Übungsaufgaben Analysis 2 für den 17. und 18.10.24

15. Oktober 2024

1 Integrationsrechnung

Aufgabe 1

Berechnen Sie die Stammfunktion von $f(x) = \frac{2x+1}{2x^2+2x-1}$ mit Hilfe der Partialbruchzerlegung.

Lösung zu Aufgabe 1

Bestimme Nullstellen des Nenners: $x_1 = \frac{1}{2}(-1-\sqrt{3})$, $x_2 = \frac{1}{2}(-1+\sqrt{3})$

Finde Partialbruch :
$$f(x) = \frac{x + \frac{1}{2}}{x^2 + x - \frac{1}{2}} = \frac{\frac{1}{2}}{x - \frac{1}{2}(-1 - \sqrt{3})} + \frac{\frac{1}{2}}{x - \frac{1}{2}(-1 + \sqrt{3})}$$
Integriere Partialbruch:
$$\int \frac{2x + 1}{2x^2 + 2x - 1} = \int \frac{\frac{1}{2}}{x - \frac{1}{2}(-1 - \sqrt{3})} + \int \frac{\frac{1}{2}}{x - \frac{1}{2}(-1 + \sqrt{3})}$$

$$= \frac{1}{2}ln(x - \frac{1}{2}(-1 - \sqrt{3}) + \frac{1}{2}ln(x - \frac{1}{2}(-1 + \sqrt{3}))$$

$$= \frac{1}{2}ln(2x^2 + 2x - 1)$$

Aufgabe 2

Berechnen Sie das uneigentliche Integral $\int_1^\infty \frac{1}{x^2} dx$ und zeigen Sie mit dem Ergebnis, daß gilt

$$\sum_{i=2}^{\infty} \frac{1}{i^2} < 1.$$

(Tip: Versuchen Sie die Reihe als Fläche im Koordinatensystem darzustellen und mit der Fläche unter $1/x^2$ zu vergleichen.)

Lösung zu Aufgabe 2

$$\int_{1}^{\infty} \frac{1}{x^2} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2} dx = \lim_{t \to \infty} [-x^{-1}]_{1}^{t} = \lim_{t \to \infty} (-\frac{1}{t} + 1) = 1$$

2 Taylorreihe

Aufgabe 3

Versuchen Sie die Funktion $f(x) = \sqrt{x}$ an der Stelle $x_0 = 0$ sowie an der Stelle $x_0 = 1$ in eine Taylorreihe zu entwickeln. Berichten Sie über evtl. Probleme.

Lösung zu Aufgabe 3

n	1	2	3	4
n -te Ableitung von \sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\boxed{\frac{-1}{4x^{\frac{3}{2}}}}$	$\frac{3}{8 x^{\frac{5}{2}}}$	$\frac{-15}{16 x^{\frac{7}{2}}}$
n -te Ableitung von \sqrt{x} in $x = 1$	$\frac{1}{2}$	$\frac{-1}{4}$	$\frac{3}{8}$	$\frac{-15}{16}$

Entwicklung um $x_0 = 0$ ist nicht möglich, denn \sqrt{x} ist in $x_0 = 0$ nicht dfb. Mathematica liefert folgendes:

$$In[23] := Series[Sqrt[x], x, 0, 4]$$

$$Out[23] = Sqrt[x] + O[x]^{9/2}$$

Entwicklung um $x_0 = 1$ liefert:

$$T_{\sqrt{1}}(x) = 1 + \frac{x-1}{2} - \frac{(x-1)^2}{8} + \frac{(x-1)^3}{16} - \frac{5(x-1)^4}{128} + O(x-1)^5$$

Aufgabe 4

Berechnen Sie die Taylorreihen von Sinus und Cosinus mit Entwicklungspunkt $x_0 = 0$. Beweisen Sie daß die Taylorreihe von Sinus gegen die Sinusfunktion konvergiert.

Lösung zu Aufgabe 4

$$T_{\sin,0}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + O(x)^8$$

$$T_{\cos,0}(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + O(x)^8$$

$$\exists z \text{ zwischen } x_0 \text{ und } x \text{ mit } R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!} (x-x_0)^{n+1}$$

für $f(x) = \sin x$, $x_0 = 0$ und festes x gilt:

$$\lim_{n \to \infty} R_n(x) \le \lim_{n \to \infty} |R_n(x)| \le \lim_{n \to \infty} \left| \frac{\sin^{(n+1)}(z)}{(n+1)!} x^{n+1} \right| \le \lim_{n \to \infty} \frac{x^{n+1}}{(n+1)!} = 0$$

2