Class 8: PCA Mini Project

Sophia Wang A16838155

It is important to consider scaling your data before analysis such as PCA.

For example:

head(mtcars)

	mpg	cyl	disp	hp	${\tt drat}$	wt	qsec	٧s	\mathtt{am}	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

colMeans(mtcars)

```
mpg
                 cyl
                           disp
                                         hp
                                                  drat
                                                               wt
                                                                         qsec
20.090625
            6.187500 230.721875 146.687500
                                              3.596563
                                                         3.217250 17.848750
                           gear
                                       carb
                  am
 0.437500
            0.406250
                       3.687500
                                   2.812500
```

apply(mtcars, 2, sd)

```
mpg
                  cyl
                             disp
                                          hp
                                                     drat
                                                                   wt
6.0269481
            1.7859216 123.9386938
                                  68.5628685
                                               0.5346787
                                                            0.9784574
     qsec
                  vs
                               am
                                         gear
                                                     carb
1.7869432
            0.5040161
                       0.4989909
                                  0.7378041
                                               1.6152000
```

x <- scale(mtcars) head(x)</pre>

```
mpg
                                   cyl
                                              disp
                                                                    drat
Mazda RX4
                  0.1508848 -0.1049878 -0.57061982 -0.5350928 0.5675137
Mazda RX4 Wag
                  0.1508848 -0.1049878 -0.57061982 -0.5350928 0.5675137
Datsun 710
                  0.4495434 - 1.2248578 - 0.99018209 - 0.7830405 0.4739996
Hornet 4 Drive
                 0.2172534 -0.1049878 0.22009369 -0.5350928 -0.9661175
Hornet Sportabout -0.2307345 1.0148821 1.04308123 0.4129422 -0.8351978
Valiant
                 -0.3302874 -0.1049878 -0.04616698 -0.6080186 -1.5646078
                           wt
                                    qsec
                                                 vs
Mazda RX4
                 -0.610399567 -0.7771651 -0.8680278 1.1899014 0.4235542
Mazda RX4 Wag
                 -0.349785269 -0.4637808 -0.8680278 1.1899014 0.4235542
Datsun 710
                 -0.917004624   0.4260068   1.1160357   1.1899014   0.4235542
Hornet 4 Drive
                 -0.002299538  0.8904872  1.1160357  -0.8141431  -0.9318192
Hornet Sportabout 0.227654255 -0.4637808 -0.8680278 -0.8141431 -0.9318192
                  0.248094592 1.3269868 1.1160357 -0.8141431 -0.9318192
Valiant
                       carb
Mazda RX4
                 0.7352031
Mazda RX4 Wag
                 0.7352031
Datsun 710
                 -1.1221521
Hornet 4 Drive
                 -1.1221521
Hornet Sportabout -0.5030337
Valiant
                 -1.1221521
```

round(colMeans(x),2)

```
mpg cyl disp hp drat wt qsec vs am gear carb 0 0 0 0 0 0 0 0 0 0 0
```

apply(x, 2, sd)

```
mpg cyl disp hp drat wt qsec vs am gear carb
1 1 1 1 1 1 1 1 1 1 1
```

Load the data:

```
# Save your input data file into your Project directory
fna.data <- "WisconsinCancer.csv"

# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis radiu	s_mean	texture_mean	perimeter_mean	area_mean	
842302	М	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	smoothness_mean	compa	ctness_mean co	ncavity_mean co	oncave.poi	nts_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474	:	0.07864	0.0869		0.07017
84300903	0.10960)	0.15990	0.1974		0.12790
84348301	0.14250)	0.28390	0.2414		0.10520
84358402	0.10030)	0.13280	0.1980		0.10430
843786	0.12780)	0.17000	0.1578		0.08089
	symmetry_mean f	ractal	_dimension_mea	n radius_se te	kture_se pe	erimeter_se
842302	0.2419		0.0787	1 1.0950	0.9053	8.589
842517	0.1812		0.0566	7 0.5435	0.7339	3.398
84300903	0.2069		0.0599	9 0.7456	0.7869	4.585
84348301	0.2597		0.0974	4 0.4956	1.1560	3.445
84358402	0.1809		0.0588	3 0.7572	0.7813	5.438
843786	0.2087		0.0761	3 0.3345	0.8902	2.217
	area_se smoothn	ess_se	compactness_s	e concavity_se	concave.po	oints_se
842302	153.40 0.	006399	0.0490	4 0.05373		0.01587
842517	74.08 0.	005225	0.0130	0.01860		0.01340
84300903	94.03 0.	006150	0.0400	6 0.03832		0.02058
84348301	27.23 0.	009110	0.0745	0.05661		0.01867
84358402	94.44 0.	011490	0.0246	1 0.05688		0.01885
843786	27.19 0.	007510	0.0334	0.03672		0.01137
	symmetry_se fra	ctal_d	imension_se ra	dius_worst text	ture_worst	
842302	0.03003		0.006193	25.38	17.33	
842517	0.01389		0.003532	24.99	23.41	
84300903	0.02250		0.004571	23.57	25.53	
84348301	0.05963		0.009208	14.91	26.50	
84358402	0.01756		0.005115	22.54	16.67	
843786	0.02165		0.005082	15.47	23.75	

	perimeter_worst	${\tt area_worst}$	smoothness	s_worst	${\tt compactness_worst}$
842302	184.60	2019.0		0.1622	0.6656
842517	158.80	1956.0		0.1238	0.1866
84300903	152.50	1709.0		0.1444	0.4245
84348301	98.87	567.7		0.2098	0.8663
84358402	152.20	1575.0		0.1374	0.2050
843786	103.40	741.6		0.1791	0.5249
	concavity_worst	concave.po	ints_worst	symmeti	ry_worst
842302	0.7119		0.2654		0.4601
842517	0.2416		0.1860		0.2750
84300903	0.4504		0.2430		0.3613
84348301	0.6869		0.2575		0.6638
84358402	0.4000		0.1625		0.2364
843786	0.5355		0.1741		0.3985
	fractal_dimension	on_worst			
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402		0.07678			
843786		0.12440			

prcomp

function (x, ...)
UseMethod("prcomp")
<bytecode: 0x120c95188>

<environment: namespace:stats>

Remove this first diagnosis column from the data set as I don't want to pass this to PCA etc. It is essentially the expert "answer" that we will compare our analysis results to.

```
wisc.data <- wisc.df[,-1]
dim(wisc.data)</pre>
```

[1] 569 30

```
head(wisc.data)
```

radius_mean texture_mean perimeter_mean area_mean smoothness_mean

0.40000	47.00	40.00	100.00	004 0	0 44040
842302	17.99	10.38		001.0	0.11840
842517	20.57	17.77		326.0	0.08474
84300903	19.69	21.25		203.0	0.10960
84348301	11.42	20.38		386.1	0.14250
84358402	20.29	14.34		297.0	0.10030
843786	12.45	15.70		477.1	0.12780
040200	_	concavity_mean	_	ts_mean symme 0.14710	-
842302	0.27760				0.2419
842517	0.07864			0.07017	0.1812
84300903				0.12790	0.2069
84348301	0.28390			0.10520	0.2597
84358402	0.13280			0.10430	0.1809
843786	0.17000			0.08089	0.2087
040200		on_mean radius_se		-	
842302		0.07871 1.0950		8.589	153.40
842517		0.5435		3.398	74.08
84300903		0.05999 0.7456		4.585	
84348301		0.4956		3.445	
84358402		0.05883 0.7572		5.438	94.44
843786		0.07613 0.3345	0.8902	2.217	27.19
0.40000	_	ompactness_se con	• –		
842302	0.006399	0.04904	0.05373	0.015	
842517	0.005225	0.01308	0.01860	0.013	
84300903		0.04006	0.03832	0.020	
84348301	0.009110	0.07458	0.05661	0.018	
84358402	0.011490	0.02461	0.05688	0.018	
843786	0.007510	0.03345	0.03672	0.011	
040200	-	ctal_dimension_se			
842302	0.03003	0.006193			
842517	0.01389	0.003532			
84300903		0.004571	23.5		
84348301	0.05963	0.009208	14.9 22.5		
84358402	0.01756	0.005115	22.0		
843786	0.02165	0.005082			
0.40000	•	area_worst smoot	_	-	
842302	184.60	2019.0	0.1622		6656
842517	158.80	1956.0	0.1238		1866
84300903		1709.0	0.1444		4245
84348301	98.87	567.7	0.2098		8663
84358402	152.20	1575.0	0.1374		2050
843786	103.40	741.6	0.1791		5249
040200	• –	concave.points_w		• –	
842302	0.7119	0.3	2654	0.4601	

```
842517
                  0.2416
                                         0.1860
                                                         0.2750
84300903
                  0.4504
                                         0.2430
                                                         0.3613
84348301
                  0.6869
                                         0.2575
                                                         0.6638
84358402
                  0.4000
                                         0.1625
                                                         0.2364
843786
                  0.5355
                                                         0.3985
                                         0.1741
         fractal_dimension_worst
                          0.11890
842302
842517
                          0.08902
84300903
                          0.08758
84348301
                          0.17300
84358402
                          0.07678
843786
                          0.12440
```

```
diagnosis <- wisc.df[,1]
table(diagnosis)</pre>
```

diagnosis

B M

357 212

Q1. How many observations are in this dataset?

569 observations

Q2. How many of the observations have a malignant diagnosis?

212 Malignant

Q3. How many variables/features in the data are suffixed with _mean?

10 variables in the data are suffixed with _mean.

```
length(grep("_mean",colnames(wisc.data)))
```

[1] 10

##Principal Component Analysis

```
colMeans(wisc.data)
```

radius_mean	texture_mean	perimeter_mean
1.412729e+01	1.928965e+01	9.196903e+01
area_mean	${\tt smoothness_mean}$	compactness_mean
6.548891e+02	9.636028e-02	1.043410e-01
${\tt concavity_mean}$	concave.points_mean	${ t symmetry_mean}$
8.879932e-02	4.891915e-02	1.811619e-01
fractal_dimension_mean	radius_se	texture_se
6.279761e-02	4.051721e-01	1.216853e+00
perimeter_se	area_se	smoothness_se
2.866059e+00	4.033708e+01	7.040979e-03
compactness_se	concavity_se	concave.points_se
2.547814e-02	3.189372e-02	1.179614e-02
symmetry_se	fractal_dimension_se	radius_worst
2.054230e-02	3.794904e-03	1.626919e+01
texture_worst	perimeter_worst	area_worst
2.567722e+01	1.072612e+02	8.805831e+02
${\tt smoothness_worst}$	compactness_worst	concavity_worst
1.323686e-01	2.542650e-01	2.721885e-01
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
1.146062e-01	2.900756e-01	8.394582e-02

apply(wisc.data,2,sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry_mean	concave.points_mean	${\tt concavity_mean}$
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	${\tt fractal_dimension_mean}$
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se
6.170285e-03	3.018606e-02	1.790818e-02
radius_worst	${\tt fractal_dimension_se}$	symmetry_se
4.833242e+00	2.646071e-03	8.266372e-03
area_worst	perimeter_worst	texture_worst
5.693570e+02	3.360254e+01	6.146258e+00
${\tt concavity_worst}$	compactness_worst	${\tt smoothness_worst}$
2.086243e-01	1.573365e-01	2.283243e-02
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst

6.573234e-02 6.186747e-02 1.806127e-02

```
wisc.pr <- prcomp(wisc.data,scale=T)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                         PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                                         PC10
                                                PC11
                                                        PC12
                           PC8
                                  PC9
                                                                PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                  PC20
                                                                         PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                         PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

See what is in our PCA result object:

```
attributes(wisc.pr)
```

```
$names
```

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

head(wisc.pr\$x)

```
PC1
                         PC2
                                   PC3
                                             PC4
                                                        PC5
                                                                    PC6
842302
        -9.184755 -1.946870 -1.1221788 3.6305364 1.1940595 1.41018364
842517
        -2.385703
                   3.764859 -0.5288274 1.1172808 -0.6212284 0.02863116
84300903 -5.728855
                   1.074229 -0.5512625 0.9112808 0.1769302 0.54097615
84348301 -7.116691 -10.266556 -3.2299475 0.1524129 2.9582754 3.05073750
84358402 -3.931842
                   1.946359 1.3885450 2.9380542 -0.5462667 -1.22541641
843786
        -2.378155 -3.946456 -2.9322967 0.9402096 1.0551135 -0.45064213
                                                 PC10
                PC7
                            PC8
                                       PC9
                                                            PC11
                                                                       PC12
         2.15747152  0.39805698  -0.15698023  -0.8766305  -0.2627243  -0.8582593
842302
842517
         0.01334635 -0.24077660 -0.71127897 1.1060218 -0.8124048 0.1577838
84300903 -0.66757908 -0.09728813 0.02404449 0.4538760 0.6050715 0.1242777
84348301 1.42865363 -1.05863376 -1.40420412 -1.1159933 1.1505012 1.0104267
84358402 -0.93538950 -0.63581661 -0.26357355 0.3773724 -0.6507870 -0.1104183
843786
         0.49001396  0.16529843  -0.13335576  -0.5299649  -0.1096698  0.0813699
               PC13
                            PC14
                                        PC15
                                                    PC16
                                                                PC17
842302
        0.10329677 -0.690196797 0.601264078 0.74446075 -0.26523740
842517
        -0.94269981 -0.652900844 -0.008966977 -0.64823831 -0.01719707
84300903 -0.41026561 0.016665095 -0.482994760 0.32482472 0.19075064
84348301 -0.93245070 -0.486988399 0.168699395 0.05132509 0.48220960
84358402 0.38760691 -0.538706543 -0.310046684 -0.15247165 0.13302526
843786
       -0.02625135 0.003133944 -0.178447576 -0.01270566 0.19671335
               PC18
                          PC19
                                     PC20
                                                  PC21
                                                              PC22
842302
        -0.54907956 0.1336499 0.34526111 0.096430045 -0.06878939
842517
         0.31801756 -0.2473470 -0.11403274 -0.077259494 0.09449530
84300903 -0.08789759 -0.3922812 -0.20435242 0.310793246 0.06025601
84348301 -0.03584323 -0.0267241 -0.46432511 0.433811661 0.20308706
84358402 -0.01869779 0.4610302 0.06543782 -0.116442469 0.01763433
       -0.29727706 -0.1297265 -0.07117453 -0.002400178 0.10108043
843786
               PC23
                            PC24
                                        PC25
                                                     PC26
                                                                 PC27
842302
         0.08444429 0.175102213 0.150887294 -0.201326305 -0.25236294
        -0.21752666 -0.011280193 0.170360355 -0.041092627 0.18111081
842517
84300903 -0.07422581 -0.102671419 -0.171007656 0.004731249 0.04952586
84348301 -0.12399554 -0.153294780 -0.077427574 -0.274982822 0.18330078
84358402 0.13933105 0.005327110 -0.003059371 0.039219780 0.03213957
843786
         0.03344819 -0.002837749 -0.122282765 -0.030272333 -0.08438081
                 PC28
                              PC29
                                           PC30
842302
        842517
         0.0325955021 -0.005682424 0.0018662342
84300903 0.0469844833 0.003143131 -0.0007498749
84348301 0.0424469831 -0.069233868 0.0199198881
84358402 -0.0347556386 0.005033481 -0.0211951203
         0.0007296587 -0.019703996 -0.0034564331
843786
```

Main "PC score plot", "PC1 vs PC2 plot":

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

0.4427

- Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?
- 3 PCs to describe at least 70% of the original variance in the original variance in the data.
 - Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?
- 7 PCs to describe at least 70% of the original variance in the original variance in the data.

biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why

The plot is too crowded, very difficult to understand.

```
plot( wisc.pr$x[,1],wisc.pr$x[,2] , col = as.factor(diagnosis) ,
     xlab = "PC1", ylab = "PC2")
```


Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

The clusters are less distinctive compared to PC1 vs PC2 plot.


```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```



```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357


```
## ggplot based graph
#install.packages("factoextra")
library(factoextra)
```

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

```
fviz_eig(wisc.pr, addlabels = TRUE)
```


Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

 $concave.points_mean: -0.26085376$

wisc.pr\$rotation[,1]

perimeter_mean	texture_mean	radius_mean
-0.22753729	-0.10372458	-0.21890244
compactness_mean	${\tt smoothness_mean}$	area_mean
-0.23928535	-0.14258969	-0.22099499
symmetry_mean	concave.points_mean	${\tt concavity_mean}$
-0.13816696	-0.26085376	-0.25840048
texture_se	radius_se	fractal_dimension_mean
-0.01742803	-0.20597878	-0.06436335
smoothness_se	area_se	perimeter_se
-0.01453145	-0.20286964	-0.21132592
concave.points_se	concavity_se	${\tt compactness_se}$
-0.18341740	-0.15358979	-0.17039345
radius_worst	fractal_dimension_se	symmetry_se
-0.22799663	-0.10256832	-0.04249842
area_worst	perimeter_worst	texture_worst
-0.22487053	-0.23663968	-0.10446933

```
        smoothness_worst
        compactness_worst
        concavity_worst

        -0.12795256
        -0.21009588
        -0.22876753

        concave.points_worst
        symmetry_worst fractal_dimension_worst

        -0.25088597
        -0.12290456
        -0.13178394
```

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

5 PCs

##Hierarchical clustering

```
# Scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)</pre>
```

```
data.dist <- dist(data.scaled)</pre>
```

```
wisc.hclust <- hclust(data.dist, method="complete")</pre>
```

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19.5, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
wisc.hclust.clusters <- cutree(wisc.hclust, k=2)</pre>
```

```
table(wisc.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.hclust.clusters B M
1 357 210
2 0 2
```

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

2 clusters

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

ward.D2 gives a clean dendrogram and the table() of ward.D2 has a reasonable distribution of M and B, where one group is composed mainly by M and the other group mainly by B.

```
wisc.hclust.single<- hclust(data.dist, method="single")
plot(wisc.hclust.single)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "single")

```
wisc.hclust.clusters.single <- cutree(wisc.hclust.single,k=2)
table(wisc.hclust.clusters.single, diagnosis)</pre>
```

diagnosis
wisc.hclust.clusters.single B M
1 357 210
2 0 2

wisc.hclust.average<- hclust(data.dist, method="average")
plot(wisc.hclust.average)</pre>

Cluster Dendrogram

data.dist hclust (*, "average")

wisc.hclust.clusters.average <- cutree(wisc.hclust.average,k=2)
table(wisc.hclust.clusters.average, diagnosis)</pre>

diagnosis
wisc.hclust.clusters.average B M
1 357 209
2 0 3

```
wisc.hclust.wardd2<- hclust(data.dist, method="ward.D2")
plot(wisc.hclust.wardd2)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "ward.D2")

```
wisc.hclust.clusters.wardd2 <- cutree(wisc.hclust.wardd2,k=2)
table(wisc.hclust.clusters.wardd2, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.clusters.wardd2 B M
1 20 164
2 337 48
```

Combine PCA and clustering

Our PCA results were in wisc.pr\$x

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d,method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Cut tree into two groups:

```
grps <- cutree(hc, k=2)
table(grps)</pre>
```

grps 1 2 203 366

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

The new combined model does a great job at separating the two diagnoses with one group mainly composed of B and the other of M.

Compare my clustering result(my grps) to the expert diagnosis

table(diagnosis, grps)

```
grps
diagnosis 1 2
B 24 333
M 179 33
```


plot(wisc.pr\$x[,1:2], col=as.factor(diagnosis))

Q16. How well do the k-means and hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? Again, use the table() function to compare the output of each model (wisc.km\$cluster and wisc.hclust.clusters) with the vector containing the actual diagnoses.

The hcluster plot with ward.D2 works as good as the plot we got for combining PCA and clustering, but single & average & complete does not effectively separate the data into two groups.

##Prediction

```
#url <- "new_samples.csv"</pre>
url <- "https://tinyurl.com/new-samples-CSV"</pre>
new <- read.csv(url)</pre>
npc <- predict(wisc.pr, newdata=new)</pre>
npc
           PC1
                     PC2
                                 PC3
                                            PC4
                                                       PC5
                                                                  PC6
                                                                             PC7
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                       0.8193031
            PC8
                      PC9
                                 PC10
                                           PC11
                                                      PC12
                                                                PC13
                                                                         PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                      PC16
                                  PC17
                                              PC18
                                                           PC19
                                                                      PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
           PC21
                      PC22
                                  PC23
                                             PC24
                                                          PC25
                                                                       PC26
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121 0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
             PC27
                          PC28
                                       PC29
                                                     PC30
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
```

```
plot(wisc.pr$x[,1:2], col=as.factor(diagnosis))
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], c(1,2), col="white")
legend("topright", legend = levels(as.factor(diagnosis)), col = 1:2, pch = 16)
```


Q18. Which of these new patients should we prioritize for follow up based on your results?

Patient 2 should be prioritized for a follow up.