To Correlation coefficient is independent of change of origin and scale.

Let
$$U = \frac{x-a}{k}$$
, $V = \frac{Y-b}{k}$ [on $X = a+hU$, $Y = b+kV$]

To prove $Y(X,Y) = Y(U,V)$.

$$E(x) = a + RE(u)$$
, $E(Y) = b + KE(V)$

$$X-E(x)=h[U-E(U)]$$
 $Y-E(Y)=k[V-E(V)]$

$$Cov(X,Y) = E \left\{ \{X - E(X)\} \{Y - E(Y)\} \right\}$$

$$= E \left\{ h \{U - E(U)\} \cdot k \{V - E(V)\} \right\}$$

$$= h k E \left\{ \{U - E(U)\} \{V - E(V)\} \right\}$$

$$= h k Cov(U, V)$$

$$\sigma_{X}^{2} = E\left\{X - E(X)\right\}^{2} = E\left\{h^{2}\left\{U - E(U)\right\}^{2}\right\}$$

$$= h^{2} \sigma_{U}^{2}$$

$$\Rightarrow r(x, y)$$

$$= \frac{Cov(x, y)}{C_X} = \frac{h_X Cov(u, v)}{h_X C_U C_V}$$

$$= \frac{Cov(u, v)}{C_U C_V} = r(u, v).$$

The variables X and Y are connected by
the equi: ax + bY + C = 0. Show that the correlation
coefficient bet x and Y is -1 if the signs of
a and b are alike and +1 if they are
different.

$$\Rightarrow$$
 a $E(x) + b E(Y) + c = 0$

$$Cov(X,Y) = E\{x-E(X)\}\{Y-E(Y)\}\}$$

$$= -\frac{b}{a}\{E(Y-E(Y))^{2}\}^{2} = -\frac{b}{a}G^{2}$$

j. e

Agam,
$$\int_{X}^{v} = E\left\{x - E\left(x\right)\right\}^{2} = \frac{b^{v}}{a^{v}} \int_{Y}^{v}$$

$$\Rightarrow r = \frac{cov(x, y)}{c_x c_y} = \frac{-\frac{b}{a}c_y^{\gamma}}{\frac{|b|}{a}c_y^{\gamma}}$$

Calculate correlation coefficient for the following 28 heights (in inches)

X: Height of father Y: Height of Son

X; 65 66 67 67 68 69 70 72

Y: 67 68 65 68 72 72 69 71

	×	Y	Xx	Y 2	XY
	65	67	4225	4489	4355
	66	68	4356	4624	4488
	67	65	4489	4225	4355
	67	68	4489	4624	455%
	6 <i>8</i>	72	4624	5184	4896
	70	72 69	4761	5184	4968
	72	71	4966	4761	4830
1 1 ed-	Section and the second		5184	5041	5112
Total	544	5-\$2	37028	38132	37560

$$\overline{X} = \frac{1}{w} \Sigma X = 68$$
 $\overline{Y} = \frac{1}{w} \Sigma Y = 69$

$$\beta(x, Y) = \frac{\text{Cov}(x, Y)}{\sigma_{x} \sigma_{y}} = \frac{\frac{1}{h^{2}} \sum_{x = 1}^{h} \sqrt{\frac{1}{h^{2}} (\sum_{x = 1}^{h} \sum_{x = 1}^{h} \sqrt{\frac{1}{h^{2}} (\sum_{x = 1}^{h} \sum_{x = 1}^{h} \sum_{x = 1}^{h} \sqrt{\frac{1}{h^{2}} (\sum_{x = 1}^{h} \sqrt{\frac{1}{h^{2}} ($$

$$= \frac{\frac{1}{8} \times 37560 - 68 \times 69}{4.5 \times 9.5}$$

Short-out Method

×	Y	U=X-68	V= Y-69	Ű	VV	UV
65	67	- 3	- 2	9	4	6
66	68	-2	-1	4	and the same of th	2
67	65	-1	-4	1	16	4
67	68	-1	-1		1	l
68	72	0	3	0	9	0
69 70	7-2	1	3	4	9	3
72	69 71	2 4	0	16	0	0
Market and the second	. ,	1	2	21	44	24
21		0	0	36	()	-1
			_			

$$V(U,V) = \frac{c_{0}V(U,V)}{c_{0}V} = \frac{3}{\sqrt{4.5\times5.5}} = .603$$

$$\overline{U} = \frac{1}{N} \Sigma U = 0$$

$$\overline{V} = \frac{1}{N} \Sigma V^{2} = 0$$

$$Cov(U, V) = \frac{1}{N} \Sigma UV - \overline{U}V$$

$$= \frac{1}{8} \times 24 = 3$$

$$\overline{V} = \frac{1}{N} \Sigma (\overline{U})^{2} (\overline{U})^{2} = \frac{1}{8} \times 36 = 4.5$$

$$\overline{V} = \frac{1}{N} \Sigma V^{2} - (\overline{V})^{2} = \frac{1}{8} \times 44 = 5.5$$

The independent variables X and Y are defined by: $f(x) = \begin{cases} 4ax & 0 < x < x \\ 0 & \text{otherwise} \end{cases}$ $f(x) = \begin{cases} 4by & 0 \le y < S \\ 0 & \text{otherwise} \end{cases}$ Show that Corr. (U, V) = b-a , where U = X + Y, V = X - Y. Cov (U, V) = Cov. (X+Y, X-Y) = Gov. (x,x) - Cov. (x,Y) + Gov. (Y,x) - Gov (Y, Y) = 6x - 8x $Var(U) = \sigma_{x}^{\nu} + \sigma_{y}^{\nu}$ $Var(v) = \sigma_{x}^{\nu} + \sigma_{y}^{\nu}$ $E(x) = \frac{2x}{3}$, $E(x) = \frac{x}{2}$ $V(x) = \frac{1}{36a}$ $\int_{0}^{\infty} \int_{0}^{\infty} f(x) dx = 1 \Rightarrow \alpha = \frac{1}{2x^{2}}$ $\frac{1}{36b} \Rightarrow \frac{5x^{2} - 5y^{2}}{5x^{2} + 5y^{2}} = \frac{5-6}{5+6}$ Joint probability dist in given by

Find correlation coefficient between X and Y.

 $E(x) = (-1)\frac{3}{8} + 1(\frac{5}{8}) = \frac{1}{4}$ $E(x^2) = 1, \frac{3}{8} + 1, \frac{5}{8} = 1$ $Vaz(X) = \frac{15}{16}$, $Vaz(Y) = \frac{1}{4}$ E(XY) = 0, (-1) \ \frac{1}{8} + 0, \pm \frac{1}{3} + (-1), 1, \frac{2}{8} + 1, 1, \frac{2}{8} = 0 Cov (x, x) = E(xx) - E(x) E(x) = - 18. Given f(21, x2) = 6 x 0 < x < x < 1

= 0 otherwise

Find the correlation coefficient p.

Marginal dist of X, is

f, (xi) = 6 x4 (1- x4) 0 < x4 < 1

Marginal dist of X2 's

 $f_2(x_2) = 3x_2^{\nu}$ $0 < x_2 < 1$

 $E(x_1) = \int 6x_1^{2}(1-x_1)dx = \frac{1}{2} \quad E(x_2) = \frac{3}{4}$

 $V(x_1) = E(x_1^2) - \{E(x_1)\}^2 \qquad V(x_2) = E(x_2^2) - \{E(x_2)\}^2$ $= \frac{1}{20}$ = 39

 $E(x_1x_2) = \int_0^1 \int_0^{x_2} \cos(x_1x_2) dx_1 dx_2$ 0 0

 $Gov(x_1, x_2) = E(x_1 x_1) - E(x_1) E(x_2) = \frac{1}{40}$

 $\rho = \frac{\operatorname{Cev}(x_1, x_2)}{\operatorname{C}_{x_1} \operatorname{C}_{x_2}} = 179.$

 $VA \quad \text{Let} \quad f(x,y) = \begin{cases} 4xy e^{-(x^2+y^2)} & x \neq 0, y \geq 0 \\ 0 & \text{otherwise} \end{cases}$

Prove that density $\int_{0}^{\infty} \int_{0}^{\infty} U = \sqrt{\chi^{2} + \gamma^{2}} \int_{0}^{\infty} \int_{0$

-> Assume U=JX+Y", V=X

 $\frac{1}{J} = \frac{\partial(u, v)}{\partial(x, y)} = \begin{vmatrix} \frac{x}{\sqrt{x^2 + y^2}} & 1 \\ \frac{y}{\sqrt{x^2 + y^2}} & 0 \end{vmatrix} = -\frac{y}{\sqrt{x^2 + y^2}}$

The joint pdf of U and V is given by

 $g(u,v) = f(x,y)|J| = 4xye^{-(x^2+y^2)} \frac{\sqrt{y^2+x^2}}{y}$

= 4 x Jx+y2 e (x+y2)

= 4 ure - " u > 0 0< r < u

Marginal density fr. of U = Jx+y+ is

 $fr(u) = \int_{0}^{u} g(u, u) du = 4ue^{-u} \int_{0}^{u} u du = \begin{cases} 2u^{3}e^{-u} & u > 0 \\ 0 & \text{otherwise} \end{cases}$

$$f(x_1, x_2) = \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1-\rho_2}} \exp \left\{-\frac{1}{2(1-\rho)^{\alpha}} \int \left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 - 2\rho \left(\frac{x_1-\mu_1}{\sigma_1}\right) \left(\frac{x_2-\mu_2}{\sigma_2}\right) + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2\right\}$$

$$for - \infty < x_1 < \infty \text{ and } - \infty < x_2 < \infty$$

$$- \infty < \mu_1, \mu_2 < \infty \quad \sigma_1, \sigma_2 > 0, -1 < \rho < 1$$

$$Joint probability P(a < x_1 < b, a_2 < x_2 < b_2)$$
is defined as
$$\int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x_1, x_2) dx_1 dx_2$$

Marginal density 00

$$\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(x_{1}, x_{2}) dx_{2}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{1}{2} \left(\frac{x_{1} - \mu_{1}}{\delta_{1}}\right)^{2}} \Rightarrow X_{1} \sim N(\mu_{2}, \delta_{2}^{2})$$

$$\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{1}{2} \left(\frac{x_{2} - \mu_{2}}{\delta_{2}}\right)^{2}} \Rightarrow X_{2} \sim N(\mu_{2}, \delta_{2}^{2})$$

$$\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{1}{2} \left(\frac{x_{2} - \mu_{2}}{\delta_{2}}\right)^{2}} \Rightarrow X_{2} \sim N(\mu_{2}, \delta_{2}^{2})$$

Another expression for
$$f(x_1, x_2)$$
 is

$$f(x_1, x_2) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x_1 - \mu_2}{\sigma_2} \right)^2} \times \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma_1 (1 - \rho_2)^2} e^{-\frac{1}{2} \frac{1}{\sigma_2} (1 - \rho_2)} \left[x_1 - \left\{ \mu_1 + \rho \sigma_1 \left(\frac{x_2 - \mu_2}{\sigma_2} \right) \right\}^2 \right]$$

Thus

$$\int_{X_{1}/X_{2}=x_{2}} (x_{1}/x_{2}) = \frac{\int_{(x_{1}, x_{2})} f(x_{1})}{\int_{(x_{1}-\beta_{2})} (x_{2}-\beta_{1})} = \frac{1}{26(1-\beta_{2})} \left[x_{1} - \left\{ \mu + \beta \frac{6}{62} (x_{2}-\beta_{1}) \right\} \right]$$

$$= \sqrt{2\pi} \int_{(x_{1}-\beta_{2})} \frac{1}{26\pi} \int_{(x_{1}-\beta_{2}$$

$$\begin{array}{c} \Rightarrow \\ X_{1}/x_{2}=x_{2} \end{array} \qquad \begin{array}{c} N \left(\mu_{1} + \rho \ \sigma_{1} \left(\frac{x_{2}-\mu_{2}}{\sigma_{2}} \right) \ , \ \sigma_{1}^{\gamma} \left(1 - \rho^{2} \right) \end{array} \right) \end{array}$$

Similarly,

$$X_{2}/X_{1}=x_{1}$$
 $\sim N\left(\dot{\mu}_{2}+\rho\sigma_{2}\left(\frac{x_{1}-\dot{\mu}_{1}}{\sigma_{1}}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)$

Corversely, it marginal and conditional distributions are univariate normal then the joint distribution will be bivariate normal.

The amount of rainfall recorded at weather Station in January is RV X and the amount in February at the same station is RV Y. Suppose $(X,Y) \sim BND (6,4,1,\cdot 25,\cdot 1)$. Find $P(X \leqslant 5)$ and $P(Y \leqslant 5/X = 5)$.

$$P(x \le 5) = P(z \le \frac{5-6}{1}) = \phi(-1) = 0.1587.$$

$$Y/x=5 \sim N(4+1) \times \frac{1}{5}(5-6), 0.25(1-10)$$

= $N(3.975, 0.2475)$

$$P(Y \le 5 \mid x = 5) = P(Z \le \frac{S - 3.975}{.4975}) = \phi(2.06)$$

= '9803.

Ild A deek of n numbered cards is thoroughly suffled and the cards are inserted into a number cells one by one. If the card number 'i' falls in the cell 'i', we count it as a match, otherwise not. Find the mean and variance of total number of such matches.

Total number of matches 's' is given by where, $S = X_1 + X_2 + \cdots + X_n$

Xi = { 1 if i'm card falls in i'm cell

E(x1+x2+··+xn) = p.280+0.3 $= \sum_{i=1}^{n} 1 \cdot P(x_{i}=1) + 0 \cdot P(x_{i}=0) = n \cdot \frac{1}{n} = 1.$

 $Var(x_1 + x_2 + \cdots + x_n)$ = $V(x)+\cdots+Var(x_n)+2\sum_{i=1}^n\sum_{j=1}^nCov(x_i,x_j)$

 $Var(xi) = E(xi) - (E(xi))^{\nu}$

Now, $E(x_{i}^{\mu}) = 1^{n} \cdot P(x_{i} = 1) + 0^{n} \cdot P(x_{i} = 0)$

 \Rightarrow var(xi) = $\frac{1}{n} - \frac{1}{n^2} = \frac{n-1}{n^2}$

$$Cov(x_i,x_j) = E(x_i,x_j) - E(x_i) E(x_j)$$

$$E(x_i x_j) = 1.P(x_i x_j = 1) + 0.P(x_i x_j = 0)$$

Xi $x_j = 1 \Rightarrow i \hat{m} \neq j \hat{m}$ cards are in their matching so, $P(x_i x_j = 1) = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$

So,
$$P(x_i x_j = 1) = \frac{(n-2)!}{m!} = \frac{1}{n(n-1)}$$

 $Cov(x_i x_j) = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)} \frac{1}{n-1}$

$$= \frac{n - n + 1}{n^{2}(n-1)}$$

$$= \frac{1}{n^{2}(n-1)}$$

Therefore,

Var (s)
$$= n \cdot \left(\frac{n-1}{nr}\right) + 2 \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{n^{r}(n-1)}$$

$$= \frac{n-1}{n} + 2 \cdot \binom{n}{2} \cdot \binom{n-1}{n-1} + \frac{1}{n} = 1.$$

The life a tube (xi) and the filament diameter (x2) are distributed as BVN (2000, 0.1, 2500, .01, .87).

If the filament diameter is .098, what is the probability that the tube will last 1950 hours?

SH!
$$X_1/X_2 = 0.098$$
 $N(2000 + 0.87 \cdot \frac{50}{1}(0.098 - 0.0),$
 $2500(1 - (0.87)^2)$

$$= N \left(\frac{1999.43}{2000.87}, 607.25 \right)$$

$$P(X_1 > 1950 | X_2 = .098)$$

$$= P\left(\frac{7}{2}\right) \frac{1950 - 2000.87}{24.6526}$$

$$= P(2 > -2.06)$$

Development of Poisson Process

Assumptions

- -> Number of arrivals during non-overlapping time intervals are independent RV.
- > IA, such that for small st Prob (exactly one arrival in st) = AAt
- -> Prob (exactly zero arrival) = 1-2st
- \rightarrow Prob (2 or more arrivals) in 0 st S.t. $\frac{OAE}{AE} \rightarrow 0$ as $AE \rightarrow 0$

where is in mean arrival vate / occurrence vate.

Then if $P(x) = P(x_t = x) = p_x(t)$ Prob. that x no. of arrivals in t. $X = 0, 1, 2 \dots$

 $P_{\chi}(t+\lambda t) = P_{\chi}(t)(1-\lambda \lambda t) + P_{\chi-1}(t) \cdot \lambda \lambda t$ $\chi \text{ amivals in } t \text{ No anivals in } t \text{ and } t$ $\lim_{t \to t} [t, t+\lambda t] \quad \text{amival in } \lambda t.$

$$\frac{b_{\chi}(t+\Delta t)-b_{\chi}(t)}{\Delta t}=-\lambda b_{\chi}(t)+\lambda b_{\chi-1}(t)$$

For at -> 0

$$p_{\chi}(t) = \lambda p_{\chi-1}(t) - \lambda p_{\chi}(t)$$

$$P_{\delta}(t) = \lambda P_{\delta}(t) - \lambda P_{\delta}(t) = -\lambda P_{\delta}(t)$$

$$\Rightarrow P_{\delta}(t) = e^{-\lambda t}$$

$$P_{i}(t) = \lambda p_{0}(t) - \lambda p_{i}(t)$$

$$= -\lambda p_{i}(t) + \lambda e^{-\lambda t}$$

$$\Rightarrow$$
 $h_1(t) = e^{-\lambda t} (\lambda t)$

$$\Rightarrow p_2(t) = \frac{e^{-\lambda t} (\lambda t)^2}{2!}$$

$$\Rightarrow \phi_{\chi}(t) = e^{-\lambda t} (\lambda t)^{\chi}$$

Suppose that average number of telephone calls arriving at the switchboard of an operator is 30 calls per hour.

- (i) what is the prob that no calls arrive in 3 minute periods?
- (ii) what is The pub that more than 5 calls in 5 mins period?

Here, $\lambda = 30$, t = 1 lm. $\Rightarrow \lambda t = \frac{1}{2}$ per minute.

$$P_0(3) = \frac{e^{-\frac{1}{2}\times 3}}{0!} \sim \cdot 22$$

$$P(x(5) > 5) = \sum_{i=6}^{\infty} \frac{e^{-\frac{1}{2} \times 5} \left(\frac{5}{2}\right)^{i}}{i!} \approx .42.$$

Two RVs X and Y have The following joint pdf $f(x,y) = \begin{cases} 2-x-y & 0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant 1 \\ 0 & \text{otherwise} \end{cases}$

Find (a) Marginal pdf of x and Y (b) Cond. density Jr. (c) Var(x), Var(Y) (d) Grariance of X and Y.

Marginal $f_{x}(x) = \int (2-x-y) dy = \frac{3}{2} - x$ $f_{Y}(y) = \int (2-x-y) dx = \frac{3}{2} - y$

Conditional $f_{x_{1}}(x_{2}) = \frac{f(x,y)}{f_{1}(y)} = \frac{2-x-y}{3/2-y} \quad 0 < x, y < 1$ $f_{\chi}(y/x) = \frac{f(x,y)}{f_{\chi}(x)} = \frac{2-x-y}{3/2-x}$ 0(x,y<1)

E(X), E(X2), Nar(X) & Same for Y

$$E(x) = \int_{0}^{1} x \int_{x} (x) dx = \frac{5}{12}$$
 $E(Y)$

 $E(x^2) = \int x^2 \int_X (x) dx = \frac{1}{4}$

 $V(x) = \frac{1}{4} - \frac{25}{144} = \frac{11}{144}$

$$E(Y) = \frac{5}{12}$$

 $E(Y^2) = \frac{1}{4}$

V(Y) = 11

E(xy), Gov(x, y)

 $E(XY) = \int \int xy(2-x-y)dxdy = \frac{1}{6}$

 $G_{V}(x, Y) = E(xY) - E(x) E(Y) = -\frac{1}{144}$

$$f(x,y) = \begin{cases} \alpha^{-2} e^{-(x+y)/\alpha} \\ 0 \end{cases}$$

x, y >0 , a > 0 elsewhere

Find The distribution of \(\frac{1}{2} (X-Y).

Let
$$u = \frac{1}{2}(x - Y)$$
, $v = y$

$$|J| = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial u} \end{vmatrix} = 2.$$

$$g(u,v) = f(x,y) |J| = \frac{2}{\alpha^2} e^{-\frac{2}{\alpha}(u+v)}$$

where - 00 < u < 00

10 1 M 20

1e > -24 if u < 0

Marginal dist. form u

$$g_{u}(u) = \int_{-2u}^{\infty} \frac{2}{4^{2}} e^{-\frac{2}{4}(u+1e)} de = \frac{1}{4}e^{\frac{2u}{4}}$$
, 10>0.

Let $(x, Y) \sim N(5, 10, 1, 25, p)$ (i) If p > 0, find pWhen P(4 < Y < 16 / x = 5) = .954.

Conditional distribution of (x + p) = .954. $f_{1/2}(1/2) \sim N(\mu_{1/2} + p) = .954$ $\Rightarrow P(Y/x = 5) \sim N(10 + p) = .954$ $\Rightarrow P(4 < Y < 16 / x = 5) = .954$ $\Rightarrow P(4 - 10) = .954$ $\Rightarrow P(4 - 10) = .954$

 $P\left(\frac{-6}{\kappa} < Z < \frac{6}{\kappa}\right) = .954$ or, $\frac{6}{\kappa} = 2$ or $\kappa = 3 \Rightarrow p = \frac{4}{5} = .8$.

(ii) If p=0 find $P(x+y) \le 16$. $X+Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_{Y^2})$ i.e. N(15, 26) $P(Z \le \frac{16-15}{\sqrt{26}}) = .5793$. Let X1, X2... Xn be independent Poisson (distribution) RVs with X; ~ P(A), i =1,2...n.

Let
$$S_n = X_1 + X_2 + \cdots + X_n$$

$$= e^{\sum \lambda_i} (e^t - i)$$

$$\Rightarrow$$
 $S_n \sim P(\Sigma \lambda i)$

Additive property of Geometric distribution.

Let X1, X2... Xn be iid Geo(P). Then if Sn= ZXi

$$M_{s_i}(t) = \prod_{i=1}^{n} M_{x_i}(t) = \left(\frac{pe^t}{1-qet}\right)^n qe^t < 1.$$

Additive property of Negative binomial dist.

Let x1, x2-- xn be iid NB (ri, p), i=1,2-. n

We get Sn NB (Zri, 1)

Let $X_1, X_2 \dots X_n$ iid $Gamma(r_i, A), i = 1, 2 \dots n$ $\Rightarrow S_n = \sum X_i \sim Gamma(\sum r_i, A)$

Linearity property of Normal distribution.

Let $x_1, x_2 - \cdot \cdot x_n$ be iid Rvs and $x_i \sim N(\mu_i, \sigma_i)$. Vi then $Y = \sum_{i \ge 1} (\alpha_i x_i + b_i)$

 $N \left(\sum_{i=1}^{N} (a_{i} \mu_{i} + b_{i}), \sum_{i=1}^{n} a_{i}^{T} \sigma_{i}^{T} \right)$

If x, and x2 are not independent

 $Var(x_1 + x_2) = E(x_1 + x_2)^{2} - (Ex_1 + Ex_2)^{2}$ $= EX_1^{2} + EX_2^{2} + 2Ex_1x_2 - (Ex_1)^{2} - (E(x_2))^{2}$ $= 2(Ex_1)(Ex_2)$

= Var(x1) + Var(x2) + 2 Cov(x1, x2)

Further properties ...

Var (Σχ;) = Σναγ(x;) + 2ΣΣCον (x;, x;)

 $Cov\left(\sum_{i=1}^{n}x_{i}^{i},\sum_{j=1}^{m}Y_{j}^{i}\right)=\sum_{i=1}^{n}\sum_{j=1}^{m}Cov\left(x_{i},y_{j}^{i}\right)$

Let X1, X2 -- Xn be iid Exp(A).

> Sn = Zx; ~ Gamma (n, A).

The life of an electric system is $Y = X_1 + X_2 + X_3 + X_4$ where The system lifes X_1, X_2, X_3, X_4 are idefendent each having exponential dist with mean 4 hrs. What is The probability that The system will operate at least 24 hrs?

Here, $X_i \sim E \times p(4)$ $\Rightarrow Y = \sum_{i=1}^{4} X_i \sim Gaenera(4, 1/4)$ $P(Y \geqslant 24) = \int_{4}^{\infty} \frac{1}{4} e^{-x/4} e^{3} dx$

= .1512.

If $x_1, x_2 \sim Bin(n, p)$, prove that $x_1 + x_2 \sim Bin(2n, \frac{1}{2})$ Find the distribution of $x_1 - x_2$?

 $\frac{1}{2} \frac{1}{6} \frac{1}$

Let
$$(x, y)$$
 have joint pdf
$$f_{x, \gamma}(x, y) = \begin{cases} \frac{1 + x \cdot y}{4} & |x| < 1, |y| < 1 \end{cases}$$
Otherwise

IF U=x and V= Y, then find joint pdf of (v, v).

$$F_{U,V}(u,v) = P(U \le u, V \le v)$$

$$= P(-\sqrt{u} \le x \le \sqrt{u}, -\sqrt{v} \le Y \le \sqrt{v})$$

$$= \int_{-\sqrt{u}}^{\sqrt{u}} \int_{-\sqrt{u}}^{\sqrt{u}} (1+\frac{xy}{4}) dx dy$$

→ √u √2

Let
$$X, Y$$
 , wild $U(0, 1)$, $U = X + Y$, $V = X - Y$

$$X = \frac{U + U}{2}, Y = \frac{M - U}{2}$$

$$T = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Joint pdf of X,Y is
$$f_{X,Y}(x,y) = f_{X}(x) f_{Y}(y) = \begin{cases} 1 & 0 < x, y < 1 \\ 0 & \text{otherwise} \end{cases}$$

So The joint pdf of U and V is

$$f_{U,V}(u,v) = \begin{cases} \frac{1}{2} & 0 \leq u + v \leq 2 & 0 \leq u - v \leq 2 \\ 0 & \text{otherws} & \Rightarrow 0 \leq u \leq 2 \end{cases}$$

Theorem: Let $X = (X_1, X_2 ... X_N)$ be an n-dimensional continuous random vector with joint pdf $f_X(X)$, $X = (X_1, X_2 ... X_N)$. Let (a) $ui = g_i(X)$, i = 1, 2 ... n be a one-to-one transformation of \mathbb{R}^n to \mathbb{R}^n , i.e. inverse transformation $X_i = h_i(u)$, $X_i = h_i(u)$. $X_i = h_i(u)$, $X_i = h_$

- (b) Assume that the mapping and inverse are both continuous,
- (c) Assume that partial derivatives $\frac{\partial x_i}{\partial u_j}$, $i, j=1, 2 \cdots n$ exist and are continuous
- (d) Assume that The Jacobian J of transformations does not vanish in the range of transformation where, $J = \begin{pmatrix} \frac{\partial x_1}{\partial u_1} & \frac{\partial x_1}{\partial u_2} & \cdots & \frac{\partial x_1}{\partial u_n} \\ \frac{\partial x_2}{\partial u_1} & \frac{\partial x_2}{\partial u_2} & \cdots & \frac{\partial x_n}{\partial u_n} \\ \frac{\partial x_n}{\partial u_1} & \frac{\partial x_n}{\partial u_2} & \cdots & \frac{\partial x_n}{\partial u_n} \end{pmatrix}$

Then The random vector $\underline{v} = (v_1, v_2 ... v_n)$ is continuous and that joint paf given by

 $f_{\underline{U}}(\underline{u}) = f_{\underline{X}_{\underline{u}}}(h_1(\underline{u}), h_2(\underline{u}) - ... h_n(\underline{u})) |\underline{J}|.$

$$Y_1 = X_1 + X_2 + X_3$$
, $Y_2 = \frac{X_1 + X_2}{X_1 + X_2 + X_3}$, $Y_3 = \frac{X_1}{X_1 + X_2}$

Agam

$$\begin{vmatrix} y_2 y_3 & y_1 y_3 & y_1 y_2 \\ y_2 (1-y_3) & y_1 (1-y_2) - (y_1 y_2) \end{vmatrix} = -y_1^{y_3}$$

$$f_{x_1,x_2,x_3}(x_1,x_2,x_3) = \prod_{i=1}^{3} f_{x_i}(x_i) = \begin{cases} e^{-\sum x_i} \\ e^{-\sum x_i > 0} \\ i = 1,2,3 \end{cases}$$

Then joint pdf of (Y,, Y2, Y3) = ig (sas) is

$$f_{\underline{Y}}(\underline{y}) = \begin{cases} e^{-y_1}, y_1 y_2 & y_1 > 0, y_2, y_3 \in (0, 1) \\ 0 & \text{otherwise} \end{cases}$$

Marginal distis are
$$f_{Y_1}(y_1) = e^{-\frac{y_1}{2}} \frac{y_1^{\gamma}}{2} y_1 > 0$$

$$f_{Y_2}(y_2) = 2y_2 \quad 0 < y_2 < 1$$

Here fy (5) = ITT fy; (5;) > independent.