SUPPLEMENTARY MATERIAL FOR: ESTIMATION OF (NEAR) LOW-RANK MATRICES WITH NOISE AND HIGH-DIMENSIONAL SCALING

By Sahand Negahban and Martin J. Wainwright

University of California, Berkeley

APPENDIX A: INTRODUCTION

In this supplement we present many of the technical details from the main work [1]. Equation or theorem references made to the main document are relative to the numbering scheme of the document and will not contain letters.

APPENDIX B: PROOF OF LEMMA 1

Part (a) of the claim was proved in Recht et al. [2]; we simply provide a proof here for completeness. We write the SVD as $\Theta^* = UDV^T$, where $U \in \mathbb{R}^{m_1 \times m_1}$ and $V \in \mathbb{R}^{m_2 \times m_2}$ are orthogonal matrices, and D is the matrix formed by the singular values of Θ^* . Note that the matrices U^r and V^r are given by the first r columns of U and V respectively. We then define the matrix $\Gamma = U^T \Delta V \in \mathbb{R}^{m_1 \times m_2}$, and write it in block form as

$$\Gamma = \begin{bmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{bmatrix}, \quad \text{where } \Gamma_{11} \in \mathbb{R}^{r \times r}, \text{ and } \Gamma_{22} \in \mathbb{R}^{(m_1 - r) \times (m_2 - r)}.$$

We now define the matrices

$$\Delta'' = U \begin{bmatrix} 0 & 0 \\ 0 & \Gamma_{22} \end{bmatrix} V^T$$
, and $\Delta' = \Delta - \Delta''$.

Note that we have

$$\operatorname{rank}(\Delta') = \operatorname{rank} \begin{bmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & 0 \end{bmatrix} \leq \operatorname{rank} \begin{bmatrix} \Gamma_{11} & \Gamma_{12} \\ 0 & 0 \end{bmatrix} + \operatorname{rank} \begin{bmatrix} \Gamma_{11} & 0 \\ \Gamma_{21} & 0 \end{bmatrix} \leq 2r,$$

which establishes Lemma 1(a). Moreover, we note for future reference that by construction of Δ'' , the nuclear norm satisfies the decomposition

(B.1)
$$\|\Pi_{\mathcal{A}^r}(\Theta^*) + \Delta''\|_1 = \|\Pi_{\mathcal{A}^r}(\Theta^*)\|_1 + \|\Delta''\|_1.$$

We now turn to the proof of Lemma 1(b). Recall that the error $\Delta = \widehat{\Theta} - \Theta^*$ associated with any optimal solution must satisfy the inequality (30), which implies that

(B.2)
$$0 \leq \frac{1}{N} \langle \vec{\varepsilon}, \mathfrak{X}(\Delta) \rangle + \lambda_N \{ \|\Theta^*\|_1 - \|\widehat{\Theta}\|_1 \} \leq \|\frac{1}{N} \mathfrak{X}^*(\vec{\varepsilon})\|_{\text{op}} \|\Delta\|_1 + \lambda_N \{ \|\Theta^*\|_1 - \|\widehat{\Theta}\|_1 \},$$
 where we have used the bound (31).

Note that we have the decomposition $\Theta^* = \Pi_{\mathcal{A}^r}(\Theta^*) + \Pi_{\mathcal{B}^r}(\Theta^*)$. Using this decomposition, the triangle inequality and the relation (B.1), we have

$$\begin{split} \|\widehat{\Theta}\|_{1} &= \|(\Pi_{\mathcal{A}^{r}}(\Theta^{*}) + \Delta'') + (\Pi_{\mathcal{B}^{r}}(\Theta^{*}) + \Delta')\|_{1} \\ &\geq \|(\Pi_{\mathcal{A}^{r}}(\Theta^{*}) + \Delta'')\|_{1} - \|(\Pi_{\mathcal{B}^{r}}(\Theta^{*}) + \Delta')\|_{1} \\ &\geq \|\Pi_{\mathcal{A}^{r}}(\Theta^{*})\|_{1} + \|\Delta''\|_{1} - \{\|(\Pi_{\mathcal{B}^{r}}(\Theta^{*})\|_{1} + \|\Delta'\|_{1}\}. \end{split}$$

Consequently, we have

$$\begin{aligned} \|\Theta^*\|_1 - \|\widehat{\Theta}\|_1 &\leq \|\Theta^*\|_1 - \{\|\Pi_{\mathcal{A}^r}(\Theta^*)\|_1 + \|\Delta''\|_1\} + \{\|(\Pi_{\mathcal{B}^r}(\Theta^*)\|_1 + \|\Delta'\|_1\} \\ &= 2\|\Pi_{\mathcal{B}^r}(\Theta^*)\|_1 + \|\Delta'\|_1 - \|\Delta''\|_1. \end{aligned}$$

Substituting this inequality into the bound (B.2), we obtain

$$0 \leq \|\frac{1}{N} \mathfrak{X}^*(\vec{\varepsilon})\|_{\text{op}} \|\Delta\|_1 + \lambda_N \{2 \|\Pi_{\mathcal{B}^r}(\Theta^*)\|_1 + \|\Delta'\|_1 - \|\Delta''\|_1 \}.$$

Finally, since $\|\frac{1}{N}\mathfrak{X}^*(\vec{\varepsilon})\|_{\text{op}} \leq \lambda_N/2$ by assumption, we conclude that

$$0 \le \lambda_N \{2 \| \Pi_{\mathcal{B}^r}(\Theta^*) \|_1 + \frac{3}{2} \| \Delta' \|_1 - \frac{1}{2} \| \Delta'' \|_1 \}.$$

Since $\|\Pi_{\mathcal{B}^r}(\Theta^*)\|_1 = \sum_{j=r+1}^m \sigma_j(\Theta^*)$, the bound (32) follows.

APPENDIX C: PROOF OF COROLLARY 5

Recall that for this model, the observations are of the form $y_i = \langle \langle X_i, \Theta^* \rangle \rangle + \varepsilon_i$, where $\Theta^* \in \mathbb{R}^{m_1 \times m_2}$ is the unknown matrix, and $\{\varepsilon_i\}_{i=1}^N$ is an associated noise sequence.

We now show how Proposition 1 implies the RSC property with an appropriate tolerance parameter $\delta > 0$ to be defined. Observe that the bound (25) implies that for any $\Delta \in \mathcal{C}$, we have

$$\frac{\|\mathfrak{X}(\Delta)\|_{2}}{\sqrt{N}} \geq \frac{\sqrt{\sigma_{\min}(\Sigma)}}{4} \|\Delta\|_{F} - 12\rho(\Sigma) \left(\sqrt{\frac{m_{1}}{N}} + \sqrt{\frac{m_{2}}{N}}\right) \|\Delta\|_{1}$$
(C.1)
$$= \frac{\sqrt{\sigma_{\min}(\Sigma)}}{4} \left\{ \|\Delta\|_{F} - \underbrace{\frac{48\rho(\Sigma)}{\sqrt{\sigma_{\min}(\Sigma)}} \left(\sqrt{\frac{m_{1}}{N}} + \sqrt{\frac{m_{2}}{N}}\right)}_{\mathcal{F}} \|\Delta\|_{1} \right\},$$

where we have defined the quantity $\tau > 0$. Following the arguments used in the proofs of Theorem 1 and Corollary 2, we find that

(C.2)

$$\|\Delta\|_{1} \leq 4\|\Delta'\|_{1} + 4\sum_{j=r+1}^{m} \sigma_{j}(\Theta^{*}) \leq 4\sqrt{2R_{q}\tau^{-q}} \|\Delta'\|_{F} + 4R_{q}\tau^{1-q}.$$

Note that this corresponds to truncating the matrices at effective rank $r = 2R_q\tau^{-q}$. Combining this bound with the definition of τ , we obtain

$$\tau \, \| \Delta \|_1 \, \leq \, 4 \, \sqrt{2 R_q} \tau^{1-q/2} \, \| \Delta' \|_F \, + \, 4 \, R_q \tau^{2-q} \, \leq \, 4 \, \sqrt{2 R_q} \tau^{1-q/2} \, \| \Delta \|_F \, + \, 4 \, R_q \tau^{2-q}.$$

Substituting this bound into equation (C.1) yields

$$\frac{\|\mathfrak{X}(\Delta)\|_{2}}{\sqrt{N}} \geq \frac{\sqrt{\sigma_{\min}(\Sigma)}}{4} \Big\{ \|\Delta\|_{F} - 4\sqrt{2R_{q}}\tau^{1-q/2} \|\Delta'\|_{F} - 4R_{q}\tau^{2-q} \Big\}.$$

As long $N > c_0 R_q^{2/(2-q)} \frac{\rho^2(\Sigma)}{\sigma_{\min}(\Sigma)} (m_1 + m_2)$ for a sufficiently large constant c_0 , we can ensure that $4\sqrt{2R_q}\tau^{1-q/2} < 1/2$, and hence that

$$\frac{\|\mathfrak{X}(\Delta)\|_2}{\sqrt{N}} \geq \frac{\sqrt{\sigma_{\min}(\Sigma)}}{4} \bigg\{ \frac{1}{2} \|\Delta\|_F - 4 R_q \tau^{2-q} \bigg\}.$$

Consequently, if we define $\delta := 16 R_q \tau^{2-q}$, then we are guaranteed that for all $\|\Delta\|_F \ge \delta$, we have $4 R_q \tau^{2-q} \le \|\Delta\|_F / 4$, and hence

$$\frac{\|\mathfrak{X}(\Delta)\|_2}{\sqrt{N}} \ge \frac{\sqrt{\sigma_{\min}(\Sigma)}}{16} \|\Delta\|_F$$

for all $\|\Delta\|_F \geq \delta$. We have thus shown that $\mathcal{C}(2R_q\tau^{-q};\delta)$ with parameter $\kappa(\mathfrak{X}) = \frac{\sigma_{\min}(\Sigma)}{256}$.

The next step is to control the quantity $\|\mathfrak{X}^*(\vec{\varepsilon})\|_{\text{op}}/N$, required for specifying a suitable choice of λ_N .

LEMMA C.1. If $\|\bar{\varepsilon}\|_2 \leq 2\nu\sqrt{N}$, then there are universal constants c_i such that

(C.3)
$$\mathbb{P}\left[\frac{\|\mathfrak{X}^*(\vec{\varepsilon})\|_{\text{op}}}{N} \ge c_0 \rho(\Sigma) \nu \left(\sqrt{\frac{m_1}{N}} + \sqrt{\frac{m_2}{N}}\right)\right] \le c_1 \exp(-c_2(m_1 + m_2)).$$

PROOF. By the definition of the adjoint operator, we have $Z = \frac{1}{N}\mathfrak{X}^*(\vec{\varepsilon}) = \frac{1}{N}\sum_{i=1}^N \varepsilon_i X_i$. Since the observation matrices $\{X_i\}_{i=1}^N$ are i.i.d. Gaussian, if the sequence $\{\varepsilon_i\}_{i=1}^N$ is viewed as fixed (by conditioning as needed), then the random matrix Z is a sample from the Γ -ensemble with covariance matrix $\Gamma = \frac{\|\vec{\varepsilon}\|^2}{N^2}\Sigma \leq \frac{2\nu^2}{N}\Sigma$. Therefore, letting $\widetilde{Z} \in \mathbb{R}^{m_1 \times m_2}$ be a random matrix drawn from the $2\nu^2\Sigma/N$ -ensemble, we have

$$\mathbb{P}[|\!|\!| Z |\!|\!|_{\mathrm{op}} \geq t] \leq \mathbb{P}[|\!|\!| \widetilde{Z} |\!|\!|_{\mathrm{op}} \geq t].$$

Using Lemma H.1 from Appendix H, we have

$$\mathbb{E}[\|\widetilde{Z}\|_{\mathrm{op}}] \le \frac{12\sqrt{2}\nu\rho(\Sigma)}{\sqrt{N}} \left(\sqrt{m_1} + \sqrt{m_2}\right)$$

and

$$\mathbb{P}[\|\tilde{Z}\|_{\mathrm{op}} \ge \mathbb{E}[\|\tilde{Z}\|_{\mathrm{op}}] + t] \le \exp\left(-c_1 \frac{Nt^2}{\nu^2 \rho^2(\Sigma)}\right)$$

for a universal constant c_1 . Setting $t^2 = \Omega(\frac{\nu^2 \rho^2(\Sigma)(\sqrt{m_1} + \sqrt{m_2})^2}{N})$ yields the claim.

APPENDIX D: PROOF OF COROLLARY 6

This corollary follows from a combination of Proposition 1 and Lemma 1. Let $\widehat{\Theta}$ be an optimal solution to the SDP (29), and let $\Delta = \widehat{\Theta} - \Theta^*$ be the error. Since $\widehat{\Theta}$ is optimal and Θ^* is feasible for the SDP, we have $\|\widehat{\Theta}\|_1 = \|\Theta^* + \Delta\|_1 \le \|\Theta^*\|_1$. Using the decomposition $\Delta = \Delta' + \Delta''$ from Lemma 1 and applying triangle inequality, we have

$$\|\Theta^* + \Delta' + \Delta''\|_1 \ge \|\Theta^* + \Delta''\|_1 - \|\Delta'\|_1.$$

From the properties of the decomposition in Lemma 1 (see Appendix B), we find that

$$\|\widehat{\Theta}\|_{1} = \|\Theta^{*} + \Delta' + \Delta''\|_{1} > \|\Theta^{*}\|_{1} + \|\Delta''\|_{1} - \|\Delta'\|_{1}.$$

Combining the pieces yields that $\|\Delta''\|_1 \leq \|\Delta'\|_1$, and hence $\|\Delta\|_1 \leq 2\|\Delta'\|_1$. By Lemma 1(a), the rank of Δ' is at most 2r, so that we obtain $\|\Delta\|_1 \leq 2\sqrt{2r}\|\Delta\|_F \leq 4\sqrt{r}\|\Delta\|_F$.

Note that $\mathfrak{X}(\Delta) = 0$, since both $\widehat{\Theta}$ and Θ^* agree with the observations. Consequently, from Proposition 1, we have that

$$\begin{split} 0 \; &= \; \frac{\|\mathfrak{X}(\Delta)\|_2}{\sqrt{N}} \geq \frac{1}{4} \|\Delta\|_F - 12 \rho(\Sigma) \left(\sqrt{\frac{m_1}{N}} + \sqrt{\frac{m_2}{N}} \right) \|\Delta\|_1 \\ & \geq \|\Delta\|_F \left(\frac{1}{4} - 12 \rho(\Sigma) \sqrt{\frac{rm_1}{N}} + 12 \rho(\Sigma) \sqrt{\frac{rm_2}{N}} \right) \\ & \geq \frac{1}{20} \|\Delta\|_F \end{split}$$

where the final inequality as long as $N > c_0 \rho^2(\Sigma) r(m_1 + m_2)$ for a sufficiently large constant c_0 . We have thus shown that $\Delta = 0$, which implies that $\widehat{\Theta} = \Theta^*$ as claimed.

APPENDIX E: CONSISTENCY IN OPERATOR NORM

In this appendix, we derive a bound on the operator norm error for both the low-rank multivariate regression and auto-regressive model estimation problems. In this statement, it is convenient to specify these models in the form $Y = X\Theta^* + W$, where $Y \in \mathbb{R}^{n \times m_2}$ is a matrix of observations.

PROPOSITION E.1 (Operator norm consistency). Consider the multivariate regression problem and the SDP under the conditions of Corollary 3. Then any solution $\widehat{\Theta}$ to the SDP satisfies the bound

(E.1)
$$\|\widehat{\Theta} - \Theta^*\|_{\text{op}} \le c' \frac{\nu \sqrt{\sigma_{\max}(\Sigma)}}{\sigma_{\min}(\Sigma)} \sqrt{\frac{m_1 + m_2}{n}}.$$

We note that a similar bound applies to the auto-regressive model treated in Corollary 4.

PROOF. For any subgradient matrix $Z \in \partial \|\widehat{\Theta}\|_1$, we are guaranteed $\|Z\|_{\text{op}} \leq 1$. Furthermore, by the KKT conditions [3] for the nuclear norm SDP, any solution $\widehat{\Theta}$ must satisfy the condition

$$\frac{1}{n}X^T X \widehat{\Theta} - \frac{X^T Y}{n} + \lambda_n Z = 0.$$

Hence, simple algebra and the triangle inequality yield that

$$\|\widehat{\Theta}\|_{\mathrm{op}} \ \leq \ \|\left(\frac{1}{n}X^TX\right)^{-1}\|_{\mathrm{op}}\Big[\|X^TW/n\|_{\mathrm{op}} + \lambda_n\Big].$$

Lemma 2 yields that $\|(\frac{1}{n}X^TX)^{-1}\|_{\text{op}} \leq \frac{9}{\sigma_{\min}(\Sigma)}$ with high probability. Combining these inequalities yields

$$\|\widehat{\Theta}\|_{\text{op}} \leq c_1 \frac{\lambda_n}{\sigma_{\min}(\Sigma)}.$$

We require that $\lambda_n \geq 2 \|X^T W\|_{\text{op}}/n$. From Lemma 3, it suffices to set $\lambda_n \geq c_0 \sqrt{\sigma_{\text{max}}(\Sigma)} \nu \sqrt{\frac{m_1 + m_2}{n}}$. Combining the pieces yields the claim.

APPENDIX F: PROOF OF LEMMA 3

Let $S^{m-1} = \{u \in \mathbb{R}^m \mid ||u||_2 = 1\}$ denote the Euclidean sphere in m-dimensions. The operator norm of interest has the variational representation

$$\frac{1}{n} \|X^T W\|_{\text{op}} = \frac{1}{n} \sup_{u \in S^{m_1 - 1}} \sup_{v \in S^{m_2 - 1}} v^T X^T W u$$

For positive scalars a and b, define the (random) quantity

$$\Psi(a,b) := \sup_{u \in a \, S^{m_1-1}} \sup_{v \in b \, S^{m_2-1}} \langle Xv, \, Wu \rangle.$$

and note that our goal is to upper bound $\Psi(1,1)$. Note moreover that $\Psi(a,b) = a b \Psi(1,1)$, a relation which will be useful in the analysis.

Let $\mathcal{A} = \{u^1, \dots, u^A\}$ and $\mathcal{B} = \{v^1, \dots, v^B\}$ denote 1/4 coverings of S^{m_1-1} and S^{m_2-1} , respectively. We now claim that we have the upper bound

$$(F.1) \Psi(1,1) \leq 4 \max_{u^a \in \mathcal{A}, v^b \in \mathcal{B}} \langle X v^b, W u^a \rangle$$

To establish this claim, we note that since the sets \mathcal{A} and \mathcal{B} are 1/4-covers, for any pair $(u,v) \in S^{m-1} \times S^{m-1}$, there exists a pair $(u^a,v^b) \in \mathcal{A} \times \mathcal{B}$ such that $u=u^a+\Delta u$ and $v=v^b+\Delta v$, with $\max\{\|\Delta u\|_2,\|\Delta v\|_2\} \leq 1/4$. Consequently, we can write

(F.2)
$$\langle Xv, Wu \rangle = \langle Xv^b, Wu^a \rangle + \langle Xv^b, W\Delta u \rangle + \langle X\Delta v, Wu^a \rangle + \langle X\Delta v, W\Delta u \rangle.$$

By construction, we have the bound $|\langle Xv^b, W\Delta u\rangle| \leq \Psi(1,1/4) = \frac{1}{4}\Psi(1,1)$, and similarly $|\langle X\Delta v, Wu^a\rangle| \leq \frac{1}{4}\Psi(1,1)$ as well as $|\langle X\Delta v, W\Delta u\rangle| \leq \frac{1}{16}\Psi(1,1)$. Substituting these bounds into the decomposition (F.2) and taking suprema over the left and right-hand sides, we conclude that

$$\Psi(1,1) \le \max_{u^a \in \mathcal{A}, v^b \in \mathcal{B}} \langle Xv^b, Wu^a \rangle + \frac{9}{16} \Psi(1,1),$$

from which the bound (F.1) follows.

We now apply the union bound to control the discrete maximum. It is known (e.g., [4, 5]) that there exists a 1/4 covering of S^{m_1-1} and S^{m_2-1} with at most $A \leq 8^{m_1}$ and $B \leq 8^{m_2}$ elements respectively. Consequently, we have

$$(\mathrm{F.3}) \qquad \mathbb{P}\big[|\Psi(1,1)| \geq 4\delta\,n\big] \leq 8^{m_1+m_2} \max_{u^a,v^b} \ \mathbb{P}\left[\frac{|\langle Xv^b,Wu^a\rangle|}{n} \geq \delta\right].$$

It remains to obtain a good bound on the quantity $\frac{1}{n}\langle Xv, Wu\rangle = \frac{1}{n}\sum_{i=1}^{n}\langle v, X_i\rangle\langle u, W_i\rangle$, where $(u,v)\in S^{m_1-1}\times S^{m_2-1}$ are arbitrary but fixed. Since $W_i\in\mathbb{R}^{m_1}$ has i.i.d. $N(0,\nu^2)$ elements and u is fixed, we have $Z_i:=\langle u,W_i\rangle\sim N(0,\nu^2)$ for each $i=1,\ldots,n$. These variables are independent of one another, and of the random matrix X. Therefore, conditioned on X, the sum $Z:=\frac{1}{n}\sum_{i=1}^{n}\langle v,X_i\rangle\langle u,W_i\rangle$ is zero-mean Gaussian with variance

$$\alpha^2 := \frac{\nu^2}{n} \left(\frac{1}{n} \|Xv\|_2^2 \right) \le \frac{\nu^2}{n} \|X^T X / n\|_{\text{op}}.$$

Define the event $\mathcal{T} = \{\alpha^2 \leq \frac{9\nu^2 \|\Sigma\|_{\text{op}}}{n}\}$. Using Lemma 2, we have $\|X^T X/n\|_{\text{op}} \leq 9\sigma_{\text{max}}(\Sigma)$ with probability at least $1 - 2\exp(-n/2)$, which implies that $\mathbb{P}[\mathcal{T}^c] \leq 2\exp(-n/2)$. Therefore, conditioning on the event \mathcal{T} and its complement \mathcal{T}^c , we obtain

$$\begin{split} \mathbb{P}[|Z| \geq t] \leq \mathbb{P}[|Z| \geq t \mid \mathcal{T}] + \mathbb{P}[\mathcal{T}^c] \\ \leq \exp\left(-n\frac{t^2}{2\nu^2 \left(4 + \|\Sigma\|_{\text{op}}\right)}\right) + 2\exp(-n/2). \end{split}$$

Combining this tail bound with the upper bound (F.3), we have

$$\mathbb{P}[|\psi(1,1)| \ge 4\delta \, n] \le 8^{m_1 + m_2} \left\{ \exp\left(-n \frac{t^2}{18\nu^2 |||\Sigma|||_{\text{op}}}\right) + 2\exp(-n/2) \right\}.$$

Setting $t^2 = 20\nu^2 \|\Sigma\|_{\text{op}} \frac{m_1 + m_2}{n}$, this probability vanishes as long as $n > 16(m_1 + m_2)$.

APPENDIX G: TECHNICAL DETAILS FOR COROLLARY 4

In this appendix, we collect the proofs of Lemmas 4 and 5.

G.1. Proof of Lemma 4. Recalling that S^{m-1} denotes the unit-norm Euclidean sphere in m-dimensions, we first observe that $||X||_{\text{op}} = \sup_{u \in S^{m-1}} ||Xu||_2$. Our next step is to reduce the supremum to a maximization over a finite set, using a standard covering argument. Let $\mathcal{A} = \{u^1, \dots, u^A\}$ denote a 1/2-cover of it. By definition, for any $u \in S^{m-1}$, there is some $u^a \in \mathcal{A}$ such that $u = u^a + \Delta u$, where $||\Delta u||_2 \le 1/2$. Consequently, for any $u \in S^{m-1}$, the triangle inequality implies that

$$||Xu||_2 \le ||Xu^a||_2 + ||X\Delta u||_2,$$

and hence that $||X||_{\text{op}} \leq \max_{u^a \in \mathcal{A}} ||Xu^a||_2 + \frac{1}{2} ||X||_{\text{op}}$. Re-arranging yields the useful inequality

(G.1)
$$||X||_{\text{op}} \le 2 \max_{u^a \in A} ||Xu^a||_2.$$

Using inequality (G.1), we have

$$\mathbb{P}\left[\frac{1}{n} \|X^T X\|_{\text{op}} > t\right] \leq \mathbb{P}\left[\max_{u^a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^n (\langle u^a, X_i \rangle)^2 > \frac{t}{2}\right]$$

$$\leq 4^m \max_{u^a \in \mathcal{A}} \mathbb{P}\left[\frac{1}{n} \sum_{i=1}^n (\langle u^a, X_i \rangle)^2 > \frac{t}{2}\right].$$

where the last inequality follows from the union bound, and the fact [4, 5] that there exists a 1/2-covering of S^{m-1} with at most 4^m elements.

In order to complete the proof, we need to obtain a sharp upper bound on the quantity $\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}(\langle u,X_i\rangle)^2>\frac{t}{2}\right]$, valid for any fixed $u\in S^{m-1}$. Define the random vector $Y\in\mathbb{R}^n$ with elements $Y_i=\langle u,X_i\rangle$. Note that Y is zero mean, and its covariance matrix R has elements $R_{ij}=\mathbb{E}[Y_iY_j]=u^T\Sigma(\Theta^*)^{|j-i|}u$. In order to bound the spectral norm of R, we note that since it is symmetric, we have $\|R\|_{\text{op}}\leq \max_{i=1,\dots,m}\sum_{j=1}^m|R_{ij}|$, and moreover

$$|R_{ij}| = |u^T \Sigma(\Theta^*)^{|j-i|} u| \le (\|\Theta^*\|_{\text{op}})^{|j-i|} \Sigma \le \gamma^{|j-i|} \|\Sigma\|_{\text{op}}.$$

Combining the pieces, we obtain

$$(\mathrm{G.3}) \qquad \|R\|_{\mathrm{op}} \leq \max_{i} \sum_{j=1}^{m} |\gamma|^{|i-j|} \|\Sigma\|_{\mathrm{op}} \leq 2 \|\Sigma\|_{\mathrm{op}} \sum_{j=0}^{\infty} |\gamma|^{j} \leq \frac{2 \|\Sigma\|_{\mathrm{op}}}{1-\gamma}.$$

Moreover, we have $\operatorname{trace}(R)/n = u^T \Sigma u \leq |||\Sigma|||_{\operatorname{op}}$. Applying Lemma I.2 with $t = 5\sqrt{\frac{m}{n}}$, we conclude that

$$\mathbb{P}\bigg[\,\frac{1}{n}\,\|Y\|_2^2 \ > \ \|\!\|\Sigma\|\!\|_{\mathrm{op}} + \ 5\sqrt{\frac{m}{n}}\, \|\!\|R\|\!\|_{\mathrm{op}}\bigg] \ \leq \ 2\exp\big(-5m\big) + 2\exp-n/2\big)..$$

Combined with the bound (G.2), we obtain

(G.4)
$$\|\frac{1}{n}X^TX\|_{\text{op}} \le \|\Sigma\|_{\text{op}} \left\{ 2 + \frac{20}{(1-\gamma)} \sqrt{\frac{m}{n}} \right\} \le \frac{24\|\Sigma\|_{\text{op}}}{(1-\gamma)},$$

with probability at least $1 - c_1 \exp(-c_2 m)$, which establishes the upper bound (35)(a).

Turning to the lower bound (35)(b), we let $\mathcal{B} = \{v^1, \dots, v^B\}$ be an ϵ -cover of S^{m-1} for some $\epsilon \in (0,1)$ to be chosen. Thus, for any $v \in \mathbb{R}^m$, there exists some v^b such that $v = v^b + \Delta v$, and $\|\Delta v\|_2 \leq \epsilon$. Define the function $\Psi : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ via $\Psi(u,v) = u^T \left(\frac{1}{n} X^T X\right) v$, and note that $\Psi(u,v) = \Psi(v,u)$. With this notation, we have

$$v^{T} \left(\frac{1}{n} X^{T} X\right) v = \Psi(v, v) = \Psi(v^{k}, v^{k}) + 2\Psi(\Delta v, v) + \Psi(\Delta v, \Delta v)$$
$$\geq \Psi(v^{k}, v^{k}) + 2\Psi(\Delta v, v),$$

since $\Psi(\Delta v, \Delta v) \geq 0$. Since $|\Psi(\Delta v, v)| \leq \epsilon \|(\frac{1}{n}X^TX)\|_{\text{op}}$, we obtain the lower bound

$$\sigma_{\min}\left(\left(\frac{1}{n}X^TX\right)\right) = \inf_{v \in S^{m-1}} v^T \left(\frac{1}{n}X^TX\right) v \ge \min_{v^b \in \mathcal{B}} \Psi(v^b, v^b) - 2\epsilon \|\frac{1}{n}X^TX\|_{\text{op}}.$$

By the previously established upper bound (35)(a), have $\|\frac{1}{n}X^TX\|_{\text{op}} \leq \frac{24\|\Sigma\|_{\text{op}}}{(1-\gamma)}$ with high probability. Hence, choosing $\epsilon = \frac{(1-\gamma)\sigma_{\min}(\Sigma)}{200\|\Sigma\|_{\text{op}}}$ ensures that $2\epsilon \|\frac{1}{n}X^TX\|_{\text{op}} \leq \sigma_{\min}(\Sigma)/4$. Consequently, it suffices to lower bound the minimum over the covering

Consequently, it suffices to lower bound the minimum over the covering set. We first establish a concentration result for the function $\Psi(v,v)$ that holds for any fixed $v \in S^{m-1}$. Note that we can write

$$\Psi(v,v) = \frac{1}{n} \sum_{i=1}^{n} (\langle v, X_i \rangle)^2,$$

As before, if we define the random vector $Y \in \mathbb{R}^n$ with elements $Y_i = \langle v, X_i \rangle$, then $Y \sim N(0, R)$ with $||R|||_{\text{op}} \leq \frac{2||\Sigma||_{\text{op}}}{1-\gamma}$. Moreover, we have $\text{trace}(R)/n = v^T \Sigma v \geq \sigma_{\min}(\Sigma)$. Consequently, applying Lemma I.2 yields

$$\mathbb{P}\left[\frac{1}{n}\|Y\|_{2}^{2} < \sigma_{\min}(\Sigma) - \frac{8t\|\Sigma\|_{\text{op}}}{1-\gamma}\right] \leq 2\exp\left(-n(t-2/\sqrt{n})^{2}/2\right) + 2\exp(-\frac{n}{2}),$$

Note that this bound holds for any fixed $v \in S^{m-1}$. Setting $t^* = \frac{(1-\gamma) \sigma_{\min}(\Sigma)}{16 \|\Sigma\|_{\text{op}}}$ and applying the union bound yields that

$$\mathbb{P}\big[\min_{v^b \in \mathcal{B}} \Psi(v^b, v^b) < \sigma_{\min}(\Sigma)/2\big] \leq \left(\frac{4}{\epsilon}\right)^m \left\{2\exp\big(-n(t^* - 2/\sqrt{n})^2/2\big) + 2\exp(-\frac{n}{2})\right\},$$

which vanishes as long as $n > \frac{4 \log(4/\epsilon)}{(t^*)^2} m$.

G.2. Proof of Lemma 5. Let $S^{m-1} = \{u \in \mathbb{R}^m \mid ||u||_2 = 1\}$ denote the Euclidean sphere in m-dimensions, and for positive scalars a and b, define the random variable

$$\Psi(a,b):=\sup_{u\in a}\sup_{S^{m-1}}\sup_{v\in b\,S^{m-1}}\langle Xv,\,Wu\rangle.$$

Note that our goal is to upper bound $\Psi(1,1)$. Let $\mathcal{A}=\{u^1,\ldots,u^A\}$ and $\mathcal{B}=\{v^1,\ldots,v^B\}$ denote 1/4 coverings of S^{m-1} and S^{m-1} , respectively. Following the same argument as in the proof of Lemma 3, we obtain the upper bound

(G.5)
$$\Psi(1,1) \leq 4 \max_{u^a \in \mathcal{A}, v^b \in \mathcal{B}} \langle X v^b, W u^a \rangle$$

We now apply the union bound to control the discrete maximum. It is known (e.g., [4, 5]) that there exists a 1/4 covering of S^{m-1} with at most 8^m elements. Consequently, we have

$$(\mathrm{G.6}) \qquad \mathbb{P}\big[|\psi(1,1)| \geq 4\delta\,n\big] \leq 8^{2m} \max_{u^a,v^b} \ \mathbb{P}\big[\frac{|\langle Xv^b,\,Wu^a\rangle|}{n} \geq \delta\big].$$

It remains to obtain a tail bound on the quantity $\mathbb{P}\left[\frac{|\langle Xv, Wu\rangle|}{n} \geq \delta\right]$, for any fixed pair $(u, v) \in \mathcal{A} \times \mathcal{B}$.

For each i = 1, ..., n, let X_i and W_i denote the i^{th} row of X and W. Following some simple algebra, we have the decomposition $\frac{\langle Xv, Wu \rangle}{n} = T_1 - T_2 - T_3$, where

$$T_{1} = \frac{1}{2n} \sum_{i=1}^{n} (\langle u, W_{i} \rangle + \langle v, X_{i} \rangle)^{2} - \frac{1}{2} (u^{T}Cu + v^{T}\Sigma v)$$

$$T_{2} = \frac{1}{2n} \sum_{i=1}^{n} (\langle u, W_{i} \rangle)^{2} - \frac{1}{2} u^{T}Cu$$

$$T_{3} = \frac{1}{2n} \sum_{i=1}^{n} (\langle v, X_{i} \rangle)^{2} - \frac{1}{2} v^{T}\Sigma v$$

We may now bound each T_j for j=1,2,3 in turn; in doing so, we make repeated use of Lemma I.2, which provides concentration bounds for a random variable of the form $||Y||_2^2$, where $Y \sim N(0,Q)$ for some matrix $Q \succeq 0$.

Bound on T_3 :. We can write the term T_3 as a deviation of $\|Y\|_2^2/n$ from its mean, where in this case the covariance matrix Q is no longer the identity. In concrete terms, let us define a random vector $Y \in \mathbb{R}^n$ with elements $Y_i := \langle v, X_i \rangle$. As seen in the proof of Lemma 4 from Appendix G.1, the vector Y is zero-mean Gaussian with covariance matrix R such that $\|R\|_{\text{op}} \leq \frac{2\|\Sigma\|_{\text{op}}}{1-\gamma}$ (see equation (G.3)). Since we have $\text{trace}(R)/n = v^T R v$, applying Lemma I.2 yields that

(G.7)
$$\mathbb{P}[|T_3| \ge \frac{8||\Sigma||_{\text{op}}}{1-\gamma}t] \le 2\exp\left(-\frac{n(t-2/\sqrt{n})^2}{2}\right) + 2\exp(-n/2).$$

Bound on T_2 :. We control the term T_2 in a similar way. Define the random vector $Y' \in \mathbb{R}^n$ with elements $Y'_i := \langle u, W_i \rangle$. Then Y is a sample from the distribution $N(0, (u^T C u) I_{n \times n})$, so that $\frac{2}{u^T C u} T_2$ is the difference between a rescaled χ^2 variable and its mean. Applying Lemma I.2 with $Q = (u^T C u) I$, we obtain

(G.8)
$$\mathbb{P}[|T_2| > 4(u^T C u) t] \le 2 \exp\left(-\frac{n(t - 2/\sqrt{n})^2}{2}\right) + 2 \exp(-n/2).$$

Bound on T_1 :. To control this quantity, let us define a zero-mean Gaussian random vector $Z \in \mathbb{R}^n$ with elements $Z_i = \langle v, X_i \rangle + \langle u, W_i \rangle$. This random vector has covariance matrix S with elements

$$S_{ij} = \mathbb{E}[Z_i Z_j] = (u^T C u) \delta_{ij} + (1 - \delta_{ij}) (u^T C u) v^T (\Theta^*)^{|i-j|-1} u + v^T (\Theta^*)^{|i-j|} \Sigma v,$$

where δ_{ij} is the Kronecker delta for the event $\{i=j\}$. As before, by symmetry of S, we have $||S||_{\text{op}} \leq \max_{i=1,\dots,n} \sum_{j=1}^{n} |S_{ij}|$, and hence

$$||S||_{\text{op}} \le (u^T C u) + ||\Sigma||_{\text{op}} + \sum_{j=1}^{i-1} |(u^T C u) v^T (\Theta^*)^{|i-j|-1} u + v^T (\Theta^*)^{|i-j|} \Sigma v|$$

$$+ \sum_{j=i+1}^{n} |(u^T C u) v^T (\Theta^*)^{|i-j|-1} u + v^T (\Theta^*)^{|i-j|} \Sigma v|.$$

Since $\|\Theta^*\|_{\text{op}} \leq \gamma < 1$, and $(u^T C u) \leq \|C\|_{\text{op}} \leq \|\Sigma\|_{\text{op}}$, we have

$$\begin{split} \|S\|_{\text{op}} & \leq \|C\|_{\text{op}} + \|\Sigma\|_{\text{op}} + 2\sum_{j=1}^{\infty} \|C\|_{\text{op}} \gamma^{j-1} + 2\sum_{j=1}^{\infty} \|\Sigma\|_{\text{op}} \gamma^{j} \\ & \leq 4 \|\Sigma\|_{\text{op}} \left(1 + \frac{1}{1 - \gamma}\right) \end{split}$$

Moreover, we have $\frac{\operatorname{trace}(S)}{n} = (u^T C u) + v^T \Sigma v \leq 2 ||\!| \Sigma ||\!|_{\operatorname{op}}$, so that by applying Lemma I.2, we conclude that

(G.9)
$$\mathbb{P}\left[|T_1| > \left(\frac{24||\Sigma||_{\text{op}}}{1-\gamma}\right)t\right] \le 2\exp\left(-\frac{n(t-2/\sqrt{n})^2}{2}\right) + 2\exp(-n/2),$$

which completes the analysis of this term.

Combining the bounds (G.7), (G.8) and (G.9), we conclude that for all t > 0,

$$(G.10)$$

$$\mathbb{P}\left[\frac{|\langle Xv, Wu\rangle|}{n} \ge \frac{40(||\Sigma||_{\text{op}}t)}{1-\gamma}\right] \le 6\exp\left(-\frac{n(t-2/\sqrt{n})^2}{2}\right) + 6\exp(-n/2).$$

Setting $t = 10\sqrt{m/n}$ and combining with the bound (G.6), we conclude that

$$\mathbb{P}\big[|\psi(1,1)| \geq \frac{1600 \|\Sigma\|_{\text{op}}}{1-\gamma} \sqrt{\frac{m}{n}}\big] \leq 8^{2m} \left\{ 6 \exp(-16m) + 6 \exp(-n/2) \right\} \leq 12 \exp(-m)$$

as long as $n > ((4 \log 8) + 1)m$.

APPENDIX H: PROOF OF PROPOSITION 1

We begin by stating and proving a useful lemma. Recall the definition (22) of $\rho(\Sigma)$.

LEMMA H.1. Let $X \in \mathbb{R}^{m_1 \times m_2}$ be a random sample from the Σ -ensemble. Then we have

(H.1)
$$\mathbb{E}[||X||_{\text{op}}] \le 12 \,\rho(\Sigma) \left[\sqrt{m_1} + \sqrt{m_2}\right]$$

and moreover

(H.2)
$$\mathbb{P}[\|X\|_{\text{op}} \ge \mathbb{E}[\|X\|_{\text{op}}] + t] \le \exp\left(-\frac{t^2}{2\rho^2(\Sigma)}\right).$$

PROOF. We begin by making note of the variational representation

$$|||X|||_{\text{op}} = \sup_{(u,v) \in S^{m_1-1} \times S^{m_2-1}} u^T X v.$$

Since each variable $u^T X v$ is zero-mean Gaussian, we thus recognize $||X||_{\text{op}}$ as the supremum of a Gaussian process. The bound (H.2) thus follows from Theorem 7.1 in Ledoux [6].

We now use a simple covering argument establish the upper bound (H.1). Let $\{v^1, \ldots, v^{M_2}\}$ be a 1/4 covering of the sphere S^{m_2-1} . For an arbitrary $v \in S^{m_2-1}$, there exists some v^j in the cover such that $||v-v^j||_2 \le 1/4$, whence

$$||Xv||_2 \le ||Xv^j||_2 + ||X(v - v_i)||_2.$$

Taking suprema over both sides, we obtain that $||X||_{\text{op}} \leq \max_{j=1,\dots,M_2} ||Xv^j||_2 + \frac{1}{4}||X||_{\text{op}}$. A similar argument using a 1/4-covering $\{u^1,\dots,u^{M_1}\}$ of S^{m_1-1} yields that

$$||Xv^{j}||_{2} \leq \max_{i=1,\dots,M_{1}} \langle u^{i}, Xv^{j} \rangle + \frac{1}{4} ||X||_{\text{op}}.$$

Combining the pieces, we conclude that

$$||X||_{\text{op}} \le 2 \max_{\substack{i=1,\ldots,M_1\\j=1,\ldots,M_2}} \langle u^i, Xv^j \rangle.$$

By construction, each variable $\langle u^i, Xv^j \rangle$ is zero-mean Gaussian with variance at most $\rho(\Sigma)$, so that by standard bounds on Gaussian maxima, we obtain

$$\mathbb{E}[\|X\|_{\text{op}}] \le 4\rho(\Sigma)\sqrt{\log(M_1 M_2)} \le 4\rho(\Sigma)\left[\sqrt{\log M_1} + \sqrt{\log M_2}\right].$$

There exist 1/4-coverings of S^{m_1-1} and S^{m_2-1} with $\log M_1 \leq m_1 \log 8$ and $\log M_2 \leq m_2 \log 8$, from which the bound (H.1) follows.

We now return to the proof of Proposition 1. To simplify the proof, let us define an operator $T_{\Sigma}: \mathbb{R}^{m_1 \times m_2} \to \mathbb{R}^{m_1 \times m_2}$ such that $\text{vec}(T_{\Sigma}(\Theta)) = \sqrt{\Sigma} \text{vec}(\Theta)$. Let $\mathfrak{X}': \mathbb{R}^{m_1 \times m_2} \to \mathbb{R}^N$ be a random Gaussian operator formed with X_i' sampled with i.i.d. N(0,1) entries. By construction, we then have $\mathfrak{X}(\Theta) = \mathfrak{X}'(T_{\Sigma}(\Theta))$ for all $\Theta \in \mathbb{R}^{m_1 \times m_2}$. Now by the variational characterization of the ℓ_2 -norm, we have

$$\|\mathfrak{X}'(T_{\Sigma}(\Theta))\|_{2} = \sup_{u \in S^{N-1}} \langle u, \mathfrak{X}'(T_{\Sigma}(\Theta)) \rangle.$$

Since the original claim (25) is invariant to rescaling, it suffices to prove it for matrices such that $||T_{\Sigma}(\Theta)||_F = 1$. Letting $t \geq 1$ be a given radius, we seek lower bounds on the quantity

$$Z^*(t) := \inf_{\Theta \in \mathcal{R}(t)} \sup_{u \in S^{N-1}} \langle u, \, \mathfrak{X}'(T_{\Sigma}(\Theta)) \rangle,$$
where $\mathcal{R}(t) = \{ \Theta \in \mathbb{R}^{m_1 \times m_2} \mid \|T_{\Sigma}(\Theta)\|_F = 1, \|\Theta\|_1 \le t \}.$

In particular, our goal is to prove that for any $t \geq 1$, the lower bound

(H.3)
$$\frac{Z^*(t)}{\sqrt{N}} \ge \frac{1}{4} - 12 \,\rho(\Sigma) \left[\frac{m_1 + m_2}{N}\right]^{1/2} t$$

holds with probability at least $1 - c_1 \exp(-c_2 N)$. By a standard peeling argument (see Raskutti et al. [7] for details), this lower bound implies the claim (25).

We establish the lower bound (H.3) using Gaussian comparison inequalities [4] and concentration of measure (see Lemma I.1). For each pair $(u, \Theta) \in$ $S^{N-1} \times \mathcal{R}(t)$, consider the random variable $Z_{u,\Theta} = \langle u, \mathfrak{X}'(T_{\Sigma}(\Theta)) \rangle$, and note that it is Gaussian with zero mean. For any two pairs (u, Θ) and (u', Θ') , some calculation yields

$$(\mathrm{H}.4) \qquad \mathbb{E}[(Z_{u,\Theta} - Z_{u',\Theta'})^2] = \|u \otimes T_{\Sigma}(\Theta) - u' \otimes T_{\Sigma}(\Theta')\|_F^2.$$

We now define a second Gaussian process $\{Y_{u,\Theta} \mid (u,\Theta) \in S^{N-1} \times \mathcal{R}(t)\}$ via

$$Y_{u,\Theta} := \langle g, u \rangle + \langle \langle G, T_{\Sigma}(\Theta) \rangle \rangle,$$

where $g \in \mathbb{R}^N$ and $G \in \mathbb{R}^{m_1 \times m_2}$ are independent with i.i.d. N(0,1) entries. By construction, $Y_{u,\Theta}$ is zero-mean, and moreover, for any two pairs (u,Θ) and (u',Θ') , we have

$$\mathbb{E}[(Y_{u,\Theta} - Y_{u',\Theta'})^2] = \|u - u'\|_2^2 + \|T_{\Sigma}(\Theta) - T_{\Sigma}(\Theta')\|_F^2.$$

For all pairs $(u, \Theta), (u', \Theta') \in S^{N-1} \times \mathcal{R}(t)$, we have $||u||_2 = ||u'||_2 = 1$, and moreover $||T_{\Sigma}(\Theta)||_F = ||T_{\Sigma}(\Theta')||_F = 1$. Using this fact, some algebra yields that

$$(H.6) ||u \otimes T_{\Sigma}(\Theta) - u' \otimes T_{\Sigma}(\Theta')||_{F}^{2} \le ||u - u'||_{2}^{2} + ||T_{\Sigma}(\Theta) - T_{\Sigma}(\Theta')||_{F}^{2}.$$

Moreover, equality holds whenever $\Theta = \Theta'$. The conditions of the Gordon-Slepian inequality [4] are satisfied, so that we are guaranteed that

(H.7)

$$\mathbb{E}[\inf_{\Theta \in \mathcal{R}(t)} \| \mathcal{X}'(T_{\Sigma}(\Theta)) \|_{2}] = \mathbb{E}\left[\inf_{\Theta \in \mathcal{R}(t)} \sup_{u \in S^{N-1}} Z_{u,\Theta}\right] \geq \mathbb{E}\left[\inf_{\Theta \in \mathcal{R}(t)} \sup_{u \in S^{N-1}} Y_{u,\Theta}\right]$$

We compute

$$\begin{split} \mathbb{E}\Big[\inf_{\Theta\in\mathcal{R}(t)}\sup_{u\in S^{N-1}}Y_{u,\Theta}\Big] &= \mathbb{E}\Big[\sup_{u\in S^{N-1}}\langle g,\,u\rangle\Big] + \mathbb{E}\Big[\inf_{\Theta\in\mathcal{R}(t)}\langle\!\langle G,\,T_{\Sigma}(\Theta)\rangle\!\rangle\Big] \\ &= \mathbb{E}[\|g\|_2] - \mathbb{E}[\sup_{\Theta\in\mathcal{R}(t)}\langle\!\langle G,\,T_{\Sigma}(\Theta)\rangle\!\rangle] \\ &\geq \frac{1}{2}\sqrt{N} - t\,\mathbb{E}[\|T_{\Sigma}(G)\|_{\mathrm{op}}], \end{split}$$

where we have used the fact that T_{Σ} is self-adjoint, and Hölder's inequality (involving the operator and nuclear norms). Since $T_{\Sigma}(G)$ is a random matrix from the Σ -ensemble, Lemma H.1 yields the upper bound $\mathbb{E}[||T_{\Sigma}(G)||_{\text{op}}] \leq 12\rho(\Sigma) (\sqrt{m_1} + \sqrt{m_2})$. Putting together the pieces, we conclude that

$$\mathbb{E}\Big[\inf_{\Theta \in \mathcal{R}(t)} \frac{\|\mathfrak{X}'(T_{\Sigma}(\Theta))\|_2}{\sqrt{N}}\Big] \ge \frac{1}{2} - 12\,\rho(\Sigma)\,\left(\frac{\sqrt{m_1} + \sqrt{m_2}}{\sqrt{N}}\right)t.$$

Finally, we need to establish sharp concentration around the mean. Since $||T_{\Sigma}(\Theta)||_F = 1$ for all $\Theta \in \mathcal{R}(t)$, the function $f(\mathfrak{X}) := \inf_{\Theta \in \mathcal{R}(t)} ||\mathfrak{X}'(T_{\Sigma}(\Theta))||_2 / \sqrt{N}$ is Lipschitz with constant $1/\sqrt{N}$, so that Lemma I.1 implies that

$$\mathbb{P}\left[\inf_{\Theta \in \mathcal{R}(t)} \frac{\|\mathfrak{X}(\Theta)\|_2}{\sqrt{N}} \le \frac{1}{2} - 12\,\rho(\Sigma)\,\left(\frac{\sqrt{m_1} + \sqrt{m_2}}{\sqrt{N}}\right)\,t - \delta\right] \le 2\exp(-N\delta^2/2)$$

for all $\delta > 0$. Setting $\delta = 1/4$ yields the claim.

APPENDIX I: SOME USEFUL CONCENTRATION RESULTS

The following lemma is classical [4, 8], and yields sharp concentration of a Lipschitz function of Gaussian random variables around its mean.

LEMMA I.1. Let $X \in \mathbb{R}^n$ have i.i.d. N(0,1) entries, and let and $f : \mathbb{R}^n \to \mathbb{R}$ be Lipschitz with constant L (i.e., $|f(x) - f(y)| \le L||x - y||_2 \ \forall x, y \in \mathbb{R}^n$). Then for all t > 0, we have

$$\mathbb{P}[|f(X) - Ef(X)| > t] \le 2 \exp\big(-\frac{t^2}{2L^2}\big).$$

By exploiting this lemma, we can prove the following result, which yields concentration of the squared ℓ_2 -norm of an arbitrary Gaussian vector:

LEMMA I.2. Given a Gaussian random vector $Y \sim N(0,Q)$, for all $t > 2/\sqrt{n}$, we have (I.1)

$$\mathbb{P}\left[\frac{1}{n}|\|Y\|_{2}^{2} - \operatorname{trace} Q| > 4t \|Q\|_{\operatorname{op}}\right] \leq 2\exp\left(-\frac{n(t - \frac{2}{\sqrt{n}})^{2}}{2}\right) + 2\exp\left(-n/2\right).$$

PROOF. Let \sqrt{Q} be the symmetric matrix square root, and consider the function $f(x) = \|\sqrt{Q}x\|_2/\sqrt{n}$. Since it is Lipschitz with constant $\|\sqrt{Q}\|_{\text{op}}/\sqrt{n}$, Lemma I.1 implies that (I.2)

$$\mathbb{P}[\|\sqrt{Q}X\|_2 - E\|\sqrt{Q}X\|_2 | > \sqrt{n}\delta] \le 2\exp\left(-\frac{n\delta^2}{2\|Q\|_{\text{op}}}\right) \quad \text{for all } \delta > 0.$$

By integrating this tail bound, we find that the variable $Z = \|\sqrt{Q}X\|_2/\sqrt{n}$ satisfies the bound $\operatorname{var}(Z) \leq 4\|Q\|_{\operatorname{op}}/n$, and hence conclude that

$$\left|\sqrt{\mathbb{E}[Z^2]} - |\mathbb{E}[Z]|\right| = \left|\sqrt{\operatorname{trace}(Q)/n} - \mathbb{E}[\|\sqrt{Q}X\|_2/\sqrt{n}]\right| \le \frac{2\sqrt{\|Q\|_{\operatorname{op}}}}{\sqrt{n}}.$$

Combining this bound with the tail bound (I.2), we conclude that (I.4)

$$\mathbb{P}\Big[\frac{1}{\sqrt{n}}\big|\|\sqrt{Q}X\|_2 - \sqrt{\operatorname{trace}(Q)} \;\big| > \delta + 2\sqrt{\frac{\|Q\|_{\operatorname{op}}}{n}}\Big] \leq 2\exp\left(-\frac{n\delta^2}{2\|Q\|_{\operatorname{op}}}\right) \qquad \text{for all } \delta > 0.$$

Setting $\delta = (t - 2/\sqrt{n}) \sqrt{\|Q\|_{\text{op}}}$ in the bound (I.4) yields that

(I.5)
$$\mathbb{P}\Big[\frac{1}{\sqrt{n}}\big|\|\sqrt{Q}X\|_2 - \sqrt{\text{trace}(Q)}\big| > t\sqrt{\|Q\|_{\text{op}}}\Big] \le 2\exp\left(-\frac{n(t-2/\sqrt{n})^2}{2}\right).$$

Similarly, setting $\delta = \sqrt{\|Q\|_{\text{op}}}$ in the tail bound (I.4) yields that with probability greater than $1 - 2\exp(-n/2)$, we have

$$(\mathrm{I.6}) \qquad \left|\frac{\|Y\|_2}{\sqrt{n}} + \sqrt{\frac{\mathrm{trace}(Q)}{n}}\right| \leq \sqrt{\frac{\mathrm{trace}(Q)}{n}} + 3\sqrt{|\hspace{-0.01cm}|\hspace{-0.01cm}|}Q|\hspace{-0.01cm}|\hspace{-0.01cm}|_{\mathrm{op}} \leq 4\sqrt{|\hspace{-0.01cm}|\hspace{-0.01cm}|}Q|\hspace{-0.01cm}|\hspace{-0.01cm}|_{\mathrm{op}}.$$

Using these two bounds, we obtain

$$\left|\frac{\|Y\|_2^2}{n} - \frac{\operatorname{trace}(Q)}{n}\right| = \left|\frac{\|Y\|_2}{\sqrt{n}} - \sqrt{\frac{\operatorname{trace}(Q)}{n}}\right| \left|\frac{\|Y\|_2}{\sqrt{n}} + \sqrt{\frac{\operatorname{trace}(Q)}{n}}\right| \leq 4t \, \|Q\|_{\operatorname{op}}$$

with the claimed probability.

REFERENCES

- S. Negahban and M. J. Wainwright. Estimation of (near) low-rank matrices with noise and high-dimensional scaling. Technical Report http://arxiv.org/abs/0912.5100, UC Berkeley, Department of Statistics, December 2009.
- [2] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. *SIAM Review*, 2007. to appear.
- [3] S. Boyd and L. Vandenberghe. *Convex optimization*. Cambridge University Press, Cambridge, UK, 2004.
- [4] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes. Springer-Verlag, New York, NY, 1991.

- [5] J. Matousek. Lectures on discrete geometry. Springer-Verlag, New York, 2002.
- [6] M. Ledoux. *The Concentration of Measure Phenomenon*. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.
- [7] G. Raskutti, M. J. Wainwright, and B. Yu. Minimax rates of estimation for high-dimensional linear regression over ℓ_q -balls. Technical Report arXiv:0910.2042, UC Berkeley, Department of Statistics, 2009. Presented in part at Allerton Conference, Sep. 2009.
- [8] P. Massart. Concentration Inequalties and Model Selection. Ecole d'Eté de Probabilités, Saint-Flour. Springer, New York, 2003.

DEPARTMENT OF ELECTRICAL ENGINEERING UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY, CA 94720 USA

 $E\text{-}{\tt MAIL: sahand_n@eecs.berkeley.edu}$

DEPARTMENT OF STATISTICS UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY, CALIFORNIA 94720 USA

E-MAIL: wainwrig@eecs.berkeley.edu