利用非对话语料来丰富对话生成模型

本文基于 ACL-2020 论文《Diversifying Dialogue Generation with Non-Conversational Text》,论文作者是腾讯微信 AI 团队。

导言

基于序列到序列(seq2seq)的神经网络模型在开放领域对话生成的任务上经常会出现低丰富度(low-diversity)的问题,即生成的回复无趣且简单。因此,作者提出利用非对话的文本语料去提高对话模型的多样性。相比于传统的对话语料,非对话的文本语料不仅容易获得而且主题包罗万象,因此作者从论坛、书籍和谚语中搜集了大量的非对话语料,结合迭代的回译(back translation)方法将非对话语料融入到对话模型的语义空间内。在豆瓣和微博的数据集上,新模型在保持相关度的同时极大提高了生成回复的多样性。

模型背景与简介

seq2seq模型已经在很多语言生成任务上取得了很好地效果。然而,当把它应用到通用领域的闲聊生成上时,一个很大的问题就是它倾向于生成像"我不知道"、"好的"这样的通用回复。原因就在于在日常生活中,这些通用回复大量存在于我们的对话里面。Seq2seq模型会很容易得学习到用通用回复就可以处理大部分对话场景。

目前降低 seq2seq 模型生成通用回复的方法主要有两点:(1)改变 seq2seq 的目标函数本身来让非通用回复获得更高权重。但是模型依然在有限的对话语料上训练,限制了包含广泛主题的能力。(2)用结构化信息、情感、个性等来增强训练语料。但是,这需要昂贵的人工标注,很难应用到大规模的语料。

在这篇文章里,作者提出利用非聊天语料来丰富通用的闲聊模型。与双边成对的聊天语料相比,非聊天语料往往更容易获得,同时也更多样、涵盖不同主题、不需要进一步人工标注。作者从各种数据源收集了超过一百万条非聊天语料,包括论坛评论、谚语俗语、书籍片段等等。基于此作者提出了基于迭代的回译(iterative back translation)的训练方法来利用这些非聊天语料,实验结果显示模型可以生成更多样而且不失一致性的回复。

非聊天语料收集

收集的非聊天语料每个句子长度不宜过长或者过短,可以跟日常聊天主题和风格贴近。作者考虑 从以下三个来源收集:

- (1) 论坛评论。论坛评论来源于知乎,在知乎上选择了所有获得超过十个喜欢,而且句子 长度在 10-30 之间的评论。
- (2) 谚语俗语。从多个网站抓取了谚语、俗语、名人名言、歇后语等等。这些语言大多比较精炼,可以直接用来丰富日常聊天。
- (3) 书籍片段;从读书 app 上选取了 top 1000 个最受喜爱的小说或者散文。同样,只保留用户高亮过的、长度在 10-30 之间的句子。

进一步对收集的语料做过滤处理,删除了含有攻击性和歧视性语言的句子。最后语料总数超过一百万,其中有78万论坛评论、5万谚语俗语和20万书籍片段。

模型结构

作者用 $\{x,y\}$ 来表示聊天语料 D 中的上文和回复 $\{context, response\}$ 对。t 代表非聊天语料 D $_{T}$ 中的句子。作者首先考虑几个 baseline 系统:

- (1) 检索式: 把 D_T 中的句子作为候选答复,每次要生成回复时,就从中选出最合适的回复。作者用反向 seq2seq 在 D 上训练学出的 p(x|y)来定义合适性。检索式系统最大的瓶颈就在于只能从 D_T 中选择而不能生成全新的回复。
- (2) 加权平均:在D上训练一个普通的 seq2seq 学习 P(y|x)概率,在D_T上训练一个语言模型来学习L(t)的概率。在解码回复的时候,作者用p(y|x)和L(t)的加权平均,这样可以考虑D和D_T两个语料中的信息。
- (3) 多任务: 把D和D_T混合,在混合后的语料上同时训练一个seq2seq模型和语言模型,解码器在两个模型之间共享参数,让模型在多任务环境下同时适应两个语料的信息。

除此以外,作者提出利用 iterative back translation 来利用非聊天语料。Iteractive back translation 在机器翻译上已经获得了广泛的使用,但是还没有被用到聊天系统中。模型首先有一个初始化阶段。初始化完成之后会不断重复反向(backward)和前向(forward)阶段。在初始化阶段,作者在聊天预料 D 上同时训练一个 forward 模型 $p_f(y|x)$ 和 backward 模型 $p_b(x|y)$,训练目标如下:

$$\mathbb{E}_{X_i, Y_i \sim \mathcal{D}} - \log P_f(Y_i|X_i) - \log P_b(X_i|Y_i) \quad (2)$$

在 backward 阶段,作者用 backward 模型创建伪对(pseudo pair)来训练 forward 模型。目标函数为:

$$\mathbb{E}_{T_i \sim \mathcal{D}_T} - \log P_f(T_i|b(T_i))$$

$$b(T_i) = \operatorname*{max}_u P_b(u|T_i)$$
(3)

同理,在 forward 阶段,作者用 forward 模型创建伪对(pseudo pair) 来训练 backward 模型。目标函数为:

$$\mathbb{E}_{X_i \sim \mathcal{D}} - \log P_b(X_i | f(X_i))$$

$$f(X_i) = \arg \max_{v} P_f(v | X_i)$$
(4)

具体的算法如下所示:

(**Inilialization**) Train by minimizing Eq. 2 until convergence;

for i=1 to N do

(**Backward**) Train by minimizing Eq. 3 until convergence;

(**Forward**) Train by minimizing Eq. 4 until convergence;

end

Algorithm 1: Model Training Process

实验结果

作者在两个中文对话任务上进行了实验:豆瓣和微博。作者还对比了 standard seq2seq with beam search、MMI、diverse sampling、nucleus sampling 和 CVAE 模型。这些模型都只在聊天语料上进行训练,用了不同目标函数的改进来促进回复的多样化生成。

作者首先进行了自动化评论。在表 3 中,作者汇报了各个模型的 BLEU-2 分数来测量跟 ground-truth 的 overlap; dist-1、dist-2 和 ent-4 来测量生成回复的多样性; adver 来测量回复和上下文的一致性。对于 back translation (BT)模型,汇报了模型在第一个和第四个 iteration 的结果。考虑到模型引入了非聊天语料信息,生成的回复很可能跟原始聊天语料中的词频率、主题有所不同,这样在机器指标自动化评论中会有一个天然的劣势。但是,可以看到模型除了在多样性指标上获得了显著提高之外,在 BLEU-2 和 Adver 指标上也并没有下降,说明模型在学习到多样性的同时并没有丢失其它方面的性能。

Metrics	Weibo					Douban				
Model	BLEU-2	Dist-1	Dist-2	Ent-4	Adver	BLEU-2	Dist-1	Dist-2	Ent-4	Adver
STANDARD	0.0165	0.018	0.050	5.04	0.30	0.0285	0.071	0.206	7.55	0.19
MMI	0.0161	0.025	0.069	5.98	0.42	0.0263	0.143	0.363	7.60	0.31
DIVERSE	0.0175	0.019	0.054	6.20	0.38	0.0298	0.130	0.358	7.51	0.25
NUCLEUS	0.0183	0.027	0.074	7.41	0.43	0.0312	0.141	0.402	7.93	0.30
CVAE	0.0171	0.023	0.061	6.63	0.36	0.0287	0.169	0.496	7.80	0.29
RETRIEVAL	0.0142	0.198	0.492	12.5	0.13	0.0276	0.203	0.510	13.3	0.17
WEIGHTED	0.0152	0.091	0.316	9.26	0.22	0.0188	0.172	0.407	8.73	0.14
MULTI	0.0142	0.128	0.348	8.98	0.27	0.0110	0.190	0.389	8.26	0.16
BT (ITER=1)	0.0180	0.046	0.171	7.64	0.19	0.0274	0.106	0.313	8.16	0.15
BT (ITER=4)	0.0176	0.175	0.487	11.2	0.35	0.0269	0.207	0.502	11.0	0.25
HUMAN	-	0.171	0.452	9.23	0.88	-	0.209	0.514	11.3	0.85

Table 3: Automatic evaluation on Weibo and Douban datasets. Upper areas are models trained only on the conversational corpus. Middle areas are baseline models incorporating the non-conversational corpus. Bottom areas are our model with different number of iterations. Best results in every area are **bolded**.

除了自动化评论,作者也进行了人工评价,结果如表 4。作者随机从每个语料中 sample 了 500个实例,让人工去评价每个模型生成的回复的流畅性、多样性和与上下文的一致性。实验结果跟机器指标基本一致。

Metrics		Weibo		Douban			
Model	Rel	Inter	Flu	Rel	Inter	Flu	
STANDARD	0.32	0.11	0.76	0.26	0.13	0.82	
NUCLEUS	0.46	0.19	0.78	0.38	0.21	0.83	
RETRIEVAL	0.12	0.35	-	0.09	0.32	-	
WEIGHTED	0.19	0.14	0.52	0.15	0.17	0.46	
MULTI	0.25	0.21	0.70	0.22	0.23	0.66	
BT (ITER=4)	0.43	0.37	0.77	0.39	0.48	0.80	

Table 4: Human Evaluation Results

通过对生成回复的结果分析,发现 back translation 可以学到非聊天语料重的新词和句式,这样就可以通过不同上下文生成在原有非聊天语料中不存在的回复。

总结

在这篇文章里,作者提出了一个新的方式来丰富通用领域的闲聊模型。通过用 iterative back translation 来有效利用非聊天语料,显示模型可以从词法和语义两个层面都有效地丰富聊天回复。在跟几个基准模型对比后发现,模型显著提高回复的多样性而不降低其它方面的性能。目前的工作迈出了利用非聊天语料来丰富聊天模型的第一步,未来可以结合更加精细化的过滤、筛选来针对不同领域来自适应地选择利用的非聊天语料。