

squaremania2 • IT

Squaremania 2 (squaremania2)

Marco si sta annoiando perché il gioco *Squaremania* gli risulta troppo semplice. Per fortuna viene a sapere che esiste una nuova versione del gioco: *Squaremania* 2.

Figura 1: L'icona di Squaremania 2.

Il gioco è simile: vengono forniti al giocatore N cubetti di legno 1×1 , ma a differenza della versione precedente non è obbligatorio formare un solo quadrato. L'obiettivo di $Squaremania\ 2$ è quello di raggruppare i cubetti nel minor numero di quadrati possibile.

Ad esempio, se venissero forniti 13 cubetti, si potrebbe formare un quadrato 3×3 e uno 2×2 , e si può dimostrare che non esiste soluzione migliore.

Aiuta Marco trovando una soluzione ottimale al problema.

Possono esistere più soluzioni ottimali. In tal caso, qualsiasi delle soluzioni ottimali verrà considerata corretta.

Implementazione

Dovrai sottoporre un unico file, con estensione .cpp.

Tra gli allegati a questo task troverai un template squaremania2.cpp con un esempio di implementazione.

Il file di input è composto da 1 riga:

• Riga 1: l'intero N.

Il file di output è composto da 1 riga:

• Riga 1: Il numero di quadrati.

squaremania2 Pagina 1 di 2

• Riga 2: Le lunghezze dei lati dei quadrati, separate da uno spazio.

Assunzioni

• $1 \le N \le 15000$.

Assegnazione del punteggio

Il tuo programma verrà testato su diversi test case raggruppati in subtask. Per ottenere il punteggio relativo ad un subtask, è necessario risolvere correttamente tutti i test che lo compongono.

- **Subtask 1** (0 punti) Casi d'esempio.

- Subtask 2 (50 punti) $N \le 11$

– **Subtask 3** (50 punti) Nessuna limitazione aggiuntiva.

Esempi di input/output

stdin	stdout
13	2 3 2
7	4 2 1 1 1
2789	2 50 17

Spiegazione

Il primo caso d'esempio è quello descritto nel testo del problema.

Nel secondo caso d'esempio, si possono formare 3 quadrati di dimensioni 1×1 e uno di dimensione 2×2 . Nel terzo caso d'esempio conviene formare un quadrato 50×50 e uno 17×17 .

squaremania2 Pagina 2 di 2