Усреднение гиперболических уравнений: операторные оценки при учёте корректоров

Дородный Марк Александрович Санкт-Петербургский государственный университет mdorodni@yandex.ru Соавторы: Суслина Т.А.

Секция: Уравнения в частных производных, математическая физика и спектральная

теория

В $L_2(\mathbb{R}^d;\mathbb{C}^n)$ рассматривается самосопряжённый сильно эллиптический дифференциальный оператор A_ε второго порядка. Предполагается, что коэффициенты оператора A_ε периодичны и зависят от \mathbf{x}/ε , где $\varepsilon>0$. Мы изучаем поведение операторов $\cos(\tau A_\varepsilon^{1/2})$ и $A_\varepsilon^{-1/2}\sin(\tau A_\varepsilon^{1/2})$ при малом ε и $\tau\in\mathbb{R}$. Результаты применяются к усреднению решений задачи Коши для гиперболического уравнения $\partial_\tau^2\mathbf{u}_\varepsilon(\mathbf{x},\tau)=-(A_\varepsilon\mathbf{u}_\varepsilon)(\mathbf{x},\tau)$ с начальными данными из специального класса. При фиксированном τ получена аппроксимация решения $\mathbf{u}_\varepsilon(\cdot,\tau)$ по норме в $L_2(\mathbb{R}^d;\mathbb{C}^n)$ с погрешностью $O(\varepsilon^2)$, а также аппроксимация решения по норме в $H^1(\mathbb{R}^d;\mathbb{C}^n)$ с погрешностью $O(\varepsilon)$. В этих аппроксимациях учитываются корректоры. Отслежена зависимость погрешностей от параметра τ .

Исследование выполнено за счёт гранта Российского научного фонда № 22-11-00092, https://rscf.ru/project/22-11-00092/.