

How do different aspects of counties (e.g. location, demographics and opioid dispense rates) relate to drug overdose rates?

Can we utilize the various demographic trends of each county to more accurately explain drug overdoses?

# Previously...

Average Overdose Rate - 2020





# What we've Considered:

- -Missing Data
- -More than half of population level tho!
- -Increasing overdose rates throughout the years
- -Possible clustering of overdose rates

#### **Exhaustive Search**

- Our preliminary best subset:
  - Year
  - Unemployment\_rate
  - Dispense\_rate (Number of Opioid Prescriptions per 100 people)
  - AA\_MALE (Number of Males that identify exclusively as Asian American)
  - TOM\_MALE (Number of Males that identify with two or more ethnicities)
  - NH\_MALE (Number of Males that identify as non-Hispanic)
  - Jail Population
  - Incarceration Rate per 100k People
  - PoveryCount (Number of people below the poverty threshold)
  - MedianHHI (Median Household Income)
- All variables were standardized (except Year and our response variable Overdose Rate)

#### **Best Subset OLS**



the random error term associated with county i, for year overdose rate (response variable) is log transformed t

|                                                      | Best Subset (BSS) OLS |         |  |  |  |  |  |  |
|------------------------------------------------------|-----------------------|---------|--|--|--|--|--|--|
|                                                      | Estimate              | P-value |  |  |  |  |  |  |
| Intercept                                            | -223.7                | 0.0     |  |  |  |  |  |  |
| Year                                                 | 0.112                 | 0.0     |  |  |  |  |  |  |
| Unemployment_rate                                    | 0.082                 | 0.0     |  |  |  |  |  |  |
| Dispense_rate                                        | 0.178                 | 0.0     |  |  |  |  |  |  |
| AA_MALE                                              | 0.012                 | 0.353   |  |  |  |  |  |  |
| TOM_MALE                                             | -0.032                | 0.106   |  |  |  |  |  |  |
| NH_MALE                                              | 0.163                 | 0.0     |  |  |  |  |  |  |
| Jail_Population                                      | -0.043                | 0.009   |  |  |  |  |  |  |
| Incarceration_Rate_per_100k                          | 0.008                 | 0.18    |  |  |  |  |  |  |
| PovertyCount                                         | -0.15                 | 0.0     |  |  |  |  |  |  |
| MedianHHI                                            | -0.121                | 0.0     |  |  |  |  |  |  |
| overdose rate (response variable) is log transformed |                       |         |  |  |  |  |  |  |

Note:

AA\_MALE, TOM\_MALE, and Incarceration\_Rate\_per\_100k are statistically insignificant

## Introducing a Spatial Component







Ex: Lower regions of WV
have higher rates of both
overdose and
incarceration





**Takeaway**: There is a spatial component present in our data

Introducing a Spatial Component









- Similar to West Virginia, we have clusters in California
  - Ex: Northern California has higher Overdose, Incarceration, and Opioid Dispense Rates

### Geospatial Factors: Global Moran's I

• We introduce Moran's I to determine if there is a spatial relationship in our data (for example, it measures how one county is similar to all others)

$$I = \frac{n \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j} z_{i} z_{j}}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j} \sum_{i=1}^{n} z_{i}^{2}}$$

•  $z_i = (x_i - \bar{x})$  is the deviation of an attribute (i.e. our overdose rate) from its mean for county i and  $w_{i,j}$  is the spatial weight between county i and j, and n is the total number of counties

#### Moran's I

- In the previous equation, we used the queen weights (depicted on the right)
- Our Moran's I is 0.46085
  - This indicates a moderate positive spatial autocorrelation between the counties
- There is a spatial autocorrelation between the counties, so we concluded that it is important to have a spatial component in our model.

Ex. Queen Weights for West Virginia



$$w_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are contiguous} \\ 0 & \text{if } i \text{ and } j \text{ are not contiguous} \end{cases}$$

## **OLS with Naive Spatial Components**

Incorporating two new spatial component variables:

• **spatmax**: Maximum overdose rate of the counties that are adjacent to the focal county

• **spatmean**: Average overdose rate of the counties that are adjacent to the focal county

### **OLS Regression Outcomes**

|                             | Best Subset ( | BSS) OLS           | BSS OLS w/ spatmax |                    | BSS OLS w/ spatmean |                    | BSS OLS w/ spatmax & spatmean |         |  |
|-----------------------------|---------------|--------------------|--------------------|--------------------|---------------------|--------------------|-------------------------------|---------|--|
|                             | Estimate      | P-value            | Estimate           | P-value            | Estimate            | P-value            | Estimate                      | P-value |  |
| Intercept                   | -223.7        | 0.0                | -134.508           | 0.0                | -116.857            | 0.0                | -116.893                      | 0.000   |  |
| Year                        | 0.112         | 0.0                | 0.068              | 0.0                | 0.059               | 0.0                | 0.059                         | 0.000   |  |
| Unemployment_rate           | 0.082         | 0.0                | 0.037              | 0.0                | 0.044               | 0.0                | 0.044                         | 0.000   |  |
| Dispense_rate               | 0.178         | 0.0                | 0.1                | 0.0                | 0.082               | 0.0                | 0.082                         | 0.000   |  |
| AA_MALE                     | 0.012         | 0.353              | -0.002             | 0.844              | -0.02               | 0.065              | -0.020                        | 0.068   |  |
| TOM_MALE                    | -0.032        | 0.106              | -0.007             | 0.677              | 0.013               | 0.441              | 0.013                         | 0.447   |  |
| NH_MALE                     | 0.163         | 0.0                | 0.126              | 0.0                | 0.122               | 0.0                | 0.122                         | 0.000   |  |
| Jail_Population             | -0.043        | 0.009              | -0.021             | 0.083              | -0.016              | 0.177              | -0.016                        | 0.176   |  |
| Incarceration_Rate_per_100k | 0.008         | 0.18               | 0.024              | 0.0                | 0.024               | 0.0                | 0.024                         | 0.000   |  |
| PovertyCount                | -0.15         | 0.0                | -0.126             | 0.0                | -0.121              | 0.0                | -0.121                        | 0.000   |  |
| MedianHHI                   | -0.121        | 0.0                | -0.129             | 0.0                | -0.105              | 0.0                | -0.106                        | 0.000   |  |
| spatmax                     | N/A           | N/A                | 0.246              | 0.0                | N/A                 | N/A                | 0.003                         | 0.792   |  |
| spatmean                    | N/A           | N/A                | N/A                | N/A                | 0.277               | 0.0                | 0.274                         | 0.000   |  |
|                             | AIC           | Adj R <sup>2</sup> | AIC                | Adj R <sup>2</sup> | AIC                 | Adj R <sup>2</sup> | AIC                           | Adj R²  |  |
| Takeaways:                  | 9581          | 0.307              | 6750               | 0.492              | 6334                | 0.521              | 6336                          | 0.521   |  |

- - Spatial components are able to explain more of the variability in our model
  - spatmean explains more variability in our model than spatmax does

# Multicollinearity

| feature                     | VIF       |
|-----------------------------|-----------|
| Year                        | 68.784791 |
| Unemployment_rate           | 8.954940  |
| Dispense_rate               | 10.116277 |
| AA_MALE                     | 5.854949  |
| TOM_MALE                    | 14.211463 |
| NH_MALE                     | 14.546340 |
| Jail Population             | 9.974360  |
| Incarceration Rate per 100k | 4.811989  |
| PovertyCount                | 13.589621 |
| MedianHHI                   | 31.760316 |

High Variance Inflation Factors

 Indication of multicollinearity present between our variables

### In Progress...

- Adding new data to increase the number of predictors
  - Reducing multicollinearity
  - Decreasing the possibility of pre-selecting variables

| Premature<br>Deaths | Potential<br>Years Lost | % Low<br>Weight<br>Births | %<br>Smokers | %<br>Adults<br>Obsese | %<br>Excessive<br>Drinking | Vehicle<br>Crash<br>Death<br>Rate | Teen<br>Birth<br>Rate | %<br>Uninsured | PrimCarePhys<br>per 100k | HS<br>Grad<br>Rate | College<br>Edu | %<br>Children<br>in<br>Poverty | % 1PHH    | Crir |
|---------------------|-------------------------|---------------------------|--------------|-----------------------|----------------------------|-----------------------------------|-----------------------|----------------|--------------------------|--------------------|----------------|--------------------------------|-----------|------|
| 68872.0             | 10189.200000            | 10.210000                 | 23.600000    | 31.9                  | 12.600000                  | 25.600000                         | 53.200000             | 17.100000      | 105.00000                | 67.0               | 55.100000      | 22.1                           | 36.200000 | 431  |
| 675.0               | 9967.400000             | 9.450000                  | 27.400000    | 31.5                  | 14.100000                  | 28.300000                         | 52.000000             | 15.500000      | 67.50000                 | 75.0               | 55.400000      | 14.9                           | 29.700000 | 256  |
| 2219.0              | 8321.800000             | 8.820000                  | 21.900000    | 26.2                  | 19.400000                  | 23.200000                         | 49.600000             | 20.900000      | 120.90000                | 70.0               | 61.500000      | 15.1                           | 28.900000 | 194  |
| 403.0               | 9559.000000             | 11.350000                 | 22.900000    | 37.6                  | 8.500000                   | 29.200000                         | 79.900000             | 16.300000      | 57.00000                 | 55.0               | 34.700000      | 31.9                           | 52.500000 | 72   |
| 365.0               | 13282.900000            | 9.940000                  | 33.000000    | 32.3                  | 11.300000                  | 42.500000                         | 64.400000             | 19.900000      | 41.70000                 | 60.0               | 40.300000      | 25.0                           | 32.000000 | 164  |
|                     |                         |                           |              |                       | 1922                       |                                   | 200                   |                | 9777                     |                    | -              |                                |           |      |

Implementing elastic net to reduce multicollinearity and model complexity

## **Next Steps and Goals**

- Incorporate the Queen's Weight Matrix using a weighted least squares model with elastic net
- Explore the idea of including interaction terms in the model
- Examine the temporal aspect of our data
- Determine which features are able to best explain overdose rates
- Estimate missing overdose rates for the counties that are missing from our data