Learning Lambda Calculus with Recurrent Neural Networks

Abstract

We present a neural networks which can take in (input, ouput) pairs and generate program where input, output, and program are representations of pure untyped lambda calculus.

1 Introduction

Lambda calculus is a universal language of computation¹. Below is the syntax for lambda calculus:

$$\operatorname{term} \Rightarrow \alpha \operatorname{term} \operatorname{term}$$
 $\operatorname{term} \Rightarrow \ell \operatorname{term}$
 $\operatorname{term} \Rightarrow \nu$
 $\nu \Rightarrow \mid \nu$
 $\nu \Rightarrow \sim$

To many, this will seem as an unnatural construction of lambda calculus. The construction is based upon John Tromp's 2004 interpretation of binary lambda calculus², where instead of mapping lambda calculus to a domain of size two $\{0\ 1\}$, we instead map lambda calculus to an unambiguous domain of four $\{\alpha\ \ell\ |\ \sim\}$. We continue an elaboration of some terms in our new language:

$$false = \ell \ \ell \mid \sim \tag{1}$$

$$true = \ell \ell \parallel \sim$$
 (2)

and
$$= \ell \ell \alpha \alpha |\sim \ell \ell |\sim |\sim$$
 (3)

$$or = \ell \ell \alpha \alpha |\sim |\sim \ell \ell |\sim$$
 (4)

$$xor = \ell \ell \alpha \alpha | \sim \ell \ell | \sim \alpha \ell \alpha \alpha | \sim \ell \ell | \sim \ell \ell | \sim | \sim (5)$$

(6)

Here is an example calculation:

and true true
$$= \ell \ell \alpha \alpha |\sim \ell \ell |\sim |\sim \ell \ell |\sim \ell |\sim \ell \ell |\sim \ell \ell |\sim \ell |\sim \ell \ell |\sim \ell$$

¹Turing.

²Tromp.

2 Existing Work

2.1 Arithmetic Classifiers

Franco and Cannas showed in 1997 the ability for neural networks to learn arithmetic operations ³

³http://www.lcc.uma.es/ lfranco/A1-Franco+Cannas-1998.pdf