Thesis Defence

Simon Fraser University

Parameter Estimation and Uncertainty Quantification Applied to Advection-Diffusion Problems Arising in Atmospheric Source Inversion

Juan Gabriel García

April 10 2018

Content

- Overview
- Setting up the Problem
 - Finding a Surrogate for F
 - Optimizing the Surrogate Interpolation Capabilities
 - Reducing the Complexity of the Model
- 3 Introducing the Bayesian Framework
- 4 Decoding the Posterior

Problem of Interest

Given a function

$$F: A \times \Theta \rightarrow \mathbb{R},$$

where $A \subset \mathbb{R}^n$ and Θ is a set of parameters. Given experimental (noisy) measures of F at known points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in A$. How to infer the values of the parameters in Θ and their uncertainties when F is computationally expensive?

Case Study

Consider the model of pollutant transport for the concentration c(x, y, z, t) of a pollutant

$$\partial_t c + L(\theta)c = f$$

Goal: Estimate Q_i and θ using measurements of deposition in R_i .

Mathematical Model

$$\partial_t c(\mathbf{x},t) + \nabla \cdot (\mathbf{u}(\mathbf{x},t)c + \mathbf{S}(\mathbf{x},t)\nabla c) = q(\mathbf{x},t) \quad \text{on } \mathbb{R}^2 \times \mathbb{R}_{\geq 0} \times (0,T).$$

- $\mathbf{u}(\mathbf{x},t) = (u_x(z,t), u_y(z,t), u_{set})$ (Wind velocity field)
- $\bullet \|(u_x,u_y)\|_2 \propto (z)^{\gamma},$
- $S = diag(s_x, s_y, s_z)$ (Eddy diffusion matrix),
- $s_z = f(L, z_{cut})$,
- $s_x = s_y = g(z_i, L)$, with z_i Mixing layer height.

Boundary Conditions

• Far-field boundary condition

$$c(\mathbf{x},t) \to 0$$
 as $||x|| \to \infty$

• Robin boundary conditions at z = 0

$$\left(u_{set}c + s_z \frac{\partial c}{\partial z}\right)\Big|_{z=0} = u_{dep}c\Big|_{z=0}$$

• To avoid inconsistencies in the Robin B.C. we define a cutoff length z_{cut} .

Concentration and deposition are related via

$$w(x,y,T) = \int_0^T c(x,y,0,t) u_{set} dt.$$
 (1)

$$F(x_i, y_i, T) = \int_{R_i} w(x, y, T) dxdy \approx w(x_i, y_i, T) \Delta A,$$

- ullet ΔA is the cross-sectional area of the dust-fall jar
- T is taken to be one month.

- Numerical solution of the concentration c was obtained via a finite volume solver¹ using a 30x30 resolution grid on the domain.
- Solving for one set of parameters can take up to half an hour.

Conclusion: Finding the deposition F is computationally very expensive.

Roadmap

- ullet Find a surrogate for F,
- Locate optimal points to evaluate F so that surrogate is accurate,
- See if it is possible to do dimensionality reduction,
- Use the Bayesian framework to obtain the posterior distribution of parameters in the light of experimental data,
- Perform inference on the posterior using numerical methods.

Content

- 1 Overview
- Setting up the Problem
 - Finding a Surrogate for F
 - Optimizing the Surrogate Interpolation Capabilities
 - Reducing the Complexity of the Model
- Introducing the Bayesian Framework
- 4 Decoding the Posterior

Gaussian Process

A Gaussian process (GP) is a collection of random variables $\{g(x)\}_{x\in A}$, for some set A, possibly uncountable, such that any finite subset of random variables $\{g(x_k)\}_{k=1}^N\subset\{g(x)\}_{x\in A}$ for $\{x_k\}_{k=1}^N\subset A$ are jointly Gaussian.

A GP is completely defined by its mean m(x) and covariance operator k(x,x'):

$$m(x) = \mathbb{E}(g(x)),$$

$$k(x, x') = \mathbb{E}\left((x - m(x))(x' - m(x'))\right).$$

Gaussian Process as Interpolator

Interpolation with Real Data

Why Experimental Design?

Interpolation Using a Maximin Design

Interpolation Using an Arbitrary Partition

Maximin Design

Given $T \subset \mathbb{R}^n$ and a subset S of T, with finite (fixed) cardinality, say |S| = n. A maximin distance design S^o is a collection of points of T such that

$$\max_{(S\subset T,\;|S|=n)} \min_{(s,s'\in S)} \|s-s'\| = \min_{s,s'\in S^o} \|s-s'\| = \max!,$$

Example of a Design

Sensitivity Analysis

- γ: Fitting parameter for the z dependence of the velocity.
- z₀: Roughness length.
- z_i: Mixing layer height.
- L: Monin-Obukhov length.
- z_{cut}: cutoff height.

What About the Sources?

The deposition behaves linearly with respect to the values of the 4 sources, hence

$$\begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_9 \end{bmatrix} = \mathcal{A}(\gamma, z_0, L) \begin{bmatrix} q_1 \\ \vdots \\ q_4 \end{bmatrix}$$

To evaluate the matrix $A(\gamma, z_0, L)$ we approximate its entries by Gaussian processes and create a surrogate $A(\gamma, z_0, L)$.

Cross Validating the Surrogates

Fitted Values Against Response Values

Content

- 1 Overview
- 2 Setting up the Problem
 - Finding a Surrogate for F
 - Optimizing the Surrogate Interpolation Capabilities
 - Reducing the Complexity of the Model
- 3 Introducing the Bayesian Framework
- 4 Decoding the Posterior

Bayes' Rule

Given a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ and two events $A, B \in \mathscr{F}$, with $\mathbb{P}(B) \neq 0$, we define the conditional probability of A given B by

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

and Bayes' formula

$$\mathbb{P}_{post}(A|B) \propto \mathbb{P}_{like}(B|A)\mathbb{P}_{prior}(A). \tag{2}$$

Looking at the Stochastic Model

To account for the uncertainties in the interpolation and in the experimental measurements we propose the model

$$\begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_9 \end{bmatrix} = A(\gamma, z_0, L) \begin{bmatrix} q_1 \\ \vdots \\ q_4 \end{bmatrix} + \epsilon, \quad \text{where } \epsilon \sim \mathcal{N}(0, \lambda_\epsilon I_{9 \times 9})$$

Probabilistic Model

Our goal is to estimate values of $\omega := (\gamma, z_0, L)$ and $q := (q_1, q_2, q_3, q_4)$ given measurements \vec{R} . Mathematically we want to estimate:

$$\mathbb{P}_{post}(\omega, q | \vec{R}) \propto \underbrace{\mathbb{P}_{\textit{like}}(\vec{R} | \omega, q) \mathbb{P}_{\textit{prior}}(\omega) \mathbb{P}_{\textit{prior}}(q)}_{\textit{Assuming } p \textit{ and } q \textit{ independent}}$$

We assume $\omega \sim \textit{Uniform}$ over the domain of definition of the parameters.

What About *q*?

- $q_k > 0$ for k = 1, 2, 3, 4.
- If we trust the engineers the most likely value for q is the engineers estimate and the true value cannot be very far away from those estimates.

Source	Estimated Emission Rate [ton/yr]
q_1	35
q_2	80
q 3	5
q 4	5

Choosing a Prior for q

A consistent assumption is $q_k \sim \text{Ga}(\alpha_k, \beta_k)$, for k=1,2,3,4, the following conditions that define α_k and β_k for all k uniquely.

$$\bullet \ \beta_k(\alpha_k-1)=q_{eng,k}$$

• $qgamma(0.99, \alpha_k, \beta_k) = 3q_{eng,k}$

Likelihood

Since $\epsilon \sim \mathcal{N}(\mathbf{0}, \lambda_\epsilon \emph{I}_{9 \times 9})$ then

$$ullet$$
 $\mathbb{P}(\epsilon) \propto \exp\left(-rac{\|\epsilon\|_2^2}{2\lambda_\epsilon^2}
ight)$

$$ullet$$
 $\mathbb{P}_{\mathit{like}}(ec{R}|\omega,q) \propto \exp\left(-rac{1}{2\lambda_{\epsilon}^2} \|ec{R} - A(\omega)q\|_2^2
ight)$

Calculating the Posterior

Putting everything together

$$ullet$$
 $\mathbb{P}_{\mathit{like}}(ec{R}|\omega,q) \propto \exp\left(-rac{1}{2\lambda_{\epsilon}^2} \|ec{R} - A(\omega)q\|_2^2
ight)$

•
$$\mathbb{P}_{prior}(\mathbf{q}) \propto \Pi_{k=1}^k q_k^{\alpha_k-1} \exp(\beta_k q_k)$$

•
$$\mathbb{P}_{prior}(\omega) \propto \mathbf{1}_{[0,0.6] \times [0,3] \times [-600,0]}$$

Then

$$\mathbb{P}_{post}(\omega,q|ec{R}) \propto \mathbb{P}_{like}(ec{R}|\omega,q)\mathbb{P}_{prior}(\omega)\mathbb{P}_{prior}(q)$$

Content

- 1 Overview
- 2 Setting up the Problem
 - Finding a Surrogate for F
 - Optimizing the Surrogate Interpolation Capabilities
 - Reducing the Complexity of the Model
- 3 Introducing the Bayesian Framework
- 4 Decoding the Posterior

Sampling From a Probability Distribution

Algorithm 1 Adaptive Metropolis-Hastings Algorithm

```
1: Choose an initial point (\omega_1, \mathbf{q}_1) in the support of \mathbb{P}_{post}(\omega, \mathbf{q} | \vec{R})
2: \beta = 0.05
3: for j = 2 : N do
4:
5:
            if i < 14 then
                   Draw u from \mathcal{N}((\omega_i, \mathbf{q}_i), \frac{0.01}{7} I_{7 \times 7}).
6:
7:
            else
                   estimate the empirical covariance matrix \Sigma_i based on the samples generated so far
                   Draw u from (1-\beta)\mathcal{N}((\omega_i,\mathbf{q}_i),\frac{(2.38)^2}{7}\Sigma_i)+\beta\mathcal{N}((\omega_i,\mathbf{q}_i),\frac{(0.1)^2}{7}I_{7\times7}).
8:
9:
             end if
10:
               Propose (\tilde{\omega}_i, \tilde{\mathbf{q}}_i) \leftarrow (\omega_{i-1}, \mathbf{q}_{i-1}) + u.
              Compute \beta \leftarrow \min \left(1, \frac{\mathbb{P}_{post}(\omega_j, q_j | \mathbf{y})}{\mathbb{P}_{post}(\omega_i, \mathbf{y}, \mathbf{q}_i, \mathbf{y})}\right).
11:
12:
              Draw w \sim U([0,1]).
13:
              if w < \beta then
14:
                     (\omega_i, \mathbf{q}_i) \leftarrow (\tilde{\omega}_i, \tilde{\mathbf{q}}_i) (Accept the move)
15:
              else
16:
                     (\omega_i, \mathbf{q}_i) = (\omega_{i-1}, \mathbf{q}_{i-1})
                                                                     (Reject the move)
17:
              end if
18: end for
```

Setting λ_{ϵ}

We define

$$J(\lambda_\epsilon) = rac{1}{2} \int \left(\|A(\omega)q - ec{R})\|_2 + \|q - q_{\mathsf{est}}\|_2
ight) d\mathbb{P}_{post}^{\lambda_\epsilon},$$

and choose a minimizer of J

$$\hat{\lambda_{\epsilon}} = argmin \ J(\lambda_{\epsilon}).$$

Calculating J

Histograms for the Parameters

Histograms for the Sources

Results for the Parameters

Parameter	Point Estimate	68% Confidence Interval
γ	0.3478	[0.1498, 0.5458]
<i>z</i> ₀	0.0811	[0, 1.5781]
L	-379.45	[-195.86, -563.04]

Results for the Sources

Comparison with Related Work

Figure: Lushi, E. and Stockie, J.M. Atmospheric Environment, 2010

Figure: Hosseini and Stockie, Computers and Fluids, 2017

Conclusions

- We have developed a method to cheaply estimate parameters in computationally expensive models.
- Instead of trial and error, we propose a methodology that allows estimating parameters in complex models using experimental data.
- Besides a point estimate we are able to obtain a confidence interval for it.
- Our results agree well with previous results.