Particle spectrograph

Wave operator and propagator

		:
SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0}^{\#1} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_0^{\#1} - 2 i k \sigma_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	е
$t_1^{\#1}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	Е
$\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}t^{\chi\beta} + \partial_{\chi}\partial^{\beta}t^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_2^{\#1}\alpha\beta - 2ik \sigma_2^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 - i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}t^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}t^{\chi} -$	2
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ \emph{i}\ \emph{k}^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}G^{\delta\epsilon}_{\ \ \delta}$ -	
	$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	6 I k^{χ} $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	de denerators.	17

$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$	
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$	
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i}{\sqrt{2} (k r_5 + k^3 r_5)}$	$\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	$\frac{6 k^2 r_5 + t_1}{2 (1 + k^2)^2 r_5 t_1}$	0	0	0	0	
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{1}{\sqrt{2} \left(k^2 r_5 + k^4 r_5 \right)}$	$\frac{6k^2r_5+t_1}{2(k+k^3)^2r_5t_1}$	$-\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 r_5}$	$\frac{1}{\sqrt{2} \left(k^2 r_5 + k^4 r_5 \right)}$	$-\frac{i}{\sqrt{2}(kr_5+k^3r_5)}$	0	0	0	0	
	$\sigma_1^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha^{eta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} + ^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{#2} + \alpha$	

Quadratic (free) action $S = \iiint (f^{\alpha\beta} t_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + \frac{1}{3} t_1 (3 \omega^{\alpha\prime} \omega_{\alpha}^{\prime} \theta_{-} 6 \omega_{\alpha}^{\theta} \partial_{\beta} f^{\alpha\prime} + 6 \omega_{\beta}^{\theta} \partial_{\gamma} f^{\alpha\prime} - 3 \partial_{\gamma} f^{\alpha\prime} \partial_{\theta} f^{\alpha\prime} + 6 \omega_{\beta}^{\theta} \partial^{\gamma} f^{\alpha\prime} - 3 \partial_{\gamma} f^{\alpha\prime} \partial_{\theta} f^{\alpha\prime} + 6 \partial_{\gamma} f^{\alpha} \partial_{\theta} f^{\gamma} + 2 \omega_{\beta} f^{\alpha\prime} \partial_{\theta} f^{\alpha\prime} + 2 \partial_{\alpha} f^{\alpha\prime} \partial_{\theta} f^{\alpha\prime} + 2 \partial_{\alpha} f^{\alpha\prime} \partial_{\theta} f^{\alpha\prime} + 2 \partial_{\beta} f^{\alpha\prime} \partial_{\theta} f^{\alpha\prime} + 2 \partial_{\theta} f^{\alpha\prime} \partial_{\theta} f^{\alpha\prime} \partial_{\theta} f^{\alpha\prime} + 2 \partial_{\theta} f^{\alpha\prime} \partial_{\alpha} \partial_{\alpha$
--

$\omega_{0}^{\#1}+$	$f_{0}^{#1} + f_{0}$ $f_{0}^{#2} + f_{0}$	- 3						
	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-lpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$	
$\omega_{1}^{\#1} \dagger^{lphaeta}$	$k^2 r_5 + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0	7 #1
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	<u>i kt</u> 1 3	0	0	0	0	C#
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{1}{3}\bar{l}kt_1$	$\frac{k^2t_1}{3}$	0	0	0	0	#1
$\omega_{1}^{\#1}\dagger^{lpha}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁	
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	#1
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0	
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	-	0	0	0	

0

	$\sigma_2^{\#1} + ^{lpha}$	$\tau_2^{\#1} + ^{\alpha}$	$\sigma_{2}^{\#1} +^{lphaeta}$	I
$ au_{0}^{\#2}$ $\sigma_{0}^{\#1}$	0	0	0	0
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_{0^+}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	+	+	+	+

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_5 > 0 \&\& t_1 < 0 || t_1 > 0$