Set C Part 1 Design Marks: Total = 7

```
read(A,B,n)
```

- 1. read the value of *n*
- 2. **for** $i \leftarrow 1$ to n

do read
$$Reg_ID$$
 read $height$ $A[i] \leftarrow Reg_ID$ $B[i] \leftarrow height$

Evaluation criteria: [1 mark]

Reading the values *Reg_ID* and *height* and storing it into arrays A and B respectively.

Arrange_Student(A,B, n,s)

// using two extra arrays

1. **for**
$$i \in 0$$
 to $n-1$

do if A[i] = s

- 2. Create two arrays D and E of size n
- 3. Initialize $j \leftarrow 0$
- 4. **for** $i \leftarrow 0$ to n-1

then
$$D[j] \leftarrow A[i]$$

 $E[j] \leftarrow B[i]$
 $j \leftarrow j+1$

- 5. $D[j] \leftarrow s$
- 6. $E[j] \leftarrow ht$
- 7. $j \leftarrow j+1$
- 8. $final_pos \leftarrow j$
- 9. **for** $i \leftarrow 0$ to n-1

do if
$$B[i] < ht$$

then $D[j] \leftarrow A[i]$
 $E[j] \leftarrow B[i]$
 $j \leftarrow j+1$

10. for $i \leftarrow 0$ to $n-1$

do $A[i] \leftarrow D[i]$

 $B[i] \leftarrow E[i]$

11. Print final_pos and the two arrays A and B

Evaluation criteria : [6 marks]

Division: Finding the pos of s - 1 mark

Finding the final position of s - 2 marks

Preserving the relative positions of students - 3 marks

Design Marks: Total = 3

Set C Part 2

read(A,B, n)

- 1. read the value of *n*
- 2. **for** $i \leftarrow 0$ to n-1

3. read the value of k

Find_Tallest(A, B, l, r, k) // initially l=0, r=n-1

// Slightly modify $Arrange_Student$ (A, B, n, s) to $Arrange_Student$ (A, B, b, b) that positions b between b and b1 (inclusive) and returns the value b3 (b4 <= b6 final_pos <= b7 -b7) of the student b8.

- 1. $s \leftarrow A[l]$ // Choose an arbitrary student s in array A. // Here we take the leftmost student
- 2. $n \leftarrow r l + 1$
- 3. $pos \leftarrow Arrange_Student(A, B, l, r, s)$
- 4. index = pos 1
- 5. **if** index = k

then return A[index]

6. **else if** index > k

then return *Find_Tallest*(*A*, *B*, *l*, *index* - 1, *k*)

7. **else return** Find_Tallest(A, B, index + 1, r, k+l-index)

Evaluation criteria: [3 marks]

Division: Modification of Arrange Student () - 1 mark

Proper recursion calls of Find Tallestt()-2 marks