

Prof. Dr. Marc Zschiegner

B. Sc. Jens Möhrstedt

11. Übungsblatt

Teamaufgaben für die Woche vom 01. bis 05.02.2021. Lösen Sie die folgenden Aufgaben während der Übung gemeinsam in einer Kleingruppe in einem Breakout-Raum. Nach der vereinbarten Zeit kehren Sie in den Übungsraum zurück, wo Sie Ihre Ergebnisse präsentieren können.

(a) Überlegen Sie sich das Bildungsgesetz der folgenden Graphen, und zeichnen A Sie den nächsten Graphen dieser Folge.

- (b) Sind diese Graphen eulersch?
- (c) Beschreiben Sie ein Verfahren, wie man diese Figuren in einem Zug zeichnen kann.
- В Wie viele Kanten muss man aus K₅ mindestens entfernen, damit ein planarer Graph entsteht? Zeichnen Sie den entstehenden planaren Graphen.
- \mathbf{C} Zeichnen Sie den Graphen der Projektion eines Tetraeders, und überprüfen Sie daran die Eulersche Polyederformel für das Tetraeder.

Hausaufgaben bis zum 07.02.2021. Geben Sie die folgenden Aufgaben wie folgt ab: Schreiben Sie die Lösungen aller Aufgaben in eine einzige, max. 10 MB große PDF-Datei "Vorname_Nachname_BlattNr.pdf" (Beispiel: "Max Mustermann 11.pdf"). Laden Sie diese Datei bis spätestens 23:59 Uhr am Sonntagabend in den passenden Ordner "Abgaben der Hausaufgaben" Ihrer StudIP-Übungsgruppe hoch.

- Inzwischen gibt es in Königsberg eine Eisenbahnbrücke, die die beiden Ufer der 1 Pregel so verbindet, wie in der Abbildung dargestellt ist. Untersuchen Sie, ob das Königsberger Brückenproblem mit dieser zusätzlichen Brücke lösbar ist.
 - (a) Zeichnen Sie den zugehörigen planaren Graphen.
 - (b) Ist dieser Graph eulersch?
 - (c) Besitzt dieser Graph eine offene eulersche Linie?

2 Sei n die Anzahl der Ecken, m die Anzahl der Kanten und g die Anzahl der Gebiete eines planaren zusammenhängenden Graphen. Bestimmen Sie den fehlenden Parameter und geben Sie einen entsprechenden Graphen an. [6 P]

n	m	g
10	9	
5		5
	11	4

3 Seien $A_1, A_2, ..., A_n$ Aussagen. Wir definieren die folgenden Quantoren:

$$\bigwedge_{i=1}^{n} A_i \equiv A_1 \wedge A_2 \wedge \dots \wedge A_n$$

$$\bigvee_{i=1}^{n} A_i \equiv A_1 \vee A_2 \vee \dots \vee A_n$$

Beweisen Sie mit vollständiger Induktion die folgende Verallgemeinerung eines De Morganschen Gesetzes: [4 P]

$$\neg \left(\bigvee_{i=1}^{n} A_{i}\right) \equiv \bigwedge_{i=1}^{n} \neg A_{i}$$

Worüber Mathematiker lachen

Ein Ingenieur, ein Physiker und ein Mathematiker beweisen den Satz: *Jede ungerade Zahl ist eine Primzahl*.

Der Ingenieur verifiziert die ersten Fälle: "3 ist eine Primzahl, 5 ist eine Primzahl, 7 ist eine Primzahl. Also stimmt der Satz."

Der Physiker gibt sich damit nicht zufrieden: "3: Primzahl, 5: Primzahl, 7: Primzahl, 9: Prim-, hmhm – Messfehler, 11: Primzahl, 13: Primzahl usw. Also ist der Satz richtig."

Der angewandte Mathematiker überlegt: "3, 5 und 7 sind Primzahlen, 9 – ist auch annähernd eine Primzahl, 11, und 13 sind Primzahlen usw. Also ist der Satz richtig."

Ein Mathematikstudent versucht als einziger zu argumentieren. Aber auch das geht schief: "Sei p eine Primzahl mit p > 2. Dann ist p nicht durch p teilbar, also ist p ungerade."