# Mining The Web For Code Assistance

Aditya Parameswaran, Deva Surya Vivek Madala, Dibyendu Mishra Mentors: Prof. Ashish Surekha, Anjali CS-312, Program Analysis Ashoka University

#### 1.Introduction

Although existing IDEs (e.g., Eclipse, Netbeans, VisualStudio) are equipped with various debugging supports for programming errors and exceptions, software developers often look into the web for working solutions and for any up-to-date information. According to the study of Brandt et al., developers spend about 19% of their development time in web surfing.

They resort to finding solutions to programming errors and exceptions or reviewing code on online QandA sites like StackOverflow, portals like GeeksForGeeks or development platforms like Github despite the availability of various debugging tools on their IDE. Nevertheless, these services are detached from the development environments used by programmers. Developers have to tap into this crowd knowledge through web browsers and cannot smoothly integrate it into their workflow. This situation hinders part of the benefits of these services.

We introduce CodeBuddy, a plugin for the IntelliJ IDEA IDE which provides developers access to these resources without having to leave their IDE. In this preliminary version our plugin is able to (1) retrieve source code from knowledge repositories like GeeksForGeeks for a given query (2) display relevant questions and discussions on StackOverflow for the query (3) start a new discussion on StackOverflow if no relevant discussion is found.

## 2.CodeBuddy



- 1) Query Specification
- 2) Results View Pane
- 3) Link to the source
- 4) Results Navigation
- 5) Feedback Pane



- Query Specification
   Page
- 2) Results Pane
- 3) Navigation Pane
- Post a new question on StackOverflow





#### 3. Performance

In order to evaluate our plugin we created a list of 46 queries with varying levels of complexity. We saw impressive results in terms of recall and precision using just the \_ panel. The list of 46 queries are divided into 26 simple and 20 complex queries. The precision scores are calculated for each query and tabulated below. The overall precision is then deduced by averaging over the precision scores for all the queries. It is however noted that different features are used based on the type of queries. For instance, some complex queries require the use of additional features such as 'Search from Github' or 'Find Discussion on Stackoverflow' in order to get relevant results.

| SI.<br>No. | Query                 | Precision | Туре |
|------------|-----------------------|-----------|------|
| 1          | Reversing a string    | 1         | Easy |
| 2          | Reversing an array    | 1         | Easy |
| 3          | Factorial of a number | 0.875     | Easy |

| 4  | Generate Fibonacci sequence          | 1    | Easy    |
|----|--------------------------------------|------|---------|
| 5  | Sorting an array                     | 1    | Easy    |
| 6  | Swapping two numbers                 | 1    | Easy    |
| 7  | Find min and Max of an array         | 1    | Easy    |
| 8  | Add two numbers                      | 0.66 | Easy    |
| 9  | Check for leap year                  | 1    | Easy    |
| 10 | Check if a number is odd or even     | 1    | Easy    |
| 11 | Linear search                        | 1    | Easy    |
| 12 | Generate random number               | 0.66 | Easy    |
| 13 | Sum of array                         | 1    | Easy    |
| 14 | Average of numbers                   | 1    | Easy    |
| 15 | Get input from user                  | 1    | Easy    |
| 16 | Create a file                        | 1    | Easy    |
| 17 | Read from a file                     | 1    | Easy    |
| 18 | Write to a file                      | 1    | Easy    |
| 19 | Create m x n matrix                  | 1    | Easy    |
| 20 | Number of words in a sentence        | 1    | Easy    |
| 21 | Find ascii value of a character      | 1    | Easy    |
| 22 | Join two lists                       | 1    | Easy    |
| 23 | Converting character array to string | 1    | Easy    |
| 24 | Converting string to character array | 0.75 | Easy    |
| 25 | Palindrome check                     | 1    | Easy    |
| 26 | LCM of two numbers                   | 1    | Easy    |
| 27 | Breadth first Search                 | 1    | Complex |
|    | I .                                  | 1    | l       |

| 28 | Opening and closing a socket            | 1    | Complex |
|----|-----------------------------------------|------|---------|
| 29 | Binary to decimal                       | 1    | Complex |
| 30 | Decimal to binary                       | 1    | Complex |
| 31 | Depth First Search                      | 1    | Complex |
| 32 | Dining philosophers                     | 1    | Complex |
| 33 | Find duplicate characters in a string   | 1    | Complex |
| 34 | Term frequency in a sentence/paragraph  | 0.5  | Complex |
| 35 | Sleeping Barber                         | 0.5  | Complex |
| 36 | String pattern matching                 | 1    | Complex |
| 37 | Kruskal's Minimum Spanning Tree         | 1    | Complex |
| 38 | Dijkstra's Shortest Path                | 1    | Complex |
| 39 | Recursive Digit Sum                     | 1    | Complex |
| 40 | Caesar Cipher                           | 1    | Complex |
| 41 | Pangram Checking                        | 0.66 | Complex |
| 42 | Minimum Absolute Difference in an Array | 1    | Complex |
| 43 | Check if Sum and XOR are equal          | 1    | Complex |
| 44 | Append to CSV                           | 0.5  | Complex |
| 45 | Check Prime Using Trial Division        | 0.75 | Complex |
| 46 | Leonardo Numbers                        | 1    | Complex |

Overall precision of the system = 42.855/46 = 0.931 (**93%** precision)

### 4. Future Development

- Using the feedback received by users in the form of upvotes and downvotes to improve solutions retrieved and provide better assistance to users across the platform.
- Form a codebase of our own by storing the results retrieved for each query such that
  machine learning algorithms can be implemented on the data to move towards automatic
  code generation as opposed to a purely retrieval based system.
- Creation of code templates so as to create structures that can invoked easily by the user for integrating with one's own program.
- Automatic query formation from active IDE context (by extracting keywords from the chosen code entities)

#### 5.References

- Mining StackOverflow to Turn the IDE into a Self-Confident Programming Prompter https://www.si.usi.ch/assets/publications/conf/msr/msr2014/PonzanelliBPOL14.pdf
- SurfClipse: Context-Aware Meta Search in the IDE https://www.cs.usask.ca/~croy/papers/2014/MasudICSME2014ToolSurfClipse.pdf
- Discussions from Stackoverflow, special search on GitHub http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.700.5699&rep=rep1&type=pdf