(44)

РАДИОТЕХНИКА и ЭЛЕКТРОНИКА

(ОТДЕЛЬНЫЙ ОТТИСК)

MOCKBA

N1,1995

5. Кац Л. И., Синицын Е. В., Сомов А. Ю.//ПТЭ. 1978. № 2. С. 171.

6. Райзер М. Д., Цопп Л. Э.//РЭ. 1976. Т. 20. № 8. С. 1641.

7. Синицын Н. И., Зайцев Б. Д., Федоренко В. А., Клюев Е. Е. Детектор мощных одиночных и редкоповторяющихся СВЧ-радиоимпульсов: А. с. 1290188 СССР//Б. И. 1987. № 6. C. 165.

8. Gulyaev Yu. V., Zaitsev B. D., Kalinin V. Yu. et al.//Proc. Int. Symp. «Surface Waves in

Solids and Layered Structures». Novosibirsk, 1986. C. 347.

9. Зайцев Б. Д., Калинин В. Ю., Синицын Н. И. Измеритель пространственного распределения электрических полей одиночных и редкоповторяющихся СВЧ-радиоимпульсов: А. с. 1283670 СССР//Б. И. 1987. № 2. С. 5.

10. Дъелесан Э., Руайе Д. Упругие волны в твердых телах. М.: Наука, 1982.

11. Зайцев Б. Д., Калинин В. Ю., Магда И. И. и др.//ПТЭ. 1993. № 3. С. 133.

Поступила в редакцию 11.02.94

УДК 621.391

А. П. Трифонов, С. П. Алексеенко © 1995 г.

КВАЗИПРАВДОПОДОБНАЯ ОЦЕНКА ПАРАМЕТРОВ СПЕКТРА МОШНОСТИ СЛУЧАЙНОГО СИГНАЛА

Найдены потери в точности оценок за счет различия в форме спектров мощности ожидаемого и принимаемого сигналов.

В работах [1-3] исследованы оценки максимального правдоподобия (ОМП) параметров $\vec{\vartheta}_0 = \|\vartheta_1, \ldots, \vartheta_p\|$ спектра мощности (СМ) центрированного стационарного гауссовского случайного сигнала s(t), наблюдаемого на фоне гауссовского белого шума с односторонней спектральной плотностью N_0 . При этом предполагали, что СМ G_0 (ω , $\overrightarrow{\vartheta}_0$) и корреляционная функция B_0 (τ , $\overrightarrow{\vartheta}_0$) = $\langle s(t) s(t+\tau) \rangle$ случайного сигнала априори известны с точностью до оцениваемых параметров $\overrightarrow{\mathbb{V}}_0$. В действительности, форма СМ $G(\omega, \vec{\vartheta})$, которая используется при синтезе ОМП, может отличаться от реальной формы СМ $G_0(\omega, \vec{\vartheta})$ полезного сигнала. В связи с этим представляет интерес определить степень ухудшения качества оценок CM за счет отличия CM G_0 (ω , $\tilde{\emptyset}_0$) сигнала, поступающего на вход приемника, от СМ $G(\omega, \overline{\vartheta})$ ожидаемого сигнала, для которого синтезирован алгоритм ОМП. Введем обозначение

(1)
$$B(\tau, \vec{\vartheta}) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} G(\omega, \vec{\vartheta}) \exp(j\omega\tau) d\omega$$

— корреляционная функция ожидаемого сигнала, причем в общем $B(\tau, \overline{\vartheta}) \neq B_0(\tau, \overline{\vartheta}).$

Для стационарного гауссовского случайного сигнала с корреляционной функцией (1) и принимаемого на фоне белого шума логарифм функционала отношения правдоподобия (ФОП) имеет вид [2]

(2)
$$L(\vec{\vartheta}) = \frac{1}{N_0} \int_0^T \int_0^T x'(t_1) x(t_2) Q(t_1, t_2, \vec{\vartheta}) dt_1 dt_2 - \frac{1}{2} \int_0^1 d\chi \int_0^T \widetilde{Q}(t, t, \vec{\vartheta}, \chi) dt,$$

где x(t) — реализация суммы сигнала и шума, наблюдаемая на интервале времени $[0; T], Q(t_1, t_2, \vartheta) = \widetilde{Q}(t_1, t_2, \vartheta, \chi = 1), a \widetilde{Q}(t_1, t_2, \vartheta, \chi)$ определяется из решения интегрального уравнения

(3)
$$\frac{N_0}{2} \widetilde{Q}(t_1, t_2, \vec{\vartheta}, \chi) + \chi \int_0^T \widetilde{Q}(t_1, t, \vec{\vartheta}, \chi) B(t - t_2, \vec{\vartheta}) dt = B(t_1 - t_2, \vec{\vartheta}).$$

Поскольку реализация наблюдаемых данных x(t) в (2) содержит сигнал s(t) со спектром мощности G_0 (ω , ϑ_0) $\neq G$ (ω , ϑ_0), оценка ϑ параметров ϑ_0 , определяемая как положение абсолютного (наибольшего) максимума функции (2), не является ОМП. Эту оценку можно назвать квазиправдоподобной (КПО) [4], поскольку она совпадает с ОМП при G_0 (ω , ϑ) = G (ω , ϑ) и соответственно при G_0 (ω , ϑ) = G (ω , ϑ) и соответственно при G_0 (ω , ϑ) наблюдаемого сигнала представим G0 как сумму [1, 3] G1 (G2) = G3 (G3) + G4 (G3) где G5 (G3) = G4 (G3) — сигнальная функция, а G4 (G3) — сигнальная функция, а G4 (G3) — Сигнальная функция, а G4 (G4) — Сигнальная функция, а G5 (G5) = G6 (G6) — Сигнальная функция, а G7 (G7) — шумовая. Полагаем далее, что время наблюдения достаточно велико, при этом

(4)
$$\mu_{m} = T\Omega_{m}/2\pi >> 1,$$

$$rge \qquad \Omega_{m} = \min \left\{ \min_{\overrightarrow{\theta}} \int_{-\infty}^{+\infty} G_{0}^{2}\left(\omega, \overrightarrow{\vartheta_{0}}\right) d\omega \left[2 \max_{\omega} G_{0}^{2}\left(\omega, \overrightarrow{\vartheta_{0}}\right) \right]^{-1};$$

$$\min_{\overrightarrow{\theta}} \int_{-\infty}^{+\infty} G^{2}\left(\omega, \overrightarrow{\vartheta}\right) d\omega \left[2 \max_{\omega} G^{2}\left(\omega, \overrightarrow{\vartheta}\right) \right]^{-1} \right\}$$

— минимальная эквивалентная полоса частот СМ действительного и ожидаемого сигналов.

При выполнении (4), решая уравнение (3) при помощи преобразования Фурье,

находим сигнальную функцию

(5)
$$S(\vec{\vartheta}) = \frac{T}{4\pi} \int_{-\infty}^{+\infty} \left\{ \frac{\left[1 + \rho_0(\omega, \vec{\vartheta})\right] \rho(\omega, \vec{\vartheta})}{1 + \rho(\omega, \vec{\vartheta})} - \ln\left[1 + \rho(\omega, \vec{\vartheta})\right] \right\} d\omega$$

и два первых момента шумовой функции

(6)
$$\langle N(\vec{\vartheta}) \rangle = 0, B_N(\vec{\vartheta}_1, \vec{\vartheta}_2) = \langle N(\vec{\vartheta}_1) N(\vec{\vartheta}_2) \rangle =$$

$$= \frac{T}{4\pi} \int_{-\infty}^{+\infty} \frac{[1 + \rho_0(\omega, \vec{\vartheta}_0)]^2 \rho(\omega, \vec{\vartheta}_1) \rho(\omega, \vec{\vartheta}_2)}{[1 + \rho(\omega, \vec{\vartheta}_1)][1 + \rho(\omega, \vec{\vartheta}_2)]} d\omega.$$

В (5), (6) использованы обозначения $\rho_0 (\omega, \vec{\vartheta}_0) = 2G_0 (\omega, \vec{\vartheta}_0)/N_0$, $\rho (\omega, \vec{\vartheta}) = 2G(\omega, \vec{\vartheta})/N_0$.

Так как по определению КПО функция $L(\vec{\vartheta})$ при $\vec{\vartheta} = \vec{\vartheta}$ обращается в абсолютный максимум, КПО $\vec{\vartheta}$ является решением системы уравнений

(7)
$$\frac{\partial}{\partial 0_i} [S(\vec{0}) + N(\vec{0})]_{\vec{0}} = 0, \ i = \overline{1, p}.$$

При этом при отсутствии шумовой функции $(N(\vec{\vartheta}) \equiv 0)$ функция (3) достигает максимума в некоторой точке $\vec{\vartheta} \neq \vec{\vartheta}_0$, определяемой из системы уравнений

(8)
$$\left[\frac{\partial S(\vec{0})}{\partial \vec{0}_i}\right]_{\vec{\delta}} = \frac{T}{4\pi} \left\{ \int_{-\infty}^{+\infty} \frac{\rho_0(\omega, \vec{0}_0) - \rho(\omega, \vec{0})}{[1 + \rho(\omega, \vec{0})]^2} \frac{\partial \rho(\omega, \vec{0})}{\partial \vec{0}_i} d\omega \right\}_{\vec{\delta}} = 0, i = \overline{1, p}.$$

Поскольку $\max S(\vec{0}) \leq S(\vec{0})$, отношение сигнал/шум (ОСШ) получаем в виде [3] $z^2 = S^2(\vec{0})/B_N(\vec{0},\vec{0})$, откуда следует, что ОСШ возрастает с увеличением времени наблюдения T. Полагая ОСШ достаточно большим, для решения системы уравнений (7) воспользуемся методом малого параметра [3], в качестве которого используем величину 1/z. Ограничиваясь рассмотрением первого приближения, находим смещение (систематическую ошибку) КПО i-го параметра

$$(9) b_i = \langle \widehat{\vartheta}_i - \vartheta_{0i} \rangle = \widetilde{\vartheta}_i - \vartheta_{0i}$$

и корреляционную матрицу КПО

(10)
$$\mathbf{K} = \|\langle (\widehat{\vartheta}_{i} \langle \widetilde{\vartheta}_{k} \rangle) (\widehat{\vartheta}_{k} - \langle \widetilde{\vartheta}_{k} \rangle) \rangle \| = \mathbf{S}^{-1} \mathbf{B} (\mathbf{S}^{T})^{-1},$$

где T означает транспонирование,

$$S = \left\| - \left[\frac{\partial^{2} S(\vec{0})}{\partial \theta_{i} \partial \theta_{k}} \right]_{\vec{b}} \right\| = \frac{T}{4\pi} \left\| \int_{-\infty}^{+\infty} \frac{1 + 2\rho_{0}(\omega, \vec{0}_{0}) - \rho(\omega, \vec{0})}{[1 + \rho(\omega, \vec{0})]^{3}} \times \right.$$

$$\times \frac{\partial \rho(\omega, \vec{0})}{\partial \theta_{i}} \frac{\partial \rho(\omega, \vec{0})}{\partial \theta_{k}} d\omega + \int_{-\infty}^{+\infty} \frac{\rho_{0}(\omega, \vec{0}_{0}) - \rho(\omega, \vec{0})}{[1 + \rho(\omega, \vec{0})]^{2}} \times$$

$$\times \frac{\partial^{2} \rho(\omega, \vec{0})}{\partial \theta_{i} \partial \theta_{k}} d\omega \right\}_{\vec{b}} \right\|,$$

$$B = \left\| \left[\frac{\partial^{2} B_{N}(\vec{0}_{1}, \vec{0}_{2})}{\partial \theta_{i} \partial \theta_{2k}} \right]_{\vec{b}} \right\| = \frac{T}{4\pi} \left\| \left\{ \int_{-\infty}^{+\infty} \frac{[1 + \rho_{0}(\omega, \vec{0}_{0})]^{2}}{[1 + \rho(\omega, \vec{0})]^{4}} \times \right.$$

$$\dots \times \frac{\partial \rho(\omega, \vec{0})}{\partial \theta_{i}} \frac{\partial \rho(\omega, \vec{0})}{\partial \theta_{k}} d\omega \right\}_{\vec{b}} \right\|, i, k = \overline{1, p}.$$

В общем случае КПО смещенная, тем не менее, согласно (10), (11) дисперсия КПО убывает с ростом времени наблюдения как 1/T, аналогично дисперсии ОМП [1—3].

В частном случае, когда $G_0(\omega, \vec{\vartheta}) = G(\omega, \vec{\vartheta})$ и соответственно $\rho_0(\omega, \vec{\vartheta}) = \rho(\omega, \vec{\vartheta})$, КПО переходит в ОМП и выражения (9), (10) могут быть переписаны в виде

И

C

П

T,

y

4

CI

χ

T

ф g₀

g

П

Ta

(12)
$$b_{i} = 0, \mathbf{K} = \frac{4\pi}{T} \left\| \left\{ \int_{-\infty}^{+\infty} \frac{\partial \rho_{0}(\omega, \overrightarrow{\vartheta})}{\partial \vartheta_{i}} \frac{\partial \rho_{0}(\omega, \overrightarrow{\vartheta})}{\partial \vartheta_{k}} \times \left[1 + \rho_{0}(\omega, \overrightarrow{\vartheta}) \right]^{-2} d\omega \right\}_{\overrightarrow{\vartheta}_{0}} \right\|^{-1}.$$

Последние выражения совпадают с характеристиками совместно-эффективных оценок параметров СМ случайного сигнала [2]. В частности, при p=1 из (12) получаем результат [1, 3].

Сопоставление (9), (11) и (12) позволяет определить степень ухудшения качества оценок за счет различия формы СМ ожидаемого и принимаемого сигналов.

В качестве примера рассмотрим оценку центральной частоты у узкополосного случайного сигнала, предполагаемый СМ которого имеет вид [5]

(13)
$$G(\omega, \nu, \gamma, \Omega) = \frac{\gamma}{2} \left[g\left(\frac{\nu + \omega}{\Omega}\right) + g\left(\frac{\nu - \omega}{\Omega}\right) \right],$$

где γ — максимальная величина СМ, Ω — эквивалентная полоса частот, а функция $g(\cdot)$ описывает форму СМ и удовлетворяет условиям

(14)
$$g(x) = g(-x) \ge 0$$
, $\max g(x) = 1$, $\int_{-\infty}^{+\infty} g^2(x) dx = 1$.

Проигрыш в точности оценки частоты

Так как необходимо оценить лишь частоту ν , параметры γ и Ω являются неинформативными [6], а КПО ν определяется соотношением

(15)
$$\widehat{\mathbf{v}} = \arg \sup L(\mathbf{v}), L(\mathbf{v}) = \sup_{\mathbf{v}, \Omega} L(\mathbf{v}, \mathbf{v}, \Omega).$$

Здесь $L(\nu, \gamma, \Omega)$ — логарифм ФОП (3), найденный для ожидаемого случайного сигнала, который обладает СМ (13). Аналогично (13) СМ принимаемого сигнала запишем как

(16)
$$G_0(\omega, \nu_0, \gamma_0, \Omega_0) = \frac{\gamma_0}{2} \left[g_0 \left(\frac{\nu_0 + \omega}{\Omega_0} \right) + g_0 \left(\frac{\nu_0 - \omega}{\Omega_0} \right) \right],$$

где функции $g_0(\cdot)$ в общем случае отличается от $g(\cdot)$ в (13), но удовлетворяет условиям (14). Подставляя (13) и (16) в (8) и учитывая (14), получаем $\widetilde{v} = v_0$ и, следовательно, КПО центральной частоты будет несмещенной. Для определения дисперсии $D(\widehat{v})$ КПО \widehat{v} (15) частоты надо найти значения \widetilde{v} и $\widetilde{\Omega}$ из (8) и затем получить элемент матрицы (10), лежащий на пересечении первых строки и столбца. Соответственно дисперсию $D(v_m)$ ОМП v_m центральной частоты получаем, обращая матрицу (12) для СМ (16). Полагаем далее, что форма СМ ожидаемого и принимаемого сигналов описывается полиномами Баттерворта [7]

(17)
$$\beta_n(x) = [1 + (\alpha_n x)^{2n}]^{-1},$$

ия ии

ны

2)

ИЯ

DIO

OTO

ИЯ

где n — степень полинома, α_n — нормировочный коэффициент, определяемый из условия нормировки вида (14) $\int_{-\infty}^{+\infty} \beta_n^2(x) dx = 1$.

Функция (17) позволяет аппроксимировать форму СМ широкого класса случайных сигналов [7].

На рисунке приведены кривые зависимости проигрыша $\chi = D(\hat{v})/D(v_m)$ в точности КПО по сравнению с ОМП от отношения спектральных плотностей сигнала и шума $q_0 = \gamma_0/N_0$. Сплошные кривые соответствуют зависимости $\chi(q_0)$, когда форма СМ ожидаемого сигнала описывается полиномом Баттерворта со степенью n, т. е. $g(x) = \beta_n(x)$, а принимаемый сигнал имеет форму СМ, описываемую полиномом Баттерворта первой степени, т. е. $g(x) = \beta_1(x) = [1 + (\pi x/2)]^{-1}$. Штриховые кривые соответствуют случаю, когда $g(x) = \beta_1(x)$, а $g(x) = \beta_n(x)$. Кривые l-4 рассчитаны при n = 2; 4; 6; 10.

Как следует из рисунка, проигрыш в точности КПО может быть значительным, причем при не слишком больших q_0 он практически от q_0 не зависит. Отметим также, что проигрыш несколько уменьшается, если измеритель синтезирован

для ожидаемого СМ, фронты которого, т. е. участки спада СМ, более пологие, чем у СМ принимаемого сигнала.

Приведенные результаты получены при финансовой поддержке Российского фонда фундаментальных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Куликов Е. И. Методы измерения случайных процессов. М.: Радио и связь, 1986.
- 2. Ван Трис Г. Теория обнаружения, оценок и модуляции. Т. 3. М.: Сов. радио, 1977.
- Куликов Е. И., Трифонов А. П. Оценка параметров сигналов на фоне помех. М.: Сов. радио, 1978.
- 4. Мудров В. И., Кушко В. Л. Методы обработки измерений. М.: Радио и связь, 1983.
- 5. Тихонов В. И. Статистическая радиотехника. М.: Радио и связь, 1982.
- 6. Шинаков Ю. С.//РЭ. 1974. Т. 19. № 3. С. 542.
- 7. Фомин А. Ф., Хорошавин А. И., Щелухин О. И. Аналогичные и цифровые синхроннофазовые измерители и демодуляторы. М.: Радио и связь, 1987.

Поступила в редакцию 05.05.94