Day 2 Discrete Mathematics

Cartesian Product, Binary relation, Partial ordering

Dr. Abhijit Debnath

University of Engineering and Management

Reference book for this material is

Rosen, K. H., & Krithivasan, K. (1999). *Discrete mathematics and its applications* (Vol. 6). New York: McGraw-hill.

Cartesian Product

Discussed with illustrated examples in Day 1 lecture

Binary relation

Discussed with illustrated examples in Day 1 lecture

Partial ordering

A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.

❖ Show that the "greater than or equal" relation (≥) is a partial ordering on the set of integers.

Solution:

- ✓ Because $a \ge a$ for every integer a, \ge is reflexive.
- ✓ If $a \ge b$ and $b \ge a$, then a = b. Hence, \ge is antisymmetric.
- ✓ Finally, \geq is transitive because $a \geq b$ and $b \geq c$ imply that $a \geq c$.
- ✓ It follows that \ge is a partial ordering on the set of integers and (Z, \ge) is a poset.

Partial ordering

The elements a and b of a poset(S, \leq) are called comparable if either a \leq b or b \leq a. When a and b are elements of S such that neither a \leq b nor b \leq a, a and b are called incomparable.

If (S, \leq) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and is called a total order or a linear order. A totally ordered set is also called a chain.

Thank you

