BANK LOAN CASE STUDY

-ANDRI

Project Description

The main aim of this project is to identify patterns that indicate if a customer will have difficulty paying their installments. This information can be used to make decisions such as denying the loan, reducing the amount of loan, or lending at a higher interest rate to risky applicants. The company wants to understand the key factors behind loan default so it can make better decisions about loan approval.

When a customer applies for a loan, a company faces two risks:

- If the applicant can repay the loan but is not approved, the company loses business.
- 2. If the applicant cannot repay the loan and is approved, the company faces a financial loss.

Approach and tech stack used

- Understanding the data.
- Cleaning / pre-processing the data and handling all NULL values and outliers.
- Merging the datasets/csvs to gain deeper insights.
- Data analysis and visualization.
- Gaining insights/hypothesis from the analysis.

I have used MS-Office 2019 for analysis and powerpoint presentation.

Understanding the dataset

- Our dataset consists of three .csv files providing information of various aspects of the loan application mentioned below:
- 1. application_data.csv: gives information about current loan applications.
- 2. previous_application.csv: has information about client's previous loan data.
- 3. columns_description.csv: contains information about columns present in the above two datas.

Application data file

Rows: 50000

Columns: 122

Columns with blank cells: 67

Columns with high number of blank cells (>50% of total rows): 41

► Columns with less number of blank cells (<50% of total rows): 26s

▶ Identifying the columns (41 in number) with a high number of blank cells will be dropped as imputation would not work on it.

Out of the remaining 26 columns, certain columns are not required for analysis such as:

FLOORSMAX_AVG
FLOORSMAX_MODE
FLOORSMAX_MEDI
YEARS_BEGINEXPLUATATION_AVG
YEARS_BEGINEXPLUATATION_MODE
YEARS_BEGINEXPLUATATION_MEDI
TOTALAREA_MODE
EMERGENCYSTATE_MODE
EXT_SOURCE_3
EXT_SOURCE_2

Dropping these 10 columns, we are left with 16 columns that need to be imputed with either mean, median or mode for numerical and mode for categorical columns.

Dropping the blank rows from the below columns as there is just one blank cell.

AMT_ANNUITY

CNT_FAM_MEMBERS

DAYS_LAST_PHONE_CHANGE

Features to impute finally 13 columns:

AMT_REQ_CREDIT_BUREAU_HOUR
AMT_REQ_CREDIT_BUREAU_DAY
AMT_REQ_CREDIT_BUREAU_WEEK
AMT_REQ_CREDIT_BUREAU_MON
AMT_REQ_CREDIT_BUREAU_QRT
AMT_REQ_CREDIT_BUREAU_YEAR
NAME_TYPE_SUITE
OBS_30_CNT_SOCIAL_CIRCLE
DEF_30_CNT_SOCIAL_CIRCLE
OBS_60_CNT_SOCIAL_CIRCLE
DEF_60_CNT_SOCIAL_CIRCLE
OCCUPATION_TYPE
AMT_GOODS_PRICE

Mode Imputation:

NAME_TYPE_SUITE blank cells imputed with "Unaccompanied"

OCCUPATION_TYPE column has high number of blank cells (~15k) which is more than the highest occupation category hence imputed with "Unknown"

Median imputation

- ► AMT_REQ_CREDIT_BUREAU_HOUR: 0
- ► AMT_REQ_CREDIT_BUREAU_DAY : 0
- AMT_REQ_CREDIT_BUREAU_WEEK : 0
- ► AMT REQ CREDIT BUREAU MON: 0
- AMT_REQ_CREDIT_BUREAU_QRT : 0
- ► AMT_REQ_CREDIT_BUREAU_YEAR : 1
- ► OBS_30_CNT_SOCIAL_CIRCLE : 0
- ▶ DEF_30_CNT_SOCIAL_CIRCLE : 0
- OBS_60_CNT_SOCIAL_CIRCLE : 0
- DEF_60_CNT_SOCIAL_CIRCLE : 0
- ► AMT_GOODS_PRICE : 450000

Outliers removal

- Removing the outliers from the numerical columns
- CNT_CHILDREN in today's age can't be more than 3-4, in the dataset it goes up to 11, I have taken max 5 children.
- Removing vague values from
 DAYS_EMPLOYED (~8k) and
 AMT_INCOME_TOTAL that are too high,
 1000 years for DAYS_EMPLOYED and
 117000000 for AMT_INCOME_TOTAL.
- Removing the outliers from other numerical columns such as AMT_ANNUITY, AMT_GOODS_PRICE, AMT_CREDIT, DAYS_LAST_PHONE_CHANGE.

Previous_application data file

No. of columns: 37

▶ No. of rows: 50000

No. of columns with blank: 15

Dropping columns with more than 50% of blank cells:

RATE_INTEREST_PRIMARY
RATE_INTEREST_PRIVILEGED
AMT_DOWN_PAYMENT
RATE_DOWN_PAYMENT

Dropping these 4 columns, we are left with 33 columns, out of which we

can impute the remaining columns:

NAME_TYPE_SUITE
DAYS_FIRST_DRAWING
DAYS_FIRST_DUE
DAYS_LAST_DUE_1ST_VERSION
DAYS_LAST_DUE
DAYS_TERMINATION

NFLAG_INSURED_ON_APPROVAL
AMT_GOODS_PRICE
AMT_ANNUITY
CNT_PAYMENT
PRODUCT_COMBINATION

- Dropping unnecessary columns which don't provide any information:
- 1. NAME_TYPE_SUITE
- 2. WEEKDAY_APPR_PROCESS_START
- 3. HOUR_APPR_PROCESS_START
- 4. FLAG_LAST_APPL_PER_CONTRACT
- 5. NFLAG_LAST_APPL_IN_DAY

Median imputation

- 1. AMT_ANNUITY
- 2. AMT_GOODS_PRICE
- 3. DAYS_FIRST_DRAWING
- 4. DAYS_FIRST_DUE
- 5. DAYS_LAST_DUE_1ST_VERSION
- 6. DAYS_LAST_DUE DAYS_TERMINATION

MODE IMPUTATION

► NFLAG_INSURED_ON_APPROVAL

NFLAG_INSURED_ON_APPROVAL

Data cleaning: Dropping

▶ Dropping the blank cells from "PRODUCT_COMBINATION" feature as the blanks were just 8 in number and dropping would be better than imputation.

Data cleaning: Custom imputation

On analyzing the contract status for the CNT_PAYMENT, most of the contracts were approved, hence imputing CNT_PAYMENT with median would be better.

Outliers

- There are many outliers in the columns like AMT_ANNUITY, AMT_APPLICATION etc.
- Few outliers in CNT_PAYMENT.
- Few outliers in DAYS_DECISION are such that it indicates that the decision time taken is high, which is not a good practice.

Removing outliers

I have cleaned the outliers from the columns such as DAYS_FIRST_DRAWING, DAYS_FIRST_DUE, DAYS_LAST_DUE_1ST_VERSION, DAYS_LAST_DUE, DAYS_TERMINATION as the outliers were unrealistic values.

Data imbalance

As we can see there is data imbalance and the number of defaulters is way less than the number of re-payers in this dataset provided.

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: Age

Most of the loan applicants are from age group 30-40 years. As the age increases the rate of defaulting decreases.

Univariate analysis

Univariate segmented analysis

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: Years Employed

Most of the loan applicants are from 0-5 years of experience. As the experience increases the rate of defaulting decreases

Univariate analysis

Univariate segmented analysis

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: Contract type

Univariate analysis

Highest are cash loans.

Univariate segmented analysis

- High defaulters are from Cash loans
- Cash loans: 9.2%
- ► Revolving loans: 5.1%

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: Gender

Univariate analysis

Most of the females have taken loan.

Univariate segmented analysis

► Female defaulters: 7.5%

Male defaulters: ~11%

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: NAME_TYPE_SUITE

Univariate analysis

Most of the people were unaccompanied while taking loan.

Univariate segmented analysis

Here I have shown the categories with significant numbers.

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: Education

Univariate analysis

Most of the customers have secondary and higher education.

Univariate segmented analysis

Highest and lowest defaulters have lower secondary (16%) and academic degree (0%) respectively.

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: Family Status

Univariate analysis

Highest number of people who took loans are married.

Univariate segmented analysis

Highest default percent is in civil marriage and single people ~10%

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: Housing Type

Univariate analysis

People who took loans had houses/apartments.

Univariate segmented analysis

► Highest defaulters are from rented apartments and with parents ~11%

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: Occupation

Univariate analysis

Laborers are the highest loan taking occupation.

Univariate segmented analysis

Highest defaulter percent is for low skilled labourers ~17%.

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: Children

Univariate analysis

Most of the people taking loans are either having no child or one/two children.

Univariate segmented analysis

The highest defaulters are people having more number of children 25% of defaulters.

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: Region_Rating_Client

Univariate analysis

Most of the people taking loans are from region 2.

Univariate segmented analysis

Region rating 3 have the highest defaulters.

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS:No. of family members

Univariate analysis

Most of the people taking loans have 2 family members.

Univariate segmented analysis

Highest percent of defaulters are from people having more family members.

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS

- ▶ The most of the loans are taken between 245000 to 645000.
- ▶ Highest defaulters are from 445000 645000.

UNIVARIATE ANALYSIS:

Occupation type

Business entity Type 3 takes the highest amount of loans.

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS

▶ Most of the defaulters are from the income range of 25650 – 1025650.

UNIVARIATE/SEGMENTED UNIVARIATE ANALYSIS: previous_application

Univariate analysis

Most of the previous loan takers are for XNA category.

Univariate segmented analysis

Most of the loan defaulters are from XNA category.

UNIVARIATE ANALYSIS: previous_application

Previous application Name Contract Status

Approximately equal number of previous loans were either approved or refused.

ApprovedCanceled

Refused

Unused offer

Bivariate/Segmented Bivariate Analysis

▶ We can see the credit amount is highest for people in age bracket 51-61 years so the insight is that the 51-61 year people default less than the others.

Bivariate/Segmented Bivariate Analysis

We see pensioners having the least amount credited but also that they don't default.

Correlation among the features: Defaulters

- Top 5 correlations are from:
- OBS_30_CNT_SOCIAL_CIRCLE -OBS_60_CNT_SOCIAL_CIRCLE
- 2. AMT_CREDIT AMT_GOODS_PRICE
- 3. REGION_RATING_CLIENT REGION_RATING_CLIENT_W_CITY
- 4. CNT_CHILDREN CNT_FAM_MEMBERS
- REG_REGION_NOT_WORK_REGION -LIVE_REGION_NOT_WORK_REGION

Correlation among the features: Repayers

- Top 5 correlations are from:
- OBS_30_CNT_SOCIAL_CIRCLE -OBS_60_CNT_SOCIAL_CIRCLE
- 2. AMT_CREDIT AMT_GOODS_PRICE
- REGION_RATING_CLIENT -REGION_RATING_CLIENT_W_CITY
- . CNT_CHILDREN CNT_FAM_MEMBERS
- 5. REG_REGION_NOT_WORK_REGION LIVE_REGION_NOT_WORK_REGION

Insights and hypothesis:

- ▶ Elderly people with good experience years are less likely to default on a loan, hence can be considered good customers for loans.
- Most people take cash loans and hence there is a high defaulter rate for cash loans.
- Females take more loans than males but the default rate for males is higher, hence the banks can consider giving out loans to females more than men.
- People with less educational qualifications tend to default more than the ones having academic degrees.
- Most of the single or civil marriage people default more than any other family status.
- Taking a high amount as the loan has a high default rate, this could be considered while giving out loans.
- People with region rating 3 default more than any other region rating.
- ▶ People with less income default more.
- Pensioners have less amount of credit but they don't default much, hence can be considered for providing loans in the future.

Results:

- ► This project was of a great help to work with huge dataset with data cleaning and handling outliers using the domain knowledge.
- ► This project helped me understand how to merge two excel sheets and use addins like data analyse for correlation.

Drive Links:

- Application_data: https://docs.google.com/spreadsheets/d/1f4LFl0Z9NhbGHCyuxTpe6rzyQKI_BKbr/edit?usp=sh aring&ouid=115109770037321084146&rtpof=true&sd=true
- Previous_application:
 https://docs.google.com/spreadsheets/d/1PdOBodjo_yOuVJycu9P0xddODKUKUSB8/edit?us
 psharing&ouid=115109770037321084146&rtpof=true&sd=true
- Merged sheets:
 https://docs.google.com/spreadsheets/d/1aAJemTTQC8Rxl_jPQmlz1PSiB3x9Jom-/edit?usp=sharing&ouid=115109770037321084146&rtpof=true&sd=true
- ► Correlation: https://docs.google.com/spreadsheets/d/1SboxQXWvU-F6tPMJZDoCllje-Hpk6-Ck/edit?usp=sharing&ouid=115109770037321084146&rtpof=true&sd=true
- Analysis: https://docs.google.com/spreadsheets/d/1al0q0--y0niq_62NPtfyDc9WAu2xjJsR/edit?usp=sharing&ouid=115109770037321084146&rtpof=true&sd=true

