Naive Bayes

Mia Feng

2018年4月19日

1 概述

Naive Bayes: 监督学习,生成式模型。用于分类,朴素指的是各特征条件独立[?]。用于垃圾邮件分类等。

求解目标:分类,以后验概率最大时对应的类别作为预测分类结果。

$$y = \arg \max_{c_k} P(Y = c_k) \prod_{j=1}^{n} P(X_j = x_j | Y = c_k)$$
 (1)

求解思路:最大化后验概率,或者说省略分母不看后最大化似然,取后验概率最大或者似然值最大对应的类标作为预测类标。Concretely,分别计算各类别出现概率 $P(Y=c_k), k=1,2,\cdots,m;$ 分别计算各类别下对应特征出现的概率 $P(X=x_j|Y=c_k), j=1,2,\cdots,n, k=1,2,\cdots,m;$ 按公式 (1) 预测类标。求解方法: MAP 或者最大化似然。

1.1 推导

推导 取 I 为示性函数。 a_l 表示 X 的第 l 个特征。样本有 n 个。类标 m 个,特征 s 个。

$$P(Y = c_k) = \frac{\sum_{i=1}^{n} I(y_i = c_k)}{n}, k = 1, 2, \dots, m$$
 (2)

$$P(X_j = a_{jl}|Y = c_k) = \frac{\sum_{i=1}^n I(x_i^j = a_{jl}, y_i = c_k)}{\sum_{i=1}^n I(y_i = c_k)}$$
(3)

其中, $i = 1, 2, \dots, n, l = 1, 2, \dots, s, k = 1, 2, \dots, m$

2 算法实现 2

改进 为了避免分母为 0, 进行了拉普拉斯平滑, 即在分母上加了类数目。

2 算法实现

见 CS229[?]

- 1. 随机初始化 cluster centroids $\mu_1, \mu_2, \cdots, \mu_k \in \mathbb{R}^n$
- 2. 迭代直至收敛 {

对于每一个样例 i, 计算类标

$$c^{(i)} := \arg\min_{j} \|x^{(i)} - \mu_{j}\|^{2}$$
 (4)

对于每一个类 j,更新 cluster centroids:

$$\mu_{j} := \frac{\sum_{i=1}^{m} \mathbb{1}\left\{c^{(i)} = j\right\} x^{(i)}}{\sum_{i=1}^{m} \mathbb{1}\left\{c^{(i)} = j\right\}}$$
 (5)

}

3 Implementation

聚类测试:数据在 data.csv

图 1: 训练数据

图 2: kmeans 运行结果,iter=1,k=4。菱形标记聚类中心,点标记数据

图 3: kmeans 运行结果,iter=2,k=4。菱形标记聚类中心,点标记数据

图 4: kmeans 运行结果,iter=3,k=4。菱形标记聚类中心,点标记数据