Name:	Student ID:	
Week3-template		Math 563, Fall 2022

- (Durrett 1.3.2.) Prove Theorem 1.3.6 when n=2 by checking $\{X_1+X_2 < x\} \in \mathcal{F}$. Let $X=X_1+X_2$. Prove that we have a partition Q 1.
- Q 1.1.

$$X^{-1}((-\infty, x]) = \bigcup_{u \in \mathbb{R}} X_1^{-1}(u) \cap X_2^{-1}((-\infty, x - u]).$$
 (1)

THE PROOF	
	QED

Why is the fact in the previous part not sufficient to deduce that $X^{-1}((-\infty,x]) \in \mathcal{F}$? Q 1.2.

Q 1.3. If X_1 is a discrete variable, use the partition in equation (1) to show that $\{X < x\} \in \mathcal{F}$.

Q 1.4. Write $X^{-1}((-\infty, x])$ as a triple-nested expression (e.g. countable union of countable intersections of countable unions) like the partition above, which shows by inspection that $\{X < x\} \in \mathcal{F}$.

$$\liminf_{y \to x} f(y) \ge f(x)$$

and upper semicontinuous (u.s.c.) if -f is l.s.c. Show that f is l.s.c. if and only if $\{x: f(x) \le a\}$ is closed for each $a \in \mathbb{R}$ and conclude that semicontinuous functions are measurable.

THE PROOF	
	QED

Q 3.	(Durrett 1.4.4.) Prove the Riemann-Lebesgue lemma. If g is integrable (in the sense of Lebesgue)
	then C^{∞}

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}g(x)\cos n\,x\,dx=0.$$

Hint: If g is a step function, this is easy. Now use the previous exercise (Durrett 1.4.3). NOTE: Use the results of that exercise freely but do not solve it.

Q 4. (Durrett 1.5.8.) Show that if f is integrable on [a,b], $g(x) = \int_{[a,x]} f(y) dy$ is continuous on (a,b).

Q 5. (Durrett 1.6.14.) Let $X \ge 0$ but do NOT assume $\mathbb{E}(1/X) < \infty$. The book defines this notation

$$\mathbb{E}(X;A) = \int_A X d\mathbb{P} = \mathbb{E}(X \cdot \mathbb{1}_A)$$

Show

Q 5.1.

$$\lim_{y\to\infty}y\,\mathbb{E}\big(1/X;X>y\big)=0,$$

THE PROOF	
	QED

Q 5.2.

$$\lim_{y\downarrow 0}y\,\mathbb{E}(1/X;X>y)=0.$$

THE PROOF