Dongui Bogam

What to include

- Project Proposal
- **♦** Updates
- Methods
- **❖** Data
- Results & Visualization
- Conclusion (Recap / Takeaways)

Dongui Bogam

Topic

Health Data Analysis

Description

Personal healthcare system managing users' nutritive condition based on their input of food/health supplement intakes. We expect outputs of the user's current health status and health supplement recommendations

Main Methods

Research, Data Acquisition, Feature Selection, Predictive analysis

Team Member

신익규, 신승균, 이아현

Updates

Identify the relevant variables

 $\|$

Clean and process the data

Conduct statistical analysis

1

Develop a risk estimation tool

Back & forth with cleaning and processing the data

Recommendation

필터링 - 군집화 - 추천 \rightarrow 군집화 - 필터링 - 추천 순으로 변경 인풋에 따라 달라지는 최적 $\mathbf K$ 값 방지

그래프에 따라서 최적 K 값은 4로 선택

Recommendation

앞에서 찾은 최적 K = 4로 군집화

Recommendation

```
if (length(Nut) == 1){ #Number of Nutrients need (Multi or Not)
  df fil = dat final %>%
  filter(Target == Group,
         Type == Input_type,
         multi == 0) %>%
  filter('Ing Name' == Nut)
  df_fil = dat_final %>%
    filter(Target == Group,
           Type == Input_type,
           multi == 1) %>%
    filter('Ing Name' %in% Nut) %>%
    group_by(ID) %>%
    mutate(N_filter = n()) %>%
    filter(N_filter == length(Nut))
clust = dat_final$cluster[dat_final$Name == Nutrients][1]
Final_recom = df_fil %>%
  filter(cluster == clust) %>%
  arrange(desc(N))
Final_recom[1, ]$Name
 [1] "DEFAULT MULTIVITAMIN / MULTIMINERAL"
```

군집 선택 기준:

기존에 먹는 영양제가 있는 경우,

복용 중인 영양제와 같은 군집에 속하는 영양제 중 가장 많은 사람들이 찾는 영양제로 추천

Further Improvement

복용 목적

연령대

성별 등

으로 인풋 세분화 후 보다 정확한 추천

Final Dataset_Liver

	Data	columns (total 13 columns):		
	#	Column		Non-Null Count	Dtype
Demo	0	SEQN		3473 non-null	int64
Demo	1	BMXWT		3473 non-null	float64
	2	BMXBMI		3473 non-null	float64
	3	BMXWAIST		3473 non-null	float64
Liver	4	LBXGH		3473 non-null	float64
Livei	5	LBXGLU		3473 non-null	int64
	6	LBXTR		3473 non-null	int64
	7	LBDLDLN		3473 non-null	int64
RDI	8	water_sol	uble_vitamins_sum	3473 non-null	int64
KDI	9	fat_solub	le_vitamins_sum	3473 non-null	int64
	10	major_min	erals_sum	3473 non-null	int64
	11	trace_min	erals_sum	3473 non-null	int64
	12	MCQ160L	10000	3473 non-null	int64

Final Dataset Cardiovascular

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12409 entries, 0 to 12408
Data columns (total 18 columns):

Demo

Cardio Vascular

RDI

```
Column
                                 Non-Null Count
                                                 Dtype
                                 12409 non-null
                                                 float.64
    BMXWT
                                                 float.64
    BMXWAIST
                                 12409 non-null
    BMXBMI
                                 12409 non-null float64
    LBXTC
                                 12409 non-null int.64
    LBXTN
                                 12409 non-null float64
    LBXGH
                                 12409 non-null float64
    LBXTR
                                 12409 non-null int.64
    I-BDI-DI-N
                                 12409 non-null int.64
    water soluble vitamins sum
                                 12409 non-null
                                                 int64
    fat soluble vitamins sum
                                 12409 non-null int64
    major minerals sum
                                 12409 non-null
                                                int.64
                                 12409 non-null int.64
    AL0130
12
                                 12409 non-null int64
    SMQ
    BPXOPLS
                                 12409 non-null float64
14
    DIQ010
                                 12409 non-null int.64
    PAO706
                                 12409 non-null float.64
    URXUMS
                                 12409 non-null float.64
    HEART
                                 12409 non-null float64
```

dtypes: float64(9), int64(9)

memory usage: 1.7 MB

Final Dataset_Liver

	BMXWT	BMXBMI	BMXWAIST	LBXGH	LBXGLU	LBXTR	LBDLDLN	$water_soluble_vitamins_sum$	fat_soluble_vitamins_sum	major_minerals_sum	trace_minerals_sum	MCQ160L
count	3473.000000	3473.000000	3473.000000	3473.000000	3473.000000	3473.000000	3473.000000	3473.000000	3473.000000	3473.000000	3473.000000	3473.000000
mean	83.846300	29.951109	101.002966	5.860841	113.148575	107.519436	110.627124	-0.009214	-2.830118	-0.787504	-0.981284	0.050389
std	22.445219	7.366641	17.256111	1.138301	37.434179	70.566097	36.239897	3.258439	1.327849	2.091180	1.139946	0.218777
min	39.600000	15.400000	63.200000	2.800000	47.000000	10.000000	14.000000	-7.000000	-4.000000	-4.000000	-4.000000	0.000000
25%	67.900000	24.800000	88.800000	5.300000	96.000000	60.000000	86.000000	-2.000000	-4.000000	-2.000000	-1.000000	0.000000
50%	80.600000	28.700000	99.500000	5.600000	103.000000	89.000000	107.000000	1.000000	-3.000000	-2.000000	-1.000000	0.000000
75%	96.000000	33.700000	111.800000	6.000000	115.000000	133.000000	133.000000	3.000000	-2.000000	1.000000	0.000000	0.000000
max	210.800000	82.000000	178.000000	14.900000	451.000000	780.000000	359.000000	5.000000	2.000000	4.000000	1.000000	1.000000

Descriptive Statistics

Final Dataset_Liver

	BMXWT	BMXBMI	BMXWAIST	LBXGH	LBXGLU	LBXTR	LBDLDLN	$water_soluble_vitamins_sum$	fat_soluble_vitamins_sum	major_minerals_sum	trace_minerals_sum	MCQ160L
BMXWT	1.000000	0.891104	0.898872	0.176365	0.180693	0.157723	-0.007659	0.054901	-0.021464	-0.015674	0.062594	0.008235
ВМХВМІ	0.891104	1.000000	0.908330	0.209515	0.192484	0.168085	0.006847	-0.047056	-0.030518	-0.070379	-0.034834	0.019597
BMXWAIST	0.898872	0.908330	1.000000	0.266344	0.251934	0.224130	0.012253	-0.021565	-0.047174	-0.068998	0.018617	0.041646
LBXGH	0.176365	0.209515	0.266344	1.000000	0.852273	0.229452	0.004495	-0.045834	-0.039291	-0.062676	0.001963	0.058813
LBXGLU	0.180693	0.192484	0.251934	0.852273	1.000000	0.264493	-0.007970	-0.016657	-0.046051	-0.042145	0.010788	0.067031
LBXTR	0.157723	0.168085	0.224130	0.229452	0.264493	1.000000	0.193415	0.049156	-0.070419	0.008402	0.056733	0.036754
LBDLDLN	-0.007659	0.006847	0.012253	0.004495	-0.007970	0.193415	1.000000	-0.041201	0.005369	-0.035758	-0.001121	-0.006239
water_soluble_vitamins_sum	0.054901	-0.047056	-0.021565	-0.045834	-0.016657	0.049156	-0.041201	1.000000	0.379064	0.659722	0.716439	0.002268
fat_soluble_vitamins_sum	-0.021464	-0.030518	-0.047174	-0.039291	-0.046051	-0.070419	0.005369	0.379064	1.000000	0.506032	0.261243	-0.010638
major_minerals_sum	-0.015674	-0.070379	-0.068998	-0.062676	-0.042145	0.008402	-0.035758	0.659722	0.506032	1.000000	0.541787	0.045210
trace_minerals_sum	0.062594	-0.034834	0.018617	0.001963	0.010788	0.056733	-0.001121	0.716439	0.261243	0.541787	1.000000	0.035483
MCQ160L	0.008235	0.019597	0.041646	0.058813	0.067031	0.036754	-0.006239	0.002268	-0.010638	0.045210	0.035483	1.000000

Correlation Matrix

Final Dataset

Methods - Standard Scaler

	count	mean	std	min	25%	50%	75%	max
BMXWT	6596.0	0.257500	0.131340	0.0	0.169977	0.233645	0.321262	1.0
BMXBMI	6596.0	0.220966	0.115194	0.0	0.145646	0.195195	0.265766	1.0
BMXWAIST	6596.0	0.339415	0.148396	0.0	0.242160	0.320557	0.420732	1.0
LBXGH	6596.0	0.262830	0.102255	0.0	0.206612	0.231405	0.272727	1.0
LBXGLU	6596.0	0.175264	0.107518	0.0	0.123762	0.143564	0.178218	1.0
LBXTR	6596.0	0.133890	0.088713	0.0	0.072727	0.112987	0.171429	1.0
LBDLDLN	6596.0	0.280341	0.106965	0.0	0.200000	0.275362	0.350725	1.0
water_soluble_vitamins_sum	6596.0	0.583245	0.276465	0.0	0.416667	0.666667	0.833333	1.0
fat_soluble_vitamins_sum	6596.0	0.191480	0.219546	0.0	0.000000	0.166667	0.333333	1.0
major_minerals_sum	6596.0	0.425921	0.274985	0.0	0.250000	0.375000	0.625000	1.0
trace_minerals_sum	6596.0	0.619618	0.224037	0.0	0.600000	0.600000	0.800000	1.0

Methods - MinMax Scaler

	count	mean	std	min	25%	50%	75%	max
вмхwт	6596.0	0.257500	0.131340	0.0	0.169977	0.233645	0.321262	1.0
вмхвмі	6596.0	0.220966	0.115194	0.0	0.145646	0.195195	0.265766	1.0
BMXWAIST	6596.0	0.339415	0.148396	0.0	0.242160	0.320557	0.420732	1.0
LBXGH	6596.0	0.262830	0.102255	0.0	0.206612	0.231405	0.272727	1.0
LBXGLU	6596.0	0.175264	0.107518	0.0	0.123762	0.143564	0.178218	1.0
LBXTR	6596.0	0.133890	0.088713	0.0	0.072727	0.112987	0.171429	1.0
LBDLDLN	6596.0	0.280341	0.106965	0.0	0.200000	0.275362	0.350725	1.0
water_soluble_vitamins_sum	6596.0	0.583245	0.276465	0.0	0.416667	0.666667	0.833333	1.0
fat_soluble_vitamins_sum	6596.0	0.191480	0.219546	0.0	0.000000	0.166667	0.333333	1.0
major_minerals_sum	6596.0	0.425921	0.274985	0.0	0.250000	0.375000	0.625000	1.0
trace_minerals_sum	6596.0	0.619618	0.224037	0.0	0.600000	0.600000	0.800000	1.0

NON-TREE BASED ALGORITHMS:

Logistic Regression Naive Bayes SVM(Support Vector Machines)

TREE BASED ALGORITHMS:

Decision tree Classifier Random Forest Classifier XGBoost

- Accuracy
- Precision (P)
- Recall (R)
- **F1** score (F1)
- Area under the ROC (Receiver Operating Characteristic) curve (AUC)
 - Widely used metric for skewed binary classification tasks in the industry

Regression OMSPE OMSAE OR Square OAdjusted R Square Unsupervised Models FRand Index Mutual Information Classification OPrecision-Recall OROC-AUC OAccuracy OLog-Loss Others FUNCTION Heuristic methods to find K OBLEU Score (NLP)

Random Forest Classifier

```
Forest_reg = RandomForestClassifier(n_estimators=500, random_state=123123)
Forest_reg.fit(X_train, y_train)
y_pred = Forest_reg.predict(X_test)
Forest_reg.score(X_test, y_test)

0.9994946942900454

metrics.precision_score(y_test, y_pred, average='weighted', labels=np.unique(y_pred))

0.999495188235021

metrics.fl_score(y_test, y_pred, average='weighted', labels=np.unique(y_pred))

0.9994946857651343
```

F1 value = 0? Why?

```
In [139]: print(classification report(y test, y pred))
                        precision
                                     recall f1-score
                                                        support
                             0.95
                                       1.00
                                                 0.97
                                                           1651
                             0.00
                                       0.00
                                                 0.00
              accuracy
                                                 0.95
                                                           1737
             macro avo
                             0.48
                                       0.50
                                                 0.49
                                                           1737
          weighted avg
                                       0.95
                                                 0.93
                                                           1737
          /Users/tom/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/ classification.py:13
          Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted sam
          arameter to control this behavior.
            warn prf(average, modifier, msg start, len(result))
          /Users/tom/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/ classification.py:13
          Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted sam
          arameter to control this behavior.
            warn prf(average, modifier, msg start, len(result))
          /Users/tom/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classification.py:13
          Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted sam
          arameter to control this behavior.
            warn prf(average, modifier, msg start, len(result))
In [147]: metrics.precision score(y test, y pred, average='weighted', labels=np.unique(y pred))
Out[147]: 0.9504893494530801
In [148]: metrics.fl_score(y_test, y_pred, average='weighted', labels=np.unique(y_pred))
Out[148]: 0.974616292798111
```

Sample # disparities between each label

```
True label counts:

1 1022
0 957
Name: MCQ160L, dtype: int64

Predicted label counts:
0 1496
1 483
dtype: int64

Predicted label counts:
1 998
0 981
dtype: int64
```

[From CCCA Proj.]Oversampling

SMOTE(Synthetic Minority Oversampling Technique)

: 불균형 데이터 세트를 해결하는 방법으로 낮은 비율 클래스 데이터들의 최근접을 이용하여 새로운 데이터 생성

Oversampling

목적: 이상 데이터와 같이 적은 데이터를 증식하여 학습을 위한 충분한 데이터 확보하는 방법으로, 원본 데이터의 피처값들을 약간 변형하여 증식

- 1. 무작위추출: 무작위로 소수 데이터 복제
- 2. 유의정보: 사전에 기준을 정해서 minority data 복제
- 정보가 손실되지 않는 장점이 있으나, 복제된 관측치를 원래 데이터 세트에 추가하기만 하면 여러 유형의 관측치를 다수 추가하여 overfitting을 초래함
- 합성데이터 생성: 소수데이터를 단순 복제하는 것이 아니라 새로운 복제본을 만들어 냄

Support Vector Classification

```
model1=svm.SVC()
# Fitting the model
model1.fit (X_train, y_train)
# Predicting the test variables
y_pred = model1.predict(X_test)
# Getting the score
model1.score (X_test, y_test)
0.7170288024254674
```

Logistic Regression

logreg = LogisticRegression() logreg.fit(X_train, y_train)

0.6205154118241536

0.6216340000579095

0.6205595967869924

v pred = logreg.predict(X test) logreg.score(X_test, v_test)

print(classi	ication_repo	rt(y_test	., y_pred))	
	precision	recall	f1-score	support
0	0.72	0.67	0.70	957
1	0.71	0.76	0.73	1022
accuracy			0.72	1979
macro avg	0.72	0.72	0.72	1979
weighted ava	0.72	0.72	0.72	1979

Naïve Bayes Classifier

```
from sklearn.naive bayes import GaussianNB
                                             NB_classifier = GaussianNB()
                                             NB_classifier.fit(X_train, y_train)
                                             y_pred = NB_classifier.predict(X_test)
                                             NB classifier.score(X test. v test)
                                             0.5538150581101566
                                             metrics.precision_score(y_test, y_pred, average='weighted',
                                             0.586269372744594
                                             metrics.fl_score(y_test, y_pred, average='weighted', labels=n
                                             0.5229371430576902
metrics.precision_score(v_test, v_pred, average='weighted', labels=np.unique(v_pred))
metrics.fl.score(v_test, v_pred, average='weighted', labels=np.unique(v_pred))
```

Conclusion: 반성문

- ☐ Data Data **DATA**
- ☐ Spend more time on researching Precedent Study
- ☐ Secure "ready-to-run" model

Conclusion: To-Do

- Append additional dataset to enhance the model
- ☐ Careful statistical analysis on each variable
- Get it run & Post the update on FB

Thank you

Thank you

And I thank you for sharing your invigorating passion and your dearest integrity with us for the past semester. It has been a true pleasure;D

- ❖ Test & Train data split
- Support Vector Classification

Test & Train data split

X_train, X_test, y_train,y_test = train_test_split(X_scaled,y,test_size=0.3,random_state=40)

Support Vector Classification

```
model1=svm.SVC()
# Fitting the mode/
model1.fit (X_train, y_train)
# Predicting the test variables
y_pred = model1.predict(X_test)
# Getting the score
model1.score (X_test, y_test)
0.7170288024254674
```

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
Ō	0.72	0.67	0.70	957
1	0.71	0.76	0.73	1022
accuracy			0.72	1979
macro avg	0.72	0.72	0.72	1979
weighted avg	0.72	0.72	0.72	1979

metrics.precision_score(y_test, y_pred, average='weighted', labels=np.unique(y_pred))

0.7173385265987279

metrics.fl_score(y_test, y_pred, average='weighted', labels=np.unique(y_pred))

0.716429743446244

Naive Bayes Classifier

Naïve Bayes Classifier

```
from sklearn, naive_bayes import GaussianNB
NB_classifier = GaussianNB()
NB_classifier.fit(X_train, y_train)
y_pred = NB_classifier.predict(X_test)
NB classifier.score(X test. v test)
0.5538150581101566
metrics.precision_score(y_test, y_pred, average='weighted', labels=np.unique(y_pred))
0.586269372744594
metrics.fl_score(y_test, y_pred, average='weighted', labels=np.unique(y_pred))
0.5229371430576902
```

Logistic Regression

Logistic Regression

```
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
logreg.score(X_test, y_test)
0.6205154118241536
metrics.precision_score(y_test, y_pred, average='weighted', labels=np.unique(y_pred))
0.6216340000579095
metrics.fl_score(y_test, y_pred, average='weighted', labels=np.unique(y_pred))
0.6205595967869924
print('True label counts:')
print(y_test.value_counts())
print('\mathbb{\text{WnPredicted label counts:')}
print(pd.Series(y_pred).value_counts())
True label counts:
1 1022
Name: MCQ160L, dtype: int64
Predicted label counts:
0 1014
      965
dtype: int64
```

Results_Liver

	SVM	Random Forest	Naive Bayes	Log Regression
TN				
TP				
FN				
FP				
Recall				
Specificity				
Precision				
Accuracy				
F1 score				

Results_Cardiovascular Disease

	SVM	Random Forest	Naive Bayes	Log Regression
TN				
TP				
FN				
FP				
Recall				
Specificity				
Precision				
Accuracy				
F1 score				

Results_Diabetes

	SVM	Random Forest	Naive Bayes	Log Regression
TN				
TP				
FN				
FP				
Recall				
Specificity				
Precision				
Accuracy				
F1 score				