Interpreting Regression *p*-values as Posterior Probabilities

STAT 587 (Engineering) Iowa State University

November 3, 2020

Regression *p*-values

Recall the regression model

$$Y_i \stackrel{ind}{\sim} N(\mu_i, \sigma^2), \qquad \mu_i = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p}$$

A common hypothesis test is

$$H_0: \beta_j = 0$$
 versus $H_A: \beta_j \neq 0$

which has

$$p$$
-value $=2P\left(T>\left| t\right|
ight)$

where $T \sim t_{n-(p+1)}$ and $t = \hat{\beta}_j/SE(\beta_j)$.

Example Regression Output

```
Call:
lm(formula = Speed ~ Conditions * log(NetToWinner), data = Sleuth3::ex0920)
Residuals:
    Min
                   Median
                                30
                                        Max
-1.50551 -0.32127 -0.00219 0.35201 1.13026
Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                               33.23367
                                           0.34584 96.095 < 2e-16 ***
ConditionsSlow
                               -2.04517
                                           0.72404 -2.825
                                                           0.0056 **
log(NetToWinner)
                                0.27830
                                           0.02942
                                                    9.458 5.88e-16 ***
ConditionsSlow:log(NetToWinner) 0.08664
                                           0.06583
                                                    1.316 0.1908
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4978 on 112 degrees of freedom
Multiple R-squared: 0.7015, Adjusted R-squared: 0.6935
F-statistic: 87.75 on 3 and 112 DF. p-value: < 2.2e-16
```

Bayesian Posterior Probabilities

With prior $p(\beta, \sigma^2) \propto 1/\sigma^2$, we have

$$\beta_j | y \sim t_{n-(p+1)} \left(\hat{\beta}_j, SE(\beta_j)^2 \right).$$

Thus

$$P(\beta_j > 0 | y) = P\left(\frac{\beta_j - \hat{\beta}_j}{SE(\beta_j)} > \frac{0 - \hat{\beta}_j}{SE(\beta_j)} \middle| y\right) = P(T > -t)$$

which is very close to

$$p$$
-value = $2P(T > |t|)$.

Visualizing Posterior Distribution

Visualizing Posterior Distribution

Visualizing Posterior Distribution

Interpreting Regression *p*-values as Posterior Probabilities

Suppose we have a *p*-value for $H_0: \beta_j = 0$ vs $H_A: \beta_j \neq 0$. Then

• If $\hat{\beta}_j < 0$, then

$$P(\beta_j > 0|y) = p$$
-value/2.

• If $\hat{\beta}_j > 0$, then

$$P(\beta_j < 0|y) = p$$
-value/2.

Alternatively,

• If $\hat{\beta}_j < 0$, then

$$P(\beta_j < 0|y) = 1 - p$$
-value/2.

• If $\hat{\beta}_j > 0$, then

$$P(\beta_i > 0|y) = 1 - p$$
-value/2.

Example Interpretation

Estimate Std	. Error t	value	Pr(> t)
33.23	0.35	96.09	0.00
-2.05	0.72	-2.82	0.01
0.28	0.03	9.46	0.00
er) 0.09	0.07	1.32	0.19
	33.23 -2.05 0.28	33.23 0.35 -2.05 0.72 0.28 0.03	-2.05 0.72 -2.82 0.28 0.03 9.46

$$\begin{array}{ll} \text{Intercept} & P(\beta_0>0|y)\approx 1 \\ \text{ConditionsSlow} & P(\beta_1<0|y)\approx 0.99 \\ \log(\text{NetToWinner}) & P(\beta_2>0|y)\approx 1 \\ \text{ConditionsSlow:log(NetToWinner)} & P(\beta_3>0|y)\approx 0.90 \end{array}$$

Summary

Suppose we have a regression p-value for $H_0: \beta_j = 0$ vs $H_A: \beta_j \neq 0$. Then

• If $\hat{\beta}_j < 0$, then

$$P(\beta_j < 0|y) = 1 - p$$
-value/2.

• If $\hat{\beta}_j > 0$, then

$$P(\beta_j>0|y)=1-p\text{-value}/2.$$