Cours

Détection d'anomalies

Approches

- Détéction d'outliers
 - Apprendre à détecter des anomalies dans le jeu de donnée initial en cherchant des régions denses tout en ignorant les anomalies
- Détection de nouveauté
 - Ici le jeu de donnée pas pollué par les annomalies
 - Il faut detecter des anomalies dans les données futures non observées

Méthodes

Non supervisées

- Pas de labels fournis
- Base d'apprentissage = Données normales + anomalies
- Les anomalies sont très rares

Types

- Approches basées sur le voisinages
 - Local Outlier Factor
 - Paramètres
 - $D_k(x)$ = Distance par rapport à son k^{\{ie\}} plus proche voisin
 - $N_k(x)$ = L'ensemble de ses k plus proche voisin
 - $R_k(x,y)$ = Distance d'accessibilité de x par rapport à y comme étant le $max(d(x,y)etD_x(y))$
 - $AR_k(x)$ = Distance d'accessibilité moyenne de x comme étant égale à la moyenne des distances d'accessibilité de x avec tous les points de son voisinage $(N_k(x))$
 - $f_k(x)$ = Densité d'accessibilité = Inverse de $AR_k(x)$
 - Une instance normale est sensée avoir une densité locale similaires à ses voisins, alors q'une instance anormale est sensée avoir une beaucoup plus petite densité locale
 - LOF(x) = Moyenne du rapport $f_k(y)/f_k(x)$ pour tous les y dans $N_k(x)$
 - Mesure l'écart local d'un point par rapport à ses k voisins les plus proches
 - Si ce score est porche de 1, nous pouvons en conclure que l'observation est comparable à ses voisins
 - Si ce score est < 1, nous pouvons dire que l'observation se trouve dans une région dense
 - Dans les 2 cas, l'observation n'est pas considérée comme un outlier

- Un score est largement supérieur à 1 indique qu'on a à faire à un outlier
- Utilisée pour la détection de nouveauté ou d'outliers
- Méthode très puissante
- One class SVM : Pour la détection de nouveauté
 - Objectifs
- Isolation forest
 - Principe
 - Les anomalies sont rares et différentes ==> Elles sont donc susceptibles au mécanismes d'isolation
 - Construction d'ensemble d'arbres complement aléatoires : isolation tree
 - Chaque arbres est construit sur échantillon aléatoire des instances
 - Divisions opéré dans chaque nœud via un filtrage aléatoire d'une variable et
 - 1 seul
 -

Supervisées

- Labels à la fois pour les instances normales et anomalies
- Anomalies appartiennent à la classe rare
- Données déséquilibrées
- Adaptation des approches supervisées existantes
- Types
 - Random Under-sampling et Random Oversampling
 - Under-sampling
 - Sous échantillonnage
 - On diminue le nombre d'individus pour que les effectifs soient égaux
 - ==> Le classifieur risque d'apprendre dans un espace qui ne reflète pas la réalité ==> Il faut corriger les probabilité
 - Oversampling
 - Sur échantillonnage
 - On va dupliquer aléatoirement certains individus
 - ==> Le classifieur risque d'apprendre dans un espace qui ne reflète pas la réalité ==> Il faut corriger les probabilité
 - Balancing
 - Pondération des classes
 - On va utiliser ici un LogLoss pondéré pour calculer l'erreur de notre classifieur ==> On la veut à 0 ou proche
 - SMOTE (Synthetic Minority Oversampling Technique)
 - Approche d'oversampling
 - Étapes
 -

Évaluations

- Accuracy déconseillé
- Si on est intéressé par la classe en sortie
 - Balanced accuracy
 - Si on veut les classes positives et négatives
 - F1-score
 - Si on est intéressé par la classe positive
- Si on est intéressé par les probabilités des classes en sortie
 - AUC-ROC
 - Si on est autant intéressé par les classe + que -
 - AUC-PR (Average Precision Score)
 - Calcul l'aire sous la courbe formée par les points
 - Si on est plus intéressé par la classe +
- ==> Ne pas évaluer les modèles sur un échantillon équilibré
- ==> Les anomalies sont souvent complètement nouvelle ==> Le modèle ne pourra pas détecter les nouvelles anomalies sur lesquelles il n'a pas été entraîné

Fouilles des données textuelles

Introduction

 Processus d'extraction non triviale d'info utiles inconnues a priori à partir de grands volumes de textes

Préparation des données

- Pré-traitement des données textuelles
 - Uniformisation du codage, élimination éventuelle de ceraines caractèe spéciaux

Extraction d'informations

- Suppression des mot ignorés
- Extraction d'entités primaires
- Étiquetage grammaticale
- Extraction d'entités nommées
 - Nom de personnes, lieux, organisation, dates qui ont un role important

Exploitation

Représentation vectorielle des textes

- Elle prend les mot qui apparaisse le plus dans me texte mais ne prend pas en compte le contexte la grammaire et syntaxe ==> On perds beaucoup d'info
- Comparaison des vecteurs avec la distance cosinus :
 - Le norme du vecteur étant proportionnelle à la longueur du texte

- On utilise parfois la similarité cosinus
-
- Évolutions de la représentation vectorielle de base
 - Pondération des termes : TF-IDF
 - Pondération les termes selon leur importance déterminé dans le texte
 - On utilise le TF (Term Frequency) dans le document
 - On multiplie le TD par IDF (Inverse Document Frequency)

 - Concept du LSA (=Latent Semantic Analysis)

•

Sélection des termes :

•

- Développement de modèles
- Utilisation des modèles
- Challenges
 - Résolution référentielle
 - Analyse syntaxique (générale ou spécifique)