Introduction to Descriptive Statistics

Eslam Ahmed

Software Engineer

Understanding Data, Variables/Features

Understanding The Variables Using a Dataset

Loan_ID	Gender	Married	Dependents	Self_Employed	Income	LoanAmt	Term	CreditHistory	Property_Area	Status
LP001002	Male	No	0	No	\$5,849.00		60	1	Urban	Υ
LP001003	Male	Yes	1	No	\$4,583.00	\$128.00	120	1	Rural	N
LP001005	Male	Yes	0	Yes	\$3,000.00	\$66.00	60	1	Urban	Υ
LP001006	Male	Yes	2	No	\$2,583.00	\$120.00	60	1	Urban	Υ

Understanding The Variables Using a Dataset

Loan_ID	Gender	Married	Dependents	Self_Employed	Income	LoanAmt	Term	CreditHistory	Property_Area	Status
LP001002	Male	No	0	No	\$5,849.00		60	1	Urban	Υ
LP001003	Male	Yes	1	No	\$4,583.00	\$128.00	120	1	Rural	N
LP001005	Male	Yes	0	Yes	\$3,000.00	\$66.00	60	1	Urban	Υ
LP001006	Male	Yes	2	No	\$2,583.00	\$120.00	60	1	Urban	Υ

• Predictor/Independent

- Gender
- Married
- Dependents
- Self Employed
- Income
- LoanAmt
- Term
- CreditHistory
- PropertyArea
- Target/Dependent
 - Status

Data Type

- Character/String
 - Gender
 - Married
 - Self_Employed
 - Property Area
 - Status
- Numeric
 - Dependents
 - Income
 - LoanAmt
 - Term
 - CreditHistory

Central Tendency of Data

Central Tendency

Single value that attempts to describe the whole data using a central point or central location of the data.

Central Tendency of Data

Central Tendency

Mean

Median

Mode

• Others – Geometric mean, Harmonic Mean, Weighted Arithmetic Mean

Mean

Applicant	Loan Amount		
Jitesh	\$ 24,000		
John	\$ 18,000		
Frans	\$ 34, 000		
Danny	\$ 40,000		
Cecile	\$ 24,000		
Scott	\$ 16,000		
Alex	\$ 29,000		

$$Mean = \frac{24000 + 18000 + 34000 + 40000 + 24000 + 16000 + 29000}{7} \\
= \frac{151000}{7}$$

Mean =
$$$25,167$$

Median

Applicant	Loan Amount		
Jitesh	\$ 24,000		
John	\$ 18,000		
Frans	\$ 34, 000		
Danny	\$ 40,000		
Cecile	\$ 24,000		
Scott	\$ 16,000		
Alex	\$ 29,000		

Mode

Applicant	Loan Amount
Jitesh	\$ 24,000
John	\$ 18,000
Frans	\$ 34,000
Danny	\$ 40,000
Cecile	\$ 24,000
Scott	\$ 16,000
Alex	\$ 29,000

Outliers

Salary
\$ 3,725
\$ 4,155
\$ 4,627
\$ 5,147
\$ 5,718
\$ 6,347
\$ 7,039
\$ 7,210
\$ 7,423
\$ 19,000
\$ 8,369
\$ 8,810
\$ 8,940
\$ 9,200
\$ 9,458

Effect of Outliers

Experience	Salary
1	\$ 3,725
2	\$ 4,155
3	\$ 4,627
4	\$ 5,147
5	\$ 5,718
6	\$ 6,347
7	\$ 7,039
8	\$ 7,210
9	\$ 7,423
10	\$ 7,556
11	\$ 8,369
12	\$ 8,810
13	\$ 8,940
14	\$ 9,200
15	\$ 9,458

\$6,915	← Mean →	\$7,678
\$7,200	← Median →	\$7,200

Experience	Salary
1	\$ 3,725
2	\$ 4,155
3	\$ 4,627
4	\$ 5,147
5	\$ 5,718
6	\$ 6,347
7	\$ 7,039
8	\$ 7,210
9	\$ 7,423
10	\$ 19,000
11	\$ 8,369
12	\$ 8,810
13	\$ 8,940
14	\$ 9,200
15	\$ 9,458

Measure of Dispersion

Central Tendency

Spread in Data

Spread in Data

Day	Temperature
1	20
2	21
3	19
4	20
5	21
6	19
7	20
Total	140

Day	Temperature
1	22
2	23
3	21
4	18
5	19
6	17
7	20
Total	140

Day	Temperature
1	12
2	11
3	13
4	20
5	24
6	29
7	31
Total	140

$$Mean = 20$$

$$Median = 20$$

Measure of Dispersion

- Variance
- Standard Deviation
- Percentile
- Range
- Interquartile range

Variance and Standard Deviation

Day	X	X-X	$(X-\overline{X})^2$
1	20	0	0
2	21	1	1
3	19	-1	1
4	20	0	0
5	21	1	1
6	19	-1	1
7	20	0	0

Average =
$$4/7 = 0.57$$

Variance,
$$\sigma^2 = 0.57$$

$$\sigma = 0.7559$$

$$Mean = X = 20$$

Variance and Standard Deviation

Day	Temperature
1	20
2	21
3	19
4	20
5	21
6	19
7	20

$$\sigma = 0.7559$$

$$Mean = X = 20$$

Day	Temperature
1	12
2	11
3	13
4	20
5	24
6	29
7	31

$$Mean = X = 20$$

What is Percentile?

The value <u>below</u> which a <u>given percentage of observations</u> in a <u>group</u> of observations falls...

Wikipedia

Percentile

- Arrange the data in an order
- Calculate the percentage of observations or data points below a particular value.

What is the 80th Percentile Observation?

Total Observations * 0.8

Row Number	Salary
1	\$ 3,725
2	\$ 4,155
3	\$ 4,627
4	\$ 5,147
5	\$ 5,718
6	\$ 6,347
7	\$ 7,039
8	\$ 7,210
9	\$ 7,423
10	\$ 7,556
11	\$ 8,369
12	\$ 8,810
13	\$ 8,940
14	\$ 9,200
15	\$ 9,458

Range

Difference between the highest and lowest value...

Range

Day	Temperature
1	20
2	21
3	19
4	20
5	21
6	19
7	20

Day	Temperature
1	22
2	23
3	21
4	18
5	19
6	17
7	20

Day	Temperature
1	12
2	11
3	13
4	20
5	24
6	29
7	31

Inter Quartile Range (IQR)

Row Number	Salary
1	\$ 3,725
2	\$ 4,155
3	\$ 4,627
4	\$ 5,147
5	\$ 5,718
6	\$ 6,347
7	\$ 7,039
8	\$ 7,210
9	\$ 7,423
10	\$ 7,556
11	\$ 8,369
12	\$ 8,810
13	\$ 8,940
14	\$ 9,200
15	\$ 9 <i>,</i> 458

How to Show Numerical Data?

Visualize Numerical Data

Frequency Table

Histogram

Bar Chart

Boxplot

Frequency Table

1223
3434
4545
6798
2311
4321
5600
10345
900
2697
2687
3450
3450 6700
3450 6700 2340
3450 6700
3450 6700 2340

0-2000	2-4000	4-6000	6-8000	> 8000
1223	3434	4545	6798	10345
900	2311	4321	6700	
	2687	5600	7900	
	3450	5632		
	2340			
	3600			
2	6	4	3	1

Histogram

		* . * . * . * . * . * . * . *
	400	
	122	
	1 / /	~
10.000		9. 1. 1. 1. 1. 1. 1.
	the second second	the second second
	. '' . '' '	. 2 . 1 . 1 . 1 . 1 . 1 . 1
	343	/
		/
1.1.1.1.1.1	JTJ	T
	/ /	
	454	
100000		•
4 4 4 4 4		
	~-~	
	679	O
	\mathbf{n} / \mathbf{n}	<u> </u>
1.1.1.1.1.1.		•
1507070707	771	1
	231	The second second
1.1.1.1.1.1		40.000.000
11,1,1,1,1,1		
	e e e e e e e	
11,1,1,1,1,1	100	4
	/I - /·	The second of
1000	432	<u> 1</u>
11,1,1,1,1,1		
	er er er er er	
11,1,1,1,1,1	FCA	∧ '.'.'.'.'.
and the second	560	
1000)()(//	t <i>)</i>
1.1.1.1.1.1		•
	<u> </u>	
	4 6 6 4	
100000	1 インファ	
	1034	
2 2 2 2 3	TOO	
	the second of the second	the second second
	<u> </u>	
	· · · · · · · · · · · · · · · · · · ·	
	000	
	വവ	<u> </u>
	900)
	900)
	900)
	900 268	
	268	7
	268	7
	268	7
	268	7
		7
	268	7
	268	7
	268 345	7 0
	268 345	7 0
	268 345	7 0
	268	7 0
	268 345	7 0
	268 345	7 0
	268 345 670	7 0 0
	268 345 670	7 0 0
	268 345 670	7 0 0
	268 345	7 0 0
	268 345 670	7 0 0
	268 345 670	7 0 0
	268 345 670 234	7 0 0 0
	268 345 670 234	7 0 0 0
	268 345 670 234	7 0 0 0
	268 345 670	7 0 0 0
	268 345 670 234	7 0 0 0
	268 345 670 234	7 0 0 0
	268 345 670 234 360	7 0 0 0 0
	268 345 670 234 360	7 0 0 0 0
	268 345 670 234 360	7 0 0 0 0
	268 345 670 234	7 0 0 0 0
	268 345 670 234 360	7 0 0 0 0
	268 345 670 234 360	7 0 0 0 0
	268 345 670 234 360 563	7 0 0 0 0 2
	268 345 670 234 360	7 0 0 0 0 2
	268 345 670 234 360 563	7 0 0 0 0 2

Bar Chart

1222	
1223	
3434	1-1-1-1-1
3434	
4545	-1-1-1-1
	1-1-1-1-1
6700	-1-1-1-1
6798	1-1-1-1-1
2311	1-1-1-1-1
Z 211	-1-1-1-1
4321	-1-1-1-1
497 T	
= 600	1.1.1.1.1
5600	
3000	-1-1-1-1
10045	
10345	e le le le le
വവ	
900	
900 2687	
2687	
2687	
2687 3450	
2687	
2687 3450 6700	
2687 3450 6700	
2687 3450	
2687 3450 6700 2340	
2687 3450 6700	
2687 3450 6700 2340	
2687 3450 6700 2340 3600	
2687 3450 6700 2340	
2687 3450 6700 2340 3600 5632	
2687 3450 6700 2340 3600 5632	
2687 3450 6700 2340 3600	

Box Plot

Correlation

Number of cigarettes smoked

Stress Level

Statistically Correlated

- Strength of the correlation Coefficient of Correlation
- Direction of correlation Sign of the Coefficient

Pearson Correlation Coefficient
$$r=rac{\sum (x-\overline{x})*(y-\overline{y})}{(N-1)*\sigma_x^*\sigma_y}$$

Correlation Coefficient

	Height X	Weight Y	x – X	Y – Y	$(X-\overline{X})*(Y-\overline{Y})$
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

$$r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1) * \sigma_{x} * \sigma_{y}}$$

$$\mathbf{r} = \frac{1821.875}{(8-1) * 10.155 * 25.651}$$

$$r = 0.96$$

Correlation Coefficient

Scatter Plot

$$r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1) * \sigma_{x} * \sigma_{y}}$$

$$\mathbf{r} = \frac{1821.875}{(8-1) * 10.155 * 25.651}$$

$$r = 0.96$$

Variance

Average of the squared difference of the data from the Mean.

Variance,
$$S_x^2 = \frac{\sum (x - \overline{x})^* (x - \overline{x})}{(N-1)}$$
 Variance of X wirespect to X.

Variance of X with

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x})^* (y - \overline{y})}{(N-1)}$$
 Variance of X vertex respect to Y.

Variance of X with

Pearson Correlation Coefficient
$$r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N-1)} = \frac{Covar(x,y)}{\sigma_x * \sigma_y} = \frac{Covar(x,y)}{\sigma_x * \sigma_y}$$

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x})^* (y - \overline{y})}{(N-1)}$$

Variance of X with respect to Y.

	Height X	Weight Y	x – X	Y – Y	$(X-\overline{X})*(Y-\overline{Y})$
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x})^* (y - \overline{y})}{(N-1)}$$

Covar
$$(x, y) = \frac{1821.875}{(8-1)}$$

Covar
$$(x, y) = 260.27$$

- Non-Standardised method of correlation
- Can be positive or negative

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N-1)}$$

Covar
$$(x, y) = \frac{1821.875}{(8-1)}$$

$$Covar(x, y) = 260.27$$

Covariance Matrix

	Height X	Weight Y	x – X	Y – Y	$(X-\overline{X})*(Y-\overline{Y})$
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

X Y

Covariance (x, x) Covariance(x, y)

Y Covariance (y, x) Covariance (y, y)

Covariance Matrix

	Height X	Weight Y	x – x	Y – Y	$(X-\overline{X})*(Y-\overline{Y})$
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

Variance – Covariance Matrix

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N-1)}$$

Covariance Matrix

	Height X	Weight Y	x – X	Y – Y	$(X-\overline{X})*(Y-\overline{Y})$
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

X	Y
X 103.125	260.27
y 260.27	710.26

Variance – Covariance Matrix

Covariance Applications

Using Covariance matrix as Transformation
 Matrix to get Eigenvectors and EigenValues

Financial Portfolio Management

Thank You!