Richiami e nuove nozioni di Algebra Lineare II^a parte

Calcolo Numerico - Ing. Inf. - Lezione 4

Outline

- Matrici Riducibili
 - Grafo orientato

- 2 Autovalori e autovettori
 - Equazione caratteristica e polinomio caratteristico
 - Molteplicità degli autovalori

Outline

- Matrici Riducibili
 - Grafo orientato

- 2 Autovalori e autovettori
 - Equazione caratteristica e polinomio caratteristico
 - Molteplicità degli autovalori

3/41

Partizionamento a blocchi

Nelle applicazioni si utilizzano spesso matrici *A* partizionate a blocchi che sono matrici i cui elementi sono sottomatrici di *A* Una qualunque matrice può essere partizionata a blocchi in molti modi

Il partizionamento più importante è il caso in cui i blocchi diagonali sono quadrati

Anche per le matrici partizionate a blocchi si possono avere matrici **triangolari a blocchi**

$$\begin{pmatrix} A_{11} & \mathbf{O} & \cdots & \mathbf{O} \\ A_{21} & A_{22} & \cdots & \mathbf{O} \\ \vdots & \vdots & \ddots & \vdots \\ A_{k1} & A_{k2} & \cdots & A_{kk} \end{pmatrix} \quad \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ \mathbf{O} & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{O} & \mathbf{O} & \cdots & A_{kk} \end{pmatrix}$$

Partizionamento a blocchi

Oppure diagonali a blocchi

$$\left(\begin{array}{cccc}
A_{11} & \mathbf{O} & \cdots & \mathbf{O} \\
\mathbf{O} & A_{22} & \cdots & \mathbf{O} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{O} & \mathbf{O} & \cdots & A_{kk}
\end{array}\right)$$

Osservazione

In questi casi particolari è facile verificare che

$$\det(A) = \prod_{i=1}^k \det(A_{ii})$$

Definizione

Una matrice $A \in \mathbb{C}^{n \times n}$ si dice **riducibile** se esiste una matrice di permutazione P tale che la matrice P^TAP sia partizionabile nella forma

$$B = P^T A P = \begin{pmatrix} B_{11} & \mathbf{0} \\ B_{21} & B_{22} \end{pmatrix}$$

con blocchi diagonali quadrati

Se la matrice *B* ha qualche blocco diagonale ancora riducibile si può operare una nuova trasformazione con un'altra matrice di permutazione e così via fino ad arrivare alla **forma ridotta** della matrice *A* in cui tutti i blocchi diagonali risultano non riducibili

Una matrice che non sia riducibile è detta irriducibile

Da quanto visto in precedenza, la matrice B si ottiene dalla matrice A operando sulle righe e sulle colonne la stessa permutazione operata sulle colonne della matrice identica per ottenere P

Per stabilire se una matrice è riducibile o meno, cioè se esiste o no una matrice P che verifichi la definizione di riducibilità, non si può procedere per tentativi provando tutte le possibili matrici di permutazione (si ricorda che sono in numero pari a n!)

Serve una strada alternativa che eviti di dover procedere ad un numero elevato di prodotti tra matrici (si ricordi che i prodotti per matrici di permutazione sono facilmente programmabili senza eseguire prodotti classici tra matrici)

Definizione

Data una matrice $A \in \mathbb{C}^{n \times n}$, fissati n punti, detti **nodi**, N_1, N_2, \ldots, N_n , si dice **grafo orientato** associato ad A, il grafo che si ottiene congiungendo N_i a N_j con un cammino orientato da N_i a N_j per ogni $a_{ij} \neq 0$

Definizione

Un grafo orientato si dice **fortemente connesso** se da ogni nodo N_i , $i=1,2,\ldots,n$, è possibile raggiungere un qualunque altro nodo N_j , $j=1,2,\ldots,n$, seguendo un cammino orientato eventualmente passante per altri nodi

Teorema

Una matrice $A \in \mathbb{C}^{n \times n}$ risulta **irriducibile se e solo se** il grafo orientato ad essa associato risulta **fortemente connesso**

È data la matrice

$$A = \left(\begin{array}{rrr} -1 & 0 & 5 \\ 2 & 12 & 3 \\ -4 & 2 & 0 \end{array}\right)$$

e ci chiediamo se risulta riducibile

Il grafo orientato associato è

Conclusione

Il grafo orientato risulta fortemente connesso per cui, dal precedente Teorema, la matrice A è **irriducibile**

È data la matrice

$$A = \left(\begin{array}{ccc} 3 & 0 & 6 \\ 2 & 4 & 7 \\ 3 & 0 & 0 \end{array}\right)$$

e ci chiediamo se risulta riducibile

Il grafo orientato associato è

Analizziamo il grafo compilando la seguente tabella

Nodi	Nodi collegati	Nodi non collegati
N_1	$N_1 N_3$	N_2
N_2	$N_1 N_2 N_3$	
N_3	$N_1 N_3$	N_2

Conclusione

Il grafo orientato risulta non fortemente connesso per cui la matrice A è **riducibile**

Dalla tabella è possibile ricavare una matrice di permutazione che riduce la matrice A

Consideriamo un nodo che non raggiunge almeno un altro nodo: per esempio N_1

Cambiamo l'ordine dei nodi mettendo, dopo N_1 , i nodi collegati e di seguito i nodi scollegati

In questo caso si ha il nuovo ordine

$$N_1$$
 N_3 N_2

Una matrice di permutazione che riduce la matrice iniziale si ottieme riordinando le colonne della matrice identica come si sono riordinati i nodi del grafo

Si ha quindi

$$P = (e^{(1)}|e^{(3)}|e^{(2)}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Matrice ridotta a forma tringolare a blocchi

Eseguendo i conti si ha

$$B = P^{T} A P = \begin{pmatrix} 3 & 6 & 0 \\ 3 & 0 & 0 \\ \hline 2 & 7 & 4 \end{pmatrix}$$

Risoluzione di un sistema lineare

Sia $A \in \mathbb{C}^{n \times n}$ la matrice dei coefficienti del sistema lineare Ax = b e supponiamo che A sia riducibile e che P sia la matrice di permutazione che la riduce

Poniamo

$$B = P^T A P = \begin{pmatrix} B_{11} & \mathbf{0} & \cdots & \mathbf{0} \\ B_{21} & B_{22} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ B_{k1} & B_{k2} & \cdots & B_{kk} \end{pmatrix}$$

con i blocchi diagonali B_{ii} , $i=1,2,\ldots,k$, quadrati ed irriducibili Inoltre, supponiamo che l'ordine dei blocchi B_{ii} sia p_i , $i=1,2,\ldots,k$, per cui $\sum_{i=1}^k p_i = n$

Premoltiplicando il sistema lineare per la matrice P^T si ha

$$P^{T}Ax = P^{T}b \implies P^{T}APP^{T}x = P^{T}b$$

Ponendo $y = P^T x$ e $c = P^T b$, il sistema Ax = b si trasforma nel sistema

$$By = c$$

Partizionando i vettori y e c in blocchi di pari dimensione dei B_{ii} , i = 1, 2, ..., k, il sistema risulta della forma

```
B_{11}y_1 = c_1 \\
B_{21}y_1 + B_{22}y_2 = c_2 \\
\vdots = \vdots & \ddots & \vdots & \vdots \\
B_{k1}y_1 + B_{k2}y_2 + \cdots + B_{kk}y_k = c_k.
```

La prima equazione è un sistema lineare, con matrice dei coefficienti \mathcal{B}_{11} , di ordine p_1 , la cui incognita è il vettore y_1 Si risolve tale sistema e si sostituisce il vettore y_1 nelle equazioni seguenti.

La seconda equazione diviene un sistema lineare, quadrato di ordine p_2 , da cui si ricava il vettore y_2 che può essere sostituito nelle equazioni seguenti

Procedendo in questo modo si ricavano tutti i blocchi y_i , $i=1,2,\ldots,k$, che costituiscono il vettore y Una volta ottenuto l'intero vettore y si risale al vettore x tramite la relazione x=Py

Si osservi che se la matrice A è non singolare tale è anche la matrice B in quanto ottenuta da A con una trasformazione per similitudine (nozione che verrà introdotta a breve)

La matrice B ha il determinante uguale al prodotto dei determinanti dei blocchi diagonali per cui se B è non singolare tali sono i blocchi B_{ii} , $i=1,2,\ldots,k$

Questo assicura l'esistenza e l'unicità della soluzione di tutti i sistemi lineari che via via si risolvono

La sostituzione del sistema lineare Ax = b con il sistema lineare By = c conduce alla risoluzione di k sistemi lineari tutti di ordine inferiore ad n al posto di un unico sistema lineare di ordine n

Il vantaggio dell'uso di questa trasformazione risulterà evidente quando saranno esposti i metodi numerici per la risoluzione dei sistemi lineari

Outline

- Matrici Riducibili
 - Grafo orientato

- 2 Autovalori e autovettori
 - Equazione caratteristica e polinomio caratteristico
 - Molteplicità degli autovalori

Definizione

Data una matrice $A \in \mathbb{C}^{n \times n}$ si dice **autovalore** di A ogni numero $\lambda \in \mathbb{C}$ tale che il sistema lineare

$$Ax = \lambda x, \quad x \in \mathbb{C}^n$$

abbia soluzioni $x \neq 0$

Il vettore x è detto **autovettore destro** associato all'autovalore λ intendendo che x ed ogni vettore kx ($k \in \mathbb{C}$, $k \neq 0$) rappresentano lo stesso autovettore

Analogamente, è detto **autovettore sinistro** un vettore $y \in \mathbb{C}^n$ tale che

$$y^T A = \lambda y^T$$

Per il Teorema di Rouché-Capelli, un sistema lineare omogeneo ha soluzioni non nulle se e solo se la matrice dei coefficienti del sistema è singolare e cioè ha determinante nullo

Poiché $Ax = \lambda x$ è equivalente al sistema omogeneo

$$(A - \lambda I)x = 0,$$

ne segue che gli autovalori di A sono tutti e soli i numeri λ che soddisfano l'equazione caratteristica

$$\det(A - \lambda I) = 0$$

Essendo

$$det(A - \lambda I) = det[(A - \lambda I)^{T}] = det(A^{T} - \lambda I)$$

segue che A e A^T hanno gli stessi autovalori

Indichiamo con

$$P(\lambda) = \det(A - \lambda I)$$

il **polinomio caratteristico** della matrice $A \in \mathbb{C}^n$

Siano λ_i , $i=1,2,\ldots,n$, le soluzioni dell'equazione caratteristica (e quindi gli autovalori della matrice)

Possiamo scrivere

$$P(\lambda) = (-1)^n (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

Sviluppando i conti si ha

$$\det(A - \lambda I) = (-1)^n \lambda^n + (-1)^{n-1} \sigma_1 \lambda^{n-1}$$

$$+ (-1)^{n-2} \sigma_2 \lambda^{n-2} + \dots + \sigma_{n-2} \lambda^2$$

$$-\sigma_{n-1} \lambda + \sigma_n$$

dove i coefficienti σ_i , $i=1,2,\ldots,n$, sono, ciascuno, la somma dei minori principali di ordine i estratti dalla matrice A.

Risultano importanti

$$\sigma_1 = \sum_{j=1}^n a_{jj} = \sum_{i=1}^n \lambda_i$$

е

$$\sigma_n = \det(A) = \prod_{i=1}^n \lambda_i$$

 σ_1 si dice **traccia** di A e si indica col simbolo tr(A)

Dalle precedenti relazioni si hanno le implicazioni

se
$$\exists i, 1 \leq i \leq n$$
, tale che $\lambda_i = 0 \implies \det(A) = 0$

$$det(A) = 0 \Longrightarrow \exists i, 1 \le i \le n, \text{ tale che } \lambda_i = 0$$

Raggio Spettrale

Definizione

Si dice **raggio spettrale** della matrice $A \in \mathbb{C}^{n \times n}$ il numero reale non negativo

$$\rho(A) = \max_{1 \le i \le n} |\lambda_i|$$

<u>Te</u>orema

Una matrice $A \in \mathbb{C}^{n \times n}$ è convergente se e solo se risulta $\rho(A) < 1$

(risultato di Algebra Lineare)

Trasformazioni per similitudine

Definizione

Data una matrice $A \in \mathbb{C}^{n \times n}$ ed una matrice $S \in \mathbb{C}^{n \times n}$ non singolare, si dice **trasformata per similitudine** della matrice A, la matrice B tale che

$$B = S^{-1} A S$$

e le matrici A e B si dicono simili

Spesso, per indicare che A e B sono simili, si usa la scrittura

$$A \sim B$$

Trasformazioni per similitudine

Teorema

Due matrici simili A e B hanno gli stessi autovalori Inoltre, per ogni autovalore λ , se x è autovettore di A, allora $S^{-1}x$ è autovettore di B

Dimostrazione

Si ha

$$det(B - \lambda I) = det(S^{-1}AS - \lambda I) = det(S^{-1}AS - \lambda S^{-1}S)$$

$$= det[S^{-1}(A - \lambda I)S]$$

$$= det(S^{-1}) det(A - \lambda I) det(S)$$

$$= det(A - \lambda I).$$

Poiché A e B hanno lo stesso polinomio caratteristico, segue che A e B hanno gli stessi autovalori

Trasformazioni per similitudine

Dimostrazione

Per provare la vettoribasta osservare che da $Ax = \lambda x$ segue

$$S^{-1} A x = \lambda S^{-1} x$$

 $S^{-1} A I x = \lambda S^{-1} x$
 $S^{-1} A (S S^{-1}) x = \lambda S^{-1} x$
 $(S^{-1} A S) S^{-1} x = \lambda S^{-1} x$
 $B S^{-1} x = \lambda S^{-1} x$

Autovalori di potenze di matrici

Teorema

Se λ è autovalore della matrice A allora λ^k , $k \in \mathbb{N}$, è autovalore di A^k e gli autovettori di A sono anche autovettori di A^k

Se la matrice A è non singolare, il precedente teorema si può estendere a $k \in \mathbb{Z}$

In particolare, se la matrice A è non singolare, si ha che gli autovalori di A^{-1} sono i reciproci degli autovalori di A

Autovalori di matrici hermitiane

Teorema

Gli autovalori di una matrice hermitiana sono tutti reali

Dimostrazione

Sia λ un autovalore di A

Dalla uguaglianza $Ax = \lambda x$, si ottiene, premoltiplicando per x^H , $x^H Ax = \lambda x^H x$ ed ancora, dividendo per il numero reale e positivo $x^H x = \sum_{i=1}^n |x_i|^2$

$$\lambda = \frac{x^H A x}{x^H x}$$
 (Quoziente di Rayleigh)

Abbiamo già visto che il numeratore risulta un numero reale per cui si ha la tesi

Definizione

La molteplicità algebrica $\alpha(\lambda)$ di un autovalore λ è la molteplicità di λ come radice dell'equazione caratteristica

Definizione

La molteplicità geometrica $\gamma(\lambda)$ di λ è la dimensione dello spazio delle soluzioni del sistema lineare omogeneo $(A - \lambda I)x = 0$

In altre parole, la molteplicità geometrica di un autovalore indica il numero degli autovettori linearmente indipendenti associati all'autovalore e risulta

$$\gamma(\lambda) = n - r(A - \lambda I)$$

Teorema

Per ogni autovalore λ risulta

$$1 \leq \gamma(\lambda) \leq \alpha(\lambda) \leq n$$

Definizione

Una matrice A si dice **diagonalizzabile** se esiste una matrice X non singolare tale che

$$X^{-1} A X = D, \qquad D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

Affinché una matrice sia diagonalizzabile, per ogni autovalore, deve risultare

$$\alpha(\lambda) = \gamma(\lambda)$$

L'ultima uguaglianza è sicuramente verificata se la matrice A ha autovalori due a due distinti poiché risulta

$$\alpha(\lambda) = \gamma(\lambda) = 1$$

Traslazione dello spettro

Teorema (traslazione di spettro)

Sia λ autovalore di A e $q \in \mathbb{C}$ allora

B=A+qI ha come autovalore $\mu=\lambda+q$ con molteplicità algebrica e geometrica pari a quelle di λ e B ha gli stessi autovettori di A

Dimostrazione

Si ha

$$\det(B - \mu I) = \det(A + qI - \mu I) = \det(A - (\mu - q)I)$$

da cui $\lambda = \mu - q$

Le relazioni sugli autovettori si deducono da

$$Bx = \mu x \rightarrow (A + Iq)x = \mu x \rightarrow Ax = (\mu - q)x \rightarrow Ax = \lambda x$$

Calcolare gli autovalori della matrice

$$J = \left(egin{array}{ccccc} 0 & 0 & \cdots & 0 & 1 \ 0 & 0 & \cdots & 1 & 0 \ \cdots & \cdots & \cdots & \cdots & \cdots \ 0 & 1 & \cdots & 0 & 0 \ 1 & 0 & \cdots & 0 & 0 \end{array}
ight) \in \mathbb{C}^{n imes n}$$

Osserviamo che J è una matrice simmetrica ed una particolare matrice di permutazione e, unendo le due informazioni, risulta

$$J^2 = J^T J = I$$

Dall'ultima uguaglianza si deduce che gli autovalori di ${\it J}$ elevati al quadrato sono uguali a 1

Poiché la matrice è simmetrica, sappiamo che i suoi autovalori sono sicuramente reali

Questo significa che J può avere solo autovalori uguali a ± 1 Si deve valutare quanti sono gli autovalori uguali a 1 e quanti sono uguali a -1

Possiamo dedurre come sono distribuiti gli autovalori calcolando la traccia tr(J)

Risulta

$$tr(J) = \left\{ egin{array}{ll} 0 & ext{se} & n ext{ pari } (n=2k,k\in\mathbb{N}) \ 1 & ext{se} & n ext{ dispari } (n=2k+1,k\in\mathbb{N}) \end{array}
ight.$$

Ricordando che la traccia di una matrice è uguale alla somma degli autovalori si conclude che

$$n=2k$$
 (pari) $\Longrightarrow \lambda_1=1, \ \lambda_2=-1$ $\alpha(\lambda_1)=\alpha(\lambda_2)=k$ $n=2k+1$ (dispari) $\Longrightarrow \lambda_1=1, \ \lambda_2=-1$ $\alpha(\lambda_1)=k+1, \ \alpha(\lambda_2)=k$

Calcolare gli autovalori della matrice

$$A = I + a b^T$$
, $a, b \in \mathbb{R}^n$

Operiamo una traslazione dello spettro considerando la matrice

$$B = A - I = ab^T$$

Risulta

$$B = \begin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_{n-1} & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_{n-1} & a_2b_n \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n-1}b_1 & a_{n-1}b_2 & \cdots & a_{n-1}b_{n-1} & a_{n-1}b_n \\ a_nb_1 & a_nb_2 & \cdots & a_nb_{n-1} & a_nb_n \end{pmatrix}$$

Se costruiamo il polinomio caratteristico calcolando i coefficienti σ_i , $i=1,2,\ldots,n$, si ha

$$\det(B - \mu I) = (-1)^n \mu^n + (-1)^{n-1} a^T b \mu^{n-1}$$

essendo
$$\sigma_1 = \mathbf{a}^T \mathbf{b}$$
, $\sigma_j = 0$, $j = 2, 3, \dots, n$

Si ha che gli autovalori di B sono

$$\mu_1 = a^T b$$
 $\mu_2 = \mu_3 = \cdots = \mu_n = 0$

Ricordando che si è operata una traslazione dello spettro, si conclude che gli autovalori di A sono

$$\lambda_1 = 1 + a^T b$$
 $\lambda_2 = \lambda_3 = \cdots = \lambda_n = 1$