- 4.20. Prove que o conjunto dos pontos de descontinuidade de uma função monótona (em sentido lato) f:[a,b]→R tem medida nula.
- 9.2. Considere as funções $f(x) = \int_0^x e^{-t^2} dt$ e $g(x) = \int_0^1 e^{-x^2(t^2+1)}/(t^2+1)$ dt . Prove que $f^{2}(x)+g(x)=\pi/4$ e que $\lim_{X\to +\infty} \int_{0}^{X} e^{-t^{2}} dt = \sqrt{\pi}/2$.
- 9.4. Seja $f(t) = \int_{-1000}^{t} t^{-t^2 x^2} / x \, dx$, para t>1. Determine f'(t).
- 9.5. Verifique que se $f,f',f''\in L(\mathbb{R})$ então $u(t,x)=\int_{-\infty}^{+\infty}\left(e^{-\tau^2/(4kt)}/\sqrt{4\pi kt}\right)f(x-\tau)\ d\tau$, para $t>0,\ x\in\mathbb{R}$, é solução da equação do calor $\partial u/\partial t=k\ \partial^2 u/\partial x^2$, com k>0. Prove que essa solução satisfaz a condição inicial u(0,x)=f(x) no sentido de que $u(t,x) \rightarrow f(x)$ quando $t \rightarrow 0$, em todos os pontos x onde f é contínua.
- 9.6. Seja $g(t) = \int_0^{+\infty} f(t,x) dx$, onde $f(t,x) = (e^{-tx} sen x)/x$. Mostre que:
 - 1) $g'(t)=-1/(1+t^2)$.
 - 2) $g(t) \rightarrow 0$ quando $t \rightarrow +\infty$
 - 3) $\lim_{r \to +\infty} \int_0^r (\sin x)/x \, dx = \pi/2 .$
 - 4) $\int_0^{+\infty} |(\sin x)/x| dx$ não existe.
- 11.14. Determine se as funções dadas são ou não integráveis nos seus domínios:
 - a) $f(\mathbf{x}) = (||\mathbf{x}||^2 + 1)^{-\alpha/2}$, $\alpha > n$, definida em \mathbb{R}^n . b) $f(\mathbf{x}) = ||\mathbf{x}||^{-||\mathbf{x}||}$, definida em $\mathbb{R}^n \setminus \{\mathbf{0}\}$.