```
Name-Nilambari Mahajan
Roll-742
Assignment 5
PRN-202201040118
```

import pandas as pd import numpy as np import matplotlib.pyplot as plt from pandas import Series, DataFrame # Reading the tips.csv file df1=pd.read_csv('/content/tips.csv') df1.head()

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3 61	Female	No	Sun	Dinner	4

df1.tail()

	total_bill	tip	sex	smoker	day	time	size
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

df1.columns

Index(['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size'], dtype='object')

df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
Column Non-Null Count Dtype

#	COTUIIII	Non-Null Count	Dtype			
0	total_bill	244 non-null	float64			
1	tip	244 non-null	float64			
2	sex	244 non-null	object			
3	smoker	244 non-null	object			
4	day	244 non-null	object			
5	time	244 non-null	object			
6	size	244 non-null	int64			
dtvn	dtvnes: float64(2) int64(1) object(4)					

dtypes: float64(2), int64(1), object(4)
memory usage: 13.5+ KB

df1.describe()

	total_bill	tip	size
count	244.000000	244.000000	244.000000
mean	19.785943	2.998279	2.569672
std	8.902412	1.383638	0.951100
min	3.070000	1.000000	1.000000
25%	13.347500	2.000000	2.000000
50%	17.795000	2.900000	2.000000
75%	24.127500	3.562500	3.000000
max	50.810000	10.000000	6.000000

```
a=pd.DataFrame(df1['day'].value_counts())
a.reset_index(inplace=True)
plt.bar(a['index'],a['day'])
```

<BarContainer object of 4 artists>

plt.scatter(df1['total_bill'],df1['tip'])
plt.show()


```
plt.scatter(x='total_bill',y='tip',data=df1)
fig=plt.figure(figsize=(5,4))
ax=fig.add_axes([1,1,1,1])
ax.legend(labels=('sun','mon','tue'))
plt.show()
```


#Different types of Matplotlib Plots import matplotlib.pyplot as plt import pandas as pd # Reading the tips.csv file data = pd.read_csv('/content/tips.csv') # initializing the data x = data['day']
y = data['total_bill'] # plotting the data plt.bar(x, y) # Adding title to the plot plt.title("Tips Dataset") # Adding label on the y-axis plt.ylabel('Total Bill') # Adding label on the x-axis plt.xlabel('Day') plt.show()


```
import matplotlib.pyplot as plt
import pandas as pd
# initializing the data
x = data['day']
y = data['total_bill']
# plotting the data
plt.bar(x, y, color='green', edgecolor='blue',
linewidth=2)
# Adding title to the plot
```

plt.title("Tips Dataset")
Adding label on the y-axis
plt.ylabel('Total Bill')
Adding label on the x-axis
plt.xlabel('Day')
plt.show()

import matplotlib.pyplot as plt
import pandas as pd
initializing the data
x = data['total_bill']
plotting the data
plt.hist(x)
Adding title to the plot
plt.title("Tips Dataset")
Adding label on the y-axis
plt.ylabel('Frequency')
Adding label on the x-axis
plt.xlabel('Total Bill')
plt.show()


```
import matplotlib.pyplot as plt
import pandas as pd
# initializing the data
x = data['total_bill']
# plotting the data
plt.hist(x, bins=25, color='green', edgecolor='blue',
linestyle='--', alpha=0.5)
# Adding title to the plot
plt.title("Tips Dataset")
```

```
# Adding label on the y-axis
plt.ylabel('Frequency')
# Adding label on the x-axis
plt.xlabel('Total Bill')
plt.show()
```



```
import matplotlib.pyplot as plt
import pandas as pd
# initializing the data
x = data['day']
y = data['total_bill']
# plotting the data
plt.scatter(x, y)
# Adding title to the plot
plt.title("Tips Dataset")
# Adding label on the y-axis
plt.ylabel('Total Bill')
# Adding label on the x-axis
plt.xlabel('Day')
plt.show()
```



```
import matplotlib.pyplot as plt
import pandas as pd
# initializing the data
x = data['day']
y = data['total_bill']
# plotting the data
plt.scatter(x, y, c=data['size'], s=data['total_bill'],
marker='D', alpha=0.5)
# Adding title to the plot
```

plt.title("Tips Dataset")
Adding label on the y-axis
plt.ylabel('Total Bill')
Adding label on the x-axis
plt.xlabel('Day')
plt.show()

import matplotlib.pyplot as plt
import pandas as pd
initializing the data
cars = ['AUDI', 'BMW', 'FORD',
'TESLA', 'JAGUAR',]
data = [23, 10, 35, 15, 12]
plotting the data
plt.pie(data, labels=cars)
Adding title to the plot
plt.title("Car data")
plt.show()

Car data


```
import matplotlib.pyplot as plt
import pandas as pd
# initializing the data
cars = ['AUDI', 'BMW', 'FORD',
'TESLA', 'JAGUAR',]
data = [23, 13, 35, 15, 12]
explode = [0.1, 0.5, 0, 0, 0]
colors = ( "orange", "cyan", "yellow",
"grey", "green",)
# plotting the data
plt.pie(data, labels=cars, explode=explode, autopct='%1.2f%%',
colors=colors, shadow=True)
plt.show()
```

BMW