Elementi di sicurezza e crittografia

lab61

1 Ottobre 2016

La comunicazione

Definizione

Definiamo un modello di comunicazione:

Sorgente (S) - Canale (C) - Destinazione (D).

Il messaggio per arrivare da S a D transita per C.

	Canale	
Sorgente	→ messaggio —	Destinazione
Alice		Bob

La necessità della sicurezza

Quando comunichiamo spesso necessitiamo di certe proprietà di sicurezza.

Le proprità fondamentali

- Confidenzialità
- Autenticità
- Disponibilità
- Integrità

Le proprietà fondamentali (1)

Confidenzialità

Definizione

È la proprietà che assicura che il messaggio non venga compreso da un utente esterno mentre transita nel canale.

Autenticità

Definizione

È la proprietà che assicura che il messaggio sia stato spedito realmente da chi ci aspettiamo che l'abbia spedito.

Le proprietà fondamentali (2)

Disponibilità

Definizione

È la proprietà che assicura che una volta arrivato, il messaggio sia subito disponibile.

Integrità

Definizione

È la proprità che ci assicura che il messaggio non sia cambiato dal momento dell'invio a quello della ricezione, ovvero durante il transito nel canale.

Soluzioni? (1)

Soluzione banale

Non comunico.

Spesso è la maniera migliore di risolvere il problema, rimuovendo il messaggio rimuovo anche il pericolo che altri lo conoscano.

Soluzione meno banale

Nascondo il messaggio.

È una soluzione praticabile e praticata, chiamata steganografia. I messaggi possono ad esempio essere nascosti in immagini o occultati nei modi più diversi.

Soluzioni? (2)

Soluzione naïve

Blindare il canale.

È una soluzione chiaramente inattuabile data la natura di internet. Internet è infatti una rete distribuita e i messaggi passano da molti intermediari prima di arrivare a destinazione.

L'idea della crittografia

Perciò nasce l'idea della crittografia, ovvero un meccanismo che permette di trasformare il messaggio M1 in un altro altro M2, incomprensibile per chiunque, e che solo il possessore della chiave potrà ritrasformare in quello originale M1.

Formalmente

Definizione

Un crittosistema Ξ è una quintupla $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ dove:

- ullet ${\cal P}$ è l'insieme dei messaggi in chiaro,
- ullet $\mathcal C$ è l'insieme dei messaggi cifrati,
- K è l'insieme delle chiavi,
- $\mathcal{E} = \{E_k | k \in \mathcal{K}\}$ è la famiglia di funzioni di cifratura iniettive tale che $E_k : \mathcal{P} \to \mathcal{C}$ per ogni $k \in \mathcal{K}$,
- $\mathcal{D} = \{D_k | k \in \mathcal{K}\}$ è la famiglia di funzioni di decifratura biiettive tale che $D_k : \mathcal{C} \to \mathcal{P}$ per ogni $k \in \mathcal{K}$,

tale che per ogni $e \in \mathcal{K}$ esiste unica $d \in \mathcal{K}$ tale $D_d(E_e(m)) = m$, per ogni $m \in \mathcal{P}$.

Le tecniche

Esistono fondamentalmente due diversi meccanismi di cifratura: a chiave pubblica e a chiave privata che a loro volta si basano su diversi tipi di algoritmi.

Crittografia simmetrica	Crittografia asimmetrica
DES	Diffie-Hellman
3DES	Curve ellittiche
AES	RSA

Gli algoritmi che permettono l'effettivo funzionamento della crittografia si basano in particolare sulla teoria dei numeri, sull'algebra (tipicamente dei campi finiti), sulla teoria della probabilità e sulla teoria della complessità computazionale.

Crittografia simmetrica

Definizione

La crittografia simmetrica è un meccanismo che utilizza la stessa chiave per cifrare e decifrare il messaggio.

Formalmente $D_k(E_k(m)) = m$ per ogni $m \in \mathcal{P}$ e per ogni $k \in \mathcal{K}$.