Background pour le cours de géometrie

2023-2024

Table des matières

1	Différentielles	5
	TD1	7
	2.1	7
	2.2 Topologies	7

TABLE DES MATIÈRES

Chapitre 1

Différentielles

À faire: Jacobiennes et plan tangent.

Définition 1.0.1. Soit $f: \mathbb{R}^n \to \mathbb{R}^m$ une C^k -flèche. On peut déf la jacobienne

$$J(f) \colon \mathbb{R}^n \to M_{n \times m}(\mathbb{R})$$

par

$$J(f)(x) = \begin{pmatrix} \partial_{x_1} f_1 & \dots & \partial_{x_n} f_1 \\ \vdots & \dots & \vdots \\ \partial_{x_1} f_m & \dots & \partial_{x_n} f_m \end{pmatrix}$$

Bon maintenant, on peut les vecteurs de la jacobienne forment une base de l'espace tangent à l'image de f!

Définition 1.0.2. La dérivée totale de f en P notée $d_P f$ est l'application linéaire donnée par la jacobienne.

J'imagine que avec des fonctions C^{∞} , cette dérivée totale est vraiment une bonne notion de dérivée.

Chapitre 2

TD1

2.1

2.2 Topologies

Définition 2.2.1 (Topologie quotient). Topologie la plus fine qui rend la projection continue.

i.e. $U \subset \tilde{X}$ ouvert ssi $\pi^{-1}(U)$ ouvert.