Package 'clustree'

February 24, 2019

Type Package

Title Visualise Clusterings at Different Resolutions

Version 0.3.0

Date 2019-02-24

Maintainer Luke Zappia < luke.zappia@mcri.edu.au>

Description Deciding what resolution to use can be a difficult question when approaching a clustering analysis. One way to approach this problem is to look at how samples move as the number of clusters increases. This package allows you to produce clustering trees, a visualisation for interrogating clusterings as resolution increases.

License GPL-3

Encoding UTF-8

LazyData true

URL https://github.com/lazappi/clustree

BugReports https://github.com/lazappi/clustree/issues

VignetteBuilder knitr

Depends R (>= 3.4), ggraph

Imports checkmate, igraph, dplyr, grid, ggplot2, viridis, methods, rlang, tidygraph, ggrepel

Suggests testthat, knitr, rmarkdown, SingleCellExperiment, Seurat, covr, SummarizedExperiment, pkgdown, spelling

RoxygenNote 6.1.1

Language en-GB

NeedsCompilation no

Author Luke Zappia [aut, cre] (https://orcid.org/0000-0001-7744-8565), Alicia Oshlack [aut] (https://orcid.org/0000-0001-9788-5690), Andrea Rau [ctb]

Repository CRAN

Date/Publication 2019-02-24 15:40:03 UTC

R topics documented:

clustree-package

add node labels

add_node_points

2

assert numeric node aes

build_tree_graph

calc_sc3_stability

assert colour node aes

Clustree

overlay_node_points store node aes

Index

get_tree_nodes

get_tree_edges

check node aes list

Deciding what resolution to use can be a difficult question when approaching a clustering analysis. One way to approach this problem is to look at how samples move as the number of clusters increases. This package allows you to produce clustering trees, a visualisation for interrogating

9 12 15

add node labels

2

3

4

4 5 5

6

7

20

Description

clustree-package

add_node_labels

clusterings as resolution increases.

Description Add node labels to a clustering tree plot with the specified aesthetics.

Add node labels

Usage

add_node_labels(node_label, node_colour, node_label_size,

node_label_colour, node_label_nudge, allowed)

numeric value giving nudge in y direction for node labels

vector of allowed node attributes to use as aesthetics

3

node_label_nudge

allowed

add_node_points

Description Add node points to a clustering tree plot with the specified aesthetics.

add_node_points

Arguments

Add node points

add_node_points(node_colour, node_size, node_alpha, allowed)

Usage

Arguments

node colour either a value indicating a colour to use for all nodes or the name of a metadata

column to colour nodes by

either a numeric value giving the size of all nodes or the name of a metadata node_size column to use for node sizes

either a numeric value giving the alpha of all nodes or the name of a metadata node_alpha column to use for node transparency

allowed vector of allowed node attributes to use as aesthetics

logical vector indicating which rows of metadata are in the node to be summa-

Aggregate a metadata column to get a summarized value for a cluster node Usage

Aggregate metadata

aggr_metadata(node_data, col_name, col_aggr, metadata, is_cluster)

node_data data.frame containing information about a set of cluster nodes col_name the name of the metadata column to aggregate

is_cluster

aggr_metadata

Description

Arguments

string naming a function used to aggregate the column col_aggr metadata data.frame providing metadata on samples

rized

Value

data.frame with aggregated data

assert_colour_node_aes

Assert colour node aesthetics

Description

Raise error if an incorrect set of colour node parameters has been supplied.

Usage assert_colour_node_aes(node_aes_name, prefix, metadata, node_aes, node_aes_aggr, min, max)

Arguments name of the node aesthetic to check node_aes_name prefix string indicating columns containing clustering information

thetics node aes value of the node aesthetic to check aggregation function associated with the node aesthetic node_aes_aggr

data.frame containing metadata on each sample that can be used as node aes-

5

minimum numeric value allowed min maximum numeric value allowed max

assert_node_aes Assert node aesthetics

Description

assert_node_aes

metadata

Raise error if an incorrect set of node parameters has been supplied.

Usage

string indicating columns containing clustering information

assert_node_aes(node_aes_name, prefix, metadata, node_aes, node_aes_aggr)

Arguments

name of the node aesthetic to check

node_aes_name

prefix

metadata data.frame containing metadata on each sample that can be used as node aesthetics

value of the node aesthetic to check node_aes aggregation function associated with the node aesthetic node_aes_aggr

assert_numeric_node_aes

Description

Raise error if an incorrect set of numeric node parameters has been supplied.

Assert numeric node aesthetics

Usage

assert_numeric_node_aes(node_aes_name, prefix, metadata, node_aes, node_aes_aggr, min, max)

string indicating columns containing clustering information

data.frame containing metadata on each sample that can be used as node aes-

name of the node aesthetic to check

Build tree graph

node_aes_name prefix

6

metadata node_aes

value of the node aesthetic to check node_aes_aggr aggregation function associated with the node aesthetic min minimum numeric value allowed maximum numeric value allowed max

thetics

build_tree_graph

Description Build a tree graph from a set of clusterings, metadata and associated aesthetics

Usage

build_tree_graph(clusterings, prefix, count_filter, prop_filter, metadata, node_aes_list)

Arguments clusterings

Value

prefix count filter

count threshold for filtering edges in the clustering graph prop_filter metadata

in proportion threshold for filtering edges in the clustering graph

node_aes_list

data.frame containing metadata on each sample that can be used as node aesthetics nested list containing node aesthetics

tering at a separate resolution

string indicating columns containing clustering information

numeric matrix containing clustering information, each column contains clus-

tidygraph::tbl_graph object containing the tree graph

Details

This index was originally introduced in the SC3 package for clustering single-cell RNA-seq data. Clusters are awarded increased stability if they share the same samples as a cluster at another resolution and penalised at higher resolutions. We use a slightly different notation to describe the score but the results are the same:

$$s(c_{k,i}) = \frac{1}{size(L) + 1} \sum_{l \in L} \sum_{j \in N_l} \frac{size(c_{k,i} \cap c_{l,j})}{size(c_{l,j}) * size(N_l)^2}$$

Where:

- c_{x, y} is cluster y at resolution x
- k is the resolution of the cluster we want to score
- i is the index of the cluster we want to score

The documentation for the calculate_stability function in the SC3 package

- L is the set of all resolutions except k
- 1 is a resolution in L
- N_1 is the set of clusters at resolution 1 that share samples with c_{k, i}
- j is a cluster in N_1

Value

SC3 stability index

See Also

Warn if node aesthetic names are incorrect

warn it node aesthetic names are incorrect

check_node_aes_list(node_aes_list)

Usage

Description

Arguments

node_aes_list List of node aesthetics

Value

Corrected node aesthetics list

Creates a plot of a clustering tree showing the relationship between clusterings at different resolu-

node_colour = prefix, node_colour_aggr = NULL, node_size = "size",

node_label_nudge = -0.2, edge_width = 1.5, edge_arrow = TRUE, edge_arrow_ends = c("last", "first", "both"), show_axis = FALSE,

Plot a clustering tree

9

```
count_filter = 0, prop_filter = 0.1, layout = c("tree",
   "sugiyama"), use_core_edges = TRUE, highlight_core = FALSE,
```

Usage
 clustree(x, ...)

clustree

clustree

Description

tions.

```
## S3 method for class 'matrix'
clustree(x, prefix, suffix = NULL, metadata = NULL,
```

```
node_size_aggr = NULL, node_size_range = c(4, 15), node_alpha = 1,
node_alpha_aggr = NULL, node_text_size = 3,
scale_node_text = FALSE, node_text_colour = "black",
node_label = NULL, node_label_aggr = NULL, node_label_size = 3,
```

S3 method for class 'data.frame'

clustree(x, prefix, ...)

return = c("plot", "graph", "layout"), ...)

S3 method for class 'SingleCellExperiment'
clustree(x, prefix, exprs = "counts", ...)

S3 method for class 'seurat'
clustree(x, prefix = "res.", exprs = c("data",
 "raw.data", "scale.data"), ...)

Arguments

prop_filter

```
    extra parameters passed to other methods
    prefix string indicating columns containing clustering information
    suffix string at the end of column names containing clustering info
```

object containing clustering data

suffix string at the end of column names containing clustering information

metadata data.frame containing metadata on each sample that can be used as node aesthetics

count_filter count threshold for filtering edges in the clustering graph

in proportion threshold for filtering edges in the clustering graph

string specifying the "tree" or "sugiyama" layout, see igraph::layout_as_tree() layout and igraph::layout_with_sugiyama() for details

> logical, whether to only use core tree (edges with maximum in proportion for a node) when creating the graph layout, all (unfiltered) edges will still be dis-

clustree

10

use_core_edges

edge_arrow_ends

show_axis

played

highlight_core logical, whether to increase the edge width of the core network to make it easier to see node_colour either a value indicating a colour to use for all nodes or the name of a metadata column to colour nodes by node_colour_aggr if node_colour is a column name than a string giving the name of a function to aggregate that column for samples in each cluster

node_size column to use for node sizes

either a numeric value giving the size of all nodes or the name of a metadata node_size_aggr if node_size is a column name than a string giving the name of a function to aggregate that column for samples in each cluster

node_size_range numeric vector of length two giving the maximum and minimum point size for plotting nodes

node_alpha either a numeric value giving the alpha of all nodes or the name of a metadata column to use for node transparency node_alpha_aggr if node_aggr is a column name than a string giving the name of a function to aggregate that column for samples in each cluster

node_text_size numeric value giving the size of node text if scale_node_text is FALSE scale_node_text logical indicating whether to scale node text along with the node size node_text_colour

colour value for node text (and label) node label additional label to add to nodes

node_label_aggr if node_label is a column name than a string giving the name of a function to aggregate that column for samples in each cluster

node_label_size numeric value giving the size of node label text

node_label_nudge

numeric value giving nudge in y direction for node labels

edge_width numeric value giving the width of plotted edges edge_arrow logical indicating whether to add an arrow to edges

TRUE, one of "last", "first", or "both"

whether to show resolution axis

string indicating which ends of the line to draw arrow heads if edge_arrow is

clustree 11

tbl_graph object) or "layout" (a ggraph layout object)

	objects it must be a name in $assayNames(x)$, for a seurat object it must be one of data, raw.data or $scale.data$
Details	
Data sources	

string specifying what to return, either "plot" (a ggplot object), "graph" (a

source of gene expression information to use as node aesthetics, for SingleCellExperiment

Data source

return

exprs

Plotting a clustering tree requires information about which cluster each sample has been assigned to at different resolutions. This information can be supplied in various forms, as a matrix, data.frame or more specialised object. In all cases the object provided must contain numeric columns with the naming structure PXS where P is a prefix indicating that the column contains clustering information, X is a numeric value indicating the clustering resolution and S is any additional suffix to be removed. For SingleCellExperiment objects this information must be in the colData slot and for Seurat objects it must be in the meta.data slot. For all objects except matrices any additional columns can be used as aesthetics, for matrices an additional metadata data.frame can be supplied if required.

Filtering

Edges in the graph can be filtered by adjusting the count_filter and prop_filter parameters. The count_filter removes any edges that represent less than that number of samples, while the prop_filter removes edges that represent less than that proportion of cells in the node it points towards.

Node aesthetics

The aesthetics of the plotted nodes can be controlled in various ways. By default the colour indicates the clustering resolution, the size indicates the number of samples in that cluster and the transparency is set to 100 Each of these can be set to a specific value or linked to a supplied metadata column. For a SingleCellExperiment or Seurat object the names of genes can also be used. If a metadata column is used than an aggregation function must also be supplied to combine the samples in each cluster. This function must take a vector of values and return a single value.

Layout

The clustering tree can be displayed using either the Reingold-Tilford tree layout algorithm or the Sugiyama layout algorithm for layered directed acyclic graphs. These layouts were selected as the are the algorithms available in the igraph package designed for trees. The Reingold-Tilford algorithm places children below their parents while the Sugiyama places nodes in layers while trying to minimise the number of crossing edges. See igraph::layout_as_tree() and igraph::layout_with_sugiyama() for more details. When use_core_edges is TRUE (default) only the core tree of the maximum in proportion edges for each node are used for constructing the layout. This can often lead to more attractive layouts where the core tree is more visible.

Value

a ggplot object (default), a tbl_graph object or a ggraph layout object depending on the value of return

Examples

clustree_overlay

data(iris clusts) clustree(iris_clusts, prefix = "K")

clustree_overlay

12

```
Description
```

```
Creates a plot of a clustering tree overlaid on a scatter plot of individual samples.
```

Overlay a clustering tree

Usage clustree_overlay(x, ...)

```
## S3 method for class 'matrix'
```

```
clustree_overlay(x, prefix, metadata, x_value, y_value,
 suffix = NULL, count_filter = 0, prop_filter = 0.1,
```

```
node_colour = prefix, node_colour_aggr = NULL, node_size = "size",
```

```
node_size_aggr = NULL, node_size_range = c(4, 15), node_alpha = 1,
```

S3 method for class 'data.frame'

clustree_overlay(x, prefix, x_value,

```
exprs = c("data", "raw.data", "scale.data"), red_dim = NULL, ...)
```

Arguments

```
Х
                    object containing clustering data
```

```
extra parameters passed to other methods
```

prefix string indicating columns containing clustering information metadata

y_value, exprs = "counts", red_dim = NULL, ...)

data.frame containing metadata on each sample that can be used as node aesthetics x value numeric metadata column to use as the x axis

numeric value giving the y-direction spread of points in side plots

numeric value giving the y-direction offset for points in side plots

dimensionality reduction to use as a source for x_value and y_value

of data, raw.data or scale.data

source of gene expression information to use as node aesthetics, for SingleCellExperiment

objects it must be a name in assayNames(x), for a seurat object it must be one

plot_sides

exprs

red_dim

side_point_jitter

side_point_offset

14 clustree_overlay

Details

Data sources

Plotting a clustering tree requires information about which cluster each sample has been assigned to at different resolutions. This information can be supplied in various forms, as a matrix, data.frame or more specialised object. In all cases the object provided must contain numeric columns with the naming structure PXS where P is a prefix indicating that the column contains clustering information, X is a numeric value indicating the clustering resolution and S is any additional suffix to be removed. For SingleCellExperiment objects this information must be in the colData slot and for Seurat objects it must be in the meta.data slot. For all objects except matrices any additional columns can be used as aesthetics.

Filtering

Edges in the graph can be filtered by adjusting the count_filter and prop_filter parameters. The count_filter removes any edges that represent less than that number of samples, while the prop_filter removes edges that represent less than that proportion of cells in the node it points towards.

Node aesthetics

The aesthetics of the plotted nodes can be controlled in various ways. By default the colour indicates the clustering resolution, the size indicates the number of samples in that cluster and the transparency is set to 100 Each of these can be set to a specific value or linked to a supplied metadata column. For a SingleCellExperiment or Seurat object the names of genes can also be used. If a metadata column is used than an aggregation function must also be supplied to combine the samples in each cluster. This function must take a vector of values and return a single value.

Colour aesthetic

The colour aesthetic can be applied to either edges or sample points by setting use_colour. If "edges" is selected edges will be coloured according to the clustering resolution they originate at. If "points" is selected they will be coloured according to the cluster they are assigned to at the highest resolution.

Dimensionality reductions

For SingleCellExperiment and Seurat objects precomputed dimensionality reductions can be used for x or y aesthetics. To do so red_dim must be set to the name of a dimensionality reduction in reducedDimNames(x) (for a SingleCellExperiment) or x@dr (for a Seurat object). x_value and y_value can then be set to red_dimX when red_dim matches the red_dim argument and X is the column of the dimensionality reduction to use.

Value

a ggplot object if plot_sides is FALSE or a list of ggplot objects if plot_sides is TRUE

Examples

```
data(iris_clusts)
clustree_overlay(iris_clusts, prefix = "K", x_value = "PC1", y_value = "PC2")
```

string indicating columns containing clustering information

15

Extract the edges from a set of clusterings

get_tree_edges

Usage get_tree_edges(clusterings, prefix)

Arguments

clusterings numeric matrix containing clustering information, each column contains clus-

tering at a separate resolution

Get tree nodes

prefix

Value

data.frame containing edge information

get_tree_nodes

Description Extract the nodes from a set of clusterings and add relevant attributes

Usage

get_tree_nodes(clusterings, prefix, metadata, node_aes_list)

Arguments clusterings

numeric matrix containing clustering information, each column contains clustering at a separate resolution prefix string indicating columns containing clustering information metadata data.frame containing metadata on each sample that can be used as node aesthetics

node_aes_list nested list containing node aesthetics Value

data.frame containing node information

```
Description
```

iris_clusts

Iris dataset clustered using k-means with a range of values of k

Clustered Iris dataset

Usage

iris clusts

Format

iris_clusts is a data.frame containing the normal iris dataset with additional columns holding k-means clusterings at different values of k and the first two principal components

Source

set.seed(1)

iris_mat <- as.matrix(iris[1:4])</pre> iris_km <- sapply(1:5, function(x) {</pre> km <- kmeans(iris_mat, centers = x, iter.max = 100, nstart = 10)</pre> km\$cluster

}) colnames(iris_km) <- paste0("K", 1:5)</pre> iris_clusts <- cbind(iris, iris_km)</pre>

iris_pca <- prcomp(iris_clusts[1:4])</pre> iris_clusts\$PC1 <- iris_pca\$x[, 1]</pre> iris_clusts\$PC2 <- iris_pca\$x[, 2]</pre>

overlay_node_points

Description

Overlay node points

Overlay clustering tree nodes on a scatter plot with the specified aesthetics. Usage

overlay_node_points(nodes, x_value, y_value, node_colour, node_size, node_alpha)

17

either a numeric value giving the size of all nodes or the name of a metadata node_size column to use for node sizes node_alpha either a numeric value giving the alpha of all nodes or the name of a metadata column to use for node transparency

plot_overlay_side Plot overlay side

plot_overlay_side

Arguments

Description Plot the side view of a clustree overlay plot. If the ordinary plot shows the tree from above this plot shows it from the side, highlighting either the x or y dimension and the clustering resolution.

Usage plot_overlay_side(nodes, edges, points, prefix, side_value, graph_attr,

node_size_range, edge_width, use_colour, alt_colour, point_size,

point_alpha, point_shape, label_nodes, label_size, y_jitter, y_offset) Arguments

nodes

data.frame describing nodes

edges data.frame describing edges

data.frame describing points points

prefix string indicating columns containing clustering information

string giving the metadata column to use for the x axis side value

list describing graph attributes graph_attr

node_size_range

numeric vector of length two giving the maximum and minimum point size for

plotting nodes edge_width

use colour

point_size

point_alpha

numeric value giving the width of plotted edges thetic to alt_colour

one of "edges" or "points" specifying which element to apply the colour aes-

colour value to be used for edges or points (whichever is NOT given by use_colour) numeric value giving the size of sample points

numeric value giving the alpha of sample points

```
18
                                                                                       sc_example
```

```
numeric value giving the shape of sample points
point_shape
                   logical value indicating whether to add labels to clustering graph nodes
label nodes
```

```
label_size
                  numeric value giving the size of node labels is label_nodes is TRUE
```

y_jitter numeric value giving the y-direction spread of points in side plots y_offset numeric value giving the y-direction offset for points in side plots

Simulated scRNA-seq dataset

A simulated scRNA-seq dataset generated using the splatter package and clustered using the SC3

sc_example is a list holding a simulated scRNA-seq dataset. Items in the list included the simulated counts, normalised log counts, tSNE dimensionality reduction and cell assignments from SC3 and

> group.prob = c(0.4, 0.2, 0.2, 0.15, 0.05), de.prob = c(0.1, 0.2, 0.05, 0.1, 0.05),

method = "groups", seed = 1)

sim_sc3 <- SingleCellExperiment(assays = list(counts = sim_counts))

Value

sc_example

Description

Usage

Format

Source

RETURN DESCRIPTION

and Seurat packages.

sc_example

Seurat clustering.

Simulation

SC3 Clustering

library("splatter") # Version 1.2.1

sim_counts <- counts(sim)[1:1000,]</pre>

library("SC3") # Version 1.7.6 library("scater") # Version 1.6.2

sim_sc3 <- normalise(sim_sc3)</pre>

sim <- splatSimulate(batchCells = 200, nGenes = 10000,</pre>

rowData(sim_sc3)\$feature_symbol <- rownames(sim_counts)</pre>

sim_seurat <- FindVariableGenes(sim_seurat, do.plot = FALSE,</pre>

Seurat Clustering

sim_sc3 <- runTSNE(sim_sc3)</pre>

library("Seurat") # Version 2.2.0

store_node_aes

resolution = seq(0, 1, 0.1), print.output = FALSE) sc_example <- list(counts = counts(sim_sc3),</pre>

sim_seurat <- RunPCA(sim_seurat, do.print = FALSE)</pre> sim_seurat <- FindClusters(sim_seurat, dims.use = 1:6,</pre>

sim_seurat <- CreateSeuratObject(sim_counts)</pre>

sim_sc3 <- sc3(sim_sc3, ks = 1:8, biology = FALSE, n_cores = 1)</pre>

sim_seurat <- NormalizeData(sim_seurat, display.progress = FALSE)</pre>

tsne = reducedDim(sim_sc3), sc3_clusters = colData(sim_sc3),

seurat_clusters = sim_seurat@meta.data)

sim_seurat <- ScaleData(sim_seurat, display.progress = FALSE)

display.progress = FALSE)

Store node aesthetics store_node_aes

Store the names of node attributes to use as aesthetics as graph attributes

Description

Usage

store_node_aes(graph, node_aes_list, metadata)

Arguments

graph to store attributes in graph nested list containing node aesthetics node aes list

data.frame containing metadata that can be used as aesthetics

Value

metadata

graph with additional attributes

Index

```
*Topic datasets
    iris clusts. 16
    sc_example, 18
add_node_labels, 2
add_node_points, 3
aggr_metadata.4
assert_colour_node_aes, 4
assert_node_aes, 5
assert numeric node aes. 5
build_tree_graph, 6
calc_sc3_stability, 7
calc_sc3_stability_cluster, 7
calc_sc3_stability_cluster(), 7
check_node_aes_list, 8
clustree. 9
clustree-package, 2
clustree_overlay, 12
get_tree_edges, 15
get_tree_nodes, 15
igraph::layout_as_tree(), 10, 11
igraph::layout_with_sugiyama(), 10, 11
iris_clusts, 16
overlay_node_points, 16
plot_overlay_side, 17
sc_example, 18
store_node_aes, 19
tidygraph::tbl_graph,6
```