$10_{15} \ (K10a_{68})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{21} - u^{20} + \dots + u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 21 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{21} - u^{20} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{12} - u^{10} + 3u^{8} - 2u^{6} + 2u^{4} - u^{2} + 1 \\ -u^{14} + 2u^{12} - 5u^{10} + 6u^{8} - 6u^{6} + 4u^{4} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{11} - 2u^{9} + 4u^{7} - 4u^{5} + 3u^{3} \\ u^{11} - u^{9} + 2u^{7} - u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{20} - 3u^{18} + 9u^{16} - 16u^{14} + 24u^{12} - 25u^{10} + 21u^{8} - 10u^{6} + 3u^{4} - u^{2} + 1 \\ u^{20} - 2u^{18} + 6u^{16} - 8u^{14} + 9u^{12} - 6u^{10} + 4u^{6} - 3u^{4} \end{pmatrix}$$

- (ii) Obstruction class =-1
- (iii) Cusp Shapes = $-4u^{19} + 4u^{18} + 8u^{17} 12u^{16} 28u^{15} + 32u^{14} + 40u^{13} 56u^{12} 64u^{11} + 72u^{10} + 64u^9 68u^8 56u^7 + 44u^6 + 36u^5 8u^4 16u^3 4u^2 + 8u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_8	$u^{21} + 5u^{20} + \dots + 3u + 1$
c_2, c_7	$u^{21} - u^{20} + \dots + u - 1$
c_4, c_5, c_9 c_{10}	$u^{21} - u^{20} + \dots - u - 1$
c_6	$u^{21} + 7u^{20} + \dots + 57u + 23$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_8	$y^{21} + 23y^{20} + \dots - 21y - 1$
c_{2}, c_{7}	$y^{21} - 5y^{20} + \dots + 3y - 1$
c_4, c_5, c_9 c_{10}	$y^{21} - 25y^{20} + \dots + 3y - 1$
<i>C</i> ₆	$y^{21} - 13y^{20} + \dots + 903y - 529$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.953485	4.41569	-0.452350
u = 0.874819 + 0.364250I	-0.42770 - 3.55745I	0.30280 + 8.52474I
u = 0.874819 - 0.364250I	-0.42770 + 3.55745I	0.30280 - 8.52474I
u = -0.953468 + 0.447109I	6.90304 + 5.27729I	3.50266 - 5.86843I
u = -0.953468 - 0.447109I	6.90304 - 5.27729I	3.50266 + 5.86843I
u = -0.797642 + 0.208550I	-1.36175 + 0.64933I	-4.62516 - 0.62543I
u = -0.797642 - 0.208550I	-1.36175 - 0.64933I	-4.62516 + 0.62543I
u = -0.863139 + 0.856542I	7.11051 - 0.45995I	6.17329 + 1.45528I
u = -0.863139 - 0.856542I	7.11051 + 0.45995I	6.17329 - 1.45528I
u = 0.900058 + 0.818905I	4.54603 - 3.06102I	1.66624 + 2.52883I
u = 0.900058 - 0.818905I	4.54603 + 3.06102I	1.66624 - 2.52883I
u = 0.853497 + 0.897241I	15.5974 + 2.5355I	7.87177 - 0.33713I
u = 0.853497 - 0.897241I	15.5974 - 2.5355I	7.87177 + 0.33713I
u = -0.352374 + 0.669848I	8.81523 - 1.18870I	8.06950 + 0.14927I
u = -0.352374 - 0.669848I	8.81523 + 1.18870I	8.06950 - 0.14927I
u = -0.945375 + 0.826771I	6.85351 + 6.71941I	5.45682 - 6.57422I
u = -0.945375 - 0.826771I	6.85351 - 6.71941I	5.45682 + 6.57422I
u = 0.974286 + 0.843873I	15.2130 - 8.9734I	7.18924 + 5.14301I
u = 0.974286 - 0.843873I	15.2130 + 8.9734I	7.18924 - 5.14301I
u = 0.332595 + 0.443596I	1.162670 + 0.391903I	7.61900 - 1.22999I
u = 0.332595 - 0.443596I	1.162670 - 0.391903I	7.61900 + 1.22999I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3, c_8	$u^{21} + 5u^{20} + \dots + 3u + 1$
c_2, c_7	$u^{21} - u^{20} + \dots + u - 1$
c_4, c_5, c_9 c_{10}	$u^{21} - u^{20} + \dots - u - 1$
c_6	$u^{21} + 7u^{20} + \dots + 57u + 23$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_8	$y^{21} + 23y^{20} + \dots - 21y - 1$
c_2, c_7	$y^{21} - 5y^{20} + \dots + 3y - 1$
$c_4, c_5, c_9 \ c_{10}$	$y^{21} - 25y^{20} + \dots + 3y - 1$
c_6	$y^{21} - 13y^{20} + \dots + 903y - 529$