1.14 Theorem. Let $a, b, c, d, n \in \mathbb{Z}$ with n > 0. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.

Proof. Let $a, b, c, d, n \in \mathbb{Z}$ with n > 0 be given such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. By definition, $n \mid (a - b)$ and $n \mid (c - d)$. We may choose $t, u \in \mathbb{Z}$ such that a - b = nt and c - d = nu. Using algebra, a = nt + b and c = nu + d. Multiplying both equations

$$ac = (nt + b)(nu + d)$$

$$= ntnu + ntd + bnu + bd$$

$$= n(tnu + td + bu) + bd.$$

By CPI, we may choose $z \in \mathbb{Z}$ such that tnu + td + bu = z. Using algebra, ac = nz + bd, and consequently ac - bd = nz. By definition, $n \mid [(ac) - (bd)]$. Therefore, $ac \equiv bd \pmod{n}$.