The 2D Heat Equation

— Analysis and Numerical Approaches

- 1 Formulation of Problem
- 2 Numerical Approache
 - Finite Difference Method (FDM)
 - Finite Element Method (FEM) Approximation
 - Spectrum Theory and Fast Fourier Transform (FFT)
- 3 Analysis of Algorithms
 - Consistency
 - Stability
 - Order of Convergence
 - Possibility of Improvement
- 4 Application on Finance

An Evolutional Problem

Formulation of Problem

Figure: Region Ω_T

- Let $\Omega \subset \mathbb{R}^d$ be an open set with boundry $\Gamma := \partial \Omega$
- Set $\Omega_T = \Omega \times]0, T[, \Gamma_T := \Gamma \times]0, T[, \Gamma_T \text{ is called the } lateral boundary of the cylinder <math>\Omega_T$.
- Consider the heat equation with τ-periodic boundary condition:

$$\left\{ \begin{array}{lcl} \partial_t u - \Delta_x u & = & f & \text{ on } \Omega_T \\ u(x_i,t) & = & u(x_i+\tau,t) & \text{ on } \Gamma_T \\ u(x,0) & = & u_0(x) & \text{ on } \Omega \times \{t=0\} \end{array} \right.$$

- 1 Formulation of Problem
- 2 Numerical Approaches
 - Finite Difference Method (FDM)
 - Finite Element Method (FEM) Approximation
 - Spectrum Theory and Fast Fourier Transform (FFT)
- 3 Analysis of Algorithms
 - Consistency
 - Stability
 - Order of Convergence
 - Possibility of Improvement
- 4 Application on Finance

Finite Difference Method (FDM)

Schemes based on FDM

[cf. Luc16, ch.08]

- The Explicit Euler Three Point Finite Difference Scheme
- The Implicit Euler and Leapfrog Scheme
- The Crank-Nicolson Scheme

Finite Difference Method (FDM)

Schemes based on FDM

[cf. Luc16, ch.08]

- The Explicit Euler Three Point Finite Difference Scheme
- The Implicit Euler and Leapfrog Schemes
- The Crank-Nicolson Scheme

Finite Difference Method (FDM)

Schemes based on FDM

[cf. Luc16, ch.08]

- The Explicit Euler Three Point Finite Difference Scheme
- The Implicit Euler and Leapfrog Schemes
- The Crank-Nicolson Scheme

Finite Element Method (FEM) Approximation

Meshes in 2D

[cf. Luc16, ch.06; Zil21]

- \blacksquare Rectangular Q_1 Finite Elements
- \blacksquare Triangular P_1 and P_2 Lagrange Elements

(a) Rectangular Q_1 Finite Elements

(b) Triangular P_1 Lagrange Elemer

(c) Triangular P_2 Lagrange Ele

Finite Element Method (FEM) Approximatio

Meshes in 2D

[cf. Luc16, ch.06; Zil21]

- Rectangular Q_1 Finite Elements
- Triangular P_1 and P_2 Lagrange Elements

(a) Rectangular Q_1 Finite Elements

(b) Triangular P_1 Lagrange Elements

(c) Triangular P_2 Lagrange Elements

Spectrum Theory and Fast Fourier Transform (FFT

The Riesz-Fredholm Theory

[cf. Bre11, ch.06; Sch01, ch.08]

- 1 Formulation of Problem
- 2 Numerical Approaches
 - Finite Difference Method (FDM)
 - Finite Element Method (FEM) Approximation
 - Spectrum Theory and Fast Fourier Transform (FFT)
- 3 Analysis of Algorithms
 - Consistency
 - Stability
 - Order of Convergence
 - Possibility of Improvement
- 4 Application on Finance

[cf. Luc16; Zil21]

All algorithms are implemented by Python 3.9 on 64-bit machine.

Possibility of Improvem

- Assemble with sparse matrix: import scipy.sparse
- JIT (Just-In-Time) compile: import numb
- Parallel computation for large volume data processing

Possibility of Improvem

- Assemble with sparse matrix: import scipy.sparse
- JIT (Just-In-Time) compile: import numba
- Parallel computation for large volume data processing

Possibility of Improvement

- Assemble with sparse matrix: import scipy.sparse
- JIT (Just-In-Time) compile: import numba
- Parallel computation for large volume data processing

- 1 Formulation of Problem
- 2 Numerical Approache
 - Finite Difference Method (FDM)
 - Finite Element Method (FEM) Approximation
 - Spectrum Theory and Fast Fourier Transform (FFT)
- 3 Analysis of Algorithms
 - Consistency
 - Stability
 - Order of Convergence
 - Possibility of Improvement
- 4 Application on Finance

[cf. Nef00, ch.12-13]

$$\begin{split} -rF + \partial_t F + \partial_t F \partial_t S + \frac{\sigma_t^2}{2} \Delta_s F \partial_t^2 S &= 0 \\ S_t \in [0, +\infty[, \quad t \in [0, T] \\ F(T) &= (S_T - K)_+ \end{split}$$

mulation of Problem Numerical Approaches Analysis of Algorithms Application on Finance **References**

References:

- [Bre11] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer New York, 2011.
- [Eva10] Lawrence Evans. Partial Differential Equations. American Mathematical Society, Mar. 2010.
- [Luc16] Hervé Le Dret; Brigitte Lucquin. Partial Differential Equations: Modeling, Analysis and Numerical Approximation. Springer International Publishing, 2016.
- [Nef00] Salih N. Neftci. An Introduction to the Mathematics of Financial Derivatives. Elsevier Science & Techn., June 2000. 527 pp.
- [Sch01] Michelle Schatzman. Analyse numérique : une approche mathématique : cours et exercices. Paris: Dunod, 2001.
- [Zil21] Matthieu Bonnivard; Adina Ciomaga; Alessandro Zilio. "Méthodes numériques pour les EDO et les EDP". Notes de cours M1 Mathématiques. 2021.

Thank you for listening!

Questions?

All resources including this diapositive, the final report, code and user's manual are submitted to:

```
Project Github: https://github.com/derrring/2d_heat_equation
```

Welcome to give us your valuable feedbacks :)

- 1 Formulation of Problem
- 2 Numerical Approaches
 - Finite Difference Method (FDM)
 - Finite Element Method (FEM) Approximation
 - Spectrum Theory and Fast Fourier Transform (FFT)
- 3 Analysis of Algorithms
 - Consistency
 - Stability
 - Order of Convergence
 - Possibility of Improvement
- 4 Application on Finance

