

Thermo
Prof. Dr.-Ing. habil. Jadran Vrabec
Fachgebiet Thermodynamik

Fakultät III - Prozesswissenschaften

Aufgabe 8.1

Bei einer Wärmepumpenanlage wird ein Vorratsspeicher auf der Temperatur $T_{\rm W1}=65\,^{\circ}{\rm C}$ gehalten um in einem Wärmeübertrager das Brauchwasser von $T_{\rm B1}=10\,^{\circ}{\rm C}$ auf $T_{\rm B2}=55\,^{\circ}{\rm C}$ zu erwärmen. Die Wasserströme sind $\dot{m}_{\rm B}=0.1\,{\rm kg/s}$ und $\dot{m}_{\rm W}=0.0957\,{\rm kg/s}$. Der Druck der Wasserströme ändert sich im Wärmeübertrager nicht.

- a) Auf welche Temperatur kühlt das Wasser aus dem Wärmepumpenkreislauf ab?
- b) Wie groß ist die irreversible Entropiezunahme im Wärmeübertrager?

Hinweis:

Die mittlere spezifische Wärmekapazität des Wassers beträgt $c_p = 4.181 \,\mathrm{kJ/(kg\,K)}$.

Aufgabe 8.2

In einer Pipeline wird Methan ($\dot{m}=10\,\mathrm{kg/s}$) gefördert. Die Geschwindigkeit beträgt nach dem Turboverdichter $w_1=5\,\mathrm{m/s}$, der Druck $p_1=80\,\mathrm{bar}$ und die Temperatur $T_1=60\,\mathrm{^{\circ}C}$. Nach $10\,\mathrm{km}$ ist der Druck auf $p_2=60\,\mathrm{bar}$ und die Temperatur auf $T_2=20\,\mathrm{^{\circ}C}$ gesunken. Die Pipeline ist nicht gegen Wärmeverlust isoliert.

- a) Vergleichen Sie die Änderung der kinetischen Energie mit der Änderung der Enthalpie.
- b) Wie groß ist die Änderung der spezifischen Exergie?

An einer Übergabestation werden $\dot{m}=2\,\mathrm{kg/s}$ des Methans von p_2 , T_2 auf $p_3=3\,\mathrm{bar}$ reversibel entspannt.

c) Welche Leistung ist dabei maximal zu gewinnen, wenn das Methan nicht unter $T_3 = 0$ °C abkühlen soll?

Hinweise:

Methan soll in erster Näherung als ein ideales Gas mit $R_{\rm m}=8.314\,72\,{\rm kg/(kmol\,K)},\ M=16.043\,{\rm kg/kmol}$ und $c_p=2.185\,{\rm kJ/(kg\,K)}$ betrachtet werden. Die Umgebungstemperatur für die Aufgabenteile a) und b) beträgt $T_{\rm a}=20\,{\rm ^{\circ}C},$ für c) gilt $T_{\rm a}=0\,{\rm ^{\circ}C}.$