Capa de Enlace de Datos y LANs

Redes de Computadores FIEC04705 Sesión 07

Agenda

- Terminología
- LANs
- El problema de la asignación del canal
- IEEE 802.3 Ethernet

Terminología

Terminología

- Broadcasting: Transmisión de un mensaje a todos los nodos de una red
- Ethernet [IEEE 802.3]: Una red de área local utilizando el método de acceso CSMA/CD
- Token Ring [IEEE 802.5]: Una red de área local usando una topología en anillo y método de acceso token passing

LANs

Local Area Networks

- LANs operan en las capas OSI 1 y 2.
- El problema: acceder a un medio de comunicación en redes broadcast.
- Direccionamiento
- Colisiones
 - Subcapa MAC en la capa de enlace de datos [MAC + LLC IEEE 802.2]
 - Estática [Ej.: FDM, TDM] No muy eficiente para un número variable de usuarios o tráfico de gran actividad
 - Dinámica
 - ALOHA
 - Carrier Sense Multiple Access [IEEE 802.3 Ethernet]
 - Token passing [IEEE 802.5 Token Ring, IEEE-802.4 Token Bus]

Subcapas MAC & LLC

Subcapas MAC & LLC

- Logical Link Control [LLC]
 - Framing
 - Flow control
 - Error control
- Media Access Control [MAC]
 - Access methods

Subcapas MAC & LLC

 Medium Access Control [MAC] sublayer: La subcapa más baja en la capa de enlace de datos definida por el proyecto IEEE 802.
Define el método de acceso y control de acceso en diferentes protocolos de redes de área local.

- La Universidad de Hawaii en 1970 establece comunicación entre islas usando un sistema de radio inalámbrico:
 - Broadcast de hosts a través de una estación central usando diferentes frecuencias para datos y acks
 - En el caso de contención, el transmisor espera un tiempo aleatorio y retransmite: probabilidad reducida para una segunda colisión.

FIGURE 3.23 Aloha System

 Baja eficiencia S = Ge^{-2G}, donde S es el número promedio de frames exitosos por intervalo de tiempo.

- Slotted ALOHA: las estaciones tienen permiso para transmitir solo al inicio de cada slot de tiempo.
 - Eficiencia S = Ge^{-G}

FIGURE 3.24 Transmission Using Pure Aloha and Slotted Aloha

Protocolos CSMA

Protocolos CSMA

- Escuchar el medio y si no hay actividad entonces trasmitir, caso contrario:
 - non-persistent CSMA : esperar un slot de tiempo y luego escuhar nuevamente el medio.
 - Eficiencia:

$$S_{non-persistent} = \frac{G}{G+1}$$

 p-persistent CSMA: continuar moniteando el medio activo y cuando no haya actividad, transmitir con probabilidad p.

Protocolos CSMA

(Continuación)

- p-persistent CSMA:
 - Eficiencia:

$$S_{p-persistent} = \frac{Ge^{-G}(1+pGx)}{G+e^{-G}}$$
 where

$$x = \sum_{\kappa=0}^{\infty} \frac{\left(1-p\right)^{\kappa} G^{\kappa}}{\left(1-\left(1-p\right)^{\kappa+1}\right)!}$$

Tasa de éxito de Protocolos CSMA y ALOHA

CSMA/CD: Collision Detection

- Si el medio está ocupado, la estación espera de acuerdo al algoritmo de persistencia, de otra manera transmite el frame y continúa escuchando.
- Si detecta colisión, inmediatamente detiene la transmisión y envía una corta señal de jamming (analógica).
- Luego de una colisión, espera un lapso de tiempo aleatorio e intenta otra vez.
 - Una técnica común define el tiempo de espera como un múltiplo de un slot de tiempo. Cuántos slots (pocos o muchos)?
 - Algoritmo binary exponential backoff: después de n colisiones esperar de 0 a 2ⁿ-1 slots

CSMA/CD: Collision Detection Protocol

Collision With and Without Detection

IEEE 802.3 - Ethernet

- Topología Bus (lógica)
- Estaciones utilizan un protocolo 1-persistent CSMA/CD para acceder al backbone
- Manchester encoding (Qué capa?)
- Dispositivos Ethernet:
 - Capa 1
 - Pasivos: no requieren energía para operar
 - Cableado
 - Patch panels
 - Plugs & Jacks
 - Activos: requieren energía
 - Transceivers
 - Repeaters
 - Multiport repeaters (hubs)
 - Capa 2
 - NICs
 - Bridges
 - Switches

- Transceiver es un dispositivo responsable de transmitir, recibir y detectar colisiones.
- Transceiver viene de transmitter/receiver

Direccionamiento de capa 2

- Las direcciones de capa 2 son conocidas como direcciones MAC. Cada tarjeta NIC tiene una única dirección MAC.
- Las direcciones MAC tienen 48 bits de longitud y son expresadas como 12 dígitos hexadecimales.
 - Los primeros seis dígitos hexadecimales, los cuales son administrados por la IEEE, identifican al manufacturador o vendedor: Organizational Unique Identifier (OUI).
 - Los restantes seis dígitos hexadecimales representan un valor administrado por cada vendedor

Direccionamiento de capa 2

- Las direcciones MAC son quemados en una ROM (BIAs) y son copiados en la RAM cuando se inicializa la NIC.
- 16¹² (más de trillones) posibles direcciones MAC.
- Su principal desventaja es que no tienen estructura, son espacios de direcciones planas.

Puntos para recordar

- Aloha
- CSMA
- CSMA/CD
- IEEE 802.3 Ethernet
- Dispositivos de capa 1 y de capa 2
- NICs y direcciones MAC

Próxima Sesión

- Cableado estructurado
- Segmentación de dominios de colisión

