Probabilistic Robotics*

Probability Basics

Probabilities, Bayes rule, Bayes filters

Mohan Sridharan

University of Birmingham, UK m.sridharan@bham.ac.uk

^{*}Revised original slides that accompany the book by Thrun, Burgard and Fox.

Probabilistic Robotics

Key idea:

Explicit representation of uncertainty using the calculus of probability theory

- Perception = state estimation
- Action = utility optimization

Axioms of Probability Theory

Pr(A) or P(A) denotes probability that proposition A is true.

- $0 \le \Pr(A) \le 1$
- Pr(True)=1

$$Pr(False)=0$$

• $Pr(A \lor B) = Pr(A) + Pr(B) - Pr(A \land B)$

A Closer Look at Axiom 3

 $Pr(A \lor B) = Pr(A) + Pr(B) - Pr(A \land B)$

Using the Axioms

$$Pr(A \lor \neg A)$$
 $Pr(A) + Pr(\neg A) - Pr(A \land \neg A)$
 $Pr(True)$ $Pr(A) + Pr(\neg A) - Pr(False)$
 1 $Pr(A) + Pr(\neg A) - 0$
 $Pr(\neg A)$ $1 - Pr(A)$

Discrete Random Variables

- X denotes a random variable.
- X can take on a countable number of values in:

$$\{x_1, x_2, ..., x_n\}.$$

• $P(X=x_i)$, or $P(x_i)$, is the probability that the random variable X takes on value x_i .

- P(.) is called probability mass function.
- E.g. P(Room) = (0.7, 0.2, 0.08, 0.02)

Continuous Random Variables

X takes on values in the continuum.

• p(X=x), or p(x), is a probability density function.

$$\Pr(x \in (a,b)) = \int_{a}^{b} p(x) dx$$

• E.g.

Joint and Conditional Probability

- P(X=x and Y=y) = P(x,y)
- If X and Y are independent then:

$$P(x, y) = P(x) P(y)$$

• $P(x \mid y)$ is the probability of x given y:

$$P(x \mid y) = P(x,y) / P(y)$$

$$P(x,y) = P(x \mid y) P(y)$$

If X and Y are independent then:

$$P(x \mid y) = P(x)$$

Law of Total Probability, Marginals

Discrete case

$$\sum_{x} P(x) = 1$$

$$P(x) = \sum_{y} P(x,y)$$

$$P(x) = \sum_{y} P(x|y)P(y)$$

Continuous case

$$\int p(x) dx = 1$$

$$p(x) = \int p(x,y) dy$$

$$p(x) = \int p(x|y)p(y) dy$$

Bayes Formula

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood · prior}}{\text{evidence}}$$

Normalization

Denominator of Bayes rule is a "normalizer".

$$P(x|y) \propto P(y|x)P(x)$$

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)} = \eta P(y|x)P(x)$$

$$\eta = P(y)^{-1} = \frac{1}{\sum_{x} P(y|x)P(x)}$$

Conditioning

Law of total probability:

$$P(x) = \int P(x,z)dz$$

$$P(x) = \int P(x|z)P(z)dz$$

$$P(x|y) = \int P(x|y,z)P(z|y)dz$$

Bayes Rule with Background Knowledge

 Bayes rule can take into account background knowledge:

$$P(x|y,z) = \frac{P(y|x,z) P(x|z)}{P(y|z)}$$

Essential condition on background knowledge.

Conditional Independence

X and Y conditionally independent given Z:

$$P(x, y|z) = P(x|z)P(y|z)$$

equivalent to:

$$P(x|z) = P(x|zy)$$

$$P(y|z) = P(y|z,x)$$

Formal Definitions (Section 2.3, PR)

- State: all aspects of robot and environment that can impact the future (x or s).
- Static and dynamic state; complete state. Discrete and continuous state.
- Pose: position + orientation.
- Markov assumption: past and future data independent given current state.
- Environment interaction:
 - Sensor measurements (z). Increase knowledge.
 - Control actions (u). Increase uncertainty.
- Belief (or belief/information state) $bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$

Simple Example of State Estimation

Suppose a robot obtains measurement z

Causal vs. Diagnostic Reasoning

- P(open|z) is diagnostic.
- P(z|open) is causal.

count frequencies?

- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:

$$P(open|z) = \frac{P(z|open)P(open)}{P(z)}$$

Example

•
$$P(z|open) = 0.6$$
 $P(z|\neg open) = 0.3$

•
$$P(open) = P(\neg open) = 0.5$$

$$P(open|z) = \frac{P(z|open)P(open)}{P(z|open)p(open)+P(z|\neg open)p(\neg open)}$$

$$P(open|z) = \frac{0.6 \ 0.5}{0.6 \ 0.5+0.3 \ 0.5} = \frac{2}{3} = 0.67$$

Measurement z raises the probability that the door is open.

Combining Evidence

- Suppose robot obtains another observation z_2 .
- How can we integrate this new information?
- How can we estimate the result of a series of measurements/observations?

$$P(x|z_1...z_n) = ?$$

Recursive Bayesian Updating

$$P(x|z_{1,...,z_{n}}) = \frac{P(z_{n}|x, z_{1,...,z_{(n-1)}}) P(x|z_{1,...,z_{(n-1)}})}{P(z_{n}|z_{1,...,z_{(n-1)}})}$$

Use Markov assumption: z_n is independent of $z_1, ..., z_{n-1}$ if x known.

$$P(x|z_{1},...,z_{n}) = \frac{P(z_{n}|x)P(x|z_{1},...,z_{(n-1)})}{P(z_{n}|z_{1},...,z_{(n-1)})}$$

$$= \eta P(z_{n}|x)P(x|z_{1},...,z_{(n-1)})$$

$$= \eta_{1...n} \prod_{i=1...n} P(z_{i}|x)P(x)$$

Example: Second Measurement

•
$$P(z_2|open) = 0.5$$
 $P(z_2|\neg open) = 0.6$

• $P(open|z_p)=2/3$

$$P(open|z_{2},z_{1}) = \frac{P(z_{2}|open) P(open|z_{1})}{P(z_{2}|open) P(open|z_{1}) + P(z_{2}|-open) P(\neg open|z_{1})}$$

$$= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625$$

• z_2 lowers the probability that the door is open.

Actions

- Often the world is dynamic since:
 - actions carried out by the robot,
 - actions carried out by other agents,
 - or just the world changes over the passage of time.
- How can we incorporate such actions?

Typical Actions

The robot turns its wheels to move.

Robot uses its manipulator to grasp an object

- Plants grow over time ... ☺
- Actions are never carried out with certainty.
- In contrast to measurements, actions generally increase uncertainty.

Modeling Actions

 To incorporate the outcome of an action u into the current "belief", we use the conditional pdf:

This term specifies the pdf that executing u changes the state from x' to x.

Example: Closing the door

State Transitions

P(x|u,x') for u = ``close door'':

If the door is open, the action "close door" succeeds in 90% of all cases.

Integrating the Outcome of Actions

Continuous

case:

$$P(x|u) = \int P(x|u,x') P(x') dx'$$

Discrete case: $P(x|u) = \sum P(x|u,x')P(x')$

Example: The Resulting Belief

$$P(dosed|u) = \sum_{i=1}^{n} P(dosed|u,x^{i})P(x^{i})$$

$$= P(dosed|u,open)P(open)$$

$$+P(dosed|u,dosed)P(dosed)$$

$$= \frac{9}{10} \frac{5}{8} + \frac{1}{1} * \frac{3}{8} = \frac{15}{16}$$

$$P(open|u) = \sum_{i=1}^{n} P(open|u,x^{i})P(x^{i})$$

$$= P(open|u,open)P(open)$$

$$+P(open|u,closed)P(closed)$$

$$= \frac{1}{10} \frac{5}{8} + \frac{0}{1} * \frac{3}{8} = \frac{1}{16}$$

$$= 1 - P(closed|u)$$

Bayes Filters: Framework

Given:

- Stream of observations z and action data u: $d_t = \{u_1, z_1, ..., u_t, z_t\}$
- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x).

Wanted:

- Estimate of the state X of a dynamical system.
- The posterior of the state is also called Belief:

$$Bd(x_t) = P(x_t | u_1, z_1, ..., u_t, z_t)$$

Markov Assumption

Underlying Assumptions:

- Static world.
- Independent noise.
- Perfect model, no approximation errors.

z = observation u = action x = state

Bayes Filters

$$\begin{array}{ll} \textbf{Bel}(x_t) = P\left(x_t | u_1, z_1, ..., u_t, z_t\right) \\ \textbf{Bayes} &= \eta \, P(z_t | x_t, u_1, z_1, ..., u_t) \, P(x_t | u_1, z_1, ..., u_t) \\ &= \eta \, P(z_t | x_t) \, P(x_t | u_1, z_1, ..., u_t) \\ \textbf{Total prob.} &= \eta \, P(z_t | x_t) \int P(x_t | u_1, z_1, ..., u_t, x_{t-1}) \\ P(x_{t-1} | u_1, z_1, ..., u_t) \, dx_{t-1} \\ \textbf{Markov} &= \eta \, P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) \, P(x_{t-1} | u_1, z_1, ..., u_t) \, dx_{t-1} \\ &= \eta \, P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) \, P(x_{t-1} | u_1, z_1, ..., z_{t-1}) \, dx_{t-1} \\ &= \eta \, P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) \, Bel(x_{t-1}) \, dx_{t-1} \end{array}$$

Bayes Filter Algorithm

- 1. Algorithm **Bayes_filter**($Bd(x_{t-1}), u_t, z_t$):
 2. For all X_t do $Bd(x_t) = \int p(x_t|u_t, x_{t-1})Bd(x_{t-1})dx_{t-1}$ 3. $Bd(x_t) = \eta p(z_t|x_t)Bd(x_t)$ 5. End for $Bd(x_t)$
- 6. Return

Two key steps: *prediction* and *correction*.

Also known as control update and measurement update.

$$Bd(x_t) = \eta P(z_t|x_t) \int P(x_t|u_{t'}x_{t-1}) Bd(x_{t-1}) dx_{t-1}$$

Bayes Filters are Familiar!

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

- Kalman filters.
- Particle filters.

- Hidden Markov models.
- Dynamic Bayesian networks.
- Partially Observable Markov Decision Processes.

Summary

 Bayes rule allows us to compute probabilities that are hard to assess otherwise.

 Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.

 Bayes filters are a probabilistic tool for estimating the state of dynamic systems.