

Housing Affordability for Indiana State using federal dataset.

STAT 46700-001 TOPICS IN DATA SCIENCE XLST

Team Members: Adusumilli Sree Sai Andrea George Dharani Meka

CONTENTS:-

- 1. Motivation of the Project
- 2. Dataset Details
- 3. Handling missing values
- 4. Raw Dataset
- 5. Analysis
- 6. Significance of dataset features
- 7. Conclusion

MOTIVATION:-

This project aims to address the critical issue of housing affordability in Indiana by leveraging comprehensive federal datasets spanning 12 years (2010-2021) obtained from the Census Bureau.

Through the analysis of the percentage of income spent on housing, calculated as the median yearly housing cost divided by the median income, we seek to gain insights into housing affordability trends over time, as well as regional disparities and demographic variations within the state.

1. Distribution of household income by income bracket B19001_001E

2.Real estate taxes:B25102_008E

- 3.Unemployed population DP03 0109E
- 4.Family Income by single earner household \$1903 CO2 016E
- 5. Total Occupied housing units: S2503 C01 001E
- 6. Median income of occupied housing units S2503_C01_013E
- 7. Yearly housing costs S2503_C01_028E
- 8.Distribution of Properties by Property Value \$2506_C01_002E

HANDLING MISSING DATASET VALUES:-

- ➤ After going through the website https://data.census.gov, it is observed that the missing values have been represented by the Jam codes which looks like -666666666.0+66E.
- Missing values have been handled by replacing the Jam codes with the median value of that particular column data.

Name	Year	B17017_002E	B19001_001E	B25102_008E	DP03_0109E	S1903_C02_016E
Aaronsburg CDP (Ce	2010	31	270	0	-888888888	55769
Aaronsburg CDP (Ce	2011	35	252	0	-888888888	53750
Aaronsburg CDP (Ce	2012	48	259	0	56	41964

Name	Year	B17017_002E	B19001_001E	B25102_008E	DP03_0109E	S1903_C02_016E
Aaronsburg CDP (Ce	2010	31	270	0	16	55769
Aaronsburg CDP (Ce	2011	35	252	0	16	53750
Aaronsburg CDP (Ce	2012	48	259	0	56	41964

FINAL RAW DATASET :-

Testing dataset(Indiana)

ANALYSIS OF NEURAL NETWORK MODELS:-

METRIC	Mean Squared Error(MSE)	Root Mean Squared Error	Mean Absolute	Coefficient of Determination (r2	
MODEL No.	Li Tor(Wist)	(RMSE)	Error (MAE)	score)	
Hidden Layers: 3 batch_size=16 learning_rate=0.001 n_epochs=50	11.046147	3.3235745	1.160193	0.99161837912	
Hidden Layers: 5 batch_size=16 learning_rate=0.001 n_epochs=50	3.6760151	1.9172937	0.95963496	0.9972107046	
batch_size=16 learningrate=0.0005 n_epochs=50	37.385357	6.1143565	1.0551189	0.97163265309	
batch_size=16 learning_rate=0.001 n_epochs=70	7.2646923	2.6953094	0.87021846	0.99448768034	
DUE UNIVERSITY	NORTHWES	T			

Layer (type)	Output Shape	Param #	
Linear-1	[-1, 16]	160	
D 111 0	[4 46]		

Layer (type)	Output Shape	Param #
Linear-1	[-1, 16]	160
ReLU-2	[-1, 16]	0
Linear-3	[-1, 12]	204
ReLU-4	[-1, 12]	0
Linear-5	[-1, 8]	104
ReLU-6	[-1, 8]	0
Linear-7	[-1, 6]	54
ReLU-8	[-1, 6]	0
Linear-9	[-1, 4]	28
ReLU-10	[-1, 4]	0
Linear-11	[-1, 1]	5

Total params: 555 Trainable params: 555 Non-trainable params: 0

Input size (MB): 0.00

Forward/backward pass size (MB): 0.00

Params size (MB): 0.00

Estimated Total Size (MB): 0.00

ANALYSIS OF DECISION TREE MODELS:-

METRIC MODEL No.	Train Root Mean Squared Error	Test Root Mean Squared Error	Feature Importance
max_depth = 10 min_samples_split = 2	Train RMSE: 3.288714787896 192	Test RMSE: 7.08859504025 8605	Yearly Housing Costs Importance: 0.8065762944919934
max_depth = 12 min_samples_split = 2	Train RMSE: 1.983222640511 6682	Test RMSE: 6.287172930543 692	Yearly Housing Costs Importance = 0.79959185853688510.00916565935 642405
max_depth=10, min_samples_split=2 k=5	Average Train RMSE: 7.190047611364 362	Average Test RMSE: 4.76480423289 4837	
max_depth=12, min_samples_split=2 k=7	Average Train RMSE: 6.50049955227 0875	Average Test RMSE: 4.01956250296 25	

Significance of the Dataset Features

CONCLUSION:-

- Through the implementation of both a deep learning regression model and a decision tree model, we have effectively addressed the task of predicting housing affordability.
- Our deep learning network demonstrates high accuracy, as evidenced by its high R2 score, indicating strong predictive capability across the given nine features.
- Additionally, the decision tree model showcases superior performance in terms of root mean square error, highlighting its efficiency in capturing complex relationships within the dataset.

Thank You

