SHRI G. S. INSTITUTE OF TECHNOLOGY & SCIENCE, INDORE (Govt. Aided Autonomous Institution Established in 1952)

PRACTICAL / TEST ANSWER BOOK (Contains 8 Pages) 087862

	(CO	manis or ages)
1	Name Sample Answer Copy	Subject Code C034553
	Class Roll No	Subject Machine Learning
	Enrolment No	Subject Machine Learning Class B. Tech III year Test No MST-1
S	Signature of Internal Examiner	. Date
S	Signature of External Examiner	. Marks / Obtained Out
91:0	a) i) Supervised Machine Learning -	Google's spam et email classification using SYM & naive bayes algorithm.
	11) Unsupervised Machine Learning	> Amazens Recommendation system
	iii) Semi-Supervised Machine Learne	rages in their search result. Autofulat systems
	to label and yank well of	Rages in their search result.
	iv) Reinforsement Learning > Testas	Autofulot systeme.
	V) Generative Adveserral Networks ->	, adjust of
91	b) As the dependent feature is	dataset.
	classification tasks on this	dataset
	Zogistic Regression, Neural Ne	twork, support Vector Machines
1	ian be used for such ta	sk.
910) No, a sigmoid activation fur	retion cannot be used for
	multiclass classification to	canuse mul in last because

The output will be generated for multiple classes ℓ eigmoid cannot handle that. It can be used in hidden layers of meural metaorik or for generating the pre-final output of logistic regression.

(61d) train data = $120 \text{ K} - (120 \times 0.25) = 90,000$ X = 90,000/256 = 352 Y = 120,000 X = 352 + 2(120,000) = 240,352

Q1e) Pt Inputs with label 1;

NE Inputs with label 0;

Initialize $w = [\omega_0, \omega_1, \omega_2 - - \omega_n]$ randomly;

while ! sonvergence do

Pick reandom n EPUN

if $n \in P$ & $\sum_{i=0}^{n} w_i n_i < 0$ then w = w + n;

end

if $x \in \mathbb{N}$ & $\sum_{i=0}^{n} w_{i}x_{i} > 0$ then $w = w - x_{i}$

end

end

The algorithm convergence when all the inputs are classified correctly or it does not changes the value.

62: a=y-bx solv $b = S_{ny} = \sum (x_i - \overline{x})(y_i - \overline{y}) = \sum (x_y) - \frac{\sum x_i \overline{z}y}{n}$ $S_{xx} = \sum (x_i - \overline{x})^2 = \sum (x_i^2) - \frac{\sum (x_i)^2}{n}$ $\pi = \Sigma x = 3+4+6+8+26+50 = 97 = 16.166$ y = 2y = 25 + 30 + 45 + 60 + 100 + 160 = 70 y_i $(x_i - \overline{x})$ $(y_i - \overline{y})$ $(x_i - \overline{x})(y_i - \overline{y})$ $(x_i - \overline{x})^2$ 74 25 -13.16 173.4489 -45 592.65 148.1089 486.8 30 4 -12.19 -40 254.25 103.4289 -10.17 45 -25 6 66.7489 -10 81.7 8 60 -8.17 100 96.6289 26 +109.83 294.9 +30 3044.7 11.44.4689 160 to 33.83 +90 50 Z=1732.8334 Z = 4,755 = 2.74406 b = Sxx = 4755 5xy = 1732.833 $a = \overline{y} - b\overline{n}$ = 70 - (2.744)(16.17) = 25.62952

ŷ= 25.6295 + 2.744 x

Mar.	y	g= 25.629+2	744x Residual	(yi-9)2	(yi-y)2
			(y1-gi)		
3	25	= 33.861	= -8.861	= 48.517	= 2025
4	30	= 6000	= -6.605	=43.6260	= 1600
6	45	= 42.093	= 2.307	-8.4506	= 625
8	60	=47.581	= 12.419	=154.231	= 100
26	100	=96.973	= 8.027	=369.1627	= goo
50	160	=162.829	= -2.829	= 8.003	= 8100
	Σ		T(1, 1)2	Z301.99	Z13350
	$R^2 = 1$	$1 - \frac{5SR}{SST} = 1 - \frac{1}{1}$	= (y-9/2 = 1-	301.99 =	1-0.022
			2(41-9)-	1"2750	0.978

93(a): $J(\omega) = \omega_1^2 + \omega_2^2 + 4\omega_1 + -6\omega_2 - 1$; $[\omega_1 \omega_2] = [3 4] = [3 4]$									
Sol: $\partial J = [2\omega_1 + 4 2\omega_2 - 6]$									
sw -									
Iteration	w ^k	$\sqrt{J} = \begin{bmatrix} 2\omega_1 + 4 \\ 2\omega_2 - 6 \end{bmatrix}$	J WKT	- WK-XVJ					
(K)		-							
0	[3 4]	[10 2]	=9+16+12-24-1 =	[3 4] - 0.3[10 2]					
			=12 =	[0 3.4]					
1	[0 3.4]	[4 0.8]	= 0+11.56+0-20.4 =	10 3.47 - 0.3 4 0.8					
			=-9.84	= [-1.2 3.16]					
2	[-1.8 3.16]	[1.6 0.32]	=1.44+9.98 74.8 =	[-12 3.16]-0.3[1.6 03]					
			-18 96-1	[-1.68 3.064)					
			=-13.34						
3	[-1.68 3.064)	[0.64 0.128]	= 2.8224 + 9.38 - 692	=[-1.68 3.064)-					
			-18·38u-1	0.3[0.64 0.28)					
			=-14	= [-1.872 3.05]					

(Nove, 1)

dense

94 () network compile (optimizer = 'rmsprop', loss = 'eategorical -
94 () network compile (optimizer = 'rmsprop', loss = 'eategorical - crossentropy', metrics = ['accuracy')
network fit (train-x, train-y, epochs=100, batchsize=128)
4d) network evaluate (test-x, test-y)
2) can add more layers
1) can add more layers 2) can change the activation function.