

Exercise session 11/5 | Queueing Networks

Exercise 1.

Consider the following queueing network

This is a tandem queueing network with no buffer space. Arrivals occur at node 1 as a Poisson arrival process with rate λ . The network has single servers, and we assume independent exponentially distributed service times in both nodes with respective parameters μ_1 and μ_2 . If the service of a customer in the first server ends and it cannot immediately proceed to the second node, blocking occurs.

- (a) Construct a CTMC for this queueing network.
- (b) Find the stationary solution of this CTMC.
- (c) What is the mean number of customers E[S] in the network?
- (d) Calculate the effective arrival rate in the network.
- (e) Calculate the probability that a customer that is admitted gets blocked in the first node.
- (f) Calculate the mean network delay E [D] of (admitted) customers.

Exercise 2

Consider the M/M/1 queue with arrival rate λ and service rate μ . Calculate the distribution of the interdeparture times directly, i.e. without using reversibility of the M/M/1 queue.

Exercise 3.

Consider the tandem queueing network depicted below. This network has a Poisson arrival process with rate λ to node 1. Both nodes have infinite buffer capacity and a single server, their service times being independently exponentially distributed with respective parameters μ_1 and μ_2 .

- (a) Construct a CTMC for this queueing network.
- (b) Write down the global balance equations.

Exercise 4.

Consider the tandem queueing network depicted below. This network has a Poisson arrival process with rate λ to node 1. Both nodes have infinite buffer capacity and a single server, their service times being independently exponentially distributed with total service rate equal to $\mu = \mu_1 + \mu_2$.

- (a) Can you put a constraint on μ such that there is at least one combination of μ_1 and μ_2 for which the tandem queueing network is stable?
- (b) If this constraint is met, choose μ_1 and μ_2 such that the mean network delay E[D] is minimal.
- (c) How does the constraint and the optimal μ_1 and μ_2 of (a) and (b) change if an external Poisson arrival process to queue 2 with rate γ is introduced?
- (d) How does the constraint and the optimal μ_1 and μ_2 change if we extend the network in (c) with an extra feedback loop from node 2 to node 1, i.e. customers departing node 2 are routed to node 1 with probability p or leave the network with probability 1-p?

E9.4

Exercise 5.

Consider a M/M/1/K queue with arrival rate λ and service rate μ .

- (a) Is (the CTMC corresponding to) this queue reversible?
- (b) Is the departure process of this queue a Poisson process?

- (a) Construct a CTMC for this queueing network
 - (b) Find the stationary solution of this CTMC.
- (c) What is the mean number of customers E[S] in the network?
 - (d) Calculate the effective arrival rate in the network.
- (e) Calculate the probability that a customer that is admitted gets blocked in the first node.
 - (f) Calculate the mean network delay E [D] of (admitted) customers.

Exercise 2.

Consider the M/M/1 queue with arrival rate λ and service rate μ . Calculate the distribution of the interdeparture times directly, i.e. without using reversibility of the M/M/1 queue.

Exercise 3.

Consider the tandem queueing network depicted below. This network has a Poisson arrival process with rate. A to node 1. Both nodes have infinite buffer capacity and a single server, their service times being understandently exponentially distributed with respective parameters up and up.

- (a) Construct a CTMC for this queueing network.
 - (b) Write down the global balance equations.

xercise 4.

Consider the tandem queueing network depicted below. This network has a Poisson arrival process with ate λ to node 1. Both nodes have infinite buffer capacity and a single server, their service times being notependently exponentially distributed with total service rate equal to $\mu = \mu_1 + \mu_2$.

(a) Can you put a constraint on μ such that there is at least one combination of μ₁ and μ₂ for which the
traction constraint actuals.

(b) If this constraint is met, choose as and as such that the mean network dolay E [D] is minimal.

(c) How does the constraint and the optimal p₁ and p₂ of (a) and (b) charge if an external Poisson arrival process to queue 2 with rate is introduced?

d) How does the constraint and the optimal pr, and pre change if we extend the network in (c) with an extra feedback loop from node 2 to node 1, i.e. customers departing node 2 are routed to node 1 with rechability a or texts the network with rechability 1 - a?