Data and Applications

Assignment 3

Functional Dependencies and Normalization

TEAM: Up To Data

- Khushi Agarwal 2020101092
- Soveet Kumar Nayak 2020101086
- Naimeesh Narayan Tiwari 2020101074

Data and Applications 1

2.1 Question 1

Consider $R(A_1, A_2, ..., A_n)$ to be a relation with functional dependencies defined as follows:

$$A_1 \rightarrow A_2 A_3 ... A_n (i=1)$$

$$A_2 A_3 \rightarrow A_4 A_5 ... A_n A_1 (i=2)$$

$$A_4 A_5 A_6 \rightarrow A_7 A_8 ... A_n A_1 A_2 A_3 (i=3)$$

Functional dependencies of the sequence,

$$A_{\frac{(i-1)(i)}{2}+1}A_{\frac{(i-1)(i)}{2}+2}....A_{\frac{(i-1)(i)}{2}+i} \to A_{\frac{(i-1)(i)}{2}+i+1}....A_{n}A_{1}....A_{\frac{i(i-1)}{2}+1}A_{\frac{(i-1)(i)}{2}+1$$

For i>3 and till $\frac{(i-1)(i)}{2} + i = n$.

Question 1.1 For what values of n is the above set of functional dependencies possible?

Solution:

Since,

$$A_1 \rightarrow A_2 A_3 ... A_n (i = 1)$$

 $A_2 A_3 \rightarrow A_4 A_5 ... A_n A_1 (i = 2)$
 $A_4 A_5 A_6 \rightarrow A_7 A_8 ... A_n A_1 A_2 A_3 (i = 3)$

and so on,

we should have n = 1 + 2 + 3 +

hence n should be of the form m(m+1)/2, where m > 2

where m = no. of functional dependencies

Data and Applications

2

for $m \le 2$, the FD set is not possible as at least one of the FDs do not exist.

Question 1.2 How many keys does the relation R have and what are they?

Solution:

The keys are $:A_1, A_2A_3, A_4A_5A_6,$

Hence, there are m keys where m(m+1)/2 = n [m being the number of functional dependencies]

as all attributes are prime attributes and the LHS of every functional dependency is a key.

Question 1.3 State the normal form of the above relation and normalize it to BCNF (if valid) using decomposition rules.

Solution:

- → Assuming all attributes are simple and indivisible in R, the relation is in 1NF.
- \rightarrow Since the relation is 1NF and all attributes are prime attributes, hence the relation is in 2NF.
- \rightarrow Since the relation is in 1NF and 2NF and all attributes are prime attributes, hence there is no non-prime attribute which is transitively dependent on the primary key, the relation R is in 3NF.
- \rightarrow Since every functional dependency has a key in it hence in any functional dependency X \rightarrow Y , X is a superkey , therefore, the relation R is in BCNF.

Data and Applications 3

Question 1.4 Find the minimal cover of the above relation and use it to normalize it to BCNF (if valid).

Solution:

To get minimal cover,

Step 1: First reduce the RHS of all functional dependencies to a single attribute

$$egin{align*} A_1 & \to A_i orall 2 \leq i \leq n \ A_2 A_3 & \to A_1 \ A_2 A_3 & \to A_i orall 4 \leq i \leq n, ... \ A_{((i-1)(i)/2)+1} \ A_{((i-1)(i)/2)+2} \ldots A_{((i-1)(i)/2)+i} \ \ o \ A_i \ orall 1 \leq i \leq (i-1)(i)/2 \ \end{array}$$

Step 2: remove the redundant functional dependencies

$$egin{aligned} A_1 & o A_i orall 2 \leq i \leq n \ A_2 A_3 & o A_1 \ A_4 A_5 A_6 & o A_1 \ A_{((i-1)(i)/2)+1} \ A_{((i-1)(i)/2)+2} \dots A_{((i-1)(i)/2)+i} \ \ o \ A_1 \end{aligned}$$

4

2.2 Question 2

Consider $R(A_1, A_2, ... A_n)$ be a relation R with functional dependencies as follows:

$$A_i \rightarrow A_i \ \forall \ 1 \leq i < j \leq n$$

and,

$$A_i \rightarrow A_j \ \forall \ 1 \leq i > j \leq n$$

Given the premise, answer the following questions.

Question 2.1 How many keys does the relation R have and what are they?

here,
$$A_i
ightarrow A_j orall 1 \leq i < j \leq n$$

that implies that,

[after applying the Union property, that states that if $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$]

$$A_1 \to A_2 A_3 A_4 A_5 A_n$$

$$A_2
ightarrow A_3 A_4 A_5 A_n$$

$$A_3
ightarrow A_4 A_5 A_n$$

and so on..

now, $A_i
ightarrow A_i orall 1 \leq i > j \leq n$, implies, similarly,

$$A_n
ightarrow A_1 A_2 A_3 A_{n-1}$$

$$A_n-1
ightarrow A_1A_2A_3....A_{n-2}$$

and so on,

this means tha $tA_i o A_1A_2A_3...A_{i-1}A_{i+1}....A_n$

hence, every attribute is a key in R.

Hence there are n keys.

Question 2.2 State the normal form of the above relation and normalize it to BCNF (if valid) using decomposition rules.

Solution:

- → Assuming all attributes are simple and indivisible in R, the relation is in 1NF.
- → Since the relation is in 1NF and all attributes are prime attributes, hence the relation is in 2NF.
- \rightarrow Since the relation is in 1NF and 2NF and all attributes are prime attributes, hence there is no non-prime attribute which is transitively dependent on the primary key, the relation R is in 3NF.
- \rightarrow Since every functional dependency has a key in it hence in any functional dependency X \rightarrow Y , X is a superkey, therefore, the relation R is in BCNF.

Question 2.3 Find the minimal cover of the above relation and use it to normalize it to BCNF (if valid).

Solution:

To get minimal cover,

Step 1: First reduce the RHS of all functional dependencies to a single attribute But here, all the functional dependencies here have single attribute present.

Data and Applications 6

Step 2: remove the redundant functional dependencies

here for a functional dependency to be redundant we have the condition:

 $X \to Y$ is redundant X+ remains the same even after removing the functional dependency $X \to Y$.

$$\begin{array}{l} A_i \rightarrow A_{i+1} \forall 1 \leq i \leq n{-}1 \\ A_n \rightarrow A_1 \end{array}$$

Hence, Any cyclic functional dependencies satisfy minimal cover here.

There are (n-1)! possible minimal covers. [permutations]

 A_1 has n-1 options to determine

 A_{2} has n-2 options to determine

 A_3 has n-3 options

and similarly we get (n-1)! minimal covers.