SOOW LINEAR AMPLIFIER

TYPE TA.1813

BERYLLIUM OXIDE - SAFETY PRECAUTIONS

INTRODUCTION

The following safety precautions are necessary when handling components which contain Beryllium Oxide. Most RF transistors contain this material although the Beryllium Oxide is not visible externally. Certain heatsink washers are also manufactured from this material.

PRACTICAL PRECAUTIONS

Beryllium Oxide is dangerous only in dust form when it might be inhaled or enter a cut or irritation orea. Reasonable care should be taken not to generate dust by obrasion of the bare moterial.

Power Transistors

There is normally no hazard with power transistors as the Beryllium Oxide is encapsulated within the devices. They are safe to handle for replacement purposes but care should be exercised in removing defective items to ensure that they do not became physically damaged.

They MUST NOT:

- (a) be carried loosely in a packet, bag as container with other components where they may rub together or break and disintegrate into dust,
- (b) be heated excessively (normal soldering is quite sofe),
- (c) be broken open for inspection or in ony way abraded by tools.

Heatsink Woshers

Heatsink washers manufactured from Beryllium Oxide should be handled with gloves, cloth or tweezers when being removed from equipment. They are usually white or blue in colour although sometimes difficult to distinguish from ather types. Examples of washers used are 917796, 917216 and 700716.

They MUST NOT:

- (o) be stored loosely,
- (b) be filed, drilled or in any way tooled,
- (c) be heated other than when clamped in heatsink application.

DISPOSAL

Defective and broken companents must not be disposed of in containers used for general refuse. Defective components should be individually wrapped, clearly identified as "DEFECTIVE BERYLLIA COMPONENTS" and returned to the Equipment Manufacturer for subsequent disposal.

Broken companents should be individually wropped and identified as "BROKEN BERYLLIA COM-PONENTS". They must not be sent through the post and should be returned by hand.

Linear Amplifier Type TA.1813

500W LINEAR AMPLIFIER TA. 1813

CONTENTS

		Para.
	TECHNICAL SPECIFICATION	
CHAPTER)	GENERAL DESCRIPTION INTRODUCTION ASSOCIATED EQUIPMENTS COMPOSITION OF THE TA. 1813 AMPLIFIER Prefix Codes THE RF CIRCUITS POWER SUPPLY DISTRIBUTION OPERATIONAL FEATURES Active Standby Philosophy Operating Indicators an Modules Metering and Monitaring COOLING	1 4 7 8 9 16 17 21 22 23
CHAPTER 2	SETTING-UP AND OPERATING INSTRUCTIONS INTRODUCTION OPERATING PROCEDURE SETTING-UP PROCEDURE 250W RF Output	1 2 3 10
CHAPTER 3	INSTALLATION GENERAL FLOOR MOUNTING MAIN EARTH POWER AND SIGNAL CONNECTIONS Mains Supply Antenna Cannection Audia and Keying Inputs Miscellaneaus External Connections FITTING THE RF MODULES FITTING THE POWER SUPPLY UNITS	1 2 3 4 5 6 7 8 9
CHAPTER 4	BRIEF TECHNICAL DESCRIPTION INTRODUCTION CONTROL PANEL MM377 MUTING UNIT MS564 SPLITTER UNIT MS444 DISTRIBUTION AMPLIFIER MS240 OVERLOAD UNIT MS443 CABINET VSWR UNIT MS447 METER PANEL MS445 RF POWER MODULE MM420 RF Amplifier Module MM320	1 2 3 4 5 6 7 8 9

CONTENTS (Continued)

		Poro.
CHAPTER 4	Low Level Board PS351	13
(continued)	High Level Board PS315	16
(continued)	VSWR Board PS316	19
	Protection Board PS251	22
	COMBINING UNIT 500W MS126	23
	AUTOMATIC LEVEL CONTROL	26
	PROTECTION METHODS	27
	POWER SUPPLIES	
	Pawer Supply Unit MS64	28
	Stabilizer MS440	29
CHAPTER 5	DETAILED TECHNICAL DESCRIPTION	
	INTRODUCTION	1
	CABINET ASSEMBLY	2
	Cantrol Panel MS377	3
	Muting Unit MS564	4
	Splitter Unit MS444	9
	Distribution Amplifier MS240	12
	Overload Unit MS443	16
	Cobinet VSWR Unit MS447	20 21
	Meter Ponel MS445	21
	RF AMPLIFIER MM320	24
	Interconnection of Sub-Units	25
	Inputs	26
	Outputs	27
	Protection Components Low Level Board PS351	28
	Automotic Level Control (a.l.c.) Detectors	32
	Muting Circuit	35
	High Level Board PS315	38
	VSWR Board PS316	41
	Principles of Operation	42
	Protection Board PS251	49
	COMBINING UNIT MS126	52
	Pawer Combining	53
	Isolotian	56
	Design Features	61
	Power Dissipation	62
	AUTOMATIC LEVEL CONTROL AND PROTECTION	68
	POWER SUPPLIES	→ F
	Power Supplies Unit Type MS64	75 70
	Stobilizer Unit Type MS440	78 90
	Output Ratings	80
	+30V Stabilizer	84 86
	+20V Stabilizer	80 87
	D.C. Trip Circuit	0/

CONTENTS (Continued)

		Para.
CHAPTER 6	ROUTINE MAINTENANCE, DISMANTLING AND	
	REASSEMBLY	
	ROUTINE MAINTENANCE	1
	Centrifugal Type Blowers	2
	'Woods' Type Air Blower Air Filter	3
	Contacts	6
	DISMANTLING AND REASSEMBLY	7
	Power Supply Unit MS64	8
	Remayol	9
	Replocement	10 11
	Splitter Unit, Distribution Amplifier, Overload Unit, and	- 11
	Muting Unit	12
	Circuit Breakers	14
	Air Blowers	15
	Remavol	16
	Replocement	17
	Meter Ponel	18
	Removal	19
	Replacement	20
	Combining Unit	21
	Removol	22
	Replacement	23
	RF Power Modules	24
	RF Power Module MM420	25
	High Level Board and Protection Board	26
	Method of Changing o P.A. Transistor	27
	Access to Stobilizer Heat Sink	28
CHAPTER 7	FAULT LOCATION & ALIGNMENT PROCEDURE	
	INTRODUCTION	ן
	TEST EQUIPMENT	2
	FAULT LOCATION PROCEDURE	3
	Sub-Unit Fault Lacation	6
	Fault Lacation - RF Module MM420	7
	RF Module Checks - Without RF Drive	8
	RF Madule Checks - With RF Drive	9
	ALIGNMENT PROCEDURES	
	Adjustments to RF Module MM420	15
	Setting-up the Stabilizer Output Volts	17
	Setting-up the Stabilizer Trip Level	18
	Setting-up the Module Over Voltage - Low Level Trip	20
	Setting-up the VSWR Detectors	21
	Setting-up Reflected Power Level	22
	Setting-up the Farward Power Level	24

CONTENTS (Continued)

		rara.
CHAPTER 7	Setting-up and Adjustment of VSWR Unit MS447	25
(continued)	Setting-up the Meter Ponel	26
(Continued)	Setting-up and Adjustment of the Combining Unit MS126	28
CHAPTER B	COMPONENTS LIST	

LIST OF ILLUSTRATIONS

	Fig.No.
500W Linear Amplifier TA.1B13	Frontispiece
Location of Sub-Units: TA. IB13	1.1
Block Diagram: Linear Amplifier TA. 1813	1.2
Block Diagram: Power Supply Distribution	1.3
Block Diagram: RF Amplifier MM320	4.1
Block Diagram: Combining Unit MS126	4.2
Ratio: Approx. Output/Inoperative Modules	5.1
Circuit: Splitter Unit MS444	1
Component Layout: Splitter Unit PCB PS31B	2
Circuit: Distribution Amplifier MS240	3
Component Loyout: Distribution Amplifier PCB PS319	4
Circuit: Overload Unit MS443	5
Component Loyout: Overload Unit PCB PS322	6
Circuit: Cabinet VSWR Unit MS447	7
Component Layout: Cabinet VSWR Unit PCB PS317	8
Circuit: Meter Ponel MS445	9
Component Layout: Meter Panel MS445	10
Circuit: VSWR Waming PCB PS446	11
Component Layout: VSWR Warning PCB PS446	12
Circuit: Low Level PCB PS351	13
Component Layout: Low Level PCB PS351	14
Circuit: High Level PCB PS315	15
Component Layout: High Level PCB PS315	16
Circuit: VSWR PCB PS316	17
Component Layout: VSWR PCB PS316	18
Circuit: Protection PCB PS251	19 20
Component Layout: Protection PCB PS251	20
Circuit: Interconnections RF Module MM320	21
RF Power Module MM420 Sub-Unit Location	22
Circuit: Combining Unit 500W MS126	23
Component Layout: Combining Unit MS126	24
Circuit: Power Supply Unit MS64	25 24
Component Loyout: Power Supply Unit MS64	26

LIST OF ILLUSTRATIONS (Continued)

	Fig. No
Circuit: Stobilizer Module MM440	27
Component Loyout: Stabilizer Module MM440	28
Component Loyout: Stabilizer PCB PS313	29
Circuit: Control Ponel MM377	30
Loyout: Control Panel MM377	31
Overall Interconnecting Diagram: TA, 1813	32
Location of Connectors, Reloys etc. TA.1813	33
Circuit: Muting Unit MS564	34
Loyout: Muting Unit P.C.B. PS565	35

TA. 1813 Contents (5)

TECHNICAL SPECIFICATION

Frequency Range:

1.6 ta 30.0MHz

Pawer Output:

500W + 1dB p.e.p. and C.W.

Output Impedance:

50 ahm (will operate at full pawer into 3:1 V.S.W.R. when aperating with MA 1004 Feeder Matching Unit).

Intermadulation Products:

35dB belaw 1 tane 1.6 ta 10MHz in a standard twa

tone test.

25dB below 1 tane 10.0 to 30MHz in a standard twa

tone test.

Harmanic Radiation:

Better than -43dB below p.e.p. when operating with

MA1004 or MA1034 units.

Wideband Naise:

125dB below p.e.p. in 3KHz bandwidth - with drive

unit muted.

Input Level:

25mW - 200mW nominal + 1.5dB over the frequency

range.

Input Impedance:

50 ahm

Supply:

210-250V single phase 47-60Hz.

Cansumption 3KVA.

CHAPTER 1

GENERAL DESCRIPTION

INTRODUCTION

- 1. The TA.1813 is an all solid-state wideband linear amplifier which operates over the frequency range 1.6MHz to 30MHz. The output power (500W) is obtained by combining the 125W outputs of four identical plug-in modules in a passive combining network.
- 2. The amplifier, complete with power supplies etc. is mounted in a floor standing cabinet, the top section of which contains space for fitting associated drive equipments and filter/feeder motching units (pora.5). The amplifier operates from a 210/250V single phase AC supply, and internal regulation (up to ± 6%) is provided, as are all necessary cooling and air filtering facilities.
- 3. Installation is extremely simple (see Chop.3). For fixed station operation it is not essential to bolt the cabinet to the flaor, since it can be free standing if required, (see CAUTION on page 3-1). Alternatively the cabinet can be bolted permanently to the floor. Electrical connections i.e. audio, keying and AC supply are made to terminals in the bottom rear of the cabinet; the RF output connector is situated at the top rear.

ASSOCIATED EQUIPMENTS

- 4. The TA. 1813 omplifier is designed to operate primarily with the Racal MA. 1720 (Synthesized) or MA. 7917 (Channelized) Transmitter Drive Units. It can, however, be used in conjunction with any HF drive unit with a nominal 100mW autput over the required frequency range.
- 5. Connection to an external antenna should be made via one of two alternative units, dependent upon the type of antenna to be used, viz
 - (i) Far operation into a wideband antenna, cut dipole, or any other antenna which will normally present a V.S.W.R. better than 3:1 at the operating frequency, the Racal Feeder Matching Unit Type MA. 1004 is recommended. This is a fastacting automatically-tuned unit which ensures maximum power transfer into the antenno of all frequencies, and at the same time provides a high degree of attenuation to harmonic frequencies.
 - (ii) When operating into a whip or long wire antenna with an associated aerial tuning unit, the Racal Filter Switching Unit (Type MA.1034) is required. This unit is a simpler device than the MA.1004, and provides harmonic attenuation; impedance matching is provided by the external A.T.U.
- 6. The TA.1813 cabinet assembly is designed to include, as required, any combination of drive unit (MA.1720 or MA.7917) and output filtering/matching unit (MA.1034 or MA.1004) thereby providing a self-contained, fully automatic, solid state H.F. transmitter.

7. The following table lists the units, modules and printed circuit (p.c.) boards which form the TA.1813 linear amplifier. Detailed technical descriptions are given in Chop.5.

Prefix Codes

8. Prefix codes are given to each unit or module and to each board in a unit or module os listed below. As an example, the complete reference for resistor R1 of a board A in sub-unit No.5 is 5AR1. Prefix codes are shown encircled on illustrations.

PREFIX CODES

Prefix Code	Unit, Module or PC Board	Type No.	Quantity Used	Circuit Diagram Fig. No.
1	Cabinet Assembly Contoining	TA.1813	1	32
None	Power Supply Module	M564) 1 eoch	
None	Power Supply Module	M564) Two identical) Modules	25
2	Control Panel	MM377	1	30
None	RF Power Module Consisting of	MM420	4	21 + 27
4	Stabilizer Module Containing	M\$440	4 (total)	27
4A	PC Board	PS313	4 (total)	27
5	RF Amplifier Module Contoining	MM320	4 (total)	21
5A	Low Level Boord	PS351	4 (total)	13
<i>5</i> B	High Level Board	PS315	4 (total)	15
<i>5</i> C	Protection Board	PS251	4 (total)	19
5D	VSWR Boord	PS316	4 (total)	17
6	Combining Unit 500W Containing	M5126	1	23
6	PC Board	PS 122	1	23
7	Splitter Unit Containing	M5444	1	1
7	PC Board	PS318	ו	:
8	Distribution Amplifier Containing	MS240	1	3
8	PC Board	P5319	ו	3
12	Muting Unit Containing	MS 564	1	34
12A	PC Board	PS 565	1	34
				1 -2

Prefix Code	Unit, Module or PC Boord	Type No. (Quantity Used	Circuit Diagram Fig. No.
9	Overload Unit	MS443	1	5
9	Containing PC Board	PS322	1	5
10	Cabinet VSWR Unit	MS447	1	7
- 10	Containing PC Board	PS317	1	7
11	Meter Panel Assembly	MS445	1	9
11A	Containing VSWR Warning PC Board	PS446	1	11

THE R.F. CIRCUITS Fig. 1.2

- 9. A block diagram showing the RF path and the RF levels within the RF circuits is given in Fig. 1.2. The RF input from the associated transmitter drive unit is fed, via the muting unit, into the splitter unit which provides two outputs to the distribution amplifier. The distribution amplifier provides four buffered 50 ohm outputs with a nominal gain of 3dB from the input to each output. The four outputs are fed, vio 50 ohm coaxial lines, ta the inputs of the MM 420 RF Power Modules. The 125W output from each RF module is fed, via 50 ohm coaxial lines, to inputs on the combining units MS 126.
- 10. The module outputs are combined two at a time in hybrid stages. The first two hybrid stages each provide 250W outputs which are combined in a further hybrid stage to produce the 500W output. The two 250W outputs are available separately, at 50 ohm impedance, at a patch panel. During normal operation both outputs are connected to the final hybrid transformer to produce a combined output of 500W.
- 11. The gain characteristics of each module are maintained at similar values, vio automotic level control circuits. In addition electrical path lengths, including coaxial cable lengths, are similar for each circuit. These provisions ensure that the phase and amplitude characteristics of each path are similar, thus allowing the combining unit to function at optimum efficiency.
- 12. The complete amplifier is wideband, therefore no tuning or moving parts are involved.
- 13. The output from the combining unit is normally fed via an MA.1004 or MA.1034 unit (see para.5) which, in turn, feeds the V.S.W.R. unit Type MS 447. The V.S.W.R. unit monitors the forward and reflected output power from the amplifier and provides visual indication on the meter and an external warning voltage should a predetermined reflected output power level be exceeded.
- 14. The automatic level control circuits (para. 11) also provide protection by automatically reducing power if a mismatch occurs at the module outputs.

15. The overload unit Type MS 443 (shown on Fig. 1.4) automatically manitors the operational state of the amplifier and pravides an external signal if unbalanced RF inputs are fed to the combining unit, or if either MS64 power supply unit fails (see Chap.5 for a detailed description).

POWER SUPPLY DISTRIBUTION

Figs. 1.3 and 1.4

16. Each 250W amplifier is provided with its awn power supply which con be independently switched. Each power supply cansists af a DC power supply unit Type MS64 whose outputs provide DC supplies to a pair of RF modules. Associated with each RF module is a Stabilizer Module MS 440 which forms part of the Type MM 420 Amplifier. Each MS 440 module provides a stabilized DC output to each RF module, and includes a fost current trip circuit to protect the RF circuits if an averload accurs. The DC voltage and the current taken by each module can be manitored at the amplifier meter ponel.

OPERATIONAL FEATURES

Active Standby Philosophy

- 17. The 500W omplifier TA.1813 consists basically of two 250W amplifiers, each comprising two 125W RF modules. Each 250W amplifier is mechanically and electrically independent af the other; of the final hybrid stage of the cambining unit the two 250W outputs are combined to give 500W. The final hybrid stage can be by-passed by external potching, allowing one amplifier to continue to function and provide a 250W output, regardless of the condition of the second 250W omplifier.
- 18. The operational flexibility of the two 250W amplifiers is increased by using four independent RF modules each providing 125W output. As the outputs of the modules are combined, (not parallelled) they are isolated from each other electrically. Therefore, on operational module is not affected by a defective module even if the defect is a short-circuit, open circuit or any other fault condition. In addition, a defective module can be unplugged and replaced while the remainder of the modules continue to operate. The only effect on transmission due to a defective module will be small reduction in autput power (of the order of 1.75d8).
- 19. This extremely important feature together with the obility to transmit temporarily with only one 250W amplifier in use (pora. 17) ensures an overall equipment reliability very much greater than that obtained using conventional transmitters, giving a "lost transmission time" due to faults that is extremely small.
- 20. It should be noted that when a failure af ane 250W amplifier occurs the radiated power is reduced from 500W to 125W until the autput connector is transferred (patched) to the still functioning 250W outlet. Until patching is carried out 125W is dissipated internally in the combiner (which is continuously rated) allowing only 125W to oppear at the output. Patching for 250W output can be carried out a suitable break in transmission; approximately 30 seconds is required for this operation.

Operating Indicators on Modules

21. Each module can be switched off separately at its own front panel. The operating state of each module is indicated by two front-panel lamps. The illumination of the green lamp shows the presence of the D.C. supply; the white lamp illuminates when the module is providing an RF output. A faulty or weak module is indicated by a lower level of illumination when compared with the remainder of the indicator lamps.

Metering and Monitoring

22. The Metering panel (MS 445) allows metering of the 30V and 20V DC supply voltages and current of the 30V supply to each module. In addition the input RF power level and the forward and reflected output power levels are indicated. Front panel monitoring is provided for all module outputs, each 250W output and the 500W output, vio 50 ohm BNC connectors.

NOTE: Only positions 1 to 4 of switch SA on the panel ore connected in circuit.

COOLING

- 23. Forced air coaling is built into the amplifier cabinet. Two similar blowers are fitted at the bottom of the cobinet for cooling the RF modules, o third is located at the top rear of the cabinet and provides general cooling for the units fitted at the top of the cabinet. The total air flow from each blower fitted to the base of the cabinet is approximately 220cfm at 1.3W.G.
- 24. When the standard version of the cabinet is used air is taken in from the front vio the filter panel which covers the power supply units at the bottom of the cabinet, and is exhausted at the rear of the cabinet. When a ducted system (to special order) is required the air filter is fitted at the rear of the cabinet and inlet and outlet ducting are bolted to the rear cabinet skin.
- 25. The air flow is not interlocked with the electrical system since all RF modules are individually protected against overheating. The RF modules will operate for a considerable period of time (dependent on ambient temperature) with both blowers inoperative. This means that the equipment can be operated satisfactorily for several minutes with a module removed and a consequent loss of air through the gap created.

NOTE: SEE ALSO FIG.33

CHAPTER 2

SETTING-UP AND OPERATING INSTRUCTIONS

INTRODUCTION

1. It is assumed that the installation procedure described in Chopter 3 has been carried out, i.e. all units are mounted within the cabinet assembly, and all external wiring connections made in accordance with the appropriate system handbook. Initially, the Setting-up Procedure given in paras.3 to 5 should be carried out in conjunction with the Operating Procedure.

OPERATING PROCEDURE

- 2. Switching on is achieved as follows:-
 - (i) Set the amplifier control switch to ON for 'local' operation, or to REMOTE.
 - NOTE: When REMOTE is selected the omplifier is switched on from an external saurce by a 12V line. Switching is normally carried out from the MA. 1720 drive unit when this unit is fitted.
 - (ii) Check that the blower at the top of the cabinet operates when ON is selected.
 - (iii) Set the two front panel circuit breakers on the TA.1813 to ON. This immediately energizes the blowers and switches on all the supplies to the overall amplifier. In this condition the individual RF modules are not muted. To externally mute them it is necessary to apply an external earth connection to TB9 pin 10.
 - (iv) Switch ON all the RF modules via their respective front panel switches, and note that all green lights are illuminated.
 - (v) Check that the 20V and 30V supplies are present at all modules as indicated on the appropriate meter. Monitor the individual module currents on the switched meter, and ensure they all indicate approximately equal values when an RF output is being supplied.

NOTE: Only positions I to 4 of the meter switch are used.

SETTING-UP PROCEDURE

- Ensure that the Splitter Unit attenuators are set to OdB (i.e. SKI linked to pin 13; pin 10 linked to pin 9).
- 4. Terminate the RF output connector on the TA.1813 with a 500W, 50 ohm resistive load.
- 5. Feed in a CW drive signal, in the frequency range 1.6 to 30MHz, to PL28. Adjust the drive level, in conjunction with the Muting Unit attenuators, for an input power

TA.1813 2-1

of 25mW as monitared on the Meter Panel. Refer to the table below for the Muting Unit attenuator settings:

Pins linked on Muting Unit	Attenuation
8 and 10 14 and 13	OdB
8 and 11 15 and 13	3dB
8 and 9 12 and 13	6dB
8 and 11 15 and 9 12 and 13	9dB

- Ensure that the clear lamps on the four RF modules are glowing at approximately
 equal brightness.
- 7. Monitar module currents at the front panel meter and ensure that they all indicate approximately 12A and that in no case is 15 amps exceeded. Currents will be lower at the LF end of the band, and highest at midband, but at any one frequency setting, individual module currents should be similar.
- Switch-aff, disconnect dummy load and connect antenna.
- For system operation refer to the appropriate system handbook.

250W RF Output

- 10. If it is required to operate the TA.1813 as two separate 250W amplifiers, i.e. for maintenance purposes, the following procedure should be adopted.
 - (1) Set the control switch to OFF.
 - (2) Switch off the circuit breaker on the power supply feeding the modules not required for traffic i.e. 2CB1 for RF Modules Nas.1 and 2, or 2CB2 for RF Modules Nos.3 and 4.

NOTE: 2CB1 is the left hand circuit breaker, 2CB2 is the right hand.

(3) Remove the front panel of the Power Supply, by undoing eight quick-release fasteners.

- (4) Disconnect 7 PL2 from 85K 5 of the distribution omplifier if RF Modules Nos. 1 and 2 are to be removed from service, or disconnect 7PL3 from 85K6 if RF Modules Nos. 3 and 4 are to be removed from service.
- (5) Connect the plug, disconnected in operation (4), to the Dummy Load socket 1SK29 which is located on the hinged mounting plate.
- (6) Lower the meter panel to its fullest extent by removing the retaining arm and allowing the meter panel to rest gently on its hinges.
- (7) Disconnect the output lead from the 500W output.
- (8) Disconnect the output lead from the required 250W output and use the Combiner Potch Lead Assembly 8A604047 supplied with Accessory Kit CA.607, to connect the required 250W output to the output lead disconnected in (7).
- NOTE: This is important to maintain the pre-programmed line selection when the linear amplifier is used in pre-programmed systems e.g. with the MA.7917 Exciter or the MA.1034A Filter Switching Unit.
- (9) Switch on the amplifier and operate normally.
- (10) The other half of the amplifier may be operated for test purposes by connecting a dummy load to the 250W RF autput socket and a Signal Generator to the appropriate Distribution Amplifier input socket.

CHAPTER 3

INSTALLATION

GENERAL

1. The equipment is shipped with the RF modules and the power supply units pocked separately. Unpacking and fitting instructions are given in paras. 8, 9 and 10.

FLOOR MOUNTING

2. The cabinet is pravided with floor standing fitments and need not be permanently fixed to the floor. If a permanent fixing is intended, the feet provided should be removed and the base screwed to the floor.

CAUTION: When the cabinet is not fixed to the floor not more than one power unit should be removed at a time to prevent toppling of the cabinet.

MAIN EARTH

3. An earth strap should be connected between the earth point in the base of the cobinet and the main station earthing system.

POWER AND SIGNAL CONNECTIONS

Mains Supply

4. A single phose supply at 3kVA maximum is required. Line, neutral and earth connections are made in the rear of the cobinet at the bottom (TB1 Pins 1, 2 and 3 respectively). Each MS64 Pawer Supply has an individual mains selector plug. This should be set to the voltage appropriate to the incoming mains supply.

Antenna Connection

This is made to the RF output connector (Type C) of the top rear of the cabinet.
 UR 102 (50 ahm) cable is recommended.

Audio and Keying Inputs

These connections to the ossocioted drive unit (if fitted) should be made to TB16
at the battam of the cobinet in accordance with the following table, using the
fanning strips pravided.

NOTE: Far further information refer to the associated System Handbook.

TABLE OF AUDIO/KEYING CONNECTIONS

TB16 pin

- 1) 2) Audia 1
- 3 Screen
- 4) 5) Audio 2
- 6 Screen
- 7) Key
- 8) Earth
- 9) TSK
- 10) Earth
- 11 Not Used
- 12 Earth

Miscellaneous Externol Connections

7. Interconnections required between the TA. 1813 and units such as the MA. 1720 Drive Unit and the MA. 1004 Feeder Matching Unit will be found in the associated System handbook.

FITTING THE RF MODULES

8. The four RF modules are packed in pairs. Corefully unpack them and slide one into each of the four comportments in the cabinet. Signal and power connectors on the rear of the RF modules will mote with fixed connectors at the rear of the cabinet as the modules are slid into position. Secure each module with the two quick-release fasteners attached to the front ponels.

FITTING THE POWER SUPPLY UNITS

9. The two power supply units are packed in a specially strengthened cose. Before unpacking them, study carefully the illustrated unpacking instructions attached to the packing case.

NOTE: Foilure to observe these instructions may result in the units being damaged.

- 10. To fit the power supply units into the cobinet proceed as follows:-
 - (1) Remove the power supply ponel from the front of the cobinet by releasing the eight quick-release screws.
 - (2) Remove the two screws which secure each power supply unit mounting troy to the cabinet, and withdraw the trays.

- (3) Bolt each power unit to a mounting tray, using the six Pozidriv screws provided.
- (4) Slide the trays with power supplies into the cobinet and bolt into place with two screws.
- (5) Connect the cable harmess to the power supply units as follows:
 Cable with red or orange sleeve +ve 36V terminal
 Coble with black sleeve -ve 36V terminal
 Orange leads +ve 42V terminal
 Green leads E terminal
 Blue leads N terminal
 Brown leads L terminal
- (6) Clomp the cables to the front of the power supply units using a 'P' clip at each unit.
- (7) Re-fit the power supplies ponel to the cabinet.

CHAPTER 4

BRIEF TECHNICAL DESCRIPTION

INTRODUCTION

1. The following paragraphs briefly describe the function of the units and sub-units which constitute the TA.1813 Linear Amplifier; detailed technical descriptions are given in Chapter 5.

CONTROL PANEL MM377

2. The Control Panel carries the contactors and relay which cantrol the a.c. power supply to the amplifier.

MUTING UNIT MS564

3. The Muting Unit provides muting of the r.f. drive signal to the Splitter Unit. On de-mute, it ensures that the r.f. drive level is restored at a controlled rate.

SPLITTER UNIT MS444

4. The Splitter Unit is a passive network providing two separate outputs of equal amplitude and phase to the Distribution Amplifiers. The RF input level is sampled at the Splitter Unit, and the output is fed to a metering circuit on the Meter Panel.

DISTRIBUTION AMPLIFIER MS240

5. The Distribution Amplifier provides four separate and isolated RF outputs to the four RF Power Modules. The unit contains four buffer omplifiers each with an approximate gain of 3dB.

OVERLOAD UNIT MS443

6. The averload unit pravides a reduced power warning signal in the event of failure af a power supply or an RF Power Module. The unit also provides a 'fault' signal if either the main contactor fails or a fault signal is received from an associated unit, such as the MA.1004 Feeder Matching Unit.

CABINET VSWR UNIT MS447

7. The Cabinet VSWR Unit monitors the forward and reflected pawers on the RF output feeder and provides d.c. autputs to the metering circuit on the Meter Panel MS445.

METER PANEL MS445

8. The Meter Ponel cantains two meters and associated switches to provide an indication of the voltages applied to, and the current drawn from the 30V supply, by each RF Power Module. The RF input power and the Forward and Reflected RF output power of each module is also indicated. The Meter Panel also contains a VSWR Warning Board which comprises a trip circuit operated by the VSWR Unit reflected power line. The trip circuit can be used to operate a fault line to a suitable external circuit.

RF POWER MODULE MM420

- 9. The RF Power Module Type MM420 is an all solid-state wideband linear amplifier capable of delivering at least 125 Watts over the frequency range of 1.6MHz to 30MHz.
- 10. The module consists of a bosic RF Amplifier Type MM320 and a power stabiliser unit Type MM440. The two units consist—of printed circuit boards mounted on finned castings which are bolted together in line to form a complete plug-in unit. When required they can be readily separated, for example, when replacing a faulty stabiliser unit.
- 11. Four complete modules (MM420) are used in the TA.1813 Linear Amplifier and each module plugs directly into the TA.1813 cobinet.

RF Amplifier Module MM320

12. The RF Amplifier Type MM320 consists of a Low Level Board and High Level Board which make up the basic RF omplifier together with two associated printed circuit boards, nomely a VSWR Board and a Protection Board. A block diagrom of the amplifier assembly is shown in Fig. 4.1 at the rear of this chapter whilst the inter-connection and physical location of the sub-units are shown in Figs. 21 and 22 respectively.

Low Level Board PS351

- 13. This board omplifies the input RF signal of 10mW nominal from the Distribution Amplifier to appraximately 2W. In addition it provides a variable goin stage which is used as the automatic level control circuit to maintain the output RF level of the High Level Board constant and to reduce the output to a safe level when a load mismatch occurs.
- 14. The RF input to the Low Level Board is fed first to the Automatic Level Control (a.l.c.) stage cansisting basically of two transistors operating in class A push-pull. The gain of the stage is varied by causing two diodes, connected in series, to partially conduct and shunt part of the RF drive in accordance with signals from detectors (para.26). The shunting effect controls the output of the stage.
- 15. Following the a.l.c. stoge are two further class A amplifier stages. The first stage comprises two transistors operating in grounded base mode and connected in a push-pull configuration. The second stage is similar to the first but employs four transistors connected in a porollel/push-pull configuration and transformer coupled to the output.

High Level Board PS315

16. This board contains two stages of RF amplification. The drive stage consists of two power transistors operating in closs B push-pull with grounded base. This stage is transformer coupled to the final PA stage which comprises 8 power transistors which ore connected in a parallel push-pull arrangement and operated in a common emitter mode. Negative feedback is applied to the PA stage to ensure a flat response over the frequency ronge.

- 17. All components associated with the RF output amplifier, with the exception of the transistors and diades, are mounted on the High Level Board. The transistors themselves are stud-mounted on the main casting to ensure maximum heat dissipation. Replacement of a transistor can be effected without removing the High Level Board (refer to Chapter 6).
- 18. The High Level Board includes diodes monitoring the RF collector voltage swing of the power transistors. If this becomes too large, the diodes conduct and operate the a.l.c. stage reducing the drive level to avoid soturation (refer to paro. 14).

VSWR Board PS316

- 19. The Voltage Standing Wave Ratio Board monitors the forward and reflected output power of the High Level Board before it is fed to the RF output connector of the MM420.
- 20. The forward power detector is fed back to the a.l.c. stage on the Low Level Board to control the output level under normally matched conditions (i.e. 50 ohm). The octual forward output level is set by a potentiometer.
- 21. Under mismatched conditions, the resultant output from the reflected power detector is also fed back to the a.l.c. stage to reduce the output level appropriate to the degree of mismatch. The level at which the reflected power takes over from normal o.l.c. controls is adjustable via a second potentiameter.

WARNING

THE POTENTIOMETERS OF THE RF POWER MODULE MM420 SHOULD ONLY BE ADJUSTED WHEN SETTING UP THE MODULE AS PART OF THE ALIGNMENT PROCEDURE (CHAPTER 7 PARAGRAPH 14). THEY SHOULD NOT BE ADJUSTED WHEN THE MODULE IS INSTALLED IN THE TA. 1813, SINCE THE PROTECTION AFFORDED TO THE OUTPUT TRANSISTORS WILL BE REDUCED WITH THE CONSEQUENT RISK OF TRANSISTOR FAILURE.

Protection Board PS251

- 22. The Protection Board is designed to provide protection for the RF amplifier agoinst d.c. fault conditions. Depending on the actual fault, it operates in one of two ways.
 - (a) Firstly if a short circuit should occur on the Stobiliser Unit (MS440) this would apply opproximately 40V to the Amplifier H.T. roil, overstressing the RF transistors. To prevent this a power thyristor is included which, in the event of such a foult, conducts and operates o fuse thereby open circuiting the positive supply.
 - (b) Secondly, if the collector currents of the RF output transistors exceed a prescribed maximum (approximately 7 Amps for each group of four transistors) o fost acting d.c. overload signal is applied to the a.l.c. stage on the Low Level Board, to ensure this current level is not exceeded.

NOTE: If reducing the RF drive does not control the transistor currents then a d.c. overload trip in the stabiliser unit will operate.

COMBINING UNIT 500W MS126

- 23. The Combining Unit is a completely passive unit containing a series of hybrid combining transformers, impedance transformers and ballast load resistors.
- 24. The function of the unit is to accept the output of each RF Power Module and to combine their outputs into a common output line whilst providing RF isolation between any one module and the others.
- 25. As shown on the block diagram of the Unit, Fig. 4.2, the four RF inputs from the RF Power Modules are fed into hybrid transformers in pairs. The first two hybrid stages produce two 250W outputs. The two 250W outputs are combined to produce a 500W output. The final hybrid may be by-passed if it is required to provide a 250W output. (Chop.1, para. 17 refers).

AUTOMATIC LEVEL CONTROL

- 26. Four separate detectors control the output level of the module via the Automotic Level Control (ALC) circuit, these are:-
 - (1) Forward Power Control Normal operation into 50 ohms.
 - (2) Reflected Power Control Operates to reduce the output of the module when working into a mismatch i.e. when the Reflected Power Level would be liable to damage the output stage.
 - (3) 'Swingometer' This operates by monitoring the collector voltage swing of the output stages and under certain load impedances will reduce the output level to prevent the output transistors running into saturation.
 - (4) Current o.l.c. Operates quickly to reduce the output of the module in the event of fast transients by sensing the current in each half of the output stage.

PROTECTION METHODS

27. In addition to a.l.c. protection each module is protected against over-heating by a thermostat whilst a voltage detecting circuit in conjunction with a fuse in the supply line provides protection against short circuits in the stabilizer. AC supply overload protection is provided for each power unit by circuit breakers on the Control Panel.

POWER SUPPLIES

Power Supply Unit MS64

28. The main d.c. power supply for the TA.1813 is provided by two d.c. power supplies Type MS64, each providing smoothed unregulated d.c. outputs to the individual stabilizers. The power supplies operate from a single phase a.c. mains input.

Stabilizer MS440

29. The stabilizer Type MS440 provides stabilized +30V d.c. and +20V d.c. supplies to each RF Amplifier Type MM320. In addition each stabilizer provides inputs to the +30V current metering facility an the Meter Panel.

WOH 4083

CHAPTER 5

DETAILED TECHNICAL DESCRIPTION

INTRODUCTION

1. The circuit descriptions detailed in the following paragraphs should be read in conjunction with the appropriate circuit diagram.

CABINET ASSEMBLY

2. As outlined in Chapter 1, the TA.1813 cabinet assembly comprises the Muting Unit, Splitter Unit, Distribution Amplifier, Overload Unit, Cabinet VSWR Unit, Meter Panel and Control Panel. Fitted within the cabinet are blowers, coaxial line switching relays and interconnecting cableforms. The overall interconnection diagram is shown in Fig.32.

Control Panel MS377

- 3. Switching of the overall cabinet assembly can be accomplished from the local position (i.e. TA.1813 front panel) ar from a remote position. Remote switching can be carried out in two ways:
 - (i) by the application of an external 12V supply to an internal relay, or
 - (ii) by the closure of a mains circuit by means of an external switch.

Selection of OFF, ON (local control) or REMOTE is made from the front of the cabinet assembly. The two power supplies and associated blowers can be switched off independently by operation of the oppropriate circuit breaker.

Muting Unit MS564

Fig.34

- 4. The r.f. drive signal is fed to SK2 and routed, via an attenuator network, to the primary of transformer T2. Transistors TR1 and TR2 form a push-pull, class A amplifier operating in grounded base mode and providing approximately unity gain. The r.f. output from the secondary of T1 is fed to SK1. Base bias for TR1 and TR2 is derived from the emitter of TR3 and is approximately +9.3V, i.e. zener diode D3 voltage (+10V) minus TR3 base/emitter junction voltage (0.7V).
- 5. During normal operation (de-muted) the mute control line, PL1-3, is held at +12V: when muted it is grounded. Noise immunity is provided by diode D7. With the unit de-muted, the voltage at the junction D1/D2 is approximately +7.2V, i.e. zener D3 (+10V) minus the junction voltages of D5, TR5, TR7 and TR4 (0.7V each). As the emitter voltage of both TR1 and TR2 is approximately +8.6V, D1 and D2 are cut-off and TR1 and TR2 are conducting, thus allowing the r.f. drive signal at T2 to be coupled to T1.
- 6. When muting occurs, D8 is grounded and the base potential of TR6 falls to approximately +1.4V thus switching off TR6. This causes TR5 to be switched on allowing C8 to be charged-up via R14 and TR5. The base voltage of TR5 will now rise to approximately +12.1V (i.e. zener D3 (+10V) plus the junction voltages of D4, D9 and D6 (0.7V each)), and the voltage at the junction D1/D2 will rise to +10V, i.e. 12.1V minus the base/emitter junction voltages of TR5, TR7 and TR4. As D1 and D2 are now forward biased, they conduct thereby raising the voltage at the emitter of TR1 and TR2 to approximately +9.3V. Transistors TR1 and TR2 are therefore cut-off thus blocking the r.f. drive.

- 7. On de-muting, the mute control line at PLI-3 reverts to +12V switching an TR6 which, in turn, switches aff TR5. Capacitar C8 will now discharge through R16 reducing the valtage at the emitter of TR5. (Transistars TR7 and TR4 form a Darlington pair which prevents significant loading across C8, thus ensuring the major discharge path for C8 is R16.) The foll in voltage at the base of TR5 will be held to approximately +9.3V by the action of D5. During the discharge time of C8 (approximately 5 to 7 milliseconds) the potential at D1/D2 junction falls to approximately +7.2V, i.e. +9.3V minus the base/emitter junctions of TR5, TR7 and TR4. As the potential at D1/D2 falls, TR1 and TR2 start to conduct, thus ensuring that the r.f. drive to SK1 is restored at a controlled rate.
- 8. The attenuation level afforded by the muting action is approximately 40dB at the H.F. end of the frequency range, and greater towards the L.F. end.

Splitter Unit MS444

Fig. 1

- 9. The RF input from the muting unit is fed in at SK1. It is then routed, via an attenuatar network, to a passive splitter (R9 and R10) to provide two equal autputs of PL1 and PL2.
- 10. The output of the attenuator stage, at the junction of R9 and R10, is detected and a d.c. output fed from an emitter follower (TR1) to provide meter indication of the RF level. Calibration of this is effected by R12.
- 11. Four stabilizer outputs are connected via diodes in the appropriate Distribution Amplifier and the outputs from the two Distribution Amplifier supplies are connected via diodes in the Splitter Unit, this ensures that the Splitter Unit will always have a supply whilst one MS440 module is operating.

Distribution Amplifier MS240

Fig.3

- 12. The Distribution Amplifier provides a nominol 3dB gain from the two inputs to each of the four outputs. One input fram the Splitter Unit is fed into SK5 which is connected to auto transformers T2 and T4. Copacitor C4 ensures that the input impedance is carrect. The centre tap af each transformer is fed via a resistor to the emitter of graunded base transistars (TR1 and TR2) biased by a DC voltage derived fram a resistive network R1 and R2 acrass the 30V supply rail.
- 13. The callectars of transistars TR1 and TR2 are transfarmer-caupled providing isolated RF outputs at SK1 and SK2. The diades D1, D3 and zener diades D2, D4 across each autput transformer ensure that the positive collector voltage swing never exceeds the sofe transistor rating.
- 14. The input at SK6 is fed to a circuit, comprising TR3 and TR4, which operates in a similar manner to that given in paras. 12 and 13.
- 15. Faur 30V inputs at PL1, Pins 1, 2, 3 and 4, fed from the faur MM440 stabilizers, ensure that the Distribution Amplifier can still operate as lang as just one MM440 stabilizer remains active. The inputs are connected via diodes D9 to D12. The 30V output at PL1 Pin 5 connects to the Splitter Unit.

- 16. The function of this unit is to provide a 'reduced power' warning signal in the event of failure of a power supply to an RF module. It also provides a 'fault' signal if either the main contactor fails or a fault signal is received from an associated unit, such as the MA.1004 Feeder Matching Unit.
- 17. The DC outputs of both MS64 units are monitored and fed to PL1, pins 8, 9, 11 and 12 of the Overload Unit. Each input is fed via noise immunity circuits (e.g. C1, D1, R3, R7). These circuits ensure that transient noise spikes will not cause the circuit to give a false indication, and that they will only respond to genuine input signals. The input transistars are connected in series so that when any are switched off due to hoving no input, TR5 will be switched on.
- 18. If an RF imbalance signal, whose value exceeds the bias on the base of TR8, is present at PL1 pin 4, TR6 will switch on, TR9 will switch off, TR7 will switch on, TR10 will switch off and C9 will charge via R25. Transistors TR11 and TR12 form a latching circuit which, in the normal state, has TR12 switched on and TR11 off. However, as C9 charges up, after an RF imbalance signal is received, TR11 is turned on, and after a delay, the circuit switches over to the latched state with TR11 conducting and TR12 switched off. In this condition TR13 is switched off and +12V (via R35) appears at the output PL1 pin 10 to operate an external circuit. In the normal operating condition the output at PL1 pin 10 is 0V.
- 19. This latched condition is maintained even if the fault signals are removed. It is set by an unlatching signal applied to PL1 Pin 1 from the external 'Coarse-tune initiate/ Reset' or the 'Ready/Not Ready' line. This is normally derived from the MA. 1720 drive unit. Noise immunity is provided by D8, D9, R36 and C11.

Cabinet VSWR Unit MS447

Fig.7

20. This unit monitars the forward and reflected powers on the RF output feeder and provides the respective d.c. outputs to the Meter Ponel MS445. The design is that of a conventional reflectometer and is identical in principle to the RF Module VSWR unit described in paras. 41 to 48. It is balanced by adjusting C3 for an indicated null on reflected power when the feeder is terminated in 50 ohm.

Meter Panel MS445

Fig.9

21. This unit contains two meters; ME1, which is switched and meters the +30V, +20V supplies to, and the +30V supply drawn by, each of the four RF modules, and ME2, which is switched to monitor the input power (fed from the Splitter Unit), and the forward and reflected powers fed from the VSWR Unit. Only positions 1 to 4 of switch SA are used.

- Also included is a VSWR Warning P.C.B. (Fig. 11) which cantains a trip circuit aperating from the VSWR Unit reflected power line. The trip circuit comprises a long-tailed pair, TR2 and TR3, driven from TR1. TR4 provides the autput which can be used to aperate a 'fault' line to a suitable external circuit. The trip level is narmally set to operate at 3:1 VSWR but can be changed by altering R12.
- 23. Switch S1 on the VSWR Warning Board is set to NORMAL during traffic candition. The CAL position is used during setting-up pracedure.

RF AMPLIFIER MM320

Interconnection of Sub-Units

Fig.21

24. The overall intercannections of the sub-units making up the RF Amplifier Assembly are shown on Fig. 21.

Inputs

25. The power supply inputs are +20V and +30V DC on TS1 pins 3 and 2 respectively. These are connected directly to the associated Stabiliser Unit Type MM440. The only other cannection is the external muting line on TS1 pin 4. This applies a 0V signal to the Low Level Board which operates the relevant switching transistors thereby cutting off the RF output. The RF input from the Distribution Amplifier is at PL1.

Outputs

26. The RF Output appears at PL2. It is fed from two outputs on the High Level Board, which are connected together prior to T1. The latter is a monitaring transformer, feeding LP2 and an external RF manitar sacket. T2 is the reflectometer toroid for the VSWR unit and C3 is the associated capacitive prabe.

Pratection Camponents

27. CSR1 is fired under a fault candition from the Pratection Board, thereby shart-circuiting the +30V line and blawing FS1 if the stabilizer trip does not operate.
C1, L1 and C2 are RF decaupling components. THE1 is the thermostat on the Assembly heat sink which apen circuits the +20V supply rail if the safe working temperature (apprax. 85°C) is exceeded.

Low Level Board PS351

Fig.13

28. The RF input is cannected to pins 4 and 5 af the printed circuit board. It is transfarmer caupled via T4 to provide a balanced push-pull signal at the a.l.c. stage

which consists of TR18, TR19, D15, D16 and associated components. Transistors TR18 and TR19 act as an RF amplifying stage operating in class A grounded-base mode. Diodes D15 and D16 provide control of the stage by shunting a part of the drive current, thus reducing the output of the TR18, TR19 stage, in accordance with an input signal from TR7 (see para.33).

- NOTE: Two versions of the board are available, version DC604137/A which has a normal a.l.c. discharge time and version DC604137/B which has a long discharge time. The differences between the two versions are given on Fig.13.
- 29. The RF output from the a.l.c. stage is transformer coupled (via T3) to the following amplifier stage comprising TR17 and TR21 which also operates in a grounded base, push-pull class A condition.
- 30. T2 couples the signal to the emitters of the final stage of the Low Level Board comprising TR15 and TR16 in parallel, operating push-pull class A, with TR20 and TR22 in parallel.
- 31. T1 combines the outputs from TR15, TR16 and TR20, TR22 and feeds the signal at between 1W to 2W to pins 2 and 3 of the board.

Automatic Level Control (a.l.c.) Detectors (On Low Level Board)

- 32. The forward d.c. voltage derived from the VSWR Board is fed to pin 11. R1 is the 'set forward pawer' control which determines the threshold level at which the a.l.c. holds the output power under normal conditions. This voltage is amplified by TR1 and is gated via D1 into the a.l.c. switching circuits.
- 33. The d.c. voltage derived from the reflected power monitor on the VSWR Board is amplified by TR3 and is combined with a fixed fraction of the forward power (via TR2) at the parallel collectars. The output signal, whose level is adjusted by R6, controls the level at which the a.l.c. will respond to a reflected power signal caused by a load mismatch. This output is gated to the a.l.c. switching circuits via D2. These circuits provide current gain via TR6, TR7 and TR24 (where fitted) and a reference level determined by R29, D20 in conjunction with TR9, TR11 and TR25 (where fitted) and associated components.
- 34. The attack time is approximately 200–500uS and the discharge time is determined by C3 discharging through R18. When TR24 and TR25 are fitted and R18 = 1Mohm this approximates to 1 second. Normally, however, the discharge time without TR24 or TR25 and R18 = 100K is approximately 50 milliseconds.

Muting Circuit (On Low Level Board)

- 35. The external muting signal is applied to pin 12 (0V muted, +12V normal). With +12V applied, TR10 and TR12 are switched on, thereby supplying +20V to the TR17/TR18 amplifier stage. TR13 is also conducting, supplying a positive bias voltage to the final amplifying stage. Under muted conditions transistors TR8, TR10, TR12 and TR13 are cut off thereby applying muting to both the penultimate and final stages.
- 36. On the standard version (DC604137/A) of the amplifier, when muting occurs the gain of the a.l.c. stage is increased to maximum by the action of D13 and R52 which reduce the voltage on C3. On the DC604137/B version this effect of increased gain of the a.l.c. stage is reduced by D14 and R54 which reduce the voltage on C12. However, since the action of D13 and R52 is still present the module will operate at maximum gain, after a short delay, on de-muting.
- 37. TR8 and associated diodes, resistors etc., form an input noise immunity circuit.

 Diodes D11 and D12 provide temperature compensation for TR13 to maintain a stable bias voltage.

High Level Board PS315

Fig. 15

- 38. The RF input signal from the Law Level Board is connected to pin 4 which feeds four transformers whose primary windings are connected in parallel via 16, 17, 19 and 110. The secondary winding af 16 and 17 each feed a group of three paralleled resistors and all 6 feed the emitter of TR5. T9 and 110 are similarly connected to drive the emitter af TR6 but are wired in antiphase to 16 and 17. The resultant effect is therefore to drive TR5 and TR6 in push-pull. TR5 and TR6 form the driver stage and operate in grounded base Class B mode. T8 is the driver output push-pull transformer, and it drives 11/12 and 14/15 in push-pull. Transformers 14, 15, 111 and 112 are therefore all connected in parallel. Similarly 11, 12, 114 and 115 are also connected in parallel, both groups aperating in push-pull.
- 39. All eight transfarmers are 2:1 step-down auto-transformers driving the base of each of the eight P.A. transistors. The eight transistors are connected as four parallel pairs, operating in push-pull, each stage being a grounded emitter class B amplifier. TR1 and TR2 are in parallel giving an output via T3 in push-pull with TR3 and TR4 which are in parallel. Similarly TR7 and TR8 are in parallel giving an output via T13 in push-pull with TR9 and TR10 which are also connected in parallel. The outputs of T3 and T13 are connected together (external to the board) to provide the output of the module.
- 40. RF feedback is applied from the collectors of each pair of output transistors via a 470 ohm resistor to the collectors of the appropriate driver transistors.

V.S.W.R. Board PS316

Fig. 17

41. Two RF inputs are fed into the VSWR Board. The first is derived from the reflectometer toroid T2 and is portional to the RF output line current, and the second is fed from C3 (Fig.21) which is proportional to the RF output line voltage.

Principles of Operation

42. A simplified circuit of the VSWR Board is shown below to illustrate the principle of operation.

From Linear Amplifier

C1

RL
RL
RL
12

43. The secondary induced voltage in the feeder taroid causes a current to flow 12 which is equal to jΩMII where II is the primary current, M is the taroid $\frac{2RL+i\Omega L^2}{2R}$

mutual inductance, 2RL is the total secondary load resistance and L2 is secondary inductance of the toroid, Ω is the angular frequency in radians.

- 44. If 2RL << i ΩL2 at the lowest frequency then L2 = MI / L2 which is independent of frequency. The output voltage developed across each secondary resistor is then I2RL and they are 180° out of phase.</p>
- 45. The RF voltage divided down by C1 and C2 is applied between the resistor junction point and earth, and adjusted by C2 so that, with the matched line condition, the voltage across C2 is equal in amplitude to the voltage ocross each resistor. This voltage Vc is also not frequency conscious since Vc = V1C1 and is in phase with the voltage ocross

 C1+C2

one RL and out of phase with the other. The result is that under motched conditions at terminal A the voltage ($Vc + I_2RL$) appears (the forward power output) and at terminal B the voltage ($Vc - I_2RL$) = 0 appears (reflected power output).

- 46. Under mismatched conditions such that a short circuit appears on the feeder, then Vc is zero and the forward and reflected outputs are equal. Similarly with an open circuit on the line, the voltages appearing ocross the two resistors from the toroid are zero, and again the forward and reflected outputs are equal.
- 47. It can be shown that intermediate mismatched impedance produces some output from the reflected port, but that the forward output remains constant for a given linear amplifier output pawer.
- 48. R1 and R2 form the resistor loads and C3 and C5, in parollel, produce the required capacitive voltage. The outputs are coupled via C2 and C7, then rectified by voltage doubler circuits (D1, D2, C1 and D5, D6, C8). C9 and R5 boost the low frequency

power response of the module, by effectively reducing the d.c. level at the forward output at the low frequency end (i.e. below approximately 5MHz). This means that more power is required from the RF amplifier module to reach the same a.l.c. threshold voltage.

Protection Board PS251

Fig. 19

- 49. The Protection Board has two main functions.
 - (1) It monitors the module positive supply voltage and if this exceeds a safe operating level, a pulse is generated to fire a thyristor (mounted on the RF power module chassis) which in turn trips the stabiliser or if this has foiled blows an associated fuse FS1.
 - (2) It also monitors the DC current taken by each group of four output transistors and operates the a.l.c. line if this exceeds a predetermined level.
- 50. The +30V supply is monitored on pin 1 and connected via a chain of Zener diodes, and a potentiometer R1 to the base of TR1. R1 provides an adjustable reference voltage for the operation of the long-tailed pair comprising TR1 and TR2. The output from TR1 is amplified by TR3, the operating voltage of which is determined by R10 and R13. When transistor TR3 conducts, a voltage is generated which operates the thyristor gate, SCR1, vio pin 8.
- 51. The d.c. current overload inputs are fed to pins 3 and 4; as either or both these levels increase, transistors TR4 and TR5 will start to conduct and couse TR6 and TR1, connected as emitter followers, to conduct and provide a d.c. output to the a.l.c. circuit via pin 5 of the p.c.b. Diode D7 maintains C3 in a charged state so that TR6 will switch on quickly. The Zener diode D5 limits the maximum voltage to approximately 12.5 volts to prevent possible damage to the transistors in the o.l.c. stage on the Low Level Board.

COMBINING UNIT MS126

Fig.23

52. The Combining Unit is a completely possive unit which combines the 125W outputs from the RF Power Modules to produce the 500W output.

Power Combining

53. The operation of the Combining Unit is best described by considering just one combining operation. Thereafter all subsequent combining sequences are essentially the same, apart from variotions of actual impedance and power level. The principle however, applies at each stage.

54. Fig.(a) shows a simple combining circuit with a 50 ohm input and 50 ohm output impedance. The features of this network are as follows:-

If P1 and P2 are equal and in phase then Po = P1 + P2 and there is zero power dissipated in RL.

If P1 = 0 then Po =
$$\frac{p_2}{2}$$

- i.e. -6dB reduction on original Po with both inputs present. In this case $\frac{P2}{2}$ is also dissipated in RL. If P1 and P2 are 180° out of phase, zero power appears at the output and P1 + P2 is dissipated in RL.
- 55. Although for maximum power autput P1 and P2 should ideally be matched exactly in amplitude and phase, fairly large differences can be tolerated within the extremes quoted above before a significant reduction in output power occurs. For example, a 10% difference in amplitude results in a power output reduction of approximately 0.2% while a phase difference of 10° only results in a power output reduction of 0.75% of the total input Power P1 + P2.

Isolation

- 56. The second basic praperty of the combining network is that it provides isolation between the two inputs. This means that any impedance change at either input does not affect the input impedance presented to the other generator.
- 57. How this isolation is achieved is illustrated by considering the equivalent circuit of the two extremes i.e. open circuit and short circuit as well as the normal 50 ohm condition.
- 58. Fig. (b) shaws the 50 ohm input case. Since there is no voltage, i.e. output and input volts are the same and no power dissipation i.e. power output equals the power at A + the power at B, the output impedance must equal half the impedance at A or B. Therefore the impedance at the hybrid transformer output is 25 ohm for the two inputs to be 50 ohm.

59. Fig. (c) shows the equivalent circuit for a short circuit at input B. The 50 ohm impedance at the hybrid output is transformed up to 100 ohm at input A, in parallel with RL giving a resultant input impedance of 50 ohm (i.e. as normal).

60. Fig. (d) shows the equivalent circuit for an open circuit at input B. The 100 ohm impedance of RL is transformed to 25 ohm in series with the existing 25 ohm load impedance giving a resultant impedance of 50 ohm at input A (i.e. as normal). It can be shown that input A will always be 50 ohm for miscellaneous impedances appearing at input B.

Design Features

61. In order to meet the theoretical performance outlined in the preceeding paragraphs it is necessary to provide balancing coils in series with each ballast resistor to ensure optimum isolation and input impedance matching over the full frequency range. This offsets the effects of transformer leakage inductance and circuit stray capacitance which would otherwise cause an inferior performance.

WARNING

THE SETTING OF THESE ADJUSTABLE INDUCTORS (BALANCING COILS) IS CRITICAL AND THEY ARE ACCURATELY SET UP BEFORE DESPATCH FROM THE FACTORY. ANY FURTHER ADJUSTMENT SHOULD NOT BE NECESSARY BUT IF ADJUSTMENT IS NECESSARY THE PROCEDURE GIVEN IN CHAPTER 7 PARA. 14 MUST BE FOLLOWED.

Power Dissipation

62. As described previously, if power from one or more modules is lost then an unbalanced situation is created in the combining unit which results in power dissipation within the combining unit, as well as a reduction of output power. Fig. 5.1 shows the approximate output power against numbers of inoperative modules - the white sections show the power dissipated internally and the shaded columns indicate the actual output power.

NOTE: The conditions given in Fig. 5.1 are 'worst case'. With two modules operational the linear amplifier can be 'patched' to give 250W output (refer to Chap.2, para.7).

- 63. The combining unit is rated to withstand the maximum dissipated power (i.e. 125W) continuously. A warning signal is however signalled showing that power is being lost in the combining unit. This is sensed by a current transformer in each input ballast resistor line. This RF unbalanced signal is rectified and fed to the Overload Unit MS443 where it is available to operate an external circuit which will indicate that the TA.1813 is operating on reduced power. It is only a warning indication and does not trip the amplifier, as there is no risk af damage whilst continuing to operate in this condition.
- 64. The four RF inputs from the RF modules are fed into hybrid transformers in pairs.
 Inputs 1 and 2 are fed to opposite ends af T3 and T5 in parallel. Inputs 3 and 4 are connected to opposite ends of T4 and T6 in parallel.
- 65. Also connected in parallel with T3 and T5 is ballast resistor R3 in series with a current monitoring transformer T1 and an inductor L1. L1 operates in conjunction with C3 and is adjusted for maximum isolation and optimum input impedance matching. The output of T1 is detected by R1 and D1 and fed to PL1 pins 5 and 6, then to the Overload Unit, to provide an RF unbalance signal. The remaining input circuit is similar to that described.
- 66. The outputs from T3, T5 and T4, T6 are fed to a further hybrid transformer stage T11 via T7 and T8 which provides a 50 ohm output. R5 and R6 are connected in parallel across the primary of T11, forming the bollast load in series with L3, which improves isolation. Two 250W outputs con, if required, be taken from SK5 and SK6.
- 67. The output from T11 is at ot on impedance af 25 ohm and is 'stepped up' to 50 ohm by T12. This is then fed to SK7 via T13 current monitoring transformer. C5 is included to improve the isolation of the two 250W inputs. T13 is a current transformer for output monitoring.

AUTOMATIC LEVEL CONTROL AND PROTECTION

- 68. The overall Automatic Level Control (a.l.c.) pratection aspect of the TA.1813
 Linear Amplifier is an important and bosic feature of the design, both for normal operation and for protection under obnormal conditions.
- 69. Protection of the transistorized RF Power Modules is vital for the overall reliability of the equipment and in many instances the protection circuits operate via the a.l.c. stages of the module so that the two are closely interdependent.
- 70. The details of the actual a.l.c. stoge have been described in paras. 32 to 34. It is this stoge which is controlled under various overload conditions as well as for normal operation.
- 71. The following inputs are connected to the a.l.c. and, on exceeding the pre-set threshold level, will determine the operating gain and hence the output level of the RF Power Module.

- (1) Forward Power normal operation into 50 ahm.
- (2) Reflected Power operates the a.l.c. if mismatch at the outputs of the module is worse than approximately 2:1 VSWR.
- (3) Transistor Collector RF Voltage (Swingometer)
- Operates the a.l.c. if the voltages exceeds a pre-determined level (normally approximately 25V peak).
- (4) DC current Operates the a.l.c. if the mean d.c. current, when driven, exceeds 15 Amps approximately.
- 72. The levels at which the forward and reflected power take over control of the a.l.c. are adjustable but should only be set up in accordance with the instructions laid down in Chapter 7. In the case of the collector RF voltage and DC current detectors these are pre-determined by the design values of components and cannot be varied. The attack and decay times of the respective inputs are listed in para. 34 with the exception of d.c. current which is approximately 10 µ seconds.
- 73. In addition to the previously mentioned a.l.c. protection circuits, additional protection is included as follows:-
 - (1) A thermostat to detect overheating of each module.
 - (2) A 'latching' current trip circuit for each Stabiliser Unit.
 - (3) A high rupturing capacity fuse for each module for protection against a stabilizer short circuit.
 - (4) A magnetic circuit-breaker for AC supply input overload protection to each power unit.
 - (5) Two fuses for low mains current consumption.
- 74. Together these overload circuits provide an extremely high degree of overall protection.

POWER SUPPLIES

Power Supplies Unit Type MS64

Fig. 25

- 75. Each Power Supply Unit Type MS64 is a self-contained d.c. power supply providing smoothed unregulated d.c. outputs from a single phase a.c. supply.
- 76. Two outputs are provided:-
 - (1) +36V at 30 amps
 - (2) +42V at 100 milliamps.

Each incorporates o bridge rectifier, from two separate transformer windings. The ±36V rail has a choke input filter, while the ±42V supply employs a capacitor input filter. Under no load conditions, however, the ±36V supply behaves like a capacitor input filter and the no load voltage rises to approximately 60V. The associated units are adequately rated to withstand this.

77. A plug-in mains selector is provided an each MS64, to provide simple adjustment on installation.

Stabilizer Unit Type MS440

Fig. 27

- 78. The stabilizer Unit Type MS440 provides a stabilized +30V and +20V supply to the RF Amplifier Type MM320. It is fed from the main power supply unit Type MS64 which provides a smoothed nominal 36V, at full load, to each stabilizer.
- 79. In addition the Stabilizer unit provides current metering facilities for the +30V supply to each RF Amplifier Assembly. A fost acting current overload trip circuit is also included. The latter is reset by removing the d.c. input. All power dissipating components e.g. pawer transistors and resistors are mounted directly on the finned casting. The low level circuitry is included on a printed circuit board, PS313.

Output Ratings

- 80. The maximum current ratings of the two supply lines are:-
 - (1) +30V at 15 omps
 - (2) +20V of 2 omps.
- 81. The normal 36V DC input to the Stabilizer Unit from the MS64 power unit is connected to pins 12, 13, 14, 15 and 16 in parallel (positive) and pins 4, 5, 6, 7 and 8 in parallel (0V); pin 3 is a separate earth.
- 82. A second d.c. input at 42V is required to feed 4TR2 and 4TR5. This is also fed from the MS64 power units. The maximum current consumption, from the 42V supply is 50mA. The +30V and +20V stabilised outputs appear on TS1 pins 2 and 3 respectively.
- 83. The stabiliser itself comprises three separate circuits as follows:-
 - (1) +30V Stabilizer
 - (2) +20V Stobilizer and
 - (3) DC Overload/Trip Circuit.

+30V Stobilizer

84. The main d.c. input is fed to TR1 and TR4 connected in parallel. These are the main series stabilizing transistors. They are controlled by a feedback system comprising 4TR5, 4TR2 and 4TR3. Transistor 4TR5 is the comparator stage while 4TR2 and 4TR3 provide current amplification for the feedback loop. The emitter of 4TR5 is held at 5.6V by 4AD3 while the base voltage is derived from the stabilised +30V rail via an adjustable resistor 4A R10. This control determines the setting of the +30V output level.

85. The overall stabilizer loop functions as follows. As the volts tend to rise, due to a reduction of load current, TR5 base voltage will also rise, causing 4TR5 to conduct more, which in turn causes 4TR2, 4TR3 and TR1 and 4TR4 to conduct less. This gives a greater voltage drop across 4TR1 and 4TR4, thereby reducing the output voltage and opposing the initial change of output level. The circuit is therefore self compensating, and with the high loop gain involved relatively large input voltage variations have no effect on the output voltage.

+20V Stabilizer

86. This follows the +30V stabilizer and has 4TR7 as the main series stabilizer, with 4TR6 os an amplifier and 4TR4 as the reference detector stage. The output level is set by R16. In principle it functions exactly as the +30V stabilizer.

D.C. Trip Circuit

- 87. As the d.c. load current increases the voltage drop across 4R1 increases. This increases the voltage appearing across the base of 4ATR1 which is adjustable via 4AR3. Under normal conditions this voltage is insufficient to cause 4ATR1 to conduct so that 4ATR2 is also non-conducting. The collector voltage of 4ATR2 is high and therefore isolated from the main +30V stabilizing feedback loop i.e. base of 4TR2, by 4AD2.
- 88. A similar trip circuit for the +20V supply is provided by 4ATR3, the trip voltage being developed across R9 and applied to 80ard pins 9 and 10. Transistor 4ATR3 is coupled to 4ATR1 via diode 4AD1.
- 89. The voltage level at which 4ATR3 starts to conduct is determined by the Vbe of 4ATR3 i.e. 0.6V. Under normal operating conditions this voltage is less than 0.6V and again 4ATR2 is non-conducting.
- 90. In the event of either 4ATR1 or 4ATR3 switching on however, caused by an overload current in either the main input or the +20V stabilizer input, then 4ATR2 will switch on, causing the main +30V stabilizer transistors to be switched off. Positive feedback between 4ATR2 and 4ATR1 then causes them to 'latch' on, so that the main stabilizing transistors are held non-conducting until the unit is reset by interrupting the d.c. supply in, by unplugging and re-inserting the RF Power Module or by operation of the appropriate circuit breaker on the front panel of the Power Supply Unit.

Ratio:Approximate Output/ Inoperative Modules

CHAPTER 6

ROUTINE MAINTENANCE, DISMANTLING AND REASSEMBLY

ROUTINE MAINTENANCE

1. Routine maintenance requirements on the TA.1813 amplifier are minimal, as only the following items need be checked at regular intervals.

Centrifugal Type Blowers

2. The two air blowers fitted above the power units embody bearings which are 'sealed for life'. No regular maintenance action is, therefore, required.

'Woods' Type Air Blawer

- 3. A Woods type air blower is fitted at the top rear of the cabinet. After a considerable period of use, or after some 12 months storage under tropical conditions without use, it may be found that the oil has migrated from the grease in the bearings of this blower. As a result the blawer will start to overheat, and will ultimately seize up and fail.
- 4. To obviote this failure the blower should be overhouled and the bearings replaced at routine intervals. This could be immediately before putting into service if storage as above has occurred, or after 1 to 5 years operation dependent upon environment and duty cycle.
- 5. A spare set of bearings, packed for tropical storage, can be obtained from Racal (Part No. BA44126). The bearings are Ransome Hoffman Pollard type 106P V2 and the arease is SHELL ALVANIA RA. Bearing replacement should be carried out as follows:
 - (1) Disconnect the mains supply to the unit and render the unit safe.
 - (2) Disconnect the mains leads to the blower and remove the blower from the unit.
 - (3) Using a 4 B.A. open-jow sponner, slacken off the hexagon headed screw retaining the impeller. Remove the impeller and clean off any dust. Remove any dust from the fan housing.
 - (4) Using a 6 B.A. box spanner, remove the two nuts securing the two throughbolts. Withdrow the throughbolts.
 - (5) Remave the rear bearing housing.
 - (6) Remove the rotor with its two bearings. If the rotor and bearings show signs of gross over-heating (due to a stalled blower left on for a considerable time) the blower should be scropped. A certain amount of discolauring will not, however, be harmful.
 - (7) Remave the bearings using a bearing puller, taking care to avoid damaging the shaft. Scrap the bearings.

- (8) If the shaft is scored or damaged, restore polish with very fine emery. The new bearings should be a neat fit, not requiring excess force to fit them, but the shaft must not slip in the inner race.
- (9) Fit the replacement bearings, non-shielded faces outwards ovoiding pressure on the outer race. If SHELL ALVANIA RA grease is available it may be odded to the two bearing housing after cleaning. This will increase the life of the blower by acting as a reservoir. Excess grease will cause pressure in the bearing, which will result in over-heating and failure.
- (10) Check the field windings for overheating, continuity and insulation to frame.

 Clean off any dust.
- (11) Refit the rotor with bearings and bearing housings. Secure with two throughbolts.
- (12) Re-fit the impeller, ensuring that the screw seats in the dimple in the shaft.
- (13) Before re-fitting the blower, connect to the mains supply and check for correct operation.
- (14) Return the blower to the unit and reconnect oll leads.

Air Filter

6. This should be washed at appropriate intervals in water with a detergent.

NOTE: Ensure filter is completely dried before replacing in cabinet.

Contactor Contacts

7. It is recommended that the contacts on the main switching contactor be examined every six months, and replaced if significant deterioration is observed.

DISMANTLING AND REASSEMBLY

8. Modular construction is used throughout and access to oll sub-units and cabinet connectors is vio the front of the cabinet.

Power Supply Unit MS64

9. The Power Supply Units Type MS64 are mounted in the base of the TA.1813 cabinet.

CAUTION: When the cabinet is not fixed to the floor care should be taken in withdrawing power units to avoid the danger of the cabinet toppling.

Removal

- 10. (1) Switch off the circuit breaker appropriate to the power supply unit to be removed.
 - (2) Undo the quick-release screws holding the Power Supply Unit front panel and remove the panel.

- (3) If pawer is not fully isolated, use a meter to re-check that mains is not present on the unit table removed.
- (4) Remove the cable clip from the front of the power unit, and remove six cables (see Chap.3, para.10).
- (5) Remove two screws and slide out the pawer unit and its maunting tray.
- (6) Repeat far other pawer unit if required.

Replacement

11. Replacement of a power supply is effected by reversing the pracedure described in para.6(1) to 6(6), but reference should be made to Chap.3, para.10.

Splitter Unit, Distribution Amplifier, Overload Unit and Muting Unit

- 12. The Splitter Unit, Distribution Amplifier, Overload Unit and Muting Unit are mounted on a pair of hinged angle members which are located above the power supplies. The cover to each unit is secured by four slotted screws whilst the units are secured to the hinged angles by Pazidriv screws. The angle members and units can be swung out on hinges for access to blawers by remaving two screws from the left hand side of the angles.
- 13. To gain access to the Muting Unit, which is maunted behind the Splitter Unit, proceed os follows:-
 - (1) Isolote the cobinet from the moins supply.
 - (2) Remove the power supplies ponel and control ponel.
 - (3) Hinge forward the angle members as described in para. 12.

Circuit Breakers

14. The circuit breaker assemblies and contactor are mounted on the control panel, which can be unplugged after four screws have been removed.

Air Blowers

15. Two oir blowers are located immediately above the power supplies. The control panel should be removed to give access to the fixings on the blower plate.

Remaval

- 16. (1) Isolate the cabinet from the mains supply.
 - (2) Remove the power supplies panel and control ponel.
 - (3) Hinge farward the angle members as described in para. 12.
 - (4) Slide the power supply units forward to their fullest extent.
 - (5) Disconnect the cables at the blower terminals.
 - (6) Use a 3/8" bax spanner through the access holes, pravided by remaving the control panel, to undo the 4 blower plate captive fixings.
 - (7) Lower the blawer and remove it from the cobinet.

Replacement

- 17. (1) Replacement of on air blower is effected by reversing the procedures described in para. 16.
 - (2) Before ottempting to tighten the 4 blower plate coptive fixings, locate the blower in position and ensure that for outlet is correctly located within the air duct.

Meter Panel

18. The Meter Panel is located above the RF Pawer Modules and houses two meters and the VSWR Warning PCB.

Removal

- 19. (1) Remove cabinet connector moting with the Meter Panel Plug (11PL1).
 - (2) Remove the 4 screws securing the hinges and remove the Meter Ponel from the cabinet.
 - (3) To obtain access to the meters and the VSWR Worning PCB remove the 5 fixing screws (3 front and 2 rear) and remove the cover.

NOTE: Access to the VSWR Worning PCB may be gained without removing the meter panel.

Replocement

To replace the Meter Ponel reverse the procedures detailed in para. 19.

Combining Unit

21. The unit or units located above the Combining Unit must be removed to give reosonable access to the rear fixings.

Removal

- (1) Remove the MA. 1004 FMU (see appropriate handbook).
 - (2) Remove top cover from combining unit.
 - (3) Disconnect the four RF connectors and the multi-way connector from the rear of the unit.
 - (4) Disconnect the RF connector from the front of the unit.
 - (5) Remove the two fixing screws from the rear edge of the unit.
 - (6) Loosen the two quick-release fasteners at each side of the unit.
 - (7) Lift one side of the unit and ease it out from the cobinet through the gop immediately above, taking core not to foul cables.

Replacement

23. Replocement of the Combining Unit is effected by reversing the procedures detailed in paros. 22(1) to 22(7).

RF Power Modules

24. The RF Power Modules are removed by undoing the 2 quick release screws and sliding the module forward from the cabinet. When replacing a module ensure that it is properly located in the guide channel.

RF Power Module MM420

- 25. To separate the Stabilizer Module from the RF Power Module proceed as follows:
 - (1) Slacken the 4 fixing screws on tag strip TS1 and remove the fanning strip.
 - (2) Remove the fixing nuts and washers on both RF connectors (5PL1 and 5PL2) on the rear panel noting carefully the order in which the washers are removed.
 - (3) Remave both Pozidriv screws connecting the top plate of the MM440 Module to MM320 Module.
 - (4) Slacken off the two nuts and bolts connecting the mating edges of the heat sink.
 - (5) Remove the Stabilizer Module by pulling it in the direction of the heat sink.

High Level Board and Protection Board

- 26. To obtain access to the High Level Board proceed as follows:
 - (1) Place the complete module assembly on a bench with the front panel of the module to the right and the heat sink on the bench.
 - (2) Remove the fixing nut on plug 5PL2 on the rear panel noting carefully the order in which the washers are removed.
 - (3) Remove both Pozidriv screws fixing the Low Level plate to the pillar nuts.
 - (4) Remove 2 nuts and bolts connecting the Law Level plate to the front panel.
 - (5) The Low Level plate may now be hinged away to give access to the High Level Board.

CAUTION: If it is required to operate the module in this condition care must be taken to ensure that the Low Level plate does not short the live points.

WARNING:

THE P.A. TRANSISTORS AND THEIR ASSOCIATED INSULATING WASHERS CONTAIN BERYLLIUM OXIDE, THE DUST OF WHICH IS TOXIC. BEFORE HANDLING THESE DEVICES REFER TO THE SAFETY PRECAUTIONS AT THE FRONT OF THE HANDBOOK.

Method of Changing a P.A. Transistor

27. (1) Remove the fixings on the Low Level Board sub-assembly (including its mounting plate) so that it can be hinged up and over to gain access to the High Level Board (refer to para. 26). Unsolder the pins of the relevant

- transistor, and then place the module in its normal upright position with access to both sides of the transistor.
- (2) Undo the nuts on the stud end with a box spanner. To do this and prevent rotation of the transistor it will be necessary to hold a broad screw driver blade against one side of the hexagonal shaped transistor body through the appropriate hale on the High Level Board.
- (3) When refitting a new transistor use new insulating washers (Rocal Part No. 920916) if necessary and cover both sides of the washer with 'Thermoflow' thermal post Type A30/J (Jermyn Industries) before assembly. Reverse the procedure detailed in (1) and (2) for reassembly.

NOTE: It is important 'Thermoflow' or other high conductivity poste is used in preference to silicone grease to ensure adquate thermal conductivity.

Access to Stobilizer Heat Sink

- 28. Remove the Stabilizer (refer to paro.25) or hinge back the Low Level plate (refer to paro. 26).
 - Undo 2 screws fixing the top plote to the rear plote on the stobilizer. Hinge book the top plote to obtain access to the components mounted on the stobilizer heat sink.

CHAPTER 7

FAULT LOCATION & ALIGNMENT PROCEDURE

INTRODUCTION

1. A list of test equipment required for fault location and alignment procedure is given below.

TEST EQUIPMENT

- 2. (1) DC Power Supply +36V at 15 omps required when not using internal
 - (2) DC Pawer Supply +40V at 100 milliamps) supplies refer to para.16.
 - (3) RF Power Meter (Example: Bird Thruline Model 43 with 250W head).
 - (4) 50 ohm, 250W Dummy Load. (Example: Bird Model 8141).
 - (5) Valve Voltmeter. (Example: Marconi TF1041C).
 - (6) Variable resistor load 3 ohm 135W roting.
 - (7) Variable resistor load 10 ohm 35W roting.
 - (8) RF Drive Source, 10mW minimum output, 2MHz = 30MHz. (Example: Racol MA.1720).
 - (9) Accessory Kit CA607 containing:-
 - (i) I set of Module RF and DC Connectors
 - (ii) Combiner Potch Lead Assembly
 - (iii) Extension Lead Assembly.

FAULT LOCATION PROCEDURE

- Any foult on the TA.1813 can be very quickly located to a particular sub-unit using the front panel facilities pravided.
- 4. Each RF module has a green lamp indicating that the DC supply is present, and a clear lamp which is illuminated when the module is radiating RF. A meter is included to show the current and voltage levels, and RF monitoring points are included at each stage to provide check facilities, using an oscilloscope or spectrum analyser. The RF input and RF output powers (both forward and reflected) are also indicated an ameter.
- 5. If a malfunction occurs, the following should be checked:-
 - (i) All module green lights are illuminated.
 - (ii) All module clear lights are illuminated when the amplifier is driven.
 - (iii) Individual module currents and valtages.

- (iv) RF input power.
- (v) RF output power (forward and reflected).

The sequence of checks outlined in Tables 1 and 2 will, in conjunction with the previous checks, locate the fault quickly to the Power Supplies, Stabilizer Unit, RF Modules, Combining Unit, Distribution Amplifies or Splitter Unit.

TABLE 1

TABLE 2

LOSS OF MODULE RF OUTPUT LIGHT

Sub-Unit Fault Location

6. Fault location on sub-units is a fairly simple process; in most cases it is merely o matter of checking against the circuit diagram. The exception is the RF Amplifier Module Type MM420, and procedures for detailed circuit checking are described below.

Fault Location - RF Module MM420

7. When a faulty module has been identified it is recommended that it be replaced and subsequent fault location carried out away from the transmitter. (Refer to Chapter 7, poro. 16).

RF Module Checks - Without RF Drive

8. Remove module from cobinet and set switch on module to the ON position. Measure the impedance of the +30V supply input to earth, using a multimeter (Ava type). If the impedance is less than 10 ohm on obnormal condition is indicated, and the module circuits should be investigated. If the impedance appears satisfactory the setting of the Stabilizer Trip level (paro.18) should be checked, followed by the module checks with RF drive (paros. 9 to 14).

RF Module Checks - With RF Drive

- 9. Check that the +30V supply current (to the High Level Board) is approximately 8A to 12A dependent on the drive frequency. Even if the current measured appears to be correct it is advisable to check all RF power transistors by measuring each emitter voltage (from each transistor stud to earth).
- NOTE: Ensure transistor stud is not earthed or the transistor may be destroyed. The eight output transistors should be equal within 0.1V. Typical valtages are approximately 0.6V but are slightly dependent on the drive level and frequency applied.
- 10. If zero voltage or a significantly low voltage exists, the appropriate transistor should be changed using the procedure described in Chap. 6 Para. 26.
- 11. If a discrepancy of more than 0.1V exists, then checks on RF drive levels to the transistor must be made, following logically the RF signal path as given in the circuit diagram. Typical causes could be bias voltage errors or circuit dry joints.
- 12. Measurements of RF goin on both the Low Level Board and overall module are sometimes necessary to locate a low gain stage. When checked at 10MHz below the A.L.C. operating level the input signal for a 100W output should be between 250mV and 400mV injected at the module input socket.
- 13. With the Low Level Board terminated in a 50 ohm 2W non-inductive resistor, and isolated from the High Level Board, its output should be 2W for an input signal of not more than 10mW, injected at the module input socket.
- 14. When the low gain stage is located, detailed DC measurements on individual components will enable easy identification of the fault.

ALIGNMENT PROCEDURES

Adjustments to RF Module MM420

- 15. Following repair work and/ar component replacement, it is necessary to carry out the complete adjustment pracedure (paras. 17 to 23) on the RF Module, to ensure that all operating and protection levels are correct. Unless the procedure is carrectly carried out the RF module may not be performing to its specification and may suffer further malfunction if not adequately protected due to incorrect settings. In addition it may periodically be necessary to carry aut a routine check of the module performance. In such cases, the following procedure should be carried aut.
- 16. For the purpose of setting-up and re-aligning, the module may be operated completely separately from the main amplifier using items (1), (2), (4) and the Madule D.C. Connectors (part of Accessory Kit CA607 item (9)) of the test equipment listed in para.1. Alternatively the MM420 can be operated out of the transmitter cabinet by using the Extension Lead Assembly (part of Accessory Kit CA607) to connect to the TA.1813 supplies. If the second procedure is used, the TA.1813 should be operated as two separate 250W units and the second madule associated with the one under test should be switched off.

NOTE: Since the module is aperated outside the cabinet it will not be forced oir coaled, therefore it is recammended that it is not operated far more than 20 minutes at full pawer. If, hawever, this time is greatly exceeded the module thermostar will operate to avoid averheating.

Setting-up the Stabilizer Output Valts

17. Check the nominal 30V supply at tags 2 and 1 of TS1. Adjust 4AR10 on the Stabilizer Unit to set this voltage to 30.5 volts. Check the nominal 20V supply at tags 3 and 1 of TS1. Adjust 4AR16 on the Stabilizer Unit to set this voltage to 20 volts.

Setting-up the Stabilizer Trip Level

- 18. Switch off the module and disconnect it from the supply. Set 4AR3 an the Stabilizer fully anti-clockwise and connect an external load resistor (item (6) of the test equipment) between tag 1 and tag 2 of TS1 without disconnecting the Stabilizer from the module. Reconnect the module to the supply and switch an the supply, adjust the load resistor for a reading af 18.5 to 19 amp, indicated on an ammeter connected in series with the +36V supply, or for a reading of 16.5 to 17 amp, on the front panel meter of the TA.1813 (switched to the appropriate module). Slowly adjust 4AR3 clockwise until the stabilizer trip circuit operates. Remove external load resistor.
- 19. The trip circuit for the +20V supply is pre-set on monufacture. To check the oction af the trip circuit, switch off the module and disconnect it from the supply. Connect an external load resistor (item (7) of the test equipment) in series with an ammeter (set to read 5A FSD) between tags 1 and 3 of TS1. Reconnect the module to the supply and switch on the supply. Increase the load current by adjusting the external load resistor and nate that the trip circuit operates between 3 and 3.5 amps.

NOTE: The current must not be adjusted to exceed 4 amps.

Setting-up Module Over Voltage - Low Level Trip

NOTE: Before applying RF to the module the supply voltage must be set to 30.5V by adjustment of 4AR10.

20. Monitor the nominal 30V supply between Tags 2 and 1 on TS1, and adjust 4AR10 to increase the output voltage. Check that the over voltage trip operates between 32.5 and 33.5 volts. This adjustment should be corried out with the module undriven. In no circumstances should the output voltage be increased above 34 volts. If the trip does not operate at the specified levels, slowly adjust 5CR1 on the protection board until it does so.

Setting-up the V.S.W.R. Detectors

21. Before setting-up the Reflected and Forward Power Levels the VSWR detectors on each individual RF Module should be balanced. Connect the RF output socket of the module to a 50 ohm load.

NOTE: It is important that a true 50 ohm resistive load is used.

Apply an RF signal at 10MHz to the module, switch on the module and increase the level of drive signal until the module is delivering 100W into the load. Connect a multimeter (set to read d.c. volts) between pin 10 on the Low Level PCB and earth. Adjust 5DC3 on the VSWR PCB (through the access hale in the cover) for a minimum reading on the multimeter, this should be between 0.4 and 0.6V.

NOTE: The cover of the VSWR PCB must always be in position when the module is operating.

Setting-up Reflected Power Level

- 22. Set 5AR6 on the Low Level Board (PS351) fully clockwise. Disconnect the RF output socket 5PL2 and apply an RF input signal of 10MHz at a level of 2mW. Check that the DC current does not exceed 3 amps. if measured on the front panel meter, or 5 amps. if measured on an ammeter connected in series with the 36V supply. If these values are exceeded a foult condition exists and must be corrected before proceeding further.
- 23. Apply a short circuit at the RF output connector, increase the RF drive level to approximately 10mW and adjust 5AR6 to obtain a reading of 6.5 amp, on the front panel meter or 8.5 amp, on an ammeter connected in series with the 36V supply. Remove the short circuit and re-connect the RF output load.

NOTE: It is important that the short circuit is applied at the RF output connector 5PL2 and not at an earlier point in the output circuit.

Setting-up the Forward Power Level

24. Set the drive signal to 18MHz at a level of 10mW. Set the module output power to 135 watts (into a 50 ohm dummy load) by adjusting 5AR1 on the module Low Level Board. Check that as the frequency is raised from 1.6 to 30MHz (at 10mW input) the output does not exceed 150W or drop below 120W.

Setting-up and Adjustment of V.S.W.R. Unit MS447

25. This unit should be set up with the TA.1813 operating into a 50 ohm dummy load of full power. With the reflected power meter selected, observe the indicator. If this exceeds 25 watts, (and the load is 50 ohm) then the VSWR unit is unbalanced. Adjust C3 for a null at an operating frequency of 10MHz. If the null cannot be reduced to 25W or below switch off and remove the unit. Carry out detailed d.c. measurements against the circuit diagram to check diades, resistors etc.

Setting-up the Meter Panel

- 26. After setting-up the VSWR Unit MS447 (and with the RF output still connected to a dummy load) the transmitter output power should be measured on a power meter. With switch 11SA (located in the meter panel) set to NORMAL, the meter ponel potentiometer 11AR1 should be adjusted to give the same power indication on the upper scale of the front panel meter (with meter switch set to FORWARD POWER) as that measured on the RF power meter. Switch off a number of modules until the forward power indication on the meter drops to below 250 wotts. Set switch 11SA to CALIBRATE and the meter panel switch to REFLECTED POWER, adjust 11AR2 on the meter ponel to obtain the same reading on the lower scale of the meter os the forward power reading on the upper scale.
- 27. If the VSWR worning indication is being used, this can now be set up by adjusting the indicated reflected power to the required warning level by switching off modules or adjusting the drive level and adjusting 11R12 until the warning signal is just given. Set switch 11SA back to NORMAL.

Setting-up and Adjustment of the Combining Unit MS126

28. As described in Chapter 5, all adjustments to the Combining Unit are carefully set up in the factory prior to dispatch; re-alignment is not normally necessary. Only in the very rare occurrence of a transformer requiring to be replaced should this unit need to be re-set. The procedure requires the use of specialized equipment such as Rhode and Schwarz Polyscop. Using such an equipment odjustment of the relevant coils should be made to ochieve a compromise of matched input impedance and isolation over the frequency ronge.

CHAPTER 8

COMPONENTS LIST

Cct. Ref.	Value	Description	Rat.	Tal.	Racal Part Number	Manufacturer
		ÇAE	BINET AS	SEMBL	<u>.</u> Y	
Resistars	(ahm)					
1R1 1R2 1R3 1R4	Nat Used Nat Used Nat Used Nat Used			-	207.422	5 1
1R5	51	Metal Oxide		5	907490	Electrasil TR5
Capacit	ars (uF)					
1C1 1C2	4		440V 440V	10 10	Supplied with IBL1&1BL2	'Matar Run' Capaci- tors Ltd.
1C3	22	Electralytic	100∨	-10 +50	922186	Erie
1 C 4	22	Electrolytic	100V	-10 +50	922186	Erie
Diodes						
ID1 ID2		1N4002 1N4002			911460 911460	Texas Texas
Relays						
1RLA 1RLB IRLC	Nat Used Not Used Not Used					
1RLD 1RLE		Remate ca-axia Remote ca-axia			921770 921770	Dawkey Series 60 Dawkey Series 60
1RLF 1RLG		Remate co-axial Remate ca-axial			921770 921770	Dawkey Series 60 Dawkey Series 60
Blawers						
1BL 1 1BL2 1BL3		Centrifugal Centrifugal 6" dia. Axial			BD 603418 BD 603418 CD 31502	Racal Racal Racal

Cct. R ef .	Volue	Description	Rat.	Tol. %	Racal Part Number	Manufacturer
Connec	tors	CABIN	ET A SSE	MBLY	(Continued)	
1PL1		Coaxial 50 ohm			905031	Transradio BN7/5
1PL2		Coaxial 50 ohm			905031	Transradio BN7/5
1PL3		Cooxial 50 ohm			905031	Transrodio BN7/5
1PL4		Coaxial 50 ohm			905031	Tronsradio BN7/5
1PL5	Not Used	COUXIEF CO VIIII			, , , ,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 P L6	Not Used					
1 PL 7	Not Used					
1 PL8	Not Used					
1 PL9		Coaxial 50 ohm			905031	Transrodio BN7/5
1PL 10	Not Used					
1PL11		Coaxial 50 ohm			905031	Transradio BN7/5
1PL 12	Not Used					
1PL13		Coaxial 50 ohm			905031	Transradio BN7/5
1PL 14	Not Used					- 4 5517/5
IPL15		Coaxiol 50 ohm			905031	Transradio BN7/5
1PL16	Not Used					
1PL17		Coaxiol 50 ohm			922179	Tronsradio C7/5
1PL18		Coaxiol 50 ohm			922179	Tronsrodio C7/5
1PL 19		Coaxiol 50 ohm			901716	Tronsrodio C1/5
1PL20		Coaxiol 50 ohm			901716	Transradio C1/5
iPL2i		Cooxiol 50 ohm			901716	Tronsrodio C1/5
1PL22		Coaxiol 50 ohm			901716	Transradio C1/5
iPL23		Cooxial 50 ohm			922179	Transradio C7/5
IPL24		Coaxiol 50 ohm			922179	Tronsradio C7/5
1PL25		Coaxial 50 ohm			922179	Transradio C7/5
IPL26		Cooxiol 50 ohm			922179	Transradio C7/5
1PL27		Cooxial 50 ohm			905031	Tronsradio BN7/5
IPL28		Cooxiol 50 ohm			900038	Transradio BN 1/5
ISK 1		15-woy 'D'			900905	Cannon DA15S
1SK2		25-way Pattern 1	02		921506	Belling Lee L1328/ 5/AG
ISK3		15-way 'D'			900905	Cannon DA15S
ISK4		25-woy 'D'			91 <i>5</i> 970	Cannon DB25S
1SK 5		16-woy			920178	Amphenol 26-190-1

Cct. Ref.	Value	Description Rat.	Tol. %	Racal Part Number	Manufacturer
Connecto	ors (contd)	CABINET ASSI	EMBLY	(Continued	(h
1SK 6		16-way		920178	Amphenol 26-190-16
1\$K7		16-woy		920178	Amphenol 26-190-16
1 SK 8		16-way		920178	Amphenol 26-190-16
1 SK 9	Not Used	•			
1SK 10	Not Used				
1SK 11	Not Used				
1SK 12	Not Used				
1SK 13		Coaxiol 50 ohm		912050	Radiall R15000
1SK 14		Coaxial 50 ohm		912050	Radiall R15000
15K15		Coaxiol 50 ohm		912050	Radiall R15000
1SK 16		Coaxial 50 ohm		9 120 <i>5</i> 0	Radiall R15000
15K17		Coaxial 50 ahm		912050	Radiall R15000
15K18		Coaxial 50 ohm		912050	Radiall R15000
15K 19		Coaxial 50 ohm		912050	Radiall R15000
15K20		Coaxial 50 ohm		912050	Radiall R15000
15K21 >					
to }	Not Used				
15K28)					
15K29		Coaxial 50 ohm		908387	Transradio BN5/5A
15K 30		50-way 'D'		900 <i>5</i> 74	Cannon DD 505
1SK 31		9-woy 'D'		918090	Cannon DE95
15K 32		Coaxiol 50 ohm		912258	Transradio BN2/5B
1 SK 33		Cooxial 50 ohm		918394	Transradio BN2/5A
1LK 1		Adaptor Plug coaxial 50 o	ohm	922215	Transradio C8/5
1LK 2		Adaptor Plug coaxiol 50 c		922215	Transradio C8/5
1LK 3		Adoptor Socket coaxial 5		922214	Transradio C3/5A
1LK 4		Adoptor Plug cooxial 50 d		922215	Transradio C8/5
1LK 5		Adaptor Plug coaxial 50 o		922215	Transradio C8/5
Terminals					
ITBI		6-way 40A		922932	Klippon MK6/6
1TB2	Not Used	V-wuy 40A		122132	Kilhhou wik o\ o
1TB3	Not Used				
ITB4	1401 0360	4-way 36A		917678	Klippon, KS4D
1TB5		4-way 36A			Klippon, KS4D
. 103		4-way 305		7170/0	Muhhou Maan

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part Number	Manufocturer
Termino	ols (contd.)	CABI	NET ASS	EM8LY	(Continued))
1TB6 1TB7 1T88 1TB9 1TB10 to	_ `	6-woy 25A 12-way 25A 1 12-way 25A 1 12-way 25A 1	107		922379 922181 922181 921768	Klippon, MK3/6 Klippon, MK2L/12 Klippon, MK2L/12 Klippon, MK2/12
1 T8 16		12-way 25A 1	10∨		921768	Klippon, MK2/12

SPLITTER UNIT MS444 (and P.C. Board PS318)

Resisto	ors (ohm)					
7R1	390	Metal Oxide		5	908472	Electrosil TR4
7R2	150	Metal Oxide		5	909121	Electrosil TR4
7R3	1.2k	Metal Oxide		5	908285	Electrosil TR4
7R4	39	Metal Oxide		5	917062	Electrosil TR4
7R5	18	Metal Oxide		5	916626	Electrosil TR4
7R6	1 50	Metol Oxide		5	909121	Electrosil TR4
7 R 7	1.2k	Metal Oxide		5	908285	Electrosil TR4
7R8	390	Metal Oxide		5	908472	Electrosil TR4
7R9	51	Metal Oxide		5	917056	Electrosil TR4
7R10	51	Metal Oxide		5	917056	Electrosil TR4
7R11	1. <i>5</i> k	Metal Oxide		5	908296	Electrosil TR4
7R12	2.2k	Pre-set Linear			920518	Plessey, MPWT
7R13	82	Metal Oxide		5	908290	Electrosil TR4
Capac	itors (uF)					
7C1	.01	Fixed	2 <i>5</i> V	+50 - 25	911845	Erie, 831/T/25V
7C2	10	Electrolytic	167	-10 +50	900068	Mullard, C426AR/ E10

Cct. Value Ref.	Description	Rat.	Tol. %	Racal Part Number	Manufacturer
Transistors	SPI	LITTER UN	VIT (Co	ntinued)	
7TR1	BC107			911929	Mullard
<u>Diodes</u>					
7D1	1N4149			914898	S.T.C.
7D2	1N4002			911460	Texas
7D3	1N4002			911460	Texas
Connectors					
7PL 1	15-way			909729	Cannon DA15P
7PL2	Coaxial 50 ohm	1		905031	Transrodio 8N7/5
7PL3	Coaxial 50 ohn	1		905031	Transradio BN7/5
7SK 1	Coaxial 50 ohm	1		908387	Transradio 8N 5/5A

DISTRIBUTION AMPLIFIER MS240 (and P.C. 8oard PS319)

Resistors	_(ohm)					
8R1	470	Wirewound	2½W	5	913612	Welwyn W21
8R2	47	Metal Oxide	_	5	911930	Electrosil TR4
8R3	10	Metal Oxide		5	912868	Electrosil TR4
8R4	27	Metal Oxide		5	908473	Electrosil TR4
8R5	10	Metal Oxide		5	912868	Electrosil TR4
8 R 6	27	Metal Oxide		5	908473	Electrosil TR4
8R7	10	Metal Oxide		5	912868	Electrosil TR4
8R8	2 7	Metal Oxide		5	908473	Electrosil TR4
8R9	10	Metal Oxide		5	912868	Electrosil TR4
8R10	27	Metal Oxíde		5	908473	Electrosil TR4
8R11	22	Wirewaund	2½W	5	913580	Welwyn W21
Capacito	ors (uF)					
8C1	0.1	Fixed	100∨	20	914173	STC PMC2R/0.1/M100
8C2	0.1	Fixed	100∨	20	914173	STC PMC2R/0.1/M100
8C3	0.1	Fixed	100∨	20	914173	STC PMC2R/0.1/M100
8C4	27p	Fixed	500V	5	919483	Erie 831/N7 <i>5</i> 0
8C5	0.1	Fixed	∨00í	20	914173	STC PMC2R/0.1/M100

Cct Ref.	Value	Description	Rat.	Tal. %	Racal Part Number	Manufacturer
Capacit	ars (cantd.)	DIST	RIBUTION	AMPL	_IFIER_(Cant	inued)
8C6	0.1	Fixed	100∨	20	914173	STC PMC2R/0.1/M100
8C7	0.1	Fixed	100V	20	914173	STC PMC2R/0.1/M100
8C8	0.1	Fixed	100V	20	914173	STC PMC2R/0.1/M100
8C9	0.1	Fixed	100V	20	914173	STC PMC2R/0.1/M100
8C10	0.1	Fixed	100∨	20	914173	STC PMC2R/0.1/M100
8C11	27p	Fixed	500∨	5	919483	Erie 831/N750
8C12	0.1	Fixed	100∨	20	914173	STC PMC2R/0.1/M100
8C13	0.1	Fixed	100V	20	914173	STC PMC2R/0.1/M100
8C14	0.1	Fixed	100∨	20	914173	STC PMC2R/01./M100
Transista	ors					
8TR1		2N3553			916730	
8TR2		2N3553			916730	
8TR3		2N3553			916730	
8TR4		2N3553			916730	
Diodes						
8D1		1N4149			914898	STC
8D2		BZY88C 9V1			914899	Mullard
8D3		1N4149			914898	STC
8D4		BZY88C 9V1			914899	Mullard
8D5		1N4149			914898	STC
8D6		BZY88C 9V1			914899	Mullard
8D7		1N4149			914898	STC
8D8		BZY88C 9VI			914899	Mullard
8D9		1N4002			911460	Texas
8D10		1N4002			911460	Texas
8D11		1N4002			911460	Texas
8D 12		1N4002			911460	Texas
Transfari	mers					
8T1					CT603608	Racal
8T2					CT603607	Racal
8T3					CT603608	Racal
8T4					CT603607	Racal
8 T 5					CT603608	Racal

Cct. Volue Ref.	Description Ro	it. %	Racal Port Number	Monufocture
Transformers (contd.)	DISTRIBUTI	ON AMPL	IFIER (Conti	nued)
8T6			CT603607	Rocol
8 T 7			CT603607	Racol
8T8			CT603608	Rocal
Connectors				
8PL1	Connector 15-way		909729	Cannon DA15P
8SK 1	Connector 50Ω		908387	BN5/5A
85K2	Connector 50Ω		908387	8N5/5A
85K3	Connector 50Ω		908387	BN5/5A
8SK4	Connector 50Ω		908387	BN5/5A
8SK 5	Connector 50Ω		908387	8N5/5A
8SK 6	Connector 50Ω		908387	BN5/5A

OVERLOAD UNIT MS443 (and P.C. 8oard PS322)

Resistors	(ohm)					
R1	560	Wirewound	2½W	5	913614	Welwyn W21
R2	560	Wirewound	$2\frac{1}{2}W$	5	913614	Welwyn W21
R3	4.7k	Metal Oxide	-	5	906022	Electrosil TR5
R4	4.7k	Metal Oxide		5	906022	Electrosil TR5
R5	4.7k	Metal Oxide		5	906022	Electrosil TR5
R6	4.7k	Metal Oxide		5	906022	Electrosil TR5
R7	470	Metal Oxide		5	900992	Electrosil TR4
R8	470	Metal Oxide		5	900992	Electrosil TR4
R9	470	Metal Oxide		5	900992	Electrosil TR4
R10	470	Metal Oxide		5	900992	Electrosil TR4
RII	4.7k	Metol Oxide		5	906022	Electrosil TR5
R12	1k	Metal Oxide		5	919805	Electrosil TR4
R13	1k	Metal Oxide		5	919805	Electrosil TR4
R14	1k	Metol Oxide		5	919805	Electrosil TR4
R15	1 0 k	Metal Oxide		5	900986	Electrosil TR4
R16	4.7k	Metal Oxide		5	906022	Electrosil TR5
R17	270	Metal Oxide		5	908284	Electrosil TR4
R18	1k	Metal Oxide		5	919805	Electrosil TR4
R19	8.2k	Metal Oxide		5	900986	Electrosil TR4
R20	1. <i>5</i> k	Metol Oxide		5	908285	Electrosil TR4

Cct.	Volue	Descriptian	Rot.	Tol. %	Racal Part Number	Monufacturer
Resistars	s (ohm) (contd.)	OVER	LOAD UI	<u> </u>	antinued)	
R21	1 0 k	Metal Oxide		5	900986	Electrosil TR4
R22	10k 10k	Metal Oxide		5	900986	Electrosil TR4
				5	919805	Electrasil TR4
R23	lk	Metal Oxide				
R24	1k	Metal Oxide		5 5	919805	Electrosil TR4
R25	10k	Metal Oxide		Þ	900986	Electrasil TR4
R26	10k	Metal Oxide		5	900986	Electrosil TR4
R27	47k	Metal Oxide		5	908391	Electrosil TR4
R28	2.2k	Metal Oxide		5	906020	Electrosil TR5
R29	4.7k	Metal Oxide		5	900989	Electrosil TR4
R30	4.7k	Metal Oxide		5	900989	Electrasil TR4
R31	4 7 !-	Metal Oxide		5	900989	Electrosil TR4
	4,7k	Metal Oxide		5	900986	Electrosil TR4
R32	10k			5	900986	Electrosil TR4
R33	10k	Metal Oxide		5		Electrasil TR4
R34	10k	Metal Oxide			900986	
R35	4.7k	Metal Oxide		5	906022	Electrosil TR5
R36	4.7k	Metal Oxide		5	900989	Electrosil TR4
Copocit	ors (uF)					
C1	0.1	Fixed	100∨	20	914173	ITT, PMC2R
C2	0.1	Fixed	100∨	20	914173	ITT, PMC2R
C3	0.1	Fixed	100V	20	914173	ITT, PMC2R
C4	0.1	Fixed	100∨	20	914173	ITT, PMC2R
C5	0,1	Fixed	100∨	20	914173	ITT, PMC2R
C6	0.1	Fixed	100∨	20	914173	ITT, PMC2R
C7	0.1	Fixed	1000	20	914173	ITT, PMC2R
C8	0.1	Fixed	1007	20	914173	ITT, PMC2R
C9	20	Electrolytic	25V	-10	921354	Mullard C428AR/F20
C7	20	Liecholynic	234	+50	721054	Mondia C420/119 120
C10	.01	Fixed	100∨	20	914171	ITT, PMC2R
C11	0.1	Fixed	100∨	20	914173	ITT, PMC2R
C12	0.1	Fixed	100V	20	914173	ITT, PMC2R
C13	0.1	Fixed	100∨	20	914173	ITT, PMC2R
Diodes	•					
DI		8ZY88C18			915920	Mullard
D2		BZY88C18			915920	Mullard
D3		BZY88C18			915920	Mullard
D4		BZY88C18			915920	Mullard
D5		1 N4149			914898	STC

Cct. Value Ref.	Description	Rat. Tal	District OF	Monufacture
Diodes (cantd.)	OVE	RLOAD UNIT	Cantinued)	
D 6	BZY88C6V8		914064	Mullard
D7	8ZY88C6V8		914064	Mullard
D8	8ZY88C5V6		912747	Mullard
D9	1N4149		914898	STC
D10	BZY88C12		914310	Mullard
ווס	1N4149		914898	STC
Transistors				,
TRI	BC107		9119 2 9	Mullard
rr2	BC107		911929	Mullard
rr3	8C107		911929	Mullard
ΓR4	8C107		911929	Mullard
rr5	BC107		911929	Mullard
ΓR6	8C107		911929	Mullard
r7	8C 107		911929	Mullard
rr8	8C107		911929	Mullard
rr9	8C107		911929	Mullard
rrio	BC107		911929	Mullard
[R]]	8C107		911929	Mullard
TR12	8C107		911929	Mullard
rR13	BC107		911929	Mullard
Connectors				
 PL 1	25-way		916489	Cannon D825P

CABINET V.S.W.R. UNIT MS447 (and P.C. Baard PS317)

Resisto	ors (ohm)				
R1	22	Metal Oxide	5	922070	Electrosil TR8
R2	22	Metal Oxide	5	922070	Electrosil TR8
R3	22	Metal Oxide	5	922070	Electrasil TR8
R4	22	Metal Oxide	5	922070	Electrasil TR8

Cct. Ref.	Value	Description	Rat.	Tol.	R ac al Part Number	Manufacturer
	harr (UE)	CABINET	/SWR UN	IIT (C	antinued)	
Capacii C1	tors (uF) 2pF	Ceramic Disc		0.50	F920558	Plessey Type 10
C2	0.1	Fixed	100∨	20	914173	ITT, PMC2R
C3	4-60pF	Dielectric Trima			916940	Mullard, 809-07011
C4	1 <i>5</i> 0pF	Fixed			902238	Lemco, MS199/M
C5	0.1	Fixed	100∨	20	914173	ITT, PMC2R
C6	0.1	Fixed	100∨	20	914173	ITT, PMC2R
C7	0.1	Fixed	100V	20	914173	ITT, PMC2R
C8	1 000 pF	Feed-thraugh		20	907011	Erie 361K 2600
C9	1000pF	Feed-through		20	907011	Erie 361K2600
Diodes						
DI		1N4149			914898	Mullard
D2		1N4149			914898	Mullard
D3		IN4149			914898	Muliard
D4		IN4149			914898	Mullard
Inducto	rs					
L1		Coil Assembly			BT603391	Racal
Connec	tors					
SK1 SK2					917555 917555	Transradio C4/5CH Transradia C4/5CH
		METER PANEL	L MS445			
Switche	<u>:5</u>					
SA					8SW 60346	4 Racal
S8	,				BSW 60346	3 Racal
SC					BSW 60346	3 Racal
Meters						
MEI					AD603409	Racal
ME2					AD603410	= = =
Connec	tors					
PLI		50-way			900577	Cannan DD50P

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part Number	Monufacturer
		MET	ER PANI	L (Co	ntinued)	
Resiste	ors (ohm)					
RI	220k	Metal Oxide		2	921 <i>7</i> 71	Electrosil TR4
R2	220k	Metal Oxide		2	921771	Electrosil TR4
R3	10k	Metal Oxide		2	914042	Electrosil TR4
R4	180k	Metal Oxide		2	920644	Electrosil TR4
R5	1 80 k	Metal Oxide		2	920644	Electrosil TR4
R6	1 0 k	Metal Oxide		2	914042	Electrasil TR4
		VSWR WARN	IING P.	C.8∞ar	d PS446	
Resista	ors (ohm)					
R1	22k	Pre-set linear			919816	Plessey MPWT Dealer
R2	22k	Pre-set Linear			919816	Plessey MPWT Dealer
R3	2,2k	Metal Oxide		5	908270	Electrosil TR4
R4	1k	Metol Oxide		5	908267	Electrosil TR4
R5	22k	Metal Oxide		5	908269	Electrosil TR4
R6	27k	MetolOxide		5	908295	Electrosil TR4
R <i>7</i>	27k	Metol Oxide		5	908295	Electrosil TR4
R8	4.7k	Metol Oxide		5	900989	Electrosil TR4
R9	470	Metal Oxide		5	900992	Electrasil TR4
R10	4.7k	Metol Oxide		5	900989	Electrosil TR4
R11	10k	Metol Oxide		5	900986	Electrosil TR4
R12	4.7k	Pre-set linear		20	921023	Plessey MPWT Dealer
R13	22k	Metal Oxide		5	908269	Electrosil TR4
R14	10k	Metal Oxide		5	900986	Electrosil TR4
R15	1k	Metal Oxide		5	908267	Electrasil TR4
Сарас	citors (uF)					
C1	0.1	Fixed	100V	20	914173	STC, PMC2R
C2	0.1	Fixed	100V	20	914173	STC, PMC2R
C3	0.1	Fixed	100V	20	914173	STC, PMC2R
Transi	stors					
TRI		BC107			911929	Mullord
TR2		BC107			911929	Mullord
TR3		BC107			911929	Mullard
TR4		BCY71			911928	Mullard

Inductors L1 10uH	∨swr	WARNING	P.C.B	oard (Contin	ived)
				921609	Painton 58/10/0011/
<u>Switches</u>					
\$1	2-positian, c/a			915644	EM! T15014/001
	RF PC	OWER MOD	ULE - N	1M420 CHA	SSIS
Resistors (ahms)					
5R1 0.1 5R2 0.1 5R3 1k 5R4 220	Fixed Fixed Metal Oxide Metal Oxide		5 5 5 5	920183 920183 906031 906544	CGS HSA5 CGS HSA5 Electrosil TR5 Electrosil TR5
Capacitars (uF)					
5C1 0.1 5C2 47 5C3 6.8pF 5C4 18pF	Fixed Tantalum Disc Ceramic Ceramic	100V 35V 500V 750V	20 20 0. <i>5</i> pl	914173 917478 9194 <i>5</i> 7 902017	ITT, PMC2R STC, LWA/403/KA Erie 831/NPO Erie P100B
Diodes					
5D1	1N4002			911460	Texas
Transfarmers					
51। 512	RF Mon. Toroid VSWR Taraid			BT603397 BT603391	Racal Racal
<u>Inductars</u>					
5L1 5L2	Ferrite Core Chake			919244 900760	Neosid, F14 Painton, C4
Connectors					
5PL1 5PL2 5SK3	Coaxial Coaxial Coaxial			912192 912192 905449	Radiall R15510 Radiall R15510 Transradio BN5/58

Cct. Value Ref.	Description	Rat.	Tal. %	Racal Part Number	Manufocturer
M4!II	RF POWER	MODULE	(Contin	nued)	
Miscellaneous					
5CSR1	Thyristar, 12RCM10			920129	Int. Rectifiers
5THE1	Th ermostat			AD602957	Racal
5RLA	Relay 26.5V			921683	Clare Elliatt, G24
5PL 1	Lomp 28V, 0.04A			918756	Guest, 727T
5PL2	Lamp, 28V, 0.04A			918756	Guest, 727T
5FS1	Fuse, 17A (L350/16)			920921	Int. Rectifiers
5SA	Switch, DPDT			91 <i>77</i> 16	NSF

LOW LEVEL BOARD PS351

Resisto	rs (ohms)				
5AR1	100k	Pre-set linear		920057	Plessey, MPWT Dealer
5AR2	4.7k	Metal Oxide	5	900989	Electrosil TR4
5AR3	4.7k	Metal Oxide	5	900989	Electrosil TR4
5AR4	1 00 k	Metal Oxide	5	908293	Electrosil TR4
5AR5	47k	Metal Oxide	5	908391	Electrosil TR4
5AR6	10k	Variable	5	919815	Plessey MPWT Dealer
5AR7	2.2k	Metal Oxide	5	908270	Electrasil TR4
5AR8	2.2k	Metal Oxide	5	908270	Electrasil TR4
5AR9	2.2k	Metal Oxide	5	908270	Electrasil TR4
5AR10	10k	Metal Oxide	5	900986	Electrosil TR4
5AR11	100	Metal Oxide	5	908276	Electrosil TR4
5AR12	10k	Metal Oxide	5	900986	Electrasil TR4
5AR13	2.2k	Metal Oxide	5	908270	Electrosil TR4
5AR14	47k	Metal Oxide	5	908391	Electrosil TR4
5AR15	2.2k	Metal Oxide	5	908270	Electrosil TR4
5AR16	27k	Metal Oxide	5	908295	Electrasil TR4
5AR17	18k	Metal Oxide	5	908272	Electrasil TR4
5AR181	100k	Metal Oxide	5	907866	Electrosil TR5
5AR181	** IM	Metal Oxide	5	914036	Electrasil TR4
5AR19	4 7	Wirewound	5	913588	Welwyn W21
5AR20	1k	Metal Oxide	5	908267	Electrasil TR4

^{*} Used on Version DC604137/A Board anly.

^{**} Used on Versian DC604137/B Board anly.

Cct. Ref.	Volue	Description	Rat.	Tol.	Racal Port Number	Monufocturer
_			EVEL BOARD	(Contin	wed)	
Resistors ((ohms) (cont	·d.)				
5AR21	47k	Metal Oxide		5	908391	Electrosil TR4
5AR22	470	Metol Oxide		5	906019	Electrosil TR5
5AR23	1k	Metal Oxide		5	908267	Electrosil TR4
5AR24	4.7k	Metol Oxide		5	900989	Electrosil TR4
5AR25	220	Metol Oxide		5	900988	Electrosil TR4
5AR26	47	Metal Oxide		5	911930	Electrosil TR4
5AR27	1k	Metol Oxide		5	908267	Electrosil TR4
5A R28	1k	MetolOxide		5	908267	Electrosil TR4
5AR29	2.2k	Metol Oxide		5	908270	Electrosil TR4
5AR30	Not Used					
5AR31	820	Metol Oxide		5	906024	Electrosil TR5
5AR32	56	Metol Oxide		5	908289	Electrosil TR4
5AR33	1k	Metal Oxide		5	908267	Electrosil TR4
5AR34	330	Wirewound	2½W	5	913608	Welwyn W21
5AR35	27	Metal Oxide		5	908473	Electrosii TR4
5AR36	Not Used					
5AR37	10	Metol Oxide		5	912868	Electrosil TR4
5AR38	22	Metol Oxide		5	911495	Electrosil TR4
5AR39	100	Metal Oxide		5	913962	Electrosil TR6
5A R40	10	Metol Oxide		5	912868	Electrosil TR4
5AR41	10	Metol Oxide		5	912868	Electrosil TR4
5AR42	10	Metol Oxide		5	912868	Electrosil TR4
5AR43	10	Metol Oxide		5	912868	Electrosil TR4
5AR44	100	Metol Oxide		5	913962	Electrosil TR6
5AR45	10	Metol Oxide		5	912868	Electrosil TR4
5AR46 5AR47	22 Not Used	Metal Oxide		5	911495	Electrosil TR4
5AR48*	10	Metol Oxide		5	908471	Electrosil TR5
5AR48**	27	Metol Oxide		5	906341	Electrosil TR5
5AR49**	270	Metal Oxide		5	908143	Electrosil TR5
5AR50*	10	Metal Oxide		5	908471	Electrosil TR5
5AR50**	27	Metal Oxide		5	906341	Electrosil TR5

Used on Version DC604137/A Board only. Used on Version DC604137/B Board only.

Cct. Ref.	Volue	Description	Rot.	Tol.	Rocal Part Number	Monufocturer
Resistors (ohms) (cont	d.) LOW LE	VEL BOARE	(Cont	lnued)	
5AR51**	270	Metal Oxide		5	908143	Electrosil TR5
5AR52	4.7k	Metal Oxide		5	900989	Electrosil TR4
5AR53	33k	Metal Oxide		5	908291	Electrosil TR4
5AR54**	1k	Metal Oxide		5	908267	Electrosil TR4
Copacito	rs (uF)					
5AC1	1.0	Fixed	100∨	20	914173	ITT,PMC2R
5AC2	1.0	Fixed	100V	20	914173	ITT, PMC2R
5AC3	100	Electrolytic	20∨	20	913970	ITT, TAA
5AC4	0.1	Fixed	100∨	20	914173	ITT, PMC2R
5AC5	0.1	Fixed	100∨	20	914173	ITT, PMC2R
5AC6	1000pF	Fixed		20	915243	Erie 831K2600
5AC7	0.1	Fixed	100∨	20	914173	ITT, PMC2R
5AC8	0.1	Fixed	100∨	20	914173	ITT, PMC2R
5AC9	0.1	Fixed	100∨	20	914173	ITT, PMC2R
5AC10	100	Electrolytic	20V	20	913970	ITT, TAA
5AC11	0.1	Fixed	100∨	20	914173	ITT, PMC2R
5AC 12*	10	Electrolytic		20	90 <i>5</i> 399	ITT, TAA B/10/M20
5AC13	Not Used					
5AC 14	0.01	Fixed	2 <i>5</i> V	+50 -25	911845	Erie 831/T
5AC15	0.1	Fixed	100∨	20	914173	ITT,PMC2R
5AC16	0.01	Fixed	2 <i>5</i> V	+50 -25	911845	Erie 831/T
5AC17	0.1	Fixed	100V	20	914173	ITT, PMC2R
5AC18	0.1	Fixed	100V	20	914173	ITT, PMC2R
5AC19	0.1	Fixed	100V	20	914173	ITT, PMC2R
5AC20	0.1	Fixed	100V	20	914173	ITT, PMC2R
5AC21	0.01	Fixed	25∨	+50 -25	911845	Erie 831/T
5AC22	0.1	Fixed	100∨	20	914173	ITT,PMC2R
5AC23	0.01	Fixed	25∨	+50 -25	911845	Erie 831/T
5AC24	0.01	Fixed	25∨	+50 -25	911845	Erie 831/T
5AC25	0.1	Fixed	100∨	20	914173	ITT, PMC2R

Used on Version DC604137/A Board only. Used on Version DC604137/B Boord only.

Cct. Ref.	Value	Description	Rat.	Tal. %	Racal Part Number	Manufocturer
C	- (E) (LOW L	EVEL 80ARD	(Conti	nued)	
_apacitor	s (uF) (con	ra.)				
5AC26	0.01	Fixed	25∨	+50 -25	911845	Erie 831/T
5AC27	0.1	Fixed	100∨	20	-914173	ITT, PMC2R
5AC28	0.1	Fixed	100∨	20	914173	ITT, PMC2R
5AC29	0.1	Fixed	100∨	20	914173	ITT, PMC2R
5AC30	0.01	Fixed	2 <i>5</i> V	+50 -25	911845	Erie, 831/T
				-25		
5AC31	0.1	Fixed	100∨	20	914173	ITT, PMC2R
5AC32	0.01	Fixed	2 <i>5</i> V	+50	911845	Erie 831/T
				-25		
5AC33	0.1	Fixed	100∨	20	914173	ITT, PMC2R
AC34	Not Used					•
AC35	Not Used					
5AC36	Not Used	J				
5AC37	470pF	Fixed		10	914325	Erie H1-K AD
SAC38	470pF	Fixed		10	914325	Erie HI-K AD
5AC39	470pF	Fixed		10	914325	Erie HI-K AD
AC40	470pF	Fixed		10	914325	Erie HI-K AD
AC41	0.1	Fixed	100∨	20	914173	ITT, PMC2R
AC42	0.1	Fixed	100V	20	914173	ITT, PMC2R
6AC43**	0.01	Fixed	2 <i>5</i> V	+50 -25	911845	Erie 831/T
5AC44**	0.01	Fixed	2 <i>5</i> V	+50 -25	911845	Erie 831/T
SAC45	4.5-20pF	Variable		-23	910061	Steatite 7S
AC46	33pF	Disc Ceramic		5	919459	Erie 831/N750

^{**} Used on Version DC604137/B 8oard anly.

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part Number	Manufacturer
Transisto	<u> </u>	LOW	LEVEL BOARD	Cant	inued)	
5ATR1		BC107			911929	Mullard
5ATR2		BC107			911929	Mullard
5ATR3		BC107			911929	Mullard
5ATR4		BCY71			91192B	Mullard
SATR5		BC107			911929	Mullard
5ATR6		BFY51			908753	Mullard
SATR7		BFY51			908753	Mullard
SATR8		BC107			911929	Mullard
SATR9		BFY51			908753	Mullard
SATR10		BCY71			91192B	Mullard
SATR11		BFY51			908753	Mullard
SATR12		BFX29			915267	Mullard
SATR13		BFY51			908753	Mullard
SATR14	Not Used					
SATR15		2N3553			916730	Mullard
SATR16		2N3553			916730	Mullard
SATRI7		2N3553			916730	Mullard
SATR18		2N3866			91 <i>7</i> 219	Mullard
SATR19		2N3866			91 <i>7</i> 219	Mullard
ATR20		2N3553			916730	Mullard
ATR21		2N3553			916730	Mullard
ATR22		2N3553			916730	Mullard
SATR23	Nat Used					
ATR24**		BC107			911929	Mullard
ATR25	•	BC107			911929	Mullard
) i odes						
AD1		1N4149			91489B	STC
AD2		1N4149			91489B	STC
AD3		BZY88C5V1			912059	Mullard
AD4		BZY88C5VI			912059	Mullard
AD5		IN4149			91489B	STC

^{**} Used on Version DC604137/B Board only.

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part Number	Manufacturer
D:		LC	W LEVEL BOAR	D_(Cant	inued)	
Diades (c	onta.)					
5AD6		1N4149			914898	STC
5 AD7		1N4149			914898	STC
5AD8		1N4149			914898	STC
5AD9		1N4149			914898	STC
5AD10*		1N4149			914898	STC
5AD11		1N4149			914898	STC
5AD12		1 N4149			914898	STC
5AD13		1 N4149			914898	STC
5AD14**		1N4149			914898	STC
5AD15		1N4002			911460	Texas
5AD16		1N4002			911460	Texas
5AD 17 *		1N4149			914898	STC
5AD18*		1N4149			914898	STC
5AD19	Nat Used					
5AD20		BZY88C10			917217	Mullard
Transfarme	ers					
5AT1		Output			CT603360	Racal
5AT2		Interstage			CT603358	Racal
5AT3		Interstage			CT603358	Racal
5AT4		Input			CT 603357	Racal
Miscellan	eaus					
5AFB1		Ferrite Bead			907488	Mullard FX1242
5AFB2		Ferrite Bead			907488	Mullard FX1242
5AFB3		Ferrite Bead			907488	Mullard FX1242
5AFB4		Ferrite Bead			907488	Mullard FX1242
5AFB5		Ferrite Bead			907488	Mullard FX1242
5AFB6		Ferrite Bead			907488	Mullard FX1242

<sup>Used on Versian DC604137/A Baard only.
Used an Versian DC604137/B Baard only.</sup>

Cct. Ref.	Value	Description	Rot.	Tol. %	Rocol Port Number	Manufacturer
		HIGH	LEVEL 80A	RD PS3	15	
Resisto	ors (ohms)					
58R1	180	Wirewound	2½W	5	913602	Welwyn W21
58R2	47	Wirewound	9W	5	913738	Welwyn W23
58R3	1.5	Wirewound	2½W	5	917139	Welwyn W21
5BR4	10	Wirewound	2 ¹ ₂ W	5	91 35 71	Welwyn W21
58R5	470	Metal Oxide		5	906019	Electrosil TR5
58R6	1	Metal Film		2	921418	Beyschlag MBE
58 R7	1	Metal Film		2	921418	Beyschlag MBE
58 R8	100	Metal Oxide		5	907491	Electrosil TR5
5BR9	100	MetalOxide		5	907491	Electrosil TR5
58R10		Metal Film		2	921418	Beyschlag MBE
58R11	1	Metal Film		2	921418	Beyschlog MBE
<i>5</i> BR12	470	Metal Oxide		5	906019	Electrosil TR5
58R13		Metal Film		2	921418	Beyschlog MBE
58R14		Metal Film		2	921418	Beyschlog MBE
<i>5</i> BR15		Wirewound	9W	5	913746	Welwyn W23
<i>5</i> 8R16	100	Metal Oxide		5	907491	Electrosil TR5
<i>5</i> 8R17		Metal Oxide		5	907491	Electrosil TR5
<i>5</i> 8R18		Wirewound	2½W	5	917145	Welwyn W21
58R19		Wirewound	2½W	5	913582	Welwyn W21
58R20		Metal Film	_	2	921418	Beyschlag MBE
58 R21	1	Metol Film		2	921418	Beyschlog MBE
58R22	12	Metal Oxide		5	917782	Electrosil TR4
58R23	12	Metal Oxide		5	91 <i>7</i> 782	Electrosil TR4
5BR24		Metal Oxide		5	917782	Electrosil TR4
5 BR25		Metal Oxide		5	917782	Electrosil TR4
5BR26	12	Metal Oxide		5	917782	Electrosil TR4
58R27		Metal Oxide		5	917782	Electrosil TR4
58R28		Metal Oxide		5	917782	Electrosil TR4
58R29		Metal Oxide		5	917782	Electrosil TR4
58R30		Metol Oxide		5	917782	Electrosil TR4
5BR31	12	Metol Oxide		5	917782	Electrosil TR4
58R32		Metal Oxide		5	917782	Electrosil TR4
58R33		Metal Oxide		5	917782	Electrosil TR4
5BR34		Metal Film		2	921418	Beyschlag MBE
58R35		Metal Film		2	921418	Beyschlag MBE

Cct. Ref.	Value	Description	Rat.	Tal. %	Racal Part Number	Manufacturer
Resistor	s (contd.)	нісн	LEVEL BOA	RD (Co	ntinued)	
5BR36	4.7	Wirewound	2 ½W	5	917145	Welwyn W21
5BR37	27	Wirewaund	2½W	5	913582	Welwyn W21
5BR38	100	Metal Oxide		5	907491	Electrosil TR5
<i>5</i> BR39	100	Metal Oxide		5	907491	Electrosil TR5
<i>5</i> BR40	100	Wirewound	9 W	5	913746	Welwyn W23
<i>5</i> BR41	1	Metal Film		2	921418	Beyschlag MBE
5BR 42	i	Metal Film		2	921418	Beyschlag MBE
5BR43	470	Metal Oxide		5	906019	Electrosil TR5
5BR44	1	Metal Film		2	921418	Beyschlag MBE
5BR45	i	Metal Film		2	921418	Beyschlag MBE
<i>5</i> BR46	100	Metal Oxide		5	907491	Electrosil TR5
5BR47	100	Metal Oxide		5	907491	Electrosil TR5
5BR48	1	Metal Film		2	921418	Beyschlog MBE
5BR49	1	Metal Film		2	921418	Beyschlag MBE
5BR50	470	Metal Oxide		5	906019	Electrosil TR5
5BR51	47	Wirewound	9W	5	913738	Welwyn W23
5BR52	1.5	Wirewound	2½W	5	917139	Welwyn W21
5BR53	10	Wirewound	2½W	5	913571	Welwyn W21
58 R54	180	Wirewound	2½W	5	913602	Welwyn W21
Capacit	ors (uF)					
5BC1	0.1	Fixed	100∨	20	914173	ITT PMC2R
5BC2	1.0	Fixed	1007	20	914173	ITT PMC2R
5BC3	0.1	Fixed	100∨	20	914173	ITT PMC2R
5BC4	0.1	Fixed	100∨	20	914173	ITT PMC2R
58 C5	0.1	Fixed	100∨	20	914173	ITT PMC2R
5BC6	0.1	Fixed	V001	20	914173	ITT PMC2R
5B C7	0.1	Fixed	100∨	20	914173	ITT PMC2R
5CB8	0.1	Fixed	100∨	20	914173	ITT PMC2R
<i>5</i> B.C9	0.1	Fixed	100∨	20	914173	ITT PMC2R
5BC10	0.1	Fixed	100∨	20	914173	ITT PMC2R
<i>5</i> BC11	0.1	Fixed	100∨	20	914173	ITT PMC2R
5BC12	0.1	Fixed	100∨	20	914173	ITT PMC2R
5BC13	0.1	Fixed	100∨	20	914173	ITT PMC2R
5BC14	0.1	Fixed	100∨	20	914173	ITT PMC2R
5BC15	1000pF	Ceramicon	500∨	20	915243	Erie HI-K831

Cct. Ref.	Value	Description	Rat.	Tol. %	Raical Part Number	Manufacturer
		HIGH LEV	EL BOAR	D (Can	tinued)	
Capacita	$\frac{ \mathbf{r}\mathbf{s} (\mathbf{o}\mathbf{F})}{ \mathbf{r}\mathbf{s} }$	ntd.)		_		
58C16	0.1	Fixed	100∨	20	914173	ITT PMC2R
58C17	0.1	Fixed	100V	20	914173	ITT PMC2R
58C18	0.1	Fixed	100V	20	914173	ITT PMC2R
58C19	0.1	Fixed	100∨	20	914173	ITT PMC2R
58 C20	0.1	Fixed	100∨	20	914173	ITT PMC2R
58C21	1000pF	Ceramican	500∨	20	915243	Erie HI-K831
58C22	0.1	Fixed	100V	20	914173	ITT PMC2R
58C23	0.1	Fixed	1007	20	914173	ITT PMC2R
5BC24	0.1	Fixed	1007	20	914173	ITT PMC2R
58C25	0.1	Fixed	100∨	20	914173	ITT PMC2R
58C26	0.1	Fixed	100∨	20	914173	ITT PMC2R
58 C27	0.1	Fixed	100∨	20	914173	ITT PMC2R
5BC28	0.1	Fixed	100∨	20	914173	ITT PMC2R
5BC29	0.1	Fixed	100∨	20	914173	ITT PMC2R
58C30	0.1	Fixed	100∨	20	914173	ITT PMC2R
58C31	0.1	Fixed	100√	20	914173	ITT PMC2R
58C32	0.1	Fixed	1007	20	914173	ITT PMC2R
58C33	0.1	Fixed	100	20	914173	ITT PMC2R
5BC34	0.1	Fixed	100V	20	914173	1TT PMC2R
Transisto	rs .					
<i>5</i> 8TR1	_	Special Racal Type				
58TR2		Special Racal Type				
58TR3		Special Racal Type				
58TR4		Special Rucal Type				
58TR5		Special Racal Type				
5BTR6		Special Racal Type				
58 TR7		Special Racal Type				
58 TR8		Special Racal Type				
58TR9		Special Racal Type				
58TR10		Special Racal Type				
Diodes						
58D1		1N4997			920571	Matarala
58D2		1N4997			920571	Matarala
58D3		IN4149			914898	STC
58D4		1N4002			911460	Texas

Cct. Ref.	Value	Description	Rat.	Tal. %	Racal Part Number	Manufacturer
Diodes (cantd.)	HIG	H LEVEL BC	ARD (C	Cantinued)	
5BD6		1N4149			914898	STC
<i>5</i> BD7		1N4149			914898	STC
<i>5</i> BD8		1N4002			911460	Texas
<i>5</i> BD9		1N4002			911460	Texas
5BD10		1N4149			914898	STC
5BD11		1N4997			920571	Motorola
5BD12		1N4997			920571	Motorola
Transform	ners					
<i>5</i> BT1					CT603362	Racal
5BT2					CT603362	Racal
5BT3					CT603385	Racal
5BT 4					CT603362	Racal
5BT 5					CT603362	Racal
5BT6					CT603387	Racal
5B T7					CT603387	Racal
5BT8					DT603386	Racal
ЖТ 9					CT603387	Racal
BT10					CT603387	Racal
5BT11					CT603362	Racal
5BT12					CT603362	Racal
ЖТ13					DT603385	Racal
3BT14					CT603362	Racal
ВТ 15					CT603362	Racal
Miscella	neous					
5BFB1		Ferrite Bead			907488	Mullard FX 1242
BFB2		Ferrite Bead			907488	Mullard FX 1242
7BFB3		Ferrite Bead			907488	Mullard FX1242
		Ferrite Bead			907488	Mullard FX 1242

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part Number	Manu facturer
	-	∨sw <u>r</u>	BOARD	PS316		
Resistor	s (ohms)					
 R1	22	Fixed		2	911627	Electrosil TR5
R2	22	Fixed		2	911627	Electrosil TR5
R3	10k	Metal Oxide		5	900986	Electrosil TR4
R4	22k	Metal Oxide		5	908269	Electrosil TR4
R5	2.7k	Metal Oxide		5	908294	Electrosil TR4
R6	1 <i>5</i> k	Metal Oxide		5	908280	Electrosil TR4
Capaci	tors (uF)					
Cl	0.01	Fixed	25V	+50 -20	911845	Erie 831/T
C2	0.01	Fixed	25V	+50 -20	91 1845	Erie 831/T
C3	4-60pF	Dielectric Trimmer	200V	+50 -25	916940	Mullard 809-07011
C4	0.01	Fixed	25∨	+50 -20	911845	Erie 831/T
C5	27 0 pF	Silver Mica	125V	2	920435	Lemco M5119MR
C6	0.1	Fixed	100∨	20	914173	ITT PMC2R
C7	0.01	Fixed	25∨	+50 -20	911845	Erie 831/T
C8	0.01	Fixed	2 <i>5</i> V	+50 -20	911845	Erie 831/T
C9	47pF	Fixed	500∨	10	917418	Erie 831/T
Diodes						
DI		1N4149			914898	STC
D2		1N4149			914898	STC
D3		1N4149			914898	STC
D4		1N4149			914898	STC
D5		1N4149			914898	STC
D6		IN4149			914898	STC

Cct. Ref.	Value	Description	Rot.	Tol. %	Rocal Port	Monufocturer
		PROTEC	CTION BO	ARD PS2	51	
Resistor	s (ohms)					
5CR1	1k	Pre-set Lineor			919805	Plessey MPWT (Dealer)
5CR2	2.2k	Metol Oxide		5	908270	Electrosil TR4
5CR3	2.2k	Metal Oxide		5	908270	Electrosil TR4
5CR4	4.7k	Metal Oxide		5	900989	Electrosil TR4
<i>5</i> CR <i>5</i>	1k	Metal Oxide		5	908267	Electrosil TR4
5CR6	2.2k	Metol Oxide		5	908270	Electrosil TR4
<i>5</i> CR <i>7</i>	68k	Metal Oxide		5	908279	Electrosil TR4
5CR8	27k	Metal Oxide		5	908295	Electrosil TR4
5CR9	1k	Metol Oxide		5	908267	Electrosil TR4
5CR10	68	Metal Oxide		5	908278	Electrosil TR4
5CR11	220	Metal Oxide		5	900988	Electrosil TR4
5CR12	220	Metol Oxide		5	900988	Electrosil TR4
<i>5</i> CR13	1k	Metol Oxide		5	917265	Electrosil TR4
5CR14	100	Metal Oxide		5	908276	Electrosil TR6
5CR15	Not Use	d				
5CR16	680	Metal Oxide		5	908390	Electrosil TR4
5CR17	10k	Metol Oxide		5	900986	Electrosil TR4
5CR18	330	Metol Oxide		5	908268	Electrosil TR4
5CR19	6.8k	Metal Oxide		5	900987	Electrosil TR4
5CR20	100	Metal Oxide		5	908276	Electrosil TR4
5CR21	Not Used	d				
5CR22	27	Metal Oxide		2	911628	Electrosil TR5
5CR23	330	Metol Oxide		5	908268	Electrosil TR4
5CR24	27	Metol Oxide		2	911628	Electrosil TR5
5CR25	120k	Metol Oxide		5	908281	Electrosil TR4
5CR26	2.2k	Metol Oxide		5	908270	Electrosil TR4
Copocito	ors (uF)					
5CC1	3300 _P F	Fixed	500∨	25	917437	Erie 831/K7004
5CC2	0.1	Fixed	100V	20	914173	ITT PMC2R
5CC3	1	Fixed	100V	20	919311	ITT PMC2R
5CC4	0.1	Fixed	1007	20	914173	ITT PMC2R
5CC5	1000 _P F	Ceromicon	500∨	20	915243	Erie HI-K831

Cct. Ref.	Value	Description	Rat.	Tal. %	Racal Part Number	Manufacturer
Canacit	ors (uF) (cor	PRC	TECTION B	OARD	(Continued)	· · · · · · · · · · · · · · · · · · ·
			COO! /	20	015040	F . III K801
5CC6 5CC7	1 000 pF 0∵1	Ceramicon Fixed	500∨ 100∨	20 20	91 <i>5</i> 243 914173	Erie HI-KB31 ITT PMC2R
Transista	ors					
5CTR1		BC107			911929	Mullard
5CTR2		BC107			911929	Mullard
5CTR3		BCY71			91192B	Mullard
5CTR4		BCY71			91192B	Mullord
5CTR5		BCY71			911928	Mullard
5CTR6		BFY51			90B753	Mullard
5CTR7		BFY51			90B753	Mullard
Diodes						
5CD1		8ZY88C5V6			912747	Mullord
5CD2		BZY88C5V6			912747	Mullord
5CD3		8ZY88C <i>5</i> V6			912747	Mullord
5CD4		BZY88C5V6			912747	Mullord
5CD5		BZY88C15			919797	Mullord
5CD6		1N4149			914898	STC
5CD7		1N4149			914898	STC
5CD8		1N4002			911460	Texas
		STARII 17FR	MODULE M	SAAD		
р • .	. (A	317 1314144	77.00 0227			
Resistors 4R1	0.05	Wirewaund		10	920181	CGS, HSA50
4R2	100	Metal Oxide		5	90B276	Electrosil TR4
	100	Metal Oxide		5	90B276	Electrosil TR4
4R3 4R4		Metal Oxide		5	90B390	Electrasil TR4
	68 0	Wirewound		10	920407	CGS, HSA25
4R5	0.1	Wirewound				·
4R6	0.1	Wirewound		10	920407	CGS, HSA25
4R7	0.05	Wirewaund		5	921606	CGS, HSA5
4R8	0.05	Wirewound		5	921606	CGS, HSA5
4R9	0.2	Wirewound		5	92041B	CGS, HSA5
4R10	2.7	Wirewound		5	9201B4	CGS, HSA 50

Cct. Ref.	Volue	Description	Rat.	Tol. %	Racal Part Number	Manufacturer
Posistors	(ohms) (co		ABILIZER MC	DULE (Continued)	
4R11	680	Metal Oxide		5	908390	Electrosil TR4
4R12	100	Metal Oxide		5	908276	Electrosil TR4
4R13	56	Metal Oxide		5	908142	Electrosil TR5
Copacito	ors (uF)					
4C1	Not Used	d				
4C2	0.1	Fixed	250V	20	919807	ITT PMC2R
4C3	68	Electrolytic	63V		919121	Mullard 108-18689
4C4	0.1	Fixed	250∨	20	919807	ITT PMC2R
Diodes						
4D1		1N4002			911460	Texas
Transista	rs					
		0812055			015/54	
4TR1		2N3055			915654	Mullord
4TR2		B SW 66			917389	Mullord
4TR3		2N3055			915654	Mullord
4TR4		2N3055			915654	Mullord
4TR5		BFY51			908753	Mullord
4TR6		BFY51			908753	Mullord
4TR7		2N3055			915654	Mullard
		STABILIZER	P.C.8. PS3	13		
3 * . . .	(.1)					
Resistors	*					
4AR1	1 0 k	Metal Oxide		5	900986	Electrosil TR4
4AR2	1k	Metal Oxide		5	908267	Electrosil TR4
1AR3	100	Variable			920531	Plessey MPWT (Dealer
1AR4	1 50	Metal Oxide		5	909121	Electrosil TR4
AR5	1k	Metal Oxide		5	908267	Electrosil TR4
IAR6	10k	Metal Oxide		5	900986	Electrosil TR4
1AR7	100	Metal Oxide		5	908276	Electrosil TR4
IAR8	1k	Wirewound	2½W	5	913626	Welwyn W21
IAR9	2.2k	Metol Oxide	_	5	908270	Electrosil TR4
4AR10	470	Variable			920058	Plessey MPWT (Dealer

Cct. Ref.	Value	Description	Rat.	Tal. %	Racal Part Number	Manufacturer
			LIZER P.C.E	oard (C	antinued)	
Resistors	(ahms) (Ca	ontd.)				
4AR11	470	Metal Oxide		5	900992	Electrasil TR4
4AR12	1.2k	Metal Oxide		2	906550	Electrasil TR5
4AR13	1k	Metal Oxide		5	908267	Electrasil TR4
4AR14	680	Metal Oxide		5	908390	Electrasil TR4
4 AR15	560	Metal Oxide		5	909841	Electrasil TR4
4A R16	100	Variable			920531	Plessey MPWT (Dealer
4AR17	220	Metal Oxide		5	900988	Electrasil TR4
4AR18	3.3k	Metal Oxide		5	900991	Electrasil TR4
Capacito	ors (uF)					
4AC1	0.1	Fixed	250∨	20	919807	ITT PMC2R
4AC2	0.1	Fixed	250V	20	919807	ITT PMC2R
4AC3	33	Electrolytic	63V		920534	Mullard 108-18339
4AC4	0.01	Fixed		20	920533	ITT PMC2R
4AC5	0.1	Fixed	25 0 V	20	919807	ITT PMC2R
4AC6	0.1	Fixed	250∨	20	919807	ITT PMC2R
4AC7	0.01	Fixed		20	920533	ITT PMC2R
4AC8	0.1	Fixed	250V	20	919807	ITT PMC2R
Diades						
4AD1		1N4002			911460	Texas
4AD2		1N4002			911460	Texas
4AD3		6ZY88C5V6			912747	Mullard
4AD4		BZY88C5V6			912747	Mullard
Transista	<u>rs</u>					
4ATR1	·	B S∨68			915267	Mullard
4ATR2		B SW 66			917389	Mullard
4ATR3		8CY71			911928	Mullard
4ATR4		8FY51			908753	Mullard

Cct. Ref.	Value	Description	Raŧ.	Ta1. % ————	RocalPart Number	Manufacturer
		COMBINING UN	IIT 500W MS	126 (an	d P.C. Baai	rd PS122)
Resistar	<u>s</u> (ahms)					
6R1	180	Metal Oxide		5	909125	Electrosil TR4
6R2	180	Metal Oxide		5	909125	Electrasil TR4
6R3	100	High Pawer		5	919969	Electrosil H37
6R4	100	High Pawer		5	919969	Electrasil H37
6R5	200	High Power		5	921 <i>5</i> 88	Electrosil H37
6R6	200	High Pawer		5	921588	Electrosil H37
6R7	10	Metal Oxide		5	908471	Electrasil TR5
6R8	10	Metal Oxide		5 5	9084 71	Electrasil TR5
6R9	10	Metal Oxide		5	908471	Electrasil TR5
Copocit	rars (uF)					
6C1	0.1	Fixed	100∨	20	914173	ITT PMC2R/0.1/M100
6C2	0.1	Fixed	100∨	20	914173	ITT PMC2R/0.1/M100
6C3	68pF	Fixed		10	920176	LCC CAI
6C4	Not Used	. 17.00				
6C5	100pF	Fixed		10	920177	LCC AAU020
6C6	0.1	Fixed			914173	ITT PMC2R/0.1/M100
Diodes	_					
6D1	-	1N4149			914898	STC
6D2		IN4149			914898	STC
Inducta	rs					
					CT603079	Racal
6L1					CT603079	
6L2					CT603079	Rocal
6L3		Chake			922364	Cambion 550-3640-
6L4		Cnake			722304	45-02
Transfor	rmers					
					DT/00141	DI
6T1					BT603141	Racal
6T2					BT603141	Racal
6T3					DT602946	
6T4					DT602946 DT602946	
6 T 5					D1002740	NGCOT

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part Number	Manufacturer
Transfor	mers (contd	.) COME	INING UN	IT (Cont	inued)	'
6T6	·				DT602946	Racal
6T7					BT603701	Racal
6T8					BT603701	Racal
619					BT603066	Racal
6T 10					BT603066	
6T11					CT602989	Racal
6T12					BT603701	Racal
6T13					BT603066	Racal
Connec	tors					
6SK 1		BNC, 50 ahms			900061	Transradio 5935-99- 911-8079
6\$K2		BNC, 50 ohms			900061	Transradia 5935-99- 911 - 8079
65K 3		BNC, 50 ohms			900061	Transradia 5935-99~ 911-8079
6\$K 4		BNC, 50 ohms			900061	Transradia 5935-99- 911-8079
6\$K.5		Receptacle Sub-a	ssembly		AA602978	_
6SK 6		Receptacle Sub-a	ssembly		AA602978	Racal
6SK7		Receptacle Sub-A	ssembly		AA602978	Racal
6SK8		BNC, 50 ohms			900061	Transradia 5935 - 99- 911-8079
6SK9		BNC, 50 ohms			900061	Transradio 5935-99- 911-8079
6SK 10		BNC, 50 ahms			900061	Transradio 5935-99- 911-8079
6PL1		Printed Circuit Co	onnector		915643	Cannon DE9P
6PL2		Right Angle Plug	(50 ahms)		908713	Amphenol AMP82
6PL3		Right Angle Plug			908713	Amphenol AMP82
6TS1		Terminal Strip			905221	Wingrove & Rogers TS8-04

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part Number	Manufacturer
		CONTROL PA	NEL MM	377		
Resistors	(ohms)					
2R1	1 50 k	Fixed	<u>1</u> ₩	10	902534	Marganite
Diode						
2D1		1N4002			911460	Texas
Miscella	ineous					
2FS1		Fuselink 5A Size 0			906975	Belling Lee L693
2FS2		Fuselink 5A Size 0			906975	Belling Lee L693
		Fuseholder Size 0			900005	Belling Lee L1382
2LP1		Lamp, Neon			918753	Guest 13 NPSC/15/
2RLA		Relay, Sealed, SP t	ID 12V 17	70 ohm	916469	ITT 4190EC
2RLB		Relay, 3 pole			921509	Arrow 128 A3U/100
2CB1		Circuit Breaker, 50/	/60Hz 10A	2 pole	921324	Highland Elect.
						APL-11-1-6-2-103
2CB2		Circuit Breaker, 50/	/60Hz 10A	2 pole	921324	Highland Elect. APL-11-1-6-2-103
2SA		Switch, Rotary 2way 5A 250V	c/o and	off	921590	Tok PS/110-7NSH
2P1		Plug 25 way Pattern	102		921508	Belling Lee L1328/ P/Ag

POWER SUPPLY MS64

The following list is compiled from Gresham Transformers Ltd., drawing number A43360A

Capaci	tars (uF)			Gresham Drawing No.
C1	10		250Va.c.	
C2	10,000	Electralytic		
C3	10,000	Electralytic	100∨	A43360E-01
C4	10,000	Electrolytic	100V	A43360E-01
C5	10,000	Electrolytic	100V	A43360E-01

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part Number	Manufacturer
		POWER SU	PPLY (Co	ntinue	d)	
Diodes					Gresham Dro	wing No.
D1-D4 D5-D8		1R-25G10 (4 off) 1R-BS1			A 43360E-07	
Miscella	neous					
Tl		Mains Transformer			43365	
L1		Choke, 5mH			43366	
VSI		Mains Selector Unit			UE 60666L5-	·2
		MUTING	UNIT (A	MS <i>5</i> 65)		
Resistors	(ahm)_	,				
12AR1	100	Fixed		5	913962	Electrosil TR6
12AR2	100	Fixed			913962	Electrosil TR6
12AR3	47	Wirewound		5 5	913695	Welwyn W22
12AR4	390	Metal Oxide		5	908472	Electrosil TR4
12AR5	150	Metal Oxide		5	909121	Electrosil TR4
12AR6	1.2k	Metal Oxide		5	908285	Electrosil TR4
12AR7	1k	Metal Oxide			908267	Electrosil TR4
12AR8	39	Metal Oxide		5 5 5	910491	Electrosil TR4
12AR9	18	Metal Oxide		5	916626	Electrosil TR4
12AR10	1.2k	Metal Oxide		5	908285	Electrosil TR4
12AR11	2.2k	Metal Oxide		5	908270	Electrosil TR4
12AR12	150	Metal Oxide		5	909121	Electrosil TR4
12AR13	390	Metal Oxide		5	908472	Electrosil TR4
12AR14	33	Wirewound		5	913584	Welwyn W21
12AR15	1k	Metal Oxide		5	908267	Electrosil TR4
12AR16	4.7k	Metal Oxide		5	900989	Electrosil TR4
12AR17	47k	Metal Oxide		5	908391	Electrosil TR4
12AR18	10k	Metal Oxide		5	900986	Electrosil TR4
12AR19	4.7k	Metal Oxide		5	900989	Electrosil TR4
12AR20	220	Metal Oxide		5	900988	Electrosil TR4
12AR21	470	Metal Oxide		5	906019	Electrosil TR5
12AR22	47k	Metal Oxide		5	908391	Electrosil TR4
12AR23	18k	Metal Oxide		5	916626	Electrosil TR4
12AR24	27k	Metal Oxide		5	908295	Electrosil TR4

Cct. Ref.	Value	Description	Rat.	Tal. %	Racal Part Number	Manufacturer
· · · · · · · · · · · · · · · · · · ·	-	MUTIN	G UNIT (Co	ntinued	J)	
Capacita	rs (uF)					
12AC1	0.1	Fixed	25∨	+50 -25	911845	Erie 831/T
12AC2	0.1	Fixed	100∨	20	914173	ITT, PMC2R
12AC3	0.1	Fixed	100∨	20	914173	ITT, PMC2R
12AC4	0.1	Fixed	100∨	20	914173	ITT, PMC2R
12AC5	0.1	Fixed	25V	+50 -25	911845	Erie, 831/T
12AC6	0.1	Fi×ed	100∨	20	914173	ITT, PMC2R
12AC7	22	Electralytic	63V	+50 -10	923636	Erie, 20101-100-0
12AC8	10	Tantalum	20	20	905399	TAAB10M20
12AC9	0.1	Fixed	100∨	20	914 17 3	ITT, PMC2R
12AC10	0.1	Fixed	100∨	20	914173	ITT, PMC2R
12AC11	0.1	Fixed	100∨	20	914173	ITT, PMC2R
12AC12 Diades	39p	Fixed	500∨	5	919459	Erie, 831/N750
12AD1		1N4002			923564	Fairchild
12AD1 12AD2		1N4002			923564	Fairchild
12AD3		8ZY88C10			917217	Mullard
12AD4		1N4149			914898	STC
12AD5		1N4149			914898	STC
12AD6		1N4149			914898	STC
12AD7		1N4149			914898	STC
12AD8		1N4149			914898	STC
12AD9		1N4149			914898	STC
Transisto	rs					
12ATR1		2N3553			916730	Mullard
12ATR2		2N3553			916730	Mullard
12ATR3		8FY51			908753	Mullard
12 AT R4		BFY51			908753	Mullard
12ATR5		8FY51			908753	Mullard
12ATR6		BC107			911929	Mullard
12ATR7		BC107			911929	Mullard

Cct. Ref.	Value	Description	Rat.	Tal. %	Racal Part Number	Manufacturer
		MUTING L	JNIT (Co	ntinuec	ł)	
Transfart	mers					
12AT1		Output Transformer			CT 604693	Racal
12AT2		Input Transfarmer			CT604693	Racal
Ferrite 8	eads					
12AFB1		FX 1242			907488	Mullard
12AF82		FX1242			907488	Mullard
12AF83		FX1242			907488	Mullard
12AF84		FX1242			907488	Mullard
Connect	ors					
125K1		Coaxial 50 ahms			908387	Transradio BN5/5A
125K2		Coaxial 50 ahms			908387	Transradio BN5/5A
12PL1		9-way plug			915643	Cannon DE9P

Fig. 3

Component Layout: Distribution Amplifier P.C.B. PS319

BA603381 ರ 9

Component Layout: Cabinet V.S.W.R. Unit PCB PS317

ADH (662) [CC 642 (78)

Circuit: Meter Panel MS445

. Circuit: V.S.W.R. P.C.B PS316

Fig. 19

Circuit: Power Supply Unit MS64

FRONT VIEW

Circuit: Stabilizer Module MS440

Component Layout Stabilizer Module MS 440

WOH 40#3 CC603582

Circuit: Control Panel MM377

Fig. 30

FRONT VIEW

Layout: Control Panel MM 377

WOH 4083

Fig.31

Location of Connectors, Relays etc. TA.1813

Circuit: Muting Unit MS564

RACAL COMMUNICATIONS LIMITED, BRACKNELL

AMENDMENT TO

500W LINEAR AMPLIFIER TYPE TA. 1813

Camponents List

Page 8-10

Cabinet VSWR Unit

Amend Capacitar C4 to read 120 pF, Part Na. 902236

Page 8-12

RF Pawer Module - MM420 Chassis

Delete resistor 5R4 - nat used

Delete capacitar 5C4 - nat used

Add diodes 5D2 and 5D3 to read Type IN4002 Part No. 911460, Texas

Add transformer 5T3, Part No. CT 604968 Manufacturer Racal

Page 8-24

Protection Board PS 251

Amend Resistor 5CR2 to read lk, Part No. 908267

Page 8-31

Muting Unit

Amend resistor 12AR23, 18k to read Part No. 908272

Page 8-32

Muting Unit

Amend capacitar 12ACl to read 0.01 µF

Amend capacitor 12AC5 to read 0.01 µF

Amend capacitor 12AC12 to read 33p

ILLUSTRATIONS

F ig 7:

Circuit: VSWR Unit MS447

Amend capacitor C4 ta read 120p

MAY 1974

Change No. 1.

(continued)

Issue. B.

Fig. 19

Circuit: Pratection PSB PS.251

Amend R2 to read Ik

Fig. 21:

Circuit Interconnection RF Madule MM320

Add diades 5D2 and 5D3 with transformer 5T3 as shown in fallowing diagram:-

Fig. 32

Overall Interconnecting Diagram:

Ref: muting unit (located lower right-hand side)

Amend 125K2to read 12 SK1 mating with PL34

Amend 12SK1 to read 12SK2 mating with PL27

Fig. 34

Muting Unit MS564

Delete reference to co-axial socket Sk1 (RF Output) and earth cannection to pin 2 an

PCB (PS 565)

Insert wire cannection from Sk1 to pin 1 on same PCB.

Fig. 35

Camponent layout: Muting Unit

Delete '+ sign lacated between R12 and D6 on board.

Change No. 1.

RACAL COMMUNICATIONS LIMITED, BRACKNELL

AMENDMENT TO

TA. 1813 500W LINEAR AMPLIFIER

CHAPTER 4 Page 4-1 Para. 6

Amend sentence, line two, to read: 'The unit also provides a 'fault' signal if there is either a total supply failure whilst the main contactor is still made or a 'fault' signal is received from an associated unit, such as the MA. 1004 Feeder Matching Unit.'

CHAPTER 5 Page 5-3 Para. 16

Amend sentence, line two, to read: 'It also provides a 'fault' signal if there is either a total supply failure whilst the main contactor is still made or a 'fault' signal is received from an associated unit, such as the MA. 1004 Feeder Matching Unit.'

COMPONENTS LIST

Page 8-14 Low Level Board.

Add resistor 5ZR30 to read 470 A. Metal Oxide, Tol. 5%, Part No. 906019, Type Electrosil TR5.

Amend resistor 5AR32 to read 47 JZ. Part No. 911930.

Page 8-15 Low Level Board.
Add resistor 5AR55 to read 3.3k, Metal Oxide, Tol. 5%, Part No. 900991, Type Electrosil TR4.

Page 8-21 High Level Board Add capacitors 58C35 and 58C36 to read, 0.01 μ F, Disc Ceramic, Rating 250V, Tol. -20+50%, Part No. 900067, Type Erie 801/K800011.

Page 8-30 Power Supply MS.64.
Delete capacitor C1 (10 µF) not used.

Page 8-31 Muting Unit MS.565
Delete resistor 12AR18 (10k) not used.

Page 8-32 Add Diode 12AD10 to read 1N4149, Part No. 914898, Manufacturer; STC.

ILLUSTRATIONS

Fig. 13 Low Level 80ard PS.351
Add resistor R55 (3.3k) between the junction of zener diode D4/TR5 emitter and the +20V supply.

AUGUST 1974 TA. 1813 Change No. 2 Issue 8. Sheet 1 of 2 Fig. 13 Continued

Amend R32 to read 47 2

Add resistor R30 (470 a.) between the junction of R32/D11 and earth.

Fig. 15 High Level 8oard PS.315

Add capacitor C35 (0.01 µF) between the base of transistor TR5 and +30V

supply.

Add capacitor C36 (0.01 μ F) between the base of transistor TR6 and +30V supply.

Fig. 16

Capacitors C35 and C36 are mounted an existing pins adjocent to transistars TR5 and TR6 respectively.

Fig. 25 Pawer Supply Unit MS.64

Delete copocitor C1 (10 µF).

Fig. 34 Muting Unit MS.564

Delete resistor R18 (10k) and replace with diade D10, cathode connection to the base of transistor TR5.

Fig. 35

Amend R18 to read D10 and odd '+' sign to the end nearest transistor TR5.

TA.1813 Add to Change No. 2. Issue B

COMPONENTS LIST

Page 8-1 8lowers

Amend IBL1 and IBL2 to read Part No. DD603418 Racal.

Connectors

Poge 8∽2

Amend connectors IPL1, IPL2, IPL3, IPL4, IPL9, IPL11, IPL13, IPL15 and IPL27, together with,

Page 8-5

Amend connectors 7PL2 and 7PL3 to read as follows:-

Coaxiol 50 ohm, Port No. 923981, Type Rodioll R141082.

Add to each of the above connectors a note to read: 'Add Adaptor-Elbow, Port No. 924736, Type Radio!! R141770.

AUGUST 1974 TA. 1813 Change No. 2 Issue 8. Sheet 2 of 2