Interrogation n°2 groupe S2; Maths discrètes; année 2018/2019

Exercice 1:

On considère la forme propositionnelle $(p \lor q) \Rightarrow p$ (on notera f cette formule).

1. Réécrivez f en utilisant la forme contraposée de l'implication :

2. Réecrivez f sans utiliser le symbole \Rightarrow :

3. Complétez la table de vérité suivante (p et q représentent des variables propositionnelles):

			
p	q	$p \lor q$	$(p \lor q) \Rightarrow p$
V	V	V	V
V	F	V	V
F	V	V	F
F	F	7	V

4. Ecrivez une formule logiquement équivalente à $(p \lor q) \Rightarrow p$ et qui n'utilise qu'un seul connecteur :

Exercice 2:

1. On considère la proposition $P_1: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^2-y=0$. Donnez en le justifiant la valeur de vérité de

soit re un réel quelconque. Peut-on tronver y en fonction de re
tel que
$$n^2-y=0$$
? Réponse: oui $y=n^2$
donc $N(P_1)=V$

2. On considère la proposition $P_2:\exists y\in\mathbb{R}, \forall x\in\mathbb{R}, x^2-y=0$. Donnez en le justifiant la valeur de vérité de

Exercice 3:

Soit P la proposition suivante:

$$\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \left(x^2 = y^2\right) \Rightarrow (x = y)$$

1. Déterminez la valeur de vérité de P et justifier votre réponse :

Pour
$$\alpha = 0$$
 la proportion "YyeZ, $y^2 = 0 = 0$ "est viaire donc $\alpha(P) = V$

2. Réécrivez P en utilisant la contraposée de l'implication :

3. Ecrivez la négation de P:

Exercice 4:

Démontrez par récurrence la proposition suivante :

$$P(0): A-t-m \quad 0^{2} = \frac{O(0+1)(2x0+1)}{(2x0+1)} \quad 9 \quad P(m)$$

$$= \frac{e^{-1}}{6}$$
Sort in fixe olimentians $P(m) = P(m+1)$

$$= P(m+1)$$

$$= P(m+1)$$