Assignment

Title :-Implement Min, Max, Sum and Ang operations Using parallel reduction. Objective: Understand about the Concept of Min, Max, Sum & Aug operations using parallel reduction. Problem Statement :-Perform the Min, Max, Bum & Avg operations using parallel reduction. 5/W & H/W Requirements: - 64 bit open source linux & Windows & its derivatives - CPU Theory: Parallel Reduction :-- Parallel reduction Works by using half number of threads of elements in dataset - Every thread calculates minimum of its own element and some other element The resultant element is forwarded to next

- The number of threads is then reduced by half and then process repeated, until there is just single element remaining which is result of a operation.
- With CUDA you must remember that execution unit for given sm is a Wrap. Thus, any amount of threads less than one Wrap is underutilization hardware.
- Following fig. See item being Compared With one from other half of dataset.

- Patallel reduction refers to algorithms
 Which Combine an array of elements producing a single Value as a result.
- Problems eligible for their algorithm include those Which involve & perators that are used communative in nature.

Parallel Sum

Adding Values is an associative operation. So, We can try Something like this,
((13+27) + (15+14) + (33+2)+ (24+6))

134

This way is much better because now we can execute it in parallel

Porallel Programming

- · Task Parallelism
 - Task parallelism arises when there are many tasks or functions that Can be operated independently and largely in parallel.
 - It focuses on distributing functions acrossmultiple Cores.
- · Data Parallelism
 - Data parallelism arises when there are many data items that Can be operated on at the same time.
 - It focuses on distributing the data across multiple Cores,

	CUDA
	let's figure out using CUDA.
	13 27 15 24 33 2 24 6
•	1 1
	40 29 35 30
	0 - 0 -
	69 65
	(0)
	134
	- Assume N as the no. of elements of the
	elements in an array, We Start N/2
	threads, one thread for every 2 elements.
	- Each thread Computes the Gum of the Corres
	ponding 2 elements, Storing the result at
	the position of first one.
	- Charalinely each 6tes:
	- Iteratively each Step:

- · The no. of threads halved (for e.g. Starting With 4 then 2, 1)
- · Doubles the Step Size between Corresponding 2 elements
 (Starting With 1, then 2, 4)
- After Some iterations, the orduction result will be Stored in the first element of the array.

· Conclusion:We perform the Min, Max, Sum and Aug
operations using parallel orduction.