DETERMINATION OF TITANIUM CONCENTRATION IN BIOLOGICAL SAMPLES

Purpose and scope

To determine Titanium dioxide concentration as inert marker in biological samples.

Procedure

Chemicals/Reagents required:

1	Concentrated H ₂ SO ₄ (95.0-98.0%)	Sigma-Aldrich No. 258105- 500mL
2	H_2O_2 (30 wt.% in H_2O)	Sigma-Aldrich No. 216763- 500mL
3	Titanium (IV) oxide (technical,	Sigma-Aldrich No. 14021 or 14027
	≥99%)	_
4	Cuvettes	Fisherbrand: FB55147

Solution required:

- 1. Preparing the stock solution (standard titanium solution; 0.5 mg/mL or 150 ppm)
 - i. Dissolve 250mg TiO₂ in 100mL concentrated H₂SO₄ in a heat proof beaker.
 - ii. Heat the mixture just below boiling.
 - iii. Carefully add with rinsing to approximately 200mL distilled water in a volumetric flask (500mL).
 - iv. Add 100mL concentrated H₂SO₄ to the mixture.
 - v. Dilute the mixture with distilled water to 500mL.

Note: The volumes required for each solution can be adjusted according to the total volume desired.

- 2. Preparing 1L of sulfuric acid (7.4M) solution.
 - i. Slowly add 400 mL of concentrated H₂SO₄ to approximately 400 mL distilled water in a 1000 mL volumetric flask.
 - ii. Dilute this mixture with distilled water to 1000mL.

Note: This is an extremely vigorous exothermic reaction; the flask will be hot. Follow the steps carefully.

NEVER ADD WATER TO ACID

- 3. Preparing diluent solution (300mL total volume)
 - i. Add 30mL H₂SO₄ (7.4 M) solution to 60mL H₂O₂ in a 500 mL volumetric flask.
 - ii. Dilute the mixture to 300mL with distilled water.

Note: The total volume can be adjusted to any volume desired but the ratio of 7:2:1 for distilled water, H_2O_2 , and 7.4M H_2SO_4 should be maintained. Again, add the dilute acid to H_2O_2 and not the other way round.

4. Preparing the standard solutions for the calibration curve:

To prepare the concentration curve (Titanium concentration: 0, 12, 24, 36, 48, 60, 72 ppm), pipette into 7 individual 50 mL volumetric flasks using the chart below:

Making standard solutions.

Flask	Ti concentration	Dilution	Stock	Diluent (mL)	Total std
No.	(ppm)	factor	solution (mL)		solution (mL)
1	0	0.00	0.0	50.0	50
2	12	0.08	4.0	46.0	50
3	24	0.16	8.0	42.0	50
4	36	0.24	12.0	38.0	50
5	48	0.32	16.0	34.0	50
6	60	0.40	20.0	30.0	50
7	72	0.48	24.0	26.0	50

Note: The sample without TiO2 (blank) is used to calibrate spectrophotometer reading to zero. Measure absorbance at 410 nm (minimum of 2 readings per sample), may use the template reading table below.

From the Ti concentration and an average of absorbance values, generate a linear regression equation of the type Y = a + bX where Y are the average absorbance readings and X are the Ti concentrations. The regression coefficient should not be less than 0.98.

Sample table:

Serial	Sample ID	Beaker	Sample Wt.	Abs 1	Abs 2	Average	% Ti
No.		No.	(g)			Abs	

- 5. Preparation of biological samples (diets, excreta, feces, digesta):
 - i. Ash at least duplicate aliquots (0.50 or 1g for feed samples and 0.25g for digesta or excreta samples) in porcelain crucibles in muffle furnace overnight at 580°C.
 - ii. After cooling, add 10mL 7.4M H₂SO₄ to each crucible.
 - iii. Gently boil all the samples on hot plate for approximately 60 mins until completely dissolved.
 - iv. After cooling, pour the solution quantitatively with rinsing into a beaker containing 25mL distilled water.
 - v. Pour the contents of the beakers into 100mL volumetric flasks through filter paper (Whatman 541 or 542).
 - vi. Add 20mL H2O2 (30%) to each flask.

- vii. Dilute the content to 100mL with distilled water.
- viii. Mix thoroughly by inverting the flasks.
- ix. Measure the absorbance of aliquots of the resulting solution in a spectrophotometer at 410 nm.
- x. Use the equation to calculate Ti in your biological sample:

$$\frac{((Av.\,absorbance-Intercept)/Slope)\times\frac{100}{Sample~wt.}}{10000}$$

Where:

- Average absorbance is the average reading from the spectrophotometer.
- Intercept is the value for slope obtained from the regression analysis of the standard absorbance readings.
- Sample wt. of the biological sample used prior to ashing.

Safety and disposal:

- i. While making up the stock solution and the H₂SO₄ (7.4M) solution, use gloves and a facemask and work in the fume cupboard.
- ii. Wear gloves at times while handling the reagents.
- iii. All glassware used in the assay should be rinsed well in tap water down the sink.
- iv. All reagents to be disposed of down the sink, rinsing with copious amounts of water.