1 The Limiting MPC's

For $m_t > 0$ we can define $e_t(m_t) = c_t(m_t)/m_t$ and $a_t(m_t) = m_t - c_t(m_t)$ and the Euler equation (??) can be rewritten

$$e_{t}(m_{t})^{-\rho} = \beta R \mathbb{E}_{t} \left[\left(\underbrace{\frac{e_{t+1}(m_{t+1})}{Ra_{t}(m_{t}) + \Gamma_{t+1}\xi_{t+1}}}_{e_{t+1}(m_{t+1})} \right) - \frac{\rho}{m_{t}} \right]$$

$$= (1 - \wp)\beta R m_{t}^{\rho} \mathbb{E}_{t} \left[\left(e_{t+1}(m_{t+1})m_{t+1}\Gamma_{t+1} \right) - \frac{\rho}{m_{t}} \right] \xi_{t+1} > 0 \right]$$

$$+ \wp \beta R^{1-\rho} \mathbb{E}_{t} \left[\left(e_{t+1}(\mathcal{R}_{t+1}a_{t}(m_{t})) \frac{m_{t} - c_{t}(m_{t})}{m_{t}} \right) - \frac{\rho}{m_{t}} \right] \xi_{t+1} = 0 .$$

$$(2)$$

Consider the first conditional expectation in (1), recalling that if $\xi_{t+1} > 0$ then $\xi_{t+1} \equiv \theta_{t+1}/(1-\wp)$. Since $\lim_{m\downarrow 0} a_t(m) = 0$, $\mathbb{E}_t[(e_{t+1}(m_{t+1})m_{t+1}\Gamma_{t+1})^{-\rho} \mid \xi_{t+1} > 0]$ is contained within bounds defined by $(e_{t+1}(\underline{\theta}/(1-\wp))\Gamma\underline{\psi}\underline{\theta}/(1-\wp))^{-\rho}$ and $(e_{t+1}(\bar{\theta}/(1-\wp))\Gamma\bar{\psi}\bar{\theta}/(1-\wp))^{-\rho}$ both of which are finite numbers, implying that the whole term multiplied by $(1-\wp)$ goes to zero as m_t^ρ goes to zero. As $m_t \downarrow 0$ the expectation in the other term goes to $\bar{\kappa}_{t+1}^{-\rho}(1-\bar{\kappa}_t)^{-\rho}$. (This follows from the strict concavity and differentiability of the consumption function.) It follows that the limiting $\bar{\kappa}_t$ satisfies $\bar{\kappa}_t^{-\rho} = \beta \wp \mathsf{R}^{1-\rho} \bar{\kappa}_{t+1}^{-\rho}(1-\bar{\kappa}_t)^{-\rho}$. Exponentiating by ρ , we can conclude that

$$\bar{\kappa}_{t} = \wp^{-1/\rho} (\beta \mathsf{R})^{-1/\rho} \mathsf{R} (1 - \bar{\kappa}_{t}) \bar{\kappa}_{t+1}$$

$$\underbrace{\wp^{1/\rho} \, \mathsf{R}^{-1} (\beta \mathsf{R})^{1/\rho}}_{\equiv \wp^{1/\rho} \mathbf{p}_{\mathsf{R}}} \bar{\kappa}_{t} = (1 - \bar{\kappa}_{t}) \bar{\kappa}_{t+1} \tag{3}$$

which yields a useful recursive formula for the maximal marginal propensity to consume:

$$(\wp^{1/\rho} \mathbf{P}_{\mathsf{R}} \bar{\kappa}_t)^{-1} = (1 - \bar{\kappa}_t)^{-1} \bar{\kappa}_{t+1}^{-1}$$

$$\bar{\kappa}_t^{-1} (1 - \bar{\kappa}_t) = \wp^{1/\rho} \mathbf{P}_{\mathsf{R}} \bar{\kappa}_{t+1}^{-1}$$

$$\bar{\kappa}_t^{-1} = 1 + \wp^{1/\rho} \mathbf{P}_{\mathsf{R}} \bar{\kappa}_{t+1}^{-1}.$$
(4)

As noted in the main text, we need the WRIC (??) for this to be a convergent sequence:

$$0 \le \wp^{1/\rho} \mathbf{b}_{\mathsf{R}} < 1,\tag{5}$$

Since $\bar{\kappa}_T = 1$, iterating (4) backward to infinity (because we are interested in the limiting consumption function) we obtain:

$$\lim_{T \to 0} \bar{\kappa}_{T-n} = \bar{\kappa} \equiv 1 - \wp^{1/\rho} \mathbf{p}_{\mathsf{R}} \tag{6}$$

and we will therefore call $\bar{\kappa}$ the 'limiting maximal MPC.'

The minimal MPC's are obtained by considering the case where $m_t \uparrow \infty$. If the FHWC holds, then as $m_t \uparrow \infty$ the proportion of current and future consumption that will be financed out of capital approaches 1. Thus, the terms involving ξ_{t+1} in (1) can

be neglected, leading to a revised limiting Euler equation

$$(m_t \mathbf{e}_t(m_t))^{-\rho} = \beta \mathsf{R} \, \mathbb{E}_t \left[\left(\mathbf{e}_{t+1}(\mathbf{a}_t(m_t) \mathcal{R}_{t+1}) \left(\mathsf{R} \mathbf{a}_t(m_t) \right) \right)^{-\rho} \right]$$

and we know from L'Hôpital's rule that $\lim_{m_t\to\infty} e_t(m_t) = \underline{\kappa}_t$, and $\lim_{m_t\to\infty} e_{t+1}(a_t(m_t)\mathcal{R}_{t+1}) = \underline{\kappa}_{t+1}$ so a further limit of the Euler equation is

$$(m_t \underline{\kappa}_t)^{-\rho} = \beta R \left(\underline{\kappa}_{t+1} R (1 - \underline{\kappa}_t) m_t\right)^{-\rho}$$

$$\underbrace{R^{-1} \mathbf{p}}_{\mathbf{R} = (1 - \kappa)} \underline{\kappa}_t = (1 - \underline{\kappa}_t) \underline{\kappa}_{t+1}$$

$$\equiv \mathbf{p}_{\mathbf{R}} = (1 - \kappa)$$

and the same sequence of derivations used above yields the conclusion that if the RIC $0 \le \mathbf{p}_{\mathsf{R}} < 1$ holds, then a recursive formula for the minimal marginal propensity to consume is given by

$$\underline{\kappa}_t^{-1} = 1 + \underline{\kappa}_{t+1}^{-1} \mathbf{p}_{\mathsf{R}} \tag{7}$$

so that $\{\underline{\kappa}_{T-n}^{-1}\}_{n=0}^{\infty}$ is also an increasing convergent sequence, and we define

$$\underline{\kappa}^{-1} \equiv \lim_{n \uparrow \infty} \kappa_{T-n}^{-1} \tag{8}$$

as the limiting (inverse) marginal MPC. If the RIC does not hold, then $\lim_{n\to\infty} \underline{\kappa}_{T-n}^{-1} = \infty$ and so the limiting MPC is $\underline{\kappa} = 0$.

For the purpose of constructing the limiting perfect foresight consumption function, it is useful further to note that the PDV of consumption is given by

$$c_t \underbrace{\left(1 + \mathbf{p}_{\mathsf{R}} + \mathbf{p}_{\mathsf{R}}^2 + \ldots\right)}_{=1 + \mathbf{p}_{\mathsf{R}}(1 + \mathbf{p}_{\mathsf{R}} \underbrace{\kappa_{t+2}^{-1}}_{-1}) \dots} = c_t \underline{\kappa}_{T-n}^{-1}.$$

which, combined with the intertemporal budget constraint, yields the usual formula for the perfect foresight consumption function:

$$c_t = (b_t + h_t)\kappa_t \tag{9}$$