In this problem of multiclass classification, we are going to build a neural network to classify images of different items of clothing.

```
import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist
#The data has already been sorted into training and test sets for us.
(train data, train labels), (test data, test labels) = fashion mnist.load data()
     Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz</a>
     29515/29515 [===========] - 0s Ous/step
     Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz</a>
     26421880/26421880 [=============] - Os Ous/step
     Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz</a>
     5148/5148 [-----] - 0s 0us/step
     Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
     4422102/4422102 [============] - 0s Ous/step
#Showing the first training example
print(f"Training Sample:\n{train_data[0]}\n")
print(f"Training Label:\n{train_labels[0]}\n")
     Training Sample:
             0
                          0
                               0
                                                 0
                                                     0
                                                         0
     ] ]
                  0
                      0
                                            0
                                                                  0
                                                                       0
                                                                               0
             0
                  0
                           0
                                            0
                                                 01
                  0
                          0
                               0
                                   0
                                            0
                                                 0
                                                         0
         0
             0
                      0
                                        0
                                                                       0
                                                                               0
                                                                                   0
                                            0
                                                 01
             0
                  0
                      0
                          0
                                        0
         0
             0
                  0
                      0
                          0
                               0
                                   0
                                        0
                                            0
                                                 0
                                                     0
                                                         0
                                                              0
                                                                  0
                                                                      0
                                                                           0
                                                                               0
                                                                                   0
             0
                  0
                      0
                          0
                               0
                                   0
                                        0
                                            0
                                                 01
                          0
                                            0
                                                     0
                                                         0
                                                                       0 13 73
         0
             0
                  0
                      0
                               0
                                        0
                                                 0
                                                                  0
                  4
                      0
                          0
                               0
                                   0
                                                 01
                          0
                                                                    36 136 127
                      0
                                            0
                                                 0
                  0
                      0
        54
             0
                          1
                               3
                                   4
                                        0
                                            0
                                                31
                                                                  0 102 204 176 134
             0
                  0
                      0
                          0
                               0
                                       0
                                            0
                                                0
                                                         0
       144 123 23
                      0
                          0
                               Λ
                                   0 12
                                           10
                                                 0]
             0
                  0
                      0
                          0
                               0
                                   0
                                        0
                                            0
                                                 0
                                                     0
                                                         0
                                                                  0 155 236 207 178
       107 156 161 109
                         64 23
                                  77 130
                                               151
                      0
                          0
                               0
                                   0
                                            0
                                                              0 69 207 223 218 216
             0
                                       0
                                                0
       216 163 127 121 122 146 141
                                      88 172
                                                661
             0
                  0
                      0
                          0
                               0
                                   0
                                       0
                                            0
                                                1
                                                     1
                                                         1
                                                              0 200 232 232 233 229
       223\ 223\ 215\ 213\ 164\ 127\ 123\ 196\ 229
                                                01
             0
                 0
                      0
                          0
                               0
                                       0
                                            0
                                                     0
                                                              0 183 225 216 223 228
                                   0
       235 227 224 222 224 221 223 245 173
                                                01
                                                              0 193 228 218 213 198
       180 212 210 211 213 223 220 243 202
                                                01
                                                           12 219 220 212 218 192
             0
                 0
                     0
                          0
                              0
                                  0 0 0
                                                1
       169 227 208 218 224 212 226 197 209
                                               521
           0 0 0 0
                              0 0 0 0
                                                0
                                                           99 244 222 220 218 203
       198 221 215 213 222 220 245 119 167
                                                56]
                                                         0 55 236 228 230 228 240
                      0
                          0
                                       0
       232 213 218 223 234 217 217 209
                                           92
                                                01
             0
                 1
                      4
                          6
                                   2
                                       0
                                            0
                                                0
                                                        0 237 226 217 223 222 219
       222 221 216 223 229 215 218 255 77
                                                01
                                               62 145 204 228 207 213 221 218 208
                  0
                      0
                          0
                               0
                                       0
                                           0
       211 218 224 223 219 215 224 244 159
                     0 18 44 82 107 189 228 220 222 217 226 200 205 211 230
       224 234 176 188 250 248 233 238 215
                                                0.1
         0 57 187 208 224 221 224 208 204 214 208 209 200 159 245 193 206 223
       255 255 221 234 221 211 220 232 246
                                                01
        3 202 228 224 221 211 211 214 205 205 205 220 240 80 150 255 229 221
       188 154 191 210 204 209 222 228 225
      [ 98 233 198 210 222 229 229 234 249 220 194 215 217 241 65 73 106 117
       168 219 221 215 217 223 223 224 229 291
      [ 75 204 212 204 193 205 211 225 216 185 197 206 198 213 240 195 227 245
       239 223 218 212 209 222 220 221 230 67]
      [ 48 203 183 194 213 197 185 190 194 192 202 214 219 221 220 236 225 216
       199 206 186 181 177 172 181 205 206 1151
      [ 0 122 219 193 179 171 183 196 204 210 213 207 211 210 200 196 194 191
       195 191 198 192 176 156 167 177 210
                                               921
             0 74 189 212 191 175 172 175 181 185 188 189 188 193 198 204 209
       210 210 211 188 188 194 192 216 170
                                                0]
                         66 200 222 237 239
                                              242 246 243 244 221 220 193 191 179
             0
                      0
       182 182 181 176 166 168
                                      58
                                            0
                                                01
                          0
                                   0
                                       40
                                           61
                                               44
                                                        41
                                                            35
                                                                       0
         0
             0
                  0
                      0
                               0
                                                                  0
                  0
                      0
                          0
                               0
                                                01
             0
                                       0
                                            0
         0
             0
                  0
                      0
                          0
                               0
                                   0
                                        0
                                            0
                                                0
                                                     0
                                                         0
                                                              0
                                                                  0
                                                                       0
                                                                           0
                                                                               0
                                                                                   0
             0
                  0
                      0
                          0
                               0
                                   0
                                        0
                                            0
                                                0]
                                            0
                                                     0
                                                         0
                                                              0
         0
             0
                  0
                      0
                           0
                               0
                                   0
                                        0
                                                 0
                                                                  0
```

0]]

0 0 0 0 0 0 0

Checking the shapes of the test and train data

```
train_data.shape, train_labels.shape
          ((60000, 28, 28), (60000,))

test_data.shape, test_labels.shape
          ((10000, 28, 28), (10000,))

#Plotting a single sample
import matplotlib.pyplot as plt
plt.imshow(train_data[0]);
```


#checking its label
train_labels[0]

9

```
#creating human readable labels of given training data
```

```
class_names = ["T-shirt/top", "Trousers", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
len(class_names)
```

10

#Plotting an example image and its label
index = 18
plt.imshow(train_data[index], cmap=plt.cm.binary)
plt.title(class_names[train_labels[index]])

```
Text(0.5, 1.0, 'Shirt')

Shirt

O

import random
plt.figure(figsize=(7,7))
for i in range(4):
    ax = plt.subplot(2, 2, i+1)
    random_index = random.choice(range(len(train_data)))
    plt.imshow(train_data[random_index], cmap=plt.cm.binary)
    plt.title(class_names[train_labels[random_index]])
    plt.axis(False)
```


▼ Now lets build the multiclassification model

```
#setting the random seed
tf.random.set_seed(42)
#create the model
model_1 = tf.keras.Sequential([
  tf.keras.layers.Flatten(input_shape=(28,28)),
  tf.keras.layers.Dense(4, activation="relu"),
  tf.keras.layers.Dense(4, activation="relu"),
  tf.keras.layers.Dense(10, activation="softmax")
1)
#compiling the model
model_1.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(),
           optimizer=tf.keras.optimizers.Adam(),
           metrics = ['accuracy'])
#Fitting the model
history = model_1.fit(train_data,
               train labels,
               epochs=10,
               validation data=(test data,test labels))
   Epoch 1/10
   1875/1875 [=
            ============================= ] - 10s 4ms/step - loss: 2.1452 - accuracy: 0.1860 - val_loss: 1.7850 - val_
   Epoch 2/10
               1875/1875 [
   Epoch 3/10
   Epoch 4/10
   1875/1875 [=
             Epoch 5/10
```

```
1875/1875 [============] - 5s 2ms/step - loss: 1.4750 - accuracy: 0.3490 - val_loss: 1.4376 - val_a
   Epoch 6/10
   1875/1875 [
                   =========] - 3s 2ms/step - loss: 1.4402 - accuracy: 0.3675 - val_loss: 1.4502 - val_a
   Epoch 7/10
            1875/1875 [=
   Epoch 8/10
   1875/1875 [============] - 5s 3ms/step - loss: 1.4182 - accuracy: 0.3844 - val_loss: 1.4111 - val_a
   Epoch 9/10
                 1875/1875 [=
   Epoch 10/10
   1875/1875 [============] - 3s 2ms/step - loss: 1.3855 - accuracy: 0.3961 - val_loss: 1.3860 - val_a
#checkinng the model summary
model 1.summary()
```

Model: "sequential"

_			
Layer (type)	Output	Shape	Param #
flatten (Flatten)	(None,	784)	0
dense (Dense)	(None,	4)	3140
dense_1 (Dense)	(None,	4)	20
dense_2 (Dense)	(None,	10)	50
Total params: 3,210 Trainable params: 3,210 Non-trainable params: 0	=====		======

▼ Now lets try to improve the accuracy by standardising or normalizing the data (between 0 and 1)

```
#checking the min and max values of the training data
train data.min(),train data.max()
    (0, 255)
#normalizing the training and testing data
norm train data = train data/255.0
norm_test_data = test_data/255.0
#checking our normalized data
norm_train_data.max(), norm_test_data.min()
    (1.0, 0.0)
#Using this normalised data on the same model we built above
#setting random seed
tf.random.set_seed(42)
#building the model
model_2 = tf.keras.Sequential([
   tf.keras.layers.Flatten(input_shape = (28,28)),
   tf.keras.layers.Dense(4, activation = "relu"),
   tf.keras.layers.Dense(4, activation = "relu"),
   tf.keras.layers.Dense(10, activation = "softmax")
1)
#compiling the model
model_2.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(),
              optimizer=tf.keras.optimizers.Adam(),
              metrics = ['accuracy'])
#fitting the model
norm_history = model_2.fit(norm_train_data,
                         train labels,
                         epochs=10,
                         validation_data = (norm_test_data, test_labels))
    Epoch 1/10
    1875/1875 [=
                Epoch 2/10
    1875/1875 [=
                ============================== ] - 4s 2ms/step - loss: 1.0581 - accuracy: 0.6031 - val_loss: 0.9879 - val_a
    Epoch 3/10
```

```
==] - 4s 2ms/step - loss: 0.8989 - accuracy: 0.6571 - val_loss: 0.8808 - val_a
1875/1875 r
Epoch 4/10
1875/1875 [
                                     - 4s 2ms/step - loss: 0.8250 - accuracy: 0.6763 - val_loss: 0.8377 - val_a
Epoch 5/10
1875/1875 [
                                      5s 2ms/step - loss: 0.7917 - accuracy: 0.6867 - val loss: 0.8135 - val a
Epoch 6/10
1875/1875 [=
                                      4s 2ms/step - loss: 0.7653 - accuracy: 0.7173 - val_loss: 0.7885 - val_a
Epoch 7/10
1875/1875 [
                                      4s 2ms/step - loss: 0.7322 - accuracy: 0.7395 - val_loss: 0.7580 - val_a
Epoch 8/10
1875/1875 [
                                      4s 2ms/step - loss: 0.7015 - accuracy: 0.7476 - val_loss: 0.7343 - val_a
Epoch 9/10
Epoch 10/10
                                    - 4s 2ms/step - loss: 0.6637 - accuracy: 0.7624 - val_loss: 0.7001 - val_a
```

▼ Plotting the loss curves for normalized data and non-normalized data

```
import pandas as pd
#Plotting the non-normalized data loss curve
pd.DataFrame(history.history).plot(title = "Non_Normalized")
#Plotting the normalized data loss curve
pd.DataFrame(history.history).plot(title = "Normalized")
     <Axes: title={'center': 'Normalized'}>
                                  Non Normalized
                                                             loss
      2.00
                                                             accuracy
                                                             val loss
                                                             val_accuracy
      1.75
      1.50
      1.25
      1.00
      0.75
      0.50
      0.25
                                                                8
                                     Normalized
                                                             loss
                                                             accuracy
      2.00
                                                             val_loss
                                                             val_accuracy
      1.75
      1.50
      1.25
      1.00
```

Finding the ideal learning rate using the callback

0.75

0.50

0.25

1875/1875 r=

Epoch 28/40 1875/1875 [=

Epoch 29/40

```
12/08/2023, 01:22
                                          multiclass_classificaton_of_fashion_mnist_dataset.ipynb - Colaboratory
   #Using this normalised data on the same model we built above but with callback method
   #setting random seed
   tf.random.set seed(42)
   #building the model
   model_3 = tf.keras.Sequential([
      tf.keras.layers.Flatten(input_shape = (28,28)),
       tf.keras.layers.Dense(4, activation = "relu"),
       tf.keras.layers.Dense(4, activation = "relu"),
       tf.keras.layers.Dense(10, activation = "softmax")
   #compiling the model
   model 3.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(),
                 optimizer=tf.keras.optimizers.Adam(),
                 metrics = ['accuracy'])
   #creaating the learning rate callback
   lr_schedular = tf.keras.callbacks.LearningRateScheduler(lambda epoch : 1e-3 * 10**(epoch/20))
   #fitting the model
   lr_norm_history = model_3.fit(norm_train_data,
                           train_labels,
                           epochs=40,
                           validation_data = (norm_test_data, test_labels),
                           callbacks=[lr_schedular])
       Epoch 12/40
       1875/1875 r=
                      Epoch 13/40
       1875/1875 [=
                        ============== ] - 4s 2ms/step - loss: 0.5538 - accuracy: 0.7939 - val_loss: 0.6563 - val_a
       Epoch 14/40
       1875/1875 [=
                           Epoch 15/40
       1875/1875 r=
                             ========= ] - 4s 2ms/step - loss: 0.5566 - accuracy: 0.7927 - val loss: 0.5727 - val a
       Epoch 16/40
       1875/1875 [=
                             ========== ] - 4s 2ms/step - loss: 0.5603 - accuracy: 0.7911 - val_loss: 0.5771 - val a
       Epoch 17/40
       1875/1875 [=
                               ========] - 5s 3ms/step - loss: 0.5584 - accuracy: 0.7926 - val_loss: 0.6058 - v
       Epoch 18/40
       1875/1875 r=
                                ======== ] - 4s 2ms/step - loss: 0.5637 - accuracy: 0.7922 - val loss: 0.5792 - v
       Epoch 19/40
       1875/1875 [=
                             =========] - 4s 2ms/step - loss: 0.5637 - accuracy: 0.7907 - val_loss: 0.5902 - v
       Epoch 20/40
       1875/1875 [=
                                   =======] - 5s 2ms/step - loss: 0.5663 - accuracy: 0.7909 - val_loss: 0.5899 - v
       Epoch 21/40
       1875/1875 r=
                                =========] - 5s 2ms/step - loss: 0.5722 - accuracy: 0.7885 - val_loss: 0.6066 - val_a
       Epoch 22/40
       1875/1875 [=
                            ==========] - 4s 2ms/step - loss: 0.5775 - accuracy: 0.7864 - val_loss: 0.5940 - val_a
       Epoch 23/40
       1875/1875 r=
                                    =======] - 5s 3ms/step - loss: 0.5867 - accuracy: 0.7831 - val_loss: 0.6235 - val_a
       Epoch 24/40
       1875/1875 r=
                               ========= 1 - 4s 2ms/step - loss: 0.5864 - accuracy: 0.7849 - val loss: 0.6453 - val a
       Epoch 25/40
       1875/1875 [=
                              =========] - 4s 2ms/step - loss: 0.5939 - accuracy: 0.7829 - val_loss: 0.6242 - val_a
       Epoch 26/40
       1875/1875 r=
                                =======] - 6s 3ms/step - loss: 0.6108 - accuracy: 0.7779 - val_loss: 0.8094 - val_a
       Epoch 27/40
```

=========] - 4s 2ms/step - loss: 0.6161 - accuracy: 0.7770 - val loss: 0.6748 - val a

=========] - 4s 2ms/step - loss: 0.6295 - accuracy: 0.7722 - val_loss: 0.6362 - val_a

```
#plotting the learning rate decay curve
import numpy as np
import matplotlib.pyplot as plt

lrs = 1e-3 * (10**(tf.range(40)/20))
plt.semilogx(lrs, lr_norm_history.history["loss"])
plt.xlabel("Learning Rate")
plt.ylabel("Loss")
plt.title("Finding the ideal learning rate")
```

Text(0.5, 1.0, 'Finding the ideal learning rate')

Lets now rebuild our model with the ideal learning rate

```
#Using this normalised data on the same model we built above but with callback method and ideal learning rate
#setting random seed
tf.random.set_seed(42)
#building the model
model_4 = tf.keras.Sequential([
   tf.keras.layers.Flatten(input shape = (28,28)),
   tf.keras.layers.Dense(4, activation = "relu"),
   tf.keras.layers.Dense(4, activation = "relu"),
   tf.keras.layers.Dense(10, activation = "softmax")
1)
#compiling the model
model 4.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(),
              optimizer=tf.keras.optimizers.Adam(lr=0.001),
              metrics = ['accuracy'])
#fitting the model
lr_norm_history = model_4.fit(norm_train_data,
                        train labels.
                        epochs=40,
                        validation_data = (norm_test_data, test_labels))
    WARNING:absl:`lr` is deprecated in Keras optimizer, please use `learning_rate` or use the legacy optimizer, e.g.,tf.k
    Epoch 1/40
    1875/1875 [=
                  Epoch 2/40
    1875/1875 r
                                =======] - 4s 2ms/step - loss: 0.8798 - accuracy: 0.6441 - val_loss: 0.8718 - val_a
    Epoch 3/40
    1875/1875 [
                       ========= ] - 4s 2ms/step - loss: 0.8215 - accuracy: 0.6564 - val loss: 0.8271 - val a
    Epoch 4/40
    1875/1875 [=
                     ============ ] - 4s 2ms/step - loss: 0.7902 - accuracy: 0.6858 - val loss: 0.7929 - val a
    Epoch 5/40
                                  =======] - 5s 3ms/step - loss: 0.7597 - accuracy: 0.7195 - val_loss: 0.7652 - val_a
    1875/1875 r
    Epoch 6/40
    1875/1875 [============] - 3s 2ms/step - loss: 0.7404 - accuracy: 0.7331 - val_loss: 0.7708 - val_a
    Epoch 7/40
    1875/1875 [=============] - 4s 2ms/step - loss: 0.7263 - accuracy: 0.7423 - val loss: 0.7695 - val a
    Epoch 8/40
```

```
========== ] - 5s 2ms/step - loss: 0.7077 - accuracy: 0.7509 - val loss: 0.7184 - val a
1875/1875 r=
Epoch 9/40
1875/1875 [
            ========] - 4s 2ms/step - loss: 0.6164 - accuracy: 0.7886 - val_loss: 0.6267 - val_a
Epoch 10/40
1875/1875 [=
       Epoch 11/40
Epoch 12/40
1875/1875 [=
           =========] - 4s 2ms/step - loss: 0.5559 - accuracy: 0.8114 - val_loss: 0.5957 - val_a
Epoch 13/40
1875/1875 r==
         Epoch 14/40
Epoch 15/40
1875/1875 [=
     Epoch 16/40
1875/1875 [=
       Epoch 17/40
Epoch 18/40
Epoch 19/40
1875/1875 [===
        Epoch 20/40
1875/1875 r==
       ============== | - 4s 2ms/step - loss: 0.5227 - accuracy: 0.8225 - val loss: 0.5840 - val a
Epoch 21/40
1875/1875 [=
            ========= ] - 5s 3ms/step - loss: 0.5202 - accuracy: 0.8215 - val loss: 0.5786 - val a
Epoch 22/40
Epoch 23/40
1875/1875 [============] - 4s 2ms/step - loss: 0.5165 - accuracy: 0.8232 - val_loss: 0.5770 - val_a
Epoch 24/40
1875/1875 r=
             =======] - 5s 3ms/step - loss: 0.5133 - accuracy: 0.8250 - val_loss: 0.5666 - val_a
Epoch 25/40
Epoch 26/40
Epoch 27/40
1875/1875 [=
        Epoch 28/40
1875/1875 [============== ] - 4s 2ms/step - loss: 0.5069 - accuracy: 0.8263 - val loss: 0.5616 - v
Epoch 29/40
```

Evaulating our multiclass classification model

```
# Note: The following confusion matrix code is a remix of Scikit-Learn's
# plot confusion matrix function - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot confusion matrix
# and Made with ML's introductory notebook - https://github.com/GokuMohandas/MadeWithML/blob/main/notebooks/08_Neural_Netwo
import itertools
from sklearn.metrics import confusion_matrix
# Our function needs a different name to sklearn's plot_confusion_matrix
def make_confusion_matrix(y_true, y_pred, classes=None, figsize=(10, 10), text_size=15):
  """Makes a labelled confusion matrix comparing predictions and ground truth labels.
 If classes is passed, confusion matrix will be labelled, if not, integer class values
 will be used.
  Aras:
   y_true: Array of truth labels (must be same shape as y_pred).
   y pred: Array of predicted labels (must be same shape as y true).
    classes: Array of class labels (e.g. string form). If `None`, integer labels are used.
    figsize: Size of output figure (default=(10, 10)).
    text_size: Size of output figure text (default=15).
  Returns:
    A labelled confusion matrix plot comparing y_true and y_pred.
  Example usage:
   make confusion matrix(y true=test labels, # ground truth test labels
                          y_pred=y_preds, # predicted labels
                          classes=class_names, # array of class label names
                          figsize=(15, 15),
                          text_size=10)
  # Create the confustion matrix
  cm = confusion_matrix(y_true, y_pred)
  cm_norm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] # normalize it
  n_classes = cm.shape[0] # find the number of classes we're dealing with
  # Plot the figure and make it pretty
```

```
fig, ax = plt.subplots(figsize=figsize)
  cax = ax.matshow(cm, cmap=plt.cm.Blues) # colors will represent how 'correct' a class is, darker == better
  fig.colorbar(cax)
  # Are there a list of classes?
  if classes:
    labels = classes
  else:
    labels = np.arange(cm.shape[0])
  # Label the axes
  ax.set(title="Confusion Matrix",
         xlabel="Predicted label",
         ylabel="True label",
         xticks=np.arange(n_classes), # create enough axis slots for each class
         yticks=np.arange(n_classes),
         xticklabels=labels, # axes will labeled with class names (if they exist) or ints
         yticklabels=labels)
  # Make x-axis labels appear on bottom
  ax.xaxis.set label position("bottom")
  ax.xaxis.tick bottom()
  # Set the threshold for different colors
  threshold = (cm.max() + cm.min()) / 2.
  # Plot the text on each cell
  for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
    plt.text(j, i, f"{cm[i, j]} ({cm_norm[i, j]*100:.1f}%)",
              horizontalalignment="center",
              color="white" if cm[i, j] > threshold else "black",
              size=text size)
class names
     ['T-shirt/top',
       'Trousers'
      'Pullover',
      'Dress',
      'Coat',
      'Sandal',
      'Shirt'
      'Sneaker'
      'Bag',
      'Ankle boot']
test_labels
     array([9, 2, 1, ..., 8, 1, 5], dtype=uint8)
#Lets make predictions with our model
y_probs = model_4.predict(norm_test_data)
#Viewing the firsr 5 predictions
y_probs[:5]
     313/313 [=========== ] - 1s 2ms/step
     array([[1.65595619e-14, 1.33894042e-11, 8.38167106e-16, 1.64987485e-25,
              8.12260745e-11, 3.35326016e-01, 4.41123180e-12, 1.15524903e-01, 2.26949146e-06, 5.49146891e-01],
            [7.65582536e-06, 3.52378776e-17, 9.56999719e-01, 6.71652911e-09,
             1.16431816e-02, 1.29238295e-11, 3.13492306e-02, 5.53316900e-34, 1.54084987e-07, 7.98325974e-24],
            [2.39907950e-03, 9.78370845e-01, 7.93917934e-06, 1.19544845e-02, 2.48201486e-05, 2.62084045e-03, 9.18941732e-05, 4.43833135e-03,
              8.30943973e-05, 8.71042357e-06],
            [2.39907950e-03, 9.78370845e-01, 7.93917934e-06, 1.19544845e-02, 2.48201486e-05, 2.62084045e-03, 9.18941732e-05, 4.43833135e-03,
              8.30943973e-05, 8.71042357e-06],
             [1.35179564e-01, 9.24505457e-06, 5.09983063e-01, 5.59618790e-03,
              1.30348951e-02, 1.49875405e-05, 3.35897774e-01, 5.20340694e-18,
              2.84260197e-04, 1.92658254e-13]], dtype=float32)
#plotting the ist data object
plt.imshow(train_data[0]);
```

```
5 - 10 - 20 - 25 -
```

Confusion Matrix

from sklearn.metrics import confusion_matrix
confusion_matrix(y_true=test_labels,

y_pred=y_preds)

```
4, 19,
array([[829,
                        61,
                              1.
                                       72.
                                                 13,
                                                       0],
                                   1,
                   4,
                                        5,
       [ 9, 927,
                        52,
                              2,
                                   1,
                                             0,
                                                  0,
                                                       0],
              1, 743, 18, 105,
       [ 29,
                                   0, 103,
                                             0,
                                                  1,
                                                       0],
       [ 61, 15, 31, 785,
                            50,
                                      51,
                                                       0],
       [ 1,
               0, 190,
                        42, 636,
                                   0, 125,
                                                       0],
         0,
               0,
                  0,
                        1,
                            1, 943,
                                        0,
                                            28,
                                                  7,
                                                      20],
       [204,
               1. 141.
                            81.
                                   1, 506,
                                                       0],
                        43,
                                             0.
                                                 23.
                                  76,
                                       0, 888,
       [ 0,
               0,
                   0,
                        0,
                             0,
                                                  1,
                                                      35],
          8,
               1,
                    3,
                         4,
                              2,
                                   9,
                                      48,
                                             4, 921,
                                                       0],
          0,
               0,
                    0,
                         0,
                              0,
                                  40,
                                            44,
                                                  0, 915]])
```


Let's create a function to plot a random image along with its prediction.

```
import random
# Create a function for plotting a random image along with its prediction
def plot_random_image(model, images, true_labels, classes):
  """Picks a random image, plots it and labels it with a predicted and truth label.
   model: a trained model (trained on data similar to what's in images).
    images: a set of random images (in tensor form).
    true labels: array of ground truth labels for images.
    classes: array of class names for images.
  Returns:
    A plot of a random image from `images` with a predicted class label from `model`
    as well as the truth class label from `true_labels`.
  # Setup random integer
  i = random.randint(0, len(images))
  # Create predictions and targets
  target_image = images[i]
  pred_probs = model.predict(target_image.reshape(1, 28, 28)) # have to reshape to get into right size for model
  pred_label = classes[pred_probs.argmax()]
  true_label = classes[true_labels[i]]
  # Plot the target image
 plt.imshow(target image, cmap=plt.cm.binary)
  # Change the color of the titles depending on if the prediction is right or wrong
  if pred_label == true_label:
    color = "green"
  else:
    color = "red"
  # Add xlabel information (prediction/true label)
```


▼ Patterns our model is learning

```
# Find the layers of our most recent model
model_4.layers
     [<keras.layers.reshaping.flatten.Flatten at 0x7b90837b0700>,
      <keras.layers.core.dense.Dense at 0x7b9082a0e0b0>,
      <keras.layers.core.dense.Dense at 0x7b9082a0ebc0>,
      <keras.layers.core.dense.Dense at 0x7b9082a0e440>]
# Extracting a particular layer
model_4.layers[1]
     <keras.layers.core.dense.Dense at 0x7b9082a0e0b0>
# Getting the patterns of a layer in our network
weights, biases = model 4.layers[1].get weights()
\# Shape = 1 weight matrix the size of our input data (28x28) per neuron (4)
weights, weights.shape
     (array([[-0.6286177 , 0.04304771, 0.27682275, -1.1177504 ],
             \hbox{\tt [-0.50602835, \ 1.4612656 \ , -1.3399148 \ , -0.69901824],}
             [-1.6388192 , 1.4361247 , 1.1517581 , 0.20172885],
             [-0.19037662, -0.10284518, 0.09389258, -0.10114335],
             [ 0.52314425, 0.522483 , 0.27723047, -0.4458822 ], [-0.16856955, -0.40255272, 0.59475726, 0.01509975]],
            dtype=float32),
      (784, 4))
```

The weights matrix is the same shape as the input data, which in our case is 784 (28x28 pixels). And there's a copy of the weights matrix for each neuron the in the selected layer (our selected layer has 4 neurons).

Each value in the weights matrix corresponds to how a particular value in the input data influences the network's decisions.

```
# Shape = 1 bias per neuron (we use 4 neurons in the first layer)
biases, biases.shape
(array([1.6029571, 2.7418947, 4.0676045, 1.9065827], dtype=float32), (4,))
```

Every neuron has a bias vector. Each of these is paired with a weight matrix.

The bias values get initialized as zeroes by default (using the bias_initializer parameter).

The bias vector dictates how much the patterns within the corresponding weights matrix should influence the next layer.

#Now lets calculate the number of paramters in our model
model_4.summary()

Model: "sequential 10"

Layer (type)	Output Shape	Param #
flatten_10 (Flatten)	(None, 784)	0
dense_30 (Dense)	(None, 4)	3140
dense_31 (Dense)	(None, 4)	20
dense_32 (Dense)	(None, 10)	50

Total params: 3,210 Trainable params: 3,210 Non-trainable params: 0

Starting from the input layer, each subsequent layer's input is the output of the previous layer as shown below

from tensorflow.keras.utils import plot model

See the inputs and outputs of each layer
plot_model(model_4, show_shapes=True)

from google.colab.patches import cv2_imshow
img = cv2.imread('/content/pexels-vie-studio-4439457.jpg', cv2.IMREAD_UNCHANGED)
resized_image = cv2.resize(img,(700,300))
cv2_imshow(resized_image)

✓ 2s completed at 1:19 AM