DMA

1. Vlastnosti celých čísel, euklidův algoritmus, binární relace, matematická indukce, rekurzivní vztahy

Vlastnosti celých čísel

- ullet celá čísla Z se skládají z přirozených čísel, nuly a záporných celých čísel
- množina je uzavřena na operaci sčítání, odčítání a násobení

Dělitelnost

Definice: Nechť $a,b \in Z$. Řekneme, že a dělí b, značeno a|b, jestliže existuje $k \in Z$ takové, že $b = a \cdot k$. V takovém případě říkáme, že a je faktor b a že b je násobek a. Také říkáme, že b je dělitelné číslem a. Pokud toto není pravda, tak píšeme $a \nmid b$. Transitivita, pokud a|b a b|c, tak a|c.

- Číslo $d \in N$ je **společný dělitel** (common divisor) čísel a, b, jestliže $d \mid a$ a $d \mid b$.
- největší společný dělitel (greatest common divisor), značeno gcd(a, b) je největší prvek množiny jejich společných dělitelů, pokud je alespoň jedno z a, b nenulové.
- Číslo $d \in N$ je **společný násobek** (common multiple) čísel a, b, jestliže a|d a b|d.
- nejmenší společný násobek (least common multiple), značeno lcm(a, b) je nejmenší prvek množiny jejich společných násobků, pokud jsou obě
 a,b nenulové.

```
• lcm(a,0)=lcm(0,b)=0

• gcd(0,0)=0

• lcm(a,b)\cdot gcd(a,b)=|a|\cdot |b|

• Čísla a,b\in Z jsou nesoudělná, jestliže gcd(a,b)=1
```

Prvočíslo

- je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy 1 není prvočíslo)
- Přirozená čísla různá od jedné, která nejsou prvočísla, se nazývají složená čísla.

Počítání modulo

• **Definice** Nechť $n \in N$. Řekneme, že čísla $a, b \in Z$ jsou **kongruentní modulo** n, značeno a \equiv b (mod n), jestliže n|(a-b).

Nechť $n \in N$. Pro čísla a, $b \in Z$ jsou následující podmínky ekvivalentní:

```
a ≡ b( mod n)
existuje k ∈ Z takové, že a = b + k · n
a mod n = b mod n, tj. jsou si rovny zbytky po dělení číslem n.
```

Vlastnosti

Nechť $n \in N$, uvažujme $a, b, u, v \in Z$ takové, že $a \equiv u \mod n$ a $b \equiv v \mod n$:

```
• a+b\equiv u+v\mod n
• a-b\equiv u-v\mod n
• ab\equiv uv\mod n
```

Inverzní číslo

- Řekneme, že $b \in Z$ je inverzní číslo k $a \mod n$, $a \in Z$, jestliže $a * b \equiv 1 \pmod n$.
- Převede libovolné číslo na 1 ve světě Z_n.
- Existuje když gcd(a, n) = 1.
- Výpočet pomocí Euklidova algoritmu.

Eukleidův algoritmus

Lze jím vypočítat největšího společného dělitele dvou přirozených čísel.

- vychází z lemmatu: Nechť $a,b \in N$, nechť $q,r \in N_0$ splňují $a = q \cdot b + r$ a $0 \le r < b$. Pak platí následující: $d \in N$ je společný dělitel a,b právě tehdy, když je to společný dělitel b,r.
- gcd(a,b) = gcd(b,r)
- opakovaně hledáme gcd pro dvojici b, r místo a, b
- rozšířená verze počítá i s indexy jak se dostat k gcd (bezout)

Bezoutova identita

- gcd(a,b) lze zapsat jako gcd(a,b) = a*k+b*j, kde $k,j \in Z$
- Lze použít pro řešení diofantických rovnic (ax+by=c, kde $a,b,c\in Z$) nebo hledání inverzního čísla

Malá fermatova věta

```
pro každé prvočíslo p a každé celé číslo a platí a^p \equiv a \pmod p a^{p-1} \equiv 1 \pmod p
```

Binární relace

Definice: Nechť A,B jsou množiny. Libovolná podmnožina $R\subseteq A\times B$ se nazývá relace z A do B. Jestliže $(a,b)\in R$, pak to značíme aRb a řekneme, že a je v relaci s b vzhledem k R. Jestliže $(a,b)\notin R$, pak řekneme, že a není v relaci s b vzhledem k R.

Druhy relací

- R je reflexivní, jestliže pro všechna a ∈ A platí aRa. např. "je stejný"
- R je **symetrická**, jestliže pro všechna a, b \in A platí ($aRb \Rightarrow bRa$). Důkaz -> prohodit a a b.
- R je antisymetrická, jestliže pro všechna a, b ∈ A platí ([aRb ∧ bRa] ⇒ a = b). Důkaz -> do aRb dosadíme bRa, dostaneme podmínku a tu vložíme do bRa, kde zjistíme, co musí být a. Tím dokážeme určit jestli a = b.
- R je **tranzitivní**, jestliže pro všechna a, b, c \in A platí ($[aRb \land bRc] \Rightarrow aRc$). Důkaz -> do bRc dosadíme aRb, a to dosadíme do aRc.

Ekvivalence

Definice: Nechť R je relace na nějaké množině A. Řekneme, že R je ekvivalence, jestliže je reflexivní, symetrická a tranzitivní.

0.2.1.1 Třída ekvivalence

Každá ekvivalence rozdělí množinu A na systém disjunktních množin, které pak nazýváme třídy ekvivalence.

Definice: Nechť R je relace ekvivalence na nějaké množině A. Pro a \in A definujeme třídu ekvivalence prvku a (equivalence class of a) vzhledem k R jako [a] R = $b \in A$; aRb.

Částečné uspořádání

Definice: Nechť R je relace na nějaké množině A. Řekneme, že R je částečné uspořádání, jestliže je **reflexivní, antisymetrická a tranzitivní**. V tom případě řekneme, že dvojice (A, R) je částečně uspořádaná množina.

Hasseův diagram

- Uspořádané množiny můžeme zakreslit pomocí Hasseova diagramu.
- vrcholy představují prvky množiny
- hrana mezi vrcholy (a, b) nám říká, že a < b a zároveň neexistuje c takové, že a < c < b. Tedy mezi prvky a a b už žádný jiný prvek není. Přitom musí platit, že v grafu je vrchol a níže než vrchol b.</p>
- největší prvek prvek do, kterého se dá dostat ze všech prvků a nemá prvek nad sebou (nemusí existovat)
- maximum prvek, který nemá prvek nad sebou
- nejmenší prvek prvek ze, kterého všechno vychází a nemá prvek pod sebou (nemusí existovat)
- minimum prvek, který nemá prvek pod sebou
- ullet linearizace částeč. uspoř. Hessův diagram od minima, po úrovních zapsat na řádek, za sebe. Rozdělovací symbol $<_L$.

Matematická indukce

Matematická indukce je metoda dokazování matematických vět a tvrzení, která se používá, pokud chceme ukázat, že dané tvrzení platí pro všechna celá čísla $n \in Z$ počínající nějakým n_0 .

Typický důkaz indukcí se skládá ze dvou kroků:

- 1. **Základní krok**: V tomto kroku se dokáže, že tvrzení platí pro nejmenší číslo n_0 , nikoliv pro n=1, pro které nemusí vždy obecně platit.
- 2. *Indukční krok*: Ukážeme, že *pokud* tvrzení platí pro n=m (*indukční předpoklad**), pak* platí i pro n=m+1.

Princip matematické indukce pak již říká, že tvrzení platí pro každé $n \ge n_0$.

Často se v prvním kroku dokazuje, že tvrzení platí pro n=0.

Rozlišuje se slabý a silný princip matematické indukce: slabý princip v indukčním kroku předpokládá, že tvrzení platí pro n=m, zatímco silný předpokládá, že tvrzení platí pro všechna $n=n_0,n_0+1,\ldots,m$. Slabý a silný princip matematické indukce jsou ekvivalentní (tj. oběma lze dokázat stejnou množinu tvrzení).

Rekurzivní vztahy

Definice: Rekurentní vztah či rekurzivní vztah pro posloupnost $\{a_k\}$ je libovolná rovnice typu $F(a_n,a_{n-1},a_{n-2},\ldots,a_0)=0$, kde F je nějaká funkce. **Např.** podstata problému Hanojských věží se dá vyjádřit vztahem $H_n-2\cdot H_{n-1}-1=0$

Lineární rekurentní rovnice

Lineární rekurentní rovnice, popřípadě lineární rekursivní rovnice řádu $k \in \mathbb{N}_0$ je libovolná rovnice ve tvaru

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \cdots + c_2(n)a_{n+2} + c_1(n)a_{n+1} + c_0(n)a_n = b_n$$
 pro všechna $n \ge n_0$,

kde $n_0 \in \mathbb{Z}$, $c_i(n)$ pro $i = \{0, \dots, k-1\}$ (tzv. **koeficienty** rovnice) jsou nějaké funkce $\mathbb{Z} \mapsto \mathbb{R}$, přičemž $c_0(n)$ není identicky nulová funkce, a $\{b_n\}_{n=n_0}^{\infty}$ (tzv. **pravá strana rovnice**) je pevně zvolená posloupnost reálných čísel.

Jestliže $b_n = 0$ pro všechna $n \ge n_0$, pak se příslušná rovnice nazývá homogenní.

- Základní vlastnosti jejich množina řešení tvoří vektorový prostor dimenze rovné řádu rovnice, takže řešení lze generovat pomocí vhodné báze
- jak najít vhodnou bázi pomocí kořenů charakteristického polynomu

Řešení

Nechť je dána lineární rekurentní rovnice

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \ldots + c_1(n)a_{n+1} + c_0(n)a_n = b_n$$
 pro všechna $n \ge n_0$.

Jako její **řešení** označíme libovolnou posloupnost $\{a_n\}_{n=n_0}^{\infty}$ takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n pravdivý výrok.

viz příklad 5

Charakteristická rovnice

Definice

Nechť je dána lineární rekurentní rovnice s konstantními koeficienty

$$a_{n+k} + c_{k-1}a_{n+k-1} + \ldots + c_1a_{n+1} + c_0a_n = b_n$$
 pro všechna $n \ge n_0$.

Její charakteristický polynom (characteristic polynomial) je definován jako polynom

$$p(\lambda) = \lambda^k + c_{k-1}\lambda^{k-1} + \ldots + c_1\lambda + c_0.$$

Kořeny charakteristického polynomu se nazývají charakteristická čísla, popřípadě vlastní čísla dané rovnice (characteristic numbers/roots or eigenvalues).

K získání charakteristických čísel potřebujeme vyřešit rovnici $p(\lambda) = \lambda^k + c_{k-1}\lambda^{k-1} + \ldots + c_1\lambda + c_0 = 0$, které se také říká charakteristická rovnice.

Příklady

1. Chceme najít gcd(408, 108)

 $408 = 3 \cdot 108 + 84 (408 \mod 108 = 84)$, proto gcd(408, 108) = gcd(108, 84).

 $108 = 1 \cdot 84 + 24$, proto gcd(408, 108) = gcd(108, 84) = gcd(84, 24).

 $84 = 3 \cdot 24 + 12$, proto gcd(408, 108) = gcd(108, 84) = gcd(84, 24) = gcd(24, 12).

 $24 = 2 \cdot 12$, proto gcd(408, 108) = gcd(108, 84) = gcd(84, 24) = gcd(24, 12) = gcd(12, 0) = 12

Příklad 5b.b: Nechť $A = \mathbb{N}$. Uvažujme relaci R na A danou následující podmínkou: $(a, b) \in R$ právě tehdy, když existuje $k \in \mathbb{N}$ splňující $b = a^k$. Jaké má vlastnosti?

Nejprve se ujistíme, že definici dobře rozumíme. Jak jsme již diskutovali v příkladě 5a.h, to k je individuální pro každý testovací pár (a,b). Takže třeba víme, že $(3,9) \in R$, protože existuje $k=2 \in \mathbb{N}$ splňující $8=3^2$, a také $(2,16) \in R$, to má zase své $k=4 \in \mathbb{N}$ splňující $16=2^4$. Naopak $(4,2) \notin R$, protože nenajdeme $k \in \mathbb{N}$ tak, aby platilo $2=4^k$ (sice najdeme $k=\frac{1}{2}$, ale to není z \mathbb{N}). Relaci už rozumíme, podívejme se na vlastnosti.

R: Uvažujme nějaké $a \in \mathbb{N}$. Aby byla relace reflexivní, muselo by platit $(a, a) \in R$, tedy $a = a^k$ pro nějaké $k \in \mathbb{N}$. To umíme zařídit.

Odpověď: R je reflexivní, protože pro každé $a \in \mathbb{N}$ existuje $k = 1 \in \mathbb{N}$ splňující $a = a^1$, tedy $(\underline{a}, \underline{a}) \in R$.

S: Uvažujme nějaká čísla $a,b \in \mathbb{N}$. Symetrie vyžaduje, aby v případě, že splňují $(a,b) \in R$, platilo nutně i $(b,a) \in R$.

Podmínka $(a,b) \in R$ znamená, že $b=a^k$ pro nějaké $k \in \mathbb{N}$. Potřebujeme z toho nějakým způsobem odvodit, že pak $a=b^l$ pro nějaké $l \in \mathbb{N}$ (musíme zvolit jiné písmeno, protože dvojice (b,a) má právo na svůj vlastní exponent). Z dané rovnice $b=a^k$ hravě odvodíme $a=b^{1/k}$, takže bychom museli mít $l=\frac{1}{k}$, ale pak nevypadá nadějně, že by platilo $l \in \mathbb{N}$. To nás inspiruje k nalezení protipříkladu.

Odpověď: S není symetrická, protože dvojice $a=2,\ b=4$ splňuje $4=2^2$ neboli $(2,4)\in R$, ale nesplňuje $(4,2)\in R$.

A: Antisymetrie vyžaduje, aby pro $a,b \in \mathbb{N}$ platilo, že když $b=a^k$ a $a=b^l$ pro nějaká $k,j \in \mathbb{N}$, pak nutně a=b. Všimněte si, že jsme při překládání definice do naší situace každé z dvojic $(a,b) \in R$, $(b,a) \in R$ dali možnost mít svůj vlastní exponent. Pokud bychom v obou případech použili k, tak by byl důkaz špatně, protože by nevyčerpal všechny možné případy. Zpět k otázce, je splněna? Poslechneme radu a rovnou začneme psát důkaz, třeba to vyjde.

Vezměme <u>libovolné $a,b\in\mathbb{N}$ </u> takové, že $\underline{(a,b)\in R}$ a $\underline{(b,a)\in R}$. Pak pro nějaká $k,l\in\mathbb{N}$ platí $b=a^k$ a $a=b^l$. Dosazením první rovnice do druhé dostaneme $a=a^{kl}$. Toto je pro $a\in\mathbb{N}$ možné jedině tehdy, když kl=1. Toto je zase pro $k,l\in\mathbb{N}$ možné jedině tehdy, když k=l=1. Dostáváme proto $\underline{b}=\underline{a}^1=\underline{a}$. Ukázali jsme, že R je antisymetrická.

Poznámka: Pokud nám důkaz vznikne za pochodu, obvykle zahrnuje i rozličné pomocné úvahy. Bývá dobré pak pro čtenáře zvýraznit, která místa tvoří důkaz samotný.

Poznámka: Šel by i jiný důkaz. Můžeme si všimnout, že pro $a,k\in\mathbb{N}$ platí $a^k\geq a$. Pro dvojici $(a,b)\in R$ proto platí $b\geq a$. Z předpokladů $[(a,b)\in R\wedge (b,a)\in R]$ tak dostáváme $[b\geq a\wedge a\geq b]$, odkud hned máme a=b.

T: Mějme $a,b,c\in\mathbb{N}$. Tranzitivita vyžaduje, aby v případě, že $b=a^k$ a $c=b^l$ pro nějaká $k,l\in\mathbb{N}$, také platilo, že $c=a^m$ pro nějaké $m\in\mathbb{N}$.

Tradiční přístup je eliminovat z daných rovnic b, což se snadno povede dosazením první rovnice do druhé. Dostáváme $c = (a^k)^l$, což vypadá téměř jako to, co chceme dokázat.

Odpověď: R je tranzitivní: Vezměme <u>libovolné $a,b,c\in\mathbb{N}$ </u> a předpokládejme, že $(a,b)\in R$ a $(b,a)\in R$. To znamená, že existují $k,l\in\mathbb{N}$ splňující $b=a^k$ a $c=b^l$. Dosazením získáme $c=a^{kl}$ a také platí $kl\in\mathbb{N}$, proto dle definice $(a,c)\in R$.

2

3. Relace ≤ je uspořádání na přirozených, celých, racionálních i reálných číslech.

Relace ⊆ je uspořádání na třídě všech množin (na univerzální třídě).

Relace dělitelnosti | (a dělí b) je uspořádáním na přirozených číslech

Relace "Být potomkem" je uspořádáním na množině osob.

4. Vyřešte homogenní lineární rekurentní rovnici $F_n=F_{n-1}+F_{n-2}$, $n\geq 2$.

Nejdříve si přepíšeme indexy, aby byl nejnižší n. To si také můžeme představit jako substituci n=m+2. Dostáváme $F_{m+2}=F_{m+1}+F_m$.

Nezapomeneme na podmínku, do které také substituujeme za n: $m+2\geq 2$, neboli $m\geq 0$.

Nyní přepíšeme rovnici tak, aby na pravé straně byla 0, tedy na $F_{m+2}-F_{m+1}-F_m=0$.

Dosadíme λ^i za každé F_{m+i} a vyřešíme kvadratickou rovnici.

$$\lambda^2 - \lambda - 1 = 0$$

$$\lambda_1=rac{1+\sqrt{5}}{2}$$
 , $\lambda_2=rac{1-\sqrt{5}}{2}$

Dostáváme řešení $F_n=u\frac{1+\sqrt{5}}{2}+v\frac{1-\sqrt{5}}{2},\,n\geq 0.$ (kořeny na n ?)

5. Vyřešte homogenní lineární rekurentní rovnici $a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 0, n \ge 1.$

Znovu sestrojíme charakteristický polynom: $\lambda^3 - 3\lambda^2 + 3\lambda - 1 = 0$.

Charakteristickými čísly jsou $\lambda_1 = \lambda_2 = \lambda_3 = 1$.

Protože je násobnost kořene rovna 3, nebude řešením $a_n = u \cdot 1^n$, ale

$$a_n=u\cdot (1^n)+v\cdot (n\cdot 1^n)+w\cdot (n^2\cdot 1^n)=u+v\cdot n+w\cdot n^2$$
 , $n\geq 1$.

6. Vyřešte homogenní lineární rekurentní rovnici $a_{n+2}-2a_{n+1}-3a_n=-9n\cdot 2^n,\, n\geq 0.$

Zjistíme charakteristická čísla pro homogenní rovnici (položíme rovno nule):

$$\lambda^2-2\lambda-3=0
ightarrow \lambda_1=-1, \lambda_2=3.$$

Tím pádem je homogenním řešením $a_{h,n} = u \cdot (-1)^n + v \cdot 3^n$, $n \ge 0$.

Partikulární řešení zjistíme tak, že odhadneme pravou stranu přes polynom.

Protože je na pravé straně $-9n \cdot 2^n$, odhadneme lineární polynom $a_n = (An + B) \cdot 2^n$.

Kdyby ovšem na pravé straně bylo $-9n \cdot 3^n$, tak musíme odhadovat $a_n = n \cdot (An + B) \cdot 3^n$. Obecně - pokud má pravá straně $P(x) \cdot \lambda_i^n$, tak násobíme odhad n^m , kde m je násobnost λi .

Ten dosadíme do levé strany za a_n :

$$(A(n+2)+B) \cdot 2^{n+2} - 2(A(n+1)+B) \cdot 2^{n+1} - 3(An+B) \cdot 2^n = 4(An+2A+B) \cdot 2^n - 4(An+A+B) \cdot 2^n - 3(An+B) \cdot 2^n = [(-3A)n + (4A-3B)] \cdot 2^n.$$

Když výsledný výraz položíme roven $-9n \cdot 2^n$, dostáváme soustavu lineárních rovnic

$$-3A = -9$$

4A-3B=0, jejímž řešením je A=3, B=4. Partikulární řešení je tedy $a_{p,n}=(3n+4)\cdot 2^n, n\geq 0$.

Zkombinováním $a_n = a_{p,n} + a_{h,n}$ získáme obecné řešení

 $a_n = (3n+4) \cdot 2^n + u \cdot (-1)^n + v \cdot 3^n, n \geq 0.$

https://www.youtube.com/watch?v=6hkBATZVOjg