25 ноября 2019 года в Военном инновационном технополисе «ЭРА» (г. Анапа) проведена конференция на тему «Состояние и перспективы развития современной науки по направлению «Технологии энергообеспечения. Аппараты и машины жизнеобеспечения».

Цель конференции — Организация обмена информацией о новых научно-технических разработках, объединения ведущих научных школ, поиска партнёров в области разработки перспективных технологии энергетики, аппаратов и машин систем жизнеобеспечения в Вооружённых Силах Российской Федерации.

Задачи конференции:

- создание условий для эффективного взаимодействия органов военного

управления с предприятиями ОПК на площадке ВИТ «ЭРА»;

- обмен опытом в области инновационных решений по направлению энергетики, технологий, аппаратов и машин систем жизнеобеспечения;
- обмен мнениями и уточнение приоритетных направлений развития химмотологии топлив, масел, смазок и специальных жидкостей в интересах Вооружённых Силах Российской Федерации, разработки композитных конструкционных материалов, аппаратов и машин систем жизнеобеспечения объектов военной инфраструктуры, источников электропитания и систем распределения энергетических ресурсов;
- уточнение вопросов формирования совместных научных коллективов для эффективного проведения исследований в областях деятельности лаборатории.

В конференции приняли участие как доктора и кандидаты наук, докторанты и адъюнкты (аспиранты) образовательных учреждений и научных организаций, так и операторы научных рот.

Основные результаты работы участников конференции отражены в сборнике статей. Содержание статей представлено в авторском изложении.

Ответственный редактор капитан-лейтенант Ржавитин В.Л. Компьютерная верстка Минасян М.А. Репин Д.В.

АНАЛИЗ СУЩЕСТВУЮЩИХ КОМПОЗИТНЫХ МАТЕРИАЛОВ И
ОПРЕДЕЛЕНИЕ ПЕРСПЕКТИВ ИХ ДАЛЬНЕЙШЕГО РАЗВИТИЯ 181
Фролов А.В., Плотникова Я. Р.
ИСПОЛЬЗОВАНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ В АВИАЦИИ
Шайдуллин И.Н., Смелик А.А., Шевченко Я.В., Губанов Е.В.
ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕГО РАЗВИТИЯ ПРОЗРАЧНЫХ
БРОНЕМАТЕРИАЛОВ196
Бакеев М.М., Фролов А.В.
НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ ТЕХНИЧЕСКИХ СРЕДСТВ
СЛУЖБЫ ГОРЮЧЕГО АРМИЙ СТРАН НАТО203
Трусов Д.Н., Вдовичев А.А., Ржавитин В.Л., Смелик А.А.
АНАЛИЗ РАЗВИТИЯ КОНСТРУКЦИИ ТОПЛИВНЫХ ФОРСУНОК209
Марков А.Р., Горшков С.Н., Иконников А.В.
АЛГОРИТМЫ ОЦЕНКИ КАЧЕСТВА ЦИФРОВЫХ ИЗОБРАЖЕНИЙ220
Горшков С.Н., Маслов Н.С.
АНАЛИЗ БИБЛИОТЕК BOOST.STATECHART И BOOST.META STATE
МАСНІ ЕДЛЯ РЕШЕНИЯ ЗАДАЧИ УПРАВЛЕНИЯ БПЛА КОПТЕРНОГО
ТИПА
Иконников А.В., Марков А.Р., Горшков С.Н.
ПОДХОДЫ В ОБРАБОТКЕ ИЗОБРАЖЕНИЙ ПРИ РАСПОЗНАВАНИИ
ОБЪЕКТОВ
Усеинов И.А., Щербанев А.Ю., Кириченко А.А., Коваленко Р.В., Горшков
С.Н.
ПРИНЦИП РАБОТЫ С НАВИГАЦИОННОЙ АППАРАТУРОЙ ПРИ
ОРИЕНТИРОВАНИИ НА МЕСТНОСТИ
Прокофьев М.А., Поляков Р.Г., Горшков С.Н.
АНАЛИЗ СТОХАСТИЧЕСКОГО ПОДХОДА К МОДЕЛИРОВАНИЮ
БОЕВЫХ ДЕЙСТВИЙ245
Захаренков И.Г., Горшков С.Н.
МЕТОДИКА РАЗРАБОТКИ ПОЛЬЗОВАТЕЛЬСКОГО ИНТЕРФЕЙСА ДЛЯ
МОБИЛЬНЫХ ТЕРМИНАЛОВ ОПЕРАТОРА РОБОТОТЕХНИЧЕСКИХ
КОМПЛЕКСОВ253
Поляков Р.Г., Горшков С.Н., Прокофьев М.А.
СРАВНИТЕЛЬНЫЙ АНАЛИЗ СУЩЕСТВУЮЩИХ МЕТОДОВ
МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ БОЕВЫХ ДЕЙСТВИЙ268

АНАЛИЗ БИБЛИОТЕК BOOST.STATECHART И BOOST.META STATE MACHINE ДЛЯ РЕШЕНИЯ ЗАДАЧИ УПРАВЛЕНИЯ БПЛА КОПТЕРНОГО ТИПА

Горшков С.Н., специалист, старший оператор 4 научной роты ФГАУ «Военный инновационный технополис «ЭРА», г. Анапа, Российская Федерация, e-mail: sergik-gorshkov@mail.ru, 89097633050

Маслов Н.С., магистр, оператор 4 научной роты $\Phi \Gamma A Y$ «Военный инновационный технополис «ЭРА», г. Анапа, Российская Φ едерация, е-mail: webconn@mail.ru, 89263743420

Аннотация:

В статье рассматриваются вопросы связанные с использованием конечных автоматов для решения задачи управления БПЛА коптерного типа. Выполнен анализ специализированных библиотек, которые предоставляют все необходимые функциональные возможности для разработки полноценной машины состояний.

Ключевые слова: конечный автомат, программирование, БПЛА, квадрокоптер, C++.

Конечный автомат (или попросту FSM — Finite-state machine) это модель вычислений, основанная на гипотетической машине состояний. В один момент времени только одно состояние может быть активным. Следовательно, для выполнения каких-либо действий машина должна менять свое состояние.

Использование конечного автомата в робототехнических комплексах широко распространено. Существуют различные технологии реализации конечного автомата для задач программирования робототехнических комплексов, в частности летательных аппаратов коптерного типа.

Список необходимых состояний и подсостояний летательного аппарата коптерного типа:

- 1. Состояние удаленного управления.
- 2. Состояние успешной инициализации.
- 3. Состояние ошибки.
- 4. Состояние режима управления с бортового компьютера:
 - 1. Состояние инициализации управления с бортового компьютера.
 - 2. Состояние нахождения на земле.
 - 3. Состояние взлета.
 - 4. Состояние парения.
 - 5. Состояние движения.
 - 6. Состояние приземления.

Переходы между состояниями внутри конечного автомата происходят при помощи событий. Список событий конечного автомата летательного аппарата коптерного типа:

- 1. Событие взлета.
- 2. Событие начала приземления.
- 3. Событие зависания над точкой.
- 4. Событие успешного приземления.
- 5. Событие движения к точке.
- 6. Событие поворота.
- 7. Событие ошибки.
- 8. Событие переключения режима управления.

Для ведения лога полета коптера необходимо отслеживать изменение состояний внутреннего конечного автомата. Решение задачи логирования достигается путем записи момента входа и выхода состояний.

Рисунок 1 – Схема взаимодействия состояний конечного автомата.

В качестве основных инструментов по созданию конечного автомата летательного аппарата коптерного типа были выбраны Boost.StateChart и Boost.Meta State Machine. В ходе разработки и тестирования конечного автомата при помощи обоих библиотек были выявлены их недостатки и преимущества.

Недостатки Boost.StateChart:

- 1. Высокое потребление вычислительных ресурсов.
- 2. Некорректная работа нескольких активных состояний. Преимущества Boost.StateChart:
- 1. Высокая расширяемость.
 - Недостатки Boost. Meta State Machine:
- 1. Менее расширяемая чем Boost.StateChart.
 - Преимущества Boost. Meta State Machine:
- 1. Низкое потребление вычислительных ресурсов.

- 2. Возможность работы нескольких активных состояний.
- 3. Больше возможностей для управления состояниями и событиями.

В ходе анализа установлено, что более эффективной является библиотека Boost. Meta State Machine.

Пример создания описания машины состояний основанной на применении библиотеки Boost.Meta State Machine.

```
struct stateMachine
 : public front::state machine def<stateMachine > {
  Context ctxt;
  stateMachine () {}
  stateMachine (Context &ctxt) {
    ctxt = ctxt;
  //Шаблонный метод входа в машину состояний. В шаблоне первый пара-
метр - событие, вызвавшее переход, 2й - сама машина состояний
  template<class Event, class FSM>
  void on entry(Event const &, FSM &) {
    BOOST LOG TRIVIAL(info) << "MetaAI: Entering: StateMachine";
  template<class Event, class FSM>
  void on exit(Event const &, FSM &) {
    BOOST LOG TRIVIAL(info) << "MetaAI: Leaving: StateMachine";
   template<class FSM, class Event>
   void no transition(Event const &e, FSM &, int state) {
     BOOST LOG TRIVIAL(info) << "no transition from state " << state << " on
event " << typeid(e).name();
};
        Пример создания описания события конечного автомата основанного
на применении библиотеки Boost. Meta State Machine:
namespace Events {
struct TakeOff {};
struct Move {
  offcon::Point3 target;
  explicit Move(offcon::Point3 target)
   : target(target) {}
};
} // namespace Events
```

В примере, показано создание 2х событий: событие взлета и событие движения.

Пример создания описания состояния конечного автомата основанного на применении библиотеки Boost. Meta State Machine.

```
//Состояние управления с пульта
  struct RemoteController
   : public front::state <> {
   //Шаблон FSM - объект машины состояний, к которой принадлежит со-
стояние
    template<class Event, class FSM>
    void on entry(Event const &, FSM &fsm) {
      BOOST LOG TRIVIAL(info) << "MetaAI: Entering: RemoteController";
    template<class Event, class FSM>
    void on exit(Event const &, FSM &) {
      BOOST LOG TRIVIAL(info) << "MetaAI: Leaving: RemoteController";
    }
 };
       Пример создания описания действий, которые происходят при вызове
события.
    //Действие, выполняемое при вызове события TakeOff
    struct do takeoff {
      template<class EVT, class FSM, class SourceState, class TargetState>
      void operator()(EVT const &, FSM &fsm, SourceState &, TargetState &) {
        fsm. ctxt.mController->takeOff(fsm. ctxt.params->behaviour.height);
    };
       Пример создания правил перехода между состояниями.
    //Таблица переходов и действий между состояниями подмашины
offboard
    struct transition table
     : mpl::vector<
     // Start Event Next Action Guard
      row < Init, Events::Ground, Grounding>,
      front::Row<Init, Events::Hover, Hovering, offboard ::do hover>,
      // +-----
      front::Row<Grounding, Events::TakeOff, TakeOffing, offboard ::do take-
off>,
      // +-----
```

```
row<TakeOffing, Events::Hover, Hovering>,
     // +-----
--+
     front::Row<Hovering, Events::Land, Landing, offboard ::do land>,
     front::Row<Hovering, Events::Move, Moving, offboard ::do move>,
     front::Row<Hovering,
                             Events::MoveSelf,
                                                  Moving,
                                                              off-
board ::do move self>,
     front::Row<Hovering, Events::Turn, Moving, offboard_::do_turn>,
     front::Row<Hovering,
                             Events::TurnSelf.
                                                              off-
board ::do turn self>,
     __+
     front::Row<Moving, Events::Move, Moving, offboard_::do_move>,
     front::Row<Moving,
                            Events::MoveSelf,
                                                 Moving,
                                                              off-
board :: do move self>,
     front::Row<Moving, Events::Turn, Moving, offboard ::do turn>,
     front::Row<Moving, Events::TurnSelf, Moving, offboard ::do turn self>,
     front::Row<Moving, Events::Hover, Hovering, offboard ::do hover>,
      row<Landing, Events::LandOk, Grounding>> {};
```

Пример объявления типа состояния для создания объекта состояния, содержащего подсостояния.

//Создание типа машины состояний из описания (offboard_ - это описание конечного автомата)

typedef msm::back::state_machine<offboard_> Offboard;

Пример объявления типа машины состояний для создания объекта конечного автомата.

typedef msm::back::state_machine<stateMachine_> StateMachine;

Таким образом, для решения задачи управления БПЛА на основе машины состояний наиболее эффективым является использование библиотеки BoostMeta State Machine. Она позволяет разрабатывать сложный и производительный конечный автомат, с широкими функциональными возможностями, которые необходимы в задаче управления БПЛА.

Литература

- 1. Конечный автомат: теория и реализация [Электронный ресурс]. URL: https://tproger.ru/translations/finite-state-machines-theory-and-implementation/. (дата публикования: 25.09.2015)
- 2. Basic front-end. Chapter 3 Tutorial [Электронный ресурс]. URL: https://www.boost.org/doc/libs/1_64_0/libs/msm/d oc/HTML/ch03s02.html. (дата обращения: 08.01.2020).

- 3. Functor front-end. Chapter 3 Tutorial [Электронный ресурс]. URL: https://www.boost.org/doc/libs/1_72_0/libs/msm/d oc/HTML/ch03s03.html. (дата обращения: 08.01.2020).