Maximum Marks: 60

- (a) Calculate the variance and standard deviation of project length.
- (b) What is the probability that the project will be completed 4 weeks earlier than expected?
- What are decision trees? How and in what type of situations are they employed 4 O.5 i. for decision making?
 - A company management and the labour union are negotiating a new three year 6 settlement. Each of these has 4 strategies:

 - (a) Hard and aggressive bargaining (b) Reasoning and logical approach
 - (c) Legalistic strategy
- (d) Conciliatory approach

The cost to the company are given for every pair of strategy choice.

Union	Company Strategies					
Strategies	I	II	III	IV		
I	20	15	12	35		
II	25	14	8	10		
III	40	2	10	5		
IV	5	4	11	0		

What strategy will the two sides adopt? Also determine the value of game.

- OR iii. What is simulation? Describe the Monte-Carlo method of simulation. Also, 6 briefly describe its application to inventory problem.
- 0.6 Attempt any two:
 - State whether the following statements are correct: (Justify your comment in brief) 5
 - (a) To protect against stock-outs a large batch size is required.
 - (b) EOQ is based on a balancing between inventory carrying cost and shortage cost.
 - A company purchases 9000 parts of a machine for its annual requirement, 5 ordering one month's usage at a time. Each part cost Rs.20. The ordering cost per order is Rs.15 and the carrying charges are 15% of the average inventory per year. As a materials manager, you are to suggest a more economical purchasing policy for the company. What advice would you offer and how much would it save the company per year?
 - iii. The annual consumption of an item is 2000 items. The ordering cost is 5 Rs.100 per order. The carrying cost is Rs0.80 per unit per year. Assuming working days as 200 lead time 20 days, and safety stock 100 units. Calculate:
 - (a) EOQ
 - (b) The number of orders per year.
 - (c) Reorder level.
 - (d) The total annual ordering and carrying cost

MA)1-C	208
	VERSI	

Duration: 3 Hrs.

Enrollment No..... Faculty of Engineering

End Sem (Odd) Examination Dec-2019 ME3EI02 Operations Research

Programme: B.Tech. Branch/Specialisation: ME

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. O.1 i. Who coined the term Operations Research?

- (a) J.F. McCloskey (b) F.N. Trefethen (c) P.F. Adams (d) Both (a) and (b) ii. A minimization problem can be converted into a maximization problem by 1 changing the sign of coefficients in the
 - (a) Constraints (b) Objective Functions
 - (d) None of these (c) Both (a) and (b)
 - iii. The solution of any transportation problem is obtained in how many stages? 1 (a) Five (b) Four (c) Three (d) Two
 - iv. To make an unbalanced assignment problem balanced, what are added with all 1 entries as zeroes?
 - (a) Dummy rows (b) Dummy columns (c) Both (a) and (b) (d) Dummy entries
 - Which technique is used in finding a solution for optimizing a given objective, 1 such as profit maximization or cost minimization under certain constraints?
 - (a) Quailing Theory

(b) Waiting Line

(c) Both (a) and (b)

- (d) Linear Programming
- Dummy activities: (a) Are found in both AOA and AON networks.
 - (b) Are used when two activities have identical starting and ending events.
 - (c) Have a duration equal to the shortest non-dummy activity in the network.
 - (d) Cannot be on the critical path.
- vii. Game theory models are classified by the:
 - (a) Number of players

(b) Sum of all payoffs

(c) Number of strategies

- (d) All of these
- viii. What happens when maximin and minimax value of the game are same?
 - (a) No solution exists

(b) Solution is mixed

(c) Saddle point exists

- (d) None of these
- ix. The inventory management system where we receive orders on a regular schedule, 1 but the quantity received varies is called_

(a) EOQ/ROP

(b) Economic Lot Size

2

5

5

(c) Single Period Model

- (d) None of these
- x. Which of the following actions would likely reduce a company's need for 1 decoupling inventory?
 - (a) Increasing the number of raw material suppliers.
 - (b) Determining whether customers would accept a smaller selection of merchandise.
 - (c) Implementing a preventative maintenance program.
 - (d) Reducing the incidence of shrinkage.
- Q.2 i. What is unbound solution, and how does it occur in graphical method?
 - ii. How a multiple optimal solution is recognized when using the simplex algorithm. 3
 - iii. Solve the following LP graphically:

Maximize z = 8000x1 + 7000x2

Subject to:

$$3x1 + x2 < 66$$

$$x1 + x2 < 45$$

x1 < 20

 $x2 \le 40$

 $x1, x2 \ge 0$

OR iv. Solve the following LP problem using simplex method.

Maximize z = 3x1 + 2x2 + 5x3

Subject to:

 $x1 + 2x2 + x3 \le 430$

 $3x1 + 2x3 \le 460$

 $x1 + 4x2 \le 420$

 $x1, x2, x3 \ge 0$

- Q.3 i. What is the difference between Assignment Problem and Transportation Problem? 2
 - ii. A company has factories at F1, F2 & F3 which supply warehouses W1, W2 8 and W3. Weekly factory capacities are 200, 160 and 90 units respectively. Weekly warehouses requirements are 180, 120 and 150 units respectively. Unit shipping costs (in rupees) are as follows:

Warehouse

Factory	W1	W2	W3	Supply
F1	16	20	12	200
F2	14	8	18	160
F3	26	24	16	90
Demand	180	120	150	

Determine the optimum distribution for this company to minimize the shipping cost.

OR iii. The Atal Indore transport service limited has different buses from 'A' to 'E' to 8 cover five different routes, 'I' to 'V'. The cost operation per passenger in terms in rupees/km, in case of different buses and different routes is given below:

	Routes						
Bus	I	II	III	IV	\mathbf{V}		
A	32	38	40	28	40		
В	40	24	28	21	36		
C	41	27	33	30	37		
D	22	38	41	36	36		
E	29	33	40	35	39		

Suggest an assignment policy for different buses to different routes for minimize the total cost.

- Q.4 i. Under what conditions would you recommend scheduling by PERT?
 - ii. A typist at an office receives on the average 22 letters per day for typing. The 7 typist works 8 hours a day and it takes on the average 20 minutes to type a letter. The company has determined that the cost of a letter waiting to be mailed (opportunity cost) is 80 paisa per hour and the equipment operating cost plus the salary of the typist will be Rs. 40 per day.
 - (a) What is the typist's utilization rate?
 - (b) What is the average number of letters waiting to be typed?
 - (c) What is the average waiting time needed to have a letter typed?
 - (d) What is total daily cost of waiting letters to be mailed?
- OR iii. A small project is composed of seven activities whose time estimates are listed in 7 the table as follows:

Estimated duration (weeks)

	`					
Activity	Optimistic	Most likely	Pessimistic			
1-2	1	1	7			
1-3	1	4	7			
2-4	2	2	8			
2-5	1	1	1			
3-5	2	5	14			
4-6	2	5	8			
5-6	3	6	15			

Draw the project network, and find the following:

Marking Scheme

ME3EI02 Operations Research

		ME3E102 Operations Research		Q.3	1.	Difference between Assignment Floblem and Transportation Flo	DICIII	4
0.1	:	Who sained the term Operations Descends		1	ii.	Determine the optimum distribution for this company		8
Q.1	1.	Who coined the term Operations Research?		1		Finding IBFS by any method	3 marks	
		(d) Both (a) and (b)		_		Applying Modi method	4 marks	
	ii.	A minimization problem can be converted into a maximization p	roblem by	1		Optimum solution	1 mark	
		changing the sign of coefficients in the		OR	iii.	Converting into minimization problem	1 mark	8
		(b) Objective Functions				Finding IBFS	3 marks	
	iii.	The solution of any transportation problem is obtained in how ma	ny stages?	1		Revised cost matrix	2 marks	
		(a) Five				Final Solution	2 marks	
	iv.	To make an unbalanced assignment problem balanced, what are added	ed with all	1				
		entries as zeroes?		Q.4	i.	Conditions for scheduling by PERT		3
		(c) Both (a) and (b)				At least three conditions 1 mark for each	(1 mark * 3)	
	v.	Which technique is used in finding a solution for optimizing a given	•	1	ii.	A typist at an office receives on the average 22 letters per day	for typing. The	· 7
		such as profit maximization or cost minimization under certain constrain	ints?			typist works 8 hours a day and it takes on the average 20 minute	s to type a letter	•
		(d) Linear Programming				The company has determined that the cost of a letter waiting	ng to be mailed	1
	vi.	Dummy activities:		1		(opportunity cost) is 80 paisa per hour and the equipment opera	ting cost plus the	3
		(b) Are used when two activities have identical starting and ending ever	nts.			salary of the typist will be Rs. 40 per day.		
	V11.	Game theory models are classified by the:				(a) Typist's utilization rate	1 mark	
		(d) All of these				(b) Average number of letters waiting to be typed	2 marks	
	V111.	What happens when maximin and minimax value of the game	are same?			(c) Average waiting time needed to have a letter typed	2 marks	
		(c) Saddle point exists		_		(d) Total daily cost of waiting letters to be mailed	2 marks	
	1X.	The inventory management system where we receive orders on a regula	ır schedule,	1 OR	iii.	(a) Calculate the variance and standard deviation of project lengt	th 2 marks	7
		but the quantity received varies is called				(b) Probability that the project will be completed 4 weeks earlier	than expected	
		(d) None of these				Drawing table	3 marks	
	Х.	Which of the following actions would likely reduce a company's	s need for	1		Standard deviation	1 mark	
		decoupling inventory?				Finding probability	1 mark	
		(c) Implementing a preventative maintenance program.		Q.5	i	Decision trees	2 marks	4
0.2	:	Unbound colution		1	1.	Type of situations	2 marks	•
Q.2	1.	Unbound solution 1 m		2	ii.	Finding Union best strategy	2 marks	6
		It occur in graphical method 1 m		2	11.	Finding company's best strategy	2 marks	v
	11 .	How a multiple optimal solution is recognized when using the simplex	algorithm.			Finding value of game	2 marks	
	iii.	Solve the following LP graphically:	1	5 OR	iii.	Definition of simulation	2 marks	6
			arks			Describing Monte-Carlo method	2 marks	
OD			arks	_		Describing its application	2 marks	
OR	1V.	Solve the following LP problem using simplex method.	1	5				
			ark	Q.6		Attempt any two:		
			arks		i.	(a) Explanation	2.5 marks	5
		Optimum solution 2 m	arks			(b) Explanation	2.5 marks	

Difference between Assignment Problem and Transportation Problem

2

ii.	EOQ	1 mark	5
	Cmin (Corresponding annual cost)	1 mark	
	Optimum ordering interval	1 mark	
	Total annual cost	1 mark	
	Net saving	1 mark	
iii.	Calculate:		5
	(a) EOQ	1 mark	
	(b) The number of orders per year.	1 mark	
	(c) Reorder level.	1 mark	
	(d) The total annual ordering and carrying cost	2 marks	