

Todos as contas foram feitas urando a Maple

Alexandre Cavaliante

1ª Questão (5,0): Utilize o Segundo Teorema de Castigliano para calcular o deslocamento horizontal no ponto A. Dados: Área das barras: 1600 mm²; Módulo de elasticidade dos materiais; E = 200 GPa.

$$A := convert(1600., units, mm^2, m^2)$$

0.001600000000 (1)

E := convert(200, units, GPa, Pa)

2000000000000 (2)

 $Dac := \sqrt{6^2 + 7.5^2}$:

 $Dcd := \sqrt{10.5^2 + 7.5^2} :$

 $Cos\theta 1 := \frac{6}{Dac}$:

 $Sen\theta 1 := \frac{7.5}{Dac}$:

 $Cos\theta 2 := \frac{10.5}{Dcd}$:

 $Sen\theta 2 := \frac{7.5}{Dcd}$:

 $\Sigma Fh_A := -P + Nab + Nac \cdot Cos\theta I = 0$:

 $\Sigma Fv_A := -52000 + Nac \cdot Sen\theta 1 = 0$:

 $\Sigma Fh_{R} := -Nab + Nbd = 0$:

 $\Sigma F v_R := -85000 + Nbc = 0$:

 $\Sigma Fh_C := -Nac \cdot Cos\theta 1 + Nce + Ncd \cdot Cos\theta 2 = 0$:

 $\Sigma F_{V_C} := -Nbc - Nac \cdot Sen\theta 1 - Ncd \cdot Sen\theta 2 = 0$:

 $\Sigma Fh_{D} := -Nbd + Rhd - Ncd \cdot Cos\theta 2 = 0:$

 $\Sigma Fv_{D} := Nde + Ncd \cdot Sen\theta 2 = 0$:

 $\Sigma Fh_F := + Rhe - Nce = 0$:

 $\Sigma Fv_E := -Nde + Rve = 0$:

 $aux1 := solve\big(\left\{\Sigma Fh_{A}, \Sigma Fv_{A}, \Sigma Fh_{B}, \Sigma Fv_{B}, \Sigma Fh_{C}, \Sigma Fv_{C}, \Sigma Fh_{D}, \Sigma Fv_{D}, \Sigma Fh_{E}, \Sigma Fv_{E}\right\}, \\ \{Nab, Nbd, Nac, \Sigma Fv_{D}, \Sigma Fh_{D}, \Sigma Fv_{D}, \Sigma Fh_{D}, \Sigma Fv_{D}, \Sigma Fh_{D}, \Sigma Fv_{D}, \Sigma Fv_{D$ Nbc, Ncd, Nde, Nce, Rve, Rhe, Rhd})

 ${Nab = P - 41600.00000, Nac = 66592.49204, Nbc = 85000., Nbd = P - 41600.00000, Ncd = 85000.}$ (3)

o Revolução do vistema bormodo pelos squações de cardod con manto sup caros or sortal lings

(Normais em Junços de P)

Segue a applicação do terremoso de Costiglianos mondos $b = \sum_{i} \int \frac{Ni}{EA} \cdot \frac{\partial Ni}{\partial P} dx_i$ $-2.357037123 \cdot 10^5, Nce = 2.334000000 \cdot 10^5, Nde = 1.37000 \cdot 10^5, Rhd = -2.334000000 \cdot 10^5 + P, Rhe = 2.334000000 \cdot 10^5, Rve = 1.37000 \cdot 10^5$ assign(%) $\Delta ab := subs(P = 0, \frac{Nab}{EB} \cdot \frac{d}{dB}) \cdot (Nab) \cdot 6$

10)

$$\Delta ab := subs \left(P = 0, \frac{Nab}{A \cdot E} \cdot \frac{d}{dP} (Nab) \cdot 6 \right)$$

$$-0.0007800000000$$
(4)

$$\Delta bd := subs \left(P = 0, \frac{Nbd}{A \cdot E} \cdot \frac{d}{dP} (Nbd) \cdot 10.5 \right)$$

$$-0.001365000000$$
(5)

$$\Delta ac := subs\Big(P = 0, \frac{Nac}{A \cdot E} \cdot \frac{d}{dP} (Nac) \cdot Dac\Big)$$

$$0. (6)$$

$$\Delta bc := subs \left(P = 0, \frac{Nbc}{A \cdot E} \cdot \frac{d}{dP} (Nbc) \cdot 7.5 \right)$$
0. (7)

$$\Delta cd := subs \left(P = 0, \frac{Ncd}{A \cdot E} \cdot \frac{d}{dP} (Ncd) \cdot Dcd \right)$$

$$-0.$$
(8)

$$\Delta de := subs \left(P = 0, \frac{Nde}{A \cdot E} \cdot \frac{d}{dP} (Nde) \cdot 7.5 \right)$$

$$\Delta ce := subs \left(P = 0, \frac{Nce}{A \cdot E} \cdot \frac{d}{dP} (Nce) \cdot 10.5 \right)$$

$$0. \tag{10}$$

$$\Delta := \Delta ab + \Delta bd + \Delta ac + \Delta bc + \Delta cd + \Delta de + \Delta ce -0.002145000000$$
(11)

Como P está para a esquerada, o sinal negativa indica que o deslocaments em A é de 2,145 mm para a direita

Alexandre Cavalcante

Todas as contas foram beitas urando a Marple

	restart (CD, D)	
tenda dodas	E := convert(200, units, GPa, Pa) 200000000000	(1)
	L := 9	
	9	(2)
	$\sigma_{adm} := convert(250, units, MPa, Pa)$	
	25000000	(3)
	$lz := convert(128.\cdot 10^6, units, mm^4, m^4)$	
	0.0001280000000	(4)
3	$Iy := convert(18.4 \cdot 10^6, units, mm^4, m^4)$	
The same	0.00001840000000	(5)
3 1	$r_z := convert(130., units, mm, m)$	
	0.1200000000	(6)
	$A := solve\left(r_z = \sqrt{\frac{lz}{A}}, A\right)$ + Achando árua atroueirs do rais de giração	बं
Catholish L		
	$x_1 := solve\left(\frac{x_1}{A} = \sigma_{adm}, x_1\right)$ Conga considerando critério de renstên	cia
	$x_1 := solve\left(\frac{1}{A} = \sigma_{adm}, x_1\right)$	
	1 802401124 106	(0)
	2 F. W.) & Tomason on ties considerands blambacon es	~
	$ (\sigma_y \coloneqq \frac{\pi^2 \cdot E \cdot ly}{A \cdot (L \cdot 0.699)^2}) \text{ tensor critics considerands flambagem en } $	
	$A \cdot (L \cdot 0.699)^{\circ}$	
	$1.227680007 10^{7} \pi^{2}$	(9)
_	(2.4) Esteris de rentencis 2.4) calculo da borça com coel. de regurança	
30 adin) 2 1) saludo da porça com coelo. de segurargo	
	$\frac{1}{46492.02394 \pi^2}$	(10)
	em 5 dígitos	
3	$4.5886 \ 10^5$	(11)
3	$x_2 := convert(4.5886 10^5, units, N, kN)$	(,
	458.8600000 KN (Força adm)	(12)
arga odm		
	$\sigma_z := \frac{\pi^2 \cdot E \cdot Iz}{A \cdot (L \cdot 2)^2} $ Tensor critica considerando belambargen $1.043209876 \cdot 10^7 \pi^2$ em 5 dígitos	em
	$\sigma_z := \frac{1}{4 \cdot (L \cdot 2)^2}$ forms do sies 3	
	1.042200876 10 ⁷ - ²	(12)
	em 5 dígitos	(13)
	1.0296 10 ⁸	(14)
	$\frac{\sigma_z}{\sigma_z}$: A \rightarrow C. \rightarrow C.	
0	2	
	oz A + Contessão do força som cael. de segurança	

em 5 dígitos	$39506.17282 \pi^2$	(15)
	3.8991 10 ⁵	(16)
$x_3 := convert(3.8991 \ 10^5, units, N, kN)$	389.9100000 KN (borco, adm)	(17)

Avaliando os três forças encortrados com es virterios de resistência e estabilidade, chegane a conclusões que Padm = 389,91 KN (coros caros em que a barra flamba em torno do eixo 3)