Lesson 2: Binary Systems

Jiun-Long Huang
Department of Computer Science
National Chiao Tung University

Outline

- Unsigned Integers
- Signed Integers
- Floating-Point Numbers

Unsigned Integers

Binary Numbers

- Bit
 - Can be 0 or 1
- Why binary (base 2) numbers?
 - Why decimal (base 10) numbers?

- Logic gate
 - ON (1) and OFF (0)
- ◆Binary (Base 2)→Octal (Base 8)→Hexadecimal (Base 16)
- Octal
 - 0 1 2 3 4 5 6 7
- Hexadecimal
 - 0123456789ABCDEF

- Hour/Minute/Second can be seen as base 60
 - HH:MM:SS
- ◆02:03:04→7384 seconds

$$2*60^2+3*60^1+4*60^0$$

$$=7200+180+4$$

=7384

 $◆128 \text{ seconds} \rightarrow 00:02:08$ 128/60=2...82/60=0...2

 $3800 \text{ seconds} \rightarrow 01:03:20$

3800/60=63...20

63/60=1...3

- Decimal: 19
 - Binary: 10011
 - Octal: 23
 - Hexadecimal:13
- Transform a
 number in base N
 to the equivalent
 one in base 10

$$(19)_{10} = 1*10^{1} + 9*10^{0}$$

$$(10011)_{2} = 1*2^{4} + 1*2^{1} + 1*2^{0}$$

$$= 16 + 2 + 1$$

$$(23)_{8} = 2*8^{1} + 3*8^{0}$$

$$= 16 + 3$$

$$(13)_{16} = 1*16^{1} + 3*16^{0}$$

$$= 16 + 3$$

Transform a number in base 10 to the equivalent one in base N

■
$$(1000)_{10} \rightarrow (??)_{16}$$

 $1000/16=62...8$
 $62/16=3...(14)_{10}...E$
 $3/16=0...(3)_{10}...3$
 $(1000)_{10}=(3E8)_{16}$

- Transformation between binary and hexadecimal numbers
 - A hexadecimal digit is equivalent to four binary digits
- How about octal numbers?

Addition and Multiplication in Binary Numbers

- $(1011)_2 + (0110)_2 =$
 - **(10001)**₂
- $(1011)_2*(0110)_2=$
 - **(1000010)**₂

Overflow

- Overflow
 - Reason: Computers only use limited number of bits to represent numbers
 - The value is out of the range
- Consider 4-bit integers
 - \blacksquare 15+1→(1111)₂+(0001)₂=(0000)₂=0
 - $0-1 \rightarrow (0000)_2 (0001)_2 \rightarrow (1111)_2 \rightarrow 15$

Ranges of Unsigned Integers

- 8-bit unsigned integers
 - $-(111111111)_2 \sim (00000000)_2$
 - $2^{8}-1\sim0\rightarrow255\sim0$
- 16-bit unsigned integers
 - $2^{16}-1\sim0\rightarrow65535\sim0$
- 32-bit unsigned integers
 - 2³²-1~0
- 64-bit unsigned integers
 - 2⁶⁴-1~0

Signed Integers

Signed Numbers

- Four-best known representations for signed numbers
 - Signed and magnitude
 - One's complement
 - Two's complement
 - Offset binary (also known as Excess-K)

Signed and Magnitude

5+2

- Consider 4-bit integers
- Using a sign bit to represent positive and negative numbers
 - **■** +5→0101
 - **■** -5→1101

	0	1	0	1
+	0	0	1	0
			_	_
	0	1	1	1

Signed and Magnitude

- $0 \rightarrow 0000(+0)$ or 1000(-0)
 - 0 has two representations
- The procedures of adding a positive number and adding a negative number are different
 - Complicated circuits
- ◆Range: +7~+0,-0~-7

Two's Complement

- ♦ 2's complement
 - **+**5=0101
 - **■** -5=1011

- The leftmost bit is 1 <-> negative number
- Range:
 - 7~-8

1000

0111

1000

Two's Complement

- There is exactly one 0
- The procedures of adding positive and negative numbers are the same

• Simple circuits
$$5-2=$$
 $2-5=$ 1101 is a negative number $5+(-2)$ $2+(-5)$ $2+(-5)$ minus 1 0101 0010 $+1110$ $+1011$ 00
0<->1 0011 1101

Thus, the decimal value of 1101 is -3

Overflow

- Overflow
 - Computers only use limited number of bits to represent numbers
 - The value is out of the range
- **♦**E.g.,

 - **■** -8-1**→**-8+(-1)**→**
 - $(1000)_2 + (1111)_2 = (0111)_2 = 7$

Ranges of Signed Integers

- 8-bit integers
 - \bullet (01111111)₂~(1000000)₂
 - $2^{7}-1\sim-2^{7}\rightarrow127\sim-128$
- 16-bit integers
 - $= 2^{15} 1 \sim -2^{15} \rightarrow 32767 \sim -32768$
- 32-bit integers
 - 2³¹-1~-2³¹
- 64-bit integers
 - 2⁶³-1~-2⁶³

Floating-Point Numbers

IEEE 754-2008: Single-Precision (32 Bits) Floating-Point Numbers

- The IEEE 754 standard specifies a binary32 (single-precision floating-point numbers) as having:
 - Sign bit: 1 bit
 - Exponent width: 8 bits
 - Significand precision: 24 bits (23 explicitly stored)
 - Also known as fraction and mantissa

IEEE 754-2008: Double-Precision (64 Bits) Floating-Point Numbers

- The number has value $v = s \times m \times 2^e$, where
 - s = +1 (positive numbers) when the sign bit is 0
 - s = -1 (negative numbers) when the sign bit is 1
 - \bullet e = Exp 127 (excess-127 representation)
 - m = 1.fraction in binary (normalized)

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

IEEE 754-2008: Single-Precision (32 Bits) Floating-Point Numbers

- The sign bit is zero
- ◆The exponent is -3
- The significand is 1.01 (in binary), which is 1.25 in decimal.

$$(1.01)_2 = 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$

The represented number is therefore $+1.25 \times 2^{-3}$, which is +0.15625.

IEEE 754-2008: Single-Precision (32 Bits) Floating-Point Numbers

- ◆Show IEEE 754 form of -5
- $(-5)_{10} = (-1.25*2^2)_{10} = (-1.01*2^2)_2$
- ◆s bit: 1
- Exp = 127 + 2 = 129

 $2^{-2}=0.25$

IEEE 754-2008: Double-Precision (64 Bits) Floating-Point Numbers

- The IEEE 754 standard specifies a binary64 as having:
 - Sign bit: 1 bit
 - Exponent: 11 bits
 - Significand precision: 53 bits (52 explicitly stored)

IEEE 754-2008: Double-Precision (64 Bits) Floating-Point Numbers

- The number has value $v = s \times 2^e \times m$, where
 - s = +1 (positive numbers) when the sign bit is 0
 - s = -1 (negative numbers) when the sign bit is 1
 - \bullet e = Exp 1023 (excess-1023 representation)
 - m = 1.fraction in binary (normalized)

Round-off Error

- Since single/double precision floatingpoint numbers use finite bits, overflow may occur.
 - The significand is of finite bits, and thus, round-error may occur.
- Round-off error (the consequence of using finite precision floating point numbers on computers) is also called truncation error.

Consider storing the following number by single precision floating-point number

 $(+1.000000000000000000011*20)_2$

1 01111111 000000000000000000000001

Underflow

- Arithmetic underflow occurs when the true result of a floating point operation is smaller in magnitude (that is, closer to zero) than the smallest value representable as a normal floating point number in the target datatype.
 - E.g., 2⁻²⁰⁰⁰⁰ in double-precision floating number representation

Discussion

- ◆Is it a good idea to use 32-bit floatingpoint number to replace 32-bit signed integer?
 - Floating-point number calculation is much slower
 - Floating-point number may cause truncation error
 - It is a critical problem in some domains such as finance