Sesión 2: FUNDAMENTOS DE LA HIDROLOGÍA ESTADÍSTICA

R aplicado a la hidrología

Gutierrez Lope Leonardo Flavio

Hidroinformática

20 de diciembre de 2020

Contenido

- Conceptos generales en la hidrología
- 2 Funciones de frecuencia y probabilidad
- Parámetros estadísticos
- Oistribución de probabilidad para las variables hidrológicas
- Ejemplos aplicativos

Temario

- Conceptos generales en la hidrología
- 2 Funciones de frecuencia y probabilidad
- Parámetros estadísticos
- Oistribución de probabilidad para las variables hidrológicas
- Ejemplos aplicativos

Procesos hidrológicos

Principales medidas estadísticas de un conjunto de datos

Localización

Ejemplo: (escasez de datos)

2 4 9 11 14
$$\bar{x} = 8$$

2 4 9 11 7004
$$\bar{x} = 1406$$

La media no es robusta ni resistente

Localización

La media está comprendida entre el mínimo y el máximo de la muestra.

Media

$$\bar{x} = \frac{\sum_{i=1}^{N} x}{\sum_{i=1}^{N} x}$$

Mediana

 $q_{0.50}$

La mediana "divide el conjunto de datos en dos subconjuntos ordenados con igual cantidad de datos".

Dispersión

Intervalo intercuartil

$$IQR = q_{0.75} - q_{0.25}$$

"No usa" el 25% superior e inferior de los datos

Los cuantiles más usados:

- Mediana q_{0.5}
- Cuartiles, q0.25, q0.75
- Deciles,
- q0.05, q0.95, q0.99

Simetría

Temario

- Conceptos generales en la hidrología
- Funciones de frecuencia y probabilidad
- Parámetros estadísticos
- Distribución de probabilidad para las variables hidrológicas
- Ejemplos aplicativos

Probabilidad

Histograma de frecuencia

HISTOGRAMA DE

FRECUENCIA

Función de frecuencia relativa

FUNCIÓN FRECUENCIA RELATIVA

Función de frecuencia acumulada

Función de población

- Conceptos generales en la hidrología
- Punciones de frecuencia y probabilidad
- Parámetros estadísticos
- Oistribución de probabilidad para las variables hidrológicas
- Ejemplos aplicativos

Parámetros estadísticos

MEDIANA

• Es el valor que ocupa una posición central de una serie de datos

MEDIA ARITMETICA

• sumatoria de todos los valores, dividido entre el número total de ellos

MEDIA GEOMETRICA

• indica es una tendencia central de los datos.

DESVIACIÓN ESTANDAR

• Se refiere a que tan dispersos están los datos respecto al promedio de los datos

VARIANZA

Corresponde al cuadrado de la desviación estándar

PERCENTILES

 Es una medida estadística utilizada para comparar datos. Consiste en un número de 0 a 100 que indica el porcentaje de datos que son igual o menor que un determinado valor

COEFICIENTE DE VARIACIÓN

• Mide el porcentaje de variabilidad de los datos

• La curtosis mide la concentracion de los datos alrededor de la media, si se acerca cero es una distribución normal.

SKEWNESS

• se refiere al grado en que los datos son asimétricos. A medida que los datos se vuelven simétricos, el valor se acerca a cero

- Conceptos generales en la hidrología
- 2 Funciones de frecuencia y probabilidad
- Parámetros estadísticos
- Distribución de probabilidad para las variables hidrológicas
- Ejemplos aplicativos

Distribución de probabilidad para las variables hidrológicas

DISTRIBUCIÓN NORMAL

- Pr(x): función densidad normal de la variable x
- z: variable independiente / normal estándar
- m: parámetro de localización igual a la media aritmética de z
- s: parámetro de escala, igual a la desviación estándar de x

$$\Pr(a < x < b) = \int_a^b rac{1}{\sqrt{2\pi}s} e^{-rac{1}{2}\left(rac{x-m}{s}
ight)^2} dx$$

Figura 2: Distribución normal

APLICACIONES DISTRIBUCION NORMAL

- Ajuste de las distribuciones de variables hidrológicas de intervalos de tiempo grande (medias anuales,mensuales estacionales).
- Análisis de los errores aleatorios en las observaciones o mediciones hidrológicas.
- Referencia para comparaciones de varias distribuciones teóricas de ajuste en una distribución empírica.
- Procesos de inferencia estadística

OTRAS DISTRIBUCIONES

- LOG-NORMAL (X > 0)Distribución de tamaño de gotas y otros procesos hidrológicos
- EXPONENCIAL (X >= 0)Describir eventos hidrológicos como la ocurrencia de precipitación.

Proceso de selección de una distribución teórica

AOUAGRUM

- Conceptos generales en la hidrología
- 2 Funciones de frecuencia y probabilidad
- Parámetros estadísticos
- Distribución de probabilidad para las variables hidrológicas
- Ejemplos aplicativos

Quantile - Quantile plot

Figura 4: Q-Q plot

