

## PHOTONS: LIGHT WAVES BEHAVING AS PARTICLES

**VP38.3.1. IDENTIFY:** This problem involves the energy and momentum of a photon.

**SET UP:**  $E = hc/\lambda$ ,  $\lambda = h/p$ .

**EXECUTE:** (a) We want the energy and momentum of the photon.  $E = hc/\lambda = hc/(625 \text{ nm}) = 3.18 \times 10^{-19} \text{ J. } p = h/\lambda = h/(625 \text{ nm}) = 1.06 \times 10^{-27} \text{ kg} \cdot \text{m/s}.$ 

**(b)** We want the power output of the laser.  $\frac{E}{t} = \frac{\left(2.15 \times 10^{16} \text{photons}\right) \left(3.18 \times 10^{-19} \text{ J/photon}\right)}{1.00 \text{ s}}$ 

= 6.77 mW.

**EVALUATE:** Don't confuse the frequency of the light with the frequency at which photons are emitted. They are *very* different!

**VP38.3.2. IDENTIFY:** This problem is about the photoelectric effect.

**SET UP:**  $hf = K_{\text{max}} + \phi$ .

**EXECUTE:** (a) We want the minimum frequency to produced photoelectrons. This is the threshold frequency, at which the kinetic energy is zero, so  $hf = \phi \cdot f = \phi/h = (4.55 \text{ eV})/h = 1.10 \times 10^{15} \text{ Hz}.$ 

**(b)** We want the frequency when the maximum kinetic energy is 1.53 eV. Solve  $hf = K_{\text{max}} + \phi$  for f, giving

$$f = \frac{K_{\text{max}} + \phi}{h} = \frac{1.53 \text{ eV} + 4.55 \text{ eV}}{h} = 1.47 \times 10^{15} \text{ Hz}.$$

**EVALUATE:** Be prepared to use h in units of either J·s or eV·s, depending on the given units. Doing so can avoid tedious unit conversions.

**VP38.3.3. IDENTIFY:** This problem is about the photoelectric effect.

**SET UP:**  $eV_0 = hc/\lambda - \phi$ ,  $f\lambda = c$ .

**EXECUTE:** (a) We want the work function. Solve  $eV_0 = hc/\lambda - \phi$  for  $\phi$  using  $V_0 = 1.37$  V and  $\lambda = 475$  nm, giving  $\phi = 1.24$  eV.

**(b)** We want  $V_0$  if  $\lambda = 425$  nm. Solve  $eV_0 = hc/\lambda - \phi$  for  $V_0$  using  $\phi = 1.24$  eV and  $\lambda = 425$  nm. This gives  $V_0 = 1.68$  eV.

**EVALUATE:** Decreasing the photon wavelength increases its energy, so the stopping potential increases. From Table 38.1 we see that the  $\phi$  we found is around half that of sodium, so it is a reasonable value.

**VP38.3.4. IDENTIFY:** This problem is about the photoelectric effect.

**SET UP:**  $E = hc/\lambda$ .

**EXECUTE:** (a) We want the kinetic energy in eV. Using  $K = \frac{1}{2}mv^2$ , with *m* the electron mass and  $v = 6.95 \times 10^5$  m/s gives  $K = 2.20 \times 10^{-19}$  J = 1.37 eV.

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

**(b)** We want the photon energy.  $E = hc/\lambda = hc/(306 \text{ nm}) = 4.05 \text{ eV}$ .

(c) We want  $\phi$ .  $E_{\text{photon}} = K_{\text{max}} + \phi$ .  $\phi = 4.05 \text{ eV} - 1.37 \text{ eV} = 2.68 \text{ eV}$ .

**EVALUATE:** The work function is about the same as for sodium, so it is reasonable.

**VP38.6.1. IDENTIFY:** We are dealing with Compton scattering.

**SET UP:**  $\lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi)$ . We want the increase in the wavelength.

EXECUTE: (a)  $\lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi) = (2.426 \times 10^{-12} \text{ m}) (1 - \cos 14.5^{\circ}) = 7.73 \times 10^{5} \text{ nm}.$ 

**(b)** 
$$\frac{\lambda' - \lambda}{\lambda} = \frac{7.73 \times 10^5 \text{ nm}}{0.251 \text{ nm}} = 0.0308\%.$$

**EVALUATE:** The fractional change in the wavelength is very small. It would be larger if the scattering angle  $\phi$  were closer to 180°.

VP38.6.2. IDENTIFY: We are dealing with Compton scattering.

SET UP:  $\lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi)$ ,  $f\lambda = c$ . We want the frequency of the scattered waves. Using  $f\lambda = c$  gives

$$\frac{1}{f'} = \frac{1}{f} + \frac{h}{mc^2} \left( 1 - \cos \phi \right).$$

**EXECUTE:** (a)  $\phi = 90.00^{\circ}$ : Using the given frequency and scattering angle gives  $f' = 1.247 \times 10^{18}$  Hz.

**(b)**  $\phi = 180.0^{\circ}$ : Working as in (a) but with  $\phi = 180.0^{\circ}$  gives  $f' = 1.235 \times 10^{18}$  Hz.

**EVALUATE:** For  $\phi = 180^{\circ}$  the x rays are scattered directly back from their original direction, but at  $\phi = 90.0^{\circ}$  they go off perpendicular to their original direction. Note that the frequency of the scattered waves is different in each case.

**VP38.6.3. IDENTIFY:** We are dealing with Compton scattering off of a proton.

**SET UP:**  $\lambda' - \lambda = \frac{h}{mc}(1 - \cos \phi)$ , where *m* is now the mass of a *proton*. We want the scattering angle  $\phi$ .

Solving for  $\cos \phi$  gives  $\cos \phi = 1 - \frac{mc}{h}(\lambda' - \lambda)$ , with  $\lambda = 2.50 \times 10^{-12}$  m.

**EXECUTE:** (a)  $\lambda' = \lambda + 0.000100 \lambda$ :  $\cos \phi = 1 - \frac{mc}{h} (\lambda' - \lambda) = \frac{mc}{h} (\lambda + 0.000100 \lambda - \lambda)$ 

$$=1-\frac{mc}{h}\big(0.000100\lambda\big).$$

Using the *proton* mass gives  $\phi = 35.8^{\circ}$ .

**(b)**  $\lambda' = \lambda + 0.000800\lambda$ :  $\cos \phi = 1 - \frac{mc}{h}(\lambda' - \lambda) = \frac{mc}{h}(\lambda + 0.000100\lambda - \lambda) = 1 - \frac{mc}{h}(0.000800\lambda)$ .

 $\phi = 121^{\circ}$ .

**EVALUATE:** Note that the scattering angle has a considerable effect on the wavelength of the scattered wave.

**VP38.6.4. IDENTIFY:** This problem involves the annihilation of a proton and an antiproton.

**SET UP:** We want the energy and wavelength of the resulting photons.  $E = hc/\lambda$ .

**EXECUTE:** (a) Initial kinetic energy is negligible. The energy of the two photons is equal to the rest energy of the two protons (which is 938.3 MeV each), and each photon has the same energy due to momentum conservation. Therefore  $E_{\text{photon}} = 938.3$  MeV. The wavelength of each photon is  $\lambda = hc/E = hc/(938.3 \text{ MeV}) = 1.32 \times 10^{-15} \text{ m}$ .

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

**(b)** Initial kinetic energy of each proton is 545 MeV. In this case, the energy of the photons is equal to the rest energy of the protons plus their kinetic energy, so the energy of each photon is  $E_{\text{photon}}$ 

= 938.3 MeV + 545 MeV = 1483.3 MeV. 
$$\lambda = hc/E = hc/(1483.3 \text{ MeV}) = 8.36 \times 10^{-16} \text{ m}$$
.

**EVALUATE:** The wavelength of the photons is less when the protons have substantial energy. This is a reasonable result because short-wavelength photons have more energy than long-wavelength photons.

**VP38.7.1. IDENTIFY:** This problem involves the uncertainty principle.

**SET UP:**  $\Delta t \Delta E = \hbar/2$ ,  $\Delta x \Delta p_x = \hbar/2$ ,  $\lambda = h/p$ ,  $E = hc/\lambda$ .

**EXECUTE:** (a) We want the momentum.  $p = h/\lambda = h/(633 \text{ nm}) = 1.05 \times 10^{-27} \text{ kg} \cdot \text{m/s}.$ 

**(b)** We want the minimum uncertainty in the momentum. We know that  $\Delta x = 700 \times 10^{-6}$  m.

$$\Delta p_{\min} = \frac{\hbar}{2\Delta x} = \frac{1.055 \times 10^{-34} \text{ J} \cdot \text{s}}{2(7.00 \times 10^{-6} \text{ m})} = 7.54 \times 10^{-30} \text{ kg} \cdot \text{m/s}.$$

The percent uncertainty is

$$\frac{\Delta p_{\min}}{p_{\min}} = \frac{7.54 \times 10^{-30} \text{ kg} \cdot \text{m/s}}{1.05 \times 10^{-27} \text{ kg} \cdot \text{m/s}} = 0.720\%.$$

- (c) We want the energy.  $E = hc/\lambda = hc/(633 \text{ nm}) = 3.14 \times 10^{-19} \text{ J}.$
- (d) We want the minimum uncertainty in the energy. We use  $\Delta t \Delta E = \hbar/2$  where  $\Delta t$  is the time for the pulse to propagate  $7.00 \times 10^{-6}$  m. Therefore

$$\Delta t = \frac{\Delta x}{c} = \frac{7.00 \times 10^{-6} \text{ m}}{c} = 2.333 \times 10^{-14} \text{ s.}$$
$$\Delta E = \frac{\hbar}{2\Delta t} = \frac{h}{2(2.333 \times 10^{-14} \text{ s})} = 2.26 \times 10^{-21} \text{ s.}$$

Dividing the result in (d) by the energy in (c) gives

$$\frac{\Delta E}{E} = 0.720\%.$$

**EVALUATE:** Note that the uncertainties in p and E are very small percents.

**VP38.7.2. IDENTIFY:** This problem involves the uncertainty principle.

**SET UP:**  $\Delta t \Delta E = h/2$ , E = hf,  $f \lambda = c$ .

**EXECUTE:** (a) We want the time  $\Delta t$  of the pulse.

$$\Delta t = \frac{\hbar}{2\Delta E} = \frac{\hbar}{2(5.50 \times 10^{-29} \,\text{J})} = 9.59 \times 10^{-7} \,\text{s}.$$

- **(b)** We want the length of the pulse.  $L = c\Delta t = c(9.59 \times 10^{-7} \text{ s}) = 288 \text{ m}.$
- (c) We want the energy.  $E = hf = h(3.00 \text{ GHz}) = 1.99 \times 10^{-24} \text{ J}.$
- (d) We want the uncertainty in the frequency. E = hf, so  $\Delta E = h\Delta f$ . Also  $\Delta E = \frac{h}{2\Delta t}$   $\Delta E = \frac{\hbar}{2\Delta t}$

Combining gives 
$$\frac{\hbar}{2\Delta t} = h\Delta f$$
, so

$$\Delta f = \frac{1}{4\pi\Delta t} = \frac{1}{4\pi (9.59 \times 10^{-7} \text{ s})} = 8.30 \times 10^{-5} \text{ GHz}.$$

**EVALUATE:** As we have seen before, the fractional uncertainties arising from the uncertainty principle are usually very small.

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

**VP38.7.3. IDENTIFY:** This problem involves the uncertainty principle.

**SET UP:**  $\Delta t \Delta E \ge \hbar/2$ , E = hf,  $f \lambda = c$ .

**EXECUTE:** (a) We want the wavelength and frequency of the laser light. Using E = hf, we see that  $\Delta E = h\Delta f$ . We know that  $\Delta E = 6.70\%E = 0.0670hf$  and that  $\Delta E = 2.33 \times 10^{-20}$  J. Therefore  $2.33 \times 10^{-20}$  J

= 0.0670hf, which gives  $f = 5.25 \times 10^{14}$  Hz. Using this frequency, the wavelength is  $\lambda = c/f = 572$  nm.

**(b)** We want the minimum uncertainty in f. E = hf, so  $\Delta E = h\Delta f$ . Thus

$$\Delta f = \frac{\Delta E}{h} = \frac{2.33 \times 10^{-20} \text{ J}}{h} = 3.52 \times 10^{13} \text{ Hz}.$$

(c) We want the time duration  $\Delta t$  of the pulse. Using  $\Delta t \Delta E \ge \hbar/2$  gives

$$\Delta t = \frac{\hbar}{2\Delta E} = \frac{\hbar}{2(2.33 \times 10^{-20} \text{ J})} = 2.26 \times 10^{-15} \text{ s} = 2.26 \text{ fs}.$$

**EVALUATE:** As before, the fractional uncertainties are very small.

**VP38.7.4. IDENTIFY:** This problem involves the uncertainty principle.

SET UP:  $\Delta t \Delta E \ge \hbar/2$ ,  $E = hc/\lambda$ . The average photon energy is 0.0155 eV, the energy of a pulse is 2.39 eV, and on the *average* there are  $5.00 \times 10^{12}$  photons per pulse.

**EXECUTE:** (a) We want the time duration of a pulse. As pointed out in Example 7.4, the minimum uncertainty  $\Delta t$  for a photon is the time duration of the pulse. Using  $\Delta t \Delta E \ge \hbar/2$  gives

$$\Delta t = \frac{\hbar}{2\Delta E} = \frac{\left(4.136 \times 10^{-15} \text{ eV} \cdot \text{s}\right) / 2\pi}{2(0.0155 \text{ eV})} = 2.12 \times 10^{-14} \text{ s}.$$

**(b)** We want the wavelength. Using  $E = hc/\lambda$  gives  $\lambda = hc/E = hc/(2.39 \text{ eV}) = 519 \text{ nm}$ .

(c) We want the energy per pulse. This energy is equal to the energy per average photon times the number of photons in a pulse. Therefore  $E = (2.39 \text{ eV/photon})(5.00 \times 10^{12} \text{ photons/pulse})$ = 1.195 × 10<sup>13</sup> eV = 1.91  $\mu$ J per pulse.

**EVALUATE:** The energy per pulse is small, but the pulse lasts for a very short time, so the power during the pulse is very large. Note that some of the photons have wavelengths longer than 519 and some have shorter wavelengths.

**38.1.** IDENTIFY and SET UP: Apply  $c = f\lambda$ ,  $p = h/\lambda$ , and E = pc.

**EXECUTE:** 

$$f = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \,\text{m/s}}{5.20 \times 10^{-7} \,\text{m}} = 5.77 \times 10^{14} \,\text{Hz}.$$

$$p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34} \text{ J} \cdot \text{s}}{5.20 \times 10^{-7} \text{ m}} = 1.28 \times 10^{-27} \text{ kg} \cdot \text{m/s}.$$

$$E = pc = (1.28 \times 10^{-27} \text{ kg} \cdot \text{m/s}) (3.00 \times 10^8 \text{ m/s}) = 3.84 \times 10^{-19} \text{ J} = 2.40 \text{ eV}.$$

**EVALUATE:** Visible-light photons have energies of a few eV.

**38.2. IDENTIFY** and **SET UP:**  $c = f\lambda$  relates frequency and wavelength and E = hf relates energy and frequency for a photon.  $c = 3.00 \times 10^8$  m/s.  $1 \text{ eV} = 1.60 \times 10^{-16}$  J.

EXECUTE: **(a)** 
$$f = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \text{ m/s}}{505 \times 10^{-9} \text{ m}} = 5.94 \times 10^{14} \text{ Hz.}$$

**(b)** 
$$E = hf = (6.626 \times 10^{-34} \text{ J} \cdot \text{s})(5.94 \times 10^{14} \text{ Hz}) = 3.94 \times 10^{-19} \text{ J} = 2.46 \text{ eV}.$$

(c) 
$$K = \frac{1}{2}mv^2$$
, so  $v = \sqrt{\frac{2K}{m}} = \sqrt{\frac{2(3.94 \times 10^{-19} \text{ J})}{9.5 \times 10^{-15} \text{ kg}}} = 9.1 \text{ mm/s}.$ 

**EVALUATE:** Compared to kinetic energies of common objects moving at typical speeds, the energy of a visible-light photon is extremely small.

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

**38.3. IDENTIFY** and **SET UP:**  $c = f\lambda$ . The source emits (0.05)(75 J) = 3.75 J of energy as visible light each second. E = hf, with  $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$ .

EXECUTE: **(a)** 
$$f = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \text{ m/s}}{600 \times 10^{-9} \text{ m}} = 5.00 \times 10^{14} \text{ Hz.}$$

**(b)**  $E = hf = (6.63 \times 10^{-34} \text{ J} \cdot \text{s})(5.00 \times 10^{14} \text{ Hz}) = 3.32 \times 10^{-19} \text{ J}$ . The number of photons emitted per second is  $\frac{3.75 \text{ J}}{3.32 \times 10^{-19} \text{ J/photon}} = 1.13 \times 10^{19} \text{ photons}$ .

**EVALUATE: (c)** No. The frequency of the light depends on the energy of each photon. The number of photons emitted per second is proportional to the power output of the source.

**38.4.** IDENTIFY and SET UP:  $P_{\text{av}} = \frac{\text{energy}}{t}$ . 1 eV = 1.60×10<sup>-19</sup> J. For a photon,  $E = hf = \frac{hc}{\lambda}$ .  $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$ .

**EXECUTE:** (a) energy = 
$$P_{av}t = (0.600 \text{ W})(20.0 \times 10^{-3} \text{ s}) = 1.20 \times 10^{-2} \text{ J} = 7.5 \times 10^{16} \text{ eV}.$$

**(b)** 
$$E = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{652 \times 10^{-9} \text{ m}} = 3.05 \times 10^{-19} \text{ J} = 1.91 \text{ eV}.$$

(c) The number of photons is the total energy in a pulse divided by the energy of one photon:

$$\frac{1.20\times10^{-2} \text{ J}}{3.05\times10^{-19} \text{ J/photon}} = 3.93\times10^{16} \text{ photons.}$$

**EVALUATE:** The number of photons in each pulse is very large.

**38.5. IDENTIFY** and **SET UP:** A photon has zero rest mass, so its energy is E = pc and its momentum is  $p = \frac{h}{a}$ .

EXECUTE: (a) 
$$E = pc = (8.24 \times 10^{-28} \text{ kg} \cdot \text{m/s})(2.998 \times 10^8 \text{ m/s}) = 2.47 \times 10^{-19} \text{ J}$$
  
=  $(2.47 \times 10^{-19} \text{ J})(1 \text{ eV}/1.602 \times 10^{-19} \text{ J}) = 1.54 \text{ eV}.$ 

**(b)** 
$$p = \frac{h}{\lambda}$$
, so  $\lambda = \frac{h}{p} = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{8.24 \times 10^{-28} \text{ kg} \cdot \text{m/s}} = 8.04 \times 10^{-7} \text{ m} = 804 \text{ nm}.$ 

**EVALUATE:** This wavelength is longer than visible wavelengths; it is in the infrared region of the electromagnetic spectrum. To check our result we could verify that the same E is given by  $E = hc/\lambda$ , using the  $\lambda$  we have calculated.

**38.6. IDENTIFY** and **SET UP:** For the photoelectric effect, the maximum kinetic energy of the photoelectrons is  $\frac{1}{2}mv_{\text{max}}^2 = hf - \phi = \frac{hc}{\lambda} - \phi$ . Take the work function  $\phi$  from Table 38.1. Solve for  $v_{\text{max}}$ . Note that we wrote f as  $c/\lambda$ .

EXECUTE: 
$$\frac{1}{2}mv_{\text{max}}^2 = \frac{(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})}{235 \times 10^{-9} \text{ m}} - (5.1 \text{ eV})(1.602 \times 10^{-19} \text{ J/1 eV}).$$

$$\frac{1}{2}mv_{\text{max}}^2 = 8.453 \times 10^{-19} \text{ J} - 8.170 \times 10^{-19} \text{ J} = 2.83 \times 10^{-20} \text{ J}.$$

$$v_{\text{max}} = \sqrt{\frac{2(2.83 \times 10^{-20} \text{ J})}{9.109 \times 10^{-31} \text{ kg}}} = 2.49 \times 10^5 \text{ m/s}.$$

**EVALUATE:** The work function in eV was converted to joules for use in the equation  $\frac{1}{2}mv_{\text{max}}^2$ 

=  $hf - \phi = \frac{hc}{\lambda} - \phi$ . A photon with  $\lambda = 235$  nm has energy greater then the work function for the surface.

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

**38.7. IDENTIFY**: The photoelectric effect occurs. The kinetic energy of the photoelectron is the difference between the initial energy of the photon and the work function of the metal.

**SET UP:** 
$$\frac{1}{2}mv_{\text{max}}^2 = hf - \phi$$
,  $E = hc/\lambda$ .

**EXECUTE:** Use the data for the 400.0-nm light to calculate 
$$\phi$$
. Solving for  $\phi$  gives  $\phi = \frac{hc}{\lambda} - \frac{1}{2}mv_{\text{max}}^2$ 

$$= \frac{(4.136 \times 10^{-15} \text{ eV} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{400.0 \times 10^{-9} \text{ m}} - 1.10 \text{ eV} = 3.10 \text{ eV} - 1.10 \text{ eV} = 2.00 \text{ eV}. \text{ Then for 300.0 nm, we}$$

have 
$$\frac{1}{2}mv_{\text{max}}^2 = hf - \phi = \frac{hc}{\lambda} - \phi = \frac{(4.136 \times 10^{-15} \text{ eV} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{300.0 \times 10^{-9} \text{ m}} - 2.00 \text{ eV}$$
, which gives

$$\frac{1}{2}mv_{\text{max}}^2 = 4.14 \text{ eV} - 2.00 \text{ eV} = 2.14 \text{ eV}.$$

**EVALUATE:** When the wavelength decreases the energy of the photons increases and the photoelectrons have a larger minimum kinetic energy.

**38.8. IDENTIFY** and **SET UP:**  $eV_0 = \frac{1}{2}mv_{\text{max}}^2$ , where  $V_0$  is the stopping potential. The stopping potential in volts equals  $eV_0$  in electron volts.  $\frac{1}{2}mv_{\text{max}}^2 = hf - \phi$  and  $f = c/\lambda$ .

EXECUTE: **(a)** 
$$eV_0 = \frac{1}{2}mv_{\text{max}}^2$$
, so  $eV_0 = hf - \phi = \frac{(4.136 \times 10^{-15} \text{ eV} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{190 \times 10^{-9} \text{ m}} - 2.3 \text{ eV}$ 

= 6.53 eV - 2.3 eV = 4.23 eV, which rounds to 4.2 eV. The stopping potential is 4.2 volts.

**(b)** 
$$\frac{1}{2}mv_{\text{max}}^2 = 4.2 \text{ eV}.$$

(c) 
$$v_{\text{max}} = \sqrt{\frac{2(4.23 \text{ eV})(1.60 \times 10^{-19} \text{ J/eV})}{9.11 \times 10^{-31} \text{kg}}} = 1.2 \times 10^6 \text{ m/s}.$$

**EVALUATE:** If the wavelength of the light is decreased, the maximum kinetic energy of the photoelectrons increases.

**38.9. (b) IDENTIFY:** Solve part (b) first. First use  $eV_0 = hf - \phi$  to find the work function  $\phi$ 

**SET UP:** 
$$eV_0 = hf - \phi$$
, so  $\phi = hf - eV_0 = \frac{hc}{\lambda} - eV_0$ .

EXECUTE: 
$$\phi = \frac{(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})}{254 \times 10^{-9} \text{ m}} - (1.602 \times 10^{-19} \text{ C})(0.181 \text{ V}).$$

$$\phi = 7.821 \times 10^{-19} \text{ J} - 2.900 \times 10^{-20} \text{ J} = 7.531 \times 10^{-19} \text{ J} (1 \text{ eV} / 1.602 \times 10^{-19} \text{ J}) = 4.70 \text{ eV}.$$

(a) IDENTIFY and SET UP: The threshold frequency  $f_{th}$  is the smallest frequency that still produces photoelectrons. It corresponds to  $K_{max} = 0$  in the equation  $\frac{1}{2}mv_{max}^2 = hf - \phi$ , so  $hf_{th} = \phi$ .

**EXECUTE:** 
$$f = \frac{c}{\lambda}$$
 says  $\frac{hc}{\lambda_{\text{th}}} = \phi$ .

$$\lambda_{\text{th}} = \frac{hc}{\phi} = \frac{(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})}{7.531 \times 10^{-19} \text{ J}} = 2.64 \times 10^{-7} \text{ m} = 264 \text{ nm}.$$

**EVALUATE:** As calculated in part (b),  $\phi = 4.70$  eV. This is the value given in Table 38.1 for copper.

**38.10. IDENTIFY:** The acceleration gives energy to the electrons which is then given to the x ray photons. **SET UP:**  $E = hc/\lambda$ , so  $\frac{hc}{\lambda} = eV$ , where  $\lambda$  is the wavelength of the x ray and V is the accelerating voltage.

EXECUTE: 
$$\lambda = \frac{hc}{eV} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{(1.60 \times 10^{-19} \text{ C})(15.0 \times 10^3 \text{ V})} = 8.29 \times 10^{-11} \text{ m} = 0.0829 \text{ nm}.$$

**EVALUATE:** This wavelength certainly is in the x ray region of the electromagnetic spectrum.

**38.11. IDENTIFY:** This problem is about the characteristics of photons.

**SET UP:** E = hf,  $\lambda = h/p$ ,  $f \lambda = c$ . We want the frequency, wavelength, and momentum of the photon.

**EXECUTE:**  $E_{ph} = 0.700K_{el} = 0.700eV = hf$ . So f = (0.700eV)/h. Using V = 50.0 kV and h in terms of eV, we get  $f = 8.46 \times 10^{18}$  Hz. Using this result gives  $\lambda = c/f = 0.0355$  nm. Using this wavelength gives  $p = h/\lambda = 1.87 \times 10^{-23}$  kg·m/s.

EVALUATE: The frequency of this photon is much greater than that of visible light.

**38.12.** IDENTIFY and SET UP:  $\frac{hc}{\lambda} = eV$ , where  $\lambda$  is the wavelength of the x ray and V is the accelerating voltage.

EXECUTE: **(a)** 
$$V = \frac{hc}{e\lambda} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{(1.60 \times 10^{-19} \text{ C})(0.150 \times 10^{-9} \text{ m})} = 8.29 \text{ kV}.$$

**(b)** 
$$\lambda = \frac{hc}{eV} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{(1.60 \times 10^{-19} \text{ C})(30.0 \times 10^3 \text{ V})} = 4.14 \times 10^{-11} \text{ m} = 0.0414 \text{ nm}.$$

**EVALUATE:** Shorter wavelengths require larger potential differences.

**38.13. IDENTIFY:** Energy is conserved when the x ray collides with the stationary electron.

**SET UP:**  $E = hc/\lambda$ , and energy conservation gives  $\frac{hc}{\lambda} = \frac{hc}{\lambda'} + K_e$ .

EXECUTE: Solving for  $K_e$  gives  $K_e = hc \left( \frac{1}{\lambda} - \frac{1}{\lambda'} \right) = (6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})$ 

$$\left(\frac{1}{0.100 \times 10^{-9} \text{ m}} - \frac{1}{0.110 \times 10^{-9} \text{ m}}\right)$$
.  $K_e = 1.81 \times 10^{-16} \text{ J} = 1.13 \text{ keV}$ .

**EVALUATE:** The electron does not get all the energy of the incident photon.

**38.14.** IDENTIFY and SET UP: The wavelength of the x rays produced by the tube is given by  $\frac{hc}{\lambda} = eV$ .

$$\lambda' = \lambda + \frac{h}{mc}(1 - \cos\phi)$$
.  $\frac{h}{mc} = 2.426 \times 10^{-12}$  m. The energy of the scattered x ray is  $\frac{hc}{\lambda'}$ .

EXECUTE: (a) 
$$\lambda = \frac{hc}{eV} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{(1.60 \times 10^{-19} \text{ C})(24.0 \times 10^3 \text{ V})} = 5.167 \times 10^{-11} \text{ m, which rounds to}$$

0.0517 nm = 51.7 pm.

**(b)** 
$$\lambda' = \lambda + \frac{h}{mc} (1 - \cos \phi) = 5.167 \times 10^{-11} \text{ m} + (2.426 \times 10^{-12} \text{ m})(1 - \cos 45.0^{\circ}) = 5.238 \times 10^{-11} \text{ m}, \text{ which}$$

rounds to 0.0524 nm = 52.4 pm.

(c) 
$$E = \frac{hc}{\lambda'} = \frac{(4.136 \times 10^{-15} \text{ eV} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})}{5.238 \times 10^{-11} \text{ m}} = 2.37 \times 10^4 \text{ eV} = 23.7 \text{ keV}.$$

**EVALUATE:** The incident x ray has energy 24.0 keV. In the scattering event, the photon loses energy and its wavelength increases.

**38.15.** IDENTIFY: Apply  $\lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi) = \lambda_C (1 - \cos \phi)$ .

**SET UP:** Solve for  $\lambda': \lambda' = \lambda + \lambda_C (1 - \cos \phi)$ .

The largest  $\lambda'$  corresponds to  $\phi = 180^{\circ}$ , so  $\cos \phi = -1$ .

**EXECUTE:**  $\lambda' = \lambda + 2\lambda_{\text{C}} = 0.0665 \times 10^{-9} \text{ m} + 2(2.426 \times 10^{-12} \text{ m}) = 7.135 \times 10^{-11} \text{ m} = 0.0714 \text{ nm}$ . This wavelength occurs at a scattering angle of  $\phi = 180^{\circ}$ .

**EVALUATE:** The incident photon transfers some of its energy and momentum to the electron from which it scatters. Since the photon loses energy its wavelength increases,  $\lambda' > \lambda$ .

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

**38.16. IDENTIFY:** Compton scattering occurs. We know speed, and hence the kinetic energy, of the scattered electron. Energy is conserved.

**SET UP:** 
$$\frac{hc}{\lambda} = \frac{hc}{\lambda'} + E_e$$
 where  $E_e = \frac{1}{2}mv^2$ .

EXECUTE: 
$$E_{\rm e} = \frac{1}{2} m v^2 = \frac{1}{2} (9.108 \times 10^{-31} \text{ kg}) (8.90 \times 10^6 \text{ m/s})^2 = 3.607 \times 10^{-17} \text{ J}.$$

$$\frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})}{0.1385 \times 10^{-9} \text{ m}} = 1.434 \times 10^{-15} \text{ J. Therefore, } \frac{hc}{\lambda'} = \frac{hc}{\lambda} - E_e = 1.398 \times 10^{-15} \text{ J,}$$

which gives 
$$\lambda' = \frac{(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})}{1.398 \times 10^{-15} \text{ J}} = 0.1421 \text{ nm}.$$

$$\lambda' - \lambda = \left(\frac{h}{mc}\right)(1 - \cos\phi) = 3.573 \times 10^{-12} \text{ m}, \text{ so } 1 - \cos\phi = 1.473, \text{ which gives } \phi = 118^{\circ}.$$

**EVALUATE:** The photon partly backscatters, but not through 180°.

**38.17.** IDENTIFY and SET UP: The shift in wavelength of the photon is  $\lambda' - \lambda = \frac{h}{mc}(1 - \cos\phi)$  where  $\lambda'$  is the

wavelength after the scattering and  $\frac{h}{mc} = \lambda_{\rm C} = 2.426 \times 10^{-12}$  m. The energy of a photon of wavelength  $\lambda$ 

is 
$$E = \frac{hc}{\lambda} = \frac{1.24 \times 10^{-6} \text{ eV} \cdot \text{m}}{\lambda}$$
. Conservation of energy applies to the collision, so the energy lost by the

photon equals the energy gained by the electron.

## EXECUTE:

(a) 
$$\lambda' - \lambda = \lambda_C (1 - \cos \phi) = (2.426 \times 10^{-12} \text{ m})(1 - \cos 35.0^\circ) = 4.39 \times 10^{-13} \text{ m} = 4.39 \times 10^{-4} \text{ nm}.$$

**(b)** 
$$\lambda' = \lambda + 4.39 \times 10^{-4} \text{ nm} = 0.04250 \text{ nm} + 4.39 \times 10^{-4} \text{ nm} = 0.04294 \text{ nm}.$$

(c) 
$$\lambda' - \lambda = \left(\frac{h}{mc}\right)(1 - \cos\phi) = 0.1050 \times 10^{-9} \text{ m} + (2.426 \times 10^{-12} \text{ m})(1 - \cos 60.0^{\circ}) = 0.1062 \times 10^{-9} \text{ m} \text{ and}$$

$$E_{\lambda'} = \frac{hc}{\lambda'} = 2.888 \times 10^4 \text{ eV}$$
, so the photon loses 300 eV of energy.

(d) Energy conservation says the electron gains 300 eV of energy.

**EVALUATE:** The photon transfers energy to the electron. Since the photon loses energy, its wavelength increases.

**38.18. IDENTIFY:** The change in wavelength of the scattered photon is given by the equation

$$\frac{\Delta \lambda}{\lambda} = \frac{h}{mc\lambda} (1 - \cos\phi) \Rightarrow \lambda = \frac{h}{mc\left(\frac{\Delta \lambda}{\lambda}\right)} (1 - \cos\phi).$$

**SET UP:** For backward scattering,  $\phi = 180^{\circ}$ . Since the photon scatters from a proton,

$$m = 1.67 \times 10^{-27} \text{ kg}.$$

EXECUTE: 
$$\lambda = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})}{(1.67 \times 10^{-27} \text{ kg})(3.00 \times 10^8 \text{ m/s})(0.100)} (1+1) = 2.65 \times 10^{-14} \text{ m}.$$

**EVALUATE:** The maximum change in wavelength, 2h/mc, is much smaller for scattering from a proton than from an electron.

**38.19. IDENTIFY:** We are dealing with Compton scattering.

**SET UP:** 
$$\lambda = h/p$$
,  $E = hc/\lambda$ ,  $\lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi)$ .

**EXECUTE:** (a) The initial photon lost energy during Compton scattering. Before this it had just enough energy to create electron-positron pairs, so after the collision it has less energy. Therefore it cannot create these pairs, so the answer is no.

**(b)** We want the momentum of the scattered photon. First use find  $\lambda'$  using

$$\lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi)$$

and then use  $\lambda = h/p$  to find the momentum. Before scattering  $E = 2mc^2 = hc/\lambda$ , so  $\lambda = h/2mc$ .

$$\lambda' = \frac{h}{mc} (1 - \cos \phi) + \frac{h}{2mc} = \frac{h}{mc} \left( \frac{3}{2} - \cos \phi \right).$$

Using this result gives with  $\phi = 20.0^{\circ}$  gives

$$p = \frac{h}{\lambda'} = \frac{h}{h \binom{3}{2} - \cos \phi} = \frac{mc}{3 - \cos \phi} = 4.88 \times 10^{-22} \text{ kg} \cdot \text{m/s}.$$

**EVALUATE:** The momentum of the scattered photon depends on the scattering angle  $\phi$ . The smallest that the momentum can be is when  $\cos \phi = -1$  ( $\phi = 180^{\circ}$ , which is backscatter), for which  $p_{\min} = 2mc/5$ .

**38.20.** (a) **IDENTIFY** and **SET UP:** Use the relativistic equation  $K = (\gamma - 1)mc^2$  to calculate the kinetic energy K.

EXECUTE: 
$$K = mc^2 \left( \frac{1}{\sqrt{1 - v^2/c^2}} - 1 \right) = 0.1547 \ mc^2$$
.  $m = 9.109 \times 10^{-31} \ kg$ , so  $K = 1.27 \times 10^{-14} \ J$ .

**(b) IDENTIFY** and **SET UP:** The total energy of the particles equals the sum of the energies of the two photons. Linear momentum must also be conserved.

**EXECUTE:** The total energy of each electron or positron is  $E = K + mc^2 = 1.1547mc^2 = 9.46 \times 10^{-13}$  J. The total energy of the electron and positron is converted into the total energy of the two photons. The initial momentum of the system in the lab frame is zero (since the equal-mass particles have equal speeds in opposite directions), so the final momentum must also be zero. The photons must have equal wavelengths and must be traveling in opposite directions. Equal  $\lambda$  means equal energy, so each photon has energy  $9.46 \times 10^{-14}$  J.

(c) IDENTIFY and SET UP: Use  $E = hc/\lambda$  to relate the photon energy to the photon wavelength.

**EXECUTE:**  $E = hc/\lambda$ , so  $\lambda = hc/E = hc/(9.46 \times 10^{-14} \text{ J}) = 2.10 \text{ pm}.$ 

**EVALUATE:** When the particles also have kinetic energy, the energy of each photon is greater, so its wavelength is less.

**38.21. IDENTIFY:** The wavelength of the pulse tells us the momentum of the photon. The uncertainty in the momentum is determined by the uncertainty principle.

**SET UP:** 
$$p = \frac{h}{\lambda}$$
 and  $\Delta x \Delta p_x = \frac{\hbar}{2}$ .

**EXECUTE:**  $p = \frac{h}{\lambda} = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{556 \times 10^{-9} \text{ m}} = 1.19 \times 10^{-27} \text{ kg} \cdot \text{m/s}$ . The spatial length of the pulse is

 $\Delta x = c\Delta t = (2.998 \times 10^8 \text{ m/s})(9.00 \times 10^{-15} \text{ s}) = 2.698 \times 10^{-6} \text{ m}$ . The uncertainty principle gives

 $\Delta x \Delta p_x = \frac{\hbar}{2}$ . Solving for the uncertainty in the momentum, we have  $\Delta p_x = \frac{\hbar}{2\Delta x} = \frac{1.055 \times 10^{-34} \text{ J} \cdot \text{s}}{2(2.698 \times 10^{-6} \text{ m})}$ 

 $=1.96\times10^{-29} \text{ kg}\cdot\text{m/s}.$ 

**EVALUATE:** This is 1.6% of the average momentum.

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

**38.22. IDENTIFY:** We know the beam went through the slit, so the uncertainty in its vertical position is the width of the slit.

SET UP:  $\Delta y \Delta p_y = \frac{\hbar}{2}$  and  $p_x = \frac{\hbar}{\lambda}$ . Call the x-axis horizontal and the y-axis vertical.

**EXECUTE:** (a) Let  $\Delta y = a = 6.20 \times 10^{-5}$  m. Solving  $\Delta y \Delta p_y = \frac{\hbar}{2}$  for the uncertainty in momentum gives

$$\Delta p_y = \frac{\hbar}{2\Delta y} = \frac{1.055 \times 10^{-34} \text{ J} \cdot \text{s}}{2(6.20 \times 10^{-5} \text{ m})} = 8.51 \times 10^{-31} \text{ kg} \cdot \text{m/s}.$$

**(b)** 
$$p_x = \frac{h}{\lambda} = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{585 \times 10^{-9} \text{ m}} = 1.13 \times 10^{-27} \text{ kg} \cdot \text{m/s}. \ \theta = \frac{\Delta p_y}{p_x} = \frac{8.51 \times 10^{-31}}{1.13 \times 10^{-27}} = 7.53 \times 10^{-4} \text{ rad}.$$

The width is  $(2.00 \text{ m})(7.53 \times 10^{-4}) = 1.51 \times 10^{-3} \text{ m} = 1.51 \text{ mm}$ .

**EVALUATE:** We must be especially careful not to confuse the x- and y-components of the momentum.

**38.23. IDENTIFY:** The uncertainty principle relates the uncertainty in the duration time of the pulse and the uncertainty in its energy, which we know.

**SET UP:**  $E = hc/\lambda$  and  $\Delta E \Delta t = \hbar/2$ 

EXECUTE:  $E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})}{625 \times 10^{-9} \text{ m}} = 3.178 \times 10^{-19} \text{ J}$ . The uncertainty in the

energy is 1.0% of this amount, so  $\Delta E = 3.178 \times 10^{-21}$  J. We now use the uncertainty principle. Solving

$$\Delta E \Delta t = \frac{\hbar}{2}$$
 for the time interval gives  $\Delta t = \frac{\hbar}{2\Delta E} = \frac{1.055 \times 10^{-34} \text{ J} \cdot \text{s}}{2(3.178 \times 10^{-21} \text{ J})} = 1.66 \times 10^{-14} \text{ s} = 16.6 \text{ fs}.$ 

**EVALUATE:** The uncertainty in the energy limits the duration of the pulse. The more precisely we know the energy, the longer the duration must be.

**38.24. IDENTIFY:** The number N of visible photons emitted per second is the visible power divided by the energy hf of one photon.

**SET UP:** At a distance r from the source, the photons are evenly spread over a sphere of area  $A = 4\pi r^2$ .

EXECUTE: **(a)** 
$$N = \frac{P}{hf} = \frac{(120 \text{ W})(0.10)}{h(5.00 \times 10^{14} \text{ Hz})} = 3.62 \times 10^{19} \text{ photons/s}.$$

**(b)** 
$$\frac{N}{4\pi r^2} = 1.00 \times 10^{11} \text{ photons/s} \cdot \text{cm}^2 \text{ gives}$$

$$r = \left(\frac{3.62 \times 10^{19} \text{ photons/s}}{4\pi (1.00 \times 10^{11} \text{ photons/s} \cdot \text{cm}^2)}\right)^{1/2} = 5370 \text{ cm} = 53.7 \text{ m}.$$

EVALUATE: The number of photons emitted per second by an ordinary household source is very large.

**38.25. IDENTIFY** and **SET UP:** The energy added to mass m of the blood to heat it to  $T_f = 100^{\circ}\text{C}$  and to vaporize it is  $Q = mc(T_f - T_i) + mL_v$ , with  $c = 4190 \text{ J/kg} \cdot \text{K}$  and  $L_v = 2.256 \times 10^6 \text{ J/kg}$ . The energy of one photon is  $E = \frac{hc}{\lambda} = \frac{1.99 \times 10^{-25} \text{ J} \cdot \text{m}}{\lambda}$ .

EXECUTE: (a)  $Q = (2.0 \times 10^{-9} \text{ kg})(4190 \text{ J/kg} \cdot \text{K})(100^{\circ}\text{C} - 33^{\circ}\text{C}) + (2.0 \times 10^{-9} \text{ kg})(2.256 \times 10^{6} \text{ J/kg}) = 5.07 \times 10^{-3} \text{ J}$ . The pulse must deliver 5.07 mJ of energy.

**(b)** 
$$P = \frac{\text{energy}}{t} = \frac{5.07 \times 10^{-3} \text{ J}}{450 \times 10^{-6} \text{ s}} = 11.3 \text{ W}.$$

(c) One photon has energy  $E = \frac{hc}{\lambda} = \frac{1.99 \times 10^{-25} \text{ J} \cdot \text{m}}{585 \times 10^{-9} \text{ m}} = 3.40 \times 10^{-19} \text{ J}$ . The number *N* of photons per pulse is the energy per pulse divided by the energy of one photon:

$$N = \frac{5.07 \times 10^{-3} \text{ J}}{3.40 \times 10^{-19} \text{ J/photon}} = 1.49 \times 10^{16} \text{ photons.}$$

**EVALUATE:** The power output of the laser is small but it is focused on a small area, so the laser intensity is large.

**38.26. IDENTIFY:** The photoelectric effect occurs, so the energy of the photon is used to eject an electron, with any excess energy going into kinetic energy of the electron.

**SET UP:** Conservation of energy gives  $hf = hc/\lambda = K_{\text{max}} + \phi$ .

**EXECUTE:** (a) Using  $hc/\lambda = K_{\text{max}} + \phi$ , we solve for the work function:

$$\phi = hc/\lambda - K_{\text{max}} = (4.136 \times 10^{-15} \text{ eV} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})/(124 \text{ nm}) - 4.16 \text{ eV} = 5.85 \text{ eV}.$$

**(b)** The number N of photoelectrons per second is equal to the number of photons that strike the metal per second.  $N \times (\text{energy of a photon}) = 2.50 \text{ W}$ .  $N(hc/\lambda) = 2.50 \text{ W}$ .

$$N = (2.50 \text{ W})(124 \text{ nm})/[(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(3.00 \times 10^8 \text{ m/s})] = 1.56 \times 10^{18} \text{ electrons/s}.$$

(c) N is proportional to the power, so if the power is cut in half, so is N, which gives

$$N = (1.56 \times 10^{18} \text{ el/s})/2 = 7.80 \times 10^{17} \text{ el/s}.$$

(d) If we cut the wavelength by half, the energy of each photon is doubled since  $E = hc/\lambda$ . To maintain the same power, the number of photons must be half of what they were in part (b), so N is cut in half to  $7.80 \times 10^{17}$  el/s. We could also see this from part (b), where N is proportional to  $\lambda$ . So if the wavelength is cut in half, so is N.

**EVALUATE:** In part (c), reducing the power does not reduce the maximum kinetic energy of the photons; it only reduces the number of ejected electrons. In part (d), reducing the wavelength *does* change the maximum kinetic energy of the photoelectrons because we have increased the energy of each photon.

**38.27. IDENTIFY:** We are dealing with the characteristics of a photon.

**SET UP** and **EXECUTE:** Using  $E = hc/\lambda$ , we want to estimate the number of photons in a typical room.

(a) Estimate: On a bright day the light intensity in a room is about 1/3 of what it is outside, so

$$I = (1000 \text{ W/m}^2)/3 = 330 \text{ W/m}^2$$
.

- **(b)** Estimate: Floor area is  $A \approx 15$  ft by 30 ft  $\approx 5$  m by 10 m  $\approx 50$  m<sup>2</sup>. Height is  $H \approx 9$  ft  $\approx 3$  m.
- (c)  $t = H/c = (3 \text{ m})/c = 10^{-8} \text{ s} = 10 \text{ ns}.$
- (d)  $P = IA = (330 \text{ W/m}^2)(50 \text{ m}^2) = 16,500 \text{ W}.$
- (e)  $E_{\text{room}} = Pt = (16,500 \text{ W})(10^{-8} \text{ s}) = 165 \mu\text{J}.$
- (f)  $E = hc/\lambda = hc/(500 \text{ nm}) = 3.98 \times 10^{-19} \text{ J}.$
- (g) Using the answers from parts (e) and (f) gives  $N = E_{\text{room}}/E = 4 \times 10^{14}$ .

**EVALUATE:** These numbers give only rough approximations, not precise calculations.

**38.28. IDENTIFY:** Compton scattering occurs. For backscattering, the scattering angle of the photon is 180°. Momentum is conserved during the collision.

**SET UP:** Let +x be in the direction of propagation of the incident photon. The momentum of a photon is  $p = h/\lambda$ . The change in wavelength of the light during Compton scattering is given by

$$\lambda' - \lambda = \left(\frac{h}{mc}\right)(1 - \cos\phi)$$
, where  $\phi = 180^{\circ}$  in this case.

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

EXECUTE:  $\lambda' = \lambda + 2 \frac{h}{mc} = 0.0980 \times 10^{-9} \text{ m} + 4.852 \times 10^{-12} \text{ m} = 0.1029 \times 10^{-9} \text{ m}.$  Momentum

conservation gives  $\frac{h}{\lambda} = -\frac{h}{\lambda'} + p_e$ . Solving for  $p_e$  gives  $p_e = \frac{h}{\lambda} + \frac{h}{\lambda'} = h \left( \frac{\lambda + \lambda'}{\lambda \lambda'} \right) = (6.626 \times 10^{-34} \text{ J} \cdot \text{s})$ 

$$\frac{9.80\times10^{-11} \text{ m} + 10.29\times10^{-11} \text{ m}}{(9.80\times10^{-11} \text{ m})(10.29\times10^{-11} \text{ m})} = 1.32\times10^{-23} \text{ kg} \cdot \text{m/s}.$$

**EVALUATE:** The electron gains the most amount of momentum when backscattering occurs.

**38.29. IDENTIFY:** Compton scattering occurs, and we know the angle of scattering and the initial wavelength (and hence momentum) of the incident photon.

**SET UP:**  $\lambda' - \lambda = \left(\frac{h}{mc}\right)(1 - \cos\phi)$  and  $p = h/\lambda$ . Let +x be the direction of propagation of the incident

photon and let the scattered photon be moving at  $30.0^{\circ}$  clockwise from the +y-axis.

EXECUTE:

$$\lambda' - \lambda = \left(\frac{h}{mc}\right)(1 - \cos\phi) = 0.1050 \times 10^{-9} \text{ m} + (2.426 \times 10^{-12} \text{ m})(1 - \cos 60.0^{\circ}) = 0.1062 \times 10^{-9} \text{ m}.$$

$$P_{ix} = P_{fx}$$
.  $\frac{h}{\lambda} = \frac{h}{\lambda'} \cos 60.0^{\circ} + p_{ex}$ .

$$p_{\rm ex} = \frac{h}{\lambda} - \frac{h}{2\lambda'} = h \frac{2\lambda' - \lambda}{(2\lambda')(\lambda)} = (6.626 \times 10^{-34} \text{ J} \cdot \text{s}) \frac{2.1243 \times 10^{-10} \text{ m} - 1.050 \times 10^{-10} \text{ m}}{(2.1243 \times 10^{-10} \text{ m})(1.050 \times 10^{-10} \text{ m})}.$$

$$p_{\text{ex}} = 3.191 \times 10^{-24} \text{ kg} \cdot \text{m/s}. \ P_{\text{iy}} = P_{\text{fy}}. \ 0 = \frac{h}{\lambda'} \sin 60.0^{\circ} + p_{\text{ey}}.$$

$$p_{\rm ey} = -\frac{(6.626 \times 10^{-34} \text{ J} \cdot \text{s}) \sin 60.0^{\circ}}{0.1062 \times 10^{-9} \text{ m}} = -5.403 \times 10^{-24} \text{ kg} \cdot \text{m/s}. \quad p_{\rm e} = \sqrt{p_{\rm ex}^2 + p_{\rm ey}^2} = 6.28 \times 10^{-24} \text{ kg} \cdot \text{m/s}.$$

$$\tan \theta = \frac{p_{\text{ey}}}{p_{\text{ex}}} = \frac{-5.403}{3.191}$$
 and  $\theta = -59.4^{\circ}$ .

**EVALUATE:** The incident photon does not give all of its momentum to the electron, since the scattered photon also has momentum.

**38.30. IDENTIFY:** This problem deals with photons and the nutritional energy in food.

**SET UP** and **EXECUTE:** (a) Estimate: One medium tomato (123 g) has 22 kcal.

$$(22 \text{ kcal})(4186 \text{ J/kcal}) = 93,000 \text{ J}.$$

- **(b)** Estimate: 50 leaves of area 20 cm<sup>2</sup> each, so  $A \approx 1000$  cm<sup>2</sup> = 0.10 m<sup>2</sup>.
- (c)  $P = IA = (800 \text{ W/m}^2)(0.10 \text{ m}^2) = 80 \text{ W}.$
- (d)  $E = hc/\lambda = hc/(600 \text{ nm}) = 3.31 \times 10^{-19} \text{ J}$  per photon. The total energy each second for photosynthesis is 5% of 80 J = 4.0 J. The number N of photons needed to deliver this energy is given by

photosynthesis is 3% of 80 J = 4.0 J. The number N of photons needed to derive this energy is  $N(3.31 \times 10^{-19} \text{ J}) = 4.0 \text{ J}$ , so  $N = 1.2 \times 10^{19} \text{ photons}$ .

- (e) The number N' of photons for a single tomato is  $N' = (1/10)(N/2) = 6.0 \times 10^{17}$  photons.
- (f) Each tomato needs 93,000 J from part (a). If N is the number of photons needed, then  $N(3.31 \times 10^{-19} \text{ J}) = 93,000 \text{ J}$ , which gives  $N = 2.82 \times 10^{23}$  photons.
- (g) From part (e):  $6.0 \times 10^{27}$  photons/s supply energy to the tomato.

From part (f): The tomato needs  $2.82 \times 10^{23}$  photons.

Calling t the time to get these photons gives  $(6.0 \times 10^{17} \text{ photons/s})t = 2.82 \times 10^{23} \text{ photons}$ , which gives  $t = 4.7 \times 10^5 \text{ s} = 131 \text{ h}$ . At 12 h/day, we get t = 11 days.

**EVALUATE:** Increasing the leaf area exposed to sunlight would help capture more energy and lead to faster ripening.

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

**38.31. IDENTIFY** and **SET UP:** Find the average change in wavelength for one scattering and use that in  $\Delta \lambda$  in  $\lambda' - \lambda = \left(\frac{h}{mc}\right)(1-\cos\phi)$  to calculate the average scattering angle  $\phi$ .

**EXECUTE:** (a) The wavelength of a 1 MeV photon is

$$\lambda = \frac{hc}{E} = \frac{(4.136 \times 10^{-15} \text{ eV} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})}{1 \times 10^6 \text{ eV}} = 1 \times 10^{-12} \text{ m}.$$

The total change in wavelength therefore is  $500 \times 10^{-9} \text{ m} - 1 \times 10^{-12} \text{ m} = 500 \times 10^{-9} \text{ m}$ .

If this shift is produced in  $10^{26}$  Compton scattering events, the wavelength shift in each scattering event is  $\Delta \lambda = \frac{500 \times 10^{-9} \text{ m}}{1 \times 10^{26}} = 5 \times 10^{-33} \text{ m}.$ 

**(b)** Use this  $\Delta \lambda$  in  $\Delta \lambda = \frac{h}{mc}(1 - \cos \phi)$  and solve for  $\phi$ . We anticipate that  $\phi$  will be very small, since

 $\Delta \lambda$  is much less than h/mc, so we can use  $\cos \phi \approx 1 - \phi^2/2$ .

$$\Delta \lambda = \frac{h}{mc} \left[ 1 - (1 - \phi^2 / 2) \right] = \frac{h}{2mc} \phi^2.$$

$$\phi = \sqrt{\frac{2\Delta \lambda}{(h/mc)}} = \sqrt{\frac{2(5 \times 10^{-33} \text{ m})}{2.426 \times 10^{-12} \text{ m}}} = 6.4 \times 10^{-11} \text{ rad} = (4 \times 10^{-9})^{\circ}.$$

 $\phi$  in radians is much less than 1, so the approximation we used is valid.

**(c) IDENTIFY** and **SET UP:** We know the total transit time and the total number of scatterings, so we can calculate the average time between scatterings.

**EXECUTE:** The total time to travel from the core to the surface is  $(10^6 \text{ y})(3.156 \times 10^7 \text{ s/y}) = 3.2 \times 10^{13} \text{ s}.$ 

There are  $10^{26}$  scatterings during this time, so the average time between scatterings is

$$t = \frac{3.2 \times 10^{13} \text{ s}}{10^{26}} = 3.2 \times 10^{-13} \text{ s}.$$

The distance light travels in this time is  $d = ct = (3.0 \times 10^8 \text{ m/s})(3.2 \times 10^{-13} \text{ s}) = 0.1 \text{ mm}$ .

**EVALUATE:** The photons are on the average scattered through a very small angle in each scattering event. The average distance a photon travels between scatterings is very small.

**38.32. IDENTIFY:** In this problem, a positron with speed v and kinetic energy K collides with a stationary electron. They annihilate and produce to two photons each of wavelength  $\lambda$ .

**SET UP:** 
$$E = hc/\lambda$$
,  $K = mc^2(y-1)$ ,  $p = m\gamma v$ ,  $v'_x = \frac{v_x - u}{1 - uv_x/c^2}$ .

**EXECUTE:** (a) Energy conservation:  $K + mc^2 + mc^2 = 2hc/\lambda$ . Using  $K = mc^2(\gamma - 1)$  gives

$$(\gamma - 1)mc^2 + 2mc^2 = 2hc/\lambda.$$

Rearranging gives

$$(\gamma+1)mc^2=2hc/\lambda.$$

**(b)** Momentum conservation: Using  $p = m\gamma v$  for the positron gives

$$m\gamma v = 2\frac{h}{\lambda}\cos\phi.$$

(c) We want the energy of the photon and the angle  $\phi$ .

From part (a):  $(\gamma + 1)mc^2 = 2hc/\lambda = 2E_{\text{photon}}$ .

This gives 
$$E_{\text{photon}} = \frac{mc^2(\gamma+1)}{2}$$
.

From part (b):  $m\gamma v = 2\frac{h}{\lambda}\cos\phi$ . This gives  $\cos\phi = \frac{m\gamma v\lambda}{2h}$ .

Combine the results from (a) and (b) by eliminating  $\lambda$  and solve for  $\cos \phi$ .

$$\cos\phi = \frac{\gamma v}{c(1+\gamma)}.$$

Using  $v = c\sqrt{1 - 1/\gamma^2}$  and doing some algebra gives

$$\phi = \arccos \sqrt{\frac{\gamma - 1}{\gamma + 1}}.$$

(d) We want the energy of the photon and the angle z if K = 5.11 MeV. Using  $K = mc^2(\gamma - 1)$  with  $mc^2 = 0.511$  MeV gives  $\gamma = 11$ . From part (c)

$$\phi = \arccos \sqrt{\frac{\gamma - 1}{\gamma + 1}} = 3.07 \text{ MeV}.$$

Also from part (c) we get

$$\phi = \arccos\sqrt{\frac{\gamma - 1}{\gamma + 1}} = \arccos\sqrt{\frac{10}{12}} = 24.1^{\circ}.$$

(e) We want v if the photons are perpendicular to each other. In this case,  $\phi = 45.0^{\circ}$ . Solving

$$\phi = \arccos \sqrt{\frac{\gamma - 1}{\gamma + 1}}$$
 gives  $\gamma = 2$ . Using  $v = c\sqrt{1 - 1/\gamma^2}$  gives  $v = 0.866c$ .

(f) We want to transform to the center-of-momentum frame where the total momentum is zero. Call u the speed of this reference frame. In this frame, the electron and positron have equal but opposite

velocities. Use the relativistic velocity addition equation  $v'_x = \frac{v_x - u}{1 - uv_x/c^2}$ , with R the lab frame and R'

the center-of-momentum frame. We want to find u.

For the positron:  $v'_{px} = \frac{v - u}{1 - uv/c^2}$ 

For the electron:  $v'_{ex} = \frac{0-u}{1-0} = -u$ 

In the center-of-momentum frame,  $v'_{px} = -v'_{ex}$ , so  $v'_{px} = \frac{v - u}{1 - uv/c^2} = -(-u) = u$ . This leads to the

equation  $u^2(v/c^2) - 2u + v = 0$ . Solve this equation for u, use the positive root, and use  $v = c\sqrt{1 - 1/\gamma^2}$ . The result is

$$u = v \frac{\gamma}{\gamma + 1} = c \sqrt{\frac{\gamma - 1}{\gamma + 1}}.$$

**EVALUATE:** Check: If v << c, c = 1, so  $u = v \frac{\gamma}{\gamma + 1} = v \frac{1}{1 + 1} = \frac{v}{2}$ . This result is reasonable because in the

center-of-momentum frame without using special relativity the electron and positron are coming toward each other each with speed v/2.

**38.33. IDENTIFY** and **SET UP:** Conservation of energy applied to the collision gives  $E_{\lambda} = E_{\lambda'} + E_{\rm e}$ , where  $E_{\rm e}$  is the kinetic energy of the electron after the collision and  $E_{\lambda}$  and  $E_{\lambda'}$  are the energies of the photon before and after the collision. The energy of a photon is related to its wavelength according to  $E = hf = hc/\lambda$ .

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

EXECUTE: **(a)** 
$$E_{\rm e} = hc \left(\frac{1}{\lambda} - \frac{1}{\lambda'}\right) = hc \left(\frac{\lambda' - \lambda}{\lambda \lambda'}\right).$$
 
$$E_{\rm e} = (6.626 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s}) \left(\frac{0.0032 \times 10^{-9} \text{ m}}{(0.1100 \times 10^{-9} \text{ m})(0.1132 \times 10^{-9} \text{ m})}\right).$$
 
$$E_{\rm e} = 5.105 \times 10^{-17} \text{ J} = 319 \text{ eV}.$$
 
$$E_{\rm e} = \frac{1}{2} mv^2, \text{ so } v = \sqrt{\frac{2E_{\rm e}}{m}} = \sqrt{\frac{2(5.105 \times 10^{-17} \text{ J})}{9.109 \times 10^{-31} \text{ kg}}} = 1.06 \times 10^7 \text{ m/s}.$$

**(b)** The wavelength  $\lambda$  of a photon with energy  $E_{\rm e}$  is given by  $E_{\rm e} = hc/\lambda$ , so

$$\lambda = \frac{hc}{E_e} = \frac{(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})}{5.105 \times 10^{-17} \text{ J}} = 3.89 \text{ nm}.$$

**EVALUATE:** Only a small portion of the incident photon's energy is transferred to the struck electron; this is why the wavelength calculated in part (b) is much larger than the wavelength of the incident photon in the Compton scattering.

**38.34. IDENTIFY:** The equation  $\lambda' - \lambda = \left(\frac{h}{mc}\right)(1 - \cos\phi)$  relates  $\lambda$  and  $\lambda'$  to  $\phi$ . Apply conservation of energy to obtain an expression that relates  $\lambda$  and  $\nu$  to  $\lambda'$ .

SET UP: The kinetic energy of the electron is  $K = (\gamma - 1)mc^2$ . The energy of a photon is  $E = \frac{hc}{\lambda}$ .

**EXECUTE:** (a) The final energy of the photon is  $E' = \frac{hc}{\lambda'}$ , and E = E' + K, where K is the kinetic energy of the electron after the collision. Then,

$$\lambda = \frac{hc}{E' + K} = \frac{hc}{(hc/\lambda') + K} = \frac{hc}{(hc/\lambda') + (\gamma - 1)mc^2} = \frac{\lambda'}{1 + \frac{\lambda'mc}{h} \left[\frac{1}{(1 - v^2/c^2)^{1/2}} - 1\right]}.$$

 $(K = mc^2(\gamma - 1))$  since the relativistic expression must be used for three-figure accuracy).

**(b)**  $\phi = \arccos[1 - \Delta \lambda/(h/mc)].$ 

(c) 
$$\gamma - 1 = \frac{1}{\left(1 - \left(\frac{1.80}{3.00}\right)^2\right)^{1/2}} - 1 = 1.25 - 1 = 0.250, \frac{h}{mc} = 2.43 \times 10^{-12} \text{ m}$$

$$\Rightarrow \lambda = \frac{5.10 \times 10^{-3} \text{ nm}}{1 + \frac{(5.10 \times 10^{-12} \text{ m})(9.11 \times 10^{-31} \text{ kg})(3.00 \times 10^8 \text{ m/s})(0.250)}{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})}} = 3.34 \times 10^{-3} \text{ nm}.$$

$$\phi = \arccos\left(1 - \frac{(5.10 \times 10^{-12} \text{ m} - 3.34 \times 10^{-12} \text{ m})}{2.43 \times 10^{-12} \text{ m}}\right) = 74.0^{\circ}.$$

**EVALUATE:** For this final electron speed, v/c = 0.600 and  $K = \frac{1}{2}mv^2$  is not accurate.

**38.35. IDENTIFY** and **SET UP:** Apply the photoelectric effect.  $eV_0 = hf - \phi$ . For a photon,  $f\lambda = c$ . **EXECUTE:** (a) Using  $eV_0 = hf - \phi$  and  $f\lambda = c$ , we get  $eV_0 = hc/\lambda - \phi$ . Solving for  $V_0$  gives  $V_0 = \frac{hc}{e} \cdot \frac{1}{\lambda} - \frac{\phi}{e}$ . Therefore a graph of  $V_0$  versus  $1/\lambda$  should be a straight line with slope equal to hc/e and y-intercept equal to  $-\phi/e$ . Figure 38.35 shows this graph for the data given in the problem. The best-fit equation for this graph is  $V_0 = (1230 \text{ V} \cdot \text{nm}) \cdot \frac{1}{\lambda} - 4.76 \text{ V}$ . The slope is equal to  $1230 \text{ V} \cdot \text{nm}$ , which is equal to  $1.23 \times 10^{-6} \text{ V} \cdot \text{m}$ , and the y-intercept is -4.76 V.

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



**Figure 38.35** 

**(b)** Using the slope we have hc/e = slope, so

$$h = e(\text{slope})/c = (1.602 \times 10^{-19} \text{ C})(1.23 \times 10^{-6} \text{ V} \cdot \text{m})/(2.998 \times 10^8 \text{ m/s}) = 6.58 \times 10^{-34} \text{ J} \cdot \text{s}.$$

The y-intercept is equal to  $-\phi/e$ , so

$$\phi = -e(y\text{-intercept}) = -(1.602 \times 10^{-19} \text{ C})(-4.76 \text{ V}) = 7.63 \times 10^{-19} \text{ J} = 4.76 \text{ eV}.$$

(c) For the longest wavelength light, the energy of a photon is equal to the work function of the metal, so  $hc/\lambda = \phi$ . Solving for  $\lambda$  gives  $\lambda = hc/\phi$ . Our calculation of h was just a test of the data, so we use the accepted value for h in the calculation.

$$\lambda = hc/\phi = (6.626 \times 10^{-34} \text{ J} \cdot \text{s}) (2.998 \times 10^8 \text{ m/s})/(7.63 \times 10^{-19} \text{ J}) = 2.60 \times 10^{-7} \text{ m} = 260 \text{ nm}.$$

(d) The energy of the photon is equal to the sum of the kinetic energy of the photoelectron and the work function, so  $hc/\lambda = K + \phi$ . This gives  $(4.136 \times 10^{-15} \text{ eV} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})/\lambda = 10.0 \text{ eV} + 4.76 \text{ eV}$ = 14.76 eV, which gives  $\lambda = 8.40 \times 10^{-8} \text{ m} = 84.0 \text{ nm}$ .

**EVALUATE:** As we know from Table 38.1, typical metal work functions are several eV, so our results are plausible.

**38.36. IDENTIFY** and **SET UP:** For the photoelectric effect,  $eV_0 = hf - \phi$ , and the energy of a photon is  $E = hf = hc/\lambda$ .

**EXECUTE:** (a) The energy of the UV photons is  $E = hc/\lambda = (4.136 \times 10^{-15} \text{ eV} \cdot \text{s}) (2.998 \times 10^8 \text{ m/s})/(270 \times 10^{-9} \text{ m}) = 4.59 \text{ eV}.$ 

The photon energy must be at least as great as the work function to produce photoelectrons. From Table 38.1, we see that this is the case for aluminum, silver, and sodium.

**(b)** The maximum kinetic energy of a photoelectron is  $K = hf - \phi$ , so the smallest work function gives the largest kinetic energy of the electron. This is the case for sodium.

 $K = E_{\text{photon}} - \phi = 4.59 \text{ eV} - 2.7 \text{ eV} = 1.89 \text{ eV}$ . This is much less than the rest energy (0.511 MeV) of an electron, so we do not need to use the relativistic formula for kinetic energy. Solving  $K = \frac{1}{2}mv^2$  for v gives

$$v = \sqrt{\frac{2K}{m}} = \sqrt{\frac{2(1.89 \text{ eV})(1.602 \times 10^{-19} \text{ J/eV})}{9.11 \times 10^{-31} \text{ kg}}} = 8.2 \times 10^5 \text{ m/s}.$$

(c) The energy of the photon is equal to the work function of the gold, so  $hc/\lambda = \phi$ . This gives  $(4.136 \times 10^{-15} \text{ eV} \cdot \text{s}) (2.998 \times 10^8 \text{ m/s})/\lambda = 5.1 \text{ eV} \rightarrow \lambda = 2.4 \times 10^{-7} \text{ m} = 240 \text{ nm}$ .

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

(d) In part (c), the energy of the photon is equal to the work function for gold, so  $K_{\text{max}} = E_{\text{photon}} - \phi_{\text{sodium}} = \phi_{\text{gold}} - \phi_{\text{sodium}} = 5.1 \text{ eV} - 2.7 \text{ eV} = 2.4 \text{ eV}.$ 

**EVALUATE:** Of the three possible metals in Table 38.1, aluminum would be the most practical to use for the smoke detector. Silver is probably too expensive, and sodium is too reactive with water.

**38.37. IDENTIFY** and **SET UP:** We have Compton scattering, so  $\lambda' - \lambda = \left(\frac{h}{mc}\right)(1-\cos\phi)$ , which can also be

expressed as  $\lambda' - \lambda = \lambda_C (1 - \cos \phi)$ , where  $\lambda_C$  is the Compton wavelength.

**EXECUTE:** (a) Figure 38.37 shows the graph of  $\lambda'$  versus  $1 - \cos \phi$  for the data included in the problem. The best-fit equation of the line is  $\lambda' = 5.21 \text{ pm} + (2.40 \text{ pm})(1 - \cos \phi)$ . The slope is 2.40 pm and the *y*-intercept is 5.21 pm.



**Figure 38.37** 

**(b)** Solving  $\lambda' - \lambda = \lambda_{\mathbb{C}}(1 - \cos \phi)$  for  $\lambda'$  gives  $\lambda' = \lambda + \lambda_{\mathbb{C}}(1 - \cos \phi)$ . The graph of  $\lambda'$  versus  $1 - \cos \phi$  should be a straight line with slope equal to  $\lambda_{\mathbb{C}}$  and y-intercept equal to  $\lambda$ . From the slope, we get  $\lambda_{\mathbb{C}} = \text{slope} = 2.40 \text{ pm}$ .

(c) From the y-intercept we get  $\lambda = y$ -intercept = 5.21 pm.

**EVALUATE:** For backscatter, the photon wavelength would be 5.21 pm + 2(2.40 pm) = 10.01 pm.

**38.38. IDENTIFY:** In this problem we are dealing with the photoelectric effect and must also use Kirchhoff's rules.

**SET UP:**  $eV_0 = hf - \phi = hc/\lambda - \phi$ .

**EXECUTE:** (a) We want  $V_{AC}$  if  $R = 3.20 \text{ k}\Omega$ .

$$I = \frac{\mathcal{E}}{R_{\text{eq}}} = \frac{15.0 \text{ V}}{4.20 \text{ k}\Omega} = 3.5714 \text{ mA}.$$

$$V_R = RI = (3.20 \text{ k}\Omega)(3.5714 \text{ mA}) = 11.4 \text{ V}.$$

The cathode is at a higher potential than the anode, so  $V_{AC} = V_A - V_C = -11.4 \text{ V}$ .

**(b)** We want  $V_{AC}$  if  $R = 334 \Omega$ . Follow the same procedure as in part (a), which gives

$$V_R = (334 \Omega) \frac{15.0 \text{ V}}{1.334 \text{ K}\Omega} = 3.76 \text{ V}.$$

Therefore  $V_{AC} = -3.76 \text{ V}$ .

(c) We want the work function. From part (b), the stopping potential is 3.76 V. Solving  $eV_0 = hc/\lambda - \phi$  for  $\phi$  gives

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$\phi = \frac{hc}{\lambda} - eV_0 = \frac{hc}{140 \text{ nm}} - e(3.76 \text{ V}) = 5.10 \text{ eV}.$$



## **Figure 38.38**

- (d) We want *I*. Apply Kirchhoff's rules using the currents shown in Figure 38.38.  $i_{15} = I + i$ . A counterclockwise path through the lower part of the circuit gives  $RI (1.00 \text{ k}\Omega)i_{15} + 15.0 \text{ V} = 0$ . Solve for I using i = 3.71 mA and  $R = 334 \Omega$ , which gives I = 8.46 mA.
- (e) We want  $V_{AC}$ .  $V_{AC} = V_R = RI = (334 \Omega)(8.46 \text{ mA}) = 2.893 \text{ V}$ .
- (f) We want to find R, so that i = 0 with  $\lambda = 65.0$  nm. If i = 0, then  $V_R$  is the stopping potential  $V_0$ .

$$RI = \frac{hc/\lambda - \phi}{e} \text{ and } I = \frac{\mathcal{E}}{R + 1.00 \text{ k}\Omega}$$
$$\frac{hc/\lambda - \phi}{e} = \frac{R\mathcal{E}}{R + 1.00 \text{ k}\Omega}$$

Using  $\mathcal{E} = 15.0 \text{ V}$ ,  $\phi = 5.10 \text{ eV}$ , and  $\lambda = 65.0 \text{ nm}$ , we get  $R = 13.8 \text{ k}\Omega$ .

**EVALUATE:** A work function of 5.1 eV is the same as gold and nickel, so it is reasonable.

**38.39. IDENTIFY:** This problem involves pair production of an electron-positron pair.

**SET UP** and **EXECUTE**:  $\lambda = h/p$ ,  $E = hc/\lambda$ ,  $p = m\gamma v$ ,  $E = m\gamma c^2$ .

- (a) Energy conservation:  $hc/\lambda + Mc^2 = 2myc^2 + M\gamma_Mc^2$ .
- **(b)** Momentum conservation:  $h/\lambda = 2m\gamma v \cos \phi + M\gamma_M V_M$
- (c) Eliminate  $h/\lambda$  between the equations in parts (a) and (b) and rearrange to obtain the following:

$$\frac{2m\gamma}{M}\left(1 - \frac{v}{c}\cos\phi\right) + \gamma_M\left(1 - \frac{V_M}{c}\right) = 1.$$

(d) We want  $V_M$  if  $V_M << c$ . If x << 1,  $(1+x)^n \approx 1 + nx$ . Using  $n = -\frac{1}{2}$  and  $x = -(\frac{V_M}{c})^2$  gives

$$\gamma_M \approx 1 + \left(-\frac{1}{2}\right) \left[-\left(\frac{V_M}{c}\right)^2\right] \approx 1 + \frac{V_M^2}{2c^2} \approx 1.$$

Using this to rewrite the result from part (c) gives

$$\frac{2m\gamma}{M}\left(1 - \frac{v}{c}\cos\phi\right) + 1\frac{V_M}{c} = 1.$$

Solving for  $V_M$  gives

$$V_M = \frac{2m\gamma}{M} (c - v\cos\phi).$$

- (e) For  $V_M$  to be zero,  $c v \cos \phi$  would have to be zero, which is not possible with v < c.
- (f) We want  $V_M$  if M is a proton and v = 0. Using the result in part (d) gives

$$V_M = \frac{2m\gamma c}{M} = 327 \text{ Km/s}.$$

(g) We want  $V_M$ . Use the result from (d). First use  $E = m\gamma c^2$  to find  $\gamma$ .

$$5.00 \text{ MeV} = (0.511 \text{ MeV}) \gamma \rightarrow \gamma = 9.785.$$

Now use  $v = c\sqrt{1 - 1/\gamma^2}$  to find v, giving  $v = 2.984 \times 10^8$  m/s. Now find  $V_M$  for  $\phi = 60.0^\circ$  and using the values we just found for v and  $\gamma$ , which gives

$$V_M = \frac{2m\gamma}{M} (c - v\cos\phi) = 1610 \text{ Km/s}.$$

**(h)** We want the energy E of the incident photon. This energy is equal to the sum of the energy of the electron and positron and the kinetic energy of the proton. The proton is not relativistic, so we have

$$E = 2E_{\text{electron}} + \frac{1}{2}Mv^2.$$

Using  $E_{\text{electron}} = 5.00 \text{ MeV}$  and v = 1620 km/s gives E = 2(5.0 MeV) + 0.014 MeV = 10.0 MeV.

**EVALUATE:** Most of the energy goes to the electron-positron pair.

**38.40.** IDENTIFY: Follow the derivation of  $\lambda' - \lambda = \left(\frac{h}{mc}\right)(1-\cos\phi)$ . Apply conservation of energy and

conservation of momentum to the collision.

**SET UP:** Use the coordinate direction specified in the problem.

EXECUTE: (a) Momentum:  $\vec{p} + \vec{P} = \vec{p}' + \vec{P}' \Rightarrow p - P = -p' - P' \Rightarrow p' = P - (p + P')$ 

Energy: 
$$pc + E = p'c + E' = p'c + \sqrt{(p'c)^2 + (mc^2)^2}$$
  
 $\Rightarrow (pc - p'c + E)^2 = (p'c)^2 + (mc^2)^2 = (Pc)^2 + ((p + p')c)^2 - 2P(p + p')c^2 + (mc^2)^2.$   
 $(pc - p'c)^2 + E^2 = E^2 + (pc + p'c)^2 - 2(Pc^2)(p + p') + 2Ec(p - p') - 4pp'c^2 + 2Ec(p - p')$   
 $+2(Pc^2)(p + p') = 0$   
 $\Rightarrow p'(Pc^2 - 2pc^2 - Ec) = p(-Ec - Pc^2)$   
 $\Rightarrow p' = p \frac{Ec + Pc^2}{2pc^2 + Ec - Pc^2} = p \frac{E + Pc}{2pc + (E - Pc)}$ 

$$\Rightarrow \lambda' = \lambda \left(\frac{2hc/\lambda + (E - Pc)}{E + Pc}\right) = \lambda \left(\frac{E - Pc}{E + Pc}\right) + \frac{2hc}{E + Pc}$$

$$\Rightarrow \lambda(E - Pc) + 2hc$$

$$\Rightarrow \lambda' = \frac{\lambda(E - Pc) + 2hc}{E + Pc}$$

If 
$$E \gg mc^2$$
,  $Pc = \sqrt{E^2 - (mc^2)^2} = E\sqrt{1 - \left(\frac{mc^2}{E}\right)^2} \approx E\left(1 - \frac{1}{2}\left(\frac{mc^2}{E}\right)^2 + \dots\right)$   

$$\Rightarrow E - Pc \approx \frac{1}{2}\frac{(mc^2)^2}{E} \Rightarrow \lambda' \approx \frac{\lambda(mc^2)^2}{2E(2E)} + \frac{hc}{E} = \frac{hc}{E}\left(1 + \frac{m^2c^4\lambda}{4hcE}\right).$$

**(b)** If 
$$\lambda = 10.6 \times 10^{-6}$$
 m,  $E = 1.00 \times 10^{10}$  eV =  $1.60 \times 10^{-9}$  J

$$\Rightarrow \lambda' \approx \frac{hc}{1.60 \times 10^{-9} \text{ J}} \left( 1 + \frac{(9.11 \times 10^{-31} \text{ kg})^2 c^4 (10.6 \times 10^{-6} \text{ m})}{4hc (1.6 \times 10^{-9} \text{ J})} \right) = (1.24 \times 10^{-16} \text{ m})(1 + 56.0)$$

$$= 7.08 \times 10^{-15} \text{ m}$$

(c) These photons are gamma rays. We have taken infrared radiation and converted it into gamma rays! Perhaps useful in nuclear medicine, nuclear spectroscopy, or high energy physics: wherever controlled gamma ray sources might be useful.

**EVALUATE:** The photon has gained energy from the initial kinetic energy of the electron. Since the photon gains energy, its wavelength decreases.

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

**38.41. IDENTIFY** and **SET UP:** The specific gravity of the tumor is 1, so it has the same density as water, 1000 kg/m<sup>3</sup>. If 70 Gy are given in 35 days, the daily treatment is 2 Gy.

**EXECUTE:** The energy E per cell is

$$E/\text{cell} = \frac{(2 \text{ J/kg}) \left(\frac{1000 \text{ kg}}{(100 \text{ cm})^3}\right)}{10^8 \text{ cells/cm}^3} = (2 \times 10^{-11} \text{ J/cell})(6 \times 10^{18} \text{ eV/J}) = 1.2 \times 10^8 \text{ eV/cell} = 120 \text{ MeV/cell}.$$

Choice (c) is correct.

EVALUATE: For 35 treatments the total dose would be  $120 \text{ MeV} \times 35 = 4200 \text{ MeV} = 4.2 \text{ GeV}$  per cell.

**38.42. IDENTIFY** and **SET UP:** Assume that the photon eventually loses all of its energy. Call *N* the number of ionizations.

**EXECUTE:**  $(40 \text{ eV})N = 4 \text{ MeV} = 4 \times 10^6 \text{ eV} \rightarrow N = 10^5$ , so choice (d) is correct.

**EVALUATE:** This result is an average, since not every ionization would necessarily take 40 eV.

**38.43.** IDENTIFY and SET UP: For Compton scattering  $\lambda' - \lambda = \left(\frac{h}{mc}\right)(1-\cos\phi)$ . The energy of a photon is

 $E = hf = hc/\lambda$ . The energy gained by the electron is equal to the energy lost by the photon.

**EXECUTE:** For backscatter, 
$$\phi = 180^{\circ}$$
, so  $\lambda' - \lambda = \left(\frac{h}{mc}\right)(1 - \cos\phi)$  gives  $\lambda' = \lambda + \frac{2h}{mc}$ .

 $E = hc/\lambda = 4 \text{ MeV}$ , so  $\lambda = hc/(4 \text{ MeV})$ . Therefore

$$\lambda' = \lambda + \frac{2h}{mc} = hc/(4 \text{ MeV}) + 2h/mc = hc[2/(0.511 \text{ MeV}) + 1/(4 \text{ MeV})] = 4.165hc \text{ MeV}^{-1}.$$

 $E_{\rm el} = {
m loss}$  of energy of photon.

$$E_{\rm el} = hc/\lambda - hc/\lambda' = \frac{hc}{\lambda} - \frac{hc}{\lambda'} = hc \left[ \frac{1}{hc/(4 \text{ MeV})} - \frac{1}{0.4164hc \text{ MeV}^{-1}} \right] = 3.8 \text{ MeV}.$$
 Therefore choice (a)

is the correct one.

**EVALUATE:** Not all electrons would get this much energy because not all the photons would backscatter.

**38.44. IDENTIFY** and **SET UP:** The energy of a photon determines whether it is more likely to interact via the photoelectric effect or the Compton effect. The graph in Figure P38.44 shows that at high energies a photon is more likely to interact via the Compton effect, but at low energies it is more likely to interact via the photoelectric effect.

**EXECUTE:** From the graph we see that a 4-MeV photon has much higher probability of interacting via the Compton effect. But as it loses energy through repeated interactions, it will be more likely to interact via the photoelectric effect. Therefore choice (c) is the best one.

**EVALUATE:** In Problem 38.42 we saw that a photon can undergo around 10<sup>5</sup> ionization events, and during each of these it loses about 40 eV. Therefore it is reasonable that it would lose significant energy due to these interactions.

**38.45. IDENTIFY** and **SET UP:** For bremsstrahlung we have  $eV_{AC} = hf_{max}$ .

**EXECUTE:** If the accelerating potential  $V_{AC}$  is high, the maximum energy  $hf_{max}$  of the emitted photons will be high compared to a low accelerating potential. Thus choice (b) is correct.

**EVALUATE:** Not all the photons will have this energy, since  $f_{\text{max}}$  is the largest that the frequency can be.

<sup>©</sup> Copyright 2020 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.