WSI Zadanie 6 Q-learning

Piotr Lenczewski

Styczeń 2024

1 Opis badanego algorytmu

1.1 Cele algorytmu

Celem algorytmu Q-learning jest nauczenie agenta podejmowania optymalnych decyzji w środowisku, aby osiągnąć maksymalną nagrodę. Agent jest w nim podmiotem, który poprzez podejmowanie decyzji jest karany lub nagradzany, ucząc się w ten sposób optymalnego zachowania. Jest to tzw. uczenie ze wzmocnieniem.

1.2 Strategie eksploracji

1.2.1 Strategia ϵ -zachłanna

Strategia ϵ -zachłanna jest techniką eksploracji w której z prawdopodobieństwem ϵ losujemy akcję. W przeciwnym wyadku wybieramy najkorzystniejszą akcję według aktualnych wartości tablicy Q.

$$\pi(x,a) = \begin{cases} \text{losowa akcja} & \text{dla jeżeli rand()} < \epsilon \\ \arg\max_a Q(x,a) & \text{dla jeżeli rand()} \ge \epsilon \end{cases}$$

gdzie: ϵ - parametr strategii eksploracji, x - stan środowiska, a - akcja

1.2.2 Strategia oparta na rozkładzie Boltzmanna

Definiujemy strategię opartą na rozkładzie Boltzmanna, gdzie prawdopodobieństwo wyboru akcji a w stanie x jest proporcjonalne do eksponentu z wartości Q(x,a) podzielonej przez temperaturę T:

$$\pi(x, a) = \frac{\exp\left(\frac{Q(x, a)}{T}\right)}{\sum_{b} \exp\left(\frac{Q(x, b)}{T}\right)}$$

gdzie: $\pi(x, a)$ - prawdopodobieństwo wyboru akcji a w stanie x, Q(x, a) - wartość funkcji Q dla akcji a w stanie x, T - temperatura, kontrolująca wpływ wartości Q na prawdopodobieństwo.

1.3 Pseudokod

- Q tablica o wielkości (ilość możliwych stanów)x(ilość możliwych decyzji). Wartości tablicy inicjowane zerami symbolizują ocenę danego wyboru i są aktualizowane wraz z działaniem algorytmu,
- e ilość episodów działania algorytmu,
- x stan agenta (np. miejsce na planszy),
- g współczynniki dyskątujący,
- lr współczynnik uczenia,
- a akcja,
- r nagroda,
- stan absorbujący, jest stanem kończącym symulację.

```
\begin{array}{l} \text{begin} \\ Q <- \ 0; \ e <- \ 0 \\ \textbf{while} \ e < \text{emax do} \\ x_i <- \ \text{inicjuj stan poczatkowy} \\ \textbf{while} \ x_i \ \textbf{not in stany absorbujace do} \\ a_i <- \ \text{wybierz akcje} (x_i, \ Q_i) \\ r_i, \ x_i +1 <- \ \text{wykonaj akcje a_i} \\ \text{cel} <- \ r_i + \ g * \ \text{max}_a (Q_i (x_i +1, \ a)) \\ Q_i +1 <- \ Q_i + \ \text{lr} * (\text{cel} - \ Q_i (x_i, \ a_i)) \\ \text{end} \\ e <- \ e + 1 \\ \text{end} \\ \text{end} \\ \text{end} \\ \end{array}
```

2 Planowane eksperymenty numeryczne

Mam zamiar zbadać wpływ współczynnika uczenia oraz rodzaju algorytmu eksploracji na działanie algorytmu Q-learning. Wykorzystam do tego środowisko https://www.gymlibrary.dev/environments/toy_text/taxi/.

2.1 Założenia początkowe

- Testowane bądą średnia liczba kroków na episod oraz średnia nagroda na episod,
- Trenowanie przeprowadzę na 10000 episodów, a testowanie na 100 episodach,
- Strategie eksploracji będą testowane dla różnych wartości parametrów: ϵ , T, lr.,
- Podobnie współczynnik dyskatujący: g=0.9.

3 Uzyskane wyniki

3.1 Strategia ϵ -zachłanna

	$\epsilon=0.01$		$\epsilon=0.1$		$\epsilon=0.5$	
	avg steps	avg reward	avg steps	avg reward	avg steps	avg reward
lr = 0.1	13.89	6.57	14.31	2.64	28.98	-50.01
lr = 0.5	13.17	7.56	14.17	3.59	29.4	-49.44
lr = 1	13.63	7.01	14.88	2.7	28.92	-47.43

Table 1: Wyniki działania algorytmu dla różnych ϵ i lr

3.2 Strategia oparta na rozkładzie Boltzmanna

	T = 0.1		T = 0.5		T = 1	
	avg steps	avg reward	avg steps	avg reward	avg steps	avg reward
lr = 0.1	13.09	7.91	13.33	7.67	13.69	7.31
lr = 0.5	12.97	8.03	13.47	7.53	18.59	2.41
lr = 1	13.42	7.58	13.49	7.51	18.03	2.97

Table 2: Wyniki działania algorytmu dla różnych T i lr

4 Wnioski

- \bullet Optymalna wartość współczynnika uczenia, niezależnie od strategi eksploracji, jest bliska lr=0.5
- Optymalna wartość ϵ jest bliska $\epsilon=0.01$
- $\bullet\,$ Optymalna wartość Tjest bliska T=0.1
- \bullet Dla badanych wartości parametrów strategia oparta na rozkładzie Boltzmanna jest wydajniejsza niż strategia $\epsilon\text{-}\mathrm{zachłanna}$