

CURSO TÉCNICO EM ADMINISTRAÇÃO - 1º FASE

UNIDADE CURRICULAR: MATEMÁTICA APLICADA A ADMINISTRAÇÃO

**NOTA** 

PROFESSORA: ARIÉL MARCZAKI

NOME: DATA:

Vamos conversando e peço que qualquer dúvida, estejam entrando em contato.

Tarefa 1 –

Qual é a idade de João e de Paulo?

## PROBLEMAS DO PRIMEIRO GRAU

João e Paulo tem juntos 64 anos. A idade de João é cinco terços da idade de Paulo. Qual é a idade de cada um?

Primeira forma de resolver: tentativa e erro

Questione-se

- -Se cada um tivesse 32 anos?
- -Se João tivesse 16 anos e Paulo 48 anos?
- -Se João tiver 50 anos e Paulo 14 anos?

Dê mais exemplos ...

<u>Pergunta norteadora?</u> Algumas dessas formas solucionaram os valores dos quais temos na segunda e terceira sentença do problema?

• Segunda forma de resolver: regra de três

Questione-se

Desenvolva o problema tentando com uma regra de três simples ou composta.



**CAMPUS** 

CURSO TÉCNICO EM ADMINISTRAÇÃO - 1º FASE

UNIDADE CURRICULAR: MATEMÁTICA APLICADA A ADMINISTRAÇÃO

**NOTA** 

PROFESSORA: ARIÉL MARCZAKI

NOME: DATA:

Terceira forma de resolver: mensurar cada valor e colocar todos em função da idade de João.

Idade de João:  $\frac{5}{2}$  P

Idade de Paulo: P

Observando que a idade de Paulo é representada por P e que a idade de João é representada do  $\frac{5}{3}P$  e que a soma dessas duas idades é 64, como podemos representar todas essas informações em uma mesma sentença?

#### COMO RESOLVER COM DEDUÇÃO DE FRAÇÕES

Observe que temos uma fração de  $\frac{5}{3}$  da idade de João, então pensemos nos

desenhos:



Sabendo que um inteiro pode ser reescrito por  $\frac{3}{3}$  nesse caso, podemos somar  $\frac{3}{3} + \frac{2}{3} = \frac{5}{3}$ 

Com as representações das frações, que a idade de Paulo mais a idade de João é 64, então podemos fazer a soma das frações e querer saber quanto que é cada valor de soma das frações:

$$\frac{3}{3} + \frac{5}{3} = 64$$

$$\frac{8}{3} = 64$$

Observe que essa igualdade de nada tem solução se a gente não tem um valor a ser descoberto, é nesse momento que a resolução de frações é complementada pelo conteúdo de equações:

Pergunta norteadora: COMO RESOLVER COM EQUAÇÕES DO 1º GRAU

Primeiramente, posso montar minha equação com a idade de Paulo, então:



CAMPUS GASPAR

CURSO TÉCNICO EM ADMINISTRAÇÃO – 1ª FASE

UNIDADE CURRICULAR: MATEMÁTICA APLICADA A ADMINISTRAÇÃO

NOTA

PROFESSORA: ARIÉL MARCZAKI

NOME: \_\_\_\_\_\_ DATA:

$$P + \frac{5}{3}P = 64$$

Afinal a soma da idade de Paulo mais a idade de João que é  $\frac{5}{3}$  de Paulo é de 64 anos, assim, transformamos as frações e temos:

$$\frac{3}{3}P + \frac{5}{3}P = 64$$

Somando as frações

$$\frac{8}{3}P = 64$$

Agora sim posso utilizar as regras de resoluções de equações:

$$P = 64 \cdot \frac{3}{8}$$

$$P = \frac{192}{8}$$

$$P = 24$$

Esse valor é a idade de Paulo, 24 anos.

Temos duas possíveis resoluções imediatas para resolver a idade de João:

1º resolver pela equação:

$$\frac{5}{3}P = J$$

$$\frac{5}{3}24 = J$$

$$\frac{120}{3} = J$$

$$40 = J$$

A idade de João é de 40 anos ou

2º subtrair da idade total:

Subtraímos a idade de Paulo dos 64 anos totais:

$$I + P = 64$$



CAMPUS GASPAR

CURSO TÉCNICO EM ADMINISTRAÇÃO – 1º FASE

UNIDADE CURRICULAR: MATEMÁTICA APLICADA A ADMINISTRAÇÃO

PROFESSORA: ARIÉL MARCZAKI

NOME: DATA:

**NOTA** 

$$I + 24 = 64$$

$$J = 64 - 24$$

$$J = 40$$

Assim conseguimos os mesmos valores para a idade de João.

Finalizado o exemplo, podemos estudar agora a definição de equação do 1º grau.

Tarefa 2 -

### DEFINIÇÃO DE EQUAÇÃO DO 1º GRAU

Toda sentença aberta expressa por uma igualdade é uma equação

Interessante: A palavra equação apresenta o prefixo equa que em latim quer dizer igual.

| São Equações                     | Não são equações |
|----------------------------------|------------------|
| → x + 12 = 21                    | → x + 4 < 7      |
| → 3x + 7 = 23 + x                | → 5 + 4 = 9      |
| $\rightarrow$ $x^2 + 2x - 4 = 0$ | <b>→</b> 5 ≠ 9   |

#### Membros e Termos de uma Equação

- → Uma equação, assim como uma igualdade, possui dois membros: o que está colocado à esquerda do sinal de igualdade é o **primeiro membro** e o que está à direita do sinal de igualdade é o **segundo membro** da equação
- → Cada parcela de uma equação denomina-se termo dessa equação.





CURSO TÉCNICO EM ADMINISTRAÇÃO - 1º FASE

UNIDADE CURRICULAR: MATEMÁTICA APLICADA A ADMINISTRAÇÃO

PROFESSORA: ARIÉL MARCZAKI

NOME: DATA:

**NOTA** 

→ Numa equação as letras que representam os valores desconhecidos são as variáveis ou incógnitas

Interessante : A palavra incógnita significa desconhecida

#### Raiz de uma Equação

Consideremos a sentença fechada e verdadeira : 5 x 3 = 10 + 5 Se substituirmos o algarismo 3 pela letra x, teremos uma sentença aberta

→ 5x = 10 + 5 → 5x = 15, que se tornará uma sentença fechada e verdadeira para o valor x = 3

Dizemos, nesse caso, que 3 é a raiz da equação 5x = 15

Raiz de uma equação é o valor da incógnita que a transforma numa sentença matemática fechada e verdadeira.

Resolver uma equação é encontra sua raiz

Nossa raiz da equação da Tarefa 1 era a idade de Paulo, que era o valor de P=24.

#### Princípio da Igualdade ( Eguação )

Uma **Equação** não se altera quando adicionamos, subtraímos, multiplicamos ou dividimos um mesmo número a cada um de seus membros.

#### Resolução de uma Equação

Exemplo 1 – Seja resolvermos a equação : 5x + 3 = 38

→ Pelo principio aditivo das igualdades podemos adicionar - 3 a cada um dos membros da equação :

$$5x + 3 = 38 \implies 5x + 3 - 3 = 38 - 3 \implies 5x = 35$$

→ Pelo principio multiplicativo das igualdades podemos dividir por 5 cada um dos membros da equação :

$$5x = 35 \implies 5x : 5 = 35 : 5 \implies x = 5$$

Exemplo 2 - Seja resolvermos a equação :

$$8x - 11 = 4x + 13$$

→ Pelo principio aditivo das igualdades podemos adicionar - 4x a cada um dos membros da equação :

$$8x - 11 = 4x + 13 \Rightarrow$$
  
 $8x - 11 - 4x = 4x + 13 - 4x \Rightarrow$   
 $4x - 11 = 13$ 



CURSO TÉCNICO EM ADMINISTRAÇÃO - 1ª FASE

UNIDADE CURRICULAR: MATEMÁTICA APLICADA A ADMINISTRAÇÃO

PROFESSORA: ARIÉL MARCZAKI

NOME: DATA:

**NOTA** 

→ Pelo principio aditivo das igualdades podemos adicionar 11 a cada um dos membros da equação :

$$4x - 11 = 13 \rightarrow 4x - 11 + 11 = 13 + 11 \rightarrow 4x = 13 + 11 \rightarrow 4x = 24 \rightarrow$$

→ Pelo principio multiplicativo das igualdades podemos dividir por 4 cada um dos membros da equação :

$$4x = 24 \implies 4x : 4 = 24 : 4 \implies x = 6$$

| 9x - 8 = 37         |                                            |  |  |  |  |
|---------------------|--------------------------------------------|--|--|--|--|
| 9x - 8 + 8 = 37 + 8 | Principio Aditivo das<br>Igualdades        |  |  |  |  |
| 9x = 37 + 8         | Adicionado 37 + 8                          |  |  |  |  |
| 9x:9 = 45:9         | Principio multiplicativo<br>das Igualdades |  |  |  |  |
| x = 5               | Raiz da Equação                            |  |  |  |  |

Podemos passar ( transpor ) um termo de um membro para o outro desde que troquemos seu sinal ou sua operação.(operação inversa)

- → Na equação : 8x = 30 2x, podemos transpor o termo -2x para o primeiro membro trocando o seu sinal. Assim : 8x = 30 2x → 8x + 2x = 30 → 10x = 30 → x = 3
- → Na equação : 11x = 77, podemos transpor o fator 11, que multiplica o x para que ele divida o segundo membro 77:

| UM NÚMERO                   | X     |
|-----------------------------|-------|
| SUCESSIVO DE UM NÚMERO      | X + 1 |
| O DOBRO DE UM NÚMERO        | 2X    |
| O TRIPLO DE UM NÚMERO       | 3X    |
| O QUADRÚPLO DE UM NÚMERO    | 4X    |
| A METADE DE UM NÚMERO       | X/2   |
| A TERÇA PARTE DE UM NÚMERO  | X/3   |
| A QUARTA PARTE DE UM NÚMERO | X/4   |
| DOIS TERÇOS DE UM NÚMERO    | 2X/3  |
| TRES QUARTOS DE UM NÚMERO   | 3X/4  |
| DOIS QUINTOS DE UM NÚMERO   | 2X/5  |



CURSO TÉCNICO EM ADMINISTRAÇÃO - 1ª FASE

UNIDADE CURRICULAR: MATEMÁTICA APLICADA A ADMINISTRAÇÃO

**NOTA** 

PROFESSORA: ARIÉL MARCZAKI

NOME: \_\_\_\_\_\_ DATA:

Acima temos uma tabela que tem a linguagem matemática e a linguagem escrita comparadas.

#### Tarefa 3

Atividade 1- Resolva as equações do 1º grau assim como os exemplos da Tarefa 2:

Atividade 2 – Resolva as equações do 1º grau como os exemplos da Tarefa 2:

Atividade 3- Resolva as equações do 1º grau:

#### ATIVIDADE 1

| $\Box$ | a)x + 5 = 8     | b)x - 4 = 3     | c)x + 6 = 5     | d)x - 7 = -7       |
|--------|-----------------|-----------------|-----------------|--------------------|
|        | e)x + 9 = -1    | f(x) - 39 = -79 | g)10 = x + 8    | h)15 = $x + 20$    |
|        | i) $4 = x - 10$ | j)7 = x + 8     | k)x - 1 = 5     | 1)2x + 4 = 16      |
|        | m) $3x = 15$    | n)2x = 10       | o)3x = -9       | p)2x - 2 = 12 - 5x |
|        | q)3x - 13 = 8   | r)4x - 9 = 23   | s)7x - 33 = -12 | t)33+ $x = 5 - 3x$ |
|        | u) $2x = 14$    | v)7x = -21      | w)4x = -12      | x)35x = -105       |

#### ATIVIDADE 2

| a) $9x - 2 = 4x + 18$    | b) $2x - 10 + 7x + 10 = 180$ | c) $7y - 10 = y + 50$               |
|--------------------------|------------------------------|-------------------------------------|
| d) $4x - 18 + 3x = 10$   | e) $2x + 5 + x + 7 = 18$     | f) $5x - 91 = 4x - 77$              |
| g) $7x + 1 = 5x - 7$     | h) $4x + 5 = x + 20$         | i) $3(x+1)+2(2x-3)=5(x-1)+8$        |
| j) 2(x + 5) - 4 = 26     | k) $3(x+3)-5=22$             | 1) $2(2x+7)+3(3x-5)=3(4x-5)-1$      |
| m) $3(x+2)=2(x-7)$       | n) $4(2x-1) = 3(x+2)$        | o) $4(2m-1) + 3m = 2(4m-1) - (2-m)$ |
| p) $3(x+3) - 1 = 2$      | q) $3(x+2)-1=2(x+3)-7$       | r) $3(x+1)+2=5+2(x-1)$              |
| s) $3(2x-3) + x = 5$     | t)3x + 5 + 2x + 6 = x + 27   | u) $2(x-1)+3(x+1)=4(x+2)$           |
| v)3(3x + 8) - 5x = x - 3 | w) $5(2x-1) = 3(x+10)$       | x) $2(x-3) + 8x + 4 = 5(x+2)$       |

#### **ATIVIDADE 3**

| $a)\frac{x}{2} = 18$     | $b)\frac{x}{3} = 5$    | $c)\frac{x}{4} = 10$  | $d)\frac{x}{5} = 8$   |
|--------------------------|------------------------|-----------------------|-----------------------|
| $e)\frac{x}{6} = 11$     | $f)\frac{x}{7} = 9$    | $g)\frac{x}{8} = 8$   | $h)\frac{x}{9} = 12$  |
| $i = \frac{x}{2} = 1$    | $j)\frac{x}{6} = 7$    | $k)\frac{x}{7} = 8$   | $l)\frac{x}{5} = 18$  |
| $m)\frac{2x+5}{3}=3$     | $n)\frac{3x+4}{5}=2$   | $o)\frac{3x+8}{5}=4$  | $p)\frac{4x-5}{3}=5$  |
| $q)\frac{5x-4}{6}=6$     | $r)\frac{x+18}{5} = 5$ | $s)\frac{x+8}{4} = 6$ | $t)\frac{x-5}{7} = 1$ |
| $u)\frac{2x+14}{10} = 3$ | $v)\frac{3x-3}{8}=3$   | $w)\frac{4x+8}{11}=4$ | $x)\frac{5x+10}{9}=5$ |



CURSO TÉCNICO EM ADMINISTRAÇÃO - 1ª FASE

UNIDADE CURRICULAR: MATEMÁTICA APLICADA A ADMINISTRAÇÃO

NOTA

PROFESSORA: ARIÉL MARCZAKI
NOME: DATA:

- 1)O dobro de um número somado com 5 é igual a 91. Qual é esse número?
- 2)O triplo de um número diminuído de 4 é igual a 23.Qual é esse número?
- 3)O número somado com o seu dobro é igual a 150. Qual é esse número?
- 4) Qual é o número que adicionado a 28 é o mesmo que 3 vezes esse número?
- 5)O triplo de um número, menos 10 é igual ao próprio número mais 70. Qual é esse número?
- 6) Num estacionamento há carros e motos, totalizam 85 veículos. O número de carros é igual a 4 vezes o número de motos. Quantas motos há no estacionamento ?
- 7)Lucia é 5 anos mais velha que Claudia. A soma das idades dão 43anos.Qual a idade de Claudia?
- 8) Quando Pedro nasceu, Guilherme tinha 3 anos. Atualmente a soma das idades é 23 anos. Qual é a idade de Guilherme?
- 9) O perímetro de um retângulo mede 92cm. Quais são suas medidas, sabendo que o comprimento tem 8cm a mais que a largura?
- 10) O perímetro de um retângulo mede 100cm. Quais são suas medidas, sabendo que o comprimento tem 10cm a mais que a largura?
- 11)Cezar tem 15 lápis a mais que Osmar e José tem 12 lápis a menos que Osmar. O total de lápis é 63. Quantos lápis Osmar tem?
- 12)A soma de um número com o dobro do consecutivo dá 206.Qual é o número ?
- 13) O triplo de um número menos o consecutivo daquele número dá 139. Qual é esse número?
- 14) Um número somado com sua metade é igual a 45. Qual é esse número ?
- 15)Um número somado com sua metade é igual a 15. Qual é esse número ?
- 16) Um número somado com sua quarta parte é igual 20. Qual é esse número ?
- 17)A metade do número de figurinhas de um envelope mais a terça parte do número dessas figurinhas dá 60. Qual é esse número ?
- 18) A terça parte de um número menos a sua quinta parte resulta 16. Qual é esse número?
- 19) A soma de um número com o seu dobro e sua terça parte é 30. Qual é esse número?



CURSO TÉCNICO EM ADMINISTRAÇÃO - 1ª FASE

UNIDADE CURRICULAR: MATEMÁTICA APLICADA A ADMINISTRAÇÃO

**NOTA** 

PROFESSORA: ARIÉL MARCZAKI

NOME: \_\_\_\_\_ DATA:

#### Respostas das atividades da Tarefa 3

#### ATIVIDADE 1

| a) 3        | b)7   | c)-1 | d) 0  | e) -10 | f) -40 | g) 2  | h) -5 |
|-------------|-------|------|-------|--------|--------|-------|-------|
| i) 14       | j) -1 | k) 6 | I) 6  | m)5    | n)5    | o) -3 | p) 2  |
| q) 7        | r) 8  | s) 3 | t) -7 | u) 7   | v) -3  | w) -3 | x) -3 |
| y)          | z)    |      |       |        |        |       |       |
| ATIVIDADE 2 |       |      |       |        |        |       |       |

#### ATIVIDADE 2

| a) 4  | b)20  | c)10 | d)7    | e)2   | f)14 | g)-4 | h)5  |
|-------|-------|------|--------|-------|------|------|------|
| i)3   | j) 10 | k)6  | I) -15 | m)-20 | n)2  | o)2  | p)-2 |
| q) -6 | r)-2  | s)2  | t)4    | u)7   | v)-9 | w)5  | x)4  |
| y)    | z)    |      |        |       |      |      |      |

#### **ATIVIDADE 3**

| a) 36 | b)15 | c)40 | d)40 | e)66 | f)63 | g) 64 | h) 108 |
|-------|------|------|------|------|------|-------|--------|
| i)2   | j)42 | k)56 | 1)90 | m)2  | n)2  | o)4   | p)5    |
| q)8   | r)7  | s)16 | t)12 | u)8  | v)9  | w) 9  | x)7    |
| y)    | z)   |      |      |      |      |       |        |

#### Respostas das atividades da Tarefa 4

| 1)43  | 2)9   | 3)50   | 4)14      | 5)40        |
|-------|-------|--------|-----------|-------------|
| 6)17  | 7)19  | 8)10   | 9)19 e 27 | 10)20 e 30  |
| 11)20 | 12)68 | 13)70  | 14)30     | 15)10       |
| 16)16 | 17)72 | 18)120 | 19)9      | <del></del> |