Numerical Analysis: Practice Midterm (30 marks)

Urbain Vaes

March 31, 2022

Question 1 (8 marks). True or false?

- 1. Let $(\bullet)_2$ denote binary representation. It holds that $(0.1111)_2 + (0.0001)_2 = 1$.
- 2. It holds that $(1000)_2 \times (0.001)_2 = 1$.
- 3. It holds that

$$(0.\overline{1})_3 = \frac{1}{2}.$$

- 4. In base 16, all the natural numbers from 1 to 200 can be represented using 2 digits.
- 5. In Julia, Float64(.1) == Float32(.1) evaluates to true.
- 6. The spacing (in absolute value) between successive double-precision (Float64) floating point numbers is constant.
- 7. It holds that $(0.\overline{10101})_2 = (1.2345)_{10}$.
- 8. Machine addition $\widehat{+}$ is an associative operation. More precisely, given any three double-precision floating point numbers x, y and z, the following equality holds:

$$(x + \hat{y}) + \hat{z} = x + (\hat{y} + \hat{z}).$$

- 9. The machine epsilon is the smallest strictly positive number that can be represented in a floating point format.
- 10. Let ε denote the machine epsilon for the double-precision format. Let also $\widehat{+}$ and $\widehat{/}$ denote respectively the machine addition and the machine division operators for the double-precision format. It holds that $1 + (\varepsilon / 64) = 1$ and that $\varepsilon / 64 \neq 0$.
- 11. Assume that $x \in \mathbf{R}$ belongs to the double-precision floating point format (that is, assume that $x \in \mathbf{F}_{64}$). Then $-x \in \mathbf{F}_{64}$.

A correct (resp. incorrect) answer leads to +1 mark (resp. -1 mark).

Question 2 (8 marks). Assume that $A \in \mathbf{R}^{n \times n}$ is an invertible matrix and that $\mathbf{b} \in \mathbf{R}^n$ and $\mathbf{\beta} \in \mathbf{R}^n$ are two nonzero vectors in \mathbf{R}^n . We denote by \mathbf{x} and $\mathbf{\xi}$ the solutions to the linear equations $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{\xi} = \mathbf{\beta}$, respectively. Show that

$$\frac{\|x - \xi\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|b - \beta\|}{\|b\|}.$$

Here $\| \bullet \|$ denotes both the Euclidean vector norm and the induced matrix norm.

Bonus question (1 mark): Let $\kappa := \|\mathsf{A}\| \|\mathsf{A}^{-1}\|.$ Prove that $\kappa \geq 1$.

Question 3 (8 marks). Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix and let $b \in \mathbb{R}^n$. The steepest descent algorithm for solving Ax = b is given below:

Pick
$$\varepsilon$$
 and initial x
 $r \leftarrow \mathsf{A}x - b$
while $\|r\| \ge \varepsilon \|b\|$ do
 $\omega \leftarrow r^T r / r^T \mathsf{A}r$
 $x \leftarrow x - \omega r$
 $r \leftarrow \mathsf{A}x - b$
end while

- Why is this method called the *steepest descent* algorithm? (1 mark)
- How many floating point operations does an iteration of this algorithm require? (5 marks)
- Are the following statements true of false? (2 marks)
 - 1. There exists a unique solution x_* to the linear system Ax = b.
 - 2. The iterates converge to x_* in at most n iterations.
 - 3. We consider the following modification of the algorithm:

Pick
$$\varepsilon$$
, ω and initial x
 $r \leftarrow \mathsf{A}x - b$
while $||r|| \ge \varepsilon ||b||$ do
 $x \leftarrow x - \omega r$
 $r \leftarrow \mathsf{A}x - b$
end while

If ω is sufficiently small, then this algorithm converges.

4. Here we no longer assume that A is positive definite. Instead, we consider that

$$\mathsf{A} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}.$$

Then the steepest descent algorithm is convergent for any initial x.

Question 4 (6 marks). We proved in class the quadratic convergence of the Newton–Raphson method for a smooth function with a simple root. The aim of this exercise is to study the convergence of the method in the case of a function with a double root. To this end, we consider the simple one-dimensional equation

$$f(x) := (x-1)^2 = 0. (1)$$

1. Write down one iteration of the Newton-Raphson method for (1) in the form:

$$x_{k+1} = F(x_k).$$

- 2. Let $e_k = x_k x_*$, where x_* is the exact solution to (1). Write a recurrence relation for the error and, assuming that the initial guess is $x_0 = 2$, write down an explicit expression for e_k .
- 3. What is the order of convergence of the method in this case?
- 4. Bonus question (1 mark): Repeat the previous exercises for the equation $(x-1)^3 = 0$. What is the order of convergence in this case, and what is the rate of convergence?