Documents autorisés : cours, TD, notes manuscrites, calculatrice. Durée : 1h 30.

Barème indicatif : 2 + 2 + 2 + 3 + 5 + 3 + 3

Exercice 1

Inverse modulaire

Déterminer si l'inverse de $\overline{25}$ existe dans $\mathbb{Z}/27\mathbb{Z}$. Si c'est le cas, préciser l'inverse avec un représentant dans [0, 26]. Expliquer.

Exercice 2

Petit théorème de Fermat

Montrer que le nombre premier 2 039 divise $2 \cdot 025^{2038} - 1$. Expliquer.

Exercice 3

Théorème du reste chinois Résoudre dans \mathbb{Z} : $\begin{cases} x \equiv 5 \pmod{11} \\ x \equiv 6 \pmod{14} \end{cases}$

Exercice 4

Clés inverses

L'alphabet choisi est $\mathcal{A}_0 = \{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z\}$ avec $n = |A_0| = 26$.

On code chacun des symboles de l'alphabet en le remplaçant par son rang dans l'alphabet de la manière suivante.

Symbole	Α	В	С	D	Е	F	G	Н	I	J	K	L	М
Rang x	0	1	2	3	4	5	6	7	8	9	10	11	12
Symbole	N	О	Р	Q	R	S	Т	U	V	W	Χ	Y	Z
Rang x	13	14	15	16	17	18	19	20	21	22	23	24	25

- 1. Dans le chiffrement de César, on prend la clé k = F. Déterminer la clé inverse k^{-1} (clé de déchiffrement) exprimée sous la forme d'un symbole. Expliquer.
- 2. Dans le chiffrement de Vigenère, on prend la clé k = CUBES. Déterminer la clé inverse k^{-1} exprimée sous la forme d'une suite de symboles. Expliquer.

Exercice 5

Chiffrement RSA

On choisit p = 7 et q = 11.

- 1. Préciser le module n = pq et m = (p-1)(q-1).
- 2. On choisit c=53. Déterminer d tel que $cd \equiv 1 \pmod{m}$, $d \in [0; m-1]$. Expliquer.

- 3. On souhaite déchiffrer le nombre $m_c = 5$.
 - (a) Décomposer d en base 2.
 - (b) Calculer $5^i \pmod{n}$ avec $i \in \{2^j\}$, $j \in [1,4]$ (donner le représentant dans [0; n-1]). Reproduire et compléter le tableau suivant.

j	1	2	3	4
$5^{2^j} \pmod{n}$				

(c) En déduire le message déchiffré $m_d \equiv 5^d \pmod{n}$. On donnera le représentant dans [0; n-1].

Exercice 6

Chiffrement affine

L'alphabet choisi est $\mathcal{A}_0 = \{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z\}$ avec $n = |\mathcal{A}_0| = 26$.

On code chacun des symboles de l'alphabet en le remplaçant par son rang dans l'alphabet de la manière suivante.

Symbole	A	В	С	D	Е	F	G	Н	I	J	K	L	М
Rang x	0	1	2	3	4	5	6	7	8	9	10	11	12
Symbole	N	О	Р	Q	R	S	Т	U	V	W	Χ	Y	Z
Rang x	13	14	15	16	17	18	19	20	21	22	23	24	25

On note la clé de chiffrement $k=(a,b)\in\mathbb{Z}^2$ avec $A=\overline{a}$ inversible dans $\mathbb{Z}/n\mathbb{Z}$. La fonction de chiffrement associée s'écrit $f:\mathbb{Z}/n\mathbb{Z}\to\mathbb{Z}/n\mathbb{Z}$ définie par f(X)=AX+B avec $B=\overline{b}$.

Le message AP a été chiffré CH.

- 1. Déterminer la clé de chiffrement k=(a,b) avec a et b dans $[\![0,n-1]\!]$. Expliquer.
- 2. Déterminer le message déchiffré du texte chiffré HW pour la clé trouvée. Indication : on pourra d'abord préciser la clé inverse $k^{-1} = (a', b')$.

Exercice 7

Chiffrement de Hill

On note $\mathcal{A} = \{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, *\}$ (* représente l'espace) et $n = |\mathcal{A}| = 27$.

On code chacun des symboles de l'alphabet en le remplaçant par son rang dans l'alphabet de la manière suivante.

Symbole	A	В	С	D	Е	F	G	Н	I	J	K	L	Μ	N
Rang x	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Symbole	О	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	*	
Rang x	14	15	16	17	18	19	20	21	22	23	24	25	26	

2

Dans le chiffrement de Hill, on prend la clé $M=\left(\begin{array}{cc} \overline{3} & \overline{10} \\ \overline{14} & \overline{19} \end{array}\right)$.

1. Chiffrer le mot BU. Expliquer.

- 2. Déterminer la clé inverse M^{-1} . Expliquer. Les représentants des coefficients de M^{-1} seront pris dans $[\![0,n-1]\!]$.
- 3. Déchiffrer le mot KL. Expliquer.