GRINCH: a matrix factorization method to discover structural units of chromosomes

Da-Inn Lee and Sushmita Roy

Department of Biostatistics and Medical Informatics
University of Wisconsin, Madison

Wisconsin Institute of Discovery

Long-range gene regulation by distal elements

Illustration by Kelvin Ma

Chromosomal territories

Compartments

TADs and sub-TADs

Chromatin loops

Existing methods for finding topological units of chromosomes

Method	Algorithm	Objective			
Directionality (Dixon et al. Nature 2012)	НММ	Find domains that maximize the difference between intra- and inter-domain interaction levels			
Armatus (Filippova et al. Algorithm. Mol. Biol. 2014)	Dynamic programming	Find domains that maximize intra-domain sum of contact counts			
Arrowhead (Rao et al. Cell 2014)	Dynamic programming	Find <i>boundaries</i> defining domains with observed counts significantly different from expected			
Insulation Score (Crane et al. Nature 2015)	Aggregation, ratio calculation	Find domains with significantly higher ratio of observed counts to expected			
3DNetMod (Norton et al. Nature 2018)	Network modularity maximization	Find communities within network with maximal modularity			
rGMAP(Yu et al. Nature 2017)	Gaussian Mixture model	Find two components (intra- vs inter- domain interactions) and boundaries between the two			

GRINCH: a method to discover topological units of chromosomes from Hi-C data

GRINCH: a method to discover topological units of chromosomes from Hi-C data

- Non-negative factorization (NMF)
- Graph regularization

	A	P	A	A	A	A	A
>	5			5			
>	4		4	4		5	4
>	4		4	4		3	4
	3	1	4	3		2	4
		4	2		3		1
•		4			4	5	
•		3				4	
>		2			3	2	

	P	P	P	P	P	P	A
	5			5			
>	4		4	4		5	4
>	4		4	4		3	4
>	3	1	4	3		2	4
>		4	2		3		1
>		4			4	5	
>		3				4	
>		2			3	2	

$$X = \mathbb{R}^{n \times m}$$

A	A	A	A	A	A	A

	•	* *	•	•	•	•	• •
•	5			5			
>	4		4	4		5	4
•	4		4	4		3	4
•	3	1	4	3		2	4
•		4	2		3		1
•		4			4	5	
•		3				4	
>		2			3	2	

$$X = \mathbb{R}^{n \times m}$$

$$U = \mathbb{R}^{n \times k}$$

P	A	A	A	A	P	A

	•	T	* *	Y Y	Y Y	* *	Y Y
•	5			5			
•	4		4	4		5	4
•	4		4	4		3	4
N	3	1	4	3		2	4
•		4	2		3		1
•		4			4	5	
•		3				4	
>		2			3	2	

$$X = \mathbb{R}^{n \times m}$$

•	
•	
•	
•	
>	
•	
•	

$$U = \mathbb{R}^{n \times k}$$

$$V^T = \mathbb{R}^{k \times m}$$

	P	P	P	P	P	P	P
N	5			5			
>	4		4	4		5	4
>	4		4	4		3	4
	3	1	4	3		2	4
 		4	2		3		1
>		4			4	5	
		3				4	
M		2			3	2	

$$X = \mathbb{R}^{n \times m}$$

P	P	A	P	A	A	A

$$V^T = \mathbb{R}^{k \times m}$$

Graph regularization incorporates prior knowledge in network form

	P	A	P	P	A	P	A
•	5			5			
 	4		4	4		5	4
	4		4	4		3	4
 	3	1	4	3		2	4
		4	2		3		1
 		4			4		
•		3					
N		2			3	2	

Graph regularization incorporates prior knowledge in network form

	P	P	A	P	P	A	P	\sim Ω
•	5			5				
>	4		4	4		5	4	
•	4		4	4		3	4	Ω
•	3	1	4	3		2	4	
		4	2		3		1	
•		4			4			222222
•		3						
>		2			3	2		

Graph regularization incorporates prior knowledge in network form

	A	A	A	A	A	A	A	- A A
>	5			5				
>	4		4	4		5	4	
•	4		4	4		3	4	
>	3	1	4	3		2	4	
•		4	2		3		1	
>		4			4			AAAAAAA
>		3						
>		2			3	2		

Minimize $O = ||\mathbf{X} - \mathbf{U}\mathbf{V}^T||^2 + \lambda \text{Tr}(\mathbf{V}^T \mathbf{L} \mathbf{V}) + \lambda \text{Tr}(\mathbf{U}^T \mathbf{L} \mathbf{U})$

GRINCH: graph-regularized NMF and clustering to analyze Hi-C data

GRINCH: graph-regularized NMF and clustering to analyze Hi-C data

GRINCH: graph-regularized NMF and clustering to analyze Hi-C data

CTCF binding is associated with TAD boundaries

GRINCH cluster boundaries are associated with CTCF signals

GRINCH cluster boundaries are significantly enriched in CTCF binding

Assessing cluster boundaries for architectural proteins

GRINCH cluster boundaries are enriched for different architectural proteins

	MYC					RAD21					1	S	MC	3	8			SP1		8	YY1				
	Gm12878	Hmec	Huvec	K562	Nhek	Gm12878	Hmec	Huvec	K562	Nhek	Gm12878	Hmec	Huvec	K562	Nhek	Gm12878	Hmec	Huvec	K562	Nhek	Gm12878	Hmec	Huvec	K562	Nhek
GRINCH	1.2	1.6	1.3	1.2	1.6	1.4	1.7	1.5	1.3	1.5	1.5	1.8	1.5	1.3	1.5	1.3	1.5	1.4	1.2	1.6	1.1	1.4	1.2	1.2	1.5

GRINCH cluster boundaries are enriched for different architectural proteins

	MYC						RAD21					S			1		SP1		8	YY1					
	Gm12878	Hmec	Huvec	K562	Nhek	Gm12878	Hmec	Huvec	K562	Nhek	Gm12878	Hmec	Huvec	K562	Nhek	Gm12878	Hmec	Huvec	K562	Nhek	Gm12878	Hmec	Huvec	K562	Nhek
GRINCH	1.2	1.6	1.3	1.2	1.6	1.4	1.7	1.5	1.3	1.5	1.5	1.8	1.5	1.3	1.5	1.3	1.5	1.4	1.2	1.6	1.1	1.4	1.2	1.2	1.5
3DNetMod	1.2	1.2	1.1	1.1	1.2	1.6	1.5	1.4	1.3	1.5	1.6	1.5	1.4	1.3	1.5	1.2	1.2	1.2	1.1	1.2	1.2	1.2	1.2	1.1	1.3
rGMAP	1.2	1.5	1.2	1.2	1.5	1.6	1.9	1.5	1.4	1.9	1.6	1.8	1.5	1.4	1.9	1.2	1.5	1.2	1.1	1.6	1.2	1.4	1.1	1.1	1.5

GRINCH cluster boundaries are enriched for different architectural proteins

Simulating sparsity to test stability

Simulating sparsity to test stability

Simulating sparsity to test stability

GRINCH is the most stable method to dropout

GRINCH is robust to lower-depth data

Depth Reduction %

GRINCH captures a wide range of domain sizes

GRINCH captures a wide range of domain sizes

GRINCH can smooth Hi-C matrix through matrix completion

Conclusion

- GRINCH is an NMF-based method with graph regularization to find structural units of the genome.
- GRINCH finds clusters with significant boundary element enrichment.
- GRINCH is very stable to noisy datasets.
- GRINCH can find TADs of diverse lengths.
- GRINCH can smooth input Hi-C matrix.

Conclusion

- GRINCH is an NMF-based method with graph regularization to find structural units of the genome.
- GRINCH finds clusters with significant boundary element enrichment.
- GRINCH is very stable to noisy datasets.
- GRINCH can find TADs of diverse lengths.
- GRINCH can smooth input Hi-C matrix.

Poster A-73 on GRINCH

Acknowledgements

Members of Roy lab:

Sushmita Roy

Brittany Baur

Shilu Zhang

Deborah Chasman

Alireza Siahpirani

Sara Knaack

Jon Ide

Junha Shin

Sunnie Grace McCalla

Funding sources:

Center for Predictive Computational Phenotyping

(NIH BD2K U54 AI117924)

NIH NIGMS 1R01GM117339

Quantitative Biology Initiative

Computing resources:

Center for High Throughput Computing (CHTC)

