback $x^7 + x^6 + x^5 + x^4 + Z(2)^0$ over GF(2) !!!

The whole sequence(s): seq from S_0 : 0101001111 seq from S_6 : 1111001000

LFSR in GAP

Tikz_LFSR(output, Ifsr)
Tikz_nLFSR(output, Ifsr)

creates a Tikz figure of the LFSR *lfsr* to a file given by *output*: the only difference between the two figures is that **Tikz_nLFSR** shows an element *e* added to the feedback.

LFSR in GAP

Figure: LFSR with feedback polynomial $f(x) = y^3 + y^2 + Z(2^2)^2 * y + Z(2^2)$

Part IV: WG stream ciphers

STRUCTURE OF WG-16

the LFSR with feedback polynomial

$$\ell(x) = x^{32} + x^{25} + x^{16} + x^7 + \omega^{2743}$$

• the WG transformation:

$$\mathsf{WGT-16}(X^d) = \mathrm{Tr}(\mathsf{WGP-16}(X^d)),$$

where $X \in \mathbb{F}_{2^{16}}$ is the LFSR state S_{31} and WGP- $16(X^d): \mathbb{F}_{2^{16}} \to \mathbb{F}_{2^{16}}$ the WG-16 permutation with decimation value d=1057

- the FSM controlling its operation: the cipher operates in three phases
 - key/IV loading phase (load)
 - initialization phase (init)
 - running phase (run)

- ⇒ LFSR input: DIN
- \Rightarrow LFSR input: w = f XOR WGP
 - WGP=WGP-16 (X^d) , f= LFSR feedback
 - \Rightarrow LFSR input: f

$$k_i = WGT-16(X^d) = Tr(WGP - 16(X^d))$$

STRUCTURE OF WG-16

WG transformation - details:

$$Y = X^d + 1 \tag{1}$$

$$q(Y) = Y + Y^{2^{11}+1} + Y^{2^{6}+2^{11}+1} + Y^{2^{6}-2^{11}+1} + Y^{2^{6}+2^{11}-1}$$
(2)

$$WGP-16(X^{d}) = q(Y) + 1$$
 (3)

$$WGT-16(X^d) = Tr(WGP-16(X^d)), \tag{4}$$

from HW perspective: equations (2) and (1) \Rightarrow

 \Rightarrow 9 multiplications and 2 inversions for one WGP-16(X^d) !!!

$$q(Y) = Y \oplus_{16} (Y^{2^{11}} \otimes Y) \oplus_{16} (Y^{2^{11}} \otimes Y^{2^{11}} \otimes Y^{2^{6}} \otimes Y) \oplus_{16} (Y^{2^{6}} \otimes Y^{-2^{11}} \otimes Y) \oplus_{16} (Y^{2^{11}} \otimes Y^{2^{6}} \otimes Y^{-1})$$
(5)

with $\underset{16}{\oplus}$ representing addition in $\mathbb{F}_{2^{16}}$ and $\underset{16}{\otimes}$ multiplication in $\mathbb{F}_{2^{16}}$

Decimation can be written as

$$X^{d} = X^{1057} = X^{2^{10}} \underset{16}{\otimes} X^{2^{5}} \underset{16}{\otimes} X \tag{6}$$

Both multiplication and inversion are quite demanding in \mathbb{F}_{216} , which makes the module WGP_T the most complex part of WG-16 ightarrow pipeline!

Part V: WG in GAP

WG in GAP

```
WG(args)
```

```
WG(K, fieldpol, LFSRpol[, tap] )
WG(K, fieldpol, LFSRpol, d[, tap] ) - if using decimated version
WG(F, LFSRpol[, tap] )
WG(F, LFSRpol, d[, tap] ) - if using decimated version
WG(p, n, l, d[, tap] ) - char, field, length of LFSR (degree of primitive poly), decimation
```

returns an empty WG object with three components: decimation, LFSRpoly, $OutTap \rightarrow$ everything that could change in the WG's lifetime is a component and sets the following:

- FieldPoly: attr
- IsNotMmod3: prop; WGm(wg, m): attr; WGk(wg, k): attr, 3k=1 mod m
- WGexponents: attr, stores them as a list for faster computation of permutation polynomial
- IsPrimitiveFeedback: prop
- WGI = Degree(Ifsrpol): attr

WG in GAP

WGlfsr(wg)

stores a component Ifsr := LFSR(K, f, I, tap) (calling LFSR contructor we have seen before), but also sets additional (WG specific) filters: SetWGexponents, SetWGdecimation, SetIsRunReady(wglfsr, IsLFSR(lfsr));

LoadWG(Ifsr, ist)): loads initial state ist into the LFSR (callin LoadLFSR)

StepWG(Ifsr [, ffe])): one step of LFSR (callin StepLFSR with or without ffe input)

WGP(ffe, dec, exponents)): using equations (2),(1) and (3) compute the WGP value of ffe

StepWGP(Ifsr): using equations (2),(1) and (3) compute the next WGP value but DONT clock LFSR (this value is then used to call StepWG), also NOT calling the WGP value, but copy-pasted code to save time?

WGT(F, K, ffe, dec, exponents)): analogue to StepWGP, only that the trace is performed as well, again not clocked (instead call StepWG without input)

StepWGT(Ifsr): analogue to StepWGP, only that the trace is performed as well, again not clocked (instead call StepWG without input)

not yet implemented inside WG package, but "used": KiaWG, RunWG

Appendix 1: Some WG-16 implementation details

WGP_T module and different field constructions

- implementation of the LFSR is straightforward
- \bullet different constructions of $\mathbb{F}_{2^{16}}$ to optimize module WGP_T
- implementation of FSM depends on the particular WGP_T implementation

Finite field $\mathbb{F}_{2^{16}}$:

$$p(x) = x^{16} + x^5 + x^3 + x^2 + 1$$

- $\mathbb{F}_{2^{16}}$ as an extension of degree 16 over \mathbb{F}_2 \Rightarrow polynomial basis
 - ⇒ normal basis
- $\mathbb{F}_{2^{16}}$ as a tower of extensions over \mathbb{F}_2
 - $\Rightarrow \quad \mathbb{F}_{(((2^2)^2)^2)^2}$
 - \Rightarrow $\mathbb{F}_{(2^4)^4}$
 - $\Rightarrow \mathbb{F}_{(2^8)^2}$

pipelining the feedback

	total matrix	maximum row	XOR tree
	Hamming weight	Hamming weight	depth
ω^{2743}	110	11	4
ω^{22363}	118	9	4

Table: Hamming weights of the old constant term ω^{2743} and the new constant term ω^{22363}

$$\ell_1(x) = x^{32} + x^{25} + x^{16} + x^7 + \omega^{2743}$$

$$\ell_2(x) = x^{32} + x^{25} + x^{16} + x^7 + \omega^{22363}$$

$$\ell_3(x) = x^{32} + x^{25} + x^{17} + x^{16} + x^{14} + x^{13} + x^{11} + x^{10} + x^7 + \omega^{22363}$$

(a) LFSR with original (un-pipelined) feedback

(b) LFSR with pipelined feedback

(c) LFSR with feedback pipelined twice Figure: LFSR with original feedback and its pipelined versions