Chapter 8 Security

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2023 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Security: overview

Chapter goals:

- understand principles of network security:
 - cryptography and its many uses beyond "confidentiality"
 - authentication
 - message integrity
- security in practice:
 - firewalls and intrusion detection systems
 - security in application, transport, network, link layers

Chapter 8 outline

- What is network security?
- Principles of cryptography
- Message integrity, authentication
- Securing e-mail
- Network layer security: IPsec
- Operational security: firewalls and IDS

What is network security (Security Goals)?

confidentiality: only sender, intended receiver should "understand" message contents

- sender encrypts message
- receiver decrypts message

authentication: sender, receiver want to confirm identity of each other

message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection

access and availability: services must be accessible and available to users

Friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- Bob, Alice (lovers!) want to communicate "securely"
- Trudy (intruder) may intercept, delete, add messages

Friends and enemies: Alice, Bob, Trudy

Who might Bob and Alice be?

- ... well, real-life Bobs and Alices!
- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- BGP routers exchanging routing table updates
- other examples?

There are bad guys (and girls) out there!

- Q: What can a "bad guy" do?
- A: A lot! (recall section 1.6)
 - eavesdrop: intercept messages
 - actively insert messages into connection
 - impersonation: can fake (spoof) source address in packet (or any field in packet)
 - hijacking: "take over" ongoing connection by removing sender or receiver, inserting himself in place
 - denial of service: prevent service from being used by others (e.g., by overloading resources)

Chapter 8 outline

- What is network security?
- Principles of cryptography
- Message integrity, authentication
- Securing e-mail
- Network layer security: IPsec
- Operational security: firewalls and IDS

The language of cryptography

Breaking an encryption scheme

- cipher-text only attack: Trudy has ciphertext she can analyze
- two approaches:
 - brute force: search through all keys
 - statistical analysis

- known-plaintext attack:
 Trudy has plaintext
 corresponding to ciphertext
 - e.g., in monoalphabetic cipher, Trudy determines pairings for a,l,i,c,e,b,o,
- chosen-plaintext attack:Trudy can get ciphertext for chosen plaintext

Symmetric key cryptography

symmetric key crypto: Bob and Alice share same (symmetric) key: K

- e.g., key is knowing substitution pattern in mono alphabetic substitution cipher
- Q: how do Bob and Alice agree on key value?

Simple encryption scheme

substitution cipher: substituting one thing for another

monoalphabetic cipher: substitute one letter for another

```
plaintext: abcdefghijklmnopqrstuvwxyz
ciphertext: mnbvcxzasdfghjklpoiuytrewq
e.g.: Plaintext: bob. i love you. alice
```

Encryption key: mapping from set of 26 letters to set of 26 letters

ciphertext: nkn. s gktc wky. mgsbc

A more sophisticated encryption approach (1/2)

- n substitution ciphers, M₁,M₂,...,M_n
- cycling pattern:
 - e.g., $n=4: M_1, M_3, M_4, M_3, M_2; M_1, M_3, M_4, M_3, M_2; ...$
- for each new plaintext symbol, use subsequent substitution pattern in cyclic pattern
 - dog: d from M₁, o from M₃, g from M₄
- Encryption key: n substitution ciphers, and cyclic pattern
 - key need not be just n-bit pattern

A more sophisticated encryption approach (2/2)

Same letter at different position encoded differently

```
Plaintext letter: a b c d e f g h i j k l m n o p q r s t u v w x y z C_1(k = 5): f g h i j k l m n o p q r s t u v w x y z a b c d e C_2(k = 19): t u v w x y z a b c d e f g h i j k l m n o p q r s
```

A polyalphabetic cipher using two Caesar ciphers

Two Caesar keys (k = 5, k = 19) and the pattern C1, C2, C2, C1, C2.

m = "bob, i love you." -> c = "ghu, n etox dhz."

Symmetric key crypto: DES

DES: Data Encryption Standard

- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- block cipher with cipher block chaining
- how secure is DES?
 - DES Challenge: 56-bit-key-encrypted phrase can nowadays be decrypted (brute force) in less than a day
 - no known good analytic attack
- making DES more secure:
 - 3DES: encrypt 3 times with 3 different keys

DES operation

initial permutation

16 identical "rounds" of function application, each using different 48 bits of key final permutation

AES: Advanced Encryption Standard

- symmetric-key NIST standard, replaced DES (Nov 2001)
- processes data in 128 bit blocks
- 128, 192, or 256 bit keys
- brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES

Public Key Cryptography

symmetric key crypto:

- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?

public key crypto

- sender, receiver do not share secret key
- public encryption key known to all
- private decryption key known only to receiver

Public Key Cryptography

Wow - public key cryptography revolutionized 2000-year-old (previously only symmetric key) cryptography!

similar ideas emerged at roughly same time, independently in US and UK (classified)

Public key encryption algorithms

requirements:

- need $K_B^+(\cdot)$ and $K_B^-(\cdot)$ such that $K_B^-(K_B^+(m)) = m$
- 2 given public key K_B, it should be impossible to compute private key K_B

RSA: Rivest, Shamir, Adleman algorithm

Prerequisite: modular arithmetic

- x mod n = remainder of x when divide by n
- facts:

```
[(a mod n) + (b mod n)] mod n = (a+b) mod n

[(a mod n) - (b mod n)] mod n = (a-b) mod n

[(a mod n) * (b mod n)] mod n = (a*b) mod n
```

thus
(a mod n)^d mod n = a^d mod n

example: x=14, n=10, d=2: $(x \mod n)^d \mod n = 4^2 \mod 10 = 6$ $x^d = 14^2 = 196 \quad x^d \mod 10 = 6$

RSA: getting ready

- message: just a bit pattern
- bit pattern can be uniquely represented by an integer number
- thus, encrypting a message is equivalent to encrypting a number

example:

- m= 10010001. This message is uniquely represented by the decimal number 145.
- to encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext).

RSA: another important property

The following property will be *very* useful later:

$$K_B(K_B^+(m)) = m = K_B^+(K_B^-(m))$$

use public key use private key first, followed by private key by public key

result is the same!

RSA in practice: session keys

- exponentiation in RSA is computationally intensive
- DES or AES is at least 100 times faster than RSA
- use public key crypto to establish secure connection, then establish second key symmetric session key for encrypting data

session key, K_S

- Bob and Alice use RSA to exchange a symmetric session key K_s
- once both have K_s, they use symmetric key cryptography

Chapter 8 outline

- What is network security?
- Principles of cryptography
- Authentication, message integrity
- Securing e-mail
- Network layer security: IPsec
- Operational security: firewalls and IDS

Authentication

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap1.0: Alice says "I am Alice"

failure scenario??

Authentication

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap1.0: Alice says "I am Alice"

in a network, Bob can not "see" Alice, so Trudy simply declares herself to be Alice

Authentication: another try

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

failure scenario??

Authentication: another try

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Trudy can create a packet "spoofing" Alice's address

Authentication: a third try

Goal: Bob wants Alice to "prove" her identity to him Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Authentication: a third try

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

playback attack:
Trudy records
Alice's packet
and later
plays it back to Bob

Authentication: a modified third try

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap3.0: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Authentication: a modified third try

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap3.0: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Authentication: a fourth try

Goal: avoid playback attack

nonce: number (R) used only once-in-a-lifetime

protocol ap4.0: to prove Alice "live", Bob sends Alice nonce, R

Alice must return R, encrypted with shared secret key

Authentication: ap5.0

ap4.0 requires shared symmetric key - can we authenticate using public key techniques?

ap5.0: use nonce, public key cryptography

Bob computes

$$K_A^+$$
 $(K_A^-(R)) = R$

and knows only Alice could have the private key, that encrypted R such that

$$K_A^+$$
 $(K_A^-(R)) = F$

Authentication: ap5.0 – there's still a flaw!

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

Chapter 8 outline

- What is network security?
- Principles of cryptography
- Authentication, message integrity
- Securing e-mail
- Network layer security: IPsec
- Operational security: firewalls and IDS

Digital signatures

cryptographic technique analogous to hand-written signatures:

- sender (Bob) digitally signs document: he is document owner/creator.
- verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document
- simple digital signature for message m:
 - Bob signs m by encrypting with his private key K_B, creating "signed" message, K_B-(m)

Digital signatures

- suppose Alice receives msg m, with signature: $m, \bar{K}_B(m)$
- Alice verifies m signed by Bob by applying Bob's public key \bar{K}_B to $\bar{K}_B(m)$ then checks $\bar{K}_B(\bar{K}_B(m)) = m$.
- If $K_B(K_B(m)) = m$, whoever signed m must have used Bob's private key

Alice thus verifies that:

- Bob signed m
- no one else signed m
- Bob signed m and not m'

non-repudiation:

✓ Alice can take m, and signature K_B(m) to court and prove that Bob signed m

Message digests

computationally expensive to public-key-encrypt long messages

goal: fixed-length, easy- to-compute digital "fingerprint"

apply hash function H to m, get fixed size message digest, H(m)

Hash function properties:

- many-to-1
- produces fixed-size msg digest (fingerprint)
- given message digest x, computationally infeasible to find m such that x = H(m)

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:

- produces fixed length digest (16-bit sum) of message
- is many-to-one

but given message with given hash value, it is easy to find another message with same hash value:

<u>message</u>	ASCII format	<u>message</u>	ASCII format
I O U 1	49 4F 55 31	I O U <u>9</u>	49 4F 55 <u>39</u>
00.9	30 30 2E 39	00. <u>1</u>	30 30 2E <u>31</u>
9 B O B	39 42 D2 42	9 B O B	39 42 D2 42
	B2 C1 D2 AC -	different messages	B2 C1 D2 AC
		but identical checksums!	

Digital signature = signed message digest

Bob sends digitally signed message:

Alice verifies signature, integrity of digitally signed message:

Hash function algorithms

- MD5 hash function widely used (RFC 1321)
 - computes 128-bit message digest in 4-step process.
 - arbitrary 128-bit string x, appears difficult to construct msg m whose
 MD5 hash is equal to x
- SHA-1 is also used
 - US standard [NIST, FIPS PUB 180-1]
 - 160-bit message digest

Authentication: ap5.0 – let's fix it!!

Recall the problem: Trudy poses as Alice (to Bob) and as Bob (to Alice)

Public key Certification Authorities (CA)

- certification authority (CA): binds public key to particular entity, E
- entity (person, website, router) registers its public key with CE provides "proof of identity" to CA
 - CA creates certificate binding identity E to E's public key
 - certificate containing E's public key digitally signed by CA: CA says "this is E's public key"

Public key Certification Authorities (CA)

- when Alice wants Bob's public key:
 - gets Bob's certificate (Bob or elsewhere)
 - apply CA's public key to Bob's certificate, get Bob's public key

Chapter 8 outline

- What is network security?
- Principles of cryptography
- Authentication, message integrity
- Securing e-mail
- Network layer security: IPsec
- Operational security: firewalls and IDS

Secure e-mail: confidentiality

Alice wants to send *confidential* e-mail, m, to Bob.

- generates random symmetric private key, K_s
- encrypts message with K_s (for efficiency)
- also encrypts K_s with Bob's public key
- sends both $K_s(m)$ and $K_B^+(K_s)$ to Bob

Secure e-mail: confidentiality (more)

Alice wants to send *confidential* e-mail, m, to Bob.

Bob:

- uses his private key to decrypt and recover K_s
- uses K_S to decrypt K_S(m) to recover m

Secure e-mail: integrity, authentication

Alice wants to send m to Bob, with message integrity, authentication

- Alice digitally signs hash of her message with her private key, providing integrity and authentication
- sends both message (in the clear) and digital signature

Secure e-mail: integrity, authentication

Alice sends m to Bob, with confidentiality, message integrity, authentication

Alice uses three keys: her private key, Bob's public key, new symmetric key

What are Bob's complementary actions?

Chapter 8 outline

- What is network security?
- Principles of cryptography
- Authentication, message integrity
- Securing e-mail
- Network layer security: IPsec
- Operational security: firewalls and IDS

What is network-layer confidentiality?

between two network entities:

- sending entity encrypts datagram payload, payload could be:
 - TCP or UDP segment, ICMP message, OSPF message
- all data sent from one entity to other would be hidden:
 - web pages, e-mail, P2P file transfers, TCP SYN packets ...
- "blanket coverage"

Virtual Private Networks (VPNs)

motivation:

- institutions often want private networks for security.
 - costly: separate routers, links, DNS infrastructure.
- VPN: institution's inter-office traffic is sent over public Internet instead
 - encrypted before entering public Internet
 - logically separate from other traffic

Virtual Private Networks (VPNs)

IP Sec

- provides datagram-level encryption, authentication, integrity
 - for both user traffic and control traffic (e.g., BGP, DNS messages)
- two "modes":

transport mode:

 only datagram payload is encrypted, authenticated

tunnel mode:

- entire datagram is encrypted, authenticated
- encrypted datagram encapsulated in new datagram with new IP header, tunneled to destination

Two IPsec protocols

- Authentication Header (AH) protocol [RFC 4302]
 - provides source authentication & data integrity but not confidentiality
- Encapsulation Security Protocol (ESP) [RFC 4303]
 - provides source authentication, data integrity, and confidentiality
 - more widely used than AH

Four combinations are possible!

IPsec datagram

- ESP trailer: padding for block ciphers
- ESP header:
 - SPI, so receiving entity knows what to do
 - sequence number, to thwart replay attacks
- MAC in ESP auth field created with shared secret key

ESP tunnel mode: actions

at R1:

- appends ESP trailer to original datagram (which includes original header fields!)
- encrypts result using algorithm & specified key
- appends ESP header to front of this encrypted quantity
- creates authentication MAC using algorithm and specified key
- appends MAC forming payload
- creates new IP header, new IP header fields, addresses to tunnel endpoint

IPsec summary

- REther AH or ESP protocol (or both)
 - AH provides integrity, source authentication
 - ESP protocol (with AH) additionally provides encryption
- IPsec peers can be two end systems, two routers/firewalls, or a router/firewall and an end system

Chapter 8 outline

- What is network security?
- Principles of cryptography
- Authentication, message integrity
- Securing e-mail
- Network layer security: IPsec
- Operational security: firewalls and IDS

Firewalls

firewall

isolates organization's internal network from larger Internet, allowing some packets to pass, blocking others

Firewalls: why

prevent denial of service attacks:

 SYN flooding: attacker establishes many bogus TCP connections, no resources left for "real" connections

prevent illegal modification/access of internal data

• e.g., attacker replaces CIA's homepage with something else

allow only authorized access to inside network

set of authenticated users/hosts

Three types of firewalls:

- stateless packet filters
- stateful packet filters
- application gateways

- internal network connected to Internet via router firewall
- filters packet-by-packet, decision to forward/drop packet based on:
 - source IP address, destination IP address
 - TCP/UDP source, destination port numbers
 - ICMP message type
 - TCP SYN, ACK bits

Stateless packet filtering: example

- example 1: block incoming and outgoing datagrams with IP protocol field = 17 and with either source or dest port = 23
 - result: all incoming, outgoing UDP flows and telnet connections are blocked
- example 2: block inbound TCP segments with ACK=0
 - result: prevents external clients from making TCP connections with internal clients, but allows internal clients to connect to outside

Stateless packet filtering: more examples

Policy	Firewall Setting
no outside Web access	drop all outgoing packets to any IP address, port 80
no incoming TCP connections, except those for institution's public Web server only.	drop all incoming TCP SYN packets to any IP except 130.207.244.203, port 80
prevent Web-radios from eating up the available bandwidth.	drop all incoming UDP packets - except DNS and router broadcasts.
prevent your network from being used for a smurf DoS attack.	drop all ICMP packets going to a "broadcast" address (e.g. 130.207.255.255)
prevent your network from being tracerouted	drop all outgoing ICMP TTL expired traffic

Access Control Lists

ACL: table of rules, applied top to bottom to incoming packets: (action, condition) pairs: looks like OpenFlow forwarding (Ch. 4)!

action	source address	dest address	protocol	source port	dest port	flag bit
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53	
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023	
deny	all	all	all	all	all	all

Stateful packet filtering

- stateless packet filter: heavy handed tool
 - admits packets that "make no sense," e.g., dest port = 80, ACK bit set, even though no TCP connection established:

action	source address	dest address	protocol	source port	dest port	flag bit
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK

- stateful packet filter: track status of every TCP connection
 - track connection setup (SYN), teardown (FIN): determine whether incoming, outgoing packets "makes sense"
 - timeout inactive connections at firewall: no longer admit packets

Stateful packet filtering

ACL augmented to indicate need to check connection state table before admitting packet

action	source address	dest address	proto	source port	dest port	flag bit	check connection
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any	
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK	X
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53		
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023		X
deny	all	all	all	all	all	all	

Application gateways

- filter packets on application data as well as on IP/TCP/UDP fields.
- example: allow select internal users to telnet outside

- 1. require all telnet users to telnet through gateway.
- 2. for authorized users, gateway sets up telnet connection to dest host
 - gateway relays data between 2 connections
- 3. router filter blocks all telnet connections not originating from gateway

Limitations of firewalls, gateways

- IP spoofing: router can't know if data "really" comes from claimed source
- if multiple apps need special treatment, each has own app. gateway
- client software must know how to contact gateway
 - e.g., must set IP address of proxy in Web browser

- filters often use all or nothing policy for UDP
- tradeoff: degree of communication with outside world, level of security
- many highly protected sites still suffer from attacks

Intrusion detection systems

- packet filtering:
 - operates on TCP/IP headers only
 - no correlation check among sessions
- IDS: intrusion detection system
 - deep packet inspection: look at packet contents (e.g., check character strings in packet against database of known virus, attack strings)
 - examine correlation among multiple packets
 - port scanning
 - network mapping
 - DoS attack

Intrusion detection systems

multiple IDSs: different types of checking at different locations

Network Security (summary)

basic techniques.....

- cryptography (symmetric and public key)
- message integrity and authentication
- used in many different security scenarios
 - secure email
 - IP sec

operational security: firewalls and IDS

