19

Orthogonal Distance Regression

正交回归

输入和输出数据都参与主成分分析,构造正交空间

数学展现出秩序、对称和有限——这些都是美的极致形态。

The mathematical sciences particularly exhibit order, symmetry, and limitations; and these are the greatest forms of the beautiful.

—— 亚里士多德 (Aristotle) | 古希腊哲学家 | 384~322 BC

- numpy.linalg.eig() 特征值分解
- ◀ numpy.linalg.svd() 奇异值分解
- ◀ numpy.mean() 计算均值
- ◀ numpy.std() 计算均方差
- ◀ numpy.var() 计算方差
- ◀ pandas_datareader.get_data_yahoo() 下载股价数据
- ◀ scipy.odr 正交回归
- ◀ scipy.odr.Model() 构造正交回归模型
- ◀ scipy.odr.ODR() 设置正交回归数据、模型和初始自
- ◀ scipy.odr.RealData() 加载正交回归数据
- ◀ statsmodels.api.add constant() 增加OLS常数项
- ◀ statsmodels.api.OLS 最小二乘法线性回归

19.1 主成分与回归

本章主要介绍一种和主成分分析息息相关的回归方法——**正交回归** (orthogonal regression)。

正交回归,也叫做**正交距离回归** (Orthogonal Distance Regression, ODR),又叫**全线性回归** (total linear regression)。平面上,最小二乘法线性回归 OLS 仅考虑纵坐标方向上误差,如图 1 (a) 所示;而正交回归 TLS 同时考虑横纵两个方向误差,如图 1 (b) 所示。

图 1. 对比 OLS 和 TLS 线性回归

从主成分分析角度,正交回归特点是输入数据 X 和输出数据 y 都参与主成分分析。按照特征值从小到大顺序排列特征向量 $[v_1,v_2,...,v_D,v_{D+1}]$,用其中前 D 个向量 $[v_1,v_2,...,v_D]$ 构造一个全新超平面 H。利用 v_{D+1} 垂直于超平面 H 便可以求解出回归系数。

下面用两特征 $X = [x_1, x_2]$ 数据作例子,聊一下主成分回归的思想。如图 2 所示, x_1 和 x_2 为输入数据,y 为输出数据;通过主成分分析, x_1 、 x_2 和 y 正交化之后得到 v_1 、 v_2 和 v_3 (根据特征值从小到大排列); v_1 、 v_2 和 v_3 两两正交。第一主成分 v_1 和第二主成分 v_2 构造平面 H。 v_3 垂直于平面 H,通过这层关系求解出正交回归系数。

图 2. 通过主成分分析构造正交空间

前文介绍的线性回归采用算法叫做**普通最小二乘法** (Ordinary Least squares, OLS); 而正交回 归采用的算法叫做**完全最小二乘法** (Total Least Squares, TLS)。如图 3 所示,最小二乘回归,将 y投影到 x_1 和 x_2 构造的平面上。而对于正交回归,将 y 投影到 H,得到 \hat{y} 。而残差, $\varepsilon = y - \hat{y}$,平行 于 v_3 。再次强调,平面 H 是由第一主成分 v_1 和第二主成分 v_2 构造。

此外,建议读者完成本章学习之后,回过头来再比较图 3 和图 4。这样,相信大家会更清楚 OLS 和 TLS 之间的区别。

图 3. 最小二乘回归,将 y 投影到 x_1 和 x_2 构造的平面上

图 4. 正交回归,将输出数据 y 投影到 H

下一节首先用一元正交回归给大家建立正交回归的直观印象,本章后续将逐步扩展到二元回归和多元回归。

19.2 —元正交回归

设定一元正交回归解析式如下:

$$y = b_0 + b_1 x \tag{1}$$

其中, b0为截距项, b1为斜率。

如图 5 所示,x-y 平面上任意一点 $(x^{(i)}, y^{(i)})$ 和正交回归直线距离可以利用下式获得:

$$d_{i} = \frac{y^{(i)} - \left(b_{0} + b_{1}x^{(i)}\right)}{\sqrt{1 + b_{1}^{2}}} \tag{2}$$

当 $i=1 \sim n$ 时, d_i 构成列向量为 d:

$$d = \frac{y - (b_0 + b_1 x)}{\sqrt{1 + b_1^2}} \tag{3}$$

构造如下优化问题, 60和 61为优化变量, 优化目标为最小化欧氏距离平方和:

$$\underset{b0,b1}{\operatorname{arg\,min}} f\left(b_{0}, b_{1}\right) = \left\|\boldsymbol{d}\right\|^{2} = \boldsymbol{d}^{\mathrm{T}}\boldsymbol{d} \tag{4}$$

将 (3) 代入 f(b₀, b₁) 得到:

$$f\left(b_{\scriptscriptstyle 0}, b_{\scriptscriptstyle 1}\right) = \frac{\left(\mathbf{y} - \left(b_{\scriptscriptstyle 0} + b_{\scriptscriptstyle 1} \mathbf{x}\right)\right)^{\mathsf{T}} \left(\mathbf{y} - \left(b_{\scriptscriptstyle 0} + b_{\scriptscriptstyle 1} \mathbf{x}\right)\right)}{1 + b_{\scriptscriptstyle 1}^{2}} \tag{5}$$

为了方便计算,也引入全 1 向量 1,它和 x 形状一样为 n 行 1 列向量; $f(b_0, b_1)$ 展开整理为下式:

$$f(b_0, b_1) = \frac{nb_0^2 + 2b_0b_1\mathbf{x}^{\mathrm{T}}\mathbf{I} + b_1^2\mathbf{x}^{\mathrm{T}}\mathbf{x} - 2b_0\mathbf{y}^{\mathrm{T}}\mathbf{I} - 2b_1\mathbf{x}^{\mathrm{T}}\mathbf{y} + \mathbf{y}^{\mathrm{T}}\mathbf{y}}{1 + b_1^2}$$
(6)

 $f(b_0, b_1)$ 对 b_0 偏导为 0,构造如下等式:

$$\frac{\partial f(b_0, b_1)}{\partial b_0} = \frac{2nb_0 + 2b_1 \mathbf{x}^{\mathsf{T}} \mathbf{I} - 2\mathbf{y}^{\mathsf{T}} \mathbf{I}}{1 + b_1^2} = 0$$
 (7)

 $f(b_0, b_1)$ 对 b_1 偏导为 0,构造如下等式:

$$\frac{\partial f(b_0, b_1)}{\partial b_1} = \frac{2b_1 \mathbf{x}^{\mathsf{T}} \mathbf{x} + 2b_0 \mathbf{x}^{\mathsf{T}} \mathbf{1} - 2\mathbf{x}^{\mathsf{T}} \mathbf{y}}{1 + b_1^2} - \frac{\left(nb_0^2 + 2b_0 b_1 \mathbf{x}^{\mathsf{T}} \mathbf{1} + b_1^2 \mathbf{x}^{\mathsf{T}} \mathbf{x} - 2b_0 \mathbf{y}^{\mathsf{T}} \mathbf{1} - 2b_1 \mathbf{x}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}\right) 2b_1}{\left(1 + b_1^2\right)^2} = 0 \quad (8)$$

观察 (7), 容易用 b_1 表达 b_0 :

$$b_0 = \frac{\mathbf{y}^{\mathrm{T}} \mathbf{I} - b_1 \mathbf{x}^{\mathrm{T}} \mathbf{I}}{n} = \mathrm{E}(\mathbf{y}) - b_1 \, \mathrm{E}(\mathbf{x})$$
(9)

其中,

$$\begin{cases} E(\mathbf{x}) = \frac{\mathbf{x}^{\mathrm{T}} \mathbf{I}}{n} = \frac{\sum_{i=1}^{n} \mathbf{x}^{(i)}}{n} \\ E(\mathbf{y}) = \frac{\mathbf{y}^{\mathrm{T}} \mathbf{I}}{n} = \frac{\sum_{i=1}^{n} \mathbf{y}^{(i)}}{n} \end{cases}$$
(10)

将(9)给出 b₀解析式代入(8)获得仅含有 b₁的一元二次方程:

$$b_1^2 + kb_1 - 1 = 0 (11)$$

其中,

$$k = \frac{nx^{\mathsf{T}}x - x^{\mathsf{T}}lx^{\mathsf{T}}l - ny^{\mathsf{T}}y + y^{\mathsf{T}}ly^{\mathsf{T}}l}{nx^{\mathsf{T}}y - x^{\mathsf{T}}ly^{\mathsf{T}}l}$$

$$= \frac{\left(\frac{x^{\mathsf{T}}x}{n} - \frac{x^{\mathsf{T}}lx^{\mathsf{T}}l}{n^{2}}\right) - \left(\frac{y^{\mathsf{T}}y}{n} - \frac{y^{\mathsf{T}}ly^{\mathsf{T}}l}{n^{2}}\right)}{\frac{x^{\mathsf{T}}y}{n} - \frac{x^{\mathsf{T}}ly^{\mathsf{T}}l}{n^{2}}}$$

$$= \frac{\operatorname{var}(x) - \operatorname{var}(y)}{\operatorname{cov}(x, y)} = \frac{\sigma_{x}^{2} - \sigma_{y}^{2}}{\rho_{xy}\sigma_{x}\sigma_{y}}$$
(12)

上式,不区分求解方差协方差时,1/(n-1)和1/n之间差别。

求解 (11) 一元二次方程, 得到 b_1 解如下:

$$b_{1} = \frac{-k \pm \sqrt{k^2 + 4}}{2} \tag{13}$$

将 (12) 给出的 k, 代入 (13), 整理得到 b₁ 解:

$$b_{1} = \frac{\left(\sigma_{y}^{2} - \sigma_{x}^{2}\right) \pm \sqrt{\left(\sigma_{x}^{2} - \sigma_{y}^{2}\right)^{2} + 4\left(\rho_{xy}\sigma_{x}\sigma_{y}\right)^{2}}}{2\rho_{xy}\sigma_{x}\sigma_{y}}$$
(14)

发现 b_1 两个解即**主成分分析** (principal component analysis, PCA) 主元方向。

构造 [x,y] 数据矩阵,它的协方差矩阵 Σ 可以记做:

$$\Sigma = \begin{bmatrix} \sigma_x^2 & \rho_{xy}\sigma_x\sigma_y \\ \rho_{xy}\sigma_x\sigma_y & \sigma_y^2 \end{bmatrix}$$
 (15)

对 Σ 进行特征值分解,得到两个特征向量:

$$\mathbf{v}_{1} = \begin{bmatrix} \left(\sigma_{y}^{2} - \sigma_{x}^{2}\right) + \sqrt{\left(\sigma_{x}^{2} - \sigma_{y}^{2}\right)^{2} + 4\left(\rho_{xy}\sigma_{x}\sigma_{y}\right)^{2}} \\ 2\rho_{xy}\sigma_{x}\sigma_{y} \\ 1 \end{bmatrix}$$

$$\mathbf{v}_{2} = \begin{bmatrix} \left(\sigma_{y}^{2} - \sigma_{x}^{2}\right) - \sqrt{\left(\sigma_{x}^{2} - \sigma_{y}^{2}\right)^{2} + 4\left(\rho_{xy}\sigma_{x}\sigma_{y}\right)^{2}} \\ 2\rho_{xy}\sigma_{x}\sigma_{y} \\ 1 \end{bmatrix}$$
(16)

 Σ 两个特征值,从大到小排列:

$$\lambda_{1} = \frac{\sigma_{x}^{2} + \sigma_{y}^{2}}{2} + \sqrt{\left(\rho_{xy}\sigma_{x}\sigma_{y}\right)^{2} + \left(\frac{\sigma_{x}^{2} - \sigma_{y}^{2}}{2}\right)^{2}}$$

$$\lambda_{2} = \frac{\sigma_{x}^{2} + \sigma_{y}^{2}}{2} - \sqrt{\left(\rho_{xy}\sigma_{x}\sigma_{y}\right)^{2} + \left(\frac{\sigma_{x}^{2} - \sigma_{y}^{2}}{2}\right)^{2}}$$
(17)

特征值较大的特征向量为正交回归直线切线向量;特征值较小特征向量对应直线法线向量,这样求得 b_1 斜率。有了上述思路,便可以用 PCA 分解来获得正交回归系数,这是下一节要讲解的内容。

如下代码首先介绍如何利用 scipy.odr 可以求解得到正交回归系数。构造线性函数 linear_func(b, x),利用 scipy.odr.Model(linear_func) 创建线性模型; 然后,采用 scipy.odr.RealData() 加载数据,再用 scipy.odr.ODR() 整合数据、模型和初始值,输出为 odr。odr.run() 求解回归问题。然后,用 pprint()打印结果。

Beta: [0.00157414 1.43773257]
Beta Std Error: [0.00112548 0.05617699]
Beta Covariance: [[1.21904872e-02 -2.43641786e-02]
[-2.43641786e-02 3.03712371e+01]]
Residual Variance: 0.00010390932459480641
Inverse Condition #: 0.22899877744275976
Reason(s) for Halting:
Sum of squares convergence

一元正交回归的解析式为:

$$y = 1.4377x + 0.00157 \tag{18}$$

下一节将介绍如下采用主成分分析来求解一元正交回归系数,并比较正交回归和最小二乘法线性回归。

19.3 几何角度看正交回归

图 6 所示为正交回归和 PCA 分解关系,发现主元回归直线通过数据中心 (E(x), E(y)),回归直线方向和主元方向 v_1 平行,垂直于次元 v_2 方向。即,次元方向 v_2 和直线法向量 n 平行。

图 6. 正交回归和 PCA 分解关系

对于 (1) 所示一元一次函数,构造二元 F(x, y) 函数如下:

$$F(x, y) = b_0 + b_1 x - y \tag{19}$$

F(x, y) 法向量,即平面上形如 (1) 直线法向量 n 可以通过下式求解:

$$\boldsymbol{n} = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right)^{\mathrm{T}} = \begin{bmatrix} b_1 \\ -1 \end{bmatrix}$$
 (20)

如前文所示,n 方向即 PCA 分解第二主元方向,即次元方向。

为了方便计算,假设数据已经经过中心化处理,即已经完成如下运算:

$$x = x - E(x), \quad y = y - E(y)$$
(21)

由于x和y已经是中心化向量,协方差矩阵可以通过下式运算得到:

$$\Sigma = \begin{bmatrix} x & y \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} x^{\mathsf{T}} \\ y^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} x^{\mathsf{T}} x & x^{\mathsf{T}} y \\ y^{\mathsf{T}} x & y^{\mathsf{T}} y \end{bmatrix}$$
(22)

为了方便计算,本节计算协方差矩阵不考虑系数 1/(n-1)。

由于n为 Σ 次元方向:

$$\Sigma \mathbf{n} = \lambda_2 \mathbf{n} \quad \Rightarrow \quad \begin{bmatrix} \mathbf{x}^{\mathsf{T}} \mathbf{x} & \mathbf{x}^{\mathsf{T}} \mathbf{y} \\ \mathbf{y}^{\mathsf{T}} \mathbf{x} & \mathbf{y}^{\mathsf{T}} \mathbf{y} \end{bmatrix} \mathbf{n} = \lambda_2 \mathbf{n}$$
 (23)

将(20)代入(23),整理得到如下两个等式:

$$\begin{bmatrix} \mathbf{x}^{\mathsf{T}} \mathbf{x} & \mathbf{x}^{\mathsf{T}} \mathbf{y} \\ \mathbf{y}^{\mathsf{T}} \mathbf{x} & \mathbf{y}^{\mathsf{T}} \mathbf{y} \end{bmatrix} \begin{bmatrix} b_1 \\ -1 \end{bmatrix} = \lambda_2 \begin{bmatrix} b_1 \\ -1 \end{bmatrix} \implies \begin{cases} \mathbf{x}^{\mathsf{T}} \mathbf{x} b_1 - \mathbf{x}^{\mathsf{T}} \mathbf{y} = \lambda_2 b_1 \\ \mathbf{y}^{\mathsf{T}} \mathbf{x} b_1 - \mathbf{y}^{\mathsf{T}} \mathbf{y} = -\lambda_2 \end{cases}$$
(24)

联立 (24) 两个等式, 用 λ_2 表示 b_1 :

$$b_{1\text{ TLS}} = \left(\boldsymbol{x}^{\mathrm{T}}\boldsymbol{x} - \lambda_{2}\right)^{-1} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y} \tag{25}$$

下式为本书前文获得的一元线性回归 OLS 中 b_1 解:

$$b_{\text{l OLS}} = \left(\mathbf{x}^{\mathsf{T}}\mathbf{x}\right)^{-1}\mathbf{x}^{\mathsf{T}}\mathbf{y} \tag{26}$$

对比 OLS 和 TLS; 当 (25) 中 λ_2 为 0 时, 两种回归方法得到斜率完全一致。 $\lambda_2 = 0$ 时, y 和 x 完全线性相关。

数据中心化前后,回归直线梯度向量不变;中心化之前的回归直线通过 (E(x), E(y)) 一点,即:

$$E(\mathbf{y}) = b_0 + b_1 E(\mathbf{x}) \tag{27}$$

获得回归式截距项 bo表达式:

$$b_0 = \mathbf{E}(\mathbf{y}) - b_1 \, \mathbf{E}(\mathbf{x}) \tag{28}$$

图 7 所示为一元正交回归数据之间关系。发现自变量 x 列向量和因变量 y 列向量数据都参与 PCA 分解得到正交化向量 v_1 和 v_2 ,然后用特征值中较大值对应特征向量 v_1 作为一元正交回归直线 切线向量。更为简单计算方法是,用特征值较小值对应特征向量 v_2 作为一元正交回归直线法向量。

图 7. 一元正交回归 TLS 数据关系

图 8 所示为最小二乘法 OLS 一元线性回归系数,对应的一元 OLS 解析式为:

$$y = 1.1225x + 0.0018 \tag{29}$$

图 9 比较 OLS 和 TLS 结果。

OLS	Regression	Results

=========					:========		
Dep. Variable	:	A	APL	R-squ	ared:		0.687
Model:			OLS	Adj.	R-squared:		0.686
Method:		Least Squa	res	F-sta	tistic:		549.7
Date:		Thu, 07 Oct 2	2021	Prob	(F-statistic):	:	4.55e-65
Time:		07:08	3:46	Log-I	ikelihood:		678.03
No. Observati	ons:		252	AIC:			-1352.
Df Residuals:			250	BIC:			-1345.
Df Model:			1				
Covariance Ty	pe:	nonrob	ust				
=========							========
	coef				P> t	-	_
const	0.0018				0.080		
SP500	1.1225	0.048	23	.446	0.000	1.028	1.217
Omnibus:	:=====:	 . 52	424	Durbi	======== .n-Watson:		1.864
Prob(Omnibus)	:	0.	000	Jarqu	ie-Bera (JB):		210.804
Skew:		0.	777	Prob	JB):		1.68e-46
Kurtosis:		7.	203	Cond.	No.		46.1
========							

图 8. 最小二乘法 OLS 一元线性回归结果

图 9. 比较 OLS 和 TLS 结果

Bk6_Ch19_01.py 绘制本节图像。

19.4 二元正交回归

这一节用主成分分析讨论二元正交回归。

首先也是对数据进行中心化处理:

$$x_1 = x_1 - E(x_1), \quad x_2 = x_2 - E(x_1), \quad y = y - E(y)$$
 (30)

根据 PCA 计算法则,首先求解协方差矩阵。由于 x_1 、 x_2 和 y 已经为中心化矩阵,因此协方差矩阵 Σ 通过下式计算获得。

$$\Sigma = \begin{bmatrix} x_{1} & x_{2} & y \end{bmatrix}^{T} \begin{bmatrix} x_{1} & x_{2} & y \end{bmatrix}$$

$$= \begin{bmatrix} x_{1}^{T} \\ x_{2}^{T} \\ y^{T} \end{bmatrix} \begin{bmatrix} x_{1} & x_{2} & y \end{bmatrix} = \begin{bmatrix} x_{1}^{T} x_{1} & x_{1}^{T} x_{2} & x_{1}^{T} y \\ x_{2}^{T} x_{1} & x_{2}^{T} x_{2} & x_{2}^{T} y \\ y^{T} x_{1} & y^{T} x_{2} & y^{T} y \end{bmatrix}$$
(31)

为了方便计算,本节也计算不考虑系数 1/(n-1)。

正交回归解析式表达:

$$y = b_0 + b_1 x_1 + b_2 x_2 \tag{32}$$

构造二元 $F(x_1, x_2, y)$ 函数如下:

$$F(x_1, x_2, y) = b_0 + b_1 x_1 + b_2 x_2 - y$$
(33)

 $F(x_1, x_2, y)$ 法向量即平面 $f(x_1, x_2)$ 法向量 n 通过下式求解:

$$\boldsymbol{n} = \begin{pmatrix} \frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \frac{\partial F}{\partial y} \end{pmatrix}^{\mathrm{T}} = \begin{bmatrix} b_1 & b_2 & -1 \end{bmatrix}^{\mathrm{T}}$$
(34)

n 平行于 Σ 矩阵 PCA 分解特征值最小特征向量,即:

$$\Sigma v_{3} = \lambda_{3} v_{3} \quad \Rightarrow \quad \begin{bmatrix} x_{1}^{\mathsf{T}} x_{1} & x_{1}^{\mathsf{T}} x_{2} & x_{1}^{\mathsf{T}} y \\ x_{2}^{\mathsf{T}} x_{1} & x_{2}^{\mathsf{T}} x_{2} & x_{2}^{\mathsf{T}} y \\ y^{\mathsf{T}} x_{1} & y^{\mathsf{T}} x_{2} & y^{\mathsf{T}} y \end{bmatrix} n = \lambda_{3} n$$
(35)

整理得到:

$$\begin{bmatrix} \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{1} & \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{2} & \mathbf{x}_{1}^{\mathsf{T}} \mathbf{y} \\ \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{1} & \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{2} & \mathbf{x}_{2}^{\mathsf{T}} \mathbf{y} \\ \mathbf{y}^{\mathsf{T}} \mathbf{x}_{1} & \mathbf{y}^{\mathsf{T}} \mathbf{x}_{2} & \mathbf{y}^{\mathsf{T}} \mathbf{y} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ -1 \end{bmatrix} = \lambda_{3} \begin{bmatrix} b_{1} \\ b_{2} \\ -1 \end{bmatrix} \implies \begin{cases} (\mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{1} - \lambda_{3}) b_{1} + \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{2} b_{2} = \mathbf{x}_{1}^{\mathsf{T}} \mathbf{y} \\ \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{1} b_{1} + (\mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{2} - \lambda_{3}) b_{2} = \mathbf{x}_{2}^{\mathsf{T}} \mathbf{y} \end{cases}$$
(36)

n 平行于 Σ 矩阵 PCA 分解特征值最小特征向量 v_3 ,构造如下等式并求解 b_1 和 b_2 :

$$\begin{bmatrix} b_1 \\ b_2 \\ -1 \end{bmatrix} = k \mathbf{v}_3 \quad \Rightarrow \quad \begin{bmatrix} b_1 \\ b_2 \\ -1 \end{bmatrix} = k \begin{bmatrix} v_{1,3} \\ v_{2,3} \\ v_{3,3} \end{bmatrix}$$
(37)

根据 (37) 最后一行, 可以求得 k

$$k = \frac{-1}{v_{3,3}} \tag{38}$$

 b_1 和 b_2 构成的列向量为:

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \frac{-1}{v_{1,3}} \begin{bmatrix} v_{1,3} \\ v_{2,3} \end{bmatrix}$$
 (39)

回归方程常数项通过下式获得:

$$b_0 = \mathbf{E}(\mathbf{y}) - \left[\mathbf{E}(\mathbf{x}_1) \quad \mathbf{E}(\mathbf{x}_2)\right] \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
(40)

为了方便多元正交回归运算,令:

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} = \begin{bmatrix} X \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} x_1 & x_2 & y \end{bmatrix} = \begin{bmatrix} X & y \end{bmatrix} \tag{41}$$

协方差矩阵 Σ 为:

$$\Sigma = \begin{bmatrix} X^{\mathsf{T}} X & X^{\mathsf{T}} y \\ y^{\mathsf{T}} X & X^{\mathsf{T}} y \end{bmatrix}$$
(42)

上式 Σ 也不考虑系数 1/(n-1):

$$\Sigma v_{3} = \lambda_{3} v_{3} \quad \Rightarrow \quad \begin{bmatrix} X^{\mathsf{T}} X & X^{\mathsf{T}} y \\ y^{\mathsf{T}} X & y^{\mathsf{T}} y \end{bmatrix} n = \lambda_{3} n \tag{43}$$

构造 $b = [b_1, b_2]^T$ 这样重新构造特征值和特征向量以及 Σ 之间关系:

$$\boldsymbol{n} = \begin{bmatrix} b_1 \\ b_2 \\ -1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{b} \\ -1 \end{bmatrix} \tag{44}$$

将 (44) 代入 (43), 整理得到 b:

$$\begin{bmatrix} X^{\mathsf{T}}X & X^{\mathsf{T}}y \\ y^{\mathsf{T}}X & y^{\mathsf{T}}y \end{bmatrix} \begin{bmatrix} b \\ -1 \end{bmatrix} = \lambda_{3} \begin{bmatrix} b \\ -1 \end{bmatrix} \quad \Rightarrow \quad b = (X^{\mathsf{T}}X - \lambda_{3})^{-1} X^{\mathsf{T}}y$$
 (45)

下一节将使用(45)这一解析式计算正交回归解析式系数。

图 10 回顾本章第一节介绍的二元正交回归坐标转换过程。

数据 $[x_1, x_2, y]$ 中心化后,用 PCA 正交化获得正交系 $[v_1, v_2, v_3]$ 。 v_1, v_2 和 v_3 对应特征值由大到小。前两个主元向量 v_1 和 v_2 相互垂直,构成了一个平面 H,特征值最小主元 v_3 垂直于该平面。n 为 H 平面法向量,n 和 v_3 两者平行。

图 10 还比较了 OLS 和 TLS 回归结果。值得大家注意的是,如图 10 上半部分所示,对于最小二乘回归 OLS, \hat{y} 在 x_1 和 x_2 构造的平面上;而如图 10 下半部分,正交回归 TLS 中, \hat{y} 在 v_1 和 v_2 构造平面 H 上。

图 10. 几何角度解释二元正交回归坐标转换

图 11 解释二元正交回归数据关系。如前文反复强调,输入数据和输出数据都参与主成分分析,也就是正交化过程,因此特征向量既有"输入"成分,也有"输出"成分,呈现"你中有我,我中有你"。

图 11. 二元正交回归数据关系

利用上一节介绍的 scipy.odr,可以求解一个二元正交回归的结果如下。利用主成分分析,我们可以获得相同正交回归的系数。

```
Beta: [-0.00061177  0.40795725  0.44382723]
Beta Std Error: [0.00057372  0.02454606  0.02864744]
Beta Covariance: [[ 5.46486647e-03 -2.24817813e-02  1.00466594e-02]
[-2.24817813e-02  1.00032390e+01 -7.07446738e+00]
[ 1.00466594e-02 -7.07446738e+00  1.36253753e+01]]
Residual Variance: 6.02314210079386e-05
Inverse Condition #: 0.16900716799896934
Reason(s) for Halting:
Sum of squares convergence
```

二元正交回归的平面解析式为:

$$y = 0.4079x_1 + 0.4438x_2 - 0.00061 (46)$$

图 12 所示为最小二乘法 OLS 二元线性回归结果,对应的平面解析式如下:

$$y = 0.3977x_1 + 0.4096x_2 - 0.006 (47)$$

		OLS Regr	essi	on Re	sults		
Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	Th	Least Squar u, 07 Oct 20 07:31:	DLS ces 021 :57 252 249 2	Adj. F-st Prob Log- AIC:	uared: R-squared: atistic: (F-statistic): Likelihood:		0.830 0.829 607.4 1.69e-96 831.06 -1656.
					P> t	-	_
AAPL	-0.0006 0.3977	0.001 0.024	-0 16	.984 .326	0.326 0.000 0.000	-0.002 0.350	0.001
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0.0	00	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		1.991 157.710 5.67e-35

图 12. 最小二乘法 OLS 二元线性回归结果

图 13 比较 OLS 和 TLS 二元回归结果。

图 13. 比较 OLS 和 TLS 二元回归结果,重新做

Bk6_Ch19_02.py 完成本节回归运算。

19.5 多元正交回归

下面,把上述思路推广到D维度X矩阵。首先中心化数据,获得如下两个中心化X,y向量:

$$\boldsymbol{X}_{\scriptscriptstyle ns:D} = \left(\boldsymbol{I} - \frac{1}{n} \boldsymbol{l} \boldsymbol{l}^{\scriptscriptstyle T}\right) \boldsymbol{X}, \quad \boldsymbol{y} = \boldsymbol{y} - \mathbf{E}(\boldsymbol{y})$$
 (48)

为了表达方便,假设 X 和 y 已经为中心化数据;这样,构造回归方程式时,不必考虑常数项 b_0 ,即回归方程中没有截距项:

$$y = b_1 x_1 + b_2 x_2 + \dots + b_{D-1} x_{D-1} + b_D x_D$$
 (49)

为了进行 PCA 分解,首先计算 [X, y] 矩阵协方差矩阵。

X和y均是中心化数据,不考虑系数 1/(n-1),协方差矩阵通过下式简单运算获得:

$$\Sigma_{(D+1)\times(D+1)} = \begin{bmatrix} X, y \end{bmatrix}^{T} \begin{bmatrix} X, y \end{bmatrix} = \begin{bmatrix} X^{T} \\ y^{T} \end{bmatrix} \begin{bmatrix} X, y \end{bmatrix} = \begin{bmatrix} X^{T}X & X^{T}y \\ y^{T}X & y^{T}y \end{bmatrix}$$
(50)

上述协方差矩阵行列宽度均为 D+1。对它进行特征值分解得到:

$$\Sigma = V \Lambda V^{-1} \tag{51}$$

其中.

$$\boldsymbol{\Lambda} = \begin{bmatrix} \lambda_{1} & & & & \\ & \lambda_{2} & & & \\ & & \ddots & & \\ & & & \lambda_{D} & & \\ & & & & \lambda_{D+1} \end{bmatrix}, \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{D} \geq \lambda_{D+1} \tag{52}$$

$$\boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{D} & \boldsymbol{v}_{D+1} \end{bmatrix}$$

特征值矩阵对角线特征值从左到右,由大到小。有了本章之前内容铺垫,相信读者已经清楚 正交回归的矩阵运算过程,具体如图 14 所示。

图 14. 多元正交回归矩阵运算过程

V中第 1 到第 D 个行向量 $[v_1, v_2, ..., v_D]$ 构造超平面 H,而 v_{D+1} 垂直于该超平面。

构造 F(x₁, x₂, ..., x_D, y) 函数:

$$F(x_1, x_2, ..., x_D, y) = b_1 x_1 + b_2 x_2 + \dots + b_{D-1} x_{D-1} + b_D x_D - y$$
(53)

 $F(x_1, x_2, ..., x_D, y)$ 法向量即平面上 $f(x_1, x_2, ..., x_D)$ 法向量 n 通过下式求解:

$$\boldsymbol{n} = \left(\frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_D}, \frac{\partial F}{\partial y}\right)^{\mathrm{T}} = \begin{bmatrix} b_1 & b_2 & \dots & b_D & -1 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{b} \\ -1 \end{bmatrix}$$
(54)

这样重新构造特征值 λ_{D+1} 和特征向量 v_{D+1} 以及 Σ 之间关系。注意,n 平行 v_{D+1} 。n 对应 Σ 矩阵 PCA 分解特征值最小特征向量,即:

$$\Sigma v_{D+1} = \lambda_{D+1} v_{D+1} \quad \Rightarrow \quad \begin{bmatrix} X^{\mathsf{T}} X & X^{\mathsf{T}} y \\ y^{\mathsf{T}} X & y^{\mathsf{T}} y \end{bmatrix} n = \lambda_{D+1} n$$
 (55)

求解获得多元正交回归系数列向量 b 解:

$$\begin{bmatrix} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} & \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} \\ \boldsymbol{y}^{\mathsf{T}} \boldsymbol{X} & \boldsymbol{y}^{\mathsf{T}} \boldsymbol{y} \end{bmatrix} \begin{bmatrix} \boldsymbol{b} \\ -1 \end{bmatrix} = \lambda_{D+1} \begin{bmatrix} \boldsymbol{b} \\ -1 \end{bmatrix} \quad \Rightarrow \quad \boldsymbol{b}_{TLS} = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} - \lambda_{D+1} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$
 (56)

对比多元线性最小二乘系数向量结果:

$$\boldsymbol{b}_{\text{OLS}} = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} \tag{57}$$

发现当 λ_{D+1} 等于 0 时,y 完全被 X 列向量解释,即两个共线性。

这里我们再次区分一下最小二乘法和正交回归。最小二乘法寻找因变量和自变量之间残差平方和最小超平面;几何角度上讲,将因变量投影在自变量构成超平面 H,使得残差向量垂直 H。正交回归则通过正交化自变量和因变量,构造一个新正交空间;这个新正交空间基底向量为分解得到主元向量,具体如图 15 所示。

图 15. 几何角度解释多元正交回归

n 平行于数据 [X, y] PCA 分解特征值最小特征向量 v_{D+1} ,构造如下等式并求解 b_1 , ..., b_D :

$$\begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{D} \\ -1 \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ -1 \end{bmatrix} = k \mathbf{v}_{D+1} \quad \Rightarrow \quad \begin{bmatrix} \mathbf{b} \\ -1 \end{bmatrix} = k \begin{bmatrix} v_{1,D+1} \\ v_{2,D+1} \\ \vdots \\ v_{D,D+1} \\ v_{D+1,D+1} \end{bmatrix}$$

$$(58)$$

求解 k 得到:

$$k = \frac{-1}{v_{D+1}} \tag{59}$$

求解 b 得到:

$$\boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_D \end{bmatrix} = \frac{-1}{v_{D+1,D+1}} \begin{bmatrix} v_{1,D+1} \\ v_{2,D+1} \\ \vdots \\ v_{D,D+1} \end{bmatrix}$$
(60)

b₀通过下式求得。

$$b_{0} = \mathbf{E}(\mathbf{y}) - \left[\mathbf{E}(\mathbf{x}_{1}) \quad \mathbf{E}(\mathbf{x}_{2}) \quad \cdots \quad \mathbf{E}(\mathbf{x}_{D})\right] \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{D} \end{bmatrix}$$
(61)

图 16 展示多元正交回归运算数据关系。看到数据 [X,y] 均参与到了正交化中;正交化结果为 D+1 个正交向量 [v_1 , v_2 ,..., v_D , v_{D+1}]。通过向量 v_{D+1} 垂直 v_1 , v_2 ,..., v_D 构成超平面,推导出多元正交回归解析式。

图 16. 多元正交回归运算数据关系

图 17 所示直方图,比较多元 TLS 回归和多元 OLS 回归系数。

图 17. 比较多元 TLS 回归和多元 OLS 回归系数

Bk6_Ch19_03.py 完成本节回归运算。