

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий

Кафедра Вычислительной техники

Отчет по практической работе №1

по дисциплине «Теория автоматов»

Тема практической работы: «Умножитель 4-разрядных чисел без знака»

Выполнил студент группы ИВБО-02-19

К. Ю. Денисов

Проверил ассистент

А. С. Боронников

Москва 2021

Содержание

1	Общее строение автомата	3
2	Алгоритм работы автомата	5
3	Реализация Операционного автомата	6
4	Реализация управляющего автомата	8
5	Тестирование работы автомата	9
6	Вывод	10

1 Общее строение автомата

В любом устройстве обработки цифровой информации можно выделить два основных блока – операционный автомат (ОА) и управляющий автомат (УА). Операционный автомат (ОА) служит для хранения слов информации, выполнения набора микроопераций и вычисления значений логических условий, т.е. операционный автомат является структурой, организованной для выполнения действий над информацией. Микрооперации, выполняемые ОА, задаются множеством управляющих сигналов $Y\{y_1,....,y_M\}$, с каждым из которых отождествляется определенная микрооперация.

Значения логических условий, вычисляемые в операционном автомате, отображаются множеством *осведомительных* сигналов $X = \{x_1,...,x_L\}$, каждый из которых отождествляется с определенным логическим условием.

Управляющий автомат (УА) генерирует последовательность управляющих сигналов, предписанную микропрограммой и соответствующую значениям логическим условий. Управляющий автомат задает порядок выполнения действий в ОА, вытекающий из алгоритма выполнения операций. Наименование операции, которую необходимо выполнить в устройстве, определяется кодом g операции, поступающим в УА извне.

В отличие от УА с жесткой логикой, закон функционирования которого обеспечивается определенным образом соединенными логическими элементами, в автоматах, построенных на основе ПЗУ, заданная микропрограмма реализуется в явной форме и хранится в памяти в виде последовательности управляющих слов. Управляющее слово определяет порядок работы устройства в течение одного такта и на-

зывается микрокомандой (МК). Она содержит информацию о микрооперациях, которые должны выполняться в данном такте, и (или) об адресе следующей микрокоманды.

В ходе данной практической работы был реализован автомат, выполняющий умножение 4-разрядных чисел без знака. Управляющий автомат был построен по схеме с адресным ПЗУ в последовательном варианте. Рассмотрим строение управляющего автомата. См рисунок 1.

Рис. 1: УА с адресным ПЗУ; последовательный вариант

В конкретной реализации роль мультиплексора выполняет логический элемент ИЛИ, на входы которого подаются сигналы CT0 — признак нуля в счетчике и осведомительный сигнал (признак) H — указывающий на присутствие логического ветвления в текущем месте алгоритма.

2 Алгоритм работы автомата

Опишем алгоритм работы автомата с помощью блок схемы. Используем сумматор для сложения текущего значение СЧП и множимого, счетчик для подсчета обработанных разрядов и регистры для хранения и использования разрядов рассматриваемых чисел. Обозначим микрокоманды от m_0 до m_4 . См. рисунок 2.

Рис. 2: Алгоритм умножения двух 4-разрядных чисел

В алгоритме присутствует условие, это означает, что при реализации операционного автомата текущие значение счетчика необходимо

проверять при переходе $m_0 \to m_1$ и $m_3 \to m_1$.

После построения алгоритма работы автомата следует перейти к реализации операционной части.

3 Реализация Операционного автомата

Построим операционный автомат, выполняющий умножение двух 4-разрядных чисел посредством использования четырех регистров, в том числе двух сдвиговых. Приведем названия и назначения каждого из регистров. См. таблицу 1.

Идентификатор	Назначение
RG_A	Хранит разряды множимого
RG_B	Сдивговый регистр. Хранит разряды мно-
	жителя
RG_R	Сдвиговый регистр. Хранит разряды
	СЧП, служит для хранения старших раз-
	рядов результата
RG_D	Сдвиговый регистр. Хранит младшие раз-
	ряды результата

Таблица 1: Регистры операционного автомата

Укажем необходимые признаки, которые впоследствии будут вырабатываться управляющим автоматом. См. таблицу 2. Соединим все элементы в соответствии с алгоритмом задачи. См. рисунок 3.

Признак	Назначение
Н	Указывает на условность-безусловность
	перехода
$EMIT_R_0$	Сигнализирует об окончании операции
	умножения
LOAD_R	Загрузка в регистр RG_R
RST	Асинхронный сброс всех элементов
$COUNT_CT$	Загрузка счетчика. Декремент, если
	$DECR_CT == 1$
$DECR_CT$	Декремент счетчика
LOAD_AB	Загрузка в регистры RG_A и RG_B
$SHIFT_RB$	Сдвиг в регистрах RG_R и RG_B

Таблица 2: Осведомительные сигналы (признаки)

Рис. 3: Схема операционного автомата

4 Реализация управляющего автомата

Приступим к построению управляющего автомата, определяющего последовательность выполнения микрокоманд для умножения двух 4-разрядных чисел.

Определим разрядность адресного ПЗУ и ПЗУ микрокоманд. Адрес должен иметь 4 разряда, где ведущим разряд — текущее значение параметра *СТО*. Микрокоманда представлена в виде 8 бит — 8 признаков, расположенных в следующем порядке: H, EMIT_RO, LOAD_R, RST, CONT_CT, DECR_CT, LOAD_AB, SHIFT_RB. Адрес текущей команды будет храниться в 4-разрядном регистре.

Заполним память в соответствии в алгоритмом, подключим ПЗУ и регистр последовательным способом. См рисунок 4.

Рис. 4: Схема операционного автомата

5 Тестирование работы автомата

После реализации операционного и управляющего автомата следует приступить к объединению данных устройств, тестированию их совместной работы. Подключим признаки к входам соответствующих логических элементов и цифровых устройств с помощью туннелей. Добавим блок ввода исходных данных, используя контакты, блок вывода —регистр результата и индикатор завершения операции умножения.

Проведем проверку корректности выходных результатов построенного цифрового устройства. Перемножим два наибольших 4-разрядных двоичных числа 1111_2*1111_2 ожидая получить двоичное число 11100001_2 . Укажем входные данные, будем подавать тактовые сигналы до тех пор, пока индикатор не сообщит нам о завершении операции, сравним практические результаты с ожидаемыми. См рисунок 5. Умножение выполнено корректно. Ожидаемые и полученные результаты совпадают.

Рис. 5: Схема операционного автомата

6 Вывод

В ходе данной практической работы было рассмотрено строение и работа управляющего автомата с адресным ПЗУ. Использовав полученные знания на практике, на основе данного управляющего автомата построено вычислительное устройство (операционный и управляющий автомат), реализующее операцию умножения двух 4-разрядных чисел без знака. Работа данного устройства испытана, проверена корректность полученных результатов.