Implementação do Método Simplex

Bruno Sesso 8536002 Gustavo Estrela de Matos 8536051

15 de Junho de 2015

1 Introdução

1.1 Apresentação do problema

Os problemas de Programação Linear (PL) são casos específicos de otimização combinatória em que a função objetivo e as restrições são ambos lineares. Portanto a função objetivo é da forma c^Tx e as restrições são da forma $a_i^Tx \geq b_i$ ou $a_i^Tx \leq b_i$, com $c, x, a_i \in \mathbb{R}^n$ e $b_i \in \mathbb{R}$.

Multiplicando por -1 todas as restrições da forma $a_i^T x \ge b_i$, podemos escrever qualquer PL como:

$$\begin{array}{ll} \text{minimizar} & c^Tx \\ \text{sujeito a} & Ax \leq b, \\ & A \in R^{m \times n} \text{ e } b \in \mathbb{R}^m. \end{array}$$

Também é possível mostrar que qualquer PL pode ser escrito na forma:

Se for escrito dessa maneira, dizemos que o problema está no formato padrão. Adotaremos esse formato durante todo o trabalho.

Se vale que $Ax^1=b$ e $x^1\geq 0$ dizemos que x^1 é um ponto viável. O conjunto $P=\{x|Ax=b,x\geq 0\}$ de todos os pontos viáveis é chamado conjunto viável.

Uma solução ótima do problema é um ponto $x^1 \in P$ que minimiza 1 a função objetivo c. Se x^1 existe, dizemos que o custo ótimo é c^Tx . Se x^1 não existe, ou não existem pontos viáveis ($P = \emptyset$), ou podemos diminuir o custo o quanto quisermos e dizemos que o custo ótimo é $-\infty$.

1.2 Objetivos do trabalho

Neste trabalho, temos o objetivo de desenvolver, na linguagem Octave, o algoritmo simplex para resolver problemas de Programação Linear.

¹Se o interesse for maximizar c^Tx , podemos simplismente conseguir um problema equivalente em que o objetivo seja minimizar $-c^Tx$.

2 Conceitos fundamentais

Antes de introduzirmos o funcionamento do nosso algoritmo, precisamos definir alguns conceitos que são fundamentais para garantir sua corretude.

Seja o nosso problema de Programação Linear o seguinte:

$$\begin{array}{ll} \text{minimizar} & c^Tx \\ \text{sujeito a} & Ax = b \\ & x \geq 0 \\ & \text{com} & c, x \in \mathbb{R}^n, \, A \in \mathbb{R}^{m \times n} \text{ e } b \in \mathbb{R}^m. \end{array}$$

Além disso, vamos usar a notação a_i para a i-ésima linha de A e A_i para a i-ésima coluna de A.

2.1 Restrições e degenerecência

Uma restrição $a_i^Tx \geq b_i$ (ou $a_i^Tx \leq b_i$), com $a_i \in \mathbb{R}^n$ e $b_i \in \mathbb{R}$, é uma restrição ativa em um ponto $x^1 \in \mathbb{R}^n$ se $a_i^Tx^1 = b_i$. Uma restrição de igualdade é sempre ativa. Um conjunto de restrições será dito LI se os vetores a_i correspondentes forem LI.

Diremos que x^1 uma solução viavel básica é *degenerada* se existem mais de n restrições ativas LI nesse ponto. Como as m restrições de igualdade são sempre cumpridas, temos que as soluções básicas degeneradas possuem mais do que n-m componentes nulas, enquanto que as não degeneradas possuem exatamente n-m.

2.2 Soluções Viáveis Básicas

Dizemos que um ponto $x \in \mathbb{R}^n$ do conjunto viável P é uma solução viável básica, se existem n restrições ativas em x que são LI. Note que para problemas no formato padrão, existem sempre m restrições ativas LI vindas de Ax = b, e as outras n - m vem, necessariamente de $x \ge 0$. Portanto, uma solução viável básica possui ao menos n - m componentes nulas.

Se x^1 é uma solução básica não degenerada e seja B(1),...,B(m) os índices das componentes não nulas de x. A matriz $B = \begin{bmatrix} A_{B(1)},...,A_{B(m)} \end{bmatrix}$ é chamada *matriz básica* associada a x^1 .

Se o conjunto P tem uma solução viável básica, então ou o custo ótimo é $-\inf$ ou existe $x^1 \in P$ solução viável básica que é ótimo, ou seja, o custo de qualquer ponto do conjunto viável é maior ou igual do que o custo de x^1 . Portanto, na solução de um PL com ao menos uma solução viável básica, podemos limitar a esses elementos a nossa busca por um ponto de custo ótimo [1].

2.3 Direções básicas

Se x^1 é um solução viável básica de P, com índices básicos B(1),...,B(m). Dizemos que $d \in \mathbb{R}^n$, tal que $d_j = 1$, Ad = 0 $(A(x + \theta d) = b)$ e $d_i = 0$ para todo $i \notin \{B(1),...,B(m)\}$, é a j-ésima direção básica partindo de x^1 . Seja $d_B = \begin{bmatrix} d_{B(1)},...,d_{B(m)} \end{bmatrix}$, como $A(x + \theta d) = b$, temos que $d_B = -B^{-1}A_j$. Usaremos $u = -d_B = B^{-1}A_j$ por facilidade de notação, durante o trabalho.

A figura 2.3 dá um exemplo de direções básicas, di e dj a partir de uma solução viável básica x^1 . Note que o poliedro pode ou não limitar um θ tal que o ponto $y = x^1 + \theta * d$ (d direção básica) seja viável, e como veremos em 2.5 isso pode implicar em custo $-\infty$ se nessa direção o custo diminui.

2.4 Custos reduzidos

Seja x^1 uma solução viável básica, B a matriz básica associada e $c_B = [c_{B(1)}, ..., c_{B(m)}]$. Definimos, para cada $j \in \{1, ..., n\}$ o custo reduzido:

$$\overline{c}_i = c_i - c_B^T B^{-1} A_i.$$

Seja x^1 uma solução viável básica e \overline{c} o vetor de custos reduzidos correspondente. Sabemos que se $\overline{c} \geq 0$, então x^1 é ótimo. Além disso, se x^1 for ótimo e não degenerado, então $\overline{c} \geq 0$ [1]. Portanto, se estivermos em uma solução viável básica e $\overline{c} \geq 0$, então estamos em um ponto ótimo.

Note que ao escolhermos uma direção viável básica, o custo de um ponto $y=x^1+\theta d_j$ é $c^T(x^1+\theta d_j)=c^Tx^1+\theta(c_j-c_B^TB^{-1}A_j)=c^Tx^1+\theta\overline{c}.$ Portanto, podemos dizer que o custo reduzido representa a variação do custo ao percorrer uma direção básica.

2.5 Soluções Viáveis Básicas adjacentes

Seja x^1 uma solução viável básica com índices básicos B(1),...,B(m). Uma solução viável básica é *adjacente* a x^1 se compartilha m-1 índices com x^1 . Para achar uma solução viável básica adjacente, vamos usar as direções básicas, pois elas forçam o crescimento de uma variável j nãobásica, mantendo Ax=b e $x\geq 0$. Veremos que para um $\theta\geq 0$, o ponto $x^1+\theta d_j$ é solução viável básica adjacente a x^1 , com d_j como foi definido em 2.4.

Vamos tomar $\theta = \min_{i=1,\dots,m|u_i>0} \{x_{B(i)}/u_i\}$ e ver que $x^2 = x^1 + \theta d_j$ é de fato uma solução viável básica adjacente a x^1 . Caso todas as componentes de u_i sejam menores ou igual a zero e o custo reduzido na direção j menor do que zero teremos que o problema tem custo ótimo $-\infty$, como será explicado a seguir.

Se θ definido acima não existe, temos que todas as componentes de u_i são menores ou igual a zero $(d \geq 0)$, logo qualquer ponto $x^2 = x^1 + \theta d$ é viável com $\theta \geq 0$, pois a restrição $Ax^2 = b$ é verificada (por construção), e $x_j^2 = x_j^1 + \theta \geq x_j^1 \geq 0$, e para i básico $x_j^2 = x_j^1 + \theta d_j \geq x_j^1 \geq 0$. Se ainda tivermos que o custo diminui nessa direção, poderemos diminuir o custo o quanto quisermos e a solução do problema será $-\infty$.

Se $\theta \in \mathbb{R}$, como $d_i = 0 \ \forall i \in \{B(1),...,B(m)\}, i \neq j$, temos que para essas mesmas componentes x^2 é nulo. Logo, temos n-1 restrições ativas LI em x^2 . Suponha que para $l \in \{1,..,m\}$ vale que $\theta = x_{B(l)}/u_l$, então $x_{B(l)}^2 = x_{B(l)}^1 + (-x_B^1(l)/d_{B(l)})*d_{B(l)} = 0$ (diremos que B(l) sai da base), logo existem n restrições ativas LI em x^2 . Além disso, por construção, vale que Ax = b e $x \geq 0$ para variáveis não básicas e para $x_B(l)$. Para B(k) básico diferente de B(l), temos que $x_B^2(k) \geq x_{B(k)}^1 + (-x_B^1(k)/d_{B(k)}) *d_{B(k)} = 0$.

Portanto x^2 é solução viável básica adjacente a x^1 e, como a base de x^2 é $\{B(1),...,B(l-1),j,B(l+1),...,B(m)\}$, x^2 é adjacente a x^1 .

3 Fase 1 do simplex

Para iniciar a fase 2 do algoritmo simplex precisamos de uma solução viável básica x^1 , a sua base associada e a inversa da matriz básica. Nesta seção explicaremos o funcionamento da fase 1 do método simplex, responsável por descobrir estes parâmetros.

Para descobrir esses parâmetros vamos criar um problema auxiliar de programação linear:

$$\begin{array}{ll} \text{minimizar} & \sum_{i=1}^m y_i \\ \text{sujeito a} & \left[\begin{array}{c|c} A & I \end{array} \right] \left[\frac{x}{y} \right] \leq b, \\ \text{com} & A \in R^{m \times n}; \, b, y \in \mathbb{R}^m; \, I \in \mathbb{R}^{m \times m} \\ & x, y \geq 0 \end{array}$$

Chamaremos as variáveis de y aritificiais, e a matriz $[A \mid I]$ de \overline{A} .

Note que o ponto [0,...,0][b] é uma solução viável básica do problema auxiliar, assumindo $b \geq 0$, com índices básicos n+1,...,n+m e matrix básica B=I. Portanto, temos os parametros necessários para embalar a fase 2 do simplex para o problema auxiliar.

Assumimos no último parágrafo que $b \ge 0$. É fácil verificar que isso não implica em uma perda de generalidade, pois, se $b_i < 0$, basta multiplicar a i-ésima restrição por -1.

3.1 Custo ótimo do problema auxiliar e viabilidade do problema original

Observe que qualquer ponto viável do problema tem custo maior ou igual a zero. Além disso, se existe uma solução viável x^1 do problema original, o ponto $[x^1|0,...,0]$ é uma solução viável com custo zero, portanto com custo ótimo. Sendo assim, temos que se o problema original possui solução viável, então o problema auxiliar tem custo ótimo igual a zero. Na contra-positiva, se acharmos uma solução ótima para o problema auxiliar com custo diferente de zero, então o problema original é inviável.

3.2 Solução do problema auxiliar

Como o custo do problema auxiliar é sempre maior ou igual a zero, o custo ótimo nunca será $-\infty$, portanto a fase 2 sempre descobrirá alguma solução viável básica ótima. Se o custo dessa solução for maior que zero, o problema original é inviável, como explicado na seção 3.1. Se o custo for zero, a solução do problema auxiliar [x|y] = [x|0,...,0] também será uma solução do problema original.

Porém, mesmo que [x|0,...,0] seja uma solução viável básica do problema original, é possível que a base dada pela fase 2 do problema auxiliar tenha índices das variáveis artificiais, que serão eliminadas para iniciar a fase 2 para o problema original. Veremos na proxima seção como remover os índices ariticiais da base.

3.3 Remoção de índices artificiais da base

Suponha que temos um índice l>m aritificial que esteja na base. Queremos tirá-lo da base e adicionar um índice $j\leq m$ na base. Veremos agora, como descobrir tal índice e como mudar a base.

Suponha, sem perca de generalidade, que apenas os k < m primeiros indices básicos não são de variáveis artificiais. Para o índice j na base, devemos garantir que A_j é LI com $\{A_{B(1)},...,A_{B(k)}\}$. Suponha que a matriz básica é B e que queremos remover a l-ésima variável da base, por ser atificial. Veja que $B^{-1}A_{B(i)}=e_i$ para $1 \le i \le k$, portanto, basta escolher j não artificial tal que $(B^{-1}A_j)_l=A_j \ne 0$ e teremos garantia de que estamos escolhendo uma coluna LI para formar a base.

Se não ouver j como descrito acima, teremos que $(B^{-1}A_j)l=0$ para todo $1 \le j \le m$. Veja que se g^T é a l-ésima linha de B^{-1} , então $g^TA=0$, ou seja, $g_1a_1+\ldots+g_ma_m=0$, portanto as linhas de A são LD e podemos então, eliminar a l-ésima linha de A do nosso problema [1].

Quando removemos uma restrição, o nosso m diminui, portanto a matriz B^{-1} deixa de ser uma matriz básica do nosso problema. Para atualizar a B^{-1} , quado se remove a l-ésima restrição, basta remover sua l-ésima linha e coluna. Veremos porque isso é correto em 3.4.

Veja abaixo o pseudocódigo para remoção de índices artificiais da base:

function $RemoveAritificiais(A, I, B^{-1}, m, n)$

```
for all \{l \in \{B(1), ..., B(m)\} | l > n\} do
        candidates \leftarrow \{i \in I.n | i < n\}
        x \leftarrow length(candidates)
        k \leftarrow 1;
       while k \leq x and B_l^{-1}A_{I.n(candidates(k))} do
            k \leftarrow k + 1
        end while
        if k > x then
            m \leftarrow m-1
            remova l-ésima linha e l-ésima coluna de B
            remova l-ésima linha de A
            remova a l-ésima entrada de I.b
            remova a l-ésima entrada de b
        else
            u \leftarrow B^{-1}A_k
            atualizaBase(I, invB, u, l, k, m)
        end if
    end for
end function
```

3.4 Atualização de B^{-1} na remoção de restrições

Seja B a nossa matriz básica e l a restrição a ser removida.

$$\sum_{k=1}^{m} B_{ik} B_{kj}^{-1} = I_{ij}$$
 para $i, j = 1, ..., m$

Se ignorarmos i e j quando valem l, temos que continua valendo a somatória. Puxando o termo com k = l para fora do somatório, temos:

$$B_{il}B_{lj}^{-1} + \sum_{k=1, k
eq l}^m B_{ik}B_{kj}^{-1} = I_{ij} \; \mathsf{para} \; i,j=1,l-1,l+1,...,m$$

Sabemos que a l-ésima coluna de B corresponde a um índice de uma variável artificial, e vamos supor que uma variável artificial sai da base na fase 1 ela não precisa voltar mais, então temos que B(l) é a l-ésima variável artificial, portanto $B(l) = e_l$, ou seja: B_{il} vale 1 se i = l e 0 caso contrário. Portanto:

$$\sum_{k=1,k\neq l}^{m} B_{ik} B_{kj}^{-1} = I_{ij}$$
 para $i,j=1,l-1,l+1,...,m$

E esse somatório é exatamente o produto das matrizes B e B^{-1} ignorando a l-ésima linha e coluna. Portanto provamos que a atualização da B^{-1} está correta. Falta agora, mostrar que quando uma variável artificial sai da base na fase 1 ela não volta mais.

O objetivo da fase 1 do simplex é achar uma base viável para o problema original e utilizamos variáveis artificiais no problema auxiliar porque facilita essa tarefa. Portanto, quando retiramos uma variável artificial da base, conseguimos uma base do PL auxiliar que não usa essa variável, logo podemos removê-la do problema e teremos um problema equivalente sem essa variável.

4 Pseudocódigo do algoritmo simplex

```
function Simplex(A, b, c, m, n)
    for all i|b_i < 0 do
         b_i \leftarrow b_i * -1
    end for
    A \leftarrow [A|I], I \in \mathbb{R}^{m \times m}
    x \leftarrow [\vec{0}, b], \vec{0} \in \mathbb{R}^n
    c1 \leftarrow [\vec{0}, \vec{ac}], \vec{ac} = [1, ..., 1] \in \mathbb{R}^m
    I.b \leftarrow [n+1, ..., n+m]
    I.n \leftarrow [1,...,n]
    B^{-1} = I, I \in \mathbb{R}^{m \times m}
    (ind, x, d, I, B^{-1}) = fase2(A, b, c1, m, n + m, x, I, B^{-1})
    if c1^T x > 0 then
                                                                         ⊳ Problema inviável
         return (1, NIL, NIL)
    end if
    (I, A, invB, m) \leftarrow removeArtificials(A, I, invB, m, n, b)
    x \leftarrow [x_1, ..., x_n]
     (ind, x, d, I, B^{-1}) = fase2(A, b, c, m, n, x, I, B^{-1})
    if ind = -1 then
                                                                        \triangleright Custo ótimo = -\infty
         return (-1, x, d)
    else
                                                             ⊳ Solução ótima encontrada
         return (0, x, d)
     end if
end function
```

5 O algoritmo

5.1 Objetivo

Nossa motivação é solucionar um problema de programação linear (*PL*) que consiste em minimizar uma função linear (função de custos) sujeita a restrições lineares. Agora que temos os conceitos necessários, vamos desenvolver um algoritmo para solucionar tal problema.

5.2 O que temos a princípio

Dado o problema:

$$\begin{array}{ll} \text{minimizar} & c^T x \\ \text{sujeito a} & Ax = b \\ & x > 0 \end{array}$$

Queremos achar o x que satisfaça todas as restrições e minimize c^Tx . Portanto temos como informação inicial:

A: Matriz $m \times n$ de restrições

b: Vetor de dimensão m

c: Vetor de custos de dimensão n

m: Número de restrições de igualdade

n: Número de variáveis

Logo nossa função que calcula x terá a seguinte forma:

5.3 O que recebemos no final

Como já vimos antes, temos três possíveis cenários de resultados da nossa função:

1. O problema é inviável, portanto não existe solução ótima

- 2. Existe solução ótima, logo o custo ótimo é um valor finito
- 3. O custo ótimo é $-\infty$, e não existe solução ótima

Logo, nossa função deve retornar informação suficiente para sabermos em qual dos três casos estamos e os valores relevantes para cada um. Com isso em mente, nossa função tem o seguinte esqueleto:

[ind x d] =
$$simplex(A, b, c, m, n)$$

Onde:

Caso	ind	x	d
1	1	vetor vazio	vetor vazio
2	0	solução ótima	vetor vazio
3	-1	ultima svb computada	direção que vai a $-\infty$

5.4 A função simplex

Nos preocupando somente com o caso onde o problema tem solução, nosso algortimo seria algo próximo do seguinte:

function
$$simplex(A, b, c, m, n)$$

$$multiplica \ restrições \ com \ b < 0 \ por \ -1$$

$$A' \leftarrow \left[\begin{array}{c} A \ | \ I \end{array} \right]$$

$$x' \leftarrow \left[\begin{array}{c} 0 \\ \overline{b} \end{array} \right]$$

$$c' \leftarrow \left[\begin{array}{c} 0 \\ \overline{1} \end{array} \right]$$

$$B \leftarrow \left[\begin{array}{c} A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \end{array} \right]$$

$$x \leftarrow \operatorname{fase2}(A', b, c', m, m + n, x')$$

$$x \leftarrow \operatorname{fase2}(A, b, c, m, n, x)$$

$$\operatorname{return} x$$

end function

Nota-se que o algoritmo é dividido em 3 partes:

1. Modificar problema inicial, adicionando m variáveis artificiais

- Encontrar solução inicial para o problema inicial resolvendo o modificado
- 3. Resolver o problema inicial

Podemos resolver os dois problemas, dado uma solução inicial, graças a função fase2 que resolve problemas de programação linear a partir de uma solução viável básica inicial. Imaginando que já temos essa função, nosso algoritmo final em octave é:

```
function [ind, x, d] = simplex(A, b, c, m, n)
       % Arruma restricoes para que b > 0
       for i = 1 : m
3
           if (b < 0)
4
               b *= -1;
5
               A(i, :) *= -1;
           end
7
8
       end
       % Cria problema auxiliar para achar primeira solucao
10
       % para o problema inicial
11
       A = [A, eye(m)];
12
       x = [zeros(n, 1); b];
13
       c1 = [zeros(n, 1); ones(m, 1)];
14
       I = struct('b', [n + 1 : n + m], 'n', [1 : n]);
15
       invB = eye(m);
16
17
       % Resolve problema auxiliar
18
       [ind, x, d, I, invB] = fase2(A, b, c1, m, n + m, x, I, invB);
19
20
       if x(n + 1 : n + m) != 0
21
           % Problema Inviavel
22
           ind = 1;
           x = [];
24
           d = [];
           return;
26
       end
27
28
       % Remove vaiaveis artificiais da base. (nao altera x)
29
       [I, A, invB, m] = removeArtificials(A, I, invB, m, n, b);
30
       x = x(1 : n);
31
32
33
       % Resolve problema inicial, com solucao encontrada
34
```

Utilizamos uma estrutura chamada de I que guarda os índices básicos e não básicos, representados respectivamente pelos vetores I.b e I.n. Nessa implementação, é fácil ver a correspondência entre as principais etapas vistas quando apresentamos o pseudocódigo. Entre as linhas 3 e 16 modificamos o problema original, nas linhas de 19 a 31 encontramos uma solução inicial e na linha 35 resolvemos o problema.

Uma das melhorias feita para reduzir o espaço utilizado foi armazenar A' e x' (do pseudocódigo) em A e x respectivamente. Ainda assim, há certo desperdício de espaço utilizado em funções, pois o octave não envia argumentos por referência. Ou seja, quando enviamos invB para fase2, por exemplo, ao modifica-la dentro da função, o octave cria uma cópia e então altera seus valores. Poderiamos ter feito alterações para que não haja esse tipo de desperdício, mas optamos por um código mais legível e modularizado.

Visando melhorar nosso desempenho, passamos e retornamos alguns argumentos extras nas funções fase2 e removeArtificials. Dessa forma, evitamos cálculos desnecessários de B^{-1} e dos indices básicos associados à solução x. Nos poupar o cálculo de B^{-1} é uma melhoria significativa, visto que isso tem complexidade $O(n^3)$.

5.5 fase2

A função fase2 vista na seção anterior, é de grande importância para nosso algoritmo. Dada uma solução viável básica inicial, essa função "anda" pelas soluções adjacentes, buscando uma na qual o custo calculado seja menor que na atual. Tendo a nova solução, voltamos a situação inicial e o algoritmo é executado novamente. Fazemos isso, tomando o cuidado para não andarmos em ciclos, até encontrar uma solução viável básica na qual todas as soluções adjacentes tem custo maior. Assim concluimos que essa solução é ótima. Tendo os conceitos da seção 2, produzimos o seguinte pseudocódigo:

```
function fase2(A, b, c, m, n, x) \overline{c}^T \leftarrow c^T - (c_B^T B^{-1}) A_j while !(\overline{c} \geq 0) do j \leftarrow j \not\in B(1), \ldots, B(m), t.q. \ \overline{c}_j < 0 
ightharpoonup Usando regra anti-ciclagem u \leftarrow B^{-1} A_j
```

```
\begin{array}{l} \text{if } u < 0 \text{ then} \\ \text{return } (-1,d) \\ \text{end if} \\ \theta \leftarrow \min_{u_l \geq 0} \frac{x_{B(l)}}{u_l}, l = 1, \ldots, m \\ x \leftarrow x + \theta d \\ B(l) \leftarrow j \\ atualiza(invB) \\ \overline{c}^T \leftarrow c^T - (c_B^T B^{-1}) A_j \\ \text{end while} \\ \text{return } (0,x) \\ \text{end function} \end{array}
```

De forma muito similar, temos nosso algoritmo implementado em octave:

```
function [ind, x, d, I, invB] = fase2(A, b, c, m, n, x, I, invB)
       [redc, u, ij] = custoDirecao(A, invB, c, n, m, I);
      while redc < 0 % se essa condicao falha, x e otimo</pre>
3
           [imin, teta] = calculaTeta(x, u, I);
           if imin == -1 % custo otimo e -inf e u tem a direcao
               ind = -1;
               d = u2d(u, I.n(ij), I);
               return;
           end
10
           % atualiza
11
          x = atualizax(x, teta, u, I.n(ij), I);
           [I, invB] = atualizaBase(I, invB, u, imin, ij, m);
13
14
           [redc, u, ij] = custoDirecao(A, invB, c, n, m, I);
15
       end
17
       d = [];
       ind = 0;
19
20 end
```

5.6 Complexidade

A complexidade da função simplex depende basicamente da complexidade de removeArtificials e fase2. Primeiramente analisaremos a complexidade das funções auxiliares para então analisar as principais.

5.6.1 Função custoDirecao

A função custoDirecao é responsável por escolher uma direção básica j com custo reduzido menor do que zero.

```
\begin{aligned} & \textbf{function} \ custoDirecao(A,B^{-1},c,n,m,I) \\ & j \leftarrow 1 \\ & \textbf{while} \ j \leq n-m \ \textbf{do} \\ & redc = c(I.n(j)) - c_B^T A_{I.n(j)} \\ & \textbf{if} \ redc < 0 \ \textbf{then} \\ & ij \leftarrow j \\ & u \leftarrow B^{-1} A_{I.n(ij)} \\ & \textbf{return} \ (redc,u,ij) \\ & \textbf{end if} \\ & j \leftarrow j+1 \\ & \textbf{end while} \\ & \textbf{return} \ (0,-1,NIL) \\ & \textbf{end function} \end{aligned}
```

Apesar de estar dentro do loop principal, $u \leftarrow B^{-1}A_{I.n(ij)}$ é executada somente uma vez, pois assim que executada, logo em seguida uma chamada de retorno também é. Portanto essa linha leva $O(m^2)$, pois é multiplicação de uma matrix $m \times m$ por um vetor de dimensão m. Já a primeira linha de dentro do loop, leva O(m), pois é produto de dois vetores de tamanho m. No entanto, essa linha é executada, no pior caso, (n-m) vezes, isto é O((n-m)m) = O(nm). Como n > m, a função como um todo tem complexidade O(nm).

5.6.2 Função calculaTheta

A função calcula Theta é responsável por calcular θ como foi explicado na seção 2.5.

```
\begin{aligned} & \textbf{function} \ calcula Theta(x,u,I) \\ & imin = -1 \\ & theta = \infty \\ & \textbf{for} \ i = 1 \ \textbf{to} \ m \ \textbf{do} \\ & \textbf{if} \ u_i > 0 \ \textbf{then} \\ & t = x_{I.b(i)}/u_i \\ & \textbf{if} \ t < theta \ \textbf{then} \\ & theta = t \end{aligned}
```

```
imin = i end if end if end for return (imin, teta) end function
```

O loop itera m vezes executando operações que levam O(1), portanto calculaTheta tem complexidade O(m).

5.6.3 Atualização da base

Atualizações nas bases ocorrem quando tiramos um índice da base e adicionamos outro. Esta operação ocorre tanto na fase 1 quanto na fase 2 do método simplex.

O cálculo da inversa de uma matriz é uma operação muito cara, portanto devemos investigar uma maneira de atualizar a inversa de B ao invés de recalculá-la a todo momento. Seja B uma base, e \overline{B} a base depois de uma atualização, tirando o l-ésimo indice básico e adicionando o índice j a base. Note que:

$$B^{-1}\overline{B} = (B^{-1}A_{B(1)} \cdots B^{-1}A_{B(l-1)} B^{-1}A_{j} \cdots B^{-1}A_{B(m)})$$
$$= (e_{1} \cdots e_{l-1} u \cdots e_{m})$$

Portanto, se pré-multiplicarmos B^{-1} por matrizes fazendo com que, no lado direito da equação, u se torne $\underline{e_l}$, teremos que B^{-1} pré-multiplicada pelas mesmas matrizes será igual a $\overline{B^{-1}}$.

O pseudo-código:

Essa função executa o loop m vezes. A cada iteração, uma operação de soma de vetores de tamanho n é feita. Portanto a complexidade de atualizaBase é O(nm).

5.6.4 Função atualizaX

Para atualizar x, temos que fazer $x+\theta d$. No entanto, não há a necessidade de calcular d a partir de u:

```
function atualizax(x,t,u,j,I)
x_{I.b} \leftarrow x_{I.b} - t * u
x_{j} \leftarrow t
return x
end function
```

Claramente, por ser uma subtração de vetores de tamanho m, a complexidade é ${\cal O}(m).$

5.6.5 A função fase2

Referências

[1] Dimitris Bertsimas, John N. Tsitsiklis. Introduction to Linear Optimization. 1997.