

Regide motion

- Position Representation La reference Frame

{	Fixed frame Initial frame a	moving Frame
	World Frame $P = \begin{bmatrix} x \\ y \end{bmatrix}$	For x_0, y_0 or $P = \begin{bmatrix} a \\ b \end{bmatrix} \sim \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ For x_0, y_0
		for x_1, y_1 $1p = \begin{bmatrix} c \\ d \end{bmatrix} \sim \begin{bmatrix} -2 \\ 2 \end{bmatrix}$

- for mony applications we can Locate an object to the moving frame
- We need to tronsform Location from the moving frame to reference frame

* Rotation representation

$${}^{\circ}R_{1} = ({}^{\circ}R_{0})^{-1}$$

$$= ({}^{\circ}R_{0})^$$

$$\begin{array}{lll}
P = u_1 \overline{X}_1 + w_1 \overline{y}_1 \\
\overline{X}_1 = \cos \theta \overline{X}_0 + \sin \theta \overline{y}_0 \\
\overline{Y}_1 = -\sin \theta \overline{X}_0 + \cos \theta \overline{y}_0
\end{array}$$

$$\begin{bmatrix}
\overline{X}_1 \\
\overline{y}_1
\end{bmatrix} = \begin{bmatrix}
\cos \theta \\
-\sin \theta
\end{bmatrix} \begin{bmatrix}
\overline{X}_0 \\
\overline{y}_0
\end{bmatrix} \begin{bmatrix}
\overline{X}_0 \\
\overline{y}_0
\end{bmatrix}$$

$$\begin{array}{ll}
R_0 = R^{-1}$$

$$R \rightarrow \text{rotation motrix} \in SO(n)$$

$$|R| = \pm 1 \quad \text{FeV}$$

$$R^{-1} = R^{T}$$

$$P = U_{1}\overline{X}_{1} + W_{1}\overline{Y}_{1}$$

$$P = \begin{bmatrix} U_{1}, \overline{X}_{1} \\ V_{1}, \overline{Y}_{1} \end{bmatrix}$$

$$R_{1} = \begin{bmatrix} Crs & 0 & -sin & 0 \\ sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & -sin & 0 \\ sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & -sin & 0 \\ -sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & -sin & 0 \\ -sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & -sin & 0 \\ -sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & -sin & 0 \\ -sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & -sin & 0 \\ -sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & -sin & 0 \\ 0 & cs & 0 & -sin & 0 \\ 0 & sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & 0 & sin & 0 \\ 0 & cs & 0 & -sin & 0 \\ 0 & sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & 0 & sin & 0 \\ 0 & cs & 0 & -sin & 0 \\ 0 & sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & 0 & sin & 0 \\ 0 & cs & 0 & -sin & 0 \\ -sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & 0 & sin & 0 \\ 0 & sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & 0 & sin & 0 \\ 0 & sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & 0 & sin & 0 \\ 0 & sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & 0 & sin & 0 \\ 0 & sin & 0 & cs & 0 \end{bmatrix}$$

$$= \begin{bmatrix} crs & 0 & 0 & sin & 0 \\ 0 & sin & 0 & cs & 0 \end{bmatrix}$$