

h_da Powerflow

h_da Fahrwiderstand und Antriebskraft

Berechnung des Fahrwiderstands

$$F_{w} = c_{w} * A_{proj} * \frac{\rho}{2} * (v_{Fzg} + v_{Wind})^{2} + m * (1 + \lambda) * \alpha + m * g * \sin(\alpha) + f_{R} * m * g$$

Berechnung der Antriebskraft

$$F_A = \frac{M_{Antrieb}}{r_{dyn}} = \frac{M_{Motor} * i * \eta}{r_{dyn}}$$

The Main Vehicle Load Forces

The Main Load Forces:

- F_D = Aerodynamic Drag
- F_R = Rolling Resistance
- F_C = Climbing Resistance

Vehicle Load Forces – Aerodynamic Drag

- Air Resistance
- Equation: $F_D = \frac{1}{2} \rho C_D A (v + v_{air})^2$
 - ρ = Air Density;
 - C_D = Aerodynamic Drag Coefficient
 - A = Cross-sectional Area of the Vehicle in m²
 - v = vehicle speed in m/s; $v_{air} = \text{wind speed in m/s}$
- So, the $P_D = F_D * v$

Vehicle Load Forces – Rolling Resistance

- Combination of All Frictional Load Forces;
- Equation: $F_R = C_R mg$
 - C_R = Coefficient of Rolling Resistance
 - m = mass of the vehicle in kg
 - g = acceleration due to gravity

Fahrwiderstand und Antriebskraft

Formelzeichen	Bezeichnung	Quelle	(Erwartungs-)	
			Wert	
c_w	Beiwert des Luftwiderstandes	Literatur	0,27	
A_{proj}	Fahrzeugstirnfläche	Literatur	2,3 m²	
ρ	Luftdichte	Formel	$\frac{p_{Luft}}{R_{Luft}*T}$	
R_{Luft}	Spezifische Gaskonstante Luft	Literatur	287 J/KgK	
v_{Fzg}	Fahrzeuggeschwindigkeit	Messbar		
v_{Wind}	Windgeschwindigkeit	Vernachlässigbar*	-	
m	Fahrzeugmasse	Messbar	~ 1850 kg	
λ	Drehmassenzuschlagsfaktor	Messbar/Schätzwert	~ 1,2	
а	(Längs-)Beschleunigung	Messbar		
g	Erdbeschleunigung	Literatur	9,81 m/s²	
α	Steigungswinkel	Vernachlässigbar*	-	
f_R	Rollwiderstandsbeiwert	Messbar	~ 0,013 – 0,015	
	Dynamischer Radhalbmesser	Literatur	220.2 mm	
r_{dyn}	(Good Year 215/50R19 93T)	(Conti Reifenratgeber)	~ 339,3 mm	
i	Getriebeübersetzung	Literatur	11,53	
η_A	Wirkungsgrad Antriebsstrang	Schätzwert		

Antriebsstrang schematisch

Getriebeverluste:

$$P_{VA} = P_{mot} \cdot (1 - \eta_{A,total})$$
 $P_{V\lambda} = P_A \cdot \lambda_A$

Schlupfverluste:

$$P_{V\lambda} = P_A \cdot \lambda_A$$

$$\rightarrow P_{mot} = \frac{P_W}{\eta_{Atotal} \cdot (1 - \lambda_A)}$$

$$P_{W} = P_{mot} \cdot \eta_{A,total} \cdot (1 - \lambda_{A})$$
Fahrbahn

Fahrmotor für Elektroantrieb an der Vorderachse

Motor mit Kennbuchstabe EBGA

Audi e-tron GT

Drehmoment-Leistungskurve

684_377

684_055a

Leistung in kW

Drehmoment in Nm

Prof. Dr. Jens Hoffmann FB EIT Darmstadt ©Audi

Audi e-tron GT

Merkmale Technische Daten e-tron GT und RS e-tron GT (Vorderachse) Einsatz Motorkennbuchstabe **EBGA** Permanenterregte Synchronmaschine Bauart Innenläufer Läuferart Polpaare Kühlmantel um die Statorwicklungen Kühlung G12 evo Kühlmittel Dauerleistung in kW bei 8000 U/min 80 kW Peakleistung bei 8000 U/min 175 kW Drehmoment in Nm bis 5500 U/min (4s) 300 Nm

Fahrmotor für Elektroantrieb an der Vorderachse

Motor mit Kennbuchstabe EBGA

Leistung in kW

Drehmoment in Nm

200 180

Fahrmotor für Elektroantrieb an der Hinterachse

Motor mit Kennbuchstabe EBFA

Audi e-tron GT

Drehmoment-Leistungskurve

684_378

684_055b

Leistung in kW

Drehmoment in Nm

©Audi

Fahrmotor für Elektroantrieb an der Hinterachse

Motor mit Kennbuchstabe EBFA

Audi e-tron GT

Merkmale	Technische Daten
Einsatz	e-tron GT (Hinterachse)
Motorkennbuchstabe	EBFA
Bauart	Permanenterregte Synchronmaschine
Läuferart	Innenläufer
Polpaare	4
Kühlung	Kühlmantel um die Statorwicklungen
Kühlmittel	G12 evo
Dauerleistung in kW bei 10000 U/min	120 kW
Peakleistung bei 10000 U/min	320 kW

340 Nm

Drehmoment-Leistungskurve

684_378

Prof. Dr. Jens Hoffmann FB EIT Darmstadt ©Audi

Drehmoment in Nm bis 5000 U/min (4s)

h_da Powerflow

Z — Dauerleistung — Stundenleistung — Anfahrleistung — An

Geschwindigkeit in km/h

Drehzahl in 1/min

 $v_{x} = r_{A} \cdot \frac{\omega_{mot}}{i_{A,total}} \cdot (1 - \lambda_{A})$

h_da Zugkraftdiagramm

h_da Zugkraft

Motormoment M_{mot}

 $rac{\eta_{A,total} \cdot i_{A,total}}{r_A} +$

 F_{W0}

Rollwiderstand

$$F_{WR} = m \cdot g \cdot f_r$$

Luftwiderstand

$$F_{WL} = \frac{1}{2} \cdot c_W \cdot A \cdot \rho \cdot v^2$$

Steigungswiderstand

$$F_{WSt} = m \cdot g \cdot \sin(\alpha)$$

h_da Zugkraftdiagramm

Traction Drive

Internal combustion engine and electric traction drive

Matching

Areas of operation

Aufgabe: Fahrzeug-Berechnung

Dynamischer Radradius 0.343 m Übersetzung 9.7 mit Wirkungsgrad 0.9 Höchstgeschwindigkeit 150 km/h

	Road		Motor			
	velocity [km/h]	f _A [N]	Power P _A [kW]	speed n _{mot} [1/min]	Max torque [Nm]	Max Power [kW]
End of Base speed					250	102
Endpoint	150					102

h_da Layout

Traction Drive Front VW MEB

Öl-Wasser-Wärmetauscher

Stator

COMPLETE THE PROPERTY OF THE PARTY OF THE PA

Ölpumpe für die Ölversorgung der E-Maschine

Ölfangschale

Traction Drive Front VW MEB

Traction Drive Front VW MEB

Traction Drive Rear VW MEB

Prof. Dr. Jens Hoffmann FB EIT Darmstadt

i = 3,900 bei Allradantrieb

Traction Drive Rear VW MEB

Zylinderrollenlager Getriebebelüftung Getriebeeingangswelle -Übersetzungsstufe 1: i = 2,957 -Vierpunktlager - Ölbohrung Ölfangschale Kegelrollenlager Zwischenwelle mit Kegelrollenlager Vierpunktlager Achsantrieb mit Differenzial verschraubtes Stirnrad Übersetzungsstufe 2: i = 4,388 bei Heckantrieb

Prof. Dr. Jens Hoffmann FB EIT Darmstadt Ölbohrungen für die Lagerschmierung

Layout

Traction Drive Front Audi e-tron GT

Traction Drive Front Audi e-tron GT

Traction Drive Rear Audi e-tron GT

maximales Gesamtantriebsmoment im 2. Gang

maximales Antriebsmoment an der Hinterachse im 1. Gang

maximales Antriebsmoment an der Hinterachse im 2. Gang

maximales Antriebsmoment an der Vorderachse

© Audi

Antriebsstrang schematisch

h_da Wirkungsgrad

Der energetische Wirkungsgrad η_{Wh} , ergibt sich aus dem Quotienten von entnommener (E_{ela}) und hinzugefügter Energie (E_{lad})

$$\eta_{Wh} = {^{E_{ela}}}/_{E_{lad}}$$

Anhaltswerte:

	Bleibatterie	NiCd	NiMH	Lithium-lonen
Energetischer Wirkungsgrad (η _{Wh})	0,8	0,65	0,65	0,95

h_da Wirkungsgrad

In Umrichtern treten folgende Verluste auf:

- Schaltverluste in den Halbleitern
- Durchlassverluste in den Halbleitern
- Ohmsche Verluste in den Stromschienen und an parasitären Widerständen
- Verluste durch Eigenverbrauch
 (z.B. Ansteuerung der Leistungshalbleiter,
 Elektronik für die Motorregelung)
- Verluste in Zuleitungen und Klemmen

Wirkungsgrad

h_da Zellverschaltungen

Parallelschaltung: 2P

$$U_{2P} = U_{Zelle} = 3,65 \text{ V}$$

$$C_{2P} = 2 \cdot C_{7elle} = 112,6 \text{ Ah}$$

	Nissan Leaf
Batterietyp	Li-Ion
Kathode	Lithium-Nickel-Kobalt-Mangan - NMC
Nennkapazität	(39,5 kWh) / 37 kWh
Nennleistung	110 kW
Nennspannung	350 V
Aufbau: Pack	24 Module in Reihe
Modul	4S2P
Zelle	AESC Pouch Zellen mit 3,65 V / 56,3 Ah

Pack

$$U_{pack} = 24 \cdot U_{modul_{1}} = 350 \text{ V}$$

$$C_{\text{pack}} = C_{\text{modul } 1} = 112,6 \text{ Ah}$$

$$\Rightarrow$$
 E_{pack} = U_{pack} · C_{pack} = 39,5 kWh

Modul

Reihen-Parallelschaltung: 4S2P

$$U_{\text{modul}_{1}} = 4 \cdot U_{2p} = 14,6 \text{ V}$$

$$C_{\text{modul}_{1}} = C_{2p} = 112,6 \text{ Ah}$$

Prof. Dr. Jens Hoffmann