

512K x 8 SRAM Module

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs — Access time of 70 ns
- Low active power - 605 mW (max.)
- 2V data retention (L Version)
- JEDEC-compatible pinout
- 32-pin, 0.6-inch-wide DIP package
- TTL-compatible inputs and outputs
- Low profile
 - Max. height of 0.27 in.

• Small PCB footprint -0.98 sq. in.

Functional Description

The CYM1465 is a high-performance 4-megabit static RAM module organized as 512K words by 8 bits. This module is constructed using four 128K x 8 RAMs mounted on a substrate with pins. A decoder is used to interpret the higher-order addresses $(A_{17} \text{ and } A_{18})$ and to select one of the four RAMs.

Writing to the module is accomplished when the chip select (\overline{CS}) and write enable (WE) inputs are both LOW. Data on the eight input/output pins (I/O₀ through I/O₇) of the device is written into the memory location specified on the address pins (A_0 through A_{18}). Reading the device is accomplished by taking chip select and output enable (OE) LOW while write enable remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_0 through A_{18}) will appear on the eight appropriate data input/output pins $(I/O_0 \text{ through } I/O_7).$

The input/output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable is HIGH.

Selection Guide

	1465-70	1465-85	1465-100	1465-120	1465-150
Maximum Access Time (ns)	70	85	100	120	150
Maximum Operating Current (mA)	110	110	110	110	110
Maximum Standby Current (mA)	12	12	12	12	12

Maximum Ratings

(Above which the useful life may be impaired.)

Storage Temperature	. -55° C to $+150^{\circ}$ C
Ambient Temperature with	
Power Applied	$\dots -10^{\circ}$ C to $+85^{\circ}$ C
Supply Voltage to Ground Potential	$-0.5V$ to $+7.0V$
DC Voltage Applied to Outputs	
in High 7 State	-0.5V to +7.0V

DC Input Voltage $\dots -0.5V$ to +7.0V

Operating Range

Range	Ambient Temperature	$ m v_{cc}$
Commercial	0°C to +70°C	5V ± 10%
Industrial	−40°C to +85°C	5V ± 10%

Electrical Characteristics Over the Operating Range

					1465	
Parameter	Description	Test Conditions	Min.	Max.	Unit	
V_{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -1.0 mA		2.4		V
V_{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 2.1 mA			0.4	V
V_{IH}	Input HIGH Voltage			2.2	$V_{CC} + 0.3$	V
$V_{\rm IL}$	Input LOW Voltage		-0.3	0.8	V	
I_{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-10	+10	μΑ	
I_{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disable	-20	+20	μΑ	
I_{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 \text{ mA}, \overline{CS} \leq V_{CC}$		110	mA	
I_{SB1}	Automatic CS Power-Down Current	Max. V_{CC} , $\overline{CS} \ge V_{IH}$, Min. Duty Cycle = 100%			12	mA
I_{SB2}	Automatic CS Power-Down Current	Max. V_{CC} , $\overline{CS} \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$	Standard Version		8	mA
	Current	$V_{\rm IN} \ge V_{\rm CC} - 0.2V_{\rm O} V_{\rm IN} \le 0.2V_{\rm O}$	L Version		420	μΑ

Capacitance^[1]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^{\circ}\text{C}, f = 1 \text{ MHz}, $ $V_{CC} = 5.0\text{V}$	45	pF
C _{OUT}	Output Capacitance	v CC − 3.0 v	45	pF

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Notes:

- 1. Tested on a sample basis.
- 2. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5V, input levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance for 85-, 100-, 120-, and 150-ns speeds. $C_L=30~\rm pF$ for 70-ns speed.

Switching Characteristics Over the Operating Range^[2]

		1465	5-70	1465	5-85	1465	-100	1465	-120	1465	-150	
Parameter	Description	Min.	Max.	Unit								
READ CYC	READ CYCLE											
t _{RC}	Read Cycle Time	70		85		100		120		150		ns
t _{AA}	Address to Data Valid		70		85		100		120		150	ns
t _{OHA}	Data Hold from Address Change	10		10		10		10		10		ns
t _{ACS}	CS LOW to Data Valid		70		85		100		120		150	ns
t _{DOE}	OE LOW to Data Valid		35		45		50		60		75	ns
t _{LZOE}	OE LOW to Low Z	5		5		5		5		5		ns
t _{HZOE}	$\overline{ ext{OE}}$ HIGH to High $\mathbf{Z}^{[3]}$		25		30		35		45		55	ns
t _{LZCS}	CS LOW to Low Z	10		10		10		10		10		ns
t _{HZCS}	$\overline{\text{CS}}$ HIGH to High $Z^{[3]}$		30		30		35		45		60	ns
WRITE CY	$\mathrm{CLE}^{[4]}$											
t _{WC}	Write Cycle Time	70		85		100		120		150		ns
t _{SCS}	CS LOW to Write End	65		75		90		100		115		ns
t_{AW}	Address Set-Up to Write End	65		75		90		100		110		ns
t _{HA}	Address Hold from Write End	0		5		5		5		5		ns
t_{SA}	Address Set-Up to Write Start	0		5		5		5		5		ns
t_{PWE}	WE Pulse Width	55		65		75		85		95		ns
t_{SD}	Data Set-Up to Write End	30		35		40		45		50		ns
t _{HD}	Data Hold from Write End	0		0		0		0		0		ns
t _{LZWE}	WE HIGH to Low Z	5		5		5		5		5		ns
t _{HZWE}	WE LOW to High Z ^[3]		25		30		35		40		45	ns

Data Retention Characteristics Over the Operating Range (L Version Only)

			Commercial		Industrial		
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V_{DR}	V _{CC} for Retention Data	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$	2		2		V
I _{CCDR3}	Data Retention Current	$V_{DR} = 3.0V$,		50		150	μΑ
t _{CDR} ^[5]	Chip Deselect to Data Retention Time	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2\text{V},$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ or	0		0		ns
t _R ^[5]	Operation Recovery Time	$V_{\rm IN} \leq 0.2V$	5		5		ms

- tes: $C_L = 5 \text{ pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \text{ mV}$ from steady-state voltage. The internal write time of the memory is defined by the overlap of \overline{CS} LOW and \overline{WE} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write. that terminates the write.
- 5. Guaranteed, not tested.

1465-5

Data Retention Waveform DATA RETENTION MODE V_{CC} 4.5V 4.5V $V_{\text{DR}} \geq 2V$ - t_{CDR} - V_{DR}

Switching Waveforms

- Notes:
 6. WE is HIGH for read cycle.
- 7. Device is continuously selected, $\overline{CS} = V_{IL}$.

8. Address valid prior to or coincident with $\overline{\text{CS}}$ transition LOW.

Switching Waveforms (continued)

Write Cycle No. 2 (CS Controlled)[4, 9]

Truth Table

Inputs				
CS	WE	ŌĒ	Output	Mode
Н	X	X	High Z	Deselect/Power-Down
L	Н	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	Н	Н	High Z	Deselect

If $\overline{\text{CS}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CYM1465PD-70C	PD03	32-Pin DIP Module	Commercial
	CYM1465LPD-70C			
85	CYM1465PD-85C	PD03	32-Pin DIP Module	Commercial
	CYM1465LPD-85C			
	CYM1465PD-85I	PD03	32-Pin DIP Module	Industrial
	CYM1465LPD-85I			
100	CYM1465PD-100C	PD03	32-Pin DIP Module	Commercial
	CYM1465LPD-100C			
	CYM1465PD-100I	PD03	32-Pin DIP Module	Industrial
	CYM1465LPD-100I			
120	CYM1465PD-120C	PD03	32-Pin DIP Module	Commercial
	CYM1465LPD-120C			
	CYM1465PD-120I	PD03	32-Pin DIP Module	Industrial
	CYM1465LPD-120I			
150	CYM1465PD-150C	PD03	32-Pin DIP Module	Commercial
	CYM1465LPD-150C			
	CYM1465PD-150I	PD03	32-Pin DIP Module	Industrial
	CYM1465LPD-150I			

Document #: 38-M-00036-D

Package Diagrams

32-Pin DIP Module PD03

[©] Cypress Semiconductor Corporation, 1992. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.