Lembar Jawaban Kalkulasi Neural Network

Pada lembar jawaban ini, kamu dapat menuliskan cara mengkalkulasikan nilai-nilai yang diminta pada arsitektur neural network sesuai soal beserta hasilnya, ya, semangat!

Pertama, masukkan dulu nilai initial value dan initial randomnya ya ...

Initial Value

X ₁	X ₂	X ₃	α	Threshold	Y _{d,6}	
0.7	0.8	0.9	0.1	-1	0	

Initial Random

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ ₄	θ ₅	θ_6
-0.1	-1.3	0.5	-0.3	0.6	-0.8	1.3	-1.6	1.1	-1.2	0.2

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya

Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function

$$\begin{array}{ll} Y_4 & = sigmoid \ (X_1W_{14} + X_2W_{24} + X_3W_{34} - \theta_4) \\ & = 1/\left[1 + e^{-((0.7x-0.1) + (0.8x0.5) + (0.9x0.6) - (1x1.1))}\right] \\ & = 0.44275 \\ Y_5 & = sigmoid \ (X_1W_{15} + X_2W_{25} + X_3W_{35} - \theta_5) \\ & = 1/\left[1 + e^{-((0.7x(-1.3)) + (0.8x(-0.3)) + (0.9x(-0.8)) - (1x-1.2))}\right] \\ & = 0.33849 \\ Y_6 & = sigmoid \ (Y_4W_{46} + Y_5W_{56} - \theta_6) \\ & = 1/\left[1 + e^{-((0.44x1.3) + (0.33x-1.6) - (1x0.2)}\right] \\ & = 0.46107 \end{array}$$

e =
$$Y_{d,6} - Y_6$$

= 0 - 0.46107
= -0.46107

Lalu isi rangkuman hasilnya di tabel ini ya ...

Y ₄	Y ₄ Y ₅		е	
0.44275	0.33849	0.46107	-0.46107	

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

<u>Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections</u>

$$\delta_{6} = Y_{6}(1-Y_{6})e$$

$$= 0.46107 \times (1-0.46107) \times (-0.46107)$$

$$= -0.11456$$

$$\Delta_{46} = \alpha \times Y_{4} \times \delta_{6}$$

$$= 0.1 \times 0.44275 \times (-0.11456)$$

$$= -0.00507$$

$$\Delta_{56} = \alpha \times Y_{5} \times \delta_{6}$$

$$= 0.1 \times 0.33849 \times (-0.11456)$$

$$= -0.00387$$

$$\Delta\theta_{6} = \alpha \times (-1) \times \delta_{6}$$

$$= 0.1 \times (-1) \times (-0.11456)$$

$$= 0.01145$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_6	δ_6 Δ_{46}		$\Delta \theta_6$	
-0.11456	-0.00507	-0.00387	0.01145	

<u>Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle</u> <u>Layer/Hidden Layer</u>

$$\delta_4 = Y_4(1-Y_4) \times \delta_6 \times W_{46}$$

$$= 0.44275 \times (1-0.44275) \times 1.3$$

= 0.32073

$$\delta_5 = Y_5(1-Y_5) \times \delta_6 \times W_{56}$$

$$= 0.33849 \times (1-0.33849) \times (-1.6)$$

= -0.35826

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ ₄	δ ₅		
0.32073	-0.35826		

Langkah 4: Hitung weight corrections

$$\triangle W_{14} = \alpha \times X_1 \times \delta_4$$

$$= 0.1 \times 0.7 \times 0.32073$$

$$\triangle W_{24} = \alpha \times X_2 \times \delta_4$$

$$= 0.1 \times 0.8 \times 0.32073$$

= 0.02565

$$\triangle W_{34} = \alpha \times X_3 \times \delta_4$$

$$= 0.1 \times 0.9 \times 0.32073$$

= 0.02886

$$\Delta\theta_4 = \alpha \times (-1) \times \delta_4$$

$$= 0.1 \times (-1) \times 0.32073$$

= -0.03207

$$\Delta W_{15} = \alpha \times X_1 \times \delta_5$$

$$= 0.1 \times 0.7 \times (-0.35826)$$

= -0.02507

$$\Delta W_{25} = \alpha \times X_2 \times \delta_5$$

$$= 0.1 \times 0.8 \times (-0.35826)$$

$$= -0.02866$$

$$\Delta W_{35} = \alpha \times X_3 \times \delta_5$$

$$= 0.1 \times 0.9 \times (-0.35826)$$

$$= -0.03224$$

$$\Delta \theta_5 = \alpha \times (-1) \times \delta_5$$

$$= 0.1 \times (-1) \times (-0.35826)$$

$$= 0.03582$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

Δw ₁₄	Δw ₂₄	Δw ₃₄	$\Delta\theta_4$	Δw ₁₅	Δw ₂₅	∆w ₃₅	$\Delta\theta_5$
0.02245	0.02565	0.02886	-0.03207	-0.02507	-0.02866	-0.03224	0.03582

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

<u>Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui</u>

$$W_{14} = W_{14} + \Delta W_{14}$$

$$= 0.1 + 0.02245$$

$$= 0.12245$$

$$W_{15} = W_{15} + \Delta W_{15}$$

$$= -1.3 + (-0.0250)$$

$$= -1.3250$$

$$W_{24} = W_{24} + \Delta W_{24}$$

$$= 0.5 + 0.02886$$

$$= 0.52886$$

$$\begin{aligned} w_{25} &= w_{25} + \Delta w_{25} \\ &= -0.3 + (-0.02866) \\ &= -0.32866 \end{aligned}$$

$$w_{34} &= w_{34} + \Delta w_{34} \\ &= 0.6 + 0.02886 \\ &= 0.62866 \end{aligned}$$

$$w_{35} &= w_{35} + \Delta w_{35} \\ &= -0.8 + (-0.03224) \\ &= -0.83244$$

$$\theta_4 &= \theta_4 + \Delta \theta_4 \\ &= 1.1 + (-0.03207) \\ &= 1.06793$$

$$\theta_5 &= \theta_5 + \Delta \theta_5 \\ &= -1.2 + 0.03582 \\ &= -1.16418$$

$$\theta_6 &= \theta_6 + \Delta \theta_6 \\ &= 0.2 + 0.01145$$

$$= 0.21145$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	θ ₃	θ ₄	θ ₅
0.12245	-1.3250	0.52886	-0.32866	0.62866	-0.83244	1,06793	-1,16418	0,21145

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge platinum! Semoga mendapatkan hasil yang maksimal dan selamat bersenang-