```
# Install packages if missing (Colab usually has these)
!pip -q install pandas matplotlib seaborn numpy notebook

import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import display, Markdown

# Set visuals
%matplotlib inline
sns.set(style="whitegrid", context="notebook", font_scale=1)
plt.rcParams['figure.figsize'] = (8,5)
```

If you prefer to upload via UI, comment this cell out and upload using the Colab "Files
from google.colab import files
uploaded = files.upload() # Use the dialog to upload train.csv (and test.csv if you want
After upload, the files are available in the current working directory
print("Uploaded:", list(uploaded.keys()))

Choose Files train.csv

• train.csv(text/csv) - 61194 bytes, last modified: 8/11/2025 - 100% done Saving train.csv to train.csv Uploaded: ['train.csv']

Attempt to load train.csv from the notebook directory.
DATAFILE = "train.csv" # change if needed

if not os.path.exists(DATAFILE):

raise FileNotFoundError(f"{DATAFILE} not found. Please upload train.csv via the Files

df = pd.read_csv(DATAFILE)
print("Loaded:", DATAFILE, "| shape:", df.shape)
display(df.head())

→ Loaded: train.csv | shape: (891, 12)

			•	•						
	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briags	female	38.0	1	0	PC 17599	71.2

```
# Basic structural overview
display(Markdown("## Dataset Info"))
print(df.info())

display(Markdown("## Descriptive statistics (numeric)"))
display(df.describe().T)

display(Markdown("## Descriptive statistics (all)"))
display(df.describe(include='all').T)
```


Dataset Info

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
	67	· · · / - › · · ·	

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

None

Descriptive statistics (numeric)

	count	mean	std	min	25%	50%	75%	max
Passengerld	891.0	446.000000	257.353842	1.00	223.5000	446.0000	668.5	891.0000
Survived	891.0	0.383838	0.486592	0.00	0.0000	0.0000	1.0	1.0000
Pclass	891.0	2.308642	0.836071	1.00	2.0000	3.0000	3.0	3.0000
Age	714.0	29.699118	14.526497	0.42	20.1250	28.0000	38.0	80.0000
SibSp	891.0	0.523008	1.102743	0.00	0.0000	0.0000	1.0	8.0000
Parch	891.0	0.381594	0.806057	0.00	0.0000	0.0000	0.0	6.0000
Fare	891.0	32.204208	49.693429	0.00	7.9104	14.4542	31.0	512.3292

Descriptive statistics (all)

	count	unique	top	freq	mean	std	min	25%	50%
Passengerld	891.0	NaN	NaN	NaN	446.0	257.353842	1.0	223.5	446.0
Survived	891.0	NaN	NaN	NaN	0.383838	0.486592	0.0	0.0	0.0
Pclass	891.0	NaN	NaN	NaN	2.308642	0.836071	1.0	2.0	3.0
Name	891	891	Dooley, Mr. Patrick	1	NaN	NaN	NaN	NaN	NaN
Sex	891	2	male	577	NaN	NaN	NaN	NaN	NaN
Age	714.0	NaN	NaN	NaN	29.699118	14.526497	0.42	20.125	28.0
SibSp	891.0	NaN	NaN	NaN	0.523008	1.102743	0.0	0.0	0.0
	0040				0.004504	0.000057	0.0	0.0	0.0

exploratory-data-analysis-titanic.ipynb - Colab	
---	--

Parcn	891.U	ivaiv	ivaiv	เงลเง	U.381594	U.8U0U5/	U.U	U.U	U.U
Ticket	891	681	347082	7	NaN	NaN	NaN	NaN	NaN
Fare	891.0	NaN	NaN	NaN	32.204208	49.693429	0.0	7.9104	14.4542
Cabin	204	147	G6	4	NaN	NaN	NaN	NaN	NaN

```
display(Markdown("## Missing values (per column)"))
missing = df.isnull().sum().sort_values(ascending=False)
display(missing)

display(Markdown("## Percentage missing"))
display((df.isnull().mean().sort_values(ascending=False) * 100).round(2))

display(Markdown("## Duplicate rows"))
dups = df.duplicated().sum()
print("Duplicate rows count:", dups)
```


Missing values (per column)

	0
Cabin	687
Age	177
Embarked	2
Passengerld	0
Name	0
Pclass	0
Survived	0
Sex	0
Parch	0
SibSp	0
Fare	0
Ticket	0

dtype: int64

Percentage missing

	0
Cabin	77.10
Age	19.87
Embarked	0.22
Passengerld	0.00
Name	0.00
Pclass	0.00
Survived	0.00
Sex	0.00
Parch	0.00
SibSp	0.00
Fare	0.00
Ticket	0.00

dtype: float64

Duplicate rows

```
# show counts for the most informative categorical columns
cols_to_check = ['Survived','Pclass','Sex','Embarked','SibSp','Parch']
for c in cols_to_check:
    if c in df.columns:
        display(Markdown(f"### Value counts: `{c}`"))
        display(df[c].value_counts(dropna=False))
```


Value counts: Survived

count

Survived	
0	549
1	342

dtype: int64

Value counts: Pclass

count

Pclass	
3	491
1	216
2	184

dtype: int64

Value counts: Sex

count

Sex	
male	577
female	314

dtype: int64

Value counts: Embarked

count

Embarked				
S	644			
С	168			
Q	77			
NaN	2			

dtype: int64

Value counts: SibSp

count

SibSp 0 608

1	209
2	28
4	18
3	16
8	7
5	5

dtype: int64

Value counts: Parch

count

Parch	
0	678
1	118
2	80
5	5
3	5
4	4
6	1

dtype: int64

```
# Create a working copy
eda = df.copy()
# Feature: FamilySize
if set(['SibSp','Parch']).issubset(eda.columns):
    eda['FamilySize'] = eda['SibSp'] + eda['Parch'] + 1 # +1 for self
# Feature: IsAlone
if 'FamilySize' in eda.columns:
    eda['IsAlone'] = (eda['FamilySize'] == 1).astype(int)
# Feature: Title extracted from Name (if exists)
if 'Name' in eda.columns:
    eda['Title'] = eda['Name'].str.extract(r',\s*([^\.]+)\.', expand=False).str.strip()
    # group rare titles
    common_titles = eda['Title'].value_counts().loc[lambda x: x>10].index
    eda['Title'] = eda['Title'].where(eda['Title'].isin(common_titles), 'Other')
# Flag missing Age
if 'Age' in eda.columns:
    eda['Age_missing'] = eda['Age'].isnull().astype(int)
# Basic imputation example (not for modeling final)
if 'Age' in eda.columns:
    eda['Age_imputed'] = eda['Age'].fillna(eda['Age'].median())
display(Markdown("## New features created (if available): FamilySize, IsAlone, Title, Age
display(eda.head()[['FamilySize','IsAlone','Title','Age','Age_missing','Age_imputed']].he
```

→

New features created (if available): FamilySize, IsAlone, Title, Age_missing, Age_imputed

	FamilySize	IsAlone	Title	Age	Age_missing	Age_imputed	\blacksquare
0	2	0	Mr	22.0	0	22.0	ılı
1	2	0	Mrs	38.0	0	38.0	
2	1	1	Miss	26.0	0	26.0	
3	2	0	Mrs	35.0	0	35.0	
1	1	1	Mr	35 N	Λ	35 N	

```
num_cols = eda.select_dtypes(include=[np.number]).columns.tolist()
# Plot histograms for a selection
plot_cols = [c for c in ['Age','Fare','FamilySize'] if c in eda.columns]
for c in plot_cols:
    plt.figure(figsize=(8,4))
    sns.histplot(eda[c].dropna(), kde=True, bins=30)
    plt.title(f"Distribution of {c}")
    plt.xlabel(c)
    plt.ylabel("Count")
```

plt.tight_layout()
plt.show()


```
cat_cols = [c for c in ['Survived','Pclass','Sex','Embarked','Title','IsAlone'] if c in e
for c in cat_cols:
    plt.figure(figsize=(6,4))
    sns.countplot(data=eda, x=c, order=eda[c].value_counts().index)
    plt.title(f"Count plot of {c}")
    plt.tight_layout()
    plt.show()
```

 $\overline{\mathbf{T}}$


```
# Survival rate overall
if 'Survived' in eda.columns:
    overall = eda['Survived'].mean()
    display(Markdown(f"**Overall survival rate:** {overall:.4f}"))
# Survival by Sex and Pclass (barplots)
if set(['Survived', 'Sex']).issubset(eda.columns):
    plt.figure(figsize=(6,4))
    sns.barplot(data=eda, x='Sex', y='Survived')
    plt.title("Survival rate by Sex")
    plt.show()
if set(['Survived', 'Pclass']).issubset(eda.columns):
    plt.figure(figsize=(6,4))
    sns.barplot(data=eda, x='Pclass', y='Survived', order=sorted(eda['Pclass'].unique()))
    plt.title("Survival rate by Pclass")
    plt.show()
# Survival by Title if available
if set(['Survived','Title']).issubset(eda.columns):
    plt.figure(figsize=(8,4))
    sns.barplot(data=eda, x='Title', y='Survived', order=eda.groupby('Title')['Survived']
    plt.title("Survival rate by Title")
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```

 $\overline{\mathbf{T}}$

Overall survival rate: 0.3838


```
# Age distribution by Pclass
if set(['Age','Pclass']).issubset(eda.columns):
    plt.figure(figsize=(8,4))
    sns.boxplot(data=eda. x='Pclass'. v='Age')
```