Числовые ряды

1 Знакопеременные ряды

Определение. Ряд $\sum_{n=1}^{\infty} a_n$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$.

Если
$$\sum_{n=1}^{\infty} |a_n|$$
 сходится, то $\sum_{n=1}^{\infty} a_n$ сходится.

Определение. Ряд $\sum_{n=1}^{\infty} a_n$ называется *условно сходящимся*, если ряд $\sum_{n=1}^{\infty} a_n$ сходится, а $\sum_{n=1}^{\infty} |a_n|$ расходится.

Теорема (признак Лейбница). Пусть $c_n>0$ и $c_n\to 0$ монотонно. Тогда $\sum_{n=1}^{\infty} (-1)^{n-1}c_n$ сходится.

Следствие (оценка остатка ряда). В условиях признака Лейбница

$$|r_n| < c_{n+1}.$$

Преобразование Абеля

$$\sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n-1} (b_i - b_{i+1}) A_i + b_n A_n, \quad \text{где} \quad A_k = \sum_{i=1}^{k} a_i.$$

Лемма (Абеля). Пусть последовательность $\{a_n\}$ имеет ограниченные частичные суммы: $|A_n| \le M$, а последовательность $\{b_n\}$ монотонна. Тогда

$$\left| \sum_{i=1}^{n} a_i b_i \right| \leqslant M(|b_1 - b_n| + |b_n|), \quad n \in \mathbb{N}.$$

Теорема (признак Абеля). Пусть $\sum_{n=1}^{\infty} a_n$ сходится, а последовательность $\{b_n\}$ монотонна и ограничена. Тогда $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Теорема (признак Дирихле). Пусть последовательность $\{a_n\}$ имеет ограниченные частичные суммы: $|A_n| \leq M$, а последовательность $\{b_n\}$ стремится к нулю монотонно. Тогда $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Теорема (о перестановке членов абсолютно сходящегося ряда). Пусть $\sum_{n=1}^{\infty} a_n$ сходится абсолютно. Тогда любая его перестановка сходится к той же сумме.

Теорема (Римана о перестановке членов условно сходящегося ряда). Пусть $\sum_{n=1}^{\infty} a_n$ сходится условно. Тогда для любого $|L| \leqslant +\infty$ можно переставить элементы ряда так, что полученный ряд будет иметь сумму, равную L.