Fairness Modulo Theory: A New Approach to LTL Software Model Checking

Daniel Dietsch, Matthias Heizmann, Vincent Langenfeld, and Andreas Podelski

Presented by Henrich Lauko

December 5, 2016

1 Ultimate Automizer algorithm

- 1 Ultimate Automizer algorithm
- 2 Reachability solving

- Ultimate Automizer algorithm
- Reachability solving
- 3 Interpolants and infeasibility proofs

- Ultimate Automizer algorithm
- 2 Reachability solving
- 3 Interpolants and infeasibility proofs
- 4 LTL model checking

Ultimate Automizer

Programs as languages

A program defines a language over program statements.

- alphabet = the set of program statements
- finite automaton = control flow graph
- accepting states = error locations

Ultimate Automizer

Programs as languages

A program defines a language over program statements.

- alphabet = the set of program statements
- finite automaton = control flow graph
- accepting states = error locations

Automizer algorithm

Automizer algorithm

Craig's interpolants

Let φ, ψ be two first-order formulae such that $\varphi \implies \psi$. Then there exists a first order-formula θ called *interpolant* such that

- \blacksquare all non-logical symbols in θ occur in both φ and ψ ,
- $\blacksquare \ \phi \implies \theta \implies \psi.$

Craig's interpolants

Let φ, ψ be two first-order formulae such that $\varphi \Longrightarrow \psi$. Then there exists a first order-formula θ called *interpolant* such that

- lacksquare all non-logical symbols in θ occur in both ϕ and ψ ,
- $\blacksquare \ \phi \implies \theta \implies \psi.$

Craig's interpolants

Let φ, ψ be two first-order formulae such that $\varphi \Longrightarrow \psi$. Then there exists a first order-formula θ called *interpolant* such that

- lacksquare all non-logical symbols in θ occur in both ϕ and ψ ,

φ

Craig's interpolants

Let φ, ψ be two first-order formulae such that $\varphi \implies \psi$. Then there exists a first order-formula θ called *interpolant* such that

- all non-logical symbols in θ occur in both φ and ψ ,
- $\blacksquare \ \phi \implies \theta \implies \psi.$

Example: Error path

```
z := 0
   int z:=0;
   int x:=0;
   while (x < 20) {</pre>
                                               x := 0
        if (i!=0) {
                                                  x > = 20
              z++;
        x++;
8
                                               x<20
                                                               z > 5
   assert(z <= 5)
                              x++
                                      i=0
                                                  i! = 0
```

Example: Error path

Example: Error path

Error feasibility analysis

Symbolic execution produces:

$$z = 0 \land x = 0 \land x \geqslant 20 \land z > 5 \equiv \text{false}$$

So the error trace is *infeasible*.

true

$$z = 0 \land x = 0 \land \land \land x \geqslant 20 \land z > 5$$

$$z = 0 \land x = 0 \land \land \land x \geqslant 20 \land z > 5$$

true
$$\wedge z = 0$$

$$x = 0 \land \land x \geqslant 20 \land z > 5$$

$$z = 0 \land x = 0$$

$$x \geqslant 20 \land z > 5$$

$$x \geqslant 20 \land z > 5$$

$$z = 0 \land z > 5$$

true

Automizer algorithm

$\mathcal{L}(P) \subseteq \mathcal{L}(R)$?

$\mathcal{L}(P) \subseteq \mathcal{L}(R)$?

 $\mathcal{L}(P) \subseteq \mathcal{L}(R)$ iff the language of the synchronous product of P and complemented R is empty.

LTL model checking

LTL model checking problem

Does the program \mathcal{P} satisfy the property φ ?

LTL model checking problem

Does the program \mathcal{P} satisfy the property φ ?

Automizer approach:

lacktriangle LTL property ϕ is represented by Büchi automaton \mathcal{A}_{ϕ}

LTL model checking problem

Does the program \mathcal{P} satisfy the property φ ?

Automizer approach:

- lacktriangle LTL property ϕ is represented by Büchi automaton \mathcal{A}_{ϕ}
- lacktriangledown creates Büchi program $\mathfrak{B}=\mathfrak{P}\times\mathcal{A}_{\neg\phi}$

LTL model checking problem

Does the program \mathcal{P} satisfy the property φ ?

Automizer approach:

- lacktriangle LTL property ϕ is represented by Büchi automaton \mathcal{A}_{ϕ}
- lacktriangle creates Büchi program $\mathcal{B} = \mathcal{P} \times \mathcal{A}_{\neg \phi}$
- violation of property is proven via a feasible *fair* path

LTL model checking problem

Does the program \mathcal{P} satisfy the property φ ?

Automizer approach:

- lacktriangle LTL property ϕ is represented by Büchi automaton \mathcal{A}_{ϕ}
- lacktriangle creates Büchi program $\mathcal{B} = \mathcal{P} \times \mathcal{A}_{\neg \phi}$
- violation of property is proven via a feasible *fair* path

LTL model checking problem

Does the program \mathcal{P} satisfy the property φ ?

Automizer approach:

- lacktriangle LTL property ϕ is represented by Büchi automaton \mathcal{A}_{ϕ}
- lacktriangle creates Büchi program $\mathcal{B} = \mathcal{P} \times \mathcal{A}_{\neg \varphi}$
- violation of property is proven via a feasible *fair* path

Fair path

Path is fair if it visits set of accepting states infinitely often.

Example: Büchi program

Program:

```
int x, y;
while ( true ) {
    x := *;
    y := 1;
    while ( x > 0 ) {
        x --;
        if ( x <= 1 )
        y := 0;
    }
}</pre>
```

LTL property:

$$\phi \equiv G(x>0 \implies F(y=0))$$

Example: Büchi program

An infinite path is infeasible if:

An infinite path is infeasible if:

1 some finite prefix is not feasible.

An infinite path is infeasible if:

1 some finite prefix is not feasible.

$$x := y$$
 $x > y$ $x - - x > y$ $x - - x > y$...

An infinite path is infeasible if:

1 some finite prefix is not feasible.

```
x := y x > y x - - x > y x - - x > y ...
```

2 there is a ranking function for the path, ie. the execution is terminating.

An infinite path is infeasible if:

1 some finite prefix is not feasible.

```
x := y x > y x - - x > y x - - x > y ...
```

2 there is a ranking function for the path, ie. the execution is terminating.

An infinite path is infeasible if:

1 some finite prefix is not feasible.

$$x := y$$
 $x > y$ $x - x > y$ $x - x > y$...

2 there is a ranking function for the path, ie. the execution is terminating.

$$x - - x > 0$$
 $x - - x > 0$ $x - 0$ $x > 0$

An infinite path is infeasible if:

1 some finite prefix is not feasible.

$$x := y$$
 $x > y$ $x - - x > y$ $x - - x > y$...

2 there is a ranking function for the path, ie. the execution is terminating.

$$x - - x > 0 x - - x > 0 x - - x > 0$$
 ...

Termination proof: r(x,y) = x

An infinite path is infeasible if:

1 some finite prefix is not feasible.

$$x := y$$
 $x > y$ $x - - x > y$ $x - - x > y$...

2 there is a ranking function for the path, ie. the execution is terminating.

$$x - - x > 0 x - - x > 0 x - - x > 0$$
 ...

Termination proof: r(x,y) = x

Ultimate LTL Automizer

■ using parser for ANSI C

- using parser for ANSI C
- LTL property in ACLS format

- using parser for ANSI C
- LTL property in ACLS format
- using LTL2BA

- using parser for ANSI C
- LTL property in ACLS format
- using LTL2BA
- own source-to-source transformations

- using parser for ANSI C
- LTL property in ACLS format
- using LTL2BA
- own source-to-source transformations
- own trace abstraction, ranking function synthesis, automata manipulations

Some benchmarks

		Term. [21]		DP [23]		ULTIMATE LTLAUTOMIZER				
Program	Lines φ	Time (s)	Re- sult	Time (s)	Re- sult	Time (s)	Re- sult	$ r_F $	$ \mathtt{r}_{\omega} $	Inc. (%)
Ex. Sec. 2 of [23]	$5 \lozenge \Box p$	2.32	~	1.98	~	0.51	~	1	0	122
Ex. Fig. 8 of [21]	$34 \square (p \Rightarrow \lozenge q)$	209.64	~	27.94	~	0.72	~	2	0	186
Toy acquire/release	$14 \square (p \Rightarrow \Diamond q)$	103.48	~	14.18	~	0.44	~	1	1	129
Toy linear arith. 1	$13 p \Rightarrow \Diamond q$	126.86	(\mathbf{V})	34.51	(\mathbf{V})	1.10	×	5	1	0.28
Toy linear arith. 2	13 $p \Rightarrow \Diamond q$	T.O.	T.O.	6.74	V	0.82	~	4	2	0.24
PostgreSQL strmsrv	$259 \square (p \Rightarrow \Diamond \square q)$	T.O.	T.O.	9.56	~	1.04	~	2	0	216
PostgreSQL strmsrv + bug	$259 \ \Box(p \Rightarrow \Diamond \Box q)$	87.31	(\mathbf{X})	47.16	(\mathbf{X})	0.66	~	2	0	216
PostgreSQL pgarch	$61 \lozenge \Box p$	31.50	(/)	15.20	(0.33	X	2	0	209
PostgreSQL dropbuf	$152 \square p$	T.O.	T.Ó.	1.14	(v)	3.57	×	1	1	148
PostgreSQL dropbuf	$152 \square (p \Rightarrow \Diamond q)$	53.99	~	27.54	V	1.37	~	2	1	168
Apache accept()	$314 \square p \Rightarrow \square \lozenge q$	T.O.	T.O.	197.41	~	502.15	\mathbf{OOM}	-	-	209
Apache progress	$314 \ \Box(p \Rightarrow (\Diamond q_1 \lor \Diamond q_2))$	685.34	~	684.24	~	2.01	~	4	0	209
Windows OS 1	$180 \square (p \Rightarrow \lozenge q)$	901.81	~	539.00	~	43.59	~	1	1	178
Windows OS 2	$158 \lozenge \Box p$	16.47	~	52.10	~	0.11	~	1	0	176
Windows OS 2 + bug	$158 \lozenge \Box p$	26.15	X	30.37	×	0.22	X	1	0	174
Windows OS 3	$14 \lozenge \Box p$	4.21	~	15.75	~	0.08	~	2	0	220
Windows OS 4	$327 \square (p \Rightarrow \Diamond q)$	T.O.	T.O.	1,114.18	~	1.86	~	1	3	207
Windows OS 4	$327 \ (\lozenge p) \lor (\lozenge q)$	1,223.96	~	100.68	~	_	N.R.	_	_	_
Windows OS 5	$648 \square (p \Rightarrow \lozenge q)$		T.O.	T.O.	T.O.	20.76	~	1	16	190
Windows OS 6	$13 \Diamond \Box p$	149.41	~	59.56	~	T.O.	T.O.	6	8	158
Windows	$13 \Diamond \Box p$	6.06	X	22.12	X	0.05	X	0	0	61
OS 6 + bug										
Windows OS 7	$13 \square \Diamond p$	T.O.	T.O.	55.77	~	0.91	~	2	11	161
Windows OS 8	$181 \lozenge \Box p$	T.O.	T.O.	5.24	~	53.55	~	4	55	168

16 / 17

Some benchmarks

								Statistics for \checkmark and \checkmark				
Program set	Avg. Lines	Set	/	x	T.O.	ООМ	* (N.R.)	Avg. Time (s)	$\begin{array}{c} \operatorname{Avg.} \\ \mathtt{r}_F \end{array}$	$\frac{\mathrm{Avg.}}{ \mathtt{r}_{\omega} }$	Inc. (%)	
RERS P14	514	50	19	21	2	0	8	107.21	21	< 1	329	
RERS P15	1353	50	24	0	11	12	3	103.46	17	< 1	369	
RERS P16	1304	50	15	1	16	14	4	297.34	32	< 1	362	
RERS P17	2100	50	26	0	9	9	6	56.38	12	< 1	324	
RERS P18	3306	50	21	0	17	10	2	262.03	24	< 1	297	
RERS P19	8079	50	0	0	28	17	5	-	-	-	-	
coolant	65	18	6	10	2	0	0	1.75	2	1	258	
Benchmarks	157	23	15	5	1	1	0(1)	16.78	2	5	184	
from Tab. 1												