Curriculum Vitae

JOHN MARK P. MARTIREZ

5288 Boelter Hall

Department of Chemical and Biomolecular Engineering

University of California, Los Angeles Los Angeles, California, USA 90095

email: jmarkm@ucla.edu phone: 1-215-667-9426

professional website: https://martirez.github.io

Personal Information

Date of Birth October 14, 1985 Birthplace Bohol, Philippines

Nationality Filipino (US permanent resident)

Languages English, Filipino

Education

2015 Ph.D. in Chemistry (Physical)

Advisor: Prof. Andrew M. Rappe University of Pennsylvania

Philadelphia, Pennsylvania, United States

Research Activities and Interests

Application of quantum mechanical methods (density functional theory and multiconfigurational correlated wavefunction or post Hartree-Fock theories, e.g., CASSCF, CASPT2, and NEVPT2) to understand and design functional (nano)materials, focusing on materials for sustainable energy conversion technologies and green chemical processing

Professional Appointments

Assistant Project Scientist – Engineering, step 2 (September 2019 – present)

Supervisor: Prof. Emily A. Carter (Executive Vice Chancellor and Provost)

University of California, Los Angeles

Los Angeles, California, United States

Responsibilities:

- conduct research in the field of atomic-scale ab initio computational catalysis
- publish research in internationally recognized scientific journals
- help supervise graduate students and postdoctoral research associates in conducting their research
- help manage internal and external (provided by the US Department of Defense) computational resources
- oversee acquisition and compilation of software used by the research group
- participate in writing federal grant applications
- participate in writing federal grant reports and research updates

• present research at international and national scientific conferences and meetings

Associate Research Scholar (May 2018 – August 2019)

Supervisor: Prof. Emily A. Carter (Dean of the School of Engineering and Applied Science) Princeton University

Princeton, New Jersey, United States

Responsibilities:

- conduct research in the field of atomic-scale ab initio computational catalysis
- publish research in internationally recognized scientific journals
- help supervise graduate students and postdoctoral research associates in conducting their research
- help manage internal and external (provided by the US Department of Defense) computational resources
- oversee acquisition and compilation of software used by the research group
- participate in writing federal grant applications
- participate in writing federal grant reports and research updates
- present research at international and national scientific conferences and meetings

Postdoctoral Research Associate (March 2015 – April 2018)

Supervisor: Prof. Emily A. Carter (Dean of the School of Engineering and Applied Science)
Princeton University

Princeton, New Jersey, United States

Responsibilities:

- conduct research in the field of atomic-scale ab initio computational catalysis
- publish research in internationally recognized scientific journals
- help supervise undergraduate and graduate students in conducting their research
- participate in writing federal grant applications
- participate in writing federal grant reports and research updates
- present research at international and national scientific conferences and meetings

University Instructor, rank 4 (June 2006 – May 2008)

Institute of Chemistry, College of Science

University of the Philippines,

Diliman, Quezon city, Metro Manila, Philippines

Responsibilities:

- teach laboratory courses in general, analytical, organic, and physical chemistry
- grade laboratory reports
- prepare and grade practical and written laboratory exams
- help prepare laboratory manuals and class syllabi

Patents

- 3. <u>J. M. P. Martirez</u> and E. A. Carter, Fe-Cu and Fe-Ag as primary-secondary co-dopants into NiOOH for enhanced electrochemical molecular oxygen evolution catalysis. *Provisional US patent application no.* 62/948,392 (filed on December 16, 2019)
- J. M. P. Martirez and E. A. Carter, Plasmonic Haber-Bosch catalysts based on surfacedoped Au nanoparticles. *Provisional US patent application no.* 62/638,728 (filed on March 5, 2018)

 J. M. P. Martirez, S. Kim, and A. M. Rappe, Synergistic Oxygen Evolving Activity of Non-Stoichiometric Surfaces. *United States Letters Patent No.*: 9,469,908. Issued October 18, 2016

Publications

- 25. <u>J. M. P. Martirez</u>, and E. A. Carter, Secondary transition-metal dopants for enhanced electrochemical O₂ formation and desorption on Fe-doped β-NiOOH. **ACS Energy Letters**, **5**, 962-967 (2020) DOI: 10.1021/acsenergylett.9b02761
- 24. <u>J. M. P. Martirez</u>, and E. A. Carter, Noninnocent influence of host β-NiOOH redox activity on transition metal dopants' efficacy as active sites in electrocatalytic water oxidation. **ACS Catalysis**, **10**, 2720-2734 (2020) DOI: 10.1021/acscatal.9b05092
- 23. A. G. Rajan, J. M. P. Martirez, and E. A. Carter, Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials.

 Journal of the American Chemical Society, 142, 3600-3612 (2020) DOI: 10.1021/jacs.9b13708
- 22. L. Zhou, <u>J. M. P. Martirez</u>, J. Finzel, C. Zhang, D. F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas, Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. **Nature Energy**, **5**, 61-70 (2020) DOI: 10.1038/s41560-019-0517-9
 - Featured in the *Daily Bruin*: "UCLA researchers help develop improved process for synthesis gas production" by Zhichun Li, January 22, 2020
 - **Chemical & Engineering News:** "Light-activated catalyst makes syngas greener" by Leigh Krietsch Boerner, January 17, 2020.
 - *Rice News*: "Rice's low-temp photocatalyst could slash the carbon footprint for syngas" by Jade Boyd, January 10, 2020.
 - *Nature Research Highlights*: "More light than heat helps turn greenhouse gases into valuable product" January 9, 2020.
 - **UCLA newsroom**: "A greener, simpler way to create syngas" by Mathew Chin, January 6, 2020.
- 21. D. F. Swearer, H. Robatjazi, J. M. P. Martirez, M. Zhang, L. Zhou, E. A. Carter, P. Nordlander, and N. J. Halas, Plasmonic Photocatalysis of Nitrous Oxide into N₂ and O₂ using Aluminum-Iridium Antenna-Reactor Nanoparticles. **ACS Nano, 13**, 8076-8086 (2019) DOI: 10.1021/acsnano.9b02924
- 20. <u>J. M. P. Martirez</u>, and E. A. Carter, Unraveling Oxygen Evolution on Iron-Doped β-Nickel Oxyhydroxide: the Key Role of Highly Active Molecular-like Sites. **Journal of the American Chemical Society**, **141**, 693-705 (2019) DOI: 10.1021/jacs.8b12386
- Z. Chen,* J. M. P. Martirez,* P. Zahl, E. A. Carter, and B. E. Koel, Self-Assembling of Formic Acid on the Partially Oxidized p(2×1) Cu(110) Surface Reconstruction at Low Coverages. The Journal of Chemical Physics, 150, 041720 (2019) DOI: 10.1063/1.5046697
- 18. A. J. Tkalych, <u>J. M. P. Martirez</u>, and E. A. Carter, Thermodynamic evaluation of trace-amount transition-metal ion doping in NiOOH films. **Journal of the Electrochemical Society**, **165**, F907-F913 (2018) DOI: 10.1149/2.0101811jes
- 17. <u>J. M. P. Martirez</u>, and E. A. Carter, Effects of the Aqueous Environment on the Stability and Chemistry of β-NiOOH Surfaces. **Chemistry of Materials**, **30**, 5205-5219 (2018) DOI: 10.1021/acs.chemmater.8b01866
- 16. A. J. Tkalych, <u>J. M. P. Martirez</u>, and E. A. Carter, Effect of transition-metal-ion dopants on the oxygen evolution reaction on NiOOH(0001). **Physical Chemistry and Chemical Physics**, **20**, 19525-19531 (2018) DOI: 10.1039/C8CP02849D

- L. D. Chen, M. Bajdich, J. M. P. Martirez, C. M. Krauter, J. A. Gauthier, E. A. Carter, A. C. Luntz, K. Chan, and J. K. Nørskov, Understanding the apparent fractional charge of ions in the aqueous electrochemical double layer. Nature Communications, 9:3202 (2018) DOI: 10.1038/s41467-018-05511-y
- 14. R. B. Wexler, <u>J. M. P. Martirez</u>, and A. M. Rappe, Chemical Pressure-Driven Enhancement of the Hydrogen Evolving Activity of Ni₂P from Nonmetal Surface Doping Interpreted via Machine Learning. **Journal of the American Chemical Society, 140**, 4678-4683 (2018) DOI: 10.1021/jacs.8b00947
- 13. <u>J. M. P. Martirez</u>, and E. A. Carter, Prediction of a Low-Temperature N₂ Dissociation Catalyst Exploiting Near IR-to-Visible Light Nanoplasmonics. **Science Advances**, **3**, eaao4710 (2017) DOI: 10.1126/sciadv.aao4710
 - Featured in *Chemical & Engineering News*: "Lowering the temperature on nitrogen splitting" by Sam Lemonick, January 3, 2018.
 - **Princeton Engineering News**: "New process could slash energy demands of fertilizer, nitrogen-based chemicals" by John Sullivan, January 12, 2018
- 12. R. B. Wexler, <u>J. M. P. Martirez</u>, and A. M. Rappe, Active Role of Phosphorus in the Hydrogen Evolving Activity of Nickel Phosphide (0001) Surfaces. **ACS Catalysis**, **7**, 7718-7725 (2017) DOI: 10.1021/acscatal.7b02761
- 11. <u>J. M. P. Martirez</u>, and E. A. Carter, Excited-State N₂ Dissociation Pathway on Fe-Functionalized Au. **Journal of the American Chemical Society**, **139**, 4390-4398 (2017) DOI: 10.1021/jacs.6b12301
- D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, <u>J. M. P. Martirez</u>, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, N. J. Halas, Heterometallic Antenna-Reactor Complexes for Photocatalysis. **Proceedings of the National Academy of Sciences U.S.A., 113**, 8916-8920 (2016) DOI: 10.1073/pnas.1609769113
- 9. R. B. Wexler, <u>J. M. P. Martirez</u>, and A. M. Rappe, Stable Phosphorus Enriched (0001) Surfaces of Nickel Phosphides. **Chemistry of Materials**, **28**, 5365-5372 (2016) DOI: 10.1021/acs.chemmater.6b01437
- 8. <u>J. M. P. Martirez</u>, and E. A. Carter, Thermodynamic Constraints in Using Au*M* (*M*= Fe, Co, Ni and Mo) Alloys as N₂ Dissociation Catalysts: Functionalizing a Plasmon-Active Metal. **ACS Nano**, **10**, 2940-2949 (2016) DOI: 110.1021/acsnano.6b00085
- 7. Y. Qi, J. M. P. Martirez, W. A. Saidi, J.J. Urban, W.S. Yun, J.E. Spanier and A. M. Rappe, Modified Schottky emission to explain thickness dependence and slow depolarization in BaTiO₃ nanowires. **Physical Review B, 91**, 245431 (2015) DOI: 10.1103/PhysRevB.91.245431
- 6. <u>J. M. P. Martirez</u>, S. Kim, E. H. Morales, B. T. Diroll, M. Cargnello, T. R. Gordon, C. B. Murray, D. A. Bonnell, and A. M. Rappe, Synergistic Oxygen Evolving Activity of a TiO₂-rich Reconstructed SrTiO₃(001) Surface. **Journal of the American Chemical Society**, **137**, 2939-2947 (2015) DOI: 10.1021/ja511332y
- 5. C. Baeumer, D. Saldana-Greco, <u>J. M. P. Martirez</u>, A. M. Rappe, M. Shim, and L. W. Martin, Ferroelectrically Driven Spatial Carrier Density Modulation in Graphene. **Nature Communications**, **6**:6136 (2015) DOI: 10.1038/ncomms7136
- 4. W. A. Saidi*, <u>J. M. P. Martirez*</u>, and A. M. Rappe, Strong Reciprocal Interaction between Polarization and Surface Stoichiometry in Ferroelectric Oxides. **Nano Letters**, **14**, 6711-6717 (2014) DOI: 10.1021/nl5035013
- 3. N. Koocher, <u>J. M. P. Martirez</u>, and A. M. Rappe, Theoretical Model of Oxidative Adsorption of Water on a Highly Reduced Reconstructed Oxide Surface. **Journal of Physical Chemistry Letters**, **5**, 3408-3414 (2014) DOI: 10.1021/jz501635f

- 2. E. H. Morales*, <u>J. M. P. Martirez*</u>, W. A. Saidi, A. M. Rappe, and D. A. Bonnell, Coexisting Surface Phases and Coherent One-Dimensional Interfaces on BaTiO₃(001). **ACS Nano 8**, 4465-4473 (2014) DOI: 10.1021/nn501759g
- J. M. P. Martirez, E. H. Morales, W. A. Saidi, D. A. Bonnell, and A. M. Rappe, Atomic and Electronic Structure of the BaTiO₃ (001) (√5×√5) R26.6° Surface Reconstruction. Physical Review Letters 109, 256802 (1-5) (2012) DOI: 10.1103/PhysRevLett.109.256802

Students Mentored

Norleakvisoth Lim, *undergraduate*, University of California - LA, Fall 2019 - present Alexander J. Tkalych, *graduate*, Princeton University, Fall 2017 – Spring 2018 Robert B. Wexler, *graduate*, University of Pennsylvania, Summer 2014 – Spring 2019 Joseph Abbate, *undergraduate*, Princeton University, Fall 2015 – Spring 2016 Nicole Belonzi, *graduate*, University of Pennsylvania, Summer 2014 Nathan Z. Koocher, *undergraduate*, University of Pennsylvania, Fall 2011 – Fall 2014

Recent Referee Services

Grant Proposal Review

Centro Svizzero di Calcolo Scientifico (CSCS, Swiss National Supercomputing Centre)

Scientific Article Review

ChemCatChem, Small, The Journal of Chemical Physics, Advanced Functional Materials, ACS Sustainable Chemistry & Engineering, ACS Nano, Nano Letters, ACS Catalysis, Nature Nanotechnology, The Journal of Physical Chemistry Letters, Angewandte Chemie

Most Recent Presentations

Talks

- 6. **Invited seminar**: "Aiding in engineering new materials for sustainable energy applications: modelling ground- and excited-state catalysis on metals and metal oxides through the lens of accurate first-principles quantum mechanics", Department of Chemical Engineering, **Stanford University**, Stanford, California (March 20, 2019)
- 5. *Invited:* "Describing Light-Driven Catalysis on Surface-Doped Plasmonic Metals via Embedded Correlated Wavefunction Theories", **2018 MRS Fall Meeting and Exhibit**, Boston, Massachusetts, USA (November 27, 2018)
- 4. *Invited*: "Ab initio modeling of light-driven catalysis on surface-doped plasmonic metals" **SciX 2018**, Atlanta, Georgia USA (October 24, 2018)
- Invited: "Quantum mechanical description of excited-state catalysis on metals for nanoplasmonics" 255th American Chemical Society National Meeting and Exposition, New Orleans, Louisiana USA (March 19, 2018)
- Invited seminar: "Surface phenomena on metals and metal oxides through the lens of first-principles quantum mechanics", School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (December 12, 2017)
- 1. "Quantum Mechanical Description of Excited-State Heterogeneous Catalysis Via Embedded Correlated Wavefunction Methods" **2017 American Institute of Chemical Engineers Annual Meeting**, Minneapolis, Minnesota, USA (October 31, 2017)

Posters

- 3. "Discovering and Understanding New Catalytic Materials for Sustainable Chemical Conversion via Quantum Mechanics" Princeton E-ffiliates Partnership 2018 Retreat, New York City, New York, USA (June 13, 2018)
- 2. "Understanding heterogeneous photochemical conversion processes from first principles" AFOSR 2018 Molecular Dynamics and Theoretical Chemistry Program Review, Albuquerque, New Mexico, USA (May 23, 2018)
- 1. "Excited-State Heterogeneous Catalysis on Surface-Doped Plasmonic Nanoparticles" Gordon Research Conference – Dynamics at Surfaces, Salve Regina University, Newport, RI, USA (July 30 - August 3, 2017)