Sequences and Series

- Sequences and Series
- Convergence of Infinite Series
- Tests of Convergence
- P-Series Test
- Comparison Tests
- Ratio test
- Raabe's test
- Cauchy's Root test
- Integral test
- Leibnitz's test
- Absolute Convergence
- Conditional convergence

Sequence

A function $f:N \to S$, where S is any nonempty set is called a Sequence i.e., for each $n \in N$, \exists a unique element $f(n) \in S$. The sequence is written as f(1), f(2), f(3),f(n)...., and is denoted by $\{f(n)\}$, or $\{f(n)\}$, or $\{f(n)\}$, or $\{f(n)\}$. If $\{f(n)\}$ and $\{f(n)\}$ are the written as $\{a_1,a_2,a_3,\ldots,a_n\}$ denoted by $\{a_n\}$ or $\{a_n\}$. Here $\{f(n)\}$ or $\{a_n\}$ are the $\{a_n\}$ or $\{a_n\}$ or $\{a_n\}$.

Ex. 2.
$$\frac{1}{1^3}, \frac{1}{2^3}, \frac{1}{3^3}, \dots, \frac{1}{n^3}, \dots (or) \left(\frac{1}{n^3}, \frac{1}{n^3}, \dots, \frac{1}{n^3$$

Ex. 3. 1, 1, 1.....1.... or <1>

Ex 4: 1, -1, 1, -1, or $\langle (-1)^{n-1} \rangle$

Note: 1. If $S \subseteq R$ then the sequence is called a *real sequence*.

2. The range of a sequence is almost a countable set.

Kinds of Sequences

- **1. Finite Sequence:** A sequence $\langle a_n \rangle$ in which $a_n = 0 \ \forall n > m \in \mathbb{N}$ is said to be a finite Sequence. i.e., A finite Sequence has a finite number of terms.
- 2. Infinite Sequence: A sequence, which is not finite, is an infinite sequence.

Bounds of a Sequence and Bounded Sequence

1. If \exists a number 'M' $\ni a_n \leq M$, $\forall n \in \mathbb{N}$, the Sequence $\langle a_n \rangle$ is said to be bounded above or bounded on the right.

Ex.
$$1, \frac{1}{2}, \frac{1}{3}, \dots$$
 here $a_n \le 1 \ \forall n \in \mathbb{N}$

2. If \exists a number 'm' $\ni a_n \ge m, \forall n \in \mathbb{N}$, the sequence $\langle a_n \rangle$ is said to be bounded below or bounded on the left.

Ex. 1, 2, 3,....here
$$a_n \ge 1 \ \forall n \in \mathbb{N}$$

3. A sequence which is bounded above and below is said to be bounded.

Ex. Let
$$a_n = (-1)^n \left(1 + \frac{1}{n}\right)$$

n	1	2	3	4	
a_n	-2	3/2	-4/3	5/4	

From the above figure (see also table) it can be seen that m = -2 and $M = \frac{3}{2}$.

.. The sequence is bounded.

Limits of a Sequence

A Sequence $< a_n >$ is said to tend to limit 'l' when, given any + ve number ' \in ', however small, we can always find an integer 'm' such that $|a_n - l| < \in$, $\forall n \ge m$, and we write $\underset{n \to \infty}{Lt} a_n = l$ or $\langle a_n \to l \rangle$

Ex. If
$$a_n = \frac{n^2 + 1}{2n^2 + 3}$$
 then $\langle a_n \rangle \to \frac{1}{2}$.

Convergent, Divergent and Oscillatory Sequences

- 1. Convergent Sequence: A sequence which tends to a finite limit, say 'l' is called a Convergent Sequence. We say that the sequence converges to 'l'
- 2. Divergent Sequence: A sequence which tends to $\pm \infty$ is said to be Divergent (or is said to diverge).
- 3. Oscillatory Sequence: A sequence which neither converges nor diverges ,is called an Oscillatory Sequence.

Ex. 1. Consider the sequence 2,
$$\frac{3}{2}$$
, $\frac{4}{3}$, $\frac{5}{4}$,..... here $a_n = 1 + \frac{1}{n}$

The sequence $\langle a_n \rangle$ is convergent and has the limit 1

$$a_n - 1 = 1 + \frac{1}{n} - 1 = \frac{1}{n}$$
 and $\frac{1}{n} < \epsilon$ whenever $n > \frac{1}{\epsilon}$

Suppose we choose \in = .001, we have $\frac{1}{n}$ < .001 when n > 1000.

Ex. 2. If
$$a_n = 3 + (-1)^n \frac{1}{n!} < a_n > \text{ converges to } 3$$
.

Ex. 3. If
$$a_n = n^2 + (-1)^n \cdot n, < a_n > \text{ diverges.}$$

Ex. 4. If
$$a_n = \frac{1}{n} + 2(-1)^n$$
, $\langle a_n \rangle$ oscillates between -2 and 2.

Infinite Series

If $< u_n >$ is a sequence, then the expression $u_1 + u_2 + u_3 + \dots + u_n + \dots$ is called an infinite series. It is denoted by $\sum_{n=1}^{\infty} u_n$ or simply $\sum u_n$

The sum of the first n terms of the series is denoted by s_n

i.e.,
$$s_n = u_1 + u_2 + u_3 + \dots + u_n$$
; $s_1, s_2, s_3, \dots + s_n$ are called partial sums.

Convergent, Divergent and Oscillatory Series

Let Σu_n be an infinite series. As $n \to \infty$, there are three possibilities.

(a) Convergent series: As n→∞,s_n → a finite limit, say 's' in which case the series is said to be convergent and 's' is called its sum to infinity.

Thus
$$\underset{n\to\infty}{Lt} s_n = s$$
 (or) simply $Lts_n = s$

This is also written as $u_1 + u_2 + u_3 + \dots + u_n + \dots + to \infty = s$. (or) $\sum_{n=1}^{\infty} u_n = s$ (or) simply $\sum u_n = s$.

- **(b)** Divergent series: If $s_n \to \infty$ or $-\infty$, the series said to be divergent.
- (c) Oscillatory Series: If s_n does not tend to a unique limit either finite or infinite it is said to be an Oscillatory Series.

Note: Divergent or Oscillatory series are sometimes called non convergent series.

Geometric Series

The series, $1 + x + x^2 + \dots + x^{n-1} + \dots$ is

- (i) Convergent when |x| < 1, and its sum is $\frac{1}{1-x}$
- (ii) Divergent when $x \ge 1$.
- (iii) Oscillates finitely when x = -1 and oscillates infinitely when x < -1.

Proof: The given series is a geometric series with common ratio 'x'

$$\therefore s_n = \frac{1 - x^n}{1 - x} \quad \text{when } x \neq 1 \quad \text{[By actual division - verify]}$$

(i) When |x| < 1:

$$\underset{n\to\infty}{Lt} s_n = \underset{n\to\infty}{Lt} \left(\frac{1}{1-x} \right) - \underset{n\to\infty}{Lt} \left(\frac{x^n}{1-x} \right) = \frac{1}{1-x}$$
 [since $x^n \to 0$ as $n \to \infty$]

- \therefore The series converges to $\frac{1}{1-x}$
- (ii) When $x \ge 1$: $s_n = \frac{x^n 1}{x 1}$ and $s_n \to \infty$ as $n \to \infty$
 - .. The series is divergent.
- (iii) When x = -1: when n is even, $s_n \to 0$ and when n is odd, $s_n \to 1$
 - :. The series oscillates finitely.
- (iv) When $x < -1, s_n \to \infty$ or $-\infty$ according as n is odd or even.
 - ... The series oscillates infinitely.

Some Elementary Properties of Infinite Series

- 1. The convergence or divergence of an infinites series is unaltered by an addition or deletion of a finite number of terms from it.
- 2. If some or all the terms of a convergent series of positive terms change their signs, the series will still be convergent.
- 3. Let Σu_n converge to 's'

Let 'k' be a non – zero fixed number. Then $\sum ku_n$ converges to ks.

Also, if Σu_n diverges or oscillates, so does Σku_n

- **4.** Let Σu_n converge to 'l' and Σv_n converge to 'm'. Then
 - (i) $\Sigma(u_n + v_n)$ converges to (l+m) and (ii) $\Sigma(u_n + v_n)$ converges to (l-m)

Series of Positive Terms

Consider the series in which all terms beginning from a particular term are +ve.

Let the first term from which all terms are +ve be u₁

Let Σu_n be such a convergent series of +ve terms. Then, we observe that the convergence is unaltered by any rearrangement of the terms of the series.

Theorem

If $\sum u_n$ is convergent, then $\lim_{n\to\infty} u_n = 0$.

Proof:
$$s_n = u_1 + u_2 + \dots + u_n$$

 $s_{n-1} = u_1 + u_2 + \dots + u_{n-1}$, so that, $u_n = s_n - s_{n-1}$

Suppose
$$\Sigma u_n = l$$
 then $\underset{n \to \infty}{Lt} s_n = l$ and $\underset{n \to \infty}{Lt} s_{n-1} = l$

$$\therefore \ \, \underset{n\to\infty}{Lt} \, u_n = \underset{n\to\infty}{Lt} \left(s_n - s_{n-l} \right) \ \, ; \quad \underset{n\to\infty}{Lt} \, s_n - \underset{n\to\infty}{Lt} \, s_{n-l} = l-l = 0$$

Note: The converse of the above theorem need not be always true. This can be observed from the following examples.

(i) Consider the series,
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$
; $u_n = \frac{1}{n}$, $Lt_n = 0$
But from p -series test (1.3.1) it is clear that $\sum_{n=1}^{\infty} u_n = 1$

(ii) Consider the series,
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

$$u_n = \frac{1}{n^2}$$
, $Lt_{n \to \infty} u_n = 0$, by p series test, clearly $\Sigma \frac{1}{n^2}$ converges,

Note: If $\underset{n\to\infty}{Lt} u_n \neq 0$ the series is divergent;

Ex.
$$u_n = \frac{2^n - 1}{2^n}$$
, here $\underset{n \to \infty}{Lt} u_n = 1$: $\sum u_n$ is divergent.

Tests for the Convergence of an Infinite Series

In order to study the nature of any given infinite series of +ve terms regarding convergence or otherwise, a few tests are given below.

P-Series Test

The infinite series,
$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots$$
, is

(i) Convergent when p > 1, and (ii) Divergent when $p \le 1$. (JNTU 2002, 2003)

Proof:

Case (i) Let
$$p > 1$$
; $p > 1,3^p > 2^p$; $\Rightarrow \frac{1}{3^p} < \frac{1}{2^p}$

$$\therefore \frac{1}{2^p} + \frac{1}{3^p} < \frac{1}{2^p} + \frac{1}{2^p} = \frac{2}{2^p}$$
Similarly, $\frac{1}{4^p} + \frac{1}{5^p} + \frac{1}{6^p} + \frac{1}{7^p} < \frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p} = \frac{4}{4^p}$

$$\frac{1}{8^p} + \frac{1}{9^p} + \dots + \frac{1}{16^p} < \frac{8}{8^p}, \text{ and so on.}$$

Adding we get

$$\Sigma \frac{1}{n^p} < 1 + \frac{2}{2^p} + \frac{4}{4^p} + \frac{8}{8^p} + \dots$$
i.e.,
$$\Sigma \frac{1}{n^p} < 1 + \frac{1}{2^{(p-1)}} + \frac{1}{2^{2(p-1)}} + \frac{1}{2^{3(p-1)}} + \dots$$

The RHS of the above inequality is an infinite geometric series with common

1 . . .

ratio $\frac{1}{2^{p-1}} < 1$ (since p > 1) The sum of this geometric series is finite.

Hence $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is also finite.

... The given series is convergent.

Case (ii) Let
$$p=1$$
; $\Sigma \frac{1}{n^p} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$
We have, $\frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$
 $\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$
 $\frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{16} > \frac{1}{16} + \frac{1}{16} + \dots + \frac{1}{16} = \frac{1}{2}$ and so on
 $\Sigma \frac{1}{n^p} = 1 + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}\right) + \dots$
 $\ge 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$

The sum of RHS series is ∞

$$\left(\text{since } s_n = 1 + \frac{n-1}{2} = \frac{n+1}{2} \text{ and } \underset{n \to \infty}{Lt} s_n = \infty\right)$$

... The sum of the given series is also ∞ ; ... $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (p=1) diverges.

Case (iii) Let p<1,
$$\Sigma \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots$$

Since $p < 1, \frac{1}{2^p} > \frac{1}{2^r}, \frac{1}{3^p} > \frac{1}{3^r}, \dots$ and so on $\Sigma \frac{1}{n^p} > 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$

From the Case (ii), it follows that the series on the RHS of above inequality is divergent.

$$\therefore \qquad \qquad \sum \frac{1}{n^p} \text{ is divergent, when } P < 1$$

Note: This theorem is often helpful in discussing the nature of a given infinite series.

Comparison Tests

1. Let Σu_n and Σv_n be two series of +ve terms and let Σv_n be convergent. Then Σu_n converges,

(a) If
$$u_n \le v_n, \forall n \in \mathbb{N}$$

(b) or
$$\frac{u_n}{v_n} \le k \forall n \in N$$
 where k is > 0 and finite.

(c) or
$$\frac{u_n}{v_n} \rightarrow$$
 a finite limit > 0

Proof: (a) Let
$$\Sigma v_n = l$$
 (finite)

Then,
$$u_1 + u_2 + \dots + u_n + \dots \le v_1 + v_2 + \dots + v_n + \dots \le l > 0$$

Since l is finite it follows that $\sum u_n$ is convergent

(c)
$$\frac{u_n}{v_n} \le k \Rightarrow u_n \le kv_n, \forall n \in \mathbb{N}$$
, since Σv_n is convergent and k (>0) is finite, Σkv_n is convergent $\therefore \Sigma u_n$ is convergent.

(d) Since
$$Lt_{n\to\infty} \frac{u_n}{v_n}$$
 is finite, we can find a +ve constant $k, \ni \frac{u_n}{v_n} < k \forall n \in N$

 \therefore from (2), it follows that Σu_n is convergent

2. Let Σu_n and Σv_n be two series of +ve terms and let Σv_n be divergent. Then Σu_n diverges,

* 1. If
$$u_n \ge v_n, \forall n \in \mathbb{N}$$

or * 2. If
$$\frac{u_n}{v_n} \ge k, \forall n \in N$$
 where k is finite and $\ne 0$

or * 3. If
$$Lt \frac{u_n}{v_n}$$
 is finite and non-zero.

Note:

(a) In (1) and (2), it is sufficient that the conditions with * hold \forall > \in nmN Alternate form of comparison tests : The above two types of comparison tests 2.8.(1) and 2.8.(2) can be clubbed together and stated as follows :

If
$$\Sigma u_n$$
 and Σv_n are two series of + ve terms such that $Lt \frac{u_n}{v_n} = k$, where k is

non-zero and finite, then Σu_n and Σv_n both converge or both diverge.

- (b) 1. The above form of comparison tests is mostly used in solving problems.
- 2. In order to apply the test in problems, we require a certain series $\Sigma \nu_n$ whose

nature is already known i.e., we must know whether Σv_n

is convergent are

divergent. For this reason, we call Σv_n

as an 'auxiliary series'.

3. In problems, the geometric series (1.2.2.) and the p-series (1.3.1) can be conveniently used as 'auxiliary series'.

Solved Examples

EXAMPLE 1

Test the convergence of the following series:

(a)
$$\frac{3}{1} + \frac{4}{8} + \frac{5}{27} + \frac{6}{64} + \dots$$
 (b) $\frac{4}{1} + \frac{5}{4} + \frac{6}{9} + \frac{7}{16} + \dots$ (c) $\sum_{n=1}^{\infty} \left[\left(n^4 + 1 \right)^{1/4} - n \right]$

(b)
$$\frac{4}{1} + \frac{5}{4} + \frac{6}{9} + \frac{7}{16} + \dots$$

(c)
$$\sum_{n=1}^{\infty} \left[\left(n^4 + 1 \right)^{1/4} - n \right]$$

SOLUTION

(a) Step 1: To find "u_n" the nth term of the given series. The numerators 3, 4, 5,

6..... of the terms, are in AP.

$$n^{th}$$
 term $t_n = 3 + (n-1).1 = n+2$

Denominators are
$$1^3, 2^3, 3^3, 4^3, \dots, n^{th}$$
 term = n^3 ; $\therefore u_n = \frac{n+2}{n^3}$

Step 2: To choose the auxiliary series Σvn . In u_n the highest degree of n in the numerator is 1 and that of denominator is 3.

: we take,
$$v_n = \frac{1}{n^{3-1}} = \frac{1}{n^2}$$

Step 3:
$$Lt \frac{u_n}{v_n} = Lt \frac{n+2}{n^3} \times n^2 = Lt \frac{n+2}{n} = Lt \left(1 + \frac{2}{n}\right) = 1$$
, which is non-zero and finite.

Step 4: Conclusion:
$$Lt \frac{u_n}{v_n} = 1$$

 $\therefore \Sigma u_n$ and Σv_n both converge or diverge (by comparison test). But $\Sigma v_n = \Sigma \frac{1}{n^2}$ is convergent by p-series test (p = 2 > 1); $\therefore \Sigma u_n$ is convergent.

(b)
$$\frac{4}{1} + \frac{5}{4} + \frac{6}{9} + \frac{7}{16} + \dots$$

Step 1: 4, 5, 6, 7,in AP,
$$t_n = 4 + (n-1)1 = n+3$$
 $\therefore u_n = \frac{n+3}{n^2}$

Step 2: Let
$$\Sigma v_n = \frac{1}{n}$$
 be the auxiliary series

Step 3:
$$Lt \frac{u_n}{v_n} = Lt \left(\frac{n+3}{n^2}\right) \times n = Lt \left(1 + \frac{3}{n}\right) = 1$$
, which is non-zero and finite.

Step 4:
$$\therefore$$
 By comparison test, both Σu_n and Σv_n converge are diverge together.

But
$$\Sigma v_n = \Sigma \frac{1}{n}$$
 is divergent, by *p*-series test $(p = 1)$; $\therefore \Sigma u_n$ is divergent.

(c)
$$\sum_{n=1}^{\infty} \left[\left(n^4 + 1 \right)^{1/4} - n \right] = \left\{ n^4 \left(1 + \frac{1}{n^4} \right) \right\}^{\frac{1}{4}} - n = n \left[\left(1 + \frac{1}{n^4} \right)^{\frac{1}{4}} - 1 \right]$$
$$= n \left[1 + \frac{1}{4n^4} + \frac{\frac{1}{4} \left(\frac{1}{4} - 1 \right)}{2!} \cdot \frac{1}{n^8} + \dots - 1 \right] = n \left[\frac{1}{4n^4} - \frac{3}{32n^8} + \dots \right]$$
$$= \frac{1}{4n^3} - \frac{3}{32n^7} + \dots = \frac{1}{n^3} \left[\frac{1}{4} - \frac{3}{32n^4} + \dots \right]$$

Here it will be convenient if we take $v_n = \frac{1}{n^3}$

$$\underset{n\to\infty}{Lt} \frac{u_n}{v_n} = \underset{n\to\infty}{Lt} \left(\frac{1}{4} - \frac{1}{32n^4} + \dots \right) = \frac{1}{4}, \text{ which is non-zero and finite}$$

... By comparison test, Σu_n and Σv_n both converge or both diverge. But by p-series test $\Sigma v_n = \frac{1}{n^3}$ is convergent. (p = 3 > 1); ... Σu_n is convergent.

EXAMPLE 2

If $u_n = \frac{\sqrt[3]{3n^2+1}}{\sqrt[4]{2n^3+3n+5}}$ show that $\sum u_n$ is divergent.

SOLUTION.

As n increases, u_n approximates to

$$\frac{\sqrt[3]{3n^2}}{\sqrt[4]{2n^3}} = \frac{3^{1/3}}{2^{1/4}} \times \frac{n^{2/3}}{n^{3/4}} = \frac{3^{1/3}}{2^{1/4}} \cdot \frac{1}{n^{1/2}}$$

$$\therefore \text{ If we take } v_n = \frac{1}{n^{1/2}}, \ \underset{n \to \infty}{Lt} \frac{u_n}{v_n} = \frac{3^{1/3}}{2^{1/4}} \text{ which is finite.}$$

[(or) *Hint:* Take $v_n = \frac{1}{n^{l_1 - l_2}}$, where l_1 and l_2 are indices of 'n' of the largest terms

in denominator and nominator respectively of
$$u_n$$
. Here $v_n = \frac{1}{n^{\frac{3}{4} - \frac{2}{3}}} = \frac{1}{n^{\frac{1}{12}}}$

By comparison test, Σv_n and Σu_n converge or diverge together. But $\Sigma v_n = \Sigma \frac{1}{n^{1/2}}$ is divergent by p – series test (since $p = \frac{1}{12} < 1$)

 $\therefore \Sigma u_n$ is divergent.

Example:3

Test for convergence of the series $\sqrt{\frac{1}{2}} + \sqrt{\frac{2}{3}} + \sqrt{\frac{3}{4}} + \sqrt{\frac{4}{5}} + \dots$

Solution:

Here,
$$u_n = \sqrt{\frac{n}{n+1}}$$
; Take $v_n = \frac{1}{n^{\frac{1}{2} - \frac{1}{2}}} = \frac{1}{n^0} = 1$, $Lt_{n \to \infty} \frac{u_n}{v_n} = Lt_{n \to \infty} \sqrt{\frac{1}{1 + \frac{1}{n}}} = 1$ (finite)

 Σv_n is divergent by p – series test. (p = 0 < 1)

 \therefore By comparison test, Σu_n is divergent, (Students are advised to follow the procedure given in ex. 1.2.9(a) and (b) to find " u_n " of the given series.

Example:4

Show that $1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots$ is convergent.

Solution:

$$u_n = \frac{1}{|n|} \text{ (neglecting 1st term)}$$

$$= \frac{1}{1.2.3.....n} < \frac{1}{1.2.2.2....\overline{n-1}times} = \frac{1}{(2^{n-1})}$$

$$\Sigma u_n < 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots$$

which is an infinite geometric series with common ratio $\frac{1}{2} < 1$

 $\therefore \qquad \qquad \Sigma \frac{1}{2^{n-1}} \text{ is convergent. (1.2.3(a)). Hence } \Sigma u_n \text{ is convergent.}$

Example:5

Test for the convergence of the series $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \cdots \dots$

Solution:

$$u_n = \frac{1}{n(n+1)(n+2)};$$
 Take $v_n = \frac{1}{n^3}$ $Lt \frac{u_n}{v_n} = Lt \frac{n^3}{n^3(1+\frac{1}{n})(1+\frac{2}{n})} = 1$ (finite)

 Σu_n , and Σv_n converge or diverge together. But by p-series test,

$$\Sigma v_n = \Sigma \frac{1}{n^3}$$
 is convergent $(p = 3 > 1)$; $\therefore \Sigma u_n$ is convergent.

Example:6

If $u_n = \sqrt{n^4 + 1} - \sqrt{n^4 - 1}$, show that $\sum u_n$ is convergent. Solution:

$$u_n = n^2 \left(1 + \frac{1}{n^4}\right)^{\frac{1}{2}} - n^2 \left(1 - \frac{1}{n^4}\right)^{\frac{1}{2}}$$

$$= n^{2} \left[\left(1 + \frac{1}{2n^{4}} - \frac{1}{8n^{8}} + \frac{1}{16n^{12}} - \dots \right) - \left(1 - \frac{1}{2n^{4}} - \frac{1}{8n^{8}} - \frac{1}{16n^{12}} - \dots \right) \right]$$

$$= n^{2} \left[\frac{1}{n^{4}} + \frac{1}{8n^{12}} + \dots \right] = \frac{1}{n^{2}} \left[1 + \frac{1}{8n^{10}} + \dots \right]$$

Take $v_n = \frac{1}{n^2}$, hence $Lt \frac{u_n}{v_n} = 1$

... By comparison test, Σu_n and Σv_n converge or diverge together. But $\Sigma v_n = \frac{1}{n^2}$ is convergent by p –series test (p = 2 > 1) ... Σu_n is convergent.

EXAMPLE 7

Test the series $\frac{1}{1+x} + \frac{1}{2+x} + \frac{1}{3+x} + \dots$ for convergence.

Solution:

$$u_n = \frac{1}{n+x}$$
; take $v_n = \frac{1}{n}$, then $\frac{u_n}{v_n} = \frac{n}{n+x} = \frac{1}{1+\frac{x}{n}}$

$$Lt_{n\to\infty}\left(\frac{1}{1+\frac{x}{n}}\right) = 1; \Sigma v_n = \Sigma \frac{1}{n} \text{ is divergent by } p\text{-series test } (p=1)$$

∴ By comparison test, Σu_n is divergent.

EXAMPLE 8

Show that $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$ is divergent.

Solution:

$$u_n = \sin\left(\frac{1}{n}\right); \quad \text{take} \quad v_n = \frac{1}{n}$$

$$Lt \frac{u_n}{v_n} = Lt \frac{\sin\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} = Lt \frac{\sin t}{t} \text{ (where } t = \frac{1}{n}) = 1$$

 $\therefore \Sigma u_{_n}, \Sigma v_{_n}$ both converge or diverge. But $\Sigma v_{_n} = \Sigma \frac{1}{n}$ is divergent $(p \text{-series test}, p = 1); \therefore \Sigma u_{_n}$ is divergent.

EXAMPLE 9

Test the series $\Sigma \sin^{-1} \left(\frac{1}{n} \right)$ for convergence.

SOLUTION

$$u_n = \sin^{-1}\frac{1}{n}; \qquad \text{Take} \qquad v_n = \frac{1}{n}$$

$$\underset{n \to \infty}{Lt} \frac{u_n}{v_n} = \underset{n \to \infty}{Lt} \frac{\sin^{-1\left(\frac{1}{n}\right)}}{\left(\frac{1}{n}\right)}; = \underset{\theta \to 0}{Lt} \left(\frac{\theta}{\sin \theta}\right) = 1 \left(Taking \sin^{-1}\frac{1}{n} = \theta\right)$$

But Σv_n is divergent. Hence Σu_n is divergent.

EXAMPLE 10

Show that the series $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^3} +$ is divergent.

Solution:

Neglecting the first term, the series is $\frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots$. Therefore

$$u_n = \frac{n^n}{(n+1)^{n+1}} = \frac{n^n}{(n+1)(n+1)} n = \frac{n^n}{n(1+\frac{1}{n}) \cdot n^n \left(1+\frac{1}{n}\right)^n} = \frac{1}{n(1+\frac{1}{n})\left(1+\frac{1}{n}\right)};$$

Take
$$v_n = \frac{1}{n}$$

$$\therefore Lt \frac{u_n}{v_n} = Lt \frac{1}{\left(1 + \frac{1}{n}\right)\left(1 + \frac{1}{n}\right)^n} = Lt \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e}$$

which is finite and $\Sigma v_n = \Sigma \frac{1}{n}$ is divergent by p –series test (p = 1)

∴ Σu_n is divergent.

D' Alembert's Ratio Test

Let (i)
$$\sum u_n$$
 be a series of +ve terms and (ii) $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = k (\geq 0)$

Then the series $\sum u_n$ is (i) convergent if k < 1 and (ii) divergent if k > 1.

Note: 1 The ratio test fails when k = 1. As an example, consider the series, $\sum_{n=1}^{\infty} \frac{1}{n^p}$

Here
$$Lt \frac{u_{n+1}}{u_n} = Lt \left(\frac{n}{n+1}\right)^p = Lt \left(\frac{1}{1+\frac{1}{n}}\right)^p = 1$$

i.e., k = 1 for all values of p,

But the series is convergent if p > 1 and divergent if $p \le 1$, which shows that when k = 1, the series may converge or diverge and hence the test fails.

Note: 2 Ratio test can also be stated as follows:

If
$$\sum u_n$$
 is series of +ve terms and if $\underset{n\to\infty}{Lt} \frac{u_n}{u_{n+1}} = k$, then $\sum u_n$ is convergent

If k > 1 and divergent if k < 1 (the test fails when k = 1).

Solved Examples

Test for convergence of Series

EXAMPLE 28

(a)
$$\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots$$

SOLUTION

$$u_n = \frac{x^n}{n(n+1)}; \ u_{n+1} = \frac{x^{n+1}}{(n+1)(n+2)}; \ \frac{u_{n+1}}{u_n} = \frac{x^{n+1}}{(n+1)(n+2)} \cdot \frac{n(n+1)}{x^n} = \frac{1}{\left(1 + \frac{2}{n}\right)}x.$$

Therefore $\underset{n\to\infty}{Lt} \frac{u_{n+1}}{u_n} = x$

 \therefore By ratio test $\sum u_n$ is convergent When |x| < 1 and divergent when |x| > 1;

When
$$x = 1$$
, $u_n = \frac{1}{n^2 (1 + 1/n)}$; Take $v_n = \frac{1}{n^2}$; $Lt_{n \to \infty} \frac{u_n}{v_n} = 1$

 \therefore By comparison test $\sum u_n$ is convergent.

Hence $\sum u_n$ is convergent when $|x| \le 1$ and divergent when |x| > 1.

(b)
$$1+3x+5x^2+7x^3+...$$

SOLUTION

$$u_n = (2n-1)x^{n-1};$$
 $u_{n+1} = (2n+1)x^n;$ $Lt_{n\to\infty} \frac{u_{n+1}}{u_n} = Lt_{n\to\infty} \left(\frac{2n+1}{2n-1}\right)x = x$

... By ratio test $\sum u_n$ is convergent when |x| < 1 and divergent when |x| > 1When $x = 1 : u_n = 2n - 1$; $\underset{n \to \infty}{Lt} u_n = \infty$; ... $\sum u_n$ is divergent.

Hence $\sum u_n$ is convergent when |x| < 1 and divergent when $|x| \ge 1$

(c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2 + 1}$$

SOLUTION

$$u_n = \frac{x^n}{n^2 + 1}$$
; $u_{n+1} = \frac{x^{n+1}}{(n+1)^2 + 1}$.

Hence $\frac{u_{n+1}}{u_n} = \left(\frac{n^2 + 1}{n^2 + 2n + 2}\right) x$, $Lt_{n \to \infty} \frac{u_{n+1}}{u_n} = Lt_{n \to \infty} \left| \frac{n^2 \left(1 + \frac{1}{n^2}\right)}{n^2 \left(1 + \frac{2}{n} + \frac{2}{n^2}\right)} \right| (x) = x$

... By ratio test, $\sum u_n$ is convergent when |x| < 1 and divergent when |x| > 1. When $x = 1 : u_n = \frac{1}{n^2 + 1}$; Take $v_n = \frac{1}{n^2}$

 \therefore By comparison test, $\sum u_n$ is convergent when $|x| \le 1$ and divergent when |x| > 1

EXAMPLE 29

Test the series $\sum_{n\to\infty}^{\infty} \left(\frac{n^2-1}{n^2+1}\right) x^n, x>0$ for convergence.

Solution:

$$u_n = \left(\frac{n^2 - 1}{n^2 + 1}\right) x^n; u_{n+1} = \left[\frac{\left(n + 1\right)^2 - 1}{\left(n + 1\right)^2 + 1}\right] x^{n+1}$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_n} = Lt_{n\to\infty} \left[\left(\frac{n^2 + 2n}{n^2 + 2n + 2} \right) \frac{(n^2 + 1)}{(n^2 - 1)} \right] . x$$

$$= Lt_{n\to\infty} \left[\frac{n^4 (1 + 2/n)(1 + 1/n^2)}{n^4 (1 + 2/n + 2/n^2)(1 - 1/n^2)} \right] = x$$

 \therefore By ratio test, $\sum u_n$ is convergent when x < 1 and divergent when x > 1 when x = 1,

$$u_n = \frac{n^2 - 1}{n^2 + 1}$$
 Take $v_n = \frac{1}{n^0}$

Applying p-series and comparison test, it can be seen that $\sum u_n$ is divergent when x = 1.

 $\therefore \sum u_n$ is convergent when x < 1 and divergent $x \ge 1$

EXAMPLE 30

Show that the series $1 + \frac{2^p}{2} + \frac{3^p}{2} + \frac{4^p}{4} + \dots$, is convergent for all values of p.

SOLUTION

$$\begin{split} u_n &= \frac{n^p}{\lfloor \underline{n}} \; ; \; u_{n+1} = \frac{\left(n+1\right)^p}{\left\lfloor \underline{n+1} \right\rfloor} \\ Lt &= \underbrace{Lt}_{n \to \infty} \frac{1}{u_n} = \underbrace{Lt}_{n \to \infty} \left[\frac{\left(n+1\right)^p}{\left\lfloor \underline{n+1} \right\rfloor} \times \frac{\lfloor \underline{n}}{n^p} \right] = \underbrace{Lt}_{n \to \infty} \left\{ \frac{1}{\left(n+1\right)} \left(\frac{n+1}{n}\right)^p \right\} \\ &= \underbrace{Lt}_{n \to \infty} \frac{1}{\left(n+1\right)} \times \underbrace{Lt}_{n \to \infty} \left(1 + \frac{1}{n}\right)^p = 0 < 1 \; ; \end{split}$$

 $\sum u_n$ is convergent for all 'p'.

EXAMPLE 31

Test the convergence of the following series

$$\frac{1}{1^p} + \frac{1}{3^p} + \frac{1}{5^p} + \frac{1}{7^p} + \dots$$

SOLUTION

$$u_n = \frac{1}{(2n-1)^p};$$
 $u_{n+1} = \frac{1}{(2n+1)^p}$

$$\frac{u_{n+1}}{u_n} = \frac{(2n-1)^p}{(2n+1)^p} = \frac{2^p \cdot n^p (1-1/2n)^p}{2^p \cdot n^p (1+1/2n)^p}; \qquad Lt \frac{u_{n+1}}{u_n} = 1$$

.. Ratio test fails.

Take
$$v_n = \frac{1}{n^p}$$
; $\frac{u_n}{v_n} = \frac{n^p}{(2n-1)^p} = \frac{1}{2^p \left(1 - \frac{1}{2n}\right)^p}$; $Lt_{n \to \infty} \frac{u_n}{v_n} = \frac{1}{2^p}$,

which is non - zero and finite

 \therefore By comparison test, $\sum u_n$ and $\sum v_n$ both converge or both diverge.

But by p – series test, $\sum v_n = \sum \frac{1}{n^p}$ converges when p > 1 and diverges when $p \le 1$

 $\therefore \sum u_n$ is convergent if p > 1 and divergent if $p \le 1$.

EXAMPLE 32

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+1)x^n}{n^3}; x > 0$

SOLUTION

$$u_{n} = \frac{(n+1)x^{n}}{n^{3}}; u_{n+1} \frac{(n+2)x^{n+1}}{(n+1)^{3}}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{n+2}{(n+1)^{3}} x^{n+1} \cdot \frac{n^{3}}{(n+1)x^{n}} = \left(\frac{n+2}{n+1}\right) \left(\frac{n}{n+1}\right)^{3} . x$$

$$Lt \frac{u_{n+1}}{u_{n}} = Lt \frac{1}{u_{n+1}} \frac{1}{1 + \frac{1}{n}} \frac{1}{1 + \frac{1}{n}} \frac{1}{1 + \frac{1}{n}} x^{n} = x$$

 \therefore By ratio test, $\sum u_n$ converges when x < 1 and diverges when x > 1.

When
$$x = 1$$
, $u_n = \frac{n+1}{n^3}$

Take $v_n = \frac{1}{n^2}$; By comparison test $\sum u_n$ is convergent (give proof)

 $\therefore \sum u_n$ is convergent if $x \le 1$ and divergent if x > 1.

Raabe's Test

Let
$$\sum u_n$$
 be series of +ve terms and let $\lim_{n\to\infty} \left\{ n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right\} = k$

Then

(i) If
$$k > 1$$
, $\sum u_n$ is convergent. (ii) If $k < 1$, $\sum u_n$ is divergent. (The test fails if $k = 1$)

Solved Examples

EXAMPLE 43

Test for convergence the series

$$x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots$$

SOLUTION

Neglecting the first tem ,the series can be taken as ,

$$\frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots$$

1.3.5....are in A.P.
$$n^{th}$$
 term = $1 + (n-1)2 = 2n-1$

2.4.6...are in A.p.
$$n^{th}$$
 term = $2 + (n-1)2 = 2n$

3.5.7....are in A.P
$$n^{th}$$
 term = $3 + (n-1)2 = 2n+1$

$$u_n (n^{th} \text{ term of the series}) = \frac{1.3.5...(2n-1)}{2.4.6...(2n)} \cdot \frac{x^{2n+1}}{2n+1}$$

$$u_{n+1} = \frac{1 \cdot 3 \cdot 5 \cdot ... (2n-1)(2n+1)}{2 \cdot 4 \cdot 6 \cdot ... (2n)(2n+2)} \cdot \frac{x^{2n+3}}{2n+3}$$

$$\frac{u_{n+1}}{u_n} = \frac{1 \cdot 3 \cdot 5 \cdot ... (2n+1)}{2 \cdot 4 \cdot 6 \cdot ... (2n+2)} \cdot \frac{x^{2n+3}}{(2n+3)} \cdot \frac{2 \cdot 4 \cdot 6 \cdot ... 2n}{1 \cdot 3 \cdot 5 \cdot ... (2n-1)} \cdot \frac{(2n+1)}{x^{2n+1}}$$

$$= \frac{(2n+1)^2 x^2}{(2n+2)(2n+3)}$$

$$\therefore Lt_{n \to \infty} \frac{u_{n+1}}{u_n} = Lt_{n \to \infty} \frac{4n^2 \left(1 + \frac{1}{2n}\right)^2}{4n^2 \left(1 + \frac{2}{2n}\right) \left(1 + \frac{3}{2n}\right)} x^2 = x^2$$

 \therefore By ratio test, $\sum u_n$ converges if |x| < 1 and diverges if |x| > 1 If |x| = 1 the test fails.

 \therefore By ratio test, $\sum u_n$ converges if |x| < 1 and diverges if |x| > 1 If |x| = 1 the test fails.

$$x^{2} = 1 \quad \text{and} \quad \frac{u_{n}}{u_{n+1}} = \frac{(2n+2)(2n+3)}{(2n+1)^{2}}$$

$$\frac{u_{n}}{u_{n+1}} - 1 = \frac{(2n+2)(2n+3)}{(2n+1)^{2}} - 1 = \frac{6n+5}{(2n+1)^{2}}$$

$$Lt_{n\to\infty} \left\{ n \left(\frac{u_{n}}{u_{n+1}} - 1 \right) \right\} = Lt_{n\to\infty} \left(\frac{6n^{2} + 5n}{4n^{2} + 4n + 1} \right)$$

$$= Lt_{n\to\infty} \frac{n^{2} \left(6 + \frac{5}{n} \right)}{n^{2} \left(4 + \frac{4}{n} + \frac{1}{n^{2}} \right)} = \frac{3}{2} > 1$$

By Raabe's test, $\sum u_n$ converges. Hence the given series is convergent when $|x| \le 1$ and divergent when |x| > 1.

EXAMPLE 44

Test for the convergence of the series

$$1 + \frac{3}{7}x + \frac{3.6}{7.10}x^2 + \frac{3.6.9}{7.10.13}x^3 + \dots; x > 0$$

SOLUTION

Neglecting the first term,

$$u_{n} = \frac{3.6.9....3n}{7.10.13....3n + 4} x^{n}$$

$$u_{n+1} = \frac{3.6.9....3n(3n+3)}{7.10.13....(3n+4)(3n+7)} x^{n+1}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{3n+3}{3n+7} x ; Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = x$$

 \therefore By ratio test, $\sum u_n$ is convergent when x < 1 and divergent when x > 1.

When x = 1 The ratio test fails. Then

$$\frac{u_n}{u_{n+1}} = \frac{3n+7}{3n+3}; \frac{u_n}{u_{n+1}} - 1 = \frac{4}{3n+3}$$

$$Lt_{n\to\infty} \left\{ n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right\} = Lt_{n\to\infty} \left(\frac{4n}{3n+3} \right) = \frac{4}{3} > 1$$

... By Raabe's test, $\sum u_n$ is convergent .Hence the given series converges if $x \le 1$ and diverges if x > 1.

EXAMPLE 45

Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{1^2.5^2.9^2....(4n-3)^2}{4^2.8^2.12^2....(4n)^2}$

SOLUTION

$$u_{n} = \frac{1^{2}.5^{2}.9^{2}....(4n-3)^{2}}{4^{2}.8^{2}.12^{2}....(4n)^{2}}; \qquad u_{n+1} = \frac{1^{2}.5^{2}.9^{2}....(4n-3)^{2}(4n+1)^{2}}{4^{2}.8^{2}.12^{2}....(4n)^{2}(4n+4)^{2}}$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = Lt_{n\to\infty} \frac{(4n+1)^{2}}{(4n+4)^{2}} = 1 \quad \text{(verify)}$$

 \therefore The ratio test fails. Hence by Raabe's test, $\sum u_n$ is convergent. (give proof)

EXAMPLE 46

Find the nature of the series $\sum \frac{(|n|^2)}{|2n|} x^n, (x > 0)$

SOLUTION

$$u_{n} = \frac{\left(\left|\frac{n}{2}\right|^{2}}{\left|\frac{2n}{2}} x^{n}; u_{n+1} = \frac{\left(\left|\frac{n+1}{2}\right|^{2}}{\left|\frac{2n+2}{2}} x^{n+1}\right|}{\frac{u_{n+1}}{u_{n}}} = \frac{\left(n+1\right)^{2}}{\left(2n+1\right)\left(2n+2\right)} x;$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = Lt_{n\to\infty} \frac{n^{2} \left(1 + \frac{1}{n}\right)^{2}}{4n^{2} \left(1 + \frac{1}{2}n\right)\left(1 + \frac{2}{2}n\right)} x = \frac{x}{4}$$

 \therefore By ratio test, $\sum u_n$ converges when $\frac{x}{4} < 1$, i. e; x < 4; and diverges when x > 4;

When x = 4, the test fails.

$$\frac{u_n}{u_{n+1}} = \frac{(2n+1)(2n+2)}{4(n+1)^2}$$

$$\frac{u_n}{u_{n+1}} - 1 = \frac{-2n-2}{4(n+1)^2} = \frac{-1}{2(n+1)}; \quad Lt \left[n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right] = \frac{-1}{2} < 1$$

 \therefore By ratio test, $\sum u_n$ is divergent

Hence $\sum u_n$ is convergent when x < 4 and divergent when $x \ge 4$

EXAMPLE 47

Test for convergence of the series $\sum \frac{4.7...(3n+1)}{1.2.3...n} x^n$ (JNTU 1996)

Solution:

SOLUTION

$$u_{n} = \frac{4.7...(3n+1)}{1.2.3...n} x^{n} ; u_{n+1} = \frac{4.7...(3n+1)(3n+4)}{1.2.3...n(n+1)} x^{n+1}$$

$$\underset{n\to\infty}{Lt} \frac{u_{n+1}}{u_{n}} = \underset{n\to\infty}{Lt} \left[\frac{(3n+4)}{(n+1)} .x \right] = 3x$$

... By ratio test
$$\sum u_n$$
 converges if $3x < 1$ i.e., $x < \frac{1}{3}$ and diverges if $x > \frac{1}{3}$;

If
$$x = \frac{1}{3}$$
, the test fails

$$x = \frac{1}{3}, \ n \left[\frac{u_n}{u_{n+1}} - 1 \right] = n \left[\frac{(n+1)3}{3n+4} - 1 \right] = n \left[\frac{-1}{3n+4} \right] = -\frac{1}{\left(3 + \frac{4}{n}\right)}$$

$$\underset{n \to \infty}{Lt} \, n \left[\frac{u_n}{u_{n+1}} - 1 \right] = -\frac{1}{3} < 1$$

- \therefore By Raabe's test, $\sum u_n$ is divergent.
- $\therefore \sum u_n$ is convergent when $x < \frac{1}{3}$ and divergent when $x \ge \frac{1}{3}$

EXAMPLE 48

Test for convergence
$$2 + \frac{3x}{2} + \frac{4x^2}{3} + \frac{5x^3}{4} + \dots (x > 0)$$
 (JNTU 2003)

SOLUTION

The
$$n^{th}$$
 term $u_n = \frac{(n+1)}{n} x^{n-1}$; $u_{n+1} = \frac{(n+2)}{(n+1)} x^n$; $\frac{u_{n+1}}{u_n} = \frac{n(n+2)}{(n+1)^2} x^n$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_n} = Lt_{n\to\infty} \frac{n^2 \left(1 + \frac{2}{n}\right)}{n^2 \left(1 + \frac{1}{n}\right)^2} x = x$$

 \therefore By ratio test, $\sum u_n$ is convergent if x < 1 and divergent if x > 1

If x = 1, the test fails.

Then
$$Lt_{n\to\infty} n \left[\frac{u_n}{u_{n+1}} - 1 \right] = Lt_{n\to\infty} n \left[\frac{\left(n+1\right)^2}{n\left(n+2\right)} - 1 \right] = Lt_{n\to\infty} n \left[\frac{1}{n\left(n+2\right)} \right] = 0 < 1$$

- \therefore By Raabe's test $\sum u_n$ is divergent
- $\therefore \sum u_n$ is convergent when x < 1 and divergent when $x \ge 1$

EXAMPLE 49

Find the nature of the series $\frac{3}{4} + \frac{3.6}{47} + \frac{3.6.9}{47.10} + \dots \infty$

SOLUTION

$$u_{n} = \frac{3.6.9....3n}{4.7.10....(3n+1)}; u_{n+1} = \frac{3.6.9....3n(3n+3)}{4.7.10....(3n+1)(3n+4)}$$
$$\frac{u_{n+1}}{u_{n}} = \frac{3n+3}{3n+4}; \underset{n\to\infty}{Lt} \frac{u_{n+1}}{u_{n}} = \underset{n\to\infty}{Lt} \frac{3n(1+\frac{3}{3n})}{3n(1+\frac{4}{3n})} = 1$$

Ratio test fails.

 \therefore By Raabe's test $\sum u_n$ is divergent.

Cauchy's Root Test

Let $\sum u_n$ be a series of +ve terms and let $\lim_{n\to\infty} u_n^{1/n} = l$. Then $\sum u_n$ is convergent when l < 1 and divergent when l > 1

Note: When $\underset{n\to\infty}{Lt} \left(u_n \stackrel{1}{/_n}\right) = 1$, the root test can't decide the nature of $\sum u_n$. The fact of this statement can be observed by the following two examples.

1. Consider the series
$$\sum_{n=1}^{\infty} \frac{1}{n^3} : - \underbrace{L}_{n \to \infty} t u_n^{1/n} = \underbrace{L}_{n \to \infty} t \left(\frac{1}{n^3} \right)^{1/n} = \underbrace{L}_{n \to \infty} t \left(\frac{1}{n^{1/n}} \right)^3 = 1$$

2. Consider the series
$$\sum_{n \to \infty} \frac{1}{n}$$
, in which $\lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^{1/n}} = 1$
In both the examples given above, $\lim_{n \to \infty} \frac{1}{n} = 1$. But series (1) is convergent (p-series test)

And series (2) is divergent. Hence when the $\lim_{n \to \infty} \frac{1}{n} = 1$, the test fails.

EXAMPLE 51

Test for convergence the infinite series whose nth terms are:

(i)
$$\frac{1}{n^{2n}}$$
 (ii) $\frac{1}{(\log n)^n}$ (iii) $\frac{1}{\left[1+\frac{1}{n}\right]^{n^2}}$

Solution:

(i)
$$u_n = \frac{1}{n^{2n}}, u_n^{1/n} = \frac{1}{n^2}$$
; $Lt_{n \to \infty} u_n^{1/n} = Lt_{n \to \infty} \frac{1}{n^2} = 0 < 1$;
By root test $\sum u_n$ is convergent.

(ii)
$$u_n = \frac{1}{(\log n)^n}; u_n^{1/2} = \frac{1}{\log n}$$
; $\lim_{n \to \infty} u_n^{1/2} = \lim_{n \to \infty} \frac{1}{\log n} = 0 < 1;$
 $\lim_{n \to \infty} u_n^{1/2} = \lim_{n \to \infty} \frac{1}{\log n} = 0 < 1;$

(iii)
$$u_n = \frac{1}{\left(1 + \frac{1}{n}\right)^{n^2}}; u_n^{1/n} = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \quad \underset{n \to \infty}{\underline{Lt}} u_n^{1/n} = \underset{n \to \infty}{\underline{Lt}} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} < 1;$$

 \therefore By root test $\sum u_n$ is convergent.

EXAMPLE 53

If
$$u_n = \frac{n^{n^2}}{(n+1)^{n^2}}$$
, show that $\sum u_n$ is convergent.

Solution:

$$Lt_{n\to\infty} u_n^{1/n} = Lt_{n\to\infty} \left[\frac{n^{n^2}}{\left(n+1\right)^{n^2}} \right]^{1/n}; = Lt_{n\to\infty} = \frac{n^n}{\left(n+1\right)^n} = Lt_{n\to\infty} \left(\frac{n}{n+1}\right)^n$$

$$= Lt_{n\to\infty} \left(\frac{1}{1+\frac{1}{n}}\right)^n = \frac{1}{e} < 1; \therefore \sum u_n \text{ converges by root test }.$$

EXAMPLE 55

$$\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}}.x^n$$

Test for the convergence of

SOLUTION:

$$u_{n} = \left(\frac{1}{1 + \frac{1}{n}}\right)^{\frac{1}{2}} .x^{n}; \ \underset{n \to \infty}{Lt} u_{n}^{\frac{1}{n}} = \underset{n \to \infty}{Lt} \left(\frac{1}{1 + \frac{1}{n}}\right)^{\frac{1}{2}} .x = x$$

 \therefore By root test, $\sum u_n$ is convergent if |x| < 1 and divergent if |x| > 1.

When |x| = 1: $u_n = \sqrt{\frac{n}{n+1}}$, taking $v_n = \frac{1}{n^0}$ and applying comparison test, it can be

seen that is divergent

 $\sum u_n$ is convergent if |x| < 1 and divergent if $|x| \ge 1$.

EXAMPLE 61

 $\frac{2}{1^2}x + \frac{3^2}{2^3}x^2 + \dots + \frac{(n+1)^n \cdot x^n}{x^{n+1}} + \dots, x > 0$ Test the convergence of the series

Solution:

$$\underset{n\to\infty}{Lt} u_n^{1/n} = \underset{n\to\infty}{Lt} \left[\frac{\left(n+1\right)^n . x^n}{n^{n+1}} \right]^{1/n} = \underset{n\to\infty}{Lt} \left[\left(\frac{n+1}{n}\right) . \frac{1}{n^{1/n}} . x \right]$$

$$= \underset{n\to\infty}{Lt} \left[\left(1 + \frac{1}{n} \right) \cdot \frac{1}{n^{\frac{1}{n}}} \cdot x \right] = 1 \cdot 1 \cdot x = x \left[\text{ since } \underset{n\to\infty}{Lt} n^{\frac{1}{n}} = 1 \right]$$

 \therefore By root test, $\sum u_n$ converges if x < 1 and diverges when x > 1.

When x = 1, the test fails.

 $u_n = \left(1 + \frac{1}{n}\right)^n \cdot \frac{1}{n}$; Take $v_n = \frac{1}{n}$ $Lt \frac{u_n}{v_n} = Lt \left(1 + \frac{1}{n}\right)^n = e \neq 0$

 \therefore By comparison test and *p*-series test, $\sum u_n$ is divergent.

Hence $\sum u_n$ is convergent when x < 1 and divergent when $x \ge 1$.

Integral Test

+ve term series,

$$\phi(1) + \phi(2) + \dots + \phi(n) + \dots$$

where $\phi(n)$ decreases as n increases is convergent or divergent according as the integral $\int_{1}^{\infty} \phi(x) dx$ is finite or infinite.

Solved Examples

EXAMPLE 62

Test for convergence the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$

SOLUTION

$$\int_{2}^{\infty} \frac{1}{x \log x} dx = Lt \int_{n \to \infty}^{n} \left[\int_{2}^{n} \frac{1}{x \log x} dx \right] = Lt \left[\log \log x \right]_{2}^{n} = \infty$$

.. By integral test, the given series is divergent.

EXAMPLE 64

Test the series $\sum_{1}^{\infty} \frac{n}{e^{n^2}}$ for convergence.

SOLUTION

$$u_n = \frac{n}{e^{n^2}} = \phi(n)(say);$$

 $\phi(n)$ is +ve and decreases as n increases. So let us apply the integral test.

$$\int_{1}^{\infty} \phi(x) dx = \int_{1}^{\infty} x e^{-x^{2}} dx = \frac{1}{2} \int_{1}^{\infty} e^{-t} dt \left\{ t = x^{2}, dt = 2x dx \right\}$$
$$= -\frac{1}{2} e^{-t} \Big|_{1}^{\infty} = -\frac{1}{2} \left(0 - \frac{1}{e} \right) = \frac{1}{2e}, \text{ which is finite.}$$

By integral test, $\sum u_n$ is convergent.

EXAMPLE 65

Apply integral test to test the convergence of the series

$$\sum_{2}^{\infty} \frac{1}{n^2} \sin\left(\frac{\pi}{n}\right)$$

Solution:

Let $\phi(n) = \frac{1}{n^2} \sin\left(\frac{\pi}{n}\right)$; $\phi(n)$ decreases as *n* increases and is +ve.

$$\int_{2}^{\infty} \phi(x) dx = \int_{2}^{\infty} \frac{1}{x^{2}} \sin\left(\frac{\pi}{x}\right) dx; \qquad Let \frac{\pi}{x} = t$$

$$-\frac{1}{\pi} \int_{\frac{\pi}{x}}^{0} \sin t dt = \frac{1}{\pi} \cos t \Big|_{\frac{\pi}{x}}^{0} = \frac{1}{\pi} \text{ finite, } -\frac{\pi}{x^{2}} dx = dt; \qquad \frac{1}{x^{2}} dx = -\frac{1}{\pi} dt$$

 \therefore By integral test, $\sum u_n$ converges $x = 2 \Rightarrow t = \pi/2$ $x = \infty \Rightarrow t = 0$

Alternating Series

A series, $u_1 - u_2 + u_3 - u_4 + \cdots + (-1)^{n-1} u_n + \cdots$, where u_n are all +ve, is an alternating series.

Leibneitz Test

If in an alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$, where u_n are all +ve,

(i)
$$u_n > u_{n+1}, \forall n$$
, and (ii) $\underset{n \to \infty}{Lt} u_n = 0$, then the series is convergent.

Solved examples

EXAMPLE 68

Test for convergence
$$\frac{\sum \frac{(-1)^{n-1}}{2n-1}}{n-1}$$

Solution:

The given series is an alternating series $\sum (-1)^{n-1} u_n$, where $u_n = \frac{1}{2n-1}$ We observe that (i) $u_n > 0, \forall n$ (ii) $u_n > u_{n+1}, \forall n$ (iii) $\underset{n \to \infty}{Lt} u_n = 0$

.. By Leibneitz's test, the given series is convergent.

EXAMPLE 69

Show that the series $S = 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots$ converges.

SOLUTION

The given series is $\sum_{1}^{\infty} \frac{\left(-1\right)^{n-1}}{3^{n-1}} = \sum_{1} \left(-1\right)^{n-1} u_n$, where $u_n = \frac{1}{3^{n-1}}$ is an alternating series in which 1. $u_n > 0$, $\forall n = 2$, $u_n > u_{n+1}$, $\forall n = 3$ and 3. Lt $u_n = 0$;

Hence by Leibneitz's test, it is convergent.

EXAMPLE 70

Test for convergence of the series, $\frac{x}{1+x} - \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} - + \dots, 0 < x < 1$

SOLUTION

The given series is of the form $\sum \frac{\left(-1\right)^{n-1}.x^n}{1+x^n} = \sum \left(-1\right)^{n-1}u_n$,

where $u_n = \frac{x^n}{1 + x^n}$ Since $0 < x < 1, u_n > 0, \forall n$;

Further, $u_n - u_{n+1} = \frac{x^n}{1+x^n} - \frac{x^{n+1}}{1+x^{n+1}}$ $= \frac{x^n - x^{n+1}}{\left(1+x^n\right)\left(1+x^{n+1}\right)} = \frac{x^n\left(1-x\right)}{\left(1+x^n\right)\left(1+x^{n+1}\right)}.$

 $0 < x < 1 \implies$ all terms in numerator and denominator of the above expression are +ve.

$$u_n > u_{n+1}, \forall n.$$

Again, $x^n \to 0$ as $x^n \to \infty$ since 0 < x < 1; $\therefore Lt_{n \to \infty} u_n = \frac{0}{1+0} = 0$

.. By Leibneitz's test, the given series is convergent.

EXAMPLE 72

Test for the convergence of the following series,

$$\frac{1}{6} - \frac{2}{11} + \frac{3}{16} - \frac{4}{21} + \frac{5}{26} - + \dots$$

SOLUTION

Given series,
$$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{n}{5n+1} = \sum_{n=1}^{\infty} \left(-1\right)^{n-1} u_n$$
 is an alternating series

$$u_n = \frac{n}{5n+1} > 0 \,\forall n$$
; $\frac{n}{5n+1} - \frac{n+1}{5n+6} = \frac{-1}{(5n+1)(5n+6)} \Rightarrow u_n < u_{n+1}, \forall n$

Again,
$$Lt_{n\to\infty} u_n = Lt_{n\to\infty} \frac{n}{5n+1} = \frac{1}{5} \neq 0$$

Thus conditions (ii) or (iii) of Leibnitz's test are not satisfied. The given series is not convergent. It is oscillatory.

Absolute convergence

A series $\sum u_n$ is said to be absolutely convergent if the series $\sum |u_n|$ is convergent

Ex. Consider the series

$$\sum u_n = 1 - \frac{1}{2^3} + \frac{1}{3^3} - \frac{1}{4^3} + \dots$$

$$\sum |u_n| = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \dots = \sum_{1}^{\infty} \frac{1}{n^3}$$

By p - series test, $\sum |u_n|$ is convergent (p = 3 > 1)

Hence $\sum u_n$ is absolutely convergent.

Note: 1. If $\sum u_n$ is a series of +ve terms, then $\sum u_n = \sum |u_n|$.

For such a series, there is no difference between convergence and absolute convergence. Thus a series of +ve terms is convergent as well as absolutely convergent.

An absolutely convergent series is convergent. But the converse need not be true.

Consider
$$\sum_{1}^{\infty} (-1)^{n-1} \cdot \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

This series is convergent (1.7.3)

But
$$\sum \left| (-1)^{n-1} \cdot \frac{1}{n} \right| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$
 is divergent (p-series test).

Thus $\sum u_n$ is convergent need not imply that $\sum |u_n|$ is convergent (i.e., $\sum u_n$ is not absolutely convergent).

Conditional Convergence

If the series $\sum |u_n|$ is divergent and $\sum u_n$ is convergent, then $\sum u_n$ is said to be conditionally convergent.

Ex. Consider the Series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$$
...... $\sum u_n$ is convergent by Leibnitz's test. (Ex.1.7.3)

But
$$\sum |u_n| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$
.... is divergent by p – series test.

 $\therefore \sum u_n$ is conditionally convergent.

EXAMPLE 77

Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^n}{n^3}$

SOLUTION

$$u_n = \frac{x^n}{n^3}; u_{n+1} = \frac{x^{n+1}}{(n+1)^3}$$

$$Lt \left(\frac{u_{n+1}}{u_n}\right) = Lt \left(\frac{n}{n+1}\right)^3 . x = Lt \left(\frac{1}{1+\frac{1}{n}}\right)^3 . x = x$$

By ratio test, the given series converges when |x| < 1, i.e., $x \in (-1,1)$

When $x = 1, \sum u_n = \sum_{n=1}^{\infty} \frac{1}{n^3}$, which, is convergent by p series test.

 $\therefore \sum u_n$ is convergent when x = 1

Hence, the interval of convergence of the given series is (-1, 1)

EXAMPLE 80

Show that the series, $1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^4} + \dots$ is absolutely convergent.

SOLUTION

$$\sum |u_n| = \sum_{n=1}^{\infty} \frac{1}{3^{n-1}}$$
, which is a geometric series with common ratio $\frac{1}{3} < 1$

. It is convergent. Hence given series is absolutely convergent.

EXAMPLE 81

Test for convergence, absolute convergence and conditional convergence of the series,

$$1 - \frac{1}{5} + \frac{1}{9} - \frac{1}{13} + \dots$$

SOLUTION

The given alternating series is of the form $\sum (-1)^{n-1}u_n$, where, $u_n = \frac{1}{4n-3}$.

Hence,
$$u_n > 0 \forall n \in \mathbb{N}$$
; $u_{n+1} = \frac{1}{4(n+1)-3} = \frac{1}{4n+1}$

$$u_n - u_{n+1} = \frac{1}{4n-3} - \frac{1}{4n+1}$$

$$= \frac{4n+1-4n+3}{(4n-3)(4n+1)} = \frac{4}{(4n-3)(4n+1)} > 0, \forall n \in \mathbb{N}$$

i.e.,
$$u_n > u_{n+1}, \forall n \in N$$
 Lt $u_n = Lt \frac{1}{4n-3} = 0;$

All conditions of Leibnitz's test are satisfied.

Hence $\sum (-1)^{n-1} u_n$ is convergent.

$$|u_n| = \frac{1}{4n-3}$$
; Take $v_n = \frac{1}{n}$; $Lt \frac{|u_n|}{v_n} = Lt \frac{n}{n(4-3/n)} = \frac{1}{4} \neq 0$ and finite.

 \therefore By comparison test, $\sum |u_n|$ and $\sum v_n$ behave alike.

But by p - series test, $\sum v_n$ is divergent (since p = 1).

 $\sum |u_n|$ is divergent and \therefore The given series is conditionally convergent.