ESTRUCTURAS ALGEBRAICAS

Hoja 2. Homomorfimos de grupos.

- 1. Demostrad que un grupo G es abeliano si y solamente si la función $f: G \to G$ dada por $f(g) = g^{-1}$ es un homomorfismo.
- **2.** Se define $f: D_6 \to \mathbb{Z}/2\mathbb{Z}$ mediante $f(g) = [0]_2$ si g es una rotación y $f(g) = [1]_2$ si g es una simetría. Demostrad que f es un homomorfismo de grupos.
- **3.** Demostrad que no existe un homomorfismo sobreyectivo $D_6 \to \mathbb{Z}/3\mathbb{Z}$.
- **4.** Dados grupos G_1 y G_2 escribimos $\text{Hom}(G_1, G_2)$ para denotar el conjunto de homomorfismos $G_1 \to G_2$. Determinad $\text{Hom}(\mathbb{Z}, \mathsf{D}_6)$ y $\text{Hom}(\mathbb{Z}/4\mathbb{Z}, \mathsf{D}_6)$.
- **5.** Sean G_1 y G_2 dos grupos finitos con $(|G_1|, |G_2|) = 1$. Calcula $Hom(G_1, G_2)$.
- **6.** Sea $f: G \to H$ un homomorfismo de grupos. Demostrad que $f(g^a) = f(g)^a$ para todo $a \in \mathbb{Z}$. ¿Cómo se relacionan o(g) y o(f(g)) para un $g \in G$ cualesquiera?
- 7. Encontrad dos grupos finitos G y H no triviales y un homomorfismo $f: G \to H$ con la propiedad que o(f(g)) < o(g) para todo $1 \neq g \in G$.
- 8. ¿Cuántos homomorfismos sobreyectivos se pueden definir entre los siguientes grupos aditivos?
 - a) de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/30\mathbb{Z}$, b) de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/15\mathbb{Z}$, y c) de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/8\mathbb{Z}$.
- 9. Cuando sea posible, definid un homomorfismo entre los siguientes grupos:
 - a) de S_3 en $\mathbb{Z}/12\mathbb{Z}$, inyectivo; b) de S_3 en $\mathbb{Z}/3\mathbb{Z}$, sobrevectivo; c) de S_3 en $\mathbb{Z}/6\mathbb{Z}$, no constante.
- 10. Demostrad que el grupo cuaternio Q_8 introducido en la Hoja 1 es isomorfo al grupo dado por

$$\{\pm 1, \pm i, \pm j, \pm k\}$$
,

donde
$$i^2 = j^2 = k^2 = -1$$
, $(-1)^2 = 1$, $ij = k$, $ki = j$, $jk = i$, $ji = -k$, $ik = -j$, $kj = -i$.

- 11. Comprobad que todo subgrupo de Q_8 es normal y determinad la clase de isomorfía de cada cociente.
- **12.** Sea $H \leq GL_2(\mathbb{R})$ generado por $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
 - a) Demostrad que o(A) = 2, o(B) = 4, $BA = AB^3$.
 - **b)** Demostrad que $H = \{1, B, B^2, B^3, A, AB, AB^2, AB^3\}$ con |H| = 8.
 - c) Observad que se puede calcular la tabla de grupo de H con los datos de a).
 - **d)** Demostrad que $\langle B \rangle \triangleleft H$ y que $\mathbf{Z}(H) = \langle B^2 \rangle$.
 - e) Hallad la clase de isomorfía de $H/\mathbf{Z}(H)$.
- 13. Sea (G,\cdot) un grupo, definimos una nueva operación binaria sobre G como

$$q * h = h \cdot q$$
,

para todo $g, h \in G$. Probad que (G, *) es un grupo.

Calulad el producto de los elementos de S_3 dados por $\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ y $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ respecto al producto en S_3 definido en clase y al introducido en el apartado anterior y comprobar que el esultado es distinto.

Demostrar, sin embargo, que $(G, \cdot) \cong (G, *)$.

(Nota: Si consultas varios libros encontrarás que unos usan un producto y otros el otro, pero el apartado anterior dice que ambas estructuras son equivalentes).

- **14.** Sea G un grupo y sea N un subgrupo normal maximal en G, es decir, no existe ningún $N \subsetneq M \subsetneq G$ con $M \triangleleft G$. Demostrad que:
 - a) G/N es simple.
 - **b)** Si $H \triangleleft G$ entonces o bien $H \subseteq N$ o bien G = NH.
- c) Suponiendo que G/N es abeliano y finito, si $H \leq G$, entonces o bien $H \subseteq N$ o bien G = NH. En el segundo caso, mostrad que $|H:N\cap H|$ es primo.
- **15.** Sea $\mathbb{R}_{>0} := \{ r \in \mathbb{R} \mid r > 0 \}.$
 - a) Demostrad que $(\mathbb{R}_{>0},\cdot)$ con el producto usual es un grupo.
 - **b)** Encontrad un isomorfismo $(\mathbb{R}, +) \cong (\mathbb{R}_{>0}, \cdot)$.
 - c) Decidid si \mathbb{R} y \mathbb{R}^* son o no isomorfos, y si \mathbb{R}^* y \mathbb{C}^* son o no isomorfos.
- **16.** Sea $\mathbb{S}^1 = \{z \in \mathbb{C} \mid |z| = 1\} \leq \mathbb{C}^*$. Utilizad el primer teorema de isomorfía para demostrar que \mathbb{S}^1 es isomorfo al grupo cociente $\mathbb{R}/2\pi\mathbb{Z}$. Hallad el subgrupo de \mathbb{S}^1 formado por todos los elementos de orden finito. ¿A qué subgrupo de $\mathbb{R}/2\pi\mathbb{Z}$ corresponde?
- 17. Sean H_j, K_j grupos con $j \in \{1, 2\}$, y sean también H y K grupos.
 - a) Probad que si $H_1 \cong K_1$ y $H_2 \cong K_2$ entonces $H_1 \times K_1 \cong H_2 \times K_2$.
 - **b)** Probad que $H \times K \cong K \times H$.
- **18.** Sea G un grupo con $H, K \triangleleft G$ tales que G = HK.
 - a) Demostrad que si $H \cap K = 1$ entonces $G \cong H \times K$.
 - **b)** Probad que, en general, $G/H \cap K \cong G/H \times G/K$.
- **19.** Sea $H = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} : a \in \mathbb{Z} \right\}$ el conjunto de matrices unitriangulares superiores con entradas enteras.
 - a) Demostrad que $H \leq GL_2(\mathbb{Q})$.
 - **b)** Demostrad que $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} H \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \subseteq H$.
 - c) Razonad si $H \triangleleft \operatorname{GL}_2(\mathbb{Q})$.
 - d) Determinad la clase de isomorfía de H.
- **20.** Sea A un grupo abeliano y $k \in \mathbb{Z}$.
 - a) Demostrad que la función $f_k \colon A \to A$ dada por $f_k(a) := a^k$ es un homomorfismo.
 - b) En el caso k = -1, demostrad que f_{-1} es un automorfismo de A.
 - c) En el caso $A = \mathbb{Q}$, ¿para qué valores de k es f_k un automorfismo de \mathbb{Q} ?

- **21.** Sea G > 1 un grupo abeliano de orden p^a donde p es un número primo. Suponed que G tiene un único subgrupo de orden p, y considerad el homomorfismo $f: G \to G$ dado por $f(g) := g^p$.
 - a) Demostrad que $K = \ker(f) \triangleleft G$ es el único subgrupo de orden p de G.
- b) Probad que si H < G entonces H tiene un único subgrupo de orden p. En particular, f(G) tiene un único subgrupo de orden p.
 - c) Probad por inducción sobre |G| que G es cíclico.
- **22.** Sean G y H grupos. Si $G \cong H$, entonces $\operatorname{Aut}(G) \cong \operatorname{Aut}(H)$.
- 23. Probad que:
 - a) $\operatorname{Aut}(\mathbb{Z}) \cong \mathsf{C}_2$. b) $\operatorname{Aut}(\mathsf{C}_2 \times \mathsf{C}_2) \cong \mathsf{S}_3$. c) $\operatorname{Aut}(\mathsf{S}_3) \cong \mathsf{S}_3$.
- **24.** Probad que todo grupo no abeliano de orden 8 es isomorfo a Q_8 o D_8 .
- **25.** Probad que todo grupo de orden 6 es isomorfo a C_6 o S_3 . Deducid que $D_6 \cong S_3$.
- **26.** Demostrad que el subgrupo de \mathbb{Q}/\mathbb{Z} generado por las clases de $\frac{3}{2}$ y de $\frac{1}{5}$ es isomorfo a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.
- **27.** Sea G un grupo y sea $g \in G$.
- a) Demostrad que, si g tiene orden finito y $n \in \mathbb{N}$ es un múltiplo de o(g), entonces existe un único homomorfismo $f: \mathbb{Z}/n\mathbb{Z} \to G$ que satisface $f([1]_n) = g$.
 - b) Demostrad que existe un único homomorfismo $f: \mathbb{Z} \to G$ que satisface f(1) = g.
 - c) Probad que si G es cíclico entonces $G \cong \mathbb{Z}$ o $G \cong C_n$ para algún n.
- **28.** Sea f un homomorfismo sobreyectivo de G en \mathbb{Z} . Demostrad que para todo entero positivo $n \in \mathbb{Z}$, G tiene un subgrupo normal de índice n.
- **29.** Hallad los inversos de los siguientes elementos, cada uno en su grupo correspondiente. Recordad que U_n , el conjunto de elementos de $\mathbb{Z}/n\mathbb{Z}$ con inverso multiplicativo, es un grupo con el producto habitual.
 - a) $[11]_{23} \in U_{23}$, b) $[5]_{31} \in U_{31}$, c) $[4]_{15} \in U_{15}$, d) $[11]_9 \in U_9$.
- **30.** Sean N y K grupos y θ un homomorfismo $K \to \operatorname{Aut}(N)$. Demostrad que si $N \rtimes_{\theta} K$ es abeliano entonces θ es constante (es decir, $N \rtimes_{\theta} K = N \times K$). ¿Es cierto el recíproco?
- **31.** Sea p un número primo. Demostrad que $\mathbb{Z}/p^n\mathbb{Z}$ no se puede escribir como producto semidirecto de dos subgrupos propios.
- 32. Demostrad que el grupo cuaternio Q_8 no es producto semidirecto de dos subgrupos propios.
- **33.** Demostrad que $D_8 \cong (C_2 \times C_2) \rtimes C_2 \cong C_4 \rtimes C_2$.
- **34.** Demostrad que la única estructura de producto semidirecto $(C_2 \times C_2) \rtimes_{\theta} C_5$ es $(C_2 \times C_2) \times C_5$.
- **35.** Un subgupo $H \leq G$ se dice característico si $\alpha(H) = H$ para todo $\alpha \in \text{Aut}(G)$. Probad los siguientes

enunciados.

- a) H es característico en G si, y solo si, $\alpha(H) \subseteq H$ para todo $\alpha \in \operatorname{Aut}(G)$.
- **b)** Si H es característico en G, entonces $H \triangleleft G$.
- c) $\mathbf{Z}(G)$ es característico en G.
- d) Si H es característico en $N \triangleleft G$, entonces $H \triangleleft G$.
- e) Si H cíclico es normal en G, entonces los subgrupos de H son normales en G.