# CHAPTER 3-2

Arithmetic for Computers

By Pattama Longani Collage of arts, media and Technology

#### **REAL NUMBER**

- •programming languages support numbers with fractions, which are called *reals* in mathematics.
- Here are some examples of reals:
  - •3.14159265 . . . <sub>ten</sub> (pi)
  - •2.71828 . . . <sub>ten</sub> (*e*)
  - •0.00000001<sub>ten</sub>or  $1.0_{ten} \times 10^{-9}$
  - •3,155,760,000<sub>ten</sub> or  $3.15576_{ten} \times 10^{9}$

# **FLOATING POINT**

•Scientific notation: a single digit to the left of the decimal point.



- In binary
  - •±1.XXX<sub>2</sub> × 2<sup>yyy</sup>
  - •x = fraction, y = exponent
- •such numbers is called **floating point** because it represents numbers in which the binary point is not fixed.

## **FLOATING POINT**

- •A designer of a floating-point representation must find a compromise between the size of the **fraction** and the size of the **exponent**.
- •This representation is called **sign and magnitude**, since the sign is a separate bit from the rest of the number.

s E (exponent) F (fraction)

1 bit 8 bits 23 bits

**Single Precision Floating Point** 

#### **EXCEPTION IN FLOATING POINT**

- •Overflow (floating point) happens when a positive exponent becomes too large to fit in the exponent field
- •<u>Underflow</u> (floating point) happens when a negative exponent becomes too large to fit in the exponent field
- •One way to reduce the chance of underflow or overflow is to offer another format that has a larger exponent field

#### **FLOATING POINT**

Double precision – takes two MIPS words

| s E                    | (exponent) | F (fraction) |  |  |
|------------------------|------------|--------------|--|--|
| 1 bit                  | 11 bits    | 20 bits      |  |  |
| F (fraction continued) |            |              |  |  |
| 32 bits                |            |              |  |  |

•These formats go beyond MIPS. They are part of the IEEE 754 floating-point standard, found in virtually every computer invented since 1980.

#### FLOATING POINT STANDARD

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
  - Portability issues for scientific code
- Now almost universally adopted
- Two representations
  - Single precision (32-bit)
  - Double precision (64-bit)

# **IEEE FLOATING-POINT FORMAT**

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- •S: sign bit (o  $\Rightarrow$  non-negative, 1  $\Rightarrow$  negative)
- Exponent: excess representation: actual exponent + Bias
  - Ensures exponent is unsigned
  - Single: Bias =  $127 = (2^8/2)-1$
  - Double: Bias =  $1023 = (2^{11}/2)-1$

$$(-1)^{S} \times (1 + (s1 \times 2^{-1}) + (s2 \times 2^{-2}) + (s3 \times 2^{-3}) + (s4 \times 2^{-4}) + ...) \times 2^{E}$$

# **EXAMPLE**: Represent –0.75

•0.75 = 
$$75/100_{\text{ten}} = 3/4_{\text{ten}} = 3/2^2_{\text{ten}}$$
  
=  $11_2/2^2_{\text{ten}} = 1.1_2 \times 2^{-1}$  Exponent-Bias

• 
$$(-1)^1 \times 1.1_2 \times 2^{-1}$$
  $X = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$ 

- •S = 1
- •Fraction =  $1000 / .00_2$
- •Exponent = -1 + Bias
- F (fraction)

  1 bit 8 bits 23 bits

| s E (exponent)         |         | F (fraction) |  |
|------------------------|---------|--------------|--|
| 1 bit                  | 11 bits | 20 bits      |  |
| F (fraction continued) |         |              |  |

- •Single:  $-1 + 127 = 126 = 01111110_2$  32 bits
- •Double:  $-1 + 1023 = 1022 = 01111111110_2$
- •Single: **10111110**1000...00
- •Double: 101111111101000...00

# **EXAMPLE:** What number is represented by the single-precision float

#### **11000001**01000...00

```
s E (exponent) F (fraction)

1 bit 8 bits 23 bits
```

- •Fraction = 01000...00<sub>2</sub>
- •Exponent =  $10000001_2 = 129$

•
$$X = (-1)^1 \times (1.01_2) \times 2^{(129-127)}$$
 Exponent-Bias
$$= (-1) \times 1.01_2 \times 2^2$$

$$= (-1) \times 101_2$$

$$= -5.0$$

### FLOATING-POINT ADDITION

Consider a 4-digit decimal example  $9.999 \times 10^1 + 1.610 \times 10^{-1}$ 

- 1. Align decimal points Shift number with smaller exponent  $9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add significands  $9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3. Normalize result & check for over/underflow 1.0015 × 10<sup>2</sup>
- 4. Round and renormalize if necessary



#### FLOATING-POINT ADDITION

Now consider a 4-digit binary example

$$1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$$

- 1. Align binary points
  Shift number with smaller exponent  $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands  $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow 1.000<sub>2</sub> × 2<sup>-4</sup>, with no over/underflow
- 4. Round and renormalize if necessary 1.000<sub>2</sub> × 2<sup>-4</sup> (no change) = 0.0625

# **FP ADDER HARDWARE**



#### **FP ADDER HARDWARE**

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
  - Much longer than integer operations
  - •Slower clock would penalize all instructions
- •FP adder usually takes several cycles
  - Can be pipelined