Lesweek 3: Toepassingen kettingregel, afleiden van 2D-krommen, middelwaardestellingen en extrema-onderzoek

Cursustekst HOOFDSTUK 2, §2.5 tot §2.8

Toepassingen afgeleiden

Toepassing: afleiden van inverse functies

"Hoe heeft men afgeleiden van ln(x), Bgsin(x), Bgcos(x), Bgtg(x), ... gevonden ??"

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$

Toepassing: logaritmisch afleiden

bvb.
$$y = x^x$$

$$y = f(x) \to \ln y = \ln f(x)$$

Nu afleiden naar x!

Toepassing: kettingregelvraagstuk (oef 12, p.15)

12. Een ladder van 5m lang staat schuin tegen een muur zoals aangegeven op de tekening.

Door een forse windstoot begint de voet van de ladder ineens weg te schuiven met een constante snelheid van 1/3 meter per seconde. Bereken de snelheid waarmee de top van de ladder naar beneden glijdt op het moment dat de top zich nog maar 3 meter boven de begane grond bevindt.

Gegeven: $\frac{dx}{dt} = \frac{1}{3}$ m/s

Kettingregel: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$

Gevraagd: $\frac{dy}{dt}$ | y = 3m

Verband tussen y en x nodig!

Toepassing: kettingregelvraagstuk (oef 12, p.15)

OPLOSSTRATEGIE 1: $\frac{dy}{dx}$ zoeken via expliciet afleiden

$$x^{2} + y^{2} = 25 \rightarrow y = \sqrt{25 - x^{2}} \rightarrow \frac{dy}{dx} = \frac{-2x}{2\sqrt{25 - x^{2}}} = \frac{-x}{\sqrt{25 - x^{2}}}$$

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{-x}{\sqrt{25 - x^2}} \cdot \frac{1}{3} \text{ m/s} = \frac{4}{9} \text{ m/s}$$

als y = 3 dan is $x = \sqrt{25 - 3^2} = 4$

OPLOSSTRATEGIE 2: $(x(t))^2 + (y(t))^2 = 25$ afleiden naar t

$$\Rightarrow 2x(t) \cdot \frac{dx}{dt} + 2y(t) \cdot \frac{dy}{dt} = 0 \quad \Rightarrow 2y \cdot \frac{dy}{dt} = -2x \cdot \frac{dx}{dt} \quad \Rightarrow \frac{dy}{dt} = -\frac{x}{y} \cdot \frac{dx}{dt}$$

Dit is eveneens $\frac{dy}{dx}$ maar nu op een "impliciete" manier genoteerd !!

§ 2.6.1 Afleiden van cartesische krommen

BIJVOORBEELD

$$y^2 - x \cdot y + 1 - x^2 = 0$$

Zoek alle punten van deze kromme waar de raaklijn VERTIKAAL is.

- Expliciet afleiden ?
- Impliciet afleiden ! \rightarrow impdif(F(x,y) = 0,x,y,n)

§ 2.6.1 Afleiden van parameterkrommen

Afleiden in parametervorm

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \quad \frac{d^{n+1}y}{dx^{n+1}} = \frac{\frac{d}{dt}\left(\frac{d^ny}{dx^n}\right)}{\frac{dx}{dt}} \qquad (n \ge 1)$$

$$\begin{cases} x = \cos^3(t) \\ y = 3\sin^3(t) \end{cases}$$

$$(n \ge 1)$$

$$\begin{cases} x = \cos^3(t) \\ y = 3\sin^3(t) \end{cases}$$

Vind het punt op deze kromme waarvoor de raaklijn // is met de koorde gevormd door de 2 knikpunten van deze kromme in het eerste kwadrant en bereken ook de tweede afgeleide in dit punt.

Poolkrommen: altijd omzetten naar parametervorm !!

§ 2.7.1 Stelling van Rolle

- 1. f(x) continu in [a,b]
- 2.f(x) afleidbaarin a,b
- 3.f(a) = f(b)

Er bestaat

$$\Rightarrow \exists c \in]a,b[:f'(c)=0$$

Voorwaarden zijn essentieel!!

§ 2.7.2 Stelling van Lagrange

1.f(x) continu in [a,b]2.f(x) afleidbaar in]a,b[

$$\Rightarrow \exists c \in]a,b[:f'(c) = \frac{f(b)-f(a)}{b-a}$$

§ 2.7.3 Stelling van Cauchy

- 1. f(x) & g(x) continu in [a,b]
- 2.f(x) & g(x) afleidbaar in a,b
- $3.g'(x) \neq 0 \text{ in } a,b$

$$\Rightarrow \exists c \in]a,b \left[: \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} \right]$$

VOORBEELD:

§ 2.8 Extremumonderzoek

We zeggen dat een kromme K in het punt x_0 een relatief (lokaal) $maximum y_0$ bereikt als er een omgeving V van x_0 bestaat waarvoor:

voor alle
$$x \in V$$
: $y \le y_0 \mod(x, y) \in K$.

Zo zeggen we ook dat een kromme K in het punt x_0 een relatief (lokaal) $minimum y_0$ bereikt als er een omgeving V van x_0 bestaat waarvoor:

§ 2.8.1 Nodige voorwaarde

Eigenschap

In een extremum (=minimum of maximum) moet de afgeleide nul zijn

In symbolen

Een kromme K heeft een relatief extremum in $x_0 \Rightarrow \frac{dy}{dx}|_{x=x_0} = 0$

Verklaring: horizontale raaklijn

LET OP: het omgekeerde geldt niet !! Vb. $y = x^3$

§ 2.8.2 Eerste voldoende voorwaarde

Eigenschap 1 (eerste voldoende voorwaarde voor bereiken van extremum)

Als een kromme K continu is in x_0 en afleidbaar in een omgeving van x_0 :

 $\frac{dy}{dx}$ verandert van teken in $x_0 \Rightarrow K$ bereikt een relatief extremum in x_0 .

Motivatie:

§ 2.8.2 Tweede voldoende voorwaarde

Eigenschap 2 (tweede voldoende voorwaarde voor bereiken van extremum)

Gegeven is een kromme K die minstens tweemaal afleidbaar is in een omgeving van x_0 .

- $y'(x_0) = 0$ en $y''(x_0) < 0 \Rightarrow K$ heeft een maximum in x_0
- $y'(x_0) = 0$ en $y''(x_0) > 0 \Rightarrow K$ heeft een minimum in x_0

Motivatie:

Benader de kromme in x_0 door zijn benaderingsparabool!

$$P_2(x) = y_0 + \frac{y''(x_0)}{2}(x - x_0)^2$$

CURSUS pag 40 + HOOFDSTUK 3 (volgende week!)

§ 2.8.3 Extremumvraagstukken

VOORBEELD

26. De doorsnede van een tunnel bestaat uit een rechthoek met daarboven een halve cirkel (zie figuur). Zo de omtrek van de doorsnede 18m bedraagt, hoe groot moet dan de straal van de cirkel zijn om de oppervlakte van de doorsnede zo groot mogelijk te maken?

ALGEMENE OPLOSSTRATEGIE

STAP 1

Vind op basis van de opgave de functie f(x) in 1 veranderlijke waarvoor je een minimum en/of maximum dient te zoeken.

STAP 2

Zoek kandidaat extrema ("kritische punten") + gebruik één van de twee voldoende voorwaarden om extremaal karakter van elke kandidaat duidelijk te benoemen.

STAP 3 Vertaal je min/max conclusie naar de context van de opgave.

NOOIT VERGETEN!!

