RESEARCH

Substructure-based Neural Machine Translation for Retrosynthetic Prediction

Umit V. Ucak¹, Taek Kang², Junsu Ko^{3*} and Juyong Lee^{1*}

*Correspondence: junsuko@arontier.co; juyong.lee@kangwon.ac.kr ³Arontier co., Seoul, South Korea ¹Division of Chemistry and Biochemistry, Department of Chemistry, Kangwon National University, Chuncheon, South Korea Full list of author information is

available at the end of the article

Abstract

Keywords: retrosynthesis planning; machine neural translation; seq-to-seq; attention

Additional Files as Figures.

Please find the supporting materials as **figures** within the "Additional Files" section of the BMC article.

Ucak et al. Page 2 of 2

Author details

 1 Division of Chemistry and Biochemistry, Department of Chemistry, Kangwon National University, Chuncheon, South Korea. 2 Center for Neuro-Medicine, Korea Institute of Science and Technology, Seoul, South Korea. 3 Arontier co., Seoul, South Korea.

References

Additional Files

Additional File 2 : Figure S1

File name : Supplementary Figure S1

Title of data : Sentence length distribution

File format : Standard Latex figure, formatted as PNG.

Description of data: Distribution profile of product-reactant pairs.

Figure S1: Distribution of length of product-reactant pairs in Lowe's USPTO dataset.