Lösungsstrategien für NP-schwere Probleme der Kombinatorischen Optimierung

— Übungsblatt 8 —

Walter Stieben (4stieben@inf)

Tim Reipschläger (4reipsch@inf)

Louis Kobras (4kobras@inf)

Hauke Stieler (4stieler@inf)

Abgabe am: 20. Juni 2016

Aufgabe 8.1

Zunächst sei bemerkt, dass $c(T) \le c(H^*)$ gilt, alle Kanten in T haben weniger oder gleich viele Kosten wie die aus H^* .

Beweis: T ist ein minimaler Spannbaum, man kann also keine Kanten weglassen und trotzdem einen zusammenhängenden Graphen haben und die vorhandenen Kanten sind diejenigen mit minimalem Gewicht womit $c(T) \not> c(H^*)$ gilt.

Vor dem Bilden von T^+ gilt für T die Ungleichung $c(T) < c(H^*)$. Da T ein Baum ist und keinen Zyklus bildet, enthält T keine Tour für das Δ -TSP, somit kann $c(T) = c(H^*)$ nie gelten und es gilt $c(T) < c(H^*)$.

Durch die Hinzunahme von M gibt es einen Zyklus für das Δ -TSP, somit ist $c(T^+) = c(H^*)$, zudem ist $c(T^+) = c(H) = c(T) + c(M)$. aus (*) wissen wir, dass $c(M) \le \frac{1}{2} \cdot c(H^*)$ gilt. Da alle Kanten aus T^+ in H^* enthalten sind gilt für T^+ :

$$c(T^+) = c(H) = c(T) + c(M) \le c(H^*) + \frac{1}{2} \cdot c(H^*) = \frac{3}{2} \cdot c(H^*)$$

Insgesamt gilt also $c(H) \leq \frac{3}{2} \cdot c(H^*)$.

Aufgabe 8.2

Algorithm 1 Approx-3D-Matching

```
1: repeat
2: Nehme erstes Tripel t \in T in M auf
3: for alle t_i \in T do
4: if t \cap t_i \neq \emptyset then
5: lösche t aus T
6: end if
7: end for
8: until T = \emptyset
```

Um zu zeigen, dass für das mit diesem Algorithmus gefundene M die Ungleichung $|M| \ge \frac{1}{3} \cdot |M^*|$ gilt machen wir folgende Annahme:

Walter Stieben, Tim Reipschläger, Louis Kobras, Hauke Stieler

Seite 1 von 2

Wir betrachten 4 Tripel aus T und nehmen an, dass 3 dieser Tripel Elemente von M^* sind. Wir nehmen weiterhin an, dass das übrig gebliebene Tripel jeweils ein Element mit jedem der 3 Tripel aus M^* gemeinsam hat.

Nehmen wir nun das Tripel in M auf, das nicht in M^* ist, so streichen wir genau die 3 Tripel, die Element M^* sind von der optimalen Lösung. Selbst wenn es mehrere optimale Lösungen gibt (also mehrere M^* mit gleichen Betrag), streichen wir aus jeder dieser optimalen Lösungen genau 3.

Wir können offensichtlich nur maximal 3 Tripel jeder beliebigen optimalen Lösung M^* streichen, da die 3 Elemente aus unserem schlecht gewählten Tripel maximal in 3 unterschiedlichen Tripeln von M^* vorkommen können. Das liegt daran, dass sich die Tripel aus M^* nicht überschneiden dürfen, da es sonst keine gültige Lösung wäre und somit kann ein Element unseres schlecht gewählten Tripels immer nur genau in einem Tripel aus M^* Vorkommen. Wenn wir für unsere Annahme nun |M| und $|M^*|$ vergleichen, dann haben wir in M ein Tripel und in M^* 3 Tripel. Demnach ist $|M| = \frac{1}{3} \cdot |M^*|$ und wir sind noch in der Grenze.

Der beschriebene Fall ist offensichtlich der worst-case, denn wenn unser gewähltes Tripel nur 2 Tripel aus M^* schneidet, erhalten wir |M|=1, $|M^*|=2$ und somit $|M|=\frac{1}{2}\cdot |M^*|$, womit wir noch in der Grenze ist. Schneidet Das Schlecht gewählte Tripel nur ein Element aus M^* , muss das gewählte Tripel in einer anderen optimalen Lösung M_2^* sein, da man die 2 Tripel offensichtlich austauschen kann. Allerdings würde dieser Fall der Annahme widersprechen.

Somit findet unser Algorithmus immer Mengen M, für die gilt $|M| \geq \frac{1}{3}|M^*|$.