

Module 5 – Review of Basic Data Analytic Methods Using R- Part II

EMC² PROVEN PROFESSIONAL

Module 5: Review of Basic Data Analytic Methods Using R

Lesson1: Statistics for Model Building and Evaluation

During this lesson the following topics are covered:

- Statistics in the Analytic Lifecycle
- **Hypothesis Testing**
- Difference of means
- Significance, Power, Effect Size
- **ANOVA**
- Confidence Intervals

Statistics in the Analytic Lifecycle

- Model Building and Planning
 - Can I predict the outcome with the inputs that I have?
 - Which inputs?
- **Model Evaluation**
 - Is the model accurate?
 - Does it perform better than "the obvious guess"
 - Does it perform better than another candidate model?
- Model Deployment
 - Do my predictions make a difference?
 - Are we preventing customer churn?
 - Have we raised profits?

Evaluating a Model: Hypothesis Testing

- Fundamental question: "Is there a difference?"
 - Specifically: "Would I see this value if there is no difference?"
- The baseline scenario: "There is no difference."
 - Statisticians call this the Null Hypothesis
 - "There is a difference." The Alternative Hypothesis

Null and Alternative Hypotheses: Examples

Null Hypothesis	Alternative Hypothesis
The best estimate of the outcome is the average observed value: • The mean is the "Null Model"	The model predicts better than the null model: • The average prediction error from the model is smaller than that of the null model
This variable does not affect the outcome: • The coefficient value is zero	The variable does affect outcome: • Coefficient value is non-zero
The model predictions do not improve revenue: • Revenue is the same with or without intervention	Interventions based on model predictions improve revenue: • A/B Testing, ANOVA

EMC² PROVEN PROFESSIONAL

Intuition: Difference of Means

In Practice: t-test

t-statistic:
$$t = \frac{\overline{X_1 - X_2}}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}}$$

(this is the t-statistic for the Welch t-test)

> x = rnorm(10) # distribution centered at 0 > y = rnorm(10,2) # distribution centered at 2 > t.test(x,y)

Welch Two Sample t-test

data: x and y t = -7.2643, df = 15.05, p-value = 2.713e-06 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

-2.364243 -1.291811

sample estimates:

mean of x mean of y 0.5449713 2.3729984

p-value: area under the tails of the appropriate student's distribution

if p-value is small (say < 0.05), then reject the null hypothesis and assume that m₁ <> m₂

> m₁ and m₂ are "significantly different"

In Practice: Wilcoxson Rank Sum test

- t-test assumes that the populations are normally distributed
 - Sometimes this is close to true, sometimes not
- Wilcoxson Rank Sum test
 - Makes no assumption about the distributions of the populations
 - More robust test for difference of means
 - if p-value is small: reject the null hypothesis (equal means)

```
> mean(x)
[1] 0.5449713
> mean(y)
[1] 2.372998
> wilcox.test(x, y)
           Wilcoxson rank sum test
data: x and y
W = 2, p-value = 4.33e-05
alternative hypothesis: true location shift is not equal to 0
```

Hypothesis Testing: Summary

- Calculate the test statistic
 - Different hypothesis tests are appropriate, in different situations

- If p-value is "small" then reject the null hypothesis
 - "small" is often p < 0.05 by convention</p> (95% confidence)
 - Many data scientists prefer a smaller threshold.

Generating a Hypothesis: Type I and Type II Error

If H ₀ is X, and we:	Null hypothesis(H ₀) is true	Null hypothesis(H ₀) is false
Fail to accept the Null	Type I error	Correct Outcome
Hypothesis → we claim (False positive)	True positive
something happened	α	We reject the Null
		hypothesis
Fail to reject the null	Correct outcome	Type II error
hypothesis → we claim	True negative (False negative
nothing happened.	Accept the NULL	β
	hypothesis	

Example: Ham or Spam? H_0 : it's ham H_A : it's spam

If it's ↓, and we say it's →	SPAM	HAM
HAM	Type I – false positive	OK – true positive
SPAM	OK – true negative	Type II – false negative
	Cool Identify onem	

- Goal: Identify spam
- Which error is worse?

EMC² PROVEN PROFESSIONAL

Significance, Power and Effect Size

- Significance: the probability of a false positive (α)
 - p-value is your significance
- Power: probability of a true positive (1 β)
- Effect size: the size of the observed difference
 - The actual difference in means, for example

Always Keep Effect Size in Mind!

Both power and significance increase with larger sample sizes.

So you can observe an effect size that is *statistically* significant, but *practically* insignificant!

Hypothesis Testing: ANOVA

ANOVA is a generalization of the difference of means

- One-way ANOVA
 - k populations ("treatment groups")
 - n_i samples each total N subjects
 - Null hypothesis: ALL the population means are equal

Population	n _i : # offers made	m _i : avg purchase size
Offer 1	100	\$55
Offer 2	102	\$40
No intervention	99	\$25

ANOVA: Understanding the F statistic

 s_B : how the population means vary with respect to the total mean m_0

$$s_B^2 = \frac{1}{k-1} \sum_i n_i \cdot (m_i - m_0)^2$$

$$s_W^2 = \frac{1}{N-k} \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij} - m_i^2$$

 s_W : the "average" of the s_i

Test statistic: $F = s_B^2/s_W^2$

R Example: ANOVA

3 different offers, and their outcomes

Use Im() to do the ANOVA

offer1-nooffer offer2-nooffer

F-statistic: reject the null hypothesis

Tukey's test: all pair-wise tests for difference of means

95% confidence intervals for difference between means

.No appreciable difference between offer1 and offer2

```
>offers = sample(c("noffer", "offer1", "offer2"),
           size=500, replace=T)
>purchasesize = ifelse(offers=="noffer", rlnorm(500,
meanlog=log(25)), ifelse(offers=="offer1", rlnorm(500,
meanlog=log(50)), rlnorm(500, meanlog=log(55))))
>offertest = data.frame(offer=as.factor(offers),
           purchase amt=purchasesize)
> model = lm(log10(purchase amt) ~ as.factor(offers),
              data=offertest)
>summary(model)
Residuals:
   Min
           1Q Median
                         3Q
                              Max
-1.1940 -0.2837 0.0135 0.2863 1.3374
Coefficients:
                 Estimate Std. Error
                                  t value
                                           Pr(>|t|)
```

(Intercept) 1.49092 0.03240 46.011 < 2e-16 *** as.factor(offers)offer1 0.20424 0.04706 4.340 1.73e-05 *** as.factor(offers)offer2 0.22371 0.04596 4.867 1.52e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4262 on 497 degrees of freedom Multiple R-squared: 0.05479, Adjusted R-squared: 0.05098 **F-statistic: 14.4 on 2 and 497 DF, p-value: 8.304e-07**

> TukeyHSD(aov(model))

Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = model)

\$offers

diff lwr upr p adj offer1-noffer 0.20424099 0.09361976 0.3148622 0.0000512 offer2-noffer 0.22370761 0.11566775 0.3317475 0.0000045 offer2-offer1 0.01946663 -0.09146092 0.1303942 0.9104871

Confidence Intervals

Example:

- Gaussian data N(μ, σ)
- x is the estimate of μ
 - based on n samples

μ falls in the interval

 $x \pm 2\sigma/\sqrt{n}$

with approx. 95% probability ("95% confidence")

If x is your estimate of some unknown value μ, the P% confidence interval is the interval around x that μ will fall in, with probability P.

Example

The defect rate of a disk drive manufacturing process is within 0.9% - 1.7%, with 98% confidence. We inspect a sample of 1000 drives from one of our plants.

- We observe 13 defects in our sample.
 - Should we inspect the plant for problems?
- What if we observe 25 defects in the sample?

Check Your Knowledge

- Refer back to the Anova example on an earlier slide. What do you think? Does the difference between offer1 and offer2 make a practical difference? Should we go ahead and implement one of them?
- If yes, and the costs were US \$25 for each offer1 and US \$10 for offer2, would you still make the same decision?
- In our manufacturing plant example, assuming you would check the plant for problems in the manufacturing process, how might you justify this decision financially?

Module 5: Review of Basic Data Analytic Methods Using R

Lesson 1: Summary

During this lesson the following topics were covered:

- The role of Statistics in the Analytic Lifecycle
- Developing a model and generating the null and the alternative hypothesis
- Difference between means
- Difference between significance, power and effect size, and how they relate to Type I and Type II errors
- Applying ANOVA and determining whether the results are significant
- Defining confidence intervals and applying them

Lab Exercise 3: Basic Statistics, Visualization and Hypothesis Tests

This lab is designed to investigate and practice using R to perform basic statistics and visualization on data and to perform hypothesis testing.

- After completing the tasks in this lab you should able to:
 - Perform basic data analysis
 - Visualize data with R
 - Create and test a hypothesis

Lab Exercise 3: Basic Statistics, Visualization and Hypothesis Tests—Part1 - Workflow

Lab Exercise 3: Basic Statistics, Visualization and Hypothesis Tests - Part 2 - Workflow

1	Define problem – Analysis of Variance (ANOVA)
2	Generate the Data
3	Examine the Data
4	Plot and determine how purchase size varies within the three groups
5	Use Im() to do the ANOVA
6	Use Tukey's test to check all the differences of means
7	Use the lattice package for density plot
8	Plot the Logarithms of the Data
9	Use ggplot() package
10	Generate the example data to perform a Hypothesis Test with manual calculations
11	Create a function to calculate the pooled variance, which is used in the Student's t statistic
12	Examine the Data
12	Examine the Data Calculate the t statistic for Student's t-test
13	Calculate the t statistic for Student's t-test

EMC² PROVEN PROFESSIONAL

Module 5: Summary

Key points covered in this module:

- How to use basic analytics methods such as distributions,
 statistical tests and summary operations to investigate a data set
- How to use R to apply visualization patterns to better understand the data, help develop a model and derive hypotheses, and determine if our actions had a practical affect.