SRS Međuispit

Osnove sigurnosti

Definicija sigurnosti

Sigurnost je kontinuirani proces čijim provođenjem se osigurava određeno stanje (sustava, podataka/informacija). Željeno stanje je definirano zahtjevima.

Ako neki od zahtjeva nije ispunjen, kažemo da se desio incident, odnosno, da je narušena sigurnost.

Temeljni sigurnosni zahtjevi

- 1. Povjerljivost (engl. confidentiality), tajnost (engl.secrecy)
 - Podaci/informacije moraju biti dostupne samo ovlaštenim entitetima
- 2. Cjelovitost, Integritet (engl. integrity)
 - Jamstvo da su podaci/informacije poslane, primljene ili pohranjene u izvornom i nepromijenjenom obliku
- 3. Raspoloživost (engl. availability)
 - Informacije moraju biti raspoložive, a sustavi i usluge u operativnom stanju, usprkos mogućim neočekivanim i nepredvidljivim događajima

Dodatni sigurnosni zahtjevi

- 1. Autentičnost (engl. authenticity)
 - Potvrda identiteta korisnika; ovjera vjerodostojnosti (autentifikacija) sudionika komunikacije; ovjera izvora podataka
- 2. Neporecivost (engl. non-repudiation)
 - Sudionici ne mogu poreći akciju u kojoj su sudjelovali, npr. nemogućnost naknadnog odricanja slanja, odnosno primanja, poruke

Kako bi se desio incident (narušila sigurnost) moraju postojati dva preduvjeta: ranjivost i prijetnja

- Ranjivost (engl. vulnerability) je pogreška ili slabost u dizajnu sustava, implementaciji, upotrebi ili upravljanju koja se može iskoristiti za narušavanje sigurnosti sustava ili informacije.
- Prijetnja (engl. threat) je bilo koja okolnost ili događaj koji ima potencijal narušiti sigurnost sustava ili informacije
- Napad je realizacija namjerne prijetnje

Podjela sigurnosti

- 1. Podjela na ofenzivnu i defenzivnu
 - Znaju dijeliti iste alate, ali naravno za različite svrhe

2. Podjela na tehničku, taktičku, operativnu i stratešku

- Tehnička direktno vezano uz tehničke aspekte
- Taktička povezivanje više tehničkih aspekata u jednu cjelinu
- Operativna povezivanje više taktičkih aspekata u jednu cjelinu
- Strateška definira smisao i svrhu, iz nje proizlazi operativna razina

Stražnja vrata u sustave (engl. backdoor)

Stražnja vrata su svojstvo sustava da omogućava pristup nekome tko ne bi smio imati pristup.

Prikriveni kanali (engl. covert channel)

Komunikacijski kanal kojim se prenose podaci, a da toga nisu svjesni vlasnici ili legitimni korisnici sustava u kojemu se kanal javlja.

Sporedni kanal (engl. side channel)

Komunikacijski kanal kroz koji prolaze dodatne informacije koje ne želimo otkriti napadaču.

Osnove kriptografije i kriptoanalize

Kerckhoffov princip

Kriptosustav mora biti siguran čak i kada su javno poznati svi detalji rada sustava osim samih ključeva.

Savršena povjerljivost

Šifra pruža savršenu povjerljivost ako je za svakog napadača šansa da pogodi poruku jednaka 1/|M|.

Simetrične šifre

Simetrična šifra je par algoritama E i D (E: $M \times K \rightarrow C$, D: $C \times K \rightarrow M$) gdje za svaki $k \in K$ i $m \in M$ vrijedi D(E(m, k), k) = m.

Jednokratna bilježnica

- Enkripcija i dekripcija se vrše tako da se napravi XOR između poruke/šifrata i ključa
- $M = K = C = \{0, 1\}^n$
- Osigurava savršenu povjerljivost

 Nedostatci: ključ mora biti iste duljine kao i poruka i smije koristiti najviše jednom, ne štiti integritet poruke

Blok šifra

- $M = C = \{0, 1\}^n$
- $K = \{0, 1\}^k$
- E i D deterministički algoritmi
- Primjeri blok šifri: DES, 3DES, IDEA, Blowfish, AES
- AES
 - o Veličina bloka: 128 bitova
 - O Veličine ključa: 128, 192 ili 256 bitova
 - o Postoji sklopovska potpora algoritmu (naredbe aesenc, aesenclast)

Slika 1. AES postupak

Ostali načini šifriranja:

ECB – Electronic Codebook

Slika 2. ECB postupak

CBC - Cipher Block Chaining

CTR - Counter Mode

Slika 3. CBC postupak

Protočna šifra

- Generator pseudoslučajnih brojeva na temelju ključa generira niz bitova koji se XOR-a s izvornim tekstom
- Primjeri: RC4, CSS, Salsa20/ChaCha (ključ 128 ili 256 bitova, alternativa AES-u zbog boljih performansi)

Kriptoanaliza blok šifri

- Apsolutne dokaze sigurnosti simetričnih šifri nemamo
- Efektivna veličina ključa je b ako najbolji poznati napad radi red veličine 2^b koraka
- Vrste kriptoanalize:
 - Gruba sila
 - Linearna kriptoanaliza iskorištava linearne zavisnosti pojedinih bitova poruke, ključa i šifrata
 - Diferencijalna kriptoanaliza analiza kako promjene poruke utječu na promjene šifrata

Kriptografske funkcije sažetka

H je deterministički algoritam $H: \{0,1\}^* \to \{0,1\}^n$ koji proizvoljnoj poruci pridružuje sažetak fiksne duljine.

Kriptografska funkcija sažetka H je otporna na kolizije ako je praktički nemoguće pronaći dvije različite poruke x i y takve da vrijedi H(x) = H(y).

Koriste se za: integritet poruka, zaštitu zaporki, deriviranje ključeva iz zaporki, generiranje pseudoslučajnih brojeva, digitalne potpise.

Kod za integritet poruke - MAC

M je deterministički algoritam $M: \{0, 1\}^* \times \{0, 1\}^k \to \{0, 1\}^n$ koji proizvoljnoj poruci i ključu pridružuje oznaku fiksne duljine.

Vrste:

- 1. HMAC MAC pomoću kriptografskih hash funkcija
- 2. CBC MAC MAC pomoću blok šifre

Osiguravanje povjerljivosti i integriteta

- Encrypt-and-MAC: E(m, k1), M(m, k2) nesignran
- MAC-then-Encrypt: $E(m \mid \mid M(m, k2), k1)$ nesiguran
- Encrypt-then-MAC: c = E(m, k1), M(c, k2) siguran!

Autentificirana šifra

Pruža svojstva povjerljivosti i integriteta u jednom paketu (AES-GCM).

Preporuke

- NE koristiti način kriptiranja ECB
- IV i salt generirati slučajno
- NE koristiti stalno isti simetrični ključ

Asimetrične šifre

Primatelj ima dva ključa:

- Javni ključ *pk*: Javno poznat
- Privatni ključ sk: Poznat samo Branku

Jasni tekst se šifrira s javnim ključem pk, skriveni tekst se dešifrira s privatnim ključem sk.

Za svaki par ključeva (pk, sk) generiranih preko G i za svaku poruku p vrijedi D(E(p, pk), sk) = p.

- G algoritam koji generira par ključeva pk, sk
- E(m, pk) algoritam enkripcije
- D(c, sk) algoritam dekripcije

Primjeri sustava kriptiranjem javnim kljucem: McEliece, ElGamal, RSA

RSA

Teorija brojeva

Notacija

- *N* prirodni broj
- p, q prosti brojevi
- $\mathbb{Z}_N = \{0, 1, ..., N-1\}$ prsten u kojemu se zbraja, oduzima i množi modulo N
- Inverz elementa $x \in \mathbb{Z}_N$ je element $y \in \mathbb{Z}_N$ takav da vrijedi $x \cdot y = 1$ u \mathbb{Z}_N
- Broj x ima inverz u \mathbb{Z}_N ako i samo ako je nzd(x, N) = 1
- \mathbb{Z}_N^* je skup svih invertibilnih elementa
- Eulerova funkcija $\varphi(N) = |\mathbb{Z}_N^*|$
 - Ako je p prost onda $\varphi(p) = p 1$
 - O Ako su p i q različiti prosti brojevi onda je $\varphi(pq) = (p-1)(q-1)$

RSA - generiranje ključeva!

Algoritam G:

- 1. Odaberem velike slučajne proste brojeve p i q
- 2. Izračunam $N = p \cdot q$
- 3. Izračunam $\varphi(N) = (p 1)(q 1)$
- 4. Odaberem proizvoljni $e \in \mathbb{Z}_{\varphi(N)}^*$ (u praksi e = 65537)
- 5. Izračunam $d = e^{-1}$ u $\mathbb{Z}_{\varphi(N)}$ *
- 6. Javni ključ: pk = (e, N)
- 7. Privatni ključ: sk = (d, N)

Ako je moguće N efikasno rastaviti na faktore onda je RSA nesiguran.

Ako je moguće efikasno izračunati $\varphi(N)$ onda je RSA nesiguran.

RSA – enkripcija i dekripcija

Algoritam E:

- $E(m, (e, N)) = m^e \cup \mathbb{Z}_N$
- e je javni eksponent

Algoritam D:

- $D(c, (d, N)) = c^d \cup \mathbb{Z}_N$
- D je privatni eksponent

Sigurnost

Obični RSA nije siguran sustav kriptiranja javnim ključem.

- Niti od napada poznatim izvornim tekstom.
- Niti od napada odabranim tekstom.

RSA – kombinacija sa simetričnom šifrom

U praksi se RSA gotovo nikada ne koristi za kriptiranje podataka već za kriptiranje ključeva ili materijala za ključeve.

- 1.način: Digitalna omotnica: $E(Pad(k), pk), E_S(m, k)$
- 2.način: Kriptiranje materijala za ključ

H je hash funkcija, $E_{\rm S}$ simetrična šifra

Algoritam E:

- 1. Izaberem slučajni $x \in \mathbb{Z}_N$
- 2. Izračunam k = H(x)
- 3. Izračunam c1 = E(x, pk)
- 4. Izračunam $c2 = E_s(m, k)$
- 5. Skriveni tekst je (c1, c2)

Ako se RSA ispravno koristi smatramo ga sigurnim.

Digitalni potpisi

Pošiljatelj generira potpis svojim privatnim ključem skA.

Primatelj provjerava potpis pošiljatelja javnim ključem pkA.

Autentičnost - Svatko može provjeriti ispravnost digitalnog potpisa ako ima na raspolaganju javni ključ potpisnika

Trojka efikasnih algoritama G, S i V

- *G* algoritam koji generira par ključeva *pk*, *sk*
- S(m, sk) algoritam potpisivanja
- $V(m, \sigma, pk)$ algoritam verifikacije

Primjeri sustava digitalnog potpisa: McEliece, DSA, RSA

Digitalni potpis nije enkripcija sažetka poruke privatnim ključem!

RSA digitalni potpis

H – kriptografska funkcija sažetka

Pad – funkcija nadopunjavanja

Algoritam S:

• $S(m, (d, N)) = Pad(H(m))^d \cup \mathbb{Z}N$

Algoritam V:

• $V(m, \sigma, (e, N)) = (Unpad(\sigma^e \cup \mathbb{Z}_N) == H(m)) ? 1 : 0$

Ranjivosti

Ranjivost je moguće uvesti u bilo kojoj fazi životnog ciklusa sustava.

Životni ciklus programskih sustava sastoji se od sljedećih faza:

- 1. Dizajn
- 2. Implementacija
- 3. Uvođenje u upotrebu, upravljanje, održavanje
- 4. Uklanjanje

Ranjivosti u dizajnu sustava

- Tijekom dizajna definiraju se ključne karakteristike sustava
- Najčešće se specificira kroz arhitekturu sustava i načela izgradnje sustava
- Pogreške, odnosno slabosti, nastaju ako se ne predvidi ugrađivanje odgovarajućih sigurnosnih zaštitnih mehanizama
- Za sprečavanje je potrebno od inicijalnog trenutka voditi računa o sigurnosti
- Temeljni mehanizam za ispravno dizajniranje sustava je modeliranje prijetnji (engl. Threat modeling)

- o Zadaća modeliranja prijetnji je utvrditi što prijeti sustavu i od čega se štitimo
- Otkrivanje ranjivosti provođenjem analize sustava

Ranjivosti u implementaciji

- U ovoj fazi ranjivosti su podskup programskih pogrešaka (bugs).
- Svaki bug nije ranjivost, ali svaka ranjivost jest bug.
- Posebna kategorija su ranjivosti nultog dana (engl. zero day vulnerability)
 - Otkrivene ranjivosti za koje ne zna nitko osim onoga tko ih je otkrio

• Sprečavanje ranjivosti

- o Edukacija programera
- o Testiranje koda
- o Revizija koda (barem jedan drugi programer provjerava kod)
- o Statička analiza koda
- Dinamička analiza koda
- o Formalne metode
- Liste najčešćih ranjivosti:
 - o OWASP Top 10
 - o CWE Top 25

Ranjivosti u upotrebi

- Tijekom uporabe mogu nastati zbog pogrešaka proizvođača ili neispravnog korištenja sustava
- Pogreške proizvođača tek u ovoj fazi postaju vidljive

• Sprečavanje ranjivosti

- Temeljni način otkrivanja pogrešaka je pregledavanje sustava (Ručno pregledavanje i testiranje ili pomoću alata)
- Sprečavanje pogrešaka i slabosti u upotrebi (korištenje alata koji provjeravaju konfiguracije te upozoravaju na potencijalne manjkavosti)

Otkrivanje ranjivosti

- o Ručno može otkriti i nove, do sada nepoznate, ranjivosti
- Automatizirano potencijalno puno lažno pozitivnih i lažno negativnih, može otkriti samo ono što je algoritamski "pronalazivo" i isprogramirano
- Implementacijske ranjivosti u upotrebi
 - Kada se ranjivost otkrije potencijalno su ranjive sve implementacije u upotrebi
 - o Dominantan način ispravljanja je korištenjem zakrpa (eng. patch)
 - o Proizvođači programske podrške također izdaju upozorenja
 - Ako zakrpa nije odmah dostupna proizvođači daju privremene mjere zaštite (engl. workaround)
- Način iskorištavanja ranjivosti
 - o Metoda, kod ili nekakav drugi artefakt koji iskorištava ranjivost
 - Shellcod kratki kod koji iskorištava ranjivost i potom pokreće nešto drugo
- Baza ranjivosti CVE
 - Common Vulnerability Enumeration (CVE) je često korišten način označavanja i katalogiziranja ranjivosti

- Metoda izračuna ozbiljnosti ranjivosti
 - Common Vulnerability Scoring System (CVSS)
 - o Raspon mjere je od 0 do 10 u koracima 0.1
 - U izračunu CVSS-a uzimaju se u obzir tri komponente: Bazna komponenta, vremenska komponenta, okruženje

Ranjivosti u upravljanju i uklanjanju

- Ovo su pogreške koje nastaju zbog upravljačkih ili administrativnih propusta
- Ove ranjivosti sprečavaju se definiranjem odgovarajućih politika i procedura
- Kada se sustavi uklanjaju treba paziti na podatke koji se na njima nalaze
- Primjer ranjivosti: skeneri/printeri imaju diskove na kojima se nalaze podaci

Zloćudni kod

Zloćudna funkcionalnost (engl. malicious logic) je sklopovlje, firmware ili programska podrška koja je namjerno uključena ili ubačena u sustav radi štetnih ciljeva.

Zloćudni kod (engl. malware) je značajan mehanizam djelovanja raznih napadača.

Klasifikacija zloćudnog koda

- Način širenja na koji način dolaze do računala žrtve
- Način pokretanja na koji način započinje njihovo izvršavanje
- Monolitni ili modularni
- Platforma kako/gdje se izvršava zloćudni kod
- Perzistencija
- Način prikrivanja od korisnika
- Zloćudna funkcionalnost

Česti spominjan zloćudni kod

- Virusi
 - Temeljna karakteristika je da se šire tako što se ubacuju u izvršne kodove legitimnih programa te se pokreću njihovim pokretanjem
- Crvi
 - Temeljna karakteristika je da se mogu samostalno širiti putem mreže (ranjivi servisi, dijeljeni diskovi)
- Downloader
 - Zloćudni kod koji skida i instalira neki drugi zloćudni kod
- Dropper
 - Zloćudni kod koji sadrži drugi zloćudni kod te ga postavlja na kompromitirano računalo
- Logička bomba (engl. logic bomb)
 - o Zloćudni kod koji obavlja nekakvu zloćudnu aktivnost kada se ispune određeni uvijeti

- Špijunski zloćudni kod (engl. spyware)
 - o Zloćudni kod koji na neki način izvlači podatke korisnika računala
- Alat za udaljen pristup (engl. remote access tool)
 - O Nije nužno zloćudni kod, primjerice downloader može instalirati TeamViewer
- Trojanci (engl. Trojan horse)
 - Temeljna karakteristika je da se pretvaraju kako obavljaju neku korisnu funkciju dok u biti sadrže maliciozni teret
- Ucjenjivački zloćudni kod (engl. Ransomware)
 - o Kod koji na nekakav način pokušava ucijeniti vlasnika kompromitiranog računala

Forma zloćudnog koda

- Zloćudni kod može biti gdje god se nalazi programski kod
- Zloćudni kod može biti i u podacima
- Izvršne datoteke operacijskog sustava (npr. EXE)
- Skripte operacijskog sustava (Powershell)
- MS Office dokumenti (Visual Basic kod)
- PDF dokumenti (Javascript kod)
- Mobilne aplikacije
- Web

C&C poslužitelj

- Jako često se zloćudni kod po uspješnoj instalaciji javlja nekom računalu na Internetu (engl. phone home)
- Korištenjem C&C poslužitelja napadač se štiti od otkrivanja

Zaštita od zloćudnog koda

- Antivirus
- Dinamička analiza elektroničke pošte i Web prometa
- Blokiranje C&C poslužitelja

Indikatori kompromitacije (IOC) su podaci koji omogućavaju detekciju zloćudnog koda. Vrlo su efikasan način za utvrditi je li nešto zaraženo.

Napadačima je jednostavno promijeniti IOC-e.

Analiza zloćudnog koda

- **Reverzno inženjerstvo** metode, tehnike i procesi uz pomoć kojih se pokušava saznati što i kako nešto radi
 - Metode:
 - Pokretanje koda u zaštićenoj okolini (engl. sandbox) i praćenje rezultata
 - Analiza koda u debugeru
 - Statička analiza
 - Zloćudni kod pisan je u raznim jezicima i alatima i ne postoji univerzalni skup alata za sve potrebe reverzanja

Botnet

- Skup zaraženih računala kojima upravlja botmaster
- Svako računalo izvršava maliciozni kod koji čini računalo dijelom botneta
- Sastoji se od napadača, izvora napada, C&C poslužitelja, botova, žrtve i komunikacijskih puteva

Slika 4. Botnet

Izvori prijetnji i prijetnje

Primjeri prijetnji i pridruže ranjivosti

- Pogađanje kriptografskog ključa
- Preplavljivanje poslužitelja zahtjevima
- Lažiranje poruka elektroničke pošte
- DDoS napada na tvrtku
- Poplava u sistemskoj sali
- Napajanje poslužitelja prestane raditi
- Ransomware

Ne postoji formalni popis prijetnji.

Ne postoji formalni popis ranjivosti koje svaka prijetnja iskorištava.

Prijetnje mogu biti tehničke, taktičke, operativne i strateške.

Dodatni pojmovi vezani uz prijetnje

- Agent prijetnje (engl. threat agent) je subjekt koji provodi prijetnju
- Izvor prijetnje (engl. threat source) je onaj koji je prijetnju potaknuo
- Ova dva termina se često poklapaju
- Napad je kombinacija izvora prijetnje, namjere, prijetnje i posljedice

Podjela izvora prijetnji

- Prirodni izvori (npr. prirodne nepogode)
- Ljudski izvori
 - Postoje dvije podjele:
 - Namjerni (napadači) ili slučajni (posljedice grešaka)
 - Vanjski ili unutarnji (u odnosu na sustav koji se štiti)
- Postoji jako puno izvora prijetnji na Internetu i grupiramo ih da se lakše nosimo s njima
- Podjelu je moguće napraviti na temelju sljedećih karakteristika
 - o Raspoloživi materijalni resursi
 - o Motiv i ciljevi Što žele postići, odnosno, do čega žele doći te koga napadaju
 - O Ustrajnost Koliko je bitno da dođu do zadanog cilja
 - o Količina ljudskih resursa i njihove kompetencije

Izvori prijetni

- Napredne ustrajne prijetnje (APT)
 - Napredne ustrajne prijetnje su dijelovi obavještajnih službi ili dio vojne organizacije
 - Skoro neograničene količine resursa
 - Raspoloživi ljudi imaju vrlo visoke kompetencije
 - Vrlo su ustrajni i ciljani u svom djelovanju
 - o Prikrivaju svoju prisutnost
- Kibernetički kriminalci
 - Motiv je zarada, a ustrajnost srednja
 - Dvije vrste kriminalnih aktivnosti:
 - Tradicionalne kriminalne aktivnosti koje se obavljaju putem kibernetičkog prostora
 - Kriminalne aktivnosti koje je omogućio kibernetički prostor
 - Načini zarade:
 - Krađa podataka
 - Prodaja ilegalne robe i usluga
 - Ucjenjivanje i iznuđivanje

- Prijevare
- Haktivisti
 - Slabo povezana grupa anonimaca
 - Ne pretjerano velikih kompetencija i resursa
 - o Promoviraju nekakve političke, svjetonazorske i slične stavove
 - o Trude se biti što vidljiviji
 - Uporni su prema grupi ciljeva, a ne specifičnim ciljevima
- Pojedinačni napadači
 - o Napadači potencijalno vrlo velikih vještina i kompetencija
 - o Razlikuju se po tome djeluju li etično (white hats) ili ne (black hats)
 - Vrsta Gray Hats su na granici
 - O Script Kiddies napadači najmanje razine vještine
- Automatizirane probe
 - Dvije vrste automatiziranih proba:
 - Skeneri koji stalno pretražuju Internet za ranjivim servisima
 - Crvi koji se pokušavaju zaraziti druga računala na mreži
 - o Više spadaju pod smetnju/dosadu nego nešto ozbiljno, lako obranjivi

Kako izgleda napad?

- Napad (ponašanje napadača) pokušavamo opisati modelom
- Najpoznatiji model napada je Cyber Kill Chain
- Sastoji se od sljedećeg niza koraka:
 - 1. Istraživanje
 - 2. Naoružavanje
 - 3. Isporuka
 - 4. Iskorištavanje
 - 5. Instalacija
 - 6. Uspostava upravljačkog kanala
 - 7. Djelovanje
- Organizacija MITRE slaže bazu taktika, tehnika i procedura uočenih u napadima

Česte tehnike: Društveni inženjering

- Čovjek je najslabija karika
- Napadači često iskorištavaju ljudske slabosti jer im je to najjednostavnije
- Phishing, Spear Phishing

Problem atribucije

- Atribucija: Odgovor na pitanje tko stoji iza napada?
- Zbog načina kako Internet radi teško je dati odgovor na to pitanje
- Sposobniji napadači prikrivaju svoj pravi identitet (npr. pomoću VPN-a)

Kontrola pristupa

Kontrola pristupa sastoji se od dva koraka:

- Autentifikacija proces provjere identiteta SUBJEKTA (korisnika, procesa ili uređaja)
- Autorizacija proces odlučivanja može li SUBJEKT obaviti točno određenu OPERACIJU nad OBJETKOM

Metode autentifikacije

- Temelje se na jednom ili kombinaciji više faktora
- Jedno-faktorska autentifikacija (1FA)
 - Najčešće korištena, u dosta slučajeva nedovoljna
- Dvo-faktorska autentifikacija (2FA)
 - o Sve više korištena i dovoljno visoke razine zaštite
- Višefaktorska autentifikacija (MFA)
 - o Rijetko korištena

Primjeri metoda autentifikacije

- 1. Lozinke
- 2. Dijeljene tajne
- **3.** Fraze
- 4. Jednokratne lozinke
- 5. Pametne kartice
- **6.** Biometrijske metode

Lozinke

- Niz znakova, temeljene na onome što znamo
- Jednostavne za implementaciju i korištenje
- Ranjivosti i prijetnje na sigurnost lozinki:
 - Niska razina slučajnosti i kompleksnosti (ranjivost)
 - Upotreba iste lozinke na više raznih mjesta (ranjivost)
 - Krađa lozinki (prijetnja)
 - Presretanje/krađa lozinki tijekom prijenosa (prijetnja)
 - Sustav obnavljanja lozinki

• Smanjenje ranjivosti lozinka

- o Ispravno ih pohranjivati
- o Trebaju biti odgovarajuće kompleksnosti i često se mijenjati
- Spriječiti pogađanje
- o Korisnik ih ne smije dijeliti s nikim više te koristiti jedinstvene lozinke za svaku uslugu
- o Tijekom unosa paziti da ih netko ne otkrije

Zaštititi tijekom prijenosa

• Sigurna pohrana lozinki

- Svakoj lozinki se dodaje slučajna vrijednost (salt)
- o Slučajna vrijednost i lozinka se propuštaju kroz kriptografsku funkciju sažetka
- Na disk se pohranjuju slučajna vrijednost i rezultat kriptografske funkcije sažetka
- Salt onemogućava dvije stvari
 - Ista lozinka ima isti zapis u bazi
 - Napad korištenjem tzv. Rainbow tables

• Sprečavanje pogađanja lozinki

- Pogađanje može biti on-line ili off-line
- Obje vrste napada otežavamo ako su lozinke minimalne određene kompleksnosti
- o Kako bi spriječili pogađanja lozinke često se uvode dva dodatna ograničenja:
 - Nakon svakog neuspjelog pokušaja upisivanja lozinke povećava se vrijeme čekanja
 - Nakon određenog broja neuspjelih pokušaja korisnik se blokira, korisnički račun se zaključava, generira se upozorenje vlasniku sustava
- Periodički se traži promjena lozinke
- Za očekivati je da će ljudi zaboravljati lozinke i često se u raznim aplikacijama na Internetu ugrađuje mogućnost resetiranja lozinke

Prijenos lozinke preko mreže

- Problem ako mjesto gdje korisnik upisuje lozinku i mjesto gdje se provjerava lozinka nisu na istom računalu
- Rješenje tog problema je izazov-odgovor način provjere
- Izazov odgovor način provjere (challenge-response)
 - 1. Poslužitelj šalje slučajan broj na klijent
 - 2. Korisnik upisuje korisničko ime i lozinku
 - 3. Klijent slučajan broj i lozinku propušta kroz funkciju sažetka
 - **4.** Korisničko ime i rezultat funkcije sažetka se šalju na poslužitelj
 - **5.** Poslužitelj na temelju korisničkog imena dohvaća pohranjenu lozinku te izračunava funkciju sažetka na temelju lozinke i slučajnog broja kojeg je poslao klijentu
 - 6. Ako je izračunata vrijednost ista kao i primljena verzija autentifikacija je uspješna

Dijeljene tajne

 Služe za međusobnu autentifikaciju – i jedna i druga strana dokazuju poznavanje dijeljene tajne

Fraze

- Dvije razlike u odnosu na lozinke:
 - Značajno su dulje (rečenice i slično)
 - Uz njih nije vezano korisničko ime

Jednokratne lozinke

- Najčešće broj od 4 i više znamenki koji se generira po nekom poznatom algoritmu
- Algoritmi: TOTP RFC6238, HOTP RFC4226

Pametne kartice

- Kategorija ono što imamo (kartica) i ono što znamo (PIN)
- Dvofaktorska autentifikacija
- Temelj za autentifikaciju su privatni i javni ključevi
- Privatni ključ se nalazi na kartici i nikada ne izlazi van, javni ključ je svima poznat

Biometrijske metode

- Koristi se jedinstvenim biološkim karakteristikama
- Otisak prsta, slika lica, slika rožnice, stil tipkanja, otisak dlana, ...
- Problematični u slučaju krađe autentifikacijskih podataka

Autorizacija

- Nakon što je korisnik identificiran utvrđuje se pravo korisnika da provede nekakvu operaciju nad nekim resursom
- Subjekti su korisnici, odnosno, procesi koji djeluju u ime korisnika
- Koji **objekti** i dozvole postoje ovise o aplikaciji i onima koji su je razvijali
- Autorizacija bazirana na dozvolama
 - Objekt za svaki subjekt ima definirano može li obaviti pojedinu operaciju
 - Dodavanje/uklanjanje dozvola svodi se na modifikaciju odgovarajućih struktura podataka
- Autorizacija bazirana na ulogama
 - o Prava se grupiraju u uloge, a uloge se dodjeljuju subjektima
 - o Puno veća fleksibilnost i upravljivost

Sigurnost programske podrške – ranjivosti i napadi

Defenzivno programiranje

- "Obično" programiranje program u razumnim okolnostima, za razumne ulaze treba davati razumne izlaze
- Defenzivno programiranje čak i u potpuno nerazumnim okolnostima i za potpuno nerazumne ulaze, program se ne smije ponašati nerazumno
- Potrebno je razumjeti napade kako bi shvatili rizike i oblikovali obrane
- Primjeri čestih i opasnih ranjivosti programske podrške:

- o Provjera ispravnosti ulaza (input validation)
- Napadi prelijevanjem međuspremnika (buffer overflow attacks)
- Interakcija s okolinom i operacijskim sustavom

Provjera ispravnosti ulaza

- Provjera sintakse ulaza je li ulaz ispravne veličine i ispravno formatiran
- Provjera semantike (značenja) ulaza ima li ulaz smisla
- Primjer: Heartbleed ranjivost
 - Ranjivost u OpenSSL kriptografskoj biblioteci

Slika 5. Heartbleed ranjivost

• Primjer: Command injection (općenita verzija SQL injectiona)

```
$userName = $_POST["user"];
$command = 'ls -l /home/' . $userName;
system($command);
```

Slika 6. Command injection

- Treba voditi računa o različitim jezicima, kodiranjima znakova.
- Blacklist vs whitelist pristup
- Preporuka: sve pretvarati u kanonski oblik pa onda provjeravati ispravnost

Preljev međuspremnika (buffer overflow)

- Primjeri iz povijesti: Morris crv, Code Red crv, Iphone ranjivosti
- Napadač kao ulaz daje strojni kod koji želi da se izvrši te njegovu očekivanu adresu
- Ulaz je pažljivo namješten tako da adresa točno prepiše adresu za povratak na spremljenu na stogu
- Nakon instrukcije ret izvršava se kod napadača
- Shellcode najčešće kratak strojni kod koji omogućuje ili olakšava napadaču postizanje cilja

Slika 7. Prelijevanje međuspremnika

- Napadač ne može skroz pouzdano predvidjeti točnu adresu vrha stoga
 - o Rješenje: prije samog koda staviti dugačak niz nop instrukcija
- Obrana: write xor execute
 - Razlikujemo podatke i programe: procesoru kažemo da neke memorijske stranice sadrže podatke te da se ne smiju izvršavati
 - O Većina modernih sustava ima uključenu ovu obranu.

• Zaobiliženje NX bita – return-to-libc napad

- Napadač prepisuje stog tako da se poziva postojeća funkcija
- Dodatno, napadač na prepisani stog stavlja i argumente za tu funkciju po njegovoj želji
- Obrana: randomizacija memorijskog prostora
 - Adrese memorijskih stranica su (djelomično) slučajno odabrane
- Obrana: kanarinci na stogu
 - Prilikom pozivanja funkcije stavlja na stog određenu vrijednost nepoznatu napadaču
 - Prije završetka funkcije provjerava je li točno ta vrijednost još uvijek na stogu

Sigurnost programske podrške 2

Taksonomija pogrešaka

- Namjerne
 - o Zlonamjerne
 - o Nezlonamjerne
- Nenamjerne
 - o Pogreške pri provjeri valjanosti
 - Logičke pogreške
 - o Neadekvatna identifikacija ili autentifikacija

Nezlonamjerne pogreške

- Preljevi spremnika
- Nepotpuna provjera valjanosti ulaznih parametara
- Sinkronizacija provjere i pristupa

Statička i dinamička analiza koda

- Statička analiza = analiza izvornog koda
- Dinamička analiza = analiza binarnog (izvršnog) koda

Problemi

- Koliko programski jezik pazi na način pisanja koda u smislu rukovanja tipovima podataka možemo li napisati kod koji će biti besmislen/pogrešan?
- Možemo li biti sigurni da će se program izvoditi kako smo mi zamislili?

Strogo tipiziran jezik (strongly typed) - rješenje

- Strog u definiranju i rukovanju tipovima podataka "pazi umjesto nas"
- Provjerava kod u nekom trenutku najčešće prilikom prevođenja ili tijekom izvođenja (baca grešku)
- Java, C#, Rust

Sigurni razvoj programske podrške

Cilj nam je uključivanje sigurnosti u dizajn sustava od faze skupljanja zahtjeva.

Koraci prije implementacije sustava

- Što moramo osigurati?
- Profili napadača
- Identifikacija i klasifikacija entiteta u sustavu
- Postavljanje arhitekture

Smjernice za siguran dizajn

Minimizacija prostora za napad

 Princip minimizacije jest da ne dodajemo funkcionalnosti koje nisu doista potrebne čime ćemo efektivno smanjiti sigurnosne rizike

Definiranje sigurnih početnih postavki

- o lako se korisnicima želi olakšati, početne postavke trebale bi biti maksimalno sigurne
- Omogućiti korisnicima da na vlastitu odgovornost smanje razinu sigurnosti i olakšaju korištenje

Princip najmanjih prava

 Korisnici / dijelovi sustava / servisi bi trebali imati samo ona prava na resurse koja im doista trebaju

• Princip obrane u dubinu

- o Princip obrane u dubinu zapravo govori da uvijek treba biti više mehanizama obrane
- o Dobra praksa više neovisnih mehanizama koji štite isti dio sustava

• Sigurno ispadanje

 Svaki sustav će najvjerojatnije nekada ispasti, važno je što će sustav izvesti u tom trenutku

Ne vjerujte vanjskim uslugama

Razdvajanje zaduženja

- o Nema preklapanja između funkcionalnosti
- o Npr. administratori nikada ne bi smjeli imati ulogu običnih korisnika

Izbjegavajte sigurnost prikrivanjem

o Kod bi trebao biti siguran i onda kada je javno dostupan

Jednostavna sigurnost

- Sve riješiti na najjednostavniji mogući način
- o Ipak, razmisliti o obrani u dubinu i ne zanemariti više razina obrane

Ispravne sigurnosne zakrpe

Ne žuriti s popravkom nego pokušati doći do stvarnog uzroka

Sigurnost operacijskih sustava

Razdvajanje

- Osnova zaštite objekti jednog korisnika nisu vidljivi drugom korisniku
- Sandboxing
- Osim razdvajanja, želimo i dijeljenje resursa (sharing)

Dijeljenje

- Različite razine
 - o Dijeljenje uz ograničenje pristupa
 - o Dijeljenje prema mogućnosti
 - o Ograničenje korištenja objekta
- Pristup podacima na više razina: bit, byte, word, polje, zapis, datoteka, disk granularnost

Ovlasti

- Podjela na tri skupine ovlasti
 - o Vlasnik (owner) u
 - o Grupa korisnika (group, staff) g
 - Svi ostali (other, all, everyone) o, a
- Podjela na tri skupine akcija
 - o Read r
 - o Write w
 - o Execute x
 - o Bez ovlasti –
- r=4, w=2, x=1
- rwx = 4+2+1 = 7 -> rwxrwxrwx = 777
- Primjer promjene ovlasti
 - o "chmod 644 file.txt"

Sandboxing kao koncept

- Koncept kod kojeg se svaki proces/aplikacija izvodi u svojem "pješčaniku"
- Za "izlazak iz pješčanika" treba posebne dozvole

Šifriranje datoteka/diska

- Još jedna mogućnost zaštite podataka
- Različita rješenja na sustavima