Design of industrial fan

Ву:

Saif-Aldain Aqel QTY3S6

Table of Contents:

- 1. Description
- 2. Calculations
 - 2.1 Given data.
 - 2.2 Shaft selection.
 - 2.3 Motor selection.
 - 2.4 Belt drive design.
 - 2.5 Pullies selection.
 - 2.6 Belt selection.
 - 2.7 Checking shaft for bending.
 - 2.8 Checking shaft for fatigue.
 - 2.9 Bearing selection.
 - 2.10 Lifetime calculation.
 - 2.11 Critical speed calculation.
 - 2.12 Seal selection.
- 3. References

1. Description

The task is to design the shaft and bearing for an industrial fan system.

2. Calculations

2.1 Given data.

- o Power: Pjk = 2.5 kW
- Operating Speed: njk = 940 rpm
- o Thrust (axial) Load on the Rotor: Fax = 700 N
- o Mass of the Rotor: mjk = 60 kg
- O Distance of the Bearing from the Rotor: a = 355 mm
- O Shaft Diameter under the Rotor: d = 60 mm
- o Direction of the Belt pulling Force (H): $\alpha = 15^{\circ}$
- o The required setup:

2.2 Shaft selection.

We would need to use a solid shaft without any intricate geometrical shapes to reduce the procedure difficulty during the assembly process. The shaft selection is based on the geometrical data and the ease of assembly.

From the SKF Catalogue:

12.5 Shafts for two-bearing housings in the PDN 3 series da 25 – 120 mm

Dimens Shaft	ions											
d _a	d _b	d_{ϵ}	d_{d}	В	Bb	Вс	B_d	B_{α}	В	$r_{\rm s}$	G_2	G_3
mm												
25	19	34	28	91	89,5	115,5	216	40	4	0,8	8	20
30	24	39	32	101,5	100	138,5	240	50	4	0,8	10	27
35	28	4.4	36	118,5	117	158,5	274	60	4	1,2	10	27
40	32	49	40	140	138,5	212,5	331	80	5	1,2	12	30
45	38	54	45	151,5	150	234,5	376	80	5	1,2	12	30
50	42	59	50	175	173,5	264,5	393	110	6	1,6	16	36
55	48	64	63	186,5	185	286,5	438	110	6	1,6	16	40
60	48	69	63	182,5	181	332,5	476	110	6	1,6	16	40
65	55	74	70	191	189,5	347,5	508	110	6	1,6	16	40
70	60	79	70	225	223,5	363,5	532	140	6	1,6	16	40
75	65	84	78	230,5	229	387,5	567	140	6	1,6	20	46
80	70	89	90	227	225,5	403,5	576	140	6	1,6	20	46
85	75	99	90	234,5	234,5	421	610	140	6	1,6	20	46
90	80	104	100	260	260	445	625	170	8	1,6	20	46
95	85	109	100	269,5	269,5	469	668	170	8	2,5	20	46
100	90	214	105	266.5	266,5	500	693	170	8	2,5	24	52
110	100	124	115	309,5	309,5	510	709	210	8	2,5	24	52
*20	110	126	122	211	241	633	700	240	12	25	20	10

Shaft diameter	Appropriate Housing	parts Bearings	Shaft	Shaft keys to ISO 773	Mass Shaft only
d _a					
mm	(5)				kg
25	PDN 305	2×6305	VJ-PDNB 305	6x6x32	1,4
30	PDN 306	2×6306	VJ-PDNB 306	8×7×40	2,2
35	PDN 307	2×6307	VJ-PDNB 307	8x7x40	3,35
40	PDN 308	2 x 6308	VJ-PDNB 308	10x8x63	5,25
45	PDN 309	2×6309	VJ-PDNB 309	10x8x63	7,3
50	PDN 310	2×6310	VJ-PDNB 310	12x8x80	9,85
55	PDN 311	2×6311	VJ-PDNB 311	14x9x80	13
60	PDN 312	2×6312	VJ-PDNB 312	14×9×80	15,5
65	PDN 313	2×6313	VJ-PDNB 313	16x10x80	19,5
70	PDN 314	2×6314	VJ-PDNB 314	18x11x100	25
75	PDN 315	2×6315	VJ-PDNB 315	18×11×100	30
80	PDN 316	2×6316	VJ-PDNB 316	20x12x100	34,5
85	PDN 317	2×6317	VJ-PDNB 317	20×12×100	43
90	PDN 318	2×6318	VJ-PDNB 318	22×14×140	51
95	PDN 319	2 x 6319	VJ-PDNB 319	22x14x140	59,5
100	PDN 320	2×6320	VJ-PDNB 320	25x14x140	67,5
110	PDN 322	2×6322	VJ-PDNB 322	28x16x180	87,5
120	PDN 324	2 4 6 3 2 6	VI-PINR 324	28+16+180	106

Turning technologies will be used to reach the wanted dimensions keeping the lengths the same, for the shaft to be usable and fit with the wanted dimensions between the bearings (distance a=355 mm).

2.3 Motor selection.

we would need to have a motor with a higher rpm to reach a good ratio between the motor and the belt drive system.

From https://theissdrive.com/villanymotor/haromfazisu-villanymotor/.

Three-phase electric motor

230/400V D/Y up to IEC100 size
400/690V D/Y from IEC112 size
aluminum / cast iron housing
2, 4, 6, 8 poles
0.06kW – 315kW
IE1, IE2, IE3 efficiency classification
deep blue color

	kW	hp	mo	del	rpm	η% 100%	ŋ% 75%	ŋ% 50%	cas¢	In (A) 400V 50 Hz	ls In	Cn	Cs Cn	Cmax Cn	kg	
	0,75	1	T3A	80A2	2890	80,7	80,3	77,2	0,81	1,7	6,0	2,5	2,7	2,8	8,4	
	1,1	1,5	T3A	90B2	2890	82,7	82,5	79,9	0,82	2,4	6,7	3,7	2,7	2,9	10,2	
	1,5	2	T3A	9082	2900	84,2	83,8	.81,4	0,82	3,1	6,1	5,0	2,3	2,7	14,4	
	2,2	3	T3A	90L2	2910	85,9	86,1	84,7	0,84	4,4	7,0	7,4	2,6	2,7	16,2	
	3	4	T3A	100L2	2910	87,1	87.5	86,3	88,0	5,7	7,6	10,1	2,5	2,8	18,5	
	4	5,5	T3A	112M2	2920	88,1	88,2	87,0	0,90	7,3	7,8	13,1	2,5	2,7	30,2	
	5,5	7,5	T3A	132SA2	2930	89,2	89,4	88,2	0,89	10,0	7,8	18,1	2,4	2,9	44,1	-11
E	7,5	10	T3A	132SB2	2930	90,1	90,2	89,1	0,90	13,4	7,9	24,6	2,7	2,8	52,0	E
3000rpm	11	15	7SM3	160MA2	2940	91,2	91,1	89,8	0,89	19,6	8,1	35,7	2,0	2,3	115	3000rpm
ĕ	15	20	7SM3	160MB2	2940	91,9	91,8	90,7	0,89	26,5	8,1	48,7	2,0	2,3	125	ĕ
	18,5	25	7SM3	160L2	2940	92,4	92,3	90,4	0.89	32,5	8,2	60,1	2,0	2,3	147	
	22	30	7SM3	180M2	2955	92,7	92,6	91,6	0,89	38,5	8,2	71,1	2,0	2,3	195	-
POL	30	40	7SM3	200LA2	2965	93,3	93,2	92,1	0,89	52,1	7,6	96,6	2,0	2,3	243	POL
4	37	50	7SM3	200LB2	2965	93,7	93,5	92,3	0,89	64,0	7,6	119,2	2,0	2,3	258	4
2	45	60	7SM3	225M2	2970	94,0	93,6	92,4	0,90	76,8	7,7	144,7	2,0	2,3	324	2
ë	55	75	7SM3	250M2	2975	94,3	94,1	93,0	0,90	93,5	7,7	176,6	2,0	2,3	432	m l
<u>=</u>	75	100	7SM3	280S2	2975	94,7	94,3	93,8	0,90	127,0	7,1	240,8	1,8	2,3	560	<u>E</u>
	90	125	7SM3	280M2	2975	95,0	94,6	94,3	0,90	151,9	7,1	288,9	1,8	2,3	603	
	110	150	7SM3	315S2	2980	95,2	94,8	93,6	0,90	185,3	7,1	352,5	1,8	2,3	880	
	132	180	7SM3	315M2	2980	95,4	95,0	93,9	0,90	221,9	7,1	423,0	1,8	2,3	960	
	160	220	7SM3	315LA2	2980	95,6	95,0	94,2	0,91	265,5	7,2	512,8	1,8	2,3	1030	
	200	270	7SM3	315LB2	2980	95,8	95,1	94,2	0,91	331,1	7,2	640,9	1,8	2,2	1358	
	250	340	7SM3	355MB2	2980	95,8	95,2	94,5	0,90	413,9	7,2	801,2	1,6	2,2	1802	
Ē	315	430	7SM3	355LB2	2980	95.8	95.2	94.5	0.91	521.5	7.2	1009.5	1.6	2.2	2017	

The dimensions of the motor:

																85					B14					
SIZE	poles		AB	AC	AD	В		D	DH		F				KK		M	N		s		М			S	
80	2-4	125	160	158	130	100	50	19	M6X16	40	6	15,5	80	10X13		277	165	130	200	12	3,5	100	80	120	M6	3
905	2-4-6	140	175	177	140	100	56	24	MBX19	50	В	20	90	10X13	1	312	165	130	200	12	3,5	115	95	140	MB	3
90L	2-4-6	140	175	177	140	125	56	24	MBX19	50	8	20	90	10X13	M20 X 1,5	337	165	130	200	12	3,5	115	95	140	MB	3
100L	2-4-6	160	196	199	157	140	63	28	M10X22	60	В	24	100	12X16	24.74	375	215	180	250	15	4	130	110	160	MB	3,5
100LB	4	160	196	199	157	140	63	28	M10X22	60	8	24	100	12X16		375	215	188	250	15	4	130	110	160	MB	3,5
112M	2-4-6	190	220	220	168	140	70	28	M10X22	60	8	24	112	12X16		397	215	180	250	15	4	130	110	160	MB	3,5
132S	2-4-6	216	252	261	187	140	89	38	M12X28	80	10	33	120	12X16	M25 X 1.5	460	265	230	300	15	4	165	130	200	M10	3,5
132M	2-4-6	216	252	261	187	178	88	38	M12X28	80	10	33	132	12X16		498	265	230	300	15	4	165	130	200	M10	3,5
150M	***	ne.	200	200	ana	210	100	100	M16X36	110	10	37	100	14X19		665				18,5	5	215	180	250	M12	4
160L	2-4-6	254	320	330	261	254	108	42	M16X36	110	12	37	160	14X19	M32	685	000			18,5	5	215	180	250	M12	4

2.4 Belt drive design.

Using the above-mentioned formula and C2:

$$P_{planning} = C_2 P_{jk} = 1.8 \; KW$$

Using this and the given diagram we can choose the belt's profile and the speed of the small pully.

 $\label{eq:As we have PB=1.8} As we have P_B=1.8 \approx 2 KW$ So we have a SPZ profile and $n_k=350$ rpm.

$$I_{nominal} = \frac{n_{jk}}{n} = 0.3723$$

Since we have a SPZ profile the bigger pully will be placed on the shaft.

2.5 Pullies selection.

Choosing a small pulley of diameter 50 mm and a big pulley of diameter 80 mm.

Wedge belt profile	DIN 7753 Fort 1 and ISO 4184	-	=	-	5PZ	SPA	SPB	-	SPC	÷	-	-	min.	max.	solerance
		20.0 22.0 25.0 28.0 31.5 35.5 40.0	28.0 31.5 35.5 40.0	40	400								20.0 22.0 25.0 28.0 31.5 35.5 40.0	20.4 22.4 25.4 28.4 32.0 36.1 40.6	
		45.0 50.0 56.0 63.0	45.0 50.0 56.0 63.0	45 50 56 63	450 500 560 63 67	63							45.0 50.0 56.0 63.0 67.0	45.7 50.8 56.9 64.0 68.0	0.2
		71.0 80.0	71.0 80.0 90.0 100.0	71 80 90 100	71 75 80 85 90 95 100 106	71 75 80 85 85 90 95 100 106	907 957 1007 1067						71.0 75.0 80.0 85.0 90.0 95.0 100.0 106.0	72.1 76.1 81.3 86.3 91.4 96.4 101.6 107.6	
			112.0	112	112 118 125	112 118 125	112 118 125						112.0 118.0 125.0	113.8 119.9 127.0	

After the selection we check the center distance.

$$a > 0.7(d_1 + d_2)$$

 $a < 2 (d_1 + d_2)$

As both equations are satisfied the chosen pulley sizes are alright.

2.6 Belt selection.

We select the belt based on the required length, which can be determined by:

$$L = 2a + 1.57(d_1 + d_2) + \frac{(d_1 + d_2)^2}{4a} = 705 \text{ mm}$$

Selected length is L = 710 mm.

Based on the belt length we calculate a modified center distance.

$$a_{nom} = \frac{L - \frac{\pi}{2}(d_1 + d_2)}{4} + \sqrt{\frac{L - \frac{\pi}{2}(d_1 + d_2)}{4}^2 - \frac{(d_1 + d_2)^2}{8}} = 249.95 \ mm$$

$$\approx 250 \ mm$$

Other quantities we need to calculate for the belt include:

o Belt speed.

$$v_{belt} = \frac{d_1 \pi n_1}{60} = 0.9163 \frac{m}{s}$$

Since the speed is less than 55 m/s, the belt is alright.

Belt frequency.

$$f_{belt} = \frac{2 \cdot 1000 \cdot v_{belt}}{L_{belt}} = 2.58 \, Hz$$

Since the frequency is less than 100 Hz, the belt is alright.

o Belt loops.

To complete the rest of the calculations we need to find a few factors depending on the contact angle.

$$\beta = 2 arccosine \left(\frac{d_1 - d_2}{2a_{nom}}\right) = 174^{\circ}$$

Using this we can obtain $C_1 \& C_3$, since we already have $C_2=1.2$.

 $C_1 = 1$

 $C_2 = 1.2$

 $C_3 = 0.85$

To find the number of the required belt loops we use:

$$z = \frac{PC_2}{P_N C_1 C_3} = 3$$

Where P_N=0.29 KW.

Therefore, we have 3 belt loops.

Tensile force

$$T = \frac{500(2.04 - C_1) \cdot P_B}{C_1 \cdot z \cdot v_{belt}} + kv_{belt}^2 = 340.56 N$$

Where, k=0.07

Pulling force

$$H \approx 2T \cdot \sin\left(\frac{\beta}{2}\right) \cdot z = 2040 \ N$$

2.7 Checking shaft for bending.

Bending and moment diagram:

$$G = weight \ of \ rotor = 461 \ N$$
 $m_g = weight \ of \ shaft = 588 \ N$
 $F_r = 730 \ N$
 $F_A = 255 \ N$
 $\sum F_x = A_x = F_x$

$$A_x = 255 N$$

$$\sum F_y = 0$$

$$A_y + B_y = G + F_r + m_g = 1779 N$$

$$\sum M_{oz} = 0$$

$$xA_y - (x+a) \cdot (G + F_r + m_g) + (x+2a) \cdot B_y = 0$$

 $A_y = B_y = 889.5 N$

$$H_{z} = 2040 N$$

$$\sum F_{z} = 0$$

$$H_{z} + A_{z} + B_{z} = 0$$

$$\sum M_{y} = 0$$

$$(H_{z} \cdot x) - (B_{z} \cdot (2 \cdot a)) = 0$$

$$A_{z} = -2183.7 N$$

$$B_{z} = 143.7 N$$

$$A = 2357.9 N$$

$$B = 901.0 N$$

$$M_{hk} = H_{z} \cdot l + A_{z}(l - x) = 66.1 Nm$$

Max M_{hk}=102 Nm when M_{hr}=0

Max M_{hr} =157.8 Nm when M_{hk} =66.1 Nm

$$M_h = \sqrt{M_{hk}^2 + M_{hr}^2} = 171.1 Nm$$

$$Torque = \frac{P}{w} = 25.4 Nm$$

Bending sectional modulus $K = \frac{d^2\pi}{32} = 173.2 \ mm^2$

Polar sectional modulus $K_p = \frac{d^3\pi}{16} = 14547.1 \ mm^3$

Bending stress $\sigma_{b,max} = \frac{M_h}{K} = 11.5 \ MPa$

Shear stress $\tau_{max} = K_d \cdot T = 26.7 \ MPa$

Equivalent stress $\sigma_{eq} = \sqrt{\sigma^2 + 3\tau^2} = 47.86 \ MPa$

Shaft material is C55E with Re=400 MPa

Safety factor:

$$z = \frac{Re}{\sigma_{eq}} = 8.4$$

Safety factor is satisfactory.

2.8 Checking shaft for fatigue.

Investigation of the First shoulder (60 -70 mm):

& d/D = 0.86, t = (D-d)/2 = 5 [mm], ρ the fillet radius ρ = 1.6 [mm] then, ρ /t = 0.32 – For bending: Stress concentration factor αk in case of bending from the diagram: αk = 2.4

Notch sensitivity (q) from the diagram: q = 0.81

Then, the Fatigue stress concentration factor βk :

 $\beta k = 1+q*(\alpha k - 1) = 2.134$ bending moment applied on the shaft first shoulder:

M = Fr * I = 1500 * 140 = 210,000 [N.mm]

So, the normal stress for bending $\sigma a = M/K = 9.9$ [MPa]

Then, to calculate the surface factor Ka = 0.575*Ka' + 0.425, where Ka' = 0.8 Ka = (0.575*0.8) + 0.425 = 0.885

And to calculate the size factor(Kb):

$$k_b = \begin{cases} 0.879 d^{-0.107} & 0.11 \le d \le 2 \text{ in.} \\ 0.91 d^{-0.157} & 2 < d \le 10 \text{ in.} \\ 1.24 d^{-0.107} & 2.79 \le d \le 51 \text{ mm.} \\ 1.51 d^{-0.157} & 51 < d \le 254 \text{ mm.} \end{cases}$$

Kb = 1.51*d-0.157 = 0.79

Then, the endurance limit of the shaft shoulder: $\sigma v' = * Ka *Kb * \sigma v$, Where

 $\sigma v = 350 \, [MPa]$

 $\sigma v' = 114.668 [MPa]$

Then the safety factor (n)

n = 11.58

For torsion:

T=55577.92 Nmm

so, torsional stress : $\tau = T/Kp = 1.31$ [MPa]

Fatigue stress concentration factor: $\beta_k = 1 + q^*(\alpha_k - 1) = 2.134$

The size factor(Kb): Kb = 1.51*d-0.157=0.79

The surface factor Ka = 0.6*Ka' + 0.4, where Ka' = 0.8

Ka = (0.6*0.8) + 0.4 = 0.88

Then, the endurance limit for torsion: $\tau v' = 61.90$ [MPa]

safety factor (n): $n = \tau v' / \tau = 47.615 >> 2$

Then, the first shoulder is well resistant to fatigue from bending or torsion

To investigate the second shoulder (70-79):

d/D = 0.886, t = (D-d)/2 = 4.5 [mm], ρ the fillet radius $\rho = 1.6$ [mm] then, $\rho/t = 0.356 - 1.6$

For bending:

Stress concentration factor αk in case of bending from the diagram: $\alpha k = 2.3$

Notch sensitivity (q) from the diagram: q = 0.81

Then, the Fatigue stress concentration factor βk : $\beta k = 1+q*(\alpha k-1) = 2.053$ bending

moment applied on the shaft second shoulder:

$$\sigma a = M/K = 9.13 \text{ [MPa]}$$
 $Ka = (0.575*0.8) + 0.425 = 0.885 \text{ Kb} = 1.51*d-0.157 = 0.77$

$$\sigma_{v}{'} = \frac{1}{\beta \, k} * \, K_{a} * K_{b} * \sigma_{v} \, = 116.175 \; [\text{MPa}]$$

n=12.72

- For torsion:

T = 55577.92 [N.mm]

Polar section modulus: Kp = 67347.89 [mm3] so,

torsional stress : $\tau = T/Kp = 0.825$ [MPa]

Fatigue stress concentration factor βk : $\beta k = 1+q*(\alpha k-1) = 2.053$

The size factor(Kb): Kb = 1.51*d-0.157 = 0.77

The surface factor Ka = 0.6*Ka' + 0.4, where Ka' = 0.8

Ka = (0.6*0.8) + 0.4 = 0.88

Then, the endurance limit for torsion: $\tau v' = 62.71$ [MPa]

safety factor (n): $n = \tau v' / \tau = 76 >> 2$

Then, the second shoulder is well resistant to fatigue from bending or torsion

2.9 Bearing selection.

Dbearing= 35mm

The selected bearing:

Dimensions

<u> </u>		
d	35 mm	Bore diameter
d_1	≈ 46.1 mm	Shoulder diameter of inner ring
Α	45 mm	Base width
A_1	27 mm	Top width
A ₅	24.5 mm	Standout of end cover
В	42.9 mm	Width of inner ring
B ₄	6 mm	Distance from locking device side face to thread centre
Н	47.6 mm	Height of spherical seat centre
H_1	19 mm	Foot height
H ₂	93 mm	Overall height
J	126 mm	Distance between attachment bolts
J	max. 133 mm	Distance between attachment bolts
J	min. 119 mm	Distance between attachment bolts
L	160 mm	Overall length
N	14 mm	Diameter of attachment bolt hole
N_1	21 mm	Length of attachment bolt hole
s ₁	25.4 mm	Distance from locking device side face to raceway centre

2.10 Lifetime calculation.

For estimating the expected bearing life, If we consider only the load and speed, you can use the basic rating life, L10. The basic rating life of a bearing in accordance with ISO 281 is

$$L = \left(\frac{C}{P}\right)^p$$

P = X Frad + Y Fax, X & Y are radial and axial load factor for the bearing respectively which can be drawn from this table

	$F_e = X_i$	$VF_r + Y_iF$	a	(11-9)	
Table 11-1					
		Fa/(VF,) = e	Fo/(VI	F _r) > e
Fa/Co	•	X 1	Υ1	X2	Y2
0.014*	0.19	1.00	0	0.56	2.30
0.021	0.21	1.00	0	0.56	2.1
0.028	0.22	1.00	0	0.56	1.99
0.042	0.24	1.00	0	0.56	1.83

Since
$$\frac{Fax}{C_0} = 650/45000 = 0.014$$
, $\frac{Fax}{Frad} = 0.43 > e = 0.19$

Then, X = 0.56 & Y = 2.30 from the table

So, P = (0.56 * 1500) + (2.30 * 650) = 2335 [N] Then,L10h = 358,057.48 Service Hours.

Then this bearing is acceptable for 40,000 service hours.

2.11 Critical speed calculation.

Model applied for the calculations:

- -The weight of the shaft is neglected
- -The impeller is considered a rigid body and its weight is acting on single point (its center of gravity)
- -The bearings allow rotation, but rigid radially.

The shaft and impeller are a 1 degree of freedom oscillating system and its frequency is identical to the critical rotational speed.

First, the reaction forces are determined by applying the impeller's weight (G)

Static Equilibrium equations:

$$G+R_1+R_2=zero$$

 $\Sigma M_{R1} \! : \! - G^*(l_1 + l_2) \! = R_2^* \, l_3 \, . \, \text{Then,} \ \, R_2 = 344.75 \, [N] \, \, \& \, R_1 = 933.35 \, [N] \, \, \, \text{Deformation:}$

$$^{2*l3^3}_{3} =$$
 $_{Rd\pi}^{4}_{1} = ^{2^4*}_{2} =$ $_{64}^{2*10^5}_{2.1*10^5} [N/mm^2]$

f= 0.0184 [mm], I= 1911957.63 [mm

$$\begin{array}{c} \beta_2 = f_3/l_3 = 0.0184/350 = 5.259*10^{-5} \\ f_{11} = \beta_2 * (l_1 + l_2) = 0.0108 \text{ [mm]} \end{array}$$

And to calculate f_2 we need to get M_1 first, where $M_1 = G^*l_1 = 82992.6$ [N.mm]

So, f, where I= 1178588.12
$$= \frac{1}{64} = \frac{64}{2} = \frac{613^3}{3*I1*E} = \frac{613^3}{2*I1*} = \frac{613^3}{2} = \frac{1}{4} = \frac{4}{1}$$
 [mm]

$$\beta_1 = \frac{G * l2^2}{3 * l1 *} + \frac{M1 * l1}{1 *} = 0.00015 \text{ [mm]}_E$$

So, $f_{21} = \beta_1 * l_1 = 9.6 * 10^{-3} \text{ [mm]}_E$

so, total deflection due to impeller's weight $f_1 = f_{11} + f_2 + f_{21} = 0.0251$ [mm]

Then, the spring characteristics: $C = f_1/G = 4.26 * 10^{-5} \text{ [mm/N]}$ Frequency:

$$\alpha = \sqrt{\frac{g}{G*C}} = 625.169 \text{ [rad]}$$

Then, the critical speed: $n_{cr} = (60^* \alpha)/(2 \pi) = 5969.927 \text{ [rpm]}$

$$(\frac{ncr}{n} * 100\%) = 531.738\%$$

Then, the shaft is suitable for this rotation speed(n) since $n_{cr} >> n$.

3. References

1)SKF Catalogues for shafts

https://www.skf.com/binaries/pub12/Images/Shafts%20for%20two-bearing%20housings%20in%20the%20PDN%202%20serie_tcm_12-231227.pdf

2) Bearing Catalogues from SKF

https://www.skf.com/binaries/pub12/Images/Two-bearing%20housings%20in%20the%20PDN%20series tcm 12-231223.pdf

3)design aid

4) the iss drive

https://theissdrive.com/villanymotor/haromfazisu-villanymotor/