Appendix B

Using the calculus of variations, we set the derivative of this functional to zero giving

$$p(x) = \exp\left\{-1 + \lambda_1 + \lambda_2 x + \lambda_3 (x - \mu)^2\right\}. \tag{2.97}$$

Exercise 2.24

The Lagrange multipliers can be found by back-substitution of this result into the three constraint equations, leading finally to the result:

$$p(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\},\tag{2.98}$$

and so the distribution that maximizes the differential entropy is the Gaussian. Note that we did not constrain the distribution to be non-negative when we maximized the entropy. However, because the resulting distribution is indeed non-negative, we see with hindsight that such a constraint is not necessary.

If we evaluate the differential entropy of the Gaussian, we obtain

$$H[x] = \frac{1}{2} \left\{ 1 + \ln(2\pi\sigma^2) \right\}. \tag{2.99}$$

Thus, we see again that the entropy increases as the distribution becomes broader, i.e., as σ^2 increases. This result also shows that the differential entropy, unlike the discrete entropy, can be negative, because H(x) < 0 in (2.99) for $\sigma^2 < 1/(2\pi e)$.

2.5.5 Kullback-Leibler divergence

So far in this section, we have introduced a number of concepts from information theory, including the key notion of entropy. We now start to relate these ideas to machine learning. Consider some unknown distribution $p(\mathbf{x})$, and suppose that we have modelled this using an approximating distribution $q(\mathbf{x})$. If we use $q(\mathbf{x})$ to construct a coding scheme for transmitting values of \mathbf{x} to a receiver, then the average additional amount of information (in nats) required to specify the value of \mathbf{x} (assuming we choose an efficient coding scheme) as a result of using $q(\mathbf{x})$ instead of the true distribution $p(\mathbf{x})$ is given by

$$KL(p||q) = -\int p(\mathbf{x}) \ln q(\mathbf{x}) d\mathbf{x} - \left(-\int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x}\right)$$
$$= -\int p(\mathbf{x}) \ln \left\{\frac{q(\mathbf{x})}{p(\mathbf{x})}\right\} d\mathbf{x}. \tag{2.100}$$

This is known as the *relative entropy* or *Kullback–Leibler divergence*, or *KL divergence* (Kullback and Leibler, 1951), between the distributions $p(\mathbf{x})$ and $q(\mathbf{x})$. Note that it is not a symmetrical quantity, that is to say $\mathrm{KL}(p\|q) \not\equiv \mathrm{KL}(q\|p)$.

We now show that the Kullback-Leibler divergence satisfies $\mathrm{KL}(p\|q) \geqslant 0$ with equality if, and only if, $p(\mathbf{x}) = q(\mathbf{x})$. To do this we first introduce the concept of *convex* functions. A function f(x) is said to be convex if it has the property that every chord lies on or above the function, as shown in Figure 2.15.

Any value of x in the interval from x=a to x=b can be written in the form $\lambda a + (1-\lambda)b$ where $0 \le \lambda \le 1$. The corresponding point on the chord

Exercise 2.25