Management and Operations of Networks, Services, and Systems A Quality Network

Ricardo Morla FEUP – GORS/M.EEC, GRS/M.EIC

Challenges

- Large number of devices, and switching limitations
 - leading to capacity bottlenecks
- Specific requirements for users and applications
 - with service level commitments with users/clients
- Costs (!)
 - both capex and opex
- Traffic growth
 - and shrinkage (?)
- Network outages
- Users with different levels of access and accounts
- Attacks

Network design

- Do you have an idea of how the traffic flows in your network?
 - North-south, east-west, other?
- Different parts of the network may use different technologies and topologies
 - LAN, WAN, MAN; access, distribution, core
 - STP, fat tree, etc
 - 1-10-25-40-100 GBps
- Segregation:
 - Workstations, Servers/Datacenter, public-facing (DMZ), admin, etc.
- Technologies:
 - Ethernet, VLAN, EtherChannel, MPLS, IP, OSPF, BGP
- Interconnection with other networks
 - ISProviders, BGP Peers, other networks of other departments

The "dev | fence | ops" trap, configuration

- Silos
 - Network planning and design
 - Network deployment
- Devops for networking allows a more iterative process of design, deploy, and getting feedback to update the network design
- Network function virtualization helps
- Cost of hardware and hardware compatibility with future network expansions – hinders

Application quality requirements

- Capacity, bit/s bandwidth intensive applications
 - Bursts timescale how long, how many bytes
 - Capacity vs. throughput vs. goodput
- Delay real time, interactive applications
 - End-to-end delay (control)
 - Round-trip delay (teleconference)
 - Delay variation / jitter visualization
- Reliability mission critical applications
 - Error rates bit, packet, etc
 - Mean time between failures MTBF
 - Mean time to recover MTTR
 - Availability = MTBF / (MTBF+MTTR) , Uptime(%) = 1-Availability
 - 99.999% uptime (5 nines) ⇔ 5.3 minutes down time in a year

QoS and traffic engineering, SLA

- Best effort networks
 - Lightly used quality ok; Heavily used quality degradation
- QoS
 - Queue management choose packet, different queues
 - Round-robin, token bucket, RED, etc algorithms
- tc linux
 - https://www.cyberciti.biz/faq/linux-traffic-shaping-using-tc-to-control-http-traffic/
 - Add 200ms delay, ad tocken bucket
 - tc qdisc add dev eth0 root netem delay 200ms
 - tc qdisc add dev eth0 root tbf rate 1mbit burst 10kb latency 70ms peakrate 2mbit minburst 1540

QoS and traffic engineering, SLA (2)

- ATM, intserv, diffserv+MPLS
- SLA uptime%, minimum bitrate and delay, etc
- Why is QoS not a problem in circuit switching networks?
 - What is admission control?

Faults

- Both hardware and software
- Root cause analysis 'root cause' detector hard in complex networks
- Fault recovery agile reconfiguration
- Fault detection signal processing and machine learning

Security

- Enforcing security
 - Segregation
 - Access control
 - Firewall
 - IDS/IPS
 - ...
- Security management
 - Vulnerability scanning
 - Intelligence gathering
 - Incident response
 - Forensics
 - •

Find out more about...

Network design

- How do you expose part of your network to the public without isolating that part from the rest of the network?
 - How does a DMZ work?
- What are typical network designs?
 - For a corporate network https://www.ciscopress.com/articles/article.asp?p=2448489
 - For a cloud provider
 - For an ISP https://au.int/sites/default/files/documents/31363-doc-session_8-1-_isp-network-design.pdf
- How does the Internet topology look like?
 - What is a PoP?
 - What is an Internet Exchange?
 - What is BGP?