5.78 common_partition

DESCRIPTION LINKS GRAPH

Origin

Derived from common.

Constraint

```
common_partition ( NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, PARTITIONS )
```

Type

VALUES : collection(val-int)

Arguments

```
NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var-dvar)

VARIABLES2 : collection(var-dvar)

PARTITIONS : collection(p - VALUES)
```

Restrictions

```
\begin{split} &|\text{VALUES}| \geq 1 \\ & \text{required}(\text{VALUES}, \text{val}) \\ & \text{distinct}(\text{VALUES}, \text{val}) \\ & \text{NCOMMON1} \geq 0 \\ & \text{NCOMMON1} \leq |\text{VARIABLES1}| \\ & \text{NCOMMON2} \geq 0 \\ & \text{NCOMMON2} \leq |\text{VARIABLES2}| \\ & \text{required}(\text{VARIABLES1}, \text{var}) \\ & \text{required}(\text{VARIABLES2}, \text{var}) \\ & \text{required}(\text{PARTITIONS}, \text{p}) \\ & |\text{PARTITIONS}| \geq 2 \end{split}
```

Purpose

NCOMMON1 is the number of variables of the VARIABLES1 collection taking a value in a partition derived from the values assigned to the variables of VARIABLES2 and from PARTITIONS.

NCOMMON2 is the number of variables of the VARIABLES2 collection taking a value in a partition derived from the values assigned to the variables of VARIABLES1 and from PARTITIONS.

Example

```
 \left( \begin{array}{c} 3,4,\langle 2,3,6,0\rangle,\\ \langle 0,6,3,3,7,1\rangle,\\ \langle \mathbf{p}-\langle 1,3\rangle,\mathbf{p}-\langle 4\rangle,\mathbf{p}-\langle 2,6\rangle \rangle \end{array} \right)
```

In the example, the last argument PARTITIONS defines the partitions $p-\langle 1,3\rangle$, $p-\langle 4\rangle$ and $p-\langle 2,6\rangle$. As a consequence the first three items of collection $\langle 2,3,6,0\rangle$ respectively correspond to the partitions $p-\langle 2,6\rangle$, $p-\langle 1,3\rangle$, and $p-\langle 2,6\rangle$. Similarly the items of collection $\langle 0,6,3,3,7,1\rangle$ (from which we remove items 0 and 7 since they do

20030820 865

not belong to any partition) respectively correspond to the partitions $p - \langle 2, 6 \rangle$, $p - \langle 1, 3 \rangle$, $p - \langle 1, 3 \rangle$, and $p - \langle 1, 3 \rangle$. The common_partition constraint holds since:

- Its first argument NCOMMON1 = 3 is the number of partitions associated with the items of collection $\langle 2,3,6,0 \rangle$ that also correspond to partitions associated with $\langle 0,6,3,3,7,1 \rangle$.
- Its second argument NCOMMON2 = 4 is the number of partitions associated with the items of collection $\langle 0,6,3,3,7,1 \rangle$ that also correspond to partitions associated with $\langle 2,3,6,0 \rangle$.

Typical

```
\begin{aligned} |\text{VARIABLES1}| &> 1 \\ \mathbf{range}(\text{VARIABLES1.var}) &> 1 \\ |\text{VARIABLES2}| &> 1 \\ \mathbf{range}(\text{VARIABLES2.var}) &> 1 \\ |\text{VARIABLES1}| &> |\text{PARTITIONS}| \\ |\text{VARIABLES2}| &> |\text{PARTITIONS}| \end{aligned}
```

Symmetries

- Arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2) (VARIABLES1, VARIABLES2) (PARTITIONS).
- Items of VARIABLES1 are permutable.
- Items of VARIABLES2 are permutable.
- Items of PARTITIONS are permutable.
- Items of PARTITIONS.p are permutable.
- An occurrence of a value of VARIABLES1.var can be replaced by any other value that also belongs to the same partition of PARTITIONS.
- An occurrence of a value of VARIABLES2.var can be replaced by any other value that also belongs to the same partition of PARTITIONS.

Arg. properties

- Functional dependency: NCOMMON1 determined by VARIABLES1, VARIABLES2 and PARTITIONS.
- Functional dependency: NCOMMON2 determined by VARIABLES1, VARIABLES2 and PARTITIONS.

See also

specialisation: common(variable ∈ partition replaced by variable).
used in graph description: in_same_partition.

Keywords

characteristic of a constraint: partition.

constraint arguments: constraint between two collections of variables, pure functional dependency.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency.

Arc input(s)	VARIABLES1 VARIABLES2
Arc generator	$PRODUCT \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$
Arc arity	2
Arc constraint(s)	$\verb in_same_partition (\verb variables 1.var, \verb variables 2.var, \verb PARTITIONS) $
Graph property(ies)	• NSOURCE= NCOMMON1 • NSINK= NCOMMON2
Graph class	• ACYCLIC • BIPARTITE • NO_LOOP

Graph model

Parts (A) and (B) of Figure 5.201 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NSOURCE** and **NSINK** graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since the graph has only 3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal to 3 and 4. Note that the vertices corresponding to the variables that take values 0 or 7 were removed from the final graph since there is no arc for which the associated <code>in_same_partition</code> constraint holds.

Figure 5.201: Initial and final graph of the common_partition constraint

20030820 867