LINEAR REGRESSION

March 05, 2015 – General Assembly, Santa Monica

Mohsen Chitsaz, Ph.D.

Sr. Principal Data Scientist at Symantec

Lecture 08

Machine Learning

- Supervised
 - Regression
 - Classification

- Unsupervised
 - Clustering
 - Density estimation
 - Dimensionality reduction

Components of Learning

• Input: **x** (customer application) • Output: y (good/bad customer?) • Target function: $f: \mathcal{X} \to \mathcal{Y}$ (ideal credit approval formula) ullet Data: $(\mathbf{x}_1,y_1), (\mathbf{x}_2,y_2), \cdots, (\mathbf{x}_N,y_N)$ (historical records) ullet Hypothesis: $g: \mathcal{X} \to \mathcal{Y}$ (formula to be used)

Cross Validation

- K-fold cross validation
 - Splitting the data into K pieces
 - Repeating the process of training K-times
 - For each training round, use (K-1) pieces and leave one piece out
 - Train on (K-1) parts and test on the piece that is left out

K-Fold Cross Validation

```
folds = cv.KFold(n=114, n_folds=6)
for fold in folds:
  train_data = xl.ix[fold[0],:]
  test_data = xl.ix[fold[1],:]
```

Regression

Linear Regression

Polynomial Regression

Linear Regression

Generalized Linear Models

$$\hat{y}(w,x) = w_0 + w_1x_1 + ... + w_px_p$$
Intercept weighted inputs

Ordinary Least Squares

Minimizes the error,

X: input vector, y: output value, w: weights

$$\min_{w} ||Xw - y||_2^2$$

Regression Example – US Population

Year	Population	
1900	76.09	
1901	77.58	
1902	79.16	
1903	80.63	
1904	82.17	350
1905	83.82	300 - 250 -
1906	85.45	200 -
1907	87.01	150 -
1908	88.71	50 1880 1900 1920 1940 1960 1980 2000

How good is our model?

We need to know how well the model fits the data

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$SS_{\text{tot}} = \sum_{i} (y_i - \bar{y})^2,$$

$$SS_{res} = \sum_{i} (y_i - f_i)^2$$

$$R^2 \equiv 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}}.$$

sklearn.metrics.r2_score

Polynomial Regression

 The goal of polynomial regression is to model a non-linear relationship between the independent and dependent variables

Example for one dimensional

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

Polynomial Regression

Still linear regression

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

Sklearn:

```
import sklearn.preprocessing as pp
poly = pp.PolynomialFeatures()
b = np.arange(0,6).reshape(2,3)
c = poly.fit_transform(b)
```

Class Group Work – Abalone Age

- Determining the age Abalone is very laborious
- We want to find a formula that predicts the **age** of abalone based on some of its features

Class Group Work – Abalone Age

Feature	Description
sex	M, F, I, (Gender or Infant)
length	Longest shell measurement (mm)
diameter	Perpendicular to the length (mm)
height	With meat in shell (mm)
whole_weight (gr)	Whole weight (gr)
shucked_weight	Weight of meat (gr)
viscera_weight	Gut weight after bleeding (gr)
shell_weight	After being dried (gr)
rings	+1.5 gives the age in years

Youtube Rating Prediction

- 1) Search for videos "Madonna"
- 2) Parse the json result
- 3) Extract features of videos, e.g. number of likes, number of dislikes, number of views, number of days since its publish date
- 4) Come up with a formula that relates features to the rating

Example

 Try polynomial regression on youtube data and abalone examples

How does the result of regression changes as we change the degree of polynomial from 5 to 2?

Can you plot the in and out of sample R² score as a function of polynomial degree (k) for both problems? k=1..10

Group work

- 1) Extract the same set of financial indexes from 01/01/2000 to 01/01/2014
- Pull the data for one the composite indexes (e.g. NASDAQ Composite .IXIC)
- 3) Try to come up with a linear or polynomial regression model that relates the indexes to the composite index
- 4) Assess the generality of your model by k-fold cross validation