CIS*3110 Operating Systems Assignment 4

Abinav Bukkaraya Samudram (0951030)

Question 1

The program contains two threads which request for a semaphore to access the variable *cnt*. Once the value has been incremented the resource is released. Each thread requests for only one resource, the counter semaphore, and request no additional resources. This means that the hold and wait condition required for a deadlock to arise is not satisfied. Thus, it is not possible for the program to encounter a deadlock. This can also be observed from the resource allocation graph present in Figure 1. The resource allocation graph contains no cycles indicating that no deadlocks are possible.

Figure 1: Resource allocation graph for program igoodcnt.c

Question 2

	Allocation	Max	<u>Available</u>
	ABCD	ABCD	ABCD
P_{0}	0012	0012	1520
P_1	$1\ 0\ 0\ 0$	1750	
P_2	1354	2356	
P_3	0632	0652	
P_4	$0\ 0\ 1\ 4$	0656	

Figure 2: Snapshot of a system.

The content of the matrix *Need* is shown below. It is obtained by calculating *Max* - *Allocation*.

Process	Need	
-	ABCD	
p_0	0000	
p_1	0750	
p_2	1002	
p_3	0020	
p_4	0642	

The system is in a safe state and can be verified using the safety criteria for in the Banker's algorithm. Initially the Work vector is <1, 5, 2, 0>. This allows either p_0 or p_3 to satisfy the condition $Need_i \leq Work$. Using p_3 as the first process to satisfy the condition, the Work vector becomes <1, 11, 5, 2>. The new Work vector satisfies the needs of all the other processes, making the system safe.