Chicago Car Crashes

By: Yamuna Umapathy & Lotus Baumgarner

Business Problem:

Our Insurance Carrier wants us to build a model to predict the type of car crashes that lead to certain injuries (Incapacitating, Non-Incapacitating and No Injuries) in Chicago.

They want to use this information to help determine what type of injury they will be dealing with when they are presented with a new car accident.

Dataset:

Original Dataset comes from City of Chicago Data portal. It started with over 800K rows and 48 columns.

Feature Engineering

- Our Target Variable: MOST SEVERE INJURY
- Combined liked values within certain columns.
 - EX: Traffic Control Device had 19 different categorical values and was reduced down to 5 values.
- Dropped 32 of the original columns.
 - Deemed not useful (Photos Taken)
 - Missing too many values (Work Zone missing > 800K)
 - Repetitive (Location = Longitude + Latitude)

Dataset: >800k rows, 17 columns

Down Sampling our Dataset

MOST_SEVERE_INJURY
NO_INJURY 700415
NON_INCAP_INJURY 97292
INCAP_INJURY 14676
Name: count, dtype: int64

- 1. Separated Dataframe by No Injury, Non-Incap, Incap
- 2. Set sample size to the length of Incap_Injury and used the sample() method to randomize the pulled rows.
- 3. Concatenated back into a single DataFrame.

Balanced Dataset: 44,000 rows and 17 columns

Visual: Crashes Vs Longitude, Latitude

Most crashes in a geographical area:

LAT: 41.90 & 41.95 LON: -87.65 & -87.60

Roughly the Near North Side area

Target and Columns

Metric: Accuracy

After Column Transformation: X had 147 columns

Models with Logistic Regression and Random Forest

Logistic Regression:

	precision	recall	f1-score	support
INCAP_INJURY	0.59	0.58	0.59	2980
NON_INCAP_INJURY	0.56	0.63	0.59	2975
NO_INJURY	0.99	0.87	0.92	2867
accuracy			0.69	8822
macro avg	0.71	0.69	0.70	8822
weighted avg	0.71	0.69	0.70	8822
1				

Random Forest Classifier:

	precision	recall	f1-score	support
INCAP_INJURY	0.55	0.69	0.61	2980
NON_INCAP_INJURY	0.57	0.50	0.53	2975
NO_INJURY	1.00	0.86	0.92	2867
accuracy			0.68	8822
macro avg	0.70	0.68	0.69	8822
weighted avg	0.70	0.68	0.68	8822

Random Forest had a lower accuracy score on the test than Logistic Regression.

Model Using XG Boost

	precision	recall	f1-score	support	
0	0.59	0.57	0.58	2980	
1	0.55	0.65	0.60	2975	
2	1.00	0.86	0.93	2867	
accuracy			0.69	8822	
macro avg	0.71	0.69	0.70	8822	
weighted avg	0.71	0.69	0.70	8822	

- 2000

- 1500

- 1000

- 500

GridSearch with Hypertuned Parameters

<u>MODEL</u>	ACCURACY SCORE ON TEST
1. LOGISTIC REGRESSION	0.6903355850218983
2. RANDOM FOREST	0.6846572310961132
3. XGBOOST	0.6914144529630037

Tensorflow results

Conclusions:

<u>Crashes and causes that tend to lead to Injuries:</u>

- RearEnd
- Pedestrian/cyclist
- Head-on collision
- Driver's physical condition
- Weather
- Late Night

Next Steps:

Ours:

• Work more on our Hyperparameter Tuning and Feature Importance to achieve a higher accuracy score.

Insurance Carrier:

- Offer Drivers Insurance benefits such as lower premiums or deductibles for safer driving.
- Focus on drivers who live, work or visit the Near North Side area since they have the most crashes.

Questions?

Yamuna Umapathy
u.yamuna@gmail.com
https://www.linkedin.com/in/yamuna-umapathy/

Lotus Baumgarner <u>Lotus Baumgarner @gmail.com</u> https://www.linkedin.com/in/lotus-baumgarner/