© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°05

• La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 ★★

Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{2}} \cos(t)^n dt$ et $J_n = \int_0^{\frac{\pi}{2}} t^2 \cos(t)^n dt$.

- **1.** Calculer I_0, J_0, I_1, J_1 .
- **2.** Montrer que $I_n > 0$ pour tout $n \in \mathbb{N}$.
- 3. Montrer que $I_{n+2} = \frac{n+1}{n+2} I_n$ pour tout $n \in \mathbb{N}$.
- **4.** a. Montrer que pour $t \in \left[0, \frac{\pi}{2}\right], 0 \le t \le \frac{\pi}{2}\sin(t)$.
 - **b.** En déduire que $0 \le J_n \le \frac{\pi^2}{4}(I_n I_{n+2})$ pour tout $n \in \mathbb{N}$.
 - c. Montrer que la suite de terme général $\frac{J_n}{I_n}$ converge vers 0.
- **5. a.** Montrer que $I_{n+2} = \frac{1}{2}(n+2)((n+1)J_n (n+2)J_{n+2})$ pour tout $n \in \mathbb{N}$.
 - **b.** En déduire que $\frac{J_n}{I_n} \frac{J_{n+2}}{I_{n+2}} = \frac{2}{(n+2)^2}$ pour tout $n \in \mathbb{N}$.
- **6.** Pour $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n \frac{1}{k^2}$. Montrer que la suite de terme général S_n converge vers $\frac{\pi^2}{6}$.

Exercice 2 ★★

Soient $I =]0, +\infty[$ et

(E):
$$(1 - e^{-t})y' + y = e^{-t}$$
.

- 1. En remarquant que $\forall t \in \mathbb{R}$, $1-e^{-t}=e^{-t}(e^t-1)$, résoudre l'équation homogène $(\mathbf{E_H})$ sur I.
- 2. Résoudre (E) sur I.
- 3. On cherche à prouver que (E) admet une unique solution sur I admettant une limite finie en 0⁺.
 - **a.** Établir que pour tout $x \in I$, $x \le e^x 1 \le xe^x$.
 - **b.** En déduire qu'il existe une unique solution de (E) sur I, notée f, admettant en 0^+ une limite finie ℓ . On précisera la valeur de ℓ .

© Laurent Garcin MP Dumont d'Urville

- **4.** Etude de f sur I. On prolonge désormais f en 0 en posant $f(0) = \ell$. Puisque $\lim_{t\to 0^+} f(t) = \ell = f(0)$, la fonction f ainsi prolongée est définie et continue sur \mathbb{R}_+ .
 - a. Étudier les variations de f sur I. On précisera la limite de f en $+\infty$.
 - **b.** Établir que pour tout $x \in \mathbb{R}_+$,

$$1 + x + \frac{x^2}{2} \le e^x \le 1 + x + \frac{x^2}{2}e^x.$$

- **c.** En déduire que f est dérivable en 0 et que $f'(0) = -\frac{1}{2}$.
- **d.** Tracer le graphe de f sur \mathbb{R}_+ .

Exercice 3 ★★

On note \mathcal{E} l'ensemble des fonctions f continues sur \mathbb{R} à valeurs dans \mathbb{R} telles que

$$\forall (x, y) \in \mathbb{R}^2, \ f(xy) = xf(y) + yf(x)$$

- **1.** Soit $f \in \mathcal{E}$.
 - **a.** Déterminer les valeurs de f(0), f(1) et f(-1).
 - **b.** Démontrer que la fonction f est impaire.
- **2.** On suppose que f est dérivable sur \mathbb{R}_+^* .
 - **a.** Montrer que f est solution sur \mathbb{R}_+^* de l'équation différentielle xy'-y=kx où k=f'(1).
 - **b.** En déduire f(x) en fonction de k pour tout $x \in \mathbb{R}$.
- 3. On note φ l'unique élément de $\mathcal E$ dérivable sur $\mathbb R_+^*$ vérifiant $\varphi'(1)=1$.
 - **a.** φ est-elle dérivable en 0?
 - **b.** Déterminer les variations et les limites de φ en $+\infty$ et $-\infty$ puis tracer son graphe.
- **4.** On considère $f \in \mathcal{E}$ que l'on suppose seulement continue sur \mathbb{R} . On note alors F l'unique primitive de f s'annulant en 0.
 - **a.** Montrer que pour tout $(x, y) \in \mathbb{R}^2$, $F(xy) = x^2 F(y) + \frac{xy^2}{2} f(x)$.
 - **b.** En déduire que f est dérivable sur \mathbb{R}_+^* .
 - **c.** Déterminer l'ensemble \mathcal{E} .

Exercice 4 ★★

Soit $g: \mathbb{R} \to \mathbb{R}$ continue. Pour $x \in \mathbb{R}$, on pose

$$f(x) = \int_0^x \operatorname{sh}(x - t)g(t) \, dt$$

1. Soit $(a, b) \in \mathbb{R}^2$. Montrer les relations suivantes

$$sh(a - b) = sh(a) ch(b) - ch(a) sh(b)$$

$$ch(a - b) = ch(a) ch(b) - sh(a) sh(b)$$

© Laurent Garcin MP Dumont d'Urville

2. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et que pour tout $x \in \mathbb{R}$,

$$f'(x) = \int_0^x \operatorname{ch}(x - t) g(t) \, dt$$

- 3. Montrer que f est de classe \mathcal{C}^2 et que f est solution de l'équation différentielle y''-y=g.
- **4.** En déduire toutes les solutions de l'équation différentielle y'' y = g.