PROYECTO DE GRADO

Presentado ante la ilustre Universidad de Los Andes como requisito parcial para obtener el Título de Ingeniero de Sistemas

Propuesta de Gemelo Digital para el Proceso de Potabilización en Hidrológicas desde la visión de la Industria 4.0

Por

Br. Ysis Lacruz

Tutor: PhD. Juan Cardillo Cotutor: PhD. Edgar Chacón

Septiembre 2019

©2019 Universidad de Los Andes Mérida, Venezuela

Propuesta de Gemelo Digital para el Proceso de ${\bf Potabilizaci\'on~en~Hidrol\'ogicas~desde~la~visi\'on~de~la~Industria}$ ${\bf 4.0}$

Br. Ysis Lacruz

Proyecto de Grado — Control y Automatización, 51 páginas

Resumen: Se propone el diseño de un gemelo digital para la unidad de potabilización de una planta hidrológica, en pro de cambiar el enfoque hacia la Industria 4.0. Se estudiará el modelo de negocio que rige a las hidrológicas y se realizarán los modelos del proceso para su sistematización basada en condición, así como el modelo del flujo de producto y de los recursos. Se construye el modelo de operación basado en los modelos anteriores. Se utilizarán Sistemas Híbridos para describir el comportamiento del proceso de potabilización. Los análisis y pruebas se realizarán en un ambiente de simulación.

Palabras clave: Gemelo digital, Industria 4.0, Automatización, Sistemas Híbridos, Hidrológica.

Índice

Ín	Índice de Tablas						
1	Intr	Introducción					
	1.1	Antecedentes	2				
	1.2	Planteamiento del problema	4				
	1.3	Objetivos	5				
		1.3.1 Objetivo general	5				
		1.3.2 Objetivos específicos	5				
	1.4	Metodología	5				
2	Marco Teórico						
	2.1	Ciudades Inteligentes	7				
	2.2	Industria 4.0	8				
		2.2.1 Sistemas Ciber-Físicos	9				
		2.2.2 Internet de las Cosas (IoT) e Internet Industrial de las Cosas (IIoT)	11				
		2.2.3 Analítica de Datos	11				
	2.3	Gemelo Digital	11				
	2.4	Modelo de Conocimiento	13				
	2.5	Modelo Híbrido	16				
	2.6	Sistemas Holónicos	18				
	2.7	Sistemas de suministro de agua potable, hacia la I4.0	22				
3	Caso de Estudio: Hidrológicas						
	3.1	Áreas de Negocio	26				

	3.1.1	Estudio de fuentes y caracterización de la demanda
	3.1.2	Operación
	3.1.3	Comercialización
	3.1.4	Áreas de Soporte
3.2	Caden	a de Valor de cada Área de Negocio
	3.2.1	Fuentes y Estudio de la Demanda
	3.2.2	Operaciones
	3.2.3	Comercial
	3.2.4	Soporte
3.3	Esque	ma Integral de Cadena de Valor para Hidrológicas
3.4	Planif	icación
3.5	Model	o APS en Hidrológicas
3.6	Unida	des Holónicas en Hidrológicas
3.7	Descri	pción del Proceso de Potabilización
	3.7.1	Captación del agua
	3.7.2	Determinación de las características del agua cruda
		3.7.2.1 Turbidez
		3.7.2.2 pH
		3.7.2.3 Cloro Residual
		3.7.2.4 Color Aparente
		3.7.2.5 Temperatura
		3.7.2.6 Prueba de Jarras
	3.7.3	Unidad de Potabilización
		3.7.3.1 Coagulación
4 Im _]	plemen	tación
4.1	Epane	et y MATLAB
4.2	Simula	ación
5 Co	nclusio	nes y Recomendaciones
6 An	exos	

Bibliografía 51

Índice de Tablas

3.1	Características físicas del agua potable. [37]	38
6.1	Desripción de instrumentos de medición.	50

Capítulo 1

Introducción

Los procesos industriales tienen un papel fundamental en el desarrollo de las comunidades, de ellos dependen un sinfín de bienes y artículos que benefician el día a día; es por ello que la evolución en este campo es constante, la industria debe ajustarse a las exigencias que la sociedad dictamina.

La evolución tecnológica, a pasos agigantados, ha permitido la automatización de algunas industrias: desde el triángulo de automatización en la década de los 80, la manufactura integrada por computador y los SCADA para control supervisorio. Sin embargo, en pro del aprovechamiento de recursos y mejoras en los procesos industriales, se busca implantar un nuevo enfoque de integración basado en la Industria 4.0.

Este enfoque plantea la aplicación de la teoría del Internet de las Cosas (IoT), a los procesos industriales, de forma que las unidades de producción, supervisión y gerencia mantengan una interconexión y un actuar inteligente, permitiendo la adaptación de la empresa ante cambios constantes en la demanda.

Uno de los conceptos que se manejan con este nuevo enfoque es el de Gemelo Digital, que incluye no solo la representación digital de un sistema en el mundo real, su diferencia fundamental con respecto a las descripciones actuales es que este maneja el modelo de proceso clásico, y añade el modelo del flujo de producto y de los recursos, permitiendo utilizar mecanismos como Analítica y Big Data para establecer elementos de ayuda a la toma de decisiones.

El enfoque de la Industria 4.0 ofrece nuevos métodos para encarar los procesos

1.1 Antecedentes 2

complejos de sistemas críticos [cita], aquellos sistemas clave en el desarrollo humano e industrial como son la electricidad, el agua, la salud, el transporte, y demás sistemas de sistemas que mantienen interrelación entre sí.

El agua, siendo un recurso limitado, es un eslabón necesario en todos los ámbitos y el funcionamiento eficiente de la industria hidrológica es uno de los retos a asumir para dar forma a ciudades inteligentes. El hecho de proponer un Gemelo Digital en el proceso de potabilización en la industria hidrológica, se debe a que este proceso debe hacer uso de sistemas híbridos para su concepción. La interrelación del proceso es necesaria para evitar mayores pérdidas de flujo y recursos.

1.1 Antecedentes

Siguiendo la tendencia mundial, en la que se proyecta a la industria en una nueva etapa de crecimiento e innovación, existen muchas tecnologías emergentes que comienzan a impulsar y sustentar este fenómeno conocido como industria 4.0. Esta se asume como la cuarta revolución industrial, que nace como la evolución natural de la tercera revolución industrial centrada en el uso de dispositivos electrónicos y computacionales. Así I4.0 se convierte en el esquema industrial centrado en la interconectividad de sistemas ciber-físicos.

Los acontecimientos más destacados en la historia de la industria podemos ubicarlos en los tres grandes hitos que hicieron posible, entre otras cosas, el crecimiento económico y el desarrollo tecnológico a nivel mundial. Estos tres grandes hitos se conocen como las revoluciones industriales, donde la primera revolución contempla la creación e implementación de la máquina de vapor en los centros de manufactura así como la mecanización en los puestos de trabajo permitiendo la elaboración de productos personalizados, posteriormente, la segunda revolución, es la incorporación del suministro de electricidad a las fábricas, implementación de nuevos paradigmas en la producción como lo es la división del trabajo, que permitieron elaborar productos de bajo costo. La tercera revolución industrial se basa en la puesta en marcha de las microcomputadoras, los PLC (Programmable Logic Controller por sus siglas en inglés) y los robots autónomos en las líneas de producción de las fábricas, haciendo posible la

1.1 Antecedentes 3

variedad de los productos y la masificación de la producción. La cuarta revolución industrial o también llamada industria 4.0, corresponde a una nueva manera de organizar los medios de producción, donde el objetivo es la puesta en marcha de fábricas capaces de una mayor adaptabilidad a las necesidades y a los procesos de producción, así como a una asignación más eficiente de los recursos usando la interconectividad. Esta nueva visión de la industria contempla una manufactura completamente equipada con sensores, actuadores y sistemas de comunicación, en donde mediante modelos holísticos de proceso, producto y recursos (gemelo digital), aunado a la aplicación de estrategias de computación, logren el despliegue de un control autónomo dentro de estas fábricas. Las características principales de cada evolución industrial se observan en la figura 1.1.

Figura 1.1: Evolución de la Industria.

La I4.0 corresponde a un concepto genérico de los Sistemas Ciber Físicos (SCF) aplicado a los Sistemas de Producción Industrial. Considerando a los SCF como la autonomía requerida por los Sistemas Físicos para operar, negociar e interactuar usando la conectividad y la identificación única de los recursos para interoperar, dando origen al internet industrial de las cosas (IIoT), cuya premisa es poder tener una representación de la Información de Ingeniería (conocimiento del proceso) comprensible en las máquinas (manufactura inteligente). Para poder implementar la visión antes

descrita se requiere poder plasmar en el computador los modelos de conocimiento tanto del proceso, recursos, como de flujo de producto. Una de las grandes diferencias entre los esquemas de control y supervisión de I3.0 era poder interrogar al proceso de producción sobre su condición, esto es conocer condición de proceso y de producto; en I4.0 en vez de interrogar al proceso, se define un gemelo de comportamiento del proceso de producción en un sistema digital llamado Gemelo Digital, en donde no solo incorpora la condición del proceso y de del flujo de producto sino también de la condición de los recursos involucrados.

En una empresa hidrológica, la cadena de valor asociada a producción esta genéricamente representada por 6 eslabones a saber: Fuente, Captación, Potabilización, Distribución, Recuperación, y Retorno, pudiéndose incluir un eslabón de transporte entre cada uno de los mencionados. Para el eslabón de Distribución las empresas hidrológicas tienen rigurosos estudios sobre redes que incluyendo aplicaciones (WaterCAD, EPANET, etc) que permiten mostrar el comportamiento de flujo en la red, pero en los eslabones anteriores los modelos de comportamiento son continuos, por lo que generar un gemelo digital es más complicado y aunque necesario, es menos desarrollado en las industrias.

1.2 Planteamiento del problema

Dada la importancia del proceso de potabilización como el generador del flujo a distribuir, se propone desarrollar los modelos de comportamiento del proceso de potabilización, que incluye el modelo de proceso, el modelo de flujo de producto y el modelo de los recursos, con el fin de determinar el modelo operacional (secuencia de operaciones) para establecer el gemelo digital de la unidad de potabilización. Para cada uno de los modelos mencionados se requiere definir: Condición normal de operación, condición degradada y condición de falla en cada una de las etapas: arranque, operación, parada y limpieza.

1.3 Objetivos 5

1.3 Objetivos

1.3.1 Objetivo general

 Generar un gemelo digital de la unidad de potabilización de una hidrológica desde la visión de la industria 4.0, basado en Sistemas Híbridos.

1.3.2 Objetivos específicos

- Determinar los modelos de comportamiento de la unidad de potabilización (Modelo de comportamiento del proceso, flujo del producto y recursos).
- Establecer las condiciones de conmutación de los modelos obtenidos desde el punto de vista de sistemas a eventos discretos.
- Generar el modelo de comportamiento desde el punto de vista de los sistemas híbridos.
- Implementar el modelo de comportamiento de la unidad de potabilización en un ambiente de simulación.
- Establecer condiciones para generar el gemelo digital e incorporarlas al ambiente de simulación.

1.4 Metodología

A fin de lograr el cumplimiento de los objetivos planteados, se presenta el procedimiento a seguir:

- Se realizará la revisión bibliográfica pertinente, con base en el estudio del proceso de potabilización y en la evolución que ofrece la industria 4.0 como enfoque en la integración de procesos.
- Se estudiará el modelo de negocios que rige a la industria hidrológica.
- Se determinarán los modelos del proceso, para realizar la sistematización del mismo basada en condición.

1.4 Metodología 6

• El proceso será definido como una unidad holónica de producción, en base al enfoque de la Industria 4.0.

• Para el desarrollo de las simulaciones en el computador, se utilizarán redes de Petri, debido a la imposibilidad de implantarlo en el proceso real.

Capítulo 2

Marco Teórico

2.1 Ciudades Inteligentes

Se pueden encontrar numerosas definiciones para el termino de Ciudad Inteligente, Vito et all [94] se encargó de recopilar y analizar concepciones desde distintos puntos de vista, los cuales convergen en el concepto de una ciudad que visualiza el desarrollo sustentable social y tecnológico, empleando tecnologías de información y comunicación para permitir la interrelación en los sistemas que la conforman, tanto de infraestructura como servicios. Una parte clave de las ciudades inteligentes es el continuo aprendizaje y manejo de conocimientos, generando desarrollo tecnológico que pueda implementarse en procedimientos de innovación.

Si bien la tecnología es una herramienta clave, una ciudad digitalizada no necesariamente es inteligente; la noción de ciudad inteligente es la fusión entre infraestructura tecnológica y sociedad de conocimiento (2.1), permitiendo el intercambio de información entre máquinas y hombres, entre industrias y entes públicos, todo en pro de un desarrollo sustentable de la comunidad y eficiencia al buscar soluciones de problemas cotidianos. [94] Es aquí donde se aprecia uno de los conceptos que dan vida a las ciudades inteligentes, el Internet de las Cosas, el cual permite la virtualización y conexión de dispositivos para el intercambio de datos. [70]

Una ciudad inteligente requiere además una industria que evolucione en eficiencia, de manera que pueda responder a las exigencias y necesidades de los consumidores. 2.2 Industria 4.0 8

Figura 2.1: Ciudades Inteligentes. [96]

Uno de los nuevos conceptos trata de incluir el Internet de las Cosas, junto a demás nociones para el manejo y análisis de datos, en el ámbito industrial, dando paso al término de Industria 4.0.

2.2 Industria 4.0

En adelante referida como I4.0, se trata de un proceso necesario de transformación digital en la industria, ocasionado por el avance vertiginoso en el ámbito tecnológico y los cambios que esto generó en la sociedad. La I4.0 busca aplicar las tecnologías de información para modificar la metodología de organización de la cadena de valor y gestión. Se basa en el uso de Sistemas Ciber-Físicos para monitorear los procesos, virtualizarlos, y hacer uso del Internet de las Cosas para generar comunicación y cooperación hombre-máquina y máquina-máquina en tiempo real. [12][97]

Para que las organizaciones puedan identificar e implementar escenarios que permitan adaptarse a la tecnología de I4.0, se presentan algunos principios de diseño: [97]

• Interoperabilidad: Es la habilidad para conectar y habilitar una comunicación

2.2 Industria 4.0 9

entre máquinas y personas, haciendo uso del Internet de las Cosas.

• Virtualización: Se refiere a un vínculo entre los sistemas físicos instalados y modelos virtuales de la planta, permitiendo monitoreo y simulación del proceso.

- Descentralización: Es la capacidad de los sistemas físicos de tomar decisiones por sí mismos, siguiendo un modelo de comportamiento. Solo en caso de fallo las decisiones pasarían a un nivel superior, disminuyendo así la carga de un control central, sin descuidar el monitoreo de la cadena de producción.
- Capacidad en Tiempo Real: Recopilación de datos al instante, ya sea para almacenarlos o analizarlos y tomar decisiones de acuerdo a lo obtenido. La obtención del estado de la planta en tiempo real permite reaccionar ante fallos en el proceso.
- Orientación al Servicio: La producción debe estar orientada al cliente, en ese sentido, la empresa puede brindar servicios interna o externamente para mantener una interacción con el cliente final.
- Modularidad: Capacidad de adaptarse en un mercado cambiante, busca industrias reconfigurables. Con sistemas modulares se hace fácil el ajuste en caso de fluctuaciones en las solicitudes del mercado, mediante adición, ampliación o sustitución de módulos individuales.

Esta nueva revolución industrial busca ir más allá de modelos computacionales y sistemas de SCADA aislados, la colaboración es la clave para optimizar los procesos industriales; es partiendo de esa premisa que se adoptan los componentes de la I4.0, algunos de ellos se detallan a continuación: [97][88]

2.2.1 Sistemas Ciber-Físicos

Los Sistemas Ciber-Físicos (en adelante CPS, por sus siglas en inglés) son sistemas que integran componentes físicos con componentes computacionales, guardando relación con un proceso en curso. Estos sistemas están dedicados a realizar funciones

2.2 Industria 4.0 10

específicas en tiempo real, siendo capaces de recibir y tratar información, monitorear y actuar sobre elementos físicos del proceso asociado. [63]

La interrelación entre sistemas físicos y computacionales contribuye a la formación de ciudades inteligentes; beneficios como eficiencia en la transmisión de información, sistemas reconfigurables, eficiencia operativa, optimización, y demás aportes que se obtienen al implementar el concepto de CPS en los procesos existentes. [61]

En Laszlo Monostori et al [66] se hace referencia a un gráfico del modelo de madurez de un CPS (véase figura 2.2), donde en un primer nivel se generan las condiciones para la implementación y conexiones físicas, mientras que los niveles superiores representan la evolución en el procesamiento de la información y procesos de cooperación.

Figura 2.2: Modelo de madurez de un CPS.

Los CPS hacen uso del Internet de las Cosas, red de sensores, almacenamiento de información, entre otras propiedades, para mantener una comunicación máquina-máquina y hombre-máquina eficiente, de manera que el proceso de producción se logre de forma eficiente.

2.3 Gemelo Digital 11

2.2.2 Internet de las Cosas (IoT) e Internet Industrial de las Cosas (IIoT)

Son tecnologías emergentes, un conjunto de dispositivos interconectados que permiten la recopilación y acceso a datos compartidos, monitoreo y comunicación en tiempo real, con plataformas amigables para el usuario. [65]

Al aplicar el concepto en el entorno industrial, se pueden obtener datos acerca del estado del proceso o el producto, dispositivos inteligentes y autónomos que optimizan el proceso de producción, lo que incluye la eficiencia en entrega del servicio, mayor productividad, reducción de costos y recopilación de datos de interés. [67]

La adopción del HoT permite la aplicación de la tecnología a nivel de planta [Wallace Riddick], dando paso a lo que se denomina Smart Factory; siendo ésta una convergencia del proceso industrial de manufactura con tecnologías de información para mejorar y acelerar el proceso de producción. [68].

2.2.3 Analítica de Datos

Es una técnica que consiste en extraer datos de distintas fuentes y analizarlos para obtener información útil, necesaria para tomar mejores decisiones corporativas y plantear estrategias. El análisis de datos emplea grandes cantidades de información, descrita como Big Data, inmensos paquetes que requieren de software especial para su almacenamiento y tratamiento. [69]

2.3 Gemelo Digital

Previamente se describe que los CPS interactúan con un sistema virtual a través de redes de comunicación, en ese sentido cada módulo físico tendrá una representación digital de sí mismo, permitiendo la interconexión de procesos en un dispositivo que pueda monitorear y controlar la unidad física, el término es conocido como Gemelo Digital. [101]

El Gemelo Digital ofrece la posibilidad de crear una planta virtual haciendo uso de modelos matemáticos, modelos de comportamiento, medición de parámetros en campo, 2.3 Gemelo Digital 12

historial de datos y análisis, para visualizar posibles acciones a tomar según el estado real del proceso; estas acciones son accesibles gracias al IoT, debido a que facilita de forma eficiente la conexión entre el comportamiento real y el Gemelo Digital. [91][101]

La aplicación de la tecnología de gemelos digitales ayuda a comprender las operaciones de la planta, visualizar mejorías y detectar problemas físicos en fases tempranas, de esta manera es posible cumplir las expectativas cada vez mayores de los clientes. [87]

Para lograr la digitalización de una planta, es necesario en primera instancia conocer a fondo cómo opera y realizar la documentación necesaria, de manera que los detalles del proceso estén disponibles. Se deben implementar soluciones digitales a medida que se vayan recreando los modelos físicos en un ambiente virtual, mientras se hace revisión de las estrategias de control y producción, de modo que la colaboración entre virtualización y trabajadores resulte en mejoras de estrategias de gestión. [86]

Entre los beneficios que esta tecnología ofrece, está la posibilidad de obtener un gemelo digital del producto, diseñar, planificar y optimizar, para luego generar simulaciones de la producción previas a la implementación física, de esta forma se pueden visualizar escenarios de riesgo sin necesidad de realizar inversiones en pruebas reales. Una vez que el sistema físico esté instalado, transmitirá datos al gemelo digital que actuará como monitor de desempeño, evaluando el proceso de producción y el producto resultante. Los datos obtenidos de planta deben ser analizados según el contexto para asegurar eficiencia en el sistema. [86]

Si bien la implementación de un gemelo digital no es tarea sencilla, es una herramienta clave en la visión de la I4.0, permitiendo hacer gestión, coordinación, supervisión y seguimiento. En colaboración con los demás componentes da paso a industrias reconfigurables, aptas para generar respuestas eficientes de producción ya sea ante fluctuaciones en la demanda o ante situaciones adversas dentro del proceso mismo.

2.4 Modelo de Conocimiento

El conocimiento, desde una visión organizacional, es considerado como la información que posee valor para la misma organización, tal información es necesaria para alcanzar objetivos, generar acciones y satisfacer necesidades de mercado. Desde el punto de vista de procesos, el conocimiento es el resultado de la utilización de la información partiendo de un contexto, información generada a partir de datos. [102]

Un modelo, por su parte, es una representación en un lenguaje entendible que expresa el comportamiento de un fenómeno. Así se convierten en abstracciones particulares en función del interés del modelador.

Una de las bases para desarrollar modelos de procesos específicos de una empresa es el uso de cadenas de valor, herramienta desarrollada por el investigador Michael Porter, la cual permite el análisis de la empresa mediante la disgregación en sus principales actividades. El nombre viene dado de la consideración de que cada eslabón de la cadena añade valor al producto. [108]

La cadena de valor representa la relación entre procesos primarios, los que se relacionan directamente con la producción, y procesos de soporte que si bien añaden valor al producto, no están directamente relacionados con la producción, tales como la gestión de recursos humanos, investigación, planificación, finanzas y demás áreas que complementan la organización. (véase figura 2.3)

Figura 2.3: Cadena de Valor en producción. Basada en [108]

Cada eslabón de la cadena de valor es visto como una unidad de producción, la tipificación de cada una depende de la manera cómo evoluciona el recurso en ella,

a saber: Continua, Lotes, Manufactura, Híbrida, etc. Además, cada unidad de producción realiza una acción específica, basada en un objetivo preestablecido.

Ahora bien, partiendo de una cadena de valor se pueden adicionar modelos que determinen los modos de operación de cada eslabón, siendo el caso de un modelo de conocimiento. Este hace referencia a la caracterización de las unidades correspondientes al proceso de producción, descripción de las competencias, modelos y modos de operación de cada unidad asociada.

El modelo de conocimiento abarca las caracterizaciones del proceso, el flujo de producto y los recursos necesarios para la transformación de tal producto: [104]

- El modelo del proceso determina cómo llevarlo a cabo, incluyendo información acerca de los parámetros necesarios para la elaboración de un producto o acción específica.
- El modelo del producto describe la calidad y cantidad del flujo de producto, estructuras de datos y métodos para acceder a la información recabada.
- El modelo de recursos por su parte, mantiene la información de los equipos usados por el proceso, estado de funcionamiento, disponibilidad.

La gestión de los procesos de producción se asocia al conocimiento en sí, tanto de las recetas para generar el producto deseado, insumos y sus cualidades, como el proceso físico (transformación, transporte y distribución). Estos procesos de producción están concebidos para elaborar uno o más productos partiendo de una solicitud de producción, con garantía en la asignación de materia prima y recursos respectivos. Así, los modelos del proceso de producción son una descripción que inicia con un modelo simple caja negra de entrada - salida (E/S), donde se define su funcionalidad y configuración.

En [108] se describen los procesos de producción como una red de unidades o nodos, los cuales se dividen en Nodo Almacenamiento (materia prima, producto intermedio, producto final), Nodo Transporte (transportadores, canales, tuberías) y Nodo Producción (transformación); la red representa el desarrollo de una receta (véase figura 2.4)

Figura 2.4: Descripción de una receta. [108]

Figura 2.5: Representación de la planta física. [108]

La elaboración de productos está sujeta a la receta, esto genera un modelo para la fabricación del producto y un modelo del producto. La receta especifica las diferentes etapas donde la materia prima/producto intermedio pasa a través de ellos y se convierte en un producto intermedio /terminado. Este modelo de producto es proyectado sobre el proceso físico del proceso de producción, el cual determina una configuración que permite seguir el producto de acuerdo a la receta. En la red de la figura 2.5 se representa el modelo físico y sus interacciones.

Es posible, en algunos casos, que cuando el flujo de producto se coloca sobre el proceso físico, genere más de una configuración aceptable, y de éstas, se selecciona una de acuerdo a un criterio, estableciéndose como un patrón en la fabricación del producto.

2.5 Modelo Híbrido 16

Figura 2.6: Ejemplo de configuraciones admisibles. [108]

Al tratarse de una evolución dinámica, en algún momento puede haber un nuevo evento (interno o externo) capaz de alterar el rendimiento de la configuración seleccionada, por lo que es necesario realizar una reprogramación en el plan para corregir los efectos del evento ocurrido. El evento puede afectar, ya sea a la ejecución (regulación, control), a la supervisión/coordinación/gestión del dispositivo o unidad, o a una combinación de los mismos. Una nueva configuración admisible se establece a partir del conjunto de configuraciones admisibles que tengan como estado inicial el obtenido a partir de la aparición del evento, tratando de lograr el objetivo de la receta (disponibilidad, capacidad, interconexión, etc.), de lo contrario, el proceso debe pasar a una condición segura. (véase figura 2.6)

La interconexión entre representación del proceso de producción y modelos, permite transmitir información del estado actual de la planta, es por ellos que mantener un modelo de conocimiento adecuado contribuye a alcanzar un proceso de producción eficiente.

2.5 Modelo Híbrido

Un sistema híbrido consta de varios modos de operación de dinámicas continuas en el tiempo, y transiciones entre dichos modos, las cuales ocurren bajo ciertas condiciones. Tales condiciones son descritas mediante modelos de tipo discreto. Por tanto, los

2.5 Modelo Híbrido 17

Figura 2.7: Ejemplo: componentes de una red de Petri.

sistemas híbridos son una interacción de dinámicas continuas y discretas. [84]

Un modelo híbrido es la representación de las transiciones discretas y la evolución de las dinámicas continuas, afectadas por los eventos discretos. Al momento de modelar se debe cuidar tanto la precisión de los resultados como la simplicidad del modelo, incorporando correctamente las entradas, demás componentes del proceso y la interrelación entre ellos. [106] Para el desarrollo de los modelos híbridos se utilizan herramientas como ecuaciones diferenciales para dinámicas continuas del proceso y redes de Petri para los eventos discretos. [105]

En [107] se definen las rede de Petri como una herramienta matemática que permite la representación gráfica de un modelo, facilitando el análisis y modificaciones del mismo. Están representadas por un diagrama compuesto de cuatro bloques: Lugares, transiciones, arcos y marcas o tokens; los lugares simbolizan los posibles estados del sistema, las transiciones representan los eventos que causan cambios en los estados, permitiendo la relación entre dos lugares, los arcos son la unión entre lugares y/o transiciones, armando la red e indicando el sentido del flujo y las marcas, que se ubican en los lugares, representan unidades de materia prima, productos en proceso o productos terminados. (véase figura 2.7)

Formalmente las redes de Petri se denotan mediante una quíntupla: [105]

$$RdP = (P, T, D^+, D^-, \mu_0)$$
(2.1)

donde.

 $P = \{p_1, p_2, ..., p_n, \}$ es un conjunto finito de lugares,

 $T = \{t_1, t_2, ..., t_m, \}$ es un conjunto finito de transiciones,

 $D^+ \in Z^{n \times m}$ es la matriz de los lugares de salida,

2.6 Sistemas Holónicos

 $D^- \in \mathbb{Z}^{n \times m}$ es la matriz de los lugares de entrada,

 $D = D^+ - D^-$ es la matriz de incidencia,

 $\mu_0: P \to \{\mu_1, \mu_2, \mu_3, ..., \mu_n\}$ es el vector marcación inicial con dimensión $n \times 1$, donde μ_i es la marcación inicial de cada lugar $p_i, P \cap T = \emptyset$ y $P \cup T \neq \emptyset$.

Cada elemento de la matriz D^+ , es el peso del arco del lugar de salida i desde la transición j, y cada elemento de la matriz D^- , es el peso del arco desde el lugar de entrada i hacia la transición j.

Por otro lado, un sistema continuo representa el cambio de estado en función del tiempo, mediante una ecuación diferencial de la forma:

$$\dot{x}(t) = f\left(x(t), u(t), t\right) \tag{2.2}$$

18

donde,

f es la función de transición de estado,

x(t) es el vector de variables de estado,

u(t) es el vector de entradas,

t es el tiempo,

Con la integración de estos dos métodos, redes de Petri y ecuaciones diferenciales, es posible generar un modelo híbrido, el cual reduce la complejidad del orden al modelar algún sistema.

2.6 Sistemas Holónicos

En [109] se define un holón como una unidad autónoma y cooperativa, capaz de transformar, transportar, almacenar y/o validar información y objetos físicos. Tiene la autonomía de crear y controlar la ejecución de sus propios planes mientras interactúa con otros holones; tal cooperación permite desarrollar un plan entre holones para llevar a cabo la meta del sistema.

En [109] se propone que un holón en el proceso de producción debe estar compuesto por tres partes esenciales: un cuerpo, donde se desarrollen los procesos

Figura 2.8: Holón en los procesos de producción. [109]

de transformación, transporte y almacenamiento; una cabeza, donde se desarrolle la toma de decisiones de la unidad, basada en el conocimiento del proceso y los recursos disponibles, acciones realizadas por dispositivos físicos y humanos en interacción; por último un cuello, que representa la interfaz entre los componentes previos, conformado por las tecnologías que transportan la información. (véase figura 2.8)

Por su parte, PROSA (Product Resource Order Staff Architecture) presenta una estructura que describe los elementos que hacen a una unidad autónoma ser un holón, estos son: Orden, Producto y Recursos (véase figura 2.9). Cada holón es responsable de un aspecto del control de manufactura, ya sea logístico, de planificación tecnológica o de capacidades de recursos, respectivamente. [104]

Los tipos de holones del modelo PROSA se describen brevemente a continuación: [104]

- Un holón de orden representa una orden de un cliente, orden interna, orden de reparación, de recursos, entre otras. Es responsable de manejar el producto físico en producción, el modelo del estado del producto y el procesamiento de información relacionada a la producción.
- Un holón de producto contiene el conocimiento del proceso y la producción, para

Figura 2.9: Sistema Holónico de Producción, modelo PROSA. [110]

asegurar la calidad en la realización del producto. Maneja información acerca del ciclo de vida del producto, diseño del proceso, modelos del producto, entre otras, con el fin de monitorear la eficiencia y calidad en la unidad de producción.

• Un holón de recurso contiene la parte física de un recurso necesario para el proceso de manufactura y una parte de manejo de información para controlar el recurso. Contiene métodos y procedimientos para la asignación y organización de los recursos.

Un sistema holónico de producción no es más que alcanzar la cooperación entre distintos holones, cuya finalidad es obtener una visión completa de la unidad, desde la toma de decisiones hasta los procesos de máquina en el nivel más bajo (véase figura 2.10). Este tipo de sistemas ofrece autonomía a los módulos individuales u holones, lo que permite generar respuestas a las perturbaciones del proceso de forma rápida, de igual forma se añade la habilidad de reconfiguración del proceso en caso de enfrentar nuevos requerimientos de producción. [108] Los sistemas holónicos proveen flexibilidad y adaptabilidad tal como los esquemas heterárquicos, manteniendo la estabilidad y optimización global de los esquemas jerárquicos. [62]

En la holarquía, los holones en diferentes niveles se comportan como un todo autónomo y como partes cooperantes, donde los mecanismos de toma de decisión son heredados del esquema jerárquico, de forma vertical, mientras los modelos de las entidades se integran de forma horizontal y vertical, para establecer el

Figura 2.10: Unidad Holónica. [108]

plan global, e individualmente un plan a seguir para cada unidad. Tal dualidad autonomía - cooperación es balanceada por el modelo de conocimiento, el cual define el comportamiento del sistema mediante condiciones de funcionamiento. Es así como una empresa holónica, está constituida por unidades holónicas, con las mismas características cabeza - cuello - cuerpo descritas previamente para un holón de producción [108] (véase figura 2.11)

En el modelo referido de la figura 2.11 [108], se propone que el manejo del conocimiento en una empresa holónica es llevado a cabo por tres entes: Gestor, Programador, Ejecutor; la cooperación de estos elementos permite generar tres mecanismos de toma de decisión cuyos modelos son considerados a eventos discretos, que reciben la información discretizada proveniente de los modelos del proceso, los cuales son continuos en cada etapa.

- Sistema de Gestión: Se encarga de realizar tareas de planificación y evaluación de órdenes de producción. Realización de las diferentes formas de obtener un producto según la factibilidad de ejecución y los recursos disponibles. Genera el esquema de supervisión que va a ser utilizado por el supervisor en tiempo real.
- Sistema de Coordinación/Supervisión: Hace seguimiento y evalúa las secuencias de operaciones en tiempo real. Debe realizar la sincronización entre etapas e informar de fallos en caso de ser necesario, de modo que el planificador pueda adaptarse a los cambios.

Figura 2.11: Empresa Holónica. [108]

• Sistema de Ejecución/Control: Seguimiento de las variables del proceso, detección de alarmas, evalúa la condición de equipos. Debe determinar el estado del proceso y del flujo de producto, para verificar las condiciones en la entrada y salida del proceso. Encargado de indicadores, alarmas y estados del sistema.

Los atributos claves de un sistema holónico: autonomía, cooperación, proactividad y reactividad, hacen de ellos una solución eficiente para la ejecución del plan de producción, adaptándose a los requerimientos no programados del proceso, como solicitudes de urgencia, cambios en ordenes, fallas de recursos y demás inconvenientes que puedan afectar el buen funcionamiento de la planta.

2.7 Sistemas de suministro de agua potable, hacia la I4.0

Los Sistemas de Suministro de Agua Potable, WSS por sus siglas en inglés, son sistemas encargados de proveer agua potable en una comunidad mediante amplias redes

de distribución.[70] Según el Foro Económico Mundial, la crisis alrededor del agua se sitúa dentro de los diez principales riesgos sociales en el mundo, siendo todo un reto para la industria hidrológica el cumplir sus objetivos de forma eficiente, manteniendo una buena coordinación entre los eslabones que conforman el proceso y asegurando un mínimo de pérdidas del recurso. Aun con la prioridad de mantener un buen funcionamiento, el Banco Mundial calcula que la producción de agua pierde entre un 25% y 30% de flujo debido a fallas. [87]

Los WSS hacen parte de la clasificación de sistemas críticos debido a la importancia que gira en torno a la industria hidrológica, un proceso clave para el bienestar común y la persistencia de otros sistemas, considerando también que dependen de un recurso limitado y vulnerable como lo es el agua. [70]

Los sistemas críticos mantienen una interdependencia entre ellos (electricidad, agua, salud, entre otros), son sistemas vitales para el buen funcionamiento de la sociedad y demás procesos tecnológicos. La falta de un sistema crítico tendría un impacto directo en el bienestar de la población, afectando también la seguridad y defensa de los gobiernos. [64] En el mapa publicado por el Foro Económico Mundial (véase figura 2.12) se permite explorar los problemas interconectados en torno al agua, donde el enfoque de la I4.0 y sus componentes, pueden ofrecer soluciones basadas en un seguimiento del proceso, junto a recolección y análisis de datos que aporten a la toma de decisiones. [70]

Los CPS, como componente base de la I4.0, ofrecen una nueva forma de plantearse el diseño del sistema, combinando una representación virtual del proceso en tiempo real, mientras se interactúa con el proceso físico; los datos obtenidos de planta son almacenados en la nube, de modo de conocer el estado del proceso en cualquier momento. Se debe generar una integración entre las nuevas tecnologías y las instalaciones de los WSS. [99?]

Dirigir los WSS hacia la visión de la I4.0 implica descentralizar el sistema de control e integrar el concepto de CSP; la creación de módulos autónomos con funciones específicas, la habilidad de reconfiguración del proceso, la automatización de las unidades y su interacción facilitan el manejo adecuado de los WSS. Para ello es necesaria también la integración hombre - máquina y una debida formación para

Figura 2.12: Mapa general de problemas y soluciones interconectados en torno al agua.

desarrollar los modelos que emulen el comportamiento de cada unidad.

Un esquema que proporciona un sistema autónomo modular es el holónico; la idea de trabajar el proceso hidrológico mediante unidades de producción Holónicas, siguiendo la visión de la I4.0, permite la resolución de problemas complejos a través de paradigmas elementales. En [99] se describe la combinación de los conceptos mencionados, con el fin de controlar un sistema de abastecimiento de agua como un sistema holónico de producción.

Partiendo de estas ideas es posible generar una propuesta de los modelos de unidades autónomas en el proceso de potabilización de agua, bajo un esquema holónico, en pro de automatizar e integrar los módulos correspondientes al sistema, teniendo como base de diseño los componentes de la I4.0.

Capítulo 3

Caso de Estudio: Hidrológicas

Las hidrológicas son una empresa de servicio cuya misión es proporcionar agua potable a una población, utilizando para ello las fuentes que proporciona la naturaleza, procesando el agua y devolviéndola al ambiente (véase figura 3.1). Todas estas actividades las debe realizar de manera que sea una empresa autosostenible, manteniendo el costo del servicio dentro de márgenes accesibles para el público.

3.1 Áreas de Negocio

Los principales procesos que definen las áreas de negocio básicas en una hidrológica (véase figura 3.2) están dados por:

- Estudio de las fuentes para una determinada población.
- La potabilización del agua, el tratamiento y retorno de aguas servidas al ambiente.
- La comercialización del producto.

3.1.1 Estudio de fuentes y caracterización de la demanda

En esta área se contemplan los planes de desarrollo para satisfacer las demandas de agua en una población y su posterior tratamiento para devolverlas al ambiente, incluye:

• Estudio y caracterización de la demanda de agua para el consumo.

3.1 ÁREAS DE NEGOCIO 27

Figura 3.1: Estructura física clásica de las hidrológicas. Basado en [111]

Figura 3.2: Areas de Negocio en Hidrológicas.

3.1 Áreas de Negocio 28

- Determinación de las posibles fuentes para satisfacción del consumo.
- Elaboración de planes de desarrollo para satisfacer las necesidades de la población.
- Planificación de los sistemas de acarreo del agua desde las fuentes a los centros poblados, potabilización del agua, almacenamiento y distribución del agua potable, tratamiento de las aguas servidas.
- Estimación de los costos de desarrollo y operación de los sistemas.

3.1.2 Operación

El área de operaciones contempla el proceso de convertir el agua cruda en agua potable y el proceso de tratar el agua servida y retornarla al ambiente.

El proceso de obtención de agua potable a partir de agua cruda consiste en una serie de pasos que permiten eliminar la turbiedad y suciedad del agua cruda y transformarla en agua apta para el consumo humano. Este proceso capta, potabiliza y almacena agua hasta llevarla a las tuberías matrices de cada área de distribución. Está incluido el retorno de aguas servidas debido a que la conservación del ambiente es un factor importante para una empresa responsable del manejo del recurso hídrico y de su impacto en el ambiente. Los resultados de este proceso de operaciones están referidos al cumplimiento de las necesidades de agua potable para una población cualquiera.

Así, teniendo:

- La caracterización de las unidades correspondientes a operación, modelo de conocimiento.
- El plan de mantenimiento de las unidades operativas con el fin de asegurar su funcionamiento óptimo.
- Los procedimientos para el manejo de los recursos para la potabilización y almacenamiento del agua y el tratamiento de agua servida.

Se determina:

3.1 Áreas de Negocio 29

• Las condiciones operacionales de las diferentes unidades para asegurar el servicio de una manera eficiente y económica.

- El seguimiento del comportamiento de las mismas.
- Indicadores de rendimiento, gestión, etc.

3.1.3 Comercialización

Las actividades asociadas a la comercialización tienen que ver con el transporte del agua potable desde las redes de distribución hasta los usuarios finales, la conexión de usuarios a la red, la recuperación de las aguas servidas desde los usuarios hasta el alcantarillado de cada localidad en los sitios donde esté disponible este servicio. Para ello se requiere de:

- Manejo del catastro poblacional.
- Manejo de nuevos clientes, conexión a la red.
- Manejo de clientes, prestación del servicio, desconexión, reconexión.
- Facturación y cobranza.

3.1.4 Áreas de Soporte

Las áreas de soporte son las responsables del apoyo a las actividades medulares de la hidrológica. Dentro de las funciones podemos mencionar:

- Manejo de los recursos financieros de la empresa.
- Gestión del Recurso Humano.
- Mantenimiento de la imagen de la empresa.
- Soporte legal.
- Protección del recurso humano, ambiente, equipos, etc. (Protección Integral)

Adicionalmente, es necesario realizar la coordinación y manejo de todos los procesos involucrados en las diferentes Áreas de Negocio mediante un conjunto de funciones de gestión de la empresa. Estas funciones son:

- Planificación.
- Evaluación y control de la gestión.
- Mejoramiento continuo de los procesos.
- Manejo de la información y generación de indicadores de la gestión.
- Preparación del presupuesto anual.
- Presentación de nuevos proyectos.
- Control del presupuesto.

3.2 Cadena de Valor de cada Área de Negocio

3.2.1 Fuentes y Estudio de la Demanda

Se expande en cuatro eslabones (véase figura 3.3), con el fin de obtener la red que debe soportar el consumo de una población dada, considerando las fuentes y su calidad. Estos cuatro procesos son:

- Estudio de la Población: Para esto, se deben conocer los estudios de crecimiento poblacional para cada región.
- Estimación del Consumo: Con el estudio poblacional y caracterizando los hábitos de consumo se determinar el volumen de agua necesario para cada región.
- Planificación de la Red: Este proceso necesita de la estimación de consumo, evaluación de las fuentes hídricas para determinar las zonas de captación de agua junto con los recursos necesarios para realizar esta labor, el dimensionamiento, diseño, establecimiento de planes de construcción para el transporte del agua desde las zonas de captación hasta los centros de potabilización y el costo esperado

Figura 3.3: Cadena de Valor Área fuente y estudio de la demanda.

Figura 3.4: Cadena de Valor Área de operaciones.

para la construcción de la infraestructura, su mantenimiento y operación hasta los centros poblados.

• Determinación de Costos: se determina cual es el costo final del agua, como este será trasladado a los usuarios.

3.2.2 Operaciones

El área de operaciones se expande en nueve eslabones, cinco para el agua potable (Fuente, Captación, Transporte, Potabilización, Distribución) y cuatro para las aguas servidas (Recuperación, Transporte, Tratamiento, Retorno). (véase figura 3.4)

Asociada a esta cadena debe existir un sistema de logística que asegure los recursos necesarios para mantener la operación.

3.2.3 Comercial

En esta área se establecen los requerimientos de servicio que implican un análisis de los nuevos clientes y de la capacidad de distribución en el sitio, así como las estrategias de prestación de servicio de conexión, con el fin de generar la orden de conexión, luego se procede a la conexión física del usuario a la red, incluyendo un mecanismo de medición (fiable) y estableciendo los mecanismos de cobranza por el servicio. Así, el área de comercial se expande en cuatro eslabones: Requerimiento de Servicio, Conexión, Medición, Cobro. (véase figura 3.5)

Figura 3.5: Cadena de Valor Área de comercialización.

Figura 3.6: Área de soporte.

3.2.4 Soporte

El área de soporte está conformada por: Finanzas, Contabilidad, Recursos Humanos, Relaciones Industriales, Protección Integral, Relaciones con otros organismos públicos y privados en general (véase figura 3.6). Estas sub-áreas soportan todas las actividades de las otras áreas facilitándoles recursos humanos, financieros y apoyando la gestión de las mismas.

3.3 Esquema Integral de Cadena de Valor para Hidrológicas

El esquema integrado de las diferentes cadenas de valores, sin tomar en cuenta la actividad de planificación, coordinación y control de la gestión es el mostrado en la figura 3.7.

3.4 Planificación

En el diagrama de planificación se observa que existe un eje vertical encargado de la toma de decisiones asociadas a la gestión de la empresa, definición de las metas,

Figura 3.7: Cadena de Valor de áreas de negocio en Hidrológicas.

control y seguimiento de las mismas dentro de una autonomía operativa. Un esquema de interacción entre las áreas de soporte, operaciones, comercial con el eje de toma de decisiones. Es detallado en la figura 3.8.

3.5 Modelo APS en Hidrológicas

Se presenta el modelo APS (Advanced Planning & Scheduling) para las hidrológicas (véase figura 3.9), asociado al modelo de tres ejes de manufactura colaborativa para i4.0 adaptado en industria de procesos. Un APS asigna recursos y capacidad de producción de forma óptima para equilibrar la demanda y la capacidad de la planta.

3.6 Unidades Holónicas en Hidrológicas

Desde la visión propuesta de un enfoque holónico asociado a los sistemas ciberfísicos, la descripción del modelo de conocimiento de las unidades holónicas de producción (UPH) pasa por una caracterización del equipamiento de la unidad, descripción de las competencias-habilidades, modelos y modos de operación,

SISTEMAS DE INFORMACION POR AREA

Figura 3.8: Esquema de interacciones.

Figura 3.9: Esquema de interacciones.

Figura 3.10: Unidades Holónicas de Producción para Hidrológicas.

información que constituye el modelo de conocimiento. Una visión que asocia la cadena de valor con unidades de producción para el área de operaciones es mostrado en la figura 3.10.

De la cadena de unidades en las hidrológicas, se tomará para el estudio el proceso de Potabilización del Área de Operaciones, con el fin de generar los modelos de conocimiento e integrarlos desde una visión de sistemas híbridos.

Debido a la variedad posible en la configuración del proceso de potabilización, se toma como referencia la Planta de Potabilización "Dr. Eduardo Jauregui", ubicada en el Estado Mérida. La referencia no hace exclusiva la visión del proyecto, sino que sirve de base para el desarrollo de los modelos de comportamiento.

3.7 Descripción del Proceso de Potabilización

La Unidad de Operación comprende el conjunto de recursos y actividades necesarias para administrar y operar los sistemas de agua, sumado al mantenimiento de las instalaciones y equipos utilizados [35]; incluye las unidades fundamentales del proceso

Figura 3.11: Entrada y salida de la unidad de Potabilización.

de producción: captación, potabilización, almacenamiento y distribución. En la figura 3.11 se presenta un modelo con las unidades correspondientes a Operación, con detalle de la entrada y salida del proceso de potabilización, transmisión de flujo e información referentes a tal proceso.

3.7.1 Captación del agua

La captación de agua cruda, en el caso de las plantas del Estado Mérida, se realiza mediante una estructura construida adyacente al cauce de la fuente (véase figura 3.12), de forma que el flujo se desvíe e ingrese al sistema mediante la rejilla de captación; el flujo es trasladado hacia un desripiador, donde se evacúa el material sólido de tamaño considerable que ha ingresado, y posteriormente hacia el desarenador, encargado de separar el agua cruda de la arena y partículas en suspensión de tamaño superior a 0,2 mm; luego el flujo ingresa a la planta de potabilización, cuyas unidades funcionales corresponden a: Coagulación ? Floculación ? Sedimentación ? Filtración ?Desinfección.[8]

Las acciones operativas sobre el caudal dependen de la capacidad máxima de la planta, en caso de ser superado este nivel máximo o por el contrario, no contar con una fuente óptima, el agua como producto final no será adecuada para el consumo humano, por ello es necesario el conocimiento y regulación del flujo mediante operación de compuertas para cumplir con los requerimientos de la planta, tomando en cuenta el plan de consumo, calidad de la fuente y periodo climático de la localidad. [37]

Figura 3.12: Proceso de captación del agua cruda. [33]

3.7.2 Determinación de las características del agua cruda

Para establecer la secuencia operacional de la unidad de potabilización se consideran dos condiciones principales, la calidad del flujo de entrada, que comprende la turbiedad, el caudal, el color, la temperatura, el cloro residual, oxígeno disuelto y el pH de la fuente proveniente de la unidad de captación, incluyendo valores de caudal, y la capacidad máxima de la planta de potabilización (en L/s o m3/s), en condiciones reales de funcionamiento.

Las características del flujo se obtienen por medición, previo a realizar el traslado a la planta de potabilización; esta acción evita el ingreso de agua de mala calidad y ayuda a establecer el modo de operación del sistema. [23] Si la captación es por gravedad o mecanizada, con estructura física fija, el flujo de entrada es constante, según la calidad del agua. La estacionalidad define el caudal de extracción y la calidad, siempre se debe respetar el caudal ecológico, en cualquier caso.

Las condiciones principales del flujo de salida de la unidad de potabilización, de igual forma, son calidad (pH, turbiedad, color y cloro residual) y cantidad (caudal). La calidad del agua al finalizar el proceso de potabilización, debe cumplir con las

Características físicas Expresadas como Valor aceptable Turbiedad Unidades Nefelométricas de Turbiedad (NTU) Hasta 2 NTU рН 6,5 - 9,0Cloro residual Hasta 2 mg/L mg/LUnidades de Platino Cobalto (UPC) Color aparente Hasta 15 UPC Olor y sabor Aceptable o No Aceptable Aceptable

características físico químicas descritas en la tabla 6.1.

Tabla 3.1: Características físicas del agua potable. [37]

3.7.2.1 Turbidez

Es una medida del grado en el cual el agua pierde su transparencia debido a la presencia de partículas en suspensión. Cuantos más sólidos en suspensión haya en el agua, más sucia parecerá ésta y más alta será la turbidez. En potabilización del agua y tratamiento de aguas residuales, la turbidez es considerada como un buen parámetro para determinar la calidad del agua, a mayor turbidez menor calidad.

La turbidez se mide en Unidades Nefelométricas de turbidez, o Nephelometric Turbidity Unit (NTU). Se utiliza para su medición un Nefelómetro o Turbidímetro, que mide la intensidad de la luz dispersada a 90 grados cuando un rayo de luz pasa a través de una muestra de agua.

Las condiciones de turbidez en agua cruda dependen de condiciones climáticas y contaminantes que afecten a la fuente, registrándose valores entre 0 y 1000 NTU, sin embargo el valor máximo adecuado para la entrada a la planta de potabilización es de 50 NTU.

Para disminuir la turbidez del agua se utiliza un coagulante que, en condiciones y dosis adecuadas, modifica el comportamiento de las partículas presentes en el agua, haciendo que se aglomeren y desciendan, de esta manera las unidades de NTU disminuyen.

3.7.2.2 pH

Coeficiente que indica el grado de acidez o basicidad de una solución acuosa. En general, un agua con un pH menor que 7 se considera ácido y con un pH mayor que 7 se considera básica o alcalina. La alcalinidad es una medida de la capacidad del agua para resistir un cambio de pH que tendería a hacerla más ácida. El rango normal de pH en agua superficial es de 6,5 a 9 y para las aguas subterráneas 6 ? 8.5. La medición de pH se realiza con un pHmetro.

3.7.2.3 Cloro Residual

Es aquella porción de cloro que queda en el agua después de un período de contacto, que reacciona química y biológicamente como ácido hipocloroso e hipoclorito; siendo entonces el remanente de cloro en el agua después de que parte del añadido reaccione en el proceso de desinfección. El límite máximo permitido para el agua potable es de 2 mg/L.

3.7.2.4 Color Aparente

El color del agua dependerá tanto de las sustancias que se encuentren disueltas, como de las partículas que se encuentren en suspensión. Se clasifica como ?color verdadero? al que depende solamente el agua y sustancias disueltas, mientras el ?aparente? es el que incluye las partículas en suspensión (que a su vez generan turbidez). El color aparente es entonces el de la muestra tal como se obtiene en el sistema a estudiar.

La medición de color se realiza por medio de un espectrofotómetro por medio del color Platino-Cobalto (Pt-Co) que es el color que se encuentra en aguas y aguas residuales. Varía de un aspecto amarillo claro hasta marrón, con un rango de 0-500 en Unidades de Platino - Cobalto (UPC).

3.7.2.5 Temperatura

Es un parametro utilizado para determinar el oxígeno disuelto en el agua, a mayor temperatura menor concentración de oxígeno disuelto; la disminución de oxígeno

disuelto genera trastornos en el ambiente acuático. La temperatura aceptable para el consumo humano es de 15°C.

3.7.2.6 Prueba de Jarras

En la industria hidrológica es la Prueba de Jarras la que proporciona los rangos óptimos de la dosis de coagulante según el pH de agua a tratar, para llevar a cabo la coagulación; este ensayo de laboratorio simula las condiciones en que se realiza el proceso de coagulación, floculación y sedimentación en la planta, partiendo de varias muestras de agua cruda tomada de la fuente, con características de calidad conocidas, y añadiendo en cada muestra los productos químicos variando tipo y dosis. El tiempo de retención de las unidades del proceso también es determinado mediante la Prueba de Jarras, tiempo necesario para la mezcla rápida e inicio de formación del flóculo (grumo formado por adhesión de sólidos en suspensión). Las condiciones operacionales para las etapas que comprende el proceso de potabilización, se determinan con esta prueba.

La metodología para realizar la prueba de Jarras consiste primero en tener conocimiento de turbidez, pH y color del agua cruda que está ingresando a la planta. Se toman entre 4 y 6 muestras de agua de igual cantidad en vasos de precipitado, y se les suministra distintas dosis de coagulante a cada muestra, según conocimiento previo. Cada muestra es sometida a una mezcla mecánica que emula el comportamiento de la planta real. La determinación óptima de coagulante resulta de aquella muestra en que se formen y desciendan mayor cantidad de sólidos aglomerados, disminuyendo así la turbidez presente en el agua. (véase figura 3.13)

3.7.3 Unidad de Potabilización

La Unidad de Potabilización es la encargada de tomar el agua cruda con características particulares y convertirla en agua potable, tal como se muestra en el diagrama de la figura 3.11. Partiendo del modelo de negocio de la unidad de Operaciones, se desglosan las unidades funcionales de la Potabilización (véase figura 3.14): Coagulación, floculación, sedimentación, filtración, desinfección.

Como se mencionó previamente, se toma como caso de estudio la Planta de Potabilización "Dr. Eduardo Jáuregui", ubicada en la Hoyada de Milla, municipio

Figura 3.13: Prueba de Jarras. [41]

Figura 3.14: Cadena de valor de la Unidad de Potabilización.

Milla del Estado Mérida, la cual tiene una producción de 300 L/s de agua potable, siendo este el caudal promedio que genera la fuente. Es importante mencionar que el diseño estructural de las plantas de potabilización se realiza luego de aplicar estudios a la fuente que surtirá el proceso, de modo que en casos extremos, usualmente periodos de sequía, el caudal mínimo que entre a la planta logre en lo posible mantener la producción, sin afectar la distribución de agua a la población.

La unidad de potabilización debe cuidar que el proceso, el flujo de producto y los recursos estén coordinados. El modelo del proceso comprende la información y buen funcionamiento de cada eslabón de la potabilización, incluyendo los modelos de mantenimiento en las unidades y de consumo de la población; en el caso de la planta Jáuregui no se tienen registros de consumo. Respecto al flujo de producto se debe cuidar que la calidad y cantidad de agua en la entrada y salida del proceso sean las adecuadas. El modelo de recursos por su parte, permite distribuir los químicos utilizados, como el sulfato de aluminio y el cloro, en las unidades que lo requieran.

La unidad debe llevar un registro de rendimiento y fallas, de manera que se puedan tomar decisiones en pro de mejorías en la producción mientras se mantiene la continuidad del proceso.

En la figura 3.15 se presenta el diagrama P&ID del proceso de potabilización generalizado, donde cada tanque representa una unidad del proceso. El detalle de cada unidad se detalla a continuación.

3.7.3.1 Coagulación

Entrada

Agua cruda aceptada, proveniente de la captación. La aceptación del agua cruda depende de los valores obtenidos en las pruebas sobre la calidad del agua cruda: turbidez, color aparente, Ph, temperatura, así se recibe agua con caudal y calidad. La prueba de jarra indica las condiciones operacionales para el tipo de coagulante, cantidad y tiempo de residencia (en condiciones normales del flujo de agua este valor es fijo).

Proceso

Figura 3.15: Diagrama P&ID del proceso de Potabilización.

El proceso de coagulación consiste en quitar la turbidez del agua cruda proveniente de la fuente, producida por partículas de muy bajo diámetro y baja sedimentación, llamadas partículas coloidales. Los coloides son mezclas intermedias entre las soluciones y las suspensiones, que según la afinidad al medio dispersante, se clasifican en:

- Liofóbicos o liófobos: Si las partículas dispersas tienen poca afinidad al medio dispersante. Algunos ejemplos son el aceite suspendido en el agua, óxidos metálicos, sulfuros.
- Liofílicos: Si las partículas tienen fuerte afinidad al medio de suspensión. Por ejemplo el jabón disperso en agua, gelatina en agua, proteínas, virus.

Para remover la turbidez se realiza un procedimiento de desestabilización química sobre el agua turbia, neutralizando las fuerzas que mantienen separadas las partículas coloidales mediante adición de coagulantes químicos, estos comúnmente son: Sulfato de aluminio, Sulfato Férrico o Polímeros catiónicos.

Para que la desestabilización se realice de forma adecuada es necesaria la aplicación de energía por mezclado rápido (hidráulico o mecánico), que hace que el material en suspensión cargado eléctricamente al entrar en contacto con los elementos químicos (dispersados de forma rápida y homogénea), permitan la aglomeración de las partículas en suspensión, formando partículas de mayor tamaño llamadas flóculos. Los tiempos de retención varían entre 0,3 y 5 minutos [6] dependiendo del coagulante y el mecanismo de la mezcla, por ejemplo, los polímeros se distribuyen más lentamente que los iones metálicos debido a su mayor molécula, por lo tanto, requerirán mayor tiempo de residencia en la unidad que los coagulantes metálicos hidrolizantes. Esta desestabilización química que genera cargas iónicas permite eliminar el 95% de las bacterias presentes en el agua cruda en los flóculos y el 90% de las arcillas, partículas gramnegativas que quedan neutralizadas al añadir el químico.

Para realizar el proceso de coagulación hay dos estructuras principales, la estructura mecánica consiste en un tanque con un agitador a motor, y la estructura hidráulica que trata de un canal de ingreso con desnivel, tal desnivel genera un resalto hidráulico óptimo para realizar la mezcla requerida con el coagulante.

En ambos casos de manera general debe controlarse:

- Entrada del flujo a la unidad de coagulación, ya que se realiza una mezcla con el coagulante.
- Fijar la cantidad adecuada de coagulante en los dosificadores y cuidar que se añada uniformemente en la zona de mayor agitación.

Para el agitador mecánico:

- El nivel de agua en el tanque de coagulación, manteniéndose en el rango de operación del equipo.
- El funcionamiento del agitador para la mezcla rápida, con la velocidad óptima determinada en la prueba de jarras mediante el gradiente medio de velocidad: $\bar{G} = \sqrt{\frac{P}{V\alpha}}$, donde, P es la potencia total disipada; V es la unidad de volumen en una estructura hidráulica y α es la viscosidad absoluta del agua.
- Fijar el tiempo de retención necesario para que los químicos entren en contacto con toda la masa de agua.
- Monitorear la salida del flujo una vez cumplido el tiempo adecuado de coagulación.

Para el agitador hidráulico:

 Controlar flujo de agua para un óptimo resalto hidráulico para la mezcla según especificaciones de coagulante.

El gradiente de velocidad hace referencia a las colisiones de partículas debido al movimiento del agua, inducido por una energía exterior. Cuanto mayor es el gradiente de velocidad, más rápida es la velocidad de aglomeración de las partículas. Sin embargo, con un gradiente elevado es posible que flóculos ya formados se dividan en partículas menores. Es necesario realizar la prueba de jarras y mantener un equilibrio en la unidad en cuanto a tiempos de retención y gradientes.

Se debe cuidar también la dosis de coagulante aplicada, si se suministra menos que la cantidad requerida, las cargas no se neutralizan, por lo que la formación de flóculos será escasa y la turbidez se mantendrá elevada; si por el contrario, se añade en exceso el coagulante, las cargas de las partículas se invierten y se forman cantidades altas de microflóculos con velocidad de sedimentación muy baja, manteniendo igualmente elevada la turbidez del flujo. Al añadir cantidades adecuadas de coagulante, se evita también el aumento del costo del proceso para la empresa, ya que es la unidad que más pérdidas puede generar debido a los recursos químicos que intervienen.

Salida

Flujo de agua con añadidura de químicos coagulantes, características de calidad y cantidad de agua.

El mantenimiento de la unidad se asocia al control de válvulas o compuertas (entrada, salida, desagüe), y a los equipos electromecánicos, si aplica.

En la planta Jáuregui el proceso de coagulación se realiza de forma hidráulica con un canal Parshall (véase figura 3.16). La dosis de coagulante se añade justo en el resalto hidráulico que genera la mezcla rápida, en cuestión de segundos. El coagulante utilizado es el Sulfato de Aluminio $(Al_2(SO_4)_318H_2O)$, químico que debe aplicarse con un rango óptimo de pH entre 5 - 8, consideración que se cumple puesto que la fuente mantiene un pH de 7,1. De igual forma, la temperatura del agua es templada sin cambios bruscos, por tanto no afecta las reacciones químicas.

3.7.3.2 Floculación

Entrada

Agua cruda con coagulantes añadidos en la unidad anterior; valores de calidad y cantidad de flujo.

Proceso

El objetivo principal de la floculación es reunir las partículas desestabilizadas en el proceso de coagulación, para formar aglomeraciones de mayor peso y tamaño que sedimenten con mayor eficiencia. La masa de agua es sometida a una mezcla lenta que permite la aglomeración de las partículas coloidales para disminuir la turbiedad existente.

Figura 3.16: Canal Parshall, unidad de coagulación.[114]

La unidad se compone de tanques de floculación con agitadores mecánicos o hidráulicos, de flujo vertical, horizontal, alabama o helicoidales. Con gradientes de velocidad decrecientes para garantizar el crecimiento progresivo de los flóculos. El tiempo de mezcla y el gradiente de la velocidad se obtienen mediante la prueba de Jarras detallada previamente, generalmente el gradiente (G) suele ubicarse entre $20s^{?1}$? $70s^{?1}$, y el tiempo de retención (T) entre 20 y 30 minutos. La agitación muy lenta o muy rápida del fluido, puede producir sedimentación o rompimiento de flóculos en la unidad, respectivamente.

Los parámetros operacionales y procesos de control de la unidad de floculación son:

- Verificar que el caudal de entrada corresponda con el rango de operación de la unidad.
- En caso tal de que el floculador utilizado sea tipo mecánico, se debe cuidar el buen funcionamiento de las aspas.
- Verificar el cumplimiento del gradiente de velocidad (G) y el tiempo de retención
 (T); parámetros que optimizan el proceso de floculación.
- Controlar el flujo de salida y realizar las mediciones necesarias de caudal, pH y turbiedad.

Figura 3.17: Floculador mecánico de turbina.[115]

Salida

Flujo de agua con flóculos listos para la sedimentación.

Para operación y mantenimiento de la unidad funcional, cada floculador cuenta con desagüe protegido que descarga en una línea común; el sistema debe incluir una válvula de compuerta. [8]

En la planta Jáuregui se cuentan con dos unidades de floculación; el flujo proveniente de coagulación es dividido hacia dos unidades de floculación mecánica de turbina (véase figura ??), de dos cámaras cada una. La segunda cámara de cada floculador se conecta a la unidad de sedimentación.

Capítulo 4

Implementación

4.1 Epanet y MATLAB

¿Cómo realizar la simulación híbrida?

4.2 Simulación

Capítulo 5

Conclusiones y Recomendaciones

Capítulo 6

Anexos

Para llevar a cabo las mediciones de calidad de agua se uilizan principalmente los instrumentos descritos en la tabla 6.1.

6 Anexos 52

Instrumento	Función	Funcionamiento
Turbidímetro (NTU)	Medición de turbidez en	Detección de las partículas
	el agua. Determina la	con una fuente de haz
	cantidad de sustancias en	lumínico y un detector de
	un líquido, se emplea en la	luz fijado a 90 grados del
	medición de partículas en	haz original.
	suspensión en un líquido o	
	gas disuelto	
pHmetro (pH)	Medición de la actividad del	Medición de la diferencia
	ion hidrógeno en soluciones	de potencial eléctrico entre
	acuosas, indicando su grado	un electrodo de pH y un
	de acidez o alcalinidad	electrodo de referencia.
	expresada como pH.	
Medidor de Cloro	Detección de la cantidad de	Medición amperométrica
Amperométrico (mg/L)	cloro libre residual del agua	con potencial constante,
	tratada.	hecho a través de dos
		electrodos, de metal y un
		electrodo de referencia.
		La corriente consume el
		contenido de cloro, por lo
		que se necesita un sistema
		de circulación.
Espectrofotómetro (UPC)	Detección del color	Se produce un rango
	mediante la medición	deseado de longitud de
		onda de luz que pasa a
	transmitida a través de la	través de la muestra y,
	muestra.	mediante un fotómetro,
		se detecta la cantidad de
		fotones absorbidos.

Tabla 6.1: Desripción de instrumentos de medición.

Bibliografía

- Daneels, A. and Salter, W. (1999). What is scada? *Inductive Automation*.
- del Val Román, J. L. (2016). Industria 4.0: la transformación digital de la industria. Facultad de Ingeniería de la Universidad de Deusto (CODDII).
- Fúquene Retamoso, C. E., Aguirre Mayorga, S., and Córdoba Pinzón, N. B. (2007). Evolución de un sistema de manufactura flexible (fms) a un sistema de manufactura integrada por computador (cim). *Ingeniería y universidad*, 11(1).
- Klaus-Dieter Thoben, Stefan Wiesner, T. W. (2017). Industrie 4.0, and smart manufacturing a review of research issues and application examples. *Int. J. Autom. Technol*, (11).
- Morales-Rodríguez, N. (2018). Uso de nuevas tecnologías para la competitividad del país. *Investiga. TEC*, (33):3.
- national academyc of Science Egineering Medicine, T. (2016). A 21st century cyber-physical systems education. *International Standard Book*, (13).
- Olivier Cardin, William Derigent, D. T. (2018). Evolution of holonic control architectures towards industry 4.0, a short overview. *IFAC PapersOnLine*, (1243).
- Pérez, F. A. F. and Guerra, J. L. G. (2017). Internet de las cosas. Perspectiv@s, 10(11):45-49.