0.1. Implementación por lógica discreta

Para la lógica combinacional lo primero que se hizo fue escribir las posiciones de memoria en las que vivirá nuestro periférico en binario.

$$0x4000 \implies 16384 \implies 010000000000 \tag{1}$$

$$0x2000 \implies 8192(Memory) \tag{2}$$

$$0x6000 \implies 24576 \implies 011000000000$$
 (3)

De aqui se arma la tabla de verdad de los últimos 3 bits mas significativos.

a_{15}	a_{14}	a_{13}	CS
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

De aquí se puede solucionar el mapa de karnaugh para la siguiente configuración:

Figura 1: Lógica Discreta

0.2. Implementación por lógica de baja complejidad

Se utilizó el decodificador 74LS139, conectando a los pines a_{15} y a_{14} a las entradas B y A respectivamente, el CS será la salida Y_1 quedando de la siguiente manera

Figura 2: Lógica de baja complejidad

.

0.3. Implementación por medio de una PAL

Se utilizó una PAL como decodificador de direcciones, como se observa en la tabla (??) es posible detectar el perisferico viendo únicamente los bits a_{15} y a_{14} asi se llega a la siguiente ecuación:

$$x_1 = a_{15} x_2 = a_{14} (4)$$

$$f1 = CS \quad f1 = \bar{x_1} \& x_2 \tag{5}$$

0.4. Análisis y construcción del diagrama de tiempos

Se construyó para el microprocesador M68HC11 el diagrama de tiempos para un ciclo de lectura/escritura, usando como ejemplo la posición de memoria \$2345, la cual está dentro de la hipotética región del mapa de memoria donde se aloja la memoria para la cual se diseñó el decodificador anteriormente.

Figura 3: Ciclo de lectura/escritura de DATA en la dirección de memoria \$2345

Para el análisis de tiempos se tiene en cuenta una frecuencia característica de 2 MHz. Dado esto, se obtiene un rise time de las señales de $t_4 = 20 \ ns$ y un periodo entre ciclos de lectura/escritura de $t_1 = 500 \ ns$, por lo que los tiempos en alto y bajo de la señal $\bf E$ de enable serán de $t_3 = 230ns$ respectivamente.

0.4.1. Primera mitad del ciclo de escritura/lectura

El comienzo del ciclo de lectura o escritura comienza con el flanco descendente de la señal de enable. Un tiempo $t_{26}=53\ ns$ después se activa la señal ${\bf AS}$ de address strobe, lo cual indica que se utilice el bus de address entero para cargar la parte baja y alta de la dirección de memoria en los puertos C y B del M68HC11 respectivamente. Esta señal se desactiva luego de un tiempo $t_{27}=96\ ns$ activando el latch que retendrá la parte baja de la dirección de memoria. De esta manera se logra multiplexar la parte baja del bus de address, o puerto C, para leer o escribir datos al igual que retener la parte baja de la dirección del mapa de memoria.

El puerto C tiene la dirección de memoria por un tiempo válido de $t_{t22} = 88 \ ns$ como mínimo y el puerto B por un tiempo de $t_{12} = 94 \ ns$ como mínimo, que corresponde con el flanco ascendente de la señal de enable y marca la mitad del ciclo de lectura/escritura.

Página 2

0.4.2. Segunda mitad del ciclo de escritura/lectura

Lectura: En el caso de la lectura, el tiempo de setup para que el periférico coloque el dato a su salida y lo mantenga estable antes del flanco descendente de la señal de enable es de $t_{17}=30\ ns$ y debe ser mantenido estable por $t_{18A}=10\ ns$ pasado dicho flanco. Luego pasa a hiZ el puerto C pasados $t_{18B}=83\ ns$ de dicho flanco.

Escritura: Para el caso de la escritura, el puerto C tiene un delay máximo para contener el dato a escribir de $t_{19} = 128 \ ns$ y un tiempo de hold de $t_{21} = 33 \ ns$ como mínimo, por lo cual el tiempo de escritura deberá ser como máximo de $t_3 + t_{21} - t_{19} = 143 \ ns$.

Finalmente, el address se mantendrá por un tiempo de t_9 tras el flanco descendente de la señal de enable, por lo que el tiempo válido de lectura de la dirección de memoria en un ciclo de $t_1 = 500ns$ será de $t_1 - t_{26} + t_9 = 480 ns$.