

Ճանապարհների փակումներ

Սուրաբայա քաղաքում կան N խաչմերուկներ, որոնք համարակալված են 0-ից N-1 թվերով։ Այս խաչմերուկները միացված են N-1 երկկողմանի ճանապարհներով, որոնք համարակալված են 0-ից N-2 թվերով այնպես, որ ցանկացած խաչմերուկից ցանկացած այլ խաչմերուկ կարելի է հասնել ճանապարհներով։ i ($0 \le i \le N-2$) համարի ճանապարհը իրար է միացնում U[i] և V[i] խաչմերուկները։

Բնապահպանական իրազեկությունը բարձրացնելու համար Պակ Դենգկլեքը, որպես Սուրաբայայի քաղաքապետ, նախատեսում է անցկացնել առանց մեքենաների օր։ Միջոցառմանը նպաստելու համար, Պակ Դանգկլեկը կազմակերպելու է ճանանպարհների փակումներ։ Պակ Դեգկլեկը նախ ընտրելտու է մի k ոչ բացասական ամբողջ թիվ, ապա փակելու է որոշ ճանապարհներ այնպես, որ յուրաքանչյուր խաչմերուկ ուղիղ միացված լինի **առավելագույնը** k ճանապարհների, որոնք փակ չեն։ i- որ ճանապարհը փակելու արժեքը W[i] է։

Օգևեք Պակ Դենգկլեկին և յուրաքանչյուր k ($0 \le k \le N-1$) ոչ բացասական թվի համար գտեք ճանապարհները փակելու ընդհանուր մինիմալ արժեքը։

Իրականացման մանրամասներ

Դուք պետք է իրականացնեք հետևյալ ենթածրագրերը.

int64[] minimum_closure_costs(int N, int[] U, int[] V, int[] W)

- N։ խաչմերուկների քանանկը Սուրաբայայում։
- ullet U և V: N-1 չափի զանգվածներ, որտեղ U[i] և V[i] խաչմերուկներն իրար միացված են i-րդ ճանապարհով։
- ullet W: N-1 չափի զանգված, որտեղ W[i]-ն i-րդ ճանապարհը փակելու արժեքն է։
- Ենթածրագիրը պետք է վերադարձնի N չափի մեկ զանգված։ Յուրաքանչյուր k-ի ($0 \le k \le N-1$) համար, k-րդ տարրը ճանապարհները փակելու մինիմալ արժեքն է այնպես, որ յուրաքանչյուր խաչմերուկ ուղիղ կապված լինի առավելագույնը k ճանապարհների, որոնք փակ չեն։
- Այս ենթածրագիրը կանչվում է ճիշտ մեկ անգամ։

Օրինակներ

Օրինակ 1

Դիտարկենք հետևյալ կանչը.

```
minimum_closure_costs(5, [0, 0, 0, 2], [1, 2, 3, 4], [1, 4, 3, 2])
```

Սա նշանակում է, որ կան 5 խաչմերուկներ և դրանք իրար միացնող 4 ճանապարհներ, որոնք իրար են միացնում խաչմերուկների հետևյալ զույգերը` (0,1), (0,2), (0,3) և (2,4), որոնց փակումների արժեքներ են 1,4,3 և 2, համապատասխանաբար։

Մինիմում արժեքները ստանալու համար.

- Եթե Պակ Դենգկլեկը ընտրի k=0, ապա բոլոր ճանապարհները պետք է փակել, և ընդհանուր արժեքը կլինի 1+4+3+2=10;
- Եթե Պակ Դենգկլեկը ընտրի k=1, ապա 0 և 1 ճանապարհները պետք է փակել, և ընդհանուր արժեքը կլինի 1+4=5;
- Եթե Պակ Դենգկլեկը ընտրի k=2, ապա 0 ճանապարհը պետք է փակել, և ընդհանուր արժեքը կլինի 1;
- Եթե Պակ Դենգկլեկը ընտրի k=3 կամ k=4, ապա որևէ ճանանպարհ չպետք է փակել։

 \prec ետևաբար, minimum_closure_costs ենթածրագիրը պետք է վերադարձնի [10,5,1,0,0]։

Օրինակ 2

Դիտարկենք հետևյալ կանչը.

```
minimum_closure_costs(4, [0, 2, 0], [1, 0, 3], [5, 10, 5])
```

Սա նշանակում է, որ կան ընադամենը 4 խաչմերուկներ և 3 ճանապարհներ, որոնք իրար են միացնում խաչմերուկների (0,1), (2,0) և (0,3) զույգերը, որոնց փակելու արժեքներն են 5,10 և 5 համապատասխանաբար։

Մինիմում արժեքները ստանալու համար.

- Եթե Պակ Դենգկլեկը ընտրի k=0, ապա բոլոր ճանապարհները պետք է փակել, և ընդհանուր արժեքը կլինի 5+10+5=20;
- Եթե Պակ Դենգկլեկը ընտրի k=1, ապա 0 և 2 խաչմերուկները պետք է փակել, և ընդհանուր արժեքը կլինի 5+5=10;
- Եթե Պակ Դենգկլեկը ընտրի k=2, ապա 0 կամ 2 ճանապարհը պետք \mathbf{t} փակել, և ընդհանուր արժեքը կլինի $\mathbf{5}$;
- Եթե Պակ Դենգկլեկը ընտրի k=3, ապա որևէ ճանապարհ չպետք է փակել։

 \prec ետևաբար, minimum_closure_costs ենթածրագիրը պետք է վերադարձևի [20,10,5,0]։

Սահմանափակումներ

- $2 \le N \le 100\,000$
- $0 \le U[i], V[i] \le N-1$ (for all $0 \le i \le N-2$)
- Ցանկացած խաչմերուկից ցանկացած այլ խաչմերուկ կարելի է հասնել ճանապարհներով։
- ullet $1 \leq W[i] \leq 10^9$ (բոլոր $0 \leq i \leq N-2$ համար)

ենթախնդիրներ

- 1. (5 միավոր) U[i]=0 (for all $0\leq i\leq N-2$)
- 2. (7 միավոր) U[i]=i, V[i]=i+1 (for all $0\leq i\leq N-2$)
- 3. (14 միավոր) $N \leq 200$
- 4. (10 միավոր) $N \leq 2000$
- 5. (17 միավոր) W[i]=1 (for all $0 \le i \le N-2$)
- 6. (25 միավոր) $W[i] \leq 10$ (for all $0 \leq i \leq N-2$)
- 7. (22 միավոր) Լրացուցիչ սահմանափակումներ չկան։

Գրեյդերի նմուշ

Գրեյդերի նմուշը մուտքային տվյալները կարդում է հետևյալ ձևաչափով.

• տող 1: *N*

• $\operatorname{unn} 2 + i$ ($0 \leq i \leq N-2$): $U[i] \; V[i] \; W[i]$

Գրեյդերնի նմուշը մեկ տողում տպում է minimum_closure_costs-ի վերադարձրած զանգվածի պարունակությունը։