Cursul 11

Valori și vectori proprii pentru matrice simetrice. Forme pătratice. Descompunerea SVD a unei matrice

11.1 Valori și vectori proprii pentru matrice simetrice. Descompunerea ortogonală a unei matrice simetrice

Reamintim că o matrice pătratică $M \in \mathbb{R}^{n \times n}$ cu proprietatea că $M^T = M$ se numește matrice simetrică.

În machine learning matricele simetrice studiate sunt cel mai adesea matrice obținute dintr-o matrice de date $A \in \mathbb{R}^{m \times n}$ care stochează pe coloane datele pentru n entități. Fiecare entitate are m caracteristici, numite atribute: $A = [X_1 | X_2 | \dots | X_n]$.

De exemplu, în diagnosticarea inteligentă sau în studiul eficacității unor medicamente în tratamentul unei boli, entitățile sunt n persoane. Pentru fiecare individ se înregistrează valorile pentru un set de m analize medicale (atribute ale indivizilor). Dacă după constituirea matricei de date se calculează versorul fiecărei coloane și se notează cu B matricea $B = [X_1^0|X_2^0|\dots|X_n^0]$, atunci matricea simetrică $M = B^TB$ are ca elemente $M_{ij} = \langle X_i^0, X_j^0 \rangle$. Cu alte cuvinte, un element M_{ij} indică similaritatea dintre indivizii i și j. Pe de alta parte, elementele N_{ij} ale matricei $N = BB^T$ indică similaritatea dintre atribute. Informația importantă codificată de matricea de date A se extrage din valorile proprii și vectorii proprii corespunzători ai matricei simetrice M, respectiv N.

Să studiem particularitățile matricelor simetrice comparativ cu matricele pătratice generale, nesimetrice.

În continuare vom presupune că \mathbb{R}^n este înzestrat cu produsul scalar standard $<\cdot,\cdot>$ și că elementele sale sunt vectori coloană. De asemenea, vom interpreta produsul Av, dintre o matrice pătratică $A\in\mathbb{R}^{n\times n}$ și un vector coloană $v\in\mathbb{R}^n$, ca fiind vectorul w ce reprezintă efectul unui operator liniar $L:\mathbb{R}^n\to\mathbb{R}^n$, a cărui matrice în baza canonică este A, asupra vectorului v. Deci, în loc de L(v) scriem Av.

Propoziția 11.1.1 Dacă $A \in \mathbb{R}^{n \times n}$ este o matrice pătratică, atunci are loc următoarea relație:

$$\langle Av, w \rangle = \langle v, A^T w \rangle, \ \forall \ v, w \in \mathbb{R}^n.$$
 (11.1)

Demonstrație: Exprimând produsul scalar standard astfel $\langle x,y \rangle = x^T y$, membrul stâng al egalității ce dorim să o demonstrăm devine

$$\langle Av, w \rangle = (Av)^T w = v^T A^T w,$$

iar cel drept este

$$\langle v, A^T w \rangle = v^T (A^T w) = v^T A^T w,$$

 $\mathrm{deci} < Av, w> = < v, A^Tw>.$

Observația 11.1.1 Dacă A este o matrice simetrică, atunci, din $A^T = A$ și relația (11.1), rezultă

$$\langle Av, w \rangle = \langle v, Aw \rangle, \ \forall \ v, w \in \mathbb{R}^n.$$
 (11.2)

Să enunțăm particularitățile valorilor și vectorilor proprii pentru matrice simetrice:

Propoziția 11.1.2 Polinomul caracteristic al unei matrice simetrice $A \in \mathbb{R}^{n \times n}$ are toate cele n rădăcini reale, adică o matrice simetrică are n valori proprii. În plus, dimensiunea fiecărui subspațiu propriu S_{λ} coincide cu ordinul de multiplicitate m_{λ} al valorii proprii corespunzătoare, adică $dim(S_{\lambda}) = m_{\lambda}$ pentru orice valoare proprie λ .

Propoziția 11.1.3 Pentru orice matrice simetrică $A \in \mathbb{R}^{n \times n}$, la valori proprii distincte corespund vectori proprii ortogonali.

Demonstrație: Fie $\lambda_1 \neq \lambda_2$ două valori proprii distincte ale matricei simetrice A şi $v_1 \in S_{\lambda_1}$, $v_2 \in S_{\lambda_2}$ doi vectori proprii corespunzători, adică $Av_1 = \lambda_1 v_1$, $Av_2 = \lambda_2 v_2$. Din proprietatea (11.2) a matricelor simetrice, avem că

$$< Av_1, v_2 > = < v_1, Av_2 >,$$

ceea ce este echivalent cu

$$<\lambda_1 v_1, v_2> = < v_1, \lambda_2 v_2>$$

sau

$$\lambda_1 < v_1, v_2 >= \lambda_2 < v_1, v_2 > \iff (\lambda_1 - \lambda_2) < v_1, v_2 >= 0.$$

Cum $\lambda_1 \neq \lambda_2$, rezultă că $\lambda_1 - \lambda_2 \neq 0$, deci $\langle v_1, v_2 \rangle = 0$, adică $v_1 \perp v_2$, căci v_1, v_2 sunt vectori proprii, deci **nenuli**.

Fie $A \in \mathbb{R}^{n \times n}$ o matrice simetrică.

• Polinomul caracteristic al lui A, $P_n(\lambda) = \det(A - \lambda I_n)$, având n valori proprii (simple sau multiple), admite descompunerea:

$$P_n(\lambda) = (-1)^n (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_s)^{k_s}, \quad k_1 + k_2 + \cdots + k_s = n,$$

unde λ_i este rădăcină de ordin $m_{\lambda_i} = k_i$, $i = \overline{1, s}$.

11.1. Matrice simetrice 3

• Pentru fiecare valoare proprie λ se determină subspațiul propriu corespunzător,

$$S_{\lambda} = \{ v \in \mathbb{R}^n \mid Av = \lambda v \Leftrightarrow (A - \lambda I_n)v = 0 \}.$$

• Deoarece dimensiunea subspațiului propriu S_{λ_i} este egală cu ordinul de multipliciate, k_i , al lui λ_i , determinăm o bază arbitrară \mathcal{B}_i în S_{λ_i} (care conține k_i vectori) și apoi o ortonormăm folosind procedeul Gram–Schmidt şi obţinem baza ortonormată \mathcal{B}'_i , $i = \overline{1, s}$.

• Dacă
$$\mathcal{B}_1' = \underbrace{(u_1, u_2, \dots, u_{k_1})}_{k_1 \text{ vectori}}, \, \mathcal{B}_2' = \underbrace{(u_{k_1+1}, \dots, u_{k_1+k_2})}_{k_2 \text{ vectori}}, \, \mathcal{B}_s' = \underbrace{(u_{n-k_s+1}, \dots, u_n)}_{k_s \text{ vectori}} \text{ sunt}$$
baze ortonormate în subspațiile proprii $S_{\lambda_1}, S_{\lambda_2}, \dots, S_{\lambda_s}$, concatenând aceste baze ortonormate

formate din vectori proprii ai matricei A, obținem o bază ortonormată în \mathbb{R}^n ,

$$\mathcal{B}' = (u_1, u_2, \dots, u_{k_1}, u_{k_1+1}, \dots, u_{k_1+k_2}, \dots, u_n),$$

deoarece vectorii din bazele \mathcal{B}'_i sunt ortonormați și pentru că la valori proprii distincte corespund vectori proprii ortogonali, adică orice vector din \mathcal{B}'_i este ortogonal pe orice vector din \mathcal{B}'_i , $i \neq j$.

- Notăm cu $T_{\mathcal{BB}'}$ matricea de trecere de la baza canonică $\mathcal{B}=B_c \dim \mathbb{R}^n$ la baza ortonormată \mathcal{B}' formată din vectori proprii ai matricei A. Aceasta este o matrice ortogonală, fiind matricea de trecere dintre două baze ortonormate, deci $T_{\mathcal{BB}'}^{-1} = T_{\mathcal{BB}'}^T$ (reamintim că inversa unei matrice ortogonale este chiar transpusa sa).
 - Notând cu D matricea diagonală a valorilor proprii,

$$D = \operatorname{diag}(\underbrace{\lambda_1, \dots, \lambda_1}_{k_1 \text{ ori}}, \underbrace{\lambda_2, \dots, \lambda_2}_{k_2 \text{ ori}}, \dots, \underbrace{\lambda_s, \dots, \lambda_s}_{k_s \text{ ori}}),$$

rezultă că matricea simetrică A este similară cu matricea diagonală D și, în plus, matricea Tdin relația de similaritate este matricea ortogonală $T_{\mathcal{BB}'}$, adică are loc relația:

$$A = T_{\mathcal{B}\mathcal{B}'}DT_{\mathcal{B}\mathcal{B}'}^{-1} = T_{\mathcal{B}\mathcal{B}'}DT_{\mathcal{B}\mathcal{B}'}^{T}.$$

Astfel, suntem conduși la unul din cele mai importante rezultate aplicative din algebra liniară și anume:

Propoziția 11.1.4 Dacă $A \in \mathbb{R}^{n \times n}$ este o matrice simetrică ce are valorile proprii λ_i cu ordinele de multipliciate k_i , $i = \overline{1, s}$, $k_1 + k_2 + \cdots + k_s = n$, atunci există o bază ortonormată \mathcal{B}' în \mathbb{R}^n formată din vectori proprii ai lui A și notând cu Q matricea de trecere de la baza canonică la baza \mathcal{B}' , matricea A este similară cu matricea

$$D = \operatorname{diag}(\underbrace{\lambda_1, \dots, \lambda_1}_{k_1 \text{ ori}}, \dots, \underbrace{\lambda_s, \dots, \lambda_s}_{k_s \text{ ori}}), \tag{11.3}$$

iar relația de similaritate este

$$A = QDQ^{T}. (11.4)$$

Definiția 11.1.1 Descompunerea unei matrice simetrice A în forma $A = QDQ^T$, unde D este matricea diagonală a valorilor proprii ale lui A și $Q=T_{\mathcal{BB}'}$ este o matrice ortogonală, se numește descompunere ortogonală.

Să ilustrăm această descompunere printr-un exemplu:

Exemplul 1. Să se determine valorile proprii și subspațiile proprii pentru matricea simetrică

$$A = \left[\begin{array}{rrr} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{array} \right].$$

Să se determine apoi câte o bază ortonormată în fiecare subspațiu propriu al lui A și o bază ortonormată în \mathbb{R}^3 formată din vectori proprii ai lui A. Să se scrie descompunerea ortogonală a matricei A.

- Valorile proprii ale lui A sunt $\lambda_{1,2} = 1, \lambda_3 = 7;$
- Subspațiile proprii corespunzătoare:

$$S_{\lambda=1} = \{ v = (x, y, z)^T : Av = 1v \Leftrightarrow (A - 1I_3)v = 0 \}.$$

Avem

$$(A - 1I_3)v = 0 \iff \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Rezolvând sistemul de mai sus, obținem

$$S_{\lambda=1} = \{ v = (-\alpha - \beta, \alpha, \beta)^T = \alpha (-1, 1, 0)^T + \beta (-1, 0, 1)^T : \alpha, \beta \in \mathbb{R} \}.$$

Bază în acest subspațiu este $\mathcal{B}_1 = (v_1 = (-1, 1, 0)^T, v_2 = (-1, 0, 1)^T)$. Evident că baza \mathcal{B}_1 nu este ortonormată. Aplicând procedeul Gram-Schmidt, obținem baza

$$\mathcal{B}'_1 = \left(q_1 = \frac{1}{\sqrt{2}}(-1, 1, 0)^T, q_2 = \frac{1}{\sqrt{6}}(-1, -1, 2)^T\right).$$

Pentru a determina subspațiul propriu $S_{\lambda=7}$ determinăm soluțiile sistemului

$$(A - 7I_3)v = 0 \iff \begin{bmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Alegem drept determinant principal determinantul constituit din elementele de intersecție ale liniilor 1,2 cu coloanele 1,2. Astfel, $z=\alpha$ este necunoscută secundară și obținem

$$S_{\lambda=7} = \{ v = \alpha(1, 1, 1)^T : \alpha \in \mathbb{R} \}.$$

O baza ortonormată în $S_{\lambda=7}$ este

$$\mathcal{B}_2' = \left(q_3 = \frac{1}{\sqrt{3}}(1, 1, 1)^T\right),$$

iar $\mathcal{B}'=\mathcal{B}'_1\cup\mathcal{B}'_2=(q_1,q_2,q_3)$ este o bază ortonormată în \mathbb{R}^3 formată din vectori proprii ai matricei A. Notând

$$Q = [q_1|q_2|q_3] = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix},$$

obţinem descompunerea ortogonală $A=QDQ^T,$ unde $D=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix}.$

11.2 Forme pătratice

În inteligența artificială deseori într-o etapă a unui algoritm trebuie determinate punctele în care o funcție $f:D\subset\mathbb{R}^n\to\mathbb{R}$ de clasă C^2 ia valoarea minimă sau maximă. Problema aflării punctelor de minim sau maxim se numește problemă de optimizare și se notează astfel:

$$\operatorname{argmin} f(x), x \in D, \quad \operatorname{argmax} f(x), x \in D$$

și se citește: să se determine argumentul $x \in D$ care minimizează funcția f sau să se determine argumentul $x \in D$ care maximizează funcția f.

Exemple de probleme de optimizare: minimizarea erorii în clasificare sau determinarea drumului de lungime minimă pe care trebuie să îl parcurgă un agent inteligent pentru a deservi n noduri/puncte de lucru etc.

Decizia dacă un punct x_0 din D este punct de minim sau maxim pentru o funcție f se ia analizând o formă pătratică asociată funcției f și anume $\varphi(v)=d_{x_0}^2f(v,v)$, unde $d_{x_0}^2f$ este diferențiala de ordinul 2 a funcției f în punctul x_0 .

Considerăm spațiul vectorial \mathbb{R}^n înzestrat cu produsul scalar standard $\langle v, w \rangle = v^T w$ și \mathcal{B} o bază ortonormată în \mathbb{R}^n (de obicei, baza canonică; vom face convenția că dacă nu este precizat în context cine este baza \mathcal{B} , aceasta va fi considerată baza canonică).

Definiția 11.2.1 Fie $A=(a_{ij})_{i,j=\overline{1,n}}$ o matrice simetrică. Aplicația $q:\mathbb{R}^n\to\mathbb{R}$, definită prin

$$q(v_{\mathcal{B}}) = \langle v_{\mathcal{B}}, Av_{\mathcal{B}} \rangle = v_{\mathcal{B}}^T A v_{\mathcal{B}}, \tag{11.5}$$

se numește formă pătratică.

Dacă un vector arbitrar $v \in \mathbb{R}^n$ are relativ la baza \mathcal{B} coordonatele $v_{\mathcal{B}} = (x_1, x_2, \dots, x_n)^T$, atunci expresia analitică a formei pătratice în această bază este:

$$q(v_{\mathcal{B}}) = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$
(11.6)

Efectuând produsele, obținem

$$q(v_{\mathcal{B}}) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n + \dots + 2a_{n-1}x_nx_{n-1}x_n.$$

Expresia precedentă ilustrează de ce funcția q se numește formă pătratică: expresia ei este o sumă de termeni de gradul 2 în x_1, x_2, \ldots, x_n , adică ceea ce se numește **polinom omogen de gradul 2**.

Exemplul 2. Formă pătratică q determinată de matricea simetrică $A = \begin{bmatrix} -2 & 1 \\ 1 & 3 \end{bmatrix}$ este

$$q(x_1, x_2)^T \stackrel{\text{not.}}{=} q(x_1, x_2) = \left[\begin{array}{cc} x_1 & x_2 \end{array} \right] \left[\begin{array}{cc} -2 & 1 \\ 1 & 3 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = -2x_1^2 + 2x_1x_2 + 3x_2^2.$$

În cele ce urmează în loc de $q(x_1, x_2, \dots, x_n)^T$ vom scrie simplu $q(x_1, x_2, \dots, x_n)$.

Dacă cunoaștem expresia analitică a unei forme pătratice $q: \mathbb{R}^n \to \mathbb{R}$, adică un polinom omogen de gradul 2 în x_1, x_2, \ldots, x_n , matricea simetrică ce o definește se determină astfel:

- coeficienții termenilor $x_1^2, x_2^2, \dots, x_n^2$ reprezintă elementele $a_{11}, a_{22}, \dots, a_{nn}$ ale matricei simetrice A, adică elementele de pe diagonala principală a lui A;
- coeficienții produselor $x_i x_j$ împărțiti la 2 sunt elementele a_{ij} și a_{ji} ale matricei A, pentru $i, j = \overline{1, n}, i \neq j$.

Exemplul 3. Se dă forma pătratică $q: \mathbb{R}^3 \to \mathbb{R}$, definită prin

$$q(x_1, x_2, x_3) = 2x_1^2 + 3x_1x_2 + 6x_1x_3 - 5x_2^2 - 8x_2x_3 + x_3^2.$$

Matricea simetrică asociată este

$$A = \begin{bmatrix} 2 & \frac{3}{2} & 3 \\ \frac{3}{2} & -5 & -4 \\ 3 & -4 & 1 \end{bmatrix}.$$

O formă pătratică ia valori reale care pot fi pozitive, negative sau zero. Se observă că q(0)=0, deci o formă pătratică aplică vectorul nul $0=(0,0,\ldots,0)$ în numărul real 0.

- Forma pătratică $q: \mathbb{R}^n \to \mathbb{R}$ care ia valori pozitive, q(v) > 0, oricare ar fi vectorul $v \in \mathbb{R}^n \setminus \{0\}$, se numește formă pătratică pozitiv definită.
- Dacă $q(v) \ge 0$, pentru orice $v \in \mathbb{R}^n$, atunci q se numește formă semipozitiv definită (mai precis, în acest caz q poate lua valoarea zero și pentru vectori nenuli).
- Dacă q(v) < 0, oricare ar fi $v \in \mathbb{R}^n \setminus \{0\}$, atunci q se numeşte formă negativ definită, iar dacă $q(v) \leq 0$, $\forall v \in \mathbb{R}^n$, forma q se numeşte seminegativ definită.

ullet Dacă pentru anumiți vectori q ia valori pozitive, iar pe alții valori negative, atunci q se numește formă pătratică nedefinită.

Analizând expresia analitică a formei pătratice din Exemplul 3 este greu să ne pronunțăm dacă ea este pozitiv definită, negativ definită sau nedefinită. Este însă foarte simplu să indicăm tipul formei pătratice dacă ea conține doar termeni în x_i^2 , $i = \overline{1, n}$.

Exemplul 4. Forma pătratică $q(x_1,x_2,x_3)=-3x_1^2-x_2^2-4x_3^2$ este negativ definită, forma pătratică $q(x_1,x_2,x_3)=2x_1^2-x_2^2+6x_3^2$ este nedefinită, deoarece q(1,0,1)=8>0 și q(0,1,0)=-1<0, iar forma $q(x_1,x_2,x_3)=x_1^2+x_2^2$ este semipozitiv definită (ea nu este pozitiv definită, căci ia valoarea 0 și pentru vectori nenuli, de exemplu q(0,0,1)=0).

Observăm că putem deduce rapid tipul unei forme pătratice dacă ea este definită de o matrice diagonală, care evident este simetrică:

$$q(x_1, x_2, \dots, x_n) = [x_1 x_2 \dots x_n] \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$= d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2, \quad d_i \in \mathbb{R}.$$

O formă pătratică a cărei matrice de definiție este diagonală se zice că este în forma canonică. Să exploatăm faptul că orice matrice simetrică A este similară cu o matrice diagonală, adică există $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$, ce sunt valorile proprii ale lui A, și o matrice inversabilă $T = T_{\mathcal{BB}'}$, ce este matricea de trecere de la baza canonică \mathcal{B} la baza ortonormată \mathcal{B}' , formată din vectori proprii ai lui A, astfel încât $A = TDT^{-1} = T_{\mathcal{BB}'}DT^T_{\mathcal{BB}'}$, unde $D = \operatorname{diag}(d_1, d_2, \ldots, d_n)$.

Relația de mai sus este echivalentă cu

$$D = T_{\mathcal{B}\mathcal{B}'}^T A T_{\mathcal{B}\mathcal{B}'}. \tag{11.7}$$

Pe de altă parte, relația dintre coordonatele unui vector $v \in \mathbb{R}^n$ relativ la cele două baze este $v_{\mathcal{B}} = T_{\mathcal{B}\mathcal{B}'}v_{\mathcal{B}'}$. Să deducem expresia analitică a formei pătratice q definită de matricea A relativ la baza \mathcal{B}' , formată din vectori proprii ai lui A. Pentru aceasta notăm cu X_1, X_2, \ldots, X_n , coordonatele vectorului arbitrar v relativ la baza \mathcal{B}' , adică $v_{\mathcal{B}'} = (X_1, X_2, \ldots, X_n)^T$. Avem

$$\begin{split} q(v_{\mathcal{B}}) = & < v_{\mathcal{B}}, Av_{\mathcal{B}} > = < T_{\mathcal{B}\mathcal{B}'}v_{\mathcal{B}'}, AT_{\mathcal{B}\mathcal{B}'}v_{\mathcal{B}'} > \stackrel{(11.1)}{=} < v_{\mathcal{B}'}, T_{\mathcal{B}\mathcal{B}'}^TAT_{\mathcal{B}\mathcal{B}'}v_{\mathcal{B}'} > \stackrel{(11.7)}{=} < v_{\mathcal{B}'}, Dv_{\mathcal{B}'} > \\ & = \left[\begin{array}{ccc} X_1 & X_2 & \dots & X_n \end{array} \right] \left[\begin{array}{ccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_n \end{array} \right] \left[\begin{array}{c} X_1 \\ X_2 \\ \vdots \\ X_n \end{array} \right] \\ & = \lambda_1 X_1^2 + \lambda_2 X_2^2 + \dots + \lambda_n X_n^2. \end{split}$$

Am arătat astfel că o formă pătratică definită de o matrice simetrică A asociază unui vector exprimat în baza $\mathcal B$ aceeași valoare ca valoarea asociată de forma pătratică definită de matricea diagonală D a valorilor proprii ale lui A aceluiași vector, dar exprimat în baza $\mathcal B'$.

În concluzie, pentru a decide tipul formei pătratice care relativ la baza ortonormată inițială \mathcal{B} are matricea simetrică A, se determină valorile proprii ale lui A.

- Dacă toate valorile proprii sunt pozitive $(\lambda_i > 0, \forall i = \overline{1, n})$, atunci forma pătratică este pozitiv definită;
- Dacă toate valorile proprii sunt mai mari sau egale cu 0, atunci forma pătratică este semipozitiv definită;
- Dacă $\lambda_i < 0$, $\forall i = \overline{1,n}$, atunci forma este negativ definită, respectiv seminegativ definită dacă $\lambda_i \leq 0$, $\forall i = \overline{1,n}$;
- Dacă cel puţin o valoare proprie este pozitivă şi alta negativă, atunci forma pătratică este nedefinită.

Exemplul 5. Se dă forma pătratică $q: \mathbb{R}^2 \to \mathbb{R}$, $q(x_1, x_2) = 4x_1^2 - 4x_1x_2 + x_2^2$. Să se determine matricea formei pătratice, valorile ei proprii și să se precizeze tipul formei.

Matricea formei pătratice este

$$A = \left[\begin{array}{cc} 4 & -2 \\ -2 & 1 \end{array} \right].$$

Valorile proprii ale lui A sunt $\lambda_1 = 0, \lambda_2 = 5$, deci forma pătratică este semipozitiv definită.

În analiza matematică, unei funcții $f:D\subset\mathbb{R}^n\to\mathbb{R}$, de clasă C^2 pe D, i se asociază matricea simetrică $\operatorname{Hess}(f)(x_0)$ a derivatelor parțiale de ordinul 2 într-un punct critic x_0 , numită Hessiana funcției f în x_0 . Elementele a_{ij} ale acestei matrice sunt

$$a_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0)$$
, pentru $i, j = \overline{1, n}$.

Dacă x_0 este un punct critic al funcției f, adică

$$\frac{\partial f}{\partial x_i}(x_0) = 0, \forall \ i = \overline{1, n},$$

atunci tipul formei pătratice având ca matrice Hessiana funcției f în punctul x_0 indică dacă punctul x_0 este punct de maxim, punct de minim sau punct şa (este punct critic, dar nu este punct de extrem).

În Fig.11.1 este ilustrat graficul unei forme pătratice

$$q: \mathbb{R}^2 \to \mathbb{R}, \ q(x_1, x_2) = \lambda_1 x_1^2 + \lambda_2 x_2^2$$

pentru cazul q – pozitiv definită ($\lambda_1, \lambda_2 > 0$), negativ definită ($\lambda_1, \lambda_2 < 0$), respectiv nedefinită ($\lambda_1 > 0, \lambda_2 < 0$).

Observăm că în primul caz (0,0) este punct de minim pentru că $q(x_1,x_2)>0$ pentru orice $v=(x_1,x_2)^T\neq (0,0)^T$, în al doilea caz este punct de maxim și în al treilea este punct șa. O funcție $f:D\subset\mathbb{R}^2\to\mathbb{R}$, de clasă C^r pe $D,r\geq 2$, este aproximată în vecinătatea unui punct critic x_0 de o astfel de formă pătratică și, deci, tipul extremal al punctului critic depinde de tipul punctului (0,0) pentru forma pătratică asociată.

Fig.11.1: Graficele a trei forme pătratice aduse la forma canonică $q(x_1, x_2) = \lambda_1 x_1^2 + \lambda_2 x_2^2$: în stânga forma este pozitiv definită, în centru forma este negativ definită și în dreapta forma este nedefinită.

11.3 Descompunerea singulară a unei matrice

Necesitatea de a minimiza volumul de informație ce trebuie să fie stocată sau transmisă printr-un canal de comunicație a condus la dezvoltarea unor metode de reducere a dimensiunii acestora (comprimarea datelor). Una din metodele de comprimare a datelor oferite de algebra liniară se bazează pe descompunerea singulară a unei matrice $A \in \mathbb{R}^{m \times n}$.

11.3.1 Noțiuni și rezultate preliminare

Definiția 11.3.1 O matrice simetrică $A \in \mathbb{R}^{n \times n}$ pentru care forma pătratică asociată q este pozitiv definită, adică

$$q(v) = \langle v, Av \rangle > 0, \forall v \in \mathbb{R}^n \setminus \{0\}, \tag{11.8}$$

se numește matrice pozitiv definită, iar dacă este verificată relația

$$q(v) = \langle v, Av \rangle \ge 0, \forall \ v \in \mathbb{R}^n, \tag{11.9}$$

se numește *matrice simetrică semipozitiv definită*.

Propoziția 11.3.1 O matrice simetrică este semipozitiv definită dacă și numai dacă are toate valorile proprii mai mari sau egale cu zero.

Demonstrație: Fie $A \in \mathbb{R}^{n \times n}$ o matrice simetrică semipozitiv definită. Fiind simetrică, A are n valori proprii (distincte sau nu). Fie $\lambda \in \mathbb{R}$ o valoare proprie și v un vector propriu corespunzător, adică $Av = \lambda v$. Au loc următoarele echivalențe:

$$< v, Av > \geq 0 \quad \Leftrightarrow \quad < v, \lambda v > \geq 0 \quad \Leftrightarrow \quad \lambda < v, v > \geq 0.$$

v, fiind vector propriu, este nenul, deci < v, v >> 0. Astfel, $\lambda < v, v >\geq 0$ dacă și numai dacă $\lambda \geq 0$.

Considerăm o matrice arbitrară cu m linii şi n coloane, $A \in \mathbb{R}^{m \times n}$. Matricele asociate A^TA , AA^T sunt matrice pătratice de tip $n \times n$, respectiv $m \times m$ şi simetrice, deoarece coincid cu transpusele lor. De exemplu, $(A^TA)^T = A^T(A^T)^T = A^TA$.

Propoziția 11.3.2 Dacă $A \in \mathbb{R}^{m \times n}$ este o matrice de tip $m \times n$, atunci matricele simetrice asociate $A^T A$, AA^T sunt semipozitiv definite.

Demonstrație: Deoarece produsul scalar al unui vector cu el însuși este mai mare sau egal cu zero, avem că pentru orice vector $v \in \mathbb{R}^n$: $\langle Av, Av \rangle \geq 0$. Dar

$$< Av, Av > \stackrel{(11.1)}{=} < v, A^T Av >,$$

ceea ce implică $< v, A^TAv> \ge 0, \forall \ v \in \mathbb{R}^n$, adică matricea A^TA este semipozitiv definită. Analog, $< A^Tv, A^Tv> \ge 0$ și din

$$\langle A^T v, A^T v \rangle \stackrel{\text{(11.1)}}{=} \langle v, AA^T v \rangle, \forall v \in \mathbb{R}^m$$

rezultă că și matricea AA^T este semipozitiv definită.

Propoziția 11.3.3 Rangul matricei $A^T A$ coincide cu rangul matricei $A \in \mathbb{R}^{m \times n}$.

11.4 Calculul descompunerii singulare a unei matrice

Propoziția 11.4.1 (Descompunerea singulară) Pentru orice matrice $A \in \mathbb{R}^{m \times n}$ de rang r există două matrice ortogonale $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ și numerele reale pozitive

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

astfel încât A se descompune în produsul $A=U\Sigma V^T$, adică

$$\underbrace{A}_{m \times n} = \underbrace{U}_{m \times m} \begin{bmatrix}
\sigma_{1} & 0 & \dots & 0 & 0 & \dots & 0 \\
0 & \sigma_{2} & \dots & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \dots & \vdots & \vdots & \dots & \vdots \\
0 & 0 & \dots & \sigma_{r} & 0 & \dots & 0 \\
0 & 0 & \dots & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \dots & \vdots & \vdots & \dots & \vdots \\
0 & 0 & \dots & 0 & 0 & \dots & 0
\end{bmatrix} \underbrace{V^{T}}_{n \times n}.$$
(11.10)

Definiția 11.4.1 Descompunerea de mai sus se numește descompunerea singulară a matricei A (singular value decomposition, SVD). Valorile pozitive $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$ din matricea Σ se numesc valorile singulare ale matricei A, vectorii u_i , vectori singulari stângi, iar vectorii v_i , vectori singulari drepți, $i = \overline{1, r}$.

Pentru a interpreta descompunerea SVD şi pentru a prezenta aplicaţii ale ei, definim câteva noţiuni şi rezultate de calcul matriceal:

ullet Produsul exterior a doi vectori $u\in\mathbb{R}^m,\,v\in\mathbb{R}^n$ este o matrice de tip $m\times n$ obținută înmulțind vectorul coloană u cu vectorul linie v^T , adică uv^T .

Dacă $u = (x_1, x_2, \dots, x_m)^T$ şi $v = (y_1, y_2, \dots, y_n)^T$, atunci produsul lor exterior este

$$uv^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \dots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \dots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \dots & x_{2}y_{n} \\ \vdots & \vdots & \dots & \vdots \\ x_{m}y_{1} & x_{m}y_{2} & \dots & x_{m}y_{n} \end{bmatrix}.$$

Prin urmare, matricea produs exterior, $B = uv^T$, are elementele $b_{ij} = x_i y_j$, $i = \overline{1, m}$, $j = \overline{1, n}$.

Dacă vectorii u, v sunt nenuli, atunci coloanele matricei uv^T sunt proporționale, deci rangul matricei B este 1.

Propoziția 11.4.2 Produsul $U\Sigma V^T$ din descompunerea SVD a unei matrice $A\in\mathbb{R}^{m\times n}$ de rang r este egal cu

$$U\Sigma V^T = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_1^T + \dots + \sigma_r u_1 v_r^T.$$

Prin urmare, ideea de bază a descompunerii SVD a unei matrice $A \in \mathbb{R}^{m \times n}$ de rang r este că matricea A se poate descompune ca o combinație liniară cu coeficienți pozitivi și descrescători a r matrice de rangul $1, M_j = u_j v_i^T, j = \overline{1,r}$:

$$A = U\Sigma V^T = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_r u_r v_r^T.$$

Aproximarea de rang k a matricei A: Dacă în descompunerea SVD a unei matrice ultimele valori singulare sunt mici (apropiate de zero), atunci, renunţând la termenii ce le conţin, obţinem o aproximare a matricei A:

$$A_k = \sigma_1(u_1v_1^T) + \dots + \sigma_k(u_kv_k^T).$$

Matricea aproximare A_k se factorizează astfel:

$$A_k = \underbrace{[u_1|u_2|\dots|u_k]}_{m \times k} \underbrace{\begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \sigma_k \end{bmatrix}}_{k \times k} \underbrace{\begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_k^T \end{bmatrix}}_{k \times n} = U_k \Sigma_k V_k^T$$

și are rangul k.

Ori de câte ori se aproximează un element al unei mulţimi înzestrate cu o distanţă (o astfel de mulţime se numeşte *spaţiu metric*) cu alt element al aceleaşi mulţimi, ne interesează "cât de bună este acea aproximare", evaluând distanţa dintre element şi aproximantul său.

În mulțimea matricelor din $\mathbb{R}^{m \times n}$ se definesc diferite norme și atunci dist(A, B) = ||A - B||. O normă este cea definită de produsul scalar a două matrice:

$$\langle A, B \rangle = \operatorname{trace}(A^T B)$$

și anume

$$||A|| = \sqrt{\langle A, A \rangle} = \sqrt{\operatorname{trace}(A^T A)}.$$

Această normă se numește **norma Frobenius** a unei matrice și pentru a o distinge de alte norme se notează $||A||_F$.

Teorema 11.4.1 (Teorema Eckart) Fie matricea $A \in \mathbb{R}^{m \times n}$ şi $A_k \in \mathbb{R}^{m \times n}$ aproximarea sa de rang k. Dintre toate matricele $B \in \mathbb{R}^{m \times n}$ de rang k, distanţa de la k la k este minimă pentru k0 = k1, adică

$$\min_{B \mid \text{rang}(B) = k} ||A - B||_F = ||A - A_k||_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_r^2}.$$

Cu alte cuvinte, A_k este cea mai bună aproximare de rang k a matricei A. Această proprietate se exploatează în numeroase domenii din Computer Science, printre care: comprimarea datelor, în general, și a imaginilor, în particular, information retrieval, machine learning.

Dacă A este o matrice imagine ai cărei pixeli au diverse nivele de gri, între negru şi alb, un element al matricei A fiind codul nivelului de gri $c \in \{0,1,2,\ldots,255\}$ sau normalizat $c \in [0,1]$ (depinde de tipul de imagine şi limbajul de programare care o citeşte; de exemplu, în Python imaginile în nivele de gri din mulțimea $\{0,1,2,\ldots,255\}$ sunt convertite la citire în imagini cu nivelul de gri în [0,1], adică dacă codul pentru gri este c=135, el este convertit în 135/256), atunci, determinând descompunerea SVD a matricei $A=\sum_{i=1}^r\sigma_iu_iv_i^T$ și renunțând la termenii ce au coeficienții $\sigma_{k+1},\ldots,\sigma_r$ suficient de mici în comparație cu $\sigma_1,\sigma_2,\ldots,\sigma_k$, obținem o aproximare A_k a imaginii A. Aceasta este o modalitate de comprimare a imaginii în scopul stocării sau transmiterii ei pe un canal de comunicație, adică în locul transmiterii vectorilor $u_1,u_2,\ldots,u_r,v_1,v_2,\ldots,v_r$ și, respectiv, a valorilor singulare $\sigma_1,\sigma_2,\ldots,\sigma_r$ se transmit doar vectorii $u_1,\ldots,u_k,v_1,\ldots,v_k$ și valorile singulare $\sigma_1,\sigma_2,\ldots,\sigma_k,k< r$.

Descompunerea trunchiată A_k a unei imagini A filtrează o parte din zgomotul conținut în imagine fără a pierde o informație semnificativă din ea.

11.5 Contrucția matricelor U, V, Σ din descompunerea SVD

• Construcția matricei V:

Matricea A^TA , fiind o matrice de tip $n \times n$ simetrică şi semipozitiv definită, are n valori proprii $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. Construind câte o bază ortonormată în fiecare subspațiu propriu şi reunind aceste baze obținem baza ortonormată în \mathbb{R}^n formată din vectori proprii ai matricei A^TA , $\mathcal{B}'_n = (v_1, v_2, \dots, v_n)$. Notăm cu $V = [v_1|v_2|\dots|v_n]$ matricea de trecere de la baza canonică la baza \mathcal{B}'_n , care evident este matrice ortogonală. Astfel, matricea A^TA este similară cu matricea diagonală a valorilor proprii:

$$M = A^T A = V \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) V^T.$$

Dar cum două matrice similare au aceelași rang, rezultă că

$$rang(\operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)) = rang(A^T A).$$

Cum $rang(A^TA) = rang(A) = r$, matricea diagonală diag $(\lambda_1, \lambda_2, \dots, \lambda_n)$ are rangul r, deci doar primele r valori proprii în ordinea descrescătoare sunt nenule:

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0$$
 și $\lambda_{r+1} = \cdots = \lambda_n = 0$.

• Construcția matricei U:

Vectorii proprii ortonormați v_1, v_2, \ldots, v_r corespund la valori proprii λ_i nenule:

$$A^T A(v_i) = \lambda_i v_i, \ i = \overline{1, n}.$$

Considerăm vectorii din \mathbb{R}^m , $w_i = Av_i$, $i = \overline{1, r}$. Să arătăm că sistemul w_1, w_2, \dots, w_r este un sistem ortogonal de vectori:

$$< w_i, w_i > = < Av_i, Av_i > = < v_i, (A^T A)v_i > = < v_i, \lambda_i v_i > = \lambda_i < v_i, v_i > = \lambda_i \delta_{ii}.$$

Astfel, pentru $i \neq j, < w_i, w_j >= \lambda_j \cdot 0 = 0$, deci vectorii $w_i, i = \overline{1, r}$, sunt ortogonali. Pentru i = j avem $< w_i, w_i >= \lambda_i$, ceea ce este echivalent cu $||w_i||^2 = \lambda_i$ sau echivalent

$$||w_i|| = \sqrt{\lambda_i} = \sigma_i, i = \overline{1, r}.$$

Normând sistemul de vectori (w_1, w_2, \ldots, w_r) , obţinem sistemul ortonormat de r vectori din \mathbb{R}^m , (u_1, u_2, \ldots, u_r) , unde

$$u_i = \frac{w_i}{\|w_i\|} = \frac{w_i}{\sigma_i} = \frac{Av_i}{\sigma_i}, i = \overline{1, r}.$$

Prin urmare, are loc următoarea relație între vectorii ortonormați v_1, v_2, \ldots, v_r din \mathbb{R}^n și vectorii ortonormați u_1, u_2, \ldots, u_r din \mathbb{R}^m :

$$Av_i = \sigma_i u_i, \quad i = \overline{1, r}.$$

Sistemul de vectori ortonormați (u_1,u_2,\ldots,u_r) îl completăm la o bază ortonormată

$$(u_1,u_2,\ldots,u_r,u_{r+1},\ldots,u_m)$$

în \mathbb{R}^m și anume:

- Determinăm o bază arbitrară în $Null(A^T)$. Deoarece A^T are rangul lui A, adică r, rezultă că dimensiunea lui este m-r. Baza arbitrară (t_1,t_2,\ldots,t_{m-r}) se ortonormează cu metoda Gram-Schmidt şi obținem din ea baza ortonormată $(u_{r+1},u_{r+2},\ldots,u_m)$ în $Null(A^T)$.
- Baza ortonormată (u_{r+1}, \ldots, u_m) din $Null(A^T)$ completează sistemul (u_1, u_2, \ldots, u_r) la o bază ortonormată în \mathbb{R}^m , $(u_1, \ldots, u_r, u_{r+1}, \ldots, u_m)$.

Notăm cu U matricea de trecere de la baza canonică din \mathbb{R}^m la baza ortonormată găsită anterior, (u_1,u_2,\ldots,u_m) . Matricea $U=[u_1|u_2|\ldots|u_m]$ este chiar matricea ortogonală din descompunerea SVD a matricei A.

14

Etapizarea calculelor pentru determinarea descompunerii singulare a unei matrice $A \in \mathbb{R}^{m \times n}$

- se calculează produsul $M = A^T A$;
- se determină polinomul caracteristic al matricei simetrice semipozitiv definite $M = A^T A$, $P_n(\lambda) = \det(M \lambda I_n)$, și i se determină rădăcinile $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$;
- se determină câte o bază în fiecare subspațiu propriu al matricei $M = A^T A$, care apoi se ortonormează folosind procedeul Gram-Schmidt; reuniunea acestor baze conduce la o bază ortonormată în \mathbb{R}^n formată din vectori proprii, (v_1, v_2, \dots, v_n) ;
 - se constituie matricea $V = [v_1|v_2|\dots|v_n];$
- se separă vectorii v_1, v_2, \dots, v_r ce corespund valorilor proprii nenule $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r$ şi se calculează valorile singulare

$$\sigma_i = \sqrt{\lambda_i}, \ i = \overline{1, r};$$

• se determină vectorii ortonormați u_1, u_2, \ldots, u_r din \mathbb{R}^m cu formula

$$u_i = \frac{1}{\sigma_i} A v_i, \ i = \overline{1, r};$$

- se determină o bază arbitrară în subspațiul $Null(A^T)$ rezolvând sistemul liniar și omogen $A^Tx=0$. Aplicând procedeul Gram-Schmidt, se ortonormează baza determinată, obținând astfel m-r vectori ortonormați u_{r+1},\ldots,u_m , deoarece dimensiunea lui $Null(A^T)$ este egală cu m-r, adică cu numărul m de coloane ale matricei A^T minus $\operatorname{rang}(A^T)=\operatorname{rang}(A)=r$;
 - se constituie matricea $U = [u_1|u_2|\dots|u_m];$
- se scrie descompunerea SVD a matricei A, $A = U\Sigma V^T$, ținând seama că matricea Σ are aceleași dimensiuni ca și A, adică este de tip $m \times n$.

Exemplul 6. Să se determine descompunearea singulară a matricei $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$.

• Calculăm

$$M = A^T A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right].$$

- $P_2(\lambda) = det(M \lambda I_2) = (2 \lambda)^2 1$ și $\lambda_1 = 3, \lambda_2 = 1$ (le-am ordonat descrescător).
- Determinăm câte o bază în fiecare subspațiu propriu:

$$S_{\lambda=3} = \{v = \alpha(1,1)^T, \alpha \in \mathbb{R}\}, \ \mathcal{B}_1 = ((1,1)^T),$$

$$S_{\lambda=1} = \{ v = \beta(1, -1)^T, \beta \in \mathbb{R} \}, \ \mathcal{B}_2 = ((1, -1)^T).$$

Vectorii celor două baze sunt ortogonali, deoarece corespund la valori proprii distincte ale unei matrice simetrice (A^TA). Îi normăm și obținem baza ortonormată în \mathbb{R}^2

$$\mathcal{B}' = (v_1 = (\sqrt{2}/2, \sqrt{2}/2)^T, v_2 = (\sqrt{2}/2, -\sqrt{2}/2)^T))$$

și matricea

$$V = [v_1 | v_2] = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}.$$

- Calculăm valorile singulare: $\sigma_1 = \sqrt{3}, \sigma_2 = \sqrt{1} = 1$.
- Determinăm coordonatele vectorilor $u_i = \frac{1}{\sigma_i} A v_i$, i=1,2, unde 2 este rangul matricei $A^T A$:

$$u_{1} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix} = \begin{bmatrix} \sqrt{6}/3 \\ \sqrt{6}/6 \\ \sqrt{6}/6 \end{bmatrix},$$

$$u_{2} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2}/2 \\ -\sqrt{2}/2 \end{bmatrix} = \begin{bmatrix} 0 \\ -\sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}.$$

• Completăm sistemul ortonormat (u_1, u_2) la o bază ortonormată în \mathbb{R}^3 . Teoretic, ar trebui să determinăm o bază în subspațiul soluțiilor sistemului $A^Tx = 0$, adică

$$\left[\begin{array}{cc} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right].$$

Notând $x_2 = \gamma$, avem

$$Null(A^T) = \{ v = \gamma(-1, 1, 1)^T : \gamma \in \mathbb{R} \},\$$

 $\text{deci } u_3 = (-1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})^T.$

În acest caz special am fi putut determina pe $u_3 = u_1 \times u_2$.

• Matricea U este

$$U = [u_1|u_2|u_3] = \begin{bmatrix} \frac{\sqrt{6}}{3} & 0 & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \end{bmatrix}.$$

• Descompunerea SVD a matricei A este

$$A = \begin{bmatrix} \frac{\sqrt{6}}{3} & 0 & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}.$$

11.6 Probleme propuse

- **1**. Să se determine factorizarea $A = QDQ^T$ a matricei simetrice $A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$.
- 2. Matricea

16

$$A = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{array} \right]$$

admite valoarea proprie 1. Mai admite A și alte valori proprii? Argumentați! Să se factorizeze matricea $A = QDQ^T$, unde Q este o matrice ortogonală și D este o matrice diagonală.

- 3. Să se factorizeze matricea simetrică $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ în $A = QDQ^T$, unde Q este o matrice ortogonală, iar D este o matrice diagonală.
- **4**. Determinați expresia analitică a formei pătratice $Q: \mathbb{R}^3 \to \mathbb{R}$, definită de matricea simetrică

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{array}\right),$$

apoi stabiliți natura acestei forme pătratice.

5. Să se determine matricea formei pătratice $Q: \mathbb{R}^3 \to \mathbb{R}$, definită prin

$$Q(x_1, x_2, x_3) = 3x_1^2 + 8x_1x_2 - 8x_1x_3 - x_2^2 - 4x_2x_3 + x_3^2,$$

apoi stabiliți natura acestei forme pătratice.

- **6**. Să se aducă forma pătratică $Q(x_1, x_2) = -2\sqrt{2}x_1x_2 + x_2^2$ la forma canonică și apoi să se stabilească natura ei, adică dacă Q este o formă pătratică pozitiv definită, negativ definită sau nedefinită.
- 7. Dacă matricea unei forme pătratice are valorile proprii -1, 2, 0, ce puteți spune despre natura formei pătratice? Justificați!
- **8**. Să determine descompunerea singulară a matricei $A = \begin{bmatrix} 2 & 1 & -2 \end{bmatrix}$.
- **9**. Să se determine descompunerea singulară a matricei $A = \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix}$ și aproximația A_1 a acesteia.
- **10**. Determinați descompunerea singulară a matricei $A = \begin{bmatrix} 7 & 1 \\ 0 & 0 \\ 5 & 5 \end{bmatrix}$.