OPTIMIZATION METHODS AND ALGORITHMS

PROBLEM FORMALIZATION

NOTATION:	Domain:	
1 s	$\epsilon\{1, S \}$	Student index
2 <i>e</i>	$\epsilon\{1, E \}$	Exam index
3 t	$\epsilon\{1, t_{max}\}$	Timeslot index
$4 t_1$	$\epsilon\{1, t_{max}\}$	Auxiliary timeslot index
5 <i>i</i>	ϵ {1, t_{max} – 1}	Difference between 2 timeslots indices

DATA:	
$ S \epsilon$ N	Total number of students enrolled in at least 1 exam
$ E \epsilon$ N	Total number of exams
$a_{s,e} \in \{0,1\}$	1 if student s is enrolled in exam e , 0 o/w
$t_{max} \in \mathbb{N}$	Number of available timeslots

VARIABLES:		
1 $x_{e,t} \in \{0,1\}$	$\forall e, t$	1 if exam e is scheduled on timeslot t , 0 o/w
2 $z_{s,t} \in \mathbb{N}$	∀ s, t	Number of exams that student s has in a certain timeslot t . NB: due to the constraint #3, the real domain of $z_{s,t}$ is {0,1}
3 $u_{s,t,t_1} \in \{0,1\}$	$\forall s, t, t_1$	1 if student s is occupied in both timeslots t and t_1 , 0 o/w

CONSTRAINTS:

$\sum_{t=1}^{t_{max}} x_{e,t} = 1$	$\forall \ e$	Each exam is scheduled in one and only one timeslot.
$z_{s,t} = \sum_{e=1}^{ E } a_{s,e} x_{e,t}$ $z_{s,t} \le 1$	∀ s, t	$z_{\text{s,t}}$ is the number of exams that student s has in a certain timeslot t.
$z_{s,t} \leq 1$	∀ <i>s</i> , <i>t</i>	Student <i>s</i> cannot be enrolled in more exams which are scheduled in the same timeslot, hence the sum of all exams in which student <i>s</i> is enrolled and which take place in timeslot <i>t</i> is 1 or 0.
$4 u_{s,t,t_1} \ge z_{s,t} + z_{s,t_1} - 1$	$\forall s, t, t_1$	$u_{s,t,t1}$ represents a conflict: it is 1 if student s is occupied in both timeslots t and t_I , 0 o/w.

COST FUNCTION:

$$c(i,t) = \begin{cases} 0, & i > 5 \\ 2^{5-i} * \frac{\sum_{s=1}^{|S|} u_{s,t,t+i}}{|S|}, & i \leq 5 \end{cases}$$
 For a given distance i and a given timeslot t , we have a penalty that depends on the number of people occupied in both timeslots t and $t+i$. The penalty is 0 if $t > 5$.

OBJECTIVE FUNCTION:

$$\sum_{i=1}^{5} \sum_{t=1}^{t_{max}-i} c(i,t)$$

$$= \sum_{i=1}^{5} \sum_{t=1}^{t_{max}-i} 2^{5-i} * \frac{\sum_{s=1}^{|S|} u_{s,t,t+i}}{|S|}$$

$$= \sum_{i=1}^{5} \sum_{t=1}^{t_{max}-i} \sum_{s=1}^{|S|} 2^{5-i} * \frac{u_{s,t,t+i}}{|S|}$$

For each penalizing distance $i \in \{1,5\}$ between timeslots we sum the penalty generated by each pair of timeslots which distance is i.

i.e. for each considered distance, we multiply the respective penalty $\frac{2^{s-i}}{|s|}$ by the number of students which are occupied both in timeslot t and t+i*. This number of students is calculated by summing over all students the boolean variable $u_{s,t,t+i}$ which is 1 if student s is occupied in timeslots t and t+i and t+i

^{*}We only consider the **subsequent** timeslots to avoid counting penalties twice.