Introduction to Game Theory

B. Nebel, R. MattmüllerT. Schulte, D. Speck, K. HeinoldSummer semester 2020

University of Freiburg Department of Computer Science

Exercise Sheet 2 — Solutions

Exercise 2.1 (Nash equilibria, 2 points)

Consider the following strategic game:

Determine and write down all Nash equilibria.

Solution:

Strategies A and Y can be eliminated since they are strictly dominated.

- pure strategy NE: (B, Z) (1p)
- pure strategy NE: (C, X) (1p)

Exercise 2.2 (Minimax strategy profiles, 1.5+1.5 points)

Let G be a two-player zero-sum game that has a Nash equilibrium.

(a) Show that if some of player 1's payoffs are increased in such a way that the resulting game G' is also a zero-sum game then G' has no Nash equilibrium in which player 1 gets a lower payoff than he got in the Nash equilibria of G.

Solution:

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ and $G' = \langle N, (A_i)_{i \in N}, (u_i')_{i \in N} \rangle$ be zero sum games with $N = \{1, 2\}$ and $u_1'(a_1, a_2) \geq u_1(a_1, a_2)$ for all $a_1 \in A_1$ and $a_2 \in A_2$.

If there is no Nash equilibrium in G', there is nothing to show.

Let's assume (a'_1, a'_2) is a Nash equilibrium in G'. Furthermore, let (a_1^*, a_2^*) be a Nash equilibrium in G (which exists according to specification). With the maximinimizer theorem the following holds

$$\begin{aligned} u_1'(a_1', a_2') &= \max_{a_1 \in A_1} \min_{a_2 \in A_2} u_1'(a_1, a_2) \\ &= \min_{a_2 \in A_2} \max_{a_1 \in A_1} u_1'(a_1, a_2) \\ &\geq \min_{a_2 \in A_2} \max_{a_1 \in A_1} u_1(a_1, a_2) = \max_{a_1 \in A_1} \min_{a_2 \in A_2} u_1(a_1, a_2) = u_1(a_1^*, a_2^*) \end{aligned}$$

Thus, in every Nash equilibrium (a'_1, a'_2) of G' player 1 gets the same or a higher utility as in the Nash equilibria of G. This does not necessarily hold true for non-ZSGs.

(b) Show that the game G' that results from G by elimination of one of player 1's strategies does not have a Nash equilibrium in which player 1's payoff is higher than it is in the Nash equilibria of G.

Solution:

Let
$$G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$$
 and $G' = \langle N, (A'_i)_{i \in N}, (u'_i)_{i \in N} \rangle$ be ZSGs with $N = \{1, 2\}.$

$$A_1' = A_1 \setminus \{a_1\}$$
 for some $a_1 \in A_1$,
 $A_2' = A_2$,
 $a_1'(a) = a_1(a)$ for all $a \in A_1' \times A_2'$

Let (a_1^*, a_2^*) be a Nash equilibrium in G, which exists according to specification, and let (a_1', a_2') be a NE in G', which we assume exists because otherwise there is nothing to show. As G and G' are ZSGs it holds

$$\begin{aligned} u_1'(a_1', a_2') &= u_1(a_1', a_2') = \max_{a_1 \in A_1'} \min_{a_2 \in A_2'} u_1(a_1, a_2) \\ &= \max_{a_1 \in A_1'} \min_{a_2 \in A_2} u_1(a_1, a_2) \\ &\leq \max_{a_1 \in A_1} \min_{a_2 \in A_2} u_1(a_1, a_2) = u_1(a_1^*, a_2^*), \end{aligned}$$

Thus, in every NE of G', the utility of player 1 is at best as high as in any NE of G. This (again) does not necessarily hold true for non-ZSGs.

Exercise 2.3 (Best response function, 3 points)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ with $N = \{1, 2\}$, $A_1 = A_2 = \mathbb{R}^{\geq 0}$, $u_1(a_1, a_2) = a_1(a_2 - a_1)$ and $u_2(a_1, a_2) = a_2(1 - \frac{1}{2}a_1 - a_2)$ for all $(a_1, a_2) \in A$. Define all Nash equilibria of this game by constructing and analyzing the best response function of both players.

Solution:

A strategy profile (a_1, a_2) is a NE iff a_1 is a best response to a_2 and a_2 is a best response to a_1 . Let's first look for best responses of player 1 to actions a_2 of player 2. The utility of player 1 is

$$u_1(a_1, a_2) = a_1 a_2 - a_1^2.$$

Action a_1 is a best response to a_2 iff it maximizes $u_1(a_1, a_2)$ given a_2 . We have a maximum that does not lie on the boundaries of the function's domain, iff

$$\frac{\partial}{\partial a_1}u_1(a_1,a_2)=0\quad \text{and}\quad \frac{\partial^2}{\partial a_1^2}u_1(a_1,a_2)<0.$$

We have

$$\frac{\partial}{\partial a_1} u_1(a_1, a_2) = a_2 - 2a_1 = 0 \quad \text{iff} \quad a_1 = \frac{1}{2} a_2$$
 (1)

$$\frac{\partial^2}{\partial a_1^2} u_1(a_1, a_2) = -2 < 0 \tag{2}$$

Therefore, the extremum is a maximum. The utility of player 2 is

$$u_2(a_1, a_2) = a_2 - \frac{1}{2}a_1a_2 - a_2^2.$$

We have

$$\frac{\partial}{\partial a_2} u_2(a_1, a_2) = 1 - \frac{1}{2} a_1 - 2a_2 = 0 \quad \text{iff} \quad a_2 = \frac{1}{2} (1 - \frac{1}{2} a_1)$$
 (3)

$$\frac{\partial^2}{\partial a_2^2} u_2(a_1, a_2) = -2 \tag{4}$$

Again, the extremum is a maximum. Consequently, we have a NE if $a_1 = \frac{1}{2}a_2$ and $a_2 = \frac{1}{2}(1 - \frac{1}{2}a_1)$. Solving this system of equations yields the following solution: $(a_1, a_2) = (\frac{2}{9}, \frac{4}{9})$. The strategic game G has a unique Nash equilibrium $(a_1, a_2) = (\frac{2}{9}, \frac{4}{9})$ with payoff profile $(\frac{4}{81}, \frac{16}{81})$.