Chicago's crime data in 2021

Agenda

Introduction

In practically every nation, crime is rising quickly. Analyzing many aspects of crime and identifying criminal trends are highly important. Security agencies throughout the world are working hard to lower these crimes, but the volume of crime data is growing quickly, making it challenging to handle such a large amount of data and to maintain records of crimes that occur over a vast geographic area and over a variety of time periods. Therefore, having a criminal information system that can analyze a lot of data quickly is essential. Also, one of the most efficient techniques to explore, analyze, find patterns, and forecast future crimes in a vast quantity of data is data analysis by using clustering, classification, and association mining.

Description

Dataset for year 2021

.csv format

48.1 MB → size

Collected from: Kaggle

Libraries used

- Data Wrangling → Panadas
- NumPy (for math operations)
- Datetime (python datetime module)

Data Visualization

Matplotlib & seaborn

→ 2.1 Data Gathering

ì	# put dataset> dataframe
	<pre>df = pd.read_csv('Chicago_Crimes_2021.csv')</pre>
	df.head(5)

₽	ID	Case Number	Date	Block	IUCR	Primary Type	Description	Location Description	Arrest	Domestic	•••	Ward	Community Area	FBI Code	X Coordinate	Y Coordinate	Year	
	0 12445124	JE328077	08/05/2021 10:00:00 PM	033XX S LEAVITT ST	0610	BURGLARY	FORCIBLE ENTRY	RESIDENCE - GARAGE	0	0		25.0	59.0	05	1162228.0	1882544.0	2021	0
	1 12541099	JE445417	11/14/2021 10:58:00 PM	003XX N LAVERGNE AVE	143A	WEAPONS VIOLATION	UNLAWFUL POSSESSION - HANDGUN	STREET	1	0		28.0	25.0	15	1142984.0	1901704.0	2021	1
:	2 12344992	JE204888	04/16/2021 12:00:00 AM	011XX W 50TH ST	0820	THEFT	\$500 AND UNDER	APARTMENT	0	0		20.0	61.0	06	1169689.0	1871646.0	2021	0
	3 12345838	JE205622	03/03/2021 06:20:00 PM	012XX N WELLS ST	0820	THEFT	\$500 AND UNDER	STREET	0	0	575	2.0	8.0	06	1174488.0	1908479.0	2021	0
	12444222	JE326942	08/05/2021 11:00:00 AM	044XX N BROADWAY	0486	BATTERY	DOMESTIC BATTERY SIMPLE	APARTMENT	0	1		46.0	3.0	08B	1168547.0	1929701.0	2021	0

5 rows × 22 columns

Summary

#Summary df.info() 21.csv <class 'pandas.core.frame.DataFrame'> RangeIndex: 207914 entries, 0 to 207913 Data columns (total 22 columns): Column Non-Null Count Dtvpe _____ TD 0 207914 non-null int64 1 Case Number 207914 non-null object Date 207914 non-null object 207914 non-null object Block TUCR 207914 non-null object Primary Type 207914 non-null object Description 207914 non-null object Location Description 207071 non-null object 8 Arrest 207914 non-null int64 Domestic 207914 non-null int64 10 Reat 207914 non-null int64 207914 non-null float64 11 District Ward 207903 non-null float64 Community Area 207914 non-null float64 FBI Code 207914 non-null object 15 X Coordinate 202902 non-null float64 16 Y Coordinate 202902 non-null float64 17 Year 207914 non-null int64 207914 non-null object 18 Updated On 19 Latitude 202902 non-null float64 20 Longitude 202902 non-null float64 21 Location 202902 non-null object

dtypes: float64(7), int64(5), object(10)

memory usage: 34.9+ MB

84.74 GB available

Missing Values

Missing Values Cont.

The simplest cleaning technique here

would be to drop all the rows with at least

one missing value --> as every feature in

the dataset is important

rt Runtime Tools Help All changes saved + Code + Text $\square \times$ dt.into() <class 'pandas.core.frame.DataFrame'> Int64Index: 202264 entries, 0 to 207903 Data columns (total 22 columns): Non-Null Count Column -----TD 202264 non-null int64 21.csv Case Number 202264 non-null object Date 202264 non-null object 202264 non-null object Block IUCR 202264 non-null object Primary Type 202264 non-null object Description 202264 non-null object Location Description 202264 non-null object Arrest 202264 non-null int64 Domestic 202264 non-null int64 10 Beat 202264 non-null int64 11 District 202264 non-null float64 12 Ward 202264 non-null float64 13 Community Area 202264 non-null float64 14 FBI Code 202264 non-null object 15 X Coordinate 202264 non-null float64 16 Y Coordinate 202264 non-null float64 17 Year 202264 non-null int64 18 Updated On 202264 non-null object 19 Latitude 202264 non-null float64 20 Longitude 202264 non-null float64 202264 non-null object 21 Location dtypes: float64(7), int64(5), object(10) memory usage: 35.5+ MB ✓ [12] # How much of the data has been deleted ?

Observations

- Most occurring top 5 crimes in Chicago in 2021
- Modify the date column to a pythonic format
- Convert the date-time column to a known format
- Top crimes in Chicago in the year 2021
- Create a new column month.
- The probability of arrest of Chicago
- Distribution of arrests across the months
- What are the most unsafe hours
- Is your house safe from burglary during the day
- Visualize a crime pattern for 24 hours
- Crime & time
- Crime & location
- Most common Occurrences per district
- Which region is given crime concentrated in?
- Visualizing Narcotics (to get an understanding of the most prevalent of drugs in the area
- Visualizing with heatmaps
- Using Supervised machine learning to predict crime hotspots

Is the house safe from a burglary during the day?

Crime vs Locations

Heatmap

	District vs Month												
10	34.000000	37.000000	18.000000	20.000000	21.000000	34.000000	44.000000	25.000000	41.000000	39.000000	34.000000	43.000000	
20	40.000000	68.000000	64.000000	35.000000	46.000000	54.000000	58.000000	43.000000	47.000000	86.000000	76.000000	77.000000	
30	78.000000	106.000000	79.000000	69.000000	90.000000	99.000000	89.000000	103.000000	92.000000	88.000000	101.000000	103.000000	
40	91.000000	106.000000	80.000000	59.000000	110.000000	97.000000	112.000000	78.000000	109.000000	94.000000	112.000000	112 000000	
20	103.000000	142.000000	132.000000	87.000000	105.000000	155.000000	107.000000	106.000000	134.000000	121 000000	111.000000	130.000000	
0.0	102.000000	143.000000	87.000000	105.000000	135.000000	138.000000	140.000000	179.000000	139.000000	127.000000	109.000000	132.000000	
7.0	122.000000	120.000000	72.000000	86.000000	126.000000	138.000000	174.000000	103.000000	156.000000	94.000000	125.000000	118.000000	
80	93.000000	110.000000	107.000000	81.000000	97.000000	95.000000	101.000000	94.000000	114.000000	120.000000	115.000000	138.000000	
90	68.000000	79.000000	98.000000	43.000000	69.000000	90.000000	86.000000	72.000000	83.000000	94.000000	90.000000	84.000000	
0.0	105.000000	85.000000	99.000000	84.000000	100.000000	111 000000	97.000000	99.000000	77.000000	93.000000	113.000000	86.000000	
11.0	278.000000	171 000000	145.000000	296.000000	311.000000	177.000000	254.000000	365.000000	316.000000	185.000000	176.000000	186 000000	
12.0	48.000000	55.000000	58.000000	34.000000	53.000000	54.000000	52.000000	56.000000	55.000000	87.000000	67.000000	61.000000	
14.0	45.000000	36.000000	47.000000	35.000000	35.000000	57.000000	45.000000	34.000000	41.000000	63.000000	78.000000	51.000000	
15.0	73.000000	96.000000	63.000000	67.000000	65.000000	77.000000	98.000000	90.000000	97.000000	78.000000	87.000000	73.000000	
16.0	52.000000	35.000000	54.000000	24.000000	43.000000	30.000000	43.000000	30.000000	55.000000	30.000000	42.000000	45.000000	
17.0	31.000000	28.000000	45.000000	21.000000	53.000000	48.000000	26.000000	38.000000	36.000000	43.000000	44.000000	38.000000	
18.0	34.000000	42.000000	53.000000	36.000000	45.000000	47.000000	61.000000	32.000000	43.000000	70.000000	73.000000	69.000000	
19.0	43.000000	39.000000	67.000000	29.000000	45.000000	48.000000	51.000000	23.000000	25.000000	60.000000	53.000000	41.000000	
0.0	19.000000	12.000000	21.000000	12.000000	17.000000	14.000000	11.000000	19.000000	7.000000	25.000000	24.000000	16.000000	
200	72.000000	63.000000	54.000000	52.000000	50.000000	46.000000	50.000000	55.000000	44.000000	46.000000	75.000000	72.000000	
24.0	29.000000	26.000000	36.000000	27.000000	29.000000	22.000000	37.000000	41.000000	21.000000	31.000000	42.000000	35.000000	
220	95.000000	89.000000	100.000000	74.000000	102.000000	111.000000	116.000000	118 000000	101.000000	88.000000	105.000000	104.000000	
31.0							1.000000						
	April	August	December	February	January	July	June	March	May	November	October	September	

Month

Supervised Machine Learning

```
+ coue
         34465
                       10
                                    31.0
(60]
         34464
                       10
                                    31.0
          497
                                    31.0
/ [61] cri4 = cri4[['Month num','Day','Hour','Primary Type','District']]
        cri4.head()
        cri4.shape
        (42047, 5)
/ [62] print(cri4['Primary Type'].max(),cri4['Primary Type'].min())
        32 1

√ [63] print("Average no. of crime per month per day per district per hour :",cri4['Primary Type'].sum()/42774,".")

        Average no. of crime per month per day per district per hour: 4.728666947210923.
  [64] # Feature Engineer and create a new feature
        def crime_rate_assign(x):
            if(x<=7):
                return 0
            elif(x>7 and x<=15):
                return 1
            else:
                return 2
        cri4['Alarm'] = cri4['Primary Type'].apply(crime_rate_assign)
        cri4 = cri4[['Month num', 'Day', 'Hour', 'District', 'Primary Type', 'Alarm']]
        cri4.head()
```

B available

THANK OU