BÀI TẬP TRẮC NGHIỆM Môn: Giải tích 2

ĐẠI HỌC BÁCH KHOA TP HCM Khoa Khoa học ứng dụng - Toán ứng dụng ÔN TÂP

00

Họ và tên:			Đề 1000
Lớp:	TÍCH 1	PHÂN KÉP	
Câu 1. Viết cận tích phân sau	trong tọa độ cực $I=\iint\limits_{\Omega}\sqrt{x^2}$	$+y^2 dx dy$, trong đó D là miền	giới hạn bởi $x^2+y^2\leq 2x, y\leq 0$
	D .	$\bigcap_{\frac{3\pi}{2}}^{2\pi} d\varphi \int_{0}^{2\cos\varphi} r^2 dr$	2 2 2 2 2
Câu 2. Tính $I = \iint_{D} (x^2 - 2x)^2 dx$	y)dxdy, với D là miền giới hạn	n bởi $y = 2x, y = -2x, y = -2$	2
$\begin{array}{c} A & \frac{7}{3} \end{array}$	$\frac{2}{3}$	\bigcirc $\frac{-4}{3}$	\bigcirc $\frac{-2}{3}$
D			$\geq x, y \geq -x$. Chọn kết quả đúng
\bigcirc 7 Câu 4. Tính $\iint\limits_D x^2 dx dy$, trong	B 14 g đó D là miền được giới hạn b	$\ddot{\text{O}}$ -7 $\ddot{\text{O}}$ i $y=x^2, x^2=4y, y=4$	D -14
	$\frac{-896}{15}$	$ \begin{array}{c} 896 \\ 15 \end{array} $	$\frac{-64}{15}$
Câu 5. Tính tích phân $I = \iint_D$	$\int \frac{ y-x }{x^2+y^2} dx dy$, trong đó D giới h	nạn bởi $x^2 + y^2 \le 2x, y \ge 0$	
A 1	B 3	i $y = x^2, x^2 = 4y, y = 4$. Khẳn	D 0
Câu 6. Cho $I = \iint_D (x^2 + y^2)$	dxdy và D là miền giới hạn bở	$y = x^2, x^2 = 4y, y = 4$. Khẳi	ng định nào đúng:
	Các câu đầu sai	$ \begin{array}{c} \text{B} I = \int_{0}^{4} dy \int_{\sqrt{y}}^{\sqrt{4y}} (x^2 + y^2) \\ \sqrt{y} \end{array} $)dx
Câu 7. Cho tích phân $I = \int_{0}^{1} dt$	$\int_{0}^{\sqrt{4-x^2}} dx \int_{0}^{\sqrt{4-x^2}} \sqrt{x^2 + y^2} dy + \int_{0}^{\sqrt{4-x^2}} dx$	$\int_{0}^{\sqrt{4-x^2}} \sqrt{x^2+y^2} dy. \text{ Tim dẳng}$	thức đúng.
	$ \begin{array}{c} \mathbb{B} \int\limits_{0}^{\frac{\pi}{2}} d\varphi \int\limits_{1}^{2} r dr \end{array} $		$ \bigcirc \int_{0}^{\pi} d\varphi \int_{1}^{2} r^{2} dr $
Câu 8. Tính $I=\int\limits_0^1 dx\int\limits_0^{\sqrt{1-x^2}}$	$\sqrt{x^2 + y^2} dy$		
$\frac{\pi}{6}$	$\frac{2\pi}{3}$		<u> </u>
Câu 9. Cho tích phân $I = \iint_{D}$	f(x,y)dxdy, trong đó D được	giới hạn bởi $x \leq \sqrt{y}, x \leq 2$ —	$y^2, x \ge 0$. Tìm đẳng thức đúng.
(A) $I = \int_{0}^{1} dx \int_{\sqrt{2-x}}^{x^2} f(x, y) dx$		(B) $I = \int_{0}^{2} dx \int_{x^{2}}^{\sqrt{2-x}} f(x,y)$	
Các câu khác sai		dy	
Câu 10. Viết cận tích phân $I =$			
$ (A) I = \int_{0}^{1} dx \int_{x-2}^{-\sqrt{x}} f(x,y) dy $	J	(B) $I = \int_{-1}^{0} dy \int_{y^2}^{2+y} f(x, y) dx$	dx
$ C I = \int_{0}^{1} dx \int_{x-2}^{\sqrt{x}} f(x,y) dy $	$ D I = \int_{-1}^{0} dy \int_{y^{2}}^{2-y} f(x, y) dy $	dx	

Câu 11. Tính $I=\iint\limits_{\Omega}ydxdy$, trong đó D giới hạn bởi $x-y^2+$	9=0,x-y+3=0, kết quả	đúng là:			
$ \begin{array}{cccc} & 124 & & & \\ & 125 & & \\ & & 125 & \\ & & & 125 & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	$\frac{126}{12}$	D Đáp án khác			
Câu 12. Tính tích phân $I = \iint\limits_D (x^2 + y^2 - 2x + 2y) dx dy$ với miền	D được giới hạn bởi $x-y \leq 2, x$	$x + y \ge 0, x^2 + y^2 - 2x + 2y + 1 \le$			
$0.$ Đổi biến bằng cách đặt $x=1+r\cosarphi,y=-1+\sinarphi$	_				
$ \begin{array}{ll} A & I = \int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\varphi \int\limits_{0}^{1} (r^{2} - 2)) r dr \\ C & I = \int\limits_{\frac{\pi}{4}}^{\frac{3\pi}{4}} d\varphi \int\limits_{0}^{1} (r^{2} - 2)) r dr \end{array} $	$ B I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} d\varphi \int_{0}^{1} (r^2 - 2)) dr $				
$C I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} d\varphi \int_{0}^{1} (r^2 - 2)) r dr$	$ \begin{array}{c} \boxed{\mathbb{D}} I = \int_{\frac{3\pi}{r}}^{\frac{5\pi}{r}} d\varphi \int_{0}^{1} (r^2 - 2)) r dr \end{array} $				
Câu 13. Tính tích phân $I = \iint\limits_{D} e^{-y^2} y^2 dx dy$, với D là miền giớ	i hạn bởi $0 \le x \le 1, x \le y \le 1$. Chọn kết quả đúng.			
(A) $1 - \frac{1}{e}$ (B) $\frac{1}{2} - \frac{1}{3e}$	O Đáp án khác	$\frac{1}{2} - \frac{1}{e}$			
Câu 14. Tính tích phân $I = \iint\limits_{D} \arctan\left(\frac{y}{x}\right) dx dy$ với D giới hạn	n bởi $\{(x,y)\in\mathbb{R}_2 1\leq x^2+y^2$	$\leq 4, 0 \leq y \leq x \}$			
(A) $\frac{15\pi^2}{64}$ (B) $\frac{3\pi^2}{64}$	$\frac{\pi^2}{32}$	D Đáp án khác			
Câu 15. Tính $\iint\limits_D (x+2y) dx dy$, trong đó D là miền được giới h	ạn bởi $y = 1 + x^2, y = 2x^2$				
(A) $\frac{13}{15}$ (B) $\frac{4}{15}$	Các câu kia đều sai	$\frac{32}{15}$			
Câu 16. Tính $\iint\limits_D xydxdy$, trong đó miền được giới hạn bởi $y=$	$x - 1, y^2 = 2x + 6$				
(A) 36 (B) 4	C 12	Dáp án khác			
Câu 17. Đổi thứ tự lấy tích phân sau $I = \int_{1}^{2} dx \int_{0}^{x} f(x, y) dy$					
$ (A) I = \int_{0}^{1} dy \int_{1}^{2} f(x, y) dx + \int_{1}^{2} dy \int_{y}^{2} f(x, y) dx $	$ B I = \int_{0}^{2} dy \int_{y}^{2} f(x, y) dx $				
$I = \int_{1}^{0} dy \int_{1}^{1} f(x, y) dx + \int_{0}^{1} dy \int_{y}^{2} f(x, y) dx$	D Các câu đều sai				
Câu 18. Tính tích phân $I = \int_{0}^{2} dx \int_{0}^{\sqrt{2x-x^2}} \frac{1}{\sqrt{x^2+y^2}} dy$ ÊU SƯU TÂP					
0 0 •		(D) 2			
	Các câu khác sai $(x, y) \in \mathbb{R}_2 x^2 + y^2 < 2x, y < 2x$				
Câu 19. Viết tích phân kép $\iint\limits_{D}\cos\sqrt{x^2+y^2}dxdy$ với $D=\{(x,y)\in\mathbb{R}_2 x^2+y^2\leq 2x, y \leq x\}$ dưới dạng tọa độ cực					
		D Các câu khác sai			
Câu 20. Viết cận tích phân trong tọa độ cực sau $I=\iint\limits_{D}\sin\sqrt{x^2+y^2}dxdy$, trong đó D là miền giới hạn bởi $\frac{\pi^2}{4}\leq x^2+y^2\leq \pi^2$					
	$ C I = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} r \sin r dr $				
Câu 21. Thể tích vật thể Ω được tính bởi $V(\Omega)=\int\limits_{-1}^{1}dx\int\limits_{0}^{1-x^2}ye$	dy. Vật thể này có thể được giới	hạn bởi:			
A Trụ $y = 1 - x^2$, 3 mp $z = 0$, $y = 0$ và $z = y$ Trụ $y = 1 - x^2$, 2 mp $z = 0$ và $z = y$	B Trụ $y = 1 - x^2$, 2 mp x D Trụ $y = 1 - x^2$, 3 mp $z = 1 - x^2$	= y và z = y $= 0, x = 0 và z = y$			
Câu 22. Tính tích phân $I=\iint\limits_{D}\frac{y}{\sqrt{x^4+y^2}}dxdy$, trong đó D giới hạn bởi $y=\sqrt{3}x^2,y=0,x=1$					
$ \begin{array}{cccc} D & V^{2} & 19 \\ \hline \text{(A)} & 1 & & \\ \hline \text{(B)} & \frac{2}{3} \end{array} $	© 0	\bigcirc $\frac{1}{3}$			
Câu 23. Tính tích phân $\int_{-3}^{3} dx \int_{0}^{\sqrt{9-x^2}} \sin(x^2+y^2)dy$					
	σ (1 (2))	Θ π/4 (Δ))			
(A) $\frac{\pi}{4}(1 - \cos(9))$ (B) $\frac{\pi}{2}(1 - \cos(9))$	$\frac{\pi}{2}(1-\cos(3))$	$\frac{D}{4}(1-\cos(3))$			

Câu 24. Đổi thứ tự lấy tích phân $I = \int_{1}^{e} dx \int_{0}^{\ln x} f(x,y) dy$

$$(A) I = \int_{1}^{e} dy \int_{0}^{e^{y}} f(x, y) dx$$

$$B I = \int_{0}^{0} dy \int_{0}^{x} f(x, y) dx$$

$$C I = \int_{0}^{1} dy \int_{0}^{e^{y}} f(x, y) dx$$

(A)
$$I = \int_{1}^{e} dy \int_{0}^{e^{y}} f(x,y) dx$$
 (B) $I = \int_{1}^{0} dy \int_{0}^{x} f(x,y) dx$ (C) $I = \int_{0}^{1} dy \int_{e}^{e^{y}} f(x,y) dx$ (D) $I = \int_{0}^{1} dy \int_{e^{y}}^{e} f(x,y) dx$

Câu 25. Viết tích phân kép $\iint\limits_{\Omega} f(x,y) dx dy$ với $D = \{(x,y)|x^2+y^2 \leq 2, x \geq 0, y \geq \sqrt{x}\}$ thành tích phân lặp

$$\bigcap_{0}^{1} \int_{0}^{1} dy \int_{y^{2}}^{\sqrt{2-y^{2}}} f(x,y) dx$$

Câu 26. Cho tích phân $I=\iint\limits_{\Omega}f(x,y)dxdy$, trong đó D giới hạn bởi $x^2+y^2+2y\leq 0, x^2+y^2\geq 2$. Tìm đẳng thức đúng:

$$(A) I = \int_{-\frac{3\pi}{4}}^{\frac{-\pi}{4}} d\varphi \int_{\sqrt{2}}^{-2\sin\varphi} rf(r\cos\varphi, r\sin\varphi) dr$$

$$(B) I = \int_{-\frac{3\pi}{4}}^{\frac{-\pi}{4}} d\varphi \int_{-2\sin\varphi}^{\sqrt{2}} rf(r\cos\varphi, r\sin\varphi) dr$$

Cho tích phân $I = \int_{0}^{\sqrt{2}} dx \int_{0}^{x} xy dy + \int_{\sqrt{2}}^{2} dx \int_{0}^{\sqrt{4-x^2}} xy dy$. Tìm đẳng thức đúng

$$(A) I = \int_{0}^{\frac{\pi}{4}} d\varphi \int_{0}^{2} r^{3} \cos \varphi \sin \varphi dr$$

$$C I = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} r^{2} \cos\varphi \sin\varphi dr$$

$$D I = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} r^{3} \cos \varphi \sin \varphi dr$$

(A)
$$I = e - \frac{1}{2}$$

(B)
$$I = e + \sqrt{e} - \frac{1}{2}$$

(C)
$$I = e - \sqrt{e} + \frac{1}{2}$$

$$I = e - \sqrt{e} - \frac{1}{2}$$

 $\begin{array}{c} \text{ (a)} \quad I = \int\limits_0^{\frac{\pi}{4}} d\varphi \int\limits_0^2 r^3 \cos\varphi \sin\varphi dr \\ \text{ (b)} \quad I = \int\limits_0^{\frac{\pi}{2}} d\varphi \int\limits_0^2 r^2 \cos\varphi \sin\varphi dr \\ \text{ (c)} \quad I = \int\limits_0^{\frac{\pi}{2}} d\varphi \int\limits_0^2 r^2 \cos\varphi \sin\varphi dr \\ \text{ (d)} \quad I = \int\limits_0^{\frac{\pi}{2}} d\varphi \int\limits_0^2 r^3 \cos\varphi \sin\varphi dr \\ \text{ (d)} \quad I = \int\limits_0^{\frac{\pi}{2}} d\varphi \int\limits_0^2 r^3 \cos\varphi \sin\varphi dr \\ \text{ (d)} \quad I = \int\limits_0^{\frac{\pi}{2}} d\varphi \int\limits_0^2 r^3 \cos\varphi \sin\varphi dr \\ \text{ (d)} \quad I = e - \frac{1}{2} \\ \text{ (d)} \quad I = e - \sqrt{e} - \frac{1}{2} \\ \text{ (d)$

$$(A) \quad I = \int_{-\frac{\pi}{3}}^{\frac{-\pi}{3}} d\varphi \int_{0}^{-2\sin\varphi} r(1-\cos\varphi)dr$$

$$(A) \quad I = \int_{-\frac{\pi}{3}}^{\frac{-\pi}{3}} d\varphi \int_{0}^{-2\sin\varphi} r(1-\cos\varphi)dr$$

$$C I = \int_{\frac{3\pi}{}}^{\frac{-\pi}{}} d\varphi \int_{0}^{-2\sin\varphi} r^{2} (1 - \cos\varphi) dr$$

$$C I = \int_{\frac{3\pi}{2}}^{\frac{-\pi}{3}} d\varphi \int_{0}^{-2\sin\varphi} r^2 (1-\cos\varphi) dr$$

$$B O I H C M U D I = \int_{-\frac{\pi}{2}}^{\frac{-\pi}{3}} d\varphi \int_{0}^{-2\sin\varphi} r^2 (1-\cos\varphi) dr$$

Đổi thứ tự lấy tích phân $I=\int\limits_0^{1-\frac{\sqrt{2}}{2}}dy\int\limits_{1+\sqrt{2y-y^2}}^{2-y}f(x,y)dx$

(A)
$$I = \int_{0}^{1+\frac{\sqrt{2}}{2}} dx \int_{0}^{1-\sqrt{2x-x^2}} f(x,y)dy$$

B Các câu kia đều sai

$$I = \int_{1}^{1 - \frac{\sqrt{2}}{2}} dx \int_{0}^{1 - \sqrt{2x - x^2}} f(x, y) dy + \int_{1 - \frac{\sqrt{2}}{2}}^{2} dx \int_{0}^{2 - x} f(x, y) dy$$

Thể tích vật thể Ω được tính bởi $V(\Omega) = \int\limits_0^2 dx \int\limits_{-\sqrt{2x-x^2}}^{\sqrt{2x-x^2}} 2xdy$ Vật thể này có thể được giới hạn bởi:

(A) Trụ
$$x^2 + y^2 = 2x$$
, 2 mp $z = 0$ và $y = 2x$

B Trụ
$$x^2 + y^2 = 2x$$
, 2 mp $z = 0$ và $z = -2x$

Tru
$$x^2 + y^2 = 2x$$
, 2 mp $z = 0$ và $z = 2x$

D Trụ
$$x^2 + y^2 = 2x$$
, 2 mp $z = 0$ và $y = -2x$

(A)
$$\pi - 6 + 3\sqrt{3}$$

(B)
$$\pi + 6 + 3\sqrt{3}$$

$$\pi - 6 - 3\sqrt{3}$$

$$\pi + 6 - 3\sqrt{3}$$

Câu 33. Tính tích phân $I=\iint\limits_{D}\frac{1}{\sqrt{1-y^2}}dxdy$, trong đó D là miền $x^2+y^2\leq 1, x\leq 0$					
(A) 0	B 2	© 1	\bigcirc 2π		
Câu 34. Đổi tích phân sau sang tọa độ cực: $I=\iint\limits_{\Omega}\sqrt{x^2+y^2}dxdy$ với D là miền giới hạn bởi $2y\leq x^2+y^2\leq 4y, x\geq 0$					
	$ \begin{array}{c} B \\ I = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{2\sin\varphi}^{H\sin\varphi} r dr \end{array} $				
Câu 35. Đổi thứ tự lấy tích phân	$n I = \int_{0}^{2} dx \int_{0}^{x} f(x, y) dy$				
$ (A) I = \int_{0}^{2} dy \int_{0}^{y} f(x, y) dx $	$ (B) I = \int_{0}^{2} dy \int_{y}^{2} f(x, y) dx $	$I = \int_{1}^{2} dy \int_{1}^{2} f(x, y) dx + \int_{1}^{2} f(x, y) dx$	$\int\limits_{0}^{1}dy\int\limits_{y}^{2}f(x,y)dx$		
D Các câu kia đều sai					
Câu 36. Đổi thứ tự tích phân $I =$	$= \int_{0}^{1} dx \int_{x^{2}}^{2-x} f(x, y) dy$				
	$ B I = \int_{0}^{2} dy \int_{0}^{\sqrt{y}} f(x, y) dx $	$ C I = \int_{0}^{1} dy \int_{0}^{\sqrt{y}} f(x, y) dx + $	$\int_{1}^{2} dy \int_{0}^{2-y} f(x,y) dx$		
	$\int_{1}^{2} dy \int_{0}^{2-y} f(x,y) dx$				
Câu 37. Viết cận tích phân $I =$	$\iint\limits_{D} f(x,y) dx dy, \text{ v\'oi } D: x \leq 2$	$-y^2, x \ge 0, x + y \le 0$			
$ \begin{array}{c} \text{(A)} I = \int\limits_{-1}^{0} dy \int\limits_{-y}^{2-y^2} f(x,y) dx \\ \text{(C)} I = \int\limits_{0}^{1} dx \int\limits_{-x}^{-x} f(x,y) dy \end{array} $	CH CH	$I = \int_{0}^{1} dx \int_{-\sqrt{2-x}}^{-x} f(x,y)dx$ $I = \int_{0}^{0} dy \int_{0}^{-y} f(x,y)dx$	dy		
Câu 37. Viết cận tích phân $I=\int\limits_{D}^{1}f(x,y)dxdy$, với $D:x\leq 2-y^2, x\geq 0, x+y\leq 0$ $A I=\int\limits_{-1}^{0}dy\int\limits_{-y}^{2-y^2}f(x,y)dx$ $C I=\int\limits_{0}^{1}dx\int\limits_{\sqrt{2-x}}^{-x}f(x,y)dy$ $D I=\int\limits_{0}^{1}dy\int\limits_{2-y^2}^{-y}f(x,y)dx$ Câu 38. Đổi thứ tự lấy tích phân $I=\int\limits_{0}^{4}dy\int\limits_{-\sqrt{y}}^{2-y}f(x,y)dx$					
(A) $I = \int_{-2}^{2} dx \int_{0}^{2-x} f(x, y) dy$	$-\int\limits_{-2}^{1} dx \int\limits_{0}^{x^{2}} f(x,y) dy \\ +\int\limits_{0}^{2} dx \int\limits_{0}^{x} f(x,y) dy$	$ (B) I = \int_{-2}^{1} dx \int_{x^{2}}^{2-x} f(x, y) dy $	$+\int_{1}^{2} dx \int_{0}^{x^{2}-x} f(x,y)dy$		
$ C I = \int_{2}^{0} dx \int_{-2}^{2-x} f(x,y) dy $	$+\int_{0}^{2}dx\int_{0}^{2-x}f(x,y)dy$	D Các câu khác sai			
Câu 39. Tính $I = \iint\limits_{\Omega} \sin x^2 dx dy$, trong đó D giới hạn bởi $y \le x \le \pi, 0 \le y \le \pi$. Kết quả đúng là:					
	$\frac{1}{2} - \frac{\cos \pi^2}{4}$	$\bigcirc \frac{1}{2} - \frac{\cos \pi^2}{2}$			
Câu 40. Tính tích phân $\iint_D x dx$					
$ \begin{array}{c} A & \frac{7(2-\sqrt{2})}{3} \\ C^{2} & A1 & T^{2} & \int \Omega_{1} du du du du du \\ \end{array} $	B $\frac{3(2-\sqrt{2})}{2}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D Các câu khác sai		
Câu 41. Tính $\iint\limits_{D} 2x dx dy$ trong		$x^2 + y^2 = 2x, x^2 + y^2 = 4x$			
(A) 4π Câu 42. Tính $\iint_D x^2(y-x)dxdy$	(B) 14π y , trong đó D là miền được giới		$ \begin{array}{c} \boxed{D} \frac{-2\pi}{3} \end{array} $		
$ \begin{array}{c} A \\ \hline 1 \\ \hline 504 \end{array} $	B Các câu đều sai	\bigcirc $\frac{1}{252}$	$ \begin{array}{c} \boxed{D} \frac{-1}{504} \\ \text{bis } \alpha^2 + \alpha^2 < 4 \text{ as } > 0 \text{ and } 0 \end{array} $		
Câu 43. Viết cận tích phân sau trong tọa độ cực $I = \iint\limits_D (x+1) dx dy$, trong đó D là miền giới hạn bởi $x^2 + y^2 \le 4, y \ge -x, y \le 0$					
$ C I = \int_{\frac{5\pi}{4}}^{2\pi} d\varphi \int_{0}^{2} (r\cos\varphi + 1) $)dr	$ \bigcirc \int_{0}^{\pi} d\varphi \int_{0}^{1} r^{2} dr $			

 $\mathbf{D}\hat{\mathbf{e}}$ 1000 $\mathbf{D}\hat{\mathbf{A}}\mathbf{P}\,\hat{\mathbf{A}}\mathbf{N}$

TÍCH PHÂN KÉP

Câu 1. C	Câu 8. (A)	Câu 15. D	Câu 22. ①	Câu 30. ①	Câu 37. B
Câu 2. A	Câu 9. D	Câu 16. (A)	Câu 23. B	Câu 31. (C)	Câu 38. (C)
Câu 3. C	Câu 10. (A)	Câu 17. (A)	Câu 24. D	Câu 32. (A)	Câu 39. (C)
Câu 4. C	Câu 11. B	Câu 18. D	Câu 25. (B) Câu 26. (A)	Câu 33. B	Câu 40. (A)
Câu 5. (A)	Câu 12. (C)	Câu 19. D	Câu 27. (A)	Câu 34. (A)	Câu 41. B
Câu 6. (A)	Câu 13. D	Câu 20. B	Câu 28. (D)	Câu 35. B	Câu 42. D
Câu 7. (A)	Câu 14. (B)	Câu 21. (A), (I	B) Câu 29. (D)	Câu 36. (C)	Câu 43. (B)

