Magnon Bose Einstein Condensation

a brief introduction

Dec. 21st 2018

何梦云 李思衡 李娜 孙慧敏 陈文杰

After this presentation, you are supposed to have some basic understanding of:

- What is magnon BEC?
- Why is it so special?
- How to achieve it?
- Several experiments.

$$N_{i,BE} = \frac{1}{e^{(\epsilon_i - \mu)/k_B T} - 1}$$

$$N_{i,BE} = \frac{1}{e^{(\epsilon_i - \mu)/k_B T} - 1}$$

If the total particle number N is fixed,

the chemical potential
$$\mu = \frac{\partial F}{\partial N}$$
 has a finite value.

$$\epsilon
ightarrow \mu$$
 BEC

$$N_{i,BE} = \frac{1}{e^{(\epsilon_i - \mu)/k_B T} - 1}$$

If the total particle number N is NOT fixed,

the chemical potential
$$\mu = \frac{\partial F}{\partial N}$$
 is always zero!

Why?

$$N_{i,BE} = \frac{1}{e^{(\epsilon_i - \mu)/k_B T} - 1}$$

If the total particle number N is NOT fixed,

the chemical potential
$$\mu = \frac{\partial F}{\partial N}$$
 is always zero!

$$\epsilon > \mu$$
 no BEC

Magnon

$$N_{i,BE} = \frac{1}{e^{(\epsilon_i - \mu)/k_B T} - 1}$$

Last hope: raise the chemical potential.

But how?

$$N_{i,BE} = \frac{1}{e^{(\epsilon_i - \mu)/k_B T} - 1}$$

Defined at thermal equilibrium,

But at thermal equilibrium ...

What happens beyond thermal equilibrium?

Magnon

create magnons

heating

oscillating magnetic field

scattering

magnon's life

destroy magnons

cooling

dissipation into lattice

Magnon

dissipation into lattice: scattering into equilibrium:

 μs ns

YIG film

V. E. Demidov *et al.*, *Phys. Rev. Lett.* **100**, 047205 (2008).

V. E. Demidov et al., Phys. Rev. Lett. 101, 257201 (2008).

YIG film

O. Dzyapko et al., Appl. Phys. Lett. 92, 162510 (2008).

O. Dzyapko et al., Appl. Phys. Lett. 92, 162510 (2008).

First experimental discovery of mBEC

nature

Vol 443|28 September 2006|doi:10.1038/nature05117

LETTERS

Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping

S. O. Demokritov¹, V. E. Demidov¹, O. Dzyapko¹, G. A. Melkov², A. A. Serga³, B. Hillebrands³ & A. N. Slavin⁴

New Journal of Physics

The open-access journal for physics

Direct observation of Bose–Einstein condensation in a parametrically driven gas of magnons

O Dzyapko¹, V E Demidov¹, S O Demokritov^{1,4}, G A Melkov² and A N Slavin³

FM material +
$$\overrightarrow{H}$$
 + pumping \rightarrow magnons $N(\nu_{min}) = N_{max} \rightarrow BEC$

- 1 microwave electromagnetic field—density of magnon
- ② $\tau_{sl} > 1\mu s$, $\tau_{ss} < 100ns$ —quasi-equilibrium
- 3 transparent for visible light

Experimental set-up

Demokritov S O. et al. Nature, 2006, 443(7110):430-433. Dzyapko O. et al. New Journal of Physics, 2007, 9(3):64.

Dispersion curve

Dzyapko O. et al. New Journal of Physics, 2007, 9(3):64.

BLS spectrum without pumping

$$\rho(\nu) = D(\nu)n(\nu) = \frac{D(\nu)}{e^{\frac{h\nu - \mu}{k_B T_0}} - 1} \stackrel{\mu=0}{\iff} \frac{\widetilde{D}(\nu)}{e^{\frac{h\nu}{k_B T_0}} - 1}$$

BLS spectrum with pumping

Dzyapko O. et al. New Journal of Physics, 2007, 9(3):64.

BLS spectrum with pumping

Dzyapko O. et al. New Journal of Physics, 2007, 9(3):64.

BLS spectrum with pumping

Demokritov S O. et al. Nature, 2006, 443(7110):430-433. ²⁴

BLS spectrum after pumping

Dzyapko O. et al. New Journal of Physics, 2007, 9(3):64.

Research about magnon-magnon interaction

Magnon-magnon interactions in a room-temperature magnonic Bose-Einstein condensate

Oleksandr Dzyapko,¹ Ivan Lisenkov,^{2,3,*} Patrik Nowik-Boltyk,¹ Vladislav E. Demidov,¹ Sergej O. Demokritov,^{1,4} Benny Koene,⁵ Andrei Kirilyuk,⁵ Theo Rasing,⁵ Vasyl Tiberkevich,⁶ and Andrei Slavin⁶

2017

- Parametric pumping
- Doubly degenerate mBEC

$$W_{\rm int}(r'-r) = \frac{4\pi\hbar^2 a}{m} \delta(r'-r) = g\delta(r'-r)$$

g>0, repulsive interaction; g<0, attractive interaction

$$i\hbar \dot{b}_{1} = (\hbar \omega_{0} + g \frac{b_{1}^{*}b_{1}}{V} + 2g^{12} \frac{b_{2}^{*}b_{2}}{V})b_{1}$$

$$i\hbar \dot{b}_{2} = (\hbar \omega_{0} + g \frac{b_{2}^{*}b_{2}}{V} + 2g^{12} \frac{b_{1}^{*}b_{1}}{V})b_{2}$$

$$\delta \omega = \omega - \omega_{0} = (g/\hbar)\rho + (2g^{12}/\hbar)\rho$$

Research about magnon-magnon interaction

- MOKE
- Wavelength: 490nm
- Duration: 100 fs
- Repetition frequency $\omega L/(2\pi)=82.379MHz$

Research about magnon-magnon interaction

- $H_0 = 113.91 \text{kA/m}$
- A threshold
- P<P_{th}, before the condensation of magnons

Spin current induced magnons

Chemical potential of quasi-equilibrium magnon gas driven by pure spin current

V.E. Demidov¹, S. Urazhdin², B. Divinskiy¹, V.D. Bessonov³, A.B. Rinkevich³, V.V. Ustinov^{3,4} & S.O. Demokritov^{1,3} 2017

- Spin-Hall effect
- Ferromagnetic Permalloy (Py) strip+Pt
- Magnetization of Py: 10.2KG
- Spin current//M
- Microfocus Brillouin light scattering (BLS) technique

$$\rho(v) = D(v)n(v)$$

ρ: spectral density of magnons

• $k_v = \pi m/w$

Spin current induced magnons

Spin current induced magnons

$$n_0(v) = k_B T_0 / h v$$

$$n_I(v) = k_B T_{eff} / (h v - \mu)$$

$$R(v) = \frac{n_I(v)}{n_0(v)} = \frac{T_{eff}}{T_0} \frac{v}{v - \mu / h}$$

- T_{eff}: frequency independent scaling of R
- μ : a comprehensive modulation on R(v)

Current induced and detected mBEC

Spin transport in a charge current induced magnon Bose-Einstein condensate at room temperature

T. Wimmer, ^{1,2,*} M. Althammer, ^{1,2,†} L. Liensberger, ^{1,2} N. Vlietstra, ¹ S. Geprägs, ¹ M. Weiler, ^{1,2} R. Gross, ^{1,2,3} and H. Huebl^{1,2,3,‡}

- Dissipationless magnon transport
- $I_{dc} = 0$, nac from the injector decays exponentially
- $I_{dc} = I_{BEC}$, formation of magnon BEC
- $I_{dc} = I_{SW}$, magnon damping is completely compensated

Current induced and detected mBEC

- $\mu_0 H = 50 \text{mT}$, T = 280 K
- $\phi = \pm 180$ °, magnon accumulation underneath the modulator
- ϕ =0 °, magnon depletion obtained in this configuration

Current induced and detected mBEC

- Linear dependence: SHE induced injection effects
- Quadratic dependence: thermal activation

Thank you for your attentions!