

Parallel and Distributed Computing

a.a. 2023-2024

Somma di N numeri

Su architettura MIMD-DM

Prof. Giuliano Laccetti

Materiale tratto dal testo A. Murli – Lezioni di Calcolo Parallelo, Liguori

da Appunti e Lezioni tenute dal prof. Murli in vari corsi in a.a. precedenti

27/09/2023

PROBLEMA:

Calcolo della somma di N numeri

su un calcolatore parallelo tipo MIMD con p processori A MEMORIA DISTRIBUITA

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

5

5

Somma di N numeri

Su un calcolatore monoprocessore la somma è calcolata eseguendo le N-1 addizioni una per volta secondo un ordine prestabilito

sumtot :=
$$a_0$$

sumtot := sumtot + a_1
sumtot := sumtot + a_2
sumtot := sumtot + a_{N-1}

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

Somma di N numeri

Su un calcolatore monoprocessore la somma è calcolata eseguendo le N-1 addizioni una per volta secondo un ordine prestabilito

```
begin
    sumtot:= a<sub>0</sub>;
    for i=1 to N-1 do
        sumtot:= sumtot+a<sub>i</sub> ;
    endfor
end
```

Qual è

I'ALGORITMO PARALLELO?

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

7

CALCOLO PARALLELO

Decomporre un problema di dimensione N in P sottoproblemi di dimensione N/P e risolverli contemporaneamente su più calcolatori

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

Ogni processore

·calcola la propria somma parziale

Ad ogni passo

 ciascun processore invia tale valore ad un unico processore prestabilito

Tale processore contiene la somma totale.

Operazioni concorrenti

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

17

Algoritmo per la somma di N=kp numeri su MIMD-Distributed Memory I Strategia begin forall Pi , 0≤ i ≤p-1 do $sum_i := 0$ h := i * (n/p)for j = h to h+(n/p)-1 do $sum_i := sum_i + a_i$ endfor $\quad \text{if } P_0 \text{ then } \\$ for k = 1 to p-1 do recv(sum, P,) sumtot:=sumtot+sumk endfor else if P_i then send(sum_i, P₀) endif endif endforall end 27/09/2023

23

Message Passing Interface MPI

27/09/2023 Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

gni processore può conoscere i dati nella memoria di un processore o far conoscere i propri, attraverso il trasferimento di dati.

Message Passing : modello per la progettazione di software in ambiente di Calcolo Parallelo.

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

Problema

Valutare l'efficienza di un algoritmo in ambiente di calcolo parallelo

Cosa si intende per "EFFICIENZA"?

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

2

27

Efficienza di un algoritmo sequenziale

- COMPLESSITA' di TEMPO T(n)
 Numero di operazioni eseguite dall'algoritmo
- COMPLESSITA' di SPAZIO S(n)
 Numero di variabili utilizzate dall'algoritmo

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

Domanda

Si può ancora legare il tempo di esecuzione al numero delle operazioni che costituiscono l'algoritmo?

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

3

Nell'algoritmo parallelo della somma

Il numero delle operazioni non è legato al numero dei passi temporali

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

Infatti ...

Un calcolatore parallelo è in grado di eseguire più operazioni

concorrentemente

(allo stesso passo temporale)

Il tempo di esecuzione non è proporzionale alla complessità di tempo (ovvero non dipende soltanto dal numero di operazioni fl. p. effettuate)

La complessità di tempo non è adatta a misurare l'efficienza di un algoritmo parallelo

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

37

37

... e allora

Che cosa si intende per efficienza di un algoritmo in ambiente parallelo?

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

Esempio:

Se p indica il numero di processori, p=1, 2, 3,...

T(p) = tempo di esecuzione su p processori

$$p = 4$$

Ci aspettiamo che T(1) sia il quadruplo di T(4):

$$\frac{\mathsf{T}(1)}{\mathsf{T}(4)} = 4$$

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

41

41

In generale

Con p processori ci aspettiamo che T(1) sia p volte T(p)

$$\frac{\mathsf{T}(1)}{\mathsf{T}(\mathsf{p})} = \mathsf{p}$$

ovvero

ci aspettiamo di ridurre p volte il tempo di esecuzione

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

IDEA

Misuriamo di quanto si riduce il tempo di esecuzione su p processori rispetto al tempo di esecuzione su 1 processore...

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

43

In generale: calcolo di T(p)

ALGORITMO PARALLELO della somma di n numeri posto p=2k processori

p=1
$$T(1)=15 + t_{calc}$$

p=2 $T(2)=8 + t_{calc}= (7+1) + t_{calc}$
p=4 $T(4)=5 + t_{calc}= (3+2) + t_{calc}$
p=8 $T(8)=4 + t_{calc}= (1+3) + t_{calc}$

T(p)= $(\frac{n}{p}$ -1 +log₂ p) \dagger_{calc}

t_{calc}= tempo di esecuzione di 1 addizione

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory 27/09/2023

Speed-up

Si definisce il rapporto T(1) su T(p)

$$S(p) = \frac{T(1)}{T(p)}$$

Lo speed up misura la riduzione del tempo di esecuzione rispetto all'algoritmo su 1 processore

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

59

59

Speed-up

Si definisc<u>e il rapporto T(1) su T(p)</u>

$$S(p) = \frac{\text{righe}(1)}{\text{righe}(p)}$$

Lo speed up misura la riduzione del tempo di esecuzione rispetto all'algoritmo su 1 processore

$$S(p) < p$$

$$SPEEDUP IDEALE$$

$$S^{ideale}(p) = p$$

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

OVERHEAD totale

$$S(p) = \frac{T(1)}{T(p)} = \frac{T(1)}{(O_h + T(1))/p} = \frac{pT(1)}{O_h + T(1)} = \frac{p}{\frac{O_h}{T(1)} + 1}$$

L'OVERHEAD totale misura quanto lo speed up differisce da quello ideale

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

61

61

Osservazione

L'OVERHEAD totale misura quanto lo speed up differisce da quello ideale

27/09/2023 Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

La rappresentazione degli operatori in tabella dà immediate informazioni sul tempo d'esecuzione e sull'overhead totale dell'algoritmo!

L'OVERHEAD totale misura quanto lo speed up differisce da quello ideale

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

63

63

L'overhead nell'algoritmo parallelo della somma

$$T(1) = n-1$$

 $T(p) = n/p - 1 + log_2 p$

$$O_h = p T(p) - T(1) = p (n/p + log_2 p) - (n-1) =$$

$$= n + p log_2 p - n + 1 = O(p log_2 p)$$

р	O_{h}
2	2
4	8
8	24
2 ^k	p log₂ p

Al crescere di p l'overhead aumenta!

27/09/2023 Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

Quindi

se si vuole calcolare la somma di 16 numeri nel minor tempo possibile l'algoritmo su 8 processori è da preferire

Infatti, aumentando il numero di processori si riduce

il tempo impiegato per eseguire le operazioni richieste

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

65

65

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

Esempio: calcolo della somma di n=16 numeri

Lo speed-up su 8 processori è il maggiore $\mathbf{M}\mathbf{A}$

Lo speed-up su 2 processori è "il più vicino" allo speed-up ideale...

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

67

67

Cioè

Ho utilizzato 8 processori per avere un incremento di appena 4 volte

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

In altre parole

... lo speed up non basta a

fornire informazioni sull'efficienza dell'algoritmo parallelo!

... e allora?

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

69

69

... se si rapporta lo speed-up al numero di processori...

р	S(p)	<u>S(p)</u>
2	1.88	0.94
4	3.00	0.75
8	3.75	0.47

Rapporto più grande

maggiore sfruttamento dei processori per p=2

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

In altre parole

L'ilizzo di un maggior numero di processori NON è sempre una garanzia di sviluppo di algoritmi paralleli "efficaci"

OVVERO

Di algoritmi che sfruttano tutte le risorse della macchina parallela!

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

71

71

Come misurare se e quanto è stata sfruttato il calcolatore parallelo?

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

Efficienza

Si definisce Efficienza E(p) il rapporto S(p) diviso p

$$E(p) = \frac{S(p)}{p}$$

che misura quanto l'algoritmo sfrutta il parallelismo del calcolatore

EFFICIENZA IDEALE

$$\mathsf{E}^{\mathsf{ideale}}(p) = \frac{\mathsf{S}^{\mathsf{ideale}}(p)}{\mathsf{p}} = 1$$

27/09/2023

Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD distributed memory

73

Infatti, per la somma con p=8 al I passo: lavorano p=8 processori al II passo: lavorano p/2=4 processori al III passo: lavorano p/4=2 processori al IV passo: lavora p/8=1 processore! t_{calc}= tempo di esecuzione di 1 addizione Ad ogni passo si dimezza il numero di processori attivi Parallel and Distributed Computing - a.a. 2023/2024 - prof. Giuliano Laccetti - somma N Numeri MIMD 27/09/2023 distributed memory

