Abstract of DE 19 650 749

The invention relates primarily to a vacuum cleaner with an aspirator in a vacuum cleaner housing and an odour and/or particle filter (4) placed in front of the aspirator, said aspirator having a substantially rectangular cavity (6) for the filter (4). The invention secondarily relates to an odour and/or particle filter for a vacuum cleaner in question. In order to achieve a suction flow with minimum filter bypassing when correctly using a suction cross section with regard to a filter to be inserted, even if the aspirating hole is arranged offset to the centre of the cavity, it is proposed that an aspirating hole (10) in the cavity (6) is arranged offset to the plan in the direction of a longitudinal edge (B) and a corner of the rectangle, that the longitudinal edge (B) has a slightly concave profile, that the filter (4) is designed to be flexible like a cushion and, particularly as regards the concave edge (B), to have a slight oversize, preferably for its geometrical adaptation to the profile of the edge (B), and also that the filter (4) has, in an overall substantially rectangular plan, one of the long sides (B') and/or one of the narrow sides (C') which is (are) concave.

6) Int. Cl.⁸: A 47 L 5/00 A 47 L 9/12

(B) BUNDESREPUBLIK DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 196 50 749 A 1

DEUTSCHES PATENTAMT

21) Aktenzeichen:

196 50 749.9

2 Anmeldetag:

6. 12. 96

49 Offenlegungstag:

2. 10. 97

(66) Innere Priorität:

196 12 937.0

01.04.96

7 Anmelder:

Vorwerk & Co Interholding GmbH, 42275 Wuppertal, DE

(74) Vertreter:

H. Rieder und Kollegen, 42329 Wuppertal

② Erfinder:

Krapp, Jan Thomas, Dr., 42399 Wuppertal, DE

(Si) Geruchs- und/oder Partikelfilter

Die Erfindung betrifft zunächst einen Staubsauger mit einem in einem Staubsaugergehäuse angeordneten Sauggebläse und einem vor dem Sauggebläse angeordneten Geruchs- und/oder Partikelfilter (4), wobei in dem Sauggebläse eine im wesentlichen rechteckige Aufnahme (6) für das Filter ausgebildet ist und des weiteren einen Geruchs- und/oder Partikelfilter für einen in Rede stehenden Staubsauger. Um bei guter Ausnutzung eines Saugquerschnittes im Hinblick auf einen einzulegenden Filter eine möglichst kurzschlußfreie Saugströmung zu erreichen, auch bei einer Anordnung der Saugöffnung, außermittig zu einem Flächenschwerpunkt der Aufnahme, wird vorgeschlagen, daß eine Saugöffnung (10) in der Aufnahme (6) in bezug auf den Grundriß versetzt in Richtung auf eine Längsrandkante (B) und eine Ecke des Rechteckes angeordnet ist, daß die Längsrandkante (B) einen leicht konkaven Verlauf aufweist, daß das Filter (4) kissenartig flexibel ausgebildet ist und insbesondere in bezug auf die konkave Randkante (B) mit einem leichten Übermaß, bevorzugt in geometrischer Anpassung an den Verlauf der Randkante (B) ausgebildet ist und weiter, daß das Filter (4) bei insgesamt im wesentlichen rechteckigem Grundriß an einer der Längsseiten (B') und/oder einer der Schmalseiten (C') eine konkav verlaufende Gestaltung auf-

16/23

Beschreibung

Die Erfindung betrifft einen Staubsauger mit einem in einem Staubsaugergehäuse angeordneten Sauggebläse und einem vor dem Sauggebläse angeordneten Geruchs- und/oder Partikelfilter, wobei in dem Sauggebläse eine im wesentlichen rechteckige Aufnahme für das Filter ausgebildet ist.

Bei Staubsauggeräten ist es bekannt, diese zur Absorbierung von Feinststaub und Gerüchen mit Geruchs- 10 und/oder Partikelfiltern zu versehen. Geruchs- und Partikelfilter können als Einzelelemente vorliegen. Es sind jedoch auch Ausbildungen bekannt, bei welchen die Filter zusammen von einer Gesamtumhüllung umgeben sind zur Bildung eines Filterpaketes. Weiter ist es be- 15 kannt, ein solches Paket oder auch einzelne Filterlagen in Strömungsrichtung zwischen einem Staubfilterbeutel und dem Sauggebläse anzuordnen.

Im Hinblick auf den vorbeschriebenen Stand der Technik wird eine technische Problematik der Erfin- 20 dung darin gesehen, bei guter Ausnutzung eines Saugquerschnittes im Hinblick auf einen einzulegenden Filter eine möglichst kurzschlußfreie Saugströmung zu erreichen, auch bei einer Anordnung der Saugöffnung au-Bermittig zu einem Flächenschwerpunkt der Aufnahme. 25

Diese Problematik ist zunächst und im wesentlichen beim Gegenstand des Anspruchs 1 gelöst, wobei darauf abgestellt ist, daß eine Saugöffnung in der Aufnahme in Bezug auf den Grundriß versetzt in Richtung auf eine Längsrandkante und eine Ecke des Rechteckes ange- 30 ordnet ist, daß die Längsrandkante einen leicht konkaven Verlauf aufweist, daß das Filter kissenartig flexibel ausgebildet ist und insbesondere in Bezug auf die konkave Randkante mit einem leichten Übermaß, bevorzugt in geometrischer Anpassung an den Verlauf der 35 Randkante, ausgebildet ist. Ein Filter kann nur dann wirksam werden, wenn die mit dem abzutrennenden Gut beladene Luft auch tatsächlich durch das Filter und nicht an diesem vorbei durch sogenannte Leckagen strömt. Das Filter muß somit in der Aufnahme dichtend einliegen. Bekannte Filter besitzen entweder eine unzureichende Dichtwirkung oder verlieren durch ein weiteres, abdichtendes Gehäuse einen Teil ihrer frei durchströmbaren Anströmfläche. Bedingt durch die erfinnung der Saugöffnung außermittig zu dem Flächenschwerpunkt der Aufnahme eine kurzschlußfreie Saugströmung erreicht. Durch die Verlagerung der Saugöffnung in der Aufnahme in Richtung auf eine Längsrandkante, dies bspw. bedingt durch konstruktive Vorgaben, 50 wird durch den leicht konkaven Verlauf dieser Längsrandkante eine gegenüber einer im Grundriß rechteckigen Aufnahme eine Vergrößerung der Anlagefläche im Bereich dieser Längsrandkante erzielt, welche Anlagefläche eine Dichtfläche bildet. Das kissenartig flexibel 55 schlusses abgedichtet. ausgebildete Filter, welches sowohl ein Geruchs- oder Partikelfilter als auch eine Kombination aus beiden Filtern darstellen kann, weist eine dieser konkaven Längsrandkante angepaßte Kontur auf. Demnach ist eine der Längsrandkante der Aufnahme zuzuordnende Randkante des Filters gleichfalls konkav ausgebildet, dies mit einem leichten Übermaß, so daß nach einem Einsetzen des Filters in die Aufnahme die Filterrandkante dichtend an die Längsrandkante der Aufnahme angepreßt wird. Es entstehen somit keine Kurzschlüsse zum 65 Durchtritt von ungefilterter Saugluft. Es ist auch denkbar, bei einem leicht konkaven Verlauf der Aufnahme-Längsrandkante mit einem in Bezug auf die Gesamtab-

maße des Grundrisses relativ großen Radius die korrespondierende Längsrandkante des Filters geradlinig, d. h. nicht konkay, auszubilden, wobei die gerade verlaufende Linie der Filter-Randkante die Wurzelpunkte der konkaven Aufnahme-Längsrandkante schneidet Hierdurch ist das gewünschte Übermaß gegeben. Durch die flexible Ausgestaltung des Filters erfolgt im Bereich der konkaven Längsrandkante eine Verformung der Filter-Randkante, wodurch die gewünschte Abdichtung in diesem Bereich weiterhin gegeben ist. Bei einer Ausbildung des Filters mit einer konkav verlaufenden, der Längsrandkante der Aufnahme angepaßten Randkante ergibt sich der überraschende Vorteil, daß bei Verwendung eines Kombinationsfilters (Geruchs- und Partikelfilter), bei welchem eine bevorzugte Durchströmungsrichtung vorgegeben sein soll, ein seitenverkehrtes Einlegen des Filters durch den Benutzer vermieden wird. Dem Benutzer wird durch die konkave Ausgestaltung der Filter-Randkante eine Einweishilfe gegeben. Weiter wird bei einer Anordnung der Saugöffnung in der Aufnahme in Bezug auf den Grundriß versetzt in Richtung auf die konkave Längsrandkante und eine Ecke des Rechteckes zur Erzielung einer kurzschlußfreien Saugströmung vorgeschlagen, daß die Aufnahme im Anschluß an die konkav verlaufende Randkante hinsichtlich der Ecke, zu welcher die Saugöffnung versetzt angeordnet ist, in eine konvex gerundete Eckausbildung übergeht, welche hinsichtlich einer Schmalseite sich in eine weitere konkav verlaufende Randkante fortsetzt, wobei die Eckausbildung einen größeren Abstand zum Saugöffnungs-Mittelpunkt aufweist als die konkaven Randkanten und daß das Filter in Anpassung an den Verlauf der Randkante in diesem Bereich gleichfalls von einer konvexen Eckausbildung in eine konkave Randausbildung übergeht. Ist die Saugöffnung in Bezug auf den Grundriß versetzt in Richtung auf einen Eckbereich, so ergibt sich hier die Gefahr eines Saugströmungskurzschlusses. Diesem ist durch die zuvor genannte erfinderische Ausgestaltung entgegengewirkt. Die beiden konkav verlaufenden Randkanten des Eckbereiches bewirken zusammen mit der konvexen Ausformung der Eckausbildung eine Vergrößerung der Dichtfläche, insbesondere dann, wenn das Filter, wie bevorzugt, geometrisch dem Verlauf der beiden Randkanten und der Eckausbildung angepaßt ist, dungsgemäße Ausgestaltung ist auch bei einer Anord- 45 dies weiter bevorzugt mit einem leichten Übermaß. Bei einem Einsetzen des Filters in die Aufnahme werden die korrespondierenden Randbereiche des Filters - bedingt durch die Flexibilität - derart nach innen verdrängt, daß zwischen den Filter-Randkanten bzw. der Filter-Eckausbildung und den Aufnahme-Längsrandkanten bzw. dessen Eckausbildung eine vollflächige Abdichtung erzielt ist. Es ist somit insbesondere der kritische Bereich um die Saugöffnung in einer verbesserten Form zur Verhinderung eines Saugströmungskurz-

> Weiter betrifft die Erfindung einen Geruchs- und/ oder Partikelfilter für einen Staubsauger, insbesondere für einen Staubsauger der zuvor beschriebenen Art. Hier wird zur Erzielung einer möglichst kurzschlußfreien Saugströmung bei einer Anordnung der Saugöffnung außermittig zu einem Flächenschwerpunkt der Aufnahme vorgeschlagen, daß das Filter bei insgesamt im wesentlichen rechteckigem Grundriß an einer der Längsseiten und/oder einer der Schmalseiten eine konkav verlaufende Gestaltung aufweist. Hierdurch werden im Vergleich zu einem im Grundriß streng rechteckig ausgebildeten Filter die Seitenflächen, welche im Einbauzustand dichtend an Längsrandkanten einer Aufnahme an-

liegen, vergrößert, wodurch eine verbesserte Abdichtung gegeben ist. Die konkav verlaufende Gestaltung kann an einer Längsseite des Filters vorgesehen sein. Weiter kann eine Schmalseite des Filters mit einem konkaven Verlauf versehen sein. Bevorzugt wird jedoch eine Ausgestaltung, bei der sowohl eine Längsseite als auch eine Schmalseite konkav verlaufen, dies zumindest im Bereich des durch diese beiden Seiten gebildeten Eckbereichs. Wird das Filter als Kombinationsfilter ausgebildet, bei welchem das Filter sowohl eine Geruchsals auch eine Partikelfiltrierung übernimmt, und wobei bei dieser Filterkombination eine Durchströmrichtung des Saugstromes vorgegeben ist, ergibt sich durch die erfinderische geometrische Ausgestaltung des Filters bei einer geometrischen Anpassung an den Verlauf der 15 Längsrandkanten der Aufnahme eine Einweiserfunktion. Dem Benutzer wird optisch eine Hilfe gegeben, das Filter lagen- bzw. strömungsrichtig einzulegen. Weiterhin wird vorgeschlagen, daß ein Eckbereich des Filters bei insgesamt konvex gekrümmter Gestaltung vorra- 20 gend bezüglich eines zweiten schmalseitig zugeordneten Eckbereiches ausgebildet ist.

Dieser konvex gekrümmte Eckbereich ist bevorzugt zwischen den beiden konkav verlaufenden Längs- bzw. Schmalseiten angeordnet, womit sich eine halbinselarti- 25 ge Ausgestaltung des Eckbereiches ergibt. Dieser ragt gegenüber dem anderen, schmalseitig zugeordneten Eckbereich im Grundriß hervor. Der so gebildete konvexe Eckbereich unterstützt die zuvor angesprochene Orientierungshilfe. Durch diese Ausgestaltung wirkt 30 dieser Eckbereich wie eine aus dem Grundriß vorstehende Orientierungsnase, welche durch den Benutzer automatisch einem entsprechend ausgeformten Eckbereich der Aufnahme zugeordnet wird. Zur verbesserten Entnahme des Filters aus der Aufnahme, bspw. zum 35 Auswechseln des Filters, wird vorgeschlagen, daß das Filter eine Handhabungslasche aufweist. Diese ist bevorzugt so angeordnet, daß diese im eingesetzten Zustand des Filters in der Aufnahme leicht erreichbar ist. Hierzu wird vorgeschlagen, daß die Handhabungslasche 40 freikragend an einem Eckbereich des Filters angeordnet ist, dies vorzugsweise an der der konkav ausgebildeten Schmalseite zugewandten und dem konvex ausgebildeten Eckbereich abgewandten Ecke. Um ein sicheres Ergreifen zur Entnahme des Filters zu gewährleisten, ist 45 vorgesehen, daß die Handhabungslasche in ihrer Länge etwa einer Höhe des Filters entspricht. Es kann sich hierbei um eine im Grundriß nahezu dreieckig ausgeformte Lasche handeln, welche Dreieckform bevorzugt einem rechtwinkligen Dreieck nachempfunden ist. Der 50 ter schützt die dieser Baugruppe wiederum nachge-Eckbereich, in welchem die Handhabungslasche freikragend angeordnet ist, weist bevorzugt eine Kontur auf, welche es erlaubt, daß die Handhabungslasche um die Randkante des Eckbereiches geklappt und auf der Oberfläche des Filters abgelegt werden kann. Das Filter 55 kann weiterhin so ausgebildet sein, daß dieses im Hinblick auf eine Geruchsfilterung eine Geruchsfilterschicht aufweist. Geruchsstoffe werden in bekannter Weise durch Anlagerung an Festkörperoberflächen abgeschieden. Ein effektives Geruchsfilter weist daher bevorzugt eine möglichst große, innere Oberfläche auf. Zu diesem Zweck werden als geruchsabsorbierende Substanzen hochporöse Materialien, wie Zeolite oder Aktivkohle, eingesetzt. Die innere Oberfläche dieser Materialien ist durch Poren und Kanäle mit dem filteräuße- 65 ren Raum verbunden. In Richtung kleiner werdenden Durchmessers spricht man von Makro-, Meso- und Mikroporen, wobei letztere für die Abscheidung am wich-

tigsten sind. Die größeren Poren hingegen dienen mehr dem Transport der abzuscheidenden Stoffe innerhalb des Filters. Für den Transport der Luft innerhalb des Filters werden noch größere Kanäle benötigt, als sie von den Makroporen des porösen Materials bereitgestellt werden. Diese Aufgabe wird in bekannter Weise gelöst, indem einzelne Körper des porösen Materials im Raum durch ein Gerüst fixiert werden, welches durch eine einfache Schüttung, aber auch durch Aneinander-10 kleben oder andersartige Fixierung, wie z. B. Sintern, oder auch durch Aufbringen auf eine räumliche Struktur (offenporiger Schaumstoff, plissiertes Vlies, räumlich texturiertes Vlies oder andersartige Raumstrukturen) bereitgestellt sein kann. Erfindungsgemäß wird eine Ausgestaltung bevorzugt, bei welcher die Geruchsfilterschicht aus einem Schaumstoffgerüst mit eingelagerter Aktivkohle besteht. Weiter wird bevorzugt, in dem Schaumstoffgerüst aktive Bruchkohle einzulagern. Alternativ zum Schaumstoffgerüst besteht die Möglichkeit, das Trägermaterial aus einem Fasermaterial herzustellen. Zur Filterung von Feinstaub erweist es sich als vorteilhaft, daß das Filter im Hinblick auf eine Partikelfilterung eine Partikelfilterschicht aufweist. Bevorzugt wird dabei eine Ausgestaltung, bei welcher die Partikelfilterschicht aus einem Vlies besteht. Alternativ kann die Partikelfilterschicht auch aus einem Glaspapier-Filterstoff bestehen. Um die Geruchsfilterschicht bspw. vor Feinstaub zu schützen, wird vorgeschlagen, daß die Partikelfilterschicht in Durchströmrichtung vor der Geruchsfilterschicht angeordnet ist. Ein vorgeschaltetes Partikelfilter schützt demnach bspw. die Aktivkohle oder ein anderes alternativ verwendetes Adsorbens vor Feinstaub. Dieser Staub könnte, wenn er nicht im vorgeschalteten Partikelfilter abgefangen würde, je nach Größe die Makroporen, die Mesoporen oder die Mikroporen des Adsorbenses verstopfen und so die Adsorptionsleistung des Geruchsfilters reduzieren. Insbesondere ist hier relativ grober Feinstaub mit einem Durchmesser von 10 bis 100 µm kritisch, da dieser die Makrobzw. Mesoporen zusetzen kann. Hierdurch würden zwangsläufig die Zugänge zu allen nachfolgenden Poren, insbesondere den Mikroporen, versperrt und ein Großteil der im Filter effektiven, abscheidenden Fläche inaktiviert. Diesem Effekt ist erfindungsgemäß durch den in Strömungsrichtung dem Geruchsfilter vorgeschalteten Partikelfilter entgegengewirkt. Weiter kann die Anordnung so getroffen sein, daß die Geruchsfilterschicht in Durchströmrichtung vor der Partikelfilterschicht angeordnet ist. Ein nachgeschaltetes Partikelfilschalteten Baugruppen, wie Gebläse, Motor, Schalldämpfer oder Auslaßfilter, nicht nur vor Teilen des noch durch den Staubfilterbeutel hindurchtretenden Feinstaubes, sondern auch vor etwaigem Kohlestaub, der durch Vibration und Verschleiß innerhalb des Geruchsfilters freigesetzt werden kann, insbesondere Bruchstükke von Bruchkohle und den bei dem Abbrechen dieser Bruchstücke freiwerdenden Feinstaub. Eine weitere, wesentliche Aufgabe eines solchen Partikelfilters liegt darin, den Verlust an porösem Material und somit den Verlust an effektiver Filterleistung zu verhindern. Eine weitere Kombinationsmöglichkeit der beiden Filterschichten besteht darin, daß die Partikelfilterschicht zwischen zwei Geruchsfilterschichten angeordnet ist. Bevorzugt wird eine Anordnung, bei welcher die Geruchsfilterschicht zwischen zwei Partikelfilterschichten angeordnet ist. Hier wird durch eine - in Strömungsrichtung betrachtet - erste Partikelfilterschicht die Ge-

ruchsfilterschicht vor noch durch den Staubfilterbeutel hindurchtretenden Feinstaub geschützt. Die nachgeschaltete zweite Partikelfilterschicht schützt die nachgeschalteten Baugruppen des Staubsaugers, so daß diese nicht dem in dem Geruchsfilter freigesetzten Staub, insbesondere Kohlestaub ausgesetzt werden, was möglicherweise eine Verringerung der Standzeiten eines Ausblasfilters zur Folge hätte. Unabhängig von den zuvor angesprochenen Kombinationsmöglichkeiten wird weiter vorgeschlagen, daß das Filter von einem hautartigen 10 Schaumstoff umgeben ist. Dies zur Bildung eines kompakten, zusammenhängenden Filterpaketes. Der hautartige Schaumstoff ist luftdurchlässig und umspannt die eine oder mehrere Filterschichten gänzlich. Hier wird eine Ausbildung bevorzugt, bei welcher der Schaum- 15 lung, jedoch eine zweite Ausführungsform betreffend; stoff aus zwei miteinander verschweißten Lagen besteht mit einer höhenmäßig außermittig angeordneten Schweißnaht. Diese um den gesamten Umfang des Filters verlaufende Schweißnaht ist bevorzugt höhenmä-Big der im Einbauzustand freiliegenden Oberfläche des 20 Filterpaketes zugewandt. Hierdurch ergibt sich ein über den gesamten Umfang des Filterpaketes sich erstrekkender Kragen, welcher im Einbauzustand beispielsweise von aufnahmeseitigen Fixierungsstegen übergriffen sein kann. Durch die Verschweißung ist aus dem luft- 25 durchlässigen Material (Filterschaum) eine luftundurchlässige Dichtlippe gebildet, welche durch die Federkraft des komprimierbaren Filtersystems an die Wandung der Filteraufnahme gepreßt wird. Hierdurch ist gewährleistet, daß keine Luft an dem Filter vorbeiströmen kann 30 und somit nicht gereinigt wird. Dieses Merkmal hat darüber hinaus zur Folge, daß aufgrund der platzsparenden Konstruktion der Dichtung mehr Bauraum für adsorptives Material zur Verfügung steht. Hierdurch ist eine deutliche Steigerung der Filterleistung und somit eine 35 Erhöhung der Standzeit des Filters gegeben. Weiter ist gewährleistet, daß eventuelle Leckluft, welche bis zur Ebene der Dichtlippe seitlich an dem Filter vorbeiströmt, noch durch den überwiegenden Teil der Bauhöhe des Filters durch dieses strömen muß. Weiter kann 40 vorgesehen sein, daß der hautartige Schaumstoff aus einem Polyurethanschaum auf Ester-Basis mit einer Porenzahl von 50 bis 150 PPI, typisch 90 PPI, besteht bei einer Dicke von 0,5 bis 3 mm, bevorzugt 1,5 mm. Hierzu wird in einer alternativen Ausgestaltung vorgeschlagen, 45 daß die entscheidenden Filterstufen (Porenschutzfilter, Geruchsfilter und ggf. Rückhaltefilter) in den Filterschaum eingeschweißt sind. Desweiteren ist denkbar, daß der umhüllende Filterschaum anströmseitig die Funktion des Porenschutzfilters und abströmseitig die 50 Funktion des Rückhaltefilters für adsorptives Material unterstützt oder sogar alleine erfüllt. Schließlich erweist es sich als vorteilhaft, daß die Handhabungslasche im Bereich der Schweißnaht angeordnet ist. Die Handhabungslasche ist in einer bevorzugten Ausgestaltung aus 55 den beiden miteinander verschweißten Lagen gebildet, womit die Handhabungslasche eine Vergrößerung des bereits angesprochenen durch die Schweißnaht gebildeten Kragens in einem Eckbereich des Filters bildet. Somit ist die Entnahmehilfe seitlich zum Filter angeordnet, 60 ist. so daß sie nicht die freie Anströmfläche reduziert. Gleichzeitig ist sie sehr flexibel, so daß sie nicht zu einer Verkeilung der neben dem Filter befindlichen Staubsaugerteile führen kann. Weiter ist von Vorteil, daß die Ausstattung des Filters mit einer derartigen Handhabe 65 nahezu kostenneutral ermöglichst ist.

Die Erfindung ist nachstehend anhand der Zeichnungen, welche lediglich Ausführungsbeispiele darstellt, erläutert. Hierbei zeigt:

Fig. 1 einen Handstaubsauger in einer perspektivischen Darstellung mit in verdeckter Linienart dargestellter Lage eines Filters und eines Sauggebläses;

Fig. 2 eine Draufsicht auf das Filter nach Einsetzen in eine Aufnahme des Sauggebläses;

Fig. 3 den Schnitt gemäß der Linie III-III in Fig. 2;

Fig. 4 eine Draufsicht auf das Filter in einer Einzeldarstellung;

Fig. 5 eine Seitenansicht des Filters gemäß Fig. 4;

Fig. 6 eine vergrößerte Schnittdarstellung durch das Filter gemäß Linie VI-VI in Fig. 5;

Fig. 7 eine Ausschnittsvergrößerung aus Fig. 3;

Fig. 8 eine der Fig. 6 entsprechende Schnittdarstel-

Fig. 9 eine weitere der Fig. 6 entsprechende Darstellung, eine dritte Ausführungsform betreffend;

Fig. 10 eine weitere der Fig. 6 entsprechende Schnittdarstellung, eine vierte Ausführungsform betreffend;

Fig. 11 eine weitere der Fig. 6 entsprechende Schnittdarstellung, eine fünfte Ausführungsform betreffend.

Dargestellt und beschrieben ist zunächst mit Bezug zu Fig. 1 ein Handstaubsauger 1 mit einem in einem Staubsaugergehäuse 2 angeordneten Sauggebläse 3 und einem in Strömungsrichtung r vor dem Sauggebläse 3 angeordneten Filter 4, welcher als Geruchs- und Partikelfilter ausgebildet ist. Weiter ist in Strömungsrichtung r diesem Filter 4 ein in einer Filterbeutelkassette 5 gehalterter, nicht dargestellter Staubfilterbeutel vorge-

In dem Sauggebläse 3 ist eine im wesentlichen rechteckige Aufnahme 6 für das Filter 4 ausgebildet. In dieser Aufnahme 6 liegt im Betriebszustand das Filter 4 ein. Zur Entnahme des Filters 4 ist die Aufnahme 6 freilegbar, indem die Staubbeutelkassette 5 von dem Sauggehäuse 2 abgeschwenkt wird. Hiernach ist der Blick frei auf das in der Aufnahme 6 einliegende Filter gemäß der in Fig. 3 gezeigten Ausschnittsdarstellung.

Die Aufnahme 6 ist im wesentlichen schalenförmig ausgebildet mit einem Boden 7 und einer senkrecht zu diesem ausgerichteten, umlaufenden Wandung 8. Auf dem Boden 7 sind Stege 9 angeformt zum Abstützen des einzulegenden Filters 4, wodurch eine Beabstandung zwischen der Unterseite des Filters 4 und dem Boden 7

gegeben ist.

Weiter ist in dem Boden 7 eine Saugöffnung 10 zum Anschluß an das Sauggebläse 3 vorgesehen, welche Saugöffnung 10 im Grundriß kreisrund ausgebildet ist. In dem gezeigten Ausführungsbeispiel weist die Saugöffnung 10 einen Durchmesser von ca. 18 mm auf.

Weiter ist die Anordnung der Saugöffnung 10 im Boden 7 so gewählt, daß der Mittelpunkt M beabstandet ist zu einem Flächenschwerpunkt FS der Aufnahme 6 und zwar derart, daß die Saugöffnung 10 etwa einer Eckausbildung A des Aufnahmegrundrisses zugeordnet versetzt ist. Konkret ist dies in der gezeigten Ausbildung so gewählt, daß der Mittelpunkt M etwa mittig auf einer gedachten Verbindungslinie zwischen dem Flächenschwerpunkt FS und der Eckausbildung A positioniert

Durch diesen Versatz der Saugöffnung 10 sind eine Längsrandkante B, eine Schmalrandkante C und die Eckausbildung A dem Bereich der Saugöffnung 10 zugeordnet, womit diesen Bereichen eine besondere Bedeutung zukommt. Um in diesem Bereich eine kurzschlußfreie Saugströmung bei eingesetztem Filter 4 zu erreichen, müssen die beiden Randkanten B und C und auch die Eckausbildung A so ausgebildet sein, daß eine

genügend hohe Abdichtung zwischen dem Filter 4 und der Wandung 8 der Aufnahme 6 erzielt wird.

Hierzu weist die Längsrandkante B einen leicht konkaven Verlauf auf, wobei der Scheitelpunkt der so gebildeten Krümmungslinie nahe an der Randkante der Saugöffnung 10 angeordnet ist. Die sich an diese Längsrandkante B anschließende Eckausbildung A hingegen ist konvex gerundet, von wo aus sich die Wandung 8 in einer ebenfalls konkav verlaufenden Schmalrandkante der Übergangsbereich von der Eckausbildung A zur Schmalrandkante C etwa auf Höhe des Saugöffnungs-Mittelpunktes M liegt.

Weiter ist zu erkennen, daß die Eckausbildung A einen größeren Abstand zum Saugöffnungs-Mittelpunkt 15 M aufweist als die konkaven Randkanten B und C. In dem gezeigten Ausführungsbeispiel ist die Eckausbildung A mit einem Maß a von ca. 50 mm zum Mittelpunkt M beabstandet, wobei die Längsrandkante B einen Abstand b von ca. 20 mm und die Schmalrandkante 20 C einen Abstand c von ca. 45 mm zu dem Mittelpunkt M besitzen.

Die Aneinanderreihung von Längsrandkante B, Eckausbildung A und Schmalrandkante C verläuft mit Bezug auf eine Draufsicht auf die Aufnahme 6 gemäß 25 Fig. 2 entgegen der Uhrzeigerrichtung.

An der Schmalrandkante C schließt sich ein weiterer schräg einwärts über einen Winkel von ca. 45° verlaufender Eckbereich D an, welcher die Verbindung zwischen der Schmalrandkante C und einer zweiten, der 30 Längsrandkante B gegenüberliegenden Längsrandkante E bildet. Die Kontur der Aufnahmewandung 8 wird geschlossen durch einen gleichmäßig abgerundeten Eckbereich F, einer daran anschließenden geradlinig te und die konkav verlaufende Längsrandkante B verbindenden, schräg über einen Winkel von ca. 15° verlaufenden Kante H.

Die verschiedenen Abmaße, insbesondere die Radien der konkaven Randkanten werden anhand des Filtergrundrisses beschrieben, welcher Filter 4 im Grundriß geometrisch dem Verlauf der Randkanten bzw. der Wandung 8 ausgebildet ist, dies jedoch mit einem leichten Übermaß von umlaufend ca. 1 bis 2 mm.

Das Filter 4 ist, wie bereits erwähnt, als Geruchs- und 45 Partikelfilter ausgebildet. Die Fig. 4-6 zeigen eine erste Ausführungsform des Filters 4.

Wie insbesondere aus der Schnittdarstellung in Fig. 6 zu erkennen, ist eine schichtweise Anordnung verschiedener Filterlagen vorgesehen. Zur Absorbierung von 50 Hilfsrechteckes so schneidet, daß sich ein Abstand i zwi-Gerüchen ist eine Geruchsfilterschicht 11 vorgesehen. welche in Durchströmrichtung r zwischen zwei Partikelfilterschichten 12 und 12' angeordnet ist. Die Geruchsfilterschicht 11 besteht bevorzugt aus einem Schaumstoffgerüst mit eingelagerter Aktivkohle. Weiter wird hier 55 bevorzugt aktive Bruchkohle eingesetzt.

Zur Filtrierung von Feinststaub, der noch aus dem Staubfilterbeutel austreten kann, ist die einen Porenschutzfilter bildende Partikelfilterschicht 12 aus einem Vliesstoff hergestellt. Es kann jedoch auch ein Glaspa- 60 pierfilterstoff zur Anwendung kommen.

Es ist so ein dreilagiges Filter 4 geschaffen, welches von einem hautartigen Schaumstoff 13, bevorzugt Polyurethanschaum auf Ester-Basis mit ca. 60 bis 100 Poren pro Zoll, typisch 80 Poren pro Zoll, zur Bildung einer 65 Hülle umgeben ist. Die Dicke dieses hautartigen Schaumstoffes 13 beträgt 1 bis 2 mm, bevorzugt 1,5 mm. Dieser hautartige Schaumstoff 13 besteht aus zwei mit-

einander verschweißten Lagen 13', 13", welche an den Schmalseiten entlang des ganzen Umfanges miteinander verschweißt sind, wobei durch die Schweißnaht 14 aus dem luftdurchlässigen Material ein luftundurchlässiges Material gebildet ist. Die Schweißnaht 14 hat somit die Funktion einer Dichtlippe 16.

Die so gebildete Schweißnaht 14 ist höhenmäßig, bezogen auf die Dicke des Filters 4, außermittig angeordnet, und zwar so, daß die Schweißnaht mehr der im C fortsetzt. Die Anordnung ist hierbei so getroffen, daß 10 Einbauzustand des Filters 4 oberen, d. h. gemäß Fig. 3 freiliegenden Oberseite des Filters 4 zugewandt ist.

Durch die vorgeschaltete Partikelfilterschicht 12 wird die Geruchsfilterschicht 11 oder ein anderes alternativ verwendetes Adsorbens vor Feinstaub geschützt. Dieser Feinstaub könnte, wenn er nicht in der vorgeschalteten Partikelfilterschicht 12 abgefangen würde, je nach Größe die Makroporen, die Mesoporen oder die Mikroporen des Adsorbenses verstopfen und die Adsorptionsleistung des Geruchsfilters reduzieren. Die nachgeschaltete Partikelfilterschicht 12' wiederum schützt die nachgeschalteten Baugruppen des Staubsaugers 1 wie beispielweise das Sauggebläse 3, den Motor usw., nicht nur vor Teilen des noch durch den Staubfilterbeutel hindurchtretenden Feinstaubes, sondern auch vor etwaigem Kohlenstaub, der durch Vibration und Verschleiß innerhalb des Geruchsfilters freigesetzt werden kann. Weiter wird durch diese Maßnahme der Verlust an freigesetztem, porösem Material und somit der Verlust an effektiver Filterleistung verhindert. Insofern ist die insbesondere in Fig. 6 dargestellte Ausführungsform die bevorzugte Ausführungsform.

Anhand der Fig. 4 und 5 wird nachstehend die äußere Kontur des Filters 4 näher beschrieben.

Das Filter 4 weist einen im wesentlichen rechteckigen verlaufenden Schmalrandkante G und einem diese Kan- 35 Grundriß auf mit einer Länge x von ca. 150 mm, einer Breite y von ca. 75 mm und einer Dicke z von ca. 20 mm.

Entsprechend der zuvor beschriebenen Aufnahme 6 ist die Grundrißkontur des Filters 4 entsprechend aus einer Rechteckform abgewandelt.

Das Filter 4 ist kissenartig kompressibel ausgebildet und weist an einer Längsseite B' eine konkav verlaufende Gestaltung auf. Der Radius e der so gebildeten kreisabschnittsförmigen Linie beträgt in dem gezeigten Ausführungsbeispiel ca. 300 mm.

In Fig. 4 ist zur Erläuterung des Konturverlaufes in strichpunktierter Linienart ein den wesentlichen Grundriß wiedergebendes Rechteck dargestellt. Die konkave Ausgestaltung der Längsseite B' ist so gewählt, daß die diese bildende Kreisabschnittslinie die Längsseite des schen den Schnittpunkten von ca. 90 mm ergibt. Hieraus resultiert eine durch die konkave Ausgestaltung hervorgerufene Einziehung g der Längsseite B' von ca. 3 mm zur ursprünglichen Rechteck-Längsseite. Die Anordnung der konkaven Längsseite B' ist weiter so getroffen, daß diese nicht mittig zur gesamten Längserstreckung des Filters 4 sondern mehr einem konvex gekrümmten Eckbereich A' zugeordnet ist.

Dieser konvex gekrümmte Eckbereich A' schließt sich unmittelbar an die konkav gekrümmte Längsseite B' an, dies in dem gezeigten Ausführungsbeispiel mit einem Radius d von ca. 12 mm.

Dieser konvex gekrümmte Eckbereich A' läuft aus in eine Schmalseite des Hilfsrechteckes, von wo aus sich unmittelbar ein weiterer konkav gekrümmter Bereich einer Schmalseite C' erstreckt.

Der diese Krümmungslinie beschreibende Radius f ist in dem gezeigten Ausführungsbeispiel mit ca. 50 mm

bemessen, wobei die Krümmungslinie weiter so angeordnet ist, daß diese eine lichte Weite j von ca. 30 mm besitzt. Anfangs- und Endpunkt dieser Schmalseite C liegen, bezogen auf die Längserstreckung des Filters 4, nicht auf einer Ebene, sondern sind um ein Maß h von ca. 5 mm versetzt zueinander derart, daß der dem Eckbereich A' abgewandte Endpunkt nach innen, d. h. in Richtung auf einen Flächenmittelpunkt des Filters 4 hin versetzt ist.

Aus den zuvor beschriebenen Ausgestaltungen und 10 schluß entsteht. Abmaßen der Längsseite B' und der Schmalseite C' ergibt sich eine vorragende, nasenartige Ausgestaltung des Eckbereiches A'. Dieser nasenartige Eckbereich A' gibt dem Benutzer eine gute optische Orientierung zum lagerichtigen Einsetzen des Filters 4 in die Aufnahme 6. 15 Weiter sind durch die konkave bzw. durch die konvexe Ausgestaltung der Bereiche die Seitenflächen gegenüber dem geradlinigen, rechtwinkeligen Verlauf über die gleiche Erstreckung vergrößert, was zu einer verbesserten Abdichtung bei in der Aufnahme 6 eingesetz- 20 tem Filter 4 in diesen Bereichen führt. Wie bereits erwähnt, ist das Filter 4 mit Bezug zu der Aufnahme 6 mit einem leichten Übermaß von ca. 1-2 mm versehen, so daß sich — bedingt durch die kissenartige Flexibilität die Seitenflächen dichtend an die Längs- und Schmal- 25 randkanten der Aufnahme 6 anschmiegen.

Im Anschluß an den Endpunkt der konkav gekrümmten Schmalseite C' ist ein weiterer schräg nach innen in einem Winkel von etwa 45° verlaufender Eckbereich D' angeordnet. Dieser geht über in eine geradlinig verlau- 30 fende, der Längsseite B' gegenüberliegende Längsseite E'. Die Kontur des Filter-Grundrisses wird geschlossen von einem weiteren, einen Radius k von ca. 25 mm aufweisenden Eckbereich F', einer hieran anschließenden geradlinig verlaufenden Schmalseite G' und einer zwischen dieser Schmalseite G' und dem dem Eckbereich A' abgewandten Ende der konkaven Längsseite B' erstreckenden, in einem Winkel Alpha von ca. 15° verlaufenden Seite H'. Der Übergang von Schmalseite G' zur Seite H' ist abgerundet ausgebildet, mit einem Radius 1 40 von ca. 20 mm.

In dem von dem schräg verlaufenden Eckbereich D' freigeschnittenen Bereich ist eine flexible Handhabungslasche 15 vorgesehen, welche im Grundriß einem rechtwinkligen Dreieck annähernd ausgebildet ist. Die- 45 se Handhabungslasche 15 ist höhenmäßig im Bereich der Schweißnaht 14 angeordnet und ist gebildet durch die beiden miteinander verschweißten Lagen 13' und 13" des hautartigen Schaumstoffes 13. Somit ergeben sich die Katheten der Handhabungslasche 15 durch eine 50 Verlängerung der Schweißnähte der Längsseite E' und der Schmalseite C'. Die Hypotenuse, welche eine Knicklinie für die Handhabungslasche 15 bildet, ist durch den Eckbereich D' beschrieben.

Die freikragende Handhabungslasche 15 entspricht in 55 ihrer Länge m etwa der Höhe z des gesamten Filters 4.

Durch die zuvor beschriebene Ausgestaltung und die ausgewählten Abmaße ergibt sich eine Grundrißfläche von ca. 100 cm² und ein Volumen von etwa 230 cm³ bei einem Umfang von ca. 40 cm.

In den Fig. 2 und 3 ist der Einbauzustand dargestellt, wobei das Filter 4 sich unterseitig auf den bodenseitigen Stegen 9 der Aufnahme 6 abstützt. Entlang ihrer Seitenränder schmiegt sich das Filter 4 bedingt durch das beder Aufnahme 6 an, wobei diese Dichtung durch die erwähnte, aus der Schweißnaht 14 gebildeten Dichtlippe 16 unterstützt wird. Die Handhabungslasche 15 ist nach oben hin, d. h. in Richtung auf die Entnahmeöffnung umgeknickt, zur sicheren Ergreifung desselben. Hierdurch bedingt ist ein leichtes Entnehmen des Filters 4 aus der Aufnahme 6 gewährleistet.

Weiter ist bedingt durch die konturgleiche Ausgestaltung von Filter 4 und Aufnahme 6 insbesondere in den Bereichen A bis C bzw. A' bis C' eine ausreichend hohe Abdichtung geschaffen, so daß vor allem im Bereich der Saugöffnung 10 kein saugströmungsmäßiger Kurz-

Wie in Fig. 7 in einer vergrößerten Detaildarstellung gezeigt, wirkt sich die Ausbildung der Schweißnaht 14 als Dichtlippe 16 insofern positiv aus, daß etwaige, durch das kompressible Filter 4 außenwandseitig nicht vollständig abgedichtete Bereiche durch diese Dichtlippe 16 geschlossen werden. Sogenannte Leckluft (in Fig. 7 durch den Pfeil 17 symbolisiert) kann somit nicht an dem Filter 4 vorbeiströmen, sondern wird im Bereich der luftundurchlässigen Dichtlippe 16 in den Filter 4 abgelenkt. Durch die beschriebene höhenmäßig außermittig in Richtung auf die Ansaugseite versetzte Anordnung der Dichtlippe 16 bzw. Schweißnaht 14 muß diese Leckluft 17 noch durch den überwiegenden Teil der Bauhöhe des Filters 4 strömen.

In den Fig. 8-11 sind alternative Ausgestaltungen des mehrschichtigen Aufbaues des Filters 4 gezeigt.

In Fig. 8 ist eine Partikelfilterschicht 12 zwischen zwei Geruchsfilterschichten 11 angeordnet.

In Fig. 9 ist in Strömungsrichtung r der Geruchsfilterschicht 11 lediglich eine als Porenschutzfilter dienende Partikelschicht 12 vorgelagert. Derartige wie in den Fig. 8 und 9 dargestellte Filter 4 können beispielsweise in Staubsaugern zum Einsatz kommen, welche eine in Strömungsrichtung r nachgeschaltete, zusätzliche Partikelfilterschicht zur Absorption von beispielsweise aus der Geruchsfilterschicht austretenden Kohlenstaub auf-

Fig. 10 zeigt eine alternative Ausgestaltung, bei welcher einer Partikelfilterschicht 12' lediglich eine Geruchsfilterschicht 11 vorgelagert ist. Diese Ausgestaltung des Filters 4 kommt beispielsweise bei Staubsaugern zum Einsatz, welche eine in Durchströmrichtung r vor dem Filter 4 geschaltete, zusätzliche Partikelfilterschicht aufweisen, zur Absorption von noch aus dem Staubfilterbeutel austretenden Feinstaubes, welcher den Geruchsfilter zusetzen könnte.

Bei den zwei alternativen Ausführungsformen gemäß den Fig. 9 und 10 erweist sich die beschriebene Grundrißgestaltung des Filters 4 dahingehend weiter als vorteilhaft, daß, bedingt dadurch, daß die Filter 4 strömungsmäßig lagenrichtig eingesetzt werden müssen, die konkaven und konvexen Bereiche eine Einweisfunktion aufweisen. Dem Benutzer wird optisch sofort vermittelt, in welcher Lage das Filter 4 eingesetzt werden muß. So ist einem Vertauschen von Ober- und Unterseite des Filters 4 entgegengewirkt.

Schließlich zeigt Fig. 11 eine weitere alternative Ausgestaltung, bei welcher die Schaumstofflage 13' anströmseitig die Funktion eines Porenschutzfilters 12 und 60 abströmseitig die Schaumstofflage 13" die Funktion eines Rückhaltefilters 12' für adsorptives Material alleine erfüllt. Dies ist durch eine entsprechende Typisierung des hüllenartigen Schaumstoffes realisierbar.

Alle offenbarten Merkmale sind erfindungswesentreits erwähnte Übermaß dichtend an den Randkanten 65 lich. In die Offenbarung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehörigen/beigefügten Prioritätsunterlagen (Abschrift der Voranmeldung) vollinhaltlich mit einbezogen, auch zu dem Zweck,

Merkmale dieser Unterlagen in Ansprüche vorliegender Anmeldung mit aufzunehmen.

Patentansprüche

 Staubsauger (1) mit einem in einem Staubsaugergehäuse (2) angeordneten Sauggebläse (3) und einem vor dem Sauggebläse (3) angeordneten Geruchs- und/oder Partikelfilter (4), wobei in dem Sauggebläse (3) eine im wesentlichen rechteckige 10 Aufnahme (6) für das Filter (4) ausgebildet ist, dadurch gekennzeichnet, daß eine Saugöffnung (10) in der Aufnahme (6) in bezug auf den Grundriß versetzt in Richtung auf eine Längsrandkante (B) und eine Ecke des Rechteckes angeordnet ist, daß 15 die Längsrandkante (B) einen leicht konkaven Verlauf aufweist, daß das Filter (4) kissenartig flexibel ausgebildet ist und insbesondere in bezug auf die konkave Randkante (B) mit einem leichten Übermaß, bevorzugt in geometrischer Anpassung an 20 den Verlauf der Randkante (B), ausgebildet ist. 2. Staubsauger nach Anspruch 1 oder insbesondere danach, dadurch gekennzeichnet, daß die Aufnahme (6) im Anschluß an die konkav verlaufende Randkante (B) hinsichtlich der Ecke, zu welcher die 25 Saugöffnung (10) versetzt angeordnet ist, in eine konvex gerundete Eckausbildung (A) übergeht, welche hinsichtlich einer Schmalseite sich in eine weitere konkav verlaufende Randkante (C) fortsetzt, wobei die Eckausbildung (A) einen größeren 30 Abstand (a) zum Saugöffnungs-Mittelpunkt (M) aufweist als die konkaven Randkanten (B, C) und daß das Filter (4) in Anpassung an den Verlauf der Randkante (C) in diesem Bereich gleichfalls von einer konvexen Eckausbildung (A') in eine konkave 35 Randausbildung (C') übergeht.

3. Geruchs- und/oder Partikelfilter (4) für einen Staubsauger (1), insbesondere für einen Staubsauger (1) nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß das Filter (4) bei insgesamt im wesentlichen rechteckigem Grundriß an einer der Längsseiten (B') und/oder einer der Schmalseiten (C') eine konkav verlaufende Gestaltung aufweist.

4. Geruchs- und/oder Partikelfilter nach Anspruch
3 oder insbesondere danach, dadurch gekennzeichnet, daß ein Eckbereich (A') des Filters (4) bei insgesamt konvex gekrümmter Gestaltung vorragend
bezüglich eines zweiten schmalseitig zugeordneten
Eckbereiches (D') ausgebildet ist.

5. Geruchs- und/oder Partikelfilter nach einem 50 oder mehreren der Ansprüche 3 bis 4 oder insbesondere danach, dadurch gekennzeichnet, daß das Filter (4) eine Handhabungslasche (15) aufweist.

6. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3-5 oder insbeson- 55 dere danach, dadurch gekennzeichnet, daß die Handhabungslasche (15) freikragend an einem Eckbereich (D') des Filters (4) angeordnet ist.

7. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3-6 oder insbesondere danach, dadurch gekennzeichnet, daß die Handhabungslasche (15) in ihrer Länge (m) etwa einer Höhe (z) des Filters (4) entspricht.

8. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3-7 oder insbeson- 65 dere danach, dadurch gekennzeichnet, daß das Filter (4) im Hinblick auf eine Geruchsfilterung eine Geruchsfilterschicht (11) aufweist.

9. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3-8 oder insbesondere danach, dadurch gekennzeichnet, daß die Geruchsfilterschicht (11) aus einem Schaumstoffgerüst mit eingelagerter Aktivkohle besteht.

10. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3-9 oder insbesondere danach, dadurch gekennzeichnet, daß das Filter (4) im Hinblick auf eine Partikelfilterung eine Partikelfilterschicht (12) aufweist.

11. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3-10 oder insbesondere danach, dadurch gekennzeichnet, daß die Partikelfilterschicht (12) aus einem Vlies besteht.

12. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3-11 oder insbesondere danach, dadurch gekennzeichnet, daß die Partikelfilterschicht (12) in Durchströmrichtung (r) vor der Geruchsfilterschicht (11) angeordnet ist.

13. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3—12 oder insbesondere danach, dadurch gekennzeichnet, daß die Geruchsfilterschicht (11) in Durchströmrichtung (r) vor der Partikelfilterschicht (12) angeordnet ist.

14. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3—13 oder insbesondere danach, dadurch gekennzeichnet, daß die Partikelfilterschicht (12) zwischen zwei Geruchsfüterschichten (11) angeordnet ist.

15. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3-14 oder insbesondere danach, dadurch gekennzeichnet, daß die Geruchsfilterschicht (11) zwischen zwei Partikelfilterschichten (12) angeordnet ist.

16. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3-15 oder insbesondere danach, dadurch gekennzeichnet, daß das Filter (4) von einem hautartigen Schaumstoff (13) umgeben ist.

17. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3—16 oder insbesondere danach, dadurch gekennzeichnet, daß der Schaumstoff (13) aus zwei miteinander verschweißten Lagen (13', 13") besteht mit einer höhenmäßig außermittig angeordneten Schweißnaht (14).

18. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3-17 oder insbesondere danach, dadurch gekennzeichnet, daß die Schweißnaht (14) eine luftundurchlässige Dichtlippe (16) ausbildet.

19. Geruchs- und/oder Partikelfilter nach einem oder mehreren der Ansprüche 3—18 oder insbesondere danach, dadurch gekennzeichnet, daß die Handhabungslasche (15) im Bereich der Schweißnaht (14) angeordnet ist.

Hierzu 4 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.6: Offenlegungstag: DE 196 50 749 A1 A 47 L 5/00

2. Oktober 1997

Nummer: Int. Cl.⁶: Offenlegungstag: DE 196 50 749 A1 A 47 L 5/00

2. Oktober 1997

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 196 50 749 A1 A 47 L 5/00**2. Oktober 1997

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 196 50 749 A1 A 47 L 5/00

2. Oktober 1997

702 040/723