Laboratoire 5 : Nombres complexes et vecteur de \Re^3

1. Soit les nombres complexes suivants :

$$x = 125$$
 $y = 3 - 4i$ $z = 6 + 4i$

- a. Calculer y + z (1 pts).
- b. Calculer $x \times y$ (1 pts).
- c. Calculer $\frac{y}{x}$ (1 pts).
- d. Calculer $\frac{x}{y}$ (3 pts).
- e. Calculer $y \times z$ (3 pts).
- f. Calculer $\frac{z}{y}$ (3 pts).
- g. Représenter x, y et z dans la plan D'Argand (3 pts).
- h. Convertir x, y et z en forme trigonométrique (6 pts).
- i. Résoudre l'équation $w^3=125$ (donner votre réponse en forme cartésienne) (5 pts).
- 2. Construire deux vecteurs unitaires perpendiculaires aux vecteurs $\vec{u} = \begin{bmatrix} 1 & 4 & -3 \end{bmatrix}$ et $\vec{v} = \begin{bmatrix} 2 & 2 & -3 \end{bmatrix}$ (5 pts).

3. Soit les quatre vecteurs suivants :

$$\vec{u} = \begin{bmatrix} 2 & 4 & -5 \end{bmatrix}$$
 $\vec{v} = \begin{bmatrix} -3 & -5 & 4 \end{bmatrix}$ $\vec{w} = \begin{bmatrix} -4 & 1 & 4 \end{bmatrix}$ $\vec{x} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

- a. Démontrer que les vecteurs \vec{v} , \vec{w} et \vec{x} sont linéairement indépendants (5 pts).
- b. Démontrer que les vecteurs \vec{u}, \vec{v} et \vec{x} ne forment pas une base de \Re^3 (identifier clairement le critère qui n'est pas rempli) (5 pts).
- c. Exprimer le vecteur \vec{u} comme une combinaison linéaire des vecteurs \vec{v} , \vec{w} et \vec{x} (5 pts).

Remise

- 4 points sont réservés à la propreté et la lisibilité du travail.
- Remettre une copie par équipe de 2 ou 3.
- Remettre le laboratoire au plus tard le **lundi 2 décembre avant 13h00** dans ma case au DIM ou en main propre au laborantin lors de l'atelier à 13h00.