Math 501 Homework (§3.5 Cauchy Sequences)

Problem 1. Let the sequence (x_n) be defined recursively as $x_1 = 1$, and $x_{n+1} = 1 + 1/x_n$ for n > 1. Prove that (x_n) converges.

Solution. By Triangle Inequality and definition of the sequence

$$|x_{n+1} - x_n| \le |1 + \frac{1}{x_n}| - |x_n|$$

$$= \frac{x_n + 1}{x_n} - x_n \text{ (since } x_n > 0, \forall n \in \mathbb{N})$$

$$= \frac{x_n + 1}{1 + \frac{1}{x_{n-1}}} - x_n$$

$$= \frac{(x_n + 1)x_{n-1}}{x_{n-1} + 1} - x_n$$

$$= \frac{x_n x_{n-1} + x_{n-1}}{x_{n-1} + 1} - x_n$$

$$= \frac{x_n x_{n-1} + x_{n-1}}{x_{n-1} + 1} - x_n$$

$$= \frac{x_n x_{n-1} + x_{n-1} - x_n x_{n-1} - x_n}{x_{n-1} + 1}$$

$$= \frac{x_{n-1} - x_n}{x_{n-1} + 1}$$

$$\le \frac{|x_{n-1} - x_n|}{x_{n-1} + 1} \text{ (by Triangle Inequality)}$$

Moreover, we can show by Induction that $1 \le x_n \le 2$. Or

$$2 \le x_n + 1 \le 3$$

$$\implies \frac{1}{x_n + 1} \le \frac{1}{2}$$

Using the two inequalities above, we have that the ratio

$$\frac{|x_{n+1} - x_n|}{|x_n - x_{n-1}|} \le \frac{1}{2}$$

I.e., (x_n) is a *contractive* sequence, hence a Cauchy Sequence, hence convergent.