Point Estimation

Feng-Chang Lin

Department of Biostatistics
University of North Carolina at Chapel Hill

flin@bios.unc.edu

(C&B §7)

Introduction

- Random sample X_1, \dots, X_n from $f(x|\theta)$, where θ is either a scalar or vector.
- We want to estimate θ or $\tau(\theta)$.
- **Example** If $X \sim N(\mu, \sigma^2)$, how do we estimate $\theta = (\mu, \sigma^2)$?
- **Example** If $X \sim N(\mu, \sigma^2)$, how do we estimate $\tau(\theta) = \mu/\sigma^2$?
- Example If $X \sim N(\mu, \sigma^2)$, how do we estimate $\tau(\theta) = P(X_1 > 100) = \Phi((100 \mu)/\sigma)$?

Introduction (cont'd)

- *Point estimator*: Any function of the sample, a statistic, $W(X_1, \dots, X_n)$, also simply called *estimator*. Specifically, an estimator can not be a function of θ . It must be a statistic.
- *Estimator*: The random variable $W(X_1, \dots, X_n)$.
- *Estimate*: The realized value $W(x_1, \dots, x_n)$.
- We want a good point estimator.
- How to find good estimators?
- What is a "good" estimator?

Method of Moments

- Match sample moments with population moments.
- Use as many sample moments as needed. Start with lower order moments first.
- The *k*th population moment: $\mu_k = EX_1^k$.
- The *k*th sample moment: $M_k = \frac{1}{n} \sum_{i=1}^n X_i^k$. What is M_1 ?
- Finding the moment estimator: Set $M_1 = \mu_1$, $M_2 = \mu_2$, \cdots , and solve for θ .
- The moment estimator will be denoted by $\hat{\theta}_{MM}$.
- **Example** X_1, \dots, X_n iid Bernoulli(θ), $\theta \in [0, 1]$. $M_1 = \mu_1$ gives $\hat{\theta}_{MM} = \bar{X}$.
- Example X_1, \dots, X_n iid $N(0, \theta)$, $M_1 = \mu_1 = 0$ is not usable. $M_2 = \mu_2 = \theta$ gives $\hat{\theta}_{MM} = \frac{1}{n} \sum_{i=1}^n X_i^2$.

Method of Moments (cont'd)

• **Example** X_1, \dots, X_n iid $N(\mu, \sigma^2)$, both μ and σ^2 unknown.

$$M_1 = \mu$$
, and $M_2 = \mu^2 + \sigma^2$.

$$\hat{\mu}_{MM} = \bar{X}, \hat{\sigma}_{MM}^2 = M_2 - M_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{n-1}{n} S^2.$$

• **Example** X_1, \dots, X_n iid binomial(m, p), both m and p unknown, $p \in [0, 1], m \in \{0, 1, \dots\}$.

$$M_1 = mp, M_2 = (mp)^2 + mp(1-p).$$

$$\frac{M_2}{M_1} - M_1 = 1 - p, \hat{p}_{MM} = 1 - \frac{M_2 - M_1^2}{M_1}, \hat{m}_{MM} = \frac{M_1}{\hat{p}_{MM}}.$$

• Negative \hat{p}_{MM} and \hat{m}_{MM} is possible. Out of range moment estimators are not rare in applications.

Maximum Likelihood

- The *likelihood function* is the joint pdf or pmf, but viewed as a function of θ with the sample x being fixed.
- If X is a random vector representing the observable data, then

$$L(\theta|\mathbf{x}) = f(\mathbf{x}|\theta).$$

• If X_1, \dots, X_n is a random sample from a pdf or pmf $f(x|\theta)$, then

$$L(\theta|x) = \prod_{i=1}^{n} f(x_i|\theta),$$

with the log-likelihood function

$$\ell(\theta|x) = \log L(\theta|x) = \sum_{i=1}^{n} \log f(x_i|\theta).$$

6/37

Lin (UNC-CH) Bios 661 February 19, 2019

- For a given sample x, the maximum likelihood estimator (MLE), denoted $\hat{\theta}(x)$ is a value of θ at which $L(\theta|x)$ attains its maximum over the parameter space.
- The abbreviation MLE is used for both maximum likelihood estimator and maximum likelihood estimate.
- If the range of x depends on θ , that dependence should be built into $L(\theta|x)$.
- **Example** X_1, \dots, X_n iid uniform on $[0, \theta]$.

$$L(\theta|\mathbf{X}) = \theta^{-n} \prod_{i=1}^{n} I(0 \le \mathbf{X}_i \le \theta) = \theta^{-n} I(\mathbf{X}_{(n)} \le \theta).$$

One has $\hat{\theta} = X_{(n)}$.

7/37

Lin (UNC-CH) Bios 661 February 19, 2019

- Multiplied by a positive constant that does not involve the unknown parameters does not change the final answers.
- **Example** X_1, \dots, X_n iid Binomial (m, θ) , with m known and $\theta \in [0, 1]$ unknown. The likelihood is

$$L(\theta|x) = \prod_{i=1}^{n} {m \choose x_i} \theta^{x_i} (1-\theta)^{m-x_i} = C(x) \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{m-x_i},$$

where C(x) depends on x but not θ .

- Dropping C(x) does not affect the maximization over θ .
- A value of θ that maximizes the log-likelihood $\ell(\theta|x)$ will also maximize the likelihood $L(\theta|x)$.

- There is no single simple procedure that is applicable to all types of problems for finding MLE.
- **Example** X is a single observation from the Binomial(m, θ), with unknown $\theta \in [0, 1]$, and known $m \ge 1$.

$$L(\theta|x) = {m \choose x} \theta^x (1-\theta)^{m-x}.$$

- If x = 0, the likelihood $L(\theta|0) = (1 \theta)^m$, which is monotone decreasing in θ . One would say $\hat{\theta} = 0$.
- If x = m, the likelihood $L(\theta|m) = \theta^m$, which is monotone increasing in θ . One would say $\hat{\theta} = 1$.
- If 0 < x < m, the likelihood $L(\theta|x)$ is maximized at $\hat{\theta} = x/m$.
- In all cases, $\hat{\theta} = x/m$.

• **Example** Let X_1, \dots, X_n be iid random variables distributed as $N(\theta, 1), \theta \in (-\infty, \infty)$.

$$L(\theta|x) = (2\pi)^{-n/2} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} (x_i - \theta)^2\right\},$$

$$\ell(\theta|x) = (-n/2) \log(2\pi) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{x})^2 - \frac{n}{2} (\bar{x} - \theta)^2,$$

• The log-likelihood is a quadratic function in θ that has a unique global maximum at $\theta = \bar{x}$, so $\hat{\theta} = \bar{x}$.

10/37

Lin (UNC-CH) Bios 661 February 19, 2019

• Example (restricted range) Let X_1, \dots, X_n be iid random variables distributed as $N(\theta, 1)$, $\theta \in [0, \infty)$. If $\bar{x} \geq 0$, then \bar{x} is the MLE. If $\bar{x} < 0$, the log-likelihood

$$\ell(\theta|x) = (-n/2)\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(x_i - \bar{x})^2 - \frac{n}{2}(\bar{x} - \theta)^2,$$

will be monotone decreasing over $[0,\infty)$, hence its maximum will be at $\hat{\theta}=0$.

• Example (flat likelihood function) X_1, \dots, X_n iid Uniform $(\theta - 1/2, \theta + 1/2)$.

$$L(\theta|x) = I(x_{(1)} > \theta - \frac{1}{2})I(x_{(n)} < \theta + \frac{1}{2})$$

The likelihood $L(\theta|x) = 1$ over $\theta \in (x_{(n)} - 1/2, x_{(1)} + 1/2)$ and $L(\theta|x) = 0$ otherwise.

- **Discrete parameter, MLE of the binomial** m **with known** p Consider a single observation X from the Binomial(m, p), with p known and m unknown. We want to find the MLE of m.
- The parameter space is the set of integers $\{1, 2, \dots\}$.
- Suppose that p = 0.71 and the observed value is x = 7. What is the MLE of m?
- Because P(X = x | m) = 0 if x > m, we get L(m|x) = 0 for m < 7 and $L(m|x) = {m \choose x} p^x (1-p)^{(m-x)}$ for integer $m \ge 7$.
- L(m|x) is increasing for $7 \le m \le 9$ and decreasing for for $m \ge 9$. We can conclude that the MLE is $\hat{m} = 9$.
- Since EX = mp, the moment estimate is $\hat{m}_{MM} = x/p = 7/0.71 \approx 9.86$, which is not far from the MLE.

Lin (UNC-CH) Bios 661 February 19, 2019 12 / 37

MLE for a 2-dimensional Parameter

- A two-dimensional parameter, and the likelihood is twice-differentiable.
- Use rules of calculus to find "local" maximum.
- The rules for a local maximum:
 - a) Two first-order partial derivatives are zero.
 - b) At least one second-order partial derivatives is negative.
 - c) The Jacobian of the second-order partial derivatives is positive.
- **Example**: The $N(\mu, \sigma^2)$ model with both parameters unknown.

$$\ell(\mu, \sigma^2 | x) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2 / \sigma^2.$$

Lin (UNC-CH) Bios 661 Feb

Example (Normal Distribution)

$$\frac{\partial}{\partial \mu} \ell(\mu, \sigma^2 | \mathbf{x}) = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)$$

$$\frac{\partial}{\partial \sigma^2} \ell(\mu, \sigma^2 | \mathbf{x}) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2$$

$$\frac{\partial^2}{\partial \mu^2} \ell(\mu, \sigma^2 | \mathbf{x}) = -\frac{n}{\sigma^2}$$

$$\frac{\partial^2}{\partial (\sigma^2)^2} \ell(\mu, \sigma^2 | \mathbf{x}) = \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{i=1}^n (x_i - \mu)^2$$

$$\frac{\partial^2}{\partial \mu \partial \sigma^2} \ell(\mu, \sigma^2 | \mathbf{x}) = -\frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)$$

$$J(\hat{\mu}, \hat{\sigma}^2) = \frac{1}{\hat{\sigma}^6} \frac{n^2}{2} > 0.$$

Successive 1-dimensional Maximization

- To maximize $L(\alpha, \beta | x)$ over both α and β , we can proceed as follows.
- First, for a fixed α , we maximize $L(\alpha, \beta | x)$ over β .
- Let $\hat{\beta}(\alpha)$ be the value of β that maximizes $L(\alpha, \beta|x)$ for a fixed α .
- The function

$$H(\alpha|\mathbf{x}) = L(\alpha, \hat{\beta}(\alpha)|\mathbf{x})$$

depends on α .

- We call this kind of function $H(\alpha|x)$ as the *profiled likelihood* for α .
- Then, the MLE of β is simply $\hat{\beta}(\hat{\alpha}_H)$, where $\hat{\alpha}_H$ is the maximizer of $H(\alpha|x)$.

Successive 1-dimensional Maximization (cont'd)

• Example (MLE of the Weibull parameters) Let X_1, \dots, X_n are iid Weibull (α, β) with density

$$f(x|\alpha,\beta) = \frac{\alpha}{\beta}x^{\alpha-1} \exp\left(-\frac{x^{\alpha}}{\beta}\right), x \ge 0, \alpha > 0, \beta > 0.$$

The log-likelihood

$$\ell(\alpha, \beta | x) = n \log \alpha - n \log \beta + (\alpha - 1) \sum_{i=1}^{n} \log x_i - \frac{1}{\beta} \sum_{i=1}^{n} x_i^{\alpha}.$$

• Maximized over β by setting the derivative

$$\frac{d}{d\beta}\ell(\alpha,\beta|\mathbf{x}) = -\frac{n}{\beta} + \frac{1}{\beta^2} \sum_{i=1}^n x_i^{\alpha} = 0.$$

• The solution is $\hat{\beta}(\alpha) = n^{-1} \sum_{i=1}^{n} x_i^{\alpha}$.

16/37

Lin (UNC-CH) Bios 661 February 19, 2019

Successive 1-dimensional Maximization (cont'd)

The solution is verified to be a maximum since

$$\left. \frac{d^2}{d\beta^2} \ell(\alpha, \beta | x) \right|_{\beta = \hat{\beta}(\alpha)} = -\frac{n}{\hat{\beta}(\alpha)^2} < 0.$$

• The profile log-likelihood for α is

$$h(\alpha|x) = \ell(\alpha, \hat{\beta}(\alpha)|x)$$

$$= n \left\{ \log \alpha - \log \frac{\sum_{i=1}^{n} x_i^{\alpha}}{n} + (\alpha - 1) \frac{\sum_{i=1}^{n} \log x_i}{n} - 1 \right\}.$$

• There is no "closed" form for α . Maximization over α can be done either graphically or by numerical methods.

Lin (UNC-CH) Bios 661

Invariance Property of MLE

Theorem (Theorem 7.2.10)

If $\hat{\theta}$ is the MLE of θ , then for any function $\tau(\theta)$, the MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

• If the mapping $\theta \to \tau(\theta)$ is one-to-one, then it is easy to see that the MLE of $\eta = \tau(\theta)$ is the same since

$$L^*(\eta|x) = \prod_{i=1}^n f(x_i|\tau^{-1}(\eta)) = L(\tau^{-1}(\eta)|x),$$

and

$$\sup_{\eta} L^*(\eta|x) = \sup_{\eta} L(\tau^{-1}(\eta)|x) = \sup_{\theta} L(\theta|x).$$

• The proof is more complicated if the τ function is not one-to-one. Check p. 320 in C&B.

Invariance Property of MLE (cont'd)

- **Example** What is the MLE of θ^2 if X_1, \dots, X_n follows $N(\theta, \sigma^2)$?
- **Example** What is the MLE of $\sqrt{p(1-p)}$ if X_1, \dots, X_n follows Binomial(n, p)?

$$L(p|x) = \prod_{i=1}^{n} {n \choose x_i} p^{x_i} (1-p)^{n-x_i}$$

$$= C(x) p^{\sum_{i=1}^{n} x_i} (1-p)^{n^2 - \sum_{i=1}^{n} x_i}.$$

$$\ell(p|x) \propto \sum_{i=1}^{n} x_i \log p + (n^2 - \sum_{i=1}^{n} x_i) \log(1-p).$$

• How do we find the MLE of p?

Lin (UNC-CH) Bios 661 Fet

Instability of MLE

- The MLE can be highly unstable if the likelihood function is very flat in the neighborhood of its maximum.
- **Example** X_1, \dots, X_5 follows Binomial(n, p) with both n and p unknown.

Sample 1: (16, 18, 22, 25, 27)
$$\Rightarrow \hat{n} = 99$$
;
Sample 2: (16, 18, 22, 25, 28) $\Rightarrow \hat{n} = 190$.

Even worse, there is no finite maximum. The MLE doesn't exist.

Method of Evaluating Estimators

- Bias: Bias $_{\theta}W(X) = E_{\theta}W(X) \theta$.
- Variance: $Var_{\theta}W(X)$.
- Mean Squared Error (MSE): $E_{\theta}(W(X) \theta)^2 = \text{Bias}^2 + \text{Variance}$.
- Other: $E_{\theta}g(|W-\theta|)$.
- **Example**: Let X_1, \dots, X_n be iid $N(\mu, \sigma^2)$. Since,

$$E\bar{X} = \mu$$
, $ES^2 = \sigma^2$,

for all μ and σ^2 . The MSE of these estimators are given by

$$E(\bar{X} - \mu)^2 = Var\bar{X} = \frac{\sigma^2}{n},$$

$$E(S^2 - \sigma^2)^2 = VarS^2 = \frac{2\sigma^4}{n-1}.$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C*

Method of Evaluating Estimators (cont'd)

• What is the MLE of μ and σ^2 ?

$$E(\hat{\sigma}^2) = E\left(\frac{n-1}{n}S^2\right) = \frac{n-1}{n}\sigma^2,$$

$$Var(\hat{\sigma}^2) = Var\left(\frac{n-1}{n}S^2\right) = \frac{2(n-1)}{n^2}\sigma^4.$$

• The MSE of $\hat{\sigma}^2$ is given by

$$E(\hat{\sigma}^2 - \sigma^2)^2 = \frac{2(n-1)}{n^2}\sigma^4 + \left(\frac{n-1}{n}\sigma^2 - \sigma^2\right)^2 = \left(\frac{2n-1}{n^2}\right)\sigma^4.$$

We have

$$E(\hat{\sigma}^2-\sigma^2)^2=\left(\frac{2n-1}{n^2}\right)\sigma^4<\left(\frac{2}{n-1}\right)\sigma^4=E(S^2-\sigma^2)^2.$$

Lin (UNC-CH) Bios 661 February 19, 2019 22 / 37

Best Unbiased Estimators

- Having a "biased" estimator may not be acceptable.
- Finding an estimator that minimizes MSE may not be reasonable for "scale" parameters.
- One can restrict their searching for the "best" estimator only form those "unbiased" estimators.
- Uniformly Minimum Variance Unbiased Estimators (UMVUE): An estimator W^* is a best unbiased estimator of $\tau(\theta)$ if it satisfies $E_{\theta}W^* = \tau(\theta)$ for all θ and, for any other estimator W with $E_{\theta}W = \tau(\theta)$, we have $Var_{\theta}W^* \leq Var_{\theta}W$ for all θ .
- W^* is called *uniformly minimum variance unbiased estimators* (UMVUE) of $\tau(\theta)$.
- "Uniformly" means the statement holds for all $\theta \in \Theta$.

Best Unbiased Estimators (cont'd)

• **Example** Let X_1, \dots, X_n be iid Poisson(λ), and let \bar{X} and S^2 be the sample mean and variance, respectively. One has

$$E_{\lambda}\bar{X}=\lambda$$
, and $E_{\lambda}S^2=\lambda$,

so both \bar{X} and S^2 are unbiased estimators of λ . By linear combinations of \bar{X} and S^2 , we can create infinitely many unbiased estimators. Do we have the best one?

Lin (UNC-CH) Bios 661 February 19, 2019 24 / 37

Cauchy-Schwarz Inequality

• For random variables X and Y,

$$Cov(X, Y) \leq \sqrt{Var(X)Var(Y)}$$
.

or, equivalently,

$$VarX \geq \frac{\{Cov(X, Y)\}^2}{VarY}.$$

Cramér-Rao Lower Bound (CRLB)

• Cramér-Rao Inequality Let X_1, \ldots, X_n be a sample with pdf $f(x|\theta)$, and let $W(X) = W(X_1, \ldots, X_n)$ be any unbiased estimator of $\tau(\theta)$ satisfying

$$\frac{d}{d\theta} E_{\theta} W(\mathbf{X}) = \int_{\mathcal{X}} \frac{\partial}{\partial \theta} [W(\mathbf{X}) f(\mathbf{X}|\theta)] d\mathbf{X},$$

and

$$Var_{\theta}W(\boldsymbol{X})<\infty.$$

Then

$$Var_{\theta}W(\mathbf{X}) \geq rac{\{d au(heta)/d heta\}^2}{E_{ heta}\{U(heta|\mathbf{X})\}^2},$$

where $U(\theta|\mathbf{x}) = \frac{\partial}{\partial \theta} \log f(\mathbf{x}|\theta)$ is called score function.

Proof: Note that,

$$\frac{d}{d\theta} E_{\theta} W(\mathbf{X}) = \int_{\mathcal{X}} W(\mathbf{x}) \left\{ \frac{\partial}{\partial \theta} f(\mathbf{x}|\theta) \right\} d\mathbf{x}$$

$$= E_{\theta} \left\{ W(\mathbf{X}) \frac{\frac{\partial}{\partial \theta} f(\mathbf{X}|\theta)}{f(\mathbf{X}|\theta)} \right\}$$

$$= E_{\theta} \left\{ W(\mathbf{X}) \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta) \right\}. \tag{1}$$

• If W(X) = 1 in (1), one can have

$$E_{\theta}\left\{\frac{\partial}{\partial \theta}\log f(\boldsymbol{X}|\theta)\right\} = \frac{d}{d\theta}E_{\theta}(1) = 0.$$

27 / 37

Lin (UNC-CH) Bios 661 February 19, 2019

According to (1), we have

$$Cov_{\theta} \left\{ W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta) \right\} = E_{\theta} \left\{ W(\mathbf{X}) \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta) \right\}$$

$$= \frac{d}{d\theta} E_{\theta} W(\mathbf{X}).$$

Also, we have

$$Var_{\theta} \left\{ \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta) \right\} = E_{\theta} \left[\left\{ \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta) \right\}^{2} \right].$$

By the Cauchy-Schwarz Inequality, we have

$$Var_{\theta}W(\mathbf{X}) \geq \frac{\left\{ \frac{d}{d\theta}E_{\theta}W(\mathbf{X}) \right\}^{2}}{E_{\theta}\left[\left\{ \frac{\partial}{\partial\theta}\log f(\mathbf{X}|\theta) \right\}^{2} \right]}.$$

• If X_1, \dots, X_n are iid with pdf $f(x|\theta)$, then

$$Var_{\theta}W(\mathbf{X}) \geq \frac{\left\{ \frac{d}{d\theta}E_{\theta}W(\mathbf{X}) \right\}^{2}}{nE_{\theta}\left[\left\{ \frac{\partial}{\partial\theta}\log f(X_{1}|\theta) \right\}^{2}\right]}.$$

• If $f(x|\theta)$ satisfies

$$\frac{d}{d\theta} E_{\theta} \left\{ \frac{\partial}{\partial \theta} \log f(X_1 | \theta) \right\} = \int \frac{\partial}{\partial \theta} \left[\left\{ \frac{\partial}{\partial \theta} \log f(x_1 | \theta) \right\} f(x_1 | \theta) \right] dx_1,$$

then

$$E_{\theta}\left[\left\{\frac{\partial}{\partial \theta}\log f(X_1|\theta)\right\}^2\right] = -E_{\theta}\left\{\frac{\partial^2}{\partial \theta^2}\log f(X_1|\theta)\right\}.$$

• Proof can be found in Exercise 7.39 of C&B.

- In the Poisson example, $\tau(\lambda) = \lambda$ so $\tau'(\lambda) = 1$.
- One can show

$$E_{\lambda}\{U(\lambda|\mathbf{X})\}^{2} = -nE_{\lambda}\left\{\frac{\partial^{2}}{\partial\lambda^{2}}\log f(X_{1}|\lambda)\right\}$$
$$= \frac{n}{\lambda}.$$

• Hence for any unbiased estimator, W, of λ , we must have

$$Var_{\lambda}W \geq \frac{\lambda}{n}$$
.

• Since $Var_{\lambda}\bar{X} = \lambda/n$, \bar{X} is the best unbiased estimator of λ .

30/37

Lin (UNC-CH) Bios 661 February 19, 2019

Violation of the Assumption in CRLB

• Let X_1, \dots, X_n be iid pdf $f(x|\theta) = 1/\theta$, $0 < x < \theta$. Since $\frac{\partial}{\partial \theta} \log f(x|\theta) = -1/\theta$. We have

$$E_{\theta}\left[\left\{\frac{\partial}{\partial \theta}\log f(X_1|\theta)\right\}^2\right]=\frac{1}{\theta^2}.$$

- The CRLB indicates $Var_{\theta}W \ge \theta^2/n$.
- However, $EX_{(n)} = \frac{n}{n+1}\theta$, and

$$Var_{\theta}\left(\frac{n+1}{n}X_{(n)}\right)=\frac{1}{n(n+2)}\theta^{2}<\frac{1}{n}\theta^{2}.$$

• The problem is $\frac{d}{d\theta} \int_0^\theta h(x) f(x|\theta) dx \neq \int_0^\theta h(x) \frac{d}{d\theta} f(x|\theta) dx$.

◆□▶◆圖▶◆臺▶◆臺▶ 臺 めぬの

Uniqueness of UMVUE

Theorem (7.3.19 in C&B)

If W is the best unbiased estimator of $\tau(\theta)$, then W is unique.

- Suppose that W' is another best unbiased estimator of $\tau(\theta)$, i.e., Var(W') = Var(W).
- Take $W^* = (W + W')/2$; one can easily see $EW^* = \tau(\theta)$.
- Using covariance inequality, one can show $Var(W^*) \leq Var(W)$.
- However, since W is the best, $Var(W^*)$ can only equal Var(W).
- When the equality stands, it implies that W' = a + bW.
- One can show that a = 0, b = 1, and W' = W.

Sufficiency and Unbiasedness

Theorem (Rao-Blackwell Theorem)

Let W be any unbiased estimator of $\tau(\theta)$, and let T be a sufficient statistic for θ . Define $\phi(T) = E(W|T)$. Then $E_{\theta}\phi(T) = \tau(\theta)$ and $Var_{\theta}\phi(T) \leq Var_{\theta}W$ for all θ .

• **Proof** We have $\phi(T)$ as an unbiased estimator of $\tau(\theta)$ since

$$\tau(\theta) = E_{\theta}W = E_{\theta}\{E(W|T)\} = E_{\theta}\phi(T).$$

Also,

$$Var_{\theta}W = Var_{\theta}\{E(W|T)\} + E_{\theta}\{Var(W|T)\}$$

= $Var_{\theta}\{\phi(T)\} + E_{\theta}\{Var(W|T)\}$
 $\geq Var_{\theta}\phi(T)$.

• We must show that $\phi(T) = E(W|T)$ is a function of only the sample and independent of θ (sufficiency!!).

Lin (UNC-CH) Bios 661 February 19, 2019 33 / 37

Sufficiency/Completeness and Unbiasedness

Theorem (Lehmann-Sheffe Theorem)

Let W be any unbiased estimator of $\tau(\theta)$, and let T be a sufficient and complete statistic for θ . Then $\phi(T) = E(W|T)$ is the UMVUE for $\tau(\theta)$ and is unique.

- **Proof** Assume both W_1 and W_2 are unbiased estimator of $\tau(\theta)$.
- If we let $\phi_1(T) = E(W_1|T)$ and $\phi_2(T) = E(W_2|T)$, then

$$E\{\phi_1(T) - \phi_2(T)\} = E(W_1) - E(W_2) = 0.$$

- By the definition of completeness, $\phi_1 \phi_2$ is a zero function.
- Hence $\phi_1(T) = \phi_2(T)$ (uniqueness).

Find UMVUE

Method 1:

- Find an unbiased estimator W for $\tau(\theta)$.
- ▶ Look for a complete sufficient statistic for θ .
- ▶ Derive $\phi(t) = E(W|T = t)$.
- ▶ Then $\phi(T)$ is the UMVUE of $\tau(\theta)$.

Method 2:

- ▶ **Theorem 7.3.23** Let T be a complete sufficient statistic for a parameter θ , and let $\phi(T)$ be any estimator based only on T. Then $\phi(T)$ is the unique best unbiased estimator of its expected value.
- Adjusting a complete sufficient statistic to be unbiased gives the UMVUE.

Find UMVUE (cont'd)

Example Assume X_1, \dots, X_n are iid and follow Poisson(θ).

- (1) Show that $I(X_1 = 0)$ is an unbiased estimator for $e^{-\theta}$.
- (2) Find UMVUE for $e^{-\theta}$.

Solution

- Since $E\{I(X_1 = 0)\} = P(X_1 = 0) = e^{-\theta}$, $I(X_1 = 0)$ is an unbiased estimator for $e^{-\theta}$.
- Since the Poisson distribution belongs to an exponential family, $\sum_{i=1}^{n} X_i$ is a complete sufficient statistic.
- By the Lehmann-Scheffe Theorem, we know

$$\phi\left(\sum_{i=1}^n X_i\right) = E\left\{I(X_1=0)|\sum_{i=1}^n X_i\right\}$$

is the UMVUE for $e^{-\theta}$.

Find UMVUE (cont'd)

$$\phi(t) = E\left\{I(X_1 = 0) | \sum_{i=1}^n X_i = t\right\} = P\left(X_1 = 0 | \sum_{i=1}^n X_i = t\right)$$

$$= \frac{P\left(X_1 = 0, \sum_{i=1}^n X_i = t\right)}{P\left(\sum_{i=1}^n X_i = t\right)} = \frac{P\left(X_1 = 0\right) P\left(\sum_{i=2}^n X_i = t\right)}{P\left(\sum_{i=1}^n X_i = t\right)}$$

$$= \left(1 - \frac{1}{n}\right)^t.$$

- One can conclude $\phi(\sum_{i=1}^n X_i) = (1 1/n)^{\sum_{i=1}^n X_i}$ is the UMVUE for $e^{-\theta}$.
- What is the MLE for $e^{-\theta}$?
- What does the $\phi(\sum_{i=1}^n X_i)$ converge to when $n \to \infty$?

Lin (UNC-CH) Bios 661 February 19, 2019 37 / 37