

华中科技大学计算机与科学技术学院 2024~2025 第一学期

"离散数学(二)"期中考试试卷

考试方式	试方式 闭卷		日期	2024-10-16	考试时长		50 分钟
专业班级		学	号		姓	名	

题号	1	2	3	4	5	6	7	总分	总分人	核对人
分值	20	10	10	20	10	10	20	100		
得分										

1. 分别计算 3⁹⁶³ mod 35 以及 17! mod 19 的值。(20 分)

参考答案: 因为 gcd(3,35)=1, 且 φ(35)=24,则 3⁹⁶³ mod 35=3³ mod 35=27;

因为 19 为质数, 先计算 18 mod 19 的逆元为-1, 再在 18! (mod 19)=-1 (mod 19)两端同时乘上 18 mod 19 的逆元, 即-1, 可得 17! (mod 19)=1 (mod 19)

2. 求线性同余式 35x≡10 mod 50 的所有解。(10 分)

参考答案: 化简上述同余式得 7x = 2 mod 10, 再求 7 mod 10 的逆元为 3,

因此 x≡6 mod 10, 即 x=6+10k, 这里 k 是任意整数, 即 x=6,16,26,36,...,-4,-14,-24,...。

3. 将整数 5 允许重复地**有序**拆分成三个非负整数的方案有几个?要求写出具体求解过程。(10 分)

参考答案: 即求 x1+x2+x3=5,其中 x1, x2 和 x3 均为非负整数的解个数,允许重复的组合,即 C(3+5-1,2)=C(7,2)=21 个方案。具体如下:

(5,0,0), (0,5,0), (0,0,5), (4,1,0), (4,0,1), (1,4,0), (1,0,4),

(0,4,1), (0,1,4), (3,2,0), (3,0,2), (2,3,0), (2,0,3), (0,3,2),

(0,2,3), (3,1,1), (1,3,1), (1,1,3), (2,2,1), (2,1,2), (1,2,2);

4. 某班有 7 个男同学,6 个女同学,现要组织一个由数目为奇数的男同学和数目不少于 3 的女同学组成的小组,问选 11 人多少种组成方式?要求分别给出所选男女同学的离散序列和相应生成函数再进行求解。(20 分)

参考答案: 令 a_n 为从 7 位男同学中抽取出 n 个的允许组合数。由于要求其数目必须是奇数。故 a_1 =C(7,1)=7, a_3 =C(7,3)=35, a_5 =C(7,5)=21, a_7 =C(7,7)=1, a_0 = a_2 = a_4 = a_6 =0,其生成函数 A(x)=7x+35x3+21x5+x7。令 b_n 为从 6 位女同学中抽取出 n 个的允许组合数。由于要求其数目大于或等于 3。故 b_0 = b_1 = b_2 =0, b_3 =C(6,3)=20, b_4 =C(6,4)=15, b_5 =C(6,5)=6, b_6 =C(6,6)=1,其生成函数 B(x)= $20x^3$ +15 x^4 +6 x^5 + x^6 。求 A(x)*B(x)中 x^{11} 系数为 36。 A(x)*B(x)= x^{13} +6 x^{12} +36 x^{11} +146 x^{10} +350 x^9 +630 x^8 +532 x^7 +742 x^6 +105 x^5 +140 x^4 。这题只要正确求出 x^{11} 系数即可。

5. 3 个有区别的球放进 4 个有标志的盒子里,要求 1,2 两个盒子必须有 奇数个球,第 3 个盒子有偶数个球,求不同的方案个数,并列出。[提示:可用指数型生成函数求解] (10 分)

参考答案: 题目相当于把 1, 2, 3, 4 允许重复地排成三位数的个数, 要求 1和 2 出现的次数为奇数, 3 出现的次数为偶数, 4 出现的次序不限。例如数字 124, 其中第 i 位的数字表示把第 i 个球放到标号为该数字的盒子里, 这里 124 相当于把第 1 个球放到盒子 1, 第二个球放到盒子 2, 第三个球放到盒子 4。

因为要求 1 和 2 出现的次数为奇数,最多为 3 次,因此其指数型生成函数 $A(x)=(x+x^3/3!)^2$,因为要求 3 出现的次数为偶数,最多为 2 次,因此其指数型生成函数 $B(x)=(1+x^2/2!)$,因为 4 出现的次数不限,最多 3 次,因此其指数型生成函数 $C(x)=(1+x+x^2/2!+x^3/3!)$ 。求 A(x)*B(x)*C(x)的展开式中 $x^3/3!$ 的系数为 6,因此有 6 种,分别为 124, 142, 214, 241, 412

和 421。这里 3 均出现 0 次,表示没有任何球扔到盒子 3 中。

6. 证明: 当 p 是质数且 e 是正整数时,欧拉函数 $\varphi(p^e)=p^{e^{-1}}(p-1)$,这里欧拉函数 $\varphi(n)$ 表示小于或等于 n 的正整数中与 n 互质的数的个数。 (10 分)

参考答案:与 p^e不互质的数有 p,2p,3p,4p,...p^e,这里最后一个数 p^e可以表示成 p^{e-1}*p,所以共有 p^{e-1}个数与 p^e不互质;此外小于或等于 p^e的正整数有 p^e个,因此 ϕ (p^e)= p^e - p^{e-1}= p^{e-1}(p-1),举例而言, ϕ (8)= ϕ (2^3)=4*1=4,即 1,3,5,7 四个数。

7. (1) Alice 和 Bob 使用 Diffie-Hellman 密钥交换协议生成共享密钥,假设他们使用素数 p=23,并取原根 g=5,且 Alice 选择私钥 a=6,而 Bob 选择私钥 b=15,计算他们各自使用的公钥和共享密钥;(2) Alice 拟用凯撒密码(即 Shift Cipher)作为对称加密算法对字符串"HELLO"进行加密并发给 Bob,然后 Bob 再用凯撒密码进行解密,分别写出 Alice 发送的密文和 Bob 解密的明文,写出过程,这里密钥即为各自的共享密钥。(20 分)

参考答案:

- (1) Alice 计算其公钥为 5⁶ mod 23=8, Bob 计算其公钥为 5¹⁵ mod 23=19, 则 Alice 的共享密钥为 19⁶ mod 23=2, 而 Bob 的共享密钥为 8¹⁵ mod 23=2;
- (2) 即 f(p)=p+2,则 Alice 发送的密文为 JGNNQ;而 Bob 则采用 f(p)的 逆函数 p-2,则其解密的明文为 HELLO。