Section 14.3 – Motion in Space

• Position:
$$r(t) = \langle x, y, z \rangle$$

• Instantaneous Velocity:
$$v(t) = r'(t) = \langle x'(t), y'(t), z'(t) \rangle$$

• Speed:
$$|v(t)| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}$$

• Acceleration:
$$a(t) = v'(t) = r''(t)$$

• Find the velocity and speed of the object. Then find the acceleration of the object.

$$r(t) = \langle 3 + t, t^2, e^{-t} \rangle$$
 for $t \ge 0$

• Find the velocity and speed of the object. Then find the acceleration of the object.

 $r(t) = \langle 3 \sin t, 5 \cos t, 4 \sin t \rangle$ for $0 \le t \le 2\pi$

- Uniform straight-line motion: $r(t) = \langle x_0 + at, y_0 + bt, z_0 + ct \rangle$
- <u>Circular motion</u>: $r(t) = \langle A \cos t, A \sin t \rangle$ for $0 \le t \le 2\pi$, r and a are parallel but point in opposite directions, and $r \cdot v = a \cdot v = 0$ which means position and acceleration are both orthogonal to the velocity.
- Given an acceleration vector, initial velocity $\langle u_0, v_0 \rangle$, and initial position $\langle x_0, y_0 \rangle$, find the velocity and position vectors for $t \ge 0$.

$$a(t) = \langle 1, 2 \rangle, \ \langle u_0, v_0 \rangle = \langle 1, 1 \rangle, \langle x_0, y_0 \rangle = \langle 2, 3 \rangle$$

• Two-Dimensional Motion in a Gravitational Field:

Consider an object moving in a plane with a horizontal x-axis and a vertical y-axis, subject only to the force of gravity, $\mathbf{a}(t) = \langle 0, -g \rangle$. Given the initial velocity $\mathbf{v}(0) = \langle u_0, v_0 \rangle$ and the initial position $\mathbf{r}(0) = \langle x_0, y_0 \rangle$, the velocity of the object, for $t \geq 0$, is

$$v(t) = \langle x'(t), y'(t) \rangle = \langle u_0, -gt + v_0 \rangle$$

and the position is

$$r(t) = \langle x(t), y(t) \rangle = \langle u_0 t + x_0, -\frac{1}{2}gt^2 + v_0 t + y_0 \rangle$$

 $g \approx 9.8 \frac{m}{S^2} \text{ or } 32 \frac{ft}{S^2}$

• Determine the time of flight and range of the object.

• Determine the maximum height of the object.

- <u>Three-dimensional motion</u>:
- Find the velocity and position vectors for $t \ge 0$.

$$\boldsymbol{a}(t) = \langle 1, t, 4t \rangle, \langle u_0, v_0, w_0 \rangle = \langle 20, 0, 0 \rangle, \langle x_0, y_0, z_0 \rangle = \langle 0, 0, 0 \rangle$$

- $a(t) = \langle 0, 0, -g \rangle$. We include any crosswinds, spins, or slices in other force components.
- For the following problems:
 - Find the velocity and position vectors for $t \ge 0$.
 - o Determine the time of flight and range of the object.
 - o Determine the maximum height of the object.
- A bullet is fired from a rifle 1 m above the ground in a northeast direction. The initial velocity of the bullet is (200, 200, 0) m/s.

•	A baseball is hit 3 feet above home plate with an initial velocity of $(60, 80, 80)$ ft/s. The spin on the baseball produces a horizontal acceleration of the ball of 10 ft/ s^2 in the eastward direction.