Informed Search

Searches

Uninformed searches

- Easy to implement
- Very inefficient in many situations
 - Huge search tree, time & space complexities

Informed searches (Heuristic)

- Use problem-specific information
- Reduce size of search tree
 - Resolve time & space complexities

Both give similar results

Completeness & Optimality

Informed Search

Best-First Search

- Arrange nodes in the queue
- In the order of their goodness

Use evaluation function, f(n)

Calculate goodness towards the goal

The order of expanding nodes is essential

- Affect size of the search tree
- Smaller size → less space, faster

Best-First Search

Applying evaluation function f(n)

Every node is with a value stating its goodness

Based on values of f(n)

- Nodes in the queue are arranged
 - The best one is placed/expanded firstly

Do not guarantee

The node to expand is really the best

The node only appears to be the best

• *f*(*n*) is not omniscient

Evaluation Function f(n)

Path cost g(n) is an example

- $f(n) = g(n) \rightarrow$ uniform-cost search
- Do not direct search towards the goal

Heuristic function h(n) is required

- Estimated cost of the cheapest path
 - From node n to a goal state
- Expand node closest to the goal
 - Node with least cost to goal
- If n is a goal state, h(n) = 0

$f(n) = h(n) \rightarrow$ greedy search

- Only try to expand the node closest to the goal
 - Likely lead to solution quickly

Example of $h(n) - h_{SLD}$

h_{SLD} - Straight Line Distance

Cannot be computed from problem itself

Only obtainable from experience

Greedy Best-First Search

$$f(n) = h(n)$$

Good ideally

- Poor practically
- Cannot make sure
 - Heuristic h(n) give correct estimation or not

Dangerous

Just depending on the estimates h(n)

Analysis of Greedy Search

Similar to depth-first search

- Not optimal
 - Find the closest goal
- Incomplete
 - Repeated states may happen
 - Solution may never be found
- Time and space complexities
 - Depend on quality of heuristic function h

POOR

A* Search

A* Search

Most well-known best-first search

- Evaluate nodes by combining
 - Path cost g(n) and heuristic h(n)
 - $\circ f(n) = g(n) + h(n)$
 - ∘ *g*(*n*) cheapest known path
 - *h(n)* cheapest estimated path

Minimize total path cost

- Combine
 - Uniform-cost search
 - Greedy search

A* Search

Uniform-cost search

- Optimal and complete
- Minimize cost of the path so far, g(n)
- Can be very inefficient

Greedy search + Uniform-cost search

- Evaluation function f(n) = g(n) + h(n)
- [Evaluated so far + Estimated future]
- f(n) = Estimated cost of the cheapest solution through n

Analysis of A* Search

Complete and optimal

Uniform-cost search

Reasonable time & space complexities

Greedy best-first search

Optimality can be assured

- Only h(n) is admissible
 - Never overestimates cost from n to the goal
 - Can underestimate
- h_{SLD}, never overestimate
 - Straight Line Distance = Shortest distance between 2 places

Memory Bounded Search

Memory

- Another issue besides time constraint
- More important than time
 - Solution cannot be found
 - Not enough memory
- Solution can still be found
 - Even need a long time

Iterative Deepening A* Search

Iterative deepening (ID) + A*

- Similar to ID
- Reduces memory constraints effectively

Complete and optimal

Similar to A*

Use f = g + h for cutoff

- Instead of depth d or cost p
- Smallest f-cost of any nodes
 - Exceeded cutoff value in previous iteration

Heuristic Function

Heuristic Functions

Problem of 8-puzzle

- Two heuristic functions
 - Cut down search tree
- h_1 = number of misplaced tiles
- \circ h_1 is admissible, never overestimates
 - At least h₁ steps to reach the goal

Goal State

Heuristic Functions

- h_2 = sum of distances of tiles from their goal positions
- City block distance or Manhattan distance
 - Count horizontally and vertically
- h₂ is admissible

$$h_2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$$

- Actual cost = 26
- Choose h₁ or h₂
 - Quality of heuristic

Goal State

Branching Factor

Represent quality of a heuristic

Assume

- N = Total number of nodes expanded by A*
- *d* = Solution depth
- b^* = Average branching factor of the tree

$$N = 1 + b^* + (b^*)^2 + \dots + (b^*)^d$$

- If b* tends to 1
 - N tends to be smallest
 - Tree becomes minimized

Branching Factor

 h_1 = number of misplaced tiles

 h_2 = sum of distances of tiles from their goal positions

	Search Cost (nodes generated)			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	_	539	113	_	1.44	1.23
16	Tree size N	1301	211	_	1.45	1.25
18	1166 3126 7	3056	363	_	1.46	1.26
20	_	7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

Branching Factor

h_2 is better than h_1

- h_1 = number of misplaced tiles
- h_2 = sum of distances of tiles from their goal positions

h_2 dominates h_1

- Any node n
- ∘ $h_2(n) \ge h_1(n)$
- Do not overestimate

Conclusion

- Better use heuristic function with higher values
- As long as it does not overestimate

Relaxed problem

Problem with less restriction on operators

Cost of exact solution to relaxed problem

Often good heuristic for original problem

 h_2 = sum of distances of tiles from their goal positions

Goal State

Original problem

- Tile can move from square A to square B
 - A is horizontally or vertically adjacent to B
 - B is blank

Relaxed problem

- 1. Tile can move from square A to square B
 - A is horizontally or vertically adjacent to B
- 2. Tile can move from square A to square B
 - B is blank
- 3. Tile can move from square A to square B

Given 3 heuristics

- Choose the easiest one
- Do not waste too much time on h(n)

Do not know best heuristic

- Among h₁, ..., h_m heuristics
- Set $h(n) = max(h_1(n), ..., h_m(n))$
- Let computer run it
 - Determine at run time

Can also be derived

- From solution cost of a subproblem of given problem
- Get only 4 tiles into their positions
- Cost of optimal solution of this subproblem
 - Used as a lower bound, as a heuristic value

Start State

Goal State

Previously, find solution by searching paths

Initial state → goal state

Many problems

- Solution is not a path to goal
 - 8-queens problem
- Solution
 - Final configuration
 - Not the order they are added or modified

Other kinds of method

Local search

A group of searches work in search space

Landscape has two axes

- Location (defined by states, a vector)
- Elevation (defined by objective function)

Operate on a single current state

Instead of a tree of multiple paths

Only move to

Neighbors of current state

Paths in the search

- Not retained
 - Only retain current state
- Method is not systematic

Two advantages

- Little memory constant amount
 - Current state and some information
- Find reasonable solutions
 - Large or infinite (continuous) state spaces
 - Systematic algorithms are unsuitable

Suitable

- Optimization problems
- Find the best state with
 - Objective function

Analysis of Local Search

Completeness

- Complete local search algorithm
 - Find a goal if exists
- Most local search methods
 - Incomplete

Optimality

- Optimal algorithm
 - Find a global maximum or minimum (optimum)
- No local search methods are optimal

Theoretically, POOR

Practically, work well

At least reasonable

Hill-climbing Search

One type of local search

- Loop
 - Current state → multiple successors (neighbors)
 - Evaluate each neighbors → evaluation value
- Continually move in direction of increasing value
 - Current state ← best neighbor
 - Uphill (Climbing Hill)

No search tree is maintained

Node

- State
- Its evaluation
 - Objective value, real number

Hill-climbing Search

Multiple best neighbors

Select among them randomly

function HILL-CLIMBING(problem) **returns** a state that is a local maximum

```
current \leftarrow Make-Node(problem.Initial-State)
```

loop do

 $neighbor \leftarrow$ a highest-valued successor of current

if neighbor. Value \leq current. Value then return current. State

 $current \leftarrow neighbor$

Drawbacks of Hill-climbing Search

Hill-climbing is also called

- Greedy local search
- Grab a good neighbor state
 - Without thinking about where to go next

Local maxima

- Peak lower than the highest peak in state space
- Algorithm stops
 - Even though solution is far from satisfactory

Drawbacks of Hill-climbing Search

Ridges

- Grid of states is overlapped on a ridge
- Rise from left to right, right to left
- Unless move directly along top of ridge
- Search may oscillate from side to side
- Make little progress

Drawbacks of Hill-climbing Search

Plateaux

- Area of the state space landscape
 - Evaluation function is flat
 - Shoulder
 - Impossible to make progress
- May be unable to find way off the plateau

function HILL-CLIMBING(problem) **returns** a state that is a local maximum

```
current \leftarrow \text{MAKE-NODE}(problem.\text{INITIAL-STATE})
loop \ do
neighbor \leftarrow \text{a highest-valued successor of } current
\textbf{if neighbor.Value} \leq \text{current.Value} \ \textbf{then return } current.\text{STATE}
current \leftarrow neighbor
```

Solution

Previous problems happen

Poor initial states

Random-restart hill-climbing (RRHC)

- Conduct a series of hill-climbing searches
 - Random generated initial states
 - Save best result found
- Fixed number of RRHC
 - Continue until best saved result has not been improved
 - For a certain number of iterations
- Cannot ensure optimality
 - Reasonably good solution

Annealing

Cooling down liquid until it freezes

Search

- Allow downhill steps
- Leave the local maximum
- Instead of start again randomly

Every iteration

- Do not choose the best move
- Choose a random one

If the move results better

- Always execute
- Otherwise, take the move with a probability less than 1

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

 $current \leftarrow Make-Node(problem.Initial-State)$

for
$$t = 1$$
 to ∞ do

 $T \leftarrow schedule(t)$

if T = 0 then return current

 $next \leftarrow$ a randomly selected successor of current

$$\Delta E \leftarrow next. Value - current. Value$$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

T, temperature also affects the probability

- Since $\Delta E \le 0$, T > 0, $\Delta E/T \le 0$
- Probability $0 < e^{\Delta E/T} \le 1$

Probability decreases exponentially

• "Badness" of the move = ΔE

Higher T

- More likely bad move is allowed
- Usually happen in early schedule
- When T is large and $|\Delta E|$ is small (≤ 0)
 - $\Delta E/T$ is a negative small value \rightarrow $e^{\Delta E/T}$ is close to 1

T becomes smaller and smaller

- Until T = 0
 - Normal hill-climbing

Local Beam Search

No good in keeping only one current state

Local beam search

- k current states simultaneously
- All k states are generated randomly initially
- Generate successors
 - All successors of k states are generated
 - m*k successors together
- Halt if any one is a goal
- Select k best successors
 - From complete successor list (m*k) and repeat

Local Beam Search

Different from random-restart hill-climbing

Do not make k independent searches

Work together

- Collaboration
- Choose the best successors
 - Among those generated together by k states

Stochastic beam search

- Choose k successors at random
- Instead of k best successors

Variant of beam search

Successor states are generated by

- Combining two parent states
- Instead of modifying a single state

Successor state → offspring

GA firstly make a population

- A set of k randomly generated states
 - Individuals

Each state or individual

- Represent as a string over a finite alphabet
 - Binary or 1 to 8, etc.

State Representation

24748552

Choose k parents randomly

Parents may occur more than once

Produce next generation of k individuals

Population (k) + Next gen (k) = 2k

Choose k best individuals as the next population

Based on some probabilities over the fitness values

Operations for reproduction

- Crossover
 - Combine two parent states randomly
 - Crossover point is randomly chosen from positions in string
- Mutation
 - Modify the state randomly
 - A small independent probability

Efficiency and effectiveness

- State representation
- Algorithms for operations


```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
  inputs: population, a set of individuals
           FITNESS-FN, a function that measures the fitness of an individual
  repeat
      new\_population \leftarrow empty set
      for i = 1 to SIZE(population) do
          x \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
          y \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
          child \leftarrow REPRODUCE(x, y)
          if (small random probability) then child \leftarrow MUTATE(child)
          add child to new_population
      population \leftarrow new\_population
  until some individual is fit enough, or enough time has elapsed
  return the best individual in population, according to FITNESS-FN
```

```
function REPRODUCE(x, y) returns an individual inputs: x, y, parent individuals n \leftarrow \text{LENGTH}(x); c \leftarrow \text{random number from 1 to } n return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
```