1

Matrices in Geometry 5.13.61

EE25BTECH11035 - Kushal B N

Question: Let $\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{pmatrix}$ and \mathbf{I} be the identity matrix of order 3. If $\mathbf{Q} = q_{ij}$ is a matrix such that $\mathbf{P}^{50} - \mathbf{Q} = \mathbf{I}$, then $\frac{q_{31} + q_{32}}{q_{21}}$ equals (*JEEAdv*.2016)

1) 52

2) 103

3) 201

4) 205

Given:

The matrix $\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{pmatrix}$ and $\mathbf{Q} = \mathbf{P}^{50} - \mathbf{I}$

Solution:

Let us express the matrix P as

$$\mathbf{P} = \mathbf{I} + \mathbf{N} \tag{1}$$

where

$$\mathbf{N} = \begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 16 & 4 & 0 \end{pmatrix} \tag{2}$$

Now we see that

$$\mathbf{N}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 16 & 0 & 0 \end{pmatrix} \tag{3}$$

$$\mathbf{N}^3 = \mathbf{0} \tag{4}$$

So that now by binomial expansion we have,

$$\mathbf{P}^{50} = (\mathbf{I} + \mathbf{N})^{50} \tag{5}$$

from (4),

$$\implies \mathbf{P}^{50} = \mathbf{I} + 50\mathbf{N} + 1225\mathbf{N}^2 \tag{6}$$

$$\implies \mathbf{Q} = 50\mathbf{N} + 1225\mathbf{N}^2 \tag{7}$$

$$\mathbf{Q} = \begin{pmatrix} 0 & 0 & 0 \\ 200 & 0 & 0 \\ 20400 & 200 & 0 \end{pmatrix} \tag{8}$$

$$\Longrightarrow \left[\frac{q_{31}+q_{32}}{q_{21}}=103\right] \tag{9}$$

Final Answer:

... The value of the given expression $\frac{q_{31}+q_{32}}{q_{21}} = 103$. Hence, the correct answer is (2).