多项式优化: 理论与实践

王杰 (中科院数学与系统科学研究院)

第十三届中国数学会计算机数学大会 2023 年 6 月 16 日

合作者

Jean B. Lasserre

Victor Magron

目录

① 多项式优化与 Moment-SOS 半定松弛分层

② 软件与数值实验

③ 高效求解低秩 SDP

目录

① 多项式优化与 Moment-SOS 半定松弛分层

② 软件与数值实验

③ 高效求解低秩 SDP

目录

① 多项式优化与 Moment-SOS 半定松弛分层

② 软件与数值实验

③ 高效求解低秩 SDP

多项式优化

● 多项式优化问题:

$$f_{\min} \coloneqq egin{cases} \inf_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \ ext{s.t.} & g_i(\mathbf{x}) \geq 0, \quad i = 1, \dots, m \ h_j(\mathbf{x}) = 0, \quad j = 1, \dots, I \end{cases}$$

- 非凸, NP-难
- 运筹控制、量子信息、量子力学、神经网络、计算机视觉、电力系统、 张量计算、计算复杂度、机器证明、信号处理、图形图像、程序验证

多项式优化

• 多项式优化问题:

$$f_{\min} \coloneqq egin{cases} \inf_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \ ext{s.t.} & g_i(\mathbf{x}) \geq 0, \quad i = 1, \dots, m \ h_j(\mathbf{x}) = 0, \quad j = 1, \dots, I \end{cases}$$

- 非凸, NP-难
- 运筹控制、量子信息、量子力学、神经网络、计算机视觉、电力系统、 张量计算、计算复杂度、机器证明、信号处理、图形图像、程序验证

多项式优化

● 多项式优化问题:

$$f_{\min} \coloneqq egin{cases} \inf_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \ ext{s.t.} & g_i(\mathbf{x}) \geq 0, \quad i = 1, \dots, m \ h_j(\mathbf{x}) = 0, \quad j = 1, \dots, I \end{cases}$$

- 非凸, NP-难
- 运筹控制、量子信息、量子力学、神经网络、计算机视觉、电力系统、 张量计算、计算复杂度、机器证明、信号处理、图形图像、程序验证

- 强大的建模能力与广泛应用: 二次约束二次规划、二元优化问题、混合整数(非)线性规划等
- 与实代数几何紧密的内在联系: 多项式的正性表示、凸代数几何
- 可求得全局最优值 (解): Moment-SOS 半定松弛分层
- 与理论计算机科学密切的联系: 近似算法、计算复杂度理论

- 强大的建模能力与广泛应用: 二次约束二次规划、二元优化问题、混合整数(非)线性规划等
- 与实代数几何紧密的内在联系:多项式的正性表示、凸代数几何
- 可求得全局最优值 (解): Moment-SOS 半定松弛分层
- 与理论计算机科学密切的联系:近似算法、计算复杂度理论

- 强大的建模能力与广泛应用: 二次约束二次规划、二元优化问题、混合整数(非)线性规划等
- 与实代数几何紧密的内在联系: 多项式的正性表示、凸代数几何
- 可求得全局最优值 (解): Moment-SOS 半定松弛分层
- 与理论计算机科学密切的联系:近似算法、计算复杂度理论

- 强大的建模能力与广泛应用: 二次约束二次规划、二元优化问题、混合整数(非)线性规划等
- 与实代数几何紧密的内在联系: 多项式的正性表示、凸代数几何
- 可求得全局最优值 (解): Moment-SOS 半定松弛分层
- 与理论计算机科学密切的联系: 近似算法、计算复杂度理论

多项式优化的非凸性

例子 (moment 松弛)

$$\begin{cases} \inf_{\mathbf{x}} & x_1^2 + x_1 x_2 + x_2^2 \\ \mathbf{x}.\mathbf{t}. & 1 - x_1^2 \geq 0, 1 - x_2^2 \geq 0 \end{cases} \iff \begin{cases} \inf_{\mathbf{x}} & x_1^2 + x_1 x_2 + x_2^2 \\ \mathbf{x}.\mathbf{t}. & \begin{bmatrix} 1 & x_1 & x_2 \\ x_1 & x_1^2 & x_1 x_2 \\ x_2 & x_1 x_2 & x_2^2 \end{bmatrix} = [1, x_1, x_2] \cdot [1, x_1, x_2]^\intercal \succeq 0, \\ 1 - x_1^2 \geq 0, 1 - x_2^2 \geq 0 \end{cases}$$

$$\iff \begin{cases} \inf_{\mathbf{y}} & y_{2,0} + y_{1,1} + y_{0,2} \\ \text{s.t.} & \begin{bmatrix} 1 & y_{1,0} & y_{0,1} \\ y_{1,0} & y_{2,0} & y_{1,1} \\ y_{0,1} & y_{1,1} & y_{0,2} \end{bmatrix} \succeq 0, & \xrightarrow{\text{relax}} (Moment) \begin{cases} \inf_{\mathbf{y}} & y_{2,0} + y_{1,1} + y_{0,2} \\ \text{s.t.} & \begin{bmatrix} 1 & y_{1,0} & y_{0,1} \\ y_{1,0} & y_{2,0} & y_{1,1} \\ y_{0,1} & y_{1,1} & y_{0,2} \end{bmatrix} \succeq 0, \\ 1 - y_{2,0} \ge 0, 1 - y_{0,2} \ge 0, & & & & & & \\ \exists \mathbf{x} \in \mathbb{R}^2 \text{ s.t. } \mathbf{y} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1^2, \mathbf{x}_1 \mathbf{x}_2, \mathbf{x}_2^2) \end{cases}$$

- $\mathbb{N}_r^n := \{ \beta = (\beta_i) \in \mathbb{N}^n \mid \sum_{i=1}^n \beta_i \le r \}$
- r 阶moment 矩阵 $M_r(y)$:

$$[\mathbf{M}_r(\mathbf{y})]_{\beta\gamma} := y_{\beta+\gamma}, \quad \forall \beta, \gamma \in \mathbb{N}_r^n$$

• 给定 $g = \sum_{\alpha} g_{\alpha} \mathbf{x}^{\alpha}$, r 阶局部化矩阵 $\mathbf{M}_{r}(g\mathbf{y})$:

$$[\mathbf{M}_r(g\mathbf{y})]_{oldsymbol{eta}oldsymbol{\gamma}}\coloneqq \sum_{lpha} g_{lpha} y_{lpha+eta+eta}, \quad orall eta, oldsymbol{\gamma} \in \mathbb{N}_r^n$$

$$\mathbf{M}_{2}(\mathbf{y}) = \begin{bmatrix} 1 & x & x^{2} \\ y_{0} & y_{1} & y_{2} \\ x & y_{1} & y_{2} & y_{3} \\ x^{2} & y_{2} & y_{3} & y_{4} \end{bmatrix}, \quad \mathbf{M}_{1}(\mathbf{g}\mathbf{y}) = \begin{bmatrix} 1 & x \\ y_{0} - y_{2} & y_{1} - y_{3} \\ x & y_{1} - y_{3} & y_{2} - y_{4} \end{bmatrix}$$

- $\mathbb{N}_r^n := \{ \beta = (\beta_i) \in \mathbb{N}^n \mid \sum_{i=1}^n \beta_i \le r \}$
- r 阶moment 矩阵 $\mathbf{M}_r(\mathbf{y})$:

$$[\mathbf{M}_r(\mathbf{y})]_{\beta\gamma} := y_{\beta+\gamma}, \quad \forall \beta, \gamma \in \mathbb{N}_r^n$$

• 给定 $g = \sum_{\alpha} g_{\alpha} \mathbf{x}^{\alpha}$, r 阶局部化矩阵 $\mathbf{M}_{r}(g\mathbf{y})$:

$$[\mathbf{M}_r(g\mathbf{y})]_{eta\gamma}\coloneqq\sum_{lpha}g_{lpha}y_{lpha+eta+\gamma},\quadoralleta,\gamma\in\mathbb{N}_r^n$$

- $\mathbb{N}_r^n := \{ \boldsymbol{\beta} = (\beta_i) \in \mathbb{N}^n \mid \sum_{i=1}^n \beta_i \leq r \}$
- r 阶moment 矩阵 $\mathbf{M}_r(\mathbf{y})$:

$$[\mathbf{M}_r(\mathbf{y})]_{\beta\gamma} := y_{\beta+\gamma}, \quad \forall \beta, \gamma \in \mathbb{N}_r^n$$

• 给定 $g = \sum_{\alpha} g_{\alpha} \mathbf{x}^{\alpha}$, r 阶局部化矩阵 $\mathbf{M}_{r}(g\mathbf{y})$:

$$[\mathbf{M}_r(g\mathbf{y})]_{oldsymbol{eta}oldsymbol{\gamma}}\coloneqq \sum_{lpha} g_{lpha} y_{lpha+eta+oldsymbol{\gamma}}, \quad orall eta, oldsymbol{\gamma} \in \mathbb{N}_r^n$$

$$\mathbf{M}_{2}(\mathbf{y}) = \begin{bmatrix} 1 & \times & \times^{2} \\ y_{0} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{3} \\ x^{2} & y_{2} & y_{3} & y_{4} \end{bmatrix}, \quad \mathbf{M}_{1}(\mathbf{g}\mathbf{y}) = \begin{bmatrix} 1 & \times \\ y_{0} - y_{2} & y_{1} - y_{3} \\ y_{1} - y_{3} & y_{2} - y_{4} \end{bmatrix}$$

- $\mathbb{N}_r^n := \{ \beta = (\beta_i) \in \mathbb{N}^n \mid \sum_{i=1}^n \beta_i \le r \}$
- r 阶moment 矩阵 $\mathbf{M}_r(\mathbf{y})$:

$$[\mathbf{M}_r(\mathbf{y})]_{\beta\gamma} := y_{\beta+\gamma}, \quad \forall \beta, \gamma \in \mathbb{N}_r^n$$

• 给定 $g = \sum_{\alpha} g_{\alpha} \mathbf{x}^{\alpha}$, r 阶局部化矩阵 $\mathbf{M}_{r}(g\mathbf{y})$:

$$[\mathbf{M}_r(g\mathbf{y})]_{eta\gamma}\coloneqq\sum_{lpha}g_{lpha}y_{lpha+eta+\gamma},\quadoralleta,\gamma\in\mathbb{N}_r^n$$

$$\mathbf{M}_{2}(\mathbf{y}) = \begin{bmatrix} 1 & \times & \times^{2} \\ 1 & y_{0} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{3} \\ \times^{2} & y_{2} & y_{3} & y_{4} \end{bmatrix}, \quad \mathbf{M}_{1}(\mathbf{g}\mathbf{y}) = \begin{bmatrix} 1 & \times \\ y_{0} - y_{2} & y_{1} - y_{3} \\ y_{1} - y_{3} & y_{2} - y_{4} \end{bmatrix}$$

Moment 松弛

• Moment 松弛 (Lasserre 2001):

$$\theta_r := \begin{cases} \inf_{\mathbf{y}} & L_{\mathbf{y}}(f) \\ \text{s.t.} & \mathbf{M}_r(\mathbf{y}) \succeq 0, \\ & \mathbf{M}_{r-d_i}(g_i\mathbf{y}) \succeq 0, \quad i = 1, \dots, m, \\ & \mathbf{M}_{r-d_j}(h_i\mathbf{y}) = 0, \quad j = 1, \dots, l, \\ & y_0 = 1. \end{cases}$$

例子(SOS 松弛)

$$\begin{cases} \inf_{\mathbf{x}} & x_1^2 + x_1 x_2 + x_2^2 \\ \text{s.t.} & 1 - x_1^2 \ge 0, 1 - x_2^2 \ge 0 \end{cases} \iff \begin{cases} \sup_{\lambda} & \lambda \\ \text{s.t.} & x_1^2 + x_1 x_2 + x_2^2 - \lambda \ge 0, \forall \mathbf{x} \in \mathbb{R}^2 \text{ s.t. } (1 - x_1^2 \ge 0, 1 - x_2^2 \ge 0) \end{cases}$$

$$\text{(SOS)} \begin{cases} \sup_{\lambda} & \lambda \\ \text{s.t.} & x_1^2 + x_1 x_2 + x_2^2 - \lambda = \sigma_0 + \sigma_1 (1 - x_1^2) + \sigma_2 (1 - x_2^2), \\ & \sigma_0, \sigma_1, \sigma_2 \in \text{SOS} \end{cases}$$

基础半代数集上的正性

•
$$S = \{ \mathbf{x} \in \mathbb{R}^n \mid g_1 \ge 0, \dots, g_m \ge 0, h_1 = 0, \dots, h_l = 0 \}$$

定理 (Putinar's Positivstellensatz, 1993)

假设 Q(g, h) 满足Archimedean 条件。若 f 在 S 上是严格正的,则

$$f = \sigma_0 + \sigma_1 g_1 + \dots + \sigma_m g_m + \tau_1 h_1 + \dots + \tau_l h_l,$$

其中 $\sigma_0, \ldots, \sigma_m$ 是 SOS 多项式, τ_1, \ldots, τ_l 是多项式。

对偶 SOS 松弛

• 对偶 SOS 松弛 (Parrilo 2000 & Lasserre 2001):

$$\theta_r^* = \begin{cases} \sup_{\lambda, \sigma_j} & \lambda \\ \text{s.t.} & f - \lambda = \sigma_0 + \sum_{i=1}^m \sigma_i g_i + \sum_{j=1}^l \tau_j h_j, \\ & \sigma_0, \sigma_1, \dots, \sigma_m \in \Sigma(\mathbf{x}), \\ & \deg(\sigma_0) \le 2r, \deg(\sigma_i g_i) \le 2r, \deg(\tau_j h_j) \le 2r. \end{cases}$$

Moment-SOS/Lasserre 半定松弛分层

渐进收敛性与有限收敛性

- 假定 Archimedean 条件: 存在 N > 0 使得 $N ||\mathbf{x}||^2 \in \mathcal{Q}(\mathbf{g}, \mathbf{h})$
 - \triangleright $\theta_r \uparrow f_{\min}$ \hbar $\theta_r^* \uparrow f_{\min}$ \pm $r \rightarrow \infty$ (Lassere, 2001)
 - ► 一般地有限收敛性成立 (Nie, 2014)

渐进收敛性与有限收敛性

- 假定 Archimedean 条件: 存在 N > 0 使得 $N ||\mathbf{x}||^2 \in \mathcal{Q}(\mathbf{g}, \mathbf{h})$
 - $ightharpoonup heta_r \uparrow f_{\min}$ 和 $\theta_r^* \uparrow f_{\min}$ 当 $r \to \infty$ (Lassere, 2001)
 - ► 一般地有限收敛性成立 (Nie, 2014)

渐进收敛性与有限收敛性

- 假定 Archimedean 条件: 存在 N > 0 使得 $N ||\mathbf{x}||^2 \in \mathcal{Q}(\mathbf{g}, \mathbf{h})$
 - $ightharpoonup heta_r \uparrow f_{\min}$ 和 $\theta_r^* \uparrow f_{\min}$ 当 $r \to \infty$ (Lassere, 2001)
 - ➤ 一般地有限收敛性成立 (Nie, 2014)

全局最优性条件

- Moment 松弛取到全局最优 $(\theta_r = f_{\min})$ 当下列条件之一满足:
 - ▶ 对某个 $r_{\min} \le r' \le r$, 有 $\operatorname{rank} M_{r'-r_{\min}}(y) = \operatorname{rank} M_{r'}(y)$
 - \rightarrow 可提取 rank $M_{r'}(y)$ 个全局最优解
 - $ightharpoonup \operatorname{rank} \mathbf{M}_{r_{\min}}(\mathbf{y}) = 1$
 - → 可提取一个全局最优解

全局最优性条件

- Moment 松弛取到全局最优 $(\theta_r = f_{\min})$ 当下列条件之一满足:
 - ightharpoonup 对某个 $r_{\min} \leq r' \leq r$,有 $\mathrm{rank}\,\mathbf{M}_{r'-r_{\min}}(\mathbf{y}) = \mathrm{rank}\,\mathbf{M}_{r'}(\mathbf{y})$
 - → 可提取 $rank M_{r'}(y)$ 个全局最优解
 - $ightharpoonup \operatorname{rank} \mathbf{M}_{r_{\min}}(\mathbf{y}) = 1$
 - → 可提取一个全局最优解

全局最优性条件

- Moment 松弛取到全局最优 $(\theta_r = f_{\min})$ 当下列条件之一满足:
 - ightharpoonup 对某个 $r_{\min} \leq r' \leq r$,有 $\mathrm{rank}\,\mathbf{M}_{r'-r_{\min}}(\mathbf{y}) = \mathrm{rank}\,\mathbf{M}_{r'}(\mathbf{y})$
 - → 可提取 $\operatorname{rank} M_{r'}(y)$ 个全局最优解
 - $ightharpoonup \operatorname{rank} \mathbf{M}_{r_{\min}}(\mathbf{y}) = 1$
 - → 可提取一个全局最优解

Moment-SOS 分层的理论研究

- 收敛速率: 紧集、球面、单形、超立方体 (Klerk & Laurent)
- 近似度: 一阶 → 最大割问题 ≈ 0.878 (Goemans & Williamson, 1995)
- ▲ 准确性: 一阶、二阶(秩1矩阵补全)、高阶(Hua & Qu, 2021)
- 加强: Lagrange 乘子的多项式表达 (Nie, 2019)

Moment-SOS 分层的计算瓶颈

- r 阶 SOS 松弛对应 SDP 问题的规模:
 - PSD 矩阵大小: (^{n+r}/_r)
 - ② 等式约束个数: (n+2r)
 2r)
- r = 2, n < 30 (MOSEK)
- 利用结构:
 - > 约化的单项式基
 - ▶商环
 - > 对称性
 - ▶ 稀疏性

Moment-SOS 分层的计算瓶颈

- r 阶 SOS 松弛对应 SDP 问题的规模:
 - PSD 矩阵大小: (^{n+r}/_r)
 - ② 等式约束个数: (n+2r)
 2r)
- r = 2, n < 30 (MOSEK)
- 利用结构:
 - ▶ 约化的单项式基
 - ▶商环
 - > 对称性
 - ➤ 稀疏性

Moment-SOS 分层的计算瓶颈

- r 阶 SOS 松弛对应 SDP 问题的规模:
 - PSD 矩阵大小: (^{n+r}/_r)
 - ② 等式约束个数: (n+2r)
 2r)
- r = 2, n < 30 (MOSEK)
- 利用结构:
 - ▶ 约化的单项式基
 - ➤ 商环
 - ➤ 对称性
 - ➤ 稀疏性

变量 (correlative) 稀疏性 (Waki et al. 2006)

- 变量稀疏型 (csp) 图 $G^{csp}(V, E)$:
 - $ightharpoonup V := \{x_1, \ldots, x_n\}$
 - $ightharpoonup \{x_i, x_j\} \in E \iff x_i, x_j$ 出现在 f 的同一项或同一个约束多项式 g_k 或

h_k 中

• 对 $G^{csp}(V, E)$ 的每一个极大团,

$$I_k \longmapsto \mathbf{M}_r(\mathbf{y}, I_k), \mathbf{M}_{r-d_i}(g_i\mathbf{y}, I_k), \mathbf{M}_{r-d_i}(h_j\mathbf{y}, I_k)$$

变量 (correlative) 稀疏性 (Waki et al. 2006)

- 变量稀疏型 (csp) 图 G^{csp}(V, E):
 - $ightharpoonup V := \{x_1, \ldots, x_n\}$
- $ightharpoonup \{x_i, x_j\} \in E \iff x_i, x_j$ 出现在 f 的同一项或同一个约束多项式 g_k 或

 h_k 中

• 对 $G^{csp}(V, E)$ 的每一个极大团,

$$I_k \longmapsto \mathbf{M}_r(\mathbf{y}, I_k), \mathbf{M}_{r-d_i}(g_i\mathbf{y}, I_k), \mathbf{M}_{r-d_i}(h_j\mathbf{y}, I_k)$$

项稀疏性 (Wang & Magron & Lasserre, 2021)

- 项稀疏型 (tsp) 图 $G^{\mathrm{tsp}}(V,E)$:
 - \triangleright $V := v_r = \{1, x_1, \dots, x_n, x_1^r, \dots, x_n^r\}$
 - $ightharpoonup \{\mathbf{x}^{lpha},\mathbf{x}^{eta}\}\in \mathcal{E} \Longleftrightarrow$

 $\textbf{x}^{\alpha} \cdot \textbf{x}^{\beta} = \textbf{x}^{\alpha + \beta} \in \operatorname{supp}(\textbf{f}) \cup \bigcup_{i=1}^{m} \operatorname{supp}(\textbf{g}_{i}) \cup \bigcup_{j=1}^{l} \operatorname{supp}(\textbf{h}_{j}) \cup \textbf{v}_{r}^{2}$

$$\begin{array}{c|cccc}
 & & & & & & & & \\
\vdots & & & & \vdots & & \\
\beta & & & \cdots & & & \\
\vdots & & & \vdots & & & \\
\vdots & & & \vdots & & & \\
\end{array} = \mathbf{M}_r(\mathbf{y})$$

变量-项联合稀疏性

- 利用变量稀疏性分解变量
- ② 对子系统利用项稀疏性

变量-项联合稀疏性

- 利用变量稀疏性分解变量
- ② 对子系统利用项稀疏性

扩展

- 复多项式优化 → 最优电力流
- 三角多项式优化 → 信号处理
- 多项式矩阵优化 → 控制
- SOS 规划 → 联合谱半径计算
- 广义矩问题 → 控制
- 非交换/trace/state/moment 多项式优化 → 量子多项式优化

软件

• TSSOS:基于 JuMP,用户友好,支持交换/复/非交换多项式优化

https://github.com/wangjie212/TSSOS

• SparseJSR, SparseDynamicSystem

最优电力流问题(AC-OPF)

$$\begin{cases} \inf_{V_{i},S_{k}^{g}\in\mathbb{C}} & \sum_{k\in G} \left(\mathbf{c}_{2k}\Re(S_{k}^{g})^{2} + \mathbf{c}_{1k}\Re(S_{k}^{g}) + \mathbf{c}_{0k}\right) \\ \text{s.t.} & \angle V_{r} = 0, \\ & \mathbf{S}_{k}^{gl} \leq S_{k}^{g} \leq \mathbf{S}_{k}^{gu}, \quad \forall k \in G, \\ & \mathbf{v}_{i}^{l} \leq |V_{i}| \leq \mathbf{v}_{i}^{u}, \quad \forall i \in \mathcal{N}, \\ & \sum_{k\in G_{i}} S_{k}^{g} - \mathbf{S}_{i}^{d} - \mathbf{Y}_{i}^{s}|V_{i}|^{2} = \sum_{(i,j)\in E_{i}\cup E_{i}^{g}} S_{ij}, \quad \forall i \in \mathcal{N}, \\ & S_{ij} = (\mathbf{Y}_{ij}^{*} - \mathbf{i} \frac{\mathbf{b}_{ij}^{c}}{2}) \frac{|V_{i}|^{2}}{|\mathbf{T}_{ij}|^{2}} - \mathbf{Y}_{ij}^{*} \frac{V_{i}V_{j}^{*}}{\mathbf{T}_{ij}^{*}}, \quad \forall (i,j) \in E, \\ & S_{ji} = (\mathbf{Y}_{ij}^{*} - \mathbf{i} \frac{\mathbf{b}_{ij}^{c}}{2})|V_{j}|^{2} - \mathbf{Y}_{ij}^{*} \frac{V_{i}^{*}V_{j}}{\mathbf{T}_{ij}^{*}}, \quad \forall (i,j) \in E, \\ & |S_{ij}| \leq \mathbf{s}_{ij}^{u}, \quad \forall (i,j) \in E \cup E^{R}, \\ & \theta_{ij}^{\Delta l} \leq \angle(V_{i}V_{j}^{*}) \leq \theta_{ij}^{\Delta u}, \quad \forall (i,j) \in E. \end{cases}$$

最优电力流问题(AC-OPF)

n		$CS\;(r=2)$				CS+TS $(r = 2, s = 1)$				
	m+l	mb	opt	time (s)	gap	mb	opt	time (s)	gap	
12	28	28	1.1242e4	0.21	0.00%	22	1.1242e4	0.09	0.00%	
20	55	28	1.7543e4	0.56	0.05%	22	1.7543e4	0.30	0.05%	
72	297	45	4.9927e3	4.43	0.07%	22	4.9920e3	2.69	0.08%	
114	315	120	7.6943e4	94.9	0.00%	39	7.6942e4	14.8	0.00%	
344	1325	253	-	-	_	73	1.0470e5	169	0.50%	
348	1809	253	-	-	_	34	1.2096e5	201	0.03%	
766	3322	153	3.3072e6	585	0.68%	44	3.3042e6	33.9	0.77%	
1112	4613	496	-	-	_	31	7.2396e4	410	0.25%	
4356	18257	378	-	-	_	27	1.3953e6	934	0.51%	
6698	29283	1326	_	_	_	76	5.9858e5	1886	0.47%	

基于流形优化求解低秩 SDP

- 退化: 二阶以上松弛 ~→ m ≫ n
- 低秩: $\operatorname{rank} \mathbf{M}^{\operatorname{opt}} \ll n \rightsquigarrow \mathbf{M} = YY^{\mathsf{T}}, \ Y \in \mathbb{R}^{n \times p}$ (Burer-Monteiro 分解)
- 单位对角: $M_{ii} = 1, i = 1, ..., n$
- 常数迹: tr(M) = c
- $\triangleright \mathcal{N}(n,p) := \{ Y \in \mathbb{R}^{n \times p} \mid ||Y(k,:)|| = 1, k = 1,\ldots, n \}$

基于流形优化求解低秩 SDP

- 退化: 二阶以上松弛 → m ≫ n
- 低秩: $\operatorname{rank} \mathbf{M}^{\operatorname{opt}} \ll n \rightsquigarrow \mathbf{M} = YY^{\mathsf{T}}, \ Y \in \mathbb{R}^{n \times p}$ (Burer-Monteiro 分解)
- 单位对角: $M_{ii} = 1, i = 1, ..., n$
- 常数迹: $tr(\mathbf{M}) = c$
- $ightharpoonup \mathcal{N}(n,p) := \{ Y \in \mathbb{R}^{n \times p} \mid ||Y(k,:)|| = 1, k = 1, \ldots, n \}$

增广拉格朗日方法

$$\begin{cases} \inf_{X \succeq 0} & \langle C, X \rangle \\ \text{s.t.} & \mathbf{A}(X) = \mathbf{b}, \ \mathcal{B}(X) = \mathbf{d} \rightsquigarrow \mathbf{定义流形} \end{cases}$$

• 增广拉格朗日函数:

$$L_{\sigma}(X,y) = \langle C, X \rangle - y^{\mathsf{T}} (A(X) - b) + \frac{\sigma}{2} ||A(X) - b||^2$$

• 第 k 步求解子问题:

$$\min_{X \in \mathcal{M}} L_{\sigma^k}(X, y^k)$$

增广拉格朗日方法

$$\begin{cases} \inf_{X\succeq 0} & \langle C,X\rangle \\ \text{s.t.} & \mathcal{A}(X)=b \end{cases}, \ \mathcal{B}(X)=d \rightsquigarrow 定义流形$$

• 增广拉格朗日函数:

$$L_{\sigma}(X, y) = \langle C, X \rangle - y^{\mathsf{T}} (A(X) - b) + \frac{\sigma}{2} ||A(X) - b||^{2}$$

• 第 k 步求解子问题:

$$\min_{X \in \mathcal{M}} L_{\sigma^k}(X, y^k)$$

增广拉格朗日方法

$$\begin{cases} \inf_{X\succeq 0} & \langle C,X\rangle \\ \text{s.t.} & \mathcal{A}(X)=b \end{cases}, \ \mathcal{B}(X)=d \rightsquigarrow 定义流形$$

• 增广拉格朗日函数:

$$L_{\sigma}(X,y) = \langle C, X \rangle - y^{\mathsf{T}}(A(X) - b) + \frac{\sigma}{2} ||A(X) - b||^{2}$$

• 第 k 步求解子问题:

$$\min_{X \in \mathcal{M}} L_{\sigma^k}(X, y^k)$$

黎曼信赖域法求解子问题

令X = YY 。用黎曼信赖域法在关于 Y 的流形N上求解子问题:

$$\min_{Y \in \mathcal{N}} \langle \mathcal{C}, YY^{\mathsf{T}} \rangle - (y^k)^{\mathsf{T}} (\mathcal{A}(YY^{\mathsf{T}}) - b) + \frac{\sigma^k}{2} \|\mathcal{A}(YY^{\mathsf{T}}) - b\|^2 \!\!\!\! \rightsquigarrow \!\!\!\! \# \underline{\mathbf{L}} \!\!\! !$$

但是..

我们可以高效逃离鞍点, 求解 SDP 到全局最优。

黎曼信赖域法求解子问题

 $\phi X = YY$ 。用<mark>黎曼信赖域法</mark>在关于 Y 的流形 \mathcal{N} 上求解子问题:

$$\min_{Y \in \mathcal{N}} \langle \mathcal{C}, YY^\mathsf{T} \rangle - (y^k)^\mathsf{T} (\mathcal{A}(YY^\mathsf{T}) - b) + \frac{\sigma^k}{2} \|\mathcal{A}(YY^\mathsf{T}) - b\|^2 \\ \leadsto \frac{\sharp \mathbf{L}}{!}$$

但是...

我们可以高效逃离鞍点,求解 SDP 到全局最优。

数值实验

表: BQP 问题
$$\min_{\mathbf{x} \in \{-1,1\}^d} \mathbf{x} Q \mathbf{x}^\intercal$$
, $r = 2^1$

d n	_		MOSEK 10.0		SDPNAL+		STRIDE		ManiSDP	
	п	m	$\eta_{ m max}$	time						
10	56	1,256	4.4e-11	0.71	1.9e-09	0.65	4.7e-13	0.79	3.2e-15	0.14
20	211	16,361	2.7e-11	49.0	3.0e-09	28.8	7.4e-13	6.12	1.2e-14	0.53
30	466	77,316	-	-	1.7e-04	187	1.2e-12	65.4	2.4e-14	3.25
40	821	236,121	-	-	2.1e-08	813	4.4e-13	249	4.1e-14	10.5
50	1,276	564,776	-	-	1.6e-07	3058	7.8e-09	826	6.4e-14	31.1
60	1,831	1,155,281	-	-	*	*	1.3e-12	2118	7.9e-14	94.3

王杰

¹-: 内存不足, *: >10000s

求解大规模多项式优化

总结

王杰

更多的结果和应用...

- 计算机视觉 SDP 松弛数值实验
- 切换线性系统稳定性
- 多项式动力系统相关集合逼近
- 非线性 Bell 不等式的最大背离
- 量子多体系统基态能量

主要参考文献

- Jie Wang, Victor Magron and Jean B. Lasserre, TSSOS: A Moment-SOS hierarchy that exploits term sparsity, SIAM Journal on Optimization, 2021.
- Jie Wang, Victor Magron and Jean B. Lasserre, Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension, SIAM Journal on Optimization, 2021.
- Jie Wang and Victor Magron, Exploiting Sparsity in Complex Polynomial Optimization,
 Journal of Optimization Theory and Applications, 2021.
- Jie Wang, Victor Magron, Jean B. Lasserre and Ngoc H. A. Mai, CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization, ACM Transactions on Mathematical Software, 2022.

主要参考文献

- Jie Wang and Victor Magron, Exploiting Term Sparsity in Noncommutative Polynomial Optimization, Computational Optimization and Applications, 2021.
- Igor Klep, Victor Magron, Jurij Volčič and Jie Wang, State Polynomials: Positivity,
 Optimization and Nonlinear Bell Inequalities, arXiv, 2023.
- Jie Wang and Liangbing Hu, Solving Low-Rank Semidefinite Programs via Manifold Optimization, arXiv, 2023.
- Feng Guo and Jie Wang, A Moment-SOS Hierarchy for Robust Polynomial Matrix Inequality Optimization with SOS-Convexity, arXiv, 2023.

新书

王杰

谢谢!

https://wangjie212.github.io/jiewang