EXAM 3 is next week

Time: 8:00-9:30 pm Wed Apr 11

Place: Elliott Hall

Material: lectures 1-22, HW 1-22, Recitations 1-12, Labs 1-12

focus will be on last 3rd of material (not on Exams 1 & 2)

Problems: multiple choice, 10 questions (70 points)

write-up part, hand graded (30 points)

Equation sheet: provided with exam

Practice exam + equation sheet: will be posted at the end of this week

Note: no lecture on Thursday Apr 12!

Predicting Position with Rotation

A light string is wrapped around disk of radius R and moment of inertia I that can freely spin around its *fixed* axis. The string is pulled with force F during time Δt . Assume that the disk was initially at rest $(\omega_i=0)$

1) What will be the angular speed ω_f ?

Solution:

$$\Delta \vec{L}_{tot} = \vec{\tau}_{net} \Delta t$$

$$I\vec{\omega}_{f} - I\vec{\omega}_{i} = I\vec{\omega}_{f} = \vec{R} \times \vec{F} \cdot \Delta t$$

$$I\omega_f = RF\Delta t$$

$$\omega_f = \frac{RF\Delta t}{I}$$

$$\frac{d\vec{L}_{tot}}{dt} = \vec{\tau}_{net}$$

Predicting Position with Rotation

A light string is wrapped around disk of radius R and moment of inertia I that can freely spin around its *fixed* axis. The string is pulled with force F during time Δt . Assume that the disk was initially at rest (ω_i =0)

- 1) What will be the angular speed ω_f ?
- 2) How far (Δx) will the end of string move?

Solution:

$$\Delta \theta = \omega_{aver} \Delta t \qquad \longleftarrow \omega_{aver} \equiv \frac{\Delta \theta}{\Delta t}$$

ω changes linearly with time:

$$\frac{d\vec{L}_{tot}}{dt} = \vec{\tau}_{net} \, \middle| \, \omega_f = \frac{RF\Delta t}{I}$$

$$\omega_{aver} = \frac{\omega_i + \omega_f}{2} = \frac{\omega_f}{2}$$

$$\Delta\theta = \frac{\omega_f}{2} \Delta t = \frac{RF(\Delta t)^2}{2I}$$

$$\Delta x = R\Delta\theta = \frac{F(R\Delta t)^2}{2I}$$

See also examples in Section 11.8

Angular momentum quantization

Many elementary particles behave as if they posses intrinsic rotational angular momentum

Electron can have translational (orbital around nucleus), and intrinsic rotational angular momenta

Strange but true: Angular momentum is quantized

Angular momentum quantum =
$$\hbar = \frac{h}{2\pi} = 1.05 \times 10^{-34}$$
 J s

Whenever you measure a vector component of angular momentum you get either half-integer or integer multiple of \hbar

Orbital angular momentum comes in integer multiples, but intrinsic spin of "Fermions" (building blocks) is $\frac{1}{2}$ unit of \hbar

 $[J s] = kg m^2 s^{-1}$

Orbital Angular Momentum

Where is the orbital angular momentum in a hydrogen orbital?

 p_x

Electron "current" circles around the atom.

Quantized because these are 3D standing electron waves around the nucleus.

$$= |L=1, L_z=1>$$

See Atom in a Box www.daugerresearch.com

Bohr's Atomic Model

$$\left| \vec{L}_{A,trans,electron} \right| = \sqrt{mrkq_e^2}$$

1913: IDEA: Electron can only take orbits where its translational angular momentum is integer multiple of \hbar

Allowed radii:
$$r = N^2 \frac{\hbar^2}{kq^2 m}$$

$$\hbar = 1.05 \times 10^{-34} J \cdot s$$
 $N = 1, 2, 3, ...$

This implies that only certain values of L_{A,trans,electron} are allowed:

$$\left| \vec{L}_{A,trans,electron} \right| = N\hbar$$
 where N=1,2,3,...

Bohr Model

Consider an electron in circular orbit about a proton. What are the possible values of $L_{A,trans,electron}$?

Assume circular motion:

$$\left| \vec{F}_e \right| = \frac{m \nu^2}{r} \Rightarrow \frac{kq_e^2}{r^2} = \frac{m v^2}{r} \Rightarrow v = \sqrt{\frac{kq_e^2}{mr}}$$

Thus,
$$\left| \vec{L}_{A,trans,electron} \right| = mvr = \sqrt{mrkq_e^2}$$

If any orbital radius r is allowed, L_{A,trans,electron} can be anything.

However, only certain values of r are allowed . . .

The Bohr model: allowed radii and energies

See derivation on page 444-446

Allowed Bohr radii for electron orbits:

$$r_N = N^2 \frac{h^2}{\frac{1}{4\pi\varepsilon_0} e^2 m} \approx N^2 (0.53 \times 10^{-10} \text{ m})$$

Use E
$$_{\rm N}$$
 = K+U and $\left| \vec{F}_e \right| = \frac{m \nu^2}{r} = \frac{k q_e^2}{r^2}$

$$k = \frac{1}{4\pi\epsilon_o}$$

Bohr model energy levels:

$$E = -rac{\left(rac{1}{4\pi\epsilon_o}
ight)^2 e^4 m}{2N^2\hbar^2} = -rac{13.6 \ {
m eV}}{{
m N}^2}, \quad {
m N=1,2,3,...}$$

The Bohr model: and photon emission

Particle spin

Rotational angular momentum

Electron, muon, neutrino have spin 1/2 : mesurements of a component of their angular momentum yields $\pm \frac{1}{2}\hbar$

Quarks have spin ½
Protons and neutrons (three quarks) have spin ½

Mesons: (quark+antiquark) have spin 0 or 1

Macroscopic objects: quantization of *L* is too small to notice!

Two lowest energy electrons in any atom have total angular momentum 0

Fermions: spin ½, Pauli exclusion principle Cooper pairs: superconductivity

Bosons: integer spin

Rotational energies of molecules are quantized

Quantum mechanics: L_x , L_y , L_z can only be integer or half-integer multiple of \hbar

Quantized values of $L^2 = l(l+1)\hbar^2$ where l is integer or half-integer

Gyroscopic Stability

Edmund Scientifics

In 1917, the Chandler Company of Indianapolis, Indiana, created the "Chandler gyroscope," a toy gyroscope with a pull string and pedestal. It has been in continuous production ever since and is considered a classic American toy. -- Wikipedia

Best Trick in the Book

$$\frac{d\vec{p}}{dt} = \vec{F}_{\text{net}}$$

$$\vec{p} = |p|\hat{p}$$

Vectors have direction and magnitude.

Vector Notation and the Momentum Principle:

$$\frac{d\vec{p}}{dt} = |p| \frac{d\hat{p}}{dt} + |\hat{p} \frac{d|p|}{dt}$$

$$= |\vec{F}_{\perp}| + |\vec{F}_{||}|$$

Use the chain rule

 \vec{F}_{\perp} causes changes in the *direction* of \vec{p}

 $ec{F}_{||}$ causes changes in the *magnitude* of $ec{p}$

Blast Section 5.5

Best Trick Not in the Book

$$\frac{d\vec{L}}{dt} = \vec{\tau}_{\rm net}$$

$$\vec{\tau} = |\tau|\hat{\tau}$$

Vectors have *direction* and *magnitude*.

Vector Notation and the Angular Momentum Principle:

$$\begin{split} \frac{d\vec{L}}{dt} &= \left| L \right| \frac{d\hat{L}}{dt} + \left| \hat{L} \frac{d|L|}{dt} \right| \\ &= \left| \vec{\tau}_{\perp} \right| + \left| \vec{\tau}_{||} \right| \end{split}$$

Use the chain rule

 $ec{ au}_{\perp}$ causes changes in the *direction* of $ec{L}$

 $ec{ au}_{||}$ causes changes in the *magnitude* of $ec{L}$

Gyroscopes

Precession

Precession and nutation

i>clicker

$$\Omega = \frac{RMg}{I\omega}$$

In which of the two gyroscopes is the disk spinning faster?

Precession phenomena (see book)

Magnetic Resonance Imaging (MRI)

Precession of spin axes in astronomy

Tidal torques

Felix Bloch 1905-1983

Edward Mills Purcell 1912-1997

B.S.E.E. from **Purdue electrical engineering**

NMR - nuclear magnetic resonance

Independently discovered (1946)

Nobel Price (1952)

NMRI = MRI