

ARJUNA NEET BATCH

States of Matter

LECTURE - 7

して

Objective of today's class

MAXWELL BOLTZMANN CURVE AND MOLECULAR SPEEDS

KINETIC ENERGY AND MOLECULAR SPEEDS

According to Kinetic Theory of

gases.

P-V Relation:>

$$PV = \frac{1}{3}m^{\frac{2}{3}}$$

P-> Pressure

V-> Volume

m-> mass of gas molecules

-2 Root mean square

$$\Rightarrow P-V=\frac{1}{3}mc^{2}$$

Multiply & divide

$$\Rightarrow P-V=1\times 2\times 1\text{mc}^2$$

$$\Rightarrow P-V=\frac{2}{3} \times \text{KoEo}$$

$$\Rightarrow$$
 K. E. = $\frac{3}{2}$ PXV-0

Acc. to ideal gas Équation.

From () & (2)

$$\Rightarrow$$
 KoEo=3nRT

if n=1

KoE. per molecule

$$\Rightarrow \mathcal{N} = \frac{N_0}{N_A} \Rightarrow (N_0 = N_A)$$

(K. E.) per =
$$\frac{3}{2} \times \frac{R}{NA} \times T$$
molecule

$$\frac{8.314}{6.02\times10^{23}} \left(\frac{R}{NA}\right) = K$$

$$\frac{-23}{1.38\times10} = \frac{1.38\times10}{1} =$$

K -> Boltzmann Constans

Average Kot of gas X Temperahus molecules

Types of Molecular Speeds_

Most probable speed) => Speed snown by max. no. of molecules O present in I the sample. -> It is least presise & Smallest among all the molecular

VAVERAGE (Average Speed) VAverage=MIVI+M2V2 · u algebric mean et au the 12s molecula present in the

JRMS

Root mean square Velocity.

Vr1PS

$$VMPS = \frac{2PV}{M}$$

$$VMPS = \frac{RP}{d}$$

VAVERAGE

VRMS

N,→ no. of gas molecules

V, → Velocity (speed) of M,

molecules

M2 → Second gas moleculy (Total)

V2 > Velocity (speed) of n2

gas molecuses)

 $O_2 \rightarrow V_1$, m_1

Chu -> 12, M2

P-> Pressure

V-> Volume

T=3.14

d > density

M-Moleman weight

T > Tem >.

R-) gas constant

Temperature

Q. At what V_{rms} of He will be same as average speed of Hydrogen at 100 K.

$$\frac{3X \text{ The}}{4} = \frac{8X100}{3.14X2}$$

$$T_{Hc} = \frac{8 \times 100 \times 2}{3.14 \times 3}$$

Q. Find rms of He at 100 K (R = 8.314)

$$\left(V_{rms}\right)_{He} = \frac{3RT}{11}$$

Q. At what temp. V_{rms} of O_2 gas will be same as that of methane at 27°C.

$$T=?$$
 $(Vrms)_{02} = (Vrms)_{0my}$

$$\frac{3RT}{M} = \frac{3RT}{M}$$

On Squaring born side

ARJUNA

Q. The rate of diffusion of gas having molecular weight just double of H_2 gas is 30 ml/s. The rate of diffusion of H_2 gas.

gas > n -> Molo cut of n = 2 x Mwt of H2 (RXI)

Nn => 30 ml/s |

$$7H_2 = 30\sqrt{2}$$

= 30×1.414
\$\frac{4}{4}\frac{42.42}{5}\frac{11}{5}

Q. Two gases A & B having some volume diffuses through porous position in 20 s & 10 s respectively. The molar mass of A is 49 mol. Wt. of B will be-

MAXWELL-BOLTZMANN DISTRIBUTION OF MOLECULAR SPEEDS

- ❖ The speeds of the individual molecules of a gas do not remain constant. They keep on changing due to intermolecular collisions and due to collisions with the walls of the container. However, at a given temperature, the distribution molecular speeds remains constant. This distribution of molecular speeds is given by Maxwell-Boltzmann distribution law
- For a given gas, at a given temperature, the distribution of Molecular speed is constant.

<u>0</u>. Manimum Kinetic Energy at 300 k. 0 H2 2 He 3 ()²³⁸ Au have Same.

De Kinetic Energy of 6.4 gm of SO2 at 600 K.

Q Relation between VRMS & Vaverage.

The important features of the distribution curve are:

- PW
- (a) The fraction of molecules having too low or too high speeds is very small.
- (b) There is a certain speed for which the fraction of molecules is maximum. This speed is know as most probable speed.
- (c) The most probable speed of a gas, is the speed possessed by the maximum number of molecules of the gas at a given temperature and it corresponds to the peak of the curve.

Since the most probable speed (C*) is related absolute temperature T by the expression

$$\mathbf{C}^* = \sqrt{\frac{2\mathbf{RT}}{\mathbf{M}}}$$

VMPS OVI lolewlar speed

AN - fraction of N molecules

VMPs -> Most probable speed

It means that at the same temperature, lighter gases shall move faster than heavier gases as is evident from the distribution curves of chlorine and nitrogen gases.

EFFECT OF TEMPERATURE

A Maxwell Boltzmann distribution curves of a gas at three different temperature T_1 , T_2 , and T_3 such that $T_3 > T_2 > T_1$.

It can be seen from these distribution curves that as the temperature increases

- ☐ The entire curves shift towards right.
- ☐ The most probable speed increases. (VMPS3 > VMPS2 > VMPS1
- The fraction of molecules having most probable speed decreases.
- The curve becomes broader in the middle range indicating that more molecules have speeds near to the most probable speed.
- □ The fraction of molecules having higher speed increases.
- ☐ The fraction of molecules having lower speed decreases.

W. At what temperature Vrms of No win be J3 limes of Vrms of H2 at 100 K.

thanks for watching

