Nombres complexes: partie géométrique

I. Image d'un nombre complexe et affixe

1. Affixe d'un point

Définition.

Dans le plan muni d'un repère orthonormé $(O; \overrightarrow{u}; \overrightarrow{v})$:

- à tout complexe z = x + iy avec x et y réels, on associe le point M(x; y).
- Réciproquement à tout point M(x; y) on associe le nombre complexe z = x + iy.
- On dit que le point M est le **point image** du nombre complexe z et que z est **l'affixe** du point M.
- Le plan est alors appelé plan complexe.

Plan complexe.

- 1. Soit D d'affixe -2 + 6i. Donner les coordonnées du point D.
- **2.** Soit E(3; -4). Donner l'affixe du point E.

Remarque. L'axe des abscisses est appelé axe des réels et l'axe des ordonnées, axe des imaginaires purs.

Propriétés.

Soit A et B deux points du plan complexe d'affixe respective z_A et z_B .

- Les points A et B sont confondus si et seulement si $z_A = z_B$.
- Le milieu du segment [AB] a pour affixe $\frac{z_A + z_B}{2}$

Exercice 2.6. Dans le plan complexe, on considère les points A, B, C et D d'affixes respectives $z_A = -3 + i$, $z_B = 5 - 3i$, $z_C = 1 + i$ et $z_D = -7 + 5i$.

- f 1. Placer ces points dans le plan complexe et conjecturer la nature du quadrilatère ABCD.
- 2. Démontrer ou invalider cette conjecture.

2. Affixe d'un vecteur

Définition.

À tout complexe $z=x+\mathrm{i} y$ avec x et y réels, on associe le vecteur $\overrightarrow{w}\begin{pmatrix} x\\y \end{pmatrix}$ du plan complexe. On dit que le vecteur \overrightarrow{w} est le **vecteur image** du nombre complexe z et que z est **l'affixe** du vecteur \overrightarrow{w} .

Propriétés.

Dans le plan complexe, on considère deux vecteurs \overrightarrow{w} et $\overrightarrow{w'}$ d'affixes respectives z et z' et k un réel.

- Les vecteurs \overrightarrow{w} et $\overrightarrow{w'}$ sont égaux \overrightarrow{si} et seulement \overrightarrow{si} z=z'.
- Le vecteur $\overrightarrow{w} + \overrightarrow{w'}$ a pour affixe z + z'.
- Le vecteur $k\overrightarrow{w}$ a pour affixe kz.

3. Lien entre affixe d'un point et affixe d'un vecteur

Propriétés.

- Soit M un point du plan complexe muni d'un repère $(O; \overrightarrow{u}; \overrightarrow{v})$ et z un nombre complexe. Le point M a pour affixe z si et seulement si le vecteur \overrightarrow{OM} a pour affixe z.
- Soit A et B deux points du plan complexe d'affixes respectives z_A et z_B . Le vecteur \overrightarrow{AB} a pour affixe $z_B - z_A$.

Exercice 3.6. On donne A(-4-2i), B(3-i) et C(-1). Déterminer l'affixe du point D telle que le quadrilatère ACBD soit un parallélogramme.

II. Module d'un nombre complexe

1. Définition

Définition.

Soit le nombre complexe de forme algébrique z = x + iy et M l'image de z dans le plan complexe. Le module de z, noté |z|, est le réel positif noté |z| tel que :

$$|z| = \sqrt{z \ \overline{z}} = x^2 + y^2$$

Remarque. Si z est $r\acute{e}el$, $|z| = \sqrt{z} \, \overline{z} = \sqrt{z^2} = |z|$ donc le module de z est bien la valeur absolue de z et la notation utilisée pour le module est cohérente.

La notion de module dans $\mathbb C$ généralise donc celle de valeur absolue dans $\mathbb R$.

Exercice 4.6. Calculer les modules des complexes suivants :

- 1. $z_1 = 5 + i$.
- **2.** $z_2 = -3 + 2i$.
- 3. $z_3 = -6$.
- **4.** $z_4 = 9i$.

Propriétés.

• Soit z un nombre complexe et M le point image associé dans le repère $(O; \overrightarrow{u}; \overrightarrow{v}), |z| = \sqrt{x^2 + y^2}$ qui n'est autre que la norme du vecteur \overrightarrow{OM} c'est-à-dire la distance OM, ainsi |z| = OM.

• Soit A et B deux points d'affixes respectives z_A et z_B . On a alors:

$$AB = |z_B - z_A| = |z_A - z_B|$$

Exercice 5.6. Soit A(1+2i), B(2) et C(-1+i) dans le plan complexe muni d'un repère orthonormé $(O; \overrightarrow{u}; \overrightarrow{v})$.

- 1. Placer ces points dans le plan complexe et conjecturer la nature du triangle ABC.
- 2. Démontrer ou invalider cette conjecture.

2. Propriétés du module

Propriétés.

Soit z un nombre complexe de forme algébrique z = x + iy avec $(x; y) \in \mathbb{R}^2$.

- 1. $z = 0 \iff |z| = 0$.
- **2.** $|z|^2 = z \times \overline{z} = x^2 + y^2$.
- 3. $|z| = |-z| = |\overline{z}| = |-\overline{z}|$.

Propriétés.

On considère z et z' deux nombres complexes.

1.
$$|zz'| = |z||z'|$$
.

2. Si
$$z \neq 0$$
, $\left| \frac{1}{z} \right| = \frac{1}{|z|}$.

3. Si
$$z \neq 0$$
, $\left| \frac{z'}{z} \right| = \frac{|z'|}{|z|}$.

4.
$$\forall n \in \mathbb{N}^*, |z^n| = |z|^n.$$

5. Si
$$z \neq 0$$
, $\forall n \in \mathbb{Z}$, $|z^n| = |z|^n$.

6.
$$|z+z'| \leq |z| + |z'|$$
: inégalité triangulaire.

7.
$$|z+z'|=|z|+|z'|\iff \exists k\in\mathbb{R}^+/z'=kz$$
 ou $z=kz'$ (cas d'égalité).

Exercice 6.6. Déterminer les modules des complexes suivants :

1.
$$z_1 = (1+i)(2-4i)$$

2.
$$z_2 = (1+i)^{15}$$

3.
$$z_3 = \frac{5}{2+5i}$$

1.
$$z_1 = (1+i)(2-4i)$$

2. $z_2 = (1+i)^{15}$
3. $z_3 = \frac{3-i}{2+5i}$
4. $z_4 = \frac{(-3+4i)^5}{(5-4i)^4}$

Nombres complexes de module 1 3.

Définition.

Soit z un nombre complexe. z est de module 1 si et seulement si |z|=1. L'ensemble des nombres complexes de module 1 est noté \mathbb{U} .

Ainsi $\mathbb{U} = \{ z \in \mathbb{C}/|z| = 1 \}.$

Remarque. Dans le plan complexe, l'ensemble des points images des éléments de U est le cercle trigonométrique.

Propriétés.

1. Si
$$(z; z') \in \mathbb{U}^2$$
 alors $zz' \in \mathbb{U}$.

2. Si
$$z \in \mathbb{U}$$
 alors $\frac{1}{z} \in \mathbb{U}$.

3. Si
$$(z; z') \in \mathbb{U}^2$$
 alors $\frac{z'}{z} \in \mathbb{U}$.

III. Arguments d'un nombre complexe

1. Notion d'arguments

Définition.

Soit z un nombre complexe $non\ nul$ d'image M. On appelle argument de z toute mesure en radian de l'angle orienté :

$$arg(z) = (\overrightarrow{u}; \overrightarrow{OM})$$

Si θ est un argument de z, $\theta + 2k\pi$ en est également un pour tout $k \in \mathbb{Z}$. On note $\theta = \arg(z)$ $[2\pi]$ et on lit « θ égal à arg de z modulo 2π ».

Remarques.

- 0 n'a pas d'argument.
- Tout nombre *réel positif* a un argument égal à 0.
- Tout nombre *réel négatif* a un argument égal à π .
- Tout nombre *imaginaire pur* iy avec y > 0 a un argument égal à $\frac{\pi}{2}$.
- Tout nombre *imaginaire pur* iy avec y < 0 a un argument égal à $-\frac{\pi}{2}$.

Propriétés.

- Soit z un nombre complexe non nul et \overrightarrow{w} le vecteur image associé. On a alors $(\overrightarrow{u}\;;\;\overrightarrow{w})=\arg(z)\;[2\pi].$
- Soit A et B deux points **distincts** d'affixes respectives z_A et z_B . On a alors $(\overrightarrow{u}; \overrightarrow{AB}) = \arg(z_B - z_A) \ (2\pi)$.

2. Propriétés sur les arguments

Propriétés.

Soit z un nombre complexe non nul.

$$--\arg(\overline{z}) = -\arg(z) [2\pi].$$

- $arg(-z) = arg(z) + \pi [2\pi].$
- $arg(-\overline{z}) = -arg(z) + \pi [2\pi @.$
- $z \in \mathbb{R} \iff \arg(z) = 0 \ [\pi].$
- $z \in i\mathbb{R} \iff \arg(z) = \frac{\pi}{2} [\pi].$

3. Forme trigonométrique d'un nombre complexe non nul

Soit z un nombre complexe non nul. Son module |z|=r et un argument θ permettent de caractériser son image M sur le plan, au même titre que les coordonnées (x; y).

Le couple $[r;\theta]$ forme alors ce que l'on appelle les coordonnées polaires du point M. On passe des coordonnées polaires aux coordonnées cartésiennes par les relations :

$$x = r\cos\theta$$
 et $y = r\sin\theta$

En effet, d'après la figure ci-contre,

$$\sin(\theta) = \frac{y}{r}$$
 et $\cos(\theta) = \frac{x}{r}$

Définition.

Soit z un nombre complexe non nul de forme algébrique z = x + iy un nombre complexe de module r et d'argument θ . D'après la remarque précédente, on a :

$$z = x + iy = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta)$$

Cette dernière expression est appelée forme trigonométrique de z.

Exercice 7.6.

- 1. Calculer un argument des nombres complexes suivants :
 - (a) $z_1 = 4i$
 - (b) $z_2 = -2$
 - (c) $z_3 = -2 + 2i$
 - (d) $z_4 = -1 + i\sqrt{3}$
- 2. Déterminer la forme algébrique des nombres complexes suivants :
 - (a) z_1 tel que $|z_1| = 2$ et $\arg(z_1) = -\frac{\pi}{2}$ (2π) .
 - (b) z_2 tel que $|z_2| = 5$ et $\arg(z_2) = \frac{2\pi}{3}$ (2π) .
- 3. Déterminer une forme trigonométrique des complexes suivants :
 - (a) $z_3 = 4 + 4\sqrt{3}i$.
 - (b) $z_4 = 2\sqrt{3} 2i$.

Propriété.

Soit z et z' deux nombres complexes *non nuls*.

$$z = z' \iff |z| = |z'|$$
 et $\arg(z) = \arg(z')$ $[2\pi]$

Propriétés.

Soit z et z' deux nombres complexes *non nuls*.

- $\arg(zz') = \arg(z) + \arg(z') [2\pi].$
- $\operatorname{arg}\left(\frac{1}{z}\right) = -\operatorname{arg}(z) [2\pi].$
- $\operatorname{arg}\left(\frac{z'}{z}\right) = \operatorname{arg}(z') \operatorname{arg}(z) [2\pi].$
- $\forall n \in \mathbb{Z}, \ \arg(z^n) = n\arg(z) \ [2\pi].$