CONTRIBUTIONS AU DÉVELOPPEMENT DES MÉTHODES FORMELLES DE PREUVES ET APPLICATIONS À LA GÉOMÉTRIE

Habilitation à diriger des recherches

Nicolas Magaud

Pôle API - Université de Strasbourg - A302 - 6 novembre 2020

Structure de la présentation

- 1 Contexte scientifique
- 2 Modélisation géométrique à base topologique
- 3 Automatisation des preuves en géométrie projective
- 4 Calcul réel exact pour la géométrie
- 5 Bilan et perspectives

Contexte scientifique

- Domaines de recherche :
 - Preuves formelles en Coq
 - Géométrie (algorithmique, combinatoire, calcul numérique)
 - interactions / intersections entre ces deux domaines
- Etude et formalisation en Coq de trois problèmes
 - Modélisation géométrique à base topologique
 - Automatisation des preuves en géométrie projective
 - Calcul réel exact pour la géométrie

Encadrement et collaborations

- Encadrement de doctorants
 - Christophe Brun (thèse soutenue en 2010)
 - David Braun (thèse soutenue en 2019)
- Collaborations
 - ANR Galapagos (2007-2011) porteur local Strasbourg
 - collaboration avec l'équipe MIV/Images de ICube
 - collaboration avec l'Université de Poitiers

Structure de la présentation

- 1 Contexte scientifique
- 2 Modélisation géométrique à base topologique
- 3 Automatisation des preuves en géométrie projective
- 4 Calcul réel exact pour la géométrie
- 5 Bilan et perspectives

Enveloppe convexe

- distinction topologie / géométrie
- structure topologique : utilisation des cartes combinatoires
- aspects géométriques : axiomes de Knuth

 preuves formelles de deux variantes de la fonction d'insertion d'un point dans une enveloppe déjà construite

Topologie: hypercartes

Définition (Hypercarte)

- (1) Une *hypercarte* (en dimension 2) est une structure algébrique $M=(D,\alpha_0,\alpha_1)$, où D est un ensemble fini, dont les éléments s'appellent des *brins*, et où α_0 et α_1 sont des permutations sur D.
- (2) Quand α_0 est une involution sur D, M est appelé une carte combinatoire orientée.

D	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a0	2	1	4	3	6	5	8	7	10	9	12	11	13	14
a1	8	3	2	9	4	12	6	13	5	11	10	7	1	14

Topologie : modélisation des hypercartes en Coq

Les cartes libres inductivement en Coq

```
Inductive fmap : Set :=
  V : fmap
| I : fmap -> dart -> point -> fmap
| L : fmap -> dim -> dart -> dart -> fmap.
```

- Préconditions nécessaires
 - pour l'insertion de x : x <> nil /\ ~ exd m x
 - pour la couture de x et y à la dimension k :
 exd m x /\ exd m y /\ ~ succ m k x /\
 ~ pred m k y /\ cA m k x <> y
- Propriété d'invariance pour les cartes inv_hmap

Géométrie : les axiomes de Knuth

• le prédicat d'orientation ccw(p, q, r)

a. The triple (p,q,r) is oriented counter-clockwise

b. The points p,q,r are colinear

c. The triple (p,q,r) is oriented clockwise

- les axiomes de Knuth
 - Hypothèse que les points sont en position générale
- But : abstraire les questions de précisions des calculs

Géométrie : les axiomes de Knuth

6 axiomes, qui capturent les propriétés de ce prédicat

P.1 (cyclicité) : $ccw(p, q, r) \Rightarrow ccw(q, r, p)$.

P.2 (symétrie) : $ccw(p, q, r) \Rightarrow \neg ccw(p, r, q)$.

P.3 (non-dégénérescence) :

 $\neg collinear(p, q, r) \Rightarrow ccw(p, q, r) \lor ccw(p, r, q).$

P.4 (intériorité): ...

P.5 (transitivité): ...

P.5 bis (transitivité bis) : ...

Enveloppe convexe : définition

a. A finite set P of points

b. A convex polygon T

c. A convex polygon with its oriented edges

Calcul de l'enveloppe convexe

 Algorithme incrémental : calcul d'une nouvelle enveloppe convexe T' à partir du polygone convexe T et d'un point p

• Deux implantations de l'algorithme incrémental sous forme de fonctions en Coq

Calcul structurel en Coq

récursion structurelle sur la structure des cartes libres

• reconstruction de la nouvelle carte à partir d'une carte vide

Calcul géométrique en Coq

- récursion en suivant la forme de l'enveloppe convexe
 - recherche des extrémités gauche et droite si elles existent
 - introduction d'une mesure pour garantir la terminaison

Implantation prenant en compte la géométrie

Propriétés topologiques et géométriques

- Propriétés topologiques
 - préservation de la structure d'hypercarte
 - la carte représentant l'enveloppe convexe est un polygone (et des points isolés)
 - la carte représentant l'enveloppe convexe est planaire

- Propriétés géométriques
 - correction du plongement
 - propriété de convexité

Bilan et perspectives

- Deux programmes de calcul de l'enveloppe convexe
 - implantés fonctionnellement en Coq
 - prouvés formellement en Coq
 - des dizaines de milliers de lignes de Coq dans chaque cas
- Extensions possibles
 - en 3D et plus
 - cas dégénérés : points confondus, alignés.
- Ingénierie de la preuve
 - automatisation partielle des aspects géométriques

Structure de la présentation

- 1 Contexte scientifique
- 2 Modélisation géométrique à base topologique
- 3 Automatisation des preuves en géométrie projective
- 4 Calcul réel exact pour la géométrie
- 5 Bilan et perspectives

Motivations, contexte et objectifs

- Motivation :
 - faire des outils d'aide à la preuve en géométrie
- Contexte :
 - une théorie géométrique simple : la géométrie d'incidence projective
 - Une approche combinatoire automatisable
- Objectifs
 - un prouveur automatique
 - et un résultat certifié en Coq

Axiomes usuels pour la 3D

19/53

Une approche combinatoire

- Notion de rang (rk):
 fonction à valeurs entières permettant de capturer la
 dimension (point, droite, plan, espace tout entier) d'un
 ensemble fini E de points
- Approche extensible en dimension supérieure à 3,
- plus homogène, mais plus combinatoire
- Propriétés de matroïde de la fonction de calcul du rang
 - (A1R3) Non-Negative and Subcardinal : $\forall X \subseteq E, 0 \le \text{rk}(X) \le |X|$
 - (A2R3) Non-Decreasing :
 ∀ X ⊆ Y, rk(X) ≤ rk(Y)
 - (A3R3) Submodular :
 ∀ X,Y ⊆ E, rk(X∪Y) + rk(X∩Y) ≤ rk(X) + rk(Y)

Quelques exemples d'ensembles de points et leurs rangs

$$rk{A,B} = 1$$
 $A = B$

$$rk{A,B} = 2$$
 $A \neq B$

$$rk{A,B,C} = 2$$
 A,B,C sont alignés

$$rk{A,B,C} \le 2$$
 A,B,C sont alignés

$$rk{A,B,C} = 3$$
 A,B,C ne sont pas alignés

$$rk{A,B,C,D} = 3$$
 A,B,C,D sont coplanaires, et ne sont pas alignés

$$rk{A,B,C,D} = 4$$
 A,B,C,D ne sont pas coplanaires

Adaptation des rangs à la géométrie

- (A4R3) Rk-Singleton : ∀ P : Point, rk{P} = 1
- (A5R3) Rk-Couple : \forall P Q : Point, P \neq Q \Rightarrow rk{P, Q} = 2
- (A6R3) Rk-Pasch : \forall A B C D : Point, rk{A, B, C, D} \leq 3 \Rightarrow \exists J : Point, rk{A, B, J} = rk{C, D, J} = 2
- (A7R3) Rk-Three-Points : ...
- (A8R3) Rk-Lower-Dimension :
 ∃ A B C D : Point, rk{A, B, C, D} ≥ 4
- (A9R3) Rk-Upper-Dimension : ...

Equivalence des représentations

- Le système d'axiomes de l'approche synthétique est équivalent au système basé sur les matroïdes et les rangs.
- Cette équivalence reste vraie en 2D et en dimension supérieure à 3.
- Comparaison des deux approches sur des modèles finis
- Un premier exemple fait à la main : la preuve du théorème de Desargues plongé en 3D.

Théorème de Desargues

Un prouveur automatique

- Un outil basé sur la saturation du contexte
- qui génére un script de preuve Coq vérifiable

- intervalle de rangs pour chaque sous-ensemble
- initialisation des intervalles avec les hypothèses
- réduction d'intervalles

Encodage et règles de réécriture

Codage de l'ensemble et ses rangs min. et max. sur 32 bits

Transformation des propriétés de rkMin et rkMax en règles de réécriture :
 la propriété X ⊆ Y ⊆ E, rkMin(Y) ≥ rkMin(X)
 devient la règle
 if X ⊆ Y and rkMin(X) > rkMin(Y)
 then rkMin(Y) ← rkMin(X)

Un exemple de preuve automatique

Enoncé en Coq

```
Lemma example : forall A B C D : Point, rk(A, B, D) = 3 \rightarrow rk(A, C, D) = 2 \rightarrow rk(A, C) = 2 \rightarrow rk(A, B, C) = 3.
```

géométriquement

Initialisation

Saturation partielle

Saturation complète

Reconstruction

Production d'un script de preuve Coq

- parcours récursif postfixe à partir du noeud dont on cherchait le rang
- lorsque le nombre de points et donc le graphe grossissent : structuration en couches et réutilisation de lemmes
- pour le petit exemple précédent (pas de couche)
 65 lignes de script Coq
 5 pour l'énoncé et 60 pour la preuve

Quelques preuves automatiques

- le théorème de Desargues
- le conjugué harmonique
- le théorème de Dandelin-Gallucci (3D)
 - équivalence entre la propriété de Pappus et la propriété de Dandelin-Gallucci
 - intégration de la règle de Pappus au système de preuves
 - gestion de la création de points réservée à l'utilisateur

Théorème de Dandelin-Gallucci

Quelques preuves automatiques

- le théorème de Desargues
 15 points, 6 000 lignes,
 génération du script et vérification < 3 minutes
- le conjugué harmonique
 14 points, 10 000 lignes de Coq
- le théorème de Dandelin-Gallucci (Pappus -> DG)
 19 points, 50 000 lignes, 16h pour produire la saturation, ingénierie logicielle pour obtenir un script validable par Coq
- le théorème de Dandelin-Gallucci (DG -> Pappus)
 17 points (2h, 34 000 lignes de script en Coq)

Discussion et perspectives

- prouveur automatique (de style hammer)
- pas de création automatique de points, mais plutôt un guidage par l'utilisateur
- Extension à venir : transformer le prouveur automatique en un outil d'aide à la preuve intégré à Coq
- Optimisations
 - amélioration de la réduction d'intervalle
 - génération de scripts Coq plus concis

Structure de la présentation

- Contexte scientifique
- Modélisation géométrique à base topologique
- 3 Automatisation des preuves en géométrie projective
- 4 Calcul réel exact pour la géométrie
- Bilan et perspectives

Motivations

- Description des algorithmes géométriques avec une arithmétique réelle exacte.
- Implantations avec des nombres flottants.
- Norme IEEE-754 : prédiction et analyse du comportement de nombreux algorithmes numériques
- Nombres flottants : précision limitée et propriétés différentes de l'arithmétique réelle
- Un point de vue calculatoire : la droite d'Harthong-Reeb
 - Faire des calculs réels uniquement avec des entiers.
 - En s'appuyant sur une arithmétique non-standard.
 - Travailler avec des objets continus dans un cadre discret.

Le continu sur un ordinateur?

- Idée : travailler à une échelle donnée.
 - A cette échelle, les points ont une taille spécifique.
 - Pouvoir choisir autant d'échelles différentes qu'on le veut.
 - Zoomer pour trouver autant de points qu'on veut entre deux points.
- Exemple : une droite de pente 3/5 à différentes échelles

Un modèle discret du continu

Avoir autant de nombres qu'on veut entre 2 nombres donnés?

- Utilisation d'une arithmétique non-standard
 - On choisit un entier infiniment grand ω comme nouvelle unité $\mathbf{1}_{\omega} =_{def} \omega$.
 - Deux classes d'éléments : les nombres limités/standards et les nombres infiniment grands
 - Ainsi, entre deux entiers, on peut toujours trouver autant d'entiers qu'on le souhaite.

La droite d'Harthong-Reeb

$$\mathcal{HR}_{\omega} = \{ X \in \mathbb{Z}_{\Omega}, \ \exists n \in \mathbb{N}, \ |X| \leq n\omega \}$$

 \mathcal{HR}_{ω} est une remise à l'échelle de l'arithmétique non-standard choisie.

Un modèle discret du continu

 \mathbb{R} , c'est \mathbb{Z} vu de loin. (J. Harthong)

Illustation de la droite d'Harthong-Reeb

La droite \mathcal{HR}_{ω} est-elle constructive?

La droite réelle constructive (Douglas Bridges, 1999)

- Un système (R,+,×,=,>,0,1,Opp,Inv) qui satisfait les 3 groupes d'axiomes suivants :
 - Opérations algébriques (9 axiomes)
 - Structure ordonnée (5 axiomes)
 - Axiome d'Archimede et principe de la borne supérieure constructive (2 axiomes)
- La droite d'Harthong-Reeb vérifie-t-elle les axiomes de Bridges? En s'appuyant sur quels entiers?
- Deux propositions de solutions :
 - Une interface : les entiers non-standards axiomatiques
 - Une implantation : les entiers de Laugwitz-Schmieden

Une théorie des entiers non-standards

- Un paramètre abstrait A: Type représentant les entiers non-standards en Coq
- Des opérations usuelles +,-,*, <,≤ et leurs propriétés
- $\mathcal{HR}_{\omega} = \{x : A \mid \exists n : A, \lim n \wedge 0 < n \wedge (|x| \leq n * w)\}.$
- Cette propriété est stable par les opérations algébriques.
- Propriétés supplémentaires liées au non-standard
 - (LIM1) L'entier 1 est limité.
 - (LIM2) La somme et le produit de deux entiers limités sont limités.
 - (LIM3) Il existe des entiers qui ne sont pas limités (i.e. ω).
 - (LIM4) Si X est limité et $|Y| \le |X|$, alors Y est aussi limité.
 - (LIM5) (extension du calcul et du raisonnement usuel au cas non-standard)

De l'interface vers une implantation

- La droite d'Harthong-Reeb avec le type abstrait des entiers non-standards vérifie les axiomes de Bridges.
- Une implantation concrète des entiers non-standards?
 - On considère des suites $a = (a_n)_{n \in \mathbb{N}}$ avec $a_n \in \mathbb{Z}$.
 - munies de l'égalité suivante :

$$a = b$$
 if there exists $N \in \mathbb{N}$ s.t. $\forall n > N$, $a_n = b_n$.

- Exemples
 - (2,2,2,2,2,2,...) dénote l'Ω-entier 2.
 - $(1,5,4,2,2,2,\ldots) \equiv (2,2,2,2,2,2,\ldots)$
 - $\omega = (2^0, 2^1, 2^2, 2^3, 2^4, 2^5, \ldots)$

Opérations pour les entiers de Laugwitz-Schmieden

- Opérations *terme* à *terme* sur \mathbb{Z}_{Ω} :
 - $a + b =_{def} (a_n + b_n)$ et $-a =_{def} (-a_n)$ et $a \times b =_{def} (a_n \times b_n)$;
 - $a > b =_{def} [(\exists N \ \forall n > N) \ a_n > b_n]$
 - $|a| =_{def} (|a_n|).$
- Propriétés
 - Tous les axiomes (R1) sont vérifiés!
 - Seules 3 propriétés du groupe (R2) doivent être adaptées (voir [Chollet et al. TCS 2012])
 - Le principe de la borne supérieure doit aussi être adapté.
- Une forme alternative du continu
 - Propriété non vérifiée : $(\forall a, b \in \mathbb{Z}_{\Omega})$ $(a \geqslant b) \lor (b \geqslant a)$
 - Exemple avec $a = ((-1)^n)_{n \in \mathbb{N}}$ et $b = ((-1)^{n+1})_{n \in \mathbb{N}}$.

Arithmétisation et courbes discrètes

Schéma d'arithmétisation d'Euler

- Objectif : représenter X : T → X(T)
- Solution du problème de Cauchy X' = F(X, T), X(A) = B
- Schéma d'Euler

$$\begin{cases}
T_0 = A; X_0 = B \\
T_{k+1} = T_k + \frac{1}{h} \\
X_{k+1} = X_k + \frac{1}{h} \times F(T_k, X_k)
\end{cases}$$

• Utilisation avec \mathcal{HR}_{ω} : il faut remplacer h par un Ω -entier infiniment grand.

Arithmétisation et courbes discrètes

• L'arithmétisation de la fonction $t\mapsto \frac{t^2}{6}$.

- Calculée avec le code extrait de Coq vers Ocaml
- Elle approxime $X: T \mapsto X(T)$ qui est la solution de X' = F(X, T), X(A) = B. Ici, F(X, T) = T/3.
- L'Ω-arithmétisation est une représentation fidèle de la fonction continue T → X(T).

Conclusions

- Une représentation du continu adaptée pour la géométrie
 - Un modèle abstrait
 - avec une description axiomatique des entiers non-standards
 - Un modèle calculatoire
 - avec les entiers de Laugwitz-Schmieden
 - Presque tous les axiomes sont vérifiés
 - Alternatives : un sous-ensemble de \mathcal{HR}_{ω} ou bien une adaptation des axiomes
- Formalisation en Coq
 - un contexte original
 - nombreux éclaircissements de la description mathématique
- Perspectives : lien avec les nombres B-approximables

Structure de la présentation

- 1 Contexte scientifique
- Modélisation géométrique à base topologique
- 3 Automatisation des preuves en géométrie projective
- 4 Calcul réel exact pour la géométrie
- 5 Bilan et perspectives

Bilan des travaux présentés

- Etudes de cas dans 3 domaines complémentaires
 - Preuves en géométrie algorithmique
 - Automatisation de preuves en géométrie projective
 - Représentation informatique exacte des réels
- Passage d'une modélisation mathématique à la mise en œuvre de solutions informatiques
- Enrichissement mutuel de deux domaines de recherche
 - Utilisation des méthodes formelles de preuve en géométrie
 - Utilisation de la géométrie pour affirmer les capacités des systèmes d'aide à la preuve comme Coq

Perspectives

- Perspectives sur les preuves à venir
 - Preuves automatiques de nouveaux théorèmes de géométrie projective : Pascal, Brianchon, . . .
 - Etude des géométries projectives finies
 - Algorithmes géométriques en 3D
 - Harthong-Reeb et les nombres B-approximables
- Perspectives sur les outils d'aide à la preuve
 - Intégration d'outils externes à Coq comme des plug-in
 - Outils d'aide à la gestion des inégalités et encadrements
 - Maintenabilité et pérénnité des développements formels
 - Post-processing des preuves

Merci de votre attention

