Fizyka dla Informatyki Stosowanej Zestaw nr 8

- 1. Jaka siła Lorentza działa na proton, który z prędkością $\vec{v}=(v_0,0,0)$ wpada w pole magnetyczne o indukcji $\vec{B}=(0,B_0,0)$? Ładunek protonu wynosi $e=1.6\times 10^{-19}\,C$, $B_0=2$ T i $v_0=10^8$ m/s.
- 2. Udowodnić, że energia kinetyczna naładowanej cząstki poruszającej się w polu magnetycznym jest stała w czasie.
- 3. Udowodnić, że całkowita siła działająca na zamknięty obwód z prądem w jednorodnym polu magnetycznym wynosi zero. Obwód ma dowolny kształt i nie musi zawierać się w jednej płaszczyźnie.
- 4. W całej (nieskończonej) płaszczyźnie z=0 płynie stały prąd powierzchniowy $\vec{\Sigma}=(\Sigma,0,0)={\rm const.}$ Korzystając z prawa Ampère'a znaleźć indukcję magnetyczną \vec{B} w dowolnym punkcie P(x,y,z).

5. W nieskończenie długim walcu o promieniu R płynie prąd o stałej gęstści \mathcal{J} . Korzystając z prawa Ampère'a znaleźć indukcję magnetyczną \vec{B} w odległości r od osi walca w przypadku (a) $r \leq R$ oraz (b) r > R.

- 6. Korzystając z prawa Biota–Savarta (lub wyniku podanego na wykładzie 11), znaleźć indukcję magnetyczną \vec{B} w środku kwadratowej ramki o boku a=20 cm, w której płynie prąd o natężeniu I=1 A.
- 7. Kwadratowa ramkę o boku a i całkowitym oporze R umieszczono w odległości s od nieskończonego przewodnika liniowego, w którym płynie prąd I(t)

$$I(t) = \begin{cases} (1 - \alpha t) I_0 &, & 0 \le t \le 1/\alpha, \\ 0 &, & t > 1/\alpha \end{cases},$$

gdzie α i I_0 to dodatnie stałe. Ramka i przewodnik leżą w jednej płaszczyźnie, a bok ramki jest równoległy do przewodnika. Jaka będzie wartość natężenia i kierunek prądu indukowanego w ramce prądu $I_i(t)$?

8. Dany jest tzw. szeregowy obwód RLC. Znaleźć równanie różniczkowe opisujące napięcie na kondensatorze V(t) i jego związek z natężeniem prądu I płynącego w obwodzie. W ogólnym przypadku w obwód można wpiąć źródło zewnętrznej siły elektromotorycznej zmiennej w czasie $\epsilon(t)$. Co stanowi mechaniczny odpowiednik takiego obwodu? Dlaczego zwykle rozważania ograniczają się do siły elektromotorycznej postaci $\epsilon(t) = \epsilon_0 \cos(\omega t)$ lub $\epsilon(t) = \epsilon_0 \sin(\omega t)$, gdzie ϵ_0 i ω to stałe?

Jacek Golak