মহাকর্ষ ও অভিকর্ষ

১) নিউটনের মহাকর্ষ সুত্রঃ m_1 ও m_2 ভরের দুটি বস্তু d দূরত্বে থেকে পরস্পরকে F বলে আকর্ষণ করলে,

$$F=G.rac{m_1m_2}{d^2}$$
 এখানে, G মহাকর্ষীয় ধ্রুবক $=6.673 imes 10^{-11} Nm^2 kg^{-2}$

- ২) M ভরবিশিষ্ট এবং R ব্যাসার্ধের পৃথিবী পৃষ্ঠে অবস্থিত কোন বস্তুর অভিকর্ষীয় ত্বরণ $g=\frac{GM}{R^2}$ । আবার ঘনত্বের সাপেক্ষে মান নির্ণয় করলে, $g=\frac{4}{3}$ π $R\rho$ G
- ৩) অভিকর্ষজ তুরণের বিভিন্ন মানঃ
- $(R+h)^2$ g হতে $(R+h)^2$ g
- ${
 m II}$) ভূপৃষ্ঠ হতে ${
 m h}$ গভীরতায় অবস্থিত কোন স্থানে অভিকর্ষজ ত্বরণ ${
 m g}^{**}={
 m g}iggl(1-rac{h}{R}iggr)=rac{4}{3}h\pi(R-h)P$
- III) λ অক্ষাংশে অবস্থিত ভূপৃষ্ঠের কোন স্থানে অভিকর্ষজ ত্বরণ, $g`=g-\omega^2R\cos^2\!\lambda$, এখানে, $\omega=$ পৃথিবীর কৌনিক বেগ, বিষুব অঞ্চলে $\lambda=0^{\rm o}$, বিষুব অঞ্চলে $g`=g-\omega^2R(\cos0^{\rm o})^2=g\omega^2R$. আবার, মেরু অঞ্চলে $\lambda=90^{\rm o}$, মেরু অঞ্চলে g`=g

 $_{\cdot\cdot}$ বলা যায়, g এর মান মেরু অঞ্চলে সবচেয়ে বেশি এবং বিষুব অঞ্চলে সবচেয়ে কম। λ অক্ষাংশে অবস্থিত কোন স্থানে অভিকর্ষজ তুরণ $=g-w^2R\cos^2\!\lambda\;[w=$ পৃথিবীর কৌনিক বেগ]

৪) মহাকর্ষীয় বিভব ও প্রাবল্যঃ

i) বিভব,
$$V = \frac{-GM}{r}$$

$$ii)$$
 মহাকর্ষীয় প্রাবল্য, $E=rac{GM}{r^2}$

৫) মুক্তবেগের রাশিমালাঃ

a)
$$V_E = \sqrt{2gR} = \sqrt{\frac{2GM}{R}}$$
 b) $V_E = \sqrt{2gR} = \sqrt{\frac{2GM}{R}} = R\sqrt{\frac{8}{3}}\pi G\rho$

- ৬) কৃত্রিম উপগ্রহ সংক্রান্ত সূত্রসমূহঃ
 - i) ভূপৃষ্ঠ হতে h উচ্চতায় আবর্তনরত কোন কৃত্রিম উপগ্রহের রৈখিক বেগ, $V=\sqrt{\frac{GM}{R+h}}=\sqrt{\frac{gR^2}{R+h}}$ । উপগ্রহটি ভূপৃষ্ঠের খুব নিকট অবস্থান করলে h=0 ধরা যায় । সেক্ষেত্রে, $V=\sqrt{\frac{gR^2}{R}}=\sqrt{gR}$ [যেহেতু $GM=gR^2$] ii) আবর্তনকাল T হলে, রৈখিক বেগ, $V=\frac{2\pi}{T}(R+h)$
 - iii) hউচ্চতায় আবর্তনরত উপগ্রহের আবর্তনকাল T হলে, $h=\left(rac{GMT^2}{4\pi^2}
 ight)^{\!\!rac{1}{3}}\!-\!R$
 - ${
 m iv}$) কৃত্রিম উপগ্রহটি ${
 m m}$ ভরবিশিষ্ট এবং এর বেগ ${
 m v}$ হলে, কাক্ষিক শক্তি $= {1\over 2}\,{mv}^2$

Type -01: খাড়াভাবে পড়ন্ত বা উর্ধ্বগামী বস্তুর জন্য অভিকর্ষের প্রভাব

 $v\infty t$ সংক্রান্ত সমস্যা s

EXAMPLE – 01: মুক্তভাবে দুটি বস্তুকে ছেড়ে দিলে তারা 2s এ $19.6ms^{-1}$ বেগ প্রাপ্ত হয়। প্রথম 3s এ প্রথম বস্তু ও 5s এ দ্বিতীয় বস্তুর বেগদ্বয়ের অনুপাত কত?

$$\frac{V_1}{V_2} = \frac{3 \times g}{5 \times g} \qquad \therefore V_1 : V_2 = 3 \approx 5$$

 $h \infty t^2$ সংক্রান্ত সমস্যা ঃ

EXAMPLE – 02: মুক্তভাবে দুটি বস্তুকে একই সময়ে ছেড়ে দিলে তারা 2s পর 19.6m দূরত্ব অতিক্রম করে। এক্ষেত্রে সমানুপাতিক ধ্রুবকের মান কত? প্রথম 2s এ প্রথম 5sec বস্তু দ্বারা অতিক্রান্ত দূরত্ব ও প্রথম এ ২য় বস্তু দ্বারা অতিক্রান্ত দূরত্বদুয়ের অনুপাত কত?

$$h \infty t^2 = h = k t^2 = k = \frac{h}{t^2} = \frac{19.6}{4} = 4.9 \, \text{ms}^{-2}$$

$$\frac{h_1}{h_2} = \frac{t_1^2}{t_2^2} = \frac{4}{25} \qquad h_1 \, \text{$^{\circ}$} \, h_2 = 4 \, \text{$^{\circ}$} \, 25$$

EXAMPLE – 03: একটি বস্তুকে মুক্তভাবে ছাড়া হল তা ৩য় সেকেন্ডে মোট দূরত্বের অর্ধেক অতিক্রম করলে কত উচ্চতা হতে বস্তুটি ছোড়া হয়েছিল।

$$\frac{1}{2}h = \frac{1}{2}g(2t-1) \Rightarrow \frac{1}{2} \cdot \frac{1}{2}gt^2 = \frac{1}{2}g(2t-1) \Rightarrow \frac{1}{2}t^2 = 2t-1 \Rightarrow t^2 - 4t - 2 = 0$$

$$\Rightarrow t^2 - 4t + 4 - 4 - 2 \Rightarrow (t-2)^2 = 6 \Rightarrow t - 2 = \pm\sqrt{6} \Rightarrow t = 2\pm\sqrt{6}$$

$$\therefore t = 2 + \sqrt{6} \quad t = 2 - \sqrt{6} \quad invalid \quad \therefore h = \frac{1}{2}g(2 + \sqrt{6})^2 = 97m. \quad (Ans:)$$

EXAMPLE – 04: মুক্তভাবে পড়ন্ত একটি বস্তু ১ম সেকেন্ডে 3mউলম্ব দূরত্ব অতিক্রম করলে 8 তম সেকেন্ডে কত দূরত্ব অতিক্রম করবে?

সমাধানঃ ১ম সেকেন্ডে অতিক্রান্ত দূরত্ব $=rac{1}{2}g(2t-1)=rac{1}{2} imes 9.8 imes 1=4.9m$. কিন্তু প্রশ্নমতে অতিক্রান্ত দূরত্ব=3m

হওয়ার কথা ৷ তাহলে,
$$3 = \frac{1}{2}(g - f)(2t - 1) \Longrightarrow 3 = \frac{1}{2}(g - f)(2 \times 1 - 1) \Longrightarrow 6 = g - f$$

$$\implies f = 9.8 - 6 = 3.8 ms^{-2}$$

লব্ধি ত্বরণ =
$$6 ms^{-2}$$
 : $h_{8th} = \frac{1}{2} \times 6 \times (2 \times 8 - 1) = 3 \times 15 = 45 m$ Ans.

সিদ্ধান্ত ঃ

- (১) বায়ুর বাধা উপেক্ষা করা হয় নাই।
- (২) ফলে বস্তুটার উপর উর্ধ্বগামী বল ক্রিয়াশীল।

EXAMPLE - 05: একটি পড়ন্ত বস্তু ১ম সেকেন্ডে 6m দূরত্ব অতিক্রম করে। বস্তুটি ২য় সেকেন্ডে কত দূরত্ব অতিক্রম করবে?

সমাধানঃ মুক্তভাবে পড়ন্ত বস্তুর ক্ষেত্রে দেখি বস্তুটি ১ম সেকেন্ডে 4.9m এর বেশি অতিক্রম করতে পারে না। প্রশ্নমতে বস্তুটি ১ম সেকেন্ডে 6m দূরত্ব অতিক্রমু করেছে। সুতরাং বস্তুটি উপর বাহ্যিক বল প্রয়োগ করা হয়েছে। ধরি বস্তুটিকে u বেগে ছাড়া হয়েছে।

তাহলে,
$$h_{1st}=u+\frac{1}{2}g\left(2t-1\right),\;6=u+\frac{1}{2}\times 9.8\left(2\times 1-1\right)=>u=6-4.9=1.1ms^{-1}$$
 বেগে ছাড়া হয়েছিল ২য় সেকেন্ডে অতিক্রান্ত দূরত্ব, $h_{2nd}=1.1+\frac{1}{2}\times g\left(2\times 2-1\right)=1.1+4.9\times 3=15.8m$

m Practice: একটি বস্তুকে $19.6ms^{-1}$ খাড়া উপরের দিকে নিক্ষেপ করায় বস্তুটি সর্বোচ্চ 9.6m উচ্চতায় উঠলে বস্তুর তুরণ কত? $[
m Ans: 11.8 \ ms^{-2}]$

Type -02: নিউটনের মহাকর্ষ সুত্র

$$h$$
 উচ্চতায় , $g_h = g (1 - \frac{2h}{R})$ ও d গভীরতায় $g_d = g (1 - \frac{h}{R})$

$$F = G\frac{Mm}{R^2} = mg$$

$$\frac{g_h}{g_d} = \frac{1 - \frac{2h}{R}}{1 - h/R} = \frac{R - 2h}{R - h} \quad [R \ge 2h]$$

পৃথিবীর আহ্নিক গতির ক্রিয়া
$$g' = g(1 - \frac{w^2R\cos^2\lambda}{g})$$
 $(\lambda = 0$ অক্ষাংশ)

 $\mathbf{EXAMPLE}$ – $\mathbf{01}$: পৃথিবী পৃষ্ঠ হতে $4 \times 10^3 m$ উচ্চতায় ও গভীরতায় অভিকর্ষজ ত্বরণের মানের অনুপাত নির্ণয় কর।

সমাধানঃ
$$\frac{g_h}{g_d} = \frac{64 \times 10^5 - 2 \times 4 \times 10^3}{64 \times 10^5 - 4 \times 10^3} = \frac{1598}{1599} \approx 1$$
, $g_h \approx g_d$ আর একটা উচ্চতা ও গভীরতা নেওয়া যাক ধরি,

 $10^{3} m$

$$\frac{g_h}{g_d} = \frac{64 \times 10^5 - 2 \times 10^3}{64 \times 10^5 - 10^3} = \frac{6398}{6399} \approx 1, \ g_h \approx g_d$$

সুতরাং বলা যায় একই উচ্চতায় ও গভীরতায় ত্বরণের মান একই। % error = .00016

EXAMPLE - 02: ভূ-পৃষ্ঠ হতে কত উচ্চতায় গেলে সেখানকার অভিকর্ষজ ত্বরণের মান ভূ-পৃষ্ঠ হতে $4 \times 10^3 m$ গভীরতায় তুরণের মানের এক শতাংশ হবে।

সমাধানঃ মনেকরি h উচ্চতায় শর্তপূরণ হবে।

$$g_{h} = g(1 - \frac{2h}{R}) \qquad \{h \text{ means height}\}$$

$$g_{d} = g(1 - \frac{h}{R}) \qquad \{d \text{ means depth}\}$$

$$\therefore \frac{g_{h}}{g_{d}} = \frac{1 - \frac{2h}{R}}{1 - \frac{h}{R}} = \frac{R - 2h}{R - h} = g_{h} = \frac{1}{100} g_{d}$$

$$\Rightarrow \frac{1}{100} = \frac{6.3 \times 10^{5} - 2h}{6.3 \times 10^{5} - h} \Rightarrow 6.3 \times 10^{5} - h = 6.3 \times 10^{7} - 200h$$

$$\therefore h = 3.13 \times 10^{5} \text{ m. Ans.}$$

EXAMPLE – 03: ভূ-পৃষ্ঠে কোন লোকের ওজন 648N হলে তিনি চাঁদে গেলে কতটুকু ওজন হারাবেন? পৃথিবীর ভর ও ব্যাসার্ধ যথাক্রমে চাঁদের ভর ও ব্যাসার্ধের 81গুণ ও 4 গুণ।

সমাধানঃ
$$F_e = mg_e = \frac{GM_e \, m}{R_e^2}$$
 , $F_m = mg_m = \frac{GM_m m}{R_m^2}$,
$$\frac{F_e}{F_m} = \frac{g_e}{g_m} = \frac{M_e}{M_m} \times \left(\frac{R_m}{R_e}\right)^2 = \frac{81M_m}{M_m} \times \left(\frac{R_m}{4R_m}\right)^2 = \frac{81}{16}$$

$$F_m = \frac{16}{81} \times 648 = 128N \therefore \text{ হারানো ওজন} = 648 - 128 = 520N \text{ s}$$

EXAMPLE-04: একটি মহাশূন্যযান পৃথিবী থেকে চাঁদের দিকে যাচ্ছে। পৃথিবী থেকে এমন একটি অবস্থান বের করো যেখানে, এর উপর মহাকর্ষীয় বল শূন্য। দেয়া আছে, পৃথিবীর ভর $=6.0 \times 10^{24} kg$, চাঁদের ভর $=7.4 \times 10^{22} kg$. পৃথিবীর কেন্দ্র ও চাঁদের কেন্দ্রের মধ্যবর্তী দুরত্ব $=3.8 \times 10^8 m$.

সমাধান ঃ মহাশূন্য যানের উপর পৃথিবীর জন্য মহাকর্ষীয় বল =
$$\frac{GM_e m}{x^2}$$

আবার, মহাশূন্য যানের উপর চাঁদের জন্য মহাকর্ষীয় বল, $=\frac{GM_m m}{(3.8 \times 10^8 m - x)^2}$

$$M_{\rm e}=6.0\times 10^{24}{\rm kg}$$
 $M_{\rm m}=7.4\times 10^{22}{\rm kg}$ $x=?$ এখানে, $\frac{GM_e m}{x^2}=\frac{GM_m m}{(3.8\times 10^8-x)^2}$ বা, $\frac{6.0\times 10^{24}}{x^2}=\frac{7.4\times 10^{22}}{(3.8\times 10^8-x)^2}$ বা, $\frac{600}{x^2}=\frac{7.4}{(3.8\times 10^8-x)^2}$

বা,
$$\frac{24.5}{x} = \frac{2.72}{3.8 \times 10^8 - x}$$

বা, $2.72 x = 9.31 \times 10^9 - 24.5 x$
∴ $x = 3.42 \times 10^8 \text{m}$ (Ans)

EXAMPLE-05: পৃথিবীর ব্যাসার্ধ $6.38\times10^6 m$ এবং মহাকর্ষীয় ধ্রুবকের মান $6.67\times10^{-11}N-m^2kg^{-2}$ ধরে এর গড় ঘনত্ব বের কর।

সমাধান ঃ
$$R=6.38\times10^6 m;$$
 $G=6.67\times10^{-11} N-m^2 kg^{-2}$ $g=9.81 ms^{-2};$ $p=?$
$$P=\frac{3g}{4\pi GR}=\frac{3\times9.81 ms^{-2}}{4\times3.14\times6.67\times10^{-11} N-m^2 kg^{-2}\times6.38\times10^6 m}=5.51\times10^3 kgm^{-3}$$
 (Ans)

 $EXAMPLE - 06: 33^{\circ}$ অক্ষাংশে অভিকর্ষজ তুরণের মান কত ? $[g = 9.8 \ ms^{-2}]$

সমাধানঃ পৃথিবীর আহ্নিক গতির ক্রিয়া $g' = g(1 - \frac{w^2R\cos^2\lambda}{g})$

$$g^{1} = 9.8 \left(1 - \frac{w^{2}R \cos^{2} 33^{0}}{9.8} \right), = 9.8 \left(1 - \frac{\left(\frac{2\pi}{T} \right)^{2} \times R \times \cos^{2} 33^{0}}{9.8} \right) = 9.799 ms^{-2}$$

Check যখন $\lambda=0^{\circ}$, $g'=g-w^2R=9.766$; যখন $\lambda=90^{\circ}$ হলে, g'=g

Practice: পৃথিবী পৃষ্ঠ হতে কত উচ্চতায় অভিকর্ষজ ত্বুরণের মান পৃথিবীর ত্বুরণের মানের শতকরা চল্লিশভাগ হবে? $[1.9 \times 10^6 m]$

 ${f Type}$ -03: স্যাটেলাইট বা উপগ্ৰহের পর্যায়কাল, ব্রের ব্যাসার্ধ $=rac{2\pi\,r}{V}=rac{2\pi(R+h)}{V}\;;\;\;(r=R+r)$

$$V = \sqrt{rac{GM}{R+h}} = > rac{2\pi\left(R+h
ight)}{T} = \sqrt{rac{GM}{R+h}} \;,\; T = 2\pi\left(R+h
ight)\sqrt{rac{R+h}{GM}} \;,$$
 উচ্চতা, $h = \left(rac{GMT^2}{4\pi^2}
ight)^{rac{1}{2}} - R$

EXAMPLE - 01: স্যাটালাইটের পর্যায়কাল T = 24hrহলে স্যাটালাইটের ভূস্থির হবে,ও স্যাটেলাইটের পর্যায়কাল একই। তাহলে তো আপেক্ষিক বেগ 0 হওয়ার কথা। পারলে দেখাও। 700m দূরে ঘূর্ণায়মান স্যাটেলাইটের বেগ ও পর্যায়কাল কত?

সমাধানঃ
$$T = \sqrt{\frac{4\pi^2 (R+h)^3}{GM}} = 5940 \sec = 1hr 39 \min.$$

condition: ভূ-স্থির হলে, তার উচ্চতা ও বেগ নির্ণয় কর। T=24hr. হলে, h=?

$$h = \left(\frac{6.673 \times 10^{11} \times 6 \times 10^{24} \times (24 \times 3600)^2}{4\pi^2}\right)^{\frac{1}{3}} - 6.3 \times 10^6 = 3.6 \times 10^7 \, m. \text{ Ans.}$$

অর্থাৎ ভূ-স্থির উপগ্রহের উচ্চতা হবে 3.6×10^7m বেগ, $v=\frac{2\pi(6.3\times10^6+3.6\times10^7)}{24\times3600}$ = $3076.4\,ms^{-1}=3.08\,kms^{-1}$ প্রায় । Ans.

EXAMPLE - 02: একটি কৃত্রিম উপগ্রহ ভূপৃষ্ঠের নিরক্ষবৃত্ত বরাবর পূর্বদিকে আবর্তিত হচ্ছে। কৃত্রিম উপগ্রহের আবর্তনকাল 12 ঘন্টা হলে উপগ্রহটির বৃত্তাকার পথের ব্যাসার্ধ কত?

সমাধান %
$$T=12hr=(12\times60\times60)s=43200s$$
 $G=6.67\times10^{-11}Nm^2kg^{-2}; M=6\times10^{24}kg; r=R+h=?$ $r=h+R=\left(\frac{GMT^2}{4\pi^2}\right)^{\frac{1}{3}}=\left(\frac{6.67\times10^{-11}N-m^2kg^{-2}\times6\times10^{24}kg\times(43200s)^2}{4\pi^2}\right)^{\frac{1}{3}}$ $\therefore r=\left(1.89\times10^{22}Nm^2s^2kg^{-1}\right)^{\frac{1}{3}}=2.66\times10^7m(Ans)$

EXAMPLE-03: পৃথিবী পৃষ্ঠ থেকে 700 km উপরে একটি কৃত্রিম উপগ্রহ পৃথিবীকে প্রদক্ষিণ করছে। পৃথিবীর ব্যাসার্ধ $64 \times 10^5 m$ এবং পৃথিবী পৃষ্ঠে অভিকর্ষজ ত্বরণ $9.8 ms^{-2}$ হলে উপগ্রহটির অনুভূমিক বেগ ও পর্যায়কাল নির্ণয় করো।

সমাধান ঃ
$$R = 64 \times 10^5 \text{m}; \ g = 9.8 \text{ms}^{-2} \text{h} = 700 \ \text{km} = 7 \times 10^5 \text{m}; \ \text{v} = ?$$

$$v = \sqrt{\frac{GM}{(R+h)}} = \sqrt{\frac{gR^2}{(R+h)}} \left[\because g = \frac{GM}{R^2} \right]$$

$$= R \sqrt{\frac{g}{(R+h)}} = (64 \times 10^5 \text{m}) \sqrt{\frac{9.8 m \text{s}^{-2}}{64 \times 10^5 m + 7 \times 10^5 m}} = (64 \times 10^5 \text{m}) \sqrt{\frac{9.8 m \text{s}^{-2}}{71 \times 10^5 m}}$$

$$= (64 \times 10^5 \text{m}) \sqrt{\frac{9.8 m \text{s}^{-2}}{71 \times 10^5}} = 7.52 \times 10^3 \text{ms}^{-1} = 7.52 \text{kms}^{-1}$$

$$T = \frac{2\pi (R+h)}{v} = \frac{2 \times 3.141 \text{s} \times (64 \times 10^5 \text{m} + 7 \times 10^5 \text{m})}{7.52 \times 10^3 \text{ms}^{-1}} = 5932.26 \text{s} (\text{Ans})$$

EXAMPLE - 04: একটি গ্রহ পৃথিবীর চারদিকে $4 \times 10^4 km$ দূরত্বে বৃত্তাকার কক্ষপথে প্রদক্ষিণ করলে গ্রহটির পর্যায়কাল ও বেগ নির্ণয় কর । $G = 6.67 \times 10^{-11} \, N - m^2 \, kg^{-2}$, $M = 5.96 \times 10^{24} \, kg$,

$$r = 4 \times 10^4 \times 10^3 m = 4 \times 10^7 m$$

সমাধানঃ
$$T^2 = \frac{4\pi^2}{GM} \times r^3$$
 পর্যায়কাল, $T = \sqrt{\frac{4\pi^2}{GM}} \times r^{3/2} = > \frac{2\pi \times r^{3/2}}{\sqrt{GM}} = > \frac{2\times 3.1416 \times (4\times 10^7)^{3/2}}{\sqrt{6.67\times 10^{-11}\times 5.96\times 10^{24}}}$ $= 22.14hr = 0.923~day.$ বেগ, $v = \frac{2\pi \, r}{T} = \frac{2\pi \times 4 \times 10^7}{79723} = 3152.51~ms^{-1}$ $= 3152.51.~\frac{10^{-3}~km}{s} = 3.15km/s$.

Practice:

০১। পৃথিবী থেকে $1600 {
m km}$ উচ্চতায় একটি কৃত্রিম উপগ্রহ পৃথিবীকে কেন্দ্র করে বৃত্তাকার পথে প্রদক্ষিণ করছে। এর বেগ ঘন্টায় কত কিলোমিটার হবে ? পৃথিবীর ব্যাসার্ধ, $1600 {
m km}$, ভর $6 { imes} 10^{24} {
m kg}$ এবং

$$G = 6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$$

[উঃ 25462 km h⁻¹]

০২। একটি রিমোট সেঙ্গিং স্যাটেলাইট পৃথিবীর চারিদিকে ভূ-পৃষ্ঠ হতে $250 \mathrm{km}$ উপরে বৃত্তাকার পথে ঘুরছে। এই পথে স্যাটেলাইটটির গতিবেগ এবং ঘূর্ণন কাল নির্ণয় কর।

$$(Re = 6400 \text{km}, g = 9.8 \text{ ms}^{-2})$$

Type -04: প্রাবল্য ও বিভব নির্ণয়

(i) যখন P বিন্দুটি গোলকের ভেতরে অবস্থিত

বিভব,
$$(V_P);=rac{-3GM}{2a^3}(a^2-rac{r^2}{3})$$
, ক্ষেত্র প্রাবল্য, $(E_P);=rac{d}{d\,r}(V_P);=rac{GM}{a^3}r.$

(ii) যখন P বিন্দুটি গোলকের বাইরে অবস্থিত,

বিভব,
$$\left(V_{P}\right)_{O}=-rac{GM}{r}$$
 , ক্ষেত্র প্রাবল্য $\left(E_{P}\right)_{o}=rac{GM}{r^{2}}$

(iii) যখন P বিন্দুটি গোলকের উপর অবস্থিত।

বিভব,
$$\left(V_{P}\right)_{C}=-rac{GM}{a}$$
, ক্ষেত্র প্রাবল্য $\left(E_{P}\right)_{C}=rac{GM}{a^{2}}$

ফাপা গোলকের জন্য উপরোক্ত তিনটি ক্ষেত্র:

যখন
$$\,P\,$$
 বিন্দু গোলকের বাইরে অবস্থিত: $\,V_P = - \frac{GM}{r}\,,\,\,E_P = \frac{GM}{r^2}\,$

যখন P বিন্দু গোলকের অভ্যন্তরে অবস্থিত; $V_P = -2\pi\,GP(a^2-b^2)$ $\implies E_P = 0$.

EXAMPLE - 01: 100 kg ভরের একটি শুরুভার বস্তুর ভারকেন্দ্র হতে 10m দুরত্বে অবস্থিত কোনো বিন্দুতে মহাকর্ষীয় বিভব ও প্রাবল্য নির্ণয় করো।

সমাধান ঃ
$$M = 100 \text{kg}$$
; $r = 10 \text{m}$; $v = ? E = ?$

$$\begin{split} V = -\frac{GM}{r} &= -\frac{6.67 \times 10^{-11} N \text{-m}^2 \text{kg}^{-2} \times 100 \text{kg}}{10 \text{m}} = -6.67 \times 10^{-10} \text{J kg}^{-1} \text{ (Ans)} \\ E = \frac{GM}{r^2} &= \frac{6.67 \times 10^{-11} N \text{-m}^2 \text{kg}^{-2} \times 100 \text{kg}}{(10 \text{m})^2} = 6.67 \times 10^{-11} \text{N kg}^{-1} \text{ (Ans)} \end{split}$$

 $\mathbf{EXAMPLE}$ – $\mathbf{02}$: পৃথিবীকে একটি নিরেট গোলক ধরে এর কেন্দ্র হতে r দূরত্বে কোন বিন্দুতে বিভব $v=\frac{GM}{R}$

$$\therefore$$
 পৃঠে বিভব, $v = = -\frac{GM}{R}$, $\rho = 5.5 \times 10^3 \, kgm^{-3}$, $R = 64 \times 10^5 \, m$, $M = \frac{4}{3} \pi \, R^3 \rho$

$$G = 6.67 \times 10^{-11} Nm^2 kg^{-2} : v = -\frac{GM}{R} = -\frac{6.67 \times 10^{-11} \times \frac{4}{3} \pi R^3 \rho}{R}$$

$$= -6.67 \times 10^{-11} \times \frac{4}{3} \times 3.1416 \times (64 \times 10^{5})^{2} \times 5.5 \times 10^{3} = -6.3 \times 10^{7} \text{ J.kg}^{-1} = -6.3 \times 10^{4} \text{ kj.kg}^{-1}$$

Practice: A ও B দুটি বস্তুর ভর যথাক্রমে $8000\,kg$ এবং 6000kg এবং তাদের মধ্যেকার দুরত্ব 0.25m । A ও B থেকে 0.20m ও 0.15mদুরে একটি বিন্দু P তে উভয় বস্তুর জন্য সৃষ্ট মহাকর্ষীয় ক্ষেত্র প্রাবল্যের লব্ধির মান নির্ণয় কর এবং বিভব নির্ণয় কর । $G=6.673\times 10^{-11}\,N.m^2kg^{-2}$

SPECIAL:

পৃথিবীকে মাঝ বরাবর কেটে উপর থেকে 10kg ভরের একটি বস্তুকে ছেড়ে দিলে তা কিরূপ আচরণ করবে? রাশিমালা নির্ণয় কর।

এটা সরল দোল গতিতে পৃথিবীর এক প্রান্ত থেকে অন্য প্রান্তে দুলতে থাকবে। যার সাম্যাবস্থান পৃথিবীর কেন্দ্র যেখানে বস্তুর বেগ সর্বাধিক , বিভব শূন্য; অভিকর্ষজ তুরণ শূণ্য; প্রাবল্য অসীম।

$$F=rac{4}{3}\pi G
ho mx$$
 $F \propto x$ $x=R\sin heta$, প্রত্যয়নীবল, $F_e=-kx$ $F=-Fe=kx$

 $k = \frac{4}{3}\pi G\rho m$ [তোমরা পর্যায় কালের সূত্র ব্যবহার করবে]

$$F = \frac{dV}{dR} = \frac{GM}{R^2} = \frac{4}{3}\pi G\rho mx, \implies x = \frac{3M}{4\pi\rho mR^2} = \frac{3\times 5.97\times 10^{24}}{4\times 3.1416\times 5.5\times 10^3\times 10\times (64\times 10^5)^2} = 6.33\times 10^5 m, \text{ almost equal to } R.$$

 ${f Type -05}$: উলম্বতলে m ভরের বস্তু r দৈর্ঘ্যের রশি দ্বারা ঘুড়ান হচ্ছে। সর্বোচ্চ বিন্দুতে টান সুতায় বোধ ঘোরানো হচ্ছে $T_{top}=rac{mv^2}{r}-mg$, সর্বনিম বিন্দুতে টান, $T_{bottom}=rac{mv_b^2}{r}+mg$, এবং $v_b^2=v_t^2+2gh, h=2r, T_b=rac{mv_t^2}{r}+5mg=T_b+5mg$ অনুভূমিক তলে, $T_A=rac{mv^2}{r}=T_B=mg$

 ${f EXAMPLE-01}:$ বালতিটিকে অনুভূমিক তলে সর্বোচ্চ কত বেগে ঘুরালে পানি আর বাইরে পড়বে না। সমাধানঃ ${mv^2\over r}=mg$, $v=\sqrt{rg}=\sqrt{5 imes9.8}=7\,ms^{-1}$ $\left[T=0\right]$

EXAMPLE - 02: ভূ-পৃষ্ঠ হতে অল্প উচ্চতায় এবং ভূ-পৃষ্ঠের সমান্তরালে একটি উড়োজাহাজ $2 \, km s^{-1}$ বেগে গতিশীল। 60 kg ভরের একজন যাত্রীর আপাত ওজন কত? $[R = 6.4 \times 10^5 \, m, \ g = 9.8 \, m s^{-2}]$

সমাধানঃ আপাত ওজন = মোট ওজন - ঘূর্ণনের কারণে হারানো ওজন

=
$$mg - \frac{mv^2}{R}$$
 = $60 \times 9.8 - \frac{60 \times (2 \times 10^3)^2}{6.4 \times 10^5}$ = 550.5 N.

EXAMPLE – 03: 0.5m লম্বা বশির এক প্রান্তে 0.2kg ভরের একটি বস্তুকে বেঁধে অন্য প্রান্তে হাতে ধরে উলম্ব তলে ঘোরানো হচ্ছে। সর্বনিম্ন কত দ্রুতিতে ঘোরালে বস্তুটির সর্বোচ্চ অবস্থানে রশি টান টান থাকবে?

সমাধানঃ
$$mg = \frac{mv^2}{r}$$
 হলে রশি টান টান থাকবে $v = \sqrt{rg} = \sqrt{0.5 \times 9.8} = 2.2136 ms^{-1}$

Type -06: ভরবেগ সংরক্ষণনীতি সম্পর্কিত

EXAMPLE - 01: পৃথিবীর অনুসূর ও অপসূর যথাক্রমে $1.47 \times 10^{11} \, m \, \& 31.52 \times 10^{11} \, m$ হলে অনুসূর স্থানে পৃথিবীর কৌণিক গতি অপসূরের কতগুণ?

সমাধানঃ
$$\frac{1}{2}\omega_1 r_1^2 = \frac{1}{2}\omega_2 r_2^2 \Rightarrow \omega_1 r_1^2 = \omega_2 r_2^2 \Rightarrow \frac{\omega_1}{\omega_2} = \frac{r_2^2}{r_1^2} = \frac{(1.52 \times 10^{11})^2}{(1.47 \times 10^{11})^2} = 1.07 \ \omega_1 = 1.07 \times \omega_2 \ 1.07$$
 গুণ Ans .

$$\mathbf{Type}$$
 -07: ক্যাভেডিস এর সূত্র, $G = \frac{r\theta r^2}{Mml}$ সংক্রান্ত ; $T^2 \propto r^3$

সমাধানঃ
$$G = \frac{r\theta \, r^2}{Mml} \Rightarrow \frac{4.8 \times 10^{-8} \times \frac{0.4 \times \pi}{180} \times (0.1)^2}{5 \times 0.02 \times 0.5} \Rightarrow 6.62 \times 10^{11} \, Nm^2 \, kg^{-2}$$

EXAMPLE – 02: সূর্যের চারদিকে শুক্র ও পৃথিবীর কক্ষপথের ব্যাসার্ধের অনুপাত 54:75। পৃথিবীতে 365দিনে এক বছর হলে শুক্রতে কত দিনে এক বছর।

[কেপলার ও Newton এর সমন্বয় সূত্র হতে] $T^2 = \frac{4\pi^2}{GM} \times r^3$

EXAMPLE-03: সূর্যের চারিদিকে আবর্তনরত পৃথিবী ও বৃহস্পতির কক্ষপথের ব্যাস যথাক্রমে $1.49 \times 10^{11} m$ এবং $4.25 \times 10^{11} m$ । পৃথিবীতে 365.25 দিনে এক বছর হলে বৃহস্প্রতিতে কত দিনে এক বছর হবে?

সমাধান ঃ
$$T_1 = 365.25$$
 দিন; $R_1 = 1.49 \times 10^{11} m$; $R_2 = 4.25 \times 10^{11} m$; $T_2 = ?$

$$\begin{aligned} &\frac{T_1^2}{r_1^3} = \frac{T_2^2}{r_2^3} \, \overline{\blacktriangleleft}, \ T_2^2 = \left(\frac{r_2}{r_1}\right)^3 \times T_1^2 \\ &\therefore T_2 = T_1 \times \left(\frac{r_2}{r_1}\right)^{\frac{3}{2}} = 365.25 \times \left(\frac{4.25 \times 10^{11}}{1.49 \times 10^{11}}\right)^{1.5} \end{aligned}$$

= 1759.5 days(Ans)

EXAMPLE - 04: F হলো সূর্যের অবস্থান। এর চতুর্দিকে উপবৃত্তাকার কক্ষপথে আবর্তনকালে A হতে B তে আসতে কোনো গ্রহের 50 দিন সময় লাগে। তাহলে CD দূরত্ব অতিক্রম করতে কত সময় লাগবে? (AFBএর ক্ষেত্রফল = $4 \times CFD$ এর ক্ষেত্রফল)

সমাধান ঃ AFB এর ক্ষেত্রফল $= 4 \times CFD$ এর ক্ষেত্রফল

AB এর অতিক্রম প্রয়োজনীয় সময়, $t_1 = 50 \; days$

CD এর অতিক্রম প্রয়োজনীয় সময়, t₂= ?

$$\frac{\text{AFB} \text{ এর ক্ষেত্রফল}}{\text{CFD} \text{ এর ক্ষেত্রফল}} \Rightarrow \frac{4 \times \text{CFD}}{\text{CFD}} \text{ এর ক্ষেত্রফল}}{\text{CFD}} = \frac{t_1}{t_2} \text{ div}, \ t_2 = \frac{t_1}{4} = \frac{50 \text{ days}}{4} = 12.3 \text{ days}$$

Type -08: মুক্তিবেগ সংক্রান্ত

EXAMPLE – 01: পৃথিবীর কৌনিক বেগ বর্তমানের কতগুণ হলে ভূপৃষ্ঠের একটি বস্তু মহাশূন্যের দিকে উধাও হবার উপক্রম হবে ?

সমাধান ঃ পৃথিবীর ব্যাসার্ধ r হলে, উধাও হবার উপক্রমনের জন্য শর্ত, $mg=rac{mv^2}{r}$ -----(1)

বর্তমানে পৃথিবীর কৌনিক বেগ ω_p এবং উধাও হবার উপক্রম কালে কৌনিক বেগ $\mathrm{w_f}$ হলে,

$$\omega_p = rac{2\pi}{86400}$$
 এবং (1) নং থেকে পাই সাম্যবস্থায়,

$$g = \frac{V^2}{r} \triangleleft g = \omega_f^2 r \Rightarrow \omega_f = \sqrt{\frac{g}{r}}$$

 $rac{w_f}{\omega_p} \, pprox \, 17$ গুন। অর্থাৎ বর্তমানে 17 গুন হতে হবে। $({
m Ans})$

উধাও হওয়ার ক্ষেত্রে ,
$$v=\omega_f r=\sqrt{2gr}\implies \omega_f=\sqrt{\frac{2g}{r}}=\frac{\omega_f}{\omega_p}=\sqrt{\frac{2g/r}{\frac{2\pi}{86400}}}pprox 24$$
 গুণ।

EXAMPLE-02: মঙ্গল গ্রহের ভর পৃথিবীর ভরের 0.018 গুন। এবং ব্যসার্ধ পৃথিবীর ব্যাসার্ধের 0.532 গুন হলে, মঙ্গল গ্রহে একটি বস্তুর মুক্তবেগ কত হবে? (পৃথিবীর ব্যাসার্ধ $6400 {
m km}$)

সমাধান ${
m 8~M_m} = 0.108~{
m M_e}\, {
m ;}~~ {
m R}_{
m m} = 0.532~{
m R}_{
m e} = 0.532 \times 6.4 \times 10^6 {
m m} = 3404800 {
m m}$

$$R_e = 6.4 \times 10^6 \text{m};$$

$$V_m = ?$$

$$V_{\rm m} = \sqrt{\frac{2GM_m}{R_m}}; \qquad G = \frac{g_e R_e^2}{M_e}$$

$$\therefore V_{\rm m} = \sqrt{\frac{\frac{2g_e R_e^2}{M_e} \times 0.108M_e}{R_m}} = \sqrt{\frac{2g_e R_e^2 \times 0.108}{R_m}} = \frac{\sqrt{2 \times 9.8ms^{-2} \times (6.4 \times 10^6 \, m)^2 \times 0.108}}{\sqrt{3404800m}}$$

$$V_m = 5046 \text{ms}^{-1} = 5.04 \text{kms}^{-1}$$
 (Ans)

EXAMPLE – 03: পৃথিবীর মহাকর্ষীয় ক্ষেত্র হতে একটি বস্তু নিক্রমনের জন্য এর প্রক্ষেপণের ন্যূনতম বেগ নির্ণয় কর।

সমাধানঃ dw = Fdr

$$\int dw = w = \int_{R}^{\infty} F \cdot dr = \int_{R}^{\infty} \frac{GMm}{r^{2}} dr = -\frac{GMm}{r} \Big]_{R}^{\infty} = \frac{GMm}{R}$$

$$w = \frac{1}{2} m v_{e}^{2} = \frac{GMm}{R}$$

$$V_{e} = \sqrt{\frac{2GM}{R}} = \sqrt{2gR} = \sqrt{2 \times 9.8 \times 6.3 \times 10^{5}} = 11.2 \, km s^{-1} = 7 \, mile/s$$

Note:
$$\Delta w = F.ds = mads = m.v. \frac{ds}{dt} = mvdv$$

=> $w = \int \Delta w = \int_0^v mv.dv = m \frac{v^2}{2} \Big]_0^v = \frac{1}{2} mv^2$

* পৃথিবীর চারদিকে সমকৌণিক বেগে কোন বস্তু গোড়ার শর্ত ঃ $v^2 \geqslant \mathrm{Rg}$

EXAMPLE - 04: তিনটি বস্তুকে পৃথিবী পৃষ্ঠ হতে যথাক্রমে $6kms^{-1}$, $8kms^{-1}$ এবং $11.5kms^{-1}$ বেগে নিক্ষেপ করা হলো। বস্তুগুলোর পরিণতি কি হবে?

সমাধান ៖ $V_1 = 6 \text{kms}^{-1}$; $V_2 = 8 \text{kms}^{-1}$; $V_3 = 11.5 \text{kms}^{-1}$

বের করতে হবে, বস্তুশুলোর পরিণতি অর্থাৎ এর পৃথিবীর মহাকর্ষের প্রভাব কাটাতে পারবে কিনা এবং কাটালে কোন পথে পৃথিবী ত্যাগ করবে।

আমরা জানি, কোনো বস্তুর উৎক্ষেপণ বেগ $7.88 km s^{-1}$ অপেক্ষা কম হলে তা উপবৃত্তাকার পথে পৃথিবীকে প্রদক্ষিণ করে এবং অবশেষে পৃথিবীতে ফিরে আসবে । যেহেতু, $V_1 = 6 km s^{-1} < 7.88 km s^{-1}$ তাই নিক্ষিপ্ত প্রথম বস্তুটি উপবৃত্তাকার পথে কিছু সময়ের জন্য প্রথিবীকে প্রদক্ষিণ করবে এবং পৃথিবীতে ফিরে আসবে । আবার, ভূপৃষ্ঠ হতে কোন বস্তুর উৎক্ষেপন বেগ $7.8 m s^{-1}$ অপেক্ষা বেশি কিন্তু $11.2 km s^{-1}$ অপেক্ষা কম হলে, বস্তুটি পৃথিবীকে একটি ফোকাসে রেখে উপবৃত্তাকার পথে পৃথিবীকে প্রদক্ষিণ করতে থাকবে ।

যেহেতু দ্বিতীয় বস্তুটির নিক্ষেপন বেগ $V_2=8kms^{-1}$ এবং $7.88kms^{-1}{<}8kms^{-1}{<}1.2kms^{-1}$ তাই দ্বিতীয় বস্তুটি পৃথিবীকে একটি ফোকাসে রেখে উপবৃত্তাকার কক্ষপথে পৃথিবীকে প্রদক্ষিণ করবে।

পুনরায় ভূপৃষ্ঠ হতে নিক্ষিপ্ত কোন বস্তুর উৎক্ষেপন বেগ $11.2 {
m km s}^{-1}$ অপেক্ষা বেশি হলে বস্তুটি পরাবৃত্ত পথে পৃথিবী পৃষ্ঠ ছেড়ে যাবে এবং তা আর পৃথিবীতে ফিরে আসবে না।

যেহেতু তৃতীয় বস্তুটির উৎক্ষেপন বেগ, $V_3=11.5 km s^{-1}>11.2 km s^{-1}$ তাই উৎক্ষেপনের পর তৃতীয় বস্তুটি পরাবৃত্ত পথে পৃথিবী পৃষ্ঠ ছেড়ে যাবে এবং তা আর পৃথিবীতে ফেরত আসবে না।

Practice: একটি বস্তুকে 5kms⁻¹দ্রুতিতে খাড়া উপরের দিকে নিক্ষেপ করলে, বস্তুটি ভূপৃষ্ঠ থেকে কত উপরে উঠবে?

$$\begin{aligned} \text{Hint: } F = & \frac{\text{GMm}}{r^2} \\ & d\omega = F dr \, \text{ wifth } dw = \frac{\text{GMm}}{r^2} \, dr \\ & \text{গতিশাক্ত} = \text{কৃতকাজ} \end{aligned} \qquad \begin{vmatrix} M = 6 \times 60^{24} \text{kg} \\ r = 6.4 \times 60^6 \text{m} \\ G = 6.67 \times 10^{-11} \text{Nm}^2/\text{kg}^2 \\ V = 5 \text{kms}^{-1} = 5000 \text{ms}^{-1} \\ & \cdot \frac{1}{2} \text{mv}^2 = \text{GMm} \int_r^h \frac{1}{r^2} dr \end{aligned}$$

EXERCISES

০১। পৃথিবীকে $6400 \mathrm{km}$ ব্যাসার্ধের একটি গোলক ধরলে ভূ-পৃষ্ঠ হতে কত উচ্চতায় অভিকর্ষীয় ত্বরণের মান ভূ-পৃষ্ঠের অভিকর্ষীয় ত্বরণের মানের $\frac{1}{64}$ অংশ হবে? [উঃ $4.48 \times 10^4 \mathrm{\ km}$]

০২। মহাশূন্য যান ভস্টক- ১-এ করে প্রথম মহাশূন্যচারী ইউরি গ্যাগারিন 89 মিনিট 6 সেকেন্ডে একবার পৃথিবীকে প্রদক্ষিণ করেন। তিনি কত উচ্চতায় থেকে পৃথিবীকে প্রদক্ষিণ করেছিলেন? তার মহাশূন্যযানের বেগ কত ছিল? পৃথিবীর ব্যাসার্ধ $R=6.371\times10^6 m$; পৃথিবীর ভর $M=5.975\times10^{24}~kg$ এবং $G=6.673\times10^{-11} N~m^2~kg^{-2}$ [উঃ 237.658 km; $7.59~km~s^{-1}$]

০৩। বৃহস্পতির ভর এবং ব্যাসার্ধ যথাক্রমে $1.9 \times 10^{27}~{
m kg}$ এবং $7 \times 10^7 {
m m}$ । বৃহস্পতিতে মুক্তিবেগ নির্ণয় কর। [উঃ $60.3 {
m km~s^{-1}}$]

০৪। পৃথিবীর নিজ অক্ষের উপর আবর্তনকাল 24 hrs মহাকর্ষীয় ধ্রুবক $6.7 \times 10^{-11} Nm^2~kg^{-2}$ পৃথিবীর ভর $6 \times 10^{-24}~kg$ এবং পৃথিবীর ব্যাসার্ধ $6.4 \times 10^6 m$ হলে একটি ভূ-স্থির উপগ্রহের উচ্চতা এবং বেগ নির্ণয় কর। [উঃ $3.6 \times 10^4 k$; $3.1 kms^{-1}$]

০৫। সূর্যের চারদিকে শুক্র ও পৃথিবীর কক্ষপথের ব্যাসার্ধের অনুপাত 54:75। পৃথিবীতে 365 দিকে এক বছার হলে শুক্রতে কত দিনে এক বছর হবে? [উঃ 223 দিন]

০৬। একটা satellite কে পৃথিবী পৃষ্ট হতে h উচ্চতায় তুলে এর প্রান্তবেগে পৌছাতে মোট কত কাজ করতে হবে ?

(i)
$$W = -\int \frac{GMm}{r^2} dr + \frac{1}{2} m v_t^2$$

(ii)
$$W = \frac{1}{2} m v_t^2$$

(iii)
$$W = -\int_{R}^{R+h} \frac{GMm}{r^2} dr$$

(iv)
$$W = \int_{r}^{R+h} \frac{GMm}{r^2} dr$$