1. Research question

3. Results

Does adding a denoising step to DP-FL-GANS increase model accuracy while preserving privacy?

Fed-Avg GAN No Differential Privacy No Denoising

Differential Privacy No Denoising DP-Fed-Avg GAN Ours. Differential Privacy Denoising

Privacy-sensitive user data needs to stay on the device while still contributing to the global training of machine learning models without giving up the user's privacy and without a loss in accuracy

Autoencoder trained at 20% noise. DP noise was arbitrary, causing blur.

	GS-WGAN*	DP-Fed-Avg GAN	Ours
Frechet Inception Distance	60	200	250
Generator loss :	?	-0.6	-0.5
Classifier accuracy	?	60%	18%
Epsilon*** .	5.99 x 10^2	9.99 x 10^6 **	9.99 x 10^6 **

- ** Ceiling value, actuals are lower
- *** The impact of a single input to the output

2. Why is it important?

4. What went wrong?

5. Performance comparison

Abbreviations:

DP = Differential Privacy FL = Federated Learning GAN = Generative Adversarial Net Responsible Professor: Dr. Kaitai Liang Kaitai.Liang@tudelft.nl

Supervisor: Rui Wang R.Wang-8@tudelft.nl

How to reach me: Gregor Schram

g.schram@student.tudelft.nl

1. Research question

Does adding a denoising step to DP-FL-GANs increase model accuracy while preserving privacy?

Privacy-sensitive user data needs to stay on the device while still contributing to the global training of machine learning models without giving up the user's privacy and without a loss in accuracy

2. Why is it important?

3. Results

Fed-Avg GAN

No Differential Privacy
No Denoising

Differential
Privacy
No Denoising
DP-Fed-Avg GAN

Ours

Differential Privacy Denoising

Autoencoder trained at 20% noise. DP noise was arbitrary, causing blur.

4. What went wrong?

	GS-WGAN*	DP-Fed-Avg GAN	Ours
Frechet Inception Distance ↓	60	200	250
Generator loss ↓	?	-0.6	-0.5
Classifier accuracy ↑	?	60%	18%
Epsilon***↓	5.99 x 10^2	9.99 x 10^6 **	9.99 x 10^6 **

* Unverified results
** Ceiling value, actuals are lower
*** The impact of a single input to the
output

5. Performance comparison

1. Research question

3. Results

Does adding a denoising step to DP-FL-GANS increase model accuracy while preserving privacy?

Fed-Avg GAN No Differential Privacy No Denoising

Differential Privacy No Denoising DP-Fed-Avg GAN Ours. Differential Privacy Denoising

Privacy-sensitive user data needs to stay on the device while still contributing to the global training of machine learning models without giving up the user's privacy and without a loss in accuracy

Autoencoder trained at 20% noise. DP noise was arbitrary, causing blur.

	GS-WGAN*	DP-Fed-Avg GAN	Ours
Frechet Inception Distance	60	200	250
Generator loss :	?	-0.6	-0.5
Classifier accuracy	?	60%	18%
Epsilon*** .	5.99 x 10^2	9.99 x 10^6 **	9.99 x 10^6 **

- ** Ceiling value, actuals are lower
- *** The impact of a single input to the output

2. Why is it important?

4. What went wrong?

5. Performance comparison

Abbreviations:

DP = Differential Privacy FL = Federated Learning GAN = Generative Adversarial Net Responsible Professor: Dr. Kaitai Liang Kaitai.Liang@tudelft.nl

Supervisor: Rui Wang R.Wang-8@tudelft.nl

How to reach me: Gregor Schram

g.schram@student.tudelft.nl