Hoy: Ejemplos le tensores
V
Ejemplo I: Las matrices son tensores de formato mxn.
Notación: Si U, V son espacios rectiones definimos
$V^* = \{ L : V \longrightarrow C \mid \text{ineales} \} V^* = \text{Hom}(V, C)$ $\text{Hom}(U, V) = \{ T : U \longrightarrow V \mid T \mid \text{ineal} \} V^* = \text{Hom}(V, C)$
Hom(U,V) = } T: U ->V T lineal }
Lema: Hay un isomorpismo canónico (i.e. que puede describase
sinutilizan bases)
· · · · · · · · · · · · · · · · · · ·
U* & J Hom (U, V)
inumble
Obs: Si pjamos bares U1, U2, Un de U
VI, Vz,, Vm de V - Ty
esto determina un isomarismo no canolico man
Hom (UV) TBURN, Mat (C) ~ C
$Hom(U,V) \xrightarrow{\mathcal{V}_{Bu,Bv}} Mat_{mxn}(C) \cong C$
U ₁ U ₂ . U ₁ U _n
\vee \vee \vee \vee \vee
$\begin{bmatrix} T(u_j) \end{bmatrix}_{B_{V'}}$
Vm L
$T(u_i) \in V \rightarrow \longrightarrow$
$T(u_j) \in V \rightarrow b_j \cdot V_1 + b_{2j} \cdot V_2 + \cdots + b_{m_j} \cdot V_m$
Dem: Queremas U* & V - Hom (U, V). Usamos pop. unil.
$\mathcal{U}^{\bullet} \times \vee \xrightarrow{\otimes} \mathcal{V}^{\bullet} \mathcal{V}$
Wind WEAL Hom (U,V)
Hom(U,V)

(b) Demieste que {T; R(T) ≤ k} es cenado. en Ver la topologia induide por un nova.

El lab directo de l'Teorema antion sugiene la signiente
definicion clave:
Sean V, Vm espacios rectoriales
Dec. TE V. 8 - 6 V. es des composible si
TE in (S) con S: V, xx Vm -> V, 8 8 Vm = V ⁽ⁱ⁾ e V; 1 \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(
$\exists v^{(i)} \in V. 1 \leq i \leq m con T = V^{(i)} \otimes - \otimes V^{(m)}$
Def: Un tensor TE V, & - & Vm
R(T) = min { he IN: 3 Ti,Ti DESCOMPONIDLES}
$\mathcal{R}(1) = Min (NEIN)$
range del (tensor rank) $ \begin{array}{c} \text{Car} T = T_1 + \dots + T_n \\ \text{tensor} T \end{array} $
tenon T (tenson rank)
Ejemplo: El tensor de multiplicación de matrices
$\mathcal{K} = \mathcal{K}_{\text{out}}(\mathcal{U}_{\mathcal{V}})$
$A = H_{0M}(VW)$
WE 9 (= Hall III)
Conside la junción:
Goside la función: $A = Hom(V, W)$ $C = Hom(U, W)$ $M : A \times B \longrightarrow C$
$(g,f) \longmapsto g \circ f$
Note que M es bi-lineal / vego po-la popiedad unusal
M: A&B> C liveal ME Hom (A&BC)
ME ABBOC = (ABB) BC
7? Tenson de moltriplicación de matrices.
de maties.
Ejerucio: Demiesta que
Ejerucio: Demiestra que (UOV) = UOV = UOV
© UøV ≥ VøU

$$(5hosen 1969)$$

$$M = (a'_1 + a'_2) \otimes (b'_1 + b'_2) \otimes (c'_1 + c'_2) + 2,2,2$$

$$(a'_2 + a'_2) \otimes b'_1 \otimes (c'_1 - c'_2) + 2,2,3$$

$$a'_1 \otimes (b'_2 - b'_2) \otimes (c'_2 + c'_2) + 2,3$$

$$a'_2 \otimes (-b'_1 + b'_1) \otimes (c'_2 + c'_1) + 3,3$$

$$(a'_1 + a'_1) \otimes b'_2 \otimes (-c'_1 + c'_2) + 3,3$$

$$(a'_1 + a'_1) \otimes (b'_1 + b'_2) \otimes c'_2 + 3,3$$

$$(a'_2 - a'_2) \otimes (b'_1 + b'_2) \otimes c'_1$$