Exercice 1:

Soit $n \in \mathbb{N}^*$. On dispose de deux urnes : l'urne U_1 contient n boules blanches et n boules noires et l'urne U_2 contient 1 boule blanche et 2 boules noires.

On tire simultanément n boules de U_1 et on les met dans l'urne U_2 . On note X la variable aléatoire égale au nombre de boules blanches tirées de U_1 .

- 1. Déterminer la loi de X et donner son espérance. On admet que $V(X)=\frac{n^2}{4(2n-1)}$
- 2. A l'issue du transfert de boules, on tire une boule de U_2 . On note E l'évènement : "on tire une boule blanche dans U_2 ".
 - (a) Pour tout $k \in [0, n]$, calculer la probabilité conditionnelle $P_{(X=k)}(E)$.
 - (b) A l'aide de la formule des probabilités totales, en déduire $P(E) = \frac{E(X)+1}{n+3}$ puis calculer P(E) uniquement en fonction de n.
 - (c) Écrire une fonction Python prenant n en entrée, simulant l'expérience aléatoire, et donnant en sortie True si E est réalisé et False sinon.
- 3. Maintenant, à l'issue du transfert de boules, au lieu de tirer une boule de U_2 , on tire simultanément deux boules de U_2 . On note F l'évènement : "on tire deux boules blanches dans U_2 ".
 - (a) Calculer $P_{(X=0)}(F)$ puis, pour tout $k \in [0, n]$, la probabilité conditionnelle $P_{(X=k)}(F)$.
 - (b) En déduire $P(F) = \frac{V(X) + E(X)^2 + E(X)}{(n+2)(n+3)}$ puis calculer P(F) uniquement en fonction de n.

Exercice 2:

Pour x réel, on pose $f(x) = \ln(1 + e^{2x} - e^x)$.

- 1. Montrer que f est bien définie et dérivable sur \mathbb{R} .
- 2. Établir : $f(x) = x + x^2 + o(x^3)$.
- 3. En déduire l'équation de la tangente à la courbe de f au point d'abscisse 0. Étudier la position de la courbe de f par rapport à sa tangente au voisinage de ce point.
- 4. Montrer que la droite d'équation y = 2x est asymptote à la courbe de f en $+\infty$ et étudier la position de la courbe de f par rapport à cette asymptote pour les abscisses positives.

Indications sur la démarche : Montrer que $\lim_{x\to +\infty} (f(x)-2x)=0$ et étudier le signe de f(x)-2x pour tout réel x positif.

- (a) Justifier que f est de classe C[∞] sur R, que f' > 0 sur]-ln(2), +∞[et que f réalise une bijection de]-ln(2), +∞[sur un intervalle ouvert J que l'on précisera (on remarquera en particulier que 0 ∈ J).
 On admet dans ce cas que la bijection réciproque f⁻¹: J →]-ln(2), +∞[est encore de classe C[∞].
 En particulier, f⁻¹ est de classe C³ sur J donc f⁻¹ admet un développement limité en 0 d'ordre 3 (conséquence du théorème de Taylor-Young) : f⁻¹(x) = a + bx + cx² + dx³ + ∘(x³) où (a, b, c, d) ∈ R⁴.
 - (b) Pour $x \in \mathbb{R}_+$, calculer très simplement $f^{-1}(f(x))$. En déduire le développement limité d'ordre 3 en 0 de $f^{-1}(f(x))$.
 - (c) Sachant que $f^{-1}(x) = a + bx + cx^2 + dx^3 + o(x^3)$, donner une autre expression du développement limité de $f^{-1}(f(x))$ en fonction de a, b, c et d.
 - (d) Conclure que $f^{-1}(x) = x x^2 + 2x^3 + o(x^3)$.

Exercice 3:

Pour tout $(x, y) \in \mathbb{R}^2$, on pose $g(x, y) = (x + y)e^{-(x^2 + y^2)}$.

- 1. Calculer le vecteur gradient de g en tout point $(x, y) \in \mathbb{R}^2$. En déduire les couples (x, y) en lesquels g est susceptible d'admettre un extrêmum local.
- 2. On rapporte le plan affine euclidien \mathbb{R}^2 à un repère orthonormé d'origine O.
 - (a) Soit $r \in \mathbb{R}_+$. Quel est le maximum M(r) et le minimum m(r) de g sur le cercle C_r de centre O et de rayon r?

 $Aide: (x, y) \in C_r \Leftrightarrow \exists \theta \in \mathbb{R}, (x, y) = (r \cos \theta, r \sin \theta).$

- (b) Étudier les variations de M et de m sur \mathbb{R}_+ .
- (c) En déduire que g admet un maximum et un minimum global sur \mathbb{R}^2 que l'on déterminera.
- 3. On rapporte l'espace affine euclidien à un repère orthonormé.

On note S la surface d'équation z = g(x, y) (c'est l'ensemble des points de l'espace dont les coordonnées (x, y, z) satisfont z = g(x, y)).

Trouver la ou les droites incluses dans cette surface.

 $Aide: \text{On pourra passer par une représentation paramétrique } \left\{ \begin{array}{l} x=a+\alpha t \\ y=b+\beta t \quad (t\in\mathbb{R}) \text{ d'une telle droite qu'on} \\ z=c+\gamma t \end{array} \right.$

"injectera" dans l'équation z=g(x,y) pour avoir des renseignements sur $a,b,c,\alpha,\beta,\gamma.$