DS°3 (le 12/11/2010)

Dans tout ce problème l'entier n est supérieur ou égal à 1 ($n \ge 1$); E est un \mathbb{C} -espace vectoriel de dimension n. Le but de ce problème est d'étudier les applications semi-linéaires de l'espace vectoriel E dans lui même. Une application u de E dans lui même est semi-linéaire si elle possède la propriété suivante :

Pour tout scalaire a et tout couple de vecteurs x et y de l'espace vectoriel E la relation ci dessous est vérifiée :

$$u(ax + y) = \overline{a}u(x) + u(y)$$

Le nombre complexe \overline{a} est le nombre complexe conjugué de a.

Un nombre complexe μ est une valeur co-propre de l'application semi-linéaire u s'il existe un vecteur x différent de 0 tel que la relation ci-dessous soit vérifiée :

$$u(x) = \mu x$$

Le vecteur x est un vecteur co-propre associé à la valeur co-propre μ .

Première partie

Le but de cette partie est d'étudier, pour une application semi-linéaire u donnée, les valeurs et vecteurs co-propres.

I.1 Premières propriétés.

Soit u une application semi-linéaire de l'espace vectoriel E.

- a) Démontrer qu'étant donné un vecteur x différent de 0, appartenant à l'espace E, il existe au plus un nombre complexe μ tel que la relation $u(x) = \mu x$ ait lieu.
- b) Démontrer que, si le nombre complexe μ est une valeur co-propre de l'application semi-linéaire u, pour tout réel θ , le nombre complexe $\mu e^{i\theta}$ est encore valeur co-propre de l'application semi-linéaire u. Exprimer un vecteur co-propre associé à la valeur co-propre $\mu e^{i\theta}$ en fonction d'un vecteur co-propre μ associé à la valeur co-propre μ et du réel θ .
- c) Étant donnée une valeur co-propre μ de l'application semi-linéaire u, soit E_{μ} l'ensemble des vecteurs x de l'espace vectoriel E qui vérifient la relation $u(x) = \mu x$:

$$E_{u} = \{x \in E \mid u(x) = \mu x\}.$$

Est-ce que l'ensemble E_μ est un $\mathbb C$ -espace vectoriel ? un $\mathbb R$ -espace vectoriel ?

d) Étant données deux applications semi-linéaires u et v, étudier la linéarité de l'application composée $u \circ v$.

I.2 Matrice associée à une application semi-linéaire :

Soit u une application semi-linéaire de l'espace vectoriel E; soit $(e_i)_{1 \le i \le n}$ une base de l'espace vectoriel E. À un vecteur x de coordonnées $x_1, x_2, ..., x_n$ est associée la matrice colonne X d'éléments $x_1, x_2, ..., x_n$.

a) Démontrer qu'à une application semi-linéaire u est associée dans la base $(e_i)_{1 \le i \le n}$ de E une matrice A, carrée, complexe, d'ordre n telle que la relation y = u(x) s'écrive :

$$Y = A\overline{X}$$
.

(la matrice-colonne \overline{X} est la matrice complexe conjuguée de la matrice-colonne X

b) Soient A et B les matrices associées à une même application semi-linéaire u dans les bases $(e_i)_{1 \le i \le n}$ et $(f_i)_{1 \le i \le n}$ respectivement. Soit S la matrice de passage de la base $(e_i)_{1 \le i \le n}$ à la base $(f_i)_{1 \le i \le n}$. Démontrer la relation :

$$B = S^{-1}A\overline{S}$$

Étant donnée une matrice carrée A, complexe, d'ordre n, le vecteur X, différent de 0, $(X \neq 0)$ est un vecteur co-propre de la matrice carrée A, associée à la valeur co-propre μ , si le vecteur X et le nombre complexe μ vérifient la relation matricielle ci-dessous :

$$A\overline{X} = \mu X$$
.

Dans la suite toutes les matrices considérées sont des matrices carrées complexes.

I.3 Exemples:

- a) Soit A la matrice d'ordre 2 définie par la relation suivante : $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Rechercher les valeurs co-propres μ et les vecteurs co-propres $X = \begin{pmatrix} a \\ b \end{pmatrix}$ associés.
- b) Démontrer que si une matrice A est réelle et admet une valeur propre réelle λ , cette matrice a au moins une valeur co-propre.

I.4 Correspondance entre les valeurs co-propres de la matrice A et les valeurs propres de la matrice \overline{AA} :

Soit A une matrice carrée complexe d'ordre n.

- a) Démontrer que si le scalaire μ est une valeur co-propre de la matrice A, le nombre réel $|\mu|^2$ est une valeur propre de la matrice $A\overline{A}$.
- **b)** Soit λ une valeur propre réelle positive ou nulle ($\lambda \ge 0$) de la matrice $A\overline{A}$ et X un vecteur propre associé :

$$A\overline{A}X = \lambda X$$
.

Démontrer que le réel $\sqrt{\lambda}$ est une valeur co-propre de la matrice A, en envisageant les deux cas suivants :

- i. les vecteurs $A.\overline{X}$ et X sont liés;
- ii. les vecteurs $A.\overline{X}$ et X sont linéairement indépendant;

(dans ce dernier cas, on cherchera un vecteur co-propre associé à $\sqrt{\lambda}$ dans le plan vectoriel engendré par ces deux vecteurs).

- c) En déduire que pour que le réel positif ou nul μ soit valeur co-propre de la matrice A, il faut et il suffit que le réel μ^2 soit valeur propre de la matrice $A\overline{A}$.
- **d)** Étant donné un réel m, soit A_m la matrice définie par la relation :

$$A_m = \begin{pmatrix} m & -1 \\ 1 & 0 \end{pmatrix}$$

Déterminer les valeurs co-propres réelles positives (discuter selon les valeurs de m).

I.5 Cas d'une matrice triangulaire supérieure :

Dans cette question la matrice A est une matrice triangulaire supérieure (les éléments situés en-dessous de la diagonale principale sont nuls).

- a) Démontrer que si λ est une valeur propre de la matrice A, pour tout réel θ , le nombre complexe $\lambda e^{i\theta}$ est une valeur co-propre de la matrice A.
- **b)** Démontrer que si μ est une valeur co-propre de la matrice A, il existe un réel θ tel que le nombre complexe $\mu e^{i\theta}$ soit valeur propre de la matrice A.
- c) Soit A la matrice définie par la relation ci dessous :

$$A = \begin{pmatrix} i & 1 \\ 0 & i \end{pmatrix}.$$

Démontrer que le réel 1 est valeur co-propre de cette matrice et déterminer un vecteur X co-propre associé. Poser $X = \begin{pmatrix} a+ib \\ c+id \end{pmatrix}$.

I.6 Une caractérisation des valeurs co-propres :

Soit A une matrice carrée complexe d'ordre n; soient B et C les matrices réelles définies par la relation suivante

$$A = B + iC$$
.

Démonter que le nombre complexe μ est valeur co-propre de la matrice A si et seulement si le nombre réel $|\mu|$ est une valeur propre de la matrice D, carrée, réelle d'ordre 2n, définie par blocs par la relation suivante :

$$D = \begin{bmatrix} B & C \\ C & -B \end{bmatrix}.$$

Seconde partie

Étant données deux matrices carrées complexes A et B d'ordre n, s'il existe une matrice carrée complexe S d'ordre n inversible ($S \in GL_n(\mathbb{C})$) telle que la relation $B = SA\overline{S}^{-1}$ soit vérifiée, les deux matrices A et B sont dites <u>co-semblables</u>. Si une matrice A est co-semblable à une matrice diagonale, la matrice A est dite co-diagonalisable. Le but de cette partie est de rechercher à quelles conditions une matrice est co-diagonalisable.

II.1 Une relation d'équivalence :

Étant données deux matrices carrées complexes A et B d'ordre n, ces matrices sont dites satisfaire la relation \approx si et seulement si ces deux matrices sont co-semblables :

$$A \approx B \iff \exists S \in GL_n(\mathbb{C}) : B = SA\overline{S}^{-1}$$

Démontrer que la relation \approx est une relation d'équivalence dans l'ensemble des matrices carrées complexes d'ordre n.

II.2 Indépendance des vecteurs co-propres :

Soit A une matrice carrée complexe d'ordre n, soient X_1 , X_2 ,..., X_k , k vecteurs co-propres de la matrice A associées à des valeurs co-propres μ_1 , μ_2 ,..., μ_k ; l'entier k est inférieur ou égal à l'entier n ($k \le n$).

Démontrer que, si les valeurs co-propres μ_p , p=1, 2, ..., k ont des modules différents les uns des autres $(p \neq q \Longrightarrow |\mu_p| \neq |\mu_q|)$, la famille $(X_1, X_2, ..., X_k)$ est libre.

En déduire que, si la matrice A. \overline{A} a n valeurs propres λ_p , $p \in [1,n]$, positives ou nulles, $(\lambda_p \ge 0)$, distinctes les unes des autres $(p \ne q \Longrightarrow \lambda_p \ne \lambda_q)$, la matrice A est co-diagonalisable.

II.3 Quelques propriétés :

a) Soit S une matrice carrée complexe d'ordre n inversible $(S \in GL_n(\mathbb{C}))$; soit A la matrice définie par la relation

$$A = S.\overline{S}^{-1}$$

Calculer la matrice produit $A.\overline{A}$.

b) Soit A une matrice carrée complexe d'ordre *n* telle que

$$A.\overline{A} = I_n$$

Démontrer qu'il existe au moins un réel θ tel que la matrice $S(\theta)$ définie par la relation ci dessous

$$S(\theta) = e^{i\theta}A + e^{-i\theta}I_n$$

soit inversible.

Calculer en donnant au réel θ cette valeur, la matrice $A.\overline{S(\theta)}$; en déduire la matrice $S(\theta).\overline{S(\theta)}^{-1}$.

II.4 Une condition nécessaire :

Soit A une matrice d'ordre n co-diagonalisable. Il existe par suite une matrice S inversible telle que la matrice S^{-1} . A. \overline{S} soit diagonale. Démonter que la matrice A. \overline{A} est diagonalisable, que ses valeurs propres sont positives ou nulles et que le rang de la matrice A est égal au rang de la matrice A. \overline{A} .

II.5 Une condition suffisante :(question plus difficile...)

Soit A une matrice carrée complexe d'ordre n qui vérifie les trois propriétés suivantes :

- i. la matrice A. \overline{A} est diagonalisable,
- ii. les valeurs propres de la matrice $A.\overline{A}$ sont positives ou nulles,
- iii. le rang de la matrice A est égal au rang de la matrice $A.\overline{A}$.

Soient λ_1 , λ_2 ,..., λ_k , les valeurs propres deux à deux distinctes de la matrice A. \overline{A} ; elles sont positives et ordonnées de façon qu'elles vérifient la relation suivante :

$$\lambda_1 > \lambda_2 > \dots > \lambda_k \geqslant 0.$$

Les valeurs propres λ_1 , λ_2 ,..., λ_k ont respectivement les multiplicités n_1 , n_2 ,..., n_k . Soit I_p la matrice identité d'ordre p. Une matrice diagonale Λ , semblable à la matrice $A.\overline{A}$, s'écrit par blocs avec les conventions précédentes sous la forme suivante :

$$\Lambda = \begin{bmatrix} \lambda_1 \mathbf{I}_{n_1} & 0 & \cdots & 0 \\ 0 & \lambda_2 \mathbf{I}_{n_2} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \lambda_k \mathbf{I}_{n_k} \end{bmatrix}$$

Par hypothèse il existe une matrice S inversible telle que

$$A.\overline{A} = S.\Lambda.S^{-1}$$

Soit B la matrice définie par la relation suivante

$$B = S^{-1}.A.\overline{S}$$

a) Démontrer les relations :

$$B.\overline{B} = \overline{B}.B : B.\Lambda = \Lambda.B$$

b) Démontrer que la matrice B s'écrit par blocs sous la forme ci-dessous (dans cette expression chaque matrice B_p est une matrice d'ordre n_p) :

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_2 & \cdots & \mathbf{0} \\ \cdots & \cdots & \cdots & \cdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{B}_k \end{bmatrix}$$

c) Démontrer qu'il existe une matrice inversible P et une matrice diagonale Λ d'ordre n telles que la relation ci-dessous ait lieu :

$$B = P \Lambda \overline{P}^{-1}$$

En déduire que toute matrice vérifiant les hypothèses i, ii, iii est co-diagonalisable.

II.6 Exemples

Soient A, B, C, D les matrices d'ordre 2 suivantes : $A = \begin{pmatrix} i & 1 \\ 0 & i \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $D = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$.

Est-ce que ces matrices sont diagonalisables? co-diagonalisables?

