Relational Algebra and SQL

Joe Hellerstein

hellerstein@berkeley.edu

A bit of computing history

- > Pre-1969: databases were more like data structures
- > 1969: E.F. Codd's relational model and languages
 - A mathematical abstraction, independent of data structures
 - 1. Mathematical relations with typed attributes
 - A Relational Algebra of simple operations on relations
 In the spirit of abstract algebra (groups, rings, fields, etc)
 Inspired functional libraries like Pandas
 - A Relational Calculus of truth expressions over relations
 Inspired declarative languages like SQL, Datalog

Historical Perspective

- > 1969: Codd's Theorem
- > 1974: IBM System R and Berkeley Ingres research projects begin > 1992: First meaningful SQL standard
- 1979: Oracle released first commercial SQL system > 1995: PostgreSQL released ("Postgres 95"), MySQL released
- > 1981: Ted Codd receives Turing Award
- ➤ 1983: IBM DB2 released for MVS mainframe ➤ 2004: Google MapReduce paper
- > 1988: Berkeley Postgres project begins
- 1989: Microsoft SQL Server released (derived from Sybase)

- > 1984-87: Teradata, Informix SQL and Sybase > 2010: Apache Hive (SQL on Hadoop) released
 - > 2012: Pandas library popularized

Math Review: Relations

Consider two domains D₁, D₂ Can define a finite set $S \subseteq D_1$ $D_1=\mathbb{R},\,D_2=\mathbb{Z}$ S = {4.2, 3.6}

Math Review: Relations

Consider two domains D₁, D₂ Can define a finite set $S \subseteq D_1$

Can define a finite **relation** $R \subset D_1 \times D_2$ Each element of R is a tuple

Consider the domain $D_1 \times D_2$

E.g. $D_1 = \mathbb{R}, D_2 = \mathbb{Z}$ $S = \{4.2, 3.6\}$

 $\mathsf{R} = \{(4.2,\,6),\,(3.6,\,6),\,(4.2,\,1)\}$

Math Review: Relations

Consider two domains D₁, D₂ Can define a finite set $S \subseteq D_1$

Consider the domain $D_1 \times D_2$

Can define a finite **relation** $R \subseteq D_1 \times D_2$ Each element of R is a *tuple* A **function** $F \subset D_1 \times D_2$ is a relation such that $((x, y) \in F \land (x, z) \in F) \Rightarrow y = z$

We can say that the value in the second position is functionally dependent on the value in the first.

E.g.

 $D_1 = \mathbb{R}, D_2 = \mathbb{Z}$ S = {4.2, 3.6}

 $\mathsf{R} = \{(4.2,\,6),\,(3.6,\,6),\,(4.2,\,1)\}$

F = {(4.2, 6), (3.6, 6)}

Math Review: Relations E.g. Consider two domains D_1 , D_2 $D_1 = \mathbb{R} D_2 = \mathbb{Z}$ Can define a finite set $S \subseteq D_1$ S = {4.2, 3.6} $\mathbb{R} \times \mathbb{Z}$ Consider the domain $D_1 \times D_2$ Can define a finite **relation** R \subseteq D₁ \times D₂ $\mathsf{R} = \{(4.2,\,6),\,(3.6,\,6),\,(4.2,\,1)\}$ Each element of R is a tuple A **function** $F \subset D_1 \times D_2$ is a relation such that $((x, y) \in F \land (x, z) \in F) \Rightarrow y = z$ F = {(4.2, 6), (3.6, 6)} We can say that the value in the second position is functionally dependent on the value in the first. R2 = {(4.2, 6, red, 🤡), Consider a relation $R2 \subseteq D_1 \times D_2 \times D_3 \times D4$

Possible concerns

- > Matrix/vector notation won't work nicely with continuous domains like $\ensuremath{\mathbb{R}}$
- Linear algebra may not provide the operations we want in a natural way.
 - E.g. union, intersection, predicates...
- > Notation could become unwieldy
 - > Finite Sets/Relations are typically sparse
 - > End up representing non-zero entries as tuples anyhow!

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental power of the race.

—Alfred North Whitehead

Relational Terminology

- Database: Set of Relations
- > Relation (Table):
 - > Schema (metadata)
 - A unique name for the relation
 A list of k distinct Attribute names, each associated with a type.
 Optional constraints (key constraints)
 - Instance (data)
 Set of k-tuples satisfying the schema
- > Attribute (Column, Field)
- > Tuple (Row, Record)

The schema of a database is the set of schemas of its relations.

Boat Club Schema

sailors(sid integer, sname text, rating integer, age float)

boats(bid integer, bname text, color text)

reserves(sid integer, bid integer, day date)

Why learn Relational Algebra

- > Intuitive for programmers
 - Imperative: apply this, then apply that
 - > Set-oriented: no need for for-loops, low-level reasoning
- > Basis of functional libraries like Pandas
 - > Pandas (over-?) complicates things
 - Nice to have a clean foundation
- > Common currency
 - Most data folk know the relational algebra operators

Relational Algebra Preliminaries

> Algebra of operators on relational instances

 $\pi_{S.name}(\sigma_{R.bid=100 \land S.rating>5}(R \bowtie_{R.sid=S.sid} S))$

- > Closed: result is also a relational instance
- > Enables rich composition! **Typed**: input schema and operator determines output Why is this important?
- > Pure relational algebra has set semantics
- No duplicate tuples in a relation instance
 vs. SQL, which has multiset (bag) semantics

Relational Algebra Operators

Unary Operators: operate on single relation instance

- \succ **Projection (\pi):** Retains only desired columns (vertical)
- **Selection (\sigma):** Selects a subset of rows (horizontal) **Renaming (\rho):** Rename attributes and relations.

Binary Operators: operate on pairs of relation instances

- Union (U): Tuples in r1 or in r2.
- Intersection (\cap): Tuples in r1 and in r2. Set-difference (-): Tuples in r1, but not in r2.
- Cross-product (\times): Allows us to combine two relations.
- Joins (Ng, N): Combine relations that satisfy predicates

Projection (π) Selects a subset of columns (vertical) $\pi_{\text{sname,rating}}(S2)$ List of Attributes Relational Instance \$2 sid sname rating age sname age 28 yuppy 9 35.0 уирру 35.0 31 Jubber 8 55.5 lubber 55.5 44 guppy 5 35.0 guppy 35.0 > Schema determined by schema of attribute list Names and types correspond to input attributes

Compound Operator: Join > Joins are compound operators (like intersection): > Cross product followed by selection and possibly projection (for natural join) > Hierarchy of common kinds: > Theta Join (♣): join on logical expression θ > Equi-Join: theta join with conjunction equalities > Natural Join (♠): equi-join on all matching column names > Note: we should use a join, not a cross-product, if we can! Easier to read, clarifies opportunities for using efficient join algorithms.

Natural Join (⋈)

Special case of **equi-join** in which equalities are specified for all matching attributes, and duplicate attributes are projected away

$$R \bowtie S = \pi_{unique \ attr.} \sigma_{eq. \ matching \ attr.} (R \times S)$$

- ➤ Compute R × S
- Select rows where attributes appearing in both relations have equal values
- > Project onto the set of all unique attributes.

More Relational Algebra Rules

Commuting of selection operators

 $ightharpoonup \sigma_{\rm C}({\rm R} imes {\rm S}) \equiv \sigma_{\rm C}({\rm R}) imes {\rm S}$ (c only has fields in R)

Commuting of projection operators

 \succ $\pi_{\text{cl}}(R \times S) \equiv \pi_{\text{cl}}(R) \times \pi_{\text{cl}}(S)$

 $\, \succeq \, \, \alpha_1$ is subset of a that mentions R and α_2 is subset of a that mentions S

> Similar result holds for joins

A Standard Extension

 \triangleright Group By / Aggregation Operator (γ):

 $\gamma_{\rm age, \, AVG(rating)}$ (Sailors)

> With selection (HAVING clause):

 $\gamma_{\rm age, \, AVG(rating), \, COUNT(*)>2}(Sailors)$

Recall Codd also had a Relational Calculus

- > A declarative logic language
 - > Find all tuples such that the following properties hold ...
 - Says "what" the output should be, not "how" to get it.
- > SQL is based on the relational calculus
 - Even though, under the hood, database engines translate to algebra expressions!

SQL Language

- > Two sublanguages:
 - > DDL Data Definition Language
 - Define and modify schema
 - > DML Data Manipulation Language
 - > Queries can be written intuitively
- Relational Database Management System (RDBMS) responsible for efficient evaluation.
 - Choose and run algorithms for declarative queries

We will learn SQL interactively

- > Frontend: psql command line, Jupyter Notebook
- ➤ Backend: PostgreSQL