## Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

# Лабораторная работа №5 по дисциплине «Методы машинного обучения» на тему «Линейные модели, SVM и деревья решений»

Выполнил: студент группы ИУ5-23М Умряев Д. Т.

# 1. Цель лабораторной работы

Изучить линейные модели, SVM и деревья решений. [1].

## 2. Задание

Требуется выполнить следующие действия [1]:

- 1. Выбрать набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости провести удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train\_test\_split разделить выборку на обучающую и тестовую.
- 4. Обучить следующие модели:
  - одну из линейных моделей;
  - SVM;
  - дерево решений.
- 5. Оценить качество моделей с помощью трех подходящих для задачи метрик. Сравнить качество полученных моделей.
- 6. Произвести для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации.
- 7. Повторить пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

## 3. Дополнительные задания

- 1. Провести эксперименты с важностью признаков в дереве решений.
- 2. Визуализировать дерево решений.

## 4. Ход выполнения работы

Подключим все необходимые библиотеки и настроим отображение графиков [2, 3]:

```
[1]: import matplotlib.pyplot as plt
     import numpy as np
     import pandas as pd
     import os
     import graphviz
     import pydotplus
     from sklearn.preprocessing import LabelEncoder
     from sklearn.impute import SimpleImputer
     from sklearn.linear model import Ridge
     from sklearn.metrics import mean squared error
     from sklearn.metrics import median_absolute_error, r2_score
     from sklearn.model selection import GridSearchCV
     from sklearn.model selection import ShuffleSplit
     from sklearn.model_selection import train_test_split
     from sklearn.model selection import cross val score
     from sklearn.preprocessing import StandardScaler
     from sklearn.svm import SVR
     from sklearn.tree import DecisionTreeRegressor
     from sklearn.tree import export_graphviz
     from operator import itemgetter
```

```
# Enable inline plots
%matplotlib inline

# Set plots formats to save high resolution PNG
from IPython.display import set_matplotlib_formats
set_matplotlib_formats("retina")

os.environ["PATH"] += os.pathsep
os.environ["PATH"] += 'C:/Program Files (x86)/Graphviz2.38/bin/'
```

Зададим ширину текстового представления данных, чтобы в дальнейшем текст в отчёте влезал на A4 [4]:

```
[2]: pd.set_option("display.width", 70)
```

## 4.1. Предварительная подготовка данных

В качестве набора данных будем использовать датасет с ценами поддержанных машин в Индии [5]:

```
[3]: data = pd.read_csv("./used_cars.csv")
```

Посмотрим на типы данных:

```
[4]: data.dtypes
```

| [4]: | Index             | int64   |
|------|-------------------|---------|
|      | Name              | object  |
|      | Location          | object  |
|      | Year              | int64   |
|      | Kilometers_Driven | int64   |
|      | Fuel_Type         | object  |
|      | Transmission      | object  |
|      | Owner_Type        | object  |
|      | Mileage           | float64 |
|      | Engine            | float64 |
|      | Power             | float64 |
|      | Seats             | float64 |
|      | New_Price         | object  |
|      | Price             | float64 |
|      | dtype: object     |         |
|      |                   |         |

-51----

Посмотрим на данные:

```
[5]: data.head(10)
```

| [5]: | Index | Name                                | Location   | Year | \ |
|------|-------|-------------------------------------|------------|------|---|
| 0    | 0     | Maruti Wagon R LXI CNG              | Mumbai     | 2010 |   |
| 1    | 1     | Hyundai Creta 1.6 CRDi SX Option    | Pune       | 2015 |   |
| 2    | 2     | Honda Jazz V                        | Chennai    | 2011 |   |
| 3    | 3     | Maruti Ertiga VDI                   | Chennai    | 2012 |   |
| 4    | 4     | Audi A4 New 2.0 TDI Multitronic     | Coimbatore | 2013 |   |
| 5    | 5     | Hyundai EON LPG Era Plus Option     | Hyderabad  | 2012 |   |
| 6    | 6     | Nissan Micra Diesel XV              | Jaipur     | 2013 |   |
| 7    | 7     | Toyota Innova Crysta 2.8 GX AT 8S   | Mumbai     | 2016 |   |
| 8    | 8     | Volkswagen Vento Diesel Comfortline | Pune       | 2013 |   |
| 9    | 9     | Tata Indica Vista Quadrajet LS      | Chennai    | 2012 |   |

```
41000
     1
                               Diesel
                                            Manual
                                                         First
                                                                   19.67
                                                         First
     2
                     46000
                                                                   18.20
                               Petrol
                                            Manual
     3
                     87000
                               Diesel
                                            Manual
                                                         First
                                                                   20.77
     4
                     40670
                               Diesel
                                         Automatic
                                                        Second
                                                                   15.20
     5
                     75000
                                  LPG
                                            Manual
                                                         First
                                                                   21.10
     6
                     86999
                               Diesel
                                            Manual
                                                         First
                                                                   23.08
     7
                               Diesel
                                                                   11.36
                     36000
                                         Automatic
                                                         First
     8
                     64430
                               Diesel
                                            Manual
                                                         First
                                                                   20.54
     9
                     65932
                               Diesel
                                            Manual
                                                        Second
                                                                   22.30
        Engine
                  Power
                         Seats New_Price
                                           Price
     0
         998.0
                  58.16
                           5.0
                                            1.75
                                      NaN
     1
       1582.0
               126.20
                           5.0
                                      NaN
                                           12.50
                           5.0
                                            4.50
     2
       1199.0
                  88.70
                                     8.61
     3
       1248.0
                  88.76
                           7.0
                                      NaN
                                            6.00
     4
       1968.0
               140.80
                           5.0
                                      NaN
                                           17.74
     5
         814.0
                  55.20
                           5.0
                                      NaN
                                            2.35
       1461.0
                  63.10
                           5.0
                                      NaN
                                            3.50
     6
     7
        2755.0
                                       21
                                           17.50
                171.50
                           8.0
     8 1598.0
                103.60
                           5.0
                                            5.20
                                      NaN
     9 1248.0
                  74.00
                           5.0
                                      NaN
                                            1.95
       Удалим ненужные столбцы:
[6]: data = data.drop(["Index", "Name", "Location", "New_Price"], axis=1)
       Выполним кодирование категориальных признаков:
[7]: le = LabelEncoder()
     data[["Fuel_Type"]] = le.fit_transform(
         data[["Fuel_Type"]].values.ravel())
     data[["Transmission"]] = le.fit_transform(
         data[["Transmission"]].values.ravel())
     data[["Owner_Type"]] = le.fit_transform(
         data[["Owner_Type"]].values.ravel())
       Проверим данные на наличие пропусков:
[8]: data.isnull().sum()
[8]: Year
                             0
     Kilometers_Driven
                             0
     Fuel_Type
                             0
     Transmission
                             0
                             0
     Owner_Type
     Mileage
                             2
     Engine
                             36
     Power
                           143
     Seats
                            42
                             0
     Price
     dtype: int64
```

Kilometers\_Driven Fuel\_Type Transmission Owner\_Type Mileage

Manual

First

26.60

CNG

72000

0

Заполним пропуски медианным значением:

```
[9]: median_imp = SimpleImputer(strategy="median")
      data[["Mileage"]] = median_imp.fit_transform(data[["Mileage"]])
      data[["Engine"]] = median_imp.fit_transform(data[["Engine"]])
      data[["Power"]] = median_imp.fit_transform(data[["Power"]])
      data[["Seats"]] = median_imp.fit_transform(data[["Seats"]])
[10]: data.isnull().sum()
[10]: Year
                            0
      Kilometers_Driven
                            0
                            0
      Fuel_Type
      Transmission
                            0
      Owner_Type
                            0
                            0
      Mileage
                            0
      Engine
      Power
                            0
                            0
      Seats
      Price
                            0
      dtype: int64
        Посмотрим на новые типы данных:
[11]: data.dtypes
[11]: Year
                              int64
      Kilometers_Driven
                              int64
      Fuel_Type
                              int32
      Transmission
                              int32
      Owner_Type
                              int32
      Mileage
                            float64
                            float64
      Engine
      Power
                            float64
      Seats
                            float64
      Price
                            float64
      dtype: object
[12]: data.head(10)
[12]:
         Year
               Kilometers_Driven
                                   Fuel_Type
                                               Transmission
                                                             Owner_Type
         2010
                            72000
      0
                                            0
      1 2015
                            41000
                                            1
                                                          1
                                                                       0
      2 2011
                                            4
                            46000
                                                          1
                                                                       0
         2012
                                            1
                                                                       0
      3
                            87000
                                                          1
      4
        2013
                            40670
                                            1
                                                          0
                                                                       2
                                            3
                                                          1
                                                                       0
      5
         2012
                            75000
      6
        2013
                                            1
                                                          1
                                                                       0
                            86999
      7
         2016
                                            1
                                                          0
                                                                       0
                            36000
                                                          1
      8
         2013
                            64430
                                            1
                                                                       0
      9 2012
                            65932
                                            1
                                                          1
                                                                       2
         Mileage Engine
                                   Seats
                                          Price
                            Power
      0
           26.60
                  998.0
                            58.16
                                     5.0
                                            1.75
      1
           19.67
                  1582.0 126.20
                                     5.0 12.50
      2
           18.20 1199.0
                            88.70
                                     5.0
                                            4.50
      3
           20.77
                  1248.0
                            88.76
                                     7.0
                                            6.00
```

```
4
    15.20 1968.0 140.80
                            5.0 17.74
5
    21.10
           814.0
                  55.20
                            5.0
                                 2.35
6
    23.08 1461.0
                  63.10
                            5.0
                                 3.50
7
    11.36 2755.0 171.50
                            8.0 17.50
    20.54 1598.0 103.60
8
                            5.0
                                  5.20
9
    22.30
          1248.0
                   74.00
                            5.0
                                  1.95
```

Посмотрим на размер данных:

```
[13]: data.shape
```

[13]: (6019, 10)

Посмотрим на основные статистические характеристики набора данных:

```
[14]: data.describe()
```

| [14]: |       | Year        | Kilometers_D | riven | Fuel   | _Туре | Transm  | ission | \ |
|-------|-------|-------------|--------------|-------|--------|-------|---------|--------|---|
|       | count | 6019.000000 | 6.01900      | 0e+03 | 6019.0 | 00000 | 6019.   | 000000 |   |
|       | mean  | 2013.358199 | 5.87383      | 8e+04 | 2.3    | 63017 | 0.      | 714238 |   |
|       | std   | 3.269742    | 9.12688      | 4e+04 | 1.5    | 04939 | 0.      | 451814 |   |
|       | min   | 1998.000000 | 1.71000      | 0e+02 | 0.0    | 00000 | 0.      | 000000 |   |
|       | 25%   | 2011.000000 | 3.40000      | 0e+04 | 1.0    | 00000 | 0.      | 000000 |   |
|       | 50%   | 2014.000000 | 5.30000      | 0e+04 | 1.0    | 00000 | 1.      | 000000 |   |
|       | 75%   | 2016.000000 | 7.30000      | 0e+04 | 4.0    | 00000 | 1.      | 000000 |   |
|       | max   | 2019.000000 | 6.50000      | 0e+06 | 4.0    | 00000 | 1.      | 000000 |   |
|       |       |             |              |       |        |       |         |        |   |
|       |       | Owner_Type  | Mileage      |       | Engine |       | Power   | \      |   |
|       | count | 6019.000000 | 6019.000000  | 6019. | 000000 | 6019  | .000000 |        |   |
|       | mean  | 0.379465    | 18.134966    | 1620. | 509221 | 112   | 883539  |        |   |
|       | std   | 0.818458    | 4.581528     | 599.  | 635458 | 53.   | 283701  |        |   |
|       | min   | 0.000000    | 0.000000     | 72.   | 000000 | 34.   | 200000  |        |   |
|       | 25%   | 0.000000    | 15.170000    | 1198. | 000000 | 78.   | .000000 |        |   |
|       | 50%   | 0.000000    | 18.150000    | 1493. | 000000 | 97.   | 700000  |        |   |
|       | 75%   | 0.000000    | 21.100000    | 1969. | 000000 | 138.  | 030000  |        |   |
|       | max   | 3.000000    | 33.540000    | 5998. | 000000 | 560   | 000000  |        |   |
|       |       |             |              |       |        |       |         |        |   |
|       |       | Seats       | Price        |       |        |       |         |        |   |
|       | count | 6019.000000 | 6019.000000  |       |        |       |         |        |   |
|       | mean  | 5.276790    | 9.479468     |       |        |       |         |        |   |
|       | std   | 0.806346    | 11.187917    |       |        |       |         |        |   |
|       | min   | 0.000000    | 0.440000     |       |        |       |         |        |   |
|       | 25%   | 5.000000    | 3.500000     |       |        |       |         |        |   |
|       | 50%   | 5.000000    | 5.640000     |       |        |       |         |        |   |
|       | 75%   | 5.000000    | 9.950000     |       |        |       |         |        |   |
|       | max   | 10.000000   | 160.000000   |       |        |       |         |        |   |
|       |       |             |              |       |        |       |         |        |   |

## 4.2. Разделение данных

Разделим данные на целевой столбец и признаки:

```
[15]: x = data.drop("Price", axis=1)
y = data["Price"]
```

```
[16]: x.head()
```

```
[16]:
         Year
               Kilometers_Driven Fuel_Type
                                             Transmission Owner_Type
      0
         2010
                            72000
      1 2015
                            41000
                                           1
                                                          1
                                                                      0
      2 2011
                            46000
                                           4
                                                          1
                                                                      0
      3 2012
                            87000
                                           1
                                                          1
                                                                      0
      4 2013
                           40670
                                           1
                                                          0
                                                                      2
         Mileage Engine
                           Power
                                  Seats
      0
           26.60
                  998.0
                           58.16
                                     5.0
      1
           19.67 1582.0 126.20
                                     5.0
      2
           18.20 1199.0
                          88.70
                                     5.0
      3
           20.77
                  1248.0
                           88.76
                                     7.0
           15.20 1968.0 140.80
      4
                                     5.0
[17]: y.head()
[17]: 0
            1.75
           12.50
      1
            4.50
      2
      3
            6.00
      4
           17.74
      Name: Price, dtype: float64
        Обработаем данные, чтобы модель была более точной:
[18]: columns = x.columns
      scaler = StandardScaler()
      x = scaler.fit_transform(x)
        Разделим выборку на обучающую и тестовую [6]:
[19]: x_train, x_test, y_train, y_test = train_test_split(x, y,
                                                            test_size=0.25,
                                                            random_state=77)
[20]: print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)
     (4514, 9) (1505, 9) (4514,) (1505,)
     4.3. Обучение моделей
```

Напишем функцию, которая считает метрики построенной модели:

## 4.3.1. Ridge регрессия

Ridge регрессия с гиперпараметром  $\alpha = 0, 5$ :

```
[22]: rdg = Ridge(alpha=0.5)
rdg.fit(x_train, y_train)
```

[23]: test\_model(rdg, x\_test, y\_test)

r2 score: 0.7138082242771551

mean\_squared\_error: 35.35932893183665
median\_absolute\_error: 2.4329131305844856

Получили довольно неплохие оценки

#### 4.3.2. SVM

SVR с гиперпараметром C = 0, 5:

```
[24]: svm = SVR(C=3.0, gamma='scale')
svm.fit(x_train, y_train)
```

[24]: SVR(C=3.0, cache\_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='scale', kernel='rbf', max\_iter=-1, shrinking=True, tol=0.001, verbose=False)

```
[25]: test_model(svm, x_test, y_test)
```

r2\_score: 0.8270730067432199

mean\_squared\_error: 21.36533246043204 median\_absolute\_error: 0.8421629782693447

Как мы видим, SVR справился с задачей лучше Ridge регрессии

## 4.3.3. Дерево решений

Дерево решений с глубиной дерева  $max \ depth = 2$ :

```
[26]: dtr = DecisionTreeRegressor(max_depth=2)
  dtr.fit(x_train, y_train)
```

```
[27]: test_model(dtr, x_test, y_test)
```

r2 score: 0.6361926334480652

mean\_squared\_error: 44.94882604241194 median\_absolute\_error: 2.162802527646128

Данная модель показала наихудший результат по сравнению с другими моделям, хотя при этом довольно приемлимый

## 4.4. Подбор гиперпараметра с испльзованием GridSearchCV и кросс-валидациии

## 4.4.1. Ridge регрессия

Создадим список настраиваемых параметров:

```
[28]: param_range = np.arange(0, 20.0, 0.1)
      grid_params = [{'alpha': param_range}]
      grid_params
[28]: [{'alpha': array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
                                                                               0.9,
                1.1,
                      1.2,
                            1.3,
                                  1.4,
                                        1.5,
                                              1.6,
                                                    1.7,
                                                          1.8,
                                                                1.9, 2.,
                2.2,
                      2.3,
                            2.4,
                                  2.5,
                                        2.6,
                                              2.7,
                                                    2.8,
                                                          2.9,
                                                                3.,
                                                                      3.1,
                                                                            3.2,
                                                          4.,
                3.3,
                      3.4,
                            3.5,
                                  3.6,
                                        3.7,
                                              3.8,
                                                    3.9,
                                                                4.1,
                                                                      4.2,
                                                                            4.3,
               4.4,
                     4.5,
                            4.6,
                                  4.7,
                                       4.8,
                                              4.9,
                                                    5.,
                                                          5.1,
                                                               5.2,
                                                                      5.3,
                                                                            5.4,
                5.5,
                     5.6,
                            5.7,
                                  5.8,
                                        5.9,
                                              6.,
                                                    6.1,
                                                          6.2,
                                                                6.3,
                                                                      6.4,
                                                                            6.5,
                                        7.,
                6.6,
                     6.7,
                            6.8,
                                  6.9,
                                              7.1,
                                                    7.2,
                                                          7.3,
                                                                7.4,
                                                                      7.5,
                                                                            7.6,
                            7.9,
                                        8.1,
                                              8.2,
                                                    8.3,
                                                          8.4, 8.5,
                7.7,
                     7.8,
                                  8.,
                                                                      8.6.
                                                                            8.7,
               8.8, 8.9,
                            9., 9.1,
                                       9.2, 9.3,
                                                    9.4,
                                                         9.5,
                                                               9.6,
                                                                      9.7,
                                                                            9.8,
               9.9, 10., 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9,
               11. , 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 12. ,
               12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13. , 13.1,
               13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14., 14.1, 14.2,
               14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9, 15., 15.1, 15.2, 15.3,
               15.4, 15.5, 15.6, 15.7, 15.8, 15.9, 16. , 16.1, 16.2, 16.3, 16.4,
               16.5, 16.6, 16.7, 16.8, 16.9, 17. , 17.1, 17.2, 17.3, 17.4, 17.5,
               17.6, 17.7, 17.8, 17.9, 18. , 18.1, 18.2, 18.3, 18.4, 18.5, 18.6,
               18.7, 18.8, 18.9, 19. , 19.1, 19.2, 19.3, 19.4, 19.5, 19.6, 19.7,
               19.8, 19.9])}]
        Начнем подбор параметра:
[29]: gs = GridSearchCV(Ridge(), grid_params,
                        cv=ShuffleSplit(n_splits=5), n_jobs=-1,
                        scoring="r2", return_train_score=True)
      gs.fit(x, y)
      gs.best_params_
[29]: {'alpha': 19.900000000000002}
[30]: gs.best_estimator_
[30]: Ridge(alpha=19.90000000000000, copy_X=True, fit_intercept=True, max_iter=None,
            normalize=False, random state=None, solver='auto', tol=0.001)
[31]: plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```



Получили довльно странный результат. Проблема скорее всего в том, что данный метод не может дать хороший результат для данной выборки

#### 4.4.2. SVM

Создадим список настраиваемых параметров:

```
[32]: param_range = np.arange(0.1, 10.0, 0.5)
grid_params = [{'C': param_range}]
grid_params
```

[32]: [{'C': array([0.1, 0.6, 1.1, 1.6, 2.1, 2.6, 3.1, 3.6, 4.1, 4.6, 5.1, 5.6, 6.1, 6.6, 7.1, 7.6, 8.1, 8.6, 9.1, 9.6])}]

Начнем подбор параметра:

[33]: {'C': 9.6}

```
[34]: gs.best_estimator_
```

[34]: SVR(C=9.6, cache\_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='scale', kernel='rbf', max\_iter=-1, shrinking=True, tol=0.001, verbose=False)

```
[35]: plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```



Обучим модель с использованием подобранного параметра:

```
[36]: svm = SVR(C=gs.best_params_['C'], gamma='scale')
svm.fit(x_train, y_train)
```

[36]: SVR(C=9.6, cache\_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='scale', kernel='rbf', max\_iter=-1, shrinking=True, tol=0.001, verbose=False)

```
[37]: test_model(svm, x_test, y_test)
```

r2\_score: 0.8497236791026992

mean\_squared\_error: 18.566815373547925 median\_absolute\_error: 0.7989548385844407

Как мы видим, модель дала лишь небольшое улучшение с подобранным параметром

## 4.4.3. Дерево решений

Создадим список настраиваемых параметров:

```
[38]: param_range = np.arange(1, 50, 1)
grid_params = [{'max_depth': param_range}]
grid_params
```

Начнем подбор параметра:

[39]: DecisionTreeRegressor(criterion='mse', max\_depth=12, max\_features=None, max\_leaf\_nodes=None, min\_impurity\_decrease=0.0,

```
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
presort=False, random_state=None, splitter='best')
```

```
[40]: plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```



Обучим модель с использованием подобранного параметра:

```
[41]: dtr = DecisionTreeRegressor(max_depth=gs.best_params_['max_depth'])
    dtr.fit(x_train, y_train)
```

```
[42]: test_model(dtr, x_test, y_test)
```

r2\_score: 0.8428690731973061

mean\_squared\_error: 19.413709957764162 median\_absolute\_error: 0.7999999999999998

Как мы видим, модель показала значительное улучшение с подобранным параметром

## 4.5. Эксперименты с важностью признаков в дереве решений

С помощью свойства featureimportances можно получить значение важности признаков. Вычисление важности признаков основано на том, какое количество раз признак встречается в условиях дерева. Чем чаще встречается признак, тем более он важен.

Важность признаков:

```
[43]: list(zip(columns.values, dtr.feature_importances_))
```

```
('Owner_Type', 0.0019495498271238686),
('Mileage', 0.02361097958034725),
('Engine', 0.06544323097344992),
('Power', 0.6559494235304008),
('Seats', 0.014763460413757683)]
```

Важность признаков в сумме дает единицу:

```
[44]: sum(dtr.feature_importances_)
```

[44]: 0.999999999999999

Напишем функцию для вывода важности признаков в виде графика:

```
[45]: def draw_feature_importances(tree_model, columns, figsize=(15,7)):
          # Сортировка значений важности признаков по убыванию
          list_to_sort = list(zip(columns.values, tree_model.feature_importances_))
          sorted_list = sorted(list_to_sort, key=itemgetter(1), reverse = True)
          # Названия признаков
          labels = [x for x,_ in sorted_list]
          # Важности признаков
          data = [x for _,x in sorted_list]
          # Вывод графика
          fig, ax = plt.subplots(figsize=figsize)
          ind = np.arange(len(labels))
          plt.bar(ind, data)
          plt.xticks(ind, labels, rotation='vertical')
          # Вывод значений
          for a,b in zip(ind, data):
              plt.text(a-0.05, b+0.01, str(round(b,3)))
          plt.show()
          return labels, data
```

И вывыдем график:

```
[46]: dtr_fl, dtr_fd = draw_feature_importances(dtr, columns)
```



Список признаков, отсортированный на основе важности, и значения важности:

```
[47]: dtr_fl, dtr_fd
[47]: (['Power',
         'Year',
         'Engine',
         'Kilometers_Driven',
         'Mileage',
         'Seats',
         'Transmission',
         'Fuel_Type',
         'Owner_Type'],
       [0.6559494235304008,
        0.16909165392593634,
        0.06544323097344992,
        0.05590702023106376,
        0.02361097958034725,
        0.014763460413757683,
        0.008511197372427367,
        0.004773484145493002,
        0.0019495498271238686])
         Обучим дерево и предскажем результаты на всех признаках:
```

```
[48]: dtr_exp = DecisionTreeRegressor(max_depth=gs.best_params_['max_depth'])
dtr_exp.fit(x_train, y_train)
```

```
[48]: DecisionTreeRegressor(criterion='mse', max_depth=12, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0,
```

```
presort=False, random_state=None, splitter='best')
```

Проверим точность:

```
[49]: test_model(dtr_exp, x_test, y_test)
```

r2\_score: 0.843925961235849

mean\_squared\_error: 19.283130203316027 median absolute error: 0.7923529411764711

Обучим дерево и предскажем результаты на единственном самом важном признаке:

```
[51]: dtr_exp = DecisionTreeRegressor(max_depth=gs.best_params_['max_depth'])
    dtr_exp.fit(x_train_feature, y_train)
```

Проверим точность:

```
[52]: x_test_feature = [item[feature_index] for item in x_test];
x_test_feature = np.reshape(x_test_feature, (-1, 1));
```

```
[53]: test_model(dtr_exp, x_test_feature, y_test)
```

r2\_score: 0.777127537760558

mean\_squared\_error: 27.536153623801386 median\_absolute\_error: 1.1764062500000008

Как мы видим, использование одного, но важного признака, дает неплохие результаты на тестах

## 4.6. Визуализация дерева решений

dot: graph is too large for cairo-renderer bitmaps. Scaling by 0.254744 to fit



# Список литературы

- [1] Гапанюк Ю. Е. Лабораторная работа «Линейные модели, SVM и деревья решений» [Электронный ресурс] // GitHub. 2020. Режим доступа: https://github.com/ugapanyuk/ml\_course\_2020/wiki/LAB\_MMO\_TREES (дата обращения: 05.05.2020).
- [2] Team The IPython Development. IPython 7.13.0 Documentation [Electronic resource] // Read the Docs. 2020. Access mode: https://ipython.readthedocs.io/en/stable/ (online; accessed: 05.05.2020).
- [3] Waskom M. seaborn 0.10.0 documentation [Electronic resource] // PyData. 2020. Access mode: https://seaborn.pydata.org/ (online; accessed: 05.05.2020).
- [4] pandas 1.0.1 documentation [Electronic resource] // PyData. 2020. Access mode: http://pandas.pydata.org/pandas-docs/stable/ (online; accessed: 05.05.2020).
- [5] Kasliwal A. Used Cars Price [Electronic resource] // Kaggle. 2019. Access mode: https://www.kaggle.com/avikasliwal/used-cars-price-prediction#test-data.csv (online; accessed: 05.05.2020).
- [6] scikit-learn 0.22.2 documentation [Electronic resource]. 2020. Access mode: https://scikit-learn.org/ (online; accessed: 05.05.2020).