Homework 4: Sequence labeling (CS 2731 Fall 2023)

Due 2023-11-09, 11:59pm. Instructions last updated 2023-11-03.

In this assignment, you will manually decode the highest-probability sequence of part-of-speech tags from a trained HMM using the Viterbi algorithm. You will also fine-tune BERT-based models for named entity recognition (NER).

1. POS tagging with an HMM

Consider a Hidden Markov Model with the following parameters: postags = {NOUN, AUX, VERB}, words = {'Patrick', 'Cherry', 'can', 'will', 'see', 'spot'}

Initial probabilities:

	π
NOUN	0.7
AUX	0.1
VERB	0.2

Transition probabilities: The format is P(column_tag | row_tag), e.g. P(AUX | NOUN) = 0.3.

	NOUN	AUX	VERB
NOUN	0.2	0.3	0.5
AUX	0.4	0.1	0.5
VERB	0.8	0.1	0.1

Emission probabilities:

	Patrick	Cherry	can	will	see	spot
NOUN	0.3	0.2	0.1	0.1	0.1	0.2
AUX	0	0	0.4	0.6	0	0
VERB	0	0	0.1	0.2	0.5	0.2

Using the Viterbi algorithm and the given HMM, find the most likely tag sequence for the following 2 sentences.

- 1. "Patrick can see Cherry"
- 2. "will Cherry spot Patrick"

To get you started on the Viterbi tables, here are the first 2 columns for the first sentence. You'll also want to include the backtraces.

POS state	Patrick	can	see	Cherry
NOUN	0.21	0.0042		
AUX	0	0.0252		
VERB	0	0.0105		

Deliverables for part 1

In your report, show your work for calculating the Viterbi tables or lattices for both example sentences. Report the most likely tag sequences for these 2 sentences.

2. Fine-tune BERT-based NER models

In this section, you will fine-tune multiple pretrained BERT-based models on Spanish NER data. Specifically, you will fine-tune at least one model pretrained on masked language modeling (MLM) on Spanish data, and at least one model pretrained on NER in a language other than Spanish.

Copy this skeleton Colab notebook, run the cells, and fill in the places that are specified.

Deliverables for part 2

In your report, include:

- 1. The F1 score on the CoNLL-2003 Spanish test set for
 - 1. the model pretrained on MLM in Spanish, and
 - 2. the model pretrained on NER in another language
- 2. A brief discussion of which model performs better and any choices you made about hyperparameters in training
- 3. A link to your copied and filled out Colab notebook

Submission

Please submit the following items on Canvas:

- Your report with results and answers to questions in Part 1 and Part 2, named report_{your pitt email id}_hw3.pdf. No need to include @pitt.edu, just use the email ID before that part. For example: report_mmy29_hw3.pdf.
- A README.txt file explaining
 - o any additional resources, references, or web pages you've consulted
 - o any person with whom you've discussed the assignment and describe the nature of your discussions

Part 1 of this assignment is based on homework assignments by Prof. Hyeju Jang and Prof. Diane Litman.

- any generative AI tool used, and how it was used
- any unresolved issues or problems

This homework assignment is worth 45 points.

Acknowledgments

Ackilowiedgilielits

© 2023 Michael Miller Yoder. Powered by Jekyll & Minimal Mistakes.