1. Dado un digrafo D con pesos $c: E(D) \to \mathbb{N}$ y dos vértices s y t , decimos que una arista $v \to w$ es st -eficiente cuando $v \to w$ pertenece a algún camino mínimo de s a t . Sea $d(\cdot, \cdot)$ la función que indica el peso de un camino mínimo entre dos vértices.																		
	 a. Demostrar que v → w es st-eficiente si y sólo si d(s, v) + c(v → w) + d(w, t) = d(s, t). b. Usando el inciso anterior, proponga un algoritmo eficiente que encuentre el mínimo de los caminos entre s y t que no use aristas st-eficientes. Si dicho camino no existe, el algoritmo retorna ⊥. 																	

Arista v->w es st-eficiente	
$\langle = \rangle d(s,v) + c(v \rightarrow w) + d(w,t) = d(s,t)$	
(⇒)	
	•
como v-> w es st-eficiente, por def pertenece a algún cam	IMO
minimo Pst = Sm>t.	
PSE = PSV + V->W + PWE	
ISE ISV I WE	
Cualquier subcamino dentro de un camino minimo es también	งก
camino mínimo (subestructura óptima).	
$c(P_{st}) = c(P_{sv}) + c(v \rightarrow w) + c(P_{wt})$	
Como Pst, Psv y Pwt son caminos mínimos su costo es igual a	la
distancia minima.	
$d(P_{S+}) = d(S,V) = d(S,V) + c(V \rightarrow W) + d(W,+)$	
(=)	
$d(s,t)$ es la distancia minima de cualquier camino minimo entre (s,t) Suponien do $d(s,v) + c(v \rightarrow w) + d(w,t) = d(s,t)$	
sique que la arista v->w pertenece a un camino mínimo en	lre
syt. Por lef enfonces v-> w as st-eficiente.	

- 1) Dijkstra desde s en D para calcular do(s,v) YveV(D).
- 2) Construimos DT el digrafo transpuesto de D que resulta de invertir todas las aristas. O(n+m)
- 3) Dijkstra desde t en D^T para calcular $d_{D^T}(t,v) = d_{D^T}(v,t) \ \forall v \in V(D)$.
- 4) Revisamos todas las aristas en D para determinar cuáles son st-eficientes usando la propiedad demostrada en el inciso anterior. $O(m) \cdot O(1) = O(m)$ Mientras hacemos esto, vamos construyendo el digrafo D' que tiene los mismos vértices que D y solamente las aristas que no son st-eficientes.

$$(u,v) \in E(D') \iff d_D(s,u) + c(u,v) + d_D(v,t) > d_D(s,t)$$

5) Dijkstra desde s en D'. Si do (s,t) = 00 retornamos I, caso contrario retornamos do (s,t) que es la distancia mínima entre s y t sin usar aristas st-eficientes.