

M.S. Ramaiah Institute of Technology (Autonomous Institute, Affiliated to VTU) Department of Computer Science and Engineering

Course Name: Database Systems

Course Code: CS52

Credits: 3:1:0

UNIT 4

Term: Oct 2021 – Feb 2022

Faculty:

Dr. Sini Anna Alex

Examples:

R=(A,B,C,D,E,F)

F1={A->BC, B->CDE, AE->F}

F2={A->BCF, B->DE, E->AB}

Check whether F1 and F2 are equivalent or not.

Solution

To check F1 covers F2 -

 $A^+=\{A,B,C,D,E,F\}$ contains B,C,F

 $B^+=\{B,C,D,E\}$ contains D,E

E+={E} contains A,B

So F1 does not cover F2.

Hence F1 and F2 are not equivalent.

Consider another example where two functional dependencies are equivalent.

R=(A,C,D,E,H)

F1={A->C, AC->D, E->AD, E->H},

F2={A->CD, E->AH}

Check whether F1 and F2 are equivalent or not?

Solution

To check F1 covers F2 -

 $A^+=\{A,C,D\}$ contains C,D

 $E^+=\{A,D,E,H\}$ contains A,H

So F1 covers F2

To check F2 covers F1:

 $A^+=\{A,C,D\}$ contains C

 $\{A,C\}+=\{A,C,D\}$ contains D

 $E^+=\{A,C,D,E,H\}$ contains A,D,H

So F2 covers F1.

Hence F1 and F2 are equivalent.

Minimal Sets of FDs

A set of FDs is minimal if it satisfies the following conditions:

- 1. Every dependency in F has a single attribute for its RHS.
- We cannot replace any dependency X -> A in F with a dependency Y -> A, where Y proper-subset-of X (Y subset-of X) and still have a set of dependencies that is equivalent to F.
- 3. We cannot remove any dependency from F and have a set of dependencies that is equivalent to F.
 - 1. Simple FD
 - 2. Left Reduced FD
 - 3. Non-redundant FD

RAMAIA Institute of Tele

Minimal Sets of Functional Dependencies

Algorithm 10.2: Finding a Minimal Cover F for a Set of Functional Dependencies E

- 1. Set F := E.
- 2. Replace each functional dependency $X \to \{A_1, A_2, \dots, A_n\}$ in F by the n functional dependencies $X \to A_1, X \to A_2, \dots, X \to A_n$.
- 3. For each functional dependency $X \rightarrow A$ in F

for each attribute B that is an element of X if $\{ \{ F - \{X \to A\} \} \cup \{ (X - \{B\}) \to A \} \}$ is equivalent to F, then replace $X \to A$ with $(X - \{B\}) \to A$ in F.

For each remaining functional dependency X → A in F if { F − {X → A} } is equivalent to F, then remove X → A from F.

In Chapter 11 we will see how relations can be synthesized from a given set of dependencies *E* by first finding the minimal cover *F* for *E*.

Minimal Sets of FDs

- Every set of FDs has an equivalent minimal set.
- •There can be several equivalent minimal sets.
- •There is no simple algorithm for computing a minimal set of FDs that is equivalent to a set F of FDs.
- To synthesize a set of relations, we assume that we start with a set of dependencies that is a minimal set.
- •Minimal Cover: set of FD's equivalent to given FD's
- Canonical Cover: Left side must be unique

Find Minimal Cover/ Canonical Cover of E

Let the given set of FDs be E : {B \rightarrow A, D \rightarrow A, AB \rightarrow D}. We have to find the minimum cover of E.

■ All above dependencies are in canonical form; so we have completed step 1 of Algorithm 10.2 and can proceed to step 2.

In step 2 we need to determine if AB \rightarrow D has any redundant attribute on the left-hand side; that is, can it be replaced by B \rightarrow D or A \rightarrow D?

- Since B \rightarrow A, by augmenting with B on both sides (IR2), we have BB \rightarrow AB, or B \rightarrow AB
- (i). However, AB \rightarrow D as given (ii).
- Hence by the transitive rule (IR3), we get from (i) and (ii), B \rightarrow D. Hence AB \rightarrow D may be replaced by B \rightarrow D.
- We now have a set equivalent to original E , say E' : {B \rightarrow A, D \rightarrow A, B \rightarrow D}. No further reduction is possible in step 2 since all FDs have a single attribute on the left-hand side.
- In step 3 we look for a redundant FD in E'. By using the transitive rule on B \rightarrow D and D \rightarrow A, we derive B \rightarrow A. Hence B \rightarrow A is redundant in E' and can be eliminated.
- Hence the minimum cover of E is $\{B \rightarrow D, D \rightarrow A\}$

Compute the Minimal Cover

Consider the following set F of functional dependencies:

```
F=\{A \longrightarrow BC \\ B \longrightarrow C \\ A \longrightarrow B \\ AB \longrightarrow C \\ \}
```


Definitions of Keys and Attributes Participating in Keys

A **superkey** of a relation schema R = {A1, A2,, An} is a set of attributes S *subset-of* R with the property that no two tuples t1 and t2 in any legal relation state r of R will have t1[S] = t2[S]

A **key** K is a **superkey** with the *additional property* that removal of any attribute from K will cause K not to be a superkey any more.

Befinitions of Keys and Attributes Participating in Keys

If a relation schema has more than one key, each is called a candidate key.

 One of the candidate keys is arbitrarily designated to be the primary key, and the others are called secondary keys.

A **Prime attribute** must be a member of *some* candidate key

A **Nonprime attribute** is not a prime attribute—that is, it is not a member of any candidate key.

Finding Candidate Keys and Super Keys of a Relation using FD set

The set of attributes whose attribute closure is set of all attributes of relation is called super key of relation.

Consider the following FD set. **{E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY->E-STATE}**

Let us calculate attribute closure of different set of attributes: EMPLOYEE(E-ID, E-NAME, E-CITY, E-STATE)

 $(E-ID)+ = \{E-ID, E-NAME, E-CITY, E-STATE\}$

 $(E-ID,E-NAME)+ = \{E-ID, E-NAME,E-CITY,E-STATE\}$

 $(E-ID,E-CITY)+ = \{E-ID, E-NAME,E-CITY,E-STATE\}$

(E-ID,E-STATE)+ = {E-ID, E-NAME,E-CITY,E-STATE}

 $(E-ID,E-CITY,E-STATE)+=\{E-ID,E-NAME,E-CITY,E-STATE\}$

 $(E-NAME)+=\{E-NAME\}$

 $(E-CITY)+ = \{E-CITY, E-STATE\}$

First Normal Form

Disallows

- composite attributes
- multivalued attributes
- **nested relations**; attributes whose values for an *individual tuple* are non-atomic

Considered to be part of the definition of relation

(a)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
A		^	A
27			

Figure 10.8

Normalization into 1NF.

(a) A relation schema that is not in 1NF. (b)

Example state of relation DEPARTMENT. (c) 1NF version of the same relation with redundancy.

(b)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

(c)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

(a)

EMP_PROJ Projs

Ssn Ename Pnumber Hours

(b)

EMP_PROJ

Ssn	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
L	L	2	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
L		22	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
L	L	20	10.0
999887777	Zelaya, AliciaJ.	30	30.0
L		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
L	L	30	5.0
987654321	Wallace, Jennifer S.	30	20.0
L	L	20	15.0
888665555	Borg, James E.	20	NULL

(c)

EMP_PROJ1

<u>Ssn</u>	Ename

EMP_PROJ2

Ssn Pnumber Hours

Figure 10.9

Normalizing nested relations into 1NF. (a) Schema of the EMP_PROJ relation with a *nested relation* attribute PROJS. (b) Example extension of the EMP_PROJ relation showing nested relations within each tuple. (c) Decomposition of EMP_PROJ into relations EMP_PROJ1 and EMP_PROJ2 by propagating the primary key.

Thank you