Appendix A

Grammars for Meaning Representation Languages

This appendix describes the grammars for all of the formal MRLs considered in this thesis, namely the GEOQUERY logical query language, the GEOQUERY functional query language (FUNQL), and CLANG (Section 2.1). These formal MRL grammars are used to train various semantic parsers and tactical generators, including all WASP-based systems and the PHARAOH++ tactical generator (Section 5.3.1).

A.1 The GEOQUERY Logical Query Language

The GEOQUERY logical query language was devised by Zelle (1995, Sec. 7.3) for querying a U.S. geography database called GEOQUERY. Since the database was written in Prolog, the query language is basically first-order Prolog logical forms, augmented with several meta-predicates for dealing with quantification.

There are 14 different non-terminal symbols in this grammar, of which QUERY is the start symbol. The following non-terminal symbols are for entities referenced in the GEOQUERY database:

Entity types	Non-terminals	Sample productions
City names	CITYNAME	C ITY N AME $ \rightarrow$ austin
Country names	COUNTRYNAME	CountryName → usa
Place names	PLACENAME	$ ext{PLACENAME} ightarrow ext{tahoe}$
(lakes, mountains, etc.)		
River names	RIVERNAME	RIVERNAME ightarrow mississippi
State abbreviations	STATEABBREV	STATEABBREV o tx
State names	STATENAME	STATENAME o texas
Numbers	Num	$Num \rightarrow 0$

The following non-terminals are used to disambiguate between entities that share the same name (e.g. the state of Mississippi and the Mississippi river). Note the corresponding Prolog functors (e.g. stateid and riverid):

Entity types	Non-terminals	Productions
Cities	CITY	$CITY \rightarrow cityid(CITYNAME, STATEABBREV)$
		$CITY \rightarrow cityid(CITYNAME, _)$
Countries	COUNTRY	$Country \rightarrow countryid(CountryName)$
Places	PLACE	$PLACE \rightarrow placeid(PLACENAME)$
Rivers	RIVER	$RIVER \rightarrow riverid(RIVERNAME)$
States	STATE	STATE $ ightarrow$ stateid(S TATE N AME)

The FORM non-terminal (short for "formula") is for the following first-order predicates, which provide most of the expressiveness of the GEOQUERY language. Note that x_1, x_2, \ldots are logical variables that denote entities:

Productions	Meaning of predicates
$FORM \rightarrow capital(x_1)$	x_1 is a capital (city).
$FORM \rightarrow city(x_1)$	x_1 is a city.
$FORM \rightarrow country(x_1)$	x_1 is a country.
$FORM \rightarrow lake(x_1)$	x_1 is a lake.
$FORM \rightarrow major(x_1)$	x_1 is major (as in a <i>major</i> city or a <i>major</i> river).
FORM \rightarrow mountain (x_1)	x_1 is a mountain.

Productions	Meaning of predicates
$FORM \rightarrow place(x_1)$	x_1 is a place.
$FORM \rightarrow river(x_1)$	x_1 is a river.
$FORM \rightarrow state(x_1)$	x_1 is a state.
FORM $ ightarrow$ area (x_1, x_2)	The area of x_1 is x_2 .
$FORM \rightarrow capital(x_1, x_2)$	The capital of x_1 is x_2 .
$FORM \rightarrow density(x_1, x_2)$	The population density of x_1 is x_2 .
FORM \rightarrow elevation (x_1, x_2)	The elevation of x_1 is x_2 .
FORM \rightarrow elevation (x_1 , NUM)	The elevation of x_1 is NUM.
FORM \rightarrow high_point (x_1, x_2)	The highest point of x_1 is x_2 .
FORM \rightarrow higher (x_1, x_2)	The elevation of x_1 is greater than that of x_2 .
${\sf FORM} o {\sf len}\left(x_1, x_2 ight)$	The length of x_1 is x_2 .
FORM \rightarrow loc (x_1, x_2)	x_1 is located in x_2 .
$FORM o longer\left(x_1, x_2\right)$	The length of x_1 is greater than that of x_2 .
$FORM o low_point\left(x_1, x_2 ight)$	The lowest point of x_1 is x_2 .
$ extsf{FORM} ightarrow extsf{lower}(x_1, x_2)$	The elevation of x_1 is less than that of x_2 .
$FORM o next_to\left(x_1, x_2 ight)$	x_1 is adjacent to x_2 .
$FORM \rightarrow population(x_1, x_2)$	The population of x_1 is x_2 .
FORM \rightarrow size (x_1, x_2)	The size of x_1 is x_2 .
FORM \rightarrow traverse (x_1, x_2)	x_1 traverses x_2 .

The following m-tuples are used to constrain the combinations of entity types that the arguments of a m-place predicate can denote. See Section 4.2.5 for how to use these m-tuples for type checking:

Predicates	Possible entity types for logical variables
capital(x_1)	(CITY), (PLACE)
$city(x_1)$	(CITY)
$country(x_1)$	(COUNTRY)
$lake(x_1)$	(PLACE), (LAKE)
${\tt major}(x_1)$	(CITY), (LAKE), (RIVER)

Predicates	Possible entity types for logical variables
$mountain(x_1)$	(PLACE), (MOUNTAIN)
$place(x_1)$	(PLACE), (LAKE), (MOUNTAIN)
$river(x_1)$	(RIVER)
$state\left(x_{1}\right)$	(STATE)
$area(x_1, x_2)$	(CITY, NUM), (COUNTRY, NUM), (STATE, NUM)
capital(x_1, x_2)	(STATE, CITY)
$density(x_1, x_2)$	(CITY, NUM), (COUNTRY, NUM), (STATE, NUM)
elevation(x_1, x_2)	(PLACE, NUM), (MOUNTAIN, NUM)
elevation(x_1 , N UM)	(PLACE), (MOUNTAIN)
$high_point(x_1, x_2)$	(COUNTRY, PLACE), (COUNTRY, MOUNTAIN),
	(STATE, PLACE), (STATE, MOUNTAIN)
$higher(x_1, x_2)$	(PLACE, PLACE), (PLACE, MOUNTAIN),
	(MOUNTAIN, PLACE), (MOUNTAIN, MOUNTAIN)
$len(x_1, x_2)$	(RIVER, NUM)
$loc(x_1, x_2)$	(CITY, COUNTRY), (PLACE, COUNTRY),
	(LAKE, COUNTRY), (MOUNTAIN, COUNTRY),
	(RIVER, COUNTRY), (STATE, COUNTRY),
	(CITY, STATE), (PLACE, STATE), (LAKE, STATE),
	(MOUNTAIN, STATE), (RIVER, STATE), (PLACE, CITY)
longer (x_1, x_2)	(RIVER, RIVER)
$low_point(x_1, x_2)$	(COUNTRY, PLACE), (COUNTRY, MOUNTAIN),
	(STATE, PLACE), (STATE, MOUNTAIN)
$lower(x_1, x_2)$	(PLACE, PLACE), (PLACE, MOUNTAIN),
	(MOUNTAIN, PLACE), (MOUNTAIN, MOUNTAIN)
$\operatorname{next_to}(x_1, x_2)$	(STATE, RIVER), (STATE, STATE)
population (x_1, x_2)	(CITY, NUM), (COUNTRY, NUM), (STATE, NUM)
$\operatorname{size}(x_1, x_2)$	(CITY, NUM), (COUNTRY, NUM), (PLACE, NUM),
	(LAKE, NUM), (MOUNTAIN, NUM), (RIVER, NUM),
	(STATE, NUM)

Predicates	Possible entity types for logical variables
traverse (x_1, x_2)	(RIVER, CITY), (RIVER, COUNTRY), (RIVER, STATE)

In addition, the equal predicate is used to equate logical variables to ground terms, e.g. equal $(x_1, \text{cityid}(\text{austin}, \text{tx}))$:

Productions	Possible entity types for logical variables
$FORM \rightarrow equal(x_1, CITY)$	(CITY)
$FORM o equal\left(x_1, COUNTRY\right)$	(COUNTRY)
$FORM o equal\left(x_1, PLACE ight)$	(PLACE), (LAKE), (MOUNTAIN)
$FORM o equal\left(x_1, RIVER ight)$	(RIVER)
${\sf FORM} o {\sf equal}(x_1,{\sf STATE})$	(STATE)

Another important production is the conjunction operator (,), which is used to form conjunctions of formulas:

$$FORM \rightarrow (FORM, FORM)$$

The not operator is used to form negations:

$$FORM \rightarrow not (FORM)$$

The FORM non-terminal is also for the following meta-predicates, which take conjunctive goals as their arguments:

Productions	Meaning of meta-predicates	
$FORM \rightarrow largest(x_1, FORM)$	The goal denoted by FORM produces only	
	the solution maximizing the size of x_1 .	
$FORM \rightarrow smallest(x_1, FORM)$	The goal denoted by FORM produces only	
	the solution minimizing the size of x_1 .	
$FORM \rightarrow highest(x_1, FORM)$	Analogous to largest (with elevation).	
$FORM \to lowest(x_1, FORM)$	Analogous to smallest (with elevation).	

Productions	Meaning of meta-predicates
$FORM \rightarrow longest(x_1, FORM)$	Analogous to largest (with length).
$FORM \to shortest(x_1, FORM)$	Analogous to smallest (with length).
$\operatorname{FORM} o \operatorname{count}(x_1,\operatorname{FORM},x_2)$	x_2 is the number of bindings for x_1 satisfying
	the goal denoted by FORM.
$FORM o sum(x_1,FORM,x_2)$	x_2 is the sum of all bindings for x_1 satisfying
	the goal denoted by FORM.
$FORM \rightarrow most(x_1, x_2, FORM)$	The goal denoted by FORM produces only
	the x_1 maximizing the count of x_2 .
FORM \rightarrow fewest $(x_1, x_2, FORM)$	The goal denoted by FORM produces only
	the x_1 minimizing the count of x_2 .

Below are the corresponding m-tuples of entity types for type checking:

Meta-predicates	Possible entity types for logical variables
largest $(x_1, FORM)$	(CITY), (PLACE), (LAKE), (MOUNTAIN), (NUM),
	(RIVER), (STATE)
$smallest(x_1, FORM)$	(CITY), (PLACE), (LAKE), (MOUNTAIN), (NUM),
	(RIVER), (STATE)
$highest(x_1, FORM)$	(PLACE), (MOUNTAIN)
lowest (x_1 , FORM)	(PLACE), (MOUNTAIN)
longest (x_1 , FORM)	(RIVER)
shortest (x_1 , FORM)	(RIVER)
count $(x_1, FORM, x_2)$	(*, NUM)
$\operatorname{sum}(x_1,\operatorname{FORM},x_2)$	(NUM, NUM)
$most(x_1, x_2, FORM)$	(*,*)
fewest (x_1 , x_2 , FORM)	(*,*)

In the above table, * denotes any of these entity types: CITY, COUNTRY, PLACE, LAKE, MOUNTAIN, NUM, RIVER, STATE.

Finally, the start symbol, QUERY, is reserved for the answer meta-predicate, which serves as a wrapper for query goals (denoted by FORM):

```
QUERY \rightarrow answer (x_1, FORM)
```

Here x_1 is the logical variable whose binding is of interest (i.e. answers the question posed). x_1 can denote entities of any type (*).

A.2 The GEOQUERY Functional Query Language

For semantic parsers and tactical generators that cannot handle logical variables (e.g. WASP, PHARAOH++, WASP⁻¹++), a variable-free, functional query language called FunQL has been devised for the GEOQUERY domain (Kate et al., 2005). Below is a sample FunQL query, together with its corresponding Prolog logical form:

```
What are the cities in Texas? FUNQL: answer (city(loc_2(stateid(texas)))) Prolog logical form: answer (x_1, (\text{city}(x_1), \text{loc}(x_1, x_2), \text{equal}(x_2, \text{stateid}(\text{texas}))))
```

In Section 2.1, we noted that FUNQL predicates can have a set-theoretic interpretation. For example, the term stateid(texas) denotes a singleton set that consists of the Texas state, and $loc_2(stateid(texas))$ denotes the set of entities located in the Texas state, and so on. Here we present another interpretation of FUNQL based on the lambda calculus. Under this interpretation, each FUNQL predicate is a shorthand for a λ -function, which can be used to translate FUNQL expressions into the GEOQUERY logical query language through function application. For example, the FUNQL predicate stateid denotes the λ -function $\lambda n.\lambda x_1.equal(x_1,stateid(n))$. Hence by function application, the FUNQL term stateid(texas) is equivalent to the following logical form in the GEOQUERY logical query language:

```
\lambda x_1.equal(x_1, stateid(texas))
```

Also since the FunQL predicate loc_2 denotes $\lambda p.\lambda x_1$. (loc (x_1, x_2) , $p(x_2)$), the FunQL term loc_2 (stateid(texas)) is equivalent to:

```
\lambda x_1.\log(x_1,x_2), equal(x_2, stateid(texas)))
```

There are 13 different non-terminal symbols in the FunQL grammar. All of them are from the GEOQUERY logical query language. Only the FORM non-terminal is not used in FunQL. Query is the start symbol in the FunQL grammar.

Below are the FUNQL productions for named entities and numbers, which are identical to those in the GEOQUERY logical query language:

Entity types	Sample productions	Corresponding λ -functions
City names	C ITY N AME $ \rightarrow$ austin	austin
Country names	CountryName o usa	usa
Place names	$ extstyle{PLACENAME} ightarrow extstyle{tahoe}$	tahoe
River names	$RIVERNAME ightarrow exttt{mississippi}$	mississippi
State abbreviations	$STATEABBREV \rightarrow tx$	tx
State names	STATE N AME $ ightarrow$ texas	texas
Numbers	$Num \rightarrow 0$	0

The rest of the FUNQL productions are as follows:

Productions	Corresponding λ -functions
City →	$\lambda n. \lambda a. \lambda x_1. $ equal $(x_1, \text{cityid}(n, a))$
cityid(CITYNAME, STATEABBREV)	
$\text{CITY} \rightarrow \text{cityid} \left(\text{CITYNAME,}_{-} \right)$	$\lambda n.\lambda x_1.$ equal(x_1 ,cityid(n ,_))
$Country \to$	$\lambda n.\lambda x_1.$ equal(x_1 ,countryid(n))
countryid(COUNTRYNAME)	
$P \texttt{LACE} \rightarrow \texttt{placeid} (P \texttt{LACE} N \texttt{AME})$	$\lambda n.\lambda x_1.$ equal $(x_1$, placeid (n))
$RIVER \to \texttt{riverid}(RIVERNAME)$	$\lambda n.\lambda x_1.$ equal(x_1 ,riverid(n))
$S \texttt{TATE} \to \texttt{stateid}(S \texttt{TATE} N \texttt{AME})$	$\lambda n.\lambda x_1.$ equal $(x_1$, stateid (n))

Productions	Corresponding λ -functions
$CITY \rightarrow capital(all)$	$\lambda x_1.$ capital (x_1)
$\operatorname{CITY} o \operatorname{city}(\operatorname{all})$	$\lambda x_1. \text{city}(x_1)$
$\texttt{COUNTRY} \rightarrow \texttt{country(all)}$	λx_1 .country(x_1)
$ ext{PLACE} ightarrow ext{lake(all)}$	λx_1 .lake (x_1)
$PLACE \rightarrow mountain(all)$	λx_1 .mountain (x_1)
$PLACE \rightarrow place(all)$	λx_1 .place(x_1)
$RIVER \to \texttt{river(all)}$	λx_1 .river (x_1)
STATE $ ightarrow$ state(all)	λx_1 .state(x_1)
$CITY \rightarrow capital(CITY)$	$\lambda p.\lambda x_1.$ (capital (x_1) , $p(x_1)$)
$\texttt{CITY} \to \texttt{capital}(\texttt{PLACE})$	$\lambda p.\lambda x_1.$ (capital(x_1), $p(x_1)$)
$CITY \rightarrow city(CITY)$	$\lambda p.\lambda x_1.$ (city (x_1) , $p(x_1)$)
${\sf PLACE} o {\sf lake}({\sf PLACE})$	$\lambda p.\lambda x_1.$ (lake(x_1), $p(x_1)$)
$\operatorname{CITY} o \operatorname{major}(\operatorname{CITY})$	$\lambda p.\lambda x_1.$ (major (x_1) , $p(x_1)$)
PLACE ightarrow major(PLACE)	$\lambda p.\lambda x_1.$ (major (x_1) , $p(x_1)$)
$ ext{RIVER} ightarrow ext{major}(ext{RIVER})$	$\lambda p.\lambda x_1.$ (major (x_1) , $p(x_1)$)
$PLACE \rightarrow \texttt{mountain}(PLACE)$	$\lambda p.\lambda x_1.$ (mountain (x_1) , $p(x_1)$)
$PLACE \rightarrow place(PLACE)$	$\lambda p.\lambda x_1.$ (place(x_1), $p(x_1)$)
$RIVER \to \texttt{river}(RIVER)$	$\lambda p.\lambda x_1. (\mathtt{river}(x_1), p(x_1))$
STATE $ ightarrow$ state(S TATE)	$\lambda p.\lambda x_1.$ (state(x_1), $p(x_1)$)
$Num \rightarrow area_1(CITY)$	$\lambda p.\lambda x_1.$ (area $(x_2$, $x_1)$, $p(x_2)$)
$N \text{UM} \rightarrow \text{area_1} (\text{COUNTRY})$	$\lambda p.\lambda x_1.$ (area $(x_2$, $x_1)$, $p(x_2)$)
$N{\text{UM}} \to {\text{area_1}} (P{\text{LACE}})$	$\lambda p.\lambda x_1.$ (area $(x_2$, $x_1)$, $p(x_2)$)
N UM $ ightarrow$ area_1 (S TATE)	$\lambda p.\lambda x_1.$ (area $(x_2$, $x_1)$, $p(x_2)$)
$CITY \rightarrow \texttt{capital_1}(COUNTRY)$	$\lambda p.\lambda x_1.$ (capital(x_2 , x_1), $p(x_2)$)
$\texttt{CITY} \to \texttt{capital_1}(\texttt{STATE})$	$\lambda p.\lambda x_1.$ (capital(x_2 , x_1), $p(x_2)$)
$STATE \rightarrow \texttt{capital_2}(CITY)$	$\lambda p.\lambda x_1.$ (capital(x_1,x_2), $p(x_2)$)
$N{\scriptstyle UM} \to \mathtt{density_1}(C{\scriptstyle ITY})$	$\lambda p.\lambda x_1.$ (density(x_2 , x_1), $p(x_2)$)
$N{\scriptstyle UM} \to \mathtt{density_1}(Country)$	$\lambda p.\lambda x_1.(ext{density}(x_2,x_1),p(x_2))$
$N{\scriptstyle UM} \to \mathtt{density_1}(S{\scriptstyle TATE})$	$\lambda p.\lambda x_1.$ (density(x_2 , x_1), $p(x_2)$)
$N{\scriptstyle \text{UM}} \rightarrow \text{elevation_1} (P{\scriptstyle \text{LACE}})$	$\lambda p.\lambda x_1.$ (elevation (x_2, x_1) , $p(x_2)$)
$PLACE \rightarrow \texttt{elevation_2} \; (NUM)$	$\lambda n.\lambda x_1.$ elevation (x_1,n)

Productions	Corresponding λ -functions
PLACE → high_point_1(STATE)	$\lambda p.\lambda x_1.$ (high_point (x_2,x_1) , $p(x_2)$)
$S{\tt TATE} \to {\tt high_point_2}(P{\tt LACE})$	$\lambda p.\lambda x_1.$ (high_point (x_1,x_2) , $p(x_2)$)
$PLACE \rightarrow higher_2(PLACE)$	$\lambda p.\lambda x_1.$ (higher (x_1,x_2) , $p(x_2)$)
NUM $ ightarrow$ len(R IVE R)	$\lambda p.\lambda x_1.$ (len $(x_2$, $x_1)$, $p(x_2)$)
$CITY \rightarrow loc_1 (PLACE)$	$\lambda p.\lambda x_1.$ (loc(x_2 , x_1), $p(x_2)$)
$\texttt{COUNTRY} \rightarrow \texttt{loc_1} (\texttt{CITY})$	$\lambda p.\lambda x_1.$ (loc(x_2 , x_1), $p(x_2)$)
$\texttt{COUNTRY} \rightarrow \texttt{loc_1} (\texttt{PLACE})$	$\lambda p.\lambda x_1.$ (loc(x_2 , x_1), $p(x_2)$)
$\texttt{Country} \rightarrow \texttt{loc_1} (\texttt{RIVER})$	$\lambda p.\lambda x_1.$ (loc(x_2 , x_1), $p(x_2)$)
$\texttt{Country} \rightarrow \texttt{loc_1} (\texttt{STATE})$	$\lambda p.\lambda x_1.$ (loc(x_2 , x_1), $p(x_2)$)
State \rightarrow loc_1 (City)	$\lambda p.\lambda x_1.$ (loc(x_2 , x_1), $p(x_2)$)
State \rightarrow loc_1 (Place)	$\lambda p.\lambda x_1.$ (loc(x_2 , x_1), $p(x_2)$)
State $\rightarrow loc_1$ (River)	$\lambda p.\lambda x_1.$ (loc(x_2 , x_1), $p(x_2)$)
$City \rightarrow loc_2 (Country)$	$\lambda p.\lambda x_1.$ (loc(x_1 , x_2), $p(x_2)$)
$ ext{City} ightarrow ext{loc_2} (ext{State})$	$\lambda p.\lambda x_1.$ (loc(x_1 , x_2), $p(x_2)$)
PLACE \rightarrow loc_2 (CITY)	$\lambda p.\lambda x_1.$ (loc(x_1 , x_2), $p(x_2)$)
Place \rightarrow loc_2 (State)	$\lambda p.\lambda x_1.$ (loc(x_1 , x_2), $p(x_2)$)
$PLACE \rightarrow \texttt{loc_2} (COUNTRY)$	$\lambda p.\lambda x_1.$ (loc(x_1 , x_2), $p(x_2)$)
RIVER \rightarrow loc_2 (COUNTRY)	$\lambda p.\lambda x_1.$ (loc(x_1 , x_2), $p(x_2)$)
RIVER \rightarrow loc_2 (STATE)	$\lambda p.\lambda x_1.$ (loc(x_1 , x_2), $p(x_2)$)
State \rightarrow loc_2 (Country)	$\lambda p.\lambda x_1.$ (loc(x_1 , x_2), $p(x_2)$)
$RIVER \to \texttt{longer}(RIVER)$	$\lambda p.\lambda x_1.$ (longer (x_1,x_2) , $p(x_2)$)
$PLACE \rightarrow lower_2 (PLACE)$	$\lambda p.\lambda x_1.$ (lower $(x_1$, $x_2)$, $p(x_2)$)
$STATE \rightarrow next_to_1(STATE)$	$\lambda p.\lambda x_1.$ (next-to(x_2 , x_1), $p(x_2)$)
$STATE \rightarrow next_to_2 (STATE)$	$\lambda p.\lambda x_1.$ (next_to(x_1 , x_2), $p(x_2)$)
$STATE \rightarrow next_to_2(RIVER)$	$\lambda p.\lambda x_1.$ (next-to(x_1 , x_2), $p(x_2)$)
$N{\scriptstyle UM} \to \texttt{population_1}(C{\scriptstyle ITY})$	$\lambda p.\lambda x_1.$ (population (x_2,x_1) , $p(x_2)$)
$N{\tt UM} \to {\tt population_1}(Country)$	$\lambda p.\lambda x_1.$ (population (x_2,x_1) , $p(x_2)$)
$Num \to \texttt{population_1}(STATE)$	$\lambda p.\lambda x_1.$ (population (x_2,x_1) , $p(x_2)$)
NUM $ ightarrow$ size(C ITY)	$\lambda p.\lambda x_1.$ (size (x_2,x_1) , $p(x_2)$)
$\texttt{NUM} \to \texttt{size}(\texttt{COUNTRY})$	$\lambda p.\lambda x_1.$ (size (x_2,x_1) , $p(x_2)$)
$ ext{NUM} ightarrow ext{size} (ext{STATE})$	$\lambda p.\lambda x_1.(\text{size}(x_2,x_1),p(x_2))$

Productions	Corresponding λ -functions
$CITY \rightarrow traverse_1(RIVER)$	$\lambda p.\lambda x_1.$ (traverse $(x_2,x_1),p(x_2)$)
$Country \rightarrow \texttt{traverse_1} (RIVER)$	$\lambda p.\lambda x_1.$ (traverse(x_2 , x_1), $p(x_2)$)
S TATE \rightarrow traverse_1 (R IVER)	$\lambda p.\lambda x_1.$ (traverse $(x_2$, $x_1)$, $p(x_2)$)
$RIVER \rightarrow traverse_2 (CITY)$	$\lambda p.\lambda x_1.$ (traverse $(x_1$, $x_2)$, $p(x_2)$)
$RIVER \rightarrow \texttt{traverse_2} (COUNTRY)$	$\lambda p.\lambda x_1.$ (traverse (x_1,x_2) , $p(x_2)$)
$RIVER \rightarrow \texttt{traverse_2}(STATE)$	$\lambda p.\lambda x_1.$ (traverse (x_1,x_2) , $p(x_2)$)
$CITY \rightarrow largest(CITY)$	$\lambda p.\lambda x_1.$ largest $(x_1,p(x_1))$
$PLACE \rightarrow largest(PLACE)$	$\lambda p.\lambda x_1.$ largest $(x_1,p(x_1))$
STATE $ ightarrow$ largest(S TATE)	$\lambda p.\lambda x_1.$ largest $(x_1,p(x_1))$
State $ o$	$\lambda p.\lambda x_1.$ largest(x_2 ,
<pre>largest_one(area_1(STATE))</pre>	(area (x_1,x_2) , $p(x_1)$))
$CITY \rightarrow$	$\lambda p.\lambda x_1.$ largest(x_2 ,
<pre>largest_one(density_1(CITY))</pre>	(density(x_1 , x_2), $p(x_1)$))
State $ o$	$\lambda p.\lambda x_1.$ largest(x_2 ,
${\tt largest_one(density_1(STATE))}$	(density(x_1 , x_2), $p(x_1)$))
$CITY \rightarrow$	$\lambda p.\lambda x_1.$ largest(x_2 ,
<pre>largest_one(population_1(CITY))</pre>	(population(x_1 , x_2), $p(x_1)$))
STATE o	$\lambda p.\lambda x_1.$ largest(x_2 ,
$\texttt{largest_one(population_1(STATE))}$	(population(x_1 , x_2), $p(x_1)$))
$C{\tt ITY} \to {\tt smallest}(C{\tt ITY})$	$\lambda p.\lambda x_1.$ smallest $(x_1,p(x_1))$
$N{\text{UM}} \to \text{smallest}(N{\text{UM}})$	$\lambda p.\lambda x_1.$ smallest $(x_1,p(x_1))$
$P \texttt{LACE} \rightarrow \texttt{smallest}(P \texttt{LACE})$	$\lambda p.\lambda x_1.$ smallest $(x_1,p(x_1))$
$S \texttt{TATE} \to \texttt{smallest}(S \texttt{TATE})$	$\lambda p.\lambda x_1.$ smallest $(x_1,p(x_1))$
STATE o	$\lambda p.\lambda x_1.$ smallest(x_2 ,
$smallest_one(area_1(STATE))$	(area $(x_1, x_2), p(x_1)$))
STATE o	$\lambda p.\lambda x_1.$ smallest(x_2 ,
$smallest_one(density_1(STATE))$	(density(x_1 , x_2), $p(x_1)$))
$CITY \rightarrow$	$\lambda p.\lambda x_1.$ smallest(x_2 ,
$smallest_one(population_1(CITY))$	(population(x_1 , x_2), $p(x_1)$))
State $ o$	$\lambda p.\lambda x_1.$ smallest(x_2 ,
<pre>smallest_one(population_1(STATE))</pre>	(population(x_1, x_2), $p(x_1)$))

Productions	Corresponding λ -functions
$PLACE \rightarrow highest(PLACE)$	$\lambda p.\lambda x_1.$ highest $(x_1,p(x_1))$
$PLACE \rightarrow lowest(PLACE)$	$\lambda p.\lambda x_1.$ lowest $(x_1,p(x_1))$
$RIVER o ext{longest}(RIVER)$	$\lambda p.\lambda x_1.$ longest $(x_1,p(x_1))$
$RIVER \rightarrow \text{shortest}(RIVER)$	$\lambda p.\lambda x_1.$ shortest $(x_1,p(x_1))$
$N{\text{UM}} \to \text{count}(C{\text{ITY}})$	$\lambda p.\lambda x_1.$ count $(x_2,p(x_2),x_1)$
$N{\text{UM}} \to \text{count}(P{\text{LACE}})$	$\lambda p.\lambda x_1.$ count $(x_2,p(x_2),x_1)$
$N{\text{UM}} \to \text{count}(R{\text{IVER}})$	$\lambda p.\lambda x_1.$ count $(x_2,p(x_2),x_1)$
NUM $ ightarrow$ count (S TATE)	$\lambda p.\lambda x_1.$ count $(x_2,p(x_2),x_1)$
$\mathrm{NuM} ightarrow \mathtt{sum}(\mathrm{NuM})$	$\lambda p.\lambda x_1.$ sum $(x_2,p(x_2),x_1)$
$\operatorname{CITY} o \operatorname{most}(\operatorname{CITY})$	$\lambda p'.\lambda x_1.$ most $(x_1, x', p'(x_1))$, where
	p' contains one and only one free variable, x'
$P \texttt{LACE} \to \texttt{most} (P \texttt{LACE})$	$\lambda p'.\lambda x_1.most\left(x_1,x',p'(x_1) ight)$
$RIVER \to \texttt{most}(RIVER)$	$\lambda p'.\lambda x_1.most\left(x_1,x',p'(x_1)\right)$
STATE $ ightarrow$ most (S TATE)	$\lambda p'.\lambda x_1.most\left(x_1,x',p'(x_1) ight)$
$\texttt{CITY} \to \texttt{fewest}(\texttt{CITY})$	$\lambda p'.\lambda x_1.$ fewest $(x_1,x',p'(x_1))$
$P \texttt{LACE} \rightarrow \texttt{fewest} (P \texttt{LACE})$	$\lambda p'.\lambda x_1.$ fewest $(x_1,x',p'(x_1))$
$RIVER \to \texttt{fewest}(RIVER)$	$\lambda p'.\lambda x_1.$ fewest $(x_1,x',p'(x_1))$
$S{\tt TATE} \to {\tt fewest}(S{\tt TATE})$	$\lambda p'.\lambda x_1.$ fewest $(x_1,x',p'(x_1))$
$CITY \rightarrow$	$\lambda p_1.\lambda p_2.\lambda x_1.\left(p_1(x_1),p_2(x_1)\right)$
<pre>intersection(CITY, CITY)</pre>	
$PLACE \to$	$\lambda p_1.\lambda p_2.\lambda x_1.\left(p_1(x_1),p_2(x_1)\right)$
<pre>intersection(PLACE, PLACE)</pre>	
$RIVER \rightarrow$	$\lambda p_1.\lambda p_2.\lambda x_1.(p_1(x_1),p_2(x_1))$
intersection(RIVER,RIVER)	
$STATE \rightarrow$	$\lambda p_1.\lambda p_2.\lambda x_1.(p_1(x_1),p_2(x_1))$
<pre>intersection(STATE, STATE)</pre>	
$\texttt{CITY} \rightarrow \texttt{exclude}(\texttt{CITY}, \texttt{CITY})$	$\lambda p_1.\lambda p_2.\lambda x_1.\left(p_1(x_1),\operatorname{not}\left(p_2(x_1) ight) ight)$
$PLACE \rightarrow \texttt{exclude}(PLACE, PLACE)$	$\lambda p_1.\lambda p_2.\lambda x_1.(p_1(x_1)$, not $(p_2(x_1))$)
${\tt RIVER} \rightarrow {\tt exclude}({\tt RIVER},{\tt RIVER})$	$\lambda p_1.\lambda p_2.\lambda x_1.\left(p_1(x_1),\operatorname{not}\left(p_2(x_1) ight) ight)$
$STATE \rightarrow exclude(STATE, STATE)$	$\lambda p_1.\lambda p_2.\lambda x_1.\left(p_1(x_1),\operatorname{not}\left(p_2(x_1) ight) ight)$

Productions	Corresponding λ -functions
QUERY o answer(CITY)	$\lambda p.$ answer $(x_1,p(x_1))$
$Q{\tt UERY} \to {\tt answer}(C{\tt OUNTRY})$	$\lambda p.$ answer(x_1 , $p(x_1)$)
$Q \texttt{UERY} \to \texttt{answer} (N \texttt{UM})$	$\lambda p.$ answer(x_1 , $p(x_1)$)
$Q{\tt UERY} \to {\tt answer}(P{\tt LACE})$	$\lambda p.$ answer(x_1 , $p(x_1)$)
$Q{\tt UERY} \to {\tt answer}(R{\tt IVER})$	$\lambda p.$ answer(x_1 , $p(x_1)$)
$Q{\tt UERY} \to {\tt answer}(S{\tt TATE})$	$\lambda p.$ answer(x_1 , $p(x_1)$)

A.3 CLANG: The ROBOCUP Coach Language

In the ROBOCUP Coach Competition, teams compete to provide effective instructions to advice-taking agents in the simulated soccer domain. Coaching instructions are provided in a formal coach language called CLANG (Chen et al., 2003, Sec. 7.7).

The CLANG grammar described here basically follows the one described in Chen et al. (2003). We have slightly modified CLANG to introduce a few concepts that are not easily describable in the original CLANG language. These new constructs are marked with asterisks (*).

In CLANG, coaching instructions come in the form of *if-then rules*. Each if-then rule consists of a *condition* and a *directive*:

$$RULE \rightarrow (CONDITION DIRECTIVE)$$

Possible conditions are:

Productions	Meaning of predicates
$CONDITION \rightarrow (true)$	Always true.
$\texttt{CONDITION} \to \texttt{(false)}$	Always false.

Productions	Meaning of predicates
CONDITION → (ppos PLAYER	At least UNUM ₁ and at most UNUM ₂ of
UNUM ₁ UNUM ₂ REGION)	PLAYER is in REGION.
${\tt CONDITION} \rightarrow {\tt (ppos-any\ PLAYER\ REGION)}^*$	Some of PLAYER is in REGION.
$Condition \rightarrow \text{(ppos-none our REGION)}^*$	None of our players is in REGION.
$\texttt{CONDITION} \rightarrow \texttt{(ppos-none opp REGION)}^*$	None of the opponents is in REGION.
$\texttt{Condition} \to (\texttt{bpos Region})$	The ball is in REGION.
$Condition \rightarrow (\texttt{bowner PLAYER})$	PLAYER owns the ball.
${\tt CONDITION} \rightarrow ({\tt playm bko})$	Specific play modes (Chen et al., 2003).
${\tt CONDITION} \rightarrow ({\tt playm \ time_over})$	
${\tt CONDITION} \to ({\tt playm \ play_on})$	
${\tt CONDITION} \rightarrow ({\tt playm ko_our})$	
${\tt CONDITION} \to ({\tt playm ko_opp})$	
$CONDITION \rightarrow (playm ki_our)$	
${\tt CONDITION} \to ({\tt playm ki_opp})$	
${\tt CONDITION} \rightarrow ({\tt playm fk_our})$	
${\tt CONDITION} \rightarrow ({\tt playm fk_opp})$	
${\tt CONDITION} \rightarrow ({\tt playm \ ck_our})$	
${\tt CONDITION} \to ({\tt playm ck_opp})$	
${\tt CONDITION} \rightarrow ({\tt playm gk_our})$	
${\tt CONDITION} \rightarrow ({\tt playm gk_opp})$	
${\tt CONDITION} \rightarrow ({\tt playm gc_our})$	
${\tt CONDITION} \to ({\tt playm gc_opp})$	
${\tt CONDITION} \rightarrow ({\tt playm ag_our})$	
${\tt CONDITION} \to ({\tt playm ag_opp})$	
Condition \rightarrow "Ident"	Condition named IDENT. See definec.
Condition \rightarrow (< Num ₁ Num ₂)	NUM_1 is smaller than NUM_2 . Both
	NUM_1 and NUM_2 can be identifiers.
Condition \rightarrow (> Num ₁ Num ₂)	NUM_1 is greater than NUM_2 .
$Condition \rightarrow \ (<= Num_1 \ Num_2)$	NUM ₁ is not greater than NUM ₂ .
Condition \rightarrow (== Num ₁ Num ₂)	NUM_1 is equal to NUM_2 .
Condition \rightarrow (>= Num ₁ Num ₂)	NUM_1 is not smaller than NUM_2 .

Productions	Meaning of predicates
CONDITION \rightarrow (!= NUM ₁ NUM ₂)	NUM_1 is not equal to NUM_2 .
$\textbf{Condition} \rightarrow (\textbf{and Condition}_1 \ \textbf{Condition}_2)$	CONDITION $_1$ and CONDITION $_2$.
$\textbf{Condition} \rightarrow (\textbf{or Condition}_1 \ \textbf{Condition}_2)$	CONDITION ₁ or CONDITION ₂ .
Condition ightarrow (not $Condition$)	CONDITION is not true.

Directives are lists of actions for individual players to take:

Productions	Meaning of predicates
Directive → (do Player Action)	PLAYER should take ACTION.
$DIRECTIVE \rightarrow (\texttt{dont}\ PLAYER\ ACTION)$	PLAYER should avoid taking ACTION.

Possible actions are:

Productions	Meaning of predicates
$Action \rightarrow (pos Region)$	Go to REGION.
$Action \to (\texttt{home} \; Region)$	Set default position to REGION.
$Action \to (\texttt{mark}\ PLAYER)$	Mark PLAYER (usually opponents).
$Action \to (\texttt{markl Region})$	Mark the passing lane from current ball position
	to REGION.
$Action \to (\texttt{markl}\ PLAYER)$	Mark the passing lane from current ball position
	to position of PLAYER (usually opponents).
$A\texttt{CTION} \to (\texttt{oline} \ R\texttt{EGION})$	Set offside-trap line to REGION.
$Action \to (\texttt{pass} \; Region)$	Pass the ball to REGION.
$Action \rightarrow (\texttt{pass}\ PLAYER)$	Pass the ball to PLAYER.
$Action \to (\texttt{dribble} \ REGION)$	Dribble the ball to REGION.
$A\texttt{CTION} \to (\texttt{clear} \ R\texttt{EGION})$	Clear the ball to REGION.
$\operatorname{ACTION} o (\operatorname{shoot})$	Shoot the ball.
$\operatorname{ACTION} o (\operatorname{hold})$	Hold the ball.
$Action \rightarrow (intercept)$	Intercept the ball.
$\text{ACTION} \rightarrow \text{(tackle PLAYER)}$	Tackle PLAYER.
	I

The following productions are for specifying players: (UNUM stands for "uniform numbers", i.e. 1 to 11)

Productions	Meaning of predicates
$PLAYER ightarrow (player our {UNUM})**$	Our player UNUM.
PLAYER ightarrow (player our	Our players U_{NUM_1} and U_{NUM_2} .
$\{\operatorname{Unum}_1\operatorname{Unum}_2\}$)**	
PLAYER ightarrow (player our	Our players $UNUM_1$, $UNUM_2$ and
$\{\operatorname{Unum}_1\operatorname{Unum}_2\operatorname{Unum}_3\})^{**}$	UNUM ₃ .
PLAYER ightarrow (player our	Our players $UNUM_1$, $UNUM_2$, $UNUM_3$
$\{\operatorname{Unum}_1\operatorname{Unum}_2\operatorname{Unum}_3\operatorname{Unum}_4\})^{**}$	and UNUM ₄ .
$PLAYER ightarrow$ (player opp $\{UNUM\}$)**	Opponent player UNUM.
$PLAYER \rightarrow (player our \{0\})^{**}$	Our team.
$PLAYER \rightarrow (player opp \{0\})^{**}$	Opponent's team.
PLAYER ightarrow (player-range our	Our players $UNUM_1$ to $UNUM_2$.
$U_{NUM_1}U_{NUM_2})^*$	
PLAYER ightarrow (player-range opp	Opponent players $UNUM_1$ to $UNUM_2$.
$U_{NUM_1}U_{NUM_2})^*$	
$PLAYER \rightarrow (player-except our$	Our team except player UNUM
{UNUM})*	
PLAYER ightarrow (player-except opp	Opponent's team except player UNUM
{UNUM})*	
	ı

Productions marked with double asterisks (**) are slight variations of existing constructs in the original CLANG grammar (e.g. as in (bowner our $\{4\}$)). The new player predicate is introduced for uniformity. To specify regions, we can use the following productions:

Productions	Meaning of predicates
$REGION \rightarrow POINT$	A POINT.
$REGION \rightarrow \text{(rec }POINT_1 \;POINT_2\text{)}$	A rectangle with opposite corners POINT ₁ and
	Point ₂ .
$\texttt{REGION} \to (\texttt{tri POINT}_1 \ \texttt{POINT}_2$	A triangle with corners POINT ₁ , POINT ₂ and
Point ₃)	POINT ₃ .

Productions	Meaning of predicates
${\tt REGION} \rightarrow ({\tt arc} \ {\tt POINT} \ {\tt NUM}_1$	A donut arc (Chen et al., 2003).
$Num_2 \ Num_3 \ Num_4)$	
$R{\tt EGION} \rightarrow \left(\texttt{circle Point Num} \right)^*$	A circle of center POINT and radius NUM.
$ ext{REGION} ightarrow ext{(null)}$	The empty region.
$\text{REGION} \rightarrow (\text{reg REGION}_1 \; \text{REGION}_2)$	The union of REGION $_1$ and REGION $_2$.
$Region \rightarrow \text{(reg-exclude $Region_1$)}$	REGION ₁ excluding REGION ₂ .
REGION ₂) *	
$ ext{REGION} ightarrow ext{(field)}^*$	The field.
REGION \rightarrow (half TEAM) *	The TEAM's half of field. TEAM can be
	either our or opp.
$ ext{REGION} ightarrow ext{(penalty-area TEAM)}^*$	The TEAM's penalty area.
${\sf REGION} ightarrow {\sf (goal-area\ TEAM)}^*$	The TEAM's goal area.
$Region ightarrow$ (midfield) *	The midfield.
$R{\tt EGION} \to ({\tt midfield} \ T{\tt EAM})^*$	The TEAM's midfield.
$R{\tt EGION} \rightarrow \texttt{(near-goal-line TEAM)}^*$	Near TEAM's goal line.
$R{\tt EGION} \to \texttt{(from-goal-line TEAM)}$	NUM ₁ to NUM ₂ meters from TEAM's goal
$Num_1 Num_2$)*	line.
$R{\tt EGION} \rightarrow ({\tt left}\; R{\tt EGION})^*$	The left half of REGION (from our team's
	perspective).
$REGION \rightarrow \text{(right REGION)*}$	The right half of REGION.
$R{\tt EGION} \rightarrow \texttt{(left-quarter REGION)}^*$	The left quarter of REGION.
$R{\tt EGION} \rightarrow \text{(right-quarter $R{\tt EGION}$)}^*$	The right quarter of REGION.
Region \rightarrow "Ident"	Region named IDENT. See definer.
	I

To specify points, we can use the following productions:

Productions	Meaning of predicates
$POINT \rightarrow (pt NUM_1 NUM_2)$	The xy -coordinates (NUM ₁ , NUM ₂).
POINT ightarrow (pt ball)	The current ball position.
$POINT \to POINT_1 + POINT_2$	Coordinate-wise addition.
$POINT \to POINT_1 - POINT_2$	Coordinate-wise subtraction.
$POINT \to POINT_1 \star POINT_2$	Coordinate-wise multiplication.

Productions	Meaning of predicates
$POINT \rightarrow POINT_1 / POINT_2$	Coordinate-wise division.
$Point \rightarrow \text{(pt-with-ball-attraction}$	$POINT_1 + ((pt ball) * POINT_2).$
POINT ₁ POINT ₂)*	
$ ext{Point} ightarrow ext{(front-of-goal TEAM)}^*$	Directly in front of TEAM's goal.
$Point \rightarrow \text{(from-goal TEAM NUM)}^*$	NUM meters in front of TEAM's goal.

The following CLANG statements can be used to define names for conditions and regions. These names (IDENT) can be used to simplify the definition of if-then rules:

$$\begin{array}{ll} \text{STATEMENT} \to \text{(definec "IDENT" CONDITION)} \\ \\ \text{STATEMENT} \to \text{(definer "IDENT" REGION)} \end{array}$$

Note that an if-then rule is also a CLANG statement:

$$S\texttt{TATEMENT} \to R\texttt{ULE}$$

STATEMENT is the start symbol in the CLANG grammar.