Derivadas e Integrais

Vamos considerar o caso unidimensional em que a posição de uma partícula em no tempo é definida pela função:

$$s(t) = \frac{t^2}{2} + 2t + 5$$

- using Plots
- s (generic function with 1 method)
 - $s(t) = 0.5*t^2 + 2*t +5$

plot(0:0.2:5, s.(0:0.2:5), label=false, xlabel="t(s)", ylabel="s(m)", linewidth=3)

Derivando, encontramos a expressão para a velocidade da partícula.

$$\frac{ds}{dt} = v(t) = t + 2$$

v (generic function with 1 method)

$$v(t) = t + 2$$


```
• plot(0:0.2:5, v.(0:0.2:5), label=false, xlabel="t(s)", ylabel="v(m/s)",
linecolor="green", linewidth=3)
```

Derivando novamente, descobrimos que a aceleração é constante e igual a 1 m/s²

a (generic function with 1 method)

$$a(t) = 1$$

plot(0:0.2:5, a.(0:0.2:5), label=false, xlabel="t(s)", ylabel="a(m/s²)", linecolor="red", linewidth=3, ylim=[0,2]) Podemos percorrer o caminho inverso e integrar a aceleração para recuperar a velocidade, em seguida integrar a velocidade para encontrar a posição (teorema fundamental do cálculo)

Vamos tentar integrar a aceleração para ver o que acontece.

$$v_{ exttt{ iny 2}}(t) = \int a(t) dt = \int dt = t$$

Vemos que a expressão final obtida, $v_2(t) = t$, é diferente da que começamos, v(t) = t + 2

Qual a explicação para isso?

Ao integrarmos não conseguimos recuperar algumas informações (informaçõa contida no espaço nulo, se traçarmos um paralelo com álgebra linear). Na realidade, o que encontramos é uma família de funções. A função específica apenas será determinada a partir das condições de contorno.

Modelos matemáticos

Como exemplo, vamos interpretar o modelo epidemiológico SIR.

$$\left\{ egin{aligned} rac{dS}{dt} &= -rSI \ rac{dI}{dt} &= rSI - aI \ rac{dR}{dt} &= aI \end{aligned}
ight.$$

```
    using DifferentialEquations
```

tspan = [0.0,360.0] p = [0.35/500, 0.17]

end

Definindo o problema

prob = ODEProblem(sir!, u₀, tspan, p)

```
sir! (generic function with 1 method)

• function sir!(du, u, p, t)
• du[1] = -p[1]*u[1]*u[2]
• du[2] = p[1]*u[1]*u[2] - p[2]*u[2]
• du[3] = p[2]*u[2]
• end

ODEProblem with uType Vector{Float64} and tType Float64. In-place: true timespan: (0.0, 360.0)
u0: 3-element Vector{Float64}:
499.0
1.0
0.0

• begin
• # Condições iniciais:
• u0 = [499.0, 1.0, 0.0]
```

	-	
SO	L	=

	timestamp	value1	value2	value3
1	0.0	499.0	1.0	0.0
2	0.00831474	498.997	1.00149	0.00141456
3	0.0914621	498.968	1.01653	0.0156767
4	0.564398	498.793	1.10645	0.100969
5	1.5923	498.357	1.32997	0.313251
6	3.09756	497.556	1.74015	0.703743
7	5.00856	496.178	2.44443	1.3771
8	7.41229	493.642	3.73619	2.62174
9	10.2847	488.851	6.15888	4.99051
10	13.6583	479.34	10.8982	9.76195
1	more			

- * # Resolvendo problema
 * sol = solve(prob)

plot(sol)