Functions Quiz 2 - SOLUTIONS

January, 2022

1 Name and Date:	
Print your name and todays date below;	
Name	

Question 1: (8 points)

Answer the following True/False questions,

1. Let $id_{\mathbb{R}} \colon \mathbb{R} \to \mathbb{R}$ be the identity function on \mathbb{R} , then

$$id_{\mathbb{R}}(id_{\mathbb{R}}(id_{\mathbb{R}}(id_{\mathbb{R}}(id_{\mathbb{R}}(id_{\mathbb{R}}(2)))))) = 2.$$

Answer: True.

2. Let $\phi: \mathcal{A} \to \mathcal{B}$ be an *injective* function, then every element in \mathcal{B} is mapped to. **Answer**: **False**.

3. Let $\mathcal{L}: \mathcal{A} \to \mathcal{B}$ be a *surjective* function, then $|\mathcal{R}_{\mathcal{L}}| = |\mathcal{B}|$, where $\mathcal{R}_{\mathcal{L}}$ is the range of \mathcal{L} .

Answer: True, Surjectivness implies that $\mathcal{R}_{\mathcal{L}} = \mathcal{B}$, which would then imply that $|\mathcal{R}_{\mathcal{L}}| = |\mathcal{B}|$ (Ask me in class if you are still confused).

4. Let $\lambda : \mathcal{A} \to \mathcal{B}$ be a function, suppose λ is one of surjective or injective, then λ is invertible. **Answer**: **False**, If λ is **both** injective and surjective, then its invertible.

5. Let $\mathcal{X} = \{-1, 0, 1\}$ and $\mathcal{Y} = \{-1, 1, 2\}$ be sets, lets define the following function,

- $\eta: \mathcal{X} \to \mathcal{Y}$.
- $\eta(x) = 2x^2 1$.

Then η is an invertible function.

Answer: False, Since $\eta(-1) = \eta(1) = 1$, we conclude that η fails to be injective. Since it fails to be injective, it fails to invertible.

6. Let $\mathcal{V} = \{-2, 0\}$ and $\mathcal{W} = \{0, 4\}$ be sets, define the following function,

- $\mathcal{T} \colon \mathcal{V} \to \mathcal{W}$.
- $T(v) = v^2$.

Then the function,

- $\mathcal{T}^{-1} \colon \mathcal{W} \to \mathcal{V}$.
- $\mathcal{T}^{-1}(w) = \sqrt{w}$.

is the inverse function for \mathcal{T} .

Answer: False, Note that $\mathcal{T}^{-1}(\mathcal{T}(-2)) = \mathcal{T}^{-1}(4) = 2$, and hence we conclude that \mathcal{T}^{-1} fails the first condition of invertible functions with this element, therefore this is not the inverse function for \mathcal{T} .

- 7. Let **A** and **B** be binary strings, then $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$.

 Answer: False, Suppose that $\mathbf{A} = 1$ and $\mathbf{B} = 0$, then $\mathbf{A} + \mathbf{B} = 10$ wheras $\mathbf{B} + \mathbf{A} = 01$, and clearly $10 \neq 01$.
- 8. Let G: H → T be a function. If |H| = |T|, then G is invertible.
 Answer: False, This was a tricky question, it requires you to think of a function that fails to satisfy invertibilty even though the sizes of the sets are the same, so ill take this up in class. (In class explanation)

Question 2: (8 points)

For each of the following, you are given a function and its definition. For each question,

- Prove that the function is invertible **or** prove that the function is not invertible.
- Determine the range of the function.
- (a) $g: \mathcal{A} \to \mathcal{B}$,

Solution: Since $2 \in \mathcal{B}$ is not mapped to, we conclude that g is not surjective. Since g fails to be surjective, we conclude that it fails to be invertible.

Based on the outputs given in the mapping diagram, we conclude that the range of the function is,

$$\mathcal{R}_g = \{1, 4, 18\}.$$

- (b) Let $\mathcal{X} = \{-3 2, 0, 1\}, \ \mathcal{Y} = \{0, 1, 2, 3\}$ be sets and define,
 - $H \colon \mathcal{X} \to \mathcal{Y}$.
 - H(x) = |x|.

Solution:

From the mapping diagram we see that no two elements in \mathcal{X} map to the same element in \mathcal{Y} , hence H is injective. Also note that every element in \mathcal{Y} is mapped to, and hence H is surjective as well. Since H is both surjective and injective, it follows that H is invertible.

Based on the outputs given in the mapping diagram, we conclude that the range of the function is,

$$\mathcal{R}_H = \{0, 1, 2, 3\}.$$

Question 3: (7 marks)

Let $\mathcal{X} = \{3, 7, 4\}$ and $\mathcal{Y} = \{2, 0, 1\}$ be sets, define the following function,

- $A: \mathcal{X} \to \mathcal{Y}$.
- $A(x) = \sqrt{x-3}$.

Prove that the function,

- $A^{-1}: \mathcal{Y} \to \mathcal{X}$.
- $A^{-1}(y) = y^2 + 3$.

is the inverse function for \mathcal{L} .

Hint: Use mapping tables.

Solution: We confirm that both conditions of Definition 4.1 hold with mapping tables,

$$\begin{array}{c|cccc} \mathcal{X} & A^{-1}(A(x)) \\ \hline 3 & A^{-1}(A(3)) = A^{-1}(0) = (0)^2 + 3 = 3 \\ 7 & A^{-1}(A(7)) = A^{-1}(2) = (2)^2 + 3 = 7 \\ 4 & A^{-1}(A(4)) = A^{-1}(1) = (1)^2 + 3 = 4 \\ \hline \\ \mathcal{Y} & A(A^{-1}(x)) \\ \hline 2 & A(A^{-1}(2)) = A(7) = \sqrt{7 - 3} = 2 \\ 0 & A(A^{-1}(0)) = A(3) = \sqrt{3 - 3} = 0 \\ 1 & A(A^{-1}(1)) = A(4) = \sqrt{4 - 3} = 1 \\ \hline \end{array}$$

By our results from the mapping tables, we conclude that $A^{-1}(y) = y^2 + 3$ is indeed the inverse function for A.

Question 4: (3 marks)

Let $S = \{101, 010, 111\}$ and $R = \{11, 01, 10\}$ be sets of binary strings, define the following function,

- $Q: \mathcal{S} \to \mathcal{R}$.
- $Q(\mathbf{S}) = \mathbf{s}_1 \mathbf{s}_2$.

Prove that the function,

- $Q^{-1}\colon \mathcal{R} \to \mathcal{S}$.
- $Q^{-1}(\mathbf{R}) = \mathbf{R} + 1$.

is **NOT** the inverse function for Q.

Hint: Which of the two conditions in Definition 4.1 does it fail to preserve?

Solution: Note that $Q^{-1}(Q(010)) = Q^{-1}(01) = 011$, clearly $011 \neq 010$ and hence $Q^{-1}(\mathbf{R}) = \mathbf{R} + 1$ fails to satisfy the first condition of Definition 4.1. We conclude that $Q^{-1}(\mathbf{R}) = \mathbf{R} + 1$ is not the inverse function for Q.