수학 필수 개념 정리 노트

[문제 풀 때 절대 하면 안 되는 것]

- ① 미지수 3개 이상으로 두고 문제 풀이 (특히, 지수함수/로그함수 좌표 관련된 문제)
- ② 그래프 안 그리고 '대충 이거겠지' 하고 넘어가는 습관
- ③ [수학1]은 특히 개수 구하고 그런 문제가 많아서 검산은 필수적! 검산 안 하고 넘기면 등짝스매싱 준비^^
- ④ 특히 실수 쉬운 거 : $x^2=n$ 이면 $x=\pm\sqrt{n}$ 이다. $(+\sqrt{n} \text{ 만 생각하면 안 됩니다^^)}$

[이건 제발 좀 해줘]

- ① 삼각함수의 그래프에서 대침점 활용하기
- ② 도형 문제에서 길이/각도 표시해주기
- ③ 수열 문제 한 번씩은 나열해주기
- ④ 도형 문제에서 어떤 길이가 $\sqrt{2}$, $\sqrt{3}$ 등에 대한 식이면 각각 45° . 60° 의심하기!!
- ⑤ 감력한 조건부터 문제 조건 해석해 나가기!
- ⑥ 모든 n에 대해 성립하는 부등식은 최댓값/최솟값에서 만 성립함을 보이면 됨.

1 지수함수와 로그함수

- 의외로 자주 쓰이는 공식

지수/로그 관련 식 변형 문제에서는

$$\frac{\log b}{\log a} = \log_a b$$

- 이 매우 자주 쓰인다.
- i) $\log_a b \times \log_b c \times \log_c a = 1$
- ii) $\log_{a^n} b^m = \frac{m}{n} \log_a b$

- 로그의 분석

- ① 가능하면 로그는 최대한 밑을 간단하게 통일시킨다.
- ② 로그가 곱셈으로 붙어있으면 한 번쯤 떨어뜨리고, 로그가 덧셈으로 연결되어 있으면 한 번쯤 붙여보자.

| 예제 | $\log_2 |x-2| + \log_4 (x+2)^2 = 2$ 을 풀어라.

 $\| \mathbf{\Xi} \mathbf{0} \| \| \log_2 |x-2| + \log_2 |x+2| = 2$

$$\log_2 |x^2 - 4| = 2$$

$$|x^2 - 4| = 4 \rightarrow x = \pm 2\sqrt{2}$$

- 지수함수의 그래프 분석

 $y=a^x$ 의 그래프를 그릴 때는 a>1인지, a<1인지를 정확하게 알고 출발해야 한다. 모르고 출발하면 나중에 낭패를 보기 쉽다.

- 로그 문제에서의 가장 큰 실수

진수 조건을 안 쓰면 그대로 나락간다.

| 풀이 | $x^2 > 0$ 이고(진수 조건), $x^2 < 8$ 이므로 x = -2, -1, 1, 2로 4개

- 거듭제곱근의 개수

기본 개념 n이 짝수일 때 a의 n제곱근은 a > 0이면 2개, a < 0이면 1개 n이 홀수일 때 a의 n제곱근은 a의 값에 관계없이 1개

- 로그함수와 지수함수의 점근선

① 로그함수

넣었을 때 로그의 진수가 0 되는 게 점근선이다.

| 예제 | $y = \log_2(x-3) + 1$ 의 점근선은 x = 3이다.

물이 x = 3일 때, x - 3 = 0이기 때문이다.

② 지수함수

∞ 또는 -∞ 넣었을 때 수렴하는 값이 점근선이다.

| 예제 | $y = 3^{x-2} + 1$ 의 점근선은 y = 1이다.

| 풀이 | x에 $-\infty$ 넣었을 때 $3^{x+2} \rightarrow 0$ 이므로 y는 1로 수렴한다.

-a의 n제곱근 중 정수가 존재할 조건

a가 그냥 일반적인 수인지, 제곱수인지, 세제곱수인지 등에 따라 달라진다.

 $a=k^m$ 라고 하자. (k는 자연수, m는 최대의 자연수) 이때, $k^{\frac{m}{n}}$ 이 정수여야 하므로 $\frac{m}{n}$ 을 기약분수로 나타냈

을 때, $\frac{m'}{n'}$ 이면 k는 n'제곱수여야 한다.

|**에제** $| <math>x^3$ 의 6제곱근 중 정수가 존재하려면?

| 풀이 | $x^{3/6} = x^{1/2}$ 가 정수여야 하므로 x는 제곱수

꿀팁 전수 어떤 식의 값이 정수이면 그 식의 값을 N이라 두고 정리하는 것도 좋은 선택이다.

- 로그함수와 지수함수의 대칭성

로그와 지수는 일종의 역함수 관계이기 때문에 대칭성을 가진다. → 로그함수와 지수함수가 동시에 있으면 대칭성은 특히나 굉장히 자주 활용된다.

- 로그와 지수 혼합형 문제의 기본 해법

- ① 대부분은 로그를 지수로 바꿔서 풀어주면 풀린다. (진수 조건 생각할 일도 없고 보통 편하다)
- ② 미지수는 왠만하면 주어진 조건을 직접 활용할 수 있는 곳에 잡는다.

| 예제 | 점 A는 곡선 $y = \log_2(x-2) + 1$ 위의 점, 점 A 를 직선 y = x 에 대하여 대칭이동한 점은 곡선 $y = 4^{x+1} + 2$ 위에 있다.

물이 | A(a, b)라 하면 $b = \log_2(a-2) + 1$ 로그는 지수 형태로 생각하는 게 편하다. $2^{b-1} = a - 20$ |므로, $a = 2^{b-1} + 2$ ··· ③ y = x에 대해 대칭이동한 점은 (b, a)이므로 $a = 4^{b+1} + 2$ ··· ⑤ ③ = ⑥라 두면 $2^b = X$ 라 할 때, $4X^2 - \frac{1}{2}X = 0$ 이므로, $X = \frac{1}{8}$ 이고, b = -3, $a = \frac{33}{16}$

- 로그함수 또는 지수함수 여러 개의 교점

로그나 지수 자체를 덩어리처럼 생각하고 접근하면 편하다. 즉, x 값 자체를 구하기보다는 $\log_a x$ 나 a^x 등의 값을 구한다는 느낌으로 접근해보자.

| 예제 | $\overline{OB} = 3 \times \overline{OH}$ 일 때, a의 값은?

불이 미지수는 가능하면 주어진 조건에서 찾는다. H(0, k)라 잡으면, B(0, 3k)이고, 이는 $y=2^{-x+a}$ 의 y절편이므로 $3k=2^a$. A의 y좌표가 k이므로 $x_{\rm A}=\alpha$ 라 두고 비교 $2^\alpha-1=2^{-\alpha+a}=k$ 인데, $2^{-\alpha+a}=3k\times 2^{-\alpha}=k$ 이므로, $\alpha=\log_23$. 따라서 $k=2^{\log_23}-1=2$ 이고, $a=\log_23k=\log_26$

2 삼각함수

- 삼각함수의 성질 암기 방법

꿀팁 전수 공식을 따로 외우지 말고 단위원을 그리는 것이 가장 빠르다. 단위원 위에 적당히 작은 각 x를 표시해두고 각도의 변화에 따라 좌표 분석

예시 위의 그림에서 점 Q는 P를 $\pi/2$ 만큼 회전시킴. $\cos(\pi/2+x)$ 는 Q의 x좌표인데, 음수이고 짧은 거니까 $-\sin x$ 이다. $\sin(\pi/2+x)$ 는 Q의 y좌표인데, 양수이고 긴 거니까 $\cos x$ 이다.

- 삼각함수와 식 변형

기본 개념 $\sin^2 x + \cos^2 x = 1$ $\tan^2 x + 1 = \sec^2 x$

꿀팁 전수 보통은

$$\tan x = \frac{\sin x}{\cos x}$$
, $\sec x = \frac{1}{\cos x}$, $\csc x = \frac{1}{\sin x}$ 로 생각하는 게 편함

- 삼각함수 그래프의 기본 스킬

기본 개념

- ① sin, cos의 그래프는 최대점/최소점을 기준으로 대칭이라는 점을 기억해두자.
- ② $\sin(ax)$, $\cos(ax)$ 의 주기는 $\frac{2\pi}{a}$ $\tan(ax)$ 의 주기는 $\frac{\pi}{a}$
 - → 그래프가 반복되는 횟수를 이용해 $\sin ax = k$ 등의 방정식의 해의 개수를 구할 수도 있다.

꿀팁 전수

- ① $\sin x$, $\cos x$ 는 [-1, 1]의 값만 가진다는 것을 놓치는 경우가 있다. 특히 합성함수 에서는 정의역을 좁히는 역할을 할 수 있으니 꼭 기억해두자.
- ② 가능하면 표시할 수 있는 좌표는 전부 표시해보자. 특히, 삼각함숫값이 $\frac{1}{2}$, $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{3}}{2}$ 등으로 나오는 것은 거의 100% 좌표 구하는 문제이다. 만약 다른 값이라면 그래프의 대칭성을 잘 활용해보자.

- 도형 문제에서의 삼각함수 활용

① 코사인 법칙을 사용해야만 하는 상황

두 변의 길이와 한 각의 크기를 아는 경우

→ 나머지 한 변을 미지수로 잡고 코사인 법칙을 쓴다.

② 사인 법칙을 사용해야만 하는 상황

삼각함수값은 많이 알고 있는데, 막상 아는 변의 길이 는 하나밖에 없는 상황

→ 사인법칙을 써서 나머지 변의 길이를 구한다. 코사인 법칙 보다 우선 순서이다. 가능하면 사인 법칙 먼저 쓸 궁리 하고 코사인 법칙 쓰자. (코사인 법칙은 식이 복잡함)

③ 닮음과 직각, 원주각, 방멱

직각의 중요성

직각은 피타고라스의 정리를 사용하거나 넓이 등을 구함에 있어 매우 유용하다. 직각이 있으면 최대한 뽕을 뽑아보려 시도해보자.

특히, 원에서는 지름이 매우 중요한 역할을 한다.

이는 반지름의 길이는 항상 일정하다는 사실과 동시에 자주 쓰인다. 진짜 제발 기억하기.

원주각

방멱 정리

$$ab = cd$$

$$cd$$
 $ab = cd$

$$d \qquad a^2 = bc$$

④ 같은 각, 같은 길이 표시

이건 몇 번을 강조해도 좋은 게, 못 찾으면 그냥 문제가 안 풀리게 설정해둔다. ①~③을 통해 알게 된 정보를 통해 같은 각도, 같은 길이는 무조건 표시를 별도로해 주자. 제발. 제발.

⑤ 보조선은 어디다 긋는가

보조선은 최후의 수단으로 사용해야 함을 잊지 말자.

비어보이는 곳, 아직 점과 점이 연결되지 않은 곳에 보조선을 그으면 대부분은 맞는다. 보조선을 그릴 때 너무 많은 선을 교차해서 지나가지 않는 곳에 우선적으로 그려보자. (단, 최소한의 정보라도 얻을 수 있는 곳에 그어야지 무턱대고 긋는 건 아니다.)

│ **예제** │ AB는 지름, O는 반원의 중심

$$\overline{\text{CE}} = 4$$
, $\overline{\text{ED}} = 3\sqrt{2}$, $\angle \text{CEA} = \frac{3}{4}\pi$

 $\overline{AC} \times \overline{CD}$ 의 값은?

| 풀이 |

보이는 것만에서 구할 수 있는 길이를 전부 표시하면 \overline{CD} 의 길이를 구할 수 있다.

$$\overline{\text{CD}} = \sqrt{4^2 + (3\sqrt{2})^2 - 2 \times 4 \times 3\sqrt{2} \times \frac{1}{\sqrt{2}}} = \sqrt{10}$$

더 이상 구할 수 있는 게 없으므로 보조선 그어야 한다. 이 그림에서 아직 연결되지 않은 두 점은 O, O이므로 이어보자. $\overline{OE}=r-4$, $\overline{OD}=r$ 이므로 코사인 법칙 사용

$$\overline{OD}^{2} = r^{2}$$

$$= (r-4)^{2} + 18 - 2 \times (r-4) \times 3\sqrt{2} \times \left(-\frac{1}{\sqrt{2}}\right)$$

$$= r^{2} - 2r + 10$$

이므로, r = 5.

원의 나머지 부분을 그리고, $\overline{\mathrm{EO}}$ 연장하면 방멱 정리 $^{\circ}$ 수 있다.

 $4 \times 6 = 3\sqrt{2} \times \overline{AE}$ 이므로, $\overline{AE} = 4\sqrt{2}$.

 Δ ACE에서 코사인 법칙 쓰면 $\overline{AC} = 4\sqrt{5}$.

$$\overline{AC} \times \overline{CD} = 20\sqrt{2}$$

│ 예제 │ 선분 AC의 중점은 M,

$$\overline{AB} = 3$$
. $\overline{BC} = 2$.

$$\overline{AC} > 3$$
, $\cos(\angle BAC) = \frac{7}{9}$

MD의 길이는?

| 풀이 |

삼각형 ABC에서 주어진 정보 상 코사인 법칙 사용.

$$\overline{BC}^2 = 4 = \overline{AC}^2 + 3^2 - 2 \times \overline{AC} \times 3 \times \frac{7}{8}$$

 $\overline{AC} = x$ 라 하면,

$$x^2 - \frac{21}{4}x + 5 = 0$$
,

$$(x-4)(x-5/4)=0$$

이므로 $x = 4 \rightarrow \overline{AM} = \overline{MC} = 2$.

$$\overline{\text{MB}} = \sqrt{2^2 + 3^2 - 2 \times 2 \times 3 \times \frac{7}{8}} = \sqrt{\frac{5}{2}}$$

방멱 정리에 의해

$$\overline{\mathrm{MD}} \times \sqrt{\frac{5}{2}} = 2 \times 20$$
|므로 $\overline{\mathrm{MD}} = \frac{4\sqrt{10}}{5}$

- 각의 이등분선 정리

3 수열

- 등차수열의 합을 구하는 빠른 방법

- ① 처음 항과 마지막 항을 알고 있다면 (두 항의 평균) × (항 개수) 로 구한다.
- ② 정중앙에 항이 존재한다면 (정중앙 항) × (항 개수) 로도 구할 수 있다.

- 등차중항

너무 자주 쓰이는 거라 할 말이 없을 정도이다.

기본 개념

등차수열의 경우 n, r이 정수일 때

$$a_m + a_n = 2a_{(m+n)/2}$$

이 성립한다.

꿀팁 전수

- ① 이 정보는 등차수열의 어떤 항의 값이 0이라는 정보가 있을 때 유용하게 쓰인다. 수열이 그 점을 기점으로 부호가 바뀐다는 것을 의미하기 때문이다.
- ② $|a_m| = |a_n|$ 일 때도 매우 유용하게 쓰이는 정보이다. 공차가 0이 아닌 이상 $a_m = -a_n$ 이므로 등차중항이 0이 된다는 의미이기 때문이다.
 - **Cf.** 예를 들어, $a_2=-a_5$ 이면 등차중항은 $a_{3.5}=0$. a_3 과 a_4 의 평균값이라 생각하면 편하다. (ex. $a_3=2$, $a_4=3$ 이면 $a_{3.5}=2.5$)

| 예제 | $a_1 = -45$, 공차 d인 등차수열 $\left\{a_n\right\}$.

(가) $|a_m| = |a_{m+3}|$ 인 자연수 m 존재

(나) 모든 자연수 n에 대하여 $\sum_{k=1}^{n} a_k > -100$ 모든 자연수 d의 합?

| 물이 | $a_m = -a_{m+3}$ 이므로 등차중항 성질에 의해

$$a_{m+1.5} = 0$$
, \subseteq , $a_m = -\frac{d}{2}$, $a_{m+1} = \frac{d}{2}$.

$$\sum_{k=1}^{n} a_k > -100$$
이므로 $\sum_{k=1}^{n} a_k$ 의 최솟값이

-100보다 크다. a_m 까지 $a_n < 0$ 이므로

최솟값은
$$n=m$$
일 때, $\sum_{k=1}^{m} a_k$ 이다.

$$\begin{split} \sum_{k=1}^{m} a_k &= a_m + a_{m-1} + \dots + a_1 \\ &= -\frac{d}{2} - \frac{3d}{2} - \dots - \frac{(2m-1)d}{2} \\ &= -\frac{m^2d}{2} > -100 \ \cdots \ \ \ \, \ \, \end{split}$$

첫째항이 - 45이므로

$$-\frac{(2m-1)d}{2} = -45$$

$$(2m-1)d = 90$$

2m-10] 홀수이므로 d=10, 18, 30, 900] 가능.

이 중 d = 10이면 \bigcirc 을 만족하지 않고,

d = 90이면 $a_1 = -45$, $a_2 = 45$ 이므로 $a_m = -a_{m+3}$

인 자연수 m은 찾을 수 없다. (m=0)이면 되기야 하

겠으나 수열은 m=1일 때부터 정의되므로)

따라서 d = 18, 30이므로 18 + 30 = 48

- 등비중항

기본 개념

등비수열의 경우는

$$a_m a_n = a_{(m+n)/2}^2$$

이 성립한다.

| 예제 | $a_3 = 1$, $a_9 = 9$ 인 등비수열에서 a_6 은?

| 풀이 |
$$a_3a_9=a_6^2$$
이므로 $a_6=\pm 3$

- 수열의 합과 일반항의 관계

 S_n 과 a_n 이 동시에 주어져 있으면 S_n 을 이용해 a_n 을 구하면 다음과 같다.

$$a_n = S_n - S_{n-1}$$

참조 1. S_n 이랑 $\sum_{k=1}^n a_n$ 은 같은 것 / 2. $S_1 = a_1$

꿀팁 전수

가끔 S_{2n} 에 대한 식이 주어지는 경우가 있다.

이때는 S_{2n-1} 을 구할 수는 없기 때문에

$$S_{2n} - S_{2n-2} = a_{2n} + a_{2n-1}$$

으로 정보를 얻는 것이 최선이다.

- 귀납적으로 정의된 수열의 분석

- ① 순방향으로 분석하거나, 거꾸로 분석하거나 둘 중하나이다. 적절한 것을 택하자.
- (Tip : 일반적으로 문제에서 구하는 값의 반대 방향으로 분석하는 것이 맞다. 예를 들어, a_1 을 구하는 거면 a_b 부터 역방향으로 분석하는 것이다.)
- ② 도저히 이 수열이 뭔지 모르겠으면 일단 나열해보는 것이 가장 좋은 방법이다. (나열을 해야 방정식을 세우든 뭘 하든 하니까)
- ③ 반복성 확인은 무조건 해야 한다.

│ 예제 │ *a*₁이 자연수일 때,

$$a_{n+1} = \begin{cases} a_n - 2 & (a_n \ge 0) \\ a_n + 5 & (a_n < 0) \end{cases}$$

 $a_{15} < 0$ 이 되도록 하는 a_1 의 최솟값?

| 풀이 |

 a_1 이 자연수이고, $a_n \geq 0$ 에서는 계속 2씩 빠지므로 언젠가 $a_n = 0$ 또는 $a_n = 1$ 인 지점을 지날 수 밖에 없다. $a_n = 0$ 이면 $0 \rightarrow -2 \rightarrow 3 \rightarrow 1 \rightarrow -1 \rightarrow 4 \rightarrow 2 \rightarrow 0$ 반복 $a_n = 1$ 이면 $1 \rightarrow -1 \rightarrow 4 \rightarrow 2 \rightarrow 0 \rightarrow -2 \rightarrow 3 \rightarrow 1$ 반복 a_1 이 최솟값을 가지려면 가능한 이 반복 구간이 많이나와야 한다. (어차피 반복 안 되면 계속 값이 늘어나니까) $a_n = 0$ 이고 $a_{15} = -1$ 일 때, 반복되는 부분이 한 번반복된다고 가정하면 $a_1 = 8$ 에서 최소. $a_n = 1$ 이고 $a_{15} = -2$ 일 때, 반복되는 부분이 한 번

반복된다고 가정하면 $a_1 = 5$ 에서 최소.

꿀팁 전수 $a_n \ge 0$, $a_n < 0$ 으로 범위가 나누어진 수열은 일반적으로 특정 주기마다 어떤 성질이 반복되는 수열일 가능성이 높다.

- 거듭제곱의 합 공식

①
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

꿀팁 전수 연속된 홀수의 합은 제곱수이다.

$$\sum_{k=1}^{n} (2k-1) = n^2$$

- 등차수열의 합 공식

괜한 공식 외우지 말고 원리로 기억하자.

$$a_1, a_1 + d, a_1 + 2d, ..., a_1 + (n-1)d$$

까지 중에

 a_1 은 n번 나오고

$$d = 1 + 2 + ... + (n-1) = \frac{(n-1)n}{2}$$
 번 나온다.

따라서

$$S_n = na_1 + \frac{(n-1)n}{2}d$$

이다.