Bài 1 số phức thỏa mãn điều kiện nào thì có điểm biểu diễn ở phần gạch chéo trong các hình a, b, c?

Lời giải:

- a) Mỗi số phức z = a + bi có điểm biểu diễn trong miền gạch sọc ở hình a phải thỏa mãn điều kiện: phần thực a ≥1 (phần ảo b bất kì).
- b) Số phức z = a + bi có điểm biểu diễn trong miền gạch sọc ở hình b phải thỏa mãn điều kiện : phần ảo b ∈[-1;2] (phần thực a bất kì).
- c) Điều kiện: mô đun ≤ 2 , phần thực a ∈ [-1;1]

Bài 2: Thế nào là phần thực phần ảo, mô đun của một số phức? Viết công thức tính mô đun của số phức theo phần thực phần ảo của nó?

Lời giải:

Mỗi số phức là một biểu thức $z = a + bi với a,b \in R,i^2 = -1$

- Số thực a là phần thực của số phức: z = a + bi
- Số thực b là phần ảo của số phức z = a + bi
- Điểm M(a; b) trên mặt phẳng tọa độ biểu diễn số phức z = a + bi

Khi đó độ dài vecto \overrightarrow{OM} gọi là môđun của z,

kí hiệu
$$|z| = |\overrightarrow{OM}|$$

Ta có công thức $|a + bi| = \sqrt{a^2 + b^2}$

Bài 3 : Tìm mối liên hệ giữa khái niêm mô đun và khái niệm giá trị tuyệt đối của số thực.

Lời giải:

Mỗi số thực a được gọi là số phức có phần ảo bằng 0

Ta có: $a \in R \Rightarrow a = a + 0i$

Mô đun của số thực a là:

$$|a + 0i| = \sqrt{a^2 + 0^2} = |a|$$

Như vậy với một số thực, khái niệm mô đun và khái niệm giá trị tuyệt đối là đồng nhất.

Bài 4 : Nêu định nghĩa số phức liên hợp với số phức z. Số phức nào bằng số phức liên hợp của nó?

Lời giải:

Cho số phức z = a + bi $(a, b \in R)$ thì số phức liên hợp

của số phức z kí hiệu là : z = a - bi

Số phức z bằng số phức liên hợp của nó \bar{z}

khi và chỉ khi z là số thực.

Bài 5 : Trên mặt phẳng tọa độ, tìm tập hợp biểu diễn của các số phức z thỏa mãn điều kiện:

- a) Phần thực của z bằng 1
- b) Phần ảo của z bằng -2
- c) Phần thực của z thuộc đoạn [-1; 2], phần ảo của z thuộc đoạn [0; 1]
- d) |z|≤2

Lời giải:

- a) Tập hợp các điểm thuộc đường thẳng x =1
- b) Tập hợp các điểm thuộc đường thẳng y= -2

- c) Tập hợp các điểm thuộc hình chữ nhật có các cạnh nằm trên các đường thẳng x=-1, x=2, y=0, y=1 (hình gạch sọc).
- d) Tập hợp các điểm thuộc hình tròn tâm O(0,0), bán kính bằng 2.

Bài 6: Tìm các số thực x, y sao cho:

- a) 3x+yi=2y+1+(2-x)i
- b) 2x+y-1=(x+2y-5)i

Lời giải:

a) Ta có:
$$3x + yi = 2y + 1 + (2 - x)i$$

$$\Leftrightarrow \begin{cases} 3x = 2y + 1 \\ y = 2 - x \end{cases} <=> \begin{cases} x = 1 \\ y = 1 \end{cases}$$

b) Ta có:
$$2x + y - 1 = (x + 2y - 5)i$$

 $\Leftrightarrow (2x + y - 1) + (0i) = 0 + (x + 2y - 5)i$
 $\Leftrightarrow \begin{cases} 2x + y - 1 = 0 \\ x + 2y - 5 = 0 \end{cases} <=> x = -1, y = 3$

Bài 7: Chứng tỏ rằng với mọi số thực z, ta luôn phần thực và phần ảo của nó không vượt quá mô đun của nó.

Lời giải:

Số phức z = a + bi, mô đun $|z| = \sqrt{a^2 + b^2}$

Ta có:

$$\sqrt{a^2 + b^2} > \sqrt{a^2} = |a| \ge a$$

 $\sqrt{a^2 + b^2} \ge b^2 = |b| \ge b$

Vậy với mọi số phức thì phần thực và phần ảo của nó không vượt quá mô đun của nó.

Bài 8 : Thực hiện các phép tính sau:

a)
$$(3+2i)[(2-i)+(3-2i)]$$

b) b)
$$(4-3i)+\frac{1+i}{2+i}$$

$$c)(1+i)^2-(1-i)^2$$

d)
$$\frac{3+i}{2+i} - \frac{4-3i}{2-i}$$

Lời giải:

$$(3+2i)(5-3i) = 15+6+(10-9)i = 21+i$$

b) Ta có:

$$(4-3i) + \frac{(1+i)(2-i)}{2^2+1^2} = 4-3i + \left(\frac{3}{5} + \frac{1}{5}i\right) = \frac{23}{5} - \frac{14}{5}i$$

c) Ta có:
$$(1+i)^2 = 1^2 + 2i + i^2 = 1 + 2i - 1 = 2i$$

$$(1-i)^2 = 1^2 - 2i + i^2 = -2i$$

$$Vav (1+i)^2 - (1-i)^2 = 4i$$

d) Ta có:
$$\frac{3+i}{2+i} = \frac{(3+i)(2-i)}{2^2+1^2} = \frac{7}{5} - \frac{2}{5}i$$

$$\frac{4-3i}{2-i} = \frac{(4-3i)(2+i)}{2^2+1^2} = \frac{11}{5} - \frac{2}{5}i$$

$$2-i$$
 2^2+1^2 5 5 5 $3+i$ $4-3i$ 4 1

$$V\hat{a}y \frac{3+i}{2+i} - \frac{4-3i}{2-i} = -\frac{4}{5} + \frac{1}{5}i$$

Bài 9 : Giải các phương trình sau trên tập số phức:

a)
$$(3 + 4i)x + (1 - 3i) = 2 + 5i$$
;

b)
$$(4 + 7i)x - (5 - 2i) = 6ix$$

Lời giải:

a)
$$(3 + 4i) x + (1 - 3i) = 2 + 5i$$

$$\Leftrightarrow$$
 (3 + 4i) x = 2 +5i - (1 - 3i)

$$(3 + 4i) x = 1 + 8i$$

$$\Leftrightarrow x = \frac{1 + 8i}{3 + 4i}$$

$$\Leftrightarrow$$
 x = $\frac{7}{5} + \frac{4i}{5}$

b)
$$(4+7i)x - (5-2i) = 6ix$$

$$\Leftrightarrow$$
 (4+7i)x - 6ix = 5 – 2i

$$\Leftrightarrow$$
 (4+i) x = 5 – 2i

$$\Leftrightarrow x = \frac{5-2i}{4+i}$$

$$\Leftrightarrow x = \frac{18}{17} - \frac{13}{17}i$$

Bài 10 : Giải các phương trình sau trên tập số phức:

a)
$$3z^2+7z+8=0$$

b)
$$z^4-8=0$$

c)
$$z^4-1=0$$

Lời giải:

a) Ta có:
$$\Delta = 7^2 - 96 = -47$$

 $3z^2 + 7z + 8 = 0$
 $\Leftrightarrow z_1 = \frac{-7 - i\sqrt{47}}{6}, z_2 = \frac{-7 + i\sqrt{47}}{6}$
b) Đặt $t = z^2, z^4 - 8 = 0$
 $\Rightarrow t^2 - 8 = 0 \Rightarrow t = \pm\sqrt{8}$
Khi đó: $z_{1,2} = \pm\sqrt{\sqrt{8}} = \pm\sqrt[4]{8}, z_{3,4} = \pm i\sqrt[4]{8}$
c) $z_{1,2} = \pm 1, z_{3,4} = \pm i$

Bài 11 : Tìm hai số phức, biết tổng của chúng bằng 3 và tích của chúng bằng 4.

Lời giải:

Giả sử hai số phức cần tìm là z₁,z₂. Theo giả thiết ta có:

$$\begin{cases} z_1 + z_2 = 3 \\ z_1 \cdot z_2 = 4 \end{cases} \Leftrightarrow \begin{cases} z_2 = 3 - z_1 \\ z_1(3 - z_1) = 4 \end{cases} \Leftrightarrow \begin{cases} z_2 = 3 - z_1 (1) \\ z_1^2 - 3z_1 + 4 = 0 (2) \end{cases}$$

Giải (2) ta được $z_1 = \frac{3\pm i\sqrt{7}}{2}$. Từ (1) suy ra:

$$z_1 = \frac{3 + i\sqrt{7}}{2}$$
; $z_2 = \frac{3 - i\sqrt{7}}{2}$

Hoặc
$$z_1 = \frac{3-i\sqrt{7}}{2}$$
; $z_2 = \frac{3+i\sqrt{7}}{2}$

Bài 12 : Cho hai số phức z1,z2, biết rằng z1+z2 và z1.z2 là hai số thực. Chứng tỏ rằng z1,z2 là hai nghiệm của một phương trình bậc hai với hệ số thực.

Lời giải:

Cho các số phức z_1, z_2 khi đó z_1, z_2 là các nghiệm của phương trình:

$$(x-z_1)(x-z_2)=0$$

$$x^2+(z_1+z_2)x+z_1.z_2=0$$
 (*)

Theo giả thiết z_1+z_2 và $z_1.z_2$ là hai số thực nên phương trình (*) là phương trình bậc hai với hệ số thực.

Bài tập trắc nghiệm

Bài 1 : Số nào trong các số sau là số thực?

(A).
$$(\sqrt{3} + 2i) - (\sqrt{3} - 2i)$$

(B).
$$(2 + i\sqrt{5}) + (2 - i\sqrt{5})$$

(C).
$$(1 + i\sqrt{3})^2$$

(D).
$$\frac{\sqrt{2}+i}{\sqrt{2}-i}$$

Lời giải:

Chọn đáp án B.

$$\left(\sqrt{3}+2i\right)-\left(\sqrt{3}-2i\right)=4i$$

$$(2+i\sqrt{5})+(2-i\sqrt{5})=4$$

$$(1+i\sqrt{3})^2 = -2 + 2i\sqrt{3}$$

$$\frac{\sqrt{2} + i}{\sqrt{2} - i} = \frac{1 + 2i\sqrt{2}}{3}$$

Bài 2 : Số nào trong các số sau là số ảo?

(A).
$$(\sqrt{2} + 3i) + (\sqrt{2} - 3i)$$

(B).
$$(\sqrt{2} + 3i)(\sqrt{2} - 3i)$$

(C).
$$(2+3i)^2$$

(D).
$$\frac{3+2i}{2-3i}$$

Lời giải:

Chọn đáp án C.

$$(\sqrt{2} + 3i) + (\sqrt{2} - 3i) = 2\sqrt{2}$$
$$(\sqrt{2} + 3i)(\sqrt{2} - 3i) = 11$$
$$(2 + 3i)^2 = -5 + 12i$$
$$\frac{3 + 2i}{2 - 3i} = \frac{(3 + 2i)(2 + 3i)}{13} = i$$

Bài 3: Đẳng thức nào sau đây là đẳng thức đúng?

(A).
$$i^{1977}=-1$$

(B).
$$i^{2345}=i$$

(C).
$$i^{2005}=1$$

(D).
$$i^{2006} = -i$$

Lời giải:

Chọn đáp án B.

Ta có: $i^{(4k+r)}=i^r$ (với k, $r \in N$)

2345=4k+1=>i²³⁴⁵=i

Bài 4: Đẳng thức nào trong các đẳng thức sau là đúng?

(A).
$$(1-i)^8 = -16$$

(B).
$$(1+i)^8=16i$$

(C).
$$(1+i)^8=16$$

(D).
$$(1+i)^8 = -16i$$

Lời giải:

Chọn đáp án B.

Ta có: $(1+i)^8 = [(1+i)^2]^4 = (2i)^4 = 2^4 i^4 = 2^4 = 16$

Bài 5 : Biết nghịch đảo của số phức z bằng số phức liên hợp của nó, trong các kết luận sau, kết luận nào là đúng?

(A).
$$z \in R$$

(B).
$$|z| = 1$$

(C). z là số thuần ảo

(D).
$$|z| = -1$$

Lời giải:

Chọn đáp án B.

Giả sử cho số phức $z = a + bi \neq 0 \Leftrightarrow a^2 + b^2 \neq 0$

Số phức biên hợp là $\bar{z} = a - bi$

Theo định nghĩa, nghich đảo của x là:

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2} = > \frac{1}{z} = \bar{z} \Leftrightarrow |z|^2 = 1$$

 $\Leftrightarrow |z| = 1$ (vì mô đun là số không âm)

Bài 6 : Trong các kết luận sau, kết luận nào là sai?

- A. Mô đun của số phức z là một số thực
- B. Mô đun của số phức z là một số phức
- C. Mô đun của số phức z là một số thực dương
- D. Mô đun của số phức z là một số thực không âm.

Lời giải:

Chọn đáp án C.

Giả sử cho số phức z = a + bi, mô đun của z là $|z|=\sqrt{(a^2+b^2)}\ge 0$

Số 0 là số phức có mô đun bằng 0.|0+0i|=0