Package Documentation for csthm

Agni Datta

August 31, 2024

Contents

1	Introduction	1
2	Installation	1
3	Usage	1
	3.1 Loading the Package	1
	3.2 Theorem Environments	1
	3.3 Definition Environments	2
	3.4 Remark Environments	2
	3.5 Highlight Environments	2
	3.6 Case Environment	2
	3.7 Axiom Environment	3
4	Customization	3
5	License	3
6	Contact	3
7	Package Source Code	3

1 Introduction

The csthm package provides customized theorem-like environments specifically designed for computer science documents. It offers a set of pre-defined theorem styles and environments to streamline the creation of theorems, definitions, remarks, and other common structures in computer science papers and documents.

2 Installation

To install the csthm package:

1. Run tex csthm.ins to generate csthm.sty

- 2. Move csthm.sty to your TeX tree or project directory
- 3. Use \usepackage{csthm} in your LaTeX documents

3 Usage

3.1 Loading the Package

To use the package, include it in your LaTeX document's preamble:

\usepackage{csthm}

If you want to use the package with cleveref support:

\usepackage[cleveref]{csthm}

Note that the cleveref option requires the hyperref package to be loaded.

3.2 Theorem Environments

The csthm package provides several theorem-like environments commonly used in computer science literature:

THEOREM 3.1. Let G be a graph with n vertices. Then, the minimum number of colours needed to colour G such that no two adjacent vertices share the same colour is known as the chromatic number of G.

LEMMA 3.2. For every natural number n, the sum of the first n odd numbers is n^2 .

COROLLARY 3.3. The sum of the first n positive integers is given by $\frac{n(n+1)}{2}$.

Proposition 3.4. If a and b are two even integers, then their sum is also even.

CONJECTURE 3.5. Every even integer greater than 2 can be expressed as the sum of two primes. (Goldbach's Conjecture)

3.3 Definition Environments

To introduce key definitions and illustrative examples:

Definition 3.6. A tree is a connected, undirected graph with no cycles.

Example 3.7. Consider the binary tree with nodes labelled from 1 to 7. This tree has 3 levels, and each parent node has at most 2 children.

H

3.4 Remark Environments

To include remarks and notes that highlight important observations:

Remark 3.8. While all trees are graphs, not all graphs are trees. A graph must be acyclic and connected to be classified as a tree.

Note 3.9. Keep in mind that proofs of conjectures, like Goldbach's Conjecture, often remain unproven for centuries despite numerous verified instances.

3.5 Highlight Environments

To emphasize crucial points within the document:

IMPORTANT 3.1. Algorithm efficiency is critical; always consider time complexity when designing algorithms. \blacksquare

HIGHLIGHT 3.1. Understanding the P vs NP problem is fundamental in computational complexity theory.

3.6 Case Environment

Used to present distinct cases in an argument or proof:

Case 1: When n = 0, the factorial of n is defined as 1.

Case 2: When n > 0, the factorial is computed as $n \times (n-1) \times \ldots \times 1$.

3.7 Axiom Environment

To enumerate foundational axioms in formal proofs:

Axiom A: For any sets A and B, $A \cup B = B \cup A$ (Commutative Law of Union).

Axiom B: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributive Law).

4 Customization

You can customize the accent colour used in the package to suit your document's design preferences:

\setaccentcolor{blue}

5 License

This package is released under the LaTeX Project Public License (LPPL) version 1.3c or later.

6 Contact

For bug reports or feature requests, please contact the package maintainer:

Agni Datta: agnidatta.org@gmail.com

7 Package Source Code

The following listing shows the source code of the csthm.sty file:

```
\mbox{\ensuremath{\mbox{\%}}} This is file 'csthm.sty',
    %% generated with the docstrip utility.
    %% The original source files were:
    %% csthm.dtx (with options: 'package')
    %% This is a generated file.
    %% Copyright (C) 2024 by Agni Datta <agnidatta.org@gmail.com>
11
12
    \label{eq:conditions} \% This file may be distributed and/or modified under the conditions of
    14
    \mbox{\ensuremath{\%}}\mbox{\ensuremath{\%}} or (at your option) any later version. The latest version of this
16
    %% license is in:
    %% http://www.latex-project.org/lppl.txt
18
    \ensuremath{\text{\%}}\xspace and version 1.3c or later is part of all distributions of LaTeX
    %% version 2008/05/04 or later.
21
    \NeedsTeXFormat{LaTeX2e}[1999/12/01]
23
    \ProvidesPackage{csthm}
    [2024/08/31 v1.2 Theorem Environments for Computer Science]
25
    \newif\if@csthm@loadcleveref
    \DeclareOption{cleveref}{\@csthm@loadclevereftrue}
    \ProcessOptions\relax
29
    \RequirePackage{amsmath}
31
    \RequirePackage{amssymb}
    \RequirePackage{amsthm}
    \RequirePackage{enumitem}
    \RequirePackage{thmtools}
34
    \if@csthm@loadcleveref
36
    \AtBeginDocument{%
37
            \verb|\difpackageloaded{hyperref}|{%|}
38
                   \RequirePackage{cleveref}
39
40
                    \PackageWarning{csthm}{The 'cleveref' option was set, but 'hyperref' is not loaded. Skipping
41
                     'cleveref' loading.}
            }%
42
    \fi
44
    \declaretheoremstyle[
46
47
            spaceabove=\topsep,
            spacebelow=\topsep,
48
           headfont=\scshape,
49
            notefont=\scshape,
            bodyfont=\normalfont,
51
            postheadspace=5pt,
            numberwithin=section
53
            qed=$\scriptstyle\star$,
            headpunct={.}
55
    ]{thmstyle}
56
57
    \declaretheoremstyle[
58
            spaceabove=\topsep,
```

```
spacebelow=\topsep,
60
61
            headfont=\bfseries,
            notefont=\bfseries,
62
63
            bodyfont=\normalfont,
            postheadspace=5pt.
64
            numberwithin=section,
66
            ged=$\scriptstyle\maltese$,
            headpunct={.}
67
68
     ]{defstyle}
69
70
     \declaretheoremstyle[
            spaceabove=\topsep,
71
            spacebelow=\topsep,
            headfont=\scshape,
73
74
            notefont=\scshape,
            bodyfont=\normalfont,
75
76
            postheadspace=5pt,
77
            numberwithin=section,
            qed=$\scriptstyle\maltese$,
78
79
            headpunct={.}
     ]{remarkstyle}
80
81
     \declaretheoremstvle[
82
83
            spaceabove=\topsep,
            spacebelow=\topsep,
84
            headfont=\scshape,
85
            notefont=\scshape,
86
            bodyfont=\normalfont\sffamily,
87
88
            postheadspace=5pt,
            numberwithin=section,
89
90
            qed=$\scriptstyle\maltese$,
            headpunct={.}
91
92
     ]{hltstyle}
93
     \declaretheorem[style=thmstyle,name=Theorem]{theorem}
     \declaretheorem[style=defstyle,sibling=theorem]{fact}
95
     \declaretheorem[style=thmstyle,sibling=theorem]{assumption}
     \declaretheorem[style=thmstyle,sibling=theorem]{claim}
97
     \declaretheorem[style=thmstyle,sibling=theorem]{conjecture}
98
99
     \verb|\declaretheorem[style=thmstyle,sibling=theorem]{corollary}|
     \declaretheorem[style=thmstyle,sibling=theorem]{lemma}
100
101
     \declaretheorem[style=thmstyle,sibling=theorem]{property}
     \declaretheorem[style=thmstyle,sibling=theorem]{proposition}
102
103
     \declaretheorem[style=defstyle,sibling=theorem]{definition}
104
     \declaretheorem[style=defstyle,sibling=theorem]{example}
     \declaretheorem[style=defstyle,sibling=theorem]{exercise}
106
     \declaretheorem[style=defstyle,sibling=theorem]{problem}
107
     \declaretheorem[style=defstyle,sibling=theorem]{question}
108
109
     \declaretheorem[style=remarkstyle,sibling=theorem]{note}
     \declaretheorem[style=remarkstyle,sibling=theorem]{remark}
     \declaretheorem[style=remarkstyle,sibling=theorem]{solution}
113
     \declaretheorem[style=hltstyle,name=Important]{important}
114
     \declaretheorem[style=hltstyle]{highlight}
     \declaretheorem[style=hltstyle]{keypoint}
116
117
118
     \newlist{caseList}{enumerate}{1}
     \setlist[caseList]{label=\textbf{Case~\arabic*:},leftmargin=*}
119
120
     \begin{caseList}[#1]%
122
                   }{%
```

```
\end{caseList}%
124
    }
125
126
    \verb|\newlist{axiomList}{enumerate}{\{1\}}
127
    \setlist[axiomList]{label=\textbf{Axiom~\Alph*:}, leftmargin=*}
128
129
    \verb|\NewDocumentEnvironment{axiom}{0{}}{%}|
130
131
           \verb|\begin{axiomList}[#1]||
                  }{%
132
           \end{axiomList}%
133
    }
134
135
     \renewcommand\qedsymbol{\$\scriptstyle\blacksquare\$}
136
137
     \providecommand{\accentcolor}{black}
139
140
     \providecommand{\csthmpkg}{\textsf{csthm}}}
     141
142
     \verb|\newcommand{\setaccentcolor}[1]{\newcommand{\accentcolor}\{\#1\}}|
143
    \endinput
144
    %%
145
    %% End of file 'csthm.sty'.
146
```