Analysis of methods and uncertainties in estimating winter surface mass balance from direct measurements on alpine glaciers

Alexandra PULWICKI, ¹ Gwenn E. FLOWERS, ¹ Valentina RADIĆ, ²

¹ Simon Fraser University, Burnaby, BC, Canada

² University of British Columbia, Vancouver, BC, Canada

Correspondence: Alexandra Pulwicki < apulwick@sfu.ca>

10

12

13

14

15

16

17

18

19

20

21

22

23

24

ABSTRACT. Accurately estimating winter surface mass balance for a glacier is central to quantifying overall mass balance and melt runoff. However, measuring and modelling snow distribution and variability is inherently difficult in alpine terrain, resulting in high mass balance uncertainty. The goal of this paper is to provide a comprehensive sweep of choices and assumptions present when moving from snow observations to winter mass balance estimates and to better understand how interactions between snow variability, data error and our methodological choices contribute to uncertainty. We extensively measure snow depth and density, at various spatial scales, on three glaciers in the St. Elias Mountains, Yukon. Elevation is found to be the dominant driver of accumulation variability but the relationship varies between glaciers. Our results also suggest that wind redistribution and preferential deposition affect snow distribution but that more complex parametrization is need to fully capture wind effects. We use a Monte Carlo method to quantify the effects of variability due to density interpolation method, snow water equivalent observations as well as observation interpolation on estimates of winter surface mass balance. The largest source of uncertainty stems from

calculating parameters for interpolation using either linear regression or simple kriging. Spatially extensive measurements in the accumulation area are needed, at the expense of detailed ablation area measurements, to better constrain interpolation models and reduce uncertainty.

Accurate estimation of winter surface mass balance is critical for correctly simulating the summer and

INTRODUCTION

25

26

27

28

overall mass balance of a glacier (Réveillet and others, 2016). Effectively representing spatial distribution of 31 snow is also important for simulating snow and ice melt as well as energy and mass exchange between the 32 land and atmosphere to better monitor surface runoff and its downstream effects (Clark and others, 2011). Snow distribution is sensitive to a number of complex process that partially depend on glacier location, 34 topography, and orientation (Blöschl and others, 1991; Mott and others, 2008; Clark and others, 2011; Sold 35 and others, 2013). Current models are not able to fully represent these processes so the distribution of snow 36 in remote, mountainous locations is not well known. There is, therefore, a significant source of uncertainty 37 that undermines the ability of models to represent current glacier conditions and make predictions of glacier 38 response to a warming climate. 39 Winter mass balance is the sum of accumulation and ablation over the winter season (? glossary), and 40 constitutes the addition of glacier mass when considering the net mass balance. In this study, we attempt 41 to estimate winter surface mass balance, which is the net accumulation and ablation assuming no internal 42 snow pack accumulation in the form of ice lenses. We refer to this quantity as winter balance, defined as the 43 change of mass during a winter season, throughout the paper. Accurate estimates of winter balance are critical 44 for mass balance estimates, not only because winter balance constitutes half of the mass balance but also 45 because the distribution of snow on a glacier initializes the summer balance and high snow albedo contributes to reduced summer melt. Winter balance is typically measured at a few stake locations and interpolation 47 methods are the same as those of summer balance. This equivalence is likely inappropriate. Snow distribution 48 is largely driven by precipitation and wind patterns, which are known to be high heterogeneous in alpine 49 environments, and is therefore highly variable and has short correlation length scales. Melt is strongly affected 50 by air temperature and solar radiation, both of which are consistent across large spatial domains. Further, 51 detailed studies of winter balance are far less common than those of summer balance and uncertainty in winter mass balance currently overshadows differences between summer balance models. It is therefore necessary to 53

investigate methods that address the variability of snow distribution and will improve estimates and decrease
 uncertainty of winter balance.

Winter balance is notoriously difficult to estimate. Snow distribution in alpine regions is highly variable and 56 influenced by dynamic interactions between the atmosphere and complex topography operating on multiple 57 spatial and temporal scales (Liston and Elder, 2006). Extensive, high resolution and accurate accumulation 58 59 measurements on glaciers are almost impossible to achieve due to cost benefits of the various methods used to quantify snow water equivalent (McGrath and others, 2015). For example, snow probes obtain accurate 60 point observations but have negligible spatial coverage. Conversely, gravimetric methods obtain extensive 61 measurements of mass change but cannot capture relevant spatial variability of snow. Glacierized regions are 62 also generally remote and challenging to access during the winter due to poor travelling conditions. 63

Predicting winter balance is a further challenge. Physically-based dynamic models are able to capture the intricate interactions between the atmosphere and local topography but they are operationally complex and computationally expensive, and require a diverse set of detailed observations (e.g. Dadic and others, 2010). Empirical models that rely on statistical relationships between proxy parameters and measured accumulation are widely applied and simple to execute but most are unable to explain the majority of variance observed or lack insight into processes that affect snow distribution (e.g. Grabiec and others, 2011; López-Moreno and others, 2011).

There is currently a disparity in snow survey sophistication within mass balance studies when compared to 71 snow hydrology (?) studies. Studies that aim to estimate the end-of-winter, basin-wide snow water equivalent (SWE) within the snow science literature employ a wide range of snow measurement techniques, including 73 direct measurement, lidar/photogrammerty and ground penetrating radar. Surveys are designed to measure 74 snow throughout the basin and ensure that all terrain types are sampled. A wide array of measurement 75 interpolation methods are used, including linear and non-linear regressions and geospatial interpolation such 76 as kriging, and methods are often combined to yield improved fit. Physical snow models, such as Alpine3D 77 and SnowDrift3D, are continuously being improved and tested within the snow science literature. Snow 78 survey error has been considered from both a theoretical and applied perspective (Turcan and Loijens, 1975; 79 ?; Deems and Painter, 2006; ?). Winter mass balance surveys employ many similar techniques and methods, 80 favouring more basic approaches. Measurement tools overlap between the two disciplines but spatial coverage 81 is often limited for winter balance studies and typically consist of a sparse elevation transect along the 82 glacier centreline. Interpolation of these measurements is primarily done by computing a linear regression 83

that includes only a few topographic parameters, with elevation being the most common. Other applied 84 techniques include hand contouring, kriging and attributing measured accumulation values to elevation bands. 85 Physical snow models have been applied on a few glaciers but a lack of detailed meteorological data generally 86 prohibits their wide-spread application. Error analysis is rarely considered and to our knowledge, no studies 87 have investigated uncertainty in winter balance estimates. By investigating tools and methodologies applied 88 89 in snow science literature, we hope to identify ways to improve snow survey design and estimates of SWE. There is clearly a need for more comprehensive understanding of uncertainties inherent when estimating 90 accumulation on glaciers. Ultimately, we need a thorough knowledge of the processes that affect spatial and 91 temporal snow variability and an effective method to predict snow accumulation. The contribution of our work 92 toward these goal is to (1) examine methods and uncertainties when moving from snow measurements to 93 estimating winter balance and (2) show how snow variability, data error and our methodological choices 94 interact to create uncertainty in our estimate of winter balance. We focus on commonly applied low-95 complexity methods of measuring and predicting winter balance with the hope of making our results broadly applicable to current and future winter mass balance programs.

${f STUDY\ SITE}$

Winter balance surveys were conducted on three glaciers in the Donjek Range of the St. Elias Mountains, 99 located in the south western Yukon, Canada. The Donjek Range is approximately 30×30 km and Glacier 100 4, Glacier 2, and Glacier 13 (naming adopted from Crompton and Flowers (2016)) are located along a SW-101 NE transect through the range. There is a local topographic divide in the Donjek Range that follows an 102 "L" shape, with one glacier located in each of the south, north, and east regions (Figure 1). These mid-103 sized alpine glaciers are generally oriented SE-NW, with Glacier 4 dominantly south facing and Glaciers 104 2 and 13 generally north facing. The glaciers are low angled with steep head walls and steep valley walls. 105 The St. Elias mountains boarder the Pacific Ocean and rise sharply, creating a significant climatic winter 106 gradient between coastal maritime conditions, generated by Aleutian-Gulf of Alaska low-pressure systems, 107 and interior continental conditions, determined by Yukon-Mackenzie high-pressure system (Taylor-Barge, 108 1969). The average dividing line between the two climatic zones shifts between Divide Station and the head 109 of the Kaskawalsh Glacier based on synoptic conditions. The Donjek Range is located approximately 40 km 110 to the east of the head of the Kaskawalsh Glacier. Research on snow distribution and glacier mass balance 111 in the St. Elias is limited. A series of research programs were operational in the 1960s (Wood, 1948; Danby 112

Fig. 1. Sampling design for Glaciers 4, 2 and 13, located in the Donjek Range, Yukon (a,b). Centreline and transverse transects are shown in blue dots, hourglass and circle design are shown in green dots. (d) Linear and curvilinear transects typically consist of sets of three measurement locations, spaced ~10 m apart. (e) At each measurement location, three snow depth observation are made. (c) Linear-random snow depth measurements in 'zigzag' design are shown as grey dots. Orange squares are locations of snow density measurements.

and others, 2003) and long-term studies on a few alpine glaciers have arisen in the last 30 years (e.g. Clarke and others, 1984; Paoli and Flowers, 2009).

115 METHODS

Estimating winter balance involves transforming snow depth and density measurements to distributed estimates of snow water equivalent (SWE). We use four main processing steps that obtain (1) measurements, (2) distributed density, (3) grid cell average and (4) interpolated SWE. To estimate the specific winter surface mass balance (WSMB) we calculate the mean SWE for a grid cell from the estimated distributed SWE.

Measurements

120

The estimated SWE is the product of the snow depth and density. Snow depth is generally accepted to be more variable than density (Elder and others, 1991; Clark and others, 2011; López-Moreno and others, 2013) so we chose a sampling design with relatively small measurement spacing along transects that resulted in a

ratio of approximately 55:1 snow depth to snow density measurements. The sampling design attempted to 124 capture depth variability at multiple spatial scales and to account for known variation with elevation. Our 125 sampling design is created to avoid bias, be space filling within the ablation area and minimize distance 126 travelled (Shea and Jamieson, 2010). 127 We measured winter balance at three glaciers along the precipitation gradient in the St. Elias Mountains, 128 129 Yukon (Taylor-Barge, 1969) in an attempt to account for range-scale variability (Clark and others, 2011). We measured winter balance on Glaciers 4, 2, and 13, which are located increasingly far from the head 130 of the Kaskawalsh Glacier (Figure 1b). Snow depth was measured along linear and curvilinear transects to 131 encompass basin-scale variability. At each measurement location, three values of snow depth were recorded to 132 account for point-scale variability (Clark and others, 2011). We selected centreline and transverse transects 133 with sample spacing of 10-60 m (Figure 1d) to capture previously established correlations between elevation 134 and accumulation (Machguth and others, 2006; Walmsley, 2015) as well as accumulation differences between 135 ice-marginal and center accumulation. We also implemented an hourglass and circle design (Figure 1), which 136 allows for sampling in all directions and easy travel (Parr, C., 2016 personal communication). At each 137 measurement location, we took 3-4 depth measurements (Figure 1e), resulting in more than 9,000 snow 138 depth measurements throughout the study area. 139 Our sampling campaign involved four people and occurred between May 5 and 15, 2015, which corresponds 140 to the historical peak accumulation in the Yukon (Yukon Snow Survey Bulletin and Water Supply Forecast, 141 May 1, 2016). While roped-up for glacier travel, the lead person used a hand-held GPS (Garmin GPSMAP 142 64s) to navigate as close to the predefined transect measurement locations as possible (Figure 1). The 143 remaining three people used 3.2 m aluminium avalanche probes to take 3-4 snow depth measurements 144 within ~ 1 m of each other. Each observer was approximately 10 m behind the person ahead of them along 145 the transect line. The location of each set of depth measurements, taken by the second, third and fourth 146 147 observers, was approximated based on the recorded location of the first person. Snow depth sampling was primarily done in the ablation area to ensure that only snow from the current 148 accumulation season was measured. Determining the boundary between snow and firn in the accumulation 149 area, especially when using an avalanche probe, is difficult and often incorrect (Grunewald and others, 2010; 150 Sold and others, 2013). We intended to use a firn corer to extract snow cores in the accumulation area but due 151 to technical issues we were unable to obtain cohesive cores. The recorded accumulation area measurements 152

were done either in a snow pit or with a Federal Sampler so that we could identify the snow-firn transition based on a change in snow crystal size and density.

To capture variability at spatial scales smaller than a DEM grid cell, we implemented a linear-random sampling design, termed 'zigzag' (Shea and Jamieson, 2010). We measured depth at random intervals (0.3-3.0 m) along two 'Z'-shaped transects within three to four $40 \times 40 \text{ m}$ squares (Figure 1c) resulting in 135-191 measurement points for each zigzag. Zigzag locations were randomly chosen within the upper ($\sim 2350 \text{ m}$ a.s.l.), middle ($\sim 2250 \text{ m}$ a.s.l.), and lower portions ($\sim 2150 \text{ m}$ a.s.l.) of the ablation area of each glacier. We were able to measure a fourth zigzag on Glacier 13, which was located in the middle ablation area ($\sim 2200 \text{ m}$ a.s.l.).

Snow density was measured using a wedge cutter in three snowpits on each glacier. We collected a continuous density profile by inserting a $5 \times 5 \times 10$ cm (250 cm³) wedge-shaped cutter in 5 cm increments to extract snow samples and then weighed the samples with a spring scale (e.g. Gray and Male, 1981; Fierz and others, 2009). Uncertainty in estimating density from snow pits stems from measurement errors and incorrect assignment of density to layers that could not be sampled (i.e. ice lenses and 'hard' layers).

While snow pits provide the most accurate measure of snow density, digging and sampling a snow pit is time and labour intensive. Therefore, a Federal Snow Sampler (FS) (Clyde, 1932), which measures bulk SWE, was used to augment the spatial extent of density measurements. A minimum of three measurements were taken at 7 – 19 locations on each glacier and eight FS measurements were co-located with each snow pit profile. Measurements where the tube snow length was less than 90% of the snow depth were assumed to be an incorrect sample and were excluded. Density values were then averaged for each location.

During the field campaign there were two small accumulation events. The first, on May 6, also involved high winds so accumulation could not be determined. The second, on May 10, resulted in 0.01 m w.e accumulation at one location on Glacier 2. High temperatures and clear skies occurred between May 11 and 16, which we believed resulted in significant melt occurring on Glacier 13. The snow in the lower part of the ablation area was isothermal and showed clear signs of melt and snow metamorphosis. Total amount of accumulation and melt during the study period could not be estimated so no corrections were made.

179 Distributed density

Measured density is interpolated to estimate SWE at each depth sampling location. We chose four separate methods that are commonly applied to interpolate density: (1) mean density over an entire range (e.g. Cullen and others, 2017), (2) mean density for each glacier (e.g. Elder and others, 1991; McGrath and others, 2015),

(3) linear regression of density with elevation (e.g. Elder and others, 1998; Molotch and others, 2005) and (4) inverse-distance weighted density (e.g. Molotch and others, 2005).

When designing the sampling campaign we assumed that SP and FS densities could be combined so that
we could have a more spatially distributed density data set. However, there is no correlation between colocated SP and FS densities (Figure 3). Therefore, SP and FS measurements were used independently for
each interpolation method, resulting in eight density interpolation options.

189 Grid cell average

We average SWE values within each DEM-aligned grid cell. The locations of measurements have considerable uncertainty both from the error of the GPS unit (2.7-4.6 m) and the estimation of observer location based on the GPS unit. These errors could easily result in the incorrect assigning of a SWE measurement to a certain grid but this source of variability was not further investigated because we assume that SWE variability is captured in the zigzag measurements described below. There are no differences between observers (p>0.05), with the exception of the first transect on Glacier 4, so no corrections to the data based on observer are applied.

197 Interpolated SWE

SWE data were interpolated for each glacier using linear regression (LR) as well as simple kriging (SK). 198 Linear regressions relate observed SWE to grid cell values of DEM-derived topographic parameters (Davis and 199 Sampson, 1986). We chose to include elevation, distance from centreline, slope, aspect, curvature, "northness" 200 and a wind redistribution parameter in the LR. Topographic parameters were weighted by a set of fitted 201 regression coefficients (β_i). Regression coefficients are calculated by minimizing the sum of squares of the 202 vertical deviations of each data point from the regression line (Davis and Sampson, 1986). The distributed 203 estimate of SWE was found by using regression coefficients to estimate SWE at each grid cell. Specific WSMB 204 was calculated as the mean SWE for each glacier ([m w.e.]). 205 The goal of generating a LR is to predict SWE at unsampled grid cells and to tease out dominant 206

The goal of generating a LR is to predict SWE at unsampled grid cells and to tease out dominant relationships between accumulation and topographic parameters. Since snow depth data is highly variable, there is a possibility for the LR to fit to this data noise, a process known as overfitting. To prevent overfitting, cross-validation and model averaging were implemented. Cross-validation was used to obtain a set of β_i values that have greater predictive ability. We selected 1000 random subsets (2/3 values) of the data to fit the LR and the remaining data (1/3 values) was used to calculate a root mean squared error (RMSE) (Kohavi and others, 1995). Regression coefficients resulting in the lowest RMSE were selected. Model averaging takes into

account uncertainty when selecting predictors and also maximizes predictive ability (Madigan and Raftery, 213 1994). Models were generated by calculating a set of β_i for all possible combinations of predictors. Following 214 a Bayesian framework, model averaging involves weighting all models by their posterior model probabilities 215 (Raftery and others, 1997). To obtain the final regression coefficients, the β_i values from each model were 216 weighted according to the relative predictive success of the model, as assessed by the Bayesian Information 217 Criterion (BIC) value (Burnham and Anderson, 2004). BIC penalizes more complex models, which further 218 reduces the risk of overfitting. 219 Topographic parameters are easy to calculate proxies for physical processes, such as orographic 220 precipitation, solar radiation effects, wind redistribution and preferential deposition. We derived all 221 parameters for our study from a SPOT-5 DEM (40×40 m) (Korona and others, 2009). Elevation (z) values 222 were taken from the SPOT-5 DEM directly. Distance from centreline (d_C) was calculated as the minimum 223 distance between the Easting and Northing of the northwest corner of each grid cell and a manually defined 224 centreline. Slope, aspect and curvature were calculated using the r.slope.aspect module in GRASS GIS 225 software run through QGIS as described in Mitášová and Hofierka (1993) and Hofierka and others (2009). 226 Slope (m) is defined as the angle between a plane tangential to the surface (gradient) and the horizontal 227 (Olaya, 2009). Aspect (α) is the dip direction of the slope and $\sin(\alpha)$, a linear quantity describing a slope 228 as north/south facing, is used in the regression. Mean curvature (κ) is found by taking the average of 229 profile and tangential curvature. Profile curvature is the curvature in the direction of the surface gradient 230 and it describes the change is slope angle. Tangential curvature represents the curvature in the direction of 231 the contour tangent. Curvature differentiates between mean-concave (positive values) terrain with relative 232 accumulation and mean-convex (negative values) terrain with relative scouring (Olaya, 2009). "Northness" 233 (N) is defined as the product of the cosine of aspect and sine of slope (Molotch and others, 2005). A value 234 of -1 represents a vertical, south facing slope, a value of +1 represents a vertical, north facing slope, and a 235 236 flat surface yields 0. The wind exposure/shelter parameter (Sx) is based on selecting a cell within a certain angle and distance from the cell of interest that has the greatest upward slope relative to the cell of interest 237 (Winstral and others, 2002). Sx was calculated using an executable obtained from Adam Winstral that 238 follows the procedure outlined in Winstral and others (2002). 239

Visual inspection of the curvature fields calculated using the DEM showed a noisy spatial distribution that did not vary smoothly. To minimize the effect of noise on parameters sensitive to DEM grid cell size, we

applied a 7×7 grid cell smoothing window to the DEM, which was then used to calculate curvature, slope, aspect and "northness".

Our sampling design ensured that the ranges of topographic parameters covered by the measurements 244 represented more than 70% of the total area of each glacier (except for the elevation range on Glacier 2, 245 which was 50%). However, were were not able to sample at locations with extreme parameter values and the 246 247 distribution of the sampled parameters generally differed from the full distribution. Simple kriging (SK) estimates SWE values at unsampled locations by using the isotropic spatial correlation 248 (covariance) of measured SWE to find a set of optimal weights (Davis and Sampson, 1986; Li and Heap, 2008). 249 SK assumes that if sampling points are distributed throughout a surface, the degree of spatial correlation of 250 the observed surface can be determined and the surface can then be interpolated between sampling points. We 251 used the DiceKriging R package (Roustant and others, 2012) to calculate the maximum likelihood covariance 252 matrix, as well as range distance (θ) and nugget. The range distance is a measure of data correlation length 253 and the nugget is the residual that encompasses sampling-error variance as well as the spatial variance at 254

Quantifying effects of variability

255

256

distances less than the minimum sample spacing (Li and Heap, 2008).

We identify three major sources of variability within the process of translating snow measurements to WSMB. 257 These variability sources encompass error and uncertainty within each processing step. When calculating 258 distributed density, choice of density interpolation method is the largest source of variability. We therefore 259 carry all density interpolation options forward in the estimation of WSMB. When calculating a grid cell 260 average SWE, variability stems from a distribution of SWE values within each grid cell, which is assumed to 261 be caused by random effects that are unbiased and unpredictable (Watson and others, 2006). We therefore 262 choose to encompass the SWE variability by generating a normal distribution of SWE values for each 263 measured grid cell. The normal distribution has a mean equal to the grid cell average SWE and a standard 264 deviation equal to the mean standard deviation of all zigzags on each glacier. When obtaining interpolated 265 SWE, the best fit interpolation itself has variability based on the data that is used to fit the regression line 266 or kriging surface. LR variability is represented by obtaining a multivariate normal distribution of possible β_i 267 values. The standard deviation of each distribution is calculated using the covariance of regression coefficients 268 as outlined in Bagos and Adam (2015). SK variability is calculated using the DiceKriging package and is 269 returned as an upper and lower 95% confidence interval for SWE at each grid cell. We refer to the three 270 variability sources as (1) density variability, (2) SWE variability and (3) interpolation variability. 271

Fig. 2. Boxplot of measured snow depth on Glaciers 4, 2 and 13. The box shows first quartiles, the line within the box indicates data median, bars indicate minimum and maximum values (excluding outliers), and circles show outliers, which are defined as being outside of the range of 1.5 times the quartiles (approximately $\pm 2.7\sigma$).

To quantify the effects of the three variability sources on the final WSMB estimate, we conduct a Monte 272 Carlo experiment, which uses repeated random sampling to calculate a numerical solution (Metropolis and 273 Ulam, 1949). In our study, we randomly sample the distributions for SWE variability and interpolation 274 variability and carry these values through the data processing steps to obtain a value of WSMB. First, 275 random values from the distribution of SWE values for each grid cell are independently chosen. Then, LR 276 or SK is used to interpolate these SWE values. With the LR, a set of β_i values and their distributions are 277 calculated and the β_i distributions are randomly sampled. These new β_i values are used to calculate WSMB. 278 With SK, a distribution of WSMB is calculated from the 95% confidence interval kriging surfaces. Density 279 variability is accounted for by repeating the process for each density interpolation method. This random 280 sampling process is done 1000 times, which results in a distribution of possible WSMB values based on 281 variability within the data processing steps. 282

 \cdot 12

283 RESULTS

284

300

Measurements

A wide range of snow depth is observed on all three study glaciers (Figure 2). Glacier 4 has the highest mean 285 snow depth and a high proportion of outliers, indicating a more variable snow depth overall. Glacier 13 has 286 the lowest mean snow depth and a narrower distribution of observed values. At each measurement location, 287 the median range of measured depths (3-4 points) as a percent of the mean depth at that location is 2%, 288 11%, and 12%, for Glaciers 4, 2 and 13, respectively. 289 Mean SP and FS density values are within one standard deviation of each other for each glacier and over 290 all three glaciers. The standard deviation of glacier-wide mean density is less than 10% of the mean density. 291 However, FS densities have a larger range of values $(227 - 431 \text{kg m}^{-3})$ when compared to SP densities 292 $(299 - 381 \text{kg m}^{-3})$. The mean SP densities are within one standard deviation between glaciers, whereas 293 mean FS densities are not. 294 Uncertainty in SP density is largely due to sampling error of exceptionally dense snow layers. We quantify 295 this uncertainty by varying three values. Ice layer density is varied between 700 and 900 kg m⁻³, ice layer 296 thickness is varied by ± 1 cm of the observed thickness, and the density of layers identified as being too hard 297 to sample (but not ice) is varied between 600 and 700 kg m⁻³. The range of integrated density values is 298 always less than 15% of the reference density, with the largest ranges present on Glacier 2. Density values 299

Distributed density

There is no correlation between co-located SP and FS densities (Figure 3) so each set of density values is used for all four density interpolation options. Range and glacier mean densities are higher when SP densities are used (Table 1). The magnitude and slope of a linear regression of density with elevation differs between SP and FS densities (Table 1). At Glaciers 2 and 13, SP density decreases with elevation, likely indicating melt at lower elevations. SP density is independent of elevation on Glacier 4. FS density increases with elevation on Glacier 2 and there is no relationship with elevation on Glaciers 4 and 13.

for shallow pits that contain ice lenses are particularly sensitive to changes in density and ice lens thickness.

There is a positive linear relation ($R^2 = 0.59$, p<0.01) between measured snow density and depth for all FS measurements. No correlation exists between SP density and elevation.

Fig. 3. Comparison of integrated density estimated using wedge cutters in a snow pit and density estimated using Federal Sampler measurements for Glacier 4 (G04), Glacier 2 (G02) and Glacier 13 (G13). Snow pits were distributed in the accumulation area (ASP), upper ablation area (USP) and lower ablation area (LSP). Error bars are minimum and maximum values.

310 Grid cell average

312

313

314

315

311 SWE observations within a DEM grid cell are averaged. Between one and six measurement locations are in

each measured grid cell. The distribution of grid-cell SWE values for each glacier is similar to that of Figure

2 but with fewer outliers.

SWE measurements for each zigzag are not normally distributed about the mean SWE (Figure 4). The

average standard deviation of all zigzags on Glacier 4 is $\sigma_{G4} = 0.027$ m w.e., on Glacier 2 is $\sigma_{G2} = 0.035$ m

316 w.e. and on Glacier 13 is $\sigma_{\rm G13}=0.040$ m w.e.

317 Interpolated SWE

The choice of interpolation method affects the specific WSMB (Table 2). SK produces the highest WSMB

on Glacier 4 and the lowest WSMB on Glacier 13. WSMB estimated by SK is $\sim 30\%$ lower than WSMB

estimated by LR on Glaciers 2 and 13. When using LR, the WSMB on Glaciers 4 and 2 are similar in

321 magnitude.

322 The predictive ability of SK and LR differ on the study glaciers. Generally, SK is better able to predict

323 SWE at observed grid cells (Figure 5) and RMSE for all glaciers is lower for SK estimates (Table 2). Glacier

Table 1. Snow density values used for interpolating density based on snow pit (SP) densities and Federal Sampler (FS) densities. Four interpolation methods are chosen: (1) using a mean snow density for all three glaciers (Range mean density), (2) using a mean density for each glacier (Glacier mean density), (3) using a regression between density and elevation (Elevation regression), and (4) inverse-distance weighted mean density (not shown).

		SP density	FS density	
		$({ m kg} { m m}^{-3})$	$(\mathrm{kg}\ \mathrm{m}^{-3})$	
Range mean density		342	316	
	G4	348	327	
Glacier	G2	333	326	
mean density	G13	349	307	
Elevation regression	G4	0.03z + 274	-0.16z + 714	
	G2	-0.14z + 659	0.24z - 282	
	G13	-0.20z + 802	0.12z + 33	

13 has the lowest RMSE regardless of interpolation method, indicating lower SWE variability. The highest
RMSE and the lowest correlation between estimated and observed SWE is seen on Glacier 4 (R² = 0.12),
which emphasizes the highly variable snow pack. The highest correlation between estimated and observed
SWE is on Glacier 2 when SK is used for interpolation (R² =0.84) (Figure 5). Residuals using LR and SK
for all glaciers are normally distributed.

The importance of topographic parameters in the LR differs for the three study glaciers (Figure 6). The
most important topographic parameter for Glacier 4 is wind redistribution. However, the wind redistribution

Table 2. Specific winter surface mass balance (WSMB [m w.e.]) estimated using linear regression and simple kriging interpolation for study glaciers. Average root mean squared error (RMSE [m w.e.]) between estimated and observed grid cells that were randomly selected and excluded from interpolation.

	Linear Regression		Simple Kriging		
	WSMB	RMSE	WSMB	RMSE	
Glacier 4	0.582	0.153	0.616	0.134	
Glacier 2	0.577	0.102	0.367	0.073	
Glacier 13	0.381	0.080	0.271	0.068	

Fig. 4. Distribution of zigzag SWE values about the local mean on Glacier 4 (upper panel), Glacier 2 (middle panel) and Glacier 13 (lower panel). Zigzags are distributed throughout the ablation area of each glacier, with one located in the lower portion (L), one in the middle portion (M), and one in the upper portion (U). There were two zigzags in the middle ablation area of Glacier 13.

coefficient is negative, which indicates less snow in 'sheltered' areas. Curvature is also a significant predictor of accumulation and the positive correlation indicates that concave areas are more likely to have higher

Fig. 5. Estimated grid cell SWE found using linear regression (LR) and simple kriging (SK) plotted against observed values of SWE on Glacier 4 (left), Glacier 2 (middle) and Glacier 13 (right). Line of best fit between estimated and observed SWE is also plotted.

SWE. For Glacier 2, the most important topographic parameter is elevation, which is positively correlated

333

with elevation. Wind redistribution is the second most important topographic parameter and has a positive 334 correlation, which indicates that 'sheltered' areas are likely to have high accumulation. The most important 335 topographic parameter for Glacier 13 is elevation. The coefficient is positive, which means that cells at 336 higher elevation have higher SWE. Curvature is also a significant topographic parameter but the correlation 337 is negative, indicating less accumulation in concave areas. Most of the topographic parameters are not 338 significant predictors of accumulation on Glacier 13. Aspect and "northness" are not significant predictors 339 of accumulation on all study glaciers. 340 Spatial patterns of SWE found using LR are similar between Glaciers 2 and 13 and differ considerably for 341 Glacier 4 (Figure 7). Estimated SWE on Glacier 4 is relatively uniform, which results from the low predictive 342 ability of the LR. Areas with high wind redistribution values (sheltered), especially in the accumulation area, 343 have the lowest values of SWE. The map of modelled SWE on Glacier 2 closely matches that of elevation, 344 which highlights the strong dependence of SWE on elevation. Glacier 2 has the largest range of estimated 345 SWE (0-1.92 m w.e). The area of high estimated accumulation in the southwest region of the glacier results 346

Fig. 6. Distribution of regression coefficients for linear regression of grid cell topographic parameters and SWE calculated using eight density options on study glaciers. Topographic parameters include elevation (z), distance from centreline (d_C) , slope (m), aspect (α) , curvature (κ) , "northness" (N) and wind exposure (Sx). Regression coefficients that were not significant were assigned a value of zero.

from the combination of high elevation and Sx values. The low SWE values at the terminus arise from low

347

359

generally low ($\sim 0.1 - 0.5$ m w.e.).

elevation and Sx values close to zero. The map of estimated SWE on Glacier 13 also closely follows elevation. 348 However, the lower correlation between SWE and elevation results in a relatively small range of distributed 349 SWE values. 350 There are large differences in spatial patterns of estimated WSMB for the three study glaciers found using 351 SK (Figure 7). On Glacier 4, the isotropic correlation length is considerably shorter (90 m) compared to 352 Glacier 2 (404 m) and Glacier 13 (444 m), which results in a relatively uniform SWE distribution over the 353 glacier with small deviations at measured grid cells. Nugget values for the study glaciers also differ, with the 354 nugget of Glacier 4 (0.0105 m w.e.) more than twice as large as that of Glacier 2 (0.0036 m w.e.) and Glacier 355 13 (0.0048 m w.e.). Glacier 2 has two distinct and relatively uniform areas of estimated accumulation. The 356 lower ablation area has low SWE (~ 0.1 m w.e.) and the upper ablation and accumulation areas have higher 357 SWE values (~ 0.6 m w.e.). Glacier 13 does not appear to have any strong patterns and accumulation is 358

Fig. 7. Spatial distribution of SWE estimated using linear regression (upper) and simple kriging (lower). Grid-cell SWE observations are calculated using glacier wide mean snow pit density and are shown as black dots. Glacier flow directions are indicated by arrows. Specific WSMB values are also shown.

SWE estimated with LR and SK differ considerably in the upper accumulation areas of Glaciers 2 and 13. The significant influence of elevation in the LR results in substantially higher SWE values at high elevation, whereas the accumulation area of the SK estimates approximate the mean observed SWE.

360

361

Table 3. Standard deviation ([m w.e.]) of specific winter surface mass balance estimated using linear regression (LR) and simple kriging (SK) when variability is introduced. Density variability (σ_{ρ}) is the standard deviation of WSMB estimated using SWE data with different density interpolation methods. SWE variability (σ_{SWE}) is approximated by a normal distribution about the local SWE value with standard deviation equal to the glacier-wide mean zigzag standard deviation. LR interpolation variability (σ_{β}) is accounted for by varying the regression coefficients with a normal distribution with standard deviation calculated from regression covariance. SK interpolation variability (σ_{KRIG}) is taken from the range of distributed SWE estimates calculated by the DiceKriging package. Result for Glacier 4 (G4), Glacier 2 (G2) and Glacier 13 (G13) are shown.

	Linear Regression		Simple Kriging			
	$\sigma_{ ho}$	$\sigma_{ m SWE}$	σ_{eta}	$\sigma_{ ho}$	$\sigma_{ m SWE}$	$\sigma_{ m KRIG}$
G4	0.0190	0.0086	0.0213	0.0215	0.0085	0.1405
G2	0.0337	0.0180	0.0309	0.0203	0.0253	0.1378
G13	0.0168	0.0112	0.0280	0.0127	0.0115	0.0965

Transferring LR coefficients between glaciers results in a high RMSE across the mountain range. The lowest overall RMSE (0.2051 m w.e.) results from calculating a LR using all available observations. Elevation is the only significant topographic predictor for a range-scale LR ($\beta_z = 0.0525$).

Specific WSMB is affected by variability introduced when interpolating density (density variability), when

366 Quantifying effects of variability

367

calculating grid cell SWE values (SWE variability), and when interpolating observations (interpolation 368 variability). We find that when using a LR, interpolation variability has a larger effect on WSMB uncertainty 369 than density variability or SWE variability. The probability density function (PDF) that arises from SWE 370 variability is much narrower than the PDF that arises from interpolation variability (Figure 8 and Table 3). 371 WSMB uncertainty found with SK interpolation is dominated by interpolation variability (Table 3). 372 373 The total WSMB uncertainty from SK interpolation is 3 to 5 times greater than uncertainty from LR interpolation. The PDFs overlap between the two interpolation methods although the PDF peaks are lower 374 when SK is used for Glaciers 2 and 13 and higher for Glacier 4. SK results in WSMB distributions that 375 overlap between glaciers and there is also a small probability of estimating a WSMB value of 0 m w.e. for 376 Glaciers 2 and 13. LR results in overlapping WSMB distributions for Glaciers 2 and 4, with the PDF peak 377 of Glacier 4 being slightly higher than that of Glacier 2. 378

Fig. 8. Probability density functions (PDFs) fitted to distributions of specific winter surface mass balance (WSMB) values that arise from SWE variability (σ_{ZZ}) and interpolation variability (σ_{β} or σ_{KRIG}). Results from a linear regression interpolation (top panels) and simple kriging (bottom panels) are shown. Each PDF is calculated using one of eight density interpolation methods for Glacier 4 (G4), Glacier 2 (G2) and Glacier 13 (G13).

The spatial patterns of WSMB uncertainty are affected by density, SWE, and interpolation variability (Figure 10). For both LR and SK, the greatest variability in estimated SWE occurs in the accumulation area. When LR is used, estimated SWE is highly sensitive to the elevation regression parameter. In the case of SK, variability is greatest in areas far from observed SWE, which consist of the upper accumulation area on Glaciers 2 and 13. Variability is greatest on Glacier 4 when LR interpolation is used at the upper edges of the accumulation area, which correspond to the locations with extreme values of the wind redistribution parameter. When SK is used for interpolation on Glacier 4, variability is greatest at the measured grid

Fig. 9. Probability density functions (PDFs) fitted to distributions of specific winter surface mass balance (WSMB) values estimated using linear regression (top) or simple kriging (bottom). Each PDF includes density variability, SWE variability and interpolation variability for Glacier 4 (G4), Glacier 2 (G2) and Glacier 13 (G13).

cells, which highlights the short correlation length and the large effect of density interpolation on the SK accumulation estimate.

DISCUSSION

388

389

390

391

392

393

The goal of this study is to compile a comprehensive sweep of choices and assumptions present in the process of translating snow measurements to winter mass balance. The discussion focuses on evaluating the choices we made within the four main steps needed to estimate accumulation. We then discuss the relative importance of sources of variability when estimating specific WSMB.

Measurements

Snow probing is the simplest and oldest method used to determine accumulation. Direct measurement of snow depth means that no data processing or corrections are needed and depth uncertainty is simple to quantify by taking multiple depth measurements close together (Sold and others, 2013). However, probing is time consuming and this limits the number of measurements that can be made. Further, measurement is limited

Fig. 10. Variability of SWE estimated using linear regression (top) and simple kriging (bottom). Variability is a relative quantity measured by taking the sum of differences between one hundred estimates of distributed WSMB that include SWE variability and, in the case of linear regression, regression variability. The sum is then normalized for each glacier. Glacier flow directions are indicated by arrows.

to areas that are both accessible and safe for researchers. In complex terrain many areas cannot be surveyed, resulting in data gaps (Deems and Painter, 2006; Sold and others, 2014). Sold and others (2013) noted that this systematic bias can result in incorrect values of glacier-wide accumulation, particularly because inaccessible areas such as cliffs and ridges have relatively shallow accumulations (due to wind erosion), while

398

399

400

heavily crevassed areas can accumulate deep snow packs. Despite these limitations, we chose to use snow 402 probing for this study to minimize cost, simplify field logistics and reduce data processing time. By focusing 403 on simple field methods that are easy to execute, we hope to make our conclusions and recommendations for 404 estimating WSMB more broadly applicable and reproducible. 405 Most contemporary studies that investigate glacier accumulation use ground penetrating radar (GPR), 406 407 either airborne or ground-based, to obtain continuous and extensive snow depth profiles (e.g. Winther and others, 1998; Machguth and others, 2006; Gusmeroli and others, 2014; McGrath and others, 2015). GPR snow 408 surveys, especially when airborne, are able to quickly collect data over large areas and terrain accessibility 409 does not hamper data collection. The main limitation of GPR is the misinterpretation of radargram layers, 410 especially in areas where the snow-ice boundary is ill-defined such as the accumulation area or heavily 411 crevassed terrain (Machguth and others, 2006; Gusmeroli and others, 2014; McGrath and others, 2015). 412 Complications also arise when radar wave speed is altered due to varying snow density and liquid water 413 content. Further, there is no universal procedure for obtaining snow depth data so methodology is difficult 414 to reproduce. Results therefore depend on available equipment, selection of processing parameters and 415 radargram processing algorithms (Sold and others, 2013). 416 DEM differencing has also been used to estimate glacier-wide accumulation (Deems and Painter, 2006; 417 Nolan and others, 2015). This method allows for maximal spatial data coverage. However, DEM differencing 418 requires knowledge of glacier dynamics to account for surface changes and data collection, either by lidar or 419 photogrammetry, is subject to considerable errors and noise (Deems and Painter, 2006; Nolan and others, 420 2015). 421 Our study suffers from lack of data in the accumulation area. Snow probing cannot be used in the 422 accumulation area because the snow-firm transition is often difficult to determine and ice lenses can be 423 misinterpreted. Both GPR and DEM differencing are also not reliable in the accumulation area. Observing 424 425 the snow-firn transition using GPR can be difficult because the density difference between snow and firn can be small. Obtaining an accurate snow surface and correlating two DEMs for differencing can also be difficult 426 in the accumulation area because camera sensor noise and poor lighting can result in significant topographic 427 noise. Measuring SWE in the accumulation area is difficult and subject to large errors regardless of the data 428 collection method. 429

We measured snow density by sampling a snow pit (SP) and by using a Federal Sampler (FS). We found

that FS and SP measurements are not correlated and that FS density values are positively correlated with

430

snow depth. This positive relationship could be a result of physical processes, such as compaction, and/or

artefacts during data collection. However, it seems more likely that this trend is a result of measurement 433 artefacts for a number of reasons. First, the range of densities measured by the Federal sampler is large 434 (225-410 kg m⁻³) and the extreme values seem unlikely to exist at these study glaciers, which experience 435 a continental snow pack with minimal mid-winter melt events. Second, compaction effects would likely be 436 437 small at these study glaciers because of the relatively shallow snow pack (deepest measurement was 340 cm). Third, no linear relationship exists between depth and SP density ($R^2 = 0.05$). Together, these reasons lead 438 us to conclude that the Federal Sampler measurements are biased. 439 The FS appears to oversample in deep snow and undersample in shallow snow. Oversampling by small 440 diameter (area of 10–12 cm²) sampling tubes has been observed in previous studies, with a percent error 441 between +6.8% and 11.8% (Work and others, 1965; Fames and others, 1982; Conger and McClung, 2009). 442 Studies that use Federal Samplers often apply a 10% correction to all measurements (e.g. Molotch and others, 443 2005). Dixon and Boon (2012) attributed oversampling to slots "shaving" snow into the tube as it is rotated 444 as well as cutter deign forcing snow into the tube. Beauont and Work (1963) found that only when snow 445 samples had densities greater than 400 kg m⁻³ and snow depth greater than 1 m, the FS oversampled due 446 to snow falling into the greater area of slots. Undersampling is likely to occur due to snow falling out of the 447 bottom of the sampler (Turcan and Loijens, 1975). It is likely that this occurred during our study since a 448 large portion of the lower elevation snow on both Glaciers 2 and 13 was melt affected and thin, allowing for 449 easier lateral displacement of the snow as the sampler was inserted. For example, on Glacier 13 the snow 450 surface had been affected by radiation melt (especially at lower elevations where the snow was shallower) 451 and the surface would collapse when the sampler was inserted into the snow. It is also difficult to measure 452 the weight of the sampler and snow with the spring scale when there was little snow because the weight was 453 at the lower limit of what could be detected by the scale. 454

Distributed density

455

432

We choose four different density interpolation methods and keep SP and FS measurements separate. Despite
the wide range of measured density values and variety in density interpolation, density does not appear to
strongly affect WSMB estimates and is usually not the dominant source of WSMB uncertainty. We have
relatively few density measurements throughout the study glaciers, as is common in many snow surveys,
and we believe our FS measurements to be biased. Therefore, our preferred density interpolation is to use
a glacier-wise mean of SP densities. This method employs common snow density measurement techniques

and is easily transferable to other study areas. While using a glacier-wide mean snow density omits spatial variability in snow density (Wetlaufer and others, 2016), it does not assume unmeasured spatial correlation or trends in density.

Wetlaufer and others (2016) found that distributed density from snow depth and density results in more variability than directly measuring SWE using a FS. Since SWE is more time consuming to measure than snow depth, future studies could consider decreasing the number of sample locations but directly measuring SWE to reduce the variability in distributed density at a measurement location. A detailed investigation of FS error is needed to contrain the variability introduced when using FS to directly measure SWE.

70 Grid cell average

López-Moreno and others (2011) completed an extensive survey of snow depth variability at the plot scale (10×10 m) in the Spanish Pyrenees Mountains. The authors concluded that at least five measurement points are needed in each plot to ensure estimation error is <10% for plot averaged SWE. Their suggestion amounts to at least 80 measurement points for the grid cells in this study (40×40 m). Rather than gridded or random sampling, as executed by the authors, we suggest a zigzag sampling scheme. The zigzag offered a comprehensive estimation of snow depth variability in a grid cell. Shea and Jamieson (2010) proposed this linear-random sampling scheme and showed that it performs as well as pure-random sampling in detecting spatial correlations and is considerably easier to execute.

Since such a large number of points are needed to characterize the variability in a grid cell there is little
advantage to measuring and then averaging snow depth at multiple measurement locations. Rather, time
should be spent extensively characterizing grid-cell variability in a few locations and to then decrease the
spacing of transect measurements to extend their spatial coverage over the glacier. In our study, the grid cell
variability appeared to be captured with dense sampling in select grid cells but the basin-scale variability
was not captured because sampling was limited to the ablation area. By decreasing transect spacing, grid
cells would only have one or two measurements but more grid cells could be measured.

486 Interpolated SWE

Linear regression (LR) is chosen for this study because topographic parameters can be used as proxies for physical processes that affect snow distribution. Elevation was the only topographic parameter that offered relevant insight into topographic controls on accumulation. Even so, elevation had little predictive ability for Glacier 4 and the correlation was moderate on Glacier 13. Elevation affects snow distribution through melt at lower elevation due to higher temperatures, as well as increased precipitation and preservation of snow

at higher elevation. It is possible that the elevation correlation was accentuated during the field campaign 492 due to warmer than normal temperatures and an early (1-2 weeks) start to the melt season (Yukon Snow 493 Survey Bulletin and Water Supply Forecast, May 1, 2016). The southwestern Yukon winter snow pack in 494 2015 was also well below average, likely resulting in the effects of early melt onset to be emphasized. Glacier 495 4 had deeper snow and cloudier conditions during the field campaign so perhaps a correlation between SWE 496 497 and elevation had not manifested. Our mixed insights into dominant predictors of accumulation are consistent with the conflicting results 498 present in the literature. Many snow accumulation studies have found elevation to be the most significant 499 predictor of SWE (e.g. Machguth and others, 2006; McGrath and others, 2015). However, accumulation-500 elevation gradients vary considerably between glaciers (Winther and others, 1998) and other factors, such as 501 orientation relative to dominant wind direction and glacier shape, have been noted to affect accumulation 502 distribution (Machguth and others, 2006; Grabiec and others, 2011). Machguth and others (2006), Grünewald 503 and others (2014) and Kirchner and others (2014) observed elevation trends in snow accumulation for the 504 lower parts of their study basins but no correlation or even a decrease in SWE with elevation for the upper 505 506 portion of their basins. Helbig and van Herwijnen (2017) suggest that an increase in accumulation with elevation can better be approximated by a power law. There are also a number of accumulation studies 507 on glaciers that found no significant correlation between accumulation and topographic parameters and the 508 highly variable snow distribution was attributed to complex local conditions (e.g. Grabiec and others, 2011; 509 López-Moreno and others, 2011). 510 Wind redistribution and preferential deposition of snow is known to have a large influence on accumulation 511 at sub-basin scales. Dadic and others (2010) used a dynamic model to show that variations in snow depth are 512 caused by preferential deposition, which is well correlated with mean wind speed. Interactions between local 513 wind fields and complex topography create uplift and down drafts that affect snow deposition. Pomeroy and 514 others (1999) looked at snow mass balance in a non-glacierized alpine basin within the St. Elias and found 515 that up to 79% of the snow was redistributed from alpine areas to (primarily) hillsides, where accumulation 516 was tripled. In the study basin, measured accumulation ranged from 54% to 419% of the actual snowfall. 517 The wind redistribution parameter used in the study is found to be a small but significant predictor of 518 accumulation on Glacier 4 (negative correlation) and Glacier 2 (positive correlation). This result indicates 519 that wind likely has an impact on snow distribution but that the wind redistribution parameter is perhaps 520

not the most appropriate way to characterize the effect of wind on our study glaciers. For example, Glacier

4 is located in a curved valley with steep side walls so having a single cardinal direction for wind may be 522 inappropriate. Examining wind redistribution parameter values that assume wind moving up or down glacier 523 and changing direction to follow the valley could allow the wind redistribution parameter to explain more 524 of the variance in SWE. Additionally, sublimation from blowing snow has been shown to be an important 525 mass loss from ridges (Musselman and others, 2015). Incorporating snow loss as well as redistribution and 526 527 preferential deposition may be needed for accurate representations of seasonal accumulation. Further work with dynamic modelling that uses high resolution weather modelling and considers small scale mountain 528 topography is also needed to better understand relevant scales of snow deposition, reduce uncertainty when 529 modelling snow and to aid in developing more appropriate wind parametrizations (Musselman and others, 530 2015). In our study, the scale of deposition may be smaller than the resolution of the Sx parameter in 531 the relatively large DEM grid cells. An investigation of the wind redistribution parameter with finer DEM 532 resolution is also needed. Accounting for wind in snow distribution models is especially important because it 533 plays a dominant role in spatial patterns of accumulation (Winstral and others, 2013). A universal predictor 534 of distributed SWE therefore continues to elude researchers and accumulation variability due to complex 535 536 interactions between topography and the atmosphere needs to be considered when estimating winter mass balance. 537 Since we were unable to measure SWE in grid cells that corresponded to the extreme values of all 538

topographic parameters, we must extrapolate linear relationships. The accumulation area, where there are 539 few observations, is most susceptible to extrapolation errors. This area typically also has the highest SWE 540 values, affecting the specific WSMB estimated for the glacier. In our study, the dependence of SWE on 541 elevation, especially on Glacier 2, means that LR extrapolation results in almost 2 m w.e. estimated in the 542 parts of the accumulation area. This exceptionally large estimate of SWE is unlikely for a continental snow 543 pack. As described above, snow in the accumulation area has been shown to have no correlation or a negative 544 545 correlation with elevation and wind effects have been observed. Therefore, extrapolating a LR that is fitted to predominantly ablation area SWE values is likely erroneous. Future studies need to focus on collecting 546 SWE observations in the accumulation area, even if it means collecting fewer observations in the ablation 547 area. Observations in the accumulation area can be used both to characterize accumulation patterns in the 548 upper portions on a glacierized basin and to generally increase the spatial extent and topographic parameter 549 range coverage of observations. 550

While a LR can be used to predict distributed SWE in other basins, we found that transfer of LR coefficients 551 between glaciers results in large estimation error. The LR fitted to all observed data produced the best overall 552 predictor of SWE in the Donjek Range, so transferability of LR is also limited in our study area. Our results 553 are consistent with Grünewald and others (2013), who found that local statistical models are able to perform 554 well but they cannot be transferred to different regions and that regional-scale models are not able to explain 555 556 the majority of variance. Therefore, if the intent of a study is to estimate range-scale accumulation it is perhaps best to sparsely sample many glaciers and to make assumptions about variability within the basin 557 rather than conducting a detailed study of one basin. The inter-basin variability in our study range is greater 558 than the intra-basin variability. 559 For all study glaciers, simple kriging (SK) is a better predictor of observed SWE. However, the WSMB 560 uncertainty that arises from using SK is large, and unrealistic values of 0 m w.e. WSMB can be estimated. 561 Such a large uncertainty is undesirable when estimating WSMB. Our observations are generally limited to 562 the ablation area so SK estimates an almost uniform distribution of SWE in the accumulation areas of the 563 study glaciers, which is inconsistent with observations described in the literature. Extrapolation using SK is 564 erroneous and leads to large uncertainty in estimating WSMB, which further emphasis the need for SWE 565 observations in the accumulation area. 566 SK cannot be used to understand physical processes that may be controlling snow distribution and cannot 567 be used to estimate accumulation beyond the study area. However, fitted kriging parameters, including the 568 nugget and spatial correlation length, can provide insight into important scales of variability. Glaciers 2 and 569 13 have long correlation lengths and small nuggets indicating variability at large scales. Conversely, Glacier 570 4 has a short correlation length and large nugget, indicating that accumulation variability occurs at small 571 scales. Using a higher resolution sampling design and DEM may allow us to capture more of the variability 572 on Glacier 4 and to perhaps improve the predictive ability of both LR and SK interpolation. 573 574 A number of studies that relate SWE to topographic parameters have found success when using a regression tree interpolation model, which is a non-linear regression method (e.g. Elder and others, 1998; Erickson and 575 others, 2005; López-Moreno and others, 2010). Many relationships between accumulation and topographic 576 parameters have been observed to be non-linear so regression tree are valuable in snow modelling and may

vield improved results (Erxleben and others, 2002; Molotch and others, 2005).

577

Quantifying effects of variability

579

587

606

Interpolation variability is the greatest contributor to WSMB uncertainty for both SK and LR. This 580 581 uncertainty arises from extrapolation beyond the sampled region, which results in highly variability in estimated SWE in the accumulation area. To reduce WSMB uncertainty, emphasis must therefore be placed 582 on sampling in the accumulation area and generally obtaining measurements throughout the study basin. 583 SWE variability is the smallest contributor to WSMB uncertainty. Therefore, obtaining the most accurate 584 value of SWE to represent a grid cell, even a relatively large grid cell, does not need to be a priority when 585 designing a snow survey. Extensively measuring SWE variability in a few locations using a zigzag design 586 appears to be a good constraint on SWE variability. Many parts of a glacier though are characterized by a relatively smooth surface, with roughness lengths on the order of centimeters (Hock, 2005) resulting in low 588 snow depth variability. However, we assume that the sampled grid cells are representative of the variability 589 across the entire glacier, which is likely not true for areas with debris cover, crevasses and steep slopes. Snow 590 depth variability can be large and thus exert a dominant control on snow distribution in these area (McGrath 591 and others, 2015). Effects of SWE variability in either smaller or larger grid cells could also be different so 592 further investigation is needed. 593 Using a Monte Carlo experiment to propagate variability allowed us to quantify effects of variability on 594 estimates of WSMB. However, our analysis did not include variability arising from a number of data sources. 595 Error associated with SP and FS density measurement is not included but we believe that this error is likely 596 to be encompassed in the wide range of density interpolation methods. DEM vertical and horizontal error are 597 not considered in the Monte Carlo experiment mainly because there is no DEM validation data at our study 598 location. Error associated with estimating measurement locations, which is a combination of hand-held GPS 599 error, distance of observers from GPS and travel along a straight line, is also not considered. However, we 600 feel that this source of error is encompassed in the variability estimated from zigzag measurements. 601 While quantifying WSMB uncertainty is an important feature of accumulation studies, we also need to 602 consider how much uncertainty we are willing to accept. At what point do we say that we are not able to 603 make an accurate estimate of WSMB? In our study, are we able to say that our most probable estimate of 604 WSMB found using SK is appropriate to report when the uncertainty is so large? Further, is our assumption 605

that we have captured the majority of uncertainty in our variability analysis sufficient?

Fig. 11. Relation between SWE and linear distance from St. Elias mountain divide, located at the head of the Kaskawalsh Glacier. Blue dots are snow pit derived SWE values from (Taylor-Barge, 1969). Orange dots farthest from the divide are mean WSMB from Glaciers 4, 2 and 13, with 95% confidence interval using a linear regression interpolation. Orange dots close to the divide are snow pit derived SWE value at two locations in the accumulation area of the Kaskawalsh Glacier collect in May 2016. Black line indicates line of best fit ($\mathbb{R}^2 = 0.85$).

Mountain range accumulation gradient

607

An accumulation gradient is observed for the continental side of the St. Elias Mountains (Figure 11). 608 Accumulation data is compiled from Taylor-Barge (1969), the three glaciers presented in this paper, as well as 609 two snow pits we dug at the head of the Kaskawalsh Glacier in May 2016. The data show a linear decrease in 610 observed SWE as distance from the main mountain divide (identified by Taylor-Barge (1969)) increases, with 611 a gradient of -0.024 m w.e. km⁻¹. This relationship indicates that glacier location within a mountain range 612 also affects glacier-wide WSMB. Interaction between meso-scale weather patterns and mountain topography 613 is a major driver of glacier-wide accumulation. Further insight into mountain-scale accumulation trends 614 can be achieved by investigating moisture source trajectories and orographic precipitation contribution to 615 accumulation. 616

617 Limitations and future work

646

Extensions to this work could include an investigation of experimental design, examining implications of a 618 619 non-linear SWE elevation trend, examining the effects of DEM grid size on WSMB and resolving temporal variability. 620 Our sampling design was chosen to extensively sample the ablation area and is likely too finely resolved for 621 many future mass balance surveys to replicate. Therefore, it is valuable to investigate how best to reduce our 622 sampling design and measurement spacing while maintaining a reasonable estimate of distributed WSMB. 623 López-Moreno and others (2010) examined data reduction in a \sim 6 km² basin and found a non-linear response 624 of model stability and accuracy to sample size. The authors concluded that 200-400 observations are needed 625 to obtain accurate and robust models. Determining a sampling design that minimizes error and reduces the 626 number of measurements, known as data efficiency thresholds, would contribute to optimizing snow surveys 627 in mountainous regions. 628 A non-linear SWE-elevation trend has been documented in a number of studies so it would be valuable 629 to further investigate this relationship. Although more observations in the accumulation area are needed to 630 confirm this relationship on our study glaciers, we could apply a variety of non-linear elevation trends to 631 investigate their effects on WSMB estimates. 632 DEM grid cell size had a large influence on the resolution of topographic features (López-Moreno and 633 others, 2010), which can have implications for calculating a LR for SWE data. DEM grid cell size is known 634 to significantly affect computed topographic parameters and the ability for a DEM to resolve important 635 hydrological features (i.e. drainage pathways) in the landscape (Zhang and Montgomery, 1994; Garbrecht 636 and Martz, 1994; Guo-an and others, 2001). Zhang and Montgomery (1994) found that simulating geomorphic 637 and hydrological process for many landscapes is best accomplished with a 10-m grid cell size, which is an 638 optimal compromise between increasing resolution and large data volumes. The authors found that a 30- and 639 90-m grid cell size were insufficient in resolving terrain features in a moderate to steep gradient topography. 640 López-Moreno and others (2010) state that a grid cell size of 5 m is need to reliably represent terrain and 641 to accurately identity solar radiation, curvature and slope. The authors conclude that relevant topographic 642 parameters in their $\sim 6 \text{ km}^2$ basin are completely lost at grid sizes greater than 55×55 m making DEMs 643 with a coarse resolution inappropriate for modelling snow pack. Further, the importance of topographic 644 parameters in predicting SWE was correlated with DEM grid size. A decrease in spatial resolution of the 645

DEM resulted in a decrease in the importance of curvature and an increase in the importance of elevation and,

to a lesser degree, solar radiation. These results corroborated Kienzle (2004), who found that curvature was 647 the main predictor of SWE with a high resolution DEM. To further confound the use of DEMs to estimate 648 SWE, Molotch and others (2005) found that estimated SWE distributions were dependent on the DEM 649 chosen. Even different DEMs with similar spatial resolutions can generate significantly different topographic 650 parameters and resulting SWE distributions. A detailed and ground controlled DEM is therefore needed to 651 652 identify the features that drive accumulation variability. Future studies could also evaluate the effects of DEM uncertainty on elevation and derived topographic 653 parameters. Wechsler and Kroll (2006) used a Monte Carlo experiment to quantify deviation of topographic 654 parameters due to DEM error. The authors found that elevation did not significantly deviate but slope and 655 other hydrological parameters such as catchment area and topographic index were significantly affected. 656 Guo-an and others (2001) also conducted an DEM error analysis and found that the accuracy of hydrological 657 topographic parameters was closely related to the vertical resolution of the DEM. Errors were especially 658 large in smooth plain areas with slope less than 4 degrees. 659 It appears then that topographic parameters included in a LR and the uncertainty in estimating WSMB are 660 dependant on the resolution of DEM grid cells. Future accumulation investigations should therefore focus on 661 obtaining a high resolution DEM and quantifying effects of DEM variability on WSMB. There is a strong need 662 for a better understanding of the effects of DEM error and grid size on glacier accumulation. The majority of 663 published studies focus on hydrological modelling and the study areas are non-glacierized. Glaciers present 664 different accumulation patterns and surface topography so the DEM resolution and uncertainty may also 665 differ. 666 Temporal variability in accumulation is not considered in our study. While this limits the extent of our 667 conclusions, a number of studies have found temporal stability in spatial patterns of snow accumulation 668 and that terrain-based model could be applied reliable between years (e.g. Grünewald and others, 2013). 669 670 For example, Walmsley (2015) analysed more than 40 years of accumulation recorded on two Norwegian glaciers and found that snow accumulation is spatially heterogeneous yet exhibits robust time stability in 671 its distribution. Reliability maps were then used to reduce the sampling scheme to one index site as well as 672 a transect with 50 m elevation intervals for each glacier and winter balance was estimated to within 0.15 m 673 w.e. However, the temporal transferability of terrain-based parametrization is not always reliable. Walmsley 674

(2015) also found several strongly irregular snow spatial distribution years that were inconsistent with the

overall reduced sampling schemes. Revuelto and others (2014) also noted that snow distribution variability could not be explained by their model in low snow years.

We estimate spatial accumulation patterns and specific winter surface mass balance (WSMB) for three

CONCLUSION

679

glaciers in the St. Elias mountains from extensive snow depth and density sampling. Range scale accumulation 680 is sampled by selecting three glaciers along a precipitation gradient found on the continental side of the 681 mountain range. We sample basin scale accumulation by measuring snow depth along linear and curvilinear 682 transects throughout the ablation area of each glacier. Snow depth variability within a DEM grid cell is 683 684 sampled using a linear-random design. Point scale accumulation is sampled by taking three to four snow depth measurements at each measurement location. Snow density is measured using a wedge cutter in snow 685 pits in three locations on each glacier as well as a Federal Sampler in a number of locations throughout 686 the glacier. Snow water equivalent (SWE) is then calculated by interpolating the measured density values. 687 Four interpolation methods are used for the snow pit and Federal Sampler density measurements, which are 688 found to be uncorrelated. An average SWE value for each measured grid cell is then calculated. The grid cell 689 values of SWE are interpolated to estimate distributed accumulation. Two interpolation methods are used. 690 Liner regression (LR) relates SWE values to topographic parameters, which are derived from a DEM and 691 serve as proxies for physical processes that affect snow distribution. We choose to include elevation, distance 692 from centreline, slope, aspect, curvature, "northness" and a wind redistribution parameter as topographic 693 parameters. Cross-validation and model averaging are used to reduce overfitting of the LR. Simple kriging 694 (SK) is also used to interpolate SWE. SK assumes spatial correlation of the quantity being interpolated 695 and fitted kriging parameters, including the correlation length and nugget, can provide insight into scales of 696 spatial variability. WSMB for each glacier is then calculated as the average SWE for a grid cell. 697 Overall, elevation is the dominant driver of SWE distribution but results vary between glaciers. 698 Accumulation spatial patterns and scales of variability are considerably different on Glacier 4 when compared 699 to Glaciers 2 and 13. Glaciers 2 and 13 have a dominant elevation-accumulation trend and long spatial 700 correlation lengths. No topographic parameters were able to explain snow distribution on Glacier 4 and 701 a short correlation length and large nugget indicate variability at shorter length scales. Our results also 702 suggest that wind redistribution and preferential distribution are significant drivers of SWE distribution but 703 these effects are not captured by the wind redistribution parameter used. Improved modelling of wind effects 704 on accumulation through modification of the wind redistribution parameter as well as increased physical 705

modelling are needed. A LR applied to our study glaciers resulted in little insight into dominant physical processes indicating that accumulation is controlled by complex interactions between topography and the atmosphere and that a finer resolution DEM is needed to resolve SWE distribution and potentially relevant topographic parameters, such as curvature and wind redistribution.

Glacier accumulation is strongly affected by interactions between topography and atmospheric processes at the basin- and range-scale. Although we could not conclusively identify processes at the basin scale due to low predictive ability of the LRs, there is a dominant trend in accumulation at the range scale. We identify a clear linear decrease in SWE with increased distance from the main topographic divide along the continental side of the St. Elias Mountains. This trend indicates that glacier location within a mountain range has a large influence on WSMB. Further investigation of meso-scale weather patterns could provide insight into relevant processes that affect accumulation at the range scale.

We also quantify the effects of variability from density interpolation, grid cell SWE calculation as well 717 as interpolation method on uncertainty in estimating WSMB. We conduct a Monte Carlo experiment to 718 propagate variability through the process of estimating accumulation from snow measurements. The largest 719 720 source of uncertainty in our study stems from variability in interpolation method, both within and between methods. We find that SK results in up to five times greater uncertainty than LR and the distribution 721 encompasses unrealistic estimates of WSMB. Spatial distribution of interpolation variability indicates that 722 the accumulation area is the greatest area of uncertainty. This large variability is a result of the accumulation 723 area being poorly sampled, sensitive to estimates of dominant regression coefficients, and having the largest 724 values of estimated SWE within the glacier. To better constrain WSMB estimates, future studies should 725 focus on obtaining snow measurements in the accumulation area at the expense of collecting less data 726 overall. Density and SWE variability are found to be small contributors to WSMB uncertainty. We conclude 727 that the choice of interpolation method in combination with sampling design, especially in the accumulation 728 area, has a major impact on the uncertainty in WSMB estimates. 729

References

- 731 Bagos PG and Adam M (2015) On the Covariance of Regression Coefficients. Open Journal of Statistics,
- **5**(07), 680 (doi: 10.4236/ojs.2015.57069)
- 733 Beauont RT and Work RA (1963) Snow sampling results from three sampler. International Association of
- 734 Scientific Hydrology. Bulletin, 8(4), 74–78 (doi: 10.1080/02626666309493359)

- 735 Blöschl G, Kirnbauer R and Gutknecht D (1991) Distributed snow melt simulations in an alpine catchment.
- 736 Water Resources Research, **27**(12), 3171–3179

- 737 Burnham KP and Anderson DR (2004) Multimodel Inference: Understanding AIC and BIC in Model
- 738 Selection. Sociological Methods & Research, 33(2), 261–304 (doi: 10.1177/0049124104268644)
- 739 Clark MP, Hendrikx J, Slater AG, Kavetski D, Anderson B, Cullen NJ, Kerr T, Orn Hreinsson E and Woods
- 740 RA (2011) Representing spatial variability of snow water equivalent in hydrologic and land-surface models:
- 741 A review. Water Resources Research, 47(7) (doi: 10.1029/2011WR010745)
- 742 Clarke GK, Collins SG and Thompson DE (1984) Flow, thermal structure, and subglacial conditions of a
- surge-type glacier. Canadian Journal of Earth Sciences, 21(2), 232–240 (doi: 10.1139/e84-024)
- 744 Clyde GD (1932) Circular No. 99-Utah Snow Sampler and Scales for Measuring Water Content of Snow
- 745 Conger SM and McClung DM (2009) Comparison of density cutters for snow profile observations. Journal
- of Glaciology, **55**(189), 163–169
- 747 Crompton JW and Flowers GE (2016) Correlations of suspended sediment size with bedrock lithology and
- glacier dynamics. Annals of Glaciology, 1–9 (doi: 10.1017/aog.2016.6)
- Cullen NJ, Anderson B, Sirguey P, Stumm D, Mackintosh A, Conway JP, Horgan HJ, Dadic R, Fitzsimons
- 750 SJ and Lorrey A (2017) An 11-year record of mass balance of Brewster Glacier, New Zealand, determined
- vsing a geostatistical approach. *Journal of Glaciology*, **63**(238), 199–217 (doi: 10.1017/jog.2016.128)
- 752 Dadic R, Mott R, Lehning M and Burlando P (2010) Parameterization for wind-induced preferen-
- 753 tial deposition of snow. Journal of Geophysical Research: Earth Surface (2003–2012), 115 (doi:
- 754 10.1029/2009JF001261)
- 755 Danby RK, Hik DS, Slocombe DS and Williams A (2003) Science and the St. Elias: an evolving framework
- for sustainability in North America's highest mountains. The Geographical Journal, 169(3), 191–204 (doi:
- 757 10.1111/1475-4959.00084)
- 758 Davis JC and Sampson RJ (1986) Statistics and data analysis in qeology, volume 646. Wiley New York et al.
- 759 Deems JS and Painter TH (2006) Lidar measurement of snow depth: accuracy and error sources. In
- 760 Proceedings of the International Snow Science Workshop, 1–6
- 761 Dixon D and Boon S (2012) Comparison of the SnowHydro snow sampler with existing snow tube designs.
- 762 Hydrological Processes, **26**(17), 2555–2562, ISSN 1099-1085 (doi: 10.1002/hyp.9317)
- 763 Elder K, Dozier J and Michaelsen J (1991) Snow accumulation and distribution in an alpine watershed.
- 764 Water Resources Research, 27(7), 1541–1552 (doi: 10.1029/91WR00506)

- 765 Elder K, Rosenthal W and Davis RE (1998) Estimating the spatial distribution of snow water equivalence
- in a montane watershed. $Hydrological\ Processes,\ 12(1011),\ 1793-1808\ (doi:\ 10.1002/(SICI)1099-1808$
- 767 1085(199808/09)12:10/11;1793::AID-HYP695;3.0.CO;2-)
- 768 Erickson TA, Williams MW and Winstral A (2005) Persistence of topographic controls on the spatial
- distribution of snow in rugged mountain terrain, Colorado, United States. Water Resources Research,
- 770 **41**(4) (doi: 10.1029/2003WR002973)
- 771 Erxleben J, Elder K and Davis R (2002) Comparison of spatial interpolation methods for estimating
- snow distribution in the Colorado Rocky Mountains. Hydrological Processes, 16(18), 3627–3649 (doi:
- 773 10.1002/hyp.1239)

- 774 Fames PE, Peterson N, Goodison B and Richards RP (1982) Metrication of Manual Snow Sampling
- Equipment. In Proceedings of the 50th Western Snow Conference, 120–132
- 776 Fierz C, Armstrong RL, Durand Y, Etchevers P, Greene E, McClung DM, Nishimura K, Satyawali PK
- and Sokratov SA (2009) The international classification for seasonal snow on the ground, volume 25.
- 778 UNESCO/IHP Paris
- 779 Garbrecht J and Martz L (1994) Grid size dependency of parameters extracted from digital elevation models.
- 780 Computers & Geosciences, **20**(1), 85–87, ISSN 0098-3004 (doi: 10.1016/0098-3004(94)90098-1)
- 781 Grabiec M, Puczko D, Budzik T and Gajek G (2011) Snow distribution patterns on Svalbard glaciers derived
- 782 from radio-echo soundings. Polish Polar Research, 32(4), 393-421 (doi: 10.2478/v10183-011-0026-4)
- 783 Gray DM and Male DH (1981) Handbook of snow: principles, processes, management & use. Pergamon Press
- 784 Grunewald T, Schirmer M, Mott R and Lehning M (2010) Spatial and temporal variability of snow depth
- and ablation rates in a small mountain catchment. Cryosphere, 4(2), 215–225 (doi: 10.5194/tc-4-215-2010)
- 786 Grünewald T. Stötter J. Pomerov J. Dadic R. Moreno Baños I. Marturià J. Spross M. Hopkinson C. Burlando
- P and Lehning M (2013) Statistical modelling of the snow depth distribution in open alpine terrain.
- 788 Hydrology and Earth System Sciences, 17(8), 3005–3021 (doi: 10.5194/hess-17-3005-2013)
- 789 Grünewald T, Bühler Y and Lehning M (2014) Elevation dependency of mountain snow depth. The
- 790 Cryosphere, **8**(6), 2381–2394 (doi: 10.5194/tc-8-2381-2014)
- 791 Guo-an T, Yang-he H, Strobl J and Wang-qing L (2001) The impact of resolution on the accuracy of
- 792 hydrologic data derived from DEMs. Journal of Geographical Sciences, 11(4), 393–401, ISSN 1861-9568
- 793 (doi: 10.1007/BF02837966)

- 794 Gusmeroli A, Wolken GJ and Arendt AA (2014) Helicopter-borne radar imaging of snow cover on and around
- 795 glaciers in Alaska. Annals of Glaciology, **55**(67), 78–88 (doi: 10.3189/2014AoG67A029)
- 796 Helbig N and van Herwijnen A (2017) Subgrid parameterization for snow depth over mountainous
- terrain from flat field snow depth. Water Resources Research, 53(2), 1444–1456, ISSN 0043-1397 (doi:
- 798 10.1002/2016WR019872)

- 799 Hock R (2005) Glacier melt: a review of processes and their modelling. Progress in Physical Geography,
- **29**(3), 362–391 (doi: 10.1191/0309133305pp453ra)
- 801 Hofierka J, Mitášová H and Neteler M (2009) Geomorphometry in GRASS GIS. Developments in Soil Science,
- **33**, 387–410 (doi: 10.1016/S0166-2481(08)00017-2)
- 803 Kienzle S (2004) The Effect of DEM Raster Resolution on First Order, Second Order and Compound Terrain
- Derivatives. Transactions in GIS, 8(1), 83–111, ISSN 1467-9671 (doi: 10.1111/j.1467-9671.2004.00169.x)
- 805 Kirchner PB, Bales RC, Molotch NP, Flanagan J and Guo Q (2014) LiDAR measurement of seasonal snow
- accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrology and Earth
- 807 System Sciences, **18**(10), 4261–4275, ISSN 1027-5606
- 808 Kohavi R and others (1995) A study of cross-validation and bootstrap for accuracy estimation and model
- selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
- volume 14, 1137–1145
- 811 Korona J, Berthier E, Bernard M, Rémy F and Thouvenot E (2009) SPIRIT SPOT 5 stereoscopic survey
- of Polar Ice: Reference images and topographies during the fourth International Polar Year (2007–2009).
- 813 ISPRS Journal of Photogrammetry and Remote Sensing, 64(2), 204–212
- 814 Li J and Heap AD (2008) A review of spatial interpolation methods for environmental scientists No. Record
- 815 2008/23. Geoscience Australia
- 816 Liston GE and Elder K (2006) A distributed snow-evolution modeling system (SnowModel). Journal of
- 817 Hydrometeorology, **7**(6), 1259–1276 (doi: 10.1175/JHM548.1)
- 818 López-Moreno J, Latron J and Lehmann A (2010) Effects of sample and grid size on the accuracy and stability
- of regression-ÂÅÂŘbased snow interpolation methods. Hydrological Processes, 24(14), 1914–1928, ISSN
- 820 1099-1085 (doi: 10.1002/hyp.7564)
- 821 López-Moreno J, Fassnacht S, Heath J, Musselman K, Revuelto J, Latron J, Morán-Tejeda E and Jonas T
- 822 (2013) Small scale spatial variability of snow density and depth over complex alpine terrain: Implications
- for estimating snow water equivalent. Advances in Water Resources, 55, 40–52, ISSN 0309-1708 (doi:

- 10.1016/j.advwatres.2012.08.010), snow-Atmosphere Interactions and Hydrological Consequences
- 825 López-Moreno JI, Fassnacht S, Beguería S and Latron J (2011) Variability of snow depth at the plot scale:
- implications for mean depth estimation and sampling strategies. The Cryosphere, 5(3), 617–629 (doi:
- 827 10.5194/tc-5-617-2011)

- Machguth H, Eisen O, Paul F and Hoelzle M (2006) Strong spatial variability of snow accumulation observed
- with helicopter-borne GPR on two adjacent Alpine glaciers. Geophysical Research Letters, 33(13) (doi:
- 830 10.1029/2006GL026576)
- 831 Madigan D and Raftery AE (1994) Model Selection and Accounting for Model Uncertainty in Graphical
- Models Using Occam's Window. Journal of the American Statistical Association, 89(428), 1535–1546,
- 833 ISSN 01621459
- McGrath D, Sass L, O'Neel S, Arendt A, Wolken G, Gusmeroli A, Kienholz C and McNeil C (2015) End-
- of-winter snow depth variability on glaciers in Alaska. Journal of Geophysical Research: Earth Surface,
- **120**(8), 1530–1550 (doi: 10.1002/2015JF003539)
- 837 Metropolis N and Ulam S (1949) The Monte Carlo Method. Journal of the American Statistical Association,
- 838 **44**(247), 335–341, ISSN 01621459
- 839 Mitášová H and Hofierka J (1993) Interpolation by regularized spline with tension: II. Application to terrain
- modeling and surface geometry analysis. *Mathematical Geology*, **25**(6), 657–669 (doi: 10.1007/BF00893172)
- 841 Molotch N, Colee M, Bales R and Dozier J (2005) Estimating the spatial distribution of snow water equivalent
- in an alpine basin using binary regression tree models: the impact of digital elevation data and independent
- variable selection. *Hydrological Processes*, **19**(7), 1459–1479 (doi: 10.1002/hyp.5586)
- Mott R, Faure F, Lehning M, Löwe H, Hynek B, Michlmayer G, Prokop A and Schöner W (2008) Simulation
- of seasonal snow-cover distribution for glacierized sites on Sonnblick, Austria, with the Alpine3D model.
- Annals of Glaciology, **49**(1), 155–160 (doi: 10.3189/172756408787814924)
- 847 Musselman KN, Pomeroy JW, Essery RL and Leroux N (2015) Impact of windflow calculations on simulations
- of alpine snow accumulation, redistribution and ablation. Hydrological Processes, 29(18), 3983–3999 (doi:
- 849 10.1002/hyp.10595)
- 850 Nolan M, Larsen C and Sturm M (2015) Mapping snow-depth from manned-aircraft on landscape scales
- at centimeter resolution using Structure-from-Motion photogrammetry. The Cryosphere Discussions, 9,
- 852 333–381 (doi: 10.5194/tcd-9-333-2015)
- 853 Olaya V (2009) Basic land-surface parameters. Developments in Soil Science, 33, 141–169

- Paoli LD and Flowers GE (2009) Dynamics of a small surge-type glacier using one-dimensional geophysical
- inversion. Journal of Glaciology, **55**(194), 1101–1112 (doi: 10.3189/002214309790794850)
- Pomeroy J, Hedstrom N and Parviainen J (1999) The snow mass balance of Wolf Creek, Yukon: effects of
- snow sublimation and redistribution. Wolf Creek, Research Basin: Hydrology, Ecology, Environment, edited
- by: Pomeroy, JW and Granger RJ, 15–30
- 859 Raftery AE, Madigan D and Hoeting JA (1997) Bayesian Model Averaging for Linear Regression Models.
- Journal of the American Statistical Association, **92**(437), 179–191 (doi: 10.1080/01621459.1997.10473615)
- 861 Réveillet M, Vincent C, Six D and Rabatel A (2016) Which empirical model is best suited to simulate glacier
- mass balances? *Journal of Glaciology*, 1–16 (doi: 10.1017/jog.2016.110)
- Revuelto J, López-Moreno JI, Azorín-Molina C and Vicente Serrano SM (2014) Topographic control of
- snowpack distribution in a small catchment in the central Spanish Pyrenees: Intra-and inter-annual
- persistence (doi: 10.5194/tc-8-1989-2014)
- Roustant O, Ginsbourger D and Deville Y (2012) DiceKriging, DiceOptim: Two R packages for the analysis
- of computer experiments by kriging-based metamodeling and optimization. Journal of Statistical Software,
- 868 **21**, 1–55

- 869 Shea C and Jamieson B (2010) Star: an efficient snow point-sampling method. Annals of Glaciology, 51(54),
- 870 64–72 (doi: 10.3189/172756410791386463)
- 871 Sold L, Huss M, Hoelzle M, Andereggen H, Joerg PC and Zemp M (2013) Methodological approaches to
- infer end-of-winter snow distribution on alpine glaciers. Journal of Glaciology, 59(218), 1047–1059 (doi:
- 873 10.3189/2013JoG13J015)
- 874 Sold L, Huss M, Eichler A, Schwikowski M and Hoelzle M (2014) Recent accumulation rates of an alpine
- glacier derived from firm cores and repeated helicopter-borne GPR. The Cryosphere Discussions, 8(4),
- 876 4431–4462 (doi: 10.5194/tcd-8-4431-201)
- 877 Taylor-Barge B (1969) The summer climate of the St. Elias Mountain region. Technical report, DTIC
- 878 Document
- 879 Turcan J and Loijens H (1975) Accuracy of snow survey data and errors in snow sampler measurements. In
- 32nd Eastern Snow Conference, 2–11
- 881 Walmsley APU (2015) Long-term observations of snow spatial distributions at Hellstugubreen and
- 882 Gråsubreen, Norway

- Watson FG, Anderson TN, Newman WB, Alexander SE and Garrott RA (2006) Optimal sampling schemes
- for estimating mean snow water equivalents in stratified heterogeneous landscapes. Journal of Hydrology,
- **328**(3), 432–452 (doi: 10.1016/j.jhydrol.2005.12.032)
- Wechsler SP and Kroll CN (2006) Quantifying DEM Uncertainty and its Effect on Topographic Parameters.
- Photogrammetric Engineering & Remote Sensing, 72(9), 1081–1090, ISSN 0099-1112
- 888 Wetlaufer K, Hendrikx J and Marshall L (2016) Spatial Heterogeneity of Snow Density and Its Influence
- on Snow Water Equivalence Estimates in a Large Mountainous Basin. Hydrology, 3(1), 3 (doi:
- 890 10.3390/hydrology3010003)
- Winstral A, Elder K and Davis RE (2002) Spatial snow modeling of wind-redistributed snow using terrain-
- based parameters. Journal of Hydrometeorology, 3(5), 524-538
- 893 Winstral A, Marks D and Gurney R (2013) Simulating wind-affected snow accumulations at
- catchment to basin scales. Advances in Water Resources, 55, 64–79, ISSN 0309-1708 (doi:
- 10.1016/j.advwatres.2012.08.011), snow-Atmosphere Interactions and Hydrological Consequences
- 896 Winther J, Bruland O, Sand K, Killingtveit A and Marechal D (1998) Snow accumulation distribution on
- 897 Spitsbergen, Svalbard, in 1997. Polar Research, 17, 155–164
- 898 Wood WA (1948) Project "Snow Cornice": the establishment of the Seward Glacial research station. Arctic,
- 899 107–112

- 900 Work R, Stockwell H, Freeman T and Beaumont R (1965) Accuracy of field snow surveys. Technical report
- 901 Zhang W and Montgomery DR (1994) Digital elevation model grid size, landscape representation,
- and hydrologic simulations. Water Resources Research, 30(4), 1019–1028, ISSN 1944-7973 (doi:
- 903 10.1029/93WR03553)