LLIÇÓ 12: SUBESPAIS DE \mathbb{R}^n

Subespais

- Un subconjunt $F \subset \mathbb{R}^n$ és un subespai si
 - 1. $\vec{0} \in F$
 - 2. $u_1, u_2 \in F, \alpha_1, \alpha_2 \in \mathbb{R} \Rightarrow \alpha_1 \vec{u}_1 + \alpha_2 \vec{u}_2 \in F$

Base d'un subespai

Una base del subespai F és un conjunt B que és linealment independent i genera F, és a dir, $\langle B \rangle = F$.

- \square Tots els subespais, tret de O, tenen base
- Totes les bases de *F* tenen el mateix nombre d'elements
- La dimensió de *F* és el nombre d'elements de qualsevol base de *F*

Classificació dels subespais

Subespais de \mathbb{R}^n :

- El subespai zero
- Subespais de dimensió 1 (les rectes que passen per l'origen)
- Subespais de dimensió 2 (els plans que contenen l'origen)
- Subespais de dimensió 3
- ...
- Subespais de dimensió n-1 (hiperplans que contenen l'origen)
- \mathbb{R}^n
- \blacksquare Els subespais trivials són $\{\vec{0}\}$ i \mathbb{R}^n .

Coordenades respecte a una base

Si $B = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p\}$ és una base de F i $\vec{u} = x_1\vec{u}_1 + x_2\vec{u}_2 + \dots + x_p\vec{u}_p$ llavors, el vector de coordenades de \vec{u} respecte a B és

$$\vec{u}_B = (x_1, x_2, \dots, x_p)$$