Homework 4

Problem 1. Count the number of linear extensions for the following partial ordering:

X is a disjoint union of sets X_1, X_2, \ldots, X_k of sizes r_1, r_2, \ldots, r_k , respectively. Each X_i is linearly ordered by \leq , and no two elements from the different X are comparable.

Problem 2. Given a set X with |X| = n, determine the number of ordered set pairs $\langle A, B \rangle$ where $A \subseteq B \subseteq X$.

Problem 3. There are n married couples attending a dance. How many ways are there to form n pairs for dancing if no wife should dance with their husband.

Problem 4. Count the permutations with exactly k fixed points. (Remark: π is a permutation of the set $\{1,2,\ldots,n\}$. Call an index i with $\pi(i)=i$ a fixed point of the permutation π .)

Problem 5. What is wrong with the following inductive proof that D(n) = (n-1)! for all $n \ge 2$? Can you find a false step in it? For n = 2, the formula holds, so assume $n \ge 3$. Let π be a permutation of $\{1, 2, ..., n-1\}$ with no fixed point. We want to extend it to a permutation π' of $\{1, 2, ..., n\}$ with no fixed point. We choose a number $i \in \{1, 2, ..., n-1\}$, and we define $\pi'(n) = \pi(i), \pi'(i) = n$, and $\pi'(j) = \pi(j)$ for $j \ne i$, n. This defines a permutation of $\{1, 2, ..., n\}$, and it is easy to check that it has no fixed point. For each of the D(n-1) = (n-2)! possible choices of π , the index i can be chosen in n-1 ways. Therefore, $D(n) = (n-2)! \cdot (n-1) = (n-1)!$.

Problem 6. How many ways are there to seat n married couples at a round table with 2n chairs in such a way that the couples never sit next to each other?