UNCLASSIFIED

AD NUMBER AD803760 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 21 NOV 1966. Other requests shall be referred to Air Force Technical Applications Center, Washington, DC. AUTHORITY AFTAC ltr 28 Feb 1972

LCHO BANGE BESSHIE MEASURE WAY

HALF BEAK

3 JUNE 1948

. Napoled for

AM FORCE TECHNICAL APPLICATIONS CUITER

W-1--,0.C

21 NOVEMBER 1986

TELEDINE INDUSTRIES, INC.

Under Project VELA UNIFORM

ADVANCED RESEARCH PROJECTS AGENCY

PLEASOFT ON Debut No. 0814

BEST AVAILABLE COPY

LONG RANGE SEISMIC MEASUREMENTS HALF BEAK

30 June 1966

SEISMIC DATA LABORATORY REPORT NO. 171

AFTAC Project No.: VELA T/6702

Project Title: Seismic Data Laboratory

ARPA Order No.: 624

ARPA Program Code No.: 5810

Name of Contractor: EARTH SCIENCES DIVISION

TELEDYNE INDUSTRIES, INC.

Contract No.: AF 33(657)-15919

Date of Contract: 18 February 1966

Amount of Contract: \$ 1,842,884

Contract Expiration Date: 17 February 1967

Project Manager: William C. Dean (703) 836-7644

P. O. Box 334, Alexandria, Virginia

AVAILABILITY

This document is subject to special export controls and each transmittal to foreign governments or foreign national may be made only with prior approval of Chief, AFTAC.

This research was supported by the Advanced Research Projects Agency, Nuclear Test Detection Office, under Project VELA-UNIFORM and accomplished under the technical direction of the Air Force Technical Applications Center under Contract AF 33(657)-15919.

Neither the Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsible for information contained herein which may have been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary.

TABLE OF CONTENTS

		Page	No
EVENT DES	SCRIPTION	1	
INTRODUCT	2		
INSTRUMEN	3		
DATA AND		5	
TABLES			
1	Station Status Report - HALF BEAK		
2	Principal Phases - HALF BEAK		
FIGURES			
1	Recording Stations and Signals Received		
2	Unified Magnitudes		
3	Travel-Time Residuals, T- $\Delta/8.1$; T-JB		
4	Maximum Amplitudes of Pn and P		
5	Maximum Amplitudes of Pg		
6	Maximum Amplitudes of Lg		
7	Maximum Amplitudes of LQ		
8	Maximum Amplitudes of LR		
LIST OF A	APPENDICES		
I(A)	Recording Site Information		
I(B)	Unified Magnitudes from Pn or P Waves		
II(A)	Seismic Analysis Diagram		
II(B)	Instrument Response Curves - LRSM		

BLANK PAGE

HALF BEAK

EVENT DESCRIPTION

DATE:

30 June 1966

TIME OF ORIGIN: 22:15:00.1Z

YIELD:

MAGNITUDE: 6.02 ± 0.60

LOCATION:

SITE: Nevada Test Site, Area U19b

GEOGRAPHIC COORDINATES:

Lat: 37°18'57.0" N

Long: 116⁰17'56.0" W

ENVIRONMENT:

GEOLOGIC MEDIUM: Rhyolite

SURFACE ELEVATION: 6791 ft.

SHOT ELEVATION: 3907 ft.

SHOT DEPTH: 2884 ft.

COMPUTED EPICENTER:

ALL STATIONS

GEOGRAPHIC COORDINATES:

Lat: 37°13'12.0" N

Long: 116°24'36.0" W

TIME OF ORIGIN:

22:15:04.92

DEPTH:

52.6 km

EPICENTER SHIFT: 14.4 km, S 43° W

					734	nal				
Code	Station	SPZ	SPR	SPT	LPE	LPR	LPT	Tape	Timing	
				•	*	•	*	•	P	
VII-EM	Mina, Nevafa	•					4	•	8	
KM-OT	Kanab, Utal	•	•	•	•	•				
TF80-21	Tonto forest Observatory, Arisona	•	•		٠	•	*	٠	P	
uaso-z10	Uinta Basin Observatory, Uteh	٠	*	•	•	•	•	•	P	
BMS0-23	Blue Mountain Observatory, Oregon	*	•	•	•	•	•	•	P	
LAO	Suberray A0-10, Hontana	•	M	16	36	96	36		*	
SW-MA	Sweetgraas, Montana	•	•	•	•	•	•	•	7	
3G-8D	Redig, South Dakota	•	•	•	•	•	•	•	P	
WH - SD	Winner, South Dakote	•	•	•	•	•	•	•	P	
WB - \$D	Wichite Mountein				•		•	•	P	
WHSO-26	Observatory, Oklehoma	*	*					•	,	
CR-HB	Crete, Mebraska	•	•	+	•	•	*	•	,	
JP-AT	Jeaper, Alberte, Canada	•	*	•	•	•	•	•	,	
RC-MO	Kanasa City, Missouri	•	•	•	•	•	•			
PG-BC	Prince George, British Columbia, Canada	٠	•	٠	•	•	*	•	•	
SI-BC	Smithera, British Columbia, Canada	•	•	•	•	•	٠	•	,	
PK-ON	Red Lake, Onterio, Canada	•	•	•	•	•	•	•		
CP80-28	Cumberland Pleteeu Chaervatory, Tennessee	*	•	•	•	•	•	•	,	
AYZAL	Alexander City. Alabama	•	•	•	•	*	*			
DE-PL	Belleview, Florida	•	•	•	•	•	•	•	,	
IM-ME	Houlton, Maine	•	•	•	•	•	*	•	7	
8V 37,4	Schefferville, Quebec, Canada	•	•	•	•	•	I	•	P	
HP-HT	Hould Bay, Borthwest Territories, Canada	1	1	I	I	1	1	•	2	

Inoperative S Secondary Timing

No Instrument

Primary Timing

Statior Status Report - HALF BRAK Table 1

Recording Stations and Signals Received

Figure 1

INTRODUCTION

A long range seismic measurements (LRSM) program and several larger seismographic observatories were established under VELA-UNIFORM to record seismological data resulting from natural seismic activity and a planned series of U. S. underground nuclear tests. The LRSM teams are mobile and occupy locations selected to provide optimum data from events of special interest; the observatories are permanent installations as follows:

Wichita Mountains Seismological Observatory (WMSO)
Lawton, Oklahoma

Uinta Basin Seismological Observatory (UBSO)
Vernal, Utah

Blue Mountain Seismological Observatory (BMSO)
Baker, Oregon

Cumberland Plateau Seismological Observatory (CPSO)
McMinnville, Tennessee

Tonto Forest Seismological Observatory (TFSO)
Payson, Arizona

Large Aperture Seismic Array (LASA)
Billings, Montana

The purpose of this report is to provide an analysis

of data resulting from the HALF BEAK event recorded by the LRSM teams and the VELA observatories and a preliminary summary of data reported by other permanent and temporary seismographic stations.

INSTRUMENTATION AND PROCEDURE

The instrumentation at each of the LRSM locations consists of three-component short-period and three-component long-period seismographs. In general, data are recorded on 35 millimeter film and on one-inch 14 channel magnetic tape although recently more portable instrumentation has been incorporated which records only on magnetic tape. The stations are all equipped to record WWV continuously to provide accurate time control and calibration is accomplished once each day and just prior to each shot at the operational settings. Pertinent information useful for analysis of LRSM data is available to qualified users of this data and is contained in Technical Report 65-43, "Interpretation and Usage of Seismic Data, LRSM program." General information on LRSM van and portable system equipment and operation is given in Technical Reports 66-27, "The LRSM Mobile Seismological Laboratory," and 65-74, "A Portable Seismograph." Copies of

these reports may be obtained from DDC. The AD control number of Technical Report 66-27 is 480343. All the observatories have both long-period and short-period, three-component instrumentation, in addition to their other specialized facilities.

Station information is presented in Appendix I. This includes the station name and code; the geographic coordinates, distances and azimuths involved; the station elevations; and the type of instruments in use at each location. Representative instrumental response curves are shown in Appendix II(B).

The procedures used in measuring amplitudes reported herein is illustrated in Appendix II(A) and the unified magnitude is calculated as shown in Appendix I(B). The distance factors (B) beyond 16° are from Gutenberg and Richter. For distances less than 16° values were read from a curve in the Gutenberg and Richter paper back to 10° and then extrapolated to 2°, using an inverse cube relationship.

A standard hypocenter location program for a digital

^{- 4 -}

^{*}Gutenberg, B. and Richter, C. F., Magnitude and Energy of Earthquakes, Ann. Geofis., 9 (1956), pp. 1-15

computer is used to determine the location using data from all stations analyzed. Best-fit values of latitude, longitude, depth of focus, and time of origin are determined statistically by a least squares technique. This utilizes a Jeffreys-Bullen travel-time curve as modified by Herrin in 1961 on the basis of Pacific surface-focus recordings. Precision of the computation is limited primarily by the accuracy of arrival times, the validity of the standard travel-time curve, and by local velocity deviations. Since the method is based on P-wave arrivals, this particular program does not make use of later phases such as pP and S in the determination of depth or location.

DATA AND RESULTS (LRSM and VELA OBSERVATORIES)

The parameters of the HALF BEAK event and a summary of the seismic evaluation is shown on the Event Description page. The operational status of the 22 LRSM stations and observatories is given in Table 1 and illustrated in Figure 1.

Table 2 summarizes the measurements made of the principal phases from the HALF BEAK event at the LRSM and VELA stations. Included are the Pn and P arrival times, the maximum amplitudes (A/T) of Pn or P motion and other phases

period Love and Rayleigh wave motion are also tabulated in (A/T) form. In addition, individual station Rayleigh wave areas (mm²) is indicated as measured on the LPZ only. Although reduced to 1K magnification, they have not been normalized to any magnitude. Twenty-one stations recorded short-period signals. Long-period signals from this event were recorded by 20 stations.

The unified magnitudes determined from the LRSM and VELA observatories is shown in Figure 2. The average magnitude is 6.02 ± 0.60 .

The travel-time residuals from the Pn and P phases are shown in Figure 3. Figures 4 through 8 illustrate plots of the amplitude of P, Pg, Lg, LQ, and LR.

Attached to the report are illustrative seismograms showing the signals recorded at 4 stations. The most distant station analyzed that recorded HALF BEAK was SV3QB at a distance of 4187 kilometers.

Principal Phose HALP SEAR 30 June 1966 22:15:00.17

Code	Station	Distance	Inet.	Hagni- floation (k) Pilm x 10	Phese		vel Time	Perled T (sec)	Hasleum Amplitude A/T	Magnl- tude (m)	Area (m
MH-NA	Hine, Nevede	205	ZPS ZPZ SPT LPT LPZ	0.32 0.11* 0.15	Pn Pg Lg 1 J	0	12.7 34.1	0.5 0.65 0.7	13575 185741 51450		
KM -UT	Keneb, Oteh	110	SPZ SPZ SPT LPT LPZ	0.294 0.294 0.295 1.12 1.02	Pn Pg Lg LG LG	0	64.2 52.6	0.4 0.6 0.9 12.0 12.0	10369 27878 24212 1828 5250	6.62	1609.7
TESO	Tonto Porest Observetory, Ar.zons	565	SPZ-1 ZPZ-1 GPZ-1 ZPZ-1 ZPS-1 ZPS SPM LPZ LPZ LPZ LPZ	9.0 5.0 9.0 9.0 0.8 0.8 0.7.	Pn e e py Lg Lg LQ LQ LQ LQ LR	1 1 1 1 1	19.1 21.9 26.1 26.6 33.4	0,65 0,45 0,7 0,4 0,7 1,3 1,1	929 698 360 658 2997 3744 2226 (7194)	4.16	6483.3
USSO	Pints Sesin Observatory, Utsh	673	SPZ-10 SPZ-10 SPZ-10 RPE SPM LPH LPH LPE	1.0 1.0 1.0 0.97 0.97 9.3+ 9.3+	Pr Lg Lg LQ LQ LQ LQ LQ	1 1 1	(34.4) (43.1) (51.4)	1.15 1.0 0.9 1.2 1.3 14.0 14.0 (14.0)	3125 1425 5141 4934 6013 149 249 (212)	7.11	149.52
BMZ0	zlus Mountein Observatory, Oregon	841	SPZ-3 ZPZ-3 SPZ-3 ZPZ-3 SPZ SPS LPZ LPZ LPZ	17.5° 17.5° 17.5° 17.5° 17.5° 5.94° 5.43° 0.60°	Pn Pg Lg LG LG	1 2 2 2 2	54.7 02.3 06.9 14.5	0.5 1.19 1.0 1.0 1.6 1.45 18.0	(50.1) 964 571 2264 2144 2857 965	(5.47)	
LAO	Zubarrey A0-10, Montene	1133	SPS	28.7 29.7	Pn Pg	2	52.5 (34.4)	(1.15) 1.2	(368) (877)	(4.47)	
ZH-MA	Zweetgrass, Montene	1342	SPZ SPS SPZ SPZ SPR SPT LPR LPT LPZ	33.2 33.2 23.2 23.2 33.2 50.5 39.8 8.15* 2.94	P P P P P P P P P P P P P P P P P P P	2 3 3 3 3	54.2 03.1 05.6 (46.7)	1.1 0.9 1.1 1.0 (1.4) 1.3 (16.0) 12.0	646 240 726 437 (1339) 647 (268) 1937	6.90	990.51
RG-ED	Redig. South Dekote	1301	SPZ SPZ SPZ SPS SPZ SPS SPR SPT LPT LPT	54.1 54.1 54.1 40.0° 40.0° 45.3 54.8 7.93 4.75 1.075	**************************************	2 2 3 3 3 4 4	58.5 59.8 01.5 16.2 (27.3) 05.6	0.8 0.8 0.6 1.3 1.1 1.0 1.4 1.4 12.0 12.0	34.0 72.1 109 2158 938 456 928 515 532 252 2226	5,59	1418.60
wne-gro	Winner, South Dekote	1517	SPZ ZPZ ZPZ SPZ SPS SPT LPS LPT LPZ	43.3 43.3 43.3 18.41 40.0 67.2 8.72 7.45 3.62	P (PP) B Pg Lg Lg LG LG LG LG LG LR	3 3 4	15.7 22.9 (49.9) 06.4	1.0 1.2 1.2 1.0 (1.1) 1.2 14.0 15.0	341 720 1500 813 (938) 670 360 195 325	4.27	713.45
M41.80	Michite Mountein Observetory, Oklahoma	1620	SPZ-6 SPZ-6 SPZ-6 LPE LPH ZPE SPM LPM LPM	340 340 340 52.0 51.0 70.0 70.0 27.6*	P P P P P P P P P P P P P P P P P P P	3 4 4 6	(29.7) 37.5 32.7 25 25.	1.35 1.2 22.0 21.0 1.5 (2.1) (16.0) 17.0	53.5 27.7 27.7 10.9 13.6 47.6 (173) (195) 730	5.16	1089.47
CR-MZ	Crsts, Nebreske	1722	SPS SPZ SPZ SPS ZPT LPR LP? LPZ	26.9° 24.9° 33.4 16.35 14.39 0.61° J.76° 4.1	P e Pg Lg Lg LQ LQ LQ LQ	31	(41.2) 46.8 (68.9)	1.0 1.1 1.0 1.2 1.2 (16.0)	1225 2236 591 1581 1343 (451) 585 (3242)	4.20	1200.54
JP-AT	Jesper, Alberte, Censds	1738	SPS EPE EPE EPE EPE EPE EPE EPE EPE EPE	69.9 69.5 69.5 49.9 69.5 69.5 10.8 12.49 72.0 68.6 10.8 12.45 1.86	PP e E E E E E E E E E E E E E E E E E E	3 3 3 4 4 4 4 6 6 6	43.5 45.8 47.2 (55.5) 02.8 24.5 35.7 47	1.0 1.0 1.1 1.2 1.0 1.2 1.2 15.0 14.0 (2.0) (2.0) (2.0) 16.0 (20.0)	82.7 227 487 445 410 251 257 54.4 (37.5) (1026) (1177) 672 (216) 961	6.97	1620.41

Principal Phase MALF SEAK 30 June 1944

	Station	Distance	last.	Magn1- fication (k)	Phone	TESV	orved ol Timo	Period T	Maximum Amplituda A/T	Hagnl- tuda (m)	Area (m ²)
Code	acactam			Pilm s 10		(min)	(100)	(sec)		(5.30)	
:-#0	Senesa City, Nisseuri	1900	aps aps aps aps LPR LPT aps aps LPR LPR LPT LPS	35.8° 35.8° 35.8° 8.3 7.1 35 37.0 0.50° 7.1	P PP PQ d s Lq Lq LQ LQ LQ LQ	4 4 5 7 7	(1.0 (4.7 (8.2 (11.3) 15 15	(1.0) 0.8 (1.2) 11.0 12.0 (1.3) 1.8 (14.0) 15.0 13.0	(251) 436 462 (403) 75.1 53.2 (349) 813 (1287) 753 2394	(5.30)	904.76
3-8C	Prince George, Sritish calumbia, Canada	1914	ere ere LPE LPT ern ert LPS LPT LPS	112 31.9° 4.64 10.2 115 113 4.64 10.2 8.00	# 8 8 Lq Lq Lq 10 10 Ls	4 4 7 7 7	03.7 07.2 34 34	1.3 1.3 10.0 10.0 2.4 1.7 14.0 15.0	339 1564 453 155 447 179 2103 734 757	5.43	1936.65
1-8C	Smithers. Sritish Columbia, Canada	2109	SPE SPE SPS SPS SPS SPS SPS SPT LPT LPT LPS	55.1° 55.1° 55.1° 55.1° 114 114 122 134 0.68° 1.54° 1.42	P	4 4 4 5 5 5	25.0 27.9 31.4 (35.7) 02.0 (31.1)	0.8 0.8 1.3 1.0 1.2 1.2 2.3 2.8 15.0 13.0	32 0 42 7 86 2 32 7 27 6 30 5 20 8 40 4 74 1 72 7 22 5 9	5.51	1805.54
36-ON	Red Lake. Onterio, Cenade	2339	SPS SPS SPS SPS SPS SPT LPT LPS	13.0° 13.0° 51.7 51.7 51.7 43.8 32.3 4.92	P a (PP) a c Lq LQ LR	4 4 5 7 7 7	45.2 47.8 04.4 24.9 31.7	0.9 0.6 1.1 1.0 1.2 2.1 15.0 13.0	2070 1839 323 42.9 106 642 101 930	6.42	513.21
: P8 0	Cumberland Pletesu Observetory, Tennesses	27/9	SPE-7) SPE-8 SPE-8 SPE-8 LPB LPB SPB SPB	45.0 45.0 45.0 45.0 15.5 14.5	P	5 5 7 9	23.4 24.7 36.2 (31.8) 45 45	0.9 1.1 1.2 1.3 17.0 13.0	131 197 206 84.1 58.5 88.3	5.57	
ax2al	Alexander City, Alabama	2784	LPS LPM LPS 6PZ 6PZ 6PZ 6PZ 6PZ 6PG LPS LPT 6PG 6PG LPT LPT	0.75 0.50 25.8° 98.4 98.4 10.4 25.2 89.4 . 3 4.3° 5.0°	LQ LS P PP PCP S Lq Lq LQ	5 4 9 9 9 9	27.4 47.3 09.4 00.9 55	14.0 14.0 1.1 1.1 1.2 1.1 15.0 14.0 2.0 2.2 20.0 14.0	1144 3289 772 202 147 506 99.6 52.5 146 261 154 543	6.38	1771.4
#I~FL	Salleview, Ploride	3306	LPS SPS SPS SPS SPS LPS LPT LPT LPT SPS SPT LPS LPT LPS LPT LPS LPT LPS	4.65 37.1 37.1 15.2 15.9 14.2 15.9 33.2 35.4 14.2 15.9 2.01	LS P G S S G LG LG LQ LQ LQ LQ LQ LQ LQ	4 4 4 11 11 14 14	09.4 31.5 55.7 11 15	19.0 1.2 (1.3) 1.3 13.0 14.0 10.0 10.0 10.8 (1.8) 17.0 19.0 16.0	368 259 (139) 171 116 56.2 520 264 174 (142) 292 109	4.01	2109.4
HH-MB	Moviton, Maine	4073	SPS SPZ SPS SPS SPS SPT LPT LPZ	29.0° 123 123 123 123 120 4.3° 4.85	P a a PP PCP Lq LQ L0 L8	7 7 7 8 9	06.3 17.8 20.3 29.6 31.0	(1.0) 0.7 0.9 1.1 0.9 2.8 (18.0)	(750) 47.4 70.1 72.7 59.8 244 (174) 254	(6.41)	506.1
8V XQ8	Schofferville, Quebec, Canade	4187	SPS SPS SPS SPS SPS SPR SPT LPC LPC	142* 142* 142* 142* 142* 142* 135* 2.11*	P 0 0 19 14 10 10	7 7 7 7 7	14.0 23.7 30.8 39.5 39.5	1.2 1.1 1.1 1.1 1.2 (1.2) (1.2) 12.0 (16.0)	315 107 103 68.7 208 (50.4 (31.9 240 (348)		222.5

A/T mi/rec

^() Doubtful Values

^{*} Messurementa Hade

⁻⁻⁻ Maximum Amplitude Clipped on Plim

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

			C'ographic Latituda	Geographic Longituda	Elav. (km)	Computed	Azimuth	Installed	Larga or	LP Inst.	
Code	Station	Distance (km)				Epi. Sta.	Sta. Epi.	Radial	Tang.	8ma 11 8P	Inst.
				118 ⁰ 08'53" W	1.52	308°	127°	308°	38°	L	x
ui-NV	Mina, Navada	205	38°26'10" N		1.73	95°	2770	95°	185°	ī,	×
ON-UT	Kanab, Utah	310	37 ⁰ 01'22" N	112 ⁰ 49'39" W		125°	308°	900	00	JM	×
F30-Z1	Tonto Forast Obsarvatory, Arizona	565	34 ⁰ 17'12" N	111 ₀ 16.03, A	1.49	125	308	,,,			
UBBO-210*	Uinta Basin Observatory, Utah	673	40 ⁰ 19'18" N	109 ⁰ 34'07" W	1,60	58°	2420	90°	η°	JM	×
BM80-Z3*	Blua Mountain	841	44 ⁰ 50'56" N	117 ⁰ 18'20" W	1.19	355°	174°	0°	90°	JM	×
BM80-23	Obsarvatory, Oragon		46 ⁰ 41'19" N	106 ⁰ 13'20" W	.90	35°	222°			HSZ	1
LAO	Subarray AO-10, Montana	1333	49°59'08" N	111 ⁰ 57'46" W	1.11	14°	1970	1210	211°	8	,
SW-MA	Bweatgrass, Montana	1,342		103 ⁰ 32'05" W	.95	47°	235°	127°	2170	L	1
NG-SD*	Radig, South Dekota	1 381	45 ⁰ 12'59" N 43 ⁰ 15'08" N	100°11'46" W	.79	59°	250°	129°	219°	L	1
MK-ED.	Winnar, South Dakota	1517		99 ⁰ 35'21" W	.51	95°	285°	90°	00	JM	
MMS0-26	Wichita Mountain Observatory, Oklahoma	1620	34 ⁰ 43'05" N			720	264°	131°	221°	L	
CR-NB	Crata, Nabraska	1722	40°39'52" N	96 ⁰ 51'15" W	.44	356°	175°	114°	204°	L	
JP-AT	Jaspar, Albarta, Canada	1738	52°53'50" N	118 ⁰ 05'25" W	1,13		1	133°	223°	s	
KC-MO	Kansas City, Missouri	1900	39 ⁰ 21'21" N	94 ⁰ 40'17" W	.27	770	270°	1			h
PG-BC	Princa Georga, British Columbia, Canada	1916	53 ⁰ 59'50" N	122 ⁰ 31'23" W	.91	348°	163°	1100	200°	L	
	emithers, British	2109	54 ⁰ 47'18" N	127°04'17" W	.58	341°	153°	107°	197°	L	
BI-BC	Columbia, Canada Rad Lake, Ontario, Canad	2339	50°50'20" N	93 ⁰ 40'20" W	.37	43°	239°	58°	148°	5	1
RK-ON		2749	35 ⁰ 35'41" N	85°34'13" W	.57	85°	283°	90°	00	JM	
CPBQ-28	Observatory, Tennessa		32 ⁰ 46' 38" N	86°07'48" W	.23	91°	289°	138°	228°	L	
AX2AL*	Alaxandar City, Alabama	2796		82 ⁰ 03'52" W	.02	96°	295°	140°	230°	s	
BE-FL	Ballaviaw, Florida	3308	28°54'19" N	67°59'09" W	.21	60°	274°	93°	183°	8	-
HN-ME	Houlton, Maina	4073	46 ⁰ 09'43" N				263°	139°	2290	s	
sv 3QB*	Schaffarvilla, Quabec, Canada	4197	54 ⁰ 48'39" N	66 ⁰ 45'00" W	.58				86°	JM 2	,
NP-NT	Mould Bay, Northwest Tarritorias, Canada	4343	76 ⁰ 15'08" N	119 ⁰ 22'18" W	.06	359°	176°	356°	86	S	

*SEISMOMETERS NOT ORIENTATED TOWARD NEVADA TEST SITE

Unified Magnitude: $m = log_{10} (A/T)$, + B

where A = zero to peak ground motion in millimicrons = (mm) (1000)

1

T = signal period in seconds

B = distance factor (see Table below)

mm = record amplitude in millimeters zero to

K = magnification in thousands at signal
frequency

Table of Distance Factors (B) for Zero Depth

5 2 4 4		Dist	•	Dist		Dist	
Dist	D	(deg)	В	(deq)	В	(deq)	В
(deg)	<u>B</u>			54 ⁰	3.8	80°	3.7
o°	-	27°	3.5	54	3.0	81	3.8
1	-	28	3.6	55	3.8	82	3.9
2	2.2	29	3.6	56	3.8	83	4.0
3	2.7	30	3.6	57	3.8	84	4.0
4	3.1	31	3.7	58	3.8	04	
		32	3.7	59	3.8	85	4.0
5	3.4	33	3.7			86	3.9
6	3.6		3.7	60	3.8	87	4.0
7	3.8	34	3.7	61	3.9	88	4.1
8	4.0	35	3.7	62	4.0	89	4.0
9	4.2	36	3.6	63	3.9		4 0
10	4.3	37	3.5	64	4.0	90	4.0
11	4.2	38	3.5	65	4.0	91	4.1
12	4.1	39	3.4	66	4.0	92	4.1
	4.0			67	4.0	93	4.2
13	3.6	40	3.4		4.0	94	4.1
14	3.0	41	3.5	68		95	4.2
15	3.3	42	3.5	69	4.0	96	4.3
16	2.9	43	3.5	70	3.9	97	4.4
17	2.9	44	3.5	71	3.9	98	4.5
18	2.9	45	3.7	72	3.9	99	4.5
19	3.0	46	3.8	73	3.9	99	4.5
		47	3.9	74	3.8	100	4.4
20	3.0		3.9			101	4.3
21	3.1	48		75	3.8	102	4.4
22	3.2	49	3.8	76	3.9	103	4.5
23	3.3	50	3.7	77	3.9	104	4.6
24	3.3	51	3.7	78	3.9		
25	٦.5	52	3.7	79	3.8	105	4.7
	.4	53	3.7				
26	1 • 1	9.0					

Detail Showing Allowance For Line Width

Pick time of Pn at beginning of "a" half cycle.

Pick amplitude of Pn as maximum "d/2" within 2 or 3 cycles of "c".

Pick amplitudes of Pg and Lg at maximum of corresponding motion.

Seismic Analysis Diagram

APPENDIX II(A)

INSTRUMENT RECPONSE CURVES - LRSM

22:21:30.0 Z

SPZ HI

99.2 K

139°

SPR-HI

97.6 K

102.3 K

UP

LPZ-HI

3.87 K

159°

LPR-HI

3.88 K

229°

LPT-HI

INOPERATIVE

HALF BEAK SV3QE

SCHEFFERVILLE, QUEBEC

30 JUNE 1966

 $\Delta = 4187 \text{ km}$

22:21:29.9 Z · SPZ-LO 35.9 K 93° "SPR-HI" .35.8 K 183° SPT-HI 37.5 K LPZ-HI 5.49 K 93° ·LPR-HI 6.13 K 183° · LPT-HI · 5.86 K

HALF BEAK

HN-ME

HOULTON, MAINE

30 JUNE 1966

 $\Delta = 4073 \text{ km}$

A

₹ 22:15:11.7 Z SPZ-LO I SPR-HI .510 K 1850 HALF BEAK SPT-HI .394 K KN-UT KANAB, UTAH LPZ-LO 30 JUNE 1966 .600 K 95° $\Delta = 310 \text{ km}$ LPR-LO .567 K

1850

CLIPPED

Security Classification

DOCUMENT CO (Security ciseeification of title, body of ebetract and indexi	NTROL DATA - R&	D stered when t	the overell report (a classified)					
TELEDYNE INDUSTRIES, INC.		20. REPOR	T SECURITY CLASSIFICATION Unclassified					
EARTH SCIENCES DIVISION ALEXANDRIA, VIRGINIA 22314		26 GROUP						
3. REPORT TITLE								
Long Range Seismic Measurements - HALF BEAK								
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Scientific								
8. AUTHOR(5) (Lest name, first name, initial)								
Clark, Don M.								
6. REPORT DATE	7# TOTAL NO. OF P	AGES	76. NO. OF == 78					
21 November 1966	20		1					
a. CONTRACT OR GRANT NO.AF 33(657)-15919 90. ORIGINATOR'S REPORT NUMBER(S)								
& PROJECT NO. VELA T/6702	SDL Report No. 171							
ARPA Order No. 624	9b. OTHER REPORT NO(8) (Any other numbers that may be assigned this report)							
ARPA Program Code No. 5810								
10. AVAILABILITY/LIMITATION NOTICES		,						
This document is subject to special export controls and each trans- mittal to foreign governments or foreign national may be made only with prior approval of Chief, AFTAC.								
11. SUPPLEMENTARY NOTES								
	FTAC. 12. SPONSORING MILITARY ACTIVITY ADVANCED RESEARCH PROJECTS AGENCY NUCLEAR TEST DETECTION OFF1 E WASHINGTON, D. C.							
13. ABSTRACT								

An analysis of seismological data from an underground nuclear explosion as a continuing study to provide information to aid in distinguishing between earthquakes and explosions.

A table of travel-times and amplitudes of P, Pg, Lg, and surface waves are included along with other unidentified phases.

Unclassified

Security Classification

14 KEY WORDS	LIF	IK A	LINK B		LINK C		
	AOLE	WT	ROLE	wT	ROLE	wT	
Seism	ic Magnitude						
Seism	ic Travel-Time						
Seism	ic Amplitude						
VELA-	UNIFORM						
Nuclea	ar Tests						

INSTRUCTIONS

- ORIGINATING ACTIVITY: Enter the name and address
 of the contractor, autoontractor, grantee, Department of Defense activity or other organization (corporate author) Issuing
 the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall accurity classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be nelected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter test name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 76. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, aubproject number, aystem numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the officlal report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(\$): If the report has been assigned any other report numbers (either by the originator or by the aponaor), also eater this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explana-
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory aponaoring (paying for) the reaearch and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual aummary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional apace is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the Information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be aselected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.