(iii) Umordnung konv. Rahen konn sogor zu Divergent führe.
Vir ordnen nochmels die old. harm. Rahe cem, und
zuer so, doss die nepobien Terme immer spöter
and spöter oufteeten (n22):



(ii) Zon kono \$ I/on/kono dens obje horm. Rahe of ein hegenbap:  $\frac{2}{h} \frac{(-1)^{n-1}}{h} konv. [4.11] ober \frac{2}{h} \frac{(-1)^{n-1}}{h} = \frac{2}{h} div [4.7ai]$ Die Umkehrung ist der sichtig & 4.16. PROP (Obs Kono =) Kono) Obs Kow ist obs Wirhlich Stocke ob blode Konsugent S Jede chsolut Konv. Reihe Konverpiet Berzis. [CP für Raihen & A-Ungl-] Sci 500, down pill mit 6.3. Pin 5/el: JN # n2m2N  $\frac{L}{2} \frac{\ln |a_k|}{2 |\sum_{k=m}^{n} 0_k|} \frac{|a_k|}{2 |\sum_{k=m}^{n} 0_k|} = \frac{|a_k|}{2 |a_k|} \frac{|a_k|}{2 |a_k|}$ A-Unpl f. endl Summe von rechts noch link gdese 4.17 THM (Umordnungssolz) Shs Kono ist stobil
by l. Umordnungen) Sai Zon onsolut Konvegent. Down ist jede Umordnung Down obs. Konsepont und Konsepielt gegen denselben! Limes.

Berris. 4.16 => Js:= limZon. Sa: 5>0 [Jelzt im 3 Schriften ins fiel]

(ii) Indicate ong Zon konveprat = Zon konveprat

| 4.20 BSP (Verpleichsdest)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| (i) I'm divepiet, denn thist: \(\frac{1}{\text{in}} \grace \frac{1}{\text{in}} \grace \frace \frac{1}{\text{in}} \grace \frac{1}{\text{in}} \grace \frac{1}{ | 1<br>- 1 div     |
| (ii) Sci (an) eine reelle Folge mit  On/<1 \for Scip.  donn pilt = Ong h ist obsolut konverpent,  n=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 (0,1),<br>deun |
| 10,9"/=9"; Zp" Kono [2.37] 4.18 ] 0,p" k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| 4.21. Prop (Wurgelfest) Dicreelle Reihe Zie<br>(i) obsolut konvegent, Palls JO: 06821, Jnoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on ist           |
| (i) obsolut konvegent, Palls JO: 06821, Jnoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/K=             |
| $ \gamma / \rho_n  \leq \Theta +  \gamma   \gamma   \rho_n $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| (ii) divergent, folls mondish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i viole n        |
| Reua's [schreinfoch]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| (i)  0,  = 8 für fost ollen, Z,0 kono [2.37]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                |
| 4.1 2/on/ kom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| (ii) $ o_n  \ge 1$ for unendlich vide $n = 0$ on $\ne 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| 50n diverpent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |

| Tours (i) Haza oils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Sevas. (i) frano pilt $\left \mathcal{O}_{h+n}\right  \leq \Theta \left \mathcal{O}_{n}\right  \leq \Theta^{2} \left \mathcal{O}_{h-n}\right  \leq \ldots \leq \mathcal{O}^{h-h_{o}} \left \mathcal{O}_{n_{o}}\right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| $ = \sum_{n} \frac{\partial^{n-h_0}}{\partial h_0} = \frac{\partial h_0}{\partial h_0}$ |          |
| 4.18ci) [ /On / konu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| (ii) Sci n, zho und so doss On = On   2/0m/20 th zh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n        |
| $\Rightarrow h \neq 0 \Rightarrow Zondis.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 4.24. BEts ( Fun Ovohientantest)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| (i) Anolog Fam W1: Folls $\int a = \lim_{n \to \infty} \left  \frac{O_{n+1}}{O_n} \right  dom pil$ $0 < 1 \implies \sum_{n \to \infty} O_n div.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| $Q < 1 \implies 2 o_n abs. konv.$ $Q > 1 \implies 2 o_n div.$ $L.23(ii)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>.</u> |
| (ii) WARNOWY Auch hier ist be 0=1 Kine Aussope<br>möplich, denn 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| 2 1/2 Kono and (n) 1> On+1 = h2 ->1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| $Z = \frac{1}{n} \operatorname{div} \text{ (and (hon) } 1 > \frac{O_{n+1}}{Q_n} = \frac{n}{n+1} \rightarrow 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| - (iii) Wurzelfest vs Quotiententest. Mon kom Jajen,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7        |
| (i) im Quotiententest = (i) im Wurzeltest<br>(d.h. folls der QT positiv ous follt, donn ist ouch de T-T<br>onwend bor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        |
| d.h. folls der QI positiv Oles föllt, donn ist Olech de I-1 - onwend bor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7        |
| Die Umkehour ist fobel [fix Detoils siehe Borner, Flohing Anolysis 1, \$5.3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| $\sim$ $\sim$ $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

NIGHT YORKETIDAGEN

4.25-BSP (QT, WT) (1) 25 = 12 ist abs. kono., denn [4.23ci), h.24cis]  $\left|\frac{O_{n+1}}{O_n}\right| = \frac{(n+1)^2 2^{h}}{2^{h+1} n^2} = \frac{1}{2} \left(1 + \frac{1}{n}\right)^2 \rightarrow \frac{1}{2} < 1$ (ii) I on met  $O_n = \int_{0}^{2^{-h}} n perode$  ist ohs konv, denn [4.21(i)]  $\left|Q_{n}\right|^{n} \leq mox\left(\frac{1}{2},\frac{1}{3}\right) \leq \frac{1}{2} < 1$ Konner 0 = 1/2 Wahlen Bemede, für diese Reihe ist der Quotiententest nicht (QT bringthier nichtsD) Schlissig, denn  $\frac{\partial 2k+1}{\partial 2k} = \frac{1}{3} \begin{pmatrix} 2 \\ \overline{3} \end{pmatrix}^{2k} \longrightarrow 0, \quad \frac{\partial 2k+2}{\partial 2k+1} = \frac{1}{2} \begin{pmatrix} 3 \\ \overline{2} \end{pmatrix}^{2k+1} \longrightarrow 0$ 4.26 MOTIVATION (Dezimoldorsfellung & b-odische Entwichlung) Als erste Anvendung des entwickelten Pepriffsopportes Pir Rahen werden wir nun die Dezimoldors tellung veeller Fohlen und ihre Verall pemeinwung ouf ondere Bosen (stott IN)-1.-1:---10/ Studieren (i) Reginner Wir mit Q: Im Allhof sind wire powohnt, robionde Jahlen in Dezimolderstellung zu sehen, 4.73. auf Presschilder im Supe moult 17,48 Eur. Die entsprechense Bruchzohl xe Q errechnet Sich pemos  $X = 1.10^{1} + 7.10^{2} + 4.10^{1} + 8.10^{2} = \frac{10^{3} + 7.10^{2} + 4.10 + 8}{11} = \frac{1748}{11}$ 



4.29 MOTIVATION (Konkretisierung von (A) in 4.26(11) Die Frogen in 4.26cii) (A) Konner Wie folgt Konkrehisiert (i) let jede b-odische Entwichlung Konverpent! Werden (ii) Konn jedes x & Rols limes eine b-adischen Endvicklung dorpestellt werden? (iii) 1st diene Dorstellung eindeutig! 4.30 BET (Unandahigkail b-solische Entwicklunger) Die Andwork oaf 4.2P (iii) ist pepohir, vie das folgende Bsp Faigh (b=10)  $\frac{2,9999...}{2} = \frac{2}{2}9.15^{h} = 9.15^{12} \frac{2}{2}(10^{-1})^{h}$  $= \frac{9}{10} \cdot \frac{1}{1 - \frac{2}{10}} = \frac{9}{10} \cdot \frac{10}{10 - 1} = 1 = 1,0000 \dots$ Jum Which loubet die Andwork Out 4.29 (i), (ii) : JA 4.31 THM (b-odische Endwicklung reelle Johlen) Sabe Al, b=2, donn pild: (1) Jede b-odische Entricklup konv. obsolut. (ii) Jede reelle Johl x ist Summe (ol.h. Limes)
eine b-odischen Entwicklung (43bi obie
Ziffern rekursiv Konstrusert werden Können).

| Berais. (1) [leicht &                                                                   | Vie peholf ]      | For pill:       | 9            |
|-----------------------------------------------------------------------------------------|-------------------|-----------------|--------------|
| $ 0,5^{-4}  = (6-1)5^{-1}$                                                              |                   |                 | repente      |
| 0n ≤ 5-1 th                                                                             |                   | 4.19cis obs. ke | ·            |
| (11) [technisch onspruch                                                                | svoll]            | = obs. ke       | av-          |
| .   /                                                                                   | ,                 | broch far. Vir  | -            |
| Es peniet des tolo                                                                      | -oolische Dorsi   | tellang Pir.    | KEIZ         |
| (1) Konstruktions vorschru                                                              | :/1<br>G(1/1/17   | be<br>1         | liebip       |
| Konstruktions vorschrubions $5 = 2 \xrightarrow{1.5} \text{Im} = 24$ :  Sche $N = -m_2$ | 6 m x = 7 m.      | =min fmexl: X   | < 6 m-1      |
| ,0                                                                                      |                   | 1               | _            |
| Wir Konskuieren ind                                                                     | white line toly   | oe On in 50,1,  | ,6-15        |
| Sodass The N J                                                                          | TS mit 0=5. < 6   | - h<br>cund     | (<br>( \     |
|                                                                                         | $x = \frac{n}{2}$ | - 0k b-k+ {n    | . <i>X ]</i> |
|                                                                                         | k=x               | V ,             |              |
| (2) Da genipt, denn                                                                     |                   |                 |              |
| X= 2                                                                                    | 2066 K            | Wasolic Hun     | opc (ii)     |
| (0)                                                                                     | RÎNNERUNG: N      |                 | 1001         |
|                                                                                         | 1 COS             | E, B641, 16]    | confe        |
| Wir pehen induk-<br>tir ver cend be-<br>pinnen bei h=N                                  | ) L J: R ->       | >TZ             |              |
| pinnen bei h=N                                                                          | ) _               | = mox fle // l  | •            |
|                                                                                         | ( Espill 0=       | =y-2yJ<1        | (1)          |
| 1                                                                                       | l .               |                 |              |

N=N! Def N=)  $0 \in X \stackrel{N}{b} \subset b$ . Uir definition  $0_N \in [0,1,...,b^{-1}]$  and  $S_N$  durch  $\mathcal{O}_{N} := \left[ xb^{N} \right], \quad \mathcal{E}_{N} := \left( xb^{N} - a_{N} \right) b^{-N}$ Down pild  $x = b0_N + \xi_N \text{ und } 0 \leq \xi_N \leq b^{-N}$  Sco (x) für n=Nninh+1: Aus (x) für in folph 0 = {in bh+1/26} Vir definieren Open sund durch 0=\\( \lambde{\beta}\_{n+1} < b \), oco (\text{\beta}) \( \beta^{\text{\text{a}}}\_{n} \) h+1. 4.32 Kor (Dichtheit von Q in IR, Hum Dritten) (pl. mil)

Jedes XER ist Limes eine Folge in Q (cano 3.30 sie) Bessis:  $4.31 \Rightarrow J$  Derimoldorstellung für x, d. h.  $x = \sum_{h=N}^{\infty} O_{h} \cdot 10^{h}$ Fir jela mist die Portiolsumme  $\int_{N} = \sum_{n=N}^{\infty} \partial_{n} \cdot 10^{-n} \leq \Omega$ / ( und Sm -> x.

4.33 BETT. So: R=x=Zonb" ane b-odische Entwickling Than Konn Jaipen [Amon, Escher, Anolysis 1, II.7] ( Xt Q (=) Dic Jiffern folge on ist obtenem KEN/ Devodish of h JK& H Jpe Al- (0)

antp = en + b=K inkludich den Fall, dos fost oble on verschvinden, die Entwick lup also Obbricht 4.34 Motivation (Dos Couchy- Produkt for Kahen) (i) Um Ju einer greiten - noch viel Wich hijre - Anvendung Unser Erkenntnisse uber Mühlen ju flongen namlich der ExpoNENTIALFINKTION missen Wir uns nah am Produkte von Reiher kummern. (ii) Um lehtre Ju mohisiven beginnen 42 mit Giver Oberlepung zu Produkter endhihe Jummen. Sien An = Zon, Bn = Zbn, donn pilt  $A_{N} \cdot B_{N} = \left( \frac{N}{2} \partial_{h} \right) \left( \frac{N}{N-0} b_{h} \right) = \frac{N}{2} \frac{N}{2} \partial_{k} b_{\ell}$   $k = 0 \quad \ell = 0$ (X)Für die Untersuchung de Konverpent N-20 solcher Ausdricke eruist es sich als gunstig die Summations onders Ju orron pieren. Am best en wird dos in line 2-dimensionales Skille douthish.





Jett Endlich für Exponentialiähe (i) Für jede XER ist die Rahe  $\frac{\infty}{n!}$  abs. konv. denn für X+0 =>  $0_n$  +0 4. So BETT (Exponentidraine) Cand  $\left|\frac{O_{n+1}}{O_n}\right| = \frac{\left|\frac{x_1^{n+1}}{n!}\right|}{(n+1)!|x|^n} = \frac{\left|\frac{x_1}{n+1}\right|}{n+1} \longrightarrow 0$   $\longrightarrow 0 \text{ (bs. konv.)}$ lù x=0: 20 =1 (ii) [ACHTUNG: NEUE IDEE]) 4.3) DEF (EXPONENTIALFUNKTION) -Die Exponentialfunktion exp:  $R \rightarrow R$  ist definial durch  $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$  und  $e:=\exp(1)$  haist Eulersche Fahl. 4.38 Norivation (Funktionolpleichung für exp) Vicle Wichtipe Eiperschoften de Tiberous Wichtigen exp-Flit logen des de Funktionolpl. exp(x+y)=exp(x). exp(y). [Totsachlich ist exp dodunch und eine Beschrönlich eits-

| bedinpang schon ein derbig chorolikisiert [Borner-Flohi, Sec 7.5]                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bedinpung schon ein deutip chorolikisiert [Borner-Flohi, Sec 7.5])<br>Vir werden sie jetzt ob Folpenny aus dem Couchy-Produkt<br>herleiten                                                                                   |
| 4.39 THM (Funktionalpl. für die lep-Fht)  Für die xije Rpilt                                                                                                                                                                 |
| Fir dle X, y \ Pill                                                                                                                                                                                                          |
| $ = \exp(x+y) = \exp(x) \exp(y) \cdot (4.2) $                                                                                                                                                                                |
|                                                                                                                                                                                                                              |
| Sevas. 4.36 = $2\sqrt{n!}$ , $2\sqrt{n!}$ sind obs konu.                                                                                                                                                                     |
| 4.35 => $exp(x) \cdot exp(y) = Z \subset_{n=0} mit$                                                                                                                                                                          |
| 4.35 => $exp(x) \cdot exp(y) = \sum_{k=0}^{\infty} (n) mit_{k=0}$ $G_{n} = \sum_{k=0}^{n} \frac{x^{k}}{k!} \frac{y^{n-k}}{(n-k)!} = \frac{1}{n!} \frac{h}{k} \binom{n}{k} \frac{k}{xy} = \frac{(x+y)^{n}}{n!} \binom{x}{xy}$ |
| $exp(x)exp(y) = \sum_{h=0}^{\infty} \frac{(x)}{h!} = \exp(x+y),$                                                                                                                                                             |
| 4.40 KoR (Wichige Eigenschoften von exp) Für olle xe Rpill  (i) $exp(x) = 0$ (ii) $exp(-x) = exp(x)$                                                                                                                         |
| (i) exp(x) >0 /                                                                                                                                                                                                              |
| $(ii) \exp(-x) = \frac{1}{\exp(x)}$                                                                                                                                                                                          |
| ) (iii) Far olde ne Z pild exp(n)=eh                                                                                                                                                                                         |
| Berais: (ii) Die Funktionolph. (4.2) liefert                                                                                                                                                                                 |
| $1 = \exp(0) = \exp(x - x) = \exp(x) \exp(-x)$                                                                                                                                                                               |
| <b>,</b>                                                                                                                                                                                                                     |

| (i) Far x 20 pill                                                                                                                                                                                                                      | 10           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| $exp(x) = 1 + x + \frac{x^2}{5} + \dots = 2170$ , (x)                                                                                                                                                                                  |              |
| Für x=0 pilt exp(x)= $\frac{1}{exp(-x)} > 0$                                                                                                                                                                                           |              |
| 70                                                                                                                                                                                                                                     |              |
| 70 (¥)                                                                                                                                                                                                                                 |              |
| (iii) Lepen exp(-n) = /exp(n) [(ii)] penupt ex die Aussope<br>für ne H du bevasen. Des mochen vir indulti:                                                                                                                             | ?            |
| für NEN the bestisen. Dos mochen Wir induktiv:                                                                                                                                                                                         |              |
| $n=0$ . $exp(0)=1=e^{0}$                                                                                                                                                                                                               |              |
| $\frac{n \mapsto n + j}{\sum_{k=1}^{n} exp(n+1) = exp(n) exp(1) = e \cdot e^{1} = e^{n+1}}$                                                                                                                                            | _            |
| 4.41 BEM & NOVIVATION                                                                                                                                                                                                                  |              |
| (i) Thin 4.39 und Kor 4.40(1) besogen, doss exp ein Grupsenhomomorphismus                                                                                                                                                              |              |
| ¿ Crupsenhomomorphismus                                                                                                                                                                                                                |              |
| $\exp: (\Omega, t) \longrightarrow ((0, \infty), \cdot)$                                                                                                                                                                               |              |
| ist; pl. [E17A, 5.2.62]                                                                                                                                                                                                                |              |
| (ii) Zum Abschluß der Sand des Kopitals bewasen wir                                                                                                                                                                                    |              |
| nun eine probe abe doch nutzliche Fehlerschrenke                                                                                                                                                                                       | Pir          |
| nun eine probe abe doch nutzliche Fehlerschrenke  <br>die Exponentialrahe - Spöte [WS] werden vir oliese.                                                                                                                              | noch         |
| erheblich verbessern [ Stichvort: Toglorieihe]                                                                                                                                                                                         |              |
| 1.42 PROP (Fehlerobschaftung für exp) Sei NeW. Für                                                                                                                                                                                     | alle         |
| $CXP(X) = \frac{N}{2} \frac{xh}{h!} + R_{N+1}(X) \left( \frac{N}{Pardy} \right)$                                                                                                                                                       | <del>-</del> |
| Wobcider Rest RX+1 Parable XETR mil  X/<1+X/2                                                                                                                                                                                          | Samme        |
| $CXP(X) = \sum_{n=0}^{N} \frac{x^n}{n!} + R_{N+1}(X)$ $Vobci der Rest R_{N+1}   \text{ fir able } x \in \mathbb{R} \text{ mil }  X  \leq 1 + N/2$ $\text{die Abschötzung}   R_{N+1}(X)  \leq 2 \frac{x^{N+1}}{(N+1)!} \text{ exfullt}$ |              |
|                                                                                                                                                                                                                                        |              |

Beras. Fir don Pashfam pith

River(x) = exp(x) - 
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = \sum_{n=0}^{\infty} \frac{x^n}{n!} - \sum_{n=0}^{\infty} \frac{x^n}{n!} = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Und letter Rahe knowspiert chosolud. [4.36cii]

Dohu pith

 $||P_{N+1}(x)|| \leq \sum_{n=0}^{\infty} \frac{|x|^n}{n!} = \frac{|x|^{N+1}}{|x+1|!} \left(\frac{1+|x|}{|x+2|!} + \frac{|x|^2}{|x+2|!} + \frac$