Mother-to-Child Transmission of Cytomegalovirus

This project aims to use the maternal viral load information during pregnancy to

- deduce the possibility that the infant will be infected by CMV
- Help test different hypotheses of what might affect the transmission

Method Overview:

- Maternal viral dynamics:
 - System of ordinary differential equations
- Viral transmission through placenta:
 - (System of) partial differential equation(s) and analytic solution
- Viral dynamics in infant:
 - Stochastic simulation

Maternal viral dynamics using ODE

$$\begin{split} \frac{dV}{dt} &= n\delta R_I - cV - fkR_S V, \\ \frac{dE}{dt} &= (1 - \epsilon_S) \left(\lambda_E \left(1 - \frac{E}{e} \right) E + \rho V \right), \\ \frac{dR_I}{dt} &= kR_S V - \delta R_I - (1 - \epsilon_S) mER_I + \alpha_0 R_L - \kappa R_I, \\ \frac{dR_S}{dt} &= \lambda_{rep} \left(1 - \frac{R_S}{r_S} \right) R_S - kR_S V, \\ \frac{dR_L}{dt} &= \lambda_{rep} \left(1 - \frac{R_L}{r_L} \right) R_S + \kappa R_I. \end{split}$$

Variable	Description	Units
V	Viral load (free virus)	Virions/μl-blood
E	Virus-specific immune effector cells	Cells/µl-blood
R_I	Actively-infected cells	Cells/µl-blood
R_{S}	Susceptible cells	Cells/µl-blood
R_L	Latently-infected cells	Cells/µl-blood

Maternal viral dynamics using ODE

 $\epsilon_{\rm S}$: Level of immune suppression, corresponding to depletion of CD4+ level

Viral Transmission through Placenta (PDE)

c = 0, 0 < x < l, t = 0, no virus inside placenta at first.

 $c = 0, x = 0, t \ge 0$

When virus enters the infant, it quickly gets washed away with blood.

Spatial movement due to diffusion

$$c = 0, x = 0, t \ge 0,$$

 $c = V_m(t), x = l, t \ge 0,$
 $c = 0, 0 < x < l, t = 0.$

 $c = V_m(t), x = l, t \ge 0,$ Viral dynamics on mother side is given by the ODE system.

Viral Transmission through Placenta

Viral Transmission through Placenta

Number of viruses that reach the infant at a given time:

$$C = \int_0^T D \frac{\partial c}{\partial x} \Big|_{x=0}$$
 (Surface area of placenta) dt

But this information is not enough.

Infection of CMV

Treat the viral flux as the rate for an inhomogeneous Poisson point process, so we can obtain the time that each virus enters the infant.

Time

Toy example for inhomogeneous Poisson process

1. Total number of viruses enter the infant

2. The time that each virus enters

Primary Infection of CMV

Think of this flux function as probability of a virus arrives at the fetal side.

Here we have a list of time stamp for each virus, however, just the viruses entering the infant does not mean the infant is infected.

Primary Infection of CMV

Immune suppressed ϵ_S = 0.4

Primary Infection of CMV

Chronic Infection of CMV

Chronic infection

# of viruses entered	Healthy ϵ_S = 0	Immune suppressed ϵ_S = 0.4	Immune suppressed ϵ_S = 0.7
Primary	~300	~1600	~8700
Chronic	~100	~1300	~8100

Stochastic simulation on the infant side

When the number of viruses is very small, it is possible that the viruses go extinct before causing persistent infection.

$$R_0 = \frac{\beta S_0 p}{c\delta \left(1 + \frac{\mu}{\alpha}\right)} \approx 1.36$$

$$S \rightarrow I \text{ with } c_1 = \beta SV,$$

 $I \rightarrow \emptyset \text{ with } c_2 = \delta_I,$
 $\emptyset \rightarrow V \text{ with } c_3 = p,$
 $V \rightarrow \emptyset \text{ with } c_4 = \mu.$

Probability of infection

Heuristic

$$\left(\frac{\beta SV}{\beta SV + \mu V}\right) \left(\frac{pI}{pI + \delta_I I}\right)^N \approx \left(\frac{0.0012}{0.0012 + 1.5}\right) \left(\frac{1400}{1400 + 0.77}\right)^{1000} = 0.00046$$

Probability of infection = $1 - (1 - 0.046\%)^N$

(a) On average, it takes 1.23 days to develop an infection.

-(b) On average, it takes 0.49 days to clear all viruses.

Persistent infection

Infection that got cleared

Summary

# of viruses entered	Healthy ϵ_S = 0	Immune suppressed ϵ_S = 0.4	Immune suppressed ϵ_S = 0.7
Primary	~300	~1600	~8700
Chronic	~100	~1300	~8100

Infection rate	Healthy ϵ_S = 0	Immune suppressed ϵ_S = 0.4	Immune suppressed ϵ_S = 0.7
Primary	12.89%	52.19%	98.17%
Chronic	4.5%	45.02%	97.59%

