

IMT Atlantique

Électrostatique : modélisation de l'effet de pointe par méthode des éléments finis

BLOCH Maxime LEHEL Eliaz

Mars 2025

Introduction

Nous nous proposons dans ce travail d'utiliser la méthode des éléments finis pour modéliser l'effet de pointe dans un champ électrostatique.

1 Situation physique

Figure 1: Modélisation de la pointe

La figure 1 représente une pointe (en gris) dont les bords sont maintenus à un potentiel V=0 et les contours de la cavité (en noir) à un potentiel constant $V(\theta)$ non nul.

$$V(\theta) = 1 - \frac{\theta^2}{\theta_0^2}$$
, where $\theta_0 = \frac{3\pi}{4}$ (1)

Dans ces conditions, le potentiel électrostatique V est solution de l'équation de Laplace :

$$\Delta V = 0 \tag{2}$$

2 Modélisation par éléments finis

2.1 Equation à résoudre

On cherche à résoudre l'équation de Laplace sur un domaine Ω avec des conditions aux limites de Dirichlet sur le domaine Γ_D .

On pose u le potentiel électrostatique. On veut résoudre:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{3}$$

On introduit les fonctions v sur Ω le domaine de définition de u, notre potentiel, avec $v \in V = \{H^1(\Omega); v|_{\Gamma_D} = 0\}$, où $H^1(\Omega)$ est l'espace de Hilbert des fonctions dérivables au sens des distributions et carrés intégrables sur Ω .

Pour appliquer la méthode des éléments finis, on utilise Green pour écrire:

$$\int_{\Omega} \Delta u(x)v(x)dx = \int_{\Omega} \nabla u(x)\nabla v(x)dx - \int_{\Gamma} \partial_n u(s)v(s)ds \tag{4}$$

Par définition, les fonctions tests v sont nulles sur le bord Γ . On a donc:

$$\int_{\Omega} \nabla u(x) \nabla v(x) dx = 0 \tag{5}$$

L'équation 5 est appelée la formulation faible de notre problème.

Ainsi, on cherche u telle que pour tout v dans l'espace de Hilbert $H^1(\Omega)$, l'équation 5 soit vérifiée. On peut réécrire cette équation sous la forme suivante:

$$a(u,v) = 0 (6)$$

On ajoute maintenant la condition de Dirichlet sur le bord Γ_D :

$$u(x) = g(x), \ \forall x \in \Gamma_D \Leftrightarrow u - g \in V$$
 (7)

Dès lors, on peut approcher le problème avec la solution u^h dans un espace de dimension finie V^h . On a donc:

$$a(u^h, v^h) = 0 (8)$$

On décompose u^h et v^h sur la base des fonctions chapeau $\{B_i^h\}_{i=1}^{i=N^h}$

$$u^{h} = g^{h} + \sum_{i=1}^{N^{h}} x_{i} B_{i}^{h} \quad \text{et} \quad v^{h} = \sum_{i=1}^{N^{h}} y_{i} B_{i}^{h}$$
 (9)

Avec x_i les inconnues du problème.

On revient au problème équivalent suivant:

$$a(u^h - g^h, v^h) = -a(g^h, v^h)$$
(10)

On pose maintenant les coefficients $A_{ij} = a(B_j^h, B_i^h)$. Ainsi, on peut réécrire le problème sous forme matricielle:

$$\sum_{i,j} y_i A_{i,j} x_j \tag{11}$$

En posant $g_i = a(g^h, B_i^h)$, ce qui donne $a(g^h, v^h) = \sum_i y_i g_i$, on obtient le système linéaire suivant:

$$\sum_{i,j} y_i A_{i,j} x_j = -\sum_i y_i g_i \tag{12}$$

Que l'on peut réécrire sous forme matricielle en posant b le vecteur colonne des $-g_i$ et x le vecteur colonne des x_i :

$$y^T \cdot A \cdot x = y^T \cdot b \tag{13}$$

Ce qui équivaut à résoudre:

$$A \cdot x = b \tag{14}$$

2.2 Méthode des éléments finis

On doit maintenant assurer le raccord entre les différents éléments. Pour ce faire, on considère dorénavant les fonctions tests polynomiales $v \in X^h$.

Dès lors, on montre que chaque fonction v est définie par les valeurs qu'elle prend sur les nœuds du maillage et on peut les écrire comme une combinaison linéaire des fonctions B_i , les fonctions chapeau généralisées.

Ainsi, on assure directement la continuité de v sur les éléments en ayant simplement les mêmes valeurs aux nœuds.

2.3 Maillage du domaine

Nous allons discrétiser le domaine en éléments finis et résoudre le problème de Laplace par la méthode des éléments finis.

La figure 2 représente la discrétisation du domaine en éléments finis. Nous nous placerons en deux dimensions.

Figure 2: Discretisation du domaine

On rappelle qu'on doit résoudre le problème suivant:

$$\begin{cases} u^h \in X^h, & u^h - g^h \in V^h \\ a(u^h, v^h) = 0, & \forall v^h \in V^h \end{cases}$$

$$\tag{15}$$

2.3.1 Base des polynômes sur un élément

On réécrit le problème avec des sommes sur chaque élément [e]:

$$a(u^h, v^h) = \sum_{T^{[e]} \in \mathcal{T}^h} \int_{T^{[e]}} \sum_{i,j=1}^N a_{ij} \partial_j u^{[e]} \partial_i v^{[e]} dT^{[e]}$$
(16)

Nous allons maintenant avoir besoin de décomposer les fonctions u et v sur une base de fonctions chapeau. Ces fonctions, propres à chaque élément [e], sont notées $B_1^{[e]}$, $B_2^{[e]}$ et $B_3^{[e]}$ et doivent nous permettre de définir n'importe quelle fonction polynomiale de degré 1 sur l'élément [e].

Figure 3: Un élément du maillage

Pour un élément [e] (Figure 3), on les définit comme par les propriétés suivantes:

$$B_1^{[e]}(x_1, y_1) = 1, \ B_1^{[e]}(x_1, y_2) = 0, \ B_1^{[e]}(x_2, y_1) = 0$$
 (17)

$$B_2^{[e]}(x_1, y_1) = 0, \ B_2^{[e]}(x_1, y_2) = 1, \ B_2^{[e]}(x_2, y_1) = 0$$
 (18)

$$B_3^{[e]}(x_1, y_1) = 0, \ B_3^{[e]}(x_1, y_2) = 0, \ B_3^{[e]}(x_2, y_1) = 1$$
 (19)

Autrement dit, chaque fonction chapeau vaut 1 sur un nœud et 0 sur les deux autres. On peut montrer qu'avec de telles propriétés, ces fonctions chapeaux définissent bien une base de l'espace des fonctions polynomiales de degré 1 sur l'élément [e].

Dans cette base, on peut écrire $u^{[e]}$ et $v^{[e]}$ comme suit:

$$u^{[e]} = \sum_{i=1}^{3} u_i^{[e]} B_i^{[e]} = u_1^{[e]} B_1^{[e]} + u_2^{[e]} B_2^{[e]} + u_3^{[e]} B_3^{[e]}$$
(20)

$$v^{[e]} = \sum_{i=1}^{3} v_i^{[e]} B_i^{[e]} = v_1^{[e]} B_1^{[e]} + v_2^{[e]} B_2^{[e]} + v_3^{[e]} B_3^{[e]}$$
(21)

2.3.2 Matrice de raideur partielle

On introduit la matrice de raideur partielle $K^{[e]}$ telle que pour un élément [e]:

$$\int_{T^{[e]}} \sum_{i,j=1}^{2} a_{ij} \partial_{j} u^{[e]} \partial_{i} v^{[e]} dT^{[e]} = \left[v_{1}^{[e]}, v_{2}^{[e]}, v_{3}^{[e]} \right] \cdot K^{[e]} \cdot \left[u_{1}^{[e]}, u_{2}^{[e]}, u_{3}^{[e]} \right]^{T}$$

$$(22)$$

Si on considère un seul élément [e], on peut chercher à expliciter les termes de la matrice de raideur $K^{[e]}$

On réécrit le problème comme suit:

$$\left[v_1^{[e]}, v_2^{[e]}, v_3^{[e]}\right] K^{[e]} \left[u_1^{[e]}, u_2^{[e]}, u_3^{[e]}\right]^T = \int_{T^{[e]}} \left[\partial_x v^{[e]}, \partial_y v^{[e]}\right] A^{[e]} \left[\partial_x u^{[e]}, \partial_y u^{[e]}\right]^T dT^{[e]} \tag{23}$$

Avec $A^{[e]}$ la matrice des coefficients a_{ij} .

Nous allons chercher à réécrire ce problème sous forme matricielle afin d'être capable de calculer les coefficients de $K^{[e]}$. De cette manière, nous serons capable d'avoir accès au terme de l'intégrale de l'équation 22.

En sélectionnant des polynômes de degré 1 sur un élément $T^{[e]}$, l'intégrale se réduit à la mesure de l'aire du triangle élémentaire noté $|T^{[e]}|$ et à moyenner les valeurs de $A^{[e]}$:

$$\begin{bmatrix} v_1^{[e]} & v_2^{[e]} & v_3^{[e]} \end{bmatrix} K^{[e]} \begin{bmatrix} u_1^{[e]} \\ u_2^{[e]} \\ u_3^{[e]} \end{bmatrix} = |T^{[e]}| \cdot \begin{bmatrix} \partial_x v^{[e]} & \partial_y v^{[e]} \end{bmatrix} \overline{A^{[e]}} \begin{bmatrix} \partial_x u^{[e]} \\ \partial_y u^{[e]} \end{bmatrix}$$
(24)

2.3.3 Réécriture sous forme matricielle

Puisque $u,v\in V^h$, on sait qu'on peut les écrire sous forme de polynômes de degré 1 en deux dimensions:

$$u^{[e]}(x,y) = \alpha_0^{[e]} + \alpha_1^{[e]}x + \alpha_2^{[e]}y = \begin{bmatrix} 1 \ x \ y \end{bmatrix} \begin{bmatrix} \alpha_0^{[e]} \ \alpha_1^{[e]} \ \alpha_2^{[e]} \end{bmatrix}^T$$
(25)

$$v^{[e]}(x,y) = \beta_0^{[e]} + \beta_1^{[e]}x + \beta_2^{[e]}y = \begin{bmatrix} 1 \ x \ y \end{bmatrix} \begin{bmatrix} \beta_0^{[e]} \ \beta_1^{[e]} \ \beta_2^{[e]} \end{bmatrix}^T$$
(26)

Puisqu'on cherche la décomposition de u sur la base des fonctions chapeau, on exprime les coefficients de u par rapport à cette base grâce aux sommets de l'élément sous la forme suivante:

$$\begin{cases} \alpha_0^{[e]} + \alpha_1^{[e]} x_1 + \alpha_2^{[e]} y_1 = u_1^{[e]} \\ \alpha_0^{[e]} + \alpha_1^{[e]} x_2 + \alpha_2^{[e]} y_1 = u_2^{[e]} \\ \alpha_0^{[e]} + \alpha_1^{[e]} x_1 + \alpha_2^{[e]} y_2 = u_3^{[e]} \end{cases} \Leftrightarrow P^{[e]} \left[\alpha^{[e]} \right] = \left[u^{[e]} \right]$$

$$(27)$$

Avec la matrice $P^{[e]}$ définie par:

$$P^{[e]} = \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_1 \\ 1 & x_1 & y_2 \end{bmatrix}$$
 (28)

Par ailleurs, en dérivant les formes générales de u et v, on peut écrire:

$$\begin{bmatrix} \partial_x u^{[e]} \\ \partial_y u^{[e]} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_0^{[e]} \\ \alpha_1^{[e]} \\ \alpha_2^{[e]} \end{bmatrix}$$
(29)

$$\begin{bmatrix} \partial_x v^{[e]} \\ \partial_y v^{[e]} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0^{[e]} \\ \beta_1^{[e]} \\ \beta_2^{[e]} \end{bmatrix}$$

$$(30)$$

On pose alors la matrice $D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ qui nous permet de dériver simplement les fonctions u et v. On pose les vecteurs suivants:

$$\begin{bmatrix} \partial_x u^{[e]} \\ \partial_y u^{[e]} \end{bmatrix} = \begin{bmatrix} \partial u^{[e]} \end{bmatrix} \text{ et } \begin{bmatrix} \partial_x v^{[e]} \\ \partial_y v^{[e]} \end{bmatrix} = \begin{bmatrix} \partial v^{[e]} \end{bmatrix}$$
 (31)

$$\begin{bmatrix} \beta_0^{[e]} \\ \beta_1^{[e]} \\ \beta_2^{[e]} \end{bmatrix} = \begin{bmatrix} \beta^{[e]} \end{bmatrix} \text{ et } \begin{bmatrix} \alpha_0^{[e]} \\ \alpha_1^{[e]} \\ \alpha_2^{[e]} \end{bmatrix} = \begin{bmatrix} \alpha^{[e]} \end{bmatrix}$$
(32)

$$\begin{bmatrix} u_1^{[e]} \\ u_2^{[e]} \\ u_3^{[e]} \end{bmatrix} = \begin{bmatrix} u^{[e]} \end{bmatrix} \text{ et } \begin{bmatrix} v_1^{[e]} \\ v_2^{[e]} \\ v_3^{[e]} \end{bmatrix} = \begin{bmatrix} v^{[e]} \end{bmatrix}$$
(33)

Avec ces nouvelles matrices, muni de l'équation 27 et de l'équation 24 que l'on réécrit comme suit:

$$\left[v^{[e]}\right]^T K^{[e]} \left[u^{[e]}\right] = |T^{[e]}| \left[\partial v^{[e]}\right] \overline{A^{[e]}} \left[\partial u^{[e]}\right]$$

$$\tag{34}$$

On peut alors réécrire le problème sous forme matricielle:

$$[v]^T K^{[e]} [u] = |T^{[e]}| [\partial v]^T \overline{A^{[e]}} [\partial u]$$
(35)

$$\left(P^{[e]}\left[\beta^{[e]}\right]\right)^{T}K^{[e]}P^{[e]}\left[\alpha^{[e]}\right] = |T^{[e]}|\left(D\left[\beta^{[e]}\right]\right)^{T}\overline{A^{[e]}}D\left[\alpha^{[e]}\right]$$
(36)

En passant les termes à droite, en simplifiant les matrices $[\alpha]$ et $[\beta]$ par la droite et la gauche, et en écrivant $H^{[e]} = (P^{[e]})^{-1}$, on obtient:

$$K^{[e]} = \left(H^{[e]}\right)^T D^T \left(|T|\overline{A^{[e]}}\right) DH^{[e]} \tag{37}$$

Notez qu'ici, D est de taille 2x3, $\overline{A^{[e]}}$ de taille 2x2 et $H^{[e]}$ de taille 3x3.

2.3.4 Expression des matrices dans le cadre du problème

En pratique, avec notre problème, nous savons que:

$$\overline{A^{[e]}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{38}$$

Car, rappelons-le, notre formulation faible d'origine est

$$\int_{\Omega} \nabla u(x) \nabla v(x) dx = 0 \tag{39}$$

Nous avons maintenant besoin de connaître la matrice $H^{[e]}$ et la valeur de |T|. Notons h la longueur d'un côté de l'élément [e]. On a donc $h = x_2 - x_1 = y_2 - y_1$. Dès lors,

$$|T| = \frac{1}{2}h^2\tag{40}$$

Par ailleurs, on peut inverser la matrice $P^{[e]}$ pour obtenir la matrice $H^{[e]}$. Par calcul, on trouve:

$$H^{[e]} = \frac{1}{h^2} \begin{bmatrix} x_2 y_2 - x_1 y_1 & -h x_1 & -h y_1 \\ -h & h & 0 \\ -h & 0 & h \end{bmatrix}$$
 (41)