計算機結構 Final Project Report

資應所二 吳佩蓮 112065538

→ Name of the proof of the

1. Basic Part

2. Advanced Part

二、 Data structure

1. 通用結構

用於儲存結果的資料結構。

成員名稱	類型	功能描述
reference_list	vector <string></string>	存儲每一筆記憶體參考
		的位元字串(例如:地
		址字串)。
hit_or_miss	vector <string></string>	每一筆記憶體參考對應
		的結果(hit 或
		miss) ·
miss_count	int	紀錄模擬結束後的總快
		取未命中次數。
indexing_bits	vector <int></int>	儲存最終輸出的索引位
		元(從大到小排序)。

2. 模擬方法一: Basic

成員名稱	類型	功能描述
offset_bit_count	int	計算偏移位元的長度,
		公式:
		log2(block_size) ∘
index_bit_count	int	計算索引位元的長度,
		公式:
		log2(cache_sets) ∘
index_bits_basic	vector <int></int>	儲存索引位元的編號
		(由低到高排序),在結
		果輸出階段排序為從大
		到小。
cache	vector <vector<string>></vector<string>	快取結構,每個集合包
		含多個關聯表目錄(根
		據關聯度設定)。
reference_bits	vector <vector<bool>></vector<bool>	每個關聯項的引用位,
		用於 1-bit Clock
		Replacement ·
clock_pointer	vector <int></int>	每個集合的時鐘指針,
		用於追蹤下一個可替換
		的快取位置。

3. 模擬方法二: Advanced

成員名稱	類型	功能描述
offset_bit_count	int	計算偏移位元的長度,
		公式:
		log2(block_size) ∘
index_bit_count	int	計算索引位元的長度,
		公式:
		log2(cache_sets) ∘
Z, O	vector <int></int>	紀錄每個位元出現 0 或
		1 的次數。
E_count	vector <vector<int>></vector<int>	統計任意兩個位元相等
		的次數,用於計算相關
		性(C矩陣)。
D_count	vector <vector<int>></vector<int>	統計任意兩個位元不相
		等的次數,用於計算相
		關性。
Q	vector <double></double>	每個位元的資訊增益
		比,用於貪婪選擇最佳
		位元作為索引位元。
C_val	vector <vector<double>></vector<double>	兩位元之間的相關性值
		矩陣,公式:C(i, j) =
		min(e, d) / max(e, d) °
selected_order	vector <int></int>	儲存動態選出的索引位
		元的順序。
chosen_index_bits	vector <int></int>	最終選出的索引位元
		(大小排序)。
cache	vector <vector<string>></vector<string>	快取結構,每個集合包
		含多個關聯表目錄。
reference_bit	vector <vector<bool>></vector<bool>	每個關聯項的引用位,
		用於 1-bit Clock
		Replacement ·
clock_pointer	vector <int></int>	每個集合的時鐘指針,
		用於追蹤下一個可替換
		的快取位置。

4. 比較

項目	模擬方法一: Basic	模擬方法二: Advanced
索引位元選擇	直接選擇連續位元,基	動態選擇,基於 Q 矩
	於地址中的位元區段。	陣和 C 矩陣計算出資
		訊增益最大化的位元。
結構複雜度	簡單,固定索引位元。	複雜,需統計每位元的
		0/1 出現次數及相關性
		矩陣。
實現靈活性	靜態設計,適用於簡單	動態調整,適用於快取
	快取模擬。	命中率優化的情境。
1-bit Clock	同樣採用,處理引用位	同樣採用,處理引用位
Replacement	更新與替換策略一致。	更新與替換策略一致。