Clustering with Multi-Layer Graphs: A Spectral Perspective [1]

Souheib Ben Mabrouk - Imen Mahdi

Supervisor: Jean Feydey

December 18, 2023

Contents

- Context
 - Multi-Layer Graphs
 - Spectral Clustering
- Methodology
 - Clustering with Generalized Eigen-Decomposition
 - Clustering with Spectral Regularization
- 3 Experiments
 - Datasets
 - Algorithms and Evaluation Metrics
 - Experiments : Results
- 4 Limitations and Extensions
 - Sensitivity to Layer Importance Order
 - Modularity Analysis
 - Scalability
 - Reproducibility
- Conclusion

- Context
 - Multi-Layer Graphs
 - Spectral Clustering
- 2 Methodolog
 - Clustering with Generalized Eigen-Decomposition
 - Clustering with Spectral Regularization
- Experiments
 - Datasets
 - Algorithms and Evaluation Metrics
 - Experiments : Results
- 4 Limitations and Extensions
 - Sensitivity to Layer Importance Order
 - Modularity Analysis
 - Scalability
 - Reproducibility
- Conclusion

Context: Multi-Layer Graphs

A multilayer graph is a collection of interconnected graphs that share a common set of vertices while featuring distinct sets of edges.

⇒ inherent representation for multi-model data.

Figure 1: A multi-layer graph representing AUCS social network interactions.

Spectral Clustering [2]

A conventional clustering algorithm:

- Identifies k clusters in a single-layer graph.
- Selects the k smallest eigenvalues of graph Laplacian matrix (L) and corresponding eigenvectors $(u_1,...,u_k)$, and applies K-means on rows of the spectral embedding matrix U composed from the eigenvectors as its columns.
- Theoretical guarantees of the effectiveness of vertex projection into a lower-dimensional spectral domain.
- \Longrightarrow Extension to Multi-layer Graphs using a common spectrum of the Laplacian matrices of the different layers.

- Context
 - Multi-Layer Graphs
 - Spectral Clustering
- Methodology
 - Clustering with Generalized Eigen-Decomposition
 - Clustering with Spectral Regularization
- Experiments
 - Datasets
 - Algorithms and Evaluation Metrics
 - Experiments : Results
- 4 Limitations and Extensions
 - Sensitivity to Layer Importance Order
 - Modularity Analysis
 - Scalability
 - Reproducibility
- Conclusion

Methodology: Clustering with Generalized Eigen-Decomposition

Core Idea:

- **Aggregate** information from multiple layers : Find matrix P such that $L_{\text{TW}}^{(i)} \approx P \Lambda^{(i)} P^{-1}$ for all i.
- Prioritize information from the most relevant layer for clustering.
- Compensation for sparse layers through the integration of information from remaining layers through optimization.

Optimization Problem:

$$\min_{P,Q} \frac{1}{2} \sum_{i=1}^{M} \|L_{\text{rw}}^{(i)} - P\Lambda^{(i)}Q\|_F^2 + \frac{\alpha}{2} (\|P\|_F^2 + \|Q\|_F^2) + \frac{\beta}{2} \|PQ - I_n\|_F^2$$

Methodology: Clustering with Spectral Regularization (1/2)

- Core Idea: Map the graph into 1-dimensional space such that projections of connected vertices are preserved as close as possible.
- Find a smoothing function $f: V \to \mathbb{R}$ that preserves the proximity between the vertices for each layer:

$$\arg\min_{f} f^{T} L f \ s.t \ ||f|| = 1, f \perp 1$$

• If the eigenvalues are small, the eigenvectors of *L* are **good** candidates.

Methodology: Clustering with Spectral Regularization (2/2)

• For 2 layers: we consider the first layer as the most informative and we compute the eigenvectors of $L_{rw}^{(0)}$ denoted $(u_1,...,u_k)$

The smooth spectrum:
$$\arg\min_{f} \frac{1}{2} \frac{\|f_i - u_i\|^2}{\|f_i\|_{\text{close to } u_i}} + \underbrace{\lambda f_i^T L_{rw}^{(1)} f_i}_{\text{f smooth to the next layer}}$$

- For m layers: we can repeat the process by considering the current combination and the next informative layer.
- ⇒ The final function is the **join spectrum** for the clustering.

- Context
 - Multi-Layer Graphs
 - Spectral Clustering
- 2 Methodolog
 - Clustering with Generalized Eigen-Decomposition
 - Clustering with Spectral Regularization
- 3 Experiments
 - Datasets
 - Algorithms and Evaluation Metrics
 - Experiments : Results
- 4 Limitations and Extensions
 - Sensitivity to Layer Importance Order
 - Modularity Analysis
 - Scalability
 - Reproducibility
- Conclusion

Experiments: Datasets

Cora[3]

- Extensive bibliographic repository with diverse research papers.
- Selected 900 papers within three ground truth clusters.

authors

Figure 2: Spy plots of the adjacency matrices for the layers of the CORA dataset.

MIT Reality Mining [4]

- Social network of 94 mobile users on the MIT campus.
- After preprocessing, narrowed down to 90 subjects organized into 7 clusters.

Figure 3: Spy plots of the adjacency matrices for the layers of the MIT dataset.

Experiments: Datasets

AUCS[5]

- Extension to the original work with relationships among 61 university employees.
- Each subject is affiliated with one of 8 research groups, designated as the ground truth cluster.

Figure 4: Spy plots of the adjacency matrices for the layers of the Aucs dataset.

Experiments: Algorithms and Evaluation Metrics

- Implementation of Spectral Clustering method for single-layer graphs, Generalized Eigen-Decomposition (SC-GED), and Spectral Regularization (SC-SR).
- Baseline methods: Kernel K-means (K-Kmeans) algorithm, the Spectral Clustering applied to Single Layers, the averaged Laplacian matrix algorithm (SC-AL), and the summation of adjacency matrices (SC-SUM)
- Evaluation of the performance using the Purity, the Normalized Mutual Information (NMI), and Rand Index (RI).

Results

Cora Dataset

	Single layer graph		Multi-layer graph				
	Titles	Citations	SC-SUM	SC-AL	K-Kmeans	SC-GED	SC-SR
Purity	0.609	0.521	0.523	0.526	0.705	0.560	0.584
NMI	0.237	0.005	0.009	0.018	0.427	0.122	0.238
RI	0.524	0.401	0.396	0.396	0.640	0.567	0.600

MIT Dataset

	Single layer graph		Multi-layer graph					
	Friendship	Calls	SC-SUM	SC-AL	K-Kmeans	SC-GED	SC-SR	
Purity	0.578	0.500	0.478	0.478	0.589	0.578	0.433	
NMI	0.361	0.181	0.222	0.220	0.302	0.313	0.202	
RI	0.682	0.414	0.530	0.529	0.571	0.653	0.625	

AUCS Dataset

	Single layer graph		Multi-layer graph					
	Lunch	Facebook	SC-SUM	SC-AL	K-Kmeans	SC-GED	SC-SR	
Purity	0.870	0.500	0.833	0.833	0.944	0.889	0.944	
NMI	0.849	0.413	0.857	0.857	0.908	0.880	0.905	
RI	0.937	0.725	0.925	0.925	0.966	0.950	0.962	

- Context
 - Multi-Layer Graphs
 - Spectral Clustering
- 2 Methodolog
 - Clustering with Generalized Eigen-Decomposition
 - Clustering with Spectral Regularization
- Experiments
 - Datasets
 - Algorithms and Evaluation Metrics
 - Experiments : Results
- 4 Limitations and Extensions
 - Sensitivity to Layer Importance Order
 - Modularity Analysis
 - Scalability
 - Reproducibility
- Conclusion

Sensitivity to Layer Importance Order: SC-SR

How to properly sort layers according to their importance?

- Ideally, rely on knowledge of expertise
- Exhaustive search along all different permutations (d! complexity)
- Selection criteria evaluated for each layer

Figure 5: Influence of Informative Layer Order on SC-SR Method Performance evaluated on AUCS Dataset

Modularity Analysis

- Modularity: Measures the quality of a partition. Higher modularity indicates more cohesive clusters, making a layer more meaningful for clustering.
- Evaluate layer ranking from most to least informative.
- AUCS dataset layer analysis shows Co-author and Lunch with the highest modularity.

Table 1: Modularity of Layers Based on Clustering Results

Lunch	Facebook	Leisure	Work	Coauthor
0.599	0.272	0.474	0.400	0.662

Scalability

• Limitations:

- SC-GED method complexity: $O(mn^3)$.
- Complexity arises from eigen-decomposition and matrix inversions.

Appplication:

- Applicable to small networks (approximately 100 nodes, 3 to 5 layers).
- Impractical and non scalable for real-life datasets are larger and more complex.

Reproducibility

Challenges:

- Non-existence of the preprocessing details for Cora and MIT datasets.
- Unclear criteria for paper selection in Cora and node/cluster selection in MIT.
- \implies Variability in results due to different data engineering strategies for adjacency matrix extraction.

Solutions:

- Introduced a new dataset, AUCS, for reproducibility.
- · Carefully constructed adjacency matrices.
- Precise ground truth labels for benchmarking.

- Context
 - Multi-Layer Graphs
 - Spectral Clustering
- 2 Methodolog
 - Clustering with Generalized Eigen-Decomposition
 - Clustering with Spectral Regularization
- 3 Experiments
 - Datasets
 - Algorithms and Evaluation Metrics
 - Experiments : Results
- 4 Limitations and Extensions
 - Sensitivity to Layer Importance Order
 - Modularity Analysis
 - Scalability
 - Reproducibility
- Conclusion

Conclusion

- Re-implemented two spectral-based multi-layer graph clustering methods: SC-GED and SC-SR.
- Extended the evaluation on a new well-constructed dataset.
- Demonstrated a slight improvement over existing methods and competition with certain baselines.
- Emphasized the critical impact of the order of informative layers.
- Encountered challenges such as hyperparameter sensitivity, requiring expert domain knowledge, and facing computational intensity issues with limited scalability.

Thank You for your attention!

References

- [1] Xiaowen Dong, Pascal Frossard, Pierre Vandergheynst, and Nikolai Nefedov
 - Clustering with multi-layer graphs: A spectral perspective. *IEEE Transactions on Signal Processing*, 60(11):5820â5831, 2012.
- [2] B. Luo, R. C. Wilson, and E. R. Hancock. Spectral clustering of graphs. In Nicolai Petkov and Michel A. Westenberg, editors, *Computer Analysis of Images and Patterns*, pages 540–548, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.
- [3] Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the construction of internet portals with machine learning. *Information Retrieval Journal*, 3:127–163, 2000. www.research.whizbang.com/data.

References

- [4] Nathan Eagle, Alex Pentland, and David Lazer. Inferring social network structure using mobile phone data. Proceedings of the National Academy of Sciences (PNAS), 106(36):15274–15278, 2009.
- [5] Luca Rossi and Matteo Magnani. Towards effective visual analytics on multiplex and multilayer networks. Chaos, Solitons and Fractals, 72:68–76, 2015.
- [6] Ulrike von Luxburg.A tutorial on spectral clustering.Statistics and Computing, 17(4):395–416, 12 2007.
- [7] Liang Liu, Zhao Kang, Jiajia Ruan, and Xixu He. Multilayer graph contrastive clustering network. *Information Sciences*, 613:256–267, 2022.