TD 08 – Convergence de variables aléatoires (corrigé)

Exercice 1. Second theorème de Borel-Cantelli

L'objectif de cet exercice est de montrer le second théorème de Borel-Cantelli. Il donne une réciproque du theorème de Borel-Cantelli vu en cours, dans le cas où les événements sont indépendants. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements *indépendants* de probabilité p_n . On suppose que la somme $\sum_n p_n$ diverge. L'objectif de cet exercice est de montrer qu'alors, presque sûrement, une infinité d'événements A_n se réalisent.

- **1.** Exprimer l'événement "une infinité d'événements A_n se réalisent" en terme d'unions et d'intersections des événements A_n .
 - Soit $\omega \in \Omega$ un éléments de l'espace de probabilité. Alors ω appartient à l'événement "une infinité d'événements A_n se réalisent" si et seulement si ω appartient à une infinité de A_n , i.e. $\omega \in \cap_{k \geq 0} \cup_{n \geq k} A_n$. Donc l'événement "une infinité d'événements A_n se réalisent" n'est autre que l'événement $\cap_{k \geq 0} \cup_{n \geq k} A_n$ (aussi appelé $\limsup A_n$).
- **2.** Soit $B_{k,\ell}$ l'événement $\bigcap_{k \leq n \leq \ell} \overline{A_n}$. Montrer que pour tout k fixé, $\lim_{\ell \to \infty} \mathbf{P} \left\{ B_{k,\ell} \right\} = 0$. Indice : on pourra utiliser l'inégalité $1 + x \leq e^x$ pour tout $x \in \mathbb{R}$.
 - Par indépendance des A_n (et donc indépendance de leur complémentaire, cf exercice "complément des indépendants"), on a $\mathbf{P}\{B_{k,\ell}\} = \prod_{n=k}^{\ell} (1-p_n)$. En utilisant l'indice, on a alors $\mathbf{P}\{B_{k,\ell}\} \leq \prod_{n=k}^{\ell} e^{-p_n} = e^{-\sum_{n=k}^{\ell} p_n}$. Mais par hypothèse, la somme des p_n diverge, donc pour tout k fixé, $\lim_{\ell \to \infty} \sum_{n=k}^{\ell} p_n = +\infty$. On conclut que $\lim_{\ell \to \infty} \mathbf{P}\{B_{k,\ell}\} = 0$.
- 3. On note $B_k = \cap_{n \geq k} \overline{A_n}$. En déduire que $\mathbf{P} \{ \cup_k B_k \} = 0$.

 Il suffit de montrer que $\mathbf{P} \{ B_k \} = 0$ pour tout k. On aura alors $\mathbf{P} \{ \cup_k B_k \} \leq \sum_k \mathbf{P} \{ B_k \} = 0$. Mais $\mathbf{P} \{ B_k \} = \mathbf{P} \{ \cap_{n \geq k} \overline{A_n} \} = \lim_{k \to \infty} \mathbf{P} \{ B_{k, \ell} \}$ (car les événements $B_{k, \ell}$ sont décroissants et leur intersection est égale à B_k). On conclut avec la question précédente que $\mathbf{P} \{ B_k \} = 0$.
- **4.** Conclure que **P** {"une infinité d'événements A_n se réalisent"} = 1.
 - On a vu à la première question que l'événement "une infinité d'événements A_n se réalisent" est en fait égal à $\bigcap_{k\geq 0}\cup_{n\geq k}A_n$. Le complémentaire de cet événement est donc $\bigcup_{k\geq 0}\cap_{n\geq k}\overline{A_n}=\bigcup_{k\geq 0}B_k$. On a donc bien $\mathbf{P}\left\{\bigcap_{k\geq 0}\cup_{n\geq k}A_n\right\}=1-\mathbf{P}\left\{\bigcup_{k\geq 0}B_k\right\}=1$ d'après la question précédente
- 5. Application. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables de Bernoulli indépendantes de paramètre $\mathbf{P}\{X_n=1\}=p_n=1/n$. Montrer que presque sûrement la suite X_n contient un nombre infini de '1', mais seulement un nombre fini de '11'.
 - Commençons par montrer que presque sûrement, la suite X_n contient un nombre infini de '1'. On note A_n l'événement " $X_n = 1$ ". On a $\mathbf{P}\{A_n\} = 1/n$, et donc $\sum_n \mathbf{P}\{A_n\}$ diverge. D'après le second théorème de Borel-Cantelli (les A_n sont indépendants car les X_n le sont), on a donc $\mathbf{P}\{$ "une infinité d'événements A_n se réalisent" $\}=1$, ce qui est équivalent à dire que presque sûrement la suite X_n contient une infinité de 1.

Montrons maintenant que presque sûrement la suite X_n ne contient qu'un nombre fini de '11'. On utilise cette fois le théorème de Borel-Cantelli vu en cours. Soit C_n l'événement " $X_n = X_{n+1} = 1$ ". Par indépendance de X_n et X_{n+1} , on a $\mathbf{P}\left\{C_n\right\} = 1/(n^2+n) \le 1/n^2$. (Remarque : on n'a pas que les C_n sont indépendants, mais l'indépendance n'est pas nécessaire pour utiliser le théorème de Borel-Cantelli dans ce sens.) Donc la somme $\sum_n \mathbf{P}\left\{C_n\right\}$ converge. D'après le théorème de Borel-Cantelli, on conclut que presque sûrement, seuls un nombre fini d'événements C_n sont réalisés. C'est-à-dire, presque sûrement il n'y a qu'un nombre fini de '11' dans la suite des X_n .

Comme l'intersection de deux événement presque sûrs est aussi presque sûre, on conclut que presque sûrement la suite X_n contient un nombre infini de '1', mais seulement un nombre fini de '11'.

Exercice 2. Conditions de convergence

Soit X_n une suite infinie de variables de Bernoulli indépendantes de paramètres $1 - p_n$, avec $0 \le p_n \le 1/2$ (i.e. $\mathbf{P}\{X_n = 1\} = 1 - p_n$ et $\mathbf{P}\{X_n = 0\} = p_n$).

- 1. Donner une condition nécessaire et suffisante pour que la suite X_n converge en distribution.
 - Supposons que les variables X_n convergent en distribution vers une variable X. Les fonctions de répartitions F_{X_n} des variables X_n sont comme sur la Figure 1. En particulier, elles sont continues en 1/2, et pour tout n, on a $F_{X_n}(1/2) = p_n$. Notons $p = F_X(1/2)$. Par définition de la convergence en distribution, on a $\lim_{n\to\infty} p_n = p$ (en particulier, les p_n convergent).
 - Supposons à l'inverse que les p_n convergent vers une constante p. Comme [0,1] est fermé et les p_n vivent dans [0,1], on en déduit que $p \in [0,1]$. Définissons X la variable de Bernoulli de paramètre p. Alors, on a bien, pour tout $x \neq \{0,1\}$, $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$, i.e. X_n converge en distribution vers X.
 - On conclut que X_n converge en distribution ssi p_n converge.

FIGURE 1 – Fonction de répartition de X_n

2. Donner une condition nécessaire et suffisante pour que la suite X_n converge en probabilité.

Comme la convergence en probabilité implique la convergence en distribution, on sait qu'une condition nécessaire est que les p_n converge. Mais ce n'est pas une condition suffisante. Supposons par exemple que $p_n=1/2$ pour tout n. Alors les p_n sont bien convergents, mais, si je prend $\varepsilon=1/2$, j'ai $\mathbf{P}\{|X_n-X_{n+1}|\geq \varepsilon\}=\mathbf{P}\{X_n\neq X_{n+1}\}=1/2$ par indépendance des X_n . En particulier, cette quantité ne tend pas vers zero, donc les X_n ne peuvent pas converger en probabilité. Le problème ici est que les X_n suivent bien la même loi, mais comme ils sont indépendants, rien ne nous assure que leurs valeurs seront proches.

Reprenons notre condition nécessaire. Supposons que X_n converge en probabilité vers X. Alors, pour tout $\varepsilon>0$, on a $\mathbf{P}\left\{|X_n-X|\geq\varepsilon\right\}\to 0$. Par inégalité triangulaire, cela implique en particulier que $\mathbf{P}\left\{|X_n-X_{n+1}|\geq 2\varepsilon\right\}\to 0$. Prenons $2\varepsilon=1/2$, on a alors $\mathbf{P}\left\{|X_n-X_{n+1}|\geq 2\varepsilon\right\}=\mathbf{P}\left\{X_n\neq X_{n+1}\right\}\geq p_n$. En effet, une fois X_{n+1} fixé, on a $\mathbf{P}\left\{X_n\neq X_{n+1}\right\}=p_n$ si $X_{n+1}=1$ et $\mathbf{P}\left\{X_n\neq X_{n+1}\right\}=1-p_n$ si $X_{n+1}=0$. Dans tous les cas, cette probabilité est supérieur à p_n , car on a choisi $p_n\leq 1/2$. On en déduit donc que $p_n\to 0$.

Supposons maintenant $p_n \to 0$, et notons X la variable aléatoire valant toujours 1. On a, pour tout $\varepsilon > 0$

$$\mathbf{P}\{|X_n - X| \ge \varepsilon\} = \mathbf{P}\{X_n = 0\} = p_n \to 0.$$

On en conclut que X_n converge en probabilité vers X.

On a donc que X_n converge en probabilité ssi p_n tend vers 0 (avec la contrainte $p_n \le 1/2$).

3. Donner une condition nécessaire et suffisante pour que la suite X_n converge presque sûrement.

On a vu que si la suite X_n converge presque sûrement, alors elle converge vers 1 (car elle converge en probabilité). On veut donc montrer que $\mathbf{P}\{X_n \to 1\} = 1$, quitte à faire quelques hypothèses supplémentaires sur les p_n . On sait, d'après le lemme de Borel-Cantelli que si $\sum_n p_n$ converge, alors avec probabilité 1, un nombre fini de variables X_n valent 0 (car les événements " $X_n = 0$ " ont probabilité p_n). Mais dire qu'un nombre fini de variables X_n valent 0 est équivalent à dire que X_n converge vers 1 (car les variables X_n sont à valeur dans $\{0,1\}$). On en déduit donc que si $\sum_n p_n$ converge, alors X_n converge vers 1 presque sûrement.

Pour la réciproque, on utilise le second théorème de Borel-Cantelli (cf exercice "second théorème de Borel-Cantelli"), qui dit que si les X_n sont indépendants et $\sum p_n$ diverge, alors, avec probabilité 1, il existe une infinité de X_n valant 0. En particulier, X_n ne peux pas converger vers 1. On en déduit donc que si X_n converge presque sûrement, alors $\sum_n p_n$ converge.

On a donc que X_n converge presque sûrement ssi $\sum_n p_n$ converge.

Exercice 3. Calcul de limite

L'objectif de cet exercice est de montrer l'égalité suivante :

$$\lim_{n} \exp(-n) \sum_{k=0}^{n} \frac{n^k}{k!} = \frac{1}{2}$$

On considère $(X_n)_{n\geq 0}$ une suite de variables aléatoires indépendantes de loi de Poisson de paramètre 1. On note $S_n=\sum_{k=0}^n X_k$.

- **1.** Montrer que pour tout $n \ge 0$, $\mathbf{P}\{S_n \le n\} = \exp(-n)\sum_{k=0}^n \frac{n^k}{k!}$. $\mathbb{R}^{\mathfrak{S}}$ S_n est une somme de variables aléatoires indépendante de loi de Poisson de paramètre 1, donc suit une loi de Poisson de paramètre n.
- Conclure en utilisant le Théorème Central Limite.
 D'après le Théorème Central Limite, on a :

$$\mathbf{P}\left\{\left(\right\}S_n \leq n\right) = \mathbf{P}\left\{\left(\right\} \xrightarrow{S_n - n} \leq 0\right) \xrightarrow[n \to +\infty]{(d)} \Phi(0) = \frac{1}{2}$$

Théorème de Mycielski

Recall that the *chromatic number* $\chi(G)$ is the smallest number of colors needed to color the vertices of G such that any two adjacent vertices have different colors. Clearly, graphs with large cliques have a high chromatic number, but the opposite is not true. The goal of this exercise is th prove Mycielski's theorem, which states that for any integer $k \geq 2$, there exists a graph G such that G contains no triangles and $\chi(G) \geq k$.

- **1.** Fix $0 < \varepsilon < \frac{1}{3}$ and let G be a random graph on n vertices where each edge appears independently with probability $p = n^{\varepsilon 1}$. Show that when n tends to infinity, the probability that G has more than n/2 triangles tends to 0.
 - The expected number of triangles is less than n^3p^3 . By Markov, G has more than n/2 triangles with a probability $<\frac{n^3p^3}{n/2}\to 0$.
- **2.** Let $\alpha(G)$ be the size of the largest *independent set* of G (A set of vertices X is *independent* if there is no edge between any two vertices of X in G). Show that $\chi(G) \geq n/\alpha(G)$.
 - By definition of χ , there is a coloring of G with χ colors, which is also a partition of V(G) into subsets such that each subset is independent. Hence, the carnality of each subset is at most α . This implies $\chi \alpha \geq n$.
- 3. Let $a = 3n^{1-\varepsilon} \ln n$. Show that when n tends to infinity,

$$\mathbb{P}(\alpha(G) < a) \to 1.$$

Deduce that there exists n and G of size n such that G has at most n/2 triangles and $\alpha(G) < a$.

$$\binom{n}{a}(1-p)^{\binom{2}{a}} < n^a e^{-p\frac{1}{2}a(a-1)} < n^a n^{-\frac{3}{2}(a-1)} \to 0.$$

4. Let G be such a graph. Let G' be a graph obtained from G by removing a minimum number of of vertices so that G' does not contain any triangle. Show that

$$\chi(G') > \frac{n^{\varepsilon}}{6 \ln n}$$

and conclude the proof of Mycielski's Theorem.

$$\chi > |G'|/\alpha > \frac{n/2}{3n^{1-\varepsilon}\ln n} > \frac{n^{\varepsilon}}{6\ln n}$$

Exercice 5. Filtres de Bloom

[Disclaimer : l'exercice parle de choses vues en cours que vous n'avez en fait pas vu. Mais ça n'a aucune importance.]

Rappelez-vous les tables de hachage vues en cours et reprenons l'exemple de l'interdiction des mots de passe trop simples. On dispose d'un ensemble F de mots de passe interdits, et l'on veut stocker F de manière intelligente pour pouvoir, à chaque fois qu'un utilisateur choisi un nouveau mot de passe, vérifier si ce mot de passe est admissible. Dans le premier exemple du cours (*Chain Hashing*), on cherche à minimiser le temps d'une requête pour savoir si $x \in F$. Dans le deuxième exemple du cours (*Bit Strings/Fingerprints*), on cherche à minimiser l'espace de stockage de F, quitte à ce que certaines requêtes produisent un faux positif (i.e. répond que $x \in F$ alors que $x \notin F$).

On va s'intéresser ici à un troisième exemple appelés *filtre de Bloom* qui permet d'obtenir un meilleur compromis entre espace de stockage et taux de faux positifs. Un filtre de Bloom est un tableau A à n cases, initialement remplies à 0. On dispose de k fonctions de hachage indépendantes h_1, \ldots, h_k à valeurs dans $\{1, \ldots, n\}$. On suppose comme à l'accoutumée pour les fonctions de hachage, que chaque h_i associe à n'importe quel élément de l'univers un nombre choisi uniformément au hasard dans $\{1, \ldots, n\}$. Soit $F = \{f_1, \ldots, f_m\}$ l'ensemble des m mots interdits. L'étape de pré-processing est la suivante : pour chaque $f \in F$, et pour chaque $i \le k$, on met $A[h_i(f)]$ à 1 (si cette case était déjà à 1, on ne la touche pas). Supposons maintenant que l'on ait une requête du type $s \in F$. On répond de la manière suivante : si tous les $A[h_i(s)]$ valent 1 pour $1 \le i \le k$, alors on répond $s \in F$. Sinon, on répond $s \notin F$. On vérifie facilement qu'il est impossible d'obtenir un faux-négatif.

1. Soit X le nombre de cases de A dans lesquelles il reste un 0 après le pré-processing. Quelle est l'espérance de X/n?

Considérons une case donnée $A[\ell]$. A chaque hachage $h_i(f_j)$, la probabilité que $h_i(f_j) = \ell$ (i.e. que $A[\ell]$ passe ou repasse à 1) est 1/n. Donc la probabilité que $A[\ell] = 0$ après les km hachages est $\left(1 - \frac{1}{n}\right)^{km}$. Cette probabilité correspond à l'espérance de la proportion de cases à 0 (car on multiplie puis on divise par n).

2. Soit $p = e^{-km/n}$. Dans cette question, on suppose pour simplifier que X est égal à pn. Quelle est la probabilité P d'un faux positif? Comment choisir k pour minimiser P, et qu'obtient-on comme valeur de P?

Un faux positif se produit pour un mot s si les k hachages $h_i(s)$ (pour $1 \le i \le k$) tombent sur des cases contenant toutes un 1. Si i est fixé, la probabilité que $h_i(s)$ tombe sur une case contenant un 0 est pn/n = p, dont on obtient au total : $P = (1-p)^k = (1-e^{-km/n})^k$ Or, comme $p = e^{-km/n}$, on a $\ln p = -km/n$ donc $k = -\ln(p)n/m$ et donc $P = (1-p)^k = e^{k\ln(1-p)} = e^{-\ln(p)\ln(1-p)n/m}$. On voit que cette expression est minimisée pour $p = 1/2 \to \infty$ on remarque donc que l'on obtient une probabilité de faux-positif optimale lorsque la moitié des bits du tableau sont à 1, autrement dit lorsque le filtre de Bloom ressemble à un tableau aléatoire. On obtient $P = (2^{-\ln 2})^{n/m} \approx (0.61)^{n/m}$.

3. Justifier pourquoi il a semblé raisonnable de supposer, par simplification, que X = pn. Plus exactement, utiliser l'approximation de Poisson pour borner $\mathbf{P}\{|X - np| \ge \varepsilon n\}$, et commenter.

On utilise la question 3 de l'exercice "Approximation de Poisson", qui nous dit que si X_i est la charge réelle de n paniers dans lesquels on a jeté km balles, et si Y_i est la charge dans l'approximation de Poisson (i.e. chaque Y_i est une variable de Poisson de paramètre km/n indépendantes), alors pour toute fonction f à valeurs positives ou nulles

$$\mathbf{E}\left[f(X_1,\ldots,X_n)\right] \leq e\sqrt{km}\mathbf{E}\left[f(Y_1,\ldots,Y_n)\right].$$

On va prendre $f(x_1,\ldots,x_n)=0$ si le nombre de variables x_i égales à 0 est dans $[np-n\varepsilon,np+n\varepsilon]$ et 1 sinon. la fonction f est bien à valeur positives ou nulles. On rappelle que X est le nombre de variables X_i égales à zéro. On définit de la même manière Y qui est égale au nombre de Y_i valant 0. Alors $f(X_1,\ldots,X_n)$ est la fonction indicatrice de l'événement " $|X-np|>n\varepsilon$ ". Donc $\mathbf{E}\left[f(X_1,\ldots,X_n)\right]=\mathbf{P}\left\{|X-np|>n\varepsilon\right\}$. De même, on a $\mathbf{E}\left[f(Y_1,\ldots,Y_n)\right]=\mathbf{P}\left\{|Y-np|>n\varepsilon\right\}$. Majorons cette dernière probabilité. Comme les Y_i sont indépendantes et de même loi, la variable Y suit une loi binomiale de paramètres $(n,\mathbf{P}\left\{Y_i=0\right\})$. Or $\mathbf{P}\left\{Y_i=0\right\}=e^{-km/n}=p$.

Donc $\mathbf{E}[Y] = np$. En utilisant l'inégalité de Chernoff II, on obtient $\mathbf{P}\{|Y - np| > n\epsilon\} \le 2e^{-\frac{\epsilon'n}{2p+\epsilon}}$. Et donc, en revenant aux X_i (en en utilisant le résultat de l'approximation de Poisson), on a

$$\mathbf{P}\{|X - np| > n\varepsilon\} \le 2e \cdot \sqrt{km} \cdot e^{-\frac{\varepsilon^2 n}{2p + \varepsilon}}.$$

Si on fixe comme à la question précédente p=1/2, alors $km=n\ln(2)$ et la quantité ci-dessus tend vers 0 pour tout choix de $\varepsilon>0$. Donc l'approximation faite à la question précédente est justifiée.