Consistent Individualized Feature Attribution for Tree Ensembles

SHAP (SHapley Additive exPlanation) values

https://arxiv.org/abs/1802.03888

https://github.com/slundberg/shap

Supervised ML

	Feature 1	Feature 2		Feature M	Target Var.
point 1					0.1
point 2		$\int_{\mathcal{O}_{\mathcal{A}}}$			1.2
		30			
point n		7	4p.		0.6
¹ / ₀ ,					
point n+1			5		???

- Motivation
- Feature importance metrics
- What are SHAP values and why are they useful?
- How are SHAP values calculated?
- Outlook

- Motivation
- Feature importance metrics
- What are SHAP values and why are they useful?
- How are SHAP values calculated?
- Outlook

Motivation

- Supervised ML models: predicted values are not enough
 - your collaborators/users need explanations to build trust and to take proper actions
 - you need explanations to debug the code, generate better features, etc.
- Some models are easier to explain/interpret than others
 - accuracy vs. interpretability compromise

Motivation

Motivation

- Motivation
- Feature importance metrics
- What are SHAP values and why are they useful?
- How are SHAP values calculated?
- Outlook

Feature importance metrics (global)

- Gain: the average training loss reduction while using a feature
- Permutation: permute the feature values in the test set, observe change in the model's error
- Split count (for tree-based methods only): the number of times a feature was used to split on
- Cover (for tree-based methods only): same as split count but weighted by the number of points that go through the split

Feature importance metrics (local)

- LIME: <u>L</u>ocally <u>I</u>ndependent <u>M</u>odel-agnostic <u>E</u>xplanations*
- SHAP: <u>SHapley Additive exPlanations</u>

- Motivation
- Feature importance metrics
- What are SHAP values and why are they useful?
- How are SHAP values calculated?
- Outlook

SHAP values

- $\mathrm{E}[f(x)|x_s]$ the prediction of the model if only features x_s are used
- E[f(x)] bias term, only the target variable is used to predict
- $E[f(x)|x_1,x_2,x_3,x_4] = f(x)$
- $\sum \phi_i = f(x)$

SHAP values - why are they useful?

From global feature importance plots...

SHAP values - why are they useful?

...to SHAP summary plots...

SHAP values - why are they useful?

... and local feature importance plots.

- Motivation
- Feature importance metrics
- What are SHAP values and why are they useful?
- How are SHAP values calculated?
- Outlook

- Cooperative game theory
- A set of m players in a coalition generate a surplus.
- Some players contribute more to the coalition than others (different bargaining powers).
- How important is each player to the coalition?
- How should the surplus be divided amongst the players?

- Cooperative game theory applied to feature attribution
- A set of *m* features in a model generate a prediction.
- Some features contribute more to the model than others (different predictive powers).
- How important is each feature to the model?
- How should the prediction be divided amongst the features?

$$\phi_i = \sum_{S \subseteq M \setminus \{i\}} \frac{|S|!(M - |S| - 1)!}{M!} \left[f_{\mathcal{X}}(S \cup \{i\}) - f_{\mathcal{X}}(S) \right],$$

- i the feature whose contribution we want to calculate
- M the number of features
- S a set of features excluding i
- |S| the number of features in S
- f_x(S) the expected value of the prediction with features S

$$\phi_{i} = \sum_{S \subseteq M \setminus \{i\}} \frac{|S|!(M - |S| - 1)!}{M!} \left[f_{x}(S \cup \{i\}) - f_{x}(S) \right],$$

- Loop through all possible ways a set of S features can be selected from the M features excluding i
- $[f_x(S \cup \{i\}) f_x(S)]$ is the contribution of feature i to the model with features S
- Weight this appropriately

$$\phi_i = \sum_{S \subseteq M \setminus \{i\}} \frac{|S|!(M - |S| - 1)!}{M!} [f_{\mathcal{X}}(S \cup \{i\}) - f_{\mathcal{X}}(S)]$$

- Loop through all possible ways a set of S features can be selected from the M features excluding i
- $[f_x(S \cup \{i\}) f_x(S)]$ is the contribution of feature i to the model with features S
- Weight this appropriately

$$\phi_i = \sum_{S \subseteq M \setminus \{i\}} \frac{|S|!(M - |S| - 1)!}{M!} [f_{\mathcal{X}}(S \cup \{i\}) - f_{\mathcal{X}}(S)],$$

- Loop through all possible ways a set of S features can be selected from the M features excluding i
- $[f_x(S \cup \{i\}) f_x(S)]$ is the contribution of feature i to the model with features S
- Weight this appropriately

$$\Phi_i = \frac{1}{\text{nr features}} \sum_{\text{features excluding i}} \frac{\text{contribution of i to model}}{\text{nr models with same number of features}}$$

$$\phi_i = \sum_{S \subseteq M \setminus \{i\}} \frac{|S|!(M - |S| - 1)!}{M!} \left[f_x(S \cup \{i\}) - f_x(S) \right],$$

- How to calculate $f_x(S)$?
- How to ignore the effect of features not in S?

- Motivation
- Feature importance metrics
- What are SHAP values and why are they useful?
- How are SHAP values calculated?
- Outlook

Outlook

- SHAP interaction index
 - pairwise interactions
 - how important are features i and j together?
- Supervised Clustering
 - run clustering on the SHAP values
 - it naturally converts all input features to the same unit

Summary

• Use SHAP values in supervised ML (especially with tree-based models)

• It's a great tool!