G4 de Álgebra Linear I-2007.2

Data: 4 de dezembro de 2007.

1) Considere as retas r_1 e r_2 de equações paramétricas

$$r_1 = \{(t, 2t, 1-t): t \in \mathbb{R}\}, \qquad r_2 = \{(3+t, 5+t, 1+2t): t \in \mathbb{R}\}.$$

- a) Determine o ponto P de interseção das retas r_1 e r_2 .
- b) Determine a equação cartesiana do plano π que contém as retas r_1 e r_2 .
- c) Considere agora a reta

$$r_3 = \{(t, t, a + t) : t \in \mathbb{R}\}.$$

Determinte $\underline{\mathbf{todos}}$ os valores de a tais que as distâncias entre as retas r_1 e r_3 seja $\frac{2}{\sqrt{14}}$.

2) Considere o vetor w=(2,-1,0) a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \qquad T(v) = v \times w.$$

- a) Determine a matriz $(T)_{\mathcal{E}}$ de T na base canônica.
- b) Considere a base ortonormal de \mathbb{R}^3

$$\gamma = \left\{ e_1 = \frac{1}{\sqrt{5}} (2, -1, 0), e_2 \frac{1}{\sqrt{6}} (1, 2, 1), e_3 = \frac{1}{\sqrt{30}} (1, 2, -5) \right\}$$

Determine a matriz $(T)_{\gamma}$ de T na base γ

- c) Determine as coordenadas do vetor (1,2,2) na base γ .
- d) Determine um autovetor de T (escrito na base canônica).

3) Considere as matrizes

$$M = \begin{pmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{pmatrix} \qquad e \qquad N = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

- a) Sabendo que 4 é um autovalor de M, determine um conjunto de vetores de \mathbb{R}^3 que contenha um número máximo de autovetores linearmente independentes associados ao autovalor 4.
- b) Determine explicitamente $\underline{\mathbf{todas}}$ as formas diagonais de M.

Observação: para calcular os autovalores de M v. não necessita calcular seu polinômio característico.

c) Determine explicitamente uma matriz Q e uma matriz diagonal D tais que

$$M = Q^t D Q,$$

onde D é uma matriz diagonal.

d) Observe que a matriz N é simétrica, portanto é diagonalizável, e que um dos autovalores de N é 3. Determine se existe uma matriz P tal que

$$N = P \left(\begin{array}{cc} 3 & 1 \\ 0 & 1 \end{array} \right) P^{-1}.$$

Em caso afirmativo, determine <u>explicitamente</u> a matriz P. Em caso negativo, justifique de forma completa sua resposta.

4) Determine a inversa da matriz

$$B = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{array}\right).$$