$\underline{\text{CLAIMS}}$

What is claimed is:

1	1. A method, including:					
2	separating, in a frequency domain, a combined plurality P of asynchronous					
3	data streams received at substantially a same time into a separated plurality of					
4	data streams.					
1	2. The method of claim 1, further including:					
2	converting the combined plurality P of asynchronous data streams from a					
3	time domain into the frequency domain prior to the separating.					
1	3. The method of claim 1, further including:					
2	receiving, at substantially the same time, the combined plurality P of					
3	asynchronous data streams at a plurality Q of antennas.					
1	4. The method of claim 1, further including:					
2	separating the combined plurality P of asynchronous data streams into the					
3	separated plurality of data streams in the frequency domain using a frequency					
4	spatial demapper.					
1	5. The method of claim 1, wherein the separated plurality of data streams					
2	correspond directly to a number of wireless channels.					
1	6. The method of claim 1, wherein at least one of the separated plurality of data					
2	streams is formatted according to one of an Institute of Electrical and					
3	Electronics Engineers 802.11 standard and an Institute of Electrical and					
4	Electronics Engineers 802.16 standard.					

1	7.	The method	of claim 1.	further	including:
_			 		**********

- 2 synchronizing at least one of the separated plurality of data streams in the
- 3 time domain.
- 8. An article including a machine-accessible medium having associated
- 2 information, wherein the information, when accessed, results in a machine
- 3 performing:
- 4 separating, in a frequency domain, a combined plurality P of asynchronous
- data streams received at substantially a same time into a separated plurality of
- data streams.
- 9. The article of claim 8, wherein the separating is performed by a wireless
- 2 access point.
- 1 10. The article of claim 8, wherein the information, when accessed, results in the
- 2 machine performing:
- 3 computing a frequency response for a number of channels corresponding to
- 4 the plurality P of asynchronous data streams.
- 1 11. The article of claim 8, wherein the information, when accessed, results in the
- 2 machine performing:
- 3 converting the separated plurality of data streams in the frequency domain
- 4 into a separated plurality of data streams in the time domain.
- 1 12. The article of claim 8, wherein the information, when accessed, results in the
- 2 machine performing:
- 3 synchronizing at least one of the separated plurality of data streams after
- 4 detecting a presence of a short preamble.

- 1 13. The article of claim 12, wherein the information, when accessed, results in
- 2 the machine performing:
- 3 estimating a coarse frequency offset.
- 1 14. An apparatus, including:
- a module to separate, in a frequency domain, a combined plurality P of
- 3 asynchronous data streams received at substantially a same time into a separated
- 4 plurality of data streams.
- 1 15. The apparatus of claim 14, wherein the module to separate further includes:
- a spatial demultiplexer to provide the separated plurality of data streams.
- 1 16. The apparatus of claim 14, wherein the module to separate further includes:
- a module to perform a fast Fourier transform on the combined plurality P of
- 3 asynchronous data streams; and
- a module to perform an inverse fast Fourier transform on at least one of the
- 5 separated plurality of data streams.
- 1 17. The apparatus of claim 14, further including:
- a synchronization module to receive at least one of the separated plurality of
- data streams after processing by a module capable of performing an inverse fast
- 4 Fourier transform.
- 1 18. The apparatus of claim 14, wherein at least one of the separated plurality of
- data streams is formatted according to one of an Institute of Electrical and
- 3 Electronics Engineers 802.11 standard and an Institute of Electrical and
- 4 Electronics Engineers 802.16 standard.

1	19. An apparatus, including:
2 ·	a module to perform a fast Fourier transform on a combined plurality P of
3	asynchronous data streams;
4	a spatial demultiplexer to provide a separated plurality of data streams
5	associated with the combined plurality P of asynchronous data streams; and
6	a module to perform an inverse fast Fourier transform on at least one of the
7	separated plurality of data streams so as to separate, in a frequency domain, the
8	combined plurality P of asynchronous data streams received at substantially a
9	same time into the separated plurality of data streams.
1	20. The apparatus of claim 19, wherein at least some of the separated plurality of
2	data streams include a plurality of orthogonal frequency division multiplexed
3	symbols.
1	21. The apparatus of claim 19, wherein a frequency offset associated with a first
2	data stream included in the separated plurality of data streams is different than a
3	frequency offset associated with a second data stream included in the plurality of
4	separated data streams.
1	22. A system, including:
2	a module to separate, in a frequency domain, a combined plurality P of
3	asynchronous data streams received at substantially a same time into a separated
4	plurality of data streams; and
5	a plurality Q of antennas to receive the combined plurality P of
6	asynchronous data streams.
1	23. The system of claim 22, wherein the plurality Q of antennas form a portion
2	of a multiple-input, multiple-output (MIMO) system.

- 1 24. The system of claim 22, further including:
- 2 a wireless access point coupled to the plurality Q of antennas.
- 1 25. The system of claim 24, wherein the wireless access point is to train at least
- one channel for at least some of a plurality of P users associated with the
- 3 combined plurality P of asynchronous data streams.
- 1 26. The system of claim 22, further including:
- a processor to form a Q x P channel matrix.