Φροντιστήριο 4 ΦΥΣ112

11/10/2023

26.27) Δύο αγωγοί είναι φτιαγμένοι από το ίδιο υλικό και έχουν το ίδιο μήκος. Ο αγωγός A είναι συμπαγές καλώδιο διαμέτρου $1.00\,mm$. Ο αγωγός B είναι κούφιος σωλήνας με εξωτερική διάμετρο $2.00\,mm$ και εσωτερική διάμετρο $1.00\,mm$. Ποιος είναι ο λόγος των αντιστάσεών τους R_A/R_B που μετρώνται μεταξύ των δύο ακρών τους;

26.35) Στο σχήμα πιο κάτω περνάει ρεύμα διαμέσου ενός πλαγιαστού κόλουρου κώνου ειδικής αντίστασης $731\,\Omega\cdot m$, αριστερή ακτίνα $a=2.00\,mm$, δεξιά ακτίνα $b=2.30\,mm$ και μήκος $L=1.94\,cm$. Υποθέστε ότι η πυκνότητα ρεύματος είναι ομοιόμορφα κατανεμημένη σε κάθε επιφάνεια διατομής παρμένη κάθετα στο μήκος του κώνου. Ποια είναι η αντίσταση του κώνου;

26.49) Ένας λαμπτήρας $100\,W$ είναι συνδεδεμένος σε πηγή $120\,V$. (a) Πόσο στοιχίζει ανά μήνα 31 ημερών να αφήνεται ανοιχτός ο λαμπτήρας συνεχώς; Υποθέστε ότι η ηλεκτρική ενέργεια κοστίζει $\mathbf{\in}0.06/kW\cdot h$. (b) Ποια είναι η αντίσταση του λαμπτήρα; (c) Πόσο ρεύμα διαπερνά τον λαμπτήρα;

27.26) Το παραχάτω σχήμα δείχνει μια μπαταρία συνδεδεμένη με ομοιόμορφο αντιστάτη R_0 . Μια χυλιόμενη επαφή μπορεί να χινείται κατά μήχος του αντιστάτη από x=0 στα αριστερά έως και $x=10\,cm$ στα δεξιά. Μεταχινώντας την επαφή αλλάζουμε πόση αντίσταση υπάρχει στα αριστερά και δεξιά της. Εξάγετε μια έχφραση για τον ρυθμό που φθίνει η ενέργεια εντός του αντιστάτη R σαν συνάρτηση του x. Ζωγραφίστε την γραφιχή παράσταση για $\mathcal{E}=50\,V,\,R=2000\,\Omega$ και $R_0=100\,\Omega$.

27.45) Στο σχήμα που ακολουθεί οι αντιστάσεις είναι $R_1=1.0\,\Omega$ και $R_2=2.0\,\Omega$, και οι ιδανικές μπαταρίες έχουν $\text{HE}\Delta\ \mathcal{E}_1=2.0\,V$ και $\mathcal{E}_2=\mathcal{E}_3=4.0\,V$. Πόσο είναι (a) το μέγεθος και (b) η κατεύθυνση (πάνω ή κάτω) του ρεύματος στην μπαταρία $1,\ (c)$ το μέγεθος και (d) η κατεύθυνση του ρεύματος στην μπαταρία $2,\ \text{και}\ (e)$ το μέγεθος και (f) η κατεύθυνση του ρεύματος στην μπαταρία $3;\ (g)$ Πόση είναι η διαφορά δυναμικού $V_a-V_b;$

Πρόβλημα 1: Δύο διαφορετικά διηλεκτρικά συμπληρώνουν τον χώρο ανάμεσα στους οπλισμούς ενός επίπεδου πυκνωτή όπως φαίνεται στο σχήμα. Προσδιορίστε την εξίσωση που δίνει την χωρητικότητα του πυκνωτή αυτού συναρτήσειτων διηλεκτρικών σταθερών K_1, K_2 των υλικών, της επιφάνειας A και του πάχους των διηλεκτρικών υλικώναπόστασης $d_1 = d_2 = \frac{d}{2}$. <u>Υπόδειξη:</u> θα μπορούσατε να θεωρήσετε τον πυκνωτή αυτόν σαν δύο πυκνωτέςσυνδεδεμένους σε σειρά ή παράλληλα:

Πρόβλημα 2: Ενα κομμάτι υλικού πάχους d και διηλεκτρικής σταθεράς K έχει εισαχθεί κατά απόσταση x, στο χώρο ανάμεσα στους οπλισμούς ενός επίπεδου τετραγωνικού πυκνωτή πλευράς ℓ , όπως φαίνεται στο σχήμα. Προσδιορίστε συναρτήσει του x, (α) τη χωρητικότητα, (β) την αποθηκευμένη ενέργεια αν η διαφορά δυναμικού είναι V_0 και (γ) το μέτρο και διεύθυνση της δύναμης που ασκείται στο διηλεκτρικό υλικό. Υποθέστε ότι V_0 παραμένει σταθερό και δεν μεταβάλλεται.

