L	Moments	5	WIIIIII	aı	Spectru	111	varobs	
	$[\psi_{\pi}\psi_{y} ho_{R}\sigma]$	$_R]$	err		$[\psi_{\pi}\psi_{y} ho_{R}c]$	$\sigma_R]$	YGR	
Ī	$[\psi_{\pi}\psi_{y} ho_{R}\sigma]$	R	err		$[\psi_{\pi}\psi_{y}\rho_{R}a]$	σ_R	INFL	
Ì	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$	- 1	INT	
ł		_	err		F / /	- 1		
}	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$				$[\psi_{\pi}\psi_{y}\rho_{R}c]$	_	y	
ļ	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$		c	
l	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$	R	err		$ \psi_{\pi}\psi_{y} ho_{R}c$	σ_R	R	
	$[\psi_{\pi}\psi_{y} ho_{R}\sigma]$	$_{R}]$	err		$[\psi_{\pi}\psi_{y} ho_{R}c]$	$\sigma_R]$	π	
Ì	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$		g	
ł	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$		$\frac{3}{z}$	
ł							~ 	
ŀ	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$	R	err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$	R	Van INEI	
ļ	√√		err		√ √		YGR, INFL	
l	√√		err		$[\psi_{\pi}\psi_{y} ho_{R}c]$	σ_R	YGR, INT	
	$[\psi_{\pi}\psi_{y} ho_{R}\sigma]$	$_R]$	err		$[\psi_\pi\psi_y ho_R a]$	$\sigma_R]$	YGR, y	
Ī	$[\psi_{\pi}\psi_{y} ho_{R}\sigma]$	R	err		$[\psi_{\pi}\psi_{y}\rho_{R}a]$		YGR, c	
Ì	<u>√√</u>	,	err				YGR,R	
ł	.(.(err		$[\psi_{\pi}\psi_{y}\rho_{R}\alpha]$	11.	YGR, π	
ŀ		1	-		* *		YGR,g	
-	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$	R	err		$[\psi_{\pi}\psi_{y}\rho_{R}a]$			
ļ	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}\alpha]$		YGR, z	
	$[\psi_{\pi}\psi_{y} ho_{R}\sigma]$	$_{R}]$	err		$[\psi_{\pi}\psi_{y} ho_{R}c]$	$\sigma_R]$	YGR, ζ	
Ī	√ √		err		$[\psi_{\pi}\psi_{y}\rho_{R}a]$		INFL, INT	
Ì	√		err		√ √	,	INFL, y	
ŀ	./				[2/2 2/2 0.00	T D	INFL, c	
}			err		$[\psi_{\pi}\psi_{y}\rho_{R}a]$			
ļ	V V	1	err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$		INFL,R	
	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$		$INFL,\pi$	
	$[\psi_{\pi}\psi_{y} ho_{R}\sigma]$	R	err		$\mid [\psi_\pi \psi_y ho_R a]$	$[\sigma_R]$	INFL, g	
Ī	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}a]$		INFL, z	
Ì	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$		$INFL, \zeta$	
ł	√ √	10]	err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$		INT, y	
ł							INT, c	
ļ		1	err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$			
ļ	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$	R	err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$		INT,R	
l	√ √		err		$[\psi_{\pi}\psi_{y} ho_{R}c]$	σ_R	INT,π	
	$[\psi_{\pi}\psi_{y} ho_{R}\sigma]$	$_{R}]$	err		$[\psi_\pi\psi_y ho_R a]$	$\sigma_R]$	INT, g	
Ì	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$		INT, z	
ł	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$		INT, ζ	
ł	-		err					
ŀ	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$	R	1		$[\psi_{\pi}\psi_{y}\rho_{R}c]$		y, c	
ļ	√√		err		$[\psi_{\pi}\psi_{y}\rho_{R}a]$	-	y, R	
Į	√		err		$[\psi_{\pi}\psi_{y}\rho_{R}c]$	σ_R	y,π	
	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$	$_R]$	err		$\mid [\psi_\pi \psi_y ho_R a]$	$[\sigma_R]$	y,g	
ĺ	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}a]$	σ_R	y, z	
[u]	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		err	[1	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	T	y, ζ	
L /	$\frac{x + y + t + t \cdot t}{\sqrt{}}$		err	[2	$\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}$		c,R	ᅱ
				[4	$\frac{\sqrt{\pi \Psi y \rho_{R0} R_{\parallel}}}{}$	+		ᅱ
Γ /	√		err	г	v		c,π	_
	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		err	Įų	$\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}$		c, g	_
$ \psi $	$[\psi_\pi \psi_y ho_R \sigma_R]$		err		√		c, z	
$[\psi]$	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		err	[y]	$\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}$		c, ζ	
	√ √		err		$[\psi_{\pi}\psi_{y}\rho_{R}]$		R,π	
1/2	$[v_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}]$		R,g	\dashv
				[2	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		$\frac{R, g}{R, z}$	ᅱ
-	$[v_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		err					_
	$[v_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		err		$[\psi_{\pi}\psi_{y}\rho_{R}]$		R, ζ	_
	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		err	Įų	$\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}$		π, g	
$[\psi$	$[\psi_\pi \psi_y ho_R \sigma_R]$		err		$[\sigma_R]$		π,z	
$[\psi]$	$[\sigma_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		err	[4	$\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}$		π, ζ	
	$[v_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		err		$\frac{\partial \psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}}{\partial \psi_{y}\rho_{R}\sigma_{R}}$		g, z	\dashv
	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		err	-	$\frac{\partial_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{\partial_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	+	<u> </u>	\dashv
F /	, ,			-		+	g,ζ	\dashv
Ψ	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$		err	ĽΨ	$\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}$	- Te -	z, ζ	
	√√		err		√√	Y	GR, INFL, INT	<u>'</u>
	√ √	L	err		√ ✓	\perp	YGR, INFL, y	_
	√ √ √		err		√ √ √		YGR, INFL, c	\neg
	//		err		√ √		$\overline{YGR, INFL, R}$	\dashv
	<u> </u>		err		<u>√</u> √ √	+	$\overline{YGR, INFL, \pi}$	\dashv
	<u> </u>					+	$\frac{IGR,INFL,\pi}{YGR,INFL,g}$	\dashv
	V V		err		v v		L GIL , $IIV F L$, g	

Minimal Spectrum

Varobs

Moments

	Own		YGR, INFL, z
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	err	√√	$\frac{IGR,INFL,z}{YGR,INFL,\zeta}$
V V		√√	$\frac{IGR,INTL,\zeta}{YGR,INT,y}$
√√	err	√√	$\frac{IGR,INT,g}{YGR,INT,c}$
V V	err		$\frac{YGR,INT,c}{YGR,INT,R}$
√√	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	$\frac{IGR,INT,\pi}{YGR,INT,\pi}$
V V	err	$\frac{ \psi_{\pi}\psi_{y}\rho_{R}\sigma_{R} }{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	$\frac{IGR,INT,\pi}{YGR,INT,g}$
V V	err		$\frac{IGR,INT,g}{YGR,INT,z}$
V V	err		$\frac{1 GR, INT, z}{YGR, INT, \zeta}$
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err		$\frac{YGR, TVT, \zeta}{YGR, y, c}$
$[\varphi\pi\varphi y\rho R \circ R]$	err	$[\varphi_{\pi}\varphi_{y}\rho_{R}\sigma_{R}]$	$\frac{YGR, y, c}{YGR, y, R}$
/ /	err	\ \ \ \ \ \	$\frac{YGR, y, \pi}{YGR, y, \pi}$
$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	$\frac{YGR, y, \pi}{YGR, y, g}$
$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	err	$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	$\frac{YGR, y, z}{}$
$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	err	$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	$\frac{YGR, y, z}{YGR, y, \zeta}$
$\begin{array}{c c} [\varphi\pi\varphi p R \circ R] \\ \hline \checkmark \checkmark \end{array}$	err	$[\varphi\pi\varphi y \rho R \circ R]$	YGR, c, R
/ /	err	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\frac{YGR,c,\pi}{YGR,c,\pi}$
$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	$\frac{YGR,c,\pi}{YGR,c,g}$
$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	err	$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\rho_{R}\sigma_{R}]}$	$\frac{YGR,c,g}{YGR,c,z}$
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$			$\frac{YGR,c,z}{YGR,c,\zeta}$
√ √	err	$ \frac{ \left[\psi_{\pi} \psi_{y} \rho_{R} \sigma_{R} \right] }{ \checkmark \checkmark } $	YGR, R, π
√√	err	$[\psi_{\pi}\psi_{y}\rho_{R}]$	YGR, R, g
√ √ √	err		YGR, R, z
√ √ √	err		$\frac{YGR,R,z}{YGR,R,\zeta}$
/ /	err	$[\varphi\pi\varphi y\rho R]$	YGR, π, g
√√	err	\ \ \ \ \	YGR, π, z
/ /	err	/ /	YGR, π, ζ
	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	$\frac{YGR, \eta, \zeta}{YGR, g, z}$
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err		$\frac{YGR, g, z}{YGR, g, \zeta}$
$\begin{bmatrix} 2/2 & 2/2 & 0.00 & 0.0 \end{bmatrix}$	err		$\frac{YGR, z, \zeta}{YGR, z, \zeta}$
$\begin{array}{ c c c c c c }\hline (\psi_\pi\psi_y\rho_R\sigma_R] \\\hline \checkmark\checkmark \\\hline \end{array}$	err	$\frac{\left[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}\right]}{\checkmark\checkmark}$	$\frac{INFL, INT, y}{INFL, INT, y}$
√ √	err	/ /	$\frac{INFL,INT,g}{INFL,INT,c}$
√ √	err	$[\psi_{\pi}\psi_{y}]$	$\frac{INFL,INT,e}{INFL,INT,R}$
√√	err	$\frac{[\psi_{\pi}\psi_{y}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	$\frac{INFL,INT,\pi}{INFL,INT,\pi}$
√√	err		$\frac{INFL,INT,\pi}{INFL,INT,g}$
√√	err	$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	$\frac{INFL,INT,g}{INFL,INT,z}$
√√	err		$\frac{INFL,INT,z}{INFL,INT,\zeta}$
√	err	$\begin{array}{ c c }\hline [\psi_\pi\psi_y\rho_R\sigma_R]\\\hline \checkmark\end{array}$	$\frac{INFL, y, c}{INFL, y, c}$
	err	\ \ \ \ \ \	$\frac{INFL, y, c}{INFL, y, R}$
√	err	√	$INFL, y, \pi$
√	err	/	$\frac{INFL, y, \pi}{INFL, y, g}$
√	err		$\frac{INFL, y, z}{INFL, y, z}$
√	err		$INFL, y, \zeta$
<i>,</i>	err	11	INFL, c, R
✓ ✓	err	$[\psi_{\pi}\psi_{n}\rho_{D}\sigma_{D}]$	$\frac{INFL, c, n}{INFL, c, \pi}$
V ✓	err		INFL, c, g
· /	err	$[\psi_{\pi}\psi_{y} ho_{R}\sigma_{R}]$	INFL, c, z
√	err		$INFL, c, \zeta$
,	err		$INFL, R, \pi$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	err	[T N T Y P N O N]	INFL, R, g
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	$\frac{INFL,R,g}{INFL,R,z}$
	err	$[\psi_{\pi}\psi_{y} ho_{R}\sigma_{R}]$	$INFL, R, \zeta$
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y} ho_{R}\sigma_{R}]$	$INFL, \pi, g$
$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	err	$[\psi_{\pi}\psi_{y} ho_{R}\sigma_{R}]$	$INFL, \pi, z$
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y} ho_{R}\sigma_{R}]$	$INFL, \pi, \zeta$
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y} ho_{R}\sigma_{R}]$	INFL, g, z
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y} ho_{R}\sigma_{R}]$	$INFL, g, \zeta$
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	$INFL, z, \zeta$
$\sqrt{\checkmark}$	err	$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	INT, y, c
/ /	err		INT, y, R
/ /	err	$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	INT, y, π
/ /	err	$[\psi_{\pi}\psi_{y} ho_{R}\sigma_{R}]$	INT, y, g
, ,		[[T N T YP N O N]	+ 1919

√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	INT, y, z
	err	$\frac{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]}$	INT, y, ζ
	err		INT, c, R
√ √			INT, c, π INT, c, π
√ √ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	
	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	INT, c, g
√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	INT, c, z
√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	INT, c, ζ
√√	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	INT, R, π
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	INT, R, g
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$\left[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}\right]$	INT, R, z
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$\left[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}\right]$	INT, R, ζ
√√	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	INT, π, g
√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	INT, π, z
√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	INT, π, ζ
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	INT, g, z
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$ [\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}] $	INT, g, ζ
$[\psi_{\pi}\psi_{y} ho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	INT, z, ζ
$[\varphi \pi \varphi y \rho R \circ R]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	y, c, R
	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	y,c,π
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	y, c, g
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	y, c, z
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	y, c, ζ
√√	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	y, R, π
√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	y, R, g
√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	y, R, z
√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}]$	y, R, ζ
✓	err	✓	y,π,g
√	err	√	y,π,z
√	err	√	y,π,ζ
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	√	y, g, z
$[\psi_{\pi}\psi_{y} ho_{R}\sigma_{R}]$	err	√	y,g,ζ
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	√	y, z, ζ
√√	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	c, R, π
√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	c, R, g
/ /	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	c, R, z
	err	$\frac{[\psi_{\pi}\psi_{y}\rho_{R}]}{[\psi_{\pi}\psi_{y}\rho_{R}]}$	c, R, ζ
-/	err	$[\varphi\pi\varphi y\rho R]$	
		V	c, π, g
V	err	V	c, π, z
[a/1, a/1, a, -1]	err	V	c, π, ζ
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	√	c, g, z
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	√	c, g, ζ
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	√	c, z, ζ
√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	R, π, g
√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}]$	R,π,z
√ √	err	$[\psi_{\pi}\psi_{y}\rho_{R}]$	R,π,ζ
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\rho_{R}\sigma_{R}]$	R, g, z
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}]$	R, g, ζ
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	R, z, ζ
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\sigma_R]$	π, g, z
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	π, g, ζ
$[\psi_{\pi}\psi_{y} ho_{R}\sigma_{R}]$	err	$[\sigma_R]$	π, z, ζ
$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	err	$[\psi_{\pi}\psi_{y}\rho_{R}\sigma_{R}]$	g,z,ζ
$\perp \mid \forall \pi \forall u P K^{\vee} K \mid$	· PREESI		

Table 1: PREFSHOCK MONPOL GROWTH