## 1 Definitions

**Definition 1.1** (Prorelation). A partial-ordered set of relations  $X \to Y$ , which is down-directed and an upper set. i.e A set,  $P \subseteq \mathcal{P}(X \times Y)$  such that

- (i) A partial-order defined to be containment as relations,  $r \subseteq s$  only if  $\forall (x,y) \in X \times Y, (x,y) \in r \implies (x,y) \in s$
- (ii) (Down-directed),  $\forall r, s \in P, \exists t \in P \text{ such that } t \subseteq r \text{ and } t \subseteq s$
- (iii) (Up-set) for any relation  $u: X \to Y$ , if  $\exists p \in P$  such that  $p \leq u$  then  $u \in P$

**Definition 1.2** (Composition of prorelations). Prorelations can be composed by taking all compositions of their elements as relations: for prorelations  $P: X \to Y$  and  $Q: Y \to Z$ ,

$$Q.P := \{q \circ p : p \in P \text{ and } q \in Q\}$$

Definiton 1.3 (Comparison of Prorelations). Two prorelations with same domain, co-domain are comparable as

for 
$$P,Q:X\to Y$$
 ,  $P\le Q$  if  $\forall q\in Q, \exists p\in P$  such that  $p\subseteq q$ 

**Definition 1.4** (Quasi-uniformity). A prorelation on a set  $X, P : X \to X$  is a quasi-uniformity if it follows:

i 
$$\forall p \in P$$
, for any  $x \in X$ ,  $(x, x) \in p$  i.e.  $xpx$ 

ii 
$$\forall p \in P, \exists p' \in P \text{ such that } p' \circ p' \subseteq p$$

And in this case, (X, A) is called a *quasi-uniform space*.

**Definition 1.5** (Uniformly Continuous function). A function,  $f: X \to Y$  is called a uniformly continuous function,

$$f: (X,A) \to (Y,B) \text{ if, } \forall b \in B, \exists a \in A \text{ such that } f \circ a \subseteq b \circ f. \text{ meaning that } f.A \leq B.f \text{ or } A \downarrow \qquad \leq \qquad \downarrow_B.$$

$$X \xrightarrow{f} Y$$

$$X \xrightarrow{f} Y$$

$$X \xrightarrow{f} Y$$

**Definition 1.6** (Promodule). A prorelation,  $\phi: X \longrightarrow Y$  is called a promodule  $\phi: (X, A) \longrightarrow (Y, B)$  if it obeys:  $\phi.A < \phi$  and  $B.\phi < \phi$  where . denotes composition as prorelations.

**Definition 1.7** (Comparison of Promodules). Promodules with same domain and co-domain are compared as prorelations, for  $\phi, \psi : (X, A) \longrightarrow (Y, B), \phi \sqsubseteq \psi$ , only if  $\phi \leq \psi$ .

**Definition 1.8** (Composition of Promodules). Promodules are composed as prorelations. For promodules  $\phi: (X, A) \longrightarrow (Y, B)$  and  $\psi: (Y, B) \longrightarrow (Z, C)$ ,  $\psi \phi := \psi . \phi = \{q \circ p : p \in \phi \text{ and } q \in \psi\}$ 

**Definition 1.9** (Opposite relation). For relation  $r: X \to Y$ ,  $r^o$  is defined to be a relation  $r^o: Y \to X$  as

$$\forall (x,y) \in X \times Y, (x,y) \in r \iff (y,x) \in r^o$$

**Lemma 1.9.1.** For any relation  $r: X \to Y$ ,  $r^o \circ r = \Delta_X$ 

**Lemma 1.9.2.** For any relation  $r: X \to Y$ ,  $r \circ r^o \subseteq \Delta_Y$ 

**Lemma 1.9.3.** For relations  $r, s: X \to Y$  and  $t: Y \to Z$ , for any  $x, x' \in X$ ,  $r(x) \subseteq s(x') \implies (t \circ r)(x) \subseteq (t \circ s)(x)$ 

**Lemma 1.9.4.** For relations  $r: X \to Y$  and  $s, t: Y \to Z$ ,  $s \subseteq t \Longrightarrow (s \circ r) \subseteq (t \circ r)(x)$ 

**Definition 1.10**  $((-)_*)$ .

**Definition 1.11**  $((-)^*)$ .

Definiton 1.12 (Fully Faithful).

Definiton 1.13 (Fully Dense).

**Definition 1.14** (Topologically Dense).

## 2 Propositions

**Definition 2.1** (QUnif). QUnif is defined to be the category having quasi-uniform spaces as objects, and uniformly continous maps between them as morphisms.

Lemma 2.1.1. QUnif does define a category, as

- i Composition
- ii Identity

Definiton 2.2 (ProMod).

Lemma 2.2.1. ProMod does define a category, as

- i Composition
- ii Identity

**Proposition 2.1**  $((-)_* : QUnif \rightarrow ProMod \text{ is a Functor }).$ 

Proof.

**Proposition 2.2**  $((-)^* : QUnif^{op} \to ProMod$  is a Functor ). Defined as fixing objects and taking morphisms to their image under  $(-)^*$ 

- (a) for  $(X, A) \in \text{QUnif}^{op}$ ,  $(X, A)^* := (X, A) \in \text{ProMod}$
- (b) for  $f:(X,A)\to (Y,B)$  in QUnif,  $f^*:=f^o.B$

Proof.

Showing that  $f^o.B:(Y,B) \longrightarrow (X,A)$  is a promodule

So, need to show  $f^o.B$  a prorelation  $Y \to X$  and that  $(f^o.B).B \sqsubseteq f^o.B$  and  $A.(f^o.B) \sqsubseteq f^o.B$  To show prorelation,

- (i) (Partial-order) Inclusion of relations i.e. for  $k = f^o \circ b$  and  $k' = f^o \circ b'$  in  $f^o B$ ,  $k \subseteq k' \iff b \subseteq b'$
- (ii) (Down directed) for  $k, k' \in f^o.B$ , need that  $\exists l \in f^o.B$  such that  $l \subseteq k, k'$

Fix  $k, k' \in f^o.B \implies \exists b, b' \in B : k = f^o \circ b \text{ and } k' = f^o \circ b'$ 

And as B is a quasi-uniformity, it's down directed so,  $\exists c \in B : c \subseteq b, b' \implies l := f^o \circ c \subseteq k, k'$ 

(iii) (Up-set) for a relation  $l: Y \to X$  and  $k \in f^o.B$  such that  $l \supseteq k$ , need  $l \in f^o.B$ 

Let  $b \in B$  be such that  $k = f^o \circ b$  and define  $b' := \{(y, y') : y \in domain(l) \text{ and } y' \in (f^o)^{-1}(l(y)) \}$ 

As  $l \supseteq k = f^o \circ b$ ,  $domain(b') = domain(l) \supseteq domain(b)$ 

and  $range(l) \supseteq range(f^o \circ b) \implies \forall y \in domain(b), range(b') = (f^o)^{-1}(l(y)) \supseteq (f^o)^{-1}(f^o \circ b) = range(b)$ Now, by definition of b',  $f^o \circ b' \supseteq l$ . To show  $f^o \circ b \subseteq l$ ,

(x, y)  $\in f^o \circ b' \implies \exists z \in Y : (x, z) \in b' \text{ and } (z, y) \in f^o \implies x \in domain(l) \text{ and } z \in l(x) \text{ i.e. } (x, z) \in l$ 

To show  $(f^o.B).B \le f^o.B$ , need that  $\forall b \in B, \exists b' \in B : f^o \circ b' \circ b' \subseteq f^o \circ b$ ,

Fix any  $b \in B$  as B is a quasi-uniformity,  $\exists b' \in B : b' \circ b' \subseteq b \implies f^o \circ b' \circ b' \subseteq f^o \circ b$ 

To show  $A.(f^o.B) \leq f^o.B$ , need that  $\forall b \in B, \exists b' \in B, a \in A : a \circ f^o \circ b' \subseteq f^o \circ b$ ,

As f is uniformly continuous,  $f.A \leq B.f$  i.e.  $\forall b \in B, \exists a \in A: f \circ a \subseteq b \circ f \implies a = f^o \circ f \circ a \subseteq f^o \circ b \circ f$ 

Fix any  $b \in B$ , so,  $\exists b' \in B : b'b' \subseteq b$  (for brevity, omitting  $\circ$  to explicitly denote composition )

And, for this  $b', \exists a : a \subseteq f^ob'f \implies af^ob' \subseteq f^ob'ff^ob' \subseteq f^ob'b' \subseteq f^ob \implies af^ob' \subseteq f^ob$ 

Now, need to show that  $(-)^*$  respects composition and identity.

(i) (Composition) let f, g be uniformly continuous,  $(X, A) \xrightarrow{f} (Y, B) \xrightarrow{g} (Z, C)$  need that  $(g \circ f)^* = f^*.g^*$ 

LHS= $(g \circ f)^* = (g \circ f)^o \cdot C = (f^o \circ g^o) \cdot C$  and RHS= $f^* \cdot g^* = (f^o \cdot B) \cdot (g^o \cdot C)$ 

For equality, showing that LHS\geq RHS and LHS\leq RHS:

To show  $(f^o \circ g^o).C \ge (f^o.B).(g^o.C)$ , need that  $\forall c \in C, \exists b \in B, c' \in C : f^og^oc \supseteq f^obgc'$ 

Fix any  $c \in C$ , so,  $\exists c' \in C : c' \circ c' \subseteq c \implies f^o g^o c \supseteq f^o g^o (c'c') = f^o g^o (c'\Delta_Z c') \supseteq f^o g^o c'(gg^o)c'$ 

By uniform countinuity of g, for  $c' \in C$ ,  $\exists b \in B : gb \subseteq c'g$ 

Thus,  $f^o g^o c \supseteq f^o g^o (c'g) g^o c' \supseteq f^o (g^o g) b g^o c' = f^o b g^o c'$ .

To show  $(f^o \circ g^o).C \leq (f^o.B).(g^o.C)$ , need that  $\forall b \in B, c \in C, \exists c' \in C : f^og^oc \subseteq f^obg^oc$ 

Fix any  $c \in C, b \in B$  will show that c' := c works:

As B is a quasi-uniformity,  $\Delta_Y \subseteq b \implies f^o \Delta_Y g^o c = f^o g^o c \subseteq f^o b g^o c = f^o b g^o c'$ 

(ii) (Identity) let  $(X,A) \in \text{QUnif}^{op}$ , and  $1_{(X,A)}: (X,A) \to (X,A)$  as  $x \mapsto x$  need that  $(1_{(X,A)})^* = 1_{(X,A)^*}$ LHS= $(1_{(X,A)})^* = (1_{(X,A)})^o . A = 1_{(X,A)} . A = A.$ 

Now, it's required that A is the identity of (X, A) in ProMod.

So, fix  $\phi:(X,A) \longrightarrow (Y,B)$ , need to show  $\phi.A = \phi$ 

As  $\phi$  is a promodule,  $\phi.A \leq \phi$  and as A is quasi-uniformity on X,

 $\forall a \in A, \Delta_X \subseteq a \implies \forall a \in A, \forall p \in \phi, p = p\Delta_X \subseteq pa \implies \phi \leq \phi.A$ 

Also, fix  $\psi:(Y,B) \longrightarrow (X,A)$ , need to show  $A.\psi=\psi$ 

As  $\psi$  is a promodule,  $A.\psi \leq \psi$  and as A is quasi-uniformity on X,

 $\forall a \in A, \Delta_X \subseteq a \implies \forall a \in A, \forall q \in \psi, q = \Delta_X q \subseteq aq \implies \psi \leq \psi.A$ 

**Proposition 2.3** (Proposition 1). Fix a uniformly continuous map,  $f:(X,A)\to (Y,B)$ 

- (a) f is fully faithful  $\iff A \ge f^o.B.f$
- (b) f is fully dense  $\iff \forall b \in B, \exists b' \in B \text{ such that } b' \subseteq bff^ob$
- (c) f is topologically dense  $\iff \forall b \in B, \Delta_V \subseteq b \circ f \circ f^o \circ b$
- (d) f is fully dense  $\iff$  f is topologically dense

Proof.

- (a) (i) ( $\Longrightarrow$ ) Let f be fully faithful i.e.  $f^*.f_* = A \Longrightarrow f^o.B.B.f = A$ Need to show that  $A = f^o.B.f$  i.e.  $A \le f^o.B.f$  and  $A \ge f^o.B.f$ By hypothesis and quasi-uniformity of B,  $A \geq f^o.B.B.f \geq f^oB.f$ To show  $A \leq f^o.B.f$ , need that  $\forall b \in B, \exists a \in A : a \subseteq f^obf$ Fix  $b \in B$ , hypothesis gives that  $f^o.B.B.f \leq A$  so,  $\exists a \in A : a \subseteq f^obbf$  and also, by quasi-uniformity of B, for  $b, \exists b' \in B : b'b' \subseteq b \implies f^ob'b'f \subseteq f^obf$ Combining the above two inequalities,  $a \subseteq f^o bbf \subseteq f^o bf$ 
  - (ii) ( $\iff$ ) Let  $A = f^o.B.f$  need to show  $A = f^o.B.B.f$  i.e.  $A \ge f^o.B.B.f$  and  $A \le f^o.B.B.f$ To show  $A \geq f^o.B.B.f$ , need to show that  $\forall a \in A, \exists b, b' \in B : a \supseteq f^obb'f$ Have that  $A \geq f^o.B.f$  and  $B.B \leq B$ So, fix  $a \in A$ , now  $\exists b \in B : a \subseteq f^obf$  and for this b,  $\exists b' \in B : b'b' \subseteq b$ . Therefore,  $a \supseteq f^obf \supseteq f^ob'b'f$ To show  $A \leq f^o.B.B.f$ , need  $\forall b, b' \in B, \exists a \in A : a \subseteq f^obb'f$ Before that, uniform continuity of f along with Lemma 2.1.1 gives that  $f.A < B.f \implies A = f^{o}f.A < f^{o}.B.f$ So, fix  $b, b' \in B$ , now, as,  $A \leq f^o.B.f$  giving  $\exists a \in A : a \subseteq f^o b f \text{ and } \exists a' \in A : a' \subseteq f^o b' f \implies \Delta_X \subseteq f^o b' f.$ Therefore  $a = a\Delta_X \subseteq (f^obf)(f^ob'f) \subseteq f^obb'f$
- (b) (i) ( $\Longrightarrow$ ) Let f be fully dense i.e.  $B = f_* f^* = B.f.f^o.B.$  showing that  $\forall b \in B, \exists b' \in B: b' \subseteq bff^ob:$ So, fix  $b \in B$ , as  $B \leq B.f.f^o.B$ , there exists  $b' \in B$  such that  $b' \subseteq bff^ob$ .
  - (ii) ( $\iff$ ) Suppose  $\forall b \in B, \exists b' \in B: b' \subseteq bff^ob$ . This gives  $B \leq B.f.f^o.B$ , in order to show equality, also need B > B, f,  $f^o$ . B. By quasi-uniformity of B, for any  $b \in B$ ,  $\exists b' \in B : b'b' \subseteq b$ . Now, by Lemma 1.9.2,

$$ff^o \subseteq \Delta_Y \implies b'ff^ob' \subseteq b'\Delta_Yb' = b'b' \subseteq b$$

(c) (i) ( $\Longrightarrow$ ) Let f be topologically dense, going to show that  $\forall b \in B$ ,  $(y,y) \in bff^ob$ . So, fix any  $b \in B$  and  $y \in Y$ . Now, by definition of f(X) = Y, we get

$$\exists x \in X \text{ such that } (f(x), y) \in b \text{ and } (y, f(x)) \in b$$

Re-writing the above statement in terms of relations, and considering f as a relation:

$$(f(x), y) \in b \text{ gives } x(b \circ f)y \text{ i.e. } y \in (b \circ f)(x)$$
 (1)

$$(y, f(x)) \in b \text{ gives } f(x) \subseteq b(y)$$
 (2)

Repeatedly applying Lemma 1.9.3 to (2),

$$f(x) \subseteq b(y) \implies (f \circ f^o)(f(x) \subseteq (f \circ f^o)b(y) \implies (f \circ f^o \circ f)(x) \subseteq (f \circ f^o \circ b)(y)$$

Applying Lemma 1.9.1 to the above statement gives that

$$f(x) = (f \circ f^o \circ f)(x) \subseteq (f \circ f^o \circ b)(y)$$

Applying Lemma 1.9.3 and then using (1) to this inequality completes the result:

$$f(x) \subseteq (ff^ob)(y) \implies (b \circ f)(x) \subseteq (bff^ob)(y) \implies y \in (bff^ob)(y) \text{ i.e. } y(bff^ob)y$$

(ii) ( $\Leftarrow$ ) Fix any  $y \in Y$  and  $b \in B$ . Also, suppose that  $\Delta_Y \leq bff^ob$ . As f is a function with domain as X,  $f^o: Y \to X$ ,  $\phi \neq (f^o \circ b)(y) \subseteq X$ . So, fix  $x \in (f^o \circ b)(y)$ , going to show that  $(f(x), y) \in b$  and  $(y, f(x)) \in b$ . Again, while viewing f as a relation.

$$\Delta_Y \leq bff^ob \implies \Delta_Y(y) \subseteq bff^ob(y) = (bf)(f^ob(y))$$

Using Lemma 1.9.3 on the above statement, gives  $y \in (bf)(x)$  i.e.  $(f(x), y) \in b$ . Applying Lemma 1.9.3 to f, and then using Lemma 1.9.4,

$$ff^o \subseteq \Delta_Y \implies ff^o b \subseteq \Delta_Y b = b$$

Thus  $ff^{o}b(y) \subseteq b(y)$  and hence  $f(x) \subseteq b(y) \implies (y, f(x)) \in b$ 

(d) (i) ( $\Longrightarrow$ ) Let f be topologically dense. As B is a quasi-uniformity, for any  $b \in B$ ,

$$\exists b' \in B : b'b' \subseteq b \text{ and } \Delta_Y \subseteq b' \implies b' = b'\Delta_Y \subseteq b'b' \subseteq b$$
 (3)

By the characterisation of topologically dense in (c), have that  $\Delta_Y \subseteq b'ff^ob'$ . Now, using the (3) and Lemma 1.9.2,

$$\Delta_Y \subseteq b'ff^ob' \implies b' = b'\Delta_Y \subseteq b'b'ff^ob' \subseteq bff^ob' \subseteq bff^ob$$

Hence, we have  $b' \in B : b' \subseteq bff^ob$  giving us that f is fully dense (from (b)).

(ii) ( $\iff$ ) From (b), we have for  $b \in B$ , the existstence of  $b' \in B$  such that  $b' \subseteq bff^ob$ . As B is a quasi-uniformity,  $\Delta_Y \subseteq b'$ . So,  $\Delta_Y \subseteq bff^ob$ , and from (c), this gives us that f is topologically dense.

**Definition 2.3** (PX).  $PX := \{ \psi : \psi : (X, A) \longrightarrow 1 \text{ is a promodule} \}$ 

**Definition 2.4**  $(\tilde{a})$ . for any  $a \in A$ ,  $\tilde{a}$  is defined to be a relation  $PX \to PX$  as

for 
$$\phi, \psi \in PX, \phi \tilde{a} \psi$$
 only if  $\phi \leq \psi.a$ 

**Proposition 2.4** (Prorelation  $\tilde{A}$ ). The set,  $\tilde{A} := \{\tilde{a} : a \in A\}$  defines a quasi-uniformity on PX.

*Proof.* First, need to show that  $\tilde{A}$  is a prorelation,

- (i) (Partial order) Define, for any two relations  $\tilde{a}, \tilde{b}: PX \to PX$ , that  $\tilde{a} \leq \tilde{b}$  only if  $a \subseteq b$
- (ii) (Down-Directed) Need that  $\forall \tilde{a}, \tilde{b} \in \tilde{A}, \exists \tilde{c} \in A : c \subseteq a, b$  $\tilde{a}, \tilde{b} \in A \implies a, b \in A \implies \exists c \in A : c \subseteq a, b \implies \tilde{c} \leq \tilde{a}, \tilde{b}$
- (iii) (Upset) Need that, for any relation  $l: PX \to PX$ , if  $\exists \tilde{k} \in \tilde{A}$  such that  $l \geq \tilde{k}$ , then  $l \in \tilde{A}$ Fix any  $k: PX \to PX$ , and  $\tilde{k} \in \tilde{A}$  such that  $l \geq \tilde{k}$ Now, k is a relation between promodules  $X \to 1$ . Thus, it can be thought of as a relation on X,  $a:=\{(x,y): x \in domain(\psi) andy \in domain(\phi) \text{ whenever } \exists \psi, \phi \in PX: \psi l \phi\}$

So,  $l = \tilde{a}$  and thus,  $\tilde{a} \geq \tilde{k} \implies a \supseteq k \implies a \in A \implies l \in \tilde{A}$ 

Now to show that the other two conditions hold,

- (i) need that  $\forall \tilde{a} \in \tilde{A}, \forall \psi \in PX, \psi \tilde{a} \psi$ So, need to show that  $\psi \leq \psi.a$  i.e.  $\forall p \in \psi, \exists q \in \psi: q \subseteq p.a$ . Take q := p, and as A is a quasi-uniformity,  $\Delta_X \subseteq a \implies p = p.\Delta_X \subseteq p.a$
- (ii) Need that  $\forall \tilde{a} \in \tilde{A}, \exists \tilde{b} \in \tilde{A} : \tilde{b}\tilde{b} \leq \tilde{a}$ Before that, showing , for any  $x, y \in A, \tilde{x}\tilde{y} \leq \widetilde{x}\tilde{y}$  i.e.  $\forall \psi, \phi \in PX$  ,  $\psi(\tilde{x}.\tilde{y})\phi \implies \psi \widetilde{x}\tilde{y}\phi$ Let  $\psi_1(\tilde{a}.\tilde{b})\psi_3 \implies \exists \psi_2 : \psi_1\tilde{b}\psi_2\tilde{a}\psi_3 \implies \psi_1 \leq \psi_2.b$  and  $\psi_2 \leq \psi_3.a \implies \psi_1 \leq \psi_2.b \leq \psi_3.ab \implies \psi_1(\tilde{a}\tilde{b})\psi_3$ Fix any  $\tilde{a} \in \tilde{A} \implies a \in A \implies \exists b \in A : b \circ b \subseteq a \implies \tilde{b}\tilde{b} \leq \tilde{a} \implies \tilde{b}\tilde{b} \leq \tilde{b}\tilde{b} \leq \tilde{a}$

## Proposition 2.5 (Yoneda Embedding).

For a quasi-uniform space (X, A), function  $y_X : X \to PX$  is defined by  $x \mapsto x^*$  for  $x \in X$ .

- (a)  $y_X:(X,A)\to(PX,\tilde{A})$  is a uniformly continuous map
- (b)  $y_X:(X,A)\to(PX,\tilde{A})$  is fully faithful

Proof.

(a) In order to show  $y_X$  is uniformly continuous, need to show that  $y_X.A \leq \tilde{A}.y_X$ . By definition of  $\leq$ , need  $\forall a \in A, \exists b \in A: y_X \circ b \subseteq \tilde{a} \circ y_X$ . Applying the relations to some element, x of the set X:

$$(y_X \circ b)(x) \subseteq (\tilde{a} \circ y_X)(x) \implies y_X(b(x)) \subseteq \tilde{a}(x^*) \tag{4}$$

So, for the condition given by (4) to hold, if  $y \in b(x)$ , then it's required that  $y^* = y_X(y) \in \tilde{a}(x^*)$  i.e.  $x^*\tilde{a}y^*$ . Using the definition of  $x^*, y^*$  and  $\tilde{a}$ ,

$$x^*\tilde{a}y^* \iff x^o.A \le y^o.A.a \iff \forall a' \in A, \exists a'' \in A : x^oa'' \subseteq y^oa'a \tag{5}$$

Now, fix any  $a \in A$ ,  $x \in X$ . Thus, quasi-uniformity of A, gives  $a'' \in A$  such that  $a''a'' \subseteq a$ . Also, choose some  $y \in a''(x)$ . Hence, in order to show that the condition from (5) holds, need that  $\forall b \in A, x^o a'' \subseteq y^o b a$ , and by applying the relations to an element z gives the following condition

$$\forall b \in B, \forall x \in X, (x^o a'')(z) \subseteq (y^o ba)(z)$$
(6)

Examining the left side of (6),

$$(x^{o}a'')(z) = x^{o}(a''(z)) = \begin{cases} \phi & \text{if } x \notin a''(z) \\ \star & \text{if } \in a''(z) \end{cases}$$

Thus, to show that (6) holds, need to show that (for any  $b \in A$  and  $z \in X$ ):

$$x \in a''(z) \implies z(y^o ba) \star \text{ i.e. } y \in (ba)(z)$$
 (7)

To show that (7) holds, fix any  $z \in X : x \in a''(z)$ . Also, by our choice of y, have that  $y \in a''(x)$ . And as  $b \in A$ , it's reflexive, giving that  $y \in b(y)$ . So, by composition of relations, we get:

$$za''x$$
,  $xa''y$  and  $yby \implies z(a''a''b)y \implies z(ab)y$  i.e.  $y \in (ba)(z)$ 

(b) By using Proposition 2.3(a), need to show that  $A \geq y_X^o$ .  $\tilde{A}.y_X$  i.e.  $\forall a \in A, \exists \tilde{b} \in \tilde{A} : a \supseteq y_X^o$   $\tilde{b}$   $y_X$ . Applying to an element,  $x \in X$  gives the condition

$$(y_X^o \ \tilde{b} \ y_X)(x) \subseteq a(x) \implies (y_X^o \ \tilde{b})(x^*) = y_x^o (\tilde{b}(x^*)) \subseteq a(x)$$
 (8)

Thus, if  $y^* \in PX$  such that  $x^*\tilde{b}y^*$ , then  $y \in y^o_x(\tilde{b}(x^*))$ . Now, for (8) to hold,  $y \in a(x)$  i.e. xay. Thus, need only to show that for any  $a \in A$ ,  $\exists b \in A$  such that  $\forall x, y \in X, x^*\tilde{b}y^* \implies xay$ . So, fix  $a \in A$ , and take  $b \in A : bb \subseteq a$ . Now, let  $x^*\tilde{b}y^*$  i.e.  $x^o.A \le y^o.A.b$ . Hence,  $\exists c \in A : x^oc \subseteq y^obb$ . And as c is reflexive,

$$xcx \implies x(cx^o)\star \implies x(bby^o)\star \implies x(bb)y \implies xay$$

**Lemma 2.4.1.** A.A = A for any quasi-uniformity

**Theorem 2.1** (Yoneda Lemma). For every  $\psi \in PX$ , in the following digram, DRAW THE DIGRAM

(a) 
$$\psi \ge \psi^* . (y_X)^*$$

(b) 
$$\psi \in \overline{y_X(X)} \implies \psi \leq \psi^*.(y_X)_*$$

Proof. (a) By definition,  $(y_X)_* = \tilde{A}.y_X$ , and  $\psi^* = \psi^o.\tilde{A}$ . Need that  $\psi \geq (y_X)_*.\psi^* = \psi^o.\tilde{A}.\tilde{A}.y_X$ . And applying Lemma 2.4.1 to  $\tilde{A}$ , the required condition becomes  $\psi \geq \psi^o.\tilde{A}.y_X$  Fix  $p \in \psi$ , we will find  $a \in A : p \supseteq \psi^o ay_X$ . Examining the right side of the condition, (for any  $a \in A$ ,  $x \in X$ )

$$\left(\psi^{o}.\tilde{a}.y_{X}\right)(x) = \psi^{o}.\tilde{a}(x^{*}) = \psi^{o}\left(\tilde{a}(x^{*})\right) = \begin{cases} \phi & \text{if } \psi \notin \tilde{a}(x^{*}) \\ \star & \text{if } \psi \in \tilde{a}(x^{*}) \end{cases}$$
(9)

In case  $\psi \notin \tilde{a}(x^*)$ , the condition holds trivially. As  $\psi$  is a promodule,  $\psi.A \leq \psi$  gives  $\exists q \in \psi, a \in A : qa \subseteq p$ . Thus, fix  $x \in X$  and  $\psi \in PX$  such that  $x^*\tilde{a}\psi$ . We will now show that xp\*. Using the definition of  $\tilde{a}$ ,

$$x^*\tilde{a}\psi \implies x^o.A \le \psi.a \implies \exists b \in A : x^ob \subseteq qa \implies \forall z \in X, (x^ob)(z) \subseteq (qa)(z) \tag{10}$$

Thus, in particular for z = x, as b is reflexive, xbx, which gives:

$$(x^{o}b)(x) \subseteq (qa)(x) \implies x^{o}x \subseteq (qa)(x) \implies \star \in (qa)(x) \tag{11}$$

But, as  $qa \subseteq p$ , (11) gives that  $xp \star$ .

(b) Suppose  $\psi \in \overline{y_X(X)}$ , need to show  $\psi \leq \psi^*.(y_X)_* = \psi^o.\tilde{A}.y_X$  i.e. for  $a \in A$ ,  $\exists p \in \psi : p \subseteq \psi^o.\tilde{a}.y_X$ . For any  $x \in domain(p)$ , the condition requires:

$$p(x) \subseteq \psi^{o}.\tilde{a}.y_{X}(x) = \psi^{o}(\tilde{a}(x^{*})) \tag{12}$$

By definition of p, for (12) to hold, need that  $xp\star \implies \psi \in \tilde{a}(x^*)$ . Fix any  $a \in A$ , we will find  $p \in \psi$  such that (12) holds. By quasi-uniformity of A,  $\exists b \in A : bb \subseteq a$ . From Proposition 2.5(a),  $y_X$  is uniformly continuous,  $y_X \cdot A \leq \tilde{A} \cdot y_X$  giving that  $\exists c \in A : y_x c \subseteq \tilde{b}y_X$ . Thus, for any  $z, w \in X$  such that zcw,

$$(y_X c)(z) \subseteq (\tilde{b}y_X)(z) \implies y_X(c(z)) \subseteq \tilde{b}(z^*) \implies w^* \in \tilde{b}(z^*) \text{ i.e. } z^* \tilde{b} w^*$$
 (13)

As A is a quasi-uniformity,  $\exists d \in A : dd \subseteq c$ . Also, because A is a down-directed set,  $\exists a' \in A : a' \subseteq b, d$ . This along with (13) gives that for any  $x, y \in X$ 

$$x(a'a')y \implies x(dd)y \implies xcy \implies x^*\tilde{b}y^*$$
 (14)

Now, because  $\psi \in \overline{y_X(X)}$ , we get  $\exists x^* \in y_X(X)$  such that  $\psi \tilde{a'}x^*$  and  $x^*\tilde{a'}\psi$ . By definition of  $\tilde{a}$ ,  $\psi \tilde{a'}x^*$  gives

$$\psi \le x^o.A.a' \implies \exists p \in \psi : p \subseteq x^oa'a' \tag{15}$$

Fix any  $z \in X : zp \star$ , using (15) and (14) gives:

$$zp\star \stackrel{z}{\Rightarrow} (x^oa'a')\star \stackrel{(15)}{\Longrightarrow} z(a'a')x \stackrel{(14)}{\Longrightarrow} z^*\tilde{b}x^*$$
 (16)

Finally, by definition of the partial order on  $\tilde{A}, a' \subseteq b \implies \tilde{a'} \subseteq \tilde{b}$ . Therefore,  $x^*\tilde{a'}\psi \implies x^*\tilde{b}\psi$ . Now, using (16),  $z^*\tilde{b}x^*$  and  $x^*\tilde{b}\psi$  gives the desired result  $z^*\tilde{b}x^*$ .

 $\operatorname{asd}$