EECS 16A Imaging 2

Insert your names here

Agenda

- Quick overview + review
- Images as matrices and vectors
- Pixel-by-pixel scanning
- Reconstructing scans as images
- Lab-specific simulation directions

Last Week: Imaging 1

- Built our very first circuit!
 - O What did this circuit do?

Circuit Diagram

Breadboard Diagram

Today's Lab: Single Pixel Scanning

- Circuit from last week measures light intensity
- Simulated projector illuminates image in a controlled way
- Python programming to reconstruct image

Why?

• Imaging 1:

- Finding a link between physical quantities and voltage is powerful
- If you can digitize it, you can do anything (IOT devices, internet, code, processing)

• Imaging 2:

- What measurements are good measurements?
 - Remember Kody and Nara from Dis2B

Kody and Nara

2. Finding The Bright Cave

Nara the one-handed druid and Kody the one-handed ranger find themselves in dire straits. Before them is a cliff with four cave entrances arranged in a square: two upper caves and two lower caves. Each entrance emits a certain amount of light, and the two wish to find exactly the amount of light coming from each cave. Here's the catch: after contracting a particularly potent strain of ghoul fever, our intrepid heroes are only able to see the total intensity of light before them (so their eyes operate like a single-pixel camera). Kody and Nara are capable adventurers, but they don't know any linear algebra — and they need your help.

Kody proposes an imaging strategy where he uses his hand to completely block the light from two caves at a time. He is able to take measurements using the following four masks (black means the light is blocked from that cave):

Figure 1: Four image masks.

- (a) Let \(\vec{x}\) be the four-element vector that represents the magnitude of light emanating from the four cave entrances. Write a matrix \(\mathbf{K}\) that performs the masking process in Figure 1 on the vector \(\vec{x}\), such that \(\mathbf{K}\vec{x}\) is the result of the four measurements.
- (b) Does Kody's set of masks give us a unique solution for all four caves' light intensities? Why or why not?
- (c) Nara, in her infinite wisdom, places her one hand diagonally across the entrances, covering two of the cave entrances. However, her hand is not wide enough, letting in 50% of the light from the caves covered and 100% of the light from the caves not covered. The following diagram shows the percentage of light let through from each cave:

Illuminating the Big Picture

- Linear dependence
 - When can you recover your image?
 - Does it matter what mask matrix you pick?
 - Does it matter how you cover the pixels?
- Invertibility
 - When can you solve Ax = b?
 - How does this relate to our system?
 - How does this affect the way we pick our masking matrix?

- What are the unknowns in our system?
- Want to do an experiment to get information about these unknowns
- We can do a lot of interesting processing on vectors, but we need to convert the image into one first
 - In lecture and discussion, you have seen how to turn an image into a vector. How?

[0]	[1]
[2]	[3]
[4]	[5]

[0]

[1]

[0]	[1]
[2]	[3]
[4]	[5]

[0] [1] [2] [3] [4] [5]

Masked image

Image

Masked image

Image

Masked image

Image

Poll Time!

What would you expect the dimensions of a vector representing a 2x3 image to be?

- A. 2x3
- B. 3x2
- C. 6x1
- D. 5x1

To read all the pixels of a 4x4 image, how many pixel-by-pixel scans do we need to do?

- A. 4
- B. 8
- C. 16
- D. 32

Poll Time!

What would you expect the dimensions of a vector representing a 2x3 image to be?

- A. 2x3
- B. 3x2
- C. 6x1
- D. 5x1

To read all the pixels of a 4x4 image, how many pixel-by-pixel scans do we need to do?

- A. 4
- B. 8
- C. 16
- D. 32

Representing our Masks in Python

Representing our Masks in Python

Turning the Masks Into Vectors

Turning the Masks Into Vectors

mask0

1,	0,	0,	0,	0
0,	0,	0,	0,	0
0,	0,	0,	0,	0
0,	0,	0,	0,	0
0,	0,	0,	0,	0

1	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	

1	0	0	0	0	0	0	0	:
0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	0	1	0	0	0	0	

Measuring a Pixel is Matrix-Vector Multiplication

Masking Matrix H

Unknown, vectorized image, \vec{l}

Recorded Sensor readings, \vec{S}

Measuring a Pixel is Matrix-Vector Multiplication

$$\vec{s} = H\vec{\iota}$$

- We know H and we have the sensor readings, how do we get the image?
- How do we solve this?
- When can we solve this?
 - Conditions on H

Poll Time!

Select all of the following that must be true for the image vector i to be recoverable from the sensor vector s.

- 1. H must be invertible
- 2. H must have linearly independent rows
- 3. H must be a square matrix
- 4. H must be the identity matrix

Poll Time!

Select all of the following that must be true for the image vector i to be recoverable from the sensor vector s.

- 1. H must be invertible
- 2. H must have linearly independent rows
- 3. H must be a square matrix
- 4. H must be the identity matrix

¹A tall matrix with redundant equations could work, but noise in the system might cause the equations to become inconsistent (More in Imaging 3)

What Makes a Mask Good?

- Linearly independent columns → Invertible
 - Can't get a solution without this
 - There is a unique solution
- What would be a bad mask?
- Food for thought: Are all invertible matrices equally as good?
 - Find out in Imaging 3 next week

Cumulative Scanning

Real-life Setup

Power strip to power your projector 8:52 Tuesday, February 4

Sample Real-Life Setup Images

Real-life Setup (cont.)

- 1. Draw a "simple" image
- 2. Project masks (rows of H) onto it in a dark environment
- 3. Measure ambient light sensor reading s
- 4. Multiply by H inverse to find i (= H⁻¹.s)

This Lab: Software Simulator Setup

- 1. Upload ("simple") image of an object (or use default)
- 2. Shrink your image (preferably 32x32)
- 3. 'Project' masks (rows of H) onto it and "measure" *s* using matrix multiplication
- 4. Multiply by H inverse to find *i* (= H⁻¹s)

Poll Time

Select all of the following that describe the relationship between H (the masking matrix), s (the sensor vector), and i (the image vector)?

- 1. Hs = i
- 2. Hi = s
- 3. $H^{-1}i = s$
- 4. $H^{-1}s = i$
- 5. i * s = H

Poll Time

Select all of the following that describe the relationship between H (the masking matrix), s (the sensor vector), and i (the image vector)?

- 1. Hs = i
- 2. Hi = s
- 3. $H^{-1}i = s$
- 4. $H^{-1}s = i$
- 5. i * s = H

Important Notes

- Pick a simple image! Quality can be lost when resizing.
- 2. Use a short / simple imagePath name
 - a. you'll have to fill this in for some cells
 - b. default is the home directory for the lab
- 3. Before starting the simulations, open up the link (in the directions above the code cell) to the display view in a different tab & observe as the cell is running
- 4. Read simulation descriptions carefully!
 - a. you might have to manually set height & width because the defaults are 32x32
- 5. Each mask section includes ideal + noisy imaging
 - a. noisy imaging meant to simulate real projector behavior
 - b. don't worry about this for now -- more to come in Img 3
- 6. If you still have an unresolved Energia error from Imaging 1, seek help from lab staff after completing Imaging 2 (iff they are available) or look out for Energia debugging sections during the week of 2/15