Determining chirp mass and distance of gravitational wave sources in LIGO data

Laura Cui

October 2021

MIT Department of Physics

Introduction

- Gravitational waves originally predicted by Einstein in 1916
- First direct detection of gravitational waves by LIGO in 2015
- 2017 Nobel Prize in Physics awarded to Rainer Weiss, Barry Barish, and Kip Thorne
- New opportunities to probe strong field phenomena

Motivation

- Reproduce LIGO event detections using simplified processing pipeline
- Determine chirp mass and distance to event from strain data

Gravitational waves

- Accelerating masses emit gravitational radiation which carries away energy
- Analogous to electromagnetic radiation from classical acceleration electron
- Chirp waves produced by inspiraling black hole or neutron star mergers
- Other signals produced by supernovae, rotating neutron stars, early universe

Gravitational waves (cont.)

Figure 1: Shockwaves in field from classical accelerating charge

Theoretical model

• For binary system with masses m_1 , m_2 , chirp mass given by

$$M_{\rm c} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

• Using the Newtonian approximation for circular orbits, we obtain

$$\omega(t) \approx 948.5 \left(\frac{M_{\odot}}{M_c}\right)^{5/8} \left(\frac{1 \text{ s}}{\Delta t}\right)^{3/8} [\text{Hz} \cdot \text{rad}]$$

$$\frac{dE}{dt} \propto (M_c \omega(t))^{10/3}$$

5

LIGO

- Laser Interferometer Gravitational-Wave Observatory
- Includes two Michelson interferometers with 4 km long physical arms
- Use of Fabry Perot cavities to increase effective arm length to 1200 km
- Recycles power to amplify beam from 40 W to 750 kW
- Active and passive damping

LIGO (cont.)

LIGO (cont.)

- Amplitude of strain signal dependent on polarization of wave
- Consider projection onto plane of interferometer h

$$\Delta l = \Delta l_1 - \Delta l_2 = hL$$

Processing techniques

- Used gwpy package adopted from LIGO library to whiten data
- Fit to waveform using lmfit, used cutoff $\Delta t = 3 \times 10^{-2}$ and exponential dropoff
- Reported event time only has precision of 0.1, search for most likely value of t_0

$$f(t) = C(M_c\omega(t))^{10/3}\cos(\omega(t)\Delta t + \phi)$$

$$\chi^2 = 0.451$$

Piecewise fit

- Fit $t < t_0$ and $t > t_0$ pieces separately to address issues with initial model
- Fit to GW150914 template to determine cutoffs and exponential dropoff
- Used $t > t_0$ cutoff of 1.26 imes 10⁻³ and exponential factor (10⁻⁹⁰) $^{\Delta t}$

Piecewise fit (cont.)

$$\chi^{2} = 0.219$$

Estimates for chirp mass

Event	Detector	Reported $M_c(M_{\odot})$	$t < t_0$ estimate	$t > t_0$ estimate
GW1501914	H1	28.6 ^{+1.7} _{-1.5}	$\textbf{13.0} \pm \textbf{0.1}$	26.1 ± 0.8
GW170104	H1	21.1+2.4	20.3 ± 0.8	$\textbf{35.7} \pm \textbf{1.0}$
GW170814	L1	$24.1^{+1.4}_{-1.1}$	20.5 ± 0.3	28.5 ± 0.8
GW170818	L1	$26.5^{+2.1}_{-1.7}$	27.8 ± 0.9	33.5 ± 0.7
GW190412	L1	$15.2^{+0.2}_{-0.2}$	17.8 ± 0.3	52.9 ± 2.3
GW190421_213856	H1	46.6+6.6	$\textbf{16.4} \pm \textbf{0.3}$	60.3 ± 6.2
GW190521_074359	L1	39.9 ^{+2.2} _{-2.9}	$\textbf{32.6} \pm \textbf{0.6}$	$\textbf{60.8} \pm \textbf{1.4}$
GW190630_185205	L1	$29.4^{+1.6}_{-1.5}$	$\textbf{14.7} \pm \textbf{0.2}$	$\textbf{32.9} \pm \textbf{1.1}$
GW190727_060333	H1	$44.7^{+5.3}_{-5.7}$	24.9 ± 0.7	44.1 ± 1.6

Systematic error analysis

- Only considered $t < t_0$ estimates for M_c within 20% or 3σ of reported value
- Outliers appear to be caused by convergence of model to incorrect to
- Average systematic error of about 3.0%

Event	Detector	Reported $M_c(M_{\odot})$	$t < t_0$ estimate
GW170104	H1	$21.1^{+2.4}_{-2.7}$	20.3 ± 0.8
GW170814	L1	$24.1^{+1.4}_{-1.1}$	20.5 ± 0.3
GW170818	L1	$26.5^{+2.1}_{-1.7}$	27.8 ± 0.9
GW190412	L1	$15.2^{+0.2}_{-0.2}$	17.8 ± 0.3
GW190521_074359	L1	$39.9^{+2.2}_{-2.9}$	32.6 ± 0.6

Inferring distance

- Chirp mass determines both waveform and luminosity of event
- Possible to infer distance from strain amplitude and triangulation
- Analyzed relationship between reported distance and constant factor in model

Event	Reported distance (Mpc)	Detector	$-\log C_{t < t_0} $
GW170104	990 ⁺⁴⁴⁰ ₋₄₃₀	H1	13.91 ^{+0.05} _{-0.04}
GW170814	600^{+150}_{-220}	L1	$\textbf{13.59} \pm \textbf{0.02}$
GW170818	1060 ⁺⁴²⁰ ₋₃₈₀	L1	13.97 ± 0.03
GW190412	740^{+140}_{-170}	L1	$\textbf{13.56} \pm \textbf{0.02}$
GW190521_074359	1280^{+380}_{-570}	L1	13.70 ± 0.02

Inferring distance

$$R^2 = 0.368, R = 0.607$$
$$y = 11.199 + 0.374 \log x$$

Conclusions

- Simplified pipeline can be used to detect transient events and reliably estimate chirp mass, after controlling for estimate of t_0
- Moderate correlation observed between log distance and log luminosity
- LIGO A+ upgrades to decrease noise expected to be complete in 2024

Acknowledgements

- · Richard Luhtaru
- Jing Wang
- · Prof. Gunther Roland
- Junior Lab course staff