TP555 - Inteligência Artificial

Francisco A. S. Carmo

Lista#7

Item 1

Utilizando o método ID3

Entropia do conjunto:

$$H(y) = -\left[\left(\frac{P}{p+n}\right)log_2\left(\frac{P}{p+n}\right) + \left(\frac{1-P}{p+n}\right)log_2\left(\frac{1-P}{p+n}\right)\right] \quad \cos\left\{\frac{p=2\ (positivo)}{n=3\ (negativo)}\right\}$$

Então:

$$H(y) = -\left[\left(\frac{2}{5}\right)\log_2\left(\frac{2}{5}\right) + \left(\frac{3}{5}\right)\log_2\left(\frac{3}{5}\right)\right] = 0.97$$

p+n = 5

		p1	n1	
A ₁	1	2	2	4
	0	1	0	1

		p2	n2	
A_2	1	2	1	3
	0	2	0	0

		р3	n3	
A ₃	1	1	1	4
	0	2	2	1

Ganho (A₁) = 0,97-
$$\left[\left(\frac{4}{5}\right)B\left(\frac{2}{4}\right)+\left(\frac{1}{5}\right)B\right]=0,17$$

Ganho (A₂) = 0,97-
$$\left[\left(\frac{3}{5}\right)B\left(\frac{2}{3}\right)+\left(\frac{2}{5}\right)B\left(\frac{2}{2}\right)\right]=0,41$$

Ganho (A₃) = 0.97 -
$$\left[\left(\frac{2}{5} \right) B \left(\frac{1}{2} \right) + \left(\frac{3}{5} \right) B \left(\frac{3}{2} \right) \right] = 0.02$$

Com A₂ em primeiro nó temos:

$$A_2 = 0 => y = 0$$

$$A_2 = 1 \Rightarrow y = \text{indefinido assim temos que } A2 = \begin{cases} A1 = 0.97^2 \\ A3 = 0.30 \end{cases}$$

Item 2

Utilizando o método ID3

$$H(y) = -\left[\left(\frac{2}{4}\right)\log_2\left(\frac{2}{4}\right) + \left(\frac{2}{4}\right)\log_2\left(\frac{2}{4}\right)\right] = 1$$

Então:

Ganho (X₁) =
$$1 - \left[\left(\frac{2}{4} \right) B \left(\frac{1}{2} \right) + \left(\frac{2}{4} \right) B \left(\frac{1}{2} \right) \right] = 0$$

Ganho (X₂) =
$$1 - \left[\left(\frac{2}{4} \right) B \left(\frac{1}{2} \right) + \left(\frac{2}{4} \right) B \left(\frac{1}{2} \right) \right] = 0$$

Se
$$X_1 = 0$$
 implica que $\begin{cases} x2 = 0 \ e \ y = 0 \\ x2 = 1 \ e \ y = 1 \end{cases}$ e se Se $X_1 = 1$ implica que $\begin{cases} x2 = 0 \ e \ y = 1 \\ x2 = 1 \ e \ y = 0 \end{cases}$