Category \mathcal{O} , Problem Set 3

D. Zack Garza

February 23, 2020

Contents

1	Humphreys 1.10 1.1 Solution	1
2	Humphreys 1.12	3
3	Humphreys 1.13	3

1 Humphreys 1.10

Prove that the transpose map τ fixes $Z(\mathfrak{g})$ pointwise.

Check that τ commutes with the Harish-Chandra morphism ξ and use the fact that ξ is injective.

1.1 Solution

We first note that after choosing a PBW basis for \mathfrak{g} , τ is defined on \mathfrak{g} in the following way:

$$\tau: \mathfrak{g} \longrightarrow \mathfrak{g}$$

$$x_{\alpha} \mapsto y_{\alpha}$$

$$h_{\alpha} \mapsto h_{\alpha}$$

$$y_{\alpha} \mapsto x_{\alpha}$$

which lifts to an anti-involution $\tau: U(\mathfrak{g}) \longrightarrow U(\mathfrak{g})$ by extending linearly over PBW monomials. We can note that since τ fixes \mathfrak{h} pointwise by definition, its lift also fixes $U(\mathfrak{h})$ pointwise.

Using this basis, we can explicitly identify the Harish-Chandra morphism:

$$\prod_{i,j,k} x_i^{r_i} h_j^{s_j} y_k^{t_k} \mapsto \prod_j h_j^{s_j}.$$

Proposition 1.1.

The following diagram commutes

$$Z(\mathfrak{g}) \xrightarrow{\xi} U(\mathfrak{h})$$

$$\downarrow^{\tau} \qquad \qquad \downarrow^{\tau}$$

$$Z(\mathfrak{g}) \xrightarrow{\xi} U(\mathfrak{h})$$

Proof.

We will show that for all $z \in Z(\mathfrak{g})$, $(\xi \circ \tau)(z) = (\tau \circ \xi)(z)$. Expand z in a PBW basis as $z = \prod_{i,j,k} x_i^{r_i} h_j^{s_j} y_k^{t_j}$. We then make the following computations:

$$\begin{split} (\xi \circ \tau)(z) &= (\xi \circ \tau) \Biggl(\prod_{i,j,k} x_i^{r_i} h_j^{s_j} y_k^{t_j} \Biggr) \\ &= \xi \Biggl(\prod_{i,j,k} y_i^{r_i} h_j^{s_j} x_k^{t_j} \Biggr) \quad \text{since } \tau \text{ is an anti-homomorphism} \\ &= \prod_j h_j^{s_j} \end{split}$$

Similarly, we have

$$(\tau \circ \xi)(z) = \tau \left(\prod_{j} h_{j}^{s_{j}} \right)$$
$$= \prod_{j} h_{j}^{s_{j}}$$

where we note that the two resulting expressions are equal.

The above computation in fact shows that

$$(\xi \circ \tau)(z) = (\tau \circ \xi)(z) = \xi(z),$$

and using the injectivity of ξ , we have

$$(\xi \circ \tau)(z) = \xi(z)$$

 $\implies \tau(z) = z.$

2 Humphreys 1.12

Fix a central character χ and let $\{V^{(\lambda)}\}$ be a collection of modules in \mathcal{O} indexed by the weights λ for which $\chi = \chi_{\lambda}$ satisfying

- 1. dim $V^{(\lambda)} = 1$
- 2. $\mu < \lambda$ for all weights μ of $V^{(\lambda)}$.

Then the symbols $[V^{(\lambda)}]$ form a \mathbb{Z} -basis for the Grothendieck group $K(\mathcal{O}_x)$.

For example take $V^{(\lambda)} = M(\lambda)$ or $L(\lambda)$.

3 Humphreys 1.13

Suppose $\lambda \notin \lambda$, so the linkage class $W \cdot \lambda$ is the disjoint union of its nonempty intersections of various cosets of $\Lambda_r \in \mathfrak{h}^{\vee}$.

Prove that each $M \in \mathcal{O}_{\chi_{\lambda}}$ has a corresponding direct sum decomposition $M = \bigoplus M_i$ in which all weights of M_i lie in a single coset.

Recall exercise 1.1b.