Mineração de Dados

Agrupamento

Sumário

- Análise de Agrupamento
- Métodos de Particionamento
- Métodos Hierárquicos
- Métodos Baseados em Densidade
- Métodos Baseados em Grade
- 6 Avaliando Agrupamentos

Análise de Agrupamento

Análise de Agrupamento

- ► Grupo ou *Cluster*: uma coleção de objetos
 - similar (ou relacionado) aos outros objetos do mesmo grupo
 - dissimilar (ou não relacionados) aos objetos dos outros grupos
- Agrupamento, Clustering, Segmentação dos Dados
 - ► Encontrar similaridades entre os dados de acordo com características desses dados e agrupá-los em conjuntos com elementos similares
- Aprendizado não supervisionado: não há uma indicação de classe ou supervisão
- Aplicações típicas
 - Como uma ferramenta stand-alone para descobrir relações entre os dados
 - ▶ Como um componente de pré-processamento para outros algoritmos

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- ► Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market research

Agrupamento para Pré-processamento

- Sumarização
 - Pré-processamento para técnicas de regressão, PCA, classificação e análise de associação
- Compressão
 - Processamento de imagem: quantização vetorial
- Encontrar os k-vizinhos mais próximos
 - Busca por grupos
- Detecção de outlier
 - Os outliers frequentemente não estão relacionados a nenhum grupo

Qualidade

- Uma boa técnica de agrupamento deve produzir uma organização com
 - Alta similaridade intra-grupo: grupo coesivo
 - Baixa similaridade inter-grupos: distinção entre grupos
- A qualidade de uma técnica de agrupamento depende da
 - medida de similaridade utilizada pelo método
 - sua implementação
 - sua habilidade em descobrir alguns ou todos os padrões escondidos nos dados

Medida de Qualidade do Agrupamento

- ► Métrica de similaridade/dissimilaridade
 - lacksquare Similaridade é expressa em termos de uma função de distância: d(i,j)
 - A definição das funções de distância depende do tipo de dado
 - Pesos podem estar associados a diferentes variáveis com base na aplicação e na semântica dos dados
- Qualidade de um agrupamento
 - Normalmente, existe uma função de "qualidade" separada
 - ▶ É difícil definir "suficientemente similar" ou "bom suficiente"
 - Esta avaliação é tipicamente subjetiva

Considerações para a Análise de Agrupamento

- Critério de Particionamento
 - Único nível
 - Hierárquico
- Separação dos grupos
 - Exclusivo: cada elemento pertence apenas a um grupo
 - Não exclusivo: um elemento pode pertencer a mais de um grupo
- Medida de similaridade
 - Distância: Euclideana, por exemplo
 - Conectividade: densidade ou contiguidade
- Espaço de agrupamento
 - Todo o espaço: comumente adotado quando os dados envolvem baixa dimensionalidade
 - Subespaços: agrupamento sobre dados de alta dimensionalidade

Requerimentos e Desafios

- Escalabilidade
 - Agrupamento de muitos dados
- Habilidade de lidar com diferentes tipos de atributos
- Agrupamento com restrições
 - As restrições são impostas pelo usuário
 - Utiliza conhecimento do domínio do problema
- ► Interpretabilidade e usabilidade
- Outros
 - Descoberta de grupos com forma arbitrária
 - ► Habilidade de tratar dados com ruído
 - Agrupamento incremental e insensibilidade à ordem dos dados
 - Alta dimensionalidade

Propostas Mais Adotadas

- Particionamento
 - Várias partições são construídas e depois são avaliadas segundo algum critério; por exemplo, minimizando a soma dos quadrados dos erros
 - Métodos típicos: k-Médias, k-Medoides, CLARANS
- Hierárquica
 - Cria uma decomposição hierárquica do conjunto de dados usando algum critério
 - Métodos típicos: Diana, Agnes, BIRCH, CAMELEON
- Baseadas em densidade
 - Leva em consideração funções de conectividade de densidade
 - Métodos típicos: DBSCAN, OPTICS, DenClue
- Baseadas em grade
 - Organizado numa estrutura de granularidade multinível
 - ▶ Métodos típicos: STING, WaveCluster, CLIQUE

Agrupamento: Exemplos de Problemas

Scikit Learn: Agrupamento

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Ward hierarchical clustering	number of clusters	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance between points

Scikit Learn: Exemplos Incluídos Aqui

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Aminity propagation	damping, sample preference	Not scalable with n_samples	many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Ward hierarchical clustering	number of clusters	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance between points

Métodos de Particionamento

If Jf

Métodos de Particionamento: Conceito Básico

ightharpoonup Particionar um banco de dados D com n objetos em k grupos de modo que a soma dos quadrados das distâncias é minimizada como

min
$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - c_i)^2$$
,

onde c_i é o centroide ou medóide do *cluster* C_i

- Dado k, encontrar um particionamento de k grupos que otimizam o critério de particionamento adotado
 - Solução global: exaustivamente enumera-se todas as partições
 - Métodos heurísticos: algoritmo k-Médias e k-Medoids
 - ▶ k-Médias: Cada *cluster* é representado pelo seu centro geométrico
 - k-Medoids: Cada grupos é representado pelo seu objeto central

k-Médias

- Dado o número de *clusters* k
 - Particiona-se as instâncias em k conjuntos não vazios
 - Computa o centro de cada grupo como sendo o ponto médio dos seus elementos
 - Atribui cada elemento a um cluster pela menor distância aos atuais centros
 - Volta-se ao passo de cômputo dos centros

k-Médias

(a) Initial clustering

(b) Iterate

(c) Final clustering

k-Médias

- lacktriangle Vantagem: eficiência computacional na ordem de O(tkn)
 - $lackbox{ } n$ é o número de instâncias, k é o número de grupos e t é o número de iterações até a convergência do algoritmo
- O processo iterativo converge para um mínimo local
- Fraquezas
 - Aplicável apenas para o caso contínuo
 - k-Modas pode ser aplicado ao caso categórico
 - ▶ k-Medoids é mais robusto quando há diferentes tipos de dados
 - ightharpoonup O número de grupos k deve ser definido à priori (apesar de existirem meios de determinar esse parâmetro)
 - Sensível à ruído e outliers
 - Encontra grupos apenas com organização geométrica convexa

Variantes do k-Médias

- ► A maioria das variantes do k-Médias difere-se em
 - Seleção dos grupos iniciais
 - Cálculo da dissimilaridade
 - Estratégias para cálculo das médias dos grupos
- Tratamento de dados categóricos: k-Modas
 - Substitui as médias por modas
 - Usar novas medidas de dissimilaridades para tratar os dados categóricos
 - Usar métodos baseados em frequências para atualizar as modas dos grupos
 - Mistura de dados categóricos e numéricos: k-Protótipos

Variantes do k-Médias

- ► O algoritmo k-Médias é sensível à *outliers*
 - Um objeto com um valor extremamente grande pode distorcer a distribuição dos dados
- k-Medoids
 - Utiliza o medóide que é o ponto localizado mais ao centro do grupo

k-Medoids

- ► Encontra objetos centrais em grupos
 - ► PAM (Partition Around Medoids)
 - Começa com um conjunto inicial de pontos centrais e iterativamente substitui um desses pontos centrais, se houver redução na distância total do grupo resultante
 - Funciona bem para conjuntos pequenos de dados, mas não escala bem para grandes quantidades de dados

- Melhora na eficiência do PAM
 - ► CLARA: PAM opera sobre amostras
 - CLARANS: re-amostragem aleatória

k-Médias / k-Means

KMeans

MiniBatchKMeans

Difference

Métodos Hierárquicos

- ▶ Usa-se uma matriz de distância como critério de agrupamento
- Não requer a quantidade k de grupos, mas requer um critério de parada

Agglomerative and divisive hierarchical clustering on data objects $\{a,b,c,d,e\}$

- Usa o Método de Ligação Única e uma matriz de dissimilaridade
- Nós que têm uma dissimilaridade mínima são unidos
- Eventualmente todos os nós pertencem a um único grupo

- Opera em ordem inversa do AGNES
- Eventualmente pode gerar grupos com um único elemento

Distância entre Grupos

- Ligação simples
 - Menor distância entre um elemento de um grupo e um elemento de outro
 - $b dist(C_i, C_j) = \min(t_{ip}, t_{jq})$
- Ligação completa
 - Maior distância entre um elemento de um grupo e um elemento de outro
 - $b dist(C_i, C_j) = \max(t_{ip}, t_{jq})$
- Média
 - Média das distâncias entre os elementos de um grupo e os elementos de outro
 - $ightharpoonup dist(C_i, C_j) = avg(t_{ip}, t_{jq})$

Distância entre Grupos

- Centroide
 - Distância entre os centroides de dois grupos
 - $ightharpoonup dist(C_i, C_j) = dist(c_i, c_j)$
- Medoid
 - Distância entre os medóides dos dois grupos
 - ▶ $dist(C_i, C_j) = dist(m_i, m_j)$, onde m_i e m_j são os elementos mais ao centro dos grupos i e j, respectivamente

If

Agrupamento Hierárquico

- ► Algumas fraquezas dos métodos de agrupamento aglomerativos
 - Não se pode desfazer o que foi feito antes
 - Não escala bem: complexidade computacional de ao menos $O(n^2)$, onde n é o número de instâncias

Métodos Baseados em Densidade

Métodos Baseados em Densidade

- Agrupamentos baseados em densidade, tal como pontos conectados por densidade
- Principais características
 - Descobrir grupos com forma arbitrária
 - Trata o ruído
 - Varredura única
 - Requer parâmetros de densidade no critério de parada
- Algumas técnicas
 - DBSCAN
 - ▶ OPTICS
 - DENCLUE
 - CLIQUE

Conceitos Básicos

- Parâmetros
 - eps: raio máximo de vizinhança
- minPts: quantidade mínima de pontos dentro da vizinhança do ponto
- $ightharpoonup N_{eps}(p)$: número de elementos com distância menor ou igual a eps
- Core object: q é um core object se $|N_{eps}(q)| \geq minPts$
- Diretamente alcançável pela densidade
 - Um ponto p é diretamente alcançável pela densidade de um ponto q se
 - (i) p pertence ao $N_{eps}(q)$
 - (ii) $|N_{eps}(q)| \ge minPts$

$$MinPts = 5$$

$$Eps = 1 cm$$

Alcançável e Conectado pela Densidade

- ► Alcançável pela densidade
 - ▶ Um ponto p é alcançável pela densidade por um ponto q se há uma sequência de pontos $q = p_1, \ldots, p_n = p$ tal que p_{i+1} é diretamente alcançável pela densidade por p_i
- Conectado pela densidade
 - Dois pontos p e q são conectados pela densidade se há um ponto o tal que p e q são alcançáveis pela densidade por ele

DBSCAN

- DBSCAN: Density-Based Spatial Clustering of Applications with Noise
- Um cluster é definido como o conjunto máximo de pontos conectados pela densidade
- Descobre grupos de forma arbitrária e em bases com ruído

DBSCAN

- Seleciona um ponto p arbitrário
- Verifica-se se p já foi visitado
- Se p é um núcleo
 - lacktriangle Se p não pertence a um grupo então um novo grupo é formado
 - Recupera todos os pontos alcançáveis pela densidade de p (utilizando ϵ e minPts)
 - Esses pontos são também investigados (conectividade)
- ightharpoonup Se p é um ponto de borda, então nenhum ponto é alcançável pela densidade de p
- O processo se repete até que todos os pontos sejam visitados

DBSCAN


```
mark all objects as unvisited;
(1)
(2)
     do
(3)
           randomly select an unvisited object p;
(4)
           mark p as visited;
           if the \epsilon-neighborhood of p has at least MinPts objects
(5)
(6)
                 create a new cluster C, and add p to C;
(7)
                 let N be the set of objects in the \epsilon-neighborhood of p;
(8)
                 for each point p' in N
(9)
                       if p' is unvisited
                            mark p' as visited;
(10)
(11)
                            if the \epsilon-neighborhood of p' has at least MinPts points,
                            add those points to N;
                       if p' is not yet a member of any cluster, add p' to C;
(12)
(13)
                 end for
(14)
                 output C;
(15)
           else mark p as noise;
(16) until no object is unvisited;
```

DBSCAN: Sensibilidade dos Parâmetros

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

(a) (b)

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

- ▶ O DBSCAN é muito sensível aos seus parâmetros
- O Ordering Points To Identify the Clustering Structure (OPTICS) busca diminuir essa dependência
 - lacktriangle Os parâmetros ϵ (aqui maior distância) e minPts ainda são utilizados
- lacktriangle Nota-se que o agrupamento é monotônico em relação a ϵ
 - Dado o mesmo MinPts, um grupo gerado com ϵ_2 é um subgrupo de um gerado com ϵ_1 quando $\epsilon_1<\epsilon_2$
- Produz uma ordem especial dos dados, que leva em consideração sua estrutura de densidade
- Os parâmetros da técnica de agrupamento por densidade são determinados com base na estrutura dos dados

- ► Requer as definições de
 - lacktriangledown core-distance de q é o menor valor de ϵ' tal que $N_{eps}(q) \geq \operatorname{MinPts}$
 - ightharpoonup reachability-distance de q para p é $\max\{\mathsf{core}\text{-distance}(q),\mathsf{dist}(p,q)\}$
 - Se q não é um núcleo, então essa distância é indefinida

- Os objetos são processados numa ordem específica
 - ightharpoonup Objetos com maior ϵ aparecem primeiro

Cluster-order of the objects

Métodos Baseados em Grade

Métodos Baseados em Grade

- Usa uma estrutura de grade multidimensional
- Alguns métodos
 - ► STING: a STatistical INformation Grid approach)
 - CLIQUE: Clustering In QUEst

CLIQUE

- Pode ser considerado tanto um método de agrupamento baseado em grade quanto em densidade
- Particiona cada dimensão em intervalos (mesmo número para todas as dimensões) e igualmente espaçados
- Gera vários retângulos para cada par de dimensões
- Identifica os subespaços que contém clusters usando as densidades de cada dimensão
 - Identifica unidades densas e as unidades densas conectadas
- Determina novos grupos pela combinação dos subespaços

CLIQUE

After forming a grid structure on the space, each rectangular cell is called a Unit. Unit: Dense: A unit is dense, if the fraction of total data points contained in the unit exceeds the input model parameter. Cluster: A cluster is defined as a maximal set of connected dense units.

CLIQUE

Avaliando Agrupamentos

Tendência do Agrupamento

- ▶ Identificar se uma estrutura não aleatória existe nos dados medindo a probabilidade dos dados serem geradas por uma distribuição uniforme
- Teste de aleatoriedade espacial via teste estatístico: Estatística de Hopkins
 - Amostre n pontos p_1, \ldots, p_n uniformemente de D
 - Para cada p_i , encontre o vizinho mais próximo em D: $x_i = \min dist(p_i, v)$, onde $v \in D$
 - lacktriangle Amostre n pontos q_1,\ldots,q_n uniformemente no mesmo intervalo de D
 - Para cada q_i , encontre o vizinho mais próximo em $D \{q_i\}$: $y_i = \min dist(q_i, v)$, onde $v \in D$ e $v \neq q_i$

 - $lackbox{ Quando } H pprox 1$ então o conjunto de dados é considerado agrupável

Determinar o Número de Grupos

- Método empírico
 - Número de grupos $\approx \sqrt{n}/2$ para um banco de dados de n pontos
- Método de Elbow
 - Use o ponto em que há mudança de tendência da variância da soma intragrupo
- Validação cruzada
 - Divide-se um conjunto de dados em m partes
 - lacktriangledown m-1 partes são usadas para obter um modelo de agrupamento
 - Os demais dados são usados para testar a qualidade do agrupamento
 - A qualidade do modelo é avaliada pela soma dos quadrados das distâncias entre os pontos de teste e o centroide mais próximo
 - Para todo k > 0, o processo é repetido m vezes e o melhor k é assumido como aquele que apresenta os melhores resultados

Qualidade do Agrupamento

- Extrínsecos
 - Avalia o modelo com base em alguma supervisão
- Intrínsecos
 - Avalia o modelo considerando: separação entre os grupos e compactação dos grupos

Método Extrínseco

- ▶ Índice aleatório ajustado (ARI): considera todos os pares de amostras entre dois agrupamentos e avalia quais estão no mesmo grupo
 - adjusted_rand_score
 - ► Vale 1 quando os agrupamentos são idênticos
- Homogeneidade dos grupos: avalia se os dados de um grupo pertencem a uma única classe
- Completude dos grupos: avalia se os dados de uma classe são elementos do mesmo grupo
- ► Medida-V: média harmônica entre homogeneidade e completude

Coeficiente da Silhueta

$$a(i) = \frac{1}{|C_i|-1} \sum_{j \in C_i, i \neq j} d(i,j)$$

$$b(i) = \min_{k \neq i} \frac{1}{|C_k|} \sum_{j \in C_k} d(i,j)$$

$$s(i) = \frac{b(i)-a(i)}{\max\{a(i),b(i)\}}, \text{ se } |C_i| > 1, \text{ e 0, caso contrário}$$

- lacktriangle Calcula-se a média dos s(i) para todos os dados
- Comum na escolha do número de grupos (maior média)

Avaliação de Modelos de Agrupamento

