INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

LICENCIATURA EM ENGENHARIA INFORMÁTICA E MULTIMÉDIA

PROCESSAMENTO DIGITAL DE SINAIS Teste Nº 2

8 de Junho de 2015

Duração: 1h30mn

1. Considere um SLIT S cuja função de transferência é dada por:

$$H(z) = \frac{1 - z^{-1}}{1 + 0.64z^{-2}}, |z| > 0.8$$

- (a) {2v} Qual a equação às diferenças que caracteriza este sistema? Desenhe o diagrama de blocos que implementa o sistema.
- (b) {2v} Quais os pólos e zeros deste sistema.
- (c) {2v} Determine a resposta impulsional do sistema.
- (d) $\{2v\}$ Esboce a resposta em frequência, $H(\Omega)$. Que tipo de filtragem realiza o sistema.
- (e) $\{2\mathbf{v}\}$ Qual a saída do sistema, y[n], quando na entrada está presente o sinal: $x[n] = 3 \cos[\frac{\pi}{2}n]$?
- 2. Considere que a entrada de um SLIT é o sinal:

$$x[n] = \left(\frac{1}{2}\right)^n u[n]$$

e que sua saída é:

$$y[n] = \left(\frac{1}{2}\right)^n u[n] - \left(\frac{1}{4}\right)^n u[n]$$

onde u[n] é o escalão unitário (u[n] = 0 para n < 0 e u[n] = 1 para $n \ge 0$).

- (a) $\{2v\}$ Determine as transformadas-z, X(z) e Y(z) dos sinais x[n] e y[n].
- (b) $\{2v\}$ Determine a transformada-z, H(z) do SLIT.
- (c) {1v} Caracterize o SLIT em termos do tipo de filtro (FIR/IIR), causalidade e estabilidade.

- 3. Considere os sistemas S_1 , cuja resposta em frequência está representada na Figura (assuma fase nula) e S_2 com resposta em frequência dada por $H_2(\Omega)=1-H_1(\Omega)$. Considere ainda o sinal $x[n]=1+\frac{1}{2}\cos\left[\frac{\pi}{4}n\right]-\frac{3}{4}\cos\left[\frac{3\pi}{4}n\right]$
 - (a) $\{1.5v\}$ Qual o sinal à saída de S_1 quando à sua entrada está x[n]?

- (b) $\{1.5v\}$ Qual o sinal à saída de S_2 quando à sua entrada está x[n]?
- (c) Considere o sistema S_s resultante dos dois sistemas S_1 e S_2 colocados em série.
 - i. $\{1v\}$ Represente graficamente a resposta em frequência, $H_s(\Omega)$, do sistema S_s .
 - ii. $\{1v\}$ Qual o sinal à saída de S_s quando à sua entrada está x[n]?

1.

2. (a)
$$X(z) = \sum_{n=-\infty}^{n=+\infty} x[n]z^{-n} = \sum_{n=0}^{n=+\infty} \left(\frac{1}{2}\right)^n z^{-n} = \frac{1}{1 - \frac{1}{2}z^{-1}}$$

$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} - \frac{1}{1 - \frac{1}{4}z^{-1}}$$
(b) $H(z) = \frac{Y(z)}{X(z)} = 1 - \frac{1 - \frac{1}{2}z^{-1}}{1 - \frac{1}{4}z^{-1}} = \frac{\frac{1}{4}z^{-1}}{1 - \frac{1}{4}z^{-1}}$

(c) SLIT IIR, causal e estável.