ASEN 2002 Design Lab

Haotian Chen $^{\scriptscriptstyle 1}$, Cole Sechrist $^{\scriptscriptstyle 2}$, Sunny Sarkar $^{\scriptscriptstyle 3}$, Isaac Timko $^{\scriptscriptstyle 4}$, Ricardo Lopez-Abadia $^{\scriptscriptstyle 5}$

University of Colorado - Boulder ASEN 2002 Section 302 Group 8

October 22, 2019

¹109201000

²109088806

 $^{^{3}}$ 109027828

⁴107668395

⁵ 108585148

General Purpose

General Purpose: To design a functional zero-pressure balloon and understand the fundamental thermodynamic principles governing its behavior

Zero-Pressure Balloons

- Open at bottom
- Vents on side
- Limited duration

Super-Pressure Balloons

- Long distance
- No openings
- Low gas loss

Introductions and Outline

Design Requirements — Haotian Chen

 $Design \ Specifications \longrightarrow \textbf{Sunny Sarkar}$

 $\mathsf{Design}\ \mathsf{Research} \longrightarrow \mathbf{Cole}\ \mathbf{Sechrist}$

Design Analysis → Isaac Timko

Design Deliverables \longrightarrow Ricardo Lopez-Abadia

Design Requirements

Purpose

- Carry a 500 kg research instrument
- ullet Maintain altitude of 25 kilometers \pm 800m for at least one day

Pre-Lab

- Force Analysis, Volume Analysis, and Mass Analysis
 - Free Body Diagram
 - Equilibrium Equations for Full-Scale Design
- Thermal Analysis
 - Effect of Radiation and Heat Transition

Free Body Diagram

Design Requirements

Full-Scale Design

- Gas
 - Density, Safety......
- Material
 - Density, Strength, Safety......
- Computer Science
 - Matlab code for calculation which considers all factors that affect Volume and the balloon's mass
 - Thermal radiation, Gas, Material, Safety redundancy......

Finally.....

THE BEST TEAM OF ASEN2002!

Zero Pressure Balloon

- Gage Pressure
- Pressure Depends Heavily on Temperature
- Vents on Sides
- Limited Run Time

Assumptions

Perfect Sphere

$$\frac{dE}{dt} = 0$$

- $\bullet \ 0 = \dot{Q}_{in} \dot{Q}_{out}$
- ullet $\dot{Q}_{balloon} = \dot{Q}_{solar} + \dot{Q}_{earth}$
- $T_{balloon\ min} = \sqrt[4]{\frac{\alpha_{eb} \cdot q_{earth}}{4\varepsilon_{b} \cdot \sigma_{SB}}}$

$$T_{balloon\ max} = \sqrt[4]{rac{lpha_{sb} \cdot q_{sun} + lpha_{eb} \cdot q_{earth}}{4arepsilon_b \cdot \sigma_{SB}}}$$

Assumptions

Ideal Gas

$$PV = mRT$$

• Pressure Constant at the initial altitude and temperature

$$V_{He} = \frac{mRT}{p}$$
 gives value

Radius of Shell is Negligible

$$V_{He} = V_{system}$$
 $\rho_{system} = \frac{m_{system}}{V_{system}}$

Design Specifications

$$V_{system} = \frac{mRT}{p}$$
 gives value

$$\rho_{system} = \frac{m_{system}}{V_{system}}$$

Design Research

Potential Materials

- Honeywell Capran Emblem 2500M M-Coated Bi-Axially Oriented Nylon Film
 - Lowest tensile strength at break is 207 MPa
 - Thickness of 25.4 microns
- Honeywell Capran Emblem 1200 Bi-Axially Oriented Nylon Film
 - Lowest tensile strength at break is 193 MPa
 - Thickness of 12.2 microns
- Honeywell Capran Emblem 1500 Clear Bi-Axially Oriented Nylon Film
 - Lowest tensile strength at break is 200MPa
 - Thickness of 15.2 microns

Selected Material: Honeywell Capran Emblem 2500M M-Coated Bi-Axially Oriented Nylon Film

Design Research

Potential Gases

- Helium
 - Non-combustible
 - Density at STP (1 atm and 0°C) is 0.179 g/L
 - Price: \$58/125L
- Hydrogen
 - Very flammable
 - Density at STP is 0.090 g/L
 - Price: \$5.50/kg

Selected Gas: Helium

Data on materials is from matweb.com

Design Analysis

Mass Budget

Item	Mass (kg)	Fractional Percent of Total
Balloon Shell	3.387	0.471%
Helium Gas	81.15	11.28%
Ballast	135	18.76%
Payload	500.0	69.49%
Total	719.5	100.0%

• Factor of Safety: 2

• Volume: 16810 m³

Volume Calculations

$$Volume_{Balloon} = \frac{4}{3} * \pi * (r + thickness)^3$$

thickness =
$$\frac{k_{safe} * P_{Guage} * r}{2 * \sigma_u}$$

$$Volume_{He} = \frac{4}{3} * \pi * (r)^3$$

$$Volume_{Balloon} = \frac{4}{3} * \pi * (r + thickness)^3$$

Design Visulzation

Design Deliverables

- Mass
 - 81.2 kg Gas of Balloon
 - 3.4 kg Shell of Ballon
- Released Balast
 - 140kg Released Payload
 - 18 kg Released Gas
- Volume
 - 13650 m³ volume during night
 - 20700 m³ volume during day
- Height
 - 24250 m height during night
 - 25750 m height during day

Design Deliverables

Figure: https://www.researchgate.net

