Tutorium 2

Funktionentheorie

12. & 13. Mai 2025

Das Wurzelkriterium ist strikt stärker als das Quotientenkriterium: Für

$$a_n := egin{cases} 2^{-n} & \text{falls } n \text{ gerade,} \\ 2^{-n+1} & \text{falls } n \text{ ungerade,} \end{cases}$$

Das Wurzelkriterium ist strikt stärker als das Quotientenkriterium: Für

$$a_n := \begin{cases} 2^{-n} & \text{falls } n \text{ gerade,} \\ 2^{-n+1} & \text{falls } n \text{ ungerade,} \end{cases}$$

haben wir $\frac{1}{2} \leq \sqrt[n]{|a_n|} \leq \frac{1}{2}\sqrt[n]{2} \stackrel{n \to \infty}{\longrightarrow} \frac{1}{2}$, also gilt gemäß "Sandwich-Lemma" $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \frac{1}{2}$.

Das Wurzelkriterium ist strikt stärker als das Quotientenkriterium: Für

$$a_n := egin{cases} 2^{-n} & \text{falls } n \text{ gerade,} \\ 2^{-n+1} & \text{falls } n \text{ ungerade,} \end{cases}$$

haben wir $\frac{1}{2} \leq \sqrt[n]{|a_n|} \leq \frac{1}{2}\sqrt[n]{2} \stackrel{n \to \infty}{\longrightarrow} \frac{1}{2}$, also gilt gemäß "Sandwich-Lemma" $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \frac{1}{2}$. Allerdings ist

$$\frac{|a_{2n+1}|}{|a_{2n}|} = \frac{2^{-(2n+1)+1}}{2^{-2n}} = 1 \qquad \text{und} \qquad \frac{|a_{2n+2}|}{|a_{2n+1}|} = \frac{2^{-(2n+2)}}{2^{-(2n+1)+1}} = \frac{1}{4},$$

d.h. $\frac{|a_{n+1}|}{|a_n|}$ konvergiert *nicht*. Das Quotientenkriterium ist hier also im Gegensatz zum Wurzelkriterium nicht anwendbar.

Kurven

Kurven

Für Definition einer Kurve und Eigenschaften wie *geschlossen*, *einfach* oder $\ddot{a}quivalent$, s. Vorlesung (im Wesentlichen ist eine Kurve eine stetige Abbildung $z : [a,b] \to \Omega \subset \mathbb{C}$ mit $z \in C^1_p([a,b])$).

Kurven

Für Definition einer Kurve und Eigenschaften wie *geschlossen*, *einfach* oder *äquivalent*, s. Vorlesung (im Wesentlichen ist eine Kurve eine stetige Abbildung $z \colon [a,b] \to \Omega \subset \mathbb{C}$ mit $z \in C^1_p([a,b])$).

Definition (Kurve mit umgekehrter Orientierung)

$$z^-$$
: $[a,b] \to \mathbb{C}, \ t \mapsto z(b+a-t).$

Definition (Kurvenintegral)

Gegeben einer Kurve γ mit Parametrisierung $z\colon [a,b]\to\mathbb{C}$ und "Knickstellen" $a=a_0<\ldots< a_K=b$ definieren wir das *Integral von f entlang* γ mittels

$$\int_{\gamma} f(z) dz := \sum_{k=1}^K \int_{a_{k-1}}^{a_k} f(z(t))z'(t) dt.$$

Definition (Kurvenintegral)

Gegeben einer Kurve γ mit Parametrisierung $z \colon [a,b] \to \mathbb{C}$ und "Knickstellen" $a=a_0 < \ldots < a_K=b$ definieren wir das *Integral von f entlang* γ mittels

$$\int_{\gamma} f(z) dz := \sum_{k=1}^K \int_{a_{k-1}}^{a_k} f(z(t))z'(t) dt.$$

Merkregel für/Intuition zum Faktor z'(t) (rein heuristisch):

Definition (Kurvenintegral)

Gegeben einer Kurve γ mit Parametrisierung $z \colon [a,b] \to \mathbb{C}$ und "Knickstellen" $a=a_0 < \ldots < a_K=b$ definieren wir das *Integral von f entlang* γ mittels

$$\int_{\gamma} f(z) dz := \sum_{k=1}^K \int_{a_{k-1}}^{a_k} f(z(t))z'(t) dt.$$

Merkregel für/Intuition zum Faktor z'(t) (rein heuristisch):

• "Wie bei der Substitutionsregel"

Definition (Kurvenintegral)

Gegeben einer Kurve γ mit Parametrisierung $z\colon [a,b]\to\mathbb{C}$ und "Knickstellen" $a=a_0<\ldots< a_K=b$ definieren wir das *Integral von f entlang* γ mittels

$$\int_{\gamma} f(z) dz := \sum_{k=1}^{K} \int_{a_{k-1}}^{a_k} f(z(t)) z'(t) dt.$$

Merkregel für/Intuition zum Faktor z'(t) (rein heuristisch):

- "Wie bei der Substitutionsregel"
- Bezieht "Geschwindigkeit" der Parametrisierung mit ein

Definition (Kurvenintegral)

Gegeben einer Kurve γ mit Parametrisierung $z \colon [a,b] \to \mathbb{C}$ und "Knickstellen" $a=a_0 < \ldots < a_K=b$ definieren wir das *Integral von f entlang* γ mittels

$$\int_{\gamma} f(z) dz := \sum_{k=1}^{K} \int_{a_{k-1}}^{a_k} f(z(t)) z'(t) dt.$$

Merkregel für/Intuition zum Faktor z'(t) (rein heuristisch):

- "Wie bei der Substitutionsregel"
- Bezieht "Geschwindigkeit" der Parametrisierung mit ein
- Unabhängigkeit von Parametrisierung (vorausgesetzt, parametrisierte Kurven sind äquivalent im Sinne der Definition aus der Vorlesung)

(Holomorphe) Stammfunktionen

Definition

Sei $\Omega \subset \mathbb{C}$ offen und $f: \Omega \to \mathbb{C}$. Dann heißt $F: \Omega \to \mathbb{C}$ Stammfunktion (von f), falls F holomorph in Ω ist mit F' = f.

(Holomorphe) Stammfunktionen

Definition

Sei $\Omega \subset \mathbb{C}$ offen und $f : \Omega \to \mathbb{C}$. Dann heißt $F : \Omega \to \mathbb{C}$ Stammfunktion (von f), falls F holomorph in Ω ist mit F' = f.

Theorem

Mit Ω , f und F wie oben, gilt für jede Kurve γ in Ω mit Anfangspunkt w_0 und Endpunkt w_1 , dass

$$\int_{\gamma} f(z) dz = F(w_1) - F(w_0).$$

Insbesondere gilt, für jede geschlossene Kurve γ (also mit $w_0 = w_1$):

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0.$$