- 30. Diga quais das aplicações seguintes são morfismos de grupos, e, nesses casos, classifique-os:
 - (a) $\varphi_1:(\mathbb{Z},+)\to(\mathbb{Z},+)$ definida por $\varphi_1(x)=x+3$, para todo $x\in\mathbb{Z}$;
 - (b) $\varphi_2: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$ definida por $\varphi_2(x) = 3x$, para todo $x \in \mathbb{Z}$;
 - (c) $\varphi_3:(\mathbb{R},+)\to(\mathbb{R}^+,+)$ definida por $\varphi_3(x)=2^x$, para todo $x\in\mathbb{R}$.
- 31. Seja G um grupo. Mostre que a aplicação $\phi:G\to G$ definida por $\phi(x)=x^{-1}$ é um automorfismo se e só se o grupo G for abeliano.
- 32. Seja $\varphi: \mathbb{Z} \otimes \mathbb{Z} \to \mathbb{Z} \otimes \mathbb{Z}$ a aplicação definida por

$$\varphi((x,y)) = (x+y, x-y)$$
 $(x, y \in \mathbb{Z}).$

- (a) Mostre que φ é um endomorfismo em $\mathbb{Z} \otimes \mathbb{Z}$.
- (b) Determine $\operatorname{Nuc} \varphi$.
- (c) Classifique o endomorfismo φ .
- (d) Prove que, para todo $n \in \mathbb{N}$, φ^n é um endomorfismo em $\mathbb{Z} \otimes \mathbb{Z}$.
- 33. Sejam G_1, G_2 grupos, $\phi: G_1 \to G_2$ um morfismo e X um subconjunto de G_1 . Mostre que $\phi(\langle X \rangle) = \langle \phi(X) \rangle$.
- 34. Sejam G e G' grupos e $\varphi:G\to G'$ um morfismo. Mostre que:
 - (a) Se H' < G' então $\varphi^{-1}(H') = \{x \in G : \varphi(x) \in H'\} < G;$
 - (b) Se $H' \triangleleft G'$ então $\varphi^{-1}(H') \triangleleft G$.
- 35. Sejam G e G' grupos e $\varphi:G\to G'$ um morfismo. Mostre que:
 - (a) Para cada $x \in G$ e $n \in \mathbb{Z}$, se tem $\varphi(x^n) = \varphi(x)^n$;
 - (b) Se $x \in G$ tem ordem finita, então, $\varphi(x)$ tem ordem finita e $o(\varphi(x)) \mid o(x)$;
 - (c) Se $x \in G$ tem ordem finita e φ é isomorfismo, então $\varphi(x)$ tem ordem finita e $o(\varphi(x)) = o(x)$.
- 36. Sejam G um grupo, H um grupo abeliano, $\theta:G\to H$ um morfismo e $\psi:G\otimes G\to H$ a aplicação definida por: $\psi[(g_1,g_2)]=\theta(g_1)\theta(g_2)^{-1}$. Prove que ψ é um morfismo.
- 37. Sejam G um grupo, H < G um subgrupo abeliano de G e $\theta, \phi: G \longrightarrow H$ morfismos. Considere o subconjunto S de G definido por $S = \{x \in G: \ \theta(x) = \phi(x)\}$. Mostre que S é um subgrupo normal de G.
- 38. Sejam G um grupo não trivial, $G\otimes G$ o grupo produto direto e $\phi:G\otimes G\longrightarrow G$ a aplicação definida por $\phi((a,b))=ab$, para todos $a,b\in G$.
 - (a) Prove que a aplicação ϕ é um morfismo se e só se G é comutativo.
 - (b) Suponha que o grupo ${\cal G}$ é comutativo.
 - \bullet Determine Nuc ϕ e diga, justificando, se ϕ é um monomorfismo.
 - Diga justificando se o morfismo ϕ é sobrejetivo.