1	CL	•	1 B 4	\sim
		-	11.71	•

We claim:

3

- 4 1. A method for determining near-end cross-talk effects, the method5 comprising:
- inputting a test signal into at least one conductor of a transmission cable;
 receiving a raw cross-talk signal from at least another conductor of the
 transmission cable; and

processing the raw cross-talk signal in the frequency domain to determine a combination of near-end cross-talk components thereof, said combination of components being characteristic of the near-end cross-talk effects.

12

11

9 10

2. A method for determining near-end cross-talk effects according to claim 1, wherein the test signal has a frequency that is swept, each time by a predefined sweep frequency step, across a predetermined sweep frequency range, and wherein the near end cross-talk components include at least one of a cross-talk component that is non-periodic over the sweep frequency range and a cross-talk component that has a repetition period of more than a predetermined number of sweep frequency steps.

20

3. A method for determining near-end cross-talk effects according to claim 2,
 wherein the combination of near end cross-talk components is obtained by
 averaging the raw cross-talk signal.

24

4. A method for determining near-end cross-talk effects according to claim 3,
 wherein the averaging of the raw cross-talk signal is performed using the function

28
$$X1(n) = \frac{1}{2K+1} \sum_{m=-K}^{m=K} X(m+n)$$

- 29 wherein
- 30 X1(n) is the averaged cross-talk signal value at a sweep frequency $n\Delta f$,
- 31 X(n) is the raw cross-talk signal value at a sweep frequency $n\Delta f$,
- Δf is the predefined sweep frequency step.

1	K is a positive integer, which corresponds to about half a predetermined				
2	number of discrete magnitude values for performing the moving average,				
3		m is an	integer from –K to K, and		
4		<i>n</i> is a po	ositive integer.		
5					
6	5.	A me	ethod for determining near-end cross-talk effects according to claim 3,		
7	whe	erein the	averaging of the raw cross-talk signal comprises:		
8		a)	performing a moving average operation over a predetermined		
9		num	ber of discrete magnitude values of the raw cross-talk signal to obtain		
10		an a	veraged cross-talk signal; and		
11		b)	repeating a) on the average cross-talk signal obtained from a		
12		prec	eding moving average operation for a predefined number of times to		
13		obtai	in the combination of near end cross-talk components that is		
14		char	acteristic of the near-end cross-talk effects.		
15					
16	6.	A me	ethod for determining near-end cross-talk effects according to claim 3,		
17	whe	erein the	averaging of the raw cross-talk signal comprises:		
18		a)	performing a first moving average operation over a predetermined		
19		numl	ber of discrete magnitude values of the raw cross-talk signal to obtain		
20		a firs	st averaged cross-talk signal;		
21		b)	performing a second moving average operation over the		
22		pred	etermined number of discrete magnitude values of the first averaged		
23		cross	s-talk signal to obtain a second averaged cross-talk signal; and		
24		c)	performing a third moving average operation over twice the		
25		pred	etermined number of discrete magnitude values of the second		
26		aver	aged cross-talk signal to obtain the combination of near end cross-talk		
27		com	ponents that is characteristic of the near-end cross-talk effects.		
28					
29	7.	A me	ethod for determining near-end cross-talk effects according to claim 1,		
30	whe	erein the	test signal has a frequency that is swept between 1 megahertz and		

350 megahertz.

8. A method for removing near-end cross-talk effects from a raw cross-talk signal, the method comprising:

1	inputting a test signal into at least one conductor of a transmission cable;
2	receiving the raw cross-talk signal from at least another conductor of the
3	transmission cable;
4	processing the raw cross-talk signal in the frequency domain to determine
5	a combination of near-end cross-talk components thereof, said combination of
6	components being characteristic of the near-end cross-talk effects; and
7	subtracting the combination of near-end cross-talk components from the
8	raw cross-talk signal to remove the near-end cross-talk effects.
9	
10	9. A system for determining near-end cross-talk effects originating from a
11	near-end location of the system, a near end portion of the system being
12	connectable to a transmission cable comprising a plurality of conductors, the
13	system comprising:
14	an injecting unit being adapted to generate and input a test signal into at
15	least one conductor of the transmission cable;
16	a receiving unit being adapted to receive a raw cross-talk signal from at
17	least another conductor of the transmission cable; and
18	a processing unit being adapted to process the raw cross-talk signal in the
19	frequency domain to determine a combination of near-end cross-talk components
20	thereof, said combination of components being characteristic of the near-end
21	cross-talk effects.
22	
23	10. A system for determining near-end cross-talk effects according to claim 9,
24	wherein the test signal has a frequency that is swept, each time by a predefined
25	sweep frequency step, across a predetermined sweep frequency range, and
26	wherein the near-end cross-talk components include at least one of a cross-talk
27	component that is non-periodic over the sweep frequency range and a cross-talk
28	component that has a repetition period of more than a predetermined number of
29	sweep frequency steps.
30	
31	11. A system for determining near-end cross-talk effects according to claim
32	10, wherein the processing unit is adapted to obtain the combination of near end

cross-talk components by averaging the raw cross-talk signal.

34

- 1 12. A system for determining near-end cross-talk effects according to claim
- 2 11, wherein the processing unit is adapted to average the raw cross-talk signal by
- 3 using the function
- 4 $X1(n) = \frac{1}{2K+1} \sum_{m=-K}^{m=K} X(m+n)$
- 5 wherein
- 6 X1(n) is the averaged cross-talk signal value at a sweep frequency $n\Delta f$,
- 7 X(n) is the raw cross-talk signal value at a sweep frequency $n\Delta f$,
- 8 Δf is the predefined sweep frequency step,
- 9 K is a positive integer, which corresponds to about half predetermined number of
- discrete magnitude values for performing the moving average,
- m is an integer from -K to K, and
- *n* is a positive integer.

13

- 14 13. A system for determining near-end cross-talk effects according to claim
- 15 11, wherein the processing unit is adapted to average the raw cross-talk signal
- 16 **by**:
- a) performing a moving average operation over a predetermined
- number of discrete magnitude values on the raw cross-talk signal to obtain
- an averaged cross-talk signal; and
- b) repeating a) on the average cross-talk signal obtained from a
- 21 preceding moving average operation for a predefined number of times to
- obtain the combination of near end cross-talk components that is
- characteristic of the near-end cross-talk effects.

- 25 14. A system for determining near-end cross-talk effects according to claim
- 26 11, wherein the processing unit is adapted to average the raw cross-talk signal
- 27 **by**:
- a) performing a first moving average operation over a predetermined
- 29 number of discrete magnitude values of the raw cross-talk signal to obtain
- a first averaged cross-talk signal;

		·	
1		b) performing a second moving average operation over the	
2		predetermined number of discrete magnitude values of the first averaged	
3		cross-talk signal to obtain a second averaged cross-talk signal; and	
4		c) performing a third moving average operation over twice the	
5		predetermined number of discrete magnitude values of the second	
6		averaged cross-talk signal to obtain the combination of near end cross-talk	
7		components that is characteristic of the near-end cross-talk effects.	
8			
9	15.	A system for determining near-end cross-talk effects according to claim 9,	
10	where	in the test signal has a frequency that is swept between 1 megahertz and	
11	350 m	egahertz.	
12			
13	16.	A system for determining near-end cross-talk effects according to claim 9,	
14	where	in the receiving unit is a phase locked loop receiver.	
15			
16	17.	A system for determining near-end cross-talk effects according to claim 9,	
17	where	in the processing unit is a microprocessor.	
18			
19	18.	A system for determining near-end cross-talk effects according to claim 9,	
20	the sy	stem further comprises an analog to digital converting unit being adapted to	
21	digitize	e the raw cross-talk signal received by the receiving unit.	
22			
23	19.	A system for determining near-end cross-talk effects according to claim 9,	
24	where	in the system is implemented in a portable testing instrument.	
25			
26	20.	A system for determining near-end cross-talk effects according to claim 9,	
27	wherein the injecting unit, the receiving unit and the processing unit are contained		
28	within	a hand held testing instrument.	
29			