Linguagens Formais e Autômatos

Gramáticas Livres de Contexto

Eduardo Furlan Miranda

Baseado em: GARCIA, A. de V.; HAEUSLER, E. H. Linguagens Formais e Autômatos. Londrina: EDA, 2017.

Hierarquia de Chomsky

R aⁿb ε, b, ab, aab LC aⁿbⁿ ab, aabb SC aⁿbⁿcⁿ abc, aabbcc I a^{2^n} a, aa, aaaa

apenas estas

Gramáticas	Regras	Ex. de linguagens geradas
GR (tipo 3) Regulares	A \rightarrow aB, A \rightarrow b, (A \rightarrow ϵ , se permitido, apenas para o símbolo inicial) A, B \in V (variáveis) a, b \in T (terminais)	$\{ \epsilon, b, ab, aab, aaab, \}$ = $\{ a^n b \mid n \ge 0 \} \cup \{ \epsilon \}$
GLC (tipo 2) Livres de Contexto	A → α A ∈ V , α ∈ (V ∪ T)* A: 1 única variável	{ ab, aabb, aaabbb, aaaabbbb, } = { $a^n b^n \mid n > 0$ }
GSC (tipo 1) Sensíveis ao Contexto	$\alpha \rightarrow \beta$ $\alpha \in (V \cup T)^+$, $\beta \in (V \cup T)^*$ $ \alpha \leq \beta $ $S \rightarrow \epsilon$, se S não aparece do lado direito de nenhuma regra	{ abc, aabbcc, aaabbbccc, } $= \{ a^n b^n c^n \mid n > 0 \}$
GI (tipo 0) Irrestrita ou geral	$\alpha \rightarrow \beta$ $\alpha, \beta \in (V \cup T)^*$ α : pelo menos 1 símbolo de V	{ a, aa, aaaa, aaaaaaaa, } = { $a^{2^n} n \ge 0$ }

Gramáticas Livres de Contexto (GLC)

- Todas as regras têm exatamente uma variável (e nenhum outro símbolo) do lado esquerdo
- Uma gramática G = (V, T, P, S) é GLC se, e somente se, todas as regras são da forma

```
A \rightarrow \alpha com A \in V e \alpha \in (V \cup T)^*
```

- α, γ, β representam cadeia de símbolos compostas por qualquer combinação
- gramática = conjunto de regras

```
R a^nb \epsilon,b,ab,aab A\rightarrow b, A\rightarrow \epsilon, A\rightarrow aB LC a^nb^n ab, aabb A\rightarrow \alpha, \alpha\in (V\cup T)^* SC a^nb^nc^n abc, aabbcc \alpha\rightarrow \beta 1 a^{2^n} a, aa, aaaa \alpha\rightarrow \beta
```

 Seja a linguagem que possui os parênteses corretamente balanceados

```
\mathsf{L}_{\mathsf{par}} = \{ \ \epsilon \ , \ () \ , \ (()) \ , \ ()() \ , \ ((())) \ , \ (())() \ , \ ()(()) \ , \ (()()) \ , \ \dots \ \}
```

- A gramática deve gerar cadeias com os caracteres "(" e ")" de forma que cada abertura de parênteses corresponde a um fechamento de parênteses posterior
 - Os parênteses devem estar corretamente balanceados

- Esta linguagem é gerada pela gramática
 - S → ε
 - S → SS
 - $S \rightarrow (S)$

- Toda gramática regular também é uma gramática livre de contexto (GLC)
- Uma linguagem é livre de contexto (LLC) se existe uma gramática livre de contexto (GLC) que a gere
- Toda linguagem regular possui uma gramática regular que a gera, livre de contexto (LC)
 - Portanto, a linguagem L também é livre de contexto
 - A recíproca não é verdadeira

Gramáticas	Regras	Ex. de linguagens geradas
GR (tipø 3) Regulares	A \rightarrow aB, A \rightarrow b, (A \rightarrow ϵ , se permitido, apenas para o símbolo inicial) A, B \in V (variáveis) a, b \in T (terminais)	$\{ \epsilon, b, ab, aab, aaab, \}$ = $\{ a^n b \mid n \ge 0 \} \cup \{ \epsilon \}$
GLC (tipo 2)/ Livres de / Contexto	$A \rightarrow \alpha$ $A \in V$, $\alpha \in (V \cup T)^*$ A: 1 única variável	{ ab, aabb, aaabbb, aaaabbbb, } = { $a^n b^n \mid n > 0$ }

Exemplo

• Considere a linguagem $L_p = \{ ab, aabb, aaabbb, ... \}$ gerada pela gramática livre de contexto G_p :

- A gramática G_p gera facilmente a cadeia aaabbb, através da derivação:
 - S ⇒ aSb ⇒ aaSbb ⇒ aaabbb
- Pode-se demonstrar que L_p não é uma linguagem regular

Um autômato finito não pode contar a quantidade de "a"s e garantir que haja a mesma quantidade de "b"s depois. Isso exige uma memória maior do que um autômato finito pode fornecer, o que só é possível em gramáticas livres de contexto, que usam pilhas

GLC - repetição de estados

- GLCs permitem laços, como em q_i e q_{i+1}
 - Demonstra o maior poder de expressividade das GLC

- GLCs podem ser usadas para especificar a sintaxe de uma linguagem de programação (ex.: Java)
- São poderosas o suficiente para descrever estruturas sintáticas complexas, como expressões matemáticas, estruturas de controle (if, while, for) e chamadas de funções
- Ferramentas como Yacc, Bison e ANTLR utilizam GLC para gerar analisadores sintáticos (parsers) que verificam a conformidade do código-fonte com as regras da linguagem

GLC - exemplo

• Gramática livre de contexto G_{exp} que gera as expressões aritméticas formadas com as operações soma e multiplicação e o número "1"

```
• S \rightarrow S + S
```

$$S \rightarrow S+S \rightarrow 1+1$$

 $S \rightarrow S+S \rightarrow 1+1$
 $S \rightarrow (S) \rightarrow (S+S) \rightarrow (1+1)$
 $1, 1+1, 1+1 \times 1,$
 $(1+1) \times (1+1), ...$

símbolos terminais: + , × , (,) , 1

símbolo inicial: S

A partir do símbolo inicial S, aplicamos repetidamente as regras até não haver mais variáveis

- Uma mesma cadeia pode ter diversas derivações
 - Ex.: cadeia $1 + 1 \times 1$ possui, entre outras, as derivações:
 - 1) $S \Rightarrow S + S \Rightarrow 1 + S \Rightarrow 1 + S \times S \Rightarrow 1 + 1 \times S \Rightarrow 1 + 1 \times 1$
 - 2) $S \Rightarrow S + S \Rightarrow S + S \times S \Rightarrow S + S \times 1 \Rightarrow S + 1 \times 1 \Rightarrow 1 + 1 \times 1$
 - 3) $S \Rightarrow S + S \Rightarrow S + S \times S \Rightarrow 1 + S \times S \Rightarrow 1 + 1 \times S \Rightarrow 1 + 1 \times 1$
 - Em 1) substituímos sempre a variável mais à esquerda na forma sentencial = "Derivação Mais à Esquerda" (DME)
 - Em 2) "Derivação Mais à Direita (DMD)
 - Em 3) não há uma ordem preferencial de substituição

Árvore de derivação

Outro exemplo de árvore

Derivações

- $S \Rightarrow S \times S \Rightarrow S + S \times S \Rightarrow 1 + S \times S \Rightarrow 1 + 1 \times S \Rightarrow 1 \times S \Rightarrow 1 + 1 \times S \Rightarrow 1 \times S \Rightarrow 1 \times S \Rightarrow 1 + 1 \times S \Rightarrow 1 \times S$
- $S \Rightarrow S \times S \Rightarrow S \times 1 \Rightarrow S + S \times 1 \Rightarrow$ $S + 1 \times 1 \Rightarrow 1 + 1 \times 1 \text{ (DMD)}$
- $S \Rightarrow S \times S \Rightarrow S + S \times S \Rightarrow 1 + S \times S \Rightarrow$ $1 + 1 \times S \Rightarrow 1 + 1 \times 1$

- outra árvore de derivação para a mesma cadeia 1 + 1 x 1
- neste caso dizemos que a gramática é ambígua (possui mais de uma árvore de derivação)

GLC ambigua

- Uma GLC G é ambígua se existe uma cadeia w que possui mais de uma árvore de derivação, de acordo com G
- Uma vez que existe uma correspondência um para um entre árvores de derivação e DME, podemos dizer, de forma equivalente,
 - que uma GLC G é ambígua se existe uma cadeia w que possui mais de uma DME, de acordo com G
- O mesmo se dá com DMDs

GLC não ambígua

- Podemos ter uma GLC que gera a mesma linguagem, porém não é ambígua
- Porém não existe um algoritmo para obter uma gramática equivalente não ambígua que funcione para qualquer GLC

GLC não ambígua

- Esta GLC gera as expressões aritméticas, mas não é ambígua
 - E → E + T | T
 - $T \rightarrow T \times F \mid F$
 - $F \rightarrow (E)$
 - F → 1
- Uma derivação da sentença 1 + 1 × 1 é:
 - $E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow 1 + T \Rightarrow 1 + T \times F \Rightarrow 1 + F \times F \Rightarrow 1 + 1 \times F \Rightarrow 1 + 1 \times 1$

Ambiguidade inerente

- Dada uma GLC ambígua, nem sempre é possível construir uma gramática não ambígua equivalente
 - Considere as LLCs:

```
• L_1 = \{ a^n b^m c^m d^n | n, m > 0 \}, e 
 L_2 = \{ a^n b^n c^m d^m | n, m > 0 \}
```

- A linguagem $L = L_1 \cup L_2$ é livre de contexto, mas, para todas as GLCs que a geram, as cadeias em $L_1 \cap L_2$ possuem mais de uma árvore de derivação
 - isso acontece porque cadeias que pertencem às duas linguagens podem ser derivadas seguindo as regras de L1 ou de L2,
 - o que gera múltiplas interpretações da mesma sentença
 - ou seja, todas as gramáticas que geram L são ambíguas
- Nesse caso dizemos que a gramática L é inerentemente ambígua

Consequências da ambiguidade inerente 17/17

- Em linguagens de programação, gramáticas ambíguas podem causar dificuldades na análise sintática e interpretação do código
- Algumas linguagens livres de contexto podem ser reescritas de forma não ambígua, mas no caso da linguagem L, não existe uma gramática livre de contexto equivalente que seja não ambígua