TD n°7 Agents logiques

Introduction à l'intelligence artificielle et à la robotique D. Pellier

Exercice. 1 Considerez un vocabulaire composé de 4 proposition A, B, C et D. Combien existe t-il de modèles pour les énoncés suivants :

- 1. $(A \wedge B) \vee (B \wedge C)$
- $2. A \vee B$
- 3. $A \Leftrightarrow B \Leftrightarrow C$

Exercice. 2 Déterminer pour chacun des énoncés suivants s'ils sont valide, satisfables ou non. Vérifier votre réponse en donnant la table de vérité associée :

- 1. $Fumee \Rightarrow Fummee$
- 2. $Fumee \Rightarrow Feux$
- 3. $(Fumee \Rightarrow Feux) \Rightarrow (\neg Fumee \Rightarrow \neg Feux)$
- 4. $Fumee \lor Feux \lor \neg Feux$
- 5. $((Fumee \land Chaleur) \Rightarrow Feux) \Leftrightarrow ((Fumee \Rightarrow Feux) \lor (Chaleur \Rightarrow Feux))$
- 6. $(Fumee \Rightarrow Feux) \Rightarrow ((Feux \land Chaleur) \Rightarrow Feux)$
- 7. $Grand \lor Idiot \lor (Grand \Rightarrow Idiot)$
- 8. $(Grand \land) \lor \neg Idiot$

Exercice. 3 Prover les équivalences suivantes :

- 1. $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativité de \wedge
- 2. $(\alpha \vee \beta) \equiv (\beta \vee \alpha)$ commutativité de \vee
- 3. $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativité de \land
- 4. $((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma))$ associativité de \vee
- 5. $\neg(\neg \alpha) \equiv \alpha$ élimination de la double-negation
- 6. $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition
- 7. $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ élimination de l'implication
- 8. $(\alpha \equiv \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ élimination de l'équivalence
- 9. $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan
- 10. $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan
- 11. $(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$ distributivité de \wedge par rapport à \vee
- 12. $(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$ distributivité de \vee par rapport à \wedge