3.3.

Представление данных в ЭВМ

Правила перевода из одной системы счисления в другую

Целые: делим на q → остатки записываем в обратном порядке

Дроби: умножаем на q → целые части формируют новую дробь

$$\begin{array}{c}
0,625_{10} = 0,101_{2} \\
2 \\
1,250 \\
2 \\
0,500 \\
2 \\
1,000
\end{array}$$

Кодирование двоичных чисел

$$\mathbf{\Pi K} = \begin{bmatrix} \mathbf{3H} & a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_0 \end{bmatrix}$$

$$\mathbf{OK} = \begin{cases} \mathbf{+} & \mathbf{0} & a_{n-1} & a_{n-2} & \dots & a_0 \\ \mathbf{-} & \mathbf{1} & \overline{a_{n-1}} & \overline{a_{n-2}} & \dots & \overline{a_0} \end{bmatrix}$$

$$\mathbf{\Pi K} = \begin{cases} \mathbf{+} & \mathbf{0} & a_{n-1} & a_{n-2} & \dots & a_0 \\ \mathbf{1} & \overline{a_{n-1}} & \overline{a_{n-2}} & \dots & \overline{a_0} \\ \mathbf{1} & \overline{a_{n-1}} & \overline{a_{n-2}} & \dots & \overline{a_0} \end{bmatrix}$$

Знаковый разряд
$$3H = \begin{cases} 0 = + \\ 1 = - \end{cases}$$

Значащие разряды \mathcal{Q}_i

Форматы данных

Числа с фиксированной точкой:

$$q^{n-1}$$
 q^{n-2}

$$a_0$$

_	2^{-1}	2^{-2}	$2^{-(n-2)}$)
	a_{-1}	a_{-2}	 a_{-n}	
	0	1	n-1	

со знаком

	2^{-1}	$2^{-(n-1)}$
3H	a_{-1}	 a_{-n-1}
0	1	n-1

со знаком

		2^{n-2}	2^{0}
ſ	3H	a_{n-2}	 a_0
	0	1	n-1

Целое: (int) Байт (8), Слово (16), Двойное слово (32), Квадро слово (64)

m64int

 $x = -72_{10} = -1001000_2 = 1101111000_{IK}$

			1	
63	62		V	0
1	1	11	10111000	

Упакованное слово: в 64 разрядах упаковывают байты (8*8), слова (4*16), двойные слова (2*32)

63 56	55					15	8 7 0	
Байт 7	6	5	4	3	Байт 2	Байт 1	Байт О	

Упакованные байты

Числа с плавающей точкой X = M*2

3.5.

Модуль порядка

Модуль мантиссы

P_{n-1}		P_1	P_0
-----------	--	-------	-------

$$m_{-1}$$
 m_{-2} ... m_{-n}

$$-P_{max} \leqslant P \leqslant +P_{max}$$
$$0 \leqslant M < 1$$

Смещенный порядок:

Смещенный порядок

Модуль мантиссы

 $0 \leq (P + P_{max} = E) \leq +2P_{max}$

Нормализованная мантисса:

 $1/2 \le M < 1$

Скрытая единица: $m_{-1}=1$

$$m_{-1} = 1$$

можно не писать

B M Π Intel: $1 \le M < 2$ $m_0 = 1$ T.e. 1

$$m_0 = 1$$
 T.e

m80 real Расширенная S точность РТ

m32real Двойная

Пусть $x = -350, 750_{10}$

$$350_{10} = 1010111110_2$$
 , $0,750_{10} = 0.11_2$, $S=1$

$$101011110,11=1.01011110,11*2^8$$
, $E=8+(2^{14}-1)=8+16383=16391=100000000000111_2$

78

63

1	10000000000111	1	0101111011	0000
1	4	0	0	

14

точность ДТ

Пусть $x=-85,125_{10}=-1010101,001_2, P=6$, $E=6+(2^{10}-1)=1029=10000000101$

31	30	23	22		0
1	100000	000101	010101	00	

Десятичные числа: BCD-Binary Coded Decimal (ТЕТРАДА)

Зонный:

 Байт
 ... Байт

 Зона
 Цифра
 Зона
 Цифра
 ... Знак
 Цифра

Уплотненный:

Байт		Байт		 Байт	
Цифра	Цифра	Цифра	Цифра	 Цифра	Знак

Пример зонного BCD - формата:

Байт		Байт		Байт	
	7	3	9	6	-
0000	0111	0011	1001	011	1101

M80dec (ΜΠIntel):

79	71	0
S	 D17D0	

Логические элементы ЭВМ

или	Х	У	Z
$z = x \vee y$	0 0 1 1	0 1 0 1	0 1 1
	У	1	Z

Комбинационные узлы ЭВМ

4.2

Дешифратор (декодер)

Мультиплексер

Сумматор

$$b_5 = 1$$

$$b_5$$
=1 $b_{i\neq 5}$ =0

$$B = A_i$$
 при C_1 $C_0 = \mathbf{i}$

C_1	C_0	B
0 0 1 1	0 1 0 1	A_0 A_1 A_2 A_3

Арифметикологическое устройство 4.2.

$a_i = 1$,	
$a_{j\neq i}=0,$	
$B=i_2$.	

A=01000000 B=110

Элементы ЭВМ с памятью

Триггер — элемент,имеющий два устойчивых состояния,который после установки сохраняет своё состояние,что позволяет хранить один бит информации

информации															
RS-триггер			IK-триггер			D-триггер			Т-триггер						
$\begin{array}{c c} \hline R & Q \\ \hline C & \overline{\underline{\mathcal{Q}}} \\ \hline \end{array}$			□ □ □ Q □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □			□ Q			$\begin{array}{c c} \hline \\ \hline $						
S-set-установка R-reset-сброс						Задержка			Счетный						
R	S	Q	$\overline{\mathcal{Q}}$	I	K	Q	$\overline{\mathcal{Q}}$	D	С	Q	$\overline{\mathcal{Q}}$	Т	С	Q	$\overline{\mathcal{Q}}$
0 0 1 1	0 1 0 1	Q 1 0 -	Q 0 1 -	0 0 1 1	0 1 0 1	Q 0 1 Q	<i>Q</i> 1 0 Q	0 0 1 1	0 1 0 1	Q 0 Q 1	$\frac{\overline{Q}}{1}$	0 0 1 1	0 1 0 1	Q Q Q	$egin{array}{c} \overline{\mathcal{Q}} \\ \overline{\mathcal{Q}} \\ \mathbf{Q} \\ \mathbf{Q} \end{array}$

Узлы ЭВМ с памятью

логический, Кольцевой

- **Z** нулевой результат С - перенос из старшего разряда **V** - переполнение
 - **N** отрицательный результата