Corso di Laurea: Ingegneria Informatica

Esame di F	Sisica Generale del $04/02/2014$		
Cognome:		Nome:	
Matricola:		Anno di corso	:

Esercizio 1

Un proiettile di massa m=100 g viene sparato ad una altezza h contro un cubo di legno di lato a=30 cm e densita' $\rho=0.8$ g/cm³ La velocità del proiettile è orizzontale e pari a $V_0=100$ m/s; si consideri istantanea la penetrazione del proiettile nel legno e facciamo l' ipotesi che il proiettile si fermi a distanza d=a/2 dalla parete di ingresso.

Il cubo di legno si trova su una superficie scabra con attrito radente caratterizzato da un coefficiente di attrito dinamico $\mu_d=0.7$.

a) Supponendo che h=a/2, calcolare la distanza percorsa dal cubo prima di fermarsi.

$$d = \dots \dots$$

b) Calcolare a che altezza h occorre colpire il cubo per fare in modo che subito dopo l'urto il cubo ruoti di $\pi/2$ (senza scivolare) intorno allo spigolo O (in questo caso si consideri il cubo incernierato in O. Momento di inerzia di un cubo rispetto ad un asse passante per il suo baricentro $I=\frac{1}{6}ma^2$

$$h = \dots \dots \dots$$

(punteggio: 1.a = 5 punti, 1.b = 10 punti)

Esercizio 2

Una spira quadrata di lato a=10 cm e resistenza $R=0.5~\Omega$ si trova a distanza d=10 cm da un filo indefinito percorso da una corrente variabile nel tempo. In particolare, nell'intervallo di tempo compreso fra 0 e 4 s la corrente ha un andamento del tipo: $I(t)=A(t_0-t)t$ con $A=100A/s^2$ e $t_0=4$ s. La spira è indeformabile ed è trattenuta nella sua posizione iniziale da una forza opportuna.

Trovare

a) l'espressione della fem indotta nella spira in funzione del tempo ed il suo valore massimo (5punti)

$$f.e.m.(t) = \dots f.e.m._{max} = \dots$$

b) l'istante in cui la fem si annulla (5 punti)

$$t = \dots$$

c) gli istanti in cui la forza con la quale si deve trattenere la spira nella sua posizione e' massima in modulo (5punti)

$$t = \dots, , \dots, , \dots, , \dots, , \dots, , \dots,$$

]

(punteggio: 2.a.b.c = 5 punti)