

FIG. 2

22-141 50 SHEETS
22-142 100 SHEETS
22-144 200 SHEETS

	Outage Probability	Mean Outage Rate	Mean Outage Duration
M	Pout	Rout	Tout
Threshold/ <dgd></dgd>	(min/year)	(events/year)	(min/event)
1.0	243046	461	527.0
1.1	197138	427	461.6
1.2	155591	379	410.3
1.3	119480	324	369.1
1.4	89268	266	335.3
1.5	64893	211	307.2
1.6	45901	162	283.4
1.7	31594	120	263.0
1.8	21162	86.2	245.4
1.9	13796	60.0	229.9
2.0	8754	40.5	216.4
2.1	5407	26.5	204.3
2.2	3251	16.8	193.5
2.3	1903	10.4	183.8
2.4	1084	6.20	175.0
2.5	602	3.60	167.0
2.6	325	2.04	159.7
2.7	171	1.12	153.1
2.8	87.7	0.597	146.9
2.9	43.8	0.310	141.2
3.0	21.3	0.156	136.0
3.1	10.1	0.0768	131.1
3.2	4.65	0.0367	126.5
3.3	2.09	0.0171	122.3
3.4	0.913	0.00772	118.3
3.5	0.389	0.00340	114.6
3.6	0.162	0.00146	111.1
3.7	0.0654	6.07E-04	107.8
3.8	0.0258	2.46E-04	104.6
3.9	0.00990	9.74E-05	101.7
4.0	0.00370	3.75E-05	98.9
4.1	0.00135	1.40E-05	96.3
4.2	4.80E-04	5.12E-06	93.7
4.3	1.66E-04	1.82E-06	91.4
4.4	5.60E-05	6.29E-07	89.1
4.5	1.84E-05	2.12E-07	86.9
4.6	5.89E-06	6.94E-08	84.9
4.7	1.84E-06	2.22E-08	82.9
4.8	5.59E-07	6.90E-09	81.0
4.9	1.66E-07	2.09E-09	79.3
5.0	4.82E-08	6.18E-10	78.0

FIG. **6**