

Åbo Akademi
Laboratory of Industrial
Chemistry and Reaction Engineering
Åbo, Finland

University of Naples Federico II N.I.C.L.: Naples Industrial Chemistry Laboratory Naples, Italy

Dynamic Nonisothermal Trickle Bed Reactor with both Internal Diffusion and Heat Conduction Sugar Hydrogenation as a Case Study

RussoV., Kilpiö T.*, DiSerio M., Tesser R., Santacesaria E., Salmi T. Univ. Naples Federico II, Italy Abo Akademi, Turku, Finland

Merits of gPROMS ModelBuilder

- Fast! No need to think step-by-step!
- User friendly equation typing!
- Local phenomena solved simultaneously.
- Process flow sheet modelling.
- Everything as program code.
- Parameter estimation & statistics.
- Steady-state and dynamic.

Fixed Bed Reactor

- Gas-liquid-solid.
- Heat & mass transfer.
- Conduction, dispersion(axial and radial)
- Kinetics: known/unknown.
- Particles: Internal heat & mass transfer.

Mass and energy balances for three phases

Boundary conditions

Gas phase			
Entrance	Outlet	Center	Wall
I	Iz-L	$\frac{\partial C_{i,G}(t,z)}{\partial r}\bigg _{r=0} = 0$	Ir=R
$T_G(t,r)\Big _{z=0} = T_G^{\ N}$	$\frac{\partial T_G(t,r)}{\partial z}\Big _{z=L} = 0$	$\frac{\partial T_G(t,z)}{\partial r}\Big _{r=0} = 0$	$\left. \frac{\partial T_G(t,z)}{\partial r} \right _{r=R} = 0$
<u>Liquid phase</u>			
Entrance	Outlet	Center	Wall
		$\frac{\partial C_{i,L}(t,z)}{\partial r}\Big _{r=0} = 0$	
$T_L(t,r)\Big _{z=0} = T_L^{IN}$	$\frac{\partial T_L(t,r)}{\partial z}\Big _{z=L} = 0$	$\left. \frac{\partial T_L(t,z)}{\partial r} \right _{r=0} = 0$	$-\left.k_{_{f}}\cdot\frac{\partial T_{_{L}}(t,z)}{\partial r}\right _{r=R}=h_{_{w}}\cdot(T_{_{L}}(t,z)\Big _{r=R}-T_{_{w}})$
Solid phase			
Entrance	Outlet	Center	Wall
$C_{i,s}(t,r,r_p)\Big _{z=0} = C_{i,s}^{IN}$	$\left.\frac{\partial C_{i,s}(t,r,r_p)}{\partial z}\right _{z=L}=0$	$\left.\frac{\partial C_{i,s}(t,z,r_p)}{\partial r}\right _{r=0}=0$	$\left. \frac{\partial C_{i,s}(t,z,r_p)}{\partial r} \right _{r=R} = 0$
	z-L	$\frac{\partial T_s(t, z, r_p)}{\partial r}\Big _{r=0} = 0 - k$	$\left. \frac{\partial T_{s}(t,z,r_{p})}{\partial r} \right _{r=R} = h_{w} \cdot (T_{s}(t,z,r_{p})) \Big _{r=R} - T_{w})$
Particle center		Particle surface	
$\left. \frac{\partial C_{i,s}(t,z,r)}{\partial r_p} \right _{r_p=0} = 0$	$\left. \frac{\partial T_s(t, z, r)}{\partial r_p} \right _{r_p = 0} = 0$	$C_{i,s}(t,z,r)\Big _{r_p=R_p}=C$	$T_s(t,z,r)\Big \qquad T_s(t,z,r)\Big _{r_p=R_p}=T_L(t,z,r)$

Gratefully Acknowledged for Financial Support Acades

Results

enends on how well system is

- Success depends on how well system is defined. (zero degrees of freedom).
- Numerical strategy: ModelBuilder does it itself.
- Program surprisingly fast running and reliable.
- Simultaneous dynamic solution of mass & heat balances for Gas-Liquid-Solid reaction system in three different dimensions (axial, radial, within particles).