

Condensador plano

$$Q = \sigma A$$

$$V = Ed$$

$$E = \frac{\sigma}{\varepsilon_0}$$

$$C = \frac{Q}{V}$$

$$C = \frac{\sigma A}{E d} = \frac{E \varepsilon_0 A}{E d} \iff C = \varepsilon_0 \frac{A}{d}$$

$$[C] = F$$

Condensador plano com dieléctrico

	Dielétrico	Constante dielétrica
$K = \frac{\varepsilon}{\varepsilon_0}$	Ámbar	2.7-2.9
	Água	80.08
	Ar	1.00059
	Álcool	25.00
	Baquelite	4-4.6
	Cera de abelhas	2.8-2.9
	Glicerina	56.2
	Hélio	1.00007
	Mica moscovita	4.8-8
	Parafina	2.2-2.3
	Plástico vinílico	4.1
	Plexiglás	3-3.6
	Porcelana eletrotécnica	6.5
	Seda natural	4–5

$$\begin{cases} V_{eq} = V_1 + V_2 \\ Q_1 = Q_2 = Q_{eq} \end{cases} \qquad \frac{Q_{eq}}{C_{eq}} = \frac{Q_1}{C_1} + \frac{Q_2}{C_2} \iff \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

Condensadores em paralelo

$$\begin{cases} V_{eq} = V_1 = V_2 \\ Q_{eq} = Q_1 + Q_2 \end{cases}$$

$$C_{eq}V_{eq} = C_1V_1 + C_2V_2 \quad \Leftrightarrow \quad C_{eq} = C_1 + C_2$$

Energia armazenada

$$U = \int V dq = \int \frac{q}{C} dq = \frac{1}{C} \int q dq = \frac{1}{C} \frac{Q^2}{2}$$

$$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C V^2 = \frac{1}{2} Q V$$