Computational NeuroEthology

Computational tools for studying behavior

Albert Einstein College of Medicine

Class 3 October 20th, 2025

Mikhail Kislin Roland Ferger

Overview

- How to get from video to posture
- Posture dynamics ≈ Behavioral language
- Best Practices and Advanced Topics

Why Behavior Quantification Matters?

 Behavior is the brain's ultimate output understanding neural circuits requires equally precise descriptions of what animals actually do.

• Neural recordings are high-resolution; behavioral measures must match this precision to interpret neural dynamics.

• Modern tools allow continuous, highdimensional tracking of posture, movement, and interaction. •Traditional assays (e.g., lever presses, time in zone, binary scores) capture only a tiny fraction of ongoing complexity.

- Quantitative behavior should provide:
- objective, reproducible metrics
- access to latent behavioral states and motifs
- new ways to link circuit activity

behavior must be captured as a structured and quantifiable signal

Representations of animal to quantify distinct behaviors

I) Model free

II) Model based

variance cross grey scale images

Berman et al. J.R.Soc.Interface 2014

variance cross depth images

Wiltschko et al. Neuron 2015

Coarse

Fine

Centroid tracking

Ellipse tracking

Single – animal pose estimation

Anatomically constrained 3d model

Biological motion capture

"The Horse in Motion" ,1878 Eadweard Muybridge

Footfall pattern of each different gait

White: swing phase; color: stance phase

Biological motion perception

Gunnar Johansson experiments

Computer Vision: Techniques and Algorithm

enables computers to "see" and interpret visual information from images and videos like humans do

Deep learning methods for animal pose estimation

DeepPoseKit (Graving et al., 2019); OptiFlex (Liu et al., 2021); SemiMultiPose (Blau et al., 2022); Anipose (Karashchuk et al., 2021); CAPTURE (Marshall et al., 2020); YOLO family methods and other

Anatomy of pose estimation systems

LEAP and SLEAP Pereira et al., Nat Methods 2019 Pereira, Shaevitz & Murthy. Nat Neurosci 2020 Pereira et al., Nat Methods 2022

Accurate body landmark localization

Making sense of posture dynamics

Supervised and unsupervised machine learning for behavior classification

Supervised machine learning approach

Popular approaches to classify behavior based on human definitions:

- JAABA (Kabra et al., 2013)
 Support Vector Machine based
- SimBA (Nilsson et al., 2020 and Goodwin et al., 2024)
 Random forest, Gradient boost classifier(GBC)
 or eXtreme Gradient boost (Xgboost)
- MARS (Segalin et al., 2021)
 set of 270 spatiotemporal features and Xgboost
- DeepEthogram (Bohnslav et al., 2021)
 deep convolutional neural networks
- BehaviorDEPOT (Gabriel et al., 2022)
 heuristics (thresholding pose-based metrics)
- A-SOiD (Tillmann et al., 2024) Random Forest Classifier

Unsupervised machine learning approach

Popular approaches to classify behavior without human definitions:

MoSeq (Wiltschko et al., 2015) and Keypoint-MoSeq (Weinreb et al., 2024)

Auto-regressive hidden Markov model (AR-HMM)

MotionMapper (Berman et al., 2014)

Model behavior in frequency space

B-SOiD (Hsu and Yttri, 2021)

Reduce dimensions of spatiotemporal pose with UMAP

VAME (Luxem, K. et al. 2022)

deep variational embeddings of animal motion

Unsupervised behavioral classification for a non-goal oriented task

Modeling mouse behavior as a clusters of body postures in frequency space

Modeling mouse behavior as a clusters of body postures in frequency space

Agreements and discrepancies between MMM and human annotators

Inter-annotator style differences

17

Time to practice Open the Google Colaboratory (Colab)