# Suggesting best venues for stay in Toronto for Tourism

## Navaneeth Krishna Vadapalli

## **August 15, 2019**

#### 1. Introduction

#### 1.1. Background

Tourism is a social, cultural and economic phenomenon which entails the movement of people to countries or places outside their usual environment for personal or business/professional purposes. When looking at tourism it's important to consider the term hospitality. Some define hospitality as "the business of helping people to feel welcome and relaxed and to enjoy themselves" Simply put, the hospitality industry is the combination of the accommodation and food and beverage groupings, collectively making up the largest segment of the industry.

Tourism generates about **Half a Billion Dollar revenue** worldwide. World Tourism Organization (UNWTO) is the most widely recognized and the leading international organization in travel and tourism today. It is a specialized agency of the United Nations. It serves as a global forum for tourism policy and a practical source of tourism know-how. With its headquarters in Madrid, Spain the World Tourism Organization plays a central and decisive role in promoting development of responsible, sustainable and universally accessible tourism.

#### 1.2. Problem Statement

Looking back into time there is a significant growth the rate of development in Tourism and so has the rate of exploitation by the local neighborhoods when a tourist comes to an unknown place. Many a times Tourists end up staying in places where the venues are very fat apart causing a lot of inconvenience. So, wouldn't it be better if we had means and the ability to suggest best neighborhoods based on the Tourist basic amenities like café, diner, gym, hotels, restaurants etc. The scope of venues in this project is restricted to Toronto, Canada.

### 1.3. Interest or Target Audience

With the explosion of technology in the modern era, the ease of connectivity to internet and data is made a lot easier. But still customer satisfaction is a factor which can never be determined. If this solution is integrated with an API and website to display the search results based on user input. It can tap the untapped market and could very well be a means of generating large sums of revenue. Majority of the target audience are the end users of mobile, laptop, iPad, tablets etc.

## 2. Data acquisition and cleaning

#### 2.1. Data Sources

The source of the data is Wikipedia and the links are attached below:

https://en.wikipedia.org/wiki/List of postal codes of Canada: M

The link contains data about the neighborhoods in Toronto.

https://foursquare.com/

To get the venues around a location.

http://cocl.us/Geospatial data

To get the co-ordinates of various neighborhoods of Toronto.

#### 2.2. Data Cleaning

The final data was obtained by combining data from multiple sources into one. The data from Wikipedia has to be scrapped cleaned and obtain the columns PostalCode, Borough, and Neighborhood. Later these had to be integrated with the co-ordinates (Latitudes and Longitudes). The processing involved working with the cells that have an assigned borough. Ignore cells with a borough that is Not assigned. More than one neighborhood can exist in one postal code area. For example, in the table on the Wikipedia page, you will notice that M5A is listed twice and has two neighborhoods: Harbourfront and Regent Park. These two rows will be combined into one row with the neighborhoods separated with a comma. a cell has a borough but a **Not assigned** neighborhood, then the neighborhood will be the same as the borough.

### 3. Methodology

### 3.1. Exploratory data Analysis

#### 3.1.1. Part 1

The preliminary data to create the Folium Map was prepared and the screenshot of the dataframe is below.

The data has 103 records and 3 columns namely PostalCode, Borough, and Neighborhood.

| Neighbourhood                                 | Borough          | Postalcode |    |
|-----------------------------------------------|------------------|------------|----|
| Parkwoods                                     | North York       | МЗА        | 0  |
| Victoria Village                              | North York       | M4A        | 1  |
| Harbourfront, Regent Park                     | Downtown Toronto | M5A        | 2  |
| Lawrence Heights, Lawrence Manor              | North York       | M6A        | 3  |
| Queen's Park                                  | Queen's Park     | M7A        | 4  |
| Islington Avenue                              | Etobicoke        | М9А        | 5  |
| Rouge, Malvern                                | Scarborough      | M1B        | 6  |
| Don Mills North                               | North York       | МЗВ        | 7  |
| Woodbine Gardens, Parkview Hill               | East York        | M4B        | 8  |
| Ryerson, Garden District                      | Downtown Toronto | М5В        | 9  |
| Glencairn                                     | North York       | М6В        | 10 |
| Cloverdale, Islington, Martin Grove, Princess | Etobicoke        | М9В        | 11 |

### 3.1.2. Part 2

After obtaining data from the Wikipedia, the data had to be merged with the co-ordinates; Latitude and Longitude so that this could be plotted on a Folium map.

The merged dataframe has a size of (103,5) and the dataframe is attached below along with the Folium map visualization:

|    | Postalcode | Borough          | Neighbourhood                                 | Latitude  | Longitude  |
|----|------------|------------------|-----------------------------------------------|-----------|------------|
| 0  | МЗА        | North York       | Parkwoods                                     | 43.753259 | -79.329656 |
| 1  | M4A        | North York       | Victoria Village                              | 43.725882 | -79.315572 |
| 2  | M5A        | Downtown Toronto | Harbourfront, Regent Park                     | 43.654260 | -79.360636 |
| 3  | M6A        | North York       | Lawrence Heights, Lawrence Manor              | 43.718518 | -79.464763 |
| 4  | M7A        | Queen's Park     | Queen's Park                                  | 43.662301 | -79.389494 |
| 5  | M9A        | Etobicoke        | Islington Avenue                              | 43.667856 | -79.532242 |
| 6  | M1B        | Scarborough      | Rouge, Malvern                                | 43.806686 | -79.194353 |
| 7  | МЗВ        | North York       | Don Mills North                               | 43.745906 | -79.352188 |
| 8  | M4B        | East York        | Woodbine Gardens, Parkview Hill               | 43.706397 | -79.309937 |
| 9  | M5B        | Downtown Toronto | Ryerson, Garden District                      | 43.657162 | -79.378937 |
| 10 | M6B        | North York       | Glencairn                                     | 43.709577 | -79.445073 |
| 11 | М9В        | Etobicoke        | Cloverdale, Islington, Martin Grove, Princess | 43.650943 | -79.554724 |
| 12 | M1C        | Scarborough      | Highland Creek, Rouge Hill, Port Union        | 43.784535 | -79.160497 |
| 13 | мзс        | North York       | Flemingdon Park, Don Mills South              | 43.725900 | -79.340923 |
| 14 | M4C        | East York        | Woodbine Heights                              | 43.695344 | -79.318389 |
| 15 | M5C        | Downtown Toronto | St. James Town                                | 43.651494 | -79.375418 |
| 16 | М6С        | York             | Humewood-Cedarvale                            | 43.693781 | -79.428191 |
|    |            |                  |                                               |           |            |



3.1.3. Part 3

## Using Foursquare API to get nearby venues:

|   | Neighbourhood                | Neighbourhood<br>Latitude | Neighbourhood<br>Longitude | Venue                                        | Venue<br>Latitude | Venue<br>Longitude | Venue Category                |
|---|------------------------------|---------------------------|----------------------------|----------------------------------------------|-------------------|--------------------|-------------------------------|
| 0 | Parkwoods                    | 43.753259                 | -79.329656                 | Brookbanks Park                              | 43.751976         | -79.332140         | Park                          |
| 1 | Parkwoods                    | 43.753259                 | -79.329656                 | KFC                                          | 43.754387         | -79.333021         | Fast Food Restaurant          |
| 2 | Parkwoods                    | 43.753259                 | -79.329656                 | TTC stop #8380                               | 43.752672         | -79.326351         | Bus Stop                      |
| 3 | Parkwoods                    | 43.753259                 | -79.329656                 | Variety Store                                | 43.751974         | -79.333114         | Food & Drink Shop             |
| 4 | Victoria Village             | 43.725882                 | -79.315572                 | Victoria Village Arena                       | 43.723481         | -79.315635         | Hockey Arena                  |
| 5 | Victoria Village             | 43.725882                 | -79.315572                 | Tim Hortons                                  | 43.725517         | -79.313103         | Coffee Shop                   |
| 6 | Victoria Village             | 43.725882                 | -79.315572                 | Portugril                                    | 43.725819         | -79.312785         | Portuguese<br>Restaurant      |
| 7 | Victoria Village             | 43.725882                 | -79.315572                 | Eglinton Ave E & Sloane<br>Ave/Bermondsey Rd | 43.726086         | -79.313620         | Intersection                  |
| 8 | Victoria Village             | 43.725882                 | -79.315572                 | Cash Money                                   | 43.725486         | -79.312665         | Financial or Legal<br>Service |
| 9 | Harbourfront, Regent<br>Park | 43.654260                 | -79.360636                 | Roselle Desserts                             | 43.653447         | -79.362017         | Bakery                        |

|        | Venue                                | frequency   |           |
|--------|--------------------------------------|-------------|-----------|
| )      | Venue Category Coffee Shop           | 0.08        |           |
| Ĺ      | Venue Category Café                  | 0.05        |           |
| 2      | Venue Category Bar                   | 0.04        |           |
| 3      | Venue Category Steakhouse            | 0.04        |           |
| 4      | Venue Category Thai Restaurant       | 0.04        |           |
| 5      | Venue Category Breakfast Spot        | 0.03        |           |
| 6      | Venue Category American Restaurant   | 0.03        |           |
| 7      | Venue Category Hotel                 | 0.03        |           |
| 8      | Venue Category Gym                   | 0.03        |           |
| 9      | Venue Category_Restaurant            | 0.03        |           |
|        |                                      |             |           |
| Ag.    | incourt                              | Venue       | frequency |
| 0      | Venue Category Bre                   |             | 0.25      |
| 1      |                                      | gory Lounge | 0.25      |
| 2      | Venue Category Clo                   |             | 0.25      |
| 3      | Venue Category S                     | •           | 0.25      |
| 4      | Venue Category Miscell               | -           | 0.00      |
| 5      | Venue Category Mo                    | -           | 0.00      |
| 6      |                                      | egory Motel | 0.00      |
| 7      | Venue Category Monument              |             | 0.00      |
| 8      | Venue Category Molecular Gastronomy  |             | 0.00      |
| 9      | Venue Category_Modern European       |             | 0.00      |
| _      |                                      |             |           |
| Ag.    | incourt North, L'Amoreaux East, Mill |             |           |
| ^      | Wanna Calana                         | Venue       | frequency |
| 0      | Venue Category                       |             | 0.5       |
| 1      |                                      | tegory_Park | 0.5       |
| 2      | Venue Category_Mexican               |             | 0.0       |
| 3<br>4 |                                      | egory_Motel | 0.0       |
|        | Venue Category_Monument              | / Landmark  | 0.0       |
| 5      | Venue Category Molecular Gastronomy  | Dast        | 0.0       |

The screenshot above indicates the top 10 venues visited around the neighborhoods and the frequency (% it comprises for).



Top 20 neighborhoods which have highest number of venues located within 500 meters of the location.

#### 4. Results

Since it is a unsupervised Machine Learning problem, Cluster Analysis is one of the preliminary methods that can be used to group similar entities together. Analyzing the sum of squared distances of the centroids of the cluster. The optimal value of k=5. The reason being the elbow joint occurring at k=5. The Cluster 2 is very highly concentrated having 81 Burrows in the group. This implies that the 81 neighborhoods in that area have very high similarity and is the best cluster to live in. The reasons being high availability of the venues around the neighborhood and having a variety of options to explore. The Cluster 1 stands second as there are 13 Burrows in the group.





#### 5. Discussion

|   | Neighbourhood                                              | Number<br>of<br>nearby<br>Venues | Cluster<br>Labels | Rank 1         | Rank 2                              | Rank 3                | Rank 4                          | Rank 5                | Rank 6                    | Rank 7                 | Rank 8                 | Rank 9                 | Rank 10                |
|---|------------------------------------------------------------|----------------------------------|-------------------|----------------|-------------------------------------|-----------------------|---------------------------------|-----------------------|---------------------------|------------------------|------------------------|------------------------|------------------------|
| 0 | Adelaide, King,<br>Richmond                                | 100                              | 1                 | Coffee<br>Shop | Café                                | Thai<br>Restaurant    | Bar                             | Steakhouse            | Breakfast<br>Spot         | Hotel                  | Restaurant             | American<br>Restaurant | Gym                    |
| 1 | Chinatown,<br>Grange Park,<br>Kensington<br>Market         | 100                              | 1                 | Café           | Vegetarian<br>/ Vegan<br>Restaurant | Chinese<br>Restaurant | Mexican<br>Restaurant           | Bakery                | Vietnamese<br>Restaurant  | Dumpling<br>Restaurant | Bar                    | Coffee<br>Shop         | Park                   |
| 2 | St. James Town                                             | 100                              | 1                 | Café           | Hotel                               | Coffee<br>Shop        | Restaurant                      | Italian<br>Restaurant | Gastropub                 | Cosmetics<br>Shop      | Beer Bar               | Bakery                 | Breakfast<br>Spot      |
| 3 | Ryerson,<br>Garden District                                | 100                              | 1                 | Coffee<br>Shop | Clothing<br>Store                   | Cosmetics<br>Shop     | Middle<br>Eastern<br>Restaurant | Café                  | Restaurant                | Bookstore              | Japanese<br>Restaurant | Diner                  | Ice Cream<br>Shop      |
| 4 | First Canadian<br>Place,<br>Underground<br>city            | 100                              | 1                 | Coffee<br>Shop | Café                                | Hotel                 | Restaurant                      | Steakhouse            | Bar                       | Seafood<br>Restaurant  | American<br>Restaurant | Gym                    | Gastropub              |
| 5 | Design<br>Exchange,<br>Toronto<br>Dominion<br>Centre       | 100                              | 1                 | Coffee<br>Shop | Café                                | Hotel                 | Restaurant                      | Bakery                | Gastropub                 | Gym                    | Italian<br>Restaurant  | Bar                    | American<br>Restaurant |
| 6 | Commerce<br>Court, Victoria<br>Hotel                       | 100                              | 1                 | Coffee<br>Shop | Hotel                               | Café                  | American<br>Restaurant          | Restaurant            | Gastropub                 | Bakery                 | Deli /<br>Bodega       | Steakhouse             | Gym                    |
| 7 | Harbourfront<br>East, Toronto<br>Islands, Union<br>Station | 100                              | 1                 | Coffee<br>Shop | Hotel                               | Aquarium              | Café                            | Italian<br>Restaurant | Sporting<br>Goods<br>Shop | Bakery                 | Brewery                | Scenic<br>Lookout      | Pizza Place            |
| 8 | Stn A PO Boxes<br>25 The<br>Esplanade                      | 96                               | 1                 | Coffee<br>Shop | Restaurant                          | Café                  | Seafood<br>Restaurant           | Italian<br>Restaurant | Cocktail<br>Bar           | Beer Bar               | Hotel                  | Bakery                 | Creperie               |

Since it is an unsupervised Machine Learning problem, Cluster Analysis is one of the preliminary methods that can be used to group similar entities together. Analyzing the sum of squared distances of the centroids of the cluster. The optimal value of k = 5. The reason being the elbow joint occurring at k = 5. The Cluster 2 is very highly concentrated having 81 Burrows in the group. This implies that the 81 neighborhoods in that area have very high similarity and is the best cluster to live in. The reasons being high availability of the venues around the neighborhood and having a variety of options to explore. The Cluster 1 stands second as there are 13 Burrows in the group.

#### Based on the use case of Suggesting best venues for stay in Toronto for Tourism:

The best neighbourhood could be any one from the top 8 entries. But based on the variety and ofcourse the case provided, the best Neighborhood would be 'Harbourfront East, Toronto Islands, Union Station'.

### 6. Conclusion

The data in the scope of the project cannot be decisively state or claim the best neighborhood as the factors such as reviews, number of visits made by people, costs, menu, sanitation and other vital factors are not taken into consideration. For future scenarios if these factors are tapped into and a model is prescribed on it, then the analysis would be more rigid and accurate.