武汉大学 <u>2015—2016</u> 学年度第<u>一</u>学期 《数学物理方法》期中试卷

- 一、(本题 20 分) 多值函数的计算和积分 设 $f(z) = \sqrt[3]{z}$ 为一单值分支,若 f(-1) = -1,求:
 - 1)(10分) f(1)和f'(1)。
 - 2) (10 分) 积分 $\int_{c} \sqrt[3]{z} dz$ 的值, 其中
 - (1) c 为从 z = 0,到 z = 1 的直线段;
 - (2) c为|z|=1的上半圆周,从z=-1,到z=1。
- 二、(本题 10 分) 指出函数 $f(z) = \frac{1}{z(1-e^{iaz})}$ (a 为实数)的奇点和类型(含∞ 点);若是弧立奇点,计算各弧立奇点的留数。
- 三、(本题 10 分) 计算函数 $f(x) = e^{-|t|} \cos t$ 的 Fourier 变换。
- 四、(本题 15 分) 函数的级数展开
 - 1) (10 分) 将函数 $f(z) = \frac{z-1}{z+1}$ 在 z = 1 点的所有解析区域内展开成幂级数。
 - 2)(5 分)设 $\frac{z-1}{z+1} = \sum_{n=-\infty}^{\infty} c_n z^n, |z| > 1$,则求 c_{-1} 的值,说明它和 $\operatorname{Re} s[\frac{z-1}{z+1}, -1]$ 的关系。
- 五、(本题 15 分)利用留数定理计算积分
 - 1) (5 分) 对函数 $\tan(\theta + i\alpha)$, 其中 α 为实数且 $\alpha \neq 0$, 若令 $z = e^{2(\theta + i\alpha)}$, 证明:

$$\tan(\theta + i\alpha) = \frac{z - 1}{i(z + 1)}$$

2) (10 分) 计算积分 $\int_0^{\pi} \tan(\theta + i\alpha) d\theta$

六、(本题 15 分) 关于解析函数和调和函数

- 1) $(10 \, f)$ 一个解析函数 f(z) = u(x,y) + iv(x,y) 的实部和虚部是调和函数,若 $u(x,y) = f_1(x^2 y^2)$,求 f(z)。
- 2) (5 分) 证明, 如果u = u(x, y) 是解析函数 f(z) = u(x, y) + iv(x, y) 的实部,则 $\nabla^2(u^p) = p(p-1)u^{p-2} \left| f'(z) \right|^2$

七、(本题 15 分) 利用 Laplace 变换求微分方程 $y''(t) + a^2 y(t) = \cos \omega t$ 满足条件 $y(0) = 0, y(\frac{\pi}{2a}) = -1$ 的解,其中 a > 0 为常数。