

PL1167

单片低功耗高性能 2.4GHz 无线射频收发芯片

芯片概述:

PL1167 是一款工作在 2.4~2.5GHz 世界通用 ISM 频 段的单片低功耗高性能 2.4GHz 无线射频收发芯片。

该单芯片无线收发器集成包括: 频率综合器、功率放大器、晶体振荡器、调制解调器等模块。

输出功率、信道选择与协议等可以通过 SPI 或 I2C 接口进行灵活配置。

支持跳频以及接收信号强度检测等功能,抗干扰性能强,可以适应各种复杂的环境并达到优异的性能。

内置地址及 FEC、CRC 校验功能。

内置自动应答及自动重发功能。

芯片发射功率最大可以达到 5.5dBm,接收灵敏度可以达到-88dBm。

内置电源管理功能,掉电模式和待机模式下待机电流可以减小到接近 1uA。

管脚分布图:

主要特点:

- 低功耗高性能2.4GHz无线射频收 发芯片
- 无线速率: 1Mbps
- 内置硬件链路层
- 内置接收信号强度检测电路
- 支持自动应答及自动重发功能
- 内置地址及FEC、CRC校验功能
- 极短的信道切换时间,可用于跳频
- 使用微带线电感和双层PCB板
- 低工作电压: 1.9~3.6V
- 封装形式: TSSOP16/SOP16
- TSSOP16/SOP16可支持SPI与 I2C接口

应用:

- 无线鼠标,键盘,游戏机操纵杆
- 无线数据通讯
- 无线门禁
- 无线组网
- 安防系统
- 遥控装置
- 遥感勘测
- 智能运动设备
- 智能家居
- 工业传感器
- 工业和商用近距离通信
- IP电话,无绳电话
- 5 玩具

V1.2 © 2018 www.pmicro.com.cn

产品说明书 PL1167

1概要

PL1167 是一款工作在 2.4~2.5GHz 世界通用 ISM 频段的单片低功耗高性能 2.4GHz 无线射 频收发芯片。

该单芯片无线收发器集成包括:频率综合器、 功率放大器、晶体振荡器、调制解调器等模块。

输出功率、信道选择与协议等可以通过 SPI 或 I2C 接口进行灵活配置。

支持跳频以及接收信号强度检测等功能,抗

干扰性能强,可以适应各种复杂的环境并达到优异的性能。

内置地址及 FEC、CRC 校验功能。

内置自动应答及自动重发功能。

芯片发射功率最大可以达到 5.5dBm,接收 灵敏度可以达到-88dBm。

内置电源管理功能,掉电模式和待机模式下 待机电流可以减小到接近 1uA。

2 特性

- 低功耗高性能2.4GHz无线射频收发芯片
- 无线速率: 1Mbps
- 内置硬件链路层
- 内置接收信号强度检测电路
- 支持自动应答及自动重发功能
- 内置地址及FEC、CRC校验功能

- 极短的信道切换时间,可用于跳频
- 使用微带线电感和双层PCB板
- 低工作电压: 1.9~3.6V
- 封装形式: TSSOP16/SOP16
- TSSOP16/SOP16可支持SPI与I2C接口

3 快速参考数据

参数	数值	单位
最低工作电压	1.9	V
最大发射功率	5.5	dBm
数据传输速率	1	Mbps
发射模式功耗@OdBm	16	mA
接收模式功耗	17	mA
工作温度范围	-40 to +105	$^{\circ}$ C
接收灵敏度	-88	dBm
掉电模式功耗	1	uA

4 管脚分布图

TSSOP16/SOP16 管脚分布图如下:

5 管脚描述

Pin	管脚名	类型	描述	
1	AVSS	电源	接地(0V)	
2	N/C	悬空	悬空不接	
3	PKT	数字输出	发射/接收包状态指示位	
4	RSTB	数字输入	复位脚,低电平有效	
5	DVSS	电源	接地(0V)	
6	SCSB	数字输入	SPI: SPI接口从模式使能信号,低电平有效 从SLEEP模式唤醒芯片 I2C: 从SLEEP模式唤醒芯片	
7	SCK/SCL	数字输入	SCK: SPI接口时钟输入 SCL: I2C接口时钟输入	
8	SDI/A4	数字输入	SDI: SPI接口数据输入 A4: I2C接口地址位4	
9	SDO/SDA	数字输出	出 SDO: SPI接口数据输出(无效时为三态)	
		数字I/O	SDA: I2C接口数据输入输出I/O	
10	MODE	数字输入	接口模式选择:	
			VSS: 选择SPI接口	
			VCC:选择I2C接口	
11	VCC	电源	电源(3.3V)	
12	VDDO	电源	1.8V内部LDO输出,外接电容	
13	XOUT	模拟输出	晶振输出	
14	XIN	模拟输入	晶振输入	
15	ANTB	天线	天线接口	
16	ANT	天线	天线接口	

6 结构框图

7 最大额定值

参数	符号	范围	单位
VCC 供电电压	VCC	-0.3 to +3.6	V
VDDO 供电电压	VDDO	-0.3 to +2.5	V
输入电压	V _{IN}	-0.3 to (VCC+0.3)	V
输出电压	V _{OUT}	-0.3 to (VCC+0.3)	
工作温度	T _{OP}	-40 to +105	$^{\circ}$
仓储温度	T _{ST}	-40 to +125	$^{\circ}$

注释: 超过最大额定值可能损毁器件; 超过推荐工作范围的芯片功能特性不能保证; 长时间工作于最大额定条件下可能会影响器件的稳定性。

8 电气特性

(VCC=+3V, VSS=0V, TA= -40° C to +105 $^{\circ}$ C)

符号	参数(条件)	说明	最小值	典型	最大值	单位
	工作条件					
VCC	VCC 供电电压		1.9	3.3	3.6	V
T _{OP}	工作温度		-40		105	$^{\circ}$ C
	数字输入管脚					
V _{IH}	高电平输入电压		0.8VCC		1.2VCC	V
V _{IL}	低电平输入电压		0		0.2VCC	V
	数字输出管脚					
V _{OH}	高电平输出电压		0.8VCC		VCC	V
V _{OL}	低电平输出电压		0		0.2VCC	V
	常规射频条件					
f _{OP}	工作频段		2402		2480	MHz
f _{XTAL}	晶振频率			12		MHz
$\triangle f_{1M}$	频率偏移@1Mbps			280		KHz
R _{GFSK}	数据传输速率			1		Mbps
F _{CHANNEL}	信道间隔			1		MHz
	发射操作					
P _{RF}	最大输出功率			0	5.5	dBm
P _{RFC}	射频功率控制范围		18	20	22	dB
P _{RF1}	第一临近信道发射功率				-20	dBm
P _{RF2}	第二临近信道发射功率				-50	dBm
I _{VCC_H}	高增益时功耗			16		mA
I _{VCC_L}	低增益时功耗			12		mA
	接收操作					
I _{VCC}	接收功耗			17		mA
RX _{SENS}	0.1% BER 时接收灵敏度			-88		dBm

9 SPI 接口

9.1 SPI 接口说明

PL1167 收发芯片提供简单的 MCU 接口 SPI 模式,芯片的 SPI 接口只支持从模式。

SPI接口包含7个相关信号,如下表:

管脚	描述
RSTB	复位脚,低电平有效
MODE	模式选择,为0时选择SPI模式
SCSB	SPI接口从模式使能信号,低电平有效
	从SLEEP模式唤醒芯片
SCK	SPI接口时钟输入
SDI	SPI接口数据输入
SDO	SPI接口数据输出
PKT	发射/接收包状态指示位

9.2 SPI 命令格式

注释: SPI 总线在 SCK 上升沿建立数据,在下降沿采样数据。

符号	最小	典型	最大	描述
T _{SSH}	250ns			两次 SPI 命令时间间隔
T_{SSF} , T_{SSR}	41.5ns			SCSB 与 SCK 时间间隔
$T_{\mathtt{A2D}}$	*1			地址与数据时间间隔
T_{H2L}	*1			高低字节数据时间间隔
$T_{\mathtt{R2R}}$	*1			两个寄存器数据时间间隔
$T_{\mathtt{SCK}}$	83ns			SCK 时钟周期

注: *1—在读FIFO数据时,至少需要 450ns等待时间; 其它寄存器时T3_{min} = 41.5ns。

10 I2C 接口

10.1 I2C 接口说明

管脚	描述
RSTB	复位脚,低电平有效
MODE	模式选择,为1时选择I2C模式
SCSB	从 SLEEP 模式唤醒芯片
SCL	I2C接口时钟输入
SDA	I2C 数据输入输出 I/O
A4	I2C 接口地址位 4

10.2 I2C 支持特性

I2C 从模式选择	支持与否
标准模式- 100 kbps	是
快速模式 - 400 kbps	是
增强型快速模式 - 1000 kbps	是
高速模式 - 3200 kbps	否
时钟展宽	否
10 位从地址	否
广呼方式地址	否
软件复位	否
器件 ID	否

10.3 I2C 命令格式

10.4 I2C 器件地址

A6	A5	A4	А3	A2	A 1	A0	R/W
0	1	A4 Pin	1	0	0	0	Read=1
							Write=0

11 控制寄存器

最新的推荐控制寄存器值参考《用户手册》,请联系聚元微索取。

12 典型应用

13 封装

TSSOP16 封装

TSSOP16 封装尺寸

MILL	IMETER
MIN	MAX
	1.20
0.05	0.15
0.90	1.05
0.39	0.49
0.20	0.30
0.19	0.25
0.13	0.19
0.12	0.14
4.86	5.06
6.20	6.60
0.65BSC	
0.45	0.75
1.00BSC	
0	8°
	MIN

SOP16 封装

SOP16 封装尺寸

Cumbal	符号	SOP(M)16		
Symbol	111 5	Min	Max	
Α	总高	1.40	1.73	
A1	站高	0.05	0.18	
A2	塑封体高	1.35	1.55	
Е	跨度	5.84	6.24	
E1	塑封体宽	3.84	4.04	
D	塑封体长	9.90	10.10	
L	脚长	0.40	0.70	
е	脚间距	1.27TYP		
В	引脚宽度	0.36	0.46	
С	引脚厚度	0.3	2TYP	
θ1	脱模斜度	8°TYP		
θ2	脱模斜度	8	°TYP	
θ3	脚角度 0° 8°		8°	

14 版本修订记录

修订日期	修订内容
2012/07/10	初稿
2016/11/07	正式发布版本: TSSOP16/SOP16 1) 9.2 SPI 命令格式加入 SPI 说明 2) 10.3 I2C 命令格式修正 3) 修正f _{OP} : 2402~2480
2018/07/11	工作温度参数
	2012/07/10 2016/11/07

15 注意事项

为了持续改进产品的可靠性、功能或设计,聚元微保留随时更新修改的权利,并不另行通知客户。 客户在下单前请确认所使用的是最新的完整版说明书。