Licence (L3)

Année 2016/2017

ALGÈBRE

Exercices sur les anneaux

A. CHAMBERT-LOIR

EXERCICE 1

Soit A un anneau et soit S une partie de A.

- 1 Démontrer que le centralisateur $Z_S(A)$ de S dans A (pour la structure de monoïde multiplicatif) est un sous-anneau de A.
- **2** En déduire que le centre de *A* est un sous-anneau de *A*.

EXERCICE 2

Soit A le sous-anneau de C engendré par $\sqrt{2}$.

- Démontrer que pour tout élément a de A, il existe un unique couple (u, v) d'entiers relatifs tels que $a = u + v\sqrt{2}$.
- 2 Démontrer que le monoïde des endomorphismes de A possède deux éléments, l'identité et l'application donnée par $u + v\sqrt{2} \mapsto u v\sqrt{2}$.
- 3 Pour $a = u + v\sqrt{2}$, on pose $N(a) = u^2 2v^2$. Démontrer que $N: A \to \mathbb{Z}$ est un homomorphisme de monoïdes multiplicatifs.
- **4** Démontrer que a est inversible dans A si et seulement si $N(a) \in \{\pm 1\}$.
- Soit a un élément inversible de A. On suppose que 1 < a < 3; démontrer alors que $a = 1 + \sqrt{2}$. Dans le cas général, démontrer qu'il existe un unique entier $n \in \mathbb{Z}$ tel que $|a| = (1 + \sqrt{2})^n$. En déduire que le groupe A^{\times} est isomorphe à $\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})$.

EXERCICE 3

Soit A le sous-anneau de C engendré par $\sqrt[3]{2}$.

- 1 Démontrer que pour tout $a \in A$, il existe un unique triple $(u, v, w) \in \mathbb{Z}^3$ tel que $a = u + v \sqrt[3]{2} + w \sqrt[3]{4}$.
- **2** Démontrer que l'endomorphisme identique est l'unique endomorphisme de *A*.

EXERCICE 4

- Soit A le sous-anneau de C engendré par i (où $i^2 = -1$) (« entiers de Gauß »).
- 2 Démontrer que pour tout élément a de A, il existe un unique couple (u, v) d'entiers relatifs tels que a = u + iv.
- **3** Démontrer que le monoïde des endomorphismes de *A* possède deux éléments, l'identité et la conjugaison complexe.
- 4 Pour $a = u + iv \in A$, on pose $N(a) = u^2 + v^2 = |a|^2$. Démontrer que $N: A \to \mathbb{N}$ est un homomorphisme de monoïdes multiplicatifs.

5 Démontrer que a est inversible dans A si et seulement si $a \in \{\pm 1, \pm i\}$. En déduire que le groupe A^{\times} est isomorphe à $\mathbb{Z}/4\mathbb{Z}$.

EXERCICE 5

Soit K un corps, soit V un K-espace vectoriel de dimension n, soit $A = \operatorname{End}_K(V)$ l'anneau des endomorphismes de V et soit $u \in A$.

- 1 Déterminer $Z_u(A)$ lorsque u est diagonalisable.
- **2** déterminer $Z_u(A)$ lorsque le polynôme minimal de u est égal à T^n .
- 3 Démontrer que le centre de A est l'ensemble des endomorphismes de la forme $v \mapsto \lambda v$, pour $\lambda \in K$.

EXERCICE 6

Soit A un anneau. Soit a un élément de a tel que $a^2 = a$ (on dit que a est idempotent).

- On pose $A_a = aAa$; Démontrer que l'addition et la multiplication de A font de A_a un anneau. Est-ce un sous-anneau de A?
- 2 Démontrer que 1-a est idempotent et démontrer que l'addition induit un homomorphisme injectif de l'anneau produit $A_a \times A_{1-a}$ dans A.
- 3 Si A est commutatif, démontrer que cet homomorphisme est un isomorphisme.

EXERCICE 7

Soit A un anneau.

- Soit $a \in A$ un élément nilpotent. Démontrer que 1 + a est inversible dans A et calculer son inverse
- Soit a, b des éléments de A; on suppose que a est inversible, b nilpotent, et que ab = ba. Démontrer que a + b est inversible.
- 3 Soit a, b des éléments nilpotents de A qui commutent. Démontrer que a + b est nilpotent.
- 4 Donner des exemples qui montrent que dans les deux questions précédentes, on ne peut pas omettre l'hypothèse que *a* et *b* commutent.

EXERCICE 8

Soit A un anneau, soit a et b des éléments de A.

- 1 On suppose que ab est nilpotent. Démontrer que ba est nilpotent. En déduire une formule reliant les inverses de 1-ab et de 1-ba.
- 2 On suppose que 1 ab est inversible dans A. Démontrer que 1 ba est inversible.

EXERCICE 9

Soit *A* un anneau commutatif. Soit $f = a_0 + a_1 T + \cdots + a_n T^n \in A[T]$.

1 Démontrer que f est nilpotent dans l'anneau A[T] si et seulement si, pour tout i, a_i est nilpotent dans A.

- On suppose que a_0 est inversible et que $a_1, ..., a_n$ sont nilpotents dans A; démontrer que f est inversible dans A.
- Inversement, on suppose que f est inversible dans A[T] et soit $g = b_0 + \cdots + b_m T^m$ son inverse; démontrer par récurrence sur k que $a_n^{k+1}b_{m-k} = 0$. En déduire que a_0 est inversible et que a_1, \ldots, a_n sont nilpotents.
- On suppose que f n'est pas simplifiable. Soit $g \in A[T]$ un polynôme non nul de degré minimal tel que fg = 0; démontrer que $a_kg = 0$ pour tout entier k. En déduire qu'il existe un élément non nul $a \in A$ tel que af = 0.

Soit K un corps, soit V un K-espace vectoriel de dimension finie et soit A l'anneau $\operatorname{End}_K(V)$ des endomorphismes de V.

- Soit W un sous-espace vectoriel de V. Démontrer que $N_W = \{u \in A; W \subset \text{Ker}(u)\}$ est un idéal à gauche de A.
- 2 Inversement, si I est un idéal à gauche de A, démontrer qu'il existe un unique sous-espace vectoriel W de V tel que $I = N_W$.
- 3 Soit W un sous-espace vectoriel de V. Démontrer que $I_W = \{u \in A; \Im(u) \subset W \text{ est un idéal à droite de } A$.
- 4 Inversement, si J est un idéal à droite de A, démontrer qu'il existe un unique sous-espace vectoriel W de V tel que $J = I_W$.
- 5 Soit *I* un idéal bilatère de *A*. Démontrer que $I = \{0\}$ ou I = A.

EXERCICE 11

Soit *A* un anneau et soit *I* un idéal à droite de *A*.

- 1 Démontrer que l'idéal à gauche engendré par *I* est un idéal bilatère.
- Soit J l'ensemble des éléments $a \in A$ tels que xa = 0 pour tout $x \in I$. Démontrer que J est un idéal bilatère de A.

EXERCICE 12

Soit A un anneau commutatif, soit I et J des idéaux tels que I+J=A. Démontrer que $I^n+J^n=A$ pour tout entier $n\geqslant 1$.

EXERCICE 13

Soit A un anneau et soit I l'idéal bilatère de A engendré par les éléments de la forme xy-yx, pour $x,y \in A$.

- 1 Démontrer que l'anneau A/I est commutatif.
- **2** Soit *J* un idéal bilatère de *A* tel que l'anneau A/J soit commutatif. Démontrer que $I \subset J$.

Soit A un anneau commutatif et soit S une partie multiplicative de A. Soit A_S l'anneau des fractions de A à dénominateurs dans S et soit $j: A \rightarrow A_S$ l'homomorphisme canonique.

- 1 Démontrer que le noyau de j est l'ensemble des éléments $a \in A$ tels qu'il existe $s \in S$ tel que as = 0.
- **2** En déduire que *j* est injectif si et seulement si tout élément de *S* est simplifiable.
- 3 Soit *a* ∈ *A*. Démontrer que j(a) est inversible dans A_S si et seulement s'il existe $b \in A$ tel que $ab \in S$.
- 4 Soit S' l'ensemble des éléments $a \in A$ tels qu'il existe $b \in A$ de sorte que $ab \in S$. Démontrer que S' est l'ensemble des éléments $a \in A$ tels que j(a) soit inversible dans A_S .
- 5 Démontrer qu'il existe un unique homomorphisme d'anneaux de A_S dans $A_{S'}$ qui applique a/1 sur a/1, pour tout $a \in A$. Démontrer que cet homomorphisme est un isomorphisme.

EXERCICE 15

Soit A un anneau commutatif, soit s un élément de A et soit $S = \{1, s, s^2, ...\}$ l'ensemble des puissances de s. Soit A_s l'anneau des fractions de A à dénominateurs dans S; on le considère comme une A-algèbre au moyen de l'homomorphisme canonique $j: A \to A_s$.

- 1 Démontrer qu'il existe un unique homomorphisme de A-algèbres $f: A[T] \to A_s$ qui applique T sur 1/s.
- **2** Démontrer que f est surjectif et que son noyau contient 1 sT.
- **3** Démontrer que l'image de s dans l'anneau quotient A[T]/(1-sT) est inversible.
- 4 Soit $φ: A[T]/(1-sT) \rightarrow A_s$ l'homomorphisme déduit de f par passage au quotient. Démontrer que φ est un isomorphisme.

EXERCICE 16

Soit A un anneau. On dit qu'un idéal à gauche I de A est maximal si $I \neq A$ et si pour tout idéal à gauche I de A tel que $I \subset I$, on a I = I ou I = A.

- 1 Démontrer que tout idéal à gauche *I* de *A* qui est distinct de *A* est contenu dans un idéal à gauche maximal.
- Soit R l'intersection de la famille des idéaux à gauche maximaux de A (« radical de Jacobson » de A). Démontrer qu'un élément a de A appartient à R si et seulement si 1-xa est inversible à gauche, pour tout $x \in A$.
- **3** Démontrer que R est un idéal bilatère de A.
- 4 Soit a un élément de A. On suppose que l'image de a dans A/R est inversible; démontrer que a est inversible.
- 5 Soit J un idéal à gauche de A tel que 1+x est inversible, pour tout $x \in J$. Démontrer que $J \subset R$.

- 1 Soit *A* l'anneau $\mathscr{C}(\mathbf{R}; \mathbf{R})$ des fonctions continues de **R** dans **R**. Démontrer que l'ensemble des fonctions à support compact est un idéal de *A* qui n'est pas contenu dans un idéal de la forme $M_x = \{f; f(x) = 0\}$, pour $x \in X$.
- Soit $f_1, ..., f_n \in M_0$; démontrer que $\inf(|f_1|, ..., |f_n|)^{1/2}$ n'appartient pas à l'idéal engendré par les f_i . En déduire que dans l'anneau A, l'idéal M_0 n'est pas de type fini.
- Soit B l'anneau des fonctions continues sur le disque unité de ${\bf C}$ dont la restriction au disque ouvert est holomorphe. Soit I un idéal de B; démontrer qu'il existe un polynôme $P \in {\bf C}[T]$ dont toutes les racines sont de module ≤ 1 tel que I = (P). En déduire que les idéaux maximaux de B sont les idéaux (z-a), pour $a \in {\bf C}$ de module ≤ 1 .

EXERCICE 18

Soit *A* un anneau non nul.

- On suppose que A possède un seul idéal à gauche maximal M. Démontrer que A-M est l'ensemble A^{\times} des éléments inversibles de A.
- 2 On suppose inversement que $M = A A^{\times}$ est un sous-groupe du groupe additif de A. Démontrer que M est un idéal bilatère de A, et est l'unique idéal à gauche maximal de A.

EXERCICE 19

Soit A un anneau commutatif possédant un seul idéal maximal. Soit I et J des idéaux de A et soit a un élément simplifiable de A tels que IJ = (a).

- 1 Démontrer qu'il existe $x \in I$ et $y \in J$ tels que xy = a.
- **2** Démontrer que *x* et *y* sont simplifiables.
- **3** Démontrer que I = (x) et J = (y).

EXERCICE 20

Soit A un anneau commutatif intègre et soit $j: A - \{0\} \to \mathbb{N}$ une application. On suppose que pour tous $a, b \in A$ tels que $b \neq 0$, il existe $q, r \in A$ tels que a = bq + r et r = 0 ou j(r) < j(b). Soit $j': A - \{0\} \to \mathbb{N}$ l'application définie par $j'(a) = \inf\{j(ax); x \in A - \{0\}\}$. Démontrer que j' est un stathme euclidien sur A.

EXERCICE 21

Soit *A* un anneau commutatif intègre et soit *j* un stathme euclidien sur *A*.

- Soit $a \in A$ — $\{0\}$ un élément non nul, non inversible, pour lequel j(a) soit minimal. Démontrer que pour tout élément $b \in A$ —(a), il existe un élément inversible $u \in A^{\times}$ et $v \in A$ tel que 1 = ub + va.
- On suppose que A^{\times} est fini. Démontrer qu'il existe un idéal maximal M de A tel que $Card(A/M) \leq Card(A^{\times}) + 1$.

Soit A le sous-anneau de C engendré par i (anneau des entiers de Gauß).

- 1 Pour tout $z \in \mathbb{C}$, démontrer qu'il existe $a \in A$ tel que $|a-z|^2 \le 1/2$.
- **2** Démontrer que l'application $N: z \mapsto |z|^2$ est un stathme euclidien sur A.
- 3 Soit $a \in A$ tel que N(a) soit un nombre premier; démontrer que a est irréductible.
- 4 Pour tout nombre premier p, démontrer que l'anneau A/(p) est isomorphe à l'anneau $(\mathbf{Z}/p\mathbf{Z})[T]/(T^2+1)$. En déduire que p est irréductible dans A si et seulement si $p \equiv 3 \pmod 4$.
- 5 Soit p un nombre premier tel que $p \equiv 1 \pmod{4}$. Démontrer qu'il existe $u, v \in \mathbf{Z}$ tels que $u^2 + v^2 = p$ (théorème de Fermat sur les sommes de deux carrés).

EXERCICE 23

Soit $f: A \to B$ un homomorphisme d'anneaux commutatifs, soit S une partie multiplicative de A et soit T une partie multiplicative de B telle que $f(S) \subset T$. Démontrer qu'il existe un unique homomorphisme d'anneaux $\varphi: A_S \to B_T$ qui applique a/1 sur f(a)/1 pour tout $a \in A$.

EXERCICE 24

Soit A un anneau commutatif, soit S une partie multiplicative de A et soit $j: A \rightarrow A_S$ l'homomorphisme canonique de A dans l'anneau des fractions de A à dénominateurs dans S.

- Soit I un idéal de A; on note I_S l'idéal de A_S engendré par j(I). Démontrer que I_S est l'ensemble des fractions a/s, pour $a \in I$ et $s \in S$.
- **2** Démontrer que $I_S = A_S$ si et seulement si $S \cap I \neq \emptyset$.
- 3 Soit *J* un idéal de A_S et soit $I = j^{-1}(J)$. Démontrer que l'on a $I_S = J$.
- Soit $f: A \to A/I$ l'homomorphisme canonique, soit T = f(S) et soit $k: A/I \to (A/I)_T$ l'homomorphisme canonique de A/I dans l'anneau des fractions de A/I à dénominateurs dans T. Démontrer qu'il existe un unique homomorphisme d'anneaux $\varphi: (A/I)_T \to A_S/I_S$ qui applique f(a)/1 sur la classe de a/1 modulo I_S . Démontrer que φ est un isomorphisme.

EXERCICE 25

Soit A un anneau commutatif, soit S un partie multiplicative de A et soit $j: A \rightarrow A_S$ l'homomorphisme canonique de A dans l'anneau des fractions de A à dénominateurs dans S.

- Soit *P* un idéal premier de *A* tel que $P \cap S = \emptyset$. Démontrer que P_S est un idéal premier de A_S .
- 2 Soit Q un idéal premier de A_S . Démontrer que $P = j^{-1}(Q)$ est l'unique idéal premier de A tel que $P_S = Q$.
- 3 On suppose que S = A P, où P est un idéal premier de A. Démontrer que tout idéal de A_P qui est distinct de A_P est contenu dans P_P . En déduire que l'anneau A_P possède un unique idéal maximal.

Soit A un anneau intègre et soit K son corps des fractions. Soit $f = a_n T^n + \cdots + a_0$ un polynôme à coefficients dans A en une indéterminée T.

- Soit P un idéal premier de A tel que $a_0, ..., a_{n-1} \in P$, $a_n \notin P$ et $a_0 \notin P^2$. Démontrer qu'il n'existe pas de polynômes non constants $g, h \in A[T]$ tels que f = gh.
 - On suppose dans la suite que A est un anneau factoriel qu'il existe un un élément irréductible p de A tel que p divise a_0, \ldots, a_{n-1} , et p^2 ne divise pas a_0 .
- 2 On suppose de plus que f est de contenu 1. Démontrer que le polynôme f est irréductible dans A[T].
- **3** Démontrer que le polynôme f est irréductible dans K[T]. (« Critère d'Eisenstein ».)
- 4 Démontrer que pour tout nombre premier p, le polynôme $T^{p-1} + \cdots + T + 1$ est irréductible dans $\mathbf{Q}[T]$. (Faire d'abord une substitution T = U + 1.)
- 5 Soit K un corps. Démontrer que pour tout polynôme $f \in K[X]$ qui n'est pas un carré, le polynôme $Y^2 f(X)$ est irréductible dans K[X, Y].

EXERCICE 27

Pour tout entier $n \ge 1$, soit $\Phi_n \in \mathbb{C}[T]$ le polynôme unitaire dont les racines sont simples, égales aux racines primitives n-ième de l'unité (« polynôme cyclotomique »).

- 1 Démontrer que pour tout entier $n \ge 1$, on a $\prod_{d \mid n} \Phi_d = T^n 1$.
- **2** Calculer Φ_1 . Calculer Φ_p si p est un nombre premier.
- **3** Démontrer par récurrence sur n que $\Phi_n \in \mathbf{Z}[T]$ pour tout entier $n \ge 1$.

EXERCICE 28

Soit n un entier $\geqslant 1$. Le but de l'exercice est de démontrer que le polynôme cyclotomique Φ_n est irréductible dans $\mathbf{Q}[T]$.

- Soit a une racine primitive n-ième de l'unité et soit $P \in \mathbf{Q}[T]$ un polynôme unitaire de degré minimal tel que P(a) = 0. Démontrer que $P \in \mathbf{Z}[T]$ et que P divise Φ_n dans $\mathbf{Z}[T]$.
- 2 Soit p un nombre premier qui ne divise pas n. Démontrer que a^p est une racine primitive p-ième de l'unité.
- 3 Démontrer que le polynôme $P(T^p) P(T)^p$ appartient à $p\mathbf{Z}[T]$. En déduire qu'il existe $b \in \mathbf{Z}[a]$ tel que $P(a^p) = pb$.
- 4 On suppose que $b \neq 0$. Démontrer qu'il existe un polynôme $Q \in \mathbf{Z}[T]$ tel que $T^n 1 = PQ$ et $Q(a^p) = 0$. En dérivant $T^n 1$, démontrer que $n \in \mathbf{Z}[a]$ puis en déduire une contradiction.
- 5 Démontrer que P(z)=0 pour toute racine primitive n-ième de l'unité et en déduire que $P=\Phi_n$.
- **6** Démontrer que pour tout entier $n \ge 1$, le polynôme Φ_n est irréductible dans $\mathbf{Q}[T]$.

Soit A un anneau commutatif. On dit qu'une application D: $A \to A$ est une dérivation sur A si c'est un morphisme de groupes additifs et si, pour tout $a,b \in A$, on a D(ab) = aD(b) + bD(a). Soit D une dérivation sur A.

- 1 Démontrer que pour tout $a \in A$ et tout $n \in \mathbb{N}$, on a $D(a^n) = na^{n-1}D(a)$. Si a est inversible, démontrer cette relation pour $n \in \mathbb{Z}$.
- **2** Soit *B* l'ensemble des éléments $a \in A$ tels que D(a) = 0. Démontrer que *B* est un sous-anneau de *A*.
- 3 Soit ε la classe de T dans l'anneau quotient $A[T]/(T^2)$. Démontrer que l'application $f: A \to A[T]/(T^2)$ définie par $f(a) = a + D(a)\varepsilon$ est un homomorphisme de A-algèbres.
- 4 Soit K un anneau commutatif; on suppose que A = K[T]. Démontrer qu'il existe une unique dérivation D sur A qui applique T sur 1 et tout polynôme constant sur 0.

EXERCICE 30

Soit *A* un anneau et soit $f \in A[T]$.

- Soit I un idéal de A tel que $I^2 = 0$, soit $a \in A$ et $b \in I$. Démontrer que f(a+b) = f(a) + bf'(a). On suppose que $f(a) \in I$ et que f'(a) est inversible modulo I. Démontrer qu'il existe un unique élément $a' \in A$ tel que $a' \equiv a \pmod{I}$ et f(a') = 0.
- Soit I un idéal de A. On suppose qu'il existe un entier $m \ge 1$ tel que $I^m = 0$. Soit $a \in A$ tel que $f(a) \in I$ et tel que f'(a) soit inversible modulo I. Démontrer qu'il existe un unique élément $a' \in A$ tel que $a' \equiv a \pmod{I}$ et f(a') = 0.
- 3 Trouver tous les éléments a ∈ $\mathbb{Z}/125\mathbb{Z}$ tels que $a^2 = -1$.

EXERCICE 31

Soit A un anneau.

- Soit $a \in A^{\times}$ et $b \in B$; démontrer qu'il existe un automorphisme φ de la A-algèbre A[T], et un seul, tel que $\varphi(T) = aT + b$.
- Soit φ un automorphisme de la A-algèbre A[T]. Démontrer qu'il existe un unique couple (a,b), où $a \in A^{\times}$ et $b \in A$, tels que $f = \varphi(T) aT b$ soit divisible par T^2 .
- Soit $f \in A$ tel que f T soit nilpotent. Démontrer qu'il existe un automorphisme φ de A[T], et un seul, tel que $\varphi(T) = f$.

EXERCICE 32

Soit $A = \mathbb{Z}[i\sqrt{5}]$ le sous-anneau de **C** engendré par $i\sqrt{5}$.

- 1 Démontrer que tout élément de A s'écrit de manière unique sous la forme $a+ib\sqrt{5}$, pour $a,b\in \mathbb{Z}$.
- **2** Démontrer que $A^{\times} = \{\pm 1\}$.
- **3** Démontrer que 2,3,1 + $i\sqrt{5}$ et 1 $i\sqrt{5}$ sont irréductibles dans A.
- 4 Démontrer que A n'est pas un anneau factoriel.

EXERCICE 33 (Nullstellensatz combinatoire [?])

Soit K un corps commutatif, soit n un entier $\geqslant 1$, et soit $f \in K[T_1, ..., T_n]$. Pour $i \in \{1, ..., n\}$, soit A_i une partie de K et soit $g_i = \prod_{a \in A_i} (T_i - a)$.

- On suppose que f s'annule en tout point de $A_1 \times \cdots \times A_n$. On suppose que $Card(A_i) > \deg_{T_i}(f)$ pour tout i, alors f = 0. (Traiter d'abord le cas n = 1 puis raisonner par récurrence sur n.)
- On suppose encore que f s'annule en tout point de $A_1 \times \cdots \times A_n$. Démontrer qu'il existe des polynômes $h_1, \ldots, h_n \in K[T_1, \ldots, T_n]$ tels que $f = \sum_{i=1}^n g_i h_i$ et $\deg(g_i) + \deg(h_i) \leqslant \deg(f)$ pour tout i.
- Soit $m = (m_1, ..., m_n) \in \mathbb{N}^n$ tel que le coefficient de T^m dans f soit non nul et tel que $\deg(f) = m_1 + \cdots + m_n$. On suppose que $\operatorname{Card}(A_i) > m_i$ pour tout i. Démontrer qu'il existe $a \in A_1 \times \cdots \times A_n$ tel que $f(a) \neq 0$.

EXERCICE 34

Soit *p* un nombre premier.

- Soit C une partie de $\mathbb{Z}/p\mathbb{Z}$, distincte de $\mathbb{Z}/p\mathbb{Z}$, et soit $f_C \in (\mathbb{Z}/p\mathbb{Z})[X,Y]$ le polynôme $\prod_{c \in C} (X + Y c)$. Soit $m, n \in \mathbb{N}$ tels que $\operatorname{Card}(C) = m + n$. Démontrer que le coefficient de $X^m Y^n$ dans f n'est pas nul.
- 2 Soit A, B des sous-ensembles non vides de $\mathbb{Z}/p\mathbb{Z}$; on pose C = A + B. On suppose que $\operatorname{Card}(A) + \operatorname{Card}(B) > p$; démontrer que $C = \mathbb{Z}/p\mathbb{Z}$.
- 3 On suppose que $Card(A) + Card(B) \le p$. Observer que $f_C(a, b) = 0$ pour tout $(a, b) \in A \times B$. Utiliser le résultat de l'exercice 33 pour démontrer l'*inégalité de Cauchy–Davenport* :

$$Card(A + B) \geqslant Card(A) + Card(B) - 1$$
.

EXERCICE 35

Soit *p* un nombre premier.

- Soit d un entier $\geqslant 1$. Démontrer qu'il existe un élément d'ordre multiplicatif d dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si d divise p-1.
- **2** Démontrer que -1 est un carré dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si $p \equiv 1 \pmod{4}$ ou p = 2.
- 3 Démontrer que l'équivalence des propriétés suivantes : (i) Le polynôme $T^2 + T + 1$ est réductible dans $(\mathbb{Z}/p\mathbb{Z})[T]$; (ii) -3 est un carré dans $\mathbb{Z}/p\mathbb{Z}$; (iii) $p \equiv 1 \pmod{3}$.

EXERCICE 36

Soit M un monoïde commutatif vérifiant la propriété (*): pour tout $m \in M$, l'ensemble des couples $(p,q) \in M \times M$ tels que p+q=m est fini. Soit A un anneau commutatif. Montrer que le produit de convolution définit encore une loi commutative et associative sur A^M . Vérifier qu'alors $(A^M, +, *)$ est une A-algèbre commutative et associative dont $A^{(M)}$ est une sous-algèbre. (« Algèbre large du monoïde M ».)

- **2** Soit *n* un entier naturel. Démontrer que le monoïde $M = \mathbb{N}^n$ vérifie la propriété (*).
- 3 Démontrer qu'une fonction $f \in A^M$ est inversible pour le produit de convolution si et seulement $f(0) \in A^{\times}$.
- 4 On suppose que A est un anneau noethérien et que $M = \mathbb{N}$. Démontrer que $(A^{\mathbb{N}}, +, *)$ est un anneau noethérien.

Soit A un anneau.

- Soit (P_i) une famille totalement ordonnée d'idéaux premiers de A. Démontrer que son intersection $P = \bigcap_i P_i$ est un idéal premier de A.
- 2 Démontrer que tout idéal premier de A contient un idéal premier minimal.

EXERCICE 38

Soit n un entier naturel. Soit K un corps commutatif. Soit A l'anneau $K[T_1, ..., T_n]$ et soit P l'anneau des fonctions de K^n dans K.

- Pour tout $f \in A$, on note $\varphi(f)$ la fonction de K^n dans K donnée par $a \mapsto f(a)$. Démontrer que l'application $\varphi \colon A \to P$ est un homomorphisme d'anneaux.
- 2 On suppose que K est un corps infini. Démontrer que l'homomorphisme φ est injectif mais pas surjectif.
- 3 On suppose que K est un corps fini. Démontrer que l'homomorphisme φ est surjectif mais pas injectif.