ARL 67-0017 JANUARY 1967

四十?

00

Fid

63

10

Aerospace Research Laboratories

SPECIFIC HEAT RATIOS AND ISENTROPIC EXPONENTS FOR CONSTANT-VOLUME COMBUSTION OF STOICHIOMETRIC MIXTURES OF HYDROGEN-OXYGEN DILUTED WITH HELIUM HYDROGEN

ANDRÉ BENOIT UNIVERSITY OF TORONTO TORONTO, CANADA

Contract No. AF 33(615)-2766 Project No. 7065

Distribution of this document is unlimited

OFFICE OF AEROSPACE RESEARCH
United States Air Force

ARCHIVE GOPY

SPECIFIC HEAT RATIOS AND ISENTROPIC EXPONENTS FOR CONSTANT-VOLUME COMBUSTION OF STOICHIOMETRIC MIXTURES OF HYDROGEN-OXYGEN DILUTED WITH HELIUM HYDROGEN

ANDRÉ BENOIT

INSTITUTE FOR AEROSPACE STUDIES
UNIVERSITY OF TORONTO
TORONTO, CANADA

JANUARY 1967

Contract No. AF 33(615)-2766 Project No. 7065

Distribution of this document is unlimited

AEROSPACE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

FOREWORD

This interim technical report was prepared by Andre Benoit,
University of Toronto, Canada on Contract AF33(615)-2766 for
the Aerospace Research Laboratories, Office of Aerospace
Research, United States Air Force. The research reported
herein was accomplished on Task 7065-0015, "Fluid Dynamics
Facilities Research" of Project 7065, "Aerospace Simulation
Techniques Research" under the technical cognizance of
Mr. John Goresh of the Fluid Dynamics Facilities Research
Laboratory of ARL.

The author wishes to express his thanks to Dr. G. N. Patterson for the opportunity to complete this work.

He is also grateful to Dr. I. I. Glass who suggested the study reported herein, and to Professor J. Meinguet for the opportunity to perform the numerical calculations at the "Centre de Calcul Numerique" of the University of Louvain.

ABSTRACT

This note is complementary to UTIAS Technical Note No. 85, "Thermodynamic and Composition Data for Constant-Volume Combustion of Stoichiometric Mixtures of Hydrogen-Oxygen Diluted with Helium or Hydrogen", by A. Benoit. It includes the calculation of the equilibrium specific heats, the equilibrium specific heat ratios, the isentropic exponents, and the corresponding values of the speeds of sound. For convenience, the final-to-initial temperature ratio and the final-to-initial pressure ratio have also been included in the present tables. The results are presented for helium and hydrogen dilution respectively.

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
2	BASIC EQUATIONS	1
3.	METHOD OF SOLUTION	2
4.	RESULTS	5
5.	CONCLUSIONS	7
6	REFERENCES	9
	TABLES	10
	FIGURES	16

LIST OF TABLES

		Page
TABI	<u>LE</u>	
1	SPECIFIC HEAT RATIOS, ISENTROPIC EXPONENTS AND SOUND SPEEDS FOR CONSTANT VOLUME COMBUSTION OF STOICHIOMETRIC OXYGEN-HYDROGEN MIXTURES WITH HELIUM DILUTION	11
2	SPECIFIC HEAT RATIOS, ISENTROPIC EXPONENTS AND SOUND SPEEDS FOR CONSTANT VOLUME COMBUSTION OF STOICHIOMETRIC OXYGEN-HYDROGEN MIXTURES WITH HYDROGEN DILUTION	14

LIST OF FIGURES

FIGUR	<u>E</u>	PAGE
1.	Molar specific heats versus dilution for helium dilution.	16
2.	Molar specific heats versus dilution for hydrogen dilution.	17
3.	Specific heat ratios and isentropic exponent versus dilution for helium dilution.	18
4.	Specific heat ratios and isentropic exponent versus dilution for hydrogen dilution.	19
5.	Speed of sound versus dilution for helium dilution.	20
6.	Speed of sound versus dilution for hydrogen dilution.	21

NOTATION

a	equilibrium speed of sound (m sec-1)
a ₁	frozen speed of sound (m sec-1)
a*	fictitious speed of sound (m sec^{-1}) defined by (53) (*)
a _{ik}	coefficients appearing in the linearized system ((15) to (17)) and given by relations ((18) to (29)).
b _{ik}	coefficients appearing in the linearized system ((30) to (31)) and given by relations ((32) to (37))
B_k	functions of p and T defined by (9) and (10)
C_p	molar equilibrium specific heat at constant pressure (cal mole $^{-1}$ $^{\rm O}$ K $^{-1}$) defined by (42)
C_{p_1}	molar frozen specific heat at constant pressure (cal mole $^{-1}$ $^{\rm o}$ K $^{-1}$) defined by (40)
$c_{\mathbf{v}_1}$	molar frozen specific heat at constant volume (cal mole $^{-1}$ $^{\rm o}{\rm K}^{-1}$)
d	function of p and T defined by (39)
e	function of p and T defined by (36)
Н	molar enthalpy (cal mole $^{-1}$) including sensible enthalpy and chemical energy at $0^{\rm O}{\rm K}$ for gas state
K	equilibrium constant based on partial pressures for reaction of formation from elements in gas state. The subscripts, 1,2,3 and 4 referrespectively to the formation of $\rm H_2O$, OH, $\rm H_2$ and $\rm O_2$
m	number of moles of diluting hydrogen per mole of oxygen in reactants

^{(*) (53)} refers to equation (53) etc.

n	number of moles of helium per mole of oxygen in reactants
n _j	number of moles of species "j" in reaction products per mole of oxygen in reactants
n _i	total number of moles of reactants per mole of oxygen in reactants $(n_i = m + n + 3)$
$n_{\mathbf{f}}$	total number of moles of products per mole of oxygen in reactants $(n_f = \sum_{j=1}^{n} n_j)$
p	pressure of products of reaction (atm)
$p_{\mathbf{i}}$	pressure of reactants (atm)
R	universal gas constant (1.98718 cal mole ⁻¹ ^O K ⁻¹)
Ro	universal gas constant (8314. $m^2 sec^{-2} oK^{-1} gr$)
T	absolute temperature (^o K)
U	molar internal energy of reaction products (cal mole-1)
Ui	molar internal energy of reactants (cal mole ⁻¹)
Y	isentropic exponent defined by (44)
γ,	frozen specific heat ratio defined by (49)
8 *	equilibrium specific heat ratio defined by (47)
۲	molecular weight of products of reaction (gr. mole ⁻¹)
μ,	molecular weight of reactants (gr. mole ⁻¹)
ν	molar fraction of species "j" in products of reaction

Subscripts

i refers to the reactants

refers to species "j" according to the correspondence j

- for H₂O for OH 1
- 2
- for H₂ for O₂ for H 3
- 5
- for O 6
- for He

at constant pressure p

1 at constant entropy

at constant volume v

was to sing the

BLANK PAGE

1. INTRODUCTION

In order to complete the work on constant-volume combustion reported in Ref. 1, it was felt that the equilibrium quantities such as the specific heat, specific heat ratio, isentropic exponent and the equilibrium speed of sound should be computed and incorporated in the results. The same source of thermodynamic data was used (Ref. 2), but all the thermodynamic functions including the equilibrium constants were introduced in the program in the form of best-fitted analytical functions.

Instead of using the method of solution described previously (Ref. 1), the final thermodynamic conditions were obtained through an iteration procedure based on the linearization of the equations (Newton-Raphson iteration). This, at the same time, provided a verification of the results.

2. BASIC EQUATIONS

The general assumptions under which the calculations are performed have been described in Ref. 1.

The initial mixture

$$(2H_2 + O_2) + m H_2 + n He$$

at temperature T_i and the pressure p_i , is transformed to give, $n_1 H_2O + n_2 OH + n_3H_2 + n_4 O_2 + n_5 H + n_6 O + n_7 He at temperature T and pressure p. The symbols <math>H_2O$, OH, etc. represent one mole of H_2O , one mole of OH, etc. The equilibrium equations combined with the equations of conservation of mass of each chemical element yield the following equations:

$$B_{1} \sqrt{\frac{2}{5}} \sqrt{\frac{2}{6}} + B_{2} \sqrt{\frac{5}{5}} \sqrt{\frac{6}{6}} + B_{3} \sqrt{\frac{2}{5}} + B_{4} \sqrt{\frac{2}{6}} + V_{5} + V_{6} + \frac{n}{n_{f}} - 1 = 0$$
 (1)

$$2B_1 \mathcal{V}_5^2 \mathcal{V}_6 + B_2 \mathcal{V}_5 \mathcal{V}_6 + 2B_3 \mathcal{V}_5^2 + \mathcal{V}_5 - \frac{2(2+m)}{n_f} = 0$$
 (2)

$$E_1 \gamma_5^2 \gamma_6 + B_2 \gamma_5 \gamma_6 + 2B_4 \gamma_6^2 + \gamma_6 - \frac{2}{n_f} = 0$$
 (3)

and

$$\mathbf{y}_{1} = K_{1} \mathbf{y}_{5}^{2} \mathbf{y}_{6}^{2} \quad p^{2} \tag{4}$$

$$y_2 = K_2 y_5 y_6 p$$
 (5)

$$V_3 = K_3 V_5^2 p \tag{6}$$

$$\mathbf{V}_{4} = K_{4} \mathbf{V}_{6}^{2} \quad p \tag{7}$$

$$\mathbf{V}_7 = \frac{\mathbf{n}}{\mathbf{n}_{\mathbf{f}}} \tag{8}$$

from which the composition can be determined when the temperature and pressure are known. In these relations, the y's represent the molar concentrations, the K's are the equilibrium constants based on partial pressures and the subscripts of the K's refer to the following compounds:1 to $\rm H_2O$, 2 to OH, 3 to H₂ and 4 to O₂, The B's are written for: $B_1 = K_1 p^2$

$$B_1 = K_1 p^2 \tag{9}$$

$$B_{j} = K_{j}p \quad (j = 2, 3, 4)$$
 (10)

The two complementary equations required to determine the final pressure and temperature express the conservation of density and energy, i.e.,

$$\rho = \rho_{i} \tag{11}$$

or

$$\frac{p}{p_i} = \frac{T_{n_f}}{T_i n_i} \tag{12}$$

and

$$n_{\mathbf{f}}U = n_{\mathbf{i}}U_{\mathbf{i}} \tag{13}$$

or
$$n_f(H - RT) = n_i (H_i - RT_i)$$
 (14)

METHOD OF SOLUTION

Equations (1) to (3) are linearized to provide a system from which ν_5 , ν_6 and n_f^{-1} are determined for any set of values, p, T,

$$a_{11}\delta y_5 + a_{12}\delta y_6 + a_{13}\delta(\frac{1}{n_f}) = a_{10}$$
 (15)

$$a_{21} y_5 + a_{22} y_6 + a_{23} (\frac{1}{n_f}) = a_{20}$$
 (16)

$$a_{31}\delta y_5 + a_{32}\delta y_6 + a_{33}\delta (\frac{1}{n_f}) = a_{30}$$
 (17)

The coefficients $a_{\hat{i}\,\hat{j}}$ are readily obtained

$$a_{11} = 2B_1 \gamma_5 \gamma_6 + B_2 \gamma_6 + 2B_3 \gamma_5 + 1$$
 (18)

$$a_{12} = B_1 V_5^2 + B_2 V_5 + 2B_4 V_6 + 1$$
 (19)

$$a_{13} = n \tag{20}$$

$$a_{10} = -(B_1) \frac{2}{5} \frac{1}{6} + B_2 \frac{1}{5} \frac{1}{5} + B_3 \frac{1}{5} + B_4 \frac{1}{6} + B_5 \frac{1}{5} + \frac{n}{n_f} - 1$$
(21)

$$a_{21} = 4B_1 \gamma_5 \gamma_6 + B_2 \gamma_6 + 4B_3 \gamma_5 + 1$$
 (22)

$$a_{22} = 2B_1 V_5^2 + B_2 V_5$$
 (23)

$$a_{23} = -2 (2 + m)$$
 (24)

$$a_{20} = -(2B_1 V_5^2 V_6 + B_2 V_5 V_6 + 2B_3 V_5^2 + V_5 - \frac{2(2+m)}{n_f})$$
 (25)

$$a_{31} = 2B_1 V_5 V_6 + B_2 V_6$$
 (26)

$$a_{32} = B_1 V_5^2 + B_2 V_5 + 4B_4 V_6 + 1$$
 (27)

$$a_{33} = -2$$
 (28)

$$a_{30} = -(B_1 \gamma_5^2 \gamma_6 + B_2 \gamma_5 \gamma_6 + 2B_4 \gamma_6^2 + \gamma_6 - \frac{2}{n_f})$$
 (29)

The linearized forms of equations (8) and (10) will provide the means of computing the temperature and the pressure

$$b_{11} \int p + b_{12} \int T = b_{10}$$
 (30)

$$b_{21} \int p + b_{22} \int T = b_{20}$$
 (31)

with

$$b_{11} = \frac{1}{p_i} - \frac{T}{T_i n_i} \left(\frac{\partial^n f}{\partial p} \right)_T$$
 (32)

$$b_{12} = \frac{1}{T_{i}n_{i}} \left(n_{f} + T\left(\frac{\partial n_{f}}{\partial T}\right)_{p}\right) \tag{33}$$

$$b_{10} = \frac{p}{p_i} - \frac{Tn_f}{T_i n_i} \tag{34}$$

$$b_{21} = n_f e + (H-RT) \left(\frac{\partial^n f}{\partial p}\right)_T$$
 (35)

$$b_{22} = n_f (C_{p_1} + d - R) + (H - RT) \left(\frac{\lambda}{\lambda} \frac{n_f}{T} \right)_p$$
 (36)

$$b_{20} = n_f (H - RT) - n_i (H_i - RT_i)$$
 (37)

where

$$e = \sum_{j=1}^{7} \left(\frac{\partial V_j}{\partial P} \right)_{T} \cdot H_j (T)$$
 (38)

$$d = \underbrace{\begin{cases} 7 \\ j = 1 \end{cases}}_{p} \left(\underbrace{\frac{\partial \nu_{j}}{\partial T}}_{p} \right), \quad H_{j} (T)$$
(39)

and C_{p_1} is the molar frozen specific heat, i.e.

$$C_{p_1} = \underbrace{\xi}_{j=1}^{7} \quad \gamma \quad C_{pj}$$
 (40)

When the composition, the temperature and pressure have been determined, the following quantities are computed:

a) the molecular weight

$$\mathcal{P} = \sum_{j=1}^{7} \gamma_j \, \mathcal{P}_j \tag{41}$$

b) the molar equilibrium specific heat

$$C_{p} = \mathcal{N} \left(\frac{\partial h}{\partial T} \right)_{p} \tag{42}$$

$$= C_{p_1} + d - \frac{H}{T} \left(\frac{\partial \ln M}{\partial \ln T} \right)_{p}$$
 (43)

c) the isentropic exponent

$$= \left(\frac{\partial \ln P}{\partial \ln P} \right) a \tag{45}$$

$$= \left(\left(1 + \left(\frac{\partial \ln p}{\partial \ln p} \right)^{-1} - \frac{R}{C_p} \left(1 - \left(\frac{3 \ln p}{3 \ln T} \right)^{2} \right)^{-1} \right)$$
 (46)

d) the equilibrium specific heat ratio

$$\chi^* = \frac{C_p}{C_v} \tag{47}$$

$$= \chi(1 + \left(\frac{\partial \ln \mu}{\partial \ln p}\right)_{T}) \tag{48}$$

e) the frozen specific heat ratio

$$\mathbf{\chi}_{1} = \frac{\mathbf{C}_{\mathbf{p}_{1}}}{\mathbf{C}_{\mathbf{v}_{1}}} \tag{49}$$

$$= \frac{C_{p_1}}{C_{p_1}-R}$$
 (50)

f) the frozen speed of sound (a₁), the equilibrium speed of sound (a) and a fictitious speed of sound computed using the equilibrium specific heat ratio instead of the isentropic exponent.

$$a_1 = R_0^{1/2} \left(\frac{\chi_1 T}{P} \right)^{1/2}$$
 (51)

$$a = R_0^{1/2} \left(\frac{f}{\nu} \right)^{1/2}$$
 (52)

$$a^* = R_0^{1/2} \left(\frac{\chi T}{\nu} \right)^{1/2}$$
 (53)

where R is the universal gas constant for which the value 8314 m 2 sec $^{-2}$ oK $^{-1}$ gr. has been used.

4. RESULTS

Computations have been performed for the initial conditions

$$T_i = 298.15$$
 ^OK

$$p_i = 1.$$
; 5.; 10.; 30.; 50.; 100.; 300.; 500. atm.

and the dilutions

- 1) m=0 and n varying from 0 to 12 in steps of 0.5
- 2) n=0 and m varying from 0 to 7.5 in steps of 0.5

The results are given Tables 1. and 2. and some are presented graphically in Figures 1. to 6. Incidentally, the intermediate results, p, T, n_f/n_i , C_p , H_2O , OH,, constitutes a verification of the data tabulated in Ref. 1 (*). A comparison is illustrated for the case T_i = 298, 15 O K, p_i = 1 atm.,

m = n = 0. The agreement is excellent.

0. The agreement	is excellent.	
Quantity	This report	UTIAS T. N. NO. 85
p/p _i	9.611	9,611
T/T _i	11.750	11,750
n _f /n _i	0.818	0.818
س	14. 684	14. 684
8 1	1.214	1,214
C _{p1}	11.282	11.282
$v_{\mathrm{H_2O}}^{\mathrm{C_{p_1}}}$	0.5560	0, 5560
$\nu_{ m OH}$	0. 1268	0. 1268
V_{H_2}	0. 1577	0. 1577
ν _{O2}	0.0486	0.0486
ν _H	0.0758	0.0758
y _o	0.0351	0.0351

The effect of temperature on the composition (characterized by the partial derivatives of the molar fractions with respect to temperature) leads to values of the equilibrium specific heat (C_p) appreciably higher than the values obtained neglecting the variations of the composition (C_{p_1}). The difference between C_p and C_{p_1}

$$C_p - C_{p_1} = \underbrace{\begin{cases} 7 \\ j = 1 \end{cases}}_{j = 1} \left(\frac{\partial y_j}{\partial T} \right)_p H_j(T) - \frac{H}{T} \left(\frac{\partial \ln P}{\partial \ln T} \right)_p$$

(*) Note - In Ref. 1., The value used for R_0 was slightly larger than the accepted value, consequently all the values of a_f and a_i should be multiplied by the factor 0.9902 to obtain the correct values.

increases with decreasing initial pressure and decreases with increasing dilution. The initial pressure has a much stronger influence on C_p than on C_{p_1} . For m=n=0, C_p is approximately five times as large as C_{p_1} for $p_i=1$ atm, and about three times for $p_i=100$ atm., while the variation of C_{p_1} remains of the order of 12% (see Fig. 1 and 2).

The difference between the isentropic exponent (1) and the equilibrium specific ratio (1) is as large as 10% for a stoichiometric mixture of hydrogen-oxygen and an initial pressure of one atmosphere. This difference decreases rapidly with increasing dilution. Although the difference between C_p and C_{p_1} is found to be a maximum for the stoichiometric mixture, the values of the specific heat ratios Y^* and Y^* are rather close in the neighborhood of Y^* and Y^* are reaches a maximum for a value of the dilution index depending on the type of diluting gas and on the initial pressure. For instance, for hydrogen dilution and $P_i = 100$ atm., this maximum is close to $P_i = 100$ atm.

The various expressions for the speed of sound are represented in Fig. 5 for helium dilution and in Fig. 6 for hydrogen dilution. According to the definitions (51), (52) and (53), what has been said for the repeated for the sound speeds, (see Fig. 5 and 6).

5. CONCLUSIONS

The equilibrium specific heat ratio and the isentropic exponent have been computed for reaching gas mixtures composed of stoichiometric hydrogen-oxygen diluted with helium or hydrogen. The values of these quantities have been compared with the frozen specific heat ratio for initial pressures ranging from 1 to 500 atm. and diluting index ranging from 1 to 7.5 in the case of hydrogen dilution, and from 1 to 12 in the case of helium dilution. In each calculation the initial temperature was chosen equal to 298. 15°K, but the computer program does not include any such restriction.

Differences of the order of ten percent, were found between the isentropic exponent and the equilibrium specific heat ratio for initial pressure as high as one atmosphere. In both cases of helium and hydrogen dilutions, this difference was a maximum for the stoichiometric hydrogenoxygen mixture.

The difference between the equilibrium and frozen specific heat ratios, was a maximum for a dilution depending on the diluting gas and the initial pressure.

In the case of helium dilution, and p_i = 1. atm, this difference reaches about 15% for a dilution index n of the order of 5.5 (approximately 65% of helium per volume in the initial mixture). The different values of the speed of sound evaluated using the isentropic exponent, the equilibrium and frozen specific heat ratios have also been computed and compared.

REFERENCES

1.	Benoit, A.	Thermodynamic and Composition Data for Constant- Volume Combustion of Stoichiometric Mixtures of Hydrogen-Oxygen Diluted with Helium or Hydrogen. UTIAS Technical Note No. 85, November, 1964
2.	McBride, B. J. Heimel, S. Ehlers, J. G.	Thermodynamic Properties to 6000°K for 210 Substances Involving the 18 Elements. NASA SP-3001, July, 1963.

LIST OF TABLES

1. Helium dilution. (m = 0)

 $T_i = 298.15^{O}K$

 $p_i = 1.$; 5.; 10.; 30.; 50.; 100. atm. n = 0 to 12 in steps of 0.5

Hydrogen dilution. (n = 0)2.

 $T_i = 298.15^{O}K$ $p_i = 1. ; 5. ; 10. ; 30. ; 50. ; 100. atin.$

m = 0 to 7.5 in steps of 0.5

SYMBOLS USED IN TABLES 1 AND 2

Tables 1 and 2 are the direct outputs of the computer. The following symbols have been used:

> : p_i (atm) \mathbf{PI}

: T_i (OK) TI

N : n

M : m

: C_{p_1} (cal mole⁻¹) CP1

: C_p (cal mole⁻¹) CP

: **४** 1 **GAMI**

: **%** * GAM*

GAM

: a₁ (m sec⁻¹) **A** 1

: $a* (m sec^{-1})$ A*

: $a (m sec^{-1})$ Α

11- 20	10 15 Ma	•						TABL	8 1 - P	NGB 1
11= 29	98.15 M=	0•								
٧	P/PI	1/11	CP1	CP	GAM1	GAM#	GAM	A1	A *	A
0.	9.611	11.750	11.282	58.941	1.214	1.212	1.124	1551.7	1550.6	1493.2
0.5 1.0	9.641	11.531	10.280 9.556	48.795 41.473	1.240	1.200	1.131	1651.2 1735.3	1624.3 1686.4	1577.0
1.5	9.590	11.141	9.008	35.929	1.283	1.189	1.144	1807.0	1739.5	1706.2
2.0	9.533	10.962	8.578	31.559	1.301	1.188	1.151	1868.7	1785.4	1757.0
2.5	9.463	10.791	8.232	28.031	1.318	1.189	1.158	1922.1	1825.5	1801.2
3.0	9.385	10.676	7.947	25.115	1.773	1,191	1.165	1968.4	1860.7	1839.9
3.5	9.301	10.466	7.707	22.663	1.347	1.195	1-173	2008 · 8	1892.0	1874.1
4.0	9.211 9.117	10.309	7.503 7.327	20.578	1.360	1.200	1.181	2043.9	1920.0	1904.6
4.5 5.0	9.019	10.155	7.173	18.781 17.221	1.372	1.206 1.213	1.190 1.199	2074.5 2101.1	1945.1 1967.9	1931.9 1956. 5
5.5	8.919	9.853	7.037	15.857	1.394	1.221	1.209	2124.0	1988.5	1978.8
6.0	8.816	9.704	6.916	14.658	1.403	1.230	1.220	2 43.8	2007.4	1999.0
6.5	8.710	9.556	6.808	13.59B	1.412	1.240	1.231	2160.7	2024.8	2017.6
7.0	8.602	9.408	6.710	12.661	1.421	1.251	1.243	: 174.9	2040.7	2034.6
7.5	8.493	9.261	6.620	11.829	1.429	1.262	1.256	2186.8	2055.4	2050.2
8.0 8.5	8.381 8.268	9.115 8.969	6.539	11.088 10.431	1.437	1.275	1.269 1.283	2196.4 2204.1	2068.9 2081.3	2064.5 2077.6
9.0	8.154	8.823	6.395	9.846	1.451	1.301	1.297	2209.9	2092.7	2089.5
9.5	8.038	8.677	6.331	9.326	1.457	1.315	1.312	2214.0	2104.0	2100.4
10.0	7.922	8.533	6.272	8.865	1.464	1.329	1.327	2216.6	2112.3	2110.1
10.5	7.805	8.389	6.216	8.457	1.470	1.344	1.342	2217.7	2120.6	2118.7
11.0	7.688	8.246	6.164	8.096	1.476	1.358	1.356	2217.6	2127.7	2126.1
11.5	7.571	8.104	6.116	7.776	1.481	1.373	1.371	2216.3	2133.8	2132.5
12.0	7.454	7.964	6.070	7.495	1.487	1.387	1.386	2214.0	2138.8	2137.7
								TABLE :	L - PAGI	8 2
PI=	4.000									
TI= 29	8.15 M=	0•								
N	P/PI	1/11	CP1	CP	GAM1	GAM*	GAM	A1	A *	A
0.	10.146	12.713	11.68A	47.355	1.205	1.209	1.132	1588.4	1590.9	1539.9
0.5	10.188	12.436	10.594	39.26B	1.231	1.200	1.141	1691.3	1669.9	1628.3
1.0	10.174	12.181	9.809	33.452	1.254	1.196	1.149	1777.6	1735.9	1701.5
1.5	10.125	11.942	9.218	29.048	1.275	1.195	1.157	1850.B	1791.9	1763.2
2.0	10.053	11.716	A.756	25.583	1.294	1.197	1.165	1913.2	1840.0	1816.0
2.5	9.966	11.499	8.384	22.787	1.311	1.200	1.174	1966.8 2012.9	1881.8 1918.4	1861.5 1901.2
3.0 3.5	9.867 9.760	11.289 11.086	8.078 7.822	20.482 18.548	1.326	1.205 1.211	1.193	2052.6	1950.7	1936.1
4.0	9.647	10.887	7.604	16.907	1.354	1.218	1.203	2086.8	1979.3	1966.9
4.5	9.528	10.693	7.416	15.496	1.366	1.226	1.213	2116.1	2004.9	1994.4
5.0	9.406	10.502	7.251	14.27H	1.377	1.236	1.225	2141.2	2027.8	2019.0
5.5	9.280	10.313	7.106	13.217	1.388	1.246	1.237	2162.5	2048.5	2041.0
6.0	9.151 9.020	10-127	6.977	12.289	1.408	1.257 1.269	1.249 1.262	2180.4 2195.2	2067.2 2084.0	2060.8 2078.7
6.5 7.0	8.888	9.944	6.862 6.758	11.475 10.759	1.417	1.281	1.276	2207.4	2099.2	2094.7
7.5	8.753	9.582	6.663	10.128	1.425	1.294	1.290	2217.1	2112.9	2109.2
8.0	8.618	9.404	6.576	9.571	1.433	1.30H	1.304	2224.5	2125.2	2122.0
8.5	8.487	9.227	6.497	9.080	1.441	1.322	1.319	2229.9	2136.0	2133.4
9.0	8.346	9.053	6.423	8.64A	1.448	1.336	1.333	2233.5	2145.5	2143.4
9.5	8.209	8.882	6.316 6.293	8.267	1.455	1.350	1.348	2235.4	2153.7 2160.6	2151.9 2159.1
10.0 10.5	8.073 7.938	8.713	6.235	7.932 7.638	1.462 1.468	1.379	1.377	2235.1	2166.2	2164.9
11.0	7.804	8.383	6.180	7.379	1.474	1.392	1.391	2233.0	2170.4	2169.4
11.5	7.672	8.222	6.129	7.152	1.480	1.406	1.405	2229.9	2173.5	2172.6
12.0	7.541	8.066	6.081	6.953	1.485	1.419	1.418	2225.9	2175.4	2174.7
								TABLE 1	- PAGE	. 3
PI=	10.000									
TI= 298	8.15 M=	0 •								
N	P/PI	1/11	CP1	CP	GAM1	GAM*	GAM	A1	A	A .
0.	10.375	13.149	11.877	43.064	1.201	1.207	1.136	1603.6	1607.6	1559.€
0.5	10.423	12.843	10.738	35.752	1.227	1.200	1.145	1708.1	1689.0	1650.1
1.0	10.408	12.560	9.923	30.496	1.250	1.197	1.154	1795.4	1756.8	1724.9
1.5 2.0	10.354	12.296 12.044	9.311 8.833	26.523 23.400	1.271 1.290	1.198	1.163	1869.1	1814.2	1787.7
2.5	10.275 10.179	11.804	8.450	20.879	1.307	1.201 1.205	1.172	1931.7 1985.3	1863.4	1841.2 1887.3
3.0	10.070	11.572	8.135	18.805	1.323	1.211	1.131	2031.1	1942.9	1927.3
3.5	9.951	11.347	7.871	17.066	1.338	1.218	1.202	2070.4	1975.6	1962.4
4 - 0	9.826	11-128	7 - 646	15.593	1.351	1.226	1.213	2104.0	2004.4	1993.3
4.5	9.696	10.914	7.452	14.329	1.364	1.236	1.224	2132.7	2030.1	2020.H
5.0	9.561	10.704	7.283	13.239	1.375	1.246	1.236	2157.0	2053.0	2045.1
5.5 6.0	9.423 9.282	10.497 10.294	7.134 7.002	12.292 11.467	1.386 1.396	1.257 1.269	1.249 1.262	2177.4 2194.4	2073.4 2091.8	2066.8 2086.3
6.5	9.140	10.094	6.883	10.744	1.406	1.281	1.276	2208.4	2108.2	2103.6
7.0	8.996	9.896	6.776	10.110	1.415	1.294	1.290	2219.5	2122.8	2119.0
7.5	8.850	9.702	6.678	9.554	1.424	1.308	1.304	2228.2	2135.8	2132.6
8.0	8.705	9.510	6.590	9.064	1.432	1.322	1.319	2234.7	2147.2	2144.6
8.5 9.0	A.559 A.414	9.321 9.135	6.50H 6.433	8.634 8.257	1.440	1.336 1.350	1.333	2239.1 2241.8	2157.2 2165.6	2155.0 2163.8
9.5	8.269	8.953	6.364	7.926	1.454	1.364	1.362	2242.9	2172.6	2171.1
10.0	8.125	8.774	6.300	7.634	1.461	1.378	1.377	2242.5	2178.3	2177.0
13,5	7.983	8.599	6.241	7.378	1.467	1.392	1.390	2240.9	2182.5	2181.5
1.0	7.843	11.4 TH	6.185	7.154	1.473	1.405	1.404	2238.1	2185.5	2184.7
12	7.705	A.261	6.133	6.95R	1.479	1.418	1.417	2234.4	2187.3	2186.6
12.	7.570	8.099	6.085	6.786	1.485	1.430	1.429	2229.R	2187.8	2187.2

PI= 30.000									
TI= 298.15 M=	0.						TARLE 1	- PAGE	4
N P/PI 9. 10.731 J.5 10.789 1.0 10.772 1.5 10.710 2.0 10.617 2.5 10.504 3.0 10.377 3.5 10.239 4.0 10.094 4.5 9.943 5.0 9.788 5.5 9.630 6.0 9.470 6.5 9.308 7.0 9.146 7.5 8.963 8.663 9.0 8.823 8.5 8.663 9.0 8.823 8.5 8.663 9.0 8.823 8.5 8.663 9.0 8.823 8.5 8.663 9.0 8.823 8.5 8.663 9.0 8.823 8.5 8.663 9.0 8.823 8.5 8.663 9.0 8.823 8.5 8.663 9.0 8.823 8.5 8.663 9.0 8.823 8.5 8.663 9.0 8.823 8.5 8.663 9.0 8.823 8.5 8.663	7/71 13.858 13.499 13.167 12.8561 12.279 12.078 11.746 11.492 11.244 11.002 10.766 10.534 10.307 10.085 9.447 8.465 9.447 8.466 8.310 8.140	CP1 12.193 10.975 10.10A 9.460 A.956 A.552 A.221 7.944 7.709 7.506 7.330 7.174 7.036 6.912 6.801 6.700 6.60H 6.524 6.376 6.310 6.249 6.139 6.139 6.049	CP 37.09A 30.871 26.405 23.033 20.392 18.263 16.513 15.051 13.814 12.75H 11.850 11.064 10.381 9.267 8.813 8.416 8.466 7.764 7.497 7.263 7.659 6.879 6.772 6.584	GAM1 1-195 1-221 1-245 1-266 1-285 1-303 1-319 1-347 1-360 1-372 1-383 1-413 1-422 1-430 1-438 1-446 1-453 1-466 1-473 1-479 1-484	GAM* 1.204 1.200 1.200 1.200 1.207 1.214 1.221 1.230 1.251 1.262 1.275 1.248 1.301 1.315 1.329 1.343 1.357 1.370 1.384 1.397 1.410 1.427 1.433 1.444	GAM 1.141 1.152 1.162 1.163 1.183 1.194 1.205 1.217 1.229 1.242 1.255 1.268 1.282 1.297 1.311 1.326 1.340 1.355 1.369 1.383 1.396 1.409 1.421 1.432 1.443	A1 1626.7 1733.6 1822.4 1896.8 1999.7 2013.0 2058.4 2129.4 2156.8 2179.8 2214.3 2226.7 2236.3 2243.5 2248.4 2551.5 2252.5 2252.5 2251.0 2244.6 2234.6	1632.7 1718.3 1789.1 1848.7 1899.4 1943.1 1980.9 2013.9 2042.9 2068.5 2091.0 2110.9 2128.5 2144.0 2157.4 2168.9 2178.8 2198.5 2202.2 2204.4 2205.4 2205.4	A 1589.7 1683.8 1761.1 1825.6 1880.3 1927.2 1967.7 2003.0 2033.8 2060.9 2084.7 2105.7 2124.2 2140.4 2166.5 2176.8 2185.3 2197.4 2201.3 2203.6 2204.8 2204.8
P1=							TABLE 1	- PAGE	5
T[= 298+15 M=	0.								
N P/P! 0. 10.891 0.5 10.954 1.0 10.977 1.5 10.870 2.0 10.770 2.5 10.649 3.0 10.512 3.5 10.365 4.0 10.209 4.5 10.049 5.0 9.884 5.5 9.717 6.0 9.547 7.0 9.208 7.5 9.378 7.0 9.208 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.388 7.5 9.588 7.5 9.588 7.5 9.588	T/TI 14-192 13-805 13-444 13-113 12-706 12-493 11-922 11-650 11-386 11-129 10-878 10-634 9-713 9-497 9-287 9-287 9-497 9-287 9-87 8-804 8-508 8-508 8-508 8-104 8-508 8-105 8-	CP1 12.345 11.087 10.106 0.629 2.012 8.520 7.977 7.737 7.737 7.730 7.101 7.050 6.925 6.811 6.709 6.616 6.530 6.452 6.380 6.313 6.251 6.104 6.104	CP 34.655 28.876 24.730 21.616 19.172 17.207 15.592 14.45 13.106 12.136 11.304 10.582 9.417 8.941 8.531 8.171 7.856 7.580 7.338 7.127 6.941 6.770 6.636	GAM1 1.192 1.218 1.242 1.263 1.283 1.301 1.317 1.332 1.346 1.371 1.382 1.440 1.471 1.421	GAM* 1 · 202 1 · 199 1 · 205 1 · 211 1 · 218 1 · 226 1 · 236 1 · 247 1 · 258 1 · 270 1 · 243 1 · 324 1 · 338 1 · 352 1 · 365 1 · 379 1 · 394 1 · 417 1 · 428 1 · 439 1 · 449	GAM 1.143 1.155 1.166 1.177 1.188 1.200 1.212 1.224 1.237 1.250 1.263 1.277 1.292 1.306 1.321 1.335 1.350 1.321 1.350 1.321 1.350 1.321 1.444 1.444	A1 1636.R 1744.9 1834.7 1909.1 1972.0 2025.2 2070.2 2108.2 2140.3 2167.1 2149.4 2207.7 2224.5 2243.1 2249.6 2253.9 2256.3 2257.0 2256.3 2251.1 2247.0 2242.0 2236.4	1643.5 1731.2 1803.5 1864.2 1915.6 1959.7 1997.9 2031.0 2060.0 2045.5 2107.7 2127.3 2144.4 2159.2 2172.0 2182.8 2191.8 2191.8 2191.8 2191.8 2191.8 2191.8 2191.8 2191.9 2204.7 2204.7 2209.9	A 1603.1 1694.9 1777.3 1842.7 1898.0 1945.2 1985.8 2021.1 2051.8 2071.6 2140.5 2140.5 2140.5 2169.4 2180.6 2207.9 2210.8 2212.6 2207.9 2210.8
PI= 100.000							TABLE 1	- PAGE	6
T!= 298.15 M=	n.								
N P/PI O. 11.100 O.5 11.171 1.0 11.152 1.6 11.079 2.0 10.969 2.5 10.836 3.5 10.526 4.0 10.357 4.5 10.182 5.0 10.004 5.5 9.462 7.0 9.282 7.5 9.103 N.0 9.643 6.5 9.462 7.0 9.282 7.5 9.103 N.0 9.5 H.26 0.9 8.248 0.0 8.248 0.5 H.09	1/11 14.645 14.21A 13.423 13.464 13.106 12.774 12.455 12.149 11.8547 11.567 11.249 11.019 10.757 10.552 10.255 10.015 9.782 9.656 9.337 9.125 8.921 8.723 8.533 8.349 8.172	CP1 12.557 11.241 10.313 9.622 9.007 H.660 H.310 H.019 7.772 7.559 7.374 7.212 7.06H 6.939 6.824 6.719 6.624 6.719 6.624 6.719 6.636 6.317 6.458 6.317 6.458 6.317 6.458	CP 31.669 26.43H 22.701 19.490 17.694 14.4H1 13.275 12.259 11.394 10.653 10.015 9.464 7.461 7.46	GAM1 1.1HH 1.215 1.239 1.260 1.2H0 1.314 1.329 1.344 1.347 1.369 1.380 1.391 1.401 1.420 1.421 1.459 1.459 1.466 1.472 1.478	GAMe 1.199 1.202 1.208 1.215 1.224 1.233 1.244 1.256 1.281 1.335 1.349 1.376 1.376 1.376 1.376 1.376 1.402 1.414 1.425 1.436 1.446 1.456	GAM 1.146 1.159 1.171 1.183 1.195 1.208 1.220 1.233 1.247 1.261 1.275 1.289 1.318 1.313 1.347 1.347 1.361 1.375 1.388 1.401 1.413 1.424 1.435 1.446 1.455	A1 1649.8 1759.4 1849.7 1924.9 1987.8 2015.3 2122.7 2154.0 2218.7 2232.5 2243.2 2251.2 2256.8 2262.0 2262.0 2262.0 2262.0 2254.3 7249.7 2244.4 2238.4	A+ 1657.4 1748.0 1822.3 1844.4 1936.8 1981.5 2020.0 2053.3 2082.2 2107.3 2129.2 2148.1 2164.4 2178.4 2190.1 2197.7 2213.8 2218.3 2221.2 2222.7 2222.9 2211.9 2211.9 2211.9 2211.9 2211.9 2211.9	A 1620.4 1718.6 1798.6 1865.1 1921.1 1968.7 2009.4 2044.6 2075.0 2101.4 2124.3 2144.1 2161.2 2175.7 2188.0 2198.1 2206.3 2212.7 2217.3 2220.4 2222.1 2222.4 2221.5 2219.5 2216.6

P1= 300.000

T!= 298.15 M= n.

N	P/PI	1/11	CP1	CP	GAM1	GAM*	MAD	7.1	A #	Α
0.	11.407	15.349	12.H97	27.654	1.182	1.194	1.150	1668.3	1676.A	1645.4
0.5	11.492	14.853	11.485	23.164	1.209	1.198	1.165	1780.5	1772.2	1747.5
1.0	11.471	14.396	10.496	19.977	1.234	1.204	1.179	1872.1	1849.B	1830.1
1.5	11.386	13.969	9.764	17.587	1.256	1.212	1.192	1947.8	1914.1	1494.3
2.0	11.261	13.568	9.199	15.725	1.276	1.222	1.206	2010.6	196H.O	1955.2
2.5	11.108	13.187	8.750	14.235	1.294	1.233	1.220	2063.0	2013.6	2003.2
3.0	10.937	12.823	4.384	13.016	1.311	1.244	1.234	2106.7	2052.5	2044.1
1.5	10.755	12.475	8.0PO	12.005	1.326	1.256	1.248	2143.0	2085.8	2078.9
4.0	10.564	12.141	7.822	11.154	1.341	1.269	1.262	2173.0	2114.3	2108.7
4.5	10.36R	11.820	7.601	10.477	1.454	1.282	1.277	2197.6	2138.8	2134.3
5.0	10.170	11.510	7.409	9.818	1.367	1.296	1.292	2217.6	2159.7	2156.0
5.5	9.971	11.212	7.241	9.288	1.378	1.310	1.306	2233.5	2177.5	2174.5
6.0	9.772	10.924	7.092	8.832	1.389	1.324	1.321	2245.9	2192.4	2190.0
6.5	9.574	10.646	6.959	H.437	1.400	1.33R	1.335	2255.2	2204.9	2202.9
7.0	9.379	10.378	6.840	8.094	1.409	1.352	1.350	2251.9	2215.0	2213.4
7.5	9.187	10.119	6.733	7.796	1.419	1.365	1.363	2266.3	2223.0	2221.7
8.0	H.99H	9.870	6.635	7.536	1.428	1.37H	1.377	2268.6	2229.0	2227.9
8.5	8.813	9.631	6.547	7.309	1.436	1.391	1.390	2269.2	2233.2	2232.4
9.0	8.632	9.400	6.466	7.110	1.444	1.403	1.402	226R.2	2235.9	2235.2
9.5	8.456	9.178	6.391	6.936	1.451	1.414	1.414	2266.0	2237.0	2236.5
10.0	8.285	8.965	6.123	6.783	1.458	1.425	1.425	2262.6	2236.9	2236.5
10.5	8.119	A.740	6.250	6.648	1.465	1.436	1.435	2258.3	2235.5	2235.2
11.0	7.958	H.564	6.200	6.529	1.472	1.446	1.445	2253.1	2233.1	2232.8
11.5	7.802	8.375	6.146	6.423	1.478	1.455	1.454	2247.3	2229.7	2229.4
12.0	7.651	H.194	6,095	6.329	1.484	1.463	1.463	2240.8	2225.4	2225.2

PI= 500.000

T1= 298.15 M= 0.

INDIE	Ŧ	_	PAGE	О

N	P/PI	1/11	(Pl	CP	GAM1	GAM#	GAM	Al	A *	A
0.	11.538	15.664	13.055	26.063	1.180	1.192	1.151	1676.0	1684.7	1655.8
0.5	11.630	15.135	11.596	21.874	1.207	1.197	1.167	1789.3	1782.3	1759.7
1.0	11.60B	14.648	10.578	18,904	1.231	1.205	1.182	1881.5	1861.5	1843.5
1.5	11.518	14.104	9.827	16.682	1,252	1.215	1.197	1957.4	1926.A	1912.4
2.0	11.384	13.767	9.249	14.955	1.274	1.225	1.211	2020.2	1981.4	1969.8
2.5	11.223	13.363	8.789	13.575	1.292	1.237	1.225	2072.3	2027.4	2018.0
3.0	11.042	12.979	A.416	12.447	1.309	1.249	1.240	2115.6	2066.4	2058.8
3.5	10.849	12.612	8.105	11.514	1.325	1.262	1.254	2151.3	2099.6	2093.4
4.0	10.649	12.250	7.843	10.729	1.339	1.275	1.269	2180.8	2127.9	2122.0
4.5	10.444	11.023	7.618	10.066	1.353	1.289	1.284	2204.7	2151.9	2147.9
5.0	10.237	11.600	7.423	9.500	1.366	1.303	1.299	2224.1	2172.4	2169.1
5.5	10.029	11.288	7.252	9.014	1.377	1.317	1.314	2239.4	2189.5	2186.9
6.0	9.823	10.989	7.101	H.595	1.389	1.331	1.328	2251.1	4203.B	2201.7
6.5	9.61A	10.702	6.967	A.233	1.309	1.345	1.343	2259.9	2215.5	2213.7
7.0	9.417	10.425	6.847	7.910	1.409	1.35P	1.356	2266.0	2224.8	2223.4
7.5	9.219	10.159	6.73H	7.646	1.418	1.371	1.370	2269.8	2232.0	2230.9
8.0	9.025	9.904	6.640	7.40H	1.427	1.384	1.383	2271.7	2237.2	2236.3
8.5	8.836	9.659	0.50	7.199	1.435	1.396	1.395	2271.9	2240.7	2240.0
9.0	8.652	9.424	6.46A	7.017	1.443	1.408	1.407	2270.5	2242.6	2242.0
9.5	R.472	9.198	6.393	6.856	1.451	1.419	1.419	2268.0	2243.0	2242.5
10.0	8.299	8.981	6.324	6.715	1.458	1.430	1.429	2264.3	2242.2	2241.8
10.5	H.130	8.774	6.261	6.590	1.465	1.440	1.439	2259.7	2240.2	2239.9
11.0	7.967	8.575	6.202	6.480	1.472	1.449	1.449	2254.3	2237.2	2237.0
11.5	T.810	8.384	6.147	6.382	1.478	1.458	1.458	2248.3	2233.3	2233.1
12.0	7.658	8.201	6.096	6.294	1.484	1.466	1.466	2241.7	2228.6	2228.5

PI=	1.000									
TI= 298	.15 N=	0.						TABLE	2 - Pa	ge l
M 0. 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.5	P/P! 9,611 9,614 9,523 9,369 9,176 8,963 8,740 8,512 8,284 8,057 7,833 7,613 7,319 7,191 6,798	7/TI 11.750 11.687 11.483 11.199 10.874 17.533 10.190 9.851 9.520 9.107 8.884 8.582 8.792 8.016 7.753 7.504	CPI 11.282 11.192 11.062 10.912 10.755 10.597 10.447 10.290 10.143 10.000 9.862 9.728 9.600 9.477 9.361 9.250	(P 58,941 54,295 44,757 35,956 29,361 24,585 21,052 18,364 16,276 14,636 13,341 17,319 11,514 10,882 10,386 9,995	6AM1 1-214 1-216 1-219 1-273 1-277 1-231 1-235 1-239 1-244 1-248 1-257 1-265 1-265 1-270 1-274	GAMP 1.212 1.205 1.191 1.180 1.176 1.176 1.179 1.184 1.192 1.200 1.210 1.220 1.230 1.240 1.249 1.257	GAM 1-124 1-126 1-130 1-136 1-144 1-153 1-162 1-172 1-183 1-194 1-205 1-217 1-228 1-238 1-238 1-257	A1 1551.7 1654.8 1739.4 1806.8 1866.1 1913.6 1953.3 1986.2 2013.6 2035.9 2054.1 2068.5 2079.7 2088.3 2099.0	A* 1550.6 1647.6 1719.7 1777.2 1877.0 1870.3 1908.3 1941.7 1971.1 1996.8 2019.1 2038.2 2054.2 2067.3 2077.7 2085.6	A 1493.2 1592.4 1674.8 1743.9 1802.2 1851.9 1894.6 1931.6 1963.7 1991.4 2015.3 2035.5 2052.3 2065.9 2076.7 2084.9
Djv	5.000									
†1× 298	•15 N≃	0.								
M 0. 0.5 1.0 1.5 2.0 2.5 3.0 4.5 5.0 6.5 7.0	P/P1 10.146 10.141 10.013 9.807 9.560 9.293 9.018 H.747 H.204 7.947 7.699 7.463 1.238 1.074 6.H22	7/T1 12,713 17,620 17,329 11,502 11,502 11,502 10,109 9,704 9,409 9,409 9,409 7,704 9,409 7,704 9,409 7,704 7,704 7,704	CPI 11.688 11.584 11.415 11.415 10.615 10.620 10.434 10.257 10.088 9.929 9.778 9.637 9.504 9.380 9.263	(P 47.354 43.018 34.808 27.883 22.964 19.495 16.976 15.097 13.671 12.579 11.737 11.086 10.180 9.864 9.611	6AM1 1.205 1.207 1.211 1.215 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255 1.260 1.264 1.264	GAM# 1.209 1.202 1.189 1.181 1.180 1.184 1.190 1.197 1.206 1.216 1.225 1.235 1.243 1.251 1.259	GAM 1-132 1-135 1-140 1-14H 1-15H 1-16H 1-179 1-190 1-201 1-212 1-223 1-233 1-242 1-250 1-25H 1-265	A1 1588.4 1693.3 1777.5 1845.1 1899.7 1944.1 1980.2 2009.6 2033.3 2052.2 2067.1 2078.8 2087.7 2094.3 2099.0 2102.3	1590.9 1689.5 1761.1 1819.2 1868.5 1910.9 1947.3 1978.5 2005.2 2027.7 2040.4 2061.7 2073.9 2083.4 2090.6 2095.8	A 1539.9 1641.9 1725.1 1793.5 1850.4 1898.1 1938.2 1972.2 2000.7 2024.6 2044.2 2060.3 2072.9 2082.7 2090.1
								TABL	E 2 - P	age 2
P1=	10.000									
fl= 79	8.15 N=	0.								
M 0.5 1.0 1.5 2.0 3.5 4.0 4.1 5.0 5.5 6.0 6.5 7.0	P/P1 10-375 10-364 10-215 9-983 9-415 9-416 8-820 8-530 7-7980 7-724 7-480 7-7250 7-033 6-828	7/TI 13-149 13-037 12-605 12-242 11-751 11-257 10-777 10-318 9-884 9-475 9-092 8-735 8-404 8-095 7-809 7-544	CP1 11.H77 11.763 11.57.1 11.348 11.170 10.407 10.485 10.484 10.204 10.116 9.940 9.703 9.6647 9.511 9.384 9.766	CP 43.064 38.825 31.172 25.013 20.750 17.780 15.645 14.066 12.878 11.276 11.284 10.788 10.330 9.938 9.732 9.515	GAM1 1.201 1.203 1.207 1.212 1.218 1.228 1.228 1.239 1.244 1.250 1.255 1.255 1.264 1.269 1.273	GAM* 1 * 207 1 * 200 1 * 1 H H 1 * 1 R 2 1 * 1 R 3 1 * 1 R 7 1 * 1 2 0 3 1 * 2 1 7 1 * 2 2 3 1 * 2 2 4 1 * 2 6 1 1 * 2 6 7	GAM 1-136 1-139 1-145 1-154 1-174 1-186 1-197 1-298 1-718 1-229 1-234 1-246 1-254 1-267	A1 1603.6 1709.2 1792.8 1859.2 1912.3 1955.1 1949.6 2017.3 2039.5 2057.1 2070.9 2081.6 2049.6 2095.8 2100.2 2103.1	A* 1607.6 1706.6 1774.1 1836.0 1884.8 1926.4 1961.8 1991.8 2016.9 2037.9 2055.0 2068.7 2079.6 2087.9	A 1559.6 1662.7 1745.9 1813.7 1869.5 1915.9 1954.5 1986.7 2013.5 2035.5 2053.4 2067.7 2078.9 2087.4 2093.7
Pį=	30.000									
T1= 29	98.15 N=	1.								
M 0.5 1.0 1.5 2.0 3.5 4.0 4.5 5.0 6.0 6.7	P/P1 10-731 10-707 10-516 10-235 9-913 9-577 9-247 8-916 8-601 8-301 8-018 7-750 7-499 7-263 7-042	T/T1 13.858 13.705 13.252 12.605 12.104 11.527 10.979 10.467 9.901 9.551 9.146 8.773 8.479 8.113 7.8821	CP1 12.193 12.058 11.416 11.541 11.269 11.010 10.769 10.545 10.347 9.771 9.808	CP 37.095 32.969 26.198 21.206 17.888 15.618 14.009 12.837 11.958 11.201 10.380 10.633 9.806 9.894	GAM1 1-195 1-197 1-202 1-208 1-214 1-220 1-232 1-232 1-234 1-244 1-249 1-244 1-249 1-256	GAM# 1.204 1.196 1.186 1.184 1.202 1.211 1.202 1.237 1.237 1.244 1.252 1.254	GAM 1.141 1.145 1.152 1.162 1.173 1.184 1.196 1.207 1.217 1.227 1.236 1.244 1.251 1.254	A1 1676.7 1732.9 1815.1 1873.2 1929.6 1969.7 2026.9 2047.0 2062.8 2075.2 2084.8 2097.5 2101.4	A* 1632.7 1732.0 1802.9 1860.2 1908.0 1948.0 1981.4 2009.0 2031.8 2050.2 2065.1 2076.8 2085.8 2092.7 2097.7	A 1589.7 1694.2 1777.0 1843.2 1890.8 1940.5 1976.4 2005.7 2029.6 2048.8 2064.1 2076.1 2085.4 2092.4
7 • O 7 • 5	6.834	7.552	9.270	9.415	1.273	1.269	1.269	2104.0	2101.2	2101.1

PI= 50.000

T1= 298.15 N= 0.

М	P/PI	T/TI	CP1	(P	GAM1	GAM*	GAM	Al	A.	A
0.	10.891	14.192	12.345	34.657	1.192	1.202	1.143	1636.8	1643.5	1603.1
0.5	10.858	14.013	12.197	30.563	1.195	1.194	1.147	1743.1	1747.9	1708 - 1
1.0	10.644	13.508	11.926	24.218	1.200	1.185	1.155	1824.5	1813.4	1790.4
1.5	10.338	12.886	11.624	19.737	1.206	1.185	1.166	1887.3	1870.4	1855.6
2.0	9.994	12.247	11.730	16.811	1.213	1.189	1.177	1936.4	1917.5	1907.9
2.5	9.640	11.632	11.054	14.827	1.219	1.196	1.189	1975.2	1956.6	1950.3
3.0	9.289	11.055	10.801	13.475	1.225	1.205	1.200	2005.9	1988.9	1984.8
3.5	8.950	10.520	10.568	12.403	1.232	1.214	1.210	2030.3	2015.5	2012.7
4.0	A. 626	10.02B	10.254	11.641	1.238	1.222	1.220	2049.6	2037.1	2035.3
4.5	H.319	9.577	10.158	11.063	1.243	1.231	1.230	2064.8	2054.6	2053.4
5.0	H.030	9.164	9.978	10.615	1.249	1.239	1.238	2076.6	2068.6	2067.8
5.5	7.759	8.785	9.812	10.262	1.254	1.246	1.246	2085.8	2079.5	2078.9
6.0	7.505	8.428	9.661	0.078	1.259	1.253	1.253	2092.8	2087.9	2087.6
6.5	7.267	8.119	9.521	9.745	1.264	1.250	1.259	2098.1	2094.3	2094 - 1
7.0	7.045	7.825	9.201	9.550	1.268	1.265	1.265	2101.8	2098.9	2098.7
7.5	6.836	7.555	9.271	9.384	1.273	1.270	1.270	2104.3	2102.1	2102.0

PI= 100.000

11= 298.15 N= 0.

м	P/PI	T/TT	CPI	CP	GAMI	GAM#	GAM	-A1	A+	A
0.	11.100	14.645	12.557	31.669	1.188	1.199	1.146	1649.8	1657.4	1620.4
0.5	11.053	14.422	12.380	27.613	1.191	1.192	1.150	1756.1	1756.5	1725.9
1.0	10.805	13.827	12.070	21.855	1.197	1.185	1.160	1836.0	1826.5	1807.2
1.5	10.464	13.121	11.728	18.034	1.204	1.186	1.171	1897.0	1882.8	1870.H
2.0	10.020	12.417	11.402	15.530	1.211	1.192	1.183	1944.3	1978.9	1921.3
2.5	9.711	11.753	11.105	13.945	1.218	1.200	1.194	1981.5	1966.6	1961.8
3.0	9.341	11.140	10.836	12.786	1.225	1.208	1.205	2010.8	1997.5	1994.4
3.5	R.987	10.579	10.502	11.741	1.231	1.217	1.215	2034.0	2022.7	2020.6
4.0	8.652	10.069	10.371	11.309	1.237	1.226	1.224	2052.3	2043.0	2041.7
4.5	8.338	9.604	10.170	10.824	1.243	1.234	1.233	2066.8	2059.3	2058.4
5.9	8.043	9.182	7.781	10.444	1.248	1.241	1.241	2078.1	2072.2	2071.6
5.5	7.768	R.797	9.819	10.140	1.254	1.248	1.248	2086.9	2082.2	2081.9
6.9	7.511	8.446	9.665	9.890	1.259	1.255	1.254	2093.6	2090.0	2089.8
5.5	7.271	8.124	9.523	9.682	1.264	1.260	1.260	2098.6	2095.9	2095.7
7.0	.048	7.829	9.393	9.506	1.268	1.266	1.266	2102.2	2100.1	2100.0
7.5	6.838	7.557	9.272	9.352	1.273	1.271	1.271	2104.5	2103.0	2102.9

FIG. 3 SPECIFIC HEAT RATIO AND ISENTROPIC EXPONENT (HELIUM DILUTION)

FIG. 4 SPECIFIC HEAT RATIOS AND ISENTROPIC EXPONENT (HYDROGEN DILUTION)

BLANK PAGE

Unclassified
Security Classification

DOC (Security classification of title, body of abets	UMENT CONTROL DATA - R&	D ntered when	n the overall report is classified)				
1. ORIGINATING ACTIVITY (Corporate author) Institute for Aerospace Studies	3,	Zo. REP	ort security classification nclassified				
University of Toronto, Toronto Canada			UP				
. REPORT TITLE							
SPECIFIC HEAT RATIOS AN D ISENT STOICHIOMETRIC MIXTURES OF HYI	PROPIC EXPONENTS FOR CO PROGEN-OXYGEN DILUTED W	ITH HE	-VOLUME COMBUSTION OF LIUM OF HYDROGEN				
Scientific. Interi							
BENOIT, Andre							
S. REPORT DATE	7p. TOTAL NO. OF	PAGES	75. NO. OF REFS				
January 1967	21		2				
AF 33(615)-2766	90. ORIGINATOR'S R UTIAS T. N		MBER(3)				
A. PROJECT NO. 7065							
c. 61445014	94. OTHER REPORT	95. OTHER REPORT NO(3) (Any other numbers that may be sealgned this report)					
4 681307	ARL 67-001	7					
1. Distribution of this doc	12. SPONSORING MIL Aerospace Res	search	Laboratories (ARF) r Force Base,				
13. ABSTRACT	C> AD-455 747.	-					
This note is complementary to Composition Data for Constant Hydrogen-Oxygen Diluted with calculation of the equilibriu ratios, the isentropic expone sound. For convenience, the initial pressure ratio have a are presented for helium and	-Volume Combustion of S Helium or Hydrogen", by m specific heats, the onts, and the correspond final-to-initial temperature to been included in the	Stoichi y A. Be equilib ling va rature he pres	cometric Mixtures of enoit. It includes the crium specific heat clues of the speeds of ratio and the final-to- cent tables. The result				

Unclassified

Security Classification

4.	LIN	KA	LINK B		LINK C	
KEY WORDS	ROLE	WT	ROLE	WT	ROLE	WT
Constant volume combustion						
	1		1 1		1	
Gaseous Thermodynamic Properties and	1		1 1			
composition			1 1			
Driver Gases for Shock Tubes, Shock Tunnels		1	1			
and Hypervelocity Launchers						
•	1					
			1 1		1	i
			1 1			
			1 1			
		1				

INSTRUCTIONS

- ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(\$): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.