軍 운송수단 음향신호 분류를 위한 인공지능 모델 설계 및 비교 실험

최연희^{1,3}, 하은택^{2,3}, 안병현^{1,3}, 김민재⁴, *백준기^{4,5}

대한민국 육군1, 해군2

중앙대학교 국방 AI대학 핵심인재과정³, 영상학과⁴, AI학과⁵

연구 목적 및 데이터

연구 목적

- 전차, 장갑차, 각종 전투차량 등 총 23종의 軍 운송수단에서 발생하는 소리를 구분하는

인공지능 모델 설계

데이터

AI-Hub^[1]의「자연 및 인공적 발생 非 언어적 소리 데이터」에서 제공하는
 2,369개의 軍 운송수단 음향 신호를 활용

데이터는 6:2:2로 나누어각각 학습:검증:평가로 이용

구분	軍 운송수단 음향 신호원 (23종)					
전차 (2)	K-1, K-1a1					
궤도·장갑차 (10)	K-56, K-77, K288a1, K-200, K800, 화생방정찰차, K10 탄약 운반차, Km9ace, 교량 전차, 장애물개척전차					
차륜 전투차량 (11)	2.5t, 9.5t, 5t, 10t, 27t, 다목적 굴착기, 살수차, 대형버스, 부식수송차량, 승용차, 통신 가설 차량					

제안하는 방법

- 데이터 분석
 - 시간-주파수 표현(Spectrogram)을 이용한 軍 운송수단 주파수 특성 분석

☑ 고주파 영역을 중심으로 유의미한 차이 발견

제안하는 방법

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

• 모델 설계

- 주파수 특성을 활용하기 위한 특징 추출 방법 선정
 - Zero-crossing rate
 - Spectral centroid
 - Spectral roll-off
 - MFCC
 - Chroma frequencies
 - Mel spectrogram
- 다양한 복잡도를 갖는 머신/딥 러닝 방법 선정
 - Linear regression
 - SVM
 - LeNet5^[2]
 - VGG16^[3]
 - ResNet50^[4]

[3] ResNet

제안하는 방법

- 실험설계
 - 특징 추출 방법 (6) ➤ 인공지능 모델 (5) ➤ 학습조건 (4)
 ♪ 120개 조합으로 비교 실험 수행

특징 추출 방법		모델 종류		학습 조건		
Zero-crossing rate		LR			Adam	
Spectral centroid		SVM		Optimizer	SGD	
Spectral roll-off	X		X			
MFCC		LeNet5		Epoch	100	
Chroma frequencies		VGG16				
Mel spectrogram		ResNet50			300	

실험 결과

• 실험 환경

구현	TensorFlow, Keras
GPU	Nvidia Geforce RTX 3070 Laptop

• 실험 결과

모델 및 전처리 방법에 따른 분류 정확도

Model		Accuracy (%)	Model		Accuracy (%)
LR	ZCR	20.04		MFCC	83.33
	Centroid	14.56	LeNet5	Chroma	53.8
	Roll-Off	17.09		Mel	43.67
	MFCC	86.92		ZCR	21.1
	Chroma	44.3		Centroid	14.56
	Mel	56.96	VGG16	Roll-Off	24.05
	ZCR	14.56	VGG16	MFCC	67.72
	Centroid	16.03		Chroma	42.62
SVM	Roll-Off	17.3		Mel	54.01
20101	MFCC	87.55		ZCR	25.74
	Chroma	43.46		Centroid	21.73
	Mel	61.81	ResNet	Roll-Off	25.53
LeNet5	ZCR	22.78	50	MFCC	76.79
	Centroid	21.52		Chroma	51.69
	Roll-Off	23.84		Mel	48.87

Epoch 설정에 따른 분류 정확도

Model	LR		SVM		LeNet5		VGG16		ResNet50	
Epoch	100	300	100	300	100	300	100	300	100	300
Accuracy (%)	84.2	86.9	83.5	87.6	83.3	82.1	62.2	67.7	76.8	71.3

모델별 평균 학습 및 평가 시간 (second/sample)

Model	LR	SVM	LeNet5	VGG16	ResNet50
Train	0.0237	0.0229	0.0637	3.8202	4.3865
Test	0.0004	0.0004	0.0007	0.0124	0.0065

실험 결과

• 실험 결과

결론 및 고찰

- 적절한 특징 추출 과정이 수반되는 경우 (MFCC), 휴대용 단말기에서 구동이 가능할 정도로 경량인 선형 모델로 80%이상의 정확도로 軍 운송 수단을 분류할 수 있음을 확인
- 음향 신호 MFCC 특징 벡터 t-SNE^[5] 시각화

② 고주파 성분이 충분히 보존된 상황에서 軍 운송수단의 음향 신호는 선형 분리가 가능

• 향후 연구에서는 딥러닝 모델의 성능을 이끌어내기 위해 데이터 증강, 정칙화, 사전학습 등의 방법 등을 시도할 계획

