RESUMEN FUNDAMENTOS DE COMPUTADORES

Tema 1 - Introducción a los Computadores

Definiciones Preliminares

- Informática: Conjunto de conocimientos científicos y técnicas que permiten el tratamiento automático de la información mediante computadoras.
- Computador: Máquina electrónica que almacena y procesa información para resolver problemas. También conocido como ordenador o computadora.

Componentes de un Computador

Hardware

 Componentes físicos como procesadores, memoria, discos duros, y dispositivos de entrada/salida.

Software

- Programas e instrucciones que permiten la ejecución de tareas en un computador.
- Se encuentra almacenado físicamente en hardware pero es intangible y modificable.

Clases de Computadores

- 1. Personales: Uso general con equilibrio entre coste y prestaciones.
- 2. Supercomputadores: Alta capacidad para cálculos científicos e ingeniería.
- 3. Servidores: Gestionan acceso a redes con alta capacidad y confiabilidad.
- 4. Empotrados: Integrados en otros sistemas con restricciones de energía y coste.

Niveles de Transformación y Jerarquías

- Las abstracciones simplifican el diseño de computadores ocultando detalles de niveles inferiores:
 - Electrones y Transistores: Nivel físico básico.
 - o Circuitos Lógicos: Implementación de operaciones digitales.
 - Microarquitectura e ISA (Arquitectura de Conjunto de Instrucciones): Interfaces clave entre hardware y software.
 - Sistemas Operativos, Compiladores y Lenguajes de Programación: Intermediarios que conectan aplicaciones con hardware.
 - o Aplicaciones: Programas que resuelven problemas específicos para el usuario.

Modelo Básico del Computador

- CPU (Unidad Central de Proceso):
 - Unidad de control.

- o Camino de datos (incluye ALU: Unidad Aritmético-Lógica).
- Memoria Principal: Almacena temporalmente instrucciones y datos.
- Dispositivos de Entrada/Salida: Permiten interacción con el usuario (teclado, pantalla, etc.).
- Modelo de Von Neumann: Diseño básico que define la estructura de computadores.

Codificación de Información

- Bits y Bytes:
 - o Bit: Unidad elemental (0 o 1).
 - Byte: Conjunto de 8 bits, permite representar hasta 256 valores diferentes.
- Bases Numéricas: Representación en binario, octal, decimal y hexadecimal.

Lenguajes de Programación

- Alto Nivel: Cercanos al problema, ofrecen productividad y portabilidad (ej. Python, C, Java).
- Bajo Nivel:
 - o Ensamblador: Representación textual de instrucciones de máquina.
 - o Máquina: Codificación binaria utilizada por el hardware.

Software del Sistema

- Sistemas Operativos: Gestionan recursos de hardware y protegen la ejecución de programas.
- Compiladores e Intérpretes: Traducen programas de lenguajes de alto nivel a instrucciones comprensibles por el hardware.

Rendimiento del Computador

- Tiempo de CPU:
 - Depende del número de instrucciones, ciclos por instrucción y frecuencia del procesador.

• Factores Críticos:

 Diseño del algoritmo, eficiencia del compilador, microarquitectura del CPU y tecnología de circuitos.

Resumen detallado por temas

Tema 2: Representación de la información

Introducción

 Los computadores son máquinas diseñadas para procesar información representada en forma binaria.

- La información incluye:
 - o Caracteres alfabéticos: Letras minúsculas y mayúsculas (A-Z, a-z).
 - o Caracteres numéricos: Dígitos del 0 al 9.
 - o Caracteres especiales: Símbolos como *, +, -, (,).
 - Caracteres de control: Fin de línea, tabulaciones, entre otros.
- La codificación convierte esta información comprensible para los humanos en secuencias binarias que la máquina puede procesar.
- Códigos normalizados: Estándares como ASCII y Unicode garantizan uniformidad.

Representación de enteros

- Sistemas de numeración:
 - Decimal (base 10): Sistema natural para los humanos.
 - o Binario (base 2): Sistema fundamental para computadores; usa 0 y 1.
 - Octal (base 8) y Hexadecimal (base 16): Representaciones compactas para agrupar bits.
- Métodos de representación interna:
 - o Signo y magnitud: Utiliza un bit para el signo; los restantes representan el valor.
 - Complemento a 2: Permite representación de enteros con signo y simplifica operaciones aritméticas.
 - o **Sesgado:** Agrega un desplazamiento al valor, usado en exponentes de reales.

Representación de reales

- IEEE 754:
 - División en signo, exponente y mantisa.
 - o Precisión simple (32 bits) y doble (64 bits).
 - Permite representar valores muy grandes, pequeños y no exactos (errores de redondeo).

Errores comunes:

- o Desbordamiento: Cuando el valor excede el rango representable.
- o Subflujo: Para valores menores al mínimo.

Representación de caracteres

- **ASCII:** Define caracteres en 7 bits para textos básicos en inglés.
- **Unicode:** Codificación de hasta 32 bits; incluye emojis, idiomas globales y símbolos matemáticos.

Representación multimedia

• Imágenes:

o Basadas en mallas de pixeles con profundidades de color como RGB (24 bits).

Sonido:

Se digitaliza muestreando señales analógicas.

Video:

Secuencia de cuadros con codificaciones como MP4 y AVI.

Tema 3: Los lenguajes del computador

ISA (Instruction Set Architecture)

- Define el conjunto de operaciones que el procesador puede realizar.
- Ejemplos:
 - o Carga (load): Copiar datos de memoria a un registro.
 - o Almacenamiento (store): Transferir datos de un registro a memoria.
 - o Aritmética: Suma, resta, etc.
 - Saltos (jumps): Alterar el flujo de ejecución del programa.

Arquitectura RISC-V

Ventajas:

- o Diseño abierto y libre de licencias.
- o Fácil aprendizaje y simplicidad en sus instrucciones.
- Variedades soportadas: 32, 64 y 128 bits.

Niveles de lenguajes de programación

- 1. Lenguaje de alto nivel: Legible para humanos (C, Python).
- 2. Lenguaje ensamblador: Instrucciones cercanas al hardware, mapeadas al ISA.
- 3. Lenguaje de máquina: Código binario ejecutable por la CPU.

Registros en ensamblador

- Uso de registros:
 - Datos almacenados temporalmente dentro de la CPU para acceso rápido.
- RISC-V: Tiene 32 registros de 32 bits.
- Optimización: Uso eficiente de registros es clave debido a su cantidad limitada.

Tema 4: Estructura del computador

Modelo básico

- Componentes principales:
 - o CPU: Realiza operaciones y controla el flujo de datos.
 - o Memoria: Almacena programas y datos para su procesamiento.
 - Entrada/Salida (E/S): Conexión con dispositivos externos.
- Interconexiones: Los componentes se comunican mediante buses.

Procesador (CPU)

- Unidad aritmético-lógica (ALU): Ejecución de operaciones matemáticas.
- Contador de programa (PC): Indica la próxima instrucción a ejecutar.
- Registros internos: Almacenan resultados temporales.

Jerarquía de memoria

- 1. Registros: Ubicados en la CPU; ultrarrápidos y pequeños.
- 2. Caché: Memoria intermedia para reducir latencias.
- 3. RAM: Principal, de mayor capacidad pero más lenta.
- 4. Almacenamiento secundario: HDDs y SSDs.

Sistemas digitales

- Construidos con puertas lógicas (AND, OR, NOT).
- Circuitos combinacionales: Dependen solo de las entradas actuales.
- Circuitos secuenciales: Guardan información pasada (memoria).

Tema 5: El sistema operativo (SO)

Concepto general

- Software intermedio entre el hardware y las aplicaciones.
- Roles principales:
 - Gestionar hardware (CPU, memoria, dispositivos).
 - Ofrecer servicios para que las aplicaciones funcionen.

Interfaces

- 1. GUI: Gráfico, basado en ventanas e iconos.
- 2. CLI: Basado en comandos escritos.

Gestión de procesos

- Los procesos son programas en ejecución.
- Cambio de contexto: Permite que el sistema gestione múltiples procesos.

Memoria virtual

- Abstracción que crea la ilusión de tener más memoria que la física.
- Divide el espacio en páginas, asignándolas a programas según demanda.

Tema 6: Compilación e interpretación

Compilación

- Traducción completa de código fuente a lenguaje máquina antes de ejecutar.
- Ventajas:
 - o Programas rápidos y eficientes.
- Ejemplo: Lenguajes como C, C++.

Interpretación

- Traducción y ejecución línea por línea.
- Ventajas:
 - Flexibilidad para depuración.
- Ejemplo: Python.

Modelos híbridos

• Bytecode interpretado por máquinas virtuales (e.g., JVM para Java).

Uso de bibliotecas

- Funcionalidades adicionales reutilizables.
- Ejemplo en Python: os, math, numpy.

Prácticas detalladas

1. Linux Shell:

Domina comandos como ls, grep, chmod y el manejo de paquetes.

2. Control de versiones (Git):

Usa commit, push y crea ramas para colaboración.

3. Simulaciones:

 $_{\odot}~$ Usa RIPES para entender el procesamiento en caché y arquitectura RISC-V.

4. Cómputos en binario:

o Convierte números y realiza operaciones con complemento a 2.