Diskrete Modellierung

Wintersemester 2017/18

Mario Holldack, M. Sc. Prof. Dr. Georg Schnitger Hannes Seiwert, M. Sc.

Institut für Informatik AG Theoretische Informatik

Ausgabe: 19.10.2017

Abgabe: nein

Übungsblatt 0

Dieses Blatt ist ein **Präsenzblatt** und wird in den Übungsgruppen in der zweiten Vorlesungswoche besprochen. Eine Abgabe findet nicht statt. Bitte bereiten Sie sich auf das Blatt vor!

Aufgabe 0.1 Rechnen mit Indizes

Gegeben seien die Mengen $M_1 := \{1, 2, 3\}, M_2 := \{2, 4, 6\}$ und $M_3 := \{1, 4, 5, 6, 7\}$. Bestimmen Sie die folgenden Mengen in extensionaler (expliziter) Schreibweise.

a)
$$\bigcap_{j=3}^{5} M_{j-2}$$

b)
$$\bigcap_{k=1}^{2} \left(\bigcup_{\ell=2}^{3} (M_k \setminus M_{\ell}) \right)$$

b)
$$\bigcap_{k=1}^{2} \left(\bigcup_{\ell=2}^{3} (M_k \setminus M_{\ell}) \right)$$
 c) $\left(\bigcup_{i=1}^{3} M_i \right) \setminus \left(\bigcup_{j=0}^{2} M_{j+1} \right)$

Aufgabe 0.2 Mathematische bzw. umgangssprachliche Mengenbeschreibung

- a) Beschreiben Sie die folgenden Mengen umgangssprachlich.
 - i) $\{m \cdot n : m, n \in \mathbb{N}, m, n \geq 2\}$
 - ii) {}
 - iii) $\{-x : x \in \mathbb{Z}\}$
- b) Geben Sie die folgenden Mengen in intensionaler (impliziter) Form, also wie in a) an.
 - i) Die Menge aller ganzen Zahlen, die Lösung der Ungleichung 3x + 2 < 1 sind.
 - ii) Die Menge aller natürlichen Zahlen, die das Produkt zweier ungerader Zahlen ≥ 3 sind.
 - iii) Die Menge aller Teilmengen von natürlichen Zahlen, die nur gerade Zahlen enthalten.

Aufgabe 0.3 Beziehungen zwischen Mengen

Geben Sie an, welche der folgenden Aussagen richtig und welche falsch sind.

a)
$$\emptyset \in \{1, 2, \emptyset\}$$

b)
$$\emptyset \subseteq \{1, 2, \emptyset\}$$

c)
$$\{\emptyset\} \subseteq \{1, \{2, \emptyset\}\}\$$

$$d) \emptyset \subseteq \emptyset$$

e)
$$\{3,2,1\} \subseteq \{1,3,\{1,2\}\}$$

Aufgabe 0.4 Mengengleichungen

Welche der Gleichungen sind für beliebige Mengen A und B korrekt, welche nicht? Beweisen Sie jeweils die Korrektheit oder geben Sie ein Gegenbeispiel an.

1

a)
$$(A \cup B) \setminus A = A \cup (B \setminus A)$$

b)
$$(A \cap B) \cup A = A \cap (B \cup A)$$