### Localization Algorithms in Passive Sensor Networks

#### Darya Ismailova

Department of Electrical and Computer Engineering University of Victoria, Victoria, BC, Canada

January 19, 2017

### Outline

- Motivation
- Basic Localization Systems and Methods
- Iterative Re-Weighting Least-Squares Methods for Source Localization
- Penalty Convex-Concave Procedure for Range-based Localization
- Onclusions and Future Work

### Introduction

- Navigation: outdoor; indoor
- Surveillance
- Localization of emergency callers
- Emergency and rescue operations / first responders
- Self-organizing networks
- Asset monitoring and tracking
- Other commercial location-based services

#### Introduction

- Ranging methods
  - range measurements (Time Of Arrival)
  - range-difference measurements (Time-Difference of Arrival)
  - received signal strength
- Angle Of Arrival Techniques
- Survey-Based Systems (fingerprinting)
  - memoryless systems (SVM, NN)
  - memory systems (Bayesian inference, grid-based Markov)
  - channel impulse response fingerprinting non-RF features

# Basic Localization Systems and Methods



Figure: Classical geolocation system. Range or angle information is extracted from received RF signals. Location is then estimated by lateration/angulation techniques [GeoLoc].

# Time Of Arrival Localization (TOA)



Figure: TOA-based trilateration. Range measurements to at least three BS make up a set of nonlinear equations that can be solved to estimate the position of a signal source [GeoLoc].

# Time Of Arrival Localization (TOA)

The nonlinear least squares (NLLS) source location extimate  $\hat{x}$  is found by

$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{X}} \left\{ \sum_{i=1}^{m} \beta_i \left( d_n^i - \|\mathbf{x} - \mathbf{a}_i\| \right)^2 \right\}$$

where

 $a_{i}$ - a vector of known coordinates of reference points (sensors)

 $d_n^i$  - a noisy range measurement associated with it

 $\beta_i$  - a weight used to emphasize the degree of confidence in the measurement

m - the number of sensors.

# Time-Difference Of Arrival Localization (TDOA)



Figure: Example of observed time-difference of arrival (O-TDOA) method [GeoLoc].

# Time-Difference Of Arrival Localization (TDOA)

Given the range-difference measurements

$$d_i = \|\mathbf{x} - \mathbf{a}_i\| - \|\mathbf{x} - \mathbf{a}_0\| = \|\mathbf{x} - \mathbf{a}_i\| - \|\mathbf{x}\|, \text{ for } i = 1, 2, \dots, m$$

The standard NLLS location estimate  $\hat{x}$  is found by

$$\hat{\mathbf{x}} = \min_{\mathbf{x}} \sum_{i=1}^{m} (\|\mathbf{x} - \mathbf{a}_i\| - \|\mathbf{x}\| - d_n^i)^2$$

with

 $a_{i}$ - a vector of known coordinates of reference points (sensors)  $d_{n}^{i}$  - a noisy range-difference measurement associated with it m - the number of sensors.

# Methods Based on Received Signal Strength (RSS-based)

The relationship between the RSS reading and the distance can be approximated by

$$P_{x}(d) = P_{0}(d_{0}) - 10n_{p}\log_{10}\left(\frac{d_{i}}{d_{0}}\right) + X_{\sigma}$$

where

 $P_0(d_0)$  - a reference power in dB milliwatts at a reference distance  $d_0$  away from the transmitter

 $n_p$  - the pathloss exponent

 $X_{\sigma}$  - the log-normal shadow fading component with variance  $\sigma^2$ 

 $d_i$  - the distance between the mobile devices and the ith base station  $\sigma$  and  $n_D$  are environment dependent

# Why Least Squares

- Least squares (LS) algorithms for range-based localization:
  - geometrically meaningful
  - provide low complexity solutions with competitive accuracy
- However:
  - the error measure is non-convex
  - excludes many local methods, that are iterative
- Solutions obtained using global localization techniques such as semidefinite programming (SDP) are not optimal in LS sense.

# Iterative Re-Weighting Least-Squares Methods for Source Localization

- Methods developed by A. Beck, P. Stoica, J. Li [BSL2008] for squared range LS (SR-LS) and squared range difference LS (SDR-LS) problems allow to obtain exact and global solutions.
- The results produced are merely approximations of the original LS problems because SR-LS and SRD-LS are no longer an ML solutions.
- Proposed iterative procedure where the SR-LS (or SRD-LS) algorithm
  is applied to a weighted sum of squared terms and special weights
  construction allow to obtain a solution which is considerably closer to
  the original range-based (or range-difference-based) LS solution.

#### Measurement Model

• Throughout it is assumed that range measurements obey the model

$$r_i = \|\mathbf{x} - \mathbf{a}_i\| + \varepsilon_i, \quad i = 1, \dots, m.$$

where  $\{a_1, \ldots, a_m\}$  - given array of m sensors;

 $a_i \in \mathbb{R}^n$  contains n coordinates of the ith sensor in space  $\mathbb{R}^n$ ;

 $r_i$  - received noisy distance reading from the *i*th sensor;

 $\varepsilon_i$  - unknown noise associated with measurement from the *i*th sensor.

• The problem can be stated as to estimate the exact source location  $\mathbf{x} \in R^n$  from noisy range measurements  $\mathbf{r} = [r_1 \ r_2 \dots r_m]^T$ .

#### LS Formulations

• The range-based least squares (R-LS) estimate refers to the solution of the problem

$$\underset{\boldsymbol{x}}{\text{minimize }} f(\boldsymbol{x}) = \sum_{i=1}^{m} (r_i - \|\boldsymbol{x} - \boldsymbol{a}_i\|)^2 \tag{R}$$

- If  $\varepsilon \sim N(0, \Sigma)$  and  $\Sigma \propto I$ , then the R-LS solution of problem (R) is identical to the ML location estimator.
- Unfortunately, the objective in (R) is highly non-convex, possessing many local minimizers even for small-scale systems.

#### LS Formulations

 Alternatively, location estimate can be obtained by solving the squared range based LS (SR-LS) problem [BSL2008]

minimize 
$$\sum_{i=1}^{m} (\|\mathbf{x} - \mathbf{a}_i\|^2 - r_i^2)^2$$
 (SR)

- The SR-LS estimate is no longer an ML solution, hence, only an approximation of the original R-LS problem.
- To reduce the gap between the two solutions we propose a weighted SR-LS (WSR-LS) problem:

minimize 
$$\sum_{i=1}^{m} w_i (\|\mathbf{x} - \mathbf{a}_i\|^2 - r_i^2)^2$$
 (WSR)

### An Iterative Re-Weighting Strategy

- WSR-LS with properly chosen weights facilitates an excellent approximation of the R-LS estimate.
- The main idea is to use the weights  $w_i$ , i = 1, ..., m to tune the objective in (WSR) toward the objective in (R).

$$\underbrace{w_i \left(\|\mathbf{x} - \mathbf{a}_i\|^2 - r_i^2\right)^2}_{\text{in (WSR)}} \leftrightarrow \underbrace{\left(\|\mathbf{x} - \mathbf{a}_i\| - r_i\right)^2}_{\text{in (R)}}$$

### An Iterative Re-Weighting Strategy

• By writing the *i*th term in (WSR) as

$$w_i (\|\mathbf{x} - \mathbf{a}_i\|^2 - r_i^2)^2 = w_i (\|\mathbf{x} - \mathbf{a}_i\| + r_i)^2 \underbrace{(\|\mathbf{x} - \mathbf{a}_i\| - r_i)^2}_{\text{same as in (R)}}$$

we note that the objective in (WSR) would be the same as in (R) if the weight  $w_i$  was assigned to  $1/(\|\mathbf{x} - \mathbf{a}_i\| + r_i)^2$ .

• Evidently, such weight assignments cannot be realized.

### An Iterative Re-Weighting Strategy

• In the proposed iterative procedure we solve a weighted SR-LS sub-problem, where at each iteration the weights are fixed:

minimize 
$$\sum_{i=1}^{m} w_i^{(k)} (\|\mathbf{x} - \mathbf{a}_i\|^2 - r_i^2)^2$$
 (IRWSR)

- for k=1 all weights  $\{w_i^{(1)}, i=1,\ldots,m\}$  are set to unity;
- for  $k \ge 2$  the weights  $\{w_i^{(k)}, i=1,\ldots,m\}$  are assigned using the previous iterate  $\mathbf{x}_{k-1}$  as

$$w_i^{(k)} = \frac{1}{(\|\mathbf{x}_{k-1} - \mathbf{a}_i\| + r_i)^2}.$$

□ ▶ ◆률 ▶ ◆불 ▶ 호텔 외약

#### Problem Statement

• It is assumed that the range-difference measurements obey the model:

$$d_i = \|\mathbf{x} - \mathbf{a}_i\| - \|\mathbf{x} - \mathbf{a}_0\| = \|\mathbf{x} - \mathbf{a}_i\| - \|\mathbf{x}\|, \quad i = 1, \dots, m$$

where  $a_0$  - reference sensor placed at the origin.

The standard range-difference LS (RD-LS) problem is formulated as

$$\underset{\mathbf{X} \in R^n}{\text{minimize}} F(\mathbf{x}) = \sum_{i=1}^m (d_i + \|\mathbf{x}\| - \|\mathbf{x} - \mathbf{a}_i\|)^2 \tag{RD}$$

#### SRD-LS and WSRD-LS formulations

- An approximation of the RD-LS solution can be obtained by solving the *squared range difference based LS* (SRD-LS) problem.
- By re-writing the measurements model as  $d_i + ||x|| = ||x a_i||$  and squaring both sides, we obtain

$$-2d_i \|\mathbf{x}\| - 2\mathbf{a}_i^T \mathbf{x} = g_i, \quad i = 1, \dots, m$$

where  $g_i = d_i^2 - \|\mathbf{a}_i\|^2$ . The SRD-LS solution can be obtained by minimizing following criterion:

$$\underset{\boldsymbol{x} \in R^n}{\text{minimize}} \sum_{i=1}^m \left( -2\boldsymbol{a}_i^T \boldsymbol{x} - 2d_i \|\boldsymbol{x}\| - g_i \right)^2$$

### Improved Solution Using Iterative Re-weighting

- We now present a method for improved solutions over SRD-LS solutions.
- We consider the weighted SRD-LS problem

$$\underset{\mathbf{x} \in R^n}{\text{minimize}} \sum_{i=1}^m w_i \left( -2\mathbf{a}_i^T \mathbf{x} - 2d_i \|\mathbf{x}\| - g_i \right)^2$$
 (WSRD)

where weights  $w_i$  for i = 1, ..., m are *fixed* nonnegative constants.

### Improved Solution Using Iterative Re-weighting

• The *i*th term of the objective function in (WSRD) can be written as:

$$w_i \left(-2d_i \|\mathbf{x}\| - 2\mathbf{a}_i^T \mathbf{x} - g_i\right)^2$$

$$= w_i \left(d_i + \|\mathbf{x}\| + \|\mathbf{x} - \mathbf{a}_i\|\right) \underbrace{\left(d_i + \|\mathbf{x}\| - \|\mathbf{x} - \mathbf{a}_i\|\right)}_{\text{same as in RD}}$$

• If weights  $w_i$  were set to  $1/(d_i + ||x|| + ||x - a_i||)^2$  the objective in (WSRD) would be the same as in (RD).

### Improved Solution Using Iterative Re-weighting

• We employ an iterative procedure where the weights in the *k*th iteration are assigned to

$$w_i^{(k)} = \frac{1}{(d_i + ||\mathbf{x}_{k-1}|| + ||\mathbf{x}_{k-1} - \mathbf{a}_i||)^2}, i = 1, \dots, m$$

with 
$$\{w_i^{(1)} = 1, i = 1, \dots, m\}.$$

 We will refer to the derived problem as the iterative re-weighted SRD-LS (WSRD-LS) problem and the solution obtained as IRWSRD-LS solution.

### Performance Evaluation for SR-LS and IRWSR-LS

 We can see that IRWSR-LS solutions offer considerable improvement over SR-LS solutions.

Table: Averaged MSE for SR-LS and IRWSR-LS methods by noise level

| $\sigma$ | SR - LS        | IRWSR-LS       | Improvement (%) |
|----------|----------------|----------------|-----------------|
| 1e-03    | 2.03251062e-06 | 1.19962894e-06 | 41              |
| 1e-02    | 1.83717590e-04 | 1.24797437e-04 | 32              |
| 1e-01    | 1.83611315e-02 | 1.22233840e-02 | 33              |

### Performance Evaluation for SRD-LS and IRWSRD-LS

Table: Averaged MSE for SRD-LS and IRWSRD-LS methods by noise level

| $\sigma$ | SRD - LS       | IRWSRD-LS      | Improvement (%) |
|----------|----------------|----------------|-----------------|
| 1e-04    | 1.38301598e-08 | 8.22705918e-09 | 40              |
| 1e-03    | 1.60398717e-06 | 1.03880406e-06 | 35              |
| 1e-02    | 1.11632818e-04 | 6.67785604e-05 | 40              |
| 1e-01    | 1.20947651e-02 | 7.20891487e-03 | 40              |
| 1e+0     | 1.57050323e+00 | 9.70756420e-01 | 40              |

### Problem Statement

#### Measurement Model

• The range measurements model is assumed to be given by

$$r_i = \|\mathbf{x} - \mathbf{a}_i\| + \varepsilon_i, \quad i = 1, \dots, m.$$

 $\{a_1,\ldots,a_m\}$  - given array of m sensors;  $r_i$  - received noisy distance reading from sensor i;  $\varepsilon_i$  - unknown noise associated with measurement from the ith sensor.

The range-based least squares estimate refers to the solution of

$$\underset{\boldsymbol{x}}{\operatorname{minimize}} F(\boldsymbol{x}) = \sum_{i=1}^{m} (r_i - \|\boldsymbol{x} - \boldsymbol{a}_i\|)^2 \tag{R}$$

- We frame the localization problem as difference-of-convex-functions (DC) program.
- Proposed formulation:
  - based on a penalty convex-concave procedure (PCCP)
  - accepts infeasible initial points
  - additional constraints that enforce the algorithms iteration path towards the LS solution  $\,$
  - strategies to secure good initial points

# Basic Convex-Concave Procedure (CCP)

The CCP finds local optima of nonconvex problems of the form

minimize 
$$f(x) - g(x)$$
  
subject to:  $f_i(x) \le g_i(x)$  for:  $i = 1, 2, ..., m$ 

where  $f(\mathbf{x}), g(\mathbf{x}), f_i(\mathbf{x}), g_i(\mathbf{x})$  for i = 1, 2, ..., m are convex.

• It is a descent algorithm that requires a *feasible* initial point  $x_0$ , i.e.  $f_i(x) - g_i(x) \le 0$  for i = 1, 2, ..., m.

# Basic Convex-Concave Procedure (CCP)

• The basic CCP algorithm is an iterative procedure including two key steps (in the *k*-th iteration):

① Convexify: form 
$$\hat{g}(\mathbf{x}, \mathbf{x}_k) = g(\mathbf{x}_k) + \nabla g(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k)$$
 and  $\hat{g}_i(\mathbf{x}, \mathbf{x}_k) = g_i(\mathbf{x}_k) + \nabla g_i(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k)$  for  $i = 1, 2 \dots, m$ 

Solve the convex problem:

minimize 
$$f(\mathbf{x}) - \hat{g}(\mathbf{x}, \mathbf{x}_k)$$
  
subject to:  $f_i(\mathbf{x}) - \hat{g}_i(\mathbf{x}, \mathbf{x}_k) \leq 0$   
for:  $i = 1, 2, ..., m$ 



Figure: A nonconvex function in the form of the difference of two convex functions and its contour plot.



Figure: Separation of the nonconvex function into two convex functions.



Figure: First order approximation of g(x).



Figure: A convex approximation of the original nonconvex function at  $x_0 = (0,0)$ .

### Range-Based Localization Revisited

• The range-based least squares (R-LS) estimate:

$$\underset{\boldsymbol{x}}{\operatorname{minimize}} F(\boldsymbol{x}) = \sum_{i=1}^{m} (r_i - \|\boldsymbol{x} - \boldsymbol{a}_i\|)^2 \tag{R}$$

### Problem Reformulation

• We begin by re-writing the objective F(x) up to a constant as:

$$\sum_{i=1}^{m} (r_i - \|\mathbf{x} - \mathbf{a}_i\|)^2 = m\mathbf{x}^T\mathbf{x} - 2\mathbf{x}^T\sum_{i=1}^{m} \mathbf{a}_i - 2\sum_{i=1}^{m} r_i\|\mathbf{x} - \mathbf{a}_i\|$$

which allows to formulate it in a basic CCP form F(x) = f(x) - g(x) with

$$f(\mathbf{x}) = m\mathbf{x}^T\mathbf{x} - 2\mathbf{x}^T\sum_{i=1}^m \mathbf{a}_i$$
 - convex

$$g(\mathbf{x}) = 2\sum_{i=1}^{m} r_i \|\mathbf{x} - \mathbf{a}_i\|$$
 - convex.

### Problem Reformulation

• Since g(x) is not differentiable at the point where  $x = a_i$  for some  $1 \le i \le m$ , we replace  $\nabla g(x_k)$  by a subgradient of g(x) at  $x_k$  as

$$\partial g(\mathbf{x}_k) = 2\sum_{i=1}^m r_i \partial \|\mathbf{x}_k - \mathbf{a}_i\|$$

where

$$\|oldsymbol{x}_k - oldsymbol{a}_i\| = egin{cases} rac{oldsymbol{x}_k - oldsymbol{a}_i}{\|oldsymbol{x}_k - oldsymbol{a}_i\|}, & ext{if } oldsymbol{x}_k 
eq oldsymbol{a}_i \\ oldsymbol{0}, & ext{otherwise} \end{cases}$$

#### Problem Reformulation

• Up to a multiplicative factor 1/m and an additive constant term the objective in (R) can be written as

minimize 
$$\hat{F}(x) = x^T x - 2x^T v_k$$

where

$$\mathbf{v}_k = \bar{\mathbf{a}} + \frac{1}{m} \sum_{i=1}^m r_i \partial \|\mathbf{x}_k - \mathbf{a}_i\|, \quad \bar{\mathbf{a}} = \frac{1}{m} \sum_{i=1}^m \mathbf{a}_i$$

• Given  $x_k$  (in the k-th iteration) the solution of the quadratic problem can be obtained as

$$\mathbf{x}_{k+1} = \bar{\mathbf{a}} + \frac{1}{m} \sum_{i=1}^{m} r_i \partial \|\mathbf{x}_k - \mathbf{a}_i\|$$

## Imposing Error Bounds

 The algorithm can be enhanced by imposing a bound on each squared measurement error

$$(\|\mathbf{x}-\mathbf{a}_i\|-r_i)^2 \leq \delta_i^2$$

which leads to

$$\|\mathbf{x} - \mathbf{a}_i\| - r_i - \delta_i \le 0$$

$$r_i - \delta_i \le \|\mathbf{x} - \mathbf{a}_i\|, \text{ for } 1 \le i \le m.$$
 (C2)

Both sets of constraints can be written in a form  $f_i(\mathbf{x}) \leq g_i(\mathbf{x})$ .

• Constraints in (C1) are convex, with  $f_i(\mathbf{x}) = \|\mathbf{x} - \mathbf{a}_i\| - r_i - \delta_i$ , and  $g_i(\mathbf{x}) = 0$ .

## Imposing Error Bounds

• In case of (C2): define  $f_i(\mathbf{x}) = r_i - \delta_i$  and  $g_i(\mathbf{x}) = \|\mathbf{x} - \mathbf{a}_i\|$ . Replace  $g_i(\mathbf{x})$  with its approximation

$$\hat{g}_i(\mathbf{x}, \mathbf{x}_k) = \|\mathbf{x}_k - \mathbf{a}_i\| + \partial \|\mathbf{x}_k - \mathbf{a}_i\|^T (\mathbf{x} - \mathbf{x}_k)$$

This allows to convexify constraints  $r_i - \delta_i \leq \|\mathbf{x} - \mathbf{a}_i\|$  as

$$-\|\boldsymbol{x}_{k}-\boldsymbol{a}_{i}\|-\partial\|\boldsymbol{x}_{k}-\boldsymbol{a}_{i}\|^{T}(\boldsymbol{x}-\boldsymbol{x}_{k})+r_{i}-\delta_{i}\leq0$$

 $\bullet$  Summarizing, the problem in the k-th iteration can be stated as

minimize 
$$\mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \mathbf{v}_k$$
  
subject to:  $\|\mathbf{x} - \mathbf{a}_i\| - r_i - \delta_i \le 0$   
 $-\|\mathbf{x}_k - \mathbf{a}_i\| - \partial \|\mathbf{x}_k - \mathbf{a}_i\|^T (\mathbf{x} - \mathbf{x}_k) + r_i - \delta_i \le 0$ 

# Penalty CCP (PCCP)

- ullet Technical problem: the formulation requires a feasible initial point  $x_0$ .
- Solution approach: allow *infeasible* initinial points by introducing slack variables  $s_i \geq 0$ ,  $\hat{s_i} \geq 0$ ,  $1 \leq i \leq m$  into constraints (C1) and (C2) and penalizing the sum of violations.
- This leads to a penalty CCP:

minimize 
$$\mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \mathbf{v}_k + \tau_k \sum_{i=1}^m (s_i + \hat{s}_i)$$
 subject to:  $\|\mathbf{x} - \mathbf{a}_i\| - r_i - \delta_i \le s_i$  
$$-\|\mathbf{x}_k - \mathbf{a}_i\| - \frac{(\mathbf{x}_k - \mathbf{a}_i)^T}{\|\mathbf{x}_k - \mathbf{a}_i\|} (\mathbf{x} - \mathbf{x}_k) + r_i - \delta_i \le \hat{s}_i$$
  $s_i \ge 0, \hat{s}_i \ge 0, \text{ for: } i = 1, 2, \dots, m$ 

where  $0 \le \tau_k \le \tau_{max}$ .

# The Algorithm: Input parameters

#### Bound $\delta_i$ on the measurement error

- Lower  $\delta_i$  leads to a "tighter" solution.
- Larger  $\delta_i$  makes the algorithm less sensitive to outliers.
- If  $\varepsilon$  obeys a Gaussian distribution with zero mean and  $\mathbf{\Sigma} = \mathrm{diag}(\sigma_1^2, \dots, \sigma_m^2)$ , then  $\delta_i = \gamma \sigma_i$ , where  $\gamma$  determines the width of confidence interval.
- For example, for  $\gamma=3$  we have the probability  $Pr\{|\varepsilon_i|\leq 3\sigma_i\}\approx 0.99$ .

# The Algorithm: Input parameters

### Initial point $x_0$

Techniques to select a good initial point:

- select the initial point uniformly randomly over the same region as the unknown source;
- set the initial point to the origin;
- run the algorithm from a set of candidate initial points and identify the solution as the one with lowest LS error;
- apply a global localization algorithm to generate an approximate LS solution, then take it as the initial point.

#### **Numerical Results**

### System setup

- Sensors:  $\{a_i, i=1,2,\ldots,5\}$  randomly placed in the planar region in  $[-15;15]\times[-15;15]$
- Source:  $x_s$ , located randomly in  $\{x = [x_1; x_2], -10 \le x_1, x_2 \le 10\}$
- Noise:  $\{\varepsilon_i, i=1,\ldots,m\}$  was modelled as i.i.d random variables with zero mean and variance  $\sigma^2$ ,  $\sigma\in\{10^{-3},10^{-2},10^{-1},1\}$
- $\gamma = 3$ ,  $K_{max} = 20$

#### Numerical Results

Table: Averaged MSE for SR-LS and PCCP methods

| $\sigma$ | MLE        | SR - LS    | PCCP       | R.I. |
|----------|------------|------------|------------|------|
| 1e-03    | 6.0159e-01 | 1.3394e-06 | 9.5243e-07 | 29%  |
| 1e-02    | 3.5077e-01 | 1.4516e-04 | 9.5831e-05 | 34%  |
| 1e-01    | 3.7866e-01 | 1.2058e-02 | 8.7107e-03 | 28%  |
| 1e+0     | 1.4470e+00 | 1.3662e+00 | 1.2346e+00 | 10%  |

- New iterative method for locating a radiating source based on noisy range measurements
- Transforms original least-squares problem to a DC programming problem
- This in turn is relaxed to a sequential convex minimization based on PCCP that can be efficiently solved with an infeasible initial point
- CCP allows a natural embedding of the LS formulation for localization into a sequential convex formulation

# Q & A

# **Appendix**

# Nonconvexity of the objective

Given the objective

$$F(x) = \sum_{i=1}^{m} (r_i - ||x - a_i||)^2$$

its Hessian for points x that are not coincided with  $a_i$  for  $1 \le i \le m$ , is given by

$$\nabla^{2}F(\mathbf{x}) = 2m\mathbf{I} + 2\sum_{i=1}^{m} \frac{r_{i}}{\|\mathbf{x} - \mathbf{a}_{i}\|^{3}} \cdot \left( (\mathbf{x} - \mathbf{a}_{i})(\mathbf{x} - \mathbf{a}_{i})^{T} - \|\mathbf{x} - \mathbf{a}_{i}\|^{2} \mathbf{I} \right)$$

which is not always positive semidefinite. Hence F(x) is not convex.

#### Problem Reformulation

We express the objective in (R) as F(x) = f(x) - g(x) with

$$f(x) = mx^T x - 2x^T \sum_{i=1}^{m} a_i$$
 and  $g(x) = 2 \sum_{i=1}^{m} r_i ||x - a_i||$ 

Then, we replace  $\nabla g(\mathbf{x}_k)$  by a subgradient of  $g(\mathbf{x})$  at  $\mathbf{x}_k$ :

$$\partial g(\mathbf{x}_k) = 2\sum_{i=1}^m r_i \partial \|\mathbf{x}_k - \mathbf{a}_i\|,$$

where

$$\|oldsymbol{x}_k - oldsymbol{a}_i\| = egin{cases} rac{oldsymbol{x}_k - oldsymbol{a}_i}{\|oldsymbol{x}_k - oldsymbol{a}_i\|}, & ext{if } oldsymbol{x}_k 
eq oldsymbol{a}_i \\ oldsymbol{0}, & ext{otherwise} \end{cases}$$

#### Problem Reformulation

Hence  $\hat{g}(x, x_k)$  can be formed as:

$$\hat{\mathbf{g}}(\mathbf{x}, \mathbf{x}_k) = \mathbf{g}(\mathbf{x}_k) + \nabla \mathbf{g}(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k)$$

$$= 2 \sum_{i=1}^m r_i ||\mathbf{x}_k - \mathbf{a}_i|| + 2 (\mathbf{x} - \mathbf{x}_k)^T \sum_{i=1}^m r_i \partial ||\mathbf{x}_k - \mathbf{a}_i||$$

$$= 2\mathbf{x}^T \sum_{i=1}^m r_i \partial ||\mathbf{x}_k - \mathbf{a}_i|| + c$$

where c is a constant given by

$$c = -2\sum_{i=1}^{m} r_i \mathbf{a}_i^T \partial \|\mathbf{x}_k - \mathbf{a}_i\|.$$

## The Algorithm

## PCCP-based LS Algorithm for Source Localization

**Step 1:** Input sensor locations  $\{a_i, i = 1, ..., m\}$ , range measurements  $\{r_i, i = 1, ..., m\}$ ,  $x_0, K_{max}, \tau_0, \tau_{max}, \mu > 0, \gamma, \sigma$ , and set k = 0.

**Step 2:** Form  $v_k$  and solve PCCP. Denote the solution as  $(s^*, \hat{s}^*, x^*)$ .

**Step 3:** Update  $\tau_{k+1} = \min (\mu \tau_k, \tau_{max})$ , set k = k + 1.

**Step 4:** If  $k = K_{max}$ , terminate and output  $x^*$  as the solution; otherwise, set  $x_k = x^*$  and repeat from Step 2.

• New global methods for locating a radiating source based on noisy range or range difference measurements have been proposed.

- New global methods for locating a radiating source based on noisy range or range difference measurements have been proposed.
- These methods are developed by transforming the SR-LS and SRD-LS algorithms [BSL2008] into an iterative procedure so that a weighted SR-LS (SRD-LS) objective asymptotically approaches the original R-LS objective.

- New global methods for locating a radiating source based on noisy range or range difference measurements have been proposed.
- These methods are developed by transforming the SR-LS and SRD-LS algorithms [BSL2008] into an iterative procedure so that a weighted SR-LS (SRD-LS) objective asymptotically approaches the original R-LS objective.
- Proposed algorithms are found to outperform the existing methods.

# Q & A

# **Appendix**

# Source Localization From Range Measurements

## Weighted Squared Range Least Squares Formulation

• Following [BSL2008], we convert (WSR) into a GTRS as

$$\underset{\boldsymbol{y} \in R^{n+1}}{\text{minimize}} \|\boldsymbol{A}_{w}\boldsymbol{y} - \boldsymbol{b}_{w}\|^{2} \tag{0a}$$

subject to: 
$$\mathbf{y}^T \mathbf{D} \mathbf{y} + 2 \mathbf{f}^T \mathbf{y} = 0$$
 (1b)

where  $\mathbf{y} = [\mathbf{x}^T \ \alpha]^T$ ,  $\alpha = \|\mathbf{x}\|$ ,  $\mathbf{A}_w = \Gamma \mathbf{A}$  and  $\mathbf{b}_w = \Gamma \mathbf{b}$  with fixed  $\Gamma = \text{diag}\left(\sqrt{w_1}, \dots, \sqrt{w_m}\right)$ , and

$$\mathbf{A} = \begin{pmatrix} -2\mathbf{a}_1^T & 1 \\ \vdots & \vdots \\ -2\mathbf{a}_m^T & 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} r_1^T - \|\mathbf{a}_1\|^T \\ \vdots \\ r_m^T - \|\mathbf{a}_m\|^T \end{pmatrix}$$
(2)

$$\mathbf{D} = \begin{pmatrix} \mathbf{I}_{n \times n} & \mathbf{0}_{n \times 1} \\ \mathbf{0}_{1 \times n} & 0 \end{pmatrix}, \mathbf{f} = \begin{pmatrix} \mathbf{0} \\ -0.5 \end{pmatrix}$$
 (3)

Darya Ismailova (UVic) Localization in PSN January 19, 2017 1 /

# Source Localization From Range Measurements

#### The Algorithm

- Input data: Sensor locations  $\{a_i, i=1,\ldots,m\}$ , range measurements  $\{r_i, i=1,\ldots,m\}$ , maximum number of iterations  $k_{max}$  and convergence tolerance  $\zeta$ .
- ② Generate data set  $\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{D}, \boldsymbol{f}$  using (2) and (3). Set  $k = 1, w_i^{(1)} = 1$  for i = 1, ..., m.
- Solve the WSR-LS problem (IRWSR) via (1) to obtain its global solution  $x_k$ .
- If  $k = k_{max}$  or  $||x_k x_{k-1}|| < \zeta$ , terminate and output  $x_k$  as the solution; otherwise, set k = k+1, update weights  $\{w_i^{(k)}, i = 1, \ldots, m\}$  and repeat from Step 3).

## Source Localization From Range-Difference Measurements

### Weighted Squared Range-Difference Least Squares Formulation

• By introducing new variable  $\mathbf{y} = [\mathbf{x}^T \ \| \mathbf{x} \|]^T$  and noticing nonnegativity of the component  $y_{n+1}$  problem (WSRD) is converted to

subject to: 
$$\mathbf{y}^T \mathbf{C} \mathbf{y} = 0$$
 (4b)

$$y_{n+1} \ge 0 \tag{4c}$$

3 / 8

• where  $m{B}_w = m{\Gamma} m{B}$ ,  $m{g}_w = m{\Gamma} m{g}$ ,  $m{\Gamma} = \mathrm{diag}\{\sqrt{w_1}, \ldots, \sqrt{w_m}\}$ ,  $m{g} = [g_1 \ldots g_m]^T$  and

$$\boldsymbol{B} = \begin{pmatrix} -2\boldsymbol{a}_{1}^{T} & -2d_{1} \\ \vdots & \vdots \\ -2\boldsymbol{a}_{m}^{T} & -2d_{m} \end{pmatrix}, \boldsymbol{C} = \begin{pmatrix} \boldsymbol{I}_{n} & \boldsymbol{0}_{n\times1} \\ \boldsymbol{0}_{1\times n} & -1 \end{pmatrix}$$
 (5)

Darya Ismailova (UVic) Localization in PSN January 19, 2017

# Source Localization From Range Difference Measurements

## The Algorithm

- Input data: Sensor locations  $\{a_i, i = 0, 1, \dots, m\}$  with  $a_0 = 0$ , range-difference measurements  $\{d_i, i = 1, \dots, m\}$ , maximum number of iterations  $k_{max}$  and convergence tolerance  $\xi$ .
- ② Generate data set  $\{\boldsymbol{B}, \boldsymbol{g}, \boldsymbol{C}\}$  using (5). Set k=1,  $w_i^{(1)}=1$  for  $i=1,\ldots,m$ .
- **3** Solve WSRD-LS problem (4) to obtain its global solution  $x_k$ .
- If  $k = k_{max}$  or  $||x_k x_{k-1}|| < \xi$ , terminate and output  $x_k$  as the solution; otherwise, set k = k+1, update weights  $\{w_i^{(k)}, i = 1, \ldots, m\}$  and repeat from Step 3).

## References I

- J. O. Smith and J. S. Abel, "Closed-form least-squares source location estimation from range-difference measurements," *IEEE Trans. Acoust., Speech Signal Process.*, vol. 12, pp. 1661–1669, Dec. 1987.
- H. Schau and A. Robinson, "Passive source localization employing intersecting spherical surfaces from time-of-arrival differences," *IEEE Trans. Acoust., Speech Signal Process.*, vol. ASSP–35, pp. 1223–1225, Aug. 1987.
- K. Yao, R. Hudson, C. Reed, D. Chen, and F. Lorenzelli, "Blind beamforming on a randomly distributed sensor array system," *IEEE J. Select. Areas Commun.*, vol. 16, pp. 1555-1567, Oct. 1998.
- M. A. Sprito, "On the accuracy of cellular mobile station location estimation," *IEEE Trans. Veh. Technol.*, vol. 50, pp. 674-685, May 2001.

## References II

- Y. Huang, J. Benesty, G. W. Elko, and R. M. Mersereau, "Realtime passive source localization: A practical linear correction least-squares approach," *IEEE Trans. Speech Audio Process.*, vol. 9, no. 8, pp. 943-956. Nov. 2002.
- K. W. Cheung, H. C. So, W. K. Ma, and Y. T. Chan, "Least squares algorithms for time-of-arrival-based mobile location," *IEEE Trans. Signal Process.*, vol. 52, no. 4, pp. 1121–1228, Apr. 2004.
- D. Li and H. Hu, "Least square solutions of energy based acoustic source localization problems," in *Proc. ICPPW*, 2004.
- K.W. Cheung, W.K. Ma, and H.C. So, "Accurate approximation algorithm for TOA-based maximum-likelihood mobile location using semidefinite programming," in *Proc. ICASSP*, 2004, vol. 2, pp. 145–148.

## References III

- A. H. Sayed, A. Tarighat, and N. Khajehnouri, "Network-based wireless location," *IEEE Signal Process. Mag.*, vol. 22, no. 4, pp. 24–40, July 2005.
- Y. T. Chan, H. Y. C. Hang, and P. C. Ching, "Exact and approximate maximum likelihood localization algorithms," *IEEE Trans. Veh. Technol.*, vol. 55, no. 1, pp. 10–16, Jan. 2006.
- P. Stoica and J. Li, "Source localization from range-difference measurements," *IEEE Signal Process. Mag.*, vol. 23, pp. 63–65,69, Nov. 2006.
- A. Beck, P. Stoica and J. Li, "Exact and approximate solutions of source localization problems," *IEEE Trans. Signal Processing*, vol. 56, no. 5, pp. 1770–1777, May 2008.

## References IV

- L. Vandenberghe and S. Boyd, "Semidefinite programming," *SIAM Rev.*, vol. 38, no. 1, pp. 40–95, Mar. 1996.
- A. Antoniou and W.-S. Lu, *Practical Optimization: Algorithms and Engineering Applications*, Springer, 2007.
- J.J. More, "Generalizations of the trust region subproblem," *Optim. Methods Softw.*, vol. 2, pp. 189–209, 1993.
- C. Fortin and H. Wolkowicz, "The trust region subproblem and semidefinite programming," *Optim. Methods Softw.*, vol. 19, no.1, pp. 41–67, 2004.