Secção de Desenvolvimento e Eletrónica | noisR

Cada exercício levou, em média, 48 minutos a ser resolvido pelos melhores alunos de MEFT. Vocês têm de o fazer em 30 porque não conseguimos reservar sala para mais tempo. Significa isto que não trabalharem em conjunto podem morrer eletrocutados, ou pior: fundir um dos nossos LED's.

Cada exercício foi desenhado para aprendem algo de novo, mas sendo 3 elementos podem por vezes distribuir tarefas. No final, é importante que cada elemento do grupo tenha montado pelo menos um circuito na breadboard para que todos possam ter sofrido de forma mais equitativa.

Para resolver estes exercícios precisam de uma calculadora, um lápis, imensas folhas de rascunho, os datasheets, uma aspirina, um multímetro e o kit NoisR.

Coloquem o grupo e nomes neste enunciado e folhas de rascunho, para serem entregues mais tarde. As respostas e diagramas finais podem ser escritos algures no próprio enunciado.

Planeamento

WORKSHOP				
#	Dia Local Tema		Tema	
1	11 Dez 16h-18h	Sala de Seminários	Circ. de proteção e Portas Lógicas	Sai P1
2	2 14 Dez 16-18h Online + LOF1		Circ. equiv. e métodos de análise	
3	B 19 Dez 16-18h LOF1		Amplificadores e Comparadores	Entrega P1
4	4 20/21 Dez 16-18h LOF1		Filtros e Integradores	Sai P2
2 Jan 23h59 Github		Github		Entrega P2

${\bf WORKSHOPS\ 1,\ 2+PROJETO\ 1}$						
GRUPO 1	GRUPO 1 GRUPO 2 GRUPO 3					
Tomás Abreu	Ana Armanda	Miguel Moreira	Gabriel Franco			
Beatriz Carvalho	João Amaral	Bernardo Monteiro	Guilherme Gonçalves			
Martim Leitão	Filipa Santiago	Eduardo Braz	Bernardo Rodrigues			
GRUPO 5	GRUPO 6	GRUPO 7				
Gonçalo Girante	Rodrigo Silva	Simão Crispim				
Ricardo Ribeiro	Diogo Carvalho	Francisco Silva				
Beatriz Lima	Gonçalo Andrade	Apolo Gomes				

Material

Componente	#	Componente	#	Componente	#	Componente	#
Pilha 9V	1	Díodo	3	Res 390R	3	390R	3
Suporte Pilha	2	LED	8	Res 15R	3	1MR	2
Fio	6	Botão	4	Res 1.2kR	3	Switch-2	1
Breaboard	1	Transistor	10	Res 470R	3	Terminal-2	1
Código Ohm	1	Regulador 5V	1	Res 330R	3	Rebuçados	3

NOISR	PROBLEMAS	# 1 - Proteção DC		
Secção de Desenvolvin	nento e Eletrónica			
Telmo Viana Vaz				
Gonçalo Roriz		11 de Dezembro de 2023		

Análise

Quantos são os nós (interface entre componentes) neste circuito? (1 min)
Aponta no esquemático qual o terminal do Díodo com maior (+) e menor (-) potencial. (1 min)
Sinalizar o sentido convencional $(+\stackrel{i}{\rightarrow}-)$ da corrente no esquemático. (1 min)
Ver datasheet: queda de tensão nesta montagem do díodo (Forward Voltage). (1 min)
$\textbf{Com multímetro} : \ \text{mede a tensão na pilha e prevê a tensão em cada nó do circuito.} \ (2 \ \text{min})$
Qual o valor da tensão v_R sobre a resistência e como se relaciona com U_x ? (2 min)
Desenha um novo circuito, introduzindo um LED em série entre R e GND . (1 min)
Ver datasheet: corrente típica e queda de tensão esperadas no LED. (1 min)
Considerando o novo circuito, escolhe um R que assegure próximo dessa corrente. (2 min)

Montagem

Para o LED/resistência escolhidos, montar o circuito na breadboard. Liga o circuito. (3 min)
Com multímetro: lê a tensão entre os terminais do díodo (v_D) e do LED (v_{LED}) . (1 min
Com multímetro: lê U_x e calcula o erro relativo com o teórico. Porque há erro? (2 min)
Com multímetro: inverte as pontas de prova - porque observas este valor? (1 min)
Desliga o circuito. Inverte o díodo e explica os novos valores de v_D e U_x . (2 min)
Intuitivamente, qual é a função do díodo no circuito? (2 min)

NOISR **PROBLEMAS** # 2 - Proteção a tensões Secção de Desenvolvimento e Eletrónica Telmo Viana Vaz Gonçalo Roriz

11 de Dezembro de 2023

(a) OR-Diode (b) Circuito Díodo-Protetor

Análise

Todos os pontos referem-se ao circuito (a):

□ Quantos nós e malhas (loops) existem neste circuito? E quantos são essenciais? (1 min) \square Define direções (quaisquer) para as correntes i_2, i_3 a entrar/sair na junção k. (1 min) \square Quais as expressões analíticas de cada corrente: i_1, i_2, i_3 ? De certeza que são essas? (2 min) \square Encontra a expressão analítica para U_x . Hint: KCL (5 min) \square Redesenha o circuito trocando R_1, R_2 por 2 díodos, D_1, D_2 , de forma que ambas as correntes i_1, i_2 fluam da fontes para U_x . (1 min)

Montagem

- ☐ Monta o circuito redesenhado, utilizando LED's enquanto díodos, e colocando dois fios soltos nos nós adequados para que posteriormente se ligue V_2 conforme o esquemático. (3 min)
- ☐ Dirige-te com o circuito montado às fontes de tensão regulável e faz os passos descritos abaixo. Enquanto estiver lá um grupo faz o ponto seguinte.
 - 1. Certifica-te que a fonte de tensão está desligada e que a tensão está no mínimo.
 - 2. Liga a fonte de tensão ao circuito através dos fios que preparaste para o efeito.
 - 3. Liga e aumenta progressivamente (devagar!) a tensão na fonte até ao **máximo de** 15V
 - 4. Intuitivamente, qual é a função deste circuito?
- ☐ (OPCIONAL) Se estás à espera ou se já acabaste:
 - Utiliza o switch e os pin-terminals para melhorar a segurança do teu circuito (2 min)
 - No circuito (b), o que é U_p se $V'_1 \approx 5V$? E se $V'_1 \approx 9V$? (3 min)
 - Monta e testa o circuito (b). Usa o regulador de tensão de 5V para definir V'_1 . (3 min)

NOISR	PROBLEMAS	# 3 - Circuito NOT			
Secção de Desenvolvim					
Telmo Viana Vaz					
Gonçalo Roriz		11 de Dezembro de 2023			

Análise

\square Escolhe um nó adequado para colocar o ground (referência de $0V$). (1 min)
\square Redesenha o circuito em cada caso do switch: fechado (ON) e aberto (OFF). (2 min)
\square Define por ramos a expressão da tensão U_x e da corrente i_{LED} . É fácil, bora lá. (2 min)
\square Escolhe R de modo a que vejas claramente o LED ligado (e sem que $i_{LED} > 20mA$). (2 min)

\mathbf{M}

Montagem
□ Multímetro em modo díodo : verifica em que terminais do botão passa a corrente. (1 min)
$\hfill\square$ Monta o circuito na breadboard sem fios auxiliares (exceto os do suporte da pilha). (2 min)
\square Verifica que o LED acende apesar de S_0 estar OFF. Explica porquê. (3 min)
\square Com multímetro: mede v_{LED} com o switch ON e OFF. (1 min)
\square Resedenha o circuito com um transístor, ligando S_0 -Base, U_x -Coletor e Terra ¹ -Emissor. Monta o novo circuito, deixando um fio da base do transístor com ponta solta. (3 min)
\square Com o fio solto curto-circuita a base B à vez com U_x e GND e preenche a tabela ² . (3 min)

Input	$S_{LED} = \overline{S_0}$			
S_0	$U_x[V]$	S_{LED}		
OFF				
ON				

 $^{^1}$ Neste circuito, Terra é o ground que escolheste. 2 Para um valor lógico H/L consideramos $H:U_x>2.1V$ e $L:U_x<2.1V.$

NOISR

PROBLEMAS

4 - Circuitos AND e NOT

Secção de Desenvolvimento e Eletrónica

Telmo Viana Vaz

Gonçalo Roriz

11 de Dezembro de 2023

$$V_1 \bullet \overbrace{\hspace{1cm}}^R V_2 \xrightarrow{\hspace{1cm}} S_0 \xrightarrow{\hspace{1cm}} S_1 \xrightarrow{\hspace{1cm}} v_{LED} \bullet 0V \qquad S_0 \xrightarrow{\hspace{1cm}} S_1 \xrightarrow{\hspace{1cm}} S_{LED} = S_1 \cdot S_0$$
(a) Circuito AND-switch. (b) Porta Lógica **AND**

Análise

- \square Escolhe uma resistência R, e, supondo que S_0, S_1 estão ambos fechados, prevê i_{LED} . (1 min)
- \square Se S_1 está aberto e S_0 está fechado, com $V_1\approx 9V$ a tensão em U_x é: (1 min)

a.
$$U_x = 0V$$

b.
$$U_x = v_{LED} \approx 2.1V$$

c.
$$U_x = V_1 - v_{LED} \approx 6.9V$$

- d. Nenhuma das opções.
- ☐ Pela compreensão das alíneas anteriores, a que porta lógica corresponde o circuito? (1 min)
- □ Redesenha o circuito substituindo os switches por transístores. (3 min)
- ☐ Com os mesmos componentes, desenha agora o circuito de uma Porta Lógica OR: (3 min)
 - 1. Com switches

$$S_0 \longrightarrow S_{LED} = S_1 + S_0$$

Montagem

- ☐ Monta ambos os circuitos (AND, OR) na breadboard utilizando transístores. (5 min)
- \square Preenche a tabela de verdade abaixo: (10 min)

Input		$S_{LED} = S_1 \cdot S_0$		$S_{LED} = S_1 + S_0$		
S_1	S_0	$U_x[V]$	S_{LED}	$U_x[V]$	S_{LED}	
OFF	OFF					
OFF	ON					
ON	OFF					
ON	ON					

 \square É boa prática criar um grau de encapsulamento no circuito que separa o input da lógica. Para isso coloca switches S_1, S_0 num lugar específico da breaboard para input do utilizador e, recorrendo a fios, liga os botões às bases dos transístores B_0, B_1 . (10 min)