CS61C: Great Ideas in Computer Architecture (aka Machine Structures)

Lecture 10: Combinational Logic, FSMs

Instructors: Rosalie Fang, Charles Hong, Jero Wang

Announcements

- Midterm Friday! Logistics on Ed/the course website.
 - Review sessions Tuesday 5-7pm, Thursday 3-5pm (different content see Ed for details)
 - Additional conceptual OH M/W 5-6pm in Soda 411
- Extensions
 - 7 day limit
- OH clarification
 - No lab tickets in OH on Tuesdays/Thursdays
- Labs 3 and 4 due tomorrow (Tuesday), Homework 3 due Wednesday (long!)

So far...

- C, RISC-V generally exist on the software side of the stack
 - Nuance: the ISA does determine much of how a processor is implemented
- We built our way down from C to machine code

Next 5-ish lectures:

How a modern processor is built, starting with basic elements as building blocks

Another way to put it...

Previously:

Today:

What's in this thing?

Why study hardware?

1. The cliché:

To really understand how computers work and become a better performance programmer.

Understand capabilities and limitations of HW in general and processors in particular.

- Why is my computer so slow? Why does my battery run down?
- Someday, you may need to decide between different hardware platforms, or even design custom HW for extra performance.

3. \$\$\$\$

- In addition to hardware companies like Apple, Intel, or NVIDIA, traditionally software companies Google, Amazon, Meta do their own hardware design! Even some financial firms employ hardware engineers.
- 4. Background for more in-depth HW courses (EECS 151, CS 152)
 - More fun!

CS 61C Hardware Roadmap

Processor (CPU) Architecture

- Datapath
- Control Logic
- Pipelining

Synchronous Digital Systems

- Sequential Logic
- Combinational Logic

Transistors

Transistors

Switches

When the switch is open, the light bulb isn't on.

When the switch is closed, the light bulb is on.

Transistors: n-type

An n-type transistor is drawn like this.

Drain, Gate, and Source are terminals with some voltage value (let's say 0 to 1).

If $G \le S$, then the switch is open. e.g. G=0, S=0

If G > S, then the switch is closed. e.g. G=1, S=0

Transistors: p-type

A p-type transistor is drawn like this.

Drain, Gate, and Source are terminals with some voltage value (let's say 0 to 1).

If G < S, then the switch is closed. e.g. G=0, S=1

If $G \ge S$, then the switch is open. e.g. G=1, S=1

What's the out voltage if A is low, and B is low?

Α	В	Out
0	0	
0	1	
1	0	
1	1	

What's the out voltage if A is low, and B is low?

Α	В	Out
0	0	
0	1	
1	0	
1	1	

What's the out voltage if A is low, and B is low?

Α	В	Out
0	0	
0	1	
1	0	
1	1	

What's the out voltage if A is low, and B is high?

Α	В	Out
0	0	1
0	1	
1	0	
1	1	

What's the out voltage if A is high, and B is low?

Α	В	Out
0	0	1
0	1	1
1	0	
1	1	

What's the out voltage if A is high, and B is high?

Α	В	Out
0	0	1
0	1	1
1	0	1
1	1	

Α	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

We just built a logic gate out of transistors!

C = Complementary.
We use p-type and
n-type transistors
together to build
logic.

CS 61C Hardware Roadmap

Processor (CPU)

- Datapath
- Control Logic
- Pipelining

Synchronous Digital Systems

- Sequential Logic
- Combinational Logic

Transistors

Note: Transistors will not be in scope for exams.

Basic Logic Gates

Logic Gates

- Operators with:
 - One or more 1-bit inputs
 - One 1-bit output
- Can be built out of transistors
- Can be represented as:
 - A block in a circuit diagram
 - A truth table, listing the output for every possible input
 - A Boolean algebra expression
- Used to perform bitwise operations
 - Recall: We saw bitwise operations (NOT, OR, AND, XOR) in C and RISC-V

NOT

- One 1-bit inputs, labeled A
- One 1-bit output, labeled Out
- Can be represented as:

Out =
$$\neg A$$

Α	Out
0	1
1	0

A diagram

An algebraic expression

OR

NOR gate looks like this.

- Two 1-bit inputs, labeled A and B
- One 1-bit output, labeled Out
- Can be represented as:

Out =
$$A + B$$

А	В	Out
0	0	0
0	1	1
1	0	1
1	1	1

A diagram

An algebraic expression

AND

- Two 1-bit inputs, labeled A and B
- One 1-bit output, labeled Out
- Can be represented as:

Out = AB

Α	В	Out	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

A diagram

An algebraic expression

XOR

- Two 1-bit inputs, labeled A and B
- One 1-bit output, labeled Out
- Can be represented as:

Out = $A \oplus B$

Α	В	Out
0	0	0
0	1	1
1	0	1
1	1	0

A diagram

An algebraic expression

Combinational Logic

Combinational Logic

- We can combine logic gates to make larger circuits
 - One or more inputs
 - One or more outputs
 - Perform more complicated logic operations
- These circuits can also be represented as
 - A block in a circuit diagram
 - A truth table, listing the output for every possible input
 - A Boolean algebra expression

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Let's try to write the truth table from the circuit diagram.

How many rows are in the truth table? (Hint: How many unique inputs are there?)

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Α	В	C	Out
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	_

Try inputs on the circuit to fill out the truth table!

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Α	В	С	Out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Let's write the algebraic expression from the circuit.

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Α	В	O	Out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$Out = (A + B) + C$$

Mystery Circuit #1: 3-way OR

- Intuitively: Outputs 1 when at least one of the inputs is 1
- Sometimes drawn like this:

Α	В	С	Out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$Out = (A + B) + C$$

Converting Between Representations

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Given the algebraic expression, let's draw the circuit diagram.

$$Out = AB + BC + AC$$

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

$$Out = AB + BC + AC$$

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Given the algebraic expression, let's write the truth table.

Α	В	С	Out
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$Out = AB + BC + AC$$

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Α	В	С	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Out = AB + BC + AC$$

Mystery Circuit #2: Majority Circuit

Intuitively: Outputs the most common value (0 or 1) among the three inputs

Α	В	С	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Out = AB + BC + AC$$

Converting Between Representations

We just converted algebraic expressions to truth tables and circuit diagrams.

Before we see the next conversion, let's talk a bit more about Boolean algebra.

Boolean Algebra

History of Boolean Algebra

- Early computer designers built ad hoc circuits from switches
- Began to notice common patterns in their work: ANDs,
 ORs, ...
- Master's thesis (by Claude Shannon, 1940) made link between work and 19th Century mathematician George Boole
- Called it "Boolean Algebra" in his honor

Boolean Algebra Operations

- Recall the Boolean algebra operations from earlier
 - We saw these operations in C and RISC-V
 - We can compute these operations with logic gates

Operation	Notation
A and B	AB
A or B	A + B
not A	¬A
A xor B	A⊕B

Note: There are a variety of accepted symbols used for these operations.

Simplifying Boolean Algebra

- Given a complicated Boolean algebra expression, we can use some rules to simplify them
 - Useful way to simplify circuits: convert to Boolean algebra, simplify, and convert back
 - Simplifying circuits = less hardware

Laws of Boolean Algebra

$(x)(\neg x) = 0$	x + ¬x = 1	Complementarity
(x)(0) = 0	x + 1 = 1	Laws of 0s and 1s
(x)(1) = x	x + 0 = x	Identities
(x)(x) = x	x + x = x	Idempotent law
xy = yx	x + y = y + x	Commutative law
(xy)z = x(yz)	(x + y) + z = x + (y + z)	Associativity
x(y+z) = xy + xz	x + yz = (x + y)(x + z)	Distribution
xy + x = x	(x + y)x = x	Uniting theorem
$\neg(xy) = \neg x + \neg y$	$\neg(x + y) = (\neg x)(\neg y)$	DeMorgan's Law

Boolean Algebra Simplification Example

$$y = ab + a + c$$

 $= ab + a(1) + c$ Identity
 $= a(b+1) + c$ Distribution
 $= a(1) + c$ Law of 1s
 $= a + c$ Identity

Sum-of-Products

- Given a truth table, how can we convert it to a Boolean algebra expression?
- Idea: Look for every row where the output is 1
 - For Out=1, we either have:
 - (A=0 and B=0 and C=1), or
 - (A=1 and B=0 and C=1), or
 - (A=1 and B=1 and C=1)
- In Boolean algebra: $(\neg A)(\neg B)(C) + (A)(\neg B)(C) + (A)(B)(C)$
- This is called the sum-of-products form
 - For each row where Out=1, create one product (AND the inputs together)
 - Then take the sum of all the products (OR the products together)

Α	В	O	Out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- Three 1-bit inputs, labeled A, B, S
- One 1-bit output, labeled Out

Given the truth table, let's write the algebraic expression.

Strategy: Start with sum-of-products form, then simplify with Boolean algebra laws.

Α	В	S	Out
0	0	0	0
1	0	0	1
0	0	1	0
1	0	1	0
0	1	0	0
1	1	0	1
0	1	1	1
1	1	1	1

- Three 1-bit inputs, labeled A, B, S
- One 1-bit output, labeled Out

Out =
$$(a)(\neg b)(\neg s) + (a)(b)(\neg s) + (\neg a)(b)(s) + abs$$

= $((a)(\neg b) + ab)(\neg s) + ((\neg a)(b) + ab)s$
= $((a)(\neg b + b))(\neg s) + ((\neg a + a)(b))s$
= $(a(1))(\neg s) + ((1)b)s$
= $a(\neg s) + bs$

Α	В	S	Out
0	0	0	0
1	0	0	1
0	0	1	0
1	0	1	0
0	1	0	0
1	1	0	1
0	1	1	1
1	1	1	1

- Three 1-bit inputs, labeled A, B, S
- One 1-bit output, labeled Out

Given the simplified algebraic expression, we can draw a circuit diagram with fewer logic gates (compared to drawing a diagram from sum-of-products form).

Α	В	S	Out
0	0	0	0
1	0	0	1
0	0	1	0
1	0	1	0
0	1	0	0
1	1	0	1
0	1	1	1
1	1	1	1

$$Out = (A)(\neg S) + (B)(S)$$

- Three 1-bit inputs, labeled A, B, S
- One 1-bit output, labeled Out

Α	В	S	Out
0	0	0	0
1	0	0	1
0	0	1	0
1	0	1	0
0	1	0	0
1	1	0	1
0	1	1	1
1	1	1	1

$$Out = (A)(\neg S) + (B)(S)$$

Mystery Circuit #3: Multiplexer (MUX)

Intuitively:

- If S is 0, output the value in A.
- If S is 1, output the value in B.
- S is the "select" bit
- Usually drawn like this:

Α	В	S	Out
0	0	0	0
1	0	0	1
0	0	1	0
1	0	1	0
0	1	0	0
1	1	0	1
0	1	1	1
1	1	1	1

$$Out = (A)(\neg S) + (B)(S)$$

Converting Between Representations

Now, we can convert truth tables to algebraic expressions.

Adders

- Inputs:
 - o 32-bit input A
 - o 32-bit input B
- Outputs:
 - 32-bit output Sum
- How many rows in the truth table?
 - 2³² possible inputs for each of A and B
 - 2⁶⁴ possible inputs in total
- Can we build this more efficiently?
 - Yes connect smaller building blocks together!

How do we add binary numbers by hand?

0 0 1 0 0

Consider the inputs and outputs in one column:

(1)	(1)	(0)		
0	0	1	0	
+ 0	1	1	1	
1	0	0	1	

Inputs:

- 0, 1: Bits being added
- (1): Carry-in bit

Outputs:

- 0: Sum
- (1): Carry-out bit

- Three 1-bit inputs, labeled A, B, Cin
- Two 1-bit outputs, labeled Sum and Cout

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Three 1-bit inputs, labeled A, B, Cin
- Two 1-bit outputs, labeled Sum and Cout

А	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$Cout = BCin + ACin + AB$$

Idea: Chain n 1-bit adders together to add n-bit numbers together

Arithmetic Logic Unit (ALU)

Why Build an ALU?

- Starting Wednesday, we'll be building a circuit to execute RISC-V instructions
- In that circuit, we need logic to compute arithmetic operations
 - o Examples: Addition, subtraction, AND, OR, XOR, bit-shifting, etc.
- Today, we'll build a simplified circuit that computes four arithmetic operations:
 - Addition, AND, OR, XOR
 - Use a "select" input to choose which operation to perform
- In Project 3A, you'll build a circuit that performs all the arithmetic operations we need

ALU Design Specifications

• Inputs:

- 32-bit input A
- o 32-bit input B
- 2-bit operation selector S

Outputs:

o 32-bit result R

• Behavior:

- o If S=0b00, set R=A+B (addition)
- o If S=0b01, set R=A&B (bitwise AND)
- If S=0b10, set R=A|B (bitwise OR)
- o If S=0b11, set R=A^B (bitwise XOR)

ALU Design: Splitting Bits

We can split longer inputs into smaller sets of bits to perform operations on.

Example: A and B are 3-bit inputs. We split them into individual bits to perform a 3-bit bitwise AND, then recombine the results for the output.

ALU Design: Arithmetic Operations

- Use logic gates we've seen today to implement the four arithmetic operations
 - 32-bit adder: Chain 32 1-bit adders together
 - o 32-bit AND, OR, XOR gates: Split input and perform bitwise operations on each bit

ALU Design: Selecting Operations

Recall the multiplexer (mux): select one of two inputs, based on a select bit.

How can we make a 4-to-1 mux (select one of four inputs)?

How many select bits do we need for a 4-to-1 mux?

ALU Design: 4-to-1 mux

S = 0b00: Choose A

S = 0b01: Choose B

S = 0b10: Choose C

S = 0b11: Choose D

Lower bit of S (S0) chooses A/C or B/D.

Upper bit of S (S1) chooses A/B or C/D.

ALU Design: 4-to-1 mux

Sometimes drawn like this:

ALU Circuit

Idea: Compute all four operations, and use the mux to select one to output

Finite State Machines

Finite State Machines (FSMs)

- An FSM consists of:
 - A set of states
 - \circ A transition function: f(current state, input) \rightarrow next state, output
- To run an FSM, repeat these steps:
 - Receive an input
 - Based on current state and input, move to the next state and generate an output

FSM: State Transition Diagram

- S0, S1, S2 are the states
- Each arrow represents a transition
 - Arrow from current state to next state
 - Left label on arrow is the input
 - Right label on arrow is the output
- Example of arrow transition:
 - Arrow from S0 to S1, labeled 1/0
 - If you're at state S0 and receive input 1, then move to state S1, and output 0
- Example of arrow transition:
 - Arrow from S2 to S0, labeled 1/1
 - If you're at state S2 and receive input 1, then move to state S0, and output 1

FSM: Waveform

Given this state transition diagram and input signal, what is the output signal?

73

FSM: Waveform

What pattern in the input is this FSM detecting?

FSM: Transition Function Circuit

- Transition function is combinational logic with:
 - Two inputs: current state (CS) and input (in)
 - Two outputs: next state (NS) and output (out)
 - Each state is labeled with a unique binary number

You can also derive a circuit and Boolean algebra expression for the other two outputs, NS0 and NS1.

CS	in	NS	out
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

out =
$$(CS1)(\neg CS0)(in)$$

FSM: State

How do we differentiate between timesteps?
How do we "save" which state we're in?

Summary

- Logic gates can be built out of transistors
 - Hardware implementation of bitwise operations
- More complicated circuits can be built out of logic gates
- Logic gates and circuits can be represented with:
 - Circuit diagrams
 - Truth tables
 - Boolean algebra expressions
- Manipulating Boolean algebra expressions
 - Laws of Boolean algebra
 - Sum-of-products representation
- Applications of circuits
 - Arithmetic logic unit (ALU)
 - Finite State Machines (FSMs)
- Next time: How do we store values in circuits?