College of San Mateo Data Abstraction and Algorithms Assignment #3-A: Binary Trees and AVL Trees

Given input $\{66, 28, 43, 29, 44, 69, 19\}$ and a hash function $h(x) = x \mod 10$, show the resulting hash table:

1) Using Separate Chaining

2) Using Linear Probing

#unsuccessful

probes:

0

0

0

0

0

1

2

total 3

Insert 66 66%10=6													
o		0		0		0		0		0	69	0	69
1		1		1		1		1		1		1	
2		2		2		2		2		2		2	
3		3		3	43	3	43	3	43	3	43	3	43
4		4		4		4		4	44	4	44	4	44
5		5		5		5		5		5		5	19
6	66	6	66	6	66	6	66	6	66	6	66	6	66
7		7		7		7		7		7		7	
8		8	28	8	28	8	28	8	28	8	28	8	28
9		9		9		9	29	9	29	9	29	9	29

#unsuccessful probes: 0 0 0 0 0 0 1

4) Starting with the following hash function: $h_2(x) = 7 - (x \mod 7)$,

input { 66, 28, 43, 29, 44, 69, 19 }

 $h_2(x) = 7 - (x \mod 7)$, $\lambda = 7 / 7 = 1$, because $\lambda > 0.5$. Rehash needed.

 $2 \times 7 = 14$, the next prime is 17, $\lambda = 7 / 17 \approx 0.412$, $\lambda < 0.5$ $h_2(x) = 7 - (x \mod 17)$

If $h_2(x) < 0$, $h_2(x) = h_2(x) + 17$

 $h_2(66) = 7 - (66 \mod 17) = -8$, which add 17 = 9

 $h_2(28) = 7 - (28 \mod 17) = -4$, which add 17 = 13

 $h_2(43) = 7 - (43 \mod 17) = -2$, which add 17 = 15

 $h_2(29)=7-(29 \text{ mod } 17)=-5$, which add 17=12

 $h_2(44) = 7 - (44 \mod 17) = -3$, which add 17 = 14

 $h_2(69) = 7 - (69 \mod 17) = 6$ $h_2(19) = 7 - (19 \mod 17) = 5$

0	
1	
2	
3	
4	
5	19
6	69
7	
8	
9	66
10	
11	
12	29
13	28
14	44
15	43
16	