Homework 4 - Adv. Macro 1

Davi Jorge

Homework 4 - Adv. Macro 1

Link com códigos: GitHub -Adv Macro

Questão 1. De posse da base de dados data_vec_alunos.xls, disponível na pasta da turma, estime um modelo VEC e calcule as elasticidades de curto e longo prazos da demanda de gasolina.

• Aplique a metodologia Engle-Granger como visto em sala de aula e compare seus resultados com Alves and Bueno (2003).

Resposta:

Método Engle-Granger

Foi realizado testes de integração nas series e encontrei que as séries são I(2). Os testes foram feitos a partir do teste de raiz unitária Dickey Fuller Aumentado. Para que a interpretação do modelo seja a mesma do trabalho de Alves and Bueno (2003), assumiremos apenas uma integração.

O modelo para extrair o vetor de cointegração é dado por:

$$lnCgasolina = t + t^2 + lnPIBcap + lnPgasolina + lnPetanol + e.$$

Os resultados da regressão está na tabela abaixo. Os residuos da regressão foram testados pelo teste ADF e KPSS e ambos indicaram estacionariedade da série.

Observations	26
Dependent variable	$dados_log\$Cgasolina$
Type	OLS linear regression

F(5,20)	22.39	
\mathbb{R}^2	0.85	
$Adj. R^2$	0.81	

	Est.	S.E.	t val.	p
(Intercept)	13.01	11.44	1.14	0.27
t	0.13	0.11	1.20	0.25
t2	-0.00	0.00	-1.00	0.33
$dados_log\$PIB_cap$	-0.23	1.08	-0.22	0.83
dados_log\$Pgasolina	-0.78	0.40	-1.93	0.07
$dados_log\$Petanol$	0.51	0.36	1.42	0.17

Standard errors: OLS

Após isso, diferenciei os dados em log, assim como os autores, e rodei um modelo adicionando a variavel de cointegração como regreessor. Os resultados mostram que o PGasolina, PEtanol e Cointegrao são significantes a um nível de 15%. A justificativa para o uso desse nível de significancia ser válido para o estudo é o tamanho da amostra utilizada.

Observations	24 (1 missing obs. deleted)
Dependent variable	Cgasolina
Type	OLS linear regression

F(6,17)	3.07
\mathbb{R}^2	0.52
$Adj. R^2$	0.35

	Est.	S.E.	t val.	р
(Intercept)	0.08	0.10	0.86	0.40
t	0.00	0.01	0.17	0.87
t2	-0.00	0.00	-0.53	0.61
Petanol	0.18	0.14	1.23	0.24
Pgasolina	-0.33	0.23	-1.45	0.16
PIB_cap	-0.42	0.74	-0.57	0.58
cointegracao	-0.40	0.15	-2.67	0.02

Standard errors: OLS

Método Johansen

• Refaça o exercício usando o procedimento de Johansen.

Foi utilizado o procedimento de Johansen para verificar a presença de vetores de cointegração entre as variáveis do modelo. O teste foi realizado com estatística do tipo trace e tendência linear na relação de cointegração, com três defasagens. O resultado indicou a presença de três vetores de cointegração ao nível de 5%, sugerindo uma relação de longo prazo entre as variáveis.

```
[1] 10.63991 31.73030 55.71689 130.65157
```

```
10pct 5pct 1pct
r <= 3 | 10.49 12.25 16.26
r <= 2 | 22.76 25.32 30.45
r <= 1 | 39.06 42.44 48.45
r = 0 | 59.14 62.99 70.05
```

O Resultado do VECM sinaliza que:

- *PIBcap.dl*1: negativo e significativo ao nível de 5%, indicando que aumentos defasados no PIB per capita reduzem o consumo de gasolina no curto prazo, o que pode sugerir um efeito substituição ou mudança na composição de transporte.
- Pgasolina.dl2: positivo e significativo ao nível de 5%, indicando que choques de dois períodos atrás nos preços da gasolina estão associados a aumentos no consumo de gasolina. (não entendi)
- Petanol.dl2: negativo e significativo ao nível de 5%, indicando que há substituição entre etanol e gasolina no curto prazo.

```
Call:
```

```
lm(formula = Cgasolina.d ~ ect1 + ect2 + ect3 + constant + PIB_cap.dl1 +
Pgasolina.dl1 + Petanol.dl1 + Cgasolina.dl1 + PIB_cap.dl2 +
Pgasolina.dl2 + Petanol.dl2 + Cgasolina.dl2 - 1, data = data.mat)
```

Residuals:

```
Min 1Q Median 3Q Max -0.070775 -0.016631 -0.004136 0.027502 0.040881
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
               1.34430
                          0.39837
                                    3.375
                                            0.0062 **
ect1
ect2
               0.52177
                          0.25642
                                    2.035
                                            0.0667 .
ect3
              -0.55960
                          0.38392 -1.458
                                            0.1729
              -5.69600
                          3.32106 -1.715
constant
                                            0.1143
PIB_cap.dl1
              -1.37895
                          0.58377 - 2.362
                                            0.0377 *
                                   1.648
Pgasolina.dl1 0.27673
                          0.16796
                                            0.1277
Petanol.dl1
                          0.16481 -0.927
              -0.15280
                                            0.3738
Cgasolina.dl1 -0.04614
                          0.20277 - 0.228
                                            0.8242
PIB_cap.dl2
              -0.35072
                          0.54810 -0.640
                                            0.5353
Pgasolina.dl2 0.54440
                          0.18146
                                    3.000
                                            0.0121 *
Petanol.dl2
              -0.66651
                          0.29585 - 2.253
                                            0.0457 *
Cgasolina.dl2 0.10318
                          0.15428
                                    0.669
                                            0.5174
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
Residual standard error: 0.04524 on 11 degrees of freedom Multiple R-squared: 0.8656, Adjusted R-squared: 0.7189 F-statistic: 5.902 on 12 and 11 DF, p-value: 0.003044
```

Questão 2. De posse da base de dados quartely.xls, disponível na pasta da turma, estime um modelo VEC para a relação entre a Tbill e a Tbill_3year replicando os resultados de sala de aula.

• Aplique a metodologia Engle-Granger e o procedimento de Johansen separadamente. Você deve apresentar a relação de longo prazo estimada.

Resposta:

Método Engle-Granger

O teste de integração sinaliza 1 integração apenas.

Taxas de Juros ao Longo do Tempo

A partir disso roda-se o seguinte modelo para encontrar a variável de integração:

Tbill = Tbill3year + e

Os residuos são estacionários para os testes ADF e KPSS.

Após isso, rodamos a regressão com 8 defasagens:

Call: $lm(formula = y \sim -1 + ., data = datamat)$

Coefficients:

tbill.l1	tbill_3year.11	coef_lp.l1	tbill.12	tbill_3year.12
0.211414	0.268855	-0.213060	-0.074849	-0.315927
coef_lp.12	tbill.13	tbill_3year.13	coef_lp.13	tbill.14
NA	0.376088	0.003869	NA	0.013449
tbill_3year.14	coef_lp.14	tbill.15	tbill_3year.15	coef_lp.15
-0.060911	NA	0.393308	-0.318317	NA
tbill.16	tbill_3year.16	coef_lp.16	tbill.17	tbill_3year.17
-0.066505	0.108198	NA	-0.112219	-0.154693
coef_lp.17	tbill.18	tbill_3year.18	coef_lp.18	const
NA	0.067397	0.093530	NA	-0.008583

Método Johansen

• Refaça o exercício usando o procedimento de Johansen.

Foi utilizado o procedimento de Johansen para verificar a existência de relações de cointegração entre as taxas de juros de curto e longo prazo. O teste foi realizado com estatística do tipo trace, assim como o anterior, considerando uma constante no vetor de cointegração e utilizando sete defasagens (indicado pelo AIC). Os resultados indicam a presença de um vetor de cointegração ao nível de 5%, conforme os valores estatísticos do teste e os valores críticos.

[1] 1.467173 28.824385

```
10pct 5pct 1pct
r <= 1 | 7.52 9.24 12.97
r = 0 | 17.85 19.96 24.60
```

Com base nos resultados do teste de Johansen, foi estimado um modelo VECM com um vetor de cointegração (r=1). Os resultados mostram que o termo de correção de erro (ECT) é estatisticamente significativo na equação da tbill, com sinal negativo, indicando convergência para o equilíbrio de longo prazo

Response tbill.d:

Call:

```
lm(formula = tbill.d ~ ect1 + tbill.dl1 + tbill_3year.dl1 + tbill.dl2 +
    tbill_3year.dl2 + tbill.dl3 + tbill_3year.dl3 + tbill.dl4 +
    tbill_3year.dl4 + tbill.dl5 + tbill_3year.dl5 + tbill.dl6 +
    tbill_3year.dl6 - 1, data = data.mat)
```

Residuals:

```
Min 1Q Median 3Q Max -2.99145 -0.28876 -0.00276 0.25416 3.15640
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                -0.282327
                            0.092262 -3.060 0.002566 **
ect1
tbill.dl1
                 0.153794
                            0.135100
                                       1.138 0.256537
tbill_3year.dl1 0.299049
                            0.148218
                                       2.018 0.045176 *
                            0.128007 -3.231 0.001477 **
tbill.dl2
                -0.413591
tbill_3year.dl2 -0.003426
                            0.145009 -0.024 0.981176
tbill.dl3
                 0.175233
                            0.139260
                                       1.258 0.209972
tbill_3year.dl3 0.220790
                            0.148432
                                       1.487 0.138708
```

```
0.131899 -2.370 0.018879 *
tbill.dl4
              -0.312628
tbill_3year.dl4 0.168718
                          0.148750 1.134 0.258264
                          0.137059 1.801 0.073375 .
tbill.dl5
                0.246904
tbill_3year.dl5 -0.073751
                          0.151894 -0.486 0.627907
tbill.dl6
              -0.447088
                          0.130269 -3.432 0.000749 ***
tbill_3year.dl6 0.364868
                          0.156638 2.329 0.020995 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6698 on 173 degrees of freedom
Multiple R-squared: 0.3031,
                              Adjusted R-squared: 0.2508
F-statistic: 5.789 on 13 and 173 DF, p-value: 0.00000000848
Response tbill_3year.d :
Call:
lm(formula = tbill_3year.d ~ ect1 + tbill.dl1 + tbill_3year.dl1 +
   tbill.dl2 + tbill_3year.dl2 + tbill.dl3 + tbill_3year.dl3 +
   tbill.dl4 + tbill_3year.dl4 + tbill.dl5 + tbill_3year.dl5 +
   tbill.dl6 + tbill_3year.dl6 - 1, data = data.mat)
Residuals:
                  Median
    Min
              1Q
                               3Q
                                      Max
-2.63052 -0.31921 0.01428 0.32392 1.61584
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                          0.084527 -0.263 0.79274
ect1
               -0.022244
tbill.dl1
                0.103963
                          tbill_3year.dl1 0.168927
                          0.135791 1.244 0.21517
tbill.dl2
               -0.006436
                          0.117274 -0.055 0.95630
tbill_3year.dl2 -0.260350
                          0.132851 -1.960 0.05164 .
                          0.127583 1.496 0.13640
tbill.dl3
                0.190904
tbill 3year.dl3 0.075421
                          0.135987 0.555 0.57987
                          0.120839 0.065 0.94796
tbill.dl4
                0.007899
tbill 3year.dl4 -0.121484
                          0.136278 -0.891 0.37393
tbill.dl5
               0.382903
                          0.125567 3.049 0.00265 **
tbill_3year.dl5 -0.360911
                          0.139158 -2.594 0.01031 *
tbill.dl6
                0.047190
                          0.119346
                                    0.395 0.69303
tbill_3year.dl6 -0.135400
                          0.143504 -0.944 0.34673
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6136 on 173 degrees of freedom Multiple R-squared: 0.203, Adjusted R-squared: 0.1432 F-statistic: 3.39 on 13 and 173 DF, p-value: 0.0001157

Funções de Impulso Resposta

Orthogonal Impulse Response from tbill

95 % Bootstrap CI, 1000 runs

Orthogonal Impulse Response from tbill_3year

95 % Bootstrap CI, 1000 runs