

Lower Power Design

Lecture 3: Battery Modeling 2

Anuj Pathania on behalf of Prof. Dr. Jörg Henkel Summer Semester 2017

CES – Chair for Embedded Systems

ces.itec.kit.edu

- Slides available for download -
 - http://cesweb.itec.kit.edu/teaching/LPD/s17/slides/
 - Username: student
 - Password: CES-Student
- Homework
 - Read a relevant scientific paper.
 - Discussion next class.
- Oral Exam
 - Make appointment with KIT CES secretary 6-8 weeks in advance.
 - Exam will be in English (or German if told in advance).
 - More information: http://ces.itec.kit.edu/972.php

Lectures

- 27.04.2017 Lecture 0: Introduction
- 04.05.2017 Lecture 1: Energy Sources
- 11.05.2017 Lecture 2: Battery Modelling Part 1
- 18.05.2017 Lecture 3: Battery Modelling Part 2
- 25.05.2017 Ascension Day (Holiday)
- 01.06.2017 Hardware Power Optimization and Estimation 1
- 08.06.2017 Hardware Power Optimization and Estimation 2
- 15.06.2017 Corpus Christi (Holiday)
- 22.06.2017 Hardware Power Optimization and Estimation 3
- 29.06.2017 TBA
- 06.07.2017 TBA
- 13.07.2017 TBA
- 20.07.2017 TBA
- 27.07.2017 TBA

Internal Resistance

- Battery may be modeled as a voltage source in series with a resistance; internal resistance of the battery.
- Internal resistance of a battery dependent on -
 - Size
 - Chemical properties
 - Age
 - Temperature
 - Discharge Current
 - ...

- Measure of the internal resistance of a battery is guide to its condition, but may not apply at other than the test conditions.
- Internal resistance increase on depletion of battery.

Connecting Non-Identical Batteries in Parallel

- Non-Identical charged batteries have different voltage.
 - Batteries will mutually charge and discharge.

Source: Xie [2013]

Self-discharge of Batteries

- Self-discharge present in all batteries due to internal chemical side reactions, internal short circuits.
 - Chemical reaction depend on battery technology.
 - Increases with charge.
 - Increases with temperature.
- Self-discharge in Li Ion is around 1.5% 2% per month.
- Self-discharge in NiMH is around 15% 100% per month.

Overview for Today

- Stochastic battery modeling.
- Battery-aware scheduling.

7

- Rate
 - Speed at which battery is discharge.

Source: [Rao 2003]

Idea:

- Battery-life estimation of HW/SW embedded systems.
- Exploration of alternative fast implementations without losing accuracy.

Definitions:

- Charge unit: Smallest amount of charge that can be discharged from battery.
- T: Number of maximum available charge units.
- N: Nominal capacity of charge units (nominal: for very small currents).
 - In practice: N<<T.
- N,T vary dependent upon battery technology, discharge current, etc.
- State of charge is tracked via discrete time transient stochastic process.
 - Using a probabilistic Finite State Machine (FSM).

Fundamental Electricity Terms

Voltage: 1 Volt.

Current: 1 Ampere

Charge: 1 Coulomb = 1 Ampere * 1 Second

Capacity: 1 Farad = 1 Coulomb / 1 Volt

Energy: 1 Joule = 1 Volt * 1 Coulomb

Term	Meaning				
Open-Circuit Potential	Initial potential of a fully charged cell without load.				
Cut-Off Potential	Potential at which the cell is considered discharged.				
Theoretical Capacity	Charge that can be extracted theoretically.				
Nominal Capacity	Charge that can be extracted at rated current.				
Rated Current	Used to determine nominal capacity.				
Battery Lifetime	Time until fully charged cell reaches V _{CUT.}				
Delivered Specific energy	Delivered energy over weight of battery.				
Demand Probability	Probability of demanding <i>i</i> charge units in a time slot.				
	Open-Circuit Potential Cut-Off Potential Theoretical Capacity Nominal Capacity Rated Current Battery Lifetime Delivered Specific energy				

- Stochastic process starts from state of full charge (V = Voc), denoted by N.
- At each time unit, the state of charge decreases from state *z* to *z-n* with *n* being the charge units demanded from the battery.
- On the other side: if no charge units are demanded, battery may recover → state of charge z may increase.
- Stochastic process stops at absorbing state ($V = V_{cut}$) or the max available capacity T is reached.
- Allowing idling periods between discharges → battery recovers and # of charge units drained before reaching state 0 is greater than N.

• Let us define q_i to be the probability that in one time unit, called slot, i charge units are demanded.

Recovery Process

- Is represented as a decreasing exponential function of the state of the battery (i.e. the smaller the remaining charge of the battery is, smaller is recovery potential).
- During discharge, different phases can be identified.
- Each phase f, $(f=0, ..., f_{max})$ starts right after d_f charge units have been drained from battery and ends when the amount of discharged capacity reaches d_{f+1} charge units.
- Probability of recovering 1 charge unit in a time slot dependent upon state j (j=1, ..., N-1) and phase f is

$$p_{j}(f) = \begin{cases} q_{0}e^{-g_{N}(N-j)-g_{C}(f)} & f = 0\\ q_{0}e^{-g_{N}(N-j)-g_{C}(f)}d_{f} & f = 1,..., f_{max} \end{cases}$$

 g_N , g_C - parameters that depend upon the capability of recovery of the battery; a small g_N represents high cell conductivity (high recovery capability) and a large g_N represents high internal resistance. Value of g_C is related to cell potential drop during discharging.

Source: Pani [2001]

g_C - is related to the voltage drop of the battery cell during discharge.

q₀ - is probability of an idle slot.

There is a probability to remain in the same state when discharged (due to the recovery effect):

$$r_j(f) = q_0 - p_j(f)$$
 $j=1,...,N-1$
 $r_N(f) = q_0$.

Assumption: g_N is constant;

 g_C is a piecewise constant function of the number of charge units already drawn off the cell; it changes value in correspondence with d_f (f = 1, ..., f_max). It is d_0 =0 and d_f (f-max+1)=T. Proper values are chosen according to the battery.

It can be seen that curves obtained from the PDE model and the stochastic models match closely.

- Next step: Make battery model deterministic.
- Introduce battery efficiency to account for:
 - Rate capacity effect.
 - Build efficient LUT using PDE model.

Table 3: Estimation of Battery Life and Delivered Energy Using Stochastic Model

	• • • •								
		Rate Capac	ity Effect	Recovery Effect		Rate Capacity & Recovery Effect			
		Delivered		Delivered		Delivered			
١	System	Spec.Energy	Life Time	Spec. Energy	Life Time	Spec. Energy	Life Time	Packets	
		(Wh/Kg)	(ms)	(Wh/Kg)	(ms)	(Wh/Kg)	(ms)	Processed	
	SYS1	1.369	16875	13.357	163650	1.369	16875	20250	
	SYS2	3.754	67717	15.553	280543	3.754	67717	81260	
ĺ	SYS3	2.858	88383	32.924	1115616	4.974	153817	92290	

Table 4: Comparison with PDE model: Speed and Accuracy

System	Delivered Spec. Energy (Wh/Kg)			Life Time (ms)			Computation Time	
	STOC	PDE	% Err	STOC	PDE	%Err	STOC	PDE
SYS1	1.36	1.33	2.25	16785	17264	2.85	18.62 sec	>1 Day
SYS2	3.75	3.79	1.06	67717	65723	2.94	19.52 sec	>1 Day
SYS3	4.97	5.07	2.01	153817	154956	1.00	40.35 sec	>2 Days

Idea:

- Adjust task schedule such that battery's capacity as a function of current distribution is taken into consideration.
- Based on the following Equation -

$$p^{act} = \int dI \frac{V \cdot I}{c(I)} \cdot \hat{P}(I)$$

V: voltage (assumed constant)

I : actual current drawn (piece-wise constant)

c(I): utilization factor (i.e. ratio of battery capacity at discharge current I to standard capacity.)

May be expressed through Peukert's law:

$$c(I) = k / I^b$$
 (normalized)

 $\stackrel{\frown}{P}(I)$ is the Probability Density Function (PDF) of I (a measure of how evenly the value of the current is distributed). Probability Mass Function (PMF) is discrete equivalent. Source: Luo [2001]

- Goal: Extend battery lifespan.
- Means: Schedule transformations.
- Terms:
 - Task Graph
 - Schedule (Real-Time)
 - PE
- Assumptions:
 - 2 Pes are connected via 1 bus.
 - Intra-task communication costs are 0.
 - Power drawn during each task execution is constant.
 - Notation: tx (y) means task x has power consumption of y units.

Example 1: (cont'd)

Two different valid schedules are shown.

Using equations 1 and 2 (and appropriate parameters) it turns out that the lower schedule is 15% more power efficient.

=> obviously equations 1 and 2 can be used in a cost function of a schedule to minimize the power consumption through considerations of battery effects.

Example 2:

Same assumptions as before except for

t1, t3, t4, t5, t7 -> 0.2 sec Worst-Case Execution Time (WCET)

t2, t6 -> 0.3sec

Edges (communication) e1, e2 -> 0.1sec

Task graph as shown on next slide.

P (average) of each task is 1 unit; ... of each edge is 0.2units.

t6

First schedule: ASAP. Voltage scaling extends execution time to latest finish time.

a. Original feasible schedule

b. Corresponding variable-voltage schedule

Even more improvement possible with slot shifting and swapping.

- Battery-aware improvements of slack-based list scheduling (heuristic).
 - Slack is time left after a task, if task starts now.
- Hyperperiod: Lease common multiple of all deadlines.
 - Proving feasibility in the hyperperiod is enough.
- Reduce actual power using local moves.

$$p^{act} = \frac{1}{hyperperiod} \int_{0}^{hyperperiod} dt \frac{p(t)}{c_p(t)}$$

b. New schedule after first three steps

Breaking local optima using global moves.

c. Final schedule after schedule interchanging

Source

- Xie, Qing, et al. "Charge allocation in hybrid electrical energy storage systems." *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* 32.7 (2013): 1003-1016.
- Homework >> Panigrahi, Debashis, et al. "Battery life estimation of mobile embedded systems." VLSI Design, 2001. Fourteenth International Conference on. IEEE, 2001.
- Homework >> Luo, Jiong, and Niraj K. Jha. "Battery-aware static scheduling for distributed real-time embedded systems." Proceedings of the 38th annual Design Automation Conference. ACM, 2001.
- Pedram, Massoud, and Qing Wu. "Design considerations for battery-powered electronics." Proceedings of the 36th annual ACM/IEEE
 Design Automation Conference. ACM, 1999.
- Rao, Ravishankar, Sarma Vrudhula, and Daler N. Rakhmatov. "Battery modeling for energy aware system design." *Computer* 36.12 (2003): 77-87.