Exploratory Analysis of Data for Airbnb Listings in NYC

Youngsoo Baek, Irene Yi Ji, Phuc Nguyen

Data Processing

- ▶ Remove 14 observations with *minimum_nights* > 365
- ▶ *Price*: the lowest non-zero value is 10, change 0 to 5
- Reviews per Month: missing values are set to 0 (there is no review for these listings)
- ► Last Review: group by years from 2019 (e.g. 2019 -> 0; 2018 -> 1, etc.)

Response Variables - Price and Popularity

- ► Metric for price: **price**
- Metric for popularity: monthly reviews adjusts for the history of a listing (albeit not perfectly)
- Price and popularity seem to be negatively correlated (in log scale)

XGBoost for Important Variables

- ▶ Most important variable for price: *Room Type*.
- ▶ Most important variable for popularity: *Last Review* (age of the listings).
- Price and popularity are closely related, both being an important variable of the other. We may consider model them as bivariate reponse.

Heterogeneity of Price / Popularity across Boroughs

- Create new variables "Price Level" and "Popularity Level":
 - ► "Low" for values < 25th Percentile
 - "Medium" for values between 25th and 75th Percentile
 - "High" for values > 75th Percentile
- Create contingency table and conduct Chi-squared Test for Homogeneity

Heterogeneity of Price / Popularity across Boroughs

► Small p-value suggests heterogeneity across boroughs.

Heterogeneity of Room type across Boroughs

► Small p-value suggests heterogeneity across boroughs.

Unreliability of Availability Feature

On average, it seems the listings that are "temporarily unavailable" (zero availability) have lower monthly review rate...

Unreliability of Availability Feature

... but *conditioned on* non-zero availability, the association is less obvious (can be negative?).

Modeling: Bivariate Mixed Effects Regression

▶ Varying intercept model: For the i-th listing in neighborhood j, within borough k,

$$\left(\begin{array}{c} \mathsf{Price}_{k[j[i]]} \\ \mathsf{Monthly review}_{k[j[i]]} \end{array}\right) = \left(\begin{array}{c} \boldsymbol{\beta}_1^T \mathbf{X}_i \\ \boldsymbol{\beta}_2^T \mathbf{X}_i \end{array}\right) + \boldsymbol{\eta}_{k[j]} + \boldsymbol{\theta}_j + \boldsymbol{\epsilon}_{k[j[i]]}.$$

- Both "availability specification" and raw availability count are included as predictors
- Quadratic term of the listing's age is included
- Observations with no reviews excluded (21% of the data)

What Are the Important Predictors for Price?

► Many predictors are significant, but **room type** only seems to be associated to large enough increase in price

What Are the Important Predictors for Popularity?

► The younger the listing is, the more it is popular on average (in spite of significance of the quadratic term)

Estimates for Group Heterogeneities

variableprice	variablereviews_per_month
0.03	-0.01
-0.01	0.04
variableprice	variablereviews_per_month
0.08	-0.02
0.08	-0.02 0.01

- Many significant coefficients can be swamped by the variability within/between different neighborhoods and boroughs
- Strong negative correlation between two random intercepts between boroughs (-0.76)

Examining Spatial Correlation of the Residuals

Semivariograms: For location \mathbf{s}_i , estimate $\operatorname{Var}(Y(\mathbf{s}_i+d)-Y(\mathbf{s}_i))$ in increasing distance d.

We observe large semivariogram for price when listings are extremely close, and negative spatial correlation for monthly review rates

Possible Insights

- When two listings are very close (identical coordinates), the market effect takes sway over all others. One potential customer is being sapped away from one listing to another.
- ▶ As a result, closer things have more dissimilar popularity measures. As distance increases, however, the effect becomes less severe and association between a listing's features and sales becomes noticeable.
- However, price is relatively "inelastic"; unless two listings are extremely close to each other, the hosts' pricing policy remains relatively indifferent to their neighbors, adjusted for other features of a listing.
- Hence, we observe no evidence of spatial correlation, conditional on what neighborhood a listing belongs to, except in extreme proximity (high semivariogram).

Text Analysis for Listing Names

Text Analysis for Listing Names

Foreign language, Special Characters, and Misspelling

"WilliamsburgBrooklynPrivateBedroom" "NiceRoom-NiceNeighborhoodCloseMaimonidesHospital"

Conclusions

Limitations and Further Work

- Including varying slopes calls for strong shrinkage
- Care is needed for spatial covariance models: "soft" adjacency matrix for neighborhoods/boroughs, negative autocorrelation, etc.
- Missing data/latent space model for availability_365
- Nonparametric approach for bivariate model