[Design Document]

LED SEQUENCE V3.0

By Mohamed Sayed SPRINTS

Table of Contents

TASK DESCRIPTION	3
TASK FLOWCHART	4
HIGH LEVEL DESIGN	5
Layered architecture5	
System modules6	
LOW LEVEL DESIGN	7
APIs	7
MCAL7	
DIO7	
Timer7	
External Interrupt7	
ECUAL 8	
Buttons8	
LEDs9	
APPLICATION10	

Task Description:-

Hardware Requirements:

- 1) Four LEDs (LED0, LED1, LED2, LED3)
- 2) Two Buttons (BUTTON0, BUTTON1)

Software Requirements:

- 1) Initially, all LEDs are OFF
- 2) Once BUTTON1 is pressed, LED0 will be ON
- 3) Each press further will make another LED is ON
- 4) At the fifth press, LED0 will changed to be OFF
- 5) Each press further will make only one LED is OFF
- 6) This will be repeated forever
- 7) The sequence is described below:-
 - 1) Initially (OFF, OFF, OFF, OFF)
 - 2) Press 1 (ON, OFF, OFF, OFF)
 - 3) Press 2 (ON, ON, OFF, OFF)
 - 4) Press 3 (ON, ON, ON, OFF)
 - 5) Press 4 (ON, ON, ON, ON)
 - 6) Press 5 (OFF, ON, ON, ON)
 - 7) Press 6 (OFF, OFF, ON, ON)
 - 8) Press 7 (OFF, OFF, OFF, ON)
 - 9) Press 8 (OFF, OFF, OFF, OFF)
 - 10) Press 9 (ON, OFF, OFF, OFF)
- 8) When BUTTON1 has pressed the blinking on and off durations will be changed
 - 1) No press \rightarrow BLINK 1 mode (ON: 100ms, OFF: 900ms)
 - 2) First press → BLINK 2 mode (ON: 200ms, OFF: 800ms)
 - 3) Second press \rightarrow BLINK 3 mode (ON: 300ms, OFF: 700ms)
 - 4) Third press \rightarrow BLINK 4 mode (ON: 500ms, OFF: 500ms)
 - 5) Fourth press \rightarrow BLINK 5 mode (ON: 800ms, OFF: 200ms)
 - 6) Fifth press \rightarrow BLINK 1 mode
- 9) Use External Interrupt

Layered architecture

The system may be divided to 4 layers:-

- Microcontroller
- MCAL
- ECUAI
- Application

Common	Application
	ECUAL
	MCAL
	Microcontroller

High Level Design:-

System modules

The system may be divided into drivers:-

Low Level Design:-

MCAL

```
void DIO_InitPin (PIn_name pin ,PIN_Status status );
void DIO_init (void);
void DIO_WRitePin (PIn_name pin ,Voltage_type s);

Voltage_type DIO_ReadPin(PIn_name pin);
void DIO_WritePort(PORT_Type I,u8 k);
```

TIMER

APIs

```
void TimerO_init (TimerOMode_type mode ,TimerOScaler_type scaler);
void TIMERO_OCOMode(OCOMode_type mode);
void TIMERO_OV_InterruptEnable(void);
void TIMERO_OV_InterruptDisable(void);
void TIMERO_OC_InterruptEnable(void);
void TIMERO_OC_InterruptDisable(void);
void TIMERO_OV_SetCallBack(void(*local_fptr)(void));
void TIMERO_OCR_SetCallBack(void(*local_fptr)(void));
```

External interrupt

APIs

```
void EXI_Enable (ExInterruptSource_type Interrupt);
void EXI_Disable (ExInterruptSource_type Interrupt);
void EXI_Trigger(ExInterruptSource_type Interrupt,TriggerEdge_type trigger);
void EXI_SetCallBack(ExInterruptSource_type Interrupt,void(*pf)(void));
```

ECUAL

Application

Application

APIs

void APP_Init(void);
void APP_Start(void);