

Aula 11 - Expressão Regular

Toda linguagem regular pode ser descrita por uma expressão denominada *Expressão Regular*. Tratase de um formalismo denotacional, também considerado gerador, pois se pode inferir como construir ("gerar") as palavras de uma linguagem.

Uma expressão regular é definida a partir de conjuntos (símbolos das linguagens) básicos e operações de concatenação e de união. As expressões regulares são consideradas adequadas para a comunicação Humano x Humano e, principalmente, para a comunicação Humano x Máquina.

10.1 Expressão Regular, Linguagem Gerada

Uma Expressão Regular (frequentemente abreviada por ER) sobre um alfabeto Σ é indutivamente definida como segue:

a) Base de Indução:

- a1) A expressão: ø
 - é expressão regular e denota a linguagem vazia: ø
- a2) A expressão: ε
 - é uma expressão regular e denota a linguagem que contém exclusivamente a palavra vazia: {ε}
- a3) Para qualquer símbolo $x \in \Sigma$, a expressão: x
- é uma expressão regular e denota a linguagem que contém exclusivamente a palavra constituída pelo símbolo x: {x}
- **b) Passo de Indução:** Se r e s são expressões regulares e denotam as linguagens R e S, respectivamente, então:
 - b1) *União*. A expressão: (r + s)
 - é uma expressão regular e denota a linguagem R \cup S
 - b2) Concatenação. A expressão: (rs)
 - é expressão regular e denota a linguagem: $RS = \{rs \mid r \in R \text{ e } s \in S\}$
 - b3) Concatenação Sucessiva. A expressão: (r*)
 - é expressão regular e denota a linguagem: R*

Se r é uma expressão regular, a correspondente linguagem denotada é dita a *Linguagem Gerada* por r, sendo representada por:

L(r) ou GERA(r)

A omissão de parênteses em uma ER é usual, respeitando as seguintes convenções:

- a concatenação sucessiva tem precedência sobre a concatenação e a união;
- a concatenação tem precedência sobre a união.

Exemplo: Na tabela abaixo são apresentadas expressões regulares e as correspondentes linguagens geradas.

Linguagens Formais

Tabela 1 - Expressões Regulares e correspondentes Linguagens Geradas

Expressão Regular	Linguagem Gerada
aa	Somente a palavra aa
ba*	Todas as palavras que iniciam por b, seguindo por zero ou mais a's (b, ba, baa,)
(a + b)*	Todas as palavras sobre os símbolos {a,b}
(a + b)*aa(a + b)*	Todas as palavras contendo aa como subpalavra
a*ba*ba	Todas as palavras contendo exatamente dois b's
(a + b)*(aa + bb)	Todas as palavras que terminam com aa ou bb

Fonte: Dados gerados a partir das expressões regulares

Detalhando a linguagem gerada pela expressão $(a + b)^*$ (aa + bb), vale que:

Exercício:

1. Descreva no formalismo da representação (palavras) as linguagens geradas pelas seguintes expressões regulares (desenvolva todos os passos de indução):

a)
$$(aa + ba)*(aa + bb)*$$

b)
$$(b + ab)*(\epsilon + a)$$

c)
$$(aa + bb + (aa + bb)(ab + ba)(aa + bb))*$$

Teorema 1: Expressão Regular → Linguagem Regular

Se r é uma expressão regular, então GERA(r) é uma linguagem regular.

Prova: (por indução):

Por definição, uma linguagem é regular se, e somente se, é possível construir um autômato finito (Determinístico, Não Determinístico ou Não Determinístico com movimentos vazios) que reconheça essa linguagem. Assim, é necessário mostrar que, dada uma expressão regular r qualquer, é possível construir um autômato finito M tal que:

$$ACEITA(M) = GERA(r)$$

Na construção do correspondente autômato finito com movimentos vazios M apresentado abaixo, a demonstração de que ACEITA(M) = GERA(r) é por indução no número de operadores.

a) Base de Indução: Seja r uma expressão regular com zero operador. Então r só pode ser da forma:

$$r = \emptyset$$

 $r = \epsilon$

 $r = x (x pertence a \Sigma)$

Os Autômatos Finitos:

$$M1 = {\emptyset, {q0}, \delta1, q0, \emptyset}$$

$$M2 = {\emptyset, {q0}, \delta 2, q0, {q0}}$$

$$M3 = \{\{x\}, \{q0,q1\}, \delta3, q0, \{q1\}\}\$$

Tabela 2 - Autômatos finitos correspondentes às expressões regulares com zero operadores

ER	Autômato Finito Correspondente
r = ø	(q0)
r = ε	(q0)
$r = x (x pertence a \Sigma)$	(q0) × (q1)

Fonte: Dados a partir da descrição e base de indução

- **b)** *Hipótese de Indução*: Seja r uma expressão regular com até n > 0 operadores. Suponha que é possível definir um autômato finito que aceita a linguagem gerada por r;
- c) *Passo de Indução*: Seja r uma expressão regular com n + 1 operadores. Então r pode ser representada por um dos seguintes casos, onde r1 e r2 possuem conjuntamente no máximo n operadores:

$$r = r1 + r2$$
 $r = r1r2$ $r = r1*$

Portanto, por hipótese de indução, é possível construir os autômatos:

$$M1 = (Q1, \Sigma1, \delta1, q01, \{qf1\})$$
 e $M2 = (Q2, \Sigma2, \delta2, q01, \{qf2\})$, tais que:

ACEITA(M1) = GERA(r1) e ACEITA(M2) = GERA(r2)

Nota-se que, sem perda de generalidade, é possível assumir que M1 e M2 possuem exatamente um estado final.

Tabela 3 - Autômatos finitos correspondentes às expressões regulares com n+1 operadores

Fonte: Construção dos Autômatos a partir das Expressões Regulares

Teorema 2: Linguagem Regular → Expressão Regular

Se L é uma Linguagem Regular, então existe uma Expressão Regular r tal que: GERA(r) = L(r)

Tabela 4 - Expressões Regulares e os correspondentes autômatos finitos

ER	Autômato Finito Correspondente
a	→ ○ •
b	→ ○ b
a*	* * * * * * * * * * * * * * * * * * *
aa	→
bb	
(aa + bb)	

Fonte: Autômatos construídos a partir das Expressões Regulares