REPORT

BASIC IMPLEMENTATION:

- Classes have been created for Exam, Courses and Registration
- Instance of each Exam has been encoded into binary which includes all data members of Exam class represented by six bits
- A unique number is associated to each data-member and that is converted to binary

MAIN Function:

- Reads the csv files and stores data into array
- Randomly generates population size (range = 50-150) and crossover (range = 0.3-1) and mutation probabilities (range = 0.0-0.5)
- Calls function "RunGA"

RUNGA Function:

- Randomly generates population of size and calculates its fitness
- After this a while loop is initiated
- Population is sent to crossover function which returns a new population of double size
- Roulette wheel selection selects individuals from the new population
- While loop terminates when all conditions are fulfilled

APPLY_CROSSOVER Function:

- Performs one-point crossover from the center and applies mutation on the whole population inside a while loop
- Appends already created population with crossover children
- Returns the new population of size = population_size*2 back to RunGA

APPLY_MUTATION Function:

- Randomly replaces a gene inside chromosome
- This gene is a randomly generated schedule of an exam

ROULETTE_WHEEL_SELECTION Function:

- Selects individuals from new population to generate a population of size = population_size
- These individuals are selected by roulette wheel selection

CALCULATE FITNESS Function:

- This function checks all the hard and soft constraints
- The fitness is calculated out of 400
- Functions are individually implemented for each hard and soft constraint that are called inside this function

SCREENSHOTS

Output 1:

Output 2:

