

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

Motor Control Co-Pack IGBT

Features

- Low V_{CE}(on) Non Punch Through (NPT) Technology
- Low Diode V_F (1.76V Typical @ 25A & 25°C)
- 10 µs Short Circuit Capability
- Square RBSOA
- Ultrasoft Diode Recovery Characteristics
- Positive V_{CE}(on) Temperature Coefficient
- Extended Lead TO-247AD Package
- Lead-Free

Benefits

- Benchmark Efficiency for Motor Control Applications
- Rugged Transient Performance
- Low EMI
- Significantly Less Snubber Required
- Excellent Current Sharing in Parallel Operation
- · Longer leads for Easier Mounting

Absolute Maximum Ratings

	Parameter	Max.	Units			
V _{CES}	Collector-to-Emitter Breakdown Voltage	1200	V			
I _C @ T _C = 25°C	Continuous Collector Current (Fig.1)	60				
I _C @ T _C = 100°C	Continuous Collector Current (Fig.1)	30				
I _{CM}	Pulsed Collector Current (Fig.3, Fig. CT.5)	120				
I _{LM}	Clamped Inductive Load Current(Fig.4, Fig. CT.2)	d Inductive Load Current(Fig. 4, Fig. CT.2) 120				
I _F @ T _C = 100°C	Diode Continuous Forward Current	30				
I _{FM}	Diode Maximum Forward Current	120				
V_{GE}	Gate-to-Emitter Voltage	± 20	V			
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation (Fig.2)	300	_ w			
P _D @ T _C = 100°C	Maximum Power Dissipation (Fig.2)	120	vv			
TJ	Operating Junction and	-55 to + 150				
T _{STG}	Storage Temperature Range		°C			
	Soldering Temperature, for 10 seconds	300, (0.063 in. (1.6mm) from case)				
	Mounting Torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)				

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case - IGBT			0.42	
$R_{\theta JC}$	Junction-to-Case - Diode			0.83	°C/W
R _{θCS}	Case-to-Sink, flat, greased surface		0.24		
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount			40	-
W _t	Weight		6 (0.21)		g (oz)
$Z_{\theta JC}$	Transient Thermal Impedance Junction-to-Cas	Transient Thermal Impedance Junction-to-Case (Fig.24)			

Electrical Characteristics @ TJ = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Fig.
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200			V	$V_{GE} = 0V, I_{c} = 250 \mu A$	
ΔV _{(BR)CES} / ΔTj	Temperature Coeff. of Breakdown Voltage		+1.2		V/°C	$V_{GE} = 0V, I_c = 1 \text{ mA} (25 - 125 ^{\circ}C)$	1
			2.28	2.48		$I_C = 25A, V_{GE} = 15V$	5, 6
	Collector-to-Emitter Saturation		2.46	2.66		$I_C = 30A, V_{GE} = 15V$	7, 9
V _{CE(on)}	Voltage		3.43	4.00	V	$I_{\rm C} = 60$ A, $V_{\rm GE} = 15$ V	10
			2.74	3.10		$I_C = 25A, V_{GE} = 15V, T_J = 125$ °C	11
			2.98	3.35		$I_C = 30A, V_{GE} = 15V, T_J = 125$ °C	
$V_{GE(th)}$	Gate Threshold Voltage	4.0	5.0	6.0	V	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	9,10,11,12
$\Delta V_{GE(th)} / \Delta Tj$	Temperature Coeff. of Threshold Voltage		- 1.2		mV/°C	$V_{CE} = V_{GE}, I_{C} = 1 \text{ mA} (25 - 125 °C)$	
g _{fe}	Forward Transconductance	14.8	16.9	19.0	S	$V_{CE} = 50V, I_{C} = 25A, PW = 80\mu s$	
				250		$V_{GE} = 0V, V_{CE} = 1200V$	
I _{CES}	Zero Gate Voltage Collector Current		325	675	μΑ	$V_{GE} = 0v, V_{CE} = 1200V, T_{J} = 125^{\circ}C$	
				2000		$V_{GE} = 0v, V_{CE} = 1200V, T_{J} = 150^{\circ}C$	
			1.76	2.06		I _C = 25A	
V_{FM}	Diode Forward Voltage Drop		1.86	2.17	V	I _C = 30A	8
			1.87	2.18		$I_{\rm C} = 25 {\rm A}, {\rm T_{\rm J}} = 125 {\rm ^{\circ}C}$	
			2.01	2.40		$I_C = 30A, T_J = 125^{\circ}C$	
I _{GES}	Gate-to-Emitter Leakage Current			±100	nΑ	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Fig.
Q_g	Total Gate charge (turn-on)		169	254		I _C = 25A	23
Q _{ge}	Gate - Emitter Charge (turn-on)		19	29	nC	V _{CC} =600V	CT 1
Q_{gc}	Gate - Collector Charge (turn-on)		82	123	Ī	V _{GE} = 15V	
E _{on}	Turn-On Switching Loss		1066	1250		$I_C = 25A, V_{CC} = 600V$	CT 4
E _{off}	Turn-Off Switching Loss		1493	1800	μJ	$V_{GE} = 15V, Rg = 5\Omega, L = 200\mu H$	WF1
E _{tot}	Total Switching Loss		2559	3050		T _J = 25°C, Energy losses include tail and diode reverse recovery	WF2
Eon	Turn-on Switching Loss		1660	1856		Ic =25A, V _{CC} =600V	13, 15
E _{off}	Turn-off Switching Loss		2118	2580	μJ	$V_{GE} = 15V$, $Rg = 5\Omega$, $L = 200 \mu H$	CT 4
E _{tot}	Total Switching Loss		3778	4436		T _J = 125°C, Energy losses include tail and diode reverse recovery	WF1 & 2
td(on)	Turn - on delay time		50	65		Ic =25A, V _{CC} =600V	14, 16
tr	Rise time		25	35	ns	$V_{GE} = 15V$, $Rg = 5\Omega$, $L = 200\mu H$	CT 4
td(off)	Turn - off delay time		210	230		T _J = 125°C,	WF1
tf	Fall time		60	75			WF2
C _{ies}	Input Capacitance		2200			$V_{GE} = 0V$	
C _{oes}	Output Capacitance		210		рF	$V_{CC} = 30V$	22
C _{res}	Reverse Transfer Capacitance		85			f = 1.0 MHz	
	Reverse bias safe operating area		FULL SQUARE			$T_J = 150^{\circ}C$, $Ic = 120A$	4
RBSOA		FU				$V_{CC} = 1000V, V_P = 1200V$	CT 2
						Rg = 5Ω , V_{GE} = +15V to 0 V	
						T _J = 150°C	CT 3
SCSOA	Short Circuit Safe Operating Area	10			μs	$V_{CC} = 900V, V_P = 1200V$	WF4
						Rg = 5Ω , V_{GE} = +15V to 0 V	
E _{rec}	Reverse recovery energy of the diode		1820	2400	μJ	T _J = 125°C	17,18,19
trr	Diode Reverse recovery time		300		ns	V _{CC} = 600V, Ic = 25A	20, 21
Irr	Peak Reverse Recovery Current		34	38	Α	$V_{GE} = 15V, Rg = 5\Omega, L = 200\mu H$	CT 4, WF3
Le	Internal Emitter Inductance		13			Measured 5 mm from the package.	

International TOR Rectifier

IRGP30B120KD-EP

Fig.1 - Maximum DC Collector Current vs. Case Temperature

Fig.2 - Power Dissipation vs. Case Temperature

Fig.3 - Forward SOA $T_C=25$ °C; $T_i < 150$ °C

Fig.5 - Typical IGBT Output
Characteristics

Fig.7 - Typical IGBT Output Characteristics Tj=125°C; tp=300µs

Fig.6 - Typical IGBT Output Characteristics Tj=25°C; tp=300µs

Fig.8 - Typical Diode Forward
Characteristic

Fig.9 - Typical V_{CE} vs V_{GE} *Tj*= -40°C 20 18 16 14 () 12) 10) 8 $I_{CE}=10A$ I_{CE}=25A 8 I_{CE}=50A 6 4 2 6 8 10 12 14 16 18 20 $V_{GE}(V)$

www.irf.com

5

Fig. 12 - Typ. Transfer Characteristics

Fig.13 - Typical Energy Loss vs Ic Tj=125°C; L=200 μ H; V _{CE}=600V; $Rg=22~\Omega$; V _{GE}=15V

Fig.15 - Typical Energy Loss vs Rg $T_{j=125}$ °C; L=200 μ H; V_{CE} =600V; I_{CE} =25A; V_{GE} =15V

Fig.14 - Typical Switching Time vs Ic Tj=125°C; L=200 μ H; V_{CE}=600V; $Rg=22~\Omega$; V_{GE}=15V

Fig.16 - Typical Switching Time vs Rg Tj=125°C; L=200 μ H; V_{CE} =600V; I_{CE} =25A; V_{GE} =15V

Fig.17 - Typical Diode I_{RR} vs I_F *Tj*=125°C $Rg=5\Omega$ 30 ₹²⁵ $Rg=10 \Omega$ Rg=22 Ω 15 Rg=51 Ω 10 5 0 0 10 $I_F^{30}(A)$ 50 60

Fig.21 - Typ. Diode E rec vs. IF Tj=125°C 2400 5Ω 2200 10 Ω 22 Ω 2000 51<u>Ω</u> (n e r g y l 1800 1600 1400 1200 1000 800 10 30 I_F (A) 50 60

Fig.22 - Typical Capacitance vs V_{CE} V_{GE} =0V; f=1MHz

Fig.23 - Typ. Gate Charge vs. V_{GE} I_C =25A; L=600 μ H

Fig.24 - Normalized Transient Thermal Impedance, Junction-to-Case

International

TOR Rectifier

Fig. CT.1 - Gate Charge Circuit (turn-off)

Fig. CT.3 - S.C. SOA Circuit

Fig. CT.4 - Switching Loss Circuit

Fig. CT.5 - Resistive Load Circuit

International **IOR** Rectifier

IRGP30B120KD-EP

Fig. WF.1 - Typ. Turn-off Loss Waveform @ Tj=125°C using Fig. CT.4

Fig. WF.2 - Typ. Turn-on Loss Waveform @ Tj=125°C using Fig. CT.4

Fig. WF.3 - Typ. Diode Recovery Waveform @ Tj=125°C using Fig. CT.4

Fig. WF.4 - Typ. S.C. Waveform @ T_C =150°C using Fig. CT.3

TO-247AD Package Outline

Dimensions are shown in millimeters (inches)

TO-247AD Part Marking Information

EXAMPLE: THIS IS AN IRGP30B120KD-E

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position

indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 07/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/