

planetmath.org

Math for the people, by the people.

every map into sphere which is not onto is nullhomotopic

 ${\bf Canonical\ name} \quad {\bf Every Map Into Sphere Which Is Not Onto Is Null homotopic}$

Date of creation 2013-03-22 18:31:41 Last modified on 2013-03-22 18:31:41

Owner joking (16130) Last modified by joking (16130)

Numerical id 8

Author joking (16130) Entry type Theorem Classification msc 55P99 **Proposition**. Let X be a topological space and $f: X \to \mathbb{S}^n$ a continous map from X to n-dimensional sphere which is not onto. Then f is nullhomotopic.

Proof. Assume that there is $y_0 \in \mathbb{S}^n$ such that $y_0 \notin \operatorname{im}(f)$. It is well known that there is a homeomorphism $\phi : \mathbb{S}^n \setminus \{y_0\} \to \mathbb{R}^n$. Then we have an induced map

$$\phi \circ f: X \to \mathbb{R}^n$$
.

Since \mathbb{R}^n is contractible, then there is $c \in \mathbb{R}^n$ such that $\phi \circ f$ is homotopic to the constant map in c (denoted with the same symbol c). Let $\psi : \mathbb{R}^n \to \mathbb{S}^n$ be a map such that $\psi(x) = \phi^{-1}(x)$ (note that ψ is not the inverse of ϕ because ψ is not onto) and take any homotopy $H : I \times X \to \mathbb{R}^n$ from $\phi \circ f$ to c. Then we have a homotopy $F : I \times X \to \mathbb{S}^n$ defined by the formula $F = \psi \circ H$. It is clear that

$$F(0,x) = \psi(H(0,x)) = \psi(\phi(f(x))) = f(x);$$

$$F(1,x) = \psi(H(1,x)) = \psi(c) \in \mathbb{S}^{n}.$$

Thus F is a homotopy from f to a constant map. \square

Corollary. If $A \subseteq \mathbb{S}^n$ is a deformation retract of \mathbb{S}^n , then $A = \mathbb{S}^n$.

Proof. If $A \subseteq X$ then by deformation retraction (associated to A) we understand a map $R: I \times X \to X$ such that R(0,x) = x for all $x \in X$, R(1,a) = a for all $a \in A$ and $R(1,x) \in A$ for all $x \in X$. Thus a deformation retract is a subset $A \subseteq X$ such that there is a deformation retraction $R: I \times X \to X$ associated to A.

Assume that A is a deformation retract of \mathbb{S}^n and $A \neq \mathbb{S}^n$. Let $R: I \times \mathbb{S}^n \to \mathbb{S}^n$ be a deformation retraction. Then $r: \mathbb{S}^n \to \mathbb{S}^n$ such that r(x) = R(1,x) is homotopic to the identity map (by definition of a deformation retract), but on the other hand it is homotopic to a constant map (it follows from the proposition, since r is not onto, because A is a proper subset of \mathbb{S}^n). Thus the identity map is homotopic to a constant map, so \mathbb{S}^n is contractible. Contradiction. \square