Let A and B be languages over the same alphabet Σ .

An *algorithm* that transforms:

- Strings in A to strings in B.
- Strings not in A to strings not in B.

B is decidable $\Rightarrow A$ is decidable.

A is undecidable $\Rightarrow B$ is undecidable.

One way to show a problem B to be undecidable is to reduce an undecidable problem A to B.

A Turing machine M computes a function f if:

M halts on all inputs.

On input x it writes f(x) on the tape and halts.

Such a function f is called a computable function.

Examples: increment, addition, multiplication, shift.

Any algorithm with output is computing a function.

Let A and B be languages over Σ .

A is reducible to B if and only if:

- ullet there exists a computable function $f:\Sigma^*\longrightarrow\Sigma^*$ such that
- for all $w \in \Sigma^*$, $w \in A \Leftrightarrow f(w) \in B$.

Notation: $A \leq_m B$.

FACT: $A \leq_m B \Leftrightarrow \overline{A} \leq_m \overline{B}$.

 $w \in A \Leftrightarrow f(w) \in B$ is equivalent to $w \notin A \Leftrightarrow f(w) \notin B$.

To Re-iterate:

1. Construction: f(w) from w by an algorithm.

 $2. \ \, \textbf{Correctness:} \, \, w \, \in \, A \, \Leftrightarrow \, f(w) \, \in \, B.$

An Example involving DFAs

$$EQ_{DFA} = \{A, B \mid A, B \text{ are DFAs and } L(A) = L(B)\}.$$

$$E_{\text{DFA}} = \{ A \mid A \text{ is a DFA and } L(A) = \emptyset \}.$$

A reduction machine on input A, B two DFAs:

- 1. Constructs the DFA A' such that $L(A') = \overline{L(A)}$.
- 2. Constructs the DFA B' such that $L(B') = \overline{L(B)}$.
- 3. Constructs the DFA M_1 such that $L(M_1) = L(A) \cap L(B')$.
- 4. Constructs the DFA M_2 such that $L(M_2) = L(A') \cap L(B)$.
- 5. Constructs the DFA C such that $L(C) = L(M_1) \cup L(M_2)$.
- 6. Outputs C.

Correctness:

- Suppose L(A) = L(B). Then, $L(C) = \emptyset$.
- Suppose $L(A) \neq L(B)$. Then, $L(C) \neq \emptyset$.

That is, $EQ_{DFA} \leq_m E_{DFA}$.

An Example involving CFGs

$$\begin{aligned} & \text{A}LLCFG \ = \ \{G \mid G \text{ is a CFG and } L(G) \ = \ \Sigma^*\}. \\ & EQ_{\text{CFG}} \ = \ \{G, H \mid G, H \text{ are CFGs and } L(G) \ = \ L(H)\}. \end{aligned}$$

A reduction machine on input G a context-free grammar with alphabet Σ :

- 1. Constructs a CFG H with rules of the form $S' \leftarrow aS' \mid \epsilon$, for all $a \in \Sigma$.
- 2. Outputs (G, H).

$$L(H) = \Sigma^*.$$

Correctness:

- Suppose G generates all strings in Σ^* . Then, L(G) = L(H).
- Suppose G does not generate some string in Σ^* . Then $L(G) \neq L(H)$.

That is, $ALLCFG \leq_m EQ_{CFG}$.

The Halting problem

 $HALT_{TM} = \{M, w \mid M \text{ is a DTM and } M \text{ halts on } w\}.$

The reduction machine outputs a DTM that loops whenever M reaches the rejecting state.

On input M, w:

1. Constructs the following machine M':

Read input x.

Simulate M on x.

If M accepts, halt and accept.

If M halts and rejects, enter a loop.

2. Outputs M', w.

That is, $A_{\text{TM}} \leq_m HALT_{\text{TM}}$.

 $HALT_{\mathrm{TM}}$ is undecidable since A_{TM} is undecidable.

The Halting problem

Three machines:

- $\bullet\,$ A reduction machine that is a DTM.
- Input to the reduction machine is M, w, where M is a DTM.
- Output of the reduction machine is M', w, where M' is a DTM.

The Halting problem

The output DTM M' has the input M hard-coded into it.

Let
$$M = (Q, \Sigma, \Gamma, \delta, q_s, q_a, q_r)$$
. What is M' ?

$$M' = (Q', \Sigma, \Gamma, \delta', q_s, q_a, q_r')$$
:

$$Q' = Q \cup \{q_l, q_r'\}.$$

Define δ' as follows:

For all states p, for all states $q \neq q_r$, for all symbols a, b, for all $D \in \{L, R, S\}$:

if
$$\delta(p, a) = (q, b, D)$$
 then $\delta'(p, a) = (q, b, D)$.

For all states p, for all symbols a, b, for all $D \in \{L, R, S\}$:

if
$$\delta(p, a) = (q_r, b, D)$$
 then $\delta'(p, a) = (q_l, b, S)$.

For all symbols a, include the transition $\delta'(q_l, a) = (q_l, a, S)$.

M' is constructed from M by the reduction machine.

$$\overline{E_{\mathrm{TM}}} = \{ M \mid M \text{ is a TM and } L(M) \neq \emptyset \}$$

A reduction machine on input M, w:

1. Constructs the following machine M':

Read input x.

If $x \neq w$ then reject.

If x = w, Simulate M on w.

If M accepts, halt and accept.

2. Outputs M'.

Correctness:

- If M accepts w then L(M') is not empty.
- If M does not accept w then L(M') is empty.

That is, $A_{\text{TM}} \leq_m \overline{E_{\text{TM}}}$.

$$\overline{E_{\mathrm{TM}}} \ = \ \{M \mid M \text{ is a TM and } L(M) \ \neq \ \emptyset\}$$

 $A_{\mathrm{TM}} \leq_m \overline{E_{\mathrm{TM}}}.$

This implies that $\overline{E_{\rm TM}}$ is undecidable.

This in turn implies that $E_{\rm TM}$ is undecidable.

At least one of them must be not recognizable.

 $\overline{E_{\rm TM}}$ is recognizable.

 $E_{\rm TM}$ is not recognizable.

 $EQ_{\mathrm{TM}} = \{M_1, M_2 \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$

 EQ_{TM} is undecidable.

Is $\overline{EQ_{\mathrm{TM}}}$ recognizable?

See the text book.

Language is Context-free

 $CONTEXT - FREE_{TM} = \{M \mid M \text{ is a TM and } L(M) \text{ is context - free} \}$

A reduction machine on input M, w:

1. Constructs the following machine M':

Read input x.

If x has the form $0^n 1^n 2^n$ then halt and accept.

If x is not of this form, simulate M on w.

If M accepts, halt and accept.

2. Outputs M'.

Correctness

- L(M') is Σ^* if M accepts w.
- L(M') is not context-free if M does not accept w.

 $A_{\text{TM}} \leq_m CONTEXT - FREE_{\text{TM}}.$

 $CONTEXT-FREE_{\mathrm{TM}}$ is undecidable since A_{TM} is undecidable.

Language is Not Regular

 $\overline{REGULAR_{\mathrm{TM}}} \ = \ \{M \mid M \text{ is a TM and } L(M) \text{ is NOT regular}\}$

A reduction machine on input M, w:

1. Constructs the following machine M':

Read input x.

If x is not of the form 0^n1^n then halt and reject.

If x is of this form, simulate M on w.

If M accepts, halt and accept.

2. Outputs M'.

Correctness:

- L(M') is \emptyset if M does not accept w.
- L(M') is not regular if M accepts w.

 $A_{\text{TM}} \leq_m \overline{REGULAR_{\text{TM}}}.$

 $\overline{REGULAR_{\mathrm{TM}}}$ is undecidable since A_{TM} is undecidable.

Not Recognizable

$$A_{\text{TM}} \leq_m REGULAR_{\text{TM}} \implies \overline{A_{\text{TM}}} \leq_m \overline{REGULAR_{\text{TM}}}.$$

 $\overline{REGULAR_{\text{TM}}}$ is not recognizable.

$$A_{\text{TM}} \leq_m \overline{REGULAR_{\text{TM}}} \implies \overline{A_{\text{TM}}} \leq_m REGULAR_{\text{TM}}$$

 $REGULAR_{\text{TM}}$ is not recognizable.

Properties of Reductions

1.
$$A \leq_m B$$
 and $B \leq_m C \implies A \leq_m C$.

$$2. \ A \leq_m B \implies \overline{A} \leq_m \overline{B}$$

- 3. $A \leq_m B$ and B is decidable $\implies A$ is decidable.
- 4. Let A be recognizable. Then, $A \leq_m \overline{A}$ if and only if A and \overline{A} are decidable.
- 5. $A \leq_m B$ and B is recognizable $\implies A$ is recognizable.