

## AISS CV – Group 6 – Food Label Recognition

Gianluca Geraci – Stefan Horst – Felix Kloster – Yiğit Oğuz – Tianran Wei















- √ Wo kommt es her?
- Wo wurde es verarbeitet?
- ✓ Wie hoch ist der regionale Anteil?

Neutral geprüft durch: Kontroll GmbH

ÖKO\*TEST

ÖKO-TEST-Magazin



**Bioland** 





















nach EG-Öko-Verordnung

QMilch QMilch.info

























**VEGAN** 

#### **Our Solution**



Our CV application detects labels on supermarket items to:

- Help users differentiate between legitimate & marketing labels
- Provide additional information on legitimate labels







Quickly assess properties and quality of different products while directly engaging with them in the supermarket

### **Developing Our Solution**



- Collecting & Preparing Data
- Choosing & Training The Model
- Evaluating our Model
- Putting It All Together

#### **Creating Our Data Set**





No suitable data sets publicly available for our use case



EDEKA

With label: 160 No label: 160



With label: 37 No label: 37



Label Photos

Tool: LabelImg

### **Using Labeling Guidelines To Ensure Consistency**







#### + Best Practice Labeling Rules

### **Data Split and Augmentation**





**Data Augmentation** 

~1400 Images

#### **Data Augmentation Operations**



**Original** 



Safe Rotate & Color Jitter



Contrast & Cropping



Horizontal
Flip
&
Blurring



Vertical
Flip
&
Elastic
Transform



### **Our Data Processing Pipeline**





#### **Choosing The Right Model For The Task**





Pretrained & SOTA object detection model



Small model for fast inference on Jetson Nano (Accuracy-Speed Tradeoff)



Simple training and inference API using "Darknet" Framework



Tiny YOLO v4 Top + Darknet





### Final Training & Using Darknet



**Train** on separate GPU for acceleration

1771 train images
NVIDIA RTX 4090 GPU



# **Deploy and Use** on Jetson Nano





To run Darknet, it's necessary to recompile OpenCV in order to support CUDA and GStreamer

### **Good Quality of Model Predictions**











12

**Correct: 188** 



Missed: 26



no label Incorrect: 15

### Our Model Achieves A High Average Precision

13





#### Relationship: Number of Labels & AP Score





## **Improving Poor Performing Classes**

15





## **Improving Poor Performing Classes**

16





## **Improving Poor Performing Classes**

17





### No Benefit For Already Well Performing Classes

18





#### **Putting It All Together**

19









## Let's Run Our Model!

#### Thank You For Your Attention ©





#### **Business Case**

 CV Application to detect labels on supermarket items and provide information to users



#### Data Preparation

- Collect images from supermarket
- Augment images to increase model performance → avoid data leakage



#### **Training & Inference**

 Train Darknet on GPU, run inference on Jetson Nano



#### Frontend Integration

Flask webapp allows users to run inference on Jetson Nano using video/ image stream from CSI camera



# **Backup Slides**

26 July 2024 IISM / KSRI@KIT

22





24





#### **Results in Detail**



- Mean Average Precision Score: 92%
- Intersection over Union: 74.06 %
- Test BBoxes: 214
  - **TP: 188**
  - FP: 26
  - FN: 15

#### Our Model Achieves A High Average Precision





#### AP per class:

Calculate Precision and Recall based on IoU for different confidence thresholds



AP considers the precision-recall trade-off

## **Program Flow – 1st Version with Streamlit**



## Program Flow – 2<sup>nd</sup> Version: Flask Images



## Program Flow – 3<sup>rd</sup> Version: Flask Video



#### References



- <a href="https://www.freepik.com/free-vector/hand-drawn-woman-supermarket\_4104602.htm#fromView=search&page=2&position=0&uuid=215175ba-a29a-4a77-aeb5-fb61ce7917c2">https://www.freepik.com/free-vector/hand-drawn-woman-supermarket\_4104602.htm#fromView=search&page=2&position=0&uuid=215175ba-a29a-4a77-aeb5-fb61ce7917c2</a>
- https://www.evidentlyai.com/ranking-metrics/mean-average-precision-map
- <a href="https://www.verbraucherzentrale.de/wissen/lebensmittel/kennzeichnung-und-inhaltsstoffe/nutriscore-was-bedeutet-die-kennzeichnung-76209">https://www.verbraucherzentrale.de/wissen/lebensmittel/kennzeichnung-und-inhaltsstoffe/nutriscore-was-bedeutet-die-kennzeichnung-76209</a>