Objectifs:

- Définition et méthode de construction d'un triangle
- Triangles particuliers
- Définition et méthode de construction des hauteurs d'un triangle

I. Définition

II. Construction

III. Triangles particuliers

Si un triangle n'est pas particulier, on peut dire qu'il est quelconque.

(a) Triangle rectangle

On dit que le triangle ABC est rectangle en A.

(b) Triangle isocèle

Un triangle isocèle possède deux côtés de même longueur AC=BC et deux angles égaux $\widehat{A} = \widehat{B}$.

Dans l'exemple ci-contre, le côté [AB] est la base du triangle et le sommet C le sommet principal.

On dit que le triangle ABC est isocèle en C.

(c) Triangle équilatéral

Un triangle équilatéral possède trois côtés de même longueur.

(d) Triangle isocèle rectangle

Le triangle isocèle rectangle est à la

fois isocèle : AB = AC et rectangle : $\hat{C} = 90^{\circ}$.

2. Hauteurs

Dans les figures ci-dessous, on dit que la hauteur **est issue de** A ou qu'elle **est relative à** [BC]. On appelle le point H le **pied** de la hauteur.

