FULL VERSION OF PENDING CLAIMS

· What is claimed is:

- Claim 1 (Original): A method of evaluating whiteness of light emitted from a light 1 2 source, comprising the steps of: 3 calculating chroma C, using a method defined by the CIE 1997 Interim Color Appearance Model (Simple Version); and 4 5 calculating whiteness W from the chroma C using an equation (1), $W = aC + b \dots (1)$ 6 7 where the coefficient a is a negative real number and the coefficient b is a positive real number. 8 Claim 2 (Currently Amended): The A method of Claim 1, evaluating whiteness of light 1 2 emitted from a light source, comprising the steps of: 3 calculating chroma C, using a method defined by the CIE 1997 Interim Color Appearance Model (Simple Version); and 4 calculating whiteness W from the chroma C using an equation, 5 W = aC + 100. 6 7 wherein the whiteness W is 100 when the chroma C is 0 coefficient a is a negative real number. 8
- 1 Claim 3 (Currently Amended): The A method of Claim 2, evaluating whiteness of light
 2 emitted from a light source, comprising the steps of:
- 3 calculating chroma C, using a method defined by the CIE 1997 Interim Color
- 4 Appearance Model (Simple Version); and

5	calculating whiteness W from the chroma C using an equation,
6	W = aC + 100
7	wherein the coefficient a is a negative real number and the whiteness W is 50 under a
8	standard illuminant A.
1	Claim 4 (Original): The method of Claim 1,
2	wherein the chroma C is a chroma of the light emitted from the light source, and
3	the coefficient a is -5.3 and the coefficient b is 100.
1	Claim 5 (Original): The method of Claim 1,
2	wherein the chroma C is a chroma of light obtained when the light from the light
3	source is reflected off from a surface of an object whose Munsell value and Munsell chroma is
4	9.5 and 0, respectively, and
5	the coefficient a is -4.4 and the coefficient b is 100.
1	Claim 6 (Original): The method of Claim 1,
2	wherein the chroma is a chroma of light obtained when the light emitted from the
3	light source is reflected off a blank surface of a newspaper, and
4	the coefficient a is -3.3 and the coefficient b is 100.
1	Claim 7 (Original): A method of evaluating comparative whiteness of light emitted from
2	two light sources, comprising the steps of:
3	calculating chroma $C1$ of light from a first light source and chroma $C2$ of light
4	from a second light source using a method defined by the CIE 1997 Interim Color Appearance
5	Model (Simple Version); and

52478-0500(BP14)

- 6 calculating comparative whiteness Wc from the chroma C1 and the chroma C2,
- 7 using an equation (2),

8 ·
$$Wc = (C1 - C2) / C1 ... (2).$$

1 Claims 8-83 (Cancelled)