

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Md. 20084

ANALYSIS OF WAKE SURVEY AND BOUNDARY LAYER MEASUREMENTS FOR THE R/V ATHENA REPRESENTED BY MODEL 5366 IN THE ANECHOIC WIND TUNNEL

BY

RAE B. HURWITZ
AND
DOUGLAS S. JENKINS

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT REPORT

IC FILE COP

JULY 1980

DTNSRDC/SPD-0833-02

80 7 21 026

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

AND THE PROPERTY OF THE PROPER

The second secon

7 2 4

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
DTNSRDC/SPD-0833-02 AD-ADAM	13 RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED	
ANALYSIS OF WAKE SURVEY AND BOUNDARY LAYER MEASUREMENTS FOR THE R/V ATHENA REPRESENTED BY	9 FINAL reptos	
MODEL 5366 IN THE ANECHOIC WIND TUNNEL	6. PERFORMING ORG. REPORT NUMBER	
7-AUTHOR(c)	S. CONTRACT OR GRANT NUMBER(*)	
RAE B. HURWITZ AND DOUGLAS S. JENKINS	11/50/18	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
DAVID W. TAYLOR NAVAL SHIP R&D CENTER	Program Element 63508N	
SHIP PERFORMANCE DEPARTMENT	Task Area S0379001 Task 1997	
BETHESDA, MARYLAND 20084	Work Unit 1524-641	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
NAVAL SEA SYSTEMS COMMAND (NAVSEA O5R)	JULY 1980	
WASHINGTON, D. C. 20362	13. NUMBER OF PAGES	
	78 + xii	
14. MON'TOR VC AGEVOY NAME & ADDRESSILL different from Controlling Office)	15. SECURITY CLASS. (of this report)	
	UNCLASSIFIED	
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
(1), 95, (16) 50379/ (17) 50379002		
18 SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number,		
WAKE SURVEY		
BOUNDARY LAYER		
WIND TUNNEL		
MODEL EXPERIMENTS	A Property of the Contract of	
20 ARSTRACT (Continue on reverse side if necessary and identify by block number)	mi - 1. C 1	
20 ABSTRACT (Continue on reverse side if necessary and identify by block number) The results of wake survey and boundary layer profile measurements are presented for a model representing		
a twin-screw displacement ship. These measurements were obtained in a wind		
tunnel using hot wire anemometers. Wake surveys were conducted in the propeller		
disk and ahead of the propeller plane with and wit	nout the propeller operating	
Circumferential distributions of the longitudinal,		

are included. The boundary layer profile measurements were obtained at three

DD 1 FORM 1473

EDITION OF 1 NOV 65 IS OBSOLL FE S'N 0102-LF-014-6601

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

20.

Jongitudinal locations in the area of the shafting and struts. A comparison of full-scale, model-scale towing tank, and wind tunnel measurements is presented. Model-scale boundary layer velocity profiles ahead and astern of the propeller plane were smaller than the full-scale profiles. The model wake surveys ahead of the propeller plane showed no significant differences with and without the propeller operating. The data from the wind tunnel wake survey in the propeller plane agreed better with the full-scale data than the towing tank data.

4 4

UNCLASSIFIED

TABLE OF CONTENTS

	page
LIST OF FIGURES	iv
LIST OF TABLES	vii
NOTATION	ť
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
DESCRIPTION OF EXPERIMENTS	3
DESCRIPTION OF EXPERIMENTAL APPARATUS	4
PRESENTATION AND DISCUSSION OF RESULTS	
Boundary Layer Experiments Transverse Wake Survey Experiments Rotational Wake Survey Experiment Strut Wake Experiment	7 9 12 14
CONCLUSIONS	15
REF ERENCES	17
APPENDIX A - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS OF THE TRANSVERSE WAKE SURVEY EXPERIMENTS WITH AND WITHOUT AN OPERATING PROPELLER	46
APPENDIX B - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS OF THE ROTATIONAL WAKE SURVEY EXPERIMENT	65

ACCESSION fo	r
NTJS	White Section
DDC	Buff Section 🔲
UNANNOUNCE	
JUSTIFICATIO!	١
	AVAILABILITY CODES
A	

	LIST OF FIGURES	Page
1 ·	- Ship and Model Data for R/V ATHENA Represented by Models 5365 and 5366	18
2 ·	- Controllable Pitch Propeller Geometry - Propellers 4710, 4711, and 4712	19
3 ·	- Pian View of Hull Showing Boundary Layer Rake Locations	20
4	- a - Longitudinal Locations of Wake Survey and Strut Wake Measurements on Model 5366 b - Transverse Grid Locations of Measurements of Experiments 2 and 3	21 21
5	- Afterbody Sections of R/V ATHENA Showing Radii of Wake Measurement	s 22
6	- Double Model Installed in DTNSRDC Wind Tunnel for Boundary Layer and Rotational Wake Survey Experiments	23
7	- Double Model Installed in DTNSRDC Wind Tunnel for Transverse Wake Survey Experiments	23
8	- Experimental Set-up for Boundary Layer Experiments	24
9	- Close-up View of Boundary Layer Rake Locations	24
10	- Close-up View of Boundary Layer Probe with Operating Propeller	25
11	- Single-Sensor Hot Wire Anemometer Probe Used for Boundary Layer Profile Measurements	25
12	- Experimental Set-up for Transverse Wake Survey and Strut Wake Measurements	25
13	- Triple-Sensor Hot Wire Anemometer Probe Used for Wake Survey Measurements	26
14	- Hot Wire Probe Mounted with Drive Motor for Rotational Wake Survey Experiment	26
15	- Measured Boundary Layer Velocity Profiles for R/V ATHENA and Wind Tunnel Model 5366 with and without Propeller at Locations 1 and 8	27
16	- Measured Boundary Layer Velocity Profiles for R/V ATHENA and Wind Tunnel Model 5366 with and without Propeller at Locations 2 and 6	28
17	- Measured Boundary Layer Velocity Profiles for R/V ATHENA and Wind Tunnel Model 5366 with and without Propeller at Locations 3 and 7	29

LIST OF	FIGURES	(continued
---------	---------	------------

		Caraca de Lacada (Caraca)	D
18	•••	Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (*/L = 0.906) with an Operating Propeller for the 0.417 Radius	Page 30
19		Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L _{WL} = 0.906) with an Operating Propeller for the 0.583 Radius	31
20	-	Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) with an Operating Propeller for the 0.750 Radius	32
21	-	Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) with an Operating Propeller for the 0.917 Radius	33
22	-	Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) with an Operating Propeller for the 1.083 Radius	34
23	-	Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{wL} = 0.906) without an Operating Propeller for the 0.417 Radius	35
24	-	Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) without an Operating Propeller for the 0.583 Radius	36
25	-	Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location ($x/L_{WL} = 0.906$) without an Operating Propeller for the 0.750 Radius	37
26	-	Velocity Component Ratios for F/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) without an Operating Propeller for the 0.917 Radius	38
27	-	Velocity Component Ratios for R/V ATHENA and Mcel 5366 at the Forward Rake Location (x/L_{WL} = 0.906) without an Operating Propeller for the 1.083 Radius	39
28	-	Composite Plot of Velocity Component Ratios for R/V ATHENA and Models 5365 and 5366 at the Propeller Rake Location ($x/L_{WL} = 0.949$) for the 0.456 Radius	40
29	-	Composite Plot of Velocity Component Ratios for R/V ATHENA and Models 5365 and 5366 at the Propeller Rake Location ($x/L_{WL} = 0.949$) for the 0.633 Radius	41

これである。それではないはのはないないないないないないできないというないないのできないのできないのはないないできないできます。 かいかい なまないできない こうかんしゅう しゅうしゅう

A CONTROL OF THE PROPERTY OF T

LIST OF FIGURES (continued)

	Page
30 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Models 5365 and 5366 at the Propeller Rake Location (x/L _{WL} = 0.949) for the 0.781 Radius	42
31 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Models 5365 and 5366 at the Propeller Rake Location $(x/L_{WL} = 0.949)$ for the 0.963 Radius	43
32 - Strut Wake Measurements at the Location */Lw = 0.938	44
APPENDICES	
A-1 - Composite Plot of Velocity Component Ratios from the Transverse Wake Surveys at the Forward Rake Location for the Interpolated Radius of 0.456	47
A-2 - Composite Plot of Velocity Component Ratios from the Transverse Wake Surveys at the Forward Rake Location for the Interpolated Radius of 0.633	48
A-3 - Composite Plot of Velocity Component Ratios from the Transverse Wake Surveys at the Forward Rake Location for the Interpolated Radius of 0.781	49
A-4 - Composite Plot of Velocity Component Ratios from the Transverse Wake Surveys at the Forward Rake Location for the Interpolated Radius of 0.963	50
A-5 - Radial Distribution of the Mean Velocity Component Ratios from the Transverse Wake Survey at the Forward Rake Location with an Operating Propeller	51
A-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations from the Transverse Wake Survey at the Forward Rake Location with an Operating Propeller	52
A-7 - Radial Distribution of the Mean Velocity Component Ratios from the Transverse Wake Survey at the Forward Rake Location without an Operating Propeller	53
A-8 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations from the Transverse Wake Survey at the Forward Rake Location without an Operating Propeller	54
B-1 - Velocity Component Ratios for Model 5366 from the Rotational Wake Survey at the Propeller Rake Location for the 0.456 Radius	66
B-2 - Velocity Component Ratios for Model 5366 from the Rotational Wake Survey at the Propeller Rake Location for the 0.633 Radius	67

LIST OF FIGURES (continued)

			Page
B-3	-	Velocity Component Ratios for Model 5366 from the Rotational Wake Survey at the Propeller Rake Location for the 0.781 Radius	68
B-4		Velocity Component Ratios for Model 5366 from the Rotational Wake Survey at the Propeller Rake Location for the 0.963 Radius	69
B-5	-	Radial Distribution of the Mean Velocity Component Ratios from the Rotational Wake Survey at the Propeller Rake Location	70
B-6		Radial Distribution of the Mean Advance Angle and Advance Angle Variations from the Rotational Wake Survey at the	
		Propeller Rake Location	71

LIST OF TABLES

			Page
1		Experimental Program	45
A-1	_	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii of the Transverse Wake Survey with an Operating Propeller	55
A-2	?	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental and Interpolated Radii of the Transverse Wake Survey with an Operating Propeller	56
A-3	3 –	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental and Interpolated Radii of the Transverse Wake Survey with an Operating Propeller	58
A-4		Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and the Interpolated Radii of the Transverse Wake Survey without an Operating Propeller	60
A-!	5 -	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental and Interpolated Radii of the Transverse Wake Survey without an Operating Propeller	61
A-6	· 	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental and Interpolated Radii of the Transverse Wake Survey without an Operating Propeller	63
B-1	. -	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii of the Rotational Wake Survey	72
B-2	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii of the Rotational Wake Survey	73
B-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii of the Rotational Wake Survey	74
B-4	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii of the Rotational Wake Survey	76
B-5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii of the Rotational Wake Survey	77

NOTATION

CONVENTIONAL SYMBOL	SYMBOL APPEARING ON PLOTS	DEFINITION
A _N	COS COEF	The cosine coefficient of the Nth harmonic*
^B N	SIN COEF	The sine coefficient of the Nth harmonic*
D		Propeller diameter
$^{\mathtt{J}}\mathtt{v}$		Apparent advance coefficient $J_{V} = \frac{V}{nD}$ (dimensionless)
LWL		Waterline length
N	N	Harmonic number
n		Propeller revolutions
$R_{\mathbf{n}}$	Ann page (All	Reynolds number based on length
r/R or x **	Radius or RAD.	Distance (r) from the propeller axis expressed as a ratio of the propeller radius (R)
v	v	Actual model or ship velocity
$V_{b}(x,\theta)$		Resultant inflow velocity to blade for a given point
$\overline{V}_b(x)$		Mean resultant inflow velocity to blade for 3 given radius
V _r (x,θ)	VR	Radial component of the fluid velocity for a given point (positive toward the shaft centerline)
$\overline{V}_{\mathbf{r}}(\mathbf{x})$		Mean radial velocity component for a given radius
$V_{\mathbf{r}}(\mathbf{x}, \boldsymbol{\theta})/V$	VR/V	Radial velocity component ratio for a given point
$\overline{V}_{\mathbf{r}}(\mathbf{x})/V$	VRBAR	Mean radial velocity component ratio for a given radius
$V_{t}(x,\theta)$	VT	Tangential component of the fluid velocity for a given point (positive in a counterclockwise direction looking forward)

^{*}See footnote on the following page **See footnote on the following page

NOTATION (Continued)

$\overline{V}_{t}(x)$		Mean tangential velocity component for a given radius
$v_{t}^{(x,\theta)/v}$	VT/V	Tangential velocity component ratio for a given point
$\overline{V}_{t}(x)/V$	VTBAR	Mean tangential velocity component ratio for a given radius
$(\widetilde{V}_{t}(x)/V)_{N}$	AMPLITUDE	Amplitude (B for single screw symmetric; C_N^N otherwise) of Nth
		harmonic of the tangential velocity component ratio for a given radius*
$V_{\mathbf{x}}(\mathbf{x}, \theta)$	VX	Longitudinal (normal to the plane of survey) component of the fluid velocity for a given point (positive in the astern direction)
$\overline{V}_{\mathbf{X}}(\mathbf{x})$		Mean longitudinal velocity component for a given radius
v _x (x,θ)/v	vx/v	Longitudinal velocity component ratio for a given point
v̄ _x (x)/v	VXBAR	Mean longitudinal velocity component ratio for a given radius
$(\widetilde{V}_{\mathbf{x}}(\mathbf{x})/V)_{\widetilde{\mathbf{N}}}$	AMPLITUDE	Amplitude (A _N for single screw symmetric; C _N otherwise) of Nth harmonic of the longitudinal velocity component ratio for a
x/L _{WL}		given radius* Longitudinal position aft of forward perpendicular
$\phi_{\mathbf{N}}$	PHASE ANGLE	Phase angle of Nth harmonic*

* The harmonic amplitudes of any circumferential velocity distribution f (θ) are the coefficients of the Fourier Series:

$$f(\theta) = A_0 + \sum_{N=1}^{N} A_N \cos (N\theta) + \sum_{N=1}^{N} B_N \sin(N\theta)$$
$$= A_0 + \sum_{N=1}^{N} C_N \sin(N\theta + \phi_N)$$

**
To avoid confusion it should be noted that subscript x refers to longitudinal component, whereas x as a parameter is used to define a distance (radial or longitudinal).

NOTATION (Continued)

1-w(x)

1-WX

Volumetric mean velocity ratio from the hub to a given radius

$$1-w(r/R) = \begin{bmatrix} 2 \cdot \sqrt{(\overline{v}_{x_c}(x)/v) \cdot x \cdot dx} \\ \frac{r_{hub}/R}{(r/R)^2 - (r_{hub}/R)^2} \end{bmatrix}$$

where
$$\overline{V}_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x})/V = \int_{0}^{2\pi} \left[\frac{V_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x}, \theta)}{2\pi V} \right] d\theta$$
and $V_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x}, \theta)/V = (V_{\mathbf{x}}(\mathbf{x}, \theta)/V)$
 $-(V_{\mathbf{t}}(\mathbf{x}, \theta)/V) \text{ tan } (\beta(\mathbf{x}, \theta))$

1-w_v(x)

1-WVX

Volumetric mean velocity ratio from the hub to a given radius (without the tangential velocity correction)

$$1-w(r/R) = \begin{cases} r/R \\ 2 \cdot \int_{R}^{r/R} (\overline{v}_{x}(x)/v) \cdot x \cdot dx \\ \frac{r_{hub}/R}{(r/R)^{2} - (r_{hub}/R)^{2}} \end{cases}$$

 $\beta(x,\theta)$

Advance angle in degrees for a given point

 $\overline{\beta}(x)$

BBAR

Mean advance angle in degrees for a given radius

+**∆** ₿

BPOS

Variation of the maximum advance angle from the mean for a given radius

NOTATION (Continued)

-∆ ₿	BNEG	Variation of the minimum advance angle from the mean for a given radius
0	Angle in Degrees	Position angle (angular coordinate) in degrees

Kinematic viscosity of fluid medium

VELOCITY DIAGRAM OF BETA ANGLES

ENGLISH/SI EQUIVALENTS

ENGLISH	SI
1 inch	25.400 millimeter [0.0254 m (meter)]
1 foot	0.3048 m (meter)
1 foot per second	0.3048 m/s (meter per second)
1 knot	0.5144 m/s (meter per second)
1 pound (force)	4.4480 N (Newtons)
l degree (angle)	0.01745 rad (radians)
1 horsepower	0.7457 kW (kilowatts)
1 long ton	1.016 tonnes, 1.016 metric tons, or 1016 kilograms
1 inch Water (60°F)	248.8 pa (pascals)

ABSTRACT

The results of wake survey and boundary layer profile measurements are presented for a model representing a twinscrew displacement ship. These measurements were obtained in a wind tunnel using hot wire anemometers. Wake surveys were conducted in the propeller disk and ahead of the propeller plane with and without the propeller operating. Circumferential distributions of the longitudinal, tangential, and radial velocity components at four radial locations and a harmonic analysis of each component are included. The boundary layer profile measurements were obtained at three longitudinal locations in the area of the shafting and struts. A comparison of full-scale, model-scale towing tank, and wind tunnel measurements is presented. Model-scale boundary layer velocity profiles ahead and astern of the propeller plane were smaller than the full-scale profiles. The model wake surveys ahead of the propeller plane showed no significant differences with and without the propeller operating. The data from the wind tunnel wake survey in the propeller plane agreed better with the full-scale data than the towing tank data.

ADMINISTRATIVE INFORMATION

Model experiments were performed under the Controllable Pitch Propeller Research Program sponsored by the Naval Sea Systems Command (NAVSEA 05R) and administered by the David W. Taylor Naval Ship R&D Center (DTNSRDC). The project was funded under DTNSRDC Task Area S0379001 and Work Unit 1-1524-641.

INTRODUCTION

As part of the Controllable Pitch Propeller Research Program, the DTNSRDC conducted full-scale wake and boundary layer velocity profile measurements on the high speed transom stern ship, R/V ATHENA. Project goals were to obtain propeller disk velocity component ratios in the wake of a full-scale ship and to determine the effects of propeller induction on the development of the boundary layer. The full-scale wake measurements consisted of the longitudinal, tangential, and radial velocity component ratios ahead of and in the propeller plane. The full-scale boundary layer profile

· marketske en

was obtained at three longitudinal locations in the area of the shafts and struts with and without the propeller operating.

A series of model experiments was instituted to identify the differences between model- and full-scale wake data which would affect the operation of controllable-reversible pitch propellers. Model-scale boundary layer measurements were made to estimate the effects of the hull on the wake distribution.

In an effort to correlate the results of the full-scale measurements, experiments were conducted in the towing tank and wind tunnel at DTNSRDC. Wake survey experiments in the plane of the propeller were conducted in the towing tank with a 1-to-8.25 scale model using five-hole spherical head pitot tubes. Model-scale boundary layer profile measurements and wake surveys in and ahead of the propeller plane were conducted in the Anechoic Flow Facility (AFF) with a 1-to-8.25 scale double model. The double model was constructed so that the effect of the dynamic trim of the ship at 15 knots on the wake could be represented. Although the double model does not allow the effects of the free surface to be accounted for, it does account for the angle of the shafting, including the effects of dynamic trim, to the undisturbed flow. The angle of the shafting to the free stream contributes significantly to the tangential and radial velocity components.

The results of the wake surveys and boundary layer measurements obtained on the double model are reported herein. Full-scale and towing tank data are presented as comparisons with the wind tunnel wake survey and boundary layer measurements. Harmonic analyses of the circumferential distributions of the velocity component ratios obtained from the wind tunnel wake surveys were performed and are reported herein. The results of the towing tank wake surveys will be presented in a separate report.

DESCRIPTION OF EXPERIMENTS

The experimental program reported herein consisted of model-scale boundary layer and wake survey experiments in the Anechoic Flow Facility. The Anechoic Flow Facility enabled measurements to be obtained at model-scale Reynolds numbers with and without the propeller operating. A description and aerodynamic calibration of the Anechoic Flow Facility is given by Brownell 1 and Bowers 2.

Five experiments were performed on a double model in the Anechoic Flow Facility using hot wire anemometers. Table 1 summarizes the experimental program. Experiment 1 consisted of boundary layer profile measurements at six locations on the model corresponding to the locations of the fullscale boundary layer measurements on the R/V ATHENA. Experiments 2 and 3 consisted of velocity measurements of the flow ahead of the propeller plane with and without the propeller operating. These two experiments were designed to measure the effect of the operating propeller on the flow ahead of the propeller disk. Measurements were obtained at the same nondimensional axial location as those from the full-scale wake survey at the forward rake location, $x/L_{WL} = 0.906$. Experiments 2 and 3 are referred to as the transverse wake surveys. Data were collected in a rectangular grid perpendicular to the waterplane of the model. The hot wire probe was moved in a horizontal direction at various vertical distances above and below the propeller shaft centerline. The results from Experiments 1, 2, and 3 were correlated with the data from the full-scale wake survey.

References are listed on page 17.

Experiment 4 consisted of measurements of the velocity defect in the propeller plane due to the main vee struts. These measurements were obtained in a rectangular grid perpendicular to the waterplane of the model.

The "rotational" wake survey, Experiment 5, was performed in the propeller plane by rotating the hot wire anemometer to various circumferential positions at four radii from the shaft centerline. The radii at which the measurements were made corresponded exactly to the full-scale and towing tank wake survey radii, allowing a direct one-to-one companison of the data. These radii were expressed as ratios of the local radius to the propeller radius (r/R). A motor-driven unit which positions the hot wire anemometer at discrete circumferential positions for a particular radial setting was mounted behind the model, with its axis of rotation in line with the propeller shaft.

DESCRIPTION OF EXPERIMENTAL APPARATUS

The wind tunnel experiments were conducted with Model 5366 and Propeller 4712. Model 5366 is a double model of the twin-screw displacement ship, R/V ATHENA. The double model was constructed of fiberglass to a linear ratio of 8.25 with identical top and bottom hulls. The two halves were joined together at a trimmed waterline corresponding to a ship speed of 15 knots. The model was appended with roll fins, shafting, struts, and a centerline skeg. Figure 1 shows model- and full-scale principal dimensions for the R/V ATHENA.

Propeller 4712, a geosim of the R/V ATHENA design propellers, had a stainless steel hub and fiberglass blades. Although the R/V ATHENA was fitted with controllable-reversible pitch propellers, the blades of Propeller 4712 were set at the design pitch. The propeller, propeller

shafting, and its bearings were designed to operate at a rotational rate of 20,000 revolutions per minute and a wind tunnel speed of 61 meters per second. The design of Propeller 4712 is shown in Figure 2 along with Propellers 4710 and 4711 which were used in the towing tank experiments.

Commercially available one-component and three-component hot wire anemometer probes were used to obtain all of the flow measurements in the wind tunnel. The one-component probes measured the boundary layer profiles (Experiment 1), and the three-component probes obtained the wake measurements (Experiments 2 through 5). The one-component probe had a single-sensor wire 1.25 mm in length and 5 μ m in diameter held perpendicular to the free stream velocity. The three-component probe had 3 mutually perpendicular wire sensors located within a 3 mm diameter sphere. Each wire sensor was 1.25 mm in length and 5 μ m in diameter at an angle of 54.7 degrees to the free stream.

Hot wire probes were probably the best measuring device to use because of their small size and fast response time. Compared to spherical head pitot tubes normally used for wake surveys at DTNSRDC, hot wire probes were more than three times smaller in diameter. The smaller size offered less interference to the local flow. The fast response time allowed a larger quantity of data samples. The pitot tube has a slower response time and smaller sampling rate, and rapid fluctuations in the velocity are not discernable. In addition, the size of the spherical head does not allow the measurement of high velocity gradients which can be measured by the smaller hot wire probes.

The small size of the hot wire probes makes them very susceptable to breakage caused by particles in the fluid medium or by physical mis-

handling. In addition, output voltages are very sensitive to free stream air temperature changes greater than 2.7 degrees Centigrade. Before and after free stream calibrations and constant temperature monitoring were required during each experiment due to this sensitivity. Free stream calibrations were performed at least every three hours. Temperature corrections were applied to the output voltages of the sensors based on these calibrations.

The physical size of the hot wire probe enabled the measurements of boundary layer velocity profiles and the wake ahead of an operating propeller. Scragg and Sandell have shown that hot wire anemometers are at least as accurate as five-hole pitot tubes. The boundary layer measurements were repeatable within \pm 2 percentage points of the free stream velocity. The wake m isurements ahead of and in the propeller plane varied within \pm 2-to-5 percentage points for the longitudinal velocity component ratio, $(V_X(x,\theta)/V)$. For wake surveys conducted in the deep water basin at DTNSRDC, the longitudinal velocity component ratios are repeatable within \pm 1 percent, except in areas of high velocity gradients. In these areas, such as behind the shaft struts or at the innermost radii, the five-hole pitot tube has much lower accuracy. In the areas of high velocity gradients, hot wire probes may be an order of magnitude more accurate than the five-hole pitot tubes.

Figure 3 shows the locations where measurements were taken to determine velocities in the boundary layer of the R/V ATHENA and Model 5366. Transverse wake survey and strut wake measurements were taken at the locations presented in Figure 4. The nondimensional radii at which the measurements were made for the rotational wake surveys are shown in Figure 5 and listed in Table 1.

The model was mounted on its side for the boundary layer and rotational wake survey experiments as shown in Figure 6. Figure 7 shows the double model mounted in the horizontal waterplane configuration which was used for the transverse wake surveys and the strut wake measurements.

The boundary layer profile measurements were obtained using a singlesensor hot wire probe. This probe was moved in a horizontal direction by
a remotely controlled rack and pinion drive system. This system included
a stepping motor having a resolution of 0.02 mm, and was mounted on a
vertical strut location in the free stream. The stepping motor was encased
in a streamlined piece of aluminum to reduce flow interference. A support
arm was attached to the vertical strut and the lower (starboard) shaft tube
in order to minimize the relative motion between the double model and the
vertical strut. Figures 8 through 10 show the experimental arrangement
designed for these experiments. The single-sensor is shown in Figure 11
with a scale in the background.

Two sets of experiments, Experiments 2, 3, and 5, were performed using triple—sensor hot wire probes shown in Figures 12 and 13. The transverse wake survey consisted of measurements of the wake ahead of the propeller plane with and without the propeller operating. Also, measurements of the wake behind the struts were made. Figure 12 presents the experimental set—up for these transverse measurements. The rotational wake survey was conducted in the propeller disk at four radial locations using the motor—drive unit mentioned previously. This motor had a variable rotational speed and an internal triggering system. Measurements were obtained at 128 circumferential locations. Figure 14 shows the experimental set—up for the rotational wake survey.

PRESENTATION AND DISCUSSION OF RESULTS BOUNDARY LAYER EXPERIMENTS

The boundary layer profile measurements on Model 5366 were obtained at a Reynolds number of 1.68×10^7 , based on waterline length, in the wind tunnel at six of the eight locations noted in Figure 3. Measurements, with and without the propeller operating, were obtained to study the effects of propeller action on the boundary layer. Measurements were made at Locations 1, 2 and 3 without an operating propeller, and at Locations 8, 6, and 7 with the propeller operating. No measurements were taken at Locations 4 and 5 because of the expected similarity with the velocity profiles at Locations 3 and 7, respectively. The full-scale boundary layer measurements, which are presented in this report, were measured at a speed which corresponds to a Reynolds number of 4.10×10^8 .

Model-scale bour ary layer profiles with and without the propeller operating, are plotted against the full-scale data at the corresponding locations in Figures 15, 16, and 17. These data show the effect of the propeller on the velocity profiles for both scales. The results at Locations 1 and 8 showed a small increase in the velocity profile due to the propeller for both model- and ship-scale. However, at Locations 3 and 7, behind the propeller plane, the velocity defect in the boundary layer was greater due to the operating propeller for both model and ship. For measurements at Locations 2 and 6 for the wind tunnel model, there was no noticeable difference in the data with or without the propeller operating. There were no full-scale measurements at Location 6, shown in Figure 16, due to the failure of that boundary layer probe. A comparison of the boundary layer velocity profiles presented in these figures showed that the model-scale profile is not as fully developed as the full-scale profile at

Locations 1 and 3. This was clearly a consequence of the one decade difference in Reynolds number between model and ship. However, at Location 2, the model— and full-scale profiles were quite similar. Neither profile reached the free stream velocity within the expected range. Further analysis indicated that there were no obvious errors in the collection of the model data. Additional velocity profile measurements were conducted on the model at several positions near Location 2. No unusual flow characteristics were observed and there is still no explanation for this anomaly. The possibility still exists for the full-scale measurements to be in error.

TRANSVERSE WAKE SURVEY EXPERIMENTS

Two wake surveys were conducted to measure the magnitude and direction of the flow forward of the propeller disk. Experiment 2 was performed with the propeller operating and Experiment 3 was conducted without the propeller operating. Measurements were taken at 1.11 propeller diameters forward of the propeller plane, $x/L_{WL} = 0.906$, corresponding to the forward rake location on the R/V ATHENA. Both experiments were performed in the wind tunnel at 38.1 m/s corresponding to a Reynolds number of 1.40 x 10^7 . Measurements were taken at six equally spaced heights of 25.4 millimeters above and below the shaft centerline. The vertical strut, shown in Figure 12, positioned the hot wire probe enabling measurements to be taken at increments of 18 millimeters.

Velocity component ratios from conventional wake surveys done in the towing tank at DTNSRDC are obtained radially and circumferentially in the propeller plane. The wind tunnel data from Experiments 2 and 3 were obtained in a rectangular grid perpendicular to the free stream velocity of the wind tunnel. Computer programs were developed to present the data in a cylindrical coordinate system, which is the coordinate system used in

conventional wake surveys as described by Hadler and Cheng. The longitudinal axis of this system was parallel to the propeller shaft centerline. Once transformed, the data were interpolated to the nondimensional radii corresponding to the full-scale radii at the forward rake location, $x/L_{WL} = 0.906$. The radius ratios of these measurements were 0.417, 0.583, 0.750, 0.917 and 1.083 as listed in Table 1.

The results of the wake survey measurements on the R/V ATHENA and Model 5366 with an operating propeller (Experiment 2) are presented in Figures 18 through 22. The model-scale longitudinal velocity component ratios were three to eight percent lower than the full-scale values. At the two inner radii, 0.417 and 0.583, the full-scale tangential and radial velocity component ratios were slightly lower than the model-scale data between 0 and 180 degrees. There was good agreement with the radial velocity component ratios at the two outer radii, 0.917 and 1.083 from 0 to 180 degrees.

Full-scale data taken on the starboard side as reported by Reed and Day are presented in Figure 23 through 27 along with the model data from Experiment 3. These measurements were obtained forward of the propeller plane without an operating propeller. The full-scale longitudinal velocity component ratios were five-to-ten percent higher than the model-scale. A large degree of scatter was observed in the full-scale longitudinal velocity component ratios. The full-scale tangential velocity component ratios were higher than those for Model 5366 between the angles of 180 and 360 degrees. The full-scale radial velocity component ratios were lower than the model-scale values.

The wake survey data from Experiments 2 and 3 are presented in Appendix A for all radii. Figures showing the effect of the propeller suction on each of the three velocity component ratios for each radius at model—scale, i.e., with and without a propeller turning, are also included in Appendix A.

A harmonic analysis of the circumferential distribution of the longitudinal and tangential velocities was performed. A diagram showing the relationship between the longitudinal and tangential velocity vectors, the advance coefficients and the advance angles is presented on page xii. The mean longitudinal $(\overline{V}_{x}(x)/V)$, tangential $(\overline{V}_{t}(x)/V)$, and radial $(\overline{V}_{r}(x)/V)$ velocity component ratios, and volumetric mean wake velocity ratio (1-w(x)) are presented in Appendix A for Experiments 2 and 3. These quantities, except for the radial velocity component ratio, are shown graphically in this appendix. The calculated mean values of the advance angle $(\overline{\beta}(x))$, and the maximum variations thereof, $(+\Delta\beta)$ and $(-\Delta\beta)$, are given graphically and in tabular form in Appendix A. The advance angles were calculated using an advance coefficient, $J_{\dot{V}}$, of 0.739. The harmonic analyses of the circumferential distribution of the longitudinal and tangential velocity component ratios at the experimental and interpolated radii are presented in Appendix A for Experiments 2 and 3.

Wake survey measurements were made on the port side of the double model for Experiments 2 and 3. No significant differences of the velocity component ratios of these two experiments were observed. The small variations shown in Figures A-1 through A-8 were due to the limitations of the numerical interpolation. No model data was available from 260 to 360 degrees because the experimental set-up limited the position of the hot wires

to the outside of the propeller shafting. Consequently, when the data for Experiment 3 was transposed to the starboard side, there was no model data between 0 and 100 degrees. This transposition was required to compare the wind tunnel model data to the full-scale data which was available only on the starboard side of the R/V ATHENA.

A study of the full- and model-scale velocity component ratios presented shows that the data agreement is acceptable. Comparison of the data from the wind tunnel transverse wake surveys reveals that there is little significant difference between measurements made ahead of the propeller plane with and without an operating propeller. Differences in the wake with and without the propeller operating are within experimental accuracy. From these wake survey experiments, the effect of an operating propeller is not measurable at 1.11 diameters forward of the propeller disk.

Model-scale wake surveys were performed in the wind tunnel to correlate the data obtained from the full-scale and model-scale towing tank experiments. The wake survey experiment in the towing tank was performed by towing the model at the Froude-scaled speed of the ship. The wind tunnel rotational wake survey was conducted on the double model in the propeller plane at a Reynolds number corresponding to the Froude-scale speed of the towing tank experiment, $R_n = 1.56 \times 10^7$. Measurements made at the same nondimensional radii as used for wake surveys on the R/V ATHENA and the towing tank model, Model 5365, were 0.456, 0.633, 0.781 and 0.963 as listed in Table 1. The results of this wind tunnel experiment are presented in Appendix B for the experimental radii. A harmonic

analysis was performed on the longitudinal and tangential velocity component ratios. The advance angles were calculated using an advance coefficient, $J_{\tilde{\mathbf{V}}}$, of 0.739. Circumferential mean velocity component ratios, volumetric mean velocities and the advance angles are presented graphically and in tabular form in Appendix B. The harmonic content of the circumferential distribution of the longitudinal and tangential velocity component ratios at the experimental and interpolated radii is presented also in Appendix B.

The data from the wake surveys in the towing tank and wind tunnel are shown in Figures 28 inrough 31 along with the full-scale data. The velocity component ratios presented in these figures showed that the degree of scatter of the full-scale data was higher than that of the data from the two model experiments. The rotational wake survey data obtained in the wind tunnel showed very little scatter when compared to the towing tank data. The longitudinal velocity component ratios of the wind tunnel Model 5366 were 5-to-10 percent lower than those of the towing tank Model 5365. The tangential velocity component ratios for Model 5366 at radius ratios of 0.456 and 0.781 were 2-to-5 percent higher than those for Model 5365 from 0 to 360 degrees. The radial velocity component ratios of Model 5366 were 2-to-8 percent higher than Model 5365 from 180 to 360 degrees for all four radii. The tangential and radial velocity component ratios for radius ratios of 0.633 and 0.963, were similar at angles between 0 and 180 degrees.

The results from model wake experiments in the wind tunnel and in the towing tank indicated significant differences. The greatest variation in the data was ten percent in the longitudinal velocity component ratio

for the innermost radius. The large values of the towing tank data, which were consistent with other R/V ATHENA model experiments, may be due to the inability of the pitot tube to measure velocities at large flow angles.

At the outer radii, the longitudinal velocity component ratios for the ship were 1-to-2 percent lower than those for the model in the wind tunnel. The peaks of the radial and tangential velocity component ratios at the outer radii were 8-to-10 percent higher for the ship than for the double model. At the two innermost radii, the shift in the radial and tangential velocity component ratios indicated that there was a stronger upflow on the ship than the model, in the region under and outboard of the propeller hub.

Comparison of the full-scale and wind tunnel model wake revealed differences up to 10 percent. The full-scale data showed the largest scatter and the greater deviation from the model-scale wake.

STRUT WAKE EXPERIMENT

The transverse wake survey experimental set-up also enabled measurements to be taken behind the struts with an operating propeller. The purpose of this experiment was to numerically determine the velocity decrement due to the struts with an operating propeller. Finely spaced measurements were taken transversely behind the struts. Measurements were made between the shafting and the hull surface at 57, 76, and 95 millimeters from the shaft centerline. Figure 32 presents the results of this experiment.

For the measurements obtained at 57 millimeters from the shaft centerline, a 5-to-10 percent variation in the longitudinal velocity components was seen in the area immediately behind the struts. This variation was not observed at the other two locations from the shaft centerline. At the two innermost radii of the rotational wake survey, the longitudinal velocity components showed a 10 percent velocity defect which was consistent with the results from the strut wake experiment.

CONCLUSIONS

Model-scale boundary layer velocity profiles obtained one propeller diameter ahead (Locations 1 and 8) and astern (Locations 3 and 7) of the propeller plane, were 2-to-10 percent smaller than the full-scale profiles. This difference was caused by the one decade reduction of the model-scale Reynolds number, as compared to the full-scale Reynolds number.

However, in the area where the shaft bossing pierced the hull, the model— and full—scale boundary layer profiles coincided. Further investigation on the model—scale data yielded no unusual flow phenomena in this area. It is recommended that additional experiments be conducted to understand this phenomena.

The propeller caused a 1 percent increase in velocity in both the model— and full-scale boundary layers at Locations 1 and 8, one propeller diameter ahead of the disk. At Locations 2 and 6, where the shaft bossing pierced the hull, there was no measurable difference in the data obtained with or without the propeller operating.

Wake survey experiments ahead of the propeller plane were intended to provide a comparison of velocity components with and without the propeller operating. When the scatter in values is taken into consideration, it is not possible to discern any significant difference between the two sets of data. Wake measurements ahead of the propeller plane without the propeller operating showed only a 1 percent radial decrease in the volumetric mean wake as compared to measurements made with the operating propeller.

Behind the struts in the propeller plane, at a r/R of 0.287, a ten percent velocity defect in the longitudinal component was seen when compared to free stream velocity. This agreed well with the results from the rotational wake survey and also the towing tank wake surveys at a similar radius.

Experiment 5, the wake survey conducted in the propeller disk, was performed at the same Reynolds number as those experiments done in the towing tank. The longitudinal velocity components from the wind tunnel experiments agreed better with the full-scale data than with the towing tank data. As mentioned by Reed and Day, the discrepancy between the towing tank and full-scale data may be due to the difference in attitude between the ship and model. The wind tunnel double model was constructed to take into account the dynamic trim of the full-scale ship, so that an error in attitude is unlikely.

Overall, the longitudinal velocity component ratios obtained in the wind tunnel correlated better with the full-scale data at the inner radii. The tangential and radial velocity component ratios were generally higher for Model 5366 than for the towing tank data. The radial and tangential components from both models seemed closer to each other than to the full-scale data.

Hot wire anemometry enabled the measurements of model-scale boundary layer profiles and nominal wakes in the wind tunnel. A hot wire system has not been used in the towing tank to measure boundary layer profiles at DTNSRDC, and a pitot tube system has not been used to obtain data ahead of the operating propeller. It is felt that with further experiments with hot wire anemometry, measurements in the wind tunnel would provide a valuable technique in determining the wake and boundary layer of surface ships.

REFERENCES

- 1. Brownell, W. F., "An Anechoic Flow Facility Design for the Naval Ship Research and Development Center, Carderock," NSRDC Report 2924 (Sep 1968).
- 2. Bowers, B. E., "The Anechoic Flow Facility Aerodynamic Calibration and Evaluation," DTNSRDC Ship Acoustics Department Evaluation Report SAD-48E-1942 (May 1973).
- 3. Scragg, C. A. and D. A. Sandell, "A Statistical Evaluation of Wake Survey Techniques," International Symposium on Ship Viscous Resistance, SSPA, Goteborg, Sweden, pp.8:1 8:14 (1978).
- 4. Grant, Jerald W. and Alan C. M. Lin, "The Effects of Variations of Several Parameters on the Wake in Way of the Propeller Plane, For Series 60-0.60 C_B Models," NSRDC Research and Development Center, Report 3024 (Jun 1969).
- 5. Hadler, J. B. and H. M. Cheng, "Analysis of Experimental Wake Data in Way of Propeller Plane of Single- and Twin- Screw Ship Models," Trans. Soc. Naval Arch. and Mar. Eng., Vol. 73, pp. 287-414 (1965).
- 6. Reed, A. M. and W. G. Day, "Wake Scale Effects on a Twin-Screw Displacement Ship," Twelfth ONR Symposium on Naval Hydromechanics, Washington, D. C. (1978).

SHIP AND MODEL DATA FOR R/V ATHENA REPRESENTED BY DTNSRDC MODEL 5365 AND 5366

Appendages: Shafts, V-Struts, Rudders, Centerline Skeg, Stabilizer Fins

	<u>Ship</u>	<u>Model</u>
Length Overall	50.3 m	6.10 m
Length on Waterline	47.0 m	5.70 m
Length Between Perpendiculars Beam (Maximum)	46.9 m 6.68m	5.69 m 0.81 m
Draft (Mean)	1.715m	0.208m
Displacement Wetted Surface	266 t 317.lm ²	0.463 t 4.66 m ²
Mecced Juliuce	J17 - 110	T.00 III

Coafficients

Scale Ratio	$\lambda = \frac{L_{S}}{L_{M}}$	8.25
Block Coefficient	C _B M	0.48
Prismatic Coefficient	CB L7B	0.63
Length/Beam Ratio	L/̈́Β	7.04
Beam/Draft Ratio	B/T	3.89
Displacement/Length Rat	io ∆ L	7.15

Figure 1 - Ship and Model Data for R/V ATHENA Represented by Models 5365 and 5366

		1	
	119 33	119 33	
Ì	4950	9369	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9110	.x.	H- 1	12. THE
ŦĬ.	0.00	020 6	Sherr Inc
:	0.048	0.048	
t	0.670	0 670	## 552?
ii	40.100	25871.1	
:	9.5	9.453	₹
#	0.778	277 0	<u> </u>
à i	46.358	29808.5	
į.i	•	ŀ	
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		=	e Hi i i i i i i i i i i i i i i i i i i
2 1 2 R		80.000	.0-R. 1-L. XLADE
ě ř	9.697	9.697	4777
iì	72.000	72 000	
* 10g	8.727	6.727	
2017	9.250]
1	4710	21111	
,	INCHES	CH SZHONI	TADUE COUNT. THE
			0.10 1 1351 0.30 1 1351 0.40 1 1351 0.40 1 1351 0.40 1 1351

Figure 2 - Controllable-Pitch Propeller Geometry - Propellers 4710, 4711, and 4712

Figure 3 - Plan View of Hull Showing Boundary Layer Rake Locations

Figure 4a - Longitudinal Locations of Wake Survey and Strut Wake Measurements on Model 5366

Figure 4b - Transverse Grid Locations of Measurements of Experiments 2 and 3

Figure 5 - Afterbody Sections of R/V ATHENA Showing Radii of Wake Measurements

PSD 549-15A

Figure 6 - Double Model Installed in DTNSRDC Wind Tunnel for Boundary Layer and Rotational Wake Survey Experiments

PSD 520-5A

Figure 7 - Double Model Installed in DTNSRDC Wind Tunnel for Transverse Wake Survey Experiments

PSD 548-4A

Figure 8 - Experimental Set-Up for Boundary Layer Experiments

Pt 548-6A

Figure 9 - Close-up View of Boundary Layer Rake Locations

PSD 548-18A

Figure 10 - Close-up View of Boundary Layer Probe with Operating Propeller

PSD 549-11A

Figure 11 - Single Sensor Hot Wire Anemometer Probe
Used for Boundary Layer Profile Measurements

PSD 520-13A

Figure 12 - Experimental Set-Up for Transverse Wake Survey and Strut Wake Measurements

Figure 13 - Triple Sensor Hot Wire Anemometer Probe Used for Wake Survey Measurements

PSD 1009-78-11

Figure 14 - Hot Wire Probe Mounted with Drive Motor for Rotational Wake Survey Experiment

Figure 15 - Measured Boundary Layer Velocity Profiles for R/V ATHENA and Wind Tunnel Model 5366 with and without Propeller at Locations 1 and 8

Figure 16 - Measured Boundary Layer Velocity Profiles for R/V ATHENA and Wind Tunnel Model 5366 with and without Propeller at Locations 2 and 6

Figure 17 - Measured Boundary Layer Velocity Profiles for R/V ATHENA and Wind Tunnel Model 5366 with and without Propeller at Locations 3 and 7

- c FULL SCALE DATA
- MODEL SCALE DATA EXPERIMENT 2

Figure 18 - Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) with an Operating Propeller for the 0.417 Radius

- o FULL SCALE DATA
- + MODEL SCALE DATA -- EXPERIMENT 2

Figure 19 - Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) with an Operating Propeller for the 0.583 Radius

- FULL SCALE DATA
- + MODEL SCALE DATA EXPERIMENT 2

Figure 20 - Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906` with an Operating Propeller for the 0.750 Radius

- o FULL SCALE DATA
- + MODEL SCALE DATA EXPERIMENT 2

Figure 21 - Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) with an Operating Propeller for the 0.917 Radius

- O FULL SCALE DATA
- + MODEL SCALE DATA EXPERIMENT 2

Figure 22 - Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) with an Operating Propeller for the 1.083 Radius

- C FULL SCALE DATA
- + MODEL SCALE DATA EXPERIMENT 3

Figure 23 - Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) without an Operating Propeller for the 0.417 Radius

- o FULL SCALE DATA
- + MODEL SCALE DATA EXPERIMENT 3

Figure 24 - Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) without an Operating Propeller for the 0.583 Radius

- o FULL SCALE DATA
- + MODEL SCALE DATA EXPERIMENT 3

Figure 25 - Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) without an Operating Propeller for the 0.750 Radius

- o FULL SCALE DATA
- + MODEL SCALE DATA EXPERIMENT 3

Figure 26 - Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) without an Operating Propeller for the 0.917 Radius

- © FULL SCALE DATA
- * MODEL SCALE DATA EXPERIMENT 3

Figure 27 - Velocity Component Ratios for R/V ATHENA and Model 5366 at the Forward Rake Location (x/L_{WL} = 0.906) without an Operating Propeller for the 1.083 Radius

- velocity component ratios for model 5365 TOWING TANK
- * VELOCITY COMPONENT RATIOS FOR MODEL 5356 WIND TUNNEL

Figure 28 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Models 5365 and 5366 at the Propeller Rake Location $(x/L_{WL} = 0.949)$ for the 0.456 Radius

- × VELOCITY COMPONENT RATIOS FOR MODEL 5365 TOWING TANK
 + VELOCITY COMPONENT RATIOS FOR MODEL 5366 WIND TUNNEL
- Figure 29 Composite Plot of Velocity Component Ratios for R/V ATHENA and Models 5365 and 5366 at the Propeller Rake Location $(x/L_{WL} = 0.949)$ for the 0.633 Radius

- VELOCITY COMPONENT RATIOS FOR MODEL 5365 TOWING TANK
 VELOCITY COMPONENT RATIOS FOR MODEL 5366 WIND TUNNEL
- WIND TOWNEL

Figure 30 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Models 5365 and 5366 at the Propeller Rake Location $(x/L_{WL} = 0.949)$ for the 0.781 Radius

VELOCITY COMPONENT RATIOS FOR MODEL 5365 TOWING TANK
 VELOCITY COMPONENT RATIOS FOR MODEL 5366 WIND TUNNEL

Figure 31 - Composite Plot of Velocity Component Ratios for R/V ATHENA and Models 5365 and 5366 at the Propeller Rake Location $(x/L_{WL} = 0.949)$ for the 0.963 Radius

Figure 32 - Strut Wake Measurements at the Location $x/L_{\rm WL}$ = 0.938

theis the test of the experience of the second of the seco

فيكك إبطاعه لامار والموجوع والمحمودة وعدرات بدمانا

TABLE 1

EXPERIMENTAL PROGRAM

Description	Boundary Layer Profile Measurements	Transverse Wake Survey at Forward Rake Location with Operating Propeller*	Transverse Wake Survey at Forward Rake Location without Operating Propeller*	Strut Wake Velocity Defects	Rotational Wake Survey in Propeller Plane*
Reynolds Number (based on waterline length)	1.58 × 10 ⁷	1.40 × 10 ⁷	1.40 × 10 ⁷	1.42×10^7	1.56 × 10 ⁷
Experiment Number	1	2	e	4	S

*Nondimensional radii of 0.417, 0.583, 0.750, 0.917, and 1.083

Nondimensional radii of 0.456, 0.633, 0.781, and 0.963

THE PROPERTY AND ASSESSED ASSE

APPENDIX A

VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS OF THE TRANSVERSE WAKE SURVEY EXPERIMENTS WITH AND WITHOUT AN OPERATING PROPELLER

× Model 5366 Transverse Wake Survey Experiment 2 with Propeller + Model 5366 Transverse Wake Survey Experiment 3 without Propeller

Figure A-1 - Composite Plot of Velocity Component Ratios from the Transverse Wake Surveys at the Forward Rake Location for the Interpolated Radius of 0.456

× Model 5366 Transverse Wake Survey Experiment 2 with Propeller

Model 5366 Transverse Wake Survey Experiment 3 without Propeller

Figure A-2 - Composite Plot of Velocity Component Ratios from the Transverse Wake Surveys at the Forward Rake Location for the Interpolated Radius of 0.633

Model 5366 Transverse Wake Survey Experiment 2 with Propeller
 Model 5366 Transverse Wake Survey Experiment 3 without Propeller

Figure A-3 - Composite Plot of Velocity Component Ratios from the Transverse Wake Surveys at the Forward Rake Location for the Interpolated Radius of 0.781

Model 5366 Transverse Wake Survey Experiment 2 with Propeller
 Model 5366 Transverse Wake Survey Experiment 3 without Propeller

Figure A-4 - Composite Plot of Velocity Component Ratios from the Transverse Wake Surveys at the Forward Rake Location for the Interpolated Radius of 0.963

© □ △ ◇ EXPERIMENTAL RADII

X INTERPOLAT_D RADII

Figure A-5 - Radial Distribution of the Mean Velocity Component Ratios from the Transverse Wake Survey at the Forward Rake Location with an Operating Propeller

Figure A-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations from the Transverse Wake Survey at the Forward Rake Location with an Operating Propeller

Figure A-7 - Radial Distribution of the Mean Velocity Component Ratios from the Transverse Wake Survey at the Forward Rake Location without an Operating Propeller

Figure A-8 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations from the Transverse Wake Survey at the Forward Rake Location without an Operating Propeller

TABLE A-1

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED

	1.093	.898	033	. 030	.924	.929	11.12	1.48	-3.56 342.50
LLER	716.	606.	024	.023	.934	938	13.20	1.c6 95.c0	-3.48
PROPELLER	75.0	21.6	003	900.	116.	Grö.	1. 33	1.81 1.00	54.52
SURVEY WITH AN OPERATING	£86.	. ts	01.	.002	6:6.	.9.4	20.76	2.40 90.00	270.00
ITH AN (.417	. 941	013	.003	. 937	.961	28.13	3.71	-2.72 270.00
URVEY W.	.312	.931	050	.007	0000	0.000	36.11	5.26 95.00	-3.53
WAKE	.963	868.	033	. 030	.931	.935	12.48	1.71	-3.95 342.50
TRANSVERSE	. 781	. 932	001	.008	.941	. 945	15.68	1.75	-2.65 357.50
THE	.633	.944	.016	.003	.943	.949	19.22	2.17	-2.53
RADII OF	456	€ 643	=003	002	. 938	e c.59	= 25.98	3.31	= -2.85
2	RADIU', =	VXBAR	VIBAR	VRBAR :	1-WVX	1-WX	EBAR =	BPOS =	BNES =

15 CIRCUMFERENTIAL WEAN LONGITUDINAL VELOCITY.
15 CIRCUMFERENTIAL WEAN TANGENTIAL VELOCITY.
15 CIRCUMFERENTIAL WEAN RADIAL VELOCITY.
16 VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.
17 VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
18 NOTAL ANGLE OF ADVANCE.
19 VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (O'LTA BETA MINUS).
19 VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (O'LTA BETA MINUS).
19 ANGLE IN DEGREES AT WHICH CORRESPONJING BPOS OR BNIG OCC RS. 7X8A4 VT8A2 VR6AF 1-WVX 1-KX BBAR BPO3 BNEG THETA

detectibilistics marked and specifical

のできない。 1. 1970年 - 1月1日 - 1970年 - 1974年 - 1974年

はないないないできないのできないというというというというできないというできないと

THIS PAGE IS BEST QUALITY PRACTICABLE WAL COPY POSTICION TO DUC

TABLE A-2

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS
AT THE EXPERIMENTAL AND INTERPOLATED RADII OF THE TRANSVERSE
WAKE SURVEY WITH AN OPERATING PROPELLER

HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.0154 331.2	.0061 355.1	.0.106 2 47.6	.0101	.0076 322.2	.0027 291.2	.0021 216.4	.0019 298.3
RADIUS = .633 AMPLITUDE = PHASE ANGLE =	.0357 299.9	.0151 311.8	.0192 265.7	.0 to1 277.4	.0122 317.2	.0033 337.2	.0034 224.J	.0029 317.3
RADIUS = .781 AMPLITUDE = PHASE ANGLE =	.0674 292.2	.0368 302.1	.0247 2 84.1	.0217 288 8	.0121 335.4	.0054 44.8	.0029 200.4	.0014 293.6
RADIUS = .963 AMPLITUDE = PHASE ANGLE =	.1218 288.7	.0820 301.4	.043 9 302.3	.0269 314 4	.0163 356-1	.0127 79,4	.0102	.0041
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0137	.0091 345.4	.0012	.00 18 51.2	.0054 54.6	.0017	.0020 113.3	. 0036 247. 9
RADIUS = .417 AMPLITUDE = PHASE ANGLE =	.0139 342.1	.0063 359.3	.0081 242.9	.00,1 277 6	.0060 332.4	.0021 279.7	.0016	.0020 282-0
RADIUS = .583 AMPLITUDE = PHASE ANGLE *	.0279 305.2	.0106 320.1	.0171	.01.3 275.2	.0116 3 J.3	.0034 320.1	.003J 226.1	.00?5 320.1
RADIUS = .750 AMPLITUDE = PHASE ANGLE =	.0598 293.2	.0311	.0229 280.0	.0212 285 5	.0118	.0045 34.2	.0032	.0043 292-6
RADIUS = .917 AMPLITUDE = PHASE ANGLE =	.1064	.0686 301.3	.0377 218.9	.0 > .0	.0147 351.9	.0105 73.5	.00(9	.00 to
RADIUS = 1.083 AMPLITUDE = PHASE ANGLE =	.1218 288.7	.0820 301.4	.0439 302.3	.0203 314,4	.0163 356.1	.0127 79.4	.0102	.0011

THIS PAGE IS NO. 1.1 WILL INACTICABLE
FROM COPY FURA COMM. 19. 10

TABLE A-2 CONTINUED

MODEL 5366 TRANSVERSE WAKE SURVEY EXP 2 WITH PROPELLER

HARMONIC	ANALYSES	OF LONGI	TUDINAL	VE LOCITY	COMPONENT	RATIOS	(VX/V)	
HARMONIC =	9	10	1.1	12	13	14	15	16
RADIUS = .456								
AMPLITUDE = PHASE ANGLE =	.0013 324.3	.0008 135.5	,0009 192.2	.0011 251 4	.0001 330.3	.0004 123.2	.0002 225.2	.0004 73.6
	324.3	133.3	1.2.2	231 4	330.0	.20.2	223.2	70.0
RADIUS = .633 AMPLITUDE =	.0041	. 0005	.0024	.00.5	.0014	.0005	.0009	. 000 7
PHASE ANGLE =	351.2	104.3	210.4	270.7	302.8	99.6	181.9	222.9
RADIUS = .781								
AMPLITUDE =	.0058	.0008	10031	.0019	.0027	.0015	.0018	.0018
HASE ANGLE =	345.4	324.3	213.0	243 6	3.9	103.3	183.5	269.11
RADIUS = .963		2040	6000	10	0010	0010	0007	.0018
AMPLITUDE = PHASE ANGLE =	.0071 6.2	.0049 79.0	.0021 138,5	. 0 0 3 0 2 9 B - 1	.0019 353.0	.0019 128.0	.0027 199.6	265.6
PHASE ANGLE -	0.2	75.0	100.5	236 1	333.4	.20.0	. 55.0	2(0:0
RADIUS = .312		0006	00.0		00.12	0040	0006	.0017
AMPLITUDE = PHASE ANGLE =	.0029 220.5	.0006 214.9	6190. 9190.		.0032 74.0	.0012 123.4	.0005 291.0	17.3
		214.5			, ,,,,		-3710	, ,
RADIUS = .417 AMPLITUDE =		. 0007	.0005	. 0005	.0006	.0005	.0002	.0006
PHASE ANGLE =	285.8	145.9	167.0		70.3	124.8	257.3	47.8
RADIUS = .583 AMPLITUDE =		.0007	.0020	.00.3	,0012	.0003	.0007	. 0005
PHASE ANGLE =	350 ย	115.5	208.6		289.0	102.1	183.9	197.7
RADIUS = .750 AMPLITUDE =		.0008	.0631	.0019	.024	.0014	.0016	. 0016
PHASE ANGLE =		308.8	214.4		.5	101.1	181.8	267.7
· · · ·		•••		203 4				
RADIUS = .917		0020	0000		0024	0040	0001	. 0019
AMPLITUDE = PHASE ANGLE =		.0029 71.6	.0020 173.3		.0024 2.2	.0019 119.5	.0024 194.8	269.4
_	•	`,,,,,	1,3,3	. 49.0	414	. (3.3	. 54 . 0	200.4
RADIUS = 1.083		0040	222	2012	0010	0040	0.00"	0010
AMPLITUDE = PHASE ANGLE =		.0049 79.0	.0021 138.5		.0019 353.0	.0019 128.0	.0027 199.6	.0018 265.8
PHASE ANGLE 3	0.4	79.0	130.5	8.1	333.0	120.0	199.0	200.0

TABLE A-3

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS
AT THE EXPERIMENTAL AND INTERPOLATED RADII OF THE TRANSVERSE
WAKE SURVEY WITH AN OPERATING PROPELLER

HARMONIC =	1	2	3	4	5	6	7	ម
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.1678 184.7	.0129 152.5	.0302 8.4	.0152 304.9	.0074 28.0	.0094 47.9	.0047 8.5	.0011
RADIUS = .633 AMPLITUDE = PHASE ANGLE =	.2059 179.1	.0197	.0364 358.1	.0102 6.4	.0040 351.0	.0083 29.5	.0025 46.6	.0016 287.6
RADIUS = .781 AMPLITUDE = PHASE ANGLE =	.1850 183.4	.0181 306.3	.0392 7.5	.0124 38.3	.0009 305.5	.0067 33.0	.0035 75.9	.0022 236.5
RADIUS = .963 AMPLITUDE = PHASE ANGLE =	.1544 197.6	.0459 339.3	.0421 8.7	.0159	.0061 349-6	.0046 70.1	.0023 148.4	.0013 161.4
RADJUS = .312 AMPLITUDE = PHASE ANGLE =	.1006 213.0	.0464 84.0	.6293 41.9	.02 (8 281.8	.0125 53.6	.0116 74.1	19004 1.c	.0060
RADIUS = .417 AMPLITUDE = PHASE ANGLE =	.1510 188.5	.0173 120.0	.02หฤ 15.2	.01%2 29% 3	.0085 35.8	.0097 54.6	•0055 5.6	.0021 131.3
RADIUS = .583 AMPLITUDE = PHASE ANGLE =	.2021 179.4	.0185 227.5	.0349 .0349	.01 2 348 3	.0049	.0096 32.5	.0027	.0012 295.2
RADIUS = .750 AMPLITUDE = PHASE ANGLE =	.1899 182.1	.0160 292.1	au£0, 6,3	.0113 36 9	.(009 313.5	.0071	·0035 71.0	.00.12
RADIUS = .917 AMPLITUDE = PHASE ANGLE =	.1619 192.8	.0373 335.8	.0415 9.4	·01 15 22.1	.0038 344.9	.0049 55.2	.0024 116.0	.0015 196-2
RADIUS = 1.083 AMPLITUDE = PHASE ANGLE =	.1544 197.6	0459 339.3	.0421 8.7	.0159	.0061 349.6	.0046 70.1	.0023 148.4	.0013 161.4

THIS PAGE I TO THE PRACTICABLE

TABLE A-3 CONTINUED

MODEL 5366 TRANSVERSE WAKE SURVEY EXP 2 WITH PROPELLER

HARMON	IC	ANALYSES	OF TAN	GENTIAL	AEI OC I IA	COMPONENT	RATIOS	(VT/V)	
HARMONIC	=	9	10	11	12	13	14	15	16
RADIUS = .45 AMPLITUDE PHASE ANGLE	6 = =	.0039 144.2	.0011 104.9	.0020 95.5		.0008 116.0	.0025 132.4	.0013	.0019 126.5
RADIUS = .63 AMPLITUDE PHASE ANGLE	= =	.0012	. 0017 97. 4			.0020 160.6	.0007 121.2	.0016 146.6	,0011 218.2
RADIUS = .78 AMPLITUDE PHASE ANGLE	31 = =	.0018 356.1	.0036 73.6			.0022 107.4	.0011	.0017	,0013 119.8
RADIUS = .96 AMPLITUDE PHASE ANGLE	3 = =	.0045 135.3	.0063 136.6			. 0052 138.7	.0043 138.2	.0026 123.6	.00.15
RADIUS = .31 AMPLITUDE PHASE ANGLE	2 =	.0107 152.5	.0020 65.8			.0040 32.6	.0056 130.5	-003 ^c 36.7	.00-0 100-3
RADIUS = .41 AMPLITUDE PHASE ANGLE	7 = =	.0055 147.9	.0011 94.3	.0038 108.		.0011 65-2	.0032 132.0	.0014 85.9	.0028 113.6
RADIUS = .58 AMPLITUDE PHASE ANGLE	= =	.0008 69.0	.0014 106.6			.0018 165.0	.0010 129.1	.0018 150.1	.0011
RADIUS = .75 AMPLITUDE PHASE ANGLE	50 = =	.0020 352.7	.0034 69.5			. 0019 109-0	.0009 92.6	.0015 57.9	.0010 128.3
RADIUS = .91 AMPLITUDE PHASE ANGLE	1 7 = =	.0023 124.6	. 0049 119.5			.0041 129.6	.0031 132.7	.0020 98.1	.00°2 115 °
RADIUS = 1.08 AMPLITUDE PHASE ANGLE	33	.0045 135.3	.0063 136.6			. 0052 138-7	.0043 138.2	.0026 123.6	.0025

TABLE A-4

THE PROPERTY OF THE PROPERTY O

other Derived Quantities at the Experimental and the Interpolated Radii of Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and the Transverse Wake Survey without an Operating Propeller

ğ	siiraii a	the Italisvetse wave ourvey without an optioning	ים סמדעכים				L			
PADIUS =	456	6 .633	.781	.963	.312	.417	.5.13	.750	.917	1.083
VXBAR	935	5 .936	.920	.913	.917	. 932	6:6.	. 322	.913	.313
VIBAR	VIBAR =017	000 7	006	034	049	024	002	003	025	034
VRBAK =	₹ .013	3 .012	. 029	.031	.630	.016	010.	.027	.033	.031
1-WVX	928	8 .934	. 932	.926	0.000	.925	.933	.432	.927	.922
1 - W X	951	1 .946	. 940	. 933	0.000	.952	216.	. 941	. 934	.930
BEAR	= 25,95	5 19.19	15.51	12.68	35.68	28.05	20.76	11.15	13.27	11.30
BPOS THE TA	2.56	6 1.73	1.57	1.39	4.64	2.96	1.87	71.00	107.50	1.21
BNEG THE TA	= -3.45	5 -3.23	-3.94	-3.99	-5.44	-3.72	-3.32 265.00	270.00	-3.40	-3.58 340.00

CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

VOLUMETRIC MEAN WAKE VELOCITY WITH JANGENITAL CHRECTION.

VULUMETRIC MEAN WAKE VELOCITY WITH JANGENITAL CORPLCTION.

VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANG ES 'DI LTA BETA FLUS).

VARIATION BETWEEN THE MINIMUM AND MFAN ADVANCE ANGLES (D' LTA BETA MINUS).

ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNIG OLC'RS. 1-WX BBAR BFOS BNEG THETA VTBAR VRBAP 1-47×

Lois PAGE 1, C. OT Q. ALITY PRACTICABLE

TABLE A-5
HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS
AT THE EXPERIMENTAL AND INTERPOLATED RADII OF THE TRANSVERSE
WAKE SURVEY WITHOUT AN OPERATING PROPELLER

HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = .4 AMPLITUDE PHASE ANGLE	56 = =	.0287 314.7	.0131 69.3	.0,145 243.7	.0191	.0117 348.3	.0965 56.4	.0034 189.6	.0034 283.3
RADIUS = .6 AMPLITUDE PHASE ANGLE	33 = =	.0454 301.8	.0109 10.8	.0183 218.5	.02··8 288.3	.0182 34J.6	.0089 67.0	.0062 203.3	.00 12 292-6
RADIUS = .7 AMPLITUDE PHASE ANGLE	81 = =	.0622 306.1	.0231 307.9	.0211 275.5	.02·15 300.1	.0201 357.8	.0145 85.7	.0107 190.6	.0139 287.2
RADIUS = .9 AMPLITUDE PHASE ANGLE	63 = *	.1253 288.4	.0634 316.7	.0362 321.2	.0303 316.6	.0174 6.5	.0188 94.0	.0127 148.7	.0056 301.9
RADIUS = .3 AMPLITUDE PHASE ANGLE	12	.0262 355.4	.0094 101.0	.0106 2તેકે. 1	.0123 340.0	.0076 55.6	.0070 78.0	.0051	.0031 172-2
RADIUS = .4 AMPLITUDE PHASE ANGLE	1 7 = =	.0262 323.1	. 0128 76. 3	.0131 248.5	.0157 299. 2	.0097 356.4	.0063 59.5	.0033	.0023 267.1
RADIUS = .5 AMPLITUDE PHASE ANGLE	83 = =	.0403 302.5	.0112 35.2	.0176 2 43.7	.02°3 287.2	.0169 342.0	.0079	.0051 205.3	.0076 293.1
RADIUS = .79 AMPLITUDE PHASE ANGLE	50 = =	.0565 307.9	.0183 310.2	.0204 2 67.9	.0212 207 5	,0199 355.6	.0134 83.3	.010- 194.5	.0138 287.3
RADIUS = .9 AMPLITUDE PHASE ANGLE	17 = = .	.1040 292.7	.0511 313.5	.0302 311.5	.0298 312 2	.0187	.0181 92.4	.0119 162.3	. 00 ⁰ 1 2 92 - 3
RADIUS = 1.00 AMPLITUDE PHASE ANGLE	83 *	.1253 288.4	.0634 316.7	.0362 321.2	.0303 316.6	.0174	.0188 94.0	.0127 148.7	. 0056 301. 9

TO A STATE OF THE STATE OF THE

TABLE A-5 CONTINUED

MODEL 5366 TRANSVERSE WARE SURVEY EXP 3 WITHOUT PROPELLER

HARMONIC	ANALYSES	OF LONG!	TUDINAL	VE FOCITY.	COMPONE	NT RATIOS	(VX,V)	
HARMONIC =	9	10	11	12	13	14	15	16
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.0022	.0023 96.7	.0013 130.4	0014 158.7	.0013	.0007 249.0	.0012 30.4	.0017
RADIUS = .633 AMPLITUDE = PHASE ANGLE =	.0082 9.8	.0056 88.1	.0027 192.5	.00.14 281 1	.0011	.0018 143.8	206.9	.0005 290.8
RADIUS = .781 AMPLITUDE = PHASE ANGLE =	.0141	.0120 88.3	.0094 184.2	.00 © 274 6	.0083 6.1	.0078 85.5	.005' 167.1	.00·10 261.5
RADIUS = .963 AMPLITUDE = PHASE ANGLE =	.0115 31.8	.0124 93.3	.0076 162.5	.00 17 280.9	.0047	.0055 105.8	.0051 161.2	.0015 232.6
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0021 205.8	.0032 104.8	.0057 142.9		. 0030 328. 7	.0049 40.8	.0048 75.2	. 0028 103.0
RADIUS = .417 AMPLITUDE = PHASE ANGLE =	.0010 359.6		.0021 1)1.9		,0009 206-9	.0006 355.8	0019 49.3	.0020 111.6
RADIUS = .583 AMPLITUDE = PHASE ANGLE =			.0014 191.6		.0010	.0015 194.7	.000° 236.1	.0004 64.5
RADIUS = .750 AMPLITUDE = PHASE ANGLE =	.0135		.0086 195.7		.0075	.0071 86.2	.0050 160.1	, 00 °6 262 - 7
RADIUS = .917 AMPLITUDE = PHASE ANGLE =	.0129		.0040 172.3		. 00118 13. 0	.0071 93.9	.0058 162.4	.0077 251.2
RADIUS = 1.083 AMPLITUDE = PHASE ANGLE =	.0115		.0076 162.5		.0047	.0055 105.8	.0051	.0015 232.6

TOTA COLL TOUR CONTRACT PROJECT LOADIE

TABLE A-6

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS
AT THE EXPERIMENTAL AND INTERPOLATED RADII OF THE TRANSVERSE
WAKE SURVEY WITHOUT AN OPERATING PROPELLER

DINOMRAH	2	1	2	3	4	5	6	. 7	8
RADIUS = . AMPLITUDE PHASE ANGLE	456 =	.1472 182.4	. 0202 1 08 · 9	.0186 14.2	.0100 353.7	.0065	.0078	.0057	.0018
	633	,02.4	100.5	1712	353.7	23.9	33,3	28.7	69.5
AMPLITUDE PHASE ANGLE	=	.1755 177.8	.0108 127.4	.0116 3.9	.0116 354.7	.0077	.00 1 9 29.9	.0039 21.8	.0042 22.9
	781								
AMPLITUDE PHASE ANGLE	=	.1701 181.7	.0029 12.5	.0175 10.8	.0141 357.9	.0053 ').5	.0036 30.0	.0036 59.7	.0015 28.8
RADIUS = .	963	1.422	0249	0070					
PHASE ANGLE		.1432 194.3	.0248 342.1	.0272 3 51.8	.015 6 343. 5	.0085 332.0	.0036 272.9	.0055 267. 9	.0023 288-3
	312								
AMPLITUDE PHASE ANGLE	=	.1034 201.5	, 0286 84.8	.0,361 21.1	.0098 356.3	.0080 85.6	.0139 34.9	.0086 49.0	.0072 173.4
	417								
AMPLITUDE PHASE ANGLE	2	.1364 185.4	.0221 102.7	.0223 16.6	.009 8 354.1	.0062 39.7	.0092 33.8	.0063 33.9	.0018 123.9
RADIUS = .	583								
AMPLITUDE PHASE ANGLE	*	.1713 178.0	.0139 124.3	.0120 5.3	.0110 354.0	.0077 3.8	.0046 30.9	.0043 19.5	.0011 25.8
RADIUS = .	750 =	.1726	. 0022	.0162	04.37	.0056	0040		0000
PHASE ANGLE	=	180.5	82.7	12.0	.012 7 358. 5	12.1	.0049 32.3	.0041 57.3	,0020 31.1
AMPLITUDE	917 =	.1515	.0183	.0242	.0152	.0068	.0021	.0022	.0014
PHASE ANGLE	± .	189.9	341.8	357.6	348.8	341.7	306.1	277.9	295.3
RADIUS = 1.4 AMPLITUDE PHASE ANGLE	083 #	.1432 194.3	. 0248 342 · 1	.0272 351.8	.0156 343. 5	.0085 332.0	.0036 272.9	.0055 267.9	.0023 288.3

TABLE A-6 CONTINUED

MODEL 5366 TRANSVERSE WAKE URVEY EXP 3 WITHOUT PROPELLER

	HARMO	NIC	ANALYSES	OF TANG	GENTIAL	AE1 9C I I.A	COMPONENT	RATIOS	(VT/V)	
HARMON	I C	=	9	10	11	12	13	14	15	16
RADIUS AMPLITE PHASE	UDE	56 = =	.0034	.0024 117.9	.0018 102.9		.0014 157.9	.0008 138.2	.0010 121.8	.0009 152 3
RADIUS AMPLITU PHASE	JDE	33 = =	.0016	.0030 38.5	.0020		.0020 116.1	.0015	.0015	.0007
RADIUS AMPLITE PHASE A	JDE	9 1 = =	.0015 162.6	.0016 25.0	.0005 87.7	.002 5	.0019	.0012 65.5	.0012	.0018
RADIUS AMPLITU PHASE A	IDE	53 = =	.0037 254.0	.0017 137.6	.0034 130,4	. ur 35 1.:2 0	.0036 127-1	.0017	.002: 134.J	. 0025 135-5
RADIUS AMPLITU PHASE A	DE	2 = =	.0079	.0079 169.6	.0040 167.9	.0036 151.7	.0024 222.8	.0015 329.0	.0001	.0023 83-5
RADIUS AMPLITU PHASE A	DE	7 = =	.0043	.0033 141.8	.0020 126.1	.0019 163 0	.0014 178.5	.0003	.0007	.0010 128 8
RADIUS AMPLITU PHASE A	DE	13 = =	.0020 75.7	.0028 47.9	.0021 60.6	.0005	.0019 121.4	.0015 132.6	.0014	. 00/19 178. "
RADIUS AMPLITU PHASE A	DE	0 = =	.0015 145.2	.0019 25-2	.0006 61.7	.0073	.0018	.0012	.0012 187.7	.0016
RADIUS AMPLITU PHASE A	DE	7 = = .	.0027 237.7	.0099 116.0	.0023 132.1	.00 12 126 8	. 0029 123-6	.0011 124.9	.0017 148.4	.00.00
RADIUS AMPLITU PHASE A	DE	3==	.0037 254.0	.0017 137.6	.0034 130.4	.00 \5	.0036	, ,0017 151,6	.0023 134.3	. 0025

PROGRAMME COLL CALLE TO DUC

APPENDIX B

VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS OF THE ROTATIONAL WAKE SURVEY

Figure B-1 - Velocity Component Ratios for Model 5366 from the Rotational Wake Survey at the Propeller Rake Location for the 0.456 Radius

Figure B-2 - Velocity Component Ratios for Model 5366 from the Rotational Wake Survey at the Propeiler Rake Location for the 0.633 Radius

Figure B-3 - Velocity Component Ratios for Model 5366 from the Rotational Wake Survey at the Propeller Rake Location for the 0.781 Radius

Figure B-4 - Velocity Component Ratios for Model 5366 from the Rotational Wake Survey at the Propeller Rake Location for the 0.963 Radius

Figure B-5 - Radial Distribution of the Mean Velocity Component Ratios from the Rotational Wake Survey at the Propeller Rake Location

Figure $B-\delta$ - Radial Distribution of the Mean Advance Angle and Advance Angle Variations from the Rotational Wake Survey at the Propeller Rake Location

TABLE B-1

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII OF THE ROTATIONAL

WAKE SURVEY

347.50	347.50	325.00	327.50	327.50	327.50	345.00	345.00	345.00	347.50	325.00	327.50	= 730,00	THETA
-1.74	-1.50		-1.86	-2.40	-3.00	-4.63	-6.61				-2.24	= -3.35	BNEG
82.50	87.50		92.50	92.50	92.50	92.50		92.50	82.50		92.50	= 92.50	
.80	.93		1.40	1.89		4.43	5.62	6.76	.85	1.16	1.68	3.41	8048
13.03	14.40			21.15			32.71	35.42	13.51	16.47	20.14	= 26.75	38AR
. 984	.984	. 984		.982	716.	.970		0.000	.984	. 985	.983	974	3 - W.Y
.985	986.	.987	.987	.986	985	.983		0.000	986.	.987	. 986	984	1-WVX
.025	.026	.025	.020	.013	900	005	010	014	.025	.024	.015	. 001	VRBAR
010	.004	.015	.013	.004	.012	.029	.041	. 652	010	.016	.004	. 018	VIBAR
. 981	.983	. 986	. 988		. 987		.982	. 981	.981	986.	. 988	986. =	VXBAR
1.300	900.	. 800	.700	.600	.500	. 400	.350	.312	.963	. 781	.633	= .456	RAD: 5 =

S ß 00

'S CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.
IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.
IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.
IS COLUMETRIC MEAN WAKE VELOCITY WITH OUT TANGENTIAL CORRECTION.
IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
IS MEAN ANGLE OF ADVANCE.
IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
IS ANGLE IN DEGREES AT WHICH CORRESTONTING BPOS OR BNEG OCCURS. VXBAR VYBBAR VYBBAR 1-WVX 1-WVX BBBAR BBAR BBDOS BNEG

and the second s

ENTAL

EXPerimen	ω	.0036	.0027	.0019	.0055	16	.0019	.0029	.0037	.0042
THE	7	91.3	.0040	61.2	0069	15	.0006	.0004	.0016	.0032 83.4
AT		•		•	•		• (*)	• •	• •	•
RATIOS	ω	.0025	.0047	.0040	.0084	4	.0030	.0022	.0014	.0013
PONENT SURVEY	ហ	.0045	.0035	.0034	.0097	13	.0041	.0043	.0036 325.6	.0014
LTY COM	4	.0098	.0006	.0031	.0113	12	.0038	. 00°. 29°.	.00c. 316 .	,0035 288.2
L VELOCI STATIONA	ъ	.0171	.0051	.0072	.0162	=	.0026	.0045	.0053	.0047
OF LONGITUDINAL VELOCITY COMPONENT RATIOS RADII OF THE ROTATIONAL WAKE SURVEY	7	.6303	.0148	.0162	.0264	10	.0003	0027 278.7	.0043	.0049
OF LUNG RADII D		.030° 276.9	.9162	.0191	.0254	Ĵì	.0022	.0004 219.8	.0024	.0047
	u ن	456 06 - NGLE -	: .633 JDE = : AMGLÉ =	= .78; ide = : ingle = :	5 = .963 CUDE = = ANGLE =	ıı ن	= ,456 :0E = :NGLE =	633 .uor Angle .	105 = 1031 105 = 1000 1000 = 1000	# .963 30 40LE #
HARMONIC ANALYSES	HARMONIC	RADÍUS = AMPLITUDE PHASE ANGL	AADIUS : AMPLITUDE PHASE ANGL	RADIUS = AMPLI:UDE PHASE ANGL	PADIUS = AMPLITUDE PHASE ANG	HAPMON: C	RADIUS = AMPLITUDE PLASE ANGLE	RADIUS = AMPLITUDE PHASE ANG	RADIUS = . AMPLI:UNE PHASE ANCLE	RADIUS = . AMPLITUDE PP1SE ANGLE

THE PROPERTY OF THE PROPERTY O

. TABLE B-3

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII OF THE ROTATIONAL WAKE SURVEY

	æ	.0036	.0035 86.1	.0035 98.8	.0035	.0030	.0018 86.0	.0021	.0040	.0055
	7	.0036	.0031 48.6	.0031	.0039 98.8	.0041	.0034	.0032	.0049	.0069
7 2	9	.0087	.0062	.0036	.0030	.0045	.0043 87.8	.0041	.0059	.0084
INDIE OF THE NOTATIONAL WAKE SURVEY	s.	.0175	.0134	.0087	.0022	.0030	.0033	.0036	.0065	.0097
TWO TWO	4	.0276	.0220	.0156	.0061	.0009	.0014	.0037	.0078	.0113
TWIN 3	ო	.0388	.0320	.0243	.0127	.0061	,0054 295,4	.0079 303.8	.0124	.0162
T 30 1	Ø	.0571	.0487	.0392	.0247	.0163	.0146	.0168	.3219	.0264
TOPS:	-	.0556 282.3	.0476	.0385	.0249	.0174	.0168	.0198	.0249	, .0294 275.2
	HARMGNIC =	RADIUS = .312 AMPLITUDE = PHASE ANGLE =	RADIUS = .350 AMPLITUDE = PHASE ANGLE =	RADIUS = .400 AMPLITUDE = PHASE ANGLE =	RADIUS = .500 AMPLITUDE = PHASE ANGLE =	RADIUS = .600 AMPLITUDE = PHASE ANGLE =	RADIUS = .700 AMPLITUDE = PHASE ANGLE =	RADIUS = .800 AMPLITUDE = PHASE ANGLE =	RADIUS = .900 AMPLITUDE = FHASE ANGLE =	RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =

TABLE B-3 CONTINUED

MODEL 5366 R/V ATHENA DQUBLE MODEL

9	.0033	.0026	.0021	.0020	.0027	.0034	.0037	.0037	.0042
15	.0011	.0010	.0008	.0004	.0002	.0010	.0017	.0025	.0032
4	.0052 358.0	.0044	.0035 335.6	.0028	.0024 290.6	.0017	.0013 348.5	.0012	.0013
13	.0066	.0054	.0044	.0042	.0044	.0040	.0035	.0023	.0014
12	.0059	.0046	.0038	.0042	.0051	.6052	.0051	.0042	.0035
=	.0039	.0028	.0022	.0032	.0043	.0048	.0053	.0051	.0047
01	.0037	.0025	.0010	.0011	.0024	.0034	.0045	.0049	.0049
6	.0045	.0037	.0029	.0017	.0006	.0011	.0027	.0040	.0047
HARMONIC =	RADIUS = .312 AMPLITUDE = PHASE ANGLE =	RADIUS = .350 AMPLITUDE = PHASE ANGLE =	RADIUS = .400 AMPLITUDE = PHASE : =	RADIUS = .500 AMPLITUDE = PHASE ANGLE =	RADIUS = .600 AMPLITUDE = PHASE ANGLE =	RADIUS = .700 AMPLITUDE = PHASE ANGLE =	RADIUS = .800 AMPLITUDE = PHASE ANGLE =	RADIUS = .900 AMPLITUDE = PHASE ANGLE =	RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =
	= 9 10 11 12 13 14 15	.312 E = .0045 .0037 .0039 .0059 .0066 .0052 .0011 GLE = 90.6 64.9 23.7 16.1 8.1 358.0 333.4	.312 GLE = .0045 .0037 .0039 .0059 .0066 .0052 .0011 6.15 = .0045 .0037 .0039 .0059 .0066 .0052 .0011 6.15 = .0037 .0025 .0028 .0046 .0054 .0044 .0010 6.15 = .0037 .0025 .0028 .0046 .0054 .0044 .0010	.312 GLE = .0045 .0037 .0039 .0059 .0066 .0052 .0011 GLE = .90.6 64.9 23.7 16.1 8.1 358.0 333.4 .350 GLE = .0037 .0025 .0028 .0046 .0054 .0044 .0010 GLE = .0029 .0010 .0022 .0038 .0044 .0035 .0008 GLE = .0029 .0010 .0022 .0038 .0044 .0035 .0008	.312 LE = 90 10 11 12 13 14 15 15 LE = 90.65 .0037 .0039 .0059 .0066 .0052 .0011 .350 LE = 97.4 67.6 7.9 2.4 356.6 349.3 330.7 .400 LE = 107.5 73.1 333.2 .0048 .0044 .0035 .0008 LE = 132.3 255.4 288.2 298.8 302.9 306.7 328.2	.312 LE = 90 10 11 12 13 14 15 15 LE = 90.66 .0037 .0039 .0059 .0066 .0052 .0011 .350 .0037 .0025 .0028 .0046 .0054 .0014 .400 .400 LE = 97.4 67.6 7.9 2.4 356.6 349.3 330.7 .400 .E = 107.5 73.1 333.2 337.9 337.5 335.6 328.1 .500 LE = 107.5 .0011 .0032 .0042 .0042 .0028 .00044 .600	.312 LE = 9 10 11 12 13 14 15 15 LE = 90.65 .0037 .0039 .0059 .0066 .0052 .0011 .350 .0037 .0025 .0028 .0046 .0054 .0044 .0010 LE = 97.4 67.6 7.9 2.4 356.6 349.3 330.7 .400 .0029 .0010 .0022 .0038 .0044 .0035 .0008 LE = 107.5 73.1 333.2 337.9 337.5 335.6 328.1 .500 .0017 .0011 .0032 .0042 .0042 .0028 .0004 LE = 132.3 255.4 288.2 298.8 302.9 306.7 328.2 .600 .0006 .0024 .0043 .0051 .0044 .0024 .0002 .700 .0011 .0034 .0043 .0051 .0044 .0024 .0002 .700 .0011 .0034 .0048 .0051 .0044 .0024 .0002 .700 .0011 .0034 .0048 .0051 .0044 .0017 .0010	1312 14 15 15 15 15 15 15 15	1312 14 15 15 15 15 15 15 15

TABLE B-4

Printing and the state of the state of

THE STATE OF THE PROPERTY OF T

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII OF THE ROTATIONAL WAKE SURVEY

11	1	,	3	NEALLY OF THE ANIMAL WANTE STANKED.	2 C	9	7	ω
. 2202		.0122	9100.	.0027	.0033	.0031	.0026	.0020
.1942		.0036	.0032	.0046	.0038	.0023	.0005	.0012
.1826		.0018	.0023	.0044	.0030	.0004	.0012	.0020
1797		.0062	.0009	.0028 315.0	.0019 290.6	.0007	.0006	.0004
თ		10	Ξ	12	£.	4 /	15	16
.0008		.0003	.0007	.0008	.0010	.0010	.0010	.0009
.0015		.0015	.0009	9000° 309 6	.0009	.0014	.0014	.0011
.0020		.0013	.0011	.0014	.0021	.0021	.0016	.0008
.0003		.0003	.0005	.0006	.0009	.0010	.0011	.0014

TABLE B-5

HARMONIC ANALYSES	ANALYSES	OF TANGEN RADII OF	NGENTIAL OF THE	. VELOCITY COMPON ROTATIONAL WAKE	TY COMP NAL WAK	ONENT RA	RATIOS AT EY	HE	OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERFULATED RADII OF THE ROTATIONAL WAKE SURVEY
, HARMONIC	11	-	8	ო	4	ហ	Q	7	80
RADIUS = . AMPLITUDE PHASE ANGLE	312	.2514	.0225	.0066	.0017	.0006	.0025	.0049	. 059
RADIUS = . AMPLITUDE PHASE AMGLE	350	.2423	.0195	.0048 160.2	.0009	.0014	.0027	.0042	.0047
RADIUS = AMPLITUDE PHASE ANGLE	. 400 	.2313	.0158	.0028	.0016	.0024	.0029	.0034	.0033
RADIUS = AMPLITUDE PHASE ANGLE	.500 	2125 179.6	.0096 348.5	.0017	.0035	.0037	.0030	.0020 59.6	.0012
RADIUS = . AMPLITUDE PHASE ANGLE	.600 = = = =	.1980	.0048	.0030	.0045	.0039	.0026	.0008 .08.5	.0009
RADIUS = . AMPL:TUDE PHASE ANGLE	.700 	.1879	.0022	.0029	.0046 355.9	.0031 359.8	30.9	.0007	.0018
RADIUS = . AMPLITUDE PHASE ANGLE	.800 .E	.1817	.0021	.0021	.0044	.0030	.0005	.0012	.0019
RADIUS = . AMPLI1UDE PHASE ANGLE	006	.1793	.0045	.0010	.0036	.0026 305.6	.0008	.0009	.0013
RADIUS = 1.0 AMPLITUDE PHASE ANGLE	000	1797	.0062	.0009 226.8	.0028	.0019	.0007	.0006	.0004

TABLE B-5 CONTINUED

MODEL 5366 R/V ATHEMA DOUBLE MODEL

HARMONIC	HARMONIC ANALYSES		NTIAL VE	LOCI 1Y	OF TANGENTIAL VELOCITY COMPONENT	RATIOS	(V1/V)	
HARMONIC =	თ	10	1,1	12	13	4	15	16
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0049	.0040	.0021	.0007	0025 222.3	.0043	.0051	.0040
AADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0036	.0027	.0013	.0007 203 8	.0021	.0033	.0038	.0029
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0022	.0013	.0006	.0007	.0015	.0022	.0024	.0018
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	317.8	.0008	.0009	.0009	.0006	.0003	.0003	.0006
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0012	.0015	.0011	.3007	.0007	.0011	.0012	.0010
RADIUS = ,700 AMPLITUDE = PHASE ANGLE =	.0018	.0011	.0004	.0009	.0018	.0020 26.8	.0015	.0007
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0020	.0013	.0012	.0014	.0020	.0021	.0015	.0008
RADIUS = ,900 AMPLITUDE = = PHASE ANGLE =	.0012	.0009	.0010	.0010	.0012	.0013	.0010	.0009
RADIUS = 1.000 AMPLITUDE = = PHASE ANGLE =	.0003	.0003	.0005	.0006 142.6	.0009	.0010	.0011	.0014

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

HEADQUARTERS BETHESDA, MARYLAND 20084 ANNAPOLIS LABORATORY ANNAPOLIS, MD 21402 CARDEROCK LABORATORY BETHESDA, MD 20084 IN REPLY REFER TO:

1524:RBH 5605 21 July 1980

From: Commander, David W. Taylor Naval Ship R&D Center

To: Distribution List

Subj: Forwarding of Technical Report

Ref: (a) Conference at DTNSRDC between NAVSEA (05R) and DTNSRDC (Code 154) on 14 Jul 1977

(b) DTNSRDC 1tr 1524:WMB:svc/9245 dtd 22 Jul 1977

Encl: (1) DTNSRDC Ship Performance Department Report DTNSRDC/SPD-0833-02 entitled, "Analysis of Wake Survey and Boundary Layer Measurements for the R/V ATHENA Represented by Model 5366 in the Anechoic Wind Tunnel," by R. Hurwitz and D. Jenkins (July 1980)

1. The results of the model boundary layer and wake survey experiments for the R/V ATHENA are forwarded herewith as enclosure (1) for your information and retention as requested in references (a) and (b).

R. J. STENSON Acting Head,

Ship Powering Division

1524:RBH 5605 21 July 1980

DISTRIBUTION LIST: NAVSEA (31 copies) CHONR (2) USNA (2) DTIC (12) BUSTAND (Klebanoff (1)) US COAST GUARD (3) U CALIFORNIA, BERKLEY (1) CIT (4) MIT (6) U. MICHIGAN (6) U. MINNESOTA SAFHL (3) PENN STATE U., ARL (5) SIT DAVIDSON LAB (4) WEBB INST. (2) BIRD-JOHNSON CO. (2) HYDRONAUTICS (3) LIPS (1)

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.