Prep #16 Polynomials and algebra

- 1. Simplify each expression.
 - (a) $x^{\frac{2}{3}} \cdot x^{\frac{1}{3}} =$

(d) $(x^{\frac{3}{2}}y^3)^2 =$

(b) $x^{\frac{4}{5}} \cdot x^{\frac{6}{5}} =$

(e) $(x^{\frac{2}{3}}y^4)^{\frac{1}{2}} =$

(c) $\frac{\sqrt[3]{8x^2}}{\sqrt{16x}} =$

- (f) $\frac{x^{\frac{3}{4}}}{x^{\frac{1}{4}}} =$
- 2. Write the expression as a polynomial in standard form.
 - (a) (x-3)(x+3)

(b) $(x+y)(x^2-xy+y^2)$

- 3. Simplify each complex expression to the form a + bi, with real numbers a and b.
 - (a) (2+3i)(3-4i) =

(c)
$$(2xi+4)^2 =$$

(b)
$$(2xi+4)^2 =$$

(d)
$$-2i(\sqrt{-3}+4i)-5i^3$$

The quadratic formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

4. Solve each equation. Expression the answer in a+bi form.

(a)
$$2x^2 + 5x + 8 = 0$$

(b)
$$3x^2 + 7x + 5 = 0$$

5. Determine the solution of each equation algebraically.

(a)
$$\sqrt{3x+7} = x-1$$

(b)
$$\sqrt{4x+1} = 11 - x$$

BECA/Huson/Algebra 2: Regents Preparation 23 May 2024

Name:

Geometric Series:

$$S_n = \frac{a_1 - a_1 r^n}{1 - r}$$
 where $r \neq 1$

- 6. Write a recursive formula for the sequence $16, 8, 0, -8, \dots$
- 7. A sequence is defined by the recursive formula

$$a_1 = 30$$

$$a_n = a_{n-1} + 5$$

Write an explicit formula for the sequence.

- 8. The sum of the first n terms of the geometric sequence beginning 1, 1.5, 2.25, ... is 171, rounded to the nearest integer. Find n.
 - F.LE.2: Construct a linear or exponential function symbolically given: a graph, a description of the relationship, or two input-output pairs (including from a table).
- 9. Complete the table for f(x) and write an explicit formula for the exponential function.

x	0	1	2	3	4
f(x)	12	18			

10. The frequency table below shows the barbeque selections at the school field day.

Class	Hot dog	Hamburger	Chicken
Middle school	25	15	10
High School	30	40	15

- (a) Add totals to the table.
- (b) Overall, what was the least favorite selection?
- (c) What percentage of the overall survey are middle school students?
- (d) What percentage of the middle school students prefer chicken?

(e) Complete the missing proportions in the table rounded to the nearest thousandth.

Class	Hot dog	Hamburger	Chicken	Total
Middle school	0.185	0.111	0.074	0.370
High School		0.296	0.111	0.630
Total	0.407	0.185		1.000

11. Determine the average rate of change, in mph, from zero to three hours on the graph.

BECA/Huson/Algebra 2: Regents Preparation 23 May 2024

Name:

AII-F.LE.2: Construct a linear or exponential function symbolically given: a graph, a description of the relationship, or two input-output pairs (include reading these from a table).

- 12. Given the cubic function $f(x) = -x^3 + 4x^2 + x 4$, graphed below.
 - (a) How many real solutions are their to the equation f(x) = 0?
 - (b) Write down the real zeros of the function.
 - (c) Over the interval 3 < x < 4, is the function increasing, decreasing, or constant?
 - (d) Find the average rate of change of the function over the interval from point A to point B.

13. Factor the function $f(x) = x^3 + 4x^2 - 4x - 16$ over the set of integers.

14. Given the function $f(x) = x^3 - 2x^2 - 9x + 18$, find the value of f(2).

Now identify the correct statement.

- (a) f(2) = 0 and x 2 is a factor of f(x).
- (b) f(2) = 0 and x 2 is not a factor of f(x).
- (c) $f(2) \neq 0$ and x 2 is a factor of f(x).
- (d) $f(2) \neq 0$ and x 2 is not a factor of f(x).

15. Graph the continuous exponential function $f(x) = 3e^{0.10x}$ on the grid below.

- (a) Graph the line y = 6. Mark the intersection of the line with f and label it as an ordered pair, rounded the nearest whole number.
- (b) The function f(x) models the growth of an investment. Explain what the values of 3 and 0.10 represent in the context of the investment.

(c) How long will the investment take to double?