Progressas Aritmética (PA)

$$\int \alpha_{1} = \alpha_{m-1} + \alpha$$

$$\int \alpha_{2} = \alpha_{m}$$

$$\int \alpha_{1} = \alpha_{m}$$

(1)
$$(a_1, a_1, a_1, a_2, a_3, a_4, a_5)$$
 $PA R_1 = -3 + M = 2$
(2) $(-3, -1, 1, 3, 5, ...)$ $PA R_1 = -3 + M = -3$
(3) $(7, 4, 1, -2, -5, ...)$ $PA R_2 = 7 + M = -3$

$$4 = \frac{7+1}{2}$$
 $1 = \frac{4+(-2)}{2}$ $-2 = \frac{1+(-5)}{2}$

(
$$\alpha_1, \alpha_2, \alpha_3, \alpha_4, \dots$$
) $\alpha_{m-1}, \alpha_m, \alpha_{m+1}, \dots$) PA de $\alpha_2 \bar{\alpha}_0 \pi$
3 termes consecutives da Aquencia
 $\alpha_2 - \alpha_1 = \alpha_3 - \alpha_2 = \alpha_4 - \alpha_3 = \dots = \alpha_m - \alpha_{m-1} = \alpha_{m+1} - \alpha_m$
 $\alpha_m - \alpha_{m-1} = \alpha_{m+1} - \alpha_m$
 $\alpha_m + \alpha_m = \alpha_{m+1} + \alpha_{m-1}$
 $\alpha_m = \alpha_{m+1} + \alpha_{m-1}$ fropriedade da
 $\alpha_m = \alpha_{m+1} + \alpha_{m-1}$ fropriedade da
 $\alpha_m = \alpha_{m+1} + \alpha_{m-1}$ fropriedade da
 $\alpha_m = \alpha_{m+1} + \alpha_{m-1}$ fropriedade da

Ex paq
$$(x+5, 4x-1, x^2-1)$$
 PA $x?$

Prop. da média anitmética

 $4x-1 = \frac{x+5+x^2-1}{2}$ $x=1 \Rightarrow a PA = (6, 3, 0)$
 $8x-2 = x^2+x+4$ au $x=6$
 $x=1 \text{ au } x=6$

opcos
$$(x^2-1)-(4x-1)=(4x-1)-(x+5)$$

Termo geral da PA 1º termes apre razas $a_2 = a_1 + 1 \pi$ $a_3 = a_2 + n = a_1 + n \Rightarrow a_3 = a_1 + o_n$ $a_4 = a_3 + \pi = a_1 + 2\pi + \pi \Rightarrow a_9 = a_1 + 3\pi$ $a_{m} = a_{1} + (m-1) \cdot \pi, m 1$

①
$$PA(4,10,16,22,...)$$
 $Q_{51} = ?$

$$Q_{1} = 4 \qquad M = 10 - 4 = 6 \qquad Q_{m} = Q_{1} + (m-1). M$$

$$Q_{51} = 4 + 50.6 \qquad \Rightarrow \qquad \boxed{Q_{51} = 304}$$

3)
$$PA(2,10,18,...,250)$$
 $m \in de terms da PA$
 $Q_1 = 2$ $Q_m = 250$ $M = 8$
 $Q_m = Q_1 + (m-1)N$
 $Q_m = Q_$

ex 17 ao 40 quantidade de exercícios (17,18,19, -..,40) PA a, = 47 am = 40 r=1 $40 = 17 + (M-1) \cdot 1 \implies M-1 = 40 - 17 \implies M = 40 - 17 + 1$ 5) Interpolar 4 meios aritmétices entre 1 e 2, nersa orden \ PA e-m = 2 + 4 = 6 $Q = 1 + 5 \pi$

0.6 = 2

$$\begin{cases} a_1 + a_5 = 26 \\ a_2 + a_9 = 46 \end{cases}$$

$$\begin{array}{c}
0.1 + 0.1 + 41 = 26 \\
0.1 + 1 + 0.1 + 81 = 46
\end{array}$$

Treisson método da adição

7 PA de 3 termos fal que a Roma desses termos e⁻3 e o produto deles e⁻ $\frac{5}{9}$.

 $\frac{19 \text{ solução}}{(\alpha_{1}, \alpha_{2}, \alpha_{3}) PA}$ $\frac{(\alpha_{1}, \alpha_{2}, \alpha_{3}) PA}{(\alpha_{1}, \alpha_{2}, \alpha_{3} = 3)}$ $\frac{(\alpha_{1}, \alpha_{2}, \alpha_{3} = 3)}{(\alpha_{1}, \alpha_{2}, \alpha_{3} = \frac{5}{9})}$ $\frac{(\alpha_{1}, \alpha_{2}, \alpha_{3} = \frac{5}{9})}{(\alpha_{1}, \alpha_{2}, \alpha_{3} = \frac{3}{9})}$

PA QI= x e razaot $(x, x+\pi, x+2\pi)$ $\int \gamma + \gamma + \Gamma + \chi + 2\Lambda = 3$ $\int \gamma \cdot (\chi + \Gamma)(\chi + 2\Lambda) = \frac{5}{9}$ $\begin{array}{c} 1 & \gamma_{2} + \Lambda = 1 & -D & \chi = 1 - \Lambda \\ (1 - \Lambda) (1 - \Lambda + \Lambda) (1 - \Lambda + 2\Lambda) = \frac{5}{9} \end{array}$

PA de razão M $(\chi-\Pi,\chi)$ $\chi+\Pi$ $\begin{cases} \chi - \chi + \chi + \chi + \chi = 3 \\ (\chi - \chi) \chi \cdot (\chi + \chi) = 5 \\ q \end{cases}$ $3x = 3 \Rightarrow |x = 1|$ $(1-1)\cdot 1\cdot (1+1)=\frac{5}{a}$

$$(1-\pi)(1+\pi) = \frac{5}{9}$$

 $1-\frac{5}{9}$
 $1-\frac{5}{9}$
 $1-\frac{5}{9}$
 $1-\frac{2}{9}$
 $1-\frac{2}{9}$

$$\gamma = 1 \cdot 2 \cdot 7 = \frac{2}{3} \implies \alpha \quad PA \quad \left(\frac{1}{3}, \frac{1}{3}, \frac{5}{3}\right)$$

$$\frac{QU}{\chi = 1e} \quad \chi = -\frac{2}{3} \implies \alpha PA \quad \left(\frac{5}{3}, \frac{1}{3}, \frac{4}{3}\right)$$

Tarefa Pag 174 do 9 ao 36

$$Q_{m} = Q_{1} + (m-1). M$$
 $Q_{m} - Q_{1} = (m-1). M$
 $M + Q = M - M - M = \frac{Q_{m} - Q_{1}}{M}$
 $M + Q = \frac{36 - 9}{1}$