Dynamic Programming*

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

Algorithm Course: Shanghai Jiao Tong University

Algorithm Course @SJTU Xiaofeng Gao Dynamic Programming 1/2

^{*}Special thanks is given to *Prof. Kevin Wayne@Princeton* for sharing his slides, and also given to Mr. Chao Wang from CS2014@SJTU and Mr. Hongjian Cao from CS2015@SJTU for producing this lecture.

Outline

- Introduction
 - Background
 - Introductory Example: Weighted Interval Scheduling
- Popular Recipes
 - Segmented Least Squares
 - Knapsack Problem
 - RNA Secondary Structure
- 3 Hirschberg's Alignment Algorithm
 - String Similarity
 - Sequence Alignment in Linear Space

Outline

- Introduction
 - Background
 - Introductory Example: Weighted Interval Scheduling
- 2 Popular Recipes
 - Segmented Least Squares
 - Knapsack Problem
 - RNA Secondary Structure
- 3 Hirschberg's Alignment Algorithm
 - String Similarity
 - Sequence Alignment in Linear Space

Algorithmic Paradigms

Greedy: Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer: Break up a problem into sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming: Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

History

Richard E. Bellman (1920-1984): Pioneered the systematic study of dynamic programming in 1950s.

Etymology:

- Dynamic programming = planning over time
- Secretary of Defense had pathological fear of mathematical research.
- Bellman sought a "dynamic" adjective to avoid conflict.

Applications

Areas: Bioinformatics, Control Theory, Information Theory, Operations Research, Computer Science (Theory, Graphics, AI, Compilers, Systems, ...)

Some Famous Algorithms

- Avidan-Shamir for seam carving.
- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- De Boor for evaluating spline curves.
- Knuth-Plass for word wrapping text in T_EX.
- o Smith-Waterman for genetic sequence alignment.
- o Bellman-Ford-Moore for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.
- Needleman-Wunsch/Smith-Waterman for sequence alignment.

6/59

Dynamic Programming Books

Outline

- Introduction
 - Background
 - Introductory Example: Weighted Interval Scheduling
- 2 Popular Recipes
 - Segmented Least Squares
 - Knapsack Problem
 - RNA Secondary Structure
- 3 Hirschberg's Alignment Algorithm
 - String Similarity
 - Sequence Alignment in Linear Space

Weighted Interval Scheduling Problem

Job j starts at s_j , finishes at f_j , and has weight or value $w_j > 0$.

Two jobs are compatible if they don't overlap.

Goal: find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling Problem

Job j starts at s_j , finishes at f_j , and has weight or value $w_j > 0$.

Two jobs are compatible if they don't overlap.

Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall: Greedy algorithm works if all weights are 1.

- o Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Unweighted Interval Scheduling Review

Recall: Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation: Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Definition: p(j) =largest index i < j such that job i is compatible with j.

Weighted Interval Scheduling

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Definition: p(j) = largest index i < j such that job i is compatible with j.

Example: p(8) = 5, p(7) = 3, p(2) = 0.

Binary Choice

Recurrence template: OPT(j) = value of optimal solution to the problem consisting of job requests $1, 2, \dots, j$.

Binary Choice

Recurrence template: OPT(j) = value of optimal solution to the problem consisting of job requests $1, 2, \dots, j$.

Optimal substructure:

Case 1: OPT selects job *j*.

- o collect weight w_j ,
- o can't use incompatible jobs $\{p(j) + 1, p(j) + 2, \dots, j 1\},\$
- must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \dots, p(j)$.

Case 2: OPT does not select job *j*.

• must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \dots, j-1$.

Binary Choice

Recurrence template: OPT(j) = value of optimal solution to the problem consisting of job requests $1, 2, \dots, j$.

Optimal substructure:

Case 1: OPT selects job *j*.

- collect weight w_i ,
- o can't use incompatible jobs $\{p(j) + 1, p(j) + 2, \dots, j 1\},\$
- must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \dots, p(j)$.

Case 2: OPT does not select job *j*.

• must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \dots, j-1$.

$$OPT(j) = \begin{cases} 0, & j = 0, \\ \max\{w_j + OPT(p(j)), OPT(j-1)\}, & otherwise \end{cases}$$

Algorithm Course@SJTU Xiaofeng Gao Dynamic Programming 12/59

Brute Force Algorithm

Algorithm 1: Weighted Interval Scheduling – Brute Force

```
Input: n; s_1, \dots, s_n; f_1, \dots, f_n; w_1, \dots, w_n; Output: Optimal weight OPT(n).
```

- 1 Sort jobs by finish times so that $f_1 \le f_2 \le \cdots \le f_n$;
- **2** Compute $p(1), p(2), \dots, p(n)$;
- 3 return B-Sched(n);

Algorithm 2: B-Sched (j)

```
1 if j = 0 then
2 | return 0;
3 else
```

4 **return** $\max\{w_j + B - Sched(p(j)), B - Sched(j-1)\};$

Brute Force Algorithm

Observation: Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Example: Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Memoization: Store sub-results in cache; lookup as needed

Algorithm 3: Weighted Interval Scheduling – Memoization

```
Input: n; s_1, \dots, s_n; f_1, \dots, f_n; w_1, \dots, w_n; Output: Optimal weight OPT(n).
```

- 1 Sort jobs by finish times so that $f_1 \le f_2 \le \cdots \le f_n$;
- 2 Compute $p(1), p(2), \dots, p(n)$;
- 3 M[0] = 0; // global array
- 4 return M-Sched(n);

Algorithm 4: M-Sched (j)

- 1 **if** M[j] is uninitialized **then**
- $\mathbf{2} \quad | \quad M[j] = \max\{w_j + M \text{Sched}(p(j)), M \text{Sched}(j-1)\};$
- 3 return M[j];

Running Time

Claim: Memoized version of algorithm takes $O(n \log n)$ time.

- Sort by finish time: $O(n \log n)$.
- Computing $p(\cdot)$: $O(n \log n)$ via sorting by start time.
- M-Sched(j): each invocation takes O(1) time and either
 - (1) returns an existing value M[j]
 - (2) initializes M[j] and makes two recursive calls
- Progress measure $\Phi =$ number nonempty entries of $M[\cdot]$.
 - \triangleright initially $\Phi = 0$, throughout $\Phi \le n$.
 - \triangleright (2) increases Φ by $1 \Rightarrow$ at most 2n recursive calls.
- Overall running time of M-Sched(n) is O(n).

Running Time

Claim: Memoized version of algorithm takes $O(n \log n)$ time.

- Sort by finish time: $O(n \log n)$.
- Computing $p(\cdot)$: $O(n \log n)$ via sorting by start time.
- o M-Sched(j): each invocation takes O(1) time and either
 - (1) returns an existing value M[j]
 - (2) initializes M[j] and makes two recursive calls
- Progress measure $\Phi =$ number nonempty entries of $M[\cdot]$.
 - \triangleright initially $\Phi = 0$, throughout $\Phi \le n$.
 - \triangleright (2) increases Φ by $1 \Rightarrow$ at most 2n recursive calls.
- Overall running time of M-Sched(n) is O(n).

Remark: O(n) if jobs are pre-sorted by start and finish times.

Finding a Solution from the OPT Value

```
Algorithm 5: Find-Solution (j)

1 if j=0 then

2 | return \emptyset;

3 else if w_j + M[p(j)] > M[j-1] then

4 | return \{j\} \cup \text{Find-Solution}(p(j));

5 else

6 | return Find-Solution (j-1);
```

Finding a Solution from the OPT Value

```
Algorithm 5: Find-Solution (j)

if j=0 then

| return \emptyset; 

selse if w_j + M[p(j)] > M[j-1] then

| return \{j\} \cup Find-Solution (p(j)); 

selse

| return Find-Solution (j-1);
```

- Run Find-Solution(*n*) to find optimal schedule;
- # of recursive calls $1 \le n \Rightarrow O(n)$;

Tabulation: Bottom-Up Dynamic Programming

Algorithm 6: Weighted Interval Scheduling – Tabulation

```
Input: n; s_1, \dots, s_n; f_1, \dots, f_n; w_1, \dots, w_n;
```

Output: Optimal weight OPT(n).

- 1 Sort jobs by finish times so that $f_1 \le f_2 \le \cdots \le f_n$;
- 2 Compute $p(1), p(2), \dots, p(n)$;
- M[0] = 0;
- 4 for $j = 1 \rightarrow n$ do
- 5 $M[j] = \max\{w_j + M[p(j)], M[j-1]\};$

Tabulation: Bottom-Up Dynamic Programming

Algorithm 6: Weighted Interval Scheduling – Tabulation

```
Input: n; s_1, \dots, s_n; f_1, \dots, f_n; w_1, \dots, w_n;
```

Output: Optimal weight OPT(n).

- 1 Sort jobs by finish times so that $f_1 \le f_2 \le \cdots \le f_n$;
- 2 Compute $p(1), p(2), \dots, p(n)$;
- M[0] = 0;
- 4 for $j = 1 \rightarrow n$ do
- 5 $M[j] = \max\{w_j + M[p(j)], M[j-1]\};$

Running Time: $O(n \log n)$.

Tabulation: Bottom-Up Dynamic Programming

Algorithm 6: Weighted Interval Scheduling – Tabulation

Input:
$$n$$
; s_1, \dots, s_n ; f_1, \dots, f_n ; w_1, \dots, w_n ;

Output: Optimal weight OPT(n).

- 1 Sort jobs by finish times so that $f_1 \le f_2 \le \cdots \le f_n$;
- 2 Compute $p(1), p(2), \dots, p(n)$;
- M[0] = 0;
- 4 for $j = 1 \rightarrow n$ do
- 5 $M[j] = \max\{w_j + M[p(j)], M[j-1]\};$

Running Time: $O(n \log n)$.

Those who cannot remember the past are condemned to repeat it.

— Kevin Wayne@Princeton

Algorithm Course@SJTU

Outline

- Introduction
 - Background
 - Introductory Example: Weighted Interval Scheduling
- Popular Recipes
 - Segmented Least Squares
 - Knapsack Problem
 - RNA Secondary Structure
- 3 Hirschberg's Alignment Algorithm
 - String Similarity
 - Sequence Alignment in Linear Space

- Foundational problem in statistic and numerical analysis.
- Given *n* points in the plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- \circ Find a line y = ax + b to minimize the sum of the squared error:

Solution: Calculus \Rightarrow min error is achieved when

$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i})(\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n}$$

- Points lie roughly on a sequence of several line segments.
- Given *n* points in the plane: (x_1, y_1) , (x_2, y_2) , \cdots , (x_n, y_n) with $x_1 < x_2 < \cdots < x_n$, find a sequence of lines that minimizes f(x).

Question: What's a reasonable choice for f(x) to balance accuracy (goodness of fit) and parsimony (number of lines)?

- Points lie roughly on a sequence of several line segments.
- Given *n* points in the plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ with $x_1 < x_2 < \dots < x_n$, find a sequence of lines that minimizes:
 - \triangleright the sum of the sums of the squared errors E in each segment
 - \triangleright the number of lines L
- Tradeoff function: E + cL, for some constant c > 0.

Multiway Choice

Notation:

- o $OPT(j) = minimum cost for points <math>p_1, p_{i+1}, \dots, p_j$.
- $e(i,j) = \text{minimum sum of squares for points } p_i, p_{i+1}, \cdots, p_j$.

Compute OPT(j):

- Last segment uses points p_i, p_{i+1}, \dots, p_j for some i.
- $\circ Cost = e(i,j) + c PT(i-1).$

$$OPT(j) = \begin{cases} 0, & j = 0, \\ \min_{1 \le i \le j} \{e(i,j) + c + OPT(i-1)\}, & otherwise \end{cases}$$

Algorithm 7: Segmented Square Error (SSE)

Input: $n; p_1, \cdots, p_n; c;$

Output: Optimal square error for p_1, \dots, p_n .

- 1 for $j = 1 \rightarrow n$ do
- 2 | for $i = 1 \rightarrow j$ do
- 3 compute least square error e_{ij} for segment p_i, \dots, p_j ;
- 4 M[0] = 0;
- 5 for $j = 1 \rightarrow n$ do
- 6 $M[j] = \min_{1 \le i \le j} \{e_{ij} + c + M[i-1]\};$
- 7 return M[n];

Algorithm 7: Segmented Square Error (SSE)

Input: $n; p_1, \cdots, p_n; c;$

Output: Optimal square error for p_1, \dots, p_n .

- 1 for $j=1 \rightarrow n$ do
- 2 | for $i = 1 \rightarrow j$ do 3 | compute least square error e_{ij} for segment p_i, \dots, p_j ;
- 4 M[0] = 0;
- 5 for $j = 1 \rightarrow n$ do
- 6 $M[j] = \min_{1 \le i \le j} \{e_{ij} + c + M[i-1]\};$
- 7 return M[n];

Time Complexity: $O(n^3)$ (can be improved to $O(n^2)$)

Space Complexity: $O(n^2)$.

Algorithm Analysis

Theorem (Bellman, 1961) SSE solves the segmented least squares problem in $O(n^3)$ time and $O(n^2)$ space.

Algorithm Analysis

Theorem (Bellman, 1961) SSE solves the segmented least squares problem in $O(n^3)$ time and $O(n^2)$ space.

Proof: Bottleneck = computing e_{ij} for $O(n^2)$ pairs,

$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i})(\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, \ b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n},$$

O(n) per pair e_{ij} using previous formula.

Algorithm Analysis

Theorem (Bellman, 1961) SSE solves the segmented least squares problem in $O(n^3)$ time and $O(n^2)$ space.

Proof: Bottleneck = computing e_{ij} for $O(n^2)$ pairs,

$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i})(\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, \ b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n},$$

O(n) per pair e_{ij} using previous formula.

Remark: Can be improved to $O(n^2)$ time.

- o $\forall i$: precompute cumulative sums $\sum_{k=1}^{i} x_k$, $\sum_{k=1}^{i} y_k$, $\sum_{k=1}^{i} x_k^2$, $\sum_{k=1}^{i} x_k y_k$,
- Using cumulative sums, we can compute e_{ij} in O(1) time.

Outline

- Introduction
 - Background
 - Introductory Example: Weighted Interval Scheduling
- Popular Recipes
 - Segmented Least Squares
 - Knapsack Problem
 - RNA Secondary Structure
- 3 Hirschberg's Alignment Algorithm
 - String Similarity
 - Sequence Alignment in Linear Space

Knapsack Problem

Given *n* objects and a "knapsack".

Item *i* weighs $w_i > 0$ kilograms and has value $v_i > 0$.

Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Knapsack Problem

Given *n* objects and a "knapsack".

Item *i* weighs $w_i > 0$ kilograms and has value $v_i > 0$.

Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Example: $\{3,4\}$ has value 40.

	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem

Given *n* objects and a "knapsack".

Item *i* weighs $w_i > 0$ kilograms and has value $v_i > 0$.

Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Example: $\{3,4\}$ has value 40.

W = 11

	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_i/w_i .

Example: $\{5, 2, 1\}$ achieves only value = $35 \Rightarrow$ greedy not optimal.

First Attempt

Definition: $OPT(i) = \max \text{ profit subset of items } 1, \dots, i.$

Case 1: OPT does not select item i.

• OPT selects best of $\{1, 2, \dots, i-1\}$.

Case 2: OPT selects item *i*.

- accepting item i does not immediately imply that we will have to reject other items,
- without knowing what other items were selected before i, we don't even know if we have enough room for i.

First Attempt

Definition: $OPT(i) = \max \text{ profit subset of items } 1, \dots, i.$

Case 1: OPT does not select item i.

• OPT selects best of $\{1, 2, \dots, i-1\}$.

Case 2: OPT selects item i.

- accepting item *i* does not immediately imply that we will have to reject other items,
- without knowing what other items were selected before i, we don't even know if we have enough room for i.

Conclusion: Need more sub-problems!

Adding a New Variable

Definiton: $OPT(i, w) = \max \text{ profit subset of items } 1, \dots, i \text{ with weight limit } w.$

Case 1: OPT does not select item i.

• OPT selects best of $\{1, 2, \dots, i-1\}$ using weight limit w

Case 2: OPT selects item i.

- new weight $limit = w w_i$
- OPT selects best of using $\{1, 2, \dots, i-1\}$ this new weight limit

Adding a New Variable

Definiton: $OPT(i, w) = \max \text{ profit subset of items } 1, \dots, i \text{ with weight limit } w.$

Case 1: OPT does not select item i.

• OPT selects best of $\{1, 2, \dots, i-1\}$ using weight limit w

Case 2: OPT selects item *i*.

- new weight $limit = w w_i$
- OPT selects best of using $\{1, 2, \dots, i-1\}$ this new weight limit

$$OPT(i, w) = \begin{cases} 0, & j = 0, \\ OPT(i-1, w), & w_i > w, \\ \max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\}, & otherwise \end{cases}$$

Bottom-Up Algorithm (Fill up an *n*-by-*W* array)

Algorithm 8: Knapsack Algorithm using *n*-by-*W* Array

```
Input: n, W, w_1, \dots, w_n, v_1, \dots, v_n;
  Output: Optimal value of knapsack with W.
1 for w = 0 \rightarrow W do
  M[0, w] = 0;
3 for i=1 \rightarrow n do
      for w = 1 \rightarrow W do
          if w_i > w then
5
         M[i, w] = M[i - 1, w];
6
          else
            M[i, w] = \max\{M[i-1, w], v_i + M[i-1, w-w_i]\}; 
8
```

9 return M[n, W];

Knapsack Algorithm

Knapsack Algorithm

OPT:
$$\{3,4\}$$
 value = $22 + 18 = 40$

Item	Value	Weight		
1	1	1		
2	6	2		
3	18	5		
4	22	6		
5	28	7		

Running Time

Running time: $\Theta(nW)$.

- Not polynomial in input size!
- "Pseudo-polynomial".
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm: There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum.

Outline

- Introduction
 - Background
 - Introductory Example: Weighted Interval Scheduling
- 2 Popular Recipes
 - Segmented Least Squares
 - Knapsack Problem
 - RNA Secondary Structure
- 3 Hirschberg's Alignment Algorithm
 - String Similarity
 - Sequence Alignment in Linear Space

RNA Secondary Structure

RNA:String $B = b_1 b_2 \cdots b_n$ over alphabet $\{A, C, G, U\}$.

Secondary structure: RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

RNA Secondary Structure

Secondary structure: A set of pairs $S = \{(b_i, b_j)\}$ that satisfy:

[Watson-Crick] S is a matching and each pair in S is a Watson-Crick complement: A-U, U-A, C-G, or G-C.

[No sharp turns] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then i < j - 4.

[Non-crossing] If (b_i, b_j) and (b_k, b_l) are two pairs in S, then we cannot have i < k < j < l.

Free energy: Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.

Goal: Given an RNA molecule $B = b_1 b_2 \cdots b_n$, find a secondary structure S that maximizes the number of base pairs

Examples

ok

sharp turn

crossing

Subproblems

First attempt: OPT(j) = maximum number of base pairs in a secondary structure of the substring $b_1b_2 \cdots b_j$.

Difficulty: Results in two sub-problems.

- Finding secondary structure in: $b_1b_2 \cdots b_{t-1}$.
- Finding secondary structure in: $b_{t+1}b_{t+2}\cdots b_{n-1}$.

Dynamic Programming Over Intervals

Notation: $OPT(i,j) = \text{maximum number of base pairs in a secondary structure of the substring <math>b_i b_{i+1} \cdots b_j$.

- Case 1: If $i \ge j 4$.
 - \circ OPT(i,j) = 0 by no-sharp turns condition.
- Case 2: Base b_i is not involved in a pair.
 - \circ OPT(i,j) = OPT(i,j-1)
- Case 3: Base b_j pairs with b_t for some $i \le t < j 4$.
 - o non-crossing constraint decouples resulting sub-problems
 - $OPT(i,j) = 1 + \max_{t} \{ OPT(i,t-1) + OPT(t+1,j-1) \}$

Remark: Same core idea in CKY algorithm to parse context-free grammars.

Bottom Up Dynamic Programming Over Intervals

Question: What order to solve the sub-problems?

Answer: Do shortest intervals first.

```
RNA(b_{1},...,b_{n}) \{ \\ for k = 5, 6, ..., n-1 \\ for i = 1, 2, ..., n-k \\ j = i + k \\ Compute M[i, j] \\ return M[1, n] \\ using recurrence \}
```


Running time: $O(n^3)$.

Dynamic Programming Summary

Recipe

- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques

- Binary choice: weighted interval scheduling.
- Multi-way choice: segmented least squares.
- Adding a new variable: knapsack.
- Dynamic programming over interval

Top-down vs. bottom-up: different people have different intuitions.

Outline

- Introduction
 - Background
 - Introductory Example: Weighted Interval Scheduling
- 2 Popular Recipes
 - Segmented Least Squares
 - Knapsack Problem
 - RNA Secondary Structure
- 3 Hirschberg's Alignment Algorithm
 - String Similarity
 - Sequence Alignment in Linear Space

String Similarity: How similar are two strings?

0	c	u	r	r	a	n	c	e	-
0	с	c	u	r	r	e	n	c	e

6 mismatches, 1 gap

How similar are two strings?

- ocurrance
- occurrence

1 mismatch, 1 gap

0 mismatches, 3 gaps

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ ; mismatch penalty α_{pq} .
- Cost = sum of gap and mismatch penalties.

Sequence Alignment

Goal: Given two strings $X = x_1 x_2 \cdots x_m$ and $Y = y_1 y_2 \cdots y_n$ find alignment of minimum cost.

Definiton: An alignment M is a set of ordered pairs x_i - y_j such that each item occurs in at most one pair and no crossings.

Definiton: The pair x_i - y_j and $x_{i'}$ - $y_{j'}$ cross if i < i', but j > j'.

$$M = \sum_{\substack{(x_i, y_j) \in M \\ f \text{mismatch}}} \alpha_{x_i y_j} + \sum_{i: x_i \text{ unmatched}} \delta + \sum_{j: y_j \text{unmatched}} \delta$$

Example: CTACCG vs. TACATG.

Solution: $M = \{x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4,$

$$x_6-y_6$$
 }.

Problem Structure

```
Definition: OPT(i,j) = \min cost of aligning strings x_1x_2 \cdots x_i and y_1y_2 \cdots y_j.

Case 1: OPT matches x_i - y_j.

pay mismatch for x_i \cdot y_j + \min cost of aligning two strings x_1x_2 \cdots x_{i-1} and y_1y_2 \cdots y_{j-1}

Case 2a: OPT leaves x_i unmatched.

pay gap for x_i and min cost of aligning x_1x_2 \cdots x_{i-1} and y_1y_2 \cdots y_j

Case 2b: OPT leaves y_j unmatched.

pay gap for y_i and min cost of aligning x_1x_2 \cdots x_i and y_1y_2 \cdots y_{i-1}
```

Sequence Alignment

Algorithm 9: Sequence Alignment

```
Input: m, n, x_1x_2 \cdots x_m, y_1y_2 \cdots y_n, \alpha, \delta;

1 for i = 0 \to m do M[i, 0] = i\delta;

2 for j = 0 \to n do M[0, j] = j\delta;

3 for i = 1 \to m do

4 for j = 1 \to n do

5 M[i, j] = \min(\alpha[x_i, y_j] + M[i - 1, j - 1], \delta + M[i - 1, j], \delta + M[i, j - 1]);

6 return M[m, n];
```

Sequence Alignment

Algorithm 9: Sequence Alignment

```
Input: m, n, x_1x_2 \cdots x_m, y_1y_2 \cdots y_n, \alpha, \delta;

1 for i = 0 \to m do M[i, 0] = i\delta;

2 for j = 0 \to n do M[0, j] = j\delta;

3 for i = 1 \to m do

4  for j = 1 \to n do

5  M[i, j] = \min(\alpha[x_i, y_j] + M[i - 1, j - 1], \delta + M[i - 1, j], \delta + M[i, j - 1]);

6 return M[m, n];
```

Analysis: $\Theta(mn)$ time and space.

English words or sentences: $m, n \le 10$.

Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?

Outline

- Introduction
 - Background
 - Introductory Example: Weighted Interval Scheduling
- 2 Popular Recipes
 - Segmented Least Squares
 - Knapsack Problem
 - RNA Secondary Structure
- 3 Hirschberg's Alignment Algorithm
 - String Similarity
 - Sequence Alignment in Linear Space

Linear Space

Question: Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space* and O(mn) time.

- Compute $OPT(i, \cdot)$ from $OPT(i-1, \cdot)$.
- No longer a simple way to recover alignment itself.

Linear Space

Question: Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space* and O(mn) time.

- Compute $OPT(i, \cdot)$ from $OPT(i-1, \cdot)$.
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m+n) space and O(mn) time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

Programming G. Manusher Tradasjons God Manusher Manusher God Manusher Manu

common subsequence, string correction, editing

CR Categories: 3.63, 3.73, 3.79, 4.22, 5.25

48/59

^{*}including space storing original strings

- Let f(i,j) be shortest path from (0,0) to (i,j).
- Observation: f(i,j) = OPT(i,j).

- Let f(i,j) be shortest path from (0,0) to (i,j).
- Observation: f(i,j) = OPT(i,j).

Proof: (by strong induction on i + j)

Base case:
$$f(0,0) = OPT(0,0) = 0$$

Inductive hypothesis: assume true for all (i',j') with i'+j' < i+j.

Induction: Last edge on shortest path to (i,j) is from (i-1,j-1), (i-1,j), or (i,j-1).

$$\begin{split} f(i,j) &= \min\{a_{x_iy_i} + f(i-1,j-1), \delta + f(i-1,j), \delta + f(i,j-1)\} \\ &= \min\{a_{x_iy_i} + OPT(i-1,j-1), \delta + OPT(i-1,j), \delta + OPT(i,j-1)\} \\ &= OPT(i,j) \end{split}$$

- Let f(i,j) be shortest path from (0,0) to (i,j).
- Can compute $f(\cdot, j)$ for any j in O(mn) time and O(m+n) space.

- Let g(i,j) be shortest path from (i,j) to (m,n).
- Can compute by reversing the edge orientations and inverting the roles of (0,0) and (m,n)

Algorithm Course@SJTU

- Let g(i,j) be shortest path from (i,j) to (m,n).
- Can compute $g(\cdot,j)$ for any j in O(mn) time and O(m+n) space.

Observation 1: The cost of the shortest path that uses (i,j) is f(i,j) + g(i,j).

Observation 2: Let q be an index that minimizes f(q, n/2) + g(q, n/2). Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP. Align x_q and $y_{n/2}$.

Conquer: recursively compute optimal alignment in each piece.

Running Time Analysis Warmup

Theorem: Let $T(m, n) = \max$ running time of algorithm on strings of length at most m and n. $T(m, n) = O(mn \log n)$.

$$T(m,n) \le 2T(m,n/2) + O(mn) \Rightarrow T(m,n) = O(mn \log n)$$

Remark: Analysis is not tight because two sub-problems are of size (q, n/2) and (m - q, n/2). In next slide, we save $\log n$ factor.

Running Time Analysis

Theorem. Let $T(m, n) = \max$ running time of algorithm on strings of length m and n. T(m, n) = O(mn)

Proof: (by induction on *n*)

- o O(mn) time to compute $f(\cdot, n/2)$ and $g(\cdot, n/2)$ and find index q.
- o T(q, n/2) + T(m q, n/2) time for two recursive calls
- Choose constant c so that:

$$T(m,2) \le cm$$

$$T(2,n) \le cn$$

$$T(m,n) \le cmn + T(q,n/2) + T(m-q,n/2)$$

Running Time Analysis (Continued)

Theorem. Let $T(m, n) = \max$ running time of algorithm on strings of length m and n. T(m, n) = O(mn)

Proof:

- Base cases: m = 2 or n = 2.
- Inductive hypothesis: $T(m, n) \leq 2cmn$.

$$T(m,n) \le T(q,n/2) + T(m-q,n/2) + cmn$$

$$\le 2cqn/2 + 2c(m-q)n/2 + cmn$$

$$= cqn + cmn - cqn + cmn$$

$$= 2cmn$$