

CAD System Deep Learning Approach

Tewodros Arega, Abdullah Thabit

Project Objectives

- Build a CAD system to address two main problems:
 - Skin Lesion Classification
 - 6000 images (half benign and half other classes)

- Histopathology Classification
 - 29494 images (half benign and half malignant)

CAD System Framework

First Experiment: Transfer Learning

- VGG16
- Resnet50
- Initial Hyperparameters:
- Optimizer: Adadelta
- Lr= 0.001
- Epochs = 50
- The models Performed about the same
- VGG16 (acc) = 77.9%
- Resnet50= 78.1%
- Training Loss is high meaning the models couldn't learn the dataset very well

Switch to fine tuning:

- Vgg16
- Resnet50
- Densenet161

- VGG16 = 80%
- Resnet50= 81%
- Densenet161 = 84%
- Training loss now goes very low, but there is big over fitting from the first epochs!!

Apply Augmentation:

- Contrast and Saturation
- Rotation
- Flipping

Apply Augmentation:

- Vgg16
- Densenet161
- Resnet50
- Resnet34
- InceptionV3

- The models Performance increased
- Vgg16 = 86%
- Resnet34 = 86%
- Resnet50 = 86%
- Densenet161 = 87%
- InceptionV3 = 56% (failed)
- Overfitting reduced, but still present

Apply Stain Normalization:

Macenko stain normalization 'A method for normalizing histology slides for quantitative analysis'

Apply Stain Normalization with two setups:

- With Augmentation
- Without Augmentation
- Applied on Resnet34

- The models Performance decreased
- Without Augmentation = 82%
- With Augmentation = 84%
- Stain normalization led to corrupting the features extracted with the deep learning model, and led to a worse performance

Hyperparameter tuning:

Applied on Resnet34

- Best parameters found:
- Optimizer = SGD
- Lr = 0.001
- Momentum = 0.9
- Lr_scheduler = No
- Batch size = 16
- Resnet34 = 88.9%
- SGD with these parameters converge faster and to a lower loss value, but at the expense of oscillation in loss function!

Parameters	Range of options
Optimizer	Adadelta, Adam, SGD
Lr	0.001 - 0.00001
Weight decay(Adam)	0.01 - 0.0001
Momentum (SGD)	0.5 - 0.9
Lr_scheduler	Factor=0.5,0.9 Patience =2, 5
Batch size	6, 16, 32, 64

Apply best parameters on all networks:

- MobileNetV2
- ResNet18
- ResNet34
- ResNet50
- DenseNet121
- DenseNet161
- Vgg16
- Vgg19

- Best model: VGG19
- Al models have higher sensitivity than specificity with VGG19 having a balanced sensitivity to specificity ratio and a high accuracy

Model	Accuracy(%)	Sensitivity(%)	Specificity(%)
MobileNetV2	89.0	91.5	86.8
ResNet18	88.2	95.0	83.2
ResNet34	89.0	91.6	86.5
ResNet50	88.0	91.7	85.0
DenseNet121	89.0	91.8	86.5
DenseNet161	87.9	90.3	85.6
Vgg16	90.8	93.2	88.7
Vgg19	90.5	90.7	90.2

Best Model: VGG19

Training Metrics	
Accuracy	93.7%
Per-class Accuracy	93.3% , 93.9%

Validation Metrics		
Accuracy	90.5%	
Per-class Accuracy	90.3% , 90.8%	

Best Model: VGG19

