Machine-Level Programming III: Procedures

15-213: Introduction to Computer Systems 7th Lecture, Sep. 22, 2015

Instructors:

Randal E. Bryant and David R. O'Hallaron

Mechanisms in Procedures

Passing control

- To beginning of procedure code
- Back to return point

Passing data

- Procedure arguments
- Return value

Memory management

- Allocate during procedure execution
- Deallocate upon return
- Mechanisms all implemented with machine instructions
- x86-64 implementation of a procedure uses only those mechanisms required

Today

- Procedures
 - Stack Structure
 - Calling Conventions
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

x86-64 Stack

- Region of memory managed with stack discipline
- Grows toward lower addresses
- Register %rsp contains lowest stack address
 - address of "top" element

Stack Pointer: %rsp →

Stack "Top"

x86-64 Stack: Push

pushq Src

- Fetch operand at Src
- Decrement %rsp by 8
- Write operand at address given by %rsp

Stack Pointer: %rsp

Stack "Top"

Stack "Bottom"

Increasing Addresses

Stack Grows Down

x86-64 Stack: Pop

popq Dest

- Read value at address given by %rsp
- Increment %rsp by 8
- Store value at Dest (must be register)

Increasing **Addresses** Stack Grows Down Stack Pointer: %rsp Stack "Top"

Stack "Bottom"

Today

- Procedures
 - Stack Structure
 - Calling Conventions
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

Code Examples

```
void multstore
  (long x, long y, long *dest)
{
    long t = mult2(x, y);
    *dest = t;
}
```

```
      0000000000000400540
      <multstore>:

      400540: push %rbx
      # Save %rbx

      400541: mov %rdx,%rbx
      # Save dest

      400544: callq 400550 <mult2> # mult2(x,y)

      400549: mov %rax,(%rbx)
      # Save at dest

      40054c: pop %rbx
      # Restore %rbx

      40054d: retq
      # Return
```

```
long mult2
  (long a, long b)
{
  long s = a * b;
  return s;
}
```

```
0000000000400550 <mult2>:
    400550: mov %rdi,%rax # a
    400553: imul %rsi,%rax # a * b
    400557: retq # Return
```

Procedure Control Flow

- Use stack to support procedure call and return
- Procedure call: call label
 - Push return address on stack
 - Jump to label
- Return address:
 - Address of the next instruction right after call
 - Example from disassembly
- Procedure return: ret
 - Pop address from stack
 - Jump to address

Control Flow Example #1


```
0000000000400550 <mult2>:
  400550:
                   %rdi,%rax
           mov
  400557:
           retq
```


Control Flow Example #4


```
0000000000400550 <mult2>:
   400550: mov %rdi,%rax
   •
   400557: retq
```

Today

- Procedures
 - Stack Structure
 - Calling Conventions
 - Passing control
 - Passing data
 - Managing local data
 - Illustrations of Recursion & Pointers

Procedure Data Flow

Registers

■ First 6 arguments

Return value

Stack

Only allocate stack space when needed

Data Flow Examples

```
void multstore
  (long x, long y, long *dest)
{
    long t = mult2(x, y);
    *dest = t;
}
```

```
long mult2
  (long a, long b)
{
  long s = a * b;
  return s;
}
```

Today

- Procedures
 - Stack Structure
 - Calling Conventions
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

Stack-Based Languages

Languages that support recursion

- e.g., C, Pascal, Java
- Code must be "Reentrant"
 - Multiple simultaneous instantiations of single procedure
- Need some place to store state of each instantiation
 - Arguments
 - Local variables
 - Return pointer

Stack discipline

- State for given procedure needed for limited time
 - From when called to when return
- Callee returns before caller does

Stack allocated in Frames

state for single procedure instantiation

Call Chain Example

```
who (...)
{
    amI();
    amI();
    amI();
}
```

Procedure amI () is recursive

Example Call Chain

Stack Frames

Contents

- Return information
- Local storage (if needed)
- Temporary space (if needed)

Frame Pointer: %rbp (Optional)

Stack Pointer: %rsp

Previous Frame

Frame for proc

Management

- Space allocated when enter procedure
 - "Set-up" code
 - Includes push by call instruction
- Deallocated when return
 - "Finish" code
 - Includes pop by ret instruction

Stack **Example** уоо who (...) уоо amI (...) who who amI amI amI(); %rbp amI amI %rsp

amI

Stack **Example** уоо who (...) уоо amI (...) who amI (...) who amI amI amI amI amI(); %rbp amI amI %rsp

Stack **Example** уоо who (...) уоо amI (...) who • amI (...) who amI amI • amI (...) amI amI amI(); amI amI %rbp amI %rsp

Stack **Example** уоо who (...) уоо amI (...) who • amI (...) who amI amI amI amI amI(); %rbp amI amI %rsp

x86-64/Linux Stack Frame

■ Current Stack Frame ("Top" to Bottom)

- "Argument build:"Parameters for function about to call
- Local variablesIf can't keep in registers
- Saved register context
- Old frame pointer (optional)

Caller Stack Frame

- Return address
 - Pushed by call instruction
- Arguments for this call

Example: incr

```
long incr(long *p, long val) {
   long x = *p;
   long y = x + val;
   *p = y;
   return x;
}
```

```
incr:
  movq (%rdi), %rax
  addq %rax, %rsi
  movq %rsi, (%rdi)
  ret
```

Register	Use(s)
%rdi	Argument p
%rsi	Argument val , y
%rax	x, Return value

Example: Calling incr #1

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

Initial Stack Structure

```
Rtn address ← %rsp
```

```
call_incr:
    subq $16, %rsp
    movq $15213, 8(%rsp)
    movl $3000, %esi
    leaq 8(%rsp), %rdi
    call incr
    addq 8(%rsp), %rax
    addq $16, %rsp
    ret
```

Resulting Stack Structure

Example: Calling incr #2

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

```
call_incr:
    subq    $16, %rsp
    movq    $15213, 8(%rsp)
    movl    $3000, %esi
    leaq    8(%rsp), %rdi
    call    incr
    addq    8(%rsp), %rax
    addq    $16, %rsp
    ret
```

Stack Structure

Register	Use(s)
%rdi	&v1
%rsi	3000

Example: Calling incr #3

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

```
call_incr:
    subq $16, %rsp
    movq $15213, 8(%rsp)
    movl $3000, %esi
    leaq 8(%rsp), %rdi
    call incr
    addq 8(%rsp), %rax
    addq $16, %rsp
    ret
```

Stack Structure

Register	Use(s)
%rdi	&v1
%rsi	3000

Example: Calling incr #4

Stack Structure

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

```
...

Rtn address

18213 ← %rsp+8

Unused %rsp
```

call_incr	:
subq	\$16, %rsp
movq	\$15213, 8(%rsp)
movl	\$3000, %esi
leaq	8(%rsp), %rdi
call	incr
addq	8(%rsp), %rax
addq	\$16, %rsp
ret	

Register	Use(s)
%rax	Return value

Updated Stack Structure

Example: Calling incr #5

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

Updated Stack Structure


```
call_incr:
    subq    $16, %rsp
    movq    $15213, 8(%rsp)
    movl    $3000, %esi
    leaq    8(%rsp), %rdi
    call    incr
    addq    8(%rsp), %rax
    addq    $16, %rsp
    ret
```

Register	Use(s)
%rax	Return value

Final Stack Structure

Register Saving Conventions

- When procedure yoo calls who:
 - yoo is the caller
 - who is the callee
- Can register be used for temporary storage?

```
yoo:

movq $15213, %rdx
call who
addq %rdx, %rax

ret
```

```
who:

• • •

subq $18213, %rdx
• • •

ret
```

- Contents of register %rdx overwritten by who
- This could be trouble → something should be done!
 - Need some coordination

Register Saving Conventions

- When procedure yoo calls who:
 - yoo is the caller
 - who is the callee
- Can register be used for temporary storage?
- Conventions
 - "Caller Saved"
 - Caller saves temporary values in its frame before the call
 - "Callee Saved"
 - Callee saves temporary values in its frame before using
 - Callee restores them before returning to caller

x86-64 Linux Register Usage #1

■ %rax

- Return value
- Also caller-saved
- Can be modified by procedure
- %rdi, ..., %r9
 - Arguments
 - Also caller-saved
 - Can be modified by procedure
- %r10, %r11
 - Caller-saved
 - Can be modified by procedure

x86-64 Linux Register Usage #2

- %rbx, %r12, %r13, %r14
 - Callee-saved
 - Callee must save & restore
- %rbp
 - Callee-saved
 - Callee must save & restore
 - May be used as frame pointer
 - Can mix & match
- %rsp
 - Special form of callee save
 - Restored to original value upon exit from procedure

Callee-Saved Example #1

```
long call_incr2(long x) {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return x+v2;
}
```

Initial Stack Structure

```
Rtn address ← %rsp
```

```
call_incr2:
  pushq %rbx
  subq $16, %rsp
  movq %rdi, %rbx
  movq $15213, 8(%rsp)
  movl $3000, %esi
  leaq 8(%rsp), %rdi
  call incr
  addq %rbx, %rax
  addq $16, %rsp
  popq %rbx
  ret
```

Resulting Stack Structure

Callee-Saved Example #2

Resulting Stack Structure

```
long call_incr2(long x) {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return x+v2;
}
```

```
call_incr2:
  pushq %rbx
  subq $16, %rsp
  movq %rdi, %rbx
  movq $15213, 8(%rsp)
  movl $3000, %esi
  leaq 8(%rsp), %rdi
  call incr
  addq %rbx, %rax
  addq $16, %rsp
  popq %rbx
  ret
```


Pre-return Stack Structure

Today

- Procedures
 - Stack Structure
 - Calling Conventions
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

Recursive Function

```
pcount r:
 movl $0, %eax
        %rdi, %rdi
 testq
 jе
        .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi
 call
        pcount r
 addq
        %rbx, %rax
        %rbx
 popq
.L6:
 rep; ret
```

Recursive Function Terminal Case

Register	Use(s)	Туре
%rdi	x	Argument
%rax	Return value	Return value

```
pcount r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi
 call
        pcount r
        %rbx, %rax
 addq
        %rbx
 popq
. L6:
 rep; ret
```

Recursive Function Register Save

```
pcount r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq
        %rdi
 call
        pcount r
 addq
        %rbx, %rax
        %rbx
 popq
.L6:
 rep; ret
```

Register	Use(s)	Туре
%rdi	x	Argument

Recursive Function Call Setup

Register	Use(s)	Туре
%rdi	x >> 1	Rec. argument
%rbx	x & 1	Callee-saved

```
pcount r:
 movl $0, %eax
         %rdi, %rdi
 testq
        .L6
 je
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi
 call
         pcount r
         %rbx, %rax
 addq
         %rbx
 popq
. L6:
 rep; ret
```

Recursive Function Call

Register	Use(s)	Туре
%rbx	x & 1	Callee-saved
%rax	Recursive call return value	

```
pcount r:
 movl $0, %eax
 testq
        %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
        %rdi
 shrq
 call
        pcount r
        %rbx, %rax
 addq
        %rbx
 popq
. L6:
 rep; ret
```

Recursive Function Result

Register	Use(s)	Туре
%rbx	x & 1	Callee-saved
%rax	Return value	

```
pcount r:
 movl $0, %eax
        %rdi, %rdi
 testq
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi
 call
        pcount r
        %rbx, %rax
 addq
        %rbx
 popq
. L6:
 rep; ret
```

Recursive Function Completion

Register	Use(s)	Туре
%rax	Return value	Return value

```
pcount r:
 movl
        $0, %eax
         %rdi, %rdi
 testq
        . L6
 jе
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq
        %rdi
 call
         pcount r
         %rbx, %rax
 addq
         %rbx
 popq
.L6:
 rep; ret
```


Observations About Recursion

Handled Without Special Consideration

- Stack frames mean that each function call has private storage
 - Saved registers & local variables
 - Saved return pointer
- Register saving conventions prevent one function call from corrupting another's data
 - Unless the C code explicitly does so (e.g., buffer overflow in Lecture 9)
- Stack discipline follows call / return pattern
 - If P calls Q, then Q returns before P
 - Last-In, First-Out

Also works for mutual recursion

P calls Q; Q calls P

x86-64 Procedure Summary

■ Important Points

- Stack is the right data structure for procedure call / return
 - If P calls Q, then Q returns before P
- Recursion (& mutual recursion) handled by normal calling conventions
 - Can safely store values in local stack frame and in callee-saved registers
 - Put function arguments at top of stack
 - Result return in %rax
- Pointers are addresses of values
 - On stack or global

