IEOR E4650 Business Analytics

Session 22: Analytics at Zara

Spring 2018

Copyright © 2018

Prof. Adam Elmachtoub

Outline

- Zara's value proposition
- Legacy planning process
 - Potential inefficiencies
 - Analytic opportunity
- From concept to deployment
 - Leveraging forecasting and optimization
 - Testing the value of the approach

For more information, see: F. Caro, J. Gallien, M. Diaz, J. Garcia, J. M. Corredoira, M. Montes, J. A. Ramos, and J. Correa. 2010. Zara Uses Operations Research to Reengineer its Global Distribution Process. *Interfaces*, Vol.40, No.1.

http://personal.anderson.ucla.edu/felipe.caro/papers/pdf_FC12.pdf

What is Zara's Value Proposition?

Session 22-3

Zara's Value Proposition

- Fast fashion retailer
 - Frequent assortment rotation
 - Frequent store replenishments
 - In-season production, responsive to the market
- Local manufacturing

Today:

How does Zara make it happen?

Legacy Order and Shipment Planning Process

Session 22-5

Main Performance Metrics

• Sales to shipment ratio (SSR)

$$\mathsf{SSR} = \frac{\mathsf{Cumulative \ sales}}{\mathsf{Cumulative \ shipments}}$$

Demand cover ratio (DCR)

$$DCR = \frac{Cumulative sales}{Cumulative demand (estimated)}$$

Two types of errors

- Ship too much: leads to items that don't sell at some stores (SSR too small)
- Ship too little: items that customers would buy aren't there (DCR too small)

Sales to shipment ratio (SSR): Cumulative sales/Cumulative shipments

Demand cover ratio (DCR): Cumulative sales/Cumulative demand (estimated)

Session 22-7

Demand Versus Sales

- Sales: the number of units actually sold
- Demand: the number of units that would have been sold if there were no stockouts
- A simple approach to estimate demand: scale up sales depending on when the last item was sold during the week
 - Further refinements: day-of-the-week effect and other factors

Exercise

Session 22-9

Warehouse Decisions: How Much to Ship?

	Store 1	Store 2	Store 3	Store 4
Sales 3 weeks ago	10	9	7	11
Sales 2 weeks ago	12	11	10	7
Sales last week	14	16	8	10
Inventory	3	3	5	8
Order	30	30	3	1
Shipment	s_1	s_2	s_3	s_4

- Warehouse currently has 100 items in stock; 19 units are at the stores
- Orders from stores were just received (30, 30, 3, 1)
- ullet Shipment decisions need to be made this week: $s_1,s_2,s_3,$ and s_4
- Week 1 demand will be revealed
- \bullet Process repeats for week 2 and week 3
- At the end of week 3 teams will be measured on their SSR and DCR

	Store 1	Store 2	Store 3	Store 4
Inventory	3	3	5	8
Order	30	30	3	1
Shipment	30	30	3	1
Inventory	33	33	8	9
Week 1 demand	6	9	12	14
Week 1 sales	6	9	8	9
Inventory	27	24	0	0
Order	7	9	15	14
Shipment	s_1	s_2	s_3	s_4

Warehouse inventory remaining: 36

Session 22-11

Warehouse Decisions: Week 2

	Store 1	Store 2	Store 3	Store 4
Inventory	3	3	5	8
Order	30	30	3	1
Shipment	30	30	3	1
Inventory	33	33	8	9
Week 1 demand	6	9	12	14
Week 1 sales	6	9	8	9
Inventory	27	24	0	0
Order	7	9	15	14
Shipment	7	9	15	5
Inventory	34	33	15	5
Week 2 demand	10	10	4	11
Week 2 sales	10	10	4	5
Inventory	24	23	11	0
Order	7	9	15	14
Shipment	s_1	s_2	s_3	s_4

Warehouse inventory remaining: 0

Shipments must be zero (in this case): the remaining warehouse inventory is zero

Session 22-13

Warehouse Decisions: Week 3 After Demand

	Store 1	Store 2	Store 3	Store 4
Inventory	24	23	11	0
Order	7	9	15	14
Shipment	0	0	0	0
Week 3 demand	11	7	12	14
Week 3 sales	11	7	11	0
Inventory	13	16	0	0

• Cumulative sales: 90

Cumulative shipments: 119Cumulative demand: 120

- Sales to shipment ratio (SSR): Cum. sales/Cum. shipments = 90/119 = 0.76
- Demand cover ratio (DCR): Cum. sales/Cum. demand (estimated) = 90/120 = 0.75

SSR Versus DCR: Possible Outcomes

Sales to shipment ratio (SSR): Cumulative sales/Cumulative shipments

Demand cover ratio (DCR): Cumulative sales/Cumulative demand (estimated)

Session 22-15

Diagnostic

Legacy Process: Potential Inefficiencies

Example of item: PANTALON NINA TEJANO CON PRINT ROMANTICO

Tienda	Nombre	Ventas	Ser	man	а				
		Totales	1	2	3	4	5	6	7
3197	MIL-VITORIO	238,608							
3028	CC MATOSINHOS	193,862							
382	TS-TSIMISKI	137,671							
306	BRAGA	94,192							
76	ALICANTE	93,960							
3043	AVE-CC FORUM	93,157							
3093	ANDORRA	92,885							
117	BARC-DIAGONAL	56,521							
1086	KC-CAD.NOVENA	56,510							
3208	T.A-REHOVOT	10,640							
3158	QUE-CC STE.FOY.	10,195							
3293	MON-CHAMPLAIN	10,012							

Stock relativo
a la capacidad de venta:
Alto o sufficiente
Insuficiente
No Stock

Stores that need inventory "starve" while some stores have plenty of leftover inventory

Session 22-17

Legacy Process: Potential Inefficiencies

Sources of inefficiencies

- Store incentives
 - Store managers rewarded on sales
 - Store level optimization versus centralized optimization
- Warehouse resources and guidelines
 - How many decisions have to be made every week?

1,000 stores \times 3,000 items \times 8 sizes \Rightarrow approximately 24 million decisions per week

Analytics Opportunity?

- Reduce biases through predictive analytics
 - Obtain an "objective" view of demand
- Process and optimize a very large number of decisions in a systematic fashion
 - Mitigate inefficiencies that may arise
 - Potential to use optimization

Session 22-19

Zara's Approach

Goal: Forecast weekly sales at the model, quality, color and size level at every store

In a fast fashion retail environment, is there any useful information from past years?

Session 22-21

Predictive Analytics: Approach to Forecasting Demand

Unit of time t: week

$$\mathsf{Demand}_t = \alpha \left(I_t + X_t \right) \ + \ \left(1 - \alpha \right) Y_t + \ \mathsf{error}$$

 I_t : current inventory at the store

 X_t : store manager's order

 $I_t + X_t$: subjective forecast of demand

 Y_t : data-driven forecast of demand, constructed using

- Year-on-year subfamily sales (seasonality correction)
 Examples of subfamilies: basic t-shirts, basic pants
- Last week subfamily sales (short-term trend)
- Proportion of subfamily sales attributed to target item ("top-down" item forecast)

Prescriptive Analytics: Optimizing the Shipment Decisions

Decision variables

• $x_{i,i,k} = \text{number of units of item } i \text{ of size } j \text{ to send to store } k$

Constraints

• Cannot ship more than what is available in the warehouse

Two objectives

- Maximize DCR: want to make sure not to miss demand
 - ship a lot initially (short term)
 - make sure to keep inventory for future demand (long term)
- Maximize SSR: want to make sure not to have unsold inventory at the stores at the end of the season
 - Limit initial shipments to keep flexibility for later allocations (long term)

Maximize Next week's forecasted dollar sales at stores

Subject to:

Leftover inventory at WH / Total initial inventory $\geq \mathbf{K}$

Leftover inventory at WH = Initial WH inventory - sum of all shipments

Sum of all shipments ≤ Initial WH inventory

K: aggressiveness parameter

- Can be tuned by users
- ullet High ${f K}$ is conservative: keep flexibility for later
- Low **K** is aggressive: used toward the end of an article's lifecycle

Session 22-25

Legacy Process versus New Process

Pros

- Introduces objectivity in the decision-making process
- Easily scalable to more stores and items
- Accounts for store managers' input (forward view) in addition to historical patterns of sales

Cons

- Future value of flexibility is captured in a heuristic fashion
- ullet Subjectivity in selecting tuning parameter ${f K}$

Session 22-27

Decision Support System Snapshot

Analytics Solution

What is the potential value of such a system for Zara? (In other words, how much should Zara be ready to pay for such a system if the alternative is doing nothing?)

- (a) 0-50K
- (b) 50-200K
- (c) 200K-500K
- (d) 500K-2M
- (e) 2-10M
- (f) > 10M

Session 22-29

From Proposal to Validation: How?

- 10 test articles that represent Zara's assortment
- Each test article was matched with a control article based on
 - Type: basic versus fashion
 - Age: date of introduction differs by at most one week
 - Similarity in performance prior to start of pilot: sales to shipment ratio (SSR) and demand cover ratio (DCR)
- Implemented at Arteixo warehouse

Setting up the Pilot

Assessing the Impact: Methodology

Difference-in-Differences (DiD) approach

For each matched pair of test/control articles, and performance metric ${\cal M}$, compute:

$$\Delta M = [M_{\rm test}^{\rm end} - M_{\rm test}^{\rm start}] - [M_{\rm control}^{\rm end} - M_{\rm control}^{\rm start}]$$

• Eliminates factors that are common to test and control articles

Assess impact on performance metrics SSR and DCR

Warehouse	Articles	Δ SSR	Δ DCR
Arteixo	Basic	-2.2%	10.1%
	Fashion	6.4%	1.9%
	All	3.0%	5.2%

Secondary Control

- Pilot at Arteixo WH: measures the impact of the new process
- Control at Zaragoza WH: measures estimation error (second layer of control) using same articles

Warehouse	Articles	Δ SSR	Δ DCR
Arteixo	Basic	-2.2%	10.1%
	Fashion	6.4%	1.9%
	All	3.0%	5.2%
Zaragoza	Basic	-5.3%	2.6%
(control)	Fashion	-0.5%	4.6%
	All	-2.4%	3.8%

- (1) Interpret the results: How did the program work?
- (2) Evaluate, through a back of the envelope calculation the potential value of the new system (if any)

Visualizing Pilot Results

Sales to shipment ratio (SSR): Cumulative sales/Cumulative shipments

Demand cover ratio (DCR): Cumulative sales/Cumulative demand (estimated)

The Timeline from Concept to Deployment

- From labor intensive legacy process to a new process
 - Scalable process without major capital investments
 - Systematic rules for decision-making through optimization and forecasting
- Even imperfect models can yield significant value
- Framework developed is broadly applicable: Zara has since re-optimized its markdown policies following a similar framework¹
 - Modeling of the key drivers of the demand for items that are marked down (e.g., broken assortment effect)
 - Validation of demand forecast
 - Dynamic optimization of markdowns with forecast as input
 - Pilot in Belgium and Ireland (DiD)
- Analytics is a core value driver in many supply chains

¹Source: Caro, F., J. Gallien. 2012. Clearance Pricing Optimization for a Fast-Fashion Retailer, *Operations Research*, Vol.60, No.6. http://personal.anderson.ucla.edu/felipe.caro/papers/pdf_FC15.pdf