ILLINOIS INSTITUTE OF TECHNOLOGY - PHYS 221 L03

Lab Report - Lab 04: Capacitors

September 30, 2020

Daniel Ayabe

TA: Alex Brueske

Lab 04: Capacitors

Part 1 Questions

1. Using the Capacimeter, measure the capacitance of each of the three capacitors given. Table 1:

Blue Capacitor	8.0 nF
Yellow Capacitor	21.9 nF
Disk Capacitor	35.6 nF

2. Connect them in series using the breadboards which have connectivity between all sets of five holes (at a minimum). Measure the effective capacitance of this combination. Repeat this for a parallel configuration. Which configuration produces a higher capacitance? Compare the measured values with those calculated from Equations 2 and 3.

Table 2:

Series Capacitance	5.0 nF	
Parallel Capacitance	65.733333333333 nF	

Calculated:

$$C_{\text{series}} = ((1/C_1) + (1/C_2) + (1/C_3))^{-1} = 1/8 + 1/21.9 + 1/35.6 = 5.031 \text{ nF}$$
 $C_{\text{parallel}} = C_1 + C_2 + C_3 = 8.0 + 21.9 + 35.6 = 65.5 \text{ nF}$

% error = |experimental - actual| / actual x 100

Using the % error formula, we can now compare the values of the calculated and the actual. Series capacitance values had a % error of 0.62%, while the parallel capacitance values had a % error of 0.355%. The values had a small margin of error, so it is safe to infer that the data is reliable.

Overall, the parallel circuit configuration produces the higher capacitance.

Questions

- Calculate the capacitance using Equation 1 for the various separation distances of task 1 (for part 2a). How do these values compare with the data taken with the capacimeter? Don't forget to take into account the dielectric constant for air.
 - a. Table 3:

			Number of			
Material	k	d (m)	Sheets	C (measured) nF	C (calculated) nF	Error (%)
Air	1.00059	0.01	0	31.96667	27.82	12.9734226
Air	1.00059	0.03	0	12.0	9.27	22.72361442
Air	1.00059	0.05	0	8.2	5.56	32.42226982

Air	1.00059	0.07	0	6.533333	3.97	39.170189
Air	1.00059	0.09	0	5.466666	3.09	43.45629634
Air	1.00059	0.12	0	4.5	2.32	48.48240961

The % error between the measured and calculated capacitance values had some significant percentages. One explanation for this could be due to the temperature and humidity of the air.

- 2. Calculate the dielectric constant for the paper used. How do your values compare with the listed value from the table above?
 - a. Table 4:

C w/ air (pF)	C w/ paper (pF)	calculated K	actual K	% error
31.966667	37.166667	1.163	1.5	22.4666667

Using the equation $KC_0 = C$ (2), where C_0 is the capacitance with the air while C is the capacitance with the paper, we solve for K, which equals 1.163. Choosing the lower range of the actual K, we discover the % error to be 22.466667%. K is below the range of what the K value should be for a piece of paper.

- 3. Calculate the dielectric constant for the transparency sheets. Does the capacitance of the parallel plates depend on the thickness of the dielectric?
 - a. Using equation 2 from the previous question with the same values except the final capacitance is C = 33.53333, the value of K = 1.049. The capacitance of the parallel plates does depend on the thickness of the dielectric.
- 4. Show that the capacitance for the setup in Figure 4 is given by $C = (2E_0A/d) \times (\kappa 1\kappa 2/(\kappa 1 + \kappa 2))$ (4).
 - a. Similarly to figure 1, a capacitor filled with two different dielectrics is equivalent to 2 capacitors in series with 2 different dielectrics. $1/C = 1/C_1 + 1/C_2$
- 5. Compare your experimental results of task 4 with Equation 4.
 - a. For task 4, K is about equal to 1 because we did not use any dielectric in the capacitor. So then the equation becomes $C = E_0A/d = Q/V$, where Q was constant due to the fact that the plates were charged before d was changed. Therefore, since Q is constant, then V must increase as separation increases.
- 6. The dielectrics you insert between the parallel plates may have excess charge. What happens when you charge the plates, if this turns out to be true?
 - a. It causes polarization of the charge inside, which therefore causes the overall voltage between the plates to decrease and capacitance to increase.
- 7. For Part 2b, create a plot of V vs d. What does the slope represent?
 - a. Graph 1:

b.

The slope represents the magnitude of the electric field between the plates.

- 8. How much charge is found on the plates in Part 2b?
 - a. Table 5:

Separation (m)	Volts (V)	C (F)	Q (C)
0.005	15	5.56E-11	8.34E-10
0.01	17.866667	2.78E-11	4.97E-10
0.015	19.133333	1.85E-11	3.55E-10
0.02	19.9	1.39E-11	2.77E-10
0.025	20.433333	1.11E-11	2.27E-10
0.03	20.766667	9.27E-12	1.92E-10
0.035	21	7.94E-12	1.67E-10
0.002	10.5	1.39E-10	1.46E-09

 $Q = CV = (E_0A/d) \times V$, so using the values from the data gathered we calculate the charge of the plates when at different separations and voltages.