Exame de Biomecânica: Época de Recurso 09/07/2015 Eng. Biomédica (Ano lectivo de 2014/2015) Duração: 3h00

NOME	Nº	
------	----	--

- RESPONDA A DUAS ALÍNEAS DE CADA PERGUNTA E MAIS DUAS ALÍNEAS À SUA ESCOLHA
- EM CADA ALÍNEA, APENAS UMA DAS OPÇÕES ESTÁ CORRECTA.
- ASSINALE NESTA FOLHA A RESPOSTA CORRECTA COM UMA CRUZ.
- CADA RESPOSTA CORRECTA É COTADA COM 2 VALORES.
- CADA RESPOSTA ERRADA É COTADA COM -2/3 VALORES.
- RESPOSTAS EM BRANCO SÃO COTADAS COM 0 VALORES.

FOLHA DE RESPOSTAS

Donoveto	A 16	Resposta						
Pergunta	Alínea	A	В	С	D			
	a)							
1)	b)							
	c)							
	a)							
2)	b)							
	c)							
	a)							
3)	b)							
	c)							
	a)							
4)	b)							
	c)							

1. Considere o sistema de forças $(\vec{F}_1, \vec{F}_2 \in \vec{F}_3)$ e binários (\vec{M}) da Figura 1, com $F_1 = F_3 = 100 \text{ N}$, $F_2 = 300 \text{ N}$, M = 1500 N cm, $\theta = 45^{\circ}$, e a = 10 cm.

[2] a) O módulo do momento resultante do sistema de forças e binários em relação ao ponto C é:

A) 2328 N cm B) 1914 N cm	C) 2	2536 N cm	D)	2121 N cm
---------------------------	------	-----------	----	-----------

[2] b) O módulo do momento resultante mínimo do sistema de forças e binários é:

A)	1914 N cm	B)	1500 Nom	C)	414 N cm	D)	0 Nom
A)	1914 N CIII	D)	1500 N cm	(C)	414 N cm	D)	0 N cm

[2] c) O sistema de forças e binários pode ser substituído pela resultante aplicada no ponto *B* e um binário com intensidade:

A`	4864 N cm	В) 9107 N cm	С) 2743 N cm	D) 6985 N cm
1 L	1001110111	ים)	\sim) 2173110III	$\boldsymbol{\nu}$) 0703110111

09/07/2015

Duração: 3h00

[6] 2. Considere o sistema em equilíbrio representado na Figura 2, no qual uma barra (de massa m_1 e comprimento L) está na horizontal apoiada por um pino no ponto A. A barra é ainda suportada no ponto B pelo cabo I, e no ponto C pelo cabo 2, que passa por uma roldana ideal, suspendendo uma massa m_2 . Ambos os cabos são ideais e fazem um ângulo $\theta = 30^\circ$ com a horizontal. A barra tem uma massa $m_1 = 5$ kg, e $m_2 = 1$ kg.

[2] a) Se a barra for homogénea, e estiver em equilíbrio na horizontal, a tensão no cabo 1 é igual a:

A)	101	D)	O Iraf	(1)	6 Iraf	D)	2.16
A)	12 Kg1	В)	9 kgi	(C)	o kgi	D)	3 kgt

[2] b) Nas condições da alínea a), a intensidade da reacção exercida pelo pino sobre a barra é igual a:

A) 2,65 kgf B) 1,73 kgf	C) 9,64 kgf	D)	6,08 kgf
-------------------------	-------------	----	----------

[2] c) Se $T_1 = 15 \,\mathrm{kgf}$, a que distância do ponto A se encontra o centro de massa da barra?

A) 0,7 L B) 0,6 L C) 0,9 L D) 0,8 L	
-------------------------------------	--

09/07/2015 Duração: 3h00

09/07/2015 Duração: 3h00

[6] 3. Para um dado plano de análise, os tensores de tensão e de deformação de uma dado material isotrópico e linearmente elástico são dados por

$$\sigma = \begin{bmatrix} 150 & 50 & 0 \\ 50 & -50 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{MPa} \qquad ; \qquad \varepsilon = \begin{bmatrix} 8,889 & 3,333 & 0,000 \\ 3,333 & -4,444 & 0,000 \\ 0,000 & 0,000 & -1,111 \end{bmatrix} \times 10^{-4}$$

[2] a) Qual dos seguintes diagramas representa o estado de tensão descrito pelo tensor de tensões?

[2] b) O módulo de elasticidade do material é igual a:

	210 CD	ý	200 GB	ý	100 GD	,	100 CP
(A)	210 GPa	B)	200 GPa	(C)	190 GPa	D)	180 GPa
/	-10 01 4	- /	-00 01 4	<i>-</i>)	170 01 4		100 01 4

[2] c) As tensões axiais mínima e máxima a que o material está sujeito são:

_	_			•		· ·		
	A)	$\begin{cases} \sigma_{min.} = -162 \text{ MPa} \\ \sigma_{max.} = -62 \text{ MPa} \end{cases}$	B)	$\begin{cases} \sigma_{min.} = -162 \text{ MPa} \\ \sigma_{max.} = +62 \text{ MPa} \end{cases}$	C)	$\begin{cases} \sigma_{min.} = -62 \text{ MPa} \\ \sigma_{max.} = +162 \text{ MPa} \end{cases}$	D)	$\begin{cases} \sigma_{min.} = +62 \text{ MPa} \\ \sigma_{max} = +162 \text{ MPa} \end{cases}$

[6] **4.** Considere uma barra horizontal de massa desprezável, com comprimento $L=1\,\mathrm{m}$. A barra encontra-se suportada por um apoio duplo em A, e por uma corda em B, que faz um ângulo $\theta=30^\circ$ com a horizontal. Sobre a barra encontra-se aplicada a carga distribuída representada na Figura 3, com $p_1(x) = 500\,x\,\big[\mathrm{N\,m^{-1}}\big]$ e $p_2(x) = p_1(L)\,\big[\mathrm{N\,m^{-1}}\big]$. A variável x é a distância ao ponto A.

[2] a) Qual das afirmações está correcta?

A)	A tensão axial é nula em todos os pontos da barra	B)	A tensão axial máxima de compressão é superior à tensão axial máxima de tracção
C)	A tensão axial máxima de compressão é inferior à tensão axial máxima de tracção	D)	A tensão axial máxima de compressão é igual à tensão axial máxima de tracção

09/07/2015

Duração: 3h00

