

AGENDA

General Overview – Oncology Strategy

Preanalytical Validation

Analytical Validation

Genomic biomarkers for Immunotherapy

The Cancer Patient Journey

Our strategic focus on the Therapy Selection and Monitoring Segments

Drug-Centered Oncology Rx

Traditional approach

Too many questions for a small amount of tissue

Comprehensive testing can save time, sample and impact patients lives earlier

What if, instead of multiple tests, you could perform a single test that looked at all relevant **biomarkers** at the same time?

+ New Markers: TMB, MSI

In Progress: Precision Oncology Treatment

From companion diagnostics to companion therapeutics

Companion Diagnostic Development

Partnering to Power Oncology Precision Medicine

Companion Diagnostic product (under development) based on TruSight™ Tumor 170 content

tent

Companion Diagnostic product (under development) based on TruSight[™] Oncology 500 content

Loxo to expand oncology menu for NextSeqDx

Bristol-Myers Squibb to expand oncology menu for NextSeqDx

TruSight[™] Tumor 170 | TruSight[™] Oncology 500

Multi Biomarker Panels for Pan-Cancer Analysis

CONTENT	TST170	TSO500
Genes	170	523
Size	0.5Mb	~2Mb
SNVs	⊘	Ø
InDels		
CNVs		*
Fusions	✓	✓ ∞
Splice Variants	✓	⊘ ∞
MSI	V +	•
ТМВ	X	

- * CNVs calling available after launch
- + Software solution for MSI calls coming soon
- ∞ fusions and splice calls enabled by combining TSO500 DNA product with the RNA workflow from TST170

AGENDA

General Overview – Oncology Strategy

Preanalytical Validation

Analytical validation

Genomic biomarkers for Immunotherapy

The biomarker development process

FFPE DNA

Pathological review to identify tumor-rich areas for microdissection

- Tumor purity information is important for interpretation of the results
- Limit of detection at 5% variant allele frequency would require tumor purity >10%

DNA quantification

- Spectrophotometry (such as NanoDrop): Presence of nucleotides; could be single-stranded, highly degraded DNA
- Fluorometric-based methods (such as Qubit or PicoGreen): Double-stranded DNA, however could be variable fragment size
- Quantitative RT-PCR is preferable to quantify the amount of amplified templates
 - qPCR reaction determines the fragmentation status and amplification potential of FFPE samples. The status and potential are compared to ACD1 control DNA to calculate a ΔCq value for each sample
 - The higher the ∆Cq of the samples, the lower the quality and higher the amount of input DNA required for sequencing

FFPE Nucleic Acids

Highly variable within a set

DNA damage

- Higher duplicate reads in FFPE libraries
- Chimeric fragments are more common in FFPE samples
- Smaller insert size in FFPE samples
- GC bias is more severe in FFPE samples
- Noisier variant calling results
- Noisier CNV results

Types of DNA damage in FFPE tissues

Do et. al. Clinical Chemistry (2014)

Deamination of Cytosine bases

- Hydrolytic deamination of cytosine bases: C -> U
- Result in artificial C:G >T:A SNVs
- Prevalent in CpG dinucleotide

Duplex sequencing

Bioinformatics:

Collapsing reads based on duplex sequences Build error model based on duplex information https://www.illumina.com/science/sequencing-method-explorer/kits-and-arrays/duplex-sequencing.html

FFPE RNA

- Traditional quality assessment: RNA Integrity Number (RIN) from RNA electropherogram traces (e.g. Bioanalyzer traces)
- DV200 metric
 - Measure percentage of RNA >200 nucleotides
 - DV200 >30% ensures degraded RNA fragment meet the requirement for efficient target capture
- DV200 can be calculated from a Bioanalyzer trace by performing a Smear Analysis

Sample	RIN	DV ₂₀₀ *
Breast Normal	2.3	77
Breast Tumor	2.7	71
Lung Normal	2.9	55
Lung Tumor	3.2	50
Colon Normal	N/A	32
Colon Tumor	N/A	39
Stomach Tumor	2.4	30
Stomach Normal	2.6	8

https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf

High concordance of gene expression between replicates across FFPE samples of varied quality

https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf

Current NGS Oncology Market

Tumor/normal vs. tumor only

Tumor/normal

- To distinguish somatic mutations from germline variants
- To capture false positive calls caused by poorly behaved genomic regions
- To confirm germline variants that are associated with tumor development (BRCA genes, MMR genes etc)

Tumor-only

- Matched normal specimens are not routinely collected in clinical practice
- Tumor/normal analysis has significant cost increase even if normal is sequenced at a lower depth

Practical consideration in patient management

Build robust pipeline for tumor only workflow

Tumor/normal

- To distinguish somatic mutations from germline variants
- To capture false positive calls caused by poorly behaved genomic regions
- To confirm germline variants that are associated with tumor development (BRCA genes, MMR genes etc)

Tumor-only

 Removal of common germline variants documented in public databases, e.g. dbSNP, 1000G, ExAC and gnomAD

WES analysis in Jones et al. Science TM, 2015

Cohort

Normal

 More population sequencing datasets will help or one-time germline WGS at birth or healthy

Baseline Normal

Build robust pipeline for tumor only workflow

Tumor/normal

- To distinguish somatic mutations from germline variants
 - To capture false positive calls caused by poorly behaved genomic regions
 - If a matched normal is from blood or saliva, it could not capture the systematic noise from sample preservation and nucleic acid extraction
 - Adjacent non-tumor tissues might be hard to collect in clinical practice
- To confirm germline variants that are associated with tumor development (BRCA genes, MMR genes etc)

Tumor-only

- Reference non-tumor tissues undergone the same process would capture majority if not all systematic bias
- Use the systematic biases in reference samples as background filter

Pipeline Normal

Build robust pipeline for tumor only workflow

Tumor/normal

- To distinguish somatic mutations from germline variants
- To capture false positive calls caused by poorly behaved genomic regions
- To confirm germline variants that are associated with tumor development (BRCA genes, MMR genes etc)

Tumor-only

- Serves as a screening test for pathogenic germline variants
- Once suspect germline variants are identified in the tumor sample, then confirm with germline sequencing

Recommendation for tumor-only workflow

AGENDA

General Overview – Oncology Strategy

Preanalytical validation

Analytical Validation

Genomic biomarkers for Immunotherapy

FDA's approach to regulatory oversight for NGS in vitro diagnostic (IVD) tests

"...assure the safety and effectiveness (which, for IVDs, generally means a reasonable assurance of analytical and clinical validity) of these test..."

Accuracy

- Positive percent agreement (PPA) : TP/(TP+FN)
 - Ability to correctly identify variants
- Negative percent agreement (NPA) : TN/(TN+FP)
 - Ability to correctly identify wt bases
- Technical positive predictive value (TPPV) : TP/(TP+FP)
 - Particular import if variant confirmation will not be performed
- Minimum acceptable overall and target thresholds for PPA, NPA, and TPPV
 point estimate and lower bound of 95% confidence interval (CI) of an NGSbased test should be predefined and reported for each variant type claimed by
 the test

No calls in the NGS assay

- No calls or invalid calls describe the result where a base call is not made,
 which can be a result of a number of factors
 - the base level performance not meeting predefined thresholds for quality, resulting in insufficient data to make a variant call.
- No calls and invalid calls should not be used in PPA, NPA, or TPPV calculations, but should be individually documented as part of the accuracy study results.
- Minimum acceptable values for the number of no calls or invalid calls will depend on indications for use and test design.

Accuracy calculation

		Comparator Method		Total
		Positive	Negative	Total
	Positive	A	В	A+B
Test	Negative	С	D	C+D
	No calls or invalid	Е	F	E+F
	calls			
	Total	A+C+E	B+D+F	N

 Percent of no calls or invalid calls: (E+F)/N along with a 95% two-sided confidence interval

PPA : A/(A+C)

NPA: D/(D+B)

TPPV: A/(A+B)

Precision (Reproducibility and Repeatability)

- Reproducibility: NGS tests involves measuring test variability under a variety of specified condition
 - Samples
 - Runs
 - Reagent lots
 - Days
 - Operators
- Repeatability: measuring test result variability when using the same operators, the same measuring system, the same operating conditions and the same location, and replicating measurements on the same or similar objects over a short period of time
- The percentage of no calls or invalid replicates should be also reported

Limit of Detection (LoD)

- Establish and document the input DNA range, that will enable the test to provide expected results in 95% of test runs
- Establish and document that the level of invalid calls or no call results is acceptable
- Establish and document the lower LoD for each variant type, and in different sequence context included in the test's indication for use
- The lower LoD is calculated as the lowest concentration of analyte at which at least 95% of positive calls
- An upper LoD should be established and documented

Analytical Specificity

Analytical specificity relates to the ability of a test to measure solely the intended analyte.

Interference

 Identify and document any interfering substances that might reduce the ability to amplify or sequence

Cross-reactivity

 Access and document the potential for cross-reactivity of known cross-reactive alleles and homologous regions (e.g., pseudogenes), based on the targets that will be interrogated by the test

Cross-contamination

- Develop, validate and document methods to detect carryover or cross-contamination between patient specimens or samples

Reference materials

- Synthetic mimic libraries, cell lines, synthetic vectors, company or WHO and NIST reference
 - NA12878 from NIST: Genome in a Bottle (GIAB) Consortium
 - FFPE tissue-based controls are available from companies
 - Horizon Dx, Acrometrix (Thermo Fisher, Inc), Seracare Life Science

Other concerns for reference materials

AGENDA

General Overview – Oncology Strategy

Preanalytical validation

Analytical Validation

Genomic biomarkers for immunotherapy

Companion Diagnostic Development

Partnering to Power Oncology Precision Medicine

Companion Diagnostic product (under development) based on TruSight™ Tumor 170 content

Loxo to expand oncology menu for NextSeqDx

Companion Diagnostic product (under development) based on TruSight[™] Oncology 500 content

Bristol-Myers Squibb to expand oncology menu for NextSeqDx

Cancer Immunotherapy Biomarker Advancement

Tumor Mutation Burden correlation to therapy outcomes

Not every tumor responds well to IO therapy. High <u>Tumor Mutation Burden</u> has been linked to better responses

Results from Clinical Trials demonstrate the link between High Tumor Mutation Burden and better response to immunotherapies.

TUMOR MUTATION BURDEN (TMB): The measurement of mutations carried by tumour cells. A new predictive marker being used in response to IO therapies

TruSight[™] Tumor 170 | TruSight[™] Oncology 500

Multi Biomarker Panels for Pan-Cancer Analysis

CONTENT	TST170	TSO500
Genes	170	523
Size	0.5Mb	~2Mb
SNVs	⊘	Ø
InDels		
CNVs		*
Fusions	✓	✓ ∞
Splice Variants	✓	⊘ ∞
MSI	V +	•
ТМВ	Х	

- * CNVs calling available after launch
- + Software solution for MSI calls coming soon
- ∞ fusions and splice calls enabled by combining TSO500 DNA product with the RNA workflow from TST170

TruSight[™] Oncology 500 Content

Pan-cancer DNA + RNA* analysis: Consolidate multiple tests into one

Single Assay – 523 Genes

Detection of currently relevant DNA & RNA variants for multiple types of cancer. Some key biomarkers included:

Lung	Melanoma	Colon	Ovary	Breast	Gastric	Bladder	Myeloid	Pan-Cancer
AKT1	BRAF	AKT1	BRAF	AKT1	BRAF	MSH6	ALBL1	MSI
ALK	CTNNB1	BRAF	BRCA1	AR	KIT	PMS2	ASXL1	NTRK
BRAF	GNA11	HRAS	BRCA2	BRCA1	KRAS	TSC1	CALR	
DDR2	GNAQ	KRAS	KRAS	BRCA2	MET		CEBPA	
EGFR	KIT	MET	PDGFRA	ERBB2	MLH1		ETV6	
ERBB2	MAP2K1	MLH1	FOXL2	FGFR1	PDGFRA		EZH2	
FGFR1	NF1	MSH2	TP53	FGFR2	TP53		FLT3	
FGFR3	NRAS	MSH6		PIK3CA			GATA2	
KRAS	PDGFRA	NRAS		PTEN			IDH1	
MAP2K1	PIK3CA	PIK3CA					IDH2	
MET	PTEN	PMS2					JAK2	
NRAS	TP53	PTEN					KIT	
PIK3CA		SMAD4					MPL	
PTEN		TP53					NPM1	
RET							RUNX1	
TP53							SF3B1	
TMB							SRSF2	
							TP53	

^{*} The recommended product to evaluate DNA + RNA variants is the TSO500 DNA+RNA bundle (PN: 20028216) - commercially available in January -2019

For Research Use Only. Not for use in diagnostic procedures.

TruSight[™] Oncology 500

Premium tumor profiling solutions; Include all genes covered by FoundationOne and MSK-IMPACT

Premium Content

- Our assays are comprehensive, with high coverage of relevant biomarkers, such as the ones present in NCCN Guidelines and Clinical Trials.
- Enrichment enables better detection of novel fusions and splice variants.
- TSO500 can detect both TMB+MSI. Detecting both markers is key in immuno-oncology

	TSO500 DNA+RNA
Total # of Genes	523
SNVs, InDels	523
Amplifications	59
Fusions	55
Splice Variants	3
ТМВ	YES
MSI	YES
Presence in Guidelines	42
Presence in Clinical Trials	>1,600

Panel size of 1.94 Mb surpasses minimum requirements

Recent Evidence shows that TMB can accurately calculated by targeting ≥1.5 Mb of coding genome.² Larger Panels correlate with <u>greater sensitivity</u> and have <u>increased correlation with WES</u>.^{1,2}

^{1.} Chalmers et al. Genome Medicine 2017 9:34:

^{2.} Buchhalter et al., Int J Cancer. 2018 Sep 21. doi: 10.1002/ijc.31878.

TruSight™ Tumor 170 | TruSight™ Oncology 500

When it comes to TMB detection, size matters

TMB in tumor only variant callilng

- ▶ TMB in tumor only setting is a "needle in a haystack" problem
- Main challenge is to effectively remove technical noise (FFPE artifacts) and germline variants

False positive removal with normal baseline

- Systematic noisy regions exist across samples
- These usually represent low complexity regions in the genome
- A cohort of normal FFPE samples can capture such recurrent error, leading to improved specificity
- ► This approach removes 80-90% of FPs in a given sample
- However, sample specific noise can not be removed by normal baseline

Deamination contributes heavily to FPs

- After removing site specific errors, No. FP is ~5-20/Mb in High quality sample and 200-400/Mb in Low quality sample
- No. FP is a associated with sample quality and strong deamination signature leads to C:G->T:A (deamination of C) or A:T->G:C (deamination of A) variants

Specificity evaluation on FFPE

- All samples pass 99.999% specificity
- Specificity is not correlated with sample quality (dCq):
 - Very important not to bias TMB measurement

Germline filtering – the challenge with tumor only workflow

- If both tumor and normal samples are available, we can use the variant calling results from the normal sample to filter out germline variants.
- ► There are ~800/Mb germline variants in each individual, some are commonly observed in population, some are rare.

Combining panel size with proprietary pipeline for high precision

Tumor-Only TMB Scoring

- 170 FFPE Samples tested: colon, endometrium gastric, lung, Melanoma, Uterine
- Tumor/Normal compared to tumor-only
- Illumina's germline filtering algorithm is key to enable tumor-only analysis
- 99.3% correlation (R²)

TMB Detection pipeline maximizes sensitivity, specificity and accuracy

Bioinformatic Attribute	TSO500
Includes non-syn + syn SNVs	\odot
Includes InDels	\odot
5% LOD	\odot
Enrichment Chemistry	\odot
FFPE and Seq Error Artifact Removal	\odot
500 – 1,000x false positive reduction	\odot
Removal of variants in low confidence regions	\odot
Removal of driver mutations	⊘
Germline filtering using variant databases, allele frequency and machine learning	\odot

Combining panel size with pipeline for high precision

Tumor/Normal whole exome sequencing was compared at Illumina to the tumor only TSO 500 workflow, across 108 FFPE tissue samples. TMB results showed high correlations between the two assays.

Performance at TMB threshold of 10mut/MB

	10 mutation/Mb cutoff
Positive % Agreement	94.7%
Negative % Agreement	96.1%
Overall % Agreement	95.4%

	WES T/N TMB High	WES T/N TMB Low
TSO500 TMB High	54	3
TSO500 TMB Low	2	49

Reproducibility: TMB

Reproducibility TMB score

- · FFPE and cell line DNA
- 12 replicates tested across 4 operators to determine TMB score

Robust TMB scoring across operators

Challenges for MSI calling for tumor only workflow

- Distribution of multiple alleles instead of a single allele in repetitive regions
 - Probe synthesis
 - PCR (polymerase slippage)
 - Enrichment bias (AT drop, TC drop)
 - Sequencing error
 - Mapping and variant calling
- Lack of prior knowledge
 - Need to rely on noncanonical sites
- Tumor only workflow
 - Genetic diversity for normal samples
 - Ethnicity specific sites
 - Tumor samples contain mixed tumor and normal cells
- A robust metric to capture the distribution shift for each MSI site

Enable Tumor Only Testing with baseline samples

- Use 61 normal samples for baseline distribution of same MSI sites
- Jensen-Shannon Distance between baseline samples
 - Pairwise calculation for any two BL samples
 - discrete distribution of relative alleles: BL1 = Pr [X=x]; BL2= Pr[X=x]
 - JS <- 0.5 * (sum(BL1 * log(BL1 / m)) + sum(BL2 * log(BL2 / m)); m <- 0.5 * (BL1 + BL2)
 - d1 <- sqrt (JS)
- Jensen-Shannon Distance between the test sample to Baseline samples
 - Pairwise calculation for one BL sample and the test sample
 - BL1 = Pr [X=x]; T= Pr[X=x]
 - JS <- 0.5 * (sum(BL1 * log(BL1 / m)) + sum(T * log(T / m)); m <- 0.5 * (BL1 + T)
 - d2 <- sqrt (JS)
- Comparison between two Jensen-Shannon Distance distributions
 - One sided t-test: d1 < d2, p<0.01
 - d2-d1>=0.1
- Final score:
 - Number of unstable sites / number of total sites tested
 - Similar to MSI-PCR

Identify MSI sites with ethnicity bias

- 175 sites with at least 20 supporting reads for minimum 5 samples of each ethnicity group
- Identified 45 sites with >=0.1 ΔJSD based on pair-wised comparison between three ethnicity groups

Normal sample MSI-score with

Use cell line sample as a validation cohort

- For filtered sites MSI score, the highest value is sample IHW09101 (MSI score: 0.21)
- This is annotated with Warao SA Indian ethnicity

- 10 IHW and 48 coriell
- P_AFR (n=22)
- P_AMR (n=25)
- P_EUR (n=8)
- P_EAS (n=3)

Warao

TruSight[™] Oncology 500 | Highly Accurate MSI Detection

Tumor-only MSI workflow, Precise MSI detection

Tumor-Only MSI Detection

	Training set	Validation set
PPA	97.3% (85.8%-99.9%)	100% (69.2%-100.0%)
NPA	100% (96.7%-100.0%)	98.0% (92.7%-99.8%)
OPA	99.3% (96.3%-100.0%)	98.1% (93.4%-99.8%)

Reproducibility: MSI

Reproducibility MSI status

- · FFPE and cell line DNA
- 12 replicates tested across 4 operators to determine MSI score

Robust MSI scoring for all samples across operators

For Research Use Only. Not for use in diagnostic procedures.

TruSight[™] Oncology 500 | Highly Accurate Small Variants Detection

Precise Assay chemistry combined with sophisticated variant calling pipeline

FFPE cell line samples were tested at 40 ng input and VAF ranges of 1.3% - 5.0%, 6 replicates each. VAFs with ≥95% sensitivity are highlighted in green, while VAFs below 95% sensitivity are in yellow.

TruSight[™] Oncology 500 | Ability to Detect Novel Fusions

Enrichment based assay combined with probe design algorithm

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624911/

TruSight[™] Oncology 500 | Tolerance to Sample Degradation

Enrichment based assay can generate yield from highly degraded samples

TruSight[™] Oncology 500

Future-Proof: UMIs incorporated to enable Liquid Samples analysis (under development)

TMB evaluation from Liquid Samples (under development)

UMIs designed by our patented algorithm provide state-of-the-art error correction

128 samples, across 4 tissue types were included. Matched FFPE tissue andplasma tested.

The fraction of ctDNA in plasma was calculated

bTMB is highly correlated with tissue TMB in samples with high ctDNA fraction (R=0.95).

Performance is equivalent with the predicted tumor fraction by plasma only (R=0.92)

TruSight[™] Oncology 500 | Partnerships

Partnering with leading institutions to realize the vision of Precision Oncology

TruSight[™] Tumor 170 | TruSight[™] Oncology 500

Similar and automated workflows

APPENDIX – ADDITIONAL PRODUCT INFORMATION

TruSight Tumor 170 Content

Gene List and Variant Classification

TSO500 Content: Page 1

TSO500 Content: Page 2

Small Variants

•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	CD74	•	EPHA7	•	GPR124	•	IL7R	•	MEF2B	•	PIK3C2G	•	RNF43	•	SUFU
	,	•	CDC73	•	EPHB1	•	GPS2	•	INHA	•	MEN1	•	PIK3C3	•	RPS6KA4	•	SUZ12
	,	•	CDK8	•	ERCC3	•	GREM1	•	INHBA	•	MGA	•	PIK3R2	•	00.102	•	SYK
	,	•	CDKN1A	•	ERCC4	•	GRIN2A	•	INPP4A	•	MITF	•	PIK3R3	•	RPTOR	•	TAF1
	ALOX12B		CDKN1B	•	ERCC5	•	GRM3	•	INSR	•	MST1	•	PIM1	•	RUNX1	•	TBX3
•	ANKRD11		CDKN2B	•	ERRFI1	•	GSK3B	•	IRF2	•	MST1R	•	PLCG2	•	RUNX1T1	•	TCEB1
	ANKRD26	•	CDKN2C	•	ETS1	•	H3F3A	•	IRF4	•	MYB	•	PLK2	•	RYBP	•	TCF3
	ARAF	•	CENPA	•	ETV1	•	H3F3B	•	IRS1	•	MYOD1	•	PMAIP1	•	SDHA	•	TCF7L2
	ARFRP1	•	CHD2	•	ETV4	•	H3F3C	•	IRS2	•	NAB2	•	PMS1	•	SDHAF2	•	TERC
	ARID1B	•	CHD4	•	ETV5	•	HGF	•	JAK1	•	NCOA3	•	PNRC1	•	SDHB	•	TET1
	ARID2	•	CIC	•	ETV6	•	HIST1H1C	•	JUN	•	NCOR1	•	POLD1	•	SDHC	•	TFE3
	ARID5B	•	CRKL	•	EWSR1	•	HIST1H2BD	•	KAT6A	•	NEGR1	•	POLE	•	SDHD	•	TFRC
	ASXL1	•	CRLF2	•	FAM123B	•	HIST1H3A	•	KDM5A	•	NF2	•	PPARG	•	SETBP1	•	TGFBR1
	ASXL2	•	CSF3R	•	FAM46C	•	HIST1H3B	•	KDM5C	•	NFE2L2	•	PPM1D	•	SETD2	•	TGFBR2
	ATRX	•	CSNK1A1	•	FANCA	•	HIST1H3C	•	KDM6A	•	NFKBIA	•	PPP2R1A	•	SF3B1	•	TMEM127
	AURKA	•	CTCF	•	FANCC	•	HIST1H3D	•	KEAP1	•	NKX2-1		PPP6C		SH2B3	•	TMPRSS2
	AURKB	•	CTLA4	•	FANCD2	•	HIST1H3E	•	KEL	•	NKX3-1	•	PRDM1	•	SH2D1A	•	TNFAIP3
	AXIN1	•	CTNNA1	•	FANCE	•	HIST1H3F	•	KIF5B	•	NOTCH4		PREX2		SHQ1	•	TNFRSF14
	AXIN2	•	CUL3	•	FANCF	•	HIST1H3G	•	KLF4	•	NSD1		PRKAR1A		SLIT2	•	TOP1
	AXL	•	CUX1	•	FANCG	•	HIST1H3H	•	KLHL6	•	NTRK1		PRKCI		SMAD2	•	TOP2A
	B2M	•	CXCR4	•	FAS	•	HIST1H3I	•	KMT2B	•	NTRK2		PRKDC		SMAD3	•	TP63
	BBC3	•	CYLD	•	FAT1	•	HIST1H3J	•	KMT2C	•	NTRK3		PRSS8		SMARCA4	•	TRAF2
	BCL10	•	DAXX	•	FGF19	•	HIST2H3A	•	KMT2D	•	NUP93		PTPRD		SMARCD1	•	TRAF7
	BCL2L1		DCUN1D1		FH	•	HIST2H3C		LAMP1		NUTM1		PTPRS		SMC1A	•	TSHR
	BCL2L11	•	DDX41	•	FLCN	•	HIST2H3D	•	LATS1	•	PAK1		PTPRT		SMC3	•	U2AF1
	BCL2L2		DHX15		FLI1	•	HIST3H3		LATS2		PAK3		QKI		SNCAIP	•	VEGFA
	BCOR		DICER1		FLT4	•	HLA-A		LMO1		PAK7		RAB35		SOCS1	•	VTCN1
	BCORL1		DIS3		FOXA1	•	HLA-B		LRP1B		PARK2		RAC1		SOX10	•	WISP3
	BCR		DNAJB1		FOXO1		HLA-C		LYN	•	PARP1		RAD21		SOX17		WT1
	BIRC3	•	DNMT1	•	FOXP1	•	HNRNPK	•	LZTR1	•	PAX3	•	RAD50		SOX2	•	XIAP
	BLM		DNMT3B		FRS2	•	HOXB13		MAGI2		PAX5		RAD52		SOX9	•	XPO1
	BMPR1A	•	DOT1L	•	FUBP1	•	HSD3B1	•	MALT1	•	PAX7	•	RAF1		SPEN	•	YAP1
	BRD4	•	E2F3	•	FYN	•	HSP90AA1	•	MAP2K4	•	PAX8		RANBP2		SPOP	•	YES1
	BTG1		EED		GABRA6		ICOSLG		MAP3K1		PBRM1		RARA		SPTA1		ZBTB2
	C11orf30	•	EGFL7	•	GATA1	•	ID3	•	MAP3K13	3 =	PDCD1		RASA1		SRSF2	•	ZBTB7A
	CALR	÷	EIF1AX		GATA2	•	IFNGR1		MAP3K14	ļ -	PDCD1LG2		RBM10		STAG1		ZFHX3
	CASP8	ě.	EIF4A2		GATA3		IGF1		MAP3K4	•	PDK1		RECQL4		STAG2		ZNF217
		÷	EIF4E		GATA4	•	IGF1R		MAPK1		PDPK1		REL		STAT3		ZNF703
	CBL	÷	EML4		GATA6	•	IGF2		MAPK3		PGR		RFWD2		STAT4		ZRSR2
	CD274	÷	EPCAM	•	GID4	•	IKBKE	•	MAX	•	PHF6	•	RHEB		STAT5A		
	CD276	÷	EPHA3		GLI1	•	IKZF1		MDC1		PHOX2B		RHOA		STAT5B		
		i	EPHA5		GNA13		IL10		MED12	÷	PIK3C2B		RIT1		STK40		

FUSIONS + SPLICE VARIANTS

KDR ABL1 AKT3 KIF5B ALK KIT AR KMT2A AXL (MLL) BCL2 MET **BRAF** MLLT3 BRCA1 MSH2 BRCA2 MYC CDK4 NOTCH1 CSF1R NOTCH2 **EGFR** NOTCH3 EML4 NRG1 ERBB2 NTRK1 NTRK2 ERG ESR1 NTRK3 ETS1 PAX3 ETV1 PAX7 ETV4 **PDGFRA** ETV5 **PDGFRB EWSR** PIK3CA **PPARG** FGFR1 RAF1 FGFR2 RET ROS1 FGFR3 FGFR4 RPS6KB1 • FLI1 TMPRSS2 • FLT1 FLT3

JAK2

