Beamer

A.B.Arthur J.Doe

Motivation

The Basic Problem

Timenass

About the Beamer class in presentation making

A short story

A.B.Arthur J.Doe

UCB

August 12, 2022

Table of Contents

Beamer

A.B.Arthur, J.Doe

Motivation

The Basic Problen
That We Studied

Timepas

- 1 Motivation
 - The Basic Problem That We Studied

Sample frame title

Beamer

A.B.Arthur, J.Doe

Motivation

The Basic Problem

Timenass

This is some text in the first frame. This is some text in the first frame. This is some text in the first frame.

What Are Prime Numbers?

Beamer

A.B.Arthur J.Doe

Motivation
The Basic Problem

That We Studied

Definition

A prime number is a number that has exactly two divisors.

Example

■ 2 is prime (two divisors: 1 and 2).

What Are Prime Numbers?

Beamer

A.B.Arthur J.Doe

Motivation The Basic Problem

_.

Definition

A prime number is a number that has exactly two divisors.

Example

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).

What Are Prime Numbers?

Beamer

A.B.Arthur J.Doe

Motivation
The Basic Problem

Timepass

Definition

A prime number is a number that has exactly two divisors.

Example

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).

The proof uses reductio ad absurdum.

Beamer

A.B.Arthur J.Doe

Motivation The Basic Problen That We Studied

Timepass

Theorem

There is no largest prime number.

Proof.

1 Suppose *p* were the largest prime number.

But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof uses reductio ad absurdum.

Beamer

A.B.Arthur J.Doe

Motivation The Basic Problen That We Studied

Timepass

Theorem

There is no largest prime number.

- 1 Suppose *p* were the largest prime number.
- 2 Let q be the product of the first p numbers.
- But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof uses reductio ad absurdum.

Beamer

A.B.Arthui J.Doe

Motivation The Basic Probler That We Studied

Timepass

Theorem

There is no largest prime number.

- 1 Suppose *p* were the largest prime number.
- 2 Let q be the product of the first p numbers.
- **1** Then q + 1 is not divisible by any of them.
- But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof uses reductio ad absurdum.

Beamer

A.B.Arthui J.Doe

Motivation The Basic Probler That We Studied

Timepass

Theorem

There is no largest prime number.

Proof.

- 1 Suppose *p* were the largest prime number.
- 2 Let q be the product of the first p numbers.
- **3** Then q + 1 is not divisible by any of them.
- But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof used reductio ad absurdum.

What's Still To Do?

Beamer

A.B.Arthur J.Doe

Motivation The Basic Problem That We Studied

Timepass

Answered Questions

How many primes are there?

Open Questions

Is every even number the sum of two primes?

What's Still To Do?

Beamer

- Timepass

- Answered Questions
 - How many primes are there?
- Open Questions
 - Is every even number the sum of two primes?

What's Still To Do?

Beamer

A.B.Arthur J.Doe

Motivation
The Basic Problem
That We Studied

Timepass

Answered Questions

How many primes are there?

Open Questions

Is every even number the sum of two primes?

Open Questions

Is every even number the sum of two primes?

A title

Beamer

A.B.Arthur J.Doe

Motivation

The Basic Problem That We Studied

Timepass

Some content.

Beamer

A.B.Arthur, J.Doe

Motivation

The Basic Problem That We Studied

Timepass

Theorem

A = B.

Beamer

A.B.Arthur J.Doe

Motivation

The Basic Problem That We Studied

Timepass

Theorem

A = B.

Theorem

A = B.

- Clearly, A = C.
- Thus A = B.

Timepass

Theorem

A = B.

- Clearly, A = C.
- As shown earlier, C = B.
- Thus A = B.

An Algorithm For Finding Prime Numbers.

Beamer

A.B.Arthur J.Doe

Motivation The Basic Problem That We Studied

```
That We Studie
```

```
int main (void)
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
if (is_prime[i])
std::cout << i << " ";
for (int j = i; j < 100; is_prime [j] = false, j+=i);
}
return 0;
}
```

An Algorithm For Finding Prime Numbers.

Beamer

A.B.Arthur J.Doe

Motivation
The Basic Problem
That We Studied

Timepass

```
int main (void)
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
if (is_prime[i])
std::cout << i << " ";
for (int j = i; j < 100; is_prime [j] = false, j+=i);
}
return 0;
}
```

Note the use of

Beamer

A.B.Arthur J.Doe

Motivation

The Basic Problem

Timepass

■ Robert De Niro

Beamer

A.B.Arthur J.Doe

Motivation

The Basic Problem

- Robert De Niro
- Brian De Palma

Beamer

A.B.Arthur J.Doe

Motivation
The Basic Problem

- Robert De Niro
- Brian De Palma
- Gerard Depardieu

Beamer

A.B.Arthur J.Doe

Motivation

The Basic Problem

- Robert De Niro
- Brian De Palma
- Gerard Depardieu
- Tux