GOING VIRAL

TEAM 10

Emily Chen, Allison Higgins, Lina Huang, & Chloé le Comte chenem@, ahigg@, hlina@, chloeml@seas.upenn.edu

Advisor: Dr. Pappas

Email: pappasg@seas.upenn.edu

Purpose of the Project

Problem Identification

Epidemic outbreaks are a major concern to public health and a strain on resources

Resource Allocation

Efficient resource allocation saves money and curbs the spread of diseases

Planning Policy Tool

Create a resource
allocation policy
planning tool
represented on a web
interface

MILESTONES

Yearlong Milestones

	SEPT	OCT	NOV	DEC	JAN	FEB	MAR	APR
Finding project idea								
Research & goal-setting								
Obtaining & cleaning data								
Creating web data visuals								
Decipher MATLAB code								
Integrate MATLAB to web								
Making website dynamic								
Fine-tuning math model								
Updating website design								
Collecting user feedback								
Integrating user feedback								
Testing final product								

Disease Spread through a Network

Weighted, directed network graph

$$\frac{1}{n} \sum_{j \in N_i} \beta_{ij} p_j(t) \le 1 - \left(1 - \frac{p_i(t+1) - p_i(t)(1 - \delta_i^0)}{1 - p_i(t)} \right)^{\frac{1}{n}}$$

SIS Epidemic Model

Probability of disease spreading depends on how infected the city's set of neighbors are, as well as the recovery rates and the proportions of each city currently infected

Calibrating the Predictive Model

Prediction Model:

$$p_i(t+1) \le \sum \beta_{ij} p_j(t) + (1 - \delta_i) p_i(t)$$

Matrix Formulation:

Solving for Natural Recovery Rates:

- 1 Initialize a possible set of δ_i values
- 2 Calculate absolute difference between real & estimated data across all cities and years
- $oxed{3}$ Repeat steps 1 & 2 for all combinations of δ_i
- A Return set of δ_i values with minimum difference

Resource Allocation Model

Convex Optimization Problem

- ♦ Local min is global min
- ♦ Scalable for large data sets
- ♦ Faster algorithm
- Implemented using CVX MATLAB Library


```
\begin{array}{ll} \underset{\mathbf{d^c}}{\operatorname{minimize}} & \sup_{B_{\mathcal{G}} \in \Delta_{B_{\mathcal{G}}}} \rho(M(B_{\mathcal{G}}, \mathbf{d}^c)) \\ & - \end{array}
```

subject to
$$\sum_{i \in \mathcal{V}_C} g_i(\delta_i^c) \leq C$$
,

$$\underline{\delta}_i^c \le \delta_i^c \le \overline{\delta}_i^c, \quad i \in \mathcal{V}_C,$$

Results

- ♦ Optimal budget allocation
- Improved recovery rates
- Cost per infection prevented
- Graph of projected improvements

PLANNING TOOL

Software Architecture

Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	Iteration 6
CVXOpt and CVXPy	Python MATLAB Engine	Heroku Deployment	SEAS Server with PHP	Digital Ocean: Ubuntu Servers	Deployment & Redirecting to Domain

Planning Tool Features

Flu Data by City

Graph number of infected people out of 100,000 by flu season and city. Users can interactively graph cities and years simultaneously, as well as view age distributions of populations.

Heat Map

Choose a network of cities and a time period to map. The model calculates which cities' data in that particular network is most correlated with others'.

Resource Allocation

Input budget, year, and network for an outputted graph and table of cost allocations, improved recovery rates, people saved, and cost per life saved for each city.

User Feedback

Sarah Jenkins & Megan Doherty

- Create results table in Resource Allocation
- ♦ Add age distribution for comparison
- Rename "Influential Cities" page to "Heat Map"

Heather Klusaritz

- Add explanatory info on each page
- Include "How to Interpret Results"
- Graph flu seasons instead of years
- Make Heat Map more intuitive

