Unidad I: Computabilidad

El problema de la parada

Clase 07 - Lógica para Ciencia de la Computación/Teoría de la Computación

Prof. Miguel Romero

El problema de la parada (Halting problem)

Definamos el siguiente lenguaje sobre $\{0,1\}$:

Halting = $\{\langle M, w \rangle \mid M \text{ es una MT, } w \in \{0, 1\}^* \text{ y } M \text{ se detiene con } w\}$

Proposición:

Halting es recursivamente enumerable.

Basta modificar la MUT U definida anteriormente.

MUT modificada para Halting

Sobre entrada $z \in \{0,1\}^*$:

- 1. Verificar que $z = \langle M, w \rangle$ para alguna MT M y $w \in \{0, 1\}^*$. Si no, rechazar.
- 2. Escribir w en la cinta 2 y poner la cabeza al inicio de w.
- 3. Escribir 0 en la cinta 3 (estado inicial).
- 4. Si el contenido de la cinta 3 es 0ⁿ, aceptar. (n es la cantidad de estados.)
- 5. Buscar en la cinta 1 una transición de la forma $\delta(s_i, a) = (s_j, b, D)$ donde 0^i es el contenido de la cinta 3 y la cabeza de la cinta 2 está sobre a. Si no hay tal transición, aceptar.
- 6. Reemplazar 0^i por 0^j en la cinta 3.
- 7. Reemplazar a por b en la cinta 2.
- 8. Mover la cabeza de la cinta 2 a la izquierda o derecha, según D.
- 9. Volver al paso (4).

El problema de la parada (Halting problem)

Definamos el siguiente lenguaje sobre $\{0,1\}$:

Halting = $\{\langle M, w \rangle \mid M \text{ es una MT, } w \in \{0,1\}^* \text{ y } M \text{ se detiene con } w\}$

Teorema:

Halting es indecidible.

Por contradicción, supongamos que existe una MT H que decide Halting.

- H se detiene sobre toda entrada $z \in \{0,1\}^*$.
- Para toda MT M y $w \in \{0,1\}^*$:
 - Si M se detiene con w, entonces H acepta (M, w).
 - Si M no se detiene con w, entonces H rechaza (M, w).

A partir de H podemos definir la siguiente MT N.

```
Sobre entrada z \in \{0, 1\}^*:
```

- 1. Verificar que $z = \langle M \rangle$ para alguna MT M. Si no es así, rechazar.
- 2. Simular H sobre $\langle M, \langle M \rangle \rangle$.
- 3. Si *H* acepta, quedarse en un **loop infinito**.
- 4. Si *H* rechaza, aceptar.

Por la definición de lenguaje aceptado de una MT, tenemos:

$$\langle M \rangle \in L(N) \iff N \text{ acepta } \langle M \rangle \iff N \text{ se detiene con } \langle M \rangle$$

Por la definición de *H*, tenemos:

$$(M) \in L(N) \iff H \text{ rechaza } (M, \langle M \rangle) \iff M \text{ no se detiene con } \langle M \rangle$$

¿Qué sucede si ejecutamos N sobre su propio código $\langle N \rangle$?

N se detiene con $\langle N \rangle \iff \langle N \rangle \in L(N) \iff N$ no se detiene con $\langle N \rangle$

Contradicción.

N no puede existir, y luego H no puede existir.

Concluimos que Halting es indecidible.

Lo anterior se puede ver como un argumento de diagonalización.

Sabemos que el conjunto ${\mathcal M}$ de todas las MTs es infinito numerable.

Podemos ordenar el conjunto ${\mathcal M}$ en una lista infinita:

$$M_1$$
, M_2 , M_3 , M_4 , ...

Considere la siguiente matriz:

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
M_1	para	loop	loop	para	
M_2	loop	loop	loop	para	
M_3	para	para	para	loop	
M_4	para	loop	loop	para	
:	÷	:	:	÷	٠.

para = se detiene con la entradaloop = no se detiene con la entrada

La MT N usa H para complementar la diagonal.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
M_1	para	loop	loop	para	
M_2	loop	loop	loop	para	
M_3	para	para	para	loop	
M_4	para	loop	loop	para	
÷	÷	÷	:	÷	٠.
Ν	loop	para	loop	loop	
÷	:	÷	:	÷	

N se detiene con $\langle M_i \rangle \iff M_i$ no se detiene con $\langle M_i \rangle$

La MT N usa H para complementar la diagonal.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle N \rangle$	
M_1	para	loop	loop	para		loop	
M_2	loop	loop	loop	para		loop	
M_3	para	para	para	loop		para	
	para		loop	para		para	•••
÷	:	÷	÷	÷	٠.	:	
N	loop	para	loop	loop		?	
÷	:	÷	÷	:		÷	٠.

¿Dónde está la contradicción?

La entrada ? tiene que ser el complemento de sí misma.

Un problema que no es recursivamente enumerable

Recordar que \overline{L} denota el complemento del lenguaje L.

Corolario:

Halting no es recursivamente enumerable.

¿Cómo demuestra esto?