*베이스라인 설명 및 사용법

*베이스라인: 성능 비교의 기준이 되는 기본 모델

목표

2014 ~ 2023년의 billboard hot100 데이터를 이용한 top10 여부 예측

사용 데이터

• 파일명: final_data_senti.csv

학습 데이터

독립변수

year, month, week, BPM, duration_sec, R, G, B, compound, genre

종속변수 (target)

isTop10 (0: X, 1: 0)

데이터 전처리

- [1] Genre: 힙합 -> 랩/힙합
- [2] RGB1: R, G, B로 나누기
- [3] top10 여부 컬럼 추가
- [4] 사용 feature 정의

・ Year ・ R ・ Month ・ G ・ Week ・ B ・ Genre ・ Featuring ・ BPM ・ compound ・ Duration_sec ・ isTop10

____ 제외

- Rank: 'isTop10'으로 대체
- Title
- Artist
- Lyrics
- color1, color2, color3
 - : 'R', 'G', 'B'로 대체
- neg, neu, pos: compound로 대체

데이터 전처리

[5] 데이터 타입 변경

6	Year	Month	Week	Genre	ВРИ	Duration_sec	R	G	В	Featuring	compound	isTop10
0	2014			랩/힙합	110.009	251.246	186	97	156	1.0	0.9904	1
1	2014		2	POP	129.992	204.160	18	22	36	1.0	0.9958	1
2	2014			랩/힙합	122.013	257.840	82	68	48	0.0	-0.9867	1
3	2014		2	POP, 록/메탈	84.876	190.185	151	123	112	0.0	0.9887	1
4	2014		2	발라드	141.284	229.400	33	39	67	0.0	0.9771	1
												22
52095	2023	12		재즈, 보컬재즈, 애시드/퓨전/팝	77.810	1037.907	200	215	236	0.0	0.8405	0
52096	2023	12	5	POP	129.918	143.940	31	30	30	0.0	0.9676	0
52097	2023	12		윌드뮤직, 라틴	125.012	189.426	161	163	191	0.0	-0.7319	0
52098	2023	12		POP	156.975	146.752	54	32	13	0.0	-0.9849	0
52099	2023	12		R&B/Soul, 국외드라마	84.828	244.685	71	83	80	0.0	-0.9946	0
52084 ro	52084 rows × 12 columns											

Data #		l 12 columns): Non-Null Count	Dtype
0	Year	52084 non-null	int 64
	Month	52084 non-null	int64
2	Week	52084 non-null	int64
3	Genre	52084 non-null	category
4	BPM	52084 non-null	float64
5	Duration_sec	52084 non-null	float64
6	R	52084 non-null	int64
7	G	52084 non-null	int64
8	В	52084 non-null	int64
9	Featuring	52084 non-null	float64
10	compound	52084 non-null	float64
11	isTop10	52084 non-null	category

전처리가 끝난 데이터

모델링

[1] 데이터 준비

- 1) X, y로 데이터 나누기
- 2) 수치형 변수 스케일링

Standard Scaling: 평균을 0, 표준편차를 1로 하는 데이터로 변환

MinMax Scaling: 최대값은 1, 최소값은 0으로 하여 0~1 사이의 값으로 변환

Robust Scaling: 중앙값, IQR 사용

3) 범주형 변수 인코딩

Label Encoding

Food Name	Categorical #	Calories	
Apple	1	95	
Chicken	2	231	
Broccoli	3	50	

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

- 4) 2), 3) 데이터 병합
- 5) train, test 데이터 나누기

모델링

[2] 모델 정의

경사하강법 기반: Logistic Regression

확률 기반: Naive Bayes

거리 기반: SVM

트리 기반: 기본) Decision Tree

앙상블) Random Forest

[3] 모델 학습 & 예측

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

모델링

[4] 성능 평가

Accuracy

F1-Score

Classification_report

Confusion Matrix

- 환경: Google Colab
- 준비
 - 1) 구글 드라이브 'Colab Notebookes' 폴더 내에 'project' 폴더 생성
 - 2) project 폴더 내에 '<u>baseline.ipynb</u>' 파일 업로드
 - 3) project 폴더 내에 'data' 폴더 생성
 - 4) data 폴더 내에 'final_data_senti.csv' 파일 업로드

MyDrive └ Colab Notebooks └ project └ baseline.ipynb └ data └ final data senti.csv

[1] 구글 드라이브 마운트

[2] 라이브러리 로드

[3] 데이터 로드

[4] 전처리

[5] 모델링

[5-1] 데이터 준비

[5-2] 모델 정의

5개 중 하나만 실행!

[6] 모델 학습 & 예측

[7] 성능 평가

[8] 테스트 결과 정리: <u>링크</u>