1 Une première preuve

Montrons que $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x > y$.

Soit $x \in \mathbb{R}$.

Montrons que $\exists y \in \mathbb{R}, x > y$.

On pose y = x - 1

Montrons que x > y

On a bien $y \in \mathbb{R}$ et de plus comme -1 < 0, on a x-1 < x et donc y < x. Ce qui peut se réécrire x > y.

On a vu que y convient. On a donc montré $\exists y \in \mathbb{R}, x > y.$

Ce raisonnement est valable quel que soit x. Ainsi on a montré $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x > y$. CQFD.

2 Par l'absurde

Montrons que $0 \neq 1$.

On raisonne par l'absurde en supposant 0 = 1.

On a donc 1=2 ou encore par symétrie, 2=1. Or le pape et moi somme deux personnes distinctes donc puisque 2=1, le pape et moi somme une seule et même personne. Autrement dit : je suis le pape. C'est absurde car je ne parle pas latin et je n'ai même pas de chapeau.

On a aboutit a une contradiction, il était donc absurde de supposer 0 = 1. Ainsi on a montré que $0 \neq 1$.

3 Continuité de la fonction sinus

Montrons que $\forall \varepsilon > 0, \exists \eta > 0, \forall x \in \mathbb{R}, (|x| < \eta) \Rightarrow (|\sin(x)| < \varepsilon).$

Soit $\varepsilon > 0$.

Montrons que $\exists \eta > 0, \forall x \in \mathbb{R}, (|x| < \eta) \Rightarrow (|\sin(x)| < \varepsilon).$

On pose $\eta = \varepsilon$.

On a $\eta > 0$ par définition de ε .

Montrons que $\forall x \in \mathbb{R}, (|x| < \eta) \Rightarrow (|\sin(x)| < \varepsilon).$

Soit $x \in \mathbb{R}$.

Montrons que $(|x| < \eta) \Rightarrow (|\sin(x)| < \varepsilon)$.

On suppose $|x| < \eta$.

Montrons que $|\sin(x)| < \varepsilon$.

Par inégalité des accroissement finis appliqué à la fonction C^1 sinus sur [0, x] (ou [x, 0] suivant le signe de x), on a $|\sin(x) - \sin(0)| \le 1 \times |x - 0|$ ou encore $|\sin(x)| \le |x|$.

Dès lors, comme $|x| < \eta$ et $\eta = \varepsilon$ on a $|\sin(x)| < \varepsilon$.

On a montré $|\sin(x)|<\varepsilon$ sous l'hypothèse $|x|<\eta$. Ainsi on a montré $(|x|<\eta)\Rightarrow (|\sin(x)|<\varepsilon)$

Ce raisonnement est valable quel que soit x. Donc on a montré $\forall x \in \mathbb{R}, (|x| < \eta) \Rightarrow (|\sin(x)| < \varepsilon).$

On a vu que η convient.

Donc on a montré $\exists \eta > 0, \forall x \in \mathbb{R}, (|x| < \eta) \Rightarrow (|\sin(x)| < \varepsilon).$

Ce raisonnement est valable quel que soit ε . Et finalement on a montré que la fonction sin est continue en 0 (en utilisant qu'elle est de classe \mathcal{C}^1 , mais là n'est pas la question).

4 Disjonction de cas

4.1 Connexité des intervalles

```
Soient a, b \in \mathbb{R} avec a < b
    Montrons que l'intervalle [a, b] est connexe.
   c'est-à-dire :
   Montrons que \forall u, v \in [a, b], [u, v] \subseteq [a, b].
Soit u, v \in [a, b].
       Montrons que [u, v] \subseteq [a, b].
       Distinguons les cas:
   Cas 1: u > v.
          Dans ce cas [u, v] est vide et l'inclusion est automatique.
   Cas 2: u \leq v.
          Montrons que \forall x \in [u, v], x \in [a, b[.
      Soit x \in [u, v].
             Montrons que x \in [a, b[.
             On a u \leq x \leq v par définition de x, et de plus
              • comme u \in [a, b[, alors a \le u, et ainsi a \le u \le x
              • et de même comme v \in [a, b[ , alors v < b et donc x \le v < b.
          En conclusion, par transitivité a \le x < b ce qui signifie que x \in [a,b[ .
      Ce raisonnement est valable quel que soit x. On a donc montré que
      [u,v] \subseteq [a,b] dans ce cas.
```

L'inclusion étant vraie dans tous les cas, on a montré $[u,v] \subseteq [a,b[$

Ce raisonnement est valable quel que soit u,v. On a donc montré que [a,b[est connexe.

4.2 Résolution d'une inéquation

Soit à résoudre $|x-3| \le |2x-3|$

4.2.1 Analyse

Soit $x \in \mathbb{R}$ solution de l'inéquation.

Distinguons les cas:

Cas 1: x-3 < 0.

Alors |x - 3| = -x + 3.

Distinguons les cas:

Sous-cas 1 : $2x - 3 \ge 0$.

On a alors |2x-3|=2x-3 et donc x vérifie $3-x\leq 2x-3$ ou encore $3x\geq 6$ c'est-à-dire $x\geq 2$. Or on a supposé x<3 donc $x\in [2,3[$.

Sous-cas 2: 2x - 3 < 0.

On a alors |2x-3|=-2x+3 et donc x vérifie $3-x\leq 3-2x$ ou encore $x\leq 0$.

On peut donc avoir les sous-cas suivants : $x \in [2,3]$ ou $x \le 0$.

Cas $2: x - 3 \ge 0$.

Alors |x-3|=x-3 et d'autre part $x\geq 3$ et donc $2x\geq 6$ ainsi $2x-3\geq 0$. On a donc |2x-3|=2x-3. Il s'en suit donc que x vérifie $x-3\leq 2x-3$ ou encore $x\geq 0$. Ce qui est automatique sous notre hypothèse.

En conclusion on peut avoir les cas suivants : $x \le 0$, $x \in [2,3[$ et $x \ge 3$.

Ce raisonnement est valable quel que soit x. Ainsi toute solution de l'équation est dans $]-\infty,0]\cup[2,+\infty[$.