DATE : 08.10.2024

DT/NT : DT

LESSON: DEEP LEARNING

SUBJECT: ANN

BACKPROPAGATION

BATCH : 250

DATA **SCIENCE**

MOST POPULAR DEEP LEARNING LIBRARIES & PLATFORMS

DEEP LEARNING LIBRARIES

DEEP LEARNING LIBRARIES

Keras

Keras is an open source neural network library written in Python. It is capable of running on top of TensorFlow. It is designed to enable fast experimentation with deep neural networks.

TensorFlow

TensorFlow is an open-source software library for dataflow programming across a range of tasks. It is a symbolic math library that is used for machine learning applications like neural networks. PyTorch

PyTorch is an open source machine learning library for Python, based on Torch. It is used for applications such as natural language processing and was developed by Facebook's AI research group.

★ Theano

Caffe is a deep learning framework, originally developed at University of California, Berkeley. It is open source, under a BSD license. It is written in C++, with a Python interface.

TECHPRO

DEEP LEARNING LIBRARIES

EDUCATION

	Languages	Tutorials and training materials	CNN modeling capability	RNN modeling capability	Architecture: easy-to-use and modular front end	Speed	Multiple GPU support	Keras compatible
Theano	Python, C++	++	++	++	+	++	+	+
Tensor- Flow	Python	+++	+++	++	+++	++	++	+
Torch	Lua, Python (new)	+	+++	++	++	+++	++	
Caffe	C++	+	++		+	+	+	
MXNet	R, Python, Julia, Scala	++	++	+	++	++	+++	
Neon	Python	+	++	+	+	++	+	
CNTK	C++	+	+	+++	+	++	+	

EPOCH, BATCHSIZE

BATCHSIZE

BATCHSIZE

Batch size is a term used in machine learning and refers to the number of training examples utilized in one iteration.

DIFFERENCE BETWEEN BATCH & EPOCH

Example: if you have 1000 training examples, and your batch size is 500, then it will take 2 iterations to complete 1 epoch.

EPOCH

EPOCH

```
model.fit(x=X_train,y=y_train.values,
validation_data=(X_test.v_test.values),
batch_size=128,epochs=400)
```

Epoch

One epoch means, the entire dataset is passed forward and backward through the neural network once.

EPOCH


```
model.fit(x = X_train, y = y_train, batch_size = 32, epochs = 300)
```


700 (TRAIN DATASI) / 32 (BATCH SIZE) = 22

 $700 \div 32 =$

21,875

EP(700 (TRAIN DATASI) / 32 (BATCH SIZE) = 22

DIFFERENCE BETWEEN BATCH & EPOCH

Epoch:

An Epoch represent one iteration over the entire dataset.

Batch:

We cannot pass the entire dataset into the Neural Network at once. So, we divide the dataset into number of batches.

Iteration:

If we have 1000 images as Data ane a batch size of 20, then an Epoch should run 1000/20 = 50 iteration.

OPTIMIZER

Gradient descent is an optimization algorithm that uses the gradient of the objective function to navigate the search space. Optimization is a mathematical discipline that determines the "best" solution in a quantitatively welldefined sense.

Gradient descent is the process of using gradients to find the minimum value of the cost function, while backpropagation is calculating those gradients by moving in a backward direction in the neural network.

Optimizer comparison

LEARNING RATE

A small learning rate requires many updates before reaching the minimum point

θ

Just right

The optimal learning rate swiftly reaches the minimum point

Too high

Too large of a learning rate causes drastic updates which lead to divergent behaviors

LEARNING RATE

Step Size = slope x learning rate

REGULARIZATION:

- DROPOUT L1
- EARLYSTOPPING L2
- BATCH NORMALIZATION

DROPOUT

DROPOUT

Training time

DROPOUT

(a) Standard Neural Network

(b) Network after Dropout

EARLYSTOPPING

EDUCATION

EARLY STOPPING TO PREVEN OVERFITTING

EARLYSTOPPING

L1 & L2

L1 & L2

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras import regularizers

tf.random.set_seed(seed)

create the model
model = Sequential()

Add the layers and use only apply only L1 regularization model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.I1(0.01))) model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.I1(0.01))) model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.I1(0.01))) model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.I1(0.01))) model.add(Dense(8, activation='relu', kernel_regularizer=regularizers.I1(0.01))) model.add(Dense(1)) # regylarization didn't apply

L1 & L2

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras import regularizers

tf.random.set_seed(seed)

create the model model = Sequential()

add the layers and apply only L2 regularization model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01))) model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01))) model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01))) model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.01))) model.add(Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.01))) model.add(Dense(1)) # regularization didn't apply

compile the Model model.compile(optimizer='adam', loss='mse')

BATCH NORMALIZATION

BATCH NORMALIZATION

BATCH

Kullanım Durumu	Açıklama				
Derin Sinir Ağları (DNN)	DNN'lerde Batch Normalization, daha hızlı ve istikrarlı bir eğitim süreci sağlayabilir ve aşırı uyumu azaltabilir.				
Evrişimli Sinir Ağları (CNN)	CNN'lerde özellikle büyük ve karmaşık modellerde kullanılabilir. Evreli ve tam bağlantılı katmanlar arasında eklenerek özellik haritalarının daha iyi öğrenilmesine yardımcı olabilir.				
Rekürrent Sinir Ağları (RNN)	RNN'lerde Batch Normalization, özellikle büyük zaman serisi verileri işlerken kullanılabilir. Ancak, dikkatli bir şekilde yapılandırılması gerekebilir.				
Uzun Kısa Süreli Bellek (LSTM) ve GRU	LSTM ve GRU gibi özel RNN türleri, Batch Normalization ile kullanılabilir. Özellikle bu hücre tiplerinin daha istikrarlı eğitim sağlamasına yardımcı olabilir.				
Doğal Dil İşleme (NLP)	Metin verilerini işleyen NLP modellerinde özellik çıkarma veya tam bağlantılı katmanlar gibi yerlerde kullanılabilir.				
Genel Veri Normalizasyonu	Veri normalizasyonu işlemini daha hızlı ve daha kararlı hale getirir. Bu, giriş verilerini aynı ölçekleme düzeyine getirerek eğitim sürecini iyileştirebilir.				

BATCH NORMALIZATION

Why normalize?

Gradient of larger parameter dominates the update

Both parameters can be updated in equal proportions

BACKPROPAGATION

BACK PROPAGATION

BACK PROPAGATION

input layer

hidden layer

0

EDUCATION

Compute of o_1

$$o_1 = f(j_1) \cdot w_5 + f(j_2) \cdot w_6 + b_2$$

$$o_1 = 0.62 \cdot 0.67 + 0.61 \cdot 0.54 + 0.67$$

$$o_1 = 0.42 + 0.33 + 0.67$$

$$o_1 = 1.42$$

input layer

Compute of o_2

$$o_2 = f(j_1) \cdot w_5 + f(j_2) \cdot w_6 + b_2$$

$$o_2 = 0.62 \cdot 0.84 + 0.61 \cdot 0.52 + 0.67$$

$$o_2 = 0.52 + 0.32 + 0.67$$

$$o_2 = 1.51$$

input layer

For each neuron:

$$E_{total} = \sum_{i=1}^{n} \frac{1}{2} (target - actual)^2$$

Calculate the error

$$E_{o1} = \frac{1}{2}(target_{o1} - actual_{o1})^2$$

$$E_{o1} = \frac{1}{2}(0 - 0.80)^2 = 0.32$$

BIAS

0.42

$$E_{o2} = \frac{1}{2}(target_{o2} - actual_{o2})^2$$

$$E_{o2} = \frac{1}{2}(1 - 0.82)^2 = 0.0162$$

hidden layer

BIAS

0.67

input layer

output layer

BACK PROPAGATION

input layer

BATCK PROPAGATION

 δ o2= -(O2-O2)otputO2(1-outputO2) -(1-0.82)0.82(1-0.82)

-0.18 * 0.82 * 0.18

- 0.027812

PREVIOUS WEIGHT (0.52)
Wyeni= PREVIOUS WEIGHTLearning rate δ 02outputJ2
0.52-(0.1)(-0.027812)(0.61)
0.52168517

input layer

NOTEBOOK SAMPLES


```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense,
BatchNormalization
```

import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, <u>BatchNormalization</u>

```
# You can perform the necessary operations to load and prepare the dataset. # You can perform the necessary operations to load and prepare the dataset.
# Creating a sample CNN model
                                                                            # Creating a sample ANN model
model = Sequential()
                                                                            model = Sequential()
# First convolutional layer
                                                                            model.add(Dense(64, input dim=input dim, activation='relu'))
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)))
                                                                            model.add(BatchNormalization()) # Adding a Batch Normalization layer
model.add(BatchNormalization()) # Adding a Batch Normalization layer
                                                                            model.add(Dense(32, activation='relu'))
model.add(MaxPooling2D((2, 2)))
                                                                            model.add(BatchNormalization())
                                                                            model.add(Dense(output_dim, activation='softmax'))
# Second convolutional layer
model.add(Conv2D(64, (3, 3), activation='relu'))
                                                                            # Compiling the model
model.add(BatchNormalization())
                                                                            model.compile(optimizer='adam',
                                                                                    loss='categorical_crossentropy',
model.add(MaxPooling2D((2, 2)))
                                                                                    metrics=['accuracy'])
# Flattening layer
model.add(Flatten())
                                                                            # Training the model with training data
                                                                            model.fit(x train, y train, epochs=10, batch size=32)
# Fully connected layers
model.add(Dense(128, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(10, activation='softmax')) # Sample output layer
# Compiling the model
model.compile(optimizer='adam',
       loss='categorical_crossentropy',
       metrics=['accuracy'])
# Training the model with training data
model.fit(x_train, y_train, epochs=10, batch_size=32)
```

Tea break...

10:00

Start

Stop

Reset

mins: 10

secs: 0

type: Tea

Pin controls when stopped

Breaktime for PowerPoint by Flow Simulation Ltd.