4FNTATION PAGE

Form Approved OMB No. 0704-0188

rige I hour per responsi , including the time for reviewing instructions, searching existing data sources, gr on of information. See a comments regarding this burden estimate or any other aspect of this obtaction of leadquarter. Services, Airectorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite last, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

RT	DATE
	09/00/91

3. REPORT TYPE AND DATES COVERED FINAL

5. FUNDING NUMBERS 4. TITLE AND SUBTITLE COMPREHENSIVE MONITORING PROGRAM, FINAL AIR QUALITY DATA ASSESSMENT REPORT FOR FY90, VERSION 3.1 10 V NONE 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER ROBERT L. STOLLAR AND ASSOCIATES 91311R01 10. SPONSERING/MONITORING 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES NONE 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

13. ABSTRACT

(Maximum 200 words)

THE OBJECTIVE OF THIS CMP IS TO: VERIFY AND EVALUATE POTENTIAL AIR QUALITY HEALTH HAZARDS, TO VERIFY PROGRESS THAT HAS BEEN MADE TO DATE IN REMOVING CONTAMINANTS RESULTING FROM PREVIOUS ACTIVITIES, TO PROVIDE BASELINE DATA FOR THE EVALUATION OF PROGRESS THAT WILL BE MADE IN FUTURE REMEDIAL ACTIVITIES, TO DEVELOP REAL-TIME GUIDELINES, STANDARD PROCEDURES AND DATA COLLECTION METHODS, AS APPROPRIATE, TO INDICATE IMPACTS OF ONGOING, REMEDIAL ACTIONS, AND TO VALIDATE AND DOCUMENT DATABASE RELIABILITY.

96-01806

6969503

14. SUBJECT TERMS			15. NUMBER OF PAGES 4 VOLS.	
CONTAMINANT SOURCES, HEALTH AND SAFETY, METEOROLOGY			16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT	

91311R01 VERSION 3.1 VOLUME IV 2ND COPY

COMPREHENSIVE MONITORING PROGRAM

Contract Number DAAA15-87-0095

AIR QUALITY DATA ASSESSMENT REPORT FOR FY90

FINAL REPORT

SEPTEMBER 1991

Version 3.1 Volume IV

Prepared by:

R. L. STOLLAR & ASSOCIATES INC. HARDING LAWSON ASSOCIATES EBASCO SERVICES INC. DATACHEM, INC. MIDWEST RESEARCH INSTITUTE

Prepared for:

U. S. ARMY PROGRAM MANAGER FOR ROCKY MOUNTAIN ARSENAL

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

THE USE OF TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS. THE REPORT MAY NOT BE CITED FOR PURPOSES OF ADVERTISEMENT.

DTIC QUALITY INSPECTED 5

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

TABLE OF CONTENTS

										PAC	ЭE
<u>vol</u>	UMF	1									
EXE	CUT	IVE SUM	IMARY .			· · · · · · · · · · · · · · · ·					I
0.1	INT	INTRODUCTION				1					
	1.1 1.2			Information Minant Sour							
		1.2.1 1.2.2 1.2.3	BASIN A .	ANTS MANUF		• • • • • • • • •					8
				Background (Impacts of B							9 10
		1.2.4 1.2.5 1.2.6	FINDINGS	TENTIAL CON OF THE AIR I OF THE CMP	СЕМЕ	DIAL INVESTI	GATION P	ROGRAM			10 11 12
2.0		GIONAL ARACTE		LOCAL A	IR 	QUALITY	AND	METEC	ROLOGI	CAL	15
	2.1	Air Qu	ALITY		.						15
		2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6	METALS SULFUR D NITROGEN OZONE .	ATES IOXIDE OXIDES MONOXIDE .							15 19 19 20 21 21
	2.2	Метео	ROLOGY AN	d Air Quali	TY D	ISPERSION .	· · · · · · · ·		· · · · · · · · · · · · ·		22
3.0	PRO	OGRAM	STRATEG	Y AND ME	rhoi	DOLOGY .	· · · · · · · ·				30
	3.1 3.2			оиир Имотиот							30 31
		3.2.1	SITING CI	eteria						<i></i>	32
			3.2.1.1 3.2.1.2 3.2.1.3 3.2.1.4	Wind Speed, Topographic	Directal Fe	rces or Bound ction eatures and O Previous Mor	bstruction				32 32 39 39
		3.2.2	Тие СМ	Air Qualit	Y Me	ONITORING N	ETWORK 1	LOCATION	s		40
			3.2.2.1 3.2.2.2			ns Locations lity Monitori					40 40
		3.2.3	Air Qua	LITY MONITO	RING	STRATEGIES					41
			3.2.3.1	Baseline As	sessm	ent					41

TABLE OF CONTENTS (continued)

			PA	GE
		3.2.3.2 3.2.3.3 3.2.3.4	Worst-case Assessment Remedial Assessment Criteria for Gaseous Pollutant Assessment	44 45 45
	3.2.4	Air Qua	LITY MONITORING METHODS	46
		3.2.4.1 3.2.4.2 3.2.4.3 3.2.4.4 3.2.4.5 3.2.4.6 3.2.4.7 3.2.4.8	Total Suspended Particulates (TSP) Particulate Matter Less than 10 Microns (PM-10) Asbestos Volatile Organic Compounds Semi-volatile Organic Compounds ICP Metals and Arsenic Organochlorine Pesticides (OCP) Mercury	46 47 47 47 48 48 49 49
3.3 3.4			MEDIATION AIR MONITORING PROGRAM	49 52
	3.4.1 3.4.2 3.4.3	Samplin	g Locations g Strategy Vent Monitoring	52 52 55
3.5	Метво	ROLOGICA	L MONITORING PROGRAM	55
	3.5.1 3.5.2 3.5.3 3.5.4	Monito Data A	on of Meteorological Monitoring Stations ring Equipment and Strategy cquisition pplications	. 57
3.6 3.7			Monitoring Program	
VOLUMI	<u>E II</u>		•	
4.0 RES	ULTS O	F FY90 PI	ROGRAM	64
4.1	Basis (of Air Qu	ALITY DATA EVALUATION	64
	4.1.1 4.1.2 4.1.3 4.1.4	Remedi Dispers	rerized Documentation Ation Evaluation SION Model Applications Emission Factors	67 68
4.2	TOTAL	Suspendi	ED PARTICULATES (TSP)	75
	4.2.1 4.2.2	CMP F Assessi	Y90 TSP RESULTS	75 88
		4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4	CMP TSP Monitoring Results Basin F TSP Monitoring Results Analysis of Combined CMP/Basin F TSP Monitoring Results Individual Day Remedial Assessment Comparisons	96 105

TABLE OF CONTENTS (continued)

		PAGE	į
	4.2.3 4.2.4	RMA TSP Causal Effects)
		4.2.4.1 CMP FY90 Period Results)
	4.2.5 4.2.6	ANALYSIS IMPLICATIONS FOR MITIGATION AND CONTROLS 125 SUMMARY 126	
4.3	RESPIRA	ABLE PARTICULATE MATTER	5
	4.3.1 4.3.2	CMP PM-10 MONITORING PROGRAM 126 BASIN F PM-10 IMPACTS 129	
		4.3.2.1 CMP Data 129 4.3.2.2 Basin F Data 140 4.3.2.3 Combined Basin F and CMP Data Analysis 140	0
	4.3.3 4.3.4	METROPOLITAN DENVER PM-10 DATA	
4.4	METAL	s	7
	4.4.1 4.4.2 4.4.3	METALS MONITORING STRATEGIES 14 CMP FY90 METALS MONITORING RESULTS 14 ASSESSMENT OF BASIN F METALS IMPACTS 15	8
		4.4.3.1 CMP Data 15 4.4.3.2 Basin F Data 15 4.4.3.3 Combined CMP and Basin F Data Analyses 17	9
	4.4.4 4.4.5	Analysis of Metals Source Factors	
	4.4.6	GUIDELINES	
4.5 4.6		ros	
	4.6.1 4.6.2	CMP VOC SAMPLING, ANALYSIS AND REPORTING STRATEGIES	
		4.6.2.1 December 19, 1989 20 4.6.2.2 June 27, 1990 20 4.6.2.3 July 18, 1990 20 4.6.2.4 July 27, 1990 20 4.6.2.5 August 9, 1990 20 4.6.2.6 September 11, 1990 21)2)2)6)8
	4.6.3	BASIN F VOC IMPACTS	0
		4.6.3.1 CMP Data 21 4.6.3.2 Basin F Data 22 4.6.3.3 Combined CMP and Basin F Data Analyses 21	21

T \BLE OF CONTENTS (continued)

						PAGE
•	4.6.4	Additional VOC N	Monitoring Considera	TIONS		244
		4.6.4.1 Seasonal V 4.6.4.2 Metropoli	VOC Impacts	Emissions		244
	4.6.5 4.6.6		TS AND ASSESSMENT OF			
		4.6.6.1 Laborator 4.6.6.2 Summary	ry Procedures of Nontarget VOCs			266
4.7	Semi-vo (OCPs) .	LATILE ORGANIC CO	DMPOUNDS (SVOCs) AND	ORGANOCHLORIN	E PESTICIDE	s 272
	4.7.1 4.7.2		Lysis and Reporting St olatile Organic Comp			
		4.7.2.2 August 7.	, 1990 , 1990 9, 1990			280
	4.7.3	Basin F SVOC Imp	ACTS			284
		4.7.3.2 Basin F I	a			288
	4.7.4 4.7.5 4.7.6	Seasonal Conside	LTS AND ASSESSMENT OF RATIONS			310
VOLUME	<u> III</u>					
5.0 CON	rinuot	S AIR MONITORI	NG PROGRAM			318
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Analys Carbon Ozone Sulfur Nitric	S OVERVIEW MONOXIDE DIOXIDE DIOXIDE DXIDE, NITROGEN I	DIOXIDE AND NITROGEN (Oxides		321 321 332 341 351
	5.7.1 5.7.2	DECEMBI и 22-23, Мау 21, 1990	1989	• • • • • • • • • • • • • • • • • • • •		381 384
6.0 PHO	TO VISII	ILITY STUDY				393
6.1 6.2 6.3	BROWN	CLOUD EVENTS		,,,,,,,,,,,		398
7.0 ME T	reorol	OGY MONITORIN	IG AND DISPERSION 1	MODELING PRO	GRAMS	419

TABLE OF CONTENTS (continued)

	~	P'
	7.1.1	PROGRAM OBJECTIVES
	7.1.2	DATA RECOVERY
	7.1.3	DATABASES
7.2	SUMMA	RY OF RESULTS
	7.2.1	TEMPERATURE
	7.2.2	RELATIVE HUMIDITY
	7.2.3	BAROMETRIC PRESSURE
	7.2.4	Solar Radiation
	7.2.5	PRECIPITATION
	7.2.6	WINDS
	7.2.7	ATMOSPHERIC STABILITY
7.3		AL AND DIURNAL INFLUENCES
7.4	Summa	RY AND CONCLUSIONS
7.5	RMA N	METEOROLOGICAL STATION COMPARISONS
7.6	ATMOS	PHERIC DISPERSION MODEL
	7.6.1	MODEL APPLICATIONS
	7.6,2	Additional Model Approaches and Analyses
		7.6.2.1 Source Emissions Characterization
		7.6.2.2 Remedial Activity Production Data
		7.6.2.3 Local and Regional Emissions Inventory
		7.6.2.4 Empirical/Statistical Adjustments
QUA	LITY A	SSURANCE PROGRAM
8.1	Overv	iew and General Guidance
8.2	LABOR	ATORY QUALITY CONTROL AND QUALITY ASSURANCE PROGRAM OVERVIEW
		QUALITY CONTROL PROGRAM
8.3		
	231	ORGANIZATION
	8.3.1 8.3.2	ORGANIZATION
	8.3.2	ORGANIZATION FIELD PROGRAM QUALITY CONTROL OUALITY CONTROL FIELD SAMPLE RESULTS
		FIELD PROGRAM QUALITY CONTROL
	8.3.2	FIELD PROGRAM QUALITY CONTROL QUALITY CONTROL FIELD SAMPLE RESULTS 8.3.3.1 VOC Quality Control Results
	8.3.2	FIELD PROGRAM QUALITY CONTROL QUALITY CONTROL FIELD SAMPLE RESULTS 8.3.3.1 VOC Quality Control Results 8.3.3.2 Semi-Volatile Organics and Organics on PUF Quality Control
	8.3.2	FIELD PROGRAM QUALITY CONTROL QUALITY CONTROL FIELD SAMPLE RESULTS 8.3.3.1 VOC Quality Control Results
	8.3.2	FIELD PROGRAM QUALITY CONTROL QUALITY CONTROL FIELD SAMPLE RESULTS 8.3.3.1 VOC Quality Control Results 8.3.3.2 Semi-Volatile Organics and Organics on PUF Quality Control
	8.3.2 8.3.3	FIELD PROGRAM QUALITY CONTROL QUALITY CONTROL FIELD SAMPLE RESULTS 8.3.3.1 VOC Quality Control Results 8.3.3.2 Semi-Volatile Organics and Organics on PUF Quality Control Results
8.3	8.3.2 8.3.3 8.3.4 Assess	FIELD PROGRAM QUALITY CONTROL QUALITY CONTROL FIELD SAMPLE RESULTS 8.3.3.1 VOC Quality Control Results 8.3.3.2 Semi-Volatile Organics and Organics on PUF Quality Control Results DATA PROCESSING
8.3	8.3.2 8.3.3 8.3.4 Assess	FIELD PROGRAM QUALITY CONTROL QUALITY CONTROL FIELD SAMPLE RESULTS 8.3.3.1 VOC Quality Control Results 8.3.3.2 Semi-Volatile Organics and Organics on PUF Quality Control Results DATA PROCESSING SMENT OF DATA PRECISION AND COLLOCATED DUPLICATE SAMPLING RESULTS TY ASSURANCE FIELD PROCEDURES
8.3	8.3.2 8.3.3 8.3.4 Assess Quality	FIELD PROGRAM QUALITY CONTROL QUALITY CONTROL FIELD SAMPLE RESULTS 8.3.3.1 VOC Quality Control Results 8.3.3.2 Semi-Volatile Organics and Organics on PUF Quality Control Results DATA PROCESSING MENT OF DATA PRECISION AND COLLOCATED DUPLICATE SAMPLING RESULTS

AIR 90.TOC Rev. 08/28/91

TABLE OF CONTENTS (continued)

	.PAGE			
9.1 TGTAL SUSPENDED PARTICULATES 472 9.2 RESPIRABLE PARTICULATES (PM-10) 473 9.3 METALS 473 9.4 ASBESTOS 473 9.5 VOLATILE ORGANIC COMPOUNDS 473 9.6 SEMI-VOLATILE ORGANIC COMPOUNDS 474 9.7 ORGANOCHLORINE PESTICIDES 474 9.8 CRITERIA POLLUTANTS 474 9.9 GENERAL INTERPRETATIONS 476 10.0 REFERENCES 476				
VOLUME IV				
APPENDIX A	Total Suspended Particulates (TSP) Data (on diskette)			
APPENDIX B	Respirable Particulates of Less Than 10 Microns (PM-10) Data (on diskette)			
APPENDIX C	Arsenic, Metals and Mercury Data (on diskette)			
APPENDIX D	Asbestos Data (on diskette)			
APPENDIX E	Volatile Organic Compounds (VOC) Data (on diskette)			
APPENDIX F	Semi-Volatile Organic Compounds (SVOC) Data (on diskette)			
APPENDIX G	Organochlorine Pesticides (OCP) Data (on diskette)			
APPENDIX H	Quality Assurance/Quality Control			
APPENDIX I	Continuous Air Quality Data			
APPENDIX J	Air Quality Meteorological Data and Joint Frequency Distribution (on diskette)			
APPENDIX K	ISC and INPUFF2 EPA Model Description			
APPENDIX L	IRA-F Total Suspended Particulates (TSP) Data (on diskette)			
APPENDIX M	IRA-F Respirable Particulates of Less Than 10 Microns (PM-10) (on diskette)			
APPENDIX N	IRA-F Arsenic, Metals, and Mercury Data (on diskette)			
APPENDIX O	IRA-F Volatile Organic Compounds (VOC) Data (on diskette)			
APPENDIX P	IRA-F Semi-Volatile Organic Compounds (SVOC) Data (on diskette)			
APPENDIX Q	IRA-F Organochlorine Pesticides (OCP) Data (on diskette)			

LIST OF TABLES

Table 2.1-1	Colorado and National Ambient Air Quality Standards
Table 2.2-1	Summary of Temperature Data in the RMA Vicinity
Table 2.2-2	Summary of Precipitation and Humidity Data in the RMA Vicinity
Table 2.2-3	Summary of Wind and Pressure Data in the RMA Vicinity
Table 2.2-4	Summary of Meteorological Data in the RMA Vicinity
Table 3.2-1	Sampling Locations
Table 3.2-2	Parameters and Strategies for RMA Air Monitoring Program
Table 3.2-3	Sampling Strategies for High Event Air Quality Monitoring
Table 3.4-1	Location and Monitoring Parameters at IRA-F Sites
Table 3.5-1	Meteorological Parameters Monitored at RMA During FY90
Table 3.6-1	RMA Continuous Gaseous Air Monitoring Program Summary
Table 3.7-1	Analytical Methods for Air Quality Monitoring Program
Table 3.7-2	Analytes and Certified Reporting Limits for Air Quality Monitoring Program
Table 4.1-1	Basin F Remediation Phases
Table 4.1-2	Emissions Inventory Summary for Regulated Pollutants
Table 4.2-1	Summary of KMA Total Suspended Particulates (TSP) Monitoring for FY90
Table 4.2-2	Total Suspended Particulates (TSP) Sampling Results for FY90
Table 4.2-3	Total Suspended Particulates (TSP) Sampling Results for CMP Phases 1-4
Table 4.2-4	Total Suspended Particulates (TSP) Sampling Results for Basin F/IRA-F Phases 1-4
Table 4.2-5	Combined Seasonal TSP Concentrations
Table 4.2-6	Seasonal TSP Concentrations by Site
Table 4.2-7	Particulate Sources with Emissions of 25 TPY or More
Table 4.2-8	Deriver Metropolitan Area Total Suspended Particulates (TSP)
Table 4.3-1	S immary of CMP FY90 Sampling for Respirable Particulates of Less Than 10 Microns (PM 10)
Table 4.3-2	Concentration: of Respirable Particulates of Less Than 10 Microns (PM-10) for CMP FY90

Table 4.3-3	Concentrations of Respirable Particulates of Less Than 10 Microns (PM-10) for Phases 1-4
Table 4.3-4	Combined Seasonal PM-10 Concentrations
Table 4.3-5	Seasonal PM-10 Concentrations by Site
Table 4.3-6	Concentrations of Respirable Particulates of Less Than 10 Microns for Phases 3 and 4 at IRA-F Sites
Table 4.3-7	Denver Metropolitan Area Respirable Particulates of Less Than 10 Microns (PM-10)
Table 4.4-1	Summary of Routine Metals Sampling for FY90
Table 4.4-2	Summary of CMP Metals Concentrations for FY90
Table 4.4-3	Summary of CMP Metals Concentrations by Phase
Table 4.4-4	Metals Data Summary for 1986-1987 Remedial Investigation Program
Table 4.4-5	Summary of Basin F/IRA-F/RIFS Metals Concentrations for Phases 1-4
Table 4.4-6	Observed Maximum Metals Concentrations and Associated Wind Speed at CMP Sites
Table 4.4-7	Seasonal Metals and Arsenic Concentrations by Site
Table 4.4-8	Maximum Concentrations Measured at RMA for CMP and Basin F/IRA-F Concurrent Programs
Table 4.4-9	RMA Target Metals Compounds Comparison to Health Guidelines
Table 4.5-1	Synopsis of FY90 Asbestos Monitoring
Table 4.6-1	Synopsis of FY90 Monitoring for Volatile Organic Compounds (VOC)
Table 4.6-2	Summary of FY90 Volatile Organic Compounds (VOC) Concentrations
Table 4 6-3	Summary of CMP Volatile Organic Compounds (VOC) Concentrations for Phases 1-4
Table 4.6-4	Summary of Basin F/IRA-F/RIFS VOC Concentrations for Phases 1-4
Table 4.6-5	Maximum Concentrations and Locations of Volatile Organic Compounds
Table 4.6-6	Combined Seasonal Average VOC Concentrations
Table 4.6-7	Volatile Organic Compounds (VOC) Sources with Emissions of 10 TPY or More
Table 4.6-8	Total Releases of Toxic Chemicals by Facility and Toxicity for Denver and Adams Counties
Table 4.6-9	Releases of Toxic Chemicals for Denver and Adams Counties

Table 4.6-10	RMA Target Volatile Organic Compounds (VOC) Comparison to Health Guidelines for Phases 1 and 2
Table 4.6-11	RMA Target Volatile Organic Compounds (VOC) Comparison to Health Guidelines for Phases 3 and 4
Table 4.6-12	Comparison of EPA Air Toxics Study and RMA Results for VOCs
Table 4.6-13	Ambient Volatile Organic Compounds (VOC) Concentrations from Various Studies
Table 4.6-14	Summary of VOC Nontargets for FY90
Table 4.6-15	Summary of VOC Blank Nontargets for FY90
Table 4.7-1	Synopsis of FY90 Semi-Volatile Organic Compounds (SVOC) Monitoring
Table 4.7-2	Synopsis of FY90 Organochlorine Pesticides (OCP) Monitoring
Table 4.7-3	Summary of Semi-Volatile Organic Compounds (SVOC) Concentrations for FY90'- Pesticide Method
Table 4.7-4	Summary of Organochlorine Pesticides (OCP) Concentrations for FY90
Table 4.7-5	Summary of CMP Semi-Volatile Organic Compounds (SVOC) Concentrations by Phase
Table 4.7-6	Summary of CMP Organochlorine Pesticides (OCP) Concentrations by Phase
Table 4.7-7	Summary of Basin F/IRA-F/RIFS Semi-Volatile Organic Compounds (SVOC) for Phases 1-4
Table 4.7-8	Maximum Average Long-Term and Short-Term Semi-Volatile Organic Compounds Concentrations
Table 4.7-9	RMA Target SVOC and OCP Comparison to Health Guidelines
Table 4.7-10	Combined Seasonal Organochlorine Pesticides (OCP) Concentrations
Table 4.7-11	Summary of SVOC Nontargets for FY90
Table 4.7-12	Summary of SVOC Nontargets Blank Data for FY90
Table 5.1-1	RMA and Colorado Department of Health Gaseous Emissions Monitoring Sites
Table 5.3-1	Summary of Carbon Monoxide 1-Hour Average Values in ppm October 1, 1989 (0100 MST) through September 30, 1990 (2400 MST)
Table 5.3-2	Summary of Carbon Monoxide 8-Hour Average Values in ppm October 1, 1989 (0100 MST) through September 30, 1990 (2400 MST)
Table 5.4-1	Summary of Ozone 1-Hour Average Values in ppm October 1, 1989 (0100 MST) through September 30, 1990 (2400 MST)

Table 5.5-1	Summary of Sulfur Dioxide 1-Hour Average Values in ppm October 1, 1989 (0100 MST) through September 30, 1990 (2400 MST)
Table 5.5-2	Summary of Sulfur Dic side 3-dour Average Values in ppm October 1, 1989 (0100 MST) through September 30, 1990 (2400 MST)
Table 5.5-3	Summary of Sulfur Dioxide 24-Hour Average Values in ppm October 1, 1989 (0100 MST) through September 30, 1990 (2400 MST)
Table 5.6-1	Summary of Nitric Oxide (NO) 1-Hour Average Values in ppm October 1, 1989 (0100 MST) through September 30, 1990 (2400 MST)
Table 5.6-2	Summary of Nitrogen Dioxide (NO ₂) 1-Hour Average Values in ppm October 1, 1989 (0100 MST) through September 30, 1990 (2400 MST)
Table 5.6-3	Summary of Nitrogen Oxides (NO _x) 1-Hour Average Values in ppm October 1, 1989 (0100 MST) through September 30, 1990 (2400 MST)
Table 5.7-1	Carbon Monoxide (CO) Sources with Emissions of 100 TPY of More
Table 5.7-2	Sulfur Dioxide (SO ₂) Sources with Emissions of 40 TPY or More
Table 5.7-3	Nitrogen Oxides (NO _x) Sources with Emissions of 40 TPY or More
Table 5.7-4	Relevant Air Quality and Meteorological Data for December 22-23, 1989
Table 5.7-5	Relevant Air Quality and Meteorological Data for May 21, 1990
Table 6.1-1	Summary of High Dust Events During FY90
Table 6.1-2	TSP Monitoring Results for May 15, 1990
Table 6.1-3	May 15, 1990 Dust Event Data
Table 6.2-1	October 25, 1989 Brown Cloud Event Data
Table 6.2-2	January 5, 1990 Brown Cloud Event Data
Table 6.2-3	September 14, 1990 Brown Cloud Event Data
Table 7.1-1	Summary of RMA Meteorological Monitoring for FY90
Table 7.2-1	Summary of Rocky Mountain Arsenal Monthly Meteorological Conditions for FY90 (October 1, 1989 through September 30, 1990)
Table 7.4-1	FY89 - FY90 Comparison
Table 7.5-1	Meteorological Tower Comparison of Wind Speed (mph)/Direction
Table 7.5-2	Meteorological Tower Comparison of Temperature (°F)
Table 7.5-3	Meteorological Tower Comparison of Precipitation (inches)
Table 7.5-4	FY90 Frequency (%) of Atmospheric Stability Categorie . for Each Met Station

AIR-90.TOC Rev. 08/28/91

Table 8.3-1	CMP Target Volatile Organic Compounds (VOC) Blank Values
Table 8.3-2	Summary of Semi-Volatile Organic Compounds Results of Field Spiking
Table 8.3-3	Summary of OCP Results of Field Spiking
Table 8.4-1	Collocated Sample Comparisons for FY90 at AQ5
Table 8.4-2	Continuous Air Quality Parameters Precision Results

LIST OF FIGURES

Figure 1.1-1	Rocky Mountain Arsenal Location Map
Figure 1.1-2	Rocky Mountain Arsenal Reference Map
Figure 1.2-1	CMP Air Quality and Meteorological Monitoring Stations
Figure 2.2-1	Stapleton Airport Wind Direction Rose, 1982-1986
Figure 3.2-1	CMP Air Quality Moni@ring Stations at Rocky Mountain Arsenal
Figure 3.2-2	National Ambient Air Quality Sampling Schedule for 1990
Figure 3.3-1	Location of Basin F Air Quality Monitoring Stations at Rocky Mountain Arsenal
Figure 3.4-1	Location of IRA-F Air Quality Monitering Stations at Rocky Mountain Arsenal
Figure 3.5-1	RMA Meteorological Monitoring Stations
Figure 4.1-1	X/Q Dispersion for Phase 1
Figure 4.1-2	X/Q Dispersion for Phase 2-Stage 1
Figure 4.1-3	X/Q Dispersion for Phase 2-Stage 2
Figure 4.1-4	X/Q Dispersion for Phase 3
Figure 4.1-5	X/Q Dispersion for Phase 4
Figure 4.1-6	Sources of Regulated Pollutants in RMA Vicinity
Figure 4.2-1	CMP Total Suspended Particulates Results for FY90
Figure 4.2-2	TSP Results for 9/14/90
Figure 4.2-3	September 14, 1990 12Z Sounding for Stapleton Airport
Figure 4.2-4	TSP Distribution at RMA for 6/4/90
Figure 4.2-5	TSP Concentrations at AQ10 During Remediation Phases
Figure 4.2-6	Basin F/IRA-F TSP Results by Phase
Figure 4.2-7	Composite TSP Analysis for Phase 1
Figure 4.2-8	Composite TSP Analysis for Phase 4
Figure 4.2-9	TSP Geometric Means by Phase for CMP
Figure 4.2-10	TSP Results for 9/24/88
Figure 4.2-11	TSP Results for 9/26/90

Figure 4.2-12	Site AQ11 TSP Concentration: vs. Hours of Wind from Direction of Basin F - Phase I
Figure 4.2-13	Site AQ11 TSP Concentrations vs. Hours of Wind from Direction of Basin F -
171mmm 4 9 14	Phase 3
Figure 4.2-14	Particulate Sources with Emissions of 25 TPY or More in RMA Vicinity
Figure 4.2-15	Denver Area TSP Data for FY90 - Geometric Means
Figure 4.3-1	PM-10 Results for 9/14/90
Figure 4.3-2	Comparison of TSP and PM-10 at AQ2
Figure 4.3-3	Comparison of TSP and PM-10 at AQ5
Figure 4.3-4	Comparison of TSP and PM-10 at AQ9
Figure 4.3-5	Composite PM-10 Analysis for Phase 1
Figure 4.3-6	Composite PM-10 Analysis for Phase 4
Figure 4.3-7	Denver Area PM-10 Data for Phase 4
Figure 4.4-1	Chromium Results by Phase
Figure 4.4-2	Copper Results by Phase
Figure 4.4-3	Mercury Results by Phase
Figure 4.4-4	Zinc Results by Phase
Figure 4.4-5	Lead Results by Phase
Figure 4.4-6	Arsenic Results by Phase
Figure 4.4-7	Cadmium Results by Phase
Figure 4.4-8	X/Q Dispersion and Basin F Metals for 9/6/88
Figure 4.4-9	X/Q Dispersion and IRA-F Metals for 6/10/90
Figure 4.4-10	Composite Metals Analysis for Phase 1 - Average Values
Figure 4.4-10A	Composite Metals Analysis for Phase I - Maximum Values
Figure 4.4-11	Composite Metals Analysis for Phase 4 - Average Values
Figure 4.4 11A	Composite Metals Analysis for Phase 4 - Maximum Values
Figure 4.4-12	Metals Results and X/Q Dispersion for 6/28/90
Figure 4.6-1	Seasonal VOC Results and X/Q Dispersion for 12/19/89
Figure 4.6-2	High Event VOC Results and X/O Dispersion for 6/27/90

Figure 4.6-2A	High Event VOC Results for 6/27/90 - South Plants
Figure 4.6-3	High Event VOC Results and X/Q Dispersion for 7/18/90
Figure 4.6-4	High Event VOC Results and X/Q Dispersion for 7/27/90
Figure 4.6-5	High Event VOC Results and X/Q Dispersion for 8/9/90
Figure 4.6-6	High Event VOC Results and X/Q Dispersion for 9/11/90
Figure 4.6-7	Bicycloheptadiene Results by Phase
Figure 4.6-8	Chloroform Results by Phase
Figure 4.6-9	Dicyclopentadiene Results by Phase
Figure 4.6-10	Dimethyl Disulfide Results by Phase
Figure 4.6-11	Toluene Results by Phase
Figure 4.6-12	X/Q Dispersion and Basin F VOCs for 8/12/88
Figure 4.6-13	X/Q Dispersion and IRA-F VOCs for 7/28/90
Figure 4.6-14	Composite VOC Analysis for Phase 1 - Average Values
Figure 4.6-14A	Composite VOC Analysis for Phase 1 - Maximum Values
Figure 4.6-15	Composite VOC Analysis for Phase 4 - Average Values
Figure 4.6-15A	Composite VOC Analysis for Phase 4 - Maximum Values
Figure 4.6-16	VOC Sources with Emissions of 25 TPY or More in RMA Vicinity
Figure 4.7-1	High Event SVOC Results and X/Q Dispersion for 8/2/90
Figure 4.7-2	High Event SVOC Results and X/Q Dispersion for 8/7/90
Figure 4.7-2A	High Event SVOC Results for 8/7/90 - South Plants
Figure 4.7-3	High Event SVOC Results and X/Q Dispersion for 8/29/90
Figure 4.7-4	SVOC Results at CMP/BF2 for Phases 1 and 4
Figure 4.7-5	Aldrin Results by Phase
Figure 4.7-6	Dieldrin Results by Phase
Figure 4.7-7	Endrin Results by Phase
Figure 4.7-8	Isodrin Results by Phase
Figure 4.7-9	X/Q Dispersion and Basin F Pesticides for 8/23/88
Figure 4.7-10	X/Q Dispersion and Basin F Pesticides for 9/8/90

Figure 4.7-11	Composite SVOC Analysis for Phase 1 - Average Values
Figure 4.7-11A	Composite SVOC Analysis for Phase 1 - Maximum Values
Figure 4.7-12	Composite SVOC Analysis for Phase 4
Figure 5.1-1	RMA and Colorado Department of Health Continuous Air Quality Monitoring Sites
Figure 5.3-1A	Graphical Depiction of Daily Mean for Carbon Monoxide FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.3-1B	Graphical Depiction of Daily Maximum for Carbon Monoxide FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.3-2	Graphical Depiction of Monthly Mean for Carbon Monoxide (May 1989 - Sept. 1990)
Figure 5.3-3	Graphical Depiction of Diurnal Cycle for Carbon Monoxide FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.3-4	Graphical Depiction of Diurnal Comparison for Carbon Monoxide (May - September)
Figure 5.3-5	CMP and Colorado Department of Health Sites 1-Hour Carbon Monoxide Values (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.3-6	CMP and Colorado Department of Health Sites 8-Hour Carbon Monoxide Values (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.4-1A	Graphical Depiction of Daily Mean for Ozone FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.4-1B	Graphical Depiction of Daily Maximum for Ozone FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.4-2	Graphical Depiction of Monthly Mean for Ozone (May 1989 - Sept. 1990)
Figure 5.4-3	Graphical Depiction of Daily Mean for Ozone (May 6, 1989 - Sept. 30, 1990)
Figure 5.4-4	Graphical Depiction of Diurnal Cycle for Ozone FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.4-5	Graphical Depiction of Diurnal Comparison for Ozone (May - September)
Figure 5.5-6	Graphical Depiction of Overall Mean for Ozone (May 6, 1989 - Sept. 30, 1990)
Figure 5.4-7	CMP and Colorado Department of Health Sites 1-Hour Ozone Values (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.5-1A	Graphical Depiction of Daily Mean for Sulfur Dioxide FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.5-1B	Graphical Depiction of Daily Maximum for Sulfur Dioxide FY90 (Oct. 1, 1989 -Sept. 30, 1990)

Figure 5.5-2	Graphical Depiction of Monthly Mean for Sulfur Dioxide (May 1989 - Sept. 1990)
Figure 5.5-3	Graphical Depiction of Daily Mean for Sulfur Dioxide (May 6, 1989 - Sept. 30, 1990)
Figure 5.5-4	Graphical Depiction of Diurnal Cycle for Sulfur Dioxide FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.5-5	Graphical Depiction of Diurnal Comparison for Sulfur Dioxide (May - Sept.)
Figure 5.5-6	Graphical Depiction of Overall Mean for Sulfur Dioxide (May 6, 1989 - Sept. 30, 1990)
Figure 5.5-7	CMP and Colorado Department of Health Sites 3-Hour Sulfur Dioxide Values (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.5-8	CMP and Colorado Department of Health Sites 24-Hour Sulfur Dioxide Values (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.6-1A	Graphical Depiction of Daily Mean for Nitric Oxide FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.6-1B	Graphical Depiction of Daily Mean for Nitrogen Dioxide FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.6-1C	Graphical Depiction of Daily Mean for Nitrogen Oxides FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.6-2A	Graphical Depiction of Daily Maximum for Nitric Oxide FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.6-2B	Graphical Depiction of Daily Maximum for Nitrogen Dioxide FY90 (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.6-2C	Graphical Depiction of Daily Maximum for Nitrogen Oxides FY90 (Oct. 1, 1989 -Sept. 30, 1990)
Figure 5.6-3A	Graphical Depiction of Monthly Mean for Nitric Oxide (May 1989 - Sept. 1990)
Figure 5.6-3B	Graphical Depiction of Monthly Mean for Nitrogen Dioxide (May 1989 -Sept. 1990)
Figure 5.6-3C	Graphical Depiction of Monthly Mean for Nitrogen Oxides (May 1989 -Sept. 1990)
Figure 5.6-4A	Graphical Depiction of Daily Mean for Nitric Oxide (May 6, 1989 -Sept. 30, 1990)
Figure 5.6-4B	Graphical Depiction of Daily Mean for Nitrogen Dioxide (May 6, 1989 -Sept. 30, 1990)
Figure 5.6-4C	Graphical Depiction of Daily Mean for Nitrogen Oxides (May 6, 1989 -Sept. 30, 1990)

wis in

Figure 5.6-5	Graphical Depiction of Diurnal Cycle for Nitrogen Oxides (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.6-6	Graphical Depiction of Diurnal Comparison for Nitrogen Oxides (May - September)
Figure 5.6-7	Graphical Depiction of Diurnal Mean for Nitrogen Oxides (May 6, 1989 - Sept. 30, 1990)
Figure 5.6-8	CMP and Colorado Department of Health Sites 24-Hour Nitrogen Dioxide Values (Oct. 1, 1989 - Sept. 30, 1990)
Figure 5.7-1	Sources of Regulated Pollutants in RMA Vicinity
Figure 5.7-2	Graphical Depiction of Carbon Monoxide for December 22-23, 1989
Figure 5.7-3	Graphical Depiction of Sulfur Dioxide for December 22-23, 1989
Figure 5.7-4	Graphical Depiction of Nitrogen Oxides for December 22-23, 1989
Figure 5.7-5	Graphical Depiction of Carbon Monoxide for May 21, 1990
Figure 5.7-6	Graphical Depiction of Sulfur Dioxide for May 21, 1990
Figure 5.7-7	Graphical Depiction of Nitrogen Oxides for May 21, 1990
Figure 6.1-1	Dust Event Case Study: May 15, 1990
Figure 6.1-2	Dust Event: May 15, 1990 (SO ₂ and NO _x)
Figure 6.2-1	Brown Cloud Case Study: October 25, 1990
Figure 6.2-2	Brown Cloud Migration: October 25, 1989
Figure 6.2-3	Brown Cloud Event: October 25, 1989 (SO ₂ and NO _x)
Figure 6.2-4	Brown Cloud Event: October 25, 1989 (CO)
Figure 6.2-5	Brown Cloud Case Study: January 5, 1990
Figure 6.2-6	Brown Cloud Event: January 5, 1990 (SO ₂ and NO _x)
Figure 6.2-7	Brown Cloud Event: January 5, 1990 (CO)
Figure 6.2-8	Brown Cloud Case Study: September 14, 1990
Figure 6.2-9	Brown Cloud Event: September 14, 1990 (SO ₂ and NO _x)
Figure 6.2-10	Brown Cloud Event: September 14, 1990 (CO)
Figure 7.2-1	RMA Graphical Depiction of Temperature (Oct. 1, 1989 - Sept 30, 1990)
Figure 7,2-2	RMA Graphical Depiction of Precipitation (Oct. 1, 1989 - Sept. 30, 1990)
Figure 7.2-3	RMA Graphical Depiction of Wind Speed and Wind Direction (Oct. 1, 1989 - Sept. 30, 1990)

Figure 7.2-4	Wind Roses for RMA (Oct. 1 - Dec. 20, 1989) and Stapleton Airport 1982-86 Fall
Figure 7.2-5	Wind Roses for RMA (Dec. 21, 1989 - March 19, 1990) and Stapleton Airport 1982-86 Winter
Figure 7.2-6	Wind Roses for RMA (March 20 - June 20, 1990) and Stapleton Airport 1982- 86 Spring
Figure 7.2-7	Wind roses for RMA (June 21 - Sept. 30, 1990) and Stapleton Airport 1982-86 Summer
Figure 7.2-8	Wind Roses for RMA (Oct. 1, 1989 - Sept. 30, 1990) and Stapleton Airport 1982-86 Annual
Figure 7.2-9	RMA and Stapleton Airport Fall Wind Rose Comparisons
Figure 7.2-10	RMA and Stapleton Airport Winter Wind Rose Comparisons
Figure 7.2-11	RMA and Stapleton Airport Spring Wind Rose Comparisons
Figure 7.2-12	RMA and Stapleton Airport Summer Wind Rose Comparisons
Figure 7,2-13	RMA and Stapleton Airport Annual Wind Rose Comparisons

ACRONYMS AND ABBREVIATIONS

111TCE 1,1,1-Trichloroethane
112TCE 1,1,2-Trichloroethane
ADI Acceptable Daily Intake

Atrazine 2-chloro-4-ethylamino-6-isopropylamino-s-trianine

BCHPD Bicycloheptadiene

C₆H₆ Benzene

 CCl_4 Carbon Tetrachloride CH_2Cl_2 Methylene Chloride

CHCi₃ Chloroform

Chlordane 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H-

indene

ClC₆H₅ Chlorobenzene

CMP FY90 Comprehensive Monitoring Program Fiscal Year 1990

CO Carbon Monoxide

CRL Certified Reporting Limit
DBCP Dibromochloropropane
DCLE11 1,1-Dichloroethane
DCLE12 1,2-Dichloroethane
DCPD Dicyclopentadiene

DDD Dichlorodiphenyldichloroethane

DMB12 Dimethylbenzene
DMDS Dimethyl Disulfide

EPA Environmental Protection Agency

ETC₆H₅ Ethylbenzene

GC/MS Gas Chromatography/Mass Spectrometry

GC/ECD Gas Chromatography/Electron Capture Detection

ICAP Inductively Coupled Argon Plasma

Malathion 0,0-dimethyl-s-(1,2-dicarboxyethyl) phosphorodithioate

MEC₆H₅ Toluene

MIBK Methyl Isobutyl Ketone
MST Mountain Standard Time

NAAQS National Ambient Air Quality Standards

NATICH National Air Toxics Information Clearinghouse

NIOSH National Institute of Occupational Safety and Health

NNDMEA N-Nitrosodimethylamine

NO_x Nitrogen Oxides

O₃ Ozone

ACRONYMS AND ABBREVIATIONS (continued)

OCP Organochlorine Pesticides
Parathion Parathion $(C_{10}H_{14}NO_5PS)$

PMRMA Program Manager Rocky Mountain Arsenal
PM-10 Respirable Particulates less than 10 microns

PPDDE Dichlorodiphenylethane

PPDDT Dichlorodiphenyltrichloroethane

SO₂ Sulfur Dioxide

Supona 2-chloro-1-(2,4-dichlorophenyl) vinyl diethyl phosphate

SVOC Semi-Volatile Organic Compounds

T12DCE Trans-1,2-Dichloroethene

TCLEE Tetrachloroethene
TLV threshold limit value

tpy tons per year TRCLE Trichlcroethene

TSP Total Suspended Particulates

USATHAMA U.S. Army Toxic and Hazardous Materials Agency

USAEHA U.S. Army Environmental Hygiene Agency

VOC Volatile Organic Compounds

XYLENE Xylene

APPENDIX A

TOTAL SUSPENDED PARTICULATES (TSP) DATA

A1 Summary

A2 Listing

Al Summary
(on diskette file APPA1.TXT)

A2 Listing (on diskette file APPA2.TXT)

APPENDIX B

RESPIRABLE PARTICULATES OF LESS THAN 10 MICRONS (PM-10) DATA

B1 Summary

B2 Listing

B1 Summary (on diskette file APPB1.TXT)

B2 Listing (on diskette file APPB2.TXT)

APPENDIX C

ARSENIC, METALS AND MERCURY DATA
(1) use data have not been finalized by PARMA)
C1 Listing

C1 Listing (on diskette file APPC1.TXT)

APPENDIX D

ASBESTOS DATA
D1 Listing

D1 Listing (on diskette file APPD.TXT)

APPENDIX E

VOLATILE ORGANIC COMPOUNDS (VOC) DATA
(These data have not been finalized by PMRMA)

E1 Listing

E1 Listing (on diskette file APPE.TXT)

APPENDIX F

SEMI-VOLATILE ORGANIC COMPOUNDS (SVOC) DATA
(These data have not been finalized by PMRMA)

F1 Listing

F1 Listing (on diskette file APPF,TXT)

APPENDIX G

ORGANOCHLORINE PESTICIDES (OCP) DATA
(These data have not been finalized by PMRMA)

G1 Listing

G1 Listing (on diskette file APPG.TXT)

APPENDIX H

QUALITY ASSURANCE/QUALITY CONTROL

- H1 Precision Calculation
- H2 Daily Zero and Span Data for
 - Continuous Gascous Monitors
- H3 Audit Results

HI Precision Calculation

OZONE PRECISION CALCULATIONS CMP - FY90

	ANALYZER RESPONSE	CALIBRATOR OUTPUT	%
DATE	(PPB)	(PPB)	DIFF.
10-13-89	95.4	89.6	6.47
10-24-89	94.7	89.7	5.57
11-08-89	94.6	93.3	1.39
11-20-89	95.6	89.3	7.05
12-08-89	96.1	90.7	5.95
12-22-89	95.1	89.8	5.90
02-01-90	106.0	99.7	6.32
02-15-90	96.9	89. 0	8.88
03-02-90	95.9	90.2	6.32
03-15-90	95.7	90.8	5.40
04-19-90	93.3	90.0	3.67
04-26-90	91.0	90.2	0.89
05-10-90	93.3	90.5	3.09
05-24-90	92.0	90.5	1.66
06-07-90	89.1	89.7	-0.67
06-21-90	92.0	90.0	2.22
67-05-90	91.6	90.0	1.78
07-20-90	89.6	90.0	-0.44
08-02-90	91.3	90.2	1.22
08-16-90	90.4	89.5	1.01
08-30-90	92.9	92.8	0.11
09-13-90	91.0	89.8	1.34
09-27-90	91.7	89.7	2,23
AVERAGE	% DIFFEREN	 DE	3.36
	DEVIATION		2.70
	· · · · · · · · · · · · · · · · · · ·	ITY LIMIT	8.65
	% PROBABIL		-1.92

CARBON MONOXIDE PRECISION CALCULATIONS CMP - FY90

DATE	RESPONSE	CALIBRATOR OUTPUT (PPM)		
10-13-89	8.9	9.6	-7.29	
10-23-89	9.1	9.6	-5.21	
11-03-89	9.3	9.6	-3.12	
11-20-89	9.4	9.6	-2.08	
12-04-89	9.3	9.6	-3.12	
12-22-89	9.5	9.6	-1.04	
02-01-90	8.4	9.1	-7.69	
02-08-90	8.6	9.1	-5.49	
02-14-90	8.8	9.1	-3.30	
03-01-90	8.7	9.1	-4.40	
03-15-90	8.9	9.1	-2.20	
03-29-90	9.0		-7.22	
04-11-90	9.3	9.7	-4.12	
05-10-90	9.1	9.7	-6.19	
05-24-90	7.0	9.7	-7.22	
06-07-90	9.0	9.7	~7 .2 2	
06-21-90	9.1	9.7	-6.19	
07-05-90	9.1	9.7	-6.19	
07-20-90	9.0	9.7	-7.22	
08-02-90	8.9	9.7	-8.25	
08-16-90	8.9		-6.32	
08-30-90	9.0			
09-13-90	8.8	9.3	-5.38	
09-27-90	8.8	9.3		
AVERAGE	% DIFFERENC	:F	-5.38	
	DEVIATION		1.98	
UPPER 95	% PROBABILI	ITY LIMIT	-1.50	
LOWER 95	% PROBABIL	ITY LIMIT	-9.25	

SULFUR DIOXIDE PRECISION CALCULATIONS CMP - FY O

DATE	ANALYZER RESPONSE (PPB)	CALIBRATOR OUTPUT (PPB)	χ DIFF.	
10-13-89	88.6	104.0	-14.81	
10-23-89	84.6			
11-08-90	87.3	104.0	-16.06	
11-20-89	94.3	104.0	-9.33	
12-04-89	89.9	104.0	-13.56	
12-22-89	91.6	90.0	1.78	
02-01-90	100.0	91.0	9.89	
02-15-90	110.3	115.6	~4.58	
03-01-90	93.3	88.8	5.07	
03-15-90	97.3		9.57	
03-29-90	123.8	125.3	-1.20	
04-11-90	125.5	125.3	0.16	
04-19-90	114.3	113.5	0.70	
04-26-90	102.3	102.4	-0.10	
05-10-90	103.7	102.4	1.27	
05-24-90	100.3	102.4	-2.05	
06-07-90		102.4	-5.66	
06-20-90		96.8	-4.65	
06-21-90	97.4	102.4	-4.88	
07-05-90			-2.93	
07-20-90				
08-02-90				
08-07-90				
08-16-90				
08-30-90			-2.66	
09-1390			-3.26	
09-27-90	99.4	101.3	-1.88	
AVERAGE	Z DIFFURENC	Œ	-3.61	
STANDARD	DEVIATION		6.73	
	Z PROBABILI		9.58	
LOWER 95	% PROBABILI	TY LIMIT	-16.80	

NITROGEN OXIDES PRECISION CALCULATIONS CMP - FY90

DATE	ANALYZER RESPONSE (PPB)	CALIBRATOR OUTPUT (PPB)	
10 17 00		00 (-5 . 25
10-13-89			
10-24-89			
11-08-89		_	-7.48
11-20-89	_		0.00
12-04-89			-6.36
12-22-89	· · · · ·		-13.50
02-01-90			
02-03-90		88.0	
02-05-90			
02-15-90			
03-01-90	=		
03-15-90			13.38
03-29-90	101	124.4	-18.81
04-26-90	100.7	101.6	-0.89
05-10-90			-1.48
05-24-90	90.6	101.6	-10.83
06-07-90			-12.11
06-21-90	92.7		
07-05-90	92.6	101.6	-8.84
07-20-90	97 . 7	101.6	-3.84
08-02-90	96.0	102.4	-6.25
08-16-90		104.0	
08-30-90		104.1	
		100.2	
09-27-90			
AVERAGE	% DIFFERENCE	LL	-5.12
STANDARD	DEVIATION		7.37
UPPER 95	% PROBABIL:	TTV TMIT	9.33
		ITY LIMIT	
	(10/2/112/412)	L. ATJA 1	2,.00

DATE	SITE	TAG NO.	TSP CONC (ug/m3)	SITE	TAG NO.	CONC (ug/#3)	Z DIFF
01-0CT-89 i	AQ5	18449	73.6	AQ5B	1 84 50	71.5	-3.00
19-0CT-89	A05	18666	31.6	AQ5B	18667	28.9	-9.10
25-0CT-89	AD5	18680	95.8	AQSB	18681	93.5	-2.51
31-0CT-89	AQ5	18701	23.5	405B	18702	17.0	-31.74
06-NOV-89	AQ5	18715	42.0	AQ5B	18716	40.8	-2.97
12-NOV-89	A05	18746	24.8	A058	18747	24.1	-3.11
18-NOV-89	AQ5	18760	35.6	AQ5B	18761	35.5	-3.16
24-NOV-89	A05	18781	41.9	A058	18782	40.7	2.89
30-NOV-89	AQ5	18795	55.8	A058	18796	53.0	-5.13
06-DEC-89	AQ5	22909	28.9	AQ5B	22910	29.1	0.71
12-DEC-89	AQ5	22928	50.8	AQ5B	22929	48.8	-3.98
18-DEC-89	AQ5	22942	26.8	AQSB	22943	28.5	6.11
24-DEC-89	AQ5	22956	53.0	AQ5B	22957	51.0	-3.83
30-DEC-89	AQ5	22970	24.0	AQ5B	22971	22.7	-5.26
05-JAN-90	AQ5	22984	124.0	AQ5B	22985	122.0	-1.61
11-JAN-90	A05	25768	21.5	A05B	25769	20.1	-6.73
17-JAN-90	A05	25784	36.7	AQ5B	25785	36.5	-0.33
23-JAN-90	AQ5	25798	25.3	AQ5B	25799	24.7	-2.16
29-JAN-90	AQ5	25812	34.4	AQ5B	25813	32.9	~4.47
04-FEB-90	AQ5	25826	34.8	A05B	25827	33.6	-3.78
10-FEB-90	AG5	25840	29.2	AQ58	25841	29.1	-0.47
16-FEB-90	AQ5	25854	86.4	A058	25855	85.2	-1.41
22-FEB-90	A85	25868	42.1	AQ5B	25869	41.2	-2.17
28-FEB-90	AQ5	25882	17.4	AQ5B	25883	17.7	1.48
12-MAR-90	A05	25910	30.3	AQ5B	25911	35.9	-6.4
18-MAR-90	A05	25924	9.6	A05B	25925	9.4	-1.98
24-HAR-90	AQ5	25938	7.0	AQ5B	25939	6.5	-6.83
30-MAR-90	A05	25952	19.9	AQ5B	25953	19.4	-2.59
05-APR-90	AQ5	25966	5.0	AQ5B	25967	4.4	-13.60
11-APR-90	AQ5	25980	43.3	AQ5B	25981	42.5	-1.8
17-APR-90	AQ5	25994	33.5	AGSB	25995	34.2	1.79

			TSP			TSP	
			CONC			CONC	
DATE	SITE	NO.	UG/H3	SITE		UG/H3	
29-APR-90		0000033	24.3	AQ5B	0000034	22.7	-6-96
05-MAY-90	AQ5		20.5				
11-MAY-90		Q0000B3	35.2	AQ5B	0000084	35.6	1.10
17-HAY-90	AQ5	9000129	22.4				
23-HAY-90	AQ5	Q000154	53.1	AQ58	2000190	55.8	5.02
29-MAY-90	A05 -	0000210	21.8	คนอย	U000211	22.1	1.36
10-JUN-90	AQ5	0000254	28.2			26.3	
16-JUN-90	AD5	0000285				56.4	5.86
22-JUN-90	A05	0332		AQ5B		51.9	-0.99
28-JUN-90	AQ5	Q367	63.4 23.7	AD59	Q368 Q394	67.4	6.19
04-JUL-90	AQ5	0393	23.7	A058	U374	24.5	5.45
10-JUL-90	AQ5	Q426	32.5	AQ58	Q428	33.0	1.52
16-JUL-90	AQ5	G447	42.9	AQ5B	9448	40.4	-6.05
22-JUL-90	AQ5	9469	10.3	AUSB	0470	9.5	-8.38
28-JUL-90	AQ5	0489	38.8	405R	0490	43.9 66.3	12.24
09-AUG-90	AQ5		66.7	A058	Q546	66.3	-0.66
15-AUG-90	AQ5	Q 565	36.2	AQ5B	Q566	40.8	11.96
21-AUG-90	A05	Q585	37.0	AQ5B	0586	39.1	5.61
27-AUG-90	AQ5	Q 606	37.6	A058	Q 607	40.4	7.26
02-SEP-90	AQ5	0626	32.6	AR5R	0627	33.1	1.51
08-SEP-90	AQ5	Q647	35.7	AQ5B	Q648	34.9	-2.16
14-SEP-90	AQ5	8649	170.1	AQ5B	9669	181.0	6.19
20-SEP-90	AQ5	0689	25.5	AQ5B	9690	27.1	6.25
26-SEP-90	A05	B711	24.8	AQ58	0712	24.7	

AVERAGE %							-1.50
STANDARD D	FATU	IIUN					6.57
UPPER 95%							B.04
LOWER 95%	PROB	. LIMIT					-10.16
NUMBER OF	PREC	ISION CHE	ECKS				55
NUMBER OF	PAIR	ED SAMPLE	ES LESS THAN	20 ug/#3			6

PM-10 PRECISION CALCULATIONS

DATE	SITE	FILTER NO.	CONC UG/H3	SITE	FILTER NO.	CONC UG/M3	X DIFFEF
01-0CT-8	89 40 50	13479	29.17	AQ5D	13480	2B.99	-0.62
07-OCT-	B9A05C	13485	32.29	AQ5D	13486	32.88	1.80
13-OCT-0	B9AG5C	13491	27.33	AU5D	13492	27.06	1.93
19-OCT-1	B9AA5C	13497	19.20	AQ5D	13498	18.85	-1.8
25-0CT-1	B9AQ5C	13503	50.34	AQ5D	13504	50.79	0.8
31-0CT-1	B9AQ5C	13509	15.06	AQ50	13510	14.97	-0.6
06-NOV-	B9A05C	13515	19.66	AUSD	13516	19.63	-0.1
12-NOV-1	B9AQ5C	13521	12.57	AQ5D	13522	12.66	0.7
18-NOV-1	B9AQ5C	13527	19.02	AQ5D	13528	19.19	0.80
24-NOV-1	B9AQ5C	13533	20.48	AU5D	13534	20.34	-0.7
30-NCY-1	B9AQ5C	13539	30.21	AQ50	13540	29.91	-0.99
06-DEC-I	B9AQ5C	13545	13.51	AQ5D	13546	14.69	8.4
12-DEC-1	B9AQ5C	13551	26.33	AQ5D	13554	25.50	-3.23
18-DEC-	89AQ5C	13558	21.45	AQ5D	13559	20.48	~4.5
24-DEC-	B9AQ5C	13564	22.83	A050	13565	22.80	-0.1
30-DEC-	99AQ5C	13570	15.32	AQ5D	13571	14.43	-5.9
05-JAN-	90AQ5C	13574	65.72	AQ5D	135/7	65.76	0.0
11-JAN-	90AQ5C	13582	10.27	AQ5D	13583	10.27	0.0
17-JAN-	90A05C	13588	19.14	AQ5D	13587	19.87	3.7
23-JAN-	90A05C	13594	10.16	AQ5D	13595	9.94	-2.1
29-JAN-	90A05C	13600	13.70	AU5D	13601	12.19	-11.6
04-FEB-	90A05C	13606	19.24	AQSD	13607	19.09	-0.8
10-FEB-	90AQ5C	13612	11.69	A050	13613	11.92	1.9
16-FE 8-	90A05C	13618	59.76	AQ5D	13619	59.87	0.1
22-FEB-	90A05C	13624	23.60	AU5D	13625	23.0B	- 2.2
28-FEB-	90A05C	13430	14.23	AQ5D	13631	14.17	-0.4
06-MAR-	90A05C	13636	8.96	A050	13637	8.91	-0.5
12-MAR-	90A05C	13642	17.31	AQ5D	13643	17.30	-0.0
18-HAR-	90AQ5C	13648	10.31	AQ5D	13649	10.54	2.1
24-MAR-	90AQ5C	13654	8.78	AQ5D	13655	0.10	-8.1
05-APR-	90AQ5C	13666	5.02	AQ50	13667	3.56	-34.2
11-APR-	90AQ5C	13672	28.29	AQ5D	13673	28.57	1.0
17-APR-	90AU50	13678	16.87	AQ5D	13679	17.39	3.0

PM-10 PRECISION CALCULATIONS (CONTINUED)

DATE	SITE		CONC UG/M3	SITE	NO.	U6/M3	
29-APR-9	70AU5C	Q000 0 35	19,91			6.12	-105.92
			11.73		0000056	11.86	1.09
LI-MAY-	70AQ5C		17.35		0000086	16.76	-3,44
7-HAY-	90AQ5C	0000131	12.44	AD5D	0000132	11.89	~4.54
23-MAY-	90AQ5C	0000191	23.57	AU5D	0000192	23.73	0.64
29-MAY-9	90AU5C		11.00	AQ5D	0000213	11.15	
10-JUN-9	90AQ5C		12.40	AQ5D	0000257	12.54	1.09
16-JUN-	90AQ5C	0000287	21.50	AQ5D	0000288	20.94	-2.64
22-JUN-	90A05C	Q334	24.02	AQSD	0335	22.23	-7,7
28-JUN-	90A05C	Q369	29.78	A05D	9370	29.99	0.77 5.37
04-JUL-1	90AQ5C	Q395	14.55	AQSD	0346	15.35	5.37
22-JUL- ⁴	90A05C	0471	4.63	AQ5D	0472	4.45	-4.12
28-JUL-	90AQ5C	0491	17.92	AQ5D	0492	17.26	-3.7
03-AU6-	90AQ5C	Q527	21.39	AQ5D	0528	21.54	0.6
09-AUG-	90AQ5C	9547	32.80	AQ5D	Q548		0.6
15-AUG-	90A05C	Q567	17.08	AQSD	0568	16.51	-3,36
21-AUG-	90AU5C	0587	19.25	AQ5D	u58 8	19.37	0.6
27-AUG-	40AQ5C	8040	17.12	A05D	0609	14.36	-17.5
02-SEP-	90A05C	Q628	16.41	AQ50	0630	15.72	-4.3
08-SEP-	90AU5C	0649	17.11	AQ5D	0450	17.22	0.6
14-SEP-	90AQ5C	0670	64.97	AQ5D	0671	66.88	2.9
20 -SEP-	90A05C	0691	13.55	405D	0692	13.64	0.6
26-SEP-	90AQ5C	0713	13.53	AQ5D	0714	12.91	-4,6
AVERAGE	• • • • • • • • • • • • • • • • • • •	- I D C MUE					-3,5
S FANDAR							15.0
UPPER 9	5% PROF	B. LIMIT					19.3
COWER 9	5% PROI	B. LIMIT					-23.3
NUMBER	OF PRE	CISION CHE	CKS				5
NUMBER	OF PATI	RED SAMPLE	S LESS TH	AN 20 m	n/ a 3		3

			PE	RCENT DIFFER	ENCE		
DATE	SITES	CADHIUM	CHROMIUM	COPPER	LEAD	IINC	ARSENIC
01-0CT-89		LY CRL	LT CRL		11.07	6.37	-78.88
07-0CT-89	AQ5, AQ5B	L1 CRL	LT CRL	62.67	0.15	0.45	-6.38
13-0CT-89	AU5, AU5B	1'x 12"	LT CRL	63.42	-0.68	5.07	L1 CRL
19-0CT-89	A05, A05B	LT CRL	LT CRL	70.88	2.55	-5.41	LT CRL
25-001-89	AQ5, AQ58	-B.15	LT CRL	49.0B	-6.16	~6.28	-1.04
31 - 00T-89	AQ5. AQ58	LI CHL	LT CRL	20.01	21.04	-18.25	
06-NOV-89	A05, A058	LT CRL	LT CRL	40.25	10.83	4.42	-131.93
08-NOV-89	AQ5, AQ5B	LT CRL	LT CRL	6/.91	-38.40	-6.76	LT CRL
12-NOV-89	AQ5, AQ58	LY CRL	LT CRL	8.73	4.29	8.44	
18-NOV-89	A05. A05B	LT CRL	LT CRL	57.16	2.00		
24-NOV-89	AUS, AUSB	LT CRL	LT CRL	55.19	-10.66		LT CRU
30-NOV-89	AQ5, AQ5B	LT CRL	LT CRL	36.81	-10.19		
06-DEC-89	AQ5, AQ5B	LT CRL	LT CRL	-16.63	1.89		LT CRL
12-DEC-89	AQ5, AQ5B	-5.24	LT CRL	63.79	-2.60		
18-DEC-89		LT CRL	LT CRL	11.98			
24-DEC-89	AQ5, AQ5B	LT CRL LT CRL	LT CRL	33.36	38.36 15.18	-0.54	
30-DEC-89	AQ5, AQ58	6.89	LT CRL	-1.08	48.01	101.15	
05-JAN-90	A05, A05B	LT CRL	LT CPL	-17.44	48.01 -6.58	-1.58	21.03
07-JAN-90	AQ5, AQ58	-8.95		60.04	7.49	19.18	LT CRI
09-JAN-90	AQ5. AQ5B	-4.67	LT CRL	23.23	-2.54		LT CRI
11-JAN-90	AUS, AUSB	LT CRL	LT CRL	-9.84	L1 CRL	-B.92	LT CRI
17-JAN-90	AQ5. AQ58	LT CRL	LT CRL	31.06	33.39		ET ON
23-JAN '	AQ5, AD5B		LT CRL	74.39	0.04	6.24	
29-JAN-7	405. AQ5B	LT CRL	LT CRL	83.31	-7.05		
04-FEB-90	AQ5, AQ58		LT CRL	62.74	-4.9B		-2.18
10-FEB-90	AQ5, AQ5B	LT CRL	LT CRL	87.93	-17.01		2.1
16-FEB-90	A05, A05B	LT CRL	וז רטו	3.85	0.62	5.00	
22-FEB-90	AQ5, AQ5B	LT CRL	LT CRL LT CRL	56.34	14.56	0.93	
28-FEB-90	A05, A05B	LT CRE	LT CRL	25.91	LT CRL	-65.43	
06-MAR-90	AQ5, AQ5B	LT CRL	LT CRL	-14,57	LT CRL		IT CR
12-MAR-90	A05, A05B			105.02		-5.76	I) UN
18-MAR-90	AQ5, AQ5B	LI UNL	LT CRL		-28.65		
24-MAR-90	AQ5, AQ5B	LT CRL	LT CRL	74.25	LT CRL LT CRL	19.55	
	AQ5. AQ5B	LY CRL	LT CRL LT CRL	109.09			
30-MAR-90		-41.70	LI UNL	64.53	-41.71	-9,07	LY Ch
05-APR-90	AQ5, AQ58	LT CRL	LT CRL	-24.31		-5.26	LT CR
11-APR-90	AQ5, AQ5B	LT CRL	LT CRL	38. 53	LT CRL	13.27	
17-AFR-90	AD5, AD58	LT CRL	LT CRL	55. 55	-3.48	~4.15	
29- APR-90	AQ5, AQ5B	LT CRE	LT CRL	3 7.39	LT CRL	LT CRL	
05-MAY-90	A05, A05B	LT CRL	LT CRL	23.80	LT CRL	-7.08	LT CR
07 MAY-90	A05. A05B	LT CRL	LT CAL	22.46	LT CRL	-4.70	LT CR
11-MAY-90	AU5, AU5B	LT CRL	L7 CRL	-34.38	LT CRL	LT CRL	LT CR
15-MAY-90	,	LT CRL	LT CRL LT CRL LT CRL LT CRL	-37.35	LT CRL	LT CRL	LT CR
17-MAY-90	AQ5, AQ5B	L1 CRL	LT CAL	42.45	LT CRL	20.94	
23-MAY-90		LT CRL	LT CRL	45.35	LT CRL	0.73	LT CR
29~ MAY-9 0	A05, A05B	LT CRL	LT CRL	37.36	LT CRI.	29.99	

METALS AND ARSENIC PRECISION CALCULATIONS (CONTINUED)

			PE	RCENT DIFFER	RENCE		
		CADHIUM	CHROHIUM				
10-JUN-90) LT CRL					
12-JUN-90	AG5, AG51		LT CRL				LT CRL
16-JUN-90	AQ5, AQ51	3 LT CRL	LT CRL	-1.62	LT CRL	LT CRL	
22-JUN-90	A05. A05	ET CRL	LT CRL	-8.70	LT CRL	4.33	
28-JUN-90	AQ5, AQ51	B LT CRL	LT CRL	1.93	LT CAL	62.66	
04-JUL-90	A05, A05	3 LT CAL	LT CRL	-5.51	LT CRL	-8.99	LT CRI
10-JUL -9 0	AQ5, AQ51	B LT CRL	LT CRL	-34.55	LT CRL	-3.10	
16-JUL-90	A05, A05	ET CRL	LT CRL	47.68	LT CRL	-7.70	
22-JUL-90	Aú5, AQ5	3 LT CRL	LT CRL	0.12	LT CRL	-4.85	
25-JUL -90	AQ5, AQ5	B LT CRL	LT CRL	-21.57	LT CRL	-21.31	LT CR
28-JUL-90	A05, A05		LT CRL	79.94	LT CRL	30.55	
09-AUG-90	AQ5, AQ5	B LT CRL	LT CRL	36.86	LT CRL	7.46	LT CR
15-AUG-90	A05, AQ5	B LT CRL	LT CRL	86.53	LT CRL	19.21	
21-AUG-90	AQ5, AQ5	B LT CRL	LT CRL	50.21	5.51	11.87	
27-AUG-90	A05, A05	9 LT CRL	LT CRL	86.14	LT CRL	14.76	
02-SEP-90	A05, A05	B LT CRL	LT CRL	49.81	LT CRL	18.32	
08-SEP-90	A05, A05	B LT CRL	LT CRL	69.20	LT CRL	5.56	LT CR
14-SEP-90	AQ5, AQ5	B LT CRL				14.11	
20-SEP-90	AQ5, AQ5	B LT CRL	LT CRL	22.4B	LT CRL	-4.88	
26-SEP-90	A05, A05	B LT CRL	LT CRL	56.15	LT CRL	0.77	
verage % DIFFER					0.47		
TANDARD DEVIATI					19.02		
PPER 95% PROB.	LIMIT				26.69		
OWER 95% PROB.	LIMIT				-26.03		
NUMBER OF PRECIS	SION CHECKS	ь	0	65	31	61	

DATE	SITE	TAG NO.	Hg CONC.
			(up/#3)
08-NOV-89	A05	24556	LT CRL
08-NOV-89		24557	L) CRL
05-DEC-89	AQ5	24567	LT CRL
05-DEC-89	AUSC	24568	LT CRL
07-JAN-90	AB5	24583	LT CRL
07-JAN-90	A05C	24584	LT CRL
07-JAN-90	MOBILE	24588	LT CRL
07-JAN-90	MOBILE C	24589	LT CRL
09-JAN-90	AQ5	24594	LT CRL
09- JAN -90	AU5C	24595	LY CRL
09-JAN-90	NOBILL E	24598	LT CRL
09-JAN-90	NOBILE EC	24601	LT CRL
10-JAN-90	AQ5	24608	LT CRL
10-JAN-90	A05C	24609	L1 CRL
10-JAN-90	MOBILL E	24612	LT CRL
10-JAN-90	MOBILE EC	24613	LT CRL
07-MAY-90	AQ5	24625	LT CKL
07-MAY-90	AU5C	24626	LT CRL
11-MAY-90	NQ5	24635	LT CRL
11-MAY-90	AQ5C	24636	LT CRL
11-MAY-90	AQ6	24637	LY CRL
11-HAY-90	AO4C	24638	LT CRL
15-NAY-90	A05	24646	LT CRŁ
15-MAY-90	A05C	24647	LT CRL
15-MAY-90	AU6	24648	LT CRL
15-MAY-90	AG6C	24652	LT CRL
12-JUN-90	AU5	24663	LT CRL
12-JUN-90	A05C	24664	LT CRL
12-JUN-90	AUS	246 66	LT CRL
12-JUN-90	AU9C	24667	LT CRL
25-JUL-90	A05	24707	LT CRE
25-JUL-90	AQ5C	24708	LT CRL
25~JUL-90	FC2	24701	LT CRL
25~JUL-90	FC2C	24710	L1 CRL
20-SEP-90	AQ5	24750	LT CRL
20-SEP-90	AU5C	29751	LT CRL
20-SEP-90	A06	29752	LT CRL
20~SEI>-90		29753	LT CRL
26-SEP-90		29761	LT CRL
26-SEP-90		29762	I,T CRL
26-SEP-90		29766	LT CRL
26-SEP-90	FC5C	29767	LT CRL

Number of paired samples is 21. Number of samples above the LCRL = 0.

CMP FY90 ASBESTOS PRECISION CALCULATIONS (in fibers/ml)

			SITE		LAB REPORTED
MO	DAY	YR	NO.	TAG NO.	FIBERS/ML
10	Ь	89	AQ6	AB275	<0.0002
10	6	89	A06C	AB278	<0.0002
10	19	89	AGB	AB283	(0.0002
10	19	89	AQBC	AB285	(0.0002
10	30	89	AG12	AB291	(0.0002
10	30	89	AQ12C	AB292	(0.0002
11	12	89	AGI	AB295	(0.0002
11	12	89	AUIC	AB299	(0.0002
11	23	89	AG6	AB303	(0.0002
11	23	89	AQ6C	AB306	(0.0002
12	6	89	AG8	AB311	(0.0002
12	6	89	AGBC	AB313	(0.0002
12	18	89	AQ1	AB316	<0.0002 <0.0003
12	18	89	AQ1C	A8320	<0.0003
12	30	67 89	AQ6	AB324	
12	30	89	AD6C	AB327	(0.0002
12	11	90	AB8	AB332	<0.0002 <0.0002
1	11	90	AUSC AUSC	AB334	
1	. 23	90	A012		(0.0002
1	23	90	AU12C	AB340	(0.0002
				AB341	(0.0002
2	4	90	A01	AB344	(0.0002
2	4	90	AQIC	AB348	(0.0002
3	12 12	90	A06	AB352	(0.0002
		90	38UA	AB355	(0.0002
4	4	90	80A	AB360	(0.0002
4	4	90	AGBC	AB362	(0.0002
5	11	90	A012	AB368	<0.0002
5	11	90	A012C	AB369	(0.0002
6	4	90	A01	AB372	(0.0002
6	4	90	AGIC	AB376	<0.0002
7	16	90	A06	AB387	(0.0002
7	16	90	AQ6C	AB390	(0.0002
8	3	90	AQ8	AB395	(0.0002
8	3	90	AUBC	AB397	(0.0002
9	7	90	AQ12	AB403	<0.0002
9	7	90	AQ12C	AB404	<0.0002

^{*} Number of paired samples is 18.
Number of samples above LCRL = 0.

DATE	SITE	TAG NO.	IIITCE	112TCE	11DCLE	12DCLE	BCHPD	C6H6	CCL4	CH2CL2	CHCL3	CLC6H5	DRCP
19-DEC-1	B9 AQ5	24577	C 7.161	LT CRL	LT CRL	0.178	LT CRL	>C 7.548	>C 1.169	>C 2.839	LT CRL	LT CRL	LT CRL
16-MAR-	90 AUS	24619	C 1.987	LT CRL	LT CRL	0.107	LT CRL	>C 0.917	>C 0.757	C 3.849	0.145	LT CRL	LT CRL
21-MAY-	90 AQ5	24657	C 2.468	LT CRL	LT CRL	0.069	LT CRL)C 1.365	>C 0.376	DC 6.371	0.051	LT CRL	LT CRL
27-JUN-	90 AQ5	24678	C 2.533	LT CRL	LT CRL	0.057	LT CRL	>C 1.402	0.340	C 1.308	0.091	LT CRL	LT CRL
28-JUN-	90 AUS	24684	€ 2.536	LT CRL	LT CRL	0.114	LT CRL	>C 2.807	0.382	>C 3.274	0.134	LT CRL	LT CRL
19-141-	90 A05	24694	C 1.541	LT CRL	LT CRL	0.130	LT CRL	>C 0.947	>C 0.391	C 13.262	0.068	LT CRL	LT CRL
27-JUL-1	90 A05	24715	€ 2.114	LT CRL	LT CRL	LT CRL	LT CRL	0.948	0.354	DC 2.729	LT CRL	LT CRL	LT CRL
02-AUG-	90 AUS	24725	C 4.540	LT CRL	LT CRL	LT CRL	LT CRL	>C 6.281	>C 0.576	C 1.954	0.214	LT CRL	LT CRL
Q9-AUG-	90 AQ5	24735	C 4.141	LT CRL	LT ERL	LT CRL	LT CRL	>C 0.955	>C 0.394	>C 6.683	0.088	LT CRL	LT CRL
11-SEP-	90 AQ10	24743	C 4.610	LT CRE	LT CRL	LT CRL	LT CRL	>C 1.890	>C 0.390	C 19.837	0.285	LT CRL	LT CRL
19-DEC-	B9 AB5C		C 7.121		LT CRL	0.210	LT CRL	>C 7.037	C 1.162	>C 3.677)C 0.823	LT CRL	LT CRL
16-MAR-			C 1.501	LT CRL	LT CRL	0.099				>C 3,229	0.113		LT CRL
21-HAY-	70 AD50	24458	C 2.483			0.075		>C 1.832	>C 0.378	>C 5.769	0.061	LT CRL	LT CRL
27-JUN-		24679	C 2.538		LT CRL	0.081		>C 1.873	0.363)C 1,311	0.115	LY CRL	LT CRL
28-JUN-	90 AD5C	24685	C 2.540	LT CRL	LT CRL	LT CRL		>C 2.342	0.348	>C 3.279	0.096	LT CRL	LT CRL
18-101-			C 1.025			0.139		C 1.418		C 6.617	830.0		LT CRL
27-JUL-	90 4950	24716	C 3.521	LT CRL	LT CRL	0.104	LT CRL	DC 1.856	>C 0.383	>0 1.299	0.085	LT CRL	LT CRL
02-AUG-	90 A050	24726	5.111	LY CRL	LT CRL	LT CRL		>€ 4.714	>C 0.779	>€ 1.320	6.120	LT CRL	LT CKL
09-AUG-	90 AD50		C 5.162							>6.664		LT CRL	
11-SEP-	90 AU10	C 24744				LT CRL		C 1.412	>C 0.389	>C 6.509		LT CRL	
						ENT DIFFER							
			-0.56	LT CRL	LT CRL	16.73	LT CRI	L -7.01	-0,56	25.71	LT CRL	LT CRL	LT C
			-27.90	LT CRL	LT CRE	-8.41	LT CR	L 0.68	-66.05		-24.78	LT CRL	LT C
			0.61	LY CRL	LT CRL	7.06	LT CRI	L 29.17	0.31		17.27	LT CRL	LT C
			0.21	LT CRL	LT CRL	34.69	LT CR	L 28.78	6.80	0.21	23,46	LT CRL	LT C
			0.14	LT CRL	LT CRL	LT CRL	LT CR	L -18.04	-9.38	0.14	-33.20	LT CRL	LT C
			-40.20	LY CRL	LT CRU	6.93	LT CR	L 39.80	-6,41	66.85	-0.21	LT CRL	LT CI
			49.94	LT CRL	£T CRL	LT CAL	LT CR	L 74.52	7.84	-71.03	LT CRL	LI CRL	LT 0
			11.84	LT CRL	LT CRL	LT CRL	LT CR	L -28 ,4 9	29.86	-38. 73	-55.93	LT CRL	LT C
			21.94		LT CRL		LT CR				-57,40	LT CRL	LT C
			-0.35	LT CRL	L1 CRE	LT CRL	LT CR	L -28.91	0.35			LT CRL	LT C
AVERAGE 2	DIFFERENCE		1.57			11.40		13.02	-3.79	-27.85	-14.08		
NUMBER OF	PAIRED SAF	IPLES	10			5		10	10	10	8		

VOC PRECISION CALCULATIONS FOR FY90 (CONTINUED) ANALYSIS OF ALL VALUES INCLUDING GREATER THANS

DATE	SITE	TAG NO.	DCPD	BNBS	ETC6H5	NECAHS	MIBK	HILDHEA	12DNB	T12DCE	TCLEE	TRCLE	XYLEHE
19-DEC-89	AQ5	24577	LT CRL	LT CRL	>C 3.776	>C 6.743	>C 0.694	LT CRL	>C 4.934	LT CRL	C 4.516	0.316	C B.380
16-NAR-90	A95	24519	LT CRL	LT CRL	>C 0.437	>C 4.367	LT CRL	LT CRL	>C 0.484	LT CRL	>€ 1.935	LT CRL :	C 1,285
21-HAY-90	AQ5	24657	LT CRL	LT CRL	>C 0.434	>€ 5.421							
27-JUH-90	AQ5	24678	LT CRL	LT CRL	0.890	>C 16.693	0.270	LT CRL	>C 0.987	LT CRL	>C 2.630	LT CRL :	C 2.184
28-JUN-90	AQ5	24684	LT CRL		>C 1.337								
18-JUL-90	405	24694	LT CRL	LT CRL	0.307	>C 2.821	0.107	LT CRL	0.425	LT CKL	0.594	LT CRL :	388.0 3
27-JUL-90			LT CRL	LT CRL	0.437 0.572	C 3.484	LT CRL	LT CRL	0.567	LT CRL	0.686	LT CRL	0 1.823
02-AUG-90	A95	24725	LT CRL	LT CRL	0.572	C 16.624	LT CRL	LT CRL	DC 0.737	LT CRL	>C 5.894	LT CRL :	C 3.262
07-AUS-90	A05	24735	LT CRL	LT CRL	>C 0.910	>C 5.687	LT CRL	LT CRL	>€ 1.513	LT CRL)C 1.344	0.109	C 3.571
11-SEP-90	AU10	24743	LT CRL	LT CRL	0.180	>C 5.627	0.204	LT CRL	0.210	LT CRL	C 0.665	0.156	0.707
19-0EC-89	AQSC	24578	LT CRL	LT CRL	>C 4.157	>C 6.705	>C 0.829	LT CRL	>C 4.956	L1 CRL	>C 4.953	0.235	C 9.210
16-MAR-90	AQ5C	24620	LT CRL	LT CRL	>€ 0.440	C 4.397	LT CRL	LT CRL	>C 0.488	LT CRL	C 1.948	LT CRL	0 1.725
21-MAY-90	ADSC	24658	LT CRL	LT CRL	>C 0.873	>C 10.909	LT CRL	LT CRL	>C 0.968	LT CRL	>0 2.579	LT CKL	C 1.713
27-JUN-90	AQ5C	24679	LT CRL	LT CRL	>C 0.892	>C 16.728	0.317	LT CRL	>C 1.484	LT CRL	C 2.636	0.106	C 2.626
28-JUN-90	AUSC	11685	LT CRL	LT CRL	>C 0.893	>C 0.558	LT CRL	LT CRL	>C 1.485	L1 CRL	>C 1.978	0.080	C 3.066
18-JUL-90	AQ5C	24695	LT CRL	LT CRL	0.257	>C 2.252	0.098	LT CRL	0.370	LT CRL	0.546	LT CRL	C 0.884
27-JUL-90	AQ5C	24716	LT CRL	LT CAL	>C 0.442	>€ 5.526	LT CRE	LT CRL	>C 0.980	LT CRL	>C 0.653	LY CRL	E 1.735
02-AH5-90	AQSC				>C 0.898								
07-AUG-90	A95C	24736	LT CRL	LT CRL	>C 1.815	>C 17.012	LT CRL	LT CRL	>C 3.521	LT CRL	DC 3.351	LT CRL	C 8.902
11-SEP-90	A@10C	24744	LT CRL	LT CRL	€ 0.449	>C 5.607	0.282	LT CRL	>C 0.995	LT CRL	>C 1.325	0.144	C 2.201
			******		PERCE	NT DIFFER	ENCES						
			LT CR	L LT CR	9.61	-0.56	17.63	LT CRU	0.45	LT CRL	9.23	-29.67	9.44
			LT CR	L LT CR		0.68						LT CRL	29.24
			LT CR	L LY CR		67.21		LT CRE			29,17	LT CRL	0.61
			LT CA	L LT CR	L 0.21	0.21	15.83	LT CRI	40.20	LT CRE	0.21	LT CRL	18.39
			LT UR	L LT CR			LT CAL	LT CRU			0.14	-33.03	-13.19
			LT CR	L LT CR	L -17.81	-22.43	-19.26	LT CR	-14,05	LT CRI	-8.40	LT CRL	-0.21
			LT CR										-4.95
			LT CR										29.87
			LT CR	L LY CA	L 66.41	99.79					85,48	LT CRL	95.49
			i" CR	L LT CA			32.04	LT CA		LT CRI	66.35	-7,49	102.77
AVERAGE 2 DI	IFFERENCE				21.75	-2.98	11.56		-3.79	·	13.92	-23.39	25.74
HUMBER OF PI	AIRED SAN	PLES			10	10	, 4	i	10)	10	3	10

DATE	SITE	TAG No.	1	11TCE	i	i 2TCE	1	1DCL	£	12	DCLE	1	BCHPI)	C	6H6	ĺ	CL4	1	CH2CL2		CHCL3		CL C & II	j	DPCP
17-DEC-89	AQ5	24577	6T	CRL	Lī	CRL	 LT	CRL			.178	LT	CRL	G1	· ·	CRL	GT	CRL	GT	CRL	Lī	CRL	 Lĭ	CRL	LT	CRL
16-MAR-90	AQ5	24619	GT	CRL	U	CRL	LT	CRL		(.107	LT	CRL					CRL				0.145				CXL
21-MAY-90	AQ5	24657	GT	CRL	LT	CRL	LT	CRL		(.069	LT	CRL	6	1	CRL	GT	CRL	61	CRL		0.051	Lĭ	CRL	LT	CRL
27-JUN-90	AQ5	24678	GI	CRL	U	CRL	Lī	CRL			.057				1	CRL		0.340	G I	CRL		0.091	Lī	CRL	LT	CRL
28-JUN-90	AQ5	24684	GT	CRL	LT	CRL	LT	CRL		(.114	LŦ	CRL	6	ī	CRI		0.382	61	CRL		0.134	LJ	CKL	LJ	CRL
18-JUL-90	AQ5	24694	61	CRL	U	CRL	LT	CRL		(130	LT	CRL	G	Ţ	CRL	GT	CRL	G٢	CRL		0.068	Lī	CRL	LT	CRL
27-JUL-90	A95	24715	GI	CRL	lΤ	CRL	Lĭ	CRL	ŗ	[{	RL	LĮ	CRL			0.848		0.354	GT	CRL	L٢	.AL	LT	CRL	LI	CRL
02-AUG-90	AQ5	24725	61	CRL	LŢ	CRL	LT	CRL	L	.1 (CRL	LT	CRL	G	T	CRL	GT	CRL	GT	CRL		0.214			LI	CRL
09-AUG-90	AQ5	24735	ST	CRL	IJ	CRL	Lĭ	CRL	L	Τ (CRL	LT	CRL	6	ī	CRL	GT	CRL	61	CRL		0.088	Lī	CRL	LT	CRL
11-SEP-90	A910	24743						CRL			RL									CRL		0.285			LT	CRL
19-DEC-09	A950	24578						CRL			.210			6							61	CRL			LT	CRL
16-MAR-90	AQ5C	24620						CRL		1	.099	Lī	CKF					CRL				0.113			LT	CRL
21-MAY-90	AQ3C	25658						CRL		(.075	LT	CRL					CRL				0.061				CRI.
27-JUN-90	AQ5C	24679						CKL			0.081							0.363				0.115				CRL
28-JUN-90	AQ5C	24685						CRL			CRL							0.348				0.096				CRL
18-JUL-90	AQ5C	24695						CRE			1.139							0.367				0.068				CKL
27-JUL-90	AQ5C	24716						CRL			104							CKL				0.085				CRL
02-AUG-90	AQ5C	24726						CRL			CRL					CRL	GT	CRL	61	CRL		0.120	LI	CRL	LI	CRL
	AQ5C	24736						CRL			CRL															
11-SEP-90	AQ10C	29/44	61 			CKL											61	CRL	GT 	CRL		0.341	11	CKL	L1 	CRL
										ŧT.	DIFFE	REN	CES													
				ST CRL												T CRL				GT CRL		ET CRE				LT C
				ST CRL		T CRL		LT C			-8.41					IT CRL		GT CRL		GT CRL		-24.78				LT
				ST CRI		LT CRE		LT C			7.06		LT C			IT CRE		GT CRL		GT CRU		17.27		LT CR		LT (
				GT CRL		LT CRL		LT C			34.69		LTC			T CRL		6.80		er cri		23.46		LT CR		LT S
				ST CRL		T CRE		LT C			T CRL		LT C			T CRL		-9.38		GT CRL		-33.20		LT CR		[] [
				ST CRL		LT CRL		LT C			6.93		LT C			IT CRL		GT CRL		GT CRL		-0.21		LT CR		LIC
				OT SL		LT CRL		LT C			T CRL		TJ C			T CRL		et cri		GT CRL		LT CAL		LT CR		1.1
				GT CRL		LT CRL		LT CI			T CRL		LT C			ST CRL		61 CAL		GT CRL		-55.93				LT
				GT CRL		LT CRL					T CRL		LT C			T CAL		ST CRL		GT CRL		-57.40				LI
				GT CRL		LT CRL					T CRL					ST CRL		GT CRL		GT CR		18.11				L1 (
AVERAGE 2 DIF	FERENCE										11.40							-1.29				-14.08				
NUMBER OF PAI	nch camp										,							2								

•

•

•

•

9

ÿ

BATE	SITE	TAG No.	ì	CPD	1	MDS	1	TC6H5		NEC6H5	i	NIBK	١	HNDHEA		12DHB		TIZDCE		TCLEE		TRCLE		XYLE	NE
19-DEC-89	A05	24577	LT	CRL	LT	CRL	GT	CRL	61	CRL	GT	CRŁ	LT	CRL	 T8	CRL	LT	CRL	GT	CRL		0.316	61	CRI	
16-MAR-90	A95	24619	LT	CRL	LT	CRL	GT	CRL			L٢	CRL	LT	CRL			LT	CRL	61	CRL	Lī	CRL	GT	CRU	
21-MAY-90	AQ5	24657	LΤ	CRL	LT	CRL	GT	CRL	GŢ	CRL	U	CRL	LĪ	CRL	GT	CRL	LI	CRL	61	CRL	LT	CRL	61	CRI	
27-JUN-90	AQ5	24678	LT	CRL	Lī	CKL	GT	CRI.	GT	CRL		0.270	LT	CRL	6T	CKL	U	CRL	GT	CRL	LT	CRL	61	CRI	L
28-JUN-70	AQ5	24684	LT	CAL	LT	CRL	61	CRL	GT	CRL		0.413	H	CRL	61	CRL	IJ	CRL	GT	CRL		0.112	GT	CRI	L
18-JUL-90	AQ5	24694	U	CRL	U	CRL		0.307	GT	CRL		0.107	ŧΤ	CRL		0.425	U	CRL		0.594	LT	CRL	61	CRI	L
27-JUL-90	AØ5	24715	IJ	CRL	ίį	CRL		0.437			LT	CRL	U	CRL		0.567	LT	CRL		0.686	Lī	CRL	GT	CRI	l
02-AUG-90	A05	24725						0.572	GT	CRL	LT	CRL.	Lī	CRL	GT	CRL	LI	ERL	GT	CRL	LT	CŘL	GT	CRI	L
09-AUG-90	AQ5	24735				CRL	GT				H			CRL	b.			CRL	GT	CRL		0.109	GŢ	CRI	L
11-SEP-90	AQ10	24743	LT	CRL	LĪ	CRL		0.180	61	CRL		0.204	Lì	CRL		0.210	LT	CRL	61	CRL		0.156		0.	707
19-DEC-89	AQ5C	24578	U	CRL	LT	CRL	GT	CRL	gŢ	CRL	61	CRL	LT	CRL	Gī	CRL	Lī	CRL	61	CRL		0.235	61	CRI	L
16-MAR-90	AQ5C	24620	Lī	CRL	LT	CRL	61	CRL	GT	CRL	U	ERL	ίŢ	CRL	GT	CRL	U	CRL	GT	CRL	Lī	CRL	GT	ER	L
21-NAY-90	AD5C	25658	Lī	CRL	LT	CRL	GT	CRL	GT	CRL	11	CRL	Ų	CRL	61	CRL	Lī	CRL	61	CRL	LT			CR	
27-JUN-90	AU5C	24679	U	CRL	LT	CRL	Gī	CRL	SI	CRL		0.317	LT	CRL	GT	CRL	LT	CRL	GT	CRL		0.106	GT	CR	L
28-JUN-90	AQ5C	24685	Lī	CRL.	U	CRL	βŢ	CRL			LT	CRL	Lī	CRL	67	CRL	LT	CRL	6T	CkL		0.080	67	CR	L
18-JUL-90	AG5C	24695	LT	CRL	ll	CRL		0.257	Gĭ	CRL		0.088	ĻΤ	CRL		0.370	LI	CRL		0.546	LT	CRL	61	CR	L
27 -JU L-90	AQ5C	24716	LT	CRL	LT	CRL	GT	CRL	GT	CRL	LT	CRL	U	CRL	ĢŢ	CRL	LI	CRL	61	CRL	LT	CRL	GT	CR	L
02-AUG-90	AQ5C	24726	LT	CRL	LT	CRL	61	CRL	GT	CRL	LT	CRL	Lī	CRL	GI	CRL	LI	CRL	GŢ	CRL		0.107	GT	CR	L
09-AUG-90	AQ5C	24736	LT	CRL	U	CRL	61	CRL	GT			CRL				CRL	L	CRL	61	CRL	LT	CRL	GT	CR	L
11-SEP-40	ADIOC	24744	LT	CRL	LT	CRL	61	CRL	G	CRL		0.282	LI	CRL	61	CRL	LI	CRL	GŢ	CRL		0.144	61	CR	L
								PEXC	EN1	DIFFE	REN	ICES													
				LT CRE		LT CRL		GT CRL		GT CAL		GT CR!		LT CRE		GT CRL		LT CRL		GT CRI		-29.67		GT	CRL
				LT CRL		LT CRL		et crl		GY CRL		LT CRL		LT CRE		GT CRL		LT CRL		GT CAL		LT CRL		GT	CRL
				LT CRE		LT CRL		GT CRL		GT CRL		LT CRL		LT CRL		GT CRL		LT CRL		GT CR		LT CRL		ET	CRL
				LT CRI		LT CRL		et cer		61 CRL		15.83		LT CRI		GT CRL		LT CRL		GT CRI		LT CRL		GT	
				LY CRI		LT CRE		GT CRL		ST CRL		LT CRL		LT Ci.		GT CRL		LT CRL		OT CRU		-33.03		GT	CRL
				LT CRE		LI CRL		-17.81		GT CRL		-19.28		LY CRI		-14.05		FL CMF		-8.40)	LT CAL		GT	CRI
				LT CRI		LT CRE		GT CRL		GT CRL		L1 CRI		IT CRE		GT CKL		ET CRE		ST CR		LT CRL		€T	CRL
				LT CRU		LT CRL		GT CRU		GT CRE		LT CRL		LT CRI		GT CRL		LT CRL		GT CRI		LT CRL		GT	CR1
				LY CRE		LT CRL		ST CRU		GT CRL		LT CRL		LT CRI		GT CRL		LT CRL		GT CR		LT CRL		GT	CRL
				LT CRI		LT CRL		GT CRL		GT CRL		32,04		LT CRI				LT CRL		GT CRI		-7.49		GT	
AVERAGE 2 DIF	FERENCE							-17.81				9.54				-14.05						-23.39			
NUMBER OF PAI	DEB PAND	ire						1				3				1						3			

(*)

DATE	SITE	TAG NO.	1.3DBD4	2CI.PD4	ATZ	CLDAN	CPMS0	CPMS02	DEFD4	DLDRN
21-HAY-90	AQSE	20334	0.18788	0.14719	LT CRL	LT CRL	LT CRL	LT CRL	0.22905	LT CF
29-AUG-90	AQ10	SIP			LT CRL	LT CRL	LT CRL	LT CRL		LT CF
11-SEP-90	AQ10	62P			LT CRL	LT CRL	LY CRL	LT CRL		LT CF
18-JUL-90	AQ26	7P			LT CRL	LT CRL	LT CRL	LT CRL		LT C
02-AU6-90	AQ26	17P			LT CRL	LT CRL	LT CRL	LT CRL		LT C
27-AU6-90	AQ36	48P			LT CRL	LT CRL	LT CRL	LT CRL		LT CI
21-HAY-90	AQ5F	20335	0.23040	0.18404	LT CRL	LT CRL	LT CRL	L1 CRL	0.25850	LT C
29-AU6-90	AGIOC	52P			LT CRL	Lf CRL	LT CRL	LT CRL		LT C
11-SEP-90	AG10C	68P			LY CRL	LT CRL	LT CRL	LT CRL		LT C
18-JUL-90	AG26C	BP			LT CRL	LT CRL	LT CRL	LT CRL		LT C
02-AU6-90	AG26C	23P			LT CRL	LT CRL	LT CRL	LT CRL		LT C
27-AUG-90	AØ360	49P			LT CRL	LT CRL	LT CRL	LT CRL		LT C
					PERCENT	DIFFERENCE	5			
21-MAY-90	405E		20.33	22.25	LT CRL	LT CRL	LT CRL	LT CRL	12.09	LT CR
29-AUG-90	A010		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CR
11-SEP-90	A010		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CR
18-JUL-90	A026		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CR
02-AUG-90	A026		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CR
27-AUG-90	A036		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LY CRL	LT CR

****		TAG	sugn s	EBM * II	*****		DD= 25	20000		
DATE	SITE	NO.	DNBPD4	EDRIN	ISODR	MLTHN	PPDDE	PPDOT	PRTHN	SUPDNA
21~NAY-90	AQ5E	20334	0.22342	LT CRL	LT CRL	LT CRL	L1 CRL	LT CRL		LT CR
29-AUG-90	A010	51P		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRU
11-SEP-90	AQ10	62P		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRI.	I + CRi
19-JUL-90	AQ26	7P		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRI
02-AUG-90	A026	17P		LT CRL	LT CRL	LT CRL	LT CRL	LT CRI.	LT CRL	LT CRI
27-AUG-90	AQ36	48P		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRI
21-MAY-90	AQ5I	20335	0.23333	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL		LT CRI
29-AUG-90	AQ10C	5 2P		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LY CRI
11-SEP-90	AUTOC	68P		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CR
18-JUL-90	AQ260	8P		L1 CRL	LT CRL	LT CRL	LT CRL	LT CRE	LT CAL	LT CRI
02-AUG-90	A0260	23P		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CR
27-AUG-90	AQ360	49P		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LY CR
				PERC	ENT DIFFERE	NCES				•
21-MAY-70	A05E		4.34	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL		LT CRL
24-AUG-90	A010		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL
11-SEP-90	AQ10		LT CRL	LT ERL	LT CRL	LT CRL	LT CRL	LT CRL	LT LAL	LT CRL
18-JUL-90	AQ26		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	IT CRL	LT CRL	LT CRL
02-AU6-90	A026		LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL
27-AUG-90	AQ36		LT CRL	LT CRL	IT CRL	LT CRL	LT CRL	LT CRL	LT CRI.	LT CRI

DATE	SITE	TAG No.	2FBP	ALDRIN	CMPS	DBCP	DCPD	DDVP	DIMP	DIT
29-AUG-90	AQ10	51P	0.17381	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT C
11-SEP-90	AQ10	62P	0.15991	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LTC
18-JUL-90	A026	7P	0.16873	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LY CRL	LT C
02-AUG-90	AQ26	17P	0.17301	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LTC
27-AUG-90	AQ36	48P	0.22660	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LTC
29-AUG-90	AQ10C	52P	0.16891	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LTO
11-SEP-90	AUTOC	68P	0.13832	L) CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LTO
18-JUL-90	AQ26C	8P	0.20674	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LIC
02-AUG-90	AQ26C	23 <i>P</i>	0.15450	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LTC
27-AUG-90	AQ36C	49P	0.17423	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT
DD 4115 D4						DIFFERENCE		t v atal	LW OB	
29-AUG-90	A010		-2.90	LT CRL	LT CRL	LT CRL	LT CRL	LT CKL	LT CRL	LT CF
11-SEP-90	AQ10		-15.61	LT CRL	LT CRL	LT CRL	LT CRI	LT CRL	LT CRL	LT CF
18-JUL-90	A026		18.39	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CF
02-AUG-90	A026		-11.98	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CRL	LT CF
27-AUG-90	A036		-30.06	LT CRL	LT CRL .	LT CRL	LT CRL	LT CRL	LT CRL	LT CI
DATE	eite	TAG	MMKD	นตก	Nuns		TEONSA			
DATE	SITE	TAG NO.	Р	нсвр	NBD 5	UXAT	TERD14			
29-AUG-90	A010	NO. 51P	LT CRL	LT CRL	0.17223	LT CRL	0.27171			•••••
29-AUG-90 11-SEP-90	A010 A010	NO. 51P 62P	LT CRL LT CRL	LT CRL	0.17223 0.16098	LT CRL LT CRL	0.27171 0.14664			•••••
29-AUG-90 11-SEP-90 18-JUL-90	A010 A010 A026	NO. 51P 62P 7P	LT CRL LT CRL LT CRL	LT CRL	0.17223 0.16098 0.16760	ET CRL ET CRL ET CRL	0.27171			
29-AUG-90 11-SEP-90	A010 A010	NO. 51P 62P	LT CRL LT CRL	LT CRL	0.17223 0.16098	LT CRL LT CRL	0.27171 0.14664			•••••
29-AUG-90 11-SEP-90 18-JUL-90	A010 A010 A026	NO. 51P 62P 7P	LT CRL LT CRL LT CRL	LT CRL LT CRL LT CRL	0.17223 0.16098 0.16760	ET CRL ET CRL ET CRL	0.27171 0.14664 0.24529			
29-AUG-90 11-SEP-90 18-JUL-90 02-AUG-90	A010 A010 A026 A026	NO. 51P 62P 7P 17P	LT CRL LT CRL LT CRL LT CRL	LT CRL LT CRL LT CRL LT CRL	0.17223 0.16098 0.16760 0.18337	LT CRL LT CRL LT CRL LT CRL	0.27171 0.14664 0.24529 0.20460			
29-AUG-90 11-SEP-90 18-JUL-90 02-AUG-90 27-AUG-90	AB10 AB10 AB26 AB26 AB36	NO. 51P 62P 7P 17P 48P	LT CRL LT CRL LT CRL LT CRL LT CRL	LT CRE LT CRE LT CRE LT CRE LT CRE	0.17223 0.16098 0.16760 0.18337 0.20414	ET CRL ET CRL ET CRL ET CRL ET CRL	0.27171 0.14664 0.24529 0.20460 0.35591			
29-AUG-90 11-SEP-90 18-JUL-90 02-AUG-90 27-AUG-90 29-AUG-90	A010 A010 A026 A026 A036 A0100	51P 62P 7P 17P 48P 52P	LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL	LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL	0.17223 0.16098 0.16760 0.18337 0.20414 0.16003	LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL	0.27171 0.14664 0.24529 0.20460 0.35591 0.24873			
29-AUG-90 11-SEP-90 18-JUL-90 02-AUG-90 27-AUG-90 29-AUG-90 11-SEP-90	A010 A010 A026 A026 A036 A010C A010C	NO. 51P 62P 7P 17P 49P 52P 68P	LT CRL	LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL	0.17223 0.16098 0.16760 0.18337 0.20414 0.16003 0.13746	LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL	0.27171 0.14664 0.24529 0.20460 0.35591 0.24873 0.13502			
29-AUG-90 11-SEP-90 18-JUL-90 02-AUG-90 27-AUG-90 29-AUG-90 11-SEP-90 18-JUL-90	A010 A010 A026 A026 A036 A010C A010C A026C	51P 62P 7P 17P 48P 52P 68P 8P	LT CRL	LT CRL	0.17223 0.16098 0.16760 0.18337 0.20414 0.16003 0.13746 0.20056	LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL LT CRL	0.27171 0.14664 0.24529 0.20460 0.35591 0.24873 0.13502 0.30681			
29 -AUG-90 11-SEP-90 18-JUL-90 02-AUG-90 27-AUG-90 29-AUG-90 11-SEP-90 18-JUL-90 02-AUG-90	A010 A010 A026 A026 A036 A010C A010C A026C A026C	51P 62P 7P 17P 48P 52P 68P 8P 23P	LT CRL	LT CRL	0.17223 0.16098 0.16760 0.18337 0.20414 0.16003 0.13746 0.20056 0.15424	LT CRL	0.27171 0.14664 0.24529 0.20460 0.35591 0.24873 0.13502 0.30681 0.16394			
29 -AUG-90 11-SEP-90 18-JUL-90 02-AUG-90 27-AUG-90 29-AUG-90 11-SEP-90 18-JUL-90 02-AUG-90	A010 A010 A026 A026 A036 A010C A010C A026C A026C	51P 62P 7P 17P 48P 52P 68P 8P 23P	LT CRL	LT CRL	0.17223 0.16098 0.16760 0.18337 0.20414 0.16003 0.13746 0.20056 0.15424 0.15393	LT CRL	0.27171 0.14664 0.24529 0.20460 0.35591 0.24873 0.13502 0.30681 0.16394			
29-AUG-90 11-SEP-90 18-JUL-90 02-AUG-90 27-AUG-90 11-SEP-90 18-JUL-90 02-AUG-90 27-AUG-90	A010 A010 A026 A026 A036 A010C A010C A026C A026C A036C	51P 62P 7P 17P 48P 52P 68P 8P 23P	LT CRL	LT CRL	0.17223 0.16098 0.16760 0.18337 0.20414 0.16003 0.13746 0.20056 0.15424 0.15393	LT CRL	0.27171 0.14664 0.24529 0.20460 0.35591 0.24873 0.13502 0.30681 0.16394 0.23576			
29 - AUG - 90 11 - SEP - 90 18 - JUL - 90 02 - AUG - 90 27 - AUG - 90 11 - SEP - 90 18 - JUL - 90 02 - AUG - 90 27 - AUG - 90	A010 A010 A026 A026 A036 A010C A010C A026C A026C A036C	51P 62P 7P 17P 48P 52P 68P 8P 23P	LT CRL	LT CRL	0.17223 0.16098 0.16760 0.18337 0.20414 0.16003 0.13746 0.20056 0.15424 0.15393 CENT DIFFERE -7.62 -17.11	LT CRL	0.27171 0.14664 0.24529 0.20460 0.35591 0.24873 0.13502 0.30681 0.16394 0.23576			
29 - AUG - 90 11 - SEP - 90 18 - JUL - 90 02 - AUG - 90 27 - AUG - 90 11 - SEP - 90 18 - JUL - 90 02 - AUG - 90 27 - AUG - 90 27 - AUG - 90 11 - SEP - 90 18 - JUL - 90 18 - JUL - 90	A010 A010 A026 A026 A010C A010C A026C A026C A036C A010 A010 A010 A010 A026	51P 62P 7P 17P 48P 52P 68P 8P 23P	LT CRL	LT CRL	0.17223 0.16098 0.16760 0.18337 0.20414 0.16003 0.13746 0.20056 0.15424 0.15393 CENT DIFFERE -7.62 -17.11 16.43	LT CRL	0.27171 0.14664 0.24529 0.20460 0.35591 0.24873 0.13502 0.30681 0.16394 0.23576			
29 - AUG - 90 11 - SEP - 90 18 - JUL - 90 02 - AUG - 90 27 - AUG - 90 11 - SEP - 90 18 - JUL - 90 02 - AUG - 90 27 - AUG - 90 27 - AUG - 90 11 - SEP - 90	A010 A010 A026 A026 A036 A010C A010C A026C A026C A036C	51P 62P 7P 17P 48P 52P 68P 8P 23P	LT CRL	LT CRL	0.17223 0.16098 0.16760 0.18337 0.20414 0.16003 0.13746 0.20056 0.15424 0.15393 CENT DIFFERE -7.62 -17.11	LT CRL	0.27171 0.14664 0.24529 0.20460 0.35591 0.24873 0.13502 0.30681 0.16394 0.23576			••••

OCP PRECISION CALCULATIONS

DATE		NO.	44DCBZ		ALDRN		CLDAN		DLDRN	1	ÈNDRN		ISODR	,	PPDDE	I	PPDDT
.7-NDV-89	AQ5E		0.00585	LT	CRL	LT	CRL	 L1	CRL	LT	CRL	LT	CRL	LT	CRL .	L۲	CRL
29-JAN-90	AQ5E	22443	0.00651	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL
18-HAR-90	AQ5E	2267B	0.00634	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL
50-HAR-90	AQ5E	20263	0.00680	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LI	CRL
23-APR-90	A05E	20282	88400.0	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL
6-MAY-90	A05E	20330	0.00634	LΤ	CRL	LT	CRL	LT	CRL.	LT	CRL	LT	CRL	LT	CRL	LT	CRL
0-JUN-90	AQ5E	20404	0.00664	LT	CRL	LT	CRL	LT	CRL	LT	CRL	Lĭ	CRL	Lĭ	CRL	LT	CRL
6-JUL-90	AQ5E	4P		LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL
1-AUG-90	AQ5E	42P		LT	CRL		0.00120		0.00039	LT	CRL	LT	CRL	LT	CRL	Lĭ	CRL
17-NOV-89	AQ5F	22322	0.00625	LT	CRL	LT	CRL	LT	CRL	LT	CRL	Lĭ	CRL	LT	CRL	LT	CRL
29-JAN-90	AQ5F	22444	0.00618	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LΤ	CRL
1B-NAR-90	AQ5F	22679	e.006B1	LT	CRL	LT	CRL	Lĭ	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL
30-MAR-90	AQ5F	20264	0.00684	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL
3-APR-90	AQ5F	20283	0.00751	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LŦ	CRL	LT	CRL	LT	CRL
6-MAY-90	AQSF	20328	0.00863	ĹĬ	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL
10-JUN-90	AQ5F	20405	0.00700	LT	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL.	LT	CRL	LT	CRL
16-JUL-90	AUSF	5P		LT	CRL	LT	CRL	LT	CRL	LT	CRL	Lī	CRL	LT	CRL	LT	CRL
21-AUG-90	AQ5F	43P		LT	CRL.		0.00097	Lī	CRL	LT	CRL	LT	CRL	LT	CRL	LT	CRL
							PERCENT D	IFF	RENCES								
DATE	SI	TE	44DCBZ		ALDRN		CLDAN		DLDRN		ENDRN		1500R		PPDDE		PPDDT
17-NOV-09	AQSE.	AQ5F	6.73		LT CRL		LT CRL		I.T CRL		LT CRL		LT CRL		LT CRL		LT CR
29-JAN-90	AQSE.	A05F	-5.17		LT CRL		LT CRL		LT CRL		LT CRL		LT CRL		LT CRL		LT CRI
18-HAH-90	AOSE,	A05F	7.13		LT CRL		LT CRL		LT CRL		LT CRL		LT CRL		LT CRL		LT CRI
30-MAR-90	AUSE,	A05F	0.65		LT CRL		LT CRL		LT CRL		LT CRL		LT CRL		LT CRL		LT CRI
23-APR-90	ADSE.	AQ5F	8.66		LT CRL		LT CRL		LT CRL		LT CRL		LT CRL		LT CRL		LT CR
16-MAY-90	AUSE,	AU5F	4.42		LT CRL		LT CRL		LT CRL		LT CRL		LT CRL		LT CRL		LT CRI
10-JUN-90	A05E,	AQ5F	5.21		LT CRL		LT CRL		LT CRL		L1 CRL		LT CRL		LT CRL		LT CRI
16-JUL-90	AUSE,	AQ5F			LT CRL		LT CRL		LT CRL		LT CRL		LT CAL		LT CRL		LT CR
21-AUG-90	AU5E.	AQ5F			LT CRL		-20.68		LT CRL		LT CRL		LT CRL		LT CRL		LT CR
AVE. % DIA	FERENC	E	3.95				-20.68										

H2 Daily Zero and Span Data for Continuous Gaseous Monitors

H3 Audit Results

Summary Tables from First Quarter 1990 Audit Report

TABLE 4.1-1 (Sheet 1 of 2) HIGH VOLUME SAMPLERS TSP - PM₁₀ - PUF AUDIT SUMMARY

TSP SAMPLERS

Site	Audit Flow (SCFM)	Operator Determined Flow(SCFM)	Percent Difference
1A	40.2	39.82	-0.9
2A	41.6	39.85	-4.2
3A	41.0	40.05	-2.3
4A	40.4	40.10	-0.8
5A	40.3	40.20	-0.2
5B	41.1	40.28	-2.0
6A	40.6	39.89	-1.8
7A	40.2	39.92	-0.7
8A	40.9	40.13	-1.9
9A	40.8	39.99	-2.1
10A	40.3	40.04	-0.6
11A	39.8	39.95	+0.4
12A	39.2	39.76	+1.5
MIA	41.4	40.34	-2.6
M2A	41.3	40.21	-2.6
мза	40.4	40.17	-0.5
M4A	39.7	39.64	-0.3

TABLE 4.1-1 (Sheet 2 of 2) HIGH VOLUME SAMPLERS TSP - PM₁₀ - PUF AUDIT SUMMARY

PM 10 SAMPLERS

Site	Audit Flow (SCFM)	Operator Determined Flow (SCFM)	Percent Difference		
1B	35.4	35.82	+1.1		
2B	36.6	36.05	-1.5		
3B	36.1	35.99	-0.3		
5C	35.5	36.09	+1.6		
5D	35.7	35.89	+0.5		
9B	34.3	35.78	+4.2		

PUF SAMPLERS

	Audit	Operator Determined	Percent
Site	Flow (SLM)	Flow (SLM)	Difference
1C	195.5	200.7	+2.7
2C	193.2	194.7	+0.8
3C	200.0	204.9	+2.5
5E	214.1	219.5	+2.5
5F	211.2	226.1	+7.0
5G	201.7	194.4	-3.6
M1C	195.2	201.3	-3.1
M2C	204.3	196.5	-3.8
мзс	198.8	200.6	+0.9
M4C	192.4	196.6	+2.2

TABLE 4.2-1 SAMPLE PUMPS ASBESTOS - VOC - MERCURY AUDIT SUMMARY

Instrument/ID	Audit Flow (SCCM)	Operator Flow (SCCM)	Percent Difference
Micromax 11199	6718	7000	+4.2
Micromax 07792	6765	7000	+3.6
Micromax 03311	6820	7000	+2.6
Micromax 03316	6906	7000	+1.4
Micromax 03314	6830	7000	+2.5
Micromax 03312	6980	7000	+0.3
Sierra 821-2 S/N: 3327	154	1 51	-1.9
Sierra 821-2 S/N: 3327	206	200	-2.9

VIND SPEED (MPH)	CHER										
Input		2.8 RPH 2.2		m	301.0 RPH 14.9 MPH(1)		ν ο	601.9 RPH 29.4 HPH ⁽¹⁾	_		
8년 - 보고 - 보고	Response (WPH) 6.3 6.2		Difference (MPH) +0.1 0.0	Response (MPN) 14.9 14.8	Difference (MPH) 0.0 0.1))	Response (MPH) 29.3		(KPH) -0.1 -0.3	Starting (2) Torone g.cm (2) 40.2 <0.2	(2)
VIND DIRECTION (*)	(10H (C)			-1	Linearity Check						
Site	Response	North E Difference	Fast Response Di	ference	South Response Dif	uth Difference	West Response Di	st Difference	Oriented to True North		Sterting Torque g.cm
MET 1 MET 3	00	00	80 Q	77	181	o 	271 272	+	<u>រ</u> រ		6.4 8.5
TEMPSRATURE (°C)	75.7										
Site	Audit	Low Point Response	Difference	Audit	Mid Point Response	nt Difference	15		High Point	Difference	
MET 1(2H)	5.0	\$ 0	0	2 2	0 00	6 64					
MET 3	0 0	, - ·	200	50.6	50.7	40.1		> 0 (0 F	0.0	
MET 1(10M)	0.2	0.2	0.0	20.7	20.9	+0.4 +0.2	9 R	80 80	30.8 30.8	0 0 0 0	
RELATIVE MUNIDITY	Tion										
S) te	Audit RH De	Dew Point -8.1.5	Resp. 8 - 2, 9, 5	Response Dew Point -9.2	Dew Point Difference	Point <u>ference</u> -1.1°C					

SOLAR RACIATION (LANGLY)

System	0.00
Covery	Ġ
	MET 3

RAIN FALL ("H20)

	% Difference	<7.7% (3) 0.0%	The second secon
System Response	Rain Equivalent	5. 5.	
t Value	Rain Equivalent	2 .	
Aud!	Volume (cg) Rain Equ	100 100	
	110	ET 3	

(1) MPH x [(RPH/3RPH/HZ)/ 6.95] + 0.5.

(2) Acceptable W/S starting Torque <0.29.cm.

(3) Water was left in bucket after final tip. Indicating a response between 0.12 and 0.13 (a)

Summary Tables from Second Quarter 1990 Audit Report

TABLE 4.1-1 (Sheet 1 of 2) HIGH VOLUME SAMPLERS TSP - PM₁₀ - PUF AUDIT SUMMARY

TSP SAMPLERS

Site	Audit Flow (SCFM)	Operator Determined Flow(SCFM)	Percent Difference
1A	39.9	40.3	+1.0
2 <i>1</i> .	41.7	40.2	-3.6
3 A	40.9	40.2	-1.8
4A	39.7	40.1	+0.9
5A	39.2	40.3	+2.9
5B	40.4	40.4	0.0
6 A	40.6	40.0	-1.4
7A	39.7	40.1	+0.9
8 A	40.2	40.1	-0.2
9 A	40.1	40.2	+0.3
10A	40.7	40.1	-1.5
11A	39.6	39.6	0.0
12A	39.9	40.0	+0.4
M1A	39.7	40.0	+0.8
M2A	38.7	40.0	+3.2
МЗА	39.8	40.1	+0.6
M4A	39.1	39.9	+2.1

TABLE 4.1-1 (Sheet 2 of 2) HIGH VOLUME SAMPLERS TSP - PM₁₀ - PUF AUDIT SUMMARY

PM 10 BAMPLERS

Site	Audit Flow (SCFM)	Operator Determined Flow (SCFM)	Percent Difference
13	3:.6	34.6	+0.0
2B	35.4	35.0	-1.2
3B	35.1	35.1	0.0
5C	35 4	35.2	-0.5
50	35.6	35.0	-1.6
9B	34.9	35.2	+1.0
MIR	34.5	34.8	+0.7

FUF SAMPLERS

Site	Audit Flow (SLM)	Operator Determined Flow (SEM)	Percent Difference
10	200.8	207.6	+3.4
2C	201.0	212.6	+6.0
3C	185.8	193.1	+3.9
	203.6	207.5	+2.2
5F	187.5	179.5	-4.3
5G	184.8	198.0	+7.1
MIC	194.0	199.7	+3.1
M2C	206.0	207.4	+0.5
MUC	200.0	202.2	+0.8
M4C	203.0	207.3	+1.9

TABLE 4.2-1 SAMPLE PUMPS ASBESTOS - VOC - MERCURY AUDIT SUMMARY

Instrument/ID	Audit Flow (SCCM)	Operator Flow (SCCM)	Percent Difference
Micromax 11199	6753	7000	+3.6
Micromax 07792	6723	7000	+4.1
Micromax 03311	6860	7000	+3.6
Micromax 03316	7254	7000	-3.5
Micromax 03314	6862	7000	+2.0
Micromax 03312	6866	7000	+2.0
Sierra 821-2 5/N: 3327	293	300	+2.4

				Starting <u>Torque g.cm</u>	5.0						
		Starting (2) <u>lorgue g.cm</u> (0.2 <0.2		Star			ence	0.			
		Start Torge		Oriented to	40 60		oifference	0.0			
		Difference (MPN) -0.2 -0.2		or ien	Yes		High Point Response	(96.4°F)/35.8 (96.1°F)/35.6			
	601.9 RPH 20 2 May(1)			Difference	t i		2	(96.			
	601	Response (MPH) 29.2 29.2		Nest Response Dif	273 268		Audit	35.8			
		- ,					Difference	0.0			
	5	Difference (MPH) -0.2 -0.3	Deck K	South Difference	μ÷		int)/19.7)/20.2			
	301.0 RPH 14.0 MPH(1)		Linearity Check	Response	181		Mid Po Response	(67.4°F)/19.7 (63.4°F)/20.2			
	Ħ.	Response (MPH)	<u> </u>	fřerence	ភ្នំស្		Audit	19.7		Difference	-1.02
		Difference (MPH) 0.0 0.4		Response Di	88		Difference	-0.2		System	. 7
	119.8 RPM	.		oifference	. .		Low Point Response	(31.9*F)/-0.1 (32.1*F)/-0.1	c.	SYS	.7.72
(MPH)		Response (MPH) 6.2 5.8	(C) HOIL	Response Di	M 65 →	9	Audit	0.1	BARCHETRIC PRESSURE ("HQ)	Audit	24.43
WIND SPEED (MPH)	Input	の一世紀	WIND DIRECTION (*)	Site	MET 2 MET 4	TEMPERATURE (*C)	Site	MET 2	BARCHETRIC	Site	MET 4

The second of th

SOLAR RADIATION (LANGLY)

Sensor Covered System

MET 4 - -0.01

RAIN FALL ("H20)

	% Difference	7.7
System Response	Rain Equivalent	5. 25.
t Value	Rain Equivalent	.13
Audi	Yours (cc) R	100 100
	Site	NET 2

(1) MPH = [(RPM/3RPM)/ 6.95] + 0.5.

(2) Acceptable W/S starting Torque <0.2g.cm.

(*)

②

Summary Tables from Third Quarter 1990 Audit Report

TABLE 4.1-1 (Sheet of 2)

$\begin{array}{c} \text{HIGH VOLUME SAMPLERS} \\ \text{TSP - PM}_{10} \text{ - PUF} \\ \text{AUDIT SUMMARY} \end{array}$

TSP SAMPLERS

Site	Audit Flow (SCFM)	Operator Determined Flow (SCFM)	Percent Difference
1 A	40.7	40.1	-1.5
2A	40.5	40.0	-1.2
3A	42.4	40.1	-5.3
4A	39.7	39.9	+0.6
5A	40.7	40.1	+1.5
5B	36.5	40.1	+9.8
6 A	39.6	40.1	+1.2
7A	42.9	39.9	-7.1
8A	42.2	39.5	-6.5
9A	39.5	40.2	+1.8
10A	41.1	40.2	-2.3
11A	39.9	40.0	+0.3
12A	39.8	40.1	+0.7
MIA	37.8	38.0	+0.5
M2A	40.7	40.1	-1.4
МЗА	39.8	49.1	+0.8
M4A	40.7	40.2	-1.2

TABLE 4.1-1 (Sheet 2 of 2) HIGH VOLUME SAMPLERS TSP - PM₁₀ - PUF AUDIT SUMMARY

PM₁₀ SAMPLERS

	Audit	Operator L mined	Percent
Site	Flow (SCFM)	Flow (SCFM)	Difference
1B	33.3	33.5	+0.7
2B	33.4	33.3	-0.3
3B	32.9	33.3	+2.8
5C	34.0	33.7	-0.9
5D	33.8	33.7	-0.4
9B	33.4	33.6	+0.6
MIB	34.1	33.5	-1.8

PUF SAMPLERS

Site	Audit Flow (SLM)	Operator Determined Flow (SLM)	Percent Difference
iC	180	182	+1.3
2C	199	199	+0.0
3C	183	186	+1.4
5E	189	191	+1.1
5 F	176	180	+2.3
5G	189	192	+1.7
M1C	184	186	+0.9
M2C	197	190	-0.4
м3С	190	197	+3.4
M4C	190	196	+3.0

TABLE 4.2-1 SAMPLE PUMPS ASBESTOS - VOC - MERCURY AUDIT SUMMARY

Instrument/ID	Audit Flow (SCCM)	Operator Flow (SCCM)	Percent Difference
Micromax 11199	6827	7000	+2.5
Micromax 07792	6772	7000	+3.4
Micromax 03311	7110	7000	-1.5
Micromax 03316	7512	7000	-6.8
Micromax 03314	6908	7000	+1.3
Micromax 03312	6918	7000	+1.2
Sierra 821-2 S/N: 3327	289	300	+3.8

TABLE 4.3-1 (Sheft $^{\circ}$ of 2) METEOROLOGICAL SYSTEM AUDIT RESULTS SUMMARY

WIND SPEED (MPH)	(MAH)									
प्रिकृत्स		119.93 RPM 6.2 MPH ⁽³⁾			300.12 RPM 14.9 MPH ⁽³⁾		500.20 RPM 29.3 MPH ⁽¹⁾	500.20 RPM 29.3 MPH ⁽¹⁾		
Site MET 1 MET 3	Resignate (MPH) 6.1 6.2		Difference (MPH) -0.1 0.0	Response (MPH)_ 14.8 14.5	Diffeence (MPH) -5.1	8 4	Response (MPH)	Diffrence MPH) +0.2 +0.2	Starting Torque g.cm ^{d1} <0.2 <0.2	6_
WIND DIRECTION (*)	TION (C)			Linearity Check						
Site	Response I	dh Difference	East Response	Difference	South Response Dif	Difference	West Response Difference	Oriented to	d to Yorth	Starting Torque g.cm
MET 1 MET 3	2	+ 0	93	- - + +	182 181	7 + 7 +	273	+3 Yes +4		0.8 0.8
TEMPERATURE .C (*F)	RE .C (*F)									
Site	Audit	Low Point Response	Difference	Audit	Mid Point Response	Difference	Aucit	High Point Response	Difference	
MET 1 (2M) MET 3 (10M) MET 1 (10M) MET 1 (10M)	0.1 (32.2) 0.5 (32.9) No dria 0.2 (32.7)	0.3 (32.6) 0.6 (33.1) No data 0.3 (32.5)	2 +0! No dala +6.1	29.9 (85.8) 23.7 (74.7) 28.8 (83.8) 30.6 (87.1)	30.3 (86.6) 23.8 (74.8) 28.9 (84.0) 30.9 (87.6)	+0.+ +0.+ +0.3	40.6 (105.1) 30.7 (87.3) No data 40.7 (105.7)	41.4 (106.5) 31.0 (87.8) No data 41.0 (165.8)	+0.8 +0.3 No data +0.3	
RELATIVE HUMDITY	אשעג									
Site	RH	Audit Dew Point	RH	Response Dew Point	A AI	Dew Point Difference				
MET 1	53.9	-8.1.℃	49.5	-9.2	•	-1.1°C				

TABLE 4.3-1 (Sheet 2 of 2)

METEOROLOGICAL SYSTEM RESULTS AUDIT SUMMARY

SOLAR RADIATION (LANGELY PER HOUR)

	System	0.00
Sensor	Covered	

MET 3

RAIN FALL ('H20)

	% Difference	.01 (3)	
System Response	Rsin Equivalent	.12	
lit Velue	Rain Equivalent	.13	
Pn∀	Volume (cc)	88	
	Site	MET 1	

⁽¹⁾ MPH = [(RPM/3RPM)/6.95] + 0.5.

a Acceptable W/S starting Torque < 0.2g.cm.

⁽³⁾ Water was left in bucket after final tip indicating a response between 0.12 and 0.13.

Summary Tables from Fourth Quarter 1990 Audit Report

TABLE 4.1-1 (Sheet 1 of 2)

HIGH VOLUME SAMPLERS TSP - PM₁₀ - PUF AUDIT SUMMARY

TSP SAMPLERS

Site	Audit Flow (SCFM)	Operator Determined Flow (SCFM)	Percent Difference
1A	41.1	39.3	-4.4
2A	40.8	39.9	-2.1
3A	44.0	42.5	-3.5
4A	43.4	40.3	-7.2
5A	41.3	40.6	-1.6
5B	40.2	40.7	+1.3
6 A	41.2	40.8	-0.9
7 A	43.4	41.5	-4.5
8A	43.0	41.5	-3.4
9 A	41.8	40.0	-4.3
10A	40.1	38.5	-3.9
11A	41.3	40.0	-3.2
12A	41.3	40.7	-1.5
мlА	38.1	38.4	+0.8
M2A	40.3	40.3	0.0
мза	39.3	39.9	+1.5
M4A	39.0	39.7	+1.7

TABLE 4.1-1 (Sheet 2 of 2) HIGH VOLUME SAMPLERS TSP - PM₁₀ - PUF AUDIT SUMMARY

PM₁₀ SAMPLERS

Site	Audit Flow (SCFM)	Operator Determined Flow (SCFM)	Percent Difference
1B	33.4	33.3	-0.2
2B	34.1	32.8	-3.9
3B	34.3	33.6	-2.1
5C	34.4	34.6	+0.6
5D	34.8	34.5	-0.7
9В	34.4	34.3	-0.2
10B	32.9	32.3	-1.8

PUF SAMPLERS

Site	Audit Flow (SLM)	Operator Determined Flow (SLM)	Percent Difference
1C	198	196	-1.0
2C	184	183	-0.6
3C	194	199	+2.7
5E	201	198	-1.5
5F	191	188	-1.5
5G	180	178	-1.3
M1C	181	215	+18.8
M2C	187	183	-2.0
мзс	184	190	+3.2
M4C	187	187	0.0

0040-6

TABLE 4.2-1 SAMPLE PUMPS ASBESTOS - VOC - MERCURY AUDIT SUMMARY

Instrument/ID	Audit Flow (SCCM)	Operator Flow (SCCM)	Percent Difference
Micromax 11199	6295	6800	+8.0
Micromax 07792	6098	6500	+6.6
Micromax 03311	6024	6400	+6.2
Micromax 03316	6117	6600	+7.9
Micromax 03314	6367	6700	+5.2
Micromax 03312	6175	6800	+10.2
Sierra 821-2 S/N: 3327	299	302	+1.0

TABLE 4.3-1 (Shee' 1 of 2) METEOROLOGICAL SYSTEM AUDIT RESULTS SUMMARY

WIND SPEED (MITH)	MTH)									
Input		119.9 RPM 6.3 MPH"	300.1 RPM 14.9 MPH ⁽¹⁾	300.1 RPM 14.9 MPH ⁽¹⁾	600.2 RPM 29.3 MPH**	RPM PH th	:			
Site	Response (MPH)	Difference (MPH)	Response (MPH)	Difference (MPH)	Response (MPH)	Difference (MPH)	Starting Lorque g.cm [©]			
MET 1 MET 2 MET 3	6.1	6.2 6.2 6.1	14.3 14.7 14.8	.6.1 .0.2 .0.1	29.1 29.2 29.1	-0.2 -0.1 -0.2	<0.2 <0.2 <0.2			
MET 4	5.8	-0.5	14.6	-0.3	29.2	-0.1	<0.2			
WIND DIRECTION (*)	ION (*)									
				Linearity Check	heck					
	ž	North	1	East	South	ų	Wea	*		1
Site	Response	Difference	Response	Difference	Response	Difference	Response	Difference	True North	Torque g.cm
MET 1		7	93	+3	162	+ 5	273	+3	7 5	5.0
MET 2 MET 3 MET 4	367	00+	2 22 25	+ + +	182	+ + + + + +	272 270	+3	Yes	5.0 3.5
TEMPERATURE °C (*F)	E *C (*F)									
		Low Point			Mid Point			High Point		
Site	Audit	Response	Difference	Audit	Response	Difference	Audit	Response	Difference	
MET I (2M)	0.00 (32.0)	0.11 (32.2)	+0.11 (+0.2)	20.00 (68.0)	20.22 (68.4)	+0.22 (+0.4)	30.9 (\$7.6) N/A	31.16 (88.1)	+0.26 (+0.5)	
MEI 1 (10M)	0.10 (32.2)	0.06 (32.1)	0.04 (-0.1)	20.30 (68.5)	20.38 (68.7)	+0.08 (+0.2)	30.90 (87.6)	30.94 (87.7)	+0.04 (+0.1)	
MEI 2 MET 3 MET 4	0.10 (32.2) 0.05 (32.1) 0.10 (32.2)	0.00 (32.9)	-0.05 (-0.1) -0.06 (-0.1)	20.35 (68.6) 20.50 (68.9)	20.44 (68.8) 20.30 (68.5)	+0.09 (+0.2)	30.40 (86.7) 36.15 (97.1)	30.72 (87.3) 36.12 (97.0)	+0.32 (+0.6)	
RELATIVE HUMIDITY	МЮПУ									
	¥Υ	Audit	Resp	Response	1					-
Site	RH	Dew Point	RH	Dew Point	Difference					
MET 1	88.5	3.1°C (37.6°F)	97.1	4.4°C (40.0°F)	+1.3°C (+2.4°F)					
			İ							

TABLE 4.3-1 (Sheet 2 of 2) METEOROLOGICAL SYSTEM AUDIT RESULTS SUMMARY

6

0

)

SOLAR RADIA	SOLAR RADIATION (LANGLEY PER HOUR)	PER HOUR)			
Site	Sensor Covered	System			
MET 2	ı	-0.02			
MET 3		00:0			
RAIN FALL ("H,O)	(1,0)				
	Audit	Audit Value	,		
Site	Volume (cc)	Rain Equivalent	System Response Rain Equivalent	Difference	
MET 1	001	.13	1.		
MET 2	81	.13	.12	10.	
MET 3	8	.13	.13	8	
MET 4	100	.22	.23	.01	
" MPh = [(RP	(1) MPH = [(RPM/3RPM)/6.95] + 0.5.	1.5.			

a Acceptable W/S starting Torque < 0.2g.cm.

APPENDIX I

CONTINUOUS AIR QUALITY DATA

- II Carbon Monoxide (CO)
- 12 Ozone (O₃)
- 13 Sulfur Dioxide (SO₂)
- 14 Nitric Oxide (NO)
- 15 Nitrogen Dioxide (NO₂)
- 16 Nitrogen Oxides (NO_x)

II Carbon Monoxide (CO)

Carbon Monoxide (CO) Daily Data in parts per million (ppm) for FY90

Caler Month	idar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
10	1	274	1.000	0.200	0.371	24
10	2	275	1.200	0.300	0.479	24
10	3	276	0.600	0.300	0.367	24
10	4	277	1.000	0.300	0.450	24
10	j	278	0.500	0.200	0.296	24
10	6	279	1.700	0.300	0.662	24
10	7	280	1.900	0.300	0.683	24
10	8	281	1.300	0.300	0.596	24
10	9	282	4.800	0.300	1.104	$\frac{21}{24}$
10	10	283	1.900	0.300	0.746	24
10	11	284	3.200	0.300	1.012	24
10	12	285	1.500	0.300	0.629	24
10	13	286	1.800	0.300	0.691	22
10	14	287	0.900	0.300	0.579	$\frac{55}{24}$
1.0	15	288	1.000	0.400	0.521	24
10	16	289	0.500	0.400	0.474	24
10	17	290	0.500	0.400	7د4.0	24
10	18	291	2.400	0.400	0.692	24
10	19	292	2,000	0.500	1.021	24
10	20	293	2.700	0.400	1.025	24
10	21	294	2.200	0.400	0.821	24
10	22	295	1.200	0.400	0.629	24
10	23	296	1.700	0.400	0.864	22
10	24	297	2.400	0.400	1.017	24
10	25	298	3.300	0.600	1.188	24
10	26	299	0.800	0.500	0.600	24
10	27	300	2.400	0.500	0.863	24
10	28	301	1.900	0.500	0.950	16
1.0	29	302	0.800	0.500	0.596	24
10	30	303	2.200	0.600	0.975	24
10	31	304	2.200	0.500	0.808	24
11	1	305	1.900	0.500	0.800	24
11	2	306	2.100	0.700	1.137	24
11	3	307	1.800	0.600	0.950	$\overline{24}$
1.1	4	308	5.000	0.500	0.988	24
11	5	309	1.400	0.500	0.688	24
11	6	310	2.300	0.600	0.908	24
1.1	7	311	0.900	0.600	0.663	24
1 1	8	312	1.000	0.600	0.673	22
1.1	ġ	313	1.100	0.600	0.738	24
11	10	314	2.700	0.700	1.133	24
1.1	11	315	1.800	0.600	0.921	24
11	12	316	2.000	0.600	0.854	24
11	1.3	317	2.300	0.600	0.825	24
1.1	14	318	1.900	0.600	0.892	24
11	15	319	0.900	0.800	0.688	24
11	16	320	1.800	0.600	1.017	24

Carbon Monoxide (CO) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
11 11 11	17 18 19	321 322 323	2.200 2.300 2.600	0.700 0.700 0.70 0	1.063 1.063 1.092	24 24 24
11 11	20 21	324 325	3.200 4.000	0.700 0.700	1. 322 1.433	23 24
11	22	326	2.900	0.700	0.833	24
11	23	327	2.900	0.900	1.583	24
11	24	328	1.400	0.800	0.925	24
11	25	329	1.300	0.700	0.833	24
11	26	330	2.100	0.800	1.112	24
11 11	27 28	33 1 332	$\frac{1.500}{2.800}$	0.700 0.800	0.833 1.438	24 24
11	2 9	333	2.700	0.800	1.436 1.225	24
11	30	334	5.100	0.900	1.767	24
12	1	335	5.100	0.800	1.546	24
12	2	336	2.700	0.800	1.292	24
12	3	337	2.700	1.000	1.488	24
12	4	338	2.700	0.800	1.118	22
12 12	5 6	339 340	2.100 1.800	0.700 0.700	0.933	24
12	7	341	2.800	0.700	$0.954 \\ 1.054$	2 4 2 4
12	8	342	4.200	0.800	1.850	24
12	9	343	1.500	0.700	0.970	23
12	10	344	0.900	0.800	0.804	24
12	11	345	2.800	0.800	1.279	24
12	12	346	2.600	0.900	1.208	24
12	13	347	1.500	0.900	1.083	24
12 12	14 15	348	$\frac{3.100}{2.400}$	0.800	1.150	24
12	16	349 350	$2.400 \\ 2.900$	0.800 0.800	1.100 1.348	24 21
12	17	351	1.900	1.000	1.442	24
$\overline{12}$	18	352	3.200	0.800	1.121	24
12	19	353	4.200	1.700	2.829	24
12	20	354	3.500	0.800	1.192	24
12	21	355	0.900	0.800	0.846	24
12	22	356	5.900	0.900	2.417	23
12 12	23 24	357 358	8.500 1.800	0.800 0.800	$\frac{2.800}{1.171}$	24 24
12	25	359	2.400	0.900	1.333	24
12	26	360	2.000	1.000	1.275	24
$\overline{12}$	27	361	4.100	0.900	1.588	24
12	28	362	3.400	0.800	1.392	24
12	29	363	3.400	0.800	1.150	24
12	30	364	2.400	0.800	1.221	24
12	31	365	2.000	0.800	1.204	24
1. 1	1 2	$\frac{1}{2}$	$2.900 \\ 3.900$	0.900 0.900	$\frac{1.279}{1.612}$	24 24
T	ے	2	5.300	0.500	1.612	24

Carbon Monoxide (CO) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
1	3	3	1.400	0.900	0.992	24
1	4	4	3.600	1.100	2.004	24
1	5	· 5	2.500	0.900	1.346	24
1	6	6	3.700	1.000	1.525	24
1	7	7	1.700	1.000	1.200	24
1	8	8	1.200	0.900	1.017	24
1	9	9	1.600	0.900	1.071	24
1	10	10	3.100	0.900	1.179	24
1	1.1	11	1.500	0.900	1.025	24
1	12	12	3.500	1.300	1.808	24
1	13	13	3.200	1.100	1.421	24
1	14	14	3.000	1.100	1.379	24
1	15	1.5	3.500	1.200	1.858	24
1	16	16	3.300	1.200	1.717	24
1	17	17	2.600	1.100	1.492	24
1	18	18	2.100	0.300	1.061	18
1	19	19	0.500	0.100	0.242	24
1	20	20	1.800	0.100	0.588	24
1	21	21	2.100	0.100	0.575	24
1	22	22	1.400	0.100	0.622	23
1	23	23	0.400	0.100	0.150	22
1	24	24	0.700	0.100	0.242	24
1	25	25	0.400	0.100	0.175	24
1. 1	26	26	1.200	0.100	0.354	24
1	27 28	27	0.800	0.100	0.246	24
1	20 29	28 2 9	0.700	0.100	0.317	24
1	30	30	0.800 1.200	0.100	0.300	24
1	31	31	1.300	0.100 0.100	0.442 0.496	24
2	1	32	0.800	0.100	0.405	24 22
$\frac{7}{2}$	2	33	1.800	0.200	0.696	
2	3	34	1.000	0.200	0.030	24 0
$\tilde{2}$	4	35				() ()
2	5	36				0
2	ϵ	37				Ü
2	7	38				Ö
2	8	1:9				Ö
2	9	40	0.500	0.100	0.300	ğ
2	10	41	0.400	0.100	0.14	24
2	1.1	42	0.600	0.100	0.2	24
2	12	43	2.600	0.100	0.442	24
2	13	44	0.200	0.100	0.142	24
2	1.4	45	0.300	0.200	0.245	22
2	15	46	1.800	0.200	0.646	24
2	16	47	2.900	0.200	1.113	24
2	17	48	1.000	0.300	0.413	24
2	18	49	0.600	0,200	0.321	24

Carbon Monoxide (CO) Daily Data in parts per million (ppm) for FY90

Calen Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
4.1	19	50	0.900	0.300	0.479	24
$\frac{c}{2}$	20	51	1.400	0.400	0.467	$2\overline{4}$
2	21	52	2.300	0.100	0.800	24
2	22	53	1.200	0.200	0.600	24
2	23	54	1.600	0.200	0.513	24
2	24	55	2.500	0.400	0.796	24
$\frac{2}{2}$	25	56	2.700	0.200	0.763	24
5	26	57	2.000	0.300	0.775	$\frac{24}{24}$
$\frac{3}{2}$	27	58	0.600	0.300	0.338	24
$\frac{5}{2}$	28	59	0.400	0.300	0.338	24
3	1	60	1.500	0.300	0.718	22
3	$\dot{\tilde{2}}$	61	2.100	0.300	0.826	23
3	3	62	1.000	0.300	0.537	24
3	4	6 3	0.900	0.300	0.421	24
3	5	64	0.900	0.300	0.496	23
$\ddot{3}$	6	65	0.500	0.400	0.458	24
3	7	66	0.900	0.500	0.537	$\frac{24}{24}$
3	8	67	2,100	0.500	1.092	24
3	$\overset{\circ}{9}$	68	5.000	0.400	1.558	24
3	10	69	4.000	0.300	1.267	24
3	11	70	1.800	0.400	0.825	24
3	12	71	1.100	0.300	0.471	$\frac{24}{24}$
3	13	$\frac{72}{2}$	0.500	0.400	0.413	24
3	14	73	1.700	0.460	0.867	24
3	15	74	1.100	0.400	0.517	23.
3	16	75	1.000	0.300	0.463	24,
$\ddot{3}$	17	76	1.000	0.400	0.550	24
$\ddot{3}$	18	77	0.400	0.400	0.400	24
3	19	78	1.700	0.400	0.800	24
3	20	79	1.300	0.400	0.717	24
$\tilde{3}$	21	80	1.200	0.500	0.713	::4
:3	22	81	0.900	0.600	0.629	24
3	23	82	0.800	0.600	0.642	24
ટ	24	83	0.700	0.600	0.667	24
3	25	84	1.000	0.600	0.713	24
3	26	85	0.800	0.400	0.587	15
3	27	86	1.800	0.100	0.754	2.4
3	28	87	0.200	0.100	0.104	24
3	29	88	0.400	0.100	0.209	22
3	30	89	1.300	0.100	0.267	24
3	31	90	2.400	0.100	0.679	24
4	1	91	1.000	0.100	0.312	24
4	2	92	1.400	0.100	0.429	24
4	3	93	1.400	0.100	0.386	23
4	4	94	0.500	0.200	0.342	24
4	5	95	0.200	0.100	0.137	2:4
4	6	96	0.800	0.100	0.333	2:4

Carbon Monoxide (CO) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
4	7	97	1.500	0.200	0.542	24
4	ຮໍ	98	0.700	0.200	0.363	24
4	9	99	1.200	0.200	0.396	24
4	10	100	0.400	0.200	0.229	24
4	11	101	0.600	0.200	0.343	23
4	12	102	2.600	0.200	0.638	24
4	13	103	0.800	0.200	0.267	24
4	14	104	1.000	0.100	0.413	$\overline{24}$
4	15	105	0.900	0.100	0.362	24
4	18	106	0.900	0.200	0.333	24
4	17	107	0.700	0.200	0.412	24
4	. 18	108	1.100	0.200	0.500	24
4	19	109	1.500	0.200	0.567	24
4	20	1.10	1.300	0.200	0.513	24
<i>-</i> 1	21	1.11	0.900	0.200	0.479	24
4	22	112	0.600	0.200	0.342	24
4	23	113	0.800	0.300	0.438	24
4	24	114	1.500	0.300	0.679	24
4	25	115	1.300	0.300	0.586	22
4	26	116	1.100	0.300	0.488	24
. 4	27	117	0.900	0.100	0.277	22
4	28	118	0.300	0.100	0.125	24
4	29	119	0.100	0.100	0.100	24
4	30	120	0.500	0.100	0.179	24
þ	1	121	0.300	0.100	0.175	24
5	2	122	1.800	0.100	0.454	24
5	3	123	0.500	0.100	0.150	24
5	4	124	1.100	0.100	0.304	24
5	5	125	1.000	0.100	0.233	24
5	6 7	$\begin{array}{c} 126 \\ 127 \end{array}$	0.400 0.900	$0.100 \\ 0.100$	$0.192 \\ 0.187$	24 24
5 5	8	128	0.300	0.100	0.133	24 24
5 5	9	120	0.100	0.100	0.100	23
5	10	130	0.900	0.100	0.304	23
5	11	131	0.300	0.100	0.121	24
5	12	132	0.600	0.100	0.208	$\frac{24}{24}$
5	13	133	0.900	0.100	0.275	24
5	14	134	0.800	0.100	0.188	24
$\tilde{5}$	15	135	0.900	0.100	0.208	24
5	16	136	0.300	0.100	0.129	24
5	17	137	0.400	0.100	0.162	24
5	18	138	1.000	0.100	0.288	24
5	19	139	0.400	0.100	0.167	24
5	20	140	0.200	0.100	0.117	24
5	21	141	1.300	0.100	0.267	24
5	22	142	0.900	0.100	0.279	24
5	23	143	0.890	0.100	0.300	24

Carbon Monoxide (CO) Daily Data in parts per million (ppm) for FY90

5 24 144 1.100 0.100 0.343 23 8 25 145 0.200 0.100 0.117 24 5 26 146 0.300 0.100 0.100 24 5 27 147 0.100 0.100 0.110 24 5 28 148 0.300 0.100 0.112 24 5 30 150 1.100 0.100 0.337 24 5 30 150 1.100 0.100 0.337 24 5 31 151 1.000 0.100 0.350 24 6 1 152 1.300 0.100 0.271 24 6 2 153 0.100 0.100 0.271 24 6 2 153 0.100 0.100 0.201 24 6 2 153 0.100 0.100 0.142 24 6	Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
5 25 145 0.200 0.100 0.117 24 5 26 146 0.300 0.100 0.100 24 5 27 147 0.100 0.100 0.110 24 5 28 148 0.300 0.100 0.112 24 5 30 150 1.100 0.100 0.337 24 5 30 150 1.100 0.100 0.380 24 6 1 152 1.300 0.100 0.271 24 6 1 152 1.300 0.100 0.100 2271 24 6 1 152 1.300 0.100 0.271 24 6 1 152 1.300 0.100 0.242 24 6 1 156 1.300 0.100 0.242 24 6 4 155 1.200 0.100 0.202 22	5	24	144	1.100	0.100	0.343	23
5 28 146 0.300 0.100 0.100 0.100 24 5 28 148 0.300 0.100 0.112 24 5 28 148 0.300 0.100 0.112 24 5 29 149 0.500 0.100 0.192 24 5 30 150 1.100 0.100 0.337 24 6 1 152 1.300 0.100 0.271 24 6 2 153 0.100 0.100 0.100 24 6 3 154 0.300 0.100 0.142 24 6 3 154 0.300 0.100 0.242 24 6 4 155 1.200 0.100 0.242 24 6 5 156 1.000 0.100 0.296 24 6 6 157 0.400 0.100 0.200 22							
5 27 147 0.100 0.100 0.110 24 5 28 148 0.500 0.100 0.112 24 5 29 149 0.500 0.100 0.192 24 5 30 150 1.100 0.100 0.337 24 5 31 151 1.000 0.100 0.350 24 6 1 152 1.300 0.100 0.271 24 6 2 153 0.100 0.100 0.100 24 6 3 154 0.300 0.100 0.142 24 6 4 155 1.200 0.100 0.296 24 6 5 156 1.000 0.100 0.296 24 6 6 157 0.400 0.100 0.296 24 6 6 157 0.400 0.100 0.200 22 6	5						
5 28 148 0.300 0.100 0.192 24 5 30 150 1.100 0.100 0.337 24 5 31 151 1.000 0.100 0.350 24 6 1 152 1.300 0.100 0.271 24 6 2 153 0.100 0.100 0.102 24 6 3 154 0.300 0.100 0.142 24 6 3 154 0.300 0.100 0.142 24 6 4 155 1.200 0.100 0.242 24 6 6 157 0.400 0.100 0.296 24 6 6 157 0.400 0.100 0.296 24 6 6 157 0.400 0.100 0.200 22 6 8 159 0.800 0.100 0.200 22 6 <	5						
5 29 149 0.500 0.100 0.192 24 5 30 150 1.100 0.100 0.337 24 6 1 151 1.000 0.100 0.271 24 6 1 152 1.300 0.100 0.100 24 6 2 153 0.100 0.100 0.100 24 6 3 154 0.300 0.100 0.102 24 6 4 155 1.200 0.100 0.242 24 6 5 156 1.000 0.100 0.242 24 6 6 157 0.400 0.100 0.299 22 6 8 159 0.800 0.160 0.200 24 6 9 160 0.500 0.100 0.200 24 6 16 161 0.700 0.100 0.188 24 8 <							
5 30 150 1.100 0.100 0.387 24 5 31 151 1.000 0.100 0.380 24 6 1 152 1.300 0.100 0.271 24 6 2 153 0.100 0.100 0.100 24 6 3 154 0.300 0.100 0.142 24 6 4 155 1.200 0.100 0.296 24 6 5 156 1.000 0.100 0.296 24 6 6 157 0.400 0.100 0.296 24 6 6 158 0.600 0.100 0.188 24 6 7 158 0.600 0.100 0.299 22 6 8 159 0.800 0.100 0.233 24 6 16 161 0.700 0.100 0.233 24 6 <	Ę,						
5 31 151 1.000 0.100 0.350 24 6 1 152 1.300 0.100 0.271 24 6 2 153 0.100 0.100 0.1100 24 6 3 154 0.300 0.100 0.142 24 6 4 155 1.200 0.100 0.242 24 6 5 156 1.000 0.100 0.242 24 6 6 157 0.400 0.100 0.299 22 6 8 159 0.800 0.100 0.209 22 6 9 160 0.500 0.100 0.200 24 6 9 160 0.500 0.100 0.200 24 6 9 160 0.500 0.100 0.200 24 6 10 161 0.700 0.100 0.121 24 6 <	5						
6 1 152 1.300 0.100 0.271 24 6 2 153 0.100 0.100 0.100 0.100 6 3 154 0.300 0.100 0.100 0.142 24 6 4 155 1.200 0.100 0.242 24 6 5 156 1.000 0.100 0.296 24 6 6 6 157 0.400 0.100 0.296 24 6 7 158 0.600 0.100 0.200 22 6 9 159 0.800 0.100 0.200 24 6 10 161 0.700 0.100 0.233 24 6 11 162 0.300 0.100 0.121 24 6 12 163 0.300 0.100 0.112 24 6 13 164 0.100 0.100 0.112 24 6 14 1.65 0.600 0.100 0.112 24 6 17 168 0.600 0.100 0.112 24 6 18 16 16 0.700 0.100 0.112 24 6 19 16 0.500 0.100 0.100 0.112 24 6 11 162 0.300 0.100 0.102 24 6 12 163 0.300 0.100 0.102 24 6 13 164 0.100 0.100 0.102 24 6 14 1.65 0.600 0.100 0.158 24 6 15 16 167 0.500 0.100 0.158 24 6 16 17 168 0.900 0.100 0.212 24 6 18 169 0.800 0.100 0.222 24 6 18 169 0.800 0.100 0.296 24 6 19 170 0.600 0.100 0.296 24 6 20 171 0.800 0.100 0.292 24 6 21 172 1.100 0.100 0.289 19 6 22 173 0.700 0.100 0.289 19 6 22 173 0.700 0.100 0.295 22 6 24 175 0.300 0.100 0.371 24 6 25 176 1.500 0.100 0.371 24 6 26 27 178 0.600 0.100 0.371 24 6 26 27 178 0.600 0.100 0.229 24 6 28 179 0.900 0.100 0.229 24 6 29 180 1.500 0.100 0.229 24 6 29 180 1.500 0.100 0.229 24 7 1 182 1.100 0.100 0.229 24 7 1 182 1.100 0.100 0.229 24 7 1 182 1.100 0.100 0.229 24 7 1 182 1.100 0.100 0.229 24 7 1 182 1.100 0.100 0.229 24 7 1 182 1.100 0.100 0.229 24 7 1 182 1.100 0.100 0.229 24 7 1 182 1.100 0.100 0.229 24 7 1 183 0.600 0.100 0.229 24 7 1 186 1.500 0.100 0.229 24 7 1 187 0.600 0.100 0.229 24 7 1 188 0.600 0.100 0.225 24 7 1 188 0.600 0.100 0.225 24 7 1 188 0.600 0.100 0.225 24 7 1 188 0.600 0.100 0.302 24 7 1 188 0.600 0.100 0.302 24 7 1 188 0.600 0.100 0.302 24 7 1 188 0.600 0.100 0.302 24 7 1 188 0.600 0.100 0.302 24 7 1 188 0.600 0.100 0.302 24 7 1 188 0.600 0.100 0.302 24 7 1 188 0.600 0.100 0.100 0.225 24							
6 2 153 0.100 0.100 0.100 0.100 24 6 3 154 0.300 0.100 0.142 24 8 4 155 1.200 0.100 0.242 24 6 5 156 1.000 0.100 0.296 24 6 6 6 157 0.400 0.100 0.296 24 6 7 158 0.600 0.100 0.200 22 6 8 159 0.800 0.100 0.200 24 6 9 160 0.500 0.100 0.233 24 6 10 161 0.700 0.100 0.121 24 6 12 163 0.300 0.100 0.112 24 6 13 164 0.100 0.100 0.102 24 6 14 165 0.600 0.100 0.102 24 6 16 16 167 0.500 0.100 0.133 24 6 17 168 0.900 0.100 0.212 24 6 18 169 0.800 0.100 0.246 24 6 19 170 0.600 0.100 0.242 24 6 20 171 0.800 0.100 0.242 24 6 22 173 0.700 0.100 0.292 24 6 23 174 0.800 0.100 0.295 22 6 24 175 0.300 0.100 0.171 24 6 25 176 1.500 0.100 0.295 22 6 26 27 178 0.600 0.100 0.225 24 6 28 179 0.900 0.100 0.225 24 7 1 182 1.100 0.100 0.227 24 7 1 182 1.100 0.100 0.228 24 7 1 182 1.100 0.100 0.225 24 7 1 182 1.100 0.100 0.225 24							
6 3 154 0.300 0.100 0.142 24 6 4 155 1.200 0.100 0.242 24 6 5 156 1.000 0.100 0.296 24 6 6 6 157 0.400 0.100 0.296 24 6 7 158 0.800 0.100 0.200 22 6 8 159 0.800 0.100 0.200 24 6 9 160 0.500 0.100 0.233 24 6 10 161 0.700 0.100 0.188 24 6 11 162 0.300 0.100 0.121 24 6 12 163 0.300 0.100 0.112 24 6 13 164 0.100 0.100 0.112 24 6 14 185 0.600 0.100 0.112 24 6 16 16 167 0.500 0.100 0.112 24 6 17 168 0.900 0.100 0.133 24 6 19 170 0.600 0.100 0.212 24 6 19 170 0.600 0.100 0.212 24 6 19 170 0.600 0.100 0.292 24 6 19 170 0.600 0.100 0.292 24 6 20 171 0.800 0.100 0.292 24 6 21 172 1.100 0.100 0.292 24 6 23 174 0.800 0.100 0.292 24 6 25 176 1.500 0.100 0.295 22 6 26 177 1.100 0.100 0.301 22 6 26 177 1.100 0.100 0.295 22 6 27 178 0.300 0.100 0.301 24 6 26 27 178 0.600 0.100 0.255 24 6 28 179 0.900 0.100 0.255 24 7 1 182 1.100 0.100 0.255 24 7 1 182 1.100 0.100 0.225 24 7 3 184 1.000 0.100 0.225 24 7 4 185 0.400 0.100 0.225 24 7 7 188 0.600 0.100 0.225 24							
6 4 155 1,200 0,100 0,242 24 6 5 156 1,000 0,100 0,296 24 6 6 157 0,400 0,100 0,188 24 6 7 158 0,600 0,100 0,209 22 6 8 159 0,800 0,100 0,200 24 6 9 160 0,500 0,100 0,233 24 6 10 161 0,700 0,100 0,121 24 6 10 161 0,700 0,100 0,121 24 6 12 163 0,300 0,100 0,121 24 6 12 163 0,300 0,100 0,112 24 6 13 164 0,100 0,100 0,112 24 6 14 185 0,600 0,100 0,133 24 6							
6 5 156 1,000 0,100 0,296 24 6 6 157 0,400 0,100 0,188 24 6 7 158 0,600 0,100 0,209 22 6 8 159 0,800 0,100 0,200 24 6 9 160 0,500 0,100 0,233 24 6 10 161 0,700 0,100 0,188 24 6 10 161 0,700 0,100 0,121 24 6 12 163 0,300 0,100 0,112 24 6 12 163 0,300 0,100 0,112 24 6 13 164 0,100 0,100 0,112 24 6 14 1.65 0,600 0,100 0,212 24 6 16 167 0,500 0,100 0,246 24 6							
6 6 157 0.400 0.100 0.188 24 6 7 158 0.800 0.100 0.209 22 6 8 159 0.800 0.100 0.200 24 6 9 160 0.500 0.100 0.233 24 6 10 161 0.700 0.100 0.188 24 6 10 161 0.700 0.100 0.121 24 6 12 163 0.300 0.100 0.121 24 6 13 164 0.100 0.100 0.112 24 6 13 164 0.100 0.100 0.100 24 6 14 165 0.600 0.100 0.158 24 6 15 166 0.600 0.100 0.212 24 6 17 168 0.900 0.100 0.246 24 6							
6 7 158 0.800 0.100 0.209 22 6 8 159 0.800 0.100 0.200 24 6 9 160 0.500 0.100 0.233 24 6 10 161 0.700 0.100 0.188 24 6 11 162 0.300 0.100 0.112 24 6 12 163 0.300 0.100 0.112 24 6 12 163 0.300 0.100 0.112 24 6 12 163 0.300 0.100 0.112 24 6 14 165 0.600 0.100 0.158 24 6 15 166 0.600 0.100 0.133 24 6 16 167 0.590 0.100 0.246 24 6 17 168 0.990 0.100 0.242 24 6							
6 8 159 0.800 0.100 0.200 24 6 9 160 0.500 0.100 0.233 24 8 10 161 0.700 0.100 0.188 24 8 11 162 0.300 0.100 0.121 24 6 12 163 0.300 0.100 0.112 24 6 13 164 0.100 0.100 0.100 24 6 14 165 0.600 0.100 0.158 24 6 15 166 0.600 0.100 0.212 24 6 16 167 0.500 0.100 0.213 24 6 16 167 0.500 0.100 0.246 24 6 17 168 0.900 0.100 0.296 24 6 18 169 0.800 0.100 0.296 24 6							
6 9 160 0.500 0.100 0.233 24 6 10 161 0.700 0.100 0.188 24 8 11 162 0.300 0.100 0.121 24 6 12 163 0.300 0.100 0.112 24 6 13 164 0.100 0.100 0.100 24 6 14 165 0.600 0.100 0.158 24 6 15 166 0.600 0.100 0.158 24 6 16 167 0.500 0.100 0.212 24 6 16 167 0.500 0.100 0.246 24 6 17 168 0.900 0.100 0.246 24 6 18 169 0.800 0.100 0.296 24 6 19 170 0.800 0.100 0.242 24 6							
6 10 161 0.700 0.100 0.188 24 6 11 162 0.300 0.100 0.121 24 6 12 163 0.300 0.100 0.112 24 6 13 164 0.100 0.100 0.100 24 6 14 165 0.600 0.100 0.158 24 6 15 166 0.600 0.100 0.212 24 6 16 167 0.500 0.100 0.212 24 6 16 167 0.500 0.100 0.246 24 6 17 168 0.900 0.100 0.246 24 6 19 170 0.800 0.100 0.242 24 6 19 170 0.800 0.100 0.242 24 6 19 170 0.800 0.100 0.289 19 9							
6 11 162 0.300 0.100 0.121 24 6 12 163 0.300 0.100 0.112 24 6 13 164 0.100 0.100 0.100 24 6 14 1.65 0.600 0.100 0.158 24 6 15 166 0.600 0.100 0.212 24 6 16 167 0.500 0.100 0.133 24 6 17 168 0.900 0.100 0.246 24 6 18 169 0.800 0.100 0.246 24 6 19 170 0.600 0.100 0.242 24 6 19 170 0.600 0.100 0.242 24 6 19 170 0.800 0.100 0.289 19 9 22 173 0.700 0.100 0.289 19 6							
6 12 163 0.300 0.100 0.112 24 6 13 164 0.100 0.100 0.100 24 6 14 185 0.600 0.100 0.158 24 6 15 166 0.600 0.100 0.212 24 6 16 167 0.500 0.100 0.213 24 6 17 168 0.900 0.100 0.246 24 6 18 169 0.800 0.100 0.296 24 6 19 170 0.500 0.100 0.296 24 6 19 170 0.500 0.100 0.242 24 6 19 170 0.500 0.100 0.242 24 6 19 170 0.800 0.100 0.295 22 24 6 29 173 0.700 0.100 0.289 19							
6 13 164 0.100 0.100 0.100 24 6 14 1.65 0.600 0.100 0.158 24 6 15 166 0.600 0.100 0.212 24 6 16 167 0.500 0.100 0.133 24 6 17 168 0.900 0.100 0.246 24 6 18 169 0.800 0.100 0.296 24 6 19 170 0.600 0.100 0.242 24 6 19 170 0.600 0.100 0.242 24 6 19 170 0.600 0.100 0.292 24 6 19 171 0.800 0.100 0.292 24 6 20 171 0.800 0.100 0.289 19 9 22 173 0.700 0.100 0.289 19 9 22 173 0.700 0.100 0.100 0.295 22							
6 14 1.65 0.600 0.100 0.158 24 6 15 166 0.600 0.100 0.212 24 6 16 167 0.500 0.100 0.133 24 6 17 168 0.900 0.100 0.246 24 6 18 169 0.800 0.100 0.296 24 6 19 170 0.500 0.100 0.242 24 6 19 170 0.500 0.100 0.242 24 6 20 171 0.800 0.100 0.242 24 6 20 171 0.800 0.100 0.289 19 9 22 173 0.700 0.100 0.289 19 9 22 173 0.700 0.100 0.171 24 6 23 174 0.800 0.100 0.371 24 6							
6 15 166 0.600 0.100 0.212 24 6 16 167 0.500 0.100 0.133 24 6 17 168 0.900 0.100 0.246 24 6 18 169 0.800 0.100 0.296 24 6 19 170 0.500 0.100 0.292 24 6 20 171 0.800 0.100 0.292 24 8 21 172 1.100 0.100 0.292 24 8 21 172 1.100 0.100 0.289 19 9 22 173 0.700 0.100 0.289 19 9 22 173 0.700 0.100 0.295 22 6 24 175 0.300 0.100 0.371 24 6 25 176 1.500 0.100 0.371 24 6							
6 16 167 0.500 0.100 0.133 24 6 17 168 0.900 0.100 0.246 24 6 18 169 0.800 0.100 0.296 24 6 19 170 0.500 0.100 0.242 24 8 20 171 0.800 0.100 0.242 24 8 21 1.72 1.100 0.100 0.289 19 9 22 173 0.700 0.100 0.289 19 9 22 173 0.700 0.100 0.289 19 9 22 173 0.700 0.100 0.295 22 6 23 174 0.800 0.100 0.142 24 6 23 176 1.500 0.100 0.371 24 6 25 176 1.500 0.100 0.508 24 6 27 178 0.600 0.100 0.229 24 6							
6 17 168 0.900 0.100 0.246 24 6 18 169 0.800 0.100 0.296 24 6 19 170 0.600 0.100 0.242 24 6 20 171 0.800 0.100 0.292 24 6 21 172 1.100 0.100 0.289 19 6 22 173 0.700 0.100 0.171 24 6 23 174 0.800 0.100 0.295 22 6 24 175 0.300 0.100 0.142 24 6 25 176 1.500 0.100 0.371 24 6 26 177 1.100 0.100 0.508 24 6 27 178 0.600 0.100 0.254 24 6 27 178 0.600 0.100 0.229 24 6 29 180 1.500 0.100 0.300 24 7							
6 18 169 0.800 0.100 0.296 24 6 19 170 0.600 0.100 0.242 24 8 20 171 0.800 0.100 0.292 24 6 21 172 1.100 0.100 0.289 19 6 22 173 0.700 0.100 0.171 24 6 23 174 0.800 0.100 0.295 22 6 24 175 0.300 0.100 0.142 24 6 25 176 1.500 0.100 0.371 24 6 26 177 1.100 0.100 0.508 24 6 27 178 0.600 0.100 0.254 24 6 28 179 0.900 0.100 0.229 24 6 29 180 1.500 0.100 0.225 24 7 1 182 1.100 0.100 0.287 24 7 <							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
6 20 171 0.800 0.100 0.292 24 6 21 172 1.100 0.100 0.289 19 6 22 173 0.700 0.100 0.171 24 6 23 174 0.800 0.100 0.295 22 6 24 175 0.300 0.100 0.142 24 6 25 176 1.500 0.100 0.371 24 6 26 177 1.100 0.100 0.508 24 6 27 178 0.600 0.100 0.254 24 6 28 179 0.900 0.100 0.229 24 6 29 180 1.500 0.100 0.300 24 6 30 181 0.600 0.100 0.225 24 7 1 182 1.100 0.100 0.287 24 7 2 183 0.900 0.100 0.304 24 7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
6 21 1.72 1.100 0.100 0.289 19 6 22 173 0.700 0.100 0.171 24 6 23 174 0.800 0.100 0.295 22 6 24 175 0.300 0.100 0.142 24 6 25 176 1.500 0.100 0.371 24 6 26 177 1.100 0.100 0.508 24 6 27 178 0.600 0.100 0.254 24 6 28 179 0.900 0.100 0.229 24 6 29 180 1.500 0.100 0.300 24 6 30 181 0.600 0.100 0.225 24 7 1 182 1.100 0.100 0.287 24 7 2 183 0.900 0.100 0.304 24 7 3 184 1.000 0.100 0.275 24 7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
6 22 173 0.700 0.100 0.171 24 6 23 174 0.800 0.100 0.295 22 6 24 175 0.300 0.100 0.142 24 6 25 176 1.500 0.100 0.371 24 6 26 177 1.100 0.100 0.508 24 6 27 178 0.600 0.100 0.254 24 6 28 179 0.900 0.100 0.229 24 6 29 180 1.500 0.100 0.300 24 6 30 181 0.600 0.100 0.225 24 7 1 182 1.100 0.100 0.287 24 7 2 183 0.900 0.100 0.304 24 7 3 184 1.000 0.100 0.275 24 7 4 185 0.400 0.100 0.322 23 7							
6 23 174 0.800 0.100 0.295 22 6 24 175 0.300 0.100 0.142 24 6 25 176 1.500 0.100 0.371 24 6 26 177 1.100 0.100 0.508 24 6 27 178 0.600 0.100 0.254 24 6 28 179 0.900 0.100 0.229 24 6 29 180 1.500 0.100 0.300 24 6 30 181 0.600 0.100 0.225 24 7 1 182 1.100 0.100 0.287 24 7 2 183 0.900 0.100 0.304 24 7 3 184 1.000 0.100 0.275 24 7 4 185 0.400 0.100 0.167 24 7 5 186 1.000 0.100 0.329 24 7 7							
6 24 175 0.300 0.100 0.142 24 6 25 176 1.500 0.100 0.371 24 6 26 177 1.100 0.100 0.508 24 6 27 178 0.600 0.100 0.254 24 6 28 179 0.900 0.100 0.229 24 6 29 180 1.500 0.100 0.300 24 6 30 181 0.600 0.100 0.225 24 7 1 182 1.100 0.100 0.287 24 7 2 183 0.900 0.100 0.304 24 7 3 184 1.000 0.100 0.275 24 7 4 185 0.400 0.100 0.167 24 7 5 186 1.000 0.100 0.322 23 7 6 137 0.800 0.100 0.242 24 7 18							
6 25 176 1,500 0,100 0,371 24 6 26 177 1,100 0,100 0,508 24 6 27 178 0,600 0,100 0,254 24 6 28 179 0,900 0,100 0,229 24 6 29 180 1,500 0,100 0,300 24 6 30 181 0,600 0,100 0,225 24 7 1 182 1,100 0,100 0,287 24 7 2 183 0,900 0,100 0,304 24 7 3 184 1,000 0,100 0,275 24 7 4 185 0,400 0,100 0,167 24 7 5 186 1,000 0,100 0,322 23 7 6 137 0,800 0,100 0,329 24 7 7 188 0,600 0,100 0,225 24 7 8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
6 26 177 1,100 0,100 0,508 24 6 27 178 0,600 0,100 0,254 24 6 28 179 0,900 0,100 0,229 24 6 29 180 1,500 0,100 0,300 24 6 30 181 0,600 0,100 0,225 24 7 1 182 1,100 0,100 0,287 24 7 2 183 0,900 0,100 0,304 24 7 3 184 1,000 0,100 0,275 24 7 4 185 0,400 0,100 0,167 24 7 5 186 1,000 0,100 0,322 23 7 6 137 0,800 0,100 0,242 24 7 7 188 0,600 0,100 0,225 24 7 8 189 0,500 0,100 0,225 24							
6 27 178 0.600 0.100 0.254 24 6 28 179 0.900 0.100 0.229 24 6 29 180 1.500 0.100 0.300 24 6 30 181 0.600 0.100 0.225 24 7 1 182 1.100 0.100 0.287 24 7 2 183 0.900 0.100 0.304 24 7 3 184 1.000 0.100 0.275 24 7 4 185 0.400 0.100 0.167 24 7 5 186 1.000 0.100 0.322 23 7 6 137 0.800 0.100 0.329 24 7 7 188 0.600 0.100 0.242 24 7 8 189 0.500 0.100 0.225 24							
6 28 179 0.900 0.100 0.229 24 6 29 180 1.500 0.100 0.300 24 6 30 181 0.600 0.100 0.225 24 7 1 182 1.100 0.100 0.287 24 7 2 183 0.900 0.100 0.304 24 7 3 184 1.000 0.100 0.275 24 7 4 185 0.400 0.100 0.167 24 7 5 186 1.000 0.100 0.322 23 7 6 137 0.800 0.100 0.329 24 7 7 188 0.600 0.100 0.240 24 7 8 189 0.500 0.100 0.225 24							
6 29 180 1.500 0.100 0.300 24 6 30 181 0.600 0.100 0.225 24 7 1 182 1.100 0.100 0.287 24 7 2 183 0.900 0.100 0.304 24 7 3 184 1.000 0.100 0.275 24 7 4 185 0.400 0.100 0.167 24 7 5 186 1.000 0.100 0.322 23 7 6 137 0.800 0.100 0.329 24 7 7 188 0.600 0.100 0.240 24 7 8 189 0.500 0.100 0.225 24							
6 30 181 0.600 0.100 0.225 24 7 1 182 1.100 0.100 0.287 24 7 2 183 0.900 0.100 0.304 24 7 3 184 1.000 0.100 0.275 24 7 4 185 0.400 0.100 0.167 24 7 5 186 1.000 0.100 0.322 23 7 6 137 0.800 0.100 0.329 24 7 7 188 0.600 0.100 0.240 24 7 8 189 0.500 0.100 0.225 24							
7 1 182 1.100 0.100 0.287 24 7 2 183 0.900 0.100 0.304 24 7 3 184 1.000 0.100 0.275 24 7 4 185 0.400 0.100 0.167 24 7 5 186 1.000 0.100 0.322 23 7 6 137 0.800 0.100 0.329 24 7 7 188 0.600 0.100 0.242 24 7 8 189 0.500 0.100 0.225 24							
7 2 183 0.900 0.100 0.304 24 7 3 184 1.000 0.100 0.275 24 7 4 185 0.400 0.100 0.167 24 7 5 186 1.000 0.100 0.322 23 7 6 137 0.800 0.100 0.329 24 7 7 188 0.600 0.100 0.242 24 7 8 189 0.500 0.100 0.225 24							
7 3 184 1.000 0.100 0.275 24 7 4 185 0.400 0.100 0.167 24 7 5 186 1.000 0.100 0.322 23 7 6 137 0.800 0.100 0.329 24 7 7 188 0.600 0.100 0.242 24 7 8 189 0.500 0.100 0.225 24							
7 4 185 0.400 0.100 0.167 24 7 5 186 1.000 0.100 0.322 23 7 6 137 0.800 0.100 0.329 24 7 7 188 0.600 0.100 0.242 24 7 8 189 0.500 0.100 0.225 24							
7 5 186 1.000 0.100 0.322 23 7 6 187 0.800 0.100 0.329 24 7 7 188 0.600 0.100 0.240 24 7 8 189 0.500 0.100 0.225 24							
7 6 137 0.800 0.100 0.329 24 7 7 188 0.600 0.100 0.240 24 7 8 189 0.500 0.100 0.225 24							
7 7 188 0.600 0.100 0.242 24 7 8 189 0.500 0.100 0.225 24							
7 8 189 0.500 0.100 0.225 24							
				0.300	0.100		24

Carbon Monoxide (CO) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
7 7	10 11	191 192	2.100 1.400	0.100 0.100	0.642 0.433	24 24
7	12	193	0.900	0.100	0.142	24
7	13	194	1,000	0.100	0.183	24
7	14	195	0.900	0.100	0.321	24
7	15	196	0.700	0.100	0.304	$\frac{1}{2}$ 1
7	16	197	1.300	0.100	0.379	24
7	17	198	1.200	0.100	0.304	24
7	18	199	0.800	0.100	0.300	24
7	19	200	0.300	0.100	0.121	24
7	20	201	0.300	0.100	0.145	20
7	21	202	0.100	0.100	0.100	24
7	22	203	0.200	0.100	0.108	24
7 7	23	204	0.700	0.100	0.329	24
7	24	205	1.700	0.100	0.554	24
7	25 26	206	1.000	0.100	0.336	22
$\overset{\prime}{7}$	20 27	207	1.200	0.100	0.342	24
7	28	208	0.600	0.100	0.225	24
$\overset{'}{7}$	29 29	$\frac{209}{210}$	0.500	0.100	0.263	24
$\dot{7}$	30	210	0.600	0.100	0.242	24
$\frac{1}{7}$	31	$\frac{211}{212}$	0.400 0.700	0.100	0.187	24
8	1	213	1.200	0.100	0.300	24
8	$\hat{2}$	214	1.000	$0.100 \\ 0.100$	0.354	24
ង	3	215	1.200	0.100	$0.348 \\ 0.321$	23 24
ន	4	216	0.800	0.100	0.321 0.237	24
ਰ	15	217	0.100	0.100	0.100	24
8	(= }	218	0.800	0.100	0.179	24
Ħ	7	219	1.200	0.100	0.367	24
1-3	Н	220	1.800	0.100	0.475	24
뀸	9	221	1,100	0.100	0.300	24
11	10	222	1,500	0.100	0.517	24
3	1.1	223	O. BOO	0.100	0.200	24
Ħ	123	224	(1,13()0)	0.100	0.271	24
8	13	225	0.900	0.200	0.404	24
8	+4	226	1.000	0.100	0.292	24
В	15	227	2.900	0.100	0.454	24
8	16	228	1.100	0.100	0.404	23
B	17	229	1.000	0.100	0.442	24
<i>\</i> ;	18	230	1.400	0.100	0.475	24
8	19	231	0.400	0.100	0.188	17
8	20	232	1.800	0.100	0.475	1.6
8	21	233	1.600	0.100	0.583	24
13	22	234	1.500	0.100	0.563	24
8 8	23	235	1.000	0.100	0.292	24
75 13	24 25	236	1.300	0.100	0.333	24
13	.1.1	237	1.100	0.100	0.300	24

Carbon Monoxide (CO) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
8	26	2 3 8	1.000	0.100	0.221	24
8	27	239	1.000	0.100	0.342	24
8	28	240	1.100	0.100	0.271	24
8	29	241	0.900	0.100	0.379	24
8	30	242	1.200	0.100	0.317	23
8	31	243	1.000	0.100	0.350	24
9	1	244	0.800	0.200	0.333	24
9	$\ddot{2}$	245	0.800	0.100	0.308	24
9	3	246	0.600	0.100	0.300	24
9	4	247	1.200	0.100	0.375	24
9	5	248	1.200	0.100	0.350	$\overline{24}$
9	6	249	1.900	0.100	0.454	24
ģ	7	250	1.800	0.100	0.475	24
9	8	251	1.100	0.100	0.346	. 24
9	9	2352	0.700	0.100	0.288	24
9	10	258	1.000	0.100	0.300	24
9	1.1	254	1.000	0.100	0.300	24
9	12	255	2,000	0.100	0.338	21
9	13	256	1.100	0.100	0.248	23
9	14	257	1.100	0.100	0.400	24
9	15	258	ა.800	0.200	0.430	23
9	16	259	0.500	0.100	0.221	24
9	17	260	1.700	0.100	0.446	24
9	18	261	1.200	0.100	0.433	24
9	19	262	2.400	0.100	0.529	24
9	20	263	1.100	0.100	0.412	24
9	21	264	2.000	0.100	0.450	24
9	22	265	2.400	0.100	0.483	24
9	23	266	2.500	0.200	0.513	24
9	24	267	1.600	0.100	0.583	24
!3	25	268	1.100	0.200	0.433	24
9	26	269	1.200	0.200	0.471	24
<u>;</u> }	2i	270	1.300	0.200	0.573	22
9	28	271	0.600	0.300	0.367	234
19	29	272	0.300	0.200	0.221	24
9	30	273	1.900	0.100	0.642	24

December 1989

Carbon Monoxide January 1990

March 1990

April 1990

___ Daily Max ___ Daily Aug

May 1990

__ Daily Max __ Daily Avg

___ Daily Max ___ Daily Avg

Daily Max Daily Avg

___ Daily Max ___ Daily Avg

I2 Ozone (O₃)

(

(2)

4

•

_

_

Ð

•

*€

Ozone (O3) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
10	1	274	0.048	0.007	1) A21	0.4
10	2	275 275	0.053	0.007	0.031 0.027	24
10	ä	276	0.033	0.005	0.027	24
10	4	270 277	0.052			24
10	-1 -5	278	0.043	0.003 0.016	0.023	24
10		279	0.053		0.034	24
1.0	7	280	0.052	0,001 0,001	0.026	24
10	ន៍	281	0.053	0.001	0.025	24
1.0	g	282	0.033	0.001	0.028	24
10	10	283	0.048	0.001	0.024	18
10	11	284	0.041	0.001	0.027	24
10	12	285	0.041	0.001	0.019	20
10	13	286 286	0.054	0.003	0.025	24
1.0	14	287	0.046	0.004	0.025	22
10	15	288			0.024	24
10	16	289	0.036 0.031	0.001	0.022	24
10	1.7	290 290	0.031	$0.015 \\ 0.012$	0.023	24
10	18	291 291	0.031	0.012	0.022	24
10	19	292	0.036	0.001	0.017	24
10	20	293	0.037	0.001	0.016	24
10	21	294	0.050	0.001	$0.014 \\ 0.020$	24
10	22	295	0.030	0.001	0.020	24
10	23	296	0.049	0.001		24
10	24	290 297	0.043	0.001	0.020 0.013	24
10	25	298	0.018	0.001		22
10	26	299	0.018	0.001	0.007	24
10	27	300	0.049	0.001	0.027	24
10	28	301	0.043	0.001	0.023	24
10	29	302	0.032	0.001	0.021 0.020	16
16	30	303	0.037	0.001	0.020	24
10	31	304	0.038	0.001	0.017	24
1.1	1	305	0.035	0.002	0.020	24
11	2	306	0.046	0.001	0.017	24 24
11	 3	307	0.038	0.001	0.017	24
11	4	308	0.047	0.001	0.020	24
1 1	5	309	0.037	0.001	0.026	24
1 1	$\ddot{6}$	310	0.041	0.001	0.020	24 24
11	7	311	0.041	0.009	0.031	24
11	8	312	0.042	0.023	0.033	22
11	9	313	0.034	0.001	0.022	24
1 1	10	314	0.032	0.001	0.011	24
1 1	11	315	0.034	0.001	0.015	24
11	12	316	0.040	0.001	0.021	24
1, 1	13	317	0.032	0.001	0.021	24 24
1 1	14	318	0.036	0.001	0.020	24
1.1	15	319	0.037	0.011	0.024	24
1 1	16	320	0.028	0.001	0.014	24
11	17	321	0.039	0.001	0.015	24
11	18	322	0.042	0.001	0.017	24

Ozone (O3) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
11	19	323	0.035	0.001	0.019	24
11	20	324	0.034	0.001	0.012	22
11	21	325	0.034	0.001	0.014	24
11	22	326	0.032	0.001	0.024	24 24
11	23	327 328	0.025 0.041	0.001 0.001	0.008 0.023	24 24
11 11	24 25	329	0.041	0.003	0.025	24
1.1	26	330	0.039	0.001	0.019	24
11	27	331	0.036	0.001	0.029	24
11	28	332	0.032	0.001	0.012	24
11	29	333	0.043	0 001	0.017	24
11	30	334	0.035	0.001	0.011	24
12	1	335	0.040	0.001	0.017	24
12	2	336	0.035	0.001	$0.014 \\ 0.011$	24 24
12 12	3 4	337 338	0.035 0.038	0.001 0.001	0.020	24
12	5	339	0.035	0.003	0.024	24
1.2	6	340	0.029	0.001	0.018	24
12	7	341	0.030	0.001	0.014	24
12	8	342	0.035	0.001	0.007	23
12	9	343	0.037	0.001	0.01	23
12	1.0	344	0.033	0.003	0.024	24
12	11	345	0.023 0.036	0.001 0.003	0.011 0.020	24 24
12 12	12 13	346 347	0.038	0.003	0.020	24
12	14	348	0.036	0.001	0.020	24
12	15	349	0.028	0.001	0.014	24
12	16	350	0.028	0.001	0.015	20
12	17	351	0.027	0.001	0.011	2:4
12	18	352	0.038	0.001	0.024	24
12	19	353	0.040	0.001 0.001	0.009 0.024	20 21
12 12	20 21	354 355	0.038 0.036	0.001	0.024	24
12	22	356	0.045	0.001	0.017	23
12	23	357	0.048	0.001	0.024	24
12	24	358	0.042	0.001	0.020	
12	25	35.9	0.041	0.002	0.019	24
12	26	360	0.040	0.002	0.018	24
12	27	361	0.039	0.001	0.014	24
12 13	28 29	362 363	0.032 0.034	0.001 0.001	0.018 0.019	22 24
12	30		0.036	0.001	0.017	24
12	31	365	0.038	0.001	0.016	24
1	1	1	0.035	0.002	0.016	24
1	. 2		0.043	0.001	0.015	24
1	3		0.033	0.001	0.021	24
1,	4		0.022	0.001	0.009	24
1	ნ		0.040 0.040	0.001 0.002	$0.017 \\ 0.019$	24 24
1	n	• • • • • • • • • • • • • • • • • • • •	0.040	V. 00%	0.018	6.4

Ozone (03) Daily Data in parts per million (ppm) for FY90

Calendar Month Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
Month Day 1	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42				
2 19 2 20 2 21 2 22 2 23 2 23 2 24	50 51 52 53 54 55	0.045 0.045 0.039 0.044 0.046 0.031	0.008 0.001 0.002 0.001 0.001	0.033 0.024 0.022 0.022 0.019 0.020 0.014	24 24 24 24 24 24 24

Ozone (O3) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
2 2 2 2	25 26 27 28	56 57 58 59	0.047 0.043 0.030 0.024	0.001 0.001 0.003	0.020 0.017 0.024	24 24 24
2 3 3	1 2	60 61	0.024 0.048 0.051	0.005 0.001 0.001	0.019	24 23
3 3	3 4	63	0.053 0.055	0.001 0.001 0.004	0.020 0.032 0.033	21 24 24
3 3	5 6	64 65	0.043	0.001 0.016	0.035 0.025 0.025	24 23 24
3 3	7 8	66 67	0.067 0.046	0.017 0.002	0.037 0.024	24 24 24
3 3	9 10	68 69	0.076 0.074	0.002 0.001	0.024	24 24
3 3	11 12	70 71	0.076 0.060	0.001 0.009	0.031 0.041	24 24
3 3 3	13 14 15	72 73 74	0.056 0.062	0.037 0.001	0.046 0.030	24 24
3 3	16 17	75 76	0.052 0.053 0.042	0.008 0.003 0.016	0.035	23 24
3 3	18 19	77 78	0.048 0.061	0.010 0.020 0.001	0.031 0.037 0.029	24 24 24
3 3	20 21	79 80	0.058 0.053	0.006 0.001	0.033	24 24 24
3 3	22 23	81 82	0.036 0.022	0.009 0.014	0.022 0.018	10 10
3 3 3	24 25 26	83 84	0.032 0.049	0.017 0.007	0.026 0.029	21 24
3 3	27 28	85 86 87	0.035 0.053 0.042	0.014 0.001	0.021 0.022	18 20
3 3	29 30	88 89	0.042 0.044 0.046	0.025 0.015 0.001	0.035 0.028 0.029	24 20 16
3 4	31 1	90 91	0.057 0.051	0.001	0.029 0.031	24 24
4	2 3	92 93	0.050 0.055	0.007 0.009	0.029 0.032	24 22
4 4 4	4 5 6	94 95 96	0.053 0.040	0.011 0.030	0.032 0.036	24 24
4	7 8	97 98	0.053 0.059 0.060	0.013 0.005 0.012	0.033	22 24
4 4		99 100	0.042 0.031	0.012 0.006 0.008	0.036 0.027 0.022	24 24 24
4	11 12	101 102	0.042 0.054	0.012	0.021 0.020	24 24 19
4 4	13 1 4	103 104	0.058 0.049	0.007 0.001	0.037 0.028	23 24

Ozone (03) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
4	15 16	105 106	0.057 0.039	0.005 0.010	0.029 0.029	24 24
4 4	17 18	107 108	0.028	0.011	0.022	24
4	19	108	0. 054 0.053	0.003 0.001	0.025 0.028	24
4	20	110	0.059	0.001	0.028	22 24
4	21	111	0.056	0.013	0.033	24
4	22	112	0.049	0.014	0.037	24
4	23	1.13	0.049	0.011	0.032	24
4	24	114	0.053	0.001	0.023	24
4	25	115	0.041	0.001	0.023	22
4 4	26	116	0.049	0.010	0.033	23
4	27 28	117 118	0.058	0.005	0.040	24
4	29	119	0.045 0.055	0.015 0.023	0.032	24
4	30	120	0.050	0.023	0.037 0.031	24 24
5	1	121	0.037	0.022	0.031	24
5	2	122	0.063	0.001	0.034	24
5	3	1.23	0.055	0.011	0.038	24
5	4	124	0.054	0.002	0.032	24
5	5	125	0.061	0.014	0.041	24
5	6	1′3	0.070	0.027	C.J48	24
5	7	127	0.071	0.022	0.045	24
5 5	8 ទ	128	0.033	0.016	0.024	24
5	10	129 130	0.051 0.054	0.023	0.036	24
5	11	131	0.034) 903 6.013	0.028	23
5	12	132	0.054	0.013	0.026 0.036	24 24
5	13	1.33	0.064	. 401	0.036	24
5	14	134	0.054	0.604	0.030	24
5	15	1.35	0.059	0.006	0.039	24
5	16	136	0.053	0.022	0.042	24
5	17	137	0.0 ს მ	0.012	0.037	24
5	18	138	0.067	0.002	0.042	24
5 5	19 20	139	0.072	0.025	0.052	24
5	20	140 141	0.057	0.022	0.040	24
5	22	142	0.061 0.061	0.009 0.006	0.038	24
5	23	143	0.058	0.004	0.038 0.037	24
5	24	144	0.060	0.002	0.034	24 23
5	25	145	0.066	0.030	0.045	24
5	26	146	0.071	0.032	0.047	24
5	27	147	0.056	0.024	0.044	24
5	28	148	0.052	0.033	0.045	24
5	29	149	0.042	0.014	0.033	24
5 r	30	150	0.053	0.002	0.034	24
E B	31	151	0.056	0.010	0.035	24
6 6	1 2	152	0.055	0.003	0.036	24
()	۲.	153	0.058	0.025	0.045	24

Ozone (O3) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
6	3	154	0.055	0.020	0.038	24
6	4	155	0.055	0.002	0.034	24
6	5	156	0.052	0.001	0.031	24
6	6	157	0.068	0.016	0.043	24
6	7	158	0.075	0.022	0.042	22
6	8	159	0.063	0.007	0.041	24
6	9	160	0.070	0.014	0.041	24
6	10	161	0.049	0.010	0.037	24
6	11	162	0.042	0.027	0.035	24
6	12	163	0.052	0.028	0.041	24
6 6	13	164	0.053	0.030	0.043	24
6	14 15	165	0.064	0.022	0.044	24
6	16	166	0.066	0.014	0.041	24
6	17	167 168	0.058	0.019	0.040	24
6	18	169	0.069 0.076	0.014	0.042	24
6	1.9	170	0.062	$0.011 \\ 0.015$	0.049	24
6	20	171	0.002	0.013	0.040	24
6.	21	172	0.050	0.013	0.044	24
6.	22	173	0.066	0.020	0.034 0.039	23
6	23	174	0.072	0.003	0.040	20 22
6	24	175	0.070	0.027	0.051	24
6	25	176	0.072	0.004	0.042	24
6	26	177	0.086	0.006	0.040	24
6	27	178	0.079	0.017	0.047	24
6	28	179	0.070	0.012	0.050	24
6	29	180	0.082	0.014	0.050	24
6	30	181	0.118	0.020	0.061	24
7	1	182	0.080	0.017	0.051	24
7	2	183	0.071	0.014	0.042	2.4
7	3	184	0.079	0.011	0.043	24
7	4	185	0.070	0.026	0.048	24
7	5	186	0.069	0.007	0.039	22
7 7	6	187	0.070	0.008	0.037	23
7	7	188	0.076	0.018	0.039	24
7	8 9	189	0.053	0.012	0.034	24
7	10	190 191	0.059	0.020	0.040	24
7	11	192	0.059	0.002	0.029	24
7	12	193	0.059 0.065	0.001	0.031	24
7	13	194	0.078	0.015 0.009	0.043 0.041	24
7	14	195	0.071	0.003		24
7	15	196	0.064	0.004	0.039 0.040	24
7	16	197	0.064	0.004	0.040	24 24
7	17	198	0.067	0.006	0.040	24
7	18	199	0.072	0.012	0.043	24
7	19	200	0.058	0.026	0.045	24
7	20	201	0.045	0.008	0.028	20
7	21	202	0.039	0.020	0.029	24

Ozone (O3) Daily Data in parts per million (ppm) for FY90

Calen Month	idar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
7	22	203	0.051	0.008	0 030	0.4
7	23	204	0.060	0.005	0.030 0.028	24
7	24	205	0.058	0.003	0.028	24 24
7	25	206	0.067	0.001	0.028	24 22
7	26	207	0.080	0.004	0.044	24
7	27	208	0.068	0.017	0.047	24
7	28	209	0.077	0.017	0.047	24
7	29	210	0.063	0.007	0.036	24
7	30	211	0.068	0.005	0.039	24
7	31	212	0.085	0.013	0.042	24
8	1	213	0.069	0.006	0.042	24
8	2	214	0.067	0.013	0.037	23
8	3	215	0 074	0.007	0.038	24
8	4	216	0.070	0.002	0.039	24
8	5	217	0.059	0.012	0.037	24
8	6	218	0.063	0.013	0.040	24
8	7	219	0.063	0.005	0.037	24
8	8	220	0.061	0.001	0.032	24
8	9	221	0.077	0.009	0.041	24
8	10	222	0.065	0.003	0.033	24
8	11	223	0.065	0.018	0.043	34
8	12	224	0.054	0.010	0.031	24
8	13	225	0.082	0.011	0.036	24
8	14	226	0.069	0.006	0.034	24
8	15	227	0.063	0.011	0.031	24
8	16	228	0.071	0.001	0.034	23
8	17	229	0.056	0.004	0.027	24
8	18	230	0.063	0.001	0.031	24
8	19	231	0.050	0.014	0.034	17
8	20	232	0.062	0.002	0.039	16
8	21	233	0.063	0.001	0.027	24
8	22	234	0.057	0.002	0.024	24
В	23	235	0.054	0.005	0.031	24
8	24	236	0.059	0.003	0.037	24
8	25	237	0.061	0.004	0.033	24
8	26	238	0.057	0.005	0.032	24
8	27	239	0.062	0.008	0.031	24
8	28	240	0.063	0.004	0.035	24
8	29	241	0.073	0.010	0.040	24
8	30	242	0.056	0.005	0.037	23
8	31	243	0.061	0.002	0.042	23
9	1	244	0.085	0.005	0.047	24
9	2	245	0.072	0.010	0.042	24
9	3	246	0.073	0.008	0.038	24
9	4	247	0.086	0.008	0.045	24
9	5 e	248	0.072	0.006	0.043	24
9	6	249	0.068	0.004	0.038	24
9 9	7 8	250	0.060	0.002	0.032	24
:1	()	251	0.073	0.002	0.035	24

Oxone (O3) Daily Data in parts per million (ppm) for FY90

Caler	ndar	Julian	Daily	Daily	Daily	Valid
Month	Day	Day	Max	Min	Mean	Hours
_						
9	9	252	0.060	0.002	0.033	24
9	10	253	0.068	0.004	0.034	24
9	11	254	0.058	0.010	0.034	24
9	12	255	0.083	0.008	0.042	24
9	13	256	0.056	0.016	0.033	18
9	1.4	257	0.078	0.007	0.036	23
9	15	258	0.091	0.011	0.044	23
9	16	259	0.051	0.031	0.039	24
9	17	260	0.042	0.001	0.026	24
9	18	261	0.056	0.007	0.032	24
9	19	262	0.061	0.002	0.033	24
9	20	263	0.055	0.001	0.028	24
9	21	264	0 055	0.003	0.031	24
9	22	265	0.056	0.001	0.031	24
9	23	266	0.066	0.001	0.033	24
9	24	267	0.056	0.004	0.027	24
9	25	268	0.059	0.007	0.031	24
9	26	269	0.064	0.003	0.032	24
9	27	270	0.047	0.001	0.020	23
9	28	271	0.023	0.006	0.016	24
9	29	272	0.040	0.005	0.023	24
9	30	273	0.054	0.001	0.021	24

Daily Max Daily Avg

___ Daily Max ___ Daily Avg

___ Daily Max ___ Daily Avg

_ Daily Max ___ Daily Avg

13 Sulfur Dioxide (SO₂)

Sulfur Dioxide (SO2) Daily Data in parts per million (ppm) for FY90

	*	•				
Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
10	1	274	0.005	0.001	0.001	24
10	$\hat{2}$	275	0.007	0.001	0.001	24
10	3	276	0.001	0.001	0.001	24
10	4	277	0.004	0.001	0.001	24
10	5	278	0.001	0.001	0.001	24
10	ь	279	0.008	0.001	0.002	24
10	7	280	0.005	0.001	0.001	24
10	8	281	0.010	0.001	0.002	24
10	9	282	0.011	0.001	0.002	24
10	10	283	0.020	0.001	0.003	24
10	11	284	0.027	0.001	0.004	24
10	12	285	0.007	0.001	0.002	24
10	13	286	0.003	0.001	0.001	21
10	14	287	0.008	0.001	0.001	24
10	15	288	0.011	0.001	0.002	24
10	16	289	0.001	0.001	0.001	22
10	1.7	290	0.003	0.001	0.001	24
1.0	18	29 1	0.001	0.001	0.001	24
10	19	292	0.002	0.001	0.001	24
10	20	293	0.005	0.001	0.002	24
10	21	294	0.004	0.001	0.001	24
10	22	295	0.006	0.001	0.002	24
10	23	296	0.005	0001	0.001	21
10	24	297	0.011	0.001	0.004	24
10	25	298	0.014	0.001	0.004	24
10	26	299	0.006	0.001	0.001	24
10	27	300	0.007	0.001	0.001	24
10	28	301	0.011	0.001	0.003	1.6
10	29	302	0.001	0.001	0.001	24
10	30	303	0.004	0.001	0.002	24
10	31	304	0.003	0.001	0.001	24
11	1	305	0.001	0.001	0.001	24
11	2	306	0.003	0.001	0.001	24
1.1	3	307	0.014	0.001	0.002	24
1.1	4 5	308	0.008	0.001	0.002	24
11 11	6	309	0.004	0.001	0.001	24
11	7	310	0.008	0.001	0.002	24
11	ຮໍ	311 312	0.004	0.001	0.001	24
1.1	9	313	0.001	0.001	0.001	21
1.1	10	313	$0.006 \\ 0.012$	$0.001 \\ 0.001$	0.001	24
11	11	315			0.003	24
11	12	316	0.010 0.007	$0.001 \\ 0.001$	0.003	24
11	13	317	0.007	0.001	$0.001 \\ 0.002$	24
11	14	318	0.008	0.001	$0.002 \\ 0.002$	24
1.1	15	319	0.003	0.001	0.002	24 24
		52.0	W , 1957 I	(7-1)(7)	9.091	23.4

Sulfur Dioxide (SO2) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
11	16	320	0.005	0.001	0.002	24
11	17	321	0.004	0.001	0.001	24
11	18	322	0.011	0.001	0.002	24
11	19	323	0.018	0.001	0.003	24
11	20	324	0.008	0.001	0.002	22
11	21	325	0.009	0.001	0.004	24
11	22	326	0.003	0.001	0.001	24
11	23	327	0.010	0.001	0.004	24
11	24	328	0.012	0.001	0.003	24
îí	25	329	0.010	0.001	0.001	24
11	26	330	0.007	0.001	0.002	24
11	$\overline{27}$	331	0.001	0.001	0.001	24
11	28	332	0.009	0.001	0.004	24
11	29	333	0.004	0.001	0.001	24
11	30	334	0.018	0.001	0.006	24
12	1	335	0.010	0.001	0.003	24
12	$\tilde{2}$	336	0.008	0.001	0.003	24
12	3	337	0.021	0.001	0.004	24
12	4	338	0.007	0.001	0.001	22
12	5	3.39	0.005	0.001	0.002	24
12	6	340	0.001	0.001	0.001	24
12	7	341	0.003	0.001	0.001	24
12	8	342	Q.017	0.001	0.004	24
12	9	343	0.014	0.001	0.002	23
12	10	344	0.001	0.001	0.001	24
12	11	345	0.004	0.001	0.002	24
12	12	346	0.006	0.001	0.002	24
12	13	347	0.007	0.001	0.002	24
12	14	348	0.014	0.001	0.003	24
1.2	1.5	349	0.019	0.001	0.005	24
12	16	350	0.016	0.001	0.004	21
12	1.7	351	0.027	0.001	0.009	24
12	18	352	0.004	0.001	0.001	24
12	19	353	0.026	0.004	0.009	24
12	20	354	0.017	0.001	0.004	23
12	21	355	0.004	0.001	0.001	24
12	22	356	0.018	0.001	0.007	22
12	23	357	0.025	0.001	0.006	24
12	24	358	0.002	0.001	0.001	24
12	25	359	0.009	0.001	0.003	24
12	26	360	0.011	0.001	0.003	24
12	27	361	0.010	0.001	0.002	24
12	28	362	0.012	0.001	0.003	24
12	29	363	0.004	0.001	0.001	22
12	30	364	0.015	0.001	0.002	24
12	31	365	0 010	0.001	0.003	24

Sulfur Dioxide (SO2) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
1	1	1.	0.013	0.001	0.003	0.4
i	2	$\stackrel{1}{2}$	0.029	0.001		24
1	3	3	0.001		0.005	24
1	4	4		0.001	0.001	24
1	5	5 5	0.037	0.001	0.008	24
1	6	6	0.004	0.001	0.001	24
1	$\ddot{7}$	7	0.011	0.001	0.003	24
1	B	ر ع	0.008	0.001	0.002	24
1	9	9	0.021	0.001	0.002	24
i	10		0.008	100.0	0.002	24
1	11	10 11	0.008	0.001	0.002	24
1	12	12	0.003	0.001	0.001	24
1	13		0.006	0.001	0.002	24
1		13	0.011	0.001	0.003	24
1	14	14	0.010	0.001	0.002	24
1	15	15	0.021	0.001	0.005	24
1	16 17	16	0.005	0.001	0.003	24
1		17	0.021	0.001	0.004	11
	18	1 8	0.002	0.001	0.001	10
1	19	19	0.001	0.001	0.001	24
1.	20	20	0.004	0.001	0.002	24
1	21	21	0.008	0.001	0.002	24
1	22	22	0.006	0.001	0002	23
1	23	23	0.027	0.001	0.003	24
1.	24	24	0.003	0.001	0.001	22
1	25	25	0.003	0.001	0.001	24
1	26	26	0.006	0.001	0.002	24
1	27	27	100.0	0.001	0.001	24
1	28	28	0.004	0.001	0.002	24
1	29	29	0.009	0.001	0.002	24
1	30	30	0.003	0.001	0.001	24
1	31	31	0.006	0.001	0.002	24
2	1	32	0.003	0.001	0.001	22
2	2	33	0.029	0.001	0.004	24
2	3	:34	0.005	0.001	0.002	24
2	4	35	0.007	0.001	0.002	24
2	5	36	0.005	0.001	0.002	24
2	6	37	0.010	0.001	0.002	24
2	7	38	0.013	0.001	0.003	24
2	8	39	0.004	0.001	0.002	24
$\tilde{2}$	9	40	0.019	0.001	0.003	24
:5	10	4.1	0.001	0.001	0.001	24
2	11	42	0.007	0.001	0.002	24
2.	12	43	0.010	0.001	0.002	20
2	13	44	0.001	0.001	0.001	24
2	14	45	0.001	0.001	0.001	24
2	145	46	0.012	0.001	0.002	22

Sulfur Dioxide (SO2) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
2	16	47	0.006	0.001	0.002	24
2	17	48	0.004	0.001	0.001	24
$\frac{2}{2}$	18	49	0.001	0.001	0.001	24
2	19	50	0.016	0.001	0.002	24
$\frac{1}{2}$	20	51	0.003	0.001	0.001	24
$\frac{1}{2}$	21	52	0.006	0.001	0.002	24
2	22	53	0.010	0.001	0.002	$\frac{24}{24}$
$\ddot{2}$	$\frac{-23}{23}$	54	0.007	0.001	0.002	24
$\tilde{2}$	$\overline{24}$	55	0.009	0.001	0.004	24
$\ddot{2}$	25	56	0.007	0.001	0.002	24
$\ddot{2}$	26	57	0.006	0.001	0.002	24
$ar{2}$	$\frac{-5}{27}$	58	0.001	0.001	0.001	$\overline{24}$
$\tilde{\mathbf{z}}$	28	59	0.008	0.001	0.001	$\overline{24}$
3	1	60	0.012	0.001	0.002	$\overline{22}$
3	2	61	0.007	0.001	0.002	24
3	3	62	0.003	0.001	0.001	24
3	4	63	0.004	0.001	0.001	24
:3	5	64	0.003	0.001	0.001	23
3	6	65	0.001	0.001	0.001	24
3	7	66	0.008	0.001	0.002	24
3	ਲ	67	0.022	0.001	0.003	24
3	$\overline{\Box}$	68	0.020	0.001	0.005	24
3	1:	69	0.014	0.001	0.004	24
3	11	70	0.011	0.001	0.003	24
3	12	71	0.008	0.001	0.002	24
3	13	72	0.001	0.001	0.001	24
3	14	73	0.007	0.001	0.003	24
3	15	74	0.007	0.001	0.002	22
3	16	75	0.007	0.001	0.002	24
3	17	76	0.014	0.001	9,002	24
3	1.8	77	0.004	0.001	0.001	24
3	19	78	0.005	0.001	0.002	24
3	20	79	0.010	0.001	0.002	24
3	21	80	0.004	0.001	0.002	24
3	22	81	0.001	0.001	0.001	24
3	23	82	0.001	0.001	0.001	24
3	24	83	0.001	0.001	0.001	18
3	25	84	0.038	0.001	0.004	24
3	26	85	0.010	0.001	0.002	24
3	27	86	0.010	0.001	0.003	24
3	28	87	0.001	0.001	0.001	24
3	29	88	0.001	0.001	0.001	22
3	30	89	0.001	0.001	0.001	21
3	31	90	0.021	0.001	0.003	24
4	1	91	0.006	0.001	0.001	24
4	2	92	0.026	0.001	0.004	24

Sulfur Dioxide (SO2) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	. Daily Min	Daily Moan	Valid Hours
4	3	93	0.022	0.001	0.000	0.0
4	4	94	0.003	0.001	0.003	22
4	5	95	0.001		0.001	24
4	\ddot{e}	96	0.006	0.001	0.001	24
4	7	97	0.015	0.001 0.001	0.001	24
4	8	98	0.008	0.001	0.002	24
4	9	99	0.001	0.001	0.002	24
4	10	100	0.001	0.001	0.001	24
4	1.1	101	0.014	0.001	0.001	24
4	12	102	0.019	0.001	0.002 0.002	21
4	13	103	0.001	0.001	0.001	24 24
4	14	104	0.004	0.001	0.001	24 24
4	15	105	0.022	0.001	0.003	
4	16	106	0.001	0.001	0.001	24 24
4	17	107	0.002	0.001	0.001	24
4	1.8	108	0.007	0.001	0.002	23
4	19	109	0.010	0.001	0.002	23 23
4	20	110	0.006	0.001	0.002	24
4	21	111	0.016	0.001	0.003	24
4	22	112	0.007	0.001	0.001	$\frac{24}{24}$
4	23	113	0.003	0.001	0.001	24
4	24	114	0.009	0.001	0.002	24
4	25	115	0.001	0.001	0.001	$\tilde{2}\tilde{2}$
4	26	116	0.001	0.001	0.001	22
4	27	117	0.001	0.001	0.001	24
4	28	118	0.007	0.001	0.001	24
4	29	119	0.001	0.001	0.001	24
4	30	120	0.007	0.001	0.001	24
5	1	121	0.001	0.001	0.001	2:4
5	2	122	0.007	0.001	0.002	24
5	3	123	0.001	0.001	0.001	24
5	4	124	0.009	0.001	0.002	24
5	5	125	0.010	0.001	0.002	24
5 5	6	126	0.001	0.001	0.001	24
5 5	7	127	0.003	0.001	0.001	24
5	8 9	128	0.001	0.001	0.001	24
5 5	10	129	0.002	0.001	0.001	24
5	11	130 131	0.027	0.001	0.004	23
5	12	$\frac{131}{132}$	0.001	0.001	0.001	24
5 5	13	133	0.007	0.001	0.002	24
5	14	133	0.016	0.001	0.003	24
5	15	135	0.004	0.001	0.001	24
5	16	136	0.007	0.001	0.002	24
5	17	137	0.005	0.001	0.001	24
5	18	138	0,003 0,008	0.001	0.001	24
***	2 1.1	Len	V. VVO	0.001	0.002	24

Sulfur Dioxide (SO2) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
5	19	139	0.001	0.001	0.001	24
5	20	140	0.001	0.001	0.001	24
5	21	141	0.051	0.001	0.001	24
5	22	142	0.008	0.001	0.003	24 24
ŧ5	23	143	0.006	0.001	0.002	24
5	24	144	0.030	0.001	0.002	21
5	25	145	0.002	0.001	0.001	24
5	26	146	0.002	0.001	0.001	24
Ð	27	147	0.001	0.001	0.001	24
5	28	148	0.004	0.001	0.001	24
5	29	149	0.011	0.001	0.002	$\frac{21}{21}$
5	30	150	0.004	0.001	0.002	24
t)	31	-1 51	0.031	0.001	0.003	24
6	1	152	0.026	0.001	0.004	$\tilde{24}$
6	2	153	0.002	0.001	0.001	$\frac{24}{24}$
6	3	154	0.001	0.001	0.001	24
6	4	155	0.005	0.001	0.001	$\overline{24}$
6	5	156	0.006	0.001	0.002	$\overline{24}$
6	6	157	0.002	0.001	0.001	24
6	7	158	0.024	0.001	0.004	22
6	8	159	0.004	0.001	0.001	24
6	, S	160	0.007	0.001	0.002	24
6	10	161	0.004	0.001	0.001	24
G	11	162	0.001	0.001	0.001	24
6	12	163	0.003	0.001	0.001	24
G	13	164	0.001	0.001	0.001	24
()	14	165	0.013	0.001	0.003	24
6 6	15	166	0.007	0.001	0.002	24
6	16	167	0.001	0.001	0.001	114
6	1.7	168	0.014	0.001	0.003	24
6	18	169	0.018	0.001	0.002	24
8	19 20	170	0.003	0.001	0.001	24
6	21	171 172	0.006	0.001	0.002	15
$\ddot{6}$	22	173	0.006	0.001	0.001	22
Ğ	23	174	0.007	0.001	0.002	24
6	24	175	$0.014 \\ 0.013$	0.001	0.003	22
Ü	25	176	0.038	0.001	0.002	24
6	26	177		0.001	0.004	84
6	27	178	0.028	0.001	0.005	24
6	28	179	$0.015 \\ 0.013$	0.001	0.002	24
Ğ	29	180	0.013	0.001	0.002	24
6	30	181	0.010	0.001	0.002	24
Ÿ	1.	182	0.009	$0.001 \\ 0.001$	0.002	24
7	$\frac{\dot{z}}{2}$	183	0.003	0.001	0.002	24
7	$\ddot{3}$	184	0.007	0.001 0.001	0.002	24
	**	*17.	0.000	12 x QQ L	0.002	24

Sulfur Dioxide (SO2) Daily Data in parts per million (ppm) for FY90

Caler Month	idar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
7	4	185	0.001	0.001	0.001	0.4
7	5	186	0.013	0.001	0.001	24
7	6	187	0.009	0.001		22
7	$\bar{7}$	188	0.010	0.001	0.003	22
7	8	189	0.001	0.001	0.002	24
7	9	190	0.001	0.001	0.001	24
7	10	191	0.004	0.001	0.001	24
7	11	192	0.003	0.001	0.001	24
7	12	193	0.001	0.001	0.001	24
7	13	194	0.001	0.001	0.001	24
7	14	195	0.004	0.001	0.001	24
7	15	196	0.005	0.001	0.001	24
7	16	197	0.017	0.001	0.002	24
7	17	198	0.012	0.001	0.003	24
7	18	199	0.006	0.001	0.002	24
7	19	200	0.001	0.001	0.002	24
7	20	201	0.001	0.001	0.001	24
7	21	202	0.001	0.001	0.001	22
7	22	203	0.001	0.001	0.001	24
7	23	204	0.007	0.001	0.001	24
7	24	205	0.018	0.001	0.001	24
7	25	206	0.010	0.001	0.004	24
7	26	207	0.017	0.001	$0.002 \\ 0.002$	22
7	$\bar{2}7$	208	0.004	0.001	0.002	24
7	28	209	0.011	0.001	0.001	24
7	29	210	0.002	0.001	0.002	24
'7	30	211	0.001	0.001	0.001	24
7	31	212	0.004	0.001	0.001	24
8	1	213	0.014	0.001	0.002	24
8	2	214	0.006	0.001	0.002	24
H	:3	215	0.003	0.001	0.002	22 22
B	4	216	0.009	0.001	0.002	11
8	5	217		01001	0 - 002,	0
8	6	218				()
13	7	219	0.001	0.001	0.001	1.1
В	8	220	0.024	0.001	0.004	24
8	\mathfrak{g}	221	0.008	0.001	0.002	19
8	10	222	0.015	0.001	0.003	$\frac{15}{24}$
と	11	223	0.003	0.001	0.001	24
8	12	224	0.005	0.001	0.002	24
8	1.3	225	0.015	0.001	0.004	24
8	14	226	0.008	0.001	0.002	24
8	15	227	0.013	0.001	0.002	24
B	16	228	0.006	0.001	0.002	20
8	17	229	0.015	0 001	0.003	20
8	113	230	0.008	0.001	0.002	24

Sulfur Dioxide (SO2) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
8	19	231	0.042	0.001	0.006	17
8	20	232	0.003	0.001	0.001	16
8	21	233	0.010	0.001	0.002	24
8	22	234	0.009	0.001	0.002	24
8	23	235	0.006	0.001	0,001	24
8	24	236	0.007	0.001	0.002	24
8	25	237	0.007	0.001	0.002	24
8	26	238	0.006	0.001	0.001	24
8	27	239	0.005	0.001	0.002	$\begin{array}{c} 24 \\ 24 \end{array}$
8	28	$\frac{240}{241}$	0.009	0.001 0.001	0.002 0.003	24 24
8 8	29 30	241	0.016 0.012	0.001	0.003	22
8	31	243	0.005	0.001	0.002	10
9	1	244	0.000	0.00.	0.002	Ö
9	2	245				Õ
9	3	246				ŏ
ÿ	4	247				Ö
9	5	248				0
9	6	249				O
9	7	250				0
9	8	251				0
9	9	252				0
9	10	253	0.002	0.001	0.001	12
9	11	254	0.038	0.001	0.005	24
9	12	255	0.026	0.001	0.003	24
9	13	256	0.007	0.001	0.002	22
9	14	257	0.009	0.001	0.002	24
9	15	258	0.010	0.001	0.002	23
9	16	259	0.012	0.001	0.002 0.001	24 24
9 9	17 18	260	0,001 0,003	$0.001 \\ 0.001$	0.001	24 24
9	19	261 262	0,003	0.001	0.002	24
9	20	263	0.009	0.001	0.002	24
9	21	264	0.011	0.001	0.002	$\frac{21}{24}$
9	22	265	0.007	0.001	0.002	24
9	23	266	0.008	0.001	0.002	24
9	24	267	0.018	0.001	0.002	24
9	25	268	0.004	0.001	0.001	24
9	26	269	0.008	0.001	0.002	24
9	27	270	0,018	0.001	0.004	23
9	28	271	0.003	0,001	0.001	24
9	29	272	0.001	0.001	0.001	24
9	30	273	0.010	0.001	0.002	24

October 1989

_ Daily Max 🔔 Daily Avg

November 1989

_____ Daily Max _____ Daily Avg

(4)

_ Daily Max 🔔 Daily Avg

___ Daily Max ___ Daily Avg

February 1990

(4)

Daily Max 🔔 Daily Avg

(4)

__ Daily Max __ Daily Avg

Sulfur Dioxide August 1990

Sulfur Dioxic'e

__ Daily Max __ Daily Avg

14 Nitric Oxide (NO)

Nitric Oxide (NO) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
10	1	274	0.001	0.001	0.001	24
10	2	275	0.026	0.001	0.006	24
10	3	276	0.009	0.001	0.004	24
10	4	277	0.028	0.004	0.011	24
10	5	278	0.044	0.002	0.010	24
10	6	279	0.087	0.003	0.015	24
10	7	280	0.049	0.001	0.012	24
10 10	8	281	0.027	0.001	0.006	24
10	9	282	0.094	0.001	0.013	24
10	10 11	283	0.045	0.001	0.011	24
10	12	284 285	0.048	0.001	0.008	24
10	13	286	0.046 0.053	0.001	0.008	24
10	14	287	0.033	0.001	0.010	20
10	15	288	0.014	0.001 0.001	0.005	24
10	16	289	0.005	0.001	0.003 0.002	24 24
10	17	290	0.015	0.001	0.002	24 24
10	18	291	0.106	0.004	0.024	.24
10	19	292	0.075	0.001	0.024	24
10	20	293	0.104	0.001	0.024	24
10	21	294	0.072	0.001	0.012	24
10	22	295	0.024	0.001	0.008	24
10	23	296	0.048	0.001	0.012	24
10	24	297	0.106	0.001	0.021	20
10	25	298	0.134	0.001	0.027	24
10	26	299	0.007	0.001	0.002	24
10	27	300	0.084	0.001	0.010	24
10	28	301	0.065	0.001	0.020	16
10	29	302	0.010	0.001	0.005	24
10 10	30 31	303	0.075	0.001	0.018	24
11	1	^04 30 5	0.056	0.001	0.010	24
11	$\frac{1}{2}$	პ05 306	0.056 0.049	0.001	0.010	24
11	3	307	0.049	0.001 0.002	0.013	24
11	4	308	0.040	0.002	0.015 0.010	24
11	5	309	0.037	0.001	0.010	24 24
11	6	310	0.099	0.001	0.007	24 24
11	7	311	0.017	0.001	0.004	24
11	8	312	0.012	0.001	0.004	20
11	9	313	0.019	0.001	0.005	24
11	10	314	0.111	0.001	0.024	24
11	11	315	0.064	0.001	0.013	24
11	12	316	0.077	0.001	0.009	24
11	13	317	0.102	0.001	0.013	24
11	14	318	0.078	0.001	0.016	24
11	15	319	0.002	0.001	0.001	24
11	16	320	0.070	0.001	0.016	24

Nitric Oxide (NO) Daily Data in parts per million (ppm) for FY90

Calendar Month Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
Month Day 11 1 11 1 11 2 11 2 11 2 11 2 11 2 11	Day 7	Max 0.066 0.071 0.136 0.133 0.204 0.126 0.149 0.022 0.023 0.081 0.029 0.116 0.106 0.247 0.290 0.110 0.093 0.080 0.953 0.034 0.115 0.162	Min 0.001	Mean 0.014 0.011 0.016 0.039 0.045 0.011 0.043 0.006 0.006 0.017 0.004 0.031 0.016 0.051 0.044 0.021 0.029 0.009 0.009 0.009 0.009 0.016 0.046	Hours 24 24 24 24 24 24 24 24 24 24 24 24 24
12	9 343 0 344 1 345 2 346 3 347 4 348 5 349 6 350 7 351 8 352 9 354 1 355 2 356 3 357 4 358 3 360 7 361 8 362 9 363 9 364	0.027 0.009 0.070 0.074 0.014 0.149 0.068 0.106 0.086 0.121 0.163 0.090 0.001 0.329 0.518 0.029 0.085 0.053 0.178 0.106 0.151 0.106 0.151 0.076 0.027 0.116 0.183	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.046 0.007 0.005 0.015 0.008 0.005 0.017 0.014 0.019 0.028 0.011 0.072 0.014 0.001 0.073 0.102 0.011 0.073 0.102 0.011 0.020 0.033 0.021 0.020 0.033	24 22 24 24 24 24 22 24 22 24 24 24 24 2

Nitric Oxide (NO) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
1	3	3	0.014	0.001	0.004	24
1	4	4	0.132	0.001	0.044	24
1 1	5 6	5	0.085	0.001	0.012	24
1	7	6 7	0.164 0.034	0.001	0.021	24
1	8	8	0.034	0.001 0.001	0.008	24
1	9	9	0.025	0.001	0.006 0.006	24 24
1	10	10	0.139	0.001	0.015	24
1	11	11	0.009	0.001	0.003	24
1	12	12	0.142	0.001	0.036	24
1	13	13	0.119	0.001	0.017	24
1	14	14	0.099	0.008	0.021	24
1 1	15	15	0.121	0.003	0.034	24
1	16 17	16 17	0.082	0.003	0.023	24
1	18	18	0.061 0.040	0.001 0.001	0.014	24
1	19	19	0.015	0.001	$0.006 \\ 0.010$	24 13
ī	20	20	0.065	0.001	0.018	24
1	21	21	0.100	0.001	0.019	24
1	22	22	0.053	0.003	0.020	23
1	23	23	0.033	0.001	0.005	24
1	24	24	0.010	0.001	0.003	22
1	25	25	0.004	0.001	0.002	24
1 1	26 27	26	0.028	0.001	0.007	24
1	28	2 7 28	0.004 0.008	0.001 0.001	0.001	24
1	29	29	0.006	0.001	0.001 0.002	24 24
ī	30	30	0.025	0.001	0.002	24 24
1	31	31	0.049	0.001	0.012	24
2	1	32	0.024	0.001	0.005	20
2	2	33	0.076	0.001	0.019	24
2	3	34	0.043	0.001	0.009	10
$\frac{2}{2}$	4	35	ERR	ERR	ERR	O
$\frac{2}{2}$	5 6	36 37	0.040	0.001	0.004	13
2	$\frac{9}{7}$	38	0.169 0.152	$0.001 \\ 0.001$	0.037	24
2	8	39	0.008	0.001	0.023 0.003	24 2 4
2	9	40	0.023	0.001	0.004	24
2	10	41	0.003	0.001	0.001	$\frac{24}{24}$
2	11	42	0.007	0.001	0.003	24
2	12	43	0.161	0.001	0.016	24
2	13	44	0.001	0.001	0.001	24
2	14	45	0.002	0.001	0.001	24
2 2	15 16	46 47	0.055	0.001	0.013	22
2	71 71	47 48	0.076 0.008	$0.001 \\ 0.001$	0.016 0.003	24
2	1.8	49	0.000	0.001	0.005	24 24

Nitric Oxide (NO) Daily Data in parts per million (ppm) for FY90

Calendar Month Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
Month Day 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 3 1 3 2 3 3 4 3 5 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 3 26 3 27 3 28 3 30 3 31			Daily Min 0.001		
4 1 4 2 4 3 4 4 4 5 4 6	91 92 93 94 95 96	0.006 0.057 0.044 0.016 0.001 0.013	0.001 0.001 0.001 0.001 0.001	0.002 0.008 0.006 0.002 0.001 0.003	24 24 22 24 24 24

Nitric Oxide (NO) Daily Data in parts per million (ppm) for FY90

Caler Month	idar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
Month 444444444444444444444444444444444444						
5 5 5 5 5 5 5	18 19 20 21 22 23	138 139 140 141 142 143	0.027 0.002 0.001 0.055 0.041 0.018	0.001 0.001 0.001 0.001 0.001	0.004 0.001 0.001 0.007 0.005 0.004	24 24 24 24 24 24

Nitric Oxide (NO) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
5 5 5	24 25 26	144 145 146	0.067 0.001 0.006	0.001 0.001 0.001	0.012 0.001 0.001	20 24 24
5 5	27 28	147 148	0.002 0.005	0.001 0.001	0.001 0.001	24 24
5 5	29	149	0.011	0.001	0.002	24
5	30 31	150 151	0.055 0.042	0.001 0.001	0.005 0.006	24 24
6 6	1 2	152 153	0.095 0.001	0.001 0.001	0.007 0.001	24
6	3	154	0.001	0.001	0.001	24 24
6 6	4 5	155 156	0.018 0.020	0.001 0.001	0.003 0.003	24 24
6	6	157	0.007	0.001	0.002	24
6 6	7 8	158 159	0.014 0.006	0.001 0.001	0.003 0.002	22 24
6	9	160	0.005	0.001	0.002	24
6 6	10 11	161 162	0.004	0.001 0.001	0.002 0.002	24 24
6 6	12 13	163 164	0.006	0.002	0.003	24
6	14	165	0.003 0.014	0.001 0.001	0.002 0.003	23 24
6 6	15 16	166 167	0.010 0.004	0.001	0.003 0.002	24
6	17	168	0.012	0.001	0.003	24 24
6 6	18 19	169 170	0.015 0.003	0.002 0.001	0.006 0.002	9 12
6	20	171	0.020	0.001	0.004	24
6 6	21 22	172 173	0.006 0.023	0.001 0.001	0.002 0.003	$\frac{21}{24}$
6 6	23	174	0.015	0.001	0.004	22
6	24 25	175 176	$0.011 \\ 0.029$	0.001 0.001	0.003 0.005	24 24
6 6	26 27	177 178	0.046 0.013	0.001	0.008	24
6	28	179	0.019	$0.001 \\ 0.001$	0.003 0.003	$\begin{array}{c} 24 \\ 24 \end{array}$
6 6	29 30	180 181	0.043 0.019	$0.001 \\ 0.001$	0.006 0.003	24 24
7	1	182	0.008	0.001	0.002	24
7 7	2 3	183 184	0.016 0.029	0.001	0.004 0.005	24 24
7	4	185	0.007	0.001	0.003	24
7 7	5 6	186 187	0.044 0.009	0.001 0.001	0.006 0.004	$\begin{array}{c} 21 \\ 24 \end{array}$
7 7	7 8	188	0.013	0.001	0.003	24
$\frac{\epsilon}{7}$	9	189 190	0.006 0.005	0.003 0.001	0.004 0.003	24 24

Nitric Oxide (NO) Daily Data in parts per million (ppm) for FY90

	_	_	•	•		
Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
7	10	191	0.063	0.001	0.016	24
ż	11	192	0.022	0.001	0.016	24
$\overset{\cdot}{7}$	12	193	0.022			24
7	13	194		0.002	0.003	14
7	14	195	0.009	0.001	0.004	.34
7	15		0.007	0.002	0.004	44
7		196	0.010	0.001	0.004	24
7	1.6	197	0.032	0.001	0.005	24
7	17	198	0.034	0.001	0.006	24
	18	199	0.014	0.001	0.004	34
7	19	200	0.004	0.002	0.003	34
7	20	201	0.006	0.001	0.003	21
7	21	202	0.001	0.001	0.001	24
7	22	203	0.001	0.001	0.001	24
7	23	204	0.019	0.001	0.004	'ব
7	24	205	0.068	0.001	0.011	'4
7	25	206	0.026	0.001	0.00	()
7	26	207	0.020	0.001	0.005	.1
7	27	208	0.012	0.002	0.004	1
7	28	209	0.010	0.002	0.000	:
7	29	210	0.009	0.003	0.004	2. 9
7	30	211	0.009	0.003	0.004	
7	31	212	0.018	0.002	0.004	24
8	1	213	0.036	0.002	0.007	,
8	2	214	0.008	0.001	0.004	,
8	3	215	0.029	0.002	0.005	:
8	4	216	0.017	0.001	0.005	4
8	5	217	0.005	0.002	0.003	3.4
8	6	218	0.005	0.002	0.003	14
8	7	219	0.031	0.001	0.005	14
8	8	220	0.040	0.001	0.008	14
8	9	221	0.040	0.001	0.006	24
8	10	222	0.034	0.001	0.008	24
8	11	223	0.006	0.002	0.003	24
8	12	224	0.008	0.003	0.004	24
8	13	225	0.020	0.002	0.006	₹4
8	14	226	0.033	0.002	0.008	1
8	15	227	0.013	0.003	0.005	3.1
8	16	228	0.032	0.001	0.008	20
8	17	229	0.027	0.002	0.007	$\frac{23}{24}$
8	18	230	0038	0.002	0.012	24
8	19	231	0.043	0.002	0.008	17
8	20	232	0.036	0.003	0.008	16
8	21	233	0.046	0.002	0.010	24
8	$\overline{22}$	234	0.047	0.002	0.009	24
8	23	235	0.043	0.001	0.007	24
8	$\overline{24}$	236	0.023	0.002	0.006	24
8	25	237	0.016	0.002	0.005	24
			5.510	0.002	0.000	c1

Nitric Oxide (NO) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
				Min 0.001 0.001 0.001 0.002 0.002 0.003 0.002 0.001 0.003 0.002 0.003 0.002 0.001	Mean 0.004 0.005 0.005 0.007 0.004 0.006 0.004 0.003 0.005 0.006 0.010 0.008 0.005 0.007 0.009 0.008 0.001 0.002 0.003 0.006 0.011 0.007 0.009 0.006 0.005 0.007	Hours 24 24 24 24 24 24 24 24 24 24 24 24 24
900000	25 26 27 28 29 30	269 270 271 272 273	0.029 0.057 0.093 0.011 0.003 0.051	0.001 0.001 0.001 0.001 0.001 0.001	0.006 0.009 0.017 0.004 0.002 0.018	24 24 22 24 24 24

__ Daily Max __ Daily Avg

___ Daily Max ___ Daily Avg

December 1989

January 1990

Daily Max 🔒 Daily Ave

___ Daily Max ___ Daily Avg

___ Daily Max ___ Daily Avg

15 17 19 Day of Month 21

23

25

27

31

Nitric Oxide

___ Daily Max ___ Daily Avg

Nitric Oxide

__ Daily Max __ Daily Avg

Nitric Oxide

September 1990

15 Nitrogen Dioxide (NO₂)

Nitrogen Dioxide (NO2) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
10	1	274	0.043	0.00	0.010	24
10	$\bar{2}$	275	0.031	0.002	0.012	24
10	3	276	0.020	0.005	0.009	24
10	4	277	0.029	0.003	0.013	24
10	5	278	0.020	0.001	0.007	$\frac{1}{24}$
10	6	279	0.057	0.004	0.023	$\overline{24}$
10	7	280	0.062	0.003	0.021	24
10	8	281	0.051	0.001	0.019	24
10	9	282	0.051	0.001	0.021	24
10	10	233	0.067	0.007	0.024	24
10	11	284	0.048	0.002	0.023	24
10	12	28 5	0.043	0.003	0.020	24
10	13	286	0.056	0.004	0.025	20
10	14	287	0.034	0.001	0.017	24
10	15	288	0.045	0.002	0.013	24
10	16	289	0.014	0.001	0.003	24
10	17	290	0.016	0.002	0.006	24
10	18	291	0.040	0.003	0.013	24
10 10	19	292	0.041	0.006	0.027	24
10	20 21	293	0.044	0.003	0.025	24
10	22	294 295	0.054	0.002	0.022	24
10	23		0.042	0.001	0.018	24
10	23 24	296 297	0.056 0.060	0.003	0.022	24
10	25	298	0.059	0.001 0.013	0.028	20
10	26	299	0.029	0.001	0.036 0.010	24 24
1.0	27	300	0.061	0.003	0.021	24
10	28	301	0.050	0.002	0.020	16
10	29	302	0.025	0.001	0.008	24
10	30	303	0.047	0.008	0.020	24
10	31	304	0.044	0.001	0.015	24
11	1	305	0.042	0.001	0.014	$\frac{24}{24}$
11	2	306	0.067	0.008	0.033	24
11	3	307	0.043	0.005	0.023	24
11	4	308	0.038	0.003	0.016	24
11.	5	309	0.040	0.001	0.008	24
11	6	310	0.040	0.002	0.019	24
11	7	311	0.033	0.001	0.009	24
11	8	312	0.014	0.001	0.004	20
11	9	313	0.032	0.001	0.010	24
11	10	314	0.041	0.008	0.025	24
11	11	315	0.038	0.002	0.020	24
11	12	316	0.047	0.001	0.015	24
11	13	317	0.042	0.001	0.012	24
11	14	318	0.041	0.002	0.015	24
11 11	15 18	319	0.023	0.301	0.008	24
1.L	16	320	0.038	0.007	0.024	24

Nitrogen Dioxide (NO2) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Houre
11	17	321	0.042	0.003	0.023	24
1.1	18	322	0.049	0.003	0.023	$\begin{array}{c} 24 \\ 24 \end{array}$
11	19	323	0.072	0.007	0.025	24 24
11	20	324	0.050	0.003	0.025	21
11	21.	325	0.054	0.004	0.026	24
11	22	326	0.037	0.001	0.006	24
11	23	327	0.050	0.018	0.035	24
1 1	24	328	0.038	0.003	0.016	24
11	25	329	0.033	0.001	0.008	24
11	26	330	0.042	0.005	0.019	24
11	27	331	0.037	0.001	0.005	24
11	28	3 32	0.044	0.011	0.029	24
11	29	333	0.051	0.005	0.025	24
11	30	334	0.063	0.019	0.038	24
12	1	335	0.049	0.003	0.026	24
12	2	336	0.051	0.006	0.025	24
12	3	337	0.046	0.013	0.034	24
12	4	338	0.048	0.005	0.017	20
12	5	339	0.040	0.002	0.011	24
12	6	340	0.037	0.001	0.011	24
12	7	311	0.032	0.002	0.012	24
12	8	342	0.064	0.005	0.037	24
12	9	343	0.034	0.003	0.016	22
12	10	344	0.018	0.001	0.003	24
12	11	345	0.049	0.001	0.022	24
12	12	346	0.054	0.006	0.026	24
12	13	347	0.049	0.005	0.023	24
12	14	348	0.064	0.001	0.021	24
12 12	15 16	349	0.067	0.001	0.019	24
12	17	350 351	0.075	0.005	0.028	20
12	18	351 352	0.056 0.063	0.023	0.038	24
12	19	353	0.119	0.00 4 0.046	0.018 0.078	24 24
12	20	354	0.072	0.004	0.023	23
12	$\frac{20}{21}$	355	0.008	0.001	0.003	24
12	$\bar{3}\bar{2}$	356	0.112	0.005	0.054	22
12	23	357	0.133	0.006	0.057	24
12	24	358	0.046	0.004	0.024	24
12	25	359	0.077	0.013	0.036	24
12	26	360	0.051	0.012	0.031	24
12	27	361	0.075	0.004	0.037	24
12	28	362	0.058	0.004	0.028	24
12	29	363	0.045	0.003	0.015	24
12	30	364	0.046	0.002	0.020	24
12	31	365	0.042	0.003	0.025	24
1	j	1	0.055	0.003	0 023	24
1	2	2	0.064	0.003	0.031	24

Nitrogen Dioxide (NO2) Daily Data in parts per million (ppm) for FY90

Caler	idar	Julian	Daily	Daily	Daily	Valid
Month	Day	Day	Max	Min	Mean	Hours
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 16 17	34 35 36 37 38 39 40 41 42 43 44 45 64 45 46 47 48	0.030 0.075 0.042 0.067 0.045 0.022 0.045 0.052 0.033 0.045 0.040 0.047 0.052 0.052 0.053 0.053 0.053 0.062 0.057 0.031 0.031 0.031 0.031 0.041 0.041 0.041 0.041 0.041 0.045 0.052 0.055 0.056 0.057	0.002 0.025 0.003 0.001 0.005 0.001 0.002 0.001 0.007 0.003 0.006 0.009 0.012 0.006 0.002 0.003 0.001	0.011 0.045 0.024 0.028 0.023 0.009 0.009 0.015 0.005 0.030 0.018 0.013 0.035 0.027 0.021 0.016 0.023 0.028 0.028 0.028 0.028 0.028 0.028 0.012 0.006 0.017 0.008 0.011 0.018 0.023 0.015 0.029 ERR 0.015 0.029 ERR 0.015 0.029 0.010 0.014 0.001 0.014 0.013 0.017 0.001 0.014 0.013 0.017 0.001 0.014 0.013 0.017 0.001 0.014 0.013 0.017 0.001 0.004 0.013 0.016 0.016	24 24 24 24 24 24 24 24 24 24 24 24 24 2

Nitrogen Dioxide (NO2) Daily Data in parts per million (ppm) for FY90

Calendar Month Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
Month Day 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 3 3 4 3 5 3 6 3 7 3 8 3 10 3 11 3 12 3 12 3 12 3 12 3 12 3 12 3 12	50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87	Max 0.036 0.050 0.052 0.043 0.045 0.059 0.049 0.051 0.020 0.017 0.046 0.045 0.042 0.038 0.007 0.020 0.063 0.120 0.095 0.069 0.041 0.008 0.053 0.039 0.044 0.010 0.048 0.036 0.044 0.017 0.007 0.024 0.023 0.054 0.011	Min 0.005 0.010 0.002 0.003 0.002 0.017 0.003 0.004 0.001 0.005 0.001 0.003 0.004 0.005 0.011 0.005 0.011 0.005 0.011 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	Mean 0.018 0.017 0.025 0.021 0.021 0.021 0.026 0.005 0.007 0.023 0.027 0.016 0.011 0.016 0.005 0.007 0.037 0.053 0.037 0.029 0.012 0.005 0.027 0.010 0.011 0.015 0.003 0.022 0.019 0.014 0.006 0.003 0.003 0.008 0.015 0.028 0.007	Hours 24 24 24 24 24 24 24 24 24 24 24 24 24
4	89	0.013 0.045 0.052 0.031 0.061 0.047 0.026	0.010 0.041 0.001 0.002 0.003 0.001 0.002	0.012 0.043 0.022 0.012 0.020 0.014 0.013	8 3 24 24 24 22 24
4	5 95 6 96	0.003	0.001	0.001	24 24 24

Nitrogen Dioxida (12)2) Daily Data in parts per million (ppm) for FY90

Caler	ıdar	Julian	Daily	Daily	Daily	Valid
Month	Day	Day	Max	Min	Mean	Hours
4	7	97	0.053	0.004	0.019	24
4	8	98	0.034	0.004	0.011	24
4	9	99	0.032	0.001	0.011	24
4	10	100	0.012	0.002	0.006	24
4	11	101	0.026	0.002	0.011	21
4	12	102	0.061	0.004	0.020	24
4	13	103	0.032	0.002	0.007	24
4	14	104	0.040	0.001	0.013	24
4	15	105	0.041	0.002	0.013	24
4 4	16 17	106	0.036	0.001	0.008	24
4	18	107 108	0.019 0.0 4 7	0.001	0.010	24
4	19	109	0.047	0.003 0.003	0.017 0.017	24 24
4	20	110	0.046	0.002	0.018	24
4	2 <u>1</u>	111	0.028	0.004	0.015	24
4	22	112	0.022	0.001	0.008	24
4	23	113	0.036	0.002	0.012	24
4	24	114	0.046	0.003	0.021	24
4	25	115	0.040	0.002	0.014	2 ı
4	26	116	0.025	0.002	0.011	22
4	27	117	0.034	0.001	0.008:	24
4	28	118	0.017	0.001	0.005	24
4	29	119	0.010	0.001	0.002	24
4	30	120	0.023	0.001	0.009	24
5 5	1 2	121 122	0.015	0.001	0.008	24
5	3	123	0.050 0.034	0.005 0.003	0.018	20
5	4	124	0.047	0.003	0.008 0.016	24 24
5	5	125	0.039	0.001	0.009	24
5 5 5	6	126	0.018	0.001	0.008	24
5	7	127	0.032	0.003	0.009	24
5 5 5	8	128	0.010	0.003	0.006	24
5	9	129	0.007	0.001	0.004	24
5	10	130	0.033	0.001	0.013	22
5	11	131	0.017	0.003	0.007	24
5 5 5	12	132	0.023	0.001	0.009	24
5	13	133	0.040	0.003	0.014	24
5 5	14	134	0.036	0.001	0.010	24
	15	135	0.035	0.001	0.008	24
5 5	16 17	136 137	0.020 0.018	0.001 0.002	0.005	24
5	18	138	0.015	0.002	0.008 0.015	24 24
5	19	139	0.019	0.002	0.013	24
5	20	140	0.010	0.003	0.005	24
5	21	141	0.049	0.002	0.013	24
5	22	142	0.040	0.004	0.016	24
5	23	143	0.040	0.001	0.014	24

Nitrogen Dioxide (NO2) Daily Data in parts per million (ppm) for FY90

	-	-				
Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
5555555666666666666666666666666667777777	24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 22 22 22 22 22 23 23 24 25 26 27 27 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 167 168 177 178 177 178 177 178 177 178 177 178 177 178 177 178 179 179 179 179 179 179 179 179 179 179	0.046 0.010 0.016 0.007 0.011 0.035 0.037 0.038 0.040 0.021 0.014 0.043 0.060 0.019 0.030 0.039 0.026 0.027 0.010 0.011 0.009 0.025 0.031 0.023 0.030 0.039 0.030 0.031 0.039 0.030 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.031 0.030 0.031 0.030 0.031 0.030 0.031 0.030	0.003 0.001 0.002 0.001 0.002 0.001 0.003 0.001 0.003 0.001 0.003 0.003 0.001	0.021 0.004 0.005 0.003 0.008 0.013 0.012 0.003 0.005 0.010 0.012 0.006 0.010 0.008 0.009 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.010	20 24 24 24 24 24 24 24 24 24 24 24 24 24
7	9	1.90	0.011	0.004	0.007	24

Nitrogen Dioxide (NO2) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
Month 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8	Day 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7	191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219	Max 0.046 0.055 0.030 0.039 0.044 0.038 0.054 0.045 0.034 0.016 0.014 0.004 0.014 0.027 0.052 0.044 0.046 0.022 0.024 0.027 0.052 0.044 0.046 0.025 0.044 0.046 0.025 0.044 0.046 0.027 0.034 0.049	Min 0.003 0.003 0.004 0.003 0.001 0.003 0.001 0.003 0.001 0.001 0.001 0.001 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	Mean 0.018 0.017 0.006 0.010 0.015 0.013 0.018 0.015 0.006 0.006 0.002 0.004 0.014 0.023 0.013 0.014 0.009 0.011 0.009 0.011 0.009 0.012 0.017 0.019 0.014 0.013 0.005 0.008 0.017	Hours 24 24 24 24 24 24 24 24 24 24 24 24 24
688888888888888888888888888888888888888	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237	0.049 0.056 0.048 0.056 0.027 0.034 0.040 0.036 0.032 0.033 0.031 0.032 0.049 0.044 0.043 0.028 0.048	0.001 0.003 0.003 0.003 0.002 0.007 0.003 0.004 0.003 0.003 0.001 0.002 0.003 0.003 0.003	0.017 0.024 0.016 0.026 0.009 0.013 0.020 0.014 0.015 0.016 0.014 0.008 0.013 0.0.008 0.013 0.0.002 0.012 0.015	24 24 24 24 24 24 24 20 24 17 16 24 24 24 24

Nitrogen Dioxide (NO2) Daily Data in parts per million (ppm) for FY90

Calen Month	dar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
Month 8888889999999999999999999999	Day 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Day 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 260 261	Max 0.055 0.039 0.038 0.045 0.043 0.050 0.043 0.051 0.050 0.049 0.058 0.047 0.036 0.052 0.044 0.065 0.040 0.028 0.008 0.030 0.041 0.031	Min 0.001 0.002 0.003 0.003 0.003 0.005 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Mean 0.013 0.017 0.015 0.019 0.015 0.015 0.012 0.010 0.012 0.016 0.018 0.020 0.017 0.015 0.019 0.015 0.017 0.010 0.015 0.017 0.010 0.015 0.017 0.010 0.015 0.017 0.010	Hours 24 24 24 24 24 24 24 24 24 24 24 24 24
9999999999	19 20 21 22 23 24 25 26 27 28 29 30	262 263 264 265 266 267 268 269 270 271 272 273	0.056 0.039 0.056 0.051 0.069 0.051 0.032 0.045 0.045 0.021 0.013 0.047	0.003 0.002 0.002 0.003 0.004 0.004 0.003 0.002 0.008 0.002	0.016 0.013 0.015 0 014 0.018 0.022 0.015 0.016 0.021 0.013 0.005 0.018	24 24 24 24 24 24 24 22 24 24 24

___ Daily Max ___ Daily Avg

__ Daily Max __ Daily Avg

__ Daily Max __ Daily Avg

__ Daily Max __ Daily Avg

__ Daily Max __ Daily Avg

Laily Max Laily Avg

__ Daily Max __ Daily Avg

I6 Nitrogen Oxides (NO_x)

Nitrogen Oxides (NOx) Daily Data in parts per million (ppm) for FY90

Calendar Month Day	Julian y Day	Daily Max	Daily Min	Daily Mean	Valid Hours
Month Day 10 10 10 10 10 10 10 10 10 10 10 10 10					
11 11 11 11 11 11 11 11 11 11 11 11	1 305 2 306 3 307 4 308 5 309 6 310 7 311 8 312 9 313 10 314 11 315 12 316 13 317 14 318 15 319 16 320	0.099 0.115 0.127 0.080 0.077 0.140 0.043 0.027 0.046 0.152 0.100 0.125 0.145 0.120 0.023	0.002 0.012 0.010 0.006 0.002 0.004 0.003 0.001 0.003 0.012 0.003 0.001 0.005 0.001	0.024 0.047 0.040 0.027 0.016 0.039 0.014 0.007 0.016 0.050 0.034 0.025 0.027 0.032 0.008 0.040	24 24 24 24 24 20 24 24 24 24 24 24 24 24

Nitrogen Oxides (NOx) Daily Data in parts per million (ppm) for FY90

Calend Month	dar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
Month 11 11 11 11 11 11 11 11 11 11 11 11 1	17 18 19 20 21 22 23 24 25 26 27 28 29 30	321 322 323 324 325 326 327 328 329 330 331 332 333 334	Max 0.104 0.118 0.210 0.184 0.259 0.165 0.193 0.060 0.039 0.125 0.067 0.160 0.158 0.311 0.339	Min 0.004 0.007 0.010 0.003 0.004 0.005 0.024 0.006 0.003 0.007 0.001 0.021 0.005 0.024	Mean 0.038 0.036 0.042 0.064 0.072 0.018 0.079 0.023 0.014 0.037 0.009 0.061 0.042 0.090 0.070	Hours 24 24 24 24 24 24 24 24 24 24 24 24 24
12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 3 4 5 6 7 8 9 10 11 12 13 14 15	336 337 338 339 340 341 342 343 344 345 346 347 348 349	0.155 0.141 0.130 0.095 0.070 0.149 0.220 0.062 0.025 0.119 0.129 0.058 0.215 0.136	0.006 0.019 0.007 0.003 0.005 0.004 0.001 0.001 0.001 0.012 0.010 0.001 0.001	0.046 0.064 0.027 0.021 0.021 0.029 0.084 0.023 0.009 0.038 0.035 0.029 0.039 0.034	24 24 20 24 24 24 22 24 24 24 24 24
12 12 12 12 12 12 12 12 12 12 12 12 12 1	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365	0.182 0.132 0.185 0.253 0.163 0.005 0.442 0.640 0.076 0.151 0.099 0.249 0.162 0.197 0.118 0.069 0.173	0.007 0.025 0.001 0.085 0.001 0.001 0.017 0.007 0.020 0.024 0.007 0.008 0.006 0.006 0.006 0.006	0.047 0.067 0.029 0.150 0.036 0.001 0.127 0.160 0.038 0.053 0.052 0.071 0.050 0.036 0.039 0.035 0.042 0.071	20 24 24 23 24 22 24 24 24 24 24 24 24 24 24 24

Nitrogen Oxides (NOx) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
1 1 1	· 3 4 5	3 4 5	0.044	0.006 0.026	0.016 0.090	24 24
1	5 6	5 6	0.124 0.225	0.007 0.014	0.038 0.050	24
1	7	7	0.080	0.014	0.033	2 4 2 4
1	8	8	0.047	0.004	0.016	24
1	9	9	0.071	0.004	0.016	24
1 1	10 11	10 11	0.193	0.004	0.031	24
i	12	12	0.039 0.189	0.001 0.025	0.009 0.068	24
1	13	13	0.159	0.023	0.036	24 24
1	14	14	0.146	0.012	0.035	24
1	15	15	0.170	0.016	0.068	24
1 1	16 17	16	0.127	0.012	0.051	24
1	18	17 18	0.112 0.069	0.006 0.006	0.036	24
1	19	19	0.048	0.012	0.022 0.034	24 13
1	20	20	0.128	0.015	0.047	24
1	21	21	0.158	0.012	0.048	24
1 1	22 23	22 23	0.119	0.012	0.056	23
ī	24	23 24	0.065 0.045	0.003 0.005	0.015 0.016	24 22
1	25	25	0.020	0.003	0.018	24
1	26	26	0.066	0.003	0.024	24
1 1	27	27	0.044	0.001	0.008	24
1	28 29	28 29	0.034 0.039	0.001	0.014	. 24
ī	30	30	0.039	0.002 0.001	0.012 0.024	24 24
1	31	31	0.096	0.009	0.036	24
2	1	32	0.049	0.006	0.020	20
2	2 3	33	0.128	0.006	0.045	24
1 2 2 2 2	4	34 35	0.091	0.018	0.038	10
2	5	36	0.086	0.003	0.018	0 13
2	6	37	0.234	0.007	0.068	13 24
2	7	38	0.208	0.006	0.050	24
2	8 9	39 4 0	0.040	0.001	0.013	24
2	10	41	0.052 0.017	0.001 0.001	0.018 0.005	24
2	11	42	0.043	0.001	0.005	24 24
2	12	43	0.214	0.004	0.034	24
2	13	44	0.004	0.001	0.001	24
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14 15	45 46	0.010 0.104	0.001	0.004	24
$\bar{2}$	16	47	0.131	0.001 0.007	0.033 0.062	22 24
2	17	48	0.052	0.007	0.021	24 24
2	18	49	0.037	0.003	0.012	24

Nitrogen Oxides (NOx) Daily Data in parts per million (ppm) for FY90

	_	-		•		
Caler Month	ndar Day	Julian Da y	Daily Max	Daily Min	Daily Mean	Valid Hours
2	19	50	0.085	0.016	0.031	24
2	20	51	0.091	0.012	0.027	24
2	21	52	0.166	0.002	0.051	24
2	22	53	0.124	0.007	0.040	24
2 2	23	54	0.110	0.006	0.033	24
2	24	55	0.193	0.028	0.060	24
2	25	56	0.193	0.026	0.052	24
2	26	56 57				24
2 2 2 2 2 3	20 27	58	0.165	0.012	0.053 0.012	24
2			0.042	0.001	0.012	
2	28	59	0.037	0.008		24
್ರ ೧	1	60	0.129	0.005	0.052	21
3	2	61	0.145	0.001	0.049	24
3	3	62	0.064	0.008	0.025	24
3	4	63	0.063	0.002	0.019	24
3 3	5	64	0.058	0.006	0.028	22
3	6	65 63	0.012	0.004	0.008	24
3	7	6 6	0.049	0.003	0.014	24
3	8	67	0.128	0.024	0.060	24
3	9	6 8	0.296	0.015	0.092	24
3	10	69	0.250	0.002	0.069	24
3 3 3 3 3 3 3 3	1.1	70	0.113	0.008	0.045	24
3	12	71 70	0.063	0.005	0.015	24
ى 0	13	72	0.011	0.001	0.006	24
3	14 15	73 74	0.079	0.014	0.041	24 22
3	16	75	0.059	0.001	0.016	
3	1/	76 76	0.048 0.059	0.002	0.013 0.019	24 24
3	18	77		0.006		24
3		78	0.014	0.003	0.006	24
3	1 ຍ 2 0		0.121	0.005	0.038	
3		79	0.066	0.010	0.027	24
3	21 22	80 81	0.058	0.007	0.023	24
3	23	82	$0.030 \\ 0.010$	0.001 0.001	0.011 0.004	24 24
3	24	83	0.010	0.001	0.004	24
3	25	84	0.065	0.005	0.014	24
3	26	85	0.040	0.003	0.022	24
3	27	86	0.108	0.010	0.051	24
3	28	87	0.016	0.007	0.011	24
3	29	88			0.018	8
3	30	89	0.019 0.057	0.017 0.051	0.016	3
3	31	J0				
4		91	0.136 0.035	0.003	0.039	24
4	1 2	92		0.004	0.015 0.028	24
4	3	92 93	0.108 0.092	$0.003 \\ 0.001$	0.020	24
4	3 4	93 94				22
4	5	94 95	0.037 0.003	0.001 0.001	0.016 0.001	24 24
4	ა ჩ	96	0.003	0.001	0.001	24 24
-4	1)	31)	0.001	0.001	σ . σ	64

Nitrogen Oxides (NOx) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
Month 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10	97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	Max 0.109 0.035 0.051 0.026 0.029 0.152 0.032 0.068 0.041 0.044 0.024 0.048 0.080 0.068 0.040 0.021 0.036 0.066 0.065 0.042 0.044 0.017 0.006 0.023 0.012 0.140 0.033 0.085 0.069 0.018 0.046 0.009 0.007 0.080	Min 0.003 0.004 0.001	Mean 0.025 0.013 0.007 0.013 0.007 0.013 0.032 0.006 0.018 0.016 0.008 0.012 0.019 0.023 0.021 0.017 0.008 0.012 0.026 0.021 0.013 0.009 0.008 0.001 0.009 0.007 0.034 0.007 0.019 0.012 0.009 0.007 0.019 0.012 0.009 0.013 0.006 0.003 0.019	Hours 24 24 24 24 24 24 24 24 24 24 24 24 24
5 5 5 5 5	11 12 13 14 15	131 132 133 134 135	0.023 0.029 0.049 0.040 0.060	0.002 0.001 0.007 0.001	0.007 0.012 0.020 0.011	24 24 24 24
5 5 5 5	11 12 13 14	131 132 133 134	0.023 0.029 0.049 0.040	0.002 0.001 0.007	0.007 0.012 0.020	24 24 24
5 5 5 5 5	19 20 21 22 23	139 140 141 142 143	0.019 0.013 0.104 0.082 0.053	0.003 0.004 0.004 0.006 0.004	0.013 0.009 0.007 0.021 0.022 0.020	24 24 24 24 24 24

Nitrogen Oxides (NOx) Daily Data in parts per million (ppm) for FY90

Calen Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
5	24	144	0.109	0.005	0.034	20
5	25	145	0.012	0.001	0.006	24
5	26	146	0.024	0.003	0.007	24
5	27	147	0.010	0.001	0.005	24
5	28	148	0.017	0.001	0.005	24
5 5	29	149 150	0.046	0.002	0.010	24
5 5	30 31	150 151	0.092 0.081	0.002 0.003	0.018 0.020	24 24
6	1	152	0.136	0.001	0.019	24
6	2	153	0.022	0.001	0.004	24
. 6	3	154	0.016	0.003	0.007	24
6	4	155	0.063	0.004	0.014	24
6	5	156	0.073	0.003	0.016	24
6	6	157	0.027	0.004	0.009	24
6	7	158	0.044	0.005	0.014	22
6 6	8 9	159 160	0.044 0.029	0.004	$0.011 \\ 0.012$	24 24
6	10	160	0.029	0.005 0.004	0.012	24
6	11	162	0.016	0.004	0.007	24
6	12	163	0.016	0.005	0.007	24
6	13	164	0.011	0.003	0.006	23
6	14	165	0.040	0.005	0.012	24
6	15	166	0.041	0.004	0.014	24
6	16	167	0.026	0.004	0.009	24
6 6	17 18	168 169	0.042 0.045	0.004 0.008	0.016 0.027	2 4 9
6	19	170	0.034	0.008	0.027	12
6	20	171	0.049	0.005	0.017	24
6	$\overline{21}$	172	0.064	0.001	0.016	21
6	22	173	0.057	0.005	0.013	24
6	23	174	0.051	0.004	0.020	22
6	24	175	0.038	0.004	0.012	24
6 6	25 26	176 177	0.088	0.004	0.028	24
6	27	178	$0.097 \\ 0.046$	0.008 0.007	$0.034 \\ 0.020$	24 24
5	28	179	0.040	0.004	0.016	24
6	29	180	0.105	0.004	0.022	24
6	30	181	0.054	0.005	0.016	24
7	1	182	0.012	0.001	0.007	24
7	2	183	0.140	0.004	0.034	20
7	3	184	0.033	0.001	0.007	24
7 7	4 5	185	0.085	0.002	0.019	24
7	5 6	186 187	0.069 0.0 1 8	0.003 0.005	0.012 0.009	24 24
7	7	188	0.016	0.003	0.003	24 24
7	8	189	0.009	0.001	0.006	24
7	9	190	0.007	0.001	0.003	24

Nitrogen Oxides (NOx) Daily Data in parts per million (ppm) for FY90

Caler	ndar	Julian	Daily	Daily	Daily	Valid
Month	Day	Day	Max	Min	Mean	Hours
			Max 0.080 0.023 0.029 0.049 0.040 0.060 0.022 0.021 0.065 0.019 0.013 0.104 0.082 0.053 0.109 0.012 0.024 0.010 7.017 0.046 0.092 0.081 0.078 0.050 0.066 0.061 0.016 0.038 0.071 0.097 0.097 0.097 0.097 0.081 0.031 0.040 0.048	Min 0.001 0.002 0.001 0.007 0.001 0.003 0.004 0.003 0.004 0.005 0.001 0.005 0.001 0.002 0.002 0.002 0.003 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007	Mean 0.019 0.007 0.012 0.020 0.011 0.012 0.006 0.010 0.019 0.007 0.021 0.022 0.020 0.034 0.006 0.007 0.005 0.005 0.010 0.018 0.020 0.025 0.024 0.020 0.019 0.029 0.013 0.024 0.033 0.022 0.034 0.013 0.018 0.026	Hours 22 24 24 24 24 24 24 24 24 24 24 24 24
8 8 8 8 8 8 8	14 15 16 17 18 19 20 21 22	226 227 228 229 230 231 232 233 234	0.073 0.042 0.062 0.057 0.066 0.076 0.076 0.090 0.084	0.006 0.008 0.006 0.006 0.006 0.005 0.007 0.006	0.021 0.021 0.024 0.024 0.027 0.018 0.022 0.030 0.032	24 24 20 24 24 17 16 24 24
8	23	235	0.071	0.005	0.021	24
8	24	236	0.069	0.005	0.021	24
8	25	237	0.059	0.005	0.020	24

Nitrogen Oxides (NOx) Daily Data in parts per million (ppm) for FY90

Caler Month	ndar Day	Julian Day	Daily Max	Daily Min	Daily Mean	Valid Hours
8	26	238	0.062	0.004	0.018	24
8	27	239	0.058	0.005	0.023	24
8	28	240	0.060	0.004	0.022	24
8	29	241	0.075	0.006	0.027	24
8	30	242	0.067	0.006	0.020	22
8	31	243	0.061	0.006	0.022	24
9	1	244	0.049	0.009	0.016	24
9	2	245	0.035	0.007	0.015	24
9	3	246	0.030	0.006	0.016	24
9	4	247	0.068	0.008	0.022	24
9	5	248	0.096	0.006	0.025	24
9	6	249	0.109	0.008	0.028	24
9	7	250	0.087	0.006	0.029	24
9	8	251	0.057	0.007	0.023	24
9	9	252	0.057	0.006	0.021	24
8	10	253	0.083	0.007	0.027	24
9	11	254	0.105	0.005	0.025	24
9 9	12 13	255 250	0.138	0.006	0.026	24
9	13	256 257	0.066 0.060	0.005 0.010	0.016 0.026	22
9	15	258	0.011	0.005	0.025	10 11
9	16	259	0.039	0.005	0.010	24
9	17	2 6 0	0.075	0.003	0.019	24
9	18	261	0.053	0.005	0.019	24
9	19	262	0.117	0.006	0.027	24
9	20	263	0.072	0.006	0.022	24
9	21	264	0.117	0.005	0.022	24
9	22	265	0.111	0.006	0.025	24
9	23	266	0.137	0.007	0.026	24
9	24	267	0.100	0.006	0.031	24
9	25	268	0.059	0.007	0.022	24
9	26	269	0.090	0.007	0.026	24
9	27	270	0.126	0.005	0.040	22
9	28	271	0.032	0.012	0.018	24
9	29	272	0.016	.005	0.008	24
9	30	273	0.095	.005	0.037	24

Nitrogen Oxides

___ Daily Max __ Daily Avg

Nitrogen Oxides November 1989

__ Daily Max __ Daily Avg

Nitrogen Oxides December 1989

0.7

0,6

31

27

___ Daily Max ___ Daily Avg

3 15 17 1 Day of Month 21

11

5

Nitrogen Oxides February 1990

Daily Max _ Daily Avg

__ Daily Max ___ Daily Avg

__ Daily Max __ Daily Avg

Nitrogen Oxides August 1990

Nitrogen Oxides September 1990

__ Daily Max __ Daily Avg

APPENDIX K

ISC AND INPUFF2 EPA MODEL DESCRIPTION

K1 ISC EPA Model Description

K2 INPUFF2

APPENDIX J

METEOROLOGICAL DATA AND JOINT FREQUENCY DISTRIBUTION

- J1 Meteorological Data
- J2 Joint Frequency Distribution

J1 Meteorological Data (on diskette file APPJI.TXT; archived with PKZIP) J2 Joint Frequency Distribution (on diskette file APPJ2.TXT)

APPENDIX K

ISC AND INPUFF2 EPA MODEL DESCRIPTION

K1 ISC EPA Model Description

K2 INPUFF2

K 1 ISC EPA Model Description

ISC AND INPUFF2 EPA MODEL DESCRIPTIONS

Description of Industrial Sour e Complex Model (ISC)

Reference: Environmental Protection Agency, 1986. Industrial Source Complex (ISC) Dispersion

Model User's Guide, Second Edition, Volumes 1 and 2. Publication Nos. EPA-450/4-86-005a, and -005b. U.S. Environmental Protection Agency, Research Triangle Park,

NC.

Availability: This model is available as part of UNAMAP (Version 6). The computer code is

available on magnetic tape from:

Computer Products
National Technical Information Service
U.S. Department of Commerce
Springfield, Virginia 2216i

Phone (703) 487-4650

Abstract: The ISC model is a steady-state Gaussian plume model which can be used to assess

pollutant concentrations from a wide variety of sources associated with an industrial source complex. This model can account for settling and dry deposition of particulates, downwash area, line and volume sources, plume rise as a function of downwind distance, separation of point sources, and limited terrain adjustment. It

operates in both long- and short-term modes.

a. Recommendations for Regulatory Use

ISC is appropriate for the following applications:

- industrial source complexes;
- rural or urban areas;
- flat or rolling terrain;
- transport distances less than 50 kilometers; and
- one hour to annual averaging times.

The following options should be selected for regulatory applications:

• For short term modeling, set the regulatory "default option" (ISW(28)=1), which automatically selects stack tip downwash, final plume rise, buoyancy induced dispersion (BID), the vertical potential temperature gradient, a treatment for calms,

the appropriate wind profile exponents, and the appropriate value for pollutant half-life; set rural option (ISW(20)=0) or urban option (ISW(20)=3); and set the concentration option (ISW(1)=1).

For long term modeling, set the regulatory "default option" (ISW(22)=0), which automatically selects stack tip downwash, final plume rise, buoyancy-induced dispersion (BID), the vertical potential temperature gradient, the appropriate wind profile exponents, and the appropriate pollutant value for half-life; set rural option (ISW(9)=3) or urban option (ISW(9)=4); and set the concentration option (ISW(1)=1).

b. Input Requirements

Source data: location, emission rate, physical stack height, stack gas exit velocity, stack inside diameter, and stack gas temperature. Optional inputs include source elevation, building dimensions, particle size distribution with corresponding settling velocities, and surface reflection coefficients.

Meteorological data: ISCST requires hourly surface weather data from the preprocessor program RAMMET, which provides hourly stability class, wind direction, wind speed, temperature, and mixing height. For ISCLT, input incl.—s stability wind rose (STAR deck), average afternoon mixing height, average morning mixing height, and average air temperature.

Receptor data: coordinates and optional ground elevation for each receptor.

c. Output

Printed output options include:

- program control parameters, source data and receptor data;
- tables of hourly meteorological data for each specified day;
- "N"-day average concentration or total deposition calculated at each receptor for any desired combinations of sources;

- concentration or deposition values calculated for any desired combinations of sources at all receptors for any specified day or time period within the day;
- tables of highest and second-highest concentration or deposition values calculated at
 each receptor for each receptor for each specified time period during an "N"-day
 period for any desired combinations of sources; and
- tables of the maximum 50 concentration or deposition values; calculated for any
 desired combinations of sources for each specified time period.

d. Type of Model

ISC is a Gaussian plume model.

e. Pollutant Types

ISC may be used to model primary pollutants. Settling and deposition are treated.

f. Source-Receptor Relationships

ISC applies user-specified locations for point, line, area and volume sources, and user-specified receptor locations or receptor rings. Receptors are assumed to be at ground level, and must be at elevations not exceeding stack height.

Actual separation between source-receptor pair is used.

g. Plume Behavior

ISC uses Briggs (1969, 1971, 1975) plume rise equations for final rise.

Stack tip downwash equation from Briggs (1974) and building downwash (Huber and Snyder, 1976) are used.

For rolling terrain (terrain not above stack height), plume centerline is horizontal at height of final rise above source.

Fumigation is not treated.

h. Horizontal Winds

Constant, uniform (steady-state) wind is assumed for each hour.

Straight line plume transport is assumed to all downwind distances.

Separate wind speed profile exponents (EPA, 1980) for both rural and urban cases are used.

An optional treatment for calm winds is included for short term modeling.

i. Vertical Wind Speed

Vertical wind speed is assumed equal to zero.

j. Horizontal Dispersion

Rural dispersion coefficients from Turner (1969) are used, with no adjustments for surface roughness or averaging time.

Urban dispersion coefficients from Briggs (Gifford, 1976) are used.

Buoyancy induced dispersion (Pasquill, 1976) is included.

Six stability classes are used.

k. Vertical Dispersion

Rural dispersion coefficients from Turner (1969) are used, with no adjustments for surface roughness.

Urban dispersion coefficients from Briggs (Gifford, 1976) are used.

Buoyancy induced dispersion (Pasquill, 1976) is included.

Six stability classes are used.

K - 4

AIR-90,5-9 Rev. 03/01/91 Mixing height is accounted for with multiple reflections until the vertical plume standard deviation equals 1.6 times the mixing height; uniform vertical mixing is assumed beyond that point.

Perfect reflection is assumed at the ground.

I. Chemical Transformation

Chemical transformations are treated using exponential decay. Time constant is input by the user.

m. Physical Removal

Settling and dry deposition of particulates are treated.

n. Evaluation Studies

- Bowers, J. F., and A. J. Anderson, 1981. An Evaluation Study for the Industrial Source Complex (ISC) Dispersion Model, EPA Publication No. EPA-450/4-81-002. U.S. Environmental Protection Agency, Research Triangle Park, NC.
- Bowers, J. F., A. J. Anderson, W. R. Hargraves, 1982. Tests of the Industrial Source Complex (ISC) Dispersion Model at the Armeo Middletown, Ohio Steel Mill, EPA Publication No. EPA-450/4-82-006. U.S. Environmental Protection Agency, Research Triangle Park, NC.
- Scire, J. S., and L. L. Schulman, 1981 Evaluation of the BLP and ISC Models with SF6 Tracer Data and SO2 Measurements at Aluminum Reduction Plants. Air Pollution Control Association Specialty Conference on Dispersion Modeling for Complex Sources, St. Louis, MO.

K2 INPUFF2

(3)

(8)

_

C

Description of INPUFF2.0

[Extracted and adapted from INPUFF2.0 User's Guide, August 1986 Report EPA/600-8-86/024 U.S. EPA, Research Triangle Park, N.C.]

INTRODUCTION

INPUFF is a Gaussian integrated puff model with a wide range of applications. The implied modeling scale is capable of addressing the accidental release of a substance over several minutes, or of modeling the more typical continuous plume from a stack. [A requirement for] assistance in modeling the air quality downwind of incineration ships prompted the development of an integrated puff model. INPUFF is, therefore, capable of simulating moving point sources as well as stat' many sources.

Computations in INPUFF can be made for multiple point sources at up to 100 receptor locations. In practice, however, the number of receptor locations should be kept to a minimum to avoid excessive run time. INPUFF is primarily designed to model a single event during which one meteorological transition period may occur, such as, going from afternoon to evening conditions. Up to 144 separate meteorological periods of the same length may be used to characterize the meteorology during the event; this provides a time resolution that ranges from minutes to an hour. The user has the option of specifying the wind field for each meteorological period at up to 100 grid locations or allowing the model to default to a homogeneous wind field.

Three dispersion algorithms are used within INPUFF for dispersion downwind of the source. The user may select the Pasquill-Gifford (P-G) scheme (Turner, 1970) or the on-site scheme (Irwin, 1983) for short travel time dispersion. The on-site scheme, so named because it requires specification of the variances of the vertical and lateral wind direction, is a synthesis of work performed by Draxler (1976) and Cramer (1976). The long travel time scheme is the third dispersion algorithm in which the growth of the puff becomes proportional to the square root of time. Optionally, the user can incorporate his own subroutine for estimating atmospheric dispersion.

INPUFF utilizes the deposition algorithms given by Rao (1982). In the limit when pollutant settling and dry deposition velocities are zero, these expressions reduce to the Gaussian diffusion algorithms.

* * * *

FEATURES AND LIMITATIONS

The model possesses the following features which increase its flexibility and range of application:

- Optional stack-tip downwash,
- Wind speed extrapolated to release height,
- Temporally variable source characteristics,
- Temporally and spatially variable wind field,
- Up to 100 receptors,
- Some consideration of terrain effects through the wind field,
- Optional buoyancy induced dispersion,
- Optional deposition and settling,
- Optional user-supplied dispersion parameters,
- Optional user-supplied plume rise, and
- Optional graphics display.

The implied modeling scale is from tens of meters to tens of kilometers. INPUFF is capable of addressing the accidental release of a substance over a short time period, or of modeling the more typical continuous plume from a stack.

Although INPUFF has several advantages over its continuous plume counterparts, it still retains several limitations, including:

- Wind direction constant with height,
- No consideration of chemical reactions,
- No explicit treatment of complex terrain,
- No consideration of building wake or cavity effects.

BASIS FOR INPUFF

GAUSSIAN PUFF METHODOLOGY

A graphical representation of the INPUFF model is given in Figure 1. Here the first puff (the puff with the longest trajectory) was first exposed to east-southeast winds, followed by slightly

Figure 1. Gaussian puff model.

(2)

stronger winds from the south and the south-southeast. The second puff was released at the time the winds shifted from east-southeast to south. The third puff was released when winds were from the south-southeast. The stability conditions need not be equal for the various time steps, though in the figure, stability is shown to be fairly constant with time (i.e., the rate of puff growth is constant over the time frame). INPUFF assumes $\sigma_x = \sigma_y$, thus puffs remain circular throughout their lifetime. Puffs A, B, and C represent the location of the three emitted puffs at time t_3 .

In Gaussian-puff algorithms, source emissions are treated as a series of puffs emitted into the atmosphere. Constant conditions of wind and atmospheric stability are assumed during a time interval. The diffusion parameters are functions of travel time. During each time step, the puff centers are determined by the trajectory and the in-puff distributions are assumed to be Gaussian, thus, each puff has a center and a volume which are determined separately be the mean wind, atmospheric stability, and travel time. [An example of a PUFF Model 15-minute time-step interval used in the RMA Basin F remedial operations is shown in Figure 2.]

PLUME RISE

Plume rise is calculated using the methods of Briggs (see Section 5). Although plume rise from point sources is usually dominated by buoyancy, plume rise due to momentum is also considered. Building downwash, and gradual plume rise are not treated by INPUFF.

Stack-tip downwash (optional) can be considered using the methods of Briggs. In such an analysis, a height increment is deducted from the physical stack height before momentum or buoyancy rise is determined. • • • of this option primarily affects computations from stacks having small ratios of exit velocity to wind speed.

DISPERSION ALGORITHMS

Three dispersion algorithms are used within INPUFF for dispersion downwind of the source:

- P-G scheme as discussed by Turner (1970),
- On-site scheme formulated by Irwin (1983), and
- Long travel time scheme.

The user has the option of choosing either the P-G or the on-site algorithm (for short travel time dispersion) and specifying when the long travel time dispersion parameters are to be implemented. Optionally, a user-supplied subroutine to estimate dispersion can be used.

K - 10

AIR-90.5-9 Rev. 03/01/91 Dispersion downwind of a source, as characterized by the P-G scheme, is a function of stability class and downwind distance. Stability categories are commonly specified in terms of wind speed and solar radiation. The on-site dispersion algorithm is a synthesis of Draxler's (1976) and Cramer's (1976) ideas and requires specification of the variances of the vertical and lateral wind directions. The third dispersion scheme is used in conjunction with the other two and is for long travel times in which the growth of the puff is proportional to the square root of time.

SETTLING AND DRY DEPOSITION

Rao (1982) gave analytical solutions of a gradient-transfer model for dry deposition of pollutants from a plume. His solutions treat gravitational settling and dry deposition of pollutants in a physically realistic manner, and are subject to the same basic assumptions and limitations associated with Gaussian plume models. His equations for deposition and settling were incorporated in several EPA air quality models including PAL-DS (Rao and Snodgrass, 1982). The equations used in INPUFF are the same as those used in PAL-DS except they are cast in terms of travel time instead of wind speed and downwind distance.

DATA-REQUIREMENTS CHECKLIST

INPUFF requires data on user options, grid dimensions, sources, meteorology, receptors, and plotter control. The user must indicate whether the following options are to be employed:

- Stack-tip downwash,
- Source update,
- User-supplied wind field,
- Intermediate concentration output,
- Puff information output.
- Buoyancy induced dispersion,
- User-supplied dispersion algorithm, and
- User-supplied plume rise algorithm.

The dimension of the modeling grid must be specified. If the user-supplied wind field option is implemented, then the dimension of the meteorological grid along with the size of each grid rectangle must also be indicated. It is recommended that both grids be given a common origin. If a puff travels outside the modeling region, it is deleted from further consideration. If it travels outside the

meteorological grid, but is still within the modeling region, the wind at the nearest grid point to the puff is used to advect it further.

Information on the source includes the following:

- Location (km),
- Emission rate (g/sec),
- Physical stack height (m),
- Stack gas temperature (K),
- Stack diameter (m),
- Stack gas velocity (m/sec),
- Stack gas volume flow (m³/scc),
- Initial dispersion parameters (m), and
- Deposition and gravitational settling velocities (cm/sec).

Also, the direction and speed of the source, if it is moving, must be provided as input.

The meteorological data needed for the computations are as follows:

- Wind direction (deg),
- Wind speed (m/sec),
- Mixing height (m),
- Stability class (dimensionless),
- Standard deviation of elevation angle (radians),
- Standard deviation of azimuth angle (radians),
- Ambient air temperature (K), and
- Anemometer height (m).

The user has the option of updating the meteorological information after each meteorological time period. The location and height of each receptor must be indicated. If dispersion is characterized by the on-site scheme, then the standard deviations of the azimuth and elevation angles are required.

The following information is required by the plot routines:

- Type of plot desired,
- Location of concentration versus time plots, and
- Plotting grid.

The plot routines were developed on a UNIVAC 1110 and use CALCOMP plotting software.

REFERENCES

- Cadle, R.D., 1975; The Measurement of Airborne Particles. John Wiley & Sons, New York, 342 pp.
- Chamberlain, A.C., 1953: Aspects of travel and deposition of aerosol and vapor clouds. A.E.R.E., Report H.P.-1961, Atomic Energy Research Estab., Harwell, Berks.. U.K., 32 pp.
- Fuchs, N.A., 1964: The Mechanics of Aerosols. The Macmillan Co., New York, 408 pp.
- Lapple, C.E., 1961: J. Standford Res. Inst. 5, p. 95.
- McMahon, T.A., and P.J. Denison, 1979: Empirical atmospheric deposition parameters a survey.

 Atmospheric Environment 13, 571-585.
- Sehmel, G.A., and W.H. Hodgson, 1974: Predicted dry deposition velocities. Atmospheric-Surface Exchange of Particulate and Gaseous Pollutants. Available as CONF-740921 from NTIS, Springfield, VA., 399-423.
- Schmel, G.A., 1980: Particle and gas dry deposition: a review. Atmospheric Environment 14, 983-1011.
- Sheehy, J.P., W.C. Achinger, and R.A. Simon, 1969: Handbook of Air Pollution. Public Health Service Publication No. 999-AP-44, U.S. E.P.A., Research Triangle Park, N.C.
- Stern, A.C., 1976: Air Pollution. Academic Press, New York, Vol. 1, 3rd ed., 715 pp

APPENDIX L

IRA-F TOTAL SUSPENDED PARTICULATES (TSP) DATA (on diskette file APPL.TXT)

APPENDIX M

IRA-F RESPIRABLE PARTICULATES
OF LESS THAN 10 MICRONS
(on diskette file APPK.TXT)

APPENDIX N

IRA-F ARSENIC, METALS, AND MERCURY DATA
(These data have not been finalized by PMRMA)
(on diskette file APPN1.TX i and APPN2.TXT)

APPENDIX O

IRA-F VOLATILE ORGANIC COMPOUNDS (VOC) DATA
(These data have not been finalized by PMRMA)
(on diskette file APPOLTXT and APPO2.TXT)

APPENDIX P

IRA-F SEMI-VOLATILE ORGANIC COMPOUNDS (SVOC) DATA

(These data have not been finalized by PMRMA)
(on diskette file APPP.TXT)

APPENDIX Q

IRA-F ORGANOCHLORINE PESTICIDES (OCP) DATA
(These data have not been finalized by PMRMA)
(on diskette file APPQ.TXT)