

Uncertainties In Extreme Wave Height Estimates For Hurricane Dominated Regions

Philip Jonathan

Shell Research Limited

Kevin Ewans

Shell International Exploration and Production

Overview

- Background
- Motivating data
- Generalised Pareto modelling
- Effect of sample size and site averaging
- Bootstrapping to estimate parameter uncertainty
- The statistics of H_{S100}

Acknowledgement

- Shell International Exploration and Production
- Shell Research Ltd
- Key references
 - Elsignhorst C, Groeneboom P, Jonathan P, Smulders L and Taylor PH (1998) "Extreme value analysis of North Sea storm severity" J Offshore Mechanics Ocean Engineering 120 177-183.
 - Efron B and Tibshirani RJ (1993) "An introduction to the bootstrap" Chapman and Hall (New York).

Estimating extremes using correlated data

- Environmental design criteria inherently uncertain
 - Climate variability
 - Quantity and quality of data estimating design criteria
- GoM specifics
 - Hurricanes infrequent (c.f., e.g., extra-tropical storms in NNS)
 - Hurricanes relatively small scale (c.f. extra-tropical storms)
 - Hurricane track important influence on severity of sea state any location.
- Site averaging
 - In principle:
 - Increases sample size for modelling
 - Accounts for effects of random storm track
 - However:
 - Data from even quite largely separated locations are highly correlated.
 - Difficult to determine the reliability (or equivalently the degree of uncertainty) associated with design criteria derived from the site averaging approach.

The GOMOS data

- H_S values from GOMOS Gulf of Mexico hindcast Study (Oceanweather, 2005)
- September 1900 to September 2005 inclusive
- 30-minute sampling intervals
- 72 grid points arranged on a 6 x 12 rectangular lattice with spacing with 0.125° (14 km).
- For each storm period for each grid point, we isolated the storm peak significant wave height

The GOMOS data

Diagonally opposite locations are >150km apart Storm peak H_S values for different locations are highly correlated

The model, estimates and uncertainties

- The cumulative density function: $F(x; y, \sigma) = 1 \left(1 + \frac{y}{\sigma}(x u)\right)^{-\frac{1}{y}} \quad x > u, \sigma > 0$ $y = \text{shape / extreme value index, } \sigma = \text{scale, } u = \text{threshold (pre-specified)}$
- Maximum likelihood estimates $(\hat{y}, \hat{\sigma})$. Care that $(\hat{y}, \hat{\sigma})$ not materially affected by choice of u.
- Analytic asymptotic variances for $(\hat{y}, \hat{\sigma})$: $\sigma^2_{a\hat{y}} = \frac{(1+\hat{y})^2}{n}$ $\sigma^2_{a\hat{\sigma}} = \frac{2\hat{\sigma}^2(1+\hat{y})}{n}$
- Most probable 100 year significant wave height: $H_{S100yrMP} = \frac{\hat{\sigma}}{\hat{y}} \Big(p^{-\hat{y}} 1 \Big) + u$ $p = \frac{P}{100n} \; , \; P \; = \text{period of data}, \; n \; = \text{number of data}.$
- Analytic asymptotic variance of H_{S100yrMP}:

$$\sigma^2_{H_{100yrMP}} = \frac{K^2 \left(1 + \hat{y}\right)^2 + 2K\hat{\sigma} \left(\frac{1 + \hat{y}}{\hat{y}}\right) \left(p^{-\hat{y}} - 1\right) + 2\hat{\sigma}^2 \left(\frac{1 + \hat{y}}{\hat{y}^2}\right) \left(p^{-\hat{y}} - 1\right)^2}{n} \ , \ K = \frac{\hat{\sigma}}{\hat{y}^2} \left(p^{-\hat{y}} - 1\right) + \frac{\hat{\sigma}}{\hat{y}} \, p^{-\hat{y}} \, \log_e \, p \ .$$

Care needed with choice of threshold, u
Asymptotics used to studentise during bootstrapping

Extreme value estimates for GOMOS

Method	\hat{q} (m)	$\sigma_{a\hat{q}}$ (m)	ŷ	$\sigma_{m{a}\hat{y}}$	σ̂	$\sigma_{a}\hat{\sigma}$
Mean of individual estimates per grid location	13.16	1.42	-0.024	0.08	2.22	0.24
Single estimate based on all grid locations	13.19	0.17	-0.022	0.01	2.22	0.03

Table 1: Extreme value estimates and uncertainties. Note: q used as short hand for $H_{S100urMP}$.

Estimates above agree. Uncertainties are very different. Reality is between these extremes. But where?

Effect of sample size and site averaging on extreme value estimates for correlated data

- Simulation study
- Simple model for inter-correlated storm peak data
- Draw random samples from GPD, perturbed by Gaussian noise
- Select GPD parameters to mimic the GoM
- Adjust inter-correlation by changing the standard deviation of the Gaussian noise perturbation.

Effect of sample size and site averaging on extreme value estimates for correlated data

beta=1 corresponds to high intercorrelation of locations

Effect of sample size and site averaging on extreme value estimates for correlated data

Estimating uncertainty using bootstrapping

- Estimate uncertainties of extreme value parameters and quantile estimates directly
- Simple studentised bootstrapping (resampling)
 - Fit a GPD model to actual data (to obtain parameters P1)
 - Create bootstrap sample by *resampling storm-wise* from actual data with *replacement*
 - Refit GDP model to bootstrap sample (to obtain parameters P2)
 - Use variability of P2 around P1 to characterise the uncertainty of P1 with respect to the true (unknown) underlying parameters P0
 - Standardise variability of parameters with respect to their asymptotic standard errors (ie, we *studentise*)
- Can be generally for an arbitrary dependence structure

GOMOS dependency structure

Actual storm data

Randomly selected groups of 72 values

Hindcast data (per storm) sorted by mean (over locations of) storm peak H_c

Hindcast storm peak H_S data is highly spatially correlated Number of effectively "independent" data somewhere between 148 and 148 x 72, probably nearer 148!

Simple studentised bootstrap – exploring dependency

(Scaled) 95% limits for parameter uncertainties						
	$ heta = \hat{q}$		$\theta = \hat{y}$		$\theta = \hat{\sigma}$	
Data	- c ⁺ _θ	- c _θ	- c ⁺ _θ	$-c\overline{\theta}$	- c ⁺ _θ	$-c\overline{ heta}$
No dependence	-1.8	2.1	-1.8	2.1	-1.9	1.9
Perfect dependence	-10.6	39.9	-13.8	28.5	-17.9	18.7
GOMOS resample	-10.3	25.2	-8.2	14.0	-11.0	11.6

Coverage for 95% interval estimates (numbers of left- and right-hand exceedences)						
	$ heta=\hat{q}$		$\theta = \hat{y}$		$\theta = \hat{\sigma}$	
Data	LH	RH	LH	RH	LH	RH
No dependence	14/500	14/500	17/500	13/500	18/500	17/500
Perfect dependence	27/500	21/500	8/500	9/500	16/500	7/500
GOMOS resample	21/500	9/500	24/500	12/500	6/500	28/500

Point and interval estimates for GOMOS data						
Parameter	$\hat{m{q}}$	ŷ	ô			
Point Estimate (all locations)	13.0	-0.098	2.68			
Single location (mean asymptotic)	(10.7, 15.3)	(-0.246, 0.044)	(2.11, 3.27)			
Simple studentised bootstrap	(11.5, 16.3)	(-0.164, 0.015)	(2.28, 3.07)			
All locations (asymptotic)	(12.7, 13.3)	(-0.115, -0.081)	(2.61, 2.75)			
All location parametric bootstrap	(12.8, 13.3)	(-0.114, -0.078)	(2.61, 2.75)			

Studentised resampling scheme to estimate parameter uncertainty Performance quantified in terms of coverage

Scaled limits consistent with intuition

Coverage reasonable

Interval estimates using simple studentised bootstrap are:

- Narrower than single location estimate
- Much wider that those obtained using other "all location" estimates
- Reflects chance that next storm will be a Rita or Katrina

The statistics of H_{S100}

- Extreme value analysis estimates most probable quantile value H_{S100MP} only
 - but H_{S100} is a stochastic quantity!
- Possible to estimate distributional properties (e.g 95% confidence intervals) for quantile estimates also
- Width and asymmetry of distribution of quantile estimates increases with increasing extreme value index
 - For Northern North Sea conditions, distribution is approximately symmetric (index is \cong -0.3)
 - For GoM, distribution is asymmetric (index is ≈ 0)
 - Larger values of H_{S100MP} more likely in GoM than in NNS for same value of H_{S100MP}

The statistics of H_{S100}

- We know that $H_{S100yrMP}=rac{\sigma}{\hat{y}}\Big(p^{-\hat{y}}-1\Big)+u$ where $p=rac{1}{n_{100}}$ and n_{100} is the expected number of storms in a 100 year period.
- Similarly we derive an expression for $H_{S100yr(1-q)}$, the value of the 100-year significant wave height exceeded with probability q in any 100-year period:

$$H_{S100yr(1-q)} = \frac{\hat{\sigma}}{\hat{y}} \left(\left(1 - (1-q)^{1/n_100}\right)^{-\hat{y}} - 1 \right) + u$$

- Specifically, $H_{S100yr0.95}$ is the value of H_{S100yr} exceeded once in every 20 independent locations studied. For $H_{S100yr0.95}$, q =0.05.
- For current data, most probable value for H_{S100yr} is approximately 13m, whereas the value of $H_{S100yr0.95}$ is above 17m.

The statistics of H_{S100}

Asymmetry of H_{S100} distribution increases with increasing extreme value index

For given fixed H_{S100MP}, chance of a very large event increases as extreme value index increases

Assumes standard case $\hat{\sigma} = 1$, u = 0.

For other $\hat{\sigma}$ and u , multiply value here by $\hat{\sigma}$ then add u .

Conclusions

- Small samples give biased extreme value estimates
 - Using less than 100 points clearly causes underestimation of events such as H_{S100MP} for the GoM conditions considered here
 - Magnitudes of extreme value index and scale overestimated for small samples
 - Aside: Similar bias effects are observed for both GPD and Weibull fitting
- Site averaging is recommended for point estimation of parameters
 - Combining correlated data from different locations:
 - Reduces bias of estimates by increasing effective sample size
 - Can have (at worst) no effect, but can also be of little benefit
 - Site averaging provides less benefit for estimates of extreme quantiles than than for index and scale
- Estimation of parameter uncertainty when site-averaging is not trivial
 - The simple studentised bootstrap provides a straightforward and (demonstrably) reliable method applicable to arbitrary dependency structures
- Estimates of the most probable value of extreme quantiles should be used with care for structural design purposes
 - Larger values of H_{S100} more likely in GoM than in NNS for same value of H_{S100MP}

Thank You

philip.jonathan@shell.com kevin.ewans@shell.com