## **AMENDMENTS TO THE SPECIFICATION**

## In the Specification:

Please replace the paragraph at page 4, line 7 with the following amended paragraph:

[2] The compound as described in [1] represented by Formula (1), wherein R<sub>1</sub> and R<sub>2</sub> are each a hydrogen atom of, a C1-C4 alkyl group or an optionally substituted C1-C4 alkylcarbonyl group;

Xs, which may be identical or different each other, are a hydrogen atom, a halogen atom or a trifluoromethyl group;

Q<sub>1</sub> is a phenyl group, or a substituted phenyl group having one or more substituents, which may be identical or different, selected from a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C2-C4 alkenyl group, a C2-C4 haloalkenyl group, a C2-C4 alkynyl group, a C2-C4 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, a C1-C3 alkoxy group, a C1-C3 haloalkoxy group, a C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a C1-C3 alkylsulfinyl group, a C1-C3 haloalkylsulfinyl group, a C1-C3 alkylsulfonyl group, a C1-C3 haloalkylsulfonyl group, a C1-C4 alkylamino group, a di-C1-C4-alkylamino group, a cyano group, a nitro group, a hydroxyl group, a C1-C4 alkylcarbonyl group, a C1-C4 alkylcarbonyloxy group, a C1-C4 alkoxycarbonyl group, an acetylamino group, and a phenyl group; a heterocyclic group (the heterocyclic group herein represents a pyridyl group, a pyridin-N-oxide group, a pyrimidinyl group, a pyridazyl group, a pyrazyl group, a furyl group, a thienyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, a thiazolyl group, an isothiazolyl group, an imidazolyl group, a triazolyl group, a pyrrolyl group, a pyrazolyl group or a tetrazolyl group), or a substituted heterocyclic group (which means the same as those described above) having one or more substituents, which may be identical or different, selected from a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C2-C4 alkenyl group, a C2-C4 haloalkenyl group, a C2-C4 alkynyl group, a C2-C4 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, a C1-C3

alkoxy group, a C1-C3 haloalkoxy group, a C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a C1-C3 alkylsulfinyl group, a C1-C3 haloalkylsulfinyl group, a C1-C3 alkylsulfonyl group, a C1-C4 alkylamino group, a di-C1-C4-alkylamino group, a cyano group, a nitro group, a hydroxyl group, a C1-C4 alkylcarbonyl group, a C1-C4 alkylcarbonyl group, a C1-C4 alkoxycarbonyl group, an acetylamino group, and a phenyl group;

Q<sub>2</sub> is represented by Formula (2):

$$Y_5 \qquad Y_4 \qquad (2)$$

(wherein Y<sub>1</sub> and Y<sub>5</sub>, which may be identical or different, each represent a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a C1-C3 haloalkylsulfinyl group, a C1-C3 alkylsulfinyl group, a C1-C3 haloalkylsulfinyl group or a cyano group; Y<sub>3</sub> represents a C2-C6 perfluoroalkyl group, a C1-C6 perfluoroalkylthio group, a C1-C6 perfluoroalkylsulfinyl group or a C1-C6 perfluoroalkylsulfonyl group; and Y<sub>2</sub> and Y<sub>4</sub> each represent a hydrogen atom, a halogen atom or a C1-C4 alkyl group);

or by Formula (3):

$$Y_9 Y_7 Y_8$$
 (3)

(wherein  $Y_6$  and  $Y_9$ , which may be identical or different, each represent a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a C1-C3 alkylsulfinyl group, a C1-C3 haloalkylsulfinyl group, a C1-C3 alkylsulfonyl group, a C1-C3 haloalkylsulfonyl group or a cyano group;  $Y_8$  represents a C1-C4 haloalkoxy group, a C2-C6 perfluoroalkyl group, a C1-C6 perfluoroalkylthio group, a C1-C6 perfluoroalkylsulfonyl group; and  $Y_7$  represents a hydrogen atom, a halogen atom or a C1-C4 alkyl group).

Please replace the paragraph at page 8, line 26 with the following amended paragraph:

[5] The compound as described in [1] or [2], represented by Formula (1a), which is Formula (1) with  $A_1$ ,  $A_2$ ,  $A_3$  and  $A_4$  being all carbon atoms:

$$R_1$$
  $N$   $Q_1$   $X_2$   $X_1$   $Q_2$   $(1a)$   $X_3$   $X_4$   $G_2$ 

wherein Q<sub>2</sub> is represented either by Formula (2):

$$Y_{5} Y_{4} Y_{3}$$
 (2)

(wherein Y<sub>1</sub> and Y<sub>5</sub>, which may be identical or different, each represent a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a C1-C3 alkylsulfinyl group, a C1-C3 haloalkylsulfinyl group, a C1-C3 alkylsulfonyl group, a C1-C3 haloalkylsulfonyl group or a cyano group; Y<sub>3</sub> represents a C2-C6 perfluoroalkyl group; and Y<sub>2</sub> and Y<sub>4</sub> each represent a hydrogen atom, a halogen atom or a C1-C4 alkyl group);

or by Formula (3):

$$\begin{array}{c}
Y_6 \\
Y_9 \\
Y_8
\end{array}$$

$$\begin{array}{c}
Y_6 \\
Y_7 \\
Y_8
\end{array}$$

$$(3)$$

(wherein  $Y_6$  and  $Y_9$ , which may be identical or different, each represent a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a C1-C3 alkylsulfinyl group, a C1-C3 haloalkylsulfinyl group, a C1-C3 alkylsulfonyl group, a C1-C3 haloalkylsulfonyl group or a cyano group;  $Y_8$  represents a C2-C6 perfluoroalkyl group; and  $Y_7$  represents a hydrogen atom, a halogen atom or a C1-C4 alkyl group);

 $X_1$  and  $X_2$  each represent a hydrogen atom or a fluorine atom;

 $X_3$  and  $X_4$  represent a hydrogen atom;

one of  $R_1$  and  $R_2$  is a hydrogen atom, the other is a C1-C4 alkyl group or an optionally substituted C1-C4 alkylcarbonyl group, or both of them are independently a C1-C4 alkyl group or an optionally substituted C1-C4 alkylcarbonyl group;

G<sub>1</sub> and G<sub>2</sub> each represent an oxygen atom or a sulfur atom; and

Q<sub>1</sub> represents a phenyl group; a substituted phenyl group having one or more substituents, which may be identical or different, selected from a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C2-C4 alkenyl group, a C2-C4 haloalkenyl group, a C2-C4 alkynyl group, a C2-C4 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, a C1-C3 alkoxy group, a C1-C3 haloalkoxy group, a C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a C1-C3 alkylsulfinyl group, a C1-C3 haloalkylsulfinyl group, a C1-C3 alkylsulfonyl group, a C1-C3 haloalkylsulfonyl group, a C1-C4 alkylamino group, a di-C1-C4-alkylamino group, a cyano group, a nitro group, a hydroxyl group, a C1-C4 alkylcarbonyl group, a C1-C4 alkylcarbonyloxy group, a C1-C4 alkoxycarbonyl group, an acetylamino group and a phenyl group; a heterocyclic group (the heterocyclic group herein represents a pyridyl group, a pyridin-N-oxide group, a pyrimidinyl group, a pyridazyl group, a pyrazyl group, a furyl group, a thienyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, a thiazolyl group, an isothiazolyl group, an imidazolyl group, a triazolyl group, a pyrrolyl group, a pyrazolyl group or a tetrazolyl group); or a substituted heterocyclic group (which means the same as those described above) having one or more substituents, which may be identical or different, selected from a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C2-C4 alkenyl group, a C2-C4 haloalkenyl group, a C2-C4 alkynyl group, a C2-C4 haloalkynyl group, a C3-C6 cycloalkyl group, a C3-C6 halocycloalkyl group, a C1-C3 alkoxy group, a C1-C3 haloalkoxy group, a C1-C3 alkylthio group, a C1-C3 haloalkylthio group, a C1-C3 alkylsulfinyl group, a C1-C3 haloalkylsulfinyl group, a C1-C3 alkylsulfonyl group, a C1-C3 haloalkylsulfonyl group, a C1-C4 alkylamino group, a di-C1-C4-alkylamino group, a cyano group, a nitro group, a hydroxyl group, a C1-C4 alkylcarbonyl group, a C1-C4 alkylcarbonyloxy group, a C1-C4 alkoxycarbonyl group, an acetylamino group and a phenyl group.