דפי נוסחאות לבחינת הגמר (נוסחאות עם רקע אפור לא רלוונטיות ל 2024א)

חלק א: סטטיסטיקה תיאורית

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 ; $\overline{x} = \frac{\sum_{i} x_i \cdot f(x_i)}{n}$; $MR = \frac{x_{\max} + x_{\min}}{2}$

מדדי פיזור:

$$S_{x}^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n} = \frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - \overline{x}^{2}$$

$$S_{x}^{2} = \frac{\sum_{i} (x_{i} - \overline{x})^{2} f(x_{i})}{n} = \frac{\sum_{i} x_{i}^{2} f(x_{i})}{n} - \overline{x}^{2}$$

$$S_{x} = \sqrt{S_{x}^{2}}$$

 $x' = b \cdot x + a$ אזי: ארנספורמציות:

$$Mo' = b \cdot Mo + a$$
 , $Md' = b \cdot Md + a$, $MR' = b \cdot MR + a$, $\overline{x}' = b \cdot \overline{x} + a$
$$s_{x'}^2 = b^2 s_x^2 \qquad \qquad s_{x'} = |b| s_x$$

ממוצע משוקלל ושונות מצורפת:

$$\overline{\overline{x}} = \frac{\sum_{j=1}^{k} \overline{x}_{j} n_{j}}{N} \quad ; \quad N = \sum_{j=1}^{k} n_{j} \quad ; \quad s_{c}^{2} = \frac{\sum_{j=1}^{k} n_{j} s_{j}^{2}}{N} + \frac{\sum_{j=1}^{k} n_{j} (\overline{x}_{j} - \overline{\overline{x}})^{2}}{N}$$

$$Z_{x}=rac{x-ar{x}}{s_{x}}$$
מדדי מיקום יחסי:

$$C_x = \left[\frac{(x-L_0)}{(L_1-L_0)} \cdot f(x_m) + F(x_{m-1}) \right] \cdot \frac{100}{n} \qquad ; \qquad x_C = L_0 + \frac{\frac{n \cdot C}{100} - F(x_{m-1})}{f(x_m)} \cdot (L_1 - L_0)$$

התפלגות נורמלית:

$$P(Z \le Z_a \) = \Phi(Z_a) \ P(Z > Z_a \) = 1 - \Phi(Z_a)$$

$$P(Z_a < Z \le Z_b \) = \Phi(Z_b) \ - \Phi(Z_a) \qquad a < b \ ag{a < b}$$

מדדי קשר:

$$\lambda_{y/x} = rac{L_y - L_{y/x}}{L_y}$$
 ; $\lambda_{x/y} = rac{L_x - L_{x/y}}{L_x}$

$$r_c = \sqrt{\frac{\chi^2}{n(L-1)}} \qquad \chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i} \qquad ; \qquad \phi = \sqrt{\frac{\chi^2}{n}} = \sqrt{\frac{(a \cdot d - b \cdot c)^2}{e \cdot f \cdot r \cdot k}}$$

$$r_{s} = 1 - \frac{6\sum_{i=1}^{n} d_{i}^{2}}{n(n^{2} - 1)}$$

$$r = \frac{cov(x,y)}{s_x \cdot s_y} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{n \cdot s_x \cdot s_y} = \frac{\sum_{i=1}^n x_i y_i - n \cdot \bar{x} \cdot \bar{y}}{n \cdot s_x \cdot s_y}$$

$$=\frac{\sum_{i=1}^{n}x_{i}y_{i}-n\cdot\bar{x}\cdot\bar{y}}{\sqrt{(\sum_{i=1}^{n}x_{i}^{2}-n\bar{x}^{2})(\sum_{i=1}^{n}y_{i}^{2}-n\bar{y}^{2})}}=\frac{n\sum_{i=1}^{n}x_{i}y_{i}-(\sum_{i=1}^{n}x_{i})(\sum_{i=1}^{n}y_{i})}{\sqrt{[n\sum_{i=1}^{n}x_{i}^{2}-(\sum_{i=1}^{n}x_{i})^{2}][n\sum_{i=1}^{n}y_{i}^{2}-(\sum_{i=1}^{n}y_{i})^{2}]}}$$

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n} = \frac{\sum_{i=1}^{n} x_i y_i}{n} - \bar{x} \cdot \bar{y}$$

קו הרגרסיה (ניבוי Y על פי X):

$$\widetilde{y} = bx + a$$
 ; $b = \frac{rs_y}{s_x}$; $a = \overline{y} - b\overline{x}$; $r^2 = \frac{s_{\widetilde{y}}^2}{s_y^2}$

$$\widetilde{x} = b' y + a'$$
 ; $b' = \frac{rs_x}{s_y}$; $a' = \overline{x} - b' \overline{y}$; $r^2 = \frac{s_{\widetilde{x}}^2}{s_x^2}$

$$s_y^2 = s_{\tilde{y}}^2 + s_{y-\tilde{y}}^2$$
; $s_x^2 = s_{\tilde{x}}^2 + s_{x-\tilde{x}}^2$

חלק ב: הסתברות

קומבינטוריקה (חישוב אפשרויות):

$$n^k$$
עם סדר עם החזרה

$$(n)_k = rac{n!}{(n-k)!} = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)$$
 עם סדר ללא החזרה

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$
בלי סדר ללא החזרה

$$n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 1$$
 $0! = 1$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 בעולות בקבוצות:

$$P(A^c) = P(\overline{A}) = 1 - P(A)$$
 מאורע משלים למאורע \overline{A} -ב או ב- \overline{A} או ב- \overline{A}

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$
 $P(A) > 0$:הסתברות מותנית:

$$P(A \cap B) = P(A) \cdot P(B / A)$$

$$P(B \, | \, A) = P(B \, | \, \overline{A}) = P(B)$$
 הם מאורעות בלתי תלויים אם ורק אם B-1 A

$$P(A \cap B) = P(A) \cdot P(B)$$
 כלומר,

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 $k = 0,1,2,...,n$ אמ $X \sim B(n,p)$ אם $X \sim B(n,p)$

$$E(X) = \sum_{i} x_{i} P(x_{i}) = \mu$$

$$V(X) = \sum_{i} (x_i - \mu)^2 P(x_i) = \sum_{i} x_i^2 P(x_i) - \mu^2 = \sigma^2$$

$$E(X) = np$$
 ; $V(X) = npq$: אם $X \sim B(n, p)$

$$E(Y) = bE(X) + a$$
 אם $Y = bX + a$ אם $Y = bX + a$

$$V(Y) = b^2 V(X)$$
 ; $\sigma_Y = |b| \sigma_X$

$$X_n,\ldots,X_2,X_1$$
 משתנים מקרים אזי:

$$E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n)$$

אם X_n,\ldots,X_2,X_1 משתנים מקריים בלתי תלויים בזוגות, אזי:

$$V(X_1 + X_2 + \dots + X_n) = V(X_1) + V(X_2) + \dots + V(X_n)$$

 $\Phi(z)$, פונקציית ההתפלגות המצטברת של משתנה נורמלי סטנדרטי,

	- (2) /								_,	
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
١							2427			
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.0	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
1 4.7	.,,,,,,,	.//20	.,,,,,	.,,,,	.,,,,,	.,,,,,	.,,,,,	.,,,,,	.,,,,,,	.,,,,,
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
		.,,,,,								
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
			2000							

סבלת עזר: z כפונקציה של

$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z
.50	0	.91	1.341	.995	2.576
.55	.126	.92	1.405	.999	3.090
.60	.253	.93	1.476	.9995	3.291
.65	.385	.94	1.555	.9999	3.719
.70	.524	.95	1.645	.99995	3.891
.75	.674	.96	1.751	.99999	4.265
.80	.842	.97	1.881	.999995	4.417
.85	1.036	.98	2.054	.999999	4.753
.90	1.282	.99	2.326	.9999999	5.199