Combinatorics and Geometry

Fernando Rodriguez Villegas

Univ. of Texas at Austin/ICTP

August 2013

Projective plane

- ightharpoonup A a set of points
- ▶ A collection of subsets of A called lines.

Axioms

- ▶ Two distinct points lie in a unique line.
- ▶ Two distinct lines meet in a unique point.
- ▶ There exist four points not all in a line

Properties

- ▶ No finiteness required.
- ► Fano (1892): projective plane consisting of seven points and seven lines.

Finite projective planes

- ▶ Each line has q + 1 points for some q.
- ▶ The total number of points is $q^2 + q + 1$.
- ▶ In Fano's case q = 2.

Desargues

Desargues theorem

▶ Desargues theorem does not follows from the axioms.

Coordinates

- ▶ Desargues holds if and only if we can put coordinates.
- ▶ Use Desargues theorem to define sum, multiplication by scalars, etc.
- For a finite plane we get a finite field \mathbb{F}_q of $q = p^n$ elements, where p is a prime.

Fano plane coordinates

Algebraic varieties

- ▶ X zero locus of polynomials F_1, \ldots, F_m in variables x_1, \ldots, x_n .
- ▶ If the coefficients of F_i are integers we can consider $X(\mathbb{F}_q)$.
- What is the relation between $X(\mathbb{C})$ and $X(\mathbb{F}_q)$?

Example

$$X: \quad y^2 = f(x)$$
 with $f \in \mathbb{Z}[x]$ square-free of degree 8.

• Algebraic curve of genus g = 3.

 $X(\mathbb{C})$ genus 3 curve

Example

ightharpoonup By Weil for all n

$$\#X(\mathbb{F}_{p^n}) = p^n + 1 - \sum_{i=1}^{2g} \alpha_i^n, \qquad |\alpha_i| = p^{\frac{1}{2}}$$

• Hence with $q = p^n$

$$|\#X(\mathbb{F}_q) - q - 1| \le 2g\sqrt{q}$$

▶ Counting \leftrightarrow Geometry.

Analogy

 $\#X(\mathbb{F}_q)$ like Radon transform data.

Weil conjectures

- What can we recover of $X(\mathbb{C})$ from the $\#X(\mathbb{F}_q)$ data?
- ▶ Suppose $X(\mathbb{C})$ is smooth, compact and $\#X(\mathbb{F}_q) = C(q)$ for a certain polynomial C.
- Let $b_j(X) := \dim H^j(X, \mathbb{C})$, the Betti numbers of X.

Weil conjectures

▶ Then $b_{2i+1}(X) = 0$ and

$$C(q) = \sum_{i=0}^{\dim X} b_{2i}(X) q^i$$

Examples

• $X = \mathbb{P}^1$, projective line

$$C(q) = q + 1$$

- $b_0 = b_2 = 1, b_1 = 0.$
- $X = \mathbb{P}^2$, projective plane

$$C(q) = q^2 + q + 1$$

 $b_0 = b_2 = b_4 = 1, b_1 = b_3 = 0.$

Consequences

- Such counting polynomials C(q) have non-negative integer coefficients.
- ▶ We may sometimes compute Betti numbers by counting.

Classical example

▶ X = G(k, n) the Grassmanian of all dimension k subspaces in a fixed n dimensional space.

$$\#G(k,n)(\mathbb{F}_q) = \begin{bmatrix} n \\ k \end{bmatrix}$$

q-binomial coefficient.

► E.g.

$$\begin{bmatrix} 5 \\ 2 \end{bmatrix} = q^6 + q^5 + 2q^4 + 2q^3 + 2q^2 + q + 1.$$

Quivers

ightharpoonup A quiver Q is a directed graph

Quivers representation

ightharpoonup A representation of Q is an assignment:

Example

▶ Representations up to isomorphism

▶ Tuples $(A_1, ..., A_g)$ of $n \times n$ matrices up to simultaneous conjugation.

Classification

- For S_1 this is Jordan's problem.
- ▶ Classification of representations up to isomorphims in general? E.g. S_q for q > 1.
- ▶ Difficult linear algebra problems.

Kac

- ► Kac (early 80's): count over finite fields.
- Fix Q and a dimension vector α .
- ► The number of absolutely indecomposable representations up to isomorphism equals

$$A_{\alpha}(q)$$

a polynomial in q.

Kac conjecture

- $A_{\alpha}(q)$ has non-negative integer coefficients.
- Crawley-Boevey and van der Bergh proved it for α indivisible.
- ▶ With Hausel and Letellier we extended the proof to the general case.

Quiver variety

► CB-vB's argument:

$$A_{\alpha}(q) = \sum_{i} \dim \left(H_{c}^{2i}(\mathcal{Q}_{\alpha}; \mathbb{C}) \right) q^{i - d_{\alpha}}$$

- Q_{α} is an associated smooth Nakajima quiver variety of dimension $2d_{\alpha}$.
- Indivisible α crucial for the existence of \mathcal{Q}_{α} .

Quiver variety

- We consider an extended quiver Q and dimension vector $\tilde{\alpha}$ adding legs to every vertex.
- E.g. for S_g and dimension $\alpha = n$

Extended quiver

- Get associated Nakajima quiver variety $\tilde{Q}_{\tilde{\alpha}}$ of dimension $2d_{\tilde{\alpha}}$ ($\tilde{\alpha}$ is indivisible).
- The *i*-th leg gives an action of the symmetric group S_{α_i} on the cohomology of $\tilde{\mathcal{Q}}_{\tilde{\alpha}}$.
- ▶ We prove

$$A_{\alpha}(q) = \sum_{i} \dim \left(H_{c}^{2i}(\mathcal{Q}_{\tilde{\alpha}}; \mathbb{C})_{\epsilon} \right) q^{i - d_{\tilde{\alpha}}}$$

where ϵ is the sign character of $S_{\alpha_1} \times S_{\alpha_2} \cdots$