

Institute for Systems

and Robotics | LISBOA

Automatic Identification of Regions of Interest in Dermoscopy Images Using Vision Transformers and Weakly Supervised Learning

D. Araújo, C. Barata, A. Bissoto, C. Santiago

ISR / IST / LARSyS

Abstract

- Skin cancer is a growing public health concern. Early detection of the lesion plays a crucial role in ensuring successful treatment.
- In this paper, we propose a novel approach that combines Vision Transformers and Multiple Instance Learning (MIL).
- Our method consists of two branches: 1) the Vision Transformer branch; and 2) the deep-instance MIL branch.
- This combination enables accurate image and patch classification, which facilitates ROI identification.

Figure 2: ROIs identification process illustration using an Instance-level MIL classifier with Max-Pooling aggregation function. The region in red represents the patches that were classified as melanoma. The region in blue represents the patches that were classified as nevus.

Figure 1: Proposed model architecture. The model is composed by two branches. The first branch used a variant of the Vision Transformer [4]. The second is comprised by a Pretrained Feature Extractor and MIL classifier [5].

Table 1: Performances with different approaches: best results on ISIC 2019 [1], along with their corresponding results in PH2 [2], and Derm7pt [3] test sets. The best results for each architecture are highlighted in bold.

Models			ISIC 2019			PH2			Derm7pt		
	Modell		BA	R-MEL	R-NV	BA	R-MEL	R-NV	BA	R-MEL	R-NV
ne	RN-18	RN-18		73.9	92.3	71.9	45.0	98.7	70.6	51.2	90.1
Baseline	DEIT-S EVIT-S		90.6 87.9	85.6 82.5	95.6 92.0	85.9 84.6	72.5 70.0	99.4 98.8	76.5 78.8	57.9 65.1	95.1 90.4
MIL-RN-18		Max	86.2	84.7	87.7	82.5	72.5	92.5	74.5	65.1	83.8
	Instance	Avg Topk	86.1 88.3	82.7 85.2	89.4 91.5	87.7 79.7	85.0 70.0	89.4 89.4	77.0 72.6	62.3 59.9	91.7 89.4
		Max	88.0	83.6	92.4	79.7	80.0	86.9	74.5	61.5	87.5
	Embedding	Avg Topk	87.8 88.6	83.3 84.3	92.3 92.9	74.0 85.0	80.0 82.5	80.0 87.5	75.2 75.0	65.5 63.9	84.9 86.1
MIL-EVIT-S		Max	90.6	86.7	94.4	81.2	72.5	90.0	73.6	54.0	93.2
	Instance	Avg Topk	91.5 91.1	86.9 87.1	95.7 95.1	84.1 82.5	70.0 70.0	98.1 95.0	73.4 74.7	52.4 56.7	94.4 96.7
	P	Max	90.9	86.0	95.8	82.8	70.0	95.6	74.2	54.4	94.1
	Embedding	Avg Topk	91.3 91.1	86.6 87.7	96.0 94.5	80.6 86.6	70.0 80.0	91.9 91.3	73.4 76.3	54.4 60.7	92.5 91.8

References

[1]. Combalia, M., et al.: BCN20000: Dermoscopic Lesions in the Wild. arXiv preprint arXiv:1908.02288 (8 2019).

[2] Mendonca, T., et al.: Ph2 - a dermoscopic image database for research and benchmarking. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2013).

[3].Kawahara, J., et al.: Seven-Point Checklist and Skin Lesion Classification Using Multitask Multimodal Neural Nets. IEEE Journal of Biomedical and Health Informatics 23 (2019).

[4] Y. Liang, C. Ge, Z. Tong, Y. Song, J. Wang, and P. Xie, "Not all patches are what you need: Expediting vision transformers via token reorganizations," 2022. [Online]. Available: https://arxiv.org/abs/2202.07800

[5] M. Ilse, J. M. Tomczak, and M. Welling, "Attention-based deep multiple instance learning," CoRR, vol. abs/1802.04712, 2018. [Online]. Available: http://arxiv.org/abs/1802.04712.