

Designnotat

Tittel: BJT Transistorforsterker

Forfatter: Karl Henrik Ejdfors

Versjon: 2.0 Dato: 1. desember 2017

Innhold

1	Problembeskrivelse	1
2	Prinsipiell løsning	1
3	Realisering	3
4	Konklusjon	7
5	Takk	7

1 Problembeskrivelse

Det skal designes et system som vist i figur 1.1. I dette designet skal det lages en transistorforsterker som er optimalisert for størst mulig effektoverføring til en last R_L , samt stor forsterkning fra v_1 til v_2 . Transistorforsterkeren baserer seg på NPN-transistorer samt passive kretselement. Inngangssignalet er et periodisk signal, $v_s(t) = A\cos(2\pi ft)$.

Figur 1.1: Oversiktsfigur av forsterker.

2 Prinsipiell løsning

Det er mange måter å designe et slikt system på. Et mulig design av transistorforsterkeren er vist i figur 2.1.

Figur 2.1: Enkel transistorforsterker.

Arbeidspunktet er gitt ved de tre verdiene V_{CE} , I_B og I_C , og velges fra transisorkarakteristikken. V_{CE} er spenningsverdien V_C i forhold til V_E . Fra arbeidspunktet kan alle andre størrelser i kretsen bestemmes. Dette designet skal optimalisere effekt le-

vert til lastmotstanden, og det er derfor gunstig å velge et arbeidspunkt som gjør at utgangsmotstanden blir minst mulig.

Et mulig arbeidspunkt for en transistor av typen BC547B med $R_3=680\Omega$ og $V_{cc}=10\mathrm{V}$ er som følger: $I_B=40\mu\mathrm{A},~I_C=8.1\mathrm{mA}$ og $V_{CE}=4.5\mathrm{V}.$ Dette gir

$$V_C = V_{cc} - I_C \cdot R_3 = 4.5 \text{V} \Longrightarrow V_C = V_{CE} \Longrightarrow R_4 = 0.$$

For bipolare transistorer er det gitt at $V_{BE} \approx 0.7 \text{V}$, ved (2.1) gir dette $V_B = 0.7 \text{V}$. Ved (2.2) kan motstandsverdiene $R_1 = 9.3 \text{k}\Omega$ og $R_2 = 680\Omega$ realisere spenningsverdien V_B .

$$V_B = V_{BE} + V_E \tag{2.1}$$

$$V_B = V_{cc} \frac{R_2}{R_1 + R_2} \tag{2.2}$$

Ved tilkobling av inngangssignal og last, kan forsterkeren implementeres som vist i figur 2.2.

Figur 2.2: Implementasjon av forsterker.

For signaler med små variasjoner kan man forenkle kretsskjemaet til forsterkeren som vist i figur 2.3, der

$$R_i = R_1 || R_2,$$

$$R_o = R_3,$$

$$i_c = \beta \cdot i_b,$$

$$v_i = i_b \cdot r_\pi,$$

$$v_o = -i_c \cdot R_o.$$

Forsterkningen A_v blir da

$$A_v = \frac{v_o}{v_i} = -\frac{\beta \cdot R_o}{r_\pi}. (2.3)$$

Figur 2.3: Småsignalekvivalent

Fra småsignalskjemaet, er det tydelig at inngangsmotstanden til systemet er $R_i||r_{\pi}$, der r_{π} er den indre motstanden i transistoren fra base til emitter. For å finne utgangsmotstanden deaktiveres alle uavhengige spenningskilder og det påføres en testspennig. Dette resulterer i $R_o = R_3$.

Ved egenskapene til transistoren,

$$3.2k\Omega < r_{\pi} < 8.5k\Omega \text{ og } \beta = 330,$$

blir spenningsforsterkningen ved (2.3), der $R_3 = 680\Omega$

$$26.4 < |A_v| < 70.1$$

For å finne effekt levert til last, måles spenningsverdien over lasmotstanden og beregner levert effekt ved (2.4). Fra likning (2.3), avhenger spenningsforsterkningen av R_3 , samtidig som levert effekt avhenger av at R_3 skal være liten. Dette fører til at en høvelig verdi for R_3 er R_L .

$$P = \frac{V_L^2}{R_L} \tag{2.4}$$

Forsterkningen fra v_1 til v_2 er uavhengig av R_1 og R_2 , noe som fører til at man kan oppnå høy inngangsmotstand. På den annen side er det tydelig fra småsignalskjemaet at inngangsmotstanden avhenger av r_{π} , og gjør at inngangsmotstanden aldri kan bli større enn r_{π} .

3 Realisering

Realisering av designet starter med å finne et arbeidspunkt transistoren arbeider rundt. I dette designet blir det brukt en BC547B transistor, og motstandene $R_s=1.5\mathrm{k}\Omega$ og $R_L=680\Omega$. Arbeidspunktet er gitt i tabell 3.1, og er valgt for å få en utgangsmotstand

som samsvarer med lastmotstanden. Det påførte testsignalet er $v_s(t) = 60\cos(2\pi \cdot 1000)$ mV, og implementasjonen som vist i figur 3.1 har tilhørende komponentverdier i tabell 3.2. V_{cc} er satt til 10V.

Figur 3.1: Forsterkerkrets

Tabell 3.2: Komponentverdier til figur 3.1

Tabell 3.1: Arbeidspunkt til transistor i figur 3.1

	Verdi
V_{CE}	4.5V
I_C	8.1mA
I_B	40μΑ

Komponent	Verdi
R_1	$9.3 \mathrm{k}\Omega$
R_2	680Ω
R_3	680Ω
R_s	$1.5 \mathrm{k}\Omega$
R_L	680Ω
C_1	22μF
C_3	1μF

Ved figur 3.2, finner man peak-to-peak verdiene til v_1 og v_2 , som gir en forsterkning

$$A_v = \frac{|v_2|}{|v_1|} = \frac{2.1 \text{V}}{29.3 \text{mV}} = 70.1 = 36.9 \text{dB}.$$

Den maksimale amplituden A inngangssignalet kan ha uten at utgangssignalet v_2 blir synlig forvrengt er 150mV, som vist i figur 3.3. Dette kommer antagelig av at signalet går utenfor aktivt område for transistoren.

Frekvensresponsen til systemet mellom 10Hz og 10MHz er gitt i figur 3.4. Systemet har et båndpass på 100Hz < f < 1MHz.

Figur 3.5 er en graf av en regresjonsanalyse av effekt levert til last ved forskjellige lastverdier. Rundt 680Ω er levert effekt på sitt makspunkt, men når R_L beveger seg mot 500Ω og $1k\Omega$ avtar effekten. Dette tyder på at systemet er optimalisert til å levere mest mulig effekt til lasten med verdi rundt 680Ω .

Figur 3.2: Gul graf viser $v_1(t)$ og blå graf viser $v_2(t)$.

Figur 3.3: Utgangssignalet (blå) er synlig forvrengt når $A=150\mathrm{mV}$ på inngangssignalet.

Figur 3.4: Frekvensrespons til systemet. v_1 er gul, og v_2 er blå.

Figur 3.5: Effekt levert til ulike lastmotstander.

Figur 3.6: Fotografi av design.

4 Konklusjon

I dette designet er det implementert en enkel transistorforsterker som er optimalisert til å levere mest mulig effekt til last med verdi rundt 680Ω. Optimaliseringen er oppnådd ved å velge et arbeidspunkt som tar høyde for at utgangsmotstanden skal være minst mulig, samtidig som det skal være en høvelig forsterking av signalet. Implementasjonen gir en forsterkning fra v_1 til v_2 på 36.9dB. Systemet egner seg for frekvenser innenfor båndbredden (100Hz < f < 1MHz), med amplitude V < 150mV.

5 Takk

Takk til Ole Bjørn Eithun Pedersen for fruktbare diskusjoner.

Referanser

[1] Harald Garvik, Torstein Bolstad. Litt om bruk av forsterkere. NTNU, 2017.