Verifying Snapping Mechanism

October 31, 2019

1 Formalization

Definition 1 (Snap(μ , a): Distr(U) $\rightarrow A \rightarrow$ Distr(B))

The ideal Snapping mechanism $Snap(\mu, a)$ is defined as:

$$u \overset{\$}{\leftarrow} \mu; y = \frac{\ln(u)}{\epsilon}; s \overset{\$}{\leftarrow} \{-1, 1\}; z = s * y; x = f(a); w = x + z; w' = \lfloor w \rfloor_{\Lambda}; r = \mathsf{clamp}_B(w')$$

where f is the query function over input $a \in A$, ϵ is the privacy budget and S sampled from $\{-1, +1\}$ with Bernoulli(0.5).

Definition 2

Let $\epsilon \leq 0$. The ϵ -DP divergence $\Delta_{\epsilon}(\mu_1, \mu_2)$ between two sub-distributions $\mu_1 \in \mathsf{Distr}(U)$, $\mu_2 \in \mathsf{Distr}(U)$ is defined as:

$$\sup_{E \in U} \Big(\Pr_{x \leftarrow \mu_1} [x \in E] - \exp(\epsilon) \Pr_{x \leftarrow \mu_2} [x \in \cdot E]] \Big)$$

Definition 3 (ϵ - dilation)

Let $\epsilon \ge 0$. The ϵ -dilation $D_{\epsilon}(\mu_1, \mu_2)$ between two sub-distributions $\mu_1 \in \mathsf{Distr}(U)$, $\mu_2 \in \mathsf{Distr}(U)$ is defined as:

$$\sup_{E \in U} \Big(\Pr_{x \leftarrow \mu_1} [x \in E] - \exp(\epsilon) \Pr_{x \leftarrow \mu_2} [x \in \exp(-\epsilon) \cdot E]] \Big)$$

Proposition 1 $((\epsilon, \delta)$ -differential privacy)

For every pair of sub-distributions $\mu_1 \in \mathsf{Distr}(U), \, \mu_2 \in \mathsf{Distr}(U), \, \mathrm{s.t.}$

$$D_{\epsilon}(\mu_1, \mu_2) \leq \delta$$
,

The snapping mechanism $\mathsf{Snap}(\mu, a) : \mathsf{Distr}(U) \to A \to \mathsf{Distr}(B)$ is (ϵ, δ) - differentially private w.r.t. an adjacency relation Φ for every two adjacent inputs a, a' and μ_1, μ_2

Proof. Followed directly by unfolding the Snap mechanism

$$\begin{array}{lll} \Pr_{x \leftarrow \mathsf{Snap}(\mu_1,a)}[x=e] & = & \Pr_{u \leftarrow \mu_1}[\lfloor f(a) + \frac{s \cdot \log(u)}{\epsilon} \rfloor_{\Lambda} = e] \\ \\ & = & \Pr_{u \leftarrow \mu_1}[u \in [\frac{\exp((e-\frac{\Lambda}{2} - f(a))\epsilon)}{S}, \frac{\exp((e+\frac{\Lambda}{2} - f(a))\epsilon)}{S})] \\ \\ & \leq & \exp(\epsilon) \Pr_{u \leftarrow \mu_2}[u \in \exp(-\epsilon)[\frac{\exp((e-\frac{\Lambda}{2} - f(a))\epsilon)}{S}, \frac{\exp((e+\frac{\Lambda}{2} - f(a))\epsilon)}{S})] \\ \\ & = & \exp(\epsilon) \Pr_{u \leftarrow \mu_2}[\lfloor f(a') + \frac{s \cdot \log(u)}{\epsilon} \rfloor_{\Lambda} = e] \\ \\ & = & \exp(\epsilon) \Pr_{x \leftarrow \mathsf{Snap}(\mu_2,a')}[x=e] \end{array}$$

Definition 4 $((\epsilon, \delta)$ - **lifting** [1])

Two sub-distributions $\mu_1 \in \mathsf{Distr}(U_1)$, $\mu_2 \in \mathsf{Distr}(U_2)$ are related by the (ϵ, δ) - dilation lifting of $\Psi \subseteq U_1 \times U_2$, written $\mu_1 \Psi^{\#(\epsilon, \delta)} \mu_2$, if there exist two witness sub-distributions $\mu_L \in \mathsf{Distr}(U_1 \times U_2)$ and $\mu_R \in \mathsf{Distr}(U_1, U_2)$ s.t.:

$$\overline{u_1 \overset{\$}{\leftarrow} \mu \sim_{\epsilon,0} u_2 \overset{\$}{\leftarrow} \mu : T \Rightarrow u_1 = e^{\epsilon} u_2} \text{ AXUNIF}$$

$$\overline{y_1 = \frac{\ln(u_1)}{\epsilon} \sim_{0,0} y_2 = \frac{\ln(u_2)}{\epsilon} : u_1 = e^{\epsilon} u_2 \Rightarrow y_1 = 1 + y_2}$$

$$\overline{s_1 \overset{\$}{\leftarrow} \mu \sim_{0,0} s_1 \overset{\$}{\leftarrow} \mu : T \Rightarrow s_1 = s_2}$$

$$\overline{z_1 = s_1 * y_1 \sim_{0,0} z_2 = s_2 * y_2 : s_1 = s_2 \wedge y_1 = e^{\epsilon} u_2 \Rightarrow z_1 = \epsilon + z_2}$$

$$\overline{x_1 = f(a_1) \sim_{0,0} x_2 = f(a_2) : x_1 = x_2 + 1 \Rightarrow a_1 = a_2 + 1}$$

$$\overline{w_1 = x_1 + z_1 \sim_{0,0} w_2 = x_2 + z_2 : x_1 + 1 = x_2 \wedge z_1 = z_2 + 1 \Rightarrow w_1 = w_2}$$

$$\overline{w_1' = \lfloor w_1 \rfloor_{\Lambda} \sim_{0,0} w_2' = \lfloor w_2 \rfloor_{\Lambda} : w_1 = w_2 \Rightarrow w_1' = w_2'}$$

$$\overline{r_1 = \mathsf{clamp}_B(w_1') \sim_{0,0} r_2 = \mathsf{clamp}_B(w_2') : w_1' = w_2' \Rightarrow r_1 = r_2}$$

Figure 1: Coupling Derivation of two Snap mechanisms: $Snap(\mu_1, a_1)$, $Snap(\mu_2, a_2)$

- 1. $\pi_1(\mu_L) = \mu_1$ and $\pi_2(\mu_R) = \mu_2$;
- 2. $supp(\mu_L) \subseteq \Psi$ and $supp(\mu_R) \subseteq \Psi$; and
- 3. $\Delta_{\epsilon}(\mu_L, \mu_R) \leq \delta$.

Theorem 2

Let $\mu_1 \in \mathsf{Distr}(\mathbb{R})$, $\mu_2 \in \mathsf{Distr}(\mathbb{R})$ are defined:

$$\mu_1(x) = \operatorname{unif}(x)$$

$$\mu_2(y) = \text{unif}(y)$$

where unif is uniform distribution over [0, 1) whoes pdf. is defined as:

$$\mathsf{pdf}_{\mathsf{unif}}(x) = \begin{cases} 1 & x \in [0,1) \\ 0 & o.w. \end{cases}.$$

Then, $\mu_1 \Psi^{\#(\epsilon,0)} \mu_2$, where

$$\Psi = \{(x,y) \in \mathbb{R} \times \mathbb{R} | x \cdot e^{-\epsilon} = y\}$$

Proof. Existing $\mu_L, \mu_R \in \mathsf{Distr}(\mathbb{R} \times \mathbb{R})$

$$\mu_L(x,y) = \begin{cases} \operatorname{unif}(x) & (x,y) \in \Psi \land x \in [0,1) \\ 0 & o.w. \end{cases} \\ \mu_R(x,y) = \begin{cases} \operatorname{unif}(y) & (x,y) \in \Psi \land y \in [0,1) \\ 0 & o.w. \end{cases}.$$

Their pdf. are defined:

$$\begin{split} \mathsf{pdf}_{\mu_L}(x,y) &= \begin{cases} \mathsf{pdf}_{\mathsf{unif}}(x) & (x,y) \in \Psi \land x \in [0,1) \\ 0 & o.w. \end{cases} \\ \mathsf{pdf}_{\mu_R}(x,y) &= \begin{cases} \mathsf{pdf}_{\mathsf{unif}}(y) & (x,y) \in \Psi \land y \in [0,1) \\ 0 & o.w. \end{cases}. \end{split}$$

- $supp(\mu_L) \in \Psi \land supp(\mu_R) \in \Psi$
 - $supp(\mu_L) \in \Psi$

By definition of the pdf of μ_L , we have: $\Pr_{(x,y) \xleftarrow{\$} \mu_L} [(x,y) \notin \Psi] = 0$.

Then we can derive $supp(\mu_L) \in \Psi$

– supp(μ_R) ∈ Ψ

By definition of the pdf of μ_R , we have: $\Pr_{(x,y) \stackrel{\$}{\leftarrow} \mu_R} [(x,y) \notin \Psi] = 0.$

Then we can derive $supp(\mu_I) \in \Psi$

- $\pi_1(\mu_L) = \mu_1 \wedge \pi_2(\mu_R) = \mu_2$
 - $\pi_1(\mu_L) = \mu_1$

Equivalent to show $pdf_{\pi_1(\mu_L)} = pdf_{\mu_1}$.

By definition of the π_1 and pdf of μ_L , we have $\forall x \in \mathbb{R}$:

$$\mathsf{pdf}_{\pi_1(\mu_L)}(x) = \begin{cases} \int_y \mathsf{pdf}_{\mathsf{unif}}(x) & (x,y) \in \Psi \land x \in [0,1) \\ 0 & o.w. \end{cases} = \begin{cases} \mathsf{pdf}_{\mathsf{unif}}(x) & x \in [0,1) \\ 0 & o.w. \end{cases} = \mathsf{pdf}_{\mu_1}(x)$$

– supp(μ _R) ∈ Ψ

Equivalent to showpdf_{$\pi_2(\mu_R)$} = pdf_{μ_2}.

By definition of the π_2 and pdf of μ_R , we have $\forall y \in \mathbb{R}$:

$$\mathsf{pdf}_{\pi_2(\mu_R)}(y) = \begin{cases} \int_x \mathsf{pdf}_{\mathsf{unif}}(y) & (x,y) \in \Psi \land y \in [0,1) \\ 0 & o.w. \end{cases} = \begin{cases} \mathsf{pdf}_{\mathsf{unif}}(y) & y \in [0,1) \\ 0 & o.w. \end{cases} = \mathsf{pdf}_{\mu_2}(y)$$

• $\Delta_{\epsilon}(\mu_L, \mu_R) \leq 0$

By definition of ϵ -DP divergence, we have:

$$\begin{split} \Delta_{\epsilon}(\mu_{L},\mu_{R}) &= \sup_{S} \left(\Pr_{(x,y) \overset{\$}{\leftarrow} \mu_{L}} [(x,y) \in S] - e^{\epsilon} \Pr_{(x,y) \overset{\$}{\leftarrow} \mu_{R}} [(x,y) \in S] \right) \\ &= \sup_{S} \left(\int_{(x,y) \in S} \mathsf{pdf}_{\mu_{L}}(x,y) - e^{\epsilon} \int_{(x,y) \in S} \mathsf{pdf}_{\mu_{R}}(x,y) \right) \end{split}$$

case $S \subseteq \{(x, y) | x \in [0, 1) \land (x, y) \in \Psi\}$:

$$\begin{array}{ll} \Delta_{\varepsilon}(\mu_L,\mu_R) &= \int_{(x,y)\in S} \mathsf{pdf}_{\mathsf{unif}}(x) - e^{\varepsilon} \int_{(x,y)\in S} \mathsf{pdf}_{\mathsf{unif}}(y) \\ &= \int_{(x,y)\in S} \mathsf{pdf}_{\mathsf{unif}}(x) - e^{\varepsilon} \int_{(x,y)\in S} \mathsf{pdf}_{\mathsf{unif}}(x*e^{-\varepsilon}) \\ &= \int_{(x,y)\in S} \mathsf{pdf}_{\mathsf{unif}}(x) - e^{\varepsilon} * e^{-\varepsilon} \int_{(x,y)\in S} \mathsf{pdf}_{\mathsf{unif}}(x) \\ &= 0 \end{array}$$

case $S \subseteq \{(x, y) | x \in [1, e^{\epsilon}) \land (x, y) \in \Psi\}$:

$$\Delta_{\epsilon}(\mu_L, \mu_R) = 0 - e^{\epsilon} \int_{(x,y) \in S} \mathsf{pdf}_{\mathsf{unif}}(y)$$

< 0

case o.w.

$$\Delta_{\epsilon}(\mu_L, \mu_R) = 0 - 0 = 0$$

References

[1] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Proving differential privacy via probabilistic couplings. In *LICS 2016*.