Fonctions trigonométriques

**

I. Enroulement de la droite des réels sur le cercle trigonométrique

1. Cercle trigonométrique

Définition 1.

Le plan est muni d'un repère $(O, \overrightarrow{i}, \overrightarrow{j})$ orthonormal.

On appelle $cercle\ trigonom{\'e}trique\$ le cercle $\mathscr C$ de centre O et de rayon 1, muni d'un sens direct dit $trigonom{\'e}trique\$: le sens inverse des aiguilles d'une montre.

2. Enroulement de la droite des réels sur le cercle trigonométrique

La droite d'équation x=1, tangente au cercle trigonométrique en I représente la droite graduée des réels, I représentant le zéro de cette droite des réels. On enroule cette droite autour du cercle trigonométrique , le point I de la droite restant immobile. Chaque point du cercle est ainsi marqué, repéré par un nombre de la droite des réels. Et même de *plusieurs*, puisque la droite est infinie et qu'elle fait donc *plusieurs fois* le tour du cercle.

Plaçons sur le cercle les points correspondants à $\frac{\pi}{2}$, π , $-\pi$ et $-\frac{\pi}{2}$.

3. Conversion radian degré

Propriété. Si M est un point du demi-cercle au dessus de l'axe des abscisses. Le réel x de la droite des réels de l'intervalle $[0; \pi]$ associé est une mesure en *radian* de l'angle IOM.

- 1. Convertir $\frac{36^{\circ}}{5}$ en radian. 2. Convertir $\frac{4\pi}{5}$ radian en degrés.

II. Cosinus et sinus

1. Définition

Définition 2.

Soit x un réel et M le point associé à x.

- 1. le cosinus de x est l'abscisse de M.
- 2. le sinus de x l'ordonnée de M.

 $\sin x = y_M$ et $\cos x = x_M$

2. Propriétés fondamentales

Propriétés.

Pour tout nombre réel x:

- 1. $-1 \le \cos x \le 1$ et $-1 \le \sin x \le 1$.
- 2. $(\cos x)^2 + (\sin x)^2 = 1$ que l'on peut écrire également $\cos^2 x + \sin^2 x = 1$.

Démonstration.

En effet l'abscisse de M est toujours comprise entre -1 et 1...

 $(\cos x)^2 + (\sin x)^2 = 1$ se montre avec la distance OM qui vaut 1. Dans le triangle OHM rectangle en H, le théorème de Pythagore permet d'écrire :

$$OM^{2} = OH^{2} + HM^{2}$$

$$= (x_{M} - 0)^{2} + (y_{M} - 0)^{2}$$

$$= x_{M}^{2} + y_{M}^{2}$$

$$= (\cos x)^{2} + (\sin x)^{2}$$

$$= 1$$

donc:

$$(\cos x)^2 + (\sin x)^2 = 1$$

Yann MOBIAN - 1^{re} Maths G2/G4 - Licence Creative Commons (9) 3 - 2021/2022

3. Valeurs remarquables des cosinus et sinus

Propriété.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

III. Fonction cosinus et sinus

1. Périodicité

Définition 3.

Une fonction trigonométrique f définie sur $\mathbb R$ est p'eriodique de p'eriode T si et seulement si :

$$f(x+T) = f(x)$$

2. Périodicité de sin et cos

Propriété.

Pour tout réel x, les points du cercle trigonométrique associés aux réels x et $(x + 2\pi)$ sont confondus. Ainsi on a :

$$\cos(x+2\pi) = \qquad \qquad \text{et } \sin(x+2\pi) =$$

On dit que les fonctions cos et sin sont *périodiques* de période 2π .

Exercice 2.6. Démontrer que la fonction f définie sur \mathbb{R} par $f(x) = \cos(\pi x)$ est périodique de période T = 2.

3. Angles associés

On dit que la fonction cos est ______ et la fonction sin est _____

4. Variations et représentations graphiques

Grâce à la périodicité des fonctions cos et sin, et au fait que l'un est *paire* et l'autre *impaire*, on peut limiter l'étude des variations à l'intervalle $[0; \pi]$.

A. La fonction cosinus

Pour tracer la courbe représentative de la fonction cosinus, on peut déjà dresser son tableau de variations sur $[0;\pi]$:

x	0	π
signe de $\cos'(x)$	_	
Variations de cos	1	-1

Ensuite, grâce à la parité de la fonction cosinus on peut compléter sur $[-\pi; 0]$ puis on reporte sur les autres intervalles grâce à la périodicité.

La partie noire pleine est la représentation sur $[0; \pi]$, la partie bleue est obtenue grâce à la parité (fonction paire donc symétrie par rapport à l'axe des ordonnées) et la partie rouge est obtenue grâce à la périodicité (translation de vecteur $2\pi \overrightarrow{i}$).

B. La fonction sinus

De même, pour tracer la courbe représentative de la fonction sinus, on peut déjà dresser son tableau de variations sur $[0; \pi]$:

La partie noire pleine est la représentation sur $[0; \pi]$, la partie bleue est obtenue grâce à la parité (fonction impaire donc symétrie par rapport à l'origine) et la partie rouge est obtenue grâce à la périodicité (translation de vecteur $2\pi i$).