loíOtázky ku skúške Matematická analýza I.

1. Definícia limity funkcie v bode

Definícia 12 Nech $f: A \to \mathbb{R}$, $a, b \in \mathbb{R}^*$ a a je hromadným bodom množiny A. Ak pre každé $\mathcal{O}_{\varepsilon}(b)$ existuje $\mathcal{O}_{\delta}^{o}(a)$ také, že $f(\mathcal{O}_{\delta}^{o}(a) \cap A) \subset \mathcal{O}_{\varepsilon}(b)$, hovoríme, že funkcia $f: A \to \mathbb{R}$ má v bode a limitu b. Píšeme $\lim_{x \to a} f(x) = b$.

2. Veta o limite zúženia funkcie

Definícia 14 Nech $f : A \to \mathbb{R}$ a $C \subset A$. Potom funkciu $(f|C) : C \to \mathbb{R}$, (f|C)(x) = f(x) pre každé $x \in C$, nazývame zúženie funkcie f na množine C.

Veta 2 Nech $f: A \to \mathbb{R}$, $C \subset A$ a $a \in \mathbb{R}^*$ je hromadným bodom množiny C. Nech $\lim_{x\to a} f(x) = b$. Potom aj $\lim_{x\to a} (f|C)(x) = b$.

3. Veta o limite zloženej funkcie

Veta 6 Nech $f: A \to B \subset \mathbb{R}$ a $g: B \to \mathbb{R}$. Nech $\lim_{x\to a} f(x) = b$ a $\lim_{x\to b} g(x) = c$. Nech je splnená aspoň jedna z nasledujúcich podmienok:

- Pre každé x ∈ A \ {a} je f(x) ≠ b.
- Funkcia g je spojitá v bode b.

Potom $\lim_{x\to a} (g \circ f)(x) = \lim_{x\to a} g(f(x)) = c$.

4. Definícia spojitosti funkcie v bode, na množine a spojitosti

Definícia 13 Nech $f: A \to \mathbb{R}$ a $a \in A$ je hromadným bodom množiny A. Ak $\lim_{x\to a} f(x) = f(a)$, budeme hovoriť, že funkcia $f: A \to \mathbb{R}$ je spojitá v bode a. Ak funkcia f je spojitá v každom bode $a \in C \subset A$, tak budeme hovoriť, že funkcia f je spojitá na množine C.

Ak funkcia f je spojitá v každom bode $a \in A$, tak budeme hovoriť, že funkcia f je spojitá.

5. Definícia postupnosti reálnych čísel. Definícia konvergentnej postupnosti

Definícia 18 Postupnosť (reálnych čísel) je funkcia $f : \mathbb{N}^+ \to \mathbb{R}$. Hodnotu $f(n) = a_n$ nazývame n-tý člen postupnosti. V tomto prípade postupnosť zapisujeme v tvare $(a_n)_{n=1}^{\infty}$.

Ak existuje $\lim_{n\to\infty} a_n = a \in \mathbb{R}$, tak hovoríme, že postupnosť $(a_n)_{n=1}^{\infty}$ je konvergentná. Vo zvyšných prípadoch hovoríme, že postupnosť je divergentná.

6. Definícia nekonečného radu, jeho konvergencie a súčtu

Definícia 21 Nech $(a_n)_{n=1}^{\infty}$ je postupnosť reálnych čísel. Potom symbol

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots + a_n + \ldots$$

nazývame nekonečný číselný rad. Číslo a_n nazývame n-tý člen radu. K radu $\sum_{n=1}^{\infty} a_n$ je priradená taká postupnosť $(s_n)_{n=1}^{\infty}$, že platí

$$s_n = a_1 + a_2 + \ldots + a_n$$

pre každé $n \in \mathbb{N}^+$. Postupnosť $(s_n)_{n=1}^{\infty}$ nazývame postupnosť čiastočných súčtov radu $\sum_{n=1}^{\infty} a_n$.

Ak postupnosť $(s_n)_{n=1}^{\infty}$ je konvergentná, tak hovoríme, že rad $\sum_{n=1}^{\infty} a_n$ je konvergentný. Ak je divergentná, tak aj rad je divergentný.

7. Bolzano - Cauchyho kritérium konvergencie nekonečného radu

Veta 21 (Bolzano-Cauchyho kritérium konvergencie nekonečného radu) Rad $\sum_{n=1}^{\infty} a_n$ je konvergentný práve vtedy, keď pre každé $\varepsilon > 0$ existuje $n_0 \in \mathbb{N}$ také, že pre každé $m > n > n_0$, $m, n \in \mathbb{N}^+$ platí

$$|a_{n+1} + a_{n+2} + \ldots + a_m| < \varepsilon.$$

8. Nutná podmienka konvergencie nekonečného radu. Uviesť príklad, že nie je postačujúcou podmienkou (harmonický rad)

Veta 22 (Nutná podmienka konvergencie nekonečného radu) Ak rad $\sum_{n=1}^{\infty} a_n$ je konvergentný, tak

$$\lim_{n\to\infty}a_n=0.$$

harmonický rad je rad tvaru

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots = \sum_{n=1}^{\infty} \frac{1}{n}$$

9. Definícia majorantného radu, majorantné kritérium konvergencie nekonečného radu

Definícia 25 Nech rady $\sum_{n=1}^{\infty} a_n \ a \sum_{n=1}^{\infty} b_n \ sú \ také, že \ |a_n| \le b_n \ pre \ každé \ n \in \mathbb{N}^+$. (Je zrejmé, že $0 \le b_n$.) Potom hovoríme, že rad $\sum_{n=1}^{\infty} b_n$ je majorantným radom radu $\sum_{n=1}^{\infty} a_n$. Píšeme

$$\sum_{n=1}^{\infty} a_n \ll \sum_{n=1}^{\infty} b_n.$$

Veta 24 Nech

$$\sum_{n=1}^{\infty} a_n \ll \sum_{n=1}^{\infty} b_n.$$

Ak rad $\sum_{n=1}^{\infty} b_n$ je konvergentný, tak je konvergentný aj rad $\sum_{n=1}^{\infty} a_n$.

Dôsledok 3 Nech

$$\sum_{n=1}^{\infty} a_n \ll \sum_{n=1}^{\infty} b_n.$$

Ak rad $\sum_{n=1}^{\infty} a_n$ je divergentný, tak je divergentný aj rad $\sum_{n=1}^{\infty} b_n$.

10. D' Alembertovo (podielové) kritérium konvergencie nekonečného radu

3

Veta 25 (d'Alembertovo kritérium konvergencie radu) Nech $a_n \neq 0$ pre každé $n \in \mathbb{N}^+$. Ak

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1,$$

potom je rad $\sum_{n=1}^{\infty} a_n$ absolútne konvergentný.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1,$$

tak rad $\sum_{n=1}^{\infty} a_n$ je divergentný.

11. Cauchyho (odmocninové) kritérium konvergencie nekonečného radu

Veta 26 (Cauchyho kritérium konvergencie radu) Nech

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1.$$

Potom je rad $\sum_{n=1}^{\infty} a_n$ absolútne konvergentný. Ak

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1,$$

tak rad $\sum_{n=1}^{\infty} a_n$ je divergentný.

12. Definícia radu so striedavými znamienkami, kritérium o jeho konvergencii

Definícia 27 Nech $a_n > 0$ pre každé $n \in \mathbb{N}^+$. Potom rad

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \ldots + (-1)^{n+1} a_n + \ldots$$

nazývame radom so striedavým znamienkom.

Veta 27 (Leibnitzovo kritérium konvergencie radu) Nech $a_n > 0$ pre každé $n \in \mathbb{N}^+$ a postupnosť $(a_n)_{n=1}^{\infty}$ je klesajúca. Ak $\lim_{n\to\infty} a_n = 0$, tak rad $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ je konvergentný.

Veta 62 (Druhá veta o substitučnej metóde) Nech I a J sú intervaly, $\varphi: J \to I$ je spojito diferencovateľná bijekcia a $f: I \to \mathbb{R}$ je spojitá funkcia. Nech $G: J \to \mathbb{R}$ je primitívna funkcia funkcie $((f \circ \varphi)\varphi'): J \to \mathbb{R}$. Potom $(G \circ \varphi^{-1}): I \to \mathbb{R}$ je primitívna funkcia funkcie $f: I \to \mathbb{R}$.

Dôsledok 7 Nech I a J sú intervaly, $\varphi : J \to I$ je spojito diferencovateľná bijekcia a $f : I \to \mathbb{R}$ je spojitá funkcia. Potom pre každé $a, b \in I$ platí:

$$\int\limits_a^b f = \int\limits_a^b f(x) \; dx = \int\limits_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} ((f \circ \varphi) \varphi') = \int\limits_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t)) \varphi'(t) dt.$$