Introduction To C Programming And Unix

מטרות הקורס

■ הבנה בסיסית של מושגים במדעי המחשב

אלגוריתם ✓ תוכנה SW תוכנית ✓

יועוד... ✓ מבנה נתונים ✓ חומרה HW

עפת תכנות √סיבוכיות

פיתוח יכולת לפתרון בעיות (חישוביות) בעזרת מחשב

■ היכרות בסיסית של מערכת Unix

C היכרות מעמיקה של שפת התכנות ■

מושגי יסוד

Introduction To C Programming And Unix - Jazmawi Shadi

מחשב מהו?

- **▪מכונה** לעיבוד נתונים לפי תוכנית כלומר לפי סדר פקודות נתון מראש
 - **מכונה** לפתרון בעיות חישוביות
 - **מכונה** שמריצה תוכניות מחשב
 - שילוב בין **חומרה לתוכנה**
 - למה טוב? ■
 - יודע לעשות חישובים מסובכים√
 - עייתן√

∕מהיר מאד

- √לא מבקש תמורה
- אף פעם לא מתלונן √
- יודע לפתור בעיות√

www.thinkquest.org

מבנה המחשב

<u>לוח אם</u>

Bus אפיק נתונים

ערוץ תקשורת פנימי המשמש להעברת מידע בין רכיבי החומרה השונים •רוחבו מכתיב את מהירות העברת הנתונים (32/64bits)

משטח אלקטרוני המרכז עליו ומנהל את כל רכיבי החומרה הנחוצים להפעלת המחשב

Motherboard

Program תוכנית מחשב

- תכנית מחשב היא סדרה של פקודות אשר נועדו לביצוע משימה כלשהי (רצה במחשב)
- תוכנית מחשב היא מימוש של אלגוריתם בעזרת שימוש בשפת תכנות כלשהי.
 - ▪התוכנית נטענת לזיכרון המחשב בשלב ההרצה
 - מבצע את הפקודות בתוכנית CPU בתוכנית
 - דוגמאות ■
 - עמשחק מחשב ✓
 - n! תוכנית לחישוב√
 - עוכנית למיון מערך ✓
 - עוכנית למציאת מקסימום ברשימה √
 - Windows Xp/7 unix✓

Explorer✓

Operating System מערכת הפעלה

- אוסף תוכנות המנהלות את החומרה במחשב
- ממשק בין המשתמש לבין שאר רכיבי המחשב (חומרה ותוכנה)
 - מנהלת את המחשב על התקניו ומשאביו
 - ■מתווכת בין החומרה לשאר התוכנות במחשב
 - **ד**וגמאות

אלגוריתם

- דרך שיטתית לביצוע משימה מסוימת על **נתונים** במספר סופי של צעדים
 - שיטה לפתרון **בעיה** חישובית ■
 - על האלגוריתם לקיים שני תנאים •
 - עבור כל קלט נתון האלגוריתם מיגיע לסופו ✓
 - פלט נכון ✓
- פסאודו קוד) : תיאור מצומצם לאלגוריתם (פסאודו קוד) : פסאודו קוד) : לשהו.
 - מיועד לקריאה ע"י אנשים בלבד •
 - מהווה שפה משותפת למתכנתים

דוגמאות

- מתכון להכנת עוגה
- מדריך נסיעה מתל-אביב לחיפה
 - מיון מערך •

מציאת מקסימום במערך ■

מתכון להכנת עוגה

```
.... קמח,ביצים,סוכר... ➤
    דרך הכנה (אלגוריתם) \succ
להכניס את הקמח למיקסר
      להוסיף ביצים וסוכר
                           (3
            לערבב היטב
                           (4
   לסדר בתוך מגש בישול
                           (5
  להכניס לתנור 25 דקות
                           6)
      להניח עד שמתקרר
                פלט: עוגה 🗲
```

Algorithm For Finding the Maximum

Input: List of numbers L

Output: The maximum number of the list L

```
maxNum ← first number in L

for each item in the list L do

if maxNum < item then

maxNum ← item

end if
end for
```


 $L \leftarrow \{3,6,4,9\} \rightarrow \max Num \leftarrow 9$

return maxNum

Algorithm For Sorting a List Of Numbers

```
Input: Array of numbers A
Output: The sorted list of the array A
for i = 1 to size of A do
   for j = 1 to size of A do
                                              ?סיבוכיות
       if A[j] > A[j+1] then
          swap A[ j ] with A[ j+1 ]
       end if
       next j
   end for
   next i
end for
```

Machine Language שפת מכונה

- רתה ניתן לתקשר עם המחשב (CPU) השפה שבעזרתה ניתן לתקשר ש
 - פקודות בשפה זו עובדות ישירות מול החומרה
 - תלוית מעבד ■
 - שפה זו לא מובנת לאנשים
 - שפת מכונה היא שפה בינארית מיוצגת ע"י המספרים 0 ו- 1
 - שפת התכנות הכי קרובה לשפת מכונה היא Assembly (התאמה חד-חד ערכית עם פקודות בשפת מכונה)
- ?בכול זאת אנחנו מאד רוצים לדבר עם המחשב. למה

9GAG.COM/GAG/4088277 ●

שפת תכנות Programming Language

- שפת תכנות היא שפה מלאכותית אשר מיועדת לכתיבת תוכניות מחשב
 - ממשק בין התקן מתוכנת לבין מתכנת אנושי
- Semantic וסמנטיים Syntax לכל שפת תכנות יש אוסף של חוקים תחביריים "
 - מאפשרת מימוש ותיאור אלגוריתמים
- שפת סף-אסמבלי Assembly. שפת התכנות הקרובה ביותר לשפת מכונה
 - עפועלת ישרות מול החומרה במחשב √
 - ∕כמעט התאמה חד-חד ערכית עם פקודות בשפת מכונה
 - עלוית מעבד√
 - ■המעבד לא מבין את מה שכתוב בשפת תכנות לכן דרוש מתרגם
 - c/c++ הביצועים הטובים ביותר) compiler מהדר ←
 - קלה לביצוע וניוד אבל ביצועים נחותים מהידור \leftarrow Interpreter מפענח

Layers Of Programming Languages

Webopedia.com

C and C++ Can Talk To Hardware

Example of computing language translation

www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html

תרשים מסכם

Central Processing Unit

Use of lw and sw instructions to transfer data between memory and processor (MIPS)

www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html

www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html

מבנה נתונים

- דרך לאחסון נתונים במחשב
 - ✓ אחסון בזיכרון המחשב
- ✓ אחסון חיצוני בבסיסי נתונים
- בחירת מבנה נתונים היא שלב חשוב וקריטי בעיצוב תוכנית מחשב
 - בתכנות מונחה עצמים OOP מיוחסת חשיבות מיוחדת לתמיכה במבני נתונים
 - מערך, מחסנית,תור,רשימה מילון ועץ הן דוגמאות למבני נתונים

סיבוכיות

- תת תחום במדעי המחשב אשר בוחן את:
 - יעילות האלגוריתם √
- יהמשאבים הנחוצים לפתרון בעיה חישובית (משאב הזיכרון ,הזמן...) √
- ש אנו נתמקד בעיקר בסיבוכיות הזמן (מספר הצעדים הנחוצים כפונקציה של גודל הקלט)
 - O(n) סיבוכיות אלגוריתם מציאת המקסימום ✓
 - $O({\color{red}\eta^2})$ סיבוכיות אלגוריתם המיון \checkmark

Storage Devices התקני אחסון

- ■התקני חומרה אשר משמשים לשמירת מידע וקריאתו
 - -:שני סוגים עיקריים•
 - התקן אחסון ראשי ואשר ידוע בשם זיכרון המחשב
 - Random Access Memory RAM✓
 - ∙התקני אחסון משניים
 - HD✓
 - CDs√
 - DiskOnKey✓
 - floppyDisk√

Memory זיכרון

RAM=

- יהתקן זיכרון בעל גישה מהירה יחסית לזיכרון המשני √
 - עוכנות בזמן ריצה נטענות אליו √
 - ירגישה לתאי הזיכרון בו היא ישירה ולפי כתובת ✓
 - עמאפשר כתיבה וקריאה ✓
 - זיכרון נדיף√
 - Read Only Memory ROM

זיכרון לקריאה בלבד

הנתונים נשמרים גם לאחר כיבוי החשמל

מיועד בדרך כלל לאחסון ה- Bios ותוכנת ה-Boot

מפנה מקום לטובת ה- FlashMemory

ארגון הזיכרון במחשב

- ריחידה הקטנה ביותר בזיכרון היא סיבית או ביט(bit).■
 - סיבית יכולה להכיל ערך אחד 1 או 0 (יש∖אין מתח)•
 - ∙הגישה לזיכרון היא בעזרת כתובת
 - דע byte אחד byte כל שמונה סיביות הן בית
- כל בית יש לו כתובת אשר משקפת את מספרו הסידורי מתחילת הזיכרון
- 1 PetaBytes = 1024 TeraBytes
- 1 TeraBytes = 1024 Gigabytes
- 1 GigaBytes = 1024 MegaBytes
- 1 MegaBytes = 1024 KiloBytes
- 1 KiloBytes = 1024 Bytes
- 1 Bytes = 8 Bits

שיטות ייצוג מספרים

- עשרוני •
- **ה**קסדצימלי
 - אוקטלי•
 - בינארי■

עשרוני

- עשרוני (דצימלי)•
- שיטה להצגת מספרים שלמים או ממשיים לפי בסיס 10 √
 - עימוש בספרות 0,1,2,3,4,5,6,7,8,9 בלבד ✓

דוגמה:

$$153 = 1*10^{2} + 5*10^{1} + 3*10^{0}$$

הקסדצימלי

שיטה להצגת מספרים לפי בסיס 16
שימוש בספרות 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F ארבע
שתי ספרות בהקסדיצמלי הן בית byte אחד (כל ארבע
ספרות בינארי הן ספרה אחת בהקסדצימלי)
דוגמאות:

$$10^{Dec} = A^{Hex}$$
 $15^{Dec} = F^{Hex}$
 $11^{Dec} = B^{Hex}$
 $16^{Dec} = 10^{Hex}$
 $153^{Dec} = 99^{Hex}$

המרה מדצמלי להקסדצימלי

- 16. חילוק עם שארית ב-16
- 2. המרת השארית למספר הקסדצימלי
- 3. לחזור על 1-2 עד שתוצאת החילוק תהיה
- 4. לחבר את השאריות כאשר השארית הראשונה היא הספרה הימנית ביותר

שארית	תוצאת חילוק		
1	254	4065	A C C Dec Hex
14=E	15	254	$4065^{\text{Dec}} = \text{FE1}^{\text{Hex}}$
15=F	0	15	

המרה מהקסדצימלי לדצמלי

- עבור כל ספרה הקסדצימלי להמיר לערך דצמלי שלה
- (1 מיקום הספרה פחות 1 מיקום הספרה פחות 1). להכפיל כל ספרה כזו ב $^{\mathbf{n}}$
 - 3. לחבר את התוצאה

$$E1F^{Hex} = (E = 14) * 16^{2} + (1) * 16^{1} + (F = 15) * 16^{0} = 3615^{Dec}$$

אוקטלי

שיטה להצגת מספרים לפי בסיס 8 שימוש בספרות 0,1,2,3,4,5,6,7 בלבד שלוש ספרות שינארי הן ספרה אחת אוקטלי דוגמאות:

$$7^{Dec} = 7^{Oct}$$
 $8^{Dec} = 10^{Oct}$
 $9^{Dec} = 11^{Oct}$
 $16^{Dec} = 20^{Oct}$
 $153^{Dec} = 231^{Oct}$

המרת דצימלי לאוקטלי

- 1. חילוק עם שארית ב-8
- 2. לחזור על זה עד שתוצאת החילוק תהיה 0
- 3. נצמיד את השאריות ביחד כאשר השארית הראשונה היא הספרה הימנית ביותר

רית	שאו	תוצאת חילוק		
1		19	153	1 - Dec - 000
3		2	19	153 ^{Dec} = 231 ^{Oc}
2		0	2	

המרה מאוקטלי לדצמלי

להכפיל כל ספרה ב n (n מיקום הספרה פחות 1)
 לחבר את התוצאה
 דוגמה

$$231^{\text{Oct}} = (2) * 8^2 + (3) * 8^1 + (1) * 8^0 = 153^{\text{Dec}}$$

בינארי

- שיטה להצגת מספרים לפי בסיס 2
 - שימוש בספרות 0,1 בלבד
- שלוש ספרות בינארי הן ספרה אחת אוקטלי
 - ארבע ספרות בינארי הן ספרה הקסדיצמלי
 - בוגמאות:

$$0^{Dec} = 0^{Bin}$$
 $1^{Dec} = 1^{Bin}$
 $2^{Dec} = 10^{Bin}$
 $3^{Dec} = 11^{Bin}$
 $4^{Dec} = 100^{Bin}$

המרת דצימלי לבינארי

- 1. חילוק עם שארית ב 2
- 2. לחזור על זה עד שתוצאת החילוק תהיה 0
- 3. נצמיד את השאריות ביחד כאשר השארית הראשונה היא הספרה הימנית ביותר

רית	שאו	תוצאת חילוק			
0	<u> </u>	2	4		
0		1	2		$4^{\text{Dec}} = 100^{\text{Bin}}$
1		0	1	V	

המרה בינארי לדצמלי

- (1 מיקום הספרה פחות 1 מיקום הספרה פחות 1 להכפיל כל מפרה בn
 - 2. לחבר את התוצאה

דוגמאות:

$$100^{\text{Bin}} = (1) * 2^2 + (0) * 2^1 + (0) * 2^0 = 4^{\text{Dec}}$$

$$111^{Bin} = (1) * 2^2 + (1) * 2^1 + (1) * 2^0 = 7^{Dec} = 7^{Oct}$$

$$1111^{Bin} = (1) * 2^3 + (1) * 2^2 + (1) * 2^1 + (1) * 2^0 = 15^{Dec} = F^{Hex}$$

טבלת המרות

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Dec
10	F	Е	D	C	В	Α	9	8	7	6	5	4	3	2	1	0	Hex
20	17	16	15	14	13	12	11	10	7	6	5	4	3	2	1	0	Oct
10000	1111	1110	1101	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001	0000	Bin

מעבר מאוקטלי לבינארי וההפך

נשתמש בעובדה **ששלוש** ספרות בינארי שוות לספרה אחת אוקטלי ובעובדה ששתי השיטות **בעלות אותו בסיס 2**

-:נשתמש באותו עיקרון כדי לעבור מבינארי לאוקטלי

מעבר מהקסדצימלי לבינארי וההפך

נשתמש בעובדה **שארבע** ספרות בינארי שוות לספרה אחת הקסדצימלי ובעובדה ששתי השיטות **בעלות אותו בסיס 2**

 $\mathbf{EF}^{\mathbf{Hex}}$

דוגמה

נשתמש באותו עיקרון כדי לעבור מבינארי להקסדצימלי:-

המשלים ל 2

- איך מיוצג מספר שלילי בזיכרון?
- (char הסיבית האחרונה היא סיבית סימן (לא טיפוס מסוג) ∎
 - איך יודעים מהו המספר ששמור במשתנה?
 - בא ונסתכל בערך הבינארי של המספר 5- (8 סביות).

