VLSI Devices Lecture 4

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

MOS capacitors

Basis of CMOS technology

Energy band diagram

- Three components
 - Metal, silicon dioxide, and p-type silicon

Consider $V_g = V_{sub} = 0 \text{ V}$.

- Rule: Align the Fermi level.
 - -The energy difference is

$$q\Phi_s - q\Phi_m$$

- It means that a non-zero electric field is applied in the oxide layer.

When
$$V_g = \Phi_m - \Phi_s < 0$$
,

- The energy band at gate moves upward.
 - -There is no energy difference.
 - It means that the energy band becomes flat.
 - -This gate voltage is called the flatband voltage, V_{fb} .

Draw the energy band diagram at $V_g = V_{fb}$.

- Since the energy band is flat, it is not difficult.
 - The electron energy barrier is 3.1 eV between the conduction bands of silicon and silicon dioxide.

Consider $V_g = V_{sub} = 0$ V, again.

- Non-zero electric field is found.
 - However, the energy difference, $q\Phi_s-q\Phi_m$, cannot be solely applied to the oxide layer. Why?

Surface potential, $\phi_s \equiv \phi(0) - \phi(\infty)$

- A downward bending of bands in the p-type silicon near the surface
 - It is important to note that

$$V_g - V_{fb} = \phi_s + V_{ox}$$

At the silicon-oxide interface,

$$\epsilon_{ox} |\mathbf{E}_{ox}| = \epsilon_{si} |\mathbf{E}_{si}|$$

-Since
$$\epsilon_{ox} = 3.9\epsilon_0$$
 and $\epsilon_{si} = 11.7\epsilon_0$, $|\mathbf{E}_{ox}| \approx 3|\mathbf{E}_{si}|$

Taur, Eq. (2.172)

Taur, Eq. (2.173)

TCAD simulation

- Model parameter
 - -Workfunction of 4.17 eV
 - -Oxide thickness of 20 Å
 - -P-type doping of 1X10¹⁸ cm⁻³

• V_g = -0.94 V

Flatband condition

- V_g = 0.0 V -Depletion
- Space charge

- $V_g = 1.0 \text{ V}$ -Inversion
- Electron density

- V_g = -2.0 V -Accumulation
- Hole density

Thank you!