Quiz 1

1) As we discussed in class, using dimensional analysis we can extract a length and time scale. Use kinematic viscosity ν $[L^2T^{-1}]$ and energy dissipation rate per unit mass ϵ $[L^2T^{-3}]$ and extract a length scale η and time scale τ_{η} .

a)
$$\eta = \left(\frac{v}{\epsilon^3}\right); \tau_{\eta} = \left(\frac{v^3}{\epsilon}\right)$$

b)
$$\eta = \left(\frac{v^3}{\epsilon}\right)^{\frac{1}{4}}; \tau_{\eta} = \left(\frac{v^3}{\epsilon}\right)^{\frac{1}{2}}$$

c)
$$\eta = \left(\frac{v^3}{\epsilon}\right)^{\frac{1}{4}}; \tau_{\eta} = \left(\frac{v}{\epsilon}\right)^{\frac{1}{2}}$$

d)
$$\eta = \left(\frac{\nu}{\epsilon^3}\right)^{\frac{1}{2}}; \tau_{\eta} = \left(\frac{\nu^3}{\epsilon}\right)^{\frac{1}{4}}$$

- 2) Newton's third law of motion suggest that the total linear momentum ($p_1 + p_2 = m_1 v_1 + m_2 v_2$) of a pair of mutually interacting particles is conserved. It breaks when:
 - a) Both particles are not charged and moving.
 - b) Both particles are charged and moving.
 - c) Both particles are charged and at rest.
 - d) Both particles are not charged and at rest.