Neograničena provera modela softvera kroz inkrementalno SAT rešavanje

Seminarski rad u okviru kursa Verifikacija softvera Matematički fakultet

Ivan Ristović

april 2018.

Sažetak

U ovom radu je opisana nova tehnika neograničene provere modela softvera za pronalazak grešaka programa pisanih u programskom jeziku C, koristeći inkrementalne SAT rešavače. Od polaznog programa se pravi DimSpec formula. DimSpec formula predstavlja konjunkciju četiri KNF formule koje kodiraju početno, krajnje i svako tranziciono stanje programa, kao i prelaze između susednih stanja programa. Proces dobijanja DimSpec formule od izvornog C koda se odvija u više koraka. Prvo se ${\bf C}$ kod prevodi u LLVM module, koji predstavljaju međureprezentaciju između C koda i mašinskog koda. Ti moduli se zatim prevode u $\mathit{DimSpec}$ formulu korišćenjem alata LLUMC tako da ciljno stanje predstavlja stanje greške. Tako dobijena DimSpec formula se može rešiti pomoću inkrementalnih SAT rešavača ili IC3 algoritmom za proveru invarijanti. Rešenje prestavlja dokaz neispravnosti programa jer je pronađen način da se iz polaznog stanja stigne u stanje greške. Ovakvo kodiranje proširuje funkcionalnost tradicionalne ograničene provera modela sofrvera jer pokriva velike i beskonačne petlje, uz održavanje pristojnih vremenskih performansi.

Sadržaj

1	Uvod	2
2	Pomoćne tehnike i alati	2
	2.1 Inkrementalno SAT rešavanje	. 2
	2.2 LLVM međureprezentacija	. 3
	2.3 Ograničena provera modela	
	2.4 DimSpec formule	. 3
3	LLUMC kodiranje stanja programa 3.1 Kodiranje stanja programa	. 4 . 5
	3.2 Kodiranje prelaza između stanja	
	3.3 Prevođenje SMT formule u SAT formulu	
4	Zaključak	6
Li	teratura	6

1 Uvod

Vrlo je važno iscrpno testirati softver od čijeg izvršavanja zavise ljudski životi illi čije potencijalne greške mogu imati velike materijalne gubitke. Tehnike verifikacije softvera pružaju veliko pokriće programskog koda uz formalni dokaz ispravnosti. Postoje razne tehnike verifikacije softvera, npr. simboličko izvršavanje [6] i ograničena provera modela softvera [3].

U ovom radu je opisana tehnika neograničene provere modela softvera [4]. Glavna razlika u odnosu na tradicionalnu ograničenu proveru modela je uklanjanje ograničenja za razvijanje petlji. Naime, ograničena provera modela zahteva razvijanje petlji unapred zadati broj puta zbog neodlučivosti zaustavljanja proizvoljnog programa. Neograničena provera modela ne zahteva razvijanje petlji i stoga predstavlja alat za verifikaciju programa koji u sebi imaju potencijalno beskonačne petlje. Istraživanje je fokusirano na sekvencijalnim C programima i reprezentaciji niskog nivoa koju generiše LLVM [1]. Na osnovu ove reprezentacije se pravi Dim-Spec formula pomoću alata LLUMC [2]. DimSpec formula se sastoji od četiri KNF formule koje kodiraju stanja programa, naime: početno stanje, krajnje stanje, međustanja i tranzicije između susednih stanja. DimSpec formula se dalje prosleđuje inkrementalnim SAT rešavačima.

Pretpostavlja se da čitalac poseduje znanje iskazne logike, logike prvog reda i problema zadovoljivosti logičkih formula. U poglavlju 2 će biti opisane tehnike i alati na koje se oslanja metoda neograničene provere modela. Definicija stanja programa i proces kodiranja stanja programa u DimSpec formulu biti opisan u poglavlju 3.

2 Pomoćne tehnike i alati

Tehnika neograničene provere modela koristi postojeće alate i tehnike verifikacije softvera. Prvo se uz pomoć alata *LLVM* [1] od polaznog C koda dobijaju programski moduli koji predstavljaju ulaz za alat *LLUMC* [2]. *LLUMC* kodira module u *DimSpec* format koji predstavlja validnu logičku formulu koja opisuje stanja modula i prelaza između susednih stanja. *Inkrementalno SAT rešavanje* [5] se koristi za nalaženje modela za takvu *DimSpec* formulu. U ovom poglavlju će biti više reči o navedenim alatima, jer je njihova uloga važna u čitavom procesu neograničene provere modela.

2.1 Inkrementalno SAT rešavanje

Proces inkrementalnog SAT rešavanja [5] predstavlja inkrementalno dodavanje klauza tokom rešavanja problema zadovoljivosti. U tu svrhu se koriste funkcije add(C) i solve(A), gde je C klauza a A skup literala koji se nazivaju pretpostavke (engl. assumptions). Klauze se dodaju koriščenjem funkcije add i njihova konjunkcija se rešava pod predpostavkom da su vrednosti svih literala iz A tačne, koristeći solve(A).

Dodavanje nove klauze se vrši dodavanjem $C \vee a$, gde je a neiskorišćeno iskazno slovo. Klauza postaje relevantna čim se doda literal $\neg a$ u skup A. Literal a se naziva $aktivacioni\ literal$. Ukoliko se $\neg a$ ne doda u skup A, to je ekvivalentno uklanjanju C iz skupa klauza.

2.2 LLVM međureprezentacija

 $LLVM\ [1]$ je open-source compiler framework projekat. Za potrebe neograničene provere modela se koristi LLVM međureprezentacija C koda. Razlog tome je što je jako kompleksno analizirati C kod i skoro nemoguće je podržati sve alate i biblioteke. S druge strane, LLVM međureprezentacija direktnije predstavlja instrukcije i vrši razne optimizacije i uprošćavanja, što je čini idealnom za analizu. LLVM međureprezentacija koda se sastoji od više modula, gde se svaki LLVM modul može grupisati u nekoliko jedinica:

- instrukcija
- osnovni blok
- funkcija

2.3 Ograničena provera modela

Prilikom primene tehnike ograničene provere modela [3], svaka petlja koja se javlja u programu se razvija k puta (otuda naziv ograničena). Razlog razvijanja petlji je neodlučivost zaustavljanja proizvoljnog programa. Razvijanje petlji omogućava odlučivost ove tehnike, ali takođe predstavlja ozbiljno ograničenje. Nakon razvijanja petlji i kodiranja stanja programa u logičke formule, konstruiše se formula koja predstavlja negaciju željenih svojstava (specifikacije programa) i to se skupa predaje SAT rešavaču. Ukoliko rešavač nađe model za datu formulu, program ne prolazi verifikaciju i nađeni model se može iskoristiti kao test-primer za koji program ne prati specifikaciju.

Postoje razni alati koji implementiraju ograničenu proveru modela. Jedan od njih je alat LLBMC, koji je dizajniran da verifikuje programe od kojih zavisi bezbednost ugrađenih sistema. LLBMC predstavlja inspiraciju za alat LLUMC, koji je ekvivalent za tehniku neograničene provere modela.

2.4 DimSpec formule

DimSpec formula kodira stanja programa, u oznaci t_0,\ldots,t_k gde svako stanje predstavlja istinitosne vrednosti n bulovskih promenljivih x_0,\ldots,x_n . DimSpec formula se sastoji od četiri formule: $\mathcal{I},\,\mathcal{U},\,\mathcal{G}$ i $\mathcal{T}.\,\mathcal{I}$ predstavlja skup inicijalnih klauza, tj. onih klauza koje stanje t_0 zadovoljava. \mathcal{G} predstavlja skup završnih klauza, tj. onih koje stanje t_k zadovoljava. \mathcal{U} predstavlja skup klauza koje su zadovoljene stanjima t_i . \mathcal{T} predstavlja skup klauza koje su zadovoljene parovima susednih stanja t_i, t_{i+1} . Svako stanje u sebi sadrži vrednosti n promenljivih, tako da ukupno imamo kn promenljivih.

Testiranje da li je završno stanje dostižno iz početnog u k koraka, je ekvivalentno ispitivanju zadovoljivosti formule

$$F_k = \mathcal{I}(0) \wedge \left(\bigwedge_{i=0}^{k-1} \left(\mathcal{U}(i) \wedge \mathcal{T}(i,i+1) \right) \right) \wedge \mathcal{U}(k) \wedge \mathcal{G}(k),$$

gde $\mathcal{I}(i),\mathcal{U}(i),\mathcal{G}(i)i\mathcal{T}(i,i+1)$ predstavljaju formule u kojima je svaka promenljiva x_j zamenjena sa x_{j+in} - njenom vrednošcu u i-tom bloku. Jedan od načina da se nađe najmanji broj koraka za koje se završno stanje dostiže iz polaznog je da se rešavaju formule F_1, F_2, \ldots sve dok se ne nađe

zadovoljiva formula. Efikasan način da se ovo implementira je koriščenjem inkrementalnog SAT rešavanja:

 $\begin{array}{ll} step(0) & : & \mathtt{add}(\mathcal{I}(0) \wedge (a_0 \vee \mathcal{G}(0)) \wedge \mathcal{U}(0)) \\ & & \mathtt{solve}(assumptions = \neg a_0) \\ step(k) & : & \mathtt{add}(\mathcal{T}(k-1,k) \wedge (a_k \vee \mathcal{G}(k)) \wedge \mathcal{U}(k)) \\ & & \mathtt{solve}(assumptions = \neg a_k) \end{array}$

Za razliku od ograničene provere modela, tokom primene neograničene provera modela ne proverava se zadovoljivost negirane formule koja kodira stanja programa kako bi se našao kontraprimer. Umesto toga se kao završna stanja smatraju stanja greške (više reči o ovome u poglavljima koji slede) i pokušava se pronaći put od početnog stanja do stanja greške.

3 LLUMC kodiranje stanja programa

Stanja programa posmatramo kao stanja svakog osnovnog bloka LLVM modula zasebno. Posmatramo takođe i tranzicije između susednih stanja. Svako stanje se sastoji od promenljivih, a svaka promenljiva se kodira kao bit-vektor dužine n.

Uvodimo dva specijalna stanja:

- ok stanje iz ovog stanja ne mogu nastati greške
- error stanje stanje greške

Pre opisa procesa kodiranja LLVM modula u DimSpec formulu, potrebno je definisati pojam softverske greške za alat LLUMC. Jasno je da je nemoguće pokriti sve moguće greške. Stoga se u nastavku ograničavamo na greške prekoračenja. Možemo definisati prekoračenje nezavisno od tipa promenljivih i samim tim nezavisno od reprezentacije promenljive preko njenog bit-vektora. Neka je v promenljiva u potpunom komplementu i neka je l duzina bit-vektora koji reprezentuje v. Neka max_l vraća maksimalnu vrednost za v reprezentovanu bit-vektorom dužine l. Tada je $max_l = 2^{l-1} - 1$. Slično, neka min_l vraća minimalnu vrednost. Tada je $min_l = -2^{l-1}$. Ukoliko se prilikom sabiranja promenljivih x i y dobija broj veći od max_l , onda postoji prekoračenje. Prekoračenje se slično definiše za ostale aritmetičke operacije.

Takođe je potrebno uvesti funkcije assume i assert. Program se ponaša po specifikaciji ukoliko svi pozivi funkcije assert vrate true pod uslovom da su svi uslovi iz poziva assume zadovoljeni. Ukoliko assume uslov nije ispunjen, ponašanje programa je nedefinisano i stoga se ne mogu pojaviti greške. Koristeći ove funkcije možemo definisati grešku za program LLUMC.

Definicija 3.1. Neka je p program. Greška u programu p postoji ukoliko su svi pozivi funkcije **assume** pre poziva funkcije **assert** ili mogućeg prekoračenja vratili **true** i važi jedno od navedenog:

- 1. Funckija **assert** je vratila **false**.
- 2. Desilo se prekoračenje prilikom izvršavanja aritmetičke operacije.

Bijekcijom $enc(block): BasicBlocks \to \mathbb{N}$ svakom osnovnom bloku dodeljujemo jedinstven prirodan broj koji se može predstaviti odgovarajućim bit-vektorom. Ukoliko je N broj osnovnih blokova u programu, potrebno je $\lceil \log_2 |B| + 2 \rceil$ bitova za jedinstveno enkodiranje tih blokova. Promenljivu koja kodira trenutni blok označavamo sa curr. S obzirom da vrednosti promenljivih mogu da zavise od vrednosti u prethodnom bloku,

uvodimo promenljivu prev koja kodira prethodni blok. Sada možemo da kodiramo skupove $\mathcal{I}, \mathcal{G}, \mathcal{U}, \mathcal{T}$.

3.1 Kodiranje stanja programa

Naš cilj je da pronađemo enkodiranje koje LLVM modul definisan u sekciji 2.2 prevodi u DimSpec formulu. Stoga treba da definišemo četiri SMT formule $\{\mathcal{I},\mathcal{G},\mathcal{U},\mathcal{T}\}$ takve da ukoliko postoji tranzicija od \mathcal{I} do \mathcal{G} definisana po \mathcal{T} i ograničena sa \mathcal{U} tada postoji greška u datom programu. Zatim ćemo dobijene SMT formule prevesti u KNF formule, što nam kao rezultat daje DimSpec formulu. U nastavku će biti ukratko opisan postupak enkodiranja, dok se detaljni postupak može naći u [4].

Definicija 3.2. Neka *entry* označava prvi osnovni blok programa. Tada se incicijalna formula $\mathcal{I}(k), k \in \mathbb{N}$ definiše kao:

$$curr = enc(entry) \land prev = enc(entry)$$

Definicija 3.3. Neka *error* označava osnovni blok greške. Tada se ciljna formula $\mathcal{G}(k), k \in \mathbb{N}$ definiše kao:

$$curr = enc(error)$$

Univerzalna formula $\mathcal U$ se sastoji od uslova koji moraju biti tačni u svakom stanju. Iz prethodne analize znamo da je broj bitova potrebnih za enkodiranje stanja $\lceil \log_2 |B| + 2 \rceil$. S obzirom da |B| + 2 nije nužno stepen dvojke, potencijalno smo enkodirali više brojeva. Ovi brojevi se moraju izostaviti u formuli $\mathcal U$.

Definicija 3.4. Neka je |B| broj osnovnih blokova u LLVM modulu. Tada se univerzalna formula $U(k), k \in \mathbb{N}$ definiše kao:

$$\begin{array}{ll} curr \leq |B| + 2 & \land \\ prev \leq |B| + 2 \end{array}$$

3.2 Kodiranje prelaza između stanja

Enkodiranje tranzicione formule \mathcal{T} ima oblik:

$$stanje(k) \Rightarrow stanje(k+1)$$

Međutim, grananja predstavljaju problem, kao i pozivi funkcija. Na osnovu toga kojom instrukcijom se blok završava, potrebno ga je drugačije enkodirati. Zarad jednostavnosti, uvešćemo funkciju enkodiranja koja vrši enkodiranje blokova u zavisnosti od toga kojom instrukcijom se završavaju.

$$encode: BasicBlocks \rightarrow SMTFormulas$$

Sada možemo definisati tranzicionu formulu:

Definicija 3.5. Neka je BB skup svih osnovnih blokova u LLVM modulu i neka je $encode(b), b \in BB$ funkcija enkodiranja opisana iznad. Tada se tranziciona formula $\mathcal{T}(k, k+1), k \in \mathbb{N}$ definiše kao:

$$\bigwedge_{b \in BB} encode(b)$$

3.3 Prevođenje SMT formule u SAT formulu

Enkodiranje opisano iznad nam kao rezultat daje četiri SMT formule. Ove formule je potrebno prevesti u KNF formule. Najčešće se to radi koristeći tehniku bit-blasting [7]. Nakon toga, dobijenu KNF formulu u Dim-Spec formatu možemo proslediti inkrementalnim SAT rešavačima. Alat LLUMC automatski vrši ovu transformaciju i kao rezultat vraća DimSpec formulu.

4 Zaključak

Neograničena provera modela proširuje skup programa koji se mogu verifikovati tehnikama provere modela tako što uklanja granicu koja je prisutna kod ograničene provere modela što omogućava verifikovanje programa koji imaju beskonačne petlje. Enkodiranjem stanja programa u DimSpec format nam omogućava da koristimo već postojeće SAT rešavače za nalaženje modela. Takođe se mogu koristiti algoritmi provere invarijanti i paralelno SAT rešavanje kako bi se dobilo na performansama. Sledeći korak za unapređenje ove tehnike bi verovatno bila primena teorije nizova zarad primene na većem skupu programa.

Literatura

- [1] The LLVM compiler infrastructure. on-line at http://llvm.org/.
- [2] LLUMC (Low Level Unbounded Model Checker), 2017. on-line at https://github.com/MarkoKleineBuening/llumc.
- [3] Biere A., A. Cimatti, Clarke E.M., Strichman O., and Y. Zhu. Bounded model checking. 2003. In: Advances in computers 58.
- [4] Marko Kleine Büning, Tomas Balyo, and Carsten Sinz. *Unbounded Software Model Checking with Incremental SAT-Solving*. 2018. online at https://arxiv.org/pdf/1802.04174.pdf.
- [5] Eén N. and Sörensson N. An extensible sat-solver. 2003. In: Advances in computers 58.
- [6] Khurshid S., Păsăreanu C.S., and Visser W. Generalized symbolic execution for model checking and testing. 2003. In: International Conference on Tools and Algorithms for the Construction and Analysis of Systems.
- [7] Yakir Vizel, Alexander Nadel, and Sharad Malik. Solving Constraints over Bit-Vectors with SAT-based Model Checking. 2017. online at http://smt-workshop.cs.uiowa.edu/2017/papers/SMT2017_ paper_8.pdf.