Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»
Факультет программной инженерии и компьютерной техники

Компьютерные сети

Лабораторная работа №2

Выполнил: Борисенко Е. А.

Группа: Р33011

Преподаватель: Маркина Т. А.

<u>Задача</u>: исследование влияния свойств канала связи на качество передачи сигналов при различных методах физического и логического кодирования, используемых в цифровых сетях передачи данных.

Исходное сообщение: Борисенко Е. А.

Шестнадцатеричный код: C1 EE F0 E8 F1 E5 ED EA EE 20 C5 2E 20 C0 2E

Сообщение: \E8F0EEC1

Шестнадцатеричный код сообщения:			Метод кодирования					
C1EEF0E8			NRZ	RZ	M-II	4B/5B	Scramb	
Полоса	Номера	Min	7	8	36	14	16	
пропускания	гармоник	Max	28	28	56	54	48	
идеального	Частоты,	Min	1.1	1.3	5.6	1.8	2.5	
канала	МГц	Max	4.4	4.4	8.8	6.8	7.5	
СВЯЗИ								
Минимальная полоса пропускания		3.8	3.1	3.2	5	5		
идеального канала связи								
Уровень шума		max	0.16	0.04	0.04	0.07	0.03	
Уровень		max	0.04	0.25	0.03	0.37	0.56	
рассинхронизации								
Уровень граничного		max	0.02	0.04	1	0.1	0.03	
напряжения								
Процент ошибок при тах уровнях и		2.5	2.25	0.04	4.15	1.1		
минимальной полосе пропускания								
KC								

Уровень шума		Cp.	0.068 (0.07)						
Уровень		Cp.	0.25						
рассинхронизации									
Уровень граничного		Cp.	0.238 (0.24)						
напряжения									
Полоса	Гармоники	min	4	8	36	6	14		
пропускания		max	44	62	62	64	50		
реального	Частоты,	min	0.6	1.3	5.6	0.8	2.2		
канала	МГц	max	6.9	9.7	9.7	8.0	7.8		
СВЯЗИ									
Требуемая полоса пропускания			5.7	8.4	4.1	7.2	5.6		
реального канала связи									

Анализ результатов:

M-2 имеет среднюю полосу пропускания среди других методов физического кодирования. Помимо этого, у него имеется наибольший допустимый уровень граничного напряжения и наименьший процент ошибок. Минусы: самые низкие допустимые уровень рассинхронизации и уровень шума.

NRZ среди других методов имеет наибольшую полосу пропускания. Также имеет наибольший допустимый уровень шума. Минусы: наименьший допустимый уровень граничного напряжения, наибольший процент ошибок среди других методов.

RZ имеет наименьшую полосу пропускания. Среди плюсов: наибольший допустимый уровень рассинхронизации. Среди минусов: наименьший допустимый уровень шума, достаточно высокий процент ошибок.

Логическое кодирование применялось для NRZ. При избыточном кодировании допустимый уровень рассинхронизации увеличился в 10 раз, уровень граничного напряжения увеличился в 5 раз, при этом допустимый уровень шума уменьшился в 2 раза. Помимо этого, увеличился процент ошибок в 1,6 раза, а также полоса пропускания стала шире.

При скремблировании уровень рассинхронизации увеличился в 14 раз, также увеличился уровень граничного напряжения на 0.1, а допустимый уровень шума уменьшился в 5 раз. Как и при избыточном кодировании, полоса пропускания стала шире, однако процент ошибок уменьшился в 2 раза.

В реальном канале связи везде увеличилась минимальная полоса пропускания, при этом изменилась ситуация и в распределении кодировок. Теперь М-2 имеет наименьшую полосу, а RZ — наибольшую. Также, в реальном канале связи при избыточном кодировании полоса пропускания увеличивается на 2.2 Гц, когда для скремблирования (с учетом того, что в идеальном канале связи оба метода имеют одинаковую полосу пропускания) увеличение составляет всего 0.6 Гц.

Вывод:

Среди методов физического кодирования я выбрала М-2 благодаря наибольшему уровню граничного напряжения, наименьшему проценту ошибок и наименьшей полосе пропускания в реальном канале связи.

Среди методов логического кодирования я выбрала скремблирование благодаря тому, что, в отличии от избыточного кодирования, он уменьшает процент ошибок и имеет меньшую полосу пропускания. Помимо этого его уровень рассинхронизации больше, и он так же увеличивает уровень граничного напряжения.