Functional: If xRy and xRz, then y=z. If x has birthdate y and x has birthdate z, then y=z. **Inverse Functional**: If xRy and zRy, then x=z. If x has social security number y and z has social security number y, then x=z.

Transitive: If xRy and yRz, then xRz. If x is contained in y and y is contained in z, then x is contained in z.

Symmetric: If xRy, then yRx. If x is a friend of y, then y is a friend of x.

Asymmetric: If xRy, then it is not the case that yRx If x is the parent of y, then it is not the case

that y is the parent of x.

Reflexive: xRx, x is as tall as itself.

Irreflexive: It is not the case that xRx. No x is taller than itself

Functional Transitivity (X^{NS})

Suppose property R is both functional and transitive.

By functionality, for any x, y, z: if xRy \land xRz, then it follows that y=z, and by transitivity if xRy \land yRz then it also must follow that xRz.

Consider the case when $y \neq z$, then by transitivity (xRy \land yRz \Rightarrow xRz) and by functionality, [xRy \land xRz) \Leftrightarrow y=z], but since y \neq z and y=z cannot both be true, we have a contradiction. \bot

Inverse-Functional Transitivity (X^{NS})

Suppose property R is both inverse functional and transitive.

If R is Inverse Functional, then $(xRy \land zRy) \Leftrightarrow x=z$

If R is Transitive, then (xRy \land yRz) \Rightarrow xRz

* Note that ff R is Reflexive, then $(xRy \land yRx)$ and we know from the initial state of the table that Transitive Reflexivity is satisfiable.

By inverse functionality, If xRy \land zRy, then x=z and by transitivity, if xRy \land yRz then it follows that xRz.

Consider the case when $x \neq z$, then then ($xRy \land yRz \Rightarrow xRz$) holds true but Inverse functionality fails due to contradiction since it is obviously not the case that ($x \neq z$) and (x = z). \bot

Asymmetric Transitivity (XNS)

Irreflexive Transitivity (X^{NS})

Asymmetric Symmetry (XUNSAT)

Asymmetric Reflexivity (XUNSAT)

Irreflexive Reflexivity (XUNSAT)