Problem Statement 2

To design dual band T shaped Monopole MIMO antenna on a FR-4 substrate. With Stub Resonator.

The frequency is 1 GHz to 6 GHz and the thickness is 0.8 mm, dielectric constant = 4.3.

Also Reduce Mutual Coupling with the help of Stub Resonator.

USAGE: 2.4/5.2/5.8 GHz WLAN operating bands

Parameter	Value(mm)	Parameter	Value(mm)	Parameter	Value(mm)
Lg	10	a1	7	h	0.8
Lf	15	a2	13	W	0.5
Wf	1.5	a3	12	S	11
d	30.5	a4	9	ir	7
t	0.035	L	17.6		

STEP1 Modelling of Substrate Plane → Brick → Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-25	25	0	26	-h	0

Material: FR-4 (Lossy)

STEP2 Modelling of **Patch P1** → Brick → Esc

	_	
1		1
	_	а

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-1.5/2	1.5/2	0	Lf	0	t

Material: Copper Annealed

Pb

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-a1/2	a1/2	Lf	Lf +1.5	0	t

Material: Copper Annealed

Boolean Addition: Add Pa & Pb to form Patch P1

STEP3 Modelling of **Patch P2** → Brick → Esc

- 1. Transform: Translate P1 [X = 0.75 d/2]
- 2. Select Patch P1 and **Transform: Mirror [X = 180]** to form Patch P2.

STEP4 Modelling of **Slot Resonator** → Brick → Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-L/2	L/2	S+Lg	S+Lg+ W	0	t

STEP5 Modelling of **Ground** Plane → Brick → Esc

G1	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
	-25	25	0	Lg	-h-t	-h

Material: Copper Annealed

G2						
	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
	-1	0	Lg	Lg+a2	-h-t	-h

 Xmin
 Xmax
 Ymin
 Ymax
 Zmin
 Zmax

 -1-a3
 -1
 Lg+a4
 Lg+a4+1
 -h-t
 -h

Boolean Addition: Add G2 & G3 to form Ground G4

Apply **Transform: Translate [X = - L/2]** on G4

G5 Apply Transform: Mirror [X = 180] on G4 to form G5

Boolean Addition: Add G4 & G5 to form **Ground Plane**

STEP5 EXCITATION: Create input ports on both Patch P1 & P2

PICK → PICK FEED → MACRO → SOLVER → PORTS → CALCULATE PORT EXTENTION

CALCULATE → CONSTRUCT PORT FROM PICKED FACE → CLOSE

STEP6 SIMULATE