Liebe angehende Studierende, ich hoffe ihr könnt mit dem Merkblatt etwas anfangen! viel Glück in der Vorlesung ©

Notation 1 (Mengen). Seien A, B zwei Mengen, a, b Elemente aus A respektive B und $\mathfrak{A}(a)$ eine Aussage [1-9] die für a gilt, dann schreiben wir

(i) $A \subseteq B$: A ist eine Teilmenge von B

(vi) $A \cup B$: Vereinigung von A und B

(ii) $A \supseteq B$: A ist eine Obermenge von B

(vii) $A \cap B$: Durchschnitt von A und B

(iii) A = B: A ist gleich B

(viii) $A \setminus B$: Differenz von A und B

(das heißt A "ohne" B)

(v) $a \in A$: a ist ein Element von A

(iv) A := B: A ist definiert als B

(ix) $A \times B$: Kartesisches Produkt von A und B.

Wir schreiben $B := \{a \in A : \mathfrak{A}(a)\}$ für die Menge aller a für die $\mathfrak{A}(a)$ (gilt) und erhalten das karthesische Produkt mit $A \times B := \{(a, b) : a \in A, b \in B\}.$

AUFGEPASST! die leere Menge $\emptyset := \{\}$ kann selbst ein Element einer Menge sein, also ist $\emptyset \neq \{\emptyset\}$.

Bemerkung 2 (Zahlenmengen).

Wir schreiben \mathbb{N}_0 für $\mathbb{N} \cup \{0\}$ und \mathbb{R}_+ für die positiven reellen Zahlen.

Notation 3 (Quantoren und Junktoren). Seien $\mathfrak{A}(a)$, $\mathfrak{A}(b)$ Aussagen die für a respektive b gelten, dann [Vorlesung] benutzen wir die Quantoren

- (i) $\exists a \ \mathfrak{A}(a)$: es existiert (mindestens) ein $a \ \text{sodas} \ \mathfrak{A}(a)$
- (iii) $\forall a \ \mathfrak{A}(a)$: für alle a (gilt) $\mathfrak{A}(a)$
- (ii) $\exists ! a \ \mathfrak{A}(a) :$ es existiert genau ein $a \text{ sodas } \mathfrak{A}(a)$

und die Junktoren

- (i) $\mathfrak{A}(a) \wedge \mathfrak{A}(b) : \mathfrak{A}(a) \text{ und } \mathfrak{A}(b)$
- (iv) $\mathfrak{A}(a) \Rightarrow \mathfrak{A}(b)$: aus $\mathfrak{A}(a)$ folgt $\mathfrak{A}(b)$
- $\mathfrak{A}(a) \vee \mathfrak{A}(b) : \mathfrak{A}(a) \text{ oder } \mathfrak{A}(b)$ (ii)
- (v) $\mathfrak{A}(a) \Leftarrow \mathfrak{A}(b)$: $\mathfrak{A}(a)$ folgt aus $\mathfrak{A}(b)$

 $\neg \mathfrak{A}(a)$: nicht $\mathfrak{A}(a)$ (iii)

(vi) $\mathfrak{A}(a) \Leftrightarrow \mathfrak{A}(b)$: $\mathfrak{A}(a)$ genau dann, wenn $\mathfrak{A}(b)$.

AUFGEPASST! bei ", \vee " handelt es sich um ein einschließendes oder, das heißt, $\mathfrak{A}(a) \wedge \mathfrak{A}(b) \Rightarrow \mathfrak{A}(a) \vee \mathfrak{A}(b)$.

Rechenregel 4 (Brüche und Potenzen). Seien $a, b \in \mathbb{R}$ und $c, d \in \mathbb{R} \setminus \{0\}$, dann gilt

[14,15]

(i)
$$\frac{-a}{a} = -\frac{a}{a} = -\frac{a}{a}$$

(iii)
$$a^{-\frac{b}{c}} = \frac{1}{a^{-\frac{b}{c}}}$$

(i)
$$\frac{-a}{c} = -\frac{a}{c} = \frac{a}{-c}$$
 (iii) $a^{-\frac{b}{c}} = \frac{1}{\sqrt[6]{a^b}}$ (v) $\frac{a}{c} + \frac{b}{d} = \frac{a \cdot d + c \cdot b}{c \cdot d}$ (vii) $\frac{a}{c} \cdot \frac{b}{d} = \frac{a \cdot b}{c \cdot d}$

(vii)
$$\frac{a}{c} \cdot \frac{b}{d} = \frac{a \cdot b}{c \cdot d}$$

$$[17-19]$$
 $[21,22]$

(ii)
$$\frac{a \cdot b}{b} = \frac{a}{b}$$

(iv)
$$\frac{a^b}{a^b} = a^{b-c}$$

(ii)
$$\frac{a \cdot b}{c \cdot b} = \frac{a}{c}$$
 (iv) $\frac{a^b}{a^c} = a^{b-c}$ (vi) $\frac{a}{c} - \frac{b}{d} = \frac{a \cdot d - c \cdot b}{c \cdot d}$ (viii) $\frac{a}{c} : \frac{b}{d} = \frac{a \cdot d}{c \cdot b}$.

(viii)
$$\underline{a} \cdot \underline{b} = \underline{a \cdot d}$$

usw.

Weiterhin gelten für $a, b, c \in \mathbb{R}$ die Potenzgesetze

(iv)
$$a^b \cdot a^c = a^{b+c}$$

$$(\mathrm{ix}) \ a^b \cdot a^c = a^{b+c} \qquad \qquad (\mathrm{x}) \ a^c \cdot b^c = (a \cdot b)^c \qquad \qquad (\mathrm{xii}) \ (a^b)^c = a^{b \cdot c} \qquad \qquad (\mathrm{xii}) \ \frac{a^b}{d^b} = (\frac{a}{d})^b.$$

(vi)
$$(a^b)^c = a^{b \cdot c}$$

(vii)
$$\frac{a^b}{a^b} = (\frac{a}{a})^b$$

AUFGEPASST! es gilt $\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$ aber $\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$ (wobei $c \neq 0$ und $b \neq -c$).

Rechenregel 5 (Quadratische Gleichungen). Wir betrachten die Unbekannte x und die Koeffizienten [20] a, b, c auf den reellen Zahlen, dann gilt

1

(i)
$$a = 1$$
: $a \cdot x^2 + bx + c = 0$ \Leftrightarrow

$$x_{1,2} = -\frac{b}{2} \pm \sqrt{(\frac{b}{2})^2 - c} \wedge (\frac{b}{2})^2 - c \ge$$

(ii)
$$a \neq 0$$
: $a \cdot x^2 + bx + c = 0 \Leftrightarrow$

(i)
$$a = 1$$
: $a \cdot x^2 + bx + c = 0 \Leftrightarrow x_{1,2} = -\frac{b}{2} \pm \sqrt{(\frac{b}{2})^2 - c} \land (\frac{b}{2})^2 - c) \ge 0$
(ii) $a \ne 0$: $a \cdot x^2 + bx + c = 0 \Leftrightarrow x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a} \land b^2 - 4 \cdot a \cdot c \ge 0$

zuletzt aktualisiert am 6. September 2019

- [34] **Definition 6** (Folge). Eine unendliche Folge $(a_n)_{n\in\mathbb{N}}:=(a_0,a_1,...,a_n,...)$ auf den reellen Zahlen ist eine
- [38] Abbildung, die jeder natürlichen Zahl n inklusive der Null eine reelle Zahl a_n zuordnet. Eine Folge
- [43] [45]
- (i) ist positiv, wenn alle a_n positiv sind,
- (ii) ist [streng] monoton fallend (steigend), wenn für alle $n \in \mathbb{N}$: $a_n \stackrel{[>]}{\geq} a_{n+1}$ $(a_n \stackrel{[<]}{\leq} a_{n-1})$
- (iii) ist beschränkt, wenn es ein $m \in \mathbb{N}$ gibt, sodas für alle $n \in \mathbb{N}$: $-m < a_n < m$
- (iv) konvergiert gegen a, wenn für alle $\epsilon > 0$ ein $N \in \mathbb{N}$ exitiert, sodas für alle $n \geq N$: $|a_n a| < \epsilon$.

Wir nennen a den Grenzwert von $(a_n)_{n\in\mathbb{N}}$ und schreiben $a_n \xrightarrow{n\to\infty} a$ oder $\lim_{n\to\infty} a_n = a$.

Aufgepasst! die Abbildungsvorschrift darf auch rekursiv angegeben werden, das heißt, dass sich ein Folgeglied aus den vorhergehenden Gliedern berechnen lässt.

[33] **Definition 7** (Binominalkoeffizient). Seien $n, k \in \mathbb{N}_0$ wobei $k \leq n$, dann definieren wir den Binominalko-[40,41] effizienten $\binom{n}{k} := \frac{n!}{k! \cdot (n-k)!}$, wobei $n! := n \cdot (n-1)!$ und 0! := 1.

AUFGEPASST! aus $n! = n \cdot (n-1)!$ folgt z. B., dass $(n-(k-1))! = ((n+1)-k) \cdot (n-k)!$.

- [34-43] **Beweisverfahren 8** (vollständige Induktion). Ausdrücke die von natürlichen Zahlen abhängen, können mit vollständiger Induktion beweisen:
 - 1. Beweis von $\mathfrak{A}(n)$ für ein minimales n_0 , meist $\mathfrak{A}(0)$ oder $\mathfrak{A}(1)$ aufstellen einer Induktionsannahme, der Aussage $\mathfrak{A}(n)$ die wir beweisen
 - 2. Beweis von $\mathfrak{A}(n+1)$ \longrightarrow dabei dürfen wir $\mathfrak{A}(n)$ für ein beliebiges (aber festes) n \longrightarrow als bewiesen voraussetzen.
- [34-43] **Beispiel 9** (Vollständige Induktion). Sei $n \in \mathbb{N}$ und n! (Fakultät) wie in Definition 7, dann erhalten wir
 - **0**. die Induktionsannahme: $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$
 - 1. den Induktionsanfang: $(1! = 1 \cdot 0! = 1 \cdot 1 = 1)$
 - 2. den Induktionsschritt: $(n+1)! \stackrel{\text{Def } 7}{=} (n+1) \cdot n! \stackrel{\text{IA}}{=} (n+1) \cdot n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$

womit wir die Aussage mit Beweisverfahren 8 gezeigt haben.

[36-42] **Definition 10** (Partialsummen). Sei $(a_0, a_1, ..., a_n, ...)$ eine Folge wie in Definition 6, dann definieren wir die Partialsummen der ersten n+1 Glieder mit $s_n := \sum_{k=1}^n a_k$. Einige wichtige Partialsummen sind

$$\underbrace{\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q} \quad (q \neq 0)}_{\text{geometrische Reihe}} \qquad \underbrace{\left((x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} \quad (0^0 := 1)\right)}_{\text{Binomischer Lehrsatz}}$$

Aufgepasst! die meisten Partialsummenformeln lassen sich mit Beweisverfahren 8 zeigen.

Definition 11 (Funktion). Eine Abildung f, die jedem x aus dem Definitionsbereich $D_f \subseteq \mathbb{R}$ ein f(x) aus dem Wertebereich $W_f \subseteq \mathbb{R}$ zuweist, nennen wir Funktion auf den reellen Zahlen und schreiben $f: D_f \to W_f, x \mapsto f(x)$. Wir nennen die Funktion

- (i) injektiv, wenn für alle $x, y \in D_f$ mit f(x) = f(y) folgt, dass x = y
- (ii) surjektiv, wenn $W = \{f(x) : x \in D_f\}$
- (iii) bijektiv, wenn f injektiv und surjektiv ist.

Ferner sagen f ist stetig im Punkt $x_0 \in D_f$, wenn

- (iv) für alle $(a_n)_{n\in\mathbb{N}}$ auf D_f mit $a_n \xrightarrow{n\to\infty} a : \lim_{a_n\to a} f(a_n) = f(a)$
- (v) für alle $\epsilon > 0$ existiert $\beta > 0$, sodas für alle $x \in D_f$ mit $|x x_0| < \beta : |f(x) f(x_0)| < \epsilon$.

Wir nennen eine Funktion stetig, wenn sie in allen $x_0 \in D_f$ stetig ist.

Aufgepasst! um Stetigkeit zu zeigen, können wir uns eines der Kriterien (iv) oder (v) aussuchen.

Definition 12 (Ableitung). Existiert für $f: D_f := (a, ..., b) \to W_f: x \mapsto f(x)$ und $x_0 \in D_f$ der Grenzwert $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = f'(x_0)$ sagen wir f ist differenzierbar in x_0 . Ist f differenzierbar in allen $x_0 \in D_f$ sagen wir f ist differenzierbar auf dem offenen Intervall (a, ..., b). Wir bezeichnen $f': D_f \to W_{f'}, x \mapsto f'(x)$ als die erste und (falls existent) $f^{(n)}$ als die n-te Ableitung von f. Wir sagen f ist (n-mal) stetig differenzierbar, wenn $f'(f^{(n)})$ stetig ist.

Aufgepasst! differenzierbare Funktionen sind stetig, stetige Funktionen nicht immer differenzierbar.

Rechenregel 13 (Ableitungsregeln). Seien f, g und $g \circ f : D_f \to W_f \subseteq D_g \to W_g, x \mapsto (g \circ f)(x) := g(f(x))$ differenzierbare Funktionen und $a, b \in \mathbb{R}$ Konstanten, dann gilt

$$(af+g)' = af' + g'$$
Summen- und Faktorregel
$$(e^{ax+b})' = ae^{ax+b}$$

Satz 14 (Hauptsatz der Differential und Integralrechnung). Sei f auf dem abgeschlossenen Intervall [a, b] an (höchstens) endlich vielen Punkten nicht stetig, dann ist $F: D_f \to W_F$, $x \mapsto \int_{x_0}^x f(t) dt = F(x) - F(x_0)$ differenzierbar und es gilt F' = f.

Aufgepast! wir differenzieren auf offenen und integrieren auf abgeschlossenen Intervallen.

Rechenregel 15 (Integrationsregeln). Seien $f, g : [a, b] \to \mathbb{R}$ in (höchstens) endlich vielen Punkte nicht stetig, $a, b, n \in \mathbb{R}$ Konstanten und $f(x)|_a^b := f(b) - f(a)$, dann gilt

Sind ferner F wie in Satz 14, g und $\phi: [\alpha, \beta] \to [a, b]$ stetig differenzierbar, erhalten wir

$$\underbrace{\int_{\alpha}^{\beta} f(\phi(t))\phi' \, dt = \int_{\phi(\alpha)}^{\phi(\beta)} f(x) \, dx}_{\text{Integration durch Substitution}} \underbrace{\int_{a}^{b} f(x)h(x) \, dx = F(x)h(x) \Big|_{a}^{b} - \int_{a}^{b} = F(x)h'(x) \, dx}_{\text{Partielle Integration}}$$

Aufgepasst! Integration durch Substitution können wir in beide Richtungen anwenden.