Optimisation Continue et Programmation Linéaire

Razafinjatovo Heriniaina

IT University

Plan

- Introduction
- Optimisation continue
- 3 Programmation linéaire (PL)
- Python
 - scipy.optimize.minimize
 - scipy.optimize.linprog

Introduction

L'optimisation est une branche essentielle des mathématiques appliquées et de l'informatique décision. Elle consiste à trouver la meilleure solution (maximale ou minimale) à un problème donné, sous certaines contraintes. Deux grandes familles de problèmes sont abordées ici :

- L'optimisation continue, où les variables peuvent prendre toutes les valeurs réelles dans un certain domaine.
- La programmation linéaire, cas particulier de l'optimisation continue où la fonction objectif et les contraintes sont linéaires.

Plan

- Introduction
- Optimisation continue
- 3 Programmation linéaire (PL)
- Python
 - scipy.optimize.minimize
 - scipy.optimize.linprog

Optimisation continue

Définition

Un problème d'optimisation continue consiste à :

Minimiser ou maximiser f(x)

sous les contraintes : $x \in D \subset \mathbb{R}^n$

Cas d'utilisation

- Apprentissage automatique (descente de gradient)
- Controle optimal
- Ajustement de modèles statistiques

Outils théoriques

- Dérivée et gradient
- Conditions de Karush-Kuhn-Tucker (KKT)
- Convexité, points selles

Exemple illustré

Problème: Minimiser $f(x) = x^2 + 4x + 4$

Solution: $f(x) = (x+2)^2$, minimum atteint en x = -2

Plan

- Introduction
- Optimisation continue
- 3 Programmation linéaire (PL)
- Python
 - scipy.optimize.minimize
 - scipy.optimize.linprog

Programmation linéaire

Définition

Un problème de programmation linéaire consiste à :

Maximiser (ou minimiser)
$$Z=c_1x_1+c_2x_2+\cdots+c_nx_n$$
 sous les contraintes $\sum_{j=1}^n a_{ij}x_j \leq b_i$ $(i=1,\ldots,m)$ $x_j \geq 0$ (positivité)

Cas d'utilisation

- Logistique et transport
- Planification de production
- Affectation de ressources

Méthode du simplexe (idée générale)

- D'epart d'un sommet admissible de la région des solutions
- Passage de sommet en sommet avec amélioration de la valeur de la fonction objectif
- Arret lorsqu'on atteint un optimum

Exemple illustré

$$\begin{array}{l} \text{Maximiser } Z = 3x + 2y \\ \text{sous } x + y \leq 4 \\ x \leq 2 \\ y \leq 3 \\ x, y \geq 0 \end{array}$$

Solution graphique: Représenter les contraintes dans le plan, calculer la valeur de Z aux sommets de la région admissible. L'optimum est atteint en (2,2) avec Z=10.

Plan

- Introduction
- Optimisation continue
- 3 Programmation linéaire (PL)
- 4 Python
 - scipy.optimize.minimize
 - scipy.optimize.linprog

scipy.optimize.minimize

scipy.optimize.minimize permet de minimiser une fonction scalaire en utilisant différentes méthodes d'optimisation.

- Recherche d'un minimum local.
- Supporte plusieurs algorithmes d'optimisation.
- Gestion des contraintes et des bornes.

Syntaxe de base

```
from scipy.optimize import minimize
result = minimize(fun, x0, method='BFGS',
constraints=(), bounds=(), options={})
```

Paramètres:

- fun : Fonction à minimiser.
- x0 : Point initial.
- method : Algorithme d'optimisation.
- constraints : Contraintes éventuelles.
- bounds : Bornes sur les variables.

Minimisation de la fonction $f(x) = (x-3)^2$

```
import numpy as np
from scipy.optimize import minimize
# Fonction à minimiser
def f(x):
return (x - 3)**2
# Point initial
x0 = np.array([0])
# Appel de minimize
result = minimize(f, x0, method="BFGS")
# Affichage des résultats
print("Solution | optimale | : ", result.x)
print("Valeur_de_la_fonction_en_minimum_:", result.fun)
```

- result.x : Il s'agit de la solution optimale trouvée.
- result.fun : C'est le minimum de la fonction objective, c'est-à-dire la valeur de la fonction évaluée en result.x.

On cherche à minimiser $f(x) = x_0^2 + x_1^2$ sous la contrainte $x_0 + x_1 = 1$

```
def objective(x):
return x[0]**2 + x[1]**2
# Définition de la contrainte x0 + x1 = 1
constraint = {'type': 'eq', 'fun': x[0] + x[1] - 1}
# Point initial
x0 = [0.5, 0.5]
# Appel de minimize avec contrainte
result = minimize(objective, x0,
constraints=[constraint], method="SLSQP")
print("Solution | optimale | : ", result.x)
print("Valeurudeulaufonctionuenuminimumu:", result.fun)
```

Algorithmes d'optimisation courantes

- "BFGS": Méthode de quasi-Newton, efficace pour problèmes non contraints.
- "L-BFGS-B" : Variante de BFGS qui gère des bornes sur les variables.
- "Nelder-Mead": Approache sans gradient, utile pour fonctions non différentiables.
- "SLSQP" : Gère les contraintes d'égalité et d'inégalité.
- "COBYLA": Optimisation sans gradient avec contraintes d'inégalité uniquement.

scipy.optimize.linprog

La fonction scipy.optimize.linprog est utilisée pour résoudre des problèmes d'optimisation linéaire sous contraintes. Elle permet de minimiser une fonction objectif linéaire sous des contraintes d'égalité et d'inégalité.

Formulation du problème

L'optimisation linéaire vise à résoudre :

$$min c^T x$$

sous les contraintes :

$$A_{ub}x \leq b_{ub}$$
 (contraintes d'inégalité)

$$A_{eq}x = b_{eq}$$
 (contraintes d'égalité)

 $x \ge 0$ (contraintes de positivité, par défaut)

Syntaxe de base

```
from scipy.optimize import linprog
result = linprog(
        # Coefficients de la fonction objectif
с,
A_ub=A_ub, # Matrice des coefficients des
contraintes d'inégalité
b_ub=b_ub, uuuuu #u Vecteurudesu constantesudesu contraintes
d'inégalité
A_eq=A_eq, # Matrice des coefficients des
contraintes d'égalité
d'égalité
bounds=bounds, # Bornes des variables(par défaut,x>=0)
method='highs' # Algorithme utilisé ('highs', 'highs-ds',
'highs-ipm', etc.)
```

Exemple: Problème simple

Problème:

$$\min z = 3x_1 + 2x_2$$

sous:

$$x_1 + 2x_2 \le 6$$
, $4x_1 + 2x_2 \le 12$, $-x_1 + x_2 \le 1$, $x_1, x_2 \ge 0$.

Code Python

```
from scipy.optimize import linprog
# Coefficients de la fonction objectif
c = [3, 2]
# Coefficients des contraintes d'inégalité
(A_ub * x \le b_ub)
A_ub = [
[1, 2],
[4, 2],
[-1, 1]
b_ub = [6, 12, 1]
# Résolution du problème
result = linprog(c, A_ub=A_ub, b_ub=b_ub, method='highs')
# Affichage du résultat
if result.success:
print("Solution, optimale, trouvée,:")
print(f"x1={result.x[0]:.2f}, \( \) x2={result.x[1]:.2f}")
print(f"Valeur, optimale, de, la, fonction, objectif:
{result.fun:.2f}")
else:
print("Echec, de, la, résolution.")
```

Interprétation des résultats

- result.x : Valeurs optimales des variables x_1, x_2 .
- result.fun : Valeur optimale de la fonction objectif.
- result.success : booléen indiquant si la solution a été trouvée.
- result.message : Explication du résultat.

Méthodes disponibles

linprog propose plusieurs solveurs :

- 'highs' (par défaut) : Solveur HiGHS.
- 'highs-ds' : Simplexe dual.
- 'highs-ipm' : Méthode des points intérieurs.