

Instituto de Ciências Exatas Departamento de Ciência da Computação

Static Analysis to check evolution java software with language evolution

Thiago Gomes Cavalcanti Vinícius Correa de Almeida

Monografia apresentada como requisito parcial para conclusão do Curso de Computação — Licenciatura

Orientador Prof. Dr. Rodrigo Bonifácio de Almeida

Brasília 2015

Universidade de Brasília — UnB Instituto de Ciências Exatas Departamento de Ciência da Computação Curso de Computação — Licenciatura

Coordenador: Prof. Dr. Wilson Henrique Veneziano

Banca examinadora composta por:

Prof. Dr. Rodrigo Bonifácio de Almeida (Orientador) — CIC/UnB

Prof. Dr. Professor I — CIC/UnB

Prof. Dr. Professor II — CIC/UnB

CIP — Catalogação Internacional na Publicação

Cavalcanti, Thiago Gomes.

Static Analysis to check evolution java software with language evolution / Thiago Gomes Cavalcanti, Vinícius Correa de Almeida. Brasília : UnB, 2015.

59 p.: il.; 29,5 cm.

Monografia (Graduação) — Universidade de Brasília, Brasília, 2015.

- 1. language design, 2. language evolution, 3. refactoring,
- 4. microrefactoring, 5. java

CDU 004.4

Endereço: Universidade de Brasília

Campus Universitário Darcy Ribeiro — Asa Norte

CEP 70910-900

Brasília-DF — Brasil

Instituto de Ciências Exatas Departamento de Ciência da Computação

Static Analysis to check evolution java software with language evolution

Thiago Gomes Cavalcanti Vinícius Correa de Almeida

Monografia apresentada como requisito parcial para conclusão do Curso de Computação — Licenciatura

Prof. Dr. Rodrigo Bonifácio de Almeida (Orientador) CIC/UnB

Prof. Dr. Professor II Prof. Dr. Professor II $\frac{\text{CIC}}{\text{UnB}} \qquad \qquad \frac{\text{CIC}}{\text{UnB}}$

Prof. Dr. Wilson Henrique Veneziano Coordenador do Curso de Computação — Licenciatura

Brasília, 31 de março de 2015

Dedicatória

Dedicamos a nossa família

Agradecimentos

Agradecemos a todos que ajudaram de alguma forma nessa jornada que se completa.

Resumo

Este tem o objetivo analisar se o desenvolvimento do software evolui em conformidade a evolução das linguagens em específico java.

Palavras-chave: language design, language evolution, refactoring, microrefactoring, java

Abstract

This job has objective an analyze the software evolution and know how developers evolved software in accordance with evolution of languages specifically in java .

Keywords: language design, language evolution, refactoring, microrefactoring, java

Sumário

1	Introdução			
	1.1	Introdução	1	
2	Problema a ser Atacado			
	2.1	Problematização	3	
	2.2	História da linguagem	5	
	2.3	Aspectos evolutivos da liguagem Java	10	
		2.3.1 Java 2	10	
		2.3.2 Java 4	13	
		2.3.3 Java 5	13	
		2.3.4 Java 6	14	
		2.3.5 Java 7	14	
		2.3.6 Java 8	16	
3	Aná	álise estática	18	
	3.1	Checagem de tipo	19	
	3.2	Checagem de estilo	19	
	3.3	Entendimento do código	20	
	3.4	Verificação de programa	20	
	3.5	Verificação de propriedade	20	
\mathbf{R}	Referências			

Lista de Figuras

Lista de Tabelas

Capítulo 1

Introdução

1.1 Introdução

Com o passar do tempo as linguagens de programação evoluem entretanto não sabe-se ao certo como os softwares projetados e implementados há alguns anos acompanharam tais atualizações[4]. Conforme explicado por [12], tal evolução faz com que características obsoletas sejam mantidas e raramente são removidas de uma linguagem o que acarreta em um aumento da complexidade, aprendizagem e da manutenção do software. Isso naturalmente aumenta a dificuldade de desenvolvimento o que resulta em um aumento de dificuldade de aprendizagem de determinada versão já ultrapassada de uma linguagem e faz com que a equipe alterne entre propriedades atuais e antigas as quais passam a ser quase um dialeto da linguagem implicando no aumento de tempo para conceber um projeto e consequentemente gerindo aumento no custo final projeto.

Uma decisão não tão simples é manter uma porção do código congelado, sem evolução, ao longo projeto devido alguma restrição técnica. O que infelizmente acarreta em uma estagnação de todo um sistema pois não é somente o projeto afetado, mas sim uma toda infraestrutura como compiladores, banco de dados e sistema operacional e que se de alguma forma vierem a ser atualizados com esta porção código estagnado pode ocasionar problemas como uma queda significativa de desempenho ou até mesmo o sistema parar de funcionar. Devido a esses problemas de código não atualizado com as versões com estruturas mais atuais a proposta da realização de refatoração através de ferramenta a serem desenvolvidas que visem atacar esse gargalo deixado por código obsoleto.

A base para tal trabalho será o desenvolvimento de algumas ferramentas que auxiliem em mudanças em um código legado para reduzir suas estruturas obsoletas e com baixa performance. Essas ferramentas tem como base a sua construção em linguagem Java com o intuito de tornar o processo de construção mais ágil e posteriormente aberto para o acoplamento de novos módulos. A construção de uma árvore sintática é um passo onde é feito para cada arquivo de código .Java e posteriormente de todos os arquivos .Java contidos em qualquer projeto para posterior análise. Este parser implica em listar todos os arquivos Java e gerar uma Árvore Sintática Abstrata (AST) para que posteriormente haja um percorrimento usando um visitor [6] nos blocos de código contidos nos nós da

(AST)[5] afim de compará-los como estes com a versão atual.

O processo de refatoração [14] tem como motivação a reestruturação de código, de forma que o código considerado pelo processo, morto, duplicado ou com perca de desempenho não haja código morto, duplicado ou com perca de desempenho em um determinado trecho de código. Esse processo não tem como premissa a atualização do código para novas estruturas de versões da linguagem mais recentes. Essa nova abordagem de refatoração tem com motivação a retirada de código obsoleto, devido a novas abordagens e estruturas das novas versões, e com baixo desempenho de sistemas sem prejuízo na sua engenharia e funcionamento.

Devido a esse tipo de refatoração de código visa a evolução do código para a uma mais recente com estruturas onde não haja perca de desempenho devido a mudança e também a atualização do código legado para estruturas modernas. Tais estruturas antigas com a ação dessa proposta de refatoração tendem com o tempo sair das estruturas providas pela linguagem Java como aconteceu com Fortan 90 como visto em [12] e essa abordagem tem o intuito de diminuir a quantidade de estruturas antigas que não fazem mais sentido pois novas estruturas realizam as mesmas funções no interpretador da linguagem Java. As modificações proposta pela ferramenta de refatoração não deverá trazer com que haja perca de desempenho ou aumento da complexidade do código portanto deixando como uma sugestão a alteração do código ou segmento de código para o usuário a adesão das propostas de refatoração ou não.

A árvore de sintaxe abstrata (AST) proposta por Chomsky em 1956[3], é uma estrutura de dados que representa estruturas de cadeias sintáticas onde é reapresentada por um esqueleto semântico da linguagem em questão. É constituída através de um framework do ambiente de desenvolvimento integrado chamado Eclipse onde o nome desse framework é chamado de EclispeJDT onde traz métodos implementados pelo próprio framework para o percorrimento e ações na árvore sintática. A ideia é transformar inicialmente qualquer código fonte java em uma árvore sintática e devido a isso, o mapeamento da arvore já construída que é muito conveniente para inspecionar o código fonte de um arquivo ou de um projeto com vários arquivos em diferentes diretórios. Com isso é possível realizar ou sugerir ao usuário modificações no código fonte através desta árvore construída e isto seria referenciado automaticamente no código fonte.

A proposta é criar ferramentas de análise estática para códigos fonte da linguagem Java para que possa-se apurar projetos pequenos e posteriormente em projetos open-sources para a verificação da existência de alguma defasagem[4] de estruturas entre qualquer versão da linguagem Java que fora concebido para a versão atual e estável na qual a linguagem se encontra. O desenvolvimento das ferramentas será com a versão mais atual da linguagem Java que neste momento é o Java versão 8 para verificar se os softwares desenvolvidos está versão nesta versão e como acompanharam a evolução de décadas de novas versões sem atualização do código por motivo de engenharia outro qualquer.

Capítulo 2

Problema a ser Atacado

2.1 Problematização

Nos últimos anos sistemas computacionais ganharam cada vez mais espaço no mercado o que acarretou na dedicação de profissionais para manter a qualidade elevada tanto no desenvolvimento como na manutenção destes a fim de proporcionar tanto a multiplataforma quanto que qualquer equipe seja capaz de desenvolvem em qualquer local a qualquer tempo.

Com isso a produção de software tornou-se uma tarefa desafiadora de altíssima complexidade que pode acarretar no aumento da possibilidade de surgimento de problemas. Outro fator de grande relevância é que cada vez mais o bom desempenho do software depende da capacidade e qualificação dos profissionais que compom a equipe de desenvolvimento. Um desses problemas é manter o desenvolvimento com partes ultrapassadas de uma linguagem o que torna um sistema obsoleto e com a chance de conter bugs e vulnerabilidades que podem comprometer a segurança de todo o sistema.

A atuação de equipes que desenvolvem utilizando códigos obsoletos continua sendo um grande problema no desenvolvimento de software ao longo de suas releases, mesmo com a evolução da linguagem. Códigos mais atuais tornam-se cada vez mais necessário pois evitam, corrigem falhas e vulnerabilidades além do mesmo tornar-se mais atual. Tais códigos não evoluem podem ser por falta de suporte da IDE, por falta conhecimento da equipe de desenvolvedora ou pelo simples fato de não possuir uma analisador estático que aborde estas construções lançadas nas novas versões das linguagens, especificamente java.

Após toda release uma linguagem demora um certo tempo de maturação para que comunidade de desenvolvedores adote novas características lançadas ou simplesmente não a utilizem, porém java possui uma filosofia de manter suporte a todos legado já desenvolvido por questão de portabilidade o que beneficia tanto IDE's quanto equipes a não ter a necessidade de se atualizarem para as ultimas versões da linguagem o que torna a construção de software com uma linguagem ultrapassada confortável porém existe a possibilidade do software possuir vulnerabilidades.

Um bom exemplo a ser lembrado é FORTRAN quando adicionou orientação objetos em sua release **XX** forçando a evoulução de seus compiladores os quais não forneciam mais suporte a versões anteriores conforme relata Jeffrey L. Overbey e Ralph E. Johnson em [12], que como consequência forçou toda comunidade desenvolvedora a se atualizar. E ainda havia a possiblidade de certos trechos de código sofrer um refectoring em tempo de compilação por um código mais atual e equivalente.

A processo de utilizar um analisador estático em um projeto antes de sua compilação pode vir a impactar na melhora da confiança do software pois pode detectar vulnerabilidades de maneira prematura além de reduzir o retrabalho caso estas não fossem detectadas. Tais vulnerabilidades são falhas que podem vir a ser exploradas por usuários maliciosos, estes podem desde obter acesso ao sistema, manipular dados ou até mesmo tornar todo serviço indisponível. Neste trabalho a criação de um analisador estático terá o intuito de pesquisar trechos de código ultrapassado.

A implementação de refectoring na grande parte das modernas IDEs mantem suporte para um simples conjunto de código onde o comportamento é intuitivo e fácil de ser analisado, quando características avançadas de uma linguagem com o java são usados descrever precisamente o comportamento de tarefas é de extrema complexidade além da implementação do refectoring ficar complexa e de difícil entendimento segundo Max Schäfer e Oege de Moor em [14]. Modernas IDEs como ecplise realizam complexos refectoring através da técnica de microrefectoring que nada mais é que a divisão de um bloco de código complexo em pequenas partes para tentar encontrar códigos mais intuitivos a serem modificados.

O analisador estático proposto nesse trabalho tem o objeto de identificar construções ultrapassadas e porções de código congelados que são utilizadas ao logo do desenvolvimento do software verificando o histórico do lançamento das releases de software livres desenvolvidos em especialmente usando a linguagem java. Ainda caberá ao desenvolvedor tomar a decisão caso existam construções ultrapassadas nas releases se adotará o refectoring ou manterá o código congelado expondo o mesmo a usuários maliciosos.

2.2 História da linguagem

No começo da década de 90 um pequeno grupo de engenheiros da Oracle chamados de "Green Team" acreditava que a próxima onde de na área da computação seria a união de equipamentos eletroeletrônicos com os computadores. O "Green Team" liderado por James Gosling, demonstraram que a linguagem de programação Java, que foi desenvolvida pela equipe e originalmente era chamado de Oak, foi desenvolvida para dispositivos de entretenimento como aparelhos de tv a cabo, porém não foi bem aceita no meio. Em 1995 com a massificação da Internet foi quando a linguagem Java teve sua primeira grande aplicação o navegador Netscape.

Java é uma linguagem de programação de propósito geral orientada a objetos, concebida especificadademente para ter poucas dependências de implementação isso acarreta que uma vez que a aplicação fora desenvolvida ela poderá ser executada em qualquer lugar.

Na sua primeira versão chamada de Java 1 (JDK 1.0.2) onde introduziram oito pacotes básicos do java como: java.lang, java.io, java.util, java.net, java.awt, java.awt.image, java.awt.peer e java.applet. Foi usado para o desenvolvimento de ferramentas populares na epoca como o Netscape 3.0 e o Internet Explorer 3.0.

Sua segunda versão foi o JDK 1.1 [7] onde trouxe ganhos em funcionalidades, desempenho e qualidade. Novas aplicações tambem surgiram como : JavaBeans, aprimoramento do AWT, novas funcionalidades como o JDBC, acesso remoto ao objeto (RMI) e suporte ao padrão Unicode 2.0.

Na terceira versão Java 2 (JDK 1.2) ofereceu melhorias significativas no desempenho, um novo modelo de segurança, flexível e um conjunto completo de aplicações de programação interfaces (APIs). Os novos recursos da plataforma Java 2 incluiram:

- O modelo de "sandbox" foi ampliado para dar aos desenvolvedores, usuários e administradores de sistema a opção de especificar e gerenciar um conjunto de políticas de segurança flexíveis que governam as ações de uma aplicação ou applet que pode ou não ser executada.
- Suporte nativo a thread para o ambiente operacional Solaris. Compressão de memória para classes carregadas. Alocação de memória com mais desempenho e melhor para a coleta de lixo. Arquitetura de máquina virtual conectável para outras máquinas virtuais, incluindo a Java HotSpot VMNew. Just in Time (JIT). Java Native Interface (JNI) de conversão.
- O conjunto de componentes de projeto, GUI (Swing). API Java 2D que fornece novos recursos gráficos 2D e AWT, bem como suporte para impressão. O Java *look and fell*. Uma nova API de acessibilidade.
- Framework de entrada de caracteres (suporte a japonês, chinês e coreano). Complexo de saída usando a API do Java 2D para fornecer um *display* bi-direcional, de alta qualidade de japonês, árabe, hebraico e outras línguas de caracteres.

- Java Plug-in para navegadores da web, incluída na plataforma Java 2, fornecendo um tempo de execução totalmente compatível com a máquina virtual Java amplamente implantadas em navegadores.
- Invocação das operações ou serviços de rede remoto. Totalmente compatível com Java ORB e incluído no tempo de execução.
- JDBC que fornece um acesso mais fácil aos dados para consultas mais flexíveis. Melhor desempenho e estabilidade são promovidos por cursores de rolagem e suporte para SQL3 de tipos.

Em 8 de maio de 2000 foi anunciado o Java 2 versão 1.3 que trouxe ganho de desempenho em relação a primeira versão da JS2E de cerca de 40% no tempo de *start-up* e de 20%. Também trouxe novas funcionaliadades como:

- O Java HotSpot VM de cliente e suas bibliotecas atentando ao desempenho ao fazer o J2SE versão 1.3 a *realease* o mais rápido até à data.
- Novos recursos, como o caching applet e instalação do pacote opcional Java através da tecnologia Java Plug-in para aumentar a velocidade e a flexibilidade com que os applets e aplicativos baseados na tecnologia Java pode ser implantado. Java Plug-in tecnologia é um componente do ambiente de execução Java 2 que permite Java applets e aplicativos para a execução.
- O novo suporte para RSA assinatura eletrônica, gerenciamento de confiança dinâmico, certificados X.509, e verificação de arquivos o que significa o aumento das possibilidades que os desenvolvedores tem para proteger dados eletrônicos.
- Uma série de novos recursos e ferramentas de desenvolvimento da tecnologia J2SE versão 1.3 que permite o desenvolvimento mais fácil e rápido de aplicações baseadas na tecnologia web ou Java standalone de alto desempenho.
- A adição de RMI/IIOP e o Jndi (JNDI) para a versão 1.3, melhora na interoperabilidade J2SE. RMI/IIOP melhora a conectividade com sistemas de *back-end* que suportam CORBA. JNDI fornece acesso aos diretórios que suportam o populares LDAP Lightweight Directory Access Protocol, entre outros.

No ano de 2000 no dia 6 de Fevereiro, foi lançado a J2SE versão 1.4. Com a versão 1.4, as empresas puderam usar a tecnologia Java para desenvolver aplicativos de negócios mais exigentes e com menos esforço e em menos tempo. As novas funcionalidades como a nova I/O e suporte a 64 bits. A J2SE se tornou plataforma ideal para a mineração em grande escala de dados, inteligência de negócios, engenharia e científicos. A versão 1.4 forneceu suporte aprimorado para tecnologias padrões da indústria, tais como SSL, LDAP e CORBA a fim de garantir a operacionalidade em plataformas heterogêneas, sistemas e ambientes. Com o apoio embutido para XML, a autenticação avançada, e um conjunto completo de serviços de segurança, está versão forneceu base para padrões de aplicações Web e serviços interoperáveis. O J2SE avançou o desenvolvimento de aplicativos de cliente com novos controles de GUI, acelerou Java 2D, a performance gráfica, internacionalização

e localização expandida de apoio, novas opções de implantação e suporte expandido para o até então Windows XP.

Com a chegada da JSE2 versão 1.5 (Java 5.0) em 6 de ferevereiro de 2002, impulsionou benefícios extensivos para desenvolvedores, incluindo a facilidade de uso, desempenho global e escalabilidade, monitoramento do sistema e gestão e desenvolvimento. O Java 5 foi derivado do trabalho de 15 componentes Java Specification Requests (JSRs) englobando recursos avançados para a linguagem e plataforma. Os líderes da indústria na época que participam no grupo de peritos J2SE 5.0 incluiram: Apache Software Foundation, Apple Computer, BEA Systems, Borland Software Corporation, Cisco Systems, Fujitsu Limited, HP, IBM, Macromedia, Nokia Corporation, Oracle, SAP AG, SAS Institute, SavaJe Technologies e Sun Microsystems.

Novas funcionalidades foram implementadas como:

- Facilidade de desenvolvimento: os programadores da linguagem Java pode ser mais eficiente e produtivos com os recursos de linguagem Java 5 que permitiram a codificação mais segura. Nesta versão surgiu *Generics*[11][2], tipos enumerados, metadados e autoboxing de tipos primitivos permitindo assim uma fácil e rápida codificação.
- Monitoramento e gestão: Um foco chave para a nova versão da plataforma, a aplicativos baseados na tecnologia Java *Virtual Machine* que passou a ser monitorado e gerenciado com o *built-in* de suporte para Java *Management Extensions*. Isso ajudou a garantir que seus funcionários, sistemas de parceiros do cliente permanecessem em funcionamento por mais tempo. Suporte para sistemas de gestão empresarial baseados em SNMP também é viável.
- Um olhar novo aplicativo, mais moderna, baseada na tecnologia Java padrão e proporciona uma sensação GUI para aplicativos baseados na tecnologia Java. A J2SE 5.0 teve suporte completo a internacionalização e também possuindo suporte para aceleração de hardware por meio da API OpenGL e tambem para o sistema operacional Solaris e sistemas operacionais da distribuição Linux.
- Maior desempenho e escalabilidade: A nova versão incluiu melhorias de desempenho, tais como menor tempo de inicialização, um menor consumo de memória e JVM auto ajustável para gerar maior desempenho geral do aplicativo e desenvolvimento em J2SE 5.0 em relação às versões anteriores.

Java 1.6 (Java 6) foi divulgado em 11 de dezembro de 2006. Tornou o desenvolvimento mais fácil, mais rápido e mais eficiente em termos de custos e ofereceu funcionalidades para serviços web, suporte linguagem dinâmica, diagnósticos e aplicações desktop. Com a chegada dessa nova versão do Java houve combinação com o NetBeans IDE 5.5 fornecendo aos desenvolvedores uma estrutura confiável, de codigo aberto e compatível, de alta performance para entregar aplicativos baseados na tecnologia Java mais rápido e mais fácil do que nunca. O NetBeans IDE fornece uma fonte aberta e de alto desempenho, modular, extensível, multi-plataforma Java IDE para acelerar o desenvolvimento de aplicações baseadas em software e serviços web. Novas funcionalidades foram implementadas como:

- O Java 1.6 ajudou a acelerar a inovação para o desenvolvedor, aplicativos de colaboração online e baseadas na web, incluindo um novo quadro de desenvolvedores APIs para permitir a mistura da tecnologia Java com linguagens de tipagem dinâmica, tais como PHP, Python, Ruby e tecnologia JavaScript. A Sun também criou uma coleção de mecanismos de script e pré-configurado o motor JavaScript Rhino na plataforma Java. Além disso, o software inclui uma pilha completa de clientes de serviços web e suporta as mais recentes especificações de serviços web, como JAX-WS 2.0, JAXB 2.0, STAX e JAXP.
- A plataforma Java 1.6 forneceu ferramentas expandidas para o diagnóstico, gestão e monitoramento de aplicações e também inclui suporte para o novo NetBeans Profiler 5.5 para Solaris DTrace e, uma estrutura de rastreamento dinâmico abrangente que está incluído no sistema operacional Solaris 10. Além disso, o software Java SE 6 aumenta ainda mais a facilidade de desenvolvimento com atualizações de interface ferramenta para o Java Virtual Machine (JVM) e o Java Platform Debugger Architecture (ACDP).

Java 7[9] foi lançado no dia 28 de julho de 2011. Essa versão foi resultado do desenvolvimento de toda a indústria envolvendo uma revisão de codigo aberto e extensa colaboração entre os engenheiros da *Oracle* e membros do ecossistema Java em todo o mundo através da comunidade *OpenJDK* e do *Java Community Process* (JCP). Compatibilidade com versões anteriores de Java 7[9] com versões anteriores da plataforma a fim de preservar os conjuntos de habilidades dos desenvolvedores de software Java e proteger os investimentos em tecnologia Java.

Com essa versão novas funcionalidades foram adicionadas:

- As alterações de linguagem ajudaram a aumentar a produtividade do desenvolvedor e simplificar tarefas comuns de programação, reduzindo a quantidade de código necessário, esclarecendo sintaxe e tornar o código com mais legibilidade.
- Melhor suporte para linguagens dinâmicas incluindo: Ruby, Python e JavaScript, resultando em aumentos substanciais de desempenho no JVM.
- Uma nova API *multicore-ready* que permite aos desenvolvedores para se decompor mais facilmente problemas em tarefas que podem ser executadas em paralelo em números arbitrários de núcleos de processador.
- Uma interface de I/O abrangente para trabalhar com sistemas de arquivos que podem acessar uma ampla gama de atributos de arquivos e oferecem mais informações quando ocorrem erros.
- Novos recursos de rede e de segurança. Suporte expandido para a internacionalização, incluindo suporte a Unicode 6.0. Versões atualizadas das bibliotecas padrão.

Com o lançamento do Java SE 8 em 18 de Março de 2014, permitiu uma maior produtividade e desenvolvimento de aplicativos significativos aumentos de desempenho através da redução de linhas de código, *collectons* melhoradas, modelos mais simples de programação paralela e uso mais eficiente de processadores multi-core modernos. As principais

características do JDK 8 são o Projeto Lambda, Nashorn JavaScript Engine, um conjunto de perfis compactas e a remoção da "geração permanente"do HotSpot Java Virtual Machine (JVM). A JDK 8 alcançou desempenho recorde mundial para 4 sistemas de soquete em servidores baseados em Intel e NEC por 2 sistemas de soquete em servidores SPARC da Oracle T5, com uma melhoria de desempenho de 12% para 41% em comparação com o JDK 7 na mesma configuração de Oracle.

O JDK 8 adicionou novas funcionalidades como:

- As expressões lambda são suportados pelas seguintes características: As referências a metodos são compactos, maior legibilidade expressões lambda para métodos que já têm um nome. Métodos padrão que permitem adicionar novas funcionalidades para as interfaces de suas bibliotecas e assegurar a compatibilidade binária com o código escrito para versões mais antigas dessas interfaces. Eles são os métodos de interface que têm uma aplicação e a palavra-chave padrão no início da assinatura do método. Além disso, pode-se definir métodos estáticos em interfaces. Novos e aprimorados APIs que se aproveitam de expressões lambda e dos streams em Java 8 descrevem as classes novos e aprimorados que se aproveitam de expressões lambda e streams.
- O compilador Java aproveita digitação alvo para inferir os parâmetros de tipo de um método de invocação genérica. O tipo de destino de uma expressão é o tipo de dados que o compilador Java espera, dependendo de onde a expressão aparece. Por exemplo, você pode usar o tipo de destino de uma instrução de atribuição para o tipo de inferência em Java 7. No entanto, em Java 8, você pode usar o tipo de destino para a inferência de tipos em mais contextos.
- Anotações sobre tipos Java. Agora é possível aplicar uma anotação em qualquer lugar onde um tipo é usado. Utilizado em um conjunto com um sistema de tipo de conector, isso permite a verificação de tipo mais forte de seu código.
- Repetindo Anotações. Agora é possível aplicar o mesmo tipo de anotação mais de uma vez para a mesma declaração ou o tipo de utilização.

2.3 Aspectos evolutivos da liguagem Java

2.3.1 Java 2

A primeira versão do Java Security, disponível no JDK 1.1[7], contém um subconjunto dessa funcionalidade, incluindo APIs para:

- Assinaturas Digitais: Algoritmos de assinatura digital, como DSA ou MD5 com RSA. A funcionalidade inclui a geração de chaves público/privado , bem como assinatura e verificação de dados digitais.
- Gerenciamento de Chaves: Um conjunto de abstrações para o gerenciamento de "diretores" (entidades como usuários individuais ou grupos), suas chaves, e os seus certificados. Ele permite que aplicativos para projetar seu próprio sistema de gerenciamento de chaves, e para interoperar com outros sistemas em alto nível.
- Lista de controle de acesso: Um conjunto de abstrações para o gerenciamento de "diretores" e suas permissões de acesso.
- A obtenção de um objeto de assinatura:

```
import java.security.Signature;
import java.security.NoSuchAlgorithmException;

public class SignFile {
    Signature signature;

    private void init(String algorithm) throws NoSuchAlgorithmException{
        signature = Signature.getSignature(algorithm);
    }
}
```

• Em versões anteriores, Java suportava apenas top-level classes, que devem ser membros de pacotes. Na versão 1.1, o programador Java pode agora definir classes internas como membros de outras classes[1], localmente dentro de um bloco de instruções, ou (anonimamente) dentro de uma expressão.

```
public class FixedStack {
    ...
    public java.util.Enumeration elements() {
        return new FixedStack$Enumerator(this);
    }
}
class FixedStack$Enumerator implements java.util.Enumeration {
    private FixedStack this$0;

FixedStack$Enumerator(FixedStack this$0) {
        this.this$0 = this$0;
        this.count = this$0.top;
}
```

```
int count;
public boolean hasMoreElements() {
   return count > 0;
}

public Object nextElement() {
   if (count == 0)
       throw new NoSuchElementException("FixedStack");
   return this$0.array[--count];
}
```

• Para escrever um objeto remoto (RMI), você escrever uma classe que implementa uma ou mais interfaces remotas.

```
package examples.hello;
public interface Hello extends java.rmi.Remote {
   String sayHello() throws java.rmi.RemoteException;
}
```

• HelloImpl.java

```
package examples.hello;
import java.rmi.;
import java.rmi.server.UnicastRemoteObject;
public class HelloImpl extends UnicastRemoteObject implements Hello{
  private String name;
  public HelloImpl(String s) throws RemoteException {
     super();
     name = s;
  }
  public String sayHello() throws RemoteException {
     return "Hello World!";
  }
  public static void main(String args[]){
     System.setSecurityManager(new RMISecurityManager());
     try {
        HelloImpl obj = new HelloImpl("HelloServer");
        Naming.rebind("//myhost/HelloServer", obj);
        System.out.println("HelloServer bound in registry");
     } catch (Exception e) {
        System.out.println("HelloImpl err: " + e.getMessage());
        e.printStackTrace();
     }
  }
}
```

2.3.2 Java 4

• Assertion Facility [8]. As assertions são expressões booleanas que o programador acredita ser verdade sobre o estado de um programa de computador. Por exemplo, depois de ordenar uma lista o programador pode afirmar que a lista está em ordem crescente. Avaliando as afirmações em tempo de execução para confirmar a sua validade é uma das ferramentas mais poderosas para melhorar a qualidade do código, uma vez que rapidamente se descobre equívocos do programador sobre o comportamento de um programa.

2.3.3 Java 5

• Generics[8][11][13]. Este novo recurso para o sistema de tipo permite que um tipo ou método operar em objetos de vários tipos, proporcionando em tempo de compilação tipo de segurança. Acrescenta em tempo de compilação um tipo de segurança para as collections e elimina o trabalho penoso de casting. Um exemplo do uso de colletions e generics respectivamente:

```
static void expurgate(Collection c) {
  for (Iterator i = c.iterator(); i.hasNext(); )
    if (((String) i.next()).length() == 4)
        i.remove();
  }

static void expurgate(Collection<String> c) {
  for (Iterator<String> i = c.iterator(); i.hasNext(); )
    if (i.next().length() == 4)
        i.remove();
}
```

• For-Each Loop. Esta nova estrutura de linguagem elimina o trabalho e erro de propensão de iteradores e variáveis de índice quando a iteração ocorre sobre coleções e arrays. Como a construção evoluiu com o advento dessa nova estrutura:

```
void cancelAll(Collection<TimerTask> c) {
  for (Iterator<TimerTask> i = c.iterator(); i.hasNext(); )
        i.next().cancel();
}

void cancelAll(Collection<TimerTask> c) {
  for (TimerTask t : c)
        t.cancel();
}
```

• Varargs. Esta nova estrutura tende a eliminar a necessidade de passagem manual de listas de argumentos em um array ao invocar métodos que aceitam de um comprimento variável de uma lista de argumentos. Nas versões anteriores, um método levava um número arbitrário de valores necessários a criar uma matriz e colocar os valores para a matriz antes de chamar o método.

```
public class Test {
  public static void main(String[] args) {
    int passed = 0;
    int failed = 0;
    for (String className : args) {
        try {
            Class c = Class.forName(className);
            c.getMethod("test").invoke(c.newInstance());
            passed++;
        } catch (Exception ex) {
            System.out.printf("%s failed: %s%n", className, ex);
            failed++;
        }
    }
    System.out.printf("passed=%d; failed=%d%n", passed, failed);
  }
}
```

• Autoboxing/Unboxing. Esta nova estrutura elimina o trabalho de conversão manual entre tipos primitivos (como int) e os tipos de classes wrapper

2.3.4 Java 6

Não ocorreu mudanças ou introdução de novas estruturas na linguagem Java 8.

2.3.5 Java 7

• Multi Catch e lançamento de exceções com melhora na verificação de tipos. Um único bloco catch poderá lidar com mais de um tipo de exceção. Além disso, o compilador executa a análise mais precisa das exceções. Isso permite que o programador especifique tipos de exceção mais específicos na cláusula de uma declaração método. Um exemplo de como era as estruturas que usavam cacths e com a introdução de multi cacth com o Java 7[10], respectivamente.

```
catch (IOException ex) {
  logger.log(ex);
  throw ex;
}catch (SQLException ex) {
  logger.log(ex);
  throw ex;
}
```

```
catch (IOException|SQLException ex) {
  logger.log(ex);
  throw ex;
}
```

• O try-with-resouces. A declaração try-with-resouces é uma instrução try que declara um ou mais recursos. Um recurso é um objeto que deve ser fechada após o programa terminar com ele. Essa declaração garante que cada recurso é fechada no final da declaração.

```
public static void writeToFileZipFileContents(
        String zipFileName, String outputFileName) throws
            java.io.IOException {
  java.nio.charset.Charset charset =
      java.nio.charset.StandardCharsets.US_ASCII;
  java.nio.file.Path outputFilePath =
      java.nio.file.Paths.get(outputFileName);
  try(
      java.util.zip.ZipFile zf = new java.util.zip.ZipFile(zipFileName);
      java.io.BufferedWriter writer =
          java.nio.file.Files.newBufferedWriter(outputFilePath, charset)
  }{
     for (java.util.Enumeration entries = zf.entries();
         entries.hasMoreElements();) {
         String newLine = System.getProperty("line.separator");
         String zipEntryName =
             ((java.util.zip.ZipEntry)entries.nextElement()).getName() +
            newLine;
         writer.write(zipEntryName, 0, zipEntryName.length());
      }
  }
}
```

• Inferência de tipos para criação de instâncias em generics[11][2][13]. Com o Java 7 pode-se substituir os argumentos de tipo necessários para invocar o construtor de uma classe genérica com um conjunto vazio de parâmetros de tipo (<>), desde que o compilador infira os argumentos de tipo a partir do contexto. Este par de colchetes angulares é informalmente chamado de diamante.

2.3.6 Java 8

• Melhoria na inferência de tipos. O compilador Java aproveita digitação para inferir os parâmetros de tipo de uma invocação de método genérica. O tipo de destino de uma expressão é o tipo de dados que o compilador Java espera, dependendo de onde a expressão aparece. Por exemplo, pode-se usar o tipo de destino de uma instrução de atribuição para o tipo de inferência em Java 7. No entanto, em Java 8, pode-se usar o tipo de destino para a inferência de tipos em mais contextos. O exemplo mais proeminente está usando tipos de destino de um método de invocação para inferir os tipos de dados dos seus argumentos.

```
List<String> stringList = new ArrayList<>();
stringList.add("A");
stringList.addAll(Arrays.asList());
```

• Expressões lambda. Permitem encapsular uma única unidade de comportamento e passá-lo para outro código. Pode-se usar uma expressãos lambda, se quiser uma determinada ação executada em cada elemento de uma *collection*, quando o processo for concluído, ou quando um processo encontra um erro. [10]

```
public class Calculator {
   interface IntegerMath {
     int operation(int a, int b);
   }
   public int operateBinary(int a, int b, IntegerMath op) {
      return op.operation(a, b);
   }
   public static void main(String... args) {
      Calculator myApp = new Calculator();
      IntegerMath addition = (a, b) -> a + b;
      IntegerMath subtraction = (a, b) -> a - b;
      System.out.println("40 + 2 = " + myApp.operateBinary(40, 2, addition));
      System.out.println("20 - 10 = " + myApp.operateBinary(20, 10, subtraction));
   }
}
```

Capítulo 3

Análise estática

A análise estática é um termo que refere-se a qualquer processo de análise de código sem executá-lo, porém deve ser determinado previamente o que ou qual comportamento de código deseja-se obter. Essa estratégia de análise possibilita uma faixa maior de oportunidades para verificação de estruturas e também ainda é possível pesquisar por comportamentos através de uso de frameworks ou tradicionais ferramentas usadas para este propósito. Para essa checagem não é relevante considerar erros ou não no programa, pois analisador verifica somente estruturas, comportamentos e suas devidas variações previamente determinadas.

3.1 Checagem de tipo

A checagem de tipos é a forma mais utilizada de análise estática, e aquela que a maioria dos programadores estão familiarizados. As regras do "jogo"são tipicamente definida pela linguagem de programação e executadas pelo compilador, portanto, um programador que obtiver pouco a dizer quando a análise é executada ou como a análise funciona. Verificação de tipo elimina categorias inteiras de erros de programação. Por exemplo, ele impede programadores de atribuição acidentalmente valores integrais de oposição variáveis. Pela captura de erros em tempo de compilação, verificação de tipo de tempo de execução e impede erros. Verificação de tipo é limitado em sua capacidade de detectar erros, porém, sofre com falsos positivos e falsos negativos como todas as outras formas de análise estática. Curiosamente, os programadores raramente reclamar sobre uma escreva imperfeições do verificador. As demonstrações de Java no exemplo não vai compilar porque nunca é legal para atribuir uma expressão do tipo int para uma variável do tipo short, mesmo que a intenção do programador é inequívoca. A checagem de tipo sofre de falsos negativos também. Um exemplo de Java será quando o programa passará a verificação de tipo e compilar sem problemas, mas será falhar em tempo de execução. Arrays em Java são covariante, o que significa que o verificador de tipos permite uma variável de matriz de objeto para manter uma referência a uma matriz String (porque a classe String é derivado da classe de objecto), mas no tempo de execução Java não vai permitir que a matriz String para conter uma referência a um objeto do tipo Objeto.

Um falso positivo de verificação de tipo: Estas declarações Java não satisfazem tipo regras de segurança, embora sejam logicamente correta.

3.2 Checagem de estilo

Verificadores de estilo também são ferramentas de análise estática. Eles geralmente impor um pickier e um conjunto de regras mais superficial do que um verificador de tipos. Verificadores puro estilo fazem cumprir as regras relacionadas com espaços em branco, nomeação, funções obsoletas, comentando, estrutura de programa, e semelhantes. Como muitos programadores estão ferozmente anexado a sua própria versão de um bom estilo, a maioria dos verificadores de estilo são bastante flexível sobre o conjunto de regras que impõem. Os erros produzidos pela verificadores estilo muitas vezes podem afetar a legibilidade e a manutenção do código, mas não indicam que um erro particular irá ocorrer quando o programa rodam. Com o tempo, alguns compiladores têm implementado verificações de estilo opcionais. Por exemplo, bandeira do gcc: -Wall fará com que o compilador para detectar quando um switch não leva em conta todos os valores possíveis de um enum escrito. Exemplo 2.4 mostra uma função C com uma instrução switch suspeito. Exemplo

3.3 Entendimento do código

Ferramentas do programa compreensão ajudam os programadores a entender o sentido do programa de uma grande base de código. Os ambientes de desenvolvimento integrado (IDEs) incluem pelo menos algumas funcionalidade compreensão programa. Exemplos simples incluem "encontrar tudo utiliza desse método "e/ou "encontrar a declaração dessa variável global". Uma análise mais avançada pode suportar funcionalidades automáticas programa de refatoração, como renomear variáveis ou dividir uma única função em múltiplos funções. De nível superior ferramentas compreensão programa de tentar ajudar os programadores ter uma visão sobre a forma como um programa funciona. Alguns tentam fazer engenharia reversa informações sobre a concepção do programa com base em uma análise da implementação, dando assim o programador uma visão abrangente do programa. Isto é particularmente útil para programadores que precisam entender o programa fora de um grande corpo de código que eles não escreveram.

3.4 Verificação de programa

A verificação de programa é uma ferramenta que aceita uma especificação e um corpo de código e em seguida, as tentativas para demonstrar que o código é implementado fielmente com a especificação. A especificação é uma descrição completa de tudo o programa deveria fazer, a ferramenta de verificação de programa pode realizar equivalência verificar se o código e a especificação corresponder exatamente. Mais comumente as ferramentas de verificação de software contra um especificação parcial que detalha apenas uma parte do comportamento de um programa. Este esforço, por vezes, passa a verificação de propriedade de nome. A maioria das ferramentas de verificação tendem a trabalhar na aplicação de inferência lógica ou realizando verificação de modelos. Muitas ferramentas de verificação de propriedade concentram-se em propriedades de segurança temporais. A propriedade de segurança temporais especifica uma seqüência ordenada de eventos que um programa que não deve ser realizada. Um exemplo de uma propriedade de segurança temporal é. Um local de memória não deve ser lido depois de ser libertado. "A maioria das ferramentas permitem aos programadores escrever suas próprias especificações para verificar as propriedades específicas do programa.

3.5 Verificação de propriedade

Uma ferramenta de verificação propriedade é dito ser de som com respeito à especificação se ele vai sempre relatar um problema se houver. Em outras palavras, a ferramenta nunca vai sofrer um falso negativo. A maioria das ferramentas que afirmam ser de som exigir que o programa que está sendo avaliado cumprir determinadas condições. Alguns

não permitem ponteiros de função, enquanto outros não permitir recursão ou assumir que dois ponteiros nunca de alias (aponte para o mesmo local de memória). Para grandes quantidades de código, é quase impossível de satisfazer as condições estipuladas pela ferramenta, de modo a garantia de solidez não é significativo. Por esta razão, a solidez é raramente uma exigência do ponto de vista de um praticante. Em busca da solidez ou por causa de outras complicações, uma propriedade de verificação ferramenta pode produzir falsos positivos. No caso de um falso positivo, o contra-exemplo irá conter um ou mais eventos que não podia realmente ter lugar. Um exemplo é uma fuga de memória. O verificador de propriedade deu errado; ele não entende que, ao retornar NULL, malloc () é indicando que não há memória foi alocada. Isso pode indicar um problema com a forma como a propriedade for especificado, ou poderia ser um problema com o modo como o verificador propriedade funciona.

Referências

- [1] Gilad Bracha, Martin Odersky, and David Stoutamire. Gj: Extending the javatm programming language with type parameters. 10
- [2] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future safe for the past: Adding genericity to the java programming language. SIG-PLAN Not., 33(10):183–200, October 1998. 7, 16
- [3] Noam Chomsky. Three models for the description of language. *Information Theory*, *IRE Transactions on*, 2(3):113–124, 1956. 2
- [4] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N Nguyen. A large-scale empirical study of java language feature usage. 2013. 1, 2
- [5] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. Mining billions of ast nodes to study actual and potential usage of java language features. In *Proceedings of the 36th International Conference on Software Engineering*, ICSE 2014, pages 779–790, New York, NY, USA, 2014. ACM. 2
- [6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. *Design Patterns: Elements of Reusable Object-oriented Software*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995. 1
- [7] Sun Microsystems. Jdk 1.1 new feature summary @ONLINE, May 2015. 5, 10
- [8] Oracle. Enhancements in java se 8 @ONLINE, May 2015. 13, 14
- [9] Oracle. Java se 7 advanced and java se 7 support @ONLINE, May 2015. 8
- [10] Oracle. Java se 7 features and enhancements @ONLINE, May 2015. 14, 16
- [11] Oracle. The java tutorials @ONLINE, May 2015. 7, 13, 16
- [12] Jeffrey L. Overbey and Ralph E. Johnson. Regrowing a language: Refactoring tools allow programming languages to evolve. SIGPLAN Not., 44(10):493–502, October 2009. 1, 2, 4
- [13] Chris Parnin, Christian Bird, and Emerson Murphy-Hill. Java generics adoption: How new features are introduced, championed, or ignored. In *Proceedings of the 8th Working Conference on Mining Software Repositories*, MSR '11, pages 3–12, New York, NY, USA, 2011. ACM. 13, 16