Contrôle TD 1

Nom: Prénom: Classe:

Exercice 1

Soient $(a, b) \in \mathbb{R}^2$; a < b. f et g deux fonctions continues sur [a, b] telles que f(a) = -g(b) et f(b) = -g(a). Montrer que : $\exists c \in [a, b], f(c) + g(c) = 0$

Soit ϕ la fonction définie sur [a, b] par $\phi(x) = f((x) + g(x))$.

 ϕ est continue comme somme de fonctions continues.

$$\phi(a)\phi(b) = (f((a) + g(a)))(f((b) + g(b))) = (f((a) - f(b)))(f((b) - f(a))) = -(f((a) - f(b)))^{2} \le 0$$

Donc d'après le TVI, $\exists c \in [a, b], \ \phi(c) = f(c) + g(c) = 0$

Exercice 2

Soient f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{4} (x^2 - x + 4)$ et (u_n) la suite définie par : $\begin{cases} u_0 = x \in \mathbb{R} \\ \forall n \in \mathbb{N} & u_{n+1} = f(u_n) \end{cases}$

a. Déterminer les valeurs de x pour les quelles la suite (u_n) est constante.

 (u_n) constante $\iff \forall n \in \mathbb{N}, \quad f(u_n) = u_n \iff f(x) = x$

$$f(x) = x \iff x^2 - x + 4 = 4x \iff x^2 - 5x + 4 = 0$$
 $\Delta = 25 - 16 = 9$ $x_1 = \frac{5 - 3}{2} = 1$ $x_2 = \frac{5 + 3}{2} = 4$

 (u_n) constante $\iff x \in \{1,4\}$

b. Établir le tableau de variations de f et montrer que l'intervalle $]4, +\infty[$ est stable par f.

$$f'(x) = \frac{1}{4}(2x - 1) = 0 \iff x = \frac{1}{2}$$

On établit le tableau de variation de f.

On etablit le tableau de variation de j.					
	$\frac{1}{2}$	1	4		$+\infty$
f'	+		+	+	
f	<u>15</u>	1	4-		→ +∞

 $f \text{ est strictement croissante sur }]4, +\infty[\;,\;\; f(4)=4 \;\; \text{et} \;\; \lim_{+\infty} f(x)=+\infty \;\; \text{ donc } f\left(]4, +\infty[\right)=]4, +\infty[.$

 $]4, +\infty[$ est stable par f.

c. On suppose que (u_n) converge vers $l, l \in \mathbb{R}$. Quelles sont les valeurs possibles de l? Justifiez votre réponse.

D'après le cours, si (u_n) est une suite récurrente vérifiant $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$ et si u_n converge, alors sa limite l est un point fixe de f: f(l) = l.

Donc $l \in \{1, 4\}$.

Exercice 3

a. Déterminer le développement limité à l'ordre 4 en 0 de $f(x) = \frac{1}{1+x}\cos(x)$.

$$\begin{split} \frac{1}{1+x} &= 1 - x + x^2 - x^3 + x^4 + o(x^4) \\ \cos(x) &= 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4) \\ f(x) &= \left(1 - x + x^2 - x^3 + x^4 + o(x^4)\right) \left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)\right) = 1 - x + x^2 - x^3 + x^4 - \frac{x^2}{2} + \frac{x^3}{2} - \frac{x^4}{2} + \frac{x^4}{24} + o(x^4) \\ \hline f(x) &= 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \frac{13x^4}{24} + o(x^4) \end{split}$$

Exercice 4

Déterminer l'ensemble des solutions de l'équation (E): (1+t)y' + 3y = 3 sur $]-1,+\infty[$.

Résolution de l'équation homogène : (E_0) : (1+t)y' + 3y = 0

$$\frac{b}{a} = \frac{3}{(1+t)} \quad \text{Sa primitive est}: \quad \int \frac{3}{(1+t)} \, \mathrm{d}t = 3\ln(1+t)$$
 Les solutions de (E_0) sont : $S_0 = \left\{ y_0 = ke^{-3\ln(1+t)} = \frac{k}{(1+t)^3}, \qquad k \in \mathbb{R} \right\}$

Solution particulière:

On remarque que si y=1, y'=0 et en remplaçant dans $(E): (1+t)\times 0+3=3$ $y_p=1$ est une solution particulière de (E).

L'ensemble des solutions de
$$(E)$$
 est : $S = \left\{ y = 1 + \frac{k}{(1+t)^3}, k \in \mathbb{R} \right\}$.