# On the emergence of Quantum Boltzmann dynamics in boson and fermion gases

#### Thomas Chen

University of Texas at Austin

Joint work with Esteban Cárdenas (UT Austin), Michael Hott (U Minnesota)

SwissMAP Conference, Les Diablerets, 2023

#### Boltzmann equation



#### Boltzmann equation

$$(\partial_t + v\nabla_x)f_t(x,v) = Q(f_t)$$

 $f_t(x, v)$  probability density for finding a gas particle at time t in phase space volume dxdv at (x, v).

$$Q(f_t) = Q_+(f_t) - Q_-(f_t)$$

collision operator, change of  $f_t$  due to particles entering (gain) minus particles exiting (loss) phase space volume dxdv at (x, v).



#### Classical and quantum Boltzmann dynamics

Many systems exhibit collision processes obeying a Boltzmann dynamics under suitable scaling. Examples:

- Rarefied hard-sphere classical gas: Lanford, Bodineau-Gallagher-Saint-Raymond, G-SR-Texier, Pulvirenti-Saffirio-Simonella, ...
- Collisions among lattice vibrations: Spohn
- Quantum gas: Benedetto-Castella-Esposito-Pulvirenti, Paul-Pulvirenti, Erdös-Salmhofer-Yau, Ho-Landau, Spohn Obstruction: XChen-Guo

#### Boltzmann equation

- Anderson model, electrons in semiconductor: Erdös-Yau, Spohn, C, C-Rodnianski, C-Sasaki
- Phenomenology of Boson gases: Alonso-Gamba-Tran, Arkeryd-Nouri, Bijlsma-Zaremba-Stoof, Pomeau-Tran, Reichl-Tran, Soffer-Tran, Spohn, Zaremba-Nikuni-Griffin
- Maxwell molecules: Barbaroux-Hundertmark-Ried-Vugalter, Bobylev-Gamba, Fournier-Mischler, Pavić-Čolić - Tascović, Toscani-Villani
- ▶ Biological swarm models: Carlen-Degond-Wennberg et al.
- Kac model: Carlen-Carvalho-Loss et al.
- ▶ Opinion formation: Burger-Caffarelli-Markowich

## Emergence of Boltzmann dynamics in Bose gases Joint work with Michael Hott

N bosons described by Schrödinger equation

$$i\partial_t \Psi_{N,t} = \mathcal{H}_N \Psi_{N,t}$$
,

where  $\Psi_N \in L^2(\mathbb{R}^3)^{\otimes_{sym}N}$ . Mean field Hamiltonian of the system

$$\mathcal{H}_{N} = \sum_{j=1}^{N} \left( -\Delta_{j} + w(x_{j}) \right) + \frac{\lambda}{N} \sum_{i < j}^{N} v(x_{i} - x_{j}).$$

Assume at time t=0, all N bosons are in the same state  $\phi_0$ 

$$\Psi_{N,0}(x_1,\ldots,x_N) = \prod_{j=1}^N \phi_0(x_j)$$

This describes a Bose-Einstein condensate (BEC).



Mathematical proof of BEC and derivation of Hartree equation:

$$\Psi_{N,t}(x_1,\ldots,x_N) = \prod_{i=1}^N \phi_t(x_i) + o_N(1)$$

as  $N \to \infty$ , BEC persists, and

$$i\partial_t \phi_t = -\Delta \phi_t + w \phi_t + \lambda (v * |\phi_t|^2) \phi_t$$

If  $v = \delta_{Dirac}$ , obtain derivation of NLS.

Boltzmann equation

- ► Time independent: Lieb-Seiringer-Yngvason, Aizenman-L-S-Solovej-Y, Lewin-Nam-Rougerie, ...
- Dynamical via Fock space: Hepp, Ginibre-Velo, Rodnianski-Schlein, Grillakis-Machedon-Margetis, Grillakis-Machedon, Schlein-et-al
- ▶ Via BBGKY & resolvent estimates: Spohn, Erdös-Schlein-Yau, Elgart-E-S-Y, Adami-Bardos-Golse-Teta.
- Via BBGKY & dispersive nonlinear PDE: Klainerman-Machedon, Kirkpatrick-Schlein-Staffilani, C-Pavlović, X.Chen, X.C.-Holmer
- Other approaches: Fröhlich-Graffi-Schwarz, Fröhlich-Knowles-Pizzo, Golse-Paul, Pickl, Ammari-Liard-Rouffort....



Thermal fluctuations: Bosonic Fock space with vacuum vector  $\Omega$ 

$$\mathcal{F} = \mathbb{C} \oplus \bigoplus_{n \geq 1} (L^2(\Lambda))^{\otimes_{\textit{sym}} n} \ , \ \Omega = (1, 0, 0, ...) \in \mathcal{F}$$

Canonical Commutation relations (CCR)

$$[a_x, a_y^+] = \delta(x - y) , \qquad [a_x, a_y] = [a_x^+, a_y^+] = 0 .$$
  
 $a_x \Omega = 0 \quad \forall x \in \Lambda$ 

Particle number and kinetic energy operator

$$\mathcal{N} = \int dx \, a_x^+ a_x \;\; , \;\; \mathcal{T} = \int dx \, a_x^+ (-\Delta_x) a_x$$



Assume initial state near BEC, in Fock space (coherent state):

$$\Psi_{BEC}^{(\phi_0)} = e^{-\frac{1}{2}\|\phi_0\|_2^2} \left(1, \phi_0(x_1), \frac{1}{2!}\phi_0(x_1)\phi_0(x_2), \dots, \frac{1}{n!} \prod_{i=1}^n \phi_0(x_i), \dots\right)$$

Condensate density N defines large parameter of problem:

$$|\mathbf{N}|\Lambda| = \left\langle \Psi_{BEC}^{(\phi_0)}, \mathcal{N}\Psi_{BEC}^{(\phi_0)} \right\rangle = \sum_{n=0}^{\infty} n \|\Psi_{BEC,n}^{(\phi_0)}\|_{L^2}^2$$

Hamiltonian of the system

$$\mathcal{H}_{N} := \int_{\Lambda} dx \, a_{x}^{+} \Big( \frac{-\Delta_{x}}{2} + w(x) \Big) a_{x} + \frac{\lambda}{2N} \int_{\Lambda^{2}} dx \, dy : a_{x}^{+} a_{x} \, v(x-y) \, a_{y}^{+} a_{y} :$$

We are interested in thermal quantum fluctuations outside of BEC.



#### Dynamics relative to BEC

BEC wave function satisfies the Hartree equation

$$i\partial_t \phi_t = (-\Delta/2 + w)\phi_t + \lambda |\Lambda| (v * |\phi_t|^2)\phi_t$$
.

Subtract the BEC dynamics using unitary Weyl transform

$$a_x \mapsto a_x - \sqrt{N|\Lambda|}\phi_t$$
,  $a_x^+ \mapsto a_x^+ - \sqrt{N|\Lambda|} \overline{\phi_t}$ 

Hamiltonian in orders of N:

$$\mathcal{H}_{N} \mapsto N|\Lambda|E[\phi_{t},\overline{\phi_{t}}] + \underbrace{\mathcal{H}_{HFB}^{\phi_{t}}}_{O(1)} + \underbrace{\mathcal{H}_{cub}^{\phi_{t}}}_{O(\frac{1}{\sqrt{N}})} + \underbrace{\mathcal{H}_{quart}}_{O(\frac{1}{N})}$$

Leading order yields (scalar) Hartree energy of BEC

$$E[\phi_t, \overline{\phi_t}] := \int_{\Lambda} dx \, \overline{\phi_t(x)} \Big( \frac{-\Delta_x}{2} + w(x) \Big) \phi_t(x)$$
$$+ \frac{\lambda |\Lambda|}{2} \int_{\Lambda^2} dx \, dy \, v(x - y) \, |\phi_t(x)|^2 |\phi_t(y)|^2$$



Leading order fluct.: Hartree-Fock-Bogoliubov Hamiltonian

$$\mathcal{H}_{HFB}^{\phi_t} := \int_{\Lambda} dx \, a_x^+ \Big( \frac{-\Delta_x}{2} + w(x) \Big) a_x \\ + \frac{\lambda |\Lambda|}{2} \int_{\Lambda^2} dx \, dy \, v(x - y) \Big( \overline{\phi_t(x) \phi_t(y)} a_y a_x + h.c. \\ + 2|\phi_t(y)|^2 a_x^+ a_x + 2|\phi_t(x)|^2 a_y^+ a_y \Big)$$

Bilinear in  $a^+$ , a.

If taken by itself, generates HFB dynamics:

Bach-Breteaux-C-Fröhlich-Sigal, Grillakis-Machedon, Schlein-et-al, Pickl, Pickl-Pavlović-Soffer, and many others.

On torus  $\Lambda$ , static nonlinear ground state solution for  $w = -\lambda \hat{v}(0)$ 

$$\phi_t = \phi_0 = |\Lambda|^{-\frac{1}{2}}$$

Subtract HFB dynamics via unitary conjugation by  $e^{-it\mathcal{H}_{HFB}^{\phi_0}}$ .

Only interaction operators cubic and quartic in  $a^+$ , a remain,

$$\mathcal{H}_{I}(t) = \underbrace{\mathcal{H}_{cub}^{\phi_{\mathbf{0}}}(t)}_{e^{-it\mathcal{H}_{HFB}^{\phi_{\mathbf{0}}}\mathcal{H}_{cub}^{\phi_{\mathbf{0}}}e^{it\mathcal{H}_{HFB}^{\phi_{\mathbf{0}}}}} + \mathcal{H}_{quart}(t)$$

Dynamics relative to both BEC and HFB:

$$i\partial_t \langle A \rangle_t = \langle [A, \mathcal{H}_I(t)] \rangle_t \quad , \quad \langle A \rangle_0 = \frac{1}{\mathcal{Z}} \mathrm{Tr} \big( e^{-\mathcal{K}} A \big)$$
where  $\mathcal{K} = \int dp \, \mathcal{K}(p) a_p^+ a_p$ 

with  $K(p) \ge \kappa_0 + \kappa_1 p^2$  suitably regular (hence  $K \ge \beta (T - \mu N)$ ).

#### Dynamics of centered correlation functions

Consider kinetic time scale  $t = T/\lambda^2$ .

Control dynamics of moments  $\langle a \rangle_{T\lambda^{-2}}$ ,  $\langle a^+ a \rangle_{T\lambda^{-2}}$ ,  $\langle aa \rangle_{T\lambda^{-2}}$ .

Define centered correlation functions:

$$\begin{split} & \Psi_{\mathcal{T}}\delta(p) := \langle a_p \rangle_{\mathcal{T}\lambda^{-2}} \\ & F_{\mathcal{T}}(p)|\Lambda| := \langle a_p^+ a_p \rangle_{\mathcal{T}\lambda^{-2}} - |\langle a_p \rangle_{\mathcal{T}\lambda^{-2}}|^2 \\ & G_{\mathcal{T}}(p)|\Lambda| := \langle a_p a_{-p} \rangle_{\mathcal{T}\lambda^{-2}} - \langle a_p \rangle_{\mathcal{T}\lambda^{-2}}^2 \end{split}$$

 $F_T \sim$  number density of thermal fluctuation beyond leading order.



**Theorem**[C-Hott '21] Let  $T, \kappa_0 > 0$ , where  $\kappa_0 \approx$  chemical potential, with  $|\Lambda| \geq 1$  fixed. Assume

$$\lambda = \log \log(N) / \log(N)$$

Let  $E(p) := \frac{|p|^2}{2}$  and  $\Omega := \sqrt{E(E + 2\lambda \hat{v})}$  Bogoliubov dispersion. Then there exists  $\delta > 0$ , such that for any test function J,

$$\Big| \int_{\Lambda^*} dp \, J(p) \, \left( \underbrace{F_T(p) - F_0(p) - \frac{1}{N} \int_0^T dS \, Q_{d;T-S,\lambda}(F_S,F_S,F_S)(p)}_{} \right)$$

Quantum Boltzmann

$$-\frac{1}{N}\int_{0}^{T}\int_{0}^{S_{1}}dS_{1}dS_{2}\sum_{j=1}^{2}\lambda^{j}q_{d,F;S_{1},S_{2},\lambda}^{(j)}(F_{S_{2}},F_{S_{2}},F_{S_{2}})(\rho)\Big)\Big|$$

lattice effect, subdominant as  $|\Lambda| \nearrow \infty$ . " Talbot effect"

$$\leq \frac{C_0 \langle T \rangle^2 \|J\|_{\infty}}{N^{1+\delta}}$$



Cubic quantum Boltzmann collision operator (with  $\widetilde{F_S}:=1+F_S$ )

$$\begin{split} Q_{d;T-S,\lambda}(F_S,F_S)(p) \\ &:= \int_{(\Lambda^*)^2} dp_1 \, dp_2 \, \left| \hat{v}(p_1) + \hat{v}(p_2) \right|^2 \\ & \left( \delta(p-p_1) + \delta(p-p_2) - \delta(p-p_1-p_2) \right) \\ & \underbrace{\sin \left( \frac{\Omega(p_1) + \Omega(p_2) - \Omega(p_1+p_2)}{\lambda^2} (T-S) \right)}_{\sim \text{ mollified delta for energy conservation}} \\ & \underbrace{\left( \widetilde{F}_S(p_1) \widetilde{F}_S(p_2) F_S(p_1+p_2) - F_S(p_1) F_S(p_2) \widetilde{F}_S(p_1+p_2) \right)}_{\sim \text{ mollified delta for energy conservation}} \end{split}$$

Mollification due to time-energy Heisenberg uncertainty.



Correction of condensate wave function

$$\left|\Psi_{\mathcal{T}} + \frac{i}{N^{\frac{1}{2}}\lambda} \int_{0}^{\mathcal{T}} dS \int dp \, \hat{v}(p) F_{S}(p)\right| \leq \frac{C_{0}\langle T \rangle}{N^{\frac{1}{2}+\delta}}$$

Dynamics of  $\langle aa \rangle$  correlation

$$\left| \int_{\Lambda^*} dp \, J(p) \, \left( \frac{G_T(p) - \frac{1}{N} \mathcal{A}_{d;T,\lambda}(F,F)(p)}{-\frac{1}{N\lambda^2} \mathcal{Q}_{d,G;T,\lambda}(F,F,F)(p)} \right) \right| \\ \leq \frac{C_0 \langle T \rangle^2 ||J||_{\infty}}{N^{1+\delta}} \,.$$

Due to choice of initial state, both are driven by  $F_T$ .



- ► The dynamics of F is hidden in three types of noises: Correction of BEC  $\Psi$ , HFB correction terms of F, and G.
- The Boltzmann dynamics is much slower than the HFB dynamics. It modulates the HFB fluctuations at a slow rate.



$$\begin{split} \langle A \rangle_{\frac{T}{\lambda^2}} = & \langle A \rangle_0 + \int_0^{\frac{T}{\lambda^2}} ds \langle [A, \mathcal{H}_I(s)] \rangle_0 \\ & + \int_0^{\frac{T}{\lambda^2}} ds_1 \int_0^{s_1} ds_2 \langle [[A, \mathcal{H}_I(s_1)], \mathcal{H}_I(s_2)] \rangle_0 \\ & + \int_0^{\frac{T}{\lambda^2}} ds_1 \int_0^{s_1} ds_2 \int_0^{s_2} ds_3 \langle [[[A, \mathcal{H}_I(s_1)], \mathcal{H}_I(s_2)], \mathcal{H}_I(s_3)] \rangle_{s_3} \end{split}$$

Kinetic time scale  $t = \frac{T}{\lambda^2}$  to extract B eq from  $O(\lambda^2)$ -term.

- ► Control tail in Duhamel expansion
- Propagation of approximate restricted quasi-freeness

Related preliminary works for fermions:

Erdös-Salmhofer-Yau '04: B eq assuming restricted quasi-freeness. Benedetto-Castella-Esposito-Pulvirenti '04,'07,'08: Extraction of B eq from Feynman graph expansions, no error control.

Our initial state  $\nu_0 = \langle \cdot \rangle_0$  satisfies  $\langle a \rangle_0 = \langle aa \rangle_0 = 0$ .

 $\langle \cdot \rangle_0$  quasi-free  $\iff$  satisfies Wick Theorem

$$\langle a^{\#_1}a^{\#_2}\dots a^{\#_{2n}}\rangle_0=\overline{a^{\#_1}a^{\#_2}\dots a^{\#_n}}+\text{all ordered combinations}$$
 
$$\langle a^{\#_1}a^{\#_2}\dots a^{\#_{2n-1}}\rangle_0=0$$

where 
$$a^{\#_j}a^{\#_k} = \langle a^{\#_j}a^{\#_k}\rangle_0$$
.

However, for evolution generated by  $H_I(t)$ , time-dependent state  $\nu_t = \langle \cdot \rangle_t$  is *not* quasi-free, and  $\langle a \rangle_t, \langle aa \rangle_t \neq 0$ .

We prove a main technical result:

State  $\nu_t = \langle \cdot \rangle_t$  is approximately restricted quasi-free

⇔ approximate restricted Wick Theorem

$$\langle a^{\#_1} a^{\#_2} \dots a^{\#_{2n}} \rangle_t = a^{\#_1} a^{\#_2} \dots a^{\#_{2n}} + \text{all ordered combinations} + l.o.t.$$

$$\langle a^{\#_1} a^{\#_2} \dots a^{\#_{2n-1}} \rangle_t = I.o.t.$$

up to 
$$n \le n_0$$
, with  $a^{\#_j}a^{\#_k} = \langle a^{\#_j}a^{\#_k} \rangle_t$ 



#### Emergence of Quantum Boltzmann dynamics in Fermi gas Joint work with Esteban Cárdenas

Gas of N fermions in box  $\Lambda = [-L/2, L/2]^d$ . Fermion Fock space, Canonical Anticommutation Relations (CAR)

$$\{a_{p}^{+}, a_{q}\} = |\Lambda|\delta_{p,q} \ , \ \{a_{p}^{\sharp}, a_{q}^{\sharp}\} = 0 \ , \ \forall p, q \in \Lambda^{*}$$

Let  $\int dp \equiv \frac{1}{|\Lambda|} \sum_{p \in \Lambda^*}$ . Hamiltonian

$$\mathcal{H} = \int dp \ |p|^2 a_p^+ a_p + \lambda \int_{(\Lambda^*)^3} dp \ dq \ dk \ \widehat{V}(k) \ a_{p+k}^+ a_{p-k}^+ a_p a_q$$

$$\text{diam}(\text{supp}(\widehat{V})) < r, \ \widehat{V}(p) = \widehat{V}(-p), \ \widehat{V}(0) = 0, \ \sup_{\Lambda} \|\widehat{V}\|_{L^1(\Lambda^*)} < \infty.$$



#### Boltzmann equation

#### Boltzmann dynamics in Fermi gas

Fermi Ball (for  $L=2\pi$ ), radius = Fermi momentum

$$\mathcal{B} = \{ p \in \mathbb{Z}^d \mid |p| \le p_F = N^{1/d} \}$$

Ground state of non-interacting system ( $\lambda = 0$ ):

$$\Psi_0 = \prod_{p \in \mathcal{B}} a_p^+ \Omega$$

Fermi shell

$$S = \{ p \in \mathbb{Z}^d \mid | p_F - 3r \le |p| \le p_F + 3r \}$$

Interacting model: Benedikter-Nam-Porta-Schlein-Seiringer, Benedikter-Porta-Saffirio-Schlein, Christiansen-Hainzl-Nam, Fröhlich-Knowles, Petrat-Pickl, Elgart-Erdös-Schlein-Yau, Giacomelli. ...

Translation-invariant, quasi-free initial state  $\nu$  satisfying

$$\nu\Big(\prod_{i=1}^{k} a_{p_i}^+ \prod_{i=1}^{k'} a_{q_i}\Big) = \delta_{k,k'} (-1)^{\frac{k(k-1)}{2}} det \Big[\nu(a_{p_i}^+ a_{q_i})\Big]$$

Charge neutrality (# holes in  $\mathcal{B} = \#$  particles outside  $\mathcal{B}$ )

$$\int_{\mathcal{B}} dp \ \nu(a_p^+ a_p) = \int_{\mathcal{B}^c} dp \ \nu(a_p^+ a_p)$$

Low particle occupation in  ${\mathcal S}$ 

$$\int_{\mathcal{S}} dp \ \nu(a_p^+ a_p) < C(\lambda |\Lambda| p_f^{d-1})^2$$

#### Boltzmann equation

#### Boltzmann dynamics in Fermi gas

Particle-hole transformation

$$\mathcal{R}^* a_p^+ \mathcal{R} = \chi^{\perp}(p) a_p^+ + \chi(p) a_p$$

Creates particle in  $\mathcal{B}^c$  and hole in  $\mathcal{B}$ .

$$\mathfrak{h}:=\mathcal{R}^*\mathcal{H}\mathcal{R}$$

with dispersion relation (where  $\chi \equiv \mathbf{1}_{\mathcal{B}}$ )

$$E(p) = -\chi(p) \left( \frac{|p|^2}{2} + \lambda(\widehat{V} * \chi^{\perp})(p) \right) + \chi^{\perp}(p) \left( \frac{|p|^2}{2} + \lambda(\widehat{V} * \chi)(p) \right)$$

Main object of study: Dynamics of pair correlation

$$f_t(p) := rac{
u \left( e^{it\mathfrak{h}} a_p^+ a_p e^{-it\mathfrak{h}} 
ight)}{|\Lambda|}$$

density of particles in  $\mathcal{B}^c$  and holes in  $\mathcal{B}$ .



**Theorem** [Cárdenas-C] Let  $R \equiv |\Lambda| p_f^{d-1} \sim L N^{\frac{d-1}{d}}$  and

$$n = |\Lambda| \int_{\Lambda^*} dp \ f_0(p) \le CR^{1/2}$$

total number of particles in  $\mathcal{B}^c$  and holes in  $\mathcal{B}$ . Then,

$$\left\| f_t - f_0 - \lambda^2 t \ Q_t[f_0] - \lambda^2 t \ B_t[f_0] \right\|_{\ell_m^{\infty}} \le C \lambda^2 t \left( \theta_1 t \langle t \rangle + \theta_2 t \right) e^{C \lambda R \langle t \rangle}$$

where  $\|f\|_{\ell_m^\infty}:=\sup_p|f(p)|+\sup_{p\in\mathcal{S}}\langle p\rangle^{-m}|f(p)|$  and

$$\theta_1 := \lambda R^2 (R^{\frac{1}{2}} + n^2) \text{ and } \theta_2 := \frac{R^3}{p_f^m}$$

 $Q_t$  energy-mollified Boltzmann collision operator  $B_t$  energy-mollified interaction with bosonized particle-holes in  $\mathcal S$ 



Example parameters where lhs dominates over error: For T > 0,

$$t = N^{\frac{1}{3}}T$$
 and  $\lambda = \frac{1}{N^2}$  in  $d = 3$ 

Boltzmann collision operator (where  $\widetilde{f}:=1-f$ )

$$Q_{t}[f](p) = \pi \int_{(\Lambda^{*})^{4}} d\vec{p} \, \sigma(\vec{p}) \Big[ \delta(p - p_{1}) + \delta(p - p_{2}) - \delta(p - p_{3}) - \delta(p - p_{4}) \Big]$$

$$\delta_{t} \Big( E_{p_{1}} + E_{p_{2}} - E_{p_{3}} - E_{p_{4}} \Big) \Big( f(p_{1}) f(p_{2}) \widetilde{f}(p_{3}) \widetilde{f}(p_{4}) - \widetilde{f}(p_{1}) \widetilde{f}(p_{2}) f(p_{3}) f(p_{4}) \Big)$$

where 
$$\delta_t(x) = t\delta_1(tx)$$
 with  $\delta_1(x) \equiv \frac{2}{\pi} \frac{\sin^2(\frac{x}{2})}{x^2}$ .

Collision kernel  $\sigma \Rightarrow$  Momentum conservation, dependence on  $\widehat{V}$ .



Interaction with bosonized particle-holes in S:

$$B_t = B_t^{(H)} + B_t^{(P)}$$

$$B_t^{(H)}[f](h) := 2\pi \int_{\Lambda^*} dk |\widehat{V}(k)|^2 \left(\alpha_t^H(h-k,k)f(h-k)\widetilde{f}(h) - \alpha_t^H(h,k)f(h)\widetilde{f}(h+k)\right)$$

$$\alpha_t^H(h,k) := \underbrace{\chi(h)\chi(h+k)}_{\text{holes in }\mathcal{B}} \int_{\Lambda^*} dr \, \chi(r)\chi^{\perp}(r+k)\delta_t\Big(E_{\rho_1} + E_{\rho_2} - E_{\rho_3} - E_{\rho_4}\Big)$$

and similarly, define  $B_t^{(H)}$ ,  $\alpha_t^P$  for particles.



Origin of terms: Let  $k \in supp(\widehat{V})$  (resp.  $k \in \Lambda^*$ ).

Define D-operators in the bulk

$$D_k := \int_{\Lambda^*} dp \ \underbrace{\chi^\perp(p)\chi^\perp(p-k)a^+_{p-k}a_p}_{\text{particle momentum shift by } -k} - \int_{\Lambda^*} dh \ \underbrace{\chi(h)\chi(h+k)a^+_{h+k}a_h}_{\text{hole momentum shift by } k}$$

and b-operators at the boundary  ${\cal S}$ 

$$b_k^+ := \int_{\Lambda^*} dp \ \underbrace{\chi^{\perp}(p)\chi(p-k)}_{\text{supp}(\dots) \subset \mathcal{S}} a_{p-k}^+ a_p^+$$

creates bosonized particle-hole pair; particle at p and hole at p - k.



$$\mathfrak{h}-\mu_1\mathbf{1}-\mu_2\mathcal{Q}=\mathfrak{h}_0+\mathcal{V}$$
  $\mathfrak{h}_0=\int_{\Lambda^*}dp\;E(p)\;a_p^+a_p\quad,\quad \mathcal{V}=V_F+V_{FB}+V_B$ 

with charge operator  $Q = D_0$  and

$$V_{F} = \frac{1}{2} \int_{\Lambda^{*}} dk \ \widehat{V}(k) D_{k}^{+} D_{k} \ ,$$

$$V_{FB} = \int_{\Lambda^{*}} dk \ \widehat{V}(k) \ D_{k}^{+} [b_{k} + b_{-k}^{+}]$$

$$V_{B} = \int_{\Lambda^{*}} dk \ \widehat{V}(k) \ [b_{k}^{+} b_{k} + \frac{1}{2} b_{k}^{+} b_{-k}^{+} + \frac{1}{2} b_{-k} b_{k}]$$

Let

$$V_{\alpha}(t) := e^{it\mathfrak{h}_0} V_{\alpha} e^{-it\mathfrak{h}_0}$$

for  $\alpha \in \{F, FB, B\}$ .



#### Boltzmann equation

#### Boltzmann dynamics in Fermi gas

$$f_t - f_0 = -rac{\lambda^2}{|\Lambda^2|} \sum_{lpha,eta \in \{F,FB,B\}} T_{lpha,eta}(t)$$

where

$$\mathcal{T}_{lpha,eta}(t,
ho) := \int_0^t \int_0^{t_1} dt_1 dt_2 \; 
u_{t_2} \Big( [[a_
ho^+ a_
ho, V_lpha(t_1)], V_eta(t_2)] \Big)$$

Boltzmann term  $Q_t$  stems from  $T_{F,F}$ .

Particle-hole interaction term  $B_t$  stems from  $T_{FB,FB}$ , main term

$$\int_0^t \int_0^{t_1} \int_{(\Lambda^*)^2} dt_1 dt_2 dk d\ell \ \nu_{t_2} \left( D_k^+(t_1) \underbrace{\left[ b_k(t_1), b_\ell^+(t_2) \right]}_{\Rightarrow \text{boson propagator}} D_\ell(t_2) \right)$$

All other  $T_{\alpha,\beta}$  contribute to remainder term (by choice of  $\nu$ !).





- ▶ Boltzmann dynamics emerges in the bulk of  $\mathcal{B}$  for *holes*, and in  $\mathcal{B}^c$  for *particles*.
- Additional phenomenon: Interactions between bulk holes / excited particles via mediation of virtual bosonized particle-hole pairs at the boundary S.

These interactions are smaller than Boltzmann term at center of  $\mathcal{B}$  and become dominant near  $\mathcal{S}$ .

#### Boltzmann dynamics in quantum gases

Thank you for your attention.