FSTTCS 2023 Weighted One-Deterministic-Counter Automata

https://doi.org/10.4230/LIPIcs.FSTTCS.2023.39

Prince Mathew, prince@iitgoa.ac.in Indian Institute of Technology Goa, India

Vincent Penelle, vincent.penelle@u-bordeaux.fr

Prakash Saivasan, prakashs@imsc.res.in

The Institute of Mathematical Sciences, HBNI, India; CNRS UMI ReLaX, India

A.V. Sreejith, sreejithav@iitgoa.ac.in Indian Institute of Technology Goa, India

Outline of the talk

One-counter Automata

- 2 One-deterministic-counter automata (ODCA)
 - Motivation
 - Our equivalence results
 - Reachability problem of ODCA
 - A quick look at other results

One-counter automata (OCA)

One-counter automata (OCA)

Write to counter: Increment(+1), No change (0), Decrement (-1)

(FSTTCS 2023) ODCA May 18, 2025 3/31

One-counter automata (OCA)

Write to counter: Increment(+1), No change (0), Decrement (-1) Read from counter: zero (0), or positive (+)

(FSTTCS 2023) ODCA May 18, 2025 3/31

Results - OCA

- Equivalence of deterministic OCA is in P [2].
- Equivalence of non-deterministic OCA is undecidable [7].
- Equivalence of weighted OCA is open (weights from a field).

One-deterministic-counter automata (ODCA)

One-deterministic-counter automata (ODCA)

Semantic definition

An OCA where all runs of a word lead to the same counter value.

One-deterministic-counter automata (ODCA)

Semantic definition

An OCA where all runs of a word lead to the same counter value.

Syntactic definition

Figure: One-deterministic-counter automata

Example - Weighted ODCA (visibly)

Example

$$\texttt{eqPrefix}(w) = \begin{cases} \mathbf{2} \cdot \mathbf{k}, \text{ where } k \text{ is the } \# \text{proper prefixes of } w \text{ with} \\ \# a \text{'s} = \# b \text{'s, if } \# a \text{'s} \geq \# b \text{'s for all prefixes} \\ \mathbf{0}, \text{ otherwise} \end{cases}$$

• ODCAs are strict extensions of visibly OCA.

Finite state machine

Input tape

Counter

Initial vector

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} p_0 \\ \\ 0 \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Counter

Initial vector

Finite state machine

Input tape

Counter

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} p_0 \\ \\ 0 \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1)$$
 $(\{b\},\{+\},-1)$

Input tape

Counter

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} p_0 \\ \\ 0 \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1)$$
 p_0
 $(\{b\},\{+\},-1)$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} \\ p_0 \\ \\ \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1)$$
 $(\{b\},\{+\},-1)$

Input tape

Counter

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} p_0 \\ \\ 0 \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1)$$
 $(\{b\},\{+\},-1)$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} p_0 \\ \\ 0 \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Counter

Finite state machine

$$(\{a\},\{0,+\},+1)$$
 p_0
 $(\{b\},\{+\},-1)$

Input tape

Counter

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} p_0 \\ \\ 0 \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Counter

Finite state machine

Input tape

Counter

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} p_0 \\ \\ 0 \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Counter

Finite state machine

$$(\{a\}, \{0, +\}, +1)$$

$$(\{b\}, \{+\}, -1)$$

Input tape

Counter

Weighted visibly ODCA- Evaluation

 $\delta_0(a)$

0

Initial distribution

 λ

1 0

Transition matrices

 $\begin{array}{c|c}
\delta_{+}(a) \\
\hline
1 & 0 \\
\hline
0 & 1
\end{array}$

 $\frac{\delta_{+}(b)}{1 \mid 0}$

0

$$\begin{array}{|c|c|} \hline \rho \\ \hline 0 \\ \hline 1 \\ \hline \end{array}$$

• Let w = aababba.

Final distribution

Weighted visibly ODCA- Evaluation

 $\delta_0(a)$

$$(\{a\},\{0,+\},1) \\ \underbrace{(\{a\},\{0,+\},1)}_{q_0} \underbrace{(\{a\},\{0\},2)}_{q_1} \underbrace{q_1}_{q_1} \\ \underbrace{(\{b\},\{+\},1)}_{(\{b\},\{+\},1)} \underbrace{(\{b\},\{+\},1)}_{(\{b\},\{+\},1)}$$

Initial distribution

λ

0

Transition matrices

 $\delta_{+}(a)$

$$\begin{array}{c|c}
\delta_{+}(a) \\
\hline
1 & 0 \\
0 & 1
\end{array}$$

Final distribution
$$\delta_{+}(b)$$
 ρ

0

0

$_{-}^{\rho}$
0
1

- Let w = aababba.
- $\delta(w) = \delta_0(a) \ \delta_+(a) \ \delta_+(b) \ \delta_+(a) \ \delta_+(b) \ \delta_+(b) \ \delta_0(a)$.

Weighted visibly ODCA- Evaluation

 $\delta_0(a)$

$$(\{a\},\{0,+\},1) \\ (\{a\},\{0,+\},1) \\ (\{a\},\{0\},2) \\ (\{b\},\{+\},1) \\ (\{b\},\{+\},1) \\ (\{b\},\{+\},1)$$

Initial distribution

λ

0

Transition matrices

$$\begin{array}{c|c}
\delta_{+}(a) \\
\hline
1 & 0 \\
\hline
0 & 1
\end{array}$$

Final distribution

$\delta_{+}(b)$			ρ
1	0		0
0	1		1

- Let w = aababba.
- $\delta(w) = \delta_0(a) \ \delta_+(a) \ \delta_+(b) \ \delta_+(a) \ \delta_+(b) \ \delta_+(b) \ \delta_0(a)$.
- Accepting weight of $w = \lambda \delta(w) \rho$.

Motivation

- Decidability of equivalence of pPDA is an open problem [3].
- Equivalence of probabilistic OCA is also not known.
- Probabilistic ODCA is a class of probabilistic OCA for which equivalence is decidable.
- This is a strict super class of visibly probabilistic OCA.

Our equivalence results

- Equivalence of deterministic ODCA is in P.
 - ① Deterministic OCAs are equivalent to deterministic ODCAs.
 - 2 Equivalence of deterministic OCA is in P [2].

Our equivalence results

- Equivalence of deterministic ODCA is in P.
 - ① Deterministic OCAs are equivalent to deterministic ODCAs.
 - 2 Equivalence of deterministic OCA is in P [2].
- Equivalence of non-deterministic ODCA is in PSPACE.
 - A non-deterministic ODCA is equivalent to an exponential sized deterministic ODCA.
 - 2 A PSPACE machine can do this.

Our equivalence results

- Equivalence of deterministic ODCA is in P.
 - Deterministic OCAs are equivalent to deterministic ODCAs.
 - 2 Equivalence of deterministic OCA is in P [2].
- Equivalence of non-deterministic ODCA is in PSPACE.
 - A non-deterministic ODCA is equivalent to an exponential sized deterministic ODCA.
 - 2 A PSPACE machine can do this.
- Equivalence of weighted ODCA is in P (main result).
 - Equivalence of weighted finite automata is in P [6] (weights from a field).
 - 2 We reduce equivalence of weighted ODCA to that of weighted finite automata.

Reachability problem

Reachability

co-VS Reachability problem

INPUT:

- A weighted visibly OCA \mathcal{A} over a field,
- an initial configuration c,
- \bullet a vector space \mathcal{V} , and
- counter value m.

Reachability

co-VS Reachability problem

INPUT:

- A weighted visibly OCA \mathcal{A} over a field,
- an initial configuration c,
- \bullet a vector space \mathcal{V} , and
- \bullet counter value m.

OUTPUT:

- Yes, if there exists a run $c \xrightarrow{*} \overline{\mathcal{V}} \times \{m\}$ in \mathcal{A} , and
- No, otherwise.

Reachability

co-VS Reachability problem

INPUT:

- A weighted visibly OCA \mathcal{A} over a field,
- an initial configuration c,
- \bullet a vector space \mathcal{V} , and
- \bullet counter value m.

OUTPUT:

- Yes, if there exists a run $c \stackrel{*}{\to} \overline{\mathcal{V}} \times \{m\}$ in \mathcal{A} , and
- No, otherwise.
- $z \in \Sigma^*$ is a reachability witness for $(c, \overline{\mathcal{V}}, m)$ if $c \xrightarrow{z} \overline{\mathcal{V}} \times \{m\}$.

co-VS reachability

Theorem - co-VS reachability

co-VS reachability is decidable in polynomial time.

• We prove this by showing a pseudo-pumping lemma.

• Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrices.

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrices.
- For all $i \in [0, 9]$, $\mathbf{x} \mathbb{A}_i \mathbb{M}_i \mathbb{B}_i \in \overline{\mathcal{V}}$.

 \mathbb{M}_9

 \mathbb{M}_8

IVII₈

 \mathbb{M}_7

 \mathbb{M}_6

 \mathbb{M}_5

 \mathbb{M}_4

. МП. 4

 \mathbb{M}_3

 \mathbb{M}_2 \mathbb{M}_1

 \mathbb{M}_0

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.
- For all $i \in [0, 9]$, $\mathbf{x} \mathbb{A}_i \mathbb{M}_i \mathbb{B}_i \in \overline{\mathcal{V}}$.
- $\exists j \in [0, 9], \, \mathbb{M}_j = \alpha_0 \mathbb{M}_0 + \alpha_1 \mathbb{M}_1 + \dots + \alpha_{j-1} \mathbb{M}_{j-1}.$

 \mathbb{M}_9

 \mathbb{M}_8

 \mathbb{M}_7

 \mathbb{M}_6

 \mathbb{M}_5

 \mathbb{M}_4

 \mathbb{M}_3

 \mathbb{M}_2

 \mathbb{M}_1 \mathbb{M}_0

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.
- For all $i \in [0, 9]$, $\mathbf{x} \mathbb{A}_i \mathbb{M}_i \mathbb{B}_i \in \overline{\mathcal{V}}$.
- $\exists j \in [0, 9], \, \mathbb{M}_j = \alpha_0 \mathbb{M}_0 + \alpha_1 \mathbb{M}_1 + \dots + \alpha_{j-1} \mathbb{M}_{j-1}.$
- $\mathbf{x} \mathbb{A}_j (\alpha_0 \mathbb{M}_0 + \alpha_1 \mathbb{M}_1 + \dots + \alpha_{j-1} \mathbb{M}_{j-1}) \mathbb{B}_j \in \overline{\mathcal{V}}.$

 \mathbb{M}_9

 \mathbb{M}_8

 \mathbb{M}_7

 \mathbb{M}_6

 \mathbb{M}_5

 \mathbb{M}_4

 \mathbb{M}_3

 \mathbb{M}_2

 \mathbb{M}_1

 \mathbb{M}_0

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.
- For all $i \in [0, 9]$, $\mathbf{x} \mathbb{A}_i \mathbb{M}_i \mathbb{B}_i \in \overline{\mathcal{V}}$.
- $\exists j \in [0, 9], \, \mathbb{M}_j = \alpha_0 \mathbb{M}_0 + \alpha_1 \mathbb{M}_1 + \dots + \alpha_{j-1} \mathbb{M}_{j-1}.$
- $\mathbf{x} \mathbb{A}_j (\alpha_0 \mathbb{M}_0 + \alpha_1 \mathbb{M}_1 + \dots + \alpha_{j-1} \mathbb{M}_{j-1}) \mathbb{B}_j \in \overline{\mathcal{V}}.$
- There exists $k \in [0, j-1]$, $\mathbf{x} \mathbb{A}_j \mathbb{M}_k \mathbb{B}_j \in \overline{\mathcal{V}}$.

 M_9

 M_8

 \mathbb{M}_7

 \mathbb{M}_6

 \mathbb{M}_5

 \mathbb{M}_4

 \mathbb{M}_3

 \mathbb{M}_2

 \mathbb{M}_1

 \mathbb{M}_0

Multiple cuts

Special word Lemma

Lemma-Special word

The lexicographically minimal reachability witness z, if it exists, satisfies the following conditions:

- ① $z = uy_1^{r_1}w_1y_2^{r_2}w_2$ such that $|uy_1w_1y_2w_2|$ is polynomially bounded in input size, and
- 2 r_1, r_2 are polynomially bounded in input size.

ullet We show that a factor repeats in the lexicographically minimal word if d is large enough.

(FSTTCS 2023) ODCA May 18, 2025 23/31

• Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.

```
\mathbb{M}_{i_9}
\mathbb{M}_{i_8}
 \mathbb{M}_{i_7}
 \mathbb{M}_{i_6}
 \mathbb{M}_{i_5}
 \mathbb{M}_{i_4}
 \mathbb{M}_{i_3}
 \mathbb{M}_{i_2}
 \mathbb{M}_{i_1}
 \mathbb{M}_{i_0}
```

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.
- Arrange the words x_0, x_1, \ldots, x_9 in the length lex. ordering.

- Assume for all $i \in [0, 9]$, M_i is a 3×3 matrix.
- Arrange the words x_0, x_1, \ldots, x_9 in the length lex. ordering.
- Let $x_{i_0} < x_{i_1} < \ldots < x_{i_9}$.

 \mathbb{M}_{i_9}

 \mathbb{M}_{i_8}

 \mathbb{M}_{i_7}

 \mathbb{M}_{i_6}

 \mathbb{M}_{i_5}

 \mathbb{M}_{i_4}

 \mathbb{M}_{i_3}

 \mathbb{M}_{i_2}

 \mathbb{M}_{i_1}

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.
- Arrange the words x_0, x_1, \ldots, x_9 in the length lex. ordering.
- Let $x_{i_0} < x_{i_1} < \ldots < x_{i_9}$.
- For all $j \in [0, 9]$, $\mathbf{x} \mathbb{A}_{i_j} \mathbb{M}_{i_j} \mathbb{B}_{i_j} \in \overline{\mathcal{V}}$.

 M_{i_0}

 \mathbb{M}_{i_8}

 \mathbb{M}_{i_7}

 \mathbb{M}_{i_6}

 \mathbb{M}_{i_5}

 \mathbb{M}_{i_4}

 \mathbb{M}_{i_3}

 \mathbb{M}_{i_2}

 \mathbb{M}_{i_1}

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.
- Arrange the words x_0, x_1, \ldots, x_9 in the length lex. ordering.
- Let $x_{i_0} < x_{i_1} < \ldots < x_{i_9}$.
- For all $j \in [0, 9]$, $\mathbf{x} \mathbb{A}_{i_j} \mathbb{M}_{i_j} \mathbb{B}_{i_j} \in \overline{\mathcal{V}}$.
- There exists $j \in [0, 9]$, $\mathbb{M}_{i_j} = \alpha_0 \mathbb{M}_{i_0} + \alpha_1 \mathbb{M}_{i_1} + \dots + \alpha_{j-1} \mathbb{M}_{i_{j-1}}$.

 \mathbb{M}_{i_9}

 \mathbb{M}_{i_8}

 \mathbb{M}_{i_7} \mathbb{M}_{i_c}

 \mathbb{M}_{i_z}

IVII₁₅

 \mathbb{M}_{i_4}

 \mathbb{M}_{i_3}

 \mathbb{M}_{i_2}

 \mathbb{M}_{i_1}

• Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.

• Arrange the words x_0, x_1, \ldots, x_9 in the length lex. ordering.

- Let $x_{i_0} < x_{i_1} < \ldots < x_{i_9}$.
- For all $j \in [0, 9]$, $\mathbf{x} \mathbb{A}_{i_j} \mathbb{M}_{i_j} \mathbb{B}_{i_j} \in \overline{\mathcal{V}}$.
- There exists $j \in [0, 9]$, $\mathbb{M}_{i_j} = \alpha_0 \mathbb{M}_{i_0} + \alpha_1 \mathbb{M}_{i_1} + \dots + \alpha_{j-1} \mathbb{M}_{i_{j-1}}$.
- $\mathbf{x} \mathbb{A}_{i_j} (\alpha_0 \mathbb{M}_{i_0} + \alpha_1 \mathbb{M}_{i_1} + \dots + \alpha_{j-1} \mathbb{M}_{i_{j-1}}) \mathbb{B}_{i_j} \in \overline{\mathcal{V}}.$

 M_{i_0}

 \mathbb{M}_{i_8}

 \mathbb{M}_{i_7}

 \mathbb{M}_{i_6}

 \mathbb{M}_{i_5}

 \mathbb{M}_{i_4}

 \mathbb{M}_{i_3}

 \mathbb{M}_{i_2}

 \mathbb{M}_{i_1}

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.
- Arrange the words x_0, x_1, \ldots, x_9 in the length lex. ordering.
- Let $x_{i_0} < x_{i_1} < \ldots < x_{i_9}$.
- For all $j \in [0, 9]$, $\mathbf{x} \mathbb{A}_{i_j} \mathbb{M}_{i_j} \mathbb{B}_{i_j} \in \overline{\mathcal{V}}$.
- There exists $j \in [0, 9]$, $\mathbb{M}_{i_j} = \alpha_0 \mathbb{M}_{i_0} + \alpha_1 \mathbb{M}_{i_1} + \dots + \alpha_{j-1} \mathbb{M}_{i_{j-1}}$.
- $\mathbf{x} \mathbb{A}_{i_j} (\alpha_0 \mathbb{M}_{i_0} + \alpha_1 \mathbb{M}_{i_1} + \dots + \alpha_{j-1} \mathbb{M}_{i_{j-1}}) \mathbb{B}_{i_j} \in \overline{\mathcal{V}}.$
- There exists $k \in [0, j-1]$, $\mathbf{x} \mathbb{A}_{i_j} \mathbb{M}_{i_k} \mathbb{B}_{i_j} \in \overline{\mathcal{V}}$.

 \mathbb{M}_{i_9}

 \mathbb{M}_{i_8}

 \mathbb{M}_{i_7}

 \mathbb{M}_{i_6}

 \mathbb{M}_{i_5}

 \mathbb{M}_{i_4}

 \mathbb{M}_{i_3}

 \mathbb{M}_{i_2}

 \mathbb{M}_{i_1}

25/31

Multiple cuts

Equivalence

Lemma - Witness bound

If two weighted ODCAs A_1 and A_2 are not equivalent, then there exists a witness z such that the counter values encountered during the run of z are less than a polynomial in the input size.

Equivalence

Lemma - Witness bound

If two weighted ODCAs A_1 and A_2 are not equivalent, then there exists a witness z such that the counter values encountered during the run of z are less than a polynomial in the input size.

Theorem - Equivalence

There is a polynomial time algorithm to check the equivalence of two weighted ODCAs (weights from a field).

Other results

Theorem - Regularity

Given a weighted ODCA (weights from a field), determining whether there exists a weighted automata recognising the same function is in P.

Summary

- Equivalence of weighted ODCAs is in P.
- Regularity of weighted ODCAs is in P.

Existing Results

Machine	Equivalence	Reference
DFA	P (NL)	[4]
DOCA	P (NL-Complete)	[1]
NOCA	Undecidable	[7]
DPDA	Decidable	[5]
NPDA	Undecidable	[1]
PA	Р	[6]
DWROCA	Р	Our result
Weighted ODCA	Р	Our result
Deterministic-stack PDA	open	-
pPDA	open	[3]

References I

Stanislav Böhm and Stefan Göller.

Language equivalence of deterministic real-time one-counter automata is NL-Complete.

In MFCS, Lecture Notes in Computer Science, pages 194–205. Springer, 2011.

Stanislav Böhm, Stefan Göller, and Petr Jancar.

Equivalence of deterministic one-counter automata is NL-Complete.

In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 131–140. ACM, 2013.

Vojtech Forejt, Petr Jancar, Stefan Kiefer, and James Worrell.

Language equivalence of probabilistic pushdown automata.

Inf. Comput, 237:1–11, 2014.

John E. Hopcroft and Jeffrey D. Ullman.

 $Introduction\ to\ Automata\ Theory,\ Languages\ and\ Computation.$

Addison Wesley, 1979.

References II

Géraud Sénizergues.

Decidability of the equivalence problem for deterministic pushdown automata.

In Proceedings of INFINITY'97, 1997.

Wen-Guey Tzeng.

A polynomial-time algorithm for the equivalence of probabilistic automata. $SIAM\ J.\ Comput,\ 21(2):216-227,\ 1992.$

Valiant and Paterson.

Deterministic one-counter automata.

JCSS: Journal of Computer and System Sciences, 10, 1975.

Thank You!

Appendix

Non-deterministic Finite Automata

• Consider the following NFA.

• Language recognised?

Non-deterministic Finite Automata

• Consider the following NFA.

- Language recognised?
 - Set of all words containing at least one 'a'.

Weighted Automata

- A weighted automata (WA) can be viewed as an NFA with weights.
- In this talk, we assume that the weights always comes from a field.
- Consider the following WA.

2/45

• Function recognised?

Weighted Automata

- A weighted automata (WA) can be viewed as an NFA with weights.
- In this talk, we assume that the weights always comes from a field.
- Consider the following WA.

- Function recognised?
 - Number of 'a's in the input.

Another example

• Consider the following WA.

• Function recognised?

Another example

• Consider the following WA.

- Function recognised?
 - Decimal equivalent of binary number.

Equivalence WA(1)

• Given two weighted automata \mathcal{A} and \mathcal{B} , the equivalence problem asks whether for all $w \in \Sigma^*$, $f_{\mathcal{A}}(w) = f_{\mathcal{B}}(w)$.

Theorem- Equivalence WA

The equivalence problem for weighted automata over a field is decidable in polynomial time.

- Given two weighted automata \mathcal{A} and \mathcal{B} over a field, we can construct a weighted automata \mathcal{C} recognising the function $f_{\mathcal{A}} f_{\mathcal{B}}$.
- To check equivalence of \mathcal{A} and \mathcal{B} , it suffices to check the existence of a word which is accepted with non-zero weight by \mathcal{C} .

Equivalence(2)

- Let K be the number of states of C and η its final distribution.
- $\mathcal{V} = \{ \mathbf{x} \in \mathcal{F}^{\mathsf{K}} \mid \mathbf{x}\eta = 0 \}$ is a vector space.
- Given a vector space $\mathcal{U} \subseteq \mathcal{F}^{\mathsf{K}}$, we define $\overline{\mathcal{U}} = \mathcal{F}^{\mathsf{K}} \setminus \mathcal{U}$.
- The equivalence problem is to check the existence of a word w such that $\lambda \delta(w) \in \overline{\mathcal{V}}$.

co-VS reachability of weighted automata

co-VS reachability problem of WA

Input: Vector space V, Weighted automaton C.

Output: Yes, If there is a run of $\mathcal C$ that reaches a configuration in $\overline{\mathcal V}$. No, otherwise.

Theorem- co-VS reachability

The co-VS reachability problem for weighted automata is decidable in polynomial time.

Lemma- minimal word

The length of the minimal run, if it exists, that reaches a configuration in $\overline{\mathcal{V}}$ is less than the number of states of \mathcal{C} .

Minimal word

- Let the number of states of \mathcal{C} be 4.
- Assume $w = a_1 a_2 a_3 a_4$ is a minimal reachability witness.

- $B_5 = c_1B_1 + c_2B_2 + c_3B_3 + c_4B_4$ for some $c_1, c_2, c_3, c_4 \in \mathcal{F}$.
- There exists i < 5 such that $B_i \in \overline{\mathcal{V}}$. This is a contradiction.

ODCA May 18, 2025 7/45

Polynomial time algorithm

• Starting from q_0 construct a basis set by traversing the tree in a breadth-first manner and adding independent vectors to it.

(FSTTCS 2023) ODCA May 18, 2025 8/45

Example ODCA (a)

Figure: $\mathcal{L}_1 = \{a^n b a^n \mid n > 0\}$

Example ODCA (b)

Finite state machine

Figure: $\mathcal{L}_2 = \{(a+b)^* \mid \#a's > \#b's\}$

Example ODCA (c)

Figure: $f(w_1w_2)$ = decimal value of w_2 's binary interpretation, if $w_1 \in \mathcal{L}_1$ and #a's $\geq \#b$'s for any prefix of w_2 ; 0 otherwise.

(FSTTCS 2023) ODCA May 18, 2025 11/45

Example - One deterministic-counter Automata

$$L = \{a^m (b+c)^n b (b+c)^2 \mid n, m \in \mathbb{N} \text{ with } n > m\}.$$

${\bf Counter}$

Counter

${\bf Counter}$

Counter

Counter

Counter

${\bf Counter}$

${\bf Counter}$

Counter

Counter

Counter

Counter

Counter

Counter

Counter

Counter

Counter

0 0

0 0

0 0

0

0

0 0 0 0

0 0

0 0 0 0

0

0

0

0

0

0

($\{a$	},{	$\{0,$	1})		$(\{b$, c	}, {	1})
1	0	0	0	0	0	0	0	1	0	0	Г
0	0	0	0	0	0	0	0	0	0	0	Г
0	0	0	0	0	0	0	0	1	0	0	Г
0	0	0	0	0	0	0	0	0	0	0	Г
0	0	0	0	0	0	0	0	0	0	0	Γ
0	0	0	0	0	0	0	0	0	0	0	Γ

	$(\{$	b },	$\{0\}$)})	
0	1	0	0	0	0
0	1	0	1	0	0
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0
•					

($(\{c$	}, •	$\{0\}$.)	
0	1	0	0	0	0
0	1	0	0	0	0
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0
	U	U	U	U	U

Transition matrices

Input tape

Initial vector

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \xrightarrow{p_0} (\{b,c\},\{0\},0) \qquad p_1 \\ (\{b,c\},\{1\},-1)$$

Counter structure

Counter

($\{a$	},{	$\{0,$	1})		$(\{b$,c]	}, {	1})	
1	0	0	0	0	0	0	0	1	0	0	0	Γ
0	0	0	0	0	0	0	0	0	0	0	0	Γ
0	0	0	0	0	0	0	0	1	0	0	0	Γ
0	0	0	0	0	0	0	0	0	0	0	0	ľ
0	0	0	0	0	0	0	0	0	0	0	0	ſ
0	0	0	0	0	0	0	0	0	0	0	0	Γ

	$({}$	b },	$\{0\}$	1})	
0	1	0	0	0	0
0	1	0	1	0	0
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

($(\{c$	$\{\}, \cdot$	$\{0\}$	$\cdot)$	
0	1	0	0	0	0
0	1	0	0	0	0
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \longrightarrow (\{b,c\},\{0\},0) \\ (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	₹, {	0,	1})		(-	$\{b,$	$c\}$, {1	.})	
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

($(\{b$	$\}$, ·	$\{0\}$	-)	
0	1	0	0	0	0
0	1	0	1	0	0
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

$(\{c\}, \{0\})$	
0 1 0 0 0 0)
0 1 0 0 0 0)
0 1 0 0 0 0)
0 0 0 0 1 0)
0 0 0 0 0 1	
0 0 0 0 0)

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \xrightarrow{p_0} (\{b,c\},\{0\},0) \\ (\{b,c\},\{1\},-1)$$

($\{a\}$	}, {	0, 1	1})		($\{b,$,c	, {	1}))		({i	b},	{0	})		($\{c\}$	}, {	0})	
1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

a c c b c b

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \longrightarrow \begin{array}{c} (\{b,c\},\{0\},0) \\ (\{b,c\},\{1\},-1) \end{array} \\ (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	·, {	0, 1	1})		(-	$\{b,$	c },	, {1	.})	
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

($(\{b$	$\}$, ·	$\{0\}$	-)	
0	1	0	0	0	0
0	1	0	1	0	0
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

$(\{c\}, \{0\})$										
0	1	0	0	0	0					
0	1	0	0	0	0					
0	1	0	0	0	0					
0	0	0	0	1	0					
0	0	0	0	0	1					
0	0	0	0	0	0					

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \xrightarrow{p_0} (\{b,c\},\{0\},0) \\ \xrightarrow{p_1} (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	} , {	0, 1	1})		(-	$\{b,$	$c\}$, {1	.})	
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

$(\{b\}, \{0\})$									
0	1	0	0	0	0				
0	1	0	1	0	0				
0	1	0	0	0	0				
0	0	0	0	1	0				
0	0	0	0	0	1				
0	0	0	0	0	0				

$(\{c\}, \{0\})$										
1	0	0	0	0						
1	0	0	0	0						
1	0	0	0	0						
0	0	0	1	0						
0	0	0	0	1						
0	0	0	0	0						
	1 1 1 0	1 0 1 0 1 0 0 0 0 0	1 0 0 1 0 0 1 0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0						

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \xrightarrow{p_0} (\{b,c\},\{0\},0) \\ (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	} , {	0, 1	1})		$(\{b,c\},\{1\})$						
1	0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	

$(\{b\}, \{0\})$									
0	1	0	0	0	0				
0	1	0	1	0	0				
0	1	0	0	0	0				
0	0	0	0	1	0				
0	0	0	0	0	1				
0	0	0	0	0	0				

$(\{c\},\{0\})$										
0	1	0	0	0	0					
0	1	0	0	0	0					
0	1	0	0	0	0					
0	0	0	0	1	0					
0	0	0	0	0	1					
0	0	0	0	0	0					

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \xrightarrow{p_0} (\{b,c\},\{0\},0) \\ \xrightarrow{p_1} (\{b,c\},\{1\},-1)$$

$(\{a\},\{0,1\})$						(-	$\{b,$	$c\}$, {1	.})		($(\{b$	},
1	0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

($(\{b\})$	$\}$, ·	$\{0\}$	-)		(}	$\{c\}$	$, \{ ($	0})	
0	1	0	0	0	0	0	1	0	0	0
0	1	0	1	0	0	0	1	0	0	0
0	1	0	0	0	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \longrightarrow \begin{array}{c} (\{b,c\},\{0\},0) \\ (\{b,c\},\{1\},-1) \end{array} \\ (\{b,c\},\{1\},-1)$$

0

$(\{a\},\{0,1\})$								$(\{b,c\},\{1\})$						
1	0	0	0	0	0]	0	0	1	0	0	0		
0	0	0	0	0	0]	0	0	0	0	0	0		
0	0	0	0	0	0]	0	0	1	0	0	0		
0	0	0	0	0	0]	0	0	0	0	0	0		
0	0	0	0	0	0]	0	0	0	0	0	0		
0	0	0	0	0	0]	0	0	0	0	0	0		

$(\{b\}, \{0\})$										
0	1	0	0	0	0					
0	1	0	1	0	0					
0	1	0	0	0	0					
0	0	0	0	1	0					
0	0	0	0	0	1					
0	0	0	0	0	0					

({	$c\},$	{0)		
0	1	0	0	0	0
0	1	0	0	0	0
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ 0 \qquad (\{b,c\},\{0\},0) \\ p_1 \qquad (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	} , {	0, 1	1})			$(\{b,c\},\{1\})$						
1	0	0	0	0	0]	0	0	1	0	0	0	
0	0	0	0	0	0]	0	0	0	0	0	0	
0	0	0	0	0	0]	0	0	1	0	0	0	
0	0	0	0	0	0]	0	0	0	0	0	0	
0	0	0	0	0	0		0	0	0	0	0	0	
0	0	0	0	0	0	1	0	0	0	0	0	0	

$(\{b\},\{0\})$									
0	1	0	0	0	0				
0	1	0	1	0	0				
0	1	0	0	0	0				
0	0	0	0	1	0				
0	0	0	0	0	1				
0	0	0	0	0	0				

({	$(\{c\},\{0\})$										
0	1	0	0	0	0						
0	1	0	0	0	0						
0	1	0	0	0	0						
0	0	0	0	1	0						
0	0	0	0	0	1						
0	0	0	0	0	0						

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \longrightarrow (\{b,c\},\{0\},0) \\ (\{b,c\},\{1\},-1)$$

$(\{a\},\{0,1\})$							$(\{b,c\},\{1\})$						
1	0	0	0	0	0		0	0	1	0	0	0	
0	0	0	0	0	0		0	0	0	0	0	0	
0	0	0	0	0	0		0	0	1	0	0	0	
0	0	0	0	0	0		0	0	0	0	0	0	
0	0	0	0	0	0		0	0	0	0	0	0	
0	0	0	0	0	0		0	0	0	0	0	0	

$(\{b\},\{0\})$									
0	1	0	0	0	0				
0	1	0	1	0	0				
0	1	0	0	0	0				
0	0	0	0	1	0				
0	0	0	0	0	1				
0	0	0	0	0	0				

({	$c\},$)			
0	1	0	0	0	0
0	1	0	0	0	0
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \xrightarrow{p_0} (\{b,c\},\{0\},0) \\ \xrightarrow{p_1} (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	₹, {	0, 1	1})		(-	$\{b,$	$c\}$,	, {1	.})		($(\{b$	},
1	0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

($(\{b$	$\}$, -	$\{0\}$	-)		({	[(
0	1	0	0	0	0	0	
0	1	0	1	0	0	0	Г
0	1	0	0	0	0	0	Г
0	0	0	0	1	0	0	Г
0	0	0	0	0	1	0	Г
0	0	0	0	0	0	0	

$(\{c\}, \{0\})$										
1	0	0	0	0						
1	0	0	0	0						
1	0	0	0	0						
0	0	0	1	0						
0	0	0	0	1						
0	0	0	0	0						
	1 1 0 0	1 0 1 0 1 0 0 0 0 0	1 0 0 1 0 0 1 0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0						

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \longrightarrow (\{b,c\},\{0\},0) \\ (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	₹, {	0, 1	1})			$(\{b,c\},\{1\})$							({
1	0	0	0	0	0		0	0	1	0	0	0		0	Г
0	0	0	0	0	0]	0	0	0	0	0	0		0	
0	0	0	0	0	0]	0	0	1	0	0	0]	0	Г
0	0	0	0	0	0]	0	0	0	0	0	0]	0	Г
0	0	0	0	0	0		0	0	0	0	0	0		0	
0	0	0	0	0	0]	0	0	0	0	0	0		0	Г

$(\{b\},\{0\})$									
1	0	0	0	0					
1	0	1	0	0					
1	0	0	0	0					
0	0	0	1	0					
0	0	0	0	1					
0	0	0	0	0					
	1 1 1 0 0	1 0 1 0 1 0 0 0 0 0	1 0 0 1 0 1 1 0 0 0 0 0 0 0 0	1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0					

$(\{c\}, \{0\})$										
0	1	0	0	0	0					
0	1	0	0	0	0					
0	1	0	0	0	0					
0	0	0	0	1	0					
0	0	0	0	0	1					
0	0	0	0	0	0					
	0 0 0 0 0	0 1 0 1 0 1 0 0 0 0	0 1 0 0 1 0 0 1 0 0 1 0 0 0 0	0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0					

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \longrightarrow \begin{array}{c} (\{b,c\},\{0\},0) \\ (\{b,c\},\{1\},-1) \end{array} \\ (\{b,c\},\{1\},-1)$$

Pseudo-pumping lemma (pumping down)

Pseudo-pumping lemma

If z is a reachability witness for $(\mathbf{c}, \overline{\mathcal{V}}, m)$ and the maximum counter value encountered during the run of z is not polynomially bounded in the input size then,

• there exists a subword z_{sub} of z, such that $c \xrightarrow{z_{sub}} \overline{\mathcal{V}} \times \{m\}$, and the maximum counter value encountered during this run is less than the maximum counter value encountered during the run of z.

Pseudo-pumping lemma - Figure

