Riemannian Multinomial Logistics Regression for SPD **Neural Networks**

- CVPR 2024 -

Ziheng Chen¹, Yue Song¹, Gaowen Liu², Ramana Rao Kompella², Xiaojun Wu³, Nicu Sebe¹

1 University of Trento, Italy 2 Cisco Systems, USA 3 Jiangnan University, China

Applications of SPD Manifolds

Huang et al., 2019

Medical Imaging

Chakraborty et al., 2020

Action Recognition

Nguyen, Xuan Son 2021

Brain-Computer Interfaces

Ju et al., 2024

Radar Classification

Brooks et al., 2020

Huang, Zhiwu, Jiqing Wu, and Luc Van Gool. "Manifold-valued image generation with wasserstein generative adversarial nets." AAAI, 2019. Chakraborty, Rudrasis, et al. "Manifoldnet: A deep neural network for manifold-valued data with applications." IEEE-TPAMI, 2020.

Ju, Ce, et al. "Deep geodesic canonical correlation analysis for covariance-based neuroimaging data." ICLR, 2024.

Nguyen, Xuan Son. "Geomnet: A neural network based on riemannian geometries of SPD matrix space and cholesky space for 3D skeleton-based interaction recognition." ICCV, 2021. Brooks, Daniel, et al. "Deep learning and information geometry for drone micro-Doppler radar classification." RadarConf, 2020.

Classification on SPD Neural Networks

Tangent Space:

SPDNet (Huang et al., 2017)

TSMNet (Kobler et al., 2022)

Parameterization:

$$\begin{split} \left(Y_{t} &= \mathsf{FM}\left(\left\{M_{t-1}^{(\alpha)}\right\}, \left\{w^{(y,\alpha)}\right\}\right), \quad R_{t} &= \mathsf{T}\left(Y_{t}, g^{(r)}\right) \\ &\qquad \qquad T_{t} &= \mathsf{FM}\left(\left\{R_{t}, X_{t}\right\}, w^{(t)}\right), \quad \Phi_{t} &= \mathsf{T}\left(T_{t}, g^{(p)}\right) \\ &\qquad \qquad \forall \alpha \in J \;, \quad M_{t}^{(\alpha)} &= \mathsf{FM}\left(\left\{M_{t-1}^{(\alpha)}, \Phi_{t}\right\}, \alpha\right) \\ &\qquad \qquad S_{t} &= \mathsf{FM}\left(\left\{M_{t}^{(\alpha)}\right\}, \left\{w^{(s,\alpha)}\right\}\right), \quad O_{t} &= \mathsf{Chol}\left(\mathsf{ReLU}\left(\mathsf{Chol}\left(\mathsf{T}\left(S_{t}, g^{(y)}\right)\right)\right)\right) \end{split}$$

SPD-SRU (Chakraborty et al., 2018)

They rely on approximated spaces

How to build intrinsic classification layers on manifolds?

Contributions

SPDMLR:

- A general framework for SPD Multinomial Logistics Regression (MLR) under PEMs
- Specific SPD MLRs under parameterized LCM and LEM
- An intrinsic theoretical explanation of the most popular LogEig classifier

MLR Revisiting

$$\forall k \in \{1, \dots, C\}, p(y = k \mid x) \propto \exp\left(\left(\langle a_k, x \rangle - b_k\right)\right)$$

Euclidean MLR:

Reformulation into margin distance to hyperplane

$$p(y = k \mid x) \propto \exp(\operatorname{sign}(\langle a_k, x - p_k \rangle) ||a_k|| d(x, H_{a_k, p_k}))$$
$$H_{a_k, p_k} = \{x \in \mathbb{R}^n : \langle a_k, x - p_k \rangle = 0\}$$

Gyro SPD MLR:

- Requires gyro vector structures
- Relies on gyro distance, instead of geodesic distance
- · Solves formulation case by case

Our SPD MLR:

- Focus on Pullback Euclidean Metrics (PEMs)
- Only needs Riemannian geometry
- Relies on geodesic distance
- Proposes a general formulation for PEMs

SPD MLR under PEMs

From Euclidean to SPD

$$p(y=k\mid x) \propto \exp(\operatorname{sign}(\langle a_k, x-p_k\rangle) \|a_k\| d(x, H_{a_k, p_k})) \qquad H_{a_k, p_k} = \{x \in \mathbb{R}^n : \langle a_k, x-p_k\rangle = 0\}$$

Riemannian reformulation

Definition 3.1 (SPD hyperplanes). Given $P \in \mathcal{S}_{++}^n$, $A \in T_P \mathcal{S}_{++}^n \setminus \{0\}$, we define the SPD hyperplane as

$$\tilde{H}_{A,P} = \{ S \in \mathcal{S}_{++}^n : g_P(\operatorname{Log}_P S, A) = \langle \operatorname{Log}_P S, A \rangle_P = 0 \}, \tag{12}$$

where P and A are referred to as shift and normal matrices, respectively.

Definition 3.2 (SPD MLR). SPD MLR is defined as

$$p(y = k \mid S) \propto \exp(\operatorname{sign}(\langle A_k, \operatorname{Log}_{P_k}(S) \rangle_{P_k}) \|A_k\|_{P_k} d(S, \tilde{H}_{A_k, P_k})), \tag{13}$$

where $P_k \in \mathcal{S}^n_{++}$, $A_k \in T_{P_k}\mathcal{S}^n_{++}\setminus\{\mathbf{0}\}$, $\langle\cdot,\cdot\rangle_{P_k}=g_{P_k}$, and $\|\cdot\|_{P_k}$ is the norm on $T_{P_k}\mathcal{S}^n_{++}$ induced by g at P_k , and \tilde{H}_{A_k,P_k} is a margin hyperplane in \mathcal{S}^n_{++} as defined in Eq. (12). $d(S,\tilde{H}_{A_k,P_k})$ denotes the margin distance between S and SPD hyperplane \tilde{H}_{A_k,P_k} , which is formulated as:

$$d(S, \tilde{H}_{A_k, P_k})) = \inf_{Q \in \tilde{H}_{A_k, P_k}} d(S, Q), \tag{14}$$

where d(S, Q) is the geodesic distance induced by g.

Proposition 3.3 (Submanifolds). *The SPD hyperplane (as defined in Eq.* (12)) under any geometrically complete Riemannian metric g is a regular submanifold of SPD manifolds.

SPD MLR under PEMs

Margin distance and MLR

Margin distance:

Lemma 3.5. Given a PEM g, the margin distance defined in Eq. (14) has a closed-form solution:

$$d(S, \tilde{H}_{A_k, P_k})) = d(\phi(S), H_{\phi_{*, P_k}(A_k), \phi(P_k)}), \tag{15}$$

$$=\frac{\left|\left\langle\phi(S)-\phi(P_k),\phi_{*,P_k}(A_k)\right\rangle\right|}{\|A_k\|_{P_k}},\tag{16}$$

where $|\cdot|$ is the absolute value.

Optmization:

Lemma 3.6. Given a PEM, any parallel transportation is equivalent to the differential map of a left translation and vice versa.

Lemma 3.7. Given two fixed SPD matrices $Q_1, Q_2 \in \mathcal{S}_{++}^n$, we have the following equivalence for parallel transportations under a PEM,

$$\forall \tilde{A}_{1,k} \in T_{Q_1} \mathcal{S}_{++}^n, \exists ! \tilde{A}_{2,k} \in T_{Q_2} \mathcal{S}_{++}^n,$$

$$s.t. \Gamma_{Q_1 \to P_k}(\tilde{A}_{1,k}) = \Gamma_{Q_2 \to P_k}(\tilde{A}_{2,k}).$$

$$(18)$$

General formulation:

Theorem 3.8 (SPD MLR under a PEM). Under any PEM, SPD MLR and SPD hyperplane is

$$p(y = k \mid S) \propto \exp(\langle \phi(S) - \phi(P_k), \phi_{*,I}(\tilde{A}_k) \rangle), \tag{19}$$

$$\tilde{H}_{\tilde{A}_{k},P_{k}} = \{ S \in \mathcal{S}_{++}^{n} : \langle \phi(S) - \phi(P_{k}), \phi_{*,I}(\tilde{A}_{k}) \rangle = 0 \}, \tag{20}$$

where $\tilde{A}_k \in T_I \mathcal{S}_{++}^n / \{0\} \cong \mathcal{S}^n / \{0\}$ is a symmetric matrix, and $P_k \in \mathcal{S}_{++}^n$ is an SPD matrix.

MLR on the parameterized LEM and LCM

Corollary 4.1 (SPD MLRs under the deformed LEM and LCM). The SPD MLRs under (α, β) -LEM is

$$p(y = k \mid S) \propto \exp\left[\langle \text{mlog}(S) - \text{mlog}(P_k), \tilde{A}_k \rangle^{(\alpha, \beta)}\right],$$
 (21)

where $\tilde{A}_k \in T_I \mathcal{S}_{++}^n \cong \mathcal{S}^n$ and $P_k \in \mathcal{S}_{++}^n$. The SPD MLRs under (θ) -LCM is

$$p(y = k \mid S) \propto \exp\left[\frac{1}{\theta} \langle \lfloor \tilde{K} \rfloor - \lfloor \tilde{L}_k \rfloor + \left[\operatorname{Dlog}(\mathbb{D}(\tilde{K})) - \operatorname{Dlog}(\mathbb{D}(\tilde{L}_k)) \right], \lfloor \tilde{A}_k \rfloor + \frac{1}{2} \mathbb{D}(\tilde{A}_k) \rangle \right], \tag{22}$$

where $\tilde{K} = \operatorname{Chol}(S^{\theta})$, $\tilde{L}_k = \operatorname{Chol}(P_k^{\theta})$, and $\mathbb{D}(\tilde{A}_k)$ denotes a diagonal matrix with diagonal elements of \tilde{A}_k .

Visualization of SPD hyperplane

Figure 1. Conceptual illustration of SPD hyperplanes induced by (α,β) -LEM and (θ) -LCM. In each subfigure, the black dots are symmetric positive semi-definite (SPSD) matrices, denoting the boundary of \mathcal{S}_{++}^2 , while the blue, red, and yellow dots denote three SPD hyperplanes.

An Intrinsic explanantion for LogEig MLR

SPDNet (Huang et al., 2017) TSMNet (Kobler et al., 2022)

Proposition 5.1. Endowing SPD manifolds with the standard LEM, optimizing SPD parameter P_k in Eq. (21) by LEM-based RSGD and Euclidean parameter A_k by Euclidean SGD, the LEM-based SPD MLR is equivalent to a LogEig MLR with parameters in FC layer optimized by Euclidean SGD.

LogEig MLR respects a Riemannian MLR

Experiments

Backbone	Classifier	[20,16,8]	[20,16,14,12,10,8]
SPDNet	LogEig MLR Gyro-AIM	92.88±1.05 94.53±0.95	93.47±0.45 94.32±0.94
	(1,0)-LEM (1,1)-LEM	93.55±1.21 95.64±0.83	94.60±0.70 95.87±0.58
	(1)-LCM (0.5)-LCM	93.49±1.25 94.59±0.82	93.93±0.98 95.16±0.67

Table 3. Results of SPDNet with different classifiers on the Radar dataset.

Backbone	Classifier	Inter-session	Inter-subject
SPDDSMBN	LogEig MLR Gyro-AIM	53.83±9.77 53.36±9.92	49.68±7.88 50.65±8.13
	(1,0)-LEM	53.16±9.73	51.41±7.98
	(1)-LCM (1.5)-LCM	55.71±8.57 56.43±8.79	51.60±8.43 51.65±5.90

Table 5. Results of SPDDSMBN with different classifiers on the Hinss2021 dataset under inter-subject and inter-session scenarios. The presented results are the ones of balanced accuracy under the leaving 5% out cross-validation scenario.

Backbone	Classifier	[93,30]	[93,70,30]	[93,70,50,30]
	LogEig MLR Gyro-AIM	57.42±1.31 58.07±0.64	60.69±0.66 60.72±0.62	60.76±0.80 61.14±0.94
SPDNet	(1,0)-LEM	57.02±0.75	61.34±0.62	60.78±0.86
	(1)-LCM (0.5)-LCM	62.04±1.05 65.66±0.73	62.11±2.11 65.79±0.63	62.89±2.09 65.71±0.75

Table 4. Results of SPDNet with different classifiers on the HDM05 dataset.

			Hinss	Hinss2021	
Methods	Radar	HDM05	inter-session	inter-subject	
Baseline	1.36	1.95	0.18	8.31	
MLR-Gyro-AIM	1.75	31.64	0.38	13.3	
MLR-LEM	1.5	4.7	0.24	10.13	
MLR-LCM	1.35	3.29	0.18	8.35	

Table 6. Comparison of training efficiency (s/epoch) of SPDNet (SPDDSMBN) under different classifiers. The most efficient MLR is highlighted in **bold**.

Thanks you Q & A

Paper

Homepage