Texas A&M University Department of Electrical and Computer Engineering ELEN 444 - Digital Signal Processing Fall 2024

Midterm #2, Tuesday, Nov. 5, 2024

1.	Consider a linear time-invariant system, initially at rest, described by the difference equation
	$y[n] = \frac{1}{16}y[n-2] + x[n]$
	(a) (5%) Determine the system function $H(z)$.
	(b) (5%) Determine the impulse response of the system $h[n]$.

(c) (5%) Determine the direction form realization of this system.

(e)
$$(10\%)$$
 Determine the parallel form realization of this system.

(f) (15%) What is the system response to the input signal
$$x[n] = [(\frac{1}{4})^n + (-\frac{1}{4})^n]u[n]$$
.

2. Suppose we want to map the analog highpass elliptic filter shown below to a digital filter by using the bilinear transformation (note that the frequency axis is logarithmic in Hertz, so that the stopband edge is at approximately 860 Hz).

(a) (12.5 %) Determine T_d needed in the bilinear transformation so that the passband edge of the digital filter will be at $\omega_p = 0.3\pi$.

(b) (12.5 %) If the edge of the digital highpass filter was placed at $\omega_p=0.3\pi$ as in part (a), dtermine the width of the transmission band $\Delta\omega=\omega_p-\omega_s$.

- 5 (Extra point question) We start with a prototype lowpass filter h[n] with z-transform H(z) before employing frequency transformation to convert h[n] to other filters.
 - (a) (5%) If we use the frequency transformation $z^{-1} \to z$ on H(z) to get our first new filter $h_1[n]$, that is $H_1(z) = H(z^{-1})$, what is the relationship between $h_1[n]$ and h[n]?

(b) (5%) If we use the frequency transformation $z^{-1} \to -z^{-1}$ on H(z) to get our second new filter $h_2[n]$, that is $H_2(z) = H(-z)$, what is the relationship between $h_2[n]$ and h[n]? Is $h_2[n]$ lowpass, highpass, bandpass, or bandstop?