Question 1 [7 Marks]

Let
$$f(z) = z^4 - 2z^3 + 14z^2 + az + b$$

Consider $z^4 - 2z^3 + 14z^2 + az + b = 0$ ---- (1)
Sub $z = 1 + 2i$ into (1), using GC
 $(-7 - 24i) - 2(-11 - 2i) + 14(-3 + 4i) + a(1 + 2i) + b = 0$
 $(-7 + 22 - 42 + a + b) + (-24 + 4 + 56 + 2a)i = 0$
 $(-27 + a + b) + (36 + 2a)i = 0 + 0i$

Comparing the real and imaginary coefficients

$$\begin{cases}
-27 + a + b = 0 ----(2) \\
36 + 2a = 0 & ----(3)
\end{cases}$$

Solving (2) and (3),

$$a = -18$$
 and $b = 45$

Therefore
$$f(z) = z^4 - 2z^3 + 14z^2 - 18z + 45$$

Using GC to solve $f(z) = z^4 - 2z^3 + 14z^2 - 18z + 45 = 0$,

$$z = -i + 2$$
, $z = -i - 2$, $z = 3$, $z = -3$

Replace z with iz in (1), we obtain

$$z^4 + 2iz^3 - 14z^2 - 18iz + 45 = 0$$

 $iz = 1 + 2i$, $iz = 1 - 2i$, $iz = 3i$, $iz = -3i$

$$z = -i + 2$$
, $z = -i - 2$, $z = 3$, $z = -3$

Alternatively, since all the coefficients of the polynomial f(z) are real

$$\Rightarrow z = 1 + 2i$$
 and $z = 1 - 2i$ are roots of $f(z) = 0$

$$\Rightarrow [z - (1+2i)][z - (1-2i)] = z^2 - 2z + 5 \text{ is a quadratic}$$

factor of $f(z)$.

Let $z^2 + qz + r$ be the other quadratic factor of f(z).

$$z^4 - 2z^3 + 14z^2 + az + b = \left[z^2 - 2z + 5\right]\left[z^2 + qz + r\right]$$

Comparing coefficient of z^3 : $-2 = q - 2 \Rightarrow q = 0$

Comparing coefficient of z^2 : $14 = r + 5 \Rightarrow r = 9$

Therefore
$$f(z) = [z^2 - 2z + 5][z^2 + 9]$$

 $f(z) = z^4 - 2z^3 + 14z^2 - 18z + 45$

$$a = -18$$
 and $b = 45$

$$f(z) = 0 \Rightarrow z = 1 + 2i, z = 1 - 2i, z = 3i, z = -3i$$

Question 2 [8 Marks]	
$x \ge \frac{9}{x}$	
$\frac{(x-3)(x+3)}{2} \ge 0$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\therefore -3 \le x < 0 \text{or} x \ge 3$	
$\int_{n}^{4} \left x - \frac{9}{x} \right \mathrm{d}x$	
$= \int_{n}^{3} -\left(x - \frac{9}{x}\right) dx + \int_{3}^{4} \left(x - \frac{9}{x}\right) dx$	
$= \left[9 \ln x - \frac{x^2}{2}\right]_n^3 + \left[\frac{x^2}{2} - 9 \ln x \right]_3^4$	
$= \left[9\ln 3 - \frac{9}{2} - 9\ln n + \frac{n^2}{2}\right] + \left[8 - 9\ln 4 - \frac{9}{2} + 9\ln 3\right]$	
$= 18\ln 3 - 1 - 9\ln(4n) + \frac{n^2}{2}$	
=I	
As $n \to 0$, $\ln(4n) \to -\infty$	
$\therefore I \to +\infty$	

Que	Question 3 [9 Marks]		
i	OAQB is a parallelogram		
	$\Rightarrow \overrightarrow{OA} = \overrightarrow{BQ}$		
	$\Rightarrow \overrightarrow{OA} = \overrightarrow{OQ} - \overrightarrow{OB}$		
	$\Rightarrow \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \overrightarrow{OQ} - \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$		
	$\binom{2}{2}$		
	$\overrightarrow{OQ} = \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}$		
	(4)		
ii	$(\mathbf{a} \cdot \mathbf{c})\mathbf{c}$ is the projection vector of \mathbf{a} onto \mathbf{b} .		
iii	$ \mathbf{a} < \mathbf{b} $		
	$p^2 + (p-1)^2 + 4 < 1 + 4 + 4$		
	$p^2 - p - 2 < 0$		
	(p+1)(p-2) < 0		
	-1		
	But $p > 0$, therefore $0 .$		

iv
$$\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} = 3 - 3 + 0 = 0$$

Thus $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$ are perpendicular.

Note: $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$ are the diagonals of the parallelogram with \mathbf{a} and \mathbf{b} as the adjacent sides.

The parallelogram with \mathbf{a} and \mathbf{b} as the adjacent sides must be a rhombus.

 $|\mathbf{a} \times \mathbf{b}|$ is the area of a rhombus formed by the vectors \mathbf{a} and \mathbf{b} .

OR

 $|\mathbf{a} \times \mathbf{b}|$ is the area of the rhombus OAQB.

Question 4 [9 Marks]

$$y = (\cos^{-1} x)^2 --- (1)$$

$$\frac{dy}{dx} = 2(\cos^{-1} x) \left(-\frac{1}{\sqrt{1-x^2}} \right)$$
 --- (2)

Squaring both sides, we get

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \frac{4\left(\cos^{-1}x\right)^2}{1-x^2}$$

$$(1-x^2)\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 4y$$
. (shown)

$$(1-x^2)\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 4y$$

Differentiate with respect to *x*:

$$(1-x^2)(2)\left(\frac{dy}{dx}\right)\frac{d^2y}{dx^2} + (-2x)\left(\frac{dy}{dx}\right)^2 = 4\frac{dy}{dx} - -- (3)$$

Substitute x = 0 into (1), (2) and (3):

$$y = (\cos^{-1} 0)^2 = (\frac{\pi}{2})^2 = \frac{\pi^2}{4}$$

$$\frac{dy}{dx} = 2\left(\cos^{-1} 0\right) \left(-\frac{1}{\sqrt{1-0^2}}\right) = 2\left(\frac{\pi}{2}\right)(-1) = -\pi$$

$$(1-0^2)(2)(-\pi)\frac{d^2y}{dx^2} = -4\pi \implies \frac{d^2y}{dx^2} = 2$$

$$\therefore y = \frac{\pi^2}{4} + (-\pi)x + \frac{2}{2!}x^2 + \dots$$

$$y = \frac{\pi^2}{4} - \pi x + x^2 + \dots$$

i	Equation of tangent: $y = -\pi x + \frac{\pi^2}{4}$.	
ii	$\frac{2\cos^{-1}x}{x^2-1}$	
	$=-\frac{2\cos^{-1}x}{1-x^2}$	
	$=-\frac{2\cos^{-1}x}{\sqrt{1-x^2}}$	
	$= \frac{\mathrm{d}y}{\mathrm{d}x} \left(1 - x^2\right)^{-\frac{1}{2}}$	
	$= (-\pi + 2x + \dots) \left[1 + \frac{1}{2}x^2 + \dots \right]$	
	$\approx -\pi + 2x$	

Oues	stion 5 [10 Marks]	
i	Amount of water at the:	
	End of 1^{st} day = $80(0.8)$	
	End of 2 nd day	
	=(80(0.8)+40)(0.8)	
	$=80(0.8)^2+40(0.8)$	
	$= 83.2 \text{ cm}^3$	
ii	End of 2^{nd} day = $80(0.8)^2 + 40(0.8)$	
	End of 3^{rd} day = $(80(0.8)^2 + 40(0.8) + 40)(0.8)$	
	End of 3^{rd} day = $(80(0.8)^2 + 40(0.8) + 40)(0.8)$ = $80(0.8)^3 + 40(0.8)^2 + 40(0.8)$	
	:	
	·	
	F. 1 - f. d. 1	
	End of <i>n</i> th day $\frac{1}{2}$	
	$= 80(0.8)^{n} + 40[0.8 + 0.8^{2} + 0.8^{3} + \dots + 0.8^{n-1}]$	
	$0.8(1-0.8^{n-1})$	
	$=80(0.8)^{n}+40\left[\frac{0.8(1-0.8^{n-1})}{1-0.8}\right]$	
	$=80(0.8)^{n}+160\left(1-(0.8)^{n-1}\right)$	
	$=80(0.8)^{n}+160-160(0.8)^{n-1}$	
	$=80(0.8)^n+160-200(0.8)^n$	
	$= 160 - 120(0.8)^n$	
	= 100 - 120(0.8)	
	So, the amount of water at the end of the n th day is	
	$(160-120(0.8)^n)$ cm ³ (shown)	
iii	Since the maximum capacity of the glass is 180 cm ³ , we	
	will find the least n value such that the amount of water	
	at the end of n th day is more than 140 cm^3 .	
	$160 - 120(0.8)^n + 40 > 180$	
	$160 - 120(0.8)^{n} > 140$ $160 - 120(0.8)^{n} > 140$	
	100 - 120(0.0) > 140	

Method 1 (Algebraic approach):

$$160 - 120(0.8)^n > 140$$

$$(0.8)^{n} < \frac{1}{6}$$

$$n > \frac{\ln(\frac{1}{6})}{\ln(0.8)}$$

: least value of n is 9. At the end of the 9^{th} day, amount of water is more than 140 cm^3 .

So, the day when overflowing happens is the 10th day.

Method 2 (Graphical approach):

$$\frac{160 - 120(0.8)^{n} > 140}{20 - 120(0.8)^{n} > 0}$$

Plot the graph
$$y = 20 - 120(0.8)^n$$

From the graph, n > 8.0296...

 \therefore least value of *n* is 9.

So, the day when overflowing happens is the 10th day.

iv As
$$n \to \infty$$
, $(0.8)^n \to 0$
 $160 - 120(0.8)^n \to 160$

Amount of water at the end of any day will not exceed 160cm^3 , so the minimum capacity of the glass to be used is $(160+40)\text{cm}^3 = 200\text{cm}^3$.

Question 6 [10 marks]

(i) $f: x \mapsto x^2 + 2x - 3, x \le 1.$

A horizontal line y = k where $-4 < k \le 0$ cuts the graph of y = f(x) twice, thus f is not one-to-one. Therefore f⁻¹ does not exist.

Quoting a specific line eg y = -3 is acceptable.

(ii) For f^{-1} to exist, largest domain is $(-\infty, -1]$.

Largest value of a = -1.

Let
$$y = x^2 + 2x - 3$$
.

$$x^2 + 2x - 3 - y = 0$$

$$\therefore x = \frac{-2 \pm \sqrt{4 - 4(-3 - y)}}{2}$$
$$= \frac{-2 \pm \sqrt{4y + 16}}{2}$$

$$= -1 \pm \sqrt{y+4}$$

Since $x \le -1, x = -1 - \sqrt{y+4}$

$$f^{-1}(x) = -1 - \sqrt{x+4}, \ x \ge -4$$

(iii) y = f(x), $y = f^{-1}(x)$ and y = x intersect at the same point.

$$f(x) = x$$

$$x^2 + 2x - 3 = x$$

$$x^2 + x - 3 = 0$$

$$x = \frac{-1 \pm \sqrt{13}}{2}$$

Since $x \le -1, x = \frac{-1 - \sqrt{13}}{2}$.

(iv)	$ \begin{array}{c} R_g = (0,2) \\ D_f = (-\infty,1] \end{array} $	
	$D_f = (-\infty, 1]$	
	$R_{ m g} ot\subset D_{ m f}$	
	Thus, fg does not exist.	
	Thus, 15 does not exist.	
(v)	For fg to exist, $R_g \subseteq D_f$.	
(')	I of ig to exist, $\mathbf{R}_g \subseteq D_1$.	
	Let $R_g = (0,1]$	
	Thus $D_g = [1.2,3)$	
	$[1.2,3) \xrightarrow{g} (0,1] \xrightarrow{f} (-3,0]$	

Ques	Question 7 [11 Marks]	
i	$y = \frac{2x^2 + 13x + 23}{2}$	
	x+3	
	$2x^2 + 13x + 23 = xy + 3y$	
	$2x^2 + (13 - y)x + (23 - 3y) = 0$	
	The equation above has no real roots when	
	$b^2 - 4ac < 0$	
	$(13 - y)^2 - 4(2)(23 - 3y) < 0$	
	$y^2 - 2y - 15 < 0$	
	(y+3)(y-5) < 0	
	$\therefore -3 < y < 5$	
	So, <i>C</i> cannot lie between –3 and 5.	
ii	$y = \frac{2x^2 + 13x + 23}{x + 3} = 2x + 7 + \frac{2}{x + 3}$	
	The asymptotes are $y = 2x + 7$ and $x = -3$.	

iv $(x+3)^2 + \left(\frac{2x^2 + 12x + 20}{x+3}\right)^2 = k^2$ $(x+3)^2 + \left(\frac{2x^2 + 13x + 23 - x - 3}{x+3}\right)^2 = k^2$ $(x+3)^2 + \left(y-1\right)^2 = k^2$

Add a circle with centre (-3, 1) and radius k

To have a positive root, we first find the distance between (-3, 1) and $\left(0, \frac{23}{3}\right)$.

$$\sqrt{3^2 + \left(\frac{20}{3}\right)^2} = \frac{\sqrt{481}}{3}$$

So, range of values of *k*:

$$k^2 > \left(\frac{\sqrt{481}}{3}\right)^2$$

$$k < -\frac{\sqrt{481}}{3}$$
 or $k > \frac{\sqrt{481}}{3}$.

Question 8 [11 Marks]

(i)
$$x = \sec t \implies \frac{\mathrm{d}x}{\mathrm{d}t} = \sec t \tan t$$

$$y = \tan t \implies \frac{\mathrm{d}y}{\mathrm{d}t} = \sec^2 t$$

$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$
$$= \frac{\sec^2 t}{\sec t \tan t}$$

$$= \frac{\sec t}{\tan t}$$

$$= \frac{1}{\sin t} = \csc t$$

(ii) At point
$$P(\sec \theta, \tan \theta)$$
, $t = \theta$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \csc \theta$$

Equation of tangent at *P*:

$$y - \tan \theta = (\csc \theta) (x - \sec \theta)$$

$$y = (\csc \theta) x + \tan \theta - (\csc \theta) (\sec \theta)$$

$$y = (\csc \theta) x + \frac{\sin \theta}{\cos \theta} - \frac{1}{\sin \theta \cos \theta}$$

$$y = (\csc \theta) x + \frac{\sin^2 \theta - 1}{\sin \theta \cos \theta}$$

$$y = (\csc \theta) x - \frac{\cos^2 \theta}{\sin \theta \cos \theta}$$

$$y = (\csc \theta) x - \frac{\cos \theta}{\sin \theta}$$

$$y = (\cos \theta) x - \cot \theta$$

(iii) When
$$y = 0$$
,

$$x = \frac{\cot \theta}{\csc \theta} = \frac{\cos \theta}{\sin \theta} \cdot \sin \theta = \cos \theta$$

So, coordinates of $A = (\cos \theta, 0)$

When
$$x = 0$$
, $y = -\cot \theta$

So, coordinates of B = (0, $-\cot\theta$)

Area of triangle *AOB*

$$=\frac{1}{2} \times \cos\theta \times \cot\theta$$

When
$$\theta = \frac{\pi}{6}$$
,

Area =
$$\frac{1}{2} \times \cos \frac{\pi}{6} \times \cot \frac{\pi}{6}$$

= $\frac{1}{2} \times \frac{\sqrt{3}}{2} \times \sqrt{3}$
= $\frac{3}{4} \text{ units}^2$
 $A = (\cos \theta, 0)$

(iv)
$$A = (\cos \theta, 0)$$

$$B = (0, -\cot \theta)$$

So, mid-point of
$$AB = \left(\frac{\cos \theta}{2}, -\frac{\cot \theta}{2}\right)$$

$$\Rightarrow x = \frac{\cos \theta}{2}, y = -\frac{\cot \theta}{2}$$

$$\Rightarrow \sec \theta = \frac{1}{2x}, \tan \theta = -\frac{1}{2x}$$

Since $\tan^2 \theta + 1 = \sec^2 \theta$

Then
$$\frac{1}{4v^2} + 1 = \frac{1}{4x^2}$$

$$\therefore \frac{1}{4x^2} - \frac{1}{4y^2} = 1$$

[Note:
$$0 < \theta < \frac{\pi}{2} \Rightarrow 0 < x = \frac{\cos \theta}{2} < \frac{1}{2}$$

The corresponding domain for the cartesian curve is

$$0 < x < \frac{1}{2}$$
.]

Alternatively

$$A = (\cos \theta, 0)$$

$$B = (0, -\cot\theta)$$

So, mid-point of
$$AB = \left(\frac{\cos\theta}{2}, -\frac{\cot\theta}{2}\right)$$

$$\Rightarrow x = \frac{\cos\theta}{2}, \quad y = -\frac{\cot\theta}{2}$$

$$\Rightarrow \cos\theta = 2x - --(1) \quad \tan\theta = -\frac{1}{2y} - --(2)$$
Using (1):

$$\cos\theta = 2x \quad \Rightarrow \quad \tan\theta = \frac{\sqrt{1 - 4x^2}}{2x} - --(3)$$
Equating (2) and (3),

$$\frac{\sqrt{1 - 4x^2}}{2x} = -\frac{1}{2y}$$

$$1 - 4x^2 = \frac{x^2}{y^2}$$

$$\therefore \frac{1}{4x^2} - \frac{1}{4y^2} = 1$$

Question 9 [12 Marks]

(a)
$$\frac{r+1}{r+2} - \frac{r}{r+1} = \frac{(r+1)^2 - r(r+2)}{(r+2)(r+1)}$$

$$= \frac{1}{(r+2)(r+1)}$$

$$\sum_{r=1}^{10} \left[\frac{1}{r^2 + 3r + 2} - \ln r^2 \right]$$

$$= \sum_{r=1}^{10} \left[\frac{r+1}{r+2} - \frac{r}{r+1} - 2\ln r \right]$$

$$= \frac{2}{3} - \frac{1}{2} - 2\ln 1$$

$$+ \frac{3}{4} - \frac{2}{3} - 2\ln 2$$

$$+ \frac{4}{5} - \frac{3}{4} - 2\ln 3$$

$$\vdots$$

$$+ \frac{10}{12} - \frac{9}{11} - 2\ln 9$$

$$+ \frac{11}{12} - \frac{10}{11} - 2\ln 10$$

$$= \frac{11}{12} - \frac{1}{2} - 2[\ln 1 + \ln 2 + \ln 3 + ... + \ln 10]$$

	$= \frac{5}{12} - 2[\ln(1)(2)(3)(10)]$ $= \frac{5}{12} - 2[\ln(10)!] = \frac{5}{12} - 2\ln(3628800)$	
)	Let $P(n)$ be the statement:	

(b)

$$\sum_{r=1}^{n} r^{3} = \frac{1}{4} n^{2} (n+1)^{2}, \ n \in \mathbb{Z}^{+}$$

When n = 1,

LHS =
$$\sum_{r=1}^{1} r^3 = 1^3 = 1$$

RHS =
$$\frac{1}{4}(1)^2(1+1)^2 = 1 = LHS$$

 \therefore P(1) is true.

Assume P(k) is true for some $k \in Z^+$,

i.e.
$$\sum_{r=1}^{k} r^3 = \frac{1}{4} k^2 (k+1)^2$$

We need to show that P(k+1) is true,

i.e.
$$\sum_{r=1}^{k+1} r^3 = \frac{1}{4} (k+1)^2 (k+2)^2$$

LHS =
$$\sum_{r=1}^{k+1} r^3$$

= $\sum_{r=1}^{k} r^3 + (k+1)^3$
= $\frac{1}{4} k^2 (k+1)^2 + (k+1)^3$
= $\frac{1}{4} (k+1)^2 [k^2 + 4(k+1)]$
= $\frac{1}{4} (k+1)^2 (k^2 + 4k + 4)$
= $\frac{1}{4} (k+1)^2 (k+2)^2 = \text{RHS}$

 \therefore P(k+1) is true.

Since P(1) is true, P(k) is true implying P(k+1) is true, by Mathematical Induction, P(n) is true for all $n \in Z^+$.

$$\sum_{r=6}^{n+3} (r-4)^3$$
Let $k = r-4$, then
$$\sum_{k=2}^{n-1} k^3$$

$$= \sum_{k=2}^{n-1} k^3 - (1)^3$$

$= \frac{1}{4}n^2(n-1)^2 - 1$	

Question 10 [13 Marks]

i

$$p_1 : \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 0$$
 and z-axis: $\mathbf{r} = \lambda \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \lambda \in \Re$

Let θ be the acute angle between p_1 and the z-axis.

$$\begin{vmatrix} 0 \\ 2 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} = \begin{vmatrix} 0 \\ 2 \\ -1 \end{vmatrix} \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} \sin \theta$$

$$\sin\theta = \frac{1}{\sqrt{5}}$$

$$\theta = 26.6^{\circ}$$

Alternatively

Let θ be the acute angle between p_1 and the z-axis.

Let α be the acute angle between the normal of p_1 and the z-axis.

$$\begin{vmatrix} 0 \\ 2 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} = \begin{vmatrix} 0 \\ 2 \\ -1 \end{vmatrix} \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} \cos \alpha - \dots (*)$$

$$\cos \alpha = \frac{1}{\sqrt{5}}$$

$$\alpha = 63.4^{\circ}$$

$$\theta = 90^{\circ} - \alpha = 26.6^{\circ}$$

Method 1

The origin is the point of intersection of the z-axis and p_1 : y-z=0 & A(0,0,4) is a point on the z-axis.

Let d be the distance from the point A(0,0,4) to p_1 .

$$d = 4\sin\theta$$

$$d=4\left(\frac{1}{\sqrt{5}}\right)=\frac{4\sqrt{5}}{5}$$

Method 2

Let N be the foot of perpendicular from A on p_1 .

$$l_{AN}: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}, \lambda \in \Re$$

$$\overrightarrow{ON} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \text{ for some } \lambda$$

Since N lies on $p_1 : \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 0$

$$\begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 0$$
$$4 + 5\lambda = 0$$

$$4+5\lambda=0$$

$$\lambda = \frac{4}{5}$$

$$\overrightarrow{AN} = \overrightarrow{ON} - \overrightarrow{OA} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} - \dots - (1)$$

Sub
$$\lambda = 2$$
 into (1): $\overrightarrow{AN} = \frac{4}{5} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$

$$d = \left| \overrightarrow{AN} \right| = \frac{4\sqrt{5}}{5}$$

Method 3

Since the origin O is a point on $p_1: 2y - z = 0$

$$d = \left| \overrightarrow{OA} . \mathbf{n} \right|$$

$$d = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} = \frac{4\sqrt{5}}{5}$$

ii Case 1: p_4 on opposite side of B to p_1

The origin O is a point on p_1 .

Let C be the point on p_4 , along the line segment OB.

Since the distance of p_4 from the point B is twice that of the distance of p_1 from the point B.

Ratio of OC: OB = 3:1

$$\overrightarrow{OC} = 3\overrightarrow{OB} = 9\mathbf{j}$$

$$p_1: \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 0$$

Since C lies on p_4 and $\begin{pmatrix} 0 \\ 9 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 18$

$$p_4: \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 18$$

Case 2: p_4 on same side of B as p_1

Ratio of OC: OB = 1:1

$$\overrightarrow{OC} = -\overrightarrow{OB} = -3\mathbf{j}$$

$$p_1: \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 0$$

Since C lies on p_4 and $\begin{pmatrix} 0 \\ -3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = -6$

$$p_4: \mathbf{r} \cdot \begin{pmatrix} 0\\2\\-1 \end{pmatrix} = -\epsilon$$

Alternative Solution

Let q be the plane passing through B(0,3,0) parallel to

$$p_1$$
, where $p_1 : \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 0$.

Since
$$\begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 6 \Rightarrow q : \mathbf{r} \cdot \begin{bmatrix} 1 \\ \sqrt{5} \begin{pmatrix} 0 \\ 2 \\ -1 \end{bmatrix} = \frac{6}{\sqrt{5}}$$

Case 1: p_4 on opposite side of B to p_1

$$p_4: \mathbf{r} \cdot \left[\frac{1}{\sqrt{5}} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \right] = \frac{18}{\sqrt{5}} \Rightarrow p_4: \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 18$$

Case 2: p_4 on same side of B as p_1

$$p_4: \mathbf{r} \cdot \left[\frac{1}{\sqrt{5}} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \right] = -\frac{6}{\sqrt{5}} \Rightarrow p_4: \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = -6$$

(iii)
$$p_1 : \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 0 \text{ and } p_2 : \mathbf{r} \cdot \begin{pmatrix} \beta \\ 0 \\ 1 \end{pmatrix} = 2$$

$$\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 2 - 2 = 0 \Rightarrow (0,1,2) \text{ lies on } p_1$$

$$\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} \beta \\ 0 \\ 1 \\ 2 \end{pmatrix} = 0 + 0 + 2 = 2 \Rightarrow (0,1,2) \text{ lies on } p_2$$
Let d be the direction vector of l .

$$\mathbf{d} = \mathbf{n}_{1} \times \mathbf{n}_{2}$$

$$\mathbf{d} = \begin{pmatrix} \beta \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ \beta \\ 2\beta \end{pmatrix}$$

$$l : \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \gamma \begin{pmatrix} -2 \\ \beta \\ 2\beta \end{pmatrix}, \ \gamma \in \Re ----(*$$

(iv) Method 1

Using GC to solve 2y - z = 0 and 2x + z = 2, then

$$l: \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \ \gamma \in \mathfrak{R}$$

l is parallel to p_3 .

d parallel to \mathbf{n}_3

$$\begin{pmatrix} -1\\1\\2 \end{pmatrix} \cdot \begin{pmatrix} 1\\\lambda\\-2 \end{pmatrix} = 0$$

$$\lambda = 5$$

The point (1,0,0) does not lie on p_3 .

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ \lambda \\ -2 \end{pmatrix} \neq \mu$$

$$\mu \neq 1$$

Method 2

Substituting $\beta = 2$ into (*)

$$l: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \gamma \begin{pmatrix} -2 \\ \beta \\ 2\beta \end{pmatrix}, \ \gamma \in \Re ----(*)$$
$$l: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \gamma \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \ \gamma \in \Re ----(*)$$

$$l: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \gamma \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \ \gamma \in \Re ----(*)$$

l is parallel to p_3 .

d parallel to \mathbf{n}_3

$\begin{pmatrix} -1\\1\\2 \end{pmatrix} \cdot \begin{pmatrix} 1\\\lambda\\-2 \end{pmatrix} = 0$ $\lambda = 5$	
The point $(0,1,2)$ does not lie on p_3 . $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ \lambda \\ -2 \end{pmatrix} \neq \mu$	