<u>3/16</u>
Recommendation
Neighborhood Method:
1) (User, Wer) measure
2) citem, item) measure
Pros: No trainning
Challenges: PPI rate differently for different reasons
shift over time
upfront price for user might be high
Feature Extraction - Content - Based reg. parameter
Similar to SVD where we decompose. $P^{(j)} = \underset{i \in M(j)}{\operatorname{argmin}} \frac{1}{ M^{(j)} } \sum_{i \in M(j)} (P^T Q^{(i)} - r_{ij})^2 + \lambda P ^2$
P (Ent) Regularization
We don't use SUD be we have unknown values in over matrix
Can we provide prediction w/o train featurg: Learn Pla at the same time
Regulirazation for both term
Library we might use in midterm:
"Sci Kit -surprise" filtering -> redult might be very large & very sparse
Linear Regression Challenge:
predict when alarm will go off coney Linear Regression
Logistic Regression
O'define a cost function to minimize the distance between h(xi), yi.
when we have plot like this:
It's overfitting (i.e. mesmorize the model)

