

数字图像处理

第一次作业

# 摘要

数字图像处理技术是利用计算机对图像信息进行处理技术,常用于修改图像、改善图像质量、提取图像特征或信息、图像变换、编码和压缩等。本文首先简要介绍了位图文件基本格式,然后利用Matlab 软件及图像处理基础理论实现了改变灰度级数、计算均值方差、图像插值、图像仿射变换的基本操作,并对结果进行简要分析,以进一步了解各种插值、变换方法的特点。

刘 昊 自动化 61 2160504016

2019.3.3

# 1 Bmp 图像格式简介

### 1.1 概述

BMP (Bitmap-File) 图形文件是 Windows 采用的图形文件格式,在 Windows 环境下运行的所有图象处理软件都支持 BMP 图像文件格式。Windows 系统内部各图像绘制操作都是以 BMP 为基础的。可以分成设备有向量相关位图 (DDB) 和设备无向量相关位图 (DIB) 两类,应用非常广泛。

# 1.2 格式结构[1]

BMP 文件的数据按照从文件头开始的先后顺序分为四个部分:

- ①位图文件头: 主要包含文件大小、类型、图像数据偏离文件头长度等信息。;
- ②位图信息头: 提供图像数据的尺寸、位平面数、压缩方式、颜色索引等信息;
- ③调色板:可选,如使用索引来表示图像,调色板就是索引与其对应的颜色的映射表;
- ④位图数据:记录位图的每一个像素值或该对应像素的颜色表的索引值,记录顺序是在扫描行为从左到右,扫描行之间是从上到下,这种格式又称 Bottom Up 位图。

## 1.3 举例

以 7. bmp 为例简要介绍位图文件具体格式,用 WinHex 打开文件:

| '.bmp    |    |    |    |     |    |    |    |    |    |    |    |    |    |    |    |    |   |     |        |      |     |
|----------|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|----|---|-----|--------|------|-----|
| Offset   | 0  | 1  | 2  | 3   | 4  | 5  | 6  | 7  | 8  | 9  | A  | В  | C  | D  | E  | F  |   |     | ANS    | I AS | CII |
| 00000000 | 42 | 4D | 6E | 04  | 00 | 00 | 00 | 00 | 00 | 00 | 36 | 04 | 00 | 00 | 28 | 00 | в | ın  |        | 6    | (   |
| 00000010 | 00 | 00 | 07 | 00  | 00 | 00 | 07 | 00 | 00 | 00 | 01 | 00 | 08 | 00 | 00 | 00 |   |     |        |      |     |
| 00000020 | 00 | 00 | 38 | 00  | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |   | 8   |        |      |     |
| 00000030 | 00 | 00 | 00 | 00  | 00 | 00 | 00 | 00 | 00 | 00 | 01 | 01 | 01 | 00 | 02 | 02 |   |     |        |      |     |
| 00000040 | 02 | 00 | 03 | 03  | 03 | 00 | 04 | 04 | 04 | 00 | 05 | 05 | 05 | 00 | 06 | 06 |   |     |        |      |     |
| 00000050 | 06 | 00 | 07 | 07  | 07 | 00 | 08 | 08 | 08 | 00 | 09 | 09 | 09 | 00 | 0A | 0A |   |     |        |      |     |
| 00000060 | 0A | 00 | 0B | 0B  | 0B | 00 | 0C | 0C | 0C | 00 | 0D | 0D | 0D | 00 | 0E | 0E |   |     |        |      |     |
| 00000070 | 0E | 00 | 0F | 0F  | 0F | 00 | 10 | 10 | 10 | 00 | 11 | 11 | 11 | 00 | 12 | 12 |   |     |        |      |     |
| 08000000 | 12 | 00 | 13 | 13  | 13 | 00 | 14 | 14 | 14 | 00 | 15 | 15 | 15 | 00 | 16 | 16 |   |     |        |      |     |
| 00000090 | 16 | 00 | 17 | 17  | 17 | 00 | 18 | 18 | 18 | 00 | 19 | 19 | 19 | 00 | 1A | 1A |   |     |        |      |     |
| 0A00000  | 1A | 00 | 1B | 1B  | 1B | 00 | 1C | 1C | 1C | 00 | 1D | 1D | 1D | 00 | 1E | 1E |   |     |        |      |     |
| 000000B0 | 1E | 00 | 1F | 1F  | 1F | 00 | 20 | 20 | 20 | 00 | 21 | 21 | 21 | 00 | 22 | 22 |   |     |        | 111  | ""  |
| 00000000 | 22 | 00 | 23 | 23  | 23 | 00 | 24 | 24 | 24 | 00 | 25 | 25 | 25 | 00 | 26 | 26 | " | ### | \$\$\$ | 응응응  | & & |
| 00000000 | 26 | 00 | 27 | 27  | 27 | 00 | 28 | 28 | 28 | 00 | 29 | 29 | 29 | 00 | 2A | 2A | & |     | (((    | )))  | * * |
| 000000E0 | 2A | 00 | 2B | 2B  | 2B | 00 | 2C | 2C | 2C | 00 | 2D | 2D | 2D | 00 | 2E | 2E | * | +++ | ,,,    |      | ٠.  |
| 000000F0 | 2E | 00 | 2F | 2F  | 2F | 00 | 30 | 30 | 30 | 00 | 31 | 31 | 31 | 00 | 32 | 32 |   | /// | 000    | 111  | 22  |
| 00000100 | 32 | 00 | 33 | 33  | 33 | 00 | 34 | 34 | 34 | 00 | 35 | 35 | 35 | 00 | 36 | 36 | 2 | 333 | 444    | 555  | 66  |
| 00000110 | 36 | 00 | 37 | 37  | 37 | 00 | 38 | 38 | 38 | 00 | 39 | 39 | 39 | 00 | 3A | ЗА | 6 | 777 | 888    | 999  | ::  |
| 00000120 | 3A | 00 |    | 3В  |    |    |    |    | 3C | 00 | 3D | 3D |    | 00 |    |    | : | ;;; | <<<    |      |     |
| 00000130 | 3E |    |    | 3F  |    |    |    |    | 40 | 00 | 41 | 41 |    |    | 42 |    | > | ??? | 000    | AAA  | BB  |
| 00000140 | 42 | 00 | 43 | 43  | 43 | 00 | 44 | 44 | 44 | 00 | 45 | 45 | 45 | 00 | 46 | 46 | В | CCC | DDD    | EEE  | FF  |
| 00000150 | 46 |    |    | 47  |    |    |    | 48 | 48 | 00 | 49 |    | 49 |    | 4A |    |   |     | ннн    |      |     |
| 00000160 | 4A |    |    | 4B  |    |    |    | 4C | 4C |    | 4D |    |    | 00 |    |    | _ |     | LLL    |      |     |
| 00000170 | 4E | 00 |    | 4 F |    |    |    | 50 | 50 | 00 | 51 |    |    |    | 52 |    |   |     | PPP    |      |     |
| 00000180 | 52 |    |    | 53  |    |    |    | 54 | 54 | 00 |    |    | 55 |    |    |    |   |     |        | טטט  |     |
| 00000190 | 56 |    |    | 57  |    |    |    | 58 | 58 | 00 | 59 |    | 59 |    | 5A |    | V |     | XXX    |      |     |
| 000001A0 |    | 00 |    |     | 5B |    |    | 5C |    |    |    |    | 5D |    |    |    | Z | ]]] | ///    |      | ^^  |
| 000001B0 |    |    |    | 5F  |    |    |    | 60 | 60 | 00 |    |    | 61 |    |    |    | ^ |     |        | aaa  |     |
| 00000100 |    | 00 |    | 63  |    |    |    | 64 |    | 00 | 65 |    | 65 |    |    |    |   |     | ddd    |      |     |
| 000001D0 |    | 00 |    | 67  | -  | 00 |    | 68 | 68 | 00 | 69 | 69 |    | 00 |    |    |   |     | hhh    |      |     |
| 000001E0 |    | 00 |    | 6B  |    | 00 |    | 6C | 6C | 00 | 6D | 6D |    | 00 |    | 6E | j | kkk | 111    | mmm  | nn  |
| 000001F0 | 6E | 00 |    |     |    |    | 70 | 70 | 70 | 00 | 71 | 71 | 71 |    | 72 | 72 |   |     | ppp    |      |     |
| 00000200 | 72 | 00 | 73 | 73  | 73 | 00 | 74 | 74 | 74 | 00 | 75 | 75 | 75 | 00 | 76 | 76 | r | SSS | ttt    | uuu  | VV  |

图 17.bmp 源码

## ①位图文件头(14字节)

00H-01H 表示文件类型, 0x4D42 字符显示为 "BM", 即表示 Bmp 格式文件。

02H-05H 表示文件大小,单位为字节,0x0000046E 十进制为 1134,即该文件大小为 1134bytes。

06H-09H 为保留位, 固定为 0; 0AH-0DH 为位图数据偏移量。

### ②位图信息头(40字节)

0EH-11H表示位图信息头长度,即为40字节。

12H-15H, 16H-19H 分别表示位图的宽度和长度,单位为像素,显然本图片长宽均为 7 像素。

1AH-1DH 表示位图的位面数, 恒为 1.

1CH-1DH 表示每个像素的位数,本图片为8位。

1EH-21H 为压缩说明,本图为0表示不压缩。

22H-25H表示位图数据大小,无压缩时可为 0.

其余部分略去。

## ③调色板

从 36H 开始,大小为 4N 字节,其中 N 为颜色数目。本图每个像素为 8 位,则  $N=2^8=256$ ,则调色板大小为  $256\times4=1024$  字节。

## ④位图数据

该区域大小取决于压缩方法、图像尺寸和图像位深度,包含所有的位图数据字节。本图为8位色图,则每个像素用一个字节表示。

### 2 把 lena (512\*512) 图像灰度级逐级递减 8-1 显示

#### 2.1 实验原理

将提供的 8 位灰阶图像矩阵所有值不断除以 2 并向下取整,使得出现灰度值的数量不断减半,将得到的各图像矩阵利用 imshow()函数的自适应灰度显示功能以 8 位灰阶为基准显示出来。

#### 2.2 实验结果



图 2 lena 图像灰度级递减显示

可见,当灰度级在32以上时,各图片视觉效果相近,当灰度级下降至16以下时,可以逐渐感觉到图像细节缺失,过渡部分越来越不连续,出现大片伪轮廓,最后退化为二值图像。

# 3 计算 lena 图像的均值方差

#### 3.1 实验原理

对于 M×N 的灰度图像,均值和方差分别为

$$m = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} f(i, j)$$

$$\sigma^{2} = \frac{1}{MN} \sum_{i=1}^{M} \sum_{i=1}^{N} (f(i, j) - m)^{2}$$

# 3.2 实验结果

利用 Matlab 编写函数计算得到 lena. bmp 的均值为 99.0512, 方差为 2.7960×103.



图 3 均值方差计算结果

# 4 把 Iena 图像用近邻、双线性和双三次插值法 zoom 到 2048\*2048

# 4.1 实验原理

## 4.1.1 最近邻插值

最近邻插值是最简单的一种插值方法,在代求像素的相邻像素中,选取距离最近像素灰度赋给代求像素。该方法计算量很小,但可能会造成插值后图像灰度不连续,灰度变化出可能出现明显锯齿。

#### 4.1.2 双线性插值

双线性插值是基于一般的线性内插推广而来,即利用待求像素四个相邻像素灰度在两个方向上作线性内插得到。具体公式为

$$f(i+u,j+u) = (1-u)(1-v)f(i,j) + u(1-v)f(i+1,j) + (1-u)vf(i,j+1) + uvf(i+1,j+1)$$

该方法利用了周围四个像素的相关性,计算比最近邻法更复杂,但不会出现灰度不连续点。另外双线性法具有低通滤波性质,会导致图像轮廓稍显模糊。

## 4.1.3 双三次内插[2]

双三次内插利用 16 个近邻像素点灰度值加权得到代求像素点灰度, 计算量较大, 但同

时在保持细节方面通常比双线性内插更好。另外双三次内插同样具有低通滤波器性质。 具体计算公式为

$$f(i+u,j+v) = ABC^T$$

其中

$$A = [w(1+u), w(u), w(1-u), w(2-u)]$$

$$C = [w(1+v), w(v), w(1-v), w(2-v)]$$

$$B = f(i-1:i+2, j-1:j+2)$$

插值核为

$$w(x) = \begin{cases} 1 - 2|x|^2 + |x|^3, & |x| < 1\\ 4 - 8|x| + 5|x|^2 - |x|^3, & 1 \le |x| < 2\\ 0, & |x| \ge 2 \end{cases}$$

## 4.2 实验结果

利用 Matlab 编写函数计算得到原图像利用三种方法插值到 2048×2048 的结果为







图 4 插值结果

观察细节







图 5 插值图像细节

可见最近邻插值有明显锯齿,而后两种插值得到图片边缘过渡更平滑,插值效果较好。 另外双三次插值在实际处理过程时间开销较大,程序需要进一步优化。 5 把 lena 和 elain 图像分别进行水平 shear (参数为 1.5) 和旋转 30 度,并采用最近邻、双线性和双三次插值法 zoom 到 2048\*2048;

### 5.1 实验原理

#### 5.1.1 仿射变换

仿射变换是最常用的空间坐标变换之一, 一般形式为

$$[x, y, 1] = [v, w, 1]T_{3\times3} = [v, w, 1] \begin{bmatrix} t_{11} & t_{12} & 0 \\ t_{21} & t_{22} & 0 \\ t_{31} & t_{32} & 1 \end{bmatrix}$$

可更具变换矩阵T元素的值,对一组坐标点做尺度、旋转、平移或偏移。本实验所使用 到的变换包括:

①水平偏移变换

$$T = \begin{bmatrix} 1 & s_h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

②旋转变换

$$T = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

③平移变换

$$T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_x & t_y & 1 \end{bmatrix}$$

平移变换在本实验中用于将旋转得到的图形平移至合适的位置,避免部分像素点的索引超出界限。

### 5.1.2 前向映射与反向映射

由源图像到目标图像的映射成为前向映射。实际由于源图像的若干像素点可能映射到同一个象,使得目标图像某些像素点没有原象。为了避免这种情况本实验均采用反向映射方法 处理图像,即由目标图像向源图像映射,以避免目标图像像素缺失的情况。

#### 5.2 实验结果

利用 Matlab 编写函数计算得到原图像分别进行偏移和旋转然后利插值到 2048×2048 的结果为(由于内存不足无法完整复制图片,故以截图形式给出)



图 6 图片变换后插值结果

# 放大图片边缘处:



图 7 图片边缘细节

可见最近邻插值有明显的锯齿,后两者边缘更为平滑,但由于低通滤波效应,图案也较为模糊。

# 附录

# 参考文献

- [1] 图像文件格式 BMP 文件格式 详解 [EB/OL], https://wenku.baidu.com/view/6591b512cc22bcd127ff0c1d.html?from=search,2019.3.2.
- [2] 图 像 插 值 双 线 性 插 值 与 双 三 次 插 值 [EB/OL]. https://blog.csdn.net/weixin 42463482/article/details/82830628, 2019.3.2