Quick Python Intro

A very quick crash-course in the basics of Python, broadly covering

Libraries (NumPy and Matplotlib, specifically)

Variables

Whitespace

Array slicing and assigment

Step 1: 1-D Linear Convection

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 \tag{1}$$

Math

This section introduces the reader to the "parts" of the PDE and how to discretize them.

Introduce the idea of a grid

Expand equation using the definition of a derivative

Discretize into small chunks

Re-arrange to solve for u_i^{n+1}

Initial and boundary conditions

Python

Importing libraries

Assigning variables

Basic 2D plotting

Simple for-loops

YouTube videos on order of convergence, truncation error, etc...

Step 2: 1-D Nonlinear Convection

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0 \tag{2}$$

Math

Introduce non-linear PDE equation

Expand equation using definition of derivative

Discretize

Solve for u_i^{n+1}

CFL Condition

A short side-trip into the CFL condition, order of convergence and blowing things up.

Math

The Courant number

Explanation of blow-up behavior when wave travels a distance > dx during a time dt

Python

Quick introduction to defining a function to use code repeatedly

Step 3: 1-D Diffusion

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial x^2} \tag{3}$$

Math

Introduce diffusion equation

Discretize 2nd order derivative using Taylor series expansion

Discretize time derivative using def. of derivative

Python

Nothing new, still no functions being used (yet)

Step 4: 1-D Burgers' Equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} \tag{4}$$

Math

Introduce Burgers' Equation

Note that it is combination of diffusion and non-linear convection

Introduce different I.C. and B.C. for periodic behavior

e.g. What does u_{i+1}^n mean at the end of the frame?

Python

Introduce Sympy

Pretty printing

Symbolic solving of derivatives

Usage of Lambdify to make solutions 'accessible' to Numpy

Matplotlib

Plotting multiple lines per plot

Setting line styles

Legends

Array Operations

Another brief interlude to introduce handling calculations with array operations instead of iterating over the entire array.

Python

Array operations, slicing and copying

Note about using the %%timeit magic function to compare performance

Step 5: 2D Linear Convection

Math

Introduction to 2D grid

Extension of current discretization rules into i, j flatland

Discretize 2D equation and solve for unknown

Python

meshgrid

Axes3D

surf and wireframe plots

Demonstration that nested for-loop results and array operations results are the same

Step 6: 2D Nonlinear Convection

Math

Introduction of coupled PDEs

Discretization of two equations

Solving for both $u_{i,j}^{n+1}$ and $v_{i,j}^{n+1}$

Step 7: 2D Diffusion

Math

Introduction to 2D diffusion equation

Discretization of equation, etc...

Python

Nothing new, although functions are used to display results (probably should switch this over to jsanim)

Step 8: 2D Burgers'