Torelli's Theorem

Remarks on Sections III.12-13 of Milne's Abelian Varieties

University of Freiburg

28th July 2020

• *k* is an algebraically closed field.

- *k* is an algebraically closed field.
- C is a smooth complete curve over k of genus $g \ge 2$.

- *k* is an algebraically closed field.
- C is a smooth complete curve over k of genus $g \ge 2$.
- J is its Jacobian, which is an abelian variety representing

$$T \mapsto \{\mathcal{L} \in \mathsf{Pic}(C \times T) \mid \mathsf{deg}(\mathcal{L}_t) = 0 \text{ for all } t \in T\}/\,\mathsf{Pic}(T).$$

- *k* is an algebraically closed field.
- C is a smooth complete curve over k of genus $g \ge 2$.
- J is its Jacobian, which is an abelian variety representing

$$T\mapsto \{\mathcal{L}\in \operatorname{\mathsf{Pic}}(\mathit{C}\times \mathit{T})\mid \deg(\mathcal{L}_t)=0 \text{ for all } t\in \mathit{T}\}/\operatorname{\mathsf{Pic}}(\mathit{T}).$$

• In particular, we may and will identify $J(k) = Pic^0(C)$.

- *k* is an algebraically closed field.
- C is a smooth complete curve over k of genus $g \ge 2$.
- J is its Jacobian, which is an abelian variety representing

$$T \mapsto \{\mathcal{L} \in \mathsf{Pic}(C \times T) \mid \mathsf{deg}(\mathcal{L}_t) = 0 \text{ for all } t \in T\}/\,\mathsf{Pic}(T).$$

- In particular, we may and will identify $J(k) = Pic^0(C)$.
- Fix $P \in C(k)$ once and for all. Then we get a canonical map

$$f: C \to J, \quad Q \mapsto [Q - P].$$

- *k* is an algebraically closed field.
- C is a smooth complete curve over k of genus $g \ge 2$.
- J is its Jacobian, which is an abelian variety representing

$$T \mapsto \{\mathcal{L} \in \mathsf{Pic}(C \times T) \mid \mathsf{deg}(\mathcal{L}_t) = 0 \text{ for all } t \in T\}/\,\mathsf{Pic}(T).$$

- In particular, we may and will identify $J(k) = Pic^0(C)$.
- ullet Fix $P\in \mathcal{C}(k)$ once and for all. Then we get a canonical map

$$f: C \to J, \quad Q \mapsto [Q - P].$$

• For all $1 \leqslant r \leqslant g$ we get an induced map

$$f: C^{(r)} \to J, \quad P_1 \cdot \ldots \cdot P_r \mapsto [P_1 + \cdots + P_r - rP]$$

birational onto its image $W^r \subseteq J$, which is a closed subvariety.

Canonical polarization

• For r=g-1 we get a divisor $\Theta=W^{g-1}\subseteq J$, the image of $f\colon C^{(g-1)}\to J,\quad P_1\cdot\ldots\cdot P_{g-1}\mapsto [P_1+\cdots+P_{g-1}-(g-1)P].$

Canonical polarization

• For r=g-1 we get a divisor $\Theta=W^{g-1}\subseteq J$, the image of $f\colon C^{(g-1)}\to J,\quad P_1\cdot\ldots\cdot P_{g-1}\mapsto [P_1+\cdots+P_{g-1}-(g-1)P].$

Canonical polarization

• For r=g-1 we get a divisor $\Theta=W^{g-1}\subseteq J$, the image of $f\colon C^{(g-1)}\to J,\quad P_1\cdot\ldots\cdot P_{g-1}\mapsto [P_1+\cdots+P_{g-1}-(g-1)P].$

• The induced $\lambda \colon J \to J^{\vee}$ is an isomorphism, so Θ gives us a principal polarization of J called the *canonical polarization*.

Statement — Existence

Let C and C' be curves as before and let $\beta \colon (J,\lambda) \xrightarrow{\sim} (J',\lambda')$ be an isomorphism such that $\lambda' \circ \beta = \beta^{\vee} \circ \lambda$.

Statement — Existence

Let C and C' be curves as before and let $\beta \colon (J,\lambda) \xrightarrow{\sim} (J',\lambda')$ be an isomorphism such that $\lambda' \circ \beta = \beta^{\vee} \circ \lambda$.

Then there exists an isomorphism $\alpha \colon C \xrightarrow{\sim} C'$ such that

$$\begin{array}{ccc}
C & \xrightarrow{f} & J \\
\alpha \downarrow & & \downarrow \beta \\
C' & \xrightarrow{f'} & J'
\end{array}$$

commutes up to a sign and translation by some $c \in J'(k)$.

Statement — Uniqueness

A curve C as before is called *hyperelliptic* if there is a 2:1 branched covering $\gamma\colon C\to \mathbb{P}^1.$

Statement — Uniqueness

A curve C as before is called *hyperelliptic* if there is a 2:1 branched covering $\gamma\colon C\to \mathbb{P}^1$. From Hartshorne's exercises:

- A curve of genus 2 is always hyperelliptic.
- There are hyperelliptic curves of any genus $g \ge 2$.
- A plane curve of degree 4 (thus g = 3) is not hyperelliptic.

Statement — Uniqueness

A curve C as before is called *hyperelliptic* if there is a 2:1 branched covering $\gamma\colon C\to \mathbb{P}^1$. From Hartshorne's exercises:

- A curve of genus 2 is always hyperelliptic.
- There are hyperelliptic curves of any genus $g \geqslant 2$.
- A plane curve of degree 4 (thus g = 3) is not hyperelliptic.

We can now state uniqueness distinguishing two cases:

- If C is not hyperelliptic, then α , the sign and the element $c \in J'(k)$ by which we have to translate are uniquely determined by β , P and P'.
- If C is hyperelliptic, then the sign can be chosen arbitrarily, and α and c are uniquely determined by β , P, P' and the chosen sign.

Thanks for your attention! Here are some references: