§4. Абсолютная и неабсолютная (условная) сходимости несобственных интегралов с бесконечными пределами

В предыдущем параграфе (§3) рассматривались признаки сходимости несобственных интегралов от неотрицательных функций. Здесь мы отойдем в исследовании сходимости от этого требования.

Теорема 4.1. Если сходится интеграл $\int_{a}^{+\infty} |f(x)| dx$ от модуля функции, то и подавно сходится интеграл $\int_{a}^{+\infty} f(x) dx$ от самой функции.

▶ Исходим из очевидного неравенства $-|f(x)| \le f(x) \le |f(x)|$. Отсюда $0 \le f(x) + |f(x)| \le 2|f(x)|$. Интеграл $\int_0^{+\infty} 2|f(x)| dx$ сходится, следовательно, по признаку сравнения (теорема 3.1) сходится интеграл $\int_a^{+\infty} [f(x) + |f(x)|] dx$. По теореме 2.2 (свойство линейности) сходится интеграл

$$\int_{a}^{+\infty} [f(x) + |f(x)|] dx - \int_{a}^{+\infty} |f(x)| dx = \int_{a}^{+\infty} [f(x) + |f(x)| - |f(x)|] dx = \int_{a}^{+\infty} f(x) dx. \blacktriangleleft$$

Оказывается, обратное предложение с общем случае неверно. Это обстоятельство дает основание введению нового понятия.

Определение 4.1. Если вместе с данным интегралом $\int_{a}^{+\infty} f(x)dx$ сходится и интеграл от модуля подынтегральной функции, то данный интеграл называется *абсолютно сходящимся*. Если данный интеграл сходится, а интеграл от модуля подынтегральной функции расходится, то данный интеграл называется *неабсолютно* (иначе – *условно*) *сходящимся*.

Далее мы рассмотрим примеры таких интегралов.

Пример 4.1. Интеграл $\int_0^{+\infty} \frac{\sin ax}{1+x^2} dx$ сходится абсолютно, так кан $\frac{|\sin ax|}{1+x^2} \le \frac{1}{1+x^2}$, а интеграл $\int_0^{+\infty} \frac{dx}{1+x^2} = \frac{\pi}{2}$ сходится.

Пример 4.2. Исследовать сходимость интеграла Дирихле

$$D = \int_{0}^{+\infty} \frac{\sin x}{x} dx. \tag{4.1}$$

 $ightharpoonup D = \int\limits_0^{\pi/2} \frac{\sin x}{x} dx + \int\limits_{\pi/2}^{+\infty} \frac{\sin x}{x} dx = J_1 + J_2$. Здесь J_1 и J_2 — первое и второе слагаемые соответственно.

 J_1 — собственный интеграл. Устранимая точка разрыва x=0 подынтегральной функции предполагается устраненной доопределением функции $\frac{\sin x}{x}$ значением 1 при x=0. Второй интеграл J_2 берем по частям:

$$J_{2} = \begin{bmatrix} u = 1/x \\ dv = \sin x dx \end{bmatrix} du = (-1/x^{2}) dx \\ v = -\cos x \end{bmatrix} = -\frac{\cos x}{x} \Big|_{\pi/2}^{+\infty} - \int_{\pi/2}^{+\infty} \frac{\cos x}{x^{2}} dx.$$

Внеинтегральный член равен нулю, а последний интеграл абсолютно сходится:

$$\int_{\pi/2}^{+\infty} \frac{|\cos x|}{x^2} dx \le \int_{\pi/2}^{+\infty} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{\pi/2}^{+\infty} = \frac{2}{\pi}.$$

Отсюда следует, что интеграл Дирихле D сходится.

Пример 4.3. Исследовать интеграл D Дирихле на абсолютную сходимость.

▶ Рассмотрим интеграл $\int_{a}^{+\infty} \frac{|\sin x|}{x} dx = J$ (a > 0). Докажем, что этот интеграл расходится. Предположим противное, что интеграл сходится. Так как $|\sin x| \ge \sin^2 x$, то и подавно должен сходиться интеграл $\int_{a}^{+\infty} \frac{\sin^2 x}{x} dx = \frac{1}{2} \int_{a}^{+\infty} \frac{1 - \cos 2x}{x} dx$. Прибавим к этому интегралу заведомо сходящийся интеграл $\int_{a}^{+\infty} \frac{\cos 2x}{2x} dx$ (его сходимость доказывается так же, как и для интеграла Дирихле D). Должны получить сходящийся интеграл $\frac{1}{2} \int_{a}^{+\infty} \frac{dx}{x}$, что противоречит тому, что этот интеграл расходится. (формула (3.4)). Противоречие доказывает, что интеграл J расходится, но тогда и подавно расходится интеграл $\int_{0}^{+\infty} \frac{|\sin x|}{x} dx$. Таким образом, интеграл D сходится неабсолютно. \blacktriangleleft

Замечание 4.1. Понятия абсолютной и неабсолютной сходимости распространяются и на остальные типы интегралов с бесконечными пределами.

Замечание 4.2. На основании сходимости (хотя бы и неабсолютной) интегралов $\int_{a}^{+\infty} \frac{\sin x}{x} dx$ и $\int_{a}^{+\infty} \frac{\cos x}{x} dx$ (a > 0) вводятся табулированные неэлементарные функции – интегральный синус $\sin x$ и интегральный косинус $\sin x$:

$$\sin x = -\int_{x}^{+\infty} \frac{\sin t}{t} dt \ (x \ge 0), \ \ \sin x = -\int_{x}^{+\infty} \frac{\cos t}{t} dt (x > 0).$$
 (4.2)