Problem 5.14. Consider the problem of determining whether a Turing machine M on an input w ever attempts to move its head left when its head is on the left-most tape cell. Formulate this problem as a language and show that it is undecidable.

Proof. Let $T = \{ \langle M, w \rangle \mid M \text{ is a } \mathbf{TM}, \text{ which on input } w \text{ moves its head left when its head is on the left-most tape cell} \}.$

Show that A_{TM} reduces to T, where $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a } \mathbf{TM} \text{ and } M \text{ accepts } w\}$. Assume for the sake of contradiction that \mathbf{TM} R decides T. Then construct a \mathbf{TM} S that uses R to decide A_{TM} . The idea is to construct a new \mathbf{TM} M_w , which only moves its head left when its head is on the left-most tape cell if M accepts w. We construct \mathbf{TM} M_w using 2 tapes as follows.

 $M_w =$ "On input w:

- 1. Simulate M on w using the second tape.
- 2. If the simulation shows that M accepts, move the head of the first tape left."

Next, we construct **TM** S to decide A_{TM} .

S = "On input $\langle M, w \rangle$, where M is a **TM** and w is a string:

- 1. Use M and w to construct **TM** M_w as discussed above.
- 2. Convert the 2 tape $TM M_w$ to equivalent single tape TM M'.
- 3. Run R on $\langle M', w \rangle$.
- 4. If R accepts, M accepts w, so accept. Otherwise, reject."

Thus, if **TM** R exists, we can decide A_{TM} , but we know that A_{TM} is undecidable¹. By virtue of this contradiction, we can conclude that R does not exist. Therefore, T is undecidable.

¹Theorem 4.11 A_{TM} is undecidable.