Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № *labnum*

name of your labwork

Автор:

your name *groupname*

Долгопрудный, 2021

Теоретическая часть.

Рис. 1: Схема цепи

В этой схеме общим параметром для двух ветвей является напряжение U. Первая ветвь – индуктивная катушка – обладает активным сопротивлением R и индуктивностью L. Результирующее сопротивление Z_1 и ток I_1 определяются по формуле:

$$Z_1 = \sqrt{R^2 + X_L^2}$$

где $X_L = \omega L$.

$$I_1 = \frac{U(t)}{Z_1}$$

Ток в ветви отстает по фазе от напряжения на угол

$$\varphi_1 = \arctan \frac{R}{X_L}$$

Рис. 2: фазовая диаграмма

Во вторую ветвь включен конденсатор. Его сопротивление

$$Z_2 = X_C = \frac{1}{\omega L}$$

$$\frac{U(t)}{Z_2}$$

Этот ток опережает по фазе напряжение на $\frac{\pi}{2}$. Для определения тока I в неразветвленной части цепи воспользуемся формулой:

$$I = \sqrt{I_R^2 + (I_L - I_C)^2}$$

Угол сдвига между током и напряжением обозначим буквой θ .

Возможен режим работы схемы, когда $\theta=0$, т.е. ток в неразветвленной части цепи I будет иметь активный характер. Произойдет это в случае, когда $I_L=I_C$, т.е. при равенстве реактивных составляющих тока в ветвях.

Такой режим называется резонансом токов.

Рис. 3: фазовая диаграмма

Рис. 4: фазовая диаграмма

Найдем условие, при котором возникает резонанс токов. Как видно из фазовой диаграммы:

$$I_2 = I_1 \sin \varphi \Rightarrow$$

$$\sin \varphi = \frac{\omega L}{\sqrt{R^2 + (\omega L)^2}}$$

$$\cos \varphi = \frac{R}{\sqrt{R^2 + (\omega L)^2}}$$

Таким образом, условие резонанса токов:

$$\omega = \omega_0 = \frac{1}{\sqrt{LC}}$$

Вычислим теперь амплитуду полного тока при резонансе.

$$I = I_1 \cos \varphi$$

$$I = \frac{U_0}{\sqrt{R^2 + (\omega L)^2}} \cdot \frac{R}{\sqrt{R^2 + (\omega L)^2}} \approx \frac{U_0 RC}{L}$$

Тогда выразим резонансное напряжение:

$$R_{\rm pes} = \frac{U_0}{I} = \frac{L}{RC}$$

Отношение резонансного сопративления $R_{\rm pes}$ контура к его активному сопративлению равно квадрату добротности контура.

$$Q^2 = \frac{R_{\rm pes}}{R}$$

Подготовка.

В работе используются: изучение параллельной цепи переменного тока, наблюдение резонанса токов.

Цель работы: лабораторный автотрансформатор (ЛАТР), разделительный понижающий трансформатор, ёмкость, дроссель с переменной индуктивностью, три амперметра, вольтметр, реостат, электронный осциллограф, омметр, мост переменного тока.

Эксперементальная установка.

Схема экспериментальной установки приведена на рисунке. Напряжение от сети (220 В, $50~\Gamma$ ц) с помощью ЛАТРа через понижающий трансформатор Тр подаётся на параллельный контур, содержащий конденсатор ($C=120~\rm mk\Phi$) и катушку, индуктивность которой зависит от глубины погружения сердечника. Полный ток в цепи измеряется с помощью многопредельного амперметра A_1 ; для измерения токов в L и C ветвях используются два одинаковых амперметра A_2 и A_3 ; напряжение на контуре контролируется электронным вольтметром V. Последовательно с контуром включён резистор r — реостат с полным сопротивлением $\simeq 100~\rm Om$.

Рис. 5

Для наблюдения за сдвигом фаз между полным током и напряжением на контуре используется осциллограф. Сигнал, пропорциональный току, снимается с резистора r и подаётся на вход Y осциллографа. На вход X подаётся напряжение непосредственно с контура. При наличии сдвига фаз между этими напряжениями на экране виден эллипс, а при нулевом сдвиге фаз эллипс вырождается в прямую.

1 Обработка данных

Снимем зависимость резонансной частоты от емкости конденсатора. Входное напряжение $U_0=100~\mathrm{mB}$. Резонансную частоту будем измерять двумя способами: в режиме развертки и по фигурам Лиссажу (в режиме резонанса наблюдаем вырожденный эллипс).

 $\nu_{\rm pes1}$ – частота по фигурам Лиссажу, $\nu_{\rm pes2}$ – по развертке.

Построим график зависимости величины $(T/2\pi)^2$ от емкости.

В соответствии с формулой $T=2\pi\sqrt{LC}$ по угловому коэффициенту найдем индуктивность.

$$L=0.01~{
m m}\Gamma{
m H}$$

U_0 мВ	U_c мВ	$ u_{ m pes1}$ к Γ ц	$ u_{ m pes2}$ к Γ ц	T MKC	$(T/2\pi)^2$	СнФ
100	286	23,77	23,56	42	44,7	47,9
100	230	21,5	21,25	47	56,0	57,4
100	192	19,98	19,72	51	66,0	66,7
100	152,5	18,07	17,74	56	79,5	82,1
100	124	16,45	16,19	62	97,0	99,6

Рис. 6

Снимем амплитудно-частотную характеристику для двух значений емкости $C_1=47.9$ нФ ($\nu_{\rm pes}=235.6$ кГц) и $C_2=99.6$ нФ ($\nu_{\rm pes}=235.6$ кГц). Входное напряжение $U_0=100$ мВ.

ν , к Γ ц	U_c , мВ	$A = \sqrt{2}U_c$
14,15	42,0	59,39
16,45	44,2	62,50
18,83	52,7	74,53
21,22	82,8	117,09
22,35	131,0	185,26
23,00	207,0	292,74
23,56	286,0	404,47
24,05	227,0	321,03
24,78	120,0	169,71
25,90	58,0	82,024
28,20	26,5	37,48
31,00	10,0	14,14

ν , к Γ ц	U_c , мВ	$A = \sqrt{2}U_c$
10,68	47,0	66,47
12,40	47,1	66,61
14,20	51,6	72,97
16,00	71,6	101,26
17,80	99,6	140,86
19,56	36,7	51,90
21,30	9,7	13,72

Рис. 7: График добротности