Functions & 1203

Daniel Andersor Week 7

Agenda

- What makes functions "good"
- Building up functions
- Non-standard evaluation

Learning objectives

- Understand how functions build on top of each other and why "only do one thing" is a good mantra
- Understand non-standard evaluation is, even if you aren't able to fully work with it

Brainstorm

What makes a function "good" or "bad"

Two important tensions for understanding base R

Slide from Hadley Master R training

Best

Right answer

Useful error

Not useful error

Slide from

Hadley Master

R training Worst

Wrong answer

What does this mean operationally?

- Your function should do ONE thing (and do it well)
- Careful when naming functions be as clear as possible
- Embed useful error messages and warnings
 - Particularly if you're working on a package or set of functions or others are using your functions
- Refactor your code to be more clear after initial drafts (it's okay to be messy on a first draft)

Example 1

02:00

Anything we can do to clean this up?

```
both_na <- function(x, y) {</pre>
    if(length(x) != length(y)) {
        lx <- length(x)</pre>
        lv <- length(v)</pre>
        v_{lngths} \leftarrow paste0("x = ", lx, ", y = ", ly)
        if(lx %% ly == 0 | ly %% lx == 0) {
             warning("Vectors were recycled (", v_lngths, ")")
        else {
             stop("Vectors are of different lengths and are not re
                  v_lngths)
    sum(is.na(x) \& is.na(y))
```

Brain storm with your neighbor

Calculate if recyclable

```
recyclable <- function(x, y) {
   test1 <- length(x) %% length(y)
   test2 <- length(y) %% length(x)

any(c(test1, test2) == 0)
}</pre>
```

Test it

[1] FALSE

```
a \leftarrow c(1, NA, NA, 3, 3, 9, NA)
 b \leftarrow c(NA, 3, NA, 4, NA, NA, NA)
 recyclable(a, b)
## [1] TRUE
 recyclable(a, c(b, b))
## [1] TRUE
 recyclable(a, c(b, b, b))
## [1] TRUE
 recyclable(c(a, a), c(b, b, b))
```

Revision

```
both_na <- function(x, y) {</pre>
    if(!recyclable(x, y)) {
        stop(
          "Vectors are of different lengths and are not recyclab
          "x = ", length(x), "\n",
          "y = ", length(y),
          call. = FALSE
    if(length(x) == length(y)) {
        return(sum(is.na(x) & is.na(y)))
    }
    if(recyclable(x, y)) {
        warning(
          "Vectors were recycled\n",
          "x = ", length(x), "\n",
          "y = ", length(y),
          call. = FALSE
  sum(is.na(x) \& is.na(y))
```

Test it

```
both_na(a, b)

## [1] 2

both_na(a, c(b, b))

## Warning: Vectors were recycled
## x = 7
## y = 14

## [1] 4
```

```
both_na(c(a, b), c(b, b, b))
## Error: Vectors are of different lengths and are not recyclable:
## x = 14
## y = 21
 both_na(c(a, a), b)
## Warning: Vectors were recycled
## x = 14
## y = 7
## [1] 4
```

Anything else?

Make errors/warnings a function

```
check_lengths <- function(x, y) {</pre>
    if(length(x) != length(y)) {
        if(recyclable(x, y)) {
          warning(
            "Vectors were recycled\n",
            "x = ", length(x), "\n",
            "y = ", length(y),
            call. = FALSE
        else {
          stop(
            "Vectors are of different lengths and are not recycla
            "x = ", length(x), "\n",
            "y = ", length(y),
            call. = FALSE
```

Revision 2

```
both_na <- function(x, y) {
   check_lengths(x, y)
   sum(is.na(x) & is.na(y))
}</pre>
```

Test it

```
both_na(a, b)

## [1] 2

both_na(a, c(b, b))

## Warning: Vectors were recycled
## x = 7
## y = 14

## [1] 4
```

```
both_na(c(a, b), c(b, b, b))

## Error: Vectors are of different lengths and are not recyclable:
## x = 14
## y = 21

both_na(c(a, a), b)

## Warning: Vectors were recycled
## x = 14
## y = 7

## [1] 4
```

Why would we do this?

- In this case more readable code
- We might re—use the recyclable() or check_lengths() functions in other/new functions
- Helps make de-bugging easier

Quick de-bugging example

```
f <- function(a) g(a)
g <- function(b) h(b)
h <- function(c) i(c)
i <- function(d) {
   if (!is.numeric(d)) {
      stop("`d` must be numeric", call. = FALSE)
   }
   d + 10
}</pre>
```

traceback

```
f("a")
traceback()

5: stop("`d` must be numeric", call. = FALSE) at #3
4: i(c) at #1
3: h(b) at #1
2: g(a) at #1
1: f("a")
```

Non-standard evaluation (NSE)

A high-level look

Note

- Were it not for the tidyverse, I would not even mention NSE
- Generally, it's not an incredibly important topic
- But, NSE is ubiquitous in the tidyverse literally just about everything uses NSE, which makes programming with tidyverse functions more difficult

What is NSE

- Implementation of different scoping rules
- In dplyr and many others, arguments are evaluated inside the specified data frames, rather than the current or global environment.

How?

(a) Capture an expression (quote it) (b) Use the expression within the correct context (evaluate it)

So, x is evaluated as, e.g., df\$x rather than globalenv()\$x.

Example

Using the **percentile_df** function we created previously

• Here base::substitute

```
percentile_df <- function(x) {
    sorted <- sort(x)
    d <- data.frame(sorted, percentile = ecdf(sorted)(sorted))
    names(d)[1] <- paste0(substitute(x), collapse = "_")
    d
}
percentile_df(rnorm(100, 5, 0.2)) %>%
    head()
```

Confusing

- Outside of a function, substitute operates just like
 quote it quotes the input.
- Inside of a function, **substitute** does as its name implies it substitutes the input for the name.

Example

mtcars

```
quote(subset(df, select = var))
## subset(df, select = var)
substitute(subset(df, select = var))
## subset(df, select = var)
extract_var <- function(df, var) {</pre>
     substitute(df)
extract_var(mtcars)
```

Actually getting this thing to work

```
##
                       mpg
                      21.0
## Mazda RX4
                    21.0
## Mazda RX4 Waq
                     22.8
## Datsun 710
                   21.4
## Hornet 4 Drive
## Hornet Sportabout 18.7
## Valiant
                      18.1
                      14.3
## Duster 360
                      24.4
## Merc 240D
                     22.8
## Merc 230
                    19.2
## Merc 280
                   17.8
## Merc 280C
                    16.4
## Merc 450SE
                     17.3
## Merc 450SL
                      15.2
## Merc 450SLC
```

Why eval

- substitute is quoting the input, but we then need to evaluate it.
- All of this is rather confusing
- The tidyverse uses it so frequently, they've decided to implement their own version, called **tidyeval**, which we'll get to in a minute.

Better

Use NSE for both arguments

```
extract_var <- function(df, var) {
    eval(substitute(var), envir = df)
}
extract_var(mtcars, mpg)</pre>
```

```
## [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4
## [9] 22.8 19.2 17.8 16.4 17.3 15.2 10.4 10.4
## [17] 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3
## [25] 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4
```

- The above is equivalent to df\$var but where both df and var can be swapped programmatically.
- The var argument is being substituted in for whatever the user supplies, and is being evaluated within the df environment

Maybe more simply

```
extract_var <- function(df, var) {
    df[, as.character(substitute(var))]
}
extract_var(mtcars, mpg)</pre>
```

```
## [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4
## [9] 22.8 19.2 17.8 16.4 17.3 15.2 10.4 10.4
## [17] 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3
## [25] 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4
```

- Why as.character? Otherwise it is a symbol, which won't work.
- Note we could add drop = FALSE to this if we wanted to maintain the data frame structure

Taking this even further

```
extract_vars <- function(df, ...) {
  vars <- substitute(alist(...))
  df[, as.character(vars)[-1]]
}
head(extract_vars(mtcars, mpg, cyl, disp))</pre>
```

```
## Mazda RX4 21.0 6 160
## Mazda RX4 Wag 21.0 6 160
## Datsun 710 22.8 4 108
## Hornet 4 Drive 21.4 6 258
## Hornet Sportabout 18.7 8 360
## Valiant 18.1 6 225
```

- We've now basically replicated dplyr::select
- Notice the use of [-1], because calling as.character
 on vars always returns alist as the first element in the
 vector

Why is NSE used so frequently in the tidyverse?

```
mpg %>%
  select(manufacturer, model, hwy)
```

```
## # A tibble: 234 \times 3
  manufacturer model
##
                         hwy
## <chr> <chr> <int>
## 1 audi a4
                           29
## 2 audi a4
                         29
## 3 audi
                          31
              a4
## 4 audi a4
                           30
## 5 audi a4
                           26
## 6 audi a4
                           26
## 7 audi a4
                          27
## 8 audi a4 quattro 26
## 9 audi a4 quattro 25
## 10 audi a4 quattro
                           28
## # ... with 224 more rows
```

Interactive work!

- It makes interactive work easier!
- But this make programming with these functions harder...
- Without NSE, **select** and similar functions would not know where **manufacturer**, **model**, or **hwy** "live". It would be looking for objects in the global environment with these names.

dplyr programming fail

- Let's say we wanted a function that returned means in a nice table—y format for a variable by two groups (e.g., cross—tab sort of format)
- Typically, we would start by solving this problem for a single situation, then we'd generalize it to a function.
- Let's do it!

Try generalizing the above code into a function

04:00

Generalize to a function

Typically, we would expect something like this to work

```
group_means <- function(data, outcome, group_1, group_2) {
   data %>%
     group_by(group_1, group_2) %>%
     summarize(mean = mean(outcome, na.rm = TRUE)) %>%
     pivot_wider(names_from = group_1, values_from = mean)
}
```

But it doesn't...

```
group_means(mtcars, mpg, cyl, gear)
## Error in `group by() `:
## ! Must group by
## variables found in `.data`.
## Column `group 1` is not found.
## Column `group 2` is not found.
group_means(diamonds, price, cut, clarity)
## Error in `group by()`:
##! Must group by
## variables found in `.data`.
## Column `group 1` is not found.
## Column `group_2` is not found.
Why?
```

• It's looking for an object called **group_1** that doesn't exist inside the function or in the global workspace!

Solution

Quote it, and evaluate it in the correct place

The {rlang} version

```
group_means <- function(data, outcome, group_1, group_2) {
   out <- enquo(outcome) # Quote the inputs
   g1 <- enquo(group_1)
   g2 <- enquo(group_2)

   data %>%
        group_by(!!g1, !!g2) %>% # !! to evaluate (bang-bang)
        summarize(mean = mean(!!out, na.rm = TRUE)) %>%
        pivot_wider(names_from = !!g1, values_from = mean)
}
```

group_means(mtcars, mpg, cyl, gear)

group_means(diamonds, price, cut, clarity)

Alternative: Pass the dots!

 Note, I've made the function a bit simpler here by removing the call to pivot_wider()

```
group_means2 <- function(data, outcome, ...) {
   out <- enquo(outcome) # Still have to quote the outcome

   data %>%
        group_by(...) %>%
        summarize(mean = mean(!!out, na.rm = TRUE))
}
group_means2(mtcars, mpg, cyl, gear)
```

Added benefit

I can now also pass as many columns as I want, and it will still work!

group_means2(diamonds, price, cut, clarity, color)

```
## # A tibble: 276 × 4
## # Groups: cut, clarity [40]
##
  cut clarity color
                          mean
## <ord> <ord>
                 <ord> <dbl>
##
   1 Fair I1
                      7383
##
   2 Fair I1 E
                      2095.222
            F 2543.514
G 3187.472
##
   3 Fair I1
## 4 Fair I1
##
   5 Fair I1
             н 4212.962
##
   6 Fair I1
                 I 3501
##
   7 Fair I1
                 J 5795.043
              D 4355.143
## 8 Fair SI2
## 9 Fair SI2
               E 4172.385
## 10 Fair SI2
                      4520.112
## # ... with 266 more rows
```

Wait a minute!

This isn't the same thing

Correct

So in this case passing the dots won't fully fix our problem, but there is another alternative

Alternative syntax

```
group_means3 <- function(data, outcome, group_1, group_2) {
   data %>%
      group_by({{group_1}}, {{group_2}}) %>%
      summarize(mean = mean({{outcome}}, na.rm = TRUE)) %>%
      pivot_wider(names_from = {{group_1}}, values_from = mean)
}
group_means3(mtcars, mpg, cyl, gear)
```

Pipe-centric

• Because the data argument comes first, this function works just like any other in the tidyverse, e.g.,

```
diamonds %>%
  filter(color == "E") %>%
  select(carat, cut, clarity) %>%
  group_means3(carat, cut, clarity)
```

```
## # A tibble: 8 \times 6
## clarity Fair Good `Very Good`
## <ord> <dbl>
                       <dbl>
                                 <dbl>
## 1 I1 0.9688889 1.330870 1.069545
## 2 SI2 1.015641 0.8825743 0.9304045
## 3 SI1 0.8670769 0.7238592
                             0.7230831
## 4 VS2 0.6902381 0.739375 0.6644135
## 5 VS1 0.6328571 0.6806742 0.6097952
## 6 VVS2 0.6007692 0.5601923 0.4267114
## 7 VVS1 0.64 0.4181395 0.4000588
## 8 IF NA
                0.3733333 0.5793023
## # ... with 2 more variables: Premium <dbl>,
## # Ideal <dbl>
```

Syntax note

- The {{}} syntax is obviously *much* easier to apply
- It gets you out of tidyeval complications maybe 80% of the time
- If you start doing a lot of programming w/the tidyverse, you'll probably want to read up more no tidyeval and get comfy with quoting/unquoting

Challenge

07:00

If we have time

- Write a function that summarizes any numeric columns by returning the mean, standard deviation, min, and max values.
- Solve on an example case first, then generalize to a function

Example:

summarize_cols(diamonds, depth, table, price)

```
## # A tibble: 3 \times 5
##
                                min
    var
          mean
                                      max
    <chr> <dbl>
                         <dbl> <dbl> <dbl>
  1 depth 61.74940
                   1.432621
                               43
                                       79
  2 price 3932.800 3989.440
                            326 18823
  3 table
           57.45718
                      2.234491
                               43
                                       95
```

Pass the dots!

Pipe-centric again

Just putting data as the first argument leads to a lot of benefits

```
library(palmerpenguins)
penguins %>%
  select_if(is.numeric) %>%
  summarize cols(everything())
## # A tibble: 5 \times 5
##
                                        sd
  var
                           mean
##
  <chr>
                          <dbl>
                                     <dbl>
## 1 bill_depth_mm 17.15117 1.974793
## 2 bill_length_mm 43.92193 5.459584
## 3 body mass g 4201.754 801.9545
## 4 flipper_length_mm 200.9152 14.06171
## 5 year
                     2008.029 0.8183559
## # ... with 2 more variables: min <dbl>,
## # max <dbl>
```

Example with plotting

Linearity

- We want to check if an x/y relation is linear
- Function should produce linear and non-linear relations
- Optionally show the data

Maybe this?

```
check_linear <- function(data, x, y, se = TRUE,</pre>
                           points = FALSE) {
  p <- ggplot(data, aes(x, y))</pre>
 if(isTRUE(points)) {
    p <- p + geom_point(color = "gray80")</pre>
  if(isTRUE(se)) {
      p < -p +
        geom_smooth(method = "lm") +
        geom_smooth()
  } else {
      p < -p +
        geom_smooth(method = "lm", se = FALSE) +
        geom_smooth(se = FALSE)
  р
```

Nope

```
check_linear(penguins, bill_length_mm, bill_depth_mm)
```

```
## Error in FUN(X[[i]], ...): object 'bill_length_mm' not found
```

Use tidyeval

Note – there are other approaches too, but they are soft deprecated

Notice I'm passing the dots here too to make it slightly more concise

check_linear(penguins, bill_length_mm, bill_depth_mm)

Add points

Add ggplot functions

Checking linearity Linear vs LOESS fits

Building up plots

- Let's create a function that calculates means and standard errors for every numeric column in a data frame
- We'll then use this function to create a plotting function

Means/SE's

- First figure it out for a single example
- Note there's not built—in function for the standard error of the mean, which is $\frac{\sigma}{\sqrt{n}}$

```
# SE function
se <- function(x) {
   x <- x[!is.na(x)] # remove missing data
   sd(x) / sqrt(length(x))
}</pre>
```

Full means/SEs

Challenge

Try to generalize the code on the previous slide into a function. Test it on the forcats::gss_cat data.

Translate to a function

Plot

```
estimate_means(forcats::gss_cat) %>%
  ggplot(aes(mean, var)) +
    geom_point() +
    geom_linerange(
        aes(xmin = mean + (qnorm(0.025) * se),
            xmax = mean + (qnorm(0.975) * se)),
        color = "magenta",
    )
```


Create plot function

```
plot_means <- function(df) {
    means <- estimate_means(df) %>%
        mutate(var = reorder(factor(var), mean))

    ggplot(means, aes(mean, var)) +
        geom_point() +
        geom_linerange(
        aes(xmin = mean + (qnorm(0.025) * se),
            xmax = mean + (qnorm(0.975) * se)),
        color = "magenta",
    )
}
```

Notice we've successfully avoided tideval entirely in both examples!

Examples

plot_means(penguins)

plot_means(diamonds)

Overall takeaway

- Non-standard evaluation is confusing but kind of neat
- Programming with the tidyverse can be a bit more difficult, but not always
- Good to think about multiple ways to approach the same problem (and when programming, perhaps think outside the tidyverse at times)

Lab 3

Next time: Intro to shiny