

Habitable Evaporated Cores

Converting **Mini-Neptunes** into **Super-Earths** in the Habitable Zone of M Dwarfs

223rd AAS — January 8, 2014

Rodrigo Luger, Rory Barnes, Eric Lopez, Jonathan Fortney, Brian Jackson, and Victoria Meadows

The Big Picture

M dwarfs: the best targets Terrestrial planets are easiest to detect around low-mass stars

In situ formation unlikely Rocky planets in the HZ could Baymond et al. (2007), Lissauer et al. (2007) be small and volatile-poor

Planets can migrate Gas-rich, volatile-rich planets can migrate into the HZ

Planets can lose mass Roche lobe overflow and XUV-Erkaev et al. (2007), Lopez et al. (2012) driven hydrodynamic escape

TESS Observations of these planets are just around the corner

The Model

Parameters

$$M_p = 3.5M_{\oplus}$$
 $f_{H_0} = 0.25$
 $a_0 = 0.0165 \text{ AU}$ $e_0 = 0.3$
 $M_* = 0.08M_{\odot}$ $\tau_{\text{CTL}} = 1 \text{ s}$
 $L_{\text{sat}} = 10^{-3}L_*$ $\epsilon_{\text{XUV}} = 0.3$

$$M_p = 3.5M_{\bigoplus}$$
 $e_0 = 0$
 $M_* = 0.08M_{\odot}$ $\tau_{CTL} = 1 \text{ s}$
 $L_{\text{sat}} = 10^{-3}L_*$ $\epsilon_{\text{XUV}} = 0.3$

Gas-rich mini-Neptunes that migrate **early** into the **IHZ** form super-Earths.

Let's take a closer look...

$$M_p = 3.5 M_{\oplus}$$
 $e_0 = 0$ $M_* = 0.08 M_{\odot}$ $\tau_{CTL} = 1 \text{ s}$ $L_{sat} = 10^{-3} L_*$ $\epsilon_{XUV} = 0.3$

Gas-rich mini-Neptunes that migrate **early** into the **IHZ** form super-Earths.

Let's take a closer look...

The Effect of Eccentricity

Conclusions

- **®** HECs can form from mini-Neptunes with f_{H_0} ≥ 0.25 scattered into the HZ of $M \le 0.2 M_{\odot}$ M dwarfs
- **W** HECs more likely for **high** f_{H_0}
- **W** HECs form early ($t \lesssim 50 \text{ Myr}$)
- Hydrodynamic escape, Roche lobe overflow, tidal evolution and thermal evolution all play a critical role in forming HECs
- This process may be the primary mechanism for the formation of habitable planets around M dwarfs.
- HECs may be observed in the next few years

