Tutorial Sheet – II (Relations)

- 1. Let A= $\{1, 3, 5\}$, B= $\{x, y\}$, C = $\{\alpha, \beta\}$ Find $A \times B \times C$.
- 2. Let $A = \{a, b, c, d, e, f\}$ and $B = \{beef, dad, ace, cab\}$ and let R be the relation from A to B where $(x, y) \in R$ if x is a letter in the word y. Find the matrix M which represents R.
- 3. Let $A = \{2, 3, 4, 5\}$ the relations R and S on A defined by

 $R = \{(2,2), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5), (5,3)\}$

 $S = \{(2,3),(2,5),(3,4),(3,5),(4,2),(4,3),(4,5),(5,2),(5,5)\}$

Find the matrices of the above relations. Use the matrices to find out the following compositions of the relations R & S:

(i)
$$R \circ S$$

(ii)
$$R \circ R$$

(iii)
$$S \circ R$$

4. List the ordered pairs in the relation R from $A=\{0,1,2,3,4\}$ to $B=\{0,1,2,3\}$ where $(a, b) \in R$ iff $(i) \ a = b$ $(ii) \ a + b = 3$ $(iii) \ GCD(a, b) = 1$

Draw the Matrix of relation R in each case.

- 5. Let $A = \{1, 2, 3, 4\}$, $B = \{4, 5, 6\}$ and $C = \{5, 6, 7, 8\}$. Define relation $R: A \to B: xRy$ if x + y = 2k; $S: B \to C: xSy$ if y x = 1. Determine M_R, M_S and $M_{R \circ S}$.
- 6. On the set of real numbers, R & S are two relations defined as

$$R = \{(a,b): a \le 2b\}$$
 & $S = \{(b,c): b \le 3c\}$. Describe $S \circ R$ and $R \circ S$. Does $(1,5) \in S \circ R$.

- 7. R is a relation on the set $A = \{1, 2, 3, 4, 5\}$ such that xRy if $|x y| \le 1$ then draw the digraph of R.
- 8. Give an example of a relation which is
 - (i) neither symmetric nor antisymmetric
- (ii) both symmetric & antisymmetric
- (iii) symmetric but not antisymmetric
- (iv) antisymmetric but not symmetric
- (v) neither reflexive nor irreflexive
- 9. Which of the properties are followed by following relations:

$$(i) \quad M_R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad (ii) \quad M_S = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad (iii) \quad M_T = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

(Reflexive, Irreflexive, Symmetric, Asymmetric, Antisymmetric and Transitive)

- 10. From question no. 9, obtain $M_{R^{-1}}$, $M_{\overline{R}}$, $M_{R \cup S}$ and $M_{R \cap S}$. Is $M_{R^{-1}} = M_{\overline{R}}$?
- 11. Determine whether the relation R, which is given as follows; is reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive:
 - (i) Empty relation on $A = \{1, 2, 3\}$ i.e. $R = \emptyset$
 - (ii) Universal relation on $A = \{1, 2, 3\}$ i.e. $R = A \times A$
 - (iii) Relation of \subset
 - (iv) Relation of \leq
 - (v) Relation of <
 - (vi) Relation of =
 - (vii) Relation of divisibility i.e. / on the set of Natural numbers.
 - (viii) Relation of divisibility i.e. / on the set of Integers.
 - (ix) Relation of perpendicular lines i.e. \perp
 - (x) Relation of parallel lines i.e.

12. Consider the following relations on {1, 2, 3, 4}

$$R_1 = \{(1,2)\}$$

$$R_2 = \{(2,2), (2,3), (3,2)\}$$

$$R_3 = \{(1,2), (4,2), (4,1), (3,2), (3,1), (3,4)\}$$

$$R_4 = \{(1,1), (1,2), (2,1), (2,2), (4,3), (3,1), (3,3)\}$$

$$R_5 = \{(1,1), (1,4), (1,2), (4,1), (4,4), (3,3), (3,2), (2,1), (2,2)\}$$

$$R_6 = \{(1,1), (1,3), (1,2), (1,4), (3,3), (3,2), (3,4), (2,2), (2,4), (4,4)\}$$

Which of these relations are reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive?

- 13. Explain the following:
 - i) If *R* is reflexive $\Rightarrow R \cap R^{-1}$ is non empty.
 - ii) If R & S are reflexive, symmetric and transitive $\Rightarrow R \cap S$ is also...
 - iii) If R & S are transitive $\Rightarrow R \cup S$ need not be transitive.
- 14. Obtain the closure (Reflexive, symmetric and transitive) of the following relation:

- 15. What will be the reflexive and symmetric closures of the relation $R = \{(a,b): a < b\}$ on the set of integers?
- 16. Find the zero-one matrix of the transitive closure of the relation R where

$$M_R = \left| \begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{array} \right|.$$

- 17. In the digraph (given in Q. no. 14) which of the following are paths: 3, 1, 2; 5, 1, 3, 2; 5, 4, 3, 1; 5, 1, 4, 3, 1; 1, 4, 3, 1? What are the lengths of those that are paths? Which of the paths in this list are circuits?
 - 18. Show that the relation "is congruent modulo 3" on the set of integers is an equivalence relation. Find also all equivalence classes.
 - 19. Show that on a set, an equivalence relation always induces a partition.
 - 20. R is a relation defined on $Z \times Z$ by (a,b)R(c,d) if a+d=b+c. Show that R is an equivalence relation. Find the equivalence class of (1,5) and (2,6).
 - 21. Show that the "less than or equal" relation (\leq) is a partial ordering on the set of integers.
 - 22. Show that the inclusion relation \subseteq is a partial ordering on the power set of a set A.
 - 23. Draw the Hasse diagram representing the partial ordering $\{(a,b): a \le b\}$ on $\{1,3,5,7\}$.
 - 24. Draw the Hasse diagram representing the partial ordering $\{(a,b): a \ divides \ b\}$ on $\{1,2,3,4,6,9,15\}$.
 - 25. Draw the Hasse diagram for the partial ordering $\{(A, B): A \subseteq B\}$ on the power set P(S) where $S = \{1, 2, 3\}$.

<u>Remark</u>: We denote composition of relations S and R by RoS. If you wish to denote composition of S and R by SoR then must mention about it explicitly.