Escribe tu titulo

Escribe tu nombre

Escribe la fecha

Problema 1

La base de datos CARS2004 del paquete PASWR2 recoge el número de coches por 1000 habitantes (cars), el número total de accidentes con víctimas mortales (deaths) y la población/1000 (population) para los 25 miembros de la Unión Europea en el año 2004.

- 1. Proporciona con R resumen de los datos.
- 2. Utiliza la función eda del paquete PASWR2 para realizar un análisis exploratorio de la variable deaths

Apartado 1

```
library(PASWR2)

## Cargando paquete requerido: lattice

## Cargando paquete requerido: ggplot2
```

summary(CARS2004)

##	C	country	cars	deaths	population
##	Austria	: 1	Min. :222.0	Min. : 33.0	Min. : 400
##	Belgium	: 1	1st Qu.:354.0	1st Qu.: 72.0	1st Qu.: 3446
##	Cyprus	: 1	Median :448.0	Median :112.0	Median : 8976
##	Czech Repub	olic: 1	Mean :432.1	Mean :111.4	Mean :18273
##	Denmark	: 1	3rd Qu.:491.0	3rd Qu.:135.0	3rd Qu.:16258
##	Estonia	: 1	Max. :659.0	Max. :222.0	Max. :82532
##	(Other)	:19			

Como puedes observar, al compilar tu documento aparecen las sentencias de R y el output que te da el programa.

Apartado 2

Ahora vamos a utilizar la función **eda** del paquete PASWR2 para realizar un análisis exploratorio de la variable deaths

EXPLORATORY DATA ANALYSIS

Histogram of CARS2004\$deaths

Density of CARS2004\$deaths

Boxplot of CARS2004\$deaths

Q-Q Plot of CARS2004\$deaths


```
## Size (n) Missing Minimum
                               1st Qu
                                          Mean
                                                 Median
                                                         TrMean
                                                                  3rd Qu
##
     25.000
              0.000
                      33.000
                               72.000 111.400
                                               112.000 110.000 135.000
##
              Stdev
                         Var SE Mean
                                       I.Q.R.
       Max
                                                  Range Kurtosis Skewness
                                                           0.043
   222.000
            47.023 2211.167
                                9.405
                                        63.000 189.000
                                                                   0.578
## SW p-val
##
      0.243
```

En este caso, en tu documento final te aparece el código de R, el output numérico de la función eda y el output gráfico de la función eda.