```
clear
close all
% Ronan Gissler January 2023
% This file is used to analyze the data from the experiments Sakthi
% and I ran with the 1 DOF flapper robot with and without
% Polydimethylsiloxane (PDMS) wings on January 19th 2023. We tested
% flapping speeds between 1 Hz and 4 Hz with the PDMS wings, at 4 Hz
% the whole system was shaking and grinding loudly. We test flapping
% speeds between 1 Hz and 6 Hz with no wings attached, at 6 Hz the
% whole system was shaking and grinding loudly (although less
% dramatically than at 4 Hz with the wings attached).
files = ["1Hz_body_experiment_011923.csv"
        "2Hz_body_experiment_011923.csv"
        "3Hz_body_experiment_011923.csv"
        "4Hz_body_experiment_011923.csv"
        "5Hz body experiment 011923.csv"
        "6Hz_body_experiment_011923.csv"
        "1Hz PDMS experiment 011923.csv"
        "2Hz_PDMS_experiment_011923.csv"
        "3Hz_PDMS_experiment_011923.csv"
        "4Hz_PDMS_experiment_011923.csv"];
for i = 1:length(files)
    % Get case name from file name
    case_name = erase(files(i), "_experiment_011923.csv");
    case_name = strrep(case_name,'_',' ');
    % Get data from file
   data = readmatrix(files(i));
   times = data(1:end,1);
    force_vals = data(1:end,2:7);
    % Trimming off end of data (it appears beginning is already
    % trimmed)
    count = 0;
   vertical_diffs = diff(force_vals(:,3));
    for j = 1:length(vertical diffs)
       if (abs(vertical_diffs(j)) < 0.05)</pre>
           count = count + 1;
       else
           count = 0;
       end
       if (count > 5)
           data = data(1:j-1000, :);
           break
```

```
end
    end
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    force_means = round(mean(force_vals), 3);
    force SDs = round(std(force vals), 3);
    % Open a new figure.
    f = figure;
    f.Position = [200 50 900 560];
    % Create three subplots to show the force time histories.
    subplot(2, 3, 1);
   plot(times, force_vals(:, 1));
    title(["F_x" ("avg: " + force_means(1) + " SD: " + force_SDs(1))]);
    xlabel("Time (s)");
   ylabel("Force (N)");
    subplot(2, 3, 2);
    plot(times, force_vals(:, 2));
    title(["F_y" ("avg: " + force_means(2) + " SD: " + force_SDs(2))]);
   xlabel("Time (s)");
    ylabel("Force (N)");
    subplot(2, 3, 3);
   plot(times, force_vals(:, 3));
    title(["F_z" ("avg: " + force_means(3) + " SD: " + force_SDs(3))]);
    xlabel("Time (s)");
   ylabel("Force (N)");
    % Create three subplots to show the moment time histories.
    subplot(2, 3, 4);
   plot(times, force_vals(:, 4));
    title(["M_x" ("avg: " + force_means(4) + " SD: " + force_SDs(4))]);
    xlabel("Time (s)");
   ylabel("Torque (N m)");
    subplot(2, 3, 5);
   plot(times, force_vals(:, 5));
    title(["M_y" ("avg: " + force_means(5) + " SD: " + force_SDs(5))]);
    xlabel("Time (s)");
   ylabel("Torque (N m)");
    subplot(2, 3, 6);
   plot(times, force_vals(:, 6));
    title(["M_z" ("avg: " + force_means(6) + " SD: " + force_SDs(6))]);
   xlabel("Time (s)");
    ylabel("Torque (N m)");
    % Label the whole figure.
    sgtitle("Force Transducer Measurement for " + case_name);
end
```

Force Transducer Measurement for 1Hz body

Force Transducer Measurement for 2Hz body

Force Transducer Measurement for 3Hz body

Force Transducer Measurement for 4Hz body

Force Transducer Measurement for 5Hz body

Force Transducer Measurement for 6Hz body

Force Transducer Measurement for 1Hz PDMS

Force Transducer Measurement for 2Hz PDMS

Force Transducer Measurement for 3Hz PDMS

Force Transducer Measurement for 4Hz PDMS


```
% files = ["1Hz body experiment 011923.csv"
           "2Hz_body_experiment_011923.csv"
응
           "3Hz body experiment 011923.csv"
ွ
           "4Hz_body_experiment_011923.csv"
응
           "5Hz_body_experiment_011923.csv"
0
           "6Hz_body_experiment_011923.csv"];
files = ["1Hz PDMS experiment 011923.csv"
         "2Hz PDMS experiment 011923.csv"
         "3Hz_PDMS_experiment_011923.csv"
         "4Hz_PDMS_experiment_011923.csv"];
% Open a new figure.
f = figure;
f.Position = [200 50 900 560];
title("Lift Force (z-direction)");
xlabel("Time (s)");
ylabel("Force (N)");
hold on
for i = 1:length(files)
    % Get case name from file name
    case name = erase(files(i), " experiment 011923.csv");
    case_name = strrep(case_name,'_',' ');
    % Get data from file
    data = readmatrix(files(i));
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    % Trimming off end of data (it appears beginning is already
    % trimmed)
    count = 0;
    vertical_diffs = diff(force_vals(:,3));
    for j = 1:length(vertical diffs)
        if (abs(vertical_diffs(j)) < 0.05)</pre>
            count = count + 1;
        else
            count = 0;
        end
        if (count > 5)
            data = data(1:j-1000, :);
            break
        end
    end
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    % Plot lift force
    plot(times, force_vals(:, 3), 'DisplayName', case_name, "LineWidth",3);
end
```

```
legend("Location", "Southwest");
ax1 = axes('Position', [0.35 0.2 0.2 0.2]);
hold on
for i = 1:length(files)
    % Get case name from file name
    case_name = erase(files(i), "_experiment_011923.csv");
    case_name = strrep(case_name,'_',''');
    % Get data from file
    data = readmatrix(files(i));
    times = data(1:end,1);
    force vals = data(1:end,2:7);
    % Trimming off end of data (it appears beginning is already
    % trimmed)
    count = 0;
    vertical_diffs = diff(force_vals(:,3));
    for j = 1:length(vertical diffs)
        if (abs(vertical_diffs(j)) < 0.05)</pre>
            count = count + 1;
        else
            count = 0;
        end
        if (count > 5)
            data = data(1:j-1000, :);
            break
        end
    end
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    % Plot lift force
    plot(ax1, times, force vals(:, 3))
end
xlim([28, 38])
ylim([-16, 16])
box on
annotation('arrow',[0.45 0.39], [0.4 0.52])
% The data shows a positive correlation between wingbeat frequency and
% aerodynamic force, with the exception of 1 Hz. This exception is
% explained by the fact that the robot's natural frequency appeared to
% lie around 1 Hz so the system vibrated loudly for the 1 Hz test,
% obscuring the aerodynamic force production.
```



```
-----Plot Wingless Data-----
files = ["1Hz_body_experiment_011923.csv"
         "2Hz_body_experiment_011923.csv"
         "3Hz_body_experiment_011923.csv"
         "4Hz_body_experiment_011923.csv"
         "5Hz_body_experiment_011923.csv"
         "6Hz_body_experiment_011923.csv"];
% Open a new figure.
f = figure;
f.Position = [200 50 900 560];
title("Lift Force (z-direction)");
xlabel("Time (s)");
ylabel("Force (N)");
hold on
for i = 1:length(files)
    % Get case name from file name
    case_name = erase(files(i), "_experiment_011923.csv");
    case_name = strrep(case_name,'_',' ');
    % Get data from file
    data = readmatrix(files(i));
    times = data(1:end,1);
```

```
force_vals = data(1:end,2:7);
    % Trimming off end of data (it appears beginning is already
    % trimmed)
    count = 0;
    vertical_diffs = diff(force_vals(:,3));
    for j = 1:length(vertical_diffs)
        if (abs(vertical diffs(j)) < 0.05)</pre>
            count = count + 1;
        else
            count = 0;
        end
        if (count > 5)
            data = data(1:j-1000, :);
            break
        end
    end
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    % Plot lift force
    plot(times, force_vals(:, 3), 'DisplayName', case_name, "LineWidth",3);
end
legend("Location", "Southwest");
```


% -----Plot PDMS and Wingless Data at 1 Hz, 2 Hz, and 3 Hz-----

```
files = ["1Hz_PDMS_experiment_011923.csv"
         "2Hz PDMS experiment 011923.csv"
         "3Hz_PDMS_experiment_011923.csv"];
% Open a new figure.
f = figure;
f.Position = [200 50 900 560];
subplot(1,2,1)
title("PDMS Wings");
xlabel("Time (s)");
ylabel("Force (N)");
hold on
for i = 1:length(files)
    % Get case name from file name
    case_name = erase(files(i), "_experiment_011923.csv");
    case_name = strrep(case_name,'_',' ');
    % Get data from file
    data = readmatrix(files(i));
    times = data(1:end,1);
    force vals = data(1:end, 2:7);
    % Trimming off end of data (it appears beginning is already
    % trimmed)
    count = 0;
    vertical_diffs = diff(force_vals(:,3));
    for j = 1:length(vertical diffs)
        if (abs(vertical_diffs(j)) < 0.05)</pre>
            count = count + 1;
        else
            count = 0;
        end
        if (count > 5)
            data = data(1:j-1000, :);
            break
        end
    end
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    % Plot lift force
    plot(times, force vals(:, 3), 'DisplayName', case name, "LineWidth", 3);
legend("Location", "Southwest");
files = ["1Hz_body_experiment_011923.csv"
         "2Hz_body_experiment_011923.csv"
         "3Hz body experiment 011923.csv"];
subplot(1,2,2)
```

```
title("Body Only");
xlabel("Time (s)");
ylabel("Force (N)");
hold on
for i = 1:length(files)
    % Get case name from file name
    case_name = erase(files(i), "_experiment_011923.csv");
    case_name = strrep(case_name,'_',''');
    % Get data from file
    data = readmatrix(files(i));
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    % Trimming off end of data (it appears beginning is already
    % trimmed)
    count = 0;
    vertical diffs = diff(force vals(:,3));
    for j = 1:length(vertical_diffs)
        if (abs(vertical_diffs(j)) < 0.05)</pre>
            count = count + 1;
        else
            count = 0;
        end
        if (count > 5)
            data = data(1:j-1000, :);
            break
        end
    end
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    % Plot lift force
    plot(times, force_vals(:, 3), 'DisplayName', case_name, "LineWidth",3);
end
legend("Location", "Southwest");
sgtitle("Lift Force (z-direction)");
```

13


```
-----Plot PDMS and Wingless Data at 1 Hz, 2 Hz, and 3 Hz-----
  -----normalized by wing cycles-----
files = ["1Hz_PDMS_experiment_011923.csv"
         "2Hz_PDMS_experiment_011923.csv"
         "3Hz_PDMS_experiment_011923.csv"];
% flipped so that largest amplitude goes in back of plot
files = flip(files);
% Open a new figure.
f = figure;
f.Position = [200 50 900 560];
subplot(1,2,1)
title("PDMS Wings");
xlabel("Wingbeat Number");
ylabel("Force (N)");
hold on
for i = 1:length(files)
    % Get case name from file name
    case_name = erase(files(i), "_experiment_011923.csv");
    case_name = strrep(case_name,'_',' ');
    % Get data from file
    data = readmatrix(files(i));
```

```
times = data(1:end,1);
    force vals = data(1:end,2:7);
    % Trimming off end of data (it appears beginning is already
    % trimmed)
    count = 0;
    vertical_diffs = diff(force_vals(:,3));
    for j = 1:length(vertical diffs)
        if (abs(vertical_diffs(j)) < 0.05)</pre>
            count = count + 1;
        else
            count = 0;
        end
        if (count > 5)
            data = data(1:j-1000, :);
            break
        end
    end
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    force_SDs = round(std(force_vals), 3);
    % Filtering force data with moving average filter
    window = 100;
    b = 1/window*ones(window,1);
    filtered_lift_vals = filter(b, 1, force_vals(:, 3));
    % Count the number of wingbeats
    wingbeat count = 0;
    case_name = convertStringsToChars(case_name);
    speed = str2double(case_name(1));
    window = round(400 / speed);
    start_index = 0;
    end index = 0;
    for j = (1 + window):(length(filtered_lift_vals) - window)
        if (filtered_lift_vals(j) == max(filtered_lift_vals(j-window:j
+window)))
            wingbeat_count = wingbeat_count + 1;
            if (start_index == 0)
                start_index = j;
            else
                end_index = j;
            end
        end
    end
    disp(wingbeat_count)
    filtered_lift_vals = filtered_lift_vals(start_index:end_index);
    wingbeats = linspace(0,wingbeat_count,length(filtered_lift_vals));
    disp(length(filtered_lift_vals))
    % Plot lift force
```

```
plot(wingbeats, filtered_lift_vals, 'DisplayName',
 case name, "LineWidth", 3);
 save(['Lift_PDMS_',num2str(speed),'Hz.mat'], 'filtered_lift_vals','wingbeats')
legend("Location", "Southwest");
ax1 = axes('Position',[0.15 0.26 0.2 0.2]);
hold on
for i = 1:length(files)
    % Get case name from file name
    case_name = erase(files(i), "_experiment_011923.csv");
    case_name = strrep(case_name,'_',' ');
    % Get data from file
    data = readmatrix(files(i));
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    % Trimming off end of data (it appears beginning is already
    % trimmed)
    count = 0;
    vertical_diffs = diff(force_vals(:,3));
    for j = 1:length(vertical diffs)
        if (abs(vertical_diffs(j)) < 0.05)</pre>
            count = count + 1;
        else
            count = 0;
        end
        if (count > 5)
            data = data(1:j-1000, :);
            break
        end
    end
    times = data(1:end,1);
    force vals = data(1:end,2:7);
    force_SDs = round(std(force_vals), 3);
    % Filtering force data with moving average filter
    window = 100;
    b = 1/window*ones(window,1);
    filtered_lift_vals = filter(b, 1, force_vals(:, 3));
    % Count the number of wingbeats
    wingbeat count = 0;
    case_name = convertStringsToChars(case_name);
    speed = str2double(case name(1));
    window = round(400 / speed);
    start_index = 0;
    end_index = 0;
    for j = (1 + window):(length(filtered lift vals) - window)
        if (filtered_lift_vals(j) == max(filtered_lift_vals(j-window:j
+window)))
```

```
wingbeat_count = wingbeat_count + 1;
            if (start index == 0)
                start_index = j;
            else
                end_index = j;
            end
        end
    end
    filtered_lift_vals = filtered_lift_vals(start_index:end_index);
    wingbeats = linspace(0, wingbeat_count, length(filtered_lift_vals));
    % Plot lift force
    plot(ax1, wingbeats, filtered_lift_vals);
end
xlim([0, 3])
ylim([-3, 3])
y_axis = line(xlim, [0 0], 'Color', 'black');
annotation('arrow',[0.25 0.14], [0.46 0.52])
files = ["1Hz_body_experiment_011923.csv"
         "2Hz_body_experiment_011923.csv"
         "3Hz body experiment 011923.csv"];
% flipped so that largest amplitude goes in back of plot
files = flip(files);
subplot(1,2,2)
title("Body Only");
xlabel("Wingbeat Number");
ylabel("Force (N)");
hold on
for i = 1:length(files)
    % Get case name from file name
    case_name = erase(files(i), "_experiment_011923.csv");
    case_name = strrep(case_name, '_', ' ');
    % Get data from file
    data = readmatrix(files(i));
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    % Trimming off end of data (it appears beginning is already
    % trimmed)
    count = 0;
    vertical diffs = diff(force vals(:,3));
    for j = 1:length(vertical_diffs)
        if (abs(vertical_diffs(j)) < 0.05)</pre>
            count = count + 1;
        else
            count = 0;
        end
```

```
if (count > 5)
            data = data(1:j-1000, :);
            break
        end
    end
    times = data(1:end,1);
    force vals = data(1:end,2:7);
    % Filtering force data with moving average filter
    window = 100;
   b = 1/window*ones(window,1);
    filtered_lift_vals = filter(b, 1, force_vals(:, 3));
    % Count the number of wingbeats
    wingbeat_count = 0;
    case name = convertStringsToChars(case name);
    speed = str2double(case_name(1));
    window = round(400 / speed);
    start index = 0;
    end index = 0;
    for j = (1 + window):(length(filtered_lift_vals) - window)
        if (filtered_lift_vals(j) == max(filtered_lift_vals(j-window:j
+window)))
            wingbeat_count = wingbeat_count + 1;
            if (start index == 0)
                start_index = j;
            else
                end_index = j;
            end
        end
    end
    disp(wingbeat_count)
    filtered lift vals = filtered lift vals(start index:end index);
    wingbeats = linspace(0,wingbeat_count,length(filtered_lift_vals));
    disp(length(filtered_lift_vals))
    % Plot lift force
    plot(wingbeats, filtered_lift_vals, 'DisplayName',
 case name, "LineWidth", 3);
 save(['Lift_body_',num2str(speed),'Hz.mat'], 'filtered_lift_vals','wingbeats')
end
legend("Location", "Southwest");
ax2 = axes('Position', [0.6 0.26 0.2 0.2]);
hold on
for i = 1:length(files)
    % Get case name from file name
    case_name = erase(files(i), "_experiment_011923.csv");
    case_name = strrep(case_name,'_',' ');
    % Get data from file
    data = readmatrix(files(i));
```

```
times = data(1:end,1);
    force_vals = data(1:end,2:7);
    % Trimming off end of data (it appears beginning is already
    % trimmed)
    count = 0;
    vertical diffs = diff(force vals(:,3));
    for j = 1:length(vertical_diffs)
        if (abs(vertical_diffs(j)) < 0.05)</pre>
            count = count + 1;
        else
            count = 0;
        end
        if (count > 5)
            data = data(1:j-1000, :);
            break
        end
    end
    times = data(1:end,1);
    force_vals = data(1:end,2:7);
    force_SDs = round(std(force_vals), 3);
    % Filtering force data with moving average filter
    window = 100;
    b = 1/window*ones(window,1);
    filtered_lift_vals = filter(b, 1, force_vals(:, 3));
    % Count the number of wingbeats
    wingbeat_count = 0;
    case_name = convertStringsToChars(case_name);
    speed = str2double(case_name(1));
    window = round(400 / speed);
    start index = 0;
    end index = 0;
    for j = (1 + window):(length(filtered lift vals) - window)
        if (filtered_lift_vals(j) == max(filtered_lift_vals(j-window:j
+window)))
            wingbeat_count = wingbeat_count + 1;
            if (start index == 0)
                start_index = j;
            else
                end_index = j;
            end
        end
    end
    filtered_lift_vals = filtered_lift_vals(start_index:end_index);
    wingbeats = linspace(0,wingbeat_count,length(filtered_lift_vals));
    % Plot lift force
    plot(ax2, wingbeats, filtered_lift_vals);
end
```

```
xlim([0, 3])
ylim([-3, 3])
y_axis = line(xlim, [0 0], 'Color', 'black');
box on
annotation('arrow',[0.7 0.58], [0.46 0.48])
sgtitle(["Filtered Lift Force (z-direction)" "Moving Average Filter (Window =
100 ms)"]);
    99
       32666
    97
       48008
    98
       97030
    99
       32669
    97
       48013
    98
       97015
```



```
----Plot Wingless Data Subtracted from PDMS Data-----
             ----at 1 Hz, 2 Hz, and 3 Hz-----
load Lift_body_1Hz.mat;
Lift_body_1Hz = filtered_lift_vals;
load Lift_body_2Hz.mat;
Lift_body_2Hz = filtered_lift_vals;
load Lift_body_3Hz.mat;
Lift_body_3Hz = filtered_lift_vals;
load Lift_PDMS_1Hz.mat;
Lift_PDMS_1Hz = filtered_lift_vals;
wingbeats_PDMS_1Hz = wingbeats;
load Lift_PDMS_2Hz.mat;
Lift_PDMS_2Hz = filtered_lift_vals;
wingbeats_PDMS_2Hz = wingbeats;
load Lift_PDMS_3Hz.mat;
Lift_PDMS_3Hz = filtered_lift_vals;
wingbeats_PDMS_3Hz = wingbeats;
min_length = min(length(Lift_body_1Hz), length(Lift_PDMS_1Hz));
Lift_sub_1Hz = Lift_PDMS_1Hz(1:min_length) - Lift_body_1Hz(1:min_length);
wingbeats_sub_1Hz = wingbeats_PDMS_1Hz(1:min_length);
min_length = min(length(Lift_body_2Hz), length(Lift_PDMS_2Hz));
Lift_sub_2Hz = Lift_PDMS_2Hz(1:min_length) - Lift_body_2Hz(1:min_length);
```

```
wingbeats_sub_2Hz = wingbeats_PDMS_2Hz(1:min_length);
min_length = min(length(Lift_body_3Hz), length(Lift_PDMS_3Hz));
Lift sub 3Hz = Lift PDMS 3Hz(1:min length) - Lift body 3Hz(1:min length);
wingbeats_sub_3Hz = wingbeats_PDMS_3Hz(1:min_length);
% Open a new figure.
f = figure;
f.Position = [200 50 900 560];
hold on
plot(wingbeats_sub_3Hz, Lift_sub_3Hz, 'DisplayName', '3 Hz', "LineWidth",3);
plot(wingbeats_sub_2Hz, Lift_sub_2Hz, 'DisplayName', '2 Hz', "LineWidth",3);
plot(wingbeats sub 1Hz, Lift sub 1Hz, 'DisplayName', '1 Hz', "LineWidth", 3);
xlabel("Wingbeat Number");
ylabel("Force (N)");
title(["Aerodynamic Force Production" "(Subtracting Force without Wings from
 Force with Wings)"]);
legend("Location", "Southwest");
ax1 = axes('Position', [0.15 0.3 0.2 0.2]);
hold on
plot(ax1, wingbeats_sub_3Hz, Lift_sub_3Hz, "LineWidth",2);
plot(ax1, wingbeats_sub_2Hz, Lift_sub_2Hz, "LineWidth",2);
plot(ax1, wingbeats_sub_1Hz, Lift_sub_1Hz, "LineWidth",2);
xlim([0, 3])
ylim([-3, 3])
y axis = line(xlim, [0 0], 'Color', 'black');
box on
annotation('arrow',[0.25 0.14], [0.5 0.59])
```



```
% % Fast Fourier Transform stuff I was looking at for a bit...
% % f = figure;
% % f.Position = [200 50 900 560];
% % %instfreq(force_vals(:, 3),fs)
% % Y = fft(force_vals(:, 3));
% % L = 2000;
% % P2 = abs(Y/L);
% % P1 = P2(1:L/2+1);
% % P1(2:end-1) = 2*P1(2:end-1);
% % freqs = fs*(0:(L/2))/L;
% % plot(freqs,P1)
% % title("Single-Sided Amplitude Spectrum of Force Transdcuer Data")
% % xlabel("f (Hz)")
% % ylabel("|P1(f)|")
% % xlim([0,10])
2
% % instantaneous frequency stuff I was trying...
% % Open a new figure.
% f = figure;
% f.Position = [200 50 900 560];
% title("Instantaneous Frequency of Force in z-direction");
% xlabel("Time (s)");
% ylabel("Force Frequency i.e. Wing Speed (Hz)");
% hold on
% for i = 1:length(files)
     % Get case name from file name
     case name = erase(files(i), ["12 02 2022 benchtop test/",
 "_experiment_120222.csv"]);
응
     case name = strrep(case name, ' ', ' ');
0
응
      % Get data from file
2
     data = readmatrix(files(i));
응
응
     times = data(1:end,1);
응
     force vals = data(1:end,2:7);
응
응
      % Filtering force transducer data with a butterworth filter
     fc = 3; % cutoff frequency
%
응
     fs = 1000; % sample frequency
응
2
      [b,a] = butter(6,fc/(fs/2)); % 6th order
응
      force_vals = filter(b, a, force_vals);
응
응 응
       [s,f,t] = stft(force\_vals(:, 3),fs);
응 응
       stft(s(64,:),fs);
응 응
       force_vals(:, 3) = force_vals(:, 3) - mean(force_vals(:, 3));
```

```
응 응
        stft(force_vals(:,
 3),fs,'Window',kaiser(1024,5),'OverlapLength',500,'FFTLength',1024,
 'FrequencyRange','centered');
응 응
        pspectrum(force_vals(:, 3),fs,'spectrogram');
응 응
        ylim([0,10]);
응
응
      [ifq,t] = instfreq(force_vals(:, 3),fs);
응
응
      % Filtering instantaneous frequency with a butterworth filter
%
      window = 100;
응
      b = 1/window*ones(window,1);
응
      ifq = filter(b, 1, ifq);
응
      plot(t, ifq, 'DisplayName', case_name, "LineWidth", 3)
%
% end
% legend("Location", "Southwest");
```

Published with MATLAB® R2022b