AD-A183 366 FULL-INFORMATION ITEN FACTOR ANALYSIS OF TEST FORMS FROM THE ASVAB (ARMED (U) NATIONAL OPINION RESEARCH CENTER CHICAGO IL M F ZINOMSKI ET AL APR 87 UNCLASSIFIED MRC-87-1-REV N88844-85-C-9781 F/G 12/3 AD-A183 366 1/1 NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963-A

CONTRACTOR OF THE PROPERTY OF

FULL-INFORMATION ITEM FACTOR
ANALYSIS OF TEST FORMS FROM THE
ASVAB CAT POOL
Michele F. Zimowski
National Opinion Research Center
and
R. Darrell Bock
University of Chicago
MRC Report #87-1 (Revised)

April, 1987 Methodology Research Center 1155 E. 60th Street Chicago, Illinois 60637

This research was supported in part by Air Force Project #77191846, by the Office of Naval Research Contract #N00014-85-C-0781, and by National Science Foundation grant #BNS-8511774.

Research in whole or in part is permitted for any purpose of the United States Government. Approved for public release; distribution unlimited.

ADA183366

	REPORT DOCUM	MENTATION I	PAGE		
A REPORT SECURITY CLASSIFICATION	7.2	16. RESTRICTIVE	MARKINGS		
Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	AVAILABILITY O	E RESORT	
La. SECURITY COASSINGLION ACTHURITY		1			
15. DECLASSIFICATION , DOWNGRADING SCHEDU	LE	1	r public re n unlimited		
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	S. MONITORING	ORGANIZATION R	EPORT NUMBER(S)
MRC Report #87-1					
Sa. NAME OF PERFORMING ORGANIZATION	66. OFFICE SYMBOL	7a. NAME OF MO		=	
NORC	(If applicable)	1	-	esearch Prog ch (Code 114	
6c. ADDRESS (City, State, and ZIP Code)	·	7b. ADDRESS (Cir			211)
to a most control to the control to		800 N. Quin			
1155 E. 60th, Chicago, IL	60637		VA 22217-5	000	
Ba. NAME OF FUNDING SPONSORING	18b. OFFICE SYMBOL	9 PROCUREMENT	INSTRUMENT IO	ENTIFICATION NU	MBER
ORGANIZATION	(If applicable)	,			
		N00014-85-			· · · · · · · · · · · · · · · · · · ·
Sc. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF F			
		PROGRAM ELEMENT NO.	PROJECT	TASK NO	WORK UNIT
		61153N	RR04206	RR04204-01	
11. TITLE (Include Security Classification)		· L		-1	1
Full-Information Item Facto	r Analysis of Te	est forms fro	m the ASVAB	CAT Pool	
: 2. PERSONAL AUTHOR(S) R. Darrell Bock and Michele	F. Zimowski				
13a. TYPE OF REPORT 13b. TIME C	OVERED	14 DATE OF REPO			COUNT
fINAL FROM_	to	APRIL,	987	51	
16. SUPPLEMENTARY NOTATION					
	· •				
:7 COSATI CODES	18. SUBJECT TERMS (Continue on revers	e if necessary an	d identify by bloc	k number)
FIELD GROUP SUB-GROUP	-				
	†				
19. ABSTRACT (Continue on reverse if necessary	and identify by block	number)			
Data for nine tests in the c					
Aptitude Battery were subjected					
method. Because each of the te					
been randomly assigned, the sta					
analyses. Although numerous it had to be excluded from the ite					
interpretable factor solutions					
factor after the first was test					
ing to the increase in marginal	maximum likelih	nood as succe	ssive facto	rs were adde	d. To allow
for possible cluster effects in	the sampling of	respondents	, a design	effect of two	o was assumed
when computing these test stati					
occasional item format effects, Science showed a physical scien					
forms by a small chemistry fact					
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT		21 ABSTRACT SE			
UNCLASSIFIED/UNLIMITED SAME AS	RPT DTIC USERS				
1. Ranniel Date	•	(312) 16 2		H) 22c. OFFICE SY	MBOL
وجلخبطان بطانا فيكالينني مسركي الكالان فانفطارا لينوج ينزدون والجورورية	PR edition may be used u			CLASSISICATION (DE THE DAGE

#19. (Continued)

arithmetic and other calculation problems. Paragraph Comprehension was unifactorial, as was, essentially, Auto Information and Electronics Information. Shop Information showed a clear distinction between Metal Shop vs. Carpentry and General Contracting. Mathematical Knowledge and Mechanical Comprehension showed small factors related to specific types of mathematical operations, on the one hand and certain classes of mechanical relationships, on the other. The most interesting finding was a clearly significant two factor solution for Word Knowledge. One of these factors appears to represent vocabulary drawn from literary sources and recreational reading, and the other from television and the news media. Implications of these findings for vocational testing are discussed.

ABSTRACT

Data for nine tests in the computerized adaptive test pool for the Armed Services Vocational Aptitude Battery were subjected to item factor analysis by the marginal maximum likelihood method. Because each of the tests was represented by three distinct forms to which items had been randomly assigned, the stability of the results could be examined by comparing independent analyses. Although numerous items in this pool were too easy for the sample of subjects and had to be excluded from the item factor analysis, the remaining items gave clear and generally interpretable factor solutions on all tests. The statistical significance of each principal factor after the first was tested by means of the large sample χ^2 statistic corresponding to the increase in marginal maximum likelihood as successive factors were added. To allow for possible cluster effects in the sampling of respondents, a design effect of two was assumed when computing these test statistics. Apart from minor factors associated with doublets and occasional item format effects, the main factors were all interpretable. Most notably, General Science showed a physical science and biological science factor, accompanied in two of the forms by a small chemistry factor. Arithmetic Reasoning showed a distinction between business arithmetic and other calculation problems. Paragraph Comprehension was unifactorial, as was, essentially, Auto Information and Electronics Information. Shop Information showed a clear distinction between metal shop vs. carpentry and general contracting. Mathematical Knowledge and Mechanical Comprehension showed small factors related to specific types of mathematical operations and certain classes of mechanical relationships, respectively. The most interesting finding was a clearly significant two factor solution for Word Knowledge. One of these factors appears to represent vocabulary drawn from literary sources and recreational reading, and the other from television and the news media. Implications of all of these findings for vocational testing are discussed.

A-1

FULL INFORMATION ITEM FACTOR ANALYSIS OF TEST FORMS FROM THE ASVAB CAT POOL

by

Michele F. Zimowski National Opinion Research Center

and

R. Darrell Bock
The University of Chicago

June 4, 1987

Item factor analysis serves important functions in test development based on item response theory (IRT). When implemented by maximum likelihood estimation, it provides likelihood ratio tests of the statistical significance of factors successively added to the model. In large samples, these tests provide a rigorous check on the unidimensionality required by conventional item response models. Although failure to demonstrate statistical significance, which necessarily depends upon sample size, does not imply the absence of such factors in the population, it does indicate that the sample has insufficient information to justify the identification and interpretation of the putative factors.

The estimated loadings on a statistically significant factor are also informative. Inspection of rotated loadings helps identify items belonging to minor factors that are responsible for conditional dependency among responses. These factors sometimes arise in the form of "doublets" due to excessive similarity in the formats of a pair of items. When they appear on the same test form, doublets are often a sign of poor item writing practices. They tend to occur when the item writer merely varies a previous item rather than creating a new item based on an independent idea. Item factor analysis is an effective technique for detecting such derelictions.

On the positive side, item factor analysis can detect item clusters that correspond to important, but unsuspected, components of the cognitive tasks required by the items. Often, the nature of the component can be inferred

from similarities in the content and format of the items that compose the cluster. In those occasional cases where a statistically significant factor emerges for which the item content offers no clear interpretation, the analysis signals that new data from specially constructed form items and tests may be necessary to identify the cognitive basis of the factor. An example of one such difficult-to-identify factor is found in the present study.

Although factors are ordinarily discussed in terms of communalities between tests or items, it is well to remember that they imply dimensions of individual differences in the population of examinees. Distinct factors may arise because subgroups of persons in the population having similar education or experience respond differentially to different classes of items. Such factors are often apparent in educational tests when the content is drawn from a wide range of curricular topics taught in a variety of courses. Persons following different programs of study then become distinct populations in respect to their typical pattern of responses to the test items. As we shall see, tests of general science and mathematics knowledge are likely to show these effects, while a different type of subgroup effect appears in word knowledge.

In the present application, the item factor analyses are intended only as explorations of the data. They are not meant to support subtest scoring or multidimensional adaptive testing. Nevertheless, those solutions that show minor common factors can provide a basis for estimating scores on the first principal factor if a method of scoring is used that does not assume conditional independence. In section 5, we discuss a procedure for estimating such scores when the partial correlation matrix for the remaining common factors is given. Item factor analysis provides a method of estimating the partial correlation matrix required in that procedure.

1. Purpose and Background

STATE OF THE PARTY OF THE PARTY

The purpose of the present study is to examine the factor composition of nine power tests developed for a prospective computerized adaptive (CAT) version of the Armed Services Vocational Aptitude Battery (ASVAB). The present tests consist of entirely new items written for the Omnibus Item Pool and Test Development Project of the Air Force Human Resources Laboratory (Contract F-33615-81-0020). These tests are unusually favorable for item factor analysis in that each is represented in three or more forms composed of randomly assigned items. The existence of randomly replicated forms provides an opportunity to check the reproducibility of the factor patterns

obtained in the analyses. In addition, the item writing instructions and strategies are thoroughly documented in a technical report by Prestwood, Vale, Massey, and Welsh (1985). Any communalities of item sources or content that might arise from the item writing procedures are potentially identifiable from this information.

An obstacle to the interpretation of the factor patterns is that the items are still secure and cannot be exhibited in a report of this kind. In describing the results, we have tried to convey verbally the attributes of the items that appear to affect the factor structure. Readers who have access to the original test booklets can examine our interpretation in the light of the tables of factor loadings presented at the end of this report.

2. The data

Data for the present study were collected originally to calibrate an item pool for a computerized version of the Armed Services Vocational Aptitude Battery. The Prestwood, Vale, Massey, and Welsh (1985) report contains a description of the sample and the methods of data collection. Forms of the nine power tests of the ASVAB constructed from items previously field tested in Recruit Training Centers (RTC) were assembled in 43 dist. It test booklets. Items for each test were assigned randomly to the corresponding booklets and ordered randomly within booklets. The number of booklets per test and items per booklet are shown in Table 1 taken from Table 28 of Prestwood, Vale, Massey, and Welsh (1985). In the present study, we have analyzed data from the first three booklets of each test for which 3 or 4 booklets were available, and booklets 1, 3 and 5 of those tests comprising 5 or more booklets. In all, 24 distinct factor analyses were performed.

Subjects for the study were young men and women who had volunteered for enlistment in the Armed Services and were undergoing qualifications testing. Both the tests from the CAT pool and an operational ASVAB were administered at Military Entrance Processing Stations (MEPS) and by Mobile Examining Teams (METs) thoughout the nation. Each examinee in the study took one of the 43 CAT pool forms before taking the ten tests of an operational form of the ASVAB. Item responses for these two phases of testing were marked by the examinees on separate answer sheets identified by the examinee's social security number. The data were later collated by matching on those numbers. Unfortunately, errors made by the examinees in recording their social security numbers on machine scorable answer sheets

resulted in about 20 percent of unmatched forms. Because the present study is based on the master file of matched data, it is based on a range of sample sizes from 2,468 to 2,952 cases, rather than the 2,888 to 3,510 cases in the original data.

The effect of this inadvertent selection on a cognitive criterion (coding of a social security number), together with a general tendency of the performance of these examinees to exceed that of the trainees who took the experimental versions of the items a year earlier (possibly with poorer motivation; see Prestwood, Vale, Massey, and Welsh, 1985), resulted in a substantial number of items having sample difficulties (or, more correctly, "facilities") in excess of 90 percent correct. In addition, a few items were excessively difficult at less than 10 percent correct. Because items at both these extremes are virtually noninformative for item factor analysis, and can cause difficulties in obtaining convergence of the iterative maximum likelihood solution, we excluded all items with sample facilties greater than .925 or less than .075.

3. Analysis

The TESTFACT implementation (Wilson, Wood, & Gibbons, 1984) of the full-information method of item factor analysis, introduced by Bock and Aitkin (1981) and discussed by Bock, Gibbons, and Muraki (1986), was used in this study. The procedure is based on the Thurstone multiple factor model and assumes a multivariate normal distribution of ability. Normal ogive item response functions are assumed. In addition, because the examinees were explicitly instructed to guess if they did not know an answer, a nonzero lower asymptote was assumed. Estimates of the lower asymptotes of the items for this model were obtained from separate BILOG (Mislevy & Bock, 1984) analyses of the test forms. In these preliminaries and in the factor analyses, items left blank between responded-to items were treated as omits and scored as fractionally correct at the asymptote value. Items left blank following the last non-omitted item, on the other hand, were scored as "not- presented." This scoring method assumes that examinees who fail to complete the test do so because they run out of time. It avoids the spurious factor associated with item position that results when non-reached items are scored as incorrect.

In addition to the many items with percent corrects below .075 and above .925, a few were excluded because their lower asymptote values were greater than or equal to their facilities. This is an indication that the item is too difficult for the examinees and may have a nonmonotonic response function.

Such items are likely to cause convergence problems in the analysis. The numbers of items retained in each form are shown in Table 1. The items retained in each form are identified by their numbers in the test booklets in Tables 2-28. The number of examinees who responded to each item (attempts) is shown along with estimates of the guessing parameters (chance) and percents correct (facilities).

In connection with the statistical tests of the number of factors, we must consider that the data were obtained from volunteers at MEPS sites and do not constitute a well-defined sample. As a result, there is some uncertainty about the multinomial distribution assumptions on which the likelihood ratio tests are based. In particular, the localized catchment areas of the recruiting centers may introduce intraclass correlation effect similar to that associated with cluster sampling. This effect tends to inflate the likelihood ratio chisquare statistics above the level expected for independent multinomial trials in a single population.

For this reason, a positive design effect probably should be assumed when setting a critical point for the likelihood ratio chi-square statistic. To avoid overinterpreting the data, we have taken the design effect to be in the range of 2 to 3 and have considered the evidence for additional factors to be clear only when a change of chi-square upon addition of a factor is four or five times the change in degrees of freedom. Because of the large sample sizes in this study, changes that correspond to clearly defined factors are often much larger, of the order of ten times the change in degrees of freedom, and leave little doubt as to the reality of the factor. In addition to the statistical criteria, substantive considerations often establish the existence of the factor beyond any reasonable doubt. The communality of content among items that have large loadings on the factor usually make it clear that a real cognitive component has been identified. In other cases a clear doublet, two items with some similar features displaying isolated high factor loadings, is often responsible for the statistical result.

4. Results

As an aid to interpretation, factor loadings are shown in Tables 2 through 28 both in their orthogonal principal factor form and in promax factor loadings computed from a preliminary varimax target. Accompanying the principal factors is the percent of total variance associated with each. These tables also contain the item intercepts, principal factor variances, correlation of the

promax factors, change in chi-squares, degrees of freedom, and probability levels due to the inclusion of additional factors. The correlation of the promax factors is the cosine of the angle between the rotated axes. It tends to overestimate the true correlation. The values of the change chi-squares are adjusted to reflect an assumed design effect of 2. These results are based on a maximum of 45 EM cycles of the marginal maximum likelihood solution.

The sensitivity of the full-information method to departures from conditional independence is clearly demonstrated in these analyses. Even with an assumed design effect of 2, associations between as few as two items are detected in the change chi-squares. Except for a few illustrative examples, higher dimension solutions with factors largely defined by only two or three items are not shown. Factors of this type tend to represent minor departures from conditional independence due to item format similarities rather than distinct sources of individual differences in cognition. In the following descriptions of each analysis, the results are compared with the earlier work of Bock, Gibbons, & Muraki (1986), who analyzed responses to ASVAB Form 8A of 1000 cases from the Profile of American Youth survey (see Bock & Moore, 1986).

General Science (GS)(Tables 2-4). All three test forms yield at least three significant factors readily interpreted in the promax rotation. Promax Factors 1 through 3 of Form 3 exhibit the clearest separation of general science items into three content areas, namely, physical sciences, chemistry, and biological sciences, respectively. These factors are substantially intercorrelated (r=.74-.81), and a large percent of the variance is attributable to the first principal factor (50.3).

Perhaps because fewer chemistry items appear in Form 1, it exhibits a similar but less clear separation of items into these groupings. Promax Factors 1, 2, and 3 of this form also correspond to biology, the physical sciences, and chemistry. Relative to Form 1, these factors are less highly correlated (r=.67-.74), and the first principal factor accounts for less of the variance (45.71 percent).

DESCRIPTION OF THE PROPERTY OF

The relative absence of chemistry items in Form 2 is reflected in its factorial structure. The first promax factor of this form is largely represented by biology items, the second by physical science items. The third factor is almost exclusively defined by a doublet, items 2 and 53, both of which ask about the solar system.

The finding of factors that correspond to biology and physical science agrees with the Bock, Gibbons, and Muraki (1986) analysis of a test form from this area. Probably because of variation in test form composition, their evaluation failed to reveal the chemistry factor found here in two of three forms.

Arithmetic Reasoning(AR)(Tables 5-7). Two factors of arithmetic reasoning are statistically significant in all forms. The factors of each solution are substantially intercorrelated (r=.74-.81), and approximately 54 percent of the variance is attributable to the first principal factor in each form. These results agree with those of Bock, Gibbons, and Muraki (1986), who suggest that the test measures a "business arithmetic" factor in addition to a more general arithmetic reasoning factor. Items that appear to assess the business factor in this examination include questions about percentages (item 33 of Form 3, items 14, 23, and 29 of Form 5) and earnings and expenditures (items 5, 12, 15, and 17 of Form 1, items 1 and 21 of Form 3). The second promax factor of Forms 1 and 3 corresponds to this business factor: in Form 5, the business items appear in the first factor. The separation of business arithmetic from general items is not always complete: item 28 of Form 1, for example, requires computation of percentages but loads almost exclusively on the general arithmetic reasoning factor.

Word Knowledge(WK)(Tables 8-10). The interpretation of the substantial second factor in all three forms of the Word Knowledge test is not obvious upon first inspection. No distinctive contrast of the words by grammatical class, Latin or Anglo-Saxon origin, frequency in conventional word lists, etc., meets the eye when words with high loadings on the two factors are compared. The difference between them becomes apparent, however, when we recall that the existence of distinct factors in test performance corresponds to some behavioral classification of persons in the population from which the examinees have been sampled. The existence of two statistically significant factors with substantial loadings on many items suggests that the population of young people from which the present sample was drawn consists of two broad groups who differ in their exposure to the kind of words that appear in the Word Knowledge tests. Because these words must be capable of discriminating between persons in this population, they cannot be those found in everyday conversation and thus known to almost everyone. To be useful for testing word knowledge, the words in the test items must be less common, more specialized, and acquired from rather more intellectual sources.

Two such sources likely to increase word knowledge suggest themselves. One is recreational reading—reading that consists predominantly of fiction or similar narrative literature available widely in magazine, paperback and book club publications. The other source is journalistic and television media, including the news and editorial sections of newspapers, the news programs on television, and television commercials. Undoubtedly, there must now exist a substantial proportion of young people who do relatively little recreational reading, but depend for similar diversion on television and motion pictures. Clearly, the vocabularies of recreational reading and those of recreational television and film media are different in one important respect: the former necessarily contains a considerable corpus of words descriptive of physical locations, appearances and actions of persons, and of human feelings and relationships; the latter contain very little of these classes of words—the ability of television and film to depict scenes, expressions and situations visually makes verbal description unnecessary. Persons who find entertainment predominantly in the visual media must therefore have relatively less exposure to the vivid and descriptive vocabulary of fiction and other literature. Their main source of more specialized words must be the front page and television news, commentary, and commercials.

When the factor analysis of the three word knowledge forms in the CAT pool are inspected with this hypothesis in mind, a clear interpretation of the words loading most heavily on the first two factors emerges. If the words with promax loadings in excess of 0.5 on the respective factors are listed and compared, the distinction between a more descriptive and vivid vocabulary in one of the factors, and a more matter-of-fact, current-event and technically oriented vocabulary is apparent. Roughly, we might call the first of these the "literary" vocabulary and the second the "media" vocabulary. The former contains words one might expect to encounter in popular romances and adventure stories. The latter is made up of words from the law, business, politics, government military and other impersonal content. The resolution of these factors is clearest in WK3, where we first identified it. Except for a few misclassified words in the literary factor, the distinction is almost as clear in WK1. In WK2, however, literary words are not as well represented, and identification of the factors is more problematical.

Because we are not free here to divulge the actual words, we would encourage readers who have access to the test forms to attempt to verify our interpretation of the promax loadings of the two factors shown in Tables 8-10.

Very likely the distinction between the vocabularies of popular fiction and of journalism is also the basis of the two factors found by Bock, Gibbons and Muraki in ASVAB Form 8A. Because that form contains only 36 items and has relatively few words drawn from fiction or recreational reading, the distinction, although apparent, is not as clearly resolved as in the longer tests of the CAT pool. It is of considerable interest, however, that in the item bias analysis of Form 8A reported by Bock and Mislevy (1981), they call attention to a quite similar item × socioeconomic group interaction. They describe the interaction as a contrast between "literary" words and "media" words, the terms we have adopted here. This type of interaction might be expected if the subpopulations of young people that give rise to word knowledge factors divide along social class lines, presumably with the lower class population doing less recreational reading. Another possible hypothesis is that there is a sex difference with respect to these factors, with women more heavily represented among the recreational readers. Bock and Mislevy, did not, however, find an item by sex interaction for Word Knowledge in Form 8A.

Paragraph Comprehension (PC) (Tables 11-13). The paragraph comprehension items for the CAT pool are designed to be brief enough to fit on one display screen and to require only one response per paragraph. The purpose of the latter restriction is to avoid possible failures of conditional independence due to more than one item being derived from the same paragraph. The analysis of ASVAB form 8A reported in Bock, Gibbons, and Muraki (1986) appears, however, to indicate that this restriction is not necessary. There was no evidence that responses to items based on the same paragraph in Form 8A showed greater association than those for items based on different paragraphs. These results suggest that, for a given amount of testing time, a more dependable score for paragraph comprehension could be obtained by asking more than one question per paragraph.

In accord with previous results (Bock, Gibbons, & Muraki, 1986), the change chi-squares from Form 1 indicate that the Paragraph Comprehension test is unidimensional. There is, however, evidence for a second factor in both Forms 3 and 5, but neither the promax nor the varimax two-factor solutions

(not shown) have obvious interpretations. The second principal factors of Forms 3 and 5 make only minor contributions to the variance, 2.10 and 2.70 per cent, respectively, and are substantially correlated, r=.79 and r=.78, with their first factors. Even though the item features responsible for these minor departures from conditional independence could not be identified, there is little reason to believe that the second factors of these solutions represent distinct cognitive dimensions. Thus, only the results from the one-factor solutions are presented in Tables 11 through 13.

Automotive Information(AI)(Tables 14-16). Although there is evidence for at least three factors in all three forms, neither the promax nor the varimax solutions of any form have obvious interpretations. The second and third principal factors of these solutions (not shown) account for a relatively small percentage of the variance, 2.23-2.68 and 1.21-1.32 percent, respectively.

In the two-factor solutions (not shown), there is some suggestion of a contrast between items requiring technical expertise and those requiring knowledge of automotive service and maintenance, but there are numerous inconsistencies. The correlations between the promax factors of these solutions (r=.82-.83) are among the highest found for any form in any subject area, and only small percents of variance are attributable to the second principal factors (1.89-2.04). Because there is little evidence that these departures from conditional independence represent distinct content, the one-factor solutions are presented in the tables.

Shop Information(SI)(Tables 17-19). There is evidence for at least three factors in all three forms, but the third principal factors of these solutions (not shown) make only minor contributions to the variance, (1.70, 1.63, and 1.91 percent, respectively). The third factors of the promax-rotated solutions exhibit substantial correlations with the first and second factors, (r=.74, .71, r=.81, .74, and r=.78, .74, respectively, for Forms 1, 2, and 3), and are not easily interpreted. The two-factor solutions yield results anticipated in the Bock, Gibbons, and Muraki analysis of the Auto and Shop Information test from ASVAB Form 8A. In a third factor that was not clearly signficant, they observed support for a distinction between the metal and wood shop items of the test. The two factors found in the present examination roughly correspond to this distinction. The first appears to represent practical knowledge of building and carpentry, and the second, more specialized

knowledge of metal shop.

Form 3 provides the clearest evidence in favor of this interpretation. Of the twelve items with loadings larger than .60 on the first promax factor, all but one (item 19) involve knowledge of building and carpentry. Of the four items (items 2, 27, 49, and 53) that largely represent the second promax factor, all involve knowledge of metal shop. The pattern of loadings from Forms 1 and 2 also support this distinction but not so clearly.

Mathematics Knowledge (MK) (Tables 20-22). There is evidence in the change chi-squares for at least three factors of mathematical knowledge in all three test forms. The item features responsible for these departures from conditional independence are readily identified and differ by form. Most of the factors represent similarities in format attributes rather than distinct sources of individual differences in cognition. Nonetheless, they are presented to illustrate the departures from conditional independence that may occur when tests contain items with similar features.

The first principal factor of Form 1 is responsible for a larger percent of variance (59.17) than the first principal factor of any other test form in any subject area. This fact reflects the relatively large number of items that exhibit substantial loadings on this factor. There is every indication that it represents general knowledge of mathematics. Inspection of its promaxrotated factor loadings reveals that some of the items with large loadings assess the ability to manipulate and solve equations with unknowns (items 5, 24, 27, 32, 43), while others require knowledge of geometric principles (items 15 and 25). Still others involve the factorization of polynomials (items 4 and 38) or demand an understanding of absolute values (items 19 and 42). In contrast, the second promax factor of Form 1 is almost exclusively defined by items that require the examinee to find the least common denominator of several fractions (items 6, 10, 34, 41, 45). These items not only involve the same mathematical principle but also use the same item stem. Similarly, the three items responsible for the third factor all require conversion of mixed numbers into fractions. The two items that exhibit the highest loadings (over .9) on this factor, items 12 and 29, share the same stem. Item 44, which has a smaller loading (.63), also requires the examinee to solve for an unknown.

Form 3 exhibits a different structure. With few exceptions (items 9, 14, 21, and 30), items that define the first factor require knowledge of formal algebra. Items that exhibit substantial loadings on the second factor of this

form often demand knowledge of geometry, but sometimes involve algebra. The third factor is entirely defined by a doublet, items 33 and 46; both require conversion of fractions into mixed numbers and share the same stem.

As in Form 3, most of the items that load on the first factor of Form 5 demand knowledge of formal algebra. Items with the largest loadings involve manipulation of polynomials. The second factor is largely defined by four items requiring the examinee to solve for an unknown found in the numerator or denominator of an expression. The two items with loadings larger than .90 also have a common stem. Only a small percent (1.62) of the variance is attributable to the third factor, which is largely defined by two items (8 and 18) that share the same stem; they ask the examinee to find the coordinates of a plotted point.

The analysis of the Mathematics Knowledge tests provides other examples of dependencies that may occur when items in a test share the same stem. What remains uncertain is the association of the item features with individual differences in mathematical knowledge. The results provide some support for a factor representing knowledge of formal algebra, but it fails to reveal the numerical calculation and reasoning factors found in other studies (Bock, Gibbons, & Muraki, 1986). Variation in item composition of the test forms could account for these differences.

Mechanical Comprehension (MC) (Tables 23-25). Although there is evidence for at least three factors in all forms, the third factors of Forms 1 and 5 and the second factor of Form 3 are defined by doublets. In the two-factor solutions of Forms 1 and 5, there is some support for a distinction between simple lever and pulley problems, in contrast to problems involving complex linkages. The clearest evidence for this distinction is found in the pattern of loadings from the first form: three of the five items exhibiting substantial loadings (over .70) on the first factor are simple lever and pulley problems; those exhibiting the largest loadings on the second factor, items 25, 29, and 41, all involve complex linkages.

Electronics Information (EI) (Tables 26-28). There is evidence for at least three factors in all three test forms of Electronics Information. Many of the factors from the three-factor solutions (not shown) are defined by doublets. The two items (39 and 45) exhibiting the largest loadings on the second promax factor of Form 1 both ask about circuit overload, while the two items (26 and 42) largely responsible for the third factor of this form

both involve soldering irons and heating. Similarly, the second factor of Form 3 is almost exclusively defined by two items (18 and 23) that require knowledge of charged particles.

There is some support in the two-factor solution of Form 1 (not shown) for a distinction between formal knowledge of electronics and knowledge acquired through practical experience, but the classification of many of the items is ambiguous. In all, the higher dimension solutions of the three test forms provide little support for distinct sources of individual differences in electronics knowledge. The second and third factors of these solutions account for relatively small percentages (1.61-3.47) of variance.

Only the results from the one-factor solutions are presented in Tables 25-27. The principal factors of these forms account for a smaller percent of variance (35.23-39.38) than the first factors of all other solutions. The content of these tests is highly heterogeneous.

5. Discussion and Conclusions

As would be expected for tests designed and constructed to be unidimensional, variation in the test scores is dominated by the first principal factor. Variance associated with second and third factors, even when clearly significant, is small. This does not diminish the potential importance of the factors as indicators of an underlying cognitive process component, but it does mean that the component could not actually be measured without development of additional items that depend more strongly on these processes.

In other cases, the factors correspond merely to doublets that arise from nearly identical items that should not have been included in the same test form. These cases can be avoided by more careful test editing. On the whole, the present study confirms the typical finding that cognitive tests tend to show a dominant general factor and one or more group factors associated with identifiable subtypes of items. In this situation, the test constructor can pursue either of two courses. He may choose to emphasize the general factor and suppress the group factors by making the item content more homogeneous, or he may fix on the group factors and try to develop additional items that will make them estimable in the form of separate scores for each factor. The first course risks some loss of information, and the second may give more detail than required in the practical use of the test battery.

As a rule, when a vocational test is found not to be unidimensional, an attempt to divide the test into unidimensional subtests should be made only

if there is a clear distinction between the cognitive skills involved. Moreover, these skills should correspond to distinctions between the vocational
specialties for which the test is supposed to predict performance. In the case
of the General Science test, the distinction between the physical sciences
and the biological and health sciences seems worth retaining and developing into separate scales. These scales would be expected to be differentially
predictive for the medical occupational specialties as opposed to technical
specialties involved with mechanical equipment. Similarly, the distinction
between business arithmetic and other arithmetic skills might be exploited
to improve predictability of performance in the administrative and clerical
specialities. The two factors in the Word Knowlege test may present opportunities for improved prediction in jobs that require creative use of language
background, but the necessary studies are lacking at present. Finally, division of shop information into metal working vs. carpentry and general
maintenance would be pertinent to numerous occupational specialties.

The multidimensionality of mathematics knowledge and mechanical comprehension, in contrast, does not directly relate to any occupational specialty and would be of little value for predictive purposes. In this case, the best course would appear to be to attempt to maintain some balance of the various content categories included in these tests and to rely on the first principle factor to define a general skill dimension in each topic. Unfortunately, maintaining content balance during adaptive testing will be difficult, both in finding enough items to span all of the topics, and in selecting from them during adaptive testing. A scheme for rotating through the content topics as the items are selected would be required. Two-stage testing, which is easier to implement and almost as efficient, might be preferable to fully adaptive testing in this situation.

To account for the failures of conditional independence that would result when items are selected from the same types of content in a structured item domain, a method of IRT scale score estimation that does not assume complete conditional independence would be desirable. A method for this purpose has been proposed by Gibbons and Bock (1987), based on the principal factor structure obtained by full-information item factor analysis.

This procedure combines a one-dimensional quadrature on the first principal factor with a so-called "Clark algorithm" to compute the probability of the answer pattern conditional on the first factor. In this procedure, the

orthant probabilities corresponding to binary responses scored 1 for correct and -1 for incorrect are approximated using the partial correlation matrix implied by the factor loadings other than the first principal factor. Gibbons and Bock (1987) have found in extensive Monte Carlo simulations that the Clark algorithm is highly accurate when the correlations are relatively small, as they almost always are cognitive test data when contributed by principle factors other than the first. This method is suitable for conventional, two-stage, and adaptive testing, but it requires principal factor loadings for all items. These loadings can be estimated by the marginal maximum likelihood method.

REFERENCES

- Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: an application of an EM algorithm. *Psychometrika*, 46, 443-459.
- Bock, R.D., Gibbons, R.D. & Muraki, E. (1986). Full-Information Item Factor Analysis. Chicago: NORC.
- Bock, R.D. & Mislevy, R.J. (1981). The Profile of American Youth: Data Quality Analysis of the Armed Services Vocational Aptitude Battery. Chicago: NORC.
- Bock, R.D. & Moore, E.J.G. (1986). Advantage and Disadvantage: A Profile of American Youth. Hillsdale (N.J.): Erlbaum.
- Gibbons, R.D. & Bock, R.D. (1987). Calculating Orthant Probabilities. Paper submitted for reading at the Psychometric Society Meeting, McGill University, June.
- Mislevy, R.J. & Bock, R.D. (1984). BILOG: Maximum Likelihood Item Analysis and Test Scoring—Logistic Model. Mooresville (Ind.): Scientific Software, Inc.
- Prestwood, S.J., Vale, C.D., Massey, R.H. & Welsh, J.R. (1985). Armed Services Vocational Aptitude Battery: Development of an Adaptive Item Pool. AFHRL-85-19. San Antonio: Brookes Air Force Base.
- Wilson D., Wood, R. & Gibbons, R.D. (1984). TESTFACT: Test Scoring, Item Statistics, and Item Factor Analysis. Mooresville: (Ind.): Scientific Software, Inc.

TABLE 1
her of Booklets and Items per Booklet in Calibration

Content Area	Number of	Items per	Total	Booklets	# of Items
	Booklets	Booklet	Items	Analyzed	Retained in
					Analyzed Booklets
General Science	4	57	228	1,2,3	47,41,38
Arithmetic Reasoning	7	35	245	1,3,5	24,24,23
Word Knowledge	3	86	258	1,2,3	37,50,55
Paragraph Comprehension	7	33	231	1,3,5	25,28,28
Automotive Information	4	60	240	1,2,3	44,41,48
Shop Information	4	57	228	1,2,3	47,50,47
Mathematics Knowledge	5	46	230	1,3,5	41,44,42
Mechanical Comprehension	5	46	230	1,3,5	42,40,40
Electronics Information	4	57	228	1,2,3	41,42,48

TABLE 2 ASVAB ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS GENERAL SCIENCE-FORM 1 (N=2902)

ltem	Attempts	Facility	Chance	Intercept		rincipal Fac			0.474			
					1	2	3					
2	2896	0.552	0.1158	0.0173	0.7223	0.0421	-0.1614			-0.05		
3	2889	0.287	0.15 63	1.0244	0.8011	-0.1314	-0.0256			0.23		
4	2896	0.494	0.0719	0.1113	0.6595	0.1934	0.0684	0.040	0.581	0.10		
5	2899	0.721	0.1877	-0.4085	0.4714	0.2677	-0.0112	0.024	0.587	-0.09		
6	2883	0.461	0.2275	0.5144	0.7602	-0.1010	0.0587	0.311	0.193	0.3		
8	2882	0.469	0.2638	0.5852	0.6727	-0.1859	-0.1271	0.608	-0.019	0.1		
9	2897	0.281	0.1781	1.1534	0.6991	-0.2198	0.3050	0.008	0.063	0.7		
10	2893	0.563	0.2696	0.2390	0.7582	-0.1386	-0.0674	0.523	0.102	υ 2		
13	2894	0.487	0.2077	0.3828	0.7342	-0.0899	-0.2183	0.699	0.121	-0.03		
14	2899	0.554	0.1194	0.0129	0.7717	0.0411	-0.1586	0.533	0.344	-0.0		
15	2882	0.275	0.1561	1.0975	0.7925	0.0535	0.0920		0.441	0.28		
16	2888	0.385	0.2797	1.1101	0.8044	-0.1652	-0.1993			0.01		
17	2893	0.645	0.3438	0.1085	0.6711	-0.0450	-0.2372			-0.10		
18	2897	0.154	0.0567	1.2537	0.6757	-0.1064	0.1854			0.49		
19	2897	0.736	0.1559	-0.4974	0.5586	0.3301	-0.0028			-0.1		
20	2892	0.194	0.1457	1.8358	0.7123	-0.2605	0.2642			0.73		
21	2901	0.882	0.2087	-1.0496	0.3879	0.2839	-0.0179			-0.1		
22	2894	0.420	0.1673	0.5292	0.6713	0.2620	0.1239			0.1		
24	2888	0.426	0.3912	1.5752	0.6599	-0.2984	-0.1939			0.1		
25	2898	0.656	0.1448	-0.2559	0.5387	0.1723	0.1717			0.2		
26	2893	0.686	0.3862	0.0189	0.7387	-0.1775	-0.1302			0.1		
27	2896	0.817	0.1367	-0.8109	0.5783	0.3819	0.0140			-01		
28	2888	0.403	0.2902	0.9730	0.6439	-0.2203	0.1937			0.5		
	2893	0.322	0.2902	0.6084		0.15 88	0.1957			0.2		
30	2897		0.0057	0.6735	0.7913 0.7080	-0.0054	0.0219			0.2		
31		0.5 43 0.841	0.3594	-0.8084		0.0715	-0.0219 -0.0265			0.0		
32	2898				0.5735							
33	2900	0.903	0.2105	-1.1671	0.3053	0.2227	-0.0274					
35	2887	0.324	0.1850	0.9584	0.6939	-0.1354	-0.0508			0.2		
36	2897	0.734	0.2486	-0.3820	0.6063	0.0926	-0.0196			0.0		
37	2882	0.332	0.1892	0.9462	0.6964	-0.1621	-0.1419			0.1		
38	2892	0.423	0.1577	0.4598	0.7911	-0.2424	-0.0219			0.3		
39	2895	0.848	0.1499	-0.9358	0.6369	0.2424	0.0072					
40	2897	0.512	0.1103	0.1120	0.6335	-0.1050	0.1810			04		
41	2885	0.313	0.1931	0.9980	0.7199	-0.3621	0.2038			0.7		
42	2876	0.458	0.3620	1.0556	0.4926	0.0325	-0.0589			0.0		
43	2900	0.833	0.1753	-0.8599	0.7594	0.1463	-0.1316			-00		
45	2897	0.430	0.2736	0.8105	0.7344	-0.0041	-0.1580			-0.0		
46	2898	0.867	0.1805	-0.9940	0.3928	0.2562	0.0872			0.0		
47	2881	0.156	0.1427	2.1494	0.7631	-0.1606	0.1999			n 5		
48	2898	0.761	0.2118	~0.5332	0.7966	0.1267	-0.0600			0.0		
49	2892	0.702	0.2639	-0.2401	0.6769	0.2506	-0.0089			-0.0		
50	2896	0.595	0.1424	-0.0749	0.6350	0.1414	-0.0252	0.205	0.469	11-11		
52	2888	0.397	0.0977	0.4460	0.7311	0.0235	-0.0802	0.413	0.323	16.0		
54	2884	0.547	0.2095	0.1958	0.6925	0.0972	-0.1091	0.385	0.406	- (1)		
55	2888	0.910	0.2211	-1.2090	0.6000	0.3314	0.1221	-0.164	0.771	13-41		
56	2888	0.497	0.1725	0.2736	0.5248	0.1706	0.1857	-0 173	0.523	0.2		
57	2863	0.441	0.2564	0.6673	0.8566	-0.1997	0.0333	0.461	0.084	0.4		
liling	Chi-Square	d.f.	P		nt of Var			Fac	tor			
ictor	Change	54.4.	P	• • • • • • • • • • • • • • • • • • • •				Correl				
r. cor	Ononge			1	2	3		1	2			
2	285.771	46	< .001	45.7050	3.7421	1.7984	1	1.000				
2 3	121 702	45	< .001	40.7000	J. 1 744		2	0.739	1 000			

^{*} Assumed design effect = 2.

TABLE 3

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS

GENERAL SCIENCE-FORM 2 (N = 2727)

Item	Attempts	Facility	Chance	Intercept		rincipal Fac		Pr	omax Fact	0.422 0.08 0.006 0.80 -0.003 0.07 0.466 -0.11 0.559 0.05 0.468 0.24 0.390 -0.20 0.659 -0.07 0.354 0.090 0.659 -0.07 0.354 0.090 0.564 0.35 0.222 0.47 0.219 0.663 -0.01 0.261 0.12 0.609 0.40 0.755 -0.055 0.237 -0.016 0.288 0.17 0.912 0.60 0.603 0.01 0.111 -0.12 0.181 0.21 0.181 0.21 0.185 0.01 0.455 0.01 0.455 0.01 0.455 0.01 0.356 -0.12 0.455 0.01 0.356 -0.12 0.455 0.01 0.356 -0.12 0.455 0.01 0.356 -0.12 0.455 0.01 0.356 -0.12 0.455 0.01 0.356 -0.12 0.181 0.21 0.181 0.21 0.181 0.21 0.181 0.21 0.181 0.21 0.181 0.21 0.181 0.21 0.185 0.01 0.196 0.01 0.356 -0.12 0.197 0.016 0.356 0.017 0.356 0.017 0.356 0.017 0.356 0.07	
					1	2	3	1	2	3	
1	2713	0.229	0.1307	1.2357	0.6902	0.0399	-0.0164	0.238	0.422	0.085	
2	2725	0.643	0.1062	~0.2602	0.6216	0.3511	0.3986	0.020	0.006	0.802	
3	2701	0.301	0.1920	1.1197	0.8553	-0.2754	0.1195	0.865	-0.003	0.071	
5	2726	0.746	0.2201	-0.4600	0.6263	-0.0535	-0.1176	0.281	0.466	-0.110	
6	2722	0.637	0.1146	~0.2289	0.5744	0.1380	-0.0820	-0.001	0.559	0.053	
7	2726	0.866	0.1953	-0.9899	0.6690	0.1898	0.0344	0.041		0.244	
9	2726	0.909	0.1883	-1.2248	0.4162	0.1393	0.0064	-0.016			
10	2722	0.901	0.5000	-0.8621	0.7978	-0.2335	-0.1185	0.622			
11	2724	0.826	0.2170	~0.7770	0.7104	0.0509	-0.1503	0.143			
12	2719	0.323	0.0909	0.6692	0.6436	0.0220	0.0006	0.255			
13	2722	0.636	0.1236	-0.2096	0.6239	0.2409	-0.1488	-0.175			
14	2725	0.777	0.2364	~0.5593	0.7013	0.0620	0.0690	0.266			
16	2726	0.458	0.2344	0.5748	0.7847	0.2820	0.0650	-0.024			
17	2719	0.151	0.1204	1.8289	0.7809	0.1779	0.2165	0.227			
18	2716	0.360	0.2048	0.8606	0.6728	-0.3308	0.1629	0.894			
20	2722	0.569	0.1709	0.0533	0.7259	0.0886	-0.1263	0.110			
21	2721	0.741	0.3280	-0.2988	0.7513	-0.0489	0.0526	0.441			
22	2727	0.833	0.3363	~0.6757	0.5561	0.1698	-0.1007	-0.069			
23	2717	0.570	0.0856	-0.0652	0.7638	0.0995	-0.1650	0.086			
25	2714	0.321	0.1520	0.8617	0.7624	-0.1675	0.0031	0.589			
26	2718	0.415	0.1756	0.5606	0.5593	0.0748	0.0449	0.168			
30	2724	0.852	0.1827	-0.9275	0.6807	0.3094	-0.1682	-0.263			
31	2719	0.785	0.1354	-0.6809	0.6058	0.1431	-0.1625	-0.047			
33	2713	0.123	0.0856	1.7265	0.8777	-0.2087	0.0476	0.730			
34	2719	0.382	0.0849	0.4599	0.6844	-0.0679	-0.0228	0.390			
37	2723	0.692	0.3051	-0.1458	0.8440	-0.3190	0.1343	0.934			
38	2715	0.178	0.1496	1.8783	0.8041	-0.3316	0.0008	0.847			
39	2715	0.733	0.2458	-0.3861	0.8143	-0.0492	0.1224	0.515			
41	2711	0.373	0.1641	0.6842	0.6188	-0.2408	0.0768	0.681			
43	2722	0.421	0.1562	0.4960	0.7541	0.0432	-0.0143	0.263			
44	2717	0.263	0.2108	1.5062	0.7450	-0.2320	0.0583	0.712			
45	2713	0.534	0.4135	0.8335	0.7182	-0.1582	-0.0800	0.501			
47	2723	0.874	0.3429	~0.8916	0.7145	-0.0942	-0.1120	0.384			
48	2711	0.261	0.2482	2.0895	0.7004	-0.3864	0.0692	0.927			
49	2713	0.472	0.3197	0.7680	0.8240	-0.0836	-0.0101	0.484			
51	2715	0.506	0.0810	0.0969	0.4947	0.0973	-0.0187	0.065			
52	2722	0.778	0.1080	~0.6849	0.5916	0.0686	-0.2148	0.022			
53	2719	0.648	0.1424	~0.2035	0.6723	0.4709	0.3953	-0.137			
55	2716	0.457	0.1882	0.4453	0.7105	0.1436	-0.2067	-0.030			
56	2717	0.900	0.1721	~1.1956	0.7462	0.2025	-0.1121	-0.040			
57	2697	0.308	0.1721	0.9780	0.8202	0.1355	-0.0362	0.142			
Adding	Chi-Square*	d.f.			nt of Vari		-0.0302	0.142 Fac		0.137	
		a.i.	P	rerce	HE OF VALL	ance					
Factor	Change				2	3		Correla	ations 2	3	
•	205 771	40	< 001	1 50 0107	4.1438	1.8967	•	1.000	2	3	
2	285.771		<.001	50.0107	4.1436	1.8967	1	0.802	1.000		
3	107.114	39	<.001				2		0.710	1.000	
							3	0.584	0.710	1.00	

^{*}Assumed design effect = 2.

TABLE 4 ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES.

STANDARD DIFFICULTIES AND FACTOR LOADINGS

GENERAL SCIENCE-FORM 3 (N=2639)

ltem	Attempts	Facility	Chance	Intercept	P	rincipal Fac	tors	Pr	omax Fact	ors
					1	2	3	1	2	3
2	2626	0.341	0.2866	1.5003	0.7599	-0.5203	-0.1146	-0.103	1.109	-0.146
										-0.063
										0.046
										0.467 0.389
										0.311
										0.340
										0.214
										0.218
14	2636	0.843	0.5000	-0.4689						0.651
15	2635	0.309	0.1275	0.8343						0.296
16	2638	0.240	0.1780	1.4481	0.8149					0.302
17	2626	0.500	0.2354	0.4099	0.7243	0.1177	-0.1924	0.674	0.144	-0 033
18	2634	0.341	0.2415	1.1313	0.7863	-0.3844	-0.1214	0.063	0.908	-0 091
	2636	0.509	0.1720	0.2435	0.8246	-0.0969	0.1151	0.080	0.328	0 486
			0.1011	0.4009	0.7090	0.0237	-0.0735	0.411	0.216	0 142
			0.1975	-1.0284	0.7379	0.1612	0.0656	0.389	-0.074	0.471
						-0.0255	0.0225	0.188	0.204	0.259
							0.0392	0.360	0.050	0.401
							-0.2031	0.582	0.269	-0.103
									0.375	-0.011
									0.086	0.256
										0.473
										-0.042
										0 230
										0.699
										0.781
										0.474
										0.505
										0.626
										0.382 0.099
										, 194
										0.004
										0 696
										0 163
										0 178
56	2630	0.798	0.1733	-0.6874	0.5712	0.3320	-0.1746	0.821	-0.248	0.033
Adding	Chi-Square*	d.f.	P	Регсе				Fact	tor	
ractor	Change			1	2	9				3
2	93.844	37	<.001		3.4077		1		-	3
						2.4000			1.000	
							3			1.000
*Assume	d design effe	ct = 2.								
	Ū									
				20						
				20						
	4 5 7 8 9 10 11 12 14 15 16 17 18 19 20 23 24 26 27 28 29 30 32 34 35 36 38 40 41 42 43 51 52 53 54 55 6 Adding Factor	4 2635 5 2635 7 2638 8 2630 9 2633 10 2636 11 2637 12 2639 14 2636 15 2635 16 2638 17 2626 18 2634 19 2636 20 2633 23 2639 24 2636 26 2637 27 2638 28 2636 29 2635 30 2638 32 2639 34 2633 35 2638 32 2634 34 2633 35 2630 36 2634 38 2636 40 2639 41 2634 42 2632 43 2637 51 2623 52 2632 53 2628 54 2629 55 2628 54 2629 55 2628 56 2630 Adding Chi-Square* Change 2 93.844 3 85.050	4 2635 0.291 5 2635 0.864 7 2638 0.889 8 2630 0.297 9 2633 0.766 10 2636 0.396 11 2637 0.338 12 2639 0.173 14 2636 0.843 15 2635 0.309 16 2638 0.240 17 2626 0.500 18 2634 0.341 19 2636 0.509 20 2633 0.412 23 2639 0.876 24 2636 0.811 26 2637 0.859 27 2638 0.909 28 2636 0.278 29 2635 0.35 30 2638 0.909 28 2636 0.278 29 2635 0.835 30 2638 0.887 32 2634 0.622 34 2633 0.840 35 2630 0.567 36 2634 0.792 38 2636 0.893 40 2639 0.889 41 2634 0.812 42 2632 0.377 43 2637 0.878 51 2623 0.389 52 2632 0.910 53 2628 0.645 54 2629 0.569 55 2628 0.713 56 2630 0.798 Adding Chi-Square* Change	4 2635 0.291 0.0354 5 2635 0.864 0.2588 7 2638 0.889 0.1093 8 2630 0.297 0.2281 9 2633 0.766 0.2453 10 2636 0.396 0.0893 11 2637 0.338 0.2008 12 2639 0.173 0.0810 14 2636 0.843 0.5000 15 2635 0.309 0.1275 16 2638 0.240 0.1780 17 2626 0.500 0.2354 18 2634 0.341 0.2415 19 2636 0.509 0.1720 20 2633 0.412 0.1011 23 2639 0.876 0.1975 24 2636 0.811 0.1763 26 2637 0.859 0.3794 27 2638 0.909 0.2807 28 2636 0.811 0.1763 26 2637 0.859 0.3794 27 2638 0.909 0.2807 28 2636 0.278 0.0831 29 2635 0.835 0.4295 30 2638 0.887 0.2154 32 2634 0.622 0.4474 34 2633 0.840 0.1683 35 2630 0.567 0.1435 36 2634 0.792 0.1048 38 2636 0.893 0.1668 40 2639 0.889 0.1678 41 2634 0.812 0.1177 42 2632 0.377 0.1006 43 2637 0.878 0.1627 51 2623 0.389 0.2321 52 2632 0.910 0.2132 53 2628 0.645 0.0833 54 2629 0.569 0.0716 55 2628 0.713 0.2787 56 2630 0.798 0.1733 Adding Chi-Square* d.f. p	4 2635 0.291 0.0354 0.6240 5 2635 0.864 0.2588 -0.8965 7 2638 0.889 0.1093 -1.1659 8 2630 0.297 0.2281 1.3466 9 2633 0.766 0.2453 -0.4887 10 2636 0.396 0.0893 0.4359 11 2637 0.338 0.2008 0.9479 12 2639 0.173 0.0810 1.2764 14 2636 0.843 0.5000 -0.4689 15 2635 0.309 0.1275 0.8343 16 2638 0.240 0.1780 1.4481 17 2626 0.500 0.2354 0.4099 18 2634 0.341 0.2415 1.1313 19 2636 0.509 0.1720 0.2435 20 2633 0.412 0.1011 0.4009 23 2639 0.876 0.1975 -1.0284 24 2636 0.811 0.1763 -0.7388 26 2637 0.859 0.3794 -0.7392 27 2638 0.909 0.2807 -1.1501 28 2636 0.278 0.0831 0.7912 29 2635 0.835 0.4295 -0.5375 30 2638 0.887 0.2154 -1.0747 32 2634 0.622 0.4474 0.4406 34 2633 0.840 0.1683 -0.8639 35 2630 0.567 0.1435 0.0280 36 2634 0.792 0.1048 -0.7251 38 2636 0.893 0.1668 -1.1296 40 2639 0.889 0.1678 -1.1235 41 2634 0.812 0.1177 -0.7917 42 2632 0.377 0.1006 0.5226 43 2637 0.889 0.1678 -1.1235 41 2634 0.812 0.1177 -0.7917 42 2632 0.377 0.1006 0.5226 43 2637 0.878 0.1637 -1.0636 51 2623 0.389 0.2321 0.7938 52 2632 0.910 0.2132 -1.2105 53 2628 0.713 0.2787 -0.2464 56 2630 0.798 0.1733 -0.6874 Ad-ling Chi-Square* d.f. p Ferce Factor Change	4 2635 0.291 0.0354 0.6240 0.7344 5 2635 0.864 0.2588 -0.8965 0.7643 7 2638 0.889 0.1093 -1.1659 0.7558 8 2630 0.297 0.2281 1.3466 0.5351 9 2633 0.766 0.2453 -0.4857 0.5603 10 2636 0.396 0.0893 0.4359 0.7709 11 2637 0.338 0.2008 0.9479 0.7895 12 2639 0.173 0.0810 1.2764 0.6733 14 2636 0.843 0.5000 -0.4689 0.6441 15 2635 0.309 0.1275 0.8343 0.7951 16 2638 0.240 0.1780 1.4481 0.8149 17 2626 0.500 0.2354 0.4099 0.7243 18 2634 0.341 0.2415 1.1313 0.7863 19 2636 0.509 0.1720 0.2435 0.8246 20 2633 0.412 0.1011 0.4009 0.7090 23 2639 0.876 0.1975 -1.0284 0.7379 24 2636 0.811 0.1763 -0.7388 0.6010 26 2637 0.859 0.3794 -0.7392 0.7573 27 2638 0.909 0.2807 -1.1501 0.6848 28 2636 0.278 0.0831 0.7912 0.5588 29 2635 0.8365 0.2295 -0.5375 0.7208 30 2638 0.887 0.2154 -1.0747 0.7339 32 2634 0.622 0.4474 0.4406 0.7800 34 2633 0.840 0.1683 -0.8639 0.7216 35 2630 0.567 0.1435 0.0280 0.7143 36 2634 0.892 0.1048 -0.7251 0.6770 38 2636 0.893 0.1668 -1.1396 0.5956 40 2639 0.889 0.1668 -1.1395 0.6800 41 2634 0.812 0.1177 -0.7917 0.6377 42 2632 0.377 0.1006 0.5226 0.7738 43 2637 0.878 0.1668 -1.1395 0.6800 41 2634 0.812 0.1177 -0.7917 0.6377 42 2632 0.377 0.1006 0.5226 0.7738 43 2637 0.878 0.1668 -1.1395 0.6800 41 2634 0.812 0.1177 -0.7917 0.6377 42 2632 0.377 0.1006 0.5226 0.7738 43 2637 0.878 0.1668 -1.1395 0.6800 41 2634 0.812 0.1177 -0.7917 0.6377 42 2632 0.377 0.1006 0.5226 0.7738 43 2637 0.878 0.1667 -1.0366 0.6773 51 2623 0.389 0.2321 0.7998 0.7529 52 2632 0.910 0.2132 -1.2105 0.6610 53 2628 0.645 0.0833 -0.2593 0.7874 54 2629 0.569 0.0716 -0.0781 0.6745 55 2628 0.713 0.2787 -0.2644 0.6573 56 2630 0.798 0.1733 -0.6874 0.5712	\$ 2635	4 2835 0.291 0.0354 0.8240 0.7344 0.1032 −0.2072 5 2838 0.889 0.1093 −1.1659 0.7558 0.2057 0.0499 8 2630 0.297 0.2281 1.3466 0.5351 −0.1919 0.1439 9 2633 0.766 0.2453 −0.4887 0.5603 0.2327 −0.0002 10 2636 0.396 0.0893 0.4359 0.7709 −0.0114 0.0284 11 2637 0.338 0.2008 0.9479 0.7895 −0.1141 −0.0201 12 2639 0.173 0.0810 1.2764 0.6733 −0.2296 0.0321 14 2836 0.843 0.5000 −0.4689 0.6441 0.0391 0.2099 15 2635 0.309 0.1275 0.8343 0.7951 0.1992 −0.0481 16 2638 0.240 0.1780 1.4481 0.8149 −0.2558 0.0548 17 2626 0.500 0.2354 0.4099 0.7243 0.1177 −0.1924 18 2634 0.341 0.2415 1.1313 0.7863 −0.3844 −0.1214 19 2636 0.509 0.1720 0.2435 0.8246 −0.0969 0.1151 20 2633 0.412 0.1011 0.4009 0.7090 0.0237 −0.0735 23 2639 0.876 0.1975 −1.0284 0.7379 0.1612 0.0656 24 2636 0.811 0.1763 −0.7388 0.610 −0.0255 0.0225 26 2637 0.859 0.3794 −0.7392 0.7573 0.0958 0.0322 27 2638 0.909 0.2807 −1.1501 0.6848 0.0344 −0.2031 28 2636 0.278 0.891 0.795 −1.501 0.6848 0.0344 −0.0231 28 2636 0.278 0.893 0.4795 −0.7388 0.010 −0.0255 0.0225 26 2637 0.859 0.3794 −0.7392 0.7573 0.0958 0.0392 27 2638 0.909 0.2807 −1.1501 0.6848 0.0344 −0.031 28 2636 0.278 0.8831 0.7912 0.5588 −0.0967 −0.0976 29 2635 0.835 0.4295 −0.5375 0.7208 0.0926 −0.0303 30 2638 0.887 0.2154 −1.0747 0.7339 0.0085 0.1027 32 2634 0.622 0.4474 0.4406 0.7800 −0.2909 0.1139 34 2633 0.840 0.1663 −0.8639 0.7161 0.0474 0.0320 35 2634 0.792 0.1048 −0.7251 0.6770 0.1282 0.2524 40 2635 0.893 0.1668 −1.1396 0.5956 0.0937 0.0127 36 2634 0.792 0.1048 −0.7251 0.6770 0.1282 0.2524 37 2638 0.990 0.2807 −1.16037 0.0676 0.1931 38 2639 0.878 0.1627 −1.0636 0.6773 0.0772 −0.0375 50 263 0.910 0.2132 −1.2105 0.6610 0.2735 −0.1950 51 2623 0.377 0.1006 0.5226 0.7738 0.0936 0.0262 43 2637 0.878 0.1627 −1.0636 0.6773 0.0772 −0.1028 52 2632 0.717 0.1006 0.5226 0.7738 0.0930 0.0265 54 2629 0.559 0.0716 −0.0781 0.6745 0.0422 −0.0595 55 2628 0.713 0.2787 −0.2646 0.6573 −0.0514 −0.0267 56 2630 0.798 0.1733 −0.0861 0.0771 0.0320 −0.1746 Adding Chi-Square* d.f. p Fercent of Varianc	\$ 2635	4 2855 0.291 0.0354 0.6340 0.7344 0.1032 −0.2072 0.682 0.178 5 2635 0.864 0.2588 −0.8065 0.7643 0.0094 −0.1531 0.616 0.166 7 2638 0.889 0.1093 −1.1659 0.7558 0.2067 0.0409 0.464 −0.129 8 2633 0.766 0.2453 −0.4887 0.5603 0.2327 −0.0002 0.480 −0.199 10 2636 0.396 0.0893 −0.4887 0.5603 0.2327 −0.0002 0.480 −0.199 11 2637 0.338 0.2008 0.9479 0.7709 −0.0114 0.0224 0.244 0.229 11 2639 0.173 0.0810 1.2764 0.6733 −0.2206 0.0321 −0.016 0.540 14 2636 0.843 0.5000 −0.4689 0.6441 0.0391 0.2009 0.029 0.004 15 2635 0.309 0.1275 0.8343 0.7961 0.1982 −0.0461 0.601 −0.047 16 2638 0.240 0.1780 1.4481 0.8149 −0.2558 0.0548 −0.017 0.610 17 2626 0.500 0.2354 0.4099 0.7243 0.1177 −0.1924 0.674 0.144 18 2636 0.503 0.1720 0.2354 0.4099 0.7243 0.1177 −0.1924 0.674 0.144 18 2636 0.500 0.1720 0.2354 0.4099 0.7243 0.1177 −0.1924 0.674 0.144 18 2633 0.412 0.0111 0.4009 0.7090 0.0237 −0.0755 0.411 0.216 23 2636 0.509 0.1720 0.2435 0.8246 −0.0969 0.1151 0.080 0.328 20 2633 0.412 0.1011 0.4009 0.7090 0.0237 −0.0755 0.411 0.216 24 2636 0.811 0.1763 −0.1978 0.0246 −0.0969 0.1151 0.080 0.328 24 2636 0.811 0.1763 −0.7388 0.6010 −0.0255 0.0225 0.188 0.204 26 2637 0.859 0.3794 −0.7392 0.7573 0.0968 0.0392 0.300 0.050 27 2638 0.909 0.2807 −1.1501 0.6846 0.0344 −0.0976 0.251 0.375 29 2635 0.835 0.4295 −0.5375 0.7208 0.0926 −0.0976 0.151 0.433 3 2639 0.867 0.1276 0.4474 0.4306 0.7800 −0.0926 −0.0976 0.251 0.375 29 2635 0.835 0.4295 −0.5375 0.7208 0.0926 −0.0395 0.433 0.086 30 2638 0.887 0.2164 −1.0747 0.7339 0.0065 0.1027 0.173 0.143 32 2634 0.840 0.1683 −0.8639 0.7116 −0.0809 0.01173 0.163 −0.0976 0.251 0.375 38 2630 0.876 0.1975 −1.0386 0.6700 −0.0290 −0.1139 0.146 0.764 34 2633 0.840 0.1683 −0.8639 0.7116 −0.0771 0.0371 0.0976 0.251 0.375 38 2630 0.876 0.1935 0.0893 0.7816 0.0996 0.0139 0.166 0.764 34 2633 0.840 0.1683 −0.8639 0.7116 0.0976 0.2544 0.0100 0.0077 0.173 0.143 32 2634 0.812 0.0916 0.0831 0.7912 0.5856 0.0093 0.1173 0.163 −0.002 40 2639 0.869 0.1678 −0.0936 0.0930 0.0036 0.0036 0.0066 43 2637 0.890 0.890 0.1687 0.0093 0.7874 0.05076 0.

^{*}Assumed design effect = 2.

TABLE 5

ASVAB
ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETERS VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS
ARITHMETIC REASONING-FORM 1 (N = 2848)

Item	Attempt	ts Facility	Chance	Intercept	Princip	al Factors	Proma	x Factors
	•	•		•	1	2		
4	2827	0.452	0.2382	0.5920	0.7857	0.0608	0.416	0.413
5	2842	0.808	0.1859	-0.7231	0.6989	0.1583	0.207	0.539
8	2845	0.898	0.1091	-1.2106	0.6482	-0.1628	0.677	-0.011
9	2832	0.608	0.1773	-0.0514	0.6669	-0.1252	0.631	0.058
11	2842	0.775	0.1110	-0.6648	0.6451	-0.1416	0.642	0.022
12	2833	0.443	0.1809	0.4760	0.7354	0.2150	0.142	0.647
14	2816	0.465	0.1671	0.3784	0.6994	0.0117		0.297
15	2845	0.896	0.1882	-1.1518	0.6779	0.3706		
16	2840	0.855	0.1214	-0.9772	0.7309	0.1997	0.163	0.620
17	2843	0.792	0.1916	-0.6600	0.7369	0.2880		
18	2840	0.731	0.1109	-0.5182	.0.8082	0.2242		
20	2822	0.579	0.2562	0.1820	0.8101	-0.0553		
22	2838	0.668	0.0887	-0.3459	0.4211	-0.1050		
23	2835	0.486	0.1911	0.3518	0.8300	-0.0613		
24	2834	0.652	0.0949	-0.2868	0.8014	-0.1000	0.679	0.153
25	2828	0.344	0.1203	0.6659	0.7576	-0.1533		
26	2832	0.638	0.2302	-0.0677	0.7604	-0.1913		
27	2814	0.471	0.2047	0.4414	0.7640	0.0048		
28	2788	0.295	0.1558	0.9946	0.8432	-0.1094		
29	2823	0.556	0.1877	0.1270	0.7881	-0.0402	0.576	0.247
30	2823	0.488	0.1514	0.2602	0.8319	-0.1486	0.775	0.085
31	2815	0.406	0.2217	0.7420	0.8288	0.0313		
32	2824	0.913	0.1595	-1.2585	0.5883	0.0475	0.309	0.312
34	2808	0.849	0.2357	-0.8428	0.7699	-0.2119	0.834	-0.044
A	dding (Chi-square*	d.f. p	Percer	ıt of Vari	ance	Factor	
F	actor	Change					Correlatio	
				1	2		1	2
	2	96.793	23 <.0		30 2.58		1.000	
	3	25.387	22 .2	79		2	0.808	1.000

*Assumed design effect = 2.

TABLE 6

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS ARITHMETIC REASONING-FORM 3 (N=2768)

Item	Attempts	Facility	Chance	Intercept	Principa	l Factors	Promax	Factor
					1	2	1	2
1	2766	0.886	0.1398	-1.1064	0.3965	0.2016	-0.069	0.496
3	2747	0.316	0.1314	0.8212	0.6728	0.0349	0.328	0.388
4	2765	0.360	0.0635	0.4954	0.7361	-0.1614	0.649	0.130
5	2766	0.884	0.1499	-1.0875	0.4410	0.1718	-0.001	0.474
6	2755	0.439	0.0833	0.3061	0.7381	-0.1165	0.585	0.198
7	2759	0.825	0.1756	-0.7846	0.6120	-0.0649	0.439	0.21
8	2765	0.492	0.1268	0.2308	0.7807	-0.0389	0.496	0.333
9	2767	0.889	0.1273	-1.1361	0.5646	0.1314	0.127	0.476
13	2755	0.233	0.1389	1.2519	0.8386	-0.0416	0.533	0.358
14	2764	0.315	0.0450	0.6032	0.8772	-0.2282	0.825	0.102
17	2765	0.765	0.1637	-0.5683	0.7353	-0.0274	0.454	0.328
18	2757	0.566	0.0763	-0.0514	0.8178	-0.0167	0.485	0.38
19	2762	0.588	0.1084	-0.0766	0.7275	-0.0742	0.517	0.25
20	2756	0.526	0.2144	0.2864	0.6838	0.0356	0.333	0.39
21	2761	0.823	0.1127	-0.8292	0.5140	0.2185	-0.028	0.579
24	2741	0.548	0.2669	0.3157	0.8975	0.0772	0.393	0.563
26	2763	0.609	0.4443	. 0.5857	0.8434	-0.1438	0.684	0.21
27	2739	0.397	0.1350	0.5504	0.8638	0.0102	0.472	0.44'
28	2746	0.424	0.2408	0.7351	0.8005	-0.1174	0.621	0.22
29	2753	0.416	0.3176	1.1090	0.8958	0.0242	0.469	0.48
30	2739	0.480	0.2008	0.4174	0.8114	-0.0360	0.509	0.353
33	2732	0.497	0.1001	0.1750	0.8699	0.0990	0.346	0.58
34	2743	0.915	0.1465	-1.2765	0.6174	0.3139	-0.108	0.772
35	2719	0.726	0.1072	-0.4908	0.5824	0.1243	0.148	0.475
Adding	Chi-square*	d.f.	p.	Percent of	Variance		Factor	
Factor	Change					Co	orrelations	
				1	2		1	2
.5	73.175	23	<.001	54.0784	1.7065	1	1.000	
3	18.839	22	.655			2	0.767	1.000

^{*}Assumed design effect = 2.

TABLE 7

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS
ARITHMETIC REASONING-FORM 5 (N = 2673)

Item	Attempts	Facility	Chance	Intercept	Principa	l Factors	Promax	Factors
100111	nucmpus	1 dellioy	Onunce	mocreepu	1	2	1	2
1	2652	0.539	0.1588	0.1349	0.7377	0.0181	0.388	0.404
3	2662	0.660	0.2220	-0.1471	0.7619	-0.0349	0.326	0.490
4	2657	0.741	0.2354	-0.4038	0.7367	-0.0129	0.344	0.445
6	2664	0.831	0.1758	-0.8221	0.7742	-0.0583	0.300	0.529
7	2663	0.735	0.1251	-0.5057	0.7512	-0.1254	0.195	0.607
8	2666	0.655	0.1471	-0.2334	0.7147	-0.0768	0.244	0.519
9	2659	0.294	0.1897	1.1558	0.8822	0.0361	0.484	0.463
12	2673	0.899	0.1139	-1.2148	0.4904	-0.2072	-0.048	0.567
14	2667	0.300	0.0596	0.6658	0.8325	0.1732	0.651	0.248
15	2669	0.898	0.1235	-1.1944	0.5711	-0.2497	-0.067	0.671
16	2645	0.557	0.2818	0.3164	0.8172	0.0918	0.530	0.350
17	2665	0.728	0.2455	-0.3535	0.7103	-0.0062	0.341	0.421
18	2657	0.751	0.2665	-0.4037	0.7454	0.0139	0.386	0.414
20	2630	0.365	0.1301	0.6253	0.8315	-0.1350	0.221	0.666
21	2664	0.913	0.1498	-1.2655	0.6017	-0.2529	-0.057	0.693
23	2663	0.551	0.2080	0.1718	0.7637	0.3039	0.800	0.030
27	2635	0.097	0.0442	1.5712	0.8999	0.0157	0.465	0.501
28	2650	0.225	0.0245	0.8257	0.6917	-0.0199	0.313	0.429
29	2655	0.674	0.1444	-0.2962	0.6132	0.1841	0.558	0.106
31	2637	0.281	0.1613	1.0727	0.8655	0.0698	0.523	0.408
33	2654	0.728	0.1325	-0.4848	0.5926	0.1211	0.460	0.179
34	2633	0.408	0.1915	0.6411	0.8870	0.0917	0.564	0.390
35	2634	0.915	0.1442	-1.2891	0.4730	-0.1910	-0.034	0.534
Adding	Chi-square*	d.f.	p.	Percent of	Variance		Factor	
Factor	Change		-			Co	orrelations	3
	_			1	2		1	2
2	39.557	22	.012	54.4329	1.9366	1	1.000	
3	25.909	21	.210			2	0.737	1.000

^{*}Assumed design effect = 2.

TABLE 8

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES,
STANDARD DIFFICULTIES, AND FACTOR LOADINGS
WORD KNOWLEDGE-FORM 1 (N = 2840)

Item	Attempts	Facility	Chance	Intercept	•	Factors	Promax	
	- -				1	2	1	2
ī	2835	0.663	0.2804	-0.0814	0.8145	-0.2255	0.799	0.05
3	2826	0.181	0.1282	1.5346	0.8316	0.1318	0.194	0.67
4	2835	0.266	0.1603	1.1349	0.7532	0.0734	0.255	0.53
5	2826	0.161	0.0908	1.4476	0.8403	-0.2363	0.830	0.05
7	2833	0.293	0.0786	0.7250	0.8752	-0.0726	0.567	0.34
9	2836	0.377	0.1316	0.5751	0.8193	-0.0726	0.539	0.31
10	2837	0.880	0.1128	-1.1177	0.7298	0.1831	0.054	0.70
13	2840	0.892	0.1548	-1.1603	0.6071	0.3721	-0.332	0.96
15	2824	0.312	0.2455	1.3426	0.8264	0.0926	0.259	0.60
21	2835	0.899	0.1301	-1.2061	0.6460	-0.0286	0.376	0.30
28	2839	0.792	0.1883	-0.6621	0.7650	0.0141	0.362	0.43
30	2839	0.902	0.1340	-1.2303	0.6767	0.0689	0.224	0.48
34	2837	0.860	0.1252	-1.0105	0.7681	0.0743	0.261	0.54
35	2834	0.551	0.1464	0.0657	0.8271	-0.1281	0.638	0.22
37	2818	0.183	0.1128	1.3938	0.8647	0.1468	0.185	0.71
42	2827	0.628	0.1074	-0.1976	0.8654	-0.1095	0.625	0.28
43	2834	0.888	0.1708	-1.1117	0.6183	0.0607	0.208	0.43
44	2823	0.266	0.0618	0.7819	0.7648	-0.0062	0.397	0.40
45	2833	0.778	0.1890	-0.5990	0.8625	-0.0202	0.470	0.43
46	2815	0.175	0.1393	1.7162	0.5599	0.1632	0.003	0.58
47	2834	0.900	0.1424	-1.2057	0.6654	0.0934	0.176	0.51
48	2833	0.893	0.2747	-1.0635	0.8019	0.1046	0.226	0.61
49	2832	0.734	0.2012	-0.4300	0.7472	0.0122	0.357	0.42
51	2836	0.871	0.1280	-1.0625	0.7156	0.3152	- 0.179	0.92
54	2812	0.443	0.1987	0.5188	0.8532	-0.0793	0.567	0.32
58	2825	0.692	0.2690	-0.1857	0.7482	0.0773	0.245	0.53
59	2824	0.307	0.2318	1.3322	0.8152	-0.3336	0.985	0.12
61	2818	0.417	0.3174	1.0572	0.8081	0.1167	0.208	0.63
69	2803	0.306	0.1728	0.9988	0.5914	-0.0751	0.428	0.19
71	2822	0.893	0.0955	-1.1907	0.7234	0.1767	0.062	0.69
73	2821	0.653	0.1676	-0.1978	0.8475	-0.1112	0.619	0.20
74	2816	0.743	0.0925	-0.5685	0.6339	0.1454	0.071	0.59
77	2815	0.610	0.1852	-0.0399	0.8061	-0.1549	0.673	0.17
79	2805	0.507	0.2533	0.4071	0.8338	-0.2424	0.838	0.03
81	2794	0.677	0.2595	-0.1368	0.8739	-0.1339	0.672	0.24
85	2792	0.784	0.2980	-0.4920	0.8021	-0.0341	0.464	0.37
86	2746	0.345	0.2301	1.0653	0.8485	-0.0328	0.485	0.40
dding	Chi-square*	d.f.	P	Percent of	Variance	Facto	r Correlat	
Factor	Change	•	-	1	2		1	2
2	157.332	36	<.001	59.8158	2.2762	1	1.000	
3	48.774	35	.061			2	0.829	1.00

^{*}Assumed design effect = 2.

TABLE 9

ASVAB
ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES,
STANDARD DIFFICULTIES, AND FACTOR LOADINGS
WORD KNOWLEDGE-FORM 2 (N = 2655)

Item	Attempts	Facility	Chance	Intercept	Princip 1	al Factor	Promax	
1	2635	0.373	0.2936	1.2523	0.8710	-0.1192	0.645	0.25
2	2651	0.332	0.0496	0.5507	0.8188	0.1078	0.176	0.66
3	2637	0.675	0.2575	-0.1518	0.7955	-0.0242	0.170	
4	2639	0.326	0.1114	0.7152	0.8638	-0.0068	0.423	0.40
5	2648	0.781	0.2520	-0.5613	0.7780	0.1247		
7	2636	0.457	0.1117	0.3037	0.8438	0.1277	0.124	0.67
9	2650	0.831	0.2095	-0.8219	0.7256	0.0897	0.149	0.72
10	2648	0.781	0.1872	-0.6301	0.7230		0.167	0.58
14	2654	0.831	0.3802	-0.6209	0.6008	0.0280	0.222	0.38
17	2639	0.158	0.0925	1.4519		0.0460	0.194	0.42
20	2626	0.442	0.3600	1.1726	0.8349	0.0037	0.387	0.47
23	2640	0.581	0.1082		0.7924	0.0140	0.347	0.47
24	2653	0.903	0.2417	~0.0805 ~1.1793	0.7778	-0.2098	0.778	0.03
25	2647	0.338	0.1822		0.7093	0.0194	0.297	0.43
29	2649	0.408		0.8900	0.8732	0.0361	0.342	0.56
30	2643	0.479	0.3242	1.1568	0.7744	0.3183	-0.257	1.050
32	2649		0.2135	0.4163	0.8046	-0.1332	0.641	0.194
34	2646 2646	0.854 0.300	0.1276 0.1858	~1.0077	0.8165	-0.0422	0.469	0.37
37	2644	0.712		1.0935	0.7905	0.0466	0.283	0.53
39	2649		0.2310	-0.3229	0.7959	0.1794	0.025	0.79
40	2653	0.813	0.1735	-0.7785	0.7393	0.2448	-0.129	0.88
		0.341	0.1754	0.8369	0.7724	-0.1142	0.589	0.213
41	2640	0.823	0.2039	-0.7887	0.7951	0.0692	0.241	0.580
42	2650	0.683	0.1142	-0.3780	0.7952	-0.1154	0.602	0.224
43	2643	0.713	0.1268	-0.4501	0.8227	0.1882	0.021	0.820
44	2644	0.748	0.3939	~0.1970	0.8574	-0.2326	0.860	0.032
46	2647	0.851	0.2035	-0.9165	0.7033	0.1259	0.086	0.638
47	2642	0.642	0.1802	-0.1574	0.8058	-0.3416	1.049	-0.207
50	2649	0.699	0.2353	-0.2613	0.8899	-0.1583	0.730	0.194
51	2649	0.749	0.0990	-0.6094	0.8046	0.0021	0.376	0.456
52	2647	0.848	0.1905	-0.9036	0.5628	0.0293	0.209	0.373
54	2641	0.691	0.1479	-0.3572	0.7628	0.0629	0.237	0.550
56	2649	0.915	0.1574	-1.3061	0.5784	-0.0104	0.294	0.305
58	2634	0.364	0.2935	1.2980	0.7790	0.0200	0.329	0.47€
59	2639	0.921	0.1934	-1.3114	0.6017	0.0877	0.113	0.508
60	2637	0.123	0.0736	1.5979	0.7382	0.0415	0.268	0.495
62	2632	0.198	0.1171	1.3434	0.6611	-0.0669	0.443	0.242
63	2623	0.315	0.2741	1.6240	0.7759	-0.1873	0.733	0.074
64	2625	0.309	0.2505	1.4204	0.6546	-0.0933	0.492	0.187
66	2640	0.917	0.3851	-1.1458	0.7775	0.0460	0.278	0.526
67	2641	0.277	0.0393	0.6875	0.7208	0.0148	0.312	0.434
69	2640	0.569	0.1180	~0.0277	0.6650	0.1622	-0.003	0.687
70	2634	0.640	0.2443	-0.0583	0.7828	-0.0627	0.493	0.319
73	2640	0.917	0.1988	-1.2652	0.3282	0.0756	0.007	0.330
76	2634	0.555	0.2502	0.2464	0.8241	-0.0358	0.460	0.394
77	2634	0.921	0.1660	-1.3476	0.6873	-0.0132	0.351	0.361
78	2626	0.564	0.3049	0.3335	0.8088	-0.1169	0.611	0.228
79	2635	0.669	0.2202	-0.1857	0.8690	-0.0449	0.499	0.401
82	2599	0.312	0.1705	0.9533	0.3016	-0.0394	0.220	0.093
84	2622	0.883	0.2354	-1.0572	0.7932	-0.0080	0.391	0.430
86	2607	0.843	0.1303	-0.9332	0.7381	0.0190	0.312	0.451
dding	Chi-square*	d.f.	p	Percent of			Factor	
Factor	Change		•	OI		C	orrelations	
				1	2	0.	1	2
2	258.085	49	<.001	56.9080	1.45802	1	1.000	-
-		48	.028	50.5000	40002	2	0.868	

^{*}Assumed design effect = 2.

TABLE 10
ASVAB
ITEM ATTEMPTS, PACILITIES, GUESSING PARAMETER VALUES,
STANDARD DIPPICULTIES, AND PACTOR LOADINGS
WORD KNOWLEDGE-FORM 3 (N = 2674)

Item	414	Pacility	Chance	Intercept	Value (Pactors	Promas	
I to the	Attempts	Pacifity	CHARCO	Intercept	Principa	1 Pactors	Promax	PACTOR
- 1	2675	0.860	0.1461	-0.9735	0.8496	-0.146Y	0.019	0 53
;	3440	0.348	0.2304	0.9890	0.8748	0.0838	0 516	0 40
í	2673	0.917	0.2479	-1.3448	0.5673	-0.0193	0.344	0 38
•	2673	0.774	0.4445	-0.3190	0.8882	0.0429	0 491	0 40
•	2659	0.437	0 3450	0.6524	0.8957	0.1731	0.730	0 31
7	2461	0.474	0.3380	0.4867	0.4638	0.0735	0.545	0 34
	2672	0.260	0.2048	1.4593	0.3968	-0.1341	-0 034	0.44
•	2448	0.151	0.0382	1.1702	0.7876	-0.1009	0.188	0.54
11	2469	0.278	0.0794	0.7668	0.8596	-0.0136	0.397	0 \$0
12	2675	0.838	0.3019	-0.8370	0 3796	0.0434	0.357	0 14
13	2672	0.887	0.3517	-0.8748	0.7096	-0 1340	0 138	0 60
14	2672	0.900	0.1714	-1.1861	0.4961	-0.0706	0.122	0 36
15	2466	0.300	0.1753	0.8345	0.4611	0.0694	0.537	0 34
16	2657	0.303	0.1246	1.0846	0.8665	0.0958	0.585	0 32
17	2675	0.869	0.2460	-0.9562	0.5500	0.1075	0 450	0 12
20	2674	0.863	0.3619	-0.4934	0.7825	0.1933	0 493	0 42
21	2674	0 899	0.3488	-1.1338	0.7311	-0 3323	-0.208	0 96
				-0.1517				
33 26	2648 2671	0.657 0.810	0.1882	-0.1317	0.7994	0.3577 -0.0148	0.837	0 01
	2674	0.810	0.3665	-0.8534		0.1937		+0 03
30	2674			-0.8409	0.5140		0 579	
31		0. 843 0. 931	0.2237 0 1292	-1.3745	0.3839	-0.0053	0 178	9 32
33	2674	0.931	0.0144	1.4891	0 7031	-0.0904		0.54
33	2671 2674	0.586	0.1474	-0.0427	0.8874 0.3874	-0 1565 -J 0013	0 153	0.20
3 4 3 5	2671	0.419	0.1070	0.3838	0.7621	0.0963	0 535	0.26
37				0.7000		0.0093		
	2660	0 410	0.3347		0.7743		0 393	9 41
39	3659	0.496	0 2033	0.3366	0.7294	0.1997	0 694	0 01
41	2660	0.600	0 4236	0.4929	0 7889	-0 1303	0 167	0 65
4.2	2473	0.643	0.2087	-0.1330	0 7641	0.0961	0 535	0.36
4.5	2662	0 688	0.3354	-0 0537	0.8592	-0 0305	0 367	0 53
46	2672	0 343	0 1741	0 9373	0 4914	-0 1307	0 133	0 54
53	2667	0 647	0.1563	-1.0131	0 7433	0.0818	0 413	0 36
5 4	2644	0 264	0 1631	1 1739	0 8437	0 0 9 7 4	0 586	0.32
56	2664	0.371	0 1403	0.6147	0 6903	0.2301	0 727	0 00
5.7	3673	0 933	0 1737	-1 4419	0.7440	-0.2233	-0.003 0.194	0 60
5 8 5 9	2672 2647	0.874	0.1379	-1.0633 -1.7047	0.7660	~0.1088 ~0.1472	0 014	0 35
								0 36
61)	2670 2667	0.871	0 1241	-0.6086 -0.8693	0.6350 0.6775	-0.0084 - 0.0614	0 395	0 37
		0.494	0.1763	0.2992	0.8072		0 326	0 31
63	2662		0.3382	-0.6912	0.8257	-0.0394	0 143	0 69
65	2661	0 846				-0 1410		
68	2650	0 362	0.1575	0.6973	0.8057	0 2252	0 775	0 07
63	3646	0 276	0 1978	1 3864	0 4341	0 0071	0 787	0 17
70	3656	0.339	0 0771	0 9389	0 9133	0.2016		9 41
73 74	2647 2651	0 405	0.0998	0.40 67 0. 5748	0.8899	0.0495 -0.1334	0 517	9 61
76	2651 2651	0.616	0.2782	-0.0994	0 7329	0 0439	0 432	0 31
76			0 1303		0 7529	-00446	0 296	0.30
77	3646	0 260 0 765	0 1303	1.0404	0 6334	-00785	0 175	0.48
	2655	0 763	0 2086			-0 2548	-0 125	9.71
73	2656			-1.1384	0.6304	-0.0541	0 303	0.34
81	2644	0 201	0 2942	-1.0773				
8.2	2642	0 919	0 3179	-1.2835	9.8080	0 0185	0 425	0.42
6.3	2643	0 443	0 2091	-1 0458	9 4736	-0.0832	0.089	9 41
9.4	3619	0 325	9 2013	1.0131	17568	-00596	1 367	3.3
9.6	2606	0 317	1831	-1.3174	1 7824	- 1 1887	1 231	5.8
daing	Thi-square	- A T	P	Percent of	VACIABLE		Partor	
* · · · · ·	Change			_	_	(-	OFFICE LATER OF THE	
_				1	3			
3	220 250	54	< 901	52 4404	1 6316	1	1 000	
3	133 2 19	5.3	< 001			3	874	1 101

*Assumed design effect = 2.

TABLE 11

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS PARAGRAPH COMPREHENSION-FORM 1 (N = 2952)

Item	Attempts	Facility	Chance	Intercept	Principal Factor
1	2952	0.907	0.1676	-1.2244	0.6015
3	2944	0.392	0.1499	0.5670	0.4283
5	2943	0.489	0.1899	0.3397	0.7320
6	295 0	0.914	0.1433	-1.2833	0.5774
7	2952	0.919	0.1293	-1.3379	0.7477
8	2951	0.231	0.1038	1.0706	0.6219
9	2948	0.695	0.2018	-0. 3007	0.7823
11	2950	0.895	0.1451	-1.1666	0. 5207
12	2947	0.749	0.0874	-0. 6002	0.6561
13	2948	0.694	0.1072	-0.4064	0.6892
14	2948	0.471	0.1481	0.3081	0.6741
15	2944	0.611	0.3122	0.1663	0.6559
16	2946	0.367	0.1168	0.5713	0.5440
17	2946	0.902	0.1315	-1.2151	0.6249
20	2947	0.303	0.1074	0.7727	0.6993
22	2941	0.271	0.1997	1.3701	0.8456
23	2937	0.610	0.1408	-0.1123	0.7031
24	2942	0.920	0.1942	-1.2987	0.6845
27	2931	0.397	0.1515	0.5591	0.6877
28	2928	0.619	0.0971	-0.1945	0.6419
29	2926	0:846	0.1936	-0.8735	0.7106
30	2925	0.917	0.2286	-1.2444	0.8381
31	2912	0.221	0.1259	1.2340	0.7647
32	2 90 3	0.520	0.2626	0.4022	0.7880
33	2883	0.909	0.1527	-1.2407	0.5744
Adding	Chi-square*	d.f.	P		Percent of Variance
Factor	Change				
2	35.249	24	.065		46.0604

^{*}Assumed design effect = 2.

TABLE 12

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS PARAGRAPH COMPREHENSION-FORM 3 (N=2724)

Item	Attempts	Facility	Chance	Intercept	Principal Factor
1	2719	0.237	0.1800	1.5192	0.6786
2	2718	0.424	0.1138	0.3982	0.5716
3	2721	0. 503	0.2405	0.4155	0.6851
4	2718	0.374	0.1995	0.8003	0.5900
5	2721	0.758	0.0988	-0.6141	0.6145
9	2723	0.293	0.1749	1.0939	0.6452
10	2721	0. 556	0.1997	0.1505	0.6623
11	2724	0.886	0.1850	-1.0878	0.5313
13	2722	0.911	0.1410	-1.2650	0.5495
l 4	2724	0.767	0.1778	-0.5731	0.6511
15	2724	0.897	0.0988	-1.2238	0.7752
16	272 0	0.766	0.1502	-0.5937	0.7766
18	2723	0.793	0.1039	-0.7389	0.7111
19	2721	0.878	0.1483	-1.0748	0.7698
20	2718	0.531	0.1818	0.2082	0.8240
21	2715	0.277	0.0663	0.7666	0.4920
22	2717	0.719	0.1247	-0.4605	0.7319
23	2714	0.446	0.3301	0.9891	0.7462
24	2711	0.858	0.1591	-0.9568	0.6365
25	2706	0.293	0.1008	0.8235	0.8596
2 6	2702	0.445	0.2274	0.6153	0.7704
27	2705	0.708	0.1112	-0.4347	0.7162
28	2704	0.397	0.1563	0.5854	0.6544
2 9	2698	0.911	0.1752	-1.2396	0.6379
3 0	2685	0.440	0.1189	0.3715	0.7789
31	2668	0.898	0.1655	-1 1657	0.6563
32	2656	0.215	0.1161	1.2519	0.8387
33	2629	0.351	0.1354	0.7198	0.8451
Adding	Chi-square*	ব.f.	p.		Percent of Variance
Factor	Change				
2	50.863	27	<.004		48.9357

^{*}Assumed design effect = 2.

TABLE 13

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES.

STANDARD DIFFICULTIES, AND FACTOR LOADINGS
PARAGRAPH COMPREHENSION-FORM 5 (N = 2726)

Item	Attempts	Facility	Chance	Intercept	Principal Factor
1	2725	0.857	0.1758	-0.9502	0.4068
2	2720	0.647	0.1344	-0.2417	0.6190
3	2724	0.859	0.1839	-0. 9639	0.6392
5	2726	0.860	0.1928	-0.9548	0.4866
6	2720	0.237	0.1209	1.1033	0.8215
8	2722	0.108	0.0555	1.5822	0.7246
9	2726	0. 553	0.0818	-0.0445	0.7359
11	2724	0.697	0.1868	-0. 337 0	0.6608
13	2726	0.901	0.2706	-1.1313	0.7574
14	2724	0.327	0.0547	0.5506	0.7191
15	2725	0.910	0.1507	-1.2765	0.5824
16	2720	0.455	0.3163	0.8350	0.6815
17	2722	0.584	J.1865	0.0 206	0.7833
18	2721	0.910	0.1768	-1.2432	0 4877
19	272 0	0.416	0.2736	0.8499	0.3877
20	2724	0.903	0.1139	-1.2532	0 5452
21	2722	∍.810	0.1251	-0.7962	0.5501
22	2719	0.914	0.1214	-1.3120	0.6089
23	272 0	0.651	0.1331	-0. 2586	0.7447
25	2719	0.716	0.2306	-0.3440	0 7637
26	2716	0.823	0.3768	-0.5779	0.7140
27	2707	0.208	0.0841	1.1030	0.0222
28	2709	0.575	0.1428	-0.0177	0 7399
29	2707	0.905	0.1415	-1.2403	0.5395
3 0	2706	0.900	0.1944	-1.1742	0.6315
31	2699	0.558	0.1604	0.0613	0 6225
32	2692	0.627	0.1400	-0.1724	0.6645
33	2678	0.841	0 1404	-0.9096	0.6694
Aiding	Chi-square*	d.f.	P		Percent of Variance
Factor	Change				
2	64.∋32	27	< ∋01		40 7191

^{*}Assumed design effect = 2

TABLE 14

ASVAB

ITEM ATTEMPTS FACILITIES, QUESSING PARAMETER VALUES
STANDARD DIPPICULTIES, AND FACTOR LOADINGS
AUTOMOTIVE INFORMATION-FORM 1 (N = 2934)

item	Attempts	Facility	Chance	Intercept	Principal Factor
 :	2932	0 772	0 1509	-0 6531	0.7526
:	2926	0.437	0.1298	0 4469	0 8670
3	293 0	0.857	0 1070	- 1 0263	0.5771
4	2928	0.807	0 3555	- () 5491	0 6999
*,	2931	0.536	0.0569	- 0.0085	0.5179
•	2028	0.510	0.0924	0 1194	○ 5665
s s	2930	0.817	0 0931	-0 8732	0.6571
•	2929	0 553	0 2613	0.3038	0 7734
4.11	3927	∪ 56 0	9 3104	0.3912	o 65 38
	2926	0.318	0.2103	1 2919	∂ #511
1.2	2923	0.242	0.1645	1 4416	0.7358
: 3	2922	0.530	0.1619	0.1891	0 8183
14	2931	U 894	U 2042	-1 1597	0 6229
15	2927	0.184	0.0454	1 1670	0.8098
.*	2930	0 431	0 0600	9 2868	0 4822
20	2928	0.780	0 1749	-0 6633	⊕ #150
21	2928	0.316	0.0918	u 7 669	0.8164
23	2928	0	0.1992	- () 5879	0.3491
24	2926	14.174	0.0573	1 3049	0.8732
25	2930	1.737	11928	-0.4706	0.7448
28	2932	1 331	0.0458	0 5654	0.5825
29	2933	0 303	D 1076	-1 3161	□ 5280
3.1	2930	0.871	0 4185	· 0 8105	0.7466
7.3	2924	0.474	0.2062	1.4704	0.7491
્રમ •	2921	1 250	0.1149	1.1062	0 66*2
2.4	2932	1 275	9 9 8 9 7	0.0082	1 7418
2.5	2924	1 531	□ 4309	1 0429	⊕ *842
, ,	2926	1591	2676	○ 1714	⊴ 6471
`8	2922	·/ 582	11 3292	n 3636	0.8206
30	2928	1633	1 2859	1.0758	→ 6961
4 i	2027	(4)(13)	11671	-0.0443	1 8331
4.2	2928	11 921	·) 2164	- 1 2975	⊕ 4362
44	2923	1441	11 3169	1.0066	0.7869
4 5	2923	371	1 2591	1 1326	9 7098
46	2930	0.851	++ 1263	1 0123	0.7344
4*	2019	0.130	0.1141	2.3058	0.8650
49	2922	1672	11 4432	1722	○ 8346
<u>†</u> (4)	2925	1914	0.1825	1 2946	O \$366
	2915	0.355	7.0909	+ 6164	17719
51	2920	9.889	9 1772	1 1602	→ 6644
56	2914	0.36	0 1124	-0.5540	0.7714
. •	2910	9.862	9 3530	-1 836°	0.7876
∵.8	290	0 329	11956	1 0781	o *200 8
151.	2912	332	1 2009	1.0545	1 8168
A. Jelinie	predage		r.		Percent of Variance
E w t ⊤	hange				
	316 48	4.3	4 411		52 8158

 ${\mathbb Z}[X]$, see the testion effect ${\mathbb Z}[2]$

TABLE 15

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS AUTOMOTIVE INFORMATION-FORM 2 (N = 2814)

Item	Attempts	Facility	Chance	Intercept	Principal Factor
i	2803	0.357	0.1745	0.8009	0.6875
2	2811	0.812	0.2299	-0.7392	0.7917
4	2806	0.501	0.0645	0.0845	0.5011
5	2804	0.342	0.2458	1.2369	0.8016
6	2809	0.269	0.1343	1.0734	0.8344
7	2813	0.523	0.0711	0.0323	0.6182
8	2813	0.920	0.1642	-1.3567	0.6055
9	2813	0.758	0.4996	-0.0111	0.5757
12	2810	0.150	0.0672	1.4106	0.7846
13	2810	0.810	0.2179	-0.7031	0.2981
15	2812	0.678	0.2242	-0.2293	0.8502
16	2809	0.517	0.2306	0.3430	0.7842
18	2814	0.196	0.1096	1.3572	0.6839
19	2814	0.921	0.5000	-1.0864	0.8596
20	2809	0.224	0.1155	1.2154	0.6847
22	2814	0.807	0.1263	-0. 8063	0.6505
24	2812	0.643	0.4990	0.6375	0.7331
25	2808	0.896	0.1676	-1.1658	0.4453
26	2802	0.254	0.1510	1.2418	0.8049
27	2810	·0.473	0.1296	0.2937	0.8528
28	2812	0.883	0.1397	-1.1382	0.5715
29	2809	0.712	0.1101	-0.4804	0.7028
32	2806	0.635	0.2034	-0.1105	0.7587
33	2808	0.621	0.0894	-0.2208	0.6768
36	2805	0.570	0.1786	0.0660	0.8172
37	2811	0.915	0.1736	-1.2781	0.3263
38	2808	0.419	0.1622	0.5301	0.7409
39	2797	0.550	0.0675	-0.0417	0.6850
41	2805	0.326	0.2694	1.4882	0.6936
42	2811	0.853	0.2345	-0.9259	0.7434
43	2802	0.326	0.1546	0.8757	0.7142
44	2799	0.282	0.0879	0.8429	0.7298
46	2809	0.764	0 1372	-0.6266	0.6403
47	2810	0.657	0.2143	-0.1664	0.8571
49	2798	0.223	0.1571	1.5159	0.8281
50	2809	0.859	0 1577	-0.9842	0 4392
52	2809	0 718	0.1058	-05137	0.7782
55	2798	0 469	0 1281	0.2973	0 7520
57	2792	0 146	0.0658	1.4331	0 7354
59	2799	0.832	0.3719	-0.6517	0.7187
60	2794	0 586	0.2644	0.1647	0.6586
Adding	Chi-square*	d f	Р		Percent of Variance
Factor	Change		•		
2	195 154	40	< 001		49 8295

[&]quot;Assumed design effect = 2.

TABLE 16

ASVAB
ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES.
STANDARD DIFFICULTIES, AND FACTOR LOADINGS
AUTOMOTIVE INFORMATION-FORM 3 (N = 2720)

Iten		Facility	Chance	Intercept	Principal Factors
	2718	0.388	0.1441	0.5922	0.7996
	2 2705	0.308	0.1339	0.8401	0.3264
;	3 2708	0.653	0.1080	-0.3096	0.5965
	4 2708	0.304	0.0822	0.7246	0.7406
	3 2714	0.649	0.1250	- 0. 3083	0.7971
	2719	0.901	0.1408	-1.2880	0.7245
	2719	0.798	0.1507	-0.7501	0.4934
10		0.289	0.2000	1.3735	0.8701
1.		0.187	0.1741	2.1685	0.3610
12		0.272	0.1803	1.2965	0.7411
1:		0.192	0.1332	1.6115	0.8024
1.		0.406	0.2506	0.8676	0.7830
13		0.851	0.2607	-0.8465	0.2351
10		0.141	0.0595	1.4247	0.6793
Ţ		0.903	0.2052	-1.2010	0.4464
11		0.886	0.1890	-1.1352	0.5748
2.		0.231	0.1835	1.6987	0.7777
2:		0.641	0.1152	-0.2915	0.7424
2:		0.725	0.4410	-0.0605	0.8279
24		0.572	0.1808	0.0189	0.8092
2!		0.558	0.2474	0.2083	0.6668
20		0.128	0.0669	1.6166	0.7850
2.		0.451	0.1718	0.4172	0.7745
29		0.596	0.2659	0.0952	0.7692
30		0.148	0.0805	1.5455	0.7568
31		0.590	0.1457	-0.1188	0.8856
33		0.878	0.1257	-1.1098	0.3653
34		0.525	0.3328	0.5785	0.7713
38		0.660	0.2935	-0.0783	0.7316
30		0.366	0.0932	0.5395	0.8790
31		0.485	0.1368	0.2208	0.8615
38		0.882	0.2927	-1.0187	0.6057
40		0.254	0.1017	1.0025	0.7377
4.1		0.617	0.0476	-0.2900	0.6798
43		0 711	0.2718	-0.3138	0.7328
43		0 726	0.4112	-0.1420	0.8502
44		0 432	0.2290	0.6379	0.5234
45		0. 686	0.3264	-0.0978	0.3911
40		0.272	0.0906	0.8833	0.7632
41		0.474	0.1482	0.2945	0 7628
49		0.607	0.3262	0.1957	0.7056
5(0 907	0 1787	-1.2819	0 6465
50		0 365	0.1111	0 5839	0.7865
5:		0.367	0.0722	0 4758	0.6896
5.		0 625	0.2657	0.0032	0.7608
5.5		0 824	0 1835	-0 8418	0.6815
50		0 908	0.1287	-1.3030	0 5666
5'		0.425	0.0710	0.2910	0.7601 Percent of Variance
Adding	•	1/	Þ		t attaint of Astigues
Facto	r ⊖hange 2 244.263	47	<.001		49.6961

^{*} Assumed design effect = 2.

BODIES BOOKEN BOOKEN

TABLE 17 ASVAB ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS SHOP INFORMATION-FORM 1 (N=2926)

ltem	Attempt	s Facility	Chance	Intercept		Factors		c Factors
					1	2		
2	2925	0.831	0.1719	-0.8458	-0.6445	-0.2342	-0.073	0.74
3	2913	0.221	0.1505	1.3855	-0.5515	-0.2362	-0.123	0.69
4	2922	0.688	0.1842	-0.3055	-0.5898	-0.0340		0.37
5	2920	0.802	0.2549	-0.6422	-0.7130	-0.1792	0.055	0.68
6	2924	0.452	0.0857	0.2496	-0.5054	0.0929	0.412	0.11
7	2921	0.593	0.0513	-0.1850	-0.7081	0.1230	0.566	0.17
8	2926	0.096	0.0720	1.9689	-0.6868	-0.3180		0.90
9	2920	0.500	0.1126	0.1647	-0.7097	0.0896	0.510	0.23
13	2914	0.156	0.1253	1.8330	-0.7470	-0.2718		0.86
14	2922	0.787	0.0648	-0.77 73	-0.7185	0.2488		-0.02
15	2922	0.443	0.0840	0.2805	-0.7727	-0.0356		0.47
16	2918	0.719	0.4330	-0.0014	-0.7989	-0.0676	0.288	0.54
17	2924	0.915	0.1562	-1.2886	-0.5053	0.0207	0.290	0.23
19	2919	0.419	0.1062	0.3966	-0.8335	-0.0335	0.363	0.50
20	2922	0.326	0.1555	0.8541	-0.6395	0.0788	0.456	0.21
21	2923	0.854	0.3323	-0.7976	-0.6232	0.2521	0.742	-0.08
22	2911	0.260	0.0829	0.8890	-0.7287	0.1088	0.552	0.21
24	2923	0.286	0.0662	0.7311	-0.7708	-0.1454	0.142	0.66
25	2918	0.456	0.1310	0.3318	-0.7156	0.0529	0.450	0.29
26	2922	0.174	0.0667	1.2074	-0.6088	-0.1019	0.134	0.50
27	2924	0.785	0.1760	-0.6686	-0.7904	0.3850	1.052	-0.22
28	2911	0.178	0.1402	1.7378	-0.6869	-0.0771	0.215	0.50
29	2919	0.682	0.2350	-0.2142	-0.5892	-0.1453	0.050	0.56
30	2919	0.170	0.0933	1.3959	-0.7391	-0.1373	0.139	0.63
31	2923	0.924	0.1610	-1.3558	-0.5555	-0.1338	0.053	0.52
32	2922	0.861	0.1008	-1.0383	-0.6239	0.0425	0.386	0.26
3 3	2915	0.381	0.0719	0.4371	-0.6129	0.0626	0.415	0.22
35	2918	0.119	0.0691	1.6320	-0.6320	-0.0579	0.220	0.44
36	2918	0.484	0.1976	0.3873	-0.7592	0.1759	0.681	0.11
37	2918	0.707	0.2862	-0.2317	-0.7907	-0.0496	0.314	0.51
38	2918	0.400	0.3012	1.1255	-0.7371	0.0727	0.495	0.27
39	2920	0.613	0.2523	0.0425	-0.4972	0.1335	0.477	0.04
40	2923	0.240	0.0366	0.8208	-0.7525	-0.1482	0.128	0.65
41	2920	0.088	0.0357	1.6088	-0.6783	-0.0964	0.178	0.53
43	2921	0.559	0.0922	-0.0397	-0.6281	0.0996	0.486	0.17
44	2915	0.241	0.0954	0.9961	-0.4955	0.1318	0.473	0.04
45	2917	0.640	0.0524	-0.3170	-0.7190	0.1884	0.682	0.07
46	2919	0.607	0.1438	-0.1054	-0.7106	-0.1446	0.112	0.63
47	2911	0.350	0.1812	0.8409	-0.6363	-0.3064	-0.200	0.86
48	2920	0.697	0.1585	-0.3715	-0.7601	0.1454	0.630	0.16
40	2913	0.187	0.1317	1.5761	-0.7574	0.2700	0.840	-0.04
50	2910	0.217	0.1020	1.1582	-0.7356	0.0048	0.379	0.39
52	2915	0.743	0.0997	-0.5686	-0.4876	-0.0307	0.194	0.31
53	3000	0.734	0.1259	-0.5258	-0.7860	0.0818	0.535	0.28
55	2911	0.865	0.1386	-1.0137	-0.5037	-0.2118	-0.106	0.63
56	2901	0.469	0.4403	1.6364	-0.8960	0.1948	0.782	0.15
57	2874	0.522	0.1327	0.1336	-0.7256	-0.0472	0.285	0.47
	Adding	Chi-square*	d.f.	p Perce	nt of Varia	nce	Factor	
	Factor	Change		•			Correlation:	4
		- -		1	2		1	2
	2	237 573	46 <	.001 46.91		27 1	1 000	
	3	88.724	45 <			2		000

*Assumed design effect = 2.

TABLE 18

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS SHOP INFORMATION-FORM 2 (N = 2733)

Item	Attempt	s Facility	Chance	Intercept	Princip 1	al Factors	Proma:	x Factors 2
1	2723	0.548	0.0882	0.0057	0.5372	0.2387	0.714	-0.169
3	2724	0.793	0.3106	-0.5106	0.6982	0.1343	0.659	0.064
4	2730	0.561	0.1098	-0.0084	0.4193	0.2272	0.620	-0.198
5	2728	0.163	0.1041	1.5295	0.7769	-0.3234	0.008	0.835
6	2731	0.436	0.0846	0.3252	0.6477	-0.1030	0.262	0.427
7	2731	0.820	0.1955	-0.7546	0.4033	-0.0260	0.222	0.205
8	2732	0.661	0.1780	-0.2033	0.7656	-0.1654	0.243	0.576
9	2731	0.316	0.0817	0.6874	0.5938	-0.0926	0.243	0.389
10	2733	0.628	0.1116	-0.1894	0.6738	0.0708	0.545	0.157
11	2729	0.576	0.1207	-0.0147	0.7623	-0.0484	0.420	0.385
12	2725	0.375	0.1658	0.7087	0.6853	0.0344	0.497	0.221
13	2732	0.139	0.0770	1.5283	0.6974	-0.3002	-0.008	0.766
14	2730	0.563	0.1371	0.0471	0.7968	-0.0811	0.392	0.452
15	2731	0.804	0.1898	-0.6948	0.4577	0.1388	0.510	-0.040
16	2732	0.734	0.5000	0.1182	0.6035	0.0715	0.501	0.128
17	2726	0.713	0.3808	-0.0700	0.6578	0.2326	0.783	-0.111
18	2719	0.489	0.1823	0.3370	0.4687	0.0302	0.350	0.140
19	2728	0.741	0.1444	-0.5092	0.7944	-0.0101	0.499	0.336
20	2728	0.346	0.1881	0.9016	0.6688	-0.0809	0.309	0.400
21	2731	0.772	0.0623	-0.6989	0.7233	0.2568	0.863	-0.123
22	2733	0.369	0.0700	0.4907	0.6081	-0.1837	0.112	0.542
23	2729	0.454	0.1596	0.4171	0.6848	0.0123	0.463	0.256
25	2732	0.840	0.2450	-0.7996	0.5151	0.1678	0.591	-0.063
26	2728	0.627	0.1449	-0.1406	0.7338	-0.0418	0.411	0.363
27	2732	0.913	0.1423	-1.2920	0.6880	0.0241	0.483	0.238
28	2724	0.514	0.3182	0.5967	0.7180	0.1292	0.663	0.081
29	2730	0.428	0.1644	0.5175	0.7174	-0.0898	0.327	0.434
32	2718	0.325	0.2101	1.0882	0.6939	0.3246	0.947	-0.245
33	2731	0.815	0.0837	-0.8380	0.6954	0.0825	0.577	0.147
34	2725	0.590	0.2219	0.1002	0.7370	0.0665	0.580	0 190
35	2728	0.182	0.0762	1.2287	0.4851	-0.0367	0.258	0.255
36	2725	0.242	0.1053	1.0680	0.7326	-0.1006	0.320	0.458
39	2725	0.336	0.0644	0.5721	0.4745	~0.0499	0.231	0.272
40	2719	0.216	0.1699	1.5713	0.7619	-0.4418	-0.184	1.021
41	2725	0.483	0.1798	0.3568	0.6006	0.0825	0.516	0.109
42	2722	0.327	0.0660	0.6351	0.7946	~0.0599	0.423	0.417
43	2723	0.631	0.1583	-0.1351	0.5845	0.1443	0.600	0.002
44	2718	0.456	0.2768	0.7012	0.4747	0.0576	0.396	0.098
45	2725	0.477	0.1461	0.3330	0.8293	~0.0602	0.445	0.431
46	2720	0.592	0.1678	0.0176	0.8492	0.1077	0.716	0.168
47	2726	0.738	0.1936	-0.4476	0.5131	~0.3795	-0.249	0.820
48	2729	0.883	0.1604	-1.0837	0.5059	0.0933	0.471	0.053
49	2723	0.227	0.1964	1.8854	0.7646	0.2400	0.864	-0.080
50	2726	0.618	0.1469	-0.1134	0.6933	~0.3370	~0.067	0.824
51	2723	0.584	0.3033	0.2870	0.7092	~0.0152	0.436	0.310
52	2717	0.214	0.2000	2.1771	0.8227	0.0577	0.622	0.238
53	2719	0.224	0.1626	1.5166	0.6719	0.0100	0.451	0.255
55	2721	0.448	0.1335	0.3895	0.7450	-0.0229	0.448	0.337
5 G	2711	0.241	0.1600	1.3522	0.7232	0.1374	0.679	0.069
57	2695	0.236	0.0367	0.8536	0.6659	0.1119	0.603	0.087
A	dding C	hi-square*	d.f.		nt of Vari	ance	Factor	
	actor	Change	-				Correlatio	ns
		•		1		2	1	2
	2	259.945	49 <	001 44.93		195 1	1.000	
	3	127.941		.001		2	0.800	1.000

*Assumed design effect = 2.

TABLE 19

ASVAB
ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES,
STANDARD DIFFICULTIES, AND FACTOR LOADINGS
SHOP INFORMATION-FORM 3 (N = 2685)

ltem	Attempt	s Facility	Chance	Intercept	Princip 1	al Factors		x Factors
1	2675	0.228	0.1678	1.5222	0.7731	0.0900		
2	2677	0.365	0.1041	0.5899	0.7748	0.0900		
4	2679	0.617	0.1139	-0.1481				
5	2673	0.467	0.2771	0.6846	0.7280 0.7243	-0.0488		
7	2680	0.315	0.1648	0.9536	0.7197	0.1781 ~0.0732		
8	2684	0.742	0.0888	-0.5671	0.6362			
9	2680	0.734	0.2027	-0.4135	0.0302	-0.1852 0.1159		
11	2675	0.407	0.2614	0.8954	0.6900	0.1109		
12	2678	0.379	0.3052	1.3018	0.8057	~0.1516		
13	2672	0.296	0.1721	1.0807	0.7637	0.0066		
14	2678	0.262	0.1957	1.4205	0.7037	~0.0666		
15	2675	0.530	0.1712	0.2062	0.7209	0.0888		
17	2678	0.158	0.0692	1.3250	0.7209	~0.0979		
18	2679	0.393	0.0577	0.3985	0.7097	-0.1010		
19	2680	0.845	0.1279	-0.9263	0.7117	-0.2027		
20	2677	0.321	0.0763	0.6577	0.6606	-0.2027		
22	2669	0.300	0.1505	0.9675	0.6469	0.0283		
24	2675	0.217	0.1690	1.6252	0.8900	0.0253		
25	2674	0.541	0.1618	0.1535	0.6890	0.1034		
26	2679	0.447	0.2044	0.5540	0.7803	0.1750		
27	2680	0.642	0.2961	0.0418	0.7944	0.2267		
28	2681	0.618	0.1184	-0.1594	0.4066	-0.0757		
29	2680	0 575	0.1787	0.0716	0.7530	~0.1444		0.031
30	2682	0.925	0.1085	-1.3867	0.6373	-0.1158		0.091
31	2678	0.645	0.1554	-0.1740	0.7943	~0.0701		
32	2674	0.447	0.1947	0.5336	0.7073	-0.0032		0.289
33	2675	0.759	0.2294	-0.4684	0.7108	-0.0390		0.236
34	2682	0.229	0.1515	1.3625	0.7891	-0.2426		-0.044
36	2683	0.795	0.2023	-0.6544	0.4974	-0.3005		-0.254
37	2682	0.745	0.1166	-0.5443	0.5607	0.1192		0.415
38	2685	0.866	0.1754	-0.9807	0.3993	-0.0859		0.034
39	2684	0.878	0.2814	-0.9594	0.6971	0.1248		0.481
40	2678	0.389	0.2411	0.8643	0.2542	-0.0940		-0.038
41	2682	0.262	0.0645	0.8440	0.7960	-0.0404	0.570	0.269
43	2677	0.371	0.0749	0.4916	0.5670	0.0312		0.283
45	2675	0.407	0.0954	0.4252	0.6202	-0.1295	0.587	0.059
46	2673	0.624	0.2007	-0.0443	0.7421	~0.0690		0.202
48	2670	0.475	0.1351	0.3049	0.7094	-0.1568	0.684	0.054
49	2675	0.426	0.1875	0.5800	0.6791	0.4458	-0.210	0.965
50	2667	0.571	0.2321	0.1861	0.7805	0.1136	0.337	0.498
51	2669	0.551	0.2054	0.2119	0.8183	-0.0804	0.643	0.217
52	2667	0.333	0.0824	0.6186	0.4310	-0.0993	0.421	0.027
53	2661	0.217	0.1800	1.7684	0.5039	0.2997	-0.111	0.668
54	2665	0.672	0.4594	0.3186	0.6944	-0.0015	0.449	0.286
55	2664	0.766	0.1536	-0.5763	0.7065	-0.1291	0.641	0.096
56	2657	0.364	0.2580	1.1296	0.8182	0.0586	0.441	0.430
57	2641	0.905	0.1707	-1.2070	0.4027	-0.2817	0.667	-0.264
Ā	dding C	hi-square*	d.f. p		t of Varia		Factor	
	actor	Change	P				Correlation	าร
-				1	2		1	2
	2	272.32	46 <.0			62 1	1.000	_
	3	121.791	45 <.0			2		000

*Assumed design effect = 2.

Item	Attempts	Facility	Chance	Intercept	P	rincipal Fac	tors	Pre	omax Fact	ors
	-	-		-	1	2	3	1	2	
1	2758	0.640	0.1771	-0.1102	0.5607	-0.0801	0.0786	0.229	0 123	0.27
2	2754	0.899	0.3275	-1.0345	0.7170	0.1200	0.0170	0.683	-0.036	0.07
4	2722	0.382	0.1562	0.7738	0.9237	0.0171	-0.1710	0.912	0.253	-0.18
5	2738	0.327	0.0547	0.6909	0.8916	0.1009	0.0320	0.773	0.003	0.14
6	2751	0.820	0.0797	-0.8214	0.6197	-0.4929	-0.1772	0.006	0.792	0.02
8	2729	0.463	0.2177	0.6234	0.8798	0.0918	-0.0368	0.829	0.062	0.0
9	2750	0.801	0.4373	-0.3330	0.6830	0.0949	-0.0076	0.652	0.006	0.0
10	2754	0.855	0.1328	-0.9410	0.6308	-0.4671	-0.1535	0.022	0.747	0.03
11	2739	0.632	0.2695	0.0739	0.7007	0.0289	-0.0615	0.637	0.123	-0.00
12	2754	0.747	0.0432	-0.5560	0.6797	-0.2229	0.3744	-0.203	0.089	0.9
13	2737	0.327	0.1297	0.9364	0.9234	0.1962	-0.1107	1.084	0.004	-0.10
14	2742	0.647	0.3597	0.2304	0.8251	0.0569	0.0814	0.609	0.007	0.2
15	2754	0.740	0.2635	-0.3435	0.7362	0.1511	0.0381	0.716	-0.084	0.10
16	2749	0.578	0.0870	-0.0446	0.6084	0.0742	0.0824	0.467	-0.048	0.20
17	2746	0.715	0.2518	-0.2450	0.8490	0.1007	0.0236	0.750	0.003	0.13
18	2750	0.592	0.1220	-0.0223	0.7926	0.0590	0.0088	0.668	0.052	0.10
19	2738	0.353	0.1186	0.7620	0.9145	-0.0464	-0.1509	0.797	0.309	-0.1
20	2744	0.362	0.0728	0.5892	0.7672	0.0424	0.0548	0.575	0.033	0.19
21	2758	0.769	0.1895	-0.5420	0.5950	0.0798	-0.0054	0.562	0.007	0.0.
22	2752	0.710	0.1524	-0.3521	0.7151	-0.1015	0.0749	0.321	0.175	0.3
24	2741	0.409	0.1677	0.7160	0.9359	0.1381	-0.1013	1.005	0.065	-0.1
25	2754	0.324	0.0677	0.6937	0.7723	0.0344	0.0163	0.611	0.072	0.1
26	2745	0.548	0.0640	0.0284	0.7232	-0.0753	0.1116	0.321	0.119	0.3
27	2739	0.455	0.1218	0.4221	0.8614	0.0882	0.0817	0.678	-0.024	0.2
28	2749	0.699	0.2337	-0.2220	0.7123	0.0924	0.0617	0.593	-0.038	0.1
29	2749	0.841	0.0860	-0.9025	0.6653	-0.2502	0.4636	-0.350	0.052	1.0
30	2749	0.852	0.0744	-0.9590	0.5711	-0.2399	0.0078	0.101	0.359	0.2
31	2730	0.404	0.1645	0.7105	0.9247	0.0187	-0.1592	0.901	0.242	-0.1
32	2726	0.391	0.0564	0.4883	0.9158	0.1518	-0.0262	0.924	-0.009	0.0
34	2748	0.430	0.0392	0.2901	0.5522	-0.2048	-0.0004	0.143	0.322	0.0
36	2734	0.722	0.4162	0.0033	0.6474	0.0199	-0.0046	0.521	0.084	0.0
37	2738	0.343	0.0956	0.7393	0.9167	0.0426	-0.1662	0.935	0.219	-0.1
38	2712	0.353	0.1162	0.7841	0.9279	0.0446	-0.1895	0.972	0.235	-0.2
39	2725	0.627	0.1650	-0.0635	0.7701	0.1106	0.0140	0.714	-0.014	0.0
40	2731	0.468	0.0739	0.2748	0.9085	0.0966	0.1246	0.677	-0.057	0.3
41	2736	0.806	0.0639	-0.7765	0.6277	-0.3593	-0.1029	0.108	0.586	0.0
42	2728	0.375	0.1224	0.7336	0.9304	-0.0403	-0.1912	0.862	0.334	-0.1
43	2716	0.574	0.1606	0.1110	0.8283	0.0881	0.0464	0.692	-0.003	0.10
44	2705	0.515	0.2438	0.4583	0.7830	0.0148	0.2823	0.296	-0.000	11 G
45	2724	0.313	0.0531	-0.5463	0.4563	-0.3189	-0.0471	-0.030	0.472	0.1
46	2693	0.769	0.0331	-0.5916	0.4303	0.0502	0.0608	0.481	-0.001	0.1
		d.f.			nt of Vari		0.0008	Fac		
lding	Chi-square*	d.1.	P	rerce	nt or var	lance				
Fuctor	Change				_	•		Correl		
^	621 105	40	< 00:	1	2 2.8319	3	,	1 000	2	
2 3	631.125 259.593	40 39	<.001 <.001	59.1736	2.8319	1.9144	1 2	1.000 0.648	1.000	
		30	< .001				2	0.048	1.000	

^{*}Assumed design effect = 2.

TABLE 21

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS MATHEMATICAL KNOWLEDGE-FORM 3 (N = 2665)

Item	Attempts	Facility	Chance	Intercept	P	rincipal Fac	tors	Promax	Factors	
	•	-		-	1	2	3	1	2	
1	2652	0.850	0.2840	-0.8337	0.6979	0.0250	0.0217	0.427	0.258	0.05
2	2661	0.625	0.1523	-0.1438	0.7276	-0.0980	-0.0715	0.201	0.558	0.00
3	2653	0.430	0.0702	0.3165	0.8461	-0.0164	-0.0595	0.400	0.501	-0.01
4	2662	0.561	0.0616	-0.0914	0.8896	0.1688	0.0383	0.768	0.156	0.00
5	2653	0.232	0.1054	1.1405	0.8861	-0.0711	-0.0740	0.328	0.605	-0.00
6	2656	0.613	0.1775	-0.0701	0.7636	-0.0424	-0.1842	0.251	0.690	-0.17
7	2658	0.469	0.1369	0.3281	0.8253	0.0418	0.0066	0.515	0.321	0.03
8	2645	0.410	0.1034	0.4560	0.8603	0.1595	0.0338	0.735	0.161	0.00
9	2641	0.346	0.0893	0.6349	0.8614	0.1154	0.0257	0.661	0.224	0.03
10	2640	0.381	0.2193	0.8855	0.8236	0.0687	0.0018	0.554	0.297	0.0
11	2657	0.166	0.0898	1.4893	0.8424	-0.1417	-0.1705	0.143	0.817	-0.09
12	2652	0.637	0.2047	-0.1011	0.6822	-0.0593	0.0153	0.281	0.356	0.16
13	2656	0.486	0.0974	0.1814	0.7300	0.2697	0.0133	0.886	-0.170	0.03
14	2650	0.442	0.2600	-0.0274	0.7500	0.1052		0.688		
15		0.799		-0.0274 -0.7459			0.1175		0.088	9.13
15 16	2656	0.799	0.1420 0.0712		0.6548	-0.1041	0.0400	0.208	0.356	0.13
16	2653			-0.5922	0.6530	-0.0831	-0.1036	0.168	0.558	-0.0
17	2660	0.913	0.1376	-1.3057	0.5535	-0.1871	-0.1334	-0.066	0.678	-0.03
18	2637	0.477	0.1602	0.3657	0.8717	0.0642	0.0089	0.577	0.313	0 0
19	2636	0.448	0.0957	0.3222	0.8819	0.1930	0.0692	0.818	0.076	0.0
20	2664	0.890	0.1424	-1.1737	0.6161	-0.1915	0.0230	0.039	0.464	0.1
21	2648	0.717	0.3871	-0.0852	0.8842	0.1254	0.0221	0.688	0.229	0.0
22	2660	0.889	0.1514	-1.1488	0.5094	-0.1580	-0.1292	-0.042	0.618	-0.0
23	2652	0.339	0.2211	1.0599	0.6110	-0.4043	-0.0366	-0.332	0.797	0.2
24	2651	0.332	0.1126	0.7381	0.8715	0.1653	-0.0543	0.706	0.298	-0.1
25	2651	0.319	0.1128	0.7568	0.7743	-0.1577	-0.1571	0.088	0.783	-0.0°
27	2657	0.674	0.1504	-0.3218	0.8415	0.0522	-0.0009	0.536	0.329	0.0
28	2646	0.164	0.1128	1.6886	0.7999	-0.2819	-0.2188	-0.127	1.033	-0.0°
30	2649	0.694	0.4484	0.1661	0.8237	0.0892	0.0269	0.600	0.235	0.03
31	2653	0.755	0.1535	-0.5707	0.7142	-0.1423	-0.0878	0.115	0.628	0.0
32	2652	0.452	0.3202	0.9771	0.8876	0.3139	-0.0232	0.966	0.088	-0.19
33	2657	0.732	0.0567	-0.5294	0.6274	-0.4053	0.4876	-0.060	-0.023	0.9
34	2639	0.632	0.1644	-0.1518	0.8629	0.0900	0.0387	0.628	0.233	0.0
35	2656	0.880	0.1560	-1.1097	0.6421	-0.1204	-0.1586	0.075	0.682	-0.1
36	2651	0.798	0.0936	-0.7857	0.6250	-0.2684	-0.0417	-0.111	0.657	0.1
37	2646	0.714	0.0847	-0.4925	0.5903	-0.2258	-0.0130	-0.047	0.548	0.1
38	2637	0.402	0.1505	0.5775	0.8703	0.2781	0.0863	0.955	-0.052	0.00
39	2624	0.337	0.0713	0.5949	0.6475	0.0135	-0.0248	0.358	0.321	-0.00
40	2629	0.450	0.1751	0.4978	0.8793	0.0651	-0.0023	0.577	0.333	0.0
41	2632	0.620	0.0897	-0.2084	0.7488	0.0642	0.0531	0.533	0.187	0.0
42	2627	0.703	0.1424	-0.3923	0.4875	-0.0628	-0.0547	0.135	0.382	-0.00
43	2623	0.482	0.1331	0.2765	0.7772	0.0834	0.0006	0.552	0.362	0.00
44	2639	0.706	0.1331	-0.3126	0.5253	-0.1030	-0.0163	0.111	0.384	0.0
	2602	0.706	0.2219	0.4278		0.2837	0.0941	0.111	-0.074	0.0
45 46					0.8646	-0.3519	0.4724	0.903	-0.074	0.89
46	2596	0.788	0.0855	-0.7311	0.6384		0.4/24			17.83
dding	Chi-square*	d.f.	p	Perce	nt of Vari	ance		Fact		
Esctor	Change			_	_	_		Correla		
_				1	2	3		1	2	
2	440.532	43	<.001	57.7802	3.2183	1.7316	1	1.000		
3	187.841	42	<.001				2	0.820	1.000	
							3	0.638	0.738	1.06

^{*}Assumed design effect = 2.

THE PROPERTY OF THE PROPERTY OF

TABLE 22

ASVAB
ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS
MATHEMATICAL KNOWLEDGE-FORM 5 (N = 2468)

Item	Attempts	Facility	Chance	Intercept	Pi	rincipal Fac	tors	Promax Factors		
				-	1	2	3	1	2	
1	2462	0.361	0.2431	1.1101	0.8564	-0.0911	-0.0315	0.241	0.540	0.13
2	2441	0.236	0.1390	1.3166	0.7717	0.0447	0.1104	0.533	0.270	0.0
3	2461	0.439	0.1377	0.4492	0.7996	0.0384	0.0217	0.433	0.282	0.14
4	2465	0.788	0.0627	-0.7386	0.7248	-0.3909	-0.0578	-0.210	1.036	-0.00
5	2464	0.740	0.1492	-0.4779	0.5026	-0.0384	-0.2111	-0.068	0.264	0.3
6	2464	0.682	0.1082	-0.3411	0.8715	-0.0465	0.1235	0.484	0.484	-0.0
7	2443	0.461	0.2194	0.5535	0.6037	0.0126	0.0240	0.316	0.244	0.0
8	2463	0.448	0.1225	0.2377	0.8700	0.2456	-0.2854	0.351	-0.111	0.7
9	2463	0.836	0.0852	-0.9073	0.6729	-0.3560	-0.0887	-0.228	0.944	-0.00
10	2461	0.866	0.1924	-0.9426	0.5652	-0.1542	-0.0989	-0.046	0.521	0.1
11	2442	0.359	0.1373	0.7550	0.8817	0.2191	0.0770	0.753	-0.010	0.2
12	2445	0.472	0.2347	0.5738	0.8287	0.1466	0.1696	0.751	0.113	0.0
13	2442	0.303	0.1320	0.9342	0.8053	-0.0183	0.0823	0.439	0.398	0.0
14	2450	0.597	0.1133	-0.0696	0.7390	-0.0231	0.1548	0.489	0.387	-0.1
15	2439	0.400	0.0589	0.4027	0.8885	0.1776	0.0955	0.728	0.072	0.10
16	2461	0.756	0.2014	-0.4826	0.5358	-0.1654	-0.0132	0.028	0.540	-0.00
17	2457	0.488	0.1591	0.3396	0.8063	-0.1031	-0.0131	0.230	0.544	0.0
18	2462	0.638	0.3114	0.0757	0.8256	0.2585	-0.3309	0.293	-0.161	0.0
19	2444	0.525	0.1370	0.1892	0.8644	0.0072	0.1271	0.549	0.382	-0.0
20	2463	0.873	0.1370	-1.0326	0.6135	0.0072	-0.3323	-0.069		
21	2460	0.392	0.0766	0.4652					0.154	0.63
22	2459	0.635	0.2308	-0.0077	0.7316 0.8325	-0.2222	0.0272	0.096	0.737	-0.0
23	2435	0.033	0.2308	0.9944		-0.1164	0.0297	0.272	0.585	0.0
23 24	2446	0.435	0.1910	0.5970	0.8670	-0.2254	-0.0050	0.115	0.798	0.0
26	2455				0.8829	0.2402	0.1066	0.814	-0.045	0.1
27		0.461	0.1338	0.3910	0.8497	-0.0921	0.0958	0.387	0.556	-0.0
28	2464	0.844	0.1273	-0.8965	0.4007	-0.0785	-0.1577	-0.099	0.301	0.2
28 29	2445	0.294	0.1851	1.2001	0.8966	-0.0913	0.0219	0.322	0.565	0.0
	2451	0.473	0.2062	0.4955	0.7999	0.2313	0.0445	0.692	-0.073	0.2
30	2452	0.652	0.1293	-0.1960	0.8135	0.1002	-0.0247	0.459	0.167	0.2
31	2447	0.386	0.0586	0.4691	0.8975	-0.0962	0.0751	0.379	0.582	-0.0
33	2440	0.260	0.0788	1.0331	0.9274	0.1831	0.1366	0.800	0.084	0 1
34	2447	0.917	0.2440	-1.1866	0.7528	0.1521	-0.1181	0.383	0.032	0 4
35	2423	0.472	0.2322	0.5513	0.8979	0.2640	0.0249	0.752	-0.0 93	0.3
36	2450	0.787	0.1393	-0.6371	0.6405	0.0161	-0.2305	0.037	0.221	0.4
38	2439	0.580	0.2420	0.2074	0.8689	-0.0209	0.0141	0.384	0.421	0.1
39	2455	0.653	0.1749	-0.1684	0.6215	-0.1609	0.0560	0.154	0 578	-0.0
40	2420	0.424	0.1487	0.5517	0.8659	-0.1052	-0.0332	0.226	0.571	0.1
41	2451	0.358	0.1052	0.6176	0.5811	-0.0180	0.1190	0.382	0.304	-0.0
42	2450	0.829	0.1540	-0.8070	0.5310	-0.0195	-0.0042	0.212	0.268	0.09
43	2417	0.418	0.2779	0.9599	0.8734	0.0067	0.0696	0.485	0.379	0.0
44	2450	0.787	0.1530	-0.6470	0.3504	0.0227	-0.1460	0.013	0.093	0.29
45	2445	0.744	0.0939	-0.5492	0.6295	-0.1778	-0.0648	-0.006	0.598	() ():
dding	Chi-square*	d.f.	P	Регсе	nt of Vari	ance		Fac	tor	
Factor	Change		•	• • •				Correla		
	9			1	2	3		1	2	
2	399.522	41	<.001	58.5207	2.5036	1.6155	1	1.000	=	
3	173.498	40	<.001		3.0000	2.2200	2	0.805	1.000	
•	2.0.400		4.501				3	0.720	0.774	1.00

^{*}Assumed design effect = 2.

TABLE 23

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS MECHANICAL COMPREHENSION-FORM 1 (N = 2731)

tem	Attempts	Facility	Chance	Intercept	Princip	al Factors	Proma	x Factors
	_				1	2	1	2
1	2730	0.885	0.1698	-1.0968	0.5110	-0.1317	0.539	-0.013
2	2728	0.440	0.2956	0.8252	0.4468	-0.1041		0.009
3	2723	0.429	0.1124	0.3852	0.7232	0.1041	0.224	0.529
5	2725	0.788	0.1549	-0.6714	0.6331	-0.0116	0.387	0.269
6	2729	0.429	0.1210	0.3920	0.6724	-0.1381	0.644	0.049
7	2731	0.689	0.2803	-0.1643	0.6980	0.0108	0.383	0.341
8	2729	0.154	0.0651	1.3038	0.6781	-0.1358	0.643	0.056
9	2725	0.410	0.0933	0.4010	0.7264	~0.1405	0.679	0.069
10	2729	0.840	0.2690	-0.7787	0.5225	0.0191	0.266	0.276
11	2725	0.663	0.2460	-0.1219	0.6651	0.1224	0.157	0.537
13	2725	0.343	0.1434	0.7318	0.5933	-0.1306	0.584	0.027
14	2724	0.369	0.1584	0.6928	0.7646	0.1752	0.117	0.682
15	2725	0.527	0.1781	0.2055	0.6936	-0.0164	0.431	0.288
16	2729	0.437	0.2120	0.5818	0.6853	-0.0384	0.467	0.243
17	2724	0.374	0.1230	0.5707	0.6505	-0.2311	0.804	-0.136
18	2729	0.748	0.1480	-0.5360	0.6370	0.0309	0.310	0.351
19	2728	0.538	0.3262	0.5007	0.6669	0.0440	0.303	0.390
20	2727	0.339	0.1627	0.8091	0.7534	-0.1543	0.721	0.056
21	2716	0.432	0.2033	0.5823	0.7525	-0.0300	0.490	0.290
22	2719	0.821	0.1812	-0.7722	0.5443	-0.0210	0.353	0.211
23	2728	0.903	0.2199	-1.1641	0.5079	0.0542	0.193	0.336
24	2728	0.607	0.1434	-0.1035	0.4749	-0.0375	0.344	0.148
25	2721	0.653	0.0917	-0.2890	0.6758	0.2023	0.015	0.692
26	2724	0.749	0.2168	-0.4634	0.5959	0.1126	0.135	0.487
28	2724	0.513	0.1657	0.2234	0.6200	0.0287	0.305	0.339
29	2722	0.662	0.0492	-0.3639	0.6229	0.4076	-0.396	1.055
30	2719	0.402	0.3312	1.2888	0.8333	-0.2374	0.921	-0.064
31	2720	0.385	0.1728	0.6639	0.6937	-0.1195	0.622	0.094
32	2720	0.212	0.0813	1.0665	0.7746	-0.1848	0.789	0.008
33	2719	0.740	0.1211	-0.5329	0.4857	0.0546	0.179	0.326
34	2713	0.386	0.1654	0.6432	0.7264	-0.1620	0.719	0.029
35	2716	0.915	0.1606	-1.2792	0.5204	0.0497	0.208	0.333
36	2712	0.581	0.0873	-0.0773	0.8149	-0.0531	0.569	0.275
37	2711	0.807	0.2218	-0.6740	0.6482	0.0494	0.283	0.391
38	2699	0.464	0.3218	0.8308	0.7621	0.1014	0.252	0.542
39	2708	0.519	0.1503	0.1840	0.6571	0.1579	0.087	0.600
40	2701	0.533	0.1083	0.0765	0.6527	-0.0109	0.397	0.280
41	2694	0.769	0.1171	-0.6324	0.6366	0.2443	-0.085	0.753
42	2695	0.891	0.1584	-1.1323	0.5068	0.1166	0.077	0.453
44	2682	0.623	0.4003	0.3575	0.6928	0.0470	0.313	0.407
45	2661	0.754	0.1204	-0.5756	0.5368	-0.0516	0.406	0.150
46	2650	0.846	0.1380	-0.9220	0.6240	0.1418	0.097	0.554
A	dding Cl	hi-square*	d.f. 1	Percer	t of Varia	nce	Factor	
	actor	Change					Correlation	8
		-		1	2		1	2
	2	130.207	41 <.0	001 42.470	6 1.76	90 1	1.000	
	3	102.184	40 <.0			2		.000

^{*}Assumed design effect = 2.

TABLE 24

ASVAB
ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES,
STANDARD DIFFICULTIES, AND FACTOR LOADINGS
MECHANICAL COMPREHENSION-FORM 3 (N = 2647)

tem	Attemp	ts Facility	Chance	Intercept	Princip	al Factors	Proma	x Factors
	•	-		-	1	2	1	:
ı	2640	0.332	0.2141	1.0881	0.8181	0.0227	0.788	0.04
3	2643	0.835	0.1695	-0.8348	0.3685	-0.0553	0.284	0.11
4	2644	0.536	0.1067	0.0671	0.5769	0.0580	0.601	-0.03
5	2642	0.751	0.1499	-0.5327	0.5034	0.1029	0.581	-0.10
7	2643	0.544	0.2204	0.2459	0.7148	0.0864	0.760	-0.05
8	2644	0.505	0.1039	0.1627	0.7289	0.0527	0.737	-0.009
9	2647	0.436	0.1661	0.4778	0.5608	0.0251	0.551	0.01
10	2646	0.848	0.1347	-0.9288	0.6637	-0.0010	0.619	0.06
11	2633	0.295	0.2254	1.3950	0.8351	0.0712	0.856	-0.02
12	2646	0.907	0.1620	-1.2189	0.4377	0.0143	0.424	0.01
13	2642	0.205	0.1484	1.5356	0.8464	0.0210	0.813	0.04
15	2635	0.327	0.1632	0.8884	0.6250	-0.0325	0.548	0.10
16	2645	0.607	0.3880	0.3930	0.5981	0.0232	0.583	0.02
17	2639	0.288	0.0682	0.7593	0.7862	0.0303	0.767	0.02
18	2643	0.454	0.1119	0.3066	0.4944	0.0100	0.472	0.03
19	2641	0.421	0.1678	0.5580	0.8091	0.0446	0.803	0.01
20	2634	0.274	0.0637	0.7947	0.6976	0.0298	0.683	0.02
21	2644	0.529	0.2395	0.3451	0.8190	0.1061	0.879	-0.07
22	2641	0.638	0.1342	-0.1886	0.6062	0.0459	0.615	-0.01
24	2640	0.438	0.3783	1.3686	0.8114	0.0170	0.776	0.04
25	2644	0.507	0.1931	0.3113	0.6805	-0.0048	0.630	0.06
26	2642	0.708	0.3502	-0.1153	0.3729	0.0348	0.386	-0.01
27	2635	0.567	0 1013	-0.0112	0.7312	-0.0376	0.642	0.12
28	2631	0.594	0.1767	0.0137	0.6692	0.0072	0.632	0 05
30	2629	0 566	0.1832	0.1043	0.6102	0.0568	0.631	-0.02
31	2621	0.280	0.1988	1.3322	0.8261	0.1489	0.931	-0.13
32	2634	0.600	0.3165	0.2539	0.7315	0.0751	0.764	-0.04
34	2632	0.899	0.1287	-1.1928	0.6241	-0.1399	0.432	0.25
35	2630	0.450	0.1286	0.3746	0.7572	0.0590	0.770	-0.01
36	2627	0.784	0.1951	-0.6017	0.5755	-0.0869	0.444	0 17
37	2619	0.826	0.2436	-0.7213	0.6915	-0.1347	0.501	0.25
38	2618	0.469	0.3551	0.9828	0.7911	0.1386	0.888	-0.12
39	2614	0.609	0 1229	-0.1128	0.5494	-0.0730	0.434	0.15
40	2613	0.770	0.1879	-0.5243	0.5318	-0.6842	~0.240	1.02
41	2589	0.466	0.2084	0.4951	0.6775	0.0351	0.670	0.01
42	2578	0.412	0.1549	0.5548	0.7140	0.0931	0.767	-0.06
43	2597	0.850	0.1451	-0.9181	0.5665	-0.5792	-0.095	0.87
44	2575	0.531	0.1159	0.1342	0.8387	0.0079	0.791	0.06
45	2560	0.594	0.2294	0.1028	0.6686	0.0447	0.672	-0.00
46	2517	0.760	0.1927	-0.5064	0.6169	-0.0107	0.564	0.07
	Adding	Chi-square*	d.f.	Percer	it of Varia	ance	Factor	
	Factor	Change					Correlatio	ns
		•		1	2		1	2
	2	160.687	39 <.	001 45.552	1 2.43	397 1	1.000	
	3	78.891	38 <.	001		2	0.712	1.000

^{*}Assumed design effect = 2.

TABLE 25 ASVAB
ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES,
STANDARD DIFFICULTIES, AND FACTOR LOADINGS
MECHANICAL COMPREHENSION-FORM 5 (N = 2532)

tem	Attempt	s Facility	Chance	Intercept	Princip	al Factors	Proma	x Factors
	-	•			1	2	1	:
2	2530	0.674	0.1870	-0.2413	0.5172	-0.1865	-0.040	0.58
3	2527	0.708	0.1084	-0.4315	0.6077	-0.1707	0.029	0.60
4	2530	0.799	0.2133	-0.6490	0.7190	-0.2210	0.004	0.74
5	2526	0.516	0.1631	0.2243	0.7621	0.0151	0.397	0.40
7	2531	0.889	0.2091	-1.0767	0.2501	0.0244	0.161	0.10
8	2531	0.421	0.3105	1.0279	0.7239	0.0881		0.27
9	2531	0.668	0.1736	-0.2326	0.6452	-0.0807	0.189	0.49
10	2528	0.672	0.2415	-0.1534	0.5888	-0.1497	0.053	0.56
11	2527	0.364	0.0605	0.4754	0.5882	-0.0849	0.154	0.46
12	2523	0.423	0.1147	0.4153	0.6967	-0.0723	0.228	0.50
14	2512	0.400	0.1685	0.6225	0.7786	0.0024	0.385	0.43
16	2525	0.611	0.3593	0.2982	0.6473	0.1490	0.552	0.13
17	2519	0.397	0.1616	0.6050	0.7165	-0.0979	0.197	0.55
18	2524	0.543	0.2283	0.2619	0.7631	0.1581	0.623	0.18
19	2529	0.862	0.2329	~0.9113	0.6782	-0.1335	0.122	0.59
20	2531	0.879	0.2391	-0.9984	0.5974	-0.0858	0.158	0.47
21	2521	0.453	0.2289	0.5783	0.6895	-0.0134	0.317	0.41
22	2529	0.896	0.1148	-1.1812	0.6037	-0.0651	0.193	0.44
24	2523	0.480	0.1657	0.3241	0.3486	0.1021	0.332	0.03
26	2520	0.259	0.1644	1.2394	0.6737	0.2221	0.680	0.03
27	2530	0.915	0.1663	-1.2668	0.5099	-0.0063	0.240	0.29
28	2530	0.864	0.2244	-0.9267	0.3897	-0.0160	0.166	0.24
29	2526	0.297	0.1198	0.8431	0.4864	-0.1895		
30	2524	0.751	0.3186	-0.3273	0.5758	0.1041	0.446	0.16
31	2526	0.558	0.1247	0.0344	0.6983	0.0136		0.37
32	2527	0.752	0.2714	-0.3984	0.5189	0.1315	0.462	0.08
33	2506	0.453	0.0817	0.2608	0.5228	0.0223		
34	2513	0.793	0.1694	-0.6538	0.7230	0.0567		
35	2510	0.413	0.1096	0.4305	0.5483	-0.3449	-0.275	0.84
36	2511	0.282	0.1035	0.8718	0.7576	0.0821	0.501	
37	2506	0.465	0.1778	0.4252	0.7985	-0.0505		
38	2506	0.385	0.1456	0.6029	0.6355	-0.2653		
39	2508	0.674	0.1423	-0.2885	0.5670	-0.0973	0.125	0.47
40	2508	0.691	0.2243	-0.2365	0.6651	-0.0780		
41	2505	0.886	0.1535	-1.0977	0.6368	0.2903	0.770	-0.09
42	2498	0.899	0.1815	-1.1477	0.6185	0.3431	0.844	
43	2490	0.800	0.3040	-0.5310	0.7387	0.2481	0.753	
44	2474	0.694	0.2012	-0.2634	0.6711	-0.0147		
45	2462	0.523	0.1566	0.2081	0.7734	0.1576	0.627	
46	2441	0.798	0.0843	-0.7427	0.6489	0.0560	0.406	0.28
A	dding	Chi-square*	d.f. 1	Percer	nt of Varia	ance	Factor	
I	actor	Change					Correlatio	
				1	2		1	2
	2	122.820		001 40.712	3 2.20		1.000	
	3	48.26	38 <.0	001		2	0.796	1.000

^{&#}x27;Assumed design effect = 2.

TABLE 26

ASVAB

ITEM ATTEMPTS. FACILITIES, GUESSING PARAMETER VALUES.
STANDARD DIFFICULTIES, AND FACTOR LOADINGS
ELECTRONICS INFORMATION-FORM 1 (N = 2910)

Item	Attempts	Facility	Chance	Intercept	Principal Factors
1	2907	0.375	0.0743	0.4628	0.5591
3	2891	0.135	0.0926	1.7291	0. 7505
4	2902	0.694	0.1492	-0.3613	0 7121
8	2904	0.178	0.0894	1.3209	0.6122
9	2905	0.341	0.1320	0.7102	0.4038
11	2908	0.795	0.1705	-0.6871	0.4497
13	2901	0.629	0.2393	-0.0271	0.0510
14	2907	0.548	0.2735	0.3164	0.7168
17	2900	0.306	0.1092	0.7858	0.5648
18	2902	0.563	0.2367	0.1897	0.6616
19	2907	0.665	0.1311	-0.2892	0.4143
21	2901	0.531	0.1685	0.1706	0.6630
22	2901	0.418	0.0960	0.3838	0.8125
25	2904	0.586	0.2092	0.0625	0.4750
26	2906	0.742	0.1414	-0.5205	0.3449
27	2908	0.793	0.2114	-0.6354	0.3596
28	2904	0.431	0.0896	0.3252	0.5693
29	2901	0.724	0.1236	-0.4777	0.4599
30	2909	0.853	0.2420	-0.8737	0.5715
31	2905	0.156	0.0841	1.4829	0.7364
33	2902	0.330	0.0831	0.6267	0.5614
34	2907	0.683	0.2443	-0.2030	0.6709
35	2907	0.822	0.4829	-0.4028	0.6505
36	2905	0.915	0.2265	-1.2297	0.3862
38	2900	0.832	0.2695	-0.7392	0.5709
39	2899	0.749	0.2627	-0.4139	0.7085
40	2896	0.421	0.1843	0.5781	0.8540
41	2904	0.412	0.1543	0.5144	0.1609
42	2897	0.546	0.1282	0.0600	0.5311
44	2894	0.591	0.3426	0.3354	0.7797
45	2900	0.501	0.1622	0.2543	0.7444
46	2894	0.339	0.2688	1.3316	0.4403
47	2887	0.632	0.1100	-0.2077	0.3958
48	2888	0.484	0.1129	0.2128	0.2218
49	2903	0.890	0.1513	-1.1315	0.4572
50	2890	0.327	0.2031	1.0431	0.8274
53	2894	0.466	0.2252	0.5136	0.7337
54	2892	0.525	0.3026	0.5057	0.7384
55	2896	0.572	0.1013	-0.0569	0.4712
56	2893	0.862	0.1128	-1.0194	0.5747
57	2871	0.773	0.3244	-0.4246	0.7761
Adding	Chi-square*	d.f.	P		Percent of Variance
Factor	Change				
2	196.752	40	<.001		35.2255

^{*}Assumed design effect = 2.

TABLE 27

ASVAB
ITEM ATTEMPTS FACILITIES, GUESSING PARAMETER VALUES, STANDARD DIFFICULTIES, AND FACTOR LOADINGS ELECTRONIC INFORMATION-FORM 2 (N = 2765)

Item	Attempts	Facility	Chance	Intercept	Principal Factor
1	2761	0 332	0.0785	0.5998	0 7399
3	2764	0.884	0 2876	~ 0.9999	0.5655
5	2763	0.392	0.2536	0 8974	0 3339
6	2761	0.453	0.3211	0.8905	0.8032
7	2761	0 277	0.0993	0.8595	0 7295
8	2762	0.760	0 2418	-0.4850	0 4922
9	2758	0.363	0.2048	0.8579	0.6785
11	2764	0.489	0.2381	0.4407	0.2627
12	2758	0.567	0.1395	0.0050	0.6389
13	2764	0.725	0.1189	-0.4963	0 5086
15	2761	0.461	0.1376	0.2555	0.4360
16	2752	0.529	0.3711	0.6924	0 6820
18	2763	0.899	0.1157	-1.2214	0 7011
19	2758	0.348	0.1004	0.6001	0.7182
20	2757	0.362	0.2137	0.8985	0 6800
21	2761	0.213	0.0935	1.1274	0.7237
22	2765	0.780	0.2164	-0.5887	0.4334
23	2765	0.725	0.2025	-0.4081	0.5262
24	2760	0.387	0.0881	0.4455	0.6535
26	2763	0.808	0.1297	-0.7752	0.3619
28	2762	0.677	0.2142	-0.2295	0.3744
29	2764	0.811	0.1195		
30	2755	0.237	0.1193	-0.8046 0.9390	0.6651
31	2765		0.1407		0.6826
32	2763	0. 59 0 0. 86 0	0.2018	-0.0658	0.5867
32	2760			-0.9461	0.6428
		0.648	0.2394	~0.0 978	0.6021
37	2760	0.509	0.1155	0.1365	0.5647
39	2761	0.761	0.3987	-0.2608	0.5569
40	2763	0.850	0.3455	-0.7524	0.5887
42	2759	.0.362	0.0844	0.5137	0.8637
44	2762	0.525	0.2049	0.2428	0.6250
45	2761	0.774	0.2308	-0.5417	0.2303
46	2759	0.479	0 3485	0.8670	0.6035
47	2744	0.271	0.1719	1.2004	0.7224
48	2759	0.409	0.1024	0.4095	0.6910
49	2758	0.584	0.3096	0.2546	0.8586
50	2751	0.334	0.2132	1.0426	0.8113
51	2753	0.785	0.1466	-0.6728	0.4883
53	2753	0.901	0.1706	-1.1899	0.5288
54	2750	0.886	0.1941	-1.0781	0.5175
55	2751	0.688	0.2476	-0.2170	0.5546
57	2711	0.529	0.3490	0.6117	0.7661
Adding	Chi-square*	d.f.	P		Percent of Variance
Factor	Change 194,400	41	<.001		38.1883
2					

^{*}Assumed design effect = 2.

TABLE 28

ASVAB

ITEM ATTEMPTS, FACILITIES, GUESSING PARAMETER VALUES
STANDARD DIFFICULTIES, AND FACTOR LOADINGS
ELECTRONICS INFORMATION-FORM 3 (N = 2692)

Item	Attempts	Facility	Chance	Intercept	Principal Factors
1	2684	0.331	0.1827	0.9729	0.8180
2	2684	0.761	0.2266	-0 4927	0.2699
3	2685	0.581	0.4726	0 8908	0 8177
6	2686	0.588	0.3212	0 2855	0 6245
7	2688	0.459	0.2092	0 5065	0 8241
8	2687	0.837	0.2604	-0.7718	0 4576
9	2683	0.846	0.2755	-08117	0 7257
10	2688	0.555	0.4328	0 8399	0 7739
11	2688	0.453	0.3671	1 1649	0 6389
12	2690	0.737	0.2804	-0.3454	0 4709
13	2689	0.523	0.1334	0.1330	0.5276
14	2690	0.851	0.2025	-0.9162	0.8403
15	2690	0.277	0.1035	0.8918	0.6046
16	2687	0.675	0.1148	-0.3466	0.7005
17	2680	0.451	0.2931	0.7765	0 4460
18	2687	0.527	0.2623	0.3765	0 6156
19	2684	0.363	0.0908	0.5563	0 8512
20	2684	0.745	0.2142	-0.4573	0.5676
21	2679	0.462	0.2860	0.7363	0 7938
22	2683	0.687	0.2701	-0.1747	0.5849
23	2685	0.441	0.1608	0.4428	C.6341
24	2674	0.841	0.2669	-0.7799	0 6045
25	2683	0.735	0 3347	-0.2549	0 6611
28	2687	0.735	0.1683	-0.4711	0.3649
29	2684	0 440	0 1632	0.4480	0.5069
30	2689	0.895	0.3282	-1.0355	0 7366
31	2683	0 867	0.5000	-0.6192	-0.0104
32	2688	0.476	0.2285	0.4872	0 6444
33	2686	0.643	0.1312	-0.2256	0.6238
34	2685	0.462	0.3996	1.3419	0.7833
35	2681	0.636	0.2880	0 0 35 0	0.2646
36	2675	0.195	0.1126	1.3627	0.5047
37	2679	0.337	0.1528	0.8119	0 5777
38	2687	0.733	0.4400	-0.0487	0 5186
40	2688	0 649	0.1615	-0.2067	0.6630
41	2682	0.483	0 2098	0 4269	0.8346
42	2688	0.869	0 1462	-1.0325	0.5375
44	2685	0.371	0.1640	0.6991	0.5010
45	2676	0.356	0 2214	0.9841	0.7209
46	2690	0 888	0.3298	-0.9850	0.5709
48	2681	0.772	0.3944	-0.3129	0 5993
49	2690	0.864	0.1962	-0.9831	0 6697
50	2688	0.866	0.2715	-0.9223	0.7110
52	2679	0.591	0.1916	0.0236	0.6418
53	2680	0.524	0.2381	0.3293	0.5209
54	2681	0.807	0.2837	-0.6167	0.4746
56	2678	0.687	0.1172	~0.3735	0.5308
5 7	2632	0.215	0.1394	1.4132	0.7148
Adding	'hi-square"	d.f	p	··········	Percent of Variance
Factor	Change				
	249.824	47	<.001		39.3769

^{*}Assumed design effect = 2

CONTROL OF CONTROL OF

Dr. Terry Ackerman American College Testing Programs P.O. Box 168 Iowa City, IA 52243

Dr. Erling B. Andersen Department of Statistics Studiestraede 6 1455 Copenhagen DENMARK

Dr. Menucha Birenbaum School of Education Tel Aviv University Tel Aviv, Ramat Aviv 69978 ISRAEL

Dr. Bruce Bloxom
Defense Manpower Data Center
550 Camino El Estero,
Suite 200
Monterey, CA 93943-3231

Cdt. Arnold Bohrer
Sectie Psychologisch Onderzoek
Rekruterings-En Selectiecentrum
Kwartier Koningen Astrid
Bruijnstraat
1120 Brussels, BELGIUM

Dr. Robert Brennan American College Testing Programs P. O. Box 168 Iowa City, IA 52243

Dr. James Carlson
American College Testing
Program
P.O. Box 168
Iowa City, IA 52243

Dr. John B. Carroll 409 Elliott Rd. Chapel Hill, NC 27514

Dr. Robert Carroll OP 0187 Washington, DC 20370 Dr. Norman Cliff
Department of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

Director,
Manpower Support and
Readiness Program
Center for Naval Analysis
2000 North Beauregard Street
Alexandria, VA 22311

Dr. Stanley Collyer Office of Naval Technology Code 222 800 N. Quincy Street Arlington, VA 22217-5000

Dr. Hans Crombag University of Leyden Education Research Center Boerhaavelaan 2 2334 EN Leyden The NETHERLANDS

Mr. Timothy Davey
University of Illinois
Educational Psychology
Urbana, IL 61801

Dr. Dattprasad Divg: Center for Naval Analysis 4401 Ford Avenue P.O. Box 16268 Alexandria, VA 22302-0268

Dr. Hei-Ki Dong Bell Communications Research 6 Corporate Place PYA-1k226 Piscataway, NJ 08854

Dr. Fritz Drasgow University of Illinois Department of Psychology 603 E. Daniel St. Champaign, IL 61820

Defense Technical Information Center Cameron Station, Bldg 5 Alexandria, VA 22314 Attn: TC (12 Copies)

Dr. Stephen Dunbar Lindquist Center for Measurement University of Iowa Iowa City, IA 52242

Dr. James A. Earles Air Force Human Resources Lab Brooks AFB, TX 78235

Dr. Kent Eaton Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333

Dr. Susan Embretson University of Kansas Psychology Department 426 Fraser Lawrence, KS 66045

Dr. Benjamin A. Fairbank Performance Metrics, Inc. 5825 Callaghan Suite 225 San Antonio, TX 78228

Dr. Leonard Feldt Lindquist Center for Measurement University of Iowa Iowa City, IA 52242

Dr. Richard L. Ferguson American College Testing Program P.O. Box 168 Iowa City, IA 52240

Dr. Gerhard Fischer Liebiggasse 5/3 A 1010 Vienna AUSTRIA Dr. Myron Fischl Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333

Prof. Donald Fitzgerald University of New England Department of Psychology Armidale, New South Wales 2351 AUSTRALIA

Mr. Paul Foley Navy Personnel R&D Center San Diego, CA 92152-6800

Dr. Robert D. Gibbons Illinois State Psychiatric Inst. Rm 529W 1601 W. Taylor Street Chicago, IL 60612

Dr. Janice Gifford University of Massachusetts School of Education Amherst, MA 01003

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dipl. Pad. Michael W. Habon Universitat Dusseldorf Erziehungswissenschaftliches Universitatsstr. 1 D-4000 Dusseldorf 1 WEST GERMANY

Dr. Ronald K. Hambleton Prof. of Education & Psychology University of Massachusetts at Amherst Hills House Amherst, MA 01003

Ms. Rebecca Hetter Navy Personnel R&D Center Code 62 San Diego, CA 92152-6800

Dr. Paul W. Holland Educational Testing Service Rosedale Road Princeton, NJ 08541

Prof. Lutz F. Hornke Institut fur Psychologie RWTH Aachen Jaegerstrasse 17/19 D-5100 Aachen WEST GERMANY

Dr. Paul Horst 677 G Street, #184 Chula Vista, CA 90010

Mr. Dick Hoshaw OP-135 Arlington Annex Room 2834 Washington, DC 20350

Dr. Lloyd Humphreys University of Illinois Department of Psychology 603 East Daniel Street Champaign, IL 61820

Dr. Huynh Huynh College of Education Univ. of South Carolina Columbia, SC 29208

Dr. Robert Jannarone Department of Psychology University of South Carolina Columbia, SC 29208

Dr. Douglas H. Jones Thatcher Jones Associates P.O. Box 6640 10 Trafalgar Court Lawrenceville, NJ 08648

Dr. G. Gage Kingsbury Portland Public Schools Research and Evaluation Department 501 North Dixon Street P. J. Box 3107 Portland, OR 97209-3107 Dr. William Koch University of Texas-Austin Measurement and Evaluation Center Austin, TX 78703

Dr. James Kraatz Computer-based Education Research Laboratory University of Illinois Urbana, IL 61801

Dr. Leonard Kroeker Navy Personnel R&D Center San Diego, CA 92152-6800

Dr. Thomas Leonard University of Wisconsin Department of Statistics 1210 West Dayton Street Madison, WI 53705

Dr. Michael Levine Educational Psychology 210 Education Bldg. University of Illinois Champaign, IL 61801

Dr. Charles Lewis Educational Testing Service Princeton, NJ 08541

Dr. Robert Linn College of Education University of Illinois Urbana, IL 61801

Dr. Robert Lockman Center for Naval Analysis 4401 Ford Avenue P.O. Box 16268 Alexandria, VA 22302-0268

Dr. Frederic M. Lord Educational Testing Service Princeton, NJ 08541

Dr. James Lumsden
Department of Psychology
University of Western Australia
Nedlands W.A. 6009
AUSTRALIA

Dr. Milton Maier Center for Naval Analysis 4401 Ford Avenue P.O. Box 16268 Alexandria, VA 22302-0268

Dr. William L. Maloy Chief of Naval Education and Training Naval Air Station Pensacola, FL 32508

Dr. Gary Marco Stop 31-E Educational Testing Service Princeton, NJ 08451

Dr. Clessen Martin Army Research Institute 5001 Eisenhower Blvd. Alexandria, VA 22333

Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace,
Javanovich Inc.
1250 West 6th Street
San Diego, CA 92101

Dr. Clarence McCormick HQ, MEPCOM MEPCT-P 2500 Green Bay Road North Chicago, IL 60064

Dr. Robert McKinley Educational Testing Service 20-P Princeton, Nº 08541

Dr. James McMichael Technical Director Navy Personnel R&D Center San Diego, CA 92152

Dr. Robert Mislevy Educational Testing Service Princeton, NJ 08541

Headquarters, Marine Corps Code MPI-20 Washington, DC 20380 Dr. W. Alan Nicewander University of Oklahoma Department of Psychology Oklahoma City, OK 73069

Library, NPRDC Code P201L San Diego, CA 92152-6800

Dr. James Olson WICAT, Inc. 1875 South State Street Orem, UT 84057

Office of Naval Research, Code 1142PT 800 N. Quincy Street Arlington, VA 22217-5000 (6 Copies)

Assistant for MPT Research,
Development and Studies
OP 01B7
Washington, DC 20370

Dr. Judith Orasanu Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333

Dr. Jesse Orlansky Institute for Defense Analyses 1801 N. Beauregard St. Alexandria, VA 22311

Dr. Randolph Park Army Research Institute 5001 Eisenhower Blvd. Alexandria, VA 22333

Wayne M. Patience American Council on Education GED Testing Service, Suite 20 One Dupont Circle, NW Washington, DC 20036

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Dr. Mark D. Reckase ACT P. O. Box 168 Iowa City, IA 52243

Dr. Malcolm Ree AFHRL/MP Brooks AFB, TX 78235

Dr. J. Ryan Department of Education University of South Carolina Columbia, SC 29208

Dr. Fumiko Samejima Department of Psychology University of Tennessee 3108 AustinPeay Bldg. Knoxville, TN 37916-0900

Mr. Drew Sands NPRDC Code 62 San Diego, CA 92152-6800

Dr. Mary Schratz Navy Personnel R&D Center San Diego, CA 92152-6800

Dr. Dan Segall Navy Personnel R&D Center San Diego, CA 92152

Dr. W. Steve Sellman OASD(MRA&L) 2B269 The Pentagon Washington, DC 20301

Dr. Kazuo Shigemasu 7-9-24 Kugenuma-Kaigan Fujusawa 251 JAPAN

Dr. William Sims Center for Naval Analysis 4401 Ford Avenue P.O. Box 16268 Alexandria, VA 22302-0268

Dr. Richard Sorensen Navy Personnel R&D Center San Diego, CA 92152-6800 Dr. Paul Speckman University of Missouri Department of Statistics Columbia, MO 65201

Dr. Judy Spray ACT P.O. Box 168 Iowa City, IA 52243

Dr. Martha Stocking Educational Testing Service Princeton, NJ 08541

Dr. Peter Stoloff Center for Naval Analysis 200 North Beauregard Street Alexandria, VA 22311

Dr. William Stout University of Illinois Department of Statistics 101 Illini Hall 725 South Wright St. Champaign, IL 61820

Maj. Bill Strickland AF/MPXOA 4E168 Pentagon Washington, DC 20330

Dr. Hariharan Swaminathan Laboratory of Psychometric and Evaluation Research School of Education University of Massachusetts Amherst, MA 01003

Mr. Brad Sympson Navy Personnel R&D Center San Diego, CA 92152-6800

Dr. Kikumi Tatsuoka CERL 252 Engineering Research Laboratory Urbana, IL 61801

Dr. Maurice Tatsuoka 220 Education Bldg 1310 S. Sixth St. Champaign, IL 61820

Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

Mr. Gary Thomasson University of Illinois Educational Psychology Champaign, IL 61820

Dr. Robert Tsutakawa University of Missouri Department of Statistics 222 Math. Sciences Bldg. Columbia, MO 65211

Dr. Ledyard Tucker University of Illinois Department of Psychology 603 E. Daniel Street Champaign, IL 61820

Dr. David Vale Assessment Systems Corp. 2233 University Avenue Suite 310 St. Paul, MN 55114

Dr. Howard Wainer Division of Psychological Studies Educational Testing Service Princeton, NJ 08541

Dr. Ming-Mei Wang Lindquist Center for Measurement University of Iowa Iowa City, IA 52242

Or. Thomas A. Warm Coast Guard Institute P. O. Substation 18 Oklahoma City, OK 73169

Dr. Brian Waters Program Manager Manpower Analysis Program HumRRO 1100 S. Washington St. Alexandria, VA 22314 Dr. David J. Weiss N660 Elliott Hall University of Minnesota 75 E. River Road Minneapolis, MN 55455

Dr. Ronald A. Weitzman NPS, Code 54Wz Monterey, CA 92152-6800

Major John Welsh AFHRL/MOAN Brooks AFB, TX 78223

Dr. Rand R. Wilcox University of Southern California Department of Psychology Los Angeles, CA 90007

German Military Representative ATTN: Wolfgang Wildegrube Streitkraefteamt D-5300 Bonn 2 4000 Brandywine Street, NW Washington, DC 20016

Dr. Bruce Williams
Department of Educational
Psychology
University of Illinois
Urbana, IL 61801

Dr. Hilda Wing
Psychological Corporation
c/o Harcourt, Brace,
Javanovich Inc.
1250 West 6th Street
San Diego, CA 92101

Mr. John H. Wolfe Navy Personnel R&D Center San Diego, CA 92152-6800

Dr. George Wong Biostatistics Laboratory Memorial Sloan-Kettering Cancer Center 1275 York Avenue New York, NY 10021

Dr. Kentaro Yamamoto Computer-based Education Research Laboratory University of Illinois Urbana, IL 61801

Dr. Wendy Yen CTB/McGraw Hill Del Monte Research Park Monterey, CA 93940

25000000

Continue consiste continue

MANAGER MANAGER BOSSESS SECTION OF THE PROPERTY OF THE PROPERT