Отчёт о выполнении лабораторной работы 3.7.1

Скин-эффект

Рожков Александр

11 декабря 2024 г.

Цель работы: исследовать явление проникновения переменного магнитного поля в медный полый цилиндр.

В работе используются: генератор сигналов АКИП-3420, соленоид, намотанный на полый цилиндрический каркас, медный экран в виде полого цилиндра, измерительная катушка, амперметр, вольтметр, двухканальный осциллограф GOS-620, RLC-метр.

1 Теоретические сведения

1.1 Скин-эффект для полупрастранства

Рассмотрим квазистационарное поле внутри проводящей среды в простейшем плоском случае. Пусть вектор E направлен всюду вдоль оси y (рис.1) и зависит только от координаты x, т. е. $E_x=E_z\equiv 0$, $E_y=E_y(x,t)$. В квазистационарном приближении

$$\vec{\nabla} \times \boldsymbol{H} = \sigma \boldsymbol{E}$$

Берем ротор обоих частей

$$\vec{\boldsymbol{\nabla}}\times(\vec{\boldsymbol{\nabla}}\times\boldsymbol{H})=\vec{\boldsymbol{\nabla}}\Big(\vec{\boldsymbol{\nabla}}\cdot\boldsymbol{H}\Big)-\vec{\boldsymbol{\nabla}}^2\boldsymbol{H}=\sigma\vec{\boldsymbol{\nabla}}\times\boldsymbol{E}$$

Испоьзуя ур-е Максвелла для ротора ${\pmb E}$ и для дивергенции ${\pmb H}$ получаем

$$\vec{\nabla}^2 \mathbf{H} = \sigma \mu \mu_0 \frac{\partial \mathbf{H}}{\partial t} + \vec{\nabla} \left(\vec{\nabla} \cdot \mathbf{H} \right) = \sigma \mu \mu_0 \frac{\partial \mathbf{H}}{\partial t}$$
(1)

Берем ротор еще раз

$$\vec{\nabla} \times (\vec{\nabla}^2 \boldsymbol{H}) = \vec{\nabla}^2 (\vec{\nabla} \times \boldsymbol{H}) = \sigma \mu \mu_0 \frac{\partial (\vec{\nabla} \times \boldsymbol{H})}{\partial t}$$

Осталось подставить первое ур-е, и воспользоваться уравнением Максвелла

 $\vec{\nabla}^2 E = \sigma \mu \mu_0 \frac{\partial E}{\partial t} \tag{2}$

Рис. 1: Скин-эффект в полупространстве

Подставляем в (2) наше электрическое поле $E_y=E_y(x,t)$

$$\frac{\partial^2 E_y}{\partial r^2} = \sigma \mu \mu_0 \frac{\partial E_y}{\partial t} \tag{3}$$

Если $E_y(0,t)=E_0e^{i\omega t}$ то решением (3) будет функция вида

$$E_{y}(x,t) = E_{0}e^{-x/\delta}e^{i(\omega t - x/\delta)} \tag{4}$$

где

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu \mu_0}} \tag{5}$$

1.2 Скин-эффект в тонком полом цилиндре

Рис. 2: Эл-магнитные поля в цилиндре

Рассмотрим длинный тонкостенном медном цилиндре. Из соображении симметрии и непрерывности соответствующих компонент векторов \boldsymbol{E} и \boldsymbol{H} можем сказать что:

$$H_z = H(r)e^{i\omega t}, E_{\varphi} = E(r)e^{i\omega t}$$
 (6)

и при этом функции H(r) и E(r) непрерывны.

Пусть цилиндр имеет радиус a и толщину стенки $h \ll a$. Это позволяет для описания поля внутри стенки ограничится только одномерным приближением.

Внутри цилиндра токов нет, следовательно $H(r)=H_1={
m const}$ внутри цилиндра. По теореме об электромагнитной индукции в интегральной форме:

$$E_{\varphi} \cdot 2\pi r = -\mu_0 \pi r^2 \cdot \frac{dH_z}{dt} \quad \to \quad E(r) = -\frac{1}{2}\mu_0 r \cdot i\omega H_1$$
 (7)

откуда мы получаем граничное условие

$$E_1 = E(a) = -\frac{1}{2}i\omega a\mu_0 H_1 \tag{8}$$

Поле внутри тонкой стенки цилиндра описывается уравнением скинэффекта (л7.25) в плоской геометрии.

$$\frac{d^2H}{dx^2} = i\omega\sigma\mu_0H\tag{9}$$

 Γ раничные условия: $H_0 = H(0), \ H_1 = H(h)$

Решением будет:

$$H_1 = \frac{H_0}{\operatorname{ch}(\alpha h) + \frac{1}{2}\alpha a \operatorname{sh}(\alpha h)} \qquad \alpha = \sqrt{i\omega\sigma\mu_0} = \frac{\sqrt{2}}{\delta}e^{i\pi/4}$$
 (10)

Рис. 3: Стенка цилиндра

Рассмотрим предельные случае (2):

Малые частоты (от $0.01\nu_h$ до $0.05\nu_h$):

$$\frac{H_1}{H_0} = \frac{1}{1 + \frac{1}{4}(ah\sigma\mu_0\omega)^2} \qquad \xi = \xi_0 \frac{|H_1|}{|H_0|}$$
 (11)

$$\frac{1}{\xi^2} = \frac{1}{\xi_0^2} \frac{1}{\left(\frac{|H_1|}{|H_0|}\right)^2} = \frac{1}{\xi_0^2} \left(1 + (\pi a h \sigma \mu_0 \nu)^2\right)$$
(12)

или

$$tg\psi = \frac{1}{2}ah\omega\sigma\mu_0\tag{13}$$

Большие частоты (от $0.05\nu_h$ до $0.5\nu_h$):

$$\psi - \frac{\pi}{4} = h\sqrt{\frac{\omega\sigma\mu_0}{2}}\tag{14}$$

Влияние скин-эффекта на индуктивность катушки:

$$\frac{L_{max} - L}{L - L_{min}} = (\pi a h \mu_0 \sigma \nu)^2 \tag{15}$$

1.3 Оборудование и приборные погрешности

Принцип измерений:

Переменное магнитное поле создаётся с помощью соленоида 1, намотанного на цилиндрический каркас 2. (3Γ) генерирует синусоидальный сигнам с частотой ν .

Внутри каркаса расположен медный экран 3 в виде полового цилиндра.

Амперметр A снимает показания действующего силы тока I в цепи соленоида.

Вольтметр V снимает показания действующего напряжения U на измерительной катушке.

Осциллограф (ОЭ) используется для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке.

Измерительные приборы:

Генератор сигналов АКИП-3420ю Двухканальный осциллограф GOS-620

Параметры установки:

Диаметр цилиндра 2a=45 мм

Толщина стенки цилиндра $h=1.5~{
m mm}$

 $\sigma_{\nu} = 0.01 \; \Gamma$ ц (Приборная погрешности)

 $\sigma_V = 0.0001 \; {\rm B} \; (\Pi$ риборная погрешности)

 $\sigma_I = 0.00001$ А (Приборная погрешности)

2 Ход работы

Проводимость порядка $\sigma \sim 5 \cdot 10^7 {\rm Cm/m}$. Получаем оценку для частоты, при которой глубина проникновения равна толщине стенок цилиндра $\nu_h = 2250 {\rm \Gamma u}$.

2.1 Зависимость отношения $\xi = U/\nu I$ от частоты

В области низкий частот (от $0{,}01~\nu_h$ до $0{,}05~\nu_h$) измерим зависимость отношения $\xi=U/\nu I$ от частоты:

$$\frac{1}{\xi^2} = \frac{\nu^2 I^2}{U^2}, \quad \varepsilon_{\xi^2}^2 = 4\varepsilon_{\nu}^2 + 4\varepsilon_I^2 + 4\varepsilon_U^2$$
$$\sigma_{\nu^2} = 2\nu\sigma_{\nu}$$

N	ν, Гц	U, B	I, A	$ u^2$, Гц 2	$\frac{1}{\xi^2}$
1	22.50	0.0946	0.22186	506.25 ± 0.45	2784 ± 6
2	30.00	0.1244	0.22078	900.0 ± 0.6	2835 ± 5
3	40.00	0.1621	0.21853	1600.0 ± 0.8	2907 ± 4
4	50.00	0.1970	0.21573	2500.0 ± 1.0	2997 ± 3
5	60.00	0.2289	0.21257	3600.0 ± 1.2	3104 ± 3
6	70.00	0.2576	0.20920	4900.0 ± 1.4	3231 ± 3
7	80.00	0.2833	0.20578	6400.0 ± 1.6	3376.7 ± 2.5
8	90.00	0.3060	0.20237	8100.0 ± 1.8	3542.7 ± 2.5
9	100.00	0.3261	0.19901	10000.0 ± 2.0	3724.3 ± 2.4
10	112.50	0.3478	0.19507	12656.25 ± 2.25	3981.3 ± 2.4

$$\begin{split} \frac{1}{\xi^2} &= f(\nu^2) \\ \frac{1}{\xi^2} &= k_{\frac{1}{\xi^2}} \cdot \nu^2 + b_{\frac{1}{\xi^2}} \end{split}$$

$$k_{\frac{1}{\xi^2}} = (0.0973 \pm 0.0003) \frac{1}{\mathrm{Om}^2}$$

$$b_{\frac{1}{\xi^2}} = (2753 \pm 3) \frac{\Gamma \mathrm{rr}^2}{\mathrm{Om}^2}$$

$$Wx (7) \rightarrow k_{\frac{1}{\xi^2}} = \frac{(\pi a h \sigma \mu_0)^2}{\xi_0^2} \quad \rightarrow \quad \sigma = \frac{\xi_0 \sqrt{k_{\frac{1}{\xi^2}}}}{\pi a h \mu_0} \qquad \sigma_{\sigma}^{err} = \sigma \sqrt{\left(\frac{\sigma_{\xi_0}^{err}}{\xi_0}\right)^2 + \left(\frac{\sigma_{\kappa}^{err}}{k}\right)^2}$$

$$b_{\frac{1}{\xi^2}} = \frac{1}{\xi_0^2} \quad \rightarrow \quad \xi_0 = \frac{1}{\sqrt{b_{\frac{1}{\xi_0^2}}}} \qquad \sigma_{\xi_0}^{err} = \frac{1}{2} \frac{\xi_0}{b_{\frac{1}{\xi_0^2}}} \cdot \sigma_{b_{\frac{1}{\xi_0^2}}}^{err}$$

$$\xi_0 = (0.0191 \pm 0.0003) \frac{\mathrm{Om}}{\Gamma \mathrm{rr}}$$

$$\sigma = (5.03 \pm 0.17) \cdot 10^7 \frac{\mathrm{Cumehc}}{\mathrm{M}}$$

2.2 Зависимость фазы ψ от частоты ν

Исследуем зависимость зависимость фазы ψ от частоты ν (в диапазоне $0.05\nu_h$ до $0.5\nu_h$):

$$tg(\psi) = f(\nu) \quad \sigma_{tg(\psi)} = \left(\frac{\partial tg\psi}{\partial \psi}\right) \sigma_{\psi} = \frac{\sigma_{\psi}}{\cos^2 \psi}$$
$$\psi = \Delta \varphi - \frac{\pi}{2} \quad \Delta \varphi = \frac{x}{x_0} \pi \quad \varepsilon_{\Delta \varphi} = \sqrt{\varepsilon_x^2 + \varepsilon_{x_0}^2}$$

 $\sigma_{\nu} = 0.1 \; \Gamma$ ц (Приборная погрешности)

N	ν, Гц	$\Delta \varphi - \frac{\pi}{2}$	$tg\psi$
1	112.5	$(0.16 \pm 0.06)\pi$	0.55 ± 0.19
2	122.5	$(0.22 \pm 0.07)\pi$	0.83 ± 0.23
3	130.0	$(0.25 \pm 0.07)\pi$	0.99 ± 0.23
4	140.0	$(0.29 \pm 0.09)\pi$	1.29 ± 0.3
5	150.0	$(0.27 \pm 0.08)\pi$	1.13 ± 0.3
6	160.0	$(0.29 \pm 0.09)\pi$	1.3 ± 0.3
7	225.5	$(0.31 \pm 0.10)\pi$	1.5 ± 0.4
8	300.0	$(0.34 \pm 0.09)\pi$	1.8 ± 0.5
9	400.0	$(0.39 \pm 0.09)\pi$	2.8 ± 0.5
10	500.0	$(0.40 \pm 0.10)\pi$	3.1 ± 0.6
11	600.0	$(0.43 \pm 0.10)\pi$	4.5 ± 0.8
12	700.0	$(0.44 \pm 0.10)\pi$	5.2 ± 0.9

$$tg\psi = k_{tg\psi}\nu + b_{tg\psi}$$

$$k_{tg\psi} = (0.0071 \pm 0.0005) \ \Gamma \Pi^{-1}$$

$$b_{tg\psi} = (-0.03 \pm 0.11)$$
 Из (8) $\rightarrow \sigma = \frac{k_{tg\psi}}{\pi ah\mu_0} \quad \sigma_{\sigma}^{err} = \frac{\sigma}{k_{tg\psi}} \cdot \sigma_{k_{tg\psi}}^{err}$
$$\sigma = (5.4 \pm 0.3) \cdot 10^7 \ \frac{\text{Сименс}}{\text{м}}$$

2.3 Зависимость сдвига фаз от частоты

Исследуем зависимость сдвига фаз $\psi-\frac{\pi}{2}$ от частоты ν :

$$\psi - \frac{\pi}{4} = f(\sqrt{\nu})$$
 $\sigma_{\sqrt{\nu}} = \frac{\sigma_{\nu}}{2\sqrt{\nu}}$ $\sigma_{\nu} = 10 \Gamma$ ц

N	ν , Гц	$\sqrt{\nu}$	$\psi - \frac{\pi}{4}$
1	1120	33.46 ± 0.15	$(0.32 \pm 0.05)\pi$
2	2000	44.72 ± 0.11	$(0.34 \pm 0.06)\pi$
3	4000	63.25 ± 0.08	$(0.46 \pm 0.08)\pi$
4	6000	77.46 ± 0.06	$(0.47 \pm 0.08)\pi$
5	8000	89.44 ± 0.05	$(0.54 \pm 0.10)\pi$
6	10000	100.00 ± 0.05	$(0.58 \pm 0.11)\pi$
7	12000	109.54 ± 0.05	$(0.68 \pm 0.14)\pi$
8	14000	118.32 ± 0.04	$(0.78 \pm 0.16)\pi$
9	16000	126.49 ± 0.04	$(0.81 \pm 0.18)\pi$

$$\psi - \frac{\pi}{4} = k_{\psi} \sqrt{\nu} + b_{\psi}$$
 Из (9) $\rightarrow k_{\psi} = h \sqrt{\pi \sigma \mu_0} \rightarrow \sigma = \frac{1}{\pi \mu_0} \cdot \left(\frac{k_{\psi}}{h}\right)^2 \quad \sigma_{\sigma}^{err} = 2\sigma_{k_{\psi}}^{err} \cdot \frac{\sigma}{k_{\psi}}$
$$k_{\psi} = (0.0157 \pm 0.0015) \; \Gamma \text{L}^{-\frac{1}{2}}$$

$$b_{\psi} = (0.41 \pm 0.11)$$

$$\sigma = (5.5 \pm 0.5) \cdot 10^7 \; \frac{\text{Сименс}}{\text{M}}$$

2.4 Измерение индуктивности при помощи LRC-метра

$$\varepsilon_{\nu} = 0.01$$

N	ν	$L, 10^{-3}$ Гн
1	50.0 ± 0.5	9.88 ± 0.05
2	150 ± 1.5	7.25 ± 0.05
3	250 ± 2.5	5.36 ± 0.05
4	400 ± 4	4.08 ± 0.05
5	500 ± 5	3.69 ± 0.05
6	600 ± 6	3.46 ± 0.05
7	800 ± 8	3.21 ± 0.05
8	1500 ± 15	2.97 ± 0.05
9	4000 ± 40	2.89 ± 0.05
10	7500 ± 75	2.92 ± 0.01
11	12000 ± 120	3.05 ± 0.01
12	16200 ± 162	3.31 ± 0.01
13	20000 ± 200	3.71 ± 0.01

$$\begin{split} f(L,L_{min},L_{max}) &= \frac{L_{max} - L}{L - L_{min}} \\ \sigma_f^2 &= \left(\frac{L_{max} - L_{min}}{\left(L - L_{min}\right)^2}\right)^2 \sigma_L^2 + \left(\frac{L_{max} - L}{\left(L - L_{min}\right)^2}\right)^2 \sigma_{L_{min}}^2 + \left(\frac{1}{L - L_{min}}\right)^2 \sigma_{L_{max}}^2 \\ L_{min} &= \left(2.89 \pm 0.05\right) \, \Gamma_{\rm H} \qquad L_{max} = \left(9.88 \pm 0.05\right) \, \Gamma_{\rm H} \end{split}$$

N	ν^2	$f(L, L_{min}, L_{max})$
1	2500 ± 50	0.883 ± 0.010
2	$(225 \pm 5) \cdot 10^2$	1.415 ± 0.023
3	$(625 \pm 13) \cdot 10^2$	2.50 ± 0.07
4	$(160 \pm 3) \cdot 10^3$	5.2 ± 0.3
5	$(250 \pm 5) \cdot 10^3$	7.7 ± 0.7
6	$(360 \pm 7) \cdot 10^3$	10.8 ± 1.5
7	$(640 \pm 13) \cdot 10^3$	19 ± 4

Из (10)
$$\rightarrow f = k_f \nu^2 = (\pi a h \mu_0 \sigma)^2 \cdot \nu^2 \rightarrow \sigma = \frac{\sqrt{k_f}}{\pi a h \mu_0} \quad \sigma_{\sigma}^{err} = \frac{1}{2} \frac{\sigma}{k_f} \cdot \sigma_k^{err}$$
$$k_f = (2.699 \pm 0.017) \cdot 10^{-5} \, \Gamma \text{m}^{-1} \rightarrow \sigma = (4.387 \pm 0.014) \cdot 10^7$$

3 Вывод

Мы измерили проводимость материала цилиндра 4 разными способами. Сравним эти данные между собой

Метод измерения	$\sigma, 10^7 \mathrm{Cm/m}$	$\sigma_{\sigma}^{err}, 10^7 { m Cm/m}$	ε_{σ}
Отношение амплитуд	5.03	0.17	0.03
Разности фаз (низкие частоты)	5.4	0.3	0.06
Разности фаз (высокие частоты)	5.5	0.5	0.09
Индуктивность	4.387	0.014	0.003

Для данной марки меди проводимость состовляет $\sigma_{\cdot} = 5.62 \cdot 10^7 \mathrm{Cm/m}$.

Самым неточным оказался метод измерения через разность фаз при высоких частотах. Как видим, при частотах $\sim 5 \kappa \Gamma$ ц зависимость индуктивности не описывается теорией, следовательно, при этих частотах не должна работать и остальная теория. Как результат, зависимость разности фаз от корня частоты уже не описывается линейной зависимостью.

Погрешность измерения проводимости через разность фаз при низких частотах в основном связана с погрешностью измерения самой разности фаз, т.к. погрешность последней возрастает в несколько раз при подсчете тангенса угла.