(7.1) For the Lagrangian \mathcal{L} given by

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \partial_{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \sum_{n=1}^{\infty} \lambda_n \phi^{2n+2}$$
 (7.20)

show that the equation of motion is given by

$$(\partial^2 + m^2)\phi + \sum_{n=1}^{\infty} \lambda_n (2n+2)\phi^{2n+1} = 0$$
 (7.21)

Recall that

$$\frac{\partial(\partial_{\mu}\phi)}{\partial\phi} = 0$$
 and $\frac{\partial\phi}{\partial(\partial_{\mu}\phi)} = 0$

Hence for \mathcal{L} in (7.20) we have

$$\frac{\partial \mathcal{L}}{\partial \phi} = -m^2 \phi - \sum_{n=1}^{\infty} \lambda_n (2n+2) \phi^{2n+1} \tag{1}$$

and

$$\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} = \frac{\partial}{\partial(\partial_{\mu}\phi)} \left(\frac{1}{2} \partial^{\mu} \partial_{\mu} \phi \right) = \partial^{\mu}\phi \tag{2}$$

This is the Euler-Lagrange equation.

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) - \frac{\partial \mathcal{L}}{\partial \phi} = 0 \tag{3}$$

Substitute (1) and (2) into (3) to obtain

$$\partial_{\mu}\partial^{\mu}\phi + m^{2}\phi + \sum_{n=1}^{\infty} \lambda_{n}(2n+2)\phi^{2n+1} = 0$$

which is equivalent to (7.21).