Phase Relations Between Palladium Oxide and the Rare Earth Sesquioxides in Air

C. L. McDaniel and S. J. Schneider

Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234

(August 22, 1967)

The equilibrium phase relations were determined in an air environment between PdO and each of the following: La₂O₃, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Dy₂O₃, Ho₂O₃, Y₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, and Lu₂O₃. In air PdO dissociates to Pd metal at 800 °C. The dissociation of PdO is apparently a reversible process. The Nd₂O₃-PdO and Sm₂O₃-PdO systems were studied in detail inasmuch as they typified several of the Ln₂O₃-PdO systems. Three compounds, 2Nd₂O₃ · PdO, metastable Nd₂O₃ · PdO, Nd₂O₃ 2PdO occur in the Nd₂O₃-PdO system. The 2:1, 1:1, and 1:2 compounds, of unknown symmetry, dissociate or decompose at 1135, 860, and 1085 °C, respectively. The 2:1 compound dissociates to the solid phases, Nd₂O₃ and Pd. No further reactions occur between Nd₂O₃ and Pd up to 1300 °C. Three compounds, 2:1, metastable 1:1, and 1:2 occur in the Sm₂O₃-PdO and Eu₂O₃-PdO systems. Two compounds, 2:1 and 1:2 occur in the La2O3-PdO system. Other compounds detected were the 1:1 and 1:2 in the Gd₂O₃-PdO system and the metastable 1:1 in the Dy₂O₃-PdO system. Each of these compounds subsequently dissociated upon heating. No apparent reaction occurred between PdO and either Ho₂O₃, Y₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, or Lu₂O₃.

Key Words: Dissociation, equilibrium, Ln₂O₃:PdO compounds, Ln₂O₃-PdO systems, phase relations.

1. Introduction

This study is part of a program to determine what effect, if any, various Pt-group metals have upon the metal oxides when heated together in an oxidizing environment. Several of the Pt-group metals have a strong tendency to oxidize when heated in air at moderate temperatures. At higher temperatures in air, these oxides volatilize and dissociate to one solid phase, the metal. Previous work [1, 2] 1 has shown that iridium dioxide reacts with other refractory oxides at moderate temperatures. Considering the fact that several of the Pt-group metals are used as secondary standards on the International Practical Temperature Scale (IPTS)2 [3] as well as container materials, it is important to better understand the behavior of these metals in an air environment. This work presents the results of an investigation of the phase relations between palladium oxide (PdO) and the rare earth sesquioxides (Ln₂O₃) in air.

The Nd₂O₃-PdO and Sm₂O₃-PdO systems were studied in detail and were found to be guite similar in many respects. The present study was broadened somewhat to include PdO in combination with each of the following sesquioxides: La₂O₃, Eu₂O₃, Gd₂O₃,

 Dy_2O_3 , Ho_2O_3 , Y_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 , and Lu₂O₃. A limited study seemed adequate for these ten systems due to their similarity with the Nd₂O₃-PdO system or to their apparent lack of reaction.

Palladium (Pd) oxidizes to PdO when heated in air at moderate temperatures. Palladium oxide rather than Pd metal was selected as one end member of the system, because the latter oxidizes too slowly in air. By utilizing PdO, an approach to equilibrium could be achieved more readily. The study would still reflect, however, the behavior in air of Pd metal in combination with other oxides.

Palladium has the structure of face-centered cubic copper with a = 3.8898 Å [4]. The freezing point of Pd is 1552 °C, a value which is given as a secondary reference point on the International Practical Temperature Scale of 1948. The structure of PdO has been described on the basis of a tetragonal unit cell with a = 3.0434 Å and c = 5.337 Å [5]. Upon heating, PdO has been reported to dissociate to Pd and a vapor phase at 870 °C in 1 atm oxygen [6].

The stable modification of neodymium sesquioxide (Nd_2O_3) has the hexagonal A type (a=3.831 A,c = 5.999 Å) [7] rare earth oxide structure at the temperatures investigated in this study. Samarium sesquioxide (Sm₂O₃) has been reported to crystallize in the C form at low temperatures and to invert di-

¹ Figures in brackets indicate the literature references at the end of this paper.
² This scale (IPTS) applies to all temperatures listed in this paper.

rectly and irreversibly in air to the B type monoclinic structure at about 950 °C [8]. The unit cell dimensions of B type $\mathrm{Sm_2O_3}$ were reported by Roth and Schneider [8] as a=14.16 Å, b=3.621 Å, c=8.84 Å, and $\beta=100.05$ °. The melting points of $\mathrm{Nd_2O_3}$ and $\mathrm{Sm_2O_3}$ have been reported to be over 2000 °C [9].

2. Materials

All starting materials employed in this study had a purity of 99.7 percent or greater. With the exception of PdO and Y_2O_3 , the oxides were used in other investigations and their spectrochemical analyses were reported previously [10, 11]. The PdO and Y_2O_3 samples were found by general qualitative spectrochemical analysis 3 to have the following impurities:

PdO: 0.01-0.1%, Fe and Si;

0.001-0.01% each Al, Ba, Ca, Cu, Mg, Pt, and Sr:

< 0.001% each Ag, Mn, and Pb

Y₂O₃: 0.01-0.1%, Ca;

0.001-0.01% each Al, Ho, Tm, and Yb; 0.0001-0.001% each Cu, Fe, Lu, and Mg.

3. Experimental Procedure

Specimens were prepared from 0.4 g batches of various combinations of PdO and the rare earth oxides. Calculated amounts of each oxide, corrected for ignition loss, were weighed to the nearest milligram. Each batch was thoroughly hand mixed, placed in fused silica tubes (sealed at one end) and fired in a muffle furnace for a minimum of 18 hr at 770 °C and at 780 °C. Succeeding each heat treatment, the materials were thoroughly hand mixed and examined by x-ray diffraction techniques.

Following the preliminary heat treatments, portions of each batch were placed in the open silica tubes and fired in a platinum alloy wire-wound quench furnace at various temperatures for different periods of time. The specimen was air quenched by quickly pulling the tube from the furnace. Equilibrium was assumed to have been achieved when the x-ray pattern showed no change after successive heat treatments or when the data were consistent with the results from a previous set of experiments.

Sealed platinum tubes were employed as specimen containers for the experiments having prolonged heat treatments below the dissociation temperatures. Sealed tubes were utilized in an attempt to maintain composition and to obtain maximum reaction. The use of fused silica tubes instead of platinum was necessary because Pd, frequently found as a decom-

position product, readily reacts with platinum. On the other hand, the silica tube did not appear to influence or react with the various oxide samples.

Temperatures in the quench furnace were measured with a 100 percent Pt versus 90 percent Pt-10 percent Rh thermocouple. All reported temperatures pertaining to quench furnace data are considered accurate to within ± 5 °C. The precision of the measurements was ± 2 °C.

All specimens were examined by x-ray diffraction at room temperature using a high angle recording Geiger counter diffractometer and Ni-filtered Cu radiation.

4. Results and Discussion

4.1. Nd₂O₃-PdO and Sm₂O₃-PdO Systems in Air

The equilibrium phase diagram for the Nd₂O₃-PdO system in air is given in figure 1. The diagram was constructed from the data listed in table 1. The solid circles indicate the compositions and temperatures of the experiments conducted. It should be emphasized that figure 1 represents a composite of the Nd₂O₃-Pd and Nd₂O₃-PdO systems in the Nd-Pd-Oxygen ternary. At the lower temperatures, the oxygen content of the specimens closely conforms to the compositions represented by the pseudobinary system, Nd₂O₃-PdO. At the higher temperatures, the compositions of the solid phases change by an apparent oxygen loss to those indicated by the Nd₂O₃-Pd join. Figure 1 is a pseudobinary representation of a portion of the ternary system. This method of illustration has been employed by a number of investigators [1, 12].

Palladium oxide was found to dissociate to Pd metal and presumably oxygen at 800 ±5 °C in air at atmospheric pressure. This value compares favorably with the data (870 °C in one atmosphere oxygen) given by Bell et al., in their study of the Pd-oxygen system [6]. The dissociation of PdO is a reversible process. Palladium oxide was first heated above 800 °C, until only Pd was present. The same material was then reheated at 790 °C and the x-ray data indicated only PdO.

Raub [13] reports that palladium takes up appreciable quantities of oxygen into solid solution when the metal is heated in oxygen at 1200 °C. Raub's concluions were based on weight gain data with no x-ray results given. Chaston [14] concluded the weight gain of Pd observed by Raub was due to the oxidation of base metal impurities. The x-ray diffraction data obtained in the present study show no indication of solid solution of oxygen in Pd, when heated in an air environment.

Three intermediate compounds, 2:1, 1:1, and 1:2 occur in the $\mathrm{Nd_2O_3\text{-}PdO}$ system. The stable 2:1 and 1:2 compounds dissociate to two solid phases and a vapor phase, presumably oxygen at 1135 and 1085 °C, respectively. The 1:1 phase was found to decompose at about 860 °C to the 2:1 and 1:2 compounds. In order

 $^{^3\,\}mathrm{The}$ spectrochemical analyses were performed by the Spectrochemical Analysis Section of the National Bureau of Standards.

 $FIGURE\ 1. \ \ Phase\ equilibrium\ diagram\ for\ the\ Nd_2O_3-PdO\ system\ in\ air.$ Dotted lines indicate metastable 1:1 compound and decomposition temperature. Italic lettering indicates metastable phase assemblages.

- compositions and temperatures of experiments conducted.

Table 1. Experimental data for compositions in the Ln₂O₃-PdO systems

System	Composition	Heat treatment ^a		37 1100	ъ
		Temp.	Time	X-ray diffraction analyses b	Remarks
	mole %	$^{\circ}C$	hr		
d_2O_3 -PdO	75:25	780	18	$2:1 + Nd_2O_3 + 1:1$	Nonequilibrium
		c 1000	18	$2.1 + Nd_2O_3$	Nonequinbrium.
No see All Control		c 1063		$2.1 + Nd_2O_3$	
		c 1103	3 2 2	$2:1 + Nd_2O_3$	Quenched in ice water.
		d 1125	2	$2:1 + Nd_2O_3$	Quenenca in ice water.
	20 10	c 1130	62	$2:1 + Nd_2O_3$	Ouenched in ice water.
		d 1130	1.5	$2:1 + Nd_2O_3$	
		d 1135	1.5	$2:1 + Nd_2O_3 + Pd$	Nonequilibrium.
		d 1140	2	$2:1 + Nd_2O_3 + Pd$	Nonequilibrium.
	71:29	780	22	$2:1 + Nd_2O_3 + 1:1$	Nonequilibrium.
		c 1000	78	$2:1 + Nd_2O_3$	
	66.6:33.3	780	18	$2:1 + Nd_2O_3 + 1:1$	Nonequilibrium.
		790	18	$2:1 + Nd_2O_3 + 1:1$	Nonequilibrium.
		800	20	$2:1 + Nd_2O_3 + 1:1$	Nonequilibrium.
		900	71	$2:1 + Nd_2O_3$	Nonequilibrium.e
		c 1000	18	2:1	
		c 1050	504	2:1	
		c 1070	2	2:1	Quenched in ice water.

Table 1. Experimental data for compositions in the ${\rm Ln_2O_3\text{-}PdO}$ systems—Continued

System	Composition	Heat treatment ^a		X-ray diffraction analyses ^b	D1
System	Composition	Temp.	Time	A-ray diffraction analyses	Remarks
	mole %	$^{\circ}C$	hr	N	
		c 1085	2	2:1	
		1115	20	$2:1+\mathrm{Nd_2O_3}+\mathrm{Pd}$	Nonequilibrium; reheat of 1205 °C specimen.
		^d 1115 ^d 1125	2	2:1	
		d 1130	$\frac{2}{2}$	2:1 2:1	
		^d 1135	2	$2:1 + Pd + Nd_2O_3$	Nonequilibrium.
		1205 1300	1 1	$egin{array}{l} \mathrm{Nd_2O_3} + \mathrm{Pd} \ \mathrm{Nd_2O_3} + \mathrm{Pd} \end{array}$	
	62:38	780	18	$\begin{vmatrix} 1 \text{Nd}_2 \text{O}_3 + 1 \text{ d} \\ 2 : 1 + 1 : 1 + \text{Nd}_2 \text{O}_3 \dots \end{vmatrix}$	Nonequilibrium.
		845	20	2:1+1:1	1
	50:50	c 1000 780	78 18	$\begin{vmatrix} 2:1+1:2\\ 1:1+Nd_2O_3+PdO$	Nonequilibrium.
	00.00	c 830	20	1:1	Ouenched in ice water.
		842	15	$1:1 + Nd_2O_3$	Nonequilibrium.e
		845 855	144 3	2:1 + 1:2	Reheat of 902 °C specimen.
		860	2	1:1 + 1:2	Nonequilibrium.
		865	2	1:1+1:2+2:1	Nonequilibrium.
		902 c 1000	18 18	2:1+1:2 $2:1+1:2$	
		° 1070	78	2:1 + 1:2	Quenched in ice water.
		1080	2	2:1 + 1:2 2:1 + 1:2 + Pd	NI III
		1085	2	2:1 + 1:2 + Pa	Nonequilibrium.
		1090	2	2:1 + 1:2 + Pd	
		1100	4	2:1 + Pd + 1:2	Nonequilibrium.
		1200 1250	$\frac{18}{2}$	$egin{array}{l} \mathrm{Nd_2O_3} + \mathrm{Pd} \\ \mathrm{Nd_2O_3} + \mathrm{Pd} \end{array}$	
	38:62	780	21	1:2+1:1+PdO	Nonequilibrium.
		c 845 c 1000	20 78	1:2 + 1:1	Quenched in ice water.
	33.3:66.6	780	18	1:2 + 2:1 1:2 + 1:1 + PdO	Nonequilibrium.
		c 800	120	1:2	
		900 925	$\frac{2}{2}$	1:2 1:2	
		970	120	$1.2 + Nd_2O_3 + Pd$	Nonequilibrium: reheat
		975	2	1:2	1150 °C specimen.
		c 1000	18	1:2	Quenched in ice water.
		c 1000	48	1:2	
		1025 1040	$\frac{2}{2}$	1:2 1:2	
		c 1050	110	1:2	
		d 1060 d 1070	2	1:2	
		d 1080	3 2	1:2 1:2	
		d 1085	2	1:2 + Pd + 2:1	Nonequilibrium.
		d 1090	1.5 18	1:2 + Pd + 2:1	Nonequilibrium.
		1110 1130	2	2:1 + Pd 2:1 + Pd	
		1150	1	$Nd_2O_3 + Pd$	N T (11)
	29:71	780 1000	$\begin{array}{c} 21 \\ 3 \end{array}$	1:2+1:1+PdO 1:2+Pd	Nonequilibrium.
		1020	1.5	1:2 + Pd	
	25:75	780	18	1:2 + 1:1 + PdO	Nonequilibrium.
		1000 1050	3 1.5	1:2 + Pd 1:2 + Pd	
		1075	2	1:2 + Pd	
		1085	3	Pd + 2:1 + 1:2	Nonequilibrium.
		1110 1150	$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$	$egin{array}{c} \operatorname{Pd} + 2:1 \\ \operatorname{Pd} + \operatorname{Nd}_2 \operatorname{O}_3 \end{array}$	
		1300	1.5	$Pd + Nd_2O_3$	
	0:100	780	18	PdO	

TABLE 1. Experimental data for compositions in the Ln₂O₃-PdO systems - Continued

System		Heat treatment ^a		Y 1:00 l	D. I
	Composition	Temp.	Time	X-ray diffraction analyses ^b	Remarks
	mole %	$^{\circ}C$	hr		
		795 800 810 825 850 900 1200	2 2 4 1.5 3 3 2	PdO PdO + Pd Pd Pd Pd Pd Pd Pd	Nonequilibrium.
Sm ₂ O ₃ -PdO	75:25	780 c 1103	18 3	$ \begin{array}{c} 2:1 + Sm_2O_3 + 1:1\\ 2:1 + Sm_2O_3 \end{array} $	Quenched in ice water.
	66.6:33.3	1140 780 790	1 19 120		
		c 1000 c 1000 d 1100 d 1110 d 1115	20 24 2.5 2 2	$\begin{array}{c} 2:1 + Sm_2O_3\\ 2:1\\ 2:1\\ 2:1\\ 2:1 + Pd + Sm_2O_3 \end{array}$	Nonequilibrium. ^e Nonequilibrium.
	50:50	d 1125 1200 780 800 c 830 830 850	1.5 2 21 144 20 5 2	$ \begin{array}{l} 2:1 + Pd + Sm_2O_3\\ Sm_2O_3 + Pd\\ 1:1 + 1:2 + Sm_2O_3\\ 2:1 + 1:2\\ 1:1\\ 1:1\\ 1:1 \end{array} $	Nonequilibrium. Reheat of 1000 °C specimen
	,	880	2.5	1:1	specimen. Reheat of 830 °C 20 hr specimen.
		° 902 915	18 1.5	1:1 1:1	Quenched in ice water. Reheat of 830 °C 20 hr specimen.
		935 940	2 2	1:1 1:1 + 1:2 + 2:1	Reheat of 830 °C 20 hr specimen. Nonequilibrium; reheat of
	33.3:66.6	1000 1100 1200 780 790	20 3 2.5 21 120	$\begin{array}{c} 2:1+1:2\\ 2:1+Pd+1:2\\ 3:1+Pd+1:2\\ 5:1+1+Sm_2O_3\\ 1:2+1:1+Sm_2O_3\\ 1:2+PdO+Sm_2O_3\\ \end{array}$	830 °C 20 hr specimen. Nonequilibrium. Nonequilibrium; reheat of
		c 800 c 1000 d 1055 d 1060 d 1075	54 20 2.5 2	1:2	1150°C specimen. Quenched in ice water. Nonequilibrium. Nonequilibrium.
	25:75	1150 780 1050	1 21 1.5	$ \begin{aligned} Sm_2O_3 + Pd \\ 1:2 + PdO + Sm_2O_3 \\ 1:2 + Pd \end{aligned} $	
_a ₂ O ₃ -PdO	66.6:33.3	780 c 1000 c 1000 c 1000 c 1070 1150 1160 1185 1190	20 18 72 66 2 3 2 2	$\begin{array}{c} La_2O_3 + PdO + 1:2. \\ 2:1 + La_2O_3. \\ 2:1 + La_2O_3. \\ 2:1 \\ 2:1. \\ 2:1. \\ 2:1. \\ 2:1 \\ 2:1 + La_2O_3 + Pd. \end{array}$	Nonequilibrium. Nonequilibrium. Nonequilibrium. Nonequilibrium. Quenched in ice water. Reheat of 1070 °C specimen Reheat of 1070 °C specimen Reheat of 1070 °C specimen Nonequilibrium; reheat of
	50:50	780 850 c 1000 1000	20 144 18 144	La ₂ O ₃ + PdO + 1:2 2:1 + 1:2 2:1 + 1:2 2:1 + 1:2 + Pd	
		1310	2	$La_2O_3 + Pd + La(OH)_3$	1310 °C specimen.

Table 1. Experimental data for compositions in the $\mathrm{Ln_2O_3\text{-}PdO}$ systems – Continued

System	Heat treatmen		atment ^a	X-ray diffraction analyses ^b	Remarks
	Composition	Temp.	Time	A-ray diffraction analyses	Remarks
	mole %	$^{\circ}C$	hr		
	33.3:66.6	780	20	$La_2O_3 + PdO + 1:2$	Nonequilibrium.
	33.3:00.0	c 1000	18	1:2	
		° 1070	66	1:2	. Quenenca in ice water.
		d 1085	2	1:2	
		d 1090	2	1:2	
		d 1100	2.5	1:2	
		d 1105	2	1:2 + Pd	Nonequilibrium.
		d 1110	2	1:2 + Pd + 2:1	Nonequilibrium.
		^d 1140	2	2:1 + Pd	Nonequilibrium.
u_2O_3 -PdO	66.6:33.3	780	18	$Eu_2O_3 + PdO + 1:1 + 2:1 \dots 2:1 + Eu_2O_3 \dots$	
		° 900 ° 950	10 48	$2:1 + \text{Eu}_2\text{O}_3$	Nonequilibrium ^e ; quenched
		930	40	$2:1 + Eu_2O_3$	in ice water.
		c 1050	36	$2:1 + Eu_2O_3$	
	1 1 1 1 1 1 1	1085	2	$2.1 + Eu_2O_3 + Pd.$	
		1000	_		1050 °C specimen.
		1090	2	$2:1 + Eu_2O_3 + Pd$	Nonequilibriume; reheat of
					1050 °C specimen.
		1095	2	$2:1 + Eu_2O_3 + Pd$	Nonequilibrium ^e ; reheat o
					1050 °C specimen.
	50:50	780	18	$Eu_2O_3 + 1:1 + PdO$	Nonequilibrium.
		800	144	$1:2+2:1+\mathrm{Eu_2O_3}$	Nonequilibrium; reheat of
		0.050	67	1:1 + Eu ₂ O ₃	1000 °C 20 hr specimen Nonequilibrium. ^e
		c 850 c 900	67 168	$1:1 + Eu_2O_3$ $1:1 + Eu_2O_3$	
		960	2	$1:1 + Eu_2O_3$	
		700	2	1.1 Eu203	900 °C specimen.
		980	2	$1:1 + Eu_2O_3$	
		985	2 2	$11:1 + Eu_2O_2 + 1:2$	Nonequilibrium.
		990	2	$1:1 + Eu_2O_3 + 1:2$	Nonequilibrium.
		1000	20	$1:2+2:1+\mathrm{Eu_2O_3}$	Nonequilibrium.
		1000	144	$1:2+2:1+\mathrm{Eu_2O_3}$	Nonequilibrium; reheat of 1250 °C specimen.
		1250	2	$Eu_2O_3 + Pd$	1200 G Specimen.
	33.3:66.6	780	18	$1:2 + PdO + Eu_2O_3 + 1:1 \dots$	
		c 900	10	$1:2 + Eu_2O_3$	
	100		0.6		in ice water.
		c 950	96	1:2	Palant of 050 °C anadimos
	1.2.2	1040 1045	2 2	1:2 + Pd + 2:1	
		1040		1.2 + Fu + 2.1	950 °C specimen.
		1050	2	1:2 + Pd + 2:1	
					950 °C specimen.
		1055	2	1:2 + Pd + 2:1	. Nonequilibrium; reheat of 950 °C specimen.
CLO DIO	66 6.22 2	700	10	$Gd_2O_3 + 1:1 + PdO$	
Gd ₂ O ₃ -PdO	66.6:33.3	780 c 900	18 144	$Gd_2O_3 + 1:1 + PdO$ $1:1 + Gd_2O_3$. Nonequilibrium.
	50:50	780	18	$Gd_2O_3 + 1:1 + PdO$. Nonequilibrium.
	00.00	c 900	20	$1:1 + Gd_2O_3$	
	7	900	72	$1:2 + Gd_2O_3 + Pd$	Nonequilibrium; reheat of 1100 °C specimen.
		1000	2.5	$1:1 + Gd_2O_3$. Nonequilibriume; reheat of
		1005	2	$1:1 + Gd_2O_3 + 1:2$	900 °C 20 hr specimen. Nonequilibrium; reheat of
		1010	3	$1:1 + Gd_2O_3 + 1:2$	900 °C 20 hr specimen.
		1020	2	$1:1 + Gd_2O_3 + 1:2$	900 °C 20 hr specimen.
					900 °C 20 hr specimen.
		1040	2	$Gd_2O_3 + Pd + 1:2$	
		2200		010 P	900 °C 20 hr specimen.
	33.3:66.6	1100 780	3 18	$Gd_2O_3 + Pd$ $1:1 + 1:2 + Gd_2O_3$	•

Table 1. Experimental data for compositions in the Ln₂O₃-PdO systems - Continued

System	Composition -	Heat treatment a		V 1:00 h	
		Temp.	Time	X-ray diffraction analyses b	Remarks
	mole %	$^{\circ}C$	hr		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		c 950	28	1:2 + 1:1	Nonequilibrium ^e ; quenched in ice water.
		1015	2	$1:2 + Gd_2O_3$	Nonequilibrium ^e ; reheat of 950 °C specimen.
		1020	2	$1:2 + Gd_2O_3$	Nonequilibrium ^e ; reheat of 950 °C specimen.
		1025	2	$1:2 + Gd_2O_3 + Pd$	Nonequilibrium; reheat of 950 °C specimen.
	1 -	1030	2	$1:2+\mathrm{Gd}_2\mathrm{O}_3+\mathrm{Pd}$	Nonequilibrium; reheat of
		1035	2	$1:2 + Gd_2O_3 + Pd$	Nonequilibrium; reheat of 950 °C specimen.
		1040	2	$1:2 + Pd + Gd_2O_3$	Nonequilibrium; reheat of 950 °C specimen.
Dy ₂ O ₃ -PdO	66.6:33.3	780	18	$1:1 + PdO + Dy_2O_3$	Nonequilibrium.
,		850	67	$1:1 + Dy_2O_3$	On an about in the section
		c 900 c 1000	18 144	$1:1 + Dy_2O_3$ $1:1 + Dy_2O_3$	Quenched in ice water.
	50:50	780	18	$1:1 + Dy_2O_3$ $1:1 + Dy_2O_3 + PdO$	Nonequilibrium.
	00.00	c 900	68	$1:1 + Dy_2O_3$	Nonequilibrium.e
		790	120	$Dy_2O_3 + PdO + Pd$	Nonequilibrium; reheat of 1250 °C specimen.
		1000	144	$Dy_2O_3 + Pd$	
		1010	2	$1:1 + Dy_2O_3$	Reheat of 900 °C specimen.
	-	1025	2	$1:1 + Dy_2O_3$	
		1030	2	$1:1 + Dy_2O_3 + Pd$	Nonequilibrium; reheat of 900 °C specimen.
	22.2.66	1250	2	$Dy_2O_3 + Pd$	
	33.3:66.6	780 c 900	18 20	$1:1 + PdO + Dy_2O_3$ 1:1 + Pd	Nonequilibrium.
		1050	120	$Pd + Dy_2O_3$	
Io ₂ O ₃ -PdO	50:50	780	18	$Ho_2O_3 + PdO$	
		c 790	20	$Ho_2O_3 + PdO$	
		800 900	$\frac{2}{120}$	$ \begin{array}{c} Ho_2O_3 + PdO + PdHo_2O_3 + Pd \end{array} $. Nonequilibrium.
V ₂ O ₃ -PdO	50:50	780	18	$Y_2O_3 + PdO$	
		c 790	20	$Y_2O_3 + PdO$	
		900 1000	120 144	$egin{array}{l} \mathbf{Y_2O_3} + \mathrm{Pd} \\ \mathbf{Y_2O_3} + \mathrm{Pd} \end{array}$	
0.00	50.50				
$\operatorname{Cr}_2\operatorname{O}_3\operatorname{-PdO}_{$	50:50	780 c 790	18 20	$\mathrm{Er_2O_3} + \mathrm{PdO} \ \mathrm{Er_2O_3} + \mathrm{PdO}$	
		900	120	$\operatorname{Er_2O_3} + \operatorname{Pd}$ $\operatorname{Er_2O_3} + \operatorname{Pd}$	
m ₂ O ₃ -PdO	50:50	780	18	$Tm_2O_3 + PdO$	
		c 790	18	$Tm_2O_3 + PdO$	
	· ,	900	120	$T_{m_2}O_3 + Pd$	
		1000	23	$\mathrm{Tm_2O_3} + \mathrm{Pd}$	
${ m Vb_2O_3\text{-}PdO}$	50:50	780	18	$Yb_2O_3 + PdO$	
		° 790 900	18 120	$egin{array}{l} \mathrm{Yb_2O_3} + \mathrm{PdO} \\ \mathrm{Yb_2O_3} + \mathrm{Pd} \end{array}$	
Lu ₂ O ₃ -PdO	50:50	780	21	$Lu_2O_3 + PdO$	
/u ₂ O ₃ -1 uO	50.50	c 790	18	$Lu_2O_3 + PdO$ $Lu_2O_3 + PdO$	
		900	68	$Lu_2O_3 + Pd$	
		1000	25	$Lu_2O_3 + Pd$	

<sup>a All specimens were heat treated at 770 °C, a minimum of 18 hr. Unless otherwise indicated, fused silica tubes (sealed at one end) were used for specimen containers and were air quenched.
b The phases identified are given in order of the relative amount present at room temperature.
c Sealed platinum tubes were used for specimen containers.
d Reheat of 1000 °C specimen.
e PdO probably lost by volatilization.</sup>

to establish the stability of the three compounds, appropriate mixtures were heated first above and then below their respective decomposition or dissociation temperatures. Only the 2:1 and 1:2 compounds reformed from their decomposition products. Prolonged heat treatments (up to 6 days) failed to reform the 1:1 compound, indicating perhaps it is metastable phase that forms only on heating.

A literature search did not reveal any compounds structurally similar to the Nd₂O₃-PdO phases. The x-ray powder patterns of the compounds were not similar to those reported by Barry and Roy [15] for the 2:1, 1:1, and 1:2 rare earth oxide-calcium oxide compounds. The unindexed x-ray diffraction powder patterns for the three compounds found in the present study are given in table 2.

At temperatures above 800 °C the system no longer can be represented by the Nd_2O_3 -PdO join. The system changes through dissociation and at 1135 °C becomes the true binary Nd_2O_3 -Pd. Up to 1300 °C, Nd_2O_3 and Pd do not react in the solid state.

Table 2. X-ray diffraction powder data for Nd₂O₃-PdO compounds

(CV			:
$(Cu K_{\alpha})$	rad	lat	10H)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I/I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13
2,8643 81 2,0732 12 2,9303 2,8038 45 1,9980 33 2,8228 2,1401 21 1,9556 8 2,7792 2,0827 20 1,6715 18 2,5924 2,0170 8 1,6423 27 2,3178 1,9746 19 1,4393 7 2,1372 1,9313 12 1,4120 9 2,1185 1,7640 8 1,2641 5 2,0732 1,7199 9 2,0347 1,6888 12 2,0179 1,6800 22 1,8192	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	76
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41
1.9746 19 1.4393 7 2.1372 1.9313 12 1.4120 9 2.1185 1.7640 8 1.2641 5 2.0732 1.7199 9 2.0347 2.0347 1.6888 12 2.0179 2.1819 1.6800 22 1.8192	100
1.9313 12 1.4120 9 2.1185 1.7640 8 1.2641 5 2.0732 1.7199 9 2.0347 1.6888 12 2.0179 1.6800 22 1.8192	71
1.7640 8 1.2641 5 2.0732 1.7199 9 2.0347 1.6888 12 2.0179 1.6800 22 1.8192	12
1.7199 9 2.0347 1.6888 12 2.0179 1.6800 22 1.8192	10
1.6888 12 1.6800 22 2.0179 1.8192	6
1.6800 22 1.8192	9
	54
1.6628 4 1.7804	20
	8
1.6137 11 1.7287	11
1.6019 11 1.6634	7
1.5784 10 1.6148	18
1.4342 6 1.5898	11
1.5732	25
1.5674	33
1.5230	21
1.4669	15
1.4181	7
1.3913	11
1.3807	3
1.2971	1
1.2753	8
1.2281 1.1870	4 7

^a d-interplanar spacing, I/I_0 -relative intensity.

The equilibrium phase diagram for the Sm₂O₃-PdO system in air is given in figure 2. The pertinent data are listed in table 1. The diagram is similar to the Nd₂O₃-PdO system in many respects in that three intermediate compounds 2:1, metastable 1:1, and 1:2 also occur. These phases dissociate or decompose at 1115, 940, and 1060 °C, respectively.

4.2. Other Ln₂O₃-PdO Systems in Air

Mixtures were prepared from PdO and each of the following sesquioxides: La₂O₃, Eu₂O₃, Gd₂O₃, Dy₂O₃, Ho_2O_3 , Y_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 , and Lu_2O_3 . The phase equilibrium diagrams for the various Ln₂O₃-PdO systems in air are given in figure 3. The experimental data are tabulated in table 1. It is evident that the Nd₂O₃-PdO system is representative in a general way of the other Ln₂O₃-PdO systems. The La₂O₃-PdO diagram indicates the occurrence of the 2:1 and the 1:2 compounds. The 1:1 compound was not detected. Three compounds, 2:1, metastable 1:1, and 1:2 occur in the Eu₂O₃-PdO system. The 1:2 and metastable 1:1 compounds occur in the Gd₂O₃-PdO system. The 2Gd₂O₃·PdO compound was not detected. In the Dy₂O₃-PdO system, only the metastable 1:1 compound was detected.

The remaining systems of either Ho_2O_3 , Y_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 , or Lu_2O_3 with PdO are rather simple and straightforward inasmuch as there was no detectable reaction between end members in the solid state. The diagrams indicate only the dissociation of PdO, the point at which the system reverts to the true Ln_2O_3 -Pd system.

Table 3 summarizes the results obtained in this study. Listed are the systems investigated, size of the rare earth cation, and the dissociation temperatures of the Ln₂O₃-PdO compounds. The dissociation temperatures of the 2:1 compounds decrease as the size of the rare earth cation decreases. The 1:2 compounds were found to dissociate in a similar manner. However, the decomposition temperatures of the metastable 1:1 compounds increase as the size of the rare earth cation decreases. As expected, the Ln₂O₃-PdO compounds with the same molecular ratio appear to have similar x-ray patterns. The patterns indicate appropriate shift in d-spacings to account for difference in ionic size of the rare earth cations.

It should be noted that the proposed diagrams pertain only to the phase relations of the systems in an air environment at atmospheric pressure. Any change in oxygen pressure would change the equilibrium diagram. In an air environment, precaution should be taken when utilizing Pd metal in combination with some of the rare earth oxides, since the data indicate the tendency to form new phases.

4.3. Summary

Equilibrium phase diagrams for systems involving PdO and various rare earth oxides were determined in air. Selected mixtures in the systems were studied by x-ray diffraction techniques after various heat treatments. Palladium, in air, oxidizes to PdO at moderate temperatures. The dissociation temperature of PdO in air at atmospheric pressure was established at 800 ± 5 °C. This dissociation was found to be a reversible process. Palladium oxide reacts with a number of oxides to form binary compounds. The pseudobinary system Nd₂O₃-PdO exemplified the typical type of reaction and was studied in detail. Three compounds, $2Nd_2O_3 \cdot PdO$, $Nd_2O_3 \cdot PdO$ (meta-

b X-ray pattern obtained from specimen heat treated at 1000 °C for 18 hr. c X-ray pattern obtained from specimen heat treated at 830 °C for 20 hr.

FIGURE 2. Phase equilibrium diagram for the Sm₂O₃-PdO system in air.

Dotted lines indicate metastable 1:1 compound and decomposition temperature. Italic lettering indicates metastable phase assemblages.

—compositions and temperatures of experiments conducted.

stable), and Nd_2O_3 ·2PdO occur in the system. The 2:1, 1:1, and 1:2 compounds, of unknown symmetry dissociate or decompose at 1135, 860, and 1085 °C, respectively. Above 1135 °C the system corresponds to the Nd_2O_3 -Pd binary system. No further reaction appears to take place between Nd_2O_3 and Pd up to 1300 °C. Similar type compounds were found to exist in other Ln_2O_3 -PdO systems.

Three compounds, 2:1, 1:1, and 1:2, occur in the Sm₂O₃-PdO and Eu₂O₃-PdO systems. Two compounds,

2:1 and 1:2, occur in the La₂O₃-PdO system. Other compounds detected were the 1:1 and 1:2 in the Gd_2O_3 -PdO system and the 1:1 in the Dy₂O₃-PdO system. Each of these compounds also dissociated upon heating at temperatures above the dissociation temperature of PdO. Mixtures of either Ho_2O_3 , Y_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 , or Lu_2O_3 with PdO did not react in the solid state.

Figure 3. Proposed phase equilibrium diagrams for various Ln₂O₃-PdO systems in air.

For clarity experimental points are not included, see table 1 for exact compositions and temperatures studied. Dotted lines indicate metastable 1:1 compound and decomposition temperature. Italic lettering indicates metastable phase assemblages.

	RADIUS OF	DISSOCIATION TEMP. °C				
SYSTEM	Ln ⁺³ Å	2 Ln ₂ 0 ₃ · Pd0	Ln ₂ 0 ₃ ·Pd0	Ln ₂ 0 ₃ ·2Pd0		
La ₂ 0 ₃ - Pd0	1.14	1190		1105		
Nd ₂ 0 ₃ - Pd 0	1.04	1135	(860)	1085		
Sm ₂ 0 ₃ - Pd 0	1.00	1115	(940)	1060		
Eu ₂ 0 ₃ - Pd0	0.98	1085	(985)	1045		
Gd ₂ 0 ₃ - Pd0	0.97		(1005)	1025		
Dy 2 03 - Pd 0	0.92		(1030)			
Ho ₂ 0 ₃ - Pd0	0.91					
$Y_2 O_3 - PdO$	0.91					
Er ₂ 0 ₃ - Pd0	0.89					
Tm_20_3-Pd0	0.87		-			
$Yb_2 0_3 - Pd 0$	0.86					
Lu ₂ 0 ₃ - Pd0	0.85					

Table 3. Dissociation temperatures of Ln₂O₃ · PdO compounds. All radii of the rare earth cations taken from Arhens [16] with the exception of Y+3 which was taken from Roth and Schneider [8]. Parenthesis indicate decomposition temperatures of metastable 1:1 compounds.

5. References

- [1] S. J. Schneider, J. L. Waring, and R. E. Tressler, J. Res. NBS
- 69A (Phys. and Chem.), No. 3, 245–54 (1965). [2] C. L. McDaniel and S. J. Schneider, J. Res. NBS 71A (Phys. and Chem.), No. 2, 119-23 (1967).
- [3] H. F. Stimson, J. Res. NBS 65A (Phys. and Chem.), No. 3, 139-45 (1960).
- [4] H. E. Swanson and E. Tatge, NBS Circ. 539, I, 21 (1953).
- [5] H. E. Swanson, R. K. Fuyat, and G. M. Ugrinic, NBS Circ. 539, 4, 27 (1963).
- [6] W. E. Bell, R. E. Inyard, and M. Tagami, J. Phys. Chem. 70 [11], 3735–36 (1966).
- [7] H. E. Swanson, R. K. Fuyat, and G. M. Ugrinic, NBS Circ. 539, 4, 26 (1963).
- [8] R. S. Roth and S. J. Schneider, J. Res. NBS 64A (Phys. and Chem.) No. 4, 309-16 (1960).
- [9] S. J. Schneider, NBS Monograph 68, 31 p. (1963).
- [10] S. J. Schneider and R. S. Roth, J. Res. NBS 64A (Phys. and Chem.) No. 4, 317-32 (1960).
- [11] S. J. Schneider, J. Res. NBS 65A (Phys. and Chem.), No. 5, 429-34 (1961).
- [12] A. Muan, Am. J. Sci. **256**, 171–207 (1958).
 [13] E. Raub, J. Less Common Metals **1**, 3–18 (1959).
 [14] J. C. Chaston, Platinum Metals Rev. **9** [4], 126–9 (1965).
- [15] T. L. Barry, V. S. Stubican, and R. Roy, J. Am. Ceram. Soc. **49** [12], 667–70 (1966).
- [16] L. H. Ahrens, Geochim. et Cosmochim. Acta 2, 155-69 (1952).

(Paper 72A1-479)