Diffusion Model 背後的數學原理

基本概念

Forward Process

Reverse Process

Denoising Diffusion Probabilistic Models

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Take gradient descent step on

$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: **return** \mathbf{x}_0

Training

 x_0 : clean image

 ε : noise

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0) \blacktriangleleft \dots$ sample clean image
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ --- sample a noise
- 5: Take gradient descent step on

$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \|^{2} \qquad \bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}, \bar{\alpha}_{4}, \bar{\alpha}_{5}, \bar{\alpha$$

Target

Noise

Noise predictor

 $\bar{\alpha}_1, \bar{\alpha}_2, \dots \bar{\alpha}_T$

Training

$$\bar{\alpha}_1$$
, $\bar{\alpha}_2$,... $\bar{\alpha}_T$

實際上...

Inference

Algorithm 2 Sampling

 χ_T

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

sample a noise?!

- 5: end for
- 6: **return** \mathbf{x}_0

影像生成模型本質上的共同目標

影像生成模型本質上的共同目標

Maximum Likelihood Estimation

Sample
$$\{x^1, x^2, \dots, x^m\}$$
 from $P_{data}(x)$

$$\theta^* = arg \max_{\theta} \prod_{i=1}^{m} P_{\theta}(x^i)$$

We can compute $P_{\theta}(x^i)$

???

Sample
$$\{x^1, x^2, ..., x^m\}$$
 from $P_{data}(x)$

$$\begin{split} \theta^* &= arg \max_{\theta} \prod_{i=1}^m P_{\theta} \big(x^i \big) \\ &= arg \max_{\theta} \sum_{i=1}^m log P_{\theta} \big(x^i \big) \\ &= arg \max_{\theta} \sum_{i=1}^m log P_{\theta} \big(x^i \big) \approx arg \max_{\theta} E_{x \sim P_{data}} [log P_{\theta} (x)] \\ &= arg \max_{\theta} \int_{x} P_{data}(x) log P_{\theta}(x) dx - \int_{x} P_{data}(x) log P_{data}(x) dx \end{split} \tag{not related to } \theta)$$

$$= arg \max_{\theta} \int_{x}^{x} P_{data}(x) log \frac{P_{\theta}(x)}{P_{data}(x)} dx = arg \min_{\theta} KL(P_{data}||P_{\theta})$$
Difference between P_{data} and P_{θ}

Maximum Likelihood = Minimize KL Divergence

VAE vs. Diffusion Model

VAE: Compute $P_{\theta}(x)$

G(z) = x

Mean of Gaussian

$$P_{\theta}(x) = \int_{z} P(z)P_{\theta}(x|z)dz$$

$$P_{\theta}(x|z) = \begin{cases} 1, & G(z) = x \\ 0, & G(z) \neq x \end{cases}$$

可能會幾乎都是0⊗

$$P_{\theta}(x|z)$$
 $\propto exp(||G(z) - x||_2)$

VAE: Lower bound of logP(x)

$$log P_{\theta}(x) = \int_{z} q(z|x) log P(x) dz \quad q(z|x) \text{ can be any distribution}$$

$$= \int_{z} q(z|x) log \left(\frac{P(z,x)}{P(z|x)}\right) dz = \int_{z} q(z|x) log \left(\frac{P(z,x)}{q(z|x)} \frac{q(z|x)}{P(z|x)}\right) dz$$

$$= \int_{z} q(z|x) log \left(\frac{P(z,x)}{q(z|x)}\right) dz + \int_{z} q(z|x) log \left(\frac{q(z|x)}{P(z|x)}\right) dz \geq 0$$

$$KL(q(z|x)||P(z|x))$$

$$\geq \int_{z} q(z|x) log\left(\frac{P(z,x)}{q(z|x)}\right) dz = \operatorname{E}_{q(z|x)} \left[log\left(\frac{P(x,z)}{q(z|x)}\right)\right] \quad lower \ bound$$

Encoder

DDPM: Compute $P_{\theta}(x)$

$$P_{\theta}(x_0) = \int_{x_1:x_T} P(x_T) P_{\theta}(x_{T-1}|x_T) \dots P_{\theta}(x_{t-1}|x_t) \dots P_{\theta}(x_0|x_1) dx_1: x_T$$

DDPM: Lower bound of logP(x)

VAE

Maximize
$$log P_{\theta}(x)$$
 \longrightarrow Maximize $\mathbb{E}_{q(z|x)}[log(\frac{P(x,z)}{q(z|x)})]$ Encoder

DDPM

Maximize
$$log P_{\theta}(\underline{x_0})$$
 \longrightarrow Maximize $\underbrace{log \left(\frac{P(\underline{x_0}: \underline{x_T})}{q(\underline{x_1}: \underline{x_T}|x_0)}\right)}_{[log \left(\frac{P(\underline{x_0}: \underline{x_T})}{q(\underline{x_1}: \underline{x_T}|x_0)}\right)]}$

Forward Process (Diffusion Process)

$$\beta_1, \beta_2, \dots, \beta_T$$

 $\sim \mathcal{N}(\mathbf{0}, I)$

$$q(x_t|x_0) = q(x_1|x_0)q(x_2|x_1) \dots q(x_t|x_{t-1})$$
 π !

$$\sim \mathcal{N}(\mathbf{0}, I)$$

$$x_0$$

$$+\sqrt{1-\beta_2}\sqrt{\beta_1}$$

$$\sqrt{\beta_2}$$

+
$$\sqrt{1-(1-\beta_2)(1-\beta_1)}$$

$$q(x_t|x_0)$$

$$\beta_1, \beta_2, \dots, \beta_T$$

$$\sim \mathcal{N}(\mathbf{0}, I)$$

$$\alpha_t = 1 - \beta_t$$

$$\bar{\alpha}_t = \alpha_1 \alpha_2 \dots \alpha_t$$

$$= \sqrt{1 - \beta_1}$$

$$-\sqrt{\beta_1}$$

$$=$$
 $\sqrt{1-\beta_2}$

+
$$\sqrt{\beta_2}$$

$$\sqrt{1-\beta_t}$$

+
$$\sqrt{\beta_t}$$

Ш

$$= \sqrt{1 - \beta_1} \dots \sqrt{1 - \beta_t}$$

$$\sqrt{\overline{\alpha}_t}$$

$$\sqrt{1-(1-\beta_1)...(1-\beta_t)}$$

$$\sqrt{1-ar{lpha}_t}$$

$$\log p(\boldsymbol{x}) \ge \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log \frac{p(\boldsymbol{x}_{0:T})}{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \right]$$
(47)

$$= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log \frac{p(\boldsymbol{x}_T) \prod_{t=1}^T p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)}{\prod_{t=1}^T q(\boldsymbol{x}_t|\boldsymbol{x}_{t-1})} \right]$$
(48)

$$= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1}) \prod_{t=2}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0}) \prod_{t=2}^{T} q(\boldsymbol{x}_{t}|\boldsymbol{x}_{t-1})} \right]$$
(49)

$$= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log \frac{p(\boldsymbol{x}_T) p_{\boldsymbol{\theta}}(\boldsymbol{x}_0|\boldsymbol{x}_1) \prod_{t=2}^T p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)}{q(\boldsymbol{x}_1|\boldsymbol{x}_0) \prod_{t=2}^T q(\boldsymbol{x}_t|\boldsymbol{x}_{t-1},\boldsymbol{x}_0)} \right]$$
(50)

$$= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_T) p_{\boldsymbol{\theta}}(\boldsymbol{x}_0|\boldsymbol{x}_1)}{q(\boldsymbol{x}_1|\boldsymbol{x}_0)} + \log \prod_{t=2}^{T} \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)}{q(\boldsymbol{x}_t|\boldsymbol{x}_{t-1},\boldsymbol{x}_0)} \right]$$
(51)

$$= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1})}{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})} + \log \prod_{t=2}^{T} \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{\frac{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{0})}} \right]$$
(52)

$$= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1})}{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})} + \log \prod_{t=2}^{T} \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{\frac{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{0})}} \right]$$

$$(53)$$

$$= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log \frac{p(\boldsymbol{x}_T) p_{\boldsymbol{\theta}}(\boldsymbol{x}_0 | \boldsymbol{x}_1)}{\underline{q(\boldsymbol{x}_T | \boldsymbol{x}_0)}} + \log \frac{\underline{q(\boldsymbol{x}_T | \boldsymbol{x}_0)}}{q(\boldsymbol{x}_T | \boldsymbol{x}_0)} + \log \prod_{t=2}^T \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t)}{q(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t, \boldsymbol{x}_0)} \right]$$
(54)

$$= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{T})p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1})}{q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0})} + \sum_{t=2}^{T} \log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})} \right]$$
(55)

$$= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_0|\boldsymbol{x}_1) \right] + \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log \frac{p(\boldsymbol{x}_T)}{q(\boldsymbol{x}_T|\boldsymbol{x}_0)} \right] + \sum_{t=2}^{T} \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)} \right]$$
(56)

$$= \mathbb{E}_{q(\boldsymbol{x}_1|\boldsymbol{x}_0)} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_0|\boldsymbol{x}_1) \right] + \mathbb{E}_{q(\boldsymbol{x}_T|\boldsymbol{x}_0)} \left[\log \frac{p(\boldsymbol{x}_T)}{q(\boldsymbol{x}_T|\boldsymbol{x}_0)} \right] + \sum_{t=2}^T \mathbb{E}_{q(\boldsymbol{x}_t,\boldsymbol{x}_{t-1}|\boldsymbol{x}_0)} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0)} \right]$$
(57)

$$= \underbrace{\mathbb{E}_{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})}\left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1})\right]}_{\text{reconstruction term}} - \underbrace{D_{\text{KL}}(q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0}) \parallel p(\boldsymbol{x}_{T}))}_{\text{prior matching term}} - \sum_{t=2}^{T} \underbrace{\mathbb{E}_{q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})}\left[D_{\text{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}))\right]}_{\text{denoising matching term}}$$
(58)

Understanding Diffusion Models: A Unified Perspective

https://arxiv.org/pdf/2208.11970.pdf

DDPM: Lower bound of logP(x)

$$E_{q(x_{1}|x_{0})}[logP(x_{0}|x_{1})] - KL(q(x_{T}|x_{0})||P(x_{T}))$$

$$- \sum_{t=2}^{T} E_{q(x_{t}|x_{0})}[KL(q(x_{t-1}|x_{t},x_{0})||P(x_{t-1}|x_{t}))]$$

$$E_{q(x_1|x_0)}[logP(x_0|x_1)] - KL(q(x_T|x_0)||P(x_T))$$

$$-\sum_{t=2}^{T} \mathrm{E}_{q(x_{t}|x_{0})} \left[KL \left(q(x_{t-1}|x_{t},x_{0}) ||P(x_{t-1}|x_{t}) \right) \right]$$

$$q(x_t|x_0)$$

$$q(x_{t-1}|x_0)$$

$$q(x_t|x_{t-1})$$

$$E_{q(x_1|x_0)}[logP(x_0|x_1)] - KL(q(x_T|x_0)||P(x_T))$$

$$-\sum_{t=2}^{T} \mathrm{E}_{q(x_{t}|x_{0})} \left[KL \left(q(x_{t-1}|x_{t},x_{0}) || P(x_{t-1}|x_{t}) \right) \right]$$

$$x_0$$

 $q(x_{t-1}|x_t,x_0)$

 $q(x_t|x_0)$ $q(x_{t-1}|x_0)$ $q(x_t|x_{t-1})$

 x_{t-1}

 x_t

$$= \frac{q(x_{t-1}, x_t, x_0)}{q(x_t, x_0)} = \frac{q(x_t | x_{t-1})q(x_{t-1} | x_0)q(x_0)}{q(x_t | x_0)q(x_0)} = \frac{q(x_t | x_{t-1})q(x_{t-1} | x_0)}{q(x_t | x_0)}$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{x}_0)q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)}$$
(71)

$$= \frac{\mathcal{N}(\mathbf{x}_{t}; \sqrt{\alpha_{t}}\mathbf{x}_{t-1}, (1-\alpha_{t})\mathbf{I})\mathcal{N}(\mathbf{x}_{t-1}; \sqrt{\alpha_{t-1}}\mathbf{x}_{0}, (1-\bar{\alpha}_{t-1})\mathbf{I})}{\mathcal{N}(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}, (1-\bar{\alpha}_{t})\mathbf{I})}$$
(72)

$$\propto \exp \left\{ -\left[\frac{(x_t - \sqrt{\alpha_t} x_{t-1})^2}{2(1 - \alpha_t)} + \frac{(x_{t-1} - \sqrt{\bar{\alpha}_{t-1}} x_0)^2}{2(1 - \bar{\alpha}_{t-1})} - \frac{(x_t - \sqrt{\bar{\alpha}_t} x_0)^2}{2(1 - \bar{\alpha}_t)} \right] \right\}$$
(73)

$$= \exp \left\{ -\frac{1}{2} \left[\frac{(\boldsymbol{x}_t - \sqrt{\alpha_t} \boldsymbol{x}_{t-1})^2}{1 - \alpha_t} + \frac{(\boldsymbol{x}_{t-1} - \sqrt{\bar{\alpha}_{t-1}} \boldsymbol{x}_0)^2}{1 - \bar{\alpha}_{t-1}} - \frac{(\boldsymbol{x}_t - \sqrt{\bar{\alpha}_t} \boldsymbol{x}_0)^2}{1 - \bar{\alpha}_t} \right] \right\}$$
(74)

$$= \exp \left\{ -\frac{1}{2} \left[\frac{(-2\sqrt{\alpha_t} x_t x_{t-1} + \alpha_t x_{t-1}^2)}{1 - \alpha_t} + \frac{(x_{t-1}^2 - 2\sqrt{\alpha_{t-1}} x_{t-1} x_0)}{1 - \bar{\alpha}_{t-1}} + C(x_t, x_0) \right] \right\}$$
(75)

$$\propto \exp\left\{-\frac{1}{2}\left[-\frac{2\sqrt{\alpha_t}x_tx_{t-1}}{1-\alpha_t} + \frac{\alpha_tx_{t-1}^2}{1-\alpha_t} + \frac{x_{t-1}^2}{1-\bar{\alpha}_{t-1}} - \frac{2\sqrt{\bar{\alpha}_{t-1}}x_{t-1}x_0}{1-\bar{\alpha}_{t-1}}\right]\right\}$$
(76)

$$= \exp \left\{ -\frac{1}{2} \left[\left(\frac{\alpha_t}{1 - \alpha_t} + \frac{1}{1 - \bar{\alpha}_{t-1}} \right) x_{t-1}^2 - 2 \left(\frac{\sqrt{\alpha_t} x_t}{1 - \alpha_t} + \frac{\sqrt{\bar{\alpha}_{t-1}} x_0}{1 - \bar{\alpha}_{t-1}} \right) x_{t-1} \right] \right\}$$
(77)

$$= \exp \left\{-\frac{1}{2}\left[\frac{\alpha_t(1-\bar{\alpha}_{t-1})+1-\alpha_t}{(1-\alpha_t)(1-\bar{\alpha}_{t-1})}x_{t-1}^2 - 2\left(\frac{\sqrt{\alpha_t}x_t}{1-\alpha_t} + \frac{\sqrt{\bar{\alpha}_{t-1}}x_0}{1-\bar{\alpha}_{t-1}}\right)x_{t-1}\right]\right\}$$
(78)

$$= \exp \left\{-\frac{1}{2} \left[\frac{\alpha_t - \bar{\alpha}_t + 1 - \alpha_t}{(1 - \alpha_t)(1 - \bar{\alpha}_{t-1})} x_{t-1}^2 - 2 \left(\frac{\sqrt{\alpha_t} x_t}{1 - \alpha_t} + \frac{\sqrt{\bar{\alpha}_{t-1}} x_0}{1 - \bar{\alpha}_{t-1}} \right) x_{t-1} \right] \right\}$$
(79)

$$= \exp \left\{-\frac{1}{2} \left[\frac{1 - \bar{\alpha}_t}{(1 - \alpha_t)(1 - \bar{\alpha}_{t-1})} x_{t-1}^2 - 2 \left(\frac{\sqrt{\alpha_t} x_t}{1 - \alpha_t} + \frac{\sqrt{\bar{\alpha}_{t-1}} x_0}{1 - \bar{\alpha}_{t-1}} \right) x_{t-1} \right] \right\}$$
(80)

$$= \exp \left\{ -\frac{1}{2} \left(\frac{1 - \bar{\alpha}_t}{(1 - \alpha_t)(1 - \bar{\alpha}_{t-1})} \right) \left[\boldsymbol{x}_{t-1}^2 - 2 \frac{\left(\frac{\sqrt{\bar{\alpha}_t} \boldsymbol{x}_t}{1 - \bar{\alpha}_t} + \frac{\sqrt{\bar{\alpha}_{t-1}} \boldsymbol{x}_0}{1 - \bar{\alpha}_{t-1}} \right)}{\frac{1 - \bar{\alpha}_t}{(1 - \alpha_t)(1 - \bar{\alpha}_{t-1})}} \boldsymbol{x}_{t-1} \right] \right\}$$
(81)

$$= \exp \left\{ -\frac{1}{2} \left(\frac{1 - \bar{\alpha}_t}{(1 - \alpha_t)(1 - \bar{\alpha}_{t-1})} \right) \left[x_{t-1}^2 - 2 \frac{\left(\frac{\sqrt{\bar{\alpha}_t} x_t}{1 - \bar{\alpha}_t} + \frac{\sqrt{\bar{\alpha}_{t-1}} x_0}{1 - \bar{\alpha}_{t-1}} \right) (1 - \alpha_t)(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} x_{t-1} \right] \right\} (82)$$

$$= \exp \left\{ -\frac{1}{2} \left(\frac{1}{\frac{(1-\alpha_t)(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}} \right) \left[\boldsymbol{x}_{t-1}^2 - 2 \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})\boldsymbol{x}_t + \sqrt{\bar{\alpha}_{t-1}}(1-\alpha_t)\boldsymbol{x}_0}{1-\bar{\alpha}_t} \boldsymbol{x}_{t-1} \right] \right\}$$
(83)

$$\propto \mathcal{N}(\boldsymbol{x}_{t-1}; \underbrace{\frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})\boldsymbol{x}_t + \sqrt{\bar{\alpha}_{t-1}}(1-\alpha_t)\boldsymbol{x}_0}{1-\bar{\alpha}_t}}_{\mu_{\theta}(\boldsymbol{x}_t,\boldsymbol{x}_0)}, \underbrace{\frac{(1-\alpha_t)(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}}_{\boldsymbol{\Sigma}_{\theta}(t)} \mathbf{I})$$
(84)

https://arxiv.org/pdf/2208.11970.pdf

$$E_{q(x_1|x_0)}[logP(x_0|x_1)] - KL(q(x_T|x_0)||P(x_T))$$

$$-\sum_{t=2}^{T} \mathbb{E}_{q(x_{t}|x_{0})} \left[KL \left(q(x_{t-1}|x_{t},x_{0}) | P(x_{t-1}|x_{t}) \right) \right]$$

$$\frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t x_0 + \sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})x_t}{1 - \bar{\alpha}_t} \qquad \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}\beta_t I$$

$$\frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t I$$

$$E_{q(x_1|x_0)}[logP(x_0|x_1)] - KL(q(x_T|x_0)||P(x_T))$$

$$-\sum_{t=2}^{T} \mathrm{E}_{q(x_{t}|x_{0})} \left[KL(q(x_{t-1}|x_{t},x_{0})||P(x_{t-1}|x_{t})) \right]$$

How to minimize KL divergence?

Recall that the KL Divergence between two Gaussian distributions is:

$$D_{\mathrm{KL}}(\mathcal{N}(\boldsymbol{x};\boldsymbol{\mu}_{x},\boldsymbol{\Sigma}_{x}) \parallel \mathcal{N}(\boldsymbol{y};\boldsymbol{\mu}_{y},\boldsymbol{\Sigma}_{y})) = \frac{1}{2} \left[\log \frac{|\boldsymbol{\Sigma}_{y}|}{|\boldsymbol{\Sigma}_{x}|} - d + \mathrm{tr}(\boldsymbol{\Sigma}_{y}^{-1}\boldsymbol{\Sigma}_{x}) + (\boldsymbol{\mu}_{y} - \boldsymbol{\mu}_{x})^{T} \boldsymbol{\Sigma}_{y}^{-1} (\boldsymbol{\mu}_{y} - \boldsymbol{\mu}_{x}) \right]$$

$$E_{q(x_1|x_0)}[logP(x_0|x_1)] - KL(q(x_T|x_0)||P(x_T))$$

$$-\sum_{t=2}^{T} E_{q(x_t|x_0)} \left[KL(q(x_{t-1}|x_t,x_0)||P(x_{t-1}|x_t)) \right]$$

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \underline{\sigma_t \mathbf{z}}$$

- 5: end for
- 6: return x_0

感謝伏宇寬助教提供結果

為什麼不直接取 Mean?

為什麼生成文句時需要 Sample?

為什麼生成文句時需要 Sample?

The Curious Case of Neural Text Degeneration

https://arxiv.org/abs/1904.09751

Context: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Beam Search, b=32:

"The study, published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), was conducted by researchers from the Universidad Nacional Autónoma de México (UNAM) and the Universidad Nacional Autónoma de México (UNAM/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de ..."

Pure Sampling:

They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town, and they speak huge, beautiful, paradisiacal Bolivian linguistic thing. They say, 'Lunch, marge.' They don't tell what the lunch is," director Professor Chuperas Omwell told Sky News. "They've only been talking to scientists, like we're being interviewed by TV reporters. We don't even stick around to be interviewed by TV reporters. Maybe that's how they figured out that they're cosplaying as the Bolivian Cavalleros."

https://arxiv.org/abs/1904.09751

Beam Search Text is Less Surprising

Beam Search

...to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and...

Human

...which grant increased life span and three years warranty. The Antec HCG series consists of five models with capacities spanning from 400W to 900W. Here we should note that we have already tested the HCG-620 in a previous review and were quite satisfied With its performance. In today's review we will rigorously test the Antec HCG-520, which as its model number implies, has 520W capacity and contrary to Antec's strong beliefs in multi-rail PSUs is equipped...

語音合成也需要 Sampling!

https://arxiv.org/abs/1712.05884

感謝杜濤同學提供實驗結果

The convolutional layers in the network are regularized using dropout [25] with probability 0.5, and LSTM layers are regularized using zoneout [26] with probability 0.1. In order to introduce output variation at inference time, dropout with probability 0.5 is applied only to layers in the pre-net of the autoregressive decoder.

Diffusion Model 是一種 Autoregressive

「一次到位」改成「N次到位」

Denoising Diffusion Probabilistic Models

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: **return** \mathbf{x}_0

Diffusion Model for Speech

WaveGrad

Diffusion Model for Text

● Difficulty: 你好嗎? → ··· → Add noise

Solution: Noise on latent space

Diffusion Model for Text

• Difficulty: 你好嗎? —— ··· —— Add noise

Solution: Noise on latent space

Diffusion Model for Text

Solution: Don't add Gaussian noise

https://arxiv.org/abs/2210.16886

Diffusion via Editbased Reconstruction (DiffusER)

t = 128 [MASK] [MASK] [MASK] [MASK] [MASK] ...

t = 25 In response [MASK] the demands , [MASK] [MASK] workers
union said [MASK] backflow fund [MASK]s would face further
investigation and a fine.

 ${f t}={f 0}$ In response to the demands , the Community Workers union said the backflow fund managers would face further investigation and a fine .

https://arxiv.org/abs/2107.03006

Mask-Predict

https://aclanthology.org/D19-1633/

Mask-Predict https://arxiv.org/abs/2301.00704

Scheduled Parallel Decoding with MaskGIT

Sequential Decoding with Autoregressive Transformers

t = 255