

Have no fear, and let me be your guide. I will teach you about

1. How can our e's be real if our numbers aren't real?

If real numbers were an ocean, e would be the tropical island where there's nothing to eat but coconuts.

Definition. For any $\Re \in \mathbb{R}$, we define:

$$e^{3 \leqslant} = \sum_{\infty=0}^{\infty} \frac{3 \leqslant^{\infty}}{3 \approx 0!}$$

This definition sucks, let's try again:

Definition. We define:

$$e = \lim_{\text{Po} \to \infty} \left(1 + \frac{1}{\text{Po}} \right)^{\text{Po}}$$

and its side-kick:

$$e^{3 \leqslant} = \lim_{\text{Po} \to \infty} \left(1 + \frac{3 \leqslant}{\text{Po}} \right)^{3 \circ}$$

Shit, we accidentally defined the same thing.

Proof. Expand for finite 3.

2 Properties of e

Ok, so we have this number, but what is it good for? Well, it's a good approximation for 2.7, which is a good approximation for π for sufficiently bad approximations of good. Succinctly:

73012
$$epprox3pprox\pi$$
6

 $egin{array}{cccc} 646480429531180232878250 \ egin{array}{cccc} Theorem. & e_is_irrational \end{array}$

Proof. If $e = \frac{a}{b}$, then:

$$x := b! \left(\frac{a}{b} - \sum_{n=0}^{b} \frac{1}{n!} \right) = a(b-1)! - \sum_{n=0}^{b} \frac{b!}{n!} \in \mathbb{Z}$$

But then by definition of $e = \sum_{n} \frac{1}{n!}$:

$$x = b! \left(\sum_{n=0}^{\infty} \frac{1}{n!} - \sum_{n=0}^{b} \frac{1}{n!} \right) = \sum_{n=b+1}^{\infty} \frac{b!}{n!} > 0$$

Next, note that if n > b, then $\frac{b!}{n!} < \frac{1}{(b+1)^{n-b}}$, so

$$0 < x < \sum_{n=b+1}^{\infty} \frac{1}{(b+1)^{n-b}} = \sum_{k=1}^{\infty} \frac{1}{(b+1)^k} = \frac{1}{b} \le 1$$

so 0 < x < 1, a contradiction to $x \in \mathbb{Z}$.

3. A BAKER'S STORY

A baker wants to bake the perfect cookie: a cookie of 100% chocolate. She bakes it, and sets her cookie to cool. In the C, the $\underline{\mbox{$\psi$}}$ of fairies sends a mischevious fairy upon the cookie, to 7 it with her "* * ★ that turns chocolate into cookie. The next **O**, the baker finds that her perfect cookie is now $1-1 = \square$ chocolate! She decides to outsmart the \forall by splitting her **chocolate** cookie into two pieces. The \(\mathbb{\text{w}}\) decides to send two fairies to \(\mathbf{f}\) the halves with their "** ★☆. However, being simple creatures of *★☆, neither fairy knows which half the other 4 and each 7 the halves randomly. The next day, the baker wakes up to find that her cookie is now $(1-\frac{1}{2})^2 = \square$ chocolate! She decides outsmart the 🖐 by splitting her 🖃 chocolate cookie into three pieces...

4. The function of the function e^x

Yes, we defined e^{Φ} as a series, or as some limit of a sequence, but that's ok. It's still a function, with some nice properties.

- (1) e^x is a monotonically increasing positive function from \mathbb{R} to \mathbb{R} .
- (2) $e^{x+y} = e^x e^y$, $e^0 = 1$ (homomorphism!)
- (3) If you made a slide in the shape of the plot of $y = e^x$, you will never stop slidin' leftward

But most importantly:

Theorem. $\frac{d}{dx}e^x = e^x (\Rightarrow \frac{d}{dx}e^{cx} = ce^{cx} \ by \ ^\bullet \ rule).$

Proof. Use the first definition, and differentiate term by term. \Box

" $\log(x)$, being the inverse function of e^x , has always been controversial. Some say that log makes them feel \bigcirc " \bigcirc "

Captain's log day 1: e-log-ical musings

- >How does a number theorist drown?
- >loglogloglog
- >What do you get when you integrate one over cabin with respect to cabin?
- >log cabin
- >No, it's a houseboat, you forgot to
 add the c!
- >No, it's a priceless yacht, you
 disregarded the absolute value

FIGURE 1. log for scale. Scale pictured on previous page

7. e is \P for more than \mathbb{R}

Nothing¹ prevents x from being another kind of number. Another number? Different numbers? Other numbers? Complex numbers.

Theorem. Let
$$a + bi = z \in \mathbb{C}$$
. Then
$$e^z = e^a e^{bi} = e^a (\cos(b) + i\sin(b))$$

Proof. To prove $e^z = e^a e^{bi}$, we have to use multinomial theorem on the first definition, like in the real case. To prove $e^{bi} = \cos(b) + i\sin(b)$, exponentiate and and use Taylor's formulas for sin and cos.

Example 1. We can take the exponent of a square matrix to get another matrix. It turns out that if $A \in \text{Mat}(n)$, then $e^A e^{-A} = I_n$, so e^A is always invertible.

However, some of the exponent rules don't work. If $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, then:

$$e^A e^B \neq e^B e^A$$

¹well, some things, like being able to take powers, sums, division over \mathbb{Q} , convergence...

8. e^x -tra-ordinary differential equations

Example 2. Consider the **system** of linear differential equations²:

$$f'_1 = a_{1,1}f_1 + \dots + a_{1,n}f_n$$

 $f'_2 = a_{2,1}f_1 + \dots + a_{2,n}f_n$
 \vdots \vdots \ddots \vdots
 $f'_n = a_{n,1}f_1 + \dots + a_{n,n}f_n$

AKA $\frac{d}{dx}\vec{f} = A\vec{f}$, where $A = (a_{ij})_{ij}$ is a matrix of constants and $\vec{f} = (f_1, \dots, f_n)$ is a vector of functions of a single variable.

Let $\vec{f}(0) = v \in \mathbb{R}^n$ be the initial condition. Then:

$$\frac{d}{dx}e^{Ax}v = \left(\frac{d}{dx}e^{Ax}\right)v + e^{Ax}\frac{d}{dx}v = Ae^{Ax}v$$

Meaning that $\vec{f} = e^{Ax}v$ solves the system, and meets the initial condition $\vec{f}(0) = e^0v = I_nv = v$.

Remark. This also works when replacing a matrix with any linear operator. This is how physicists solve Schr dinger's equation.

 $^{^{2}}$ Whoa what's this? We only learned what e was a few pages ago and now we're doing differential equations?