Participants: Mariuxi Leon, Cameron Milligan, Jorge Gonzalez

Data Analysis

The data consist of the number of people present at different times in gym and also includes additional factor. Using this dataset interesting insights into attendace of the gym shall be derived. Also a predictive model shall ve developed which will, predict the number of people attending the gym given the values of other factors.

Basic to do list

Specify the type of data analytic question (e.g. exploration, association causality) before touching the data

- 1. How attendace is affected by time of the week
- 2. How attendace is affected by time of the temperature
- 3. How attendace is affected by the start of the semester
- 4. Create a model predicting the number of people attending the gym

Define the metric for success before beginning

- 1. Logical reasoning shall match
- 2. Logical reasoning shall match
- 3. Logical reasoning shall match
- 4. 90% accuracy

Business Application

This data from university gym. This data consists of information about attendace of the gym and other factors taken at the same timestamp. Using this data a pedictive model can be developed which will predict the attendace of the gym which might be useful for the gym owner.

```
In [1]: import datetime
        import numpy as np
        import pandas as pd
        import seaborn as sb
        # We will use matplotlib to plot figures
        import matplotlib.pyplot as plt
        %matplotlib inline
        # For regression analysis we will use the statsmodels package
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
        # For visual inspection of the regression models
        from statsmodels.graphics.regressionplots import plot regress exog, plot
        fit, plot_leverage_resid2, influence_plot
        # This function will help us to create ordinal variables
        from pandas.api.types import CategoricalDtype
```

/Users/cammilligan/anaconda/lib/python3.6/site-packages/statsmodels/com pat/pandas.py:56: FutureWarning: The pandas.core.datetools module is de precated and will be removed in a future version. Please use the panda s.tseries module instead.

from pandas.core import datetools

```
In [2]: | df = pd.read csv('https://gist.githubusercontent.com/cameronmilligan/d4b
        77b01e5fd03fd1d1b26f10f9d0c9c/raw/c807fd88a46698170151e283c749de44fde5e7
        e5/data.csv',)
        df = df[["number_people", "timestamp", "day_of_week", "is_weekend", "is_
        holiday", "temperature", "is_start_of_semester", "is during semester",
        "date", "month", "hour"]]
        #converting to celcius
        df.temperature = (df.temperature-32)/1.8
        df copy = df.copy()
```

In [3]: df.temperature.describe()

```
62184.000000
Out[3]: count
        mean
                   14.753949
        std
                     3.509109
                    3.411111
        min
        25%
                    12.777778
        50%
                    14.633333
        75%
                    16.822222
                    30.650000
```

Name: temperature, dtype: float64

In [4]: df.head(1)

Out[4]:

	number_people	timestamp	day_of_week	is_weekend	is_holiday	temperature	is_sta
(37	61211	4	0	0	22.088889	0

In [5]: df.shape

Out[5]: (62184, 11)

In [6]: df.describe()

Out[6]:

	number_people	timestamp	day_of_week	is_weekend	is_holiday	tempe
count	62184.000000	62184.000000	62184.000000	62184.000000	62184.000000	62184.0
mean	29.072543	45799.437958	2.982504	0.282870	0.002573	14.7539
std	22.689026	24211.275891	1.996825	0.450398	0.050660	3.50910
min	0.000000	0.000000	0.000000	0.000000	0.000000	3.4111 ⁻
25%	9.000000	26624.000000	1.000000	0.000000	0.000000	12.777
50%	28.000000	46522.500000	3.000000	0.000000	0.000000	14.633
75%	43.000000	66612.000000	5.000000	1.000000	0.000000	16.822
max	145.000000	86399.000000	6.000000	1.000000	1.000000	30.650

The dataset seems to be clean because:

Number of rows for all the data columns are same

Maximum number of people = 145 and min = 0, looks reasonable

Maximum timestampvalue = 86399 which is close to 24 hrs which is reasonable

Max day of the week = 6 and min = 0, seems reasonable

Below we pair plot, to get pictorial overview of the complete data. Pairplot shows histograms of the columns in diagonal of the matrix and pairwise scatter plot of the data.

sb.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x119874d30>

From above pairplot few things can be implied

- 1. Number of people attending gym and temperatures are showing gaussian distribution which is good thing
- 2. There is some kind of relationship exiting between temperatures and number of people attending gym

Some of the correlations above can be ignored such as day of week and is weekend being correlated.

Some of the correlations that stand out are the hour, day_of_week/is_weekend, temperature and whether or not it is the start of the semester

Analysis: Hour vs Number of Gym Attendees

Hypothesis: A greater number of people are attending the gym later in the day.

df.boxplot(column="number_people", by= "hour", figsize= (6,6))

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x127c92cc0>

sb.barplot(x='hour',y='number_people',data=df)

/Users/cammilligan/anaconda/lib/python3.6/site-packages/scipy/stats/sta ts.py:1626: FutureWarning: Using a non-tuple sequence for multidimensio nal indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq] `. In the future this will be interpreted as an array index, `arr[np.ar ray(seq)], which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1294ce518>

Statement: "higher number of people are attending the gym at later hours" appears true from above graph

Analysis: Day of the Week vs Number of Gym Attendees

From pairplot there is negative correlation between day_of_week and number of people going to gym.

Hypothesis: A greater number of people attending the gym on day = 0 i.e monday compared day = 6 i.e sunday.

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x129704d30>

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x1299f61d0>

Statement: Gym attendance steadily declines from Monday through Sunday.

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x129c26be0>

The above statement can analyzed in another angle by bucketing the data further and comparing weekdays verse weekend days. It is clear more people attend the gym during the week than on weekends.

Analysis: Temperature vs Number of Gym Attendees

From correlation plot, there exists the positive correlation between number of people going to gym and temperature.

Hypothesis: The higher the temperature the lower the gym attendance.

Temperature data is continuous in nature, so using a histogram is a better way to visualize it compared to boxplots or barcharts

```
In [14]:
        Bins = []
         for i in range(0,35,5):
              people_count = 0
              for index, row in df.iterrows():
                  if(row['temperature'] >= i and row['temperature'] < i+5):</pre>
                      people_count = people_count + row['number_people']
              Bins.append((people_count))
         sb.barplot(list(range(0,35,5)),Bins)
```

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x129fa9198>

df.plot(kind='bar',x='temperature',y='number_people', figsize=(12,9))

<matplotlib.axes._subplots.AxesSubplot at 0x12a7de470> Out[15]:

df.hist(column='temperature',bins=40)

Out[16]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x12a67e3c8 >]], dtype=object)

temperature 6000 5000 4000 3000 2000 1000 0

25

30

20

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x12bae64e0>

15

10

Even though from the distribution it seems like more people attend gym in warm weather its not true as most number of days weather remains in range 50 to 70. So the analysis that more people attend gym during 50 to 70 temperature range is not entirely correct.

df.boxplot(column="number_people", by= "is_holiday", figsize= (6,6))

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x14469b6a0>

df.boxplot(column="number_people", by= "is_start_of_semester", figsize= (6,6))

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x14541d240>

Boxplot grouped by is_start_of_semester

df.boxplot(column="number_people", by= "is_during_semester", figsize= (6 In [20]: ,6))

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x14559f7b8>

Boxplot grouped by is_during_semester

In [21]: df.boxplot(column="number people", by= "month", figsize= (8,8)) #could this basically be the same information as is during semester and is start of semester? concerns about overfitting maybe? Worth at least discussing in the assignment

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x12bc1f710>

Boxplot grouped by month

In [22]:	df.dtypes		
Out[22]:	number_people	int64	
	timestamp	int64	
	day_of_week	int64	
	is_weekend	int64	
	is_holiday	int64	
	temperature	float64	
	is_start_of_semester	int64	
	is during semester	int64	
	date	object	
	month	int64	
	hour	int64	
	dtype: object		

```
In [23]: #A lot of the features are categorical, so they habe to be changed to th
         e category datatype
         df["day_of_week"] = df["day_of_week"].astype('category')
         df["is_weekend"] = df["is_weekend"].astype('category')
         df["is_holiday"] = df["is_holiday"].astype('category')
         df["is start of semester"] = df["is start of semester"].astype('categor
         y')
         df["is during semester"] = df["is during semester"].astype('category')
         df["month"] = df["month"].astype('category')
         df["hour"] = df["hour"].astype('category')
```

```
In [24]: # Initialize and fit the model
         m1 = smf.ols(formula='number people ~ day of week + is weekend + is holi
         day + temperature + is_start_of_semester + is_during_semester + month +
          hour', data=df)
         m1 = m1.fit()
         df['number people predicted'] = m1.predict(df)
         df['number people redisuals'] = df['number people predicted'] - df['numb
         er people']
         # Residuals mean
         print("residuals mean: ",df.number_people_redisuals.mean())
         print("residuals mean: ",m1.rsquared)
         # Plot histogram of the residuals
         plt.hist(df.number_people_redisuals,bins=40)
         plt.xlabel('number of people residuals')
         plt.title('Including is weekend')
         plt.show()
```

-1.002208736687098e-13 residuals mean: residuals mean: 0.6265773532323791

In [25]: print(m1.summary())

OLS Regression Results

============	============	========	=========	=======
======				
Dep. Variable:	number people	R-squared	:	
0.627	_F F	1		
Model:	OLS	Adj. R-sq	uared:	
0.626	015	110,70 10 29	uar ou ·	
Method:	Least Squares	F_gtatigt	ic.	
2370.	neast bquares	r-scacisc	10.	
Date:	Mon, 16 Sep 2019	Drob (F a	+ > + i a + i a \ •	
0.00	Mon, 10 Sep 2019	PLOD (F-S	tatistic):	
	10.25.22	Ton Tileol	dhaad.	2 5
Time:	18:25:32	Log-Likel	inood:	-2.5
174e+05	62104	A.T.O.		-
No. Observations:	62184	AIC:		5.
036e+05				_
Df Residuals:	62139	BIC:		5.
040e+05				
Df Model:	44			
Covariance Type:				
=======================================	=======================================	=======	========	=======
=======================================				
	coef	std err	t	P> t
[0.025 0.975]				
Intercept	3.7228	0.451	8.258	0.000
2.839 4.606				
day_of_week[T.1]	-0.5321	0.208	-2.556	0.011
-0.940 -0.124				
day_of_week[T.2]	-1.0535	0.209	-5.036	0.000
-1.464 -0.643				
<pre>day_of_week[T.3]</pre>	-2.8412	0.210	-13.561	0.000
-3.252 -2.431				
<pre>day_of_week[T.4]</pre>	-3.5789	0.211	-16.993	0.000
-3.992 -3.166				
day_of_week[T.5]	-2.9220	0.121	-24.162	0.000
-3.159 -2.685				
day_of_week[T.6]	-3.7137	0.121	-30.666	0.000
-3.951 -3.476				
is weekend[T.1]	-6.6357	0.121	-54.649	0.000
is holiday[T.1]	-17.3138	1.135	-15.249	0.000
-19.539 -15.088				
is_start_of_semester	[T.1] 3.1802	0.279	11.385	0.000
2.633 3.728				
is during semester[T	.1] 14.8879	0.230	64.765	0.000
14.437 15.339				
month[T.2]	-4.6966	0.388	-12.111	0.000
-5.457 -3.937	110300	0.000	12 4 1 1 1	0.000
month[T.3]	-11.6965	0.377	-30.989	0.000
-12.436 -10.957	-11.0703	0.3//		J. 000
month[T.4]	-8.0203	0.416	-19.287	0.000
-8.835 -7.205	-0.0203	0.410	-19.201	0.000
	12 5400	0 242	36 6E0	0.000
month[T.5]	-12.5490	0.342	-36.659	0.000
-13.220 -11.878	7 2006	0 257	20 101	0 000
month[T.6]	-7.2086	0.357	-20.181	0.000
-7.909 -6.508				

		supyter redebook marysis or	opulations at a camp	us Gym	
month[T.7]	4 000	-5.5862	0.346	-16.166	0.000
-6.264	-4.909	-8.0697	0 210	25 222	0 000
month[T.8] -8.694	-7.445	-8.0097	0.319	-25.333	0.000
month[T.9]	-7.443	-8.5284	0.352	-24.195	0.000
-9.219	-7.838	-0.5204	0.552	-24.193	0.000
month[T.10]	-7.030	-12.0302	0.377	-31.928	0.000
-12.769	-11.292	-12:0502	0.377	-31.720	0.000
month[T.11]		-13.8252	0.355	-38.935	0.000
-14.521	-13.129				
month[T.12]		-12.7204	0.306	-41.602	0.000
-13.320	-12.121				
hour[T.1]		-10.3511	0.416	-24.888	0.000
-11.166	-9.536				
hour[T.2]		-11.5346	0.438	-26.305	0.000
-12.394	-10.675				
hour[T.3]		-11.3915	0.439	-25.950	0.000
-12.252	-10.531				
hour[T.4]		-10.5569	0.447	-23.610	0.000
-11.433	-9.681				
hour[T.5]		-12.3209	0.379	-32.489	0.000
-13.064	-11.578				
hour[T.6]		-5.1348	0.367	-13.988	0.000
-5.854	-4.415				
hour[T.7]		1.1104	0.366	3.037	0.002
0.394	1.827	0.0570	0.265	25 252	0 000
hour[T.8]	0 074	9.2578	0.365	25.350	0.000
8.542	9.974	14 7410	0.265	40 225	0 000
hour[T.9]	15 /50	14.7418	0.365	40.335	0.000
14.025 hour[T.10]	15.458	17.5772	0.367	47.946	0.000
16.859	18.296	17.5772	0.307	47.940	0.000
hour[T.11]	10.290	19.4239	0.369	52.689	0.000
18.701	20.146	17.4237	0.303	32.003	0.000
hour[T.12]	20.110	18.6265	0.370	50.276	0.000
17.900	19.353	101010		331273	
hour[T.13]		16.5558	0.373	44.413	0.000
15.825	17.286				
hour[T.14]		15.7203	0.375	41.962	0.000
14.986	16.455				
hour[T.15]		19.0739	0.374	50.964	0.000
18.340	19.808				
hour[T.16]		25.1287	0.372	67.577	0.000
24.400	25.858				
hour[T.17]		30.4123	0.367	82.938	0.000
29.694	31.131				
hour[T.18]		31.5467	0.367	85.999	0.000
30.828	32.266				
hour[T.19]		28.5130	0.366	77.897	0.000
27.796	29.230	05.0455	0.066	5 0 5 00	
hour[T.20]	26 562	25.8457	0.366	70.589	0.000
25.128	26.563	27.4416	0.266	74 020	0 000
hour[T.21] 26.724	28.159	2/.4410	0.366	74.920	0.000
hour[T.22]	20.139	25.3289	0.366	69.177	0.000
24.611	26.047	23.3209	0.300	09.111	0.000
hour[T.23]	20.01/	11.2920	0.363	31.117	0.000
		11.2720	0.303	J + • + + /	0.000

10.581 12.003 0.025 0.000 temperature 1.0314 41.704 0.983 1.080 ______ ====== 3845.022 Durbin-Watson: Omnibus: 0.234 Prob(Omnibus): 0.000 Jarque-Bera (JB): 7 366.758 Skew: 0.451 Prob(JB): 0.00 Kurtosis: 4.425 Cond. No. 2.25e+15 ______

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 2.84e-24. This might indicate that there

strong multicollinearity problems or that the design matrix is singula r.

In [26]: df.head(1)

Out[26]:

	number_people	timestamp	day_of_week	is_weekend	is_holiday	temperature	is_sta
C	37	61211	4	0	0	22.088889	0

```
In [27]: # Initialize and fit the model
         params = ['day_of_week' , 'is_holiday' , 'temperature' , 'is_start_of_se
         mester', 'is_during_semester', 'month', 'hour']
         m2 = smf.ols(formula='number_people ~ day_of_week + is_holiday + tempera
         ture + is_start_of_semester + is_during_semester + month + hour', data=d
         f)
         m2 = m2.fit()
         df['number_people_predicted'] = m2.predict(df)
         df['number_people_redisuals'] = df['number_people_predicted'] - df['numb
         er people']
         # Residuals mean
         print("residuals mean: ",df.number_people_redisuals.mean())
         print("residuals mean: ",m2.rsquared)
         # Plot histogram of the residuals
         plt.hist(df.number_people_redisuals,bins=40)
         plt.xlabel('number of people residuals')
         plt.title('Without is_weekend')
         plt.show()
```

residuals mean: -2.516511235711655e-13 residuals mean: 0.626577353232379

In [28]: print(m2.summary())

OLS Regression Results

=======================================	==========		=========	
======				
Dep. Variable:	number_people	R-squared	:	
0.627				
Model:	OLS	Adj. R-sq	uared:	
0.626				
Method:	Least Squares	F-statist	ic:	
2370.				
Date:	Mon, 16 Sep 2019	Prob (F-s	tatistic):	
0.00				
Time:	18:25:34	Log-Likel	ihood:	-2.5
174e+05				
No. Observations:	62184	AIC:		5.
036e+05				
Df Residuals:	62139	BIC:		5.
040e+05				
Df Model:	44			
Covariance Type:				
=======================================		=======	========	
=======================================				ps III
10 025 0 0751	coei	sta err	t	P> t
[0.025 0.975]				
Intercept		0.451	8.258	0.000
2.839 4.606	01,220	0.131	0.230	0.000
day_of_week[T.1]	-0.5321	0.208	-2.556	0.011
-0.940 -0.124	0.0021	0.200	21330	0.011
day_of_week[T.2]	-1.0535	0.209	-5.036	0.000
-1.464 -0.643				
<pre>day_of_week[T.3]</pre>	-2.8412	0.210	-13.561	0.000
-3.252 -2.431				
day_of_week[T.4]	-3.5789	0.211	-16.993	0.000
-3.992 -3.166				
day_of_week[T.5]	-9.5577	0.210	-45.528	0.000
-9 . 969 -9 . 146				
day_of_week[T.6]	-10.3494	0.210	-49.230	0.000
-10.761 -9.937				
is_holiday[T.1]	-17.3138	1.135	-15.249	0.000
-19.539 -15.088				
is_start_of_semester[r.1] 3.1802	0.279	11.385	0.000
2.633 3.728				
is_during_semester[T.	1] 14.8879	0.230	64.765	0.000
14.437 15.339				
month[T.2]	-4.6966	0.388	-12.111	0.000
-5.457 -3.937				
month[T.3]	-11.6965	0.377	-30.989	0.000
-12.436 -10.957				
month[T.4]	-8.0203	0.416	-19.287	0.000
-8.835 -7.205	10 5400	0 040	26.652	0.000
month[T.5]	-12.5490	0.342	-36.659	0.000
-13.220 -11.878	7 2006	0 257	20 101	0 000
month[T.6]	-7.2086	0.357	-20.181	0.000
-7.909 -6.508	E E062	0 246	16 166	0 000
month[T.7] -6.264 -4.909	-5.5862	0.346	-16.166	0.000
-6.264 -4.909				

		Jupyter Notebook - Alialysis of	ropulations at a Camp	ous Gym	
month[T.8] -8.694	-7.445	-8.0697	0.319	-25.333	0.000
month[T.9]	-/.445	-8.5284	0.352	-24.195	0.000
-9.219	-7.838	-0.3204	0.552	-24.193	0.000
month[T.10]	7.030	-12.0302	0.377	-31.928	0.000
-12.769	-11.292			011710	
month[T.11]		-13.8252	0.355	-38.935	0.000
-14.521	-13.129				
month[T.12]		-12.7204	0.306	-41.602	0.000
-13.320	-12.121				
hour[T.1]		-10.3511	0.416	-24.888	0.000
-11.166	-9.536				
hour[T.2]		-11.5346	0.438	-26.305	0.000
-12.394	-10.675	11 2015	0.400	05 050	0 000
hour[T.3]	10 521	-11.3915	0.439	-25.950	0.000
-12.252 hour[T.4]	-10.531	-10.5569	0.447	-23.610	0.000
-11.433	-9.681	-10.5509	0.447	-23.010	0.000
hour[T.5]	-7.001	-12.3209	0.379	-32.489	0.000
-13.064	-11.578	12.0209	0.075	021103	0.000
hour[T.6]		-5.1348	0.367	-13.988	0.000
-5.854	-4.415				
hour[T.7]		1.1104	0.366	3.037	0.002
0.394	1.827				
hour[T.8]		9.2578	0.365	25.350	0.000
8.542	9.974				
hour[T.9]		14.7418	0.365	40.335	0.000
14.025	15.458	17 5770	0.267	47.046	0 000
hour[T.10] 16.859	18.296	17.5772	0.367	47.946	0.000
hour[T.11]	10.290	19.4239	0.369	52.689	0.000
18.701	20.146	17.4237	0.309	32.003	0.000
hour[T.12]		18.6265	0.370	50.276	0.000
17.900	19.353				
hour[T.13]		16.5558	0.373	44.413	0.000
15.825	17.286				
hour[T.14]		15.7203	0.375	41.962	0.000
14.986	16.455				
hour[T.15]	10 000	19.0739	0.374	50.964	0.000
18.340 hour[T.16]	19.808	25 1207	0.372	67 577	0 000
24.400	25.858	25.1287	0.372	67.577	0.000
hour[T.17]	23.030	30.4123	0.367	82.938	0.000
29.694	31.131	3011123	0.007	021900	0.000
hour[T.18]		31.5467	0.367	85.999	0.000
30.828	32.266				
hour[T.19]		28.5130	0.366	77.897	0.000
27.796	29.230				
hour[T.20]		25.8457	0.366	70.589	0.000
25.128	26.563				
hour[T.21]	00 150	27.4416	0.366	74.920	0.000
26.724	28.159	25 2200	0.366	60 177	0 000
hour[T.22] 24.611	26.047	25.3289	0.300	69.177	0.000
hour[T.23]	20.04/	11.2920	0.363	31.117	0.000
10.581	12.003	11.2,20	0.000	/	0.000
temperature		1.0314	0.025	41.704	0.000

0.983	1.080			
	=======	:==========	:===========	========
======				
Omnibus:		3845.022	Durbin-Watson:	
0.234				
Prob(Omnibu	s):	0.000	Jarque-Bera (JB):	7
366.758				
Skew:		0.451	Prob(JB):	
0.00				
Kurtosis:		4.425	Cond. No.	
350.				
========	======			========
======				

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Analysis

At start of semester people tend to go to gym more

```
In [29]: from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear model import LogisticRegression
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.linear model import SGDClassifier,SGDRegressor
```

/Users/cammilligan/anaconda/lib/python3.6/site-packages/sklearn/ensembl e/weight boosting.py:29: DeprecationWarning: numpy.core.umath tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.

from numpy.core.umath tests import inner1d

```
In [30]: df2 = df_{copy.copy}()
         y = df2['number people'].values
         df2_X = df2.drop(['number_people','date','timestamp','is_weekend'],axis=
         X = df2_X.values
         df2.head(2)
```

Out[30]:

	number_people	timestamp	day_of_week	is_weekend	is_holiday	temperature	is_sta
0	37	61211	4	0	0	22.088889	0
1	45	62414	4	0	0	22.088889	0

```
In [31]: Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.40)
In [32]: # Scale the data to be between -1 and 1
         scaler = StandardScaler()
         scaler.fit(Xtrain)
         Xtrain = scaler.transform(Xtrain)
         Xtest = scaler.transform(Xtest)
In [33]: sdg = SGDRegressor()
         sdg.fit(Xtrain, ytrain)
         y_val_l = sdg.predict(Xtest)
         print(sdg.score(Xtest, ytest))
         0.505364392240245
In [34]: radm = RandomForestRegressor(n estimators=100)
         radm.fit(Xtrain, ytrain)
         print(radm.score(Xtest, ytest))
         0.912177349613403
```

Analysis

The predictive model can predict number of people attending the gym with 91% accuracy

```
In [35]: indices = np.argsort(radm.feature_importances_)[::-1]
         # Print the feature ranking
         print('Feature ranking:')
         for f in range(df2_X.shape[1]):
             print('%d. feature %d %s (%f)' % (f+1 , indices[f], df2_X.columns[in
         dices[f]],
                                                radm.feature_importances_[indices[
         f]]))
         Feature ranking:
         1. feature 6 hour (0.519484)
         2. feature 2 temperature (0.179122)
         3. feature 4 is_during_semester (0.110511)
         4. feature 0 day_of_week (0.093581)
         5. feature 5 month (0.084394)
         6. feature 3 is_start_of_semester (0.012813)
         7. feature 1 is_holiday (0.000095)
In [36]: | df2['number_people_predicted'] = radm.predict(X)
In [37]: df2['number_people_redisuals'] = df2['number_people_predicted'] - df2['n
```

umber people'] # Residuals mean print("residuals mean: ",df2.number people redisuals.mean()) # Plot histogram of the residuals plt.hist(df2.number_people_redisuals,bins=40) plt.xlabel('number of people residuals') plt.title('Random Forest Residuals') plt.show()

residuals mean: 15.401467539222255

Analysis

Below is the list of the factors affecting the number of people attending gym ranked from top to bottom in decreasing imprtance manner:

- 1. Hour
- 2. Temperature
- 3. Is during semester
- 4. Day of week
- 5. Month
- 6. Is start of semester
- 7. Is holiday