0 0

## 네트워크 기초

소프트웨어와 미래사회 2019



# 정보통신의 개념

- 정보통신이란?
  - 통신
    - 멀리 떨어진 두 개 이상의 개체 사이에 정보를 주고받는 행위
    - 통신을 구성하는 요소: '정보'와 그것을 전달하는 '수단'
    - 예) 전화: '음성'이라는 형태의 <u>정보</u>, '<u>전화기와 전화망</u>'이 통신 <u>수단</u>



PSTN(Public Switched Telephone Network) :공중교환전화망

- 컴퓨터네트워크 상에서 데이터 교환방식
  - □ 아날로그 통신과 디지털 통신의 차이: 정보의 표현 방식
    - □ 아날로그 신호는 연속성을 가진 정보로 표현
    - □ 디지털 정보는 0(off)과 1(on)의 값으로 표현되는 <u>불연속성을 가진 정보</u>로 표현
  - 컴퓨터 네트워크 : 디지털 통신망
  - 아날로그와 디지털 통신



- 직렬전송과 병렬전송
  - 직렬전송: 설치 간단, 비용 저렴, 속도 늦다
  - 병렬전송: 비용 비쌈, 단거리 전송에 사용 예) 컴퓨터와 프린터 연결



| 그림 7-6 병렬 전송 및 직렬 전송 비교

- 대역폭과 전송속도
  - 대역폭(Bandwidth): 단위 시간에 보내는 데이터의 양 / 전송속도의 기준

bps - Bit per Second

Mbps - Mega Bit per Second

Gbps - Giga Bit per Second

- 컴퓨터 네트워크의 분류
  - □ 네트워크 구조(Topology)에 의한 분류



| 그림 7-7 다양한 네트워크의 구성

#### (1) 버스 네트워크

- □ 하나의 공통된 케이블(버스)에 모든 컴퓨터와 디바이스를 직렬로 연결
- 장점: 네트워크의 구현과 확장이 쉽고 저렴
- 단점: 케이블의 길이와 노드 개수 한정, 노드 추가나 트래픽 증가에 따라 성능 감소
- □ 다른 네트워크에 비해 느리다
- □ 예) Ethernet망

#### (2) 스타 구조 네트워크

- 설치가 용이, 중앙 노드의 고장에 따른 전체 시스템 정지
- 네트워크 성능: 중앙 노드의 성능에 의존적
- 예) Wi-Fi: AP(Access Point)를 중심으로 일정 거리 내의 노드 존재

#### (3) 링 구조 네트워크

- 한방향으로 데이터 이동되는 구조
- 장점: 버스구조보다 먼 거리 연결 가능
- 단점: 한 노드의 문제만으로 전체 네트워크 정지, 구성장비가 비싸다

- 컴퓨터 네트워크의 분류
  - 운영형태에 의한 네트워크
    - (1) 클라이언트-서버 모델
      - □ 서버: 서비스 제공, 클라이언트: 서버에 연결되어 서비스를 요청
      - □ (예) 웹서버, e-메일 서버, FTP 서버
    - (2) P2P(Peer-to-Peer) 모델
      - 서버 기능을 하는 컴퓨터없이 망 구성 (주로 멀티미디어 컨텐츠 공유)
      - □ 예) Napster(1999), 소리바다: MP3 음악파일 공유
    - (3) 애드혹(Ad-Hoc) 네트워크 모델
      - □ 수많은 센서를 서로 연결하여 사용하는 유비쿼터스 센서 네트워크에서 이용되는 방식
      - 센서네트워크: 센서와 주변의 센서들이 서로 통신하며 정보를 전파



그림 7-8 다양한 네트워크 아키텍처: 클라이언트-서버 모델과 Peer-to-Peer 통신망

- 컴퓨터 네트워크의 분류
  - 데이터 전송방식에 따른 분류
    - (1) 패킷(Packet) 스위칭
      - □ 메시지를 패킷 단위로 분리하여 보내는 전송 방식
      - □ 가장 빠르게 도달하는 (트래픽이 덜 붐비는) 경로 탐색, 선택(경로는 매번 바뀜)
      - 전송효율이 높다(빨리 보낼 수 있다)
      - □ 인터넷에서 전송방식
    - (2) 서킷(Circuit) 스위칭
      - □ 데이터를 전송하기 전에 시작점과 도착점 사이에 회선을 구성(결정)
      - □ 안정적인 통신 가능, 전송효율은 떨어짐(정해진 회선을 그대로 유지해야 하므로)



그림 7-9 패킷 스위칭과 서킷 스위칭 비교

# 네트워크의 종류

- 서비스범위에 따른 유형 : PAN, LAN, WAN, 백본통신망
- 소유에 따른 유형 : 폐쇄형, 개방형
- □ 연결방식에 따른 유형 : 유선망, 무선망, 모바일망



│ 그림 7-10 컴퓨터 네트워크의 구분과 이를 지원하는 프로토콜

# 네트워크의 종류

- 소유에 따른 유형
  - (1) 폐쇄형 네트워크(Closed Network)
    - 일정한 자격을 갖춘 이용자만 이용하는 기업이나 기관내의 네트워크
    - 예) 인터넷 TV(IPTV): 매달 일정액의 사용료 지불
  - (2) 개방형 네트워크(Open Network)
    - 모든 이용자들에게 공개
    - 예) 인터넷: 기본적으로 모든 이용자들에게 공개

# 인터넷의 개념과 구성

- □ 인터넷 모델의 기반: 클라이언트-서버 구조
  - 서버 컴퓨터(Server Computer)
    - 서비스를 위한 정보들을 자신의 하드디스크에 보관. 이를 외부에 제공
    - □ 서버 프로그램이라 부르는 특정한 프로그램 필요,

예) Apache 또는 IIS 라는 웹 서버 프로그램(for Web), FTP 서버 프로그램(for FTP)

- □ 클라이언트(Client)
  - 서버에 접속하여 서버가 제공하는 정보를 얻기 위한 단말
  - □ 클라이언트 프로그램 필요,

예) Explorer-웹브라우져(for Web), FTP 클라이언트 프로그램(For FTP)

# 인터넷의 개념과 구성

- □ 인터넷의 특징 : 패킷(Packet)을 사용
  - 패킷: 인터넷에서 주고받는 정보의 단위 / 주소와 정보로 구성 (\*\*\*패킷으로나누는 이유: 회선독점 방지 및 공유 가능 / 다양한 경로 사용 가능)
- TCP 프로토콜
  - TCP: 1,500 바이트 단위로 정보를 묶어 패킷을 구성, IP층에 전달
- IP 프로토콜
  - 패킷을 받아 주소를 해석하고 다음 경로를 결정, 전송



#### 인터넷 주소체계

- 인터넷은 수많은 컴퓨터에 주소와 이름을 부여하여 구분
- NIC(Network Information Center)가 유지하고 관리하고, 한국에서는 NIC의 산하 기관인 KRNIC가 담당하고 있음

- IP 주소
  - 컴퓨터의 주소를 숫자로 나타내는 방식임
  - 상위 주소로부터 '.'으로 구별하여 영역을 차례로 나열하는 방식임 ex) 203.252.16.7
- 도메인 네임 (Domain Name)
  - '호스트.서브도메인(기관 이름).서브도메인(기관성격).최상위 도메인'의 순서로 나타냄 ex) 동국대학교 www.dongguk.edu

## 인터넷 주소체계

#### • 최상위 도메인의 종류 예

| 도메인 | 국가명          | 도메인 | 국가명                |
|-----|--------------|-----|--------------------|
| edu | 교육 기관        | kr  | 대한민국(Korea, South) |
| com | 회사(사업체)      | kp  | 북한(Korea, North)   |
| gov | 정부 기관        | jp  | 일본(Japan)          |
| int | 국제 기구        | са  | 캐나다(Canada)        |
| org | 비영리 공공 기관    | de  | 독일(Germany)        |
| net | 네트워크 관련 기관   | uk  | 영국(United Kingdom) |
| mil | 미국 국방성 관련 기관 | fr  | 프랑스(France)        |

#### • 서브 도메인의 종류

| 서브도메인 | 출처         | 의미          | 예제                       |
|-------|------------|-------------|--------------------------|
| ac    | Academy    | 교육/학술 기관    | http://www.snu.ac.kr     |
| re    | Research   | 연구소         | http://etri,re,kr        |
| со    | Company    | 회사          | http://www.samsung.co.kr |
| go    | Government | 정부 기관       | http://bluehouse.go,kr   |
| ne    | 비영리 공공 기관  | 네트워크나 게이트웨이 | http://hana.ne.kr        |

#### IPv6

- 32비트 주소체계인 IPv4의 문제점을 해결하기 위해 개발된 128비트 주소체계
- IPv4보다 수용능력이 무한대(3.4×10<sup>38</sup>개)에 가까운 차세대 인터넷 프로토콜
- PC는 물론 가전과 일반 기기까지 IP 주소를 부여하여 네트워크 연결

| 구분        | IPv4                | IPv6                          |  |
|-----------|---------------------|-------------------------------|--|
| 주소 길이     | 32번 트               | 128世 트                        |  |
| 표시 방법     | 8비트씩 4부분으로 10진수로 표시 | 16비트씩 8부분으로 16진수로 표시          |  |
| 주소 개수     | 약 43억 개             | 3.4×10 <sup>38</sup> 7H       |  |
| 주소 할당 방식  | 클래스 단위의 비순차적 할당     | 네트워크 규모, 단말기 수에 따른 순차<br>적 할당 |  |
| 브로드캐스트    | 있음                  | 없음                            |  |
| 헤더 크기     | 고정                  | 가변                            |  |
| QoS 제공    | 미흡                  | 제공                            |  |
| 보안        | IPSec 프로토콜 별도 설치    | IPSec 자체 지원                   |  |
| 서비스 품질    | 제한적 품질 보장           | 확장된 품질 보장                     |  |
| Plug&Play | 불가                  | 자동 구성 지원                      |  |

# 네트워크의 종류

#### (2) 무선망

- 대표적인 무선 LAN 망 : Wi-Fi 망,
- 케이블의 연결이 불필요, 설치 비용이 저렴
- 핫스팟: AP(Access Point-무선안테나) 중심의 반경 수십 미터 (최대 100m) 이내 컴퓨터가 신호를 받을 수 있는 지역



그림 7-14 AP를 사용한 무선 통신망 구조

# 네트워크의 종류

#### (3) 모바일망

- 무선망의 한계: 핫스팟 내에서만 사용가능, 이동 중 사용 불가
- □ 반경 수 킬로미터 지역을 셀(Cell) 단위로 나누어 망을 구성
- 이동 중에 이용, 고속 주행 중에도 이용
- □ 대부분 LTE(Long Term Evolution)기술에 기반 / Wimax(Worldwide Interoperability for Microwave Access)

Ⅰ 표 7-2 연결 형태에 따른 다양한 네트워크의 종류

|          | 유선망                            | 무선망                | 모바일망       |
|----------|--------------------------------|--------------------|------------|
| 매개체      | 트위스트 페어케이블, 동축 케이블,<br>광섬유 케이블 | 전파                 | 전파         |
| 표준       | Ethernet                       | Wi-Fi, Bluetooth 등 | WiBro, LTE |
| 최고 전송 속도 | 40Gbps(광섬유 케이블)                | 300Mbps(Wi-Fi)     | 500Mbps    |



그림 7-15 모바일망의 간략한 연결 구성

- 사용환경과 용도, 비용 등 여러조건을 고려하여 가장 적합한 통신 방식 이용
- 인터넷 연결 방식 (Web, WiFi, LTE 등) + 기기 간 직접 통신방식 (RFID, Bluetooth, Zigbee 등)
- 이외에도 다양한 통신 방식이 존재

#### [ 무선랜]

건물, 대학 캠퍼스, 상가, 가정 등과 같이 일정 공간이나 건물 내·외부에서 무선 주파수나 빛을 사용하여 접근점(Access Point)으로부터 각 단말까지 통신을 제공하는 기술

- 와이파이 (WiFi, Wireless Fidelity)
  - 무선 접속 장치가 설치된 곳에서 전파나 적외선 전송 방식을 이용하여 일정 거리 안에서 무선 인터넷을 할 수 있는 근거리 통신망
  - 와이파이를 사용하기 위해서 접속할 수 있는 지점인 액세스 포인트(AP ; Access Point)가 필요
  - 약 50~100m 근거리 통신 가능





- 블루투스 (Bluetooth)
  - 단거리(15m 이내) 라디오 전파 통신을 사용, 무선으로 여러 기기들을 연결
  - 전자 장치들이 서로 접근하면, 자동으로 동기화와 연결이 되어 통신이 가능
  - 라디오파를 이용해 송·수신되므로, 어느 정도 두께의 벽은 그대로 통과

- RFID 시스템(Radio Frequency IDentification System)
  - 사물에 RFID 태그(RFID Tag)를 부착하여 사물의 정보를 확인하고 주변 상황 정보를 감지하는 전자태그 및 센싱 기술
  - 원격처리, 관리 사물간 정보교환 등





- 지그비 (ZigBee)
  - 저가격/초저전력 센서 네트워크 (평균 전력소모가 50mW 정도)
  - 하나의 네트워크에 디바이스 255개 연결이 가능
  - 고속 대용량 정보전달보다 긴 배터리 시간과 일정거리 이상의 전송 확보가 필수적인 제어대상 기기에 적합
  - 저용량 데이터로 기기를 통합 제어하는 용도에 적합
  - 동작, 빛, 압력, 기온, 습도 등의 센서와 송·수신기를 결합하여 대규모 네트워크 구성이 가능

|          | WiFi    | Bluetooth            | ZigBee                      |
|----------|---------|----------------------|-----------------------------|
| 통신 거리    | 100m    | 10 m                 | 10 - 300 m                  |
| 통신 속도    | 11 Mbps | 1 Mbps               | 250 kbps                    |
| 주파수      | 2.4 GHz | 2.4 GHz              | 868MHz, 916 MHz,<br>2.4 GHz |
| 전력 소비    | 높음      | 중간                   | 낮음                          |
| 배터리 수명   | 몇 시간    | 몇 일                  | 몇 년                         |
| 연결 노드    | 50      | 8                    | 216                         |
| 구성       | Star    | Star                 | Star, Cluster, Mesh         |
| 연결 지속 시간 | 장시간     | 중간                   | 단시간                         |
| 접속 시간    | 3 s     | 10 s                 | 30 ms                       |
| 보안       | SSID    | PIN, 64 bit, 128 bit | 128 bit, AES                |

[ 대표적인 무선통신 기술 비교]



- 비콘 (Beacon)
  - 블루투스 저에너지(BLE) 기술 기반 근거리 데이터 통신 기술
  - 근거리 내의 스마트 기기를 감지, 각종 정보와 서비스를 제공
  - 비콘은 위치를 알려주는 기준점 역할을 수행하고 실제 정보 전달은 블루투스, 적외선 등의 근거리 통신 기술을 기반으로 이루어짐
  - 동전 크기의 전지로 1년 작동, 최대 50m까지 통신



- NFC (Near Field Communication)
  - 10cm 이내의 가까운 거리에서 다양한 무선 데이터를 주고받는 통신 기술
  - 보안성 우수, 지불결제서비스 등

| 구분    | 바코드                          | RFID 태그                                                                                              |
|-------|------------------------------|------------------------------------------------------------------------------------------------------|
| 저장 능력 | 2 <sup>7</sup>               | 2 <sup>128</sup> 이상 가능<br>(바코드에 비해 최대 6,000배의 저장 능력)                                                 |
| 저장 정보 | 국가, 제조업체, 상품품목에<br>대한 정보만 입력 | 국가, 제조업체, 상품품목 외 생산일자, 유통기간, 가격정<br>보, 조리방법 등 가능                                                     |
| 상품 인식 | 동일상품 동일 ID                   | 동일상품 개별 ID                                                                                           |
| 예제    | 농협에서 납품받은 시금치                | 산지에서 8월 31일 오후 6시에 출하되어, 9월 1일 오전 7시에 가공센터로부터 출고되었으며, 오후 10시에 매장에 입고되어, A33번 곤돌라에서 진열된 10개 중 7번째 시금치 |

[ 바코드 시스템과 RFID 태그 비교]

#### • 참고) QR 코드



- 'Quick Response'의 약자로 '빠른 응답'을 얻을 수 있다는 의미
- 활용성이나 정보성 면에서 기존의 바코드보다는 진일보한 코드 체계



[ 주요 무선 근거리 네트워크 기술 포지셔닝 맵]

# 인터넷의 개념과 구성

#### ■ 백본 네트워크(기간망)

- □ 네트워크의 최상위 레벨
- 도시와 도시 또는 넓은 지역과 넓은 지역을 연결
- 보통 수십 Gbps~ 수백 Gbps 정도의 광케이블



| 그림 7-23 한국과 미국의 백본 네트워크

# 인터넷의 개념과 구성

- 전세계 인터넷망 (백본 네트워크) 연결
  - 해저 광케이블
    - □ 자연현상의 영향을 받지 않음, 케이블 설치 비용 큼
  - 위성통신
    - 송수신 영역 매우 넓음
    - 무선통신 방식으로 자연현상의 영향 → 전송시간 지연 발생 가능성



출처: http://visual.ly/internets-undersea-world

그림 7-24 해저 광케이블과 위성통신을 이용한 인터넷 망

# THANK YOU FOR LISTENING!