Aprendiendo con incertidumbre Expectation-Maximization algorithm

Jerónimo Hernández González

Exploración y análisis de datos

Máster Universitario en Ingeniería Computacional y Sistemas Inteligentes

Euskal Herriko Unibertsitatea

Master eta Doktorego Eskola Escuela de Máster y Doctorado Master and Doctoral School

Estrategia para estimar los parámetros de máxima verosimilitud (MLE) cuando hay datos incompletos.

¿Por qué no se pueden obtener directamente?

X_1	<i>X</i> ₂	C
$\frac{X_1}{1}$	0	0
0	0	0 ? ? ?
0	1	?
0	1	?
1	0	1
0	0	1
1	1	?
1 0	1	1 ? ? 0 ?
0	1	0
1	1	?

Algoritmo *Expectation-Maximization*:

Procedimiento iterativo de dos pasos (E-M) que permite obtener los parámetros de máxima verosimilitud cuando hay datos perdidos (valores perdidos, variables latentes, etc.)

E-step: Se estima el valor de los datos perdidos usando la esperanza condicional de la verosimilitud

M-step: Se estiman unos nuevos parámetros dados los datos completados en el paso E.

Convergencia:

Máximo (local)

Casos raros: Punto de silla

Algoritmo Expectation-Maximization:

Procedimiento iterativo de dos pasos (E-M) que permite obtener los parámetros de máxima verosimilitud cuando hay datos perdidos (valores perdidos, variables latentes, etc.)

E-step:

$$Q(\theta; \theta^t) = E_{Z|X,\theta^t} [\log L(\theta; X, Z)]$$

M-step: Choose θ^{t+1} such that, for all $\theta \in \Theta$:

$$Q(\theta^{t+1}; \theta^t) \ge Q(\theta; \theta^t)$$

Donde Z son los datos perdidos, X los observados, y θ los parámetros del modelo. Se define verosimilitud como:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

Algoritmo Expectation-Maximization:

Procedimiento iterativo de dos pasos (E-M) que permite obtener los parámetros de máxima verosimilitud cuando hay datos perdidos (valores perdidos, variables latentes, etc.)

E-step:

$$Q(\theta; \theta^t) = E_{Z|X,\theta^t} [\log L(\theta; X, Z)]$$

M-step:

$$\theta^{t+1} = \underset{\theta}{\operatorname{argmax}} Q(\theta; \theta^t)$$

Donde Z son los datos perdidos, X los observados, y θ los parámetros del modelo. Se define verosimilitud como:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X;\theta) = \log p(X,Z;\theta) - \log p(Z|X;\theta)$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X;\theta) = \sum_{Z} p(Z|X;\theta^{t}) \log p(X,Z;\theta) - \sum_{Z} p(Z|X;\theta^{t}) \log p(Z|X;\theta)$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X|\theta) = Q(\theta; \theta^t) + H(\theta; \theta^t)$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X|\theta) = Q(\theta; \theta^t) + H(\theta; \theta^t)$$

$$\log p(X|\theta) - \log p(X|\theta^t) = Q(\theta; \theta^t) - Q(\theta^t; \theta^t) + H(\theta; \theta^t) - H(\theta^t; \theta^t)$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X|\theta) = Q(\theta; \theta^t) + H(\theta; \theta^t)$$

$$\log p(X|\theta) - \log p(X|\theta^t) = Q(\theta; \theta^t) - Q(\theta^t; \theta^t) + C$$

$$con C \ge 0.$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X|\theta) = Q(\theta; \theta^t) + H(\theta; \theta^t)$$

$$\log p(X|\theta) - \log p(X|\theta^t) \ge Q(\theta;\theta^t) - Q(\theta^t;\theta^t)$$

EM en la práctica

Aprendizaje del modelo (NB)

Paso E:

Determinista

X_1	X_2	C
$\frac{X_1}{1}$	$\frac{X_2}{0}$	0 0
0	0	?
0	1	? ? ?
0	1	?
1	0	1
0	0	1
1	1	1 ? ?
1	0	l
0	1	0
1	1	?

Probabilista

X_1	<i>X</i> ₂	С
1		0
0	0	?
0	1	?
0	1	?
1	0	1
0	0	1
1	1	?
1	0	?
0	1	0
1	1	?

EM en la práctica

Aprendizaje del modelo (NB)

Paso E:

Determinista

X_1	<i>X</i> ₂	C	
1	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	1	
0	0	1	
1	1	0	
1	0	1	
0	1	0	
1	1	0	

Probabilista

Υ.	С	
7.2	0	1
0	1.0	0.0
0	0.4	0.6
1	0.7	0.3
1	0.5	0.5
0	0.0	1.0
0	0.0	1.0
1	8.0	0.2
0	0.3	0.7
1	1.0	0.0
1	0.6	0.4
	0 1 1 0 0 1	0 1.0 0 0.4 1 0.7 1 0.5 0 0.0 0 0.0 1 0.8 0 0.3 1 1.0

X_1	$\frac{X_2}{0}$	C
1		0
0	0	?
0 0 0	1	? ? ?
0	1	?
1	0	1
0	0	1
1	1	?
1	0	
0	1	0 ?
1	1	?

X_1	X_2	C	
$^{\wedge_1}$	^ 2	0	1
1	0	1.0	0.0
0	0	0.5	0.5
0	1	0.5	0.5
0	1	0.5	0.5
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.5	0.5
1	0	0.5	0.5
0	1	1.0	0.0
1	1	0.5	0.5

X_1	X_2	C	
λ_1	λ_2	0	1
1	0	1.0	0.0
0	0	0.5	0.5
0	1	0.5	0.5
0	1	0.5	0.5
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.5	0.5
1	0	0.5	0.5
0	1	1.0	0.0
1	1	0.5	0.5

Aprendizaje del modelo

X_1	X_2	C	
\mathcal{N}_1	772	0	1
1	0	1.0	0.0
0	0	0.5	0.5
0	1	0.5	0.5
0	1	0.5	0.5
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.5	0.5
1	0	0.5	0.5
0	1	1.0	0.0
1	1	0.5	0.5

1

X_1	X_2	<u> </u>	
λ_1	7.2	0	1
1	0	1.0	0.0
0	0	0.5	0.5
0	1	0.5	0.5
0	1	0.5	0.5
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.5	0.5
1	0	0.5	0.5
0	1	1.0	0.0
1	1	0.5	0.5

	X_1	С	$p(X_1 C)$
	0	0	2,5/5=0,50
	1	0	2.5/5 = 0.50
•	0	1	2,5/5=0,50
	1	1	2,5/5 = 0,50

Aprendizaje del modelo

X_1	X_2	C	
\mathcal{N}_1	772	0	1
1	0	1.0	0.0
0	0	0.5	0.5
0	1	0.5	0.5
0	1	0.5	0.5
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.5	0.5
1	0	0.5	0.5
0	1	1.0	0.0
1	1	0.5	0.5

1

X_1	X_2	<u> </u>	
λ_1	7.2	0	1
1	0	1.0	0.0
0	0	0.5	0.5
0	1	0.5	0.5
0	1	0.5	0.5
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.5	0.5
1	0	0.5	0.5
0	1	1.0	0.0
1	1	0.5	0.5

X_2	C	$p(X_2 C)$
0	0	2/5 = 0,40
1	0	3/5 = 0.60
0	1	3/5 = 0.60
1	1	2/5 = 0,40

X_1	X_2	C	
λ_1	λ_2	0	1
1	0	1.0	0.0
0	0	0.5	0.5
0	1	0.5	0.5
0	1	0.5	0.5
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.5	0.5
1	0	0.5	0.5
0	1	1.0	0.0
1	1	0.5	0.5

X_i	С	$p(X_1 C)$	$p(X_2 C)$
0	0	0.5	0.4
1	0	0.5	0.6
0	1	0.5	0.6
1	1	0.5	0.4

$$\hat{c} = \underset{c}{\operatorname{argmax}} p(c) \prod_{i=1}^{2} p(x_{i}|c)$$

X_1	X_2	C	
λ_1	7 2	0	1
1	0	1.0	0.0
0	0	0.5	0.5
0	1	0.5	0.5
0	1	0.5	0.5
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.5	0.5
1	0	0.5	0.5
0	1	1.0	0.0
1	1	0.5	0.5

C	p(C)
0	0.5
1	0.5

	X_i	С	$p(X_1 C)$	$p(X_2 C)$
	0	0	0.5	0.4
	1	0	0.5	0.6
-	0	1	0.5	0.6
	1	1	0.5	0.4

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c=1|\mathsf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^2p(x_i|1)$$

<i>X</i> ₁	X_2	С	
λ_1	7 2	0	1
1	0	1.0	0.0
0	0	0.10	0.15
0	1	0.5	0.5
0	1	0.5	0.5
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.5	0.5
1	0	0.5	0.5
0	1	1.0	0.0
1	1	0.5	0.5

С	p(C)
0	0.5
1	0.5

X_i	С	$p(X_1 C)$	$p(X_2 C)$
0	0	0.5	0.4
1	0	0.5	0.6
0	1	0.5	0.6
1	1	0.5	0.4

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c=1|\mathsf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^2p(x_i|1)$$

X_1	X_2	С	
λ_1	7 2	0	1
1	0	1.0	0.0
0	0	0.4	0.6
0	1	0.5	0.5
0	1	0.5	0.5
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.5	0.5
1	0	0.5	0.5
0	1	1.0	0.0
1	1	0.5	0.5

С	p(C)
0	0.5
1	0.5

	X_i	С	$p(X_1 C)$	$p(X_2 C)$
	0	0	0.5	0.4
	1	0	0.5	0.6
-	0	1	0.5	0.6
	1	1	0.5	0.4

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c=1|\mathsf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^2p(x_i|1)$$

<i>X</i> ₁	X_2	(\mathcal{C}
λ_1	7 2	0	1
1	0	1.0	0.0
0	0	0.4	0.6
0	1	0.15	0.10
0	1	0.15	0.10
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.10	0.15
1	0	0.15	0.10
0	1	1.0	0.0
1	1	0.15	0.10

	С	p(C)
,	0	0.5
	1	0.5

X_i	С	$p(X_1 C)$	$p(X_2 C)$
0	0	0.5	0.4
1	0	0.5	0.6
0	1	0.5	0.6
1	1	0.5	0.4

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

<i>X</i> ₁	X_2	С	
<i>N</i> 1	7 2	0	1
1	0	1.0	0.0
0	0	0.4	0.6
0	1	0.6	0.4
0	1	0.6	0.4
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.4	0.6
1	0	0.6	0.4
0	1	1.0	0.0
1	1	0.6	0.4

С	p(C)
0	0.5
1	0.5

X_i	С	$p(X_1 C)$	$p(X_2 C)$
0	0	0.5	0.4
1	0	0.5	0.6
0	1	0.5	0.6
1	1	0.5	0.4

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

X_1	X_2	<u> </u>	
\mathcal{N}_1		0	1
1	0	1.0	0.0
0	0	0.4	0.6
0	1	0.6	0.4
0	1	0.6	0.4
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.4	0.6
1	0	0.6	0.4
0	1	1.0	0.0
1	1	0.6	0.4

X_1	X_2	<i>C</i>	
λ_1	Λ_2	0	1
1	0	1.0	0.0
0	0	0.4	0.6
0	1	0.6	0.4
0	1	0.6	0.4
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.4	0.6
1	0	0.6	0.4
0	1	1.0	0.0
1	1	0.6	0.4

X_1	X_2	C		
\mathcal{N}_1	772	0	1	
1	0	1.0	0.0	
0	0	0.4	0.6	
0	1	0.6	0.4	
0	1	0.6	0.4	
1	0	0.0	1.0	
0	0	0.0	1.0	
1	1	0.4	0.6	
1	0	0.6	0.4	
0	1	1.0	0.0	
1	1	0.6	0.4	

X_1	С	$p(X_1 C)$
0	0	
1	0	
0	1	
1	1	

X_1	X_2	C	
λ_1		0	1
1	0	1.0	0.0
0	0	0.4	0.6
0	1	0.6	0.4
0	1	0.6	0.4
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.4	0.6
1	0	0.6	0.4
0	1	1.0	0.0
1	1	0.6	0.4

X_1	С	$p(X_1 C)$
0	0	2,6/5,2=0,5
1	0	2,6/5,2=0,5
0	1	2,4/4,8=0,5
1	1	2,4/4,8=0,5

X_1	X_2	(\mathcal{C}
\mathcal{N}_1	772	0	1
1	0	1.0	0.0
0	0	0.4	0.6
0	1	0.6	0.4
0	1	0.6	0.4
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.4	0.6
1	0	0.6	0.4
0	1	1.0	0.0
1	1	0.6	0.4

X_2	С	$p(X_2 C)$
0	0	
1	0	
0	1	
1	1	

X_1	X_2	(\mathcal{C}
λ_1	7.2	0	1
1	0	1.0	0.0
0	0	0.4	0.6
0	1	0.6	0.4
0	1	0.6	0.4
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.4	0.6
1	0	0.6	0.4
0	1	1.0	0.0
1	1	0.6	0.4

X_2	C	$p(X_2 C)$
0	0	2,0/5,2=0,385
1	0	3,2/5,2=0,615
0	1	3,0/4,8=0,625
1	1	1,8/4,8=0,375

X_1	X_2	(2
\1	7/2	0	1
1	0	1.0	0.0
0	0	0.4	0.6
0	1	0.6	0.4
0	1	0.6	0.4
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.4	0.6
1	0	0.6	0.4
0	1	1.0	0.0
1	1	0.6	0.4

C	p(C)
0	0.52
1	0.48

X_i	С	$p(X_1 C)$	$p(X_2 C)$
0	0	0.5	0.385
1	0	0.5	0.615
0	1	0.5	0.625
1	1	0.5	0.375

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c=1|\mathsf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^2p(x_i|1)$$

<i>X</i> ₁	X_1 X_2	($\mathcal{C}_{}$
	N ₂	0	1
1	0	1.0	0.0
0	0	0.41	0.59
0	1	0.6	0.4
0	1	0.6	0.4
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.4	0.6
1	0	0.6	0.4
0	1	1.0	0.0
1	1	0.6	0.4

С	p(C)
0	0.52
1	0.48

X_i	С	$p(X_1 C)$	$p(X_2 C)$
0	0	0.5	0.385
1	0	0.5	0.615
0	1	0.5	0.625
1	1	0.5	0.375

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

<i>X</i> ₁	X_2	(\mathcal{C}
λ_1	7 2	0	1
1	0	1.0	0.0
0	0	0.41	0.59
0	1	0.64	0.36
0	1	0.64	0.36
1	0	0.0	1.0
0	0	0.0	1.0
1	1	0.64	0.36
1	0	0.41	0.59
0	1	1.0	0.0
1	1	0.64	0.36

C	p(C)
0	0.52
1	0.48

X_i	С	$p(X_1 C)$	$p(X_2 C)$
0	0	0.5	0.385
1	0	0.5	0.615
0	1	0.5	0.625
1	1	0.5	0.375

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c=1|\mathsf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^2p(x_i|1)$$

En la práctica...

Estimación de parámetros: Laplace Smoothing

$$\theta_i = \frac{N_i + 1}{N + |L|}$$

Cálculo de probabilidades: cálculo logarítmico

$$\hat{c} = \underset{c}{\operatorname{argmax}} \exp^{\left[\log p(c) + \sum_{i=1}^{2} \log p(x_i|c)\right]}$$

EM

X_1	X_2	C	lр
0	0	?	
1	0	?	0.66
0	1	?	
0	1	?	1.00
1	0	?	1.00
1	0	?	
1	0	?	0.33
1	1	?	
0	1	?	0.50
1	1	?	0.50

X_1	X_2	<i>C</i>		lр
^ 1	^ 2	0	1	
0	0	0.5	0.5	
1	0	0.5	0.5	0.66
0	1	0.5	0.5	
0	1	0.5	0.5	1.00
1	0	0.5	0.5	1.00
1	0	0.5	0.5	
1	0	0.5	0.5	0.33
1	1	0.5	0.5	
0	1	0.5	0.5	0.50
1	1	0.5	0.5	0.50

X_1	X_2	(\mathbb{C}	lp
λ_1	7 2	0	1] <i>'P</i>
0	0	0.33	0.66	
1	0	0.33	0.66	0.66
0	1	0.33	0.66	
0	1	0.00	1.00	1.00
1	0	0.00	1.00	1.00
1	0	0.66	0.33	
1	0	0.66	0.33	0.33
1	1	0.66	0.33	
0	1	0.50	0.50	0.50
1	1	0.50	0.50	0.50

X_1	X_2	C		lр
λ_1	7 2	0	1] <i>'P</i>
0	0	0.33	0.66	
1	0	0.33	0.66	0.66
0	1	0.33	0.66	
0	1	0.00	1.00	1.00
1	0	0.00	1.00	1.00
1	0	0.66	0.33	
1	0	0.66	0.33	0.33
1	1	0.66	0.33	
0	1	0.50	0.50	0.50
1	1	0.50	0.50	0.50

X_1	X_2	C		lр
λ_1	1 2	0	1] <i>'P</i>
0	0	0.33	0.66	
1	0	0.33	0.66	0.66
0	1	0.33	0.66	
0	1	0.00	1.00	1.00
1	0	0.00	1.00	1.00
1	0	0.66	0.33	
1	0	0.66	0.33	0.33
1	1	0.66	0.33	
0	1	0.50	0.50	0.50
1	1	0.50	0.50	0.50

Aprendizaje del modelo

X_1	X_2	С		
λ_1	7.2	0	1	
0	0	0.33	0.66	
1	0	0.33	0.66	
0	1	0.33	0.66	
0	1	0.00	1.00	
1	0	0.00	1.00	
1	0	0.66	0.33	
1	0	0.66	0.33	
1	1	0.66	0.33	
0	1	0.50	0.50	
1	1	0.50	0.50	

С	p(C)
0	0.4
1	0.6

Χ	i C	$p(X_1 C)$	$p(X_2 C)$
0	0	0.29	0.50
1	0	0.71	0.50
0	1	0.47	0.50
1	1	0.53	0.50

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

Aprendizaje del modelo

<i>X</i> ₁	X_2	С	
λ_1	772	0	1
0	0	0.29	0.71
1	0	0.47	0.53
0	1	0.29	0.71
0	1	0.00	1.00
1	0	0.00	1.00
1	0	0.47	0.53
1	0	0.47	0.53
1	1	0.47	0.53
0	1	0.29	0.71
1	1	0.47	0.53

С	p(C)
0	0.4
1	0.6

X_i	С	$p(X_1 C)$	$p(X_2 C)$
0	0	0.29	0.50
1	0	0.71	0.50
0	1	0.47	0.50
1	1	0.53	0.50

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

Aprendizaje del modelo

X_1	X_2	C		lp
λ_1	1 2	0	1] <i>'P</i>
0	0	0.29	0.71	
1	0	0.47	0.53	0.66
0	1	0.29	0.71	
0	1	0.00	1.00	1.00
1	0	0.00	1.00	1.00
1	0	0.47	0.53	
1	0	0.47	0.53	0.33
1	1	0.47	0.53	
0	1	0.29	0.71	0.50
1	1	0.47	0.53	0.50

С	p(C)
0	0.4
1	0.6

X_i	С	$p(X_1 C)$	$p(X_2 C)$
0	0	0.29	0.50
1	0	0.71	0.50
0	1	0.47	0.50
1	1	0.53	0.50

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

Nuevo Paso-E

X_1 X_2		С		lр
\mathcal{N}_1	7 2	0	1] <i>'P</i>
0	0	0.29	0.71	
1	0	0.47	0.53	0.66
0	1	0.29	0.71	
0	1	0.00	1.00	1.00
1	0	0.00	1.00	1.00
1	0	0.47	0.53	
1	0	0.47	0.53	0.33
1	1	0.47	0.53	
0	1	0.29	0.71	0.50
1	1	0.47	0.53	0.50

Nuevo peso: suma ponderada de la probabilidad de cada asignación en las complexiones consistentes con las LPs.

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

Nuevo Paso-E

X_1 X_2		C	
7 2	0	1	lp
0	0.29	0.71	
0	0.47	0.53	0.66
1	0.29	0.71	
1	0.00	1.00	1.00
0	0.00	1.00	1.00
0	0.47	0.53	
0	0.47	0.53	0.33
1	0.47	0.53	
1	0.29	0.71	0.50
1	0.47	0.53	0.30
	0 1 1 0 0 0 1	0 0.29 0 0.47 1 0.29 1 0.00 0 0.00 0 0.47 0 0.47 1 0.47 1 0.29	0 0.29 0.71 0 0.47 0.53 1 0.29 0.71 1 0.00 1.00 0 0.00 1.00 0 0.47 0.53 0 0.47 0.53 1 0.47 0.53 1 0.29 0.71

11

Nuevo peso: suma ponderada de la probabilidad de cada asignación en las complexiones consistentes con las LPs.

Complexiones

Nuevo Paso-E

X_1 X_2		C		lр
/ 1	712	0	1	'P
0	0	0.29	0.71	
1	0	0.47	0.53	0.66
0	1	0.29	0.71	
0	1	0.00	1.00	1.00
1	0	0.00	1.00	1.00
1	0	0.47	0.53	
1	0	0.47	0.53	0.33
1	1	0.47	0.53	
0	1	0.29	0.71	0.50
1	1	0.47	0.53	0.30

11

Nuevo peso: suma ponderada de la probabilidad de cada asignación en las complexiones consistentes con las LPs.

Complexiones consistentes

$$p(\mathbf{e}) = \prod_{j=1}^{N_i} p(C = e_j | \mathbf{x})$$

Nuevo Paso-E

X_1 X_2		C		lр
λ_1	7 2	0	1] <i>'P</i>
0	0	E_{1-}	0.71	
1	0	0.47	0.53	0.66
0	1	0.29	0.71	
0	1	0.00	1.00	1.00
1	0	0.00	1.00	1.00
1	0	0.47	0.53	
1	0	0.47	0.53	0.33
1	1	0.47	0.53	
0	1	0.29	0.71	0.50
1	1	0.47	0.53	0.50

П

Nuevo peso: suma ponderada de la probabilidad de cada asignación en las complexiones consistentes con las LPs.

Complexiones consistentes

$$E_{1-} = \frac{\sum_{t=1}^{S} p(\mathbf{e_t}) \cdot \mathbb{I}[e_{t1} = -]}{\sum_{t=1}^{S} p(\mathbf{e_t})}$$

Nuevo Paso-E

X_1 X_2		C		lр
\mathcal{N}_1	7 2	0	1] <i>'P</i>
0	0	0.24	0.76	
1	0	0.52	0.48	0.66
0	1	0.24	0.76	
0	1	0.00	1.00	1.00
1	0	0.00	1.00	1.00
1	0	0.66	0.33	
1	0	0.66	0.33	0.33
1	1	0.66	0.33	
0	1	0.32	0.68	0.50
1	1	0.68	0.32	0.50

Aprendiendo con incertidumbre Expectation-Maximization algorithm

Jerónimo Hernández González

Exploración y análisis de datos

Máster Universitario en Ingeniería Computacional y Sistemas Inteligentes

Euskal Herriko Unibertsitatea

Master eta Doktorego Eskola Escuela de Máster y Doctorado Master and Doctoral School