15. MÉRÉS **Kvantumradír**

Szerzők: Tóth Tímea Márton Tamás Krasznai Zsófia

Fizika Bsc. 2. évfolyam Hétfő délelőtti csoport

Mérés dátuma: 2018. 05. 14. Leadás dátuma: 2018. 05. 28.

1. A mérés célja

A Mach-Zehnder-interferométer összeállítása, az interferenciakép vizsgálata, és a kvantumradír alkalmazása.

2. Mérőeszközök

- HeNe lézer (632,8nm)
- optikai padok
- ernyők
- félig áteresztő és egyszerű tükrök
- rés
- polárszűrők
- fényképezőgép

3. A mérés leírása

Kétrés kísérletet végezhetünk fénnyel, elektronokkal, vagy akár nagyméretű molekulákkal is. Ha elő tudunk állítani egy olyan fényforrást, amely egyszerre csak egy fotont bocsát ki, és ezt a fotont két db résre irányítjuk, a rések mögé elhelyezett ernyőn interferencia kép jelenik meg. Ez abból adódik, hogy nem tudjuk, hogy a foton valójában melyik résen ment át, melyik úton haladt, ezért kicsit olyan, mintha mindkettőn áthaladt volna, azaz mindkét állapotban jelen lenne. Ekkor a foton önmagával interferál. Ha információt szerzünk valahogy – például a polarizáltság megállapításával – arról, hogy melyik állapotban volt, az interferencia megszűnik. Úgy is mondhatnánk, hogy az interferencia jelensége és a foton állapotáról szerzett információ egymással összeférhetetlen.

A kvantumradír

Az interferométerből kilépő részecskék hullámfüggvénye:

$$|\Psi\rangle = \frac{1}{\sqrt{2}}[|\Psi_1\rangle + |\Psi_2\rangle] \tag{1}$$

ahol Ψ_1 és Ψ_2 a két úton való áthaladás amplitúdóját jelöli. Annak a valószínűsége, hogy a részecskét az ernyő egy r pontjában találjuk:

$$|\langle r|\Psi\rangle|^2\tag{2}$$

Ezt a kifejezést kifejtve, a keresztszorzat felelős az interferenciáért. Az útvonal meghatározására bevezethetünk útvonaljelölőt. Ahhoz, hogy az útvonaljelölő 100% pontosan megmondja, hogy melyik úton haladt a részecske, a jelölő sajátállapotainak ortogonálisnak kell lenniük. Ha ezt a mérést végrehajtjuk, akkor Ψ egyszerűen beugrik az egyik vagy másik állapotba, és az interferenciakép megszűnik (az ortogonalitás miatt a keresztszorzat nulla lesz). Fontos viszont, hogy az interferencia már akkor megszűnik, ha az elvi lehetőség megvan az információszerzésre. Ha a rendszerbe behelyezünk egy olyan eszközt, mely összekeveri az útvonaljelző állapotait, és már nem lesz megállapítható az útvonal, akkor az interferencia helyreáll. Innen ered az elnevezés, mert "kiradíroztuk" az információt.

A Mach-Zhender-interferométer

A berendezés a lézernyalábot egy félig áteresztő tükör segítségével kettéosztja, majd tükrök segítségével egy másik féligáteresztő tükrön egyesíti. A kialakuló interferenciakép ernyőn figyelhető meg. Az egyik útba elhelyezhetjük a mintánkat és az interferenciagyűrűk változásaival nagyon pontosan követhetjük az optikai úthossz megváltozását.

Az interferenciagyűrűk eredete

A mérőberendezésben a tükrök nem pontosan párhuzamosak, hanem van valamennyi szögeltérés köztük. Emiatt a két fénynyalábot nem pontosan egy pontba képezi le, hanem két egymáshoz közeli pontba, amik pontszerű fényforrásként viselkednek, és interferenciát hoznak létre. Ha pontosan párhuzamosak lennének a tükrök, akkor egyetlen leképezett pontot látnánk, és megszűnne az interferencia is.

Mi a kísérletet optikai úton végeztük el, hiszen ez lehet analóg az eredeti kísérlettel, mert a hullámfüggvény úgy, mint a kvantummechanikában, az optikában is érvényes lesz. A mérés első lépéseként megállapítottuk, hogy a féligáteresztő tükröknek melyik a foncsorozott fele, majd nagyjából összeállítottuk a mérőberendezést. Az optikai kísérletben keresztezett polárszűrőket alkalmaztunk, ami a becsapódó részecskék polarizációja által megmondja, hogy melyik úton haladt a részecske. Esetünkben a kvantumradír egy az ernyő elé helyezett polárszűrő, melynek iránya épp a két polárszűrő irányának felezőjébe mutat. A mérést ebből a 45°-os helyzetből indulva mindkét irányba 2-2 pontban végeztük, egészen a határesetekig. A kiértékeléshez digitális fényképekkel rögzítettük az interferencia-"csíkokat".

4. Kiértékelés

A mérés során először összeállítottuk a Mach-Zehnder interferométert. Ezután az egyik polárszűrővel megállapítottuk a lézerfény polarizációját. A polárszűrőt folyamatosan állítva megkerestük azt a pontot, ahol nem láttuk az ernyőn a lézerfényt. Ez 80°-nál történt meg, tehát a lézer fényének polarizációja erre éppen merőleges.

A fénynyalábok szöge

A mérés során először meghatároztuk a Mach-Zehnder interferométer két fénynyalábjának egymással bezárt szögét. Az interferenciacsíkok távolsága $6,3\pm0,3$ mm értékűnek adódott. Lemértük az ernyő és a lencse közötti távolságot is, ez 35 cm-nek adódott. Az interferenciacsíkok távolságának és a lencse fókusztávolságának (f=2,7 mm) ismeretében a két nyaláb által bezért szög $\approx 1,9$ °értékűnek adódott.

Láthatósági paraméter függése a polárszűrők szögétől

A mérés során készített képeket először szürkeárnyalatossá tettük, elforgattuk úgy, hogy az interferenciacsíkok függőlegesek legyenk, majd az octave program segítségével egyetlen sor intenzitás értékeit vizsgáltuk. Az interferenciaképek jellemzésére a láthatósági paramétert használtuk:

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \tag{3}$$

Először csak a két szűrő esetén vizsgáltuk az intenzitásokat. Ezeket az adatokat az 1. táblázat tartalmazza. A számolt láthatósági paramétereket ábrázoltuk a polárszűrők egymással bezárt szögének φ függvényében, és erre a

$$V(\varphi) = \cos(a \cdot \varphi) \tag{4}$$

1. ábra. A láthatósági paraméter 2 szűrő esetén

függvényt illesztettük, ahol a értéke irodalmilag közel 2.

Az illesztési paraméter: $a=2,02\pm0,01.$

Ezután a harmadik polárszűrő szögének α függvényében vizsgáltuk az intenzitásokat. A mért és számolt adatokat a 2. táblázat tartalmazza. A láthatósági paraméter és a polárszűrő szögére a fentihez hasonló összefüggést vártunk.

2. ábra. A láthatósági paraméter 3 szűrő esetén

Az illesztési paraméter itt $a=2\pm0,02$.

A kvantumradírozás vizsgálata

A mérés során a 3 polárszűrő különböző helyzeteiben vizsgáltuk az interferencia megjelenését. A várakozásunk az volt, hogy amennyiben az első 2 polárszűrő egymásra merőleges állású, az interferenciakép megszűnik. Ez meg is történt. A harmadik "radír" szűrő behelyezése után a várakozásunk az volt, hogy ha ez a szűrő bármelyik másikkal párhuzamos állású, az interferenciakép továbbra is megszűnik, viszont ha mindkettőre merőleges, újra megjelenik. Ez utóbbi meg is történt. Azonban az interferencia nem tűnt el, ha a 3. szűrő az 1. szűrővel állt

párhuzamosan, csak kevésbé volt éles. Ennek magyarázata lehet az interferométer nem elég pontos beállítása vagy a polárszűrő hibája.

5. Diszkusszió

A kvantumradírozás jelenségét megfigyeltük. A láthatósági paraméter és a polárszűrők szögei közötti összefüggéseket hibahatáron belül kimértük. A mérés során készített fényképeket sajnos nem tudtuk beilleszteni a jegyzőkönyvbe, mert úgy meghaladta a fájl mérete a megengedettet.

6. Mérési adatok

1. szűrő	2. szűrő	φ	I_{max}	I_{min}	V
10	10	0	255	10	0,925
0	20	20	255	9	0,932
-10	30	40	243	15	0,884
-20	40	60	255	48	0,683
-30	50	80	218	24	0,802
-35	55	90	227	20	0,838

1. táblázat. Intenzitás értékek és láthatósági paraméter 2 db polárszűrő esetén

3. szűrő	I_{max}	I_{min}	V
-35	162	6	0,929
-15	189	5	0,948
10	223	5	0,956
35	254	16	0,881
55	250	34	0,761

2.táblázat. Intenzitás értékek és láthatósági paraméter $3~{\rm db}$ polárszűrő esetén