1.3.9 Арифметичность предикатов «n — степень шестёрки» и "n = 2^{k} "

Опр Предикат Р: $\mathbb{N} \to \{0,1\}$ называется *арифметичным*, если он выразим в стандартной интерпретации арифметики $\{\mathbb{N},+,*,=\}$. Функция $f:\mathbb{N}^k\to\mathbb{N}$ называется *арифметичной*, если арифметичен предикат $P_f:\mathbb{N}^{k+1}\to\{0,1\}$, где $P_f(x,y)=1\leftrightarrow f(x)=y$

Степень шестерки

Степень шестерки можно выразить с использованием квантора по конечному множеству

$$\exists D(x \in D \land \forall y \in D(y = 1 \lor (y : 6 \land \frac{y}{6} \in D)))$$

У нас есть $x, \frac{x}{6}, \frac{x}{36}, \frac{x}{216}, ..., 1$. Этакий мешок с числами. И если в нем есть x, то есть и $\frac{x}{6}$ и т.д., а остановиться это все может только на единице. Соответственно, если x - не степень шестерки, то возникнет не единица, и оба условия будут нарушены.

Через обычные предикаты эта функция выражается с помощью кодирования Смаллиана. Оно лучше применимо для описания конечных множеств. В чем суть:

Берем и вводим предикат S(a, b, x), которые отвечает следующим свойствам:

- $1 \ \forall a, b\{x : S(a, b, x) = 1\}$ конечно
- 2 Для любого конечного S найдутся такие a и b, что $S = \{x : S(a,b,x) = 1\}$

Теперь записанную нами формулу $\exists D....x \in D....$ можно переписать следующим образом:

$$\exists a, \exists b (S(a,b,x) \land \forall y (S(a,b,y) \rightarrow (y=1 \lor (y : 6 \land \exists z (y=6 * z \land S(a,b,z))))))$$

Что поменялось? Заменили $\exists D$ на $\exists a, \exists b.$ И $x \in D$ на S(a,b,x), получили формулу первого порядка

Степень двойки

 $x=2^k$ можно выразить с использованием квантора по конечной последовательности $\exists \{a_i\}(a_0=1 \land a_k=x \land \forall i \in [0;k-1] \ a_{i+1}=a*a_i)$

Через обычные предикаты это выражается с использованием β -функции Гёделя.

Тут вводится арифметическая функция $\beta(a,b,i)$ со следующим свойством:

$$\forall [x_0,...,x_n]$$
 найдутся такие a,b, что $\forall i \in [0,n] \ x_i = \beta(a,b,i)$

Теперь в формуле, которая имеет вид $\exists \{x_i\}.....x_j.....$ можно заменить на такую: $\exists a \exists b.....\beta(a,b,j).....$

Применим полученные знания к нашему предикату и получим:

$$x = 2^k \iff \exists a, b \ (\beta(a, b, 0) = 1 \land \beta(a, b, k) = x \land \forall i \in [0, ..., k-1] \ \beta(a, b, i+1) = 2 * \beta(a, b, i)$$

1.3.10 Вывод коммутативности сложения в арифметике Пеано

Хотим получить: $\forall x \forall y x + y = y + x$

Будем доказывать в три этапа

```
I) \ \forall x \ 0+x=x
1) \ \forall x \ x+0=x-\text{аксиома}
2) \ 0+0=0-\text{подстановка} \ x=0, \ \text{будет базой индукции}
3) \ \forall x \ \forall y \ x+Sy=S(x+y)
4) \ 0+Sx=S(0+x)-\text{подстановка} \ x=0, \ y=x
5) \ \forall x \ \forall y \ (x=y\to Sx=Sy)-\text{аксиома равенства}
6) \ 0+x=x\to S(0+x)=Sx-\text{подстановка} \ x:=0+x, \ y:=x
7) \ 0+x=x\to 0+Sx=Sx-\text{транзитивность} + \text{силлогизм}
8) \ \forall x \ (0+x=x\to 0+Sx=Sx)-\text{правило обобщения}
9) \ (0+0=0 \ \land \ \forall x \ (0+x=x\to 0+Sx=Sx))\to \forall x \ 0+x=x-\text{принцип индукции}
10) \ \forall x \ 0+x=x-\text{два раза modus ponens}
```

```
II) \forall x \forall y \ Sx + y = S(x + y)
                                                1) \forall x \ x + 0 = x
                                     2) x + 0 = x - подстановка x := x
                                   3) Sx + 0 = Sx - постановка x := Sx
                                         4) \forall x \forall y \ (x = y \rightarrow Sx = Sy)
                                        5) x + 0 = x \rightarrow S(x + 0) = Sx
                                    6) S(x + 0) = Sx - \pi o modus ponens
                                 7) Sx + 0 = S(x + 0) – по транзитивности
                                   8) \forall x \forall y \ x + Sy = S(x + y) – аксиома
                                           9) Sx + Sy = S(Sx + y)
                                            10) x + Sy = S(x + y)
                                         11) S(x + Sy) = SS(x + y)
             12) (Sx + y = S(x + y)) \rightarrow (Sx + Sy = S(Sx + y) = SS(x + y) = S(x + Sy))
                            T.e. (Sx + y = S(x + y)) \rightarrow (Sx + Sy = S(x + Sy))
                          13) \forall y \; ((Sx+y=S(x+y)) \rightarrow (Sx+Sy=S(x+Sy)))
14) по принципу индукции из Sx + 0 = S(x + 0) и \forall y ((Sx + y = S(x + y)) \rightarrow (Sx + Sy = S(x + Sy)))
                                      получается \forall y \ Sx + y = S(x + y)
                            15) по правилу обобщения \forall x \forall y \ Sx + y = S(x + y)
```

```
III) \forall x \forall y \ x+y=y+x

1) \forall x \ x+0=x

2) \forall x \ 0+x=x

3) x+0=x

4) 0+x=x

5) x+0=0+x

6) \forall x \ x+0=0+x

7) Sy+x=S(y+x) — из формулы II

8) x+Sy=S(x+y) — из аксиомы

9) x+y=y+x \rightarrow x+Sy=Sy+x — из аксиом равенства

10) \forall y \ (x+y=y+x \rightarrow x+Sy=Sy+x)

11) по принципу индукции из x+0=0+x и \forall y \ (x+y=y+x \rightarrow x+Sy=Sy+x) получаем \forall y \ (x+y=y+x)

12) по правилу обобщения \forall x \forall y \ (x+y=y+x)
```

1.3.11-1.12 Множество замкнутых формул, истинных в N, неперечислимо. Первая теорема Гёделя о неполноте. Теорема Тарского о неарифметичности множества истинных арифметических формул

Множество замкнутых формул, истинных в N, неперечислимо: :(

Опр Множество $A \subset \mathbb{N}^k$ называется *арифметическим*, если существует арифметическая формула α с параметрами $x_1,...,x_k$, которая его представляет в следующем смысле: $< n_1,...,n_k >$ принадлежит множеству A тогда и только тогда, когда формула α истинна при значениях параметров $x_1 = n_1,...,x_k = n_k$.

Любое перечислимое множество арифметично

Лемма1

Всякое арифметическое множество лежит в классе Σ_n или Π_n для некоторого n (и, естественно, для всех б ольших n).

▲ Формулу, задающую арифметическое множество, приведём к предварённой нормальной форме (вынеся кванторы наружу). Ясно, что бескванторная часть задаёт разрешимое множество, поэтому исходное множество принадлежит какому-то из классов Σ_n или Π_n . Можно и не использовать предварённой нормальной формы, а применить индукцию по длине формулы и сослаться на то, что пересечение, объединение и дополнение, а также проекция не выводят за пределы арифметической иерархии (объединения всех классов Σ_n и Π_n). ■

Рассмотрим теперь множество Т, элементами которого являются все истинные арифметические формулы без параметров (точнее, их номера в какой-то вычислимой нумерации всех формул

— это значит, что по формуле можно алгоритмически получить её номер и наоборот).

Лемма2

Любое арифметическое множество m-сводится к множеству Т.

▲ Пусть A — произвольное арифметическое множество. Пусть $\alpha(x)$ — формула с одной переменной, которая выражает принадлежность множеству A. Это означает, что $\alpha(n)$ истинно при тех и только тех n, которые принадлежат A. Тогда вычислимая функция $n \to ($ номер формулы, которая является результатом подстановки константы n в $\alpha(x)$) m-сводит A к T. ■

Теорема Тарского

Истинность арифметической формулы нельзя выразить арифметическим выражением. То есть не существует формулы True(x), которая истинна тогда и только тогда, когда формула с номером x истинна. (Множество T не арифметично.)

▲ Если бы Т было арифметическим, то оно лежало бы в некотором конкретном классе . Поскольку всякое арифметическое множество сводится к T, то все арифметические множества лежали бы в этом классе. Но мы знаем, что множества из более высоких классов иерархии тоже арифметичны, но в Σ_n не лежат. \blacksquare

Первая теорема Гёделя о неполноте

Множество Т арифметических истин неперечислимо.

 \blacktriangle Это следует из того, что если бы T было перечислимо, оно было бы арифметично, что противоречит теореме Тарского \blacksquare