Assignment # 04 Aimen Yaseen

Question 2 - TIME COMPLEXITY (Each Cart has 1 point) (Estimated Time 100 mins)

If you are having any difficulty in finding out the complexity of the codes - <u>read this document</u>. It has many practice problems regarding time complexity with their solution mentioned in the comments. Also if you need further explanation(of the above sample practice problems), please watch my following <u>VIDEO-LECTURE</u>, which I delivered in my <u>discrete mathematics for the</u>

(35°2 = 70 Points)

```
2) What is the algorithm's complexity
  What is the algorithm's complexity of the following
                                                                                                                          of the following piece of code
  piece of code - Sample Solution is in RED
                                                                                                                                                        # 0(1)
                                                                                                                          int Sum=0;
                                                                                                                          for(int i=0; i<N; i++) # ( (+ (+ ··· + ( ) = O(N )
  int Sum=0.
                                         // O(1) Time
  for(int i=0; i<N; i++) //(1+1+1+...+1 - - - N Times =O(N)
                                                                                                                                                       O(N)
                                                                                                                           Sum++;
    for(int j=0; j<N; j++) Sum++;
                                                                                                                          for(int j=0; j<N; j++) # O(N)
    // (1+1+1+...+1) + (1+1 +... +1)+... + (1+1 +... +1) added N times
                                                                                                                           Sum++;
                               + N
                                                     +...+
                                                                                                                                           TN= [O(N)
  Overall Complexity: O(1) + O(N) + O(N^2) + O(N^2) = O(N^2)
  3)
                                                                                                                         What is the algorithm's complexity of
  What is the algorithm's complexity of the following
                                                                                                                         the following piece of code
  piece of code
                                                                                                                                                        40(1)
                                                                                                                         int Sum=0:
                                                0(1)
                                                                                                                          for(int i=0; i<N; i++) # O(N)
  int Sum=0:
                                                # O(N)
                                                                                                                           Sum++;
   for(int i=0; i<N; i++)
                                                  # N+N+ ... +N = N.N = O()
                                                                                                                         for(int j=0; j<N; j++) # O(N)
   for(int j=0; j<N; j++)
      for(int k=0; k<N; k++) # N+N+...+N = N2. N = O(N3) Sum++;
                                                                                                                         for(int k=0; k<N; k++) # D(N)
           Sum++:
                                                                                                                           Sum++;
                                                                                                                         for(int m=0; m<N; m++) # O(N)
                                               # O(N)
 for(int i=0; i<N; i++)
  for(int n=0; n<N; n++) # O(N)
      for(int k=0; k<N; k++) # 0 (N5)
                                                                                                                          Sum++;
                                                                                                                         for(int p=0; p<N; p++) # O(N)
         Sum++;
    TH = 2[O(N)+O(N2)+O(N3)] = [O(N3)
                                                                                                                            TN = ODG O(6N) = O(N)
                                            0(1)
                                                                                                                         int Sum=0;
int Sum=0:
                                            # O(N) N.N Y
                                                                                                                         for(int i=0; i<N; i+=2) # O(N/2)
                                                                                                                          for(int j=0; j<i; j+=2) # 1+2+3+-.+N<sub>2</sub> = N<sup>2</sup>/N
for(int i=0; i<N; i++)
 for(int j=0; j<i; j++) # 1+2+3+...+N= 0(N-)
                                                                                                                              for(int k=0; k<j; k+=2)
     for(Int k=0; k<j; k++) # 1+2+3+...+N= N.N+
                                                                       O(N3)
   Tn= O(N) + O(N2) + O(N3) = O(N3) Tn = O(N/2)+O(N2/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0(N3/4)+0
```

```
int Sum=0; # 0(1)
int Sum=0;
                                                for(int i=1; i<N; i*=2) # Leg2N
for(int i=1; i<N; i'=2) # log 2N
for(int j=1; j<N; j=2) # N+N+...+N = Nlog N
                                                                                      O(108"N)
                                                Sum++:
                                                                  Migor #
                                                for(int j=1; j<N; j*=2)
                                                                     TN = O(2log2N) =
 TN= 0(20g2N)+ 0: to (NLOgN) = (O(NLOgN) SUM++;
                                                for(int i=1; i<=N'N; i+=2) # N 1/2
for(int i=1; i<=N*N; i+=2) # N2/2
                                                 Sum++;
  for(int j=1; j<N'N; j'=2) # log N'= (2 log N)"
                                                for(int j=1; j<N*N; j*=2) # log_N = a log N
   TN= N3/2+2N3/2 log, N = O(N2 log, N)
                                                    sum++; TN = N2/2+ 2 LogN = 0(N2)
                                                for(int i=1; i<=N'N; i'=2) #1092 N2 = 2 logN
for(int i=1; i<=N*N; i*=2) # Log N 1
  for(int j=1; j<N*N; j=2) # (log_N2+ log_N++
                                                for(int j=1; j<N*N; j*=2) # log_N = 2 log N
                          -4 log N2) = log N
                                                    TN = 4 LOg N = (0 (Log N)
  Tw = 2 Log N + 2 Log 2 N = [0 ( log 2 N)
13
                                                 int Sum=0;
int Sum=0;
                                                 for(int i=1; i<=N; i*=2) # Log, N
 for(int i=1; ix=N; i*=2) # log_N
 for(int j=1; j =N: j=2) # Jog N . log, N = log Nsum++;
                                                 for(int j=1; j<=N; j*=2) # 109, N
   for(int k=1; k<=N; k'=2) # log N(log N) =
                                                     Sum++;
                                                for(int k=1; k<=N; k*=2) # Log2N
     Sum++;
  Tn = 0(logN)+0(20gN)+0(3logN) sum++; 3 logN = [0(logN)] = [0(logN)
                                                 BE CAREFUL GEOMETRIC SERIES
      int sum,i,j;
                                                 int sum,i,j;
      sum = 0;
      for (i=1,i<n,i=i*2) # 1082 N
                                                 sum = 0;
                                                 for (i=1; i<n; i=i*2) # log N
       for (1=0; |<n;++|) # N log 2 N
                                                  for (j=0; j <i; ++j) # 1+2+4+8+ ... N \( \) 2N-1
           sum++;
                                                      sum++;
   Tw = log, N + N log, N = (0(Nlog, N)),
                                                    Tn = 0(log 2 N)+0(2N-1) = [0(N)
```

```
int sum,i,j;
BE CAREFUL GEOMETRIC SERIES
                                                     sum = 0;
int sum.i.i;
                                                    for (i=1; i<n, i=i*4) # 0(Log 4 n)
sum = 0;
for (i=1; i<n; i=i'5) # 0(log, n)
                                                      for (j=0; j<n; j+=3) # 1200 1691 27 420
  for (j=0; |<i; j+=2) # (1+5相+--+N)公生 200
      sum++;
                                                       TN= 0(20821)+0(1/3/20821)
   Tn = 0(00gsn)+0(N) = (0(N)
                                                    20 What will be the output(the value of Sum) of the
19 What will be the output (the value of Sum) of the
                                                    program asymptotically in BIG-O notation:
 program asymptotically in BIG-O notation, I am
 not asking here the complexity of loop rather the
                                                    int Sum = 0:
 asymptotic bound on the value of Sum:
                                                    for(int i=1; i<=n; i'=2) # Log 2 n
                                                     Sum+=i; # 1+2+4+8+16+ -+ 1 6 2N
 int Sum = 0;
 for(int i=1; i<=n; i+=1) #0(n)
 Sum+=i; # 1+2+3+4+ ... +n = 0(n3)
                                                    cout<<Sum<<endl,
                                                        Tsum = 0(2n) = 0(n)
                  Tsum = (0(n2)
 cout<<Sum<<endl;
                                                    22 What is the time complexity of the
 21 What is the time complexity of the algorithm:
                                                    algorithm:
int Sum = 0;
                                                    int Sum = 0; 11- 0(1)
for(int i=1; i<=n; i+=1) # O(N)
                                                    for(int i=1; i<n; i'=2) #0(log, N)
 for(int j=1; j<=i; j++) # (+2+3+ -- +N = O(N2)
                                                     for(int j=1; j<=i; j++) # 1+2+4+ ··· + Nと2N
   Sum++;
                                                        Sum++;
                                                                     Tn= 0(Log N) + 0(2N)
= D(N)
cout<<Sum<<endl;
       Tn = O(N) + O(N2) = O(N2)
                                                    cout<<Sum<<endl;
                                                    41 Complexity of primeNumber function.
40 Complexity of primeNumber function.
                                                    int sqrt(int N)
int sqrt(int N)
                                                     for(d=0; d*d<=N; d++){} # N
for(d=0; d*d<=N; d++)( ) # NN
                                                     return d-1; 17 1N-1
return d-1; -> 1N-1 = 1N
                                                    bool primeNumber(int n)
bool primeNumber(int n)
                                                         bool isPrime = true; AN . IN for (int d=2; d <= sqrt(n);++d) = (N)
     bool isPrime = true;
     int lmt = (sqrt(n)), # AN
     for (int d=2; d <= lmt; ++d) # 0 ((N)
```

```
if (n%d==0)
                                                                           return false;
            if (n%d==0)
                   return false;
                                                             return true;
      return true;
                                                               Tn = 10 (N)
23 What is the time complexity of the algorithm:
int f1(int n)
                                                       What is the time complexity of the
                                                        algorithm:
                                                        int f1(int n)
        int K=0;
        for(int j=0; j*j<=n*n; j++) K++; # O(N)
                                                         int K=0; # log 2 N = 1/2 log N

for(int j=1; j*j<=n; j*=2) K++; = log N
        return K >> N
                                                         return K; -> log N
int main()
                                                        int main()
       int Sum = 0, n;
       cin>>n;
       for(int i=1; i<=f1(n); i+=1) # N+N+--+N 2 N.N=N int Sum = 0;
                                                       int n; Log N + Log N + Log N + - + LyN

cin>n; Log N (Log N) = Log^2 N

for(int i=1; i<=f1(n); i+=1)
        for(int j=1; j<=i; j++) Sum++; #
                              1+2+3+-+ +N= N2
       cout<<Sum<<endl;
      TN = 0(N2) + 0(N2) = 0(2N2)
                                                        for(int j=1; j<=i; j++) Sum++; cout<<Sum<<endl; # 7+2+3+---+lcgN= lcg2N
            = [O(N2)
                                                            TN =0(leg 2 N)+0 (leg 2 N) = [0(leg 2 N)
25
                                                        What is the time complexity of the
What is the time complexity of the algorithm:
                                                        algorithm:
int f1(int n)
                                                        int f1(int n)
         int K=0;
 for(int j=1; j*j<=n; j++) # 1
                                                                 int K=0;
                                                         K++;
                                                          K++;
return K'K; JAN. IN = N'
                                                        return K; NN
int main()
                                                        int main()
int Sum = 0;
                                                        int Sum = 0;
int n:
                                                        int n;
cin>>n;
int Terminator = f1(n); (CO)
                                                        cin>>n;
                                                        int Terminator = f1(n); # O(1)
for(Int i=1; K= Terminator; i+=1) -> O(N)
                                                        for(int i=1; i<=Terminator; i+=1) # O(4N)
 for(int j=1; j<=i; j++) # 1+2+3+ ... + N= N2
                                                         for(int j=1; j <= i; j++) # 1+2+3+ ... + 1 = (1) = N
                                                            Sum++;
                                                              TN = O(N) + O(N) = O(N)
        TN = 0(N)+0(N2) = (O(N2)
```

```
cout<<Sum<<endl;
                                               cout<<Sum<<endl;
27
for (i=1;i<n;i=i*4) # 0(log N)
                                               for (i=1;i<n;i=i'4) # logy N
     cout << i;
                                                    cout << i,
                                                    for (j=0;j<i; j=j+2) # (1+4+16+-+ N & 2N)/2
     for (j=0,j<n;j=j+2) #0(N/2 Logy A)
                                                          cout << j;
           cout << j;
                           (NBORN)O
                                                          sum++
           sum++
                                                    cout << sum; Tn = O(LOgN) + O(N/2)
    TN = 0(2094N) + 0(N/2 204N) =
     cout << sum;
                                               for (i=1,i<=n'n'n;++i) # 0(n3)
                     O(N2)
for (i=1;i<=n'n;++i)
                                                   cout << i;
     cout << i;
                                                    Sum=0;
                                                    for (j=1; j<=i; ++j) # 1+2+3+-+n3=0(n6)
      Sum=0;
      for (j=1; j<=i; ++j) # 1+2+3+...+N2 = 0(N
                                                          Sum++:
           Sum++;
                                                          cout << i;
           cout << i;
                                                                 Tn= 0(n3) + 0(n6)
                TN = O(N2) + O(N4)
                                                    cout << Sum;
      cout << Sum;
                                                                     = (0(n6)
                       = (O(N4)
31
                                               for (i=1,ix=n*n*n; i*=2) # 0 (**) Logn3)
( 0 (3 log_n) = 0 (logn)
                    # o(mlogins)
for (i=1;i<=n*n*n; i*=2)
                                                    cout << i;
                     0(3 log, n)=
                                                    Sum=0:
     cout << i;
                                                    for (j=1,j<=n; j++) # Apg
                          O(logn)
     Sum=0;
     for (j=1;j<=i; j++)
                                                          Sum++;
                       1+2+4+8+...+n3 6203
                                                          cout << i;
           Sum++;
           cout << i;
                                                     for (k=1,k<=n; k++)
     cout << Sum;
                                                          Sum++;
      Tn: O(logn) + Bro(2n3)
                                                          cout << i;
                                                                The Octograff octograff
           = (0(n3)
                                                     cout << Sum;
                                                     # O(n Logn)
                                                     # O(nuogn)
                                                     Tn: O(logn) +O(nlogn)+
                                                        = [O(nlogn)
```

```
O(eg, n3) =
                                               for (i=1,i<=n'n'n; i'=2) #
                   # 0(log n 3) =
for (i=1,i<=n'n'n; i'=2)
                                                                       O(Logn)
                            Ollogo)
                                                   cout << i;
    cout << i;
                                                    Sum=0:
     Sum=0;
                                                    for (j=1,j<=i, j++)
                     # 1+2+4+8+ -- +n3
     for (j=1,j<=i; j++)
                             €2n3
                                                         Sum++;
           Sum++:
                                                         cout << i;
           cout << i;
                                                    for (j=1,je=n; j++) # O(n) . O(logn)
     for (j=1,j<=n; j=2) # 0 ( logn). (0 logn)
                         O(login)
                                                          Sum++;
           Sum++;
                                                          cout << i;
           cout << i;
                                                                  T_n = O(\log n) + O(2n3) +
                   Tn = 0(10gn) + 0(an)
                       = [0(n3)] = 10(u0)
                                                                        O(nlogn)
                                                    cout << Sum;
     cout << Sum;
                                                                    =[O(n3)
35-36
                                                                      0(1/3)
                                               for (i=0; i<n; i=i+3)
                       #0(Log, n)
 for (int i=1; i <7 n; i = i * 2)
                                                    cout << i;
      for (j=1;j <= i;j=j*2) # 1+2+4+++++
                                                                  #an. logn)
                                                    for (j=1; j<n; j=j*3)
                             login =
    In = 0((legn)+0(1eg2n)0(leg2n)
                                                          cout << j;
                                                          sum++
                                                    for (k=1,k<n,k=k-3) # $0 (n. Log3n)
     for (1=1:1 <=1:1=1:2) # O(eng 2n)
                                                          cout << j;
                                                          sum++
for (int i=1; i <= n; i = i * 2)
     for (|=1;| <=1;|=| 2) # O( log 2)
                                                    cout << sum;
                                                           Tn= 0(n13) +0(nkg3)
     Tn = O(log'n) + O(log'n) (Ologin)
                                                                 +0(nlg3n)
                                                               = O(nlogn
```

```
38
for (inti=1; i <= n; i=i*2) # O(logn)
                                                 for (I=0; Kn; I=I+3) # O(n/3)
     for (j=1;j<=1;j=j*2) # O(lcon).
                                                       cout << i;
                                                       for (j=1; j<n; j=j*3) # O(nlog2)
                              0(eogn) =
                              O(eog2n)
                                                 for (k=1;k<n;k=k*3) # 0 ( Log 3 )
for(int i=0; I<=N; I++) # O(n)
                                                              Tn = O(n/3) + O(n\log_3 n)
+ O(\log_3 n)
= O(n\log_3 n)
                                                       cout << j;
Sum++;
       Tn = O(logn) + O(log2n) + O(n)
                                                       sum++
            = (O(n)
                                                  cout << sum;
```

40. Challenge: Make a question of your own and ask your fellows (on whatsapp group, what is the time complexity of the problem, of course make that question which you know the answer of))