Primalidad en Tiempo Polinomial

Francisco Gallego Salido

Universidad de Granada fgallego@correo.ugr.es

24 de noviembre de 2021

Contenidos

- Tests de Primalidad
 - Introducción
 - Pequeño Teorema de Fermat
- 2 Algoritmo AKS
 - Introducción
 - El Algoritmo
 - Complejidad
- 3 Comparaciones
 - Primos
 - Potencias Perfectas
 - Compuestos No Potencias Perfectas
- 4 Conclusiones

Tests de Primalidad

Introducción

¿Qué son los números primos?

Un número primo es aquel que solo es divisible por 1 o por sí mismo.

Example

El número 5 es primo porque solo es divisible por 1 y 5.

Example

El número 12 no es primo porque es divisible por 2, 3, 4 y 6, que son distintos de 1 y 12.

Un test de primalidad es un algoritmo que nos permite determinar si un número es primo o no.

El test más básico es el que se deriva de la definición de primalidad, cuya complejidad es $O(\sqrt{(n)})$:

Un test de primalidad es un algoritmo que nos permite determinar si un número es primo o no.

El test más básico es el que se deriva de la definición de primalidad, cuya complejidad es $O(\sqrt{(n)})$:

• Comprobar todos los números menores que $\lfloor \sqrt{n} \rfloor$ y ver si alguno divide a n.

Un test de primalidad es un algoritmo que nos permite determinar si un número es primo o no.

El test más básico es el que se deriva de la definición de primalidad, cuya complejidad es $O(\sqrt{(n)})$:

- Comprobar todos los números menores que $\lfloor \sqrt{n} \rfloor$ y ver si alguno divide a n.
- Si ninguno lo divide, *n* es primo.

Un test de primalidad es un algoritmo que nos permite determinar si un número es primo o no.

El test más básico es el que se deriva de la definición de primalidad, cuya complejidad es $O(\sqrt{(n)})$:

- Comprobar todos los números menores que $\lfloor \sqrt{n} \rfloor$ y ver si alguno divide a n.
- Si ninguno lo divide, *n* es primo.
- Si alguno lo divide, *n* es compuesto.

Un test mucho más eficiente es el que se deriva del *Pequeño Teorema de Fermat*.

Un test mucho más eficiente es el que se deriva del *Pequeño Teorema de Fermat*.

Theorem (Pequeño Teorema de Fermat)

Si n es primo, entonces $a^n \equiv a \mod (n)$ para todo $a \in \mathbb{Z}$.

Un test mucho más eficiente es el que se deriva del *Pequeño Teorema de Fermat*.

Theorem (Pequeño Teorema de Fermat)

Si n es primo, entonces $a^n \equiv a \mod (n)$ para todo $a \in \mathbb{Z}$.

El test consiste en comprobar varios valores de *a* y vemos si se cumple la congruencia.

Un test mucho más eficiente es el que se deriva del *Pequeño Teorema de Fermat*.

Theorem (Pequeño Teorema de Fermat)

Si n es primo, entonces $a^n \equiv a \mod (n)$ para todo $a \in \mathbb{Z}$.

El test consiste en comprobar varios valores de *a* y vemos si se cumple la congruencia.

Si falla para algún a, entonces n es compuesto. En caso contrario, n probablemente sea primo.

Problema

No es cierto en general que si $a^n \equiv a \mod (n)$ para todo $a \in \mathbb{Z}$, entonces n sea primo.

Problema

No es cierto en general que si $a^n \equiv a \mod (n)$ para todo $a \in \mathbb{Z}$, entonces n sea primo.

De hecho, existe un conjunto de números que no son primos para los que el *Pequeño Teorema de Fermat* siempre se cumple.

Problema

No es cierto en general que si $a^n \equiv a \mod (n)$ para todo $a \in \mathbb{Z}$, entonces n sea primo.

De hecho, existe un conjunto de números que no son primos para los que el *Pequeño Teorema de Fermat* siempre se cumple.

A dicho conjunto se le conoce como *Números de Charmichael*, donde $561 = 3 \cdot 11 \cdot 17$ es el primer elemento de dicho conjunto.

Algoritmo AKS

El algoritmo **AKS** debe su nombre a los tres matemáticos que lo descubrieron: Manindra Agrawal, Neeraj Kayal y Nitin Saxena.

El algoritmo **AKS** debe su nombre a los tres matemáticos que lo descubrieron: Manindra Agrawal, Neeraj Kayal y Nitin Saxena.

El algoritmo **AKS** debe su nombre a los tres matemáticos que lo descubrieron: Manindra Agrawal, Neeraj Kayal y Nitin Saxena.

Se trata del primer test de primalidad que cumple todas las propiedades deseadas:

• **General**. Es válido para cualquier entrada.

El algoritmo **AKS** debe su nombre a los tres matemáticos que lo descubrieron: Manindra Agrawal, Neeraj Kayal y Nitin Saxena.

- General. Es válido para cualquier entrada.
- Determinista. Determina con una probabilidad del 100 % la primalidad de un número.

El algoritmo **AKS** debe su nombre a los tres matemáticos que lo descubrieron: Manindra Agrawal, Neeraj Kayal y Nitin Saxena.

- General. Es válido para cualquier entrada.
- Determinista. Determina con una probabilidad del 100 % la primalidad de un número.
- Polinómico. La complejidad asintótica del test es polinómica en el número de cifras.

El algoritmo **AKS** debe su nombre a los tres matemáticos que lo descubrieron: Manindra Agrawal, Neeraj Kayal y Nitin Saxena.

- General. Es válido para cualquier entrada.
- Determinista. Determina con una probabilidad del 100 % la primalidad de un número.
- Polinómico. La complejidad asintótica del test es polinómica en el número de cifras.
- **Incondicional**. La validez del test no depende de resultados no probados.

Introducción

El *Pequeño Teorema de Fermat* no proporciona un test válido, pero una versión general suya sí. Sea el siguiente teorema:

El *Pequeño Teorema de Fermat* no proporciona un test válido, pero una versión general suya sí. Sea el siguiente teorema:

Theorem

Sea n > 1 y $a \in \mathbb{Z}$. Entonces n es primo si, y solo si, se cumple

$$(X+a)^n \equiv X^n + a \mod(n)$$

El *Pequeño Teorema de Fermat* no proporciona un test válido, pero una versión general suya sí. Sea el siguiente teorema:

Theorem

Sea n > 1 y $a \in \mathbb{Z}$. Entonces n es primo si, y solo si, se cumple

$$(X+a)^n \equiv X^n + a \mod(n)$$

Un test que se deriva de esta propiedad es simplemente comprobar si la congruencia se cumple para algún *a*.

El *Pequeño Teorema de Fermat* no proporciona un test válido, pero una versión general suya sí. Sea el siguiente teorema:

Theorem

Sea n > 1 y $a \in \mathbb{Z}$. Entonces n es primo si, y solo si, se cumple

$$(X+a)^n \equiv X^n + a \mod(n)$$

Un test que se deriva de esta propiedad es simplemente comprobar si la congruencia se cumple para algún a.

Si se cumple, entonces n es primo. En caso contrario, n es compuesto.

¿Es este test polinómico?

Un problema que tiene este test es que tiene complejidad $\Omega(n)$, pues hay que evaluar n coeficientes de los polinomios resultantes.

Este test es muy ineficiente y lejos de ser polinómico en la cantidad de cifras.

¿Es este test polinómico?

Un problema que tiene este test es que tiene complejidad $\Omega(n)$, pues hay que evaluar n coeficientes de los polinomios resultantes.

Este test es muy ineficiente y lejos de ser polinómico en la cantidad de cifras.

¿Podemos reducir el número de coeficientes a evaluar?

Si la congruencia anterior la evaluamos módulo $(X^r - 1, n)$ para algún r escogido apropiadamente, podremos reducir el número de coeficientes. Sea pues la siguiente congruencia:

Si la congruencia anterior la evaluamos módulo (X^r-1,n) para algún r escogido apropiadamente, podremos reducir el número de coeficientes. Sea pues la siguiente congruencia:

$$(X+a)^n \equiv X^n + a \mod (X^r - 1, n)$$

Si la congruencia anterior la evaluamos módulo (X^r-1,n) para algún r escogido apropiadamente, podremos reducir el número de coeficientes. Sea pues la siguiente congruencia:

$$(X+a)^n \equiv X^n + a \mod (X^r - 1, n)$$

El problema de esta congruencia es que, aunque se sigue cumpliendo cuando n es primo, algunos compuestos la cumplen también para algunos valores de a y r.

Si la congruencia anterior la evaluamos módulo (X^r-1,n) para algún r escogido apropiadamente, podremos reducir el número de coeficientes. Sea pues la siguiente congruencia:

$$(X+a)^n \equiv X^n + a \mod (X^r - 1, n)$$

El problema de esta congruencia es que, aunque se sigue cumpliendo cuando n es primo, algunos compuestos la cumplen también para algunos valores de a y r.

Escogiendo apropiadamente r y probando para ciertos valores de a, si se cumple entonces la congruencia anterior, podemos asegurar que n es una potencia de un primo.

Si la congruencia anterior la evaluamos módulo (X^r-1,n) para algún r escogido apropiadamente, podremos reducir el número de coeficientes. Sea pues la siguiente congruencia:

$$(X+a)^n \equiv X^n + a \mod (X^r - 1, n)$$

El problema de esta congruencia es que, aunque se sigue cumpliendo cuando n es primo, algunos compuestos la cumplen también para algunos valores de a y r.

Escogiendo apropiadamente r y probando para ciertos valores de a, si se cumple entonces la congruencia anterior, podemos asegurar que n es una potencia de un primo.

Dichos r y a se pueden elegir de forma que la complejidad del test sea polinómica.

El Algoritmo

Pasos del Algoritmo AKS

Algorithm 1 AKS

```
procedure IsPrime(n) \triangleright Comprobar si n > 1 es un número primo
   if n = a^b \text{ con } a, b > 1 \text{ return COMPUESTO}
                                                                 ⊳ Paso 1
   Encontrar el menor r tal que ord_r(n) > \log^2(n).
                                                                 ⊳ Paso 2
   if 1 < (a, n) < n para algún a < r return COMPUESTO
                                                                 ▶ Paso 3
   if n < r return PRIMO
                                                                 ▶ Paso 4
   for a = 1 hasta |\sqrt{\phi(r)}\log(n)| do
                                                                 ▶ Paso 5
       if (X + a)^n \not\equiv X^n + a \mod (n, X^r - 1) return COMPUESTO
   end for
   return PRIMO
                                                                 ▶ Paso 6
end procedure
```

Sea el número 31, el cual ya sabemos que es primo.

1 31 no es una potencia perfecta. Pasamos al siguiente paso.

- 1 31 no es una potencia perfecta. Pasamos al siguiente paso.
- ② El menor r es 29, pues $ord_{29}(31) = 28 > \log^2(31) \simeq 24,54$.

- 1 31 no es una potencia perfecta. Pasamos al siguiente paso.
- ② El menor r es 29, pues $ord_{29}(31) = 28 > \log^2(31) \simeq 24,54$.
- (a, 31) = 1 para todo $a \le 29$. Pasamos al siguiente paso.

- 1 31 no es una potencia perfecta. Pasamos al siguiente paso.
- ② El menor r es 29, pues $ord_{29}(31) = 28 > \log^2(31) \simeq 24,54$.
- (a, 31) = 1 para todo $a \le 29$. Pasamos al siguiente paso.
- 31
 29. Pasamos al siguiente paso.

- 1 31 no es una potencia perfecta. Pasamos al siguiente paso.
- ② El menor r es 29, pues $ord_{29}(31) = 28 > \log^2(31) \simeq 24,54$.
- (a, 31) = 1 para todo $a \le 29$. Pasamos al siguiente paso.
- 31
 29. Pasamos al siguiente paso.

- 1 31 no es una potencia perfecta. Pasamos al siguiente paso.
- ② El menor r es 29, pues $ord_{29}(31) = 28 > \log^2(31) \simeq 24,54$.
- (a, 31) = 1 para todo $a \le 29$. Pasamos al siguiente paso.
- § 31

 ≤ 29. Pasamos al siguiente paso.

- 1 31 no es una potencia perfecta. Pasamos al siguiente paso.
- ② El menor r es 29, pues $ord_{29}(31) = 28 > \log^2(31) \simeq 24,54$.
- (a, 31) = 1 para todo $a \le 29$. Pasamos al siguiente paso.
- § 31

 ≤ 29. Pasamos al siguiente paso.
- - $(X + a)^{31} = x^2 + a^{31}$ módulo $(X^{29} 1, 31)$.

- 1 31 no es una potencia perfecta. Pasamos al siguiente paso.
- ② El menor r es 29, pues $ord_{29}(31) = 28 > \log^2(31) \simeq 24,54$.
- (a, 31) = 1 para todo $a \le 29$. Pasamos al siguiente paso.
- 31
 29. Pasamos al siguiente paso.
- - $(X + a)^{31} = x^2 + a^{31}$ módulo $(X^{29} 1, 31)$.
 - $X^{31} + a = x^2 + a$ módulo $(X^{29} 1, 31)$.

- 1 31 no es una potencia perfecta. Pasamos al siguiente paso.
- ② El menor r es 29, pues $ord_{29}(31) = 28 > \log^2(31) \simeq 24,54$.
- (a, 31) = 1 para todo $a \le 29$. Pasamos al siguiente paso.
- 31
 29. Pasamos al siguiente paso.
- - $(X + a)^{31} = x^2 + a^{31} \mod (X^{29} 1, 31)$.
 - $X^{31} + a = x^2 + a \text{ m\'odulo } (X^{29} 1, 31).$
 - $a^{31} \equiv a \mod (X^{29} 1, 31)$ para todo $1 \le a \le 26$. Pasamos al siguiente paso

- 1 31 no es una potencia perfecta. Pasamos al siguiente paso.
- ② El menor r es 29, pues $ord_{29}(31) = 28 > \log^2(31) \simeq 24,54$.
- (a, 31) = 1 para todo $a \le 29$. Pasamos al siguiente paso.
- **④** 31 ≰ 29. Pasamos al siguiente paso.
- - $(X + a)^{31} = x^2 + a^{31} \mod (X^{29} 1, 31)$.
 - $X^{31} + a = x^2 + a \text{ m\'odulo } (X^{29} 1, 31).$
 - $a^{31} \equiv a \mod (X^{29} 1, 31)$ para todo $1 \le a \le 26$. Pasamos al siguiente paso
- Hemos llegado al último paso, por lo que 31 es primo.

Complejidad

Cada paso tiene un complejidad determinada:

• $O^{\sim}(\log^3(n))$.

- $O^{\sim}(\log^3(n))$.
- $O^{\sim}(\log^7(n))$.

- $O^{\sim}(\log^3(n))$.
- $O^{\sim}(\log^7(n))$.
- $O^{\sim}(\log^6(n))$.

- $O^{\sim}(\log^3(n))$.
- $O^{\sim}(\log^7(n))$.
- $O^{\sim}(\log^6(n))$.
- $O(\log(n)).$

- $O^{\sim}(\log^3(n))$.
- $O^{\sim}(\log^7(n))$.
- $O^{\sim}(\log^6(n))$.
- $O(\log(n))$.
- $O^{\sim}(\log^{21/2}(n))$.

- $O^{\sim}(\log^3(n))$.
- $O^{\sim}(\log^7(n))$.
- $O^{\sim}(\log^6(n))$.
- $O(\log(n)).$
- $O^{\sim}(\log^{21/2}(n))$.
- O(1).

Complejidad Total

La complejidad del quinto paso es la más alta, luego el algoritmo **AKS** tiene una complejidad algorítmica de $O^{\sim}(\log^{21/2}(n))$.

Complejidad Total

La complejidad del quinto paso es la más alta, luego el algoritmo **AKS** tiene una complejidad algorítmica de $O^{\sim}(\log^{21/2}(n))$.

Usando *Teoría de Cribas* se puede probar que $r = O(\log^3(n))$, reduciendo la complejidad hasta $O^{\sim}(\log^{15/2}(n))$.

Complejidad Total

La complejidad del quinto paso es la más alta, luego el algoritmo **AKS** tiene una complejidad algorítmica de $O^{\sim}(\log^{21/2}(n))$.

Usando *Teoría de Cribas* se puede probar que $r = O(\log^3(n))$, reduciendo la complejidad hasta $O^{\sim}(\log^{15/2}(n))$.

Bajo ciertas hipótesis no probadas (como puede ser la Hipótesis Generalizada de Riemann), se puede probar que $r = O(\log^2(n))$, reduciendo una vez más la complejidad hasta $O^{\sim}(\log^6(n))$.

Comparaciones

Candidatos

Vamos a comparar el algoritmo AKS con dos tests probabilísticos:

Candidatos

Vamos a comparar el algoritmo AKS con dos tests probabilísticos:

• Test de Miller-Rabin con 40 rondas.

Candidatos

Vamos a comparar el algoritmo AKS con dos tests probabilísticos:

- Test de Miller-Rabin con 40 rondas.
- Test de Solovay-Strassen con 80 rondas.

Primos

Los números primos con los que se hacen las pruebas tienen una cantidad incremental de bits.

Por ejemplo, el 7 es el mayor primo con 3 bits, 31 el mayor primo con 5 bits, 2147483647 el mayor primo con 32 bits, etc.

Comparación Números Primos

Potencias Perfectas

Las potencias perfectas que usaremos serán con los primos presentados anteriorimente, y consisten de dos conjuntos:

Las potencias perfectas que usaremos serán con los primos presentados anteriorimente, y consisten de dos conjuntos:

Primos de hasta 16 bits elevados a 100.

Las potencias perfectas que usaremos serán con los primos presentados anteriorimente, y consisten de dos conjuntos:

- Primos de hasta 16 bits elevados a 100.
- Primos de entre 192 y 256 bits elevados a 5.

Comparación Potencias Perfectas 1

Comparación Potencias Perfectas 2

Compuestos No Potencias Perfectas

Conjunto de Prueba

Los números compuestos que usaremos en estas comparaciones serán producto de los primos mencionados anteriormente. Hay dos conjuntos:

Conjunto de Prueba

Los números compuestos que usaremos en estas comparaciones serán producto de los primos mencionados anteriormente. Hay dos conjuntos:

• Primos de entre 32 y 42 bits multiplicados por un primo de 16 bits.

Conjunto de Prueba

Los números compuestos que usaremos en estas comparaciones serán producto de los primos mencionados anteriormente. Hay dos conjuntos:

- Primos de entre 32 y 42 bits multiplicados por un primo de 16 bits.
- Primos de entre 32 y 42 bits multiplicados por un primo de 32 bits.

Comparación Compuestos No Potencias Perfectas 1

Comparación Compuestos No Potencias Perfectas 1

Conclusiones

Conclusiones

El test es brillante desde el punto de vista matemático, ya que la prueba de la validez del test usa herramientas elementales.

Conclusiones

El test es brillante desde el punto de vista matemático, ya que la prueba de la validez del test usa herramientas elementales.

Sin embargo, a pesar de ser un test polinómico, en la práctica queda muy por detrás de otros test usados en la actualidad.

Referencias

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena.

PRIMES is in P.

Ann. of Math. (2), 160(2):781–793, 2004.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena.

Errata: PRIMES is in P.

Ann. of Math. (2), 189(1):317-318, 2019.

Francisco Gallego Salido.

Tfg.

https://github.com/fgallegosalido/TFG.

Fin