

| 주택용 전력수요 계절별 패턴 분석과 시사점1)

조 성 진 에너지경제연구원 연구위원 (chosj0327@keei.re.kr) 운 태 연 에너지경제연구원 부연구위원 (taeyeon,yoon@keei,re,kr)

1. 서론

주택용 전기요금에 누진제도가 도입된 것은 1974년 12월 7일이다. 누진제는 제1차 석유파동으로 유가가 급등함에 따라 전기절약을 도모하고 저소득층의 전기 요금 부담경감 목적으로 도입되었다. 처음 3단계 누진 구간과 1.6배의 누진배율로 시작한 이 제도는 이후 에 너지시장의 여건에 따라 누진구간과 누진배율이 확대 되거나 축소되었고. 현재는 6단계의 누진구간과 11.7 배(저압 기준)의 누진배율이 적용된다.

에너지소비에서 나타나는 특징의 하나는 계절성이 뚜렷하다는 것이다. 가령 석유나 도시가스 그리고 열에 너지는 난방용 수요 비중이 커. 동절기 소비가 크게 증 가하는 계절성을 보이고, 전력소비의 경우 이와 반대로 냉방용 비중이 높아 겨울뿐만 아니라, 하절기에도 소비 가 증가하는 특징을 보인다. 이처럼 주택용 전력소비가 여름과 겨울에 크게 증가하는 계절성을 보이는데 여기 에 누진요금이 적용되고 있어 주택용 전력의 판매단가 역시 여름과 겨울에 상승하는 계절성을 보인다.

주택용 전력소비의 또 다른 특징으로는 가격 측면 이 있다. 현행 전기요금제도의 특징 가운데 하나는 사 용 용도에 따라 전기요금을 차등 부과하는 용도별 요금 체계를 채택하고 있다는 것인데, 특히 가정에서 사용하 는 전력인 주택용에는 누진요금제를 적용한다는 점에 서 차이를 보인다. 전력 외의 에너지원에서도 용도별로 다른 가격을 적용하는 경우가 있다. 예를 들어 도시가 스 가격은 산업용, 업무용, 가정용, 상업용 등으로 구분 하여 다른 요금을 적용한다. 그러나 소비량에 따라 다 른 요금을 부과하지는 않는다. 전력의 경우도 주택용 을 제외한 다른 용도에서는 소비량에 따라 요금을 차등 하여 부과하지는 않는다. 물론 계시별 요금이 적용되는 경우도 있지만, 이는 시간대별로 원가가 다른 전력공급 의 특징을 반영한 것이므로 공급원가와 전혀 다른 구조 를 지닌 주택용 누진요금과는 구별되어야 한다.

본고에서는 주택용 전력소비와 가격에서 나타나는 계절성을 고려할 때 주택용 전력수요 행태가 계절별로 다른 모습을 보이는지. 아니면 계절성에도 불구하고 수요 행태에 변화가 없는지에 대한 분석을 시도한다.

¹⁾ 본고는 조성진 · 박광수, 주택용 전력수요의 계절별 가격탄력성 추정을 통한 누진요금제 효과 검증 연구, 에너지경제연구원(2015)의 주요내용을 요약한 것임,

만약 전력수요 행태가 계절적으로 차이를 보이고 특히 소비가 많은 계절에 가격에 대해 보다 탄력적으로 반 응한다면 누진제의 소비절감 효과가 크다는 것을 간접 적으로 검증할 수 있을 것이다.

본고에서는 이처럼 주택용 전력소비와 가격에서 나타나는 계절성을 고려할 때 주택용 전력수요 행태가 계절별로 다른 모습을 보이는지, 아니면 계절성에도 불구하고 수요 행태에 변화가 없는지에 대한 분석을 시도한다. 만약 전력수요 행태가 계절적으로 차이를 보이고 특히 소비가 많은 계절에 가격에 대해 보다 탄력적으로 반응한다면 누진제의 소비절감 효과가 크다는 것으로 해석할 수 있을 것이다.

본고에서는 기존 다수의 연구에서 활용된 시계열 통계자료가 아닌 가구특성변수 및 인구구성 변화를 보다 정확히 반영할 수 있는 미시통계자료인 '가계동향조사' 자료를 이용하였다. 가구 및 인구특성에 따른 전력소비행태 비교는 동절기와 하절기의 난방과 냉방수요 특징을 반영하기 위해, 1월부터 12월까지의 월 단위로 수행한다. 가구 전력수요에 영향을 미치는 특성변수(소득수준, 가구 구성원수, 가구주 연령, 가구주 교육수준, 주택면적, 거주 주택유형 등)들을 중심으로 각각의 변수별 월간 전력소비 패턴 변화를 비교·분석한다. 전기요금제도 개편 및 에너지세제 개편, 그리고 에너지복지정책 수립 및 원활한 시행을 위해서는 이러한 기초적인 부석이 다양하게 시도될 필요가 있다

본고는 다음과 같이 구성된다. 2절에서는 주택용 전 기요금제도의 변천과정과 현행 제도, 그리고 문제점 및 개선방향을 간략히 정리한다. 3절에서는 미시통계 자료인 가계동향조사를 이용하여 가구특성 변수별 전력수요 패턴 변화 추이를 조사한다. 이러한 전력수요 행태 변화에 대한 조사는 전체 가구와 1인 가구로 나누어 수행되며, 동절기와 하절기 부하 특징을 고려하여 월 단위로 전력수요 패턴을 비교한다. 본 분석에서는 2010년부터 2014년까지 총 5년간의 가계동향조사통계를 이용하였다. 4절에서는 연구 요약 및 정책 시사점을 기술한다.

2. 주택용 전기요금 현황과 문제점

가, 주택용 전기요금제도 변화 추이2)

1964년 8월까지는 주택용 전기요금이 별도로 존재하지 않았다. 1961년 4월 16일 시행된 전기요금표를 보면 전기요금 종류는 정액전등요금, 종량전등요금, 가로등요금, 소동력요금, 대동력요금, 농사용 요금의 6개 요금으로 구분되었다. 별도의 주택용 전기요금은 1964년 9월 1일 전기요금 조정 시 처음으로 등장하였다. 주택용과 4kW 이하의 모든 수용가가 일반전력 갑의 요금을 적용받는 것으로 요금내용은 〈표 1〉과 같다. 표에서 알 수 있듯이 당시에는 기본요금이 부과되지 않았고 전력량 요금은 소비량이 높은 구간에서 전력량 요금이 오히려 감소하는 역진적인 요금제가 적용되었다. ③

²⁾ 한국전력공사, 2015,8,21, 한국전력 사이버지점/전기요금표/과거전기요금표, http://cyber.kepco.co.kr/ckepco/front/jsp/CY/E/E/CYEEHP00301,jsp, http://cyber.kepco.co.kr/ckepco/front/jsp/CY/E/E/CYEEHP00305,jsp 및 한국전력 사이버지점/제도 · 약관/일반현황/전기요금 개정 추이, http://cyber.kepco.co.kr/ckepco/front/jsp/CY/H/C/CYH CHP 00105,jsp 참고.

³⁾ 역진적 요금제는 주택용(일반전력 갑)뿐만 아니라 일반전력 을, 특고압전력에도 적용됨.

〈표 1〉 일반전력 갑 요금

(가) 최저요금은 90원으로 합니다.	(가) 최저요금은 90원으로 합니다.									
(나) 전력량 요금										
처음 3 kWh까지	90,00원									
다음 27 kWh에 대하여 kWh당	8,50원									
다음 180 kWh에 대하여 kWh당	6,50원									
210 kWh 초과분에 대하여 kWh당	5,00원									

주: 1964.9.1 기준. 단 최대전력 3kW 초과분에 대하여는 kW당 90kWh를 6.50원 적용괴량에 추가.

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

주택용에 적용된 역진적 요금제 구조는 1973년 11 월까지 지속되었다. 전력량 요금구간은 동일하였고. 다만 구간의 전력량 요금은 지속적으로 상승하였다.

1973년 12월 1일 시행된 전기요금 조정에서 한전 은 일반전력 갑 요금을 역진제에서 단일요금으로 변경 하였다. 그리고 전력량 요금을 단일요금으로 변경함과 동시에 기본요금을 새로 도입하였다. 기본요금은 호당 166,88원, 전력량 요금은 kWh당 15,53원으로 결정되 었다. 단일요금 구조는 중간에 기본요금과 전력량 요 금을 모두 인상하였지만 1년 정도 지속되었다. 주택용 요금구조는 석유파동으로 인하여 누진제로 변경되었 다. 제1차 석유파동으로 유가가 급등함에 따라 전기절 약을 도모하고 저소득층의 전기요금 부담을 경감하기 위하여 일반전력 갑 요금에 누진제를 도입하였다. 4기 본요금은 이전과 마찬가지로 단일요금을 적용하였으나 전력량 요금은 세 구간으로 구분되어 누진요금을 적용 하였다. 사용량이 50kWh까지는 kWh당 22.12원. 다 음 100kWh까지는 27.39원. 그리고 150kWh 초과 구 간에서는 35.05원의 요금을 부과하였다. 이에 따라 최

대요금과 최저요금의 비율은 1.58 수준이었다.

1975년 12월 1일 실시된 요금 조정에서 일반전력 갑 요금의 누진단계를 4단계로 확대하였고. 누진배율 (최고요금/최저요금)을 2.25배로 확대하였다.

일반전력 갑 요금이 적용되던 주택용 전기요금은 1980년 주택용 전력으로 명칭을 변경하였다. 이후 주 택용 누진요금은 환경의 변화에 따라 누진단계와 누진 배율을 조정하는 모습을 보였다. 주택용 전기요금에 변화가 발생한 것은 2002년 6월 1일 요금조정에서 주 택용 전기요금이 저압과 고압으로 구분하여 부과되면 서이다. 단독주택이나 저층 아파트의 경우에는 저압으 로 전기가 공급되지만, 일반 고층아파트에는 22.9kV 의 고압 전기가 공급되어 아파트에서 자체적으로 강압 하여 각 가구에 전력을 공급하므로 이러한 비용 차이 를 반영하여 주택용 전기요금을 저압과 고압으로 구분 하였다. 저압요금과 고압요금의 누진단계는 동일하지 만 공급의 비용 차이를 고려하여 저압의 기본요금과 전력량 요금이 고압에 비하여 높게 설계되었다.

주택용에 누진요금제가 처음으로 도입된 1974년에

^{4) 1974}년 발전설비를 보면 석유화력 비중이 65.3%, 발전량에서 중유발전이 차지하는 비중은 83.3%로 유가급등은 바로 전기요금의 인상을 초래함.

누진단계는 3단계이었고 최저요금(22.12원/kWh)과 최고요금(35.05원/kWh)의 비율인 누진배율은 1.58배였다. 기본요금은 단일요금을 적용하였다. 1975년에는 기본요금은 단일요금을 유지하였으나 전력량 요금

은 누진단계가 4단계로, 누진배율은 2.25배로 확대되었다. 이후 누진단계와 누진배율은 에너지시장 환경의 변화를 반영하여 지속적으로 조정되는 모습을 보였다. 2차 석유파동으로 국제유가가 급등하였던 1979년에는

〈표 2〉 주택용 전기요금 누진단계와 누진배율 변화 추이

조정시기	누진단계	누진율	비고
1974.12. 7	3단계	1,58백	기본요금은 단일요금
1975.12. 1	4단계	2.25배	기본요금은 단일요금
1976.11. 1	5단계	2 _. 43⊎∦	기본요금은 단일요금
1979. 3. 9	5단계	3,89백∤	기본요금은 단일요금
1979. 6.12	12단계	15.15배	기본요금은 단일요금
1979. 7.12	12단계	19,68배	기본요금은 단일요금
1980. 2. 1	9단계	13,97배	기본요금은 5단계
1981,12, 1	6단계	10.90배	기본요금은 3단계
1983. 4.22	5단계	6.34배	기본요금은 3단계
1986. 2.22	5단계	6,20世∤	기본요금은 3단계
1987. 5.28	5단계	5,85世∤	기본요금은 3단계
1988. 3.21	4단계	5,09世∦	기본요금은 3단계
1988,11,30	4단계	4 _. 73⊎∦	기본요금은 3단계
1987. 7. 1	4단계	4.21배	기본요금은 3단계
1991. 6. 1	5단계	7,00世∦	기본요금은 3단계
1992. 2. 1	5단계	7 _. 42배	기본요금은 4단계
1995. 5. 1	7단계	13.19배	기본요금은 6단계
1997. 7. 1	7단계	13,23배	기본요금은 6단계
2000.11.15	7단계	18,53배	기본요금은 6단계
2002, 6, 1	7 [[]]	저압 18,53배	714070000
2002. 6. 1	7단계	고압 15,93배	기본요금은 6단계
2004 2 1	65131	저압 11.11배	71407085174
2004. 3. 1	6단계	고압 9.5배	기본요금은 6단계
2005.12.28	6단계	저압 11,69배	714070 6514
2000,12,20	6단계	고압 9.96배	기본요금은 6단계

누진단계가 12단계까지 확대되었고 누진배율도 19.68 배까지 확대되었다. 1980년에는 누진단계와 누진배율 이 9단계와 13.97배로 축소되었고 그동안 단일요금이 적용되었던 기본요금이 5단계로 구분되어 사용량이 많 을수록 높은 기본요금을 적용하는 구조로 변하였다. 이후 누진단계와 누진배율은 축소되는 추세를 지속하 여 1987년에는 누진단계는 4단계, 누진배율은 4.21배 까지 축소되었다. 그러나 이후 누진단계와 누진배율은 다시 확대되는 추세로 전화되었고 2002년 주택용 전 기요금이 저압과 고압으로 구분되면서 저압과 고압의 누진배율은 차이를 보이고 있다. 2005년 12월 28일 이후 저압의 누진배율은 11.7배. 고압은 10.0배를 유 지하고 있다(〈표 2〉 참조).

나, 현행 주택용 전기요금제도

현행 국내 주택용 전기요금은 6단계의 누진요금제도 를 운영하고 있는데, 최저와 최고구간의 누진율은 11.7 배로 설계되었다. 또한, 주택용 전기요금은 전압에 따 라 저압요금과 고압요금으로 구분되며, 저압요금 주요 고객은 단독주택 저압 및 종합계약 아파트이며, 고압요 금 고객은 단독주택 고압 및 단일계약 아파트이다.

2014년 말 기준으로 우리나라 단독주택 가구수는 14.647(천 가구)이며. 아파트는 8.230(천 가구)로 주 택용 전기요금 대상 가구수는 총 22.877(천 가구)이 다(한국전력 사이버지점 홈페이지, 2015,8,21), 누 진구간별 가구수 비중은 사용량 구간 201~300kWh 가 30.6%로 가장 많으며. 순서대로 301~400kWh 가 23.2%, 101~200kWh가 22.6%를 점유하고 있으 며. 100kWh 이하가 18.2%를 차지한다. 400kWh 이 상인 가구수는 전체의 약 5.5%이다. 누진구간별 전 력소비량은 301~400kWh구간의 가구가 35.1%로 201~300kWh의 가구 34.1%보다 약간 더 많다. 전기 요금 비중 역시 301~400kWh 구간의 가구가 37.6% 로 201~300kWh의 가구보다 약 8.0%p 더 높다.

주택용 전기요금은 저압고객과 고압고객에 따라 동 일한 누진구간에서 적용되는 요금수준이 다르다. 아파 트는 전기공급약관 제56조에 따라 단독주택과 동일한 주거용으로 주택용 전력을 적용하나. 여러 세대가 모 여 있어 설비규모가 크고. 엘리버이터 및 난방설비 등

〈표 3〉 주택용 전기요금 누진구간별 가구 현황(2014년 말 기준)

누진	사용량 구간	가	구수	소비	ll량	전기	요금
단계	(kWh)	천 가구	비중(%)	백만 kWh	비중(%)	억 원	비중(%)
1	100 이하	4,104	18,2	171	3,3	148	2,3
2	101~200	5,112	22,6	780	15,3	673	10,5
3	201~300	6,899	30,6	1,740	34.1	1,893	29,6
4	301~400	5,239	23,2	1,790	35,1	2,406	37.6
5	401~500	983	4.4	428	8.4	785	12,3
6	500 이상	238 1.1		191	3.7	393	7.7
합계		22,575	100.0	5,101	100.0	495	100,0

공동사용 설비가 존재하기 때문에 단독주택과 다른 특징이 있다. 이에 우리나라의 경우 아파트는 계약방법에 따라 호별계약, 단일계약, 종합계약의 3가지로 구분하여 전기사용 계약방법을 결정한다. 순수 주거부분의 계약전력이 500kWh 이상일 경우 고압 이상으로 전력을 공급하고, 입주민들이 희망할 경우 호별계약으로 공급할 수 있다. 일반적으로 아파트 전기요금계약을 종합계약으로 한 경우는 저압고객으로 분류되고 이에 해당하는 전기요금 수준을 적용하며, 단일계약 아파트인 경우 고압고객으로 분류되어 이에 해당하는 전기요금 수준을 적용받는다. 5)

주택용 전력의 저압고객 가구수는 총 16,973(천 가구)로 전체 가구수의 약 75%를 차지한다. 저압고객의 누진구간별 가구수 비중을 살펴보면, 누진구간 2단계의 비중이 28.5%로 가장 많고, 순서대로 3단계 구간,

1단계 구간 4단계 구간, 그리고 5단계 구간으로 비중이 높아 전제 가구수의 누진구간별 비중 구조(〈표 3〉) 와 다르게 누진구간 1단계의 가구수가 4단계의 가구수보다 많은 특징을 보인다. 이번에는 저압고객을 누진구간별 전력사용량을 기준으로 살펴보면, 4단계가 가장 많고, 그 다음으로 3단계, 2단계 5단계, 6단계, 1단계 순으로 나타나 누진구간 1단계 전력사용량이 가장적은 특징을 보인다. 또한, 전기요금 청구액을 기준으로는 4단계가 가장 높고, 다음으로 3단계, 5단계, 2단계, 6단계, 1단계, 6단계, 1단계, 6단계, 1단계 순서이다(〈표 4〉참조〉).

주택용 전력 고압고객은 전체 가구수의 약 25%를 차지하는데, 누진구간 4단계에 포함된 가구수가 약 50.5%로 절반 이상을 차지한다. 그 다음으로는 3단계 구간의 가구수 비중이 크다. 전력사용량과 전기요금 청구액 역시 누진구간 4단계가 각각 56.5%와 60.0%

〈표 4〉 주택용 전기요금 저압고객 현황(2014년 말 기준)

누진	사용량 구간	가득	구수	소비	ll량	전기	요금
단계	(kWh)	천 가구	비중(%)	백만 kWh	비중(%)	억 원	비중(%)
1	100 이하	4,064 23.9		168	5.0	147	3,3
2	101~200	4,834	28,5	734 21,6		638	14.3
3	201~300	4,736	28.0	1,177	34.7	1,353	30.4
4	301~400	2,409	14.2	824	24.3	1,237	27.8
5	401~500	695	4.1	305	9.0	598	13.4
6	500 이상	226 1,3		184	5.4	480	10.8
합계		16,973	100.0	3,392	100.0	4,453	100.0

⁵⁾ 아파트 계약방법은 호별계약, 단일계약, 종합계약으로 분류됨. 호별계약은 아파트의 독립된 각 1호에 대하여 저압으로 전기를 공급하는 고객에게 적용되고, 단일계약 방법은 공동설비 사용량을 포함한 전체 사용전력량을 주택용 전력 적용대상 호수로 나누어서 평균 사용량을 산출하고, 이에 대한 기본요금 및 전력량 요금에 주택용 전력 적용대상 호수를 곱한 것을 주택용 전력 적용대상 전체 기본요금 및 전력량 요금으로 하는 방법임, 종합계약 방법은 아파트 1구내에 고압 이상의 전압으로 전기를 공급하고, 세대별 사용량은 단독주택과 동일 주택용 저압요금을 적용하며, 공동설비 사용량은 일반용(갑) 고압요금을 적용하여 요금을 계산하는 방법임(자료: 한국전력 사이버지점 홈페이지,(2015,8,21에서 발췌).

〈표 5〉 주택용 전기요금 고압고객 현황(2014년 말 기준)

누진	사용량 구간	가	구수	소비	ll량	전기요금		
단계	(kWh)	천 가구	비중(%)	백만 kWh	비중(%)	억 원	비중(%)	
1	100 이하	40	0.7	2	0.1	2	0,1	
2	101~200	278	5.0	47 2.7		35	1.8	
3	201~300	2,153	38.4	563	563 33,0		27.7	
4	301~400	2,830	50.5	967	56.5	1,169	60.0	
5	401~500	289	5.2	123	123 7.2		9,6	
6	500 이상	12	0.2	7	0.4	15	0,8	
한계 합계		5,602	100.0	1,710	100.0	1,947	100.0	

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

를 나타나 가장 많은 비중을 점유한다. 이러한 특징은 누진구간 3단계의 전력사용량과 전기요금 청구액이 가 장 큰 비중을 차지하는 저압고객의 경우와는 대조되는 점이다(〈표 5〉 참조).

가장 최근 개정된(2013년 11월) 전기요금 기준, 주 택용 저압 및 고압에 대한 전기요금표는 〈표 6〉에 정 리하고 있다. 주택용 저압과 고압의 누진구간별 전기 요금을 비교해 보면 고정비용 회수 차원의 기본요금은 누진구간이 높아질수록 격차가 커지며, 그 차이는 최 대 2.180원이다. 전력량 요금 역시 누진구간이 커질 수록 그 격차는 커지는데 누진구간 6단계에서는 kWh 당 134.9원의 차이가 존재하여 고압고객의 전기요금 이 동일한 누진단계에서도 저압고객보다 훨씬 적은 것 을 알 수 있다. 일레로 만일 특정 가구가 월 450kWh 의 전력을 소비한다고 가정한다면 저압고객으로 계약 한 가구의 경우 청구되는 월 전기요금은 93,695원인 반면. 고압고객의 경우 74.285원으로 저압고객이 고 압고객 보다 월간 19.410원 더 많은 전기요금을 지불

 $\langle \pm 6 \rangle$ 주택용 저압 및 고압 전기요금표(2013년 11월 \sim 현재 적용 기준)

누진구간		기본요금(원/호)		전력량 요금(원/kWh)				
十位十位	주택용 저압	주택용 고압	차이	주택용 저압	주택용 고압	차이		
100kWh 이하	410	410	0	60.7	57.6	-3.1		
101~200kWh	910 730		-180	125,9	98.9	-27.0		
201~300kWh	1,600 1,260		-340	187.9	147.3	-40.6		
301~400kWh	3,850	3,170	-680	280,6	215.6	-65.0		
401~500kWh	7,300	6,060	-1,240	417.7	325.7	-92.0		
500kWh 초과	12,940	10,760	-2,180	709.5	574.6	-134.9		

자료: 대한전기협회(2014.12), 2014년 전기연감, p. 133

〈표 7〉 주택용 저압 및 고압 전기요금 차이 분석 예시

전력사용량(월)	저압고객(원/월)	저압고객(원/월) 고압고객(원/월)			
150kWh	13,275	11,435	-1,840		
250kWh	29,655	24,275	-5,300		
350kWh	55,330	44,330	-11,000		
450kWh	93,695	74,285	-19,410		
550kWh	155,695	124,000	-31,695		

주: 부가가치세 10%와 전력산업기반기금 3.7%는 포함하지 않은 금액임.

해야 한다 6 이러한 격차는 전력소비량이 많은 수록 증 가할 것이다(〈표 7〉참조)

다. 주택용 전기요금제도 문제점

전술한 바와 같이 주택용 누진요금제는 석유파동 으로 국제유가가 급등함에 따라 소비절약을 유도하고 저소득층의 요금부담을 경감하기 위해 도입되었다.

를 반영하여 지속적으로 조정되었으나 2007년 이후 에는 동일한 누진단계와 누진배율이 유지되고 있다. 주택용 전력의 총괄위가가 145위/kWh 내외인 것으 로 추정되는데, 이를 〈표 6〉의 주택용 저압요금을 고 려하면 200kWh 이하의 소비구간에는 원가보다 낮은 요금이 적용된 것으로 보인다. 100kWh 이하의 구 간은 총괄원가의 50%에도 못 미치는 요금이 적용되 고 있다. 반면 200kWh 이상의 구간에서는 총괄위가 누진단계와 누진배율은 세계 에너지시장의 화경변화 를 크게 초과하는 요금이 적용되고 특히 500kWh를

〈표 8〉 전력소비량과 단가

소비량	기본요금+전	력량 요금(A)	A+부가가치세+기반기금				
포미당	요금(원)	단가(원/kWh)	청구액(원)	단가(원/kWh)			
100kWh	6,480	64,80	7,350	73,50			
200kWh	19,570	97.85	22,240	111,20			
300kWh	39,050	130.17	44,390	147,97			
400kWh	69,360	173.40	78,850	197,13			
500kWh	114,580	229.16	130,260	260,52			
1,000kWh	474,970	474.97	540,030	540.03			

⁶⁾ 이 추정치에는 부가가치세 10%와 전력산업기반기금 3,7%가 포함되지 않음.

초과하는 구간의 요금은 총괄원가에 거의 5배나 되는 요금이 적용된다.

주택용 저압요금을 적용하여 전력사용량별 단가를 계 산한 결과는 〈표 8〉에 정리되어 있다. 표에서 단가는 두 가지로 구부되어 있는데 하나는 기보요금과 전력량 요 금만을 반영하여 계산한 것이고 다른 하나는 부가가치 세와 전력산업 기반기금을 포함하여 계산한 것이다. 기 본요금과 전력량 요금만을 고려한 단가를 기준으로 보 면 월평균 전력소비가 300kWh인 가구의 경우는 총괄 원가의 90% 정도의 단가를 지불하는 것으로 추정된다.

그런데 이렇게 과도한 누진요금은 당초의 도입 목 적과는 다른 부작용을 초래한다. 〈표 9〉는 저압 및 고 압고객을 모두 포함한 누진단계별 전력소비 가구분포 를 보여주고 있는데, 2014년의 경우 월평균 전력소비 가 100kWh 이하인 가구는 4,104천 가구로 전체 수용 가의 18.2%를 차지한다. 총괄원가 이하의 요금을 지불 하는 월평균 전력소비가 300kWh 이하인 가구는 누적 기준으로 71.4%이다. 이러한 결과는 저소득층이 아닌 많은 가구가 원가 이하로 전력을 소비하고 있음을 보 여준다. 특히 기초생활수급가구가 100만 가구에도 크 게 못 미치는 수준임을 고려할 때 월평균 전력소비가 100kWh 이하인 4.104천 가구의 상당수는 누진요금에 따른 무임승차의 혜택을 보고 있는 것으로 판단된다.

〈표 10〉은 가구당 월평균 전력소비와 월평균 300 kWh 초과사용 가구의 비중 추이를 보여준다. 가구당 월평균 전력소비는 지속적으로 증가하고 있으며 총괄 원가 이상의 가격으로 전력을 구입하는 가구인 월평 균 300kWh 초과사용 가구의 비중도 빠르게 증가하여 2013년에는 31.9%까지 높아졌다. 2014년에는 기온 의 영향으로 가구당 전력소비가 감소하여 월평균 소비 와 300kWh 초과사용 가구의 비중이 2013년보다 감 소한 것으로 나타났다. 그런데 이처럼 가구당 전력소 비가 증가하는 경우 증가 추세를 반영한 누진구간이나 누진배율의 조정이 필요하였음에도 불구하고 2006년 이후 전혀 변화가 없었다. 적정 원가를 반영하는 요금 구조보다 소비절약을 강조하고 있기 때문이다. 그러나 현재와 같은 과도한 누진요금 구조가 소비절약에 어느 정도 기여하고 있는지는 불분명하다.

〈표 9〉 누진단계별 가구분포(2014년 기준)

누진	사용량 구간	가	구수	판매량			
단계	(kWh)	천 가구	%(2013년)	백만 kWh	%		
1	100 이하	4,104	18.2(16.9)	171	3,3		
2	2 101~200 5,112 22.6(21.9)		780	15,3			
3	201~300	6,899	30,6(29,4)	1,740	34.1		
4	301~400	5,239	23.2(24.1)	1,790	35,1		
5	401~500	983	4.4 (6.1)	428	8.4		
6	501 이상	238	1.1 (1.7)	191	3,7		
합계		22,575	100.0	5,101	100.0		

주: 가구별 월평균 사용량 226kWh/28,590원(기금,부가세 포함). 2013년 234kWh, 2012년 241kWh.

(표 10) 가구당 전력소비 주요지표

(단위: kWh, %)

구분	1998	2002	2006	2008	2013	2014
가구당 월평균 사용량	163	188	220	229	234	226
300kWh 초과사용 가구 비중	5.8	12.2	22.6	27.7	31.9	28.7

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

3. 주택용 전력수요 계절별 패턴 분석

가. 분석자료: 가계동향조사⁷⁾

보고에서는 분석에 활용할 미시통계자료로 통계청이 제공하는 가계동향조사 자료를 이용하고 있다. 가계 동향조사는 전국 거주 가구를 대상으로 매월 가계부문 의 수입과 지출규모, 구조 및 추이를 설문조사를 통해 구축한 순환적인 횡단면 통계자료(Rotational crosssectional Data)이다. 순환적인 횡단면자료는 동일 가 구를 일정 기간 설문조사대상에 포함하고, 일정 기간 이 지나면 신규 조사대상을 기존 조사대상 가구와 교 체하는 방식으로 구축한 자료를 의미한다. 따라서 일 정 기간에는 동일 가구의 수입 및 지출변화 정보를 내 포하고 있으므로 개념적으로는 패널 통계 자료로 볼 수도 있다. 그러나 실제로 동일 가구의 정보가 2년 혹 은 3년에 거쳐 조사되지 않고 있어서, 연 단위로는 패 널 통계 자료라 볼 수 없고. 월 단위에서는 패널 통계 (표본 수는 다수이나, 기간이 짧은 일종의 단기패널 (Short panel data)로 간주할 수 있다.

본고에서 가계동향조사를 분석 자료로 이용하는 이유는 첫째, 표본수가 상당히 크기 때문에 보다 효율적인 추정량을 도출할 수 있다. 둘째는 가계동향조사에

는 가구별 인구 특성 정보와 주거 특성 정보, 그리고 가장 중요한 월별 전기요금 지출액에 대한 정보를 제 공한다는 점이다. 우리나라의 경우 독점 전력판매사업 자인 한국전력은 개인정보 보호법에 의거하여 가구별 전력소비 정보를 일반에 공개·공유하지 않는다. 따라서 가구별 실제 전력소비량과 전기요금지출액 정보는 설문조사 외에는 구축이 어렵다. 아울러 가계동향조사에서는 전력에 대한 정보 외에 도시가스와 난방에 대한 정보도 제공하여 전력소비와 대체관계에 있는 타에너지원의 영향도 동시에 고려할 수 있다는 점에서 큰 장점이 있다.

본고에서는 2010년부터 2014년까지의 총 5년간의 월별 횡단면통계자료를 이용하여 월별 주택용 전력수 요 패턴을 분석한다. 월별 전력수요 패턴 분석은 소득 분위별 가구 소득, 가구유형별, 가구 구성원수별, 주택 유형별, 주택면적별, 가구주 교육수준 및 연령대별로 세분화하여 수행하였다. 아울러 본고에서는 전체 가구 의 전력소비 패턴 분석뿐 아니라, 최근 증가하고 있는 1인 가구의 전력소비 특성을 분석할 요량으로 1인 가 구만을 대상으로 한 특성 변수별 패턴 분석도 함께 고 려하였다.

분석대상인 2010년 1월부터 2014년 12월까지 월 별 관측수는 다음의 〈표 11〉에 정리하고 있는데, 연도

⁷⁾ 통계청(2009, 2010, 2011, 2012, 2013, 2014), 가계동향조사 통계자료, http://kostat.go,kr 참고.

〈표 11〉 2010~2014년 월별 표본수

구분	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	합계
2010	6,879	6,912	6,882	6,871	6,948	7,008	6,908	6,865	6,927	6,934	6,909	6,832	82,875
2011	6,867	6,870	6,804	6,744	6,786	6,820	6,809	6,772	6,869	6,939	6,880	6,724	81,884
2012	6,760	6,783	6,682	6,618	6,643	6,679	6,676	6,641	6,705	6,814	6,770	6,695	80,466
2013	6,682	6,701	6,640	6,572	6,606	6,629	6,613	6,547	6,628	6,636	6,493	6,402	79,149
2014	6,372	6,421	6,352	6,267	6,319	6,396	6,374	6,395	6,498	6,524	6,468	6,377	76,763
소계	33,560	33,687	33,360	33,072	33,302	33,532	33,380	33,220	33,627	33,847	33,520	33,030	401,137

자료: 통계청(2010, 2011, 2012, 2013, 2014), 가계동향조사

마다 약간의 차이가 있으나, 연간 관측수는 개략적으 로 80.000개 내외이고. 월 단위로는 6.000 ~ 7.000 개 내외이다. 월별 전력소비량이 0이거나 1.000kWh 이상인 가구는 연구대상에서 제외하였다. 8 결과적으 로 2010년부터 2014년의 합동자료의 총 관측수는 401.137이다.

나. 가구특성 변수별 전력소비 패턴 비교 · 분석

1) 전체 가구 전력소비 패턴 분석

〈표 12〉는 2010년부터 2014년까지의 합동자료 (pooled data)를 이용하여 도출한 월별 전력소비량 추 이이다. 여기에서 주의해야 할 사항은 월별 전기요금지 출액은 이전 월에 사용한 전력소비량에 대한 전기요금 이므로. 월평균 전력소비량은 그 이전 월의 전력소비량 이라는 점이다. 예를 들어 〈표 12〉의 2010년 1월의 전 력소비량 평균이 320kWh라면, 이는 실제로 2009년 12월에 사용한 전력소비량을 의미하는 것이다.

⟨표 12⟩에 의하면, 주택용 전력수요는 동절기 및 하 절기에 해당되는 월에서 높은 경향을 보이고. 2013년 을 제외한 2010, 2011, 2012, 2014년도에는 동절기 에 더 많은 전력을 소비하는 것으로 나타난다. 이는 동 절기 난방수요에 기인한 것으로 추론된다. 연도별로 월간 최대 전력소비량 값과 최소 소비량의 차이를 보 면 2010년의 경우 45kWh, 2011년 54kWh, 2012년 51kWh. 2013년 53kWh. 2014년 50kWh로 분석되 고 있어 연도별로 월간 최대 전력소비와 최소 전력소 비 격차는 50kWh 내외이다.

〈표 13〉은 2010년부터 2014년까지 합동자료 (pooled data)를 이용하여 도출한 소득분위별 월평 균 전력소비량 추이를 보여주고 있고. 〈표 14〉~〈표 18〉은 2010년부터 2014년 각 연도의 소득분위별 월 평균 전력소비량 추이를 비교하고 있다. 〈표 14〉에 따 르면, 일반적으로 소득이 높을수록 전력소비도 많아진 다. 소득이 가장 높은 10분위의 가구는 겨울철 난방 전

⁸⁾ 본고에서는 이상치(outliers)일 가능성이 높은 월별 전력소비량이 0인 가구와 1,000kWh 이상인 가구는 분석에서 제외함, 2010년부터 2014년간의 합동자료(pooled data) 에서 전력소비량이 0인 표본은 총 8,190개임.

〈표 12〉 연도별 월평균 전력소비량 추이(2010년~2014년, 합동자료)

(단위: kWh)

구분	관측 수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
2010	82,875	320	330	317	300	296	285	286	308	330	305	292	306	306	45
2011	81,884	326	340	322	300	298	286	286	303	311	293	289	304	305	54
2012	80,466	321	334	324	307	298	283	285	311	331	294	288	307	307	51
2013	79,149	324	330	314	296	294	280	284	310	333	291	283	301	303	53
2014	76,763	312	324	308	290	283	274	276	290	294	277	278	293	292	50
평균/소계	401,137	321	331	317	299	294	282	283	305	320	292	286	302	303	50

주: '최대-최소 차이'는 전력소비량이 가장 많은 월과 적은 월의 차이를 의미함.

력소비보다 여름철 난방소비가 더 많은 것으로 조사되 었고, 나머지 소득분위 가구는 동절기 전력소비가 가 장 많다. 다만, 9월의 평균 전력소비량(실제 8월 소 비량)과 2월의 평균 소비량(실제 1월 소비량)의 차이 를 소득분위로 살펴보면, 소득분위가 높을수록, 이러 한 차이가 감소한다. 이는 소득수준이 높을수록 난방 보다는 냉방에 대한 수요가 많고, 그 반대의 경우 냉 방수요가 더 크다는 사실을 시사한다. 전력소비가 가 장 낮은 월은 6월 또는 7월로 나타나는데, 전기요금고 지서가 그 이전 달의 전력소비량 정산이므로 전력소비 가 가장 적은 월은 5월 혹은 6월이 된다. 월평균 전력 소비가 가장 높은 월과 낮은 월의 차이는 소득분위가 변함에 따라 일정한 패턴을 형성하지 않으며, 개략적 으로 50kWh 내외의 차가 발생한다. 그러나 1분위 소 득계층과 10분위 소득계층 간의 월평균 전력수요는 약 131kWh의 차이가 발생한다. 소득이 5분위 이상인 가 구에서는 월평균 전력소비가 300kWh를 초과하고 전 체 월평균 전력소비는 303kWh이다.

소득분위별 전력수요량을 개별 연도별로 살펴보면, 2010년의 경우 1분위 소득계층에서 5분위 계층까지는 동절기 난방 전력수요가 많은 것으로 조사되었고, 6분 위 계층에서 10분위 계층까지는 하절기 냉방수요가 더 많은 것으로 나타난다. 월평균 전력수요의 최대와 최 소 차이는 그리 높은 수준은 아니나. 1분위 소득계층 과 10분위 소득계층의 전력수요 격차는 상대적으로 높 다(132kWh). 2011년의 경우, 소득분위에 상관없이 월평균 전력수요가 가장 많은 계절은 동절기로 조사되 어 2010년의 소득분위에 따른 월별 전력수요 패턴은 다른 양상을 보인다. 2010년과 마찬가지로 최저 소득 계층과 최고 소득계층 간의 전력수요 차이는 크게 나 타난다. 2012년의 경우 5분위, 8분위, 9분위, 10분위 소득 계층은 하절기에 전력소비가 가장 많았고. 나머 지 소득분위 계층은 동절기가 가장 많다. 2013년도는 2010년과 유사하게 6분위 소득계층 이상에서 하절기 전력소비량이 가장 많고. 1분위~5분위 소득계층은 겨 울철 전력수요가 가장 많다. 2014년도의 경우 모든 소 득계층에서 동절기 전력수요가 가장 많다. 가계동향조 사 자료를 이용하여 분석한 소득분위별 전력수요 패턴 을 종합하면, 소득수준이 높을수록 전력수요도 증가하 여, 이 두 변수 사이에는 정(+)의 상관이 존재할 가능 성이 크다. 다만, 소득이 높은 가구일수록 겨울철 난방 수요보다는 여름철 냉방수요가 더 많아. 소득이 높은

〈표 13〉 소득분위별 월평균 전력소비량 추이(2010년~2014년 합동자료)

(단위: kWh)

소득 분위	관측 수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
1분위	40,114	255	265	249	236	230	218	215	229	235	221	218	234	234	50
2분위	40,114	283	291	278	261	253	243	238	253	258	244	244	261	259	53
3분위	40,114	299	308	293	275	267	254	254	273	284	263	263	277	276	55
4분위	40,130	309	319	305	287	282	268	272	292	303	276	273	291	290	51
5분위	40,097	320	332	315	299	291	279	285	307	321	292	287	301	302	52
6분위	40,114	330	340	328	309	304	291	294	321	334	305	295	312	314	49
7분위	40,113	338	349	337	316	313	298	301	325	339	311	305	319	321	51
8분위	40,115	340	353	343	321	318	306	308	334	348	318	310	326	327	47
9분위	40,113	355	369	358	335	333	315	320	347	363	335	322	336	341	54
10분위	40,113	374	390	382	355	358	344	344	371	391	361	348	355	364	47
소계/평균	401,137	320	332	319	299	295	282	283	305	317	293	286	301	303	51

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

〈표 14〉 2010년도 소득분위별 월평균 전력소비량 추이

(단위: kWh)

소득 분위	관측 수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
1분위	8,289	255	260	245	238	231	224	216	235	245	232	221	239	237	44
2분위	8,286	283	287	277	265	255	246	241	255	267	253	251	267	262	46
3분위	8,288	301	312	302	281	267	258	259	280	294	271	270	281	281	54
4분위	8,287	307	315	301	286	286	270	272	293	315	293	276	296	293	45
5분위	8,288	318	329	314	301	290	280	286	309	328	304	289	302	304	49
6분위	8,287	326	341	322	306	304	294	298	323	342	315	301	312	315	48
7분위	8,288	334	343	340	317	314	298	299	325	353	325	312	322	323	55
8분위	8,287	354	349	343	323	323	308	309	338	358	333	318	331	332	50
9분위	8,288	362	369	358	340	336	326	325	353	374	358	334	342	348	49
10분위	8,287	377	385	385	348	362	344	350	373	404	380	352	362	368	59
소계/평균	82,875	322	329	319	301	297	285	285	308	328	306	292	305	306	50

〈표 15〉 2011년도 소득분위별 월평균 전력소비량 추이

(단위: kWh)

소득 분위	관측 수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
1분위	8,190	263	278	260	241	235	222	217	227	232	222	220	232	237	61
2분위	8,187	288	302	282	260	254	245	244	256	254	248	247	260	262	58
3분위	8,189	305	314	294	277	272	258	255	275	276	267	262	276	278	60
4분위	8,188	311	328	306	285	285	267	273	285	297	270	276	291	290	62
5분위	8,188	327	336	320	303	295	284	286	307	307	294	289	301	304	53
6분위	8,189	333	346	332	313	308	298	299	320	325	303	298	313	316	48
7분위	8,188	338	353	341	318	317	302	308	326	328	311	307	322	323	52
8분위	8,189	345	367	354	327	325	313	308	333	342	321	317	331	332	59
9분위	8,188	360	381	366	335	339	320	323	336	351	334	324	335	342	60
10분위	8,188	379	394	383	350	352	346	345	374	378	364	357	361	365	49
소계/평균	81884	325	340	324	301	298	285	286	304	309	293	290	302	305	56

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

〈표 16〉 2012년도 소득분위별 월평균 전력소비량 추이

(단위: kWh)

소득 분위	관측 수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
1분위	8,047	258	264	255	237	229	221	217	229	236	219	219	239	235	48
2분위	8,047	274	292	282	265	257	242	240	259	268	250	252	270	263	52
3분위	8,046	300	309	296	284	267	254	251	281	288	264	262	282	278	58
4분위	8,047	308	322	312	294	285	267	277	296	313	277	275	298	294	55
5분위	8,083	323	334	321	304	296	281	283	314	338	293	286	305	307	57
6분위	8,010	331	344	340	322	309	294	295	328	340	308	298	316	319	50
7분위	8,047	339	359	343	329	316	300	303	333	348	314	305	328	326	59
8분위	8,046	336	361	348	328	323	305	312	343	362	321	312	332	332	57
9분위	8,047	353	375	365	349	337	316	317	353	376	334	322	337	344	60
10분위	8,046	375	397	393	368	366	345	346	384	402	361	354	356	371	58
소계/평균	80,466	320	336	326	308	299	282	284	312	327	294	289	306	307	55

〈표 17〉 2013년도 소득분위별 월평균 전력소비량 추이

(단위: kWh)

소득 분위	관측 수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
1분위	7,915	263	266	247	236	234	214	214	235	240	217	213	229	234	53
2분위	7,915	288	289	279	260	257	242	240	254	264	243	240	259	260	49
3분위	7,921	300	305	286	267	263	250	257	278	296	264	261	279	276	55
4분위	7,920	316	321	306	281	278	272	272	301	319	279	273	288	292	49
5분위	7,904	323	335	310	298	289	276	287	312	333	287	285	304	303	59
6분위	7,915	335	334	331	308	306	288	299	325	350	307	290	312	315	62
7분위	7,915	346	347	333	312	311	299	297	328	353	307	302	314	321	55
8분위	7,915	343	345	341	317	320	309	308	336	360	316	307	324	327	54
9분위	7,915	358	359	353	330	336	312	323	359	377	337	319	332	341	65
10분위	7,914	381	385	377	355	356	343	342	380	409	361	341	352	365	69
소계/평균	79,149	325	329	316	296	295	280	284	311	330	292	283	299	303	57

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

〈표 18〉 2014년도 소득분위별 월평균 전력소비량 추이

(단위: kWh)

소득 분위	관측 수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
1분위	7,677	240	254	234	226	220	210	212	215	217	213	214	230	224	44
2분위	7,676	278	284	271	253	248	241	225	242	242	226	230	248	249	59
3분위	7,680	289	304	285	268	260	249	249	254	264	248	258	271	267	56
4분위	7,684	302	309	301	282	273	261	265	280	278	266	268	281	281	48
5분위	7,665	305	323	307	288	285	275	280	298	296	281	280	297	293	48
6분위	7,676	329	341	319	293	290	283	281	302	308	285	286	304	302	59
7분위	7,677	329	337	321	305	297	286	292	312	310	293	297	308	307	51
8분위	7,676	327	344	337	313	307	297	303	317	318	301	297	315	314	46
9분위	7,676	344	364	347	326	321	307	315	332	333	319	315	333	329	57
10분위	7,676	358	388	373	351	350	340	335	346	355	338	334	343	351	54
소계/평균	76,763	310	325	310	290	285	275	276	290	292	277	278	293	292	52

〈표 19〉 가구유형별 월평균 전력소비량 추이(2010년~2014년 합동자료)

(단위: kWh)

가구유형	관측수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
노인가구	54,144	270	280	266	250	245	234	229	242	250	237	238	254	250	51
모자가구	13,433	311	321	314	293	292	279	281	305	326	293	284	301	300	47
1인가구	58,517	221	228	218	206	201	193	193	204	211	198	198	207	206	35
맞벌이가구	123,071	345	357	343	321	316	304	307	332	349	316	310	326	327	54
일반가구	212,975	320	330	315	298	293	281	283	306	321	292	285	302	302	50
소계/평균	462,140	293	303	291	273	269	258	259	278	291	267	263	278	277	47

자료: 한국전력 사이버지점 홈페이지, 2015,8,21

가구에서는 월평균 최대 전력수요량은 여름철에 발생 한다.

⟨표 19⟩는 가구 유형별 전력소비량을 비교하고 있 다. 자료는 2010년부터 2014년까지의 5개년 합동 자 료를 이용하였다. 가계동향조사의 분류기준에서는 가 구유형은 노인 가구, 모자 가구, 1인 가구, 맞벌이 가 구. 일반 가구로 분류하고 있다. 노인 가구는 '18세 이 상 65세 미만 가구원을 포함하지 않고. 가구원 중 1인 이상이 65세 이상 노인인 가구'로 정의되어. 노인 가 구 중 일부 표본은 1인 가구에도 포함된다.⁹⁾ 〈표 19〉 에 의하면, 월평균 전력소비량이 가장 많은 가구는 맞 벌이 가구이고. 가장 낮은 가구는 1인 가구로 조사되 었다. 모자 가구의 경우 월평균 전력수요가 하절기 에 가장 많고. 나머지 가구유형은 동절기에 전력수요 가 가장 많다. 가구유형별로 월평균 전력수요 최대와 최소의 차이는 맞벌이 가구가 가장 크게 나타나며, 1 인 가구가 가장 작게 조사되었다. 이는 상대적으로 1 인 가구의 전력소비 패턴이 맞벌이 가구 혹은 다른 가 구유형 대비 평탄하다는 것을 의미한다. 1인 가구의 경우 월평균 전력소비량이 206kWh로 낮은 소비 행태를 보이지만, 맞벌이 가구의 월평균 전력소비량은 327kWh로 1인 가구대비 약 121kWh 더 많은 전력을 소비하고 있다.

《표 20》은 가구 구성원수별 월평균 전력소비량을 비교한 것이다. 가구 구성원수가 많을수록 전력소비량도 증가하고 있어, 가구 구성원과 전력소비는 양(+)의 상관관계가 강하게 나타날 수 가능성이 크다. 가구 구성원수가 3인 이하의 경우, 전력소비는 동절기에 가장 많게 나타나고 있고, 4인 및 6인 가구의 경우 하절기 전력수요가 가장 많다. 7인 이상의 가구의 경우 표본수가 매우 작아, 대표성이 의심되므로 하절기와 동절기 중어느 계절에 전력소비가 가장 크게 나타나는지에 대해서 단정하기 어렵다.

《표 21》은 주택 유형별 월평균 전력소비량을 비교하고 있는데, 분류기준은 앞서 기술 통계량 설명부분에서 구분한 주택유형을 단독주택(다가구주택 포함). 아

⁹⁾ 통계청, 가계동향조사 이용자 가이드, 2011.8 참고

〈표 20〉 가구 구성원수별 월평균 전력소비량 추이(2010년~2014년 합동자료)

(단위: kWh)

가구 구성원수	관측수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
1	58,517	221	228	218	206	201	193	193	204	211	198	198	207	206	35
2	114,171	308	320	307	287	282	269	268	286	298	278	275	292	289	52
3	96,765	338	348	335	317	312	299	301	326	344	311	304	322	321	49
4	101,380	353	365	350	330	327	315	320	346	368	330	319	336	338	53
5	25,666	374	385	369	349	344	330	333	362	384	344	334	354	355	56
6	3,618	408	418	410	384	381	368	370	400	420	386	372	391	392	52
7	871	423	407	393	380	374	355	374	391	406	376	370	401	388	69
8	115	446	428	414	481	474	484	476	491	493	439	477	460	464	79
9	32	646	459	432	387	389	378	394	430	434	393	369	415	427	277
소계/평균	401,135	391	373	359	347	343	332	336	359	373	339	335	353	353	80

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

파트, 연립 및 다세대(빌라 및 맨션), 기타(비거주용 건 물 내 주택 및 오피스텔)로 재구성하였다. 주택유형에 서 가장 큰 비중은 아파트가 차지하며(전체의 51%) 다 음으로 단독주택, 연립 및 다세대, 기타 순이다. 아파 트 거주자는 주택용 전기요금 체계에서 대부분 고압요 금을 적용받으며, 나머지 주택유형은 저압요금을 적용 받는다. 주택유형 중 아파트 거주자의 전력소비가 가 장 많으며, 기타 주거유형이 가장 적게 나타났다. 주택 유형 중 아파트 거주자의 전력소비량이 가장 큰 이유 는 아파트 거주자의 소득수준이 상대적으로 높기 때문 이다 10)

단독주택과 연립 및 다세대의 경우 동절기의 월평균 전력수요가 가장 많고. 아파트와 기타는 하절기 전력 수요가 가장 많다. 전력수요가 가장 많은 아파트와 가 장 적은 기타 유형의 월평균 전력수요 차이는 45kWh 로, 그리 큰 차이가 발생하지는 않는다.

⟨표 22⟩는 주택면적별 전력소비량 추이를 비교하고 있다. 주택면적 단위는 1.0㎡가 아닌 3.3㎡(평)로 구 분하였다. 분석에 따르면, 주택면적과 월평균 전력수 요는 비례하는 경향이 강하다. 또한, 주택면적에 관계 없이 동절기에 전력수요가 가장 많다. 50평 이상인 주 택의 월평균 전력소비량은 10평 이하 주택의 전력 수 요량보다 217kWh 더 높게 나타나. 주택면적은 전력 소비에 매우 큰 영향을 미치는 요인 중 하나라고 볼 수 있다. 더하여 주택면적이 클수록 월간 최대와 최 소 전력수요 격차가 커짐을 확인할 수 있다. 10평 이

^{10) 2010}년부터 22014년까지의 합동자료에 따르면, 아파트 거주자의 월평균 소득은 3,752,581원으로 가장 높고, 기타 유형이 2,850,514원, 연립 및 다세대가 2,850,418 원, 그리고 단독주택이 2,337,096으로 가장 낮게 나타남.

〈표 21〉 주택유형별 월평균 전력소비량 추이(2010년~2014년 합동자료)

(단위: kWh)

주택유형	관측수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
단독주택 (다가구주택 포함)	120,234	318	328	307	289	277	261	256	278	283	262	269	292	285	72
아파트	203,074	331	344	335	313	314	303	307	325	349	320	304	317	322	47
연립 및 다세대 (빌라, 맨션)	41,698	305	312	290	282	272	263	265	294	298	266	269	286	283	48
기타(비거주용 건물 내 주택, 오피스텔	36,129	290	295	280	272	265	256	264	293	300	265	263	274	276	44
2010~2014 평균	401,135	311	320	303	289	282	271	273	297	308	278	276	292	292	53

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

〈표 22〉 주택면적별 월평균 전력소비량 추이(2010년~2014년 합동자료)

(단위: kWh)

										,	,	,	,		(단위: kWh)
주택면적	관측수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
10평 미만	10,876	210	216	205	196	193	183	186	194	198	186	187	196	196	33
10평 이상 20평 미만	167,837	285	293	281	266	262	252	254	274	287	261	255	267	270	41
20평 이상 30평 미만	177,981	343	355	338	318	313	300	302	324	342	311	305	323	323	55
30평 이상 40평 미만	34,640	390	408	390	360	352	337	337	358	377	348	343	364	364	71
40평 이상 50평 미만	7,820	430	446	434	397	389	372	370	395	414	385	375	401	401	75
50평 이상	1,983	462	474	443	414	402	377	386	403	418	376	382	412	412	98
평균	401,137	353	365	349	325	319	304	306	325	339	311	308	327	328	62

자료: 한국전력 사이버지점 홈페이지, 2015,8,21

상 20평 미만인 주택의 최대-최소 월간 전력수요 차이는 41kWh이고, 20평 이상 30평 미만은 55kWh, 30평 이상 40평 미만은 71kWh, 40평 이상 50평 미만은

75kWh, 50평 이상은 98kWh로 주택면적이 증가함에 따라 월간 최대-최소 전력수요 차이도 증가한다.

〈표 23〉은 가구주 교육수준별 전력소비량 추이를 보

⟨표 23⟩ 가구주 교육수준별 월평균 전력소비량 추이(2010년~2014년 합동자료)

(단위: kWh)

가구주 교육수준	관측수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
고졸 이하	254,331	315	326	311	294	287	275	274	294	306	282	279	296	295	52
전문대	42,608	321	330	317	299	296	284	288	315	334	299	288	304	306	51
대학교(4년제)	87,276	331	342	329	308	307	296	301	324	345	311	299	315	317	49
대학원(석 · 박사)	16,922	348	361	349	324	323	312	321	344	366	328	313	326	334	54
평균	401,137	329	340	326	306	303	291	296	319	338	305	295	310	313	51

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

여준다. 가구주 교육수준은 고졸 이하. 전문대 졸업. 대학교 졸업(4년제), 대학원 졸업(석·박사)으로 재구 분하였다. 교육수준에 따른 전력수요 패턴을 보면, 가 구주의 교육수준이 높을수록 월평균 전력소비도 증가 한다. 이는 통상적으로 교육수준이 높을수록 주택용 전기요금제도와 누진제도에 대한 이해도가 높고. 절약

성향도 강하게 나타나. 전력소비도 크지 않을 것이라 는 경제학의 일반적인 가설과는 다른 결과이다. 이는 교육수준이 높은 가구일수록 소득수준도 높아. 소득효 과가 대체 효과를 압도하기 때문으로 발생하는 현상으 로 추론된다. 가구주 교육수준이 고졸 이하의 경우 동 절기 전력수요가 가장 높고, 전문대 졸업, 4년제 대학

〈표 24〉 가구주 연령대별 월평균 전력소비량 추이(2010년~2014년 합동자료)

(단위: kWh)

가구주 연령	관측수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
20세 미만	6,688	329	341	327	307	297	285	286	300	311	296	291	309	307	56
20세 이상 30세 미만	10,090	262	268	255	243	239	226	231	254	260	233	227	241	245	42
30세 이상 40세 미만	79,446	307	315	302	287	285	273	280	305	324	288	277	291	294	50
40세 이상 50세 미만	109,489	340	352	338	317	314	302	306	331	350	316	306	322	324	50
50세 이상 60세 미만	90,869	337	350	335	314	308	294	296	316	330	304	301	318	317	55
60세 이상	104,555	302	312	296	279	273	261	258	273	284	266	265	283	279	55
평균	401,137	313	323	309	291	286	274	276	297	310	284	278	294	294	51

졸업 및 대학원 졸업인 가구는 하절기 전력수요가 많다. 가구주 교육수준별 월간 최대-최소 전력수요 격차는 50kWh 내외로 그리 크지 않고, 교육수준이 높을수록 이러한 격차가 증가하지도 않는다.

《표 24》는 가구주 연령대별 전력소비량 추이를 비교한 것이다. 연령구분은 가구주 연령이 20세 미만인 가구, 20세 이상 30세 미만인 가구, 30세 이상 40세 미만인 가구, 40세 이상 50세 미만인 가구, 50세 이상 60세 이하의 가구, 그리고 60세 이상인 가구로 재구분하여 각각의 연령대별로 전력소비 추이를 비교·분석하였다. 가구주 연령대별 월평균 전력소비는 전형적인 역 U-자형 패턴을 보인다. 즉, 가구주 연령대가 50세 미만까지 전력소비가 계속 증가하나, 그 이후부터는 감소하는 경향을 보인다. 가구주 연령이 30세 미만 40세 이상인 경우에만 하절기에 전력소비가 가장많고, 그 외의 연령대에서는 동절기 전력수요가 많게나타난다. 연령대별 월간 최대-최소 전력수요 차이는 50kWh 내외로, 연령대별 월간 최대-최소 전력수요 차이는 50kWh 내외로, 연령대별 월간 최대-최소 전력수요 차이에 대한 일반화된 패턴은 발견하지 못했다.

이상의 가구특성 변수별 전력소비 추이 비교·분석 결과를 요약하면, 전력소비는 소득분위가 높을수록 증 가하는 경향이 뚜렷하며, 상대적으로 소득이 높은 가 구에서는 하절기 냉방수요가 동절기 난방수요보다 더 크게 나타난다. 가구유형별로 보면 맞벌이 가구의 전 력소비가 가장 많으며, 1인 가구의 전력소비가 가장 적 다. 가구 구성원수와 전력소비는 정(+)의 상관관계가 강하게 존재하며, 주택면적 역시 전력소비와 정(+)의 관계가 있다. 특히 주택면적이 증가할수록 전력소비도 증가한다. 전력소비가 가장 높은 주택유형은 아파트로 조사되었고, 아파트 거주자의 경우 하절기 전력소비가 동절기보다 더 많다. 교육수준이 높을수록 전력소비도 높게 나타나고 있으며, 가구주가 전문대 이상인 가구 는 하절기 전력수요가 동절기보다 더 많게 나타난다. 연령구분에 따른 전력소비 추이는 전형적인 역 U자형 패턴을 보이며, 특히 가구주 연령이 30세 이상에서 40 세 미만의 가구는 동절기보다 하절기에 전력수요가 가 장 많다.

2) 1인 가구 전력소비 패턴 분석

본고에서는 최근 가구구성 유형 중 1인 가구 비중이 증가하는 현상을 반영하여, 이 가구의 특성별 전력소 비량 변화 추이를 살펴본다.

《표 25〉는 1인 가구의 소득분위별 월평균 전력소비 량을 2010년부터 2014년간의 합동자료를 이용하여 정리한 것이다. 1인 가구의 경우 소득수준과 전력소비 량의 정(+)의 관계가 불명확한 특징을 보인다. 또한, 1인 가구의 경우 월간 최대와 최소 평균 전력소비량의 차이가 전체 가구의 차이와 비교해서 상대적으로 낮은 수준을 보인다(전체 가구: 50kWh 내외, 1인 가구: 40kWh 내외). 1인 가구는 모든 소득분위에서 동절기 전력소비량이 가장 높게 나타나고 있어, 전체 가구의 소득분위별 전력소비량 패턴과 차이를 보인다. 월평균 전력소비의 최대와 최소 격차는 소득분위가 높아진다고 해서, 더 커지는 추이는 아니며, 격차 수준의 평균은 38kWh로 월평균 전력소비가 최대인 월과 최소인 월의 차이는 그리 크지 않다.

《표 26》은 1인 가구의 주택유형별 월평균 전력소비 량 추이를 비교한 것이다. 주택유형 중 단독주택 비중이 가장 크며, 아파트, 연립 및 다세대, 기타 순이다. 전력수요는 동절기에 최대치를 보여, 난방수요가 냉방수요보다 더 많은 것으로 추론된다. 주택유형별 전력소비량 격차는 크지 않고, 월평균 전력소비의 최대와 최소 격차 역시 크지 않음을 확인할 수 있다.

〈표 25〉 1인 가구 소득분위별 월평균 전력소비량 추이(2010년~2014년 합동자료)

(단위: 원/kWh)

소득분위	관측수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
1분위	5,852	216	220	212	208	202	192	191	198	206	199	193	202	203	29
2분위	5,852	193	200	190	189	183	174	169	187	193	177	177	186	185	31
3분위	5,853	216	227	206	191	184	177	175	184	189	179	186	198	193	52
4분위	5,850	218	226	219	205	199	189	184	193	198	192	193	204	202	42
5분위	5,852	218	225	214	203	205	200	192	201	209	200	199	211	206	33
6분위	5,852	223	230	218	208	205	197	197	205	211	199	199	206	208	33
7분위	5,851	229	241	218	212	201	194	198	211	216	200	204	212	211	47
8분위	5,852	228	236	227	206	202	197	203	213	220	205	203	209	212	39
9분위	5,852	232	234	231	213	206	198	200	208	222	201	205	215	214	37
10분위	5,851	235	245	248	224	223	213	218	245	241	229	224	225	231	34
소계/평균	58,517	221	228	218	206	201	193	193	205	210	198	198	207	207	38

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

〈표 26〉 1인 가구 주택유형별 월평균 전력소비량 추이(2010년~2014년 합동자료)

(단위: kWh)

주택유형	관측수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
단독주택 (다가구 주택 포함)	27,943	214	222	208	199	191	183	180	188	194	184	190	199	196	42
아파트	19,937	236	245	240	222	221	214	218	230	238	224	217	224	227	31
연립 및 다세대 (빌라, 맨션)	6,172	215	220	208	197	193	183	184	206	208	191	190	201	200	37
기타(비거주용 건물 내 주택, 오피스텔	4,465	200	201	191	186	180	171	173	188	196	180	183	187	186	29
평균	58,517	216	222	212	201	196	188	189	203	209	195	195	203	202	35

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

〈표 27〉은 1인 가구의 교육수준별 월평균 전력소비 제외하면, 교육수준에 따른 전력소비량 차이는 거의 량 차이를 비교한 것이다. 대학원 이상의 1인 가구를 없는 것으로 보인다. 대학원 이상의 1인 가구는 하절기

〈표 27〉 1인 가구 교육수준별 월평균 전력소비량 추이(2010년~2014년 합동자료)

(단위: kWh)

교육수준	관측수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
고졸 이하	46,879	221	229	218	206	202	194	192	202	209	198	198	208	206	36
전문대	3,548	219	225	219	200	197	186	191	207	216	195	194	202	204	39
대학교(4년제)	6,671	216	224	215	204	196	189	193	211	218	198	199	204	205	35
대학원(석 · 박사)	1,419	231	227	229	206	208	200	212	232	236	219	211	213	219	36
평균	58,517	222	226	220	204	201	192	197	213	220	202	201	206	209	37

자료: 한국전력 사이버지점 홈페이지, 2015.8.21

가 동절기보다 전력소비가 많고, 나머지 가구는 동절 기 전력수요가 더 크다. 월평균 전력소비의 최대와 최 소 격차는 학력과 일정한 상관관계가 없어 보이며, 그 차이도 크지 않다.

《표 28》은 1인 가구 연령별 월평균 전력소비량을 비교한 것이다. 1인 가구의 경우 연령에 상관없이 동절기전력수요가 하절기보다 크다. 가구주 연령대별로 보면

20세부터 40세 미만이 40세 이상인 가구주보다 전력 소비가 상대적으로 적고, 50세 이상 60세 미만의 1인 가구 전력소비량이 가장 크게 나타났다.

전제 가구를 대상으로 한 가구 특성 변수별 전력수 요 추이와 1인 가구의 추이를 비교해 보면, 1인 가구의 경우 소득분위에 상관없이 동절기 전력소비가 하절기 보다 더 크다. 이는 1인 가구의 많은 비중이 저소득 계

〈표 28〉 1인 가구 연령대별 월평균 전력소비량 추이(2010년~2014년 합동자료)

(단위: kWh)

가구주 연령	관측수	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월	평균	최대-최소 차이
20세 미만	1,195	246	259	253	240	223	216	215	210	220	209	211	231	228	51
20세 이상 30세 미만	2,846	192	193	188	189	182	166	172	180	184	169	170	175	180	27
30세 이상 40세 미만	5,902	206	207	199	185	183	176	181	195	200	182	179	187	190	30
40세 이상 50세 미만	6,267	213	219	212	201	194	190	190	206	216	201	199	205	204	30
50세 이상 60세 미만	11,189	235	244	233	219	217	206	210	223	231	214	215	220	222	38
60세 이상	31,118	222	230	218	206	201	194	190	201	207	197	198	208	206	40
평균	58,517	219	225	217	207	200	191	193	202	210	195	195	204	205	36

층이기 때문으로 추론된다. 1인 가구의 경우, 주택유 형에 따른 전력소비 패턴도 전체 가구와 비교해서 차 이가 발생하는데. 1인 가구는 주택유형에 상관없이 동 절기 전력소비가 가장 크게 나타나. 전제 가구의 경우 아파트와 기타(비거주용 건물 내 주택 및 오피스텔) 유 형에서 하절기 전력수요가 가장 큰 것과 차별화된다. 1 인 가구의 경우 가구주의 모든 연령대에서 동절기 전 력수요가 가장 높으나, 전제 가구를 대상으로 하는 경 우. 30세 이상 40세 미만의 연령대에서는 하절기 전력 소비가 가장 높은 것과 다른 특징이 존재한다. 가구주 교육수준에 따른 1인 가구와 전제 가구의 전력소비 특 징을 비교해 보면. 전제 가구의 경우 가구주 학력이 전 문대 이상인 경우 동절기보다 하절기 전력소비가 가장 많으나, 1인 가구의 경우 가구주 학력이 대학원(석 · 박 사) 졸업에서만 하절기 전력소비가 가장 많다.

이상과 같이 월 단위로 전력소비 패턴의 특징을 비 교해 보면, 1인 가구를 포함한 가구유형에 따라 다른 양상을 보임을 확인할 수 있다. 이는 향후 에너지세제 정책, 에너지복지정책, 전기요금 체계 등 다양한 에너 지정책을 수립 · 보완 · 개정할 때, 가구 특성을 면밀 히 분석할 필요가 있음을 시사해 준다. 가구 특성을 고 려하지 않고 모든 가구에 동일 정책수단을 적용한다면 정책의 득보다 실이 더 높아질 수 있고. 이는 결국 정 책 실효성에 흠집을 낼 수 있다.

4. 요약 및 시사점

현행 전기요금제도의 특징은 사용 용도에 따라 전기 요금을 차등하는 용도별 요금체계를 채택하고 있다는 점이다. 현재 용도는 주택용, 일반용, 교육용, 산업용, 농사용, 가로등, 심야전력으로 구분된다. 주택용이라 는 용어가 전기요금표에 등장한 것은 1964년 9월이다. 그러나 처음에는 주택용 전력소비에 대해 별도의 요금 을 부과하지 않고 일반전력 갑 요금을 부과하였다. 일 반전력 갑 요금에 주택용이 포함되어 있었기 때문이 다. 주택용 전기요금을 지금처럼 별도의 요금으로 분 리하여 부과한 것은 1980년 2월부터이다.

주택용 요금의 추이를 보면 주택용 요금을 포함한 일반전력 갑의 요금은 1973년 11월까지는 소비량이 높은 구간에서 전력량 요금이 오히려 낮아지는 역진적 인 요금제가 적용되었다. 1973년 12월 1일 시행된 전 기요금 조정에서 일반전력 갑 요금은 단일요금으로 변 경되었고. 1년 후인 1974년 12월 7일에 누진제가 도 입되었다. 제1차 석유파동으로 유가가 급등함에 따라 전기절약을 도모하고 저소득층의 전기요금 부담을 경 감하기 위함이다. 처음에는 누진구간을 3단계로 구분 하였고 가장 높은 구간요금과 낮은 구간요금 사이의 비율(누진배율)은 1.6배 수준이었다. 이후 누진구간과 누진배율은 에너지시장의 여건에 따라 확대되거나 축 소되었고, 현재는 6단계의 누진구간과 11.7배(저압)의 누진배율이 적용된다.

주택용 전력소비는 여름과 겨울에 대폭 증가하는 계 절성을 보이는데 여기에 과도한 누진요금이 적용되고 있어 가구의 전력소비 행태가 계절별(더 구체적으로 는 월별)로 차이가 있을 것이라는 데서 연구를 시작하 였다. 누진요금제 하에서는 소비량이 많은 계절에 높 은 가격이 적용되므로 소비자가 가격에 보다 민감하게 반응할 가능성이 있다는 것이다. 이를 위해 본고에서 는 통계청의 가계동향조사 자료를 이용하였다. 가계동 향조사는 전국에 거주하는 가구를 대상으로 매월 가계 부문의 수입과 지출을 조사하므로 월별 자료를 사용할 수 있다는 장점이 있다. 다만 가계동향조사는 전력에 대한 지출액만 조사되므로 소비량에 대한 정보를 직

논단

주택용 전력수요 계절별 패턴 분석과 시사점

접 제공하지 않는다는 문제가 발생한다. 그런데 전력의 경우 지출액 정보가 제공되면 한국전력이 제공하는 전기요금표를 통해 소비 전력량을 역산할 수가 있으므로, 본고에서는 과거 전기요금표를 이용하여 2010년이후 가계동향조사 가구의 월별 전력소비량을 추정하였다.

가계동향조사 자료를 이용하여 추정한 전력소비량 을 보면, 2010년에서 2013년까지 가구의 월평균 전력 소비량은 305kWh 내외의 수준을 유지하였으나 2014 년에는 292kWh로 감소하였다. 한국전력의 통계를 보 면 2014년 주택용 전력소비가 전년대비 2.1% 감소하 여 가계동향조사 자료의 소비 추이와 부합하는 것으 로 나타났다. 월별로는 겨울철의 소비가 여름보다 많 은 것으로 나타나고 있는데 이는 최근 몇 년간 난방용 전력수요가 크게 증가한 것과 무관하지 않다. 소득수 준별로는 다소 차이를 보이는데 소득수준이 높은 가구 의 경우는 겨울보다 여름에 전력소비가 많았다. 유가 급등 등의 영향으로 난방용 에너지소비에서 전력에 의 존하는 비중이 저소득 가구에서 더 높기 때문에 발생 한 현상으로 파악된다. 2010년~2014년 합동자료를 통해 소득 1분위 가구와 소득 10분위 가구의 월별 전 력소비량 차이를 보면 2월에 125kWh인데, 9월에는 156kWh로 여름철에 차이가 더 큰 것으로 나타나고 있다. 이는 저소득가구는 난방용 전력소비가 많고 고 소득가구는 냉방용 전력소비가 많은 소득수준별 전력 소비 행태의 차이에 부합하는 결과로 볼 수 있다.

누진요금의 도입목적은 에너지 소비절약과 저소득층 비용부담 경감에 있다. 그러나 가구당 평균 전력소비 가 증가함에 따라 저소득층의 비용부담 경감효과는 지 속적으로 축소되는 것으로 판단된다. 또한, 제7차 전력수급기본계획¹¹⁾에 따르면, 향후 기저발전 증가 등으로 인해 전력 도매시장가격이 하락할 것으로 예상되므로, 총괄원가 하락에 따라 저소득가구에 대한 비용지원 효과는 더욱 축소될 것으로 예상된다. 현재와 같은 누진요금이 지속되는 경우 오히려 소득이 높은 1인 가구가 누진요금에 의한 비용혜택을 가장 많이 받는 계층이 될 가능성이 크다. 또한, 구조적으로 전력소비가많을 수밖에 없는 가구, 예를 들어 장애인 가구 등은 비록 복지할인요금이 적용된다고 하더라도 누진요금으로 원가 이상의 비용을 부담하는 경우도 많다. 즉, 누진요금의 부작용이 오히려 증가하고 있다.

본고의 분석결과를 토대로 현재 적용되는 주택용 누 진요금제는 개선될 필요가 있는 것으로 판단된다. 해 외 사례를 보면 주택용 전기요금에 단일요금을 적용하 는 국가와 누진요금을 적용하는 국가로 구분된다. 누 진요금을 적용하는 국가의 대부분 누진단계는 3단계 내외이고, 누진배율도 2배 이내이다. 또한, 가구당 평 균전력소비량이 증가함에 따라 누진구간도 소비량에 맞추어 조정한다. 현재 국내에서 시행되는 누진요금은 6단계에 저압의 경우는 누진배율이 11.7배로 매우 과 도한 측면이 있다. 아울러 현재 요금 하에서 누진요금 도입의 목적을 효과적으로 달성하고 있다고 보기도 어 렵다. 따라서 주택용 누진요금은 크게 완화될 필요가 있다. 누진단계는 3단계 이하로 축소하고 누진배율도 크게 줄여야 할 것이다. 다만 축소에 따른 부작용을 줄 이기 위해서 단계적 조정 등 신중한 접근이 필요하다. 또한, 누진배율을 축소하는 경우 현재 원가보다 크게 낮은 단계의 요금이 상승이 불가피하고 이는 일부 저

¹¹⁾ 산업통상자원부, 제7차 전력수급기본계획(2015~2029), 2015.7 참고.

소득 가구의 부담으로 작용될 가능성도 존재한다. 따 라서 요금 조정과 함께 이러한 가구에 대한 비용부담 을 경감되는 조치도 병행되어야 할 것이다.

최근 일부 연구에서 가계동향조사를 이용하여 전력 수요 행태를 분석하였다. 기존 연구와는 달리 본고에 서는 전력소비의 계절성(월별 소비 패턴)을 고려하여 계절별 전력수요 행태를 비교 · 분석하였다는 점에서 차별성을 가진다. 그러나 이러한 시도에도 불구하고 본고는 몇 가지 개선할 부분이나, 추가 연구가 필요한 사항도 존재한다. 먼저 계절별 혹은 월별 전력수요의 가격탄력성 추정분석이다. 특히 이와 같은 가격탄력성 추정연구는 기존 연구에서 항상 지적된 내생성 문제를 효율적으로 해결할 필요가 있다.

둘째, 향후 연구에서는 전력수요의 계절성을 보다 정확히 반영하기 위해, 냉방용 전력수요와 난방용 전 력수요를 구분하여 추정할 필요가 있다. 냉방용 전력 수요는 저소득의 가구가 가격에 민감하게 반응하고. 고소득 가구의 경우 덜 민감하게 반응하거나. 오히려 소비가 늘어날 가능성도 존재한다. 이는 누진요금의 소비절약 효과를 저소득가구에만 가용하는 결과를 의 미하는 것으로, 이에 대한 추가 연구가 절대적으로 필 요하다. 난방용 수요의 경우에도 전력 외에 도시가스, 석유. 열에너지 등 다양한 에너지원이 존재하여 상대 적으로 전력수요 패턴 분석이 어려운 측면이 존재하 나, 정확한 전력소비 행태 분석을 위해서는 추가 연구 가 필요한 분야라고 생각된다.

마지막으로 주택용 전기요금 개편에 따른 소비자간 형평성이나 후생의 변화와 관련된 분석이 향후 연구에 서는 포함되어야 할 것이다. 아울러, 누진단계 및 누진 배율 변화에 따른 소득분위별 영향 분석이 선행되어야 할 것이다. 이러한 한계점과 미비점을 극복하기 위해 서는 기존 연구에서 이용한 접근방식 및 추정방법론에

대한 개선 노력이 필요하며, 실시간 전력소비 자료 등 과 연계하여 전력수요의 가격 탄력성을 추정하는 연구 도 진행될 필요가 있다고 판단된다.

참고문헌

〈국내 문헌〉

- 대한전기협회, 2014년 전기연감, 2014.12, pp. 120-139
- 산업통상자원부, 제7차 전력수급기본계획(2015~ 2029), 2015, 7
- 조성진 · 박광수, 주택용 전력수요의 계절별 가격탄력성 추정을 통한 누진요금제 효과 검증 연구, 에너지 경제연구원, 2015
- 통계청. 가계동향자료 이용자 가이드. 2011.8

〈웹사이트〉

- 통계청, 가계동향조사, 2009, 2010, 2011, 2012, 2013, 2014, http://kostat.go.kr
- 한국전력공사 사이버 지점 홈페이지, http://cyber. kepco.co.kr
- 한국전력공사 사이버 지점 홈페이지/전기요금표/과거 전기요금표, http://cyber.kepco.co.kr/ckepco/ front/jsp/CY/E/E/CYEEHP00301.jsp. http://cyber.kepco.co.kr/ckepco/front/ jsp/CY/E/E/CYEEHP00305.jsp
- 한국전력공사 사이버 지점 홈페이지/제도 · 약관/일반현황 /전기요금 개정 추이, http://cyber.kepco. co.kr/ckepco/front/jsp/CY/H/C/CYH CHP 00105.jsp