

Ain Shams University Faculty of Engineering Computer and Systems Engineering Department

CSE 412: Digital Verification

4th Year CSE

2nd Semester 2021/2022

Assignment 2

Submitted by:

Sarah Mohamed Ahmed Ahmed

Code: 1700593

Section: 2

Submitted to:

Dr. Ayman Wahba

Github link: https://github.com/Sarah-56/Digital-Verification/tree/main/latest

Table of Contents

Design:	3
Interface:	
Counter Module:	
Test bench:	
Assertion output:	
Top module:	
Output:	
Output	· · · · · · · · · · · · · · · · · · ·

Design:

Interface:

```
interface Counter_Interface #(
  parameter COUNTER_SIZE = 4
)(
  input bit clk
);
  bit [1:0] ctrl, WHO;
  bit INIT, LOSER, WINNER, GAMEOVER, rst_l;
  bit [COUNTER_SIZE - 1:0] loadValue;

  clocking cb @(posedge clk);
   default input #Ons output #Ins;
   output rst_l, ctrl, INIT, loadValue;
   input WHO, LOSER, WINNER, GAMEOVER;
  endclocking

modport dut(
   output GAMEOVER, WHO, LOSER, WINNER,
   input clk, rst_l, ctrl, INIT, loadValue
  );

modport tb
  (
   clocking cb,
   output rst_l
);
endinterface
```

Counter Module:

```
sig.WHO = whoValue;
sig.GAMEOVER = 0;
m counter <= 4'b0000;
sig.LOSER <= 0;
m_counter <= sig.loadValue;</pre>
sig.WHO <= 2'b00;
    upOne: m_counter <= m_counter + 1;</pre>
    upTwo: m_counter <= m_counter + 2;</pre>
     downOne: m_counter <= m_counter - 1;
downTwo: m_counter <= m_counter - 2;</pre>
        sig.LOSER <= 1;</pre>
        sig.WINNER <= 0;
```

Test bench:

```
program tb counter(Counter Interface.tb sig);
   parameter cycle = 2;
                   $display("WINNER = %d asserted correctly", sig.cb.WINNER);
               if(loadValue c == 2) sig.cb.loadValue <= {COUNTER SIZE{1'b1}};</pre>
               #2
               sig.cb.INIT <= 1;
               #481
```

Assertion output:

```
WINNER = 0 asserted correctly
WINNER = 0 asserted correctly
[490] ---- Assertion Reseting_signals passed
"testbench.sv", 65: top.t0.assert_winner: started at 490ns failed at 890ns
        Offending '(GAMEOVER == 1)'
WINNER = 0 asserted correctly
[976] ---- Assertion Reseting_signals passed
"testbench.sv", 65: top.t0.assert_winner: started at 976ns failed at 1376ns
        Offending '(GAMEOVER == 1)'
WINNER = 0 asserted correctly
[1462] ---- Assertion Reseting_signals passed
[1692] ---- Assertion GameOver passed
WINNER = 0 asserted correctly
[1948] ---- Assertion Reseting_signals passed
[2192] ---- Assertion GameOver passed
WINNER = 0 asserted correctly
[2434] ---- Assertion Reseting_signals passed
[2664] ---- Assertion GameOver passed
WINNER = 0 asserted correctly
[2920] ---- Assertion Reseting_signals passed
"testbench.sv", 65: top.t0.assert_winner: started at 2920ns failed at 3320ns
       Offending '(GAMEOVER == 1)'
WINNER = 0 asserted correctly
[3406] ---- Assertion Reseting_signals passed
"testbench.sv", 65: top.t0.assert_winner: started at 3406ns failed at 3806ns
        Offending '(GAMEOVER == 1)'
WINNER = 0 asserted correctly
[3892] ---- Assertion Reseting_signals passed
"testbench.sv", 65: top.t0.assert_winner: started at 3892ns failed at 4292ns
```

```
Offending '(GAMEOVER == 1)'
WINNER = 0 asserted correctly
[3406] ---- Assertion Reseting_signals passed
"testbench.sv", 65: top.t0.assert_winner: started at 3406ns failed at 3806ns
        Offending '(GAMEOVER == 1)'
WINNER = 0 asserted correctly
[3892] ---- Assertion Reseting_signals passed
"testbench.sv", 65: top.t0.assert_winner: started at 3892ns failed at 4292ns
        Offending '(GAMEOVER == 1)'
WINNER = 0 asserted correctly
[4378] ---- Assertion Reseting_signals passed
[4608] ---- Assertion GameOver passed
WINNER = 0 asserted correctly
[4864] ---- Assertion Reseting_signals passed
[5096] ---- Assertion GameOver passed
WINNER = 0 asserted correctly
[5350] ---- Assertion Reseting_signals passed
[5580] ---- Assertion GameOver passed
$finish at simulation time
                                           5832
```

Top module:

```
module top (output bit clk);
  initial clk = 1;
  initial forever #1 clk = ~clk;
  Counter_Interface iface(clk);
  tb_counter t0(iface.tb);
  counter G0(iface.dut);
  /*********************
    DUMP VARIABLES
    ************************
    initial begin
        $dumpfile("wave.vcd");
        $dumpvars;
    end
endmodule
```

Output:

Control signal = 2'b00 (count up by 1) Load value = 4'b0000

Figure 1

Figure 3

Figure 4

Control signal = 2'b00 (count up by 1) Load value = 4'b0001

Figure 5

Figure 6

Figure 7

Control signal = 2'b00 (count up by 1) Load value = 4'b1111

Figure 8

Control signal = 2'b00 (count up by 1) Load value = 4'b1111

Figure 9

Control signal = 2'b01 (count up by 2) Load value = 4'b0000

Figure 10

Control signal = 2'b01 (count up by 2) Load value = 4'b0000

Figure 11

Figure 12

Control signal = 2'b01 (count up by 2) Load value = 4'b0001

Figure 13

Figure 14

Figure 15

Control signal = 2'b01 (count up by 2) Load value = 4'b1111

Figure 16

Figure 17

Control signal = 2'b10 (count down by 1) Load value = 4'b0000

Figure 18

Figure 19

Figure 20

Control signal = 2'b10 (count down by 1) Load value = 4'b0001

Figure 21

Figure 22

Control signal = 2'b10 (count down by 1) Load value = 4'b1111

Figure 23

Control signal = 2'b11 (count down by 2) Load value = 4'b0000

Figure 24

Figure 25

Figure 26

Control signal = 2'b11 (count down by 2) Load value = 4'b0001

Figure 27

Control signal = 2'b11 (count down by21) Load value = 4'b1111

Figure 28