MU5IN852 Bases de Données Large Echelle

data streaming et requêtes

Octobre 2020

Objectifs

- Aperçu du data streaming
- Notion de fenêtre sur des flux
- Notion de requêtes continues
 - Jointures sur des fenêtres
- Perspectives

Biblio

SIGMOD 2018

- Titre: Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark
- Auteurs: Armbrust et al : Databricks, Stanford Univ
- https://databricks.com/wpcontent/uploads/2018/12/sigmod structured streamin g.pdf

Contexte: Flux

- Données produites en continu
- Estampille
 - attribut date d'événement et/ou date d'arrivée

Motivations et Défis

- Requêtes incrémentales complexes à exprimer
 - Besoin de langage déclaratif
- Chaîne de traitement intégrée
- Défis opérationnels
 - Pannes et retards dus aux stragglers
 - tâches « à la traine »
 - Mise à jour des applis traitant un stream
 - Redimensionnement des ressources allouées
- Métrique de performance
 - Débit : nombre de tuples traités par minute versus
 - Latence : temps de réponse d'une requête
 - date du résultat de la requête date d'arrivée de la donnée

Système de streaming

- Système de gestion des flux et des requêtes
 - Scalable : architecture distribuée
- Gestion des flux entrants
 - Tolérance aux pannes
 - Stockage temporaire des flux
 - Possibilité de répéter l'arrivée d'un flux
 - Propriété sémantique
 - Chaque tuple arrive une et une seule fois
 - Appelée : exaclty once
 - Exemple : Kafka
- Gestion des flux sortants
 - Tolérance aux pannes
 - Ecriture indempotente : 1 ou plusieurs invocations d'une écriture produit le même résultat

Modèle d'exécution des flux

Source

- Ensemble ordonné de tuples
 - Taille infinie
- Ordre partiel si une source est distribuée

Requête

- Exécutée à l'instant t
- Posée sur toutes les données d telles que d.date <=t
- Exécution périodique ou continue
- Sortie : 3 modes possibles
 - Résultat complet à chaque instant t
 - Ajout de nouveaux tuples dans le résultat
 - Mise à jour du résultat

Modèle d'exécution périodique

Exécution appelée micro-batch

Example: word count sur un flux

Fenêtrage temporel

- Basé sur la date de l'événement
 - Attribut du flux entrant
- GROUP BY WINDOW attribut taille décalage
 - Attribut de type date
 - Taille de la fenêtre
 - Décalage entre deux dates consécutives de début de fenètre
- Superposition des fenètres si décalage < taille

Exemple de fenêtrage

Windowed Grouped Aggregation with 10 min windows, sliding every 5 mins

counts incremented for windows 12:05 - 12:15 and 12:10 - 12:20

Flux borné

- Problème : Garantir la complétude des résultats sur des flux potentiellement infinis ?
- Solution : spécifier une contrainte sur la date d'événement par rapport à la date courante
 - Taille d'une plage de validité du flux
 - Date événement > date d'événement la plus récente taille plage valide
- Notion appelée Watermarking
- Syntaxe: WITH WATERMARK attribut, taille
 - Attribut de type date
 - Taille de la plage « valide »

Flux borné: Exemple 1/3

Late data handling in Windowed Grouped Aggregation window 12:00 - 12:10

Exemple 2/3

Example 3/3

Jointure sur des flux

- Jointure entre 1 flux et une table
- Jointure entre 2 flux
 - Jointure naturelle
 - Jointure externe?

Extensibilité

- Fonction définie par l'utilisateur
- Evaluation incrémentale sur des fenêtre avec recourvrement
 - Etat à maintenir entre deux évaluations de requêtes

Biblio et perspectives

- SIGMOD
 - Structured Streaming
- Spark Structured Streaming
 - Programming guide
 - https://spark.apache.org/docs/latest/structured-streamingprogramming-guide.html
- Académique :
 - VLDB 2015 : Google DataFlow Model
 - BigData 2018: BigSR: real-time expressive RDF stream reasoning on modern Big Data platforms
 - https://ieeexplore.ieee.org/document/8621947