Работа со вторичной структурой ДНК. Отчёт. (Пахалко Илья Александрович)

1. Скачиваем наши эксперименты и распаковываем, оставляя всего 5 колонок

```
zcat ENCFF295UVV.bed.gz | cut -f1-5 >
H3K36me3_H1.ENCFF295UVV.hg19.bed
zcat ENCFF327EZJ.bed.gz | cut -f1-5 >
H3K36me3_H1.ENCFF327EZJ.hg19.bed
```

Обратим внимание, что файлы уже в нужной версии генома, конвертация не требуется.

2. Строим гистограммы с помощью len_hist.R

H3K36me3_H1.ENCFF327EZJ.hg19

Number of peaks = 44451

H3K36me3_H1.ENCFF295UVV.hg19

Number of peaks = 103479

3. (На глаз) было решено отфильтровать пики более 500 единиц длиной.

H3K36me3_H1.ENCFF327EZJ.hg19

Number of peaks = 42679

H3K36me3_H1.ENCFF295UVV.hg19

Number of peaks = 93167

4.

Итого сократили число пиков: с 44451 до 42679, и с 103479 до 93167.

5. Смотрим расположение пиков относительно аннотированных генов. В обоих случаях существенная часть располагается вблизи экзонов (расстояние в 1-2 килобаз).

6. Объединяем наши bed-файлы командой merge:

7. Число пиков нашей вторичной структуры (Z-ДНК) = 19394. Поскольку дальше мы с ней будем

пересекать пики из экспериментов, то фильтровать по длине особого смысла нет.

Расположение в почти трех четвертях случаев - очень близко к гену:

8. Пересекаем наш merged файл со вторичной структурой командой:

```
bedtools intersect -a DeepZ.bed -b *.merge.hg19.bed >
H3K36me3_H1.intersect_w_DeepZ.bed
```

9. Строим пайчарт пересечения. Теперь подавляющее большинство пиков находятся очень близко к гену, больше 75%. Получается, что очень большая часть пиков вторичной структуры так или иначе приходится на участки днк, подверженные метилированию (?)

10. Визуализация треков в геномном браузере:

http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr1%3A975894-976169&hgsid=1124209057_VHRSFA8ARQQ78ACNFMuy0kpaucap

Наблюдаем пересечение пиков гист.меток с Z-ДНК вблизи гена AGRN (chr1:975932-976023)

11. Полный список ассоциаций пиков с генами получаем с помощью скрипта anno.r.

В списке уникальных генов - 1482 строки (genes_uniq.txt можно проверить редактором, можно wc -l)

В списке пиков, ассоциированных с аннотацией - 1805 строк (и, соответственно, пиков)

12. Статистический анализ по списку уникальных генов показывает, что больше всего затронутые гены ассоциируются с процессами метаболизма клетки (и метаболизма в целом).

ao biological process complete	<u>"</u>	<u>"</u>	<u>expected</u>	1 Old Ellifoliticité		IUW I VUIUC	4 100
cellular metabolic process	<u>7542</u>	<u>766</u>	486.32	1.58	+	3.32E-51	5.25E-47
cellular nitrogen compound metabolic process	<u>3395</u>	441	218.92	2.01	+	1.41E-46	1.12E-42
primary metabolic process	<u>7352</u>	734	474.07	1.55	+	8.93E-45	4.71E-41
nitrogen compound metabolic process	6886	<u>698</u>	444.02	1.57	+	1.85E-43	7.33E-40
metabolic process	<u>8313</u>	<u>794</u>	536.04	1.48	+	2.82E-43	8.92E-40
nucleobase-containing compound metabolic process	2705	<u>365</u>	174.42	2.09	+	2.68E-40	7.07E-37
organic substance metabolic process	<u>7840</u>	<u>752</u>	505.54	1.49	+	7.37E-40	1.66E-36
heterocycle metabolic process	<u>2891</u>	<u>377</u>	186.42	2.02	+	6.94E-39	1.37E-35