Contents

Ι	Measure Theory And Lebesgue Integration	2
1	Measure Theory	3
	1.1 Measurable Sets (σ -Algebras)	3

Part I Measure Theory And Lebesgue Integration

Chapter 1

Measure Theory

1.1 Measurable Sets (σ -Algebras)

Definition 1.1.1. A σ -Algebra on a set X is a collection, denote \mathfrak{A} , of subsets of X s.t.

- $\varnothing \in \mathfrak{A}$
- If $A \in \mathfrak{A}$, then $A^c = X$ $A \in \mathfrak{A}$
- If $\{A_i/i \in \mathbb{N}\}$ is a countable family of sets in \mathfrak{A} then $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$

Definition 1.1.2. A measurable space (X, \mathfrak{A}) is a set X with a σ -algebra on X. The elements of that collection are called measurable sets.

Proposition 1.1.1. Let a set X and \mathfrak{A} be a σ -Algebra on X. Then $X \in \mathfrak{A}$ and \mathfrak{A} is closed under countable intersections.

Proof. • Since $\varnothing \in \mathfrak{A}$ then $X = \varnothing^c \in \mathfrak{A}$

• Let $\{A_i/i \in \mathbb{N}\}$ be a countable family of elements of \mathfrak{A} . Be definition, $\forall i \in \mathbb{N}, A_i^c \in \mathfrak{A}$. In other words, $\{A_i^c/i \in \mathbb{N}\}$

$$\therefore, \qquad \cap_{i=1}^{\infty} A_i = (\bigcup_{i=1}^{\infty} A_i^c)^c \in \mathfrak{A}$$

Example 1.1.1. The smallest σ -Algebra that can be defined over an arbitrary set is the empty set $\{\emptyset, X\}$

Example 1.1.2. The largest σ -Algebra that can be defined is the power set, $\mathfrak{P}(x)$. The power set is the collection of all possible sets of X.

Example 1.1.3. Let T be the collection of open sets in X ((X,T) is called a **Topological Space**). The σ -Algebra of X generalized by T is called the Borel σ -Algebra on X. We denote this $\mathfrak{B}(x)$. Its elements are called Borel Sets.

- (R) A closed set is the compliment of an open set. It is possible to be closed and open at the same time.
- R) By definition, the complement of sets in the σ -Algebra is also in the σ -Algebra. This means that the closed sets are also in the σ -Algebra. For instance, the Borel-Algebra on \mathbb{R}^n is generated by the collection of cubes, C, of the form $C = (a_1, b_1)(a_2, b_2)(\cdots)(a_n, b_n)$.

Definition 1.1.3. A **measure**, μ , on a set X, is a map $\mu : \mathfrak{A} \to [0, \infty]$ on a σ -Alembra \mathfrak{A} of X s.t.

- $\bullet \ \mu(\varnothing) = 0$
- If $\{A_i/i \in \mathbb{N}\}$ is a countable family of mutually disjoint sets of \mathfrak{A} , ie $A_i \cap A_j = \emptyset, i \neq j$

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$

The measure is said to be finite if $\mu(x) < \infty$ and said to be σ -finite if $\exists \{A_i \in /i \in \mathbb{N}\}$ of measurable subsets of X s.t. $\forall i \in \mathbb{N}, \mu(A_i) < \infty$ and $X = \bigcup_{i=1}^{infty} A_i$

Definition 1.1.4. A measure space is a triple (X, \mathfrak{A}, μ)

Example 1.1.4. The counting measure, ν , on X is defined by $\nu(x) = \{$ The number of elements in $X \}$. With convention $\nu(x) = \infty$ if x is an infinite set.

Example 1.1.5. The **delta measure**, δ_{x_0} , where $x_0 \in \mathbb{R}$ on the Borel-alg of \mathbb{R} is defined by:

$$\delta_{x_0} = \begin{cases} 1 & if x_0 \in A \\ 0 & if x_0 \notin A \end{cases}$$

Example 1.1.6. The **Lebesgue Measure**. We saw the Borel Algebra on \mathbb{R} is generated by the cubes $(a_1, b_1)(a_2, b_2) \dots (a_n, b_n)$. The Lebesague Measure, λ on the Borel Algebra s.t. $\lambda(c) = volume(c) = (b_1 - a_1)(b_2 - a_2) \dots (b_n - a_n)$.

(R) The Lebesgue Measure is $\sigma - finite$, indeed $R = \bigcup_{i=1}^{\infty} (-i, i)^n$

Theorem 1. A subset of $A \in \mathbb{R}^n$ is Lebesgue Measurable if and only if $\forall \epsilon > 0$, $\exists F$ closed, $\exists G \text{ open, } F \subset A \subset G, \ \lambda(G \setminus F) < \epsilon$.

Moreover:

$$\lambda(A) = \inf\{\lambda(u)|u \text{ is open and } A \subset u\}$$

$$\lambda(A) = \sup\{\lambda(u)|k \text{ is closed and } k \subset A\}$$

Proposition 1.1.2. The Lebesgue Measure is translation invariant. ie

$$\lambda(\mathfrak{T}_h A) = \lambda(A)$$

Where

$$T_h A = \{ y \in \mathbb{R}^n | \exists x \in A, y = x + h \}$$

Proposition 1.1.3. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear mapping. We denote $TA = \{y \in \mathbb{R}^n | \exists x \in A, y = Tx \}$. Then $\lambda(TA) = |det(T)|\lambda(A)$

Corollary 1.1.1. The Lebesgue Measure is invariant by rotation and has the scaling property. ie $\forall t > 0, \lambda(tA) = t^n \lambda(A)$

Proof. A rotation R and scaling T are linear transformations. Further, |det(R)| = 1 and $|det(T)| = t^n$.

Definition 1.1.5. Let (X,\mathfrak{A},μ) be a measure space. A subset $A\subset\mathfrak{A}$ is said to have a measure zero if it is measurable and the measure $\mu(A)=0$.

Proposition 1.1.4. A singleton in \mathbb{R} has a measure zero. ie $\forall x \in \mathbb{R}$, $\lambda(\{x\}) = 0$.

Proof. From the previous theorem we know that:

$$\lambda(\{x\}) = \inf\{\lambda(u) | \text{u is open and } \{x\} \subset u\}$$

$$= \lim_{\epsilon \to 0^+} \lambda(\{y/|x-y| < \epsilon\})$$

$$= \lim_{\epsilon \to 0^+} 2\epsilon$$

$$= 0$$

Corollary 1.1.2. Every countable subset $A = \{x_i \in \mathbb{R}/i \in \mathbb{N}\}\ of\ \mathbb{R}$ has measure 0.

Proof. Let $A = \bigcup_{i=1}^{\infty} A_i$. Then, using the properties of measures, we have:

$$\lambda(A) = \lambda(\bigcup_{i=1}^{\infty} A_i)$$

$$= \sum_{i=1}^{infty} \lambda(A_i)$$

$$= 0$$