Deep Learning for Tabular Data: An Empirical Study

by

Jan André Marais

Thesis presented in partial fulfilment of the requirements for the degree of Master of Commerce (Mathematical Statistics) in the Faculty of Economic and Management Sciences at Stellenbosch University

Supervisor: Dr. S. Bierman

December 2018

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification.

D /																
Date:																

Copyright © 2018 Stellenbosch University All rights reserved.

Abstract

Deep Learning for Tabular Data: An Empirical Study

J. A. Marais

Thesis: MCom (Mathematical Statistics)

 ${\bf December~2018}$

English abstract.

Uittreksel

Diepleer Tegnieke vir Gestruktrueerde Data: 'n Empiriese Studie

("Deep Learning for Tabular Data: An Empirical Study")

J. A. Marais

Tesis: MCom (Wiskundige Statistiek)

Desember 2018

Afrikaans abstract

Acknowledgements

I would like to express my sincere gratitude to the following people and organisations ...

- The UCI Machine Learning Repository (Dheeru and Karra Taniskidou, 2017) for hosting a platform to share datasets.

Contents

D	eclar	ation	i
\mathbf{A}	bstra	nct	ii
U	${f ittre}$	ksel	iii
\mathbf{A}	ckno	wledgements	iv
\mathbf{C}	onter	nts	\mathbf{v}
Li	ist of	'Figures v	iii
Li	ist of	Tables	ix
Li	ist of	Abbreviations and/or Acronyms	\mathbf{x}
N	omer	nclature	хi
1	Intr	$\operatorname{roduction}$	1
	1.1	Deep Learning	1
	1.2	Tabular Data	3
	1.3	Challenges for Deep Learning on Tabular Data	5
	1.4	Overview of Statistical Learning Theory/Machine learning	6
	1.5	Outline	12
2	Neı	ıral Networks	14
	2.1	Introduction	14
	2.2	The Structure of a Neural Network	15
		2.2.1 Neurons and Layers	15
		2.2.2 Activation Functions	18

CONTENTS vi

		2.2.3 Size of the Network	20
	2.3	Training a Neural Network	21
		2.3.1 Optimisation	21
		2.3.2 Optimisation Example	23
		2.3.3 Backpropogation	24
		2.3.4 Learning Rate	26
		2.3.5 Weight initialisation	27
		2.3.6 Basic Regularisation	27
	2.4	Representation Learning	27
	2.5	Vanilla MLP on Tabular Data	31
3	Dee	p Learning 3	32
	3.1	Introduction	32
	3.2	Autoeoncoders	33
	3.3	Combatting Overfitting	34
		3.3.1 Transfer Learning	34
		3.3.2 Dropout §??	34
		3.3.3 Data Augmentation	35
	3.4	Modern Architectures	36
		3.4.1 Normalisation	36
		3.4.2 Skip-connections	38
		3.4.3 Embeddings	38
		3.4.4 Attention	38
	3.5	One-cycle Policy	38
	3.6	Model Interpretation	41
		3.6.1 Model Agnostic	41
		3.6.2 Neural Network Specific	42
4	Dee	p Learning for Tabular Data 4	13
	4.1	Introduction	43
	4.2	Related Work	44
	4.3	Input Representation	45
		4.3.1 Numerical Features	45
		4.3.2 Categorical Features	46
		4.3.3 Combining Features	47
	4.4	Still to categorise	47
	4.5	Learning Interactions	53

CONTENTS	vii
----------	-----

		4.5.1 Fully-Connected Layers	53
		4.5.2 Going Deeper	53
		4.5.3 Attention	55
		4.5.4 Parallel Streams	55
	4.6	Dealing with Small Datasets	55
		4.6.1 Data Augmentation	55
		4.6.2 Unsupervised Pretraining	58
	4.7	Other	58
	4.8	Recommended Approach	58
5	Exp	eriments	59
	5.1	Introduction	59
	5.2	Datasets	60
	5.3	Evaluation	62
		5.3.1 Metrics	62
		5.3.2 Cross-validation	62
	5.4	General Approach	64
	5.5	Architectural Search	64
	5.6	Sample Size	66
	5.7	Mixup	66
	5.8	Pretraining	66
	5.9	Attention	66
	5.10	Comparisons To Tree-based Methods	66
	5.11	Example Interpretation	66
6	Con	clusion	67
Aı	pen	dices	68
\mathbf{A}	Data	asets	69
D	LT	annonamentan Seenah	70
Ŋ	пур	erparameter Search	70
\mathbf{C}			71
	C.1	Code and Reproducibility	71
Bi	hliog	raphy	72

List of Figures

1.1	The exponential growth of published papers and Google search	
	terms containing the term <i>Deep Learning</i> . Sources: Google Trends,	
	Semantic Scholar	2
1.2	Linear model on simple binary classification dataset	11
2.1	Comparison of a biological (a) and an artificial (b) neuron	16
2.2	A simple neural network accepting p -sized inputs, with one hidden	
	layer which has two neurons	17
2.3	Plots of various activation functions (a) and their local derivatives	
	(b)	19
	(a)	19
	(b)	19
2.4	Simple dataset with two linearly inseparable classes	29
2.5	Decision boundary of 1-layer NN	29
2.6	Decision boundary of 2-layer NN	30
2.7	Hidden representation of 2-layer NN	30
3.1	The effect dropout has on connections between neurons	35
4.1	Illustration of points created by mixup augmentation	57
5.1	5-Fold Cross-validation dataset split schematic	63

List of Tables

1.1	Preview of the Adult dataset.											3
4.1	Swap Noise Example											56

List of Abbreviations and/or Acronyms

ANN Artificial Neural Network

CNN Convolutional Neural Network

CTR Click-through Rate

CV Computer Vision

DL Deep Learning

EHR Electronic Health Records

kNN k-Nearest Neighbour

mAP Mean Average Precision

ML Machine Learning

MLP Multi-layer Perceptron

NLP Natural Language Processing

NN Neural Network

SGD Stochastic Gradient Descent

SotA State-of-the-Art

Nomenclature

N	number of observations in a dataset
p	input dimension or the number of features for an observation
K	number of labels in a dataset
\boldsymbol{x}	p -dimensional input vector $(x_1, x_2, \dots, x_p)^{T}$
λ	label
$\mathcal L$	complete set of labels in a dataset $\mathcal{L} = \{\lambda_1, \lambda_2, \dots, \lambda_K\}$
Y	labelset associated with $\boldsymbol{x}, Y \subseteq \mathcal{L}$
\hat{Y}	predicted labelset associated with $\boldsymbol{x},\hat{Y}\subseteq\mathcal{L},$ produced by $h(\cdot)$
\boldsymbol{y}	K -dimensional label indicator vector, $(y_1, y_2, \dots, y_K)^{\intercal}$, associ-
	ated with observation \boldsymbol{x}
$(\boldsymbol{x}_i, Y_i)_{i=1}^N$	multi-label dataset with N observations
$(\boldsymbol{x}_i, Y_i)_{i=1}^N$ D	multi-label dataset with N observations dataset
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
D	dataset
D	dataset $\text{multi-label classifier } h: \mathbb{R}^p \to 2^{\mathcal{L}}, \text{ where } h(\boldsymbol{x}) \text{ returns the set of }$
D $h(\cdot)$	dataset multi-label classifier $h: \mathbb{R}^p \to 2^{\mathcal{L}}$, where $h(\boldsymbol{x})$ returns the set of labels for \boldsymbol{x}
D $h(\cdot)$	dataset $\label{eq:multi-label classifier } \text{multi-label classifier } h: \mathbb{R}^p \to 2^{\mathcal{L}} \text{, where } h(\boldsymbol{x}) \text{ returns the set of labels for } \boldsymbol{x}$ set of parameters for $h(\cdot)$
D $h(\cdot)$	dataset $ \mbox{multi-label classifier } h: \mathbb{R}^p \to 2^{\mathcal{L}}, \mbox{ where } h(\boldsymbol{x}) \mbox{ returns the set of labels for } \boldsymbol{x} $ set of parameters for $h(\cdot)$ set of parameters for $h(\cdot)$ that optimise the loss function
D $h(\cdot)$	dataset $ \mbox{multi-label classifier } h: \mathbb{R}^p \to 2^{\mathcal{L}}, \mbox{ where } h(\boldsymbol{x}) \mbox{ returns the set of labels for } \boldsymbol{x} $ set of parameters for $h(\cdot)$ set of parameters for $h(\cdot)$ that optimise the loss function loss function between predicted and true labels

Chapter 1

Introduction

1.1 Deep Learning

This thesis is about using *Deep Learning* (DL) approaches to solve *Machine Learning* (ML) tasks with tabular data inputs. The field of DL is an extention of the class of ML algorithms called *Artifical Neural Networks* (NNs). The rapid development in computing power and the growing abundance of data available, awoken the slumbering field of NNs and resulted in optimisation and architecture design advancements, creating the DL field as we know it today (Lecun *et al.*, 2015).

DL is receiving a remarkable amount of attention in academia and elsewhere (see Figure 1.1). DL has already shown tremendous value in application areas such as Computer Vision (CV) (Hu et al., 2017), audio processing (Battenberg et al., 2017), and Natural Language Processing (NLP) (Devlin et al., 2018), significantly improving on the then State of the Art (SotA). In the aformentioned application areas, DL reached a maturity level sufficient to be able to run these systems in a production/commercial environment, e.g. voice assistants (Sarikaya, 2017) like Amazon Alexa, face recognition with Apple iPhones and language translation (Wu et al., 2016) with Google to name a few.

One of the most attractive attributes of DL is its ability to model almost any input-output relationship. DL has been used to generate art (Gatys *et al.*, 2015) and music (Mogren, 2016), controlling various modules in autonomous

¹https://www.apple.com/business/site/docs/FaceID Security Guide.pdf

²https://trends.google.com/trends/explore?date=all&q=deep%20learning

 $^{^3} https://www.semanticscholar.org/search?year%5B0%5D=2000&year%5B1%5D=2019&q=%22deep%20learning%22&sort=relevance$

Figure 1.1: The exponential growth of published papers and Google search terms containing the term *Deep Learning*. Sources: Google Trends², Semantic Scholar³

cars (Fridman et al., 2017), playing video games (Mnih et al., 2013), beating the world's best Go player (Silver et al., 2017), suggesting which videos to watch (Covington et al., 2016), and improving the quality of images (Shi et al., 2016).

One thing that these successful DL applications have in common is that the modality of the data on which they operate is homegeneous. In CV the data are pixel values, in NLP the data are words and in audio processing the data are sound waves. This is not a criteria for DL to be successful but is certainly a driver for its success in these domains. Modelling of homogeneous data is easier since every input feature can be treated the same. Furthermore, universal patterns exist in each of these domains allowing for knowledge to be transferred between tasks of the same domain, both knowledge aquired by humans and that learned by the DL model. For example in CV, advancements in classifying pictures of pets will most likely also be applicable to identifying tumuors in X-rays and the patterns learned by the model to do the one task may also be useful to do the other (see *Transfer Learning*).

A data domain in which DL does not flourish is that of tabular data.

Although work is being done on the problem (Shavitt and Segal, 2018, Song et al. (2018)) and SotA results were received on rare occasions (de Brébisson et al., 2015) (and this competition⁴), the area is nowhere near as mature or receiving as much attention compared to CV and NLP. ML tasks operating on tabular data are typically more effectively solved by using tree-based methods as found by a large study done in (Fernández-Delgado et al., 2014), and also evident by looking at the winning solutions of relevant Kaggle competitions⁵. This is possibly largely influenced by the heterogeneity of tabular data (Shavitt and Segal, 2018), which forms part of the discussion in the next section.

1.2 Tabular Data

We call data that can be represented by a 2-dimensional table, where each of the rows of the table corresponds to one observation and each column denotes an individual meaningful feature, a *tabular dataset*. See Table 1.1 for an extract of the Adult⁶ dataset, an example of a tabular dataset.

	age	occupation	education	race	sex	>=50k
1	49		Assoc-acdm	White	Female	1
2	44	Exec-managerial	Masters	White	Male	1
3	38		HS-grad	Black	Female	0
4	38	Prof-specialty	Prof-school	Asian-Pac-Islander	Male	1
5	42	Other-service	7 th- 8 th	Black	Female	0
6	20	Handlers-cleaners	HS-grad	White	Male	0

Table 1.1: Preview of the Adult dataset.

Table 1.1 is a typical tabular dataset where the features (columns) are of mixed type, continuous and discrete/categorical, and containing various information. The rows and columns are of no particular order. The data comes from a US census and the specific task was to predict whether or not an indivdual earns more than \$50,000 a year.

There are many important ML applications using tabular data:

• Various tasks on Electronic Health Records (EHR) like predicting inhopsital mortality and prolonged length of stay (Rajkomar *et al.*, 2018).

⁴https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/discussion/44629

⁵https://www.kaggle.com

 $^{^6 \}mathrm{http://archive.ics.uci.edu/ml/datasets/Adult}$

- Recommender systems for items like videos (Covington *et al.*, 2016) or property listings (Haldar *et al.*, 2018).
- Click-through rate (CTR) prediction for predicting which item a user will click on next (Song *et al.*, 2018).
- Predicting which clients are at risk of defaulting on their accounts⁷.
- Predicting store sales (Guo and Berkhahn, 2016).
- Drug discovery (Klambauer et al., 2017).

Tabular datasets come in all shapes and sizes. The number of rows can range from hundreds to millions and the number of columns also has no limits. It is not unusual for tabular datasets to be noisy. A proportion of the observations may have missing features and/or incorrect values. The continuous can be on vastly different scales, some containing outliers, and the categorical features can have high cardinality and lead to sparsity.

The most important part of building models for tabular datasets and the part that can result in the largest performance gains is the processing and manipulation of the input features (Rajkomar et al., 2018). This includes preprocessing, merging, customising, filtering and cleaning of the data. In a process called feature engineering one strives to create new features from the original features based on some domain knowledge of the data or otherwise, that makes it easier for the model to learn from interactions between features and estimate the target. This is a extremely laborious task with no clear recipe to follow and usually requires domain expertise to implement successfully.

Ensemble tree-based methods are currently the most effective ML models on tabular datasets. One reason for that may be its robustness to feature scales and types and being able to effectively model interactions between various types of features with its hierarchical feature splits and ensembling techniques.

The classical NN approaches applied to tabular data is no match for tree ensembles. DL has advanced and matured a lot in recent years but it is not yet clear how to leverage these modern techniques to effectively build and train deep NNs on tabular datasets. In this thesis we explore ways of doing so. By reviewing the most recent literature on the topic and doing empirical studies, we aim to compose a guideline and highlight the best practices for working with DL and tabular data.

⁷https://www.kaggle.com/c/loan-default-prediction

1.3 Challenges for Deep Learning on Tabular Data

This thesis acts as a tutorial for applying Deep Learning to tabular data. We review the recent literature on DL in general and then zooming in on applying DL to tabular data. We have identified the major challenges of using DL approaches on tabular data and will review the literature in this context. These challenges are summarised below, posed as questions:

- How should input features be represented numerically?: We have mentioned that tabular data consists of mixed feature types, a combination of categorical and continuous features. The question here relates to how these features should be processed and presented to the model during training.
- How can we exploit feature interactions?: Once we have found the optimal feature representation for all feature types, we will need a way to effectively learn the interactions between them and how they relate to the target. This a crucial part for effective ML models on tabular data.
- How can we be more sample efficient?: Tabular datasets are typically not as large as datasets in CV and NLP, and furthermore there is no general large dataset with universal properties that a model can learn from and transfer its knowledge. Thus, a key challenge is being able to learn from less data.
- How do we interpret the model decisions?: The use of DL is often restricted by its perceived lack of interpretability. Therefore we need ways of explaining the model output in order for it to be useful in many applications.

Clearly, there are plenty of considerations when it comes to using DL with tabular data. The aim of this thesis is to find the best ways of overcoming these challenges, by giving a detailed review of the relevant literature and backing up the claims with empirical results. The work will help the reader understand the *status quo* of the field and what is required for DL to be as effective as in other data domains such as CV and NLP.

A large part of this work consists of comparing different techniques and algorithms on datasets that are relevant to us. Furthermore, we suggest ways of improving these techniques, which also needs comparision. Since theory and practice does not always go hand-in-hand, it is usually advantageous to complement a theoretical study with empirical results. In addition, we regard the ability to implement an approach equally as important as understanding the theory behind it. We characterise a good empirical experiment as one that is rigorous and reproducible.

Recently the field of DL has been criticised for the growing gap between the understanding of its techniques and its practical successes⁸ where most of the recent focus was on the latter. The speakers urged the deep learning community to be more rigorous in their experiments where, for them, the most important part of rigor is better empiricism, not more mathematical theories. Better empiricism in classification may include, for example, practices such as using cross-validation to estimate the generalisation ability of a model and reporting standard errors. Empirical studies should be more than just trying to beat the benchmark and should also consist of simple experiments that aid in the understanding of how the techniques work.

In addition, we want all our experiments to be as reproducible as possible, *i.e.* provide all the code, data and necessary documentation to reproduce the experiments that were done in this thesis⁹. This is often an overlooked feature of experiments, but is however crucial for transparent and accountable reporting and making your work useful for others to build on.

A more detailed summary of the thesis is outlined shortly. First we cover the fundamental concepts of Statistical Learning Theory. These concepts are referred to throughout the thesis and therefore it will be beneficial to be familiar with them.

1.4 Overview of Statistical Learning Theory/Machine learning

Machine or statistical learning algorithms (used interchangably) are used to perform certain task that are too difficult or inefficient to solve with fixed rule-based programs. These algorithms are able to learn how to perform a task from data. For an algorithm to learn from data means that it can improve its ability in performing an assigned *task*, with respect to some *performance measure*, by

⁸Talk given at NIPS2017 - https://www.youtube.com/watch?v=Qi1Yry33TQE

⁹All of these are shared publicly at https://github.com/jandremarais/tabularLearner

processing data. This section gives a brief look at some of the important types of tasks, data and performance measures in the field of statistical learning.

A learning task describes the way an algorithm should process an observation. An observation is a collection of features that have been measured from some object or event that we want the system to process, for example an image. We will represent an observation by a vector $\mathbf{x} \in \mathbb{R}^p$ where each element x_j of the vector is an observed value of the j-th feature, $j = 1, \ldots, p$. For example, the features of an image are usually the color intensity values of the pixels in the image.

Many kinds of tasks can be solved with statistical learning. One of the most common learning tasks is that of classification, where it is expected of an algorithm to determine which of K categories an input belongs to. To solve the classification task, the learning algorithm is usually asked to produce a function $f: \mathbb{R}^p \to \{1, \dots, K\}$. When $y = f(\boldsymbol{x})$, the model assigns an input described by the vector \boldsymbol{x} to a category identified by the numeric code y, called the output or response. In other variants of the classification task, f may output a probability distribution over the possible classes.

Regression is the other main learning task and requires the algorithm to predict a continuous value given some input. This task requires a function $f: \mathbb{R}^p \to \mathbb{R}$, where the only difference to classification is the format of its output.

Learning algorithms can learn to perform such tasks by observing a relevant set of data points, *i.e.* a dataset. A dataset containing N observations of p features is commonly described as a design matrix $X:N\times p$, where each row of the matrix represents a different observation and each column corresponds to a different feature of the observations, *i.e.*

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \dots & x_{Np} \end{bmatrix}.$$

Often the dataset includes annotations for each observation in the form of a label (classification) or a target value (regression). The N annotations are represented by the vector \mathbf{y} , where element y_i is associated with the i-th row of X. Therefore the response vector may be denoted by

$$oldsymbol{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_N \end{bmatrix}.$$

Note that in the case of multiple labels or targets, a matrix representation $Y: N \times K$ is required.

Statistical learning algorithms can be divided into two main categories, supervised and unsupervised algorithms, determined by the presence (or absence) of annotations in the dataset to be analysed. Unsupervised learning algorithms learn from data consisting only of features, X, and are used to find useful properties and structure in the dataset (see Hastie et al., 2009, Ch. 14). On the other hand, superivised learning algorithms learn from datasets which consist of both features and annotations, (X, Y), with the aim to model the relationship between them. Therefore, both classification and regression are considered to be supervised learning tasks.

In order to evaluate the ability of a learning algorithm to perform its assigned task, we have to design a quantitative performance measure. For example, in a classification task we are usually interested in the accuracy of the algorithm, *i.e.* the percentage of times that the algorithm makes the correct classification. We are mostly interested in how well the learning algorithm performs on data that it has not seen before, since this demonstrates how well it will perform in real-world situations. Thus we evaluate the algorithm on a *test set* of data points, independent of the *training set* of data points used during the learning process.

For a more concrete example of supervised learning, and keeping in mind that the linear model is one of the main building blocks of neural networks, consider the learning task underlying linear regression. The objective here is to construct a system which takes a vector $\mathbf{x} \in \mathbb{R}^p$ as input and predicts the value of a scalar $y \in \mathbb{R}$ in response. In the case of linear regression, we assume the output be a linear function of the input. Let \hat{y} be the predicted response. We define the output to be

$$\hat{y} = \hat{\boldsymbol{w}}^T \boldsymbol{x},$$

where $\hat{\boldsymbol{w}} = [w_0, w_1, \dots, w_p]$ is a vector of parameters and $\boldsymbol{x} = [1, x_1, x_2, \dots, x_p]$. Note that an intercept is included in the model (also known as a *bias* in machine learning). The parameters are values that control the behaviour of the system. We can think of them as a set of weights that determine how each feature affects the prediction. Hence the learning task can be defined as predicting y from x through $\hat{y} = \hat{w}^T x$.

We of course need to define a performance measure to evaluate the linear predictions. For a set of observations, an evaluation metric tells us how (dis)similar the predicted output is to the actual response values. A very common measure of performance in regression is the *mean squared error* (MSE), given by

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2.$$

The process of learning from the data (or fitting a model to the data) can be reduced to the following optimisation problem: find the set of weights, $\hat{\boldsymbol{w}}$, which produces a $\hat{\boldsymbol{y}}$ that minimises the MSE. Of course this problem has a closed form solution and can quite trivially be found by means of ordinary least squares (OLS) (see Hastie et al., 2009, p. 12). However, we have mentioned that we are more interested in the algorithm's performance evaluated on a test set. Unfortunately the least squares solution does not guarantee the solution to be optimal in terms of the MSE on a test set, rendering statistical learning to be much more than a pure optimisation problem.

The ability of a model to perform well on previously unobserved inputs is referred to as its generalisation ability. We also say if a model does not generalise well that the model is overfitting to the training data. Generalisation is the key challenge of statistical learning. One way of improving the generalisation ability of a linear regression model is to modify the optimisation criterion J, to include a weight decay (or regularisation) term. That is, we want to minimise

$$J(\boldsymbol{w}) = MSE_{\text{train}} + \lambda \boldsymbol{w}^T \boldsymbol{w},$$

where $J(\boldsymbol{w})$ now expresses preference for smaller weights. The parameter λ is non-negative and needs to be specified ahead of time. It controls the strength of the preference by determining how much influence the penalty term, $\boldsymbol{w}^T\boldsymbol{w}$, has on the optimisation criterion. If $\lambda=0$, no preference is imposed, and the solution is equivalent to the OLS solution. Larger values of λ force the weights to decrease, and thus referred to as a so-called *shrinkage* method ((*cf.* for example Hastie *et al.*, 2009, pp. 61-79) and (Goodfellow *et al.*, 2016).

We can further generalise linear regression to the classification scenario. First, note the different types of classification schemes. Consider \mathcal{G} , the discrete set of values which may be assumed by G, where G is used to denote a categorical output variable (instead of Y). Let $|\mathcal{G}| = K$ denote the number of discrete categories in the set \mathcal{G} . The simplest form of classification is known as binary classification and refers to scenarios where the input is associated with only one of two possible classes, *i.e.* K = 2. When K > 2, the task is known as multiclass classification. In multi-label classification an input may be associated with multiple classes (out of K available classes), where the number of classes that each observation belongs to, is unknown. Here we start by introducing the two single label classification setups, viz. binary and multiclass classification.

In multiclass classification, given the input values X, we would like to accurately predict the output, G, which we denote by \hat{G} . One approach would be to represent G by an indicator vector $Y_G : K \times 1$, with elements all zero except in the G-th position, where it is assigned a 1, *i.e.* $Y_k = 1$ for k = G and $Y_k = 0$ for $k \neq G$, k = 1, 2, ..., K. We may then treat each of the elements in Y_G as quantitative outputs, and predict values for them, denoted by $\hat{Y} = [\hat{Y}_1, ..., \hat{Y}_K]$. The class with the highest predicted value will then be the final categorical prediction of the classifer, *i.e.* $\hat{G} = \arg\max_{k \in \{1, ..., K\}} \hat{Y}_k$.

Within the above framework we therefore seek a function of the inputs which is able to produce accurate predictions of the class scores, i.e.

$$\hat{Y}_k = \hat{f}_k(\boldsymbol{X}),$$

for k = 1, ..., K. Here \hat{f}_k is an estimate of the true function, f_k , which is meant to capture the relationship between the inputs and output of class k. As with the linear regression case described above, we can use a linear model $\hat{f}_k(\mathbf{X}) = \hat{\mathbf{w}}_k^T \mathbf{X}$ to approximate the true function. The linear model for classification divides the input space into a collection of regions labelled according to the classification, where the division is done by linear decision boundaries (see Figure 1.2 for an illustration). The decision boundary between classes k and l is the set of points for which $\hat{f}_k(\mathbf{x}) = \hat{f}_l(\mathbf{x})$. These set of points form an affine set or hyperplane in the input space.

After the weights are estimated from the data, an observation represented by \boldsymbol{x} (including the unit element) can be classified as follows:

• Compute $\hat{f}_k(\boldsymbol{x}) = \hat{\boldsymbol{w}}_k^T \boldsymbol{x}$ for all $k = 1, \dots, K$.

Figure 1.2: Linear model on simple binary classification dataset.

• Identify the largest component and classify to the corresponding class, i.e. $\hat{G} = \arg\max_{k \in \{1,...,K\}} \hat{f}_k(\boldsymbol{x})$.

One may view the predicted class scores as estimates of the conditional class probabilities (or posterior probabilities), i.e. $P(G = k | \mathbf{X} = \mathbf{x}) \approx \hat{f}_k(\mathbf{x})$. However, these values are not the best estimates of posterior probabilities. Although the values sum to 1, they do not lie within [0,1]. A way to overcome this problem is to estimate the posterior probabilities using the *logit transform* of $\hat{f}_k(\mathbf{x})$. That is,

$$P(G = k | \boldsymbol{X} = \boldsymbol{x}) \approx \frac{e^{\hat{f}_k(\boldsymbol{x})}}{\sum_{l=1} e^{\hat{f}_l(\boldsymbol{x})}}.$$

Through this transformation, the estimates of the posterior probabilities both sum to 1 and are squeezed into [0,1]. The above model is the well-known logistic regression model (Hastie et al., 2009, p. 119). With this formulation there is no closed form solution for the weights. Instead, the weight estimates may be searched for by maximising the log-likelihood function. One way of doing this is by minimising the negative log-likelihood using gradient descent, which will be discussed in the next chapter.

Finally in this section, note that any supervised learning problem can also be viewed as a function approximation problem. Suppose we are trying to predict

a variable Y given an input vector \boldsymbol{X} , where we assume the true relationship between them to be given by

$$Y = f(\boldsymbol{X}) + \epsilon,$$

where ϵ represents the part of Y that is not predictable from X, because of, for example, incomplete features or noise present in the labels. Then in function approximation we are estimating f with an estimate \hat{f} . In parametric function approximation, for example in linear regression, estimation of $f(X, \theta)$ is equivalent to estimating the optimal set of weights, $\hat{\theta}$. In the remainder of the thesis, we refer to \hat{f} as the model, classifier or learner.

1.5 Outline

This chapter provided the context, motivations, objectives and theoretical backround for this thesis The outline for the rest of the thesis is given next.

In Chapter 2 we cover the basics of NNs. The building blocks of NNs are discussed, introducing neurons, basic layers and how NNs are trained, including basic regularisation. We attempt to gain insight into what happens inside a NN from the perspective of representation and manifold learning. The chapter is concluded with an example implementation of a vanilla NN applied to a tabular dataset to further highlight its shortcomings.

Chapter 3 continues the discussion by focussing on the key advancements in NNs in recent times. Improved ways of fighting overfitting like data augmentation, dropout and transfer learning are analysed here, as well as the SotA training policy called *1Cycle*. New developments in architecture design are highlighted and then the chapter concludes with approaches to interpretting NNs and their predictions. All of the concepts introduced in this chapter can potentially help us build better deep NNs on tabular data.

Chapter 4 is the main chapter of this thesis. It mainly serves as a literature review of all the work done on DL for tabular data. It is organised by the modelling challenges faced when working with DL and tabular data, investigating and comparing what other researchers have done to solve the problems. The core of the content is about finding the right representation for tabular data, through embeddings, and designing architectures that can efficiently learn feature interactions, like with attention models, possibly with the help of unsupervised pretraining.

In Chapter 5 we empirically evaluate the claims made in the literature. It acts as an ablation study to evaluate and compare various approaches to tackling the various challenges. Thus the main experiments are evaluating NNs at various samples sizes, the gains from doing unsupervised pretraining and using data augmentation, and comparing attention modules with classic fully-connected layers. The chapter also includes a section showing an example of how the resulting NNs can be interpreted using permutation importance and knowledge distillation.

The thesis concludes with Chapter 6 which summarises the work that was done, and highlights the main take-home points. Here we validate the if the objectives of the thesis has been achieved. The limitations of this study are discussed and promising futre research directions are identified.

Chapter 2

Neural Networks

2.1 Introduction

Not unlike most supervised machine learning models, a neural network (NN) is a function which maps inputs to outputs, *i.e.* $f: x \to y$. The structure of f is often loosely compared to the structure of the human brain. Oversimplified, the brain consists of a collection of interconnected neurons. Each neuron can generate and receive signals. A received signal may be described as an input to a neuron, whereas a sent signal may be described as an output from that neuron. If two neurons are connected, it means that the output from the one neuron serves as input to the other. In a very simple model of the brain, one may argue that a neuron receives several signals, which it weighs and combines, and if the combined value of the inputs is higher than a certain threshold, the neuron sends a output signal to the next neuron. Figure 2.1 (a) provides a schematic of a biological neuron.

An artifical neural network tries to mimic this model of the human brainit is set up to consist of several layers of connected units (or neurons). With exception of units in the first and final layers, each unit outputs a weighted combination of its inputs, combined with a simple non-linear transformation. In each layer of the neural network, the input is passed through each of the neurons. In turn, their output is passed to the next layer.

The transformation at each neuron is controlled by a set of parameters, also known as weights. Training a neural network involves tuning these weights in order to obtain some desired output. During training, the neural network receives as input a set of training data. The neural network weights are then

learned in such a way that, when given a new set of inputs, the output predicted by the neural network matches the corresponding response of interest as closely as possible. The process of using the training data to tweak the weights is done by means of an optimisation algorithm called Stochastic Gradient Descent (SGD).

Although recently there has been plenty of excitement around neural networks, it is well known that they were invented many years ago. The development of neural networks dates back at least as far as the invention of perceptrons in (Rosenblatt, 1962). It is also interesting to compare modern neural networks with the Projection Pursuit Regression algorithm in statistics (Friedman and Stuetzle, 1981). Only recently a series of breakthroughs allowed neural networks to be more effective, leading to the renewed interest in the field.

The aim of this chapter is to provide an overview of neural networks, emphasising the basic structure (§2.2) and the way in which they are trained (§2.3). This is done with a view to discuss modern neural network structures and training policies in Chapter 3, which in turn will help us shed light on Deep Learning for tabular data. This chaper includes a section on representation and manifold learning (§2.4) in an attempt to understand what a NN is actually doing. Finally, the chapter concludes with an example implementation of a vanilla NN trained on tabular data (§2.5).

2.2 The Structure of a Neural Network

2.2.1 Neurons and Layers

In basic terms, a neural network processes an input boldsymbolx by sending it through a series of layers. The neurons in each layer apply some transformation to their inputs, resulting in a set of outputs which are again passed on to the next layer of neurons. Eventually, the final layer produces the neural network output. In this section we provide more detail regarding the neural network structure. We start with a description of the operations inside each neuron, and follow with a discussion of the way in which the neurons may be connected in layers in order to form a complete neural network structure. Our discussion is based upon a simple regression example.

Suppose we are in pursuit of a function which is able to estimate some

continuous target, y, given a p-dimensional input x, e.g. estimating the taxi fare from features such as distance travelled, time elapsed and number of passengers. A single neuron may act as such a function. It models y by computing a weighted average of the input features. This operation is illustrated in Figure 2.1 (b).

Figure 2.1: Comparison of a biological (a) and an artificial (b) neuron¹.

In equation form, this function can be written as:

$$w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_p \cdot x_p + b = y,$$

where $\{w_k\}_{k=1}^p$, are the weights applied to each of the inputs $\{x_k\}_{k=1}^p$ and b the constant bias term. Clearly, this equation is simply the very common linear model and thus also can be written as:

$$\boldsymbol{w}^{\intercal}\boldsymbol{x} + b = y,$$

where $\boldsymbol{x} = [x_1 \ x_2 \ \dots \ x_p]^{\mathsf{T}}$ is the input, $\boldsymbol{w} = [w_1 \ w_2 \ \dots \ w_p]^{\mathsf{T}}$ the weights and y the output. We may compress the above equation to $\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} = y$, where \boldsymbol{x} includes the bias term and the weight vector \boldsymbol{w} a unit element, *i.e.* $\boldsymbol{x} = [1 \ x_1 \ \dots \ x_p]^{\mathsf{T}}$ is the input, $\boldsymbol{w} = [b \ w_1 \ \dots \ w_p]^{\mathsf{T}}$.

The weights convey the importance of each input features in predicting the target. The larger $|w_k|$ is, the greater is the contribution of x_k towards the output. If $w_k = 0$, x_k has no influence on the target. However the weights are unknown and therefore we need to estimate them.

In linear regression this is done by means of the method of ordinary least squares. Since a neural network consists of many inter-connected neurons, an alternative estimation procedure is required. This is the topic of the next section.

Often a linear model will be too rigid to model a certain response of interest. In order to fit a more flexible model, we may add more neurons. Consider the

 $^{^{1} {\}rm Image~credit:~https://www.jeremyjordan.me/intro-to-neural-networks/}$

use of two neurons, where the second neuron accepts the same input as the first neuron, but uses a different set of weights. Thus we have two different outputs produced by the two neurons, i.e., $z_1 = \boldsymbol{w}_1^{\intercal} \boldsymbol{x}$ and $z_2 = \boldsymbol{w}_2^{\intercal} \boldsymbol{x}$. In order to produce a final estimate from the initial two estimates, viz. z_1 and z_2 , they are passed to a third neuron. That is, $y = \boldsymbol{w}_3^{\intercal} \boldsymbol{z}$, where $\boldsymbol{z} = [z_1 \ z_2]^{\intercal}$. Figure 2.2 illustrates this pipepline in network form.

Figure 2.2: A simple neural network accepting p-sized inputs, with one hidden layer which has two neurons.

The first two neurons each received all p inputs and each produced a single output. These two outputs were received by the third neuron, and combined in order to produce the final output, viz. y. The operations performed by the first two neurons may be expressed as $\mathbf{z} = W\mathbf{x}^{\intercal}$, where

$$W = \begin{bmatrix} \boldsymbol{w}_1^{\intercal} \\ \boldsymbol{w}_2^{\intercal} \end{bmatrix} = \begin{bmatrix} w_{10} & w_{11} & w_{12} & \dots & w_{1p} \\ w_{20} & w_{21} & w_{22} & \dots & w_{2p} \end{bmatrix} \quad \text{and} \quad \boldsymbol{z} = \begin{bmatrix} z_1 & z_2 \end{bmatrix}^{\intercal}.$$

The collection of these two neurons is what is called a layer. Since our third neuron (which is also a layer but with a single neuron) receives the output of this layer as input, it is possible to express the complete input-output relationship in one equation, i.e.

$$y = \boldsymbol{w}_3^{\mathsf{T}} \boldsymbol{z} = \boldsymbol{w}_3^{\mathsf{T}} W \boldsymbol{x}.$$

Note here that the weights from the first layer, W, and the third neuron, \mathbf{w}_3 , can be collapsed into a single vector \mathbf{w} , effectively reducing all of the neuron operations back into a single neuron representation and thus the fitted model is still linear. In order to fit a non-linear model, a non-linear transformation

function is applied to the output of each layer. This function is called an activation function.

Subsequently the neural network equation can be written as

$$y = a_2 \left(\boldsymbol{w}_3^{\mathsf{T}} a_1(W \boldsymbol{x}) \right),$$

where a_1 denotes the activation function applied after the first (linear) layer, and where a_2 is the the activation function applied after the final layer.

The introduction of non-linear activation functions serves to enlarge the class of functions that can be approximated by the network i.e. making it possible for the network to learn complex, non-linear relationships between the inputs and the outputs. Next, we briefly discuss the various activation functions.

2.2.2 Activation Functions

There are plenty of activation functions to choose from, since any simple non-linear and differentiable function can be used. Originally, the sigmoid activation function was a common choice (Rumelhart et~al., 1988). It can be expressed as $sigmoid(x) = \frac{1}{1+e^{-x}}$. The shape of the sigmoid activation can be seen in Figure 2.3 (a). It has an S-shape and its values range between 0 and 1. The reason it fell out of favour is because of issues related to the gradient based optimisation procedure of neural networks (which we discuss in more detail in Section 2.3). One of the issues is that the values of sigmoid activations are not centered around zero. This may cause the gradient weight updates to veer too far in different directions.

The hyperbolic tangent or the tanh activation function, on the other hand, returns outputs centered around zero. It is expressed as $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ and its shape can be seen in Figure 2.3 (a). But the problem with both the sigmoid and tanh activation functions is that they can cause the gradients to saturate during training. By observing the tails of the sigmoid and tanh functions, it is clear that the gradient tends to zero as $|x| \to \infty$. This can cause the weight updates to be very close to zero and thus resulting in the network getting stuck at a certain point in the parameter space. Furthermore, the maximum gradient of the sigmoid activation function is 0.25 (at x = 0.5), and because of the nature of the chain rule this causes the lower layers to train much slower than the higher layers. The tanh activation function typically have larger derivatives

Figure 2.3: Plots of various activation functions (a) and their local derivatives (b).

than the sigmoid and thus it is not as susceptible to this vanishing gradient problem, however, it is still not immune to it. The local derivatives of the activation functions discussed here are plotted in Figure 2.3 (b). This will become more obvious after Section 2.3.

To date, the most popular choice in activation function is the *Rectified Linear Units* (ReLU) non-linearity. It is defined as:

$$relu(x) = \begin{cases} x & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}.$$

Again, its shape and derivative is plotted in Figure 2.3 (a) and (b), respectively. The ReLU limits the gradient vanishing problem as its derivative is always 1 when x is positive. This results in significantly shorter steps to convergence, as found by the authors in (Krizhevsky $et\ al.$, 2012). However, ReLUs may suffer from the "dead ReLU" problem, which is, if a ReLU neuron gets clamped to zero, then its weights will get zero gradient and may remain permanently "dead" during training. This sparsity of the activations is what some believe is the reason for the effectivenss of ReLUs (Sun $et\ al.$, 2014). If dead activations wants to be avoided, alternative activations functions are PReLUs (He $et\ al.$, 2015) and Leaky ReLUs (Maas $et\ al.$), but they fall out of the scope of this work.

Typically, choosing the right activation function for a specific task comes down to trial and error, however, in most cases it would be sufficient to use ReLUs. In our experiments we will show how the different activation functions perform on tabular data and compare it to the *Scaled Exponential Linear Units*

(SELUs) (Klambauer *et al.*, 2017) activation, which is supposed to allow us to more effectively train deeper neural networks. The neural network depth refers to its number of hidden layers, whereas the width of a layer refers to the number of neurons it consists of. The choice in network depth and layer width is the topic of the next section.

2.2.3 Size of the Network

The network depth and the width of its hidden layers (*i.e.* the size of the network) are hyperparameters of the model. They control the capacity or the flexibility of a neural network; referring to its ability to model complex functions. The bigger the network, the more flexible the model is. Like with most such parameters, increasing the model size is usually benefical up to a certain point, after which its test performance starts to degrade (overfitting). In addition, more layers and more neurons adds to the time taken and hardware required to train the neural network.

Thus the challenge is to find a network size that is large enough to capture all the complexities in the data, but small enough to avoid overfitting. Currently the best way of finding the optimal size of a network for a given problem is by experimentation. Note, that this is true for many of the components of neural networks and deep learning.

Theoretically, according to the universal approximation theorem (Cybenko, 1989), a neural network with a single hidden layer and a finite number of neurons can approximate any continuous function. Which begs the question as to why we need more hidden layers. Even though a neural network can represent any function, it does not mean that the available learning algorithms can find these optimal weights (Ba and Caurana, 2013). It may also be that the number of neurons needed for a single hidden layer network to represent a specific function is infeasibly large. By choosing deeper networks we are assuming that the function we are trying to learn is composed of several simpler functions. Building in this prior proves to useful empirically (Goodfellow et al., 2016, pp.197-198), especially for tasks of a hierarchical nature like in computer vision.

In our experiments we will see what effect the layer width and network depth have on the generalisation performance on tabular data. The networks used for tabular data learning problems are typically much shallower than those used for say computer vision and NLP. We investigate why this is the case. Later in this chapter we view this problem from a representation learning perspective which will also give us some insight on the matter. But first, in the next section, we discuss the process of training a neural network.

2.3 Training a Neural Network

2.3.1 Optimisation

As mentioned before, fitting a linear regression model can be reduced to finding the optimal weights to minimise the MSE function. In fact, typically model training procedures can be described as the search for its internal parameters that minimises or maximises some *objective function*. Therefore statistical learning and optimisation are closely related. Optimisation refers to the task of either minimising or maximising some function J(x) by altering x. The function we want to optimise is called the objective function. When we are minimising the objective function, we may also refer to the objective function as the *cost* or *loss function*. These terms will be used interchangeably throughout the thesis.

As mentioned in the previous section, parameter estimation (or optimisation) of a linear (or logistic regression) model is usually done using OLS or maximum likelihood estimation (MLE). In this section, however, we discuss an alternative parameter estimation method which is also relevant for the optimisation of neural networks.

Consider the MSE loss function:

$$L = \sum_{i=1}^{N} L_i$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} (y_{ik} - f_k(\boldsymbol{x}_i))^2$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} (y_{ik} - \boldsymbol{w}_k^T \boldsymbol{x}_i)^2,$$

where $f_k(\cdot)$ in this case is the linear model used to predict the k-th class posterior probability. Although the MSE loss is mostly used in a regression setup and not really well suited for classification, we make use of it here for illustration purposes.

To find the weights, \boldsymbol{w} , that minimise L, we can follow a process of iterative refinement. That is, starting with a random initialisation of \boldsymbol{w} , one iteratively updates the values such that L decreases. The updating steps are repeated until the loss converges. In order to minimise L with respect to \boldsymbol{w} , we calculate the gradient of the loss function at the point $L(\boldsymbol{x};\boldsymbol{w})$. The gradient (or slope) of the loss function indicates the direction in which the function has the steepest rate of increase. Therefore, once we have determined this direction, we can update the weights by a step in the opposite direction - thereby reaching a smaller value of L.

The gradient of L_i is computed by obtaining the partial derivative of L_i with respect to \boldsymbol{w}_k , *i.e.*:

$$\frac{\partial L_i}{\partial \boldsymbol{w_k}} = -2(y_{ik} - \boldsymbol{w}_k^T \boldsymbol{x}_i) \boldsymbol{x}_i.$$

After obtaining the above N partial derivatives, an update at the (r+1)-th iteration may be obtained as follows:

$$\boldsymbol{w}_{k}^{(r+1)} = \boldsymbol{w}_{k}^{(r)} - \gamma \sum_{i=1}^{n} \frac{\partial L_{i}}{\partial \boldsymbol{w}_{k}^{(r)}},$$

where γ is called the *learning rate* and determines the size of the step taken toward the optimal direction. One typically would like to set the learning rate small enough so that one does not overshoot the minimum, but large enough to limit the number of iterations before convergence. This value can be determined via a line search but is not always ideal since this may render the training time of DNNs too long. Another option is to reduce the learning rate after every fixed number of iterations. More detail regarding the implication of the learning rate will be given in $\ref{eq:total_start}$?

The procedure of repeatedly evaluating the gradient of the objective function and then performing a parameter update, is called *gradient descent* [Cauchy, 1847]. Gradient descent forms the basis of the optimisation procedure for neural networks.

Note that a weight update is made by evaluating the gradient over a set of observations, $\{x_i, i = 1, ..., n\}$. One of the advantages of gradient descent is that at an iteration, the gradient need not be computed over the complete training dataset, *i.e.* $n \leq N$. When updates are iteratively determined by using subsets of the data, the process is called *mini-batch gradient descent*. This is extremely helpful in large-scale applications, since it obviates computation of

the full loss function over the entire dataset. This leads to faster convergence, because of more frequent parameter updates, and allows processing of data sets that are too large to fit into a computer's memory. The choice regarding batch size depends on the available computation power. Typically a batch consists of 64, 128 or 256 data points, since in practice many vectorised operation implementations work faster when their inputs are sized in powers of 2. The gradient obtained using mini-batches is only an approximation of the gradient of the full loss but it seems to be sufficient in practice (Li et al., 2014). Note at this point that the collection of iterations needed to make one sweep through the training data set is called an epoch.

The extreme case of mini-batch gradient descent is when the batch size is selected to be 1. This is called *Stochastic Gradient Descent* (SGD). Recently SGD has been used much less, since it is more efficient to calculate the gradient in larger batches compared to only using one example. However, note that it remains common to use the term SGD when actually referring to mini-batch gradient descent. Gradient descent in general has often been regarded as slow or unreliable but it works well for optimising DNNs. SGD will most probably not find even a local minimum of the objective function. It typically however finds a very low value of the cost function quickly enough to be useful.

2.3.2 Optimisation Example

To illustrate the SGD algorithm, consider the linear model in a classification context. Suppose we are given a training dataset with two-dimensional inputs and only two possible classes. Let the data be generated in the same way as described in (Hastie *et al.*, 2009, pp. 16-17).

We want to fit a linear regression model to the data such that we can classify an observation to the class with the highest predicted score. In the binary case it is only necessary to model one class probability and then assign an observation to that class if the score exceeds some threshold (usually 0.5), otherwise it is assigned to the other class. Therefore the decision boundary is given by $\{x: x^T \hat{w} = 0.5\}$.

The example is illustrated in ??. The colour shaded regions represent the parts of the input space classified to the respective classes, as determined by the decision boundary based upon OLS parameter estimates. Gradient descent was applied to the determine the optimal weights using a learning rate of 0.001.

Since the total number of training observations are small, it is not necessary to use SGD. In ??, the dashed lines represent the decision boundary defined by the gradient descent parameter estimates at different iterations. We observe that initially the estimated decision boundary is far from the OLS solution, but as the update iterations proceed, the decision boundary is rotated and translated until finally matching the OLS line. It took 29 iterations for the procedure to reach convergence.

2.3.3 Backpropagation

In Section 2.3.1 we discussed how to fit a linear model using the Stochastic Gradient Descent optimisation procedure. Currenlty, SGD is the most effective way of training deep networks. To recap, SGD optimises the parameters θ of a networks to minimise the loss,

$$\theta = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} l(\boldsymbol{x}_i, \theta).$$

With SGD the training proceeds in steps and at each step we consider a minibatch of size $n \leq N$ training samples. The mini-batch is used to approximate the gradient of the loss function with respect to the paramaters by computing,

$$\frac{1}{n}\frac{\partial l(\boldsymbol{x}_i,\theta)}{\partial \theta}.$$

Using a mini-batch of samples instead of one at a time produces a better estimate of the gradient over the full training set and it is computationally much more efficient.

This section discusses the same procedure, but applied to a simple single hidden layer neural network. This is made possible by the *backpropogation* algorithm. Note, this process extends naturally to the training of deeper networks.

The neural network described in the previous section has a set of unknown adjustable weights that defines the input-output function of the network. They are the α_{0m} , α_m parameters of the linear function of the inputs, \boldsymbol{X} , and the β_{0k} , β_k parameters of the linear transformation of the derived features, \boldsymbol{Z} . Denote the complete set of parameters by θ . Then the objective function for regression can be chosen as the sum-of-squared-errors:

$$L(\theta) = \sum_{k=1}^{K} \sum_{i=1}^{N} (y_{ik} - f_k(\boldsymbol{x}_i))^2$$

and for classification, the cross-entropy:

$$L(\theta) = -\sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} \log f_k(\mathbf{x}_i),$$

with corresponding classifier $G(\boldsymbol{x}) = \arg \max_k f_k(\boldsymbol{x})$. Since the neural network for classification is a linear logistic regression model in the hidden units, the parameters can be estimated by maximum likelihood. According to Hastie *et al.* (2009, p. 395), the global minimiser of $L(\theta)$ is most likely an overfit solution and we instead require regularisation techniques when minimising $L(\theta)$.

Therefore, one rather uses gradient descent and backpropogation to minimise $L(\theta)$. This is possible because of the modular nature of a neural network, allowing the gradients to be derived by iterative application of the chain rule for differentiation. This is done by a forward and backward sweep over the network, keeping track only of quantities local to each unit.

In detail, the backpropogation algorithm for the sum-of-squared error objective function,

$$L(\theta) = \sum_{i=1}^{N} L_{i}$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} (y_{ik} - f_{k}(\boldsymbol{x}_{i}))^{2},$$

is as follows. The relevant derivatives for the algorithm are:

$$\frac{\partial L_i}{\partial \beta_{km}} = -2(y_{ik} - f_k(\boldsymbol{x}_i))g_k'(\boldsymbol{\beta}_k^T \boldsymbol{z}_i)z_{mi},
\frac{\partial L_i}{\partial \alpha_{ml}} = -\sum_{k=1}^K 2(y_{ik} - f_k(\boldsymbol{x}_i))g_k'(\boldsymbol{\beta}_k^T \boldsymbol{z}_i)\beta_{km}\sigma'(\boldsymbol{\alpha}_m^T \boldsymbol{x}_i)x_{il}.$$

Given these derivatives, a gradient descent update at the (r+1)-th iteration has the form,

$$\beta_{km}^{(r+1)} = \beta_{km}^{(r)} - \gamma_r \sum_{i=1}^{N} \frac{\partial L_i}{\partial \beta_{km}^{(r)}},$$

$$\alpha_{ml}^{(r+1)} = \alpha_{ml}^{(r)} - \gamma_r \sum_{i=1}^{N} \frac{\partial L_i}{\partial \alpha_{ml}^{(r)}},$$

where γ_r is called the learning rate. Now write the gradients as

$$\frac{\partial L_i}{\partial \beta_{km}} = \delta_{ki} z_{mi},$$
$$\frac{\partial L_i}{\partial \alpha_{ml}} = s_{mi} x_{il}.$$

The quantities, δ_{ki} and s_{mi} are errors from the current model at the output and hidden layer units respectively. From their definitions, they satisfy the following,

$$s_{mi} = \sigma'(\boldsymbol{\alpha}_m^T \boldsymbol{x}_i) \sum_{k=1}^K \beta_{km} \delta_{ki},$$

which is known as the backpropogation equations. Using this, the weight updates can be made with an algorithm consisting of a forward and a backward pass over the network. In the forward pass, the current weights are fixed and the predicted values $\hat{f}_k(\boldsymbol{x}_i)$ are computed. In the backward pass, the errors δ_{ki} are computed, and then backpropogated via the backpropogation equations to give obtain s_{mi} . These are then used to update the weights.

Backpropogation is simple and its local nature (each hidden unit passes only information to and from its connected units) allows it to be implented efficiently in parallel. The other advantage is that the computation of the gradient can be done on a batch (subset of the training set) of observations. This allows the network to be trained on very large datasets. One sweep of the batch learning through the entire training set is known as an epoch. It can take many training epochs for the objective function to converge.

2.3.4 Learning Rate

The convergence times also depends on the learning rate, γ_r . There are no easy ways for determining γ_r . A small learning rate slows downs the training time, but is safer against overfitting and overshooting the optimal solution. With a large learning rate, convergence will be reached quicker, but the optimal solution may not have been found. One could do a line search of a range of possible values, but this usually takes too long for bigger networks. One possible strategy for effective training is to decrease the learning rate every time after a certain amount of iterations.

Recently, in (https://arxiv.org/abs/1711.00489) (no bibtex entry), the authors found that, instead of learning rate decay, one can alternatively increase the batch size during training. They found that this method reaches equivalent test accouracies compared to learning rate decay after the same amount of epochs. But their method requires fewer parameter updates.

2.3.5 Weight initialisation

2.3.6 Basic Regularisation

There are many ways to prevent overfitting in deep neural networks. The simplest strategies for single hidden layer networks are by early stopping and weight decay. Stopping the training process early can prevent overfitting. When to stop can be determined by a validation set approach. Weight decay is the addition of a penalty term, $\lambda J(\theta)$, to the objective function, where,

$$J(\theta) = \sum_{km} \beta_{km}^2 + \sum_{ml} \alpha_{ml}^2.$$

This is exactly what is done in ridge regression (Hastie *et al.*, 2009, Ch. 4). $\lambda \geq 0$ and larger values of λ tends to shrink the weights towards zero. This helps with the generalisation ability of a neural network, but recently more effective techniques to combat overfitting in DNNs have been developed. These are dicussed in ??.

It is common to standardise all inputs to have mean zero and standard deviation of one. This ensures that all input features are treated equally. Now we have covered all of the basics for simple (1-layer) neural networks.

- move regularisation to next chapter
- lead into modern learning policies
- lead into what it is learning

2.4 Representation Learning

We are now familiar with the mathematical operations of basic layers, how they are connected and how their weights are tweaked to minimise a loss function. In this section we will discuss why this works and what the NN is actually doing to model the data. The central idea is that of a data representation (Bengio et al., 2013) and that at each layer of the network the data is transformed into a higher-level abstraction of itself. Understanding and interpreting NNs remains a challenge (Frosst and Hinton, 2017), but the notion of learning an optimal data representation allows us to gain a deeper intuition of the inner mechanics of NNs.

Machine learning models are very sensitive to the form and the properties of the input given to it. Thus a large part of building machine learning models is to find the best way of representing the raw data to make it easier for the models to extract useful information. This is typically a laborious manual task of creating, analyzing, evaluating and selecting appropriate features², and requires practitioner expertise and domain knowledge. This *feature engineering* process is more trial-and-error than a systematic recipe. Therefore if one can effectively automate this process, it will save a lot of time and raise the performance ceiling of models. Automatically learning representations of the data that make it easier to extract useful information for classifiers or other predictors is called representation learning (Bengio *et al.*, 2013).

A NN can be viewed from the perspective of representation learning. Consider a classification task. Since the final layer of a NN is a linear model, in order for the network to produce accuracte predictions, the previous layers should be able to project the data into a space where the classes are linearly separable. Thus the network learns a representation of the data that is optimal for classification.

Each of the simple but non-linear modules of a NN transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level. With the composition of enough such transformations, very complex functions can be learned (Lecun *et al.*, 2015). These transformations can emphasise (and create) features that are important for discrimination and drop those which are redundant.

Let us work through a simple example to illustrate the representations learned by a NN. Consider a dataset with two classes; the two curves on a plane shown in Figure 2.4. Clearly, the observations from the two classes are not linearly separable in their raw form. Thus if we fit a single layer NN (*i.e.* only an output layer) to this data, we will get an unsatisfactory decision boundary, since the decision boundary can only be linear, as shown in Figure 2.5. However, if fit a two-layer NN, where the hidden layer has two neurons and a sigmoid activation, to the same dataset the decision boundary perfectly separates the two classes. This is shown in Figure 2.6.

Since the hidden layer consists of only two neurons, we are able to plot the output from the hidden layer after the raw data has passed through it. This is depicted in Figure 2.7. This shows how the hidden layer projected the input data into a space where the observations from the two classes are linearly separable. Which leaves it to the final layer to find the best hyperplane

²http://blog.kaggle.com/2014/08/01/learning-from-the-best/

Figure 2.4: Simple dataset with two linearly inseparable classes.

Figure 2.5: Decision boundary of 1-layer NN.

Figure 2.6: Decision boundary of 2-layer NN.

between them.

Figure 2.7: Hidden representation of 2-layer NN.

Of course this is a very simple example, but the same concepts apply to more complicated datasets and models. However, even though it is technically

possible to separate any arrangement of points with a sufficiently large network³, in reality it can become quite challenging to find such representations. This is where the need for more data, regularisation, smarter optimisation procedures and architecture design arises. Without the aforementioned, it is likely that the network will get stuck in a sub-optimal local minima, not being able to find the optimal representation of the data. In the following chapters we explore the approaches available to find optimal representations of tabular data for classification and regression tasks.

2.5 Vanilla MLP on Tabular Data

In this chapter we have discussed the basics of NNs and how to train them. To compliment this discussion we will run through a relatively simple but real-world classification task on tabular data here. The aim of this is example is to solidfy the understanding of the basics, compare the expected behaviour and the behaviour in practise for each of the discussed concepts and to highlight where sticking with the basics comes up short.

We are going to use the Adult dataset. We are going to see how we process the features. How we are going to choose the learning rate and batch size and weight decay and number of epochs. How we are going to choose the size of the layers and the depth of the network. Different activation functions?

This acts as a baseline to which we can compare the network with advanced components.

Identify things we can improve upon. Better preprocessing of the data. One-hot encode creates sparse input and requires large weight matrices. Continuous variables requires zero mean and unit variance normalisation - but is this the best way? We are naively combining very different types of features in one layer. The dataset is relatively small. We struggle to find the right balance between overfitting and underfitting. Fixed learning rate. Can't interpret it.

 $^{^3}$ http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Chapter 3

Deep Learning

3.1 Introduction

Deep learning is a broad term. The difference between a classical neural network and a deep neural network, is merely its number of layers. Even a network with two hidden layers is sometimes referred to as deep.

In this work, we use the term deep learning to refer to modern developments in the space of neural networks. In the last decade, tons of contributions have been made to the field: new types of layers, different ways of training and novel approachs to fight overfitting. Reviewing these developments requires much more space than a chapter, therefore, for the purpose of this work, we only highlight the developments we feel are important for our next chapter on deep learning for tabular data.

Practically all deep learning developments are aimed at combatting overfitting, either explicitly or implicitly. Since neural networks can already approximate any function, but our learning algorithms cannot necassrily find these solutions, we need ways of learning more efficiently from the data. This chapter starts by introducing a different class of neural networks called *autoencoders* (§3.2). Autoencoders are mostly used as an unsupervised learning technique to help us learn more robust representations from data without response variables, which we may then transfer to supervised learning algorithms. This process of transferring knowledge from one network to another is called transfer learning, which we discuss in §3.3.1.

Thereafter, we look at layers that help with regularisation: dropout (§??) and $batch\ normalisation$ (§3.4.1). Data augmentation is a technique used to

artificially enlarge the training dataset and thus also helps fighting overfitting. We discuss this in §3.3.3. The other types of layers we look at in this chapter are, *skip-connections* (§3.4.2), *attention* modules (§3.4.4) and *embedding* layers (§3.4.3). They are designed to make deeper neural networks more effective, let them focus more on the important features and to process discrete input, respectively.

Then we devote a section to a training policy called the *1cycle* policy (§3.5). This method provides a way of automatically finding a good learning rate and drastically reduces the number of training iterations needed. We conclude this chapter with a discussion on the interpretability of neural networks (§3.6).

3.2 Autoeoncoders

An autoencoder takes an input and first transforms it into some (smaller) latent representation using the part of the network called the encoder. From the latent representation the second part of the network, called the decoder, tries to reconstruct the input by doing some transformation. Both the encoder and the decoder networks are NNs in their own right and thus usually consist of either fully connected layers or convolutional layers (or both).

During training a reconstruction loss is minimised. A reconstruction loss measures the distance between the reconstruction of the input based on the latent representation and the actual input.

Autoencoders technically belong the self (or semi) supervised class of methods, although many still think of it as unsupervised. It is unsupervised in the sense that it does not require labelling, but it is stll supervised in the sense that it predicts an ouput; the input and thus self-supervised.

A denoising autoencoder (DAE) is a variant of the vanilla autoencoder. A DAE also learns to reconstruct the input vector, but in this case from a corrupted version thereof. So during training, before an input is sent through the encoder, it first get injected with random noise. However, the output of the decoder is still being compared to the original input and thus the DAE is supposed to learn how to remove noise from the input - therefore, denoising.

(Miotto et al., 2016) used a stacked denoising autoencoder to learn patient representations from EHR data. They found that these representations were useful features in predicting future health states of patients. By using these

learned representations as input significantly improved the performance of predictive models compared to those only using the raw inputs.

See also (Vincent $et\ al.$, 2008).

https://arxiv.org/pdf/1803.09820.pdf

3.3 Combatting Overfitting

3.3.1 Transfer Learning

The major critique against DNNs are that they require a huge amount of training data and that they take extremely long to train. This is somewhat true, however, transfer learning provides an effective solution to these problems. Recall that DNNs are examples of representation learning algorithms. Consider the case where a CNN was successfully trained on ImageNet. For any input image, each layer of the CNN produces some feature representation of the input image. (Not sure where Zeiler paper is going to be discussed).

3.3.2 Dropout §??

Overfitting can be reduced by using dropout (Hinton et al., 2012) to prevent complex co-adaptions on the training data. Dropout consists of setting the output of a hidden unit to zero with a probability p (in the original paper they used p=0.5). The units which are set to zero do not contribute to the forward pass and do not participate in backpropogation. Every time an input is presented, the neural network samples a different set of units to be dropped out.

This technique ensures that a unit does not rely on the presence of a particular set of other units. It is therefore forced to learn more robust features that are useful in conjunction with many different random subsets of the other units (Krizhevsky *et al.*, 2012).

At test time, no units are dropped out and their output is multiplied by 1-p (make sure) to compensate for the fact that all of the units are now active. Dropout does tremendously well to combat overfitting, but it slows down the covergence time of training.

• in the original paper they also compare the technique to ensebmling

See Figure 3.1 for an illustration of how dropout effects the connections between neurons.

Figure 3.1: The effect dropout has on connections between neurons.

Interesetingly, (Haldar *et al.*, 2018) found that dropout was not effective in their application. They pinned it down to dropout producing invalid input scenarious that distracted the model. Therefore they opted for hand crafted noise shapes taking into account the distribution of the relevant feature.

This shows that dropout does break up co-adaptations, which is probably the main reason why it leads to lower generalization errors.

3.3.3 Data Augmentation

As mentioned before, our aim with predictive models is to generalise well to an unseen test set. In an ideal world we would train a model on all possible variations of the data to capture all interactions and relationships. This is not possible in the real world. Such a dataset is not available and would be infinitely large.

In reality we have a finite subset of the full data distribution to train on. Any new samples with unique feature combinations will likely improve the models generalisablity. If the collection of new samples is not available, we can try to artificially create more.

This is a standard approach especially in computer vision applications. For example, from a single image, we can rotate it, flip it horizontally, shift it any direction, crop it, and many other transformations without destroying the semantic content of the image. But by doing so we are artificially increasing

the size of the training set to help with overfitting. Of course this is not as effective as genuine new data samples, but it is a very effective and efficient substitute (Perez and Wang, 2017).

Data augmentation consistently leads to improved generalisation.

Data augmentation can be formalised by the *Vicinal Risk Minimisation* principle (Chapelle *et al.*, 2001) where human knowledge is required to describe a vicinity around each observation in the training data so that artificial examples can be drawn from the vicinity distribution of the training sample to enlarge it. In image classification one can define the vicinity of an image as the set of its horizontal reflections and minor rotations, for example. Note that this approach is dataset dependent.

3.4 Modern Architectures

3.4.1 Normalisation

One of the things that complicate the training of neural networks is the fact that hidden layers have to adapt to the continuously changing distribution of its inputs. The inputs to each layer are affected by the paramaters of all its preceding layers and a small change in a preceding layer can lead to a much bigger difference in output as the network becomes deeper. When the input distribution to a learning system changes, it is said to experience covariate shift (Shimodaira, 2000).

Using ReLUs, carefull weight initialisation and small learning rates can help a network to deal with the internal covariate shift. However, a more effective way would be to ensure that the distribution of non-linearity inputs remains more stable while training the network. (Ioffe and Szegedy, 2015) proposed batch normalisation to do just that.

A batch normalisation layer normalises its inputs to a fixed mean and variance (similar to how the inputs of the network is normalised) and therefore it can be applied before any hidden layer in a network to prevent internal covariate shift. The addition of this layer dramatically accelerates the training of DNNs, also because it can be used with higher learning rates. It also helps with regularisation (Ioffe and Szegedy, 2015), therefore in some cases dropout is not necessary.

The batch normalising transform over a batch of univariate inputs, x_1, \ldots, x_n is done by the following steps:

1. Calculate the mini-batch mean, μ , and variance, σ^2 :

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - u)^2$$

2. Normalise the inputs,

$$\hat{x}_i = \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}},$$

where ϵ is a constant to ensure numerical stability.

3. Scale and shift the values,

$$y_i = \gamma \hat{x}_i + \beta$$
,

where γ and β are the only two learnable parameters of a batch normalisation layer.

The reason for the scale and shift step is to allow the layer to represent the identity transform if the normalised inputs are not suitable for the following layer, *i.e.* the scale and shift step will reverse the normalisation step if $\gamma = \sqrt{\sigma^2 + \epsilon}$ and $\beta = \mu$.

The batch normalisation layer attempts to normalise neuron activations to zero mean and unit variance (Ioffe and Szegedy, 2015). It has become the stanard when training deep CNNs. Training with normalisation techniques is perturbed by Stochastic Gradient Descent (SGD), stochastic regularisation (like dropout) and the estimation of the normalisation parameters. Both RNNs and CNNs can stabilise learning via weight sharing, therefore they are less prone to perturbations. Fully-connected NNs do not have this luxury and shows high variance in the training error when trained with normalisation techniques.

- batchnorm
- selu?

3.4.2 Skip-connections

- resnet and densenet
- how resnet is essentially boosting

Residual Networks became very popular after it was used to win one of the ImageNet competitions (He *et al.*, 2015). The residual connection layer can simply be formalised as

$$y = F(x) + x$$

i.e. combining the input to the layer(s) with the output of the layer(s). Here, the combination is by addition, but other ways can also be used, like multiplication or concatenation. These layers are very useful when training deeper neural networks since they encourage gradient flow through interval layers.

3.4.3 Embeddings

Like word embeddings. Learnable mapping of an item to a vector.

3.4.4 Attention

First proposed in neural machine translation (Bahdanau *et al.*, 2014) and now almost used ubiquitously in natural language processing applications.

3.5 One-cycle Policy

• can include experiment here

(Smith, 2018)

• reduce training time and increase performace

Currently the process of setting the hyper-parameters, including designing the network architecture, requires expertise and extensive trial and error and is based more on serendipity than science.

Currently there are no simple and easy ways to set hyper-parameters – specifically, learning rate, batch size, momentum, and weight decay. Grid search or random search is expensive. Optimal parameters make a huge difference in training time and performance.

Look for clues of overfitting and underfitting to determine best parameters. The experiments discussed herein indicate that the learning rate, momentum, and regularization are tightly coupled and optimal values must be determined together.

by monitoring validation/test loss early in the training, enough information is available to tune the architecture and hyper-parameters and this eliminates the necessity of running complete grid or random searches.

Underfitting is when the machine learning model is unable to reduce the error for either the test or training set. The cause of underfitting is an under capacity of the machine learning model; that is, it is not powerful enough to fit the underlying complexities of the data distributions. Overfitting happens when the machine learning model is so powerful as to fit the training set too well and the generalization error increases.

The takeaway is that achieving the horizontal part of the test loss is the goal of hyper- parameter tuning

The art of setting the network's hyper-parameters amounts to ending up at the balance point between underfitting and overfitting

If the learning rate (LR) is too small, overfitting can occur. Large learning rates help to regularize the training but if the learning rate is too large, the training will diverge.

To use CLR, one specifies minimum and maximum learning rate boundaries and a stepsize. The stepsize is the number of iterations (or epochs) used for each step and a cycle consists of two such steps – one in which the learning rate linearly increases from the minimum to the maximum and the other in which it linearly decreases.

n the LR range test, training starts with a small learning rate which is slowly increased linearly throughout a pre-training run. This single run provides valuable information on how well the net- work can be trained over a range of learning rates and what is the maximum learning rate. When starting with a small learning rate, the network begins to converge and, as the learning rate increases, it eventually becomes too large and causes the test/validation loss to increase and the accuracy to decrease. The learning rate at this extrema is the largest value that can be used as the learning rate for the maximum bound with cyclical learning rates but a smaller value will be necessary when choosing a constant learning rate or the network will not begin to converge.

the amount of regularization must be balanced for each dataset and archi-

tecture

Contrary to this early work, this Section recommends using a larger batch size when using the 1cycle learning rate schedule, which is described in the above

Weight decay is one form of regularization and it plays an important role in training so its value needs to be set properly. The important point made above applies; that is, practitioners must balance the various forms of regularization to obtain good performance. the interested reader can see kuka et al. (2017) for a review of regularization methods.

- 1. Learning rate (LR): Perform a learning rate range test to a "large" learning rate. The max LR depends on the architecture (for the shallow 3-layer architecture, large is 0.01 while for resnet, large is 3.0), you might try more than one maximum. Using the 1cycle LR policy with a maximum learning rate determined from an LR range test, a minimum learning rate as a tenth of the maximum appears to work well but other factors are relevant, such as the rate of learning rate increase (too fast and increase will cause instabilities).
- 2. Total batch size (TBS): A large batch size works well but the magnitude is typically con- strained by the GPU memory. If your server has multiple GPUs, the total batch size is the batch size on a GPU multiplied by the number of GPUs. If the architecture is small or your hardware permits very large batch sizes, then you might compare performance of different batch sizes. In addition, recall that small batch sizes add regularization while large batch sizes add less, so utilize this while balancing the proper amount of regularization. It is often better to use a larger batch size so a larger learning rate can be used.
- 3. Momentum: Short runs with momentum values of 0.99, 0.97, 0.95, and 0.9 will quickly show the best value for momentum. If using the 1cycle learning rate schedule, it is better to use a cyclical momentum (CM) that starts at this maximum momentum value and decreases with increasing learning rate to a value of 0.8 or 0.85 (performance is almost independent of the minimum momentum value). Using cyclical momentum along with the LR range test stabilizes the convergence when using large learning rate values more than a constant momentum does.

4. Weight decay (WD): This requires a grid search to determine the proper magnitude but usually does not require more than one significant figure accuracy. Use your knowl- edge of the dataset and architecture to decide which values to test. For example, a more complex dataset requires less regularization so test smaller weight decay values. A shallow architecture requires more regularization so test largerweight decay values.

3.6 Model Interpretation

Although Deep Learning is now the state-of-the-art for many machine learning tasks, it still trailing behind other algorithms in terms of model interpretability. But keep in mind this is not an unusual trade-off; between prediction performance and model interpretability. DNNs are occasionally referred to as "black boxes" since it is very difficult to interpret what is going on inside the stacks of linear and non-linear layers. This one of deep learning's greatest criticisms and is large reason why it cannot be used in some production environments. For example, in the clinical domain, model transparency is of utmost importance, given that predictions might be used to affect real-world medical decision-making and patient treatments (Shickel et al., 2017).

Fortunately, some work has been done to gain insights from NNs.

3.6.1 Model Agnostic

3.6.1.1 Permutation Importance

(Haldar et al., 2018) notes that the permutation test only produces sensical results on the assumption that the features are independent. Permuting the feature independently created examples that never occurred in real life, and the importance of features in that invalid space sent us in the wrong direction. The test however is somewhat useful in determining features that were not pulling their weight. If randomly permuting a feature did not affect the model performance at all, it was a good indication that the model is probably not dependent on it.

- Partial Dependece
- SHAP

3.6.2 Neural Network Specific

- Distilling Neural Networks, i.e. training a decision tree on train neural network generated data. https://arxiv.org/pdf/1711.09784.pdf
- Mimic learning (Che et al., 2016)
- Plotting embeddings in lower dimensional space with PCA or t-sne
- evaluate which inputs get activated by a certain unit.

•

Chapter 4

Deep Learning for Tabular Data

4.1 Introduction

- core work
- combination of other work with tabular data and other domains
- not received much attention
- automate feature engineering

It is not exactly clear why DNNs are still in many cases inferior to gradient boosted trees when applied to tabular data, eventhough it outperforms all other algorithms in other application domains like text and speech. We can look for differences between tabular data and unstructured data in their properties to try and understand why this is the case. A difference between the two data types that stand out is the relative importance of each of the important features with respect to the target. In computer vision a large amount of pixels should change before an image is of something else. Whereas in tabular data a very small change in a single feature may have totally different behaviour with respect to the target (Shavitt and Segal, 2018). The same authors mention that this can be addressed by including a separate regularisation term for each of the weights in the network. These regularisation terms are seen as additional model hyperparameters. It is easy to see that this approach is totally intractable since the only way to train these hyperpararmeters are brute force and repetitive tweaking and validating (derivative free methods). A workaround is to make these regularisation parameters trainable like all of the other points in the network. This is achieved by minimising the counterfactual loss, a novel loss function proposed by (Shavitt and Segal, 2018). They found that training NNs by optimising the counterfactual loss, outperform other regularisation approaches for NNs and results in NNs that are comparable to gradient boosted trees. The learned regularisation parameters can even help with interpretting feature importance.

• NNs proved to be useful for tabular data at AirBnB (?).

Deep Learning has set new records on various benchmarks and led to various commercial applications. Recurrent Neural Networks achieved new levels in speech and natural language processing and are already deployed on mobile devices. Their counterparts, Convolutional Neural Networks (CNNs), excel in vision tasks. CNNs are on par with human experts on detecting skin cancer. The latest self-driving cars rely on CNNs to understand video imagery. CNNs were also used in AlphaGo to evaluate board positions. (Klambauer et al., 2017)

But on structured data, Deep Neural Networks have still a long way to go. Random Forests, Gradient Boosted Trees and Support Vector Machines often outperforms DNNs on structured data, both in terms of accuracy and efficiency.

DNNs on tabular data also struggle to go deeper than 3 or 4 layers.

Adopting NNs for tabular data receives far less attention and remains challenging. Fully connected model structure leads to very complex optimization hyper-planes with a high risk of falling into local optimums.

Explanation can start with the most naive DNN and then systematically add components to improve it, from architectural changes to learning changes.

4.2 Related Work

- Recommender Systems: AirBnB (Haldar et al., 2018)
- Healthcare/EHR: (Rajkomar *et al.*, 2018) showed how effective NNs are for EHR data. State of the art on various predictive tasks.
- Taxi Trajectory: One of the first sucessful implementations of modern NNs for tabular data was in predicting the destination of a taxi ride based on its initial trajectory (de Brébisson *et al.*, 2015). It was hosted as a Kaggle competition and this solution outperformed all other entries by

a significant margin. Click-through rate prediction (CTR) (Song et al., 2018). To predict the probability of a user clicking an item, critical to online applications and recommender systems.

4.3 Input Representation

It is widely held that 80% of the effort in an analytic model is preprocessing, merging, customizing, and cleaning datasets, not analysing them for insights (Rajkomar *et al.*, 2018).

The success of predictive algorithms largely depends on feature selection and data representation. The feature selection process and finding the best data representation is largely a manual and painful process.

In most machine learning tasks the greatest performance gains can be achieved by feature engineering wheras better algorithms only result inincremental boosts. In feature egineering one strives to create new features from the original features based on some domain knowledge of the data or otherwise, that makes it easier for the model to estimate the target. Although a crucial step to make the most out of the data, this can be a very laborious process. There is not formal path to follow in this stage and thus usually consists of many a trial and error, benefitted by domain knowledge of the data, only accessible in some cases. A huge advantage of using NNs on tabular data (and other data structures) is that the feature engineering process gets automated to some extent. A NN learns these optimal feature transformations implicitly during the training process. The hidden layers of a NN can be viewed as a feature extractor that was optimised to map the inputs into the best possible features space for a model (the final layer of the network) to operate in.

4.3.1 Numerical Features

One of the things that make tree-based methods so attractive is that the numeric values of the features hardly matter, as long as their relative ordering is meaningful. On the other hand, NNs are very sensitive to the numeric value of the input. This is related to the optimisation procedure. If an abnormal feature value is fed to the network during training, large gradients can backpropagate throught the network and/or result in vanishing gradients (Clevert et al., 2015).

(Haldar *et al.*, 2018) suggest to restrict the values in the range of $\{-1,1\}$ and so that the median is mapped to zero. They achieved this by inspecting each of the features and if a feature looks gaussian, do the normalisation $(x - \mu)/\sigma$ and if the feature looks more like a power law distribution, transform is by $\log ((1+x)/(1+\text{median}))$.

Another step the same authors suggest is to ensure the continuous variables follow a smooth distribution. This helps for generalisation, checking for bugs and general training efficiency. It also helps the analyst to determine whether a feature is generated by some other underlying process.

- how to normalize continuous variables
- mean subtract and error divide
- rankGauss
- scale to 0-1

4.3.2 Categorical Features

Entity embedding not only reduces memory usage and speeds up neural networks compared with one-hot encoding, but more importantly by mapping similar values close to each other in the embedding space it reveals the intrinsic properties of the categorical variables, which you cannot obtain with one-hot encoding.

Companies like Instacart and Pinterest have reported the effective use of entity embeddings on their internal datasets. These embeddings can be reused on different machine learning tasks and do have to be relearned for each dataset.

First published work in modern times on entity embeddings was in the taxi destination prediction challenge (de Brébisson et al., 2015). Another Kaggle sucess story is for predicting the total sales of a store (Guo and Berkhahn, 2016). This embedding of discrete data was inspired by work done word embeddings in the Natural Language Processing community. There a word is mapped into a vector space of fixed size. The vector representing a word is known as its embedding. The table of embeddings for the words in the dataset is included in the model as a paramterised mapping that can be learned in the same way as the rest of the NN layers. The parameters of the embedding function (or layer) are first randomly initialised and then gets tuned along with the rest of the NN during training.

The embedding for discrete variables act in the exact same way. The embdding for each categorical variable gets concatenated to the continuous variables and then gets passed to the rest of the layers in the network.

In (de Brébisson et al., 2015) they found that embeddings helped a lot. The embeddings can also be visualised to investigate whether make sense or to gain further insight into the data and model decision making. The weights associated with each categories projection onto the embedding space can be plotted with any dimension reduction technique like t-sne or PCA. Then we can compare the categoires based on their relative distances and positions in this reduced space.

Entity embeddings are not too different to one-hot encoding a categorical input and sending it through a standard fully connected layer. An embedding is essentially the same operation but a separate one for each of the categorical features. Doing it this way reduces memory usage and speeds up training of a NN. This makes is incredibly useful for datasets with high cardinality features and many of them. It will also not be possible to interpret categories based on its embedding of the one-hot encoded path is followed.

We further demonstrate in this paper that entity embedding helps the neural network to generalize better when the data is sparse and statistics is unknown (Guo and Berkhahn, 2016).

As proof that these entity embeddings actually learns something useful, besides plotting the embedding matrix, one can also feed them along with the continuous features to other learning algorithms and see how it affects performance. (Guo and Berkhahn, 2016) found that the embeddings obtained from the trained neural network boosted the performance of all tested machine learning methods considerably when used as the input features.

4.3.3 Combining Features

4.4 Still to categorise

Feature engineering in general is hard and time consuming with no clear recipe to follow. But it is also very crucial to an effective learning system. The main aim is to find a low-dimensional representation of sparse and high-dimensional raw features and their meaningful combinations. Some of the challenges of feature engineering is listed below.

Can used the Criteo¹ dataset as an example of these challenging datasets. (Zhou $et\ al.$, 2017) is very similar to the rest of these citations. (Covington $et\ al.$, 2016) also embdding + MLP

Sparse and high-dimensional inputs. (Song et al., 2018), (Wang et al., 2017), (Qu et al., 2016), (Cheng et al., 2016), (?), (Covington et al., 2016) Not always the case, but common. High cardinality categorical features are sparse when one-hot encoded. DNNs can easily overfit these sparse and high-dimensional datasets. One-hot encoding + fully connected layer deals with the sparse inputs and the weight matrix is bigger. Separate embeddings are also easier to interpret. Each feature is fed separately into the network so that the layers above can learn specialised representations per feature. This improves generalisation (less parameters) speeds up training and reduces memory footprint (Covington et al., 2016).

Extracting high-order combinations of features. (Song et al., 2018), (Wang et al., 2017), (Qu et al., 2016), (Guo et al., 2017) They key question here is to determine which features to combine and how to form meaningful high-order features. Effective prediction usually relies on modelling high-order interactions between features. Majority of the time needs domain experts to help massage the data. Can follow a brute force approach but enumerating all the possible high-order features will exponentially increase the model search space which will just further increase the risk of overfitting. Can use multiple fully connected layers with non-linear activations of a NN. Fully-connected layers model all feature interactions implicitly, but is not good enough to learn all types of interactions. These layers are inefficient in learning multiplicative feature interactions. Hard to explain which features and combinations were important. (Song et al., 2018) uses a multi-head self-attention mechanism which they call the interacting layer. (Zhou et al., 2017) also uses some form of attention but without the softmax layer to reserve intensity of activations. The idea comes from (Vaswani et al., 2017) which itself stems from work done in (Bahdanau et al., 2014). Within in the interacting layer each feature is allowed to interact with every other feature and automatically determine which of those interactions are relevant to the output. They also combine a residual connection between layers so that different orders of feature interactions can be combined. To explain the attention mechanism, consider feature j and the step to determine which high-order features involving feature j are meaningful. We

¹http://labs.criteo.com/2014/09/kaggle-contest-dataset-now-available-academic-use/

first define the correlation between features j and k under attenion head h as:

$$\alpha_{j,k}^{(h)} = \frac{\exp\left(\phi^{(h)}(\boldsymbol{e}_j, \boldsymbol{e}_k)\right)}{\sum_{l=1}^{L} \exp\left(\phi^{(h)}(\boldsymbol{e}_j, \boldsymbol{e}_l)\right)}$$

where $\phi^{(h)}(.,.)$ is an attention function which defines the similarity between two features. It can be defined by a neural network or a simple inner product like in (Song *et al.*, 2018):

$$\phi^{(h)}(\boldsymbol{e}_j, \boldsymbol{e}_k) = \left\langle W_{\text{query}}^{(h)} \boldsymbol{e}_j, W_{\text{key}}^{(h)} \boldsymbol{e}_k \right\rangle$$

where $W_{\text{query}}^{(h)}$ and $W_{\text{key}}^{(h)}$ are transformation matrices which map the original embedding space into a new space. The representation of feature j in subspace h is then updated by combining all relevant features guided by coefficients $\alpha_{j,k}^{(h)}$:

$$\tilde{\boldsymbol{e}}_{j}^{(h)} = \sum_{k=1}^{K} \alpha_{j,k}^{(h)} W_{\mathrm{value}}^{(h)} \boldsymbol{e}_{k}$$

 $\tilde{e}_{j}^{(h)}$ is a combination of feature j and its relevant features under attention head h. Therefore it is a learned combinatorial feature. Since a feature can be involved in various different combinations, we use multiple heads to extract combinations, i.e. $\{\tilde{e}_{j}^{(h)}\}_{h=1}^{H}$. (Song et al., 2018) used H=2. All of these combinatorial features are concatenated into a single vector, \tilde{e}_{j} . Then finally the output is combined with its raw input (residual connection) and sent through a ReLU:

$$\boldsymbol{e}_{j}^{\mathrm{res}} = \mathrm{ReLU}\left(\tilde{\boldsymbol{e}}_{j} + W_{\mathrm{res}}\boldsymbol{e}_{j}\right)$$

This mapping from e_j to $e_j^{\rm res}$ is done for each features to form the interacting layer. The interacting layer is thus a representation of high-order features. These interacting layers can be stacked on-top of each other to form arbitrary order combinatorial features. (Song et al., 2018) shows that residual connection gives better results. (Wang et al., 2017) uses the cross-network which is an automated way of building cross-features. Each layer produces higher-order interactions based on existing ones, and keeps the interactions from previous layers. The cross-network is trained jointly with a DNN. (Wang et al., 2017) also used a residual connection. (Wang et al., 2017) makes a case for finding a bounded-degree feature interactions, saying that all the Kaggle competions are won with feature engineering of low-degree interactions, whereas DNNs learn highly non-linear interactions implicitly. (Wang et al., 2017) cross-network

consists of cross-layers that can be formalised as:

$$oldsymbol{x}_{l+1} = oldsymbol{x}_0 oldsymbol{x}_l^\intercal oldsymbol{w}_l + oldsymbol{b}_l + oldsymbol{x}_l$$

where x_l is the output of the l-th cross layer; x_0 is the input vector; w_l and b_l are its associate weight and bias paramters respectively. Each cross layer adds back its input after feature crossing in a residual connection fashion. (Wang et al., 2017) experimented with 1-6 cross layers. The degree of cross features grows with cross-network depth. The DNN trained in parallel is just a simple network with fully-connected layers and ReLUs. The output of the two streams are concatenated, send through a fully connected layer and a sigmoid layer. (Qu et al., 2016) used something called a product layer, which takes pairwise inner or outer products of all feature combinations and concatenates it to all linear combinations. The output is then fed to 2 fully-connected layers. According to (Guo et al., 2017) it is necessary to capture both low and high-order interactions (and wide&deep paper). They also have to parallel streams of networks, one the FM capturing the low order interactions and one the DNN captuting the high-order interactions. (Cheng et al., 2016) believes it is both important to learn to memorise and generalise. Where memorise refers to recalling from known observations and generalise to predict accurately on unseen samples. They attempt to achieve this again with two streams, one linear layer (wide) and one deep network (deep). The wide stream learns to memorise and the deep network learns to generalise. Combined by a weighted sum. (?) Fully connected model structure leads to very complex optimization hyper-planes with a high risk of falling into local optimums. Therefore it is necessary to explicitly leverage expressive feature combinations. Furthermore it help to limit the model size to make learning more efficient. To achieve this they use automatic feature grouping, feature group reduction and recursive endocder with share embeddings. These ideas seems a little ad-hoc and not end-to-end.

Dealing with mixed input types. (Song et al., 2018), (Wang et al., 2017), (Qu et al., 2016), (Cheng et al., 2016) Processing numerical and categorical features and their combinations. (Song et al., 2018) embeds both the numerical and categorical features separately into a lower-dimensional representation. By mapping both types in the same feature space faciliates more effective learning of interactions between the mixed features. The embedding for the j-th categorical feature is obtained by (Song et al., 2018), (Wang et al.,

2017):

$$\boldsymbol{e}_j = V_j \boldsymbol{x}_j$$

where x_i is the one-hot encoded vector representation of the j-th categorical variable and V_j is the associated embedding/weight matrix. The weights in V_j are learned along with all of the other parameters in the network. The embedding for the j-th numerical features is obtained by:

$$e_j = v_j x_j$$

where x_j is a scalar and v_j is the associated weight vector. Why does it help to increase the dimension of the numerical features? Is it only for balanced representation when combined with categorical features? The numerical and categorical embeddings are concatenated to form a single vector representation (Song et al., 2018). (Wang et al., 2017) does not embed numerical but just stack the normalised numerical features along with the categorical embeddings. (Song et al., 2018) used $\log^2(z)$ if Z > 2 to transform numeric features to minimise its variance. But how does that work for negative values? (Wang et al., 2017) used normal log transform. (Wang et al., 2017) uses normalisation but dont know what yet. (Song et al., 2018) experimented to find the optimal embedding size [8,16,24,32], found it depended on the dataset. (Wang et al., 2017) used embedding sizes of $6 \times (\text{cardinality})^{\frac{1}{4}}$. Not a lot of work on numerical features (?). (Zhou et al., 2017) has an intersting take on multi-hot categorical features; where a feature can have more than category associated with it. The embedding layer for that instance then outputs a list of embeddings with lenght the same as the number of categories associated with that instance and feature. The list of embeddings then gets projected back into a fixed-length representation by doing a pooling operation. (Covington et al., 2016) addresses numeric feature normalisation. (Ioffe and Szegedy, 2015) shows how sensitive DNNs are to scaling and distribution. Proper normalisation of numeric features was critical for convergence (Covington et al., 2016). (Covington et al., 2016) does a transformation to equally distribute a numeric feature in [0,1) using the cumulitive distribution. The integral is approximated with linear interpolation on the quantiles of the feature values computed in a single pass over the data before training begins. In addition they add \tilde{x}^2 and $\sqrt{\tilde{x}}$ to give the network more expressive power.

Interpreting DNNs. (Song *et al.*, 2018) Model explainability is important for various reasons. Helps to know how to improve your model or where it

goes wrong. Like a sanity check. If you cannot explain how a prediction is made, you cannot know how good it is. (Song $et\ al.$, 2018) uses the multi-head self-attention mechanism to evaluate correlations between features - globally and locally . (Zhou $et\ al.$, 2017) plots attention and categorical embeddings.

Small Datasets. It is well know that DNNs require a large amout of data to generalise well. Typically, tabular datasets are not as large as unstructured datasets like images and texts. There is also no large tabular dataset from which knowledge can be transferred from like ImageNet for computer vision and wikipedia for NLP. We suggest two techniques for overcoming this problem: data augmentaion and unsupervised pre-training. (Zhang et al., 2016) also did pretraining with DAEs. DAEs enforce robustness to partially destroyed inputs. Can also be view from a manifold learning perspective (Vincent et al., 2008). Should also consider VAE and GANS (?) uses output from GBDT to train an initial model and then to use it a initialisation of the actual model. They call it the transfer of structured knowledge. Data augmentation for tabular datasets is rarely studied. Can use corruption like DAEs or swap noise but then creates inputs that does not exist in the real data distribution.

Choosing DNN structural hyperparameters. Since there are no shared patterns among the diverse tabular datasets, it is hard to design a universal architecture that will fit all. Most of these parameters are very dependent on the dataset and other modeling choices and therefore the need to tune them. Structural hyperparameters are usually found using some brute search. (Song et al., 2018) used a sigmoid layer for binary classification. Embedding dimension: 16 (Song et al., 2018), 32 (Cheng et al., 2016) Hidden layer size: 32 (Song et al., 2018) Number of hidden layers: 32 Dropout: 0.5 (Song et al., 2018), tuned (Zhang et al., 2016) (Qu et al., 2016) (Guo et al., 2017) found dependent on dataset and model. Residual connections: (Song et al., 2018), (Wang et al., 2017) (Song et al., 2018) experimented to see how many layers they should choose [1,2,3,4]. (Song et al., 2018) experimented to find the optimal embedding size [8,16,24,32] (Wang et al., 2017) tested number of layers [2-5] (Wang et al., 2017) tested hidden layer sizes at [32-1024] (Zhang et al., 2016), (Qu et al., 2016), (Guo et al., 2017), (Covington et al., 2016) experimented for number and size of layers. Batchnorm: (Wang et al., 2017) Activation functions: tanh (Zhang et al., 2016), tanh vs sigmoid vs relu (tanh and relu depending on dataset) (Qu et al., 2016), relu vs tanh (relu better) (Guo et al., 2017) Shapes: Diamond, constant, increasing, decreasing (Zhang et al., 2016) found that Diamond shape works best. found constant to work the best (Guo et al., 2017)

Choosing DNN learning hyperparameters. Loss function: logloss with L_2 penalty (Song et al., 2018), (Wang et al., 2017), (Zhang et al., 2016), (Qu et al., 2016) mini-batch aware l2 for large inputs (Zhou et al., 2017), Batch size: 1024 (Song et al., 2018) 512 (Wang et al., 2017) Optimiser: Adam (Song et al., 2018), (Wang et al., 2017) Gradient clipping: (Wang et al., 2017) Learning rate: 0.001-0.0001 (Wang et al., 2017), [1, 0.1, ..., 0.0001] (Zhang et al., 2016) Early stopping: (Song et al., 2018), (Wang et al., 2017), (Zhang et al., 2016) (Zhang et al., 2016) compared dropout with L2 and found dropout to be better.

4.5 Learning Interactions

Automated Feature Engineering

Traditionally, input features to a machine learning algorithm must be hand-crafted from raw data, relying on practitioner expertise and domain knowledge to determine explicit patterns of prior interest. The engineering process of creating, analyzing, selecting, and evaluating appropriate features can be laborious and time consuming, and is often thought of as a "black art" requiring creativity, trial-and-error, and oftentimes luck.

In contrast, deep learning techniques learn optimal features directly from the data itself, without any human guidance, allowing for the automatic discovery of latent data relationships that might otherwise be unknown or hidden.

That being said, preprocessing of data in deep learning is not totally free of human engineering. See in the Normalisation section what measures should be taken to ensure a NN can learn effectively from tabular data.

4.5.1 Fully-Connected Layers

- how deep and how big
- architecture shape

4.5.2 Going Deeper

• Residual Connections

4.5.2.1 Self-normalising Units

Fully-connected DNNs with normalisation techniques are very sensitive to perturbations. DNNs exhibit a high variance in training error when trained using BatchNorm. This hinders the learning process. Combined with dropout just magnifies the effect. (Klambauer et al., 2017) suggested the use of SeLUs which is an activation function which helps the network to maintain zero mean and unit variance activations. By using this activation, there is no need for a BatchNorm layer. SNNs do not suffer from exploding or vanishing gradients. They paper tested on 123 tabular datasets to show that on average SNNs are the best. But it is quite finicky to get the implementation right. It requires a very specific weight initialisation, one that does not really make sense for embedding matrices. And even when you get it right, the improvement is not necessarily significant. That said, it has not been tested by others on tabular data, so it is worth a try.

$$selu(x) = \lambda \begin{cases} x & \text{if } x > 0 \\ \alpha e^x - \alpha & \text{if } x \le 0 \end{cases}$$

Give more detail if it is proved to be useful. Also needs a specific type of dropout.

(Klambauer et al., 2017) tested SELUs on 121 classification datasets from the UCI Machine Learning repository. They compared DNNs with SELU activations to other DNNs and other classifiers like Random Forests and SVMs. They found that on the datasets with less than 1000 observations, random forests and SVMs performed the best. However, for the datasets with more than 1000 observations, DNNs with SELU activations performed the best overall. The classifiers were compared by ranking them by their accuracy for each prediction task and doing a pairwise Wilcoxon test.

Another thing the authors found when comparing SELUs with other activations is that the model selection approach for SELU DNNs resulted in much deeper networks than DNNs with other activations.

4.5.3 Attention

4.5.4 Parallel Streams

4.6 Dealing with Small Datasets

4.6.1 Data Augmentation

- Blankout
- Swap Noise
- (Kosar and Scott, 2018) hybrid bootstrap
- using GANS are interesting by out of scope.

Tabular data is very different to image data and the standard augmentations used in computer vision does not make sense with tabular data. You cannot rotate or scale an observation from a tabular data without losing its meaning. One transformation that does make sense for tabular input is the injection of random noise.

When working with images, we can randomly perturb the pixel intensities by a small amount so that it is still possible to make sense of its content. By adding 1 for example to all pixels and all colors in an image, will only make it slightly brighter and we will still be able to make sense of it. Bu with tabular data we can just randomly add a small amount to any feature. The input features will probably not all be on the same scale and the addition of noise might result in a feature value that is out of the true distribution. In addition, it does not make sense to add anything to a discrete variables. Thus in order to inject random noise to a tabular data sample, the noise should be scaled relative to each input feature range and the results should be a valid value for that feature. This also helps the model to be more robust to small variations in the data.

(Van Der Maaten *et al.*, 2013) suggests an augmentation approach that does this called Marginalised Corrupted Features (MCF). The MCF approach adds noise to input from some known distribution.

In the original Denoising Autoencoding papaer (Vincent et al., 2008), they used a blank-out corruption procedure. Which is randomly selecting a subset of the input features and mask their values with a zero. The only conceptual problem with this approach is that for some features a zero value actually

age	occupation	education	race	sex	>=50k
Original Dataset					
49	NA	Assoc-acdm	White	Female	1
44	Exec-managerial	Masters	White	Male	1
38	NA	HS-grad	Black	Female	0
38	Prof-specialty	Prof-school	Asian-Pac-Islander	Male	1
42	Other-service	7 th- 8 th	Black	Female	0
20	Handlers-cleaners	HS-grad	White	Male	0
Sample with swap noise					
49	Prof-specialty	Prof-school	Asian-Pac-Islander	Female	1

Table 4.1: Swap Noise Example

carries some meaning, so a suggestion is to blank-out features with a unique value not already belonging to that feature distribution.

Another input corruption approach shown to work empirically here is what is called Swap Noise (Kosar and Scott, 2018). The swap noise procedure corrupts inputs by randomly swapping input values with those of other samples in the datasets. In this way you ensure that the corrupted input at least have valid feature values. But it still might produce combinations of features that are not actually possible.

All of these methods have hyperparameters that needs to be set. I haven't gone into detail as I still need to decide what is relevant to this thesis.

Mixup. The way mixup creates artifical samples is by the following original formulation:

$$\tilde{\boldsymbol{x}} = \lambda \boldsymbol{x}_i + (1 - \lambda) \boldsymbol{x}_j \tilde{\boldsymbol{y}} = \lambda \boldsymbol{y}_i + (1 - \lambda) \boldsymbol{y}_j$$

where \boldsymbol{x} is a input vector, \boldsymbol{y} a one-hot encoded output vector and $\lambda \in [0, 1]$. $(\boldsymbol{x}_i, \boldsymbol{y}_i)$ and $(\boldsymbol{x}_j, \boldsymbol{y}_j)$ are two samples drawn at random from the training data. Thus mixup assumes that linear interpolations of input vectors lead to linear interpolations of corresponding targets.

 λ controls the strength of the interpolation between input-output pairs. The closer λ is to 0 or 1, the closer the artificial sample will be to an actual training sample. The authors suggest using $\lambda \sim \text{Beta}(\alpha, \alpha)$ for $\alpha \in (0, \infty)$. They observed best performance when $\alpha \in [0.1, 0.4]$ and if α is too high, they experience underfitting.

Other ablation studies they did was to find at which stages of the network the interpolation should happen, e.g. raw input, after embedding, hidden layer,

etc. But the experiments are not extremely clear and therefore warrants further discussion here.

Typically data augmentation procedures are dataset dependent and therefore requires expert knowledge. It is hard to think of ways to augment tabular data, even more so a generic way of doing so. However, from this definition it is clear that mixup can be used on any type of data, including tabular datasets.

Mixup data augmentation can be understood as a mechanism to encourage the model to behave linearly in-between training samples. (Zhang et al., 2017) shows that this linear behaviour reduces the amount of undesirable variation when predicting new samples further away from the training samples. They also argue and show empirically how training with mixup is more stable in terms of model predictions and gradien norms. This is because mixup leads to decision boundaries that transition linearly between classes, resulting in smoother predictions.

The authors (Zhang et al., 2017) tested mixup data augmentation on tabular datasets. They tested it on 6 classification datasets from the UCI Machine Learning repository. They used a 2-layer MLP with 128 neuros each and a batch size of 16. They found that mixup improved the performance on 4 out of the 6 datasets.

See Figure 4.1.

Figure 4.1: Illustration of points created by mixup augmentation.

4.6.2 Unsupervised Pretraining

- DAEs (Miotto et al., 2016) presented a novel unsupervised deep feature learning method to derive a general-purpose patient representation for EHR data that facilitates clinical predictive modelling. A stacked denoising autoencoder was used. Unsupervised feature learning attempts to overcome limitations of supervised feature space definition by automatically identifying patterns and dependencies in the data to learn a compact and general representation that make it easier to automatically extract useful information when building classifiers or other predictors (Miotto et al., 2016). These techniques are very familiar and effective in text, audio and image processing, but not with tabular data. (Geras and Sutton, 2014) on gradual increasing of corruption ratio; but applied to images.
- Knowledge distillation/psuedo labelling

4.7 Other

- 1cycle not used with tabular data before
- How to interpret the model/decisions?
- other processing
- Regularisation Learning https://arxiv.org/pdf/1805.06440.pdf

4.8 Recommended Approach

Chapter 5

Experiments

"For us, the most important part of rigor is better empiricism, not more mathematical theories."

— Ali Rahimi and Ben Recht, NIPS 2017

5.1 Introduction

Since theory and practice does not always go hand-in-hand, it is usually advantageous to compliment a theoretical study or literature review with empirical results. Another motivation for empirical study is that we regard the ability to implement an approach equally as important as understanding the theory behind it. We characterise a good empirical experiment as one that is *rigorous* and *reproducible*. Recently the field of DL has been criticised for the growing gap between the understanding of its techniques and its practical successes¹ where most of the recent focus was on the latter. The speakers urged the deep learning community to be more rigorous in their experiments where, for them, the most important part of rigor is better empiricism, not more mathematical theories.

In this chapter we aim for good empiricism by evaluating the models on different types of prediction tasks and datasets, exploring many hyperparamters and doing cross-validation for unbiased performance measures along with standard errors. Our work is not necessarily about beating the benchmark and consist of simple experiments that aid in the understanding of how the techniques work, as used throughout the thesis.

Furthermore, we want all our experiments to be as reproducible as possible. Therefore we provide all the code, data and necessary documentation

 $^{^1\}mathrm{How}$ do I cite the talk given at NIPS2017 - https://www.youtube.com/watch?v=Qi1Yry33TQE

to reproduce the experiments that were done in this thesis². This is often an overlooked feature of experiments, but is however crucial for transparent and accountable reporting and making your work useful for others to build upon.

The main aim of this chapter is to better understand the behaviours of certain models and parameters and to cross-check the literature with empirical observations. We focus on the same main issues when it comes to DL on tabular as in the previous chapter, which are:

- how to represent the inputs,
- how to learn from feature interactions, and
- how to fight overfitting.

The more general hyperparameters, like learning rate, batch size, layer size and layer depth will not receive attention here since it has already been discussed at relevant parts previously. However, since these parameters are tightly linked with each other and other model parameters, we still do a hyperparameter search where we deem appropriate and report the findings in Appendix B. The rest of the chapter continues as follows: In §5.2 an overview of the datasets used for these experiments are given and why the were chosen. We discuss our evaluation procedure and metrics in §5.3. Thereafter we start with the main experiments.

5.2 Datasets

Our experiments are done on multiple datasets. Thus we can distinguish between findings that are only true for certain datasets and tasks and findings that hold more universallt.

The criteria for selecting the datasets were: - Strong model performance baselines exist; so that we can determine how far we are from the SoTA and that is actually a relevant problem. - Entirely open source; so that anyone can access it, reproduce it and build on it. - More than 20,000 observations; since NNs are data hungry. - Does not require too much preprocessing; so that most of the energy goes into the modelling phase. - Contain a mix of continuous and categorical features.

²All of these are shared publicly at https://github.com/jandremarais/tabularLearner

We chose two datasets for regression, one for binary classification and one for multi(class/label) classification from the UCI machine learning repository [Dua2017]. The chosen datasets are:

The Adult dataset³. This dataset was collected during a census. The task here is to predict whether or a not a certain person's income exceeds \$50,000 per year. The features available are things like *age*, *education*, *sex* and *race*. In total there are 14 features and 48,842 observations.

Forest Cover Type⁴: Predicting forest cover type from cartographic variables. This is a multiclass clasification task. There are 581,012 observations.

Taxi Fare Prediction: Regression task (possibly) https://www.kaggle.com/c/new-york-city-taxi-fare-prediction

- Maybe https://www.kaggle.com/c/costa-rican-household-poverty-prediction/data
- Maybe https://www.kaggle.com/c/home-credit-default-risk

Look at the datasets used by (?), also (Zhang et al., 2017)

- Criteo (Song et al., 2018), (Wang et al., 2017), (Qu et al., 2016), (Guo et al., 2017)
- Avazu (Song *et al.*, 2018)
- KDD12 (Song et al., 2018)
- MovieLens-1M (Song et al., 2018)
- iPinYou (Qu et al., 2016)
- Forest Cover type (Wang et al., 2017)
- Higgs (Wang *et al.*, 2017)
- Tox21 (Klambauer *et al.*, 2017)
- Yahoo (?)
- Letor (?)
- Protein (?)
- A9A (?)
- Flight (?)

Regularisation learning paper (Shavitt and Segal, 2018) only tested their approach on one dataset.

³http://archive.ics.uci.edu/ml/datasets/Adult

⁴https://archive.ics.uci.edu/ml/datasets/covertype

5.3 Evaluation

(Klambauer et al., 2017) did a once-off three-way split of the data into training, validation and testing datasets. Hyperparemeter decisions were made based on the validation dataset performace and then the selected models are compared on the test datasets. The models were compared using the pairwise Wilcoxon rank test. The problem with doing a once-off split is that it does not account for the variance of the model and the performance of the model can in fact be very sensitive to the subset of data. By doing cross-validation, we can have more robust performance metrics, including the benefit of reporting on standard errors.

The other problem with (Klambauer et al., 2017) is that they only tested on classification tasks and not regression. Models can behave quite differently on the two types of tasks. (Zhang et al., 2017) also only tested mixup data augmentation on tabular datasets where the task was classification.

For the regression tasks we will compare the various models using the mean squared error and for classification we use cross-entropy. These are the metrics directly being optimised during the training process. When comparing the results to previous work, we base it on the metrics that are commmon for the specific dataset.

5.3.1 Metrics

- loss function
- task specific
- dataset specific
- time and memory

AUC, Logloss for binary classification (Song et al., 2018), (Wang et al., 2017), (Zhang et al., 2016), (Qu et al., 2016) No cross-validation (Song et al., 2018), (Zhang et al., 2016) Run time per epoch (Song et al., 2018), (Guo et al., 2017) Model size (Song et al., 2018) Think (Wang et al., 2017) used CV since the report se's for hyperparameter tunings.

5.3.2 Cross-validation

For most of the experiments we will do a 5-fold cross validation (Hastie *et al.*, 2009, p. 241) to estimate the performance of a model. That is, randomly

dividing the dataset in five equal parts and then in turn, hold out one of those parts for validation purposes and train the model using the remaining four parts. Figure 5.1 visually explains how the dataset is sub-divided. The performance of the model can then be evaluated on the held-out part. This process is repeated for every one of the five segmentations of the dataset and thus five measurements of the performance of model is obtained. We can then compute the average over these five measurements to obtain a less biased estimate of the model performance. Another advantage of this approach is that we can obtain standard error for the model performance.

Cross-validation is rarely done in Deep Learning, since the models typically take very long to train and any repitition is thus more costly. However, Deep Learning is also mostly applied to large datasets and if a large test set is available, the gains from cross-validation diminishes. Fortunately, the NNs applied to tabular data are much smaller than ones used for unstructured data and for this work we have access to sufficient computing power. And therefore cross-validation makes sense.

Figure 5.1: 5-Fold Cross-validation dataset split schematic.

5.4 General Approach

- which numeric normalisation
- should we embed numerics

Unfortunately, we cannot follow the hyperparameter selection process suggested by (Smith, 2018) for all the experiments. The process is too manual. Therefore we follow the approach once on each dataset to find a good selection of learning rate, number of epochs and weight decay and then use these parameters for the rest of the experiments on this dataset. If the model significantly changes over experiments, we might need to rerun the parameter selection process. Thus we will definitely not find the optimal model for each experiment but it should be sufficient to use as comparisons. According to (Smith, 2018) these parameters are also quite robust and the model is not too sensitive on these choices.

Might follow a bit of a greedy approach when selecting optimal paramters. All the hyperparameters are very dependent on each other but we cannot run experiments for every possible combination. Therefore we find optimal parameters for a certain experiment and then assume that these parameters are also good for other experiments.

Preprocessing. - Remove infrequent features (Song *et al.*, 2018) - numeric transform by $\log^2(z)$ if Z > 2 (Song *et al.*, 2018). - numeric features log transform (Wang *et al.*, 2017)

The idea is to do as little feature engineering as possible. So the steps we take here are generic steps that are applicable to any dataset. We do no feature selection since we would want the model to learn by itself which features are relevant.

5.5 Architectural Search

- Number of layers (vs with SeLU) (vs other activations) [1-10]
- Layer size [32-2048]
- Architecture shape [Constant, increasing, decreasing diamond]
- Embedding sizes [proportional, fixed]
- dropout [0-1]

Recently found that the below experiments were already done by (Guo et al., 2017, Qu et al. (2016), Zhang et al. (2016)). This was however only explored for Click-through rate prediction data. Thus the below experiments should be done in the light of these findings and can be compared to the their findings.

Here we investigate the effect of the size of the network on the different datasets. We compare the performance of the models at different numbers and sizes of layers. Larger networks are more flexible and therefore we expect it to act similarly to any learning model flexibility parameter. Increasing the network size will be beneficial up until a certrain point until it becomes too big and be more prone to overfitting. We hope to find a rule of thumb that might act as a good starting point and guideline to choose the network size. We also want to get a feel for how important these hyperparameters are.

• Constant size Layer sizes: 32, 64, 128, 256, 512, 1024, 2048 Number of layers: 1,2,3,4,5,6 At a constant dropout.

Suppose we choose three layers, compare the following shape at approximately equal number of parameters. Shapes: Constant, decreasing, increasing, diamond, hourglass

The aim of these experiments are to evaluate performance at different embedding sizes. We explore embedding sizes at different ratios of the cardinality of categorical variables. The ratios we look at are: 10%, 20% 30%, 40%, 50%, 60%, 70%, 80% and 90% of the cardinality of each categorical feature. Possibly explore certain max embedding sizes.

As we increase the size we will also look at the effect it has by visually inspecting the embedding layers in a 2-dimensional space.

Again, we expect there to be optimal embedding size for each variable depedning on the cardinality of the variable and how complex its relationship is with the other variables and the target. We expect the ideal embedding size to be as small as possible but still being able to capture all of the information of the variable.

Look at wide and deep models from (Cheng $et\ al.,\ 2016$). They restrics all embeddings to be of size 32.

5.6 Sample Size

• accuracy vs size of dataset

5.7 Mixup

• does it help the validation loss

5.8 Pretraining

- does it help the validation loss
- Are these features useful for tree based methods.

5.9 Attention

• with residual

5.10 Comparisons To Tree-based Methods

• Compare Neural Networks to Gradient Boosted Machines and Random Forests.

5.11 Example Interpretation

- plot embeddings
- plot attention matrices
- SHAP and permutation

Chapter 6

Conclusion

- What was done in the thesis?
- Is Deep Learning useful for tabular data?
- If it is, when?
- Where should future work on the subject focus on?

Appendices

Appendix A

Datasets

Details of each of the datasets used in Chapter 5 and elsewhere.

Appendix B Hyperparameter Search

Appendix C

Software and Code

- Deep Learning Library: Pytorch and Fastai
- Hardware: GTX1080Ti
- Python and Jupyter Notebooks for programming environemnt
- github for version control
- RMarkdown for writing and compiling the thesis document

C.1 Code and Reproducibility

Note that all of the code used in the thesis, including the source documents, is made available in the tabularLearner Github repository ¹. More instructions on how to implement the code is contained in the file named README.md, in the repository.

 $^{^{1}} https://github.com/jandremarais/tabular Learner \\$

Bibliography

Ba, L.J. and Caurana, R. (2013). Do deep nets really need to be deep? CoRR, vol. abs/1312.6184. 1312.6184.

Available at: http://arxiv.org/abs/1312.6184

- Bahdanau, D., Cho, K. and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. CoRR, vol. abs/1409.0473. 1409.0473. Available at: http://arxiv.org/abs/1409.0473
- Battenberg, E., Chen, J., Child, R., Coates, A., Gaur, Y., Li, Y., Liu, H., Satheesh, S., Seetapun, D., Sriram, A. and Zhu, Z. (2017). Exploring neural transducers for end-to-end speech recognition. *CoRR*, vol. abs/1707.07413. 1707.07413. Available at: http://arxiv.org/abs/1707.07413
- Bengio, Y., Courville, A. and Vincent, P. (2013 Aug). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828. ISSN 0162-8828.
- Chapelle, O., Weston, J., Bottou, L. and Vapnik, V. (2001). Vicinal risk minimization. In: Leen, T.K., Dietterich, T.G. and Tresp, V. (eds.), Advances in Neural Information Processing Systems 13, pp. 416–422. MIT Press.
 Available at: http://papers.nips.cc/paper/1876-vicinal-risk-minimization.pdf
- Che, Z., Purushotham, S., Khemani, R.G. and Liu, Y. (2016). Interpretable deep models for icu outcome prediction. AMIA ... Annual Symposium proceedings. AMIA Symposium, vol. 2016, pp. 371–380.
- Cheng, H., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X. and Shah, H. (2016). Wide & deep learning for recommender systems. *CoRR*, vol. abs/1606.07792. 1606.07792.

Available at: http://arxiv.org/abs/1606.07792

Clevert, D.-A., Unterthiner, T. and Hochreiter, S. (2015 November). Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). *ArXiv* e-prints. 1511.07289.

- Covington, P., Adams, J. and Sargin, E. (2016). Deep neural networks for youtube recommendations. In: *Proceedings of the 10th ACM Conference on Recommender Systems*. New York, NY, USA.
- Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. *Mathematics of control, signals and systems*, vol. 2, no. 4, pp. 303–314.
- de Brébisson, A., Simon, É., Auvolat, A., Vincent, P. and Bengio, Y. (2015). Artificial neural networks applied to taxi destination prediction. CoRR, vol. abs/1508.00021. 1508.00021.

Available at: http://arxiv.org/abs/1508.00021

- Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018 October). BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding. *ArXiv* e-prints. 1810.04805.
- Fernández-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? *Journal of Machine Learning Research*, vol. 15, pp. 3133–3181.

Available at: http://jmlr.org/papers/v15/delgado14a.html

Fridman, L., Brown, D.E., Glazer, M., Angell, W., Dodd, S., Jenik, B., Terwilliger, J., Kindelsberger, J., Ding, L., Seaman, S., Abraham, H., Mehler, A., Sipperley, A., Pettinato, A., Seppelt, B., Angell, L., Mehler, B. and Reimer, B. (2017). MIT autonomous vehicle technology study: Large-scale deep learning based analysis of driver behavior and interaction with automation. CoRR, vol. abs/1711.06976. 1711.06976.

Available at: http://arxiv.org/abs/1711.06976

- Friedman, J.H. and Stuetzle, W. (1981). Projection pursuit regression. *Journal of the American statistical Association*, vol. 76, no. 376, pp. 817–823.
- Frosst, N. and Hinton, G.E. (2017). Distilling a neural network into a soft decision tree. CoRR, vol. abs/1711.09784. 1711.09784.

Available at: http://arxiv.org/abs/1711.09784

Gatys, L.A., Ecker, A.S. and Bethge, M. (2015). A neural algorithm of artistic style. CoRR, vol. abs/1508.06576. 1508.06576.

Available at: http://arxiv.org/abs/1508.06576

Geras, K.J. and Sutton, C.A. (2014). Scheduled denoising autoencoders. *CoRR*, vol. abs/1406.3269. 1406.3269.

Available at: http://arxiv.org/abs/1406.3269

- Goodfellow, I., Bengio, Y. and Courville, A. (2016). *Deep Learning*. MIT Press. http://www.deeplearningbook.org.
- Guo, C. and Berkhahn, F. (2016). Entity embeddings of categorical variables. CoRR, vol. abs/1604.06737. 1604.06737.

Available at: http://arxiv.org/abs/1604.06737

- Guo, H., Tang, R., Ye, Y., Li, Z. and He, X. (2017). Deepfm: A factorization-machine based neural network for CTR prediction. *CoRR*, vol. abs/1703.04247. 1703.04247. Available at: http://arxiv.org/abs/1703.04247
- Haldar, M., Abdool, M., Ramanathan, P., Xu, T., Yang, S., Duan, H., Zhang,
 Q., Barrow-Williams, N., Turnbull, B.C., Collins, B.M. and Legrand, T. (2018
 October). Applying Deep Learning To Airbnb Search. ArXiv e-prints. 1810.09591.
- Hastie, T., Tibshirani, R. and Friedman, J. (2009). The elements of statistical learning: data mining, inference and prediction. 2nd edn. Springer.

 Available at: http://www-stat.stanford.edu/~tibs/ElemStatLearn/
- He, K., Zhang, X., Ren, S. and Sun, J. (2015). Deep residual learning for image recognition. CoRR, vol. abs/1512.03385. 1512.03385.
 Available at: http://arxiv.org/abs/1512.03385
- Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. CoRR, vol. abs/1207.0580.

Available at: http://arxiv.org/abs/1207.0580

Hu, J., Shen, L. and Sun, G. (2017). Squeeze-and-excitation networks. *CoRR*, vol. abs/1709.01507. 1709.01507.

Available at: http://arxiv.org/abs/1709.01507

- Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, vol. abs/1502.03167. Available at: http://arxiv.org/abs/1502.03167
- Klambauer, G., Unterthiner, T., Mayr, A. and Hochreiter, S. (2017). Self-normalizing neural networks. CoRR, vol. abs/1706.02515. 1706.02515. Available at: http://arxiv.org/abs/1706.02515

Kosar, R. and Scott, D.W. (2018 January). The Hybrid Bootstrap: A Drop-in Replacement for Dropout. ArXiv e-prints. 1801.07316.

- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In: *Proceedings of the 25th International Conference on Neural Information Processing Systems*, NIPS'12, pp. 1097–1105. Curran Associates Inc., USA.
 - Available at: http://dl.acm.org/citation.cfm?id=2999134.2999257
- Lecun, Y., Bengio, Y. and Hinton, G. (2015 5). Deep learning. *Nature*, vol. 521, no. 7553, pp. 436–444. ISSN 0028-0836.
- Li, M., Zhang, T., Chen, Y. and Smola, A.J. (2014). Efficient mini-batch training for stochastic optimization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '14, pp. 661–670. ACM, New York, NY, USA. ISBN 978-1-4503-2956-9.
 Available at: http://doi.acm.org/10.1145/2623330.2623612
- Maas, A.L., Hannun, A.Y. and Ng, A.Y. (). Rectifier nonlinearities improve neural network acoustic models.
- Miotto, R., Li, L., Kidd, B.A. and Dudley, J.T. (2016). Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. In: *Scientific reports*.
- Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and Riedmiller, M.A. (2013). Playing atari with deep reinforcement learning. *CoRR*, vol. abs/1312.5602. 1312.5602.
 - Available at: http://arxiv.org/abs/1312.5602
- Mogren, O. (2016). C-RNN-GAN: continuous recurrent neural networks with adversarial training. *CoRR*, vol. abs/1611.09904. 1611.09904. Available at: http://arxiv.org/abs/1611.09904
- Perez, L. and Wang, J. (2017). The effectiveness of data augmentation in image classification using deep learning. *CoRR*, vol. abs/1712.04621. 1712.04621. Available at: http://arxiv.org/abs/1712.04621
- Qu, Y., Cai, H., Ren, K., Zhang, W., Yu, Y., Wen, Y. and Wang, J. (2016). Product-based neural networks for user response prediction. CoRR, vol. abs/1611.00144. 1611.00144.
 - Available at: http://arxiv.org/abs/1611.00144

Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Liu, P.J., Liu, X., Sun, M., Sundberg, P., Yee, H., Zhang, K., Duggan, G.E., Flores, G., Hardt, M., Irvine, J., Le, Q.V., Litsch, K., Marcus, J., Mossin, A., Tansuwan, J., Wang, D., Wexler, J., Wilson, J., Ludwig, D., Volchenboum, S.L., Chou, K., Pearson, M., Madabushi, S., Shah, N.H., Butte, A.J., Howell, M., Cui, C., Corrado, G. and Dean, J. (2018). Scalable and accurate deep learning for electronic health records. CoRR, vol. abs/1801.07860. 1801.07860.

Available at: http://arxiv.org/abs/1801.07860

- Rosenblatt, F. (1962). Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Report (Cornell Aeronautical Laboratory). Spartan Books. Available at: https://books.google.ca/books?id=7FhRAAAAMAAJ
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1988). Neurocomputing: Foundations of research. chap. Learning Representations by Back-propagating Errors, pp. 696–699. MIT Press, Cambridge, MA, USA. ISBN 0-262-01097-6. Available at: http://dl.acm.org/citation.cfm?id=65669.104451
- Sarikaya, R. (2017 Jan). The technology behind personal digital assistants: An overview of the system architecture and key components. *IEEE Signal Processing Magazine*, vol. 34, no. 1, pp. 67–81. ISSN 1053-5888.
- Shavitt, I. and Segal, E. (2018 May). Regularization Learning Networks: Deep Learning for Tabular Datasets. ArXiv e-prints. 1805.06440.
- Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D. and Wang, Z. (2016). Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1874–1883.
- Shickel, B., Tighe, P., Bihorac, A. and Rashidi, P. (2017). Deep EHR: A survey of recent advances on deep learning techniques for electronic health record (EHR) analysis. CoRR, vol. abs/1706.03446. 1706.03446.

Available at: http://arxiv.org/abs/1706.03446

Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the log-likelihood function. *Journal of Statistical Planning and Inference*, vol. 90, no. 2, pp. 227 – 244. ISSN 0378-3758.

Available at: http://www.sciencedirect.com/science/article/pii/S0378375800001154

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A. et al. (2017). Mastering the game of go without human knowledge. *Nature*, vol. 550, no. 7676, p. 354.

- Smith, L.N. (2018). A disciplined approach to neural network hyper-parameters: Part 1 learning rate, batch size, momentum, and weight decay. *CoRR*, vol. abs/1803.09820. 1803.09820.
 - Available at: http://arxiv.org/abs/1803.09820
- Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M. and Tang, J. (2018). Autoint: Automatic feature interaction learning via self-attentive neural networks. CoRR, vol. abs/1810.11921. 1810.11921.

Available at: http://arxiv.org/abs/1810.11921

- Sun, Y., Wang, X. and Tang, X. (2014). Deeply learned face representations are sparse, selective, and robust. *CoRR*, vol. abs/1412.1265. 1412.1265. Available at: http://arxiv.org/abs/1412.1265
- Van Der Maaten, L., Chen, M., Tyree, S. and Weinberger, K.Q. (2013). Learning with marginalized corrupted features. In: *Proceedings of the 30th International Conference on International Conference on Machine Learning Volume 28*, ICML'13, pp. I–410–I–418. JMLR.org.

Available at: http://dl.acm.org/citation.cfm?id=3042817.3042865

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I. (2017). Attention is all you need. *CoRR*, vol. abs/1706.03762. 1706.03762.

Available at: http://arxiv.org/abs/1706.03762

Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. In: *Proceedings of the 25th International Conference on Machine Learning*, ICML '08, pp. 1096–1103. ACM, New York, NY, USA. ISBN 978-1-60558-205-4.

Available at: http://doi.acm.org/10.1145/1390156.1390294

- Wang, R., Fu, B., Fu, G. and Wang, M. (2017). Deep & cross network for ad click predictions. CoRR, vol. abs/1708.05123. 1708.05123.
 Available at: http://arxiv.org/abs/1708.05123
- Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G.,

Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M. and Dean, J. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation. *CoRR*, vol. abs/1609.08144. 1609.08144.

Available at: http://arxiv.org/abs/1609.08144

Zhang, H., Cissé, M., Dauphin, Y.N. and Lopez-Paz, D. (2017). mixup: Beyond empirical risk minimization. CoRR, vol. abs/1710.09412. 1710.09412. Available at: http://arxiv.org/abs/1710.09412

Zhang, W., Du, T. and Wang, J. (2016). Deep learning over multi-field categorical data: A case study on user response prediction. CoRR, vol. abs/1601.02376. 1601.02376.

Available at: http://arxiv.org/abs/1601.02376

Zhou, G., Song, C., Zhu, X., Fan, Y., Zhu, H., Ma, X., Yan, Y., Jin, J., Li, H. and Gai, K. (2017 June). Deep Interest Network for Click-Through Rate Prediction. *ArXiv e-prints*. 1706.06978.