Bioinformatics CS300 Substitution Matrices and Protein Alignments

Fall 2017
Oliver Bonham-Carter

The central dogma of molecular biology

polar

Silent Mutations

 Redundant codons mean ~1/3 of DNA mutations often do not alter protein sequence

https://en.wikipedia.org/wiki/Silent_mutation

Silent Mutations

- Are these mutations really so subtle?
- Are there dangers involved?
 - While the protein may be fine, the RNA has still has dangerous folding issues
- Nature: Silent Mutations Speak Up: Overlooked genetic changes could impact on disease
 - http://www.nature.com/news/2006
 /061221/full/news061218-12.html

Third letter

Second letter

	U	С	Α	G	7
U	UUU } Phe UUA } Leu UUG }	UCU UCC UCA UCG	UAU } Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	U C A G
С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIn CAG	CGU CGC CGA CGG	U C A G
Α	AUU AUC AUA IIIe AUA Met	ACU ACC ACA ACG	AAU ASn AAA AAA Lys	AGU Ser AGC Ser AGA Arg	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA Glu	GGU GGC GGA GGG	U C A G

First letter

Alphabetical Interests

- With a larger protein "alphabet" (20 amino acids), it is much less likely to get matches by chance.
- Matches are likely to be statistically significance
- Amino acid changes are not equally harmful to protein structure
 - Chemical complexes being replaced by similar chemical complex.
 - Ex: Arginine (Arg) and Lysine (Lys)

$$H_2N$$
 H_2N
 H_1
 H_2N
 H_3
 H_3
 H_3

Amino Acid Substitutions

Amino Acid Components

- Similarity of amino acids means
 - Similar physicochemical properties (Physics + chemistry)
 - Polar vs nonpolar
 - Hydrophobic vs hydrophilic
 - Positive electric charge vs negative electric charge
 - Basic vs Acidic
- Amino Acid Table: http://www.bio.davidson.edu/courses/genomics/jmol/aatable.html
- Roles in Protein Structures
- http://www.proteinstructures.com/Structure/Structure/amino-acids.html

Amino Acids Determine Protein's Shape and Function

The hierarchy of protein structure. Public domain image from The National Genome Research Institute

Scoring Amino Acid Substitutions

 Could we quantify sequence by physicochemical properties? (yes!)

Table 5.1 Hydrophobicity values for the 20 amino acids. A more positive value represents a more hydrophobic amino acid.

Amino Acid	Hydrophobicity	Amino Acid	Hydrophobicity	Amino Acid	Hydrophobicity		
D	-3.5	Υ	-1.3	1	4.5		
K	-3.9	N	-3.5	С	2.5		
Н	-3.2	L	3.8	А	1.8		
T	-0.7	E	-3.5	S	-0.8		
٧	4.2	R	-4.5	G	-0.4		
F	2.8	W	-0.9	Р	-1.6		
М	1.9	Q	-3.5				

Scoring Amino Acid Substitutions

Better to study evolution of real proteins from <u>closely</u> <u>related</u> organisms

Minimizes likelihood that an observed difference represents a series of >1 individual mutations

Species A – Ala

Species B – Ile

Ala x Ile – 1 mutation

Ala x Pro x Ser x IIe – 3 mutations

A Model of Evolutionary Change in Proteins, Dayhoff et al., 1978

Global Pairwise Alignment

Observed frequency of each possible amino acid substitution:

$$10 \log_{10} \left(M_{ij} / f_j \right)$$

- M_{ij} the probability of a mutation replacing amino i with j
- f_j the frequency of amino acid j in a large set of sequences

The PAM Matrix

			Α	R	N	D	С	Q	Е	G	Н	1	L	K	М	F	Р	S	Т	W	Υ	١
	Ala	Α	2																			
	Arg	R	-1	5																		
	Asn	N	0	0	3																	
	Asp	D	0	-1	2	5																
	Cys	С	-1	-1	-1	-3	11															
	Gln	Q	-1	2	0	1	-3	5														
	Glu	Ε	-1	0	1	4	-4	2	5													
	Gly	G	1	0	0	1	-1	-1	0	5												
	His	Н	-2	2	1	0	0	2	0	-2	6											
	lle	1	0	-3	-2	-3	-2	-3	-3	-3	-3	4										
	Leu	L	-1	-3	-3	-4	-3	-2	-4	-4	-2	2	5									
	Lys	K	-1	4	1	0	-3	2	1	-1	1	-3	-3	5								
	Met	М	-1	-2	-2	-3	-2	-2	3	3	-2	3	3	-2	6							
	Phe	F	-3	-4	-3	-5	0	-4	-5	-5	0	0	2	-5	0	8						
	Pro	Р	1	-1	-1	-2	-2	0	-2	-1	0	-2	0	-2	-2	-3	6					
	Ser	S	1	-1	1	0	1	-1	-1	1	-1	-1	-2	-1	-1	-2	1	2				
	Thr	Т	2	-1	1	-1	-1	-1	-1	-1	-1	1	-1	-1	0	-2	1	1	2			
	Trp	W	-4	0	-5	-5	1	-3	-5	-2	-3	-4	-2	-3	-3	-1	-4	-3	-4	15		
	Tyr	Υ	-3	-2	-1	-2	2	-2	-4	-4	4	-2	-1	-3	-2	5	-3	-1	-3	0	9	
	Val	V	1	-3	-2	-2	-2	-3	-2	-2	-3	4	2	-3	2	0	-1	-1	0	-3	-3	

PAM matrices

- Point Accepted Mutation
- Family of matrices PAM 1, PAM 80, PAM 120, PAM 250
- The number with a PAM matrix (the n in PAM n) represents the evolutionary distance between the sequences on which the matrix is based

BLOSUM 80

PAM 1

PAM 120

PAM 250

Less divergent

* More divergent

PAM vs BLOSUM

- General Use
 - PAM 120
 - BLOSUM 62*
- Closely Related Species
 - PAM 60
 - BLOSUM 80
- Distantly Related Species
 - PAM 250
 - BLOSUM 45

PAM	BLOSUM				
PAM100	BLOSUM90				
PAM120	BLOSUM80				
PAM160	BLOSUM60				
PAM200	BLOSUM52				
PAM250	BLOSUM45				

^{*}BLOSUM 62 – used by BLAST – computed by choosing blocks of local alignments more than 62% identical

- Scoring for possible residue pair alignment
- Different substitution matrices are for detecting similarities according to degrees of divergence.
- BLOSUM-62 matrix good for detecting most weak protein similarities
- Provisional table of recommended substitution matrices and gap costs for various query lengths is

Query Length	Substitution Matrix	Gap Costs
<35	PAM-30	(9,1)
35-50	PAM-70	(10,1)
50-85	BLOSUM-80	(10,1)
85	BLOSUM-62	(10,1)

BLOSUM matrix Heinkoff and Heinkoff, 1992

BLOcks SUbstition Matrix - Blocks of local alignments

$$S_{ij} = \left(\frac{1}{\lambda}\right) \log \left(\frac{p_{ij}}{q_i * q_j}\right)$$

- p_{ii} probability j replacing i
- q_i and q_j probabilities of finding the amino acids i and j in any protein sequence
- λ scaling factor, set such that the matrix contains easily computable integer values.
- BLOSUM # # = minimum % similarity of sequences compared

- Create N x M matrix
- Place each sequence along one axis
- Place score 0 at the up-left corner
- Fill in 1st row & column with gap penalty multiples
- Fill in the matrix with max value of 3 possible moves:
 - Vertical move: Score + gap penalty
 - Horizontal move: Score + gap penalty
 - Diagonal move: Score + match/mismatch score
- The optimal alignment score is in the lower-right corner
- To reconstruct the optimal alignment, trace back where the max at each step came from, stop when hit the origin.

Needleman-Wunsch Algorithm: Protein Alignment – Chap 5

- Create N x M matrix
- Place each sequence along one axis
- Place score 0 at the up-left corner
- Fill in 1st row & column with gap penalty multiples
- Fill in the matrix with max value of 3 possible moves:
 - Vertical move: Score + gap penalty
 - Horizontal move: Score + gap penalty
 - Diagonal move: Score + match/mismatch score from sub. matrix
- The optimal alignment score is in the lower-right corner
- To reconstruct the optimal alignment, trace back where the max at each step came from, stop when hit the origin.

Blast-Off!!

- Let's blast some protein sequences
- https://blast.ncbi.nlm.nih.gov/Blast.cgi#dtr_Qu ery 98931

