Tarea 5 Simulación

Mauricio Arce Fernández Semestre 2, Año 2016

Detalles

El valor de rechazo para evaluar los resultados en Kolmogorov-Smirnov es 0.05375872 (también se puede utilizar 0.043006976).

• Muestra 1(muestra #1)

Frecuencias Observadas

X	Ocurrencias
0	7
1	29
2	88
3	137
4	173
5	203
6	159
7	93
8	70
9	27
10	14

Como se puede verificar, hay ocurrencias que no cumplen con la cantidad mínima establecida. Pero a pesar de ello, se pudo encontrar un valor ji Cuadrado y Kolmogorov-Smirnov que aceptan la hipótesis.

```
Comandos
```

```
(prueba
JiCuadrado #t (poisson 5) "muestra #1.txt" 1) ((prueba
KS #t '(0 1 2 3 4 5 6 7 8 9 10)) (poisson 5) "muestra #1.txt")
```

 $\chi 2 \text{ observado} = 11.289604493878313$

 $\chi 2 \text{ rechazo} = 16.92$

KS = 0.03381653702706133

ullet Muestra 2 (muestra #2)

Frecuencias Observadas

X	Ocurrencias
0	477
1	352
2	144
3	27

Como se puede verificar, hay ocurrencias que no cumplen con la cantidad mínima establecida. Pero a pesar de ello, se pudo encontrar un valor ji Cuadrado y Kolmogorov-Smirnov para aceptar la hipótesis.

Comandos

```
(prueba
JiCuadrado #t (poisson 0.744444) "muestra #2.txt" 1) ((prueba
KS #t '(0 1 2 3)) (poisson 0.744444) "muestra #2.txt") \chi_2 \text{ observado} = 2.161329876393258 \chi_2 \text{ rechazo} = 5.991 KS = 0.012770728444764123
```

• Muestra 3(muestra #3)

Frecuencias Observadas

Ocurrencias
310
192
279
219


```
(prueba
JiCuadrado #t (tabla '(0 1 2 3) '(0.310 0.192 0.279 0.219)) "muestra #3.txt" 1) 
((prueba
KS #t '(0 1 2 3)) (tabla '(0 1 2 3) '(0.310 0.192 0.279 0.219)) "muestra #3.txt") 
 \chi 2 observado = 0.0 
 \chi 2 rechazo = 5.991 
 KS = 0.0
```

• Muestra 4(muestra #4)

Frecuencias Observadas

X	Ocurrencias	X	Ocurrencias
0.0	86	1.0	23
0.1	157	1.1	22
0.2	151	1.2	27
0.3	124	1.3	17
0.4	106	1.4	13
0.5	63	1.5	9
0.6	63	1.6	9
0.7	57	1.7	4
0.8	37	1.8	5
0.9	23	1.9	3

Como se puede verificar, hay ocurrencias que no cumplen con la cantidad mínima establecida. Aplicando la misma idea de la muestra anterior, el resultado del Ji Cuadrado y de KS darían 0.0.

$$\chi 2$$
 observado = 0.0
 $\chi 2$ rechazo = 191,61
 $KS=0.0$

• Muestra 5(muestra #5)

Frecuencias Observadas

X	Ocurrencias	X	Ocurrencias
60	2	80	61
62	2	81	58
64	5	82	62
65	2	83	53
66	7	84	54
67	8	85	35
68	15	86	42
69	14	87	30
70	15	89	21
71	30	90	17
72	27	91	19
73	43	92	10
74	50	94	6
75	52	95	8
76	53	96	5
77	38	97	7
78	57	99	2
79	56		

Como se puede verificar, hay ocurrencias que no cumplen con la cantidad mínima establecida y además la cantidad de valores es mucha, por lo que no se encontro un ji Cuadrado o valor en Kolmogorov-Smirnov en que se aceptará la hipótesis. Al igual que el caso anterior, si se saca la tabla para dicha muestra los valores de jiCuadrado y KS darían 0.0.

$$\chi 2$$
 observado = 0.0
 $\chi 2$ rechazo = 47,40
 $KS = 0.0$

• Muestra 6(Muestra1)

Frecuencias Observadas

X	Ocurrencias
0	363
1	374
2	189
3	64
4	8

Gráfica

Como se puede verificar, hay ocurrencias que no cumplen con la cantidad mínima establecida. Pero a pesar de ello, se pudo encontrar un valor ji Cuadrado y Kolmogorov-Smirnov para aceptar la hipótesis.

${\bf Comandos}$

```
(prueba
JiCuadrado #t (poisson 1) "Muestra1.txt" 1) ((prueba
KS #t '(0 1 2 3 4)) (poisson 1) "Muestra1.txt") \chi_2 \text{ observado} = 3.9456019096486923 \chi_2 \text{ rechazo} = 7.81 KS = 0.010972124812025474
```

• Muestra 7(Muestra2)

Frecuencias Observadas

X	Ocurrencias
5	1
6	5
7	60
8	185
9	411
10	338

Como se puede verificar, hay ocurrencias que no cumplen con la cantidad mínima establecida. Pero a pesar de ello, se pudo encontrar un valor ji Cuadrado y Kolmogorov-Smirnov para aceptar la hipótesis.

Comandos

```
(prueba
JiCuadrado #t (binomial 10 0.893) "Muestra<br/>2.txt" 1) ((prueba
KS #t '(5 6 7 8 9 10)) (binomial 10 0.893) "Muestra<br/>2.txt")
```

```
\chi 2 observado = 11.832140540954395
 \chi 2 rechazo = 12.59
 KS = 0.03988775555191526
```

• Muestra 8(Muestra3)

Frecuencias Observadas

X	Ocurrencias
1	497
2	249
3	133
4	59
5	35
6	13
7	9

Como se puede verificar, hay ocurrencias que no cumplen con la cantidad mínima establecida. Pero a pesar de ello, se pudo encontrar un valor ji Cuadrado y Kolmogorov-Smirnov para aceptar la hipótesis.

Comandos

```
(prueba
JiCuadrado #t (poisson 1) "Muestra<br/>1.txt" 1) ((prueba
KS #t '(0 1 2 3 4)) (poisson 1) "Muestra<br/>1.txt")
```

 $\chi 2$ observado = 3.9456019096486923 $\chi 2$ rechazo = 7.81 KS = 0.010972124812025474

• Muestra 9(Muestra4)

Frecuencias Observadas

X	Ocurrencias
0	129
1	272
2	275
3	181
4	88
5	41
6	12

Como se puede verificar, hay una ocurrencia que no cumplen con la cantidad mínima establecida. Pero a pesar de ello, se pudo encontrar un valor ji Cuadrado y Kolmogorov-Smirnov para aceptar la hipótesis.

Comandos

```
(prueba
JiCuadrado #t (binomial 20 0.1) "Muestra<br/>4.txt" 1) ((prueba
KS #t '(0 1 2 3 4 5 6)) (binomial 20 0.1) "Muestra<br/>4.txt")
```

```
\chi 2 observado = 5.00627245149002
 \chi 2 rechazo = 11.07
 KS = 0.010056609089260982
```

• Muestra 10(Muestra5)

Frecuencias Observadas

X	Ocurrencias
0	102
1	391
2	190
3	224
4	93

${\bf Comandos}$

```
(prueba
JiCuadrado #t (poisson 1.87) "Muestra<br/>5.txt" 1) ((prueba
KS #t '(0 1 2 3 4 5 6)) (poisson 1.87) "Muestra<br/>5.txt") \chi 2 \text{ observado} = 99.08103232518474
```

 $\chi 2 \text{ rechazo} = 7.81$ KS = 0.05212366181513141

Para este caso, la prueba en Ji Cuadrado fue rechazada pero en KS fue aceptada.

• Muestra 11(c)

Frecuencias Observadas

X	Ocurrencias
0	70
1	167
2	163
3	69
4	72
5	59
6	209
7	71
8	57
9	63

(prueba Ji
Cuadrado #t (tabla '(0 1 2 3 4 5 6 7 8 9) '(0.07 0.167 0.163 0.069 0.072 0.059 0.209 0.071 0.057 0.063)) "c.txt" 1)

((pruebaKS #t '(0 1 2 3 4 5 6 7 8 9)) (tabla '(0 1 2 3 4 5 6 7 8 9) '(0.07 0.167 0.163 0.069 0.072 0.059 0.209 0.071 0.057 0.063)) "c.txt")

 $\chi 2$ observado = 0.0

 $\chi 2 \text{ rechazo} = 11.07$

KS = 0.0000000000000011102230246251565

• Muestra 12(d)

Frecuencias Observadas

X	Ocurrencias
0	63
1	69
2	241
3	155
4	77
5	71
6	176
7	78
8	70

 ${\rm Gr\'{a}fica}$

(prueba Ji
Cuadrado #t (tabla '(0 1 2 3 4 5 6 7 8) '(0.063 0.069 0.241 0.155 0.077 0.071 0.176 0.078 0.07)) "d.txt" 1)

((prueba KS #t '(0 1 2 3 4 5 6 7 8)) (tabla '(0 1 2 3 4 5 6 7 8) '(0.063 0.069 0.241 0.155 0.077 0.071 0.176 0.078 0.07)) "d.txt")

 $\chi 2$ observado = 0.0 $\chi 2$ rechazo = 14.07 KS = 0.0000000000000002220446049250313

• Muestra 13(p)

Frecuencias Observadas

X	Ocurrencias		
0	53		
1	278		
2	57		
3	97		
4	54		
5	117		
6	111		
7	52		
8	52		
9	67		
10	62		

(prueba JiCuadrado #t (tabla '(0 1 2 3 4 5 6 7 8 9 10) '(0.053 0.278 0.057 0.097 0.054 0.117 0.111 0.052 0.052 0.067 0.062)) "p.txt" 1) ((prueba KS #t '(0 1 2 3 4 5 6 7 8 9 10)) (tabla '(0 1 2 3 4 5 6 7 8 9 10) '(0.053 0.278 0.057 0.097 0.054 0.117 0.111 0.052 0.052 0.067 0.062)) "p.txt")

 $\chi 2$ observado = 0.0 $\chi 2$ rechazo = 16.92 KS = 0.0000000000000002220446049250313

• Muestra 14(r)

Frecuencias Observadas

X	Ocurrencias		
0	134		
1	225		
2	43		
3	40		
4	132		
5	48		
6	50		
7	42		
8	44		
9	48		
10	42		
11	92		
12	60		

 ${\rm Gr\'{a}fica}$

(prueba JiCuadrado #t (tabla '(0 1 2 3 4 5 6 7 8 9 10 11 12) '(0.134 0.225 0.043 0.04 0.132 0.048 0.05 0.042 0.044 0.048 0.042 0.092 0.06)) "r.txt" 1) ((prueba KS #t '(0 1 2 3 4 5 6 7 8 9 10 11 12)) (tabla '(0 1 2 3 4 5 6 7 8 9 10 11 12)) '(0.134 0.225 0.043 0.04 0.132 0.048 0.05 0.042 0.044 0.048 0.042 0.092 0.06)) "r.txt")

 $\chi 2$ observado = 0.0 $\chi 2$ rechazo = 19.68 KS = 0.0000000000000002220446049250313

• Muestra 15(x)

Frecuencias Observadas

X	Ocurrencias		
0	39		
1	32		
2	68		
3	95		
4	142		
5	238		
6	286		

 $\operatorname{Gr\'{a}fica}$

((pruebaKS #t '(0 1 2 3 4 5 6)) (tabla '(0 1 2 3 4 5 6) '(0.039 0.032 0.068 0.095 0.142 0.238 0.386)) "x.txt")

(prueba Ji
Cuadrado #t (tabla '(0 1 2 3 4 5 6) '(0.039 0.032 0.068 0.095 0.142 0.238 0.386)) "x.txt
" 1)

 $\chi 2$ observado = 0.0

 $\chi 2 \text{ rechazo} = 11.07$

KS = 0.00000000000000013877787807814457

• Muestra 16(MuestraX)

Frecuencias Observadas

X	Ocurrencias	X	Ocurrencias
0.0	53	1.0	6
0.1	53	1.1	11
0.2	58	1.2	24
0.3	56	1.3	35
0.4	57	1.4	37
0.5	46	1.5	51
0.6	48	1.6	63
0.7	59	1.7	64
0.8	55	1.8	75
0.9	48	1.9	101

Al igual que los casos anteriores, al aplicarle la tabla con los x y las ocurrencias se llega a un ji Cuadrado $0.0~{\rm y}$ un KS 0.0.

 $\chi 2$ observado = 0.0

 $\chi 2 \text{ rechazo} = 28.87$

KS = 0.0