

UNLOCKING THE SECRETS OF THE SUN

DR. AMY WINEBARGER

NASA MARSHALL SPACE FLIGHT CENTER

CAREER PATH

91-95

95-99

99-01

10-??

06-10

02-05

OUTLINE

BACKGROUND

WHAT DOES THE SUN LOOK LIKE?

Galileo drew the Sun at the same time each day.

His drawings reveal “sunspots,” dark areas on the Sun.

Now we know sunspots are strong magnets on the Sun.

BACKGROUND

WHAT IS THE TEMPERATURE OF THE SUN?

22 MK IN CORE

5,000 K ON SURFACE

BACKGROUND

- IN THE MID-1800S, SPECTRAL OBSERVATIONS OF SOLAR CORONA DURING ECLIPSE DISCOVERED A SPECTRAL LINE FROM UNKNOWN ELEMENT “CORONIUM”

© 1998 Andreas Gada and Jerry Lodriguss

BACKGROUND

- IN THE 1930S, GOTRIAN AND EDLEN DISCOVERED THE 5303 LINE WAS FROM FE XIV IMPLYING THE SOLAR CORONA CONTAINED MILLION DEGREE PLASMA.
- ORIGINALLY, THE ATMOSPHERE WAS TREATED AS “PLANE PARALLEL”, MEANING THE TEMPERATURE AND DENSITY OF THE CORONA DEPEND ONLY ON THE DISTANCE FROM THE SOLAR SURFACE

BACKGROUND

**FIRST X-RAY IMAGE
OF THE SUN
APRIL 19, 1960**

BACKGROUND

IMPROVEMENTS
IN SPATIAL
RESOLUTION
LED TO FINER
AND FINER
STRUCTURES

SOHO EIT 1996

TRACE 1999

YOHKOH 1982

SKYLAB 1973

BACKGROUND

AIA 193

BACKGROUND

THERE IS MORE HOT PLASMA IN TIMES OF STRONG MAGNETIC FIELD.

BACKGROUND

X-ray

EUV

EUV

FUV

WHEN WE TAKE
IMAGES OF THE SUN IN
DIFFERENT
WAVELENGTHS, WE SEE
DIFFERENT
STRUCTURES

White Light

DIFFERENT
WAVELENGTHS SHOW
DIFFERENT
TEMPERATURES.

BACKGROUND

**STRAND - FUNDAMENTAL
CORONAL STRUCTURE**

**LOOP - OBSERVED
CORONAL STRUCTURE**

**IF NUMBER OF STRANDS/LOOP = 1, WE ARE
RESOLVING THE CORONA.**

CORONAL HEATING THEORIES

MAGNETIC
RECONNECTION

WAVE
DISSIPATION

MANY DIFFERENT THEORIES FOR CARRYING AND DISSIPATING ENERGY IN THE CORONA

HEATING AND DISSIPATION MECHANISMS

TABLE 5
SUMMARY OF THE SCALING LAW FOR DIFFERENT MODELS OF CORONAL HEATING

Model Characteristics	N^0	References	Scaling Law	Parameters
Stressing Models (DC)				
Stochastic buildup	1	1	$B^2 L^{-2} V^2 \tau$	
Critical angle	2	2	$B^2 L^{-1} V \tan \theta$	
Critical twist	3	3	$B^2 L^{-2} V R \phi$	
Reconnection $\propto v_A$	4	4	$BL^{-2} \rho^{1/2} V^2 R$	
Reconnection $\propto v_{A1}$	5	5	$B^{3/2} L^{-3/2} \rho^{1/4} V^{3/2} R^{1/2}$	
Current layers	6	6	$B^2 L^{-2} V^2 \tau \log R_m$	
	7	7	$B^2 L^{-2} V^2 \tau S^{0.1}$	
	8	8	$B^2 L^{-2} V^2 \tau$	
Current sheets	9	9	$B^2 L^{-1} R^{-1} V_{ph}^2 \tau$	
Taylor relaxation.....	10	10	$B^2 L^{-2} V_{ph}^2 \tau$	
Turbulence with:				
Constant dissipation coefficients.....	11	11	$B^{3/2} L^{-3/2} \rho^{1/4} V^{3/2} R^{1/2}$	
Closure	12	12	$B^{5/3} L^{-4/3} \rho^{1/6} V^{4/3} R^{1/3}$	
Closure + spectrum	13	13	$B^{s+1} L^{-1-s} \rho^{(1-s)/2} V^{2-s} R^s$	$s = 0.7, m = -1$
	14			$s = 1.1, m = -2$
Wave Models (AC)				
Resonance	15	14	$B^{1+m} L^{-3-m} \rho^{-(1+m)/2}$	$m = -1$
	16			$m = -2$
Resonant absorption	17	15	$B^{1+m} L^{-1-m} \rho^{-(1+m)/2}$	$m = -1$
	18			$m = -2$
	19	16	$B^{1+m} L^{-m} \rho^{-(m-1)/2}$	$m = -1$
	20			$m = -2$
Current layers	21	17	$BL^{-1} \rho^{1/2} V^2$	
Turbulence	22	18	$B^{5/3} L^{-4/3} R^{1/3}$	

REFERENCES.—(1) Sturrock & Uchida 1981, Berger 1991; (2) Parker 1988, Berger 1993; (3) Galsgaard & Nordlund 1997; (4) Parker 1983; (5) Parker 1983, modified; (6) van Ballegooijen 1986; (7) Hendrix et al. 1996; (8) Galsgaard & Nordlund 1996; (9) Aly & Amari 1997; (10) Heyvaerts & Priest 1984, Browning & Priest 1986, Vekstein et al. 1993; (11) Einaudi et al. 1996, Dmitruk & Gómez 1997; (12) Heyvaerts & Priest 1992, Inverarity et al. 1995, Inverarity & Priest 1995a; (13) Milano et al. 1997; (14) Hollweg 1985; (15) Ofman et al. 1995, Ruderman et al. 1997; (16) Halberstadt & Goedbloed 1995; (17) Galsgaard & Nordlund 1996; (18) Inverarity & Priest 1995b.

NANOFLARE

- PARKER SUGGESTED BRAIDING OF THE MAGNETIC FIELD BY PHOTOSPHERIC MOTIONS WOULD DRIVE SMALL-SCALE CORONAL RECONNECTION
- ALONG INDIVIDUAL STRANDS, HEATING WOULD BE SPORADIC

A high-resolution solar image captured by the Atmospheric Imaging Assembly (AIA) instrument on the Solar Dynamics Observatory. The image is taken at the 171 Angstrom wavelength, which filters out most of the solar disk and highlights the bright, glowing plasma of the solar corona. The image shows several large, complex magnetic structures known as coronal loops. These loops appear as bright, white, and yellowish streaks against a dark blue background, representing the density and temperature of the plasma. The loops are highly organized and exhibit a distinct 'braided' pattern, where multiple strands of plasma are intertwined. The overall structure is highly symmetric and radiates outwards from the center of the solar disk.

AIA 171

**NO EVIDENCE OF
CORONAL BRAIDING**

WAVES

ALFVEN WAVES DISSIPATED BY TURBULENCE

**WAVES
HEATING
ALONG A
SINGLE STRAND
WOULD BE
HIGH-
FREQUENCY
(QUASI-STEADY)**

AIA 171

AIA 171 14-Oct-2011 22:00:00

WAVES ARE UBIQUITOUS

WAVES ARE SIMPLY EVERYWHERE

SDO/AIA 171Å – 25-Apr-2010 01:45:20.18

SCOTT MCINTOSH

SOME RECENT RESULTS

SOME RECENT RESULTS
IF WE CAN'T OBSERVE BRAIDING OR WAVE
DISSIPATION DIRECTLY, HOW DO WE INFER WHICH
IS MORE LIKELY?

**WHAT IS THE FREQUENCY OF HEATING EVENTS ON
INDIVIDUAL STRANDS IN ACTIVE REGION CORES?**

**LOW FREQUENCY (SPORADIC HEATING) MAY
SUPPORT NANOFLAres.**

**HIGH FREQUENCY (QUASI-STEADY HEATING) MAY
SUPPORT WAVE.**

ACTIVE REGION CORE

■ STEADY, HIGH TEMPERATURE INTENSITY

FREQUENCY
HEATING

FREQUENCY
HEATING

MODELING FREQUENCY

- SOLVED THE ONE-DIMENSIONAL HYDRODYNAMIC EQUATIONS FOR DENSITY, TEMPERATURE, AND VELOCITY(s, t)

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial s} (\rho v) = 0$$

$$\frac{\partial}{\partial t} (\rho v) + \frac{\partial}{\partial s} (\rho v^2) = -\frac{\partial}{\partial s} (p) - \rho g_{\parallel}$$

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho v^2 + \frac{p}{\gamma - 1} \right) +$$

$$\frac{\partial}{\partial s} \left(\frac{1}{2} \rho v^3 + \frac{\gamma p v}{\gamma - 1} \right) = -\rho v g_{\parallel} +$$

$$E_H - n_e^2 P(T) + \frac{\partial}{\partial s} \left(\kappa \frac{\partial T}{\partial s} \right)$$

UNKNOWN ENERGY
DEPOSITION.

CHOOSING ENERGY FUNCTION

- ASSUMED THE HEATING OF THE STRANDS WAS:

$$E_H(s, t) = E_0 + g(t)E_F \exp\left(\frac{(s - s_0)^2}{2\sigma_s^2}\right)$$

- WHERE $g(t)$ IS A TRIANGULAR PULSE, E_F IS THE MAGNITUDE OF THE HEATING EVENT AND E_0 IS A SMALL BACKGROUND HEATING
- THE PERIOD OF THE HEATING = TAU

LOW FREQUENCY HEATING

$$\tau \sim \tau_{cool}$$

$$\tau = 1200 \quad \delta = 67$$

EXCESS HIGH
AND LOW
TEMPERATURE
EMISSION

HIGH FREQUENCY HEATING

NO LOOPS
COOLING TO
1 MK

$$\tau \ll \tau_{cool} \quad \tau = 150 \quad \delta = 13$$

ALMOST NO HIGH
OR LOW
TEMPERATURE
EMISSION

WHAT IS THE FREQUENCY OF HEATING IN THE CORE?

- ARE THERE COOLING LOOPS IN THE CORE?
- IS THERE ENHANCED WARM (1 MK) EMISSION?
- DOES THE CORE HAVE A HOT PLASMA COMPONENT?

	COOLING	SIGNIFICANT WARM EMISSION	HOT PLASMA
HIGH FREQUENCY (WAVES)	NO	NO	No
LOW FREQUENCY (WAVES)	YES	YES	YES

NOT MANY COOLING LOOPS

AIA 171 23-Jul-2010 14:30:00

AIA 171
Å

AIA 335 23-Jul-2010 14:30:03

AIA 335
Å

COOLING EVERYWHERE!

Time-Lag Maps

- Based on this nanoflare storm model, we expect to see 193, then 094, then 171
- 094-193 should be backwards correlated (greens and blues)
- 094-171 should be forwards correlated (reds and oranges)
- What is going on in the active region core?

MAJORITY OF AR
STRUCTURES ARE COOLING

VIALL & KLIMCHUCK, APJ, 2012

WHAT IS THE FREQUENCY OF HEATING IN THE CORE?

- ARE THERE COOLING LOOPS IN THE CORE?
- IS THERE ENHANCED WARM (1 MK) EMISSION?
- DOES THE CORE HAVE A HOT PLASMA COMPONENT?

	COOLING	SIGNIFICANT WARM EMISSION	HOT PLASMA
HIGH FREQUENCY (WAVES)	NO	NO	No
Low Frequency	Yes	Yes	Yes

WARM EMISSION

- LOW FREQUENCY HEATING PREDICTS ADDITIONAL WARM (1 MK) EMISSION.
- HOW MUCH WARM EMISSION IS REQUIRED?

WARM EMISSION

- SOLVED THE ONE-DIMENSIONAL HYDRODYNAMIC EQUATIONS FOR DENSITY, TEMPERATURE, AND VELOCITY(s, t)

$$\begin{aligned}\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial s} (\rho v) &= 0 \\ \frac{\partial}{\partial t} (\rho v) + \frac{\partial}{\partial s} (\rho v^2) &= -\frac{\partial}{\partial s} (p) - \rho g_{||} \\ \frac{\partial}{\partial t} \left(\frac{1}{2} \rho v^2 + \frac{p}{\gamma - 1} \right) + \\ \frac{\partial}{\partial s} \left(\frac{1}{2} \rho v^3 + \frac{\gamma p v}{\gamma - 1} \right) &= -\rho v g_{||} + \\ E_H - n_e^2 P(T) + \frac{\partial}{\partial s} \left(\kappa \frac{\partial T}{\partial s} \right)\end{aligned}$$

THE RADIATIVE LOSSES
DEPEND ON THE
COMPOSITION OF THE
PLASMA.

WE RUN EACH SIMULATION
TWICE FOR CORONAL AND
PHOTOSPHERIC
ABUNDANCES

WARM EMISSION

- EXAMPLE SOLUTION FOR EACH STRAND.
- WE ASSUME THE LOOP IS COMPOSED OF A STRAND AT EACH TIME STEP.

STRONG WARM EMISSION

RESULTS FROM
LOW-FREQUENCY
“NANOFLARE”
SIMULATION
SLOPES: 1.6-2.3

AVERAGE: ~2

WARM EMISSION

CONSISTENT
WITH LOW
FREQUENCY
HEATING

WARM EMISSION

WARM EMISSION

SLOPE = 3.2

NOT
CONSISTENT
WITH LOW
FREQUENCY
HEATING

WHAT IS THE FREQUENCY OF HEATING IN THE CORE?

- ARE THERE COOLING LOOPS IN THE CORE?
- IS THERE ENHANCED WARM (1 MK) EMISSION?
- DOES THE CORE HAVE A HOT PLASMA COMPONENT?

	COOLING	SIGNIFICANT WARM EMISSION	HOT PLASMA
HIGH FREQUENCY (WAVES)	NO	NO	No
Low Frequency	Yes	Yes	Yes

HOT EMISSION

ENHANCED HIGH
TEMPERATURE
EMISSION FOR LOW
FREQUENCY HEATING
IS ALSO PREDICTED

HOT EMISSION

SEVERAL RECENT STUDIES HAVE FOUND EVIDENCE
OF HIGH TEMPERATURE (8-10 MK) PLASMA

Schmelz et al. (2009)

also see Reale et al. (2009) and Shestov et al. (2010)

HOT EMISSION

HOT EMISSION

EIS & XRT
CANNOT
RELIABLY
DETECT HIGH
TEMPERATURE
PLASMA.

WHAT IS THE FREQUENCY OF HEATING IN THE CORE?

- ARE THERE COOLING LOOPS IN THE CORE?
- IS THERE ENHANCED WARM (1 MK) EMISSION?
- DOES THE CORE HAVE A HOT PLASMA COMPONENT?

	COOLING	SIGNIFICANT WARM EMISSION	HOT PLASMA
HIGH FREQUENCY (WAVES)	NO	NO	WRONG INSTRUMENT
LOW FREQUENCY (WAVES)	YES	YES	YES

THE HUNT FOR DIRECT EVIDENCE OF CORONAL
BRAIDING

Hi-C First Results

High-resolution Coronal Imager (Hi-C)

• IMAGES THE SUN IN THE 193 Å PASSBAND
(EUV, 1.5 MK)

• SPATIAL RESOLUTION IS 36X THAT OF OTHER
INSTRUMENTS

Hi-C Partner Institutions

NASA Marshall Space Flight Center (MSFC)
University of Alabama – Huntsville (UAH)
Smithsonian Astrophysical Observatory (SAO)
University of Central Lancashire, UK (UCLAN)
Lockheed Martin Solar and Astrophysical Laboratory (LMSAL)
Southwest Research Institute (SWRI)
Lebedev Institute (LI)

Hi-C Team Members

Jonathan Cirtain, PI (MSFC)

Science Team:

Leon Golub (SAO)
Ken Kobayashi (UAH)
Kelly Korreck (SAO)
Robert Walsh (UCLAN)
Amy Winebarger (MSFC)
Bart DePontieu (LMSAL)
Craig DeForest (SWRI)
Sergey Kuzin (LI)
Alan Title (LMSAL)
Mark Weber (SAO)

Engineering Team:

Peter Cheimets (SAO)
Dyana Beabout (MSFC)
Brent Beabout (MSFC)
William Podgorski (SAO)
Ken McKracken (SAO)

Mark Ordway (SAO)
David Caldwell (SAO)
Henry Berger (SAO)
Richard Gates (SAO)
Simon Platt (UCLAN)
Nick Mitchell (UCLAN)

Image above shows Hi-C launch team standing in front of the Hi-C rocket on the launcher at White Sands Missile Range.

Hi-C Launch

TBB Cirtain 36.272 (B)
LC 36 Launch
11 July 2012

Hi-C was launched from White Sands Missile Range on 11 July 2012

Hi-C Launch

36.275 Aft Camera

Hi-C was launched from White Sands Missile Range on 11 July 2012

Hi-C Launch and Recovery

Hi-C recovery team

Hi-C rocket with parachute

Hi-C Target

AIA 193-Å 11-Jul-2012 18:55:07

Hi-C Field of View

The Hi-C target was Active Region 11520

Hi-C Data

- Hi-C collected data for 345 s.
- Small shift in pointing during flight
- Full frame (4kx4k) data
 - 30 full resolution images
 - 2 s exposures / 5 s cadence
- Partial frame (1kx1k) data
 - 86 full resolution image
 - 0.5 s exposures / 1.4 s cadence

Hi-C First Results

AIA 193 Å 11-Jul-12 18:55:31

Component Reconstruction

Component Reconnection

a AIA 304-Å 18:52:08

b AIA 171-Å 18:52:12

c Hi-C Unsharp Masked Image

d AIA 193-Å 18:52:07

e Hi-C 193-Å 18:52:08

f AIA 94-Å 18:52:14

Shortly after the Hi-C flight, a small flare was observed at the field line crossing.

Cirtain et al, 2013, Nature

Component Reconnection

AIA 193 Å : 11-Jul-12 18:52:07.840

Hi-C 193 Å : 11-Jul-12 18:52:07.840

Hi-C 193 Å : Running Difference

Velocities along structure estimated to be 150 km/s.

Cirtain et al, 2013, Nature

Braided Loop

Multiple strands join into this structure. It appears to unwind during Hi-C observations.

Cirtain et al, 2013, Nature

Braided Loop

a Hi-C 193-Å 18:52:08.758

b Hi-C Unsharp Mask

Braided Loop

a AIA 94-Å 18:00:01

b AIA 335-Å 18:00:02

c AIA 211-Å 17:59:59

d AIA 193-Å 18:00:06

e AIA 171-Å 17:59:59

f AIA 304-Å 18:00:07

Loop involved in heating event prior to Hi-C flight.

Cirtain et al, 2013, Nature

ACTIVE REGION EVOLUTION

ACTIVE REGION EVOLUTION

ACTIVE REGION EVOLUTION

YOUNG AR: EVIDENCE FOR COOLING, ENHANCED HOT AND COOL EMISSION

OLD AR: STEADIER EMISSION, LESS HOT AND COOL EMISSION

Emission Measure

FINAL THOUGHTS...

- PROGRESS IN UNDERSTANDING CORONAL HEATING CONTINUES.
- TWO MAIN CAMPS ON CORONAL HEATING - MAGNETIC RECONNECTION AND WAVE DISSIPATION.
- OBSERVATIONAL EVIDENCE FOR BOTH.
- HI-C, AN INSTRUMENT FLOWN ON A SOUNDING ROCKET IN 2012, TOOK THE HIGHEST RESOLUTION IMAGES OF THE SOLAR CORONA.
- IMAGES CLEARLY SHOW MAGNETIC BRAIDING AND INDICATE MAGNETIC RECONNECTION