ŘADA PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU ROČNÍK XXXIX/1990

ČÍSLO 5

V TOMTO SEŠITĚ

Polemiky a názory 161

NOVÁ GENERACE OBVODŮ

PRO BTV	
Signálová část BTVP	
Signálový procesor typu	
TDA4502	162
Obvody řádkové a sním-	
kové synchronizace	163
Doporučení pro návrh	
plošných spojů	170
Zvukový kanál stereofonního	
BTVP	
Obvod pro kvaziparalelní	
zpracování zvuku	172
Stereofonní dekodér	
TDA6600	172
Obvod pro úpravu	
nf signálu	173
Výkonový zesilovač	175
Obvody pro zpracování	
barevného signálu	
Několikanormový dekodér	
barev TDA4555	176

signalu, IDA4565	183
Výstupní	
videozesilovače	186
Převodník D/A,	
TDA8442	187
Dekodér teletextu	
Videoprocesor	
SAA5231	187
Počítačem řízený obvod	
teletextu, SAA5243H	

Obvod pro zlepšení

zpoždění jasového

a B-Y a pro

strmosti hran signálů R-Y

Kanálový volič	
Televizní obvod pro kaná- lové voliče, TUA2000-4	101
Syntezátor kmltočtu	191
se smyčkou PLL,	400
SDA3202-2 Paměť programů	193
SDA2216	195

AMATÉRSKÉ RADIO ŘADA B

Napájecí zdroj BTVP 198

Inzerce 200

Vydává vydavatelství MAGNET-PRESS, s. p., Vladislavova 26, 135 66 Praha 1, tel. 26 06 51–7. Šéfredaktor L. Kalousek, OK1FAC. Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51–7, linka 353, sekretářka linka 355. Ročně vyde 6 čísel. Cena výtisku 6 Kčs, polotetní předplatné 18 Kčs. Rozšiřuje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislavova 26, Praha 1. Informace o předplatném podá a objednávky přijímá každá administrace PNS, pošta, doručovatel a předplatitelská střediska. Objednávky do zahraničí vyřizuje PNS střední expedice a dovoz tisku Praha, administrace vývozu tisku, Kovpakova 26, 160 00 Praha 6. Tiskne NAŠE VOJSKO, s. p., závod 08, 160 00 Praha 6, Vlastina ulice č. 889/23. Za původnost a správnost příspěvku odpovídá

Za původnost a správnost příspěvku odpovídá autor. Návštěvy v redakci a telefonické dotazy po 14. hodině. Číslo indexu 46 044. Toto číslo má vyjíř podle plánu 10. 10. 1990.

Vydavatelství MAGNET-PRESS.

POLEMIKY A NÁZORY

Píši tento úvodník v době, kdy se objevily v tisku zprávy o vyhlášení stávkové pohotovosti v jednom z našich největších elektronických závodů, s. p. TESLA Rožnov. Důvodem isou podle oficiální zprávy neutěšené poměry v tomto gigantu se 8500 zaměstnanci, z nichž v současné době asi 650 obdrželo oznámení o nepotřebnosti a lze očekávat, že totéž čeká asi 2000 dalších. Důvodů je několik, z těch podstatných je to asi ukončení výroby černobílých obrazovek, pro které není odbyt stejně jako pro značné množství vyráběných integrovaných obvodů a dalších výrobků. Vzpomenu-li si na dobu, kdy se objevily první tranzistory a pak i první integrované obvody TTL, uvědomují si, že jsme sice nebyli nikdy na světové špičce ve výrobě aktivních polovodičových součástek, ale také na na chvostu - což nás zřejmě potkalo právě nyní. A důvody?

Před časem isme uveřejnili v úvodníku k číslu 2 tohoto časopisu příspěvky dvou autorů - ing. M. Arendáše a pana Romana Carby. Dostali isme k nim zajímavé ohlasy a domnívám se, že neuškodí, jeden z nich otisknout, neboť je v něm podle mého názoru částečně odpověď na otázku po důvodech současného stavu. Je samozřejmé, že ne se vším, co je v dopise uvedeno, lze bez výhrad souhlasit, něco je příliš zjednodušeno, něco příliš jednostranné - nesmírně sympatická je však snaha dobrat se podstaty a navrhnout řešení.

Vážená redakce,

189

k oběma příspěvkům v úvodníku AR B3 mám následující doplňky. Snad abych začal od konce. Mám dojem, že pan Carba vidí vše až příliš černě. Faktem je, že na poli techniky jsme spali příliš dlouho, ale faktem také je, že jako národ máme něco, co nám mnohé jiné mohou závidět. Je to (byla to?) houževnatost, píle, zručnost a v neposlední řadě i trocha toho nadání. Člověk až žasne, kolik našich lidí se dopracovalo do význačných pozic a to snad ve všech státech světa. Bohužel co nám nejvíce uškodilo, je vidět dnes na morální stránce konání lidí, stálým slibováním blahobytu, nerespektováním vzdělání a morálních vlastností, trvalým poklesem životní úrovně atd. vznikla ve značné části obyvatel republiky nedůvěra v cokoli a především lhostejnost lhostejnost vždy a ke všemu. Jsem však přesvědčen, že tam, kde stojí v čele kolektivu člověk s odpovídajícími schopnostmi, s jasným cílem a se zápalem pro práci, dokáže přivést tento kolektiv rychle k žádanému cíli. Za své dlouholeté činnosti, téměř vždy jako řadový výzkumník, s bolestí jsem pozoroval, jak stále a to čím dále tím více byla znevažována výzkumná činnost, jež je tak významná v rozvoji techniky. Zde je podle mého názoru nedozírné pole, jak zlepšit situaci. Věřím, že když budou mít vývoj a výzkum odpovídající místo, když se nebude vyvíjet "do šuplíku" nebo věci již jinde dávno vyvinuté, když budou ve výzkumu ti, kteří tam patří, bude vše lepší, neboť výzkum a vývoj jsou jedním z rozhodujících činitelů rozvoje průmyslu i společnosti. Tolik k článku pana Carby.

Snad ještě dovětkem je nutné dodat, že ke každému povolání je třeba mít lásku, jež, jak se říká, hory přenáší. Jsem přesvědčen, že nová doba "proseje" všechny ty "neumětely", kteří se často drželi a dodnes i drží ve vedoucích pozicích a to často jen pro vlastní prospěch. Má-li totiž výzkumník (a nejen výzkumník) lásku ke svému povolání, neptá se vždy pouze "za kolik", ale pracuje bez ohledu na čas, s řešením problému vstává i ulehá, ieho neioblíbeněiším námětem rozhovoru ie diskuse o problému. V této souvislosti jednu poznámku k věci – na prospěch řešení je často i manuální zručnost, která umožňuje nové úkoly řešit plynule a ve zkrácených lhůtách. Často by neškodilo, aby výzkumný pracovník měl i profesi dílenskou - a právě radioamatérství je jednou ze zálib, jež vychovává "dorost" i v tomto směru.

Markantním důkazem mého tvrzení jsou např. třicátá leta, kdy se i naši radioamatéři ve značné míře přičinili o rozvoj krátkovlnné techniky. Je jim třeba pouze dát vhodné podmínky, lépe řečeno, umožnit jim, aby se mohli svým koníčkem zabývat na úrovni a neztráceli čas např. sháněním tak základních součástek, jako jsou např. rezistory a kondenzátory. Schvalují proto snahu ing. Arendáše v plném rozsahu (viz úvodník v B2). Co bych však zvláště podtrhnul, je otázka přístrojové techniky.

Každý řemeslník podle své profese má alespoří základní vybavení, "metr", posuvné měřítko, mikrometr apod. Co má však k dispozici na druhé straně výzkumník nebo radioamatér? Co má na zjišťování různých elektronických procesů? Úsudek? Jen úsudek? Kolik amatérů má možnost měřit odpory menší než 0,1 Ω? A co teprve malé kapacity a indukčnosti? Jak zjišťovat různé mikro a nanosekundové jevy? Kde jsme s naukou Komenského "Svět v obrazech"?

Jistě mi mnozí namítnou - vždyť máme různé kluby. kde si vše potřebné může každý změřit. Mají jistě částečně pravdu, ale pouze částečně - chce-li dnes někdo vědět, kolik je hodin, neběží k radnici či ke kostelu, aby zjistil, kolik je hodin. Samozřejmostí jsou náramkové hodinky a dokonce hodinky, řízené krystalem. Tu jsme právě u kořene věci. Proč by nemohl každý, kdo má o to zájem, vlastnit např. osciloskop do 100 MHz? Jistě mi můžete opět namítnout - to právě je a vždy bylo účelem AR, copak nevyšlo dostatek článků v tomto směru? Ale ano - máte pravdu - ovšem "time is money". Jestliže amatérovi trvá zhotovení jedné desky s plošnými spoji např. jednu hodinu, pro 1000 amatérů je to 1000 hodin, čili půlroční práce jednoho pracovníka. A tu jsme u té zásadní otázky - jak pomoci všem zájemcům o stavbu elektronických přístrojů z bryndy. Snad především tím, co navrhuje ing. Arendáš: Výběrem dobrých, osvědčených schémat na dobově odborné výši a to především pokud jde o měřicí přístroje. S tím souvisí i další návrh - nebylo by možné, když je tolik zájemců o soukromé podnikání, aby někdo vyráběl skříně, různé části přístrojů a další potřeby (transformátory), a to případně i na objednávku, za přijatelné ceny? Jednoduchá skříňka za 200 až 300 Kčs není totiž podle mého názoru řešením a levnější v podstatě není možné získat.

Před mnoha lety byl v AR uveřejněn článek o tom, jak redakce sestavovala stavebnici kalkulátoru od fy Heathkit. V článku bylo uvedeno, že přístroj je možné u fy objednat i sestavený a to za velmi přijatelnou cenu. To by byl, myslím, vynikající příspěvek soukromých podnikatelů, kdyby se něco podobného podařilo uskutečnit i u nás. První vlaštovky se objevily i u nás – prodej součástek (i zahraničních) se zřejmě rozbíhá velmi slibně, ide o to, aby nezůstalo jen u součástek.

Tolik, pokud jde o amatéry. A pokud jde o profesionály – přeji jim smysluplné úkoly, dobré vybavení, odborné vedení a minimum administrativy a co nejkratší dobu mezi návrhem a realizací, možnost podívat se, jak "to dělají jinde" a dostatek sil k tomu, nenechat se

(alespoň v nejbližší době) otrávit zdánlivě "neprůstřelnými" poměry.

Tolik snad k oběma příspěvkům. Hodně úspěchů v dalším podnikání přeje všem

ing. O. Vyjidák, Bratislava.

Co k tomu dodat? Snad nejvhodnější bude citát z publikace Tomáše Bati (1925): Podnikatelské myšlení jest takové, které má iniciativní poměr k práci. Má míti snahu docilovatí s neimenší námahou největších výkonů. Bojuje proti ztrátám. Pohnutkou

k tomuto myšlení je zisk, jehož výše záleží na vynalézavosti člověka, podníkatele. Je to ta vynalézavost, která objevuje nové služby, kterých lze lidem poskytnout, nebo zdokonaluje služby dosavadní a provádí tyto služby tak dobře, že vždy přinášejí zisk.

NOVÁ GENERACE OBVODŮ PRO BTV

Ing. Václav Teska

S rozvojem barevných televizních přijímačů ve světě se vyvíjejí i nové integrované obvody, které kromě vyššího stupně integrace přinášejí i lepší technické parametry, menší počet nutných vnějších součástek, vyšší užitnou hodnotu TVP, lepší produktivitu výroby a větší spolehlivost. V následujícím přehledu jsou uvedeny pouze ty IO, které se mají po roce 1990 vyrábět u nás a našich sousedů. Protože v současné době nejsou ještě známa typová označení těchto IO, jsou v následujícím článku použita originální označení těchto IO, jak se v zahraničních BTVP používají.

Jedná se o tyto IO:

SAA3006 – kodér dálkového ovládání, SAA5231 – teletextový procesor,

SAA5243H - teletextový obvod řízený mik-

ropočítačem, SDA2080 – řídicí mikropočítač (μC), SDA3202 – syntezátor pro kanálový volič, HM6264 – paměť SRAM 8k × 8bit,

PCF8571 - paměť SRAM 256 × 8bit s přijímačem sběrnice I²C

TDA3048 - zesilovač povelů dálkového o-

TDA3654 - snímkový rozklad (rozklad V),

TDA4050 - zesilovač povelů dálkového o-

TDA4502 - signálový procesor,

TDA4555 - několikanormový dekodér ba-

TDA4565 - obvod CTI a zpoždění jasového

TDA4580 - videokombinace.

TDA4601 - obvod pro řízení spínaných napájecích zdrojů,

TDA6200 – obvod pro úpravu nf zvukového signálu,

TĎA6600 - dekodér stereofonního dvoujazyčného doprovodu,

TDA8442 - D/A převodník sběrnice I2C. Popis funkce těchto IO včetně jejich praktického zapojení spolu s návrhem plošných spojů a rozmístění součástek je uveden v následujících kapitolách.

Signálová část BTVP

Na obr. 1 je zapojení signálové části BTVP včetně nf výkonového stereofonního zesilovače a snímkového rozkladu. Ze signálové části zde naopak chybí dekodér barev a teletextu s videokombinací, které jsou popsány v následujících kapitolách, jakož i kanálový

Signálový procesor typu TDA4502

Z obr. 1 a 2 je zřejmé, že signálový procesor TDA4502 je sestaven z části pro zpracování mí obrazového signálu, přepínače videosignálu, obvodů pro zpracování synchronizačních signálů, obvodů pro řízení snímkového a řádkového vychylování.

Část pro zpracování mf obrazového slgnálu

Tato část je sestavena z obrazového čtyřstupňového mf zesilovače, synchrodemodulátoru, protiporuchového invertoru, video-předzesilovače (výstup signálu FBAS), detektoru přebuzení, obvodu pro posuv fáze referenčního signálu, detektoru a zesilovače AVC a vypínače ADK.

Mf obrazový zesilovač je tvořen čtyřmi stejnosměrně vázanými rozdílovými zesilovači; na výstup každého rozdílového zesilovače jsou zapojeny dva emitorové sledovače, které "odlehčují" výstupy jednotlivých stupňů a vyrovnávají stejnosměrné úrovně mezi jednotlivými stupni. Výstup každého stupně je dvojčinný, takže na jeho výstupu dostáváme signál ve fázi a protifázi se vstupním signálem. Symetrické zpracování mf signálu zajišťuje dobrou stabilitu celého mf zesilovače. Aby bylo možné zpracovat vstupní signál v rozsahu napětí 60 dB, jsou první tři stupně řízeny ze zdrojů proudu AVC a jejich zesílení se mění elektronickými rezistory, zapojenými mezi emitory těchto tří prvních stupňů. Regulace AVC pracuje v rozsahu 0,1 až 100 mV vstupního signálu, přičemž v rozsahu vstupního signálu 0,15 až . 47 mV se výstupní napětí mění o 1 dB. Tranzistorem T₁ jsou kompenzovány ztráty filtru F₁ v rozsahu 20 až 24 dB. Vstupní impedance na vývodech 8 a 9 IO₁ je 1,3 kΩ/5 pF a je vhodná pro připojení filtru F1. Pracovní bod mf zesilovače je stabilizován dvěma stejnosměrnými zpětnými vazbami, z nichž první je zavedena do všech čtyř stupňů a druhá do druhého a čtvrtého stupně. Signál z výstupů emitorových sledovačů za čtvrtým stupněm je veden do převodníku napětí-proud, na jehož výstupu (vývod 10 IO₁) je zapojen filtrační kondenzátor C11, potlačující zbytky mf signálu. Z výstupu tohoto převodníku je signál veden přes vnitřní rezistor na vstup mf zesilovače (vývod 8 IO1). Vývody 8 a 9 IO1 nesmí být zkratovány na zem, protože se tím. narušuje stabilita pracovního bodu mf zesilovače. Áby při velkém vstupním signálu byla zajištěna stabilita pracovního bodu mf zesilovače, je přes rozdílový zesilovač zavedeno do čtvrtého stupně mf zesilovače ss zpětnovazební napětí. Na vstupy tohoto rozdílového zesilovače je přiváděno napětí jednak ze zdroje referenčního napětí a jednak z výstupu převodníku napětí-proud; výstupní napětí zesilovače se přičítá k výstupnímu napětí třetího mf stupně.

Obrazový synchrodemodulátor. Pro demodulaci obrazového mf signálu je použit dvojčinný demodulátor, který oproti demodulátoru obalové křivky nemá kvadraturní chybu. Pro jeho buzení je použit nemodulovaný referenční signál, odvozený z mf obra-zového signálu. Zbytky modulace postranních pásem způsobují fázovou a amplitudovou modulaci mf obrazové nosné, a proto je potřebné mf signál neidříve zesílit, úzkopásmovým filtrem odfiltrovat nosnou obrazu a omezit ji. Filtr odstraňuje zbytkovou fázovou modulaci a omezením se odstraní zbytková amplitudová modulace. Výsledek demodulace je závislý na šířce filtru L₄C₂₃R₂₂ a jeho optimální šířka je ±0,75 MHz. Filtr je zapojen do kolektorů rozdílového zesilováče, jehož výstupní impedance Z_{20-21} je 8 k Ω , takže při $Q_0=65$ a požadované šířce pásma 1,3 MHz je nutné připojit paralelně k L4 rezistor $R_{22} = 3.3 \text{ k}\Omega$. Synchrodemodulátor je sestaven ze dvou křížově zapojených rozdílových zesilovačů se zdrojí proudu v emitorech, které jsou buzeny přes další rozdílový zesilovač mf výstupním signálem. Báze křížově zapojených rozdílových zesilovačů jsou buzeny napětím z detekčního obvodu. Vzhledem k symetrickému zpracování signálu je potlačena základní harmonická spínacího signálu, vf směšovací produkty a nesymetrie způsobená zbytky nosného obrazu, které jsou potlačeny dolní propustí v kolektorovém obvodu synchrodemodulátoru. Demodulovaný signál je přes další rozdílový zesilovač s proudovým zrcadlovým výstupem veden do videopředzesilovače a protiporuchového invertoru.

Protiporuchový invertor a videopředzesllovač. Videopředzesilovač je emitorový sledovač s tranzistorem n-p-n a zdrojem proudu v emitoru ($I_E = 2$ mA). Při odporu zdroje 50 Ω je na vývodu 17 (výstup FBAS) kladný výstupní signál se zápornými synchronizačními impulsy, který má při signálu "pruhy" mezivrcholovou úroveň 2,7 V, mv úroveň synchronizačních impulsů je 2,9 V. Krátkodobá rušení ve vf a mf signálu nemají vliv na referenční signál v demodulátoru. V závislosti na fázi rušivého signálu se ve videosignálu objevují kladné a záporné impulsy různých amplitud, které na obrazovce způsobují nežádoucí tmavé a bílé skvrny, které se v IO₁ potlačují protiporuchovým invertorem. Videopředzesilovač je z demo-dulátoru buzen přes invertující zesilovač a protiporuchový invertor. Při běžném signálu je emitorový sledovač uzavřen. Pokud při velkých rušivých impulsech nedosáhne výstupní napětí synchrodemodulátoru dané úrovně, emitorový sledovač povede. Při dalším zmenšení úrovně vstupního signálu se zmenšuje i výstupní napětí video ze špičkové úrovně bílé na střední úroveň šedé a výstupní odpor emitorového sledovače bude podstatně menší, než odpor paralelně připojeného invertujícího zesilovače. Pokud s doznívajícím rušívým impulsem nebude opětovně překročena prahová úroveň demodulátoru, celý obvod přechází do lineárního pracovního režimu. Součinností videopředzesilovače s protiporuchovým invertorem obdržíme přenosovou charakteristiku, která je při běžných signálech lineární - ohýbat se začíná při mezních úrovních. Tímto způsobem lze z obrazovky odstranit "ultrabílé"

Automatická regulace zisku (AVC) a detektor přebuzení. Aby mf zesilovač a kanálový volič mohly bez přerušení zpracovat velké vstupní signály a bylo dosaženo dobrého poměru signál-šum, musí být ovládány AVC. V IO1 se pro řízení AVC používá napětí synchronizačních impulsů, které je nezávislé na hloubce modulace. V IO1 je pro zjištění okamžité úrovně synchronizačních impulsů použit komparátor, dodávající proud, je-li napětí videosignálu větší než vnitřní referenční napětí. Tímto proudem je vybíjen C21 (vývod 19 IO1), který se dobíjí přes R_{20} . Napětí U_{19} (na vývodu 19 IO_1) je řídicí veličinou obvodu AVC a je minimálně 9 V při malém nebo žádném vstupním signálu. Se zvětšujícím se signálem se U₁₉ zmenšuje. Vstupní signál pro komparátor je odebírán z videopředzesilovače po vyloučení rušivých signálů v protiporuchovém invertoru a po vyfiltrování vf složek signálu dolní propustí druhého řádu. Během synchronizace je komparátor klíčován impulsy z řádkového synchronizačního obvodu, takže poruchy vzniklé mimo dobu klíčování nemají vliv na obvod AVC. Informaci o jednotlivých stavech dává napětí U_{22} (vývod 22 IO_1). Při U₂₂ ≧ 2,9 V se jedná o zasynchronizovaný stav, při U22 mezi 0,8 až 2,4 V o nezasynchronizovaný stav a při U22<0,8 V o synchronizaci cizím signálem. Při velkém vstupním signálu, zapnutí TVP nebo změně vysílače pracuje AVC se zpožděním, takže se mf zesilovač nemůže přebudit. Proti přebuzení je v IO1 vestavěn detektor přebuzení, který je ve funkci při nezasynchronizovaném stavu a při maximálním zesílení mf zesilovače. Detektor přebuzení, zapojený jako dvou-cestný usměrňovač s předpětím, je buzen vstupním signálem čtvrtého stupně mf zesilovače. Při překročení prahové úrovně generuje detektor přebuzení proud, kterým se vybíjí C21, napětí U19 se zmenšuje a tím se zmenšuje i zesílení celého mf zesilovače. Napětí U₁₉ je přes emitorový sledovač vedeno na dělič napětí, z něhož jsou odebírána čtyři napětí - tři pro zdroje proudu AVC, z nichž jsou řízeny elektronické rezistory v prvních třech stupních mf zesilovače, a jedno pro řízení zesilovače AVC, na jehož výstup je připojen obvod AVC kanálového voliče s tranzistory p-n-p. Zesilovač AVC dodává proud (vývod 5 lO₁) I_5 až 7 mA, závislý na napětí U_{19} . Zesilovač AVC je rozdílový zesilovač, na jehož jeden vstup je přiváděno napětí z nejvyšší odbočky děliče napětí a na druhý vstup referenční napětí, které je závislé na nastavitelném napětí U_1 (vývod 1 IO_1). Proud I5 je generován pouze tehdy, je-li řídicí napětí blízké napětí referenčnímu, takže bod nasazení regulace AVC v kanálovém voliči lze měnit napětím U1. Na výstupu zesilovače AVC je tranzistor s otevřeným kolektorem, takže je nutné na vývod 5 IO1 připojit R12R13 a jejich odpory zvolit tak, aby U_5 pod bodem nasazení AVC v kanálovém voliči bylo závislé na R₁₂R₁₃ a nad tímto bodem se rychle zmenšovalo se zvětšujícím se vstupním sig-

Získání řídlcího napětí pro obvod ADK. Synchrodemodulátor pro svoji funkci potřebuje nemodulovanou nosnou obrazu, která vznikne při přesném naladění TVP, kterého lze dosáhnout obvodem ADK. Řídicí napětí

obvodu ADK je závislé na kmitočtu nosné obrazu a ize je získat ze synchrodemodulátoru, na jehož jeden vstup je přiveden mf signál a na druhý referenční signál nosné obrazu, jehož fáze je závislá na okamžitém mf kmitočtu; je 90°, je-li mf kmitočet roven kmitočtu nosné obrazu. Výstupní signál z tohoto synchrodemodulátorů je nulový při kmitočtu nosné obrazu a mění se při zvyšování nebo snižování tohoto kmitočtu. Požadovaný posuv fáze o 90° je v IO₁ realizován vnitřním symetrickým fázovacím článkem RC a demodulátor ADK je klíčován klíčovacím impulsem, aby byla vyloučena závislost řídicího napětí ADK na obsahu obrazu. Na výstupu demodulátoru (vývod 18 IO₁) vzniká buď nulový nebo kladný či záporný řídicí proud $I_{18} = 2,6$ mA. Protože na přívodu ADK ke kanálovému voliči je vždy potřebné nějaké základní napětí (obvykle 6 V), je toto napětí v obr. 1 nastaveno R₁₈, R₁₉ na vývodu 18 IO1 a zbytky vf signálu jsou odfiltrovány C_{20} . Výstup ADK je připojen, je-li U_{22} >6,8 V nebo U_{22} <0,8 V. Při U_{22} = 0,8 až 6,8 V je ADK odpojen, aby při přelaďování TVP bylo zajištěno zachycení ADK na nosnou obrazu. Změnou R₂₃ lze dosáhnout stavu ,,umlčení" a ADK "vypnuto". Signál ADK je závislý na U_{19} a při $U_{19} > 9$ V neteče vývodem 18 žádný proud, protože ADK je odpojeno. Při zapnutém ADK a vnějším děliči 2× 470 kΩ je strmost detektoru d $U_{18}/df_{mf} = 80 \text{ mV/kHz}.$

Videopřepínač

Kromě signálu FBAS je na vývodu 17 IO1 mezinosný signál zvuku. Protože v signálu ze zásuvky SCART není zvukový signál, je nutné mezi vývod 17IO1 a SCART 20 (vývod 19 konektoru) zapojit odlaďovač F2, potlačuiící signály kmitočtů 5,5 a 6,5 MHz. Výstupní signál FBAS má mezivrcholovou úroveň 2 V a výstupní mezivrcholová úroveň ze SCART je 1 V/75 Ω (měřeno mezi úrovní synchronizačních impulsů a úrovní bílé). Pro srovnání těchto úrovní je mezi výstup F₂ a SCART *20* zapojen emitorový sledovač T₂ s děličem napětí R₄₇R₄₈ v emitoru. Protože signál z výstupu videopřepínače (vývod 14 IO1), určený k buzení dekodéru barev, teletextu a obvodů synchronizace, nesmí obsahovat mezinosný signál zvuku, je signál FBAS odebírán na vstup videopřepínače (vývod 15 IO1) nikoli z vývodu 17 IO1, nýbrž z výstupu F2 a vazba je zajištěna C₁₉, protože ss napětím U₁₅ ovládáme přepínání videopřepínače. Druhý vstup videopřepínače (vývod 12 IO₁) je přes C₉ připojen na SCART 19, kde je vstupní úroveň 1 V (mv). Na výstupu videopřepínače (vývod 14 lO₁) je kladný videosignál se zápornými synchronizačními impulsy o úrovni 2,5 V (mv). Videopřepínač je ovládán sa napětím U_{15} , přivedeným na SCART \mathcal{B} a pro jeho oddělení od signálu FBAS je použit R_{44} . Při $U_{15}=0$ až 5 V je zapojen vnitřní signál FBAS a při $U_{15}=8$ až 12 V vnější videosig-

Obvody řádkové (H) a snímkové (V) synchronizace

Pro tvorbu rastru na obrazovce isou k řízení rozkladů požadovány signály, synchronizované impulsy televizního signálu. Synchronizační impulsy jsou v IO1 využity pro řízení obvodů, sestavených z:

oddělovače synchronizačních impulsů,

řádkového synchronizačního obvodu se dvěma reguláčními obvody, koincidenčního detektoru s logikou řízení a generátorem klíčovacího impulsu,

snímkového synchronizačního obvodu s integrátorem a děličem,

pomocných obvodů pro generování klíčovacího impulsu a vytvoření složeného kombinovaného impulsu SCI (sandcast-

Oddělovač synchronizačních impulsů. Signál FBAS beze zbytků mezinosného signálu zvuku je z výstupu videopřepínače veden přes R21C22 na vstup oddělovače synchronizačních impulsů (vývod 25 IO1). Č28 a R₂₁ tvoří dolní propust s mezním kmitočtem asi 1 MHz, potlačující zbytky vf signálu. Oddělovačem je tranzistor n-p-n v zapojení se společnou bází, který je buzen do emitoru, němž je zapojen zdroj proudu s IE asi 9,5 µA. Napětí báze tohoto tranzistoru U_V = 5 V. Na jeho kolektoru jsou oddělené svnchronizační impulsy. Pokud je U₂₅ menší než U_V, je tranzistor otevřen a nabíjí se C₂₂. V ustáleném stavu během záporných synchronizačních impulsů jsou tyto impulsy na kolektoru oddělovače vždy. Během periody řádků je vnější napětí a tím i napětí U25 větší, oddělovač je uzavřen a C22 se vybíjí konstantním proudem. Vybíjení se mění na nabíjení a obráceně při úrovni odříznutí, která je při $R_{21} = 2.2 \text{ k}\Omega$ asi 30 % amplitudy synchronizačních impulsů. Zmenšit R21 pod 2,2 kΩ se nedoporučuje, protože přestávají pracovat ostatní části synchronizačních obvodů v IO1. Kapacita kondenzátoru C22 se volí tak, aby časová konstanta C22R21 byla značně delší než je perioda řádku $T_{\rm H}$. Doba změny náboje $t_{\rm u}=12~{\rm ms}=12.6\,{\rm R}_{\rm 21}\,{\rm C}_{\rm 22}=185\,T_{\rm H}$. Oddělené synchronizační impulsy isou vedeny do koincidenčního detektoru H. do fázového detektoru FD1 a integrátoru V.

Řádková synchronizace. Úkolem obvodu synchronizace H je získat budicí signál pro koncový stupeň H, potlačit vnější rušení a nastavit správnou fázi vůči televiznímu synchronizačnímu signálu. Přímá synchronizace koncového štupně H oddělenými synchronizačními impulsy není vhodná, protože pak je odolnost proti rušení malá. Proto se v současné době pro řízení koncových stupňů H používají synchronizované oscilá-tory, které kmitají i při rušení a krátkodobém výpadku synchronizačních impulsů. Takový obvod má mít velkou odolnost proti rušení, krátkodobým výpadkům a velký rozsah zachytávání. To isou však protichůdné požadavky, které lze splnit jen synchronizačním obvodem s přepínatelnými vlastnostmi. Nejvhodnější pro tento účel je fázová regulační smyčka RO₁, sestavená z fázového detektoru FD₁, dolní propusti DP₁, napěťově řízeného oscilátoru VCO1 a fázové reference RF1 (viz obr. 2). Výstupní napětí z FD₁ je úměrné rozdílu fází mezi vnějším synchronizačním signálem a signálem z RF₁. DP₁ odfiltruje vf složky signálu a výstupním napětím z DP₁ je řízen VCO₁. RF₁ určuje fázi "pily" VCO₁ hranou impulsu. Napětím VCO₁ je řízen FD₁. Při dobře navrženém RO, vzniká jen malý rozdíl fází mezi RF1 a synchronizačním signálem, který je úměrný rozdílu kmitočtu volně kmitajícího VCO1 a kmitočtu synchronizačního signálu. Statické a dynamické vlastnosti RO₁ jsou dány strmostí fáze FD₁, kmitočtovou charakteristikou DP1 a jeho časovou konstantou a strmostí nastavení VCO1. Strmost fáze je dána derivací časového rozdílu hran obou vstupních signálů FD1. Při činiteli přenosu DP₁ na nízkých kmitočtech rovném 1 je celková strmost ŘO₁ dána df_{osc}/ dt. Při zasynchronizování RO_1 je $f_{osc} = f_{sync}$ a dt je fázová chyba mezi signálem VCO₁ a signálem synchronizačním při změně df_{sync} kmitočtu vstupního signálu. Strmost regulace je nepřímo úsměrná statickým fázovým chybám. Při větší strmosti se zkracuje doba náběhu RO₁, zvětšuje se rozsah zachycení a šumová šířka pásma, která je mírou kolísání fáze způsobené zašumněnými signály. Celková strmost regulace je dána strmostí FD₁ a strmostí nastavení VCO₁, takže přepínáním obou strmostí se lze přizpůsobit daným požadavkům. Nejčastěji se přepíná strmost FD₁.

Obr. 1. Zapojení signálové části a snímkové-ho rozkladu BTVP

0,8

(b)

Předpokladem pro optimální vlastnosti RO₁ je vhodný návrh filtru DP₁. K tomu je zapotřebí detektor, jehož výstupní signál automaticky přepíná strmost RO₁. V IO₁ je takovým detektorem koincidenční detektor, který zjišťuje, překrývá-li se vnější synchronizační impuls s klíčovacím impulsem z VCO₁ a je-li RO₁ zasynchronizován. Kromě jiného je do koincidenčního detektoru zaveden spínací signál AVC, odvozený z napětí AVC, který určuje, je-li vstupní mf signál pod

nebo nad stanovenou úrovní. Tímto signálem je řízen RO₁ v závislosti na poměru signál-šum. Při slabém vstupním signálu je do FD₁ zaveden klíčovací impuls. Protože během zachytávání RO₁ neni FD₁ kličován, je během této doby zaváděn do FD₁ odpínatelný klíčovací impuls. Vertikální (snímkové) synchronizační impulsy spolu s prvním a posledním vyrovnávacím impulsem a impulsy půlsnímků ruší synchronizaci H, což se ná obrazovce projeví jako zákmity rastru na

horním okraji (topflutter). Toto rušení lze odstranit, když se během synchronizačního impulsu odpojí FD₁ a během zatemňování V se dosáhne maximální strmosti fáze. Pro dosažení maximální strmosti fáze je nutné přepínat FD, vyklíčovacím impulsem V a impulsem ATF (antitopflutter), přiváděnými ze synchronizačního obvodu V. Tyto signály jsou vedeny do logiky koincidenčního detektoru, ze kterého je řízen FD₁.

Rastr na obrazovce musí mít správnou fázi vůči obrazovému signálu. Polovodičové koncové stupně H spolu s budičem H mívají zpoždění až několik µs, což způsobuje nežádoucí posuv fáze a je závislé na návrhu obvodu koncového stupně, okolní teplotě a proudu koncového stupně. Toto zpoždění nelze kompenzovat nastavením obvodu koncového stupně a proto je ho potřeba regulovat. Protože však regulace pomocí RO₁ přináší řadu nedostatků (regulační signál závislý na tvaru a amplitudě proudu paprsku, korekci rastru, vysokém napětí a tolerancích součástek), je v lO₁ použit druhý regulační obvod, RO₂, který reguluje zpoždění koncového stupně H a řídí VCO1. RO2 je sestaven z fázové reference RF2, fázového detektoru FD₂, propusti DP₂, obvodu posuvu fáze OPF, vnějšího koncového stupně H a vnitřního tvarovače impulsu TI, který omezením impulsu H zpětného běhu generuje vyklíčovací impuls H. RF₂ určuje fázi VCO, hranou impulsu referenčního signálu H_{FR2}. V FD₂ je poloha hrany impulsu porovnávána s vyklíčovacím impulsem H. Výstupní napětí z FD₂, zbavené ví složek signálu v DP₂, je úměrné rozdílu H_{FR2} a impulsu zpětného běhu H a určuje fázi řídicího signálu pro koncový stupeň, odvozeného z VCO₁. RO₂ nastavuje střed impulsu zpět-ného běhu H tak, aby odpovídal fázi H_{RF2}, takže zpětný běh H má vzhledem k synchronizačnímu impulsu H danou polohu a je nezávislý na zpoždění, které vzniká v koncovém stupni H a jeho budiči. Řádková synchronizace je tedy sestavena ze dvou částí: RO1 zabezpečuje vlastní synchronizaci s automatickým přepínáním jejich vlastností a RO₂ reguluje vliv koncového stupně H na polohu zpětného běhu H a tak i proud vychy-

polohu zpětneno benu H a tak i proud vyčnylovacími cívkami H. Kmitočet VCO $_1$ v IO $_1$ na obr. 1 je nastaven C $_{25}$ R $_{26}$ R $_{27}$ na vývodu 23 a DP $_1$ je sestavena z R $_{29}$ C $_{26}$ C $_{27}$ na vývodu 24. Volbou R $_{25}$ Ize v daných mezích nastavit strmost nastavení VCO $_1$. VCO $_1$ je generátor "pily", tvořený komparátorem, Schmittovým klopným obvodem (SKO) a nabíjecím tranzistorem. Kondenzátor C $_{25}$ se vybíjí přes R $_{26}$ R $_{27}$ až na referenční napětí komparátoru U_{23} . Změnou tohoto napětí se z výstupu komparátoru překlápí SKO do druhé stabilní polohy, kdy se otvírá nabíjecí tranzistor, který nabíjí C $_{25}$ se nabíje na maximální napětí U_{23} dané vnitřním obvodem. Na vývodu 23 je pilovitý signál H $_{osc}$. Na vývod 23 je z vývodu 24 přes R $_{25}$ přiváděn proud závislý na napětí U $_{24}$, kterým se zpomaluje nebo zrychluje podle směru toku tohoto proudu vybíjení C $_{25}$, čímž se mění kmitočet VCO $_1$ v RO $_1$.

Dalším komparátorem je z H_{osc} vytvořen pravoúhlý signál, který definuje fázi sestupné hrany "pily"; sestupná hrana pravoúhlého signálu je nazývána referenční hranou, RH₁. Srovnávací napětí RO₁ je ve středu amplitudy pily. Při synchronizaci je RH₁ ve středu synchronizačního impulsu H a C₂₅ se nabíjí přibližně uprostřed řádku. V FD₁ se porovnává fáze oddělného vnějšího synchronizačního impulsu s hranou referenčního impulsu. FD₁ je sestaven ze tří zdrojů proudů, které se aktivují synchronizačním

Obr. 3. Příklad provedení desky s ploš-nými spoji signálové části BTVP (X241)

Seznam součástek k obr. 3

Rezistory (TR 212,	není-li uvedeno jinal
R ₂	2,2 MΩ, TR 213
R3, R52	47 Ω
R4	4,7 kΩ
R ₅	2,7 kΩ
R ₆	1,2 kΩ
R ₇ , R ₈₅	100 Ω
R ₈ , R ₉ , R ₅₃ , R ₅₅	10 Ω
R ₁₀ , R ₆₃ , R ₆₇ , R ₇₇	15 kΩ
R ₁₁ , R ₄₇	330 Ω
R ₁₂ , R ₂₅ , R ₃₁	33 kΩ
R ₁₃ , R ₂₆	6,8 kΩ
R ₁₄	4,7 MΩ TR 214
R ₁₅ , R ₁₇ , R ₆₄ ,	
R ₆₆ , R ₇₀	22 kΩ
R ₁₆ , R ₈₈	47 kΩ TP 009

R ₁₈ , R ₁₉ , R ₄₄ R ₂₀ R ₂₁ R ₂₂ , R ₇₂ , R ₇₆ R ₂₃ R ₂₄ R ₂₇ R ₂₈ R ₂₉ , R ₆₁ , R ₇₈ , R ₇₉ , R ₈₀ , R ₈₁ R ₃₀ , 56 kΩ, R ₃₂ , R ₆₈ R ₄₅ , R ₄₉ , R ₅₇ , R ₈₂ , R ₈₃ R ₄₈ R ₅₀ R ₅₁ , R ₅₆ R ₅₄ , R ₇₃ , R ₇₅ R ₅₈ R ₅₈ , R ₆₀	100 kΩ 330 kΩ 2,2 kΩ 3,3 kΩ nastavit při oživování 180 kΩ 6,8 kΩ, TP 009 5,6 kΩ 1 kΩ TR 213 82 kΩ 6,8 MΩ, TR 214 820 Ω 680 Ω 12 kΩ 27 kΩ 220 Ω 68 kΩ 68 kΩ 680 kΩ
R ₆₂	10 kΩ. TP 009

R ₆₅	10 kΩ
R ₇₁	18 kΩ
R ₈₇	470 kΩ

Kondenzátory	
C ₁	5 μF, TE 005
C ₃ , C ₄ , C ₈ , C ₁₂ , C	C ₁₃ , C ₁₅ , C ₈₄ 1 nF, TK 724
C ₅ , C ₆₈ , C ₇₀	10 nF, TK 744
C ₆	47 μF, TGL 38928
C ₇ , C ₁₁ , C ₂₄ , C ₃₈ ,	C ₃₉ ,
C ₄₀ , C ₄₆ , C ₄₇ , C ₅₉	, C ₆₀ 22 nF, TK 744
C ₉ , C ₂₂ , C ₅₈ ,	
C ₇₆ , C ₁₁₃ , C ₁₁₅	470 nF, TC 215
$C_{14}, C_{78}, C_{79}, C_{80}, C_{80}$	C ₈₁ , C ₈₂ , C ₁₂₀ 100 μF, TF 009
C ₁₆ , C ₅₆ , C ₅₈	22 μF, TGL 38928
C ₁₇	3,3 nF, TK 724
C ₁₉	330 nF, MPT-Pr96
C ₂₁	1 μF, TGL 38928
C ₂₃	100 pF, TK 754
C ₂₅	2,7 nF, TGL 5155
C ₂₆	68 nF, TC 215
C ₂₇	2 μF, TE 006
	`

C₂₈ 150 pF, TK 754
C₃₇ 560 pF, TK 794
C₃₉, C₆₆, C₈₅, C₁₀₇ 10 µF, TGL 38928
C₄₁ 4,7 nF, TGL 5155
C₄₂ 390 pF, TGL 5155
C₄₃, C₆₄ 680 pF, TGL 5155
C₄₄, C₄₅, C₆₁, C₆₂ 56 pF, TK 755
C₄₈ 27 pF, TK 754
C₄₉, C₅₁, C₅₂, C₈₅ 330 pF, TK 754
C₅₀, C₅₂ 6.8 nF. TK 755 L₁₄ feritová perla na vývodu C99 33 nF, MPT-Pr96 C₉₁, C₁₀₆, C₁₀₈, C₁₁₁, C₁₁₃, C₁₁₅ 470 nF, MPT-Filtry Pr96 filtr PAV OFW (Siemens) C₉₂, C₁₀₅ C₉₃, C₉₅, C₁₀₃ 47 nF, MPT-Pr96 F_2 ECM5, 5/6,5 22 nF, MPT-Pr96 (Polská republika) C₉₄, C₁₀₄ 3,3 nF, TGL 5155 C₉₆, C₁₀₀, C₁₀₉, C₁₁₀, C₁₁₂, C₁₁₄ 6,8 nF, TK 724 C₉₈ 4,7 nF, TK 724 C₉₉ 220 μF, TF 007 C₁₀₂ 470 μF, TF 009 SFE5,5 F₃ F₄ SFE6,5 SFE5,74 F₅ C₁₀₂ 6,8 pF, TK 755 C₅₀, C₅₂ Polovodičové součástky C₅₄ 27 pF, TK 755 KF190 C₅₅ 68 pF, TK 754 22 μF, TF 009 Cívky a tlumivky KC238B T_2 C₅₈ 1 μH na jádru M4×10 mm, L_{1} D₂, D₃, D₉, D₁₀ KA206 C₆₃ 470 pF, TGL 5155 hmota N1 101 TDA4502 C₆₇, C₇₁ 5 μF, TE 984 6,8 μH na stejném jádru 1O₃, 1O₄ MDA4281V 47 μF, TF 010 100 nF, MPT-Pr96 10 nH, vzduchová cívka 7×7 mm, C₇₂, C₇₃ 10_5 TDA6600 C₇₄ 106 TDA6200 C₇₅, C₈₆, iádro 3×10 mm. 220 nF, MPT-Pr96 C₈₇, C₉₇, C₁₀₁ hmota NO1 1 μF, TC 215 4,7 nF, TC 228 15 nF, MPT-Pr96 7×7 mm, kuželka L_6 až L_{13} cívka C₇₇ s hrníčkem, hmota NO5 (tzv. C₈₃

C88

japonské cívky)

impulsem. Při impulsu ATF je vstupní synchronizační signál zkratován na zem, takže ani jeden z těchto zdrojů proudu nedodává proud. Zdroje proudu jsou přes elektronické přepínače spojeny s převodníkem polarity, řízeným referenčním signálem H_{ref1}. Poloha elektronických přepínačů je závislá na spínacím signálu AVC a spínacím signálu z koincidenčního detektoru, AVC a vyklíčovacím impulsu V. Na vývod 24 IO, teče proud, jen když je sepnut některý z přepínačů. Obvodem R₂₉C₂₆C₂₇ se výstupní proud I₂₄ mění na U24, které je zbaveno vf složek signálu kondenzátorem C26, a které je řídicím signálem pro VCO., V zasynchronizovaném stavu, asi uprostřed synchronizačního impulsu H, se přepne přepínač v převodníku polarity, takže l₂₄ je složen ze záporného a následujícího kladeného impulsu. Amplituda l_{24} i strmost FD₁ závisí na počtu sepnutých přepínačů ve zdrojích proudu. Pokud při ustalování se mění fáze H_{ref1} oproti fázi synchronizačního impulsu H, rozšiřují se impulsy I_{24} a mění se i U_{24} a tím i kmitočet VCO₁. Toto dolaďování VCO₁ probíhá až do doby ustálení kmitočtu VCO, na kmitočtu synchronizačního impulsu H. Z osmi možných kombinací přepínačů je

v IO₁ využito čtýř: není aktivován žádný zdroj proudu $-I_{24}=0$ aktivován zdroj proudu $I-I_{24}=\pm0.4$ mA, aktivován zdroj proudu I a II $-I_{24}=\pm0.8$ mA, aktivovány všechny zdroje proudu

 $-I_{24} = \pm 2,0$ mA.

 $-l_{24} = \pm 2$,0 mA. Střední proud $l_{24} = \pm 0$,8 mA protéká při zpětném běhu V a při velkém vstupním signálu ($U_{8-9} > 1,5$ mV), $l_{24} = \pm 0,4$ mA teče při malém vstupním signálu ($U_{8-9} < 1,5$ mV) při zasynchronizovaném stavu ($U_{22} > 2,9$ V). Při $I_{24} = \pm 0,4$ mA je sepnut zdroj proudu I, který je klíčován, aby bylo zajištěno odrušení. Zdroj proudu dodává proud I24 jen během vnitřního klíčovacího impulsu (5,7 μs), který překrývá synchronizační impuls (4,7 μs). Při klíčování nemají rušivé impulsy v synchronizačním signálu žádný vliv na synchronizaci H. Při $U_{22} = 0.8$ až 2,4 V, tj. při "zarušené" synchronizaci, je $l_{24} = \pm 0.8$ mA. Aby po impulsu ATF, který nemá synchronizační impulsy V a kdy z FD1 nepřicházejí proudové impulsy, bylo urychleně dosaženo ustáleného stavu RO₁, je během zbývající doby vyklíčování V při velkém vstupním signálu proud $I_{24} = \pm 2 \text{ mA a při vstupním mf signálu pod}$ 1,5 mV proud $I_{24} = \pm 0.8$ mA. Také při rušení šumem je proud $l_{24}=\pm 0.8$ mA. Pokud lO_1 není synchronizován signálem FBAS (z výstupu F₂), nýbrž je synchronizován cizím signálem, je potřebné oddělit mf část od synchronizační části odpojením řídicího napětí AVC od FD $_1$ a to přivedením spínacího napětí $U_{22} < 0.8$ V přes R $_{23}$ na vývod 22 IO $_1$. I v tomto případě působí na FD1 vyklíčovací impuls H a ATF.

Jak pro FD₁, tak i ostatní bloky IO₁ je potřebný signál, indikující stav RO₁, přiváděn z koincidenčního detektoru, který porovnává fázi vnějších synchronizačních impulsů s fází vnitřního klíčového impulsu, vznikající-

Obr. 4. Blokové zapojení MDA3654

Seznam součástek k obr. 5

Rezistory R₃₄ 1,8 Ω, TR 215 R₃₅ 100 Ω, TP 012 R₃₆ 3,3 kΩ, TR 212 R₃₇ 22 kΩ, TR 212 R₃₈ 470 Ω, TR 212 R₃₉ 4,7 kΩ, TP 009 R₄₀ 10 kΩ, TR 212 R₄₁ 56 kΩ, TR 212 R₄₂ 1 kΩ, TR 212 4,7 Ω, TR 225 R₄₃

Kondenzátory

C₃₀ 100 nF, TC 215 C₃₁ 470 pF, TK 744

 $\begin{array}{cccc} C_{32} & & 1 \text{ mF, TF } 008 \\ C_{33} & & 2 \mu\text{F, TE } 006 \\ C_{34} & & 220 \mu\text{F, TF } 010 \\ C_{35} & & 100 \mu\text{F, TF } 010 \\ \end{array}$

Polovodičové součástky

D₁ KY199 O₂ TDA3654

VVC vertikální vychylovací cívky

ho ze signálů $H_{\rm osc}$ v generátoru klíčovacího impulsu. Je-li synchronizační impuls obsažen v klíčovacím impulsu, nabíjí se C_{24} . V zasynchronizovaném stavu je $U_{22} = 10,3$ V a mimo tento stav je $U_{22} = 0,8$ až 2,4 V. Napětí $U_{22} = 2,4$ až 10,3 V vzniká při synchronizaci s rušením nebo při zachytávání RO_1 . Napětí U_{22} dává informaci o stavu RO_1 a je použito k přepínání strmosti FD_1 .

Z U₂₂ jsou pomocí komparátorů odvozeny další tři signály a to signál MUTE (umlčení) pro umlčení zvuku, který je spolu se signálem 50 Hz/60 Hz vyveden na vývod 13 IO1 signál pro vypínání řídicího signálu ADK (I₁₈ = 0) a signál pro vypnutí klíčování při vzniku řídicího napětí AVC. Tyto tři signály se uplatňují při nezasynchronizované smyčce RO_1 ($U_{22} = 0.8$ až 2,4 V). Vnějším napětím přivedeným na vývod 22 IO₁ se oddělí mf část spolu s videopřepínačem od synchronizační části. Při vnějším přepnutí (vnější napětí na vývod 22) se odpojí MUTE od zvuko-vé části, není klíčován zdroj signálu AVC, takže spínací signál AVC neovlivňuje FD a integrátor V. Připojí se zdroj řídicí napětí ADK. Synchronizační část se odpojí i tehdy, je-li k synchronizaci použit jiný signál než FBAS. Při U_{22} <0,8 V je přes vývod 12 přiváděn vnější signál a při U22>0,8 V přes vývod 15 vnitřní signál. Výstup videosignálu je na vývodu 14. Prahová napětí $U_{22} = 2.6 \text{ V}$

Obr. 5. Příklad provedení desky s plošnými spoji koncového stupně V (X242)

a 6,6 V mají malou hysterezi a jsou určeny k vnitřnímu přepínání. Tím je zajištěno vypnutí nebo zapnutí i při malých změnách těchto napětí.

Abychom získali výstupní signál H pro vybuzení koncového stupně H, je pilovitý signál Hosc zaveden do fázovacího stupně, který je součástí regulační smyčky RO2, kde je signál Hosc převeden na signál pravoúhlý se šířkou impulsu 45 % periody T_H řádků. Při $T_{\rm H} = 64 \ \mu s$ je šířka tohoto impulsu asi 29 μs (výstupní signál H na vývodu 26 IO1 má ůroveň H). Fázovací obvod mění fázi pravoúhlého signálu oproti H_{osc} podle řídicího napětí přiváděného z FD₂. Výstupní signál z fázovacího obvodu je vyveden na vývod 26 IO1. Protože se jedná o výstup s otevřeným kolektorem, je nútné na vývod 26 IO1 připojit R₂₈. Výstupní signál H má při L úroveň 0,3 V a zvětšuje se až do napájecího napětí (úroveň H). V koncovém stupni H je generován impuls zpětného běhu H_{zb}, který se přes R₃₁ a vývod *27* IO₁ zavádí do generátoru SCI, a vyvou 27 lO₁ zavadi do generatoru SCI, kde se pomocí omezovače H_{zb} odvozuje vyklíčovací impulsy H; R₃₁ je nutno volit tak, aby během H_{zb} tekl do vývodu 27 lO₁ proud 0.1 až 2 mA

Jedním ze vstupních signálů pro FD_2 je vyklíčovací impuls H a druhým signálem je referenční signál $H_{\rm ref2}$, přivedený z komparátoru, do něhož je přivedeno pilovité napětí $U_{\rm osc}$ (H), které se zde mění na pravoúhlý signál, jehož sestupná hrana je o 2,85 µs zpožděna za hranou referenčního signálu $H_{\rm ref1}$. Zpoždění mezi hranami $H_{\rm ref1}$ a $H_{\rm ref2}$ je dáno dobou, kterou potřebuje sestupná hrana "pily" oscilačního napětí k proběhnutí rozsahu napětí mezi těmito dvěma referenčními úrovněmi. Zmenšení U_{23} je dáno vybjením C_{25} přes $R_{26}R_{27}$. Tento rozdíl časů není

závislý na vnějším obvodu RC, ale na parametrech vnitřního obvodu, na TH a době zpětného běhu H. Porovnáním fází mezi vyklíčovacím impulsem H a H_{ref2} vzniká řídicí signál na vývodu 28 IO1, který je filtrován C29 a FD₂ řídí tak, aby se střed H_{zb} kryl se sestupnou hranou H_{ref2}. Protože fáze H_{ref1} a H_{ref2} jsou spolu svázány, je při zasynchronizovaním stavu IO1 dosaženo trvalé závislosti mezi výstupním proudem H a vstupním který svnchronizačním impulsem, o 0,3 µs předbíhá synchronizační impuls z výstupu oddělovače. V zasynchronizovaném stavu jsou sestupná hrana H_{ref1}, střed sestupné hrany Hosc a střed vnitřního klíčovacího impulsu ve středu odděleného synchronizačního impulsu H. Náběžná hrana klíčovacího impulsu vzniká při průchodu Hose přes vnitřní úroveň Urefi a jeho sestupná hrana při průchodu Hosc přes Uret2. Náběžná hrana H_{osc} s dobou trvání T_{HR} je při zasynchronizovaném VCO1 asi 32 µs před nebo po průchodu sestupné hrany "pily" přes U_{ref1} . Při zasynchronizované RO₁ vzniká na výstupu koincidenčního detektoru proud l₂₂, složený ze dvou záporných (šířka asi 0,5 μs) a jednoho kladného impulsu (šířka 4,7 μs), který je symetrický vůči oddělenému synchronizačnímu impulsu a i vůči vnitřnímu klíčovacímu impulsu. Proudem I22 se nabíjí C_{24} až na napětí 10,3 V, kdy $I_{22} = 0$. Definovaným zpožděním aktivních hran H_{ref1} a H_{ref2} při zasynchronizované RO1 a RO2 je fázově svázána hrana RF2 a náběžná hrana klíčovacího impulsu se vstupním synchronizačním impulsem. RO2 zajišťuje, že se střed vnitřního vyklíčovacího impulsu H a střed Hzb nad danou úrovní shoduje s hranou RF2. Výstupní impuls H na vývodu 26 musí předbíhat Hzb o dobu zpoždění koncového stup-

Snímková (V) synchronizace. Jejím hlavním úkolem je odvodit kmitočtově a fázově správný, nerušený signál pro vychylo-vání V. Metoda přímé synchronizace snímkového generátoru "pily" synchronizačním impulsem V dává uspokojivé výsledky jen při malém rušení, při velkém rušení nebo při provozu z videomagnetofonu (VCR) způsobuje "zabalování" nebo "poskakování" obrazu. Proto je pro snímkovou synchronizaci v IO1 použita metoda synchronizovaných děličů, která tyto nectnosti odstraňuje. Podle normy je kmitočet V v daném poměru ku kmitočtu řádek, takže je možné snímkový kmitočet fy odvodit z řádkového kmitočtu fH soustavou děličů. Správnou fázi řídicího signálu V, který je výstupním signálem z děličů, získáme nulováním děličů synchronizačním signálem z výstupu integrátoru V. Protože se používá soustavy s prokládanými řádky, je nutné v IO_1 kmitočet f_H zdvojit. Pokud poměr $2f_H \cdot f_v$ bude odpovídat přijímané normě signálu, bude na výstupu děličů signál správného kmitočtu i fáze a vnitřně odvozený impuls _{sync int} a to i tehdy, když bude chybět V z integrátoru V. Dobrého odrušení dosáhneme i při zasynchronizovaném rušení, které vzniká při zatemňování V, protože tímto rušením nejsou ovlivněny synchronizační impulsy V_{sync int}, které vznikají ve vnitřním děliči.

Při jednodušší verzi zapojení a nezasynchronizovaných děličích nejsou pro řízení generátoru V ("pily") použity impulsy z děličů, nýbrž z integrátoru V. Tato verze vyžaduje automatické přepínání mezi děliči a integrátorem V, čemuž je použit koincidenční obvod V, který určuje, zda řídicí signál pro generátor "pily" je přiveden přímo z generátoru V nebo z děličů vynulovaných po vstupnímimpulsu 2f_H:f_V, kdy vznikne hrana V_{syncext} je generátor "pily" buzen při zachytávání děliče, při nenormovaných signálech, nezasynchronizovaném VCO₁. Nedostatkem této verze je nesnadná přizpůsobilost na vnější podmínky (např. na VCR), kdy je fáze synchronizačního impuslu závislá na kolísání

a skokových změnách vnějšího synchronizačního impulsu. Pro odstranění těchto nedostatků je v IO1 použito zlepšené zapojení děličů, které jsou buzeny signálem o 2fH, získaným ve zdvojovači z Hosc. Takt děliče má délku $T_T = 0.5 f_H$. Za zdvojovačem je připojen 10bitový dělič s dekodérem, který má několik vnitřních výstupů, pomocí nichž jsou nastavovány požadované časové průběhy výstupních impulsů, definujících rozsah dělení a tak i okénka děličů. Tak např. na výstupu dekodéru bude úroveň H jen mezi 622 až 628 taktem po vynulování děličů. Koincidenční obvody určují, jsou-li impulsy V_{sync ext} z integrátoru V v koincidenci se vstupními signály dekodéru a jsou-li v daném okénku čítače. Výstupními signály z ko-incidenčních dekodérů je řízena logika s pamětí tvořenou obousměrným čítačem a klopným obvodem. Stavem logiky je určeno aktivované okénko čítače a čítačem logiky je odvozena řada signálů V s různou délkou a fází, určených k řízení některých stupňů v IO1. Hlavní rozdíly mezi synchronizovanými děliči a přímou synchronizací V jsou:

děliče jsou nulovány, pokud V_{sync ext} z integrátoru V je v činném okénku čítače (popř. isou nulovány před jeho skončením),

 při každém nulování čítače vzniká V_{sync ext}, kterým je řízen generátor "pily" snímkového rozkladu,

 obvod se přepínáním aktivovaných okénkem čítače automaticky přizpůsobuje okamžitým podmínkám a logikou jsou zpracovávány nejen okamžité vnější podmínky, ale

půlperioda předchozího snímku. Zlepšený synchronizovaný dělič umožňuie jak rychlou synchronizaci (rychlé zachycení), tak i dobrou synchronizaci H, zejméná při silně rušeném signálu, ale i při signálech s kolísající fází synchronizačního signálu V, např. při VCR. Protože V_{sync int} je generován děličem, není zapotřebí nastavovat kmitočet generátoru "pily" V. Synchronizační obvod V v IO₁ je sestaven z integrátoru V pro odvození V_{sync ext} a z děliče. Integrátor je sestaven z komparátoru, který porovnává synchronizační signál V s vnitřní referenční úrovní, přepínatelného zdroje proudu, jehož přepínač je řízen výstupním signálem komparátoru, integrovaného C_{int} a Schmittova klopného obvodu (SKO). Pokud je oddělený synchronizační signál nad referenční úrovní vnitřní reference, Č_{int} se nabíjí lineárně s časem; pokud se zmenšní pod úroveň reference, přepne se zdroj proudu a Cint se vybíjí. Změna napětí na C_{int} je úměrná integrálu nabíjecího proudu. Spínacím napětím AVC je zdroj proudu přepínán: při slabém vstupním signálu je proud ze zdroje proudu dvojnásobný oproti proudu při silném televizním signálu. Napětím z C_{int} je řízen SKO, jehož práh sepnutí je mimo jeho oblast hystereze. Je-li napětí z C_{int} v rozsahu hystereze SKO, vzniká na jeho výstupu, při překročení nebo nedosažení prahové úrovně kladný nebo záporný skok napětí, takže na výstupu SKO je odrušený napěťový impuls. Doba mezi překročením vnitřní referenční úrovně komparátoru a přepnutím SKO je při slabém vstupním signálu asi 9 μs a při dostatečném TV signálu asi 16 μs. Obvod tedy nereaguje na synchronizační impulsy H a na první a poslední vyrovnávací impuls V se šířkou 4,7 μs nebo 2,35 μs. Při prvním synchronizačním impulsu s délkou 27,3 µs, kdy je překročeno na Cint horní prahové napětí SKO, se SKO překlápí. Tímto způsobem jsou z celkového synchronizačního signálu odvozeny synchronizační impulsy V a výstupní signál SKO je odrušeným V_{svnc ext}

Při rušeném TV signálu nebo při chybějících synchronizačních impulsech V mohou na výstupu integrátoru V vzniknout signály ležící mimo rozsah vysílaných synchronizačních impulsů. Aby v IO₁ bylo dosaženo optimálního odrušení synchronizačního sig-

nálu V, je za integrátorem V zapojen dělič pro odvození V_{sync int}, který je sestaven ze zdvojovače kmitočtu signálu odebíraného z RO1, 10bitového děliče, dekodéru, pěti koincidenčních obvodů K₁ až K₅ a logiky s obousměrným čítačem. Na vstupy K1 až K5 je přiveden ze snímkového integrátoru , Na druhý vstup K₁ je přiveden signál z dekodéru s úrovní H během 488. až 722. taktu po vynulování čítače (je označován iako široké vyhledávací okénko). Pro K2 je druhým signálem signál z dekodéru s úrovní H během 522. až 528. taktu po vynulování čítače při $f_V = 60 \text{ Hz}$ (který je označován jako úzké vyhledávací okénko). Do K3 je zaváděn z dekodéru signál s úrovní H během 622. až 628. taktu po vynulování děliče při $f_V = 60 \text{ Hz}$ (nazývaný také jako úzké okénko). Pro druhý vstup K4 je vstupním signálem signál s úrovní H během 0. až 576. taktu po vynulování děliče a ke koincidenci s V_{sync ext} dochází v K₄ při f_V = 60 Hz a normovaném počtu řádků, kdežto při $f_V = 50 \text{ Hz}$ a 625 řádcích dochází ke koincidenci v K5. K4 a K₅ při $f_V = 60$ Hz a při $f_V = 50$ Hz generují signál pro logiku, která tuto informaci zpracovává a vysílá ji jako signál 50 Hz/60 Hz na vývod 13 IO₁. K₄ a K₅ jsou trvale zapojeny a kontrolují f_V . Logikou je určováno, které okénko je ve funkci. V logice je obousměrný čítač, jehož stav se zvětšuje o 1, když je V_{syno} ext v rozsahu aktivovaného okénka; pokud tomu tak není, tento čítač se zmenší o 1 (takto např. při aktivovaném K1 (široké okénko) má čítač stav 7). Pokud V_{sync ext} je v rámci tohoto okénka, stav čítače se zvětší na 8; v opačném případě se zmenší na 6 nebo zůstane na 0. Při silném nerušeném signálu se dělič zasynchronizuje při 625 řádcích po 7. a při 525 řádcích po 4. periodě půlsnímku. Během každé periody půlsnímku se stav čítače zvětšuje o 1 a při stavu 15 přepíná na úzké okénko, kdy se odpojí K1 a zapojí se K2 nebo K₃. Informace 50 Hz/60 Hz je přiváděna z K₄ nebo K₅.

Pokud z nějakého důvodu nebude během periody půlsnímku impuls v rámci úzkého okénka, čítač čítá po 1 do 7 a přepne na široké okénko. Při změně vysílačů zůstává obvod po dobu periody půlšnímku v předchozím stavu a do nového přechází po splnění kritérií. Pokud byl obvod v úzkém okénku a po změně vysílačů synchronizační impuls do tohoto okénka nezapadá, čítač čítá až do stavu 6, kdy se zapojuje široké okénko a je prováděno nové vyhledávání. Pokud na vstup IO1 není přiváděn mf vstupní signál, dělič V se po 722. taktu vynuluje a rozšíří se rastr na obrazovce ve vertikálním směru. Aby bylo vyloučeno rušení při přítomnosti doplňkového synchronizačního impulsu z VCR, přepíná se IO1 na široké okénko při šířce synchronizačního impulsu V delším než 18 μ s, při $f_V=50~{\rm Hz}$ po 8. taktu a při $f_{V} = 60 \text{ Hz po } 10. \text{ taktu. Tak je i při provozu}$ s VCR dosaženo dobré snímkové synchronizace. V paměti synchronizačního obvodu V je obousměrný čítač, který bere do úvahy i předchozí periodu půlsnímku (princip setrvačníku), takže krátkodobá rušení prakticky neovlivňují snímkovou synchronizaci. K novému vyhledávání a přepojení na široké okénko dochází teprve při dlouhodobém ru-

Po každém nulování čítače je generován vnitřní synchronizační signál V_{sync int}, který budí snímkový generátor "pily" a má délku 28 taktů (14 řádků). Logika synchronizačního obvodu V generuje ještě další signály pro řízení vnitřních obvodů IO₁, jako je např. impuls ATF (anti-topflutter-impuls), který zabraňuje rušení řádkové synchronizace během zatemňovacího impulsu V při prvním a po-

sledním vyrovnávacím impulsu. Při aktivovaném širokém okénku vzniká impuls ATF při nulování děliče V a při aktivovaném úzkém okénku při prvním vyrovnávacím impulsu. Impuls ATF končí při $f_V = 50$ Hz po 10. a při $f_V = 60 \text{ Hz po } 12. \text{ taktu po vynulování}$ děliče. Signálem ATF je během snímkového zatemňování blokován FD1, takže se jen velmi málo mění U24 na IO1 a synchronizace H není rušena. Kromě toho jde ATF do generátoru složeného impulsu (SCI) a ovlivňuje logiku synchronizace V, která při rušené synchronizaci a aktivovaném širokém okénku prodlužuje nebo zdvojuje snímkové synchronizační impulsy. Kromě ATF generuje obvod synchronizace V snímkový vyklíčovací impuls (SVI), který začíná po vynulování děliče a končí při $f_V = 60 \text{ Hz}$ s 34. taktem (17. řádku) a při $f_V = 50 \text{ Hz}$ se 42. taktem (21. řádkem). SVI spolu s ATF vytváří snímkovou část impulsu SCI, která je doplněna řádkovým a burstovým vyklíčovacím impulsem. Snímková čásť signálu SCI při aktivovaném úzkém okénku vzniká již při prvním vyrovnávacím impulsu. Generátor SCI je vyveden na vývod 27 IO1. V logice snímkové synchronizace vzniká i signál 50 Hz/60 Hz zaváděný do generátoru "pily" a generátoru

klíčovacího impulsu. Snímkový generátor "plly" a výstupní snímkový stupeň: Generátor "pily" je tvoren C₁₈, R₁₄, vnitřním vybíjecím obvodem, který je řízen V_{sync} int z děliče V. Během zpětného běhu V je vybíjecí obvod uzavřen a C₁₈ se nabíjí přes R₁₄. Aby byl průběh "pily" lineární, je nutné R₁₄ napájet minimálním napětím 25 V. Při náběžné hraně snímkového synchronizačního impulsu se otevře vybíjecí obvod a C_{18} se vybíjí přes vnitřní rezistor asi $6\,k\Omega$. Zmenší-li se napětí na vývodu 2 IO1 (U2) na prahovou hodnotu $U_{SV} = 1.5 \text{ V}$, vybíjecí obvod se uzavírá a končí vybíjení C₁₈. U nenormovaných televizních signálů zůstává $U_2 = U_{SV}$. Nové nabíjení (nový zpětný běh V) začíná na konci V_{sync} int (tj. 14 řádků, 896 μ s při $T_H = 64 \mu$ s po začátku vybíjení). Fáze zpětného běhu V je závislá na skončení V_{sync int}, jehož poloha je závislá na vnitřním taktu děliče V. V_{sync ext} určuje pouze to, při kterém taktovacím impulsu dochází ke změnám. Protože taktovací impulsy jsou odvozeny z referenčního signálu H_{ref1}, je při zasynchronizovaném obvodu zajištěno dokonalé prokládání obou půlsnímků podle prokládání řádků. Naproti tomu při zpracování nenormovaných televizních signálů následuje po ATF ihned snímkový synchronizační impuls (prodloužený nebo dvojnásobný) a zpětný běh V začíná v okamžiku, kdy $U_2 = U_{SV}$, tj. po skončeném vybíjení. Tak lze dosáhnout i při nenormovaných televizních signálech uspokojivého rastru na obrazovce. (Nenormované televizní signály vznikají např. při trikovém přehrávání z VČR). Dolní úroveň pilovitého signálu V je dána vnitřní úrovní U_{SV} a horní úroveň "pily" na vývodu 2 IO₁ je závislá na časové konstantě $t_V = C_{18}R_{14}$, napájecím napětí a na f_V . Závislost snímkové "pily" na napájecím napětí lze využít ke kompenzaci vlivu kolísání vysokého napětí na výšku obrazu. Amplitudu snímkové "pily" lze nastavit R₁₄. Při vhodném napájecím napětí je lineární zvětšování "pily" požadovaně zkresleno po-mocí kmitočtově závislé zpětní vazby z vnějšího obvodu – tím je dosaženo požadovaného průběhu S proudu vychylovácími cívkami V (VVC). Signál je zkreslován v násobiči, na jehož jeden vstup je při $f_V = 60 \text{ Hz}$ přivedeno 100 % a při $f_V = 50 \text{ Hz}$ 83 % pilovitého napětí a na druhý vstup jen jeho malá část. Násobením obou vstupních signálů dostá-

signálu, jejíž velikost je závislá na vnitřním děliči napětí. Nelineární náběh "pily" přesně definován a je kmitočtově nezávislý. Změna f_V se na vývodu $2 \, \text{IO}_1$ projeví jako změna amplitudy "pily". Aby řídicí napětí pro snímkový koncový stupeň, které určuje výšku obrazu, bylo nezávislé na fv, je signálem 50 Hz/60 Hz automaticky přepínáno zesílení násobiče, takže při obou fv bude na výstupu násobiče stejná amplituda výstupního napětí. Korigovaným napětím je buzen výstupní stupeň v IO1, sestavený z rozdílového zesilovače a emitorového sledovače. Na jeden vstup rożdílového zesilovače (neinvertující) je přiveden amplitudově upravený snímkový pilovitý signál a na invertující vstup přes vývod 4 IO1 zpětnovazební signál z vnějšího koncového stupně V. Výstupní signál z rozdílového zesilovače je přes emitorový sledovač a vývod 3 IO₁ veden přes R₃₆ na vstup koncového stupně V. R₃₆ zajištuje stabilitu výstupního stupně.

Výstupní proud koncového stupně V teče přes vychylovací cívky VVC, C₃₂ a R₃₄ na zem. Proud VVC musí být lineárně proměnný s časem a při průchodu nulou musí mít proloženou symetrickou korekci S, která je závislá na typu obrazovky. Požadovaný vy-chylovací proud s korekcí S lze získat zavedením zpětné vazby ve snímkovém výstupním a koncovém stupni a to tak, že se z obou konců C32 odebírá napětí, které přes vývod 4 IO1 zavedeme na invertující vstup výstupního stupně v IO₁. Zpětnovazební napětí na vývodu 4 IO₁ je tvořeno dvěma složkami, z nichž první je úměrná snímkovému vychvlovacímu proudu, tedy úbytku na R₃₄, takže koncový stupeň V pracuje jako převodník napětí-proud. Druhá, menší složka, je úměrná integrálu napětí na C₃₂. Toto napětí má parabolický průběh. Integrál obsahuje složky, které zakřivením a fází odpovídají požadované korekci S. Člen RC ve zpětnovazebném obvodu je sestaven z integračního a odporového sčítacího obvodu a jeho správným návrhem lze dosáhnout toho, že nemusíme upravovat charakteristiku vychylovacího proudu V. Zpětnovazební obvod na obr. 1 je

tvořen $R_{34}R_{35}R_{37}R_{39}R_{40}R_{41}C_{33}$. Ve vychylovacím obvodu V jsou i kontrolní obvody. Dva paralelně pracující komparátory určují, je-li napětí na vývodu $4 IO_1$ menší než referenční úroveň U_{S1} , nebo je větší než referenční úroveň U_{S2} , která je vyšší než U_{S1} . Pokud U_4 není v rozsahu U_{S1} až U_{S2} , generuje kontrolní obvod proud, který se přičítá ke "snímkové" části signálu SCI, který zatemní obrazovku – tak je zabráněno jejímu zničení při výpadku snímkového rozkladu

Generátor klíčovacího imupisu a SCI. Pro svou funkci potřebuje IO1 vnitřní impulsy. které jsou odvozeny z H_{osc} a H_{ref2} v generátoru klíčovacího impulsu. V něm je generován klíčovací impuls T pro klíčovací FD1 při slabých vstupních signálech a pro koincidenční detektor k určení k určení stavu synchronizace RO₁. Klíčovací impuls trvá 5,7 μs (řádkový synchronizační impuls pouze 4,7 μ s) a je symetrický podle sestupné hrany H_{ref1} . Kromě toho generuje generátor klíčovacího impulsu burstový vyklíčovací impuls BT, který je potřebný pro generátor SCI. BT trvá při = 50 Hz 4 μs a při f_V = 60 Hz 3,5 μs. Šířka BT se přepíná v generátoru klíčovacího impulsu signálem ze snímkové synchronizace 50 Hz/60 Hz. Náběžná hrana BT je časově vázána na sestupnou hranu Href2.

Pro vytvoření SCI, používaného v dekodéru barev a při zpracování videosignálů je použit generátor SCI, v němž je ze zpětného běhu H, přiváděného z koncového stupně H přes R₃₁ a vývod *27* IO₁, omezovačem vytvořen vyklíčovací impuls H (HVI). R₃₁ musí být navržen tak, aby jím během impulsu zpětného běhu H_{2b} tekl do vývodu *27* IO₁ proud 0,1 až 2 mA. HVI trvá 12 μs a je

symetrický vůči H_{zb} . Poloha HVI není přímo svázána s řádkovým synchronizačním impulsem, nýbrž s H_{zb} . Nepřímo je tedy HVI při zasynchronizování obvodu přes RO_2 časově svázán se synchronizačním impulsem H, protože střed H_{zb} je o 2,85 μ s zpožděn za středem synchronizačního impulsu H. Aby byl dodržen tento odstup, je vnitřní HVI v FD_2 porovnáván fázově s H_{ret} . V generátoru SCI je vytvořen signál SCI z burstového a řádkového vyklíčovacího impulsu a složeného impulsu V; klíčovací burstový impuls má úroveň 10,6 V, HVI 4,5 V a složený impuls V (VVI + ATF) 2,5 V. Část V signálu SCI je jeho trvalou součástí, pokud je U_4 menší než U_{S1} anebo větší než U_{S2} a pokud kontrolní obvod V nedodává proud do generátoru SCI. Vývod 27 IO_1 je výstupem SCI a vstupem H_{zb} .

Nastavení IO₁

Vývody 7 a 11 propojíme a přivedeme napětí +12 V. Do spoje R_{14} , R_{43} připojíme napětí +26 V. Na vývodu 23 IO $_1$ nastavíme R_{27} kmitočet 15 625 Hz. Při příjmu televizního signálu odpojíme R_{25} , nebo připojíme +12 V na vývod 25 a R_{27} nastavíme stojící nebo pomalu se posouvající obraz. Cívku L_4 nastavíme na 38 MHz a napětí na vývodu 18 na polovinu napájecího napětí (6 V). R_{16} na vývodu 1 IO $_1$ nastavíme bod nasazení AVC kanálového voliče. Ke změně napětí na vývodu 1 IO $_1$ dochází při 1 mV na vstupu kanálového voliče. Dále Ize nastavit výšku obrazu změnou R_{35} , změnou R_{39} rovnoměrnou vzdálenost vodorovných linek na obrazovce. Horizontální polohu obrazu nastavíme R_{38} .

Doporučení pro návrh plošných spojů

Návrh plošných spojů je důležitý zejména v oblasti IO₁, protože na malém prostoru je v IO1 sdruženo mnoho funkcí. Při nevhodném návrhu mohou nastat galvanické, kapacitní a indukční nežádoucí vazby; galvanické vazby mohou nastat úbytkem napětí v zemních vodičích. Aby bylo zabráněno infiltraci videosignálu do synchronizace H, má IO₁ dva vývody země; vývod 6 je uvažován jako všeobecná zem a vývod 16 slouží k uzemnění obvodů synchronizace H, neboť ta je citlivá na vazby rušících signálů. Blokovací a filtrační kondenzátory musí být jednou stranou co nejblíže k danému vývodu a druhou stranou co nejkratší cestou spojeny s příslušnou zemí. Je účelné, aby vnější bloky měly oddělené přívody zemí, které se spojují do zemnicího vodiče mezi vývody 6 a 16 IO1. Příklad provedení signálové části TVP je na obr. 3, kde je pro každou důležitou funkční jednotku TVP ve struktuře země použit zvláštní "prst" a všechny prsty se sbíhají do širokého zemnicího pásu mezi vývody 6 a 16 IO1. Další "prst" pro zemnění obvodů svnchronizace H se s ostatními prsty stýká už v vývodu 16 IO1. Tímto způsobem jsou vyloučény galvanické vazby jednotli-vých funkčních bloků přes země.

Aby byly vyloučeny nežádoucí indukční vazby, jejichž příčinou jsou magnetická pole, je třeba proudové smyčky tvořené signálovými a zpětnými zemními vodiči navrhnout tak, aby byly omezeny na minimum uzavřené plochy a volit vhodnou polohu řádkového transformátoru vůči ostatním funkčním blokům. U IO2 se nejvíce uplatní vnější vychylovací obvod, který by měl být prostorově co nejmenší s co nejširšími vodiči. Kapacitní vazby lze omezit vhodným návrhem vedení vodičů a vzdálenostmi mezi vodiči, které volíme co největší, nebo mezi takové vodiče proložíme zem, napájení nebo vodič s určitým potenciálem vůči zemi.

Parametry IO₁ jsou uvedeny v tab. 1, průběhy jednotlivých signálů jsou na obr. 1.

váme výstupní signál s kvadratickou částí

Parametr	Min.	Jmen.	Max.
Napájecí napětí U ₇ V	9,5	12	13,2
Napájecí proud I ₇ [mA]		100	140
Napájecí napětí U ₁₁ [V]	1 1	9,5	
Napájecí proud / ₁₁ [mA]	60	6 100	140
Vstupní citlivost $U_{8-9} [\mu V]$ Vstupní kapacita $C_{8-9} [pF]$	60	5	140
Rozsah AVC dB	56	60	
Změna výst. napětí [dB] při změně			ŀ
vstupního napětí o 50 dB		1	
Maximální vstupní napětí U ₈₋₉ [mV]	50	100	1
Ss výstupní napětí $U_{17}[V]$		3,7	
Mv úroveň synchron. impulsu $U_{17}[V]$		1,5	
Proud výst. emitorového sledovače [mA] Šířka pásma výst. demodul. signálu [MHz]	5	6	
Diferenciální zisk %	1 3	5	10
Diferenciální fáze %	1	5	10
Nelinearita videosignálu %	1		10
Mv výstupní signál V	1	2	
Intermodulace [dB] na 1,1 MHz – modrá	55	60	
– žlutá	50	54	1
na 3,3 MHz – modrá	60	66	1
– žlutá	55	59	1
Poměr signál/šum při $U_{8-9} = 10 \text{ mV } [dB]$ na konci rozsahu AVC	50 50	54 56	1
Zbytek nosné mV	1 30	7	30
Zbytek druhé harm. nosné [mV]	ı	3	30
Vstupní mv signál (pro $U_{\text{výst}} = 2,5 \text{ V}$), $U_{12} [V]$	į	1	
Vstupní impedance Z_{12} $ M\Omega $		0,5	1
Úroveň klíčovaných synchr. impulsů [V]	1	4	1
Výstupní signál <i>U</i> ₁₄ [V]	1	2,5	
Uroveň synchr. impulsů $U_{14}[V]$	-	3	1
Výstupní impedance $Z_{14}[\Omega]$	1	100	
Amplituda vst. signálu U_{15} [V] Vstupní impedance Z_{15} [M Ω]	ì	0,5	1
Úroveň klíč. synchr. impulsů [V]		5	1
Spínací napětí pro vnější signál, <i>U</i> ₁₅ V	1	10	12
Min. ef. úroveň pro nasazení AVC v KV mV	- 1	1	0,2
Max. ef. úroveň pro nasazení AVC v KV mV	50	100	
Max. výstupní proud pro AVC v KV, I ₅ [mA]	2	3	
Výst. satur. napětí při l ₅ = 2 mA [V]		ı	0,3
Svodový proud / ₅ [μΑ]	į.	1	1
Minimální napětí U ₁ [V]		1	11
Rozkmit napětí ADK, d <i>U</i> ₁₈ [V]	10	1 4	11
Užitečný výstupní proud I ₁₈ [mA]	20	±1 40	80
Strmost řízení ADK [mV/kHz] Refer. výstupní napětí <i>U</i> ₁₈ [V]	20	6	1 80
Užit. amplit. synchr. impulsů při	- 1	"	
$R_{14-25} = 1.8 \text{ k}\Omega \text{ V }$	0,2	5 0,75	
Výstupní proud při U ₂₅ >5 V, I ₂₅ [μΑ]		10	1
Rozsah držení PLL [kHz]		±1,1	±1,
Rozsah zachycení PLL [kHz]	İ	±0,6	6 ±1
Řízení citliv. VCO ₁ [kHz/µs] při:	- 1		
slabém signálu	- 1	2	
silném signálu během hledání	- 1	3 6	1
během zpětn. běhu V a během držení Řízení citlivosti RO2, d _d /t _o	-	50	
Rozsah řízení [us]	- [25	
Řízená hrana	1 +	dadná	
Řízení citlivosti μΑ/μs		25	1
Max. přístupný posuv fáze [μs]	-	±2	1
Volnoběžný kmitočet VCO ₁ (C = 2,7 nF), $f_{\rm osc}$ [kHz]	-	15,62	5
Roztyl kmitočtu v závislosti na			1
vnějších součástkách [%]	- 1	4	-
Změna f _{osc} při <i>U</i> ₇ = 9,5 až 13,2 V [%]	0	0,5	٨
Teplotní součinitel f _{osc} [1/°C]		10-	
Maximální posuv f _{osc} [%] Max. zdvih f _{osc} při startu (na výst. H) [%]		1	10
Wax. 20011 I_{osc} pri stantu (na vyst. H) [76] Výstupní napětí úrovně H, U_{26} V			13,
Výstupní napětí $U_{26} V $ při zapoj. ochraně		13,2	
Výstupní napětí L při $I_{26} = 10 \text{ mA}, U_{26} V $		0,1	
Pracovní cyklus výst. napětí H při			1
$t_{\rm p}=10~\mu {\rm s}$		0,4	5
Doba náběhu výstupního impulsu, t, ns		300	
Doba doběhu výstupního impulsu, t [ns]		120	
Požadovaný I ₂₇ během zpětn. běhu H [mA]	0,		2
Výstupní napětí během burstu, $U_{27}[V]$	8		
Výstupní napětí U ₂₇ [V] při zatemnění H	4	.,.	
při zatemnění V	2,	1 2,5	2,
	- 1		. .
Sířka impulsu při burstu, t _W [μs]	۱ ۸	4 105	
při $f_V = 50 \text{ Hz}$	3,	1	
	3, 3,	1	3,

1				
při 60 Hz	17 ř	ádků	. 1	
v úzkém okénku při 50 Hz	25 ř	ádků		
při 60 Hz	21 ř	ádek		
Zpoždění mezi začátkem synchr. impulsu na			1	i
videovýstupu a nást. hranou burstu µs		5,2		
Napětí v zasynchr. stavu, $U_{22} V $		9,5		
				l
Napětí v nezasynchr. stavu, $U_{22}[V]$		1		
Úroveň pro sepnutí FD ₁ z "pomalu"		l i	-	ı
na "rychle", <i>U</i> ₂₂ [V]	4,9	5,3	5,8	l
Úroveň pro aktivaci umlčení (MUTE), U22 V	2.25	2,5	2,75	ı
Nabíjecí mv proud v zasynchr. stavu, l22 mA	0.7	Ιi		l
Napětí pro vypnutí ADK, $U_{22} V $	J *,,	10,5	l	l
Výstupní napětí při / ₁₃ = 1 mA (nesyn.),	Į.	1.0,0		l
$U_{13} V $	0.3	0,5	l	ł
	0,3	0,5	ا ـ ا	l
Výstupní proud I ₁₃ [mA] (nesyn.)			5	ı
Výstupní proud I ₁₃ [μΑ] (synchr.)	1	i	1	l
Výstupní napětí při identifikaci 50/60 Hz,		l	l	١
U ₁₃ V	i	12/6	1	ı
Vstupní proud během vyhledání, I ₂ μΑ	1	1	2	Į
Vybíjecí proud během zpětného běhu V, I2 mA	0,4		1	ŀ
Amplituda pily mv, $U_2 V $	1 -, .	0.9	1,2	۱
Výstupní proud / ₃ mA		0,5	10	l
	ì		١'٠	۱
Výstupní napětí při $I_3 = 1,5 \text{ mA}, U_3 \text{ [V]}$	1	5,7	l	l
Ss vstupní napětí <i>U</i> ₄ [V]	1	3	1	ļ
Střídavé mv vstupní napětí <i>U</i> ₄ [V]	1	1,2	l	İ
Vstupní proud /₄ [μΑ]	1	1	12	١
Vnitřní předkorekce pily %	1	6		I
Odchylka amplitudy 50/60 Hz, dU4 %]	1	1	5	I
	-	ــــــــــــــــــــــــــــــــــــــ	Ь	1
Ochrana V na vývodu 4 je aktivní při $U_{27} = 2,5$ V a od	lchvice			ı
ss zpětné vazby:	_ ,			1
sepnuta úroveň L	$U_4 = \frac{1}{2}$	12V		ı
H	$U_{\Delta} = 2$			
***	U4 - 1	_ v		1

V tabulce znamenají indexy u jednotlivých veličin čísla vývodů, pokud není v indexu číslo oddělené pomlčkou, měří se vždy proti vývodu 6 IO. IO je v pouzdře DIL-28.

Tab. 2. Parametry TDA3654 Obvod je v pouzdře SOT-131.

Tab. 2. Parametry 1DA3694 Obvod je v pouzdre SO1-131.				
Parametr	Min.	Jmen.	Max.	
Mezní výstupní napětí <i>U</i> ₅ [V]	×-		60	
Mezní napájecí napětí <i>U</i> ₉ V			40	
Napájecí napětí koncového stupně, U ₆ V	-		60	
Mezní vstupní napětí $U_1 \mid V$			U ₉	
Vstupní napětí spínacího stupně $U_3 [V]$		i	U ₉	
Vnější napětí na vývodu <i>7, U</i> ₇ [V]		l	5,6	
Opakovatelný špičkový mv proud výst. I ₅ A		±1,5		
Neopakovatelný špičk. mv výst. proud, 15 A		±3		
Opakov, mv výst. proud generátoru zp. běhu,				
<i>I</i> ₈ [A]		+1,5		
		-1,6		
Neopakov. my výst. proud generátoru zp.				
běhu, / ₈ [A]		±3		
Provozni údaje při $U_9 = 26 \text{ V (spojeny vývody } 1, 3$	0 2	_	L	
Napájecí napěti <i>U</i> ₉ V	1 10	"	T 40	
Napájecí napětí konc. stupně, <i>U</i> ₆ [V]		1	60	
Napájecí proud $I_6 + I_9 mA $	35	55	85	
Klidový proud I ₄ [mA]	25		64	
Teplotní součinitel /4 (mA/K)		-0,4	ı İ	
Výstupní mv proud I ₅ A	ı	2,5	3	
Výstupní mv proud gener: zpět. běhu, l ₈ [A]		1,25	1,5	
- I ₈ A	1	1,35	1,6	
Výstupní napětí během zpět. běhu, <i>U</i> ₅ [V]	1	1	60	
Saturační napětí při $I_5 = -1,5$ A, $U_{8-5}[V]$		2,5	3,2	
$I_5 = 1,5 \text{ A}$	Ì	2,5	3,2	
$l_5 = 1,2 \text{ A}$		2,3	2,8	
$I_5 = -1.2 \text{ A}$	1	2,2	2,7	
$I_5 = 1.2 \text{ A}, \ U_{5-4} [V]$	1	2,2	2,7	
$I_5 = 1.5 \text{ A}$		2,5	3,2	
$I_8 = -1.6 \text{ A}, U_{9-8} [V]$	1	1,6	2,1	
$I_8 = 1.5 \text{ A}, U_{8-9} [V]$	1	2,3		
$I_8 = -1.3 \text{ A}, U_{9-8} [V]$		1,4	1 '	
$I_8 = 1,2 \text{ A}, \ U_{8-9} \ V $ Svodový proud $-I_8 \ \mu A $	ļ	5	100	
Aktivace gen. zpětného běhu, $U_{5-9}[V]$	14	١٠	1,00	
Vstupní proud při I ₅ = 1,5 A, I ₁ mA	"	0,33	0,56	
Vstupní napětí při rozkladu, U_1 [V]	ĺ	2,35		
Vstupní proud při rozkladu, l ₃ mA	0,0			
Vstupní napětí při rozkladu, U ₃ V	0,8	1	U _o	
Vstupní napětí při zpět. běhu, U_1 , U_3 [V]		-	0,25	
Výstupní napětí při $R_z = 100 \text{ k}\Omega$, $U_7 V $	4,1	4,5		
$I_{z} = 0.5 \text{ mA}, \ U_{7} V $	3,4	ا 3,9	5,3	
Vnitřní sériový odpor na vývodu 7, R ₇ kΩ	0,9	5 1,35	5 1,7	
Ochranný obvod aktivován při U ₈ [V]			1	
Zesílení bez zpětné vazby při 1 kHz	1	33		
Kmitočtová charakteristika pro -3 dB [kHz]	1	60		

Snímkový koncový stupeň TDA3654

IO TDA3654 je koncový stupeň V, jehož blokové zapojení je na obr. 4, který je určen pro buzení vertikálních vychylovacích cívek (VVC) s úhlem vychylování 110°. Je sestaven z generátoru zpětného běhu, budiče a koncového obvodu, ochranného obvodu proti tepelnému přetížení a bezpečnému provozu (SOAR), obvodu kontroly funkce vychylování, stabilizátoru napětí a zdroje proudu. Koncový stupeň je sestaven ze dvou stupňů v Darlingtonově zapojení, z nichž každý dodává maximální proud 1,5 A a jejich $U_{CEO} = 60 \text{ V. Ochranný obvod výstupního}$ stupně zajišťuje provoz koncových tranzistorů v oblasti bezpečného provozu (SOAR) při všech stavech na výstupu (vývod 5 IO2) pomocí spolupráce s vnitřní tepelnou ochranou, detektorem proud-napětí a protizkratovým ochranným obvodem. Koncový stupeň je napájen přes vývody 6 a 4 IO2. Vstup budiče koncového stupně (vývod 1 IO2) je napájen signálem z IO₁ přes R₃₆ a propojen se vstupem spínacího obvodu na vývodu *3*, který odpojuje dolní koncový stupeň na počátku zpětného běhu, čímž je umožněn rychlý náběh generátoru zpětného běhu. Pro maximální mezivrcholový výstupní proud 3 A je vstupní signál maximálně 3 V a proud do vývodů 1 a 3 IO2 je maximálně 1 mA. Během zpětného běhu se nabíjí C₃₅ na úroveň danou R42. Generátor zpětného běhu se aktivuje na začátku zpětného běhu, pokud výstupní napětí na vývodu 5 lO2 bude větší než napětí napájecí. Během periody zpětného běhu je napájecí napětí zapojeno přes vývod 8 lO₂ do série s napětím na C₃₅, takže během zpětného běhu se napájecí napětí zmenší na požadované napětí zpětného běhu plus saturační napětí výstupních tranzistorů. Amplitudu napětí zpětného běhu lze nastavit R₄₂, jehož odpor musíme volit tak, aby během normálního provozu bylo na vývodu 8 IO₂ minimálně 1,5 V. Pokud vychylovací proud nemá danou úroveň a napětí na vývodu 8 IO₂ je menší než 1 V, ochranný obvod generuje na vývod 7 IO₂ ss napětí, které může být použito ke zhášení obrazovky, aby se nevypálilo stínítko. Pro napájení budiče koncového stupně je vnitřním stabilizátorem stabilizováno napájecí napětí na 6 V, takže budicí proud se nemění i při kolísání napájecího napětí.

Snímkový výstupní stupeň v IO1 tvoří spolu s IO2 a vychylovacím obvodem V převodník napětí-proud, v němž je k převodu napětí-proud využito zpětné vazby do vývodu 4 IO1. Kombinací "odporového" a kmitočtově závislého zpětnovazebního signálu je možné tvarovat proud VVC tak, že vychylování V na obrazovce bude probíhat lineárně s časem. Z obr. 1 je zřejmá souvislost koncového stupně V s vnější zpětnou vazbou a generátorem "pily" V, proto je účelné popsat si funkci řídicího obvodu V spolu s koncovým stupněm V. Generátor "pily" dodává "pilu" lineárního průběhu s časem. Aby toto bylo dosaženo, je napájecí napětí 26 V připojené na vývod 2 IO₁ přes R₁₄ a filtrované C₁₈ voleno podstatně větší, než je amplituda "pily" V na C_{18} ($U_{2-16} = 0.9$ V). Snímkové vychylování je úměrné proudu LVC vychylovacími cívkami, který je úměrný napětí "pily" na vývodu 2 IO₁. Snímkové vychylování je však také nepřímo úměrné části urychlovacího napětí Uurn obrazovky. Pro odchylku s na obrazovce platí: s~l_{VVC}: √U_{um}. Pokud má být výška obrazu při změnách urychlovacího napětí, tj. při změnách proudu paprsku obrazovky konstantní, je

nutné požadovaně měnit I_{VVC} a napětí "pily" na vývodu $2\,IO_1$. V prvním přiblížení musí být pro dosažení konstantní výšky obrazu splněny tyto podmínky:

 $dV_{VVC}:V_{VVC} = dU_{2-16}:U_{2-16} = dU_{urn}:U_{urn}$

Amplituda vychy lování V je především závislá na napájecím napětí $U_{\rm BV}$ generátoru "pilv".

Pro splnění výše uvedených podmínek je možné na C₁₈ přivést korekční proud Ikor, který je závislý na změnách UBV na Uurn. Tvar napětí na vývodu 3 IO1 je závislý na zkreslení (6 %) pilovitého napětí generátoru V a na zpětnovazebním napětí na vývodu 4 IO₁. Na vývod 5 IO2 je připojen vychylovací obvod s paralelně zapojenými vychylovacími cívkami VVC, s C₃₂ a s R₃₄, R₃₈C₃₀ slouží k potla-čení pronikajících "řádků" do snímkového vychylování a C33 je potřebný k tomu, aby při nesymetrickém napájecím napětí UBV bylo bez dalších úprav dosaženo symetrického vychylovacího proudu. Z R₃₄ je odebíráno kmitočtově nezávislé zpětnovazební napětí úrovně IVVC, jeho amplitudu (a tím i výšku obrazu) můžeme nastavit R35. Kmitočtově nezávislá zpětná vazba je z běžce R₃₅ přes R₃₇ vedena na vývod 4 IO₁. Kmitočtově závislá část zpětnovazebního signálu, snímaná ze spoje C₃₂ a VVC, je tvarována R₃₉R₄₀R₃₃, kde napětí na C₃₃ je úměrné dvojí integraci l_{VVC} a má tvar S-křivky potřebné pro korekci S. Při první integraci je I_{VVC} zintegrován na C₃₂ a dolní propustí je ukončena integrace na C₃₂.

Abychom vyloučili zkreslení v IO1 a mohli nastavit linearitu vychylování V, je kmitočtově závislá část zpětnovazebního napětí přivedena na C₃₃ přes R₃₉ a přes R₄₁ je přičtena ke kmitočtově nezávislé části zpětnovazebního napětí. Změnou R₃₉ můžeme měnit fázi a tvar kmitočtově závislé části zpětnovazebního napětí a tak měnit linearitu vychylování V. Mezi vývody 6 a 8 lO2 je zapojén "zvyšovací" kondenzátor C₃₅ v obvodu generátoru zpětného běhu. Pro zvětšení činného napájecího napětí koncového stupně V je napětí na C₃₅ v době zpětného běhu přičteno k napájecímu napětí U_{9-2} . Tím je umožněno dosáhnout při poměrně malém napájecím napětí $U_{\rm BV}$ (zde 26 V) a malých ztrátách ${\rm IO_2}$ dostatečně krátkého zpětného běhu V. Koncový stupeň V je během zpětného běhu přes D_1 připojen na napětí U_{9-2} a nabíjí se C_{35} . Napětí U_{BV} je na vývod $9\,IO_2$ přivedeno přes R₄₃ a filtrováno C₃₄

Deska s plošnými spoji pro IO₂ je na obr. 5 a v tab. 2 jsou uvedeny jeho parametry.

Zvukový kanál stereofonního BTVP

Zvukový kanál stereofonního BTVP na obr. 1 je sestaven z IO_3 – obvodu pro zpracování kvaziparalelního zvuku, z IO_4 – obvodu pro zpracování mezinosného signálu 5,74 MHz nebo 6,26 MHz, IO_5 – obvodu pro zpracování stereofonního signálu, IO_6 – obvodu pro úpravu stereofonního signálu a IO_{201} , IO_{202} – nf výkonových zesilovačů.

Obvod pro kvaziparalelní zpracování zvuku, MDA4281V

Z druhé sekce filtru F_1 jsou zvuková nosná 32,5 MHz nebo 31,5 MHz a nosná obrazu 38,0 MHz stejné úrovně přes C_{38} a C_{39} přivedeny na vstup 1. mf zesilovače v IO_3 (obr. 6). Prvním mf zesilovačem v IO_3 je třístupňový širokopásmový rozdílový zesilovač, u něhož první dva stupně jsou řízeny AVC. Na výstup třetího stupně 1. mf zesilovače je připojen jeden vstup synchrodetektoru a na jeho druhý vstup je připojen obvod referenčního signálu 38 MHz – L_5C_{55} . Nesymetrický výstupní signál 5,5 MHz nebo 6,5 MHz je přes emito-

rový sledovač vyveden na vývody 6 a $7\, {\rm IO_3}$. Dva vývody mezinosného signálu umožňují připojit ${\rm IO_4}$, který zpracovává signály mezinosných kmitočtů 5,74 MHz nebo 6,26 MHz při stereofonním nebo dvoujazyčném vysílání. Napětí AVC pro první stupně 1. mf zesilovače v ${\rm IO_3}$ je odebíráno z detektoru, který je připojen na třetí stupeň 1. mf zesilovače v ${\rm IO_3}$, filtrováno ${\rm C_{57}}$ na vývodu $2\, {\rm IO_3}$ a zesíleno. Signál z vývodu $7\, {\rm IO_3}$ je přes ${\rm F_3}$ nebo ${\rm F_4}$ přiveden na vstup (vývod $10\, {\rm IO_3}$) druhého mf zesilovače, tvořeného 8stupňovým omezujícím zesilovačem.

Z jeho výstupu je signál veden na jeden vstup koincidenčního detektoru a na jeho druhý vstup jsou připojeny fázovací obvody L_6C_{43} (pro 5,5 MHz), L_7C_{42} (pro 6,5 MHz), C₄₄, C₄₅, R₄₉; C₄₁ je deemfáze pro první zvuk. Výstupní signál z detektoru je veden do nf zesilovače a obvodu VCR. Výstup nf signálu z IO3 je na vývodu 11 a na vývodu 14 je vstup/výstup nf signálu z VCR. Napětím přes R₅₁, přivedeném na vývod 8 IO₃, je možné obvod přepnout na provoz VCR. Z vývodu 6 IO3 je signál 5,74 MHz přes F5R52 nebo signál 6,26 MHz přes filtr soustředěné selektivity $L_8C_{49}C_{50}C_{51}$, $L_9C_{52}C_{53}$ a $L_{10}C_{54}$ veden na vstup druhého mf zesilovače v IO_4 a z jeho výstupu na jeden vstup koincidenčního detektoru, jež má na druhý vstup připojeny fázovací obvody L11C63 (6,26 MHz), C₆₄ (5,74 MHz), C₁₆C₆₂C₆₅R₅₇. Na vývod 19 IO₄ je připojena deemfáze (C₆₆, jehož kapacita musí být volena tak, aby byl potlačen zbytek signálu mezinosného kmitočtu, ale nebyla potlačena pomocná nosná 54 kHz). Při VCR je druhý mf zesilovač v IO₄

Obr. 6. Blokové zapojení MDA4281V

odpojen napětím na vývodu $8~IO_4$ přiváděným přes R_{56} ; 1. mf zesilovač v IO_4 je výřazen z funkce napětím přes R_{54} . Z vývodu $11~IO_4$ je signál veden do IO_5 .

Příklad desky s plošnými spoji je na obr. 3 a parametry IO₃ a IO₄ jsou v tab. 3.

Stereofonní dekodér TDA6600

 IO_5 (obr. 7) je sestaven z matice, dekodérů pilotního signálu a identifikačních signálů pro dvoukanálový televizní zvuk. Dekodéry je řízena matice, v níž jsou od sebe odděleny pravý a levý kanál při stereofonním vysílání a kanál 1 a kanál 2 při dvoujazyčném doprovodu (duo). Použitím smyček PLL pro identifikační kmitočty 117 Hz (stereo) nebo 274 Hz (duo) je zlepšena spolehlivost funkce a rychlost přepínání. IO_5 umožňuje nastavit šířku pásma při stereo (přes vývody 14 a 15) a při duo (vývody 17 a 18), nezávisle nastavit časové konstatny smyček PLL při stereo (přes vývod 10)

Tab. 3. Parametry MDA4281V

Parametr	Min.	Jmen.	Max.
Mezní napájecí napětí $U_5 \left[V \right]$			15
Provozní údaje pro $U_5 = 12 \text{ V}$	*		
Napájecí proud /5 mA			80
Rozsah AVC 1. mf. zesil. při f = 35 MHz [dB]	i	55	
Vstupní napětí pro omezení, U ₁₀ [μV]	l	60	80
Výstupní nf napětí, $U_{14}[V]$		0,6	
U ₁₁ [V]	0,26		
Potlačení AM na vývodu 11 dB		42	1
Přeslech CT ₁₄₋₁₁ dB	50		i _
Napětí AVC, U ₂ [V]	0		5
Vstupní odpor synchrodetektoru, R ₃₋₄ [kΩ]		10	İ
Vstupní impedance Z_{22-23} [k Ω /pF]		1,8/2	
Výstupní odpor $R_6[\Omega]$	1	500	1
$R_7[\Omega]$		50	
Vstupní impedance $Z_{10}[\Omega]$		800	
Vstupní odpor demodulátoru R ₁₇₋₁₈ kΩ		5,4	l
Odstup signál/šum při $U_{10} = 10 \text{ mV } [dB]$		85	۔ ا
Vstupní odpor pro záznam na VCR, R_{14} Ω přehrávání, R_{14} $\kappa\Omega$			500
Odpor pro deemfázi, $R_{19} k\Omega $	- 1	10	
Rozsah napájecího napětí U ₅ [V]	11	12	15
Rozsah spinaciho proudu, Ia mA	0,3	1	1
Kmitočtový rozsah 1. mf zesilovače MHz	10	ł	60
2. mf zesilovače MHz	0,01	l	12

Tab. 4. Parametry TDA6600

Parametr	Min.	Jmen.	Max.
Mezní napájecí napětí $U_{12} V $	-0,5		16,5
Vstupní mezní napětí impulsu zpětn.	1		•
běhu H, <i>U</i> ₁₃ [V]	- U ₁₂		+U ₁₂
na vstupu 54 kHz, $U_{20}\left[V\right]$	-0,5		+ U ₁₂
na vstupu MUTE, <i>U</i> ₄ [V]	-0,5	1	+ U ₁₂
na nf vstupu, U_{21} , U_{23} $ V $	-0,5		+U ₁₂
na vstupu nast. přeslechu, U ₂₄ [V]	-0,5		+ U ₁₂
Výstupní napětí na deemfázi L, P, U_3 , $U_5 V $	-0,5	1	+ U ₁₂
na vývodu 7 a 22, U ₇ , U ₂₂ V	-0,5	1	+ U ₁₂
referenční napětí, U ₁₈ V	1	1	8
demodulátorů, U_{14} , U_{15} $ V $	-0,5		$+U_{12}^{-2}$
$U_{17}, U_{18} V $	-0,5	Į.	+ U ₁₂ -2
Výstupní proud na výstupech L, P, I2, I6 [mA]	-4		4
na integrátorech, l ₈ , l ₉ mA	1 -1		1
na filtrech PLL, I10, I11 mA	-1	1	
refer. napětí, I ₁₆ mA	-4 -1 -1 -4 -4	İ	4
filtru 54 kHz, I ₁₉ mA	-4	1	4
Rozsah napájecího napětí U ₁₂ [V]		10	15,8
Provozní údaje při $U_{12} = 12 \text{ V}, f_{\text{vst}} = 1 \text{ kHz}$			
Napájecí proud [mA]		36	50
Ref. napětí a napětí na vývodu 22, U_{16} , $U_{22} V $	5,4	6	6,6
Max. vstupní napětí pro $k = 2 \%$, U_{21} , $U_{23} V $	2	1	"

a potlačit poruchy při stereo (přes vývod 9) a při duo (přes vývod 8). Přeslechy mezi kanály isou nezávislé na tolerancích součástek a lze je nastavit ss napětím na vývodu 24. takže je možné IO5 použít i ve VCR, pokud smyčky PLL budou synchronizovány kmitočtem 15 625 Hz.

Dekodér je sestaven ze dvou obvodů PLL, čtyř směšovačů a obvodu vyhodnocení, kde smyčky PLL slouží k získání porovnávacích kmítočtů 54,96 MHz a 54,8 kHz. Fázové detektory smyček PLL mají pásmo zachycení 117 Hz nebo 275 Hz. Čtyři směšovače vyhodnocují signál pilotního kmitočtu 54 kHz, kondenzátory C₇₉, C₈₀, C₈₁ a C₈₂ určují šířku pásma identifikačních signálů a tím i odstup

Výstupní úrovní čtyř směšovačů je řízen obvod pro vyhodnočení stereo nebo duo nebo mono. Aby byla zlepšena odolnost proti rušení při zašumněném vstupním signálu, jsou signály stereo a duo zpožděny integrátorem (vývody 8 a 9 IO5). Informace stereo nebo duo nebo mono je přivedena z vyhodnocovacího obvodu do matice a na

(3,5+1/57) fn vyhod noceni zesilovać zesilovač (3,5+1/133) f_n se zpožděným L sepnutim DI 1122 Obr. 7. Blokové zapojení MDA6600 Činitel zkreslení [%] pro $U_{\rm vst}=1$ V (ef.), k_2 , k_6 Zisk vstup/výstup [dB] pro $U_{24} = 0.5U_{16}$ n a $U_{vst} = 0.3 \text{ V (ef.)}$ Nastavení vyvážení mezi kanálem 1 a 2 dB Přeslech při mono a při $U_{23} = 0 \text{ V}$, 75 60 $U_{21} = 2 \text{ V (ef.) } |dB|$ při duo a při $U_{23} = 0 \text{ V}$ 75 $U_{21} = 2 \text{ V (ef.) } dB$ 60 při stereo a při $U_{23} = 0.5U_{21}$, $U_{21} = 2 \text{ V (ef.) } |dB|$ 30 40 Výstupní proud při $U_{24} = U_{16}$, $I_{24} \mid \mu A \mid$ Vstupní úroveň MUTE $U_4 \mid V \mid$ při H (nf zapnuto) -3 2,5 při L Vstupní proud při $U_4 = 0 \text{ V}, I_4 |\mu\text{A}|$ Cizí napětí při $U_{24} = 0.5 \ U_{16}, \ U_4 = 6 \ V \ a \ U_{21} = U_{23} = 0 \ V, \ U_2, \ U_6 \ |\mu V|$ 50 Odstup rušivých napětí pro $U_{vst} = 0.3 \text{ V}$, 69 75

difer zesilovać

stabilizátor

napětí 10₅ -MDA6600

matice

smėšovače

směšovače

±6 -15 0,7 100 $U_4 = 6 \text{ V a } U_{24} = 0,5 \text{ } U_{16} \text{ [dB]}$ Vstupní odpor $R_{21}, R_{23} \text{ [k}\Omega]$ 40 Výstupní odpor při $U_4 = 6 \text{ V}, R_2, R_6 \text{ } [\text{k}\Omega]$ 0,2 100 při $U_4 = 0 \text{ V}$, R_2 , $R_6 |k\Omega|$ deemfáze, R_3 , R_5 $|k\Omega|$ Citlivost pro přepnutí na stereo, duo, U19 [mV] 71 11 na mono mV 0.6 Vstupní mv napětí pilotního signálu, U19 [V] 700 Zpoždění signálu integrátorem, t₈, t₉ ms Výstupní proud I7 mA 1 Výstupní napětí při stereo, U7 V 5,3 3,6 2,6 3,1 při duo, U7 V při mono, U, V 1,3 1.6 0 0,6 nucené mono. Uz V Šířka impulsu při nuceném mono, t₇ [μs] 500 Vstupní napětí klíčovacího impulsu, $\dot{U}_{13} \left[\mathsf{V} \right]$ ±3,5 8 Výstupní odpor demodulátorů, R₁₄, R₁₅ |kΩ| R_{17} , R_{18} $\left[k\Omega \right]$ Výstupní odpor vstupu/výstupu 4úroveň., 15 $R_7 [k\Omega]$

IO je v pouzdře DIL-24.

vývod 7 IO₅ (výstup 4 úrovně) pro řízení IO₆. Při uzemnění vývodu 7 IO5 je informace vyhodnocena jako nucené mono. Dekodérem signálu pilotního kmitočtu je řízena matice, z níž je přes předzesilovače vyveden pravý a levý dekódovaný signál do TVP a na konéktor SCART.

Matici můžeme vyřadit signálem přivedeným na vývod 4 IO₅ (mute). Na obr. 1 je signál prvního kanálu přes C₈₇ přiveden na jeden vstup matice (vývod 23 lO₅) a druhý kanál přes C₈₆ na druhý vstup matice (vývod 21 IO₅), dále přes R₆₁C₈₄ na vstup rozdílového zesilovače (vývod 20 IO₅), který má ve zpětné vazbě zapojen obvod L₁₃C_{B3}, naladě-ný na 54 kHz. Z výstupu rozdilového zesilo-vače (vývod *19* IO₅) je signál pilotního kmi-točtu s namodulovaným identifikačním kmitočtem veden na jeden vstup čtyř směšovačů, na jejichž druhé vstupy je přiveden signál z obvodu PLL. Jako referenční signál pro obvod PLL slouží zpětný běh H, přiváděný z řádkového rozkladu přes vývod 13 IO₅. Výstupním signálem ze směšovačů je ří-

zen vyhodnocovací obvod s dvěma integrá-

tory a z jeho výstupu matice v IO5. Výstupní signály z matice jsou přes předzesilovače vedeny na vývody 2 a 6 lO₅. C₆₈ a C₇₀ určují deemfázi, C_{72} a C_{73} časovou konstantu integrátorů. $C_{74}R_{59}C_{76}$ je obvod PLL pro duo (274 Hz) a R₆₀C₇₅C₇₇ obvod PLL pro stereo (117 Hz). Na vývodu 16 je výstup vnitřního zdroje referenčního napětí a C₈₅ filtruje na-pětí U₁₂/2 potřebné pro matici. Příklad desky s plošnými spoji je na obr. 3 a parametry IO5 jsou uvedeny v tab. 4.

Obvod pro úpravu nf signálu, **TDA6200**

`IO₆ (obr. 8) je sestaven z přepínače SCART, přepínače kanál 1/kanál 2 (K1/K2), obvodu pro kvazistereo, obvodu regulace šířky stereofonní báze, obvodu pro fyziologickou regulaci hlasitosti, regulaci výšek, hloubek, převodníku D/A, zesilovače, spína-

cí logiky a stykového obvodu I2C (přes který je IO₆ řízen ze sběrnice I²C) a budiče LED. Spínací logika je řízena obousměrně přes vodič 4 úrovně (vývod 2), regulátory hlasitosti, výšek, hloubek jsou řízeny přes převodník D/A. Při provozu mono se zapojuje obvod kvazistereo a při stereofonním provozu obvod regulace šířky stereofonní báze. Fyziologická regulace hlasitosti, přepínač K1/K2 pro dvojjazyčný doprovod, výstup na SCART a indikačních svítivek je řízen ze sběrnice I2C a přes vodič 4 úrovně. Rozsah regulace hlasitosti je 80 dB, výšek a hloubek ±12 dB, přeslechy mezi kanály jsou 60 dB a odstup rušivých napětí je 78 dB.

Na vstupu IO₆ je dvoukanálový analogový přepínač pro přepínání provozu mezi TV a SCART. Následující analogový přepínač slouží k přepínání mezi kanálem 1 a kanálem 2 při dvoujazyčném vysílání; je ovládán bitem K při vysílání TV nebo při přehrávání přes SCART. Za těmito přepínači je zapojen obvod kvazistereo, který při monofonním vysílání upravuje nf signál tak, abychom získali prostorový nebo stereu podobný vjem. Tento obvod je sestaven ze dvou operačních zesilovačů v obou kanálech, z nichž jeden má zesílení trvale nastavené na -1 a druhý přepínatelné mezi -1 a zesílením, daným vnějšími součástkami. Kvazistereofonního jevu je dosaženo tím, že je přiveden na jeden vstup nf signál s normální fází a na invertující vstup týž signál přes nf pásmovou zádrž, jejíž útlum je kompenzován operačním zesilovačem. Při průchodu signálu nf pásmovou zádrží vzniká amplitudově lineární signál, který je v oblasti střed-ních kmitočtů fázově pootočen o 180°. Obvod kvazistereo lze vypnout přes sběrnici 1²C

Obvod pro regulaci korekcí a hlasitosti má v každém kanálu tři operační zesilovače s elektronickými potenciometry nebo spínači. Rozsah regulace hloubek a výšek je nastaven vnějšími kondenzátory a lze jej měnit v 31 stupni a to přes sběrnici I²C a převodník D/A. Ve stupních pro regulaci šířky stereofonní báze se při kmitočtech nad 300 Hz vytváří přeslech až 60 % a to signálem v protifázi.

Hlasitost se reguluje v 64 stupních, samostatně v každém kanálu, takže lze snadno kanály vyvážit (balance). Fyziologického průběhu je dosaženo sloučením regulace hlasitosti s regulací výšek a hloubek, kde vztažnou veličinou je nastavení hlasitosti v daném kanále. Fyziologii lze odpojit přes sběrnici I2C. Zpožďovacím obvodem je uvolněn výstupní signál tehdy, až když jsou všechna napětí tohoto bloku stabilní a nemohou vznikat rušivé šumy

Obvod IO_6 je řízen přes stykový obvod I^2C a současně přes vodič 4 úrovně z IO5, který ss napětími oznamuje stav obvodu vyhodnocení (stereo nebo duo nebo mono). V opačném směru může být IO5 nastaven ss napětím přes stykový obvod IO6 na nucené mono. Systémový takt pro vstup SCL stykového obvodu I²C je odebírán z mikroprocesoru; vývod SDA slouží jako vstup dat nebo je v poloze řízení přes vodič 4 úrovně z dekodéru identifikace v IO₅, nebo slouží pro potvrzení. Data z mikroprocesoru jsou zavedena do stvkového obvodu I²C a isou podle funkce uložena v registrech (střadačích 1 až 6). Pokud je sběrnice l²C volná, je SCL = SDA = H. Každý telegram začíná podmínkou START, SDA = Ikdy a SCL = H. Všechny informace se vyměňují v době, kdy SCL = L a jsou převzaty z řídicího obvodu při kladné hraně taktu. Když SDA = H během SCL = H, rozeznává IO6 podmínkou STOP a tím i konec telegramu. Pro softwarové řízení je použit tento tvar

Adresa obvodu: 1 0 0 0 0 0 0 R/W A, při R/W = 0 obvod přijímá data, A je potvrzení příjmu. Bity jsou vysílány v uvedeném pořa-

Byte dat s podadresou. Hlasitost – 1 0 V05 V04 V03 V02 V01 V00 (levý), 1 0 V15 V14 V13 V12 V11 V10 (pravý). Oba byte jsou přenášeny současně po sobě, V×5 je nejvyšší a V×0 nejnižší bit 1 0 0 0 0 0 0 0 min. hlasitost, 0 1 1 1 1 1 1 max, hlasitost,

Korekce 1 X HV H3 H2 H1 H0 1 X TV T3 T2 T1 T0

Oba byte jsou přenášeny společně po sobě, HV nebo TV je bit znaménka, H3 nebo T3 nejvyšší, H0 nebo T0 nejnižší bit

1 1 X 0 1 1 1 1 výšky, hloubky, min 1 1 X X 0 0 0 0 výšky, hloubky lin., výšky, hloubky, min., 1 X 1 1 1 1 1 výšky, hloubky max. Řídicí byte nf -

0 0 M1 M2 K1/K/2 RK Phys Q-S/Sb

M1=1 umlčení výstupů,

M1=0 otevření výstupů,

M2=1 nucené mono přes vodič 4 úrovně, M2=0 běžný provoz dekodéru identifikace, K1/K2=0 při duo na výstup kanál 1

K1/K2=1 při duo na výstupu kanál 2 (aktivní při duo přes vodič 4 úrovně nebo

ze SCART a bitu K=1), RK=1 zapnut prostorový zvuk; při provozu z TV a při stereo zapnuta šířka báze, při mono a duo zapnut obvod kvazistereo - řízen přes vodič 4 úrovně. Při zapnutém

SCART zapne se kvazistereo RK=0 vypnuta šířka báze a kvazistereo,

Phys=1 fyziologie zapojena, Phys=0 fyziologie odpojena,

Q–S/Sb=1 při provozu z TV zapojen a šířka báze a kvazistereo, při zapnutém SCART zapojena šířka stereofonní báze

Q-S/Sb=0 vypnuta šířka stereofonní báze a kvazistereo,

Řídicí byte SCART 0 1 SC Sch K X X X

SC=1 přehrávání přes SCART vstup SCART propojen s nf výstupem,

SC=0 běžný provoz z TV,

Sch=1 zapnut výstup spínání (otevřený kolektor).

Sch=0 vypnut výstup spínání (výstup lze např. použít ke spínání záznam/přehrávání ve videočásti),

K=1 přehrávání ze SCART - vysílání duo: volba kanálu přes bit K1/K2.

K=0 provoz stereo. Přehrávání ze SCART nebo stereofonního (monofonního) vysílání.

Poznámka: Nf část je automaticky řízena přes vodič 4 úrovně. Nucené mono M2 má absolutní přednost. Po nulování (Power-On) jsou všechny střadače na 0 (min. hlasitost, korekce lineární), jen Q-S/Sb=1

Provoz vysílání – potřebná nová adresa pro IO₆ s bitem R/W=1

St D X X X X X X

St=1,D=1 dekodér poznává mono,

St=0, D=1 dekodér poznává stereo,

St=1, D=0 dekodér poznává duo.

Funkce vysílání není pro provoz IO nutná a slouží k tomu, aby mikroprocesor rozeznal stav dekodéru identifikace a aby byly umožněny doplňkové funkce.

Budiče svítivých diod D₄ a D₅

I V PI	UVUZ.			
vývod	2 1O ₆ ,	bit K1/K2,	D_4	D_5
mono		X	vyp	vyp
stereo)	X	zap	zap
duo		0	zap	vyp
duo		1	vyp	zap
Přehrá		SCART:		
SC	K1/K2	2 K	D_4	D_5
1	Х	0	zap	zap
1	0	1	zap	vyp
1	1	1	vyp	zap

Po devátém impulsu taktu je SDA=L (podmínka potvrzení) a všechny telegramy jsou přenášeny po bytech. Při provozu čtení mikroprocesor vysílá bit potvrzení. První byte je byte adresy, sestavený ze sedmi bitů, kterým mikroprocesor vybírá IO₆ z mnoha jiných obvodů na téže sběrnici I²C (Chip select). Osmý bit R/W určuje směr toku dat. V následujících bytech dat 1. a 2. bit určují, který střadač bude dotazován (podadresa). Informace pro nastavení hlasitosti má 6 bitů (64 poloh). Regulátor výšek a hloubek je řízen 5 bity, první bit (čtvrtý bit v byte) určuje znaménko a následující 4 bity umožňují korektor nastavit do 31 poloh. Óba byte hlasitosti (pravý-levý) a byte pro korektory výšek a hloubek musí být přenášeny společně po sobě, protože mají stejné adresy. Oba byte spínacích funkcí jsou rozděleny na byte nastavení nf a byte pro ovládání spínače konektoru SCART. Je-li při adresování obvodu R/W=1, pracuje stykový obvod I²C jako vysílač a přenáší okamžitý stav dekodéru identifikace v IO_5 . R_{68} , R_{70} a R_{71} na obr. 1 nastavují zesílení obvodu kvazistereo, R_{63} až R_{67} spolu s C_{88} až C_{90} pak jeho kmitočtovou charakteristiku a potřebný fázový posuv. C_{92} a C_{105} určují kmitočet zlomu při hloubkách (platí, že

Parametr	Min.	Jmen.	Max.
Mezní napájecí napětí U_{16} $ V $ Referenční proud I_{26} $ mA $ Mezní ss napětí U_1 až U_3 $ V $, U_6 , U_8 , U_9 , U_{10} , U_{14} , U_{18} , U_{20} , U_{20} , U_{22}	0		16 2
až U_{25} , U_{27} , U_{28} [V] Ss proud I_4 , I_5 , I_7 , I_{11} , I_{13} , I_{15} ,	0		U ₁₆
I ₁₇ , I ₂₁ [mA]	0		2
Rozsah napájecího napětí <i>U</i> ₁₆ [V] Rozsah přenášených kmitočtů [kHz]	8		15,74 20
Jmenovité údaje při $U_{16} = 15 \text{ V}$			
Napájecí proud při vypnutých LED, I18 mA		55	80
Referenční napětí $U_{26}[V]$ Maximální zesílení při SC = 0, Phys = 0,	5,4	6	6,6
RK = 0, Q-S/Sb = 0 [dB]	-2	0	2
Minimální zesílení [dB]	-	1	-80
Odchylka průběhu obou kanálů [dB] Zdůraznění hloubek při $f_{vst} = 40 \text{ Hz} \text{ [dB]}$	9	12	-2
Potlačení hloubek při f _{vst} = 40 Hz [dB]	١	-12	-10
Zdůraznění výšek při f _{vst} = 15 kHz dB	8,5	12	١.,
Potlačení výšek při f _{vst} = 15 kHz dB		-12	-10
Vstupní napětí [V] ze SCART (bytè KL libov.)	1		
(byte KL = CX)	3,5	į .	
Dovolené zesílení OZ kvazisterea, Q-S/Sb = 1, A ₈₋₇ dB	1		30
Oddělení kanálů (Q-S/Sb = 0, RK = 0) $ dB $	60		30
Protifázové přeslechy při stereo,	"		ŀ
RK = 1 [%]	45	60	75
Přeslechy v přepínačích SCART a	.	ł	
$K1/K2 (U_{vst} = 2 \text{ V}) [dB]$	60		
Zkreslení ($U_{\text{vst}} = 1 \text{ V, efekt., byte}$	•	l	١.
KL libovolný), k_{13} , k_{15} [%] Odstup cizích napětí při $U_{vat} = 1 \text{ V } dB $	1		1 78
Cizí napětí na výstupu µV		120	150

-	Rovnoměrnost kmit. char. [dB] při lin. korekcích a $t_{vst} = 40$ Hz až 15 kHz		±0,5	±1,5
	Hlasitost při max. fyziologii [dB]		-30_	
	Útlum při umlčení (M1 = 1) dB	80		
	Výstup pro spínání ($I_z = 1 \text{ mA}$), $U_{4vst}[V]$			0,5
	l _{4vst} [μA]	- 1		.1
1	Proud budičem LED (LED sepnuta), I ₂₂ ,			
	I ₂₃]mA]			7,5
	(LED vypn.), I ₂₂ , I ₂₃ [mA]			0,05
ı	Vstupní napětí na vodiči 4úrovň. při			
	mono, U ₂ [V]	0		1,8
1	duo, $U_2[V]$	2,4		3,9
ı	stereo, $U_2[V]$	5,2		6,6
1	nucené mono (M2 = 1, I_2 = 1 mA), U_2 [V]			0,2
	Vstupní proud /2 µA			3
	Vstupní odpor SCART, R_{27} , R_{28} [k Ω]		35	
	Vstupní odpor nf vstupů, R_1 , R_3 kΩ	35		1 1
	Výstupní odpor, R_{21} , R_{5} , R_{7} , R_{13} ,			1 1
	$R_{15}\left[\Omega ight]$			200
	Vnitřní odpor R_{11} , R_{17} k Ω			1 1
	Hrana SCL, SDA – doba čela, t _R [µs]			1
4	– doba týlu, t _F [μs]		i	0,3
-	! Takt SCL kmitočet, f _{SCL} [kHz]	0	İ	100
	– šířka impulsu t_H , t_L [μ s]	4		
	Start – doba přípravy, t _{susτΑ} [μs]	4		1
	doba držení, t _{HDSTA} [μs]	4		i l
	Stop – doba přípravy, t _{SUSTO} [μs]	4		ł
	doba uvoln. sběrnice, t _{BUF} [μs]	4		1
	Výměna dat – doba přípravy, t _{SUDAT} μs]	1	. /	
	doba držení, t _{HDDAT} [μs]	1		
	Vstup SCL, SDA, vstup. úroveň H [V]	2,4	ŀ	5,5
	L [V]	0,3		1
	vstupní proud H, / _H [μΑ]		i i	50
	L, / _լ [mA]		l	0,1
	Výstup SDA – výstupní napětí ($R_z = 2.5 \text{ k}\Omega$,		l	
	$I_z = 2 \text{ mA}$), $U_H [V]$	4,5		5,5
	<i>U</i> _L [V]		l	0,4

IO je v pouzdře DIL-28.

 $f_{-3\,\mathrm{dB}}=1/\mathrm{C}_{105})$ a C_{94} a C_{104} kmitočet zlomu výšek. Stupeň přeslechů šířky stereofonní báze je dán $1/\mathrm{R}_{73}$ nebo $1/\mathrm{R}_{75}$, dolní mezní kmitočet je $f_{-3\,\mathrm{dB}}=1:6,28\mathrm{C}_{95}$ ($\mathrm{R}_{73}+1\,\mathrm{k}\Omega)=1:6,28\mathrm{C}_{103}$ ($\mathrm{R}_{75}+1\,\mathrm{k}\Omega$). Příklad návrhu plošných spojů je na obr. 3 a parametry IO_6 jsou v tab. 5.

Výkonový zesilovač A2030D

Trend zlepšování kvality zvuku v TVP vede ke zvětšování výkonu nf koncových stupňů, u moderních TVP s měničovými stupiti, u moderniu rvr s inencovym zdroji je však výstupní výkon omezen těmito zdroji. Příčina omezení spočívá v tom, že mezivrcholový proud nf zesilovače při $P_{\rm o}=12~{\rm Wa}~R_{\rm z}=8~\Omega$ je asi 1,73 A a potřebně napájecí napětí s přihlédnutím k saturačnímu napětí koncových tranzistorů je asi 32 V. Odebíraný špičkový příkon je asi 55 W, střední příkon je 17,5 W. Moderní BTVP mají celkový příkon kolem 50 W, takže maximálním výstupním výkonem je jejich zdroj přetěžován. Aby jejich zdroj nemusel být navržen na špičkový příkon kolem 100 W, je kromě filtračního kondenzátoru použit ještě "paměťový" kondenzátor a fil-trační rezistor, na kterém se ztrácí výkon (proto se používá paměťový kondenzátor s velkou kapacitou, aby se přenesly i signály nízkých kmitočtů). V obvyklém zapojení teče při kladné půlvlně proud z napájecího zdroje přes IO, vazební kondenzátor, zatěžovací odpor zpět do zdroje a při záporné půlvlně "zapamatovaná" energie vazebního kon-denzátoru se vede přes IO a zátěž, takže energie ze zdroje je odebírána jen při kladné půlvlně. Když zapojení upravíme tak, aby při záporné půlvlně tekl proud ze zdroje, bude špičkový proud poloviční (obr. 1). Výstupní proud lo je při C₂₀₇ = C₂₀₈ složen z vybíjecího a nabíjecího proudu kondenzátorů, takže špičkový proud je během kladné a záporné půlvlny poloviční.

Obr. 9. Blokové zapojení A2030V

IO₂₀₁ (IO₂₀₂) je sestaven ze vstupního rozdílového zesilovače, budiče, koncového stupně, tepelné a protizkratové ochrany (obr. 9). IO₂₀₁ je výkonový operační zesilovač, který má na vývodu 1 neinvertující, na vývodu 2 invertující vstup, na vývodu 3 záporné a na vývodu 5 kladné napájecí napětí a na vývodu 4 výstup. Jeho zisk je bez zpětné vazby 90 dB.

Vstupní zesilovač je rozdílový zesilovač s laterálními tranzistory p-n-p, které pracují při proudu asi 15 μ A, takže při $h_{21E} = 16$ bude vstupní proud menší než 1 μ A. V emitorech vstupních tranzistorů je proudové zrcadlo, které ztrojnásobuje proudy, čímž je dosaženo malého vstupního odporu. Na výstup rozdílového zesilovače je připojen další stupeň, zapojený jako převodník impedance pro budič (převodník má napěťový omezovač, takže při přebuzení vstupního zesilovače není přibuzován budič). Vnitřní kmitočtová kompenzace z výstupu na vstup IO₂₀₁ je zabezpečena kondénzátorem 10 pF. Signálem z budiče (tři diody nastavují klidový proud koncového stupně) je buzena horní část koncového stupně, jeho dolní část je řízena z budiče přes proudové zrcadlo. Obě části koncového stupně jsou tvořeny tranzistory n-p-n + p-n-p v Darlingtonově zapojení, takže výstupní odpor IO_{201} je velmi malý. Koncové tranzistory mají $U_{CE \ min} = 36 \text{ V}$, proud až 3,5 A a minimální zesílení asi 35. Aby nedošlo k saturování dolní části koncového stupně, který je buzen proudově, je přes doplňkový stupeň (minimalizace zkreslení) nastaven malý proud do báze koncové-ho stupně. Nelineárním epitaxním odporem je určen rozsah napájecích napětí 12 až 26 V a nastaven konstantní proud vnitřní Zenerovou diodou (asi 3 mA). Zenerovo napětí je přes emitorový sledovač přivedeno na pracovní odpor a vytváří řídicí proud pro proudová zrcadla na straně kladného napájecího napětí. Tranzistory v proudových zrcadlech jsou zdroji proudu pro předzesilovač a budič s celkovým proudem asi 6 mA. Teplotní ochrana využívá kladného teplotního součinitele Zenerovy diody v napájecí části a záporného teplotního součinitele přechodů báze-emitor tranzistorů n-p-n. Konstantní napětí Zenerovy diody v napájecí části se odebírá přes emitorový sledovač, na jehož emitoru je teplotně závislé referenční napětí asi 7 V. Přes dělič napětí se toto napětí vede jako prahové na dva tranzistory n-p-n. Takto upravené napětí určuje vypínací teplotu IO₂₀₁. Záporným teplotním součinitelem UBE obou tranzistorů n-p-n je určeno kolektorové napětí v závislosti na teplotě čipu, takže se zvyšující se teplotou čipu se zmenšuje napětí Ú_{BE} o −2 mV/°C a dosáhne minimálně přípustné velikosti při teplotě přechodu 150 °C, při níž oba tranzistory začnou vést a působí jako druhá řídicí veličina pro omezení výstupního proudu - zmenšují proud do bází obou koncových stupňů. Výstupní proud je omezován v každém koncovém stupni- samostatně (protizkratová ochrana). V emitorech koncových tranzistorů je rezistor, na němž protékajícím proudem vznikne úbytek nařetí, který je však tak malý, že nestačí řídit protizkratovou ochranu. Proto jsou báze ochranných tranzistorů připojeny ke kolektoru koncového tranzistoru přes Zenerovu diodu, takže omezení proudu je závislé na napětí $U_{\rm CE}$ koncových tranzistorů. Tím se dosáhlo ochrany před nadměrným ztrátovým výkonem (ochrana SOAR). Při napětích menších než Zenerovo napětí nevzniká úbytek na emitorových odporech aktivujících ochranný obvod a proud budičem je asi 3 mA. Tato ochrana pracuje od $U_{CE} = 11 \text{ V, při menších napětích je ma-}$ ximální proud báze asi 3 mA (omezení

ximální proud báze asi 3 mA (omezení proudem). Při symetrickém napájení je $U_{\rm CE} = U_{\rm B}/2$; při zkratu na zátěži je touto ochranou jištěn IO před zničením. Poměrem R_{201}/R_{203} na obr. 1 se nastavuje požadované vstupní napětí. Poměr R_{207}/R_{205} určuje stupeň vazby a D_{201} a D_{202} chrání IO před špičkami napětí na přívodech. R_{209} , C_{205} je Boucherotův článek, omezující horní pozní kmitožet a zákmity na výstupu. Výs mezní kmitočet a zákmity na výstupu. Výstup je dodatečně ochráněn R_{213} , L_{201} , kde L_{201} je 20 závitů drátu o \varnothing 0,6 mm CuT na rezistoru R_{213} (10 Ω /0,5 W). Při symetrickém napájení nesmí být chladič spojen vodivě se zemí, protože upevňovací úhelník je vodivě spojen s vývodem 3 IO201, takže je na něm záporné napětí.

Příklad uspořádání plošných spojů je na obr. 10 a parametry A2030D isou v tab. 6.

Obvody pro zpracování barevného signálu

Zapojení dekodéru barev je na obr. 11. kde TDA4555 je několikanormový dekodér barev, TDA4565 je obvod pro úpravu strmosti hran a zpoždění jasového signálu, TDA4580 je videokombinace a TDA8442 je převodník D/A, řízený přes sběrnici I²C a ur-čený k řízení sytosti, jasu a kontrastu.

Několikanormový dekodér barev **TDA4555**

V oblastech, v nichž je možný příjem vysílačů pracující v různých soustavách (nor-mách), je vhodné použít BTVP, který má několikanormový dekodér barev a normy jsou přepínány automaticky. Postupem doby dospěl vývoj dekodéru barev od několika obvodů áž k jednomu obvodu, TDA4555. Tím se zjednodušil návrh plošných spojů, zvětšila se spolehlivost a snížila cena, zmenšil se počet vnějších součástek, zlepšila se identifikace normy a při silně za-rušeném signálu signálu se dekodér rusenem signálu signálu se dekodér automaticky odpojuje. TDA4555 zpracovává signály v normách NTSC 3,5 nosná barvy $f_{\rm B} = 3,57945$ MHz), NTSC 4,4 ($f_{\rm B} = 4,43361875$ MHz – shodná s $f_{\rm B}$ při PAL), PAL, při které se přepíná fáze nosného signálu (R–Y) z řádku na řádek posunutá o 180° a SECAM, kdy rozdílové signály jsou přenášeny odděleně ve dvou na sobě idoupřenášeny odděleně ve dvou po sobě jdoucích řádcích na kmitočtově modulovaných barvonosných ($f_{\rm BM}=4,25~{\rm MHz}-{\rm modrý}$ řádek a $f_{\rm BC}=4,40625~{\rm MHz}-{\rm červený}$ řádek). Vícenásobným využitím vnitřních funkčních

Seznam součástek k obr. 10

Rezistory (TR 212, není-li uvedeno jinak)

R₂₀₁, R₂₀₂ $1,2 k\Omega$ R₂₀₃, R₂₀₄ 18 kΩ R₂₀₅, R₂₀₆ 100 Ω R₂₀₇, R₂₀₈ $3.9 k\Omega$ 4,7 Ω, TR 214 R₂₀₉, R₂₁₀ R₂₁₁, R₂₁₂ 1,2 kΩ, TR 213

Obr. 10. Příklad desky s plošnými spoji nf koncového zesilovače (X243)

IO201, IO202

A2030V

			•
R ₂₁₃ , R ₂₁₄	10 Ω, TR 214	C ₂₀₇ , C ₂₀₈	2 mF, TE 676b
R ₂₁₅ , R ₂₁₆	10 kΩ	C ₂₀₉ , C ₂₁₀	470 nF, MPT-Pr96
R ₂₁₇	56 kΩ, TR 213	C ₂₁₁	470 μF, TE 008
R ₂₁₈ , R ₂₁₉	5,6 kΩ, TR 213	C212, C213	680 pF, TK 744
R ₂₂₀ , R ₂₂₁	1 kΩ, TR 213	C ₂₁₄	22 μF, TF 011
		L ₂₀₁ , L ₂₀₂	viz text
Kondenzátory			
C ₂₀₁ , C ₂₀₂	3,3 nF, TGL 5155	Polovodičové :	součástky
C ₂₀₃ , C ₂₀₄	100 μF, TF 009	D ₂₀₁ , D ₂₀₂	KY199

100 nF, TC 215

bloků (jako např. vstupního chrominančního zesilovače, demodulátorů, referenčního oscilátoru, budiče zpožďovací linky) se podařilo zmenšit u TDA4555 ztrátový výkon a počet vývodů. Potřebné klíčovací a upínací impulsy jsou odvozeny ze signálu SCI.

Obvod pro zpracování impulsů. TDA4555 potřebuje pro svou funkci burstový klíčovací impuls, vyklíčovací impulsy H a V které isou v signálu SCI přiváděném na vývod 24 IO₁ v obr. 11.

Signál SCI je složen z burstového klíčovacího impulsu s amplitudou minimálně 8 V. vyklíčovacího impulsu H s amplitudou 4,5 V a vyklíčovacího impulsu V s amplitudou 2,5 V, které jsou v IO₁ rozděleny na jednotlivé složky prahovými spínači v detektoru SCI, odkud jsou vedeny k jednotlivým blokům

Obvod kontroly norem. Pro kontrolu přítomnosti dané normy je v IO1 použit obvod sledování a nuceného nastavení normy, sestavený z digitální řídicí jednotky. Ta při hledání normy a jejím najití generuje řídicí signály pro vnitřní a vnější stupně. Řídicí signály isou vyvedeny na vývody 25 až 28 IO1 (na obr. 11). Dokud není identifikována přijímaná norma, dekodér přepíná postupně na dekódované normy PAL, SECAM, NTSC 3.5 a NTSC 4.4. Dekodér přepíná vždy po čtyřech periodách, tj. po 80 ms, které se nazývá periodou dotazu na normu. Perioda dotazu na normu s příslušnou časovou konstantou regulace chrominančního signálu a identifikací normy je kompromisem mezi rychlostí sepnutí barvy a odrušením zašuměného signálu. Proces vyhledávání a za-pnutí barvy trvá 360 ms. V TDA4555 je i obvod priority PAL, aby byl spolehlivě rozeznán SECAM, takže při SECAM se doba vyhledá-ní prodlužuje až na 520 ms. Během doby dotazu na normu jsou všechny funkční bloky → IO₁ přepnuty na dekódování příslušné normy a také je přepnut řídicím napětím na dotazovanou normu i vstupní filtr. Identifikační obvod v IO1 prověřuje, zda dekódovaná norma odpovídá normě přijímané. Pokud tomu tak není během periody dotazu na normu, dekodér přepne na další normu. Při černobílém vysílání se proces vyhledávání trvale opakuje a není připojena žádná barva.

Rozezná-li však identifikační obvod v IO1, že dotazovaná norma odpovídá normě přijímané, připojí se oba rozdílové signály – (R-Y) a (B-Y) na vývody 1 a 3 IO₁, na vývodech 25 až 28 se objeví spínací ss napětí odpovídající přijímané normě, které je při vyhledávání asi 2,5 V a po jeho skončení asi 6 V. Zbývající spínací napětí budou menší než 0,5 V. Napětím z vývodů *25* až *28* IO₁ se přepíná vstupní chrominanční filtr, krystal referenčního oscilátoru a odlaďovač barvonosné, případně i tranzistor se svítivou diodou, indikující přijímanou normu. Při rozpoznání SECAM je tato infromace zapamatována a je provedeno nové přepnutí na PAL (priorita PAL). Pokud však není přítomen signál PAL, zapojí se obvody SECAM. V IO1 je počítáno se zpožděným připojením dotazu na normu asi o 40 ms, aby při výpadku chrominančního signálu (krátkodobém) nezačal probíhat nový proces vyhledání nor-

Obvod sledování, nuceného nastavení normy a spínač barev je možné odpojit přivedením vnějšího napětí většího než 9 V při PAL na vývod 28, při SECAM na vývod 27, při NTSC 3,5 na vývod 26 a při NTSC 4,4 na vývod *25* lO₁. Vývody *25* až *28* lO₁ jsou jak vstupy, tak i výstupy

Řízení chrominančního signálu. Od několikanormového dekodéru barev je požadováno, aby byl schopen zpracovat požadovanou amplitudu vstupního signálu při rozdílných šířkách pásma mf filtru i při rozladěném přijímači, a aby zůstal zachován daný poměr rozdílových signálů R-Y a B-Y vůči jasovému signálu Y. V IO₁ k tomuto účelu slouží obvod regulace chrominančního signálu - ACC. Vstupní chrominanční signál je na obr. 11 veden přes C₁₄ a vývod 15 IO₁ na řízený zesilovač. Pro řízení zesilovače je jako reálná složka při PAL a NTSC (s kvadraturní amplitudovou modulací) využita amplituda burstu a při kmitočtově modulovaném signálu SECAM pak celý signál. Regulační napětí vzniká při soufázové synchrodemodulaci burstového a chromi-

nančního signálu v detektoru ACC.
Zapojení má tyto výhody: Pro všechny signály je použit jeden demodulátor s filtračním kondenzátorem C₁₅; jsou vyloučeny šumové signály a při signálu s šumem je regulováno a tím zamezeno nežádoucí zvětšení sytosti. Použitá soufázová synchrodemodulace pro řídicí napětí ACC je nezávislá na stavu synchronizace a náběhu obvodů referenčního oscilátoru a demodulátoru H/2, takže náběh řídicího napětí ACC je rychlý a je dosaženo krátké doby dotazu na normu. Řízený stupeň spolu s následujícím zesilovačem mají symetrické zapojení, takže při přenosu SECAM je dosaženo minimální složky H/2 v rozdílových kanálech.

Ke stabilizaci pracovního bodu řízeného chrominančního zesilovače je využito ss zpětnovazebního signálu filtrovaného C23 na vývodu 14 IO₁. Jmenovité mezivrcholové vstupní napětí na vývodu 15 IO1 při 75% signálu barevných pruhů je 100 mV a rozsah regulace je -20 až +12 dB (10 až 400 mV). takže je možné zpracovat přímo mezivrcho-lový signál FBAS 1 V. Výstupní signál z řízeného chrominančního zesilovače je rozveden do obvodu identifikace, obvodu získání referenčních signálů a obvodu vyklíčování burstového signálu při PAL a NTSČ. Výstupním signálem jsou buzeny demodulátory chrominančního signálu a budič zpožďovací

identifikační obvod. Obvod sledování norem musí při dané vybrané normě oznámit, zda tato norma souhlasí s normou přijímanou. V TV technice se pod pojmem identifikace rozumí určení, zda klopný obvod PAL nebo SECAM spíná ve správném nebo nesprávném rytmu vzhledem ke vstupnímu signálu. Pro odlišení je tato identifikace nazývána korekcí H/2. Pro identifikaci normy barevného signálu je vztažen k vnitřní úrovní černé (burstový signál při PAL a NTSC a při SECAM signál f_B, které se od sebe značně liší). Při SECAM je pak ještě rozdíl mezi ilsí). Při SECAM je pak jeste lozdii mezi identifikací H (signály f_B jsou vztaženy vůči vnitřní úrovní černé) a mezi identifikací V (během zatemnění V jsou generovány pro vyhodnocení speciální identifikační signály). Identifikační obvod v IO1 je sestaven ze tří

fázového diskriminátoru, v němž se porovnává při PAL a NTSC fáze burstového signálu s vnitřním referenčním signálem. kmitočtového diskriminátoru pro odvození

signálu H/2 při SECAM,

demodulátoru H/2 při PAL a SECAM a lo-

giky vlastní identifikace.

K fázovým diskriminátorům PAL a NTSC je vedle signálu chrominančního přiváděn i regulovaný burstový signál. Při porovnávání fází využívá fázový detektor při PAL refe-renčního signálu R-Y a při NTSC referenčního signálu B-Y, které jsou odebírány z výstupu děliče v obvodu referenčního oscilátoru. Z fázových diskriminátorů buzených daným vstupním signálem je získáván demodulovaný burstový signál, potřebný v obvodě identifikace. Signál H/2 je získán z kmitočtově modulovaného signálu SECAM kmitočtovým diskriminátorem (zapojeným jako kvadraturní demodulátor) a laděným obvodem na vývodu 22 IO1, který posouvá fázi signálu, a který se nazývá identifikační obvod SE-CAM. Výstupní signál z fázových diskriminátorů PAL a SECAM je veden do demodulátoru H/2, který střídá polaritu výstupního napětí diskriminátorů z řádky na řádek. Impulsy H/ 2, které jsou buď kladné nebo záporné vzhledem k proměnné fázi burstu při PAL a vzhledem k proměnnému kmitočtu při SECAM, mají po demodulaci H/2 stejnou polaritu. Pro vytvoření střední aritmetické hodnoty výstupních signálů diskriminátorů PAL nebo SECAM jsou použity po demodulaci H/2 kondenzátory C₁₈, C₁₉ na vývodech 20 a 21 IO₁. Napětí na těchto kondenzátorech představuje vlastní identifikační signály, z kterých jsou v následujících komparátorech a logických obvodech odvozeny řídicí signály pro obvod sledování norem, obsahující informaci o dané normě. Napětí na vývodech 20 a 21 IO1 je složeno z vnitřního předpětí $U_{13}/2$ a složky závislé na identifikaci d U_{20} a dU21. Dále si popíšeme vznik signálů na C₁₈ a C₁₉ při dotazu na normu a normě chrominančního signálu.

a) Při přepnutí dekodéru na dekódování PAL (dotaz PAL), je kmitočet referenčního signálu fref = f_{PAL} = 4,43 MHz. Diskriminátor NTSC je odpojen a na C₁₈ bude jen předpětí $(dU_{20} = 0)$. Demodulátor H/2 je buzen výstupním signálem fázového diskriminátoru PAL, kdežto výstupní signál kmitočtového demodulátoru není vyhodnocen. Při vstupním signálu PAL budou na výstupu demodulátoru H/2 impulsy stejné polarity, jimi se nabíjí C₁₉ při správné synchronizaci referenčního oscilátoru. Při porovnávání fází v diskriminátoru PAL vznikají vzhledem k referenčnímu signálu R-Y a vzhledem k střídání fáze burstu z řádku na řádek impulsv H/2 s proměnnou polaritou, které jsou v demodulátoru H/2 změněny na sled impulsů stejné polarity. Při vstupním signálu NTSC 4,4 vznikají v demodulátoru H/2 buď malé impulsy H/2 s fázovou chybou, které mění polaritu z řádku na řádek, protože fáze burstu je při NTSC konstantní; nebo nevznikají žádné impulsy, takže střední nabíjející proud C₁₉ je nulový a na C₁₉ bude jen předpětí. Bude-li na vstupu IO1 signál SECAM nebo NTSC 3,5, pak je při přepnutí na dekódování PAL rozdíl kmitočtu burstu a f_B tak značný, že se rychle změní fáze mezi signálem burstu nebo fa a referenčním signálem a nemohou vzniknout impulsy H/2

b) Při přepnutí dekodéru na dekódování NTSC 4,4 je odpojen kmitočtový diskriminátor SECAM a jsou připojeny fázové diskriminátory NTSC a PAL, které spolu s demodulátorem H/2 pracují jako v odstavci a). Při vstupním signálu NTSC 4,4 budou na výstupu fázového diskriminátoru NTSC 4,4 impulsy stejné polarity, protože fáze burstového signálu NTSC 4,4 je shodná s fází referen-čního signálu B-Y. Při vstupním signálu PAL generuje fázový diskriminátor NTSC 4,4 impulsy stejné polarity, protože při burstu PAL odpadá v každém řádku složka fáze referenčního signálu R-Y. C₁₈ je nabíjen z fázového diskriminátoru NTSC po dekódování NTSC 4,4 a to jak při vstupním signálu PAL, tak i při NTSC 4,4. Při vstupním signálu NTSC 3,5 a SECAM se mění střední výstupní proud diskriminátoru NTSC 4,4, protože kmitočet burstu a f_B se podstatně liší od kmitočtu

referenčního signálu.

c) Při přepnutí dekodéru na dekódování NTSC 3.5 je odpojen kmitočtový diskriminátor SECAM a oscilátor generuje referenční signál o kmitočtu 3,58 MHz. Při vstupním signálu NTSC 3,5 generuje fázový diskriminátor NTSC demodulované impulsy burstu se stejnou polaritou a na výstupu demodulátoru H/2 jsou buď fázově chybné impulsy střídavé polarity, vznikající při dekódování signálu NTSC 4,4, anebo tyto impulsy chybí. Při všech ostatních vstupních signálech (PAL, SECAM, NTSC 4,4) nevznikají na výstupu diskriminátoru požadované impulsy (vzhledem k velkému rozdílu mezi kmitočtem burstu nebo f_B a referenčním kmitočtem), takže střední nabíjecí proud pro C_{18} a C_{19} bude nulový ($dU_{29} = dU_{21} = 0$).

a C_{19} bude nulový (d $U_{20} = dU_{21} = 0$). **d)** Při dekódování SECAM nedostává demodulátor H/2 signál z diskriminátoru PAL, nýbrž z diskriminátoru SECAM, takže není vyhodnocován výstupní signál diskriminátoru PAL a diskriminátor NTSC je odpojen. Při dekódování SECAM je v identifikačním obvodu v činnosti kmitočtový diskriminátor s výstupními impulsy H/2 se střídavou polari-tou, protože kmitočet identifikačního signálu je buď pod nebo nad rezonancí identifikační-SECAM ho obvodu SECAM – $\rm L_7C_{20}C_{21}$ ($\it f_{\rm rez} = (\it f_{\rm BB} + \it f_{\rm BR})/2 = 4,43$ MHz). Při SECAM budou na výstupu demodulátoru H/2 (vzhledem ke střídání vstupních signálů SÈCAM, f_{BB} a f_{BR}) impulsy jedné polarity, kterými je nabíjen C₁₉. Při vstupních signálech PAL, NTSC 4,4 a NTSC 3,5 budou na výstupu kmitočtového detektoru impulsy stejné polarity a na výstupu demodulátoru H/2 impulsy střídající se polarity, takže nabíjecí proud pro C₁₉ bude nulový. Pro identifikaci signálu SECAM je použit buď signál zatemnění V (identifikace V), nebo signál burstu v době zatemnění H (identifikace H), nebo jsou použity oba signály současně (identifikace V+H). Identifikace se volí spínacím napětím na vývodu $23 \, \text{lO}_1$, kdy při $U_{23} = 0$ V je zapojena identifikace H, při $U_{23} = 6$ V identifikace H+V a při $U_{23} = 12$ V identifikace V. Napětím U23 se přepíná doba identifikačního dotazu v kmitočtovém diskriminátoru SECAM. Přednost je dávána identifikaci V, protože je vzhledem k délce indentifikačního signálu a jeho většího kmitočtového zdvihu spolehlivější než identifikace H, pro kterou je použit signál fB na konci řádkového impulsu při vnitřní úrovni černé.

e) Při černobílém vysílání bude střední nabíjecí proud C₁₈, C₁₉ nulový, protože není identifikována žádná z norem chrominančního signálu a vyhledávání probíhá neustále.

Obvod PLL pro generování referen-čních signálů PAL a NTSC, servisní spínač. Pro demodulaci a identifikaci kvadraturně-amplitudově modulovaných signálů NTSC a PAL potřebujeme referenční signálů Ref (R-Y) a Ref (B-Y), odvozené dekodérem z přenášeného barevného synchronizačního signálu (burstu); odvozují se obvodem PLL, který je tvořen napěťově řízeným oscilátorem (VCO), děličem 2:1 a fázovým diskriminátorem. V této verzi zapojení, kdy VCO kmitá na dvojnásobném kmitočtu, je to velmi výhodné, protože dělič nepotřebuje vnější fázovací obvod a na jeho výstupu jsou k dispozici oba referenční signály s rozdílem fáze 90°. Ve fázovém diskriminátoru obvodu PLL se při dekódování PAL a NTSC porovnává referenční signál (R-Y) se signálem burstu. Signál burstu spolu s chrominančním signálem je z výstupu řízeného chrominan-čního zesilovače veden při PAL přímo a při NTSC přes stupeň zabarvení na fázový diskriminátor, který je aktivován klíčovacím impulsem v době burstu, který v závislosti na rozdílu fází burstového a referenčního signálu generuje dolaďovací napětí pro VCŎ, filtrované filtrem druhého řádu (R₂₃R₂₉R₃₀ Introvane Intrem druneno radu (H₂₃H₂₉H₃₀ C₁₆C₁₇) na vývod 18 IO₁. Krystal je připojován mezi vývod 19 IO₁ a zem přes T₆ nebo T₇ podle toho, je-li přijímán signál PAL, NTSC 4,4 nebo NTSC 3,5. Při dekódování SECAM je VCO odpojen. V obvodu řízení zabarvení můžeme vnějším napětím 2 až 4 V, přivedeným na vývod 17 IO1, měnit fázi burstového signálu na vstupu obvodu PLL asi o ±30°.

		140
·		-
	oučástek k obr. 12	sci
Rezistory (TR 191	není-li uvedeno jinak)	spinači
R ₁	47 kΩ	*12 Ý
R ₂ , R ₁₅ , R ₁₇ , R ₁₉ ,	R ₂₁ , R ₂₇ , R ₃₂ , R ₅₉ 33	kΩ B
R ₃ , R ₆₆	1 kΩ	spinac 1
R ₄ , R ₁₅ , R ₁₀₆ , R ₁₀₇		41
R ₅ , R ₈ , R ₇	2,7 kΩ	volba matide Ri
R ₈ , R ₂₃ , R ₂₄ , R ₂₅ ,		zem
1 81 1 231 1 241 1 251	1441 1521 188 10 152	R2
R ₉	3,9 kΩ	Q2
R ₁₀ , R ₃₉	180 Ω	92
R ₁₁	220 Ω	B 2
R ₁₂ , R ₁₃	2,2 kΩ	
R ₁₄ , R ₃₄	18 kΩ	sci
	6,8 kΩ	SDA
R ₁₆ , R ₂₈		*
R ₁₈ , R ₂₀ , R ₂₂ , R ₆₁		
R ₂₆ , R ₃₁ , R ₆₀	100 kΩ	-
R ₂₉	5,1 kΩ	
R ₃₀	470 Ω	
R ₃₃	2,2 kΩ	
R ₃₅ , R ₅₄	3,3 kΩ	
R ₃₆ , R ₅₅	4,7 kΩ	
R ₃₇ , R ₄₃ , R ₄₆	1,2 kΩ	1
R ₃₈	390 Ω	1000
R ₄₀	270 Ω, TP 009	t
R ₄₁	120 kΩ	
R ₄₂	680 Ω	34
R ₄₅	8,2 kΩ	
R ₄₇	4,7 Ω, TR 214	
R ₄₈ , R ₄₉	47 Ω, TR 212	
		5 Ω
R ₅₁	56 kΩ	
	39 kΩ	/
R ₅₃	10 kΩ, TP 009	FBAS
R ₆₇	10 K22, 17 OU9,	
Kondenzátory		
C ₁ , C ₃₈ , C ₅₂ ,		
C ₅₆ , C ₅₇ , C ₅₈	5 μF, TE 004	*
C_2 , C_4 , C_{43} , C_{44}	100 pF, TK 754	
	180 pF, TK 754	
C₃		
C₅	18 pF, TK 754	
. C ₆ , C ₈	82 pF, TK 754	
C ₇ , C ₂₀ , C ₃₀ , C ₃₄	120 pF, TK 754	
C_9 , C_{10} , C_{11}	4,7 nF, TK 724	www.

Obr. 12. Příklad provedení desky s ploš-nými spoji dekodéru barev (X244)

C ₁₂ , C ₁₃ C ₁₄ C ₁₅ , C ₄₀ C ₁₆ , C ₄₂ C ₁₇ C ₁₈ , C ₁₉ , C ₂₃ C ₂₁	E7/35–7, TGL 38590 2,2 nF, TGL 5155 1 μF, TGL 38928 47 nF, MPT-Pr96 330 nF, MPT-Pr96 22 nF, TK 744 1 nF, TK 724
C ₂₂ , C ₂₈ , C ₃₃	68 pF, TK 754
C ₂₄ , C ₇₅	100 nF, TK 783
C ₂₅ , C ₆₃	100 μF, TF 009
C ₂₈	10 nF, TK 783
C ₂₇	10 nF, TK 744
C ₂₉ , C ₃₂	22 pF, TK 754
C ₃₁ , C ₃₈	220 pF, TK 754
C ₃₅ , C ₃₇	1 μF, TE 988
C ₃₉	47 μF, TF 010
C ₄₀ , C ₄₁	3,3 nF, TK 724
C ₄₅	330 pF, TK 754
C ₄₆ , C ₄₉	470 pF, TK 774
C ₄₇ , C ₄₈	22 nF, MPT-Pr96
C ₅₁	47 pF, TK 754
C ₅₃ , C ₅₄ , C ₅₅ ,	
C ₅₉ , C ₆₀ , C ₈₁	10 nF, MPT-Pr96
C ₈₂ , C ₆₄ , C ₆₅	220nF, MPT-Pr96

Polovodičové součástky

. 0.0100.0010	- Cacaci,
T₁ až T ₇	KC238C
D_1	KA234
D ₂ , D ₃ , D ₁₀	KA206
IO ₁	TDA4555
IO ₂	TDA4565
IO ₃	TDA4580
IO ₄	TDA8442

Ostatní součástky

X ₁	 krystal v pouzdru K2/19,
	8,8 MHz
V	knyetal v pouzdru K9/10

7.15 MHz L_1 až L_{12} (kromě L_8)kryt 7×7 mm, jádro NO5 L_8 120 μH na rezistoru 1 $M\Omega$

Seznam součástek k obr. 13

Rezistory	
 R ₈₉ , R ₇₀ , R ₇₁	2,2 kΩ, TP 009
R ₇₂ , R ₇₃ , R ₇₄ ,	
R ₇₅ až R ₈₀	2,2 kΩ, TR 191
R ₈₁	1,8 kΩ, TR 191
R ₈₂	820 Ω, TR 191
R ₈₃	430 Ω, TR 191
R ₈₄ , R ₆₆ , R ₈₇	18 kΩ, TR 234
R ₈₅ , R ₈₈ , R ₉₂ , R ₁₁₈	100 kΩ, TR 233
R ₈₉ , R ₉₀ , R ₉₁	560 Ω, TR 233
R ₉₃ , R ₉₄ , R ₉₅	220 Ω, TR 234
R ₉₆ , R ₉₇ , R ₉₈	1,2 kΩ, 3WK 681 05
R ₉₉ , R ₁₀₂ , R ₁₀₄	150 kΩ, TR 192
R ₁₀₀ , R ₁₀₁ , R ₁₀₃	330 kΩ, TR 191
R ₁₀₈	1 MΩ, TR 214
R ₁₀₉	2,2 Ω, TR 234
R ₁₁₀	10 kΩ, 3 WK 681 04
R ₁₁₁	470 kΩ, TR 214
R ₁₁₂ , R ₁₁₃	390 kΩ, TR 214
R ₁₁₄	470 kΩ, TP 002
R115	270 Ω. TR 233

Kondenzátory

C ₆₆ , C ₈₇ , C ₆₈	10 pF, TK 755
C ₇₀ , C ₇₁	22 nF, TC 227
C ₇₂	150 pF/2 kV, keran
C ₇₃	150 nF, TC 342
C ₇₄	10 μF, TE 994
C ₇₆	100 nF. TK 783

Polovodičové součástky

D ₄ až D ₁₃	KA207
D ₁₄	KZ260/4V7
T ₈ , T ₉ , T ₁₀ , T ₁₄	KC308C
T ₁₁ až T ₁₇	(kromě T ₁₄) KF469
T ₁₈ , T ₁₉ , T ₂₀	KF423
L ₁₃	feritová trubička

Vnějším spínacím napětím na vývodu 17 IO₁ Ize ovládat servisní spínač. Při nastavování kmitočtu VCO (C₁₂ a C₁₃) je zapotřebí odpojit nuceným sepnutím barvy synchronizaci obvodu PAL, a to napětím *U*₁₇<1 V. Při U₁₇>6 V je odpojeno nastavení zabarvení.

Obr. 13. Příklad provedení desky se spoji koncových videozesilovačů (X245)

Demodulační obvod chrominančního signálu. Při dekódování PAL je z chrominančního signálu za řízeným chrominančním zesilovačem vyklíčován signál burstu, aby bylo zabráněno rušení signálových složek, které může vzniknout při odrazech ve zpožďovací lince ZL₁, když doba jejich zpož-dění není celým násobkem periody řádků. Chrominanční signál se rozděluje na složky s kmitočty nosných F_{R-Y} a F_{B-Y} dekodérem

časového průběhu, sestaveného ze zpožďovací linky ZL, a matice. Burstu zbavený chrominanční signál je zesílen v zesilovači o 18 dB (kompenzace útlumu ZL,) a přes emitorový sledovač (budič) a vývod 12 IO,

Tab. 6. Parametry A2030D

Parametr	Min.	Jmen.	Max.
Mezní napájecí napětí $U_{5\cdot3}$ [V] Mezní vstupní napětí $U_{1\cdot3}$ [V] $U_{2\cdot3}$ [V] Rozdílové vstupní napětí [V] Výstupní špičkový proud I_4 [A] Výstupní sproud I_4 [A] Ztrátový výkon P_z [W] Tepelný odpor R_{thjc} [KW]	±6		±18 <i>U</i> ₅₋₃ <i>U</i> ₅₋₃ 30 3,5 2,5 20 3
Jmenovité údaje pro $U_{\rm CC}=\pm$ 14 V, f [kHz]			
Klidový proud při $U_{\rm CC}=\pm 18$ V, $I_{\rm CC}$ [mA] Výstupní ofsetové napětí [mV] při $U_{\rm CC}=\pm 18$ V Vstupní proud při $U_{\rm CC}=\pm 18$ V [nA] Vstupní ofsetový proud při $U_{\rm CC}=\pm 18$ V [nA] Výstupní výkon při $k=10$ % a $R_{\rm z}=4$ Ω [W] $R_{\rm z}=8$ Ω [W] Zkreslení při $P_{\rm o}=0.1$ W, $R_{\rm z}=4$ Ω [%] $P_{\rm o}=12$ W, $R_{\rm z}=4$ Ω [%] $P_{\rm o}=8$ W, $P_{\rm z}=8$ Ω [%] Potlačení brumu při $f_{\rm br}=100$ Hz a $U_{\rm br}=0.5$ V (ef) [dB] Signál/šum pro $B=20$ Hz až 20 kHz [dB] Horní mezní kmitočet [kHz]	16 10 40	40 5 70 2 18 11 0,1 0,1 0,1 70 170	60 22 1000 500 0,5 0,5 0,5
Zisk bez zpětné vazby [dB]	76	80	

IO je v pouzdře Pentawatt.

Tab. 7. Parametry TDA4555

Parametr	Min.	Jmen.	Max.
Napájecí napětí U_{13} [V] Napětí na vývodech 10, 11, 17, 23 až 28 Proud na vývodu 12, I_{12} [mA] Špičkový proud I_{12} [mA] Ztrátový výkon P_z [W]	0		13,2 <i>U</i> ₁₃ 8 15 1,4
Jmenovité údaje při <i>U</i> ₁₃ = 12 V			
Napájecí napětí <i>U</i> ₁₃ [V] Napájecí proud <i>I</i> ₁₃ [mA]	10,8	65	13,2
Vstupní mv napětí chrom. signálu U_{15} [mV] Vstupní impedance Z_{15} [k Ω] Výstupní mv chrom. napětí U_{12} [V]	20 2,3	100 3,3 1,6	200
Výstupní impedance $Z_{12}[\Omega]$ Výstupní ss napětí $U_{12}[V]$		8,2	20
Proud do vstupu zpožd. signálu, I ₁₀ μA	1	'	10

veden na vstup a výstup ZL1. Na jejím výstupu se R₄₀ nastavuje amplituda dekodéru časového průběhu a L₉, L₁₀, které kompenzují vstupní a výstupní kapacitu ZL1 a kapacitu vodičů, se nastavuje fáze.

Zpožděný signál je z R₄₀ a vývod 10 IO₁ veden do matice, ve které se pro obdržení F_{B-Y} a F_{B-Y} nezpožděný signál buď přičítá nebo odčítá od signálu zpožděného.

Nezpožděný signál je v IO₁ rozdělen na • dvě složky s opačnou fází, které jsou symetrické vůči zemi, a které jsou vedeny na symetrický vstup demodulátoru. Na jedny vstupy demodulátoru jsou přivedeny části nezpožděných signálů (B-Y) a (R-Y), symetrických vůči zemi, a na druhé vstupy jsou přiváděny zpožděné signály. V demodulátoru (R-Y) je před demodulačním stupněm přepínač PAL, kterým je nastavována z řádku na řádek fáze nosného kmitočtu složky F_{B-Y} chrominančního signálu. Demodulátory chrominančního signálu v IO1 jsou synchrodemodulátory, jsou sestaveny z násobiček s křížově zapojenými rozdílovými zesilovači (4 tranzistory) s napěťově řízenými zdroji proudu v emitorech. Referenční signály Ref (R-Y) a Ref (B-Y) řídí báze tranzistorů, zdroje proudu jsou řízeny složkami nosných kmitočtů chrominančního signálu.

Signály R-Y a B-Y jsou v době vyklíčování řádek klíčovány, takže v rozdílových kanálech dostáváme "svorkovou" referenční veličinu. Při dekódování NTSC je chrominanční signál demodulován stejně jako při PAL, odpadá však dekodér časového průběhu, protože je zpracováván jen nezpožděný signál a spínač PAL ve větvi F_{R-Y} je odpojen. Při demodulaci chrominančního signálu SE-CAM je před demodulátorem zapojen křížový spínač-permutátor, přes který je na oba demodulátory střídavě z řádku na řádek přiváděn zpožděný (přes ZL₁) a nezpožděný chrominanční signál. Za permutátorem jsou v každém kanálu zapojeny omezovače pro potlačení zbytků amplitudové modulace kmitočtově modulovaného signálu SECAM, k jehož demodulaci jsou použity kvadraturní demodulátory, tvořené násobičkami a vnějšími obvody C₂₈, C₂₉, C₃₀, L₁₁, R₄₂ (mezi vývody 7 a 8 IO₁) a C₃₂, C₃₃, C₃₄, L₁₂, R₄₃ (mezi vývody 4 a 5 IO₁), které posouvají fázi chrominančních signálů o 90°, takže se mění napětí výstupních signálů kolem předem na-staveného předpětí. Za demodulátory je v kanálech R–Y a B–Y zapojena dolní pro-pust potlačující nežádoucí signály (harmonické referenčního a chrominančního signálu). Při SECAM jsou připojeny přes vývody 2 a 6 IO₁ deemfázové kondenzátory C₃₁ a C₃₆. Nezávisle na dekódované normě jsou signály R-Y a B-Y vedeny přes emitorové sledovače se zdroji proudu v emitorech na

Zbytek nosného signálu (mv) mV Zbytek nosné PAL (mv) $\lfloor mV \rfloor$ Zbytek H/2 na výstupu – (R-Y) (mv), $U_1 \lfloor mV \rfloor$ 10 10 SS výstupní napětí Ú₁, *U*₃ [V] 7,7 Výstupní impedance $Z_1, Z_3[\Omega]$ Zbytek nosné při SECAM (4 až 5 MHz) (mv) 150 U_1 , U_3 mV 20 30 Zvlnění H/2 na výstupech 1 a 3 (mv) mV Ss výstupní napětí U1, U3 V 7,7 Posuv mV/K vložené úrovně k úrovní demodulovaných signálů f_B>dU/dT (R-Y) -0,55 +0,25 Posuv fáze referenční nosné |º] při $U_{17} = 2 \text{ V}$ 30 $U_{17} = 3 \text{ V}$ 0 0 $U_{17} = 4 \text{ V}$ 0 30 Vstupní odpor R_{17} $|\mathbf{k}\Omega|$ Spínací napětí, burst vypnut, barva zapnuta, U₁₇ V 0.5 Spínací napětí, zabarv. vypnuto, barva zapnuta, U₁₇ [V] 6 Vstupní odpor oscilátoru, $R_{19}\left[\Omega
ight]$ 350 Rozsah zachycení PLL, df Hz ±400 Řídicí napětí při vypnutém stavu, $U_{25+28}\left[V
ight]$ 0,5 Řidicí napětí ve stavu zapnuto během vyhledávání – barva vypnuta, U_{25+28} [V] 2,45 – barva zapnuta, *U*₂₅₊₂₈ [V] 5.8 Výstupní proud, -l₂₅₊₂₈ mA 3 Napětí při sepnutém SECAM, U27 V PAL, U28 V 9 Zpoždění od startu k vyhledávání, tos 2 až 3 V-periody 2 až 3 V-periody zap. barvy, tds vyp. barvy, tos 0 až 1 V-perioda Vstupní napětí pro identifikaci H, U23 V V, U23 V 10 obě ident., U23 V 6 Doba vyhledávání normy V-periody Vstup. nap. SCI pro oddělení zatemň. impulsů V a H, U24 1.2 2 Amplituda SCI pro oddělení zatem. impulsu H, U24 V mv 3 U24 V 3,2 Amplituda SCI pro oddělení burstu, U₂₄ |V| mv U₂₄ |V| 5 Amplituda SCI, U24 [V] mv 12 Vstupní napětí během vyhledávání H, U24 V Vstupní proud, -l24 mA 0,1

1.05 1,33

0.79

30

Vstupní impedance $Z_{10} |k\Omega|$

Výstupní signály $U_1:U_3$ (±10 %)

Výstupní signál – (R-Y), *U*₁ |V] (±2 dB) Výstupní signál – (B-Y), *U*₃ [V] (±2 dB)

vývody 1 a 3 IO_1 , kde mezivrcholová úroveň $U_1 = 1,05$ V a $U_3 = 1,35$ V. **Vstupní filtr.** Na obr. 11 rozděluje vstupní filtrasový signál y a chrominanční signály všech čtýř norem. Pro zjednodušení je při PAL a NTSC 4,4 použit jeden filtr. I pro signál SECAM by bylo možné využít odlaďovače 4,4 MHz z filtru PAL, NTSC 4,4, ale bylo by nutné do cesty signálu Y zapojit odlaďovač 4,05 MHz. Filtry jsou napájeny z emitorového sledovače T1, který zajišťuje velkou vstupní a malou výstupní impedanci potřebnou pro filtry. L₄, C₆, R₁₂ propouští chrominanční signály PAL a NTSC 4,4, filtr L₅, C₇, R₁₃ signálem NTSC 3,5, L₆, C₈ je obvod ploché pro SECAM. Na výstupy těchto filtrů isou přes vazební kondenzátory připojeny emitorové sledovače T₃, T₄, T₅ se společným emitorovým rezistorem, které jsou spínány napětím z obvodu vyhledáváním norem přes vývody 25 až 28 IO1 podle toho, která norma je vyhledávána nebo zapojena. L₁, C₂ je potlačován signál o kmitočtu 4,43 MHz. L2, R₅, C₃, C₄, D₁ potlačují barvonosnou a L₃, C₁₉, C₅ vyrovnávají skupinové zpoždění v jasovém kanálu.

Nastavení dekodéru barev. Rozmítač připojíme na vstup filtru a indikátor na R₃₃, na vývod 25 nebo 28 IO1 připojíme napětí větší než 9 V a L4 nastavíme na maximum indikátoru při kmitočtu 4,2 MHz. Napětí větší než 9 V přepojíme na vývod 26 IO1 a L5 nastavíme na maximum při 3,45 MHz. Poté připojíme napětí na vývod $27\,\mathrm{IO_1}$ a $\mathrm{L_6}$ nastavíme na minimum amplitudové modulace chrominančního signálu. Indikátor přepojíme do spoje $\mathrm{R_{10}}$, $\mathrm{R_{11}}$ a $\mathrm{L_2}$ nastavíme na minimum při kmitočtu 4,43 MHz, které kontrolujeme při přepojení napětí na vývody 25 a $28\,\mathrm{IO_1}$. Při $U_{26} > 9$ V nastavíme minimum při kmitočtu 3,58 MHz. Odpojíme rozmítač a indikátor. Na vstup filtru přivedeme pravoúhlý signál o kmitočtu 16 až 100 kHz a osciloskop připojíme do spoje $\mathrm{R_{10}}$, $\mathrm{R_{11}}$, $\mathrm{L_3}$ nastavíme symetrické překmity. Pro dosažení optimální ostrosti obrazu je vhodné pravoúhlý signál přivést až na vstup mť obrazového zesilovače, aby bylo uvažováno i se skupinovým zpožděním mť filtru.

Nastavení dekodéru při PAL a NTSC 4,4. Na vývod 28 IO1 připojíme napětí větší než 9 V, chrominanční signál PAL připojíme na vstup filtru a uzemníme vývod 17 IO1, čímž zapneme barvu a odpojíme burst od obvodu PLL, takže oscilátor není synchronizován. Otáčíme C₁₂, až se barvy ustálí, nebo se jen málo mění, anebo nastavíme minimální zázněj na výdech 1 a 3 lO₁. Tím je nastaven dekodér i pro signál NTSC 4,4. Odpojíme uzemnění vývodu 17 IO1 a na vstup připojíme signál barevných pruhů. L9 a L10 nastavíme na osciloskopu připojeném na vývod 3 IO1 minimální dvojité kontury signálu B-Y nebo na obrazovce BTVP minimáľní strukturu PAL (párování řádků). Změna indukčnosti cívky L₁₀ je potřebná při malém rozsahu ladění L₉. Poté připojíme na vstup signál barevných pruhů NTSC 4,4 a na vývod 17 IO1 napájecí napětí, takže se vypnou barvy a nastavení zabarvení. R₄₀ nastavíme na osciloskopu připojeném na vývod 1 IO1 minimální amplitudu nebo minimální dvojité kontury výstupního signálu R-Y, nebo na obrazovce BVTP nastavíme minimální strukturu

Nastavení dekodéru při NTSC 3,5.

PAL. Odpojením napětí z vývodu 28 a 17 lO₁ je ukončeno nastavení dekodéru PAL.

Na vývod 26 IO₁ připojíme napětí větší než 9 V a vývod 17 IO₁ uzemníme, takže je zapnuta barva a odpojen signál burstu od PLL. Na vstup filtru připojíme signál FBAS nebo chrominační signál NTSC 3,5. C₁₃ zastavíme na obrazovce BVTP "probíhání" barev nebo na vývodech 1 a 3 IO₁ nastavíme minimální zázněje signálů R-Y a B-Y. Odpojením napětí z vývodu 26 a "odzemněním" vývodu 17 IO₁ je ukončeno nastavení dekodéru na signál NTSC 3,5.

Nastavení dekodéru při SECAM.

Napájecí napětí připojíme na vývod 27 IO₁ a signál barevných pruhů na vstup filtru. Dále napájecí napětí připojíme na vývod 23 IO₁ a tím zapojíme identifikaci H. Voltmetr se vstupním odporem 10 MΩ zapojíme mezi vývod 21 a zem a otáčením L₇ nastavíme maximum. Na vývod 1 IO₁ připojíme osciloskop a L₁₁ nastavíme pruh bílé barvy na úroveň zatemňovacího impulsu H. Osciloskop přepojíme na vývod 3 IO₁ a L₁₂ nastavíme pruh bílé barvy na úroveň řádkového zatemňovacího impulsu. Odpojíme spoje z vývodu 23 a 27 IO₁ a tím je ukončeno nastavení na SECAM. Parametry IO₁ jsou uvedeny v tab. 7.

Obvod pro zlepšení strmosti hran signálů R-Y a B-Y a pro zpoždění jasového signálu Y, TDA4565

Kvalita obrazu u současných systémů je určena převážně šířkou přenášeného pásma, která je dána příslušnou normou. Kvalitu obrazu na straně přijímače lze zlepšit plným využitím šířky přenášeného pásma, rychlostní modulací vychylování H nebo ovlivněním signálu, jako je např. zlepšení strmosti

náběžných hran rozdílových barevných signálů, které mají v současných systémech šířku pásma rovnající se asi jedné pětině šířky přenášeného jasového signálu, čemuž odpovídá i nižší ostrost barevného obrazu. Vzhledem ke kompatibilitě s černobílým obrazem není možné volit větší šířku pásma rozdílových signálů, takže se spíše jedná o kolorovaný barevný obraz, než o jeho věrnou reprodukci. To je nejlépe patrné po připojení signálu barevných pruhů, kde přechody mezi hranami barev jsou neostré, protože rozdílový barevný signál se značně mění, kdežto jasový zůstává téměř konstantní. Nejvíce je to patrné na přechodu ze zeleného do purpurového pruhu, kde se signál R-Y a B-Y mění o 1,18 jednotky (vztaženo k maximálnímu jasovému signálu, kdy Y = 1), kdežto jasový signál se mění jen o 0,18 jednotky. Z menší šířky R–Y a B–Y vyplývá i pětinásobně delší náběžná hrana (přechod) než je u jasového signálu, takže pro zvětšení ostrosti barevného obrazu je nutné zlepšit strmost náběžné hrany rozdílových signálů, k čemuž se využívá obvod CTI (Colour Transient Improvement) TDA4565, který lze použít ve všech BTVP s vyvedený mi signály R-Y a B-Y a při všech normách chrominančního signálu.

Základní činnost IO2

Na obr. 11 je činnost zřejmá z časových průběhů jasového a rozdílového barevného signálu. Strmost náběžných hran jednotlivých signálů je dána šířkou přenášeného pásma a pro jasový signál Y je t_ry≈150 ns, pasma a pro jasovy signal Y je t_{rY}≈150 ns, pro rozdílové signály je t_{rFD}≈800 ns. Abychom mohli zobrazit signály R, G, B, vytvořené ze signálů Y, R–Y a B–Y, musí střed náběžné hrany signálu Y souhlasit se středem náběžných hran signálů R–Y a B–Y – proto musíme signál Y zpozdít asi o 325 ns. (t_w) vinutým zpožďovacím vedením. Jakost obrazu lze však zlepšit zlepšením strmosti náběžných hran signálů R-Y a B-Y takto: Signál z detektoru hran je dodáván jen tehdy, je-li strmost náběžné hrany jednoho ze signálů R-Y nebo B-Y nad danou absolutní hodnotou. Spínacím signálem z detektoru hran se uzavírá kanál R-Y nebo B-Y po dobu t_{VFD} , která je přibližně stejná jako t_{VFD} . Během t_{VFD} je na výstupech R-Y a B-Y signál, který byl před uzavřením na paměťových kondenzátorech. Po době typo se otevrou kanály R-Y a B-Y. Doba typo odpovídá době výměny náboje na paměťových kondenzátorech a je shodná s dobou náběžné hrany jasového signálu. I v tomto případě musí souhlasit středy náběžných hran signálů Y, R-Y a B-Y, takže signál Y je potřebné zpozdit o dobu $t_{\rm VY}=t_{\rm VFD}=t_{\rm rFD}\approx 1~\mu {\rm s.}$ K tomu účelu je v l ${\rm O}_2$ vytvořeno zpožďovací elektronické vedení, jehož zpoždění lze měnit po skocích. Toto zpožďovací vedení je realizováno zpožďovacími články 2. řádu, v nichž jsou indukčnosti realizovány gyrátory. Kromě vazebního kondenzátoru potřebuje zpožďovací vedení Y jeden rezistor a v kanálech R-Y a B-Y jen tři kondenzátory.

Obvod pro zlepšení strmosti hran slgnálů R-Y a B-Y. Obvod CTI TDA4565 je sestaven ze dvou částí, které mají společné jen napájení a zem. V první části je obvod pro zlepšení strmosti hran signálů R-Y a B-Y a v druhé části je obvod pro zpoždění signálu Y. V každém kanálu R-Y a B-Y je emitorový sledovač, spínač analogového signálu a výstupní převodník impedance. Na výstupu analogových spínačů jsou paměťové kondenzátory C46 a C49, na nichž je "zapamatován" vstupní signál před odpojením analogového spínače. Vstupní odpor převodníku impedance je tak veliký, že se napětí na C₄₆, C₄₉ prakticky po dobu 800 ns nemění. Výstupní odpor spinače je tak malý, že při sepnutém spínači analogového signálu se C₄₆, C₄₉ vybíjejí s časovou konstantou, rovnou maximální době náběžné hrany jasového signálu Y.

Analogové spínače jsou řízeny impulsním signálem, který je odvozen ze signálů R–Y a B–Y. Za vstupními převodníky jsou zapojeny detektory hran. Řídicí signál pro spínače analogového signálu vzniká tehdy, je-li absolutní hodnota jednoho ze signálů R–Y a B–Y překročena a rozhodující veličinou pro spínání a rozpínání spínačů je větší absolutní strmost hrany jednoho z těchto signálů. Oba spínače analogového signálu jsou ovládány jedním impulsním signálem z tvarovače impulsů, čímž se dosáhlo koincidence IO₂ při "zestrmnění" hran signálů R–Y a B–Y.

Detektor hran je tvořen derivačním článkem a dvoucestným usměrňovačem; derivačním článkem RC je horní propust s časovou konstantou menší než 800 ns a její výstupní napětí je časově úměrné diferenciálnímu podílu vstupních signálů R-Y a B-Y. Rezistor propusti (100 Ω) je součástí IO a kondenzátor je připojen z vnějšku. Horní propust v IO2 je tvořená rozdílovým zesilovačem, na jehož jeden vstup je veden přímý signál a na druhý vstup signál přes dolní propust, takže pro kondenzátor potřebujeme jen jeden vývod (vývody 3a 4 IO2). Signál pro dvoucestný usměrňovač je veden jednak přímo a jednak přes invertor z emitorového zesilovače. Výstupy z emitorových sledovačů jsou zapojeny paralelně a ve funkci je ten. který má "kladnější" vstupní signál. Jak při náběžné, tak i sestupné hraně signálů R-Y a B-Y je na výstupu usměrňovače kladné napětí, jehož velikost je závislá na absolutní strmosti hran. Následný tvarovač impulsů odvozuje z derivovaného signálu R-Y a B-Y řídicí signál pro analogové spínače – ten však vzniká jen při dostatečně strmých náběžných hranách signálů R-Y a B-Y.

Tvárovač impulsů je tvořen horní propustí (R_H, C_H, D_H), nelineárním rezistorem a komparátorem. Nelinearita horní propusti je zajištěna diodou D_H, připojenou paralelně k R_H, takže časová konstanta je rozdílná při náběžné a sestupné hraně signálu z dvoucestného usměrňovače. Při náběžné hraně je o něco delší než t_{rFD} (asi 800 ns), kdežto při sestupné hraně je podstatně kratší, aby tvarovač impulsů byl co nejdříve v klidovém stavu a tak mohla být zpracována kladná

hrana signálu.

Tato horní propust je realizována integrovaným rezistorem $R_{H}=2,7~k\Omega$ a kondenzátorem na vývodu 5 IO₂. Výstupním napětím komparátoru jsou ovládány analogové spínače, které jsou při úrovní H vypnuty a při úrovni L zapnuty. Komparátor je rozdílový zesilovač, v němž se výstupní napětí horní propusti porovnává s napětím prahovým U_{T} . Pokud je výstupní napětí z propusti větší než U_T, je na výstupu komparátoru úroveň H (v opačném případě úroveň L). Při menší strmosti hran signálů R–Y a B–Y bude menší i impuls na výstupu druhé horní propusti a ve stejném poměru se mění automaticky U_{T} , takže délka výstupního impulsu komparátoru bude konstantní a nezávislá na strmosti hrany vstupního signálu. Spínací impuls má při dostatečně velké a strmé změně signálu délku T_S≈800 ns, která je o něco delší než minimální doba t_{FD} signálů R–Y a B–Y. Pod danou strmostí hrany (du/dt \approx 10 5 V/s) vstupního signálu komparátor na tento signál nereaguje a spínač zůstává sepnutý. Obvod IO₂ reaguje tedy jen na strmé hrany, tj. hrany, které se vysekávají z obrazu řádky, nereaguje na málo strmé hrany, které se projevují jako změna sytosti obrazu.

Výstupní nápětí obvodu CTI je shodné s napětím na C₄₆, C₄₉, které jsou připojeny **n**a výstup analogových spínačů. Obvodem CTI se náběžná hrana signálů R-Y a B-Y zkrátí z 800 ns na asi 150 ns. což je doba shodná s dobou u jasového signálu a přechod mezi barvami bude ostřejší než přechod mezi černou a bílou. Při menší strmosti hran, jako např. při sestupné hraně barevného klínu, se mění jen první část hrany, kdy se po částečném zpoždění výstupní signál R-Y a B-Y vrací na původní úroveň, což se prakticky neprojeví v obraze. Při zmenšující se strmosti hran se zmenšuje i dílčí zpoždění až do doby, kdy zmizí úplně. Obvod CTI v IO2 pracuje při libovolné polaritě signálů R-Y a B-Y, kdežto pro signál Y musí mít dodrženu danou polaritu synchronizačních impulsů v signálu BAS. Napětí barvonosné na signálu R-Y a B-Y na vývodech 3 a 5 lO₂ musí být menší než 20 mV.

Zpožďovací obvod jasového signálu Y. Pro zlepšení strmosti náběžných hran signálů R-Y a B-Y jsou tyto signály na výstupu obvodu CTI zpožděny asi o 800 ns, a proto je vzhledem k požadované koincidenci signálů R-Y, B-Y a Y nutné o tuto dobu zpozdit i signál Y buď vinutým zpožďovacím vedením, nebo fázovacími články, kterých je využito v IO2. Jejich přenosová funkce při sinusovém signálu je kmitočtově závislá, amplitudová charakteristika je kmitočtově nezávislá. Pro nezkreslený přenos signálu je po-žadováno, aby uvnitř přenášeného pásma nastávaly jen nepatrné změny zpoždění, takže fáze se musí zmenšovat rovnoměrně s kmitočtem. Při realizaci takového fázovacího článku je signál rozdělen do dvou větví (mezi vstupem a výstupem), jako např. u křížového nebo můstkového článku.

Fázovací články prvního řádu lze realizovat obvodem RC, avšak ty nesplňují požadavek na potřebnou dobu zpoždění a jeho malé změny až do oblasti mezního kmitočtu - proto byly v IO2 použity fázovací články druhého řádu, u nichž se v oblasti pólu uplatní činitel jakosti Q. Pro fázovací článek druhého řádu lze použít aktivní obvod RC nebo kromě kondenzátorů a rezistorů i cívky.

V aktivním filtru RC je nutné pro náš případ použít operační zesilovače s jednotkovou šířkou pásma větší než 5 MHz, které lze jen těžko realizovat s ostatními součástkami na jednom čipu. Proto je v IO₂ použit fázovací článek druhého řádu v můstkovém zapojení, u něhož je potřebná indukčnost nahrazena gyrátorem, což je vlastně čtyřpól, u kterého se kapacita na výstupu projevuje na jeho vstupu jako indukčnost. Když i na vstup připojíme kondenzátor (kapacitu), dostaneme rezonanční obvod, jehož jakost je určena rezistory na vstupu a výstupu gyrátoru, který lze realizovat dvěma převodníky napětí/ proud (napětím řízené zdroje proudu). Jeden z převodníků je zapojen jako invertující zesilovač a gyrátor může být buzen z vnějšího zdroje do jeho neinvertujícího vstupu.

Převodníky napětí/proud jsou realizovány v IO₂ jako rozdílové zesilovače a potřebné kondenzátory jsou vytvořeny v hradlové vrstvě a jejich kapacita je závislá na předpětí hradlové vrstvy. Předpětím hradlové vrstvy pak lze měnit zpoždění t_D fázovacího článku. Protože i potřebné rezistory jsou součástí IO₂, nejsou třeba již žádné vnější součástky.

Rozdílové zesilovače v IO₂ jsou tvořeny čtveřící tranzistorů. V IO₂ je 11 buněk se zpožděním po 90 ns a každá buňka je sestavena ze čtyř tranzistorů, čtyř rezistorů a dvou kondenzátorů. Napětím na vývodu *15* IO₂ je ovládán elektronický přepínač zpoždění,

kterým lze měnit dobu zpoždění. Uzemněním vývodu 13 lO₂ se dá zpoždění prodloužit o 180 ns. Nezpožděný signál Y je přes vývod 17 lO₂ přiveden na fázovací články a přes emitorový sledovač na vývod 12 lO₂. Před posledním fázovacím článkem je připojen další emitorový sledovač s výstupem na vývodu 11 lO₂, takže zpoždění na tomto vývodu je o 180 ns kratší než na vývodu 12 lO₂. Vývod 11 lO₂ lze použít k řízení rychlostní modulace ve vychylování H.

Referenční rezistor na vývodu 14 IO2 určuje předpětí hradlové vrstvy s kondenzátory, takže výsledné zpoždění je jen málo závislé na dotaci této vrstvy, na geometrické struktuře IO, na teplotě a napájecím napětí. Signál Y se vstupní úrovní 1 V (mv) je na vstupu kanálu Y upraven na úroveň, vhodnou pro vnitřní zpracování a na výstupu kanálu opět zesílen, takže celkový útlum ze vstupu na výstup kanálu Y je 7 dB. Aby se neměnilo zpoždění ss složkou signálu Y, je signál Y přiveden z výstupu výhybky chrominance-jas na vývod 17 IO2 přes C38. Poloha signálu není tak závislá na obsahu obrazu a neposouvá se pracovní bod v kanálu Y, což by mohlo způsobit zkreslení signálu.

Ve vstupním stupni kanálu Y je signál klíčován synchronizačními impulsy, které jsou ve vstupním signálu BAS záporné. Během doby obrazu je vybíjecí proud $I_{17}=8~\mu A$ a při synchronizačním impulsu je nabíjecí proud $-I_{17}=0,1~mA.~C_{38}~musí~mít tak velkou kapacitu, aby se napětí na něm během nabíjení a vybíjení jen málo měnilo vůči amplitudě signálu Y = 1 V. Vnitřní odpor zdroje signálu BAS by měl být menší než 100 <math>\Omega$, aby během klíčování na něm nevznikal rušivý úbytek napětí. Z vývodů 11 a 12 IO_2 lze odebírat proud až 1 mA, do vývodů může téci proud 0,3 mA.

Praktické zapojení TDA4565 je na obr. 11 jasový signál Y je přes C_{38} přiveden na vývod 17 IO_2 , přes C_{37} je přiveden signál R–Y na vývod 1 IO_2 a přes C_{35} signál B–Y na vývod 2 IO_2 . Zpracované signály R–Y a B–Y jsou vyvedeny na vývod 7 a 8 IO_2 a zpožděný signál Y' se zpožděním t_D na vývod 12 IO_2 a Y" se zpožděním t_D = 180 ns na vývod 11 IO_2 . C_{43} , C_{44} jsou derivační kondenzátory detektorů hran a C_{45} na vývodu 5 IO_2 tvaruje impuls řídicího signálu.

Na vývodu 6 a 9 IO $_2$ jsou připojeny paměťové kondenzátory C_{48} a C_{49} se sériovými rezistory R_{48} , R_{49} , které tlumí zákmity spínačů analogového signálu. R_{46} na vývodu 14 IO $_2$ je referenční odpor kompenzačního obvodu. Napájecí napětí na vývod 10 IO $_2$ je přivedeno přes R_{47} a filtrováno C_{39} , C_{41} .

Dobu zpoždění nastavujeme děličem na vývodu $15\,\mathrm{IO_2}$ a lze ho měnit v rozsahu 720 až 990 ns. Při $U_{15}=0$ až 2,5 V je $t_\mathrm{D}=720$ ns, při $U_{15}=3,5$ až 5,5 V je $t_\mathrm{D}=810$ ns, při $U_{15}=6,5$ až 8,5 V je $t_\mathrm{D}=900$ ns při $U_{15}=9,5$ až 12 V je $t_\mathrm{D}=990$ ns. Při $U_{15}=0$ až 2,5 V teče z vývodu $15\,\mathrm{IO_2}$ do děliče proud $25\,\mu\mathrm{A}$, při $U_{15}=3,5$ až 5,5 V proud $16\,\mu\mathrm{A}$ a při $U_{15}=6,5$ až 8,5 V proud $8\,\mu\mathrm{A}$.

Kmitočtová charakteristika signálů R–Y má zdůraznění asi o 0,2 dB při 1,6 MHz a pokles –3 dB na 2,6 MHz. Protože hlavní kmitočty signálů R–Y a B–Y leží pod kmitočtem 2,6 MHz, IO₂ neovlivňuje jejich přenos. Překmit signálu Y' a Y" je asi 6 %, takže zkreslení signálu je malé. Signál Y' je potlačen v oblasti nízkých kmitočtů asi o 7 dB a na kmitočtu 4 MHz asi o 5 dB. Šířka pásma kanálu Y je pro pokles o 3 dB asi 7 MHz. Impulsní vlastnosti a kmitočtová charakteristika je částečně závislá na době zpoždění.

Parametry TDA4565 jsou uvedeny v tab

Videokombinace TDA4580

Videokombinace TDA4580, IO₃ na obr. 11, je určena pro řízení a zpracování videosignálů v BTVP, které mají vyvedeny signály R-Y a B-Y. Na vstupy musí být přiveden signál Y a signály –(R-Y) a –(B-Y), signál SCI. Dále mohou být na jeho vstupy připojeny i signály R, G, B z vnějších zdrojů signálu. IO₃ prakticky nevyžaduje vnější nastavení a výstupními signály je možné budit koncové videozesilovače. IO₃ je vybaven i automatickou regulací "závěrného bodu" obrazovky, která kompenzuje vnější vlivy včetně stárnutí součástek a obrazovky.

Mezi jeho hlavní přednosti patří i to, že vstupní signály R-Y a B-Y, Y a vnější signály R, G, B jsou klíčovány vnitřní úrovní černé, takže jsou na vstupy přiváděny přes vazební kondenzátory. Vnější analogové signály jsou do IO3 vedeny přes přepínače 1 a 2 Přes přepínač 1 jsou přiváděny signály R, G, B z konektoru SCART, který slouží k připojení signálů např. z videomagnetofonu (VCR) nebo počítače. Přes přepínač 2 jsou přiváděny signály R, G, B z dekodéru teletextu. IO3 má i elektronické potenciometry sytosti, jasu a kontrastu, které ovlivňují i signály přiváděné přes přepínač 1 (a kromě toho potenciometr jasu i signálu z dekodéru teletextu). Úroveň černé je stejná jak při TV signálu, tak i při signálech vnějších. Klíčování signálů, zatemňování V a H a časování*v obvodě automatické regulace závěrného bodu je odvozeno z tříúrovňového signálu SCI.

V IO₃ je i obvod kompenzace svodového proudu obrazovky. Měřicí impuls automatické regulace závěrného bodu obrazovky začíná ihned po skončení části impulsu H, obsaženého v signálu SCI. IO₃ umožňuje volit tři různé doby zatemnění pro signály PAL, SECAM a NTSC 3,5/4,4. V IO₃ jsou i dva spínače zpoždění pro nastavení vnějšího zbarvení, nastavitelný omezovač špičkového proudu, omezovač středního proudu obrazovky. IO₃ umožňuje i nastavit koeficient matice pro signály PAL, SECAM a NTSC. Na jeho výstupech R, G, B jsou emitorové sledovače. Šířka pásma IO₃ je 10 MHz.

Popis funkce

Přes C_{48} je na vývod 17 IO_3 přiveden signál -(R-Y) s mezivrcholovou úrovní 1,05 V a přes C_{47} na vývod 18 signál -(B-Y) s mezivrcholovou úrovní 1,33 V. Oba tyto signály mohou mít ss složku, aniž by způsobily posuv úrovně černé. Oba signály jsou během vnitřní úrovně černé upnuty na ss napětí 7,5 V, kterým jsou dobíjeny C_{47} , C_{48} . Aby se v době nabíjení a vybíjení C_{47} , C_{48} proudem 1,5 až 5 μ A rušivě neposouvala úroveň černé, měl by vnitřní odpor zdroje signálů R-Y a B-Y být menší než 500 Ω . Vstupní impedance Z_{17} a Z_{18} je mimo dobu upnutí 5 $M\Omega$ a vstupní proud při zpětném běhu asi O_3 μ A. Dané vstupní úrovně platí pro signál pruhů se 75% sytostí, avšak IO_3 je schopen zpracovat bez zkreslení i signály se 100% sytostí.

Na vývod 15 $\rm IO_3$ je přes $\rm C_{42}$ přiveden signál Y s mezivrcholovou úrovní 0,45 V, který je během vnitřní úrovně černé upnut na ss napětí 7,4 V. Během zpětného běhu je vstupní proud maximálně 300 nA a vstupní impedance $Z_{15}=5$ M Ω . Signály -(R-Y), -(B-Y) a Y jsou přes vnitřní zesilovače vedeny na přepínač 1, kam jsou přiváděny z matice 1 signály R-Y, B-Y a Y, pro něž platí, že: $U_{R-Y}=0,7U_R-0,59U_G-0,11U_B$ a pro $U_R=0,3U_R-0,59U_G+0,11U_B$. Vstupními signály matice 1 jsou signály R1, G1, B1 s mezivrcholovou úrovní 0,7 V (černá – bílá), přivedené přes C_{59} na vývod 14 $\rm IO_3$ (R1), přes C_{60} na vývod 13 $\rm IO_3$ (G1) a přes C_{16} na vývod 12 $\rm IO_3$ (B1), které jsou kličovány vnitřní úrovní černé a upínány na ss 8,2 V. Bě-

Parametr	Min.	Jmen.	Max.
Napájecí napětí, U ₁₀ V			13,2
Napětí na vývodech, 1, 2, 12, 15	0		U ₁₀
Napětí na vývodu 11, U ₁₁ [V]	0		U ₁₀ -3
17, U ₁₇ [V]	0		7 5
Napětí mezi vývody 7 a 6, 8 a 9 V	0		
Proud ± I _{6,9} [mA]	1		15
Ztrátový výkon, Pz [W]			1,1
Jmenovité údaje pro $U_{10} = 12 \text{ V}$			
Napájecí napětí, <i>U</i> ₁₀ V	10,8	12	13,2
Napájecí proud, / ₁₀ mA	1.0,0	35	50
Vstupní napětí R-Y při 75% bar. pruhů, U1 V		1.05	
B-Y U ₂ V		1,33	

Vstupní odpor, $R_{1,2} \mathbf{k}\Omega $	12
Vnitřní předpětí, $U_{1,2} V $	4,3
Útlum zestrm signálu dB	0
Ss výstupní napětí, $U_{7,8}[V]$	4,4
Výstupní proud, -I _{7,8} [mA]	1,2
Trvání přechodného děje sign.	
R-Y, B-Y ns	150
Vstupní napětí signálu Y, U ₁₇ [V] mv	1 1
Vnitřní předpětí, <i>U</i> ₁₇ [V]	1,5
Útlum signálu Y na výstupu 11 dB	8
12 dB	7
Ss výstupní napětí, U ₁₁]V]	1,2
Ss výstupní napětí, $U_{12} V $	10,3
Výstupní proud, -I ₁₁ , -I ₁₂ [mA]	1,2
	· · · · · · · · · · · · · · · · · · ·

hem řádkového zpětného běhu je vstupní proud I_{12} , I_{13} a I_{14} maximálně 300 nA a vstupní impedance Z_{12} , Z_{13} a $Z_{14} = 5 \, \mathrm{M}\Omega$. Vstupy R1, G1 a B1 jsou ovlivňovány potenciometry sytosti, jasu a kontrastu. Přepínač 1 je ovládán napětím z konektoru SCART (jeho vývod 8) a přes vývod $11\, \mathrm{IO_3}$, kdy při $U_{11}=0$ až 0,4 V je připojen signál z $\mathrm{IO_2}$ a při $U_{11}=0,9$ až 3 V signály R-Y, B-Y a Y z matice 1. V $\mathrm{IO_3}$ je mezi vývody 11 a 24 zapojen rezistor

Za přepínačem 1 jsou zapojeny elektronické potenciometry kontrastu a jasu v kanálu Y a kontrastu a sytosti v kanálech R-Y a B-Y. Potenciometry v kanálech Y, R-Y a B-Y lze měnit kontrast změnou napětí 2 až 4 V přivedeného na vývod 19 IO_3 . Maximální kontrast je při $U_{19} = 4 \text{ V}$. Při napětí $U_{19} = 3 \text{ V}$ je potlačen kontrast o 6 dB, při $U_{19} = 2.2 \text{ V}$ o 12 dB a při $U_{19} = 2.2 \text{ V}$ o 22 dB oproti kontrastu při $U_{19} = 4 \text{ V}$. Vstupní odpor je asi 5 M Ω a vstupní proud $I_{19} = 300 \text{ nA}$. Aby se při velkém jasu nezničila obrazovka,

zůstává kontrast při U_{19} <2 V konstantní. Do obvodu regulace kontrastu je připojen omezovač středního a špičkového proudu paprsku obrazovky. Výstupní signály jsou během špiček proudu paprsku omezovány zmenšením kontrastu. Úroveň omezení výstupních signálů je určena napětím U9 na vývodu $9\,lO_3$, kterou lze nastavit R_{67} v rozsahu 5 až 11 V. Při překročení U_9 je aktivován omezovač špičkového omezení po prvním řádku. Vnitřní ss napětí $U_9 = 9$ V a vstupní odpor ≈10 k Ω při $U_9>9$ V. Jsou-li napětí U_1 na vývodu $1\,\mathrm{IO}_3$, U_3 na vývodu $3\,\mathrm{IO}_3$ a U_5 na vývodu $5\,\mathrm{IO}_3$ větší než U_9 , protéká vývodem $19\,\mathrm{IO}_3$ proud asi 20 mA. Omezovač střední ho proudu paprsku obrazovky při překročení úrovně U₂₅ = 8,5 V na vývodu 25 IO3 začne omezovat na minimum kontrast podle nastaveného jasu a napětí přiváděné na vývod 19 IO₃ se odpojí. Změna napětí pro úplné omezení kontrastu je d $U_{25} = 1$ V a vstupní odpor $Z_{25} = 2,2$ k Ω při $U_{25} < 6$ V. Řídícím signálem pro vývod 25 IO₃ je napětí, odebírané přes D₁₀ z R₅₁ v koncovém videozesilovači.
 V kanálech R-Y a B-Y jsou zapojeny po-

tenciomety sytosti barev, řízené napětím na vývodu 16 IO₃, kterými můžeme měnit sytost TV signálu a signálů R1, G1 a B1. Maxximální sytost je při $U_{16} = 4 \text{ V}$, při $U_{16} = 3 \text{ V}$ je potlačena o 6 dB a při $U_{16} = 1.8$ V o 50 dB (zhasnutí barev) oproti maximu. Při $U_{16} = 1.8$ až 4 V je vstupní odpor velký a $I_{16} = 10 \, \mu A$.

Za potenciometrem kontrastu v kanálu Y je zapojen potenciometr jasu, který se řídí napětím 1 až 3 V přes vývod 20 IO3. Vstupní proud $I_{20} = 10 \,\mu\text{A}$, jmenovitému jasu odpovídá $U_{20} = 2.2 \,\text{V}$, při změně d $U_{20} = 1 \,\text{V}$ se úroveň černé, vztažená na jmenovitý výstupní černobílý signál, mění o 33 %. Při jmenovitém jasu je úroveň černé 0,3 V (10 % amplitudy jmenovitého signálu) vzhledem k měrné úrovni černé. Vnitřní napětí pro řízení jasu je o 0,7 menší než vnitřní napětí pro řízení kontrastu. Při $U_{20} = 11,5 \text{ V}$ se

vnitřní signál odpojí a úroveň černé odpovídá úrovní pro automatickou regulaci závěrného bodu.

Z potenciometrů jsou signály R-Y, B-Y a Y vedeny do matice 2, kde jsou z nich odvozeny signály R. G. B. Matice 2 je řízena napětím z detektoru úrovně, z něhož je řízen i obvod vnitřní logiky s čítačem, který generuje signály DG (řídí obvod zaclonění), MK (řídí přepínač 2 a druhý obvod zaclonění), MR, MG, MB (řídí zpoždění komparátorů) MT (řídí špičkové omezení ve výstupních zesilovačích R, G, B) a LM (řídí paměť svodového proudu). Napětí na vývodu 8 IO3 rozhoduje o tom, bude-li matice 2 pracovat v systému PAL nebo SECAM a jaká bude doba zaclonění.

Při U₈<4,5 V je matice 2 přepnuta na PAL a maticování probíhá podle rovnic: U_{G-Y} = $-0.51\,U_{\rm R-Y}\,-0.19\,U_{\rm B-Y}$, kde $U_{\rm R-Y}$ a $U_{\rm B-Y}$ jsou výstupní signály dekodéru NTSC s demodulovanou osou typu PAL a danou amplitudou. Při U₈>5,5 V je matice 2 přepnuta na NTSC a maticování probíhá podle rovnic: U G.Y = $-0.43U_{\mathrm{B-Y}}$ $-0.11U_{\mathrm{B-Y}}$; $U_{\mathrm{B-Y}}=U_{\mathrm{B-Y}}$ a $U_{\mathrm{R-Y}}=1.57U_{\mathrm{R-Y}}-0.41U_{\mathrm{B-Y}}$, kde $U_{\mathrm{R-Y}}$, $U_{\mathrm{B-Y}}$ a $U_{\mathrm{G-Y}}$ jsou modifikované barevné signály úměrné signálům demodulovaným s následnými osami a zesílením: (B-Y)' osa demodulátoru 0°, (R-Y)′ osa demodulátoru 115° (při PAL 90°), zesílení: (R-Y)′ = 1,97 (při PAL 1,14), (B-Y)′ = 2,03; $U_{\text{G-Y}} = -0,27U_{\text{R-Y}} = -0,27U_{\text{R-Y}}$ je doba zaclonění od 9 do 15 řádků.

Pokud je snímková část SCI delší a řádky pro regulaci závěrného bodu obrazovky jsou mimo periodu zhášení snímku po dobu 18, 22 nebo 25 řádků, clonění je ukončeno s posledním měřicím impulsem v obvodu regulace závěrného bodu. Při U₈ = 0 až 0,5 V je matice 2 přepnuta na PAL a je nastavena perioda zhášení snímků 25 řádků, při $U_8 = 1,5$ až 2,5 V je perioda zhášení snímků 22 řádků a při $U_8 = 3,5$ až 4,5 V je to 18 řádků. Při $U_8 = 5,5$ až 12 V je matice 2 přepnuta na NTSC a perioda zhášení snímků je 18 řádků. Vstupní proud $I_8 = 50 \,\mu\text{A}$ maximálně.

Z matice 2 jsou výstupní signály vedeny do přepínače 2, kam jsou přes C53 na vývod 23 IO₃ (R2), přes C₅₄ na vývod 22 IO₃ (G2) a přes C_{55} na vývod 21 IO_3 (B2), přivedeny signály R2, G2, B2 z dekodéru teletextu. C_{53} , C₅₄, C₅₅ zabraňují posuvu černé ss složkou signálů R2, G2, B2, které jsou však klíčovány na vnitřní úroveň černé. Vstupní úroveň signálů R2, G2, B2 je pro 100% výstupní signál (úroveň černá-bílá) rovna 1 V, vstupní proud je maximálně 300 nA a vstupní odpor 5 MΩ. Přepínač 2 je ovládán napětím na vývodu 28 IO3. Úroveň černé vkládaných signálů je v době klíčování klíčována na vnitřní úroveň černé signálů z matice (podle nastavení jasu). Při $U_{28} = 0$ až 0,4 V jsou propuštěny na výstup signály z matice 2 a při $U_{28}=0.9$ až 3 V signály z dekodéru teletextu. Mezi vývody 28 a 24 IO_3 rezistor IO k Ω .

Z přepínače 2 jsou signály R, G, B vedeny

do druhého obvodu clonění, řízeného signály DG, MK, MR, MG, MB z obvodu logiky a z jeho výstupu jsou vedeny signály R, G, B do komparátorů řízených z paměti svodového proudu a zpožděnými signály MR, MG, MB z obvodu logiky. Komparátory jsou zapojeny jako sčítačky, v nichž je k signálům R, G, B připočítána řídicí veličina pro regulaci zá-věrného bodu obrazovky. Za komparátory jsou připojeny vstupní zesilovače R, G, B, tvořené emitorovými sledovači s tranzistory n-p-n, které mají v emitorech zapojen společný zdroj proudu 3 mA.

IO₃ má automatickou regulaci závěrného bodu obrazovky. Její katodové proudy jsou přes měřicí tranzistory T₁₈, T₁₉, T₂₀ spojeny s měřicím rezistorem R51, na němž vzniká úbytek napětí úměrný těmto proudům. Ten je přes R₅₂ přiveden na vývod 26 IO₃, kam je připojen vnitřní spínač, který je sepnut v době zatemnění řádků, a který vybljí kondenzátory na měřicím vedení. V obvodu "paměť svodového proudu" je měřičím im-pulsem během 6 až 12 řádků po skončení zpětného běhu měřen svodový proud obrazovky a jeho velikost je zapamatována C50 na vývodu 27 IO₃. Zatemňovací proudy obrazovky v poměru ke svodovým proudům se pro "červený kanál" měří v řádku 15 (signál MR), pro zelený kanál v řádku 16 (signál MG) a pro modrý kanál v řádku 17 (signál MB). Komparátory porovnávají jmenovitý signál (proud zatemnění bez proudu svodového) s okamžitým vnitřním signálem a napětí vzniká rozdílem signálů jsou zapamatována na C₆₂, C₆₄, C₆₅, připojených na vývodu 2, 4, 7 IO₃. Zapamatovaný rozdíl okamžitého a jmenovitého napětí, který je úměrný katodovým proudům, je jako řídicí veličina veden do příslušné sčítačky, kde je přičten k signálům R, G, B. Smyčka regulace závěrného bodu obrazovky se uzavírá přes koncové videozesilovače a obrazovku. Regulačním napětím se posouvají ss úrovně výstupních signálů R, G, B a tím i okamžité řídicí napětí pro katody obrazovky a to tak, že při úrovni černé (s ohledem na svodový proud obrazovky) teče daný proud paprsku (jmenovitý zatemňovací proud) s $U_{ref} = 0.7 \text{ V. Během}$ nažhavování obrazovky mají výstupy R, G, B (vývody 1, 3, 5 IO₃) minimální výstupní napětí. Vložený impuls bílé v době zpětného běhu H je využit pro detekci proudu paprsku.

Když proud paprsku překročí prahovou hodnotu detektoru nažhavení na vývodu 26 IO₃, počne obvodem regulace závěrného bodu téci proud, kterým je zatemněn videosignál, jenž je propuštěn tehdy, až projde řídicí proud celou smyčkou regulace závěrného bodu. První měřicí impuls vzniká v prvním úplném řádku po skončení části signálu SCI, která musí obsahovat minimálně 9 řádkových impulsů. Doba cyklu čítače v logice IO_3 je 63 řádků. Pokud impuls V je delší než 61 řádků, IO se nastaví na podmínku "spínač sepnut", videosignál se zatemní a výstupy signálů R, G, B budou mít minimální napětí (jako během nažhavování obrazovky). Při měření svodového proudu obrazovky jsou všechny tři kanály zatemně-ny až na úroveň ultračerné 1. Pokud je měřená úroveň jen v jednom kanále, jsou zbývající dva "staženy" až na úroveň ultra-černé 1. Změnou jasu se mění úroveň černé v obou kanálech a současně i úroveň ultračerné 2. Řízení jasu je oslabeno v době od 4. do skončení měřicího řádku. Při nepříznivých podmínkách (maximální jas a minimální úroveň ultračerné 2) je úroveň zhášení rovna 30 % amplitudy signálu pod měřicí úrovní závěrného bodu. Pro obvod řízení závěrného bodu je maximální ss vnější napětí U₂₆ = 5,5 V a rozdílové napětí vzniklé z měřicího proudu závěrného bodu a měřicísvodového proudu obrazovky $dU_{26} = 0.5 \text{ V. Pro testovací impuls nažhave-}$ ní obrazvky platí, že max. $U_1 = U_3 = U_5 = U_9 = 8 \text{ V}$ a pro detektor nažhavení U₂₆ = 8 V. Vnitřní odpor v době měření svovového proudu při omezení I27 na 0,2 mA je 400 Ω a maximální vstupní proud mimo dobu řízení závěrného bodu obrazokvy $l_{27} = 500$ nA. Nabíjecí a vybíjecí proud l_2 , l_4 a $I_7 = 0.3$ mA a vstupní proud mimo dobu řízení je 100 nA.

Pro získání různých upínacích, klíčovacích a měřicích impulsů, potřebných v IO_3 , je použit signál SCI, přivedený na vývod $10IO_3$,

který je složen ze tří impulsů, jejichž amplituda je závislá na napájecím napětí. Vnitřní impulsy jsou generovány, dosáhne-li signál SCI na vývodu $10~\rm IO_3$ prahové hodnoty, která je pro zatemňovací impulsy V a H 1,5 V, pro impulsy H 3,5 V a pro klíčovací impuls 7 V. Pro spolehlivé rozdělení signálu SCI jsou zapotřebí, aby zatemňovací impulsy V a H měly úroveň 2 až 3 V, impulsy H pro vnitřní čítač logiky 4 až 5 V a klíčovací impuls byl 7,6 V. Zpoždění náběžné hrany klíčovacího impulsu $t_d=1~\rm \mu s$ a vstupní proud při $U_{10}=0~\rm je~0,1~mA$.

Za komparátory jsou zapojeny emitorové sledovače se společným zdrojem proudu a emitorovým rezistorem. Jmenovitá amplituda výstupního napětí $U_1 = U_3 = U_5 = 3 \text{ V}$ s maximální odchylkou 10 %. Maximální amplituda výstupních signálů je minimálně 4 V. Výstupní odpor $R_1 = R_3 = R_5 = 160$ až 220 Ω. Minimální ss výstupní napětí je 1 V a maximální ss výstupní napětí 10 V. Poměr úrovně zhášení řádků a snímků k úrovni ultračerné 2 (se jmenovitou úrovní černé) je 45 až 55 % amplitudy jmenovitého signálu. Poměr úrovně zhášení řádků a snímků k úrovni ultračerné 1 (včetně úrovně měrného vypínání) je 25 až 35 % amplitudy jmenovitého signálu. Rozsah úrovní vypínání závěrného bodu je 1,5 až 5 V a jmenovitá úroveň je 3 V. Úvedené údaje platí pro kladné výstupní signály R, G, B a imenovité výstupní úrovně. Bude-li amplituda výstupního signálu menší, lze zvětšit rozsah vypínaného závěrného bodu. Kmitočtový rozsah mezi vývody 15-1, 15-3, 15-5, 17-1, 18-5, 14-1, 13-3, 12-5 je 0 až 8 MHz a mezi vývody 23-1, 22-3, 21-5 je 0 až 10 MHz pro -3 dB. Tyto údaje platí pro jmenované nastavení kontrastu a sytosti a jsou měřeny na výstupech bez připojené zátěže. Parametry TDA4580 jsou uvedeny v tab. 9. Příklad desky s plošnými spoji dekodéru barev je na obr. 12.

Výstupní videozesilovače

Z IO₃ jsou výstupní signály R, G, B s amplitudou 3 V vedeny do koncových videozesilovačů, které zesilují vstupní signál asi na 100 V, potřebných pro vybuzení katod obrazovky. Koncové videozesilovače na obr. 11 pracují ve třídě AB. Dále si popíšeme funkci zesilovače pro červenou barvu, neboť zesilovače pro zelenou a modrou barvu mají stejnou funkci.

Signál z vývodu 1 IO₃ je veden přes R₇₁, R₇₈, C₆₈ na emitorový sledovač T₈, zajišťující potřebné proudové zesílení na vyšších kmitočtech a velký vstupní odpor. Kondenzátorem C₆₆ jsou kompenzovány rozptylové kapacity plošných spojů. R₆₉, R₇₀ a R₇₁ nastavujeme stejnou výstupní amplitudou ve všech třech kanálech a to tak, že při stažené sytosti barev na minimum dosáhneme černobílého obrazu na obrazovce. Katody obrazovky jsou buzeny přes tranzistory T₁₈, T₁₉ a T₂₀, jejichž kolektory jsou spojeny s měřicím rezistorem R₅₁. Kolektor T₁₈ je na R₅₁ připojen přes ochranný rezistor R₉₃ a z jeho emitoru je buzena přes R₉₆ červená katoda

Tab. 9. Parametry TDA4580

Parametr	Min.	Jmen.	Max.
Napájecí napětí, <i>U</i> ₆ V Napětí vývodů <i>2, 4, 7, 9, 12</i> až <i>23, 25, 27</i> 10, <i>U</i> ₁₀ V 26, <i>U</i> ₂₆ V 8, 11, 28 V Proud vývodů 1, 3, 5 střední [mA] špičkový mA mv	0 0 0 -0,7 -0,5		13,2 U ₆ U ₆ + 0,7 U ₆ + 0,7 U ₆ 3
19 střední [mA] 26 [mA] Ztrátový výkon, Pz [W]			5 1 2
Jmenovité údaje pro <i>U</i> ₈ = 12 V			
Rozsah napájecího napětí, U_6 [V] Napájecí proud, I_6 [mA] Vstupní signál $-(R-Y)$, U_{17} [V] mv $-(B-Y)$, U_{18} [V] mv	10,8	110 1,05 1,33	13,2
Vstupní proud při přepínání, $ I_{17}, I_{18} $ [nA] Vstupní odpor R_{17} , R_{18} [M Ω] Vnitřní předpětí během klíčování, $U_{17,18}$ [V]	5	7,5	300
Vstupní signál Y, U_{15} [V] Vstupní proud při přepínání, $ I_{15} $ [nA] Vstupní odpor, R_{15} [M Ω] Vnitřní předpětí při klíčování, U_{15} [V]	5	7,4	300
Spínací napětí pro Y, R–Y, B–Y, U_{11} [V] R1, G1, B1, U_{11} [V] Vnitřní odpor, R_{11} [k Ω] Vstupní signál R1, G1, B1 (úrov. černá–bílá),	0,9	10	3
$U_{12},~U_{13},~U_{14}~[V]$ Vstupní proud při přepínání, $ I_{12,13,14} $ [nA] Vstupní odpor, $R_{12,13,14}$ [M Ω] Vnitřní předpětí při klíčování, $U_{12,13,14}~[V]$	5	0,7	300
Maximální kontrast, U_{19} [V] Jmenovitý kontrast (-6 dB pod max.), U_{19} [V] Potlačení kontrastu při U_{19} = 2 V (pod max.) dB]		4 3 22	3
Vstupní proud pro $U_{19}=2$ až 4 V, $-I_{19}\left[\mu \mathbf{A}\right]$ Vnitřní předpětí, $U_{9}\left[\mathbf{V}\right]$ Vstupní odpor při $U_{9}{>}9$ V, $H_{9}\left[\mathbf{k}\Omega\right]$ Řídicí proud na vývodu 19 při špičkovém		9 10	٥
omezení ($U_{1,3,5}>U_{19}$), I_{19} [mA] Mez omezování kontrastu při jeho max. nastavení, U_2 Rozsah úplného zmenšení kontrastu, d U_{25} [V] Vstupní odpor při $U_{25}<6$ V, R_{25} [k Ω]	 5 V	20 8,5 1 2,2	

ramitoctovy rozsam emitoru je buzena pres n ₉₆	Cerv	ena ko	iloua
Maximální sytost, U ₁₆ V	ı	4	ľ
Jmenovitá sytost (-6 dB pod max.), $U_{16}[V]$		3	1
	1	ŭ	i
Potlačení sytosti při $U_{16} = 1.8 \text{ V, vztaženo}$	{		
na 100 kHz [dB]	50		
Vstupní proud při $U_{16} = 1.8$ až 4 V, $I_{16} [\mu A]$		2	10
Rozsah řízení jasu, $U_{20}\left[V\right]$	1		3
Jmenovitý jas, <i>U</i> ₂₀ [V]		2,2	
Vstupní proud při $U_{20} = 1$ až 3 V, $-I_{20} [\mu A]$			10
Změna úrovně černé pro $U_{20} = 1$ až 3 V ke jme-			
novitému výst. signálu pro d U_{20} = 1 V [%]		33	
Signál vypnut a úroveň černé = měřicí			
úrovni vypnutí, <i>U</i> ₂₀ V	11,5		
Vstupní signál R2, G2, B2 pro 100%			. 1
výst. signál (černá-bílá), U _{21,22,23} V		1	
Vstupní proud při přepínání, I21,22,23 [nA]			300
Vstupní odpor, $R_{21,22,23}$ $ M\Omega $	5		
Spínací napětí pro sign. Y, R-Y, B-Y, R1,			
G1, B1, signály z matice 2, U_{28} [V]			0,4
Spínací napětí pro signály R2, G2, B2, $U_{28} V $	0,9		3
Vnitřní odpor, R_{28} $ \kappa\Omega $	0,3	10	ľ
Màximální vnější ss napětí, U_{26} [V]	5,5	,,,	
Rozdíl, způsobený měřicím vypínacím	5,5		
		٥٠	
proudem a svodovým proudem, d <i>U</i> ₂₆ [V]		0,5	8
Testovací impuls nažhavení, $U_{1,3,5}[V]$		U ₉	°
Práh detektoru nažhavení, <i>U</i> ₂₆ [V]		8	1 1
Vnitřní odpor při měření svod. proudu, $R_{27}[\Omega]$		400	
Vstupní proud při řízení cyklu vypínání, l ₂₇ nA			500
Nabíjecí a vybíjecí proud, l _{2,4,7} mA		0,3	i
Vstupní proud mimo dobu řízení, I _{2,4,7} [mA]	İ	0,1	l i
Spínací napětí matice PAL a zhášení V	}		
po dobu 25 řádků, <i>U</i> ₈ [V]		0	0,5
22 řádků	1,5	2	2,5
18 řádků	3,5	4	4,5
Spínací napětí matice NTSC a zhášení V			1
po dobu 18 řádků, <i>U</i> ₈ V	5,5	6	12
Vstupní proud, <i>l</i> ₈ μA			50
Amplit. zatemň. impulsů H a V v SCI, U_{10} V	2	2,5	3
Amplituda impulsu H pro čítač, U ₁₀ V	4	4,5	5
Amplituda klíčovacího impulsu, U_{10} V	7,5		
Zpoždění náběžné hrany klíč. impulsu, t _d µs		1	
Vstupní proud pro $U_{10} = 0 \text{ V}, -I_{10} \text{ mA}$			0,1
Amplituda výstupních signálů, U _{1,3,5} V	1	3	'
Rozdíl mezi kanály RGB %	1		10
Max. amplituda výst. signálů, U _{1,3,5} V	4	1	
Vnitřní zdroj proudu, $I_{1.3.5}$ [mA]		В	1
Výstupní odpor, $R_{1.3.5}[\Omega]$		160	220
Minimální výstupní napětí, <i>U</i> _{1,3,5} [V]		1	1 -
Maximální výstupní napětí, U _{1,3,5} [V]		10	
Kmitočtový rozsah pro signál Y, R–Y, B–Y,		Ι 'Ŭ	l
R1, G1, B1 MHz	0	1.	8
R2, G2, B2 MHz	٦٥	1	10
11E, GE, DE [MI IE]			

obrazovky. Pokud jsou koncové stupně na objímce obrazovky, je $R_{96} = 1.5 \text{ k}\Omega$ a chrání koncový stupeň před zničením vysokonapěťovými výboji v obrazovce. Přes diody D₄, D₅ teče během uzavření T₁₅ nebo T₁₈ nabíjecí nebo vybíjecí proud do zatěžovacích nebo ze zatěžovacích kondenzátorů, C₅₁ potlačuje špičky na měřicím signálu a jeho kapacita musí být volena tak, aby náběžná hrana měřicího signálu přecházela bez zákmitů do vrcholu měřicího impulsu. R₈₅ je nastavena zpětná vazba a tím i zesílení koncového videozesilovače, který je zapojen jako invertující operační zesilovač. Na emitoru T₁₁ je napětí asi 3 V přivedené z T₁₄, který je zapojen jako emitorový sledovač s malým výstupním odporem, což je potřebné pro dosažení minimálních přeslechů mezi jednotlivými koncovými videozesilovači a pro dosažení dostatečného zesílení ve smyčce. Pracovní bod T₄ je nastaven R₈₁ a R₈₃. Aby tento zdroj měl malý výstupní odpor i při vysokých kmitočtech, je blokován C₇₆. Pro kompenzaci záporného svodového

proudu obrazovky, který regulační obvod závěrného bodu obrazovky nemůže zpracovat, je vytvořen posouvací proud 4 μA rezistorem R₉₉ a D₁₁ v přívodu ke katodě obrazovky. R₁₀₀ i při uzavřeném koncovém stupni vytváří na D₁₁ požadovaný úbytek napětí, vytvari na ±11 pozadvaný utytek naper, takže D₁₁ trvale teče určitý proud. Zesílení je jmenovitě 33 a je dáno poměrem R_{8s}/ (R₇₈+R₇₁) a lze ho měnit od 23 do 46. Ss napětí na emitoru T₁₈ je závislé na emitorovém napětí T₁₄ a ss napětí na vývodu 1 IO₃. Při správné regulaci závěrného bodu se napětí na katodě obrazovky nastaví na napětí úrovně černé $U_{\rm KS} = U_{\rm KR} = -dU_{\rm RS}$, kde $U_{\rm KR}$ je závěrné napětí obrazovky a d $U_{\rm RS}$ je rozdíl mezi UKR a UKS. Příklad provedení plošných spojů koncových videozesilovačů a obvodů obrazovky je na obr. 13.

Tab 10 Parametry TDAR443

Převodník D/A, TDA8442

IO₄ na obr. 11 je převodník D/A pro řízení analogových funkcí, sestavený ze čtyř převodníků D/A, rozhraní I²C, jednoho výstupního portu s velkým výstupním proudem (tranzistor n-p-n s otevřeným monitorem) a dvou výstupních spínacích portů (tranzistory n-pn s pracovními rezistory). IO₄ je řízen přes sběrnici I²C (podřízený přijímač) a v klido-vém stavu má zmenšený příkon. Analogové veličiny se řídí z výstupů čtyř 6bitových převodníků D/A, u nichž je výstupní veličina závislá na jejich nastavení přes sběrnici l2C. Port 1 lze použít pro přepínání vnějších a vnitřních signálů R, G, B; je schopný dodat proud až 14 mA. Dva výstupní porty P2 a P2N lze použít pro přepínání mezi PAL a NTSC. Oba tyto výstupy jsou schopny dodat proud až 2 mA s úbvtkem napětí menším než 0,4 V. Když je jeden výstup sepnut, je druhý rozpojen a obráceně. Provoz při zmenšeném příkonu je při napájecím napětí menším než 8,5 V, kdy jsou všechny registry nulovány do definovaného stavu. Při zápisu je IO₄ řízen ze sběrnice I²C telegramem:

adresa modulu byte instrukcí S10001000A 17 16 15 14 13 12 11 10 A

> byte dat/řízení D₇ D₆ D₅ D₄ D₃ D₂ D₁ D₀ A P

Potvrzení A je IO₄ generováno pouze tehdy, je-li přijmuta platná adresa a IO4 není ve stavu "zmenšený příkon" (UB>8,5 V). Při řízení jsou nastaveny instrukční byte POD (výstup dat z portu) a odpovídající byte data/ řízení – DACK (řízení převodníků D/A).

 D_2 D_1 D_0 kde - =bit neošetřen.

POD bit P2/P2N

Při naprogramované "1" je výstup P2 odpojen a výstup P2N sepnut (úroveň L). Při naprogramované "0" vypnut P2N, sepnut P2 nebo "zmenšený příkon". POD bit P1

Při naprogramované ,,1" výstup P1 zapojen a při "0" vypnut (velká impedance), nebo a pri "u vypnat (vo... "zmenšený příkon". DACX bit AX5 až AX0

Převodník D/A vybrán bity X1 a X0 a výstupní napětí převodníku D/A/programováno bity AX5 až AX0; pro nejmenší hodnotu jsou všechna data AX5 až AX0 rovna ,,0" anebo je aktivováno "zmenšení příkonu"

Parametry TDA8442 jsou v tab. 10 a příklad plošných spojů spolu s IO1, IO2 a IO3 je na

Dekodér teletextu

Dekodér teletextu je zařízení, které má z přijímaného složeného videosignálu oddělit a zpracovat teletextovou informaci. Současný dekodér teletextu je sestaven z videoprocesoru, obvodu EURO CCT a paměti RAM pro zápis stránek. Některé dekodéry teletextu mívají i svůj mikropočítač. Zapojení dekodéru teletextu je na obr. 14. Vstupní kombinovaný videosignál FBAS s úrovní 1,7 až 2,5 V je přiveden přes korektor přenosové charakteristiky s T₁, T₂, T₃, který zlepšuje kvalitu a dekódování signálu teletextu zkresleného v předchozí signálové cestě.

Videoprocesor SAA5231

Videoprocesor SAA5231 (IO1 na obr. 14) odděluje teletextová data z kombinovaného

AX2 AX1 AX0

Výstupní impedance při $I_0 = -2$ až +2 mA,

Parametr	Min.	Jmen.	Max.
Napájecí napětí, U ₂ V	-0,3		+13,2
Rozsah vst./výst. napětí SDA, U4 V	-0,3	1	+13,2
SCL, <i>U</i> ₅ [V]	-0,3	1	+ 13,2
P2, <i>U</i> ₆ [V]	-0,3		U ₉
P2N, <i>U</i> ₁₂ [V]	-0,3		Ú9
P1, U ₁₁ [V]	-0,3		U ₉
DAX, <i>U</i> _{1,3-16} [V]	-0,3		U ₉
Ztrátový výkon, Pz W	1	1	1
Napětí na vývodech 4 , 5 , 11 , 12 a mezi vývody 1 – 1 do $U_{ m g}$, pokud těmito vývody neteče proud větší než	<i>6</i> a <i>3</i> – 10 mA	16 lze	využ
Jmenovité údaje pro U ₉ = 12 V	1	Ĭ	
	100		40.0
Napájecí napětí, $U_9[V]$	10,8	12	13,2
Napájecí proud při nezatížených výstupech, I_9 [mA]	6,5	13	. 20
Vstupní napětí H na vývodech 4 a 5, U _{IH} [V]	3		U ₉ –
L $U_{\rm L}[V]$ Vstupní proud H a L na výv. 4, 5, $I_{\rm H,IL}[\mu A]$	-0,3		1,5
Výstupní napětí L na vývodu <i>4</i> při	Ι.	i l	10
$I_{OL} = 3 \text{ mA}, U_{OL} V $	1 :		0,4
Maximální proud do zátěže na vývodu 4,	1		0,4
I _{OL} mA	3	5	
Vnitřní odpor, R_6 , R_{12-9} [k Ω]	5	10	15
Výstupní napětí při sepnutí a	"	'Ŭ	,,,
$I_{OL} = 2 \text{ mA}, \ U_{6,12} V $	l .		0,4
Výstupní proud do zátěže, $I_{6,12}$ mA	2	5	٠, .
Svodový proud ve vypnutém stavu,	-		
$-I_{6,12} \mu A $	1		25
Výstupní proud P1 při sepnutí ($U_0 = 0$ až 5 V), mA	1 14		
Svodový proud P1 v rozpoj. stavu $(U_O = 0 \text{ až } U_9) \text{ m}$	A]		0,1
Maximální výstupní napětí, U ₁₆ -V	1 3		-,.
Minimální výstupní napětí, U ₁₆ V		li	1
Minimální krok při $I_0 = 2 \text{ mA } [\text{mV}]$		24	100
Zdvih linearity při $I_0 = 2 \text{ mA}, dU_{16} \text{ mV}$			150
Výstupní impedance při $I_0 = -2$ až $+2$ mA, $Z_{16} \Omega $	- 0		70
Max. výstupní proud zdroje, - I _{OH16} mA	2		6
do zátěže, – I _{OL16} [mA]	2	8	
Maximální výstupní napětí, U ₁ [V]	4		
Minimální výstupní napětí, $U_1^-[V]$			1,7
Minimální krok při $I_0 = 2 \text{ mA} \text{ mV}$	27		120
Zdvih linearity při $I_0 = 2 \text{ mA} [\text{mV}]$			

$Z_1 \Omega $ Maximální výstupní proud zdroje, $-I_{OH1} mA $ Výstupní proud do zátěže, $I_{OL1} mA $ Maximální výstupní napětí, $U_2 V $ Minimální výstupní napětí, $U_2 V $ Nejmenší krok při $I_0 = 2 mA mV $	2 2 4 27	8	70 6 1,7 120
Zdvih linearity při $I_{\rm O}=2$ mA [mV] Výstupní impedance při $I_{\rm O}=-2$ až $+2$ mA, Z_2 $ \Omega $ Max. výstupní proud zdroje, $-I_{\rm OH2}$ [mA] do zátěže, $I_{\rm OL2}$ mA Maximální výstupní napětí, U_3 $ V $ Minimální výstupní napětí, U_3 $ V $ Nejmenší krok při $I_{\rm O}=2$ mA [mV] Zdvih linearity při $I_{\rm O}=2$ mA [mV] Výstupní impedance při $I_{\rm O}=-2$ až $+2$ mA, Z_3 $ \Omega $	2 2 10,8 107	8	170 70 6 1 350 500 70
Maximální U_9 při aktivaci "zmenšenú příkonu", U_{PD} [V] Doba náběhu U_9 z 0 na U_{PD} , t_r [μ s]	2 2 6 5	8	10
Časování sběrnice I^2C (mezi vývody 4, 5 a + 5 V je r vývody 4, 5 a zemí je kondenzátor $C=200$ pF, $U_{\rm IH}=$ údaje v $\mu {\rm S}$			
Uvolnění sběrnice před startem, t _{BUF} Doba přípravy podmínek startu, t _{SU,STA} Doba uchování podmínek startu, t _{HD,STA} Perioda L signálů SCL, SDA, t _{LOW} Perioda H signálů SCL, SDA, t _{HIGH}	4 4 4 4 4		
Doba náběhu SCL, SDA, <i>t</i> , Doba poklesu SCL, SDA, <i>f</i> , [ns] Doba přípravy dat (zápis), <i>t</i> _{SU,DAT} Doba uchování dat (zápis), <i>t</i> _{HD,DAT} Potvrzení doby uchování, <i>t</i> _{HD,ACK}	1 1 0		1 300
Potvrzení doby přípravy, t _{SU,ACK} Doba přípravy podmínky stop, t _{SU,STO}	4		3,5

Tab. 11. Parametry SAA5231

Jmenovité údaje při $U_{16} = 12 \text{ V}$, Min.	Jmen.	Мах.
Napájecí napětí, <i>U</i> ₁₆ V	10,8	12	13,2
Napájecí proud, /16 mA	50	70	106
Vstupní napětí při $U_2 = L$, $U_{27} V mv$	0,7	1	1,4
$U_2 = H, U_{27} V \text{ mv}$	1,75	2,5	3,5
Impedance zdroje Ω			250
Amplituda synchr. impulsu, $U_{27} V mv$	0,1		1
Vstupní napětí L, U ₂ V	10		0,8
$H, U_2[V]$	2		5,5
Vstupní proud L, I ₂ mA	0		-0,15
H, I ₂ [mA]	0		1
Vstupní napětí L pro TSS, U ₂₈ V	0	1	0,8
$H = U_{28} V $	2		7
Vstupní napětí L pro SCS, U28 V	0		1,5
$H U_{28} V $	3,5		7
Vstupní proud pro videosynch, z vývodu			
při $U_{28} = 0$ až 7 V, $I_{28} \mu A $	-40	-70	-100
$U_{28} = 10 \text{ až } U_{16}, I_{28} \mu A$	-5		+
Výstupní napětí L pro VCS, U ₂₅ V	0		0,4
$H U_{25} V $	2,4	1	5,5
Výstupní proud (ss) L pro VCS, I25 mA	1		0,5
H / ₂₅ mA	-		-1,5
Zpoždění oddělovače synchr., t _d μA	0,25	0,35	0,4
Amplituda TCS, U ₁ V mv	0,2	0,45	0,65

Amplituda videosynchr., U ₁ [V] mv		1	1
Výstupní proud, / ₁ [mA]	-3		+3
Výstupní napětí při R ₁₃ proti zemi, <i>U</i> ₁ [V]	1	1,4	2
proti +12 V, U ₁ V	9	10,1	11
Vstupní signál SAND při PL = L, U22 V	0	- 1	3
$PL = H, U_{22} V $	3,9		5,5
$CBB = L, U_{22} V $	0,		0,5
$CBB = H, U_{22} V $	1		5,5
Vstupní proud, I ₂₂ µA	-10		+10
Délka impulsu PLL při slož. video, t _p μs	2	2,4	2,8
vnějších sync. μs	3	3,5	4
Střídavé výstupní napětí, U ₁₇ V mv	1	2	- 3
SS a st výstupní napětí, U _{17max} [V]	4		8,5
Amplituda dat na videovstupu při			
$U_2 = L, U_{27} V $	0,3	0,46	0,7
$U_2 = H, U_{27} V$	0,75	1,15	1,75
Střídavé výstupní napětí TTC, U ₁₄ [V] mv	2,5	3,5	4,5
Ss napětí, U ₁₄ V	3	4	5
Zatěžovací kapacita, C ₁₄ pF			40
Doba náběhu a doběhu hrany TTC, t _r , t _f ns	20	30	45
Zpoždění sestupné hrany vůči jiné hraně			
TTD, t _d ns	-20	0	+20
Střídavé výstupní napětí, U ₁₅ [V] mv	2,5	3,5	4,5
Ss napětí, U ₁₅ V	3	4	5
Zatěžovací kapacita, C ₁₅ pF		l .	40
Doba náběžné a sestupné hrany, t _r , t _t [ns]	20	30	45

videosignálu, obnovuje hodinové impulsy a pro zobrazení znaku má generátor 6 MHz. Z výstupu T₃ je signál FBAS veden přes C₃ na vývod 27 lO₁ a z něho na adaptivní oddělovač synchronizačních impulsů, kde se pomocí C₄ zapamatovává jeho úroveň černé. Z jednoho jeho výstupu je signál VCS (video composite sync) veden do obvodu CCT-IO2 a přes přepínač na generátor impulsů, jehož časová konstanta je dána C5R10 na vývodech 23 a 24 IO1; proud generátorem je dán odporem R₁₀ a doba kapacitou C₅. Z druhého výstupu oddělovače synchronizačního signálu je VCS veden na spínač zisku a přes přepínač do obvodu vyrovnání obou polarit. Z jeho výstupu je ovládán přes čidlo "zavedení programu" přepínač zapojený před generátorem impulsů. Napětím na vývodu 1 IO1 (výstup obvodu vyrovnání polarit) je určena polarita synchronizačního signálu podle toho, kam je připojen R₁₃: R₁₃ na +12 V – záporná polarita; R₁₃ na zem – kladná polarita synchronizačního signálu.

Z vývodu 1 IO₁ je možné odebírat signál FBAS přes T₅ k dalšímu použití v BTVP. Přepínač zisku nastavujeme přes vývod 2 IO₁, kdy při úrovni L je vstupní úroveň videosignálu 1 V, při nezapojeném vývodu 2 IO₁ je na něm úroveň H a vstupní úroveň

videosignálu bude 2,5 V. Ze spínače zisku je signál veden do komparátoru vť ztrát, v němž je videosignál filtrován C₁₆ a vť signál zapamatován C₁₇ (vývody 3a 4IO₁). Z něho je signál veden do adaptivního oddělovače dat, kde C₁₈ na vývodu 5IO₁ si zapamatuje amplitudu přivedenou na oddělovač. Na C₁₉ – vývod 6IO₁ – se zapamatovává úroveň nuly oddělovače a časování je provedeno C₂₀ na vývodu 8 IO₁. Do oddělovače je přes vývod 22 IO₁ přiveden z IO₂ impuls SAND, sestavený ze signálů PL

Z výstupu oddělovače dat je signál veden přes přepínač, řízený z detektoru vnějších dat, do střadače a také do detektoru fáze taktu dat. Detektor vnějších dat zjišťuje přítomnost oddělených dat teletextu, která jsou přiváděna z vnějšího obvodu a je aktivován úrovní H na vývodu 7 IO1 (má malou vstupní impedanci). Ze střadače dat je signál veden jak do detektoru fáze taktu dat, tak i přes zesilovač na vývod 15 IO1 - TTD (teletex data) a přes C₂₅ na IO₂. Detektor fáze taktu dat snímá údaje jak z oddělovače dat, tak i ze střadače, do něhož je přiváděn z obvodu posuvu fáze taktovací signál vnitřního oscilátoru a děliče 1:2. Posouvač fáze taktu posouvá fáze tak, že je dosaženo nulového

fázového posuvu mezi signály dat a taktem

Pro zapamatování úrovně detektoru fáze dat je použit C21 na vývodu 9 IO1. Kmitočet oscilátoru je určen krystalem X₂ (13,875 MHz), C₂₂ a L₃C₂₃ filtruje signál 6,9375 MHz z výstupu děliče 1:2. Výstupní signál z obvodu posuvu fáze taktu teletextu ie přes zesilovač veden na vývod 14 IO1 a odtud na vývod 7 IO2. Přepínač za oddělovačem synchronizačního signálu je řízen čidla přítomnosti vstupního TCS(text composite sync) nebo SCS (scan composite sync), které jsou přiváděny přes vývod 18 IO₁. Signál TCS přichází z IO₂; signál SCS z vnějšího synchronizačního obvodu bude vzat do úvahy jen tehdy, když na vývodu 1 IO1 nebude připojen vnější rezistor. Pokud nebude zapojen vývod 18 IO₁, bude na vývodu 1 IO₁ oddělený videosignál z vývodu 27 IO1. Jinak je signál z vývodu 28 veden do přepínače u generátoru impulsů a do přepínače u obvodu vyrovnání obou polarit. Výstupní signál z generátoru impulsů je veden do detektoru fáze řádků, kam je zaváděn i signál SAND, přes vývod 22 IO1,

Součástí filtru 1 s delší časovou konstantou je C₆ na vývodu 21·IO₁ a součástí filtru 2 s krátkou časovou konstantou je C₆ na vývodu 19 IO₁. Kratší časová konstanta je využívána při provozu z videomagnetofou (VCR) a při odpojené smyčce PLL. Signál VCR je do detektoru fáze řádek připojen přes vývod 10 IO₁, z jehož výstupu je řízeno VCO, určující takt pro zobrazení znaků. Kmitočet VCO je určen X₁, C₇, C₉, R₁₁ a jeho výstupní signál na vývodu 17 IO₁ je označen jako signál F6. Základní údaje IO₁ jsou v tab. 11.

Počítačem řízený obvod teletextu SAA5243H (ECCT)

Obvod 5243H-IO2 na obr. 14 vykonává všechny logické funkce, které jsou potřebné pro ovládání a dekódování teletextu v 625řádkovém systému. Sériová data-TTD a sériový takt-TTC jsou do IO2 přivedeny přes vývody 6a 7 IO2 z IO1. Po shromáždění jsou data přes stykový obvod v IO2 přivedena do paměti IO3 a daty z IO3 je řízen generátor znaků v IO2. Z výstupů generátoru znaků jsou přes emitorové sledovače T6, T7, T8 a videokombinaci buzeny koncové videozesilovače RGB v BTVP nebo monitoru. Z výstupu generátoru znaků je vyveden signál

pro zhášení – BLAN, korekci kontrastu – COR a monochromatický signál Y pro řízení tiskárny. IO₂ je sestaven z bloku sběru dat, bloku časování, generátoru znaků, stykového obvodu se sběrnicí I²C a stykového obvodu pro spolupráci s pamětí stránek.

Blok sběru dat je uvolňován signálem z bloku časování během 2. až 22. TV řádku při snímkovém zpětném běhu nebo během všech TV řádků při celokanálovém přenosu. Sériová data z IO1 jsou na vývodu 6 IO2 TTD taktována signálem o kmitočtu 6,9375 MHz TTC. Tok sériových dat TTD je převáděn na byte (8 bitů) paralelních dat s čítačem byte je vyhodnocen tvar vstupních byte a současně aktualizuje čtyři zapamatované stránky z paměti IO3 a je sestaven ze čtyř obvodů sběru dat. Pokud není požadováno zpracování rozšířeného bloku dat, může si 103 zapamatovat až osm stránek, i když jsou aktualizovány vždy jen čtyři. Každá stránka teletextu má sedmimístné číslo, první číslice udává magazin, další dvě jsou určeny pro číslo stránky a poslední čtyří pro podstránku (rotující stránka). Obvody sběru dat v IO2 přijímají stránky testováním kombinace těchto sedmi číslič a ignorují nepožadované stránky. Pro srovnání dedaktického čísla stránky s teletextovým vysíláním je požadován celý rozsah čísel stran v hexadecimální soustavě, čímž je dosaženo maximální flexibility speciálních dat distribučního systému. Blok sběru dat vykonává tyto funkce

- příjem standardního vysílání teletextu,
 automatický výběr národních znaků nastavením bitu C.a. C.a. C.a. v návěsti.
- vením bitu C₁₂, C₁₃, C₁₄ v návěsti,

 příjem 25 rozšířených bloků zpracovávaných řídicím mikropočítačem, každá
 stránka obsadí 2 kbyte paměti stránek
 lO₃, takže je možné zapamatování celkem
 čtyř stránek,
- příjem těchto rozšířených bloků dat: X/24,
 X/25, X/26/0 až X/26/14, X/27/0, X/27/1,
 X/27/4, X/27/5, X/28/0, X/28/2 a X/30,
- všechny vysílané řídicí bity a adresy jsou překládány mikropočítačem,
- během obou řádkových zpětných běhů nebo při celostránkovém provozu mohou být přijmuty čtyři požadované stránky,
- mód "snímkový zpětný běh" nebo "celostránkový provoz" vybírá software,
 - nestanovená možnost využití čísel magazínu, stránky a subkódu,

- při módu "snímkový zpětný běh" se automaticky vymaže stará stránka při příjmu nové stránky, je-li v záhlaví nastaven bit
- při celosnímkovém provozu se funkce mazání nepoužívá a stránka je přenesena nepřizpůsobenými řádky,
- když je vyhledávána stránka, centrální část rotujícího záhlaví stránky je na displeji
- doba vysílání (rotace) je řízena pamětí displeje,
- 8bitová data jsou přijímána buď ve všech řádcích (TV software) nebo je běžně přiimuto 7 bitů dat a bit parity (softwarová řízení)
- sběr dat může být vypnut softwarem.

Blok časování. Signály pro časování celého IO₂ jsou odvozeny v bloku časování, řízené-ho signálem F6 z IO₁. Řádky jsou s přijímaným signálem synchronizovány obvodem PLL v IO1 referenčním signálem SAND z vývodu 11 IO₂. Složený synchronizační signál VCS přiváděný přes vývod 10 IO₂ z IO₁ zajišťuje snímkovou synchronizaci při sběru dat a časové řízení daného displeje. Obvod časování displeje generuje složený synchro-nizační signál TCS, který je prokládaný nebo neprokládaný, a ten přes IO₁ řídí časovou základnu displeje nebo vývod 12 IO₂, který slouží jako vstup složeného synchronizačního signálu pro "podřízení" obvodu časování displeje v IO₂. Blok časování v IO₂:

- · je řízen taktem z IO₁,
- tvar displeje, 625 TV řádků, na řádek,
- generuje prokládaný nebo neprokládaný složený synchronizační signál (312/312 nebo 312/313 TV řádků),
- uživatel může volit dvojnásobnou výšku znaků.
- při módu "snímkový zpětný běh" a "celo-stránkový přenos" je softwarově řízena perioda vstupních dat,
- má vnitřní integrátor snímkových synchronizačních impulsů,
- má vnitřní detektor kvality přijímaného sianálu.
- má obvod prokládání s výstupem lichý/ sudý řádek.

Generátor znaků. Paměť ROM v IO2 má 192 znaků, z nichž každý je zobrazován v matici 12 bodů vodorovně a 10 bodů svisle, čímž je dosaženo dobré čitelnosti znaků na obrazovce. Znaky jsou vybírány adresami znaků a 10 TV řádků z ROM adresami řádků. ROM je přístupná jednou za 1 μs a obsluhuje 12 výstupů, které odpovídají 12 bodům každého řádku znaku. Rychlost taktu z časova-cího bloku v čítači TV řádků je 64 μs, kterou čítač dělí deseti, pokud není zvolena dvojná-sobná výška znaku. Výstupním signálem čítače je vybírán daný TV řádek v ROM. Výstupy generátoru znaků budí přes vývody 13, 14 15 IO₂ vnější zesilovače RGB, T₆, T₇, T₈. Výstup y na vývodu 18 IO₂ je určen pro řízoní řiskému je vydu 18 IO₂ je určen pro řízení tiskárny; je aktivní při znaku bez ohledu na jeho barvu a zabraňuje poblikávání obrazu. Signál pro zhášení obrazovky je na vývodu 17 lO2 a je použit ke zhášení znaku, plochy a celé obrazovky. Při smíšeném provozu je možné vhodně upravit kontrast signálem COR na vývodu 16 IO2. Všechny výstupy generátorů jsou s otevřenou elektrodou drain, takže je možné realizovat různé stykové funkce. Generátor znaků má:

- matici znaků z 12×10 bodů.
- softwarem řízení prokládané nebo neprokládané řádkování,
- ienom atribut.
- 192 alfanumerických znaků,
- několik variant národních abeced.

- 31 místně nastavitelných znaků,
- příslušná abeceda se volí softwarem,
- výstup BLAN, určený ke zhášení znaku, plochy a obrazovky,
- výstup COR (zmenšuje kontrast při překrývání nebo velké ploše a je řízen softwa-
- dvojnásobná výška znaku je volitelná softwarem. Některé znaky se zobrazují se čtyřnásobnou výškou,
- dvojnásobná výška znaku je blokována ve 23. řádku.
- oddělený řádek má vždy běžnou výšku a je použit při měřeních generovaných softwarem a může být zobrazen na horním nebo spodním okraji stínítka (jeho poloha určena softwarem),
- při černém popředí barev je možné dekó-
- vnitřním kurzorem je invertováno popředí a pozadí barev, což je zabezpečeno zvětšením jasu pomocí software v řídicím mikropočítači.
- Stykový obvod s pamětí stránek má 8 vstupů/výstupů (D0 až D7) a 13 výstupů adres (AO až A12), ovládajících statickou paměť 8 kB RAM, IO₃. Čtení a zápis do paměti jsou řízeny signálem Œ (uvolnění výstupu) a WE (uvolnění zápisu). Cyklus RAM je 500 ns a při jednom cyklu čtení-zápis asi 1 μs. Stykový obvod s pamětí stránek umožňuie:
- přímý styk s pamětí SRAM 8 kB, v níž může být zapamatováno buď osm jednoduchých stránek nebo čtyři stránky rozšířené.
- doba cyklu SRAM 500 ns, časování SRAM s dobou výběru dat 200 ns.
- místo v SRAM při čtení a zápisu je vybíráno přes sběrnici l²C,
- všech 1024 míst je adresováno 10bitovým převodníkem řádků a sloupců,
- při zapnutí sítě jsou vymazány všechny
- má samostatné čítače pro displej, výběr dat a sběrnici I2C, kde čítač adres sběrnice l²C zabezpečuje přírůstky a přednasta-
- volná místa v SRAM mohou být využita
- řídicím mikropočítačem, všechny přístupy k IO₃ (displej, sběr dat a sběrnice I²C) jsou synchronizovány systémovým taktem.
- všechny stránky jsou mazány softwarově. Stykový obvod se sběrnící l²C a jeho řízení. Sběrnice l²C a jeistykový obvod jsou použity k řízení proměnných funkcí a to buď přímo změnou módových bitů registrů, nebo nepřímo přes IO₃. Podřízený přijímač/vysí-lač sběrnice I²C přebírá/vysílá povely z nebo do řídicího mikropočítače přes vývody SDA - vývod 20 IO₂ a SCL - vývod 19 IO₂. Povely pro registr provozu v IO₂ přicházejí v běžném protokolu sběrnice I2C, první byte je podřízenou adresou (0010001) IO2 a bit Ŕ/W nastavený na "0" znamená zápis. Druhý byte je adresa registru (R1 až R11) a třetí byte jsou data určená k naplnění tohoto registru. Další byte v témže telegramu jsou data pro následující registr, protože adresa automaticky narůstá. Mapa registrů je v tab. 12, šipka vpravo označuje automatický přírůstek do-volující nastavení zvláštních podmínek při přenosu po sběrnici I2C.

V registru R11 jsou adresy pro připojení IO₃, které jsou čteny/zapisovány na kterékoli místo v IO3 a mohou být čteny řídicím software buď jako celé adresy, nebo jako text. Všechny zbývající registry jsou pouze zapisovány. Bity v registrech mají tyto funkce:

registr 1 – způsob provozu

D2

DÕ, D1 řízení prokládání/neprokládání 312/313. TV řádku,

volba textové složené nebo přímé synchronizace.

D3 volba snímkového zpětného běhu

nebo celostránkového provozu,

uvolnění/blokování bloku sběru dat,

- volba přijímaných dat - 7 bitů D6 s bitem parity nebo 8 bitů,

D7 - pro běžnou operaci může být "0"; registr 2 – adresy stránek

D0, D1, D2- definují start sloupce při datech dané stránky,

D3 pro běžnou operaci může být "0", D4, D5 volba jednoho ze čtyř obvodů

sběru dat. Ď6 volba banky čtyř adresovaných

stránek určených pro sběr dat; registr 3 – data požadované strany

D0, D1, D2, D3, D4 - obsahují čtyři skupiny dat (jedna skupina pro jeden obvod sběru dat) - je povoleno současné zpracování čtyř stránek podle tab. 13;

registr 4 – kapitola displeje

D0, D1. D2 – určují, která z osmi stránek má být zpracovávána a zobrazena;

registr 5 (běžný) a R6 (zvětšení jasu/podtitul) - řízení displeje

D0, D1	- zapnuta obrazovka - vnitřní
D2, D3	(D0) a vnější (D1) instrukcí, – text – vnitřní (D2) a vnější
	(D3) oblast instrukcí,
D4, D5	 zmenšení kontrastu – vnitřní (D4) a vnější (D5) oblast instrukcí,
D6, D7	 barevné pozadí – vnitřní (D6) a vnější (D7) oblast instrukcí;

rogietr Q _ nroyoz dienlaja

D0, D1, D2	 instrukce dovolující zapnutí řádku 0 (D0), řádku 1 až 23
	(D1) a řádkú 24 (D2),
D3	 volba běžné a dvojnásobné výšky znaku,
D4	 volba horní nebo dolní části

stránky, odhaluje utajenou část textu,

 uvolnění kurzoru pro reverzaci D6 barevného popředí a pozadí, určuje, který řádek 25 je zobrazen v horní nebo dolní části D7

hlavního textu:

registr R9 až R11 – aktivní data kapitoly, řádku, sloupce

Registry R9 až R11 obsahují aktivní data kapitoly, řádku, sloupce a informační data čtené nebo zapisované stránky paměti přes sběrnici I2C. Stykový obvod sběrnice I2C umožňuje:

- provož od 0 do 100 kHz,
- provoz podřízený přijímač/vysílač sběrnice I²C.
- funkci potvrzení,

poloha registrů R9 a R10 automaticky roste po daných povelech, nebo mohou být adresovány přímo,

všechny buňky RAM jsou přístupné pro zápis nebo čtení přes sběrnici l²C.

Funkce vývodů

- napájecí napětí U_{DD} = +5 V,
 adresy kapitoly tři výstupy volí kapitolu 1 kB ze SRAM IO₃ 2. 3. 40 pro cyklus zápis nebo čtení (vý-
- pro cyklus zapis nebo cieni (vystup adres A11, A12, A10),
 uvolnění výstupu aktivní sig-nál s úrovní L řídí čtení z IO₃ s rychlostí až 1 MHz, 4 (OE)
- 5 (WE) – uvolnění zápisu – aktivní signál s úrovní L řídí zápis dat do IO3, vzniká jen při platném cyklu zápis a je vkládán s cyklem zápis,
- teletextová data vstup pro data z IO₁, který je klíčován na 6 (TTD) U_{SS} v době od 4 do 8 μs každého televizního řádku při určení korekce ss úrovně při použité střídavé vnější vazbě,
- 7 (TTC) teletextový takt – vstup taktu 6,9375 MHz z IO1, který je střídavě navázán na aktivovaný vstup klíčovaného oddělovače,
- 8 (ODD/EVEN) lichý/sudý řádek při prokládaném provozu změna jednou

Funkce/data	-	.D7	D6	D5	D4	D3	D2	D1	D0
Způsob provozu	R1	TA	7+P/ /8 bit	ACQ. ON/OFF	EXTENSION PACKET ENABLE	DEW/ FULL FIELD	TCS ON	T1	· Т0
Adresa dané stránky	R2	-	BANK SELECT A2	ACQ CCT A1	ACQ CCT A0	тв	START COLUMN SC2	START COLUMN SC1	START COLUMN SC0
Data dané stránky	R3		-	_	PRD4	PRD3	PRD2	PRD1	PRD0
Kapitola displeje	R4	-	-	-			A2	A1	A0
Řízení displeje (norm.)	R5	BKND OUT	BKND IN	COR OUT	COR IN	TEXT OUT	TEXT IN	PON OUT	PON IN
Řizení displeje (nový, větší jas/podtitul)	R6	BKND OUT	BKND IN	COR OUT	COR IN	TEXT OUT	TEXT IN	PON OUT	PON
Aktivní kapitola	R7	_	_	-	_	CLEAR MEMORY	A2	A1	A0
Provoz displeje	R8	STATUS ROW BTM/TOP	CURSOR ON	CONCEAL/ /REVEAL	TOP/ /BOTTOM	SINGLE/ /DOUBLE HEIGHT	BOX ON 24	BOX ON 1 až 23	BOX ON 0
Aktivní řádek	R9	-	-	-	R4	R3	R2	R1	R0
Aktivní sloupec	R10	-	-	C5	C4	СЗ	C2	C1	C0
Aktivní data	R11	D7 R/W	D6 R/W	D5 R/W	D4 R/W	D3 'R/W	D2 R/W	D1 R/W	D0 R/W

Tab. 13. Obsah registru R3

	Start COLUMN	PRD4	PRD3	PRD2	PRD1	PRD0
1	0	ošetřen magazin	HOLD	MAG2	MAG1	MAG0
- 1	1	ošetřeny desítky stran	PT3	PT2	PT1	PT0
ŀ	2	ošetř. jedn. stran	PU3	PU2	PU1	PU0
	3 .	ošetř. desítky hodin	х	X	HT1	HTO
.	4	ošetř. jednotky hodin	HU3	HU2	HU1	HU0
	5	ošetř. desitky minut	X	MT2	MT1	MTO
	6	ošetř. jednotky minut	MU3	MU2	MU1	MU0

kde X je nepoužitý bit, MAG – magazín, PT – desítky stránky, PU – jednotky stránky (MAG+PT+PU = číslo stránky). MU - jednotky minut, MT - desítky minut, HU - jednotky hodin, HT - desítky hodin (MU+MT+HU+HT je subkód stránky)

> za snímek 2 µs před koncem TV řádku 311 (624). Výstup má úroveň H pro sudý řádek a úroveň

L pro lichý řádek,

9 (F6)

- takt znaků displeje – vstup pro takt 6 MHz z IO1 vnitřně střídavě navázaný na klíčovaný vstup oddělovače.

- složený video synchronizační 10 (VCS) signál - vstup pro signál z IO, je odvozen ze vstupního videosignálu. Synchronizační impulsy jsou aktivní při úrovni H, 11 (SAND) – signál SCI – výstup tříúrovňo-

vého signálu SCI pro IO₁, obsahující informaci pro smyčku PLL a burstové zhášení barev

12 (TCS/SCS) - textový složený sync/řádkový složený sync-výstup složeného synchronizačního impulsu (TCS), aktivovaného úrovní L s prokládaným/neprokláda-ným řádkem, který budí časovou základnu displeje v IO1, nebo jako vstup složeného synchronizačního impulsu (SCS), aktivovaný úrovní L pro "podřízení" časovacích obvodů displeje,

13, 14 15 (R, G, B) - červený, zelený, modrý výstupy s otevřenou elektrodou drain s videosignály pro obvody TV displeje, aktivované úrovní H, obsahující informaci o znacích a pozadí,

16 (COR) - zmenšení kontrastu - výstup s otevřenou elektrodou drain, aktivní při úrovni L, dovolující zmenšit kontrast při smíšeném

provozu,

17 (BLAN) - zatemňování - výstup s otevřenou elektrodou drain, aktivní při úrovni H, řídící zhášení obrazovky při běžném zobrazení textu a při smíšeném provozu,

charakter popředí - výstup 18 (Y) s otevřenou elektrodou drain. aktivní při úrovni H, určený pro videosignál, obsahující informaci o popředí zobrazovaného textu nebo pro buzení tiskárny

 sériový takt - vstup taktu ze sběrnice I²C (z mikropočítače), 19 (SCL)

20 (SDA) - sériová data - vstup/výstup dat sběrnice I2C (otevřená elektroda drain).

- 0 V - zem. 21 (U_{SS})

22 až 29 (D0 až D7)- 8 vodičů dat k IO3, třístavové vstupy/výstupy, pře-nášející byte dat do nebo z IO₃,

30 až 39 (A0 až A9) – adresy pro IO_3 – deset signálů určujících polohu bytu v kapitole 1 kB vnější SRAM, které jsou přístupny během kteréhokoli cyklu čtení-zápis.

Parametry SAA5243H jsou v tab. 14.

Statická paměť RAM HM6264

HM6264 je statická paměť 8 kB RAM, která je v dekodéru teletextu určena pro zápis/čtení osmi jednoduchých nebo čtyř rozšířených stránek. ${\rm IO_3}$ je sestaven z matice 256 \times 256 bitů, adresované přes oddělovací třístavové zesilovače a dekodér řádků adresami A0 až A7 a přes třístavové zesilovače a dekodér sloupců a obvod vstup/výstup sloupců adresami A9 až A12. Data isou do matice přiváděna přes třístavové zesilovače, obvod řizení vstupních dat a obvod vstup/výstup sloupců a z matice přes třístavové zesilovače na vývody vstup/výstup dat. Časování při zápisu a čtení je řízeno signály z generátoru časování řízeného signalem CS₁ (chip select) a CS2 a signály z obvodu řízení zápisu/čtení, řízeného signály WE a OE. Hlavní vlastnosti HM6264

organizace 8 k × 8 bitů,

- doba přístupu je maximálně 150 ns.
- příkon v klidu 0,1 W a při čtení nebo zápisu 200 mW,

napájecí napěti +5 V,

- úplná statická paměť nevyžaduiící takt nebo časové-strohování.
- stejná doba přístupu a cyklu,
- společný vstup a třistavový výstup dat,
- všechny vstupy a výstupy kom-patibilní s TTL.

Nejlepší přehled o její funkci poskytuje tab. 15, parametry jsou v tab. 16. Příklad plošných spojů dekodéru teletextu je na obr. 15.

Kanálový volič

Na obr. 16 je zapojení moderního kanálového voliče fy Grundig, vyrobeného technologií SMD (povřchová montáž součástek). Proti předchozím kanálovým voličům se využívá integrovaného směšovače, oscilátoru VHF a obrazového mf předzesilovače, kmitočtového syntezátoru a paměti programu.

Televizní obvod pro kanálové voliče TUA2000-4

IO1 na obr. 16 a 17 zpracovává signály I., II. a III. televizního pásma a je sestaven ze zesilovače VHF, předzesilovače UHF pro zesílení mf signálu z kanálu UHF, směšovače, tří oddělovacích stupňů, oscilátoru VHF, spínače, mf předzesilovače s oddělovacím stupněm a stabilizátoru referenčních napětí. Signál z pásmové propusti VHF, který je zapojen do elektrody D T₂, jde přes vývody 12, 13 IO1 na vstup zesilovače VHF a z jeho výstupu do směšovače VHF, kam je přes oddělovací stupeň zaveden signál z místní-ho oscilátoru VHF, jehož kmitočet je nastaven součástkami mezi vývody 4 a 5 IO₁. Z oddělovacího stupně oscilátoru VHF je signál veden přes další oddělovací stupeň na vývod 6 IO1, kam lze připojit při nastavování čítač kmitočtu. Na výstupu směšovače VHF je připojen předzesilovač UHF, který zesiluje mf signál z části UHF kanálového voliče, přivedený přes vývod 11 IO1 a současně i oddělovací stupeň, který má na výstupech (vývody 8 a 9 IO1) primární vinutí

Obr. 15. Příklad desky s plošnými spoji dekodéru teletextu

amatérské AD 10 B/5

192

Tab. 14. Parametry SAA5243H

Parametr	Min.	Jmen.	Max.
Napájecí napětí, $U_1 V $ Vstupní napětí, $U_{6,7,9,12} V $ $U_{10,19,20,22}$ až 29 $ V $	-0,3 -0,3 -0,3		+7,5 +10 +7,5
Výstupní napětí <i>U</i> _{2 až 5,} <i>U</i> _{8,11,} <i>U</i> _{13 až 18,} <i>U</i> _{20, 22 až 40} V	-0,3		+7,5
U ₁₂	-0,3		+10
Jmenovité údaje pro <i>U</i> _{DD} = +5 V ±10 %			
Napájecí napětí, <i>U</i> ₁ V Napájecí proud, <i>I</i> ₁ mA	4,5	5 160	5,5 270
Vazební kondenzátor, C ₆ nF	•	100	50
Vstupní napětí, U6 V mv	2		7
Rozsah vstupních napětí ss $U_{7,9} V $	-0,3		+10
Doba nárůstu a poklesu vstupních dat, t, t ns	10		80
Doba držení, nastavení vstupních dat, t_{DS} , t_{DH} ns	40	l	
Vstupní svodový proud pro $U_{\text{vst}} = 0$ až 10 V, $I_{\text{Li6}} \mu A $			20
Vstupní kapacita, C ₆ pF	ĺ		7
Vstupní napětí, <i>U</i> ₉ V∤mv	1		7
	1,5		7
Vstupní napětí při střídě 50 %, <i>U</i> _{7,9} V Kmitočet taktu, <i>f</i> ₇ MHz	±0,2		±3,6
signálu F6, f ₉ MHz		6,9375	
Doba nárůstu a poklesu taktu, t_r , t_f [ns]	1	6	
Vstupní kapacita, $C_{7,9}$ pF	10		80 7
Vstupní svodový proud pro $U_{\text{vst}} = 0$ až 10 V, $I_{\text{LI7.9}} [\mu A]$	l	1	20
Vstupní napětí úrovně L, U_{10} V	0	Į.	0,8
H, U ₁₀ V	2	ł	U_{DD}
Doba náběhu a doběhu na vstupu, t, t ns	1 -		500
Vstupní svodový proud pro $U_{\text{vst}} = 5.5 \text{ V}, I_{\text{L}_{10}} \mid \mu \text{A} \mid$	ļ		10
Vstupní kapacita, C ₁₀ pF		1	7
Vstupní napětí úrovně L, <i>U</i> ₁₉ V	0	1	1,5
H, U ₁₉ V	3	1	UDD
Kmitočet taktu, f ₁₉ [kHz]	0	1	100
Doba nárůstu a poklesu na vstupu, tr, tr µs		1	2
Vstupní proud svodový pro $U_{\text{vst}} = 5.5 \text{ V}, I_{\text{L19}} \mu\text{A} $		1	10
Vstupní kapacita, C ₁₉ pF	1	l	7
Vstupní napětí úrovně L, U ₁₂ V	0	1	1,5
H, <i>U</i> ₁₂ V Doba nárůstu a poklesu na vstupu, <i>t, t_i</i> ns	3,5	1	10
Vstupní svodový proud pro $U_{\text{vst}} = 0$ až 10 V, $I_{\text{L12}} \mu A $	1		500
Vstupní kapacita, C_{12} pF	ļ	1	±10
Výstupní napětí úrovně L pro $I_{OL} = 0,4$ mA, $U_{12} V $	0	ł	0,4
Výstupní napětí úrovně H pro	١٠		0,4
$-I_{OH} = 0.2 \text{ mA}, U_{12} \text{ V}$	2,4		$U_{\rm DD}$
$I_{OH} = 0.1 \text{ mA}, \ U_{12} \ V $	2,4		6
Doba nárůstu a poklesu na výv. 12, t, t, ns	-, .		500
Zatěžovací kapacita, C _z pF	1		50
Vstupní napětí úrovně L, <i>U</i> ₂₀ V	0	1	1,5
$ H, U_{20} V $	3		U _{DD}
Doba nárůstu a poklesu na vstupu 20 µs	1	1	2

Seznam součástek k obr. 15

Rezistory (TR 191)	C ₁₂ , C ₂₇	10 μF, TE 004
R ₁ , R ₉	΄120 Ω	C ₁₅ , C ₂₆	680 nF, MPT-Pr96
R ₂	270 Ω	C ₁₆	150 pF, TK 754
R ₃	150 Ω	C ₁₇	1 nF, TGL 5155
R ₄	1 kΩ, TP 008	C ₁₈	470 pF, TK 774
R ₅ , R ₁₂ , R ₃₀ , R ₃₁	470 Ω	C ₂₀	270 pF, TK 754
R ₈	1 kΩ	C ₂₁	100 pF, TK 754
R ₇	33 kΩ	C ₂₂ , C ₂₃	27 pF, TK 755
R ₈ , R ₁₀ , R ₁₅	56 kΩ	C ₂₄	22 nF, TK 724
R ₁₁	330 Ω	C ₂₅	10 nF, TK 724
R ₁₃ , R ₂₁ , R ₂₃ , R ₂₅	1,5 kΩ	20	•
R ₁₄	150 kΩ	Polovodičové souc	částky
R ₁₆ , R ₂₂ ,	_	T ₁ , T ₅ až T ₉	KC238B
R ₂₄ , R ₂₆ , R ₂₇	1,2 kΩ	T_2 , T_3	KC308B
R ₁₇ , R ₁₈ , R ₁₉ , R ₂₀	82 Ω	T ₄	KD135
R ₂₈	2,2 kΩ	D_1	KZ260/5V6
R ₂₉ , R ₃₀	4,7 kΩ	IO ₁	SAA5231
		IO ₂	SAA5243H
Kondenzátory		IO ₃	MH6264
C ₁	120 pF, TK 754		
O ₂	47 μF, TF 010	Cívky	
\mathfrak{I}_3	2 μF, TE 005	L ₁	12,5 μH na 1 MΩ, TR 212
C ₄	68 nF, TK 783	L ₂	22 μΗ
C ₅ , C ₁₉	220 pF, TK 754	L ₃	15 μH
C ₆ , C ₈	47 nF, TK 783	-	
C ₇ , C ₉	18 pF, TK 755	Krystaly	
C ₁₀ , C ₁₃	100 μF, TF 009	X ₁	6 MHz
C ₁₁ , C ₁₄	100 nF, TK 783	X ₂	13.875 MHz

				4.0
l	Vstupní svodový proud pro $U_{\text{vst}} = 5,5 \text{ V}, \ I_{\text{L20}}, \mu\text{A}$ Vstupní kapacita, C_{20} pF	- 1		10 7
l	Výstupní napětí úrovně L pro $I_{OL} = 3 \text{ mA}, U_{20} \text{ V}$	0	- 1	0,5
ı	Doba poklesu výstupu mezi 3 až 1 V, $t_{(20)}$ ns	ľ	- 1	200
ı	Zatěžovací kapacita, C_{20} pF	- 1	1	400
ł	Vstupní napětí úrovně L, U _{22 až 29} V	0		0.4
ı		2	- 1	$U_{\rm DD}$
l	H, $U_{22 \text{ až } 29} \text{ V}$ Vstupní svodový proud pro $U_{\text{vst}} = 0$ až 5,5 V, $I_{122 \text{ až } 29} \mu A$	۱ ۲	- 1	±10
۱	Vstupní kapacita, $C_{22 \text{ až } 29} \text{ pF}$	1	- 1	7
l	Výstupní napětí L pro $I_{OL} = 1,6$ mA, $U_{22 \text{ až } 29}$ V	0		0.4
ı		2,4		U_{DD}
I	$H I_{OH} = -0.2 \text{ mA}, \ U_{22 \text{ až } 29} \text{ V}$ Deba párůstu a poklasu mazi 0.6 až 2.3 V ps	2,4		50
١	Doba nárůstu a poklesu mezi 0,6 až 2,2 V ns	1		120
ı	Zatěžovací kapacita, C _{z22 až 29} pF			120
ı	Výstupní napětí L pro $I_{OL} = 1,6 \text{ mA}$	0		0,4
ı	U _{2 až 5} , U _{30 až 40 V}	۱ ۲		U,4
I	H pro $-l_{OH} \stackrel{.}{=} 0.2 \text{ mA},$	امما		11
ı	U _{2 až 5} , U _{30 až 40} V	2,4		U_{DD}
١	Doba nárůstu a poklesu výstupu mezi 0,6 až			50
ı	2,2 V na výstupech <i>2</i> až <i>5</i> , 30 až 40, <i>t</i> _{r,f} ns	ll		120
ı	Zatěžovací kapacita, $C_{z2 \ az \ 5}$, $C_{z30 \ az \ 40}$ pF	ا ہ ا		
İ	Výstupní napětí L pro $I_{OL} = 0.4 \text{ mA}, U_8 \text{ V}$	0		0,4
1	$H - I_{OH} = 0.2 \text{ mA}, \ U_8 V $	2,4		UDD
1	Doba nárůstu a poklesu mezi úrovněmi 0,6 až 2,2 V, t _r , t _f ns			100
1	Zatěžovací kapacita, C _{z8} pF	ا ہا		50
1	Výstupní napětí L pro $I_{OL} = 0.2 \text{ mA}, U_{11} \text{ V}$	0		0,25
I	Střední výstupní napětí pro $I_{OL} = \pm 10 \mu\text{A}, U_{11} \text{V}$	1,1		3,1
ı	Výstupní napětí H pro $I_{OH} = 0$ až $-10 \mu A$, $U_{11} V$	4		$U_{\rm DD}$
1	Doba nárůstu výstupu mezi 0,4 až 0,9 V, t ₁ ns			400
1	3,3 až 3,8 V,			200
ı	$t_{r2} ns $			200
ı	Doba poklesu výstupu z 3,8 V na 0,4 V, t _f ns			50
ı	Zatěžovací kapacita, C _{z11} pF			30
	Výstupní napětí L U_{13} až U_{17} V při $I_{OL} = 2 \text{ mA}$	0	!	0,4
	$l_{\text{OL}} = 5 \text{mA}$	0	ł	1
	Zatěžovací kapacita, C _{z13 až 17} pF		i	25
	Výstupní svodový proud, I _{L13 až 17} μA	١. ١	ł	10
	Perioda taktu L sběrnice I ² C μs	4	ł	
	Η [μs]	4	l	
	Doba ustálení dat na sběrnici I ² C ns	250		ļ
	Dona držení dat na I ² C ns	170		i
	Doba ustálení podmínky STOP před úrovní H taktu µs	4		
	Doba ustálení podmínek START po STOP μs	4	1	
	Doba držení podmínek START μs	4		
	Doba cyklu stykového obvodu s pamětí ns		500	l
	Změna adresy pro OE = L ns	60		Į
	Doba aktivace adresy ns	450	500	
	Délka impulsu ÖE ns	320	ł	
	Doba výběru od OE k platným datům ns			200
	Doba držení dat před ÖE = H nebo změnou adresy ns	0		1
	Změna adresy k WE = L ns	40		1
	Délka impulsu WE ns	200		ĺ
	Doba ustálení dat do WE = H ns	100	l	l
	Doba držení dat před WE = H ns	20	l	l

Tab. 16. Parametry HM6264

Parametr	Min.	Jmen.	Max.
Napájecí napětí, <i>U</i> _{CC} V	-0,5		+7
Ztrátový výkon, P _z W			1
Jmenovité údaje pro $U_{28} = +5 \text{ V} \pm 10 \%$			
Napájecí napětí, U_{28} V Vstupní napětí H, $U_{\rm IH}$ V L, $U_{\rm IL}$ V Vstupní svodový proud pro $\overline{\rm CS1}$ = 0 až $U_{\rm CC}$, $I_{\rm IL}$ $ \mu \rm A $ Výstupní svodový proud pro $\overline{\rm CS1}$ = H, $\rm CS2$ = L, $\overline{\rm OE}$ = H, $I_{\rm OL}$ $ \mu \rm A $ Napájecí proud pro $\overline{\rm CS1}$ = L, $\rm CS2$ = H, $I_{\rm I/O}$ = 0, $I_{\rm CC}$ $ m \rm A $ Provozní proud pro $\overline{\rm CS1}$ = L, $\rm CS2$ = H, činitel plnění = 100, $I_{\rm CC1}$ $ m \rm A $ Klidový napájecí proud pro $\overline{\rm CS1}$ = H, $\rm CS2$ = L, $I_{\rm I/O}$ = 0, $I_{\rm SB}$ $ m \rm A $ pro $\rm CS1$ = $\rm CS2$ = = $U_{\rm CC}$ - 0,2 V, $I_{\rm SB1}$ $ m \rm A $ Klidový napájecí proud pro $\overline{\rm CS2}$ = 0,2 V, $I_{\rm SB2}$ $ m \rm A $ Výstupní napětí L pro $I_{\rm OL}$ = 2,1 $ m \rm A $ Uystupní napětí L pro $I_{\rm OL}$ = 2,1 $ m \rm A $ Vstupní kapacita pro $U_{\rm I}$ = 0 V, $ m \rm C_{\rm I/O} $ pF	4,5 2,2 0	5 40 60 1 0,02 0,02	5,5 6 0,8 2 80 110 1 2 0,4 6
Doba výběru čtení, $t_{\text{RC}} \text{ns} $ Doba výběru čipu na výstupu $\overline{\text{CS1}}$, $t_{\text{CO1}} \text{ns} $ CS2 , $t_{\text{CO2}} \text{ns} $ Doba přístupu adresy, $t_{\text{AA}} \text{ns} $ Doba uvolnění výstupu do jeho platnosti, $t_{\text{OE}} \text{ns} $ Doba uvolnění výstupu s malou $Z \text{ns} $ Doba uvolnění výstupu na výstupu s malou $Z \text{ns} $ Doba uvolnění výstupu na výstupu s malou $Z \text{ns} $ Odpojení výběru–výstup s velkou $Z \text{ns} $ Zablokování výstupu-výstup s velkou $Z \text{ns} $ Držení výstupu při změně adresy, $t_{\text{OH}} \text{ns} $ Doba cyklu zápisu, $t_{\text{WC}} \text{ns} $ Volba čipu–konec zápisu, $t_{\text{CW}} \text{ns} $ Doba nastavení adresy, $t_{\text{AS}} \text{ns} $	150 15 0 0 15 150 100 0		150 150 150 70 5 50 50
Adresa platná-konec zápisu, t _{AW} ns Délka impulsu zápisu, t _{WP} ns Doba obnovení zápisu CS1, WE, t _{WR1} ns CS2, t _{WR2} ns Zápis-velká impedance, t _{WHZ} ns Přesah dat při zápisu, t _{DW} ns Držení dat před zápisem, t _{DH} ns OE – výstup velká impedance, t _{OHZ} ns Výstup aktivní před ukončením zápisu, t _{OW} ns	100 90 10 15 0 60 0		50 50

Pozn. Všechny časové údaje platí při $U_{28} = 5 \text{ V} \pm 10 \text{ %}, U_{1} = 0.8 \text{ až}$ 2,4 V, době nárůstu a poklesu na vstupu = 10 ns, vstupní a výstupní a výstupní úrovni časové reference (taktu) = 1,5 V, zatěžovací kapacitě

mf obrazového filtru, z jehož sekundárního vinutí je signál veden přes vývod 15 IO1 do mf zesilovače s oddělovacím stupněm. Z jeho výstupu (vývody 1 a 2 IO1) je signál veden do mf zesilovače v BTVP. Zesilovače UHF a VHF se přepínají elektronickým přepínačem, který je ovládán řídicím napětím UHF, přivedeným na vývod 14 IO1. Napájecí napětí přivedené přes vývod 10 lO1 je stabilizováno prvním stabilizátorem napětí, z něhož je napájen i zdroj referenčního napětí, které lze nastavit obvodem na vývodu 3 IO1. Parametry TUA2000-4 jsou v tab. 17.

Doba ustálení po zápisu ns

Snahou výrobců IO je sdružovat funkce do jednoho IO, čímž lze dosáhnout lepších vlastností finálního výrobku. Mezi takové IO

Tab. 1	5. Pravd	ivostni tabi	ılka pro H	HM6264		
WE	CS1	CS2	ŌE	Provoz	Vstup/výstup	l ₂₈
X H L	H X L L	X L H	X X H L	klidový klidový výstupní blok čtení zápis cyklus 1 zápis cyklus 2	velká impedance velká impedance velká impedance výstup dat vstup dat	

lze zařadit i TDA5030T fy Philips, který v sobě sdružuje směšovače, oscilátory pro pásmo VHF, hyperband (kabelová televize) a UHF. Příklad jeho zapojení je na obr. 21 jeho parametry jsou v tab. 18. TDA5230T obsahuje balanční směšovač se společným emitorovým vstupem pro VHF, oscilátor VHF s řízenou amplitudou oscilací, balanční směšovač se společnou bází pro hyperband, balanční oscilátor pro pásmo hyperband, balanční směšovač se společnou bází pro UHF a balanční oscilátor UHF, předzesilovač pro filtr PAV (s povrchovou vlnou) a výstupní impedancí 75 Ω, oddělovací stupeň pro buzení předděliče signálem oscilátoru VHF, stabilizátor napětí pro oscilátory a spínací obvod UHF.

25

Syntezátor kmitočtu se smyčkou PLL, SDA3202-2

IO2 na obr. 16 a 18 tvoří spolu s oscilátory VHF a UHF fázóvou smyčku PLL, určenou pro nastavení kmitočtu kanálového voliče. Smyčka PLL dovoluje nastavit kmitočty v pásmu 60 až 1300 MHz s krokem nastavení 62,5 kHz a při použití předděliče 1:2 i v pásmu satelitní televize s krokem 125 kHz; nastavuje se mikropočítačem přes sběrnici I²C. IO₂ se vyznačuje těmito vlast-

- je řízen přes sběrnici l²C,
 má malý příkon (5 V/55 mA),
 má 3stupňový zesilovač s velkou citlivostí pro pásmo 60 až 1300 MHz, při provozu PLL nejsou rušeny vstupní
- signály vnitřními děliči,
- má 15bitový programovatelný dělič s krokem nastavení 62,5 kHz,
- má oscilátor referenčního kmitočtu
- s $U_{\text{výst}} = 200 \text{ mV}$, který neruší laděné obvodý,
- má vysoký referenční kmitočet 7,8125 kHz,

 má osm nezávislých výstupů pro přepínání pásem a jiné spínací aplikace,

má aktivní integrátor se softwarově říze-ným "nábojovým čerpadlem proudu" a třístavovým výstupem pro aplikaci ADK. Signál z oscilátoru je přiveden přes vývod 15 IO₂ na vstup zesilovače UHF/VHF, jehož druhý vstup je blokován kondenzátorem na vývodu 16 lO2. Z výstupu zesilovače UHF/ VHF je signál veden do asynchronního děliče 1:8 a do programovatelného děliče s proměnným dělicím poměrem *N*=1:(256 až 32 767). Z jeho výstupu je signál zaveden do digitálního fázového komparátoru, kde je porovnáván s referenčním signálem o kmitočtu 7,8125 kHz, který je odvozen z krysta-lového oscilátoru děličem 1:512. Fázový komparátor má dva výstupy, UP (nahoru) a DOWN (dolů), přes které jsou řízeny dva a DOWN (dolu), pres ktere jsou rizeriy dva zdroje proudu *I*+ a *I*- v nábojové pumpě a jsou aktivovány požadovaným směrem ladění. Pokud jsou oba signály ve fázi, bude na výstupu nábojové pumpy PD (tedy na vývodu 1 IO2) velká impedance. V aktivní dolní propusti se proudové impulsy mění na ladicí napětí pro kanálový volič. Softwarově programované porty P0 až P3 mají výstupy s konstantním proudem pro buzení spína-cích tranzistorů, kdežto P4 až P7 mají výstupy s otevřeným kolektorem, které jsou vhodpy s otevřeným kolektorem, které jsou vhodné pro spínací funkce. Asynchronní, obousměrná sběrnice l²C je použita k přenosu dat mezi mikropočítačem a IO₂. Taktovací impulsy jsou přiváděny do IO₂ přes vývody 5; přes vývod 4 IO₂, který pracuje jako vstup nebo výstup, jsou vedena data (otevřený kolektor). Všechna data jsou přenášena byte pro byte vždy po devátém taktu hodin, kdvž pro byte, vždy po devátém taktu hodin, když má řídicí impuls na vývodu 4 lO₂ úroveň L (podmínka potvrzení). Třístupňový předzesilovač VHF/UHF se ziskem 20 zajišťuje velkou vstupní citlivost v pásmu 60 áž 1300 MHz.

Z výstupu předzesilovače je signál veden do prvního předděliče s ofsetovým napětím 50 mV, který zabraňuje oscilacím při chybějícím vstupním signálu. První předdělič má dělicí poměr 8, který je dán vysokým referenčním kmitočtem, čímž je dosaženo dobrých přenosových vlastností a rychlého nastavení smyčky PLL. Z výstupu prvního předděliče je napájen programovatelný 15bitový dělič, tvořený dvěma děliči (1:16 nebo 1:17) a 11bitový vratný čítač. Použití dvou čítačů umožňuje velkou pracovní rychlost, takže druhý dělič pracuje při relativně nízkém kmitočtu, čímž se příkon obvodu zmenšuje. Druhým děličem je třístupňový Johnsonův čítač, sestavený z pěti klopných obvodů typu D, kde čtvrtý KO pracuje s čtvrtinovou rychlostí oproti prvním třem KO a pátý KO s poloviční rychlostí než čtvrtý KO. Na počátku každého cyklu je první dělič nastaven na větší dělicí poměr U = 17. Programovatelné děliče S a M se nastavují programem na požadovanou hodnotu.

Po impulsu SxU se čítač S zablokuje taktovacími impulsy a první dělič přepne na dělicí poměr L=16. Obsah 11bitového děliče bude M–S. Po impulsu Lx(M–S) generuje signál M impuls LOAD (naplnění) v klopném obvodě R–S. Impuls LOAD má dolní kmitočet vydělen N, nuluje čítače A a M, když dosáhnou naprogramované hodnoty a startuje nový cyklus dělení. Programovaný dělicí poměr lze vypočítat z rovnice: N = UxS + Lx(M–S). Děliče S, M se programují binárním kódem. IO₂ je řízen mikropočítačem přes sběrnici I²C a tvar telegramu pro IO₂ je zřejmý z tab. 19. Telegram je sestaven z 5 byte a IO₂ po každém správně přijatém byte vysílá signál ACK (potvrzení).

První byte má sedm bitů adresy, které jsou

Obr. 16. Zapojení kanálového voliče fy Grundig 041,046,04 - BB5094 0₁₁0₃₁ 0<u>,</u> – BB5056 De, Drz, Drs, Drs, Dzo, Do, D, -11448 10₂ – SDA3202 – 2 10₃ – SDA2216 10₃ – PCF8571 7₁ – BF996 502Ty-BC85 - BF994 -BF579 õ 22k 4H 918 ģ 47.75 11.70 Ht ర్జ్ 9/8 \$ ₩ -11-1 4.70 023 å

Obr. 17. Blokové zapoiení TUA2000-4

Tab. 18. Parametry IO TDA5230T

Parametr	Min.	Jmen.	Max
Napájecí napětí, U ₁₇ V	10	, ,	14
Napájecí proud při $U_{17} = 12 \text{ V}, I_{17} \text{ mA}$	42		55
Spínací napětí, U ₅ V	0	l l	8
pro VHF, $U_5 V $	0		1,5
hyperband, $U_5 V $	2	l i	3,5
UHF, <i>U</i> ₅ [V]	4		5
Spínací proud, I ₅ mA			0,2
Výstupní proud, I _{11,12} [mA]	-10		+10
Kmitočtový rozsah směšovače VHF MHz	50		300
oscilátoru VHF MHz	70		.330
směšov. hyperband [MHz]	300	١.	470
oscil. hyperband [MHz]	330	l	520
směšovače UHF MHz	470	Ì	860
oscilátoru UHF [MHz]	500	ł	900
Šumové číslo směšovače VHF dB	7,5	į.	12
hyperband dB	8	i	10
UHF [dB]	8	}	11
Napěťový zisk VHF, d U_{11} , d U_{12-18} dB	22	1	27
hyperband, dU_{11} , dU_{12-21} , $dU_{22}[V]$	34	1	40
UHF, dU_{11} , dU_{12-18} , dU_{19} [dB]	34		40
Vstupní napětí VHF pro křížovou modulaci 1 %, dBmV	Ī	100	
Vstupní výkon hyperband a UHF pro křížovou modulac	1 1 %	-19	dBm

Obr. 18. Blokové zapojení SDA3202-2

Tab. 17. Parametry IO TUA2000-4

Parametr	Min.	Jmen.	Max.
Napájecí napětí, $U_{10} \mid V \mid$ Referenční napětí, $U_3 \mid V \mid$ Napětí na vývodech $1, 2, 8, 9, U_{1,2,8,9} \mid V \mid$ Spínací napětí pro VHF, $U_{14} \mid V \mid$ Napájecí proud pro $I_{14} = 0$, $U_3 = 7,2 V$, $U_{10} = 9 V$, $I_{1,2,3,8} \mid \text{mA} \mid$ $I_{9,10} \mid \text{mA} \mid$ $I_{14} = 0$, $U_{10} = 12 V$, $I_{1,2,3,8,9,10} \mid \text{mA} \mid$ Napájecí proud pro $I_{14} = 0$, $U_{10} = 12 V$, $I_{3,15} \mid \text{mA} \mid$ Střídavé napětí, $U_{4} \approx 2 6, U_{11} \approx 2 13, 15 \mid \text{mA} \mid$ Vstupní kmitočet, $f_{4,5,11} \approx 2 13, 15 \mid \text{mA} \mid$ Vstupní diferenciální odpor, $R_{12,9,9} \mid \text{MHz} \mid$ Vstupní diferenciální kapacita, $C_{12-13} \mid \text{pF} \mid$ Vstupní kapacita, $C_{11} \mid \text{pF} \mid$ Vstupní dopor, $R_{15} \mid \text{k} \mid \text{M} \mid$ Vstupní kapacita, $C_{15} \mid \text{pF} \mid$	9 7,2 9 0 7 37 37 40 14 0 10	49 49 52 19	16,5 8,3 16,5 3 U_{10} 60 64 25 0,5 400 400 3 2,7 2,2 3,9

dva byte v telegramu programují děliče (15 bitů) a poslední dva byte jsou určeny pro řízení výstupů přepínačů pásem a pro výstupy obecných spínačů a rovněž i pro testování obvodu a pro řízení nábojové pumpy. V přenášených datech první bit po prvním byte nebo třetí byte dat stanovují, jaký dělicí poměr nebo řidicí informace následuje. Po prvním byte následuje vždy buď druhý byte stejných dat, nebo podmínka STOP. Dělicí poměr N se nastavuje podle rovnice: N= 16384 (n14) + 8192 (n13) + 4096 (n12) + 2048 (n11) + 1024 (n10) + 512 (n9) + 256 (n8) + 128 (n7) + 64 (n6) + 32 (n5) + 16 (n4) + 8 (n3) + 4 (n2) + 2 (n1) + 1 (n0), P3 až P0 aktivní při úrovni 1 (vývody 10, 11, 12, 13 IO₂), P4 až P7 aktivní při úrovni 1 (vývody 9, 8, 7, 6 IO₂)

použity pro výběr obvodu připojeného na

sběrnici l2C a osmý bit je vždy L. Následující

5I = 1 větší proud nábojové pumpy, T1, TO = 0 běžná operace, při T0 = 1 má výstup nábojové pumpy velkou impedanci,

při testování T1 = 1, P6 = f_{ref}, P7 = C_y. Obvod krystalového oscilátoru 4 MHz je tvořen emitorově vázaným protitaktním multivibrátorem, který pracuje s krystalem pro sériovou rezonanci a má $U_{\rm výst}=200$ mV. Harmonické signály jsou potlačeny vnitřní dolní propustí, která zmenšuje vyzařování do kanálového voliče. Signál 4 MHz je dělen děličem v poměru 1:512 (9 bitů) a z jeho výstupu je signál o kmitočtu 7,8125 kHz veden do fázového komparátoru, který představuje fázový detektor typu 4, pracující jako kmitočtový detektor, v němž se signál o vyděleném kmitočtu oscilátorů kanálového voliče fázově porovnává se signálem o referenčním kmitočtu. Fázový detektor je aktivován pouze kladnou hranou vstupních signálů $f_{\rm vst}$ a $f_{\rm ret}$.

Je-li vydělený kmitočet oscilátoru nižší než kmitočet referenční, objeví se na výstupu fázového detektoru impuls, kterým je aktivován výstup UP; v opačném případě je aktivován výstup DOWN. Rozdíl fází mezi kladnými hranami $t_{\rm vst}$ a $f_{\rm ref}$ určuje délku výstupního impulsu z fázového detektoru. Výstupy UP/DOWN řídí dva zdroje proudu /+ a I-, tvořící nábojovou pumpu pro aktivovaný integrátor. Proud nábojové pumpy lze naprogramovat softwarově řídicím bitem 5I. Jsouli signály $t_{\rm vst}$ a $t_{\rm ref}$ ve fázi, je na výstupu

nábojové pumpy (vývod 1 lO₂) velká impedance, do tohoto stavu lze tento výstup nastavit i řídicím bitem TO na vývodu 1 lO₂. Malý vnitřní odpor ladicího napětí je určen filtrem, který integruje proudové impulsy nábojové pumpy a mění je na ladicí napětí pro kanálový volič. Přehled parametrů lO SDA3202-2 je v tab. 20.

Paměť programů SDA2216

Pro uchování předvolených programů v BTVP je použita paměť typu E²PROM se stykovým obvodem pro sběrnici l²C, kterou lze elektricky přeprogramovat. IO₃ na obr. 16 a 19 je paměť 1 kbit s organizací 128×8 bitů, napájecím napětím 5 V, programovacím napětím 24 V, řízená přes sběrnici l²C (SDA, SCL) s dobou přeprogramování 20 ms, dobou uchování programu 10 let a s možností 10⁴ přeprogramování. Je ji možno programovat vnitřním řízením bez vnější kontroly.

IO₃ reprezentuje měření a řízení sběrnice I²C, obvod řízení čtení-zápis, který řídí dekodér řádek, a multiplexer/demultiplexer s obvodem řízení sloupců. Z řídicího obvodu sběrnice I²C je přes vnitřní sběrnici řízen i čítač adres, středač dat a posuvný registr, řízený i z obvodu řízení sloupců. Ze střadače dat jsou data přes obvod řízení sloupců přenesena do matice 32×32 bitů typu E²P-ROM. Čítačem adres je řízen jednak deko-

Tab. 19. Tvar telegramu z mikropočítače k SDA3202-2

Byte adresy	1	1	0	0	0	0	1	0	A
1 – program děliče 2 – program děliče 1 – řízení informace 2 – řízení informace	0 n7 1 P7	n14 n6 5I P6	n13 n5 T1 P5	n12 n4 T0 P4	n11 n3 1 P3	n10 n2 1 P2	n9 n1 1 P1	n8 n0 0 P0	A A A

Parametr	Min.	Jmen.	Max.
Napájecí napětí, U_{14} (U_{S}) $ V $	-0,3		+6
Výstupní napětí, U _{1,2,3} V	-0,3		Us
<i>U</i> ₄ V	-0,3		+6
<i>U</i> ₆ až 13 V	-0,3		+16
Vstupní napětí, U ₅ V	-0,3		+6
UHF/VHF, <i>U</i> ₁₅ V	-0,3	1	+2,5
ref, <i>U</i> ₁₆ [V]	-0,3		+2,5
Výstup filtru, U_{18} [V]	-0,3		Us
Výstupní proud, I₄, I₀ åž 9 mA	1		5
Vstupní kmitočet, f ₁₅ MHz	16		1300
Kmitočet oscilátoru, f ₂₋₃ [MHz]		4	
Dělicí poměr N	256		32 767
Jmenovité údaje pro $U_{14} = 5 \text{ V}$			
Napájecí napětí, <i>U</i> ₁₄ V	4,5	5	5,5
Napájecí proud, / ₁₄ mA	35	55	75
Kmitočet oscilátoru při sériovém $C = 18 \text{ pF}, f_{2-3} \text{ MHz}$	3,99975	4	4,00025
Vstupní citlivost pro $f_{15} = 70$	1		
až 500 MHz, <i>U</i> ₁₅ mV ef.	10	1	315
pro $f_{15} = 500$ až 1000 MHz, U_{15} mV ef.	14		315
pro $f_{15} = 1100 \text{ MHz}, U_{15} \text{ mV} \text{ ef.}$	22	1	315
Závěrný proud při $U_{10 \text{ až } 13} = 13,5 \text{ V } I_{210 \text{ až } 13} \mid \mu A$			10
Proud z vývodů <i>10</i> až <i>13</i> při <i>U</i> _{10 až 13} =			
= 12 V, I _{10 až 13} nA	0,7	1	1,5
Závěrný proud při $U_{6 \text{ až } 9} = 13,5 \text{ V}, I_{26 \text{ až } 9} \mu A $	İ		10
Zbytkové napětí při $I_{6 \text{ až } 9} = 1,7 \text{ mA}, \ U_{6 \text{ až } 9} \mid V \mid$			0,3
Proud při byte 5l=H a $U_1 = 2 \text{ V}$, $I_1 \mid \mu A$	±90	±220	±300
$5I = L \ a \ U_1 = 2 \ V, \ I_1 \ [\mu A]$	±22	±50	±75
Výstupní napětí, U_1 [V]	1,5		2,5
Výstupní proud při $U_{18} = 0.8 \text{ V a } I_{14} = 0.09 \text{ mA}, I_{18} [\mu\text{A}]$	-500		l
Vstupní napětí SDA, SCL = H, $U_{4,5}$ [V]	3		5,5
SDA, SCL = L, $U_{4,5}[V]$	l	1	1,5
Vstupní proud při $U_{4,5} = U_S [\mu A]$		1	50
$U_{4,5} = 0 [\text{mA}]$	1	ł	-0,1
Výstupní napětí SDA při $I_4 = 2 \text{ mA}, U_4 [V]$	1	1	0,5
Náběžná hrana SDA, SCL, t _r [μs]			1
Sestupná hrana SDA, SCL, t _i [ns]		1	300
$U_{4,5} = 0$ mA Výstupní napětí SDA při $I_4 = 2$ mA, U_4 V Náběžná hrana SDA, SCL, t_i µs			0,

Obr. 19. Blokové zapojení SDA2216

Obr. 20. Blokové zapojení PCF8571

dér řádek a jednak dekodér bloků, řídicí obvod řízení sloupců. IO3 je řízen mikropočítačem (nadřízený obvod) přes sběrnici l2C při čtení a při přeprogramování, při němž se mazají a zapisují adresy paměti. V obou případech mikropočítač po podmínce START vyšle na sběrnici tři byte a bit popřípadech mikropočítač tvrzení (A). Při čtení paměti potřebujeme nejméně 8 dalších impulsů taktu pro převzetí dat z paměti, než následuje podmínka STOP. Přes vývody CS0, CS1, CS2 je mož-né volit jednu z osmi pamětí, připojených na stejnou sběrnici. Po zadání prvních dvou řídicích slov a 18 impulsech SCL se opět nastaví podmínka START a třetím řídicím slovem se paměť nastaví na čtení. Vnitřním registrem dat je během bitu potvrzení převzata informace pro paměť.

Doba nastavení podmínky START, STOP $[\mu s]$ Doba držení podmínky START, STOP $[\mu s]$

Kmitočet taktu, f₅ kHz

přenosu dat |ns|

Šířka taktu při úrovních H, L [µs]

Doba nastavení přenosu dat insi

Při sestupné hraně potvrzení přejde výstup dat na malou impedanci a je proměřován první bit dat. S každým taktem je přiváděn na výstup dat následující bit. Po každém přečteném byte se vnitřní čítač adres po bitu potvrzení zvětšuje o 1, což umožňuje číst po sobě mnoho míst v paměti. Při dosažení 127. adresy nastává přeskok na adresu 0. Po podmínce STOP přejde výstup dat do stavu velké impedance a vnitřním řízením je paměť ze stavu čtení převedena do klidového stavu. Přeprogramování paměťového slova začíná mazáním s následným zápisem. Při mazání všech osm bitů daného slova bude mít stav "1" a při zápisu stav

"0", který odpovídá informaci ve vnitřním registru dat, tzn. že vyladění je provedeno třetím zadaným řídicím slovem. Aktivní pro-

100

n

4

4 4

Λ

300

gramování je spuštěno po ukončení podmínky STOP po 27. a posledním taktu zadaného řídicího slova. Aktivní přeprogramování je

 $L_1-6.5z$ \$0,4 CuL\$3 mm; L_2 , L_3 , $L_4-1.5z$ \$0,4 mm CuL\$3 mm; $L_5-2\times6z$ \$0,1 mm; L_6-12z \$0,1 mm D, -BB911 | D2-BB909B | D3-BB405B L, - 2z Ø 0,1 mm na L6

Tab. 23. Parametry PCF8571

Parametr	Min.	Jmen.	Max.
Napájecí napětí, U ₈ V	4,5	5	5,5
Napájecí proud, /8 mA	l		8
Programovací napětí, U7 V	22,8	24	25,6
Programovací proud, I7 mA		<u> </u>	2
Vstupní napětí L pro SDA, SCL, U _{5,6} [V]	1		1,5
H pro SDA, SCL, U56 V	3		U ₈
Vstupní proud H při $U_{vst} = U_8$, $I_{5.6}$ μA	į.		10
Výstupní proud při $U_{\text{výst}} = 0,4 \text{ V}, I_5 \text{ mA}$	1		3
Výst. svodový proud při $U_{\text{výst}} = U_8$, $I_{\text{s5}} \mid \mu A$	1		10
Vstupní napětí L pro CS0, CS1, CS2/TP, U234 V	1		0,2
Vstupní napětí L pro CS0, CS1, CS2/TP, U _{2,3,4} V Vstupní napětí H pro CS0, CS1, CS2/TP, U _{2,3,4} V	4,5		U_8
Vstupní proud H, I _{2,3,4} [mA]			0,1
Kmitočet taktu, f ₆ kHz	1	1	100
Doba přeprogramování při <i>U</i> ₇ = 24 V [ms]	1 '	20	100
Vstupní kapacita pF	1		10

Parametr	Min.	Jmen.	Max.
Napájecí napětí, <i>U</i> ₈ V	2,5		6
Napájecí proud při $U_{\text{vst}} = U_{8}$ a $f_{\text{SCL}} = 100$ kHz, I_{8} [mA]	4.5		0,2
Nulovací napětí při zapnutí zdroje V Napájecí proud v klidovém stavu, I ₈ µA	1,5	1,9	2,3 15
Vstupní napětí L, U_5 [V]	-0,8		0,3 <i>U</i> 8
H, <i>U</i> ₅ [V]	0,7 <i>U</i> ₈		<i>U</i> ₈ +0,8
Výstupní proud L při $U_{\text{výst}} = 0.4 \text{ V}, I_5 \text{ [mA]}$ Výstupní svodový proud H při $U_{\text{výst}} = U_8, I_5 \text{ [nA]}$	3	1	250
Vstupní svodový proud při $U_{\text{výst}} = U_8$, I_5 [IIA] Vstupní svodový proud při $U_{\text{vst}} = U_8$ nebo U_{DD} , I_5 [nA]		1	250
Kmitočet taktu, f ₅ [kHz]	0		100
Vstupní kapacita při <i>U</i> _{vst} = <i>U</i> _{SS} [pF] Přípustná šířka impulsů ˈns			7 100
Pripustna sirka impulsu (ris) Napájecí napětí pro uchování dat, <i>U</i> _{u8} [V]	1		6
Napájecí proud pro <i>U</i> _{u8} = 1 V [μΑ]			5

řízeno vnitřním řídicím obvodem a lze ho ukončit novým dotazem na IO přes SCL a SDA.

Doba pro přepřogramování je závislá na vnitřním řízení, vzorku dat a programovacím napětí $U_{\rm P}$ a při jmenovitých napětích je maximálně 100 ms a typicky 20 ms. Vždy po připojení napájecího napětí $U_{\rm DD}$ bude mít výstup dat velkou impedanci, takže $\rm IO_3$ po zapnutí $U_{\rm DD}$ nejprve čte na libovolné adrese. Vysláním dat a podmínky STOP se vnitřní řízení vynuluje. Pokud zadáním řídicího slova je spuštěno programování paměti, pak podmínka STOP nevynuluje vnitřní řízení průběhu.

IO₃ je schopen si zapamatovat 31 TV programů. Řídicí slovo pro čtení má tento tvar:

ST CS/E As WA As ST CS/A As DA Am DA 1 SP

a při programování:

ST CS/E As WA As DE As SP,

kde CS/E je volba čipu pro zadání dat do paměti, CS/A volba čipu pro výpis z paměti, WA adresa pamětového místa, DE slovo dat zapisované do paměti, DA slovo dat čtené z paměti, DO až D7 jsou bity dat, ST je podmínka START, SP je podmínka STOP, As je bit potvrzení z paměti, Am je bit potvrzení z řídícího obvodu, CSO, CS1, CS2 jsou bity pro volbu čipu, AO až A7 jsou bity adresy zapamatování slova. V tab. 21 jsou tvary řídících slov a v tab. 22 hlavní parametry SDA2216.

Tab. 21. Tvar řídicích slov pro SDA2216

Takt č.	1	2	3	4	5	6	7	8	9	Potvrzení
CS/E	1	0	1	0	CS2	CS1	CS0	0	0 0 0 0	přes paměť
CS/A	1	0	1	0	CS2	CS1	CS0	1		přes paměť
WA	X	A6	A5	A4	A3	A2	A1	A0		přes paměť
DE	D7	D6	D5	D4	D3	D2	D1	D0		přes paměť
DA	D7	D6	D5	D4	D3	D2	D1	D0		přes řídicí obvod

Obr. 22. Zapojení napájecího zdroje BTVP fy Grundig

Kromě paměti SDA2216 je možné použít paměť RAM PCF8571 (má být vyráběna i v ČSSR) s organizací 128×8 bitů. Adresy a data jsou přenášena do paměti PCF8571 (obr. 20) přes vývody 5 a 6 ze sběrnice I²C. Vnitřní registr adres slov se automaticky zvětšuje o 1 po každém byte dat, určených pro zápis nebo čtení. Přes vývody A0, A1, A2 (vývody 1, 2, 3) je možné hardwarově programovat adresy, takže na sběrnici je možné připojit až osm IO PCF8571, které mají tuto adresu:

1 0 1 0 A2 A1 A0.

Pokud chceme uchovat data i po vypnutí napájecího zdroje, je nutné na vývod 8 přes diodu připojit náhradní zdroj aspoň 1,7 V. Napětí $U_{\rm SS}$ je na vývodu 4. Vývod 7 slouží k testování IO a pokud není použit, musíme ho spojit s vývodem 4. Parametry RAM jsou v tab. 23.

Napájecí zdroj BTVP

Na obr. 22 je zapojení blokovacího měniče z BTVP Grundig, CUC2800, který pracuje v rozsahu síťového napětí 160 až 270 V. Průběhy signálů v bodech 1 až 7 jsou na obrázku. Síťové napětí je usměrněno můstkovým usměrňovačem D1 a vyfiltrováno C7. Po zapnutí zdroje je IO1 během doby náběhu napájen přes D₁₀, R₃, pozistor R₂, během náběhu z vinutí 3–4 Tr₁ přes D₁₁. C₈ určuje poměry při zapnutí. Jako spínací tranzistor T₁ je použit BU508. C₁₆ s L₂ a primárním vinutím 1–2 Tr₁ tvoří kmitavý obvod, omezující kmitočet a amplitudu překmitů při vypnutém T₁ a R₁₅, D₂, D₃, L₃, C₉, R₆, L₁ zlepšují spínací vlastnosti T₁; zvětšování proudu je dáno indukčností primárního vinutí 1-2 Tr1. "Pila" z R₈C₁₀ je přiváděna na vývod 4 IO₁. Podle indukčnosti primárního vinutí je třeba přizpůsobit časovou konstantu R₈C₁₀,,úhlu" zvětšování proudu v T₁. Jako informace pro regulaci ve vodivé fázi je na vývodu 4 IO1 použito množství energie primárního vinutí Tr₁, které je závislé na síťovém napětí a době otevření T1. Odchylka pro regulování je snímána z vinutí 5-6 Tr₁, které je co nejtěsněji navázáno na sekundární vinutí 7-12 Tr₁. Současně je vinutí 5-6 Tr₁ součástí zpětné vazby, dovolující, aby paralelní obvod C₁₆, L₂, primární vinutí *1–2* Tr₁ při uzavření výkonového tranzistoru nezávisle kmital, čímž je nastaven maximální volnoběžný kmitočet měniče. Potřebné regulační napětí pro vývod 3 je usměrněno D₄, D₅ a filtrováno C₁₁, C₁₂. Rezistor R₁₆ spolu s C₁₁, C₁₂ tvoří časovou konstantu, která zabraňuje rychlým změnám, takže řídicí obvod reaguje teprve po několika periodách. Děličem napětí R₉, R₁₀, R₁₁, R₁₃ se nastavuje sekundární

Nastavené regulační napětí U_3 (na vývodu $3 \, \text{IO}_1$) je porovnáváno s vnitřním referenčním napětím a podle výsledku porovnání je regu-

lována střída impulsu.

Sekundární napětí se nastavuje R₁₀. V celém pracovním rozsahu měniče je na vinutí 5-6 Tr₁ při průchodu napětí nulou informace o střídě signálu, kmitočtu spínání T1 nebo o volnoběžném kmitočtu. Signály na vývodu o volnobeznem kriniociu. Signaly na vyvoca 2 IO₁ jsou tvarovány R₁₂ a vnitřní omezovací diodou. Článek R₁₆, C₁₃ omezuje rušivé špičky a překmity, které mohou posunout průchody napětí nulou. Odpojení zdroje při podhody napětí nulou. pětí zabezpečuje R7 (do vývodu 5 lO1) v závislosti na napětí na vývodu 9 IO1. Smysl vinutí 3-4 Tr₁ musí být volen tak, aby napětí na vývodu 9 IO1 nebylo regulováno a měnilo se při změně síťového napětí. D₁₁ je během vodivé fáze vodivá. Při podpětí v síti se IO₁ odpojí přes vývod 9 IO₁. Při nezapojené zátěži na sekundární straně Tr, se měnič přepne do klidového stavu (stand-by) a výkon z vinutí 11-12 se zmenší asi na 5 W. R₁₇, R₂₀ jsou zatěžovací odpory pro napětí +147 V a symetrické napětí 34 V a zabraňují zvětšení sekundárního napětí o více než 20 % při klidovém provozu. Kondenzátory C₁₇, C₁₉, C₂₃, C₂₆ omezují špičky vzniklé při spínání D₆ až D₉ a C₁₈, C₂₁, C₂₅, C₂₉ filtrují usměrněná sekundární napětí. Z obr. 22 vvplývá, že:

 na vývodu 1 je zdroj referenčního napětí se zkratuodolným oddělovacím stupněm,

na vývodu 2 je řídicí logika řízena z detektoru průchodu nulou, rozeznávající napětím U₂ průchody napětí nulou, řídí start nabíjecích a vybíjecích impulsů pro Tr₁,

 na vývodu 3 je regulační napětí vedeno do regulačního zesilovače a detektoru přetížení, kde je porovnáváno se vztažnými napětími U_R (při regulaci a přetížení) a U_K (při zkratu). Výstup detektoru přetížení

pracuje jako komparátor signálu STOP. Ochranný obvod běhu naprázdno chrání při odlehčení sekundárního vinutí T₁ před nepřípustně úzkými budicími impulsy,

na vývodu 4 je získáno napětí pomocí vnějšího obvodu RC a měniče primárního proudu, které je úměrně kolektorovému proudu T₁. Měnič, který pracuje jako komparátor i koncový stupeň, je řízen logikou a vnitřním napětím U_{4B}. Bude-li toto napětí větší než výstupní napětí regulačního zesilovače a zesilovače přetížení, je komparátorem STOP upraveno na původní velikost a současně se objeví na výstupu (vývod 7 IO₁) menší napětí. Dalším vstupem vnitřní logiky je výstup generátoru startovacího impulsu s napětím U_{ST}, který hlídá primární a sekundární napájecí napětí,

 na vývodu 5 je zmenšené primární napětí, které se porovnává s napětím U_U v bloku hlídání primárního napětí a v případě podpětí blokuje řídicí logiku,

 výstupním signálem řídicí logiky je buzen zesilovač proudu báze, který tento signál mění na budicí proud báze T₁ a to pomocí C₉ na vývodu 7 lO₁, který při náběhu nabije na 2,1 V. Regulátor proudu tvaruje na R₆ výstupní proud z vývodu 8 lO₁, který je závislý na zvětšujícím se napětí na vývodu 4 lO₁. Při přerušení báze se výkonový tranzistor odpojí přes vývod 7 lO₁.

- na vývodu 9 se z přívedeného napětí Ü₉ odvozují prahová napětí sepnutí U_{9A}, U_{9E} a U_{9min} a vnitřní referenční napětí U_{ref} pro kontrolu napájecího napětí. Z U_{ref} jsou odvozena napětí U_R, U_K, U_U, U_{4B}, U_{ST}. Pokud U₉>U_{9E}, bude U_{ref} sepnuto a při U₉<U_{9A} odpojeno. Logika pracuje jen při U₉>U_{9min}.

Funkci IO₁ je možné rozdělit na tři oblasti: náběh.

běžný/regulovaný provoz, ochranný provoz.

Při zapnutí začíná náběh zdroje, kdy je z vnitřního referenčního napětí napájen regulátor napětí a nabíjí se C_9 . Dokud $U_9 < 12 \text{ V}$, je $I_9 < 3.2 \text{ mA}$. Při $U_9 = 12 \text{ V}$ se skokově zapíná $U_{\text{ref}} = U_1 = 4 \text{ V}$ a vytvoří se potřebná napětí pro obvody v IO_1 , kromě

obvodu řídicí logiky, pro kterou je určen další stabilizátor napětí, začínající pracovat současně s objevením se referenčního napětí. To je nutné, aby se nabil C_9 . Při běžném nebo regulovaném provozu jsou na vývodu $2IO_1$ registrovány průchody signálu nulou ve vazebním vinutí 5-6 Tr₁, které ovládají řídicí logiku. Změny amplitudy napětí na zpětnovazebním vinutí 5-6 Tr₁ jsou usměrněny a přes vývod 3 IO_1 přivedeny na regulační

zesilovač a detektor přetížení. Regulační zesilovač zpracovává vstupní napětí asi 2 V a proud 1,4 mA. Detektor přetížení spolu s obvodem řízení kolektorového proudu na vývodu 4 IO₁ omezují rozsah regulace regulačního zesilovače podle velikosti vnitřního střídavého napětí. Zvětšováním C₁₀ se zvětšuje i přípustný kolektorový proud T₁ (bod obratu) a tím je určen i rozsah regulace, který je dán stejnosměrným napětím vztaženým

Obr. 23. Příklad provedení desky s plošnými spoji napájecího zdroje (X247) (na desce je přidán v pravém dolním rohu desky zdroj a v pravém horním rohu desky sítový filtr, jejichž součástky nejsou na schématu zapojení)

Instruments

World Leading Measurement Technology for Telecommunications

Phoenix Praha A.S., Ing. Havliček, Tel.: (2) 43 32 01, 69 22 906

elsinco

Divadlo pracujících v Mostě prodá

2 ks barevných videorekordérů systému VCR, typ MTV 50, výrobce UNITRA PLR licence GRUNDIG

oba rok výroby 1983.

NEPOUŽÍVANÉ – ke každému kompletní servisní manuál + 1 kazeta VCR – cena za 1 ks – 3000 Kčs.

Informace: Divadlo pracujících v Mostě, tel. 79 62 43, linka 12 – Jiří Henžl.

vůči 2 V a pilovitým střídavým napětím, dosahujícím amplitudy až 4 V (referenční napětí). Při zmenšení sekundárního výkonu na 20 W se zvýší spínací kmitočet na 50 kHz se střídou 1:3, při zmenšení sekundárního výkonu na 1 W se zvýší spínací kmitočet na 70 kHz se střídou 1:11 a současně se zmenšuje kolektorový proud T; pod 1 A.

(Dokončení příště)

ČSPLO s. p. Děčín
odprodá za zůstatkovou hodnotu
11 750 Kčs
rádiovou vysílací a přijímací stanici KV
typ SEG 100 (SSSR) rok výroby 1982.
Bližší informace podá
ing. Picek,
ČSPLO Děčín,
K. Čapka 1,
tel. 283 31

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Magnet-Press inzertní oddělení (inzerce ARB), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51–9, linka 294. Uzávěrka tohoto čísla byla 10. 8. 1990, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme. Text pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

U806D (85), C520D (105). M. Lhotský, 17. listopadu 14, 431 51 Klášterec n. Ohří. BFG65 (150), BFQ69 (150), BFT97 (100), BFT96 (70), BF961 (35), BF679 (25), BFR90 (50), BFR91 (50), BFR96 (60), štvorhlavové HQ video Panasonic NV-G 21 (22 000, 1000 DM), nový kaz. deck Technics RS-B 755 čierny (18 000, 750 DM). P. Poremba, Clementisova 12, 040 14 Košice.

Dekodér FilmNet: desky pl. sp., IO, T, D, mech. díly, krabice, konektory, zdroj, stav. návod (1980). Ing. R. Juřík, Foltýnova 15, 635 00 Brno.

BFQ69, BFG65, BFR90, 91, 96 (115, 135, 29, 34, 39), BFT66 (120). J. Zavadil, P.O.B. 27/Štúrova, 142 00 Praha 4.

KOUPĚ

Termistory v kov. pouzdře 4k7: TL 070–4; KUN 10–20; přesné R; TS 121–2; repro ARN 6604–8 a Jugo AZSK 25. M. Čechlovský, Rumburská 1371, 463 11 Liberec 30. Starší fungující počítač (ZX Spectrum, Didaktik, Sinclair) za 1500 Kčs, uveďte stav. R. Kubala, Centrum 2341/2, 734 01 Karviná.

RŮZNÉ

POZOR! Vyhledám a okopíruji články ze všech elektronic. časop., vypájím součástky a lO bez poškoz. tišťáku horkým vzduchem; seženu popř. převinu růz. traťa. MCF, Forejtová, Nad úpadem 439, 140 00 Praha 4, tel. 794 00 38.

Školská 3 11000 Praha 1 Tel. (02)299394 298110

Ceny dohodou!

Pro soukromníky i organizace!

OTESTUJEME NASTAVIME OPRAVIME

Floppy diskové mechaniky 5,25"; 3,5"

Satelitní dekodér FILMNET, špičková kvalita, automatické spínání, automatické překódování, pouze 5 int. obvodů, všechny součástky do 250 Kčs! Návod + předlohu spojů zašlu na dobírku 290 Kčs. I. Foit, Riegrova 31, 612 00 Brno.

KIKUSUI Oscilloscopes

Superior in Quality, first class in Performance!

Phoenix Praha A.S., Ing. Havliček, Tel.: (2) 69 22 906, 43 32 01,

eLainco