Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	al fields	Multiplicities
$\tau_{0}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\sigma_{0}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	3
$\sigma_{1}^{\#1}\alpha == 0$	$\partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} + \partial_{\chi} \partial^{\chi} \sigma^{\alpha \beta}_{\beta} = \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi}$	
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#1}\alpha\beta == 0$	$\partial_{\chi}\partial^{\chi} t^{\alpha\beta} +$	3
	$\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\chi\beta}$	
$\sigma_{1}^{\#1}\alpha\beta == \sigma_{1}^{\#2}\alpha\beta$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} +$) E
	$2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} = =$	
	$3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha}$	
$\sigma_{2^{-1}}^{\#1}\alpha\beta\chi==0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} \partial_{\delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta \varepsilon}{}_{\delta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta\delta\epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} = =$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} \partial^{\epsilon} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta X \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta X} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta\epsilon}{}_{\delta} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha\delta\epsilon} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\beta\delta}$	
$\tau_2^{\#1}\alpha\beta=0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} +$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\lambda} \tau^{\chi\delta} = =$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$2 \eta^{lphaeta} \partial_{\epsilon} \partial_{\delta} \partial_{\delta} \partial^{\lambda}_{\lambda}$	
$\sigma_{2}^{\#1}\alpha\beta=0$	$^{18}\sigma^{\alpha\chi\delta}$ +	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \sigma^{\chi\delta}_{\chi} == 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi\delta}_{\chi} +$	
	$3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha} \right)$	
Total constraints/gauge	generators:	36

0 0 0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0
0 0 0 0 0	0 0 0 0
$\begin{array}{c c} \alpha \beta \\ \alpha \beta$	0 0 0
$ \frac{2}{2} - \frac{1}{3} i k t_{2} $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ \frac{3\sqrt{2}}{(3+k^{2})^{2} t_{2}} $ $ \frac{3ik}{(3+k^{2})^{2} t_{2}} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{bmatrix} \tau_2^{\#1} \\ 0 \\ 0 \end{bmatrix}$
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 + \alpha \beta \\ 0 & 0 \end{bmatrix}$
$ \int_{1}^{\#1} + \alpha \beta \omega_{1}^{\#1} + \alpha \beta \omega_{1}^{\#2} + \alpha \omega_{1}^{\#2} + \alpha f_{1}^{\#2} + \alpha f_{1}^{\#2} + \alpha \beta o_{1}^{\#2} + \alpha \beta o_{1}^{\#2} + \alpha \beta c_{1}^{\#3} + \alpha \beta c_{1}^{\#4} + \alpha \beta $	$ \begin{array}{c} \sigma_{1}^{\#1} + \alpha \\ \sigma_{1}^{\#2} + \alpha \\ \tau_{1}^{\#1} + \alpha \\ \tau_{1}^{\#2} + \alpha \beta \end{array} $ $ \begin{array}{c} \sigma_{1}^{\#1} + \alpha \beta \\ \tau_{2}^{\#1} + \alpha \beta \gamma \end{array} $ $ \begin{array}{c} \sigma_{2}^{\#1} + \alpha \beta \gamma \\ \sigma_{2}^{\#1} + \alpha \beta \gamma \end{array} $

 $\omega_{0^{+}}^{\#1} f_{0^{+}}^{\#1} f_{0^{+}}^{\#2} \quad \omega_{0^{-}}^{\#1}$

0 0 0 0 0

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

Massive and massless spectra

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$