10-702 Statistical Machine Learning: Assignment 1 Solutions

1. Review of Maximum Likelihood.

Let X_1, \ldots, X_n be a random sample where $X_i \in \{1, 2, \ldots, k\}$. Let $\theta \in [0, 1]$ and suppose that $\mathbb{P}(X_i = 1) = \theta$ and $\mathbb{P}(X_i = j) = \overline{\theta}$ for j > 1 where $\overline{\theta} = (1 - \theta)/(k - 1)$.

(a) Find the mle $\widehat{\theta}$. Let Y=1 when X=1 and Y=0 otherwise. $P(Y=1)=\theta$ and $P(Y=0)=1-\theta$. Hence, $P\sim \mathrm{Bernoulli}(\theta)$ $L(\theta)=\prod_{i=1}^n\theta^{Y_i}(1-\theta)^{1-Y_i}$

Solving $\frac{\partial}{\partial \theta} l(\theta) = 0$ we get, $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 1)$

(b) Find the Fisher information.

$$I_n(\theta) = -\mathbb{E}\left[\frac{\partial^2 l(\theta)}{\partial \theta^2}\right]$$

Again assuming the tranformation to Y,

$$I_{n}(\theta) = -\mathbb{E}\left[\frac{\partial}{\partial \theta^{2}}(\log(\theta) \sum Y_{i} + \log(1 - \theta) \sum (1 - Y_{i}))\right]$$

$$= -\mathbb{E}\left[-\frac{1}{\theta^{2}} \sum Y_{i} - \frac{1}{(1 - \theta)^{2}} \sum (1 - Y_{i})^{2}\right]$$

$$= \frac{n}{\theta} + \frac{n}{1 - \theta} \quad \therefore E(Y_{i}) = \theta$$

$$= \frac{n}{\theta(1 - \theta)}$$

(c) Find an approximate $1 - \alpha$ confidence interval for θ .

$$C_n=(\widehat{\theta}-z_{lpha/2}se,\widehat{\theta}+z_{lpha/2}se)$$
 where $se=\sqrt{rac{1}{I_n(\widehat{ heta})}}$

Here substitute $I_n(\theta)$ using (2) and $\widehat{\theta}$ from (1). $Z \sim N(0, 1)$.

(d) Find the bias and variance of $\widehat{\theta}$.

$$bias(\widehat{\theta}) = \mathbb{E}(\widehat{\theta}) - \theta$$
$$= \mathbb{E}(\frac{1}{n} \sum_{i} Y_{i}) - \theta$$
$$= \theta - \theta = 0$$

Now, $\widehat{\theta} = \frac{1}{n} \sum Y_i$ where $Y_i \sim \text{Bernoulli}(\theta)$. Hence, $\sum_{i=1}^n Y_i \sim \text{Binominal}(n, \theta)$.

$$\operatorname{Var}(\widehat{\theta}) = \frac{1}{n^2} \operatorname{Var}(\sum Y_i)$$
$$= \frac{1}{n^2} n\theta (1 - \theta)$$
$$= \frac{\theta (1 - \theta)}{n}$$

(e) Show that $\widehat{\theta}$ is consistent. $MSE = bias^2(\widehat{\theta}) + Var(\widehat{\theta}) = \frac{\theta(1-\theta)}{n}$ $\lim MSE = 0$. Hence, $\widehat{\theta}$ is consistent.

2. Probability.

Let X_1, \ldots, X_n be iid and assume that $-1 \le X_i \le 1$. Also assume that X_i has mean 0.

(a) Use Hoeffding's inequality to show that $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ is close to 0 with high probability.

For X with mean 0, and bounded between [-1,1], Hoeffding's inequality says that

$$P(|\overline{X}_n| > \epsilon) \le 2exp(\frac{-2n^2\epsilon^2}{\sum_{i=1}^n 4})$$

Thus,

$$P(|\overline{X}_n| > \epsilon) \le 2exp(-n\epsilon^2/2)$$

If you assume that ϵ is fixed, then clearly, this probability is going down to 0 exponentially fast in n, and thus as $n \to \infty$, \overline{X}_n is close to 0 with high probability.

However, usually, as n increases, we expect that our estimate \overline{X}_n will get more accurate, and thus, we expect that as n increases, ϵ reduces, i.e. accuracy increases.

Let δ be the probability of error, i.e

$$P(|\overline{X}_n| > \epsilon) \le 2exp(-n\epsilon^2/2) = \delta$$

Then, with high probability $1 - \delta$, \overline{X}_n is close to zero, when ϵ is chosen as a function of n and δ as

$$2exp(-n\epsilon^2/2) = \delta$$

$$2exp(-n\epsilon^{2}/2) = \delta$$

$$\epsilon = (\frac{2}{n}\log(\frac{2}{\delta}))^{\frac{1}{2}}$$

This allows us to claim that \overline{X}_n is close to zero with high probability $1 - \delta$ even when ϵ reduces as a function of n.

(b) Show that there exists c such that

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \stackrel{P}{\to} c$$

and find c.

Let $Y = X^2$. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \frac{1}{n} \sum_{i=1}^{n} Y_i \xrightarrow{P} E(Y) = E(X^2) = Var(X) + [E(X)]^2 = Var(X)$$

- (c) Say whether the following statements are true or false and explain why.
 - i. $\overline{X}_n = o(1)$.

FALSE. X_n converges in probability to 0, but this is not convergence everywhere. Specifically, we can construct a series of $X_1, ... X_n$ whose sample mean does not go to zero as $n \to \infty$.

ii. $\overline{X}_n = o_P(1)$.

TRUE. \overline{X}_n converges in probability to 0, by Hoeffding's inequality.

iii. $\overline{X}_n = o_P(n)$.

TRUE. $\overline{X}_n = o_P(1)$ implies $\overline{X}_n = o_P(n)$

iv. $\overline{X}_n = o_P(\underline{1}/n)$.

FALSE. $n\overline{X}_n = \sum_i X_i$ which is not bounded in probability.

v. $\overline{X}_n = O_P(n^{-1/2})$.

TRUE. Central Limit Theorem

vi. $\overline{X}_n = O_P(n^{-1})$.

FALSE. No known result that says this.

3. This question will help you explore the differences between Bayesian and frequentist inference. Let X_1, \ldots, X_n be a sample from a multivariate Normal distribution with mean $\mu = (\mu_1, \ldots, \mu_p)^T$ and covariance matrix equal to the identity matrix I. Note that each X_i is a vector of length p.

The following facts will be helpful. If Z_1, \ldots, Z_k are independent N(0,1) and a_1, \ldots, a_k are constants, then we say that $Y = \sum_{j=1}^p (Z_j + a_j)^2$ has a non-central χ^2 distribution with k degrees of freedom and noncentrality parameter $||a||^2$. The mean and variance of Y are $k + ||a||^2$ and $2k + 4||a||^2$.

(a) Find the posterior under the improper prior $\pi(\mu) = 1$.

$$\begin{split} \pi(\mu|X) &\propto \prod_{i=1}^n P(X_i|\mu)\pi(\mu) \\ &\propto \prod_{i=1}^n \exp\left(-\frac{1}{2}(X_i-\mu)^T(X_i-\mu)\right) \\ &= \prod_{i=1}^n \exp\left(-\frac{1}{2}\left(X_i^TX_i-2X_i^T\mu+\mu^T\mu\right)\right) \\ &= \exp\left(-\frac{1}{2}\left(\sum_{i=1}^n X_i^TX_i-2\sum_{i=1}^n X_i^T\mu+n\mu^T\mu\right)\right) \\ &= \exp\left(-\frac{1}{2}n\left(\frac{1}{n}\sum_{i=1}^n X^TX-2\bar{X}\mu+\mu^T\mu\right)\right) \\ &\text{completing the square around } \mu \\ &= \exp\left(-\frac{1}{2}n\left((\mu-\bar{X})^T(\mu-\bar{X})+\frac{1}{n}\sum_{i=1}^n X^TX-\bar{X}^T\bar{X}\right)\right) \\ &\propto \exp\left(-\frac{1}{2}\left((\mu-\bar{X})^Tn(\mu-\bar{X})\right)\right) \\ &\sim N(\bar{X},\frac{1}{n}I) \end{split}$$

(b) Let $\theta = \sum_{j=1}^p \mu_j^2$. Our goal is to learn θ . Find the posterior for θ . Express your answers in terms of noncentral χ^2 distributions. Find the posterior mean $\widetilde{\theta}$. We have

$$\theta = \sum_{i=1}^{p} \mu_i^2$$

We also have $\mu_i | X \sim N(\bar{X}_i, \frac{1}{n})$ implies $(\sqrt{n}\mu_i) | X \sim N(\sqrt{n}\bar{X}_i, 1) = Z_i + \sqrt{n}\bar{X}_i$

$$\theta = \frac{1}{n} \sum_{i=1}^{p} (\sqrt{n}\mu_i)^2$$

$$= \frac{1}{n} \sum_{i=1}^{p} (Z_i + \sqrt{n}\bar{X}_i)^2$$

$$n\theta = \sum_{i=1}^{p} (Z_i + \sqrt{n}\bar{X}_i)^2$$

Then $n\theta$ is distributed as a noncentral χ^2 distribution with p degrees of freedom and non-central parameter $n \left\| \bar{X} \right\|^2$

the mean of $n\theta$ is $p+n\left\|\bar{X}\right\|^2$. Therefore $\widetilde{\theta}=\frac{p+n\left\|\bar{X}\right\|^2}{n}=\frac{p}{n}+\left\|\bar{X}\right\|^2$

(c) The usual frequentist estimator is $\widehat{\theta} = ||\overline{X}_n||^2 - p/n$. Show that, for any n,

$$\frac{\mathbb{E}_{\mu}|\theta - \widetilde{\theta}|^2}{\mathbb{E}_{\mu}|\theta - \widehat{\theta}|^2} \to \infty$$

as $p \to \infty$.

Lets consider the bias of $\widehat{\theta}$.

$$E(\widehat{\theta}) - \theta = E(|\bar{X}_n|^2) - \frac{p}{n} - \theta$$

$$= \sum E(\bar{X}_i^2) - \frac{p}{n} - \theta$$

$$= \sum \left(Var(\bar{X}_i) - E(\bar{X}_i)^2\right) - \frac{p}{n} - \theta$$

$$= \sum \left(\frac{1}{n} - u_i^2\right) - \frac{p}{n} - \theta$$

$$= \frac{p}{n} + \sum u_i^2 - \frac{p}{n} - \theta$$

$$= 0$$

From this, we can also tell that the bias of $\widetilde{\theta} = 2\frac{p}{n}$

Lets consider the variance of $\widehat{\theta}$. First we note that the $Variance(\widehat{\theta}) = Variance(\widehat{\theta})$

$$Variance(\widetilde{\theta}) = Variance(|\bar{X}_n|^2)$$

$$= Variance(\sum \bar{X}_i^2)$$

$$(\bar{X}_i's \text{ are independent})$$

$$= \sum_{i=1}^p Variance(\bar{X}_i^2)$$
(since X has a covariance matrix of I)
(all terms have the same variance)
$$= p \times (Variance(\bar{X}_1^2))$$

We note that $Variance(\bar{X}_1^2)$ is independent of p (whatever it really is). and we let this value be k, therefore writing $Variance(\widetilde{\theta}) = Variance(\widehat{\theta}) = pk$.

Therefore $\widehat{\theta}$ is an unbiased estimator

$$\begin{split} \lim_{p \to \infty} \frac{E|\theta - \widetilde{\theta}|^2}{E|\theta - \widehat{\theta}|^2} &= \lim_{p \to \infty} \frac{Variance(\widetilde{\theta}) + Bias(\widetilde{\theta})^2}{Variance(\widehat{\theta}) + Bias(\widehat{\theta})^2} \\ &= \lim_{p \to \infty} \frac{pk + 4\frac{p^2}{n^2}}{pk} \\ &= \lim_{p \to \infty} \frac{k + 4\frac{p}{n^2}}{k} \\ &= \lim_{p \to \infty} 1 + 4\frac{p}{n^2k} \\ &= \infty \end{split}$$

(d) Repeat the analysis with a $N(0, \tau^2 I)$ prior.

$$\pi(\mu) \sim N(0, \tau^2 I)$$

$$\pi(\mu|X) \propto \prod_{i=1}^{n} P(X_{i}|\mu)\pi(\mu)$$

$$\propto exp\left(-\frac{1}{2}\frac{1}{\tau^{2}}\mu^{T}\mu\right) \prod_{i=1}^{n} exp\left(-\frac{1}{2}(X_{i}-\mu)^{T}(X_{i}-\mu)\right)$$

$$= exp\left(-\frac{1}{2}\frac{1}{\tau^{2}}\mu^{T}\mu\right) \prod_{i=1}^{n} exp\left(-\frac{1}{2}\left(X_{i}^{T}X_{i}-2X_{i}^{T}\mu+\mu^{T}\mu\right)\right)$$

$$= exp\left(-\frac{1}{2}\left(\sum_{i=1}^{n} X_{i}^{T}X_{i}-2\sum_{i=1}^{n} X_{i}^{T}\mu+(n+\frac{1}{\tau^{2}})\mu^{T}\mu\right)\right)$$

$$\propto exp\left(-\frac{1}{2}\left(n+\frac{1}{\tau^{2}}\right)\left(\mu^{T}\mu-2\left(\frac{n}{n+\tau^{-2}}\right)\bar{X}\mu\right)\right)$$
completing the square around μ

$$= exp\left(-\frac{1}{2}\left(n+\frac{1}{2}\right)\left(\mu-\frac{n\bar{X}}{1+\tau^{2}}\right)^{T}\left(\mu-\frac{n\bar{X}}{1+\tau^{2}}\right)\right)$$

$$= exp\left(-\frac{1}{2}\left(n + \frac{1}{\tau^2}\right)\left(\mu - \frac{n\bar{X}}{n + \tau^{-2}}\right)^T\left(\mu - \frac{n\bar{X}}{n + \tau^{-2}}\right)\right)$$
$$\sim N\left(\frac{n\bar{X}}{n + \tau^{-2}}, \frac{\tau^2}{n\tau^2 + 1}I\right)$$

Using the same argument, $\widetilde{\theta}' = \frac{\tau^2}{n\tau^2+1} \left(p + \frac{n^2\tau^2}{n\tau^2+1} \left\| \bar{X} \right\| \right)$

Continuing from 3c,

Now, we have $Variance(\widetilde{\theta}') = (\frac{n\tau^2}{n\tau^2+1})^4 pk$.

And

$$\begin{split} Bias(\widetilde{\theta}') &= E(\widetilde{\theta}') - \theta \\ &= \frac{\tau^2}{n\tau^2 + 1} p + \frac{n\tau^4}{(n\tau^2 + 1)^2} p + \left[\left(\frac{n\tau^2}{n\tau^2 + 1} \right)^2 - 1 \right] \theta \end{split}$$

$$\lim_{p \to \infty} \frac{E|\theta - \widetilde{\theta}'|^2}{E|\theta - \widehat{\theta}|^2} = \lim_{p \to \infty} \frac{Variance(\widetilde{\theta}') + Bias(\widetilde{\theta}')^2}{Variance(\widehat{\theta}) + Bias(\widehat{\theta})^2}$$
$$= \infty$$

(e) Set n=10, p=1000, $\mu=(0,\ldots,0)^T$. Simulate (in R) data N times, with N=1000. Draw a histogram of the Bayes estimator (with flat prior) and the frequentist estimator. (R code for this question can be found on the web site.)

Histogram of out\$freq

Histogram of out\$bayes

(f) Interpret your findings.

The Bayes estimator and the frequentist estimator are extremely far apart. The true value of θ should be $\theta = 0$, but the Bayes estimator was unable to obtain that. As we calculated, the Bayes estimator has a bias of $\frac{2p}{n}$ which matches the plot.

4. Minimaxity and Bayes.

Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$. In what follows we use squared error loss.

(a) Find the mle \widehat{p} . Find the bias, variance and risk (mean squared error) $R(p,\widehat{p})$ of \widehat{p} . From question 1, we know that $\widehat{p} = \overline{X}_n$.

Bias
$$= p - E(\overline{X}_n) = 0$$

Variance
$$=\frac{1}{n^2}\sum_{i}Var(X_i)=\frac{p(1-p)}{n}$$

Risk = Variance + Bias² =
$$\frac{p(1-p)}{n}$$

(b) Recall that a Beta(α, β) density has the form

$$\pi(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1} \propto p^{\alpha - 1} (1 - p)^{\beta - 1}.$$

Let p have a Beta(v,v) prior. Find the Bayes estimator \overline{p} . Find the bias, variance and risk $R(p, \overline{p})$ of \overline{p} .

Since the Beta distribution is conjugate prior for Bernoulli, the posterior

$$p|X \sim Beta(n\overline{X}_n + v, n - n\overline{X}_n + v)$$

The Bayes Estimator \overline{p} is the mean of the posterior distribution. Thus,

$$\overline{p} = \frac{n\overline{X}_n + v}{n + 2v}$$

Bias
$$= E(\frac{n\overline{X}_n + v}{n + 2v}) - p = \frac{np + v}{n + 2v} - p = \frac{v(1 - 2p)}{n + 2v}$$

$$\text{Variance } = Var(\frac{n\overline{X}_n + v}{n + 2v}) = \frac{n^2}{(n + 2v)^2} Var(\overline{X}_n) + 0 = \frac{np(1 - p)}{(n + 2v)^2}$$

Risk = Variance + Bias² =
$$\frac{v^2(1-2p)^2 + np(1-p)}{(n+2v)^2}$$

(c) Show that $R(p, \overline{p})$ is contant (as a function of p) if v is chosen appropriately. Since \overline{p} is a Bayes estimator and has constant risk, it is the minimax estimator.

$$R(p, \overline{p}) = \frac{v^2(1-2p)^2 + np(1-p)}{(n+2v)^2}$$

Substitue $v = \sqrt{(n/4)}$ to get

$$R(p, \overline{p}) = \frac{n/4(1 - 4p + 4p^2) + np(1 - p)}{(n + 2\sqrt{n}/2)^2}$$

$$R(p,\overline{p}) = \frac{n/4 - np + np^2 + np - np^2}{(n + \sqrt{n})^2}$$
$$R(p,\overline{p}) = \frac{n}{4(n + \sqrt{n})^2}$$

which is a constant (as a function of p), thus, \overline{p} is the minimax estimator.