19/04/2021	SAP JD - 6000 4200132 Name - Ayush Jain DIV - J Engineering Mathematics DATE:	20/212/02
	Tutorial 5: Successive Differentiation	80.00
	th 1 22 (8 HX 5) (8 178)	21
	Find the no destructive of (x+2)6x+3)	
	$T_{\theta} y = 2^{\infty} \sin^2 x \cos^2 x , \text{ find } y_{\theta}$	
2>		
-0-	If $y = 2x\sqrt{1-x^2}$, prove that	
3)	(DEPSETAD) + (DIASIAF) & F (AS) A	
	(1-x2) 4n+2 - (2n+1) x4n+1 - (n2-4) 4n =16	
4>	Ty y = eax cos2 x sin x , find yn	
5>	To $y = (\sin^{-1}x)^2$, prove that	
	(1-x2) yn+2 - (2n+1) x yn+1 - n2yn=0	
0	sund so, samil a standance	
	10000000 \$ 1000000000000000000000000000	
	11761X 11761X 0 5 1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

and deopa smed estimation parassipas raince to Successive a Herritary Solutions $\chi^2 = A + B + C$ (x+2)(2x+3) (x+2) (2x+3) $\chi^2 = A(2x+3)(x+2) + B(2x+3) + C(x+2)$ $\chi^{2} = \chi^{2}(2A) + \chi(7A + 2B + C) + (6A + 3B + 2C)$ A=1, 7A+2B+C=0, 6A+3B+2C=0 : On solving, A = 1 78 5 174, C= 90 x 300 20 1 test every, server is the $\frac{1}{2} \frac{4}{(x+2)} + \frac{9}{2(2x+3)} = \frac{2(2x+3)}{(x+2)^2} = \frac{2($ (Differentiate n times, we have $y_n = -4(-1)^n + 9(-1)^n + 2^n$ $(x+2)^{n+1} + 2(2x+3)^{n+1}$ yn = (-1)^n! \(\frac{9}{2} \) \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(

	Page 5	
	DATE:	
	- PAU	
:	-741 + 42 (1-x2) = -8x VI-x2	(2
	: - xy1 + y2 (1-x2) + 8x1-x2 = 0 + 110 stail according	
	1. 42 (1-x2) - xy1 + 4y = 0	
	Applying leibnitzis theorem term by term to be no derivative of	9
	: [Yn+2(1-x2)+n(-2x)4n+1+n(n-1)(-2)4n] - [4n+1/2(+n4n)]	
	: (1-x2) Yn+2 - (2n+1) x Yn+1 = (n2-4) Yn = 00 (2 = 0) (x = 0) - Hence Proved.	
4>	$y = e^{\alpha x} \cos^{3} x \sin x$	
(y: e. cosr.cosx.sinx	
	$y = \frac{e^{\alpha x} \left[\sin 3x + \sin x \right]}{4}$ $y = \frac{e^{\alpha x} \left[\sin 3x + \sin x \right]}{4}$ $y = \frac{e^{\alpha x} \left[\sin 3x + \sin x \right]}{4}$ $y = \frac{e^{\alpha x} \sin 3x}{4} + \frac{e^{\alpha x} \sin x}{4}$	+
	Differentiate n times, we get	
	4n= 1 x, e ax sin(3x+ no1) + 1 x2 e ax sin(x+no2).	
	where $r = \sqrt{a^2 + 9}$ $O_1 = ton^{-1}(3/a)$ $r_2 = \sqrt{a^2 + 1}$ $O_2 = ton^{-1}(1/a)$	

	Page 6	
	DATE:	
5>	y= (sin'x)2 = ==================================	•
	Differentiate wat &, "x.10x21. ("x.1) et + 10x-	
	41 = 2 sin 2 0 = ph 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
A.	ij Ji-x2 y = 2 sin' 2 most margett 2 stindist engy	
	Squaring, suitovisos a	
	$(1-x^2) 41^2 = 4 (sin^4 x)^2$	_0_
ं नार्थि में क	Differentiate wat x,	
	(1-x2)24142 +312(-12x) = 10441140 (1415) . Seal (1)	
	: 0 ~ 2) 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	: (1=x2)42 + 41(-x)-441 = 0 (1-x2)42 + 41(-x) = 2	
b	: (1=x2)42 - x41 - 44 = 0 (1-x2)42 - x31 - 2=0	(5)
	Applying leibnitz's theorem on term by term to a derivate of X,	get
	[Yn+2 (1-x2) + n yn+1 (-2x) + n(n-1) yn (-2)] - [yn+1 (x) + nyn]	-44,00
	[Naish Maria] Maria	
	: (1-x,) luts - (5U+1) x 1U+1 - U AU = 0	
	-Hence proved.	
	top oc. south a scale was the	
	(com) 10 No. 10 1 1 (100 100) 10 10 10 10	