1. Data processing:

首先使用 pandas 讀取 csv 資料集,會發現有部分欄位為 ID 等不重複資料,因此必須先將其丢棄

data = raw_data.drop(["10", "Flow.10", "Timestamp"], axis=1) data / OSs												
	Source.IP	Source.Port	Destination.IP	Destination.Port	Protocol	Flow.Duration	Total.Fwd.Packets	Total.Backward.Packets	Total.Length.of.Fwd.Packets	Total.Length.of.Bwd.Packets		
	10.200.7.196	39485	172.217.29.66	443		2021337			795	625		
	10.200.7.196	43024	179.1.4.244	443		65552				5252		
	10.200.7.196	43031	179.1.4.244	443		107032				10784		
	10.200.7.196	43064	179.1.4.244	443		75351				10784		
	10.200.7.196	43076	179.1.4.244	443		65862				11396		
312	10.200.7.7	59979	172.16.255.183			119040676	2146	2138	80152	234873		
313	10.200.7.7	59979	172.16.255.183			31408313	647	642	24421	65673		
314	10.200.7.9	48859	172.16.255.200			76350907			180			
315	10.200.7.9	48859	172.16.255.200			13621158			180			
316	10.200.7.9	48859	172.16.255.200			104320155			180			
317 rows × 83 columns												

2. Data visualization:

這裡選用一些比較顯著的特徵來視覺化

從 Flow Duration 可以看出,絕大部分的 Flow 時間佔用都是比較少的,而從 average packet size 也可以看到,絕大多數的封包都小於 250bytes

從 Destination Port 這邊則可以看出,大部分的 Flow 也都集中在特定的幾個 Port 上。並從 value_counts 函數可以看出,這些 Flow 主要的 port 如下:

```
display(data["Destination.Port"].value_counts())

√ 0.2s

Output exceeds the size limit. Open the full output data in a text editor
         1631
53
         1593
443
          812
123
          135
51242
           40
57429
           20
59979
           18
48859
            8
3128
54944
52931
            4
46237
            3
```

另外,就 Protocol 來統計則有以下結果

最後將所有 numerical attribute 正規化並將 nominal attribute 做 one-hot-encoding 後,使用 PCA 分析,將維度降至二維後比較 cluster.csv 中的正確答案可以得到下圖:

因此可以看出,此問題是可以被妥善分群的。

3. Feature engineering

在前面讀取資料時有發現到,有部分的 attribute 對於整個資料集的數據都相同,因此將有符合此特性的欄位皆刪除。留下共 70 個欄位。

	<pre>for header in data.columns: if len(data[header].value_counts()) == 1:</pre>												
✓ 0.5													
	Source.IP	Source.Port	Destination.IP	Destination.Port	Protocol	Flow.Duration	Total.Fwd.Packets	Total.Backward.Packets	Total.Length.of.Fwd.Packets	Total.Length.of.Bwd.Packets			
	10.200.7.196	39485	172.217.29.66	443		2021337			795	625			
	10.200.7.196	43024	179.1.4.244	443		65552	14			5252			
	10.200.7.196	43031	179.1.4.244	443		107032	14		373	10784			
	10.200.7.196	43064	179.1.4.244	443		75351	14			10784			
	10.200.7.196	43076	179.1.4.244	443		65862			373	11396			
4312	10.200.7.7	59979	172.16.255.183			119040676	2146	2138	80152	234873			
4313	10.200.7.7	59979	172.16.255.183			31408313	647	642	24421	65673			
4314	10.200.7.9	48859	172.16.255.200			76350907			180				
4315	10.200.7.9	48859	172.16.255.200			13621158			180				
4316	10.200.7.9	48859	172.16.255.200			104320155			180				
4317 ro	ws × 70 colum	ns											

移除 IP、Label 等跟分群無關的資料後,對所有非數值資料做 one-hot-encding,目前共有 1177 個欄位。

接著對丢棄所有非數值資料做 Min Max Scaling,方便後面分群的距離計算

將以上正規化後的數值欄位及 one hot encoding 完的非數值欄位合併,即得到能夠直接分群用的 資料集

同時匯入 cluster.csv 作為參考

```
ans = pd.read_csv("dataset/cluster.csv")

√ 0.2s

           ID Cluster
                   0
          6460
          6578
          7683
 4312 3572701
 4313 3572728
 4314 3573244
 4315 3573361
 4316 3573425
4317 rows × 2 columns
   ans["Cluster"].value_counts()
     1695
     1631
     856
      135
Name: Cluster, dtype: int64
```

這裡使用 Iterative feature selection,每次加入一個特徵,並重新測量分群的準確度。最後得出使用 14 個欄位即可達到 91%的準確度。

```
from sklearn.cluster import KMeans
    from sklearn.metrics import adjusted_mutual_info_score
    from random import sample
    accu = 0
    best_list = []
    best_score = []
    for i in range(5):
        print(f"round {i}")
        selected = []
        columns = list(tf_data.columns.copy())
        columns = sample(columns, k=len(columns))
        for c in columns:
            selected.append(c)
            y_pred = KMeans(n_clusters=4).fit_predict(tf_data[selected])
            score = adjusted_mutual_info_score(ans["Cluster"], y_pred)
            if score > accu:
                accu = score
                print(accu)
                selected.remove(c)
        best_list.append(selected)
        best_score.append(score)
    display(accu)

√ 1m 28.6s

0.9182928870828644
```

```
display(best_list)
 ✓ 0.2s
[['Source.Port_59979',
  'Source.Port_50508',
  'Source.Port 39088',
  'Source.Port_35316',
  'Source.Port 39285',
  'Bwd.IAT.Max',
  'Source.Port 53534',
  'min seg size forward',
  'Source.Port_38934',
  'Bwd.Packet.Length.Min',
  'Source.Port 50670',
  'Destination.Port 443',
  'Source.Port 0',
  'Destination.Port 53'],
 [],
 [],
[],
[]]
```

4. Clustering:

先定義好用來繪製分群結果的函數

```
def draw_cluster(df: pd.DataFrame):
    lookup = {}
    for i in range(df.shape[0]):
        if lookup.get(df["cluster"][i]) is None:
            lookup[df["cluster"][i]] = [(df["x"][i], df["y"][i])]
        else:
            lookup[df["cluster"][i]].append((df["x"][i], df["y"][i]))
        for c, data in lookup.items():
            tmp = pd.DataFrame(data, columns=["x", "y"])
            plt.scatter(tmp["x"], tmp["y"], s=1)
```

A. KMeans

分群結果及視覺化

B. Gaussian Mixture

分析結果與視覺化

C. DBSCAN

分析結果與視覺化

可以看到,DBSCAN 由於不須指定 n_cluster,會有多分群的狀況,造成結果不盡理想,在稍後會繼續做參數調整。

5. Parameter adjustment

這裡直接調整 DBSCAN 的參數,定義 eps 介於[0.1, 2.0], min_samples [2, 10]

```
grid search

import numpy as np
# (eps, min_sample)
grid = [(a, b) for b in range(2, 11, 1) for a in np.arange(0.1, 2.1, 0.1)]
best = {"score": 0, "param": tuple()}
for p in grid:
    dbscan = DBSCAN(eps=p[0], min_samples=p[1])
    y_pred = dbscan.fit_predict(tf_data[selected])
    score = adjusted_mutual_info_score(ans["Cluster"], y_pred)
    if score > best["score"]:
        best["score"] = score
        best["param"] = p

print(best["score"])
    ✓ 43.5s

0.8518808915524809
```

搜尋最佳結果為 0.85, 參數為 eps=0.7, min samples=4

DBSCAN 的 eps 參數為資料點間的距離 Threshold, 因此若 eps 太小時,可能會造成分出的群數太多,出現分數較低的狀況。

6. 分群視覺化

這裡直接比較三種分群方法及原本的資料

7. By domain knowledge

以 Flow 的分群來說,一般我們會最注重協定本身,這裡的協定泛指傳輸層協定及應用層協定。因為此資料集沒有提供應用層協定的資訊,所以這裡直接使用 Source.Port 及 Destination.Port 來判斷。

因此共有 3 種 attribute 可以使用,做完 one-hot-encoding 共 923 個欄位,並取得分群結果如下:

可以看到,直接以這三個 attribute 做分析即可得到 0.99 的分數,視覺化的結果也與原本的分群幾乎無異。

8. 結論與討論:

在這次的實驗中,我們發現:與分類一樣,分群依賴著大量的資料前處理過程,甚至因為沒有 Label 的關係,造成 Feature selection 的階段更難取得我們想要的特徵,這時如果就直接將所有資料丢到分群演算法中進行分群,就會造成不重要的特徵去影響重要的特徵,進而造成分群結果不 理想。

由前面的 Feature selection 階段可以發現,在這次的分群的資料集中,只需要極少的特徵就可以達成較高的分群準度,並在後面的 Domain knowledge 階段發現,直接使用 Protocol, Source Port, Destination Port 就可以達到 99%的準度,説明了如果有 Domain knowledge 的幫助,可以更加方便的直接以人工提取 feature,並達到較高的準確度。