TOTES LES RESPOSTES HAN DE SER RAONADES

1. (2 punts) Considereu la successió $(a_n)_{n\geq 1}$ que depèn de $x\in\mathbb{R}$ definida per:

$$a_n = \frac{(3x+2)^n + 3n^2 + 2}{4^n + 3n + 3}, \ n \ge 1.$$

- a) Trobeu els valors de x pels quals la successió és convergent.
- b) Trobeu el suprem, l'ínfim, el màxim (si s'escau) i el mínim (si s'escau) del conjunt $\{x \in \mathbb{R} : (a_n)_{n>1} \text{ és convergent}\}.$
- 2. (1 punt) Calculeu el límit següent:

$$\lim_{n \to +\infty} \left(\frac{\ln(\sqrt[4]{n^3}) + 3}{\ln(\sqrt[5]{n^2}) + 3\ln(\sqrt{n^3}) + 2} \right).$$

3. (1 punt) Demostreu la igualtat següent per a qualsevol $x \in \mathbb{R}$.:

$$\cosh^2 x - \sinh^2 x = 1$$

- 4. (2 punts)
 - a) Escriviu el polinomi de Taylor de grau 2 de la funció $f(x) = \sqrt[3]{x}$ en el punt $x_0 = 1$ i l'expressió del residu corresponent en la forma de Lagrange.
 - b) Utilitzant el polinomi i el residu de l'apartat anterior, calculeu el valor aproximat de $\sqrt[3]{\frac{3}{2}}$ i doneu una fita superior de l'error absolut d'aquesta aproximació.
- 5.~(4 punts)
 - a) Calculeu el límit $\lim_{n\to+\infty} \frac{a^n}{n!}$ per a tot $a\in\mathbb{R}$.
 - b) Determineu el caràcter de la sèrie $\sum_{n\geq 1} \frac{a^n}{n!}$ per a tot $a\in\mathbb{R}$.
 - c) Doneu una fita superior de l'error absolut en aproximar e^a pel polinomi de Taylor de grau N de la funció $f(x) = e^x$ centrat en $x_0 = 0$, en funció de N i a per a tot $N \ge 1$ i $a \in \mathbb{R}$.
 - d) Calculeu el valor de la suma de la sèrie $\sum_{n\geq 1} \frac{a^n}{n!}$ per a tot $a\in\mathbb{R}$ i justifiqueu la resposta.

1. (2 punts) Sigui $a \in (0,1)$. Considereu la successió $(a_n)_{n\geq 1}$ que depèn de $x \in \mathbb{R}$ definida per:

$$a_n = \frac{(3x+2)^n + 3n^2 + 2}{4^n + 3n + 3}, \ n \ge 1.$$

- a) Trobeu els valors de x pels quals la successió és convergent.
- b) Trobeu el suprem, l'ínfim, el màxim (si s'escau) i el mínim (si s'escau) del conjunt $\{x \in \mathbb{R} : (a_n)_{n \geq 1} \text{ és convergent}\}.$

SOLUCIÓ:

a) Calculem el límit de la successió:

$$\lim_{n \to +\infty} \frac{(3x+2)^n + 3n^2 + 2}{4^n + 3n + 3} = \lim_{n \to +\infty} \frac{\left(\frac{3x+2}{4}\right)^n + \frac{3n^2}{4^n} + \frac{2}{4^n}}{1 + \frac{3n}{4^n} + \frac{3}{4^n}} = \lim_{n \to +\infty} \left(\frac{3x+2}{4}\right)^n$$

$$\begin{cases}
= \mathbb{Z} \ (\infty \text{ sense signe}), & \text{si } \frac{3x+2}{4} < -1; \\
\mathbb{Z}, & \text{si } \frac{3x+2}{4} = -1; \\
= 0, & \text{si } -1 < \frac{3x+2}{4} < 1; \\
= 1, & \text{si } \frac{3x+2}{4} = 1; \\
= +\infty, & \text{si } \frac{3x+2}{4} > 1.
\end{cases}$$

Per tant la successió és convergent si i només si $-1 < \frac{3x+2}{4} \le 1$, és a dir $\mathbf{x} \in \left(-2, \frac{2}{3}\right]$.

b) El conjunt és $\{x \in \mathbb{R} : (a_n)_{n\geq 1} \text{ és convergent}\} = \left(-2, \frac{2}{3}\right]$ i, per tant el seu suprem i màxim és el $\frac{2}{3}$, el seu ínfim és el -2, i aquest conjunt no té mínim.

2. (1 punt) Calculeu el límit següent:

$$\lim_{n \to +\infty} \left(\frac{\ln(\sqrt[4]{n^3}) + 3}{\ln(\sqrt[5]{n^2}) + 3\ln(\sqrt{n^3}) + 2} \right).$$

SOLUCIÓ:

$$\lim_{n \to +\infty} \left(\frac{\ln(\sqrt[4]{n^3}) + 3}{\ln(\sqrt[5]{n^2}) + 3\ln(\sqrt{n^3}) + 2} \right) = \lim_{n \to +\infty} \left(\frac{\frac{3}{4}\ln n + 3}{\left(\frac{2}{5} + 3\frac{3}{2}\right)\ln n + 2} \right) = \lim_{n \to +\infty} \left(\frac{\frac{3}{4} + \frac{3}{\ln n}}{\left(\frac{2}{5} + 3\frac{3}{2}\right) + \frac{2}{\ln n}} \right) = \frac{\frac{3}{4}}{\frac{4+45}{10}} = \frac{15}{98}.$$

3. (1 punt) Demostreu la igual
tat següent per a qualsevol $x \in \mathbb{R}$. :

$$\cosh^2 x - \sinh^2 x = 1$$

SOLUCIÓ: Per a qualsevol $x \in \mathbb{R}$ es té:

$$\cosh^{2} x - \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} = \frac{e^{2x} + 2e^{0} + e^{-2x} - (e^{2x} - 2e^{0} + e^{-2x})}{4} = \frac{4}{4} = 1.$$

4. (2 punts)

- a) Escriviu el polinomi de Taylor de grau 2 de la funció $f(x) = \sqrt[3]{x}$ en el punt $x_0 = 1$ i l'expressió del residu corresponent en la forma de Lagrange.
- b) Utilitzant el polinomi i el residu de l'apartat anterior, calculeu el valor aproximat de $\sqrt[3]{\frac{3}{2}}$ i doneu una fita superior de l'error absolut d'aquesta aproximació.

SOLUCIÓ:

a) El polinomi de Tayor de grau 2 d'una funció f(x) en el punt $x_0 = 1$ i l'expressió del residu corresponent en la forma de Lagrange són, respectivament:

$$P_2(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!} (x-1)^2$$
 i $R_2(x) = \frac{f'''(c)}{3!} (x-1)^3$, per a cert c entre 1 i x .

Com que
$$f(x) = x^{\frac{1}{3}}$$
, $f'(x) = \frac{1}{3} x^{-\frac{2}{3}}$, $f''(x) = -\frac{2}{9} x^{-\frac{5}{3}}$, $f'''(x) = \frac{10}{27} x^{-\frac{8}{3}}$, i $f(1) = 1$, $f'(1) = \frac{1}{3}$, $f''(1) = -\frac{2}{9}$, $f'''(c) = \frac{10}{27 c^{\frac{8}{3}}}$, tenim:

$$P_2(x) = 1 + \frac{1}{3}(x - 1) - \frac{1}{9}(x - 1)^2 \quad \text{i} \quad R_2(x) = \frac{5}{81 c^{\frac{8}{3}}}(x - 1)^3, \text{ amb } 1 < c < \frac{3}{2}.$$

$$\text{b) } \sqrt[3]{\frac{3}{2}} = f\left(\frac{3}{2}\right) \simeq P_2\left(\frac{3}{2}\right) = 1 + \frac{1}{3}\left(\frac{3}{2} - 1\right) - \frac{1}{9}\left(\frac{3}{2} - 1\right)^2 = 1 + \frac{1}{6} - \frac{1}{36} = \frac{41}{36} \simeq \frac{1}{36}$$

Càlcul de la fita superior de l'error absolut d'aquesta aproximació:

$$\epsilon = |R_2(x)| = \left| \frac{5}{81 c^{\frac{8}{3}}} \left(\frac{3}{2} - 1 \right)^3 \right| = \left| \frac{5}{2^3 81 c^{\frac{8}{3}}} \right|^{(1 < c < \frac{3}{2})} \le \frac{5}{2^3 81} = \frac{5}{648} \approx 0.0077.$$

5. (4 punts)

- a) Calculeu el límit $\lim_{n\to+\infty} \frac{a^n}{n!}$ per a tot $a\in\mathbb{R}$.
- b) Determineu el caràcter de la sèrie $\sum_{n\geq 1} \frac{a^n}{n!}$ per a tot $a\in\mathbb{R}$.
- c) Doneu una fita superior de l'error absolut en aproximar e^a pel polinomi de Taylor de grau N de la funció $f(x) = e^x$ centrat en $x_0 = 0$, en funció de N i a per a tot $N \ge 1$ i $a \in \mathbb{R}$.
- d) Calculeu el valor de la suma de la sèrie $\sum_{n\geq 1} \frac{a^n}{n!}$ per a tot $a\in\mathbb{R}$ i justifiqueu la resposta.

SOLUCIÓ: Si $a \in \mathbb{R}$ tenim:

a) $\lim_{n\to+\infty} \frac{a^n}{n!} = \mathbf{0}$ per a tot $\mathbf{a} \in \mathbb{R}$ pel criteri del quocient, ja que:

Sigui
$$a_n = \frac{a^n}{n!}$$
, aleshores $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{\frac{|a|^{n+1}}{(n+1)!}}{\frac{|a|^n}{n!}} = \lim_{n \to +\infty} \frac{|a|}{n+1} = 0 < 1.$

b) Sigui $a_n = \frac{a^n}{n!}$, hem vist que $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = 0 < 1$, aleshores, pel criteri del quocient, la sèrie $\sum_{n \ge 1} \left| \frac{a^n}{n!} \right|$ és convergent per a tot $a \in \mathbb{R}$, i, per tant, la sèrie $\sum_{n \ge 1} \frac{a^n}{n!}$ és convergent per a tot $a \in \mathbb{R}$.

c) Siguin $N \ge 1$ i $a \in \mathbb{R}$. L'error absolut en aproximar e^a pel polinomi de Taylor de grau N de la funció $f(x) = e^x$ centrat en $x_0 = 0$ és el valor absolut del residu d'aquest polinomi de Taylor, és a dir: $\left| R_N(a) = \frac{f^{N+1}(c)}{(N+1)!} a^{N+1} \right|$, per at cert c entre a i 0. Aleshores: ; $\left| R_N(a) = \frac{f^{N+1}(c)}{(N+1)!} a^{N+1} \right| = \frac{e^c |a^{N+1}|}{(N+1)!}$, que és creixent en c. Aleshores:

Si a < 0, aleshores a < c < 0 i una fita de l'error serà $e^0 \frac{|a^{N+1}|}{(N+1)!} = \frac{|\mathbf{a}^{N+1}|}{(N+1)!}$.

Si 0 < a, aleshores 0 < c < a i una fita de l'error serà $e^{\mathbf{a}} \frac{|\mathbf{a}^{\mathbf{N}+1}|}{(\mathbf{N}+1)!}$.

 $(\text{Tamb\'e es pot dir que en ambdues situacions} < e^{|\mathbf{a}|} \; \frac{\left|\mathbf{a^{N+1}}\right|}{(N+1)!}).$

d) El valor de la suma de la sèrie és $\sum_{n\geq 1}\frac{a^n}{n!}=\sum_{n\geq 0}\frac{a^n}{n!}-1=e^a-1$ per a qualsevol $a\in\mathbb{R}.$ En efecte:

$$\lim_{N \to +\infty} \left| e^{a} - \sum_{n=0}^{N} \frac{a^{n}}{n!} \right| \stackrel{(1)}{<} \lim_{n \to +\infty} e^{|a|} \frac{|a^{N+1}|}{(N+1)!} \stackrel{apartat \ a)}{=} 0 \implies \left| e^{a} - \sum_{n \ge 0} \frac{a^{n}}{n!} \right| = 0 \implies \sum_{n \ge 0} \frac{a^{n}}{n!} = e^{a} \implies \sum_{n \ge 1} \frac{a^{n}}{n!} = \mathbf{e}^{\mathbf{a}} - \mathbf{1}.$$

(1) S'utilitza l'apartat c). També es poden fer els casos a<0 i a>0 per separat: en el primer cas s'afita el límit per $\lim_{n\to +\infty} \frac{|a^{N+1}|}{(N+1)!}$ i en el segon per $\lim_{n\to +\infty} e^a \frac{|a^{N+1}|}{(N+1)!}$; tots dos són 0 per l'apartat a).