

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Adakah Yang Lebih Powerful dari TM?

- Ingat, berdasarkan powernya maka: FSM < PDA < TM
- Banyaknya TM yang legal adalah countably infinite.
 - Karena, string-string dapat dienumerasi secara proper-order dan mengkaitkannya dengan mesin-mesin Turing.
- Banyaknya semua kemungkinan bahasa dalam suatu alfabet tak kosong adalah uncountably infinite (ucountable)
- Jadi, lebih banyak bahasa dibanding TM (atau masih terdapat banyak bahasa yang tidak ada TM-nya!!!).
- Maka, adakah mesin yang lebih powerful dari TM?
- Dari segi komputasi, adakah algoritma yang tidak dapat diimplementasikan oleh TM?
 - Jika ada, maka mesin yang lebih powerful itu juga ada!

Entscheldungsproblem

- "Decision problem" dalam bahasa Jerman.
- Terdapat 3 cara ekivalen dalam menyatakannya:
 - I: Apakah terdapat algoritma untuk memutuskan, untuk sembarang kalimat w dalam first-order-logic, apakah w valid?
 - II: Diketahui satu himpunan aksioma *A* dan kalimat *w*, adakah algoritma untuk memutuskan *w* benar sebagai akibat dari *A*?
 - III: Diketahui satu himpunan aksioma *A* dan kalimat *w*, adakah algoritma untuk memutuskan bahwa *w* dapat dibuktikan dari *A*?

Formalisasi Algoritma

- Entscheldungsproblem menarik perhatian logician (akhli ilmu logika) termasuk Alan Turing dan Alonzo Church.
- Dalam rangka menjawabnya, perlu memformalisasi apa yang dimaksud dengan algoritma.
 - Formalisasi yang dibuat Turing (1936), kemudian menjadi Mesin Turing → lebih prosedural
 - Formalisasi ang dibuat Church (1936), kemudian menjadi Lamba Calculus → lebih fungsional
- Keduanya nampak berbeda tetapi ternyata kemudian dibuktikan ekivalen

Church-Turing Thesis

- Suatu fungsi bilangan natural adalah komputabel (i.e., oleh manusia menggunakan kertas&pensil) **iff** fungsi tsb komputabel oleh Mesin Turing.
- Terdapat banyak alternatif formalisme selain TM, namun tidak ada yang lebih powerful.

Contoh-contoh Formalisme yang Ekivalen dengan TM

- Komputer modern (dengan asumsi memory tak berhingga)
- Lambda Calculus (basis dari Functional Programming)
- Fungsi Rekursif Parsial
- Tag Systems (PDA dengan FIFO, bukannya LIFO)
- Unrestricted Grammars (Rule berbentuk $\alpha \rightarrow \beta$ dengan $\alpha \in V^+$, $\beta \in V^*$)
- Post Production Systems
- Conway's Game of Life (Two dimensional Cellular Automata)
- One Dimensional Cellular Automata
- Berbagai model teoritis Komputasi berbasis DNA
- Lindenmayer Systems

Mengingat Kembali

- TM M memutuskan (decides) L, iff: $\forall w \in \Sigma^*$:
 - Jika $w \in L$ maka M menerima w, dan
 - Jika $w \notin L$ maka M menolak w.
- L bahasa decidable $(L \in D)$ iff terdapat TM M yang memutuskan L.
- TM semi-memutuskan (semidecides) L, iff: $\forall w \in \Sigma^*$:
 - Jika $w \in L$ maka M menerima w, dan
 - Jika $w \notin L$ maka M tidak menerima w (menolak atau tidak halt).
- L bahasa semidecidable $(L \in SD)$ iff terdapat TM M yang semi-memutuskan L.

Bagaimana dengan Bahasa-bahasa Ini?

- $L_1 = \{ \langle M, w \rangle : \text{ Mesin Turing } M \text{ halt pada string input } w \}$
- $L_2 = \{ \langle M \rangle : \text{ tidak ada string yang membuat Mesin Turing } M \text{ halt } \}$
- $L_3 = \{ \langle M_a, M_b \rangle : M_a \text{ dan } M_b \text{ adalah dua TM yang halt pada string-string yang sama} \}$

• Note:

- <*M*> adalah string hasil pengkodean TM *M*.
- <M,w> adalah sepasang string <M>;<w> dengan <w> adalah string hasil pengkodean input string w dengan cara pengodean yang sama dengan <M>.
- $<\!\!M_a\!\!, \!\!M_b\!\!>$ sepasang string $<\!\!M_a\!\!>;<\!\!M_b\!\!>$ keduanya merupakan hasil pengkodean dua TM M_a dan M_b .

Halt Problem

- $H = \{ \langle M, w \rangle : \text{ Mesin Turing } M \text{ halt pada string input } w \}$
- Bahasa H ini (atau L_1 di halaman sebelumnya):
 - Mudah dinyatakan dan dipahami
 - Kepentingan praktis (program-correctness checker)
 - Semidecidable (SD)
 - Nondecidable (¬D)
- Implikasi: *H* merupakan kunci perbedaan antara D dan SD.
 - Karena, bila H adalah D maka semua SD juga adalah
 D! Nyatanya H bukan D.

- TM didefinisikan demi menjawab "Diketahui satu himpunan aksioma A dan kalimat w, adakah algoritma untuk memutuskan w benar sebagai akibat dari A?"
- Formalisasi algoritma membawa pada definisi TM.
- Sementara berada dalam *H*, apakah TM *M* halt untuk input *w*?
- Jadi, tidak ada solusi untuk Entscheldungsproblem.