Steel Material Properties Analysis

Exploratory Data Analysis (EDA)

Comprehensive analysis of steel mechanical properties and manufacturing processes

Project Overview

Dataset Scope

- 311 samples of axle material testing results
- These steel ales are used in cooling fan modules. Clients are Tesla, BMW
- Testing conducted on **two steel types**: 4Cr13(New Supplier) and X46CrS13(Old Supplier)
- Data includes chemical composition, manufacturing parameters, and mechanical properties

Research Goals

- Chemical composition analysis: Carbon, Silicon, Manganese, Chromium, Sulfur content
- Manufacturing processes enhancement: Die-casting, hardening, tempering processes
- Mechanical properties analysis: Hardness (HV10), bending force, ductility, brittleness

Data Preparation & Quality

Ensuring analysis reliability

Data Cleaning Process

Systematic approach ensuring high-quality, accurate, and consistent data for reliable analysis.

- 1 Data Validation
- Verified data types and units
- Validated measurement ranges
- Confirmed no anomalies

- 2 Quality Check
- •Zero missing values √
- No duplicate records √
- Validated test results √
- 3 Feature Engineering: Creating NEW useful variables from your EXISTING data
- •HV10 Range: Hardness variability for quality control
- •Bending Force Range: Strength consistency indicator
- •Impact: New features revealed key optimization patterns

√ Clean, validated data ready for analysis

Univariate Analysis

Understanding individual properties

What This Shows

Three histograms show how hardness, bending force, and ductility values are distributed across all 311 samples. Most values cluster around the average (marked with red line).

Business Insight

The distribution patterns help us understand material consistency and identify typical performance ranges for quality control specifications.

Key Statistics

Hardness: 640 HV10 avg Bending Force: 4,782 N avg

Ductility: 30.5% avg

Supplier Comparison

Baseline performance analysis

▲ Initial Challenge

Old (X46CrS13): 5,629 N, 36.2% ductility

New (4Cr13): 4,496 N, 28.8% ductility

New supplier showed lower performance.

What This Shows

Side-by-side bars compare materials. Chart reveals new supplier needs optimization.

Business Impact

Identified need for process optimization to enable successful supplier switch.

Material Performance Comparison

4Cr13 Process Optimization

Improving new supplier material performance

Optimal Process Found

Vacuum Hardening at 230°C

4Cr13 achieves: 6,715 N force with 43.3% ductility - now EXCEEDS old supplier performance!

Impact of Vacuum Hardening at 230°C

Bivariate Analysis

Hardness vs Ductility relationship

Analysis Type

Bivariate: Examining relationship between two variables to understand how they influence each other.

What This Shows

Each dot is one sample. Downward trend shows: higher hardness = lower ductility. Strong relationship (r = -0.795) means cannot have both high.

Business Impact

This trade-off guides selection: high hardness for wear resistance OR high ductility for impact cannot maximize both.

Choose material based on application needs

Hardness vs Ductility: Strong Negative Correlation

Correlation Analysis

Property relationships

What This Shows

Heatmap shows how properties relate. Blue = negative, Red = positive. Numbers show strength (-1 to +1).

Strong Negative (-0.795)

Hardness ↔ **Ductility:** Higher hardness = lower ductility. Fundamental trade-off.

Strong Positive (+0.754)

Bending Force ← **Ductility:** More ductile = withstands more bending.

Business Impact

Guides material selection: choose hardness for wear OR ductility for impact - cannot have both.

Mechanical Properties Correlation Matrix

Temperature Optimization

Finding the optimal process for 4Cr13

Solution Found

Vacuum hardening at 230°C provides the best balance: highest bending force (6,715 N) with excellent ductility (43.3%)

What This Shows

Blue bars show hardness, red line shows bending force, green line shows ductility. The chart compares no tempering vs three different temperatures to find the sweet spot.

Business Impact

This analysis provided the exact process specification needed to make the new supplier viable, avoiding costly supplier change reversal.

4Cr13 Process Optimization: Hardness vs Bending Force & Ductility

Chemical Element Influence on Bending Force

Chemical Influence

Which elements matter most

What This Shows

Horizontal bars show how strongly each chemical element correlates with bending force. Longer bars mean stronger influence. Sulfur (0.249) has the biggest impact, followed by Manganese.

Business Impact

Understanding chemical influence helps with quality control - focus monitoring on Sulfur and Manganese levels. Low Chromium variability indicates excellent supplier consistency.

Challenges & Solutions

Key obstacles overcome during this EDA project

1. Data Quality & Validation

Challenge: Validating 311 samples across 24 variables required thorough checking.

Solution: Systematic quality checks ensured no missing values and validated all data ranges.

2. Feature Engineering

Challenge: Raw data didn't show variability patterns for quality control.

Solution: Created new features (HV10 Range, Bending Force Range) to measure manufacturing consistency.

3. Complex Relationships

Challenge: Multiple interacting variables made patterns difficult to identify.

Solution: Used correlation analysis to isolate effects and discover the critical hardness-ductility trade-off.

4. Business Translation

Challenge: Technical findings needed to be actionable for manufacturing teams.

Solution: Converted insights into clear recommendations: "vacuum hardening 230°C tempering increases strength by 58%".

Key Findings & Recommendations

- Success: 4Cr13 Optimization Achieved
- •Process optimization works: Vacuum hardening at 230°C transforms performance
- •New supplier viable: 4Cr13 optimized now exceeds old supplier (X46CrS13)
- •Significant gains: +75% bending force, +118% ductility vs baseline 4Cr13
 - Recommended Process

For 4Cr13 (New Supplier):

- Vacuum hardening at 230°C
- •Achieves 6,715 N bending force
- •43.3% ductility (excellent)
- Exceeds old supplier baseline

Material Selection

- •High hardness: 4Cr13 no tempering (652 HV10)
- •**High strength**: 4Cr13 + vacuum hardening 230°C (optimal)
- •Reference: X46CrS13 (old supplier)

New supplier successfully optimized via data-driven EDA approach