# Machine Learning and Programming in Python Lecture for Master and PhD students

Chair of Data Science in Economics

Ruhr University Bochum

Summer semester 2024

Lecture 1

# Outline

- Logistics
- About this module
- Literature
- Overview: Data Science
- Overview: Machine Learning
- Overview: Programming with Python
- Introduction to Python, Anaconda, Jupyter Notebook

#### Lecture

- Monday, 08.04.2024, 15:15 17:45, HNC 20
- Thursday, 11.04.2024, 14:15 16:45, HNC 10
- Friday, 12.04.2024, 14:15 16:45, HNC 20
- Monday, 15.04.2024, 15:15 17:45, HNC 20
- Thursday, 18.04.2024, 14:15 16:45, HZO 30
- Friday, 19.04.2024, 14:15 16:45, HGD 30
- Monday, 22.04.2024, 15:15 17:45, HNC 20
- Thursday, 25.04.2024, 14:15 16:45, HZO 30
- Friday, 26.04.2024, 14:15 16:45, HGD 30

approx. 5 minutes break in between - note: a break is a break

- Exam: 29.07.2024
- Information on how and when to register for the exam can be found in Moodle and ecampus/ FlexNow  $\Rightarrow$  Note: You will only be able to register for and take part in the exam, if you were formally accepted by me to take part in this course
- Questions about the course, Machine Learning, Programming in Python? Email: dsecon-itc@ruhr-uni-bochum.de
- The slides will be uploaded before the lecture starts
- This is the second time that this lecture is given

#### Contents:

- 1. Introduction
- 2. Programming in Python (basics, control flow, classes)
- 3. Model complexity (underfitting, overfitting, bias-variance trade-off)
- 4. Regularisation (regression, Ridge, Lasso), Scikit-learn in Python
- 5. Supervised learning (regression, classification, logistic regression, support vector machines), Scikit-learn
- 6. Model evaluation, Scikit-learn
- 7. Decision trees (bagging, random forests, boosting algorithms),
   Scikit-learn
- 8. Unsupervised learning (k-means clustering, principal component analysis), Scikit-learn
- 9. Deep learning, neural networks, PyTorch, TensorFlow in Python
- 10. Natural language processing (text as data, pre-processing, dictionary methods, supervised learning, naïve Bayes), NLTK in Python

Prof. Dr. Astrid Krenz Ruhr University Bochum 5 / 62

- This is a compact course on Machine Learning and Programming in Python
- You will learn a lot about concepts of Machine Learning, why it is important in the field of Economics, and how to apply the techniques on data sets, using the programming language Python

# Some of the data we will be working with:

- a speech by Christine Lagarde (ECB)
- data on beer consumption
- house price data
- Titanic data set
- data on CO2 emissions and economic growth
- a speech by George W. Bush
- hotel reviews

- Prerequisites:
  - Knowledge of Macroeconomics, Microeconomics, Mathematics/ Statistics for Economists
  - Beginner in Python
  - ► Some previous knowledge of Stata/ R
- Assessment
- Important for the exam: Statistical theory and applications in Python, lecture slides, relevant pages from the textbooks, further material (Jupyter Notebooks, problem sets)
- I like to explain/ visualize concepts on the blackboard ("Tafelbilder") to convey the intuition behind the methods

# Learning Objectives:

- Getting to know models and methods from machine learning
- Being able to develop models of machine learning
- Analysis of numerical and text data
- Application of the techniques with the use of the programming language Python
- Being able to understand applications of machine learning and NLP (Natural Language Processing) in Economics

- Programming in Python critical part of the module but this is not a purely programming module!
- Course is on Machine Learning AND Economics, not merely on machine learning.
  - Learn tools & techniques to assist you in empirical economics.
  - ▶ Enable you to converse intelligently with data scientists.
  - Encourage you to explore innovative applications in economics.
  - ► Equip you for a future that will increasingly be driven by machine learning & Al!

#### Literature:

- James, Witten, Hastie, Tibshirani, Taylor (2023), An Introduction to Statistical Learning, download at https://hastie.su.domains/ISLP/ISLP\_website.pdf
- Hastie, Tibshirani, Friedman (2017), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, 2. edition, download at https://hastie.su.domains/Papers/ESLII.pdf

- Jurafsky, Martin (2021), Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, 3. edition, download at https://web.stanford.edu/~jurafsky/slp3
- Grimmer, Roberts, Stewart (2022), Text as Data: A New Framework for Machine Learning and the Social Sciences

## Additional:

- Deitel, P., Deitel, H. (2020), Intro to Python for Computer Science and Data Science, Pearson
- Mueller, Guido (2016), Introduction to Machine Learning with Python, O'Reilly

## What is Data Science?







# What is Artificial Intelligence?

- Marvin Minsky: "Artificial Intelligence is the science of making machines do things that would require intelligence if done by men"
- Stuart Russell and Peter Norvig: "the designing and building of intelligent agents that receive percepts from the environment and take actions that affect that environment"

## Language and image recognition capabilities of AI systems have improved rapidly



Data source: Kiela et al. (2021) - Dynabench: Rethinking Benchmarking in NLP

Some problems you may solve with the methods of Data Science, Al, Machine Learning:

- Identify the risk factors for prostate cancer
- Classify a customer to default on a credit
- Predict whether someone will have a heart attack on the basis of demographic, diet and clinical measurements
- Customize an email spam detection system
- Identify the numbers in a handwritten zip code
- Group a tissue sample into one of several cancer groups, based on a gene expression profile
- Establish the relationship between salary and demographic variables in population survey data
- Classify the pixels in a LANDSAT image, by usage











Income survey data for males from the central Atlantic region of the USA in 2009.



 $\label{eq:usage} Usage \in \{\textit{red soil, cotton, vegetation stubble, mixture, gray soil, damp} \\ \textit{gray soil}\}$ 

Traditionally, economists used (relatively small-sized) data sets from:

- surveys (households, firms, ...)
- experiments (field, lab, ...)
- administrative records (e.g. taxes)
- the census, etc.

Focus has been on causal inference

# Big Data

- Volume: Datasets orders of magnitude larger e.g. retail scans, debit/credit card usage, social media posts, web clicks (several GB or TB large)
- Real time: Data streaming in real time useful for business and policy to analyse and respond quickly
- Variety: Numeric or structured text (standard), unstructured text, images, video, browsing behaviour etc.
- Technology: Feasible to gather, store, access, and manipulate vast datasets

- Big is not the critical thing what matters is extracting information from data (new, unstructured data)
- Machine learning: a field that develops algorithms designed to be applied to datasets, with the main areas of focus being prediction -such as regression and classification- and clustering or grouping tasks. (Athey (2017), "The Impact of Machine Learning on Economics")

- For the application of such algorithms, data representation plays a crucial role
- Suppose that you want to draw a line that separate the blue circles and the green triangles

# Cartesian coordinates



# Cartesian coordinates



### Polar coordinates



- Impossible under cartesian coordinates, trivial under polar coordinates
- Thus, Data Science also requires creativity in terms of data representation

## So: What is Data Science?

- Different definitions
- It is about how we manage the existing –and growing- information, in a very interconnected world
- Also, it has to do with understanding our environment: Society, economy, consumption habits, machinery functioning...
- Data is around us: E-mails, social networks, surveys, banking details....
- Data science has to do with the multiple methodologies conceived to manage the existing information in a changing world, using the data to extract plausible and reasonable conclusions

# We use data for many purposes:

- It allows us to describe situations in multiple frameworks (e.g.: the average productivity of workers in a particular sector; social security affiliations, etc.).
- Detect anomalous events: By using past information —creating trends, growth rates...-, we can interpret information and classify it. (e.g.: sharp declines of stock prices; suspect logins in bank accounts, etc.).
- Ex-post evaluations: Understanding the causes and the roots of many events (e.g.: The crash of 2007/2008).

- Data collection has become in a powerful weapon for anyone interested in a field of expertise.
- Your personal information is constantly being recorded, saved, used and interpreted. And this, sometimes, is scary.
- Imagine that you buy a car. What kind of information are you going to provide to the brand in question and how this will be used?

# How does Data Science work?



## How does Data Science work?

- 1. We download/digitise the data
- 2. We clean the information, check for typos, remove columns, include rows (or vice versa), cluster the individuals, identify strings, floats etc., double-check the absence of entry errors, organisational mistakes, missing data...
- 3. Descriptive analysis, visualisation
- 4. Analysis, prediction, inference, evaluation.

#### The Workflow in Data Science

- 1. We need to well-define our question.
  - ► How is my heart rate when I do running? How many financial transfers in Madrid are fraudulent? What is the probability of having a car accident in the French coast during summer?
- 2. Some initial data allowing us to reach preliminary conclusions.
  - You can use some past recordings of your heart frequency / Banking transfer records / Average number of car accidents in French Riviera during 2018-19.
- 3. Upcoming new sets of data, so we can use new algorithms or run stochastic processes.
  - New data will allow you to establish comparisons ex-ante vs ex-post.

## Who works in Data Science?

- Everyone with interest in understanding complex processes involving information generation.
- "Traditionally", four types of jobs have been identified:
  - ▶ Data engineer: Work on the architecture of information and build the "structure" to store and keep all the data generated.
  - Data analyst: Economists could be placed here. Clean, summarise and interpret the data.
  - Data scientist: Also a job for economists, with strong statistical skills though. They make experiments and run codes to set up automatised inference process.
  - ▶ Machine learning scientist: They focus on the last part of the analytic process. They are interested in forecasting with large datasets, so create complex machine learning algorithms to do this.

- Nowadays, Data Science is a discipline that can be learned by any profile: It is used by economists, sociologists, historians, engineers, physicians, etc.
- The volume of information is growing in every field, so that's what explains the boom: both private and public sector must understand and interpret real world.

## What is Machine Learning?

## Machine Learning:

- Focus on prediction.
- May (or may not) be concerned with insights or causal inference.
- Systematic and transparent model selection.
- Can handle large numbers of covariates.

#### **Econometrics:**

- Look for patterns and insight.
- Causal inference is usually a major goal.
- Estimate one model and focus on significance/ confidence intervals of key parameters.

#### Terminology

- Features: Predictors, inputs, regressors, covariates, independent variables (X)
- Output: Outcome, response, target, label, class, dependent variable
   (y)
- Model: Learner, classifier, regression equation; e.g some function of the features that predicts outcome
- Training Data: Sample used for building the model
- Test Data: Sample used for testing the model (out of sample)
- Loss Function: Cost function, fit (usually the mean squared error MSE (error or residual sum of squares RSS))

# Statistics and Machine Learning - Differences in Terminology

| Statistics                     | Machine Learning              |
|--------------------------------|-------------------------------|
|                                |                               |
| model                          | network, graphs               |
| parameters                     | weights                       |
| fitting                        | learning                      |
| test set performance           | generalization                |
| regression/ classification     | supervised learning           |
| density estimation/ clustering | unsupervised learning         |
| large grant = 50,000 \$        | large grant = 1,000,000 \$    |
| nice place to have a meeting:  | nice place to have a meeting: |
| Las Vegas in August            | Snowbird, Utah, French Alps   |

Comparision of Machine Learning and Statistics, Glossary by R. Tibshirani

#### The Supervised Learning Problem

- Outcome measurement Y (also called dependent variable, response, target)
- Vector of p predictor measurements X (also called inputs, regressors, covariates, features, independent variables)
- In the regression problem, Y is quantitative (e.g price, blood pressure)
- In the classification problem, Y is qualitative (survived/died, digit 0-9, cancer class of tissue sample)
- We have training data  $(x_1, y_1), \ldots, (x_N, y_N)$ . These are observations (examples, instances) of these measurements

#### **Objectives**

On the basis of the training data we would like to:

- Make accurate predictions
- Understand which inputs affect the outcome, and how

With the test data we will:

Assess the quality of our predictions and inferences

#### Supervised Learning

- ⇒ Learn a model from labeled training data to make predictions in unseen or future data.
- Say, goal is to learn a model to detect spam email.
- Training data is a sample of emails labeled (by humans) as spam or not.
- Classification task: label is a category (binary or multiple).
- Regression task: label is a continuous variable e.g. house price, stock value etc.

- Goal is to predict y given k features,  $X = [x_1, x_2, x_3, ..., x_k]$
- Posit that  $y = f(X) + \epsilon$ 
  - ullet is random noise in data (cannot be eliminated).
  - f is unknown but we would like to approximate it as well as possible.
  - Different ML algorithms take different approaches to 'learning' f
- Say we train a model  $\hat{f}$ . We predict  $\hat{y} = \hat{f}(X)$ .
- How good an approximation is  $\hat{f}$ ? Are  $\hat{y}$  close to the true y?
  - Loss (or cost) function:  $J(y, \hat{y})$
  - A common loss function is  $J = \frac{1}{2} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- ML picks  $\hat{f}$  to minimise the loss function.
- Minimisation problem solved using Gradient descent, an optimisation algorithm.

#### **Unsupervised Learning**

- No outcome variable, just a set of predictors (features) measured on a set of samples
- objective is more fuzzy find groups of samples that behave similarly, find features that behave similarly, find linear combinations of features with the most variation
- difficult to know how well your are doing
- different from supervised learning, but can be useful as a pre-processing step for supervised learning

#### Unsupervised Learning

patterns.

⇒ Learn a model to explore unlabeled data and discover hidden

- Say, goal for a firm is to identify distinct customer groups (segments).
- Members within a segment have similar tastes and spending.
- Clustering.

#### Machine Learning workflow:

- Prep the raw data:
  - Quantify the various features (sometimes normalised to range [0,1] or standard normal).
  - Split into training and test samples; set aside the test sample.
- Train models
  - Training data often split into training and validation subsamples; allows us to evaluate how models generalise before final evaluation on the test sample.
  - Estimate models using training data.
- Evaluate on the test data and select a model.
  - Pick a performance metric e.g. classification accuracy.
  - ▶ Select the best performing model.

Ethical questions: ML as substitute for human decisions?

Example: Borrower, X variables (age, education, income), y variable (credit default)

- ullet Some types of data might not be available to ML algorithm. o behaviour of borrower
- ullet Available data is generated by human activity and is one-sided o Only observe flight or crime among bailed defendants o Don't have 'labels' for the jailed defendants
- Humans might have different (or more complex) payoff functions  $\rightarrow$  loan officers might not be lending to most profitable customers  $\rightarrow$  focussed on short-run default instead of long-run outcomes  $\rightarrow$  ML predictions not met

## **Philosophy of Machine Learning**

- It is important to understand the ideas behind the various techniques, in order to know how and when to use them
- One has to understand the simpler methods first, in order to grasp the more sophisticated ones
- It is important to accurately assess the performance of a method, to know how well or how badly it is working [simpler methods often perform as well as fancier ones!]
- This is an exciting research area, having important applications in science, industry and finance

#### What is Python?

- A very popular programming language.
- Highly versatile can handle almost any ML task.
- Free and comes with a vast range of "add-ons"; being improved almost daily.
- Countless online resources to learn Python. Find below a Wikilist of Python tutorials for beginners: https://wiki.python.org/moin/BeginnersGuide/Programmers.
- Useful resource on ML and Python: https://jakevdp.github.io/PythonDataScienceHandbook/

#### Growth of major programming languages



#### R versus Python

- R mainly used by Statisticians, Python by Computer Science etc. ⇒ but now convergence across disciplines
- R is a very popular programming language and free. You can access R routines via Python
- Python is more versatile, you can do all the econometrics in Python and many other tasks. It is one of the main languages of machine learning. And Python is free

- Many available programming interfaces/ integrated development environments (IDEs) but we will use the Anaconda distribution.
  - ► Freely available at https://www.anaconda.com for Mac and Windows
  - One of the most popular Python distributions for machine learning
  - Has almost all key Python libraries and tools pre-installed
  - Mainly utilise Jupyter Notebook but may use other platforms (Spyder, PyCharm, (Google Colab) ...)
- You can directly run Python from terminal on Mac or the command-line from Windows

#### Objectives of teaching Python in this module:

- Basic understanding of programming in Python.
- More in-depth understanding of working with ML-relevant Python packages.
- Foundation for more advanced study of Python and its applications.
- Data and machine learning libraries: Numpy, Pandas, Scipy, Statsmodels, Matplotlib, and Seaborn, Scikit-learn, PyTorch, TensorFlow

- Hard work and practice like learning any new language.
- Be proactive and search for solutions.
- Countless online resources:
  - Explore and bookmark a few that you find most useful, but try not to waste too much time.
  - Do one or more online tutorials (many free ones).
- Usually, many alternative ways of coding for the same objective:
  - Annotate your code (helps other readers and also yourself later).
  - Less is better (if 2 lines of code do the trick, why have 10?).

"Stack Overflow is a question and answer site for professional and enthusiast programmers"

#### Accessing the index in 'for' loops

```
Asked 14 years, 2 months ago Modified 2 days ago Viewed 3.9m times

How do I access the index while iterating over a sequence with a for loop?

5104

xs = [8, 23, 45]

for x in xs:
    print("item #{} = {}".format(index, x))

Desired output:

item #1 = 8
    item #2 = 23
    item #3 = 45
```

#### Git

- Open-source version control system for software code
- Efficiently tracking and managing changes to code
- Branching developers duplicate part of source code and modify it
- Merging modified code merged into source
- These changes are tracked and reversible

#### GitHub

- Online platform to host and manage code
- Share code and collaborate with other developers
- Over 83 million users worldwide (in 2022)

## Kaggle

- https://www.kaggle.com
- Online community of data science professionals and enthusiasts.
   Owned by Google.
- Famous for its competitions firms post machine learning problems and best algorithms win cash prizes.
- Offers short online training courses
- Data sets and code available.
- Recruitment.

## Kaggle data sets



## Jupyter Notebook

- Tool for interactively developing and presenting data science projects.
- Code and its output in the same document.
- Can include code, text, charts, equations, audio, video etc.
- Accommodates many different programming languages but Python most commonly used.

• Launch Anaconda and then launch the Jupyter Notebook application.

- Opens a new tab (in your default browser) that is the 'Dashboard' lists folders in the Jupyter start-up directory.
- The address bar may show something like http://localhost:8888/tree
   not a remote website but a 'server' on your own local machine.
- Jupyter Notebook and Dashboard run like web apps and are platform-independent.