

Machine Learning

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

Size (feet²)	Price (\$1000)		
$\rightarrow x$	y ~		
2104	460		
1416	232		
1534	315		
852	178		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

Size (f	feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
*	1	×s	×3	**	9	_
21	04	5	1	45	460 7	_
-> 14	16	3	2	40	232	M= 47
15	34	3	2	30	315	
85	52	2	1	36	178	
 Notatio	R	 *	 ሶ	 1		V [1416]
$\rightarrow n$ = number of features $n = 4$ $\rightarrow x^{(i)}$ = input (features) of i^{th} training example.				<u>*</u>	2) = 2 3 = 40	
$\Rightarrow x_j^{(i)}$ = value of feature <u>j</u> in i^{th} training example. $x_j = 2$						

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For convenience of notation, define
$$x_0 = 1$$
. [So $\theta_1 = 1$]

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1} \qquad 0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix}$$

Multivariate linear regression.

Machine Learning

Linear Regression with multiple variables

Gradient descent for multiple variables

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters:
$$\theta_0, \theta_1, \dots, \theta_n$$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ \supset (simultaneously update for every $j = 0, \dots, n$)

Gradient Descent

Previously (n=1):

$$:= \theta_0 - o \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \right]$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$1 \sum_{i=0}^{m} (i, \phi(i))$$

(simultaneously update
$$heta_0, heta_1$$
)

New algorithm $(n \ge 1)$:

Repeat
$$\{$$

$$m = 1$$
 (simultaneously update θ_j for

$$j=0,\ldots,n$$
)

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice I: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

Feature Scaling

Get every feature into approximately a

Mean normalization

Replace \underline{x}_i with $\underline{x}_i - \mu_i$ to make features have approximately zero mean (Do not apply to $\underline{x}_0 = 1$).

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice II: Learning rate

Gradient descent

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

 \rightarrow Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow converge)

To choose α , try

$$\dots, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, \dots$$

Machine Learning

Linear Regression with multiple variables

Features and polynomial regression

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Area

 $\times = frontage \times depth$
 $h_{\theta}(x) = \Theta_0 + \Theta_1 \times depth$

Polynomial regression

Choice of features

Machine Learning

Linear Regression with multiple variables

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \dots \qquad \frac{\text{Set}}{\partial \phi} O$$
Solve for ϕ

$$\underline{\theta \in \mathbb{R}^{n+1}} \qquad \underline{J(\theta_0, \theta_1, \dots, \theta_m)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underline{\frac{\partial}{\partial \theta_i} J(\theta)} = \cdots \stackrel{\boldsymbol{\leq}}{=} 0 \qquad \text{(for every } j\text{)}$$

Solve for $\theta_0, \theta_1, \ldots, \theta_n$

Examples: $\underline{m} = 4$.

	J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000))		
<u> </u>	x_0	x_1	x_2	x_3	x_4	y			
	1	2104	5	1	45	460	7		
	1	1416	3	2	40	232			
	1	1534	3	2	30	315			
	1	852	2	_1	3 6	178	7		
	\ <u>\</u>	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & \end{bmatrix}$	$2104 5 1$ $1416 3 2$ $1534 3 2$ $852 2 1$ $m \times (n+i)$	2 40 2 30 36	$y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	460 232 315 178	1est or		
$\theta = (X^T X)^{-1} X^T y$									

\underline{m} examples $(x^{(1)}, y^{(1)}), \ldots, (\underline{x^{(m)}, y^{(m)}})$; \underline{n} features.

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$(\operatorname{des}_{\mathsf{syn}} \\ \operatorname{nock}_{\mathsf{n}})$$

$$(\operatorname{h}_{\mathsf{x}}(\mathsf{n}))^{\mathsf{T}}$$

Andrew Ng

$$\underbrace{\theta = \underbrace{(X^T X)^{-1} X^T y}}_{(\mathbf{Y}^T \mathbf{Y})^{-1} \cdot \mathbf{1} \cdot \mathbf{1}} \boldsymbol{\angle}$$

 $(X^TX)^{-1}$ is inverse of matrix (X^TX) .

$$\frac{(x^{7}x)^{-1}}{(x^{7}x)^{-1}} = A^{-1}$$

$$\frac{\text{pino}(X^T + X) + X^T + y}{0 \leq X_1 \leq 1}$$

$$0 = 6 \left(X^T \times \right)^{-1} \times Ty \quad \text{min } J(6) \quad 0 \leq X_2 \leq 1000$$

$$0 \leq X_1 \leq 10^{-5} \times 10^{-5} \text{ min } J(6)$$

m training examples, \underline{n} features.

Gradient Descent

- \rightarrow Need to choose α .
- → Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute
- $(X^T X)^{-1} \quad \underset{\mathsf{n} \times \mathsf{n}}{\overset{\mathsf{n} \times \mathsf{n}}{\longrightarrow}} \quad O(\mathsf{n}^3)$
 - Slow if n is very large.

Machine Learning

Linear Regression with multiple variables

Normal equation and non-invertibility (optional)

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)
- Octave: pinv(X'*X)*X'*y

What if X^TX s non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$
 $x_2 = \text{size in m}^2$
 $x_1 = (3.18)^2 \times 2$

Too many features (e.g. $m \le n$).

- Delete some features, or use regularization.

