Scaling Python Data Applications with Dask

INTRODUCTION

Paweł Kordek SOFTWARE ENGINEER

@pawel_kordek https://kordek.github.io

Course overview
Understanding Dask
User interfaces

Target Audience

Target Audience

Any level of Python and data processing experience.

Target Audience

Any level of Python and data processing experience.

Looking for ways to easily accommodate 'bigger' data.

Python for Data

Rich ecosystem

Python for Data

Rich ecosystem

Accessible

Python for Data

Change Technology?

Leaving familiar environment

Need for additional tailoring

Operational complexity

Few Changes to Your Python Code

Course Components

Understanding Dask

Basic Usage

Internals and Monitoring

Numpy and Pandas

Multiple Machines

Key Outcome

Confidence in writing Python data applications that scale.

Understanding Dask

Scalability

Process larger datasets

Perform more intensive computations

By utilizing additional resources

This is not straightforward

	Count
Α	0
В	0

A B B B A B B B

	Count
Α	1
В	0

	Count
Α	1
В	1

	Count
Α	1
В	2

	Count
Α	1
В	3

	Count
Α	2
В	3

	Count
Α	2
В	4

	Count
Α	3
В	4

	Count
Α	3
В	5

	Count
Α	3
В	6

	Count
Α	3
В	7

	Count
Α	0
В	0

	Count
Α	0
В	0

	Count
Α	1
В	0

	Count
Α	0
В	1

	Count
Α	1
В	1

	Count
Α	1
В	1

	Count
Α	1
В	2

	Count
Α	1
В	2

	Count
Α	1
В	3

	Count
Α	1
В	3

	Count
Α	2
В	3

	Count
Α	1
В	4

	Count
Α	2
В	3

	Count
Α	3
В	7

	Count
Α	1
В	4

Challenges

No magic here

Explicit instructions needed

Parallel Computing and Python

Underutilization

Hard disk

APIs

Bag

Unstructured and semi-structured data


```
# Can contain e.g. JSON objects
# { 'a': 2, 'b': 4 }
```

Bag

Unstructured and semi-structured data


```
# Can contain e.g. JSON objects
# { 'a': 2, 'b': 4 }
some_bag \
   .map(lambda x: x['b']) \
   .distinct()
```

Bag

Unstructured and semi-structured data

Array

Numerical computations – subset of NumPy


```
# Matrix operations
# [[1, 2],
# [3, 5]]
```

Array

Numerical computations – subset of NumPy


```
# Matrix operations
# [[1, 2],
# [3, 5]]
a1 * a2 # Matrix multiplication
a1 + a2 # Row summation
```

Array

Numerical computations - subset of NumPy

DataFrame

Replicates subset of Pandas API


```
# c d
# a 1 3
# b 2 3
df.loc[df.loc['c'] == 1, 'd'] # Gives 3
```

DataFrame

Replicates subset of Pandas API


```
# c d
# a 1 3
# b 2 3

df.loc[df.loc['c'] == 1, 'd'] # Gives 3

df.merge(other_df)

df.groupby('d').sum()
```

DataFrame

Replicates subset of Pandas API

Lower-level APIs

dask.delayed

dask.futures

Spark

Dask

SQL engine

Streaming engine

JVM

Spark

Dask

SQL engine

Streaming engine

JVM

More lightweight

Flexible (at some performance cost)

Accessible

Spark

Dask

SQL engine

Streaming engine

JVM

Standalone

More lightweight

Flexible (at some performance cost)

Accessible

Spark

Dask

SQL engine

More lightweight

Streaming engine

Flexible (at some performance cost)

JVM

Accessible

Standalone

Integrates with other libraries

Let's go!

