

# FCC EVALUATION REPORT FOR CERTIFICATION

Applicant: Clipcomm, Inc.

E.S.T Bldg, 229-15, Nonhyeon-dong, Gangnam-gu,

Seoul, 135-830 South Korea

Attn: Mr. Tae-Yoon Lim / Assistant Research Engineer

Date of Issue: October 9, 2012

Order Number: GETEC-C1-12-289

**Test Report Number: GETEC-E3-12-100** 

Test Site: GUMI COLLEGE EMC CENTER

FCC Registration Number: (100749, 443957)

FCC ID.

: UXZBSH200

Applicant

: Clipcomm, Inc.

Rule Part(s)

: FCC Part 15 Subpart C-Intentional Radiator § 15.247

Test method

: ANSI C63.10 (2009)

**Equipment Class** 

: Part 15 Spread Spectrum Transmitter (DSS)

**EUT Type** 

: Bluetooth Analog Telephone adapter

Type of Authority

: Certification

**Model Name** 

: BS-H200

**Trade Name** 

: Oticon

This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4 (2009)

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the vest of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested by,

Reviewed by,

Seung-Chul Lee, Associate Engineer

**GUMI COLLEGE EMC CENTER** 

Jae-Hoon Jeong, Senior Engineer GUMI COLLEGE EMC CENTER

## **CONTENTS**

| 1. GENERAL INFORMATION                  | 4  |
|-----------------------------------------|----|
| 2. INTRODUCTION                         | 5  |
| 3. PRODUCT INFORMATION                  | 6  |
| 3.1 DESCRIPTION OF EUT                  | 6  |
| 3.2 SUPPORT EQUIPMENT / CABLES USED     | 7  |
| 3.3 MODIFICATION ITEM(S)                | 7  |
| 4. DESCRIPTION OF TESTS                 | 8  |
| 4.1 TEST CONDITION                      | 8  |
| 5. ANTENNA REQUIREMENT - §15.203        | 9  |
| 5.1 DESCRIPTION OF ANTENNA              | 9  |
| 5.2 CONDUCTED EMISSION                  | 10 |
| 5.3 RADIATED EMISSION                   | 11 |
| 6. CONDUCTED EMISSION                   | 12 |
| 6.1 OPERATING ENVIRONMENT               | 12 |
| 6.2 TEST SET-UP                         | 12 |
| 6.3 MEASUREMENT UNCERTAINTY             | 12 |
| 6.4 LIMIT                               | 13 |
| 6.5 TEST EQUIPMENT USED                 | 13 |
| 6.6 TEST DATA FOR CONDUCTED EMISSION    | 13 |
| 7. NUMBER OF HOPPING FREQUENCY USED     | 16 |
| 7.1 OPERATING ENVIRONMENT               | 16 |
| 7.2 TEST SET-UP (LAYOUT)                | 16 |
| 7.3 LIMIT                               | 16 |
| 7.4 TEST EQUIPMENT USED                 | 16 |
| 7.5 TEST RESULT                         | 16 |
| 8. DWELL TIME ON EACH CHANNEL           | 18 |
| 8.1 OPERATING ENVIRONMENT               | 18 |
| 8.2 TEST SET-UP (LAYOUT)                | 18 |
| 8.3 LIMIT                               | 18 |
| 8.4 TEST EQUIPMENT USED                 | 18 |
| 8.5 TEST RESULT                         | 18 |
| 9. CHANNEL BANDWIDTH                    |    |
| 9.1 OPERATING ENVIRONMENT               | 22 |
| 9.2 TEST SET-UP (LAYOUT)                | 22 |
| 9.3 LIMIT                               | 22 |
| 9.4 TEST EQUIPMENT USED                 | 22 |
| 9.5 TEST RESULT                         | 22 |
| 10. LIMIT OF HOPPING CHANNEL SEPARATION | 29 |
| 10.1 OPERATING ENVIRONMENT              | 29 |
| 10.2 TEST SET-UP (LAYOUT)               | 29 |
| 10.3 LIMIT                              | 29 |
| 10.4 TEST EQUIPMENT USED                | 29 |
| 10.5 TEST RESULT                        | 29 |

| 11. MAXIMUM PEAK OUTPUT POWER    |    |
|----------------------------------|----|
| 11.1 OPERATING ENVIRONMENT       | 30 |
| 11.2 TEST SET-UP (LAYOUT)        | 30 |
| 11.3 LIMIT                       | 30 |
| 11.4 TEST EQUIPMENT USED         |    |
| 11.5 TEST RESULT                 | 30 |
| 12. BAND EDGES MEASUREMENT       | 37 |
| 12.1 OPERATING ENVIRONMENT       |    |
| 12.2 TEST SET-UP (LAYOUT)        | 37 |
| 12.3 LIMIT                       |    |
| 12.4 TEST EQUIPMENT USED         | 37 |
| 12.5 TEST RESULT                 | 37 |
| 13. RADIATED EMISSION            |    |
| 13.1 OPERATING ENVIRONMENT       |    |
| 13.2 TEST SET-UP                 | 42 |
| 13.3 MEASUREMENT UNCERTAINTY     |    |
| 12.4 LIMIT                       |    |
| 13.5 TEST EQUIPMENT USED         |    |
| 13.6 RADIATED EMISSION TEST DATA |    |
|                                  |    |
|                                  |    |

- APPENDIX A ATTESTATION STATEMENT
- APPENDIX B LABELLING
- APPENDIX C BLOCK DIAGRAM
- APPENDIX D SCHEMATIC DIAGRAM
- APPENDIX E TEST SETUP PHOTOGRAPH
- APPENDIX F EXTERNAL PHOTOGRAPH
- APPENDIX G INTERNAL PHOTOGRAPH
- APPENDIX H USER'S MANUAL
- APPENDIX I OPERATIONAL DESCRIPTION
- APPENDIX J ANTENNA SPECIFICATION
- APPENDIX K PART LIST
- APPENDIX L MAXIMUM PERMISSIBLE EXPOSURE

**Scope:** Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and / or unintentional radiators for compliance with technical rules and regulations of the Federal Communications Commission.

#### 1. General Information

**Applicant: Clipcomm, Inc.** 

Applicant address: E.S.T Bldg, 229-15, Nonhyeon-dong, Gangnam-gu, Seoul, 135-830 South Korea

Manufacturer: Clipcomm, Inc.

Manufacturer address: E.S.T Bldg, 229-15, Nonhyeon-dong, Gangnam-gu, Seoul, 135-830

**South Korea** 

Contact person: Mr. Tae-Yoon Lim / Assistant Research Engineer
Telephone number: +82-2-541-9081 Fax number: +82-2-541-9085

• FCC ID. UXZBSH200

• Equipment Class Spread Spectrum Transmitter (DSS)

• EUT Type Bluetooth Analog Telephone adapter

• Model Name BS-H200

• Rule Part(s) FCC Part 15, Subpart C-Intentional Radiator § 15.247

• **Test Method** ANSI 63.10 (2009)

• Type of Authority Certification

• Test Procedure(s) ANSI C63.4 (2009)

● **Dates of Test** October 4 ~ 8, 2012

• Place of Test GUMI COLLEGE EMC CENTER (FCC Registration No.: 100749, 443957)

37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 730-711, Republic of Korea.

• Test Report Number GETEC-E3-12-100

• Dates of Issue October 9, 2012

#### 2. Introduction

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Nose Emissions From Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2009) was used in determining radiated and conducted emissions emanating from **Clipcomm**, **Inc. Bluetooth Analog Telephone adapter (Model name: BS-H200)** 

These measurement tests were conducted at **GUMI COLLEGE EMC CENTER**.

The site address is 37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 730-711, Republic of Korea.

This test site is one of the highest point of Gumi 1 college at about 200 kilometers away from Seoul city and 40 kilometers away from Daege city. It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures. The detailed description of the measurement facility was found to be in compliance with the requirements of §2.948 according to ANSI C63.4 (2009)



Fig 1. The map above shows the Gumi College in vicinity area.

#### **GUMI COLLEGE EMC CENTER**

37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 730-711, Republic of Korea Tel: +82-54-440-1195

Tel: +82-54-440-1195 Fax: +82-54-440-1199

#### 3. Product Information

## 3.1 Description of EUT

The Equipment under Test (EUT) is the Clipcomm, Inc. Bluetooth Analog Telephone adapter (Model Name: BS-H200) FCC ID.: UXZBSH200

#### **Specification**

| ~P******      |                                                                      |
|---------------|----------------------------------------------------------------------|
| Bluetooth     | : Version 2.1 + EDR                                                  |
| Rated Voltage | : DC 5 V, 0.2 A                                                      |
| I/O Port      | : USB (Charging port), 4-pol 3.5 mm jack, Land line port, Phone port |

#### **Frequency List**

| Frequency Band (MHz) | Channel | Freq.<br>[MHz] | Channel | Freq.<br>[MHz] | Channel | Freq.<br>[MHz] | Channel | Freq.<br>[MHz] |
|----------------------|---------|----------------|---------|----------------|---------|----------------|---------|----------------|
|                      | 0       | 2 402          | 20      | 2 422          | 40      | 2 442          | 60      | 2 462          |
|                      | 1       | 2 403          | 21      | 2 423          | 41      | 2 443          | 61      | 2 463          |
|                      | 2       | 2 404          | 22      | 2 424          | 42      | 2 444          | 62      | 2 464          |
|                      | 3       | 2 405          | 23      | 2 425          | 43      | 2 445          | 63      | 2 465          |
|                      | 4       | 2 406          | 24      | 2 426          | 44      | 2 446          | 64      | 2 466          |
|                      | 5       | 2 407          | 25      | 2 427          | 45      | 2 447          | 65      | 2 467          |
|                      | 6       | 2 408          | 26      | 2 428          | 46      | 2 448          | 66      | 2 468          |
|                      | 7       | 2 409          | 27      | 2 429          | 47      | 2 449          | 67      | 2 469          |
|                      | 8       | 2 410          | 28      | 2 430          | 48      | 2 450          | 68      | 2 470          |
| 2 402 ~ 2 480        | 9       | 2 411          | 29      | 2 431          | 49      | 2 451          | 69      | 2 471          |
| 2 402 ~ 2 400        | 10      | 2 412          | 30      | 2 432          | 50      | 2 452          | 70      | 2 472          |
|                      | 11      | 2 413          | 31      | 2 433          | 51      | 2 453          | 71      | 2 473          |
|                      | 12      | 2 414          | 32      | 2 434          | 52      | 2 454          | 72      | 2 474          |
|                      | 13      | 2 415          | 33      | 2 435          | 53      | 2 455          | 73      | 2 475          |
|                      | 14      | 2 416          | 34      | 2 436          | 54      | 2 456          | 74      | 2 476          |
|                      | 15      | 2 417          | 35      | 2 437          | 55      | 2 457          | 75      | 2 477          |
|                      | 16      | 2 418          | 36      | 2 438          | 56      | 2 458          | 76      | 2 478          |
|                      | 17      | 2 419          | 37      | 2 439          | 57      | 2 459          | 77      | 2 479          |
|                      | 18      | 2 420          | 38      | 2 440          | 58      | 2 460          | 78      | 2 480          |
|                      | 19      | 2 421          | 39      | 2 441          | 59      | 2 461          |         |                |

: GETEC-C1-12-289

## 3.2 Support Equipment / Cables used

### 3.2.1 Used Support Equipment

| Description                           | Manufacturer   | Model Name | S/N & FCC ID.                    |
|---------------------------------------|----------------|------------|----------------------------------|
| Bluetooth Analog<br>Telephone adapter | Clipcomm, Inc. | BS-H200    | S/N: None.<br>FCC ID.: UXZBSH200 |

See "Appendix E – Test Setup Photographs" for actual system test set-up

#### 3.2.2 System configuration

| Description              | Manufacturer  | Model Name        | S/N & FCC ID.              |  |
|--------------------------|---------------|-------------------|----------------------------|--|
| Adapter #1 <sup>1)</sup> | UE Electronic | UE05WCP-050100SPC | S/N: None.<br>FCC ID.: N/A |  |
| Adapter #2 <sup>2)</sup> | Phihong       | PSAC05R-050T      | S/N: None.<br>FCC ID.: N/A |  |

<sup>1)</sup> Input ratings: AC (100 – 240) V~, (50/60) Hz, 0.18 A / Output ratings: DC 5 V, 1.0 A

#### 3.2.3 Used Cable(s)

| Cable Name Condition |                                                             | Description       |
|----------------------|-------------------------------------------------------------|-------------------|
| USB(Charging) cable  | Connected to the EUT and adapter                            | 1.80 m shielded   |
| Aux cable            | Connected to the EUT and Bluetooth analog telephone adapter | 1.00 m shielded   |
| Land line cable      | Connected to the EUT and Bluetooth analog telephone adapter | 1.80 m unshielded |
| Phone cable          | Connected to the EUT and Bluetooth analog telephone adapter | 4.00 m unshielded |

## 3.3 Modification Item(s)

-. None

<sup>2)</sup> Input ratings: AC (100 – 240) V~, (50 – 60) Hz, (12 – 18) V, Output ratings: DC 5 V, 1.0 A

#### 4. Description of tests

#### 4.1 Test Condition

The EUT was installed, arranged and operated in a manner that is most representative of equipment as typically used.

The measurements were carried out while varying operating modes and cable positions within typically arrangement to determine maximum emission level.

The representative and worst test mode(s) were noted in the test report.

• Test Voltage / Frequency: AC 120 V / 60 Hz (Adapter DC 5 V)

#### Test Mode(s):

-. Executed "BlueTest3 (made by CSR)" to control the EUT continuously transmit RF signal.

| <b>Test Software Version</b> | BlueTest3 |           |           |  |  |
|------------------------------|-----------|-----------|-----------|--|--|
| Frequency                    | 2 402 MHz | 2 441 MHz | 2 480 MHz |  |  |
| Power setting value          | 59        | 59        | 59        |  |  |



: GETEC-C1-12-289

#### 5. Antenna Requirement - §15.203

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the applicant can be used with the device. The use of permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with this requirement.

#### 5.1 Description of Antenna

The Clipcomm, Inc. Bluetooth Analog Telephone adapter comply with the requirement of \$15.203 with a dual mode chip antenna permanently attached to the transmitter.

: GETEC-C1-12-289 : GETEC-E3-12-100

#### 5.2 Conducted Emission

The Line conducted emission test facility is inside a 4 m  $\times$  8 m  $\times$  2.5 m shielded enclosure. (FCC Registration No.: 100749)

The EUT was placed on a non-conducting 1.0 m by 1.5 m table, which is 0.8 m in height and 0.4 m away from the vertical wall of the shielded enclosure.

The EUT is powered from the Rohde & Schwarz LISN (ESH2-Z5) and the support equipment is powered from the Rohde & Schwarz LISN (ESH3-Z5). Powers to the LISN are filtered by high-current high insertion loss power line filter.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

The RF output of the LISN was connected to the EMI test receiver (Rohde & Schwarz, ESCS30).

The EMI test receiver was scanned from 150 kHz to 30 MHz with 20 ms sweep time to determine the frequency producing the maximum EME from the EUT. The frequency producing the maximum level was re-examined using Quasi-Peak mode of the EMI test receiver.

The bandwidth of Quasi-peak mode was set to 9 kHz. Each emission was maximized consistent with typical applications by varying the configuration of the test sample. Interface cables were connected to the available interface ports of the test unit. The effect of varying the position of cables was investigated to find the configuration that produces maximum diagram emission. Excess cable lengths were bundled at center with 30 cm ~ 40 cm.

Each EME reported was calibrated using the R/S signal generator



Fig 2. Impedance of LISN

: GETEC-E3-12-100

#### 5.3 Radiated Emission

Measurements (below 1 GHz) were made at Open area test site that complies to CISPR 16/ANSI C63.4. Preliminary (peak) measurements were performed at an antenna to EUT separation distance of 10 m. The EUT was rotated 360° about its azimuth with the receive antenna located at 1, 2, 3 and 4 meter heights in both horizontal and vertical polarities. Final measurements (quasi-peak or average as noted) were then performed by rotating the EUT 360° and adjusting the receive antenna height from 1.0 m to 4.0 m. All frequencies were investigated in both horizontal and vertical antenna polarity, where applicable.



Fig 3. Dimensions of test site

The measurements (above 1 GHz) were made 3 m distance test site that complies to CISPR 16-1-4 (2007). In order to meet SVSWR Limit (Within 6 dB), the bottom side of test site was installed with absorbers. The EUT was placed on a non-conductive turntable approximately 0.8 m above the ground plane. The turntable with EUT was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

The measurements were conducted with Average and Peak value.



Fig 4. Dimensions of test site

#### 6. CONDUCTED EMISSION

#### **6.1 Operating Environment**

Temperature : 23.0  $^{\circ}$ C Relative Humidity : 41.0  $^{\circ}$ R.H.

#### 6.2 Test Set-up

The conducted emission measurements were performed in the shielded room.

The EUT was placed on wooden table, 0.8 m heights above the floor, 0.4 m from the reference ground plane (GRP) wall and 0.8 m from AMN &ISN.

AMN is bonded on horizontal reference ground plane.

The ground plane, which was electrically bonded to the shield room, ground system and all power lines entering the shield room, were filtered.

#### **6.3 Measurement Uncertainty**

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement."

The measurement uncertainty was given with a confidence of 95 %.

| Test Items                            | Uncertainty | Remark                              |  |
|---------------------------------------|-------------|-------------------------------------|--|
| Conducted emission (9 kHz ~ 150 kHz)  | ± 2.71 dB   | Confidence levels of 95 % $(k = 2)$ |  |
| Conducted emission (150 kHz ~ 30 MHz) | ± 3.34 dB   | Confidence levels of 95 % $(k = 2)$ |  |

: GETEC-C1-12-289

#### 6.4 Limit

| RFI Conducted     | FCC Limit(dBμV/m) Class B |          |  |  |  |
|-------------------|---------------------------|----------|--|--|--|
| Freq. Range       | Quasi-Peak                | Average  |  |  |  |
| 150 kHz ~ 0.5 MHz | 66 ~ 56*                  | 56 ~ 46* |  |  |  |
| 0.5 MHz ~ 5 MHz   | 56                        | 46       |  |  |  |
| 5 MHz ~ 30 MHz    | 60                        | 50       |  |  |  |

\*Limits decreases linearly with the logarithm of frequency.

## 6.5 Test Equipment used

|     | Model Name | Manufacturer    | Description       | Serial Number | <b>Due to Calibration</b> |
|-----|------------|-----------------|-------------------|---------------|---------------------------|
| ■ - | ESCS30     | Rohde & Schwarz | EMI Test Receiver | 839809/003    | 05. 22. 2013              |
| □-  | ESH3-Z5    | Rohde & Schwarz | LISN              | 838979/020    | 05. 23. 2013              |
| ■ - | ESH2-Z5    | Rohde & Schwarz | LISN              | 829991/009    | 05. 23. 2013              |
| □ - | ENY81-CA6  | Rohde & Schwarz | ISN               | 101573        | 07. 04. 2013              |

## 6.6 Test data for Conducted Emission

-. Test Date : October 4, 2012

-. Resolution Bandwidth : 9 kHz

-. Frequency Range : 0.15 MHz ~ 30 MHz

-. Line : L1: Live line, N: Neutral line

## • Adapter #1 (Model name: UE05WCP-050100SPC)



## Final Result 1

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Meas.<br>Time | Bandwidth<br>(kHz) | PE  | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) | Comment |
|--------------------|---------------------|---------------|--------------------|-----|------|---------------|----------------|-----------------|---------|
|                    |                     | (ms)          |                    |     |      |               |                |                 |         |
| 0.320000           | 26.0                | 1000.0        | 9.000              | GND | N    | 10.1          | 33.7           | 59.7            |         |
| 0.508000           | 29.6                | 1000.0        | 9.000              | GND | L1   | 10.1          | 26.4           | 56.0            |         |
| 0.816000           | 20.6                | 1000.0        | 9.000              | GND | N    | 10.1          | 35.4           | 56.0            |         |
| 1.620000           | 20.3                | 1000.0        | 9.000              | GND | N    | 10.2          | 35.7           | 56.0            |         |
| 14.152000          | 30.8                | 1000.0        | 9.000              | GND | L1   | 10.3          | 29.2           | 60.0            |         |
| 17.724000          | 22.0                | 1000.0        | 9.000              | GND | L1   | 10.3          | 38.0           | 60.0            |         |

## Final Result 2

| Frequency<br>(MHz) | CAverage<br>(dBµV) | Meas.<br>Time | Bandwidth<br>(kHz) | PE  | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) | Comment |
|--------------------|--------------------|---------------|--------------------|-----|------|---------------|----------------|-----------------|---------|
|                    |                    | (ms)          |                    |     |      |               |                |                 |         |
| 0.320000           | 17.0               | 1000.0        | 9.000              | GND | N    | 10.1          | 32.7           | 49.7            |         |
| 0.508000           | 16.3               | 1000.0        | 9.000              | GND | L1   | 10.1          | 29.7           | 46.0            |         |
| 0.816000           | 12.1               | 1000.0        | 9.000              | GND | N    | 10.1          | 33.9           | 46.0            |         |
| 1.620000           | 10.1               | 1000.0        | 9.000              | GND | N    | 10.2          | 35.9           | 46.0            |         |
| 14.152000          | 22.3               | 1000.0        | 9.000              | GND | L1   | 10.3          | 27.7           | 50.0            |         |
| 17.724000          | 15.7               | 1000.0        | 9.000              | GND | L1   | 10.3          | 34.3           | 50.0            |         |

< Fig 5. Conducted emission result >

## Adapter #2 (Model name: PSAC05R-050T)



## Final Result 1

| Frequency | QuasiPeak | Meas.  | Bandwidth | PE  | Line | Corr. | Margin | Limit  | Comment |
|-----------|-----------|--------|-----------|-----|------|-------|--------|--------|---------|
| (MHz)     | (dBµV)    | Time   | (kHz)     |     |      | (dB)  | (dB)   | (dBµV) |         |
|           |           | (ms)   |           |     |      |       |        |        |         |
| 0.276000  | 40.7      | 1000.0 | 9.000     | GND | N    | 10.1  | 20.2   | 60.9   |         |
| 0.276000  | 40.7      | 1000.0 | 9.000     | GND | N    | 10.1  | 20.2   | 60.9   |         |
| 0.488000  | 31.2      | 1000.0 | 9.000     | GND | N    | 10.1  | 25.0   | 56.2   |         |
| 0.812000  | 28.6      | 1000.0 | 9.000     | GND | L1   | 10.1  | 27.4   | 56.0   |         |
| 1.356000  | 27.4      | 1000.0 | 9.000     | GND | N    | 10.2  | 28.6   | 56.0   |         |
| 2.284000  | 26.7      | 1000.0 | 9.000     | GND | N    | 10.2  | 29.3   | 56.0   |         |

## Final Result 2

| Frequency | CAverage | Meas.  | Bandwidth | PE  | Line | Corr. | Margin | Limit  | Comment |
|-----------|----------|--------|-----------|-----|------|-------|--------|--------|---------|
| (MHz)     | (dBµV)   | Time   | (kHz)     |     |      | (dB)  | (dB)   | (dBµV) |         |
|           |          | (ms)   |           |     |      |       |        |        |         |
| 0.276000  | 28.4     | 1000.0 | 9.000     | GND | N    | 10.1  | 22.5   | 50.9   |         |
| 0.276000  | 28.3     | 1000.0 | 9.000     | GND | N    | 10.1  | 22.7   | 50.9   |         |
| 0.488000  | 18.2     | 1000.0 | 9.000     | GND | N    | 10.1  | 28.0   | 46.2   |         |
| 0.812000  | 15.7     | 1000.0 | 9.000     | GND | L1   | 10.1  | 30.3   | 46.0   |         |
| 1.356000  | 14.8     | 1000.0 | 9.000     | GND | N    | 10.2  | 31.2   | 46.0   |         |
| 2.284000  | 14.1     | 1000.0 | 9.000     | GND | N    | 10.2  | 31.9   | 46.0   |         |

< Fig 6. Conducted emission result >

## 7. NUMBER OF HOPPING FREQUENCY USED

#### **7.1 Operating Environment**

Temperature :  $24.0 \, ^{\circ}\text{C}$ Relative Humidity :  $40.0 \, ^{\circ}\text{R.H.}$ 

#### 7.2 Test Set-up (Layout)



#### **7.3** Limit

At least 15 channels frequencies, and should be equally spaced

## 7.4 Test Equipment used

|   | Model Name | Manufacturer    | Description       | Serial Number | <b>Due to Calibration</b> |
|---|------------|-----------------|-------------------|---------------|---------------------------|
| _ | ESIB26     | Rohde & Schwarz | EMI Test Receiver | 830482/010    | 05. 23. 2013              |

#### 7.5 Test Result

-. Test Date : October 5 ~ 10, 2012

-. Reference Standard : Part 15 Subpart C, Sec. 15.247(a)(1)(iii)

-. Modulation : BDR (GFSK)

-. Operating Condition : RF transmitting mode

-. Power Source : AC 120 V / 60 Hz (Adapter DC 5 V)

| Modulation | Total channel No. | Hopping channel No. | Limit | Result   |
|------------|-------------------|---------------------|-------|----------|
| BDR – DH5  | 79                | 79                  | > 15  | Complies |

## Number of Hopping frequency used Plot on Configuration BDR (GFSK)



Date: 9.OCT.2012 10:52:11

#### 8. DWELL TIME ON EACH CHANNEL

#### **8.1 Operating Environment**

Temperature :  $24.0 \,^{\circ}\text{C}$ Relative Humidity :  $40.0 \,^{\circ}\text{R.H.}$ 

## 8.2 Test Set-up (Layout)



#### 8.3 Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

#### 8.4 Test Equipment used

|     | Model Name | Manufacturer    | Description       | Serial Number | <b>Due to Calibration</b> |
|-----|------------|-----------------|-------------------|---------------|---------------------------|
| ■ - | ESIB26     | Rohde & Schwarz | EMI Test Receiver | 830482/010    | 05. 23. 2013              |

#### 8.5 Test Result

-. Test Date : October 5 ~ 9, 2012

-. Reference Standard : Part 15 Subpart C, Sec. 15.247(a)(1)(iii)

-. Modulation : BDR (GFSK), EDR 2 Mbps ( $\pi/4$  DQPSK), EDR 3 Mbps (8 DPSK)

-. Operating Condition : RF transmitting mode

-. Power Source : AC 120 V / 60 Hz (Adapter DC 5 V)

#### Spectrum Parameter

-. Attenuation : Auto
-. Span frequency : zero
-. Resolution band width : 100 kHz
-. Video band with : 100 kHz
-. Sweep time : 5 ms

| Mode             | Number of transmission in a 31.6<br>(79 Hopping * 0.4) | Length of<br>transmission<br>time (ms) | Measured (ms) | Limit (ms) | Result   |
|------------------|--------------------------------------------------------|----------------------------------------|---------------|------------|----------|
| BDR – DH5        | 10  (times  / 5  s) * 31.6 = 63.2                      | 2.91                                   | 183.91        | 400        | Complies |
| EDR 2 Mbps – DH5 | 10  (times  / 5  s) * 31.6 = 63.2                      | 2.91                                   | 183.91        | 400        | Complies |
| EDR 3 Mbps – DH5 | 10  (times  / 5  s) * 31.6 = 63.2                      | 2.91                                   | 183.91        | 400        | Complies |

## Dwell time on each time used Plot on Configuration BDR (GFSK)



Date: 9.OCT.2012 11:22:41



Date: 9.OCT.2012 11:23:16

## Dwell time on each time used Plot on Configuration EDR 2 Mbps ( $\pi/4$ DQPSK)



Date: 5.OCT.2012 08:06:12



Date: 5.OCT.2012 08:03:26

## Dwell time on each time used Plot on Configuration EDR 3 Mbps (8 DPSK)



Date: 5.OCT.2012 08:07:19



Date: 5.OCT.2012 08:09:11

: GETEC-C1-12-289 : GETEC-E3-12-100

#### 9. CHANNEL BANDWIDTH

#### 9.1 Operating environment

Temperature :  $24.0 \,^{\circ}\text{C}$ Relative Humidity :  $40.0 \,^{\circ}\text{R.H.}$ 

#### 9.2 Test Set-up (Layout)



#### 9.3 Limit

For frequency hopping system operating in the 2 400 MHz  $\sim$  2 483.5 MHz, If the 20 dB bandwidth of hopping channel is greater than 25 kHz, two-thirds 20 dB bandwidth of hopping channel shall be a minimum limit for the hopping channel separation.

#### 9.4 Test Equipment used

|          | Model Name | Manufacturer    | Description       | Serial Number | Due to Calibration |
|----------|------------|-----------------|-------------------|---------------|--------------------|
| <b>-</b> | ESIB26     | Rohde & Schwarz | EMI Test Receiver | 830482/010    | 05. 23. 2013       |

#### 9.5 Test result

-. Test Date : October  $5 \sim 9$ , 2012

-. Reference Standard : Part 15 Subpart C, Sec. 15.247(a)(1)(iii)

-. Modulation : BDR (GFSK), EDR 2 Mbps ( $\pi/4$  DQPSK), EDR 3 Mbps (8 DPSK)

-. Operating Condition : RF transmitting mode

-. Power Source : AC 120 V / 60 Hz (Adapter DC 5 V)



Spectrum Parameter

-. Attenuation : Auto
-. Span frequency : zero
-. Resolution band width : 100 kHz
-. Video band with : 100 kHz
-. Sweep time : 10 ms

| Channel / Modulation     | Channel frequency (MHz) | 20 dB bandwidth (MHz) | Result   |
|--------------------------|-------------------------|-----------------------|----------|
| 0 CH / BDR – DH5         | 2 402                   | 1.115                 | Complies |
| 39 CH / BDR – DH5        | 2 441                   | 1.110                 | Complies |
| 78 CH / BDR – DH5        | 2 480                   | 1.110                 | Complies |
| 0 CH / EDR 2 Mbps – DH5  | 2 402                   | 1.375                 | Complies |
| 39 CH / EDR 2 Mbps – DH5 | 2 441                   | 1.370                 | Complies |
| 78 CH / EDR 2 Mbps – DH5 | 2 480                   | 1.375                 | Complies |
| 0 CH / EDR 3 Mbps – DH5  | 2 402                   | 1.375                 | Complies |
| 39 CH / EDR 3 Mbps – DH5 | 2 441                   | 1.380                 | Complies |
| 78 CH / EDR 3 Mbps – DH5 | 2 480                   | 1.385                 | Complies |

#### Channel bandwidth used Plot on Configuration BDR (GFSK) / 0 CH (2 402 MHz)



Date: 9.OCT.2012 10:56:17

### Channel bandwidth used Plot on Configuration BDR (GFSK) / 39 CH (2 441 MHz)



Date: 9.OCT.2012 10:58:02

#### Channel bandwidth used Plot on Configuration BDR (GFSK) / 78 CH (2 480 MHz)



Date: 9.OCT.2012 10:59:47

### Channel bandwidth used Plot on Configuration EDR 2 Mbps ( $\pi/4$ DQPSK) / 0 CH (2 402 MHz)



Date: 5.OCT.2012 07:59:55

## Channel bandwidth used Plot on Configuration EDR 2 Mbps ( $\pi/4$ DQPSK) / 39 CH (2 441 MHz)



Date: 5.OCT.2012 07:56:45

### Channel bandwidth used Plot on Configuration EDR 2 Mbps ( $\pi/4$ DQPSK) / 78 CH (2 480 MHz)



Date: 5.OCT.2012 07:54:02

#### Channel bandwidth used Plot on Configuration EDR 3 Mbps (8 DPSK) / 0 CH (2 402 MHz)



Date: 5.OCT.2012 07:38:01

### Channel bandwidth used Plot on Configuration EDR 3 Mbps (8 DPSK) / 39 CH (2 441 MHz)



Date: 5.OCT.2012 07:48:58

## Channel bandwidth used Plot on Configuration EDR 3 Mbps (8 DPSK) / 78 CH (2 480 MHz)



Date: 5.OCT.2012 07:51:20

: GETEC-C1-12-289 : GETEC-E3-12-100

#### 10. LIMIT OF HOPPING CHANNEL SEPARATION

#### **10.1 Operating Environment**

Temperature :  $24.0 \,^{\circ}\text{C}$ Relative Humidity :  $40.0 \,^{\circ}\text{R.H.}$ 

#### 10.2 Test Set-up (Layout)



#### **10.3 Limit**

For frequency hopping system operating in the 2 400 MHz  $\sim$  2 483.5 MHz, If the 20 dB bandwidth of hopping channel is greater than 25 kHz, two-thirds 20 dB bandwidth of hopping channel shall be a minimum limit for the hopping channel separation.

#### 10.4 Test Equipment used

|   | Model Name | Manufacturer    | Description       | Serial Number | <b>Due to Calibration</b> |
|---|------------|-----------------|-------------------|---------------|---------------------------|
| _ | ESIB26     | Rohde & Schwarz | EMI Test Receiver | 830482/010    | 05. 23. 2013              |

#### 10.5 Test Result

-. Test Date : October 5 ~ 9, 2012

-. Reference Standard : Part 15 Subpart C, Sec. 15.247(a)(1)

-. Modulation : BDR (GFSK), EDR 2 Mbps ( $\pi/4$  DQPSK), EDR 3 Mbps (8 DPSK)

-. Operating Condition : RF transmitting mode

-. Power Source : AC 120 V / 60 Hz (Adapter DC 5 V)



Spectrum Parameter

-. Attenuation : Auto
-. Span frequency : 10 MHz
-. Resolution band width : 100 kHz
-. Video band with : 100 kHz
-. Sweep time : 10 ms

| Channel / Modulation     | Channel<br>frequency (MHz) | Adjacent channel<br>Separation (MHz) | Limit (MHz) [2/3 of 20 dB bandwidth] | Result   |
|--------------------------|----------------------------|--------------------------------------|--------------------------------------|----------|
| 0 CH / BDR – DH5         | 2 402                      | 1                                    | > 0.743                              | Complies |
| 39 CH / BDR – DH5        | 2 441                      | 1                                    | > 0.740                              | Complies |
| 78 CH / BDR – DH5        | 2 480                      | 1                                    | > 0.740                              | Complies |
| 0 CH / EDR 2 Mbps – DH5  | 2 402                      | 1                                    | > 0.917                              | Complies |
| 39 CH / EDR 2 Mbps – DH5 | 2 441                      | 1                                    | > 0.913                              | Complies |
| 78 CH / EDR 2 Mbps – DH5 | 2 480                      | 1                                    | > 0.917                              | Complies |
| 0 CH / EDR 3 Mbps – DH5  | 2 402                      | 1                                    | > 0.917                              | Complies |
| 39 CH / EDR 3 Mbps – DH5 | 2 441                      | 1                                    | > 0.920                              | Complies |
| 78 CH / EDR 3 Mbps – DH5 | 2 480                      | 1                                    | > 0.923                              | Complies |

## Channel separation used Plot on Configuration BDR (GFSK) / 0 CH (2 402 MHz)



Date: 9.OCT.2012 11:10:41

### Channel separation used Plot on Configuration BDR (GFSK) / 39 CH (2 441 MHz)



Date: 9.OCT.2012 11:08:15

#### Channel separation used Plot on Configuration BDR (GFSK) / 78 CH (2 480 MHz)



Date: 9.OCT.2012 11:06:24

#### Channel separation used Plot on Configuration EDR 2 Mbps ( $\pi/4$ DQPSK) / 0 CH (2 402 MHz)



Date: 5.OCT.2012 10:02:21

## Channel separation used Plot on Configuration EDR 2 Mbps ( $\pi/4$ DQPSK) / 39 CH (2 441 MHz)



Date: 5.OCT.2012 09:57:14

### Channel separation used Plot on Configuration EDR 2 Mbps ( $\pi/4$ DQPSK) / 78 CH (2 480 MHz)



Date: 5.OCT.2012 09:54:25

#### Channel separation used Plot on Configuration EDR 3 Mbps (8 DPSK) / 0 CH (2 402 MHz)



Date: 5.OCT.2012 10:15:26

## Channel separation used Plot on Configuration EDR 3 Mbps (8 DPSK) / 39 CH (2 441 MHz)



Date: 5.OCT.2012 10:20:09

## Channel separation used Plot on Configuration EDR 3 Mbps (8 DPSK) / 78 CH (2 480 MHz)



Date: 5.OCT.2012 10:22:41

#### 11. MAXIMUM PEAK OUTPUT POWER

#### 11.1 Operating Environment

Temperature :  $24.0 \, ^{\circ}\text{C}$ Relative Humidity :  $40.0 \, ^{\circ}\text{R.H.}$ 

#### 11.2 Test Set-up (Layout)



#### **11.3 Limit**

The maximum peak output power measurement is 125 mW

## 11.4 Test Equipment used

|          | Model Name | Manufacturer    | Description  | Serial Number | Due to Calibration |
|----------|------------|-----------------|--------------|---------------|--------------------|
| <b>-</b> | NRVD       | Rohde & Schwarz | Power meter  | 837794/048    | 05. 23. 2013       |
| ■ -      | NRP-Z32    | Rohde & Schwarz | Power sensor | 100062        | 05. 24. 2013       |

#### 11.5 Test Result

-. Test Date : October 5, 2012

-. Reference Standard : Part 15 Subpart C, Sec. 15.247(b)

-. Modulation : BDR (GFSK), EDR 2 Mbps ( $\pi/4$  DQPSK), EDR 3 Mbps (8 DPSK)

-. Operating Condition : RF transmitting mode

-. Power Source : AC 120 V / 60 Hz (Adapter DC 5 V)

| Channel /<br>Modulation  | Channel<br>Frequency<br>(MHz) | Peak output<br>power<br>(dBm) | Peak output<br>power<br>(mW) | Limit (W) | Result   |
|--------------------------|-------------------------------|-------------------------------|------------------------------|-----------|----------|
| 0 CH / BDR – DH5         | 2 402                         | 7.09                          | 5.12                         | 1         | Complies |
| 39 CH / BDR – DH5        | 2 441                         | 6.77                          | 4.75                         | 1         | Complies |
| 78 CH / BDR – DH5        | 2 480                         | 5.64                          | 3.66                         | 1         | Complies |
| 0 CH / EDR 2 Mbps – DH5  | 2 402                         | 5.15                          | 3.27                         | 1         | Complies |
| 39 CH / EDR 2 Mbps – DH5 | 2 441                         | 5.14                          | 3.27                         | 1         | Complies |
| 78 CH / EDR 2 Mbps – DH5 | 2 480                         | 4.23                          | 2.65                         | 1         | Complies |
| 0 CH / EDR 3 Mbps – DH5  | 2 402                         | 5.40                          | 3.47                         | 1         | Complies |
| 39 CH / EDR 3 Mbps – DH5 | 2 441                         | 5.22                          | 3.33                         | 1         | Complies |
| 78 CH / EDR 3 Mbps - DH5 | 2 480                         | 4.26                          | 2.67                         | 1         | Complies |

#### 12. BAND EDGES MEASUREMENT

## 12.1 Operating Environment

Temperature :  $24.0 \,^{\circ}\text{C}$ Relative Humidity :  $40.0 \,^{\circ}\text{R.H.}$ 

#### 12.2 Test Set-up (Layout)



#### **12.3 Limit**

Below -20 dB of the highest emission level of operating band (in 100 kHz resolution band width)

#### 12.4 Test Equipment used

|   | Model Name | Manufacturer    | Description       | Serial Number | Due to Calibration |
|---|------------|-----------------|-------------------|---------------|--------------------|
| - | ESIB26     | Rohde & Schwarz | EMI Test Receiver | 830482/010    | 05. 23. 2013       |

#### 12.5 Test Result

-. Test Date : October 5, 2012

-. Reference Standard : Part 15 Subpart C, Sec. 15.247(b)

-. Modulation : BDR (GFSK), EDR 2 Mbps ( $\pi/4$  DQPSK), EDR 3 Mbps (8 DPSK)

-. Operating Condition : RF transmitting mode

-. Power Source : AC 120 V / 60 Hz (Adapter DC 5 V)

The spectrum plots are attached on the following 8 images, D1 line indicates the highest level, D2 line indicates the 20 dB offset below D1. It shows compliance with the requirement in part 15.247(d)

## Spectrum Parameter

- Attenuation : Auto
 - Resolution bandwidth : 100 kHz
 - Video bandwidth : 300 kHz

FCC ID.: UXZBSH200

# Band edge used Plot on Configuration BDR (GFSK) / 0 CH (2 402 MHz)



Date: 9.OCT.2012 11:13:20



Date: 9.OCT.2012 11:14:32

# Band edge used Plot on Configuration BDR (GFSK) / 78 CH (2 480 MHz)



Date: 9.OCT.2012 11:17:30



Date: 9.OCT.2012 11:15:54

# Band edge used Plot on Configuration EDR 2 Mbps ( $\pi/4$ DQPSK) / 0 CH (2 402 MHz)



Date: 5.OCT.2012 09:12:18



Date: 5.OCT.2012 09:08:11

# Band edge used Plot on Configuration EDR 2 Mbps ( $\pi/4$ DQPSK) / 78 CH (2 480 MHz)



Date: 5.OCT.2012 09:06:30



Date: 5.0CT.2012 09:03:07

# Band edge used Plot on Configuration EDR 3 Mbps (8 DPSK) / 0 CH (2 402 MHz)



Date: 5.OCT.2012 08:53:34



Date: 5.OCT.2012 08:48:26

# Band edge used Plot on Configuration EDR 3 Mbps (8 DPSK) / 78 CH (2 480 MHz)



Date: 5.OCT.2012 08:55:51



Date: 5.OCT.2012 08:58:28

#### 13. RADIATED EMISSION

#### **13.1 Operating Environment**

Temperature : 23.0 °C Relative Humidity : 42.0 % R.H.

#### 13.2 Test Set-up

The formal radiated emission was measured at 3 m distance anechoic chamber.

The EUT was placed on a non-conductive turntable approximately 0.8 m above the ground plane.

The turntable with EUT was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels.

This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

#### **13.3 Measurement Uncertainty**

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement".

The measurement uncertainty was given with a confidence of 95 %.

| Test Items                                               | Uncertainty | Remark                                |
|----------------------------------------------------------|-------------|---------------------------------------|
| Radiated emission (30 MHz ~ 300 MHz, 3 m, Vertical)      | ± 4.38 dB   | Confidence levels of 95 % ( $k = 2$ ) |
| Radiated emission (30 MHz ~ 300 MHz, 3 m, Horizontal)    | ± 3.50 dB   | Confidence levels of 95 % ( $k = 2$ ) |
| Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Vertical)   | ± 3.75 dB   | Confidence levels of 95 % ( $k = 2$ ) |
| Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Horizontal) | ± 3.59 dB   | Confidence levels of 95 % ( $k = 2$ ) |

## **12.4 Limit**

20 dB in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) limit in the table below has to be followed.

| Frequencies<br>(MHz) | Field Strength<br>(microvolt/meter) | Measurement Distance (meters) |
|----------------------|-------------------------------------|-------------------------------|
| 0.009 ~ 0.490        | 2 400/F (kHz)                       | 300                           |
| 0.490 ~ 1.705        | 2 400/F (kHz)                       | 30                            |
| 1.705 ~ 30.0         | 30                                  | 30                            |
| 30 ~ 88              | 100                                 | 3                             |
| 88 ~ 216             | 150                                 | 3                             |
| 216 ~ 960            | 200                                 | 3                             |
| Above 960            | 500                                 | 3                             |

: GETEC-C1-12-289 : GETEC-E3-12-100

## 13.5 Test Equipment used

|          | Model Name               | Manufacturer    | Description            | Serial Number | <b>Due to Calibration</b> |
|----------|--------------------------|-----------------|------------------------|---------------|---------------------------|
| <b>-</b> | ESIB26                   | Rohde & Schwarz | EMI Test Receiver      | 830482/010    | 05. 23. 2013              |
| ■ -      | VULB9160                 | Schwarzbeck     | Broadband test antenna | 3193          | 03. 14. 2013              |
| ■ -      | MCU066                   | maturo GmbH     | Position Controller    | 1390306       | N/A                       |
| ■ -      | TT2.5SI                  | maturo GmbH     | Turntable              | 1390307       | N/A                       |
| ■ -      | AM4.0                    | maturo GmbH     | Antenna Mast           | 1390308       | N/A                       |
| ■ -      | BBHA9120D                | Schwarzbeck     | Horn antenna           | 207           | 01. 23. 2013              |
| ■ -      | 3160-09                  | ETS LINDGREN    | Horn antenna           | LM3423        | 11. 14. 2013              |
| ■ -      | AFS44-00101800-25-10P-44 | MITEQ           | Preamplifier           | 1258942       | 11. 12. 2012              |
| ■ -      | AFS44-00101800-25-10P-44 | MITEQ           | Preamplifier           | 1258943       | 11. 12. 2012              |

#### 13.6 Radiated emission test data

-. Test Date : October 4 ~ 5, 2012

-. Reference Standard : Part 15 Subpart C, Sec. 15.247(d)

-. Modulation / Channel-. Operating Condition: EDR 3 Mbps (8 DPSK)-. RF transmitting mode

-. Measuring Distance : 3 m

-. Spectrum Resolution Bandwidth(6 dB) : 120 kHz / 1 MHz / 10 Hz / 100 kHz

-. Detector mode : Peak detector mode / Quasi Peak detector mode / Average detector mode

-. Power Source : AC 120 V / 60 Hz (Adapter DC 5 V)

-. Note : None.

FCC ID.: UXZBSH200

## Result of radiated emission (9 kHz to 30 MHz)

No emission found between lowest internal used/generated frequency to 30 MHz.

## Worst case result of radiated emission (30 MHz to 1 000 MHz): EDR 3 Mbps (8 DPSK)

Adapter #1 (Model name: UE05WCP-050100SPC)



# Final Result 1

| I IIIai IXC | Juit I    |        |           |        |              |         |       |        |          |
|-------------|-----------|--------|-----------|--------|--------------|---------|-------|--------|----------|
| Frequency   | QuasiPeak | Meas.  | Bandwidth | Height | Polarization | Azimuth | Corr. | Margin | Limit    |
| (MHz)       | (dBµV/m)  | Time   | (kHz)     | (cm)   |              | (deg)   | (dB)  | (dB)   | (dBµV/m) |
|             |           | (ms)   |           |        |              |         |       |        |          |
| 32.200000   | 30.9      | 1000.0 | 120.000   | 100.0  | V            | 118.0   | 11.1  | 9.1    | 40.0     |
| 50.138878   | 31.5      | 1000.0 | 120.000   | 125.0  | V            | 225.0   | 12.7  | 8.5    | 40.0     |
| 78.761082   | 31.6      | 1000.0 | 120.000   | 100.0  | V            | 88.0    | 9.7   | 8.4    | 40.0     |
| 86.712745   | 33.4      | 1000.0 | 120.000   | 136.0  | V            | 156.0   | 9.2   | 6.6    | 40.0     |
| 139.917715  | 21.0      | 1000.0 | 120.000   | 100.0  | V            | 7.0     | 14.2  | 22.5   | 43.5     |
| 215.689339  | 28.6      | 1000.0 | 120.000   | 100.0  | V            | 89.0    | 12.1  | 14.9   | 43.5     |
| 303.748176  | 27.7      | 1000.0 | 120.000   | 100.0  | V            | 268.0   | 16.2  | 18.3   | 46.0     |
| 431.324770  | 31.9      | 1000.0 | 120.000   | 350.0  | V            | 150.0   | 19.7  | 14.2   | 46.0     |
| 503.168617  | 30.8      | 1000.0 | 120.000   | 165.0  | Н            | 27.0    | 21.3  | 15.2   | 46.0     |
| 718.860160  | 33.9      | 1000.0 | 120.000   | 150.0  | V            | 230.0   | 25.6  | 12.1   | 46.0     |

# • Adapter #2 (Model name: PSAC05R-050T)



# Final Result 1

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Meas.<br>Time | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth (deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|-----------------------|---------------|--------------------|----------------|--------------|---------------|---------------|----------------|-------------------|
|                    |                       | (ms)          |                    |                |              |               |               |                |                   |
| 32.200000          | 30.9                  | 1000.0        | 120.000            | 100.0          | V            | 118.0         | 11.1          | 9.1            | 40.0              |
| 50.138878          | 31.5                  | 1000.0        | 120.000            | 125.0          | V            | 225.0         | 12.7          | 8.5            | 40.0              |
| 78.761082          | 31.6                  | 1000.0        | 120.000            | 100.0          | V            | 88.0          | 9.7           | 8.4            | 40.0              |
| 86.712745          | 33.4                  | 1000.0        | 120.000            | 136.0          | V            | 156.0         | 9.2           | 6.6            | 40.0              |
| 139.917715         | 21.0                  | 1000.0        | 120.000            | 100.0          | V            | 7.0           | 14.2          | 22.5           | 43.5              |
| 215.689339         | 28.6                  | 1000.0        | 120.000            | 100.0          | V            | 89.0          | 12.1          | 14.9           | 43.5              |
| 303.748176         | 27.7                  | 1000.0        | 120.000            | 100.0          | V            | 268.0         | 16.2          | 18.3           | 46.0              |
| 431.324770         | 31.9                  | 1000.0        | 120.000            | 350.0          | V            | 150.0         | 19.7          | 14.2           | 46.0              |
| 503.168617         | 30.8                  | 1000.0        | 120.000            | 165.0          | Н            | 27.0          | 21.3          | 15.2           | 46.0              |
| 718.860160         | 33.9                  | 1000.0        | 120.000            | 150.0          | V            | 230.0         | 25.6          | 12.1           | 46.0              |

: GETEC-C1-12-289 : GETEC-E3-12-100

## Worst case result of radiated emission (1 GHz to 25 GHz): EDR 3 Mbps (8 DPSK)



\*Comment : AMP/CL\_Cable loss value + AMP gain value

AF : Antenna factor value Pol. : H(Horizontal), V(Vertical)

## Worst case result of radiated emission (Band Edge): EDR 3 Mbps (8 DPSK)

#### 0 CH (2 402 MHz)

|                    | Measurement Level        |         |        |          |                          |         |           | Limit   |       | Margin  |       | Positioning System |       |  |
|--------------------|--------------------------|---------|--------|----------|--------------------------|---------|-----------|---------|-------|---------|-------|--------------------|-------|--|
| Frequency<br>(MHz) | Reading Value<br>(dBµ V) |         | AF     | AMP / CL | Test Result<br>(dBµ V/m) |         | (dBµ V/m) |         | (dB)  |         | Pol.  | Height             | Angle |  |
|                    | Peak                     | Average | (dB/m) | (dB)     | Peak                     | Average | Peak      | Average | Peak  | Average | (H/V) | (cm)               | (°)   |  |
| 2385.43            | 56.49                    | 40.49   | 26.95  | -36.94   | 46.50                    | 30.50   | 74.00     | 54.00   | 27.50 | 23.50   | V     | 165                | 193   |  |

#### 78 CH (2 480 MHz)

|                    | Measurement Level        |         |        |          |                          |         |           | Limit   |       | Margin  |       | Positioning System |       |  |
|--------------------|--------------------------|---------|--------|----------|--------------------------|---------|-----------|---------|-------|---------|-------|--------------------|-------|--|
| Frequency<br>(MHz) | Reading Value<br>(dBµ V) |         | AF     | AMP / CL | Test Result<br>(dBµ V/m) |         | (dBµ V/m) |         | (dB)  |         | Pol.  | Height             | Angle |  |
|                    | Peak                     | Average | (dB/m) | (dB)     | Peak                     | Average | Peak      | Average | Peak  | Average | (H/V) | (cm)               | (°)   |  |
| 2483.50            | 63.77                    | 48.47   | 27.21  | -36.78   | 54.20                    | 38.90   | 74.00     | 54.00   | 19.80 | 15.10   | V     | 100                | 350   |  |

#### Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dB $\mu$ V/m) = 20 log Emission level ( $\mu$ V/m).

Corrected reading: Antenna factor + Cable loss + Preamplifier gain + Read value = Test result

# Result of radiated emission (1 GHz to 10<sup>th</sup> harmonics)

## (EDR 3 Mbps (8 DPSK), 0 CH / 2 402 MHz)

|                                                                     |                            |                                                    | Measure | Measurement Level |       |                          |          | Limit         |       | rgin    | Pos   | itioning Sy | stem  |
|---------------------------------------------------------------------|----------------------------|----------------------------------------------------|---------|-------------------|-------|--------------------------|----------|---------------|-------|---------|-------|-------------|-------|
| Frequency<br>(MHz)                                                  | Reading Value<br>(dBµ V/m) |                                                    | AF      | AMP / CL          |       | Test Result<br>(dBµ V/m) |          | $(dB\mu V/m)$ |       | (dB)    |       | Height      | Angle |
|                                                                     | Peak                       | Average                                            | (dB/m)  | (dB)              | Peak  | Average                  | Peak     | Average       | Peak  | Average | (H/V) | (cm)        | (°)   |
| 4804.22                                                             | 52.93                      | 39.33                                              | 31.20   | -32.83            | 51.30 | 37.70                    | 74.00    | 54.00         | 22.70 | 16.30   | V     | 100         | 0     |
| <ul><li>♦ Verti</li><li>△ Horiz</li><li>PK L</li><li>AV I</li></ul> | zontal<br>.imit            | 90 80 70 60 50 50 50 50 50 50 50 50 50 50 50 50 50 |         |                   |       |                          |          |               |       |         |       |             |       |
|                                                                     |                            | 40<br>30<br>20                                     |         | 600               | 00    | 11                       | 000<br>N | IHz           | 16000 |         | 21000 |             |       |

\*Comment : AMP/CL\_Cable loss value + AMP gain value

AF : Antenna factor value Pol. : H(Horizontal), V(Vertical)

## (EDR 3 Mbps (8 DPSK), 39 CH / 2 441 MHz)



\*Comment : AMP/CL\_Cable loss value + AMP gain value

AF : Antenna factor value Pol. : H(Horizontal), V(Vertical) ber : GETEC-E3-12-100

: GETEC-C1-12-289

# (EDR 3 Mbps (8 DPSK), 78 CH / 2 480 MHz)

|                    | Measurement Level          |         |        |          |                          |         |           | Limit   |       | Margin  |       | Positioning System |       |  |
|--------------------|----------------------------|---------|--------|----------|--------------------------|---------|-----------|---------|-------|---------|-------|--------------------|-------|--|
| Frequency<br>(MHz) | Reading Value<br>(dBµ V/m) |         | AF     | AMP / CL | Test Result<br>(dBµ V/m) |         | (dBμ V/m) |         | (dB)  |         | Pol.  | Height             | Angle |  |
|                    | Peak                       | Average | (dB/m) | (dB)     | Peak                     | Average | Peak      | Average | Peak  | Average | (H/V) | (cm)               | (°)   |  |
| 4960.11            | 52.24                      | 35.44   | 31.47  | -32.71   | 51.00                    | 34.20   | 74.00     | 54.00   | 23.00 | 19.80   | V     | 100                | 89    |  |



\*Comment : AMP/CL\_Cable loss value + AMP gain value

AF : Antenna factor value Pol. : H(Horizontal), V(Vertical)

#### Note:

Emission level (dB $\mu$ V/m) = 20 log Emission level ( $\mu$ V/m).

Corrected Reading: Reading value + AF (Antenna Factor) + AMP/CL (Cable Loss + Preamp factor) = Test result

- The end -

FCC ID.: UXZBSH200