Séries Entières

1. Définitions et exemples.

• Formule de Taylor, si f est \mathcal{C}^{∞} sur \mathbf{R}

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \frac{x^{n+1}}{(n+1)!}f^{(n+1)}(\theta x)$$

où $0 < \theta < 1$.

- \star Comportement lorsque $n \to \infty$
- Par exemple $f(x) = \frac{1}{1-x}$: pour $x \neq 1$

$$\frac{1}{1-x} = 1 + x + \ldots + x^n + \frac{x^{n+1}}{1-x} \longrightarrow \sum_{n=0}^{\infty} x^n$$
, si $|x| < 1$

Définition. Soit $(a_n)_{n\geq 0}$ une suite numérique.

La série de fonctions $f_n(z) = a_n z^n$, $f_n : \mathbf{C} \longrightarrow \mathbf{C}$, est appelée série entière associée à $(a_n)_{n \ge 0}$. On la note $\sum a_n z^n$. Les nombres a_n sont les coefficients de la série.

- Objectifs:
 - \star Trouver tous les nombres $z \in \mathbf{C}$ tels que $\sum a_n z^n$ converge
 - * Étudier les propriétés de la limite $S(z) = \sum_{n \ge 0} a_n z^n = \sum_{n=0}^{+\infty} a_n z^n$
- Les sommes partielles sont :

$$S_0(z) = a_0, \quad S_n(z) = a_0 + a_1 z + \ldots + a_n z^n$$

Exemple. 1. $a_n = 1$, $\sum z^n$ converge ssi |z| < 1; pour tout |z| < 1, $S(z) = \frac{1}{1-z}$.

- 2. $a_0 = 0$, $a_n = n^{-2}$, $\sum a_n z^n$ converge ssi $|z| \le 1$.
- Dans la suite, pour r > 0, on note

$$D(0,r) = \{z \in \mathbf{C} : |z| < r\}, \qquad \overline{D(0,r)} = \{z \in \mathbf{C} : |z| \le r\}$$

2. Rayon de convergence.

Théorème. Soit $\sum a_n z^n$ une série entière. Il existe un unique $R \in [0, +\infty]$ tel que :

- 1. pour |z| < R, $\sum a_n z^n$ est ACV,
- 2. pour |z| > R, $\sum a_n z^n$ est GDV.

On a de plus

$$R = \sup\{r \ge 0 : (|a_n|r^n)_{n \ge 0} \text{ suite major\'ee}\}.$$

Définition. R s'appelle le rayon de convergence de la série entière $\sum a_n z^n$.

- $\sum a_n z^n$ est toujours convergente pour z=0
- Lorsque $R = +\infty$, la série entière $\sum a_n z^n$ est ACV pour tout $z \in \mathbf{C}$
- Comme il s'agit d'ACV, on est toujours conduit à des séries à termes positifs
- Si $R < +\infty$, on ne peut rien dire a priori de la convergence de $\sum a_n z^n$ pour |z| = R
 - \star Il faut faire une étude « à la main »

Exemple. 1. $\sum z^n : R = 1$ (Cauchy) — GDV si |z| = R

2.
$$\sum \frac{z^n}{n^2}$$
: $R = 1$ — ACV si $|z| = R$

3.
$$\sum \frac{z^n}{n}: R = 1$$
 (d'Alembert) — si $|z| = R$, CV ssi $z \neq 1$

4.
$$\sum \frac{z^n}{n!}$$
: $R = +\infty$ (d'Alembert)

5.
$$\sum 2^{n^2} z^n : R = 0$$

Preuve du théorème. • Soit $I=\{r\geq 0: (|a_n|r^n)_{n\geq 0} \text{ suite majorée}\}\,;\, 0\in I\,!$

- I est un intervalle : I = [0, R], I = [0, R[ou $I = [0, +\infty[$.
 - * $I = [0, +\infty[$. Soit $z \in \mathbf{C}; r > |z|$:

$$|a_n||z|^n = |a_n|r^n \times \left(\frac{|z|}{r}\right)^n \le k\left(\frac{|z|}{r}\right)^n$$

Pas fait $\star R = \sup I < +\infty$.

– Si |z| < R,il existe rt.q. |z| < r < R

$$|a_n||z|^n = |a_n|r^n \times \left(\frac{|z|}{r}\right)^n \le k\left(\frac{|z|}{r}\right)^n$$

– Si |z| > R, par définition du sup, $(|a_n||z|^n)_{n \ge 0}$ n'est pas majorée! Elle ne tend pas vers 0.

• Si $\sum a_n z^n$ a pour RdC R > 0, on définit une fonction S sur D(0,R) en posant

$$\forall |z| < R, \qquad S(z) = \sum_{n>0} a_n z^n$$

2011/2012 : fin du cours 9

3. Opérations sur les séries entières.

- $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières
 - \star la somme $\sum a_n z^n + \sum b_n z^n$ est la série entière $\sum (a_n + b_n) z^n$
 - \star si $\lambda \in \mathbb{C}$, $\lambda \sum a_n z^n$ est la série entière $\sum \lambda a_n z^n$

Proposition. Si $\lambda \neq 0$, $\sum \lambda a_n z^n$ et $\sum a_n z^n$ ont même rayon de convergence.

 $Si \sum a_n z^n$ et $\sum b_n z^n$ ont pour rayons de convergence respectifs R et R', $\sum (a_n + b_n) z^n$ a un rayon de convergence $R'' \ge \min(R, R')$. $Si R \ne R'$, $R'' = \min(R, R')$.

Démonstration. • Le premier point est évident.

- Si $|z| < \min(R, R'), \sum a_n z^n$ et $\sum b_n z^n$ sont ACV : par définition, $R'' \ge \min(R, R')$.
- Si R < R', pour R < |z| < R', $\sum a_n z^n$ est GDV et $\sum b_n z^n$ est ACV; donc $\sum (a_n + b_n) z^n$ est GDV et $R'' \le R = \min(R, R')$.

Produit de deux séries.

• $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ deux suites. Pour $n\geq 0$, on pose

$$w_n = u_0 + v_n + u_1 v_{n-1} + \dots + u_{n-1} v_1 + u_n v_0 = \sum_{p+q=n} u_p v_q = \sum_{k=0}^n u_k v_{n-k} = \sum_{k=0}^n u_{n-k} v_k.$$

- * La suite $(w_n)_{n\geq 0}$ est le produit de convolution des suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$.
- * La série $\sum w_n$ est appelée le produit de Cauchy des séries $\sum u_n$ et $\sum v_n$

Théorème (Mertens). $Si \sum u_n$ converge absolument et $\sum v_n$ converge (resp. converge absolument), alors $\sum w_n$ converge (resp. converge absolument) et

$$\sum_{n\geq 0} w_n = \sum_{n\geq 0} u_n \times \sum_{n\geq 0} v_n.$$

Remarque. Dès que l'un des deux séries converge absolument, c'est bon!

- L'application standard est $e^{x+y} = e^x e^y$
 - * Pour $z \in \mathbf{C}$, $e^z = \sum_{n > 0} \frac{z^n}{n!}$. La série précédente est ACV (d'Alembert).
 - $\star u_n = x^n/n!, v_n = y^n/n!,$

$$w_n = (u \star v)_n = \sum_{k=0}^n u_k v_{n-k} = \sum_{k=0}^n \frac{x^k}{k!} \frac{y^{n-k}}{(n-k)!} = \sum_{k=0}^n \frac{1}{n!} \binom{n}{k} x^k y^{n-k} = \frac{(x+y)^n}{n!}$$

* Mertens

$$\sum_{n\geq 0} w_n = \sum_{n\geq 0} \frac{(x+y)^n}{n!} = \sum_{n\geq 0} \frac{x^n}{n!} \times \sum_{n\geq 0} \frac{y^n}{n!}.$$

• Si $\sum a_n z^n$ et $\sum b_n z^n$, le produit de Cauchy de ces deux séries est la série de t.g.

$$w_n = a_0 z^0 b_n z^n + a_1 z^1 b_{n-1} z^{n-1} + \dots + a_{n-1} z^{n-1} b_1 z^1 + a_n z^n b_0 z^0$$

= $(a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0) z^n$

* C'est une série entière!

Corollaire. Le produit de Cauchy de deux séries entières de rayon R et R' est une série entière de rayon $R'' \ge \min(R, R')$.

• C'est une conséquence directe du théorème de Mertens.

Série dérivée.

Définition. La série dérivée de la série entière $\sum a_n z^n$ est la série entière $\sum (n+1)a_{n+1}z^n$

• Il s'agit bien de la série dérivée :

$$\sum_{k\geq 0} (k+1)a_{k+1}z^k = \sum_{n\geq 1} na_n z^{n-1} = \sum_{n\geq 0} na_n z^{n-1} = \sum_{n\geq 0} (a_n z^n)'$$

Proposition. Une série entière et sa série dérivée ont le même rayon de convergence.

Démonstration. • Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Notons R' le RdC de $\sum (n+1)a_{n+1}z^n$

- $\star R' \leq R$: si 0 < |z| < R', puisque $|a_n||z^n| \leq n|a_n||z|^{n-1}|z|$, $\sum a_n z^n$ est ACV et $R \geq R'$.
- $\star R \leq R' : \text{si } |z| < R$, prenons r t.q. |z| < r < R; on a

$$(n+1)|a_{n+1}||z|^n \le (n+1)|a_{n+1}|r^n \left(\frac{|z|}{r}\right)^n = |a_{n+1}|r^{n+1} \frac{n+1}{r} \left(\frac{|z|}{r}\right)^n$$

- La série de t.g. $|a_{n+1}|r^{n+1}$ est CV puisque r < R
- $-\frac{n+1}{r}\left(\frac{|z|}{r}\right)^n \longrightarrow 0$ puisque r > |z|
- Donc $\sum (n+1)|a_{n+1}||z|^n$ est CV

4. Régularité des séries entières.

Proposition. Soit $\sum a_n z^n$ une série entière de RdCR > 0. $\sum a_n z^n$ est normalement convergente sur $\overline{D(0,r)}$ pour tout r < R

Démonstration. • Soit r < R; $\sum |a_n| r^n$ est CV

• $\sup_{|z| \le r} |a_n z^n| = |a_n| r^n$

Théorème. Soit $(a_n)_{n\geq 0}$ une suite numérique t.q. la série entière $\sum a_n z^n$ a un RdC R > 0. Pour tout réel $x \in]-R, R[$, notons $S(x) = \sum_{n\geq 0} a_n x^n$.

Alors S est de classe C^{∞} sur]-R,R[,

- 1. pour tout |x| < R, $S'(x) = \sum_{n \ge 1} n a_n x^{n-1} = \sum_{n \ge 0} (n+1) a_{n+1} x^n$,
- 2. la primitive de S qui s'annule en 0 est la fonction F définie pour tout $x \in]-R,R[$ par $F(x) = \sum_{n\geq 0} \frac{a_n}{n+1} x^{n+1}.$

Démonstration. • On applique le théorème de dérivation des séries de fonctions sur]-r,r[avec r < R: possible puisque la série dérivée a même RdC

• C'est une conséquence du théorème d'intégration des séries de fonctions.

Exemple.

$$\frac{1}{1-x} = \sum_{n \ge 0} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n \ge 1} nx^{n-1}, \quad F(x) = -\ln(1-x) = \sum_{n \ge 1} \frac{x^n}{n}.$$

2011/2012 : fin du cours 10

Pas fait

Définition. Soient I un intervalle ouvert contenant 0 et $f: I \longrightarrow \mathbf{R}$ une fonction. Soit r > 0 ou $r = +\infty$ t.q. $]-r,r[\subset I]$.

On dit que f est développable en série entière sur]-r,r[s'il existe une série entière $\sum a_n z^n$ (à coefficients réels) de RdC $R \ge r$ telle que

$$\forall |x| < r, \qquad f(x) = \sum_{n \ge 0} a_n x^n.$$

• Par exemple, $f(x) = \frac{1}{1-x} \text{ sur }]-1,1[.$

Pas fait

Proposition. Soit r > 0. Si f est développable en série entière sur] - r, r[,

$$\forall |x| < r, \qquad f(x) = \sum_{n > 0} a_n x^n,$$

alors

- 1. f est de classe C^{∞} sur]-r,r[;
- 2. f possède un DL en 0 à tous les ordres : le DL à l'ordre n est

$$f(x) = a_0 + \ldots + a_n x^n + x^n \varepsilon(x), \quad \lim_{x \to 0} \varepsilon(x) = 0 ;$$

3. les coefficients a_n sont donnés par

$$\forall n \ge 0, \qquad a_n = \frac{f^{(n)}(0)}{n!}$$

- Attention, il existe des fonctions \mathcal{C}^{∞} qui ne sont pas développables en série entière
- Par exemple, $f(x) = e^{-1/x^2}$ si $x \neq 0$ et f(0) = 0 car on montre que, pour tout n, $f^{(n)}(0) = 0$.

Développement des fonctions usuelles.

Pas fait

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots \qquad |x| < 1$$

$$\frac{1}{1+x} = 1 - x + x^2 + \dots + (-1)^n x^n + \dots \qquad |x| < 1$$

$$-\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n} + \dots \qquad |x| < 1$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots \qquad |x| < 1$$

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + \dots \qquad x \in \mathbb{R}$$

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots \qquad x \in \mathbb{R}$$

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$
 $x \in \mathbf{R}$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \ldots + \frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!}x^n + \ldots \quad |x| < 1$$