A Finer ALOHA-Based Analytical Model for LR-FHSS Performance Evaluation

Presented by: Wilem LAMDANI

Other authors: Gerardo RUBINO

Soraya AIT CHELLOUCHE

Yassine HADJADJ-AOUL

César VIHO

Internet of Remote Things

LPWAN Characteristics:

Long Range

High Autonomy

Cost effectiveness

Some IoT use cases:

Deployed in hard-to-reach and underserved areas

Deploying Terrestrial infrastructures in remote areas:

- Costly
- Hard to achieve
- Limited by its topology
- Difficult to maintain

LoRaWAN: DtS Scenario

Geostationary Satellites

Altitude ~35,786km Latency ~500 - 600ms

MEO Satellites

Altitude ~2,000km - 36,000Km Latency ~27ms - 500ms

LEO Satellites

Altitude ~160km - 2000km Latency ~2ms - 27ms

Low Earth Orbit Satellites:

- Closer to earth
- Cheaper deployments
- More reachable
 - Less signal attenuation

Ideal Gateway alternative

LoRaWAN: DtS Network

Terrestrial LoRa:

- Multiple Gateways
- Distibuted devices
- Spread traffic

04

LR-FHSS*: New Standard for DtS-LoRaWAN

Long Range - Frequency Hopping Spread Spectrum

[&]quot;RP002-1.0.4 Regional Parameters." Accessed: Oct. 07, 2024. [Online]. Available: [1] G. Boquet, P. Tuset-Peiró, F. Adelantado, T. Watteyne, and X. Vilajosana, "LR-FHSS: Overview and Performance Analysis," IEEE Communications Magazine, vol. 59, no. 3, pp. 30–36, Mar. 2021, doi: 10.1109/MCOM.001.2000627.

LR-FHSS: Packet Fractionning

GMSK modulation **HDR Header Replicas Payload Fragments** The packet's data Carries the packet's metadata — encoded with redundancy for resilience — the key to decoding the payload **Data Rates: Coding Rates: CR 1/3: US DR5 & 3** Replicas More robust **EU DR8 / DR10** • 1/3 of the fragments allows full data retrieval **CR 2/3: US DR6 & 2** Replicas • Less redundancy **EU DR9 / DR11** • 2/3 of the fragments allows full data retrieval

LR-FHSS: Frequency Hopping

Header replica - 233ms

LR-FHSS: Collisions

Objective

 Develop an analytical model whose predictions match the simulation results

Simplified Network Model:

- Single static gateway
 - All devices within range
- Homogeneous transmissions
- Poisson packet arrival process
- Physical-layer effects ignored
 - Focus on the MAC layer

Model's Structure

- N: number of devices
- → 1: packet's arrival rate

1. Poisson Flow Division

2. Find the fragment collision probability model for each type

3. Combine to find the packet success probability

Probability of receiving at least one header replica:

$$P_H = 1 - (1 - p_{\text{ok,H}})^{N_H}$$

Probability of receiving at least CR% Payload fragments:

$$p_{\text{ok,P}}(X=k) = \binom{N_p}{k} (p_{ok}^P)^k (1 - p_{ok}^P)^{N_p - k}$$

$$P_P = 1 - \sum_{k=1}^{CR.N_P} p_{\text{ok,P}}(X = k)$$

$$P_{success} = P_H \times P_P$$

SoTA* Model: Balls in Bins

- A: number of arrivals in a time period
- C: number of channels

Vulnerability periods:

For header replicas:

$$\mathsf{T}_\mathsf{P}$$
 + T_H T_H + T_H

For payload fragments:

No Fragment Collision

probability:

Approximation by average:

$$\left(\frac{C-1}{C}\right)^{A-1} \qquad \qquad \left(\frac{C-1}{C}\right)^{E(A)-1}$$
Balls in Bins Inspired

Mathematically wrong

In Low Density Scenarios:

$$E(A) - 1 < 0$$

$$\qquad \qquad \qquad \left(\frac{C-1}{C}\right)^{E(A)-1} > 1$$

Used in all formulas

the model only provides reliable estimates in high-density networks

→ : packet's arrival rate

Basic ALOHA* Reminder

- N: number of devices
- C: number of channels

1. Multi Channel

Uniform distribution

2. Multi Class

Reasoning with Header:

Using the Aloha Logic:

No paylaod fragment collision Probability:

$$p_{\text{ok,P}} = e^{-[2\lambda_P T_P + \lambda_H (T_H + T_P)]}$$

No header collision Probability:

$$p_{\text{ok,H}} = e^{-[2\lambda_H T_H + \lambda_P (T_H + T_P)]}$$

Simulation Environment

LR-FHSS Sim*: Discrete event simulator

Model and Simulation results side by side comparison

Simulation scenarios:

- Poisson packet arrivals
- Payload length of 10 bytes
- Data rates 8 and 9
- Physical Layer abstraction

LR-FHSS: Simulation vs. Analytical Results

LR-FHSS: Low Arrival Rate

Headers

Payload Fragments

LR-FHSS: With only 3 Channels

LR-FHSS: Exploiting the Model's Derivative

LR-FHSS: Model's limitations

LR-FHSS: Model's limitations

Towards an even finer model...

ALOHA-based fragment collision probabilities enhance the robustness and the reliability of the model

Refine modeling assumptions to overcome limitations of the existing hypothesis

Incorporate physical effects (e.g., fading, capture, noise) for more realistic performance predictions

Thanks!

Any questions?