Berkeley Ph.D. IO Slides: Adverse Selection and Inertia in Health Insurance Markets: When Nudging Hurts

Benjamin R. Handel

UC-Berkeley

February 7, 2017

Logistics

- Referee Report 2 due this Friday
- Problem Set 1 begin work

INTRODUCTION ADVERSE SELECTION & SWITCHING COSTS

- Two potential impediments to efficient health insurance markets:
 - Switching Costs
 - Adverse Selection
- Switching costs and adverse selection have each been studied in isolation but interaction can also be important
- Primary questions:
 - Are switching costs large?
 - Do switching costs significantly impact consumer choices and markets?
 - How does the degree of adverse selection depend on switching costs?
 - What is the welfare impact of reducing switching costs in equilibrium?

WHAT ARE SWITCHING COSTS?

- Transaction costs:
 - Time / hassle costs of actually changing health plan
 - Time / hassle costs of researching alternative options
- Learning
- Re-Optimization Cost & Biased Beliefs
 - Realized price change vs. ex ante expectations
 - Collection of complex decisions
- Status-quo bias / inertia:
 - Persistence can result from deviations from rational behavior
 - Default option
- Switching providers:
 - Do not measure these in my setting

- Unique propriety panel data set on consumer health plan choice and utilization from large firm
 - Natural experiment: Forced re-enrollment into new health plan menu
 - Detailed medical utilization data
 - Leads to simple identification of switching costs
- Panel discrete choice model quantifies:
 - Switching Costs
 - Ex ante health risk
 - Meterogeneous risk preferences

- Large switching costs lead to poor choices as market changes
 - Pattern of 'active' choice
- Partial equilibrium counterfactual: Policy that reduces switching costs by 75% increases consumer welfare by 6%
- Full equilibrium counterfactual: Same policy improves choices conditional on prices but exacerbates adverse selection, leading to 8% decrease in consumer welfare.
- Doubles existing welfare loss from adverse selection in observed environment.

- Switching costs and choice inadequacy:
 - Farrell & Klemperer (2006)
 - Dube et al. (2009), Shum (2004), Shcherbakov (2009)
 - Madrian & Shea (2001), Samuelson & Zeckhauser (1988)
- Adverse selection and/or insurance choice:
 - Einav et al. (2011), Einav et al. (2009), Carlin & Town (2009)
 - Levin et al. (2010), Lustig (2009), Cardon & Hendel (2001), Cutler & Reber (1998)
 - **3** Abaluck & Gruber (2009), Ericson (2011)
 - Einav et al. (2010), Cutler et al. (2008)

OUTLINE

- 1 Data / Preliminary Results
- 2 CHOICE MODEL
- RESULTS
- 4 Counterfactual Analysis
- **6** Conclusions

MOTIVATING EXAMPLE: SWITCHING COSTS EVIDENCE FROM DOMINATED PLAN CHOICE

Sick people should choose more insurance, healthy people less

MOTIVATING EXAMPLE: SWITCHING COSTS EVIDENCE FROM DOMINATED PLAN CHOICE

30 % of families had plan become completely dominanted over time.
 89% of those families continue to choose plan once it is dominated.

- Individual-level panel dataset provided by large employer ($\approx 10,000$ employees) from 2004-2009:
 - 1 Choices: Health, FSA, HSA, dental, vision
 - Detailed plan characteristics
 - Demographics: Age, gender, income, family structure, time at firm, advanced degree, quantitative, zip code
- Every claim for every individual and covered dependent in PPO
 - Medical: Diagnostic code (ICD-9), procedure code (CPT/NDC), provider id, provider specialty
 - Financial: Total claim, insurer paid, deductible, coinsurance, copayment, claim date, network, pharmacy

• Forced to re-enrollment:

- Major initiative at firm to ensure 'active' choice
- No default option at t₀
- After t₀, employees have prior choice as default option
- 3 PPO post-t₀ only differentiated financially

- Forced to re-enrollment:
 - Major initiative at firm to ensure 'active' choice
 - No default option at t₀
 - After t_0 , employees have prior choice as default option
- 3 PPO post-t₀ only differentiated financially

- Forced to re-enrollment:
 - Major initiative at firm to ensure 'active' choice
 - No default option at t₀
 - After t_0 , employees have prior choice as default option
- 3 PPO post- t_0 only differentiated financially

- Forced to re-enrollment:
 - Major initiative at firm to ensure 'active' choice
 - No default option at t₀
 - After t_0 , employees have prior choice as default option
- 3 PPO post- t_0 only differentiated financially

- Forced to re-enrollment:
 - Major initiative at firm to ensure 'active' choice
 - No default option at t₀
 - After t₀, employees have prior choice as default option
- 3 PPO post-t₀ only differentiated financially

PLAN CHARACTERISTICS

	PPO ₂₅₀	PPO ₅₀₀	PPO ₁₂₀₀
DEDUCTIBLE	250 (750)	500 (1500)	1200 (2400)
CO-INSURANCE	10%	20%	20%
PHY. VISIT CO-PAY	25	25	NA
ER CO-PAY	100	100	NA
MENTAL HEALTH CI	50%	50%	50%
PHARMA CO-PAY	5/25/45*	5/25/45*	NA
	(10/50/75)	(10/50/75)	NA
OUT-OF-POCKET MAX			
Inc.Tier 1	1000	1500	2000
	(3000)	(4500)	(6000)
Tier 2/3	2000	`3000	4000
	(5000)	(7000)	(8000)
Tier 4/5	3000	4000	5000
•	(8000)	(9000)	(10000)

^{*} Perscription Max of 1500 per person

^{**} Out of Network Characteristics not Listed Above

Large Price Changes

- Premiums depend on covered dependents and income
- Significant price changes for years with a default option

SWITCHING COSTS EVIDENCE FROM NEW ENTRANTS

Cohort 1
New Entrants at t_0 N = 1377

Cohort 2
New Entrants at t₁
N = 1305

	Year t ₀	Year t
PPO ₂₅₀	21 %	20 %
PPO ₅₀₀	23 %	26%
PPO ₁₂₀₀	17%	15%
HMO_1	20%	20%
HMO_2	19%	19%
PPO ₂₅₀	-	11%
PPO ₅₀₀	-	43 %
PPO ₁₂₀₀	-	14%
HMO_1	-	20%
HMO_2	_	12%

SWITCHING COSTS EVIDENCE FROM NEW ENTRANTS

Cohort 1
New Entrants at t_0 N = 1377

Cohort 2
New Entrants at t₁
N = 1305

Year to

Year t₁

12%

SWITCHING COSTS EVIDENCE FROM NEW ENTRANTS

Cohort 1
New Entrants at t_0 N = 1377

Cohort 2
New Entrants at t₁
N = 1305

PPO ₂₅₀	21%	20%
PPO ₅₀₀	23 %	26%
PPO ₁₂₀₀	17%	15%
HMO ₁	20 %	20 %
HMO ₂	19%	19%
PPO ₂₅₀	-	(11%)
PPO ₅₀₀	-	43 %
PPO_{1200}	_	14%
HIMO_1	_	20%

HIMO,

SWITCHING COSTS EVIDENCE FROM NEW ENTRANTS

	Cohort 1 New Entrants at t ₀ N = 1377	Cohort 2 New Entrants at t ₁ N = 1305
Median age	31	31
Mean age	33	32
Income tier 1	50%	47%
Income tier 2	31%	32%
Income tier 3	10%	12%
Income tier 4	4 %	4 %
Income tier 5	5 %	5%

PATTERN OF ACTIVE CHOICE MULTIPLE DECISION ANALYSIS

▶ SKIP SLIDE

	PPO ₂₅₀ Switchers	PPO ₂₅₀ Stayers	All Switchers	All Stayers
Sample Size	174	1626	384	2786
FSA 2008 Enrollee	41%	31%	39%	25%
Dental Switch	13.1%	3.2%	14.5%	3.8%
Mean Income Tier	2.2	2.5	2.1	2.3
Quantitative Manager	17%	20%	14%	17%
Mean Age	40.6	48.3	39.1	44.0
Single	56%	50%	59%	53%

FSA choice is back to zero default

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_2
 - Benefit: Past year of medical data for all choices
 - Cost: Specific population not necessarily representative
 - Cost: Lose 'new entrant' population

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_2
 - Benefit: Past year of medical data for all choices
 - Cost: Specific population not necessarily representative
 - Cost: Lose 'new entrant' population

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_2
 - Benefit: Past year of medical data for all choices
 - Cost: Specific population not necessarily representative
 - Cost: Lose 'new entrant' population

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_2
 - Benefit: Past year of medical data for all choices
 Cost: Specific population not necessarily representative
 Cost: Lose 'new entrant' population

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_2
 - Benefit: Past year of medical data for all choices
 - Cost: Specific population not necessarily representative
 - Cost: Lose 'new entrant' population

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_2
 - Benefit: Past year of medical data for all choices
 - Cost: Specific population not necessarily representative
 - Cost: Lose 'new entrant' population

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_2
 - Benefit: Past year of medical data for all choices
 - Cost: Specific population not necessarily representative
 - Cost: Lose 'new entrant' population

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_2
 - Benefit: Past year of medical data for all choices
 - Cost: Specific population not necessarily representative
 - Cost: Lose 'new entrant' population

SUMMARY STATISTICS SAMPLE DEMOGRAPHICS

	All Employees	PPO Ever 04-09	Final Sample	
EMPLOYEES	11,253	5,667	2,023	
GENDER (MALE %)	47.4%	45.9%	48.5%	
AGE	39.9 (37)	39.9 (37)	46 (46)	
INCOME				
Tier 1	31.3%	31.7%	20.3%	
Tier 2	36.6%	39.4%	41.4%	
Tier 3	17.3%	18.5%	23.9%	
Tier 4	6.5%	5.6%	7.5%	
Tier 5	8.3%	4.8%	6.9%	
FAMILY SIZE				
1	59.9 %	57.1 %	44.5 %	
2	15.5 %	18.4 %	21.2 %	
3	10.4 %	10.7 %	13.9 %	
4+	14.2 %	13.8 %	27.9 %	
STAFF GROUPING				
MANAGER	25.7%	24.3%	34.3%	
WHITE-COLLAR	46.1%	47.5%	43.1%	
BLUE-COLLAR	28.3%	27.9%	21.7%	

ADVERSE SELECTION Evidence of significant adverse selection against PPO_{250}

	N	Mean Fam Size	Mean	25th pct	Median	75th pct
PPO_{-1}	2022	2.24	13331	1257	4916	13022
PPO ₂₅₀ t ₀	1328	2.18	16976	2041	6628	16135
$PPO_{500} t_0$	338	2.20	6151	554	2244	6989
$PPO_{1200} t_0$	280	2.53	6742	658	2958	8073
PPO ₂₅₀ t ₁	1244	2.19	17270	2041	6651	16707
PPO ₅₀₀ t ₁	461	2.19	7759	708	2659	8588
$PPO_{1200} t_1$	232	2.57	6008	589	2815	7191

• Table uses t_{-1} claims levels in all years

CHOICE FRAMEWORK REALIZED UTILITY MODEL

- Model to quantify switching costs and their welfare impact in environment with adverse selection
 - Data alone provide evidence of large switching costs
- Panel discrete choice model from t_0 to t_2 quantifies:
 - Switching costs
 - Ex ante health risk
 - Heterogeneous risk preferences
- Explicit estimates of expected-utility function parameters
- Simple supply-side pricing model

CONSUMER EXPECTED UTILITY CONSUMER BELIEFS

- Each family k has uncertainty $F_{kjt}(OOP)$ about future health expenditures for plan j at the time t of plan choice
- Consumers maximize expected utility over set of plans *J*:

$$\max_{j \in J} U_{kjt} = \int_0^\infty u_k(m_j, OOP) f_{kjt}(OOP) dOOP$$

- Estimate $\widehat{F_{kit}(OOP)}$ derived from separate cost model
- Consumer expenditure beliefs conform to $\widehat{F_{kjt}(OOP)}$

Empirical Setup

Consumers have constant absolute risk aversion (CARA) utility index:

$$u_k(m_j, OOP) = -\frac{1}{\gamma_k} e^{-\gamma_k(X_k^A)(m_j - OOP)}$$

$$m_i = W_{kt} - P_{kit} + \eta(X_k^B) \mathbf{1}_{i=i-1} + \delta_k(Y_k) \mathbf{1}_{PPO_{1200}} + a_i H_k + \epsilon_{kit}(Y_k)$$

- W_{kt} wealth, P_{kjt} premium, η switching cost, δ_k CDHP preference, X_k demographics, Y_k family status, a_j high-cost heuristic, H_k high-cost indicator
- Empirical utility:

$$\max_{j \in J} U_{kjt} = \int_{0}^{\infty} u_{k}(m_{j}, OOP) \widehat{f_{kjt}(OOP)} dOOP$$

Cost Model Estimating F_{kjt}

- Cost model separate from choice model:
 - Assumption: No private information or moral hazard
 - Based on data analysis
 - Robustness check

- Estimate $F_{kjt}(OOP)$ is information set at time of plan choice.
 - Incorporates past year of medical information with ACG software
 - Consumer could have more or less information than F_{kjt}
- Potential sources of private inforamtion:
 - Pregnancy
 - Condition Intensity
 - Genetic predisposition
 - Robustness check

COST MODEL II OUTLINE OF METHODS

• ACG software predicts future expenditures θ using past medical information ξ and demographics ζ :

$$A: \xi \times \zeta \to \theta$$

- Divide claims into four distinct categories $c \in C$
- Group individuals into ex ante risk cells for each c
 - Estimate joint distribution over C with ex post data
- Plan-specific out-of-pocket expenditure mapping:

$$\Omega_j: C \rightarrow OOP_j$$

Incorporate family-level restrictions

CLAIM LEVELS BY CATEGORY

	PPO_{-1}	PPO ₂₅₀	PPO ₅₀₀	PPO ₁₂₀₀
Pharmacy				
Mean	\$973	\$1420	\$586	\$388
Median	\$81	\$246	\$72	\$22
Mental Health (>0)				
Mean	\$2401	\$2228	\$1744	\$2134
Median	\$1260	\$1211	\$1243	\$924
Hospital / Physician				
Mean	\$4588	\$5772	\$2537	\$2722
Median	\$428	\$717	\$255	\$366
Physician OV				
Mean	\$461	\$571	\$381	\$223
Median	\$278	\$356	\$226	\$120

CHOICE MODEL UNOBSERVED HETEROGENEITY

• Risk preferences normally distributed conditional on demographics X_k :

$$\gamma_k(X_k) \Rightarrow N(\mu_\gamma(X_k))$$

 $\mu_\gamma(X_k) = \mu_0 + \beta X_k$

- Other assumptions:
 - δ_k normally distributed $N(\mu_{\delta}(Y_k), \sigma_{\delta}^2(Y_k))$
 - ϵ_j normally distributed $N(0, \sigma_{\epsilon_j}^2(Y_k))$

MODEL IDENTIFICATION MENU CHANGE

- Menu change w/ no default allows observation of same consumers in periods with and without switching costs
- Unobserved heterogeneity:
 - Same within each consumer over time
 - Population distribution same over time
- Switching Costs vs. Unobserved Heterogeneity:
 - ullet Switching costs shifts choices only t_1 and after
 - Unobserved Heterogeneity shifts choices in all periods
 - Combination of initial choice, panel, detailed medical/cost data, and network homogeneity
- Risk Prefernce vs. *PPO*₁₂₀₀ intercept:
 - \bullet γ determines choices between all plans
 - δ determines choices between PPO_{1200} and other two

ROBUSTNESS ALTERNATIVE SPECIFICATIONS

- Basic specification with no detailed demographics linked to switching costs and risk preferences
- Moral Hazard:
 - Simple framework to check if price sensitivity substantially impacts switching cost and risk preference estimates.
 - Assume high end of price elasticity estimated in literature.
 - Assume MH manifests as reduction of purely wasteful services.
- Log-normal risk preferences
- **1** No idiosyncratic error ϵ (similar to EFRSC 2011)

- Simulated maximum likelihood for choice sequence starting at t_0 for each k
- Optimization: Maximize probability of choices in data with respect to model parameters
 - Simulate draws from F_{kit}
 - Simulate draws from preference random coefficients
 - Normalization of ϵ and U_{kit}
 - Smoothed Accept-Reject of each sequence for given paramaters
- Robustness: Utility function, unobserved heterogeneity

ESTIMATION

- Simulated maximum likelihood
- Q draws from each F_{kjt}
- Z draws of preferences conditional on parameters:

$$\theta \equiv (\mu, \beta, \sigma_{\gamma}, \mu_{\delta}(Y_k), \sigma_{\delta}(Y_k), \alpha_j(Y_k), \sigma_{\epsilon_j}, \eta(Y_k)).$$

ullet Smoothed Accept-Reject for each choice given heta

$$Pr(j=j^*) = \frac{(\frac{\frac{1}{\sum_{J=U_{kjt}}}(\cdot)}{\sum_{J=U_{kjt}}(\cdot)})^{\tau}}{\sum_{\hat{j}}(\frac{\frac{1}{\sum_{J=U_{kjt}}}(\cdot)}{\sum_{J}\frac{1}{U_{kjt}}(\cdot)})^{\tau}}$$

• Maximize probability that predicted choice sequences $\hat{P_k^{j^3}}$ match actual ones d_{kj^3} :

$$SLL(\theta) = \sum_{k \in K} \sum_{j^3 \in J^3} d_{kj^3} \ln \hat{P}_k^{j^3}$$

RESULTS LARGE SWITCHING COSTS

Parameter	Base	Primary	MH Robust	γ Robust	ϵ Robust
Switching Cost Individual, η_s	1 <mark>779</mark>	1729	1859	2430	1944
	(72)	(28)	(107)	(116)	(150)
Switching Cost Family, η_f	2354	2480	2355	3006	2365
	(62)	(26)	(113)	(94)	(34)
SC - FSA	-	- 551	-669	-723	-417
	-	(56)	(155)	(131)	(50)
SC - Income	-	- 32	-59	-8	-7
	-	(13)	(15)	(43)	(15)
SC - Quant	=	5	-40	-537	-6
	=	(138)	(80)	(223)	(92)
SC - Manager	=	198	277	875	224
	=	(292)	(164)	(200)	(244)
SC - Chronic	-	80	29	-221	67
	-	(46)	(67)	(148)	(35)
SC - Salient	-	156	95	61	123
	-	(83)	(60)	(212)	(54)
SC - Total Pop. Mean, η [Pop. Standard Deviation]	2032	2087	1886	1914	1986
	[446]	[286]	[387]	[731]	[316]
Risk Aversion Mean - Intercept , μ	$3.12 * 10^{-4} $ $(1.1 * 10^{-5})$	$2.32 * 10^{-4} $ $(9.0 * 10^{-6})$	$2.31 * 10^{-4}$ $1.10 * 10^{-5}$	-8.94 (0.43)	$1.90 * 10^{-4}$ $1.0 * 10^{-5}$
Risk Aversion Mean - Income ,	$4.21 * 10^{-5} $ $(3.0 * 10^{-6})$	$2.90 * 10^{-5} $ $(4.0 * 10^{-6})$	$1.80 * 10^{-5}$ $3.00 * 10^{-6}$	0.07 (0.016)	$2.40 * 10^{-5}$ $3.00 * 10^{-6}$
Risk Aversion Mean - Age ,	- -	$2.27 * 10^{-6} $ $(1.7 * 10^{-7})$	$3.45 * 10^{-6}$ $1.80 * 10^{-7}$	0.28* (0.011)	$2.59 * 10^{-6}$ $1.50 * 10^{-7}$
Risk Aversion Std. Deviation , σ_{γ}	$1.88 * 10^{-4} $ $(8.0 * 10^{-6})$	$1.88 * 10^{-4} $ $(6.63 * 10^{-5})$	$1.27 * 10^{-4}$ $6.00 * 10^{-6}$	1.37 (0.06)	$1.04 * 10^{-4}$ $5.9 * 10^{-5}$

RESULTS II INTERPRETATION OF RISK PARAMETERS

	Absolute Risk Aversion	Interpretation	
Normal Heterogeneity			
Mean / Median Individual	$4.22 * 10^{-4}$	94.6	
25th percentile	$2.95 * 10^{-4}$	96.1	
75th percentile	$5.49 * 10^{-4}$	93.8	
95th percentile	$7.31 * 10^{-4}$	92.2	
99th percentile	$8.59 * 10^{-4}$	91.8	
Log normal Heterogeneity			
Mean	$9.82 * 10^{-4}$	91.0	
25th percentile	$1.53 * 10^{-4}$	97.2	
Median	$3.85 * 10^{-4}$	95.0	
75th percentile	$9.72 * 10^{-4}$	91.1	
95th percentile	$3.70*10^{-3}$	72.8	
99th percentile	$9.30*10^{-3}$	51.1	
Comparable Estimates			
Cohen-Einav (2007) Benchmark Mean	$3.1 * 10^{-3}$	76.5	
Cohen-Einav (2007) Benchmark Median	$3.4*10^{-5}$	99.7	
Gertner (1993)	$3.1*10^{-4}$	97.0	
Holt & Laury (2002)	$3.2*10^{-2}$	21.0	
Sydnor (2006)	$2.0 * 10^{-3}$	83.3	

COUNTERFACTUAL ANALYSIS REDUCTION IN SWITCHING COSTS

- Investigate counterfactual environment with reduced switching costs
- Price-conscious consumer choice is cornerstone of:
 - National insurance reform: health insurance exchanges
 - Large employer purchasing strategies
- Policies to reduce switching costs:
 - Personalized plan recommendations
 - Decision making tools
 - Standardized /simple benefit representation
 - Choice framing
 - Strong oversight body for all consumer decision issues

'NAIVE' ANALYSIS HOLDING PRICES FIXED

- Similar to previous analyses studying choice inadequacy
 - Consumer welfare can only increase
- Switching costs reduced to $Z\eta_k$:

$$U_{kjt}(P_{kjt}, Z\eta_k, \mathbf{1}_{kj,t-1}) = \int_0^\infty f_{kjt}(OOP)u(OOP, P_{kjt}, Z\eta_k, \mathbf{1}_{kj,t-1})dOOP$$

- Choose plan to maximize expected utility in each t
- Use certainty equivalent metric to quantify welfare change

'NAIVE' PRICING POLICY IMPACT MARKET SHARE CHANGES

'NAIVE' PRICING POLICY IMPACT AVERAGE COST CHANGES

Partial Equilibrium Information Provision Plan Family Average Cost

WELFARE ANALYSIS TANGIBLE COSTS?

- ullet Certainty equivalent Q_{kjt} makes consumer indifferent between certain Q_{kjt} and risky payoff from j
 - Q calculated *net* of switching costs (depends on *source*)
 - Denote Q for choice with policy Z as Q_{kit}^Z
- ullet κ portion of switching costs that are tangible welfare loss

$$u(Q_{kjt}^{\kappa}) = -\frac{1}{\gamma_k(X_k^A)} e^{-\gamma_k(X_k^A)(W - Q_{kjt}^{\kappa})}$$

= $U_{kjt}(P_{kjt}, \kappa Z \eta_k, \mathbf{1}_{kj,t-1})$

WELFARE ANALYSIS POPULATION METRIC

• Individual level consumer welfare impact:

$$\Delta CS_{kjt} = Q_{kj_7t}^Z - Q_{kjt}$$

• Mean welfare change:

$$\Delta TS_t^Z = \frac{1}{\|K\|} \Sigma_k \ \Delta CS_{kjt}^Z + \frac{1}{\|K\|} \Sigma_k \ (P_{kjt}^Z - P_{kjt})$$

Population welfare change comes from risk preference matching

'Naive' Policy Welfare Impact z = .25

	t_1	t ₂	
Mean △ CEQ			
Population	\$96	\$114	
Switchers Only	\$175	\$196	
Mean Welfare Change: % Total Premiums			
Mean Employee Premium (MEP)	\$2,067	\$1,954	
Welfare Change Population	4.6%	5.8%	
Welfare Change Switchers	8.5%	10.0%	
Mean Welfare Change: % Total Emp. Spending			
Mean Total Emp. Spending	\$4,373	\$4,486	
Welfare Change Population	2.2%	2.5%	
Welfare Change Switchers	4.0%	4.4%	

FULL RE-PRICING ANALYSIS ENDOGENOUS INSURANCE PRICING

- Insurance prices adjust along with new choices for Z < 1
- Recreate exact pricing rule
 - Close to prior work, resembles common pricing environments
- Start at given prices p₀
- Total premium lagged average cost:

$$TP_{jt}^{y} = AC_{K_{j,t-1}^{y}} + L$$

• Firm gives subsidy for all j as % of PPO_{1200} premium:

$$P_{kjt} = TP_{jt}^{y} - S(X_k)TP_{PPO_{1200}t}^{y}$$

IMPACT OF POLICY ON MARKET SHARE DEATH SPIRAL?

IMPACT ON PLAN PRICES

▶ Average Cost

FULL EQUILIBRIUM WELFARE IMPACT WHEN NUDGING HURTS......

	t_1	t ₂	t ₄	t ₆	Avg. t ₁ -t ₆
Mean △ CEQ					
Population	-\$63	-\$104	-\$144	-\$118	-\$115
Switcher Pop. %	51%	49%	48%	53%	49%
Switchers Only	\$86	\$175	\$ 245	\$242	\$186
Non-Switchers Only	-\$205	-\$391	-\$555	-\$432	-\$442
Welfare Change: % Premiums					
Mean Employee Premium	\$1,471	\$1,591	\$1,455	\$1,259	\$1,500
Welfare Change Population	-4.8%	-6.5%	-9.9%	-9.4%	-7.7%
Welfare Change Switchers	5.6%	11.0%	16.9%	19.2%	12.4%
Welfare Change Non-Switchers	-13.9%	-24.6%	-38.1%	-34.3%	-29.4%
Welfare Change: % Total Spending					
Mean Total Emp. Spending	\$3,755	\$4,097	\$4,022	\$3,862	\$4,015
Welfare Change Population	-1.7%	-2.5%	-3.6%	-3.06%	-2.9%
Welfare Change Switchers	2.3%	4.3%	6.1%	6.3%	4.6%
Welfare Change Non-Switchers	-5.5%	-9.5%	-13.8%	-11.2%	-11.0%

▶ More

FULL EQUILIBRIUM WELFARE IMPACT Policy Effectiveness & First Best

	First-Best	Baseline	.75η	.5η	.25η	0
Mean Δ CEQ (% of Premiums)						
Population	\$123 (<mark>8.2%</mark>)	(-)	-\$41 (-2.7%)	-\$73 (-4.9%)	-\$115 (-7.7%)	-\$107 (-7.1%)
Switchers	-\$538 (-35.9%)	(-)	\$1,017 (67.8%)	\$766 (51.0%)	\$186 (12.4%)	\$118 (7.9%)
Non-Switchers	\$953 (63.5%)	(-)	-\$249 (-16.6%)	-\$371 (-24.8%)	-\$442 (-29.4%)	-\$382 (-25.4%)
Single	-\$683 (-45.5%)	(-)	-\$153 (-10.2%)	-\$295 (-19.7%)	-\$319 (-21.2%)	-\$286 (-19.0%)
Family	\$826 (55%)	(-)	-\$54 (3.6%)	\$119 (7.9%)	\$61 (4.1%)	\$47 (3.1%)

FULL EQUILIBRIUM WELFARE IMPACT TANGIBLE SWITCHING COSTS κ

Welfare Impact		η	.75 <i>η</i>	$.5\eta$	$.25\eta$	0
$\kappa = 0$	Welfare Relevant SC	0	0	0	0	0
	Δ CEQ (% Premiums)	-	-\$41 (-2.7%)	-\$73 (-4.9%)	-\$115 (- <mark>7.7%</mark>)	-\$107 (-7.1%)
$\kappa = 0.25$	Welfare Relevant SC	46	47	36	21	0
	Δ CEQ (% Premiums)	-	-\$42 (-2.8%)	-\$63 (-4.2%)	-\$90 (-6.0%)	-\$61 (-4.1%)
$\kappa = 0.5$	Welfare Relevant SC	93	94	71	42	0
	Δ CEQ (% Premiums)	-	-\$42 (-2.8%)	-\$51 (-3.4%)	-\$64 (-4.3%)	-\$14 (-0.9%)
$\kappa = 1$	Welfare Relevant SC	185	188	142	83	0
	Δ CEQ (% Premiums)	-	-\$44 (-2.9%)	-\$30 (-2.0%)	-\$13 (-0.9%)	-\$78 (5.2%)

• Individual Allocation:

- ullet Substantial choice frictions \Rightarrow Substantial scope to improve individual plan choice
- Additional trade-off with de-regulation (Part D?): firm market power vs. adverse selection

• Health Market Design:

- National Health Exchanges and Large Employer Settings
- Even conditional on improving choices: policies to improve consumer choices and combat adverse selection should not be independent
- In certain cases, tools/policies to improve decisions can have significant negative welfare impact
- Contract characteristics, subsidy policy, choice framing
- Distribution of welfare can be significantly affected

- Evidence of large switching costs
 - What are the sources?
- Link between switching costs and adverse selection
 - Large welfare impact
 - Impact relative to observed adverse selection welfare loss
 - Policy implications
 - Sophisticated firm pricing models?
- Second-best analysis with choice inadequacy issues
- A few more things to think about:
 - Test of dynamic choice / forward-looking consumers
 - Pricing regulation, adverse selection, and re-classification risk
- Discussion of Handel / Kolstad (2013)