从0到TrustZone第一篇:探究高通的 SEE (安全可执行环境)

转载: http://www.freebuf.com/articles/system/103152.html

在本篇文章中,我们将讨论高通安全执行环境(QSEE)。

之前讨论过,设备使用TrustZone的最主要的原因之一是它可以提供"可信执行环境 (TEE)",该环境可以保证不被常规操作系统干扰的计算,因此称为"可信"。

这是通过创建一个可以在TrustZone的"安全世界"中独立运行的小型操作系统实现的,该操作系统以系统调用(由TrustZone内核直接处理)的方式直接提供少数的服务。另外,TrustZone内核可以安全加载并执行小程序"Trustlets",以便在扩展模型中添加"可信"功能。Trustlets程序可以为不安全(普通世界)的操作系统(本文指的是Android)提供安全的服务。

以下为设备上常用的Trustlets:

keymaster: 实现由Android"keystore"守护进程提供的密钥管理API,它可以安全的生成和存储密钥,并运行用户使用这些密钥操作数据

widevine: 实现Widevine DRM, 提供安全的媒体播放

实际上,根据OEM和设备的不同有很多DRM-relatedtrustlets,但是以上两种是通用的。

开始

下面通过对widevine模块的分析,来了解工作原理。

在设备固件中搜索widevine trustlet:

```
shell@shamu:/system/vendor/firmware $ find . | grep "widevine\."
./widevine.b00
./widevine.b01
./widevine.b02
./widevine.b03
./widevine.mdt
```

很显然,trustlet被分成多个文件..打开这些文件发现显示比较混乱..有些文件中包含代码、ELF头和元数据。在分解trustlet前,需要了解一下它的格式。我们可以挨个儿打开每个文件,尝试猜测内容的含义,或者查看用于加载该trustlet的代码路径。下面来都尝试一下。

加载TRUSTLET

为了从"普通世界"加载trustlet,应用程序可以使用libQSEECom.so共享对象,输出函数 "QSEECom start app":

遗憾的是,该函数的源代码是不可用的,因此我们需要使用逆向工程获取其实现代码。我们发现它可以执行以下操作:

打开/dev/qseecom设备,并调用一些ioctl函数来配置它

打开与trustlet相关的.mdt文件,并读取前0×34字节

使用.mdt文件中的0×34字节计算.bXX文件的数量

分配一个连续的缓冲区(使用ion),并将.mdt和.bXX文件复制到其中

最后, 调用ioctl函数加载trustlet, 使用已分配的缓冲区

但是目前仍然不清楚镜像如何加载,但是我们也获得了一些信息:

首先,数字0×34可能看起来很熟悉——这是32比特ELF头的大小,打开.mdt文件文件发现,第一个0×34字节确实是一个有效的ELF头:

0000h:	7F	45	4C	46	01	01	01	00	00	00	00	00	00	00	00	00	.ELF
0010h:	02	0.0	28	0.0	01	00	00	00	00	00	0.0	00	34	00	00	00	(4
0020h:	00	00	00	00	02	0.0	00	05	34	0.0	20	00	0.4	0.0	28	00	4(
0030h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0040h:	00	00	00	00	В4	0.0	00	00	00	0.0	00	00	00	00	00	07	
0050h:	00	00	00	00	00	00	00	00	00	10	00	0.0	00	50	04	00	P.
Inspecto	г																
,		lame	9				Va	lue			SI	art			s	ize	Color
▶ char e	ide	nt[1	6]			PERM	14	44		0h				10	h		Fg: Bg:
ushort	et	ype				2				10	n			2h			Fg: Bg:
ushort			ine			40				12	1			2h			Fg: Bg:
uint e	ver	sion				1				14	1			4h			Fg: Bg:
uint e	ent	гу				0				18	n			4h			Fg: Bg:
uint e	pho	off				52				1C	h			4h			Fg: Bg:
uint e	sho	ff				0				20	h			4h			Fg: Bg:
uint e	flag	IS				838	860	82		24	n			4h			Fg: Bg:
ushort	e_e	hsiz	e			52				28	n			2h			Fg: Bg:
ushort	e_p	hen	tsize	9		32				2A	h			2h			Fg: Bg:
ushor						4				2C	h			2h			Fg: Bg:
ushort	e s	hen	tsize			40				2E	h			2h			Fg: Bg:
ushort	e s	hnu	m			0				30	1			2h			Fg: Bg:
ushort					7	0				32	h:			2h			Fg: Bg:

另外,QSEECOM_start_app函数使用比特于0x2C偏移的字,以便于计算.bXX文件的数量,对应上图中的ELF头中的e phnum字段。

e_phnum字段通常用来指定程序头文件的数量,这就表示可能每个.bXX文件都包含独立的trustlet段。打开每个文件发现它们确实看起来像一段加载的程序。但是保险起见,我们还是得找到程序的头部(并检查是否与.bXX文件匹配)。

实际上,.mdt文件中接下来的几个数据库确实是程序头,对应每一个.bXX文件。

0000h:	7F	45	4C	46	01	01	01	00	00	00	00	00	00	00	00	00	.ELF
0010h:	02	00	28	00	01	0.0	00	00	00	0.0	0.0	00	34	00	00	00	(4
0020h:	00	00	00	00	02	00	00	05	34	00	20	00	04	00	28	00	4(.
0030h:	00	00	00	00	0.0	00	00	00	00	0.0	00	0.0	0.0	0.0	00	00	<mark> </mark>
0040h:	00	00	00	00	B4	0.0	0.0	00	0.0	00	00	00	0.0	00	0.0	0.7	
0050h:	00	0.0	00	00	0.0	0.0	0.0	0.0	0.0	10	00	00	0.0	50	04	0.0	P.,
0060h:	00	5.0	04	00	A8	19	00	00	0.0	20	00	00	0.0	00	20	02	.P
0070h:	0.0	10	90	00	01	00	00	00	00	30	00	00	0.0	00	00	00	
0080h:	00	00	00	00	30	C2	02	0.0	30	C2	02	00	05	00	0.0	A0	0Â0Â
0090h:	00	01	00	00	01	00	00	00	CC	0F	03	00	00	D0	02	00	iĐ
00A0h:	00	D0	02	00	A8	03	00	0.0	В8	77	01	00	06	00	00	30	.Đw0
00B0h:	00	10	00	00	00	00	00	00	03	00	00	00	00	00	00	00	
00C0h:	28	50	04	00	80	19	00	00	80	00	00	00	A8	50	04	0.0	(₽€⊕"₽
Inspecto	r																
	N	ame	2				Va	lue			SI	art			S	ize	Color
▶ char E	LF h	eade	er[52	2]		PILLE	MEDIANA				0h				h		Fg: Bg:
▶ char p	hdro	[32]								34	1			20	h		Fg: Bg:
▶ char p	hdr1	[32]								54	1			20	h		Fg: Bg:
▶ char p	hdr2	[32]				2				74	1			20	h		Fg: Bg:
▶ char p	hdr3	[32]		319		7				94	n			20	h		Fg: Bg:

正如之前猜想,它们的大小与.bXX文件文件完全匹配。

注意,上图中的前两个程序头看起来有些奇怪——它们都是NULL类型,表示它们是"保留的",不会被加载到最终的ELF镜像中。更加奇怪的是,打开相应的.bXX文件发现第一个数据块包含与.mdt中相同的ELF头和程序头,第二个数据块中包含剩余的.mdt文件。

下图为根据目前所知的简单示意图:

需要注意的是,由于ELF头和程序头都包含在.mdt文件中,我们可以使用readelf命令快速转储trustlet中与程序头相关的信息:

>head CAChain -----BEGIN CERTIFICATE----MIID5DCCAsygAwIBAgIBBTANBgkqhkiG9w0BAQUFADB9MQswCQYDVQQGEwJVUZET MBEGA1UECBMKQ2FsaWZvcm5pYTESMBAGA1UEBxMJU2FuIERpZWdvMRowGAYDVQQL ExFDRE1BIFRlY2hub2xvZ2llczERMA8GA1UEChMIUVVBTENPTU0xFjAUBgNVBAMT DVFDVCBSb290IENBIDEwHhcNMDQwNTIwMDA0NTIyWhcNMjQwODE5MTgzMDQ0WjCB hzELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExEjAQBgNVBAcTCVNh biBEaWVnbzEaMBgGA1UECxMRQ0RNQSBUZWNobm9sb2dpZXMxETAPBgNVBAoTCFFV QUxDT01NMSAwHgYDVQQDExdRVUFMQ09NTSBBdHRlc3RhdGlvbiBDQTCCASAwDQYJ KoZIhvcNAQEBBQADggENADCCAQgCggEBAMKqODEF76p9Ft8ZEHdn1gwJlUYl6Avp QLbJ18SbL4sbgC2E1jRRaiXwaQyLn+SGR3FOmgqL9S3rz5KtbTnnTGWFq1jtRDRv >openssl verify -CAfile CAChain cert1_PEM.cert cert1_PEM.cert: 0K >openssl verify -CAfile CAChain cert2_PEM.cert cert2_PEM.cert: 0K

此时,我们从.mdt和.bXX文件中获得了所有创建完整和有效的ELF文件所需的信息;我们有ELF头和程序头,已经每个片段。我们只需要使用这些数据写一个小脚本就可以创建ELF文件。

可信TRUSTLETS的反射

现在,我们对trustlets如何组装成一个可执行文件已经有了基本的了解,但是还不清楚它怎么样验证。我们知道,.bXX文件中只是包含加载的片段,这就意味着,该数据也必须存在于.mdt文件中。

假设,要创建一个可信加载器,我们要怎么做?

一个通用的方法是使用hash-and-sign(基于CRHF和数字签名)。本质上,我们计算用于身份验证的数据的哈希值,并使用私钥(其对应的公钥加载器已知)对其进行签名。

因此,我们需要在.mdt文件中找到两个信息:

证书链

签名的二讲制对象

接下来,让我们通过查找证书链开始。证书的格式有很多种,但是由于.mdt文件只包含二进制数据,我们可以猜想它可能是二进制格式,最常见的是DER。

这里有一个快速找到DER编码的证书的破解方法——它们通常以"ASN.1 SEQUENCE" (编码后为0×30 0×82) 开始。那么我们需要做的就是在.mdt文件中查找这两个字节,并将每个结果都保存在文件中。然后,只需要检查这些数据是否为使用"openssl"的结构良好的证书:

```
lmy48m/SYSTEM/vendor/firmware/widevine_certs$ openssl x509 -in cert1.der -inform
 der -text
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 5497 (0x1579)
    Signature Algorithm: sha1WithRSAEncryption
        Issuer: O=Motorola Inc. OU=Motorola PKI. CN=Motorola Attestation CA 280-
1
        Validity
            Not Before: Nov 10 21:14:36 2011 GMT
            Not After : Nov 10 21:14:36 2021 GMT
        Subject: O=Motorola Inc, OU=06 0000 MODEL ID, OU=05 00004000 SW SIZE, OU
=04 0208 OEM ID, OU=03 0000000000000000 DEBUG, OU=02 006B10E102080000 HW ID, OU=
01 0000000000000000 SW_ID, CN=Motorola Attestation 280-1-110
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                Public-Key: (2048 bit)
                Modulus:
                    00:a9:5e:de:dc:0a:e2:ad:66:c6:9d:e2:70:a9:b2:
                    7d:20:5a:d7:33:ab:7e:bd:2d:30:0f:21:29:89:9c:
                    f3:05:4e:d9:67:fd:23:64:e1:37:f2:f7:59:32:6c:
                    Oc:ef:90:97:75:85:0f:04:1a:4d:d9:77:ee:4b:2a:
                    74:d5:e6:89:5e:b3:f9:d8:2f:52:c8:5c:08:8b:fa:
                    55:e6:70:0c:c8:aa:8d:9a:c2:aa:15:7f:b7:ea:f4:
                    ea:b5:b4:01:5b:92:7f:51:bb:df:cd:c0:72:1b:5b:
                    80:5d:01:41:ae:45:35:93:c2:3c:56:ed:69:19:75:
                    fd:57:c6:77:bd:b2:02:8d:d6:89:73:85:8e:99:bd:
                    5e:67:93:83:20:30:ca:a4:5b:8b:17:87:74:8e:85:
                    42:91:a4:b7:41:e3:c7:2d:bf:01:9d:ef:14:3e:48:
                    e4:a8:a5:7c:a0:94:81:25:b5:df:1f:8f:e3:2d:d0:
                    b9:18:5a:ff:a2:21:b1:91:8a:36:ba:49:60:e8:74:
                    bb:04:51:5f:f9:bc:ff:1d:2c:c3:a9:40:f3:b9:6d:
                    c2:cb:4e:d1:99:2c:32:ce:54:a3:1e:5e:86:63:06:
                    5d:bb:6d:60:2d:32:45:7a:85:ff:4c:58:85:2f:72:
                    ef:fe:ee:3c:9c:5a:18:26:aa:b2:45:e8:9c:98:31:
                    28:b1
                Exponent: 3 (0x3)
        X509v3 extensions:
            X509v3 Authority Key Identifier:
                keyid:51:F7:68:6B:C4:AD:B1:7C:FB:1A:59:D9:8F:53:C2:5E:20:4D:F7:8
```

经比对,这些就是我们要找的证书。

事实上,trustlet中一次包含了三个证书。保险起见,我们需要检查这三个证书是否真实形成了一个有效的可信链,具体方法是将证书转储成独立的证书链文件,使用openssl验证该证书:

```
>head CAChain
----BEGIN CERTIFICATE----
MIID5DCCAsygAwIBAgIBBTANBgkqhkiG9w0BAQUFADB9MQswCQYDVQQGEwJVUzET
MBEGA1UECBMKQ2FsaWZvcm5pYTESMBAGA1UEBxMJU2FuIERpZWdvMRowGAYDVQQL
ExFDRE1BIFRlY2hub2xvZ2llczERMA8GA1UEChMIUVVBTENPTU0xFjAUBgNVBAMT
DVFDVCBSb290IENBIDEwHhcNMDQwNTIwMDA0NTIyWhcNMjQw0DE5MTgzMDQ0WjCB
hzELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExEjAQBgNVBAcTCVNh
biBEaWVnbzEaMBgGA1UECxMRQ0RNQSBUZWNobm9sb2dpZXMxETAPBgNVBAOTCFFV
QUxDT01NMSAwHgYDVQQDExdRVUFMQ09NTSBBdHRlc3RhdGlvbiBDQTCCASAwDQYJ
KoZIhvcNAQEBBQADggENADCCAQgCggEBAMKq0DEF76p9Ft8ZEHdn1gwJlUYl6Avp
QLbJ18SbL4sbgC2E1jRRaiXwaQyLn+SGR3FOmgqL9S3rz5KtbTnnTGWFq1jtRDRv
>openssl verify -CAfile CAChain cert1_PEM.cert
cert1_PEM.cert: OK
>openssl verify -CAfile CAChain cert2_PEM.cert
cert2_PEM.cert: OK
```

对于该链的可信根,通过查看该链的根证书发现,与验证高通的"安全引导"进程的引导链的其他部分的证书相同。目前已经有一些关于这种机制的研究,该验证通过匹配根证书的 SHA256和一个特殊的值"OEM_PK_HASH",该值在生产过程中被混淆到设备的QFuses中,并且在理论上是不可修改的,这就意味着建立一个这样的根证书需要对SHA256实施二次原像攻击。

现在,让我们回到.mdt文件——我们已经找到了证书链,现在需要的是签名。通常,私钥用于生成签名,公钥用于恢复签名数据。由于我们拥有该链最顶层证书的公钥,我们可以使用该值重新检查文件,尝试恢复每一个二进制对象。

但是,我们要怎样知道是否成功呢?

RSA是一个陷门置换家族——每一个相同比特的二进制对象都通过一个公共模N映射到相同大小的二进制对象中。然而,当RSA的公共模长度为2048比特时,多数哈希值会比这更短(SHA1为160比特,SHA256为265比特)。也就是当我们尝试使用该公钥解密二进制对象时,会出现很多"空"空间(例如,零字节)。但是我们有很大可能得到想要的签名(对于一个完全随机的排列,连续n个零比特的可能性为2个n——几率非常小)。

我写了一个小程序(使用带有PKCS #1 v1.5填充的rsa_public_decrypt函数),用于加载证书链最顶层证书的公钥,并尝试恢复文件中的二进制对象。如果恢复的二进制对象以一串零字节结尾,那么输出结果。以下为运行结果:

更重要的是,该签名长度为265比特——这说明它可能是一个SHA256哈希。如果.mdt中存在一个SHA256,就说明可能有更多的SHA256:

如上图,.bXX文件中的SHA256哈希值同样存储在.mdt文件中,并且是连续的。我们可能做一个可靠的猜测,这可能是用于生成之前的签名的数据。

注意,.b01文件的哈希值丢失了——为什么?记住.b01文件中包含处理ELF头和程序头之外的.mdt文件中的所有数据。由于该数据中包含以上签名,并且该数据又用于生成数据块文件的哈希值,这就会形成一个依赖循环。因此,说该数据块的哈希值不存在是有道理的。

到现在为止我们已经解码了.mdt文件中的所有数据,处理位于程序头后的一个小结构体。 经观察,该结构体中只是简单地包含了".mdt"的各个部分的指针和长度:

因此,我们已经解码了.mdt文件中的所有数据:

摩托罗拉HAB (High Assurance Boot)

尽管.mdt文件的格式对所有原始设备供应商通用,但是摩托罗拉则有些不同。

与我们之前看到的提供RSA签名不同,摩托罗拉设备中签名字段为空(以上展示的签名来自Nexus 5设备),签名如下:

那么这样的镜像怎样验证呢?

这是通过摩托罗拉调用HAB (High Assurance Boot) 的机制完成的。该机制允许将整个.mdt文件的证书链和签名附加到文件的末尾,并使用HAB的专有格式编码:

1200h:	1D	4C	96	34	EF	44	80	49	C1	D0	01	0A	01	00	04	2E	.L-4ïD€	EIÁÐ.		
1210h:	4 E	30	40	6F	74	6F	72	6F	60	61	20	49	6E	63	20	20	O-Motor	cola	Inc.	
1220h:	4 F			40	6F	74	6F	72	68	6.0	61	20		48	49	20	OU-Moto	rola	PKI	
1230h:	20	43	4E	30	48	41	42	20	4.3	41	20	36	33	37	52	3B	CN-HAE	CA	637R	;
1240h:	81	0F	бE	72	CB	8F	01	00	04	39	4.5	3D	4D	6F	74	6E	nrE.	90	-Mot	
1250h:	72	6F	6C	61	20	49	6E	63	20	20	4F	55		4D	6F	74	rola Ir	ic, O	U=Mo	
1260h:	6F	72	6F	6C	61	20		48	49	20	20	4.3	4E	30	43	53	orola E	KI,	CN=C	
1270h:	46	20	43	41	20	36	33	37	2D	31.	3B	20	53	4E	30	36	F CA 63	7-1;	SIN=	6
1280h:	33	32	33	02	0.0	00	03	01	00	01	01	00	C6	13	64	D7	323	THE REAL PROPERTY.	.E.d	
1290h:	1C	02	73	F4	7D	68	F2	FC	9A	E0	47	08	5B	BB	3D	0F	sôlhò			_
12A0h:	A3	C7	C1	55	D5	В3	7A	7D	59	11	2B	8B	FA	AE	84	02	£ÇÁUÕ³z			•
12B0h:	D1	61	57	58	D4	81	В0	9C	89	E7	EB	6E	99	DA	5F	B7	Nawxô.°		The second second	
12C0h:	36	53	8A	1A	В7	2F	33	E0	63	/A	D8	DB	22	8E	CC	AA	65Š.·/3			
12D0h:	7F	2A	45	C7	DA	54	8F	47	5B	0E	D6	E0	1F	9F	A8	36	.*ECUT.			
12E0h:	64	F/	DA	CA	3F	9B	F5	65	E8	44	/ F	5B	56	18	0E	3E	d÷ÚÊ?>č	men.	IV	3
nspector	r	2.5			00	00	00						00	0.1	**	0.1	n1-		F# -	
nspector	r.	**	Nar	me	00	0.0	.0.0			Va	alue	**	0.0	0.0	tart		Size	- 11 413		Color
Inspector	-	_ide	13,100]	0.0	^^		7	Va	alue	**	^,	0.0	**	0.7	Punta	- 11 413		
	ring	_	ntif	er[3]	.2.2			46		lue	**	120	SI	**	24	Size	- 11 413	-#	Color
▶ char st	tring	name	ntifi e_le	ier[3 n]	0.0	(((()))		0=	'.' Mot	orol	**	120	SI OCh OFh	**		Size 3h	- 11 413	Fg:	Color Bg:
▶ char st	tring ert_r ert_r	name	ntifi e_le	ier[3 n]				0=	'.'	orol	G.G.	120	SI OCh OFh	**		Size 3h 1h	- 11 413	Fg:	Color Bg:
► char st char co ► char co ► char u	tring ert_r ert_r nk1[name name 8]	ntifi e_lei e[46	ier[3 n]			^^		0=	'.' Mot	orol	G.G.	120 120 121 121	SI OCh OFh 10h	**		Size 3h 1h 2Eh	- 11 413	Fg: Fg:	Color Bg: Bg: Bg:
char ce ▶ char ce ▶ char u ▶ char st	tring ert_r ert_r nk1[tring	name name 8] _ide	ntifi e_le e[46	ier[3 n] ier[3					0=	Mot	orol	G.G.	120 120 121 121 121	SI OCh OFh 10h 3Eh	**		Size 3h 1h 2Eh 8h	- 11 413	Fg:	Color Bg: Bg: Bg: Bg: Bg:
► char st char co ► char co ► char u ► char st char is	tring ert_r ert_r nk1[tring	name name 8] _ide _nae	entifice_ler e[46 entifice_	ier[3 n] ier[3 len					O= 57	'.' Mot '9'	orol	G.G.	120 120 121 121 122 124	SI OCh OFh 10h 3Eh 46h 49h	**		Size 3h 1h 2Eh 8h 3h	- 11 413	Fg:	Color Bg: Bg: Bg: Bg:
 char st char ce char ce char u char st char is char is 	ert_r ert_r ert_r nk1[tring suer	name 8] _ide _nar	entifice_lei e[46 entificme_ me[5	ier[3 n] ier[3 len 57]]	2]			O= 	'.' Mot '9'	orol	a I	120 120 121 121 124 124 124	SI OCh OFh 10h 3Eh 46h 49h	**		Size 3h 1h 2Eh 8h 3h 1h	- 11 413	Fg:	Color Bg: Bg: Bg: Bg: Bg: Bg:
 char st char ce char ce char u char st char is char is char b 	ert_r ert_r nk1[tring suer suer yte_	name 8] _ide _nar _nar field	entifice e[46 entifice] me[5]	ier[3 n] ier[3 len 57]	ier[2	2]			O= 	'.' Mot '9'	orol	a I	120 120 120 120 120 120 120 120	SI OCh OFh 10h 3Eh 46h 49h	**		Size 3h 1h 2Eh 8h 3h 1h 3h	- 11 413	Fg:	Color Bg: Bg: Bg: Bg: Bg: Bg: Bg: Bg: Bg:
 ▶ char st char ce ▶ char ue ▶ char st char is ▶ char be ▶ char e 	tring ert_r ert_r nk1[tring suer suer yte_ xpor	name 8] _ide _name _name field nent	entifice e[46 entificme] me[5 l_ide	ier[3 n] ier[3 len 57]	ier[2	2]			O= 	'.' Mot '9'	orol	a I	120 120 121 120 120 120 120 120 120	SI OCh OFh 10h 3Eh 46h 49h 4Ah	**		Size 3h 1h 2Eh 8h 3h 1h 3h 1h	- 11 413	Fg:	Color Bg:
 char st char ce char ce char u char st char is char is char b 	tring ert_r ert_r nk1[tring suer suer yte_ xpor xpor	name 8] _ide _name field nent nent	entifice_ler e[46 entifice_ler entifice_ler [3]	ier[3 n] ier[3 len 57] entif gth[ier[2]	2]			O= 	'.' Mot '9'	orol	a I	120 120 121 120 120 120 120 120 121	SI OCH OFH 10h 3Eh 46h 49h 4Ah 83h	**		Size 3h 1h 2Eh 8h 3h 1h 39h 2h 2h	- 11 413	Fg:	Color Bg: Bg: Bg: Bg: Bg: Bg: Bg: Bg: Bg:

有关该机制的详细信息,可参看Tal Aloni调研。简而言之,就是.mdt文件使用证书链顶端的密钥哈希编码并签名,该链的根证书使用在引导程序阶段被硬编码的Super Root Key进行验证。

TRUSTLET的生命周期

在以上的验证程序之后,TrustZone内核将trustlet程序段加载到"普通世界"无法访问的安全存储区域(secapp-region),并为其分配ID。

随后,内核切换到"安全世界"用户模式,并运行trustlet的入口函数:

```
void __fastcall entry_func(int a1, int handled_func)
{
  char v2; // zf@0
  int handler_func; // ro@5

  if ( !v2 || handled_func != 1 )
     register_app(255, handled_func);
  get_stack_size();
  get_stack_location();
  get_app_name();
  handler_func = (int)get_handler_function();
  register_app(0, handler_func);
}
```

如上图, trustlet会使用"handler"函数在TrustZone内核中自动完成注册,注册完成后, trustlet会将控制权重新交给TrustZone内核,完成加载进程。

一旦trustlet加载完成,"普通世界"就可以通过调用SCM (QSEOS_CLIENT_SEND_DATA_COMMAND,其中包含已加载trustlet ID和请求响应缓冲区)向trustlet发送命令,如下:

TrustZone内核 (TZBSP) 接收到SCM调用后,将其映射到QSEOS,查找给定ID的应用程序,调用"handler"函数,处理请求。

后续

现在我们对trustlets及其加载有了一定的了解,接下来我们就可以发起攻击。在下一篇文章中,我们将在一个热门的trustlet中挖漏洞,并利用该漏洞在QSEE中执行代码。