The Extended Complex Plane and Linear Fractional Transformations

Definition: Let \mathbb{C} be the complex plane. We define $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ to be the one-point compactification of \mathbb{C} .

Open sets in $\hat{\mathbb{C}}$ look like either:

- open sets $U \subseteq \mathbb{C}$;
- sets $U \subseteq \hat{\mathbb{C}}$ where $\infty \in U$, and $U \setminus \{\infty\} \subseteq \mathbb{C}$ is open, where additionally, there exists R such that the set $\{z \in \mathbb{C} \mid |z| > R\} \subseteq U \setminus \{\infty\}$.

Proposition: There is a continuous bijection between $\hat{\mathbb{C}}$ and the unit sphere S^2 in \mathbb{R}^3 given by

$$z \mapsto \left(\frac{2\operatorname{Re}(z)}{|z|^2 + 1}, \frac{2\operatorname{Im}(z)}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}\right)$$

if $z \neq \infty$, and $z \mapsto (0, 0, 1)$ if $z = \infty$.

Proposition: Given the metric ρ on S^2 given by

$$\rho((x_1, x_2, x_3), (y_1, y_2, y_3)) = \sqrt{2(1 - x_1y_1 - x_2y_2 - x_3y_3)},$$

we have a corresponding natural metric on $\hat{\mathbb{C}}$ given by

$$d(z, w) = \begin{cases} \frac{2|z-w|}{\sqrt{(1+|z|^2)(1+|w|^2)}} & z, w \in \mathbb{C} \\ \frac{2}{\sqrt{1+|z|^2}} & w = \infty, z \in \mathbb{C} \\ \frac{2}{\sqrt{1+|w|^2}} & z = \infty, w \in \mathbb{C} \\ 0 & w = z = \infty. \end{cases}$$

Furthermore, the open sets as defined above are exactly the ones induced by this metric.

Definition: A subset $C \subseteq \hat{\mathbb{C}}$ is called a *Riemann Circle* if

• C is a union of a straight line with ∞ ,

$$C = \{ z \in \mathbb{C} \mid a \operatorname{Re}(z) + b \operatorname{Im}(z) = c \} \cup \{ \infty \};$$

• C is a Euclidean circle,

$$C = \{ z \in \mathbb{C} \mid |z - z_0| = r \}.$$

A subset $D \subseteq \hat{\mathbb{C}}$ is called a *Riemann disc* if either

- D is an open half-plane in C;
- D is an open disc in C;
- D is the complement of a closed disc in \mathbb{C} .

Note: The Riemann circles correspond to circles drawn on S^2 , while Riemann discs correspond to circular caps on S^2 .