Statistical Analysis Quick Reference Guide

For Data Science with Python

1. Common Statistical Tests & Their Uses

Test Type	When to Use	Python Code	Key Assumptions
T-Test	Compare means of 2	<pre>stats.ttest_ind(group1, group2)</pre>	- Normal distribution
	groups		- Equal variance
			- Independent samples
Chi-Squa re	Compare categorical	stats.chi2_contingency(table)	- Independent observations
	data		- Large enough sample size
ANOVA	Compare 3+ groups	<pre>stats.f_oneway(group1, group2, group3)</pre>	- Normal distribution
			- Equal variance
Mann-W hitney U	Non-parametr ic comparison	stats.mannwhitneyu(group1, group2)	- Independent observations
			Similarshapeddistributions

2. Testing Assumptions

Normality Check

```
Unset
# Visual check
sns.histplot(data)
stats.probplot(data, plot=plt)

# Statistical test
stats.normaltest(data) # p > 0.05 suggests normality
```

Equal Variance Check

```
Unset stats.levene(group1, group2) # p > 0.05 suggests equal variance
```

3. Effect Size Measures

Measure	Use Case	Interpretation
Cohen's d	T-test	0.2 = small
		0.5 = medium
		0.8 = large
Cramer's V	Chi-square	0.1 = small
		0.3 = medium
		0.5 = large

4. Decision Flowchart

```
Unset
Start → Is data normal? (stats.normaltest)

↓
```

```
YES \rightarrow Equal variance? (stats.levene)

\downarrow

YES NO

\downarrow

T-test Welch's t-test

NO \rightarrow Mann-Whitney U test
```

5. Common Pitfalls to Avoid

- Using t-test without checking normality when the sample size is small
- Ignoring sample size requirements
- Drawing causation from correlation

6. Key Python Libraries

```
from scipy import stats  # Statistical tests
import numpy as np  # Numerical operations
import seaborn as sns  # Statistical visualization
import matplotlib.pyplot as plt # Plotting
```

7. Basic Statistical Measures

```
Unset
# Basic statistics
mean = np.mean(data)
median = np.median(data)
std = np.std(data)
quantiles = np.percentile(data, [25, 50, 75])
# Quick summary
df.describe()
```

8. Visualization Best Practices

Plot Type	Use Case	Python Code
Box Plot	Distribution comparison	<pre>sns.boxplot(x='group', y='value', data=df)</pre>
Histogram	Distribution shape	<pre>sns.histplot(data=df['value'])</pre>
Q-Q Plot	Normality check	stats.probplot(data, plot=plt)
Bar Plot	Category comparison	<pre>sns.barplot(x='group', y='value', data=df)</pre>

9. Reporting Results

Template:

Unset

Statistical test: [Test Name]

Test statistic: [Value]

P-value: [Value]

Effect size: [Value]

Interpretation: [Brief explanation]

10. Quick Checklist Before Analysis

- Data cleaned and formatted correctly
- Assumptions checked and documented
- Sample size adequate
- Appropriate test selected
- Effect size calculated
- Results properly interpreted

Note: This is a reference guide. Always consult documentation for detailed implementation.