Programming Module Session-8

Implementation of a non-Newtonian model

Non-Newtonian Model	Mathematical Eq.	Coefficient
powerLaw	$\eta = K\dot{\gamma}^{n-1}$	K: Consistency index
		$\dot{\gamma}$: Shear rate
		n: power law index
CrossPowerLaw	$\eta = \frac{\eta_0 - \eta_{inf}}{1 + (m\dot{\gamma})^n} + \eta_{inf}$	m: time constant
		η_0 : lower bound viscosity
		η_{inf} : upper bound viscosity
		$\dot{\gamma}$: Shear rate
HerschelBulkley	$\eta = \tau_y + (k\dot{\gamma})^{n-1}$	τ_{y} : yield stress
		k: time constant
		$\dot{\gamma}$: Shear strain rate
BirdCarreau	$\eta = \eta_{inf} + (\eta_0 - \eta_{inf})(1 + (k\dot{\gamma})^{n-1})$	k: time constant
		η_0 : lower bound viscosity
		η_{inf} : upper bound viscosity
		γ: Shear rate

Mathematical formulation of non-Newtonian models in OpenFOAM

Implementation of a non-Newtonian model: Casson model

$$\sqrt{\eta} = \sqrt{\frac{\tau_y}{\dot{\gamma}}} + \sqrt{m}$$

 η is the viscosity (m²/s)

 τ_y is yield stress (m²/s²)

 $\dot{\gamma}$ is shear strain rate

m is the consistency index (m²/s)

Implementation of a Temperature Dependent Viscosity Model

Strain Rate in OpenFOAM

Strain Rate =
$$\sqrt{2 * symm(gard(U))}$$
: $symm(gard(U))$
 $symm(grad(U)) = grad(U) + grad(U)$. T

The dependency of viscosity obeys the following equations:

$$\mu = k \left(\frac{\partial u_i}{\partial x_i}\right)^{n-1} \qquad k = k_0 - m_k (T - T_0)$$

which k_0 and m_k are initial value of viscosity and temperature dependency coefficient.

Modification in dynamicInkJetFvMesh to generate moving waves

Three different wave types are included in the MovingWave class

linear wave: $\Pi(x, t) = a * \cos(\kappa x - \omega t)$

second order Stocks wave: $\Pi(x,t) = a\cos\theta + 0.5(\kappa a)\cos 2\theta$

third order Stocks wave:

$$\Pi(x,t) = a\cos\theta + 0.5(\kappa a)\cos 2\theta + \frac{3}{8}(\kappa a)^2\cos 3\theta$$

$$\Theta = (\kappa x - \omega t)$$

 Π : the surface elevation of a deep water wave,

x: the horizontal coordinate;

t : time;

a: the first-order wave amplitude;

k: the angular wavenumber, $k = 2\pi / \lambda$ with λ being the wavelength;

ω: the angular frequency, ω = 2π / τ where τ is the period time.

