北京大学出版社

0425 - 25 7425 - 25

群

韩其智 孙洪洲 GF95/03

北京大学出版社

群 论

輔其智 孙洪洲编著黃任编辑:周月梅

北京大学出版社出版 (北京大学校内)

北京大学印刷厂印刷 新华书店北京发行所发行 各地新华书店经售

> 850×1168毫米 32开本 11印张 270千字 1987年2月第一版 1987年2月第一次印刷 **印数: 00001—8,000册**

统一书号, 13209·168 定价: 2.20元

内容提要

本书结合实例讲述了群和群表示基础、点群、转动群,对称群和酉群的有关 理论,并介绍了李群和李代数基础、李代数的表示以及求李代数不可约表示的 张量基方法等。

本书可作为物理系高年级学生和研究生群论课的教材, 也可供物理工作者参考。

作者通过多年在北京大学物理系讲授高年级和研究生的群论 课,深感需要一本合适的群论教材。本书是在多次编写讲义的基础上, 并考虑到群论的一些新的应用和发展而写成的。

书的前半部分,即第一章到第五章,可以作为物理系研究生必修课的数材。第一、二章给出了群论和群表示论的基础。第三、四、五章中讲述的点群、转动群、对称群和酉群,不仅对理论物理工作者是必需的,而且对实验物理工作者也是重要的。在讲授时可根据不同对象将其中有些定理的证明部分略去。书的后半部分,即第六章到第八章,讲述了李群、李代数及其表示等内容,可作为理论物理专业研究生群论课的补充数材,也可供理论物理工作者参考。特别是本书给出的用张量基求表示的方法,可以推广到其他李代数和李超代数中去,我们希望它能对读者有所裨益。

因为本书是针对物理系的学生和理论物理工作者而写的,因 此在一般情况下不给出数学上的完整证明,而力求将有关理论阐 述准确、清楚。本书在内容安排上尽量做到由浅入深、多举实例, 便于学生接受。另外,由于篇幅及时间关系,本书未能把群论的 应用及李超代数包括进去,实是憾事。

由于作者水平和时间的限制,书中难觅有错误和不妥之处, 恳请读者予以指正。

最后,我们深切怀念王竹溪先生对我们的关怀,衷心感谢胡济民、杨立铭老师和高崇寿同志对本书的关心和支持。

韩其智 孙洪洲 1985年于北京

目 录

4	_
i	7
,	77

第一章	群的基本知识	
1.1	群	(1)
1.2	子群和陪集	
1.3	类与不变子群 ************************************	(8)
1.4	群的同构与同态	(12)
1.5	变换群	(18)
t.6	群的直积与半直积	(23)
第二章	群表示论的基础	
2.1	群表示	(28)
2.2	等价表示、不可约表示和酉表示	(37)
2.3	群代数和正则表示	(44)
2.4	有限群表示理论 ************************************	(48)
2.5	群表示的特征标理论 ************************************	(56)
2.6	新表示的构成 ************************************	(63)
第三章	点群	
3.1	三维实正交群 ************************************	(70)
3.2	点群	(74)
3.3	第一类点群	
3.4	第二类点群	(83)
3.5	晶体点群	(87)
3.6	点群的不可约表示	(94)
第四章	转动群	
4.1	SO(3) 群与二维特殊酉群 SU(2) (101)

4.2	SU(2) 群的不可约表示	(106)
4.3	SO(3) 群的不可约表示	(112)
4.4	李代数 su(2) 和 so(3)····································	(115)
4.5	转动群表示的直积与耦合系统的角动量	(124)
4,6	不可约张量算符	(136)
第五章	对称群与酉群	
5.1	n阶对称群 S	(141)
5.2	投影算符	(146)
5.3	杨盘及其引理	(152)
5.4	8 * 群的不可约表示	(163)
5.5	U(m)群和 SU(m) 群的不可约表示	(173)
	李群基础	
6.1	拓扑空间	(185)
6.2	微分流形	(195)
6.3	拓扑群与李群	(202)
6.4	李群和李代数	(211)
	李代数基础	
7.1	基本概念	(225)
7.2	复半单李代数的正则形式	(231)
7.3	素根及邓金 (Dynkin)图····································	(244)
	典型李代数的根系	
	含瓦累 (Chevalley) 基 ···································	
7.6	实单纯李代数	(267)
	李代数的表示	
	李群与李代数的表示	
	半单李代数的表示	
8.3	单李代数不可约表示的标记	(278)

	8.4	直积表示	(286)
	8.5	o(3) 和o(2,1) 的不可约表示	(288)
	8.6	o(4) 的不可约表示	(299)
	8.7	su(3)的不可约表示	(304)
	8.8	su(3)的CG系数	(313)
各章	习题	***************************************	(323)
参考	文献	***************************************	(332)
索引		H	(334)

第一章 群的基本知识

二十世纪以来,特别是爱因斯坦(Einstein)发现相对论之后,对称性的研究在物理学中越来越重要。对称性帮助人们求得物理问题的解,也帮助人们去寻求新的运动规律。物理学家不仅研究了时间和空间的对称性,而且还找到了许多内部对称性。如强作用的SU(2)同位旋对称,SU(3)色和味的对称,弱电统一的SU(2)XU(1)的对称,偶偶核的U(6)动力学对称等等。从七十年代起,又开展了超对称性问题的研究。群论是研究对称性问题的数学基础,因此,它越来越受到物理学工作者的重视。

1.1 群

定义1.1 设G是一些元素的集合,G={…,g,…,}={g}。在 G中定义了乘法运算。如果G对这种运算满足下面四个条件。

- (1) 封闭性。即对任意 $f,g \in G$,若 fg = h,必有 $h \in G$ 。
- (2) 结合律、对任意 $f,g,h \in G$,都有 (fg)h = f(gh).
- (3) 有唯一的单位元素。有 $e \in G$,对任意 $f \in G$,都有 ef = fe = f.
- (4) 有逆元素。对任意 $f \in G$,有唯一的 $f^{-1} \in G$,使 $f^{-1}f = ff^{-1} = e$,

则称G为一个群。e称为群G的单位元素, f^{-1} 称为f的逆元素。g01 空间反演群。

设E和I 对三维实空间 R^3 中向量r 的作用为Er=r, Ir=-r.

即 E 是保持,不变的恒等变换、 「是使, 反演的反演变换、定义 群的乘法为从右到左连续对,作用。

集合{占,1}构成豆演群, 其乘法表见 表1.1.

例 2 n 阶置換群 S_n , 又称 n 阶 对称群。将 n 个元素的 集 合 $X=\{1,\dots,n\}$ 2,…,n}映为自身的置換为

$$P = \left(\begin{array}{cccc} 1 & 2 & \cdots & n \\ \\ m_1 & m_2 & \cdots & m_n \end{array}\right),$$

其中 $m_1 m_2 \cdots m_n$ 是 1,2, \cdots , n 的任意排列, P 表示把 1 映为 m_1 , 2 映为 m_2, \dots, n 映为 m_n 的映射。显然置換只与每列 的 相 对 符 号有关,与第一行符号的顺序无关,如

$$\left(\begin{array}{cccccc} 1 & 2 & 3 & 4 \\ & & & \\ 4 & 2 & 1 & 3 \end{array}\right) = \left(\begin{array}{cccccc} 4 & 2 & 3 & 1 \\ & & & \\ 3 & 2 & 1 & 4 \end{array}\right).$$

定义两个置换 P' 和 P 的乘积 P'P ,为先实行置换 P ,再实 行置 换P', 如

$$\left(\begin{array}{ccccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right) \left(\begin{array}{ccccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) = \left(\begin{array}{ccccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right).$$

容易看出在这乘法定义下,全部n阶置 換 构 成 S_n 群。 S_n 群 共 有 n! 个元素。

例 $\mathbf{0}$ 平面正三角形对称群 $D_{\mathbf{3}}$ 、又称为 $\mathbf{6}$ 阶二面体群。

考虑重心在原点, 底边与 x 轴平行的 xy 平面上的正三角 形 $\triangle ABC$, 见图1.1(a), 保持正三角形不变的空间转动操作有

e, 不转,

d: 绕α轴转 2π/3,

f: 绕 z 轴转 $4\pi/3$, a: 绕轴 1 转 π ,

b. 绕轴 2 转 π, c. 绕轴 3 转 π.

定义两个转动操作的乘积,如 ab 为先实 行 操 作 b, 再 实 行 操 作 a , 由图 1 , 1 (b) 可看出,实行操作 b 和实行操作 ab 后 $\triangle ABC$ 位 置的变化,且可看出,实行 操 作 ab 与 实 行 操作 d 一样,因此 ab=d。在上述乘法定义下,保持正三角形不变的全体转动操作构

成 D_3 群。 $D_3 = \{e, d, f, a, b, c\}$ 是 6 阶群, 它的乘法表见表1.2。

表1.2 D₃的乘法表

	E	d	f	ø,	Ь	c	
	 6	 d	- <u>-</u>	#	b	6	
à	d	f		ç	a	b	
f	f	6	ď	ь	ç	a	
4	4	b	6	e	đ	f	
b	Ь	£	ß	f	•	d	
c	£	ø	Þ	đ	f		
·							

例4 定义群的乘法为数的加法,则全体整数构成一个群, 0 是单位记素, n 和 - n 互为逆记素。同理,全体实数在加法下 也构成一个群。但实数全体在乘法为数乘时, 纤不构成一个群, 因为 0 沒有逆记素。除去 0 以外的实数构成一个群。

例 5 空间平移群 T(3) 。 设 α 是 R^3 中的 向 量, r 是 R^3 中 任意一向量, 定义空间平移 T 。 为

$$T_{\alpha}\mathbf{r} = \mathbf{r} + \boldsymbol{\alpha}$$
,

定义两个平移 T_a 和 T_b 的乘积 T_a T_b ,为先实行平移 T_b ,再实行平移 T_a

$$T_a T_b r = T_a (r + b) = r + b + a = T_{a+b} r$$
,

故

$$T_a T_b = T_{a+b} = T_b T_{a \bullet}$$

T(3) 群的单位元素是平移零向量, T_a ,即不平移,其中 θ 是零向量, T_a 和 T_{-a} 是互逆元素。

例6 三维转动群 SO(3)。保持 R^3 中点 O 不动,设 k 是 过 O 点的任一轴,绕 k 轴转 ψ 角的转动为 $C_k(\psi)$ 。 定义两 个 转 动 $C_k(\psi)$ 和 $C_k(\psi')$ 的乘积 $C_k(\psi')$ $C_k(\psi')$,为先实行 绕 k 轴 转 ψ 角,再实行绕 k' 轴转 ψ' 角。则绕所有过 O 点轴的一切 转 动 构成 SO(3) 群。 SO(3) 群的单位元素是转角 $\psi=0$,即 不 转。绕 同一轴 k,转角 ψ 和 $2\pi-\psi$ 的元素 $C_k(\psi)$, $C_k(2\pi-\psi)$ 互为逆元素。

由上述例子可以看出群的元素不但可以是数,而且可以是空间反演、空间转动、空间平移等操作,也可以是置换等等。

当群G的元素个数有限时,G称为有限群。当G的元素个数为无限时,G称为无限群。空间反演群、 S_n 群、 D_3 群是有限群,例 4 至例 6 是无限群。

有限群G的元素的个数n称为群的阶,有时 记 为 n(G)。 反演群是二阶群, D_3 是 6 阶群, S_n 是 n! 阶群。

群的乘法,可以是数乘和数的加法,也可以是空间反演、转动等连续两次操作和连续两次置换等等。有限群的乘法规则,可

以列为乘法表。无限群的乘法虽然不能列出乘法表,但乘法规则总是确定的。

群的乘法一般不具有可交換性。即对任意 $f,g \in G$,一般说来 fg 与 gf 并不相等。如果对任意 $f,g \in G$,有 fg = gf,则称 G 是可交換群或阿贝耳 (Abel) 群。

从前面例子还可以看出,群 G 的任何元素可 以 用 指 标 α 标记。当 G 是 n 阶有限群时,指标 α 取 $1,2,\cdots,n$,群 元 用 $g_x(\alpha=1,2,\cdots,n)$ 表示。当 G 是 可数的无限群时,如整数加法群, α 可 以 取 原有整数值, $\alpha=0,\pm1,\pm2,\cdots$ 。当 G 是连续的无限群时,如实数 加法群,有时 α 取全体实数,有时 α 取多个有序的连续变化的实数:如在平移群中, α 是三个无界的 Ω 行序实数 Ω Ω Ω Ω Ω Ω

$$a = a_x i + a_y j + a_z k$$
.

又如在转动群中, α 是 3 个有界的有序实数 θ , φ , ψ ,其中 θ , φ 是转轴 k 的方位角, ψ 是转动角度,而且, $0 \le \theta \le \pi$, $0 \le \varphi < 2\pi$, $0 \le \psi \le \pi$. 综上所述,群 G 的任一个元素,总可用在一定范围内变 化 的一个数 α 标记为 g_a,给出此范围中任一个数 α ,就 对 应 群 G 的一个元素。

定理1.1(**重排定理**) 设 $G = \{g_*\}, u \in G$, 当 a 取遍所有可能值时,乘积 ug_* 给出幷且仅仅一次给出G的所有元素。

证明 先证G中任意元素 g_{ρ} 可以写成 ug_{a} 的 形式。因 为 $u^{-1} \in G$,所以 $u^{-1}g_{\rho} = g_{a} \in G$,自然有 $g_{\rho} - ug_{a}$ 。

再证 ug_a 当 a 不同时,给出 G 中不同的元素。用反证法,设 $a \neq a'$,而 $ug_a = ug_{a'}$,两边左乘 u^{-1} 得 $g_a = g_{a'}$,这 与 a 可以唯一标记 G 中元素矛盾。故 $a \neq a'$ 时, $ug_a \neq ug_{a'}$ 。于 是 当 a 改 变时, ug_a 给出 f 仅一次给出 G 的所有元素。定理证毕。

 \mathbf{x} $g_{\mathbf{a}}\mathbf{u}$ 在 α 取遍所有可能值时,也给出幷且仅仅一次给 出 群 G 的所有元素。

重排定理是关于群的乘法的重要定理。它指出每一个群无素,在乘法表的每一行(或每一列)中被列入一次而且仅仅一次。

乘法表的每一行(或每一列)部是群元素的重新排列,不可能有两行(或两列)元素是相同的。

1.2 子群和陪集

定义1.2 设H是群G的一个子集,若对于与群G同样的乘法运算,H也构成一个群,则称H为G的子群,常记为HCG。

容易证明, 群 G 的非空子集 H 是 G 的子群的充要条件为:

- (1) 若 h_a , $h_{\beta} \in H$, 则 $h_a h_{\beta} \in H$,
- (2) 若 $h_a \in H$, 则 $h_a^{-1} \in H$.

任意一个群G, 其单位元素 e 和G 本身都是G 的子群, 这两种子群称为显然子群或平庸子群。群G 的非显然子群称为固有子群。若不特别说明,一般说子群是指固有子群。

例 7 在定义群的乘法为数的加法时,整数全体构成的群是 实数全体构成的群的子群。

例 8 在 x 轴方向的平移 $\{T_{a_x}i\}$ 全体构或平移群 T(3) 的一个子群。

例 9 绕固定轴 k 的 转 动 $C_{\mathbf{k}}(\psi)$, $0 \le \psi < 2\pi$ 是 SO(3) 群 的一个子群。

定义1.3 n 阶循环群是由元素 a 的幂 a^* 组成, $k=1,2,\cdots$, n, 并且 $a^*=e$, 记为

$$z_n = \{a, a^2, \cdots, a^n = e\}$$

循环群的乘法可以交换,故循环群是阿贝尔群。从n阶有限群G的任一个元素a出发,总可以构成G的一个循环子群 z_k ,

$$z_k = \{a, a^2, \dots, a^k = e\}$$

称 a 的阶为 k , z_k 是由 a 生成的 k 阶循环群。因为 当 a=e,e 为 G 的一阶循环子群,这是显然子群。当 $a\neq e$, $a^2\neq a$, 如 $a^2=e$, 则由 a 生成 2 阶循环子 群。如 $a\neq e$, $a^2\neq e$, … , $a^{k-1}\neq e$,用 重 排 定理,知 a,a^2 , … , a^{k-1} , a^k 为 G 中不同元素。通过 增加 k ,再利

用電排定理,总可以在 $k \le n$ 中达到 $a^k = e$ 。因此,从 n 阶有限群的任一元素 a 出发,总可以生成一个 G 的循环子群。

定义1.4 设 H 是 群 G 的 子 群, $H=\{h_a\}$ 。由 固 定 $g\in G$, $g\notin H$,可生成子群 H 的左陪集

$$gH = \{gh_a \mid h_a \in H\},$$

同样也可生成丑的右陪集

$$Hg = \{h_{\alpha}g \mid h_{\alpha} \in H\}$$

有时也将陪集称为旁集。当^H是有限子群时,陪集元素的个数等于^H的阶。

定理1.2(**陪集定理**) 设群H是群G的子 群,则 H的两个左(或右)陪集或者有完全相同的元素,或者沒有任何公共元素。

证明 设 $u,v \in G$, $u,v \notin H$, 考虑由u,v 生或的H的两个左陪集,

$$uH = \{uh_a \mid h_a \in H\},$$

$$vH = \{vh_a \mid h_a \in H\},$$

设左陪集 uH 和 vH 有一个公共元素,

$$uh_a = vh_\beta$$
,

胍

$$v^{-1}u = h_{\beta}h_{\alpha}^{-1} \in H_{\bullet}$$

根据重排定理, $v^{-1}uh_v$ 当 v 取遍所有可能值时, $v^{-1}uh_v$ 给 出 群 H 的所有元素一次,并且仅仅一次,故左陪集 $v[v^{-1}uh_v] = uh_v$ 与 左陪集 vh_v 重合。因此当左陪集 uH 和 vH 有 一个公共元素时, uH 和 vH 就完全重合。定理证毕。

同样的证法, 也适用于右陪集,

定理1.3(拉格朗日(Lagrange)定理) 有限群的子群的阶,等于该有限群阶的因子。

证明 设 G 是 n 阶有限群,H 是 G 的 n 阶子 群。取 $u_1 \in G$, $u_1 \notin H$,作左陪集 u_1H 。如果包括子群 H 的左陪集 串 H, u_1H 不能 穷尽整个群 G,则取 $u_2 \in G$, $u_2 \notin H$, $u_2 \notin u_1H$,作 左 陪 集 u_2H 。根据陪集定理, u_2H 与H和 u_1H 完全不重合。继续这种做法,由于

G的阶有限,故总存在 u_{i-1} ,使包括子群H的左陪集串 $H, u_1H, u_2H, \dots, u_{i-1}H$

穷尽了整个G。即群G的任_二元素被包含在此左陪集串中,而左陪集串中又沒有相重合的元素,故群G的元素被分成i个左陪集,每个陪集有m个元素、于是

群G的阶 $n=(子群H的阶m)\times i$.

定理证毕.

系 阶为素数的群沒有非平庸子群。

上面把群G的元素,分成其子群H的左陪集串的作法,不仅对证明拉格朗日定理有用,而且提供了一种把群G分割为不相交子集的方法。这是一种很有用的分割群的方法。同样,也可以把群G分割成其子群的右陪集串。

例10 D_3 有子 群 $H_1 = \{e,a\}, H_2 = \{e,b\}, H_3 = \{e,c\}$ 和 $H_4 = \{e,d,f\}$ 。 D_3 可按 H_1 分成左陪集 串, $H_1 = \{e,a\}, bH_1 = \{b,f\}$, $cH_1 = \{c,d\}$ 。也可 按 H_4 分 成 右 陪 集 串, $H_4 = \{e,d,f\}, H_4 = \{a,b,c\}$ 。

1.3 类与不变子群

定义1.5 设 f, h 是群 G 的两个元 素,若 有 元 素 $g \in G$,使 $gfg^{-1} = h$,则称元素 h 与 f 共轭。记为 $h \sim f$ 。

共轭具有对称性, 当 $h \sim f$, 则 $f \sim h$. 且 $f \sim f$.

共轭还具有传递性,即当 $f_1 \sim h$, $f_2 \sim h$, 则有 $f_1 \sim f_2$ 。因 $f_1 = g_1hg_1^{-1}$, $f_2 = g_2hg_2^{-1}$, 故

$$f_1 = g_1 g_2^{-1} f_2 g_2 g_1^{-1} = (g_1 g_2^{-1}) f(g_1 g_2^{-1})^{-1}$$

定义1.6 群G的所有相互共轭的元素 集 合 组 成G的 一 个 类。

由于共轭关系具有对称性和传递性,因此一个类被这类中任意一个元素所决定。只要给出类中任意一个元素f,就 可 求 出 f

类的所有元素,

$$f$$
 类 = $\{f' | f' = g_a f g_a^{-1}, g_a \in G\}$.

应该指出,当 g_a 取题群G的所有元素时, $g_a f g_a^{-1}$ 可能不止一次地启出f类中的元素。如f = e, $g_a f g_a^{-1}$ 永远给出单位元素 e 。

由共轭关系具有传递性可以知道,两个不同的类沒有公共元素。因此可以对群按共轭类进行分割。这种对群按共轭类进行的 分割,每个类中元素个数不一定相同。而按子群的陪集对群进行 的分割,每个陪集元素的个数是相同的。按类和按陪集分割群, 是分割群的两种重要方式。

定理1.4 有限群每类元素的个数等于群阶的因子。

证明 设G是n阶有限群,g是G的任一个元素,看g类元素的个数。作G的子群 H^g ,

$$H^{g} = \{ h \in G | hgh^{-1} = g \},$$

 H^g 由 G 中所有与 g 对易的元素 h 组成,即 hg = gh。

对于 $g_1,g_2 \in G$, $g_1,g_2 \notin H^g$, 如果 $g_1gg_1^{-1} = g_2gg_2^{-1}$,则 g_1 , g_2 必属于 H^g 的同一左陪集 g_1H^g 。因为按定 义, $g_1 \in g_1H^g$ 。由 $g_1gg_1^{-1} = g_2gg_2^{-1}$ 可得 $(g_1^{-1}g_2)g(g_1^{-1}g_2)^{-1} = g$,故 $g_1^{-1}g_2 \in H^g$, $g_2 \in g_1H^g$ 。

反之,如 果 g_1, g_2 属于 H^s 的 同 一左 陪 集 g_1H^s ,必有 $g_2 = g_1h$, $h \in H^s$ 。于是有

$$g_2gg_2^{-1} = g_1hgh^{-1}g_1^{-1} = g_1gg_1^{-1}$$
.

因此g 类中元素的个数,等于群G 按 H^s 分割陪集的个数,也就是群G的阶的因子。

g 类元素个数 = $\frac{G \text{ 的 } M}{H^{g} \text{ 的 } M}$.

定义1.7 设H和K是群G的两个子群,若有 $g \in G$,使 $K = gHg^{-1} = \{k = ghg^{-1} | h \in H\}$,

则称H是K的共轭子群。

由共轭关系的对称性和传递性,知共轭子群也有对称性和传递性。即若H是K的共轭子群,则K也是H的共轭 子 群。若 H_1 和 H_2 是K的共轭子群,则 H_1 和 H_2 也互为共轭子群。G的全部子群可以分割为共轭子群类。

定义1.8 设H是G的子 群,若 对 任 意 $g \in G$, $h_o \in H$,有 $gh_o g^{-1} \in H$ 。即如果H包含元素 h_o ,则它将包含所有 与 h_o 同 类的元素,我们称H是G的不变子群。

定理1.5 设H是G的不变子群,对任一固定元素 $f \in G$,在h。取逼H的所有群元时,乘积fh。 f^{-1} 一次幷且仅仅一次给出H的所有元素。

证明 首先证明H的任意元素 h_{β} 具有 $fh_{\alpha}f^{-1}$ 的形式。因为 H是不变子群,故 $f^{-1}h_{\beta}f \in H$,令 $f^{-1}h_{\beta}f = h_{\alpha}$,则 $h_{\beta} = fh_{\alpha}f^{-1}$ 。

而且当 $h_a \neq h_y$ 时, $fh_a f^{-1} \neq fh_y f^{-1}$,否则必引起矛盾。因此当 h_a 取逼所有可能的H元素时, $fh_a f^{-1}$ 一次幷仅仅一次给出H的所有元素。

例11 以加法作为群的乘法时,整数加法群是实数加法群的不变子群。事实上,阿贝尔群的所有子群都是不变子群。

不变子群的左陪集与右陪集是重合的。因为对G的 不变 子群H, 由 $g \in G$, $g \notin H$ 生成H的左陪集

$$gH = \{gh_a \mid h_a \in H\}$$

和右陪集

$$Hg = \{h_a g \mid h_a \in H\},\,$$

而由 $H \neq G$ 的不变子群知 $g^{-1}h_{\bullet}g \in H$ 。由下式可以看出左陪集的元素 $g(g^{-1}h_{\bullet}g)$ 也是右陪集的元素,

$$g(g^{-1}h_{\alpha}g) = h_{\alpha}g \in Hg_{\bullet}$$

故^H的左右陪集重合,因此对不变子群,就不再区分左陪集和右 陪集,只说不变子群的陪集就够了。

设H是G的不变子群。考虑沒有公共元素的H的 陪 集 串, $H,g_1H,g_2H,\cdots,g_iH,\cdots$,假定陪集串穷尽 了 群G,两 个 陪 集 g_iH 和 g_iH 中元素的乘积,必属于另一陪集。因

$$g_i h_{\alpha} g_j h_{\beta} = g_i g_j g_j^{-1} h_{\alpha} g_j h_{\beta} = g_i g_j h_{\gamma} h_{\beta}$$
$$= g_i g_j h_{\delta} = g_k h_{\delta} \in g_k H,$$

其中

$$h_{\gamma} = g_{j}^{-1} h_{\alpha} g_{j} \,, \quad h_{\delta} = h_{\gamma} h_{\beta} \,, \quad g_{k} = g_{i} g_{j} \,,$$

陪集串 新元素
$$H \longrightarrow f_0$$
, $g_1H \longrightarrow f_1$, $g_2H \longrightarrow f_2$, $g_1H \longrightarrow f_1$,

乘法规则

$$g_i h_\alpha g_j h_\beta = g_k h_\delta \longrightarrow f_i f_j = f_k$$
.

这样得到的群 $\{f_0,f_1,f_2,\cdots,f_i,\cdots\}$,称为不变子群H的商群,记为 G/H 。不变子群H对应商群 G/H 的单 位元素 f_0 ,每 一个 陪集 g_iH 对应商群 G/H 的 一个 元素 f_i 。陪集 g_iH 和 陪集 g_jH 的乘积对应 f_i 和 f_j 的乘积。事实上,群 $\{f_0,f_1,f_2,\cdots,f_i,\cdots\}$ 和 群 $\{H,g_iH,g_2H,\cdots,g_iH,\cdots\}$ 同构,它们都可以作为商群 G/H 的 定义。

$$H_4 = \{e, d, f\} \rightarrow f_0,$$

$$aH_4 = \{a, b, c\} \rightarrow f_{1*}$$

故商群 D_3/H_4 是二阶循环群 Z_2 。

1.4 群的同构与同态

定义1.10 若从群G到群F上,存在一个一一对应的满映射 Φ ,而且 Φ 保持群的基本运算规律(乘法)不变;即群G中两个元素乘积的映射,等于两个元素映射的乘积,则称群G和群F间构,记为 $G \simeq F$ 。映射 Φ 称为同构映射。

同构映射可由图 1.2 表示:

同构映射 Φ , 把 G 的单位元素 G。映为 F 的单位元素 f0, 因 对 任

意 $g_i \in G$, $\Phi: g_i \rightarrow f_i$.

设Φ: g₀→f'₀,则有

$$\Phi: g_0g_i = g_ig_0 = g_i \rightarrow f_0'f_i = f_if_0' = f_i,$$

故 $f'_0 = f_0, f'_0$ 必为F 的单位元素 f_0 。 同构映射 Φ ,还把G 的互逆元素 g_i, g_i^{-1} 映为F 的II 逆元素 f_i, f_i^{-1} 。

由于同构映射 Φ 是一一满映射,故逆映射 Φ^{-1} 恒存在, Φ^{-1} 把 F 映为 G ,而且 Φ^{-1} 保持群的乘法规律不变,即

$$\Phi^{-1}: F \longrightarrow G,$$

$$f_i \longrightarrow g_i,$$

$$f_j \longrightarrow g_j,$$

$$f_i f_j \longrightarrow g_i g_j,$$

所以当群G和群F同构,必有群F与群G同构, $F \cong G$.

两个同构的群,不仅群的元素间有---对应关系,而且他们 所满足的乘法规律间也有一一对应关系。因此从数学角度看,两 个同构的群具有完全相同的群结构。作为抽象的群来说,两个同 构的群本质上沒有任何区别。

例13 空间反演群 $\{E,I\}$ 和二阶循环群 $Z_2 = \{a,a^2 = c\}$ 同构。

例14 三阶对称群 S_a 和正三角形对称群 D_a 同构。

例15 群G的两个互为共轭的子群H和K是同构的。因为存在 $g \in G$,使 $h_s \in H$ 与 $k_s \in K$ 有一一对应关系,

$$h_a = g k_a g^{-1}, \quad k_a = g^{-1} h_a g_a$$

以上各个同构的群,有完全相同的乘法表。因此作为抽象的数学群来说,它们是一样的。当然,对同一抽象群,当它用于不同的物理或几何问题时,它将代表不同的物理或几何意义。这和初等数学中2+3=5可以代表不同对象相加是同样的。

定义1.11 设存在一个从群G到群F上的满映射 Φ , Φ 保持群的基本运算规律(乘法)不变,即G中两个元素乘积的映射,等于两个元素映射的乘积,则称群G 与群F 同态,记为 $G\sim F$ 。

映射 Φ 称为从G到F 上的同态映射。

图 1.3表示从G 到F 上的同态映射 Φ :

图 1.3

其中

$$\Phi: G \rightarrow F,$$

$$g_i \rightarrow f_i,$$

$$g_j \rightarrow f_j,$$

$$g_i g_j \rightarrow f_i f_j,$$

也有定义从群G到群F中的同态映射 Φ ,这时 Φ 保持群的乘法规律不变,但并不是满映射。以后如不特别说明,我们说同态,是指从群G到群F上的同态。

一般说,同态映射 Φ 并不是一一对应的。即对群 F 中的 一个元素 f_i , G 中可能有不止一个元素 g_i , g'_i , … 与之 对 应。因 此 群 G 与群 F 同态, 并不一定有群 F 与群 G 同态。

同构是一种特殊的同态, 即当同态映射 σ 是一一映射时,同态就是同构。因此若群G与群F同构,则G必与F同态。反之,若群G与群F同态,G与F不一定同构。

任何群G与只有单位元素的群 $Z_1 = \{e\}$ 同态。这种同态是 显然的,一般不考虑这种同态。

定义1.12 设群G与群F同态,G中与F的单位元素 f_0 对应的元素集合 $H = \{h_o\}$,称为同态核。

定理1.6(同态椽定理) 设群G与群F同态,则有

(1) 同态核^H是G的不变子群;

(2) 商群 G/H 与F 同构。 同态核定理可以用图 1.4 表示。

图 1.4

证明 先证同态核H是G的子群。

对任意 $h_s, h_s \in H$, 有

$$\Phi: h_a \rightarrow f_0, \quad h_{\beta} \rightarrow f_0, \quad h_a h_{\beta} \rightarrow f_0,$$

故 $h_a h_{\beta} \in H$ 。因此同态核中二元素 h_a , h_{β} 的乘积仍在H中。而且由于同态映射把单位元素映为单位元素,故H含有G的单位元素 g_0 。因设 $\Phi: g_0 \rightarrow f_0'$,则对任意 $g_i \in G$,有

$$\begin{aligned} \Phi &: g_i \rightarrow f_i, \\ g_0 g_i &= g_i g_0 = g_i \rightarrow f_0' f_i = f_i f_0' = f_i, \\ f_0' &= f_0. \end{aligned}$$

于是,如果 $h_a \in H$,必有 $h_a^{-1} \in H$ 。否则,设 $h_a^{-1} \notin H$,

$$\Phi: h_a^{-1} \rightarrow f_a^{\prime} \neq f_a$$

而又有

$$\Phi \,:\, h_\alpha^{-1}h_\alpha=g_0{\longrightarrow} f_0'\,f_0=f_0\,,$$

这不可能,因此若 h_a 属于H,必有 h_a 1属于H。这 就 证 明 了H是G的子群。

再证同态核H是G的不变子群。

对 $h_a \in H$, 与 h_a 同类的元素为 $g_ih_ag_i^{-1}$, g_g 是 群G的任意 元素。同态映射 Φ 有下作用,

$$\begin{split} \Phi : g_{i} \to f_{i}, & g_{i}^{-1} \to f_{i}^{-1}, \\ g_{i} h_{a} g_{i}^{-1} \to f_{i} f_{0} f_{i}^{-1} = f_{0}, \end{split}$$

放所有与 h_a 同类的元素 $g_i h_a g_i^a \in H$. H & G 的不变子群。

最后证明商群 G/H 与 F 同构。包括 H 的陪集串, $H = \{h_a\}$, $g_1H = \{g_1h_a\}$,… $g_iH = \{g_ih_a\}$,… 是商群 G/H 的元素。因为 同态映射 Φ 保持群的乘法规律不变,故只要证明陪集串的 元素 与 F 的元素有——对应,就证明了 G/H 与 F 同构。

首先,H的一个陪集 $g_iH = \{g_ih_a\}$ 对应F的 一个 元素,设 $\Phi: g_i \rightarrow f_i$,则 $\Phi: g_ih_a \rightarrow f_i$,对任意 $h_a \in H$ 。 其次H的 不同 陪集 g_iH , g_iH ,对应F中不同的元素。因为 g_iH 和 g_jH 不同,由陪集定理可知,它们沒有 公共 元素。设 $\Phi: g_i \rightarrow f_i$, $g_j \rightarrow f_j$,假设 $f_i = f_i$,则

$$\Phi : g_i h_a \rightarrow f_i f_0 = f_i,$$

$$g_i^{-1} g_j h_a \rightarrow f_i^{-1} f_j f_0 = f_0,$$

得到 $g_i^{-1}g_jh_a \in H$, g_iH 和 g_jH 重合。这与假设矛盾,故 $f_i \neq f_j$ 。因此H的陪集与F的元素有 $-\cdot$ 一对应关系,商群 G/H 与F 同构。定理证毕。

从图 1.4 可以看到,如群 G 与群 F 同态,同态映射为 Φ 。 G 中对应 F 单位元素 f_0 的元素集合 $\{h_o\}$ 是 G 的一个不变 子 群 H 。 H 陪集串中的每一个陪集 g_iH ,唯一地对应 F 中的一个元素 f_i 。 F 中的一个元素 f_i 也唯一地对应 H 的一个陪集 g_iH 。 已知各 个 陪集元素数目相同,故 G 中与 F 的每一个元素对应的元素数目是相同的。

同态核定理,说明同态映射保持群的乘法规律不变,它是关于同态性质的重要定理。在处理各种群的问题中,我们会经常用到它,

例16 D_3 群与二阶循环群 Z_2 同态。同态核是不变子群 $H = \{e,d,f\}$,陪集是 $aH = \{a,b,c\}$ 。图 1.5 表示这个同态映射。

定义1.13 群G到自身的间构映射 ν ,称为G的自同构映

射,

$$\nu: G *G$$

即对任意 $g_a \in G$,有 $\nu(g_a) = g_{\beta} \in G$;而且保持群的乘法规律 不变, $\nu(g_ag_{\beta}) = \nu(g_a)\nu(g_{\beta})$ 。故自同构映 射 ν 总是 把 群 G 的 单位元素 g_a 映为 g_a ,把互逆元素 g_a 和 g_a^{-1} 映为互逆元素 g_a 和 g_a^{-1} 。

图 I_.5

定义1.14 定义两个自同构 ν_1 和 ν_2 的乘积 $\nu_1\nu_2$,为先实行自同构映射 ν_2 ,再实行自同构映射 ν_3 。恒等映射 ν_0 对应单位元素。每个自同构映射 ν 有逆 ν^{-1} 存在。于是群G的所有自同构映射 ν 构成一个群,称为群G的自同构群,记为A(G)或 Aut(G)。A(G)的子群也称为G的一个自同构群。

如果群G的自同构映射 μ ,是由 $u \in G$ 引起,即对任意 $g_u \in G$,有

$$\mu\left(g_{\alpha}\right)=ug_{\alpha}u^{-1},$$

则称 μ 是G的内自同构映射。

与定义自同构的乘法一样,可以定义内自同构的乘法。于是群G的所有内自同构 μ 构成一个群,称为群G的内自同构群。记为 I(G) 或 In(G)。内 自 同 构 群 I(G)是自同构群 A(G)的 一个子群,而且是 A(G)的不变子群。因为对 任 意 $\mu \in I(G)$,与 μ 同类的元素为 $\nu \mu \nu^{-1}$,其中 $\nu \in A(G)$,设 $\nu^{-1}(g_a) = g_{\beta}$,则

$$\begin{split} \nu \mu \nu^{-1}(g_{\alpha}) &= \nu \mu(g_{\beta}) = \nu u g_{\beta} u^{-1} \\ &= \nu(u) \nu(g_{\beta}) \nu(u^{-1}) = \nu(u) g_{\alpha} \nu(u^{-1}) \\ &= \nu g_{\alpha} \nu^{-1} \in I(G), \end{split}$$

其中 $\nu = \nu(u) \in G$, 故 I(G)是 A(G)的不变子群。

例17 三阶循环群 $Z_3 = \{e, a, a^2\}$ 的自同构群 $A(Z_3)$ 有两个元素,

$$v_0: \{e,a,a^2\} \rightarrow \{e,a,a^2\},$$

 $v': \{e,a,a^2\} \rightarrow \{e,a^2,a\},$

故 $A(Z_s) = \{\nu_0, \nu\}$ 与 Z_2 同构。显然 $A(Z_s)$ 不是内自同构群。

例18 三阶对称群S。有以下的内自同构映射:

$$\mu_0(g_a) = g_a$$
, $\mu_1(g_a) = (1 \ 2)g_a(1 \ 2)$, $\mu_2(g_a) = (1 \ 3)g_a(1 \ 3)$, $\mu_3(g_a) = (2 \ 3)g_a(2 \ 3)$, $\mu_4(g_a) = (1 \ 2 \ 3)g_a(1 \ 3 \ 2)$, $\mu_5(g_a) = (1 \ 3 \ 2)g_a(1 \ 2 \ 3)$, 因此 S_3 群的內自同构群为

$$I(S_3) = \{\mu_0, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5\}.$$

內自同构群 $I(S_3)$ 的子群 $\{\mu_0,\mu_1\},\{\mu_0,\mu_2\},\{\mu_0,\mu_3\},\{\mu_0,\mu_4,\mu_5\}$ 也都是 S_3 的內自同构群。

总之,同构的群作为抽象的数学群来说,是相同的,群的同态映射,是保持群结构的一种映射,是常用的重要概念。

1.5 变换群

前面所讨论的都只涉及到抽象群。而将群论用于物理对称性的研究时,常常借助变换群来研究被变换对象和变换群之间的关系。因此变换群提供了把群论用到几何和物理问题中的 重要 途径。

变换与变换群又称为置换与置换群。对置换群的讨论应包括被变换对象和变换群两部份。设被变换对象X由元 素 x,y,z,\cdots 组成,它是一个非 空 的 集 合, $X = \{x,y,z,\cdots\}$ 。X上的置换 f是将X映入自身的一一满映射, $f;X \rightarrow X$,即对 任 意 $x \in X$,有 $f(x) = y \in X$,而且 f 有逆 f^{-1} , $f^{-1}(y) = x$ 。

定义1.15 定义X上两个置换f和g的乘积fg为对X先实行置换g,再实行置换f。即对任意 $x \in X$,有fg(x) = f(g(x))。

X的全体置換在此乘法下构成一个群,称为X上的 完 全对称群,记为 $S_X = \{f,g,\dots\}$ 。恒等置换 e 是 S_X 的单位元素,置换 f 与其逆置换 f^{-1} 为 S_X 的互逆元素。

被变换对象X的元素个数可以是无限的,如X是三维实欧氏(Euclidean)空间 R^3 中所有的点,或是希耳伯特(Hilbert)空间的所有态矢量等等。X的元素个数也可以是有限的,如平面正三角形的 3 个顶点,或正四面体的 4 个顶点等等。当X 有无限多个元素时, S_X 是无限群。当X 有 n 个元素时,X 的完全对称群 S_X 就是 n 个元素的置换群 S_n 。 S_n 共有 n ! 个元素。

X的完全对称群 S_X 的任何一个子群,是X的一个对 称 群。 又称为X上的变换群。

同一个数学抽象群,可以对应不同的变换群。如二阶循环群 $Z_2 = \{a, a^2 = e\}$,可以对应转动群的 子 群, $\{C_k(0), C_k(\pi)\}$,也可以对应空间反演群 $\{E, I\}$ 。群 $\{C_k(0), C_k(\pi)\}$ 和群 $\{E, I\}$ 是 Z_2 的两个不同的实现。虽然这两个群是同构的,具有完全相同的乘法表,但它们作用于被变换对象 R^3 中的向量时,引起的后果并不相同。这说明两个同构的群,应用到物理问题上,若是不同的实现,必须注意它们的区别。

定理1.7(凱莱 (Cayley) 定理) 群 G 同构于 G 的完全对称群 S_G 的一个子群,特别地,当 G 是 n 阶有限群时, G 同构于 S_n 的一个子群。

证明 设 $G = \{f, g, h, \dots\}$ 。将G本身看作被变 換 对 象 $X = \{f, g, h, \dots\}$,则任意C的元素 g ,把 $h \in X$ 按群G的乘法映入X,即 $g(h) = (gh) \in X$ 。

由重排定理知道,g 是把X映 入X 的 —— 满 映 射,故C 是 将 X=C 映入自身的一个变换群。因此G 是 G 上完全对 称 群 S_G 的 一个子群。

下面将讨论关于变换群的轨道等重要概念,

设 $G = \{f, g, h, \dots\}$ 是 $X = \{x, y, z, \dots\}$ 的 — 个变换群, 如果 X

中两个元素 x 和 y ,有 $g \in G$,使 gx = y ,则称 元 素 x 是 G 等 价于元素 y ,或称为 x 点与 y 点等价。记为 $x \sim y$ 。因此等 价 是 指被变换对象 X 中两个元素 x 和 y ,可以通过变换群 G 的作用,从 x 变到 y 。

显然等价具有对称性,若 $x \sim y$,必有 $y \sim x$,因 gx = y,必有 $g^{-1}y = x$ 。等价也具有 传递 性,若 $x \sim y$, $y \sim z$,必 有 $x \sim z$,因 gx = y, fy = z,必有 fgx = z.

由X中全部与x 等价的点组成的轨道称为含x 的G 轨道,即为 $\{gx\mid g\in G\}$ 。即从点x 出发,用G 中元素 g 作用于x,当 g 取 遍 G 的所有元素时,gx 给出X 的一个子集,这个子集 就 是 含x 的 G 轨道。含x 的 G 轨道,就是x 点经群 G 作用后,可以变到的所有的点。有时也简称为轨道,不过要注意是过那一点的轨道。

X的G不变子集Y,是指X的子集Y,在变 換 群G的 作 用下,不会变到Y外面去,即对任 意 $g \in G$, $y \in Y$,有 $g(y) \in Y$ 。显然,X中每一个G轨道是G不变的,几个轨道的和集也是G不变的。当集合Y是G不变时,G也是Y的对称群。

设G是X的变换群,那么对于X的任意子 集Y, $Y \subset X$, 总可以找到G的一个子群H, 使任意子集Y是H 不变的,即

$$H = \{g \in G | g(Y) = Y\}.$$

Y不变的子群H总是存在的,因为Y对由单位变换 $\{e\}$ 构成的显然子群总是不变的。

例19 设X是 xy 二维平面,G是绕 z 轴转 动 的 二 维 转 动 群。 $G = \{C_{\bullet}(\psi) \mid 0 \le \psi < 2\pi\}$, $X = \{r = xi + yj\}$ 。平面 X 上 任 意 一点 r 可写为

$$r = \begin{pmatrix} x \\ y \end{pmatrix}$$

r 经 $C_*(\psi)$ 作用变到 r',

$$r' = C_k(\psi)r = \begin{pmatrix} x\cos\psi - y\sin\psi \\ x\sin\psi + y\cos\psi \end{pmatrix},$$

r' 与 r 等价, $r' \sim r$. 以原点 O 为圆心, 过 r 点的圆周 上 的 全部 点,是含了的 G 轨道。

一般说来,过不同点的G轨道是不相同的。如含 r_0 的G轨 道,是以原点 0 为圆心,过 1。点的圆。对绕 2 轴转动 的 平 面转 动群, G轨道如图1.6所示, 是一个个同心圆。

从图 1.6 可以看到,X中 G 不变的子集有,原点 O 和以原点 为圆心的同心圆的任意和集,即X中几个G轨道的和集 是G不 变 的。因此,G既是原点O的对称群,也是任意以原点为圆心的同 心圆及英油集的对称群。

例20 平面正方形 对 称 $\#D_{4}$ 设 X 为 xy 平面, G 是 绕 原

点O的转动群。中心 在O的 正方形 $\square ABCD$ 是X的子集, $\square ABCD \subset X$ 。用求正三角形对称群 D_3 的同样办法,我 们 可 以 求出下面 8 个转动使□ABCD 不变。

- e: 恒等转动,
- r. 绕 z 轴转 π/2 角,
- r²: 绕≥轴转π角. r³: 绕≥轴转 3π/2 角,
- a: 绕对角线 1 转 n 角, b: 绕对角线 2 转 n 角,
- u: 绕×轴 转π角, υ: 绕 y轴 转 π角。

见图 1.7。这 8 个保持 $_ABCD$ 不变的元素,构成G的 一 个子

群, 称为D4群。即

$$D_4 = \{e, r, r^2, r^3, a, b, u, v\}$$

 $\square ABCD$ 是 D_4 不变的。过A 点的 D_4 轨道包括 $A_7B_7C_7D_4$ 个点,故 $\square ABCD$ 只有一个 D_4 轨道。对 $\square ABCD$ 的不同子集 Y_7 可以找到 D_4 的不 同 子群 H_7 使 Y 是 H 不变的。如

$$Y = \{A\}$$
或 $Y = \{C\}$, $H = \{e,b\}$, $Y = \{B\}$ 或 $Y = \{D\}$, $H = \{e,a\}$, $Y = \{A,C\}$ 或 $Y = \{B,D\}$, $H = \{e,a,b,r^2\}$, $Y = \{A,B\}$ 或 $Y = \{C,D\}$, $H = \{e,u\}$, $Y = \{A,D\}$ 或 $Y = \{B,D\}$, $H = \{e,v\}$ 等等。

定义1.16 设G是X上变换群,x是X內一点,G的子群 G^* 保持x不变,

$$G^x = \{h \in G \mid hx = x\},\,$$

 G^* 称为G对x的迷向子群。

在正四方形对称群 D_{\bullet} 中, A_{\bullet} C 和 B_{\bullet} D 点的迷向子群 分别为

$$G^{A} = G^{C} = \{e, b\},\$$

 $G^{B} = G^{D} = \{e, a\}.$

定理1.8 设 C^* 是 C 对 x 的迷向子群,则 G^* 的每一个左陪集,把点 x 映为 X 中一个特定的点 y 。 也就是说,含 x 的 G 轨道上的点,和 G^* 的左陪集间有一一对应关系。

证明 设 y 是含 x 的 G 轨道上的点,即有 $g \in G$,使 gx = y.则 G^* 左陪集 gG^* 也将 x 映为 y 。因为

$$G^{z} = \{h_{\alpha} \in G \mid h_{\alpha}x = x\},$$

$$gG^{z} = \{gh_{\alpha} \mid h_{\alpha} \in G^{z}\},$$

得 $gh_{\sigma}x = gx = y$ 。反之,若有 $f \in G$, f 把 x 映 为 y , fx = y , 则 由 fx = y = gx , 得

$$x = g^{-1}fx$$
, $g^{-1}f \in G^x$, $f \in gC^*$.

即只有左陪集 gG^x 中的元素,才可能把x 映 为y 。因 此,含x 的 G 轨道上的点和 G^x 的 左 陪 集 间 有一一对 应 关 系。定 理证 毕。

 \mathbf{x} 设 G 是 n 阶有限群,G " 左陪集的个数,就 是 含 \mathbf{x} 的 G 轨道中点的个数。设 G " 的阶为 $n(G^*)$,则含 \mathbf{x} 的 G 轨道中共 有 $n/n(G^*)$ 个点。

例21 设A,B,C 是平面正三角形 $\triangle ABC$ 的三个 顶 点, D_3 是 $X = \{A,B,C\}$ 的对称群。A 点的迷向子群 $G^A = \{e,a\}$,即A 在 G^A 作用下不变。左陪集 $bG^A = \{b,f\}$ 把A 映为C, $cG^A = \{c,f\}$ 把A 映为B。含A 的 D_3 轨道上共有6/2 = 3 个点。见图 1.1(a)。

例22 设A, B, C, D是正四方 形 $\Box ABGD$ 的 4 个 顶 点,D, 是 $X = \{A, B, C, D\}$ 的对称群。A 点的迷向子群 $G^A = \{e, b\}$,即 A 在 G^A 作用下不变。左陪集 $aG^A = \{a, r^2\}$ 将 A 映为 C, $uG^A = \{u, r\}$ 将 A 映为 B, $vG^A = \{v, r^3\}$ 将 A 映为 D。含 A 的 D, 轨 道 共 有 8/2 = 4 个点。见图 1.7。

以上对迷向子群的讨论是很重要的,特别是定理 1.8,使 迷 向子群的陪集和轨道上的点之间,建立了一一对应关系,并把代数 的陪集概念与几何的轨道概念联系起来了。

1.6 群的真积与半直积

先讨论两个群 G_1 和 G_2 的直积。

设 $g_{1a} \in G_1$, $g_{2\beta} \in G_2$, 则 G_1 和 G_2 直积群 G 的元素 $g_{a\beta}$ 为 $g_{a\beta} = g_{1a}g_{2\beta} = g_{2\beta}g_{1a}$.

由于在群 G_1 和 G_2 间并沒有乘法规则,故定义直积群时,总可以取 g_{10} 和 $g_{2\beta}$ 可交換。对 $g_{\alpha\beta},g_{\alpha\beta}\in G$,定义直积群的乘 法 为

$$\begin{split} g_{\alpha\beta}g_{\alpha'\beta'} &= (g_{1\alpha}g_{2\beta})(g_{1\alpha'}g_{2\beta'}) = (g_{1\alpha}g_{1\alpha'})(g_{2\beta}g_{2\beta'}) \\ &= (g_{2\beta}g_{2\beta'})(g_{1\alpha}g_{1\alpha'}) = g_{1\alpha'}g_{2\beta''} = g_{2\beta''}g_{1\alpha''}, \end{split}$$

其中 $g_{1a}g_{1a'}=g_{1a''}\in G_{1}, g_{2\beta}g_{2\beta'}=g_{2\beta''}\in G_{2}$ 。由 $g_{\alpha\beta}$ 幷 按 上 述

乘法规则,得到 G_1 和 G_2 的直积群 G_2 记为 $G=G_1\otimes G_2$ 或 $G=G_1\times G_2$

设 e_1,e_2 分别是群 G_1,G_2 的单 位 元 素,群 $F_1 = \{g_{1a}e_2\}$ 和 群 $F_2 = \{e_1g_{2\beta}\}$ 分别与群 G_1 和 G_2 同构。 $G_1 \cong F_1,G_2 \cong F_2$ 。 按以上乘 法规则可得直积群 $G = F_1 \otimes F_2$ 。 G 的单 位 元 素 为 $e = e_1e_2$,元素 $g_{\alpha\beta}$ 的逆元素为 $g_{\alpha\beta}^{-1} = g_{1\alpha}^{-1}g_{2\beta}^{-1}$ 。

当群G有子群 G_1 和 G_2 ,若满足

(1) G的每个元素 gas 能够唯一地表示成

$$g_{\alpha\beta}=g_{1\alpha}g_{2\beta}\,,$$

其中 $g_{1a} \in G_1$, $g_{2a} \in G_2$,

(2) C的乘法规则满足

$$g_{1a}g_{2\beta} = g_{2\beta}g_{1a}$$
.

即 G_1 与 G_2 的元素,按 G 的乘法规则可以交换。这时 G_1 和 G_2 元素乘法规则已包含在 G 的乘法规则中。则称群 G 是其 子 群 G_1 和 G_2 的直积, $G = G_1 \times G_2$ 。 G_1 和 G_2 称为群 G 的直 积 因 子。 当 然 G_1 和 G_2 本身并不一定是阿贝尔群。

当群 G_1 和 G_2 是群 G 的直积因子时, G 的单 位 元 素 e 是 G_1 和 G_2 唯一的公共元素。而且 G_1 和 G_2 都是 G 的不变子群。

设 $e' \in G_1 \cap G_2$, 而且 $e' \neq e$, 则在直积 群 $G = G_1 \otimes G_2$ 中有两个不同的元素 ee' 和 e'e 都对应 $e' \in G$, 这 与 G 的 每 个 元素 g_{ab} 可以唯一表为 $g_{1a}g_{2b}$ 矛盾。故只有 $e \in G_1 \cap G_2$ 。

对任意 $g_{1a} \in G_1$, 与 g_{1a} 同类的元素为

$$(g_{1a}, g_{2\beta}, g_{1a}, g_{1a}, g_{2\beta}, g_{1a}, g_{$$

故 G_1 是G的不变子群,同理 G_2 也是G的不变子群。 商 群 G/G_1 同构于群 G_2 。

例23 6 阶循环群 $Z_6 = \{a,a^2,a^3,a^4,a^5,a^6=e\}$, 是二阶循环群 $G_1 = \{a^3,a^6=e\}$ 和三阶循环群 $G_2 = \{a^2,a^4,a^6=e\}$ 的 直 积 群。即

$$Z_{\mathfrak{g}} = G_{\mathfrak{g}} \otimes G_{\mathfrak{g}}$$
,

 G_1 和 G_2 唯一的公共元素是单位元素 e , G_1 和 G_2 都是 G_3 的 不变 子群 , G_4 同构于 G_2 .

反之, D_3 有子 群 $G_1 = \{e,d,f\}, G_2 = \{e,a\}, D_3$ 的 元 素 $g_{a\beta}$ 可以唯一地表为 $g_{1a}g_{2\beta}$,如 c = da,b = fa,…。但按 D_3 的 乘 法规则, $g_{1a}g_{2\beta} \neq g_{2\beta}g_{1a}$,即 ad = b, af = c,…,不满足直积的条件,故 D_3 不是其子群 G_1 和 G_2 的直积群。子群 $G_2 = \{e,a\}$ 也不 是 D_3 的不变子群。

下面讨论群的半直积。

设群 $G_1 = \{g_{1a}\}, G_2 = \{g_{2\beta}\}, G_1$ 的自同 构 群 为 $A(G_1), \nu \in A(G_1), \mu$ 如果存在一个把 G_2 映为 $A(G_1)$ 的同态映射 Φ ,

$$\Phi: G_2 \rightarrow A(G_1)$$
,

即

$$\Phi: g_{2\beta} \rightarrow \nu_{g_{2\beta}},$$

则可定义 G_1 和 G_2 的半直积群 G_3

$$G = G_1 \otimes_* G_2$$

G的元素 g_{aB} 可唯一地写为

$$g_{\alpha\beta} = \langle g_{1\alpha}g_{2\beta} \rangle$$
,

其中 g_1 。和 g_2 。为有序的。G的乘法定义为

$$g_{\alpha\beta}g_{\alpha'\beta'} = \langle g_{1\alpha}g_{2\beta} \rangle \langle g_{1\alpha'}g_{2\beta'} \rangle$$

= $\langle g_{1\alpha}v_{g_{2\beta}}(g_{1\alpha'})g_{2\beta}g_{2\beta'} \rangle$.

下面证明 6 确实是一个群。

因 $A(G_1)$ 是 G_1 的自同构群, 故 对 $\nu_{g_{2\beta}} \in A(G_1)$, 有

$$\begin{split} \nu_{g_{2\beta}}(g_{1a}g_{1a'}) &= \nu_{g_{2\beta}}(g_{1a})\nu_{g_{2a}}(g_{1a'}), \\ \nu_{g_{2\beta}}g_{2\beta'}(g_{1a}) &= \nu_{g_{2\beta}}(\nu_{g'_{2\beta}}(g_{1a})). \end{split}$$

由此可以证明G的乘法满足结合律,

$$\begin{aligned} (\langle g_{1a}g_{2\beta}\rangle \langle g_{1a'}g_{2\beta}\rangle) \langle g_{1a''}g_{2\beta''}\rangle \\ &= \langle g_{1a}\nu_{g_{2\beta}}(g_{1a'})\nu_{g_{2\beta}g_{2\beta'}}(g_{1a''})g_{2\beta}g_{2\beta'}g_{2\beta''}\rangle \end{aligned}$$

$$= \langle g_{1a} \nu_{g_{2\beta}} (g_{1a'}) \nu_{g_{2\beta'}} (g_{1a''}) g_{2\beta} g_{2\beta'} g_{2\beta''} \rangle$$

$$= \langle g_{1a} g_{2\beta} \rangle (\langle g_{1a'} g_{2\beta'} \rangle \langle g_{1a''} g_{2\beta''} \rangle),$$

设 g_{10} 和 g_{20} 分别是 G_1 和 G_2 的单位 元,则 由 于 $\nu_{g_{2\beta}}$ 是 G_1 的自同 勾映射,有

$$\nu_{g_{2\beta}}(g_{10}) = g_{10}, \ \nu_{g_{20}}(g_{1a}) = g_{1a}.$$

容易证明G的单位元为 $\langle g_{10}g_{20}\rangle$,即

$$\langle g_{10}g_{20}\rangle\langle g_{1a}g_{2\beta}\rangle = \langle g_{1a}g_{2\beta}\rangle\langle g_{10}g_{20}\rangle = \langle g_{1a}g_{2\beta}\rangle$$

元素 $\langle g_{1a}g_{2b}\rangle$ 的逆元素为 $\langle \nu_{g_{2b}}(g_{1a})g_{2b}\rangle$,

$$\langle g_{1\alpha} g_{2\beta} \rangle \langle \nu_{g_{2\beta}^{-1}} (g_{1\alpha}^{-1}) g_{2\beta}^{-1} \rangle$$

$$= \langle g_{1\alpha} \nu_{g_{20}} (g_{1\alpha}^{-1}) g_{20} \rangle = \langle g_{10} g_{20} \rangle,$$

$$\langle \nu_{g_{2\beta}^{-1}} (g_{1\alpha}^{-1}) g_{2\beta}^{-1} \rangle \langle g_{1\alpha} g_{2\beta} \rangle$$

$$= \langle \nu_{g_{2\beta}^{-1}} (g_{10}) g_{20} \rangle = \langle g_{10} g_{20} \rangle,$$

故 $G = G_1 \otimes_a G_2$ 确实构成一个群。

群 G_1 和 G_2 的半直积也可写成。

$$G = G_1 \otimes G_2 = G_1 \otimes_{\mathbf{s}} G_2$$

等等,其中 G_1 和 G_2 的额序不能颠倒。

若 $G = G_1 \bigotimes_s G_2$, G_1 是 G 的不变子群。因为与 G_1 中元素 $\langle g_{1a}, g_{2a} \rangle$ 同类的元素为

$$\begin{split} g_{\alpha\beta} \langle g_{1\alpha'} \, g_{20} \rangle g_{\alpha\beta}^{-1} &= \langle g_{1\alpha} g_{2\beta} \rangle \langle g_{1\alpha'} \, g_{20} \rangle \langle \nu_{g_{2\beta}^{-1}} (g_{1\alpha}^{-1}) g_{2\beta}^{-1} \rangle \\ &= \langle g_{1\alpha} \nu_{g_{2\beta}} (g_{1\alpha'}) g_{1\alpha}^{-1} g_{20} \rangle \in G_1 \,, \end{split}$$

因此 G_1 是 G 的不变子群。

但一般说来, G_2 幷不是G 的不变子群。当 G_2 也是G 的不 变子群时,半直积就退化为直积。可见半直积群比直积群条件弱。有些群不能作为简单群的直积,但却可以作为半直积。

例24 D_3 群,取 $G_1 = \{e,d,f\}$, $G_2 = \{e,a\}$, G_1 的 自同构群 $A(G_1)$ 有元素

$$\nu_e : \{e,d,f\} \rightarrow \{e,d,f\},$$

 $\nu_a : \{e,d,f\} \rightarrow \{e,f,d\},$

存在 G_2 到 $A(G_1)$ 上的同构 (特殊的同态) 映射,

$$\phi: e \rightarrow \nu_e, \quad a \rightarrow \nu_a,$$

因此可以定义半直积 $G_1 \otimes .G_2$, 其元素为

$$\{\langle ee \rangle, \langle ca \rangle, \langle de \rangle, \langle da \rangle, \langle fe \rangle, \langle fa \rangle\}$$

= $\{e, a, d, c, f, b\}$

并且 $G_1 \otimes G_2$ 群的乘法规则与 D_3 完全相同, 如

$$cb = \langle da \rangle \langle fa \rangle = \langle d\nu_a(f)e \rangle$$

 $= \langle dde \rangle = \langle fe \rangle = f_a$
 $bc = \langle fa \rangle \langle da \rangle = \langle f\nu_a(d)e \rangle$
 $= \langle ffe \rangle = \langle de \rangle = d_a$

144 642 552 446 544 454 615 415 445 664 446 441

因此

$$D_3 = G_1 \otimes G_2$$

第二章 群表示论的基础

通过群表示,群论在自然科学中得到了广泛的应用,群表示 经常出现在具有某种对称性的物理问题中,本章将介绍群表示论 的基础和有限群表示的重要定理。

2.1 群 表 示

本章只介绍群的线性表示,为此先复习线性空间与线性变换的概念。

定义2.1 线性空间又叫向量空间,它是定义在数域 K(如实数域 R 或复数域 C)上的向量集合 $\{x,y,z,\cdots\} = V$.在V中可以定义加法和数乘两种运算。设 $x,y,z \in V$, $a,b,c \in K$,向 量加法和数乘具有封闭性,且满足

加法:
$$x+y=y+x$$
,
 $x+(y+z)=(x+y)+z$,
有唯一 0 元素, $x+0=x$,
对任一 x , 有唯一 $(-x),x+(-x)=0$;
数乘: $1 \cdot x = x$,
 $(ab)x=a(bx)$,
 $a(x+y)=ax+ay$,
 $(a+b)x=ax+bx$.

若把加法运算看成群的乘法,线性空间V构成一个可交换的加法群。

定义2.2 设V是数域K上的线性空间,线性变换A是将V映入V的线性映射,即对 $x,y\in V$, $a\in K$,有

A:
$$V \rightarrow V$$
, $A(x) \in V$,
 $A(ax + y) = aA(x) + A(y)$.

设A和B是从V到V的线性变换,则可定义线 性 变 换 的数乘、加法和乘法为。

$$(aA)(x) = a(A(x)),$$

$$(A+B)(x) = A(x) + B(x),$$

$$(AB)(x) = A(B(x)).$$

若线性变换 A还是把V 映入V 的一一对应满映射,则存在 A^{-1} 的逆线性变换 A^{-1}

若线性空间V中最多有n个线性独立的向量,则称V是n维线性空间。

在n 维线性空间中,可选n 个线性独立的向量(e_1,e_2,\dots,e_n)作为V 的基或基矢。在基(e_1,e_2,\dots,e_n)下,任意 $x \in V$,可用基展开,

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = \sum_{i=1}^n x_i e_i, \qquad (2.1)$$

$$(x_i \in K).$$

基 (e_1, e_2, \dots, e_n) 也称为坐标系,有序数组 (x_1, x_2, \dots, x_n) 称为x的 坐标。常用列矩阵表示基和向量,

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad e_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad \dots, \qquad e_{n} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix},$$

$$x = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix},$$

V 上线性变换 A 可用 $n \times n$ 矩阵表示,

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \cdots & \cdots & \cdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix},$$

$$Ae_{j} = \sum_{i=1}^{n} A_{ij}e_{i}, \quad (Ax)_{i} = \sum_{j=1}^{n} A_{ij}x_{j}. \qquad (2.2)$$

线性变换的数乘、加法和乘法,也用相应矩阵的数乘、加法和乘法表示。当 det $A \neq 0$ 时,存在 A 的逆矩阵 A^{-1} ,它对应于 A 的逆变换 A^{-1} 。这时称 A 是非奇异的。

定义2.3 设V为n维复向量空间,V上全部非 奇 异线性变换,当定义乘法为连续两次线性变换时,构成一个群,称为n维**复一般线性群** GL(n,C),有时 我们也记为 群 GL(V,C)。显然,GL(n,C) 有无穷多个元素。

如果在V中选一组基 (e_1,e_2,\cdots,e_n) ,V中非奇异线性变换就表示 $n\times n$ 非奇异复矩阵。因此群 GL(n,C)也 可定 义 为 $n\times n$ 非奇异复矩阵所构成的群。这个群的乘法就是矩阵乘法。

群 GL(n,G)中 的单位元素为V上恒等变换,互逆 元素为互逆变换。(或单位元素为 $n \times n$ 单位矩阵,互逆元素为矩阵及逆矩阵。)

V 上线性变换群 L(V,C), 是V 上非奇异 线 性 变 换 构成的群。显然群 L(V,C) 是群 GL(V,C)的子群。

定义2.4 群G 到线性空间V 上线性变 换 群 L(V,C)的 同态 映射 A,称为G 的一个线性**表示**,V 称为表示空间。当V 的维数 是 n 时,表示 A 的维数也是 n 。有时也把线性表示简称为表示。即

$$A: G \rightarrow L(V,C),$$

对 $g_a \in G$, 有 $A(g_a) \in L(V,C)$ 与之对应,而且保持 G 的乘 法不变。即对 $g_a,g_a \in G$,有

$$A(g_{\alpha}g_{\beta})=A(g_{\alpha})A(g_{\beta}).$$

显然G的单位元素 g_0 ,对 应于V上 恒 等 变 换, $A(g_0) = E_{n \times n}$ 。G的互逆元素 g_a 和 g_a^{-1} ,对应于V上互逆变换, $A(g_a^{-1}) = A(g_a)^{-1}$ 。

如在表示空间V 选一组基,线性变换群就和矩阵群同构。因此群G 在表示空间V 的线性表示,也可定义为G 到 $n \times n$ 矩 阵群的同态映射A。对任意 $g_a \in G$,有非奇异矩阵 $A(g_a)$ 与之对应,并且对 $g_a, g_s \in G$,矩阵乘法保持

$$A(g_{\alpha}g_{\beta}) = A(g_{\alpha})A(g_{\beta}).$$

G的单位元素 g_0 对应单位矩阵 $E_{n\times n}$,

$$E_{n \times n} = \left(\begin{array}{cccc} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{array}\right)_{n \times n}.$$

互逆元素 g。和 gā1, 对应互逆矩阵

$$A(g_a^{-1}) = A(g_a^{-1})^{-1},$$

 $A(g_a)^{-1}$ 是 $A(g_a)$ 的逆矩阵。

任意群元 g_a 的表示矩阵 $A(g_a)$ 应该是非奇异的,即 det $A(g_a) \neq 0$. 设有一个群元 g_β 的表示矩阵为 det $A(g_\beta) = 0$,则必定有所有群元的表示矩阵奇异。因按重排定理,当 a 取逼所有可能值时, $g_\beta g_a$ 会跑逼所有G的元素,而 det $A(g_\beta g_a) = \det A(g_\beta) \det A(g_a) = 0$ 。因此只要有一个 det $A(g_\beta) \neq 0$,必定所有 det $A(g_a) \neq 0$ 。故看表示矩阵是否奇异,只需看任一个群元的表示矩阵是否奇异就可以了。

以上群表示的两种定义,实质上是等价的。群G到L(V,C)的同态,既可看成是到V上线性变换群的同态,也可看成在表示空间V中取一组基后,G到矩阵群的同态。在具体应用时,矩阵形式较为大家所熟悉,而在研究某些问题时,抽象的线性空间和线性变换的概念却是不可少的。以后,我们也不区分这两种表示的定义,希望读者注意二者的等价性。

定义2.5 如果群G到群L(V,C)的映射不仅同态,而且同构。即对任一 $g_a \in G$,有唯一的 $A(g_a) \in L(V,C)$ 与之对应,反之任一 $A(g_a) \in L(V,C)$,也唯一对应 $g_a \in G$,则称此 表示A为**忠实表示。**

对于两个同构的群 $G\cong G'$, 若 A 是 G 的一个表示,则 A 必是 G' 的一个表示。当然, G 和 G' 可能代表完全不同 的 物理意义,表示 A 在 G 中和 G' 中代表的意义也可能完全不同。

以上所讨论的,全是群的线性表示。近年来在研究某些物理学的问题时,人们已逐渐涉及非线性表示,有兴趣的读者,可参阅有关文献。本书将不涉及非线性表示。以后如不特别说明;本书中提到的表示均指线性表示。

例1 任何群 $G = \{g_a\}$,恒与1(一阶单位矩阵) 同态。因此 1 是任何群G的表示,称为一维恒等表示,或称为显然表示。

例2 任何矩阵群,如 GL(n,G),SL(n,C),O(n,C),Sp(2n,C)等,其本身就是它的一个表示,而且是忠实表示。

例3 设 σ_{k} 是对 xy 平面的反射, $C_{k}(\pi)$ 是 绕 z 轴 转 π 角的旋转,则对 xy 平面的反射群 $\{E,\sigma_{k}\}$,转动群的子群 $\{E,C_{k}(\pi)\}$,空间反演群 $\{E,I\}$,这三个群都同构于 Z_{2} 。如果选表 示 空 间 V 为 R^{3} ,取 V 中坐标系为笛卡尔坐标系,则从定 义 可 得,上面三个群的群元的表示矩阵分别为。

$$A(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A(\sigma_k) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix};$$

$$B(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad B(C_k(\pi)) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

$$C(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad C(I) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

显然空间反演群也有表示

$$A(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A(I) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

但这时表示空间V不再是 R^3 ,譬如说,可以是 坐 标 x,y,z 的函数 ψ_1 , ψ_2 , ψ_3 构成的三维空间,其中 ψ_1 , ψ_2 是 x,y,z 的偶函数, ψ_3 是 奇函数,定义

$$A(g_a)\psi_i(r) = \psi_i(g_a^{-1}r), \quad i = 1,2,3.$$

因为

$$\begin{split} A(g_{\beta})A(g_{\alpha})\psi(r) \\ &= A(g_{\beta})\psi(g_{\alpha}^{-1}r) = A(g_{\beta})\phi(r) = \phi(g_{\beta}^{-1}r) \\ &= \psi(g_{\alpha}^{-1}g_{\beta}^{-1}r) = \psi((g_{\beta}g_{\alpha})^{-1}r) = A(g_{\beta}g_{\alpha})\psi(r) \,, \end{split}$$

故 $A(g_a)$ 是群 G 的 一个表示。

例4 绕固定轴 k 的转动群 $SO(2) = \{(C_k(\psi))\}$.选表示空间 V 为 R^3 , 取 R^3 中笛卡尔(Descartes)坐标系为(i,j,k)。则有表示为

$$A(C_k(\psi)) = \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

例5 D_3 群的表示。 D_3 群除有一维恒等表示外,还 有另一个一维表示。通过 D_3 的不变子群 $\{e,d,f\}$,可 看出 D_3 有到 Z_2 上的同态映射

$$Z_2: \{e,d,f\} \rightarrow 1,$$

 $\{a,b,c\} \rightarrow -1.$

故 D₃的非恒等一维表示是

$$A(e) = A(d) = A(f) = 1,$$

 $A(a) = A(b) = A(c) = -1.$

这种通过不变子群的商群,来求群的表示,是求群表示的一种方法。

另外,由图1.1(a),根据定义,可以取表示 空间V为 R^{a} ,

取笛卡尔坐标系的原 点O为 $\triangle ABC$ 的 重 心, x 轴 与 BC 边 平行,可得 D_3 的三维表示为

$$A(e) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A(d) = \begin{pmatrix} -1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$A(f) = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A(a) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

$$A(b) = \begin{pmatrix} 1/2 & \sqrt{3}/2 & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad A(c) = \begin{pmatrix} 1/2 & -\sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

如果选x,y,z的二次齐次函数

$$\phi_1 = x^2$$
, $\phi_2 = y^2$, $\phi_3 = z^2$,
 $\phi_4 = xy$, $\phi_5 = yz$, $\phi_6 = xz$

作为表示空间的基,映射A为

$$A_{ji}(g_a)\phi_j(r)=\phi_i(g_a^{-1}r),$$

注意此处 A 是从左边作用于

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_8 \end{pmatrix}$$

上的。可得 D_3 的表示矩阵为,

$$A(e) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$A(f) = \begin{pmatrix} 1/4 & 3/4 & 0 & -\sqrt{3}/4 & 0 & 0\\ 3/4 & 1/4 & 0 & \sqrt{3}/4 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ \sqrt{3}/2 & -\sqrt{3}/2 & 0 & -1/2 & 0 & -0\\ 0 & 0 & 0 & 0 & -1/2 & -\sqrt{3}/2\\ 0 & 0 & 0 & 0 & \sqrt{3}/2 & -1/2 \end{pmatrix},$$

$$A(d) = \begin{pmatrix} 1/4 & 3/4 & 0 & \sqrt{3}/4 & 0 & 0 \\ 3/4 & 1/4 & 0 & -\sqrt{3}/4 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -\sqrt{3}/2 & \sqrt{3}/2 & 0 & -1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1/2 & \sqrt{3}/2 \\ 0 & 0 & 0 & 0 & -\sqrt{3}/2 & -1/2 \end{pmatrix},$$

$$A(a) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$A(b) = \begin{pmatrix} 1/4 & 3/4 & 0 & \sqrt{3}/4 & 0 & 0 \\ 3/4 & 1/4 & 0 & -\sqrt{3}/4 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \sqrt{3}/2 & -\sqrt{3}/2 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & -\sqrt{3}/2 \\ 0 & 0 & 0 & 0 & -\sqrt{3}/2 & -1/2 \end{pmatrix},$$

$$A(c) = \begin{pmatrix} 1/4 & 3/4 & 0 & -\sqrt{3}/4 & 0 & 0\\ 3/4 & 1/4 & 0 & \sqrt{3}/4 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ -\sqrt{3}/2 & \sqrt{3}/2 & 0 & 1/2 & 0 & 0\\ 0 & 0 & 0 & 0 & 1/2 & \sqrt{3}/2\\ 0 & 0 & 0 & 0 & \sqrt{3}/2 & -1/2 \end{pmatrix}$$

例6 设粒子的哈密顿量 (Hamiltonian) H 的对称群为 $G = \{g_a\}, H(g_a^{-1}r) = H(r)$. H 的本征值为 E_n , 它的本征函数为 $\psi_{n,\mu}(r)$, μ 为简并指标,

$$H(r)\psi_{n\mu}(r) = E_n\psi_{n\mu}(r), \qquad \mu = 1, 2, \dots, f_n$$

利用H的对称性,可得

$$H(r)\psi_{n\mu}(g_{\mu}^{-1}r) = E_n\psi_{n\mu}(g_{\mu}^{-1}r).$$

即 $\psi_{n\mu}(g_a^{-1}r)$ 也是 H 的本征函数,相应的本征值也为 E_{na}

$$\psi_{n\,\mu}(g_a^{-1}r) = \sum_{r=1}^{f_n} T_{r\,\mu}(g_a)\psi_{n\,r}(r).$$

对任一 $g_a \in G$,有 $f_n \times f_n$ 矩阵 $T(g_a) = (T_{*\mu}(g_a))$ 与 之 对 应,而且

$$\begin{split} \psi_{n\mu}((g_{\alpha}g_{\beta})^{-1}r) &= \sum_{r=1}^{f_{n}} T_{\nu\mu}(g_{\alpha}g_{\beta})\psi_{n\nu}(r) \\ &= \psi_{n\mu}(g_{\beta}^{-1}g_{\alpha}^{-1}r) = \sum_{\lambda=1}^{f_{n}} T_{\lambda\mu}(g_{\beta})\psi_{n\lambda}(g_{\alpha}^{-1}r) \\ &= \sum_{\lambda=r=1}^{f_{n}} T_{\nu\lambda}(g_{\alpha})T_{\lambda\mu}(g_{\beta})\psi_{n\nu}(r), \end{split}$$

于是 $T(g_a)$ 满足

$$T_{\gamma,\mu}(g_{\alpha}g_{\beta}) = \sum_{k=1}^{f_{\alpha}} T_{\gamma,k}(g_{\alpha}) T_{\lambda,\mu}(g_{\beta}),$$

故 g_a 与矩阵 $T(g_a)$ 的对应,保持群G的乘法不变。因 此 取 H能量为 E_n 的本征函数 $\psi_{n\mu}(r)$ 为表示空间的基,就得 到 H 对称群 G

的一个表示。表示矩阵的矩阵元为 $T_{\bullet,\bullet}(\varrho_{\bullet})$ 。

2.2 等价表示、不可约表示和酉表示

由群表示的定义及例子可以看出,一个群的表示原则上可以有无穷多个。为了有助于寻找有代表性的、独立的表示,本节将对群表示的类型进行讨论。

定义2.6 设群 $G = \{g_a\}$ 在表示空间 V 的表示为 $A = \{A(g_a)\}$,对应每一个 g_a ,有唯一非奇异线性变换 $A(g_a)$ 与之对应。在一组基 (e_1,e_2,\cdots,e_n) 下, $A(g_a)$ 就是与 g_a 对应 的 非奇异矩阵,设 $X \in V$ 上非奇异矩阵,det $X \neq 0$,则相似矩阵集合 $\{XA(g_a)X^{-1}\}$,也给出群G 的一个表示。因每个元素 g_a ,唯一对应矩阵 $XA(g_a)X^{-1}$,而且 $XA(g_a)X^{-1}$ 非奇异并保持群G 的乘法不变,

 $XA(g_{\mathfrak{g}}g_{\mathfrak{p}})X^{-1}=(XA(g_{\mathfrak{g}})X^{-1})(XA(g_{\mathfrak{p}})X^{-1})$ 。 表示 $\{XA(g_{\mathfrak{g}})X^{-1}\}$ 称为 $\{A(g_{\mathfrak{g}})\}$ 的等价表示。

显然,两个等价表示的维数一定相同。但维数相同的表示却不一定等价。判断两个表示是否可以通过相似变换联系起来,这相当麻烦。以后我们可以看到,用特征标来判断表示是否等价将是很方便的。

实际上,在表示空间V中,选两组不同的基,

$$[B] = (e_1, e_2, \dots, e_n),$$
$$[B'] = (e'_1, e'_2, \dots, e'_n).$$

从基[B]到基[B']由非奇异矩阵 p变换联系,

$$e_j' = \sum_{i=1}^n p_{ij} e_i, \qquad (2.3)$$

坐标系按 p 变。V 中任意向量 x ,在[B]和[B']坐标系中的坐标为

$$\begin{bmatrix} x \end{bmatrix}_{B} = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}, \qquad \begin{bmatrix} x \end{bmatrix}_{B'} = \begin{pmatrix} x'_{1} \\ x'_{2} \\ \vdots \\ x'_{n} \end{pmatrix},$$

$$\begin{bmatrix} x \end{bmatrix}_{B} = p \begin{bmatrix} x \end{bmatrix}_{B'}, \qquad \begin{bmatrix} x \end{bmatrix}_{B'} = p^{-1} \begin{bmatrix} x \end{bmatrix}_{B}. \qquad (2.4)$$

向量按 p^{-1} 变。V中任意线性变换A,在[B]和[B']坐标系中各对应矩阵[A] $_B$ 和[A] $_{B'}$,因

$$[Ax]_{B'} = p^{-1}[Ax]_{B} = p^{-1}[A]_{B}[x]_{B}$$
$$= p^{-1}[A]_{B}p[x]_{B'} = [A]_{B'}[x]_{B'},$$

故

$$[A]_{B'} = p^{-1}[A]_{B}p_{\bullet} \tag{2.5}$$

亦即不同基下同一个线性变换对应等价矩阵。而在同一表示空间中,基的选择可以任意,因此一个表示,原则上存在无穷多个等价表示。同样,在两个表示空间V和V'中,如果V和V'的基[B]和[B']用非奇异变换式(2.3)联系,则由V和V'给出的表示也是等价的。当我们寻找一个群的全部表示时,只须考虑那些互不等价的表示。

定义2.7 设A是群G在表示空间V上的一个表示。如果V存在一个G不变的真子空间W(即W不是空集或V本身),则称表示A是可约表示。亦即对任意 $y \in W$,任意 $g_a \in G$,有 $A(g_a)y \in W$ 。 $A(g_a)$ 不把W中的向量变到W以外去。

当V中存在G不变的真子空间W时,总可以在V中选一组基 $(e_1,e_2,\dots,e_m,e_{m+1},\dots,e_n)$,其中 (e_1,e_2,\dots,e_m) 是W的基,使对所有 $g_a \in G$, $A(g_a)$ 具有如下形式

$$A(g_o) = \begin{pmatrix} C_o & N_o \\ 0 & B_o \end{pmatrix}^{\pi \uparrow \bar{\jmath}} \tag{2.6}$$

W中向量具有形式

$$y = {Y \choose 0} = \frac{\pi}{17}, \qquad (2.7)$$

即 $A(g_a)$ 不会使W中向量变到W外去。

也可从表示矩阵具有以上形式来定义可约表示。但要注意,一个表示,只要有一个等价表示矩阵具有以上形式,这表示就是可约的。而这表示本身并不一定具有上面的形式。因为只有通过适当选择基,才可以把W是G的不变子空间的性质用以上矩阵形式表示出来。

设W和 W' 是线性空间 V 的子空间,若对任意 $x \in V$,可找到 $y \in W$, $z \in W'$,并唯一的将 x 表为

$$x = y + z$$

或

$$V = W + W'$$
, $W \cap W' = \{\emptyset\}$,

则称V是线性空间W和W'的**直**和,记为

$$V = W \oplus W'$$
.

定义2.8 设群G的表示空间V可以分解为W和W'的直和, $V = W \oplus W'$,且W和W'都是G不变的。即对任意 $y \in W$, $z \in W'$,V上表示 A 有,

$$A(g_n)y \in W$$
, $A(g_n)z \in W'$,

则称表示 A 是**完全可约表示。**完全可约表示是特殊的可约表示。

对完全可约表示 A, 总可以选一组基

$$(e_1, e_2, \dots, e_m, e_{m+1}, \dots, e_n),$$

使 (e_1,e_2,\dots,e_m) 和 (e_{m+1},\dots,e_n) 是W和W'的基。,这样W和W'中 向量具有形式

$$y = \begin{pmatrix} Y \\ 0 \end{pmatrix} * \hat{\tau}, \qquad z = \begin{pmatrix} 0 \\ Z \end{pmatrix} * \hat{\tau}. \tag{2.8}$$

表示矩阵 $A(g_a)$ 具有形式,

$$A(g_{\alpha}) = \begin{pmatrix} G(g_{\alpha}) & 0 \\ 0 & B(g_{\alpha}) \end{pmatrix}^{\pi} \stackrel{\uparrow_{\overline{1}}}{=} C(g_{\alpha}) \oplus B(g_{\alpha}), \quad (2.9)$$

即 $A(g_a)$ 是矩阵 $C(g_a)$ 和 $B(g_a)$ 的直和。

一般完全可约表示 $A(g_a)$ 可以写为不可约 表 示 $A'(g'_a)$ 的直和

$$A(g_a) = \sum_{r} \bigoplus m_r A^r(g_a),$$

其中 m_p 是正整数,是表示 $A'(g_a)$ 在 $A(g_a)$ 中出现的次数,称为**重复度**。

也可从表示矩阵具有准对角形式来定义完全可约表示,当表示 A 有一个等价表示矩阵具有以上形式,则称 A 是 完 全 可 约表示。如果一个表示是可约的,但不是完全可约的,则称为可约而不完全可约表示。

定义2.9 设群G的表示A的表示空间V,不存在G不变的 其子空间,则A是G的不可约表示,或称为既约表示。

显然,如果A是不可约表示,那么A的任何一个等价表示,都不具有

$$\begin{pmatrix} C_a & N_a \\ 0 & B_a \end{pmatrix}$$

形式,当然更不具有准对角

$$\left(\begin{array}{cc}C(g_{\alpha}) & 0\\ 0 & B(g_{\alpha})\end{array}\right)$$

形式。注意, 这里所说 $A(g_a)$ 的形式, 是 对 所 有 $g_a \in G$ 而言。

求群的全部不等价不可约表示问题, 是群表示 论 的 重要课题。

酉表示又称为U表示或幺正表示,它定义在內积空间上。下面先简单介绍內积等有关概念。

设V是数域K上线性空间,将V中两个有序向量x,y,映为数 $(x|y) \in K$ 、对 $x,y,z \in V, a \in K$,如满足

- (1) (x + y | z) = (x | z) + (y | z),
- (2) (x|ay) = a(x|y),
- (3) $(x|y) = (y|x)^*$,
- (4) (x|x)>0, 当 $x\neq 0$,

则数(x(y)称为x和y的內积。

内积空间是定义有内积的线性空间.

在内积空间中, 定义向量 x 的长度 | x | 为

$$|x| = \sqrt{(x|x)}$$
.

若两个向量×和y内积为

$$(x|y)=0,$$

则称 x 和 y 垂直。故內积空间向量有长度和互相垂直的概念。总可以在內积空间选择基 (e_1,e_2,\dots,e_n) 为正交归一的,即

$$(e_i|e_j) = \delta_{ij}. \tag{2.10}$$

本书中提到的内积空间,如不作特殊说明,均采用正交归一基。

我们经常用到的欧氏空间,是有限维实内积空间;酉空间是有限维复内积空间;希耳伯特空间是无限维复内积空间。

定义2.10 设U是內积空间V上线性变换,若对任 意 $x,y \in V$, U 保持x和y的內积不变,即

$$(Ux|Uy) = (x|y),$$
 (2.11)

则称U为V上幺正变换。

我们定义內积空间V上线性变换A的共轭变换 A^{+} 为,对任意 $x,y\in V$,有

$$(Ax|y) = (x|A^{+}y),$$
 (2.12)

因此幺正变换U满足。

$$(Ux|Uy) = (x|U^+Uy) = (x|y).$$

由幺正变换将正交归一基 (e_1,e_2,\cdots,e_n) 变为正交归一基,

$$(Ue_i|Ue_j)=(e_i|e_j)=\delta_{ij},$$

故U变換有逆变換 U^{-1} 存在。因此幺正变換U满足

$$U^+U^-=UU^+=E$$
,
 $U^+=U^{-1}$, (2.13)

其中E是V上恒等变换。在V的一组固定基下,U 用 矩 阵(U_{ij})表示,(U_{ij})称为幺正矩阵,它满足

$$U^{*}U = E$$
,

其中 * 表示取复数共轭, 1表示矩阵取转置。

$$U_{ji}^* U_{jk} = \delta_{ik} \tag{2.13'}$$

定义2.11 设A是群G在內积空间V上的表示,A是V上幺正变换,则A称为G的**西表示**。亦即A是G到V上幺正交换群的同态映射。对任意 $g_a,g_a \in G$,有 $A(g_a),A(g_a)$ 与之对应,而且 $A(g_ag_a)=A(g_a)A(g_a)$,

$$A(g_{\alpha})^{+} = A(g_{\alpha})^{-1} = A(g_{\alpha}^{-1}), \quad A(g_{\beta})^{+} = A(g_{\beta})^{-1} = A(g_{\beta}^{-1}).$$

在取一组正交归一基下, $A(g_a)$ 表为矩阵,则

$$A(g_a)_{ii}^* = [A(g_a)^{-1}]_{ii} = A(g_a^{-1})_{ii}, \qquad (2.14)$$

定理2.1 酉表示可约则完全可约。即群G的表示A是可约 酉表示,则A是完全可约的。

证明 A是酉表示,故A的表示空间V是 內 积 空 间。A可约,故V有G不变的真子空间W。V可以写为W和其正交补空间W1的直和,即 $V=W \oplus W$ 1。

对任意 $y \in W$, $z \in W^{\perp}$, 按定义有

$$(z|y)=0.$$

因W是G不变的,对任意 $g_a \in G, A(g_a)y \in W$,有

$$A(g_{\mathbf{o}}^{-1})y \in W$$
,

而

$$(A(g_a)z|y) = (z|A^+(g_a)y) = (z|A(g_a^{-1})y) = 0,$$

故

$$A(g_{\sigma})z\in W^{\perp}$$
,

 W^{\perp} 也是G不变的真子空间,表示A是完全可约的。

A 可以写成W和 W^{\perp} 上幺正变换C 和 B的直和

$$A(g_a) = C(g_a) \bigoplus B(g_a),$$

$$C(g_a) y \in W, \quad B(g_a) z \in W^{\perp}.$$

定理证毕。

适当选择V的正交归一基, $A(g_a)$ 矩阵有形式

$$A(g_a) = \begin{pmatrix} C(g_a) & 0 \\ 0 & B(g_a) \end{pmatrix} \times \hat{\eta},$$

 $\dim W = m, \quad \dim W^{\perp} = n - m,$

或者说 A(ga)有等价矩阵

$$XA(g_{\alpha})X^{-1} = \begin{pmatrix} C(g_{\alpha}) & 0 \\ 0 & B(g_{\alpha}) \end{pmatrix}.$$

系 有限维西表示可以分解为不可约西表示的直和。

设 A 是群 G 在有限维內积空间 V 上的酉表示,反 复 用 定 理 2 .1,总可将 V 分解为 G 不变真子空间 V p 的直和,其中 每 个 V p 不再包含 G 不变的真子空间,即

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_{k}$$

表示A也可分解为 V_p 上幺正变换A'的直和

$$A(g_{\sigma}) = A^{1}(g_{\sigma}) \oplus \cdots \oplus A^{k}(g_{\sigma}),$$

其中 A'是 G 的不可约酒表示。注意 A' 和 A' 不一定是不相同的。如果某一不可约表示 A'出现 m_p 次,我们就说表示 A 包含表示 A'共 m_p 次,或说 A' 在 A 中重复度为 m_p 。记为

$$A(g_a) = \sum_{p} \bigoplus m_p A^p(g_a), \qquad (2.15)$$

此时对不同 p 求和。

在量子力学中,对称群保持可观察量不变,即几率振幅不变,或说希耳伯特空间内积不变,故用到的是酉表示。而酉表示的完全可约性质说明,如果能找到一个群的全部不等价不可约酉表示,就可以由其直和得到全部酉表示。这给求全部酉表示带来

许多方便,

2.3 群代数和正则表示

定义2.12 R是数域 K上的线性空间,在 R 中可定义乘法, 幷且对 $x,y,z \in R$, $a \in K$, 如满足。

- (1) $xy \in R$,
- (2) x(y+z) = xy + xz, (x+y)z = xz + yz,
- (3) a(xy) = (ax)y = x(ay),

则称 R 为线性代数或代数。

当(xy)z=x(yz)时,称为可结合代数或结合代数。

例7 定义代数乘法为矩阵乘法,全部 n×n 复矩阵,是复数域 C上的结合代数。

定义2.13 设C是复数域, $G = \{g_1, g_2, \dots, g_a, \dots\}$ 是群。群G原来只有乘法运算,若进一步定义加法和数乘,即对任意

$$x = \sum_{a} x_{a} g_{a}, y = \sum_{a} y_{a} g_{a}, x_{a}, y_{a} \in C,$$

满足

$$x + y = \sum_{\alpha} (x_{\alpha} + y_{\alpha}) g_{\alpha},$$

$$ax = \sum_{\alpha} (ax_{\alpha}) g_{\alpha},$$

则

$$x = \sum_{a} x_{a} g_{a}$$

的全体构或一个线性空间 V_G ,称为**群空间。**群元 $g_1,g_2,\cdots,g_a,\cdots$ 称为 V_G 的自然基底。

下面,我们将按与G的乘法规则一致的原则,来定义群空间 V_{G} 的乘法。

定义2.14 设 $g_a, g_\beta, g_\gamma \in G, g_a g_\beta = g_\gamma,$ 对

$$x = \sum_{\alpha} x_{\alpha} g_{\alpha}$$
, $y = \sum_{\beta} y_{\beta} g_{\beta}$, $x, y \in V_{G}$,

得 x, y 的乘积为

$$xy = \sum_{\alpha} x_{\alpha} g_{\alpha} \sum_{\beta} y_{\beta} g_{\beta} = \sum_{\alpha,\beta} x_{\alpha} y_{\beta} (g_{\alpha} g_{\beta})$$

$$= \sum_{\gamma} (xy)_{\gamma} g_{\gamma}, \qquad (2.16)$$

`其中

$$(xy)_{\gamma} = \sum_{a} x_a y_{a^{-1}\gamma},$$

 $y_{a^{-1}}$,是向量 y 在 $g_a^{-1}g_y$ 上分量。

这样定义的乘法, 显然满足条件

$$(ax + y)z = a(xz) + (yz)$$
, 对 $a \in c$;
 $(xy)z = x(yz)$, $x, y, z \in V_G$.

在以上乘法定义下,群空间 V_c 构成一个结合代数,称为G的 群代数,记为 $R_c \cdot R_c$ 的维数就是G的阶。

若取群代数 R_a 作为群G的表示空间,任意 $g_i \in G$,可以映为 R_a 上线性变换 $L(g_i)$,定义 $L(g_i)$ 为

$$L(g_i)g_j = g_ig_j = g_k, \quad g_j, g_k \in R_{G_*}$$
 (2.17)

刚

$$L(g_i)L(g_j)g_k = L(g_i)g_jg_k = g_ig_jg_k = L(g_ig_j)g_k,$$

 $L(g_i)$ 映射保持G的乘法不变,称 $L(g_i)$ 是群G的正则表示。当G是n阶有限群时, $L(g_i)$ 是n维表示。

由重排定理知道,只要 $g_i \neq g_j$, $L(g_i)$ 和 $L(g_j)$ 就不同,故正则表示是 G的忠实表示。正则表示也称正规表示。按以上定义的 $L(g_i)$ 是从左面作用于群元,也称左正则表示。

如果把任意 $g_i \in G$, 映为群代数 上线 性变换 $R(g_i)$, 定义 $R(g_i)$ 为,

$$R(g_i)g_j = g_jg_i^{-1} = g_i, \quad g_j, g_i \in R_G,$$
 (2.18)

则 $R(g_i)$ 映射也保持群G的乘法不变,

$$R(g_i)R(g_j)g_k = R(g_i)g_kg_j^{-1} = g_kg_j^{-1}g_i^{-1}$$

= $g_k(g_ig_j)^{-1} = R(g_ig_j)g_k$,

因此 $R(g_i)$ 也是群 G 的表示,表示空间也是 R_{c} 。 但此时 $R(g_i)$ 是 从右面作用于群元的,故称为 G 的右正则表示。

例8 二阶循环群 $Z_2 = \{a, a^2 = e\}$, 取群代数 R_{Z_2} 中自然基

$$e = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad a = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

则 Z_2 的左正则表示矩阵为,

$$e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

取非奇异矩阵

$$X = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad X^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = X_{\bullet}$$

则 e,a 具有等价矩阵

$$XeX^{-1}=\begin{pmatrix}1&0\\0&1\end{pmatrix},\quad XaX^{-1}=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.$$

可见 Z_2 的正则表示是可约的。

例9 正三角形对称群 D_3 , 取群代数 R_{D_3} 中自然基为

$$e = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad d = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

$$a = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

则正则表示矩阵为

可以证明这正则表示是可约的,虽然从以上矩阵并不能直接看出 这一结论。

2.4 有限群表示理论

本节主要介绍舒尔(Schur)引理和有限群表示的几个 定理。 这些定理不仅是研究有限群表示的基础,而且有些结论,可以推 广到部份李群(如紧致李群)中去。

定理2.2(舒尔引理一) 设群 G 在有限维向量 空间 V_A 和 V_B 上有不可约表示 A 和 B , 若对任意 g_a \in G , 有将 V_A 映入 V_B 的线性变换 M 满足

$$B(g_a)M = MA(g_a),$$

则有

- (1) 当表示 A 和 B 不等价时,必有 M=0,
- (2) 当 M ≒ 0 时, 表示 A 和 B 必等价。

证明 作 V_A 的子空间

$$N = \{x \in V_A \mid Mx = 0\},\,$$

 $N \oplus V_A$ 中满足 Mx = 0 的向量集合 x 组成,称为M的零空间。N 是 G 不变的,因对任意 $x \in N$,有

$$MA(g_{\alpha})x = B(g_{\alpha})Mx = 0,$$

故 $A(g_a)x \in N$ 。 而 A 又是 G 的 不 可 约表 示,故 V_A 的 不 变 子空 间 N 只 可 能 是 零 向 量 θ 或 V_A 本 身, 即 $N = \{\theta\}$ 或 $N = V_A$ 。

当 $N=V_A$,则只有 M=0,M 为零变换。 当 $M \neq 0$ 时,N=0 ,即不变子空间N只有零向量。这时线性变换M是 从 V_A 到 V_B 的一一映射。M 不可能将 V_A 中两个不同向量 x_1 和 x_2 映为 V_B 中同一个向量 y。否则

$$Mx_1 = y$$
, $Mx_2 = y$,
 $M(x_1 - x_2) = 0$, $(x_1 - x_2) \in N$.

若 $x_1 \neq x_2$,则与 $N = \theta$ 矛盾,因此M是从 V_A 到 V_B 的一一映射。同时M也是从 V_A 到 V_B 的满映射。设 R 是M作用于 V_A 而得到的空间,

$$R = \{ y \in V_B \mid y = Mx, x \in V_A \}$$
.

 $R \neq V_B$ 的子空间,而且也是G不变的。因对任意 $y \in R$,有 $B(g_a)y = B(g_a)Mx = MA(g_a)x = Mx'$,

其中 $x' \in V_A$, 故

$$B(g_a)y \in R_{\bullet}$$

由于表示B是不可约的,故R只可能是零向量或 V_B 本身。但M幸0,故 $R=V_B$ 。因此M是从 V_A 到 V_B 的满映射。由M是从 V_A 到 V_B 的一一满映射,知M必有逆 M^{-1} 存在。而且

$$B(g_a) = MA(g_a)M^{-1},$$

即不可约表示 A和 B 等价。

若不可约表示A和B不等价,必有M=0。这时 V_A 和 V_B 的维数 S_A 和 S_B 不一定相同,M是 $S_A \times S_B$ 维矩阵。定理证毕。

定理2.3(舒尔引理二) 设A 是群G 在有限维复表 示 空间V 的不可约表示,若V 上线性变换M 满足

$$A(g_a)M = MA(g_a)$$
, 对任意 $g_a \in G$.

则

$$M = \lambda E$$
.

即 $M \in V$ 上恒等变换 E 乘上常数 $\lambda, \lambda \in C$.

证明 因复空间线性变换M最少有一个 本 征 矢, 即 总 存在 $y\neq 0$, 有

$$My = \lambda y$$
.

考虑 V 的子空间

$$V_{\lambda} = \{ y \in V \mid My = \lambda y \}$$
,

即由M的本征值为 λ 的本征向量全体组成空间 V_{λ} , V_{λ} 是G不变的,因对任意 $y \in V_{\lambda}$, 有

 $M(A(g_a)y) = A(g_a)My = \lambda(A(g_a)y)$, $A(g_a)y \in V_{\lambda \bullet}$ 而表示 $A(g_a)$ 是不可约的,故 $V_{\lambda} = V_{\bullet}$ 因此对任意 $x \in V$,有 $Mx = \lambda x$,故

$$M = \lambda E_{\bullet}$$

定理证毕。

注意,舒尔引建二只适用于复表示A, 对 实 表 示 不一定成立。

舒尔引理也可直接看成对表示矩阵而言,所以它是关于矩阵的定理。下面可看到,在讨论群表示性质时,舒尔引理将起很大作用。

定理2.4 有限群在內积空间的每一个表示都有等价的酉表示。

证明 设A是有限群G在内积空间V上的一个表示。即对任意 $g_i,g_i \in G$,有 $A(g_i)$, $A(g_j)$ 与之对应,且保持G的 乘 法不变 $A(g_ig_j) = A(g_i)A(g_j)$ 。

设 $x,y \in V$, 当A不是酉表 示 时, 內 积 $(A(g_i)x|A(g_i)y)$ 与(x|y)不相等。重新定义x和y的內积为

$$\langle x | y \rangle = \frac{1}{n} \sum_{j=1}^{n} (A(g_j)x | A(g_j)y),$$

其中 n 是 G 的维数。而

$$\langle A(g_i)x|A(g_i)y\rangle$$

$$=\frac{1}{n}\sum_{j=1}^{n}(A(g_{j})A(g_{j})x|A(g_{j})A(g_{j})y)$$

$$= \frac{1}{n} \sum_{k=1}^{n} (A(g_k) x | A(g_k) y) = \langle x | y \rangle,$$

这里利用了重排定理。

由上可见 $A(g_i)$ 在新定义的内积 $\langle x|y\rangle$ 下是幺正变换。

设 (e_1,e_2,\cdots,e_k) 和 (f_1,f_2,\cdots,f_k) 是V的 两 组 基,分别对旧内积(-1))和新内积(-1))。正交归一,即

$$(e_i | e_j) = \delta_{ij} = \langle f_i | f_j \rangle, \quad i, j = 1, 2, \dots, k.$$

这两组基由非奇异变换 X 联系,

$$f_i = Xe_i$$

对任意 $x \in V, x = x_i e_i$, 有 $Xx = x_i f_i$ 。因此有 $\langle Xx | Xy \rangle = x_i^* y_i = (x | y),$ $(X^{-1}A(g_i)Xx | X^{-1}A(g_i)Xy) = \langle A(g_i)Xx | A(g_i)Xy \rangle$ $= \langle Xx | Xy \rangle = (x | y).$

故当保持原来内 积的定义(|)时,表 示 $X^{-1}A(g_i)X$ 是酉表示。于是证明了有限群G在內积空间V的表 示 A 等 价酉表 示 $X^{-1}AX$

利用定理2.1,即"酉表示具有完全可约性",可得

聚1 有限群在内积空间的表示可约则完全可约。

聚2 有限群在内积空间的表示,或是不可约的,或等价于 几个不可约表示的直和。

因此只要求出有限群的全部不等价不可约酉表示,就可求出 · 有限群的全部表示。

从群代数可以引入群函数的概念,设 R_G 是群 $G = \{g_i, i = 1, 2, \dots, n\}$ 的代数,则 R_G 中任意向量 x 可以看成是群元 g_i 的函数,如

$$x = \sum_{i=1}^{n} x_i g_i = \sum_{i=1}^{n} x(g_i) g_i$$

 R_{G} 中向量 x 和复函数 $x(g_{i})$ 间有一一对应关系。故复函数全体构成一个与 R_{G} 同构的代数。对 $a \in G$,群 函数 $x(g_{i})$ 和 $y(g_{i})$ 有数乘,加法和乘法如下,

$$(ax)(g_i) = ax(g_i),$$

$$(x+y)(g_i) = x(g_i) + y(g_i),$$

$$(xy)(g_i) = \sum_{j} x(g_j) y(g_j^{-1}g_i),$$

$$(2.19)$$

G的复函数空间的n个基可选为下列n个函数,

 $g_1(g_j) = \delta_{1j}, \quad g_2(g_j) = \delta_{2j}, \quad \dots, \quad g_n(g_j) = \delta_{nj}, \quad (2.20)$ 即共有n个独立的群函数。

若在群空间进一步定义两个群函数 x 和 y 的内积为

$$(x|y) = \frac{1}{n} \sum_{i=1}^{n} x^*(g_i) y(g_i). \qquad (2.21)$$

注意这样定义的内积, 基 g;不是归一的,

$$(g_i|g_j) = \frac{1}{n}\delta_{ij}.$$

按上面內积定义,群G的正则表示是酉表示。任意 $x,y \in R_G$,有 $(L(g_k)x|L(g_k)y)$

$$= \left(L(g_k) \sum_i x(g_i)g_i | L(g_k) \sum_j y(g_j)g_j\right)$$

$$= \left(\sum_i x(g_i)(g_kg_i) | \sum_j y(g_j)(g_kg_j)\right)$$

$$= \sum_i \sum_j x^*(g_i)y(g_j)(g_kg_i | g_kg_j)$$

$$= \sum_i x^*(g_i)y(g_i) = (x|y).$$

者A是群G的一个S维表示, 其表示矩阵元 $A_{\mu\nu}(g_i)$ 是G的一个复函数。则表示A共可产生 S^2 个群函数。

定理2.5(正交性定理) 没有限群

$$G = \{g_1, g_2, \dots, g_n\}$$

有不等价不可约酉表示…,A',…,A',…,其维数分别为…,S_p, …,S_r,…,则有

$$\sum_{i} A_{\mu}^{p}, (g_{i})^{*} A_{\mu'}^{r}, (g_{i}) = \frac{n}{S_{p}} \delta_{p_{f}} \delta_{\mu\mu'} \delta_{\nu\nu'}. \qquad (2.22)$$

或用 Rc中内积表示成

$$(A^{r}_{\mu}, |A^{r}_{\mu}\rangle_{r'}) = \frac{1}{S_{p}} \delta_{p\tau} \delta_{\mu\mu'} \delta_{r\tau'}. \qquad (2.22')$$

即不可约表示 A' 和 A' 若是不等价的,则它们生 成 的 群 函 数 A'_{μ} ,中 A''_{μ} ,是正交的。而 A''_{μ} ,与自身的内积等于 $1/S_p$ 。

证明。作Sp维矩阵C,其中D为任意Sp维矩阵,而

$$C = \frac{1}{n} \sum_{i} A^{r}(g_{i}) DA^{r}(g_{i}^{-1}).$$

对任意 $g_i \in G$, 利用重排定理,有

$$A^{*}(g_{j}) C = \frac{1}{n} \sum_{i} A^{*}(g_{j}) A^{*}(g_{i}) D A^{*}(g_{i}^{-1}) A^{*}(g_{j}^{-1}) A^{*}(g_{j})$$

$$= \frac{1}{n} \sum_{i} A^{*}(g_{k}) D A^{*}(g_{k}^{-1}) A^{*}(g_{j}) = C A^{*}(g_{j}),$$

而 A' 是群C的有限维不可约表示,利用舒尔引 理二,可得

$$C = \lambda(D)E_{S, \times S, \bullet}$$

其中 $E_{s,\times s}$, 是 S_p 维单位矩阵, $\lambda(D)$ 是与D 有关 的一个常数。取D的矩阵元除 $D_{s'}$, = 1 外,其余矩阵元全为零,则有

$$C_{\mu'\mu} = \frac{1}{n} \sum_{i} A_{\mu'\nu}^{\nu} (g_{i}) A_{\nu\mu}^{\nu} (g_{i}^{-1}) = \lambda \delta_{\mu\mu'\nu}$$

取 $\mu' = \mu$, 并对上式求和得

$$\frac{1}{n} \sum_{i} A_{\mu \, \tau'}^{p} (g_{i}) A_{\nu \, \mu}^{p} (g_{i}^{-1})$$

$$= \frac{1}{n} \sum_{i} A_{i,r}^{r} (g_{i}^{-1}g_{i}) = \frac{1}{n} \sum_{i} \delta_{r,r} = \delta_{r,r} = \lambda S_{p_{i}}$$

故得 $\lambda = \delta_{\nu,\nu}/S_{\nu}$ 。因此

$$\frac{1}{n} \sum_{i} A_{\mu}^{p} v^{i}(g_{i}) A_{\nu\mu}^{p}(g_{i}^{-1}) = \frac{1}{S_{p}} \delta_{\mu\mu} i \delta_{\nu\nu} i.$$

A'是酉表示,故

$$A_{r\mu}^{r}(g_{i}^{-1}) = A_{r\mu}^{r}(g_{i})^{-1} = A_{r\mu}^{r}(g_{i})^{+} = A_{\mu\nu}^{r}(g_{i})^{*}.$$

于是证明了

$$\sum_i A^\mu_{\mu\nu}(g_i)^*A^\mu_{\mu\nu\nu}(g_i) = \frac{n}{|S_p|} \delta_{\mu\mu\nu} \delta_{\nu\nu}.$$

取 S_r 行 S_p 列矩阵 D',作矩阵 C',

$$C' = \frac{1}{n} \sum_{i} A^{r}(g_{i}) D' A^{r}(g_{i}^{-1}),$$

$$C' A^{r}(g_{j}) = \frac{1}{n} \sum_{i} A^{r}(g_{j}) A^{r}(g_{j}^{-1}) A^{r}(g_{i}) D' A^{r}(g_{i}^{-1}) A^{r}(g_{j})$$

$$= A^{r}(g_{j}) \frac{1}{n} \sum_{i} A^{r}(g_{j}^{-1}g_{i}) D' A^{r}(g_{i}^{-1}g_{j})$$

$$= A^{r}(g_{j}) \frac{1}{n} \sum_{k} A^{r}(g_{k}) D' A^{r}(g_{k}^{-1})$$

$$= A^{r}(g_{j}) C',$$

而 A' 和 A' 是群 G 的不等价不可约酉表示,用舒尔 引 理一,有 $C' \equiv 0$ 。

取 D' 除 $D_{r'}$, = 1 外, 其余矩阵元全为零, 则

$$C'_{\mu'\mu} = \frac{1}{n} \sum_{i} A^{*}_{\mu',i'}(g_{i}) A^{*}_{i,\mu}(g_{i}^{-1})$$

$$= \frac{1}{n} \sum_{i} A^{*}_{\mu,i}(g_{i}) A^{*}_{\mu',i'}(g_{i}) = 0.$$

这就证明了正交性定理。

定理2.6(**完备性定理**) 设 $A'(p=1,2,\cdots,q)$ 是有限 群 $G=\{g_1,\cdots,g_i,\cdots,g_n\}$ 的所有不等价不可约酉表示,则 A' 生成 的群函数 A', A',

证明 设 A^{\prime} 的雏数是 S_{p} ,共有q个不等价不可约酉表示,由正交性定理

$$(A_{\mu}^{r},|A_{\mu}^{r},r)=\frac{1}{S_{p}}\delta_{p_{\tau}}\delta_{\mu\mu},\delta_{\tau,r},$$

知以 A_s^{\prime} , 为正交基可构成群函数空间 R_c 的子空间 V 。下面证明 $V=R_c$ 。

首先V是 R_c 的G不变子空间。因

$$L(g_j)A_{\mu}^{\gamma},(g_j) = A_{\mu}^{\gamma},(g_j^{-1}g_i)$$

$$=\sum_{\pmb{\lambda}}A_{\pmb{\mu}\pmb{\lambda}}^{\pmb{\mu}}(g_{\pmb{j}}^{-1})A_{\pmb{\lambda}}^{\pmb{\mu}},(g_{\pmb{i}})\!\in\!V_{\bullet}$$

故 $L(g_i)$ 可约。因正则表示 $L(g_i)$ 是酉表 示,则 $L(g_i)$ 完 全 可约。设 V^{\perp} 是 V 的正交补空间。故 V^{\perp} 也是 R_c 的 G 不变 子 空间,有 $R_G = V \bigoplus V^{\perp}$ 。

再用反证法证明 V^{\perp} 只含零向量 $\boldsymbol{\theta}$. 设 $V^{\perp} \neq \{\boldsymbol{\theta}\}$,则 V^{\perp} 必有一不变子空间W,W $\not\in G$ 的不可约表示 A' 变换。设 $W \subset V^{\perp}$ 的 基为 $x_1, x_2, \cdots, x_{s_n}$,

$$L(g_j)x_{\alpha}(g_i) = x_{\alpha}(g_j^{-1}g_i) = \sum_{\beta} A_{\alpha\beta}^r(g_j^{-1})x_{\beta}(g_i).$$

取 g_i 为单位元 e,则

$$x_{\sigma}(g_{j}^{-1}) = \sum_{\theta} A_{\sigma\beta}^{\tau}(g_{j}^{-1})x_{\beta}(e) \in V_{\bullet}$$

故 $W \subset V \cap V^{\perp}$, 这不可能。于是

$$V^{\perp} = \boldsymbol{\theta}$$
 , $R_{\boldsymbol{G}} = V$.

因此函数集 $\{A_n^i,(g_i)\}$ 是 R_0 的完 备基。 $\{\sqrt{1/S_p}A_n^i,(g_i)\}$ 是群函数空间的正交归一基。群G的任意复函数 $\varrho(g_i)$ 可展为,

$$\varphi(g_i) = \sum_{p,\mu,\nu} a_{\mu,\nu}^p A_{\mu,\nu}^p(g_i), \qquad (2.23)$$

$$a_{\mu,\nu}^p = S_p(A_{\mu,\nu}^p | \varphi).$$

系1(勃恩赛德(Burside)定理) 有限群的所有 不等价不可约 酉表示维数的平方和,等于群的阶。即

$$S_1^2 + S_2^2 + \dots + S_q^2 = n. \tag{2.24}$$

这直接可从群函数空间是n维的,由完备性定理得到。

菜2 正则表示 $L(g_i)$ 按不等价不可约酉表示 $A^{i}(g_i)$ 可 约化为

$$L(g_i) = \sum_{r=1}^{q} \bigoplus S_r A^r(g_i). \qquad (2.25)$$

这是因为

$$L(g_j)A_{\mu,\bullet}^{\bullet}(g_i) = \sum_i A_{\mu,\bullet}^{\bullet,\bullet}(g_j)A_{\mu,\bullet}^{\bullet}(g_i),$$

对每一固定 ν , 基 A_{*}^{\prime} ,(g_{*})给出一次 A^{\prime} 的表示空间。故总共给出 S_{p} 次 A^{\prime} 的表示空间。正则表示含不等价不可约酉表示 的次数,等于该表示的维数。

2.5 群表示的特征标理论

以上所讲群表示的正交性和完备性定理,是对表示矩阵而言的,因此和表示空间基的选择有关。本节讨论的特征标理论,与表示空间基的选择无关。它是研究群表示的重要且有效的工具。

定义2.15 设 $A = \{A(g_a)\}$ 是群 $G = \{g_a\}$ 的一个表示,群 G表示 A 的特征标定义为 $\{\chi(g_a)\}$,其中

$$\chi(g_a) = \operatorname{tr} A(g_a) = \sum_{\mu} A_{\mu\mu}(g_a),$$

即表示矩阵 $A(g_a)$ 对角线上元素 的 和 $\chi(g_a)$ 为 元 素 g_a 的 特征标。

由特征标定义、容易证明

(1) 等价表示的特征标相同。

设 $A = \{A(g_a)\}$ 的等价表示

$$A' = \{XA(g_{\alpha})X^{-1}\},$$

$$\chi'(g_{\alpha}) = \operatorname{tr}A'(g_{\alpha}) = \operatorname{tr}(XA(g_{\alpha})X^{-1})$$

$$= \operatorname{tr}A(g_{\alpha}) = \chi(g_{\alpha}),$$

(2) 同一表示 A 中, 共轭元素的持征标相等。

设
$$f,g,h \in G$$
, $h = gfg^{-1}$, h f 则有
$$\chi(h) = \operatorname{tr} A(h) = \operatorname{tr} A(gfg^{-1})$$
$$= \operatorname{tr} (A(g)A(f)A(g^{-1}))$$

$$= tr(A(g)A(f)A(g)^{-1}) = trA(f) = \chi(f),$$

即与元素f同类的元素 gfg^{-1} 都具有相同的符征标。

设 K_a 是G中含元素 g_a 的一个类,即

$$K_{\alpha} = \{gg_{\alpha}g^{-1} | 任意 g \in G\}$$
。

则特征标是类函数, $\chi(K_a) = \chi(g_a)$ 。G 的单位元素 e 自成一类,设表示 A 的维数为 S ,则单位元的特征标等于表示的维数,即

$$\chi(e) = \operatorname{tr}(E_{S \times S}) = S.$$

以上讨论的特征标的定义和性质,并不要求G是有限群。下面讨论当G是有限群时,特征标的有关性质。

设有限群 $G = \{g_1, g_2, \dots, g_n\}$ 有 q 个不等价不可约表示 $A^*(p=1,2,\dots,q)$. A^* 的维数是 S_p . 表示 A^* 的特征标为 χ^* .

定理2.7(特征标的第一正交关系)。 即

$$(\chi^{p} | \chi^{\tau}) = \frac{1}{n} \sum_{i=1}^{n} \chi^{p}(g_{i})^{*} \chi^{\tau}(g_{i}) = \delta_{pr}.$$
 (2.26)

证明 有限群G的不可约表示A^P必有等价酉表示A^AA^P,由定理2.5知

$$\frac{1}{n} \sum_{i=1}^{n} A'_{\mu\nu}(g_i) * A'_{\mu\nu}(g_i) = \frac{1}{S_p} \delta_{p\tau} \delta_{\mu\mu} \delta_{\nu\tau}, , , ,$$

两边取 $\mu = \nu$, $\mu' = \nu'$, 对 μ , μ' 求和, 拜利用等价表示的特征标相等,

$$\frac{1}{n} \sum_{\mu,\mu'} \sum_{i=1}^{n} A'_{\mu\mu}(g_{i}) * A'_{\mu}(g_{i}) * A'_{\mu}(g_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \chi^{*}(g_{i}) * \chi^{*}(g_{i})$$

$$= \frac{1}{S_{p}} \sum_{\mu,\mu'} \delta_{pr} \delta_{\mu\mu'} \delta_{\mu\mu'} = \delta_{pr}.$$

这就是特征标的第一正交关系。

注意以上求和是对所有群元 9:。如果应用特征标是类 函数,

把对群元求和, 改成对类

$$K_i = \{gg_ig^{-1} | \text{任意 } g \in G\}$$

求和。设群G共有q'个类, $K_1,K_2,\cdots,K_{q'}$,第 K_i 类有 n_i 个元素,则特征标的第一正交关系可写为,

$$(\chi^{*}|\chi^{*}) = \frac{1}{n} \sum_{i=1}^{q'} n_{i} \chi^{*}(K_{i})^{*} \chi^{*}(K_{i}) = \delta_{p_{T}},$$
 (2.26')

从定理2.7直接可得

聚1 有限群不可约表示的特征标內积等于 1。因(x'|x') = 1.

而有限群 $G = \{g_1, g_2, \dots, g_n\}$ 的可约表示 A,由定理 2.4知 A有等价酉表示 A', A' 具有完全可约形式,

$$A' = \sum_{p=1}^{q} \bigoplus m_p A^p$$

可约表示Α的特征标 χ⁴ 为

$$\chi^{A}(g_{i}) = \chi^{A'}(g_{i}) = \sum_{p=1}^{q} m_{p} \chi^{p}(g_{i})_{a}$$
 (2.27)

mp称为不可约表示 A' 在表示 A' 中的重复度

$$m_p = (\chi^p | \chi^A), \quad m_p = 0, 1, 2, \dots$$

系2 可约表示 A 的特征标 χ^{A} 的内积大于 1.

$$(\chi^{A}|\chi^{A}) = \sum_{p=1}^{n} m_{p}^{2} > 1.$$
 (2.28)

系 1 和系 2 用来判断一个表示是否可约相当有效。

满足条件 $f(K_i) = f(g_i) = f(g_j^{-1}g_ig_j)$ 的群函数称为 类函数, 其中 g_j 是群G 的任意元素。类函数是G的共轭类 K_i 的函数。类函数全体构成类函数空间,它是群函数空间 R_G 的一个子 空间。

定理2.8 有限群的所有不等价不可约表示的特征标,在类函数空间是完备的。

证明 设有限群 $G = \{g_1, g_2, \dots, g_n\}$ 的所有不等价不可约表示

为 A', $p = 1, 2, \cdots, q$ 。由定理2.4知 A'有等价酉表 示 A''。全 体 A'' 是群 G 的所有不等价不可约两表示。由定理 2.6 知任意群函数 $f(g_i)$ 可用 A'' 生成的函数 A'_{i} $f(g_i)$ 展 F

$$f(g_i) = \sum_{p,\mu} a_{\mu\nu}^p A_{\mu\nu}'^p (g_i)_{\bullet}$$

当 $f(g_i)$ 是类函数时,有

$$\begin{split} f(g_{i}) &= f(g_{j}^{-1}g_{i}g_{j}) = \frac{1}{n} \sum_{j=1}^{n} f(g_{j}^{-1}g_{i}g_{j}) \\ &= \frac{1}{n} \sum_{\mu} \sum_{\nu=1}^{n} a_{\mu\nu}^{\nu} A_{\mu\nu}^{\nu} (g_{j}^{-1}g_{i}g_{j}) \\ &= \frac{1}{n} \sum_{j=1}^{n} \sum_{\nu,\mu,\nu} \sum_{\lambda\sigma} a_{\mu\nu}^{\nu} A_{\mu\lambda}^{\nu\nu} (g_{j}^{-1}) A_{\lambda\sigma}^{\nu\nu} (g_{i}) A_{\sigma\nu}^{\nu\nu} (g_{j}) \\ &= \frac{1}{n} \sum_{j=1}^{n} \sum_{\nu} \sum_{\lambda\sigma} a_{\mu\nu}^{\nu} A_{\lambda\sigma}^{\nu\nu} (g_{i}) \sum_{j=1}^{n} A_{\lambda\mu}^{\nu\nu} (g_{j})^{*} A_{\sigma\nu}^{\nu\nu} (g_{j}) \\ &= \sum_{\mu} \sum_{\mu} \sum_{\lambda\sigma} a_{\mu\nu}^{\nu} A_{\lambda\sigma}^{\nu\nu} (g_{i}) \delta_{\lambda\sigma} \delta_{\mu\nu} \\ &= \sum_{\mu} a_{\mu\mu}^{\nu} A_{\lambda\lambda}^{\nu\nu} (g_{i}) = \sum_{\mu} a_{\mu\mu}^{\nu\nu} \chi^{\nu\nu} (g_{i}) \\ &= \sum_{\mu} a_{\mu\mu}^{\nu} A_{\lambda\lambda}^{\nu\nu} (g_{i}) , \end{split}$$

其中 $a' = \sum_{\mu} a'_{\mu\mu}$ 。因此任意类函数 $f(g_i)$ 可 用 χ' 展开。故所有不等价不可约表示 A' 的特征标 χ' ,构成类函数空间的完备系。定理证毕。

当群G共有 K_1,K_2,\cdots,K_q ,个类时,G共有q'个独立的类函数 $f_1,f_2,\cdots,f_{q'}$,

$$f_{i}(K_{i}) = \delta_{ii}, \quad i, j = 1, 2, \dots, q'$$

fi 是类函数空间的完备基。而由定理 2,8 可知 G的 不 等 价不可

约表示特征标 $\chi_1,\chi_2,\dots,\chi_q$ 在类函数空间是完备的,故有 q'=q.

系 有限群的不等价不可约表示的个数,等于群的类的个数。

由式(2,24)可得

$$s_1^2 + s_2^2 + \dots + s_q^2 = n,$$
 (2.24')

其中 n 是群的阶,q 是群的共轭类的个数, s_1, s_2, \dots, s_q 是 不等价不可约表示 A^1, A^2, \dots, A^q 的维数。这公式给 有 限 群不等价不可约表示维数以限制,在求有限群的表示时经常用到。

定理2.9(特征标的第二正交关系),即

$$\sum_{j=1}^{q} \chi^{*}(K_{j})^{*}\chi^{*}(K_{i}) = \frac{n}{n_{i}} \delta_{ij}, \qquad (2.29)$$

证明 在特征标的第一正交关系式(2,26')中,取矩阵F的矩阵元 F_{ei} 为

$$F_{\tau i} = \sqrt{\frac{n_i}{n}} \chi^{\tau}(K_i) ,$$

则

$$F_{p,i}^* = \sqrt{\frac{n_i}{n}} \chi^p (K_i)^* = (F^+)_{ip_*}$$

式(2,26')可写为

$$\sum_{i=1}^{q} F_{\tau i} F_{i p}^{+} = (FF^{+})_{\tau p} = \delta_{\tau p} = E_{\tau p}.$$

由

$$FF^+ = E$$
,

知

$$\det(FF^+) = |\det F|^2 = 1.$$

故F有逆 F^{-1} ,因此有

$$F^+F=E$$
,

$$\sum_{r=1}^{q} (F^{+})_{i\tau} F_{rj} = \sum_{r=1}^{q} \sqrt{\frac{n_{i} n_{j}}{n}} \chi^{r}(K_{i})^{*} \chi^{r}(K_{j}) = \delta_{ij}.$$

于是证明了定理 2.9.

特征标表 把有限群G的听有不等价不可约表示的特征标,作为类函数给出一个表,称为G的特征标表。特征标表的每一行,是一个不可约表示 A' 对应不同类 K_i 的特征标 $\chi'(K_i)$ ($i=1,2,\cdots,q$)。特征标表的每一列,是群的每一类元素 K_i 在不等价不可约表示 A' 中的特征标 $\chi'(K_i)$ ($p=1,2,\cdots,q$)。在 类 $\{K_i\}$ 前标上该类元素个数 n_i 。由于有限群G 不等价不可约表示的个数等于群的类的个数,因此特征标表是一个正方形表。其形如表2.1。

	n ₁ { K ₁ }	π ₂ { K ₂ }	,	л _q { К _q }
A1	x1(K ₁) x2(K ₁)	x1(K2)	*****	x1(K _q)
		$x^{2}(K_{2})$	E r,	$\chi_2(K_q)$
•••	! !			
	' * 9 (K ₁)	× 9 (K ₂)	*****	* 9 (K _q)

表2.1 特征标表

由于特征标有第一和第二两个正交关系, 所以特征标表的任两行或任两列均满足正交关系。

$$\sum_{i=1}^{q} n_i \chi^{p}(K_i)^* \chi^{r}(K_i) = n \, \delta_{p_{\tau}},$$

$$\sum_{r=1}^{q} n_i \chi^r(K_i) * \chi^r(K_j) = n \, \delta_{ij}.$$

正交关系既可用来求特征标表,也可用来检验计算的特征标表是 否正确。

写一个群的特征标表时,按惯例第一行给出恒等 表 示 A^1 的特征标, $\chi^1(K_i)=1$ 。第一列给出群的单位 元 素 θ 的 特 征 标, $\chi^1(e)=S_p,S_p$ 是表示 A^1 的维数。

例10 n 阶循环群 $G = \{a, a^2, \dots, a^n = e\}$, 是阿贝 尔群,每个元素自成一类,共有 n 个类。因此有 n 个不等价不可约表示。由

式(2.24')知每个表示都是一维的。设A是G的一个不可约表示,则

$$A(e) = 1 = A(a^n) = [A(a)]^n,$$

 $A(a) = \exp[(l2\pi i/n), l = 0, 1, \dots, (n-1).$

共有 $n \wedge A(a)$ 值,每个值对应一个不等价不可约表示

$$A^{p}(a) = \exp[(p-1)2\pi i/n], \quad p=1,2,\dots,n.$$
 (2.30)

如 $C_4 = \{C_k(\pi/2), C_k(\pi), C_k(3\pi/2), C_k(2\pi) = e\}$ 的特征标表见表2.2.

	ŧ	1 ^C (π/2)	1ε(π)	1 ^C (3π/2)
Δ1	1	1	1	1
A2	1	$I_{-\infty}$	- 1	- i
A3	, 1	- 1	1	- 1 ·
14	î	- i	- 1	i

表2.2 C, 群的特征标表

例11 正三角形对称群 D_3 , 共有 3 个类。由例 5 知 道 它有两个不等价的一维表示。再由式(2.24')可知,三个不 等价 不可约表示维数满足 $S_1^2 + S_2^2 + S_3^2 = 6$, 因此 还 有一个二维 的不等价不可约表示。这样就可以得到 D_3 特征标表的前 两 行和第一列。利用正交关系就可求出第三行的另外两个特征标,见表2.3。 用

表2.3 D。群的特征标表

第1和第2列正交,可解出 $\chi^3(d) = -1$ 。用第1和第3列正交,可解出 $\chi^3(a) = 0$ 。计算结果又可用第2和第3列正交,以及行与行间正交来进行核对。

从例 5 中 D_3 的三维表示可以看到,它正是 A^2 和 A^3 的 直接和,因此 D_3 的三维表示 A^3 为

$$A^{3}(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad A^{3}(d) = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix},$$

$$A^{3}(f) = \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix}, \quad A^{3}(a) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$A^{3}(b) = \begin{pmatrix} 1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}, \quad A^{3}(c) = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix}.$$

 A^3 的表示空间是定义 D_3 的 xy 平面,上述表 示 矩 阵 是 选基为 (i,j) 时得到的。

2.6 新表示的构成

本节讨论用群的已知表示来构成群的新表示的问题。这里只 介绍群表示的直积、直积群的表示和子群诱导出的表示。

我们知道,一个 n 阶矩 阵 $A = (a_{ik})$ 和 一 个 n 阶 矩 阵 $B = (b_{il})$ 的直积为矩阵 C,即

$$C = (c_{ijkl}) = A \otimes B = (a_{ik}b_{jl})$$

$$(i, k = 1, 2, \dots, n, j, l = 1, 2, \dots, m).$$

 $C \stackrel{mn}{\leftarrow}$ 阶矩阵,其矩阵元 C_{ijkl} 的行和列用两个指标 标 ij 和 kl 标记。当用一个指标来标记C 的矩阵元时,可以规定

$$C = A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{pmatrix}.$$

显然这种规定与其他规定只差一个相似变换,即只是把行和列同时对调而已。通过直接计算可以证明,两个单位矩阵的直积是单位矩阵;两个对角矩阵的直积是对角矩阵,两个西矩阵的直积是西矩阵。而且若 $A^{(1)}$ 与 $A^{(2)}$ 是阶相同的矩阵, $B^{(1)}$ 与 $B^{(2)}$ 是阶相同的矩阵,则有

 $(A^{(1)} \otimes B^{(1)})(A^{(2)} \otimes B^{(2)}) = (A^{(1)}A^{(2)}) \otimes (B^{(1)}B^{(2)})$. (2.31) 注意两个矩阵间沒有符号时,如 $A^{(1)}A^{(2)}$,表示两个矩阵 $A^{(1)}$ 和 $A^{(2)}$ 的乘积。

设群 $G = \{\cdots, g_a, \cdots\}$ 有两个表示 $A = \{\cdots, A(g_a), \cdots\}$ 和 $B = \{\cdots, B(g_a), \cdots\}$ 。作表示矩阵 $A(g_a)$ 和 $B(g_a)$ 的直积 $C(g_a) = A(g_a) \otimes B(g_a).$

直积矩阵的集合 $\{\cdots,C(g_a),\cdots\}=C$,保持G的乘法规律 不 变。 对任意 $g_a,g_a\in G$,有

$$C(g_{\alpha})C(g_{\beta}) = [A(g_{\alpha}) \otimes B(g_{\alpha})][A(g_{\beta}) \otimes B(g_{\beta})]$$

$$= [A(g_{\alpha})A(g_{\beta})] \otimes [B(g_{\alpha})B(g_{\beta})]$$

$$= A(g_{\alpha}g_{\beta}) \otimes B(g_{\alpha}g_{\beta}) = C(g_{\alpha}g_{\beta}).$$

因此C也是群G的一个表示,是表示A和B的张量积表示。设表示A和B的特征标为 X^A 和 X^B ,则张量表示C的特征标为,

 $\chi^{c}(g_{a}) = \operatorname{tr} A(g_{a})\operatorname{tr} B(g_{a}) = \chi^{A}(g_{a})\chi^{B}(g_{a})$. (2.32) 如果 A 和 B 分别是有限群 G 的不等价不可约表示,则由特征标的正交性定理,可得

$$(\chi^{A}|\chi^{A}) = (\chi^{B}|\chi^{B}) = 1, \quad (\chi^{A}|\chi^{B}) = 0.$$

而

$$(\chi^{c}|\chi^{c}) = \frac{1}{n} \sum_{\alpha=1}^{n} \chi^{A*}(g_{\alpha}) \chi^{A}(g_{\alpha}) \chi^{B*}(g_{\alpha}) \chi^{B}(g_{\alpha})$$

一般不等于1,故C一般是G的可约表示。

设群 $G = \{g_{a\beta}\}$ 是群 $G_1 = \{g_{1a}\}$ 和群 $G_2 = \{g_{2\beta}\}$ 的 直 积, $A = \{A(g_{1a})\}$, $B = \{B(g_{2\beta})\}$ 分别是 G_1 和 G_2 的一个表示。则直积矩阵

$$C(g_{\alpha\beta}) = A(g_{1\alpha}) \otimes B(g_{2\beta})$$

是G的一个表示。对任一 $g_{a\beta} \in G$,有 $C(g_{a\beta})$ 与之对应。而且对 $g_{a\beta}, g_{a'\beta} \in G$,有

$$C(g_{\alpha\beta})C(g_{\alpha',\beta'})$$

$$= [A(g_{1\alpha}) \otimes B(g_{2\beta})][A(g_{1\alpha'}) \otimes B(g_{2\beta'})]$$

$$= A(g_{1\alpha}g_{1\alpha'}) \otimes B(g_{2\beta}g_{2\beta'})$$

$$= A(g_{1\alpha}) \otimes B(g_{2\beta}g_{2\beta'})$$

$$= A(g_{1\alpha}) \otimes B(g_{2\beta}g_{2\beta'})$$

其中 g_{1a} , $= g_{1a}g_{1a}$, $g_{2\beta}$, $= g_{2\beta}g_{2\beta}$. 故 $C = \{C(g_{\alpha\beta})\}$ 保 持 G 的乘法不变,是群 G 的一个表示。设 χ^4 和 χ^3 分别是 C_1 和 C_2 表 \mathcal{F} 和 B 的特征标,则直积 群 G 表示 C 的 特征标为

$$(\chi^c \mid \chi^c) = \frac{1}{nm} \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} \chi_1^{A^*}(g_{1\alpha}) \chi_1^A(g_{1\alpha}) \chi_2^{B^*}(g_{2\beta}) \chi_2^B(g_{2\beta}) = 1,$$

其中 n 和 m 是 G_1 和 G_2 的阶。因此表示 C 是 G 的不可约表示。因为直积群共轭类的数目,等于群 G_1 和群 G_2 的共轭类数目相乘。故直积群 $G = G_1 \otimes G_2$ 的全部不等价不可约表示,由 G_1 和 G_2 的不等价不可约表示的直积给出。

在求群的表示时,还常利用群和其子群的表示间的关系。设 $G \mathbb{E}_n$ 阶群, $H \mathbb{E}_G \mathbb{E}_n$ 的m阶子群。已知

$$A = \{A(g) \mid g \in G\}$$

是C的一个表示,则

$$A|_{H} = \{A(h) | h \in H\}$$

是H的一个表示。 $A|_{H}$ 称为A到H上的缩小。A 和 $A|_{H}$ 的特征标 χ 和 χ_{H} 满足 $\chi_{H}(h) = \chi(h)$ 。当A 是G 的不可约表示时,

$$(\chi \mid \chi) = \frac{1}{n} \sum_{g \in g} \chi^*(g) \chi(g) = 1.$$

洏

$$(\chi_H | \chi_H) = \frac{1}{m} \sum_{h \in \mathcal{Q}} \chi_H^*(h) \chi_H(h)$$

却不一定是 1, 而且往往大于 1, $A|_{H}$ 一般是H的可约表示。

设B是子群H在空间W上的一个表示,则可用下面办法,定义群G的一个表示U。

(1) U的表示空间 V,是以 $G = \{g\}$ 为定义域,以W为 域 值的函数空间,而且满足条件,

 $V = \{f \mid f(hg) = B(h)f(g), \ \text{对所有} \ h \in H, g \in G\}$

(2) U对 V中向量 f 的作用为

$$[U(g)f](g'') = f(g''g).$$

下面证明这样定义的U,确实是G 在V 中的一个表示。对任意 $g \in G$,有U(g) 与之对应。而且当 $f(g'') \in V$ 时, $f(g''g) = \emptyset(g'')$ 也属于V,因

$$\varphi(hg'') = f(hg''g) = B(h)f(g''g) = B(h)\varphi(g''),$$

而且U还保持G的乘法规律

$$[U(g')U(g)f](g'') = [U(g')f](g''g) = [U(g')\varphi](g'')$$

$$= \varphi(g''g') = f(g''g'g) = [U(g'g)f](g'').$$

故 $U = \{U(g)\}$ 是 $G \subseteq V$ 空间的表示。U 称为由H的 表 示 B 诱导出的表示,常记为 $_{H}U_{0}^{g}$, $_{H}U_{0}^{g}$ 或 U^{g} 。

由 U^B 及其表示空间 V 的 定义,可以在 V 中选一组基 θ_{ri} ,并给出 U^B 的表示矩阵。设 H 的 右 陪 集 串 $Hg_1 = He$, Hg_2 , \dots , Hg_1 充满 G , 其中 g_1 , g_2 , \dots , g_1 是陪集串中选定的代表元。设 把线性空间 V 映为 l 个V 的 直看的映射 f M

$$M: f \rightarrow \{f(g_1), f(g_2), \cdots, f(g_l)\}$$

利用条 件 f(hg) = B(h)f(g),用 $l \wedge f(g_1), f(g_2), \dots, f(g_l)$ 可 唯一确定 f , M 是一一满映射。所以 V 是 $l \wedge W$ 的 直 接 和。设 $\{e_1, e_2, \dots, e_d\}$ 是 W 的 一组基,则可选 V 的基为

$$e_{\tau j}(g_k) = \delta_{jk}e_{\tau}, \quad 1 \leqslant j, k \leqslant l, \quad 1 \leqslant r \leqslant d.$$
 (2.34)

V的维数是 $Id_{\bullet}U^{B}$ 的表示矩阵为

$$[U^B(g)e_{rj}](g_k) = e_{rj}(g_kg) = e_{rj}(hg_i)$$

$$= B(h)e_{rj}(g_i) = B(h)e_{rm}(g_k),$$

其中 $g_k g = hg_i$, 幷且用到 $\delta_{ij} = \delta_{i+t-j+t} = \delta_{km}$ 。 因此

$$g_m = g_k = h g_i g^{-1} = h g_j g^{-1}, \quad h = g_m g g_j^{-1}.$$

于是

$$[U^{B}(g)e_{\tau j}] = \sum_{m'=1}^{l} \sum_{s'=1}^{d} U^{B}(g)_{s',m',\tau j} e_{s',m'}$$

$$= \sum_{m=1}^{l} \sum_{s=1}^{d} \mathring{B}(g_{m}gg_{j}^{-1})_{s\tau} e_{sm}.$$

$$\mathring{B}(g_{m}gg_{j}^{-1}) = \begin{cases} B(g_{m}gg_{j}^{-1}), & \text{if } g_{m}gg_{j}^{-1} \in H, \\ 0, & \text{if } g_{m}gg_{j}^{-1} \notin H. \end{cases}$$

$$U^{B}(g)_{sm\tau j} = \mathring{B}(g_{m}gg_{j}^{-1})_{s\tau}. \qquad (2.35)$$

如果把基的顺序取 为 e_{1i} , e_{2i} , \cdots , e_{d1} , e_{12} , e_{22} , \cdots , e_{d2} , e_{1i} , e_{2i} , \cdots , e_{di} , 则 $U^{B}(g)$ 由 $l \times l \wedge d$ 维的分块矩阵构成,

$$U^{B}(g) = \begin{pmatrix} \dot{B}(g_{1}gg_{1}^{-1}) & \dot{B}(g_{1}gg_{2}^{-1}) & \cdots & \dot{B}(g_{1}gg_{1}^{-1}) \\ \dot{B}(g_{2}gg_{1}^{-1}) & \dot{B}(g_{2}gg_{2}^{-1}) & \cdots & \dot{B}(g_{2}gg_{1}^{-1}) \\ \dot{B}(g_{1}gg_{1}^{-1}) & \dot{B}(g_{1}gg_{2}^{-1}) & \cdots & \dot{B}(g_{1}gg_{1}^{-1}) \end{pmatrix}$$

$$(2.35')$$

诱导表示的特征标 X^D 为

$$\chi^{U}(g) = \operatorname{tr} U^{B}(g) = \sum_{j=1}^{l} \operatorname{tr} \dot{B}(g_{j}gg_{j}^{-1}).$$

因

$$\operatorname{tr} \hat{B}(hg_{j}g(hg_{j})^{-1}) = \operatorname{tr} \hat{B}(g_{j}gg_{j}^{-1}),$$

设在G中与g同类的元素共有 n_g 个,记为 K_g 类,则

$$\chi^{U}(g) = \frac{1}{m} \sum_{t \in g} \operatorname{tr} \mathring{B}(tgt^{-1})$$

$$= \frac{n}{mn_{g}} \sum_{g \in K_{g}} \operatorname{tr} \mathring{B}(g). \qquad (2.36)$$

设 xB 是群H表示B的特征标,其中

$$\operatorname{tr} \dot{B}(tgt^{-1}) = \begin{cases} \chi^{B}(tgt^{-1}), & \text{当} tgt^{-1} \in H_{3} \\ 0, & \text{当} tgt^{-1} \notin H_{4} \end{cases}$$

H的一维恆等表示 $\chi^B(h)=1$,对任意 $h\in H$ 。设 K_g 类共有 m_g 个元素属于H,则由一维恒等表示诱导出表示特征标为

$$\chi(g) = \frac{nm_g}{mn_g}. \tag{2.36'}$$

诱导表示一般是可约的。下面要介绍的弗罗宾尼斯(Froben-ius)互易定理,将指出如何把它分解为不可约表示的直和。

定理?.10(弗罗宾尼斯互易定理) 设A,B分别 是 群G和其子 群H的不 可约 表 示,则A在 $_HU$ *中的重复度等于 B在 A[$_H$ 中的重复度。

证明 设 $\chi^A, \chi^B, \chi^U, \chi$ 分别为表示 $A, B, U^B, A|_H$ 的特征标,则 $A \in U^B$ 中的重复度为

$$(\chi^{A} | \chi^{U}) = \frac{1}{n} \sum_{g \in g} \chi^{A^{*}}(g) \chi^{U}(g)$$

$$= \frac{1}{nm} \sum_{g \in g} \chi^{A^{*}}(g) \sum_{t \in g} \operatorname{tr} B(tgt^{-1})$$

$$= \frac{1}{m} \sum_{g \in H} \chi^{A^{*}}(g) \chi^{B}(g) = (\chi | \chi^{B}),$$

 $(x|x^B)$ 正是B在 $A|_B$ 中的重复度。定理证毕。

例12 D_3 的子群 $H = \{e,d,f\}$ 是三阶循环群,其不可约表示 B 的特征标为

$$\chi^{B}(e) = 1, \quad \chi^{B}(d) = \exp(i2\pi/3) = \varepsilon,$$
$$\chi^{B}(f) = \exp(i4\pi/3).$$

由这不可约表示 B 诱导出 D_s 群的表 示 U^B , U^B 的 特 征 标 由 式 (2,36) 给出

$$\chi^{v}(e) = 2$$
, $\chi^{v}(d) = -1$, $\chi^{v}(a) = 0$.

这与从表 2.3 算出的特征标 x3 一致,由式(2,35)可以得到 UB表

示中的表示矩阵为

$$U^{B}(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad U^{B}(d) = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{2} \end{pmatrix},$$

$$U^{B}(f) = \begin{pmatrix} \varepsilon^{2} & 0 \\ 0 & \varepsilon \end{pmatrix}, \quad U^{B}(a) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad U^{B}(b) = \begin{pmatrix} 0 & \varepsilon^{2} \\ \varepsilon & 0 \end{pmatrix}, \quad U^{B}(c) = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon^{2} & 0 \end{pmatrix}.$$

这与本章例11中的二维表示是等价的。

因为子群的阶低于群的阶,一般说求子群的表示比较容易, 故求诱导表示也是求群表示的常用方法之一。

第三章 点 群

点群对研究分子结构和晶体结构起重要作用,因而在化学和固体物理中有广泛的应用。点群在工程结构力学中 也 有 许 多应用。不仅如此,点群作为有限群的例子,对理解群及群表示论也是很有意义的。

3.1 三维实正交群

欧氏空间是定义有内积的实向量空间。三维欧氏 空间 R^3 中任意两个向量 \mathbf{r},\mathbf{r}' ,在选择 R^3 中一组正交 归 一 基($\mathbf{i},\mathbf{j},\mathbf{k}$)后,可用列矩阵表示

$$r = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad r' = \begin{pmatrix} x'_1 \\ x'_2 \\ x'_3 \end{pmatrix}.$$

r与 r/ 的内积为

$$(\mathbf{r} \cdot \mathbf{r}') = \sum_{i=1}^{3} x_i x'_{i,\bullet}$$

R3 中向量的长度为

$$|r| = (r \cdot r)^{1/2} = \left(\sum_{i=1}^{3} x_i^2\right)^{1/2}$$
.

向量,和 11 间夹角 9 满足

$$\cos \varphi = (\mathbf{r} \cdot \mathbf{r}')/|\mathbf{r}||\mathbf{r}'|$$
.

 R^{s} 中正交变换, 是保持 R^{s} 中向量长度不变的线性变换,对任意 $r \in R^{s}$,正交变换 O 满足

$$Or = r' \in R^3,$$

$$(Or \cdot Or) = (r \cdot r).$$
(3.1)

O可用 3×3 矩阵 (O_{ij}) 表示,设E 表 R^3 中恒等变换,正 交 条件 (3.1)可写成

$$O'O=E, \qquad (3.2)$$

戜

$$\sum_{k=1}^{3} O_{kj} O_{ki} = \delta_{ij}, \qquad (3.2')$$

由式(3,2)可得

$$\det(O'O) = (\det O')(\det O) = (\det O)^2 = 1.$$

故

$$detO = \pm 1$$
.

因此正交变换 O 是非奇异变换,有逆变换 O-1 存在,由式(3.2)可得

$$O^{-1} = O^{T}$$
 (3.3)

正交变换不仅保持向量的长度不变,还保持任意两个向量 n 和 n / 的内积不变,即

$$(Or \cdot Or') = (r \cdot O^i Or') = (r \cdot r'),$$

因此正交变换也保持任意两个向量的夹角不变。R³ 中一组正交归一基,在正交变换下变为另一组 正 交 归一基。

三维实正交群 O(3,R),有时也记为 O(3),是 以 R^3 中 全部 正交变换为群元。设 O_1 和 O_2 是两个正交变换,群 的 乘 法 定义 为,乘积 O_1O_2 为先实行 O_2 ,后实行 O_1 的总变换。乘积 O_1O_2 也 是正交变换,因

$$(O_1O_2)'(O_1O_2) = O_2'O_1'O_1O_2 = E$$

O(3)群的单位元素是恒等变换E。由于 R^3 中 正交变换与三维实正交矩阵有一一对应关系变换的积对应矩阵的积,故三维实正交矩阵的全体构成的群,与O(3)同构,也称为O(3)群。从抽象群

的角度看,同构的群是一样的。故以后说 O(3) 群,包 括一切与 O(3) 同构的群。

O(3) 群中全部行列式为 + 1的正交变换,组成 O(3) 的一个不变子群,称为三维实特殊正交群, 记 为 SO(3,R) 或 SO(3)。

$$SO(3) = \{O \in O(3) \mid \det O = 1\},\$$

 R^{8} 中任一组正交归一右(左)手基,在 SO(3) 群元作 用 下, 变为 另一组右(左)手正交归一基。设 I 是 O(3) 的空间反演元素,

$$I = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \det I = -1.$$

空间反演群 $\{E,I\}$ 也是 O(3)的不变子群。空间反演群 $\{E,I\}$ 与二阶循环群 $\{+1,-1\}$ 同构。 O(3) 到二阶循环群的同态映射,由 $\det O=\pm 1$ 决定,同态核是群 SO(3)。同理 O(3) 到 反演群的同态映射,同态核是 SO(3) 群和陪集 $I \cdot SO(3)$ 穷尽了 O(3)群。事实上,O(3)群是 SO(3) 群和空间反演群的直积群。

$$O(3) = SO(3) \otimes \{E,I\}$$

定理3.1 对任意 $g \in SO(3)$, 可在 R^3 中找到向量 k, 使 gk = k.

证明 因 $g \in SO(3)$, det g=1. 现证明齐次方程 (g-E)k=0

有解。由

$$\det(g-E) = \det(g-E)^{i} = \det(g^{i} - E)$$

$$= \det(g^{-1} - E) = \det(g^{-1} \det(-E) \det(g - E)$$

$$= -\det(g - E) = 0.$$

因此本征方程 gk=k 恒有解。定理证毕。

设 k 满足本征方程 gk-k,则 k 乘任意实数后仍 满 足 本征方程。当取 R^3 中正交归一坐标系为(i,j,k)时,满足件条(3,2') 并以 k 为本征矢的正交矩阵为

$$g = \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix} = C_{k}(\psi). \tag{3.4}$$

从解析几何知道,正交矩阵(3.4), 正是绕 k 轴沿逆时针方向转 ψ 角的转动矩阵 $C_k(\psi)$ 。 k 称为 g 的转动轴, ψ 称为转角, $0 \le \psi \le \pi$ 。 常用 k 的方位角 θ , φ 标志 向 量 k,且 $0 \le \theta \le \pi$, $0 \le \varphi < 2\pi$ 。

SO(3)群又称为转动群,任意行列式为 1 的正交矩阵 g_1,g_2 ,是 R^3 中的两 个 转 动 矩 阵 $C_{k_1}(\psi_1)$, $C_{k_2}(\psi_2)$ 。 而乘 积 g_1g_2 ,由 SO(3)群乘法的封闭性,必对应 R^3 中的一个转动 $C_k(\psi)$,

$$C_{k_1}(\psi_1)C_{k_2}(\psi_2) = C_k(\psi)$$
.

然而 $k_1 \psi$ 和 k_1, ψ_1, k_2, ψ_2 的关系是很复杂的。

在 R^3 中若取另一组正交归一坐标系(i',j',k'),它与基(i,j,k)用正交变换 Q^{-1} 联系。设在坐标系(i,j,k)中, 转动矩阵为 $C_*(\psi)$,则在坐标系(i',j',k')中,转动矩阵为 $QC_*(\psi)Q^{-1}$ 。不同坐标系的转动矩阵具有相同的迹,且只与转动角 ψ 有关,与转轴 k 无关。

$$\operatorname{tr}(QC(\psi)Q^{-1}) = \operatorname{tr}C(\psi) = 1 + 2\cos\psi.$$
 (3.5)

在 SO(3)群中,与元素 $C_*(\psi)$ 属于同 -- 共 轭 类 的 元 素 为 $g'C_*(\psi)g'^{-1}$, g' 为任意 SO(3)的元素。由定理 3.1 知

$$C_{\mathbf{k}}(\psi)\mathbf{k} = \mathbf{k}$$
,

故

$$g'C_{k}(\psi)g'^{-1}(g'k)=(g'k).$$

元素 $g'C_k(\psi)g'^{-1}$ 的转动轴为 g'k。由式(3.5)可得

$$\operatorname{tr}(g'C_{\mathbf{k}}(\psi)g'^{-1}) = 1 + 2\cos\psi_{\bullet}$$

故元素

$$g'C_{\bullet}(\psi)g'^{-1}=C_{g,\bullet}(\psi)_{\bullet}$$

因此 SO(3)中所有具有相同转动角 ψ 的转动,属于同一共轭类, $0 \le \psi \le \pi$.

对 O(3) 群, 不仅有转动元素 $C_*(\psi)$, 还存在 $IC_*(\psi)$ 型的转

动反演元素。对任意 $O \in O(3)$, $\det O = 1$, 当 O 为 转 动 元 素, $\det O = -1$, 当 O 为转动反演元素。设 $\varepsilon = \det O$, 则对任意 O(3) 元素 O ,与 $C_{\bullet}(\psi)$ 和 $IC_{\bullet}(\psi)$ 同类的元素分别为

$$OC_{k}(\psi)O^{-1} = C_{kok}(\psi),$$

$$OIC_{k}(\psi)O^{-1} = IC_{kok}(\psi).$$
(3.6)

即在 O(3)群中,所有具有相同转角的转动元素是一 类, 所有具有相同转角的转动反演元素是一类。式(3.6)的证明作为 练 习请读者去做。

3.2 点 群

点群是三维实正交群 O(3)的有限子群。如果点群只含 转动元素,则称为第一类点群,是转动群 SO(3)的有限 子 群。如果点群除转动元素外,还含有转动反演元素,则称为第二类点群。

点群 $G \in O(3)$ 的有限子群,那么过 R^3 中任意一点。的G轨道,是 R^3 中有限个离散的点。故点群是离散对称群。由于O(3)保持原点不变,故点群也保持原点不变。

定理3.2 设群G是绕固定轴 k 转动所生成的 n 阶群,则 G 由元素 $G_{\bullet}(2\pi/n)$ 生成。

证明 设G的元素为 $C_k(\theta_i)(i=0,1,\cdots,n-1)$,其中 $\theta_0=0$, $C_k(\theta_0)$ 是G的单位元素。设最小的正转角为 θ_1 ,总可写

$$\theta_i = m_i \theta_1 + \varphi_i$$
,

其中 $0 \le \varphi_i < \theta_i$, m_i 为正整数。

因为

$$[C_{k}(\theta_{i})]^{-m_{i}}[C_{k}(\theta_{i})] = C_{k}(\varphi_{i}),$$

故 φ_i 也是可能的转角,又要比 θ_1 小,故只有 $\varphi_i = \theta_0 = 0$. 于是

$$\theta_i = m_i \theta_i$$
, $m_i = 0, 1, \dots, n-1$, $\theta_i = 2\pi$, $\theta_i = 2\pi/n$,

定理证毕,

由元素 $C_k(2\pi/n)$ 生成的群称为 C_n 群。固定轴k称为n阶转动轴,群元 $C_k(2\pi/n)$ 也写成 C_n ,则 C_n 群是由元素 $\{C_n,C_n^2,C_n^3\}$,…, $C_n^{n-1},C_n^n=E\}$ 构成的n 阶循环群。

由上面的讨论也可看出,若 a 是无理数,含有转动角为 $2\pi/a$ 的转动元素 $C_*(2\pi/a)$ 的群,不是有限群。利用空间反演 I 与正交群任意元素 O 的可交换性,可看出含有转动反演元素 $IC_*(2\pi/a)$ 的群也不是有限群。点群作为 O(3) 的有限子群,只可能含有由 $C_*(2\pi/n)$ 和 $IC_*(2\pi/n)$ 所生成的元素,其中 $n=1,2,\dots$ R^3 中任意一点,在点群元素作用下,变到与其原始位置等价的点,因此点群的元素也常被称为对称操作。与对称操作相关 联 的 R^3 的子集,被称为对称元素。点群所有可能的对称元素,分为以下四类:

- (1) 反演 I , 是 $IC_*(2\pi/n)$ n 为 1 的特殊情况。对称元素是反演中心,反演中心在原点 $\theta = (0,0,0)$, 在 I 作用下不变。
- (2) 对平面的反射 σ , 是 $IC_*(2\pi/n)$ n 为 2 的 特 殊情况。对应的对称元素是反射平面,反射 平 面 以 k 为 法 线 幷 且 过原 点 θ 。对称操作 σ , 将 R^3 中的点对反射平面进行反射。反射平面 在反射下保持不变。有时也用 σ , 表示反射平 面。 显 然 由 σ = $IC_*(\pi)$, 可得 $\sigma^2 = E$.
- (3) 转动 C_n , 即 $C_k(2\pi/n)$, k 称为 n 阶转动轴,是对称元素。有 C_n , 必生成 C_n^2 , C_n^3 , ..., C_n^{n-1} , $C_n^n = E$ 等元素。k 在 对 称操作 C_n , C_n^2 , ..., C_n^{n-1} , E 下保持不变。

偶数阶转动轴 C_{2n} ,由于 $C_{2n}^2=C_n$,故必同时存在 C_n 轴。

(4) 转动反演 IC_n ,即 IC(2n/n)(n=3,4,...), IC_n 在 n 是偶数或奇数时,生成的对称操作是不同的。

 IC_{2n} 生成转动元素 C_n , C_n^2 , ... , C_n^{n-1} , E 和 转 动 反 演 元素 IC_{2n} , IC_{2n}^3 , ... , IC_{2n+1}^{n-1} , 而 IC_{2n+1} 生成转动元 素 C_{2n+1} , C_{2n+2}^2 , ... , C_{2n+1}^2 , E 和转动反演元素 IC_{2n+1} , IC_{2n+1}^2 , ... , IC_{2n+1}^2 , IC_{2n+1}^2 , IC_{2n+1}^2 , ... , IC_{2n+1}^2 , IC_{2n+1}^2 , ... , IC_{2n+1}^2 , IC_{2n+1}^2 , ... , IC_{2n+1}^2 , IC_{2n+1}^2 , IC_{2n+1}^2 , ... , IC_{2n+1}^2 ,

转动反演的对称元素为 k, k 称为转动反演轴。注意 k 在转动反演下经过对原点的反演,故不是不变的。另 外 从 IC_{2n} 的情

况可以看出,转动反演轴 IC_{2n} 的存在,并不意味着转动轴 C_{2n} 和 反演I 分别存在,而只是 C_n 轴的存在。当 然奇数阶转动反演轴 IC_{2n+1} 的存在,意味着分别存在转动轴 C_{2n+1} 和空间反演I.

在有些文献中,用转动反射 $S_{k}(2\pi/n)$ 来代替转动反演 $IC_{k}(2\pi/n)$,其中

$$S_{\star}(2\pi/n) = \sigma_{\star}C_{\star}(2\pi/n) = IC_{\star}(2\pi/n + \pi)_{\star}$$
 (3.7)

定理3.3 设G是点群,K是G的转动子群, $K=G\cap SO(3)$,则存在三种可能。

- (1) G=K, G是 SO(3)的有限子群。
- (2) $G \neq K$, G包含反演元素 I, $I \in G$, 则 $G = K \cup IK$.
- (3) $G \neq K$, G 不包含 D 演 元 素 I , $I \notin G$, 则 G 与转动群 $G^+ = K \cup K^+$ 同构,其中

$$K^+ = \{Ig \mid g \in G, g \notin K\}.$$

证明 $G \not\in O(3)$ 的有限子群,对任意 $g \in G$,由 $\det g = \pm 1$,可给出G到二阶循环群 $\{+1,-1\}$ 上的同态 映 射。 $\det g = 1$ 的全体元素给出同态核 $K = G \cap SO(3)$ 。如果 G 中元素行列式全部为+1,则有 G = K,是第 1 种可能。

否则,当G中有元素行列式为-1时,G应该由K和K的一个陪集所穷尽。这时如果 $I \in G$,则陪集IK和K的和集就是G,这是第 2 种可能。

反之,如 $I \notin G$,则一定可以找到一个转动群 $G^+ = K \cup K^+$,: $K^+ = \{Ig \mid g \in G, g \notin K\}$,集合 K^+ 全部由转动元素 组 成。由于 $I \notin G$, $K^+ \cap K = \{\emptyset\}$,否则 设 $g \in K^+$, $g \in K$,则 $g = Ig' \in G$, $g' \in G$,有 $I \in G$,与假设 $I \notin G$ 矛盾。由同态核定理还可知道, K^+ 和 K 有同样多个元素。将 $G^+ = K \cup K^+$ 的元素写 成 $I^*g, g \in G$, 当 $g \in K$ 时, $\varepsilon = 0$,当 $g \notin K$ 时, $\varepsilon = 1$ 。 G^+ 中乘法满足

$$I^{*} \circ g_{1}I^{*} \circ g_{2} = I^{*} \circ I^{*} \circ g_{1}g_{2},$$

注意 $I^2=I^0=E^*$. G^+ 也存在到二阶循环群上同态映射,其同态核也是K.因此不仅G中一个元素 g 唯一对应 G^+ 中一个元素 I^*g ,而

且 G^+ 中一个元素 I^*g ,也唯一对应 G 中一个元素 g, 拜 且 保持乘法规律不变。因此 G^+ 是与 G 同构的转动群,这是第三种可能。定理证毕。

从定理、3.3 可以看出,如果求出了全部第一类点群,则由第二种可能可以直接找到含 I 的第二类点群。如找不含 I 的第二类点群,则应先从第一类点群中,找有到二阶循环群上同态映射的群 G+,再利用第三种可能, 得到与 G+ 同构的第二类 点 群。这点群就是不含 I 的。因此定理 3.3 给出了从第一类点群求第二类点群的方法。

3.3 第一类点群

第一类点群只含有转动。设 G 为第一类点群, G 有转动轴 $C_{n_1}, C_{n_2}, \cdots, C_{n_i}, \cdots, n_i=2,3,\cdots$ 。 C_{n_i} 轴生 成 $C_{n_i}, C_{n_i}^2$,…, $C_{n_i}^2$ 等非恒等转动元素。由于 R^3 中原点 θ 保持不动,因此所有轴 C_{n_i}, C_{n_2}, \cdots 均相交于原点 θ 。 G 的各 元 素 由 群的乘法相联系,因此各对称操作间要满足一定的制约关系。如取笛卡儿坐标系为 (i,j,k), G 若存在两个互相垂直的二阶轴 $C_2=C_1(\pi)$, $C_2'=C_1(\pi)$,则由乘法 $C_2C_2'=C_1(\pi)$,知道必 存 在 与 C_2, C_2' 都垂直的第三个二阶轴 $C_1(\pi)$ 。 又譬如 G 若存存一个 三 阶 轴 $G_3=C_1(\pi)$,和一个与其垂直的二阶轴 $C_2=C_1(\pi)$,则由乘法 C_3C_2 , $C_3'C_2$ 知道,必存在另外两个与 C_3 垂直的二阶轴 $C_2'=C_3C_2$ 和 C_2' $C_3'C_2$ 。下面将各对称元素间的制约关系,通过第一类 点 群满足的基本方程反映出来。

如果以原点为球心,以下为半径作球面 S_r , r>0. $G 把 S_r$ 上的点映到 S_r 上。设 G 的 n; 阶 轴 C_n ,与 S_r 交 于 r ,和 -r 。, r 。和 -r 。在元素 C_n 。, C_n^2 。 "作用下不变, 称 r 。和 -r 。是元素 C_n 。, C_n^2 。 "的 极点。 而 r 。的 迷 向 子 群 为 G^r 。 =

$$\{C_{n_i}, C_{n_i}^2, \cdots, C_{n_i}^{n_i-1}, C_{n_i}^n = E\}$$
。设任意 $g \in C$,从 $gC_{n_i}^j, g^{-1}(gr_i) = (gr_i), \quad j = 1, 2, \cdots, n_i - 1$

可见极点 r, 的 G 轨道上的点 gr, 是元素 $gC_{i,g}^{-1}$ 的极点, gr, 的迷向子群是 G^r , 的共轭子群 gG^r , ig^{-1} 。由于两个互为共轭的子群是同构的, 所以 gG^r , ig^{-1} 也是一个 n_i 阶循环群, gr, 也是一个 n_i 阶循环群, gr, 也是一个 n_i 阶 轴与 S_r 的交点。设 G 的阶为 n 。从定理 1.8 知,过 r_i 的 G 轨道上共有 n/n_i 个点。这 n/n_i 个极点对应 $(n_i-1)n/2n_i$ 个非恒等转动。而由 G 的阶为 n ,知总的非恒等转动为 n-1 个。设 S_r 上共有 l 条 极点的 G 轨道,则有

$$\sum_{i=1}^{l} \frac{n}{2n_i} (n_i - 1) = n - 1,$$

或

$$\sum_{i=1}^{t} (1 - 1/n_i) = 2(1 - 1/n), \qquad (3.8)$$

其中 $n \ge n_i \ge 2$ 。式(3.8)是第一类点群满足的基本方程。 它给出 群G的阶 n和可能存在的转动轴的阶 n_i 的关系。

具体计算表明,在条件 $1/2 \ge 1/n_i \ge 1/n$ 下,只可能有 l=2或3. 一共有下面五个解。

当l=2, 式(3.8) 为

$$\frac{2}{n} = \frac{1}{n_1} + \frac{1}{n_2}$$
.

只有解

(1)
$$n_1 = n_2 = n$$
, $n = 2, 3, \dots$

当1=3, 式(3.8)为

$$1 + \frac{2}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$$
.

取 $n_1 \le n_2 \le n_3$, $1/n_1 \ge 1/n_2 \ge 1/n_3$. 显然当 $n_1 \ge 3$ 无解,因此 $n_1 = 2$. 而 $n_2 \ge 4$ 时也无解,故 n_2 只可能为 2 或 3 。于是有解:

(2)
$$n_1 = 2$$
, $n_2 = 2$, $n_3 = n/2$, $n = 2, 4, 6, \cdots$.

- (3) $n_1 = 2$, $n_2 = 3$, $n_3 = 3$, n = 12.
- (4) $n_1 = 2$, $n_2 = 3$, $n_3 = 4$, n = 24.
- (5) $n_1 = 2$, $n_2 = 3$, $n_3 = 5$, n = 60.

当 n_3 ≥6时也无解。下面分别讨论这五个解。

(1) C,群

 $l=2, n_1=n_2=n, n=2,3,\dots$ 。 全部极点分为两个轨道,而且每个轨道上只有一个极点。这正是以一个 n 阶轴为对称元素的 C_n 群。 $C_n=\{C_n,C_n^2,\dots,C_n^{n-1},C_n^n=E\}$,是 n 阶循环群。它的每个元素 C_n^n , $k=1,2,\dots,n$,是一类,共有 n 个类。

(2) 二面体群 D_m

 $l=3, n=2m, n_1=2, n_2=2, n_3=m$. 全部极点分为三个轨道。第一和第二个轨道上各有m个极点,它们是m个二阶轴与 S_r 的交点。第三个轨道上有两个极点,它们是一个m阶轴与 S_r 的交点,而这两个极点在同一个轨道上,说明必有一个二阶轴 $C_2^{(1)}$ 与 C_m 轴垂直。则由群的乘法规律知道,m个二阶轴 $C_2^{(1)}$, $C_2^{(2)}$,…, $C_2^{(n)}$ 皆与 C_m 轴垂直。第一章例 3 的正三角形对称群和例 20的正方形对称群,正是二面体群 D_3 和 D_4 。 D_3 群(或 D_4 群)的三(或四)个二阶轴都与其三(或四)阶轴垂直。

在二面体群中,由于与 C_m 轴垂直的二阶轴的 存 在, C_m 与 C_m 1 是一类, C_m^2 是一类……而且夹角为 $2\pi/m$ 的二阶轴是一类。于是,当 m 为奇数时,单位元 E 是一类, C_m^k , C_m^{m-k} 是一类, $k=1,2,\cdots$, (m-1)/2,全部二阶轴是一类,共有(m+3)/2类。当 m 为偶数时,单位元 E 是一类, C_m^k , C_m^{m-k} 是一类, $k=1,2,\cdots$, (m-2)/2 , $C_m^{m/2}$ 是一类,m 个二阶轴分为两类,共有 3+m/2 类。

(3) 四面体群T

l=3, n=12, $n_1=2$, $n_2=3$, $n_3=3$. 全部极点分为三个轨道。第一个轨道上行六个极点,是三个二阶轴与 S_r 交点。第二和第三轨道上各有四个极点,是四个三阶轴与 S_r 交点。设 r_1 , r_2 , r_3 , r_4 是第二个轨道上的四个极点, C_3 , C_3 ,

 r_3, r_4 分别不动的三阶转动。如 $C_3 r_1 = r_1, C_3 r_2 = r_3, C_3 r_3 = r_4,$ $C_3 r_4 = r_2,$ 可以得到 $|r_1 - r_2| = |r_1 - r_3| = |r_1 - r_4|, \dots,$ 考虑 C_3 ,

图 3.1

C%,C₃的作用,可以证明r₁,r₂,r₃,r₄是S,上等距分布的四个点。以它们为角顶可做成正四面体,T就是正四面体对称群。图3.1给出正四面体。它有四个角顶,四个正三角形表面和六条稜边。从每个角顶到相对表面中六条线是一个三阶轴。两个相对稜边中点连线是一个二阶轴。

四面体群T的每一个对称操作,

可看成是对角顶ӷ,,ӷ₂,ӷ₃,ӷ₄的一个置換。如

$$C_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}, \qquad C'_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix},$$

$$C'_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \qquad C''_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix},$$

$$C'_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \qquad C'_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix},$$

$$C''_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}, \qquad E = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}.$$

全部写出T的元素可以看出,T是群 S_4 的偶置换子群。利用对称群的理论或直接做乘法,可得到T的元素分为以下四个类。单位元 $\{E\}$, $\{C_2,C_2,C_2\}$, $\{C_3,C_3',C_3'',C_3'',C_3'''\}$ 和 $\{C_3^2,C_3'^2,C_3''^2\}$ 。

(4) 八面体群 ()

l=3, n=24, $n_1=2$, $n_2=3$, $n_3=4$. 全部 极点分为三个轨道。第一个轨道是六个二阶轴与 S, 相交的十二个 极点。第二个轨道是四个三阶轴与 S, 相交的八个极点。第三个轨道是 三个四阶轴与 S, 相交的六个极点。设 r_1 ($i=1,2,\cdots,6$) 是第三个轨道上的六个极点, C_4 , C_4' , C_4' 分别为使 r_1 和 r_2 , r_3 和 r_4 , r_5 和 r_6 不

动的四阶转动。如 $C_4r_1=r_1$, $C_4r_2=r_2$, $C_4r_3=r_5$, $C_4r_4=r_6$, $C_4r_5=r_4$, $C_4r_6=r_3$,可以得到 $|r_3-r_1|=|r_5-r_1|=|r_4-r_1|=|r_6-r_1|$, $|r_3-r_2|=|r_5-r_2|=|r_4-r_2|=|r_6-r_2|$,…. 考虑 C_4 ,

从图 3.2 可以看出,作立方体使正八面体内接于它,八面体的角顶正好位于立方体六个表面的中心。八面体与立方体有相同的对称操作。立方体两个相对表面中心连线是四阶轴,两个相对角顶连线是三阶轴。

同四面体群一样,八面体群〇的每一个对称操作,可以看成是对角顶 r₁, r₂, ···, r₆ 的··个置换。如

$$C_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 6 & 4 & 3 \end{pmatrix}, \qquad C_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 1 & 2 \end{pmatrix}$$

$$C_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 2 & 6 & 5 \end{pmatrix}, \qquad \cdots.$$

因此〇是对称群 S_6 的一个子群。 利用对称群的理论 或直接做乘法,可得八面体 群 共 有 五 个 类, $\{E\}$, $\{C_2^{(1)},C_2^{(2)},\cdots,C_2^{(r)}\}$, $\{C_3^{(1)},C_3^{(2)},\cdots,C_3^{(r)},C_3^{(r)},C_3^{(r)},\cdots,C_3^{(r)}\}$, $\{C_4,C_4,C_4,C_4,C_4^{(r)},C_4^{(r)},C_4^{(r)},C_4^{(r)},C_4^{(r)},C_4^{(r)},C_4^{(r)}\}$, $\{C_4,C_4,C_4,C_4^{(r)},C_4^{$

(5) 二十面体群Y

 $l=3, n=60, n_1=2, n_2=3, n_3=5$ 。 全部极点分 为 三个轨 道。第一个轨道是15个二阶轴与 8, 的三十个交点。 第 二个轨道。 是十个三阶轴与 S_r 相交的二十个极点。第 三 个轨道是六个五阶 轴与 S_r 相交的十二个极点,设其为 T_1 ($i=1,2,\cdots,12$)。设 C_5 为 一个固定 r_1 和 r_2 的五阶转动,而且 C_8 作用是把极点 r_3,r_5,r_7 $r_0, r_1, 和 r_4, r_6, r_8, r_{10}, r_{12}$ 依次轮換,就可得到: r_1, r_2 与 $r_3, r_5,$

77,79,711(或54,58,78,510,712) 距 离相 等。考虑所有的五阶转 动, 可 以 得 到:任一极点 1: 与它邻近 极 点距离 相等。因此以下1,下2,…, 下12 极 点 为 角顶可做成正二十面体,Y就是二十 面体群。图 3.3 给出正二十面体。它 有十二个角顶, 二十个正三角形表面 和三十条稜边。两个相对顶角连线是 一个五阶轴,两个相对表面中心连线

是一个三阶轴,两个相对边中点连线是一个二阶轴。

把正二十面体相邻两面的中点连接起来,形成一个正十二面 体内接于二十面体。正十二面体有二十个角顶,十二个正五边形 表面,三十条稜边。正十二面体与正二十面体具有相同的对称操 作,它的两个相对表面中心的连线是五阶轴,相对角顶的连线是 三阶轴,相对边中点的连线是二阶轴。

二十面体群Y共有五个类, $\{E\}$, $\{C_2^{(1)}, C_2^{(2)}, \cdots, C_2^{(15)}\}$, $\{C_3^{(1)}, C_3^{(2)}, \cdots, C_3^{(10)}, C_3^{(1)2}, C_3^{(2)2}, \cdots, C_3^{(10)2}\}, \{C_5^{(1)}, C_5^{(2)}, \cdots, C_3^{(2)2}, \cdots, C_3^{(2)3}, \cdots, C_3^$ $C_5^{(6)}$, $C_5^{(1)4}$, $C_5^{(2)4}$,..., $C_5^{(6)4}$ } 和 $\{C_5^{(1)2}$, $C_5^{(2)2}$,..., $C_5^{(6)2}$, $C_5^{(1)3}$, $C_5^{(2)3}, \dots, C_5^{(6)3}$ }各为一类。·

第一类点群基本方程(3.8)的五个解,穷尽了全部可能的第 一类点群。它们是循环群 C_n ,二面体群 $D_n(n \ge 2)$, 四 面 体 群 T, 八面体群O和二十面体群Y.

3.4 第二类点群

利用定理 3.3 的第二种可能,从第一类点群K,可直接写出 含反演元素I 的第二类点群 $K \cup IK$,有下面五种:

(1) $C_n \cup IC_n$,

是阶为 2n 的阿贝尔群,它的每个元素自成一类,共有 2n 个类。

- (2) $D_n \cup ID_n$, 是 4n 阶群。当 n 为奇数时,有 n+3 个类,当 n 为偶数时,有 n+6 个类。
 - (3) $T \cup IT$, 称为 T_k 群。阶为24、共有八个类。
 - (4) OUIO, 称为 O, 群。阶为48。共有十个类。
 - (5) $Y \cup IY$, 称为Y, 群、阶为120. 共有十个类。

利用定理 3.3 的第三种可能,从第一类点群中,找出有到二阶循环群上同态映射的群作 G^+ ,根据不含反演元素 I 的 第二类点群 G 与 G^+ 同构,即若 G^+ = $K \cup K^+$,可 求 出 G = $K \cup IK^+$ 。而 第一类点群中,只有 C_{2n} , D_n , D_{2n} 和 O 有到二阶循环群上同态映射,它们分别给出下面四种第二类点群:

(6) 与 C_{2n} 同构的第二类点群

 C_{2n} 群包含 C_{n} 群为其不变子群。 C_{2n} 有到二 阶 循 环群上同态映射,同态核K 和陪集 K^{+} 为,

$$K = C_n = \{C_{2n}^2 = C_n, C_{2n}^4 = C_n^2, \cdots, C_{2n}^{2n-2} = C_n^{n-1}, C_{2n}^{2n} = E\},$$

$$K^+ = \{C_{2n}, C_{2n}^3, \cdots, C_{2n}^{2n-1}\},$$

与 Can 同构的第二类点群为 Cn UIK+,

$$IK^{+} = \{IC_{2n}, IC_{2n}^{3}, \dots, IC_{2n}^{2n-1}\},$$

是阶为 2n 的阿贝尔群, 共有 2n 个类。

(7) 与 D_n 同 构的第二类点群

 D_n 群以 C_n 群为其不变子群, D_n 到 二阶循环群上的同态映射的同态核 K 和陪集 K^+ 分别为

$$\begin{split} K = C_n = \left\{ C_n , C_n^2 , \cdots , C_n^{n-1} , C_n^n = E \right\}, \\ K^+ = \left\{ C_2^{(1)} , C_2^{(2)} , \cdots , C_2^{(n)} \right\}, \end{split}$$

与 D_n 同构的第二类点群为,

 $\{C_n, C_n^2, \dots, C_n^{n-1}, C_n^n = E\} \bigcup \{IC_n^{(1)}, IC_n^{(2)}, \dots, IC_n^{(n)}\},$ 其阶为 2n。当 n 为奇数时,有(n+3)/2个类,当 n 为偶数时,有 3+n/2 个类。

(8) 与 D_{2n} 同构的第二类点群

 D_{2n} 以 D_n 为其不变子群。 D_{2n} 到二阶循环群 上 同态映射的 核 K 和陪集 K^+ 分别为。

$$K = D_n = \{C_{2n}^2 = C_n, C_{2n}^4 = C_{n}^2, \cdots, C_{2n}^{2n-2} = C_{n}^{n-1}, \cdots, C_{2n}^{2n-2} = C_{n}^{n-1}, \cdots, C_{2n}^{2n} = E, C_{2n}^{(2)}, C_{2n}^{(4)}, \cdots, C_{2n}^{(2n)}\},$$

$$K^+ = \{C_{2n}, C_{2n}^3, \cdots, C_{2n}^{2n-1}, C_{2n}^{(4)}, C_{2n}^{(3)}, \cdots, C_{2n}^{(2n-1)}\},$$

故与 D2n 同构的第二类点群为

$$\{C_{2n}^2, C_{2n}^4, \cdots, C_{2n}^{2n-2}, E, C_{2}^{(2)}, C_{2}^{(4)}, \cdots, C_{2n}^{(2n)}\}$$

 $\bigcup \{IC_{2n}, IC_{2n}^3, \cdots, IC_{2n}^{2n-1}, IC_{2n}^{(1)}, IC_{2n}^{(3)}, \cdots, IC_{2n}^{(2n-1)}\}.$
其阶为 $4n$, 有 $n+3$ 个类。

(9) 与 0 同构的第二类点群

O以四面体群 T 为其不变子群。O到二阶循环群上同态映射的核 K 和陪集 $^{K+}$ 分别为

$$\begin{split} K = T &= \{C_3^{(1)}, C_3^{(2)}, C_3^{(3)}, C_3^{(4)}, C_3^{(1)2}, C_3^{(2)2}, C_3^{(3)2}, C_3^{(4)2}, \\ &= \{C_4^{(1)2}, C_4^{(2)2}, C_4^{(3)2}\}, \\ K^+ &= \{C_4^{(1)}, C_4^{(2)}, C_4^{(3)}, C_4^{(1)3}, C_4^{(2)3}, C_4^{(3)3}, C_2^{(1)}, C_2^{(2)}, \cdots, C_2^{(6)}\}, \end{split}$$

与〇同构的第二类点群为

$$\begin{split} \{C_3^{(1)},C_3^{(2)},C_3^{(3)},C_3^{(4)},C_3^{(1)2},C_3^{(2)2},C_3^{(3)2},C_3^{(4)2},E,C_4^{(1)2},C_4^{(2)2},\\ C_4^{(3)2}\} & \cup \{IC_4^{(1)},IC_4^{(2)},IC_4^{(3)},IC_4^{(1)3},IC_4^{(2)3},IC_4^{(3)3},IC_4^{(3)3},IC_2^{(1)},IC_2^{(2)},\\ & \cdots,IC_2^{(6)}\}. \end{split}$$

是24阶群,有五个类。

以上利用已知全部五种第一类点群和定理 3.3, 求出了全部 九种第二类点群。这样就求得了全部点群。 过去在研究晶体时,通用熊夫利(Schoenflie)分类,现在有些文献中仍采用它。另外熊夫利符号与对称元素有直接关系,了解它也有助于理解点群。我们在此作简单介绍。

在熊夫利分类中,用式(3.7)的转动反射代替转动反演,

$$S_n = S_k \left(\frac{2\pi}{n}\right) = \sigma C_k \left(\frac{2\pi}{n}\right) = IC_k \left(\frac{2\pi}{n} + \pi\right),$$

k 称为 n 阶转动反射轴。点群的最高阶转动轴或转动反射轴称为主轴,主轴的方向取为垂直方向。而点群 T ,则以一个二阶轴为主轴。与主轴垂直的平面称为水平面,用 σ_k 表示。过 主 轴的平面称为垂直面,用 σ_v 或 σ_a 表示。

注意奇数阶转动反射轴 S_{2n+1} 生成转动 元 素 C_{2n+1} , C_{2n+1}^2 , C_{2n+1}^3 , C_{2n+1}^3 , ..., C_{2n+1}^2 , E和转动反演元素 $IC\left(\frac{2\pi}{4n+2}\right)$, $IC\left(\frac{3}{4n+2}2\pi\right)$, ..., $IC\left(\frac{2n-1}{4n+2}2\pi\right)$, σ_h , $IC\left(\frac{2n+3}{4n+2}2\pi\right)$, ..., $IC\left(\frac{4n+1}{4n+2}2\pi\right)$. 偶数阶转动反射轴分 S_{4n} 和 S_{4n+2} 两种 情 况。 S_{4n} 生成转动 元 素 $C_{2n}=C_{4n}^2$, C_{2n}^2 , ..., C_{2n-1}^2 , E 和 转动 反演 元素 $IC\left(\frac{1}{4n}2\pi\right)$, $IC\left(\frac{3}{4n}2\pi\right)$, ..., $IC\left(\frac{4n-1}{4n}2\pi\right)$. S_{4n+2} 生成转动元素 $C_{2n+1}=C_{4n+2}^2$, C_{2n+1}^2 , C_{2n+1

在第二类点群中,对群 T_h , O_h 和 Y_h ,因为取T,Y的一个二阶轴 C_2 和O的一个四阶轴为主轴,那么元素 IC_2 和 IC_4^2 对应于水平反射面 σ_h 。所以熊夫利符号 T_h , O_h 和 Y_h ,表明

它们可通过对 群 T, O 和 Y 加上对水平面的反射而得到。与 D_n 同构的第二类点群(7) $\{C_n, C_n^2, \cdots, C_n^{n-1}, E\} \cup \{IC_n^{(n)}, IC_n^{(n)}, \cdots, IC_n^{(n)}\}$, 其主轴 C_n 是垂直的,二阶轴 $C_n^{(n)}$, $C_n^{(n)}$, $C_n^{(n)}$ 产在水平面上,全部轴交于原点, 两相邻二阶轴夹角相等。 $IC_n^{(n)}$ 是垂直于 $C_n^{(n)}$ 轴的垂直反射面 $\sigma_n^{(n)}$ ($i=1,2,\cdots,n$)。即共有 n 个垂直反射面,而且是通过 C_n 轴的。事实上者取一个过 C_n 轴的垂直反射面 $\sigma_n^{(n)}$,可由 C_n, C_n^2 , …,作用 而 得 到 全部 $\sigma_n^{(n)}$ 。因此熊 夫 利 分 类 把这 类 点群 称为 C_n 。表示是对 C_n 群加上过主轴的垂直反射面 σ_n 面 得到。 与 O 同 构 的 第 二 类 点群 (9) $\{C_n^{(n)}$, \dots , $C_n^{(n)}$ 。 选四阶转动反演轴 $IC_n^{(n)}$ 为主轴,则 $IC_n^{(n)}$, …, $IC_n^{(n)}$, …, $IC_n^{(n)}$, …, $IC_n^{(n)}$, 一, $IC_n^{(n)}$, 是 四阶转动反演轴 $IC_n^{(n)}$ 为主轴,则 $IC_n^{(n)}$, …, $IC_n^{(n)}$ 中 有 两 个 垂 直 反射面。事实上,只要取一个垂直反射面 σ_n ,可由 T 与 σ_n 的乘积而得到全部转动反演元素。 因 此熊夫利用符号 T_n 表 示与 O 同构的第二类点群。

引进转动反射轴 S_n 后,可以看到第二类点群 $C_{2n+1} \cup IC_{2n+1}$,可以由一个转动反射轴 S_{4n+2} 生成,在熊夫利分类中称为 S_{4n+2} 群。而与 C_{4n} 同构的第二 类 点 群 (6),可由一个转动反 射 轴 S_{4n} 生成,在熊夫利分类中称为 S_{4n} 群。

而 $C_{2n} \cup IC_{2n}$ 群,存在元素 $IC_{2n}^2 = \sigma_h$ 。可以由 群 C_{2n} 与 σ_h 而得到,故熊夫利将其记为 C_{2nh} 群。而与 C_{4n+2} 群 同 构的第二 类点群,存在元素 $IC_{4n+1}^{2n+1} = \sigma_h$ 。由群 C_{2n+1} 与 σ_h 相乘可以得到整个群,在熊夫利符号中为 C_{2n+1} h。

群 $D_{2n} \cup ID_{2n}$, 有群元 $IC_{2n}^n = \sigma_h$. 科且由 D_{2n} 与 σ_h 可以得到整个群, 在熊夫利符号中记为 D_{2n} h. 当然 D_{2n} h. 还存在 2n 个垂直反射面 $IC_{2}^{(1)}$, ..., $IC_{2}^{(2n)}$. 与 D_{4n+2} 同构的第二类点群(8), 含有群元 $IC_{4,+2}^{(2n)} = \sigma_h$. 由 D_{2n+1} 和 σ_h 可得整个群, 在熊夫利分类中, 记为 D_{2n+1} h. 而且由 D_{2n+1} h. 具有群元

 $\{C_{2n+1}, C_{2n+1}^2, \cdots, C_{2n+1}^2, E, \cdots, IC_{4n+2}, IC_{4n+2}^3, \cdots, IC_{4n+2}^4, \cdots, IC_{$

「转动轴 C_{2n} , D_{2n+1} h 还存在(2n+1) 个垂直反射面 $IC_2^{(1)}$, $IC_2^{(3)}$, ... , $IC_2^{(4^{n+1})}$.

群 $D_{2n+1} \cup ID_{2n+1}$,含有反演元素 I,但不含水平反射函 σ_n ,有 2n+1 个垂直反射面 $IC_2^{(1)}$, $IC_2^{(2)}$, ..., $IC_2^{(2^{n+1})}$ 。 这些垂直反射面与水平面的交线正好是二阶轴 $C_2^{(1)}$, $C_2^{(2)}$, ..., $C_2^{(2^{n+1})}$ 的分角线。记这种垂直反射面为 $\sigma_2^{(1)}$, $\sigma_2^{(2^{n})}$, ..., $\sigma_3^{(2^{n+1})}$ 。 事实上从 D_{2n+1} 和一个 $\sigma_2^{(1)}$ 就 可 得 到 整 个 群,因 此 在熊夫利分类中,把这群记为 D_{2n+1} d。 D_{2n+1} d 群含有元素

 $\{C_{2n+1}, C_{2n+1}^2, \cdots, C_{2n+1}^2, E, IC_{2n+1}, IC_{2n+1}^2, \cdots, IC_{2n+1}^2, I, \cdots\},$ 包含转动反射轴 S_{4n+2} 。与 D_{4n} 同构的第二类点群,群元为

$$\begin{split} \{C_{4n}^2, C_{4n}^4, \cdots, C_{4n-2}^{4n-2}, E, C_{2}^{(1)}, C_{2}^{(3)}, \cdots, C_{2}^{(4n-1)}\} \\ & \cup \{IC_{4n}, IC_{4n}^3, \cdots, IC_{4n-1}^{4n-1}, IC_{2}^{(2)}, IC_{2}^{(4)}, \cdots, IC_{2}^{(4n)}\}, \end{split}$$

其中 $IC_2^{(2)}$,…, $IC_2^{(4)}$ 是 2n 个垂直反射面,而且与水平面的交线正好平分二阶轴 $C_2^{(1)}$,…, $C_2^{(4)}$ "之间 的 夹 角, 记 为 $\sigma_a^{(1)}$,…, $\sigma_a^{(2)}$ "。事实上只要用 $\sigma_a^{(1)}$ 与 D_{2n} 即可得整个群, 故 用 熊夫利符 号 D_{2n} a 标记。群 D_{2n} a 包括转动反射轴 S_{4n} .

在熊夫利分类中, 全部第二类点群分为以下九种, S_{2n} , C_{nv} , C_{nh} , D_{nh} , D_{nd} , T_h , O_h , Y_h 和 T_d .

3.5 晶体点群

理想晶体是由全同的结构单元,在空间无限次重复而构成, 其结构用晶格来描述。对任意晶格,总可以找到三个线性无关的 向量 a_1, a_2, a_3 。过空间任一点广的晶格,由r+a组成,其中

$$a = \sum_{i=1}^{3} n_i a_i, \quad n_i = 0, \pm 1, \pm 2, \dots,$$

同一个晶格, 基本向量 $\alpha_1,\alpha_2,\alpha_3$ 的取法可以不同, 但 由 $r+\alpha$ 堆成的晶格是相同的。所谓晶体点群, 就是把晶格 映为 自 身 的点群。一个晶格, 在晶体点群作用下不变, 而且恒有一点不动(一

般取原点固定)。

定理 3.4 (晶体制约定理) 设G 是晶体点群,则G 中的传动元素只可能由 E , C_2 , C_3 , C_4 , C_6 生成,G 中的转动反 演 元 素只可能由 I , IC_2 , IC_3 , IC_4 , IC_6 生成,

证明 设晶格 L 是 G 不变的,L 的基本向量为 α_i (i=1,2,3)。则对任意 $g \in G$,有

$$g\boldsymbol{a}_i = \sum_{j=1}^{n} C_{ij}\boldsymbol{a}_{j\bullet}$$

 ga_i 在L上,必要求 $C_{ij}=0$, ± 1 , ± 2 , …。而G是O(3)的子 群,故 $g \in O(3)$ 。由式(3.5) 并考虑到空间反演矩阵I,可以得到

$$tr(C_{ij}) = \sum_{i=1}^{q} C_{ii} = \pm (1 + 2 \cos \psi).$$

 ψ 是元素 g 对应的转动角或转动反馈角。可以看出 $|\text{tr}(C_{ij})| \leq 3$ 而且是整数。故 cos ψ 只可能是 $0,\pm 1/2,\pm 1$ 。 ψ 只可能是 $\pi/2$, $\pi/3,2\pi/3,0,\pi,\cdots$ 。故转动元素只可能由 E,C_2,C_3,C_4,C_6 生成,转动反演元素只可能由 I,IC_2,IC_3,IC_4,IC_6 生成。定理证毕。

有了晶体制约定理,就可以从全部点群中找出晶体点群。具体分析可以得到一共有32个晶体点群。第一类晶体 点 群 有 C_1 , C_2 , C_3 , C_4 , C_6 , D_2 , D_3 , D_4 , D_6 , T, D_6 , D_6 , D

在晶体学中,常用到晶系来对晶格进行分类。一个晶格,可能在许多晶体点群下不变。用晶格的全面对称点群,也就是它的最大晶体点群,来对晶格进行分类。两个晶格的全面对称点群者是 O(3)的共轭子群,则此两个晶格属于同一晶系。 可以证明,只有 S_2 , C_{2h} , D_{2h} , D_{4h} , D_{8h} , D_{3d} , O_h 可以作为晶格的 全面 对称点群,因此共有七个晶系。结果见表3.1。

表3.1 晶体点群按晶系分类表

晶系(全面对称群)	熊夫利符号	国 际 符 号		
三斜系(S ₂)	S ₂	1		
- 2 MT 245 1 - 27	c ₁	1		
	C 2 h	2/111		
单斜系(C _{2A})	C 2	2		
	C t h	m (= <u>2</u>)		
<u> </u>	D 2 t	mmm(2/m 2/m 2/m)		
正交系(D _{2 h})	D 2	222		
	C ₂ ,	mm(mm2)		
	Dah	4/mmm(4/m 2/m 2/m)		
	C 4	4		
	S ₄	4		
四角系(D44)	D4	42(422)		
	C4,	4 m m		
	Can	4/ m		
	D _{2d}	4 2 m		
	D3 d	3 m (3 2/m)		
	S 6	3		
三角系(D _{3d})	C ₃	3		
	C 3 v	3 m		
	D ₃	32		
	D 6 %	6/mmm(6/m 2/m 2/m)		
	. C ₆	6		
	C3 & !	6		
六角系(D _{6 h})	C 5 h	6/m		
	C 6 ,	5 ns 11s		
	D ₆	62(622)		
	. D _{3 h}	6 m 2		
	O _h	$m3m(4/m \ 3 \ 2/m)$		
	T	23		
立方系(04)	0	43(432)		
	T h	m3(2/m 3)		
	T _d	43m		

在晶体学中,现通用国际符号标记晶体点群。在 国际 符号中,用转动反演 $IC_{k}(2\pi/n)$ 和转动反演轴作为对称操作和对称元素,与在熊夫利符号中,用转动反射 $S_{k}(2\pi/n)$ 和转动反射 轴 k 作为对称操作和对称元素是不同的。国际符号中,用字母X 表示 X 阶转动轴,用数字 1,2,3,4,6 分别表示一,二,三,四,六阶转动轴。用字母上加一横 \overline{X} 表示 X 阶转动反演轴,用数字上加一横 $\overline{1}$, $\overline{2},\overline{3},\overline{4},\overline{6}$ 分别表示一,二,三,四,六阶转动反演轴。用 π 代表 反射面。事实上 $m=\overline{2}$ 。而反演中心就是 $\overline{1}$ 。转 动反演轴和转动 反射轴间有下列关系,

$$\overline{3} = S_6$$
, $\overline{4} = S_4$, $\overline{6} = S_3$.

用国际符号标记晶体点群时,一般首先写出其主轴X或 \overline{X} 。如果有一组同类的二阶轴与主轴X(或 \overline{X})垂直,记为X2(或 \overline{X} 2);如果有两类二阶轴与主轴X垂直,记为X22;如果反射面是过主轴X(或 \overline{X})的垂直反射面,记为Xm(或 \overline{X} m);如果过主轴X有两类垂直反射面,记为Xmm;如果反射面是和主轴X垂直的水平反射面,记为X/m;如既有垂直反射面又有两组水平反射面,则记为X/m加。用国际符号标记点群时,应遵守不重复的原则,只需写出为确定该点群所需要的最少数目的对称元素。如 C_4 记为4, S_6 记为 $\overline{3}$, C_{3h} 记为 $\overline{6}$;如 D_3 记为32,T记为23, D_6 记为622; C_{3v} 记为2m, C_{6v} 记为6mm; C_{2h} 记为2/m, D_{4h} 记为4/mmm。从表 3.1可以找到国际符号 与 熊 夫利符号的对应。

描绘点群还常用极射赤面投影图,这是通过平面图形描绘点群的方法之一,特别在晶体学中更经常遇到。极射赤面投影图也叫测地投影图。它是以点群固定点为原点作球心,以r>0为半径作球面 S_r 。取主轴方向为z,指向球的北极N,球的南极S是 z 轴与 S_r 交点。赤(道)面在 xy 平面上。极射赤面投影图是两个由赤道围成的圆,圆的右边画点群的对称元素,圆的左边画 S_r 上一普通点,在点群对称操作下位置的变化。它们按下 述 规

则绘制:

(1) 上半球点P的极射赤面投影P',是P与南极S联线PS与赤道面的交点,用实心点・表示。下半球点Q的极射赤面投影

图3.4 球面上点的极射赤面投影

Q',是Q与北极 N 连线 QN 与赤道面的交点,用空心点"。"表示.见图 3.4.空心点套实心点"⊙"表示上华球点和下半球点在赤道面的同一垂线上.

(2) 反射面的极射 赤面投影,用反射面与 上半球交线的极射赤面 投影,作粗线表示。故 垂直反射面为粗直线, 水平反射面为绕赤道的

粗圆周,倾斜的反射面为粗的曲线。

(3)转动轴与转动反演轴的极射赤面投影,用轴与上半球交点的极射赤面投影,按轴的符号标出。因此垂直的主轴符号只在 球心出现一次,倾斜轴的符号只在圆内出现一次,在水平面上的 轴,轴的符号将同时出现在轴的两端。转动轴符号为,

转动反演轴符号为:

注意极射赤面投影图的左边圆内,应该是 S_r 上一个普通点, 在点群作用下的投影,故全部点的数目(实心点与空心点数总和)

	三解系	单斜系 (第一组)	四 角 系
х			
茶 (傷)	1	m(-2)	
X (例) 加对称 中心及 (者)		2/m	4/m
(40)	单斜系(第二组)	正交票	
X2			422
Χm		mm2	4 mm
X2 (例) 或 Xm (例)		. —	42m
X2 或 Xm 加对称 中心及 Xm (奇)	2/m	mmm	A/mmm

图3.5 晶体点群

三 角 莱	六 角 泵	立 方 系	
3	6	23	x
- -	\$ C		X (偶)
	6/m	m3	X (偶) 加柱及 X (新)
32	622	432	₹ 2
3m	6mm	_	Xm
	6m2 €	43m	
3,m	6/mmm	m3m	X2

的极射赤面投影图

应该等于点群的阶。极射赤面投影的左边圆内,应该标出点群的 所有对称元素,与国际符号只标出确定点群所需最少的对称元素 不同。图 3.5 给出了晶体点群的极射赤面投射图。

理想晶体还存在一定的平移不变性。考虑到平移不变性,理想晶体的对称性群为晶体空间群,或简称空间群。有兴趣的读者请参考文献[16]。

3.6 点群的不可约表示

从第二章的讨论中知道,群的表示决定于抽象群的结构,同构的群有相同的表示。而且直积群 $G = G_1 \otimes G_2$ 的不可 约 表 示,可以由群 G_1 和 G_2 的不可约表示的直积得到。根据定 理 3.3,第二类点群或者是第一类点群 K = 1 与二阶循环群 $\{E,I\}$ 的直积 $K \cup IK$,或者是与第一类点群 G^+ 同构。因此求点群的不可约表示, 只需求出第一类点群的不可约表示即可。下面以晶体点群为例,求出晶体点群的不可约表示。

第一类晶体点群有 $C_1,C_2,C_3,C_4,C_6,D_2,D_3,D_4,D_6,T,O$ 等 11个。其中 C_1,C_2,C_3,C_4,C_6 是循环群,其不可约表示在 第 二章 例10中已给出。群 $D_2=C_2\otimes C_2$,是两个互相垂 直 的 C_2 直 乘 而 得, $D_6=D_3\otimes C_2$,是 D_3 与二阶轴 C_2 直乘而得,此 C_2 轴沿 D_3 的两个二阶轴的分角线方向。因此 D_2 和 D_6 的不可约表示,可分别由 C_2 与 C_2 ,和 D_3 与 C_2 不可约表示直乘而得到。 D_3 的 不 可 约表示已在第二章例11中给出。因此只要求出 D_4,T 和 O 的不可约表示即可。

$$D_4 = \{C_4, C_4^2, C_4^3, E, C_2^{(1)}, C_2^{(2)}, C_2^{(3)}, C_2^{(4)}\},$$

与第一章例20比, $C_4=r$,E=e, $C_2^{(1)}=a$, $C_2^{(3)}=b$, $C_2^{(2)}=u$, $C_2^{(4)}=v$. D_4 共 有 五 个 类, $\{E\}$, $\{C_4,C_4^3\}$, $\{C_4^2\}$, $\{C_2^{(1)}$, $C_2^{(3)}\}$ 和 $\{C_2^{(2)}$, $C_2^{(4)}\}$ 各为一类。按定理2.8系, D_4 不等价不可 约 表 示共 有五个,其维数满足

$$S_1^2 + S_2^2 + S_3^2 + S_4^2 + S_5^2 = 8$$

唯一可能解是 $S_1 = S_2 = S_3 = S_4 = 1$, $S_3 = 2$ 。 D_4 有不变子群 $\{E, C_4, C_4^2, C_4^3\}$, $\{E, C_4^2, C_2^{(1)}, C_2^{(3)}\}$, $\{E, C_4^2, C_2^{(2)}, C_2^{(2)}\}$, 每一个不变子群的商群都是二阶循环群。故 D_4 有到二阶循环群上的 三个不同的同态,分别与不同的不变子群对应,

$$\{E, C_4, C_4^2, C_4^3\} \rightarrow +1, \qquad \{C_2^{(1)}, C_2^{(2)}, C_2^{(3)}, C_2^{(4)}\} \rightarrow -1;$$

$$\{E, C_4^2, C_2^{(1)}, C_2^{(3)}\} \rightarrow +1, \qquad \{C_4, C_4^3, C_2^{(2)}, C_2^{(4)}\} \rightarrow -1;$$

$$\{E, C_4^2, C_2^{(2)}, C_2^{(4)}\} \rightarrow +1, \qquad \{C_4, C_4^3, C_2^{(1)}, C_2^{(3)}\} \rightarrow -1.$$

这里给出 D_4 的三个一维表示。另有一维恒等表示, 这样四个一维表示就全部求出来了。由此就可以求出 D_4 的特征标表, 见表 3.2.利用特征标的正交关系,可以得

	1 { E }	1 { 6 2 }	2 { C4 }	2 { C(1) }	2 { (2) }
AI	1 1	1	1	1	1
12	1	1	1	- 1	- 1
A8	1	1	- 1	1	- 1
A4	1	1	- 1	- 1	1
A5	2	x5(C2)	x5(G4)	$x^{\frac{5}{2}}(C_2^{(1)})$	$x^{\frac{5}{2}}(C_2^{(2)})$

表3.2 D, 的特征标表

$$\chi^5(C_4^2) = -2, \quad \chi^5(C_4) = 0,$$

$$\chi^5(C_2^{(1)}) \approx 0, \quad \chi^5(C_2^{(2)}) = 0.$$

计算结果,可以用其它正交关系来验证。 二维表示 A^5 的表示空间,可以选为正方 形 所在的 xy 平面(y 图1.7),其 中 x 轴 是 $C_2^{(x)}$ 轴方向,y 轴是 $C_2^{(y)}$ 轴方向。根据 D_4 定义, 可得表示矩阵 为

$$A^{5}(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad A^{5}(C_{4}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

$$A^{5}(C_{4}^{2}) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad A^{5}(C_{4}^{3}) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

$$\begin{split} A^5(C_2^{(1)}) &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad A^5(C_2^{(3)}) &= \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \\ A^5(C_2^{(2)}) &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad A^5(C_2^{(4)}) &= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \cdots \end{split}$$

直接求表示矩阵的迹,得到的特征标与前符合。因此上述表示矩阵正是第五个不等价不可约表示的表示矩阵。

四面体群 T 共有 $\{E\}$, $\{C_2,C_2',C_2'\}$, $\{C_3,C_4',C_3',C_3''\}$ 和 $\{C_3',C_4''^2,C_3''^2,C_3''^2\}$ 四个类。T 的不变子群 $\{E,C_2,C_2',C_2'\}$ 与 D_2 同构,我们把它记为 D_2 。 D_2 的陪集 串 $D_2,C_3D_2,C_3'D_2$ 穷 尽 T。商 群 T/D_2 是三阶循环群。利用 T 到商群 T/D_2 上同态映射 和 第二章 例10循环群的表示,可以得到 T 的三个不等价一维表示。由定理 2.8 系,知 T 还有一个不等价的三维不可约表示。设 $\varepsilon = \exp(2\pi i/3)$, T 的特征标表由表 3.3 给出。

	1 { E }	3 { C2 }	4 { C ₃ }	4 { 6 2 }
A 1	1	l I	1	1
A 2	1	1	e	e 2
A 3	1	. 1	€ 2	ė
A 4	3	×4(C2)	x⁴(C₃)	$\chi^{4}(C_{3}^{2})$

表3.3 T 的特征标表

利用特征标的正交性,立即可以得到

$$\chi^4(C_2) = -1, \qquad \chi^4(C_3) = \chi^4(C_3^2) = 0.$$

工的三维表示的表示矩阵,可以从工的定义求出。选表示空间为定义工的 R^3 ,取 R^3 中笛卡儿坐标系,使 x,y,z 轴沿二阶轴 C_2,C_2',C_2' 方向。图 3.6 给出了这样一个正四面体,它是内接于以原点为中心的立方体的。立方体相对顶角连线为三阶轴,在图 3.6 中用立方体外带箭头的短线标出。当 R^3 中基为(i,j,k) 时, T的表示矩阵为

$$C_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

$$C_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

$$C_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$C_3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$C_3 = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

$$C_3 = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

$$C_3'' = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

$$C_3'' = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$C_3''' = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$C_3''' = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$C_3''' = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$C_3''' = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$C_3''' = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$C_3''' = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$C_3''' = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$C_3''' = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$C_3''' = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$C_3''' = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$C_3''' = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

八面体群 O 共有五个类, $\{E\}$, $\{C_2^{(1)}, \cdots, C_2^{(s)}\}$, $\{C_3^{(1)}, \cdots, C_3^{(s)}\}$, $\{C_3^{(1)}, \cdots, C_3^{(s)}\}$, $\{C_3^{(1)}, \cdots, C_4^{(s)}\}$, $\{C_4^{(1)}, \cdots, C_4^{(s)}\}$, $\{C_4^{(1)}, \cdots, C_4^{(s)}\}$ 和 $\{C_4^{(1)}, \cdots, C_4^{(s)}\}$ 的维数为 S_1, \cdots, S_5 , 则由定理2.8系知, $S_1^2 + S_2^2 + \cdots + S_5^2 = 24$ 。唯一解是

$$S_1 = S_2 = 1$$
, $S_3 = 2$, $S_4 = S_5 = 3$.

0 有不变子群

 $T = \{E, C_3^{(1)}, \dots, C_3^{(4)}, C_3^{(1)2}, \dots, C_4^{(4)2}, C_4^{(1)2}, \dots, C_4^{(3)2}\}.$ 商群 O/T 是二阶循环群。由 O 到 O/T 上同态映射给出 O 的两个一维表示。

利用T的一维表示 A^{2} (见表3.3), 可以诱导出O的一个二维表示U. U的特征标 χ^{U} 由式(2.36)给出,

$$\chi^{U}(E) = \frac{1}{12} \sum_{i \in O} \operatorname{tr} \dot{A}^{2}(tEt^{-1}) = 2,$$

$$\chi^{U}(C_{3}^{(1)}) = \frac{1}{12} \sum_{i \in O} \operatorname{tr} \dot{A}^{2}(tC_{3}^{(1)}t^{-1})$$

$$= \frac{1}{12} \cdot 3 \cdot 4(\varepsilon + \varepsilon^{2}) = 1 \quad (\varepsilon = \exp(2\pi i/3)),$$

$$\chi^{U}(C_{4}) = 0,$$

$$\chi^{U}(C_{4}^{2}) = \frac{1}{12} \sum_{i \in O} \operatorname{tr} \dot{A}^{2}(tC_{3}^{2}t^{-1}) = \frac{1}{12} \cdot 3 \cdot 8 \cdot 1 = 2.$$

直接计算可知 $(\chi^u|\chi^v)=1$,故U正是O的二维不可约表示 A^s 。由公式(2,35)可算出表示 A^s 的矩阵为。

$$A^{3}(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad A^{3}(C_{4}^{(1)}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$A^{3}(C_{4}^{(2)}) = \begin{pmatrix} 0 & \varepsilon^{2} \\ \varepsilon & 0 \end{pmatrix}, \qquad A^{3}(C_{4}^{(3)}) = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon^{2} & 0 \end{pmatrix},$$

$$A^{3}(C_{3}^{(1)}) = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{2} \end{pmatrix}, \qquad A^{3}(C_{3}^{(2)}) = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{2} \end{pmatrix},$$

$$A^{3}(C_{3}^{(3)}) = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{2} \end{pmatrix}, \qquad A^{3}(C_{3}^{(4)}) = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{2} \end{pmatrix},$$

$$A^{3}(C_{2}^{(1)}) = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon^{2} & 0 \end{pmatrix}, \qquad A^{3}(C_{2}^{(2)}) = \begin{pmatrix} 0 & \varepsilon^{2} \\ \varepsilon & 0 \end{pmatrix}, \qquad \cdots$$

其中群的乘法可利用O为对称群 S_0 的子群求出O的元素与 S_0 的元素由下列关系给出。

$$E_{1}=(1),$$
 $C_{4}^{(1)}=(3\ 5\ 4\ 6),$ $C_{4}^{(2)}=(1\ 5\ 2\ 6),$ $C_{4}^{(3)}=(1\ 3\ 2\ 4),$ $C_{3}^{(1)}=(1\ 3\ 5)(2\ 4\ 6),$ $C_{3}^{(2)}=(1\ 4\ 5)(3\ 6\ 2),$ $C_{3}^{(3)}=(1\ 4\ 6)(2\ 3\ 5),$ $C_{3}^{(4)}=(1\ 3\ 6)(2\ 4\ 5),$ $C_{2}^{(1)}=(1\ 3)(2\ 4)(5\ 6),$ $C_{2}^{(2)}=(1\ 5)(2\ 6)(3\ 4),$

由T的三维表示 A^{4} (见表3.3),可以诱导出O的六维表示 U^{\prime} ,其特征标为

$$\chi^{U'}(E) = \frac{1}{12} \sum_{t = 0} \operatorname{tr} \dot{A}^{4}(tt^{-1}) = \frac{1}{12} \cdot 24 \cdot 3 = 6,$$

$$\chi^{U'}(C_{3}^{(1)}) = 0, \quad \chi^{U'}(C_{2}^{(1)}) = 0,$$

$$\chi^{U'}(C_{4}^{(1)}) = 0,$$

$$\chi^{U'}(C_{4}^{(1)}) = \frac{1}{12} \sum_{t = 0} \operatorname{tr} \dot{A}^{4}(tC_{4}^{2}t^{-1}) = \frac{1}{12} \cdot 24 \cdot (-1) = -2.$$

表示 U' 是可约的, 由已知O的两个一维表示和二维不可约表示,可以作出O的特征标表,见表3.4.

	{ E }	6 { (1) }	3 { C(1)2 }	8 { C(1) }	6 { C(1) }
A1	1	1	1	1	1
A2	1	- 1	. 1	1	- 1
A3	. 2	0	, 2	- 1	, 0
A4	3	$\times x^4 (C_4^{(1)})$	$X^4(C_4^{(1)2})$	$x^4(C_3^{(1)})$	$x^{\frac{4}{5}}(C_2^{(1)})$
A5	3	$x^{5}(C_{4}^{(1)})$	$x^{5}(C_4^{(1)2})$	$\chi_{\frac{5}{3}}(C_{\frac{3}{3}}^{(1)})$	$x_5(C_2^{(1)})$

表3.4 O 的特征标表

从表 3.4 可以得到

$$(\chi^3 | \chi^{U'}) = (\chi^2 | \chi^{U'}) = (\chi^1 | \chi^{U'}) = 0$$
,

故可约表示U' 只包含不可约表示 A^4 和 A^5 如果U' 包含两次 A^4 或两次 A^5 则 $\{C_*^{(1)}\}$ 类一列不满足特征标的第二正交关系 $\{2,29\}$,因此 $U' = A^4 \bigoplus A^5$,再利用特征标的两个正交关系,可以求出

$$\chi^4(C_4^{(1)}) = 1, \qquad \chi^4(C_4^{(1)2}) = -1,
\chi^4(C_3^{(1)}) = 0, \qquad \chi^4(C_2^{(1)}) = 1, \quad ;$$

和

$$\chi^{5}(C_{4}^{(1)}) = -1, \qquad \chi^{5}(C_{4}^{(1)2}) = -1,$$
 $\chi^{5}(C_{3}^{(1)}) = 0, \qquad \chi^{5}(C_{2}^{(1)}) = -1.$

三维表示 A' 的表示矩阵,可以通过 O 群的定义,利用 图 3.6 而

求得。其方法与求了的三维表示一样。当然也可以求出诱导表示 U' 的矩阵进行约化。而另一个三维表示 A^5 ,可以证明它是表示 A^4 与一维表示 A^2 的直积。只要 A^4 的表示矩阵已知, 很容易求 出 A^5 的表示矩阵。

以上讨论给出了求晶体点群不可约表示的方法,但是具体求表示还是相当麻烦的。一些常用点群的特征标表,读者可以在文献[6]中找到。

第四章 转动群

三维实特殊正交群 SO(3,R) 又简称为三维转 动 群 SO(3)。 SO(3)群在物理中有广泛的应用。它不但用于有转动不变性的力 学体系,还用于转动下具有一定变换性质的力学体系,转动的空 间可以是普通的空间,也可以是具有共它物理意义的空间,如同 位旋空间等。另外,SO(3)群作为非阿贝耳李群的一个 例子, 研 空它将有助于我们理解其它李群及李群表示。

4.1 SO(3) 群与二维特殊酉群 SU(2)

我们知道 SO(3) 群的元素可用 $C_*(\psi)$ 来标 记,其 中 $k(\theta, \varphi)$ 是转动轴, ψ 是转角。由于转动把 R^3 中一组右(左)手正交归一基 变为另一组右(左)于正交归一基,因此也用欧勒角 α, β, γ 来标记 SO(3) 的群元 $R(\alpha \beta \gamma)$,设.Oxyz 为 R^3 中固定的笛卡尔 坐标系。 $R(\alpha \beta \gamma)$ 是三个连续转动的乘积,如图4.1。

- (1) 先绕 z轴 转 α
 角,0≤α<2π。此时原来在坐标 系 Oxyz 七的点变到 Ox'y'z'上。
- (2) 绕 Oy'线 转 β 角, 0 ≤ β ≤ π. 此 时 原 来在坐标 系 Oxyz 上 的 点 由 Ox'y'z' 变 到 Ox"y"z" 上.
- (3) 最后 以 Oz″ 为 轴转γ角,0≤γ<2π。原

来在 Oxyz 上的点变到 Ox''y''z'' 处。

$$R(\alpha \beta \gamma) = C_z, (\gamma)C_y, (\beta)C_z(\alpha), \qquad (4.1a)$$

·用欧勒(Euler)角描述转动,虽有许多方便之处,但 当 β 为 0 或 π 时,只要 α + γ 或 α - γ 相同就对应同一转动,一个转动可以有 无穷多种描述,这是需要注意的。

我们可以把 $R(\alpha \beta \gamma)$ 用绕固定坐标系 Oxyz 的轴转动表示出来,如 C_y ,(β)可看成先绕 z 轴转 $-\alpha$,再绕 y 轴转 β ,最后绕 z 轴转 α 角,

$$C_y, (\beta) = C_z(\alpha)C_y(\beta)C_z(-\alpha)_{\bullet}$$

同理 $C_{zr}(y)$ 也可写为

$$C_z(\gamma) = C_z(\alpha)C_y(\beta)C_z(\gamma)C_y(-\beta)C_z(-\alpha).$$

转动 $R(\alpha, \beta, \gamma)$ 也可写成绕固定坐标系 Oxyz 的三个轴转动的乘积

$$R(\alpha \beta \gamma) = C_z(\alpha)C_y(\beta)C_z(\gamma), \qquad (4.1b)$$

即先绕 Ζ 轴转 γ 角, 再绕 y 轴传 β 角, 最后绕 Z 轴转 α 角。由

$$C_{z}(a) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$C_{y}(\beta) = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}, \dots$$

$$(4.1c)$$

可得,

 $R(a \beta \gamma) =$

$$\begin{pmatrix} \cos \alpha \cos \beta \cos \gamma - \sin \alpha \sin \gamma & -\cos \alpha \cos \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \sin \beta \\ \sin \alpha \cos \beta \cos \gamma + \cos \alpha \sin \gamma & -\sin \alpha \cos \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \\ -\sin \beta \cos \gamma & \sin \beta \sin \gamma & \cos \beta \end{pmatrix}$$

(4.1d)

在本章中,我们将利用 SU(2) 群与 SO(3) 群的 同 态 关系,来讨论 SO(3) 群的不可约表示等问题。因此 先 将 SU(2) 群 及其 与 SO(3) 群同态关系讨论清楚。

SU(2)群是二维特殊酉群(又称幺模酉群),是由行列式为1的二阶幺正矩阵所组成,群的乘法定义为矩阵的乘法。一般二阶复矩阵

$$u = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad a, b, c, d \in C_{\bullet}$$

由行列式为1及矩阵幺正条件

$$u^+u = uu^+ = E_{2\times 2}^-,$$

$$\det u = 1.$$

可得 SU(2) 群元具有下列一般形式

$$u = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}, \quad aa^* + bb^* = 1, \quad a,b \in C_{\bullet} \quad (4.2)$$

单位矩阵 $E_{2\times 2}$ 是 SU(2) 群的单位元素, u^+ 是 u 的逆 元 素 u^{-1} 。通过直接计算,容易证明两个幺正矩阵 u_1 和 u_2 的乘积 u_1u_2 也是幺正的。

考虑以下三个泡利 (Pauli) 矩阵

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{y} = \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}, \quad \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(4.3)

这是三个独立的零迹厄米 (Hermitian) 矩阵。任意一个二阶零迹厄米矩阵 h, 可以看成是以上三个泡利矩阵的线性叠加,

$$h = x\sigma_x + y\sigma_y - z\sigma_z = (r \cdot \sigma)$$

$$= \begin{pmatrix} z & x - iy \\ x + iy & -z \end{pmatrix}, \quad x, y, z \in R, \quad r \in R^3,$$

对任意

$$u = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \in SU(2),$$

可以定义 R3中向量 r 的一个变换,

$$u(\mathbf{r} \cdot \boldsymbol{\sigma}) u^{-1} = (\mathbf{r}' \cdot \boldsymbol{\sigma}) = \begin{pmatrix} z' & x' - iy' \\ x' + iy' & -z' \end{pmatrix},$$

$$\mathbf{r}' = R_u \mathbf{r}, \qquad (4.4)$$

$$R_u = \begin{pmatrix} \frac{1}{2} (a^2 + a^{*2} - b^2 - b^{*2}) & -\frac{i}{2} (a^2 - a^{*2} + b^2 - b^{*2}) & -(ab + a^*b^*) \\ \frac{i}{2} (a^2 \cdot a^{*2} - b^2 + b^{*2}) & \frac{1}{2} (a^2 + a^{*2} + b^2 + b^{*2}) & i(a^*b^* - ba) \\ (a^*b + ab^*) & i(a^*b \cdot ab^*) & (aa^* - bb^*) \end{pmatrix}.$$

而且变换保持 R³中向量长度不变,因

$$-\det[u(\mathbf{r}\cdot\boldsymbol{\sigma})u^{-1}] = -\det(\mathbf{r}'\cdot\boldsymbol{\sigma}) = x'^2 + y'^2 + z'^2$$
$$= -\det(\mathbf{r}\cdot\boldsymbol{\sigma}) = x^2 + y^2 + z^2,$$

故 R_u 是 R^3 中实正交 变 换。而 det R_u 是 a,b 的 连 续 函 数。取 a=1, b=0,即 u 为单位矩阵时,有 det $R_u=+1$ 。实 正 交变换 的行列式只可能是 +1 或 -1,由 det R_u 的连续性知必有 det u=1。这样我们得到,每一个二阶 2 模酉矩阵 u 对 应一个 R^3 中的 传动 R_u ,式 (4.5) 给出这种对应关系。

我们还可以进一步证明,这种对应保持群的乘法规律不变,对任意 $u,v \in SU(2)$, 有 R^3 中转动 R_u,R_v 与之对应, $R_u,R_v \in SO(3)$ 。由式 (4.4) 知

$$v(\mathbf{r} \cdot \boldsymbol{\sigma}) v^{-1} = (R_v \mathbf{r}) \cdot \boldsymbol{\sigma},$$

$$uv(\mathbf{r} \cdot \boldsymbol{\sigma}) (uv)^{-1} = (R_u v \mathbf{r}) \cdot \boldsymbol{\sigma}$$

$$= uv(\mathbf{r} \cdot \boldsymbol{\sigma}) v^{-1} u^{-1} = (R_u R_v \mathbf{r}) \cdot \boldsymbol{\sigma},$$

故得

$$R_{uv} = R_{u}R_{v\bullet}$$

所以 SU(2) 群中二元素乘积 uv 对应的元素 R_{uv} , 等于 u,v 对应的元素 R_u 与 R_v 的乘积。故存在一个从 SU(2) 群到 SO(3) 群中的同态映射。

下面证明这是一个从SU(2)群到SO(3)群上的同态映射,即是满映射。取 $a=e^{-i\alpha/2}$,b=0,则

$$u_{1}(a) = \begin{pmatrix} e^{-i\alpha/2} & 0 \\ & & \\ 0 & e^{i\alpha/2} \end{pmatrix} \rightarrow R_{u_{1}(a)} = \begin{pmatrix} \cos a & -\sin a & 0 \\ \sin a & \cos a & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
(4.6a)

政 $a = \cos \frac{\beta}{2}$, $b = -\sin \frac{\beta}{2}$, 则

$$v_{2}(\beta) = \begin{pmatrix} \cos \frac{\beta}{2} & -\sin \frac{\beta}{2} \\ \sin \frac{\beta}{2} & \cos \frac{\beta}{2} \end{pmatrix} \rightarrow R_{v_{2}(\beta)} = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}.$$

$$(4.6b)$$

则由乘积 $u_1(\alpha)v_2(\beta)u_1(\gamma)$ 对应的 $R_{u(\alpha)}R_{v(\beta)}R_{u(\gamma)}$,刚 好 是 用欧 勒角描述的转动元素 $R(\alpha \beta \gamma)$,

$$u_1(\alpha) v_2(\beta) u_1(\gamma)$$

$$= \begin{pmatrix} e^{-i\alpha/2} & 0 \\ 0 & e^{i\alpha/2} \end{pmatrix} \begin{pmatrix} \cos\frac{\beta}{2} & -\sin\frac{\beta}{2} \\ \sin\frac{\beta}{2} & \cos\frac{\beta}{2} \end{pmatrix} \begin{pmatrix} e^{-i\gamma/2} & 0 \\ 0 & e^{i\gamma/2} \end{pmatrix}$$

$$= \begin{pmatrix} \cos\frac{\beta}{2}e^{-i(\alpha+\gamma)/2} & -\sin\frac{\beta}{2}e^{-i(\alpha-\gamma)/2} \\ \sin\frac{\beta}{2}e^{i(\alpha-\gamma)/2} & \cos\frac{\beta}{2}e^{i(\alpha+\gamma)/2} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{pmatrix} \begin{pmatrix} \cos\gamma & -\sin\gamma & 0 \\ \sin\gamma & \cos\gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= R(\alpha \beta \gamma). \qquad (4.6e)$$

已知 R^3 中转动群元都可用 $R(\alpha \beta \gamma)$ 给出,故 SU(2)到 SO(3)的 映射是满的。这样就证明了 SU(2)群与 SO(3)群同态。

根据定义1.12, 知对应 SO(3)单位元素 $E_{s,s}$ 的 SU(2) 元 素集合 $\{u_a\}$, 是 SU(2)到 SO(3)的同态核。设

$$u_0 = \begin{pmatrix} a_0 & b_0 \\ -b_0^* & a_0^* \end{pmatrix} \rightarrow E_{3*3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

由式(4.5)可以解出

$$a_0=\pm 1, \quad b_0=0,$$

故同态核由下两个元素组成

$$E_{2\times 2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad -E_{2\times 2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

根据同态核定理, $\{E_{2\times 2}, -E_{2\times 2}\}$ 是 SU(2)的一个 不 变子群;同 态核的任意陪集 $\{u, -u\}$ 对应 SO(3)的同一转动元素 R_{u} .

综上所述,可知 SU(2)群与 SO(3)群存在 一 个 2 对 1 的同态对应。SU(2)群的两个元素 u, -u 对应 SO(3)群的同一个转动 R_u . 因此,如果已知 SU(2)群的元素 u, 则 R_u 可由 式 (4.5)算出。如果已知 SO(3)群元 $R(\alpha \beta \gamma)$,SU(2)中与其对 应 的元素 由式 (4.6c)决定,只须注意 u 与 u 有相同的结果。

4.2 SU(2) 群的不可约表示

我们知道 SU(2) 群是由二阶 Δ 模 西矩阵组 成的 矩 阵群,对任意 $u \in SU(2)$,

$$u = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}, \quad aa^* + bb^* = 1.$$

根据第二章例 2 知,其定义矩阵就是它的一个二维忠实表示。其表示空间V 是二维复向量空间,V 中向量用两个有序复数(x_1,x_2)表示,

$$ux_1 = x'_1 = ax_1 + bx_2,$$

$$ux_2 = x'_2 = -b^*x_1 + a^*x_2,$$
(4.7)

u 对(x1,x2)的作用由式(4.7)给出。

考虑 x₁和 x₂的2j 次齐次函数,

$$\eta_{\mu} = \frac{x_{1}^{j+\mu} x_{2}^{j-\mu}}{\sqrt{(j+\mu)!} (j-\mu)!}, \qquad (4.8)$$

其中 $j=0,1/2,1,3/2,2,\cdots,\mu=j,j-1,\cdots,-j+1,-j$ 。 η_{μ} 共 有 2j+1个分量,其分母上的常数是为使求的表示为西 表 示而引入的。当 SU(2) 变换 u 把(x_1,x_2) 变成(x_1',x_2'),把 η_{μ} 中 的(x_1,x_2) 也变为(x_1',x_2'),这样 η_{μ} 就变成 η_{μ}' ,

$$\eta'_{\mu} = \frac{x_{1}^{\prime} \frac{j - \mu}{x_{2}^{\prime} \frac{j - \mu}{j - \mu}}}{\sqrt{(j + \mu)_{1}(j - \mu)_{1}}} = \frac{(ax_{1} + bx_{2})^{j + \mu}(-b^{*}x_{1} + a^{*}x_{2})^{j - \mu}}{\sqrt{(j + \mu)_{1}(j - \mu)_{1}}}.$$

利用二项式定理得

$$\eta'_{\mu} = \sum_{k=0}^{j+\mu} \sum_{k'=0}^{j-\mu} \frac{(-)^{j}}{k! k'!} \frac{\sqrt{(j+\mu)! (j-\mu)!}}{(j+\mu-k)! (j-\mu-k')!} \times a^{j+\mu-k} a^{*k'} b^{k} b^{*j-\mu-k'} x_{1}^{2j+k-k'} x_{2}^{k+k'}.$$

利用负整数的阶乘为无穷,看到分母中的四个阶乘因子,上式对 k 和 k' 的求和可以看成是对所有从 $- \infty$ 到 $+ \infty$ 的整数 求和。引 进变量 $\nu = i - k - k'$ 来代替 k',当 i 是整数时, ν 的 求和范围可 看成是从 $- \infty$ 到 $+ \infty$ 的全部整数,当 i 是半整数 时, ν 的求和范围 围是从 $- \infty$ 到 $+ \infty$ 的全部半整数,于是

$$\eta'_{\mu} = \sum_{\mathbf{r}} \sum_{\mathbf{k}} \frac{(-)^{\frac{1}{k+\nu-\mu}} \sqrt{(j+\mu)} \frac{1}{(j-\mu)} \frac{1}{1}}{k! (j-\nu-k)! (j+\mu-k)! (k+\nu-\mu)!} a^{j+\mu-k} \\
\times a^{*j-\nu-k} b^{k} b^{*k+\nu-\mu} x_{1}^{j+\nu} x_{2}^{j-\nu} \\
= \sum_{\mathbf{r}} \sum_{\mathbf{k}} \frac{(-)^{k+\nu-\mu} \sqrt{(j+\mu)} \frac{1}{(j-\mu)} \frac{1}{(j+\nu)! (j-\nu)!}}{k! (j-\nu-k)! (j+\mu-k)! (k+\nu-\mu)!} a^{j+\mu-k} \\
\times a^{*j-\nu-k} b^{k} b^{*k+\nu-\mu} \eta_{\nu}, \qquad (4.9)$$

 η'_{μ} 线性依赖于 η_{μ} . 取 $\eta_{j}, \eta_{j+1}, \cdots, \eta_{-j+1}, \eta_{-j}$ 为 表示空间的向量,线性变换 $\{A(u)\}$ 将向量 η_{μ} 变为向量 η'_{μ} ,

$$A^{j}(u) \eta_{\mu} = \eta'_{\mu} = \sum_{i} A^{j}_{\mu,i}(u) \eta_{,i} \qquad (4.10)$$

容易证明,对 $u,v \in SU(2)$,线性变换A满足

$$A^{j}(uv) = A^{j}(u)A^{j}(v),$$

故 $\{A^{j}(u)\}$ 是 SU(2)群的 -个表示。由式(4.9)和 (4.10)可 得表示矩阵元为

$$A_{\mu\nu}^{j}(u) = \sum_{k} \frac{(-)^{k+\nu-\mu} \sqrt{(j+\mu) \cdot 1(j-\mu) \cdot 1(j+\nu) \cdot 1(j-\nu) \cdot 1}}{k! \cdot (j-\nu-k) \cdot 1(j+\mu-k) \cdot 1(k-\mu+\nu) \cdot 1} \times a^{j+\mu-k} a^{*j+k-\nu} b^{*} b^{*k-\mu+\nu}.$$
(4.11)

分母中的阶乘为非负整数时,分母言限,故求和中对 k 的限制为 $k \ge 0$, $k \ge \mu - \nu$, $k \le j - \nu$, $k \le j + \mu$ (4.12)

现证明由式(4.11) 所给出的 SU(2) 群 表 示 $\{A^i(u)\}$ 是 酉表示。因为保持复欧氏空间向量内积不变的矩阵是幺正的,故只要证明在变换 $A^i(u)$ 下,向量 η_μ 的为积不变,就证 明 了 $A^j(u)$ 是 酉表示。因为

$$\sum_{\mu=-j}^{j} \eta_{\mu}^{\prime *} \eta_{\mu}^{\prime} = \sum_{\mu=-j}^{j} \frac{x_{1}^{\prime j+\mu} x_{1}^{\prime * j+\mu} x_{2}^{\prime j-\mu} x_{2}^{\prime * j-\mu}}{(j+\mu)! (j-\mu)!}$$

$$= \frac{1}{(2j)!} (x_{1}^{\prime} x_{1}^{\prime *} + x_{2}^{\prime} x_{2}^{\prime *})^{2j} = \frac{1}{(2j)!} (x_{1} x_{1}^{*} + x_{2} x_{2}^{*})^{2j}$$

$$= \sum_{\mu=-j}^{j} \eta_{\mu}^{*} \eta_{\mu}.$$

所以 $\{A^{j}(u)\}$ 是 SU(2) 群的酉表示。

下面证明表示 $\{A(u)\}$ 是不可约的。首先证明两个引理。

引理4.1 如果某个对角矩阵,它的对角线上的元素 是各不相同的,与矩阵 B 可以交换,则 B 也是对角矩阵。

证明 设对角矩阵为

$$\begin{pmatrix} \delta_{1} \\ \delta_{2} \\ \vdots \\ \delta_{n} \end{pmatrix} = \begin{bmatrix} \delta_{1}, \delta_{2}, \dots, \delta_{n} \end{bmatrix},$$

$$B = (B_{pq}),$$

$$B[\delta_{1}, \delta_{2}, \dots, \delta_{n}] = [\delta_{1}, \delta_{2}, \dots, \delta_{n}]B,$$

$$B_{pq}\delta_q=B_{pq}\delta_p\,,\quad B_{pq}(\delta_q-\delta_p)=0\,,$$

当p-//q时,必有

$$B_{pq}=0$$
.

这就证明 B 必为对角矩阵。

引理4.2 设对角矩阵 $[\delta_1, \delta_2, \cdots, \delta_n]$ 与矩阵B可交换,而B中有一列不包含一个零,则必有 $\delta_1 = \delta_2 = \cdots = \delta_n$.

证明 设
$$B$$
中第 l 列元素 $B_{i,l} \neq 0$ $(i=1,1,\cdots,n)$ 。由 $B[\delta_1,\delta_2,\cdots,\delta_n] = [\delta_1,\delta_2,\cdots,\delta_n]B$

可得

$$B_{il}\delta_{l} = B_{il}\delta_{i}, \qquad B_{il}(\delta_{l} - \delta_{i}) = 0, \qquad B_{il} \neq 0,$$

$$\hat{\sigma}_{i}(i = 1, 2, \dots, n) \quad \text{At } \vec{\sigma}_{i}\delta_{i} = \hat{\sigma}_{i} = \hat{\sigma}_{i} = \hat{\sigma}_{i} \quad \text{Bid}$$

必有 $\delta_i = \hat{\delta}_i (i = 1, 2, \dots, n)$,故有 $\delta_1 = \hat{\delta}_2 = \dots = \hat{\delta}_n = \delta_i$ 。即证明了 对角矩阵 $[\hat{\delta}_1, \hat{\delta}_2, \dots, \hat{\delta}_n]$ 是常数矩阵。

利用引理 4.1 和 4.2, 可 以 证明与 SU(2) 群的 表示 矩 阵 $\{A^j(u)\}$ 可交換的一定是常数矩阵。设矩阵 Y 可以与全体 $A^j(u)$ 交換, 当

$$u = u_1 = \begin{pmatrix} e^{-i\alpha/2} & 0 \\ 0 & e^{i\alpha/2} \end{pmatrix},$$

$$A^{j}_{\mu\nu}(u_1) = \begin{cases} 0, & \mu \neq \nu; \\ e^{-i\mu\alpha}, & \mu = \nu. \end{cases}$$

故

 $A^{j}(u_{1}) = [e^{-ija}, e^{-i(j-1)a}, \cdots, e^{-i(-j+1)a}, e^{ija}]$ 。 (4.12) 此时 $A^{j}(u)$ 是对角线上元素各不相同的对角矩阵,Y 与之对易,由引理4.1知Y 必为对角矩阵,由式(4.11),看 $A^{j}(u)$ 的第一列,

$$A_{\mu j}^{j}(u) = (-1)^{j-\mu} \sqrt{\frac{(2j)!}{(j+\mu)!(j-\mu)!}} a^{j+\mu} b^{*j+\mu},$$

可知只要a和b都不为0,这一列的元素都不为0。Y与 $A^{j}(u)$ 对易,由引理4.2知Y 必为常数矩阵。

已知 A^j 是 SU(2) 群的酉表示,由定理2.1 知,如 A^j 可约则完全可约。设 A^j 完全可约, $A^j=B^j\bigoplus C^j$,则最少 有 非常数矩阵

$$\begin{pmatrix} aE_B & 0 \\ 0 & bE_C \end{pmatrix}$$

可与 $A^{j}(u)$ 交換,其中 E_{B} , E_{C} 是阶数与 B, C 相同的 单位矩阵。而已知只有常数矩阵 Y 与 $A^{j}(u)$ 对易,故 A^{j} 不是完全 可约的,因而证明了 A^{j} 是 SU(2) 的不可约表示。

这样式(4.11)给出的 A^j 是 SU(2) 群的不可约酉表示,下面将利用类函数空间的完备 性,证 明 A^j ($j=0,1/2,1,3/2,\cdots$)包括 SU(2) 群的所有不等价不可约酉表示。

首先看 SU(2) 群的类。因为任一个幺正矩阵可以通过幺正变换对角化 (14) ,因此任意 SU(2) 群元 u ,总与对角矩阵 $u_1(\alpha)$ 等价。而

$$u_1(a) = \begin{pmatrix} e^{-ia/2} & 0 \\ 0 & e^{ia/2} \end{pmatrix},$$

又可用幺正矩阵

$$v = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

变为。

$$vu_1(\alpha)v^{-1} = \begin{pmatrix} e^{i\alpha/2} & 0 \\ 0 & e^{-i\alpha/2} \end{pmatrix} = u_1(-\alpha),$$

因此 $u_1(-\alpha)$ 与 $u_1(\alpha)$ 是一类。故用 $\{u_1(\alpha)\}$ 标志 SU(2) 群 的类。在描写 SU(2) 的群元 $u_1(\alpha)$ 讨,因 $e^{-i\alpha/2}$ 可以取任意模为 1 的复数值,故 $0 \le \alpha < 4\pi$ 。而在描写 SU(2) 的类 $\{u_1(\alpha)\}$ 时,因 $u_1(-\alpha)$ 与 $u_1(\alpha)$ 是一类,故 $0 \le \alpha < 2\pi$ 。

在不可约表示 A^j 中,由式(4.12), $\{u_1(a)\}$ 类的特 征标可写为

$$\chi^{j}(u_{1}(a)) = \sum_{\mu=-j}^{j} e^{-i^{\mu}a},$$
 (4.13)

其中求和范围, μ 是从-j到j,以整数间隔进行的。如

$$\chi^{0}(u_{1}(\alpha)) = 1, \qquad \chi^{1/2}(u_{1}(\alpha)) = 2\cos\frac{1}{2}\alpha,$$

$$\chi^{1}(u_{1}(\alpha)) - \chi^{0}(u_{1}(\alpha)) = 2\cos\alpha,$$

$$\chi^{3/2}(u_{1}(\alpha)) - \chi^{1/2}(u_{1}(\alpha)) = 2\cos\frac{3}{2}\alpha, \qquad \cdots.$$

由类函数的全体 $\chi^j(u_1(a))(j=0,1/2,1,3/2,\cdots)$,组成类函数空间完备系 $\left\{1,\cos\frac{1}{2}a,\cos a,\cos\frac{3}{2}a,\cdots\right\}$, $0\leqslant a\leqslant 2\pi$ 。将定理2.8,

推广应用到紧致李群 SU(2),知当了取所有非负整数和 半 整 数时, A^{j} 包括了 SU(2)群 的所有不等价不可约西表示。

例 1 当 j=0 时,表示空间是一维的, $\eta_0=1$, $A^0(u)=1$ 是一维恒等表示。

当j = 1/2时,表示空间的向量为 $\eta_{\pm 1/2}$,

$$\eta_{\frac{1}{2}} = x_1, \quad \eta_{-\frac{1}{2}} = x_2,$$

$$A^{\frac{1}{2}}(u) = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}.$$
(4.14)

当j=1时,表示空间的向量为

$$\eta_1 = x_1^2 / \sqrt{2}, \quad \eta_0 = x_1 x_2, \quad \eta_{-1} = x_2^2 / \sqrt{2},$$

$$A^{1}(u) = \begin{pmatrix} a^{2} & \sqrt{2} ab & b^{2} \\ -\sqrt{2} ab^{*} & a^{*}a - b^{*}b & \sqrt{2} a^{*}b \\ b^{*2} & -\sqrt{2} a^{*}b^{*} & a^{*2} \end{pmatrix} (4.15)$$

从武(4.11)还可看出,当广是整 数 时, $A^{j}(u) = A^{j}(-u)$,我们称不可约表示 A^{j} 是 SU(2)群的偶表示。当广是半整数时, $A^{j}(u) = -A^{j}(-u)$,称 A^{j} 是 SU(2)群的奇表 示。例 1 中 A^{0} 和 A^{j} 是偶表示, $A^{1/2}$ 是奇表示。

4.3 SO(3) 群的不可约表示

已知 SU(2) 群与 SO(3) 群同态,SU(2) 群的两个元素 R_u 和 -u 对应 SO(3) 群的一个元素 R_u 。根据群表示的 定义 知 道,从 SO(3) 群的任一个表示 $D(R_u)$,可 以 得 到 SU(2) 的 一个 表示 A(u), $A(u) = D(R_u)$,其中 R_u 与 u 的关系可从式(4.6c) 得到,对任意 $u,v \in SU(2)$,有

$$A(u)A(v) = D(R_u)D(R_v) = D(R_uR_v)$$
$$= D(R_{uv}) = A(uv).$$

反过来,SU(2)群的一个表示,并不一定是SO(3)群的一个表示。但对SU(2) 群的偶表示 A^{j} $(j=0,1,2,\cdots)$,有 A^{j} $(u)=A^{j}(-u)$,元素 u 和 -u 对 应 于 同 一 个 矩 阵。如 取 $D^{j}(R_{u})=A^{j}(\pm u)$,则 $\{D^{j}(R_{u})\}$ 是SO(3)群的一个表示,也称为SO(3)群的一个单值表示。它保持SO(3)群的乘法 不 变,对 $u,v \in SU(2)$,有 R_{u} , $R_{v} \in SO(3)$ 与之对应。于是

$$\begin{split} D^{j}(R_{u})D^{j}(R_{v}) &= A^{j}(\pm u)A^{j}(\pm v) = A^{j}(\pm uv) \\ &= D^{j}(R_{uv}) = D^{j}(R_{u}R_{v}). \end{split}$$

故 j 为非负整数时, $D^{j}(R_{u}) = A^{j}(\pm u)$ 是 SO(3)的一个(单值)表示。而 $j = 1/2, 3/2, \cdots$ 时, $A^{j}(u) = -A^{j}(-u)$,因此 对 SO(3)的一个群元 R_{u} ,就有 $\pm A^{j}(u)$ 与之对 应。因 此 对 SU(2)的奇表示 A^{j} ,如取

$$D^{j}(R_{u}) = \pm A^{j}(u) = A^{j}(\pm u),$$
 (4.16a)

即对应 R_u 的矩阵 $D^j(R_u)$,可以有两个矩阵 $A^j(u)$ 和 $-A^j(u)$ 。这样得到的双值矩阵,不能保持群的乘 法 规 律,因 为 对 $u,v \in SU(2)$,有

$$D^{j}(R_{u})D^{j}(R_{v}) = A^{j}(\pm u)A^{j}(\pm v) = \pm A^{j}(\pm uv)$$
$$= \pm D^{j}(R_{uv}) = \pm D^{j}(R_{u}R_{v}). \quad (4.16b)$$

但它与群的乘法规律只差一个正负号。按群表示 的 定义2.4, 双

值矩 阵 $\{D^j(R_u)\}$ 并 不 是 SO(3)群 的一个表示。如 果 我们推广 定义双值表示,使群元与矩阵的对应可以相差一个正负号,而且 这种对应与群的乘法规律可以相差一个正负号.那么由式(4.16a) 给出的 $\{D^j(R_u)\}$,是 SO(3)群的一个双值表示。

按式(4.6c), 取 u 中 a 和 b 为

$$a = e^{-i\sigma/2} \cos \frac{\beta}{2} e^{-i\gamma/2}$$
,

$$b = -e^{-i\sigma/2} \sin\frac{\beta}{2}e^{i\gamma/2},$$

代入式(4.11)可得SO(3)群的不可约酉表示{ $D^{j}(\alpha \beta \gamma)$ },

$$D_{m-m}^{j}(\alpha \beta \gamma) = \sum_{k} \frac{(-)^{k} \sqrt{(j+m')} \frac{1}{1} (j-m') \frac{1}{1} (j+m) \frac{1}{1} (j-m)}{k! (j-m-k) \frac{1}{1} (j+m'-k) \frac{1}{1} (k-m'+m) \frac{1}{1}}$$

$$\times e^{-im^{\gamma-\alpha}} \left(\cos\frac{\beta}{2}\right)^{2j-m+m^{\gamma}-2k} \left(\sin\frac{\beta}{2}\right)^{2k-m^{\gamma}+m} e^{-imy}.$$

$$(4.17)$$

在式(4.17) 中,j 可以是整数也可以是半整数。表示矩阵的行和列, $m', m = j, j - 1, \cdots, -j + 1, -j$ 。 对 k 求和, k 满足条件 $k \ge 0$ 、 $k \ge m' - m$ 、 $k \le j - m$ 、 $k \le j + m'$ 。

当 j 为整数时, $\{D^j(\alpha \beta \gamma)\}$ 是 SO(3)的单值表示;当 j 为半整数时, $\{D^j(\alpha \beta \gamma)\}$ 是 SO(3)的双值表示。

当 $m'=\pm j$ 时,式(4.17)尤为简单,

$$D_{jm}^{j}(\alpha \beta \gamma) = (-)^{j-m} \sqrt{\frac{(2j)!}{(j-m)!}} e^{-ij\alpha} \left(\cos\frac{\beta}{2}\right)^{j+m}$$

$$\times \left(\sin\frac{\beta}{2}\right)^{j-m} e^{-imy}$$
,

$$D_{jm}^{j}(\alpha \beta \gamma) = \sqrt{\frac{(2j)!}{(j+m)!(j-m)!}} e^{ij\alpha} \left(\cos\frac{\beta}{2}\right)^{j-m} \times \left(\sin\frac{\beta}{2}\right)^{j+m} e^{-im\gamma}. \tag{4.17'}$$

例 2 j = 0, $D^{0}(\alpha \beta \gamma) = 1$, 给出SO(3)的一维恒等表示。 j = 1/2,

$$D^{1/2}(\alpha \beta \gamma) = \begin{pmatrix} e^{-i\alpha/2} \cos \frac{\beta}{2} e^{-i\gamma/2} & -e^{-i\alpha/2} \sin \frac{\beta}{2} e^{i\gamma/2} \\ e^{i\alpha/2} \sin \frac{\beta}{2} e^{-i\gamma/2} & e^{i\alpha/2} \cos \frac{\beta}{2} e^{i\gamma/2} \end{pmatrix},$$
(4.18)

是 SO(3)的二维双值表示。

$$D'(\alpha \beta \gamma) = \begin{cases} e^{-i\alpha} \frac{1 + \cos\beta}{2} e^{-i\gamma} & e^{-i\alpha} \frac{\sin\beta}{\sqrt{2}} e^{-i\alpha} \frac{1 - \cos\beta}{2} e^{i\gamma} \\ \frac{\sin\beta}{\sqrt{2}} e^{-i\gamma} & \cos\beta & -\frac{\sin\beta}{\sqrt{2}} e^{i\gamma} \\ e^{i\alpha} \frac{1 - \cos\beta}{2} e^{-i\gamma} & e^{i\alpha} \frac{\sin\beta}{\sqrt{2}} & e^{i\alpha} \frac{1 + \cos\beta}{2} e^{i\gamma} \end{cases},$$

$$(4.19)$$

是 SO(3)的三维表示。

下面证明,式 (4.17) 的 $D^{j}(\alpha \beta \gamma)$,当 $j=0,1,2,\cdots$ 整数时,给出了 SO(3) 群的所有不等价不可约酉表示。

从3.1节知道,SO(3)群的类由所有具有相同转 动 角 ψ 的元素构成,因此可用 $C_{\mathbf{k}}(\psi)$ 标志 SO(3) 群的 类 $\{C_{\mathbf{k}}(\psi)\}$,而 $C_{\mathbf{k}}(\psi)$ = $R(\psi \ 0\ 0)$, $0 \le \psi \le \pi$ 。 $\{C_{\mathbf{k}}(\psi)\}$ 类在不可约表示 D^{j} 的特征标为

$$\chi^{j}(\psi) = \sum_{m=-j}^{j} D_{mm}^{j}(\psi \mid 0 \mid 0) = \sum_{m=-j}^{j} e^{-im\psi}. \qquad (4.20)$$

当 / 为整数时,

$$\chi^{j}(\psi) = 1 + 2\cos\psi + 2\cos2\psi + \cdots + 2\cos j\psi.$$

由前可知,在 $0 \le \psi \le \pi$ 时,函数集 $\{1,\cos\psi,\cos2\psi,\cdots,\cos\beta\psi,\cdots\}$ 是完备的。故 $\chi^j(\psi)$,当 $j=0,1,2,\cdots$ 时,是类函数空间完备系。SO(3) 群是紧致率群,推广定理2.8知,当j 取所有非负整数时, $D^j(\alpha\beta\gamma)$ 包括了SO(3) 群的全部不等价不可约 酉表示。j 为 半整数时的双值表示,是表示概念的推广,而不是严格的表示。

可以证明 $[8^{125}]$,SO(3) 群的不可约酉表 示 D^3 , 满足正 交 定理,即

$$\frac{1}{8\pi^{2}} \int_{0}^{2\pi} d\alpha \int_{0}^{\pi} \sin\beta d\beta \int_{0}^{2\pi} D_{m_{1}^{\prime}m_{1}^{\prime}}^{j_{1}^{\ast}} (\alpha \beta \gamma) D_{m_{2}^{\prime}m_{2}^{\prime}}^{j_{2}^{\ast}} (\alpha \beta \gamma) d\gamma$$

$$= \delta_{j_{1}j_{2}} \delta_{m_{1}^{\prime}m_{2}^{\prime}} \delta_{m_{1}m_{2}} \frac{1}{2j_{1}+1} \bullet \qquad (4^{\prime}.21)$$

 D^{j} 的特征标, 也具有正交性,

$$\frac{1}{\pi} \int_0^{\pi} x^{j_1} * (\psi) x^{j_2} (\psi) (1 - \cos \psi) d\psi = \delta_{j_1 j_2}, \qquad (4.22)$$

这可用式(4.20)代入,直接积分来证明。

4.4 李代数 su(2)和 so(3)

本节中,我们将引入 SU(2)群和 SO(3)群的李代数 su(2)和 so(3), 科将看到这两个李代数是同构的。在整个 讨论中,我们仅给出李群的基本性质,而不涉及有关的严格定义,这对于那些只需了解有关李群的初步知识的读者说来,已经够了。

SU(2) 群元 u 的 - 般形式由式(4.2)给出,现在我们考虑与单位元素 E 无限接近的 SU(2) 的群元.设 M 是无穷小的二阶复矩阵,即 M 的每个矩阵元都是无穷小复数,则与 E 无限接近的 SU(2) 群元可以写成(E-iM),(E-iM) 并应满足幺正条件和幺模条件。由(E-iM) + (E-iM) = E 可得 M 必为 E 光矩阵,

$$M = M^+$$
. (4.23)

已知二阶厄米矩阵只有 4 个是独立的,可以取为单位矩阵 E 和 3 个泡利矩阵 σ_x , σ_y , σ_z , (见式(4.3))。于是M可以写为

$$M = \delta_0 E + \delta \cdot \sigma = \begin{pmatrix} \delta_0 + \delta_z & \delta_x - i \delta_y \\ \delta_x + i \delta_y & \delta_0 - \delta_z \end{pmatrix},$$

其中 $\delta = (\delta_x, \delta_y, \delta_z)$ 是无穷 小 向 量。由 det(E - iM) = 1,可 得 $\delta_0 = 0$,因此 M 为

$$M = \begin{pmatrix} \delta_z & \delta_x - i\delta_y \\ \delta_x + i\delta_y & -\delta_z \end{pmatrix} = \delta_x \sigma_x + \delta_y \sigma_y + \delta_z \sigma_z, \quad (4.24)$$

即M由迹为零的厄米矩阵生成。我们把 σ_x , σ_y , σ_z 称为 SU(2) 群的无穷小生成元。SU(2) 群中任一个 与单位元无限接近的元素,可以用三个实参数 δ_x , δ_y , δ_z 由 无穷小生成 元 生 成,即 为 $[E-i(\delta_x\sigma_x+\delta_y\sigma_y+\delta_z\sigma_z)]$ 。 σ 间满足以下封闭的对易关系,

$$[\sigma_x, \sigma_y] = 2i\sigma_z, \quad [\sigma_y, \sigma_z] = 2i\sigma_x, \quad [\sigma_z, \sigma_x] = 2i\sigma_y,$$

$$(4.25)$$

 σ_x , σ_y , σ_z 连同它们满足的对易关系,构成 李 代 数 su(2)、李代 数 su(2)的任意元素X可以写为

 $X = x\sigma_x + y\sigma_y + z\sigma_z = r \cdot \sigma$, $x,y,z \in R$, (4.26) 而且 su(2)的任意两个元素X和Y的对易关系仍在 su(2)内。由上讨论知道 SU(2)群在单位元E 邻域的元素 $(E - i\delta \cdot \sigma)$,与李代数 su(2)的元素 $\delta \cdot \sigma$ 有一一对应关系。

用 su(2) 的任意元素X,

$$X = \mathbf{r} \cdot \mathbf{\sigma} = \begin{pmatrix} z & x - iy \\ x + iy & -z \end{pmatrix} \quad (r = \sqrt{x^2 + y^2 + z^2}), (4.26)$$

考虑无穷次无穷小变换的积

$$\lim_{n \to \infty} \left(E - i \frac{M}{n} \right)^n = e^{-ir \cdot \sigma}$$

$$= \begin{pmatrix} \cos r + i \frac{z}{r} \sin r & i \frac{x}{r} \sin r + \frac{y}{r} \sin r \\ \frac{ix}{r} \sin r - \frac{y}{r} \sin r & \cos r - i \frac{z}{r} \sin r \end{pmatrix}, \quad (4.27)$$

上式右端矩阵是具有 3 个独立实参数 x,y,z 的二阶幺模酉矩阵。因此 SU(2) 群的元素,可以从 Su(2) 李代数的元素 $r \cdot \sigma$,经指数 映射 $\exp(-ir \cdot \sigma)$ 而得到。在式(4.27)的计算中,用到

$$\left(\begin{array}{ccc} z & x-iy \\ x+iy & -z \end{array}\right)^{2^n} = r^{2^n},$$

$$\begin{pmatrix} z & x-iy \\ x+iy & -z \end{pmatrix}^{2n+1} = r^{2n+1} \begin{pmatrix} \frac{z}{r} & \frac{x}{r}-i\frac{y}{r} \\ \frac{x}{r}+i\frac{y}{r} & -\frac{z}{r} \end{pmatrix}.$$

SO(3)群的元素由行列式为 1 的三阶 实 正 交 矩 阵 O 给出, $O(O = E, \det O = 1)$ 现 考虑与单位元 E 无限 接 近 的 SO(3) 的群元。设M是无穷小的三阶实矩阵,即M的每个矩阵元都是无穷小的实数,则与 E 无限接近的 SO(3) 群元可以写成 E + M。由正交条件可得M是反对称的,

$$M^t = -M. \tag{4.28}$$

三维实空间独立的反对称矩阵可以取为 I_x,I_y,I_z ,

$$I_{x} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & +1 & 0 \end{pmatrix}, \quad I_{y} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$
$$I_{z} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \tag{4.29a}$$

M可以写为

$$M = \delta \boldsymbol{\psi} \cdot \boldsymbol{I} = \begin{pmatrix} 0 & -\delta \psi_x & \delta \psi_y \\ \delta \psi_x & 0 & -\delta \psi_x \\ -\delta \psi_y & +\delta \psi_x & 0 \end{pmatrix},$$

其中 无 穷 小 向量 $\delta \psi = (\delta \psi_x, \delta \psi_y, \delta \psi_z)$, 矩阵 $I = (I_x, I_y, I_z)$. I_x, I_y, I_z 称 为 SO(3) 群的 无穷小生成元。SO(3) 群中任一个与单位元无限接近的元素,可以用三个实参数 $\delta \psi_x, \delta \psi_y, \delta \psi_z$ 由无穷 小生成元生成,即为 $E + \delta \psi_x I_x + \delta \psi_y I_y + \delta \psi_z I_z$ 。 在物 理 书 中,常习惯将 I 改用厄米矩阵 $J = (J_x, J_y, J_z)$,其中

$$J_{x} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{i} \\ 0 & \mathbf{i} & 0 \end{array}\right), \qquad J_{y} = \left(\begin{array}{ccc} 0 & 0 & \mathbf{i} \\ 0 & 0 & 0 \\ -\mathbf{i} & 0 & 0 \end{array}\right),$$

$$J_{z} = \begin{pmatrix} 0 & -\mathbf{i} & 0 \\ \mathbf{i} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \tag{4.29b}$$

取

$$\delta \psi = \delta \psi n$$
,

n 是单位向量,可用方位角 θ , φ 标志 n, 也可写为

$$\boldsymbol{n}=\left(n_{x},n_{y},n_{z}\right),$$

其中

 $n_x = \sin\theta\cos\varphi, \qquad n_y = \sin\theta\sin\varphi, \qquad n_z = \cos\theta,$

则 SO(3) 群中 与单位元无限接近的元素可写为

$$(E - i\delta\psi n \cdot J)$$
.

J 间满足下面封闭的对易关系。.

 $[J_x,J_y]=iJ_z$, $[J_y,J_z]=iJ_x$, $[J_z,J_x]=iJ_y$. (4.30) 这正是我们在量子力学中熟悉的角动量满足的对易关系. J 连同它们满足的对易关系,构成李代数 o(3). o(3)的 任 意 元素X 可写为

$$X = -\mathbf{i}\psi \mathbf{n} \cdot \mathbf{J} = \begin{pmatrix} 0 & -\psi n_z & \psi n_y \\ \psi n_z & 0 & -\psi n_x \\ -\psi n_y & \psi n_x & 0 \end{pmatrix} \cdot (4.31)$$

可以证明李代数 o(3)的任意两个元素X和Y的对易关系,仍在 o(3)内。由上讨论已知,SO(3)群在单位元邻域的元素 $(E-i\delta\psi n \cdot J)$,与李代数 o(3)的元素 $-i\delta\psi n \cdot J$ 有一一对应关系。

从李代数 o(3)的任意元素X出发,考虑 SO(3)群 无 穷多次 无穷小转动的乘积,

$$\lim_{m\to\infty} \left(E - i \frac{\phi}{m} \, \boldsymbol{n} \cdot \boldsymbol{J} \right)^m = \exp\left(- i \phi \boldsymbol{n} \cdot \boldsymbol{J} \right)$$

$$= \begin{pmatrix} \pi_{x}^{2} (1 - \cos \phi) + \cos \phi & \pi_{x} \pi_{y} (1 - \cos \phi) - \pi_{z} \sin \phi & \pi_{x} \pi_{z} (1 - \cos \phi) + \pi_{y} \sin \phi \\ \pi_{x} \pi_{y} (1 - \cos \phi) + \pi_{z} \sin \phi & \pi_{z}^{2} (1 - \cos \phi) + \cos \phi & \pi_{y} \pi_{z} (1 - \cos \phi) - \pi_{z} \sin \phi \\ \pi_{x} \pi_{z} (1 - \cos \phi) - \pi_{y} \sin \phi & \pi_{y} \pi_{z} (1 - \cos \phi) + \pi_{z} \sin \phi & \pi_{z}^{2} (1 - \cos \phi) + \cos \phi \end{pmatrix}.$$

(4.32)

式(4,32)的计算中, 用到

$$(-i\mathbf{n}\cdot\mathbf{J})^{2m+1} = (-)^m \begin{pmatrix} 0 & -n_z & n_y \\ n_z & 0 & -n_x \\ -n_y & n_x & 0 \end{pmatrix},$$

$$(-in \cdot J)^{2n} = (-)^m \begin{pmatrix} 1 + n_x^2 & -n_x n_y & -n_x n_z \\ -n_x n_y & 1 - n_y^2 & -n_y n_z \\ -n_x n_z & -n_y n_z & 1 + n_z^2 \end{pmatrix}.$$

而 SO(3) 群的元素 $C_*(\psi)$, 可通过下面 5 个转动的积表示出来,

$$C_n(\psi) = C_k(\varphi)C_j(\theta)C_k(\psi)C_j(-\theta)C_k(-\varphi). \quad (4.32')$$

图 4.2

数 o(3)的元素 $-i v n \cdot J$, 经指数映射而得到, 即

$$C_n(\psi) = \exp(-i\psi n \cdot J). \tag{4.33}$$

若将李代数 su(2) 生成元 σ 改写为 J, 取 J = σ/2, 可 以看到 J 削满足的对易关系与 o(3) · 样,就是式(4.30)的对易关系。因此我们说李代数 su(2)与 o(3)同构。从上面讨论又知,李群在单位元邻域的元素,与李代数的元素有一一对应关系。因此李群 SU(2)与 SO(3)在单位元邻域内也有一一对应关系,我们称此为局部同构。局部同构只反映了李群在单位元附近的性质,但作为整个群 SU(2)是与SO(3)同态。这一点我们也可通过对它们参数

怎定能讨论得到,

取李代数 su(2)的生成元为 $J = \sigma/2$,参数取为 rm, 其中 m是 r 方向的单位向量, r 是向量长度。 李群 SU(2) 的 元 素 由式 (4.27) 变为

 $\exp(-irm \cdot J)$

$$= \begin{pmatrix} \cos\frac{r}{2} - im_z\sin\frac{r}{2} & -im_x\sin\frac{r}{2} - m_y\sin\frac{r}{2} \\ -im_x\sin\frac{r}{2} + m_y\sin\frac{r}{2} & \cos\frac{r}{2} + im_z\sin\frac{r}{2} \end{pmatrix}.$$

$$(4.27')$$

由式(4.27')可以看出

$$\exp(-i\mathbf{r}\mathbf{m} \cdot \mathbf{J}) = \exp(-i(\mathbf{r} + 4\pi)\mathbf{m} \cdot \mathbf{J})$$
$$= -\exp(-i(\mathbf{r} + 2\pi)\mathbf{m} \cdot \mathbf{J}). \quad (4.34)$$

图 4.3

参数空间是 R^3 中的一个华径为 2π 的球,如图 4.3.球心在原点,r=0,对应 SU(2)群的单位元素。球内每一点与 SU(2)群元有一一对应 关系。但球面上所有点 2π 都对应 SU(2) 群的一层元素。

对李群 SO(3), 参 数为 ψn. 由式(4.32) 可以看出

 $\exp(-i\psi n \cdot J) = \exp(-i(\psi + 2\pi)n \cdot J)$. (4.35) 参数空间是 R^3 中华径为 π 的球,如图4.4。球心在原点, $\psi = 0$,对应单位 元素。球 内 每 一点 与 SO(3) 群元有一一对应关系。但从式(4.35)可 以 看 出,球 面 上 的 点 πn 和 $\pi n = \pi(-n)$ 对

应 SO(3) 群的同一个元素。

因此,虽然 SU(2) 群和SO(3) 群在单位元邻域同构,但作为整个群来看,它们的参数空间不同,沒有同构关系。如果我们在 SU(2) 群和 SO(3) 群的参数空间,各作一条 通 过 原 点 a 的直 线,并 取 m=n 方 向,见图 4.3 和4.4。在 SU(2) 群的参数 r 从0

图 4,4

经π变到2π时,直线上的点 a 经 c 变到 e 。由于 SU(2) 群 参 数 空间球面上点都对应 -E 元素,当 r 从2π 经3π 变到4π时,直线上的点从另一端 e 经 g 变回到原点 a 。而 SO(3) 群当参数 ψ 从 0 经 π 变到2π时,直径上的点从 a 变到球面上 e ,再 从 e 变 回到 a 。如果 ψ 再从 2π 经 3π 变到 4π ,SO(3) 群的参数空间点 a , 又 经历另一次从 a 变到 e , 再从 e 回到 a 的过程。这说明从群的整体性质来看,SU(2) 群的两个元素与 SO(3) 群的一个元素对应,SU(2) 群与 SO(3) 群有 2 对 1 的同态。

李代数 o(3) 的生成元 J_x, J_y, J_z 也常写为球张量形式

$$J_{-1} = \mp \frac{1}{\sqrt{2}} (J_x \pm i J_y), \quad J_o = J_z.$$
 (4.36a)

$$[J_o, J_{\pm_1}] = \pm J_{\pm_1}, \quad [J_{-1}, J_{-1}] = -J_o. \quad (4.36b)$$

考虑 J 的二次项 J2,

$$J^2 = J_x^2 + J_y^2 + J_z^2 = -J_{+1}J_{-1} - J_{-1}J_{+1} + J_0^2, \qquad (4.37)$$

由式(4.30) 知 月 与 o(3) 的生成元可以交换,

$$[J^2, J_x] = [J^2, J_y] = [J^2, J_z] = 0,$$

称 J^2 为 o(3) 的二阶卡塞米尔 (Casimir) 算符。 J^2 也是 SO(3) 群的不变量,即

$$[J^2,\exp(-i\psi n\cdot J)]=0.$$

用欧勒角标志的 SO(3) 群元,可以用式(4.33) 写出

$$R(\alpha \beta \gamma) = e^{-i\alpha J_z} e^{-i\beta J_y} e^{-i\gamma J_z}. \tag{4.38}$$

下面证明, 当取 SO(3) 群表示空间基矢 为 I^2 , I_2 的 共 同 本 征矢 $\{i, m\}$ 时,式 $\{4,17\}$ 给出的表示矩阵元 $D_{m,m}^2(\alpha,\beta,\gamma)$, 正是 $\{i, m'\}$ $R(\alpha,\beta,\gamma)\}$ m>。 首先看 i=1/2情况,设

$$x_1 = \eta_{1 \times 2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad x_2 = \eta_{-1, 2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

由 o(3) 代数(1,30) 可得

$$J_{0} = \frac{1}{2} \sigma,$$

$$J_{0} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad J_{+1} = -\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

$$J_{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

经直接计算可以看出, x_1 , x_2 是 $\int_{-2}^{2} J_0$ 的共同本 征矢 $\left|\frac{1}{2} \frac{1}{2}\right>$, $\left|\frac{1}{2}\right|$ $-\frac{1}{2}$ 》。 取李代数 o(3) 的另一个实现,

$$J_{o} = \frac{1}{2} \left(x_{1} \frac{\partial}{\partial x_{1}} - x_{2} \frac{\partial}{\partial x_{2}} \right),$$

$$J_{+1} = -\frac{1}{\sqrt{2}} x_{1} \frac{\partial}{\partial x_{2}}, \qquad J_{-1} = \frac{1}{\sqrt{2}} x_{2} \frac{\partial}{\partial x_{1}}.$$

$$(4.39)$$

在这实现下, J 仍满足对易关系(4,30)。SO(3)群表示 零间的基

$$\eta_m = \frac{x_1^{j+m} x_2^{j+m}}{(j+m)!(j-m)!},$$

正是尸和几,的共同本征函数,利用式(4.39),经直接计算可得,

$$J^{2} | \eta_{m} \rangle = j(j+1)\eta_{m}, \quad J_{z} | \eta_{m} \rangle = m\eta_{m}, \quad (4.40)$$

因此

$$D_{m-m}^{j}(\alpha \beta \gamma) = \langle j m' | R(\alpha \beta \gamma) | j m \rangle, \qquad (4.41)$$

从式(4,41)可以求出 $D_{h,m}(\alpha,\beta,\gamma)$ 满起的微分方程,为此,先证明下式,

$$R(\psi \mathbf{n}) (\mathbf{l} \cdot \mathbf{J}) R^{-1}(\psi \mathbf{n}) = [R(\psi \mathbf{n}) \mathbf{l}] \cdot \mathbf{J}, \qquad (4.42)$$

由式(4.16)与(4.29)可得

$$R(\alpha \mathbf{k})(\mathbf{l} + \mathbf{J})R^{-1}(\alpha \mathbf{k}) = [R(\alpha \mathbf{k})\mathbf{l}] + \mathbf{J},$$

利

$$R(\beta j)(I+J)R^{-1}(\beta j) = [R(\beta j)I] + J$$
.

利用式(4,38) 可证明式(4,42)。对式(4,38) 参数作偏微分,再利用式(4,42) 可得

$$\frac{\partial}{\partial \alpha} R(\alpha \beta \gamma) = -i J_z R(\alpha \beta \gamma),$$

$$\frac{\partial}{\partial \beta} R(\alpha | \beta | \gamma) = -i(-\sin \alpha f_x + \cos \alpha f_z) R(\alpha | \beta | \gamma),$$

$$\frac{\partial}{\partial \gamma} R(\alpha \beta \gamma) = -i(\cos \alpha \sin \beta J_x + \sin \alpha \sin \beta J_y + \cos \beta J_z) R(\alpha \beta \gamma)$$
$$= -iR(\alpha \beta \gamma) J_z,$$

于是可得

$$J_z R(\alpha | \beta | \gamma) = \mathrm{i} \frac{\partial}{\partial \alpha} R(\alpha | \beta | \gamma), \quad R(\alpha \beta \gamma) J_z \simeq \mathrm{i} \frac{\partial}{\partial \gamma} R(\alpha | \beta | \gamma),$$

$$f_x R(\alpha | \beta | \gamma) = i \left(-\cos a \cot \beta \frac{\partial}{\partial a} - \sin \alpha \frac{\partial}{\partial \beta} + \frac{\cos a}{\sin \beta} \frac{\partial}{\partial \gamma} \right) R(\alpha | \beta | \gamma)$$
,

$$I_y R(a|\beta|\gamma) = \mathrm{i} \left(-\sin a \cot \beta \frac{\delta}{\delta a} + \cos a \frac{\delta}{\delta \beta} + \frac{\sin a}{\sin \beta} \frac{\delta}{\delta \gamma} \right) R(a|\beta|\gamma)$$
,

$$J^2 R(\alpha | \beta | \gamma) = -\left[\frac{\partial^2}{\partial \beta^2} + \cot \beta \frac{\partial}{\partial \beta} + \frac{1}{\sin^2 \beta} \left(\frac{\partial^2}{\partial \alpha^2} + \frac{\partial^2}{\partial \gamma^2} - 2\cos \beta \frac{\partial^2}{\partial \alpha \partial \gamma}\right)\right]$$

$$\times R(\alpha \beta \gamma)$$
.

利用式(4,41)得 D = a(0 B 2)满足微分方程,

$$i\frac{\partial}{\partial\alpha}D^{\gamma}_{n+m}(\alpha^{-\beta}\gamma)=m'D^{\gamma}_{m+m}(\alpha^{-\beta}\gamma),$$

$$\mathrm{i} \frac{\partial}{\partial \gamma} D^j_{m,r,m} (\alpha \beta \gamma) = m D^j_{m,r,m} (\alpha \beta \gamma).$$

(4,43)

$$\left[-\frac{\partial^2}{\partial \beta^2} + \cot \beta \frac{\partial}{\partial \beta} + \frac{1}{\sin^2 \beta} \left(\frac{\partial^2}{\partial \alpha^2} + \frac{\partial^2}{\partial \gamma^2} - 2\cos \beta \frac{\partial^2}{\partial \alpha \partial \gamma} \right) \right]$$

$$\times D_{mt,m}^{j}(\alpha,\beta,\gamma) = j(j+1)D_{mt,m}^{j}(\alpha,\beta,\gamma).$$

4.5 转动群表示的直积与耦合系统的角动量

一从2.6节知道,由转动群的两个不可约表示 D^{i_1} 和 D^{i_2} 的直积 $D^{i_1} \otimes D^{i_2}$,也是 SO(3) 群的一个表示。表示 D^{i_1} 和 D^{i_2} 的特征标分别为

$$\chi^{j_{1}}(\psi) = \sum_{m_{1}=-j_{1}}^{j_{1}} e^{-im_{1}\psi},$$

$$\chi^{j_{2}}(\psi) = \sum_{m_{2}=-j_{2}}^{j_{2}} e^{-im_{2}\psi}.$$

由式(2.32)知 $D^{j_1}\otimes D^{j_2}$ 的特征标为

$$\chi(\psi) = \chi^{j_1}(\psi)\chi^{j_2}(\psi)
= \sum_{m_1 = -j_1}^{j_1} \sum_{m_2 = -j_2}^{j_2} e^{-i(m_1 + m_2)\psi}
= \sum_{m = -(j_1 + j_2)}^{j_1 + j_2} e^{-im\psi} + \sum_{m = -(j_1 + j_2 + 1)}^{j_1 + j_2 + 1} e^{-im\psi} + \cdots
+ \sum_{m = -(j_1 + j_2)}^{j_1 + j_2 + -1} e^{-im\psi} + \sum_{m = -(j_1 + j_2)}^{j_1 + j_2} e^{-im\psi} . (4.44)$$

从式(2.27)可以看出,直积 表 示 $D^{j_1} \otimes D^{j_2}$ 包 含 不 可 约 表示 $D^{j_1+j_2}$, $D^{j_1+j_2-1}$,…, $D^{j_1-j_2-1}$,…, $D^{j_1-j_2-1}$, 也就是 说可约表示

$$D^{j_1+j_2}\oplus D^{j_1+j_2+1}\oplus \cdots \oplus D^{+j_1+j_2+1}\oplus D^{+j_1+j_2+1}$$
与直积表示 $D^{j_1}\otimes D^{j_2}$ 等价。令M代表该可约表示, $M=D^{j_1+j_2}\oplus D^{j_1+j_2+1}\oplus \cdots \oplus D^{+j_1+j_2+1}\oplus D^{$

$$D^{j_1}(\alpha \beta \gamma) \otimes D^{j_2}(\alpha \beta \gamma) = S^{+}M(\alpha \beta \gamma)S. \qquad (4.46a)$$

式(1.45)中, 准对角矩阵 M 的行和列用 j, m 标志

$$j = j_1 + j_2, j_1 + j_2 - 1, \dots, |j_1 - j_2| + 1, |j_1 - j_2|,$$

 $m = j, j - 1, \dots, -j + 1, -j$

是

$$\sum_{j=1,j_1-j_2}^{j_1+j_2} (2j+1) = (2j_1+1)(2j_2+1)$$

阶矩阵。而 $D^{j_1} \times D^{j_2}$ 的行和列用 m_1, m_2 标志,也是 $(2j_1+1) \times (2j_2+1)$ 阶矩阵。从式 (1.16) 可以 看出, S 矩阵的行用 j_1, m 标志,列用 $j_1 m_1, j_2 m_2$ 标志。 其 矩 阵 元 $S_{j_1 m_1 m_2}^{j_1 j_2}$ 有 时 简 写 为 $S_{j_1 m_1 m_2}$,称为 SO(3) 胖的克莱 布 许-高 赘(Clebsch-Gordon)系数,简称为 CG 系数。注意到

$$[D^{j_1}(\alpha\beta\gamma)\otimes D^{j_2}(\alpha\beta\gamma)]_{m_1m_2m_1m_2}=D^{j_1}_{m_1m_1}(\alpha\beta\gamma)D^{j_2}_{m_2m_2}(\alpha\beta\gamma)$$

 $M(\alpha \beta \gamma)_{j=m-jm} = \delta_{jj}, D^{j}(\alpha \beta \gamma)_{m=m},$

可把(4,16a)的分量式写成

$$D_{m_1m_1}^{j_1}(\alpha\beta\gamma)D_{m_2m_2}^{j_2}(\alpha\beta\gamma)$$

$$= \sum_{j \in m_1, m_2} S^*_{j m' m'_1 m'_2} \times D^j_{m' m} (\alpha \beta \gamma) S_{j m m_1 m_2}$$
 (4.46b)

式(4,46)称为克莱布许-高登级数。它代表直积 表 $\overline{\mathbb{R}^{D^{f_1}}} \mathbb{C}^{D^{f_2}}$ 向不可约表示 $\overline{\mathbb{R}^{D^f}}$ 的约化。

下面 我们来求知阵S.

首先取 $\beta = \gamma = 0$,设 $\alpha = 0$,则由式(4.17)可得,

$$e^{-im'_{1}a}\delta_{m'_{1}m_{1}}e^{-im'_{2}a}\delta_{m'_{2}m_{2}}$$

$$=\sum_{i,m}S'^{*}_{jmm'_{1}m'_{2}}e^{-ima}S'_{jmm_{1}m_{2}},$$

在 $m_1' = m_1, m_2' = m_2$ 时,有

$$e^{-i(m_1+m_2+m_2+a)} = \sum_{j,m} |S_{jmm_1m_2}|^2 e^{-ima}$$
.

由于 c^{--ima} 是[0,2π]上完备函数 集, 故 具 有 当 m / m₁ + m₂时, $S_{jmm_1m_2} \approx 0$ 。 于是可写

$$S_{jm_1+m_2-m_1m_2} = S_{jm_1m_2}. \tag{4.47}$$

式(4 46b) 为

$$D_{\mathfrak{m}_{1}^{'}\mathfrak{m}_{1}^{'}}^{j_{1}}(\alpha\beta\gamma)D_{\mathfrak{m}_{2}^{'}\mathfrak{m}_{2}^{'}}^{j_{2}}(\alpha\beta\gamma)$$

$$= \sum_{j} S_{jm_{1}m_{2}}^{*} D_{m_{1}+m_{2}-m_{1}+m_{2}}^{j} (\alpha \beta \gamma) \times S_{jm_{1}m_{2}}. \quad (4.18)$$

式 (4,48) 不能完全决定 S 矩阵,因为M矩阵是准对角的,M可以和下面的玄正矩阵 4 对易,

$$u = \begin{pmatrix} i\theta_{j_1+j_2}E_{(j_1+j_2)} & 0 & \cdots & 0 \\ 0 & e^{i\theta_{j_1}+j_2-1}E_{(j_1+j_2-1)} & \cdots & 0 \\ \end{pmatrix},$$

共中 $\theta_{j_1,j_2}, \theta_{j_1+j_2-1}, \dots, \theta_{(j_1-j_2)}$ 是 实 数, $E_{(j_1+j_2)}, \dots, E_{(j_1-j_2)}$ 是 $2(j_1+j_2)+1$ 阶,…, $2|j_1-j_2|+1$ 阶单位矩阵。共矩阵元可写为 $u_{i,m}$, $i_m = \delta_i$, $i_{m,m}e^{i\theta_i}$,

其中 $j_1j'=j_1+j_2,j_1+j_2-1,\cdots,|j_1-j_2|,m=j,j-1,\cdots,-j$. 可以看到,当用 uS 代替 S 时,式(4.48)是不变的。即

$$(uS)_{j_{mm_1m_2}} = e^{i\theta} jS_{j_{mm_1m_2}},$$

$$(uS)_{m_1m_2j_{m_2}}^* = e^{-i\theta} jS_{j_{m_1m_2}}^*,$$

$$(4.49)$$

故式(4.48) 可决定 S 矩阵, 但还有相因子不能确定, 按惯例 1, 规定相因子使

$$S_{j-j_1-j_2} = |S_{j-j_1-j_2}| > 0,$$
 (4.50)

用 $D_{m_1+m_2}^{j*}(\alpha \beta \gamma)$ 乘式(4.48) 的两边,并对 α,β,γ 求 (加权)平均,利用群上函数正交关系式(4,21),可得

① 这是Condon-Shortly 惯例。 Ŋ M.E.Rose, G.Racah, E.P. Wigner 和A. R.Fdmonds 等用的相因于一致。见参考文献[8,18,6]。

$$\frac{1}{8\pi^{2}} \int_{0}^{2\pi} d\alpha \int_{0}^{\pi} \sin\beta d\beta \int_{0}^{2\pi} d\gamma \\
\times D_{m_{1}^{'}+m_{2}^{'}-m_{1}+m_{2}}^{j*}(\alpha \beta \gamma) D_{m_{1}^{'}+m_{1}^{'}}^{j*}(\alpha \beta \gamma) D_{m_{2}^{'}+m_{2}^{'}}^{j*}(\alpha \beta \gamma) \\
= \frac{1}{2j+1} S_{jm_{1}^{'}+m_{2}^{'}}^{*} S_{jm_{1}m_{2}^{*}} \tag{4.51}$$

为了求出 $S_{jm_1m_2}$ 的值,我们并不需要求出式(4.51)等 号 左 边的 所有积分,而只需求出对某一对 m'_1, m'_2 的积分 值 就 够了。我们 选 $m_1 = j_1, m'_2 = -j_2$,将式(4.17),(4.17') 代入式(4.51),得,

$$\frac{1}{8\pi^{2}} \left[\binom{2J_{1}}{J_{1} + m_{1}} \binom{2J_{2}}{J_{2} + m_{2}} \right]^{1/2} \int_{0}^{2\pi} d\sigma \int_{0}^{\pi} \sin\theta d\theta \int_{0}^{2\pi} d\gamma$$

$$\times \sum_{k} (\gamma) j_{1} - m_{1} + k \frac{\left[(j+j_{1}-j_{2}) \right] (j-j_{1}+j_{2}) \right] (j+m_{1}+m_{2}+m_{2}) \left[(j+m_{1}+m_{2}) \right] (j-m_{1}+m_{2})}{k! (j-m_{1}+m_{2}+k)! (j+j_{1}-j_{2}+k)! (k-j_{1}+j_{2}+m_{1}+m_{2})}$$

$$\times \left(\begin{array}{c} \cos \frac{\beta}{2} \end{array} \right)^{\left[2+j+j+1 \right] - \left(m_2 + k \right)} \left(\sin \frac{\beta}{2} \right)^{2 \cdot \left(j_2 + m_2 + k \right)}$$

$$=\frac{1}{2^{j}+1}-5^{*}_{j}j_{1}-j_{2}^{5}j_{m_{1}m_{2}}.$$
(4.52)

式(1.52)申对 た求和满足条件

$$k \ge 0$$
, $k \ge j_1 - j_2 - m_1 - m_2$,
 $k \le j + j_1 - j_2$, $k \le j - m_1 - m_2$.

为了求出式(4.52)左边的积分

$$\int_0^{\pi} \sin\beta \, \mathrm{d}\beta \left(\cos\frac{\beta}{2}\right)^{2 \cdot (j+j_1 - m_2 - k)} \left(\sin\frac{\beta}{2}\right)^{2 \cdot (j_2 + m_2 + k)},$$

再利用群上函数正交关系式(4,21),可得

$$\frac{1}{8\pi^2} \int_0^{2\pi} d\alpha \int_0^{\pi} \sin\beta d\beta \int_0^{2\pi} d\gamma D_{jm}^{j*}(\alpha \beta \gamma) D_{jm}^{j}(\alpha \beta \gamma)$$

$$= \frac{1}{8\pi^2} \left(\frac{2j}{j+m}\right) \int_0^{2\pi} d\alpha \int_0^{\pi} \sin\beta d\beta \int_0^{2\pi} d\gamma \left(\cos\frac{\beta}{2}\right)^{2(j+m)} \left(\sin\frac{\beta}{2}\right)^{2(j-m)}$$

$$= \frac{1}{2j+1}.$$

于是

$$\frac{1}{8\pi^{2}} \int_{0}^{2\pi} da \int_{0}^{\pi} \sin\beta d\beta \int_{0}^{2\pi} d\gamma$$

$$\times \left(\cos\frac{\beta}{2}\right)^{2+(j+j_{1}-m_{2}-k)} \left(\sin\left(\frac{\beta}{2}\right)\right)^{2+j_{2}+m_{2}+k)}$$

$$= \frac{(j+j_{1}-m_{2}-k)!(j_{2}+m_{2}+k)!}{(j+j_{1}+j_{2}+1)!}$$

代入式(4.52)得

$$S_{jj_1-j_2}^{\bullet}S_{jm_1m_2}$$

$$= \sum_{k} \left(- \right) j_{1} - m_{1} + k \sqrt{(2} j_{1}) \overline{!(2} \overline{j_{2})} \overline{!}(2j+1)$$

$$\times \sqrt{\frac{(i+i_1-i_2)!(i-i_1+i_2)!(i+m_1+m_2)!(i-m_1-m_2)!}{(i_1+m_1)!(i_1-m_1)!(i_2+m_2)!(i_2-m_2)!}} \\$$

$$\times \frac{(j+l_1-m_2-k)!(j_2+m_2-k)!}{(j+l_1+j_2+1)!k!(j-m_1-m_2-k)!(j+l_1-j_2-k)!(k-l_1+l_2+m_1+m_2)!}^{(j+l_1-m_2-k)!(j+l_1-j_2-k)!}$$
(4.53)

取 $m_1 = j_1, m_2 = -j_2$, 并按式(4.50)规定和因子, 可得,

$$|S_{jj_1-j_2}|^2 = S_{jj_1-j_2}^2 = \frac{2j+1}{(j+j_1+j_2+1)!}$$

$$\times \sum_{k} (-)^k \frac{(j+j_1-j_2)!(j-j_1+j_2)!(j+j_1+j_2-k)!}{k!(j-j_1+j_2-k)!(j+j_1-j_2-k)!}.$$

利用恆等式

$$\sum_{k} (-1)^{k} \binom{j-j_{1}+j_{2}}{k} \frac{(j+j_{1}+j_{2}-k)!}{(j+j_{1}-j_{2}-k)!} = (2j_{2})! \binom{2j_{1}}{j+j_{1}-j_{2}},$$

$$(4.54)$$

叮得

$$S_{jj_1-j_2} = \sqrt{\frac{(2j+1)(2j_1)!(2j_2)!}{(j+j_1+j_2+1)!(j_1+j_2-j)!}}.$$
 (4.55)

由式(4.53),(4.55)可求出

$$= \sqrt{\frac{(2i+1)(i+j_1-j_2)!}{(i+j_1+j_2+1)!} \frac{(i-j_1+j_2)!}{(i_1+m_1)!} \frac{(i_1+j_2-j_1)!}{(i_1-m_1)!} \frac{(i_2+m_2)!}{(i_2+m_2)!} \frac{(i-m_1-m_2)!}{(i_2-m_2)!}}$$

$$\times \sum_{i} \frac{(-)i_1-m_1+k(i+j_1-m_2-k)!}{(i-m_1-m_2-k)!} \frac{(-)i_1+k(i+j_1-m_2-k)!}{(i-m_1-m_2-k)!} \frac{(-)i_1+k(i+j_1-m_2-k)!}{($$

式(4.56a)也可写成

$$S_{jmm_{1}m_{2}}^{j_{1}j_{2}} = \delta_{mm_{1}+m_{2}}$$

$$\times \sqrt{\frac{(2^{j}+1)(\overline{i+i_{1}+i_{2}})!(\overline{i-i_{1}+i_{2}})!(\overline{i_{1}+i_{2}+i_{1}})!(\overline{i+i_{1}+i_{2}+i_{1}})!(\overline{i_{2}+m_{2}})!(\overline{i_{2}+m_{2}})!(\overline{i_{2}+m_{2}})!}$$

$$\times \sum_{k} (\cdot) j_{1}^{-m_{1}+k} \frac{(j+j_{1}-m_{2}+k)!(\overline{i_{2}+m_{2}+k})!}{k!(j-m-k)!(\overline{i+i_{1}-i_{2}-k})!(\overline{i+i_{1}+i_{2}+m})!}. (4.56b)$$

当 m = j, 即 $m_1 + m_2 = j$ 时, 武(4,56) 尤为简单,

$$S_{jjm_{1}}^{j_{1}j_{2}} = (-)_{j_{1}-m_{1}}^{j_{1}-m_{1}} = (-)_{j_{1}-m_{1}}^{j_{1}-m_{1}} \times \sqrt{\frac{(2^{j}+1)!(i_{1}+i_{2}-j)_{1}(i_{1}+m_{1})_{1}(i+i_{2}-m_{1})_{1}}{(2+i_{1}+i_{2}+1)_{1}(i+i_{1}-i_{2})_{1}(i-i_{1}+i_{2})_{1}(i_{1}-m_{1})_{1}(i_{2}-i+m_{1})_{1}}} . (4.57)$$

$$\sum_{\substack{m_1, m_2 \\ j \neq m_1, m_2}} S_{jmm_1, m_2}^{j_1 j_2} S_{j^{m_1} m_1, m_2}^{j_1 j_2} = \delta_{jj}, \delta_{mm'},$$

$$\sum_{j, m} S_{jmm_1, m_2}^{j_1 j_2} S_{jmm'_1, m'_2}^{j_1 j_2} = \delta_{m_1 m'_1} \delta_{m_2 m'_2}.$$
(4.58)

在计算 CG 系数时,常用正交归一关系式(1.58)进行核对。

表4.1和表4.2给出 $f_2 = 1/2$ 和 $f_2 = 1$ 的 CG 系数。 CG 系数表的任意两行或两列正交,每一行或每一列归一。

现在我们再来证明恒等 式(1.54)。设 $|x|^2 < 1, a+b>0, a>0$ 而 b<0,由

表4.7 8 3 4 2 2

- 1/2	$\sqrt{\frac{J_1 - w_1 + 1}{2^{J_1} + 1}}$	$\frac{1}{\sqrt{27-m_1}}$
1,/2	$\sqrt{\frac{j_1 + ne_1}{2^{j_1} + 1}} = 1$	$-\frac{1}{\sqrt{2^{j}_{1}-m_{1}}}$
m2	f ₁ +1'2	j ₁ -1/2

£4.2 S 1 m.

1			
: 1	$\sqrt{\frac{(j_1 - m_1 + 1)(j_1 - m_1 + 2)}{(2j_1 + 1)(2j_1 + 2)}}$	$\sqrt{\frac{((t_1-m_1+1)(\tilde{t}_1+m_1)}{2^{t_1}(t_1+1)}}$	$\sqrt{\frac{(i_1+m_1)(i_1+m_1-1)}{2^{i_1}(2i_1+1)}}$
0	$\{(t_1, \pi_1 + 1), (t_1 - \pi_1 + 1)\}$	× 71(O1+1)	$(l_1 - m_1)(l_1 + m_1)$
	0.4	i L	
1	$\sqrt{\frac{(t_1+w_1+1)(t_1+w_1+2)}{(2t_1+1)(2t_1+2)}}$	$\sqrt{\frac{(I_1+m_1-1)(I_1-m_1)}{2I_1(I_1+1)}}$	$\sqrt{\frac{(I_1-m_1-1)(J_1-m_1)}{2^{J_1}(2^{J_1}+1)}}$
22	$I - I_f$	j_1	$j_1 - 1$

$$(1+x)^{a}(1+x)^{b} = (1+x)^{a+b}$$

$$= \sum_{k,k} {a \choose k} {b \choose k'} x^{k+k'} = \sum_{l} {a+b \choose l} x^{l}.$$

比较系数得

$$\sum_{k} {a \choose k} {b \choose l-k} = {a+b \choose l},$$

共中

$${\binom{b}{l-k}} = \frac{b(b-1)(b-2)\cdots(b-l+k+1)}{(l-k)!}$$

$$= \frac{(-b)(-b+1)(-b+2)\cdots(l-b-k-1)}{(l-k)!} (-)^{l-k}$$

$$= (-)^{l-k} {\binom{l-b-k-1}{l-k}}.$$

考虑到

$$\frac{(-)^{k}(j+j_{1}+j_{2}-k)!}{(j+j_{1}-j_{2}-k)!}=(-)^{j-j_{1}-j_{2}}(2j_{2})!\binom{-2j_{2}-1}{j+j_{1}-j_{2}-k},$$

于是式(4.54) 左边

$$\sum_{k} (-)^{k} {j-j_{1}+j_{2} \choose k} {(j+j_{1}+j_{2}-k) \choose j+j_{1}-j_{2}-k) \choose k}$$

$$= (-)^{j+j_{1}-j_{2}} (2j_{2}) + \sum_{k} {j-j_{1}+j_{2} \choose k} {-2j_{2}-1 \choose j+j_{1}-j_{2}-k}$$

$$= (-)^{j+j_{1}-j_{2}} (2j_{2}) + {j-j_{1}-j_{2}-1 \choose j+j_{1}-j_{2}}$$

$$= (2j_{2}) + {2j \choose j+j_{1}-j_{2}}$$

等于右边,恒等式得证.

在量子力学中,如果同时存在两个力学体系。当力学体系 1 转动

$$C_{n_1}(\psi_1) = \exp(-\mathrm{i}\psi_1 \boldsymbol{n}_1 \cdot \boldsymbol{J}_1),$$

 $C_{n_1}(\psi_1)$ 作用在体系 1 的希耳伯特空间上, J_1 是体系 1 的 角 动量 算符、当力学体系 2 转动

$$C_{n_2}(\psi_2) = \exp(-i\psi_2 n_2 \cdot J_2),$$

 $C_{n_2}(\psi_2)$ 作用在体系 2 的希耳伯特空间上, J_2 是体系 2 的 角动量篡符。 J_1 和 J_2 是相互对易的,即

$$[J_1, J_2] = 0. (4.59)$$

如果这两个力学体系间 沒 有 相 互 作 用,那么 转 动 $C_{n_1}(\psi_1)$ 和 $C_{n_2}(\psi_2)$ 是相互独立的. 应该用 $SO(3)_1 \otimes SO(3)_2$ 来描述这两 个 力 学体系的转动性质。其中 $SO(3)_1$ 和 $SO(3)_2$ 分别给出体系1和2 的 转动性质, $C_{n_1}(\psi_1) \in SO(3)_1$, $C_{n_2}(\psi_2) \in SO(3)_2$,直 积 群 $SO(3)_1$ $\otimes SO(3)_2$ 的元素 g 为

$$g = \exp(-i\psi_1 \mathbf{n}_1 \cdot \mathbf{J}_1) \exp(-i\psi_2 \mathbf{n}_2 \cdot \mathbf{J}_2)$$
. (4.60) g 用 6 个参数 $\psi_1 \mathbf{n}_1$ 和 $\psi_2 \mathbf{n}_2$ 标志,也可用欧勒角 $\alpha_1 \beta_1 \gamma_1$ 和 $\alpha_2 \beta_2 \gamma$ 标志,设 $D^{j_1}(\alpha_1 \beta_1 \gamma_1)$ 和 $D^{j_2}(\alpha_2 \beta_2 \gamma_2)$ 分别为 $SO(3)_1$ 和 $SO(3)_2$ 的不可约酉表示,则我们由节2.6知, $SO(3)_1 \otimes SO(3)_2$ 的表 示 为 $D^{j_1}(\alpha_1 \beta_1 \gamma_1) \otimes D^{j_2}(\alpha_2 \beta_2 \gamma_2)$,它也是不可约酉表示。

如果这两个力学体系间存在相互作用,并且体系 1 和体系 2 相互耦合只能在空间作同样的转 动,即 $\psi_1 n_1 = \psi_2 n_2$,那 么 原 来 $SO(3)_1 \otimes SO(3)_2$ 中 6 个参数只有 3 个是独 立 的,取 $\psi n = \psi_1 n_1 = \psi_2 n_2$,由式 (4.60) 中满足以上条件的元素为

$$\exp(-i\psi \mathbf{n} \cdot \mathbf{J}_1) \exp(-i\psi \mathbf{n} \cdot \mathbf{J}_2) = \exp[-i\psi \mathbf{n} \cdot (\mathbf{J}_1 + \mathbf{J}_2)],$$
(4.61)

 $(J_1 + J_2)$ 满足 o(3) 李代数生成元间对易关系 (4.30). 取 $J = J_1 + J_2$, exp $(-i\psi n \cdot J)$ 全体构成 SO(3) 群. J 称为耦合 系 统角动量,是体系1和体系2角动量之和。由 J 生成的 SO(3) 群 是 直积群的一个子群, $SO(3)_1 \otimes SO(3)_2 \supset SO(3)$,可以称 它 为 总(角动量)转动群。

由直积群 $SO(3)_1 \otimes SO(3)_2$ 的不可约酉表示 $D^{j_1}(a_1 \beta_1 \gamma_1) \otimes D^{j_2}(a_2 \beta_2 \gamma_2)$,注意到总转动群 SO(3)中, $a_1 = a_2 = a_1\beta_1 = \beta_2 = \beta$,

 $\gamma_1 = \gamma_2 = \gamma$.则 $D^{j_1}(\alpha \beta \gamma) \otimes D^{j_2}(\alpha \beta \gamma)$ 是 SO(3)的一个表示。表示 $D^{j_1}(\alpha \beta \gamma) \otimes D^{j_2}(\alpha \beta \gamma)$ 是幺正的,但却不是 不 可 约 的,它可以通过 克 莱 布 许 高 登级数(式(4,46))约化为不可约表示 $D^{j}(\alpha \beta \gamma)$ 的直和。

设 $|j_1|m_1\rangle$; $|j_2|m_2\rangle$; $|j|m\rangle$ 分别为 J_1^2 , J_{12} ; J_2^2 , J_{22} ; J^2 , J_2 的共同本征矢,

$$\begin{split} J_{i}^{2} &|j_{i} m_{i}\rangle = j_{i}(j_{i}+1) |j_{i} m_{i}\rangle, \\ J_{iz} &|j_{i} m_{i}\rangle = m_{i} |j_{i} m_{i}\rangle, \\ J^{2} &|j| m\rangle = j(j+1) |j| m\rangle, \\ J_{z} &|j| m\rangle = m |j| m\rangle, \end{split}$$
 (1.62)

其中 i=1.2. 由式(4.41)知

$$D_{m_i^{\prime}m_i}^{j_i}(\alpha \beta \gamma) = \langle j_i m_i^{\prime} | R_i(\alpha \beta \gamma) | j_i m_i \rangle, \quad i = 1, 2;$$

$$D^{j}_{m' \rightarrow n}(\alpha \beta \gamma) = \langle j m' [R(\alpha \beta \gamma)] j m \rangle_{\bullet}$$

其中

 $R_i(\alpha \beta \gamma) = e^{-i\alpha J_{+z}}e^{-i\beta J_{+y}}e^{-i\gamma J_{+z}}, \quad i=1,2;$ $R(\alpha \beta \gamma) = e^{-i\alpha J_{z}}e^{-i\beta J_{y}}e^{-i\gamma J_{+z}} = R_1(\alpha \beta \gamma)R_2(\alpha \beta \gamma).$ (4.63) 利用 S 矩阵 幺 正性, 可将式 (4.46) 写成反克莱布许-高登 级 数形式,

$$\begin{split} D_{m'm}^{j}(\alpha \beta \gamma) &= \sum_{m_{1}, m_{2}, m_{1}, m_{2}'} S_{jm'm_{1}m_{2}'}^{j_{1}j_{2}} D_{m_{1}m_{1}}^{j_{1}} (\alpha \beta \gamma) \\ &\times D_{m_{2}m_{2}}^{j_{2}} (\alpha \beta \gamma) S_{jmm_{1}m_{2}}^{j_{1}j_{2}*}, \end{split}$$

$$D_{m',m}^{j}(\alpha | \beta | \gamma) = \sum_{m_1, m_2, m_1, m_2} S_{jm', m_1m_2}^{j_1j_2}$$

$$\times \langle j_1 | m_1' | \langle j_2 | m_2' | R(\alpha | \beta | \gamma) | j_1 | m_1 \rangle [j_2 | m_2 \rangle S_{j_m m_1 m_2}^{j_1 j_2 *} .$$

$$(4.64)$$

取基为

$$\langle j_1 | j_2 | j | m' \rangle = \sum_{m'_1, m'_2} S_{jm', m'_1m'_2}^{j_1 j_2} \langle j_1 | m'_1 | \langle j_2 | m'_2 | , (4.65)$$

姸

$$|j_1|j_2|i|m\rangle = \sum_{m_1,m_2} S_{j_{m_m}m_1m_2}^{j_1j_2*} |j_1|m_1\rangle |j_2|m_2\rangle.$$
 (4.65')

得

 $D^{j}_{m'm}(\alpha \beta \gamma) = \langle j_1 j_2 j m' | R(\alpha \beta \gamma) | j_1 j_2 j m \rangle,$

基 $|j_1|j_2|j_m$ 〉正是 J^2 和 J_z 的共同本征 矢。由 $J=J_1+J_2$,可得 J_1^2 和 J_2^2 与 J^2 , J_z 可以对易,因此也是 J_1^2 和 J_2^2 的本征矢,相 应的量子数为 j_1 和 j_2 。因此 CG 系 数 $S_{j_1 j_2 \atop j_{mm_1 m_2}}$ 也是在耦合体系中,基

|j, m,>,|j, m,>和基|j, j, jm>间表象变换矩阵元,常写为

$$S_{j m m_{1} m_{2}}^{j_{1} j_{2}} = \langle j_{1} j_{2} j m | j_{1} m_{1} j_{2} m_{2} \rangle$$

$$= \langle j m | j_{1} m_{1} j_{2} m_{2} \rangle. \tag{4.66}$$

为了把 CG 系数写成更为对称的形式,维格纳(Wigner)引入了3j 系数

$$\left(\begin{array}{ccc} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{array}\right)$$

$$= (-)^{j_1-j_2-m_3} \sqrt{\frac{1}{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3-m_3 \rangle, \quad (4.67)$$

注意到在康敦-肖特利 (Condon-Shortly)惯例下,CG 系数是实数,故有 $\langle j m | j_1 m_1 j_2 m_2 \rangle = \langle j_1 m_1 j_2 m_2 | j_1 m \rangle$.

由式(4.56)可以得到 CG 系数的对称性,

$$\langle j_1 | m_1 | j_2 | m_2 | j_3 | m_3 \rangle = (-)^{j_1 + j_2 + j_3} \langle j_2 | m_2 | j_1 | m_1 | j_3 | m_3 \rangle;$$

$$(4.68a)$$

$$\langle j_1 | m_1 | j_2 | m_2 | j_3 | m_3 \rangle$$

= $(-)^{j_1 + j_2 - j_3} \langle j_1 | -m_1 | j_2 | -m_2 | j_3 | -m_3 \rangle$; (4.68b)

$$\langle j_1 | m_1 | j_2 | m_2 | j_3 | m_3 \rangle = (-)^{j_1 + m_1} \sqrt{\frac{2j_3 + 1}{2j_2 + 1}}$$

 $\times \langle j_1 | m_1 | j_3 | -m_3 | j_2 | -m_2 \rangle;$ (4.68c)

$$\langle j_1 \ m_1 \ j_2 \ m_2 \ | \ j_3 \ m_3 \rangle = (-)^{j_2 + m_2} \sqrt{\frac{2j_3 + 1}{2j_1 + 1}}$$

$$\times \langle j_2 \ -m_2 \ j_3 \ m_3 \ | \ j_1 \ m_1 \rangle, \qquad (4.68d)$$

3j 系数的对称性更便于记忆。当其列经过一个偶置 换 时,3j 系数的值不变;当其列经过一个奇置换时,其值只改 变 一 个 符号 $(-)^{j_1+j_2+j_3}$,当3j 系数的 m 全变号时,其值也 只 改 变 一个符号 $(-)^{j_1+j_2+j_3}$,即

$$\begin{pmatrix}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{pmatrix} = \begin{pmatrix}
j_{2} & j_{3} & j_{1} \\
m_{2} & m_{3} & m_{1}
\end{pmatrix} = \begin{pmatrix}
j_{3} & j_{1} & j_{2} \\
m_{3} & m_{1} & m_{2}
\end{pmatrix};$$

$$\begin{pmatrix}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{pmatrix} = (-)^{j_{1} - j_{2} + j_{3}} \begin{pmatrix}
j_{2} & j_{1} & j_{3} \\
m_{2} & m_{1} & m_{3}
\end{pmatrix}$$

$$= (-)^{j_{1} + j_{2} + j_{3}} \begin{pmatrix}
j_{1} & j_{3} & j_{2} \\
m_{1} & m_{3} & m_{2}
\end{pmatrix}$$

$$= (-)^{j_{1} + j_{2} + j_{3}} \begin{pmatrix}
j_{3} & j_{2} & j_{1} \\
m_{3} & m_{2} & m_{1}
\end{pmatrix};$$

$$\begin{pmatrix}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{pmatrix} = (-)^{j_{1} + j_{2} + j_{3}} \begin{pmatrix}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & -m_{3}
\end{pmatrix}.$$

$$\begin{pmatrix}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{pmatrix} = (-)^{j_{1} + j_{2} + j_{3}} \begin{pmatrix}
j_{1} & j_{2} & j_{3} \\
-m_{1} & -m_{2} & -m_{3}
\end{pmatrix}.$$

因此CG 系数的正交归一关系式(4.58)可写为

$$\sum_{m_1, m_2} \langle j | m | j_1 | m_1 | j_2 | m_2 \rangle \langle j_1 | m_1 | j_2 | m_2 | j' | m' \rangle = \delta_{jj}, \, \delta_{mm'},$$

$$\sum_{j,m} \langle j_1 | m_1 | j_2 | m_2 | j | m \rangle \langle j | m | j_1 | m'_1 | j_2 | m_2 \rangle = \delta_{m_1 m'_1} \delta_{m_2 m'_2}.$$
(4.70)

还可用37 系数表示为

$$\sum_{m_1, m_2} (2j_3 + 1) \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3' \end{pmatrix}$$

$$= \delta_{j_3 j_3'} \delta_{m_3 m_3'} \delta(j_1 j_2 j_3).$$

当 $j_3=j_1+j_2$ 、 j_1+j_2-1 , …, $|j_1-j_2|$ 时, $\delta(j_1|j_2|j_3)=1$; 其它情形 $\delta(j_1|j_2|j_3)=0$ 。于是有

$$\sum_{j_3, m_3} (2j_3 + 1) \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} \begin{pmatrix} j_1 & j_2 & j_3 \\ m'_1 & m'_2 & m_3 \end{pmatrix}$$

$$= \delta_{m_1 m'_1} \delta_{m_2 m'_2}$$

$$(4.71)$$

本节讨论的两个不可约表示直积的约化, CG 系 数 的引入, 以及耦合系统角动量等问题,不仅可用于转动群,而且可以推广 到其它群。

4.6 不可约张量算符

设2k+1个算符 $\{T_{\delta}^{k}\}$ $(q=k,k-1,\cdots,-k+1,-k)$,在空间转动 $R(\alpha,\beta,\gamma)$ 下,按SO(3)群的不可约表示 $D^{k}(\alpha,\beta,\gamma)$ 变换,

$$R(a \ \beta \ \gamma)T_q^kR^*(a \ \beta \ \gamma) = \sum_{q} D_{q+q}^k(a \ \beta \ \gamma)T_q^k$$
 , (4.72) 则称这组算符 $\{T_q^k\}$ 是 $SO(3)$ 群的 k 秩不可约张 \mathbb{R} , T_q^k 是这不可约张量的 q 分量。

由式(4,32')可得绕 z 轴转 ψ 角,绕 y 轴转 ψ 角 和 绕 x 轴转 ψ 角的转动分别为

$$C_{k}(\psi) = e^{-i\phi J} z = R(\psi \ 0 \ 0),$$

 $C_{j}(\psi) = e^{-i\phi J} y = R(0 \ \psi \ 0),$ (4.73)

$$C_{i}(\psi) = e^{i\pi J_{z}/2} e^{-iJ_{z}} e^{-i\pi J_{z}/2} = e^{-i\#J_{z}} = R\left(-\frac{\pi}{2} \psi \frac{\pi}{2}\right),$$

根据定义,不可约张量算符 T 滤 满足

$$\begin{split} \mathrm{e}^{-\mathrm{i}\,\psi\,J_{\,x}}T_{\,q}^{\,k}\mathrm{e}^{\mathrm{i}\,\psi\,J_{\,x}} &= \sum_{q^{\,\prime}}T_{\,q}^{\,k},\,D_{\,q^{\,\prime},\,q}^{\,k}(\psi\ 0\ 0)\,,\\ \\ \mathrm{e}^{-\mathrm{i}\,\psi\,J_{\,y}}T_{\,q}^{\,k}\mathrm{e}^{\mathrm{i}\,\psi\,J_{\,y}} &= \sum_{q^{\,\prime}}T_{\,q}^{\,k},\,D_{\,q^{\,\prime},\,q}^{\,k}(0\ \psi\ 0)\,,\\ \\ \mathrm{e}^{-\mathrm{i}\,\psi\,J_{\,x}}T_{\,q}^{\,k}\mathrm{e}^{\mathrm{i}\,\psi\,J_{\,x}} &= \sum_{q^{\,\prime}}T_{\,q^{\,\prime}}^{\,k}\,D_{\,q^{\,\prime},\,q}^{\,k}\left(-\frac{\pi}{2}\,\psi\,\frac{\pi}{2}\right). \end{split}$$

在式(1.74)中, 等号两边对 ♥ 微分, 再令 ♥= 0, 计 算 中 利 用式

(4.17),得 J 与 T 的对易关系,

$$[J_{x}, T_{q}^{k}] = qT_{q}^{k},$$

$$[J_{y}, T_{q}^{k}] = -\frac{i}{2} \sqrt{(k-q)(k+q+1)} T_{q+1}^{k}$$

$$+ -\frac{i}{2} \sqrt{(k+q)(k-q+1)} T_{q-1}^{k},$$

$$[J_{x}, T_{q}^{k}] = \frac{1}{2} \sqrt{(k-q)(k+q+1)} T_{q+1}^{k} \qquad (4.75a)$$

$$+ \frac{1}{2} \sqrt{(k+q)(k-q+1)} T_{q-1}^{k},$$

如把 J 写成球张量形式,如式(4.36),则有,

$$[J_0, T_q^k] = q T_q^k,$$

$$[J_{\pm 1}, T_q^k] = \mp \sqrt{2} \sqrt{(k \pm q)(k \pm q + 1)} T_{q \pm 1}^k.$$
(4.75b)

式(4,75a)或(4.75b)完全决定了不可约张量算符{ T_{i} } 在转动下的性质,它与式(4.72)完全等价,拉卡(Racah)就是用式(4.75)作为不可约张量算符的定义的。

在量子力学中,常用到的许多算符,都是 SO(3) 群的不可约张,量算符。如哈密顿量(Hamiltonian) $H=p^2/2m+V(r)$,r,r* 都是0 秩不可约张量,也称为标量算符; 坐标 r、动量 p 和磁偶 极 矩 是 1 秩不可约张量,也称为向量算符; 而电四极矩 算 符 $\{Q_{2q}\}$ 是 2 秩不可约张最等等。我们经常会遇到求不可约张量算符的矩阵元问题。下面讲的维格纳-爱卡尔脱(Wigner-Eckart)定理,将使不可约张量算符矩阵元的计算大为简化。

设|a|i|m>是量子力学的一个态,它是角 动 量 J^2 , J_z 的共同本征矢,a是其它简并量子数。

$$J^2 \mid a \mid j \mid m \rangle = j(j+1) \mid a \mid j \mid m \rangle$$
,
 $J_z \mid a \mid j \mid m \rangle = m \mid a \mid j \mid m \rangle$.

定理4.1(维格纳-爱卡尔脱定理) 设 $\{T_{ij}\}$ 为不可约张量算符,则矩阵元满足,

 $\langle a' \ j' \ m' \ | T_q^k \ | a \ j \ m \rangle$

$$= (-)^{2k} \frac{\langle j | m | k | q | j' | m' \rangle}{\sqrt{-2j' + 1}} \times \langle a' | j' | | T^{k} | | a | j \rangle, \qquad (4.76)$$

即矩阵元 $\langle a' j' m' | T_q^k | a j m \rangle$ 对分量指标的依赖, 完全体现在 SO(3) 群的 CG 系数 $\langle j m k q | j' m' \rangle$ 中。 $\langle a' j' || T^k || a j \rangle$ 称 为 约化矩阵元,它与分量指标 $m_j q_j m'$ 无关。

证明 作矢量

$$|(Ta) \ j \ k \ j' \ m' > = \sum_{q \neq m} \langle j \ m \ k \ q | j' \ m' > T_{q}^{k} | a \ j \ m > .$$

$$(1.77)$$

先证明 $[(Ta) \ i \ k \ i' \ m']$ 按 SO(3)群的不可约表示 $D^{i'}$ 变 换。 利用式(4,41)和(4,72),有

$$R(\alpha \beta \gamma) | (Ta) j k j' m' >$$

$$=\sum_{q,m,q',m'}\langle j \ m \ k \ q | j' \ m' \rangle$$

$$\times D^{j}_{m^*m}(\alpha \beta \gamma) D^{k}_{q+q}(\alpha \beta \gamma) T^{k}_{q}, [a j m''>$$

再用式(4.48), (1.66)和式(4.70)可得

$$R(\alpha \beta \gamma) | (Ta) j k j' m' >$$

$$= \sum_{q,m,q' \to m' \to j'} \langle j | m | k | q | j' | m' \rangle$$

$$\times \langle j | m'' | k | q' | j'' | m'' + q' \rangle \langle j'' | m + q | j | m | k | q \rangle$$

$$\times D_{m'' \to q' \to m \to q}^{j''} (\alpha | \beta | \gamma) T_{q'}^{k} | \alpha | j | m'' \rangle$$

$$= \sum_{m''' \to m''' m} D_{m''' m}^{j''}, \quad (\alpha | \beta | \gamma) | (Ta) | j | k | j' | m''' \rangle_{\bullet}$$

既然|(Ta)| j| k| j'| m'''>按SO(3)的不可约表示 $D^{j'}$ 变换,容易证明它一定是 J^2 和 J_z 的共同本征矢,

$$J^{2}|(Ta) j k j' m'>=j'(j'+1)|(Ta)j k j' m'>,$$
 $J_{z}|(Ta) j k j' m'>=m'|(Ta) j k j' m'>.$ 利用 CG 系数正交性,可得

$$T_{q}^{k}[a \ j \ m\rangle = \sum_{j \neq j, m'} \langle j'' \ m'' \ | \ j \ m \ k \ q \rangle | \ (Ta) \ j \ k \ j'' \ m'' \rangle.$$

再利用 J² J_z 不同本征值的本征矢正交,得到

$$\langle a' \ j' \ m' \ | T_q^{\frac{1}{2}} \ | \ a \ j \ m \rangle$$

$$= \langle j' \ m' \ | \ j \ m \ k \ q \rangle \langle a' \ j' \ m' \ | \ (Ta) \ j \ k \ j' \ m' \rangle.$$
(4.78)

下面证明式(4.78)中 $\langle a' | j' | m' | (Ta) | j | k | j' | m' \rangle$ 与分量指标 m' 无关。

由 J 的对易关系式(4,36)知,对任意 J^2 J_2 的 共同 本征矢 $\{a,j,m\}$,有

$$J_{\pm 1} | a j m \rangle = \mp \frac{1}{\sqrt{2}} \sqrt{(j \mp m)(j \pm m + 1)} | a j m \pm 1 \rangle.$$
(1.79)

考虑

$$\langle a' \mid j' \mid m' \mid J_{-1}I_{+1} | (Ta) \mid j \mid k \mid j' \mid m' \rangle$$

$$= -\frac{1}{\sqrt{2}} \sqrt{(j' + m')} (j' + m' + 1)$$

$$\times \langle a' \mid j' \mid m' \mid J_{-1} | (Ta) \mid j \mid k \mid j' \mid m' + 1 \rangle$$

$$= -\frac{1}{2} (j' - m') (j' + m' + 1) \langle a' \mid j' \mid m' \mid (Ta) \mid j \mid k \mid j' \mid m' \rangle$$

$$= \Gamma - J_{+1} \{ a' \mid j' \mid m' \rangle \rfloor^{+} J_{+1} | (Ta) \mid j \mid k \mid j' \mid m' \rangle$$

$$= -\frac{1}{2} (j' - m') (j' + m' + 1)$$

$$\times \langle a' \mid j' \mid m' + 1 \mid (Ta) \mid j \mid k \mid j' \mid m' + 1 \rangle,$$

所以

$$\langle a' \ j' \ m' \ | \ (Ta) \ j \ k \ j' \ m' \rangle$$

= $\langle a' \ j' \ m' + 1 \ | \ (Ta) \ j \ k \ j' \ m' + 1 \rangle$, (4.80)

矩阵元中 m′变为 m′+1时值不变,故证明了

$$\langle a' j' m' | (Ta) j k j' m' \rangle \stackrel{ij}{=} m'$$

无关。可定义约化矩阵元 $\langle a' j' || T^* || a j \rangle$ 为

$$\langle a' \ j' \ m' \mid (Ta) \ j \ k \ j' \ m' \rangle = \frac{(-)^{2k}}{\sqrt{2j'+1}} \langle a' \ j' \mid T^k \mid a \ j \rangle_*$$

$$(4.81)$$

显然对约化矩阵元的定义,可以差一个与分量指标无关的因子。 不同文献上约化矩阵元的定义并不完全相同,但只要计算中前后 一致,最后得的矩阵元总是相同的。

计算约化矩阵元时,应注意充分利用它与分量指标无关的性质,往往是任选一组使计算最为简单的分量指标,用这组分量指标算出矩阵元,然后除以 CG 系数和相应的因子,求得约化矩阵元,其它约化矩阵元,则可通过维格纳-爱卡尔脱定理得到。

事实上,除 SO(3)群 外, 其它 李 群,如 SO(N),SU(N)等都有它们相应的不可约张量,而且也有推广的维格纳-爱 卡 尔脱定理。这对求群表示,以及把这些群用于物理问题,都有重要作用。

第五章 对称群与西群

5.1 n 阶对称群 Sn

在第一章例 2 中,已谈到过 S_n 群,它也称为 n 阶置 換群。置換 s 将 $\{1,2,\cdots,n\}$ n 个数字的排列 $a_1a_2\cdots a_n$,映为排列 $b_1b_2\cdots b_n$,

$$s = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}. \tag{5.1}$$

即 s 把 a_1 变 为 b_1 , a_2 变 为 b_2 , a_n 变 为 b_n . 只要每一列上面数码 a_i 和下面数码 b_i 对准,不管每列出现的顺序 如何,都表示同一个置换。如

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 & 5 & 2 & 1 \\ 5 & 1 & 4 & 2 & 3 \end{pmatrix} .$$

两个置換 τ ,s的乘积 τs ,为先实行置换s,再实行置换 τ ,如

$$r = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2 \end{pmatrix}, \quad s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix},$$
$$rs = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}, \quad sr = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix}.$$

可见置换的乘法不满足交换律。按置换乘法定义,可看出乘法是 满足结合律的。恒等置换

$$s_0 = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}$$
(5.2)

是单位元 素,对 任 意 $s \in S_n$,有 $s_0 s = s s_0 = s$ 。式 (5.1) 中 s 的逆 s^{-1} 为

$$s^{-1} = \begin{pmatrix} b_1 & b_2 & \cdots & b_n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}, \tag{5.3}$$

即 s^{-1} 把 b_1 变为 a_1 , b_2 变为 a_2 , ..., b_n 变为 a_n ,

$$ss^{-1} = s^{-1}s = s_{0}$$

这样n阶置换全体构成 S_n 群。 S_n 群是有限群,它的阶为n!。

 S_n 群是 n 个全同粒子的量子体系的对称群,而且 S_n 群的不可约表示,与李群 U(n) , O(n) 等的不可约表示有密 切的 关 系。 所以对 S_n 群的了解,往往被看成是理论物理工作者必要 的基础知识。

下面讨论一种特殊形式的置换——轮换。 m 阶轮换(e_1 e_2 \dots e_m) 把 e_1 变为 e_2 , e_2 变为 e_3 , \dots , e_{m-1} 变为 e_m , e_m 变 为 e_1 的置换,

$$(e_1 \ e_2 \ \cdots \ e_m) = \left(\begin{array}{cccc} e_1 & e_2 & \cdots & e_{m-1} & e_m \\ e_2 & e_3 & \cdots & e_m & e_1 \end{array}\right).$$

轮换符号内的数码作轮换, 仍表示同一个轮换,

$$(e_1 \ e_2 \ \cdots \ e_m) = (e_2 \ e_3 \ \cdots \ e_m \ e_1) = \cdots$$
$$= (e_m \ e_1 \ e_2 \ \cdots \ e_{m-1}).$$

两个轮换(e_1 e_2 ··· e_m)和(f_1 f_2 ··· f_i)如果沒有公共数码,我们称这两个轮换是互相独立的。两个互相独立的轮换乘积,与因子的次序无关。如 e_1 , e_2 ,···, e_m , f_1 , f_2 ,···, f_i 无公共数码,则

$$(e_1 \ e_2 \ \cdots \ e_m)(f_1 \ f_2 \ \cdots \ f_1)$$

$$= \begin{pmatrix} e_1 & e_2 & \cdots & e_m & f_1 & f_2 & \cdots & f_1 \\ e_2 & e_3 & \cdots & e_1 & f_2 & f_3 & \cdots & f_1 \end{pmatrix}$$

$$= (f_1 \ f_2 \cdots f_1)(e_1 \ e_2 \cdots e_m).$$

任意 n 阶置換 s ,总可以表为沒有公共数码轮换的乘积。在 s 中任取一个数码 e_1 作为轮换的第一个数码, 若 s 将 e_1 变为 e_2 , 则轮换的第二个数码为 e_2 , 若 s 将 e_2 变为 e_3 , 则轮换的第三个数码为 e_3 , 如此继续下去, 直到变为 e_1 为止, 这是 一个 轮换因 子。一般说, 这轮换不包含 n 个数字的全体。 从剩下的数码中任

选一个作为第2个轮换的第一个数字,重复上面的做法,组成第2个轮换。这样继续下去,直到轮换全体包含了1个数字的全体为止。这样做成的轮换乘积,当然是沒有公共因子的。于是就把s 化为独立的轮换的积了。如

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix} = (1 \ 3)(2 \ 4 \ 5),$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 6 & 5 & 1 & 3 \end{pmatrix} = (1 \ 4 \ 5)(2)(3 \ 6) = (1 \ 4 \ 5)(3 \ 6),$$

$$s_0 = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n \end{pmatrix} = (1)(2)\cdots(n) = (1) = (2)$$

$$= \cdots = (n),$$

注意(2),(3),…等表示将自身映为自身的轮换,可以在简写时不记。轮换(ϵ_1 ϵ_2 … ϵ_m)的逆为

$$(e_1 \ e_2 \ \cdots \ e_m)^{-1} = (e_m \ e_{m-1} \ \cdots \ e_2 \ e_1)$$

由 2 个数码组成的 2 阶轮换(e_1 e_2)料对换,表示 把 e_1 变为 e_2 , 把 e_2 变为 e_1 . 任一个 m 阶轮换,可以写为(m-1)个对换的乘积,

$$(e_1 \ e_2 \ \cdots \ e_m) = (e_1 \ e_m)(e_1 \ e_{m-1})\cdots(e_1 \ e_3)(e_1 \ e_2),$$

注意上面乘积的各对换因子,都具有数码 e_i ,因此 在 乘 法 中,各因子的次序不能随意改变。设 a 和 k 是任意两个正整数,可以由置换的乘法直接验明,对换 $(a \ a + k)$ 满足下面的递推关系

$$(a \ a+k) = (a+1 \ a+k)(a \ a+1)(a+1 \ a+k).$$

反复用这递推关系,可以把任意对换(a a+k)化为两个相邻数码对换的乘积。当然这些相邻数码对换的各因子中,也是有相同数码的,因此各个对换因子的次序,也不能随意改变。

意之,任一个置換可写为沒有公共数码轮換的积;轮換又可 写成对換的积;而对換又可写为相邻数码对換的积。故任一置換 可写为相邻数码对换的积。如

$$\left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{array}\right) = (1 \ 3 \ 4) = (1 \ 4)(1 \ 3)$$

= $(3 \ 4)(2 \ 3)(3 \ 4)(1 \ 2)(3 \ 4)(2 \ 3)(3 \ 4)(2 \ 3)(1 \ 2)(2 \ 3),$ 考虑与置换 s 共轭的元素 tst^{-1} ,设

$$s = \begin{pmatrix} 1 & 2 & \cdots & n \\ c_1 & c_2 & \cdots & c_n \end{pmatrix},$$

$$t = \begin{pmatrix} 1 & 2 & \cdots & n \\ d_1 & d_2 & \cdots & d_n \end{pmatrix} = \begin{pmatrix} c_1 & c_2 & \cdots & c_n \\ f_i & f_2 & \cdots & f_n \end{pmatrix},$$

$$t^{-1} = \begin{pmatrix} d_1 & d_2 & \cdots & d_n \\ 1 & 2 & \cdots & n \end{pmatrix} = \begin{pmatrix} f_1 & f_2 & \cdots & f_n \\ c_1 & c_2 & \cdots & c_n \end{pmatrix},$$

 $t \& S_n$ 的任意元素,有

$$tst^{-1} = \begin{pmatrix} d_1 & d_2 & \cdots & d_n \\ f_1 & f_2 & \cdots & f_n \end{pmatrix}, \qquad (5.4)$$

即 tst⁻¹ 可以通过对 s 中上下两行同时实行 置 換 t 而得 到。当把 s 写成 无公共数码轮换的积时,由于 tst⁻¹ 是对 s 的上下两行 同时实行置换, 就相当对 s 的每个轮换因子中的数码实行置换 t, 而每个轮换因子中所包含数码的个数不会改变。如

$$s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 5 & 3 \end{pmatrix} = (1 \ 2 \ 4)(3 \ 6)(5),$$

$$t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 4 & 1 & 3 & 2 \end{pmatrix} = (1 \ 5 \ 3 \ 4)(2 \ 6),$$

$$t^{-1} = \begin{pmatrix} 5 & 6 & 4 & 1 & 3 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = (4 \ 3 \ 5 \ 1)(6 \ 2),$$

$$tst^{-1} = \begin{pmatrix} 5 & 6 & 4 & 1 & 3 & 2 \\ 6 & 1 & 2 & 5 & 3 & 4 \end{pmatrix} = (5 \ 6 \ 1)(4 \ 2)(3).$$

反之, 若两个置换 s 和 r 所包含轮换因子的个数相同, 每个轮换因子中数码个数也相同, 或称 s 和 r 有相同轮换结构, 则 s 和 r 必互相共轭, 如

$$s = (a_1 \ a_2 \ a_3)(b_1 \ b_2) \cdots (c_1 \ c_2 \ \cdots \ c_3),$$

$$r = (d_1 \ d_2 \ d_3)(e_1 \ e_2) \cdots (f_1 \ f_2 \ \cdots \ f_i),$$

则有

茰

$$tst^{-1} = r$$
.

于是我们得到,具有相同轮换结构的置 換 构成 S_n 群的一个类。M S_n 群的轮换结构,可用

$$(v) = (1^{v_1} 2^{v_2} \cdots n^{v_n})$$

来描写,代表轮换结构中有独立的 ν_1 个 1 阶 轮 换, ν_2 个 2 阶轮换, \dots , ν_n 个 n 阶轮换。 ν_1 , ν_2 , \dots , ν_n 为非负整数,而且满足

$$\nu_1 + 2\nu_2 + 3\nu_3 + \dots + n\nu_n = n. \tag{5.5}$$

在 S_n 中,具有轮换结构(ν)的元素个数为

$$\frac{n!}{1^{\nu_1} \nu_1! 2^{\nu_2} \nu_2! \cdots n^{\nu_n} \nu_n!}$$
 (5.6)

当然由于具有相同轮换结构(ν)的元素构成 S_n 群的一个类,(ν)也代表 S_n 的一个类。

 S_n 群的类,也常用[λ] = [λ_1 λ_2 ··· λ_n]来描述,其中

$$\lambda_1 = \nu_1 + \nu_2 + \dots + \nu_n,$$

$$\lambda_2 = \nu_2 + \nu_3 + \dots + \nu_n,$$

$$\lambda_n = \nu_n.$$
(5.7a)

显然有

 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0$, $\lambda_1 + \lambda_2 + \cdots + \lambda_n = n$, (5.7b) [λ_1 称为n的一个分割,即按 (5.7b) 式把n分割为一 些不增的整数和。 S_n 群类的个数由 η 的分割个数决定。两个分割[λ_1] = [λ_1] λ_2 ··· λ_n] 和[λ'] = [λ'_1] λ'_2 ··· λ'_n],如果第一个非零差 λ_i — λ'_i 是正的,就称[λ'_1 大于[λ'_1],记为[λ'_1]>[λ'_1]。

图5.1 (a) % 群的类·(b) % 群的类

设杨图[χ]是把杨图[χ]中的行和列互换而得,则称杨图[χ]与[χ]是互为共轭的。如果杨图[χ]与[χ]一样,即[χ]=[χ],则称杨图[χ]是自轭的。如 χ 3。中的[χ 3]与[χ 3]是互为共轭的,[χ 4]是自轭的。 χ 5。中的[χ 4],[χ 5]。中的[χ 5]。中的[χ 6]。1]与[χ 6]。1]与[χ 6]。2]是自轭的。

5.2 投影算符

在第二章中,我们曾介绍过求群表示的各种方法,如通过群的定义、群的不变子群的商群、群表示的直积、把群分解为直积群和子群的诱导等来求群表示。在第四章中我们还介绍了通过群的同态关系来求群表示的方法。本章中,我们将以对 称群 S_n 为

例,来介绍将正则表示约化为不可约表示的方法,并用它求出 S_n 的所有不等价不可约表示。对 称 群 S_n 是 有 限 群、设 $s \in S_n$, $U^{(s)}(s)$ 是 S_n 的 $f^{(s)}$ 维不可约表示。从定理 2.6 知道, S_n 的 正则表示 L(s) 可以约化为 $U^{(s)}(s)$ 的直和,

$$L(s) = \sum_{\{i,k\}} f^{(i,k)} U^{(i,k)}(s),$$

$$\sum_{\{i,k\}} (f^{(i,k)})^2 = n! .$$
(5.8)

本节介绍的投影算符方法,就是将群表示空间约化为一些不变子· 空间直和的有效方法。

定义5.1 设P 是线性空间V 上的线性算符,它满足 $P^2 = P$,则称P 是V 的一个投影算符,P 的值域 R。和核 N。分别为

$$R_P = PV = \{z \in V \mid z = Px, x \in V\}, \tag{5.9a}$$

$$N_{P} = \{z' \in V \mid Pz' = \theta\}. \tag{5.9b}$$

其中 θ 是零向量。值域 P_P 是由V 经P 投影后所得的向量组成的空间。而 N_P 是由V 中经P 投影后变为零向量 θ 的向量 \mathbf{z}' 组成,故又称为P的零空间。

对任意 $z \in R_P$, 必有

$$z = Pz_{\bullet} \tag{5.10}$$

因为山式(5.9a), 有 $x \in V$, 使

$$z = Px = P^2x = Pz_{\bullet}$$

反之,若 z=Pz,显然 $z \in R_{P}$.

设P 为V 上投影算符,E 是V 上恒等算符,则(E - P)也是V 上投影算符,而且有

$$P(E-P) = 0.$$
 (5.11a)

不仅如此,向量空间V可以约化为 R_p 和 N_p 的真和。因为

$$V \approx PV + (E-P)V = R_P + (E-P)V_{\bullet}$$

对任 意 $z' \in (E-P)V$, 有 $Pz' = P(E-P)x = \theta$, 其中 $x \in \mathbb{R}V$ 中

任意向量,因此 $z' \in N_p$ 。故有

$$V = R_p + N_p$$
,

其中+号表示两个空间的和。要证 明 为 直 和,必须进一步证明 $R_P \cap N_P = \theta$ 。设 $u \in R_P \cap N_P$,则必有 $Pu = u = \theta$ 。故

$$V = R_p \oplus N_p,$$

$$R_p = PV, \qquad N_p = (E - P)V,$$
(5.11b)

式 (5.11b) 说明两个投影算符 $P_i(E-P)$ 若满足式 $(5.11a)_i$ 则它们将V 约化为两个空间的直和。

反之,若空间V可以约化为两个空间W和W'的直和,则必能找到投影算符P,使W=PV,W'=(E-P)V。因为由V= $W\oplus W'$,对任意 $x\in V$,有唯一的z和z'使x=z+z',其中 $z\in W$, $z'\in W'$ 。定义P使Px=z,恒有 $P^2x=Pz=z=Px$,故 $P^2=P$,P是V上投影算符,而且PV=W,(E-P)V=W'。

将以上讨论师以推广。可得

定理5.1 若 $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$,则V上必存 在投影算符 P_1, P_2, \cdots, P_k 满足

- (1) $P_i^2 = P_i$, $i = 1, 2, \dots, k$,
- (2) $P_i P_j = 0, i \neq j,$

(3)
$$P_1 + P_2 + \cdots + P_k = E_k$$
 (5.12)

(4) $P_iV = W_i$, $i = 1, 2, \dots, k$.

反之,若存在投影算符 P_1,P_2,\cdots,P_k 满 足 式(5.12),则V 可约化为 $W_1 \oplus W_2 \oplus \cdots \oplus W_k$ 。

定理5.2 设 $\{A(g_a)\}$ 是群 $G = \{g_a\}$ 的一个有限维表示,如果表示空间 W_1, W_2, \dots, W_k 是G的不变子空间, $V = W_1 \oplus W_2 \oplus \dots \oplus W_k$,则必存在投影算符 P_1, P_2, \dots, P_k ,且

$$A(g_{\alpha})P_{i} = P_{i}A(g_{\alpha}), \quad i = 1, 2, \dots, k.$$
 (5.13)

反之,若存在满足式(5.12)和(5.13)的投影算符,则 $W_i = P_i V$ 是G的一个不变子空间。

证明 因为 W_i 是G的一个不变子空间, 故对任意 $z \in W_i$,

有 $A(g_a)z \in W_i$. 当 $V = W_1 \oplus W_2 \oplus \cdots \oplus W_n$ 时,由定理 5.1 知必存在满足式 (5.12) 的投影算符 P_1, P_2, \cdots, P_i , $W_i = P_i V_i$ 由式 (5.10) 知对任意 $z \in W_i$, 有 $P_i z = z$, $P_j z = \theta$, 当 $j \neq i$. 因此对任意 $x \in V$, 有 $P_i A(g_a)x = A(g_a)P_i x$,故证明了

$$A(g_{\alpha})P_{i} = P_{i}A(g_{\alpha})_{\bullet}$$

反之,若存在满足式(5.12)和(5.13)的投影 算 符 P_i , $i=1,2,\cdots,k$,则对任意 $v \in W_i$,有

 $P_iz=z, \qquad A(g_\pi)z=A(g_\pi)P_iz=P_iA(g_\pi)z\in W_i.$ 故 W_i 是G的一个不变子空间。

定理 5.2 只建立了把V分解为不变子空间与投影算符间的一一对应关系,但并未解决 W_1 是否能进一步 约 化 的 问 题,定理 5.3 将回答这个问题。

定理5.3 设 P_i 不能写成另外两个与 $A(g_a)$ 可交換的投影算符 P_i , 和 P_i , 的和,而且

证明 设 P_i 不能写成两个投影算符 P_{i_1} , P_{i_2} 之和,而 W_i = P_iV 是可约的。那么由定理 5.2 知,必存在 P_{i_1} , P_{i_2} 满足式(5.14),这与假设矛盾。故 W_i 是G的一个不可约表示空间,反之,设 W_i 是G的一个不可约表示空间,而 P_i 可以写为式(5.14) 中两个投影算符之和,则由定理 5.2 知, W_{i_1} = $P_{i_2}W_i$ 和 W_{i_2} = $P_{i_2}W_i$ 是G的不变子空间, W_i 是G的可约表示空间,这与假设矛盾。故 P_i 不能写成满足式(5.14)的两个投影算符之和。

应用定理 5.2 和 5.3,就可以 把 G 在 空 间 V 的有 限 维表示 $A(g_s)$,通过一组不能分解的、与 $A(g_s)$ 可交换的投影算符 P_1 ,

 P_2, \dots, P_k , 约化为不可约表 $A^1(g_a), A^2(g_a), \dots, A^k(g_a)$ 的直和。不可约表示空间分别为 W_1, W_2, \dots, W_k .

对正则表示情况,还可以得到关于投影算符的进一步知识。设 R_a 是群G的群代数, $L(g_a)$ 是G的正 则 表 示。于是 R_a 的元素x可写为

$$x = \sum_{a} x(a)g_{a}, \quad x(a) \in C,$$

$$L(g_{a})x = g_{a}x.$$

定义5.2 群代数 R_G 中,元素 e 若满足 $e^2 = e$,则 称 e 为幂等元.

如果 R_G 中元素 e' 满 足 $e'^2 = \lambda e'$, λ 为 常 数,则 e' 称为本 质幂等元。取 $e = \lambda^{-1}e'$,则 e' 为幂等元。

下面我们建立 R_{σ} 的投影算符和幂等元 间 的一一对应关系。

设 P_i 为将 R_G 约化到 不变予空间 W_i 的投影 算 符, W_i = P_iR_G . 即对任意 $x \in R_G$, $P_ix \in W_i$! 由定理5.2 知,

$$L(g_\alpha)(P_ix) = P_iL(g_\alpha)x,$$

故有

$$g_a(P_i x) = P_i(g_a x). \qquad .$$

设群G的单位元素为 g_0 , $e_i = P_1 g_0$, 则由

$$P_{i}x = \sum_{a} x(a)(P_{i} g_{a}) = \sum_{a} x(a)(P_{i} g_{a} g_{0})$$

$$= \sum_{a} x(a)g_{a}(P_{i} g_{0}) = xe_{i}; \qquad (5.15)$$

而且.

$$P_{i}^{2}x = P_{i}(xe_{i}) = x(P_{i}e_{i}) = xe_{i}^{2} = P_{i}x = xe_{i}$$

故 e, 为幂等元,

$$e_i^2 = e_{i*}$$
 (5.16)

反之,若 $e_i \in R_G$,且为满足式(5,16)的幂等元,则可由 e_i 定义算符 P_i ,

$$P_i x = x e_i, \quad x \in R_{G_i}$$

容易验证

$$P_{i}^{2} = P_{i}, \quad P_{i}L(g_{a})x = L(g_{a})(P_{i}x).$$

故 P_i 是 R_c 上与 $L(g_s)$ 可交換的投影算符。

于是,若有一个投影算符 P_i ,则有一个幂等元 e_i 与之对应;反之,若有一个幂等元 e_i ,也就有一个投影算符 P_i 与 之 对应。亦即

$$P_i R_G = R_G e_i$$
,

而且当 $P_1 + P_2 + \cdots + P_k = E$ 时,有

$$e_1 + e_2 + \cdots + e_k = g_0$$

应用定理 5.2 和 5.3, 可得下面对正则表示约化的定理 5.4.

定理5.4 设 $R_G = W_1 \oplus W_2 \oplus \cdots \oplus W_k$, $W_i = P_i R_G$, W_i 是 $L(g_a)$ 不变子空间, P_i 是投影算符。设 P_i 对应的幂等元 为 e_i ,对任意 $x \in R_G$,有 $P_i x = x e_i$ 。则 W_i 是不可约子空间的充分必要条件是: e_i 不能分解为满足以下条件的两个幂等元的和,

$$e_{i} = e_{i_{1}} + e_{i_{2}}, \quad e_{i_{1}}^{2} = e_{i_{1}} \neq 0, \quad e_{i_{2}}^{2} = e_{i_{2}} \neq 0;$$

$$e_{i_{1}}e_{i_{2}} = e_{i_{2}}e_{i_{1}} = 0.$$
(5.17)

如一个幂等元不存在如式(5.17)所给出的分解时,称为本原幂等元.由定理 5.4 可知,将 $L(g_u)$ 约化为 不 可约表示的问题,可变成寻找全部本原幂等元的问题。但是,从本原幂等元的定义来判断一个幂等元是否是本原的,并不方便。定理 5.5 将给出一个简便的判断方法。

定理5.5 若 e_i 是一个本原幂等元,则对任意 $x \in R_G$,有 $e_i x e_i = \lambda_x e_i$, $\lambda_x \in C$;

反之, 岩 e_i 是幂等元, 若对任意 $x \in R_c$, 有

$$e_i x e_i = \lambda_x e_i,$$

则 e; 是本原幂等元。

证明 若 e_i 是本原幂等元,由定理 5.4 知由与 e_i 对应 的投影算符 P_i ,可投影出 $L(g_a)$ 的 一个 不可约 不变 子空间 W_i =

 P_iR_a , 对任意 $x \in R_a$, 用式 (5.18) 可定义一个 与 x 有 关 的算符 A,

$$Ay = ye_i xe_i, (5.18)$$

其中 $y \in R_{G_a}$ 算符 $A = L(g_a)$ 可以交換,因

$$AL(g_a)y = L(g_a)ye_ixe_i = L(g_a)Ay_{\bullet}$$

那么根据舒尔引理,A在不可约子空间 W_i 上,是常数矩阵 $\lambda_x E_{W_i}$, E_{W_i} , E_{W_i} 是 W_i 上的单位矩阵。利用 $P_i x = x e_i$, 由式(5.18)还可得出,

$$Ay = P_i[(P_iy)x]_{\bullet}$$

因此,当 $y \in W_i$ 时, $Ay \in W_i$; 当 $y \notin W_i$ 时,Ay = 0。故 $A = \lambda_x P_i$,于是有

$$e_i x e_i = \lambda_x e_i \tag{5.19}$$

反之,若 e_i 是幂等元,且对任意 $x \in R_G$,有 $e_i x e_i = \lambda_x e_i$ 。设 e_i 不是本原幂等元,即 e_i 可分为满足式(5.17)的 e_{i_1} 和 e_{i_2} ,则

$$\begin{aligned} e_{i}e_{i_{1}}e_{i} &= (e_{i_{1}} + e_{i_{2}})e_{i_{1}}(e_{i_{1}} + e_{i_{2}}) = e_{i_{1}} = \lambda e_{i}, \\ e_{i_{1}}^{2} &= \lambda^{2}e_{i}^{2} = \lambda e_{i} = \lambda e_{i}^{2}, \\ \lambda^{2} &= \lambda. \end{aligned}$$

由上式得 $\lambda = 0$ 或 $\lambda = 1$ 。但 $\lambda = 0$,即 $e_{i_1} = 0$, $\lambda = 1$,即 $e_{i_1} = e_{i_1}$,说明 e_{i_1} 不能分为满足式(5.17)的 e_{i_1} 和 e_{i_2} ,因此 e_{i_1} 是 本 原幂等元。定理证毕。

以后我们会看到,定理 5.5 对判断一个 幂 等 元是否为本原的,将是很有用的.

5.3 杨盘及其引理

从定理 5.4 知道,如果能找到 S_n 群的全部本 原 幂等元,就可以求出它的全部不等价不可约表示。本节中 我 们 将 用简化杨 (Young) 氏方法,找出 S_n 群的本原幂等元。

首先引入杨盘的 概念。 S_n 群 的杨盘,是把数 字 $1,2,\cdots,n$,分别填到杨图的每一个方格中。每

一个填有这种数字的杨图,称为一个杨盘。每个杨图可以有n! 种填法,因此每个杨图,可以有n! 个杨盘。图 5.2 给出 S_6 群 当 $[\lambda] = [3 2 1]$ 时的两个杨盘 T_a 和 T_b 。

图 5.2

我们用符号(i,j)表示杨盘中第 i 行第 j 列的 位置。在图 5.2 的杨盘 T。中,数字 5 位于(1,3), 4 位于(2,2), 6 位于(3,1)。

对每一个杨盘T,我们定义两组算符,一组是行置换R(T) = $\{p\}$,由各行中数字在行中的全部置换组成。另一组是列置换C(T) = $\{q\}$,由各列中数字在列中的全部置换组成。如图 5.2 的杨盘 T_a ,有

 $R(T_a) = \{(1), (12), (15), (25), (125), (152), (34), (12)(34), (15)(34), (25)(34), (125)(34), (152)(34)\},$

 $C(T_a) = \{(1), (13), (16), (36), (136), (163), (24), (13)(24), (16)(24), (36)(24), (136)(24), (163)(24), (163)(24)\}.$

容易看出,R(T)和C(T)分别是 S_n 群的子群,单位元素 s_0 是R(T)和C(T)群的唯一公共元素。如果杨盘T对 应杨图的 $[\lambda] = [\lambda_1 \ \lambda_2 \ \cdots \ \lambda_n]$,则R(T)群的阶为 $\lambda_1!\lambda_2!\cdots\lambda_n!$,C(T)群的阶为 $\lambda_1!\lambda_2!\cdots\lambda_n!$,C(T)群的阶为 $\lambda_1!\lambda_2!\cdots\lambda_n!$, $\lambda_n!$,其中 $[\lambda] = [\lambda_1 \ \lambda_2 \ \cdots \ \lambda_n]$ 是 $[\lambda]$ 的共轭杨图。

定义算符

$$P(T) = \sum_{p \in R(T)} p,$$

$$Q(T) = \sum_{q \in C(T)} \delta_q q,$$
(5.20)

其中 $\delta_q = +1$, 当 q 是偶置換时, $\delta_q = -1$, 当 q 是奇置換时. P

和Q都是 S_n 的群代数 R_G 的元素。用P和Q的积定义**杨算**符E,

$$E(T) = PQ = \sum_{p \in R(T)} \sum_{q \subseteq C \setminus T} \delta_q p q_{\bullet}$$
 (5.21)

当然杨算符E也是 R_c 的一个元素。由于P和Q都与 盘T有关,故E也与盘T有关。

另外,对 $p,p' \in R(T), q,q' \in C(T)$,如果 有pq = p'q'。则由只有单位元素 s_0 是 R(T)和 C(T)的公共元素,可 得 必 有 p = p', q = q'。因此式(5.21)求和号中每一项 pq,都是 S_n 的 不同元素,因此 $E(T) \neq 0$ 。

设有杨盘T, $s \in S_n$, sT 为对T 中数字作置換s 而得到的杨盘。如图 5.2 中 T_b 盘,可通过对 T_a 盘中数字作置换(254)得到,即

$$T_b = (2 5 4) T_{a.}$$

当然,只有属于同一杨图的杨盘,能且必能通过置换联系在一起。

下面介绍几个关于杨盘的引理,并证明式(5.21)引入的杨 算符,正是 S_n 群代数的本质本原幂等元。

引**理**5.1 设 T,T' 是由置換 r 联系的两个杨盘,T'=rT. 当置换 s 作用于T 上,使T 中位于(i,j)的数字变到 sT 中 (i_1,j_1) 处。则 $s'=rsr^{-1}$ 把 T' 中位于(i,j) 的 数 字,也 变 到 s'T' 的 (i_1,j_1) 处。

证明 sT 盘是把 T 盘中数字作置换 s 而得,rT 是把 T 盘中数字作置换 r 而得,由式(5.4)知 rsr^{-1} 是把置换 s 的上下两行同时作置换 r . 所以 rsr^{-1} 对 rT = T' 的作用,与 s 对 T 的作用一样。定理证毕。

如图5.3,r = (2.5.7)(3.4)(1.6),s = (1.3.5), $s' = rsr^{-1} = (6.4.7)$, 在T盘中位于(1.1)的数字 1, 在sT盘中位于(2,2); 同样在T'中位于(1,1)的数字 6, 在s'T'盘中也位于(2,2)。同样 其它数字位置的变化,也都是满足引理5.1。

图 5.3

从引理 5.1 还可看出,当行置换 p 作用于盘T 上,只引起T 中同一行数字的置换,因此 $rpr^{-1} = p'$ 也只引起 T' 中同 一 行数字的置换。显然当 p 不同时,p' 也不同,于 是,可 以 从T 的行置换 p' = rpr^{-1} 。同理,从T 的 列置 换 q ,得到 T' 的列置换 $q' = rqr^{-1}$ 。这样就可得到下面的系。

系 设

$$T' = rT$$
,

偑

$$R(T') = rR(T)r^{-1}, C(T') = rC(T)r^{-1},$$

 $P' = rPr^{-1}, Q' = rQr^{-1}, E' = rEr^{-1}.$
(5.22)

定理 5.1 和系,给出属于同一杨图的不同杨盘间的关系,式 (5.22)给出了不同杨盘的杨算符之间的关系。

引理5.2 设 p 和 q 分别是杨盘T 中的行和 列 置换,则 T 中位于同一行的任意两个数字,不可能出现 在 T' = pqT 的 同一列中。反之,若 T' = rT,而 T 中位于同一行的任意两个 数字,不出现在 T' 的同一列,则 r = pq。

证明 设T' = pqT. 考虑T'' = pT, 由引理 5.1知 $q'' = pqp^{-1}$ 是T''的列置換。而

$$q''T'' = pqp^{-1}pT = pqT = T',$$

原来在T中同一行的任意两个数字,仍在T''的同一行中。而q''是T''的列置換,不可能把T''中同一行的两个数字,变到T'的同一列。因此T中同一行的任意两个数字,经变 搀 pq 后,不可

能出现在T'的同一列中。

反之,如果 T' = rT, T 中同一行任意两个数字不出现在 T' 的同一列。也就是说在 T' 的同一列中出现的数 字,不在 T 的同一列中。 于是我们可以先对 T 进行适当的行置换,使置换后的 T 第一列所包含的数字,与 T' 第一列所包含的数字相同。 虽然这些相同数字的排列顺序并不一定相同。 然后保持 T 和 T' 的 第一列不变,再对 T 进行适当的行置换,使置换后的 T 的第二列所包含的数字,与 T' 的第二列所包含的数字相同。 这样 一 直做下去,便可使 T 经行置换 p 后,变为 T'' = pT 。 T'' 每 一 列 所包含的数字,与 T' 的相应列所包含的数字相同, 虽然每一列 中数字的顺序并不一定相同。 这样只需对 T'' 进行 适 当 的 列 置换,如 $q'' = pqp^{-1}$,就可把 T'' 中 每一列数字顺序变得与 T' 一样。 于是 q''T'' = pqT = T' 。

即 pq 把T 变成 T', 故 r = pq. 引理证毕。

引理 5.2 说明,一个列置 換 q 乘 上 行 置 換 p, pq 不 可能 把一个杨盘同一行的数字变到同一列。如果置換 r 不能把一个杨 盘的同一行数字变到同一列,那么这置换必可写成 pq 形式。

引**理5.3** 设杨盘T和T'分别属于杨图 $\{\lambda\}$ 和 $\{\lambda'\}$, $\{\lambda\}$ > $\{\lambda'\}$,则存在两个数字位于T的同一行和T'的同一列。

证明 设[λ] = [λ , λ , … λ ,], [λ'] = [λ' , λ' , … λ' ,]. 用反证法,假定T的同一行的任意两个数字,不出现在T'的同一列。那么与引理 5.2 的证明类似,先看T的第一行的 λ , 个数字,必在T' 的不同列中,T'的最长的行包含 λ' , 个数字,因此 λ' > λ_1 , 但由[λ] > [λ'] 知,只可能 λ' , = λ_1 , 通过对T' 进行适当列置换,使置换后的T' 第一行与T有相同数字。然后再看T的第二行的 λ_2 个数字,同样可以证明 λ'_2 = λ_2 , 这样一直做下去,便可得到[λ] = [λ']。与假设[λ] > [λ'] 矛盾。因此总存在位于T的同一行的两个数字,出现在T'的同一列中。

引理 5.3 指出,属于不同杨图的两个杨盘,总有一个盘中同

一行的两个数字,会出现在另一个盘的同一列中,这是不同杨图的杨盘间的一个重要性质,

引理5.4 若有两个数字,位于杨盘T的同 \cdot 行,又位于杨盘T'的同一列,则T和T'的杨算符E和E'满足

$$E'E = 0. (5.23)$$

证明 已知 R(T)和 C(T)是 S_n 的子群,利用重排定理,从式 (5.20) 可以看出,对任意 $p \in R(T)$, $q \in C(T)$,有

$$pP(T) = P(T)p = P(T),$$

$$qQ(T) = Q(T)q = \delta_q Q(T),$$

$$pEq = \delta_q E, \quad E = E(T).$$
(5.24)

设有两个数学 a_1 和 a_2 位于T 的同一行和T' 的同一列。那么对换 $(a_1 \ a_2) = t$ 属于T 的行置换 R(T),又属于T' 的列置换C(T'),即

$$t \in R(T) \cap C(T')$$
.

而已知 $t^2 = s_0$, s_0 是 S_n 的单位元素, 幷且 t 是奇置換, $S_t = -1$ 。 利用式(5.24)有,

$$Q(T')P(T) = Q(T')ttP(T) = -Q(T')P(T),$$

故有

$$Q(T')P(T) = 0.$$
 (5.26)

由式 (5,21) 得

$$E'E=0$$
.

定理证毕。

在引理 5.4 中,T和 T' 可以属于相同的杨图,也可 以属于不同的杨图。当T 和 T' 属于不同的杨图[λ]和[λ'],[λ]>[λ'] 时,利用引理 5.3,从引理 5.4 知道,必有 E'E=0.

引理5.5 设 .

$$x = \sum_{s \in S_n} x(s)s$$

是 S_n 群代数 R_c 的一个元素。如果对杨盘 T 的 任 意 $p \in R(T)$ 和 $q \in C(T)$,x 满足

$$pxq = \delta_{\mathbf{q}} x, \tag{5.27}$$

则 x = T 盘的杨算符 E 相差一个常数因子 θ ,

$$x = \theta E_{\bullet} \tag{5.28}$$

证明 整个证明分三步。首先证明当 T' = pqT 时,有 $Q(T')pq P(T) = \delta_q Q(T')P(T), \qquad (5.29)$

取 T'' = pT,于是由引 理 5.1 知 $q'' = pqp^{-1} \in C(T'')$, $\delta_{q''} = \delta_{q}$ 。 T' = pqT = q''T'',T' 是通过对 T'' 作 列 置 換 q'' 而 得 到,因此 $q'' \in C(T')$,由式 (5.24) 得

$$Q(T')pqP(T) = Q(T')q''pP(T) = \delta_q Q(T')P(T).$$

其次证明如果置换 s 不能 写 成乘积 pq 的 形 式,则 可 找到 $p \in P(T)$ 和 $q \in C(T)$,使

$$psq = s. (5.30)$$

设 T' = sT. 当 s 不是 pq 时,由引理 5.2 知,最少有两个数字 a_1 和 a_2 ,既位 于 T 的同一行,又位 于 T' 的同一列,取 对 换 $(a_1 \ a_2) = t$,有 $t^2 = 1$, $t \in R(T) \cap C(T')$ 。由 $T = s^{-1}T'$,由引理 5.1 知 $s^{-1}ts \in C(T)$ 。取 p = t, $q = s^{-1}ts$,则有

$$psq = s$$
.

于是证明丁式 (5.30)。

最后看

$$x = \sum_{s \in \mathcal{S}_n} x(s)s,$$

如果x 满足式 (5.27), 则有

$$pxq = \sum_{s \in S_n} x(s)psq = \sum_{s \in S_n} \delta_q x(s)s, \qquad (5.31)$$

式 (5.31) 求和号中,s 取 S_n 的不同的元素 时,psq 也 是 S_n 的不同元素。求和号中 s 分为可以写成 pq 和不可以写成 pq 两种情

况、首先对式(5.31)左端 psq 中 s 取为单位元素 s_0 时,相当右端 s 取为 pq 情况,于是有

$$x(s_0) = \delta_q x(pq).$$

而根据假设 p,q 是任意的, 若取

$$x(s_0) = \theta,$$

 θ 是与x 有关的常数,则

$$x(pq) = \delta_{\mathbf{q}}\theta_{\bullet} \tag{5.32}$$

当 s 不能写成 pq 形式讨,由式 (5.30)代入 (5.31),比较s+pq 项系数,可得

$$x(s) = \delta_q x(s).$$

由于 q 任意,总有 q 使 $\delta_q = -1$,故 x(s) = 0。因此当 R_q 中元素 x 满足 $pxq = \delta_q x$ 时,必有

$$x = \theta \sum_{p \in R(T)} \sum_{q \in C(T)} \delta_q pq = \theta E_{\bullet}$$

引理证毕.

从引理 5.5 可以看到,不仅杨算符满足式 (5.25),而且反之,凡是满足式 (5.27)的 R_c 元素,必是杨算符乘以常数。

引理5.6 对应于杨盘T的杨算符E,是一个本质的本原幂等元。不变子空间 $R_{G}E$ 是 S_{n} 群的一个不可约表示空间, $R_{G}E$ 的维数是 n_{1} 的因子。

证明 对任意 $p \in R(T)$, $q \in C(T)$, 由式 (5.21), (5.24)

$$pE^2 q = pEEq = \delta_q E^2.$$

用引理 5.5 可得

$$E^2 = \theta E, \qquad (5.33)$$

只要 $\theta \neq 0$, E 就是本质幂等元。

对于给定的杨盘 T 和它的杨算符 E ,可以定义 R 。上线性变换 P ,对任意 $^x \in ^R$ 。

$$Px = xE_{\bullet}$$

下面通过求P的迹定出 θ 。首先取 S_n 的元素 s_1, s_2, \dots, s_n ,为 R_G 的基。在这组基下,变换P的对角元为

$$[Ps_{j}](s_{j}) = (s_{j}E)s_{j}, \qquad (5.34)$$

由式 (2.16) 可得

$$[s_j E](s_j) = \sum_{i=1}^{n} \delta_{ij} E(s_j^{-1} s_j) = E(s_0) = 1,$$

其中 s_a 是 S_a 的单位元素。于是得到

$$[Ps_j](s_j) = 1,$$

$$\operatorname{tr} P = \sum_{i=1}^{n} [Ps_j](s_j) = n! \quad , \tag{5.35a}$$

P 的迹不会因基的选择而改变。现看 R_G 的另一 组 基 v_1, v_2, \cdots , $v_f, v_{f+1}, \cdots, v_{n}$, 其 中 v_1, v_2, \cdots, v_f 为子空 间 R_GE 的 基。因 为 $E \neq 0$,故 f 最小等于 1。由 P 定义,知

$$Pv_i = v_i E_{\bullet}$$

当 $i=1,2,\dots,f$ 时, $v_i \in R_G E$,可写为

$$v_i = u_i E, \quad u_i \in R_G,$$

由式 (5,33) 可得

$$Pv_i=u_iE^2=\theta u_iE=\theta v_{i\bullet}$$

而当 i = f + 1, ..., n! 时, $v_i \notin R_G E$, 而

$$Pv_i = v_i E \in R_c E$$

于是在这组 基 下,P 在 v_1, v_2, \cdots, v_f 的 对 角 元 都 是 θ ,而 在 v_{f+1}, \cdots, v_{n_i} 的对角元都是 0 . 于是求得

$$\operatorname{tr} P = \sum_{i=1}^{f} \theta = f\theta. \tag{5.35b}$$

因此

$$\theta = n!/f > 0. \tag{5.35c}$$

由式 (5.33) 和 (5.35c) 可以看出,E 是本质幂等元,(f/n!) E 是幂等元。而 $E = \sum_{p,q} \delta_q \ pq$ 的每一项系数为整数 $\delta_q = \pm 1$,那 么

 E^2 的系数也应为整数, 故 θ 为整数, $f = n!/\theta$ 是 n! 的因 子。

最后证明 $\theta^{-1}E$ 是本原幂 等 元。对任意 $x \in R_G$, $p \in R(T)$, $q \in C(T)$, 由式 (5.24) 可得

$$p(ExE)q = \delta_q(ExE)$$
.

由引理 5.5 知

$$ExE = \mu E$$
 (μ 是与 x 有关的常数),
($\theta^{-1}E$) $x(\theta^{-1}E) = (\mu/\theta)(\theta^{-1}E)$.

由定理 5.5 知 $\theta^{-1}E$ 是本原幂等元。因此 R_0E 是 S_n 的一 个不可约表示空间。引理证毕。

引理 5.6 告诉我们,从一个杨盘 T ,可以求出一个本原幂等 元 $\theta^{-1}E$,从而得到 S_n 群的一个不可约表示。显然,这样得到的不可约表示,肯定会有许多是等价的。下面介绍的引理5.7,将帮助我们寻找不等价的不可约表示。

引**理5.7** 同一个杨图的不同杨盘给出的表示 是等价的,而不同杨图的杨盘给出的表示是不等价的。

证明 设T和T'是两个杨盘,其杨算 符分别为E和E',各对应于不可约表示A和A',相应的表示空间为 $W=R_{\rm G}E$ 和 $W'=R_{\rm G}E'$ 。

当T和T'属于同一个杨图[λ]时,必存在 $t \in S_n$,使T' = rT。由引理 5.1 知 $E' = rEr^{-1}$ 。于是,对任意 $u \in W$,可定义算符 p ,使得

$$p^{-1}w = wEr^{-1} = wr^{-1}E' = w' \in W'$$
.

算符 p-1 满足式(2.5),

$$p^{-1}[A(s)w] = p^{-1}[sw] = [sw]Er^{-1}$$
$$= s[p^{-1}w] = A'(s)w'.$$

而且

$$Er^{-1}E' = \theta Er^{-1} \neq 0.$$

故 p^{-1} 是将W映为W'的等价映射,表示 A 和 A' 等价。

另外, 若表示 A 和 A' 等价, 即 对 任 意 $w \in W$, $s \in S_n$, 有

满足式(2.4),(2.5)的等价映射 p^{-1} 存在,

$$p^{-1}w=w'\in W',$$

$$p^{-1}[A(s)w] = A'(s)w' = p^{-1}sw = sp^{-1}w,$$

因此对任意 $x \in R_a$,有

$$p^{-1}x w = xp^{-1}w_*$$

由 p⁻¹ 可定义 C,

$$C = \lambda^{-1} p^{-1} E \neq 0$$
,

因为 $E \in w$,因此 $C \in W'$,即 $C \notin R_c$ 中W'的元素。C有下性质,对任意 $w \in W$,

$$p^{-1}w = \lambda^{-1} p^{-1}(w E) = wp^{-1}(\lambda^{-1}E) = wC$$
,

即用C右乘W,把W等价映射为W'。等价映射 p^{-1} 可以 通 过右乘C而得到。

 $M \in W'$ 可以得到

$$C = C(\lambda'^{-1}E')$$
,

m

$$C = p^{-1}(\lambda^{-1}E)^2 = (\lambda^{-1}E)p^{-1}(\lambda^{-1}E) = \lambda^{-1}EC$$

敌

$$C = (\lambda^{-1}E)C(\lambda^{\prime -1}E^{\prime}) = \lambda^{-1}\lambda^{\prime -1}ECE^{\prime},$$

即对应等价映射 p-1, 有不为零的 C 与之对应, 幷且

$$ECE' \neq 0$$
.

当杨盘T和T'属于不同杨图[λ]和[λ']时,[λ]>[λ'],用S,的任意元素 s 作用于T,得到属于杨图[λ]的杨盘sT,一共有n! 个。由上面讨论可知,杨盘 sT 与T 对应的表 示 等 价。从引理 5.1 知 sT 的杨算符为 sEs $^{-1}$,再用引 m 5.3 和 5.4,知 sT 的杨算符乘积为零,即

$$E' s E s^{-1} = 0$$
, $E' s E = 0$,

因为 s 是任意的,所以不可能找 到 $C \in R_{\mathbf{o}}$,使 $E'CE \neq 0$ 。因此不存在从 W' 到W 的等价映射,自然也不存在从 W 到 W' 的等价映射。这样就证明了不同杨图的杨盘,给出的表示是不等价的。

上面讨论的简化杨氏方法说明,由不同杨图的杨盘,可以求出 S_n 群的不等价不可约表示。而不同杨图的个数,正好是 S_n 群类的个数。从定理 2.8 系知道,只要 求出 所 有杨图所对应的表示,就可求出 S_n 群的全部不等价不可约表示。

5.4 Sn 群的不可约表示

总结 5.3 节可以得到定理 5.6.

定理5.6 杨算符 E(T)是本质的本原幂等元。不 变 子 空间 $R_{\rm G}E(T)$ 给出 S_n 群的一个不可约表示 $U^{(\lambda)}$ 。由同一个 杨图 $[\lambda]$ 的不同杨盘 T 给出的表示是等价的,而不同杨图 $[\lambda]$, $[\lambda']$ 给出的表示是不等价的。

为了进一步讨论不同杨图对应的表示的维数,我们先引进标准杨盘的概念。如果一个杨盘中,每一行的数字从左到右是逐渐增加的,每一列的数字从上到下也是逐渐增加的,我们就把这个杨盘叫做标准盘。如图 5.2 中, T_a 盘是标准盘, T_b 盘不是 标准盘。在图 5.4(a) 和 5.4(b)中,分别给出了 S_a 和 S_4 的 标准盘。

图5.4 (a)53的标准杨盘; (b)54的标准杨盘

对一个标准盘 $T_i^{(1)}$,在右上角给出这盘对应的分割,也即这盘所属的杨图。左下角:是对属于同一杨图的各标准盘的编号,这编号是从第一行的左端开始的。对数字从左到右逐个进行比较,数字小的编在前面,如果第一行数字完全相同,则将第二行对数字从左到右逐个进行比较;依此类推,可得对标准 盘 的 编号:=1,2,…, $f^{(1)}$ 。 $f^{(1)}$ 是杨图[λ]的标准盘个数。如图 5.4的(b)中, $T^{(2)}$ 是分割为[2^2]的杨图,在第一行填上数字 1,2 而 得 的标准盘, $T^{(2)}$ 21则是在同一个杨图的第一行,填上数字 1,3 而 得 的标准盘。

定理5.7 杨图[λ] 听对应的不可约表示的维数,等于该杨图的标准盘的个数 $f^{(i)}$.

此处我们不打算给出定理 5.7 的证明, 有兴趣的读者可参看 文献[2,16]。

仿上述方法,可求出对杨图[λ] = [λ_1 λ_2 ··· λ_r],标准盘的个数为

$$f^{-\lambda_1} = n! \prod_{i \le k} (l_i - l_k)/l_1! l_2! \dots l_r!$$
, (5.36a)

其中 $l_i = \lambda_i + r - i$, $i = 1, 2, \dots, r$, r 是杨图[λ]的 行 数,n[是 S_n 群的阶、显然

$$\lambda_1 + \lambda_2 + \dots + \lambda_r = n_{\bullet} \tag{5.37}$$

 $f^{(1)}$ 还有另一个简明表达式,

$$f^{(i)} = n! / \prod_{i,j} g_{ij},$$
 (5.36b)

图5.5 [643]的gi,图

其中 g_{ij} 是杨图[λ]的第:行第 i 列的"钩 长",它等于以(i) 格子为直 角 尺端点 所包含的方格数,也就是在(i) 右面与 下面的方格数加 1 . 如图 5.5,对 [λ] = [6.4.3]的 S_{13} 杨图,有

$$g_{11} = 8$$
, $g_{12} = 7$, $g_{13} = 6$, ...,

$$g_{21} = 5$$
, $g_{22} = 4$, $g_{23} = 3$, ...,

通常把 g_{ij} 填在该小方块中。因此从式(5.36b)及图 5.5,容易求出

$$f^{(6+3)} = \frac{13!}{8 \cdot 7 \cdot 6 \cdot 4 \cdot 2 \cdot 1 \cdot 5 \cdot 4 \cdot 3 \cdot 1 \cdot 3 \cdot 2 \cdot 1}$$

$$= 13 \cdot 11 \cdot 9 \cdot 5.$$

这比用式 (5.36a) 计算 $f^{(1)}$ 要方便些。

由定理5.6与5.7和式(2.24)可得

$$\sum_{\{1,1\}} (f^{\{1,1\}})^2 = n!, \qquad (5.38)$$

例 1 对 S_n 群,当[λ] = [n] 时,只有一个标准盘,如图 5.6(a)。此时

$$R(T_1^{(n)}) = S_n = \{s\}, \qquad C(T_1^{(n)}) = s_0,$$

 s_0 是 S_n 的单位元。于是

$$E_1^{(a')} = \sum_{a \in S_n} s_a$$

由重排定理知,对任意 $t \in S_n$,有

$$tE_1^{(n)}=E_1^{(n)}$$
。
因此 $[n]$ 材应 S_n 群的一维
恒等表示。

当[λ]=[1"]时, 也 只有一个标准盘如图 5.6的(b),此时

$$R(T_1^{(1^{n})}) = s_0,$$

 $C(T_1^{(1^{n})}) = S_{n_0}$

图5.6 S。的两个标准盘

于是

$$F_1^{r_1 r_1} = \sum_{s \in S_n} \delta_s s_s$$

对任意 $t \in S_n$, 有

$$tE_1^{(1^n)} = \delta_t E_1^{(1^n)},$$

因此[1"]对应 S_n 群的另一个一维表示,偶置换矩阵元为 + 1,奇置换矩阵元为 - 1。这个表示称为 S_n 群的交代表示。交代表示是 S_n 群到 2 阶循环群上的同态映射。

例 2 S_3 群的 S_3 可约表示。从图 5.4的(a) 可以看出,标准盘 $T_1^{(1)}$ 对应 S_3 的一维恒等表示, $T_1^{(2)}$ 对应 S_3 的变代表示。[λ] = [2 1]有两个标准盘,由定理 5.7 知它对应 S_3 的一个二维表示。从定理 5.6 知道,由 $T_1^{(2)}$ 和 $T_2^{(2)}$ 给出的不可约表示是等价的,现考虑由 $E_1^{(2)}$ 给出的一个 S_3 不变子空间 $R_6E_1^{(2)}$ 。已知

$$E_1^{(2)} = [(1) + (1 2)][(1) - (1 3)]$$

$$= (1) + (12) - (1 3) - (1 3 2),$$

(1) $E_1^{(2)1} = E_1^{(2)11}$,

$$(1 \ 2)E_1^{(2)} = E_1^{(2)},$$

$$(1\ 3)E_1^{211} = -(1)-(2\ 3)+(1\ 3)+(1\ 2\ 3),$$

$$(2 \ 3)E_1^{(2)1} = (2 \ 3) - (1 \ 2) + (1 \ 3 \ 2) - (1 \ 2 \ 3)$$
$$= -E_1^{(2)1} - (1 \ 3)E_1^{(2)1},$$

$$(1 \ 2 \ 3)E_1^{(2)} = (1 \ 3)E_1^{(2)},$$

$$(1 \ 3 \ 2)E_1^{211} = -E_1^{211} - (1 \ 3)E_1^{211}$$

可以看到空间 $R_G E_1^{(21)}$ 确是二维的。若取 $E_1^{(21)}$ 和 $(13)E_1^{(21)}$ 为 $R_G E_1^{(21)}$ 的基,即

$$E_1^{(2)1} = {1 \choose 0}, \quad (1 \ 3) E_1^{(2)1} = {0 \choose 1}.$$

可以算出 S₃ 群元的表示矩阵 U¹²¹¹(s)为

$$U^{(21)}((1\ 2)) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U^{(21)}((1\ 2)) = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix},$$

$$U^{(21)}((1\ 3)) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad U^{(21)}((2\ 3)) = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix},$$

$$U^{(21)}((1\ 2\ 3)) = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}, \qquad U^{(21)}((1\ 3\ 2)) = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}.$$

例 3 任
$$\circ_4$$
 群的 $\stackrel{f}{=}$ 下之:,《日 公私基外 $E_1^{(2^2)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$,(1 3) $E_1^{(2^2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$,

求(12)的表示矩阵。

由定理5.7及图 5.4的(b)可以看出 $_{i}R_{o}E_{1}^{(2)^{2}}$ 是二维空间。并可直接算出

$$E_1^{\lfloor 2^{2}\rfloor} = [s_0 + (1 \ 2)][s_0 + (3 \ 4)][s_0 + (1 \ 3)][s_0 - (2 \ 4)],$$

$$(1 \ 2)E_1^{\lfloor 2^{2}\rfloor} = E_1^{\lfloor 2^{2}\rfloor},$$

(1 2)(1 3) $E_1^{(2^{2})} = (1 3 2)E_1^{(2^{2})} = -E_1^{(2^{2})} - (1 3)E_1^{(2^{2})}$, 于是 (1 2) 的表示矩阵为

$$U^{(2^{2})}((1\ 2)) = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}.$$

由定理 5.6 和 5.7 可知,从杨图[λ]的任一个 盘 出发,可以得到 S_n 群的一个不可约表示空间,而这空间的维数就是杨图[λ]可作标准盘的个数 $f^{(\lambda)}$ 。于是,在这不可约表示 空 间取 $f^{(\lambda)}$ 线性独立的向量为基,就得到 S_n 群的一个不可约表 示 的表示矩阵。在例 1、 2、 3 中,我们就是这样作的。但这样任取的基,一般不能得到西表示,例 2 和例 3 都不是西表示。

者取 R_G 空间两组特殊基——半正则母单位和正则 母单位,或称半正规和正规单位,将得到 S_n 群表示的解析表达 式。而 且当基取为正则母单位时,将得到 S_n 群的西表示。

设T[A] 是 S_n 群的一个标准盘,由引 理 5.6 知, $\theta^{(A)-1}E[A]$ 是本原幂等元, $\theta^{(A)-1}E[A]$ 是本原幂等元,可以作一系列标准盘T[A] ,不不可,其中T[A] ,如,T[A] ,如,其中T[A] ,如,T[A] ,如,其中有的场盘,T[A] ,但是从T[A] 中去掉数字n-1 而得的杨

图5.7 \$4的两个标准盘系列

盘……, $T^{(1)}$ 是只剩下数字 1 的杨盘,图 5.7给出了从 S_* 的标准盘 $T^{\{2^2\}}$ 和 $T^{\{2^2\}}$, $T^{\{2^2\}''}$, $T^{\{2^2\}'''}$, $T^{\{2^2\}''}$, $T^{\{2^2\}'''}$, $T^{\{2^2\}''}$, $T^{\{2^2\}'}$, $T^{\{2^2\}'}$

从上述做法得到的 $T_{*}^{1'}$, $T_{*}^{1'}$, \dots , $T_{*}^{(1)}$, D 别是 S_{n} 的子群 S_{n-1} , S_{n-2} , \dots , S_{1} 的标准盘。从定义可以知道,不同的标准盘 $T_{*}^{(1)}$, 作出的标准盘 系列 $T_{*}^{(1)'}$, $T_{*}^{(1)''}$, \dots , $T_{*}^{(1)}$ 是 不同的。设 $E_{*}^{(1)'}$, $E_{*}^{(1)'}$, \dots , $E_{*}^{(1)}$ 分别为盘 $T_{*}^{(1)'}$, $T_{*}^{(1)'}$, \dots , $T_{*}^{(1)}$ 的杨 算符,则 $(\theta^{(1)'})^{-1}E_{*}^{(1)'}$, $(\theta^{(1)'})^{-1}E_{*}^{(1)'}$, $(\theta^{(1)})^{-1}E_{*}^{(1)}$ 分别为 S_{n-1} ,

图5.8 S3标准盘系列

$$\begin{split} e^{[3]'} &= s_0, \\ e^{[3]'} &= \frac{1}{2} [s_0 + (1 \ 2)], \\ e^{[3]} &= \frac{1}{6} [s_0 + (1 \ 2) + (1 \ 3) + (2 \ 3) + (1 \ 2 \ 3) + (1 \ 3 \ 2)]; \\ e^{[2]} &= s_0, \qquad e^{[2]} = \frac{1}{2} [s_0 + (1 \ 2)], \\ e^{[2]} &= \frac{1}{6} [2s_0 + 2(1 \ 2) - (1 \ 3) - (2 \ 3) - (1 \ 3 \ 2)]; \end{split}$$

$$e_{2}^{\lceil 2 \rceil \rceil \rceil} = s_{0}^{\rceil}, \qquad e_{2}^{\lceil 2 \rceil \rceil \rceil} = [s_{0} - (1 \ 2)]/2,$$

$$e_{2}^{\lceil 2 \rceil \rceil \rceil} = \frac{1}{6} [2s_{0} - 2(1 \ 2) + (1 \ 3) + (2 \ 3) - (1 \ 2 \ 3) - (1 \ 3 \ 2)],$$

$$e^{\lceil 1 \ 3 \rceil \rceil} = s_{0}, \qquad e^{\lceil 1 \ 3 \rceil \rceil} = [s_{0} - (1 \ 2)]/2,$$

$$e^{\lceil 1 \ 3 \rceil} = \frac{1}{6} [s_{0} - (1 \ 2) - (1 \ 3) - (2 \ 3) + (1 \ 2 \ 3) + (1 \ 3 \ 2)].$$

$$(5.40)$$

山 $[\theta^{[A]}]^{-1}E_{r}^{A]}$ 是幂等元及定义 式 (5.39),利 用 乘 法 容 易证明 e_{r}^{A} . 是本原幂等元,而且

$$e_{r}^{(\mu)}e_{r}^{(\mu)} = \delta_{I\lambda I} e_{I}^{(\mu)} \delta_{rs}e_{r}^{(\lambda)}$$
 (5.41)

还可以证明

$$\sum_{(\lambda)r} e_r^{(\lambda)} = s_0. ag{5.42}$$

对属于同一个杨图[λ]的标准盘 $T_*^{(\lambda)}$ 和 $T_*^{(\lambda)}$,总有 $\sigma_{rs} \in S_n$,使 $T_*^{(\lambda)} = \sigma_{rs} T_*^{(\lambda)}$ 。定 义算符 $E_*^{(\lambda)} = P_*^{(\lambda)} \sigma_{rs} Q_*^{(\lambda)}$,其中 $P_*^{(\lambda)}$ 和 $Q_*^{(\lambda)}$ 为由式 (5.20) 定义的 $T_*^{(\lambda)}$ 和 $T_*^{(\lambda)}$ 的算符。

这样我们就可以定义 S_n 群代数 R_0 的基为

$$e_{r,s}^{(\lambda)} = \frac{1}{\theta^{(\lambda)}} e_{r}^{(\lambda)} E_{r,s}^{(\lambda)} e_{s}^{(\lambda)}, \qquad (5.43)$$

$$e_{r,r}^{(\lambda)} = e_r^{(\lambda)}. \tag{5.44}$$

这组基 e^[A] 满足

$$e_{\tau s}^{(\lambda)} e_{tu}^{(\mu)} = \delta_{(\lambda)^{(\mu)}} \delta_{st} e_{\tau s}^{(\lambda)}$$
 (5.45)

我们称 e^{iS_n} 为对称群代数的**半正则母单位**。这组基实际就是**按群** 链 $S_n \supset S_{n-1} \supset ... \supset S_2 \supset S_1$ 给出的基。

半正则母单位共有 $\sum_{\{\lambda\}} (f^{(\lambda)})^2$ 个基,它是 R_0 中完备基。对任意 $x \in R_0$,可以用半正则母单位展开,

$$x = \sum_{\tau_{\lambda} > \tau_{\sigma, s}} x_{\tau, s}^{(\lambda)} e_{\tau, s}^{(\lambda)}. \tag{5.46}$$

当[λ]固定时,式(5.46)中 $x_s^{(2)}$ 可以看成 x 的表示矩阵 $V^{(3)}(x)$ 的矩阵元。 $V^{(4)}(x)$ 是 R_c 的一个不可约表 示。当[λ]取 遜 所有分割[n],[n-11],…..「1"]时,就得到 R_c 的所有不等价 不可约表示。这组不等价不可约表示称为**半正则表示**。半正则表示不是酉表示。

由节 5.1 的讨论知道, S_n 的任意 元素 可以写为相邻数码对换 (k-1,k) 的乘积。如果知道了(k-1,k) 在不可约表示 $V^{[\lambda]}$ 中的矩阵元,则可由乘法求出所有 S_n 元素在 $V^{[\lambda]}$ 中的 矩阵。下面给出 $V^{[\lambda]}((k-1,k))$ 的矩阵元解析公式:

- (1) 当数字 k-1 和 k 在 $T_{k}^{(1)}$ 的同一行时, $V_{k}^{(2)}((k-1,k))=1$;
- (2) 当数字k-1和k在 $T^{(k)}$ 的司一列时, $V^{(k)}((k-1,k)) = -1;$
- (3) 当数字k-1和k不在 $T^{(k)}_{k}$ 的同一行或同一列时,设 $T^{(k)}_{k} = (k-1)k(T^{(k)}_{k}, \rho^{-1}_{k})$ 是数字k-1到k在 $T^{(k)}_{k}$ 盘中的轴距离,

$$V_{rs}^{(\lambda)}((k-1 \ k)) = -\rho,$$

$$V_{rs}^{(\lambda)}((k-1 \ k)) = 1 - \rho^{2},$$

$$V_{sr}^{(\lambda)}((k-1 \ k)) = 1,$$

$$V_{ss}^{(\lambda)}((k-1 \ k)) = \rho,$$
(5.47)

(4) 不属于以上三种情况的其他情况,

$$V_{rs}^{(\lambda)}((k-1/k))=0.$$

上面讲到的在杨盘T产中,数字k-1 到k的轴距 离 的定义为: 从数字k-1 到数字k,凡是向左或向下数一个方格是 + 1,向右或向上数一个方格是 - 1,这样数出的代数和称为k-1 到k 的轴距离。例如在图5.4(*)的盘 $T_{*}^{(21)}$ 中, 2 到 3 的轴距离是 + 2, 1 到 2 的轴距离是 - 1。

从式 (5.47) 和 S_n 的标准盘,可以求出全 部 S_n 群 的 半正 则表示。

例 4 从式 (5.47) 可以求出 S_8 群的半正则表示 $V^{(21)}$,

$$V^{(2\,1)}((1\,2)) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$V^{(2\,1)}((2\,3)) = \begin{pmatrix} -1/2 & 3/4 \\ 1 & 1/2 \end{pmatrix}.$$

其它元素 (如 $s_0(1|3)$,(1|2|3),(1|3|2))的 表 示矩阵,可以通过 $V^{(2|1)}((1|2))$ 和 $V^{(2|1)}((2|3))$ 的乘法而得到,此处就不再详述了。

从式(5.47)和例4可以看出, 华正则表示不是酉表示。

为了得到对称群代数的酉表示,我们先引入杨盘的盘函数的概念。若对于一个标准盘 $T_{\star}^{\lambda_1}$,有一个数 $\psi_{\star}^{\lambda_2}$ 与之对应,则数 $\psi_{\star}^{\lambda_2}([\lambda]=[n],\cdots,[1^*],r=1,2,\cdots,f^{(\lambda_1)})$ 就称为**盘函数**。由于标准盘由 $[\lambda]$ 和r决定, $\psi_{\star}^{\lambda_1}$ 是 $[\lambda]$ 和r的函数。

有了盘函数概念之后,我们就可利用盘函数,定义一组 R_c 的新基O(3),使对称群代数在O(3) 基下的表示是酉表示。设

$$O_{r_s}^{\lambda_1} = \sqrt{\psi_r^{\lambda_1}/\psi_s^{\lambda_1}} e_{r_s}^{\lambda_1},$$
 (5.48)

$$[\lambda] = [n], [n-1 \ 1], \dots, [1^n], r, s = 1, 2, \dots, f^{(\lambda)}$$

从式 (5.48) 可以看出当 r= s 时,

$$O_{rr}^{(\lambda)} = e_{rr}^{(\lambda)} = e_{r}^{(\lambda)},$$
 (5.48')

当 $r \neq s$ 时,基O心是半正则母单位e心的伸长或缩短。可以证明选以下盘函数时,基O心给出对称群的西表示,O心称为对称群代数的正则母单位。v心 取为

$$\psi_r^{(\lambda)} = \phi_r^{(\lambda)}(n)\phi_r^{(\lambda)}(n-1)\cdots\phi_r^{(\lambda)}(1), \qquad (5.49)$$

其中

$$\phi_{\tau}^{(\lambda)}(n) = \prod_{\nu=1}^{\nu_{\mu}-1} (1-c_{\nu}). \qquad (5.49')$$

式中c, 是标准盘T, 的数字n与第 ν 行最后一个数字之间的轴距离。 ν , 是数字n所在的行数。当n在第一行时,定义

 $\phi_{*}^{(1)}(n)=1$ 。 而 $\phi_{*}^{(2)}(n-1)$, $\phi_{*}^{(2)}(n-2)$,…, $\phi_{*}^{(2)}(1)$ 同 样 由 式 (5.49') 定义。但它们对应的标准盘不是 $T_{*}^{(2)}$,而是由 $T_{*}^{(2)}$ 作出 的标 准 盘 系 列 $T_{*}^{(2)}$,…, $T_{*}^{(1)}$ 分 别 决 定 $\phi_{*}^{(2)}(n-1)$, $\phi_{*}^{(2)}(\lambda-2)$,…, $\phi_{*}^{(2)}(\lambda-2)$,…, $\phi_{*}^{(2)}(\lambda-2)$,…

$$\phi_{r}^{(\lambda)}(n-1) = \phi_{r}^{(\lambda)}(n-1),$$

$$\phi_{r}^{(\lambda)}(n-2) = \phi_{r}^{(\lambda)}(n-2),$$

$$\phi_{r}^{(\lambda)}(1) = 1.$$
(5.50)

如 S_5 的 $T_7^{(3)113}$ 盘,用图5.9给出的标准盘系列,可以得到

对称群代数 R_c 的任意元素 x 可以用正则母单位 $O[\lambda]$ 展开,

$$x = \sum_{\{\lambda\} \in \Gamma, A} \tilde{x}_{r,s}^{\{\lambda\}} O_{r,s}^{\{\lambda\}}. \tag{5.51}$$

取

$$U_{rs}^{\lambda}(x) = \bar{x}_{rs}^{\lambda}$$

我们就得到了 R_c 的下可约酉表示 $U^{(x)}(x)$.

相邻数码对换(k-1k)表示矩阵 $U^{(k)}((k-1k))$ 由下式给出;

(1) 当数字 k-1 和 k 在 T(x) 的同一行时,

$$U_{rr}^{(k)}((k-1|k))=1;$$

(2) 当数字 k-1 和 k 在 T字 的同一列时,

$$U_{r,r}^{(\lambda)}((k-1/k)) = -1;$$

(3) 当数字k-1和k不在T产的同一行或同一列,设

 $T_{s}^{(k)} = (k-1,k)T_{s}^{(k)}, \ \rho^{-1}$ 是数字 k-1 到 k 在 $T_{s}^{(k)}$ 盘的轴距离,则

$$U_{r,r}^{(\lambda)}((k-1,k)) = -\rho,$$

$$U_{r,s}^{(\lambda)}((k-1,k)) = \sqrt{1-\rho^2},$$

$$U_{s,r}^{(\lambda)}((k-1,k)) = \sqrt{1-\rho^2},$$

$$U_{s,s}^{(\lambda)}((k-1,k)) = \rho;$$
(5.52)

(4) 不属于以上三种的其它情况

$$U_{\tau,s}^{(k)}((k-1,k))=0.$$

从式 (5.52) 可以看出,在正则母单应 O型下,表示 U^{CAI}是酉表示。

用式 (5.52) 和 S_n 群的乘法,可以求出 S_n 群 的 所 有不等 价不可约酉表示 $U^{(\lambda)}$ 。 我们也称 $U^{(\lambda)}$ 是 S_n 的标准表示。

例 5 由式 (5,52) 可以求出 S_3 群的三个 不 等价不可约酉表示。

$$U^{[3]}((1\ 2)) = 1, \qquad U^{[3]}((2\ 3)) = 1, \qquad \cdots,$$

$$U^{[21]}((1\ 2)) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad .$$

$$U^{[21]}((2\ 3)) = \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}, \qquad \cdots,$$

$$U^{[13]}((1\ 2)) = -1, \qquad U^{[13]}((2\ 3)) = -1, \qquad \cdots,$$

其它元素的表示矩阵,可以通过群的乘法而得到,此处不再详述。

5.5 U(m) 群和SU(m) 群的不可约表示

利用对称群的表示,可以求出酉群和特 殊酉群 的 不 可约表示,本书将对此作一简单介绍.类似的方法可以用到一般复线性群,也可推广应用于正交群和辛群,有兴趣的读者可以参考文献[12,2].

设V是 m 维复向量空间,以普通矩阵乘法作为群的乘法时,

V中全部幺正矩阵 $\{u\}$,构成 m 维酉群 U(m),

$$U(m) = \{u \in GL(m, C) | u^+u = uu^+ = E\}, \qquad (5.53)$$

其中E是V中单位矩阵。从定义知U(m)是一般线性群GL(m,C)的子群。U(m)群具有无穷多个元素,是一个无限群。

从线性代数知道, 对任一个π阶酉矩阵 u, 一定可以找到另 一个π阶酉矩阵 v 使它对角化, 即

$$vuv^{+} = \begin{pmatrix} \varepsilon_{1} & 0 & \cdots & 0 \\ 0 & \varepsilon_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \varepsilon_{m} \end{pmatrix}, \qquad (5.51)$$

其中 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_m$ 是绝对值为 1 的数。所以 U(m) 群 的 任 意元素都与对角矩阵 $\left[\varepsilon_1, \varepsilon_2, \dots, \varepsilon_m\right]$ 共轭,因此我 们 用m 个绝对值为 1 的数来标志 U(m) 群的类。设 u 属于 类 $\left[\varepsilon_1, \varepsilon_2, \dots, \varepsilon_m\right]$.

设u是满足幺模条件

$$\det u = 1$$

的 $m \times m$ 酉矩阵,则全部u 的集合在定义群的乘法为矩阵乘法时,构成m维特殊酉群SU(m),

$$SU(m) = \{u \in U(m) \mid \det u = 1\},$$
 (5.55)

我们在第四章已遇到过的 SU(2)群, 就是 m=2 的 SU(m) 群。根据定义式 (5.55) 知, SU(m) 群是 U(m) 群的子群。

SU(m)群的类与U(m)群的类一样,也可以用m个绝对 值为 1 的数($\epsilon_1, \epsilon_2, \dots, \epsilon_m$)来标记。但SU(m)群的元素u 还必 需满足 幺模条件,因此标记 SU(m)群的 类 的 数 $\epsilon_1, \epsilon_2, \dots, \epsilon_m$ 还应满足 条件

$$\varepsilon_1 \varepsilon_2 \cdots \varepsilon_m = 1$$
 (5.56)

我们首先讨论 U(m) 群的表示。根据群表示的 定义,在第二章例 2 中已指出,任何矩阵群本身便是该群 的 一 个 忠实表示。 U(m) 本身也是 U(m) 群的一个表示。因为群的两个表示。的直积也是群的表示,所以 $n \cap U(m)$ 的直积也是 U(m) 的表示,记为

(U(m))", 称为U(m)的 n 阶张量表示,

$$(U(m))^{n} = \{u^{n}\},$$

$$u^{n} = u \underbrace{\otimes u \otimes \cdots \otimes u}_{n \uparrow \uparrow}.$$

$$(\bar{o}.57)$$

U(m)作为U(m)群的表示时,其表示空间 就 是V. 设(e_1 , e_2 , ..., e_m) 是V的一组基,则V中任意向量 x 可表为

$$x = \sum_{i=1}^{m} x_i e_{i \bullet}$$

张量表示 $(U(m))^*$ 的表示空间是 $n \wedge V$ 的直积 $N^* = V \otimes V \otimes \cdots$ $\otimes V$ 故 V^* 的基由 $(e_{i_1}e_{i_2}\cdots e_{i_n})$ 构成 $(i_1,i_2,\cdots,i_n=1,2,\cdots,m)$ V^* 中任意张量 F 为

$$F = \sum_{i_1, i_2, \dots, i_{n-1}}^{m} F(i_1 \ i_2 \ \dots \ i_n) e_{i_1} e_{i_2} \dots e_{i_n}, \quad (5.58)$$

$$F(i_1 \ i_2 \ \dots \ i_n) = x_{i_1} \ x_{i_2} \ \dots \ x_{i_n},$$

 $F(i_1, i_2, ..., i_n)$ 是张量F的分量。因为 V^* 是 m^* 维空 间,所以张量F 共有 m^* 个分量。由于群表示的直 积 一 般 不 是不可约的, $(U(m))^*$ 一般也不是不可约的。设 V^* 中有一个 U(m)的 不变子空间W,W的基为 $(F_1, F_2, ..., F_d)$,则对 任 意 $u \in U(m)$,有

$$(u^*)F_i = \sum_{j=1}^d B_{ji}(u)F_j,$$

 $B_{fi}(u)$ 可看作是 $d \times d$ 阶矩阵 B(u)的矩阵 元。那 么 $B = \{B(u)\}$ 是 U(m)群的一个表示。我们把 B叫做(U(m))"在不变子空间W上诱导出的表示。

下面定义 U(m)群的 f 级表示。设 U(m) 元素 u 的矩 阵 元为 $u_{ij}(i,j=1,2,\dots,m)$ 。如果 U(m) 等的 一 个 表 示 $B=\{B(u)\}$, B(u)的 每一个矩阵元都是 u_{ij} 的 f 次整 函数,则 称 B(u)是U(m) 群的 f 级表示。U(m) 群的 n 级表示与 张 量 表 示 $(U(m))^n$ 的关系,由下面的定理 5.8 给出。

定理5.8 U(m)群的每一个n级不可约表示,被包含在表示

 $(U(m))^n \oplus_{\bullet}$

由于矩阵 u 和 u^* 是玄正的,所以(U(m))* 是曹表 示,由定 理 2.1 知道, (U(m)) 是完全可约的。定理 5.8 的证 明 请 参考 文献[2].

利用定理 5.8 可知, 只要把(U(m))' 分解 为 不 可约表示的 直和,就可求出U(m)的全部n级不可约表示,而对(U(m))"的 分解,也就是对其表示容间 V^* 的分解。若 V^* 可以分解为U(m)的不可约不变子空间的直和

$$V^{\pi} = W_1 \oplus W_2 \oplus \cdots$$

则由(U(m)) 在 W_1, W_2, \dots , 诱导出的表示 B_1, B_2, \dots , 就是 U(m)群的所有n级不可约表示。于是寻求U(n)群的n级不 可约表示 的问题,就变成了对张量空间V"的分解问题,也即 寻 找V"的 全部不可约不变子空间的问题。

、从定理5.1.5.2和5.3知道,如果能找到一组不能分解的、与 $(U(m))^*$ 可以交换的投影算符,就可以把 V^* 分解为不可约不变 子空间的直和。下面我们可以看到, S_n 群的正则母单位

 $O_{r}^{(\lambda)}$, $[\lambda] = [n], [n-1, 1], \dots, [1^n], r = 1, 2, \dots, f^{(\lambda)}$, 正是这样一组投影算符。对任 意 $F \in V$ ", 定 义 O[A] 对 F 的作用 为

$$[O[A]F](i_1 \ i_2 \ \cdots \ i_n) = O[A]F(i_1 \ i_2 \ \cdots \ i_n), \qquad (5.59)$$
即 $O[A]$ 对 $F(i_1 \ i_2 \ \cdots \ i_n)$ 中的 i_1, i_2, \cdots, i_n 作用。于是

$$\begin{aligned} \{O_{\tau,\tau}^{(\lambda)}[(U(m))^n F]\}(i_1, i_2, \dots, i_n) \\ &= O_{\tau,\tau}^{(\lambda)}[(U(m))^n F](i_1, i_2, \dots, i_n) \end{aligned}$$

$$=O^{\lambda}_{\tau,\tau}[(U(m))^*F_{\perp}(i_1\ i_2\ \cdots\ i_n)$$

$$=O_{\tau^{\tau_1}}^{[\lambda]}\sum_{j_1,j_2,\cdots,j_n}u_{i_1j_1}\,u_{i_2j_2}...u_{i_nj_n}F(j_1\,\,j_2\,\,\cdots\,\,j_n)$$

$$= \sum_{j_1,j_2,\cdots,j_n} u_{i_1j_1} u_{i_2j_2} \cdots u_{i_nj_n} \ O_{\tau\tau}^{(\lambda)} F(j_1 \ j_2 \ \cdots \ j_n)$$

$$= \{ (U(m))^* [O_r^{\lambda} F] \} (i_1 \ i_2 \ \cdots \ i_n).$$

因此 O^{A} 与(U(m))* 可以交換,

$$O_{r_r}^{\lambda_1}(U(m))^* = (U(m))^*O_{r_r}^{\lambda_1}$$
 (5.60)

另外,由 O[4] 的定义式 (5.48) 和式 (5.41),知道

$$O_{r\tau}^{[\lambda]}O_{ss}^{[\mu]} = \delta_{[\lambda]^{[\mu]}}\delta_{\tau s}O_{r\tau}^{[\lambda]} \qquad (5.61)$$

$$\sum_{(\lambda), r} O_{r, r}^{(\lambda)} = 1. \tag{5.62}$$

取

$$F_{r}^{(\lambda)} = O_{r,r}^{(\lambda)} F, \qquad (5.63)$$

其中 $F \in V^*$,全体 $F^{(A)}$ 构成 V^* 的子室间 $W^{(A)}$ 。从式(5.61),(5.62),(5.63)可以看到, $O^{(A)}$ 正是满足式(5.12)的一组投影 算符,因此 V^* 可以约化为 $\sum_{\{A\}\in F} \bigcirc W^{(A)}$ 。又因 $O^{(A)}$ 与(U(m))"可以交换,故每个子室间 $W^{(A)}$ 是U(m)的不变子室间,给出U(m) 群的一个表示 $U^{(A)}$ 。由 $O^{(A)} = e^{A^{(A)}}$ 是 S_n 群代数的本原幂等元,知道 $O^{(A)}$ 是不可分的,因此由 $O^{(A)}$ 投影出的子室间 $W^{(A)}$ 是不可约的。

也可以从 V^* 中张量F满足的对称条件定义 $W_{i}^{(p)}$,如定义

$$O_{u,t}^{\mu \tau} F = 0, \qquad \stackrel{\text{iff}}{=} [\mu] \neq [\lambda];$$

$$O_{u,t}^{\lambda \tau} F = 0, \qquad \stackrel{\text{iff}}{=} t \neq r. \qquad (5.64)$$

由式 (5,45) 和式 (5,48) 有

$$O_{rs}^{\lambda_i}O_{tu}^{(\mu)} \approx \delta_{(\lambda)(\mu)}\delta_{st}O_{ru}^{\lambda_i}. \tag{5.65}$$

利用式(5.65),可以得到满足对称条件(5.64)的张量F恒可写成 O 合F 的形式,即

$$F = \sum_{F = s} O_{ss}^{(\mu)} F = O_{rr}^{(\lambda)} F_{\bullet}$$

下面我们还可看到,具有相同分割[λ]的两个不可约不变子空间 $W_{\lambda}^{(1)}$ 和 $W_{\lambda}^{(1)}$,可以通过等价变换 $O_{\lambda}^{(2)}$ 相联系。对任意 $F_{\lambda}^{(1)} \in W_{\lambda}^{(1)}$,

$$O_{r,s}^{(\lambda)}F_{s}^{(\lambda)} = O_{r,s}^{(\lambda)}O_{r,s}^{(\lambda)}F_{s}^{(\lambda)} \in W_{s}^{(\lambda)},$$

故 $W_{+}^{(1)}$ 和 $W_{+}^{(2)}$ 是等价的。不可约表示 $U_{+}^{(2)}$ 和 $U_{+}^{(2)}$ 也是等价的。如果仅仅考虑不等价的不可约表示,只需考虑任一个 $U^{(2)}$ 即可。

于是我们可把空间 V^* 分解成不可约不变 子 宏 间 W^{p_*} 的直接和,其 中[λ] = $\lfloor n \rfloor$, $\lceil n-1 \rfloor 1 \rfloor$, …, $\lceil 1^* \rceil$, r=1, 2, …, $f^{(\lambda)}$, 表 示 $U^{(\lambda)}$, 是从(U(m))" 在 $W^{(\mu)}$ 诱导出来的,它是 U(m) 群的一个不可约表示。

还可以证明,V"的不变子 空间 W[A],其中 $[\lambda_1] = [\lambda_1] \lambda_2 \dots$ $\lambda_k]$, $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k \ge 0$, 当 $k \ge m$ 时 是 零 空间。因 此, 由 (U(m))"在不变子空间 W[A] 诱导出的表示,可以 用 λ_1 , λ_2 , \dots , λ_m 个数来标记,并且有 $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_m \ge 0$ 。

从以上讨论知,不可约表示 $U^{(n)}$ 是从(U(m))* 在 $W^{(n)}$ 上诱导出来的;而不可约不变子空间 $W^{(n)}$ 是由满足 条 件 式 (5,63)的张量构成的,即

$$F_r^{(\lambda)}(i_1 \ i_2 \ \cdots \ i_n) = O_r^{\lambda} F(i_1 \ i_2 \ \cdots \ i_n), \qquad (5.63')$$
on $n = 3$ H,

$$F_{1}^{(3)}(i_{1} \ i_{2} \ i_{3}) = O_{1}^{(3)}F(i_{1} \ i_{2} \ i_{3})$$

$$= \frac{1}{6} \{F(i_{1} \ i_{2} \ i_{3}) + F(i_{2} \ i_{3} \ i_{1}) + F(i_{3} \ i_{1} \ i_{2}) + F(i_{2} \ i_{1} \ i_{3})$$

$$+ F(i_{1} \ i_{3} \ i_{2}) + F(i_{3} \ i_{2} \ i_{1})\},$$

$$F_{11}^{(2)}(i_{1} \ i_{2} \ i_{3}) = O_{11}^{(2)}F(i_{1} \ i_{2} \ i_{3})$$

$$= \frac{1}{6} \{2F(i_{1} \ i_{2} \ i_{3}) - F(i_{2} \ i_{3} \ i_{1}) - F(i_{3} \ i_{1} \ i_{2}) + 2F(i_{2} \ i_{1} \ i_{3})$$

$$- F(i_{1} \ i_{3} \ i_{2}) - F(i_{3} \ i_{2} \ i_{1})\},$$

$$F_{22}^{(2)}(i_{1} \ i_{2} \ i_{3}) = O_{22}^{(2)}F(i_{1} \ i_{2} \ i_{3})$$

$$= \frac{1}{6} \{2F(i_{1} \ i_{2} \ i_{3}) - F(i_{2} \ i_{3} \ i_{1}) - F(i_{3} \ i_{1} \ i_{2}) - 2F(i_{2} \ i_{1} \ i_{3})$$

$$+ F(i_{1} \ i_{3} \ i_{2}) + F(i_{3} \ i_{2} \ i_{1})\},$$

$$F_{1}^{(1)}(i_{1} \ i_{2} \ i_{3}) = O_{1}^{(1)}(i_{1} \ i_{2} \ i_{3})$$

$$= \frac{1}{6} \{F(i_{1} \ i_{2} \ i_{3}) + F(i_{2} \ i_{3} \ i_{1}) + F(i_{3} \ i_{1} \ i_{2}) - F(i_{2} \ i_{1} \ i_{3})$$

$$- F(i_{1} \ i_{3} \ i_{2}) - F(i_{3} \ i_{2} \ i_{1})\},$$

(5.66)

式 (5.63') 中 $F^{(1)}$ 中的 $[\lambda]$, τ 对应一个确定的杨盘 $T^{(2)}$, 我们引入分量盘的概念,或称为 韦耳 (Weyl) 盘。如图 5.10 。把式 (5.63') 用图表示出来,第一个盘是 杨盘,第二个盘是韦耳盘。

$$F\left(\begin{array}{c|c}1&2&3&4\\\hline \cdot&\cdot&\cdot\\ \cdot&n\end{array}\right)=O_{rr}^{(1)}F\left(i_{1}i_{2}\cdots i_{n}\right)$$

图 5.10

对 $F_i^{Ai} = O_i^{Ai} F$ 而言,当 F 取遍 V^* 的基矢 $e_{i_1} e_{i_2} \cdots e_{i_n}$ 时, F_i^{Ai} 也取遍了 W_i^{Ai} 的基矢。但要注意, V^* 中不同的张量 F_i , 有 可能给出同一个张量 F_i^{Ai} 。 例如当 n=3, m=3 时, V^3 中 有 3^3 个 基, W_i^{Ai} 有 10 个线性独立的分量,即

 $F_{3}^{(i)}(111) = F(111)$.

$$F_{1}^{(3)}(2\ 2\ 2) = F(2\ 2\ 2),$$

$$F_{1}^{(3)}(3\ 3\ 3) = F(3\ 3\ 3),$$

$$F_{1}^{(3)}(1\ 2) = \frac{1}{3} \{F(1\ 1\ 2) + F(1\ 2\ 1) + F(2\ 1\ 1)\},$$

$$F_{1}^{(3)}(1\ 1\ 3) = \frac{1}{3} \{F(1\ 1\ 3) + F(1\ 3\ 1) + F(3\ 1\ 1),$$

$$F_{1}^{(3)}(1\ 2\ 2) = \frac{1}{3} \{F(1\ 2\ 2) + F(2\ 2\ 1) + F(2\ 1\ 2)\},$$

$$F_{1}^{(3)}(2\ 2\ 3) = \frac{1}{3} \{F(2\ 2\ 3) + F(2\ 3\ 2) + F(3\ 2\ 2)\},$$

$$F_{1}^{(3)}(1\ 3\ 3) = \frac{1}{3} \{F(1\ 3\ 3) + F(3\ 3\ 1) + F(3\ 1\ 3)\},$$

$$F_{1}^{(3)}(2\ 3\ 3) = \frac{1}{3} \{F(2\ 3\ 3) + F(3\ 3\ 2) + F(3\ 2\ 3)\},$$

$$F_{1}^{(3)}(1\ 2\ 3) = \frac{1}{6} \{F(1\ 2\ 3) + F(2\ 3\ 1) + F(3\ 1\ 2) + F(2\ 1\ 3) + F(1\ 3\ 2) + F(2\ 1\ 3)\},$$

Wift 11 有 8 个线性独立的分量, 即

$$F_{1}^{(21)}(1 \ 1 \ 2) = \frac{1}{3} \{2F(1 \ 1 \ 2) - F(1 \ 2 \ 1) - F(2 \ 1 \ 1)\},$$

$$F_{1}^{(21)}(1 \ 1 \ 3) = \frac{1}{3} \{2F(1 \ 1 \ 3) - F(1 \ 3 \ 1) - F(3 \ 1 \ 1)\},$$

$$F_{1}^{(21)}(1 \ 2 \ 2) = \frac{1}{6} \{F(1 \ 2 \ 2) - 2F(2 \ 2 \ 1) + F(2 \ 1 \ 2)\},$$

$$F_{1}^{(21)}(1 \ 3 \ 3) = \frac{1}{6} \{F(1 \ 3 \ 3) - 2F(3 \ 3 \ 1) + F(3 \ 1 \ 3)\},$$

$$F_{1}^{(21)}(2 \ 2 \ 3) = \frac{1}{3} \{2F(2 \ 2 \ 3) - F(2 \ 3 \ 2) - F(3 \ 2 \ 2)\},$$

$$F_{1}^{(21)}(2 \ 3 \ 3) = \frac{1}{6} \{F(2 \ 3 \ 3) - 2F(3 \ 3 \ 2) + F(3 \ 2 \ 3)\},$$

$$F_{1}^{(21)}(1 \ 2 \ 3) = \frac{1}{6} \{2F(1 \ 2 \ 3) - F(2 \ 3 \ 1) - F(1 \ 3 \ 2) + 2F(2 \ 1 \ 3) - F(3 \ 2 \ 1)\},$$

$$F_{1}^{(21)}(1 \ 3 \ 2) = \frac{1}{6} \{2F(1 \ 3 \ 2) - F(3 \ 2 \ 1) - F(2 \ 3 \ 1) + 2F(2 \ 1 \ 3)\},$$

W[21] 也有 8 个线性独立的分量,即

$$F_{2}^{(2)1}(121) = \frac{1}{2}[F(121) - F(211)],$$

$$F_{2}^{(2)1}(131) = \frac{1}{2}[F(131) - F(311)],$$

$$F_{2}^{(2)1}(122) = \frac{1}{2}[F(122) - F(212)],$$

$$F_{2}^{(2)1}(133) = \frac{1}{2}[F(133) - F(313)],$$

$$F_{2}^{(2)1}(232) = \frac{1}{2}[F(232) - F(322)],$$

$$F_{2}^{(2)1}(233) = \frac{1}{2}[F(233) - F(323)],$$

$$F_{2}^{(2)1}(233) = \frac{1}{6}[2F(132) - 2F(312) + F(231)],$$

$$+F(1\ 2\ 3) - F(2\ 1\ 3) - F(3\ 2\ 1)],$$

$$F_{2}^{(2)}(1\ 2\ 3) = \frac{1}{6} \cdot [2F(1\ 2\ 3) - 2F(2\ 1\ 3) + F(3\ 2\ 1)],$$

$$+F(1\ 3\ 2) - F(3\ 1\ 2) - F(2\ 3\ 1)].$$

书耳盘的填充规则为,在每一行中填入的数字从小到大,可以重复,在每一列中填入的数字 从 小 到 大,但 不 可 重 复。图 5.11(a),(b),(c)分别给出[3],[21]和 $[1^8]$ 时的市 耳 盘。每一个 书耳盘经 O学 作用,给出 W学 的一个线性独立的分量。

图 5,11

,利用韦耳盘,求出W。空间的基,再根据张量表示的定义,可以求出对任意 $u \in U(m)$,有

$$[U^{i_1}(u)e_{i_1}e_{i_2}...e_{i_n}]$$

$$= \sum_{k_1, k_2, \dots, k_n} u_{i_1 k_1} u_{i_2 k_2} \dots u_{i_n k_n} \times e_{k_1} e_{k_2} \dots e_{k_n}.$$
 (5.67)

表示 $U^{(n)}(u)$ 的矩阵表达式可由式 (5.67) 和式 (5.63') 直接算出。

U(m)群不可约表示 $U^{(\lambda)}$ 的维数 $d^{(\lambda)}$ 满足,

$$d^{(\lambda)} = \prod_{i,j} \frac{(m-i+j)}{g_{ij}}, \qquad (5.68)$$

其中[λ] = [$\lambda_1 \lambda_2 \cdots \lambda_m$], g_{ij} 是杨图[λ]等 i 行第 j 列的"钩长"。

如

$$d^{(3)} = \frac{m}{3} \frac{m+1}{2} \frac{m+2}{1} = \frac{1}{3!} m(m+1)(m+2),$$

$$d^{(2)} = \frac{m}{3} \frac{(m+1)}{1} \frac{(m-1)}{1} = \frac{1}{3} (m-1) m(m+1), \quad (5.69)$$

$$d^{(1)} = \frac{m}{3} \frac{m-1}{2} \frac{m-2}{1} = \frac{1}{3!} (m-2)(m-1)m,$$

当加=3时,式(5.69)给出与前面一致的结果。

从上讨论知道,U(m)群的每一个n级不可约表示,可以用m个数 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m \ge 0$ 来标记, $\lambda_1 + \lambda_2 + \cdots + \lambda_m = n$ 。即用n的分割[λ]来标记 U(m)群的n级不可约表示 $U^{(\lambda)}$ 。可以证明 $U^{(\lambda)}$ 的特征标为

$$\chi^{(\lambda)}(\varepsilon_1 \, \varepsilon_2 \, \cdots \, \varepsilon_m) = \frac{\left| \varepsilon^{\lambda_1} \, \varepsilon^{\lambda_2} \cdots \varepsilon^{\lambda_m} \right|}{\left| \varepsilon^{m-1} \, \varepsilon^{m-2} \cdots 1 \right|}. \tag{5.70}$$

其中

通常把U(m)群不可约表示 $U^{(\lambda)}$ 的特征标写为,

$$\chi^{(\lambda)}(\epsilon_1 \epsilon_2 \ldots \epsilon_m) = \{\lambda_1 \lambda_2 \ldots \lambda_m\},$$

幷称它为S函数(舒尔函数)。

因为单位元的特征标 $\chi^{(\lambda)}(e)$ 就是 不 可 约 表 示 $U^{(\lambda)}$ 的维数 $d^{(\lambda)}$, 因此从式 (5.70) 也可以求出 $d^{(\lambda)}$,

$$d^{(k)} = \Delta(h_1 h_2 \dots h_m) / \Delta(m-1 m-2 \dots 0), \quad (5.71)$$

其中

$$\Delta(h_1 \ h_2 \cdots h_m) = \prod_{i < j} (h_i - h_j).$$

式 (5.71) 与 (5.68) 是一致的。例如,当n=m=3时,

$$d^{[3]} = 10, \quad d^{[2]} = 8, \quad d^{[13]} = 1,$$

现在讨论 U(m) 群不可约表示直积的分解问题,类似节 4.5对 转动群直积的分解,先考虑两个特征标(舒尔函数)的乘积。可以证明 S 函数有以下性质。

$$\{\lambda_1 \ \lambda_2 \cdots \lambda_m\}\{\mu_1 \ \mu_2 \cdots \mu_m\} = \sum_{\sigma} \{\sigma_1 \ \sigma_2 \cdots \sigma_m\}, \quad (5.72)$$

共中 $\{\sigma_1\sigma_2...\sigma_m\}$ 是杨图 $[\sigma_1\sigma_2...\sigma_m]=[\sigma]$ 的S函数,杨图 $[\sigma]$ 是由杨图 $[\lambda]$ 加上 μ_1 个标有 α 的方格, μ_2 个标有 β 的方格, μ_3 个标有 γ 的方格……而构成的;在相加过程中,还受到下面两个条件的限制:

- (1)在相加过程的每一步都要构成一个杨图, 幷且有相同 标号的方格不得排在同一列;
- (2) 从第一行开始从右往左数,再接着从第二行自右往左数……,要得到 α,β,γ ,…的一个格子排列。即在它 任 意 前 i 个标号中, α 出现的次数大于 β 出现的次数, β 出现的次数 大 于 γ 出现的次数……。

由特征标理论知道,式 (5.72) 表明,U(m) 群的 两 个不可 约表示 $U^{(\lambda)}$ 和 $U^{(\mu)}$ 的直积 $U^{(\lambda)} \otimes U^{(\mu)}$,等价于 U(m) 群的一些不可约表示 $U^{(\sigma)}$ 的直和,其中 $[\sigma]$ 就是出现在式 (5.72) 中的 $[\sigma]$ 。

例 6 求 U(m) 群的不可约表示 $U^{[1^3]}$ 与 $U^{[21]}$ 的 直积 $U^{[1^3]}$ ⊗ $U^{[21]}$ 所包含的不可约表示 $U^{[\sigma]}$ 。根据式(5.72)和 $[\sigma]$ 的作图规则,作图5.12、求出

$$\{1^3\}\{2\ 1\} = \{3\ 2\ 1\} + \{3\ 1\ 1\ 1\} + \{2\ 2\ 1\ 1\} + \{2\ 1\ 1\ 1\ 1\},$$

图 5.12

于是我们得到

$$U^{[18]} \otimes U^{[21]} = U^{[321]} \oplus U^{[3111]} \oplus U^{[2211]} \oplus U^{[21111]}$$
.

可以证明 U(m) 臂的不可约表示 $U^{(k)}$,也是它的子群SU(m)的不可约表示。并且当 U(m) 群的两个不可约表 示 $U^{(k)}$ 和 $U^{(k)}$,如果有

$$[\lambda_1 \ \lambda_2 \ \cdots \ \lambda_m] = [\mu_1 - a \ \mu_2 - a \ \cdots \ \mu_m - a], \qquad (5.73)$$
 a 是不天于 μ_m 的整数,则由式 (5.70) 可得

$$\{\lambda\} = \{\lambda_1 \ \lambda_2 \ \cdots \ \lambda_m\}$$
$$= (\varepsilon_1 \ \varepsilon_2 \ \cdots \ \varepsilon_m)^a \{\lambda_1 - a \ \lambda_2 - a \ \cdots \ \lambda_m - a\}.$$

对 SU(m) 群由式 (5.56) 可得

$$\{\lambda\} = \{\lambda_1 - a \ \lambda_2 - a \ \cdots \ \lambda_m - a\}.$$

因此如果[λ],[μ]满足式(5.73),则有

$$\{\mu\} = \{\mu_1 - a \ \mu_2 - a \ \cdots \ \mu_m - a\} = \{\lambda\},$$
 (5.74)

图 5.13

可见,不可约表示 $U^{(A)}$ 和 $U^{(B)}$ 作为 SU(m)群的表示 是 等 价的。于是 我们得到,SU(m)群的 所 有 不等 价不可约表示可以用分割

$$\begin{bmatrix} \lambda \end{bmatrix} = \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{m-1} & 0 \end{bmatrix}$$
$$(\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_{m-1} \geqslant 0)$$

来标记, 等价关系 (5.74) 可以用

图5.13表示出来。

第六章 李群基础

李群是无限群的一类,也是迄今研究得最为清楚的无限群。 李群在物理中有广泛的应用。由于在李群的研究中,往往把抽象 群与微分流形相结合,因此本章前面三节先简单介绍有关拓扑和 微分流形的知识,以供读者参考。如果读者只对李群局部性质有 兴趣,则可以从本章第4节看起。

6.1 拓扑空间

为了引入微分流形的概念,首先介绍**拓扑空间。**拓扑空间是 极其广泛的一种空间,它是由一些元素的集合加上其满足的拓扑 来定义的。

定义 6.1 设X 是一个集合,其元素 x , y , z 称为点,若能在 X 上规定一个子集组 \emptyset ,使以下条件成立:

$$(1) X \in \mathscr{O}, \quad \varnothing \in \mathscr{O}; \qquad (6.1a)$$

(2) Ø中有限个元素 O1, O2, ···, Ok的交集属于Ø,

$$O_1 \cap O_2 \cap \cdots \cap O_k \in \mathscr{O};$$
 (6.1b)

(3) Ø中任意个元素的和集属于Ø, 设 $\tilde{O} \in \mathcal{B}$, 有

$$\bigcup_{o \in \widetilde{o}} O \in \mathscr{O}; \tag{6.1c}$$

则集合X与 \emptyset 一起称为一个**拓扑空间**,记为 (X, \emptyset)。 \emptyset 称为X的一个拓扑,每一个 O_i \in \emptyset 称为X的一个开集。

有时也可略去 Ø , 简单地用 X 表示拓扑空间。但要注意, 拓扑空间不是一般的集合, 而是定义有子集组的集合, 子集组由开集组成。

定义 6.2 设(X. Ø) 是拓扑空间,A 是X 的一个子集,如果X 与A 的差集 $A^{o} = X - A$ (又称A 的补集) 是开集,就称A 是**闭集。**

定义 6.3 设 (X, \mathscr{O}) 是一个拓扑空间, $O_i \in \mathscr{O}$ 是X的一个开集,我们称 O_i 是它所包含的任意一点的一个**邻域**。

例1 设
$$X = \{a,b,c\}$$
 是有三个元素的一个集合。如果取 $\mathscr{O} = \{\emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}\},$

直接验证 Ø 满足条件式 (6.1),故 Ø 是 X 的一个拓扑, (X, \emptyset) 是一个拓扑空间。 Ø , $\{a,b\}$, $\{a,c\}$, $\{a,b,c\}$ 是 X 的开 集。 $\{a,b\}$ 是点 a 和点 b 的一个邻域, $\{a,c\}$ 是点 a 和点 c 的一个 邻域。 Ø , $\{b\}$, $\{b,c\}$, ..., $\{a,b,c\}$ 是 X 的闭集,其中 Ø 和 $\{a,b,c\}$ 既是 开集, 又是闭集。

而同样
$$X = \{a,b,c\}$$
, 如果取子集组为 $\{\emptyset, \{a,b\}, \{a,c\}, \{a,b,c\}\}\}$,

因为

$$\{a,b\} \cap \{a,c\} = \{a\}$$

不在子集组中,因此

$$\{\emptyset, \{a,b\}, \{a,c\}, \{a,b,c\}\}\$$

不是X的一个拓扑,X就不能通过它成为一个拓扑空间。

例 2 设X是一个非空的集合,令 \mathcal{L}

$$\mathscr{O} = \{ \varnothing, X \},$$

 \emptyset 满足条件式(6.1),故 \emptyset 是X的一个拓扑,(X, \emptyset)是一个拓扑空间。这样的拓扑空间称为平庸的拓扑空间,它具有的开集数目最少。

当
$$X = \{a,b,c\}$$
时,取

$$\mathscr{O} = \{ \varnothing, \{a,b,c\} \},\$$

 (X, \mathcal{O}) 给出一个平庸的拓扑空间。

例 3 设X是一个非空的集合,令

$$\mathscr{O} = \{0 \mid 0 \in X\},\,$$

即子集组Ø由X的所有可能子集组成,这当然满足条件式(6.1),故Ø是X的一个拓扑,(X,Ø)是一个拓扑空间。这样的拓扑空间称为分立的拓扑空间,它具有的开集数目最多。

当
$$X = \{a,b,c\}$$
 时,取

 $\mathscr{O} = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\},\$ (X,\mathscr{O}) 是分立的拓扑空间。而且 \mathscr{O} 中每一个开集 $\mathscr{O}, \{a\}, \{b\},\$ $\{c\}, \{a,b\}, \cdots$ 也都是闭集。

例 4 设X是一个n维欧氏空间 R^n 。 我们知道 R^n 中向量 x 用 n 个实数 x_1, x_2, \cdots, x_n 标志, $x = (x_1, x_2, \cdots, x_n)$ 。在 R^n 中定义 两点 x 和 y 的距离

$$\rho(x,y) = \left[\sum_{i=1}^{n} (x_i - y_i)^2\right]^{1/2}.$$
 (6.2)

距离给予欧氏空间一个空间结构。在距离概念基础上,对欧氏空间任一点x,可以定义x的一个球形邻域 $V(x,\varepsilon)$,

$$V(x,\varepsilon) = \{ y \in X | \rho(xy) < \varepsilon \}, \tag{6.3}$$

 $V(x,\varepsilon)$ 是一个以x 为球心, ε 为半径的开球。定义开集为球形邻域的和集,

$$\mathscr{O} = \left\{ O = \bigcup_{x \in A} V(x, \varepsilon) | A \in X \right\},\,$$

则 \emptyset 是X的一个拓扑,称为欧氏空间的自然拓扑。故欧氏空间在自然拓扑下(X, \emptyset)是一个拓扑空间。

从以上讨论可以看出,拓扑空间中的邻域是欧氏空间中邻域概念的推广。同样,在拓扑空间中也可以引进拓扑子空间和拓扑空间的直积。

定义 6.4 设 (X, \mathcal{O}) 是拓扑空间, A 是 X 上的 - 个子集,

$$\mathscr{O}_A = \{O \cap A \mid O \in \mathscr{O}\}. \tag{6.4}$$

可以证明 (A, \mathcal{O}_A) 满足式 (6.1),故 (A, \mathcal{O}_A) 是一个拓扑空间。 (A, \mathcal{O}_A) 称为 (X, \mathcal{O}) 的拓扑子空间或相对拓扑空间, \mathcal{O}_A 称为在

A上的相对拓扑。

定义 6.5 设 $(X, \mathscr{O}(X))$ 和 $(Y, \mathscr{O}(Y))$ 是拓扑空间, $Z = X \otimes Y \in X$ 和 Y 的直积集合,令

$$\mathscr{O}(Z) = \left\{ O = \bigcup_{o_1 \in \widetilde{o}_1, o_2 \in \widetilde{o}_2} O_i \otimes O_2 | \widetilde{o}_1 \in \mathscr{O}(X), \widetilde{o}_2 \in \mathscr{O}(Y) \right\},$$

则 $\mathscr{O}(Z)$ 是Z 上的一个拓扑,因此 (Z, $\mathscr{O}(Z)$) 是拓扑空间,称为 (X, $\mathscr{O}(X)$)和(Y, $\mathscr{O}(Y)$)的直积拓扑空间。

与欧氏空间相仿, 也可以讨论拓扑空间的连通性.

定义 6.6 设(X, \mathscr{O})是拓扑空间,若不存在两个不空的开集 O_1, O_2 ,使

$$O_1 \bigcup O_2 = X;$$

$$O_1 \cap O_2 = \emptyset,$$
(6.5)

则称 (X, \emptyset) 是连通的拓扑空间,或简称为连通的。反之,如果存在 (X, \emptyset) 的两个开集 O_1, O_2 满足式(6.5),则称 (X, \emptyset) 是非连通的。

例 5 对例 1 中考虑的拓扑空间(X, \mathscr{O}),

$$X = \{a, b, c\},\$$
, $\mathscr{G} = \{\varnothing, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\},\$

取X的子集 $A = \{b,c\}$, \mathcal{O} 在A上的相对拓扑为

$$\mathscr{O}_A = \{ \varnothing, \{b\}, \{c\}, \{b,c\} \},$$

則 (A, \mathscr{O}_A) 是 (X, \mathscr{O}) 的拓扑子空间。

 (X, \emptyset) 是连通的拓扑空间,而其拓扑子空间 (A, \emptyset_A) 是非连通的。此例也说明,连通拓扑空间的子空间并不一定连通。

例 6 欧氏空间 R"和 R"分别都是连通的,其直积拓扑空间 R" $\otimes R$ " = R"+"

也是连通的。

极限的概念是数学分析的基础,它是在欧氏空间引入的,下 面将其推广到拓扑空间中去。 定义 6.7 设 A 是拓扑空间 X 的一个子集, x 是 X 的一个点,如果 x 点的任一个邻域 U 满足

$$(U-x)\cap A\neq\emptyset, \qquad (6.6)$$

则称x 是A的极限点,有时也称x 是A的聚点。

A的极限点的全体与A的和集称为A的闭包,用 \overline{A} 表示。可以证明 \overline{A} 是闭集。

例 7 设 X 为一维欧氏空间 R^1 , 如果取 R^1 的子集 $A = \{1, 1/2, \dots, 1/n, \dots\}$, x = 0 点不属于 A ,但是属于 X , x = 0 是 A 的一个极限点。

当取 $A = \{x \mid a \leq x < b\}$,即 $A \in \mathcal{A}$ 是 华 开 区 间 [a,b) 。则 $a \leq x \leq b$ 中 每 一 点 都 是 A 的 极 限 点, A 的 闭 包 A = [a,b] 。

当X为 R^* 时, $A = V(x_0, \varepsilon_0)$ 是以 x_0 为球心, ε_0 为半径的开球。球内或球上任一点都是 A 的极限点。故 A 的闭包 \overline{A} 是以 x_0 为 球心, ε_0 为半径的闭球。

数学分析中,关于有界闭区间 [a,b]有两条基本定理,一是 [a,b]中任一无穷子集必有极限点属于[a,b],另一是 [a,b]的任一开覆盖有有限的子覆盖。这实际上是两种拓扑性质,前者叫列紧性,后者叫紧致性。同样在拓扑空间也可以定义列紧和紧致。

定义 6.8 设 (X, \emptyset) 是拓扑空间,如果 X 的任一无穷子集都有极限点,则称 (X, \emptyset) 是**列紧的**,如果对 X 的任一开覆盖都有有限的开子覆盖,则称 (X, \emptyset) 是**紧致的**。

例 8 R^1 中的[a,b] 作为拓扑空间是紧致的,也是列紧的。但(a,b]不是列紧的,因可作无穷子集{ $a-1,a-1/2,\cdots,a-1/n,\cdots$ },其极阻 a 不在(a,b]中。而且(a,b] 也不是紧致的,如对其开覆盖(a-1/2,b+1/2),($a-1/2^2,b+1/2^2$),…,($a-1/2^*,b+1/2^2$),…,就不可能选出有限个子覆盖盖住(a,b]。

同理可得,欧氏空间的任何有界闭区域是列紧和紧致的,而 且任何列紧或紧致的欧氏空间的子集是有界闭区域,但对一般拓 扑空间而言,如果紧致则必然列紧;反之,列紧可能不紧致,并 "且有界闭子集幷不一定列紧或紧致。

当拓扑空间 (X, \mathcal{O}) 的一个子集A,作为拓扑子空间 (A, \mathcal{O}_A) 是紧致的,我们就称A是 (X, \mathcal{O}) 的紧致子集。

定义 6.9 豪斯道夫 (Hausdorff) 空间是满足下面分离公理的拓扑空间(X, \mathscr{O})。

对任意 $x,x' \in X$, $x \neq x'$, 存在 x 和 x' 的邻域 U_x 和 $U_{x'}$, 使 $U_x \cap U_{x'} = \emptyset$ (如图 6.1),即豪斯道夫空间具 有 分 离 性。如

R* 是豪斯道夫空间,则平庸拓扑 空间不是豪斯道夫空间。

可以证明, 紧致豪斯道夫空 间的任意闭子集 是 紧 致 的, 反 之, 豪斯道夫空间的任意紧致子

集是闭集。微分流形只与豪斯道夫空间有关。

定义6.10 设(X, $\mathscr{O}(X)$), (Y, $\mathscr{O}(Y)$)是拓扑空间,如果映射 $f: X \to Y$ 满足下面条件。

对 $x \in X$, 若对 f(x) 的任何邻域 $V_{f(x)} \subset Y$, 存在 x 的 一 个 邻域 $U_x \subset X$, 使

$$f(U_x)\subset V_{f(x)}$$
,.

则称映射 f 在点 x 连续。见图6.2。

如果映射 f 在X的每一点都连续,则称 f 是连续映射。还可

证明下面定理。

定理 6.7 设(X, $\mathscr{O}(X)$)和(Y, $\mathscr{O}(Y)$) 是拓扑空间,f:X $\rightarrow Y$ 是映射,则下面四个条件是等价的。

- (2) Y 中每个开集在扩下的逆象是X中的开集;
- (3) Y中每个闭集在 / 下的逆象是 X的闭集;
- (4) 对任何 $A \subset X$, $f(A) \subset f(A)$.

定义6.11 设(X, $\mathscr{O}(X)$)和(Y, $\mathscr{O}(Y)$)是拓扑空间,若映射 $f: X \rightarrow Y$ 是一一对应的满映射,而且 f, f^{-1} 都是连续映射,则称 f 是同**胚映射**,也称为拓扑映射。

对同胚映射,f和 f^{-1} 都是连续的。因此f不仅使X中的点与Y中的点有——对应关系,而且还使X中的开集与Y中的开集有——对应关系。这意味着 $(X, \mathscr{O}(X))$ 和 $(Y, \mathscr{O}(Y))$ 的拓扑性质是相同的。如X中的闭集也与Y中闭集有——对应; $(X, \mathscr{O}(X))$ 连通 \Rightarrow ($Y, \mathscr{O}(Y)$)连通, $(X, \mathscr{O}(X))$ 紧致 \Rightarrow ($Y, \mathscr{O}(Y)$)紧致,等

拓扑空间 $(X, \mathscr{O}(X)), (Y, \mathscr{O}(Y))$ 间若存在同胚映射 $f: X \to Y$,则称 $(X, \mathscr{O}(X))$ 和 $(Y, \mathscr{O}(Y))$ 是同胚的拓扑空间。在任一同胚映射下保持不变的性质,称为拓扑性质,如开集、闭集、连通性、紧致性等等。

前面已讨论了拓扑空间的连通性,下面为了进一步区分单连通和复连强,引进道路连通、道路同伦和基本群的概念。

定义6.12 设(X, \mathscr{O})是拓扑空间,I 是 R^1 中区间 [0,1],即 $I = \{t \mid 0 \le t \le 1\} \subset R^1$ 。如果连续映射 $\alpha: I \to X$ 满足 $\alpha(0) = x_0$, $\alpha(1) = x_1, \ x_0, x_1 \in X$,则称 α 是一条从 x_0 到 x_1 的道路。

注意道路指的是从I 到X的映射 α , 拜 不 是 $\alpha(I) \in X$ 的点集。可能有两个不同的映射 $\alpha' \neq \alpha$, 但是 $\alpha(I) = \alpha'(I)$, α 和 α' 是两条不同的道路。

如果拓扑空间 (X, σ) 中任意两点 x_0 和 x_1 ,都存在一条从 x_0

到 x_1 的道路,就说拓扑空间 (X, \mathcal{O}) 是道路连通的,或 弧 连 通 的。

定理 6.2 设拓扑**空**间(X, \mathscr{O})是道路连通的,则(X, \mathscr{O})是连通的。

但连通的拓扑空间并不一定是道路连通的。

例 9 欧氏空间 R", R"中的开(或闭)的长方体和球体,是道路连通的。因为过上述空间中任意两点 x_0 和 x_1 ,作直线段

$$(1-t)x_0+tx_1=x \quad (0 \le t \le 1),$$

x 必在上述空间內。也就是说存在连续映射,

$$a: I \to R^*$$
 (或相应的空间),
 $a(t) = (1-t)x_0 + tx_1$,
 $a(0) = x_0$, $a(1) = x_1$.

在拓扑空间(X, $\mathscr O$)中,设 α 是从 x_0 到 x_1 的一条道路, β 是从 x_1 到 x_2 的一条道路。那么可以定义 α 的逆道路 α^{-1} 是 从 x_1 到 x_0 的一条道路

$$a^{-1}(t) = a(1-t), (6.7)$$

定义道路 β 与 α 的乘积是从 x_0 到 x_2 的一条道路,

$$\beta a(t) = \begin{cases} a(2t), & 0 \leq t \leq \frac{1}{2}; \\ \beta(2t-1), & \frac{1}{2} \leq t \leq 1. \end{cases}$$
 (6.8)

这样定义的 βa , 也是 $I \rightarrow X$ 的 -个连续映射, $\beta a(t)$ 就是 $a(t) \cup \beta(t)$.

定义6.13 设 f_0 和 f_1 是从拓扑空间X 到拓扑空间Y 的两个 连续映射

$$f_0, f_1: X \rightarrow Y$$
,

如果存在一个从直积拓扑空间 $X\otimes I$ 到Y的连续映射 $F:X\otimes I o Y$,使对任意 $x\in X$,有

$$F(x,0) = f_0(x), F(x,1) = f_1(x),$$

其中 $I = \{t \mid 0 \le t \le 1\}$ 。则说映射 f_0 与 f_1 **同伦**,记作 $f_0 \cong f_1: X \longrightarrow Y$ 。

F 称为从 f_0 到 f_1 的一个**伦移**, 当 f_1 是一个常值映射时,即 $f_1(x)$ 是 Y 的一个点,我们说 f_0 **零伦**.

同样,对于拓扑空间X中从 x_0 到 x_1 的两条 道 路 α 和 β ,是 从 I 映入X的两个连续映射

$$a, \beta : I \rightarrow X,$$

 $a(0) = \beta(0) = x_0,$
 $a(1) = \beta(1) = x_1,$

如果存在一个从 $I \otimes I$ 到X的连续映射F,

$$F: I \otimes I \rightarrow X$$

使对任意 t₁,t₂∈[0,1], 有

$$F(t_1,0) = a(t_1),$$
 $F(t_1,1) = \beta(t_1),$
 $F(0,t_2) = x_0,$ $F(1,t_2) = x_1,$

则称道路 α 与 β 同伦, 记为 $\alpha = \beta$, 映射 F 称为从 α 到 β 的伦移。

从图6.3可以看出道路同伦的直观意义。 $I \otimes I$ 是 t_1t_2 平面上正方形, $0 \leq t_1 \leq 1$, $0 \leq t_2 \leq 1$, 其元素是正方形內或上的一个点 (t_1t_2) 。 当道路 α 和 β 同伦时,道路 α 可以连续地变为 β 。

定理 6.3 同伦关系是一个等价关系,设 f,g,h 是拓扑空间 X到Y的连续映射,则有

- (1) $f \simeq f$;
- (2) 若 f≃g,则有 g≃f;
- (3) 者 $f \simeq g$, $g \simeq h$, 则有 $f \simeq h$.

同理,道路同伦关系也是一个等价关系,设 α , β , γ 是拓扑空间X的从 x_0 到 x_1 的道路,则有;

- (1) $a \simeq a$;
- (2) 若 a ≃ β, 则有 β ≃ a;
- (3) 若 $a \simeq \beta$, $\beta \simeq \gamma$, 则有 $a \simeq \gamma$.

定理 6.4 设 $a_0 \simeq a_1$, $\beta_0 \simeq \beta_1$, 如果乘积 $a_0\beta_0$ 有定义(即 a_0 的 起点与 β_0 的终点是拓扑空间同一点),则 $a_1\beta_1$ 也有定义,而且

$$a_0\beta_0 \simeq a_1\beta_{14}$$

定理 6.5 设 α ≃ β, 则 α ⁻¹ ≃ β ⁻¹.

利用定理6.3,可以引入**道路同伦类的概念**。设〈ɑ〉是与道路 a 同伦的所有道路的集合,称〈ɑ〉为与道路 a 同伦的类,〈ɑ〉可以 用与 a 同伦的任一道路来标记。因为道路同伦的所有道路有相同的起终点,故〈ɑ〉中所有道路的起终点是相同的。

利用定理6.4,当道路 a 和 β 的乘积 $a\beta$ 有定义时,可以定义道路同伦类 $\langle a \rangle$ 和 $\langle \beta \rangle$ 的乘积,即

$$\langle a \rangle \langle \beta \rangle = \langle a \beta \rangle, \tag{6.9}$$

只要道路 α,β,γ 的乘积 $\alpha\beta\gamma$ 有定义,由式(6.9) 定义的乘法是可以结合的,即

$$(\langle a \rangle \langle \beta \rangle) \langle \gamma \rangle = \langle a \rangle (\langle \beta \rangle \langle \gamma \rangle), \qquad (6.10)$$

根据定理6.5,可以定义道路同伦类<a>的逆

$$\langle a \rangle^{-1} = \langle a^{-1} \rangle_{\bullet}$$
 (6,11)

设x是拓扑空间X中任意一点,常值映射

$$e_x: I \rightarrow x, \quad e_x(t) = x, \quad (6.12)$$

即 e_x 把区间 $0 \le t \le 1$ 映为 X 中固定点 $x \cdot e_x$ 的同伦类 $\langle e_x \rangle$ 包括 所有把正方形 $I \otimes I$ 映为 x 点的全部常值映射。 当 $\langle a \rangle$ 的 起 点为 x_0 ,终点为 x_1 ,则有

$$\begin{split} \langle a \rangle \langle e_{x_0} \rangle &= \langle a \rangle, & \langle a \rangle \langle e_{x_1} \rangle &= \langle a \rangle, \\ \langle a \rangle \langle a^{-1} \rangle &= \langle e_{x_1} \rangle, & \langle a^{-1} \rangle \langle a \rangle &= \langle e_{x_0} \rangle, \end{split}$$
 (6.13)

引入道路同伦类及其乘法、逆、常值映射等概念之后, 就为 定义基本群作好了准备。

定义6.14 设(X, \mathscr{O})是拓扑空间, $x_0 \in X$,所有具有起点 = 终点 = x_0 的道路同伦类的集合,以 e_{x_0} 为单位元素,以式(6.9) 和(6.11)定义乘法和逆元素,构成一个群。称为(X, \mathscr{O})的以 x_0 为基点的基本群,用 $\pi_1(Xx_0)$ 表示。

定理 6.6 设(X, \mathscr{O})是道路连通的拓扑空间,设 x_0 , x_1 是X 中任意两点,则基本群 $\pi_1(Xx_0)$ 和 $\pi_1(Xx_1)$ **同构**.

因此,从定理6.6可得,道路连通的拓扑空间(X, \mathscr{O})的所有基本群都是同构的。这就是说,与道路连通拓扑空间(X, \mathscr{O})相联系的是一个抽象群,即它的基本群 $\pi_1(X)$,与基点的选择无关。

定义6.15 一个道路连通的拓扑空间,如果它的基本群只有单位元素,就称这个拓扑空间是单连通的.

显然在单连通拓扑空间中,任意两条起点 = 终点 = x₀ 的道路 是同伦的。也可以粗略地说,单连通空间中的任意一条 封 闭 道路,可以连续地缩为一点。

如果一个道路连通的拓扑空间,它的基本群 $\pi_1(X)$ 有m个元素,则称这个拓扑空间是m度连通的。也把基本群 $\pi_1(X)$ 元素多于一个的情况,通称为复连通拓扑空间。

拓扑空间的连通性,将决定李群的连通性,而基本群群元的 个数,将决定李群是几度连通的。

6.2 微分流形

定义6.16 设 (X, \mathscr{O}) 是豪斯道夫空间,如果存在一个映射的集合 $\Phi = \{(U, \varphi_U)\}$,其中 (U, φ_U) 表示从X的开集U到欧氏空

间 R^* 的一个开集的映射, $\varphi_v: U \to \varphi_v(U)$ (R^* 中开集),满足下面四个条件。

- (1) φ_U 是同胚映射;
- (2) $\bigcup U = X_{i}$
- (3) 相容性。设 (U,φ_v) , $(V,\varphi_v) \subset \Phi$, 拜且 $U \cap V \neq \emptyset$, 则 $\varphi_v \circ \varphi_v^{-1} \in C$ 类的:
- (4) 最大性。如果 X 的开集U' 有到 R'' 的 一个 开集的同胚 映射 $\varphi_{U'}$,且 $(U',\varphi_{U'})$ 与 Φ 中任何 (U,φ_{U}) 相容,则必有 $(U',\varphi_{U'})$

则称 (X, Φ) 是一个n 维 C^{∞} 微分流形,或称为光滑流形, Φ 称为X 上的微分结构。

上述定义中的 C^{∞} 是指定义在 R^{*} 的一开集上的函数f,若f有任意阶连续偏导数存在,则称f是 C^{*} 的。当f有f 阶连续偏导数存在时,则称f是 C^{*} 的。如果f在其定义的开集上每一点,都能表成幂级数,则说f是解析的,或说f是 C^{*} 的。如果把上述定义(3)中的 $\varphi_{V}\circ\varphi_{0}^{-1}$ "是 C^{∞} 类的"改成"是 C^{*} 或 C^{*} "的",则定义6.16同样能用来定义 C^{*} 流形或解析流形。

图 6.4

- 图6.4给出微分流形的示意图。由定义并结合图6.4,对任意 $x \in U$, $U \in X$ 的一个开集,通过 $(U, \varphi_v) \in \Phi$,有 R^* 中 点 $\varphi_v(x)$

与x — 对应,定义 $\varphi_U(x)$ 在 R^* 中的坐标为x 点的局部坐标 $x' = [\varphi_U(x)]^{\frac{1}{2}}$.

故把 φ_v 称为U上的局部坐标系,U 称为 φ_v 的坐标邻域, (U, φ_v) 称为X的一个坐标对,也是任意 $x \in U$ 点的一个局部**坐标系**。

从(3)可以知道,X中一个点x可以有不同的局部坐标系,设(U, φ_{0}) 和(V, φ_{v}) 都是点x的局部坐标系,在(I, φ_{0}) 和(V, φ_{v}) 中x的坐标分别为

$$x^{i} = [\varphi_{U}(x)]^{i},$$

$$y^{i} = [\varphi_{V}(x)]^{i}.$$
(6.14)

相容性告诉我们,

 $(\varphi_V \circ \varphi_U^{-1})^i(x^1, x^2, \dots, x^*) = f^i(x^1, x^2, \dots, x^*) = y^i, (6.15a)$ $\varphi_V \circ \varphi_U^{-1}$ 是 $n \land C^*$ 函数,定义在

$$(x^1, x^2, \cdots, x^n) \in \varphi_{tt}(U \cap V) \in R^n$$

上。 同理

 $(\varphi_U \circ \varphi_V^{-1})^i(y^1, y^2, \cdots, y^n) = g^i(y^1, y^2, \cdots, y^n) = x^i \quad (6, i5b)$ 定义在

$$(y^1, y^2, \cdots, y^n) \in \varphi_{\sigma}(U \cap V) \in R^n$$

上, $\varphi_{U} \circ \varphi_{V}^{i}$ 也是 $n \wedge C^{*}$ 函数.

故 C* 微分流形是一个豪斯道夫空间, 在它的每一点的邻域是和欧氏空间的一个开集是同胚的, 因此在每一点的邻域可以引进局部坐标系, 并且同一点不同的局部坐标系是相容的。粗略地说, 微分流形可以看作是一块块"欧氏空间"粘起来的结果, 也就是说微分流形是局部欧的,是欧氏空间的一种推广。

定理6.7 设(X, \emptyset)是豪斯道夫空间,如果 $\Phi' = \{(U', \varphi_{U'})\}$ 是满足定义6.16中(1),(2),(3)条件的一个映射的集合,则 Φ' 唯一确定了一个包含它的激分结构。

例10 设 $X = R^n$, I 是恒同映射, $I: R^n \to R^n$, I(x) = x. $x \in R^n$. 则微分结构 $\mathcal{P} = \{(R^n, I)\}$ 确定了一个 R^n 上的解析流形 (R^n, \mathcal{P}) , 当然 (R^n, \mathcal{P}) 也是 C^n 微分流形。

例11 设 S^1 是半径为 1 的圆周。我们可以按下列坐标 对,在 S^1 上建立一个 C^* 流形,参看图6.5。如

注 6.5

$$\begin{split} U_1 &= S^1 - \{e^{i\theta}\}, & \varphi_i \colon U_1 \rightarrow (0,2\pi) \subset R^1, \\ & e^{i\theta} \rightarrow \varphi_1(e^{i\theta}) = \theta \quad (0 < \theta < 2\pi), \\ U_2 &= S^1 - \{e^{i\pi}\}, & \varphi_2 \colon U_2 \rightarrow (\pi,3\pi) \subset R^1, \\ & e^{i\eta} \rightarrow \varphi_2(e^{i\eta}) = \eta \quad (\pi < \eta < 3\pi), \end{split}$$

即 U_1 和 U_2 是圆周 S^1 上去掉点 $e^{i\theta}=1$ 和 $e^{i\pi}=-1$ 的 S^1 的两个开集, φ_1 和 φ_2 分别把 U_1 和 U_2 映到 R^1 的开区间(0,2 π)和(π ,3 π)。在 $U_1 \cap U_2$ 中,如果 $e^{i\theta}=e^{i\theta}$,则有

$$\eta = \theta + 2k\pi = \begin{cases} \theta + 2\pi, & 0 < \theta < \pi; \\ \theta, & \pi < \theta < 2\pi. \end{cases}$$

显然在 $U_1 \cap U_2$ 中(即除去 ϵ^{i0} 和 ϵ^{i*} 两点的 S^i 上), n 是 θ 的 C^* 函数, 所以 $\Phi = \{(U_1, \varphi_1), (U_2, \varphi_2)\}$ 确定了一个 1 维流形(S^1, Φ)。

定义6.17 设 (X,Φ) 和 (Y,Ψ) 分别是n维和n维的 C° 流形,如果映射

$$f: X \rightarrow Y$$

对任意 $x \in X$, $y = f(x) \subset Y$, 对 y 的任意局部坐标系 $(V, \psi_v) \in \Psi$, 必有 x 的适当的局部坐标系 $(U, \varphi_v) \in \Phi$ 存在,而且满足

$$f(U)\subset V$$
, (6.16)

 $\psi_{\mathbf{V}} \circ f \circ \varphi_{\mathbf{V}}^{-1} : \varphi_{\mathbf{U}}(U) \rightarrow \psi_{\mathbf{V}}(V)$

是 C° 的,即

 $y' = (\psi_{\mathbf{V}} \circ f \circ \varphi_{\bar{v}}^{-1})'(x^1, x^2, \dots, x^n), \quad i = 1, 2, \dots, n \quad (6.17)$ 是 C' 的,则称 $f \mathrel{\mathcal{L}} X$ 到 Y 的 C' 映射,或称光滑映射。

图 6.6 给出从X 到Y的 C° 映射 f 的示意图。类似地,如果 (X, Φ) 和 (Y, Ψ) 是解析流形 $(C^\circ$ 流形), $\psi_V \circ f \circ \varphi_U^{-1}$ 是 $\varphi_U(U)$ 上解析 (C°) 函数,则称 f 是解析映射 (C°) 映射)。

图 6.6

引入下,列矩阵

$$D(\psi_{V} \circ f \circ \varphi_{U}^{-1})_{\varphi_{U}(x)} = \left(\left(\frac{\partial y^{i}}{\partial x^{j}} \right)_{\varphi_{U}(x)} \right)$$

$$= \begin{pmatrix} \frac{\partial y^{1}}{\partial x^{1}} & \frac{\partial y^{1}}{\partial x^{2}} & \cdots & \frac{\partial y^{1}}{\partial x^{m}} \\ \frac{\partial y^{2}}{\partial x^{1}} & \frac{\partial y^{2}}{\partial x^{2}} & \cdots & \frac{\partial y^{2}}{\partial x^{m}} \end{pmatrix}, \qquad (6.18)$$

$$= \begin{pmatrix} \frac{\partial y^{n}}{\partial x^{1}} & \frac{\partial y^{n}}{\partial x^{2}} & \cdots & \frac{\partial y^{n}}{\partial x^{m}} \end{pmatrix},$$

称矩阵(6.18)为 f 在 x 点对局部坐标 系 {x'} 和 {y'} 的 雅 可 比 (Jacobi) 矩阵。可以证明矩阵(6.18)的秩与局部坐标系的选取无 关、故可将其记为

$$\operatorname{rank} D_{t}(\psi_{V} \circ f \circ \varphi_{U}^{-1})_{\varphi_{U}(x)} = (\operatorname{rank} f)_{x}, \qquad (6.19)$$

称(rank f)_x 为 C[∞] 映射 f 在 x 点的秩.

如果 (X,Φ) **和** (Y,Ψ) 是两个维数相等的 C^* 流形,且有 f:X $\to Y$ 是同胚映射,当 f **和** f^{-1} 都是 G^{∞} 映 射 时,则 称 (X,Φ) 和 (Y,Ψ) 是可微同胚,或说 X 和 Y 的光滑流形结构是同构的。

定义6.18 设 (X,Φ) 是 m 维光滑流形, $A \subset X$ 是开集。如果映射 $f: A \rightarrow R^1$,对任何 $(U,\varphi_U) \subset \Phi$, $A \cap U \neq \emptyset$,有

$$f \circ \varphi_U^{-1} : \varphi_U(A \cap U) \rightarrow R^1$$

是 C^* 的,则称 f 是 A 上的 C^* 函数。参看图6.7。

图 6.7

与欧氏空间类似,也可以定义 C^{∞} 流形的子流 形 和 直 积 流 形。

定义6.19 设 (Y, Ψ) 是 n 维的 C^* 流形, $X \subset Y$,如果 X 有

- 一个拓扑及一个加维的 C^{∞} 流形结构 Φ ,满足
 - (1) 包含映射 $I:X\rightarrow Y$, $I(x)=x(x\in X)$ 是 C^* 的;
 - (2) $(\operatorname{rank} I)_x = m$,

则称(X,Φ)是(Y,Ψ)的 C 子流形。

设 $\Phi = \{(U, \varphi_U)\}, \ \Psi = \{(V, \psi_V)\}, \ \text{根据定义6.19, 从图 6.4}$ 可以看出,对任意 $x \in X$,映射 I 有 $I(x) = x \in Y$,设 x 和 I(x) 的局部坐标系分别为 (U, φ_U) 和 (V, ψ_V) ,则 $\psi_V \circ I \circ \varphi_U^{-1}$ 在 $\varphi_U(U)$ 是 C^{∞} 的。条件(2)即 rank $D(\varphi_V \circ I \circ \varphi_U^{-1})_{\varphi_U(x)} = m$, 说明在 x 的某个邻域 U', $I: x \to I(x)$ 是同胚映射, 也就是 x 和 I(x) 的局部坐标系有一一对应关系。

我们称X的拓扑为内部拓扑。而由式(6.4)给出的,Y在其子集X上诱导出的相对拓扑一般并不和内部拓扑一致。如果子流形 (X,Φ) 的内部拓扑与相对拓扑一致,则称 (X,Φ) 是 (Y,Ψ) 的 C^* 正则子流形。

类似地,也可以定义解析或 C^* 子流形。

定义6.20 设(X, Φ)和(Y, Ψ)为n和m维的 C°流形,其中 $\Phi = \{(U, \varphi_U)\}$, $\Psi = \{(V, \psi_V)\}$, 定义直积拓扑空间 $X \otimes Y$ 的 C°微分结构为

$$\Omega = \{(U \otimes V, \ \omega = (\varphi_U, \psi_V))\}, \tag{6.20}$$
则 $(X \otimes Y, \Omega)$ 是 (X, Φ) 和 (Y, Ψ) 的直积流形。

上述定义中 $U \otimes V$ 是 $X \otimes Y$ 的开集,由 例 6 知, $R^* \otimes R^m = R^{*+m}$, $\varphi_U(U) \otimes \psi_V(V)$ 是 R^{*+m} 的开 集, $\omega = (\varphi_U; \psi_V)$ 是 由 $U \otimes V$ 到 R^{*+m} 的拓扑映射,对任意 $x \in U$, $y \in V$;有

 $\omega(x,y) = (\varphi_U,\psi_V)(x,y) = (\varphi_U(x),\psi_V(y)),$ (6.21) ω 是同胚映射。故 Ω 满足定义6.16中(1),(2),(3)条件,利用定理 6.7,知 Ω 确 定 了 \sim 个 $X \otimes Y$ 上 的 C^{∞} 微 Ω 结 构,因 此 $(X \otimes Y,\Omega)$ 也是 C^{∞} 流形。

例12 所有 $n \times n$ 实矩阵 M(n) 构成 n^2 维欧氏空间 R^{*2} , 设I 是恒同映射,则按例10知, $\Phi = \{(R^{*2},I)\}$ 确定了 — 个 R^{*2} 上的

解析流形 $(M(n), \Phi)$, 其中 $A \in M(n)$ 为

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

 R^{*2} 中的点为 $(a_{11}, \dots, a_{1n}, a_{21}, \dots, a_{nn})$ 。显然 $\det A = 0$ 给出 R^{*2} 中一个闭曲面。因此集合

$$GL(n,R) = \{A \in M(n) \mid \det A \neq 0\}$$

是 M(n)的开集。取 GL(n,R)的拓扑为 M(n) 在它上面诱导出的拓扑,取流形结构为

$$\Phi' = \{GL(n,R), I\}, \tag{6.22}$$

则(GL(n,R), Φ') 是 M(n) 的一个正则子流形,也是开子流形。(GL(n,R), Φ')也是 n^2 维的 C^* 流形。

6.3 拓扑群与李群

定义6.21 集合 $G = \{g, f, \dots\}$ 如果满足

- (1) G是一个群;
- (2) G是一个拓扑空间;
- (3) G上的群运算是连续的,

则称 G 是一个拓扑群。

可见拓扑群G上定义了两个结构,一个是群的结构,另一个是拓扑结构。条件(3)说明G上的拓扑结构与群的结构 是 相 容的,它可以更具体写为:

- (3a) 设 $g, f \in G$,则对于乘积 gf 的每一个邻域W,总存在 g 和 f 的邻域U 和 V,使得 $UV \subset W$;
- (3b) 设 $g \in G$,则对于 g 的逆元素 g^{-1} 的每一个 邻 域 V,总存在 g 的邻域 U,使 $U^{-1} \subset V$ 。

拓扑群是相当广泛的、它包括离散群(因而包括有限群)、

李群等.

定义6.22 设集合G具有下列性质

- (1) G 是一个群;
- (2) G是一个n维 C° 流形;
- (3) 乘法运算 $\varphi: G \otimes G \to G$ 和逆运算 $\tau: G \to G$ 都是 C^* 映射, 则称 G 是一个 n 维李群, 共中

$$\varphi(\alpha,\beta) = \alpha\beta, \quad \alpha,\beta \in G, \quad \tau(\alpha) = \alpha^{-1}$$

所以李群G不但具有群的结构,还具有 C^{∞} 流形的微分结构, 并且共群结构和微分结构是相容的。

如果把定义 6.22 中的 C° 流形和 C° 映射改为解析流形和解析映射,则可定义解析李群(或写为 C° 李群)。可以证明 C° 李群(或简称李群)在本质上就是 C° 李群, 故以后只讨论李群。

设 e 是 n 维李群 C 的单位元素,在 e 点的一个邻域 U 有局部 坐标系 (U,φ_U) ,根据定义 6.22(3), 总可以找到 e 的一个邻域 W,只要 $\alpha,\beta \in W$,有 $W \otimes W \subset U$,且函数

$$(\alpha\beta)^i = \varphi_U^i(\alpha^1, \dots, \alpha^n, \beta^1, \dots, \beta^n)$$
 (6.23)

是其自变量 α^{\dagger} , …, α^{\bullet} , β^{\dagger} , …, β^{\bullet} 的解析函数。函数 ϕ_{U}^{\dagger} ($i=1,2,\dots,n$) 称为G 在给定的坐标系(U, ϕ_{U})上的合成函数,或简称合成函数。式(6.23) 也可简写为

$$(\alpha\beta)^i = \varphi_v^i(\alpha,\beta). \tag{6.23'}$$

定义6.23 设H是李群G的一个子群,H也是G流形的子流形,并且H本身是一个李群,则称H是李群G的李子群。

定理 6.8 设H 是李群G 的子群,并且是G 的一个正则子流形,则H 是G 的李子群。

定义6.24 设 G_1 , G_2 是李群,作为 C^{∞} 流 形 来 说,由 定 义 6.20可以把 $G_1 \otimes G_2$ 作为 G_1 和 G_2 的直积 C^{∞} 流形。另一方面作为抽象的群来说 $G_1 \otimes G_2$ 是群 G_1 和 G_2 的 直 积,而且满足群结构和 微分结构相容条件,故 $G_1 \otimes G_2$ 是一个李群,称它为李群 G_1 和 G_2 的 直 积。

例13 由例10知 n 维欧氏空间 R^* ,在恒同映射下是 -- 个 n 维解析流形。如果定义群的乘法为向量加法,即对任意 $x,y \in R^*$,有

$$x = (x^{1}, x^{2}, \dots, x^{n}), y = (y^{1}, y^{2}, \dots, y^{n}),$$

$$I(xy)^{i} = (x + y)^{i} = x^{i} + y^{i},$$

$$i = 1, 2, \dots, n.$$

 $I \in X, y$ 的解析函数。而 x 的逆元素为(-x), 逆运算 $\tau(x) = -x$ 也是 x 的解析函数,故 R^n 是 C^o 李群,常称为 n 维向量群。

例14 由例12知 GL(n,R)在式(6,22)拓扑下是一个 n^2 维 G^* 流形,而按矩阵的乘法,它又构成一个群。容易证明群的运算是 G^* 的,因对任意 $A=(a_{ij})$, $B=(b_{ij})\in GL(n,R)$,有

$$AB = (c_{ij}), \qquad c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

设 $A^{-1} = (d_{ij})$,由于 det $A \neq 0$,故 d_{ij} 是 a_{ij} 的解析函数, c_{ij} 是 a_{ik} 和 b_{kj} 的解析函数。所以 GL(n,R) 是 n^2 维 本群,称为 n 维实一般线性群。

同理,可以定义 n 维复一般线 性 群 CL(n,C), GL(n,C) 是 $2n^2$ 维李群。

例15 由例11给出的圆环 $S^1 = \{e^{i\theta}\}$, θ 为实数 , 是一维 C^∞ 流形。如果定义两个元素的乘法为

$$e^{i\theta} \cdot e^{i\phi} = e^{i(\theta \cdot \phi)}$$
,

则 S^1 也构成一个群。群的单位元素为 $e^{i\theta}$, $e^{i\theta}$ 的逆元素为 $e^{-i\theta}$ 。因此群的乘法运算和逆运算都是 C^∞ 的。故 S^1 是一维李群,称为一维圆环群。

n 个一维圆环群的直积

$$T^{n} = \underbrace{S^{1} \bigotimes S^{1} \bigotimes \cdots \bigotimes S^{1}}_{\# n \uparrow \uparrow}$$

也是李群,是 n 维李群, 称为 n 维圆环群。

节1.5讨论的变换群也适用于李群、设G是李群、X是 G^* 流形,如果 $G \otimes X \rightarrow X$ 的 G^* 映射满足

ex = x, e 是G的单位元素,对任意 $x \in X$ (6.24a)

 $a(\beta x) = (a\beta)x$, 对任意 $a, \beta \in G$, $x \in X$, (6.24b) 则称 G 是 X 的 E 方变 換群。

当G 是X 的左方变换群时,G 的任一元素 a,给出一个C*的 微分同胚映射 $f_a: X \to X$,即对任意 $x \in X$,有 $x \to f_a(x) = a \cdot x$,因

$$f_{\alpha^{-1}}(f_{\alpha}(x)) = \alpha^{-1} \cdot (\alpha x) = x,$$

 $f_{\alpha}(f_{\alpha^{-1}}(x)) = \alpha(\alpha^{-1}x) = x,$

故 $f_a^{-1} = f_{a^{-1}}$.

同理,如果 $X \otimes G \rightarrow X$ 的 G° 映射满足 $xe = x, \qquad \text{对 } x \in X \qquad \qquad (6.24a')$

和

$$(xa)\beta = x(a\beta), \quad \forall x \in X, \ a, \beta \in G, \quad (6.24b')$$

则称 $G \in X$ 的右方变换群。这时,G的任意元素 α ,也给出一个X到X的 C^* 微分同胚映射 f_α 。

例16 设 G = GL(n,c), $X = C^*$ 是 n 维复向量空间,对 $A \in GL(n,c)$, $x \in X$, 则

$$Ax = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = y$$

是一个 $G \otimes X \to X$ 的 C^{∞} 微分同胚映射, 故 $GL(n, \epsilon)$ 是 C^{*} 的(线性)变换群, 其中 a_{ij}, x_{i}, y_{i} 是复数。

例17 设G 是李群, 取被变换的 C^{∞} 流形 X = G, 则按群的乘法运算 $\varphi: G \otimes G \rightarrow G$,可以把G 看成G 的左方或右方变换群。

在定义1.16 中,曾给出变换群G 对 x 点的迷向子群 G^* 的定义。同样地,当李群G 是 G^{∞} 流形X的左方变 换 群,对 固 定 的

 $x \in X$,

$$G^x = \{a \in G \mid ax = x\}.$$

从 C^* 流形来看, C^* 是 G 的闭集,从抽象群来看, G^* 是 G 的迷 向子群。有时也称 G^* 是点 x 的左方固定群。

定理8.9 点 x 的迷向子群 G^* 是 G 的 G^* 正则子流形,而且是 G 的闭李子群。

定义6.25 如果李群G作为拓扑空间来说是连通 或 单 连 通 的,则称G是连通的或单连通的。如果李群G作为拓扑空间来说是紧致的,则称G是紧致的。

例18 取 X = R, 定义李群 GL(n,R) 计 X 的 左 方 作 用 为 $f:GL(n,R) \otimes R \rightarrow R$, 对 $A \in GL(n,R)$ 和 $x \in R$, 有

$$f_A(x) = Ax = (\det A)x.$$

考察 x = 1 点的固定群,

$$SL(n,R) = \{A \in CL(n,R) | \det A = 1\},$$
 (6.25)

从定理6.9知道,SL(n,R)是 GL(n,R)的闭李子群。类似地,也可定义 SL(n,C),

$$SL(n,C) = \{A \in GL(n,C) \mid \det A = 1\}.$$
 (6.25')

事实上,典型群都可以看作是李群 GL(n,C)的固定群。设K是 $n \times n$ 阶复矩阵,

$$K = (k_{ij}), \quad i, j = 1, 2, \dots, n_*$$

 k_{II} 是复数,全体K 矩阵构成一个 $2n^2$ C^* 流形,记为 $gl(n,C) = \{K\}$ 。

对任意 $A \in GL(n,C)$ 和 $K \in gl(n,C)$, 定义 $gl(n,C) \rightarrow gl(n,C)$ 的映射

$$f_A: K \rightarrow K \cdot A = A^* K A$$

f_A满足式(6.24a')和(6.24b'), 故给出

$$gl(n,G)\otimes GL(n,G) \rightarrow gl(n,G)$$

的映射, GL(n,C)是 gl(n,C)的右方变换群。对于一个固定 $K \in gl(n,C)$, 有K的固定群

$$G^{K} = \{A \in GL(n,C) \mid A^{*}KA = K\}.$$
 (6.26)

 G^{K} 是 GL(n,C)的闭李子群。

如果定义 $gl(n,C) \rightarrow gl(n,C)$ 的映射为

$$g_A: K \rightarrow K \cdot A = A \cdot K A^*,$$

对 $A \in GL(n,C)$, $K \in gl(n,C)$, 映射 g_A 也满 足 式 (6.24a') 和 (6.24b'), GL(n,C) 也是 gl(n,C) 的 右 方变换群。对于固定的 $K \in gl(n,C)$, 有 K 的固定群

$$G_*^K = \{A \in GL(n,C) \mid A^*KA^* = K\}_*.$$
 (6.27)

同样, G_{*}^{K} 是 GL(n,C) 的闭李子群,但一般说来,由于复共轭运算的出现,它不再是复解析的。

- 如果取 $K = E_{n \times n}$,则式(6.27)和(6.26)分别给出 n 阶酉群和 n 维复正交群,

$$U(n) = \{A \in GL(n,C) \mid A^*A^* = E \text{ if } A^*A = E\}, \quad (6.23)$$

$$O(n,C) = \{ A \in GL(n,C) \mid A \cdot A = E \}.$$
 (6.29)

当n=2m时,取

$$J = \begin{pmatrix} \cdot & 0 & E_{m \times m} \\ -E_{m \times m} & 0 \end{pmatrix}.$$

则由式(6.26)可得 2m 阶复辛群,

$$Sp(2m,C) = \{A \in GL(2m,C) \mid A^{\perp}JA = J\}.$$
 (6.30)

当然我们也可用同样定义 GL(n,R)中的固定群

$$((,R) = \{A \in GL(n,R) | A \cdot A = E\},$$
 (6.29')

$$Sp(2m,R) = \{A \in GL(2m,R) \mid A^{i}JA = J\}.$$
 (6.30')

各称为n维实正交群和2m维实辛群。

当然 GL(n,C) 的两个固定群的交集仍为固定群,如

$$SU(n) = SL(n,C) \cap U(n), \tag{6.31}$$

$$SO(n,C) = SL(n,C) \cap O(n,C), \qquad (6.32)$$

$$SO(n) = SL(n,R) \cap O(n,R), \qquad (6.32')$$

$$S_{D}(2m) = U(2m) \cap S_{D}(2m, C)$$
 (6.33)

SU(n), SO(n,C), SO(n), Sp(2m) 分别称为 n 维特殊酉群, n 维

特殊复正交群, n维特殊(实)正交群, 2m维辛群。

例19 $U(1) = \{A \in GL(1,C) \mid A*A = 1, \quad \text{或} A = e^{i\theta} \}.$

故U(1)的拓扑空间就是圆环 S^1 ,它是 R^2 空间的有界闭子集,故U(1)群是紧致的。U(1)群也是道路连通的,但它不是单连通的。因为从 S^1 上任一点 α 出发,所作的封闭道路总是绕圆环一圈,两圈…,而任何两条不同的封闭道路都不可能用连续变化联系,故不是同伦的。因此U(1)有无穷多个道路同伦类,它的基本群有无穷多个元素,U(1)群是 ∞ 度连通的。

例20 群

$$SU(2) = \{A \in GL(2,C) \mid A^+A = E, \text{ det } A = 1\},$$

GL(2,C)是一个 8 维李群,它的拓扑空间是 R^8 的一个子集(去掉 det A=0 的点)。由式(4.2)知,任意 $A\in SU(2)$ 可以写为

$$A = \begin{pmatrix} a_{1i} & a_{12} \\ -a_{12}^* & a_{11}^* \end{pmatrix}, \quad a_{11}^* a_{11} + a_{12}^* a_{12} = 1_{\bullet}$$

具体地

$$(\text{Re } a_{11})^2 + (\text{Im } a_{11})^2 + (\text{Re } a_{12})^2 + (\text{Im } a_{12})^2 = 1$$

故 SU(2)的拓扑空间是 R^8 中有界闭子集, 因欧氏空间的有界闭子集有有限覆盖,故 SU(2) 群是紧致的。

例21 群

$$SO(3) = \{A \in GL(3,R) \mid \det A = 1, A \cdot A = E\},$$

GL(3,R)的拓扑空间是 R^{n} 的一个子空间(去掉 $\det A=0$ 的点),由式(3.2)知

$$\sum_{i}a_{k\,i}a_{k\,j}=\delta_{i\,j},$$

其中 $A = (a_{ij})$, $a_{ij} \in R$, 显然 $a_{ki}^2 \le 1$, 故 SO(3) 的拓扑空间是 R^0 的一个有界闭子集,因此 SO(3) 群是紧致的。

如果在 SO(3,C)中,取其作用空间前两维为实,第 三 维 为 虚,则得群 SO(2,1),即

$$SO(2,1) = \{A \in SO(3,C) | a_{13}, a_{23}, a_{31}, a_{32} 为虚数,$$
 其余矩阵元为实}

则由条件

$$\sum_{\mathbf{k}}a_{k\,i}a_{k\,j}=\delta_{\,i\,j}$$

可以得到

$$a_{11}^2 + a_{21}^2 - |a_{31}|^2 = 1$$
, ...

是 R^{θ} 中无界子集,不可能有有限覆盖,故 SO(2,1) 群 是非紧致的。

例22 对 SU(2)群和 SO(3)群的连通性的讨论,利用节 4.4的结果,可以得到以下结果,如果把半径为 2π 的球面上的 所 有点都与 SU(2) 群的 -E 元素对应,那么半径为 2π 的球 与 SU(2) 群是拓扑等价的(见图 4.3);如果把半径为 π 的球直径两端的两点对应 SO(3) 群的同一个元素,则半径为 π 的球与 SO(3) 群是拓扑等价的(见图 4.4)。那么我们可以看到,SU(2) 群和 SO(3) 群都是道路连通的。从 SU(2) 群参数空间的原点出发,任何一条封闭路径,不管是否接触球面,都可以连续变到另一条封闭路径,只有一个道路同伦类,基本群只有一个元素,故 SU(2) 群是 单连通的。见图 6.8。

而对 SO(3) 群,一条从原点出 发的封闭道路,对 不接触球面或偶数 次接触球面的封闭 道路,总可以相互

图 6.8

连续变化,而奇数次接触球面的封闭道路可以连续变化,因此有两个道路同伦类,基本群有两个元素,故 SO(3)群是 2 度连通的,或称双连通的。见图6.9(a)和

例23 O(3)群是不连通的,因为

$$O(3) = SO(3) \otimes \{E,I\},$$

故存在两个开集 SO(3)和 SO(3)⊗I, 满足式(6、5)

$$SO(3) \cup SO(3) \otimes I = O(3),$$

 $SO(3) \cap SO(3) \otimes I = \emptyset,$

故 O(3)群分成两个连通部分。

设 $G = \{a, \beta, \dots\}$ 和 $G' = \{a', \beta', \dots\}$ 是李群, 如果存在一个 映射 $f:G\to G'$, 幷且滿足

- f是抽象群母到 G'的同构映射;
- (2) f 是 C[∞] 流形 G 到 C[∞] 流形 G′ 的 C[∞] 同胚映射,

则称f是李群G到李群G'的同构映射,称李群G和G'是同构的。 类似地,只要f是满足上面两个条件的 $G \rightarrow G$ 的映射,则称f为 李群G的自同构映射。这种同构是对李群的整体而言的,是群的 同构概念直接运用的结果.

对李群还存在局部同 构 的 概 念。 设 $G = \{\sigma, \tau, \dots\}$ 和 G' = $\{\sigma',\tau',\cdots\}$ 是两个李群。 e 和 e' 分别是 G 和 G' 的单位元素, W和W'分别是 e 和 e'的一个邻域。如果存在一个映射 $f:W\to W'$, $f(\sigma) = \sigma' \in W'$,而且对任意 $\sigma, \tau \in W$,满足

- (1) f 是一一映射,而且 $f(\sigma \tau) = f(\sigma)f(\tau)$;
- (2) $f \in W \supseteq W'$ 上的 C^* 同胚映射,

则称李群G和G'局部同构。局部同构是在单位元的邻域存在的同构性质。因此两个局部同构的李群G和G',在整体上并不一定同构。反之,若李群G和G'同构,显然在单位元邻域也同构,故G和G'一定局部同构。

设 $G = \{a, \beta, \dots\}$ 和 $G' = \{a', \beta', \dots\}$ 是两个李群,如果存在一个映射 $f: G \rightarrow G'$,满足

- (1) f 是抽象群G 到 G' 的同态映射;
- (2) f 是 C[∞] 流形 G 到 C[∞] 流形 G 的 C[∞] 映射,

则称李群G与李群G'同态。这同态是对李群G和G'的整体而言的,是群的同态概念在李群中运用的结果。

在李群中还存在局部同态概念。设 e 和 e' 分别是李群 G 和 G' 的单位元素,如果存在一个从 e 的邻域 W 到 e' 的邻域 W' 的映射 f ,对任意 $\sigma, \tau \in W$,有 $f(\sigma) = \sigma' \in W'$,而且满足

- (1) $f(\sigma\tau) = f(\sigma)f(\tau)$;
- (2) f 是W到W'的 C°映射, 则称李群G与李群.G'局部同态。

6.4 李群和李代数

上一节我们给出了李群的定义及李群的一些整体性质。现在 我们讨论李群在单位元邻域的性质,或称李群的局部性质。

设 G 是一个 n 维 李 群, e 是 G 的 单 位 元素。 不失 普 **逼** 性, 设 e 在 R^* 的 局 部 坐 标 为 原 点, 即 $(e^1, e^2, \dots, e^*) \approx (0, 0, \dots, 0)$ 。 那 么 总 存 在 e 的 一 个 邻 域 W , 使 $\alpha, \beta \in W$ 时, $\alpha\beta$ 也 在 W 中, 并 且

$$(\alpha\beta)^i = \varphi^i(\alpha,\beta), \quad i=1,2,\dots,n,$$

 $\varphi'(\alpha\beta)$ 是 C^{∞} 函数、把 G 作为 G 的 右方变换群,设 $\alpha, \delta\alpha \in W$,并,且 $\delta\alpha'(i=1,2,\cdots,n)$ 是 无穷小量, 考虑 $\delta\alpha$ 对 α 的 右方作用 $(\alpha\delta\alpha)$,

厠

$$(a\delta a)^{i} \equiv a^{i} + da^{i} = \varphi^{i}(a, \delta a)$$

$$= \varphi^{i}(a, 0) + \frac{\partial \varphi^{i}(a, \beta)}{\partial \beta^{j}} \Big|_{\alpha = 0} \delta a^{j}. \qquad (6.34)$$

对重复指标要求和, $(a\delta a)^i$ 称为 a^i 的无穷小右移动。令

$$\mu_j^i(\alpha) = \frac{\partial \varphi^i(\alpha, \beta)}{\partial \beta^j} \bigg|_{\beta=0} , \qquad (6.35)$$

则

$$da^i = \mu^i_j(a)\delta a^j. \tag{6.36}$$

设F(a)是任意一个 C^* 函数,当a变为 $a\delta a$ 时,F经历变化,

$$F(\alpha\delta\alpha) = F(\alpha^i + d\alpha^i) = F(\alpha) + \frac{\partial F(\alpha)}{\partial \alpha^i} d\alpha^i$$

$$= F(\alpha) + \delta \alpha^{j} \mu_{j}^{i}(\alpha) \frac{\partial F(\alpha)}{\partial \alpha^{j}}$$

$$= (1 + \delta \alpha^{j} X_{j}) F(\alpha), \qquad (6.37)$$

其中算符

$$X_j = \mu_j^i(a) \frac{\partial}{\partial a}_{i}$$
 $(j = 1, 2, \dots, n)$ (6.38)

称为李群G的无穷小生成元。设 α 为李群G的单位元邻域W中的一个元素,则任一个与 α 无限接近的元素 $(\alpha\delta\alpha)$ 可以由 X_1 生成。即在式(6.37)中,取 $F(\alpha)=\alpha$,有

$$(a\delta a) = (1 + \delta a^j X_j) a, \qquad (6.39)$$

如要决定李群G的无穷小生成元 X_{i} ,需要先知道 $\mu_{i}^{i}(a)$,而 $\mu_{i}^{i}(a)$ 又与单位元 e 的邻域中合成函数 $\varphi^{i}(a\beta)$ 有关。 设 $\alpha,\beta,\gamma\in W$,合成函数满足

(1) 结合律:

$$\varphi(\alpha, \varphi(\beta, \gamma)) = \varphi(\varphi(\alpha, \beta), \gamma), \qquad (6.40a)$$

(2)
$$\varphi^{i}(e,e) = 0$$
, $\varphi(\alpha,e) = \varphi(e,\alpha) = \alpha$, (6.40b)

(3)
$$\varphi^i(\alpha^{-1}, \alpha) = \varphi^i(\alpha, \alpha^{-1}) = 0.$$
 (6.40c)

下面将利用合成函数的已知性质,证明李氏三定理,从而得到一个李群G在单位元邻域的性质,由一个实李代数决定。

定理6.10(**李氏第一定理**) 设 $\gamma' = \varphi'(\alpha, \beta)$, 矩阵($\lambda_f^{\epsilon}(\beta)$) 是矩阵($\mu_f^{\epsilon}(\beta)$)的逆矩阵,则 γ' 满足微分方程

$$\frac{\partial \gamma^{i}}{\partial \beta^{j}} = \mu_{k}^{i}(\gamma) \lambda_{j}^{k}(\beta). \tag{6.41}$$

证明 令.

$$\chi_{j}^{i}(\alpha\beta,\beta) = \frac{\partial \varphi^{i}(\alpha,\beta)}{\partial \beta^{j}}.$$

因此

$$\chi_{j}^{i}(\alpha,\beta)=\frac{\partial\varphi^{i}(\alpha,e)}{\partial\beta^{j}},$$

其中 $\varphi^i(\alpha, e)$ 对 β^j 求偏微商时保持 $\alpha\beta^{-1}$ 不变。于是有,

$$\chi_j^i(\alpha, e) = \mu_j^i(\alpha),$$

$$\chi_j^i(\beta, \beta) = \delta_j^i,$$
(6.42)

对任意 $\alpha, \beta, \gamma \in W$, 设 $\alpha = \zeta \beta$, $\beta = \eta \gamma$, 于是 $\alpha = \zeta \eta \gamma$, $\alpha^i = \varphi^i(\alpha, e) = \varphi^i(\zeta \eta \gamma, e) = \varphi^i(\zeta, \varphi(\eta, \gamma))$,

利用复合函数微分法则,可得

$$\chi_{j}^{i}(\alpha, \gamma) = \frac{\partial \varphi^{i}(\alpha, e)}{\partial \gamma^{j}} = \frac{\partial \varphi^{i}(\zeta, \beta)}{\partial \beta^{k}} \frac{\partial \varphi^{k}(\eta, \gamma)}{\partial \gamma^{j}}$$
$$= \chi_{k}^{i}(\alpha, \beta) \chi_{j}^{k}(\beta, \gamma). \tag{6.43}$$

式(6.43)给出合成函数 φ 满足的重要关系,由它可以直接算出 $\chi_{k}^{*}(a,e)\chi_{k}^{*}(e,a)=\chi_{k}^{*}(a,a)=\delta_{k}^{*},$

由式(6.42)可知矩阵

$$(\lambda_1^*(e,\alpha)) = (\chi_1^*(e,\alpha)) \tag{6.44}$$

是(μ, (a))的逆矩阵。再利用式(6.43),有

$$\chi_1^i(\gamma,\beta) = \chi_1^i(\gamma,e)\chi_2^i(e,\beta),$$

即为

$$\frac{\partial \gamma^i}{\partial \beta^j} = \mu_k^i(\gamma) \lambda_j^k(\beta).$$

定理证华.

下面讨论无穷小生成元间的对易关系。设G是n维李群,其无穷小生成元为

$$X_j = \mu_j^i(\alpha) \frac{\partial}{\partial \alpha^{ij}}, \quad j = 1, 2, \dots, n.$$

定义 X_i 与 X_j 的对易关系为

$$[X_i, X_j] = X_i X_j - X_j X_i. \tag{6.45}$$

定理6.11(李氏第二定理) 李群G的无穷小生成元的对易关系满足

$$[X_i, X_j] = C_{i,j}^k X_k,$$
 (6.46)

而且 C1, 全是常数, 称为 G的结构常数。

证明 由式(6.38)及(6.45)得

$$[X_i,X_j] = \mu_i^k(\alpha) \frac{\partial}{\partial \alpha^k} \mu_j^l(\alpha) \frac{\partial}{\partial \alpha^l} - \mu_j^l(\alpha) \frac{\partial}{\partial \alpha^l} \mu_i^k(\alpha) \frac{\partial}{\partial \alpha^k}$$

$$= \left\{ \mu_i^l(a) \frac{\partial \mu_j^k(a)}{\partial a^l} - \mu_j^l(a) \frac{\partial \mu_i^k(a)}{\partial a^l} \right\} \frac{\partial}{\partial a^k}, \qquad (6.47)$$

已知合成函数是 C^* 的,故有

$$\frac{\partial^2 \varphi^i(\alpha \beta)}{\partial \beta^i \partial \beta^i} = \frac{\partial^2 \varphi^i(\alpha \beta)}{\partial \beta^i \partial \beta^i}.$$

设 $\gamma = \alpha \beta$, 利用式(6.41)可得

$$\frac{\partial}{\partial \beta^{k}} \mu_{i}^{i}(\gamma) \lambda_{i}^{i}(\beta) = \frac{\partial}{\partial \beta^{k}} \mu_{i}^{i}(\gamma) \lambda_{k}^{i}(\beta), \qquad (6.48)$$

而

$$\frac{\partial}{\partial \beta^{\frac{1}{k}}} \mu_{j}^{i}(\gamma) = \frac{\partial \mu_{j}^{i}(\gamma)}{\partial \gamma^{2}} \frac{\partial \gamma^{2}}{\partial \beta^{\frac{1}{k}}} = \frac{\partial \mu_{j}^{i}(\gamma)}{\partial \gamma^{2}} \mu_{q}^{2}(\gamma) \lambda_{k}^{q}(\beta),$$

于是式(6.48)为

$$\frac{\partial \mu_{j}^{i}(\gamma)}{\partial \gamma^{p}} \mu_{q}^{p}(\gamma) \left[\lambda_{k}^{q}(\beta) \lambda_{l}^{j}(\beta) - \lambda_{l}^{q}(\beta) \lambda_{k}^{j}(\beta) \right] \\
= \mu_{j}^{i}(\gamma) \left[\frac{\partial \lambda_{k}^{j}(\beta)}{\partial \beta^{i}} - \frac{\partial \lambda_{l}^{j}(\beta)}{\partial \beta^{i}} \right].$$

对求和变数进行替换得

$$\left[\frac{\partial \mu_{j}^{i}(\gamma)}{\partial \gamma^{j}}\mu_{q}^{j}(\gamma) - \frac{\partial \mu_{q}^{i}(\gamma)}{\partial \gamma^{j}}\mu_{j}^{j}(\gamma)\right]\lambda_{k}^{q}(\beta)\lambda_{i}^{j}(\beta)$$

$$= \mu_{j}^{i}(\gamma)\left[\frac{\partial \lambda_{k}^{j}(\beta)}{\partial \beta^{i}} - \frac{\partial \lambda_{j}^{j}(\beta)}{\partial \beta^{k}}\right].$$

利用($\lambda_{j}^{*}(\beta)$)是($\mu_{j}^{*}(\beta)$)逆矩阵性质,可得

$$\begin{split} & \left[\frac{\partial \mu_{q}^{i}(\gamma)}{\partial \gamma^{p}} \mu_{q}^{p}(\gamma) - \frac{\partial \mu_{q}^{i}(\gamma)}{\partial \gamma^{p}} \mu_{j}^{p}(\gamma) \right] \hat{\lambda}_{i}^{s}(\gamma) \\ & = \left[\frac{\partial \lambda_{k}^{s}(\beta)}{\partial \beta^{i}} - \frac{\partial \lambda_{l}^{s}(\beta)}{\partial \beta^{k}} \right] \mu_{q}^{k}(\beta) \mu_{j}^{l}(\beta) \,. \end{split}$$

上式左边是 γ 的函数,右边是 β 的函数,因此只有可能等于常数。而常数只与非求和指标q,i,s一关,设其为 C_i ,

$$C_{ij}^{s} = \left[\frac{\partial \mu_{ij}^{i}(\gamma)}{\partial \gamma^{p}} \mu_{q}^{p}(\gamma) - \frac{\partial \mu_{q}^{i}(\gamma)}{\partial \gamma^{p}} \mu_{j}^{p}(\gamma)\right] \lambda_{i}^{s}(\gamma)$$

$$= \left[\frac{\partial \lambda_{k}^{s}(\beta)}{\partial \beta^{i}} - \frac{\partial \lambda_{i}^{s}(\beta)}{\partial \beta^{k}}\right] \mu_{q}^{k}(\beta) \mu_{j}^{l}(\beta), \qquad (6.49)$$

于是有

$$C_{qj}^s\mu_s^i(\gamma)=\frac{\partial\mu_j^i(\gamma)}{\partial\gamma^p}\mu_q^p(\gamma)-\frac{\partial\mu_q^i(\gamma)}{\partial\gamma^p}\mu_j^p(\gamma).$$

代入式(6.47)得

$$[X_i, X_j] = C_{i,j}^s \mu_s^k(a) \frac{\partial}{\partial a^k} = C_{i,j}^s X_s.$$

于是证明了式(6.46)中 C_{ij} 是常数。

定理6.12(李氏第三定理) 李群G的结构常数满足

$$C_{i,j}^{k} + C_{j,i}^{k} = 0 ag{6.50a}$$

和

$$C_{ij}^k C_{kq}^p + C_{jq}^k C_{ki}^p + C_{q}^k C_{kj}^p = 0.$$
 (6.50b)

证明 由对易关系定义式(6.45),可得

$$[X_i, X_j] + [X_j, X_i] = 0, \qquad (6.51a)$$

$$[[X_i, X_j], X_k] + [[X_j, X_k], X_j] + [[X_k, X_j], X_j] = 0. \quad (6.51b)$$

再代入式(6.46)即可得式(6.50a)和(6.50b)。式(6.50b)和(6.51b) 称为雅可比恒等式。定理证毕。

定义6.26 设 g 是数域 K (实数域 R ,复数域 C 或其它数域 S 上的 n 维向量空间,对于 $X,Y \in \mathfrak{g}$,定义李积 $[X,Y] \in \mathfrak{g}$,李积 满足以下条件。

(2) 幂零性、对 $X \in \mathfrak{g}$,有

$$\lceil X, X \rceil = 0, \tag{6.53}$$

(3) 雅可比性。对 $X,Y,Z \in \mathfrak{g}$,有

$$[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0, \quad (6.54)$$

则称 g 是一个李代毅。

从定义2.12可以知道,李代数是一个代数,但不是可结合的代数。

从条件(6.53), 可以得到对 $X,Y \in g$,有[X+Y,X+Y] = 0,

因而得到李积的反对称性,这与幂零性不独立,

$$[X,Y] = -[Y,X], \tag{6.55}$$

若取李代数 g 的一组基 X_1, X_2, \dots, X_r , 则由李积

$$[X_i, X_j] = C_{i,j}^* X_k \qquad (6.46')$$

规定的 n^3 个常数 C_1^2 , 称为李代数 g 关于基 X_1, X_2, \dots, X_n 的结构常数,或简称为 g 的结构常数。由李积的反对称性 和 雅 可 比 性,可以得到结构常数满足

$$C_{ij}^{k} + C_{ji}^{k} = 0,$$
 (6.50a')

$$C_{ij}^{k}C_{kg}^{k} + C_{jg}^{k}C_{ki}^{k} + C_{gi}^{k}C_{kj}^{k} = 0,$$
 (6.50b')

这正是式(6.50a)和(6.50b)。

由李代数的定义和李氏三定理,可以看出对于n维李群G,如果选其无穷小生成元 X_i 为向量空间的基,则集合

$$g = \{a^i X_i | a^i \in R\}$$

是一个向量空间。在g中进一步定义两个元素X和Y的李积是X和Y的对易关系

$$\lceil X, Y \rceil = XY - YX$$

再利用李氏三定理,可以看出 g 是一个李代数。由于 $a' \in R$,故 g 还是一个实李代数。

通过上面对李群G在单位元附近行为的讨论,引入李群的无穷小生成元,证明了李氏三定理,从而得到对应每一个李群有一个实李代数 g ,这称为李群的线性化。今后我们用大写字母G ,SO(3) ,… 表示李群,而其相应的李代数则用小写字母 g ,o(3) ,…代表。

例24 设 (x_0,y_0,z_0) 是 R^3 中一个 固 定 点,在 SO(3) 群 元 $C_n(\psi)$ 作用下变为(x,y,z)点,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_n(\psi) \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}.$$

(x,y,z)可以看作是群元 $C_{\bullet}(\psi)$ 的函数。取

$$\alpha^1 = \psi n_x, \qquad \alpha^2 = \psi n_y, \qquad \alpha^3 = \psi n_z,$$

取式(6.37)中 $\alpha = e$, 有

$$F(\delta a) = F(e) + \delta a^j X_j F(e),$$

再利用节4.4的结果,可得

$$F(\delta a) = \begin{pmatrix} 1 & -\delta a^3 & \delta a^2 \\ \delta a^3 & 1 & -\delta a^1 \\ -\delta a^2 & \delta a^1 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}.$$

洏

$$F(e) = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix},$$

故可得 SO(3) 群的无穷小生成元为

$$I_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad I_{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

$$I_{3} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

与式(4.29a)结果一致。因此对矩阵群,用找与单位元素无限接近的元素矩阵表达式,如节 4.4 的方法,来求无穷小生成元是较方便的。

对一个给定的李代数,它与李群的关系通过李氏三定理的逆定理给出。下面我们只给出这些定理的表述,而不给出定理的证明。证明部分请参考文献[11,23]。

定理6.13 (李氏第一定理的逆定理) 设 a^{1} , a^{2} ,..., a^{n} , β^{1} , β^{2} ,..., β^{n} 是 2n 个变量, $\gamma^{i} = \varphi^{i}(\alpha,\beta)(i=1,2,...,n)$ 是这 2n 个变量的 n 个函数,取

$$\mu_j^i(\alpha) = \frac{\partial \varphi^i(\alpha, \beta)}{\partial \bar{\beta}^j}\Big|_{\beta=0} .$$

而 $(\lambda_j^i(\alpha))$ 是 $(\mu_j^i(\alpha))$ 的逆矩阵。如果 $\mu_j^i(\gamma)$ 在 $\gamma=0解析,且<math>\mu_j^i(0)$ = δ_j^i ,并且函数 φ^i 满足方程

$$\frac{\partial \gamma^*}{\partial \beta^*} = \mu^i_j(\gamma) \lambda^j_i(\beta),$$

则函数 pⁱ 是一个局部李群的合成函数, 其无穷小生成元为

$$X_j = \mu_j^i(a) \cdot \frac{\partial}{\partial a^{i}}.$$

上面提到的局部李群,是在单位元的一个邻域內有李群性质的李群,满足式(6.40a)、(6.40b)和(6.40c)。

定理6.14(李氏第二定理的逆定理) 设

$$X_i = \mu_i^j(a) \frac{\partial}{\partial a^{j-1}}$$

是定义在 R^* 的开子集上的解析无穷小线性变换, $i=1,2,\cdots,n$ 。假定 X_i 构成一个 n 维实李代数 g_i 即满足对易关系

$$[X_i, X_j] = C_{i,j}^L X_L,$$

那么存在一个n维局部李群G,以X,为其无穷小生成元,以g为其李代数,并且除差一个局部解析同构外,这局部李群C是唯一的。

定理6.15(李氏第三定理的逆定理) 设 9 是实数域上的 n 维抽象李代数,则存在一个 n 维局部李群 G , 其 李 代 数 与 9 同构。并且这个局部李群,在局部解析同构意义下是唯一的。

于是我们看到,一个有限维实李代数,对应的李群是局部同构的,而且若两个李群局部同构,它们的李代数是同构的。但是局部同构的李群,并不一定(整体)同构。所以一般说来,一个有限维实李代数,对应的李群并不只是一个,可以对应若干个互不同对的李群。下面的定理对我们了解李代数和李群的关系是重要的。

定理6.16 设SG是一个单连通李群。如果SG到道路连通

李群G的局部同态映射为f',则可以把局部同态f'扩充为SG到G的(整体)同态f。并且在SG的单位元素的一个邻域内,有f=f'。

定理6.17 设 9 是有限维实李代数,则存在一个单连通李群SG 以 9 为其李代数,并且这样的 SG 在同构意义下 是 唯一的。

定稱6.17指出,一个 n 维实李代数 g ,唯一决定一个单连通李群 SG。而定理6.16指出,与 SG 局部同构的道路连通李群 G_1 , G_2 , ... , G_7 , 必定有 SG到 G_1 , G_2 , ... , G_7 的同态。 也就是全部以 g 为李代数的李群 G_1 , G_2 , ... , G_7 ,必存在从 SG到 G_1 , G_2 , ... , G_7 的同态。 也就是全部以 g 为李代数的李群 G_1 , G_2 , ... , G_7 ,必存在从 SG到 G_1 , G_2 , ... , G_7 的同态映射 f_1 , f_2 , ... , f_7 。 而且还可进一步证明,从 SG到 G_1 , G_2 , ... , G_7 的同态映射 f_1 , f_2 , ... , f_7 的同态核是分立的, 即同态核 D_i 是 SG 的分立不变子群, 而且 D_i 的元素与 SG 的元素是 可以 交换的。 即对 $D_i = \{d_\mu\}$,有 $gd_\mu g^{-1} = d_\mu$,对任意 $g \in SG$ 。 我们称 D_i 是 SG的一个中心。 商群 $SG/D_i = G_i$ (i=1,2,...,r), 而且 G_i 的 基本群与 D_i 同构。 在图6.10 中,给出了所有以有限维实李代数 g 为李代数的连通李群 G_i , 拜画出了 G_i 和 G_i 的关系。 李群 G_i , G_i 。 每日 这个人, 我们可以 G_i , 我们可以 G_i , G_i 。 G_i 。 G_i , G_i , G

群.

从节 4.4 的讨论我们知道,两个同构的李代数 su(2) 和 o(3) 只对应一个唯一的单连通李群 SU(2)。群SO(3) 是复连通的。存在一个从 SU(2) 到 SO(3) 的同态。 同态核是 $\{E_{2\times 2}, -E_{2\times 2}\}$,它是 SU(2) 的一个分立的不变子群。而且这分立不变子群与SU(2) 的任一个群元是可以对易的。SU(3) 群 是 SO(3) 群 的通用覆盖群。这与图6.10的结果是一致的。

在节 4.4 中,还指出 SU(2) 群和 SO(3) 群的元素,可以经 su(2)和 o(3)李代数指数映射而得到。但一般说来,因为从无穷小变换到有限变换,就是从单位元附近的性质到群的整体性质,并非都可以通过简单的指数映射来建立李代数和李群的联系。下面两个定理对我们将是有用的。

定理6.18 设G为李群, g 是其相应的李代数, 设 $X \in g$,则指数映射 $X \rightarrow \exp X$ 在 0 点的一个邻域内是解析的和可逆的。

定理6.19 设G为李群,g为G的李代数,对于任 $-X \in g$,有G的一个单参数子群H存在,H的元穷小生成元为X,而且H的 罪元可以表为 $\exp \lambda X$, λ 是实参数。

事实上,要想由李代数 9 生成对应群 G 的元素,通常从选择适当的参数入手。参数的选择并不唯一,但要避免在单位元有奇点。从李代数的一个矩阵表达式作为无穷小生成元,通过对矩阵的指数映射,来得到与单位元连通的群元。在节 4.4 中我们正是这样做的。

利用定理6.19, 我们可以求出典型群对应的李代数。

例25 群

$$SL(n,C) = \{A \in GL(n,C) \mid \det A = 1\},\$$

对 $X \in sl(n,C)$, 有 $exp(\lambda X) \in SL(n,C)$, λ 为实数,

$$det(exp(\lambda X)) = exp(\lambda \operatorname{tr} X) = 1.$$

因而 trX = 0, 故

$$sl(n,C) = \{X \in gl(n,G) \mid trX = 0\}.$$

表6.1 典

李群	李 代 数①
GL(n,C)	gt(n,C)
GL(n,R)	gl(n,R)
$G^{(R)}(K)$	$g^{(R)}(K) = \{ A \in gl(n,R) A \in K + KA = 0 \}$
SL(#,G)	$sl(n,C) = \{ A \in gl(n,C) trA = 0 \}$
SL(n,R)	$sl(n,R) = \{ A \in gl(n,R) trA = 0 \}$
U(#)	$u(\pi) = \{ A \in gl(\pi,C) \mid A + A^+ = 0 \}$
SU (n)	$su(n) = \{ A \in gl(n,C) A + A^{+} = 0, tr A = 0 \}$
O(x,C)	$a(\pi,C) = \{ A \in gl(\pi,C) \mid A^{t} + A = 0 \}$
SO(x,C)	$so(\pi,C) = o(\pi,C)$
0 (n)	$o(n) = \{ A \in gl(n,R) A^{i} + A = 0 \}$
SO(B)	$so(\pi) = o(\pi)$
Sp(2n,C)	$sp(2n,C) = \{ A \in gl(2n,C) \mid A^{I} J + JA = 0 \}$
Sp(2π, R)	$sp(2n,R) = \{ A \in gl(2n,R) A^{t} J + JA = 0 \}$
Sp(2n)	$sp(2\pi) = \{ A \in gl(2\pi, C) \mid A^{l} J + J A = 0, A + A^{l} = 0 \}$

① 表中
$$J = \begin{pmatrix} 0 & E_{\pi \times \pi} \\ -E_{\pi \times \pi} & 0 \end{pmatrix}, \quad K = \begin{pmatrix} E_{\tau \times \tau} & 0 \\ 0 & -E_{(\pi - \tau) \times (\pi - \tau)} \end{pmatrix},$$

型群

连	紧致性 维 数
连通,∞度连通	非紧 2π2
你连通,2个连通部分,每部分在π=2时∞度连通,π≥3时	2度连通 非紧 #2
; 非连通,4个连通部分,基本群为≈1(50(r))⊗≈1(50(*-r)	非紧 (*-1)/
连通,单 连通	非紧 2=2- == == == == == == == == == == == == ==
(连通, " = 2时 ≫ 度连通, " ≥ 3时 2 度连通	非紧 *2-1
」 连通 , ∞度连通	紧致 11.2
 连 速,单 连通	紧致 12-1
 非连 道	2度连通 非紧 #(#-1)
O(n,C)的连通部分, n=2时∞度连通, n≥3时2度连通	非紧 *(*-1)
非连通,2个连通部分,每部分2度连通	紧致 *(n-1)/
О(п)的连通部分, 2度连通	紧致 [[[[]]]
' 连通,单连通	非紧 2(2*2+#
连通, ∞度连通	非紧 2*2 + #
连通, 单连通	紫敦 2*2+2

(r, n-r) 称为 $G^{(R)}(K)$ 群(或铬伦兹群)的惯性指数, $*_1(SO(r))$ 是 $^{3O(r)}$ 的基本群、

叉群

$$SU(n) = \{A \in GL(n,C) \mid \det A = 1, A^+A = E_{***} \},$$

对 $X \in su(n)$,有 $\exp(\lambda X) \in SU(n)$, λ 为实数,

$$\det(\exp(\lambda X)) = 1.$$

因而 trX = 0,

$$e^{\lambda X^+}e^{\lambda X}=e^{\lambda(X^++X)}=E_{\pi\times\pi}$$

于是 $X^+ = -X$,所以X是反厄米的。故

$$su(n) = \{X \in gl(A,C) | X^+ = -X, \operatorname{tr} X = 0\}.$$

注意,一般物理书上的指数映射常写为 $\exp(-i\lambda X)$,这样 su(n)代数中X便是厄米的。这对结果沒有什么影响。

表6.1给出典型群的李代数及其连通,紧致等拓扑性质。

从以上讨论可以看出,求出所有的相互不同构的李群问题, 变成了

- (1) 求出所有的相互不同构的实李代数 g;
- (2) 求出以 g 为李代数的 单连通李 $\Re SG$;
- (3) 求出 SG 的听有分立不变子群 D_i , 那么 $G_i = SG/D_i$ 和 SG就是以 g 为李代数的相互不同构的连通李群。

这就把求所有不同构的李群问题, 化成了求所有不同构的实 李代数问题。

第七章 李代数基础

由第六章我们知道,要得到所有互不同处的李群,需要求出所有互不同构的实李代数。本章将讨论李代数的一些基本概念、复 半单李代数的正则形式、单李代数的分类及实形等内容。

7.1 基本概念

我们知道,一个实李代数 g, 唯一地决定一个 单连 通 李群 SG. 在李群中,有李子群、同构同态等概念。在实李 代 数中,也有相应的概念。同样,这些概念在复李代数中也存在。本节将从定义 6.26 的李代数出发,讨论李代数的基本性质,其中 数 域 K可以是实数域、复数域或四元数域等等。

定义7.1 李代数 g 的一个子集 \mathfrak{h} , 当 $X,Y \in \mathfrak{h}$, 在 g 的 李积 运算下,如果满足

$$[X,Y] \in \mathfrak{h}$$
,

则称 f 是 g 的一个子代数。

如果一个李代数 g 的子代数 g ,对任 意 $X,Y \in \mathfrak{h}$,满 足 [X,Y] = 0 ,则称 \mathfrak{h} 为 g 的可交换子代数,也称为阿贝尔子代数。

定义7.2 设り是李代数 g 的一个子代数,而且 对 任意 $X \in \mathfrak{h}, Y \in \mathfrak{g}$,有

$$[X,Y] \in \mathfrak{h}$$
,

则称 5 是 g 的一个理想子代数或简称**理想**。理想子代数是 g 的一个不变子代数,即不论用 g 中任何元素与 5 的元素作李积,李积恒在 5 内。

设 g 是李代数,如 $A \in g$,对所有 $X \in g$ 满足 $[A,X] \approx 0, \tag{7.1}$

则 g 中所有 A 的集合 $C = \{A\}$,是 g 的极大可交换理 想,也称为 g 的中心。

定义7.3 李代数 g 的两个理想子代数 g₁ 和 g₂如果满足

$$g = g_1 \cup g_2, \quad g_1 \cap g_2 = \emptyset,$$
 (7.2)

则称 9 是 91 和 92 的直和, 记为

$$g = g_1 \oplus g_2$$
.

类似地也可以定义 g 为它的理想子代数 g_1,g_2,\cdots,g_n 的直 和,如果有

- (1) $g = g_1 \cup g_2 \cup \cdots \cup g_n$;
- (2) $g_i \cap g_j = \emptyset$, $\forall i, j = 1, 2, \dots, n, i \neq j$,

馴

$$g = g_1 \oplus g_2 \oplus \cdots \oplus g_n$$
.

定义7.4 设 g_1,g_2 是李代数 g 的 两个子代数,如果

$$g = g_1 \cup g_2$$

$$g_1 \cap g_2 = \varnothing; \tag{7.3}$$

 $[g_1,g_1] \in g_1$, $[g_2,g_2] \in g_2$, $[g_1,g_2] \in g_1$,

则称 9 是 91 和 92 的华直和,记为

$$g = g_1 \bigoplus_s g_{2\bullet} \tag{7.4}$$

注意半直和的第一个因子 g_1 是 g 的理想,而第二个 因 子 g_2 是 g 的子代数,但不是理想。

定义7.5 设 g 和 g' 是两个李代数,如果存在一个从 g 到 g' 上的映射 P 满足

(1) P 是… -映射,而且 对 $a,b \in C, X, Y \in \mathfrak{g}, P(X), P(Y)$ $\in \mathfrak{g}'$,有

$$P(aX + bY) = aP(X) + bP(Y). \tag{7.5a}$$

(2)
$$P([X,Y]) = [P(X),P(Y)],$$
 (7.5b)

则称李代数 $g \vdash g'$ 同构,记为 $g \cong g'$ 。映射 P 称 为 同 构映射。

故同构映射是保持李代数结构的一一映射。从抽象的数学角 度看,两个同构的李代数具有完全相同的代数结构,它们本质上 是一样的。事实上,两个同构的李代数,可以有同一的结构常数。而研究李代数的基本问题之一,就是定出所有可能的互不同构的李代数。

节 4.4 中给出的李代数 su(2)和 o(3), 便是同构的。

定义7.6 设 g 和 g' 是两个李代数,如果存在一个 从 g 到 g' 上的 映射 P , 满足

- (1) P(aX + bY) = aP(X) + bP(Y), 对 $a,b \in C$, $X,Y \in \mathfrak{g}$, $P(X),P(Y) \in \mathfrak{g}'$,
 - (2) P([X,Y]) = [P(X),P(Y)],

则称李代数 g = g' 同态,映射 P 称为同态映射。

定义7.7 设り是李代数 g 的 里想,对 $X \in g$, X = X + h 称为 X 的 mod h 同余类 (即陪集)。 g 中所有 mod h 的同 余 类,组成商空间 g/h。 定义 g/h 中李积为

$$[\overline{X}, \overline{Y}] = [\overline{X}, \overline{Y}].$$

可以证明,这李积与同余类中代表元素的选取无关,于是 g/h 是李代数, 称为 g 对 h 的 商代数。

定理7.1 从 g 到它的商代数 g/ \mathfrak{h} 上的映射是一个 同 态,称为自然同态。反之,设 P 是从 g 到 g′ 上的一个同 态 映 射,称 g 映到 g′ 中 0 元素的全体为同态核 \mathfrak{h} ,则 \mathfrak{h} 是 g 的 \mathfrak{h} 一个 理 想,而且商代数 g/ \mathfrak{h} 与 g′ 同构。

上面讨论的子代数、理想、直和、同构、同态和定 理 7.1, 在群中有子群、不变子群、直积、同构、同态和同态核定理与之相对应。

可以证明,若H是李群G的李子群,g是G的李代数,则H的李代数 h是 g的子代数;反之,若h是 g的一个子代数,则有g的唯一连通李子群H以 h为其李代数、类似地,当H是李群g的不变李子群时,h是 g的 里想,而以 g 的 理想 h 为李 代数 的连 通李群g,是g 的不变子群。 若李群g是 李 群g1 和 g2 的 直 积 群, $G = G_1 \otimes G_2$,G2 ,G3 和 G4 的李代数分别为 g3 和 g4 ,则有

$$g = g_1 \bigoplus g_2$$
 ,

即 g 是 g1 和 g2 的直和。

为了对所有不同构的李代数进行分类,还从李代数中区分出 单李代数,半单李代数,可解李代数和幂零李代数。下面将逐步 介绍这些概念。

定义7.8 设本代数 g 除了 g 本身和由零矢量构成的理想{0} 外,不再具有任何理想,则 g 是单纯李代数,或简称单李代数。

如一维李代数是单李代数,而维数大于1的交换李代数都不 是单李代数。

定义7.9 设李代数 g 除了{0}之外,不再含其它交换理想,则称 g 是**半单纯李代数,**或简称**半**单李代数。

在节 7.4 中我们将会看到,李代数 gl(n,C) 不 是 华 单 李代数,而 o(n,C), sl(n,C), sp(n,C) 是单李代数。 而两个单 李代数的 直和,如 $o(3) \oplus su(3)$ 是 半 单 李代数。

定理7.2 李代数 g 是半单的充分必要条件 是,g 可 以 写为它的理想 g_1, g_2, \dots, g_m 的直和,即

$$g = g_1 \oplus g_2 \oplus \cdots \oplus g_m,$$

而 g_1,g_2,\dots,g_m 每个都是单李代数。

只有唯一的一维李代数是单李代数,但不是半单李代数.除 此之外,所有的单李代数都是半单的.以后我们说单李代数,将 不包含一维李代数.

$$ad(X)Z = [X,Z], \quad x! \quad Z \in \mathfrak{g}. \tag{7.7}$$

则由式(6.54)知内导子满足条件

$$ad(X)[Y,Z] = [ad(X)Y,Z] + [Y,ad(X)Z]$$

$$(X \mid X,Y,Z \in \mathfrak{g}).$$

在下一章我们将看到,内导子集合 $\{ad(x)\}$ 是g的一个表示,称

为 g 的伴随表示。如果选 X_1, X_2, \dots, X_n 为 g 的一组 基,则由式 (6.46') 可得

$$ad(X_{\sigma})X_{\rho} = [X_{\sigma}, X_{\rho}] = C_{\sigma\rho}^{\tau} X_{\tau}$$

$$(\sigma, \rho, \tau = 1, 2, \dots, n)_{\bullet}$$

$$(7.9)$$

內导子 $ad(X_s)$ 在这组基下的矩阵元是 $C_{s,s}^*$ 我们定 义 g 上 的基 k(Killing) 型 为

$$g_{\lambda\sigma} = g_{\sigma\lambda} = \operatorname{tr}(\operatorname{ad}(X_{\sigma})\operatorname{ad}(X_{\lambda})) = C_{\sigma\rho}^{\tau}C_{\lambda\tau}^{\rho},$$
 (7.10)

其中 X_a, X_λ 是 g 的两个基矢, 基林型又称 为**嘉当-基林(Cartan-Killing)度规张量**。从定义可以看出, $g_{\lambda a}$ 是对称张量。

定理7.3 李代数 9 是半单的充分必要条件是其嘉当-基林度 规张量不退化,即

$$\det |g_{\sigma\lambda}| \neq 0. \tag{7.11}$$

定理 7.3 对判断一个李代数是否为半单很有用处。另外,从定理 7.3 知半单李代数 9 的基林型 $g_{\sigma\lambda}$ 不退 化,那 么 $g_{\sigma\lambda}$ 的 逆 $g^{\sigma\lambda}$ 必存在,即

$$g^{\sigma \lambda}g_{\lambda \rho} = \delta^{\sigma}_{\rho \bullet} \tag{7.12}$$

利用基林型 $g_{\sigma_{\lambda}}$ 和其逆 $g^{\sigma_{\lambda}}$,可以找到以下算符和 g 的 任一元素可以交換,

$$C_2 = g^{\alpha \lambda} X_{\alpha} X_{1}, \qquad (7.13)$$

$$C_{i} = C_{\alpha_{1}\beta_{1}}^{\beta_{2}} C_{\alpha_{2}\beta_{2}}^{\beta_{3}} \cdots C_{\alpha_{i}\beta_{i}}^{\beta_{1}} X^{\alpha_{1}} X^{\alpha_{2}} \cdots X^{\alpha_{i}}, \quad (7.14)$$

式中 X_1, X_2, \dots, X_n 是 g 的一组基,

$$X^a = g^{a\beta} X_{\beta}, \quad i = 2, 3, \dots,$$

其中 C_2 称为 g 的**卡塞米尔(Casimir)算符**, $C_i(i=3,\cdots)$ 称 为 推广的卡塞米尔算符或高阶卡塞米尔算符。可以证明独立的卡塞米尔算符的个数,等于 g 的秩(关于秩的定义,见下一节7.2)。

对李群也可以引入单纯和半单纯的概念。设李群G沒有非平庸的不变李子群,则称G是单纯李群或单李群。设李群G沒有非平庸的不变阿贝尔李子群,则称G是半单纯李群或半单李群。于是一个单(半单)李群的李代数是单(半单)的,而一个实单(半单)

李代数对应的连通李群是单(半单)的。

设 m,n 是李代数 g 的理想,则[m,n]也是 g 的一个 理 想。因对任意 $M \in m, N \in n$ 和 $X \in g$,由式(6.54)可得

$$[X,[M,N]] = [[X,M],N] + [M,[X,N]]_{\bullet}$$

而按假设 $[X,M] \in \mathfrak{m}, [X,N] \in \mathfrak{n}$,所以

$$[X,[M,N]] \in [m,n]$$

因此[m,n]是 g 的 - 个 理想。根据这个 道理,我们可以得到李代数 g 的两个理想子代数链,

(1) 李代数 9 的导来链

$$g^{(0)} \supset g^{(1)} \supset g^{(2)} \supset \cdots,$$
 (7.15)

其中

$$g^{(0)} = g, g^{(1)} = [g^{(0)}, g^{(0)}], g^{(2)} = [g^{(1)}, g^{(1)}], \dots, (7.15')$$

(2) 李代数 9 的降中心链

$$g^{(0)} \supset g^{(1)} \supset g^{(2)} \supset \cdots, \tag{7.16}$$

其中

$$g^{(0)} = g, \quad g^{(1)} = [g, g^{(0)}], \quad g^{(2)} = [g, g^{(1)}], \quad \cdots.$$
 (7.16')

从这两个理想子代数链,我们可以定义

(1) 设 g 是李代数,如果存在自然数 k,使

$$g^{(k)} = \{0\},$$

则称 g 是可解李代数, 或 g 是可解的。

(2) 设 g 是李代数,如果存在自然数 k,使

$$g^{-k_1} = \{0\},$$

则称 g 是幂零李代数, 或 g 是幂零的.

显然幂零李代数一定可解,但可解李代数却不一定幂零。另外还可以证明,可解李代数的子代数是可解的,可解李代数的同态象也是可解的。幂零李代数的子代数是幂零的,幂零李代数的同态象也是幂零的。因此可解李代数和幂零李代数都不可能包含有任何半单李代数。下面的定理对李代数的分类是重要的。

定理7.4 任何李代数 g 可以写成一个可解李 代 数 r 与一个 半单李代数 5 的半直和,即

$$g = r_{\bigcirc s}s, \qquad (7.17)$$

其中 t 是 g 的 理想。而且当 t 可解时, t 一定包括可換 理想。

由定理 7.4 可以看到,研究半单李代数,对研究全部李代数 具有重要意义。而定理 7.2 又把研究半单李代数的问题归结为研究单李代数的问题。事实上,嘉当和基林已找出全部单李代数,它们包括 4 个系列的典型 李代数 $A_n(n \ge 1)$, $B_n(n \ge 1)$, $C_n(n \ge 2)$, $D_n(n \ge 3)$ 和 5 个例外李代数 G_2 , F_4 , E_8 , E_7 , E_8 .

7.2 复半单李代数的正则形式

复半单李代数 g 的正则形式,是对 g 的一种分解,也称 为 g 的 **惠当分解**.这种分解反映了复半单李代数的最基本性质,通常用的 **惠当**-韦耳(Cartan-Weyl)基和含瓦累(Chevalley)基,都是正则形式下的基。

一为丁引入嘉当分解,首先考虑一个 g 上的本征值问题。设 g 是一个 r 维复李代数, X_1,X_2,\dots,X_r 是 g 的一组基。对 $A \in g$,在 g 上 A 的 A 征方程为,

$$\operatorname{ad}(A)X = [A,X] = \rho X, \qquad (7.18)$$

其中 $X \in \mathfrak{g}_{\bullet}$

设
$$A = a^{\mu}X_{\mu}$$
, $X = x^{\nu}X_{\nu}$, $[X_{\mu}, X_{\tau}] = C_{\mu}^{\tau}X_{\tau}$, 则有
$$a^{\mu}x^{\nu}C_{\mu\nu}^{\tau}X_{\tau} = \rho x^{\tau}X_{\tau}.$$

利用X。是线性独立的,可以得到

$$(a^{\mu}C^{\tau}_{\mu\nu} - \rho\delta^{\tau}_{\nu})x^{\nu} = 0. \tag{7.18'}$$

齐次方程(7.181)有非零解的条件是

$$\det \left[a^{\mu} C_{\mu}^{\tau}, -\rho \delta_{\tau}^{\tau} \right] = 0. \tag{7.19}$$

久期方程式(7.19)是 ρ 的 r 次方程。在复数域上有r 个解,每一个解称为g 的一个"根"。r 维复李代数,有r 个根,但可能有重根。在实数域上,久期方程一般不一定有r 个解。

嘉当指出,可以选择 A ,使它具有最大数目的不同根。并且当 9 半单时,只有 $\rho=0$ 的根是重根,而其它非零根 都 是单的。

当 $\rho=0$ 是 n 度简样的,就称李代数 g 的秩为 n。设 李 代 数 g 的私 $\geq n$,则 A 有 n 个本征矢 $H_i(i=1,2,\cdots,n)$ 满足

$$ad(A)H_{i} = [A, H_{i}] = 0.$$
 (7.20)

可以取这 n 个本征矢 H, 是线性独立的, 即

$$[H_i, H_j] = 0, \quad i, j = 1, 2, \dots, n,$$
 (7.21)

则 $H_i(i=1,2,\cdots,n)$ 展开了李代数 g 的 - \wedge \wedge n 维子空间,它是 A 的本征值为零的子空间,是对应于零根的本征矢。这个子空间通常称为 g 的**惠当子代数**,记为 h。因为 A 的一般形式为

$$A = \lambda^i H_i$$
 (対重复指标求和), (7.22)

枚

$$\mathfrak{h} = \left\{ \sum_{i=1}^{n} \lambda^{i} H_{i} | \lambda^{i} \in C \right\}.$$

式(7.19)的其余r-n个非零根 α 对应的本征矢E。满 足 本 征方程(7.18),

$$ad(A)E_{\alpha} = [A, E_{\alpha}] = \alpha E_{\alpha}. \tag{7.23}$$

嘉当指出当 g 半单时, α 是单根, 拜且全部 E。展 开了 g 的一个 (r-n) 维子空间, 是 β 的补空间。

考虑 ad(A) 对 $[H_i, E_o]$ 的作用

$$ad(A)[H_i,E_a]$$

$$= [A, [H_i, E_a]]$$

$$= [A, H_i E_a] - [A, E_a H_i]$$

$$= [A, H_i]E_a + H_i[A, E_a] - [A, E_a]H_i - E_a[A, H_i]$$

$$= a[H_i, E_o],$$

故[H_i , E_a]也是A的本征值为 α 的,本征矢。又因为 α 是单根,故[H_i , E_a]与 E_a 成比例。令比例常数为 α_i ,有

$$ad(H_i)E_a = [H_i, E_a] = a_i E_a, \qquad (7.24)$$

 E_a 是 H_i 本征值为 a_i 的本征矢。这样结构常数

$$C_{i,\sigma}^{\tau} = a_i \delta_{\sigma}^{\tau} \tag{7.25a}$$

用式(7,22),(7,23),(7,24)可得

$$\alpha = \lambda^* a_i \tag{7.26}$$

因此 a_i 可以看作是 n 维空间中向量 a 的协变分量。它是将 H_i 映入数域 a_i 的线性映射,故此 n 维空间为嘉当子代 数 b 的 对偶空间 b^* , 父称为根空间。a 称为根矢量或简称根。也常用 Σ 表示非零根的全体,称为根系。

从雅可比恒等式(6.54)可得

$$[A, [E_{\alpha}, E_{\beta}]] + [E_{\alpha}, [E_{\beta}, A]] + [E_{\beta}, [A, E_{\alpha}]] = 0$$

和

$$[A, [E_{\alpha}, E_{\beta}]] = (\alpha + \beta)[E_{\alpha}, E_{\beta}], \qquad (7.27)$$

因此 $[E_a,E_{\beta}]$ 是A的本征值为 $\alpha+\beta$ 的本征矢。再利用 半单李代数非零根是单的性质,可以得到

$$[E_a, E_{-a}] = C_{a-a}^i H_i, \quad \beta = -a_i$$
 (7.28)

$$[E_{\alpha}, E_{\beta}] = 0, \quad \alpha + \beta \text{ 不是根}, \qquad (7.29a)$$

$$[E_{\alpha}, E_{\beta}] = N_{\alpha\beta} E_{\alpha+\beta}, \quad \alpha+\beta \text{ 是根}, \quad (7.29b)$$

相应的结构常数为

$$^{\prime}C_{\alpha\beta}^{\tau}=\left\{ egin{align*}{ll} 0, & \tau=\alpha+\beta\neq0 \ \text{不是根;} \\ N_{\alpha\beta}, & \tau=\alpha+\beta\neq0 \ \text{是根.} \end{array}
ight. \eqno(7.25b)$$

定理7.5 设α是半单李代数 g 的一个根,则 - α 也 是 g 的 - - 个根。

证明 g的基林度规张量为

$$g_{a\tau} = g_{\tau a} = C_{a\eta}^{\mu} C_{\tau\mu}^{\eta}$$
 (对重复指标求和).

如果用式(7.25), 把零根与非零根分别写出, 则有

$$g_{\alpha\tau} = C_{\alpha i}^{\alpha} C_{\tau \alpha}^{i} + C_{\alpha - \alpha}^{i} C_{\tau i}^{-\alpha} + \sum_{\alpha + \beta = 0} C_{\alpha \beta}^{\alpha + \beta} C_{\tau \alpha + \beta \bullet}^{\beta}$$
 (7.30)

从式(7.25)还可以看出, 当 $\tau \neq -\alpha$ 时,

$$g_{\sigma\tau}=0$$
.

因此,若一 α 不是根,则有 $\det |g_{\alpha\tau}| = 0$,即基林型 退 化,与假设 g 半单矛盾,故一 α 必是 g 的一个根。定理证毕。

我们可以规定 E_a 的归一因子,使

$$g_{\alpha-\alpha}=1, \qquad (7.31a)$$

这样半单李代数g的基林型就为

其中 (g_{ik}) 是 $n \times n$ 阶矩阵,用式(7.25),(7.30)可得

$$g_{ik} = \sum_{a} a_i a_k, \qquad (7.31c)$$

而且

$$\det |g_{ai}| = \det |g_{ik}| \neq 0.$$

 g_{ik} 可以看成由根矢量 α 展开的 n 维根空间的度规张量。利 用 全 反对称张量 $C_{\alpha\mu\nu}$,

$$\begin{split} C_{\sigma\mu\nu} &= g_{\sigma\lambda} C_{\mu\nu}^{\lambda} = C_{\sigma\rho}^{\tau} C_{\lambda\tau}^{\rho} C_{\mu\tau}^{\lambda} \\ &= C_{\sigma\rho}^{\tau} C_{\tau\tau}^{\lambda} C_{\mu\lambda}^{\rho} + C_{\rho\sigma}^{\tau} C_{\tau\mu}^{\lambda} C_{\lambda\tau}^{\rho} \\ &= -C_{\mu\sigma\nu} = -C_{\sigma\mu\nu} = -C_{\tau\mu\sigma}. \end{split}$$

可以将结构常数 Ci...。写为

$$C_{a-a}^{i} = g^{ik}g_{kl}C_{a-a}^{l} = g^{ik}C_{ka-a}$$

$$= g^{ik}C_{-aka} = g^{ik}g_{-a\beta}C_{ka}^{\beta}$$

$$= g^{ik}C_{ka}^{a} = g^{ik}a_{k} = a^{i},$$

于是有

$$[E_{\alpha}, E_{-\alpha}] = a^{i}H_{i},$$
 (7.28')

其中 (g^{ik}) 是 (g_{ik}) 的逆, a^i 是 a 的反协变分量。

下面再进一步讨论根矢量的性质, 拜定出结 构 常 数 $N_{a\beta}$.

定理7.6 设 α,β 是半单李代数 g 的非零根, $(\alpha \cdot \beta) = \alpha' \beta_i$,则 $2(\alpha \cdot \beta)/(\alpha \cdot \alpha)$ 是整数,而且 $\beta - [2(\alpha \cdot \beta)/(\alpha \cdot \alpha)]\alpha$ 他 是一个根。

证明 设 $\gamma = \beta + l \alpha$ 是 g 的 - 个 根, 但 $\gamma + \alpha$ 不是 g 的 根,

则

$$[E_{-\sigma}, E_{\gamma}] = N_{-\sigma \gamma} E_{\gamma - \sigma} = E'_{\gamma - \sigma},$$

$$[E_{-\sigma}, E'_{\gamma - \sigma}] = E'_{\gamma + 2\sigma}, \qquad \cdots,$$

$$[E_{-\sigma}, E'_{\gamma - j\sigma}] = E'_{\gamma + (j+1)\sigma}, \qquad \cdots,$$

$$(7.32)$$

注意我们用带" $_i$ "的 $E'_{\gamma-\alpha}$,… $_{i}$, $E'_{\gamma-(j+1)\alpha}$,表示不 考虑 $E_{\gamma-\alpha}$,… $_{i}$, $E_{\gamma-(j+1)\alpha}$ 的归一因子。因为根的个数有限,所以 总 有非负整数 g 存在,使

$$[E_{-a}, E'_{y-aa}] = 0. (7.33)$$

类似地有

$$[E_{\alpha}, E'_{\gamma-(j+1)\alpha}] = \mu_{j+1} E'_{\gamma-j\alpha}.$$
 (7.34)

利用式(7.32)和雅可比恒等式,可以得到

$$\begin{split} \mu_{j+1} E'_{\gamma-j\,\alpha} &= [E_{\alpha}, [E_{-\alpha}, E'_{\gamma-j\,\alpha}]] \\ &= - [E_{-\alpha}, [E'_{\gamma-j\,\alpha}, E_{\alpha}]] - [E'_{\gamma-j\,\alpha}, [E_{\alpha}, E_{-\alpha}]] \\ &= \mu_{j} [E_{-\alpha}, E'_{\gamma-(j-1)\alpha}] - [F'_{\gamma-j\,\alpha}, \alpha^{i} H_{i}] \\ &= \mu_{j} E'_{\gamma-j\,\alpha} + \alpha^{i} (\gamma - j\alpha)_{i} E'_{\gamma-j\,\alpha}, \end{split}$$

因此

$$\mu_{j+1} = \mu_j + (\alpha \cdot \gamma) - j(\alpha \cdot \alpha). \tag{7.35}$$

在 $μ_j$ 的定义式(7.34)中, $μ_0$ 是沒有定义的。如果定 义 $μ_0 = 0$,则可计算出 $μ_1E_γ = (α \cdot γ)E_γ \cdot μ_1 = (α \cdot γ)$,式(7.35)仍成立。这样就可反复利用式(7.35),求出

$$\mu_j = j(\alpha \cdot \gamma) - j(j-1)(\alpha \cdot \alpha)/2_{\bullet}$$

利用式(7.33)知

$$\mu_{g+1}=0.$$

于是得到

$$(\alpha \cdot \gamma) = \frac{1}{2} g(\alpha \cdot \alpha),$$

$$\mu_j = \frac{1}{2} j(g+1-j)(\alpha \cdot \alpha).$$
(7.36)

代入 $\gamma = \beta + l \alpha$, 得

$$(a \cdot \beta) = \frac{1}{2} (g - 2l)(a \cdot a). \tag{7.37}$$

即有

$$\frac{2(a\cdot\gamma)}{(a\cdot a)}=g, \qquad (7.36')$$

$$\frac{2(a \cdot \beta)}{(a \cdot a)} = g - 2l, \qquad (7.37')$$

即为整数。

总结上面讨论,知者 α , β 是 β 的非零根,则存在一个 β 的 α 根链

$$\beta + l \alpha$$
, $\beta + (l-1)\alpha$, ..., $\beta - m\alpha$ (7.38)

都 是 9 的 根。但 $\beta + (l+1)a, \beta + (l+2)a, \dots$ 及 $\beta - (m+1)a, \beta - (m+2)a, \dots$ 不是根。其中m+l=g, l=g-m。由于 β 属于这个根链,故 $\beta - [2(a \cdot \beta)/(a \cdot a)]a$ 也是 9 的一个根,并且属于根链 (7,38)。定理证毕。

定理7.7 设 α 是 半 单 李 代 数 g 的 一 个 根 , 那 么 在 所 有 α 的 整 倍 数 $k\alpha$ 中 , 只 η α , 0 , $-\alpha$ 是 根 。

证明 由 $[E_a, E_a] = 0$,知 2α 不是根。如果任 何 k > 1 的 k^α 是根,将会存在一个根链,而且这个根链包含 2α ,这 不 可 能。因此 $k\alpha(k > 1)$ 不是根。同样可证 $k\alpha(k < -1)$ 也 不是根。定理证 毕。

定理7.8 设 α,β 是半单李代数 β 的两个非零 根,则 β 的 α 根键所包含根的个数最多是 4 个,因此有

$$2(\alpha \cdot \beta)/(\alpha \cdot \alpha) = g - 2l = m - l = 0$$
, ± 1 , ± 2 , ± 3 . (7.39) 证明 当 $\beta = \alpha$, β 的 α 根链为 α , 0 , $-\alpha$, 定理成立.

当 $\beta \neq \alpha$,设 β 的 α 根链有 5 个根,假定它们 是 $\beta = 2\alpha$, $\beta = \alpha$, β , $\beta + \alpha$, $\beta + 2\alpha$. 看 $\beta + 2\alpha$ 的 β 根链,由于 $\beta + 2\alpha - \beta = 2\alpha$ 和 $\beta + 2\alpha + \beta = 2(\alpha + \beta)$ 都不是根,所以 $\beta + 2\alpha$ 的 β 根 链 只 有一个根,由式 (7,37) 知

$$((\beta + 2a) \cdot \beta) = 0.$$

同理 $\beta - 2\alpha$ 的 β 根键也只含一个根, 故

$$((\beta - 2\alpha) \cdot \beta) = 0.$$

两式相加得

$$(\beta \cdot \beta) = 0,$$

这说明 β 是零根,与假设矛盾,说明 β 的 α 根链最多只能含4个根,即

$$g = m + l \leqslant 3$$

因此 $m \leq 3$, $l \leq 3$,

$$2(\alpha \cdot \beta)/(\alpha \cdot \alpha) = 0, \pm 1, \pm 2, \pm 3.$$

定理证毕.

取 $\beta = \gamma - l\alpha$,由式(7.32),(7.34)得

$$\mu_i E_{\alpha+\beta} = [E_{\alpha}, [E_{-\alpha}, E_{\alpha+\beta}]]$$

$$= N_{-\alpha-\alpha+\beta} [E_{\alpha}, E_{\beta}] = N_{\alpha\beta} N_{-\alpha-\alpha+\beta} E_{\alpha+\beta}.$$

于是得到

$$N_{\alpha\beta}N_{-\alpha-\alpha+\beta} = \mu_1 = l(g+1-l)(\alpha+\alpha)/2$$

= $l(m+1)(\alpha+\alpha)/2$, (7.40)

式(7,40)中的 1, 加由根链

$$\beta + la$$
, $\beta + (l-1)a$, ..., $\beta - ma$ (7.40')

决定.

通过具体计算,我们还可以得到 N_{all} 满足下面对称关系

$$N_{\alpha\beta} = -N_{\beta\alpha} = N_{\beta-\alpha-\beta} = N_{-\alpha-\beta-\alpha}$$
 (7.41a)

幷且规定相因子,使

$$N_{\alpha\beta} = -N_{-\alpha-\beta} = N_{-\beta-\alpha}. \tag{7.41b}$$

这样我们可以取

$$N_{\alpha\beta} = \sqrt{l(m+1)(\alpha \cdot \alpha)/2}.$$
 (7.41c)

所有 $N_{a,p}$ 间必需满足式(7,41a),(7,41b)的相因子规定。

当我们在半单李代数 g 的正则形式中,取 $g_{a-a}=1$ 及 $N_{a\beta}=-N_{-a-a}$, 这样得到 g 的基

$$\{H_1, \dots, H_n, E_a, E_\beta, \dots, E_\gamma\}$$
,

就称为9的嘉当-韦耳基。这时有对易关系(李积)如下,

$$[H_i, H_j] = 0,$$
 $i, j = 1, 2, \dots, n,$ (7.42a)

$$[H_i, E_a] = \alpha_i E_a, \quad i = 1, 2, \dots, n,$$
 (7.42b)

$$[E_{\alpha}, E_{-\alpha}] = \alpha^{i} H_{i}, \quad i = 1, 2, \dots, n, \qquad (7.42c)$$

$$[E_{\alpha}, E_{\beta}] = N_{\alpha\beta} E_{\alpha+\beta}, \quad \underline{\underline{\underline{\underline{\underline{\underline{\alpha}}}}}} \quad \alpha + \beta \neq 0. \tag{7.42d}$$

从式(7.42a)可以看出, 嘉当子代数 b 构成 g 的一个对易子代数, 而且按定义是 g 的极大对易子代数, 但由于非零根的存在, b 并不是 g 的理想.

在嘉当-韦耳基下,二阶卡塞米尔算符为

$$C_2 \approx g^{ik} H_i H_k + \sum_a E_a E_{-a}.$$
 (7.43)

当半单李代数 $g = g_1 \oplus g_2$,其中 g_1 和 g_2 也是半单或单李代数 时, g_1,g_2 的嘉当子代数为 g_1,g_2 相应的根系为 Σ_1,Σ_2 ,则 g_1,g_2 的嘉当子代数为 g_1,g_2 相应的根系为 g_1,Σ_2 ,则 g_2,g_3 是 g_1,g_2 ,而且 g_2 和 g_3 正交。对单李代数 g_3 其根系就不可能存在这样的进一步分解。

关于根矢量,归纳起来有下面重要性质:

- 若α是根, 则-α也是根;
- (2) 若 α, β 是非零根, 则 2(α·β)/(α·α)是整数;
- (3) 若α,β是非零根, 则β-[2(α・β)/(α・α)]α也是根;
- (4) 两个非零根 α , β 之间的夹角 φ , 由下式给出,

$$\cos \varphi = (\alpha \cdot \beta) [(\alpha \cdot \alpha)(\beta \cdot \beta)]^{-\frac{1}{2}}. \tag{7.44}$$

由式(7.39)可得

$$\cos^2 \varphi = 0$$
, $\frac{3}{4}$, $\frac{1}{2}$, $\frac{1}{4}$, 1,

由于 α 和 $-\alpha$ 都是根,故只要考虑 φ 为锐角,

$$\varphi = 0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}.$$
 (7.45)

我们用 καβ 表示根 α 和 β 的长度比,

$$k_{\alpha\beta} = \begin{bmatrix} (\alpha \cdot \alpha) \\ \bar{\beta} \cdot \bar{\beta} \end{bmatrix}^{\frac{1}{2}} \quad (\Re k_{\alpha\beta} \geqslant 1), \qquad (7.46)$$

则可分为下面几种情况;

(1) $\varphi = 0$ 。显然,只有 $\alpha = \beta$ 才有可能,这不是我 们 需要讨论的。

(2)
$$\varphi = 30°$$
。这时

(3) $\varphi = 45^{\circ}$. 这时

$$(\alpha \cdot \beta)/(\alpha \cdot \alpha) = 1/2 或 1,$$

$$(\alpha \cdot \beta)/(\beta \cdot \beta) = 1 \otimes 1/2,$$

$$(\beta \cdot \beta)/(\alpha \cdot \alpha) = 1/2 \otimes 2,$$

$$k = \sqrt{2}.$$
(7.47b)

(4) φ=60°. 这时

$$(\alpha \cdot \beta)/(\alpha \cdot \alpha) = 1/2,$$

$$(\alpha \cdot \beta)/(\beta \cdot \beta) = 1/2,$$

$$(\beta \cdot \beta)/(\alpha \cdot \alpha) = 1,$$

$$(7.47e)$$

$$k = 1.$$

(5) φ=90°. 这时

$$(\alpha \cdot \beta) = 0$$
,
 $(\beta \cdot \beta)/(\alpha \cdot \alpha)$ 不定, (7.47d)
 k 也不定。

可以证明, 任何一个单李代数只能有两种不同长度的根。

例1 对秩为1的单李代数,

n=1,可以得到两个非零根 α 和 $-\alpha$ 。 α 可在一维直线上回出根图如图 7.1。

例2 对秩为2的半单李代数, 图 7.1 n=2, 它的根属于二维空间 \mathfrak{h}^* , 有下面几种情况:

(1) $\varphi = 30^{\circ}$,见图7.2. 设 β 是一个根,假定它的终点是(1,0),那么存在另一个根 α ,其长度是 $\sqrt{3}$ 。 β 和 α 的夹角是30°, α 的终点是(3/2, $\sqrt{3}/2$)。当然 $-\beta$ 和 $-\alpha$ 也是根。因为

$$2(\alpha \cdot \beta)/(\alpha \cdot \alpha) = 1,$$

故 $\beta - \alpha$ 是根, 其终点是(-1/2, $-\sqrt{3}/2$)。 $\alpha - \beta$ 也是根, 其终点在(1/2, $\sqrt{3}/2$)。继续这样作下去,我们可以得到12个非零根,当然还有两个零根。这样的李代数 称 为 G_2 。我们把李代数的维数称为阶, G_2 的阶是14。

(2) $\varphi = 45$ ". 与求 G_2 的根图类似,我们可以求得两个根图, 如图 7.3(a) 和 (b),它们分别

叫做李代数 B_2 和 C_2 。包括两个零根在内,它们共有10个 根,所以 B_2 和 C_2 的阶都是10。

240

- (3) $\varphi = 60$ °。这时得到根图如图7.4,它对应李代数 A_2 。包括两个零根在内, A_2 共有 8 个根, A_2 的阶是 8。
- (4) $\varphi = 90$ °。这时得到的根图如图 7.5,它对应李代 数 D_2 , D_2 与李代数 $A_1 \oplus A_1$ 同构,因而 D_2 是半单李代 数,但不是单李代数。

例3 秩大于2的单李代数的根系如下。

(1) B_n . 引入二维空间的两个相互正交的单位向量,如 e_1 = (1,0), e_2 = (0,1). 把图 7.3(a) 中 B_2 的根 表 为 $\pm e_1$, $\pm e_2$, $\pm e_2$, 共中正负号是任意的。它们 分 别 对 应 坐 标 (± 1 ,0),(0, ± 1),(1, ± 1),(-1, ± 1)。这些矢量加上两个零矢量构 成 了 B_2 的所有的根。

类似地, 引入 3 个互相垂直的矢量, $e_i = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$, 那么, 下面 18个矢量, $\pm e_i$, $\pm e_i \pm e_j (i \neq i)$, i,j = 1,2,3), 再加上 3 个零矢量, 就构成了 B_3 的所有的 根。

因此在 n 维空间中, 引入 n 个互相垂直的单位矢量

那么下面 $2n^2 = 2n + 2n(n-1)$ 个矢量

$$\pm e_i$$
, $\pm e_i \pm e_j$
($i \neq j$, $i, j = 1, 2, \dots, n$),

再加上n个零矢量,就构成李代 数 B_n 的 所 有 根, B_n 的 阶 是 n(2n+1).

(2)
$$C_n$$
. 下面 $2n^2 = 2n + 2n(n-1)$ 个矢量 $\pm 2e_i$, $\pm e_i \pm e_j$ $(i \neq j, i, j = 1, 2, \dots, n)$,

再加上n个零矢量,就构成了李代数 C_n 的所有的根。 C_n 的阶是n(2n+1)。其中 e_i 由式(7.48)给出。

(3) D_n 。下面 2n(n-1) 个矢量 $\pm e_i \pm e_j (i \neq j, i, j = 1, 2, \dots, n)$,

再加上n个零矢量就构成了 D_n 的所有的根,其中 e_i 由式(7.48) 给出。 D_n 的阶是n(2n-1)。

那么n(n+1)个矢量

$$e_i - e_j (i \neq j, i, j = 1, 2, \dots, n + 1),$$

再加上n个零 矢 量就构成了 A_n 的所有的 根。设 $x = (x^1, x^2, \cdots, x^n, x^{n+1})$ 是n+1维空间向量,方程

$$\sum_{i=1}^{n+1} x^i = 0$$

给出一个n维的超平面。可以看出 A_n 的根 $e_i - e_j$ 全在这n维超

图7.6 正交基下 42 的根图

平面上。所以用一组正交基表示 A_n 的非零根时,这组基是n+1 维空间的基,而 A_n 的根全在这空间的一个n 维超平面上。图 7.6 给出 A_n 的根在正交基的图示。

(5) 例外李代数 F_4 , 在李代数 B_4 的36个根中加入以下16个根

$$\frac{1}{2}(\pm e_1 \pm e_2 \pm e_3 \pm e_4),$$

共52个根(其中有 4 个零根),这些根构成了 F_4 的所有 根. 显然 F_4 含有 B_4 作为其子代数。

(6) 例外 李代 数 E_6 , 在李代数 A_5 的 35 个根中加入根

$$\pm\sqrt{2}e_7$$
: $\frac{1}{2}(\pm e_1\pm e_2\pm e_3\pm e_4\pm e_6\pm e_6)\pm\frac{1}{\sqrt{2}}e_7$,

第二式的前一项取 3 个正号 3 个负号。共72个非零根,再加上 6 个零根就构成了 E_6 的所有的根。 E_6 的阶是78。显 然 E_6 含 有 A_5 $\oplus A_1$ 作为其子代数。

(7) 例外 李代 数 E_7 。 在李代数 A_7 的 所有根中 加入根 $\frac{1}{2}(\pm e_1 \pm e_2 \pm e_3 \pm e_4 \pm e_5 \pm e_8 \pm e_7 \pm e_8)$,

其中取 4 个正号 4 个负号。这样一共有 126 个非零根,再加上 7 个零根就构成 E_7 的所有根。 E_7 的阶是 133。显 然 E_7 含 有 A_7 作为其子代数。

(8) 例外 李代数 E_8 。在李代数 D_8 的所有根中加入根 $\frac{1}{2}(\pm e_1 \pm e_2 \pm e_3 \pm e_4 \pm e_5 \pm e_6 \pm e_7 \pm e_8),$

其中取偶数个正号。这样一共有 240 个非零根,再加上 8 个零根 就构成 E_8 的所有根。 E_8 的阶是 248。 显然 E_8 含有 D_8 作为其子代数。

(9) 例外李代数 G₂. 根为

$$e_i - e_j$$
, $\pm (e_i + e_j - 2e_k)$
 $(i \neq j \neq k, i, j, k = 1, 2, 3)$.

通常人们称 A_n,B_n,C_n,D_n 为典型 李 代 数, G_2,F_4,E_6,E_7,E_8 为例外李代数。

7.3 素根及邓金 (Dynkin) 图

在讨论素根之前先引入正根的概念。一个根 α^+ 称 为 正根,如果在某一组基下它的第一个非零坐标是正 数。如 B_2 的 8 个 非零根,在式(7.48)的基 下 为,(1,1),(1,0),(1,-1),(0,1),(0,-1),(-1,1),(-1,0),(-1,-1)。 其中前面 4 个是正根 α^+ ,后面 4 个是负根 α^- ,而且有 α^- = $-\alpha^+$ 。一般说,有一 中 的非零根是正根。另外我们还会用到正根和,如 B_2 的正根和为

$$\sum_{a}a^{+}=(3,1).$$

又如 F 的正根和为

$$\sum_{a} a^{+} = (11, 5, 3, 1).$$

并且常把正根和的一半记为 δ ,

$$\delta = \frac{1}{2} \sum_{a} a^{+}. \tag{7.49}$$

由正根的定义可以看出,正根是与根的坐标系选择有关的。

定义7.10 如果一个正根不能分解为另外两个正根之和,则 称此正根为**案根**。

如 B₂ 的正根有

$$(1,0) = (1,-1) + (0,1), (1,1) = (1,0) + (0,1),$$

因此(1,0)和(1,1)不是素根,而正根(0,1)和(1,-1)不存在这样的分解,故 B_2 的素根是

$$a_1 = (0,1), \quad a_2 = (1,-1),$$

所有素根构成的集合用 π 表示。对于秩为 n 的 半 单 李 代数 g, 可以证明 g 有 n 个 素 根。 $\pi = \{a_i\}(i=1,2,\cdots,n)$ 。 这 n 个素

根是线性独立的,它们构成 n 维空间 b* 的 - 组基。b* 是 g 的 嘉 当子代数 b 的对偶空间, 又称根空间。g 的任一根可以写为,

$$\pm \sum_{\alpha_i \in \pi} k_i \alpha_i$$
, k_i 为非负整数 (7.50)

定理7.9 设 α_i , α_j 是半单李代数 g的两个素根,则有

- (1) a_i a_i 不是根;
- (2) $2(a_i \cdot a_i)/(a_i \cdot a_i) = -l$, l 是零或正整数; (7.51a)
- (3) a_{i}, a_{i} 的夹角 θ_{ii} 只可能取 90°,120°,135° 或 150°, 设 a; 是长根,则

证明

- (1) 若 $a_i a_j$ 是根,则 a_i 或 a_j 不是素根。所以 $a_i a_j$ 不 是 根.
 - (2) 从式(7.38)和(7.39)可得式(7.51a)。
 - (3) 用式(7.51a)及(7.44)和(7.47),可得式(7.51b)。 如李代数 B_2 , 共素根 a_1 和 a_2 的夹角

$$\cos \theta_{12} = (a_1 \cdot a_2)[(a_1 \cdot a_1)(a_2 \cdot a_2)]^{-1/2} = -\sqrt{1/2},$$
 故 $\theta_{12} = 135^\circ$ 。 两个根长的平方比为 $(a_2 \cdot a_2)/(a_1 \cdot a_1) = 2$,其中 a_1 是短根, a_2 是长根。在图 7.3(a)中,我们用粗线标出 B_2 的素根 a_1 和 a_2 。

又如李代数 B_n , C_n 和 D_n 的素根为

$$H(B_n)_i$$
 $a_i = e_i - e_{i+1}$ $(i = 1, 2, \dots, n-1),$ $a_n = e_{n};$ $H(C_n)_i$ $a_i = e_i - e_{i+1}$ $(i = 1, 2, \dots, n-1),$ $a_n = 2e_n;$ $H(D_n)_i$ $a_i = e_i - e_{i+1}$ $(i = 1, 2, \dots, n-1),$ $a_n = e_{n-1} + e_n.$

装7.1 单纯学代数的根系

					·			
奉代養	**	₩	*	兼	推集機會	兼	Sas	根归一化常数
*	#: 	(i-i, 1 <i j<="" th="" x+1<=""><th>.j ≤ # + 1</th><th></th><th>3(3+1)</th><th>$i = \epsilon_{i+1} (i = 1, \dots, n)$</th><th>n(n+2)</th><th>[2(*+1)]-1/2</th></i>	.j ≤ # + 1		3(3+1)	$i = \epsilon_{i+1} (i = 1, \dots, n)$	n(n+2)	[2(*+1)]-1/2
£	14	± c, ± c, ; ; 1 ≤ i i < #	, 1%	**	2#2	$(i - \epsilon_{i+1}, \ \epsilon_n(i = 1, \cdots, n-1))$	$\pi(2\pi + 1)$	$\begin{bmatrix} \lfloor 2(2\pi-1) \rfloor^{-1/2} \end{bmatrix}$
౮	**	± 6, ± 1, 1, ± 26, 1 1 € i			2#2	$\ell_1 - \ell_{1+1}, \ 2\ell_n \ (i = 1, \cdots, n-1)$	$= \pi(2\pi + 1)$	$\begin{bmatrix} [2(2\pi+2)]^{-1/2} \end{bmatrix}$
ď	FR	± (, ± (, , 1 ≤ i	⊭	-	$2\pi(n-1)$	" + l - W + l + 1 + p - i 9	$\pi(2n-1)$	$\begin{bmatrix} 2(2n-2) \end{bmatrix}^{-1/2}$
						$(i=1,\cdots,n-1)$		
22		€ 1 - € 1, ± (€ 1 + € 1) ∓ 2 € k	+(1) +26		12		14	[24]-1/2
		(1≤ <i>i i k</i> ≤	k ≤3)	-				···
ř.	4	+(,+(,)+		-				
		(1≤i i≤4)			84.	1 23.2 - 13.13	52	⊢ ∫∽
		$\left \frac{1}{2} (\pm \epsilon_1 \pm \epsilon_2 \pm \epsilon_3 \pm \epsilon_4) \right $	£ (3 ± (4)			2 (** ** 1 - 2 - 3)		
Ħ ĉ	σ	1; -1; (1 < 1 + 1 < 6), ± √ 207	± '(9≽/:	V 267	,	$(i - i_{j+1} (i = 1, \cdots, 5))$	····	
		$\frac{1}{2}(\pm i_1 \pm i_2 \pm$	£ 1,3 ± 1,4 ± 1	1 (± c1 ± c2 ± c3 ± c4 ± c5 ± c6) ± c7	72	$\frac{1}{2}(-\epsilon_1-\epsilon_2-\epsilon_3+\epsilon_4+\epsilon_5)$	78	[24]-1/2
		取3个正	取3个正号3个负号	:	i	+ 66 + \sqrt{2} 67)		

	I	· 					
		\w			[60]-1/2		
盔		133	•		248		-
嵌	1,,6)	3+64+65+66		(i - (i + 1), (1 + (8) (i - 1,, 6)	3 + 64 + 65 + 66		
## 	e, e _{r+1} (i = 1,, 6)	$\begin{bmatrix} 1 \\ 2 \\ + \epsilon_7 - \epsilon_3 \\ + \epsilon_7 - \epsilon_3 \end{bmatrix}$	_	61-61-11-67+	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $(-\epsilon_1 - \epsilon_2 - \epsilon_3 + \epsilon_4 + \epsilon_5 + \epsilon_6 \end{bmatrix}$	(8) 4) +	
经分		10					
##	'	126			240		
		१ - १ - १ -	负号	0 0	165 2 66 167		
ŧ÷	8 %	-1- -4- -1-	₽. 4.		+1		五号
羋	f; 'e', 1 1<8</th <th>$rac{1}{2} \left(\pm \epsilon_1 \pm \epsilon_2 \pm \epsilon_3 \pm \epsilon_4 \pm \epsilon_5 \pm \epsilon_6 \right.$ $\pm \epsilon_7 \pm \epsilon_8 ight)$</th> <th>取4个正号4个负号</th> <th>±«;±°;, 1<; i<8</th> <th>1 (± 0 1 ± 0 2 ± 0 3 ± 0 4 ± 0 5 ÷ 0 6</th> <th>+ (8)</th> <th>取偶数个正号</th>	$rac{1}{2} \left(\pm \epsilon_1 \pm \epsilon_2 \pm \epsilon_3 \pm \epsilon_4 \pm \epsilon_5 \pm \epsilon_6 \right.$ $\pm \epsilon_7 \pm \epsilon_8 ight)$	取4个正号4个负号	±«;±°;, 1<; i<8	1 (± 0 1 ± 0 2 ± 0 3 ± 0 4 ± 0 5 ÷ 0 6	+ (8)	取偶数个正号
				+1	-J 83		_
举代数 徐				+1 - — &O			_

当然这些素根都是在式(7.48)的基下给出的。一般说来,基的选择不同,素根的具体形式也不同。即使在同一组基下,素根的取法也可能不同。在式(7.48)基下,表7.1给出通常取的单李代数的根系和素根系。

表 7.1 中的根归一化常数, 是使基林型

$$g_{ik} = \sum_{a} a_i a_k = \delta_{ik}$$

时, e_i 的归一化因子。当 $g_{ik} = \delta_{ik}$ 时, (g_{jk}) 的 遊 (g^{ik}) 有 $g^{ik} = g_{ik} = \delta_{ik}$ 。这时的基称为嘉当~ 书耳标准基,相应的卡塞米尔算符为

$$C_2 = \sum_i H_i^2 + \sum_a E_d E_{-a}. \tag{7.43'}$$

当知道素根个数,素根间夹角和长度比时,便能求出所有的根,因而能求得对应的半单李代数.**邓金**图是把半单李代数的素根系且用图表示出来。在邓金图中,一个小圆圈表示一个素根。如果两个素根间夹角为 90°,这两个素 根的小圆圈不相连接。当两个素根间夹角为 120°,135°或 150°时,则用一条、两条或三条线把这两个素根的小圆圈连接起来。连线的箭头规定为从长根指向短根。

图 $7.7 B_2, B_3, B_4$ 的邓金图

显然单李代数的邓金图是相连接的,而半单李代数的邓金图是不相连的,因为半单李代数可以分解为单李代数的直和.

图 7.7 给出 B_2 , B_3 , ..., B_n 的邓金图,以便比较 不 同 秩 的情况。图 7.8 给出全部单李代数的邓金图。

设
$$\Pi = \{a_1, a_2, \cdots, a_n\}$$
 是单季代数 g 的素根系,设
$$A_{ij} = 2(a_i \cdot a_j)/(a_i \cdot a_i), \qquad (7.52)$$

矩阵(A_{ij})称为 g 的嘉当矩阵。只要已知 g 的邓 金 图,应用定理 7.9 就可以算出 g 的嘉当矩阵。嘉当矩阵的对角元素 永远是 2,而非对角元素可能是 0, -1, -2或 -3.

例4 求李代数 A_2 和 G_2 的 嘉 当 矩 阵 .

 A_2 的邓金图如图 7.9 的(a),当 A_3 ① ① ② ② 取 e_1, e_2, e_3 为单位问量时, $(a_1 \cdot a_1) = (a_2 \cdot a_2) = 2$, $(a_1 \cdot a_2) = -2$ $(a_1 \cdot a_$

 G_2 的邓金图如图 7.9的(b), 当取 e_1, e_2, e_3 为单位向量时有 $(a_1 \cdot a_1) = 6$, $(a_2 \cdot a_2) = 2$, $2(a_1 \cdot a_2) = -6$,

故 G_2 的嘉当矩阵为,

$$\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$$
.

下面给出全部单李代数的嘉当矩阵。

$$A_{n}: \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 \\ \hline 0 & 0 & 0 & \cdots & 2 & -1 \\ 0 & 0 & 0 & \cdots & -1 & 2 \end{pmatrix},$$

$$B_{n}; \begin{cases} 2 & -1 & 0 & \cdots & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 2 & -1 \\ 0 & 0 & 0 & \cdots & -2 & 2 \end{cases}, \\ C_{n}; \begin{cases} 2 & -1 & 0 & \cdots & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 2 & -2 \\ 0 & 0 & 0 & \cdots & -1 & 2 \end{cases}, \\ C_{n}; \begin{cases} 2 & -1 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 2 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 0 & 2 \end{cases}, \\ C_{n}; \begin{cases} 2 & -1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 0 & 2 \end{cases}, \\ C_{n}; \begin{cases} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -2 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 2 \end{cases}, \\ C_{n}; \begin{cases} 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 2 \end{cases}, \\ C_{n}; \begin{cases} 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 2 \end{cases}$$

$$E_{7:} \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

7.4 典型李代数的根系

设 $\Pi = \{a_1, a_2, \cdots, a_n\}$ 是单李代数 g 的素根系,那么 g 的所有根可以从 Π 和嘉当矩阵求得,也可以说可从邓金图求得。 g 的 所有根可以表为

$$\pm \sum_{i=1}^{n} k_i a_i$$
, k_i 是非负整数。 (7.50')

若α是 g 的一个正根,即

$$\alpha = \sum_{i=1}^{n} k_i \alpha_i.$$

$$\sum_{i=1}^{n} k_i = m,$$

如果

$$\sum_{i=1}^{n} k_i = m, \qquad (7.53)$$

则称 a 为 m 级 正 混。 素根是 一级 正根。

假如我们已经知道所有m级以下的正根,即已知1级正根, 2级正根·····, m级正根, 那么 m+1级正根一定 具 有 以 下 形式

$$\beta = a + a_j \quad (a_j \in \Pi)$$
,

其中

$$a = \sum_{i=1}^{n} k_i a_i$$

是 m 级正根,即满足式(7.53)。如果 β 是根,那么它 就 是 m+1 级正根。由于我们已经知道了所有 m 级以下的正根,因而也就知道了所有的线性形式 $\alpha - \alpha_j$, $\alpha - 2\alpha_j$, …中,哪 些是根,哪些 不 是根。因此在包含 α 的 α_j 根链

$$a-m_ja_j,\ a-(m_j-1)a_j,\ \cdots,\ a,\ \cdots,\ a+n_ja_j$$

中的 m_i 是已知的,由式(7.39),(7.52)可得

$$n_j = m_j - \frac{2(\alpha \cdot \alpha_j)}{(\alpha_j \cdot \alpha_j)} = m_j - \sum_i A_{ji} k_i,$$
 (7.54)

即 n; 可以由嘉当矩阵决定。于是

如果 $n_j \ge 1$,则 $\alpha + \alpha_j$ 是根; $n_j < 1$,则 $\alpha + \alpha_j$ 不是根. (7.55)

式(7.55)给出了 $\alpha + \alpha_i$ 是否是根的判据。因此对一个单季代数 9,可以反复应用式(7.55),逐级求出共所有正根。

例5 求李代数 G_2 的 的 方 根 .

从图 7.9的(b) G_2 的邓金图可以看出, G_2 的一级正 根(素根) 为 α_1 , α_2 。由上节可知 G_2 的嘉当矩阵

$$(A_{ij}) = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}.$$

由于 $a_2 - a_1$ 不是根,所以包含 a_2 的 a_1 根 链 是 a_2 ,这 相 当 $m_1 = 0$,由式(7.54)得

$$n_1 = -(2 - 1) \binom{0}{1} = 1$$

由判据式(7.55)得 $a_1 + a_2$ 是根。

同样包含 a1 的 a2 根链是 a1, 故

$$m_2 = 0$$
, $n_2 = -(-3 \ 2) \left(\frac{1}{0}\right) = 3 > 1$,

也得到 G_2 的 2 级正根是 $a_1 + a_2$.

包含 $\alpha_1 + \alpha_2$ 的 α_1 根链为 $\alpha_2, \alpha_1 + \alpha_2, \dots$, 故

$$m_1 = 1$$
, $n_1 = 1 - (2 - 1) {1 \choose 1} = 0 < 1$,

于是 2a₁ + a₂ 不是根。

包含 $a_1 + a_2$ 的 a_2 根链为 $a_1, a_1 + a_2, \dots$, 故

$$m_2 = 1$$
, $n_2 = 1 - (-3 \ 2) \left(\frac{1}{1}\right) = 2 > 1$,

于是 $\alpha_1 + 2\alpha_2$ 是 G_2 的3级正根。

包含 $\alpha_1 + 2\alpha_2$ 的 α_1 根链是 $\alpha_1 + 2\alpha_2$,故

$$m_1 = 0$$
, $n_1 = -(2 - 1)(\frac{1}{2}) = 0 < 1$,

于是 2a₁ + 2a₂ 不是根, 这与定理 7.7 · 致。

包含 $a_1 + 2a_2$ 的 a_2 根链是 a_1 , $a_1 + a_2$, $a_1 + 2a_2$, ..., 故

$$m_2 = 2$$
, $n_2 = 2 - (-3 \ 2) \left(\frac{1}{2}\right) = 1$,

于是 $a_1 + 3a_2$ 是 G_2 的4级正根。

包含 a, + 3a, 的 a, 根链是 a, + 3a, 故

$$m_1 = 0$$
, $n_1 = -(2 - 1)(\frac{1}{3}) = 1$,

于是 $2\alpha_1 + 3\alpha_2$ 是 G_2 的 5 级正根。

包含 $\alpha_1 + 3\alpha_2$ 的 α_2 根链是 α_1 , $\alpha_1 + \alpha_2$, $\alpha_1 + 2\alpha_2$, $\alpha_1 + 3\alpha_2$, …, 数

$$m_2 = 3$$
, $n_2 = 3 - (-3) \binom{1}{3} = 0 < 1$,

于是 a1 + 4a2 不是根。

包含 $2a_1 + 3a_2$ 的 a_1 根链是 $a_1 + 3a_2$, $2a_1 + 3a_2$, ..., 故

$$m_1 = 1$$
, $n_1 = 1 - (2 - 1) \left(\frac{2}{3}\right) = 0 < 1$,

包含 $2\alpha_1 + 3\alpha_2$ 的 α_2 根链是 $2\alpha_1 + 3\alpha_2$, ..., 故

$$m_2 = 0$$
, $n_2 = -(-3 - 2) \left(\frac{2}{3}\right) = 0 < 1$,

于是 G_2 的 5 级以上的正根都是零。

归纳以上结果, 就得到 G2 的所有非零根为

$$\pm a_1$$
, $\pm a_2$, $\pm (a_1 + a_2)$, $\pm (a_1 + 2a_2)$,
 $\pm (a_1 + 3a_2)$, $\pm (2a_1 + 3a_2)$.

其中 5 级根 $2\alpha_1 + 3\alpha_2$ 称为 G_2 的最高根,常习 惯 在 G_2 的 邓金图上面,标出最高根包含 α_1 , α_2 的次数 2 和 3 , 见图 7.9的(b).

下面我们给出典型李代数的各级正根, 其最高根包含各素根的次数标在邓金图上, 见图7.10。

$$A_n$$

素根系:
$$a_i = e_i - e_{i+1}$$
, $i = 1, \dots, n$.

-级根:
$$a_i$$
, $i=1,\cdots,n$.

二级根:
$$a_1 + a_2 = e_1 - e_3$$
, $a_2 + a_3 = e_2 - e_4$, ...,

$$a_{n-1} + a_n = e_{n-1} - e_{n+1}$$

三级根:
$$\alpha_1 + \alpha_2 + \alpha_3 = e_1 - e_4$$
,

$$\alpha_2+\alpha_3+\alpha_4=c_2-e_5, \quad \cdots,$$

$$a_{n-2} + a_{n-1} + a_n = e_{n-2} - e_{n+1}$$

n 级根: $\alpha_1 + \alpha_2 + \cdots + \alpha_{n-1} + \alpha_n = e_1 - e_{n+1}$ n 级 根 是 A_n 的最高根,它包含各素根各一次,见图7.10。

 A_{u} 的正根和之半为

$$\delta = \sum_{i=1}^{n+1} \left(\frac{n}{2} + 1 - i \right) \theta_{i}. \tag{7.56a}$$

$$B_n \qquad \bigcup_{a_1, \dots, a_2} \qquad \bigcup_{a_2, \dots, a_3} \qquad \qquad \bigcup_{a_{n-1}, \dots, a_n} \qquad \qquad \bigcup_{a_{n-1}, \dots, a_n} \qquad \qquad \bigcup_{a_n} \qquad \bigcup_$$

$$c_n = \bigcup_{a_1, \dots, a_2}^2 \bigcup_{a_2, \dots, a_n}^2 \cdots = \bigcup_{a_{n-1}, \dots, a_n}^2 \bigcup_{a_n}^2 \cdots \bigcup_{a_n}^$$

$$D_n = \bigcup_{\alpha_1 = 1}^{2} \bigcup_{\alpha_2 = 2}^{2} \bigcup_{\alpha_3 = 1}^{2} \bigcup_{\alpha_{n-2} = 1}^{2} \bigcup_{\alpha_{n-1} = 2}^{2} \bigcup_{\alpha_{n-1}$$

图 B_{n:}

 $a_i = e_i - e_{i+1}, \quad i = 1, \dots, n-1, \quad a_n = e_n.$

--级根: a;,i=1,...,n。

素根系:

二级根: $a_1 + a_2 = e_1 - e_3$, $a_2 + a_3 = e_2 - e_4$, …,

 $a_{n-1} + a_n = e_{n-1}$

三级根: $a_1 + a_2 + a_3 = e_1 - e_4$, $a_2 + a_3 + a_4 = e_2 - e_5$, ..., $a_{n-2} + a_{n-1} + a_n = e_{n-2}$.

...

$$i$$
 级根: $a_1 + a_2 + \cdots + a_i = e_1 - e_{i+1}, \cdots,$ $a_{n+1-i} + a_{n+2-i} + \cdots + a_{n-1} + a_n = e_{n+1-i},$

$$\begin{aligned} a_{n+2-i} + a_{n+3-i} + \cdots + a_{n-1} + 2a_n &= e_{n+2-i} + e_n, \\ a_{n+3-i} + a_{n+4-i} + \cdots + a_{n-2} + 2a_{n-1} + 2a_n \\ &= e_{n+3-i} + e_{n-1}, \quad \cdots. \end{aligned}$$

2n-1级根: $a_1+2a_2+\cdots+2a_n=e_1+e_2$, 2n-1级根是 B_n 的最高根, 标在邓金图上见图7.10。

 B_n 的正根和之半为

$$\delta = \sum_{i=1}^{n} \left(n + \frac{1}{2} - i \right) e_{i} \qquad (7.56b)$$

 C_n

素根系:
$$a_i = e_i - e_{i+1}$$
, $i = 1, \dots, n-1$, $a_n = 2e_n$.

一级根:
$$\alpha_i$$
, $i=1,\dots,n$.

二级根:
$$a_1 + a_2 = e_1 - e_3$$
, $a_2 + a_4 = e_2 - e_4$, ...,

$$a_{n-2} + a_{n-1} = e_{n-2} - e_n$$
,

$$\alpha_{n-1} + \alpha_n = e_{n-1} + e_{n}$$

三级根:
$$a_1 + a_2 + a_3 = e_1 - e_4$$
,

$$a_2 + a_3 + a_4 = c_2 - e_5, \dots,$$

$$a_{n-3} + a_{n-2} + a_{n-1} = e_{n-3} - e_n$$
,

$$a_{n-2} + a_{n-1} + a_n = e_{n-2} + e_n$$

$$2a_{n-1}+a_n=2e_{n-1}.$$

2 级根:
$$a_1 + a_2 + \cdots + a_i = e_1 - e_{i+1}, \cdots,$$

$$a_{n-i} + a_{n+1-i} + \cdots + a_{n-1} = e_{n-i} - e_n,$$

$$a_{n+1-i} + a_{n+2-i} + \cdots + a_n = e_{n+1-i} + e_n,$$

$$a_{n+2-i} + a_{n+3-i} + \cdots + 2a_{n-1} + a_n$$

$$= e_{n+2-i} + e_{n-1}, \cdots.$$

2n-1 级根: $2a_1+2a_2+\cdots+2a_{n-1}+a_n=2e_1$, 2n-1 级根是 C_n 的最高根, 它包含素根的次数标在图 7.10 的 邓 金 图上.

C_n 的正根和之半为

$$\delta = \sum_{i=1}^{n} (n+1-i)e_{i}. \qquad (7.56c)$$

 D_n ;

素根系:
$$a_i = e_i - e_{i+1}$$
, $i = 1, \dots, n-1$, $a_n = e_{n-1} + e_n$,

一级根:
$$\alpha_i$$
, $i=1,\dots,n$.

二级根:
$$a_1 + a_2 = e_1 - e_3$$
, $a_2 + a_3 = e_2 - e_4$, ..., $a_{n-2} + a_{n-1} = e_{n-2} - e_n$,

$$a_{n-2} + a_n = e_{n-2} + e_{n \bullet}$$

三级根:
$$a_1 + a_2 + a_3 = e_1 - e_4,$$

$$a_2 + a_3 + a_4 = e_2 - e_5, \dots,$$

$$a_{n-3} + a_{n-2} + a_{n-1} = e_{n-3} - e_n,$$

$$a_{n-2} + a_{n-1} + a_n = e_{n-2} + e_{n-1},$$

$$a_{n-3} + a_{n-2} + a_n = e_{n-3} + e_n.$$

2n-3 级根: $a_1+2a_2+2a_3+\cdots+2a_{n-2}+a_{n-1}+a_n=e_1+e_2$ 。 2n-3 级根是 D_n 的最高根,它包含各素根 的 次 数 标 在图 · 7.10的邓金图 L ·

 D_n 的正根和之半为:

$$\delta = \sum_{i=1}^{s} (n-i)e_{i}. \qquad (7.56d)$$

下面举例说明如何从邓金图 构造单李代数。

例6 求单李代数 A_1 和 A_2 的正则形式。

从图 $7.8 \, \text{知} \, A_1 \, \text{和} \, A_2 \, \text{的邓金}$ 图如图 $7.11 \, \text{h(a)} \, \text{和(b)}$.

图 7.11

 $A_{\rm I}$ 的 n=1, 有一个素根 α , 故只可能有根图如 7.12的(a).

图 7.12

用 $E_{+\alpha}$ 和 $E_{-\alpha}$ 表示 H 对于根 α 和 $-\alpha$ 的本征矢量,于是有

$$[H, H] = 0,$$

$$[H, E_{\perp \alpha}] = \pm E_{\pm \alpha},$$

$$[E_{\alpha}, E_{-\alpha}] = H.$$
(7.57)

 A_1 的嘉当-基林度规张量为

$$g = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}. \tag{7.58}$$

卡塞米尔算符为

$$C = H^2 + E_a E_{-a} + E_{-a} E_{a} \tag{7.59}$$

当然 A_1 是复李代数, A_1 与三维空间转动代数 o(3) 同 构。已 知 o(3) 的生成元为 J_x , J_y 和 J_z , 则有同构映射使

$$H \leftrightarrow J_{z},$$

$$E_{\pm a} \leftrightarrow J_{\pm 1} = \mp \frac{1}{\sqrt{2}} (J_{x} \pm i J_{y}). \tag{7.60}$$

但要注意的是o(3)是实李代数, 其生成元还满足厄米性条件

$$J_x^+ = J_x$$
, $J_y^+ = J_y$, $J_z^+ = J_z$, (7.61)

而复李代数 A_1 一般并不具有这性质。

 A_2 的秩为 2 , 其邓金图如图 7.11(b),取归一化的根长度,使每个根长度为 $1/\sqrt{3}$,有嘉当-基林度规张量为

$$g_{ik} = \sum_{a} \alpha_i \alpha_j = \delta_{ij}. \qquad (7.62)$$

其最高根为 $a_1 + a_2$, 取 $a_1 + a_2 = \frac{1}{\sqrt{3}}(1,0)$. 可以得到

$$a_1 = \frac{1}{2\sqrt{3}}(1,\sqrt{3}), \quad a_2 = \frac{1}{2\sqrt{3}}(1,-\sqrt{3}).$$

 A_2 的根图见图7.12的(b)。

由式(7.42)可得

$$[H_{1}, H_{2}] = 0,$$

$$[H_{1}, E_{\pm \alpha}] = \pm \frac{1}{2\sqrt{3}} E_{\pm \alpha},$$

$$[H_{1}, E_{\pm (\alpha + \beta)}] = \pm \frac{1}{\sqrt{3}} E_{\pm (\alpha + \beta)},$$

$$[H_{1}, E_{\pm \beta}] = \pm \frac{1}{2\sqrt{3}} E_{\pm \beta},$$

$$[H_{2}, E_{\pm \alpha}] = \pm \frac{1}{2} E_{\pm \alpha},$$

$$[H_{2}, E_{\pm (\alpha + \beta)}] = 0,$$

$$[H_{2}, E_{\pm (\alpha + \beta)}] = \pi,$$

$$[H_{2}, E_{\pm \beta}] = \mp \frac{1}{2} E_{\pm \beta},$$

$$[E_{\alpha}, E_{\pm \alpha}] = \frac{1}{2\sqrt{3}} H_{1} + \frac{1}{2} H_{2},$$

$$[E_{\beta}, E_{-\beta}] = \frac{1}{2\sqrt{3}} H_1 - \frac{1}{2} H_2,$$

$$[E_{\alpha+\beta}, E_{-(\alpha+\beta)}] = H_1/\sqrt{3}.$$
(7.63a)

再根据式(7,41)可得。

$$[E_{\alpha}, E_{\beta}] = E_{\alpha+\beta} / \sqrt{6},$$

$$[E_{\alpha}, E_{\alpha+\beta}] = 0,$$

$$[E_{\alpha}, E_{-(\alpha+\beta)}] = -E_{-\beta} / \sqrt{6},$$

$$[E_{\beta}, E_{-(\alpha+\beta)}] = E_{-\alpha} / \sqrt{6}.$$

$$(7.63b)$$

这时由于根是归一化的,故 A2 的嘉当-基林度规张量为

卡塞米尔算符为

$$C_{2} = H_{1}^{2} + H_{2}^{2} + E_{\alpha}E_{-\alpha} + E_{-\alpha}E_{\alpha} + E_{\beta}E_{-\beta} + E_{-\beta}E_{\beta} + E_{\alpha,\beta}E_{-(\alpha-\beta)} + E_{-(\alpha+\beta)}E_{\alpha+\beta}.$$
 (7.65)

下面讨论典型李代数的根系.

首先看一般线性李代数 gl(n,C). 这是复数域C上所有 $n \times n$ 矩阵的集合,在数乘和矩阵加法下构成 n^2 维向 量 空 间,即C上 n 维向量空间的一切线性变换,其基可选为

$$E_{ij} = \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} \Re^{i} \tilde{\pi} , \quad (i, j = 1, \dots, n). \quad (7.66)$$

即第:行第:列元素为1, 其余元素皆为0的矩阵。当定义李积为矩阵乘法的对易关系时,构成复一般线性李代数。

$$[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{il} E_{kj}, \qquad (7.67)$$

常数矩阵

$$\hat{\lambda} E_{n \times n} = \lambda \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

的集合 $\{\lambda E_{n\times n} | \lambda \in C\}$ 是 gl(n,C)的 可交換 理 想, 故 gl(n,C)不 是半单李代数, 也不是单李代数。

特殊线性李代数 sl(n+1,C) 是

$$sl(n+1,C) = \{A \in gl(n+1,C) | tr A = 0\}.$$

即由 gl(n+1,C)中全部迹为零的 矩 阵 组 成、故 sl(n+1,C) 是 gl(n+1,C)的子代数,而且还是 gl(n+1,C) 的 理想,因为对任 意 $X,Y \in gl(n+1,C)$ 有

$$tr[X,Y] = 0$$
,

故 gl(n+1,C)是 sl(n+1,C)和一维可交换李代数 $\{\lambda E_{(n+1)\times(n+1)}\}$ [$\lambda \in C\}$ 的直和。

取 sl(n+1,C)的基为下面 $[(n+1)^2-1]$ 个生成元

$$H_{i} = \frac{1}{t} [(i-1)E_{1i} - E_{11} - E_{22} - \cdots - E_{i-1 \ i-1}]$$

$$(i = 2, 3, \cdots, n+1), \qquad (7.68)$$

$$E_{(*_{i} - *_{j})} = E_{ij}, \qquad i > j, \ i = 1, 2, \cdots, n+1,$$

$$E_{-(*_{i} - *_{j})} = E_{ji}, \qquad i > j, \ i = 1, 2, \cdots, n+1,$$

直接计算对易关系可以看出, $\{H_4\}$ 构成单李代数 A_n 的嘉当子代

数,而 $E_{\perp(e_i,e_j)}$ 是对应 A_n 的根 $\pm (e_i-e_j)=\alpha$ 的嘉当-韦 耳 基 E_a 。因此 sl(n+1,C) 与 A_n 同 构。常 用 sl(n+1,C)作 为 A_n 的定义。用这定义来构造 A_n 代数比从邓金图构造 A_n 代数 要简便得多。

正交代数 o(m,C)是

$$o(m,C) = \{A \in gl(m,C) \mid A^{\perp} + A = 0\},$$

即 o(m,C) 是 gl(m,C) 的子代数,由 C 上满 足 A' = -A 的 $m \times m$ 矩阵全体所组成, A' 是 A 的转置 矩 阵。 A' = -A 称 为 正 交条件, o(m,C) 称为正交代数。 o(m,C) 的 $\frac{1}{2}$ m(m-1) 个基可以取为

 $I_{ij} = E_{ij} - E_{ji}$, i + j, i, $j = 1, 2, \dots, m$. (7.69) I_{ij} 满足对易关系

 $[I_{ij},I_{ki}]=s_{ii}I_{jk}+\delta_{jk}I_{ii}+\delta_{ik}I_{j1}-\delta_{j1}I_{ik}$. (7.70) 可以看出 I_{ij} 是其它轴不动时的ij不面转动,所以 I_{ij} 是那维 复空间转动算符。

当 m = 2n + 1, n 是正整数时, 选 o(m,C)的基为 $H_{i=1}I_{2i,2i-1}$,

$$E_{(e_{j}\pm e_{k})} = \frac{1}{2} \left\{ i \left(I_{2k-1} \pm I_{2k-2j} \right) - \left(I_{2k-1} \pm I_{2k-2j-1} \right) \right\},$$

$$E_{-(e_{j}\pm e_{k})} = \frac{1}{2} \left\{ i \left(I_{2k-1} \pm I_{2k-2j-1} \right) \right\},$$

$$(7.71)$$

$$+ (I_{2k-1}_{2j} \pm I_{2k}_{2j-1}) \},$$

$$E_{\pm *_{j}} = \sqrt{\frac{1}{2}} \{ i I_{2n+1 \ 2j} \pm I_{2n+1 \ 2j-1} \}$$

$$(1 < k, 1, k = 1, 2, ..., n)$$
.

直接计算对易关系可得, $\{H_j\}$ 构成单李代数 B_n 的嘉当子代数,

而 $E_{(e_j \pm e_k)}$, $E_{(e_j + e_k)}$ 和 $E_{(e_j \pm e_k)}$ 对应于根为 $e_j \pm e_k$, $-(e_j \pm e_k)$ 和 $\pm e_j$ 的嘉当-书工基 E_a 。故 o(2n+1,C) 与 B_n 同构。

当m=2n时,取o(2n,C)的基为

$$H_{j} = i I_{2j \cdot 2j - 1},$$

$$\begin{split} E_{(e_{j}\pm e_{k})} &= \frac{1}{2} \{ i (I_{2k-1|2j-1} \mp I_{2k2j}) \\ &- (I_{2k-1|2j} \pm I_{2k|2j-1}) \}, \\ E_{-(e_{j}\pm e_{k})} &= \frac{1}{2} \{ i (I_{2k-1|2j-1} \mp I_{2k|2j}) \\ &+ (I_{2k-1|2j} \pm I_{2k|2j-1}) \}, \\ (j < k, j, k = 1, 2, \cdots, n), \end{split}$$

直接计算表明, H_j 构成单本代数 D_n 的嘉当子代数, $E_{(e_j \pm e_k)}$ 和 $E_{-(e_j \pm e_k)}$ 对应 D_n 根为 $(e_j \pm e_k)$ 和 $-(e_j \pm e_k)$ 的 嘉 当一韦 耳 基 E_{a_k} 所以 $o(2n_i,C)$ 与 D_n 同构。

常用 o(2n+1,C)和 o(2n,C)来定义 B_n 和 D_n 。用 这定义构造 B_n 和 D_n ,比由邓金图构造 B_n 和 D_n 简便得多。

辛代数 sp(2n,C)是

$$sp(2n,C) = \{A \in gl(2n,C) | A^{i}J + JA = 0\},$$

其中 / 是反对称矩阵, 一般取为

$$J = \begin{pmatrix} 0 & E_{n \times n} \\ -E_{n \times n} & 0 \end{pmatrix}.$$

sp(2n,C)由全部具有如

$$\begin{pmatrix} d & e \\ f & -d^t \end{pmatrix}$$
, $e^t = e$, $f^t = f$

的矩阵组成,其中d,e,f都是 $n \times n$ 矩阵。取sp(2n,C)的基为

$$\begin{cases} H_{j} = E_{jj} - E_{n+j-n+j}, \\ E_{n_{j}+n_{k}} = E_{j-n+k} + E_{kn-+j}, \end{cases}$$

$$E_{\bullet j} = E_{j k} + E_{n+k n+j},$$

$$E_{-(\bullet j^{+} \bullet k)} = E_{n+k j} + E_{n+j k},$$

$$E_{-(\bullet j^{-} \bullet k)} = -E_{k j} + E_{n+j n+k},$$

$$E_{2\bullet j} = \sqrt{2} E_{j n+j},$$

$$E_{-2\bullet j} = \sqrt{2} E_{n+j j}$$

$$(j < k, k, j = 1, 2, \dots, n).$$

$$(7.73)$$

直接计算表明, $\{H_j\}$ 组 成 单 李 代 数 C_n 的 嘉 当 子 代 数,而 $E_{\pm(e_j+e_k)}, E_{\pm(e_j-e_k)}$ 和 $E_{\pm 2e_j}$ 对应 C_n 的 根 为 $\pm (e_j+e_k)$, $\pm (e_j-e_k)$ 和 $\pm 2e_j$ 的 嘉 当 - 市耳基 E_o .

常用 sp(2n,C) 来定义 C_n . 用此定义来构造 C_n 代 数 比用邓 金图简便得多。

7.5 舍瓦累(Chevalley)基

单李代数除了常用嘉当-韦耳标准基之外,还经常采用舍瓦累基。含瓦累基对求表示有它的方便之处。

设 9 是秩为 n 的单李代数, a_m 是 9 的第 m 个素根, n 是 9 的 嘉 当 了代数, 引入 3n 个生成 元:

$$h_{\alpha_{m}} = \frac{2}{(\alpha_{m} \cdot \alpha_{m})} (\alpha_{m} \cdot H), \quad H \in \mathfrak{h},$$

$$e_{\alpha_{m}} = \sqrt{\frac{2}{(\alpha_{m} \cdot \alpha_{m})}} E_{\alpha_{m}}, \qquad (7.74)$$

$$e_{\alpha_{m}} = \sqrt{\frac{2}{(\alpha_{m} \cdot \alpha_{m})}} E_{-\alpha_{m}}$$

$$(m = 1, 2, \dots, n),$$

其中 a_m 是n维空间向量。设其协变和反协变分量为 a_m ,和 a_m ,

$$(a_m \cdot a_m) = a_m^i a_{mi}, \quad i = 1, 2, \dots, n.$$
 (7.75)

侕

$$(a_m \cdot H) = a_m^i H_i, \quad i = 1, 2, \dots, n.$$
 (7.76)

 H_p 是嘉当-韦耳基。这样对每个素根 α_m ,便可定义一个嘉当子代数 b 的基 h_{α_m} 。通过直接计算对易关系,可得

$$\begin{bmatrix} h_{\alpha_{m}}, h_{\alpha_{j}} \end{bmatrix} = 0,$$

$$\begin{bmatrix} h_{\alpha_{m}}, e_{\pm \alpha_{j}} \end{bmatrix} = \pm A_{mj} e_{\pm \alpha_{j}},$$

$$\begin{bmatrix} e_{\alpha_{m}}, e_{-\alpha_{j}} \end{bmatrix} = \delta_{mj} h_{\alpha_{m}},$$

$$(7.77)$$

其中 A_{mj} 是嘉当矩阵的矩阵元,已在 250-252 页中 给出。对易关系式(7.77)形式很简单, e_{a_m} 和 e_{a_m} 是对应素 根 a_m 的升或降生成元。这 3n 个生成元并不充满李代数 9,而 9 中 其 他 生成元可以由 e_{a_m} 和 e_{a_m} 生成,即还有

$$e_{a_{m}\cdots a_{j}a_{k}} = [e_{a_{m}}, \cdots, [e_{a_{j}}, e_{a_{k}}]],$$

$$e_{-a_{m}\cdots a_{j}a_{k}} = [e_{-a_{m}}, \cdots, [e_{-a_{j}}, e_{-a_{k}}]].$$

$$(7.78)$$

可以看出,只要 h_{a_m} 和 $e_{\pm a_m}$ 为已知,利用式(7.78)就可以求出 $e_{a_m \cdot a_j \cdot a_k}$ 和 $e_{-a_m \cdot a_j \cdot a_k}$

下面列出典型李代数的舍瓦累基,

$$A_{n_{1}}$$

$$h_{\alpha_{j}} = E_{jj} - E_{j+1 \ j+1},$$

$$e_{\alpha_{j}} = E_{j \ j+1}, \qquad j = 1, 2, \dots, n_{\bullet}$$

$$e_{-\alpha_{j}} = E_{j+1 \ j}.$$

$$B_{n_{1}}$$

$$\begin{cases} h_{\alpha \ j} = H_{j} - H_{j+1} = i(I_{2j \ 2j-1} - I_{2j+2 \ 2j+1}), \\ h_{\alpha_{a}} = 2H_{n} = 2iI_{2n \ 2n-1}, \end{cases}$$

$$266$$

$$\begin{cases} e_{\perp \sigma_{j}} = \frac{1}{2} \{ i(I_{2j+1} \,_{2j-1} + I_{2j+2} \,_{2j}) \mp (I_{2j+1} \,_{2j} - I_{2j+2} \,_{2j-1}) \} \\ (j = 1, 2, \cdots, n - 1), \\ e_{\pm \sigma_{n}} = iI_{2n+1} \,_{2n} \pm I_{2n+1} \,_{2n-1}, \end{cases}$$

$$(7.80)$$

$$C_{n};$$

$$\begin{cases} h_{\sigma_{j}} = H_{j} - H_{j+1} = E_{jj} - E_{j+1} \,_{j+1} - E_{n+j} \,_{n+j} + E_{n+j+1} \,_{n+j+1}, \\ h_{\sigma_{n}} = H_{n} = E_{nn} - E_{2n} \,_{2n}, \\ e_{\sigma_{j}} = E_{j+1} \,_{j} - E_{n+j+1} \,_{n+j}, \\ e_{\sigma_{j}} = E_{j+1} \,_{j} - E_{n+j} \,_{n+j+1}, \quad (j = 1, 2, \cdots, n - 1), \\ e_{\sigma_{n}} = E_{n,2n}, \\ e_{\sigma_{n}} = E_{2n} \,_{n}, \end{cases}$$

$$(7.81)$$

$$D_{n};$$

$$\begin{cases} h_{\sigma_{j}} = H_{j} - H_{j+1} = i(I_{2j} \,_{2j-1} - I_{2j+2} \,_{2j+1}), \\ h_{\sigma_{n}} = H_{n-1} + H_{n} = i(I_{2n-2} \,_{2n-3} + I_{2n} \,_{2n-1}), \\ e_{\pm \sigma_{j}} = \frac{1}{2} \{ i(I_{2j+1} \,_{2j-1} + I_{2j+2} \,_{2j}) \mp (I_{2j+1} \,_{2j} - I_{2j+2} \,_{2j-1}) \} \end{cases}$$

$$(j = 1, 2, \cdots, n - 1),$$

$$e_{\pm \sigma_{n}} = \frac{1}{2} \{ i(I_{2n-1} \,_{2n-3} - I_{2n,2n-2}) \\ \mp (I_{2n-1} \,_{2n-2} + I_{2n} \,_{2n-3}) \}.$$

$$(7.82)$$

7.6 实单纯李代数

首先我们讨论实李代数的复扩充。设 g 是实数域上李代数,

 $X,Y \in g$ 。 $i = \sqrt{-1}$,则由元素 X + iY 构成的集合 g^c , g^c 的元素 X + iY 与 X' + iY' 称为相等,如果 X = X' ,Y = Y' ,记为 X + iY = X' + iY'。对 g^c 按下面规定其数乘、加法和李积运算:

- (1) 复倍数。对 $a,\beta \in R$, $X,Y \in \mathfrak{g}$, 有 $(a+i\beta)(X+iY) = (aX-\beta Y) + i(\beta X + aY).$
- (2) 加法。对 X,X',Y,Y'∈g,有 (X+iY)+(X'+iY')=(X+X')+i(Y+Y')。
- (3) 李积、对 X,X',Y,Y'∈g,有 [X + iY,X' + iY'] = {「X,X'] - [Y,Y']} +i{[X,Y']+[Y,X']}.

这样定义就使 g^{σ} 是一个复数域上的李代数。 g^{σ} 称为实 李 代 数 g 的复扩充。

如果实李代数 g 的一组基为 X_1, X_2, \dots, X_n , 那么它也是 g 的 复扩充 g^{σ} 的一组基。因为对任意 $X, Y \in g$,有

$$X = \xi^{j} X_{j} \quad Y = \eta^{j} X_{j}$$
,

于是对 $X + i Y \in \mathfrak{g}^c$, 有

$$X + i Y = (\xi^j + i \eta^j) X_j,$$

这是以复数 ξ^j + $i \eta^j$ 为系数的 X_j 的浅性组合。由于 X_1, X_2, \dots , X_n 在复数域上也是线性无关的,故 X_1, \dots, X_n 也是 g^c 的一组基。于是得到 g 与 g^c 对 k X_1, X_2, \dots, X_n 有相同 的 结 构 常 数 C^k , 而且 C^k , 都是实数。所以实李代数 g 与其 g 扩充 g^c 结构 常 数 一样。

在 g^c 的元素中,把形式为 $X + i \circ (X \in g)$ 的元素看成与 g 的元素X 是等同的,并用 X 表示 $X + i \circ$ 。这样实李 代 数 g 是 其复扩充 g^c 的一个子代数,称 g 是 复李代数 g^c 的一个实形式。

一般说,设 g_1 是复李代数,如果有实李代 数 g 与 g_1 同构,则称 g 是 g_1 的 · 个实形。对 R 上李代数 g,在 同 构 意义下,可以唯一定义 g 的复扩充。但对复李代数 g_1 ,并不一 定 总 存在实

形. 如果存在实形, 也可能有两个或更多的实形. 如 SO(3) 群和 SO(2,1) 群的李代数 o(3) 和 o(2,1), 都是实李 代 数, 它们的复扩充 都 是 o(3,C). 因 此 复 李 代 数 o(3,C)有 实 形 o(3) 和 o(2,1).

如果复李代数 9_1 有实形 9_2 ,那么总可以选 9_1 和 9 的一组 共同基矢 X_1, X_2, \dots, X_n ,使 9_1 与 9 有相同的 洁构常数, 当 然结构常数是实数。由此得到,复李代数 9_1 具有实 形 的 充分必要条件是:在 9_1 中可以选一组基 X_1, X_2, \dots, X_n ,使得 9_1 关于这组基的结构常数都是实数。这时以 X_1, X_2, \dots, X_n 为基的实李代数 9_2 就是 9_1 的一个实形式。

》 对实李代数 g,可以证明,如果 g 可解,则 共 g 扩 充 g^o 可解,如果 g 半单,则 g^o 半单,并且 g^o 可以分解为单李代数的直和。

我们已经知道,复单李代数可以分为 4 个系列的典型李代数 A_n, B_n, C_n, D_n

和5个例外を代数

$$G_{2}$$
, F_{4} , E_{6} , E_{7} , E_{8} .

由于实单李代数的复扩充是单的,故全部复单李代数的所有实形,就给出了全部实单李代数。求复单李代数的所有实形问题,我们不在此讨论,有兴趣的读者可参阅有关文献[11]。

在节 6.3 中我们曾讨论过李群的紧致性,现在来讨论实李代数的紧致性。一个实李代数称为紧致的,当且仅当它是一个紧致李群的李代数。例如,紧致李群 SO(3) 的李代数。(3) 是 紧 的,而非紧致李群 SO(2,1) 的李代数。(2,1) 是非紧致的。对 实 半单 李代数的紧致性,还有下面两个重要的定理:

定理7.10 李代数 g 是紧致半单的, 当且仅当它的基林型是负定的。

定理7.10对于判断一个半单李代数是否紧致是很有用的,以后我们会常用到它,我们还可应用它来判断一个单李群是否紧致,

即当它的李代数的基林型是负定的,则为紧致;否则为非紧致。 定理7.11 复半单李代数 g 的任意两个紧致实形皆同构。

这说明在同构的意义上,复半单李代数的紧 致 实 形 是唯一的,而且由于复半单李代数的结构常数总可以选为实数,故其紧 致实形总存在,且唯一,

例如 A_n 的紧致实形是 su(n+1), B_n 的紧致实形是 o(2n+1, R), C_n 的紧致实形是 sp(2n), D_n 的紧致实形是 o(2n, R) 等等。

第八章 李代数的表示

为了求李群的表示,本章首先介绍李群表示和李代数表示之间的关系,然后介绍半单李代数表示的基本性质,最后着重介绍用张量基方法求不可约表示。我们希望通过一些简单的实例,使读者学到求表示的基本方法,以便在实际运用中,可以得到举一反三的效果。

8.1 李群与李代数的表示

李群是无限维连续群的一种。第二章关于群表示的定义显然 也适用于李群,此处不再复述。对于李代数的表示,我们有以下 定义。

定义8.1 设 g 是一个李代数,V 是复数域 C 上 n 维向 量 空间,gl(n,C) 是 V 上一般线性李代 数。如 果 存 在 一个 从 g 到 gl(n,C) 中的一个同态,对任意 $x \in g$,有

$$A: x \rightarrow A(x) \in gl(n,C)$$
,

那么就称A是李代数 9 的一个表示。其中同态映射 A 保持李代数 9 的运算不变,

$$A(ax + by) = aA(x) + bA(y),$$

$$A[x,y] = [A(x),A(y)]$$
(対任意 $x,y \in g, a,b \in C$),

V称为 g 的表示 A 的表示空间, n 是表示 A 的维数。

与群表示相似,我们也可以定义李代数 g 的忠实表示、等价表示、不可约表示、可约表示和完全可约表示等等。

设率群G的李代数是g,由定理6,17知道 g 唯一地决定一个单连通李群 SG。因此 g 的表示与 SG 的表示有一一对 应 关 系,这

样可以得到定理8.1.

定理8.1 设G是一个李群,g是G的李代数,则g的表示与G的通用覆盖群的表示是一一对应的。

在第二章我们讨论了有限群的表示性质,知道对有限群,我们只需要讨论有限维不可约酉表示就可以了。但对李群的表示情况要复杂得多。李群的表示可以是有限维的,也可以是无限维的;可以是分立的,也可以是连续的;可以是酉表示,也可以不是酉表示;可以是可分的,即不可约或完全可约的,也可以是不可分的,即可约不完全可约的。下面我们引述有关李群表示的三个定理。

定理8.2 可解李群的每一个有限维不可约表示是一维的。

如第六章例15的一维圆环群 S^1 ,只有一维表示,对任意 S^1 的元素 $e^{i\theta}$,它本身 $e^{i\theta}$ 就是 S^1 的一个一维不可约表示。 S^1 我们有时也称为U(1)群。

如 SO(3)和 SU(2)的所有不可约酉表示都是有限维的。

定理8.4 连通单纯非紧致李群的不可约酉表示,除恒等表示外,都是无限维的,

从下面节8.5的讨论中,我们将看到SO(2,1)只有无限维的不可约酉表示。

从定理8.3还可以看出,连通单纯紧致李群的酉表示都是有限维的,而且都是可分的。而连通单纯紧致李群的无限维表示不是酉表示,所以有可约不完全可约表示。

从定理8.4可以看出,连通单纯非紧致李群的不可约酉表示,除了一维恒等表示之外,都是无限维的。它的有限维表示,除了一维恒等表示之外,都不是酉表示。

定理8.2、8.3和8.4给出李群表示最重要的性质。定理8.1给出李群表示和李代数表示回的关系。利用下面讨论的李代数的表示,可以得到连通李群的表示。

8.2 半单零代数的表示

从定理7.4知道,对半单李代数的研究有重要意义,在此我们讨论半单李代数g的表示问题。设 H_i , E_a 是g的嘉当-韦耳基,则

$$q = \{a^i H_i + a^a E_a\}.$$

g 的 表示 A 为

$$A = \{a \cdot A(H_i) + a^a A(E_a)\}.$$

表示空间是 V_{A} ,

由于A是半单李代数 g 的表示,所以矩阵 $A(H_i)$, $A(E_a)$ 满足的对易关系,与 H_i , E_a 满足的对易关系式(7.42)相同,即

$$[A(H_i), A(H_j)] = 0,$$

$$[A(H_i), A(E_a)] = a_i A(E_a),$$

$$[A(E_a), A(E_{-\alpha})] = \alpha^{\dagger} A(H_i),$$

$$[A(E_a), A(E_{\beta})] = N_{\alpha\beta} A(E_{\alpha+\beta}), \quad \alpha \neq -\beta.$$
(8.2)

其中 $N_{a\beta}$ 由式(7.41)决定。为了书写方便,下面我们直接用 $H_{i,j}$ E_{a} 表示 $A(H_{i})$, $A(E_{a})$, 这时 $H_{i,j}$ E_{a} 已经是作用在 V_{A} 上 的矩阵 了。

因为矩阵 $H_i(i=1,2,\cdots,n)$ 是相互对易的,于是在表示 空间 V_A 中可以找到它们的共同本征 矢 $[U_A\rangle =]U_{A_1A_2\cdots A_n}>$, 满足

$$H_i | U_A \rangle = \Lambda_i | U_A \rangle, \tag{8.3}$$

数 A_1, A_2, \dots, A_n 构成了一个n维空间 Δ_A 中的矢量 A 的 协 变 分量,A 称为本征矢 $|U_A\rangle$ 的权矢量,或简称为**权**。由于 $|U_A\rangle$ 是 表示空间 V_A 的一个矢量,所以 A 也称为表示空间 V_A 的一个权。 并且称 n维矢量 A 的全体 Δ_A 是 A 的欠系, n 维矢量空 间 称 为权空间。也可将式(8.3)写成向量形式,令

$$H = (H_1 \ H_2 \ \cdots \ H_n),$$

娜

$$H|U_A\rangle = \Lambda |U_A\rangle, \tag{8.3'}$$

设 $|U_A\rangle$ 是权为 A 的本征矢,由式(8,2)和(8,3) 可 以 得 到 $E_a|U_A\rangle$ 是权为 $A+\alpha$ 的本征矢, α 是半单李代数 9 的 一 个 根,它也是 n 维向量。事实上,

$$H_{i}E_{\sigma}|U_{A}\rangle = \{E_{\sigma}H_{i} + [H_{i}, E_{\sigma}]\}|U_{A}\rangle$$

$$= \{A_{i} + a_{i}\}E_{\sigma}|U_{A}\rangle, \qquad (8.4)$$

或将它写成向量形式

$$HE_a|U_A\rangle = (A+a)E_a|U_A\rangle. \tag{8.4'}$$

由于 H_i 和 H_j 间相互对易,故 $H_i|U_a>$ 仍是权为A的本征矢.

定理8.5 华单本代数的任何表示空间 V_A 至少有一个权。

证明 矩阵 H_1 至少有一个本征值 A_1 ,设 V_1 是由本征 值 为 A_1 的本征矢展开的 V_A 的子空间。如 $|U_{A_1}\rangle\in V_1$,由于

$$|H_1H_2|U_{A_1}\rangle = H_2H_1|U_{A_1}\rangle = A_1H_2|U_{A_1}\rangle,$$

故

$$H_2V_1\in V_1$$

因此 H_2 在它的不变子空间 V_1 中,至少有一个本征 矢,设 相 应的本征值是 A_2 。这样继续下去,每一个 H_i 在它的不变子空间中至少有一个本征矢,设相应的本征值 是 A_i 。最 后 得 到 了 子 空间 V^4 ,它包含了 H_1,H_2,\cdots,H_n 的共同本征矢,相应的权是

$$\Lambda = (\Lambda_1, \Lambda_2, \cdots, \Lambda_n).$$

定壓证毕.

定理8.6 若矢量 $|U\rangle$ 的权为A,矢量 $|U^k\rangle$ 的权为 A^k 。如果 $|U\rangle$ 可以表为 $|U^k\rangle$ 的线性组合,而所有 A^k 都不等于A,那么 $|U\rangle$ 必为零矢量。

证明 山假设知

$$|U\rangle = \sum_{k} C_{k} |U^{k}\rangle, \qquad (8.5)$$

引入算符

$$\prod_{k} \mu^{i} \left(H_{i} - \Lambda^{k}_{i} \right),$$

μ'是任意复数。用这算符作用于式(8.5)两边,得

$$\prod_k \mu^i (H_i - \Lambda_i^k) |U\rangle = \prod_k \mu^i (\Lambda_i - \Lambda_i^k) |U\rangle = 0 ,$$

由于 A; 学A4, 而 Fi 任意, 故有

$$|U\rangle \approx 0$$
.

定理证毕.

从定理 8.6 可以看出,具有不同权的本征矢是线性独立的。 因此,在 1 维表示空间中,最多有 1 个权。若有一个权,对应它 的线性独立的本征矢有 2 个,则称这个权是 2 重的。如一个权, 对应它的线性独立的本征矢只有一个,则称这个权是单权。 **定理8.7** 设 A 是半单李代数 g 的一个不可约表示,表示 空间为 V A,则 V A,可以分解为

$$V_A = \sum_{A \in A_A} \bigoplus V_A^A, \qquad (8.6)$$

其中 V_A 由权为A的矢量所展开,是具有权A的 V_A 的子宏间。

证明 由定理8.5知 V_A 最少包含一个权A',对任意 $|U_A>$ $\in VA'$,则由式(8.4)知

$$E_{\alpha}|U_{A'}> \begin{cases} \in V_{A'}^{A'+\alpha}, & \stackrel{\text{def}}{=} A' + \alpha \in \Delta_{A}, \\ = 0, & \stackrel{\text{def}}{=} A' + \alpha \in \Delta_{A}. \end{cases}$$

同样当

$$\Lambda' + \alpha + \beta + \cdots + \gamma \in \Lambda_{\lambda}, E_{\alpha}E_{\beta} \cdots E_{\gamma} | U_{\lambda'} >$$

是权为 $A' + a + \beta + \dots + \gamma$ 的本征矢。如果

$$\Lambda + \alpha + \beta + \cdots + \gamma \in \Delta_{A}$$
,

则

$$E_{\sigma}E_{\beta}\cdots E_{\gamma}\,|\,U_{A'}>\approx 0\,,$$

可见由具有不同权的子空间 V4 的直和

$$\sum_{{\scriptstyle A}\,\in\,{\scriptstyle A}} \bigoplus V_{\scriptstyle A}^{\scriptscriptstyle A}$$

是 g 的一个不变子空间。但 V_A 是 g 的不可约表示,故必有

$$V_{A} = \sum_{A \in A_{A}} \bigoplus V_{A \bullet}^{A}$$

定理证毕,

与定理7.6的证明类似,利用式(8.4),可以证明下面的定理。

定理8.8 设A是半单李代数g的一个表示,A是A的一个权, α 是g的一个根,则有

(1) 2′ •a)/(a•a) 是整数, Λ-2a(Λ•a)/(a•a) 是A的 — 个权;

- (2) Λ 和 $\Lambda 2\alpha(\Lambda \cdot \alpha)/(\alpha \cdot \alpha)$ 在 Λ 中具有相同的重数;
- (3) 如果 Λ 是单权,则存在一个 Λ 的 α 权链 $\Lambda = r\alpha, \Lambda = (r-1)\alpha, \cdots, \Lambda + (q-1)\alpha, \Lambda + q\alpha,$

使得 $\Lambda - (r+1)a$ 和 $\Lambda + (q+1)a$ 不是权,而且

$$\frac{2(\underline{A} \cdot \underline{\alpha})}{(\underline{\alpha} \cdot \underline{\alpha})} = r - q_{\bullet} \tag{8.7}$$

对于半单李代数的表示A中的权,我们可以在权空间选一个坐标系之后,来比较不同权的高低。一个权称为是正的,如果它的第一个非零分量是正数。一个权比另一个权高,如果它们的差是正的。在所有权中,如有一个权比其它权都高,则称它为最高权。

例如在 SU(?)的 8 维表示中,有权 (1,1/2),(1,-1/2),(0,1),(0,-1),(0,0),(-1,1/2),(-1,-1/2). 其中(1,1/2),(1,-1/2),(1,1/2),(0,1),(0,0)是正的,(1,1/2)是最高权。除(0,0)是2重权外,其它权都是单的。

设度,>是本征值为权 A^{\dagger} 的本征矢, V_A 是 g 的 l 维表示,把 权 A^{\dagger} 按高低排列成

$$\Lambda^1 \geqslant \Lambda^2 \geqslant \dots \geqslant \Lambda^1, \tag{8.8}$$

则基 $|\xi_1\rangle$, $|\xi_2\rangle$,…, $|\xi_4\rangle$ 称为 V_A 的一组正则基。

定理8.9(最高权定理) 设半单李代数 g 的表示 A 是不 可 约 的,那么 g 的最高权是单的。设 g 的两个不可约表示 A_1 和 A_2 是 等价的,那么 A_1 和 A_2 的最高权相等。

最高权定理对求半单李代数的不可约表示很重要,常常作为 求不可约表示的根据。

邓金利用最高权定理,证明了最高权在舍瓦累基下有以下重要性质。

定理8.10 A 是华单李代数 g 的不可约表示 A 的最 高 权 的 充要条件是

$$A_{\alpha_i} = 2(A \cdot \alpha_i) / (\alpha_i \cdot \alpha_i) = \lambda_i$$
 (8.9)

为非负整数,其中 $\alpha_i \in \mathbb{Z}$ 是 g 的素根。设 $|\xi\rangle$ 是表示 空 间 V_A 中对应最高权 A 的本征矢,则有

$$(E_{-\alpha_i})^k |\xi\rangle \begin{cases} = 0, & \exists k > \lambda_i, \\ \neq 0, & \exists k \leqslant \lambda_i. \end{cases}$$
 (8.10)

用含瓦累基作用于15>有

$$h_{\alpha_i} |\xi\rangle = \lambda_i |\xi\rangle, \qquad (8.11)$$

根据定理8.9,知道最高权与不等价不可约表示间有一一对应的关系,我们常用最高权来标记不可约表示。下节将具体讨论不可约表示的标记问题。

对半单李代数的表示, 韦耳还证明了下面的重要定理, 我们 引述如下。

定理8.11 半单本代数的任一个有限维表示是完全可约的。

这定理说明, 半单李代版的有限维表示或者是不可约的, 或者是完全可约的, 不存在可约不完全可约的有限维表示.

8.3 单李代数不可约表示的标记

通过定理8.9和8.10,知道可以用最高权 $\lambda_i(\alpha_i \in \Pi)$ 来标记 半单李代数的不可约表示。通常把 λ_i 写在邓金图的相应 素 根 α_i 之上。所有 λ_i 都是零的表示对应 9 的一维恒等表示。

例1 单李代数 A_2 的不可约表示可以在图 8.1 上标出、设这

表示的最高权为

 $A = a_1 a_1 + a_2 a_2$,素根 a_1 和 a_2 是二维向量,则由式(8.9)和表7.1可得

$$\hat{\lambda}_1 = \frac{2(\Lambda \cdot a_1)}{(a_1 \cdot a_1)} = \hat{\lambda} = 2a_1 - a_2,$$

$$\lambda_2 = \frac{2(\Lambda \cdot a_2)}{(a_2 \cdot a_2)} = \mu = -a_1 + 2a_2$$

于是

$$\Lambda = \frac{2\lambda_1 + \lambda_2}{3} \alpha_1 + \frac{\lambda_1 + 2\lambda_2}{3} \alpha_2.$$

当 A_2 的不可约表示($\lambda \mu$) = (0 1)时,最高权 Λ = ($\alpha_1 + 2\alpha_2$)/3。 而 A_2 的不可约表示($\lambda \mu$) = (1 0)时,最高权 Λ = ($2\alpha_1 + \alpha_2$)/3。

例2 单李代数 G_2 的不可约表示可以在图8.2上标出。 这不可约表示的最高权为

$$\Lambda = (2\lambda_1 + \lambda_2)\alpha_1 + (3\lambda_1 + 2\lambda_2)\alpha_2.$$

下面我们讨论经典李代数不可约表示的标记问题,并给出常用的标记间的转换关系。

 A_n

从7.4节的讨论中,知 A_n 与 sl(n+1) 同构。与节5.5类 似,可以证明 sl(n+1)的不可约表示与 su(n+1) 一样,可以 用 分 割 Γ_{n+1} 来标记,

$$\Gamma_{n+1} = [m_1 \ m_2 \ \dots \ m_{n+1}], \tag{8.12}$$

图 8.3

其中 $m_1 \ge m_2 \ge \cdots \ge m_{n+1} \ge 0$, m_1 , m_2 , \cdots , m_{n+1} 是整数.图 8.3的(a) 中给出 Γ_{n+1} 对应的杨图,图8.3的(b)给出 A_n 的 不可 约表示 最高权在含瓦累基下的各个分量。

当 Γ_{n+1} = $[m_1 \ m_2 \ \cdots \ m_{n+1}]$,并且 $[\lambda_1 \ \lambda_2 \ \cdots \ \lambda_n]$ 表 示 A_n 的 同一个不可约表示时,它们间满足关系式。

$$\lambda_1 = m_1 - m_2,$$
 $\lambda_2 = m_2 - m_3,$
 $\lambda_n = m_n - m_{n+1},$
(8.13)

 B_n

设在嘉当-韦耳基 $H_i(i=1,\cdots,n)$ 下, B_n 的不可约表示最高权为 $\Lambda = (\Lambda_1 \ \Lambda_2 \ \cdots \ \Lambda_n)$,而含瓦累基最高权的各个 分 量 为 λ_1 , $\lambda_2,\cdots,\lambda_n$,在图8.4中表出。

图 8.4

当 λ_1 , λ_2 , … , λ_n 与 Λ 对应同一不可约表示时,由式(7.71)和(7.80)可得。

满足式(8.14)的两种标志(λ_1 λ_2 ··· λ_n)和(Λ_1 Λ_2 ··· Λ_n)是完全 等价的。

由定理8.10知礼是非负整数,故从式(8.14)可得

$$\Lambda_1 \geqslant \Lambda_2 \geqslant \cdots \geqslant \Lambda_n \geqslant 0. \tag{8.15}$$

幷且当 λ_n 是偶数时,所有 Λ_i 或者全为整数,或者当 λ_n 是 奇 数

时,所有 Λ_i 全为半整数。 Λ_i 全为半整数的表示,称 为 B_n 的 旋量表示。

 C_n

设在嘉当-韦耳基 $H_i(i=1,\cdots,n)$ 下, C_n 不可约表示的最 高权为 $\Lambda=(\Lambda_1\ \Lambda_2\ \cdots\ \Lambda_n)$ 。而舍瓦累基最高权为 $(\lambda_1\ \lambda_2\ \cdots\ \lambda_n)$,在图8.5中标出。

图 8.5

当 $(A_1,A_2,...,A_n)$ 和 $(\lambda_1,\lambda_2,...,\lambda_n)$ 对 应 C_n 的同一个不可约表示时,由式(7.73)和(7.81)可得,

由于 1,12,1,1 是非负整数,故有

$$\Lambda_1 \geqslant \Lambda_2 \geqslant \Lambda_n \geqslant 0, \qquad (8.17)$$

 $\cdot \Lambda_1, \Lambda_2, \cdots, \Lambda_n$ 都是整数。两种标记(Λ_1 Λ_2 \cdots Λ_n)和(λ_1 λ_2 \cdots λ_n) 等价。

 D_n

设在嘉当-韦耳基下, D_n 的最高权为 $\Lambda = (\Lambda_1 \ \Lambda_2 \ \cdots \ \Lambda_n)$ 。 用含瓦累基时,最高权为 $(\lambda_1 \ \lambda_2 \ \cdots \ \lambda_n)$,由图8.6给出。

当 $(\Lambda_1 \Lambda_2 \dots \Lambda_n)$ 和 $(\lambda_1 \lambda_2 \dots \lambda_n)$ 对 应 D_n 的同一个 不可约表示时,由式(7.72)和(7.82)可以求出,

$$\Lambda_{n-1} = (\lambda_{n-1} + \lambda_n)/2,$$

$$\Lambda_n = (-\lambda_{n-1} + \lambda_n)/2.$$

图 8.6

由于 $\lambda_1,\lambda_2,\dots,\lambda_n$ 都是非负整数,可得

$$\Lambda_1 \geqslant \Lambda_2 \geqslant \cdots \geqslant \Lambda_{n-1} \geqslant |\Lambda_n| \geqslant 0, \qquad (8.19)$$

其中 $\Lambda_1, \Lambda_2, \cdots, \Lambda_{n-1}$ 是非负的,而 Λ_n 可正可 负。当 $\lambda_{n-1} + \lambda_n$ 是 偶数时, $\Lambda_1, \Lambda_2, \cdots, \Lambda_n$ 全为整数,当 $\lambda_{n-1} + \lambda_n$ 是 奇数 时, Λ_1 , $\Lambda_2, \cdots, \Lambda_n$ 全为半整数。 $\Lambda_1, \Lambda_2, \cdots, \Lambda_n$ 全为半整数的表示,称 为 D_n 的旋量表示。

上面讨论了用最高权标志半单李代数的不可约表示问题。在7.1节我们曾引入半单李代数的卡塞米尔算符和推广的卡塞米尔算符,见式(7.13)和(7.14)。并且指出独立的卡塞米尔算符的个数,等于半单李代数的秩。在有些实际问题中,也有用卡塞米尔算符来标志不可约表示的。

下面给出半单李代数的有限维不可约表示的 维 数 公 式,设 Σ^+ 是 半单李代数 g 的正根集合, δ 是正 根 和 之 半, Λ 是 最 高 权,

$$\delta = \frac{1}{2} \sum_{\alpha \in \Sigma^+} \alpha_{\bullet}$$

韦耳给出 g 的不可约表示的维数为

$$d = \prod_{\alpha \in \mathcal{D}^+} \frac{((\Lambda + \delta) \cdot \alpha)}{(\delta \cdot \alpha)}.$$
 (8.20)

由式(7.56)可以算出经典李代数有

$$\frac{2(\delta \cdot a_i)}{(a_i \cdot a_i)} = 1, \quad a_i \in H_* \tag{3.21}$$

可以证明,式(8.21)对其它单李代数也成立。

下面给出经典李代数的维数公式:

 A_n

$$d_{A_n} = \prod_{j \to i} \left(1 + \frac{\lambda_i + \lambda_{i+1} + \dots + \lambda_{i+j}}{j+1} \right) \tag{8.22}$$

$$(j = 0, 1, 2, \dots, n-1, i = 1, 2, \dots, n-j)$$

A。的维数公式也可以写成

$$d_{A_n} = \prod_{j,i} \left(1 + \frac{\lambda_{i+1} + \lambda_{i+1} + \cdots + \lambda_j}{j+1-i} \right)$$
 (8.22')

$$(j = 1, 2, \dots, n, i = 1, 2, \dots, j)$$
.

例3 A_2 的 不可约表示(λ_1 λ_2),根据式(8.22) 可以求出 其 维数为:

$$d_{A_2} = (1 + \lambda_1)(1 + \lambda_2) \left(1 + \frac{\lambda_1 + \lambda_2}{2}\right). \tag{8.23}$$

 A_5 的不可约表示(λ_1 λ_2 λ_3 λ_4 λ_5)的维数,根据式(8.22)和(8.22')可以求出为:

$$d_{A_{5}} = (1 + \lambda_{1})(1 + \lambda_{2})(1 + \lambda_{3})(1 + \lambda_{4})(1 + \lambda_{5})$$

$$\times \left(1 + \frac{\lambda_{1} + \lambda_{2}}{2}\right)\left(1 + \frac{\lambda_{2} + \lambda_{3}}{2}\right)\left(1 + \frac{\lambda_{3} + \lambda_{4}}{2}\right)\left(1 + \frac{\lambda_{4} + \lambda_{5}}{2}\right)$$

$$\times \left(1 + \frac{\lambda_{1} + \lambda_{2} + \lambda_{3}}{3}\right)\left(1 + \frac{\lambda_{2} + \lambda_{3} + \lambda_{4}}{3}\right)\left(1 + \frac{\lambda_{3} + \lambda_{4} + \lambda_{5}}{3}\right)$$

$$\times \left(1 + \frac{\lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4}}{4}\right)\left(1 + \frac{\lambda_{2} + \lambda_{3} + \lambda_{4} + \lambda_{5}}{4}\right)$$

$$\times \left(1 + \frac{\lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4}}{5}\right). \tag{8.24}$$

$$d_{A_{8}} = (1 + \lambda_{1})(1 + \lambda_{2}) \left(1 + \frac{\lambda_{1} + \lambda_{2}}{2}\right)$$

$$\times (1 + \lambda_{3}) \left(1 + \frac{\lambda_{2} + \lambda_{3}}{2}\right) \left(1 + \frac{\lambda_{1} + \lambda_{2} + \lambda_{3}}{3}\right)$$

$$\times (1 + \lambda_{4}) \left(1 + \frac{\lambda_{3} + \lambda_{4}}{2}\right) \left(1 + \frac{\lambda_{2} + \lambda_{3} + \lambda_{4}}{3}\right) \left(1 + \frac{\lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4}}{4}\right)$$

$$\times (1 + \lambda_{5}) \left(1 + \frac{\lambda_{2} + \lambda_{5}}{2}\right) \left(1 + \frac{\lambda_{3} + \lambda_{4} + \lambda_{5}}{3}\right) \left(1 + \frac{\lambda_{2} + \lambda_{3} + \lambda_{4} + \lambda_{5}}{4}\right)$$

$$\times \left(1 + \frac{\lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} + \lambda_{5}}{5}\right). \tag{8.24'}$$

显然,式(8.24)与(8.24')是一样的。

 B_n 的维数公式为:

$$d_{B_n} = d_{A_n} \times \prod_{j \neq i} \left(1 + \frac{\lambda_i + \lambda_{i+1} + \dots + 2\lambda_j + \dots + 2\lambda_{n-1} + \lambda_n}{2n+1-i-j} \right)$$

$$(j = 1, 2, \dots, n-1, i = 1, 2, \dots, j). \tag{8.25}$$

例4 B_5 的下河约表示(λ_1 λ_2 λ_3 λ_4 λ_5)的维数为:

$$d_{B_{5}} = d_{A_{5}} \left(1 + \frac{2\lambda_{4} + \lambda_{5}}{3}\right) \left(1 + \frac{\lambda_{3} + 2\lambda_{4} + \lambda_{5}}{4}\right)$$

$$\times \left(1 + \frac{\lambda_{2} + \lambda_{3} + 2\lambda_{4} + \lambda_{5}}{5}\right) \left(1 + \frac{\lambda_{1} + \lambda_{2} + \lambda_{3} + 2\lambda_{4} + \lambda_{5}}{6}\right)$$

$$\times \left(1 + \frac{2\lambda_{3} + 2\lambda_{4} + \lambda_{5}}{5}\right) \left(1 + \frac{\lambda_{2} + 2\lambda_{3} + 2\lambda_{4} + \lambda_{5}}{6}\right)$$

$$\times \left(1 + \frac{\lambda_{1} + \lambda_{2} + 2\lambda_{3} + 2\lambda_{4} + \lambda_{5}}{7}\right) \left(1 + \frac{2\lambda_{2} + 2\lambda_{3} + 2\lambda_{4} + \lambda_{5}}{7}\right)$$

$$\times \left(1 + \frac{\lambda_{1} + 2\lambda_{2} + 2\lambda_{3} + 2\lambda_{4} + \lambda_{5}}{8}\right) \left(1 + \frac{2\lambda_{1} + 2\lambda_{2} + 2\lambda_{3} + 2\lambda_{4} + \lambda_{5}}{9}\right).$$
(8.26)

 C_n 的维数公式为:

$$dC_{n} = d_{A_{n}} \times \prod_{j, i} \left(1 + \frac{\lambda_{i} + \lambda_{i+1} + \dots + 2\lambda_{j} + \dots + 2\lambda_{n}}{2n + 2 - i - j} \right)$$

$$(j = 2, 3, \dots, n, i = 1, 2, \dots, j - 1), \qquad (8.27)$$

例5 C_s 的不可约表示(λ_1 λ_2 λ_3 λ_4 λ_5)的维数为

$$d_{C_{5}} = d_{A_{5}} \times \left(1 + \frac{\lambda_{4} + 2\lambda_{5}}{3}\right) \left(1 + \frac{\lambda_{3} + \lambda_{4} + 2\lambda_{5}}{4}\right)$$

$$\times \left(1 + \frac{\lambda_{2} + \lambda_{3} + \lambda_{4} + 2\lambda_{5}}{5}\right) \left(1 + \frac{\lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} + 2\lambda_{5}}{6}\right)$$

$$\times \left(1 + \frac{\lambda_{3} + 2\lambda_{4} + 2\lambda_{5}}{5}\right) \left(1 + \frac{\lambda_{2} + \lambda_{3} + 2\lambda_{4} + 2\lambda_{5}}{6}\right)$$

$$\times \left(1 + \frac{\lambda_{1} + \lambda_{2} + \lambda_{3} + 2\lambda_{4} + 2\lambda_{5}}{7}\right) \left(1 + \frac{\lambda_{2} + 2\lambda_{3} + 2\lambda_{4} + 2\lambda_{5}}{7}\right)$$

$$\left(1 + \frac{\lambda_{1} + \lambda_{2} + 2\lambda_{3} + 2\lambda_{4} + 2\lambda_{5}}{7}\right) \left(1 + \frac{\lambda_{2} + 2\lambda_{3} + 2\lambda_{4} + 2\lambda_{5}}{7}\right)$$

$$\times \left(1 + \frac{\lambda_1 + \lambda_2 + 2\lambda_3 + 2\lambda_4 + 2\lambda_5}{8}\right) \left(1 + \frac{\lambda_1 + 2\lambda_2 + 2\lambda_3 + 2\lambda_4 + 2\lambda_5}{9}\right).$$

(8, 28)

 D_n 的维数公式为

$$d_{D_n} = \frac{2d_{A_n}}{2 + \lambda_{n-1} + \lambda_n} \times \prod_{k} \left(1 + \frac{\lambda_k + \lambda_{k+1} + \dots + \lambda_{n-2} + \lambda_n}{n - k} \right) .$$

$$\times \prod_{i=1}^{n} \left(1 + \frac{\lambda_i + \lambda_{i+1} + \cdots + 2\lambda_j + \cdots + 2\lambda_{n-2} + \lambda_{n-1} + \lambda_n}{2n - i - j}\right)$$

$$(k=1,2,\cdots,n-2,j=2,3,\cdots,n-2,i=1,2,\cdots,j-1)$$
.

例6 D_s 的不可约表示(λ_1 λ_2 λ_3 λ_4 λ_5)的维数为

$$d_{D_5} = \frac{2d_{A_5}}{2 + \lambda_4 + \lambda_5} \times \left(1 + \frac{\lambda_3 + \lambda_5}{2}\right) \left(1 + \frac{\lambda_2 + \lambda_3 + \lambda_5}{3}\right)$$

$$\times \left(1 + \frac{\lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{5}}{4}\right) \left(1 + \frac{\lambda_{2} + 2\lambda_{3} + \lambda_{4} + \lambda_{5}}{5}\right) \times \left(1 + \frac{\lambda_{1} + \lambda_{2} + 2\lambda_{3} + \lambda_{4} + \lambda_{5}}{6}\right) \left(1 + \frac{\lambda_{1} + 2\lambda_{3} + \lambda_{4} + \lambda_{5}}{7}\right).$$
(8.29)

8.4 直积表示

与群表示的直积一样,可定义李代数 9 的直积表示。

定义8.2 设 $A = \{\cdots A(x)\cdots\}, B = \{\cdots B(x)\cdots\}$ 是 李代数g的两个表示, $x \in g$,则

$$C = \{\cdots C(x) = A(x) \otimes B(x) \cdots\}$$

也是 g 的一个表示,称为 A 和 B 的直积 表 示,记 为 $G = A \otimes B_*$ 以符号 "~"表示等价,直积表示 $A \otimes B$ 有以下性质。

(1) 如, $A \sim A'$, $B \sim B'$, 则 $A \otimes B \sim A' \otimes B'$,

$$(2) A \otimes B \sim B \otimes A, \qquad (8.30)$$

- (3) $(A \otimes B) \otimes C \sim A \otimes (B \otimes C)$;
- (4) $(A \oplus B) \otimes C \sim (A \otimes C) \oplus (B \otimes C)$.

如果 $A \cap B$ 是李代数 g 的不可约表示,一般讲 $A \otimes B$ 是 g 的可约表示。 $A \otimes B$ 等价于 g 的一些不可约表示的直和,即

$$A \otimes B \sim \sum \bigoplus m_{ABC} C$$
, (8.31)

其中 m_{ABC} 是与A, B, C 有关的非负整数,它代表 $A \otimes B$ 中 包含不可约表示 C 的次数,称为表示 G 在 $A \otimes B$ 中的 **重 复 度**。求 出 m_{ABC} 是不可约表示 A 和 B 直乘的分解问题,这在实际运用 中 是 相当重要的。

设A和B是半单李代数 g 的两个不可约表示,其相应的表示空间为 V_A 和 V_B 。由定理8.6知 V_A 和 V_B 可以分解为具 有 一 定权的子空间的直和,即

$$V_A = \sum_{A \in A_A} \bigotimes V_A^A, \qquad V_B = \sum_{M \in A_B} \bigotimes V_{B,i}^M$$

 Δ_A 和 Δ_B 分別是不可约表示 A 和 B 的权系。 直积表示 $A \otimes B$ 的表示空间为

$$V_{A\otimes B} = V_A \otimes V_B = \sum_{A \in A_A} \bigoplus \sum_{M \in A_B} \otimes V_A^A \bigoplus V_{B}^M . \tag{8.32}$$

由

$$(A \otimes B)(H_i)(V_A^A \otimes V_B^M)$$

$$= (A(H_i)V_A^A) \otimes V_B^M + V_A^A \otimes (B(H_i)V_B^M)$$

$$= (A_i + M_i)V_A^A \otimes V_B^M,$$
(8.33)

利用式(8.33),就可以求出直积表 示 $A \otimes B$ 的 权 系 $\Delta_{A\otimes B}$ 。 从而解决不可约表示直乘分解问题。

例7 求 A_2 的不可约表示(0 1)和(0 1)的直乘分解。

 A_2 的不可约表示(0 1)的最高权在 例 1 中已经得到,是 $A=(a_1+2a_2)/3$ 。由定理8.8,可以算出(0 1)的权 系 A 由 3 个 单 权组成,即

$$\Delta = \left\{ \frac{\alpha_1 + 2\alpha_2}{3}, \frac{\alpha_1 - \alpha_2}{3}, \frac{-2\alpha_1 - \alpha_2}{3} \right\}.$$

直积表示(0 1)⊗(0 1)的权系, 按式(8,33)应该为

$$\left\{\frac{2a_1+4a_2}{3}, \frac{2a_1+a_2}{3}, \frac{2a_1+a_2}{3}, \frac{-a_1+a_2}{3}, \frac{-a_1+a_2}{3}, \frac{-a_1+a_2}{3}, \right\}$$

$$\frac{2a_1-2a_2}{3}$$
, $\frac{-a_1-2a_2}{3}$, $\frac{-a_1-2a_2}{3}$, $\frac{-4a_1-2a_2}{3}$ }. (8.34)

应用例1结果,知道 $(2a_1 + 4a_2)/3$ 是不可约表示 $(0\ 2)$ 的最高权,再利用定理8.8可以算出 $(0\ 2)$ 的权系为

$$\left\{\frac{2a_1+4a_2}{3}, \frac{2a_1+a_2}{3}, \frac{2a_1-2a_2}{3}, \right\}$$

$$-\frac{a_1+a_2}{3}, \frac{-a_1-2a_2}{3}, \frac{-4a_1-2a_2}{3} \right\}.$$
 (8.35)

从(0 1)⊗(0 1)的汉系式(8.34)减去(0 2)的权系式(8.35),得

$$\left\{\frac{2a_1+a_2}{3}, \frac{-a_1+a_2}{3}, \frac{-a_1-2a_2}{3}\right\}. \tag{8.36}$$

式(8.36)正是不可约表示(1.0)的权系,这也可以利用例1结果和定理8.8算出。因此有

$$(0\ 1)\otimes(0\ 1)=(0\ 2)\oplus(1\ 0).$$
 (8.37)

用以上方法解决不可约表示的直乘分解是很烦琐的,尤其是对维数大的表示来说,计算更为烦琐。但对于一些具体问题,可以有另外的方法,如关于 su(n) 群直乘分解,可以用 节 5.5 的方法。

下面几节介绍一种求李代数表示的有效方 法——张 量 基 方法。应用张量基方法,不仅可以直接求出李代数的不可约表示,即给出李代数基的矩阵表达式,而且可用来求李代数不可约表示直乘分解及约化系数。下面我们依次讨论 o(3)和 o(2,1)的不 可约表示,su(3)的不可约表示和直乘分解以及 o(4)的不可约表示等。

8.5 0(3)和0(2,1)的不可约表示

复单李代数 A_1 的陕 为 1 ,它有唯一的素根 $\alpha = e_1 - e_2$,其嘉 当-韦耳基为 H_1 , $E_{\pm a}$,由第七章的例 6 得 A_1 满足的代数 为

$$[H,H] = 0,$$

$$[H,E_{\pm\sigma}] = \pm E_{\pm\sigma},$$

$$[E_{\alpha},E_{-\alpha}] = H_{\bullet}$$

若取

$$J_0 = J_z = H$$
, $J_{\pm 1} = \mp \frac{1}{\sqrt{2}} (J_x \pm i J_y) = \mp E_{\pm \alpha}$, (7.60)

可得

$$\begin{bmatrix} J_0, J_{\pm 1} \end{bmatrix} = \pm J_{\pm 1},
 \begin{bmatrix} J_{\pm 1}, J_{\pm 1} \end{bmatrix} = -J_0,
 \tag{8.38}$$

或写为

$$[J_x, J_y] = iJ_z,$$

$$[J_y, J_z] = iJ_x,$$

$$[J_z, J_x] = iJ_y.$$
(8.38')

这正是 o(3,C)满足的对易关系。不过因 A_1 是复李代数, $\int_x \int_B J_x$ 是复角动量, A_1 与 o(3,C) 同构。

o(3) 和 o(2,1) 是 o(3,C)的两个不同的实形式。取式 (8.38')中 J_x,J_y,J_z 皆为实,得实李代数 o(3)。o(3)生成元为 J_x,J_y,J_z ,而且仍满足对易关系式 (8.38),但 J_x,J_y,J_z 为 实。 o(3)的基林型是正定的,由式 (8.38)得

$$C_{12}^3 = i$$
, $C_{13}^2 = -i$,

故

$$(g_{\sigma\lambda}) = (C_{\sigma\rho}^{\tau} C_{\lambda\tau}^{\rho}) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \tag{8.39}$$

根据定理7.10可以看出,o(3)是 A_1 的紧致实形。

取式(8.38)中 J_z 为实, J_x , J_y 为虚,即取

$$J_x = i J_{x'}$$
, $J_y = i J_{y'}$, $J_z = J_{z'}$.

则以 $J_{x'}$, $J_{x'}$, $J_{z'}$ 为生成元的实李代数是o(2,1)。o(2,1) 满足的对易关系为

$$[J_{x'}, J_{y'}] = -iJ_{x'},$$

$$[J_{y'}, J_{z'}] = iJ_{x'},$$

$$[J_{x'}, J_{x'}] = iJ_{y'},$$
(8.40)

由式(8,40)可以算出 o(2,1)的基林型是不定的,

$$(g_{\sigma\lambda}) = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \tag{8.41}$$

由定理7.10可以看出 o(2,1) 是非紧致的。

为便于把 o(2,1)和 o(3)一起求表示, 取 o(2,1)的生成元为

$$J'_{\pm 1} = \mp \frac{1}{\sqrt{2}} (-J_{x'} \mp iJ_{y'}),$$

$$J_{\alpha'} = J_{z'}.$$
(8.42)

式(8.40)可以写成,

$$\begin{bmatrix} J_{0'}, J_{\pm 1}' \end{bmatrix} = \pm J_{\pm 1}',
\begin{bmatrix} J_{+1}, J_{-1}' \end{bmatrix} = J_{0'},
(8.43)$$

从式(8.38)和(8.43)可以统一地把 o(3)和 o(2,1)的对 易 关系写成,

$$[J_0, J_{\pm 1}] = \pm J_{\pm 1},$$
 (8.44a)

$$[J_{+1}, J_{-1}] = -qJ_0, \begin{cases} q = 1, & \text{if } o(3); \\ q = -1, & \text{if } o(2,1). \end{cases}$$
 (8.44b)

从式(8.39),(8.41)可以求出($g_{\sigma_{\lambda}}$)的 逆矩阵($g^{\sigma_{\lambda}}$),($g^{\sigma_{\lambda}}$)即 式(7.12)中的反协变度规张量

$$(g^{\sigma\lambda}) = \begin{pmatrix} 1/2q & 0 & 0 \\ 0 & 1/2q & 0 \\ 0 & 0 & 1/2 \end{pmatrix}. \tag{8.45}$$

用式(7.13)可得相应的卡塞米尔算符为

$$C = 2g^{\sigma \lambda} X_{\sigma} X_{\lambda} = \frac{-2}{g} J_{-1} J_{+1} + J_{0} (J_{0} + 1)$$

$$= \begin{cases} J_{x}^{2} + J_{y}^{2} + J_{z}^{2}, & \text{ x} \mid o(3); \\ -J_{x}^{\prime 2} - J_{y}^{\prime 2} + J_{z}^{\prime 2}, & \text{ x} \mid o(2,1). \end{cases}$$

$$(8.46)$$

显然有

$$[C,J_0]=[C,J_{\pm 1}]=0.$$

式(8.46)中的因子 2 ,是为了和 o(3)中的角动量的平 方 $\int^2 -$ 致而引入的。

利用这个最简单的例子 o(3)和 o(2,1),说明用张量基方法求表示的基本思路。熟悉求 o(3)表示的读 者,对 此 自 然 更 易 理解。

o(3)和 o(2,1)的生成元可分成 J_0 和 $J_{\pm 1}$ 两部分。 J_0 构 成 一个阿贝尔子代数,根据定理 8.2 可以知道,它的不可约表示全是一维的。每一个不可约表示,对应 J_0 取一个固定本征 值。从 式 (8.44a) 可以看出, $J_{\pm 1}$ (或 $J_{\pm 1}$) 是使 J_0 本征值增加(或减少) 1的算符,也可以说 $J_{\pm 1}$ (或 $J_{\pm 1}$) 是 J_0 的不可约张量算符, $J_{\pm 1}$ ($J_{\pm 1}$) 对 应 J_0 本征值为 + 1(-1)的不可约表示。

选表示空间的基为C和 J_0 的共同本征矢 J^{Φ} x>,

$$C | \Phi x \rangle = \Phi | \Phi x \rangle,$$

$$J_0 | \Phi x \rangle = x | \Phi x \rangle,$$
(8.47)

由式(8.44a)可得,

$$J_0(J_{\pm 1} | \Phi x \rangle) = (x \pm 1)(J_{\pm 1} | \Phi x \rangle)_{\bullet}$$

从式(8144b)可得 J+1 和 J-1 矩阵元乘积满足的方程

$$\langle \Phi x | J_{+1} | \Phi x - 1 \rangle \langle \Phi x - 1 | J_{-1} | \Phi x \rangle =$$

= $\langle \Phi x + 1 | J_{+1} | \Phi x \rangle \langle \Phi x | J_{-1} | \Phi x + 1 \rangle - qx$, (8.48)

式(8.48)也就是从< $\phi x + 1|J_{+1}J_{-1}|\phi x + 1>$ 推出较 小 x 的 < $\phi x|J_{+1}J_{-1}|\phi x>$ 的递推关系。

利用递推关系式(8.48)可以得到 o(3)和 o(2,1)有下面 四 类表示:

(1) 有上界的表示

设有 ₹ 使

$$\langle \Phi | \tilde{x} + 1 | f_{+1} | \Phi | \tilde{x} \rangle = 0$$
,

则由式(8.48)可得

$$<\Phi \; \tilde{x} | J_{+1} | \Phi \; \tilde{x} - 1 > <\Phi \; \tilde{x} - 1 | J_{-1} | \Phi \; \tilde{x} > = -q \tilde{x} ,$$

 $<\Phi \; \tilde{x} - 1 | J_{+1} | \Phi \; \tilde{x} - 2 > <\Phi \; \tilde{x} - 2 | J_{-1} | \Phi \; \tilde{x} - 1 > = q(2\tilde{x} - 1) ,$

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

$$\langle \Phi \ \tilde{x} - i | J_{+1} | \Phi \ \tilde{x} - i - 1 \rangle \langle \Phi \ \tilde{x} - i - 1 | J_{-1} | \Phi \ \tilde{x} - i \rangle$$

= $-q(1+i)(\tilde{x} - i/2), \quad i = 0, 1, 2, \dots$

(8.49)

只要 $\bar{z} \neq 0, 1/2, 1, 3/2, \dots$, 表示是无限维的。

设此表示空间 J_0 有最大本征值 \hat{x} , 当 $\tilde{x} = \hat{x}$ 时,有 $\langle \Phi \tilde{x} | J_{-1} | \Phi \tilde{x} + 1 \rangle = \langle \Phi \hat{x} | J_{-1} | \Phi \hat{x} + 1 \rangle = 0$,

这是有上界的无限维不可约表示。因

~ x − 2

$$\langle \Phi \hat{x} | c | \Phi \hat{x} \rangle = \Phi = \hat{x}(\hat{x} + 1), \qquad (8.50)$$

故用 $D^{-}(\Phi)$ 标志此不可约表示。

图8.7的(a)给出不可约表示 $D^-(\Phi)$ 包含的 J_a 的本征值。

图 8.7

%-1

当此表示空间 J_0 沒有最大本征值,或 J_0 的最大本征 值 \hat{x} 不等于 \hat{x} ,即 $\hat{x} \neq \hat{x}$ 时,

$$\langle \Phi \tilde{x} | J_{-1} | \Phi \tilde{x} + 1 \rangle \neq 0$$
,

(2) 有下界的表示

设有象使

$$\langle \Phi x - 1 | J_{-1} | \Phi x \rangle = 0$$
,

则有

$$\begin{cases}
\langle \Phi \ x + 1 \ | \ J_{+1} \ | \ \Phi \ x \rangle \langle \Phi \ x \ | \ J_{-1} \ | \ \Phi \ x + 1 \rangle = qx, \\
\langle \Phi \ x + 2 \ | \ J_{+1} \ | \ \Phi \ x + 1 \rangle \langle \Phi \ x + 1 \ | \ J_{-1} \ | \ \Phi \ x + 2 \rangle = q(2x+1), \\
\langle \Phi \ x + i \ | \ J_{+1} \ | \ \Phi \ x + i - 1 \rangle \langle \Phi \ x + i - 1 \ | \ J_{-1} \ | \ \Phi \ x + i \rangle \\
= qi \left(x + \frac{i-1}{2} \right), \quad i = 1, 2, \cdots,
\end{cases}$$
(8.51)

当 $x \neq 0$, -1/2, -1, -3/2, ..., 时, 对应无限维表示。

设在此表示空间 \int_{a} 有最小本征值 x ,当x=x 时,有 、

$$\langle \Phi | x | J_{+1} | \Phi | x - 1 \rangle = \langle \Phi | x | J_{+1} | \Phi | x - 1 \rangle = 0$$

对应有下界的无限维不可约表示。而

$$\langle \Phi | x | C | \Phi | x \rangle = \Phi = -x(-x+1). \tag{8.52}$$

用 $D^*(\Phi)$ 标志此不可约表示,图8.8的(a)给出了 $D^*(\Phi)$ 包含的 J_0 的 本征值。

当此表示空间 J_0 无最小本征值,或 J_0 的最 小 本 征 值 $x \neq x$ 时,则

$$<\Phi x | I_{+1} | \Phi x - 1> \neq 0$$
,

对应于无限维的可约不完全可约表示。用图 8.8的(b)表示,其中 $|\Phi x\rangle$, $|\Phi x+1\rangle$, $|\Phi x+2\rangle$, …,是 J_0 , $J_{\pm 1}$ 的 - 个 不 变 子 空 间。而 $|\Phi x-1\rangle$ 可通过 $J_{\pm 1}$ 的作用变到这个不变子空间中。

(3) 有限维表示

如果表示空间中,J₀同时具有最大本征值 * 和最小本征值 *, 则有

$$\begin{cases}
 \langle \Phi | x - 1 | J_{-1} | \Phi | x \rangle = 0, \\
 \langle \Phi | x + 1 | J_{+1} | \Phi | x \rangle = 0,
\end{cases} (8.53)$$

也就是说, 若用J_1逐次作用在|Φ \$>上, 总存在正整数i, 使

$$\langle \Phi | \hat{x} - i - 1 | J_{-1} | \Phi | \hat{x} - i \rangle = 0$$
.

则由式(8.49)和(8.53)可得

$$\begin{cases} \hat{x} - i/2 = 0, \\ x = \hat{x} - i, \end{cases}$$

解出

$$\hat{x} = i/2, \quad \hat{x} = -i/2, \quad i = 0, 1, 2, \dots$$
 (8.54)

幷且

$$\langle \Phi \hat{x} | C | \Phi \hat{x} \rangle = \Phi = \hat{x}(\hat{x} + 1).$$

用 $D(\Phi)$ 标志此不可约表示。这与在量子力学中解角动量所得 结果一致。

$$\frac{J_{+1}}{\sum_{j=1}^{x-1} x} = \frac{x+1}{x} + 2 \qquad x$$
 (b)

图 8.8

(4) 上下都无界的表示 为便于讨论起见,可设

$$x = E_0 + 整数,$$

其中 E_0 是 x 的非整数部份, $-1/2 \le \text{Re} E_0 \le 1/2$ 。对 x 上下均 无界的无限维不可约表示用 $D(\Phi, E_0)$ 标志。 $D(\Phi, E_0)$ 包含 I_0 的 本征值用图8.9表示。

以上得到了 o(3) 和 o(2,1) 的四类表示。下 面 讨 论 厄 米 表示。按一般物理书的惯例,把李群元素与其李代数生成元之间的指数映射写为 $\exp(-i\beta^j x_j)$, β^j 是群参数。 x_j 是李代 数的生 成

元, 当李群的表示为酉表示时, 其李代数的表示为厄米表示。

图 8.9

设A是李代数 g 的表示,若对任意 $x \in g$,可以定 义 共 轭 运算, $x^+ \in g$,而且

$$^{*}A(x^{+}) = A(x)^{+},$$

则称A是g的厄米表示。

对实李代数 0(3)和 0(2,1), 有共轭运算

$$J_{x}^{+} = J_{x}, J_{y}^{+} = J_{y}, J_{z}^{+} = J_{z};$$

$$J_{x}^{+} = J_{x}^{\prime}, J_{y}^{\prime} = J_{y}^{\prime}, J_{z}^{\prime} = J_{z}^{\prime}.$$
(8.55)

也可把 0(3)和 0(2,1)的共轭运算统一写为

$$J_0^+ = J_0, \quad J_{\pm 1}^+ = -J_{\mp 1}.$$
 (8.55')

卡塞米尔算符的共轭为

$$C^+ = C_+$$

因此在 o(3) 和 o(2,1) 的厄米表示中, Φ 和 x 是实数,而且 满 足条件

$$\langle \Phi | x | J_{+1} | \Phi | x - 1 \rangle = \langle \Phi | x | - J_{-1}^* | \Phi | x - 1 \rangle$$

= $- \{ \langle \Phi | x - 1 | J_{-1} | \Phi | x \rangle \}^*$,

舠

$$-\langle \Phi x | J_{+1} J_{-1} | \Phi x \rangle = |\langle \Phi x - 1 | J_{-1} | \Phi x \rangle|^{2} \geqslant 0. (8.56)$$

式(8,56)可用來判断一个表示是否厄米。下面分别讨论上面四类表示是否厄米。

(1)
$$D^{-}(\Phi)$$

由式(8.49)得表示厄米条件为

$$|\langle \Phi | \hat{x} - i - 1 | J_{-1} | \Phi | \hat{x} - i \rangle|^2 = q(1+i) \left(\hat{x} - \frac{i}{2} \right) \geqslant 0$$
 (8.57)

$$(i = 0, 1, 2, \dots)$$

注意到了可以不断增加,因此对 o(3)来说,q=1,不能满足厄米条件。因此 $D^-(\Phi)$ 不是 o(3) 的厄米表示。而 o(2,1),q=-1,当 o(2,1),可以满足厄米条件。因此 $D^-(\Phi)$ 在 o(2,1) 的厄米表示。

(2) $D^{+}(\Phi)$

由式(8.51)得表示厄米的条件为

$$|\langle \Phi | x + i - 1 | J_{-1} | \Phi | x + i \rangle|^2 = -qi \left(x + \frac{i-1}{2} \right) \ge 0$$
 (8.58)

同样对 o(3)来说 q=1,不能满足厄 米 条 件,因 此 $D^+(\Phi)$ 不 是 o(3)的厄米表示。而 o(2,1), q=-1,当 x>0 时 可以满足厄米 条件。因此 $D^+(\Phi)$ 在 x>v 时,是 o(2,1)的厄米表示。

(3) $D(\Phi)$

已知

$$\Phi = \hat{x}(\hat{x} + 1), \hat{x} = j/2, \quad j = 0, 1, 2, \dots$$

由式(8.49)可得表示厄米的条件为

$$|\langle \Phi | \hat{x} - i - 1 | I_{-1} | \Phi \hat{x} - i \rangle|^2 = q(1+i)(\hat{x} - i/2) \geqslant 0$$

$$(i = 0, 1, \dots, j). \tag{8.59}$$

对 o(3), q=1, 满足厄米条件,故 $D(\Phi)$ 是 o(3)的厄米表示。而 o(2,1), q=-1, 不满足厄米条件,故 $D(\Phi)$ 不是 o(2,1)的厄米表示。

(4) $D(\Phi,E_0)$

由式(8,46),可得

$$\langle \Phi x | C | \Phi x \rangle = \Phi = \langle \Phi x | \left(-\frac{2}{q} J_{-1} J_{+1} + J_0 (J_0 + 1) \right) | \Phi x \rangle$$

= $\frac{1}{2} \langle q | \langle \Phi x | J_{-1} | \Phi x + 1 \rangle |^2 + x(x+1),$

所以厄米条件为

$$|\langle \Phi x | J_{-1} | \Phi x + 1 \rangle|^2 = \frac{q}{2} [\Phi - x(x+1)] \geqslant 0.$$
 (8.60)

在× 上下均无界时,o(3)的 q=1,不能满足厄米条件,故 $D(\Phi,E_0)$ 不是 o(3)的厄米表示。

对 o(2,1), q=-1, 如果 $D(\Phi,E_0)$ 是 o(2,1)的厄米表示, 应该有

$$x(x+1) - \Phi \geqslant 0,$$
 (8.61)

其中×和Φ是实数。为解不等式(8.61), 写

$$\Phi = (\varphi_1 + \mathrm{i}\varphi_2)(\varphi_1 + \mathrm{i}\varphi_2 + 1)\,,$$

 φ_1, φ_2 为实数。 Φ 为实数时只有两种可能,

$$\varphi_1 + i\varphi_2 = -\frac{1}{2} + i\varphi_2, \quad \Phi = -\frac{1}{4} - \varphi_2^2,$$

或

$$\varphi_1 + i\varphi_2 = \varphi_1, \quad \Phi = \varphi_1(\varphi_1 + 1).$$

下面分别讨论这两种情况。

(1) 连续主系列 $D_p(\Phi, E_0)$ 是

$$\varphi_1 + i \varphi_2 = -\frac{1}{2} + i \varphi_2$$
, $\Phi = -\frac{1}{4} - \varphi_2^2$

的情况。此时条件式(8.61)为

$$x(x+1) + \frac{1}{4} + \varphi_2^2 \ge 0$$
,

对任意 $-\infty \le \varphi_2 \le \infty$ 恒可满足,故 o(2,1)的 表 示 $D_p(\Phi,E_0)$ 是 厄米表示。

(2) 连续辅助系列 $D_s(\Phi, E_0)$ 是

$$\varphi_1 + i\varphi_2 = \varphi_1$$
, $\Phi = \varphi_1(\varphi_1 + 1)$

的情况。不等式(8.61)可写成

$$(x-\varphi_1)(x+\varphi_1+1) \ge 0.$$
 (8.62a)

另外,由式(8.44)与(8.46)知

$$C = -\frac{2}{q} J_{+1} J_{-1} + J_{0} (J_{0} - 1).$$

对 o(2,1), q=-1, 可得另一厄米条件为 $x(x-1)-\Phi \ge 0$.

代入 $\Phi = \varphi_1(\varphi_1 + 1)$, 得

$$(x+\varphi_1)(x-\varphi_1-1) \ge 0.$$
 (8.62b)

联立不等式(8.62a)和(8.62b)在

$$\begin{cases} x + \varphi_1 < 0, \\ x - \varphi_1 - 1 < 0, \\ x - \varphi_1 > 0, \\ x + \varphi_1 + 1 > 0 \end{cases}$$

时有解。这在

$$\begin{cases}
-\frac{1}{2} < x < \frac{1}{2}, \\
\frac{1}{2} \pm x > \left| \varphi_1 + \frac{1}{2} \right|
\end{cases}$$

时满足。将上式改写成一个条件,为

$$\frac{1}{2} - |E_0| > \left| \varphi_1 + \frac{1}{2} \right|. \tag{8.63}$$

满足条件式(8.63)的 $D_s(\Phi, E_0)$,是 o(2,1)的厄米表示,称为连续辅助系列。

. 从上面讨论看到,紧致李代数 o(3),只有有限维表示 $D(\Phi)$ 是厄米的,无限维表示都不是厄米的。而非紧致李代 数 o(2,1),沒有有限维厄米表示,但存在两个离散系列 $D^-(\Phi)$ 和 $D^+(\Phi)$,两个连续系列 $D_p(\Phi,E_0)$ 和 $D_s(\Phi,E_0)$ 是厄米表示。这完全符合定理8.3和8.4给出的结论。

8.6 0(4)的不可约表示

半单李代数 o(4)是复半单李代数 D_2 的 一个紧致实形。从式 (7.69)知 o(4)有 6 个生成 元 I_{ij} , $i \neq j$, i,j = 1,2,3,4。可 以 选 o(4)的张量基为下面两部分。

(1) o(3) 生成元。

$$J_0 = iI_{21},$$

$$J_{\pm 1} = -\sqrt{\frac{1}{2}}(I_{31} \pm iI_{32})$$
 (8.64a)

`(2) o(3)的不可约张量 T_q , $q=0,\pm 1$,

$$T_0 = -iI_{43},$$

$$T_{\pm 1} = -\sqrt{\frac{1}{2}}(I_{42} \mp iI_{41}).$$
 (8.64b)

在 0(4)这个紧致实形中, 厄米共轭运算为

$$J_0^+ = J_0, \quad J_{\pm 1}^+ = -J_{\mp 1}, T_0^+ = T_0, \quad T_{\pm 1}^+ = -T_{\mp 1},$$
 (8.65)

利用式(7.70)可得它们满足的对易关系为:

(1) 0(3) 对易关系

$$[J_0, J_{\pm 1}] = \pm J_{\pm 1},$$

$$[J_{\pm 1}, J_{\pm 1}] = -J_{0},$$
(8.66a)

(2) o(3)与Tg 间对易关系

$$[J_0, T_q] = qT_q$$
,

$$[J_{41}, T_q] = \mp \sqrt{\frac{1}{2}} \sqrt{(1 \mp q)(1 \pm q + 1)} T_{q_{\pm 1}}$$
 (8.66b)

(3) T_q 间对易关系

$$[T_0, T_{\pm 1}] = \pm J_{\pm 1},$$

$$[T_1, T_{\pm 1}] = -J_{0},$$
(8.66c)

式(8,66)给出 o(4)代数。

如果取

$$L_{0} = \frac{1}{2} (J_{0} + T_{0}),$$

$$L_{\pm 1} = \frac{1}{2} (J_{-1} + T_{\pm 1}),$$

$$K_{0} = \frac{1}{2} (J_{0} - T_{0}),$$

$$K_{\pm 1} = \frac{1}{2} (J_{\pm 1} - T_{\pm 1}).$$
(8.67)

由式(8.66)可以算出 L_q , K_q , 满足下面对易关系:

$$\begin{split} & [L_0, L_{\pm 1}] = \pm L_{\pm 1}, \\ & [L_{+1}, L_{-1}] = -L_0, \\ & [K_0, K_{\pm 1}] = \pm K_{\pm 1}, \\ & [K_{+1}, K_{-1}] = -K_0, \\ & [L_q, K_{q'}] = 0, \quad q, q' = 0, \pm 1, \end{split}$$
 (8.68)

式(8.68)说明 o(4)的生成元可写成两组独立的角动 量 L_q 和 K_q . 故

$$o(4) = o(3)_L \oplus o(3)_K$$

o(4)是半单的。 $o(3)_L$ 和 $o(3)_K$ 的卡塞米尔算符都是 o(4)的不变量,故 o(4)有两个卡塞米尔算符

$$\begin{split} L^2 &= -L_{+1}L_{-1} - L_{-1}L_{+1} + L_0^2 \;, \\ K^2 &= -K_{+1}K_{-1} - K_{-1}K_{+1} + K_0^2 \;, \end{split}$$

也可取卡塞米尔算符为

$$C_{20(4)} = L^2 + K^2,$$

 $C'_{20(4)} = L^2 - K^2.$

在式(8.66)中, 0(4)的嘉当子代数为

$$H_1 = J_0$$
, $H_2 = T_{0*}$ (8.69a)

或用含瓦累基写为

$$H_{a_1} = J_0 - T_0$$
, $H_{a_2} = J_0 + T_0$ (8.69b)

为求o(4)的不可约表示,我们直接利用最高权 定 理。设 所求的不可约表示最高权态为 $|\xi\rangle$,根据定理8.10,有

$$H_{\sigma_1}|\xi\rangle = \lambda_1|\xi\rangle,$$

$$H_{\sigma_2}|\xi\rangle = \lambda_2|\xi\rangle,$$
(8.70a)

其中λ1和λ2为非负整数。 如果

$$H_1 | \xi \rangle = J_0 | \xi \rangle = m_1 | \xi \rangle, H_2 | \xi \rangle = T_0 | \xi \rangle = m_2 | \xi \rangle,$$
 (8.70b)

则有

$$m_1 = \frac{1}{2}(\lambda_1 + \lambda_2), \quad m_2 = \frac{1}{2}(-\lambda_1 + \lambda_2).$$

故 $m_1 \ge m_2, m_1 \ge 0, m_2$ 可正可负; 幷且 m_1 和 m_2 同为整数或 同 为 半整数。与式(8,18)(8,19)结果 ·致。这样对 o(4)的有限 维 不可约表示,我们可用($\lambda_1\lambda_2$)或(m_1m_2)标志。

设 o(4)的不可约表示为 (m_1m_2) ,选表示空间的基 为 J^2 , J_0 的 共同本征矢为

$$\left|\begin{array}{c} m_1m_2\\ l\\ m \end{array}\right>$$

舠

其中 $m = -l, -l+1, \dots, l-1, l$.

由式(8.4)知 $J_1|\xi\rangle = 0$, $T_1|\xi\rangle = 0$,可以求得

$$|\xi\rangle = \begin{vmatrix} m_1 & m_2 \\ m_1 \\ m_1 \end{vmatrix}$$
 (8.72)

由式(8.66b)及(4.75b),可以看出 T_q 是o(3),的1秩不可约张量。在基

$$\begin{pmatrix} m_1 & m_2 \\ l \\ m \end{pmatrix}$$

下 I_q 的矩阵元已知,再利用维格纳-爱卡尔脱定理4.1,只要 求出 T_q 的约化矩阵元,就可由 o(3) 的 CG 系数得 到 T_q 的 矩 阵元。于是求 o(4)的不可约表示问题,就归结为求 T_q 的约化矩阵元问题。

定义约化矩阵元为

$$\begin{vmatrix}
m_1 & m_2 \\
l' & T_q & l \\
m' & m
\end{vmatrix}$$

$$= \langle l \ m \ 1 \ q | l' \ m' \rangle \times \left\langle \begin{array}{c} m_1 \ m_2 \\ l \\ m \end{array} \right| T \parallel \begin{array}{c} m_1 \ m_2 \\ l \\ \end{array} \right\rangle. (8.73)$$

由式(8,65)可以求出

利用对易关系式 $T_1T_{-1} - T_{-1}T_1 = -J_0$, 求在态

$$\left| \begin{array}{c|c} m_1 & m_2 \\ l-1 \\ l-1 \end{array} \right| \neq 1 \left| \begin{array}{c|c} m_1 & m_2 \\ l \\ l-1 \end{array} \right|$$

间的矩阵元, 可以得到齐次方程

$$\left\langle \frac{m_1 \ m_2}{l-1} \right\| T \left\| \frac{m_1 \ m_2}{l-1} \right\rangle = \sqrt{\frac{l+1}{l-1}} \left\langle \frac{m_1 \ m_2}{l} \right\| T \left\| \frac{m_1 \ m_2}{l} \right\rangle . (8.75a)$$

求在态 $\begin{pmatrix} m_1 & m_2 \\ l & D & l \\ l & l & l \end{pmatrix}$ 间的矩阵元,可以得到非齐次方程

$$\frac{2l-1}{2l+1} \left| \left\langle {m_1 \ m_2 \atop l-1} \right\| \ T \ \left\| {m_1 \ m_2 \atop l} \right\rangle \right|^2$$

$$= l - \frac{1}{l+1} \left| \left\langle {m_1 \ m_2 \atop l} \right| T \ \left| \left| {m_1 \ m_2 \atop l} \right\rangle \right|^2$$

$$+\frac{l}{l+1}\left|\left\langle {m_1 \ m_2 \atop l} \right\| T \left\| {m_1 \ m_2 \atop l+1} \right\rangle \right|^2. \tag{8.75b}$$

由式(8,72), (8,70)可以算出

$$\left\langle \frac{m_1 \ m_2}{m_1} \right\| T \left\| \frac{m_1 \ m_2}{m_1} \right\rangle = \frac{(m_1 + 1) m_2}{\sqrt{m_1 (m_1 + 1)}}.$$

反复用式(8.75a), 可以解出约化矩阵元

$$\left\langle \frac{m_1 \ m_2}{l} \right\| T \left\| \frac{m_1 \ m_2}{l} \right\rangle = \frac{(m_1 + 1)m_2}{\sqrt{l(l+1)}}.$$
 (8.76a)

由递推关系式(8.75b)及(8.76a)的结果,可得

$$\left| \left\langle \frac{m_1 \ m_2}{m_1 - 1} \right| \ T \ \left| \frac{m_1 \ m_2}{m_1} \right\rangle \right|^2 = \frac{(2m_1 + 1)(m_1 + m_2)(m_1 - m_2)}{m_1(2m_1 - 1)}.$$

反复应用式(8.75b)及(8.76a)的结果,可由数学归纳法证明

$$\left|\left\langle {m_1 \ m_2 \atop l-1} \right\| \ T \ \left\| \ {m_1 \ m_2 \atop l} \right\rangle \right|^{\frac{2}{2}}$$

$$=\frac{(m_1+l+1)(m_1-l+1)(m_2+l)(l-m_2)}{l(2l-1)}.$$
 (8.76b)

要保证式(8.76b)等号右边恒正,必须有

$$m_1 \geqslant l \geqslant |m_2|$$
.

经过仔细计算知道,可以取相因子使约化矩阵元为正实数,故

式(8.76)给出了 T_q 的全部约化矩阵元,这就解出了o(4)的有限维不可约表示 $(m_1 m_2)$ 。

8.7 su(3)的不可约表示

su(3)是单李代数 A_2 的一个紧致实形。取第七章例6中 A_2 生成元为实,就构造出 su(3)。也可用 迹为零的 3×3 厄米矩阵,按物理上用的惯例构造 su(3),这时 su(3)的基可以选为

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \lambda_{2} = \begin{pmatrix} 0 & -\mathbf{i} & 0 \\ \mathbf{i} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\
\lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \\
\lambda_{5} = \begin{pmatrix} 0 & 0 & -\mathbf{i} \\ 0 & 0 & 0 \\ \mathbf{i} & 0 & 0 \end{pmatrix}, \qquad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \\
\lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{i} \\ 0 & \mathbf{i} & 0 \end{pmatrix}, \qquad \lambda_{8} = \sqrt{\frac{1}{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

 $\lambda_j(j=1,2,\cdots,8)$ 间满足的对易关系,可以从矩阵间对易 关 系 求 得。容易看出 $\lambda_1,\lambda_2,\lambda_3$ 组成 su(3)的一个子代数 su(2)。

现选 su(3)的张量基为下面两部分:

(1) su(2)的基

$$J_{0} = \frac{1}{2} (E_{22} - E_{11}) = -\frac{1}{2} \lambda_{3},$$

$$J_{+1} = -\frac{1}{\sqrt{2}} E_{21} = -\frac{1}{2\sqrt{2}} (\lambda_{1} - i\lambda_{2}), \quad (8.78a)$$

$$J_{-1} = \frac{1}{\sqrt{2}} E_{12} = \frac{1}{2\sqrt{2}} (\lambda_{1} + i\lambda_{2})$$

和标量算符

$$Q = \frac{1}{3} [2E_{33} - E_{11} - E_{22}] = \frac{-1}{\sqrt{3}} \lambda_{8}.$$

(2) su(2)和Q的不可约张量算符

$$V_{-\frac{1}{2}} = E_{13} = \frac{1}{2} (\lambda_4 + i\lambda_5),$$

$$V_{\frac{1}{2}} = E_{23} = \frac{1}{2} (\lambda_6 + i\lambda_7),$$

$$T_{\frac{1}{2}} = -E_{31} = -\frac{1}{2} (\lambda_4 - i\lambda_5),$$

$$(8.78b)$$

$$T_{-\frac{1}{2}} = E_{32} = \frac{1}{2} (\lambda_6 - i\lambda_7).$$

su(3)生成元之间满足的对易关系,可以分成下面三个 部 分: (1) su(2)和Q间满足的对易关系

$$[J_{*},Q] = 0, \quad s = 0, \pm 1,$$

 $[J_{0},J_{\pm 1}] = \pm J_{\pm 1},$ (8.79a)
 $[J_{+1},J_{-1}] = -J_{0}.$

(2) V_q , T_q 和 su(2), Q 之间的对易关系

$$[J_0,V_q]=qV_q,$$

$$[J_{\pm 1}, V_q] = \mp \sqrt{\frac{1}{2}} (\frac{1}{2} \mp q) (\frac{1}{2} \pm q + 1) V_{q\pm 1},$$

$$[J_0, T_q] = qT_q,$$

$$[J_{\pm 1}, T_q] = \mp \sqrt{\frac{1}{2} \left(\frac{1}{2} \mp q\right) \left(\frac{1}{2} \pm q + 1\right)} T_{q \pm 1}, \tag{8.79b}$$

$$\lceil Q, V_{\alpha} \rceil = -V_{\alpha},$$

$$[Q, T_q] = T_q, \quad (q = \pm 1/2).$$

(3) V_q, T_q 间对易关系

$$[V_q, V_{q'}] = [T_q, T_{q'}] = 0, \quad q, q' = \pm 1/2,$$

$$[V_{\pm 1/2}, T_{\pm 1/2}] = \sqrt{2} J_{\pm 1},$$
(8.79c)

$$[V_{\pm 1/2}, T_{\mp 1/2}] = J_0 \mp \frac{3}{2}Q$$
.

式(8,79a)说明 J_s 和Q构成su(3)的子代数su(2)⊕u(1), J_s 是o(3) $\simeq su(2)$ 的生成元,Q是u(1)的生成元。(8,79b)说明 V_q 和 T_q 是o(3)的1/2秩不可约张量, V_q 和 T_q 分别使Q的本征 值 加或减 1。

定义耦合张量为

$$(VT)_{s}^{r} = \sum_{q,q'} \left\langle \frac{1}{2} q \frac{1}{2} q' \middle| r \right\rangle V_{q} T_{q'},$$

其中 $\left(\frac{1}{2}q \, \frac{1}{2}q' \, \middle| \, r \, s \right)$ 是 o(3)的 CG 系数。则对易关系式 (8.79c)

可以写成耦合张量形式

$$(VT)_{s}^{1} - (TV)_{s}^{1} = \sqrt{2}J_{s}, \quad s = 0, \pm 1,$$

$$(VT)_{0}^{0} + (TV)_{0}^{0} = \frac{-3}{\sqrt{2}}Q.$$
(8.79c')

从式(8.79)及卡塞米尔算符定义,可以算出 su(3)的 卡塞米

尔算符为

$$C_2 = \frac{1}{3} \left\{ J^2 + \frac{3}{4} Q(Q+2) + V_{\frac{1}{2}} T_{-\frac{1}{2}} - V_{-\frac{1}{2}} T_{\frac{1}{2}} \right\}, (8.80)$$

其中 $J^2 = -J_{+1}J_{-1} - J_{-1}J_{+1} + J_{0}^2$.

对 su(3)实李代数, 厄米共轭运算为

$$Q_{\perp}^{+} \approx Q, \quad J_{0}^{+} = J_{0},$$

$$(J_{\pm 1})^{+} = -J_{\mp 1},$$

$$(V_{\pm 1/2})^{+} = \pm T_{\mp 1/2},$$

$$(T_{\pm 1/2})^{+} \approx \mp V_{\mp 1/2}.$$
(8.81)

利用 V_q , T_q 是 o(3)的1/2秩不可约张量性质,选 su(3)有限维表示空间的基为 $\{c \land K\}, \{c \land K\}, \{c \land K\}\}$ 是Q, J^2 , J_0 的共同本征矢。

$$Q \mid \varepsilon \land K \rangle = \varepsilon \mid \varepsilon \land K \rangle,$$

$$J^{2} \mid \varepsilon \land K \rangle = \Lambda(\Lambda + 1) \mid \varepsilon \land K \rangle, \qquad (8.82)$$

$$J_{0} \mid \varepsilon \land K \rangle = \kappa \mid \varepsilon \land K \rangle.$$

这时 / ... 的矩阵元是已知的,

$$\langle \varepsilon' \Lambda' K' | J_{\pm 1} | \varepsilon \Lambda K \rangle$$

$$=\mp\delta_{A'}\delta_{A'}\delta_{K'}K_{\pm 1}\times\sqrt{\frac{1}{2}(\Lambda\mp K)(\Lambda\pm K+1)}.(8.83)$$

而 V_q , T_q 的矩阵元,根据定理4.1,可以用CG 系数和约化矩阵元表示出来,定义约化矩阵元为

$$\langle \varepsilon' \Lambda' K' | V_q | \varepsilon \Lambda K \rangle$$

$$= \delta_{s',s-1} \left\langle \Lambda K \frac{1}{2} q | \Lambda' K' \right\rangle \times \langle \varepsilon - 1 \Lambda' \| V \| \varepsilon \Lambda \rangle,$$

$$\langle \varepsilon' \Lambda' K' | T_q | \varepsilon \Lambda K \rangle$$

$$= \delta_{s',s+1} \left\langle \Lambda K \frac{1}{2} q | \Lambda' K' \right\rangle \times \langle \varepsilon + 1 \Lambda' \| T \| \varepsilon \Lambda \rangle.$$
(8.84)

只要求出T和V的约化矩阵元,由式(8.84)即可得到T和V的矩阵元。所以求su(3)的表示问题,就变成了求T和V的 约化矩阵

元的问题。这是张量基方法关键之所在。

由式(8.81)和(8.84),利用 o(3)CG系数的对称性式 (4.68),可以得到

$$\langle \varepsilon A \| V \| \varepsilon + 1 A' \rangle = (-)^{A' - A + \frac{1}{2}} \sqrt{\frac{2A' + 1}{2A + 1}} \langle \varepsilon + 1 A' \| T \| \varepsilon A \rangle^*.$$

$$(8.85)$$

至此,我们已经利用了对易关系式(8.79a)和(8.79b)。再利用式(8.79c)和(8.85),可得约化矩阵元满足方程

$$-2\Lambda \left| \langle \varepsilon + 1 \Lambda + \frac{1}{2} \| T \| \varepsilon \Lambda \rangle \right|^{2} + 2\Lambda \left| \langle \varepsilon + 1 \Lambda - \frac{1}{2} \| T \| \varepsilon \Lambda \rangle \right|^{2}$$

$$-\frac{\Lambda(2\Lambda + 1)}{\Lambda + 1} \left| \langle \varepsilon \Lambda \| T \| \varepsilon - 1 \Lambda + \frac{1}{2} \rangle \right|^{2}$$

$$+ (2\Lambda + 1) \left| \langle \varepsilon \Lambda \| T \| \varepsilon - 1 \Lambda - \frac{1}{2} \rangle \right|^{2}$$

$$= 2\Lambda(2\Lambda + 1),$$

$$2(\Lambda + 1) \left| \langle \varepsilon + 1 \Lambda + \frac{1}{2} \| T \| \varepsilon \Lambda \rangle \right|^{2}$$

$$+ 2\Lambda \left| \langle \varepsilon + 1 \Lambda - \frac{1}{2} \| T \| \varepsilon \Lambda \rangle \right|^{2}$$

$$- (2\Lambda + 1) \left| \langle \varepsilon \Lambda \| T \| \varepsilon - 1 \Lambda + \frac{1}{2} \rangle \right|^{2} - (2\Lambda + 1)$$

$$\times \left| \langle \varepsilon \Lambda \| T \| \varepsilon - 1 \Lambda - \frac{1}{2} \rangle \right|^{2}$$

$$= -3\varepsilon(2\Lambda + 1). \tag{8.86}$$

由式(8.86)可以算出约化矩阵元满足递推关系

$$\left|\left\langle \varepsilon \Lambda \| T \| \varepsilon - 1 \Lambda + \frac{1}{2} \right\rangle \right|^{2}$$

$$= \frac{2(\Lambda+1)}{(2\Lambda+1)^2} \left| \left\langle \varepsilon + 1 \Lambda + \frac{1}{2} \| T \| \varepsilon \Lambda \right\rangle \right|^2$$

$$+ \frac{4\Lambda(\Lambda+1)}{(2\Lambda+1)^2} \left| \left\langle \varepsilon + 1 \Lambda - \frac{1}{2} \| T \| \varepsilon \Lambda \right\rangle \right|^2$$

$$- \frac{(2\Lambda-3\varepsilon)}{2\Lambda+1} (\Lambda+1).$$

$$\left| \left\langle \varepsilon \Lambda \| T \| \varepsilon - 1 \Lambda - \frac{1}{2} \right\rangle \right|^2$$

$$= \frac{4\Lambda(\Lambda+1)}{(2\Lambda+1)^2} \left| \left\langle \varepsilon + 1 \Lambda + \frac{1}{2} \| T \| \varepsilon \Lambda \right\rangle \right|^2$$

$$- \frac{2\Lambda}{(2\Lambda+1)^2} \left| \left\langle \varepsilon + 1 \Lambda - \frac{1}{2} \| T \| \varepsilon \Lambda \right\rangle \right|^2$$

由最高权定理,知 su(3) 的任一个有限维不可约表示,表示 空间中必有唯一的向量 $\{\epsilon\Lambda_0\Lambda_0\}$,其 ϵ 具有最大值 ℓ , Λ_0 是 与其相应的 Λ 值。自然

 $+\frac{\Lambda}{(2\Lambda+1)}(3\varepsilon+2\Lambda+2)$

$$\left\langle \hat{e} + 1 \Lambda_0 \pm \frac{1}{2} \| T \| \hat{e} \Lambda_0 \right\rangle = 0,$$
 (8.88)

从式(8.88), 利用递推关系式(8.87),可得。

$$\left| \left\langle \hat{\varepsilon} A_0 \| T \| \hat{\varepsilon} - 1 A_0 + \frac{1}{2} \right\rangle \right|^2 = \frac{(3\hat{e} - 2A_0)}{2A_0 + 1} (A_0 + 1),$$

$$\left| \left\langle \hat{\varepsilon} A_0 \| T \| \hat{\varepsilon} - 1 A_0 - \frac{1}{2} \right\rangle \right|^2 = \frac{A_0}{2A_0 + 1} (3\hat{e} + 2A_0 + 2).$$

再利用一次递推关系,得

(8.87)

$$\left| \left\langle \hat{e} - 1 \Lambda_0 - \frac{1}{2} \| T \| \hat{e} - 2 \Lambda_0 - 1 \right\rangle \right|^2 = \frac{1}{2\Lambda_0} (2\Lambda_0 - 1) (3\hat{e} + 2\Lambda_0),$$

$$\left| \left\langle \hat{e} - 1 \Lambda_0 - \frac{1}{2} \| T \| \hat{e} - 2 \Lambda_0 \right\rangle \right|^2 = \frac{1}{2\Lambda_0} (\Lambda_0 + 1) (3\hat{e} - 2\Lambda_0),$$

利用数学归纳法,可以证明

$$\left| \left\langle \hat{\varepsilon} - n \Lambda_0 + \frac{n}{2} - i \| T \| \hat{\varepsilon} - n - 1 \Lambda_0 + \frac{n+1}{2} - i \right\rangle \right|^2$$

$$= \frac{(1+n-i)(2\Lambda_0 + 2 + n - i)(3\hat{\varepsilon} - 2\Lambda_0 - 2n + 2i)}{2(2\Lambda_0 + n - 2i + 1)},$$

$$\left| \left\langle \hat{\varepsilon} - n \Lambda_0 + \frac{n}{2} - i \| T \| \hat{\varepsilon} - n - 1 \Lambda_0 + \frac{n-1}{2} - i \right\rangle \right|^2$$

$$= \frac{1}{2(2\Lambda_0 + n - 2i + 1)} (i+1)(2\Lambda_0 - i)(3\hat{\varepsilon} + 2\Lambda_0 + 2 - 2i)$$

$$(i \le n, \quad i, n = 0, 1, 2, \cdots).$$
(8.89)

由o(3)的有限维不可约表示知 A_0 为整数或半整数,设

$$\Lambda_0 = \mu/2$$
, $\mu = 0, 1, 2 \dots$, (8.90a)

要求 su(3)的有限维不可约表示,必存在 n' 和 i' 使约化矩阵 元 为 0 ,即不能无限递推,由式(8:89)得

$$3\hat{\epsilon} = 2\Lambda_0 + 2(n' - i') = \mu + 2\lambda,$$
 (8.90b)

其中 $\lambda = n' - i'$,是非负整数。 于是可以用(ℓA_0)标志 su(3)的不可约表示,也可以用($\lambda \mu$)标志 su(3) 的不可约表示, λ , μ 是非负整数,正好是例1 中 的 λ , μ 。

表8.1给出 su(3)不可约表示(λ μ)所包含 的 ε 和 Λ 值, 对每一个 Λ , K 可以取 $-\Lambda$, $-\Lambda+1$, \dots , $\Lambda-1$, Λ .

由表8.1可以看出 ε 的最小值 为 $-(\lambda+2\mu)/3$,相 应 的 Λ 为 $\lambda/2$,从表8.1还可以数出不可约表示($\lambda\mu$)的维数为

$$d^{(\lambda \mu)} = \frac{1}{2}(1+\lambda)(1+\mu)(\lambda+\mu+2),$$

与式(8.23)结果一致。

表8.7 su(3)不可约表示 $(\lambda \mu)$ 包含的 sA

e			Δ	<u></u> ·
e = (2 + + +)/3				$A_0 = \mu/2$
-1 i			$A_0 - 1/2$	$A_0 + 1/2$
ê - 2		$A_0 = 1$	A 0	$A_0 + 1$
··, ··· '			***	+1 * +4 *
ε ~ μ	0	,.,		
	•••		•••	******
ê x	***		- 1	$\hat{A} = A_0 + \lambda/2$
2-1-1			$\hat{A} = 1/2$	

$\hat{\epsilon} = (\lambda + \mu)$	A/2			

在不可约表示(A µ)中, 卡塞米尔算符式(8.80)取值为

$$C_{\frac{(\lambda \mu)}{2}} = \frac{1}{9} \{ (\lambda + 3)(\lambda + \mu) + \mu^2 \};$$

式(8.89)决定约化矩阵元相差一相因子,经过计算,可以选择< $\epsilon A \| T \| \epsilon - 1 A' >$ 的相因子为正实数。这样就解决 了 求 su(3)有限维不可约表示的问题。

例8 su(3)的($\lambda \mu$) = (00)不可约表示,对应 ℓ = 0, A_0 = 0的一维表示,表示空间只有一个矢量[000]。

 $(\lambda \mu) = (01)$ 不可约表示,对应 $\theta = 1/3$, $A_0 = 1/2$ 。由式(8.89)可得

$$\left\langle \begin{pmatrix} 0 & 1 \\ \frac{1}{3} & \frac{1}{2} \end{pmatrix} \middle| T \middle| \begin{pmatrix} 0 & 1 \\ -\frac{2}{3} & 0 \end{pmatrix} = 1,$$

其余约化矩阵元为零。故在(01)的不可约表示空间,有

$$\left|\frac{1}{3}, \frac{1}{2}, \frac{1}{2}\right\rangle$$
, $\left|\frac{1}{3}, \frac{1}{2}, -\frac{1}{2}\right\rangle$ $\mathbb{R}\left|-\frac{2}{3}, 0, 0\right\rangle$

三个矢量; 是 su(3)的三维 表示。

 $(\lambda \mu) = (1\ 0)$ 不可约表示,对应 $\ell = 2/3$, $\Lambda_0 = 0$ 。由式 (8.89) 可得不为零的约化矩阵元为

$$\left| \begin{pmatrix} (1 & 0) \\ \frac{2}{3} & 0 \end{pmatrix} \right| T_1 \left| \begin{array}{cc} (1 & 0) \\ -\frac{1}{3} & \frac{1}{2} \end{array} \right| = \sqrt{2},$$

故在(1 0)不可约表示空间,有 $\left|\frac{2}{3}\right|$ 0 0 $\left|\frac{1}{3}\right|$ $\left|\frac{1}{2}\right|$ $\left|\frac{1}{3}\right|$ $\left|\frac{1}{3$

 $(\lambda\mu)=(1\ 1)$ 不可约表示,对 应 $\ell=1$, $\Lambda_0=\frac{1}{2}$ 。由式(8.89)可得不为零的约化矩阵元为

故在(1 1)不可约表示空间,有 $\left|1\frac{1}{2}\frac{1}{2}\right>$, $\left|1\frac{1}{2}-\frac{1}{2}\right>$, $\left|0\ 1\ 1>$,

$$|0\ 1\ 0>, |0\ 1\ -1>, |0\ 0\ 0>, |-1\ \frac{1}{2}\ \frac{1}{2}>, |-1\ \frac{1}{2}\ -\frac{1}{2}>8$$

矢量, 是 su(3)的 8 维表示。(1 1)就是 su(3)的伴随表示。

8.8 su(3)的 CG系数

从4.5节的讨论知道,在两个角动量 J_1 和 J_2 的耦合系统中, $J=J_1+J_2$,不同基矢 $[j_1j_2j_1m\rangle$ 和 $[j_1m_1j_2m_2\rangle=|j_1m_1\rangle|j_2m_2\rangle$ 的幺正变换矩阵元 $\langle j_1j_2j_m|j_1m_1j_2m_2\rangle$,正是 转 动 群 so(3) 的 CG 系数。类似地,在两个 $SU(3)_1$ 和 $SU(3)_2$ 的耦合 系 统 中, $SU(3)_1\otimes SU(3)_2\supset SU(3)$, SU(3)是耦合的三维特 殊 酉 群。设 J_{is},Q_i,V_{iq},T_{iq} ,当 i=1,2 时分别为 $SU(3)_1$, $SU(3)_2$ 的 生 成元,则 SU(3)的生成元为

$$J_{s} = J_{1s} + J_{2s}, \qquad s = 0, \pm 1,$$
 $Q = Q_{1} + Q_{2},$
 $T_{q} = T_{1q} + T_{2q}, \qquad q = \pm \frac{1}{2},$
 $V_{q} = V_{1q} + V_{2q},$

$$(8.91)$$

设 $(\lambda_i \mu_i)$ 和 $(\lambda \mu)$ 分别是 $su(3)_i$ 和 su(3) 的不可约表示,相应表示空间的基矢为

则耦合系统基矢

间由 幺正变换联系。

$$\left|\frac{(\lambda_1\mu_1)(\lambda_2\mu_2)\,\pi(\lambda\,\mu)}{\varepsilon\,\Lambda\,K}\right\rangle$$

$$=\sum_{\substack{\epsilon_1,A_1,K_1\\\epsilon_2,A_2,K_2}} \left\langle \begin{matrix} (\lambda_1 \ \mu_1) & (\lambda_2 \ \mu_2) \\ \varepsilon_1 \ A_1 \ K_1 & \varepsilon_2 \ A_2 \ K_2 \end{matrix} \middle| \begin{matrix} n(\lambda \ \mu) \\ \varepsilon \ A \ K \end{matrix} \right\rangle \middle| \begin{matrix} (\lambda_1 \ \mu_1) \\ \varepsilon_1 \ A_1 \ K_1 \end{matrix} \middle\rangle \middle| \begin{matrix} (\lambda_2 \ \mu_2) \\ \varepsilon_2 A_2 K_2 \end{matrix} \middle\rangle$$

$$=\sum_{\substack{\ell=1,A_1,K_1\\\varepsilon_2,A_2,K_2}} \left\langle \begin{pmatrix} (\lambda_1 \mu_1) & (\lambda_2 \mu_2) \\ \varepsilon_1 A_1 & \varepsilon_2 A_2 \end{pmatrix} \middle| \frac{n(\lambda \mu)}{\varepsilon A} \right\rangle \langle A_1 K_1 A_2 K_2 | A K \rangle$$

$$\times \left| \frac{(\lambda_1^* \mu_1)}{\varepsilon_1 \Lambda_1 K_1} \right\rangle \frac{(\lambda_2 \mu_2)}{\varepsilon_2 \Lambda_2 K_2} \right\rangle, \tag{8.92}$$

其中 $\langle A_1 K_1 A_2 K_2 | A K \rangle$ 是 $SO(3)_1 \otimes SO(3)_2 \supset SO(3)$ 的 CG 系数, $SO(3)_i \subset SU(3)_i$, $SO(3) \subset SU(3)$ 。 系数

$$\left\langle \frac{(\lambda_1 \ \mu_1)}{\varepsilon_1 \ \Lambda_1 K_1} \ \frac{(\lambda_2 \ \mu_2)}{\varepsilon_2 \ \Lambda_2 \ K_2} \Big| \frac{n(\lambda \ \mu)}{\varepsilon \ \Lambda \ K} \right\rangle .$$

称为SU(3)群的CG系数;

$$\left\langle \frac{(\lambda_1 \ \mu_1)}{\varepsilon_1 \ \Lambda_1} \ \frac{(\lambda_2 \ \mu_2)}{\varepsilon_2 \ \Lambda_2} \left| \frac{n(\lambda \ \mu)}{\varepsilon \ \Lambda} \right\rangle$$

称为 SU(3) 群的约化标量因子,它等于 SU(3) 的 CG 系 数 除 以 SO(3) 的 CG 系数。 n 标志 $(\lambda \mu)$ 可能出现的次数。

根据定义,SU(3)的 CG 系数满足正交归一关系

$$\sum_{\substack{\epsilon_1,\Lambda_1,K_1\\\epsilon_2,\Lambda_2,K_2}} \left\langle \begin{smallmatrix} (\lambda_1 \ \mu_1) & (\lambda_2 \ \mu_2) \\ \varepsilon_1 \ \Lambda_1 K_1 \ \varepsilon_2 \ \Lambda_2 \ K_2 \end{smallmatrix} \right| \frac{n(\lambda \ \mu)}{\varepsilon \ \Lambda \ K} \left\langle \begin{smallmatrix} \gamma' \ (\lambda' \ \mu') \\ \varepsilon' \ \Lambda' \ K' \end{smallmatrix} \right| \frac{(\lambda_1 \ \mu_1) \ (\lambda_2 \ \mu_2)}{\varepsilon_1 \ \Lambda_1 \ K_1 \varepsilon_2 \Lambda_2 K_2} \right\rangle$$

$$= \delta_{(\lambda \mu)(\lambda' \mu')} \delta_{nn'} \delta_{\sigma s'} \delta_{AA'} \delta_{KK'}. \tag{8.93a}$$

$$= \delta_{e_1 e'_1} \delta_{e_2 e'_2} \delta_{A_1 A'_1} \delta_{A_2 A'_2} \delta_{K_1 K'_1} \delta_{K_2 K'_2}. \tag{8.93b}$$

用式(4.70)SO(5)CG 系数的正交归一关系,可以从式(8.93)求出约化标量因子满足的正交归一关系

$$\sum_{\epsilon_{1},A_{1},\epsilon_{2},A_{2}} \left\langle \frac{(\lambda_{1}\,\mu_{1})\,(\lambda_{2}\,\mu_{2})}{\varepsilon_{1}\,A_{1}-\varepsilon_{2}\,A_{2}} \right| \frac{n'\,(\lambda'\,\mu')}{\varepsilon'\,\Lambda'} \left. \left\langle \frac{n(\lambda\,\mu)}{\varepsilon\,\Lambda} \right| \frac{(\lambda_{1}\,\mu_{1})\,(\lambda_{2}\,\mu_{2})}{\varepsilon_{1}\,A_{1}-\varepsilon_{2}\,A_{2}} \right. \right\rangle$$

$$=\delta_{nn'}\delta_{(\lambda^{\mu})(\lambda',\mu')}$$
,

$$\sum_{P(\lambda,\mu)} \left\langle \frac{(\lambda_{1} \mu_{1}) (\lambda_{2} \mu_{2})}{\varepsilon_{1} \Lambda_{1} - \varepsilon_{2} \Lambda_{2}} \right| \frac{n(\lambda,\mu)}{\varepsilon_{1} \Lambda} \right\rangle \left\langle \frac{n(\lambda,\mu)}{\varepsilon_{1} \Lambda_{1}} \right| \frac{(\lambda_{1} \mu_{1})(\lambda_{1} \mu_{2})}{\varepsilon_{1} \Lambda_{1}' \varepsilon_{2}' \Lambda_{2}'} \right\rangle$$

$$= \delta_{\varepsilon_{1}',\varepsilon_{1}} \delta_{\varepsilon_{2}',\varepsilon_{2}} \delta_{\Lambda_{1}',\Lambda_{1}} \delta_{\Lambda_{2}',\Lambda_{2}}. \qquad (8.94b)$$
根据式(8.91), 求 $T_{q} = T_{1q} + T_{2q}$ 在态
$$\left\langle \frac{(\lambda_{1} \mu_{1})(\lambda_{2} \mu_{2}) (\lambda',\mu')}{\varepsilon' \Lambda' K'} \right| \mathcal{H} \left| \frac{(\lambda_{1} \mu_{1})(\lambda_{2} \mu_{2})(\lambda,\mu)}{\varepsilon \Lambda K} \right\rangle$$

· 间矩阵元, 利用式(8,84)和(8,9?), 可得到

同刊中 元、利用 氏(8,84) 相(8,95)、中 刊 記

$$\delta_{(\lambda',\mu',)(\lambda,\mu)}\delta_{\varepsilon',\varepsilon+1}\left\langle A K \frac{1}{2} q \middle| A' K' \right\rangle \left\langle \begin{pmatrix} \lambda & \mu \\ \varepsilon + 1A' \end{pmatrix} \middle| T \middle\| \begin{pmatrix} \lambda & \mu \\ \varepsilon & A \end{pmatrix} \right\rangle$$

$$= \sum_{\varepsilon'_1,A'_1,K'_1} \sum_{\varepsilon_1,A_1,K_1} \sum_{\varepsilon_2,A_2,K_2} \left\langle \begin{pmatrix} \lambda' & \mu' \\ \varepsilon' & A' \end{pmatrix} \middle| \begin{pmatrix} \lambda_1 & \mu_1 \end{pmatrix} \begin{pmatrix} \lambda_2 & \mu_2 \\ \varepsilon' & A' \end{pmatrix} \middle| \frac{(\lambda_1 & \mu_1)}{\varepsilon_1} \begin{pmatrix} \lambda_1 & \mu_1 \\ \varepsilon_1 & A_1 \end{pmatrix} \left\langle \begin{pmatrix} \lambda_1 & \mu_1 \\ \varepsilon_1 & A_1 \end{pmatrix} \middle| \frac{(\lambda_1 & \mu_1)}{\varepsilon_1} \right\rangle \left\langle \begin{pmatrix} \lambda_1 & \mu_1 \\ \varepsilon_1 & A_1 \end{pmatrix} \middle| \frac{(\lambda_1 & \mu_1)}{\varepsilon_1} \right\rangle \delta_{\varepsilon'_1,\varepsilon_1+1}$$

$$\times \langle A'_1 & K'_1 & A_2 & K_2 \middle| A' K' \rangle \langle A_1 & K_1 & A_2 & K_2 \middle| A & K \rangle$$

$$\times \left\langle A_1 & K_1 & \frac{1}{2} q \middle| A'_1 & K'_1 \right\rangle$$

$$+ \sum_{\varepsilon'_2,A'_2,K'_2} \sum_{\varepsilon_2,A_2,K_2} \sum_{\varepsilon_1,A_1,K_1} \left\langle \begin{pmatrix} \lambda' & \mu' \\ \varepsilon' & A' \end{pmatrix} \middle| \begin{pmatrix} \lambda_1 & \mu_1 \end{pmatrix} \begin{pmatrix} \lambda_2 & \mu_2 \\ \varepsilon_1 & A_1 & \varepsilon'_2 & A'_2 \end{pmatrix} \right\rangle$$

$$\times \left\langle \begin{pmatrix} \lambda_1 & \mu_1 \end{pmatrix} & (\lambda_2 & \mu_2) \\ \varepsilon_1 & A_1 & \varepsilon_2 & A_2 \end{pmatrix} \middle| \begin{pmatrix} \lambda & \mu \\ \varepsilon & A \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} \lambda_2 & \mu_2 \\ \varepsilon_2 & A_1 \end{pmatrix} \middle| \begin{pmatrix} \lambda_2 & \mu_2 \\ \varepsilon_2 & A_2 \end{pmatrix} \right\rangle \delta_{\varepsilon'_2} \varepsilon_{2+1}$$

$$\times \langle A_1 & K_1 & A'_2 & K'_2 \middle| A' & K' \rangle \langle A_1 & K_1 & A_2 & K_2 \middle| A & K \rangle$$

$$\times \left\langle A_2 & K_2 & \frac{1}{2} & q \middle| A'_2 & K'_2 \right\rangle. \tag{8.95}$$

利用三个角动量的重耦合系数(归一化的拉卡(Racah)系数) $<(j_1 j_2)j_{12} j_3 j_1 j_1 (j_2 j_3)j_{23} j>$

$$= \sum_{\substack{m_1, m_2, m_3, m_{12}, m_{23}}} \langle j_1 m_1 j_2 m_2 | j_{12} m_{12} \rangle \langle j_{12} m_{12} j_3 m_3 | j m \rangle$$

 $\times \langle j_2 m_2 j_3 m_3 | j_{23} m_{23} \rangle \langle j_1 m_1 j_{23} m_{23} | j m \rangle$,

有

 $<(j_1 j_2)j_{12} j_3 j | j_1(j_2 j_3)j_{23} j>< j_1 m'_1 j_{23} m'_2 | j m>$

$$= \sum_{m_2, m_3, m_{12}} \langle j_1 \, m_1' \, j_2 \, m_2 \, | \, j_{12} \, m_{12} \rangle \langle j_{12} \, m_{12} \, j_3 \, m_3 \, | \, j \, m \rangle$$

 $\times \langle j_2 m_2 j_3 m_3 | j_{23} m_{23} \rangle$.

幷把拉卡系数用 6-i 系数表示出来, 得

 $\langle (j_1 j_2) j_{12} j_3 j | j_1 (j_2 j_3) j_{23} j \rangle$

$$= (-)^{j_1+j_2+j_3+j} \sqrt{(2j_{12}+1)(2j_{23}+1)} \begin{Bmatrix} j_1 & j_2 & j_{12} \\ j_3 & j & j_{23} \end{Bmatrix}.$$

6-j 系数表见参考文献[8]。

还可以把式(8.95)化为

$$\delta_{s-s+1}\delta_{(\lambda-\mu-)-(\lambda\mu)}\left\langle \begin{array}{cccc} (\lambda & \mu) \\ \varepsilon+1 & \Lambda' \end{array} \right| T \left| \begin{array}{ccccc} (\lambda & \mu) \\ \varepsilon & \Lambda \end{array} \right\rangle$$

$$=\sum_{A_{1}^{\prime},\epsilon_{1},A_{1},\epsilon_{2},A_{2}} \left\langle \begin{array}{ccc} (\lambda^{\prime}\mu^{\prime}) & \left| \begin{pmatrix} \lambda_{1} & \mu_{1} \end{pmatrix} & (\lambda_{2} & \mu_{2}) \\ \varepsilon^{\prime} & A^{\prime} & \left| \epsilon_{1} + 1 & A_{1}^{\prime} & \epsilon_{2} & A_{2} \end{array} \right\rangle \left\langle \begin{array}{ccc} (\lambda_{1} & \mu_{1}) & (\lambda_{2} & \mu_{2}) \\ \epsilon_{1} & A_{1} & \epsilon_{2} & A_{2} \end{array} \right| \left\langle \begin{array}{ccc} (\lambda\mu) \\ \varepsilon & A \end{array} \right\rangle_{L}$$

$$\times (-)^{A_{2}+A_{1}^{\prime}+1/2+A} \sqrt{(2\Lambda+1)(2\Lambda_{1}^{\prime}+1)} \begin{Bmatrix} 1/2 & A_{1} & A_{1}^{\prime} \\ A_{2} & A^{\prime} & A \end{Bmatrix}$$

$$\times \left\langle \left\langle \left\langle \left\langle \left\langle \lambda_{1} \right. \mu_{1} \right\rangle \right\rangle \right| \mathcal{T}_{i} \right| \left\langle \left\langle \left\langle \left\langle \lambda_{1} \right. \mu_{1} \right\rangle \right\rangle \right\rangle$$

$$+\sum_{\stackrel{A_2'}{\epsilon},\stackrel{\epsilon}{\epsilon}_1,\stackrel{A_1}{\epsilon},\stackrel{\epsilon}{\epsilon}_2,\stackrel{A_2}{\epsilon}} \left\langle \stackrel{(\lambda'\mu')}{\epsilon'} \left| \stackrel{(\lambda_1}{\epsilon_1} \stackrel{\mu_1)}{A_1} \stackrel{(\lambda_2}{\epsilon} \stackrel{\mu_2)}{\mu_2} \right. \right\rangle$$

$$\times \left\langle \frac{(\lambda_1 \, \mu_1) \, (\lambda_2 \, \mu_2)}{\varepsilon_1 \, \Lambda_1 \, \varepsilon_2 \, \Lambda_2} \, \left| \frac{(\lambda \, \mu)}{\varepsilon \, \Lambda} \right\rangle \right.$$

$$\times (-)^{A_1+A_2+1/2+A'} \sqrt{(2A+1)(2A'_2+1)} \begin{Bmatrix} 1/2 & A_2 & A'_2 \\ A_1 & A' & A \end{Bmatrix}$$
$$\times \begin{pmatrix} (\lambda_2 & \mu_2) \\ \varepsilon_2 + 1 & A'_2 \end{pmatrix} T_2 \begin{pmatrix} (\lambda_2 & \mu_2) \\ \varepsilon_2 & A_2 \end{pmatrix}.$$

将上式两边乘以

$$\Big\langle \begin{pmatrix} (\lambda & \mu) \\ \varepsilon & \Lambda \end{pmatrix} \Big| \begin{pmatrix} (\lambda_1 & \mu_1) & (\lambda_2 & \mu_2) \\ \varepsilon_1'' & \Lambda_1'' & \varepsilon_2'' & \Lambda_2'' \end{pmatrix} \Big\rangle,$$

科(λμ)求和,再利用式(8.94),可得SU(3)约化标量因子的递推关系

$$\delta_{z',z+1} \Big\langle \frac{(\lambda' \mu')}{z', A'} \Big| T \Big| \frac{(\lambda' \mu')}{z', A} \Big\rangle \frac{(\lambda' \mu')}{z'-1} \Big| \frac{(\lambda_1 \mu_1)}{\varepsilon_1'' A_2''} \frac{(\lambda_2 \mu_2)}{\varepsilon_2'' A_2''} \Big\rangle$$

$$= \sum_{A_1'} (-)^{A_2'' - A_1' - 1/2 - A} \sqrt{(2A+1)(2A_1'+1)} \Big\{ \frac{1/2}{A_2''} \frac{A_1''}{A_1'} \frac{A_1'}{A_2''} \Big\}$$

$$\times \Big\langle \frac{(\lambda_1 \mu_1)}{\varepsilon_1'' + 1} \Big| T_1 \Big| \frac{(\lambda_1 \mu_1)}{\varepsilon_1'' A_1''} \Big\rangle \Big\langle \frac{(\lambda' \mu')}{z' A'} \Big| \frac{(\lambda_1 \mu_1)}{\varepsilon_1'' + 1} \frac{(\lambda_2 \mu_2)}{A_2''} \Big\rangle$$

$$+ \sum_{A_2'} (-)^{A_1'' + A_2'' - 1/2 - A_1'} \sqrt{(2A+1)(2A_2'+1)}$$

$$\times \Big\{ \frac{1/2}{A_1''} \frac{A_2'}{A_1'} \Big\}$$

$$\times \Big\{ \frac{1/2}{A_1''} \frac{A_2'}{A_1'} \Big\}$$

$$\times \Big\{ \frac{(\lambda_2 \mu_2)}{\varepsilon_2'' + 1A_2'} \Big\| T_2 \Big\| \frac{(\lambda_2 \mu_2)}{\varepsilon_2'' A_2''} \Big\rangle \Big\langle \frac{(\lambda' \mu')}{\varepsilon_1'' A_1''} \Big| \frac{(\lambda_1 \mu_1)}{\varepsilon_1'' A_1''} \frac{(\lambda_2 \mu_2)}{\varepsilon_2'' + 1} \Big\rangle \Big\}.$$

(8.96)

利用约化标量因子的正变归一性和递推关系,从式(8,94),(8,96)可以求出 su(3)的约化标量因子。

例9 求 $(\lambda_1, \mu_1) = (0, 1)$, $(\lambda_2, \mu_2) = (1, 0)$ 的约化标量因

子.

从例 8 知(0 !)的($\hat{\epsilon}_1 \Lambda_{10}$) = (1/3,1/2),(1 0)的($\hat{\epsilon}_2 \Lambda_{20}$) = (2/3,0), 显然(0 !) \otimes (1 0)的 $\hat{\epsilon}$ 最大和相 应 的 Λ_0 为($\hat{\epsilon}\Lambda_0$) = (1,1/2), 这是($\lambda \mu$) = (1 !)的($\hat{\epsilon}\Lambda_0$).由式(8.94a)知,

$$\sum_{\epsilon_{1},A_{1},\epsilon_{2},A_{2}} \left| \left\langle \begin{pmatrix} 0 & 1 \end{pmatrix} & (1 & 0) \\ \epsilon_{1} & A_{1} & \epsilon_{2} & A_{2} \end{pmatrix} \right|^{(1-1)} \left| \frac{1}{2} \right\rangle \right|^{2}$$

$$= \left| \begin{pmatrix} (0 & 1) & (1 & 0) \\ \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & 0 \end{pmatrix} \right| \begin{pmatrix} (1 & 1) \\ 1 & \frac{1}{2} \end{pmatrix} \right|^{2} = 1.$$

可取相因子为正实数,得

$$\left\langle \begin{array}{ccc|c} (0 & 1) & (1 & 0) & (1 & 1) \\ \hline \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & 0 & 1 & \frac{1}{2} \end{array} \right\rangle = 1 = \left\langle \begin{array}{ccc|c} (1 & 1) & (0 & 1)(1 & 0) \\ \hline 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & 0 \end{array} \right\rangle.$$

利用式(8.96)有

$$\begin{pmatrix} (1 & 1) & (0 & 1) & (1 & 0) \\ 0 & 1 & \frac{1}{3} & \frac{1}{2} & -\frac{1}{3} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} (1 & 1) & T & (1 & 1) \\ 1 & \frac{1}{2} & T & 0 & 1 \end{pmatrix}$$

$$=\sum_{A_2'} (-)^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}} \sqrt{3} (2\overline{A}_2' + 1) \left\{ \frac{1/2 + 1/2 + A_2'}{1/2 + 1/2 + 1} \right\}$$

$$\times \left\langle \begin{array}{ccc} (1 & 0) \\ \frac{2}{3} & A_2' \end{array} \right| T_2 \left| \begin{array}{ccc} (1 & 0) \\ -\frac{1}{3} & \frac{1}{2} \end{array} \right\rangle$$

$$\times \left\langle \begin{pmatrix} 1 & 1 \\ 1 & \frac{1}{2} \end{pmatrix} \middle| \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & A'_{2} \end{pmatrix} = \sqrt{\frac{3}{2}}.$$

代人例8,得

$$\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ \frac{1}{3} & \frac{1}{2} & -\frac{1}{3} & \frac{1}{2} \end{pmatrix} \right\rangle = 1.$$

同样利用式(8,96),有

$$\begin{pmatrix} (1 & 1) & (0 & 1) & (1 & 0) \\ 0 & 0 & \frac{1}{3} & \frac{1}{2} & -\frac{1}{3} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} (1 & 1) & T & (1 & 1) \\ 1 & \frac{1}{2} & T & 0 & 0 \end{pmatrix}$$

$$= \sum_{A_2'} \sqrt{2A_2' + 1} \begin{Bmatrix} 1/2 & 1/2 & A_2' \\ 1/2 & 1/2 & 0 \end{Bmatrix} \begin{pmatrix} (1 & 0) & T_2 & (1 & 0) \\ \frac{2}{3} & A_2' & T_2 & \frac{1}{3} & \frac{1}{2} \end{pmatrix}$$

$$\times \begin{pmatrix} (1 & 1) & (0 & 1) & (1 & 0) \\ 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & A_2' \end{pmatrix} = -\sqrt{\frac{1}{2}}.$$

代入例8,得

$$\left\langle \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & \frac{1}{3} & \frac{1}{2} & -\frac{1}{3} & \frac{1}{2} & -\frac{1}{3} & \frac{1}{2} \end{pmatrix} \right\rangle = -\sqrt{\frac{1}{3}}.$$

同样

$$\begin{pmatrix}
(1 & 1) & (0 & 1) & (1 & 0) \\
0 & 0 & -\frac{2}{3} & 0 & \frac{2}{3} & 0
\end{pmatrix}
\begin{pmatrix}
(1 & 1) & T & (1 & 1) \\
1 & \frac{1}{2} & T & 0 & 0
\end{pmatrix}$$

$$= \sum_{A_1'} (-)^{A_1' + \frac{1}{2}} \sqrt{2A_1' + 1} \begin{Bmatrix} \frac{1/2}{0} & A_1' \\
0 & A_1' & 0
\end{Bmatrix}$$

$$\times \begin{pmatrix}
(0 & 1) & T & (0 & 1) \\
\frac{1}{3} A_1' & T & -\frac{2}{3} & 0
\end{pmatrix}$$

代入例 8 ,得

$$\begin{pmatrix} (1 & 1) & (0 & 1) & (1 & 0) \\ 0 & 0 & -\frac{2}{3} & 0 & \frac{2}{3} & 0 \end{pmatrix} = \sqrt{\frac{2}{3}}.$$

同样,还利用式(8.96),有
$$\begin{pmatrix}
(1 & 1) & (0 & 1) & (1 & 0) \\
-1 & \frac{1}{2} & -\frac{2}{3} & 0 & -\frac{1}{3} & \frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
(1 & 1) & T & (1 & 1) \\
0 & 0 & T & -1 & \frac{1}{2}
\end{pmatrix}$$

$$= \sum_{A_1'} (-)^{3/2 + A_1'} \sqrt{2(2A_1' + 1)} \begin{Bmatrix} 1/2 & 0 & A_1' \\ 1/2 & 0 & 1/2 \end{Bmatrix}$$

$$\times \begin{pmatrix}
(0 & 1) & T & (0 & 1) \\
-\frac{1}{3} & A_1' & T_1 & -\frac{2}{3} & 0
\end{pmatrix}$$

$$\begin{pmatrix}
(1 & 1) & (0 & 1) & (1 & 0) \\
1 & 1 & 1 & 1 & 1
\end{pmatrix}$$

$$+\sum_{A_2'} (-)\sqrt{2(2A_2'+1)} \left\{ \frac{1/2}{0} \frac{1/2}{0} \frac{A_2'}{1/2} \right\}$$

$$\times \left\langle \begin{array}{cccc} (1 & 0) \\ \frac{2}{3} & A_{2}' \end{array} \right| T_{2} \left| \begin{array}{cccc} (1 & 0) \\ -\frac{1}{3} & \frac{1}{2} \end{array} \right\rangle$$

$$\times \left\langle \begin{pmatrix} (1 & 1) & (0 & 1) & (1 & 0) \\ 0 & 0 & -\frac{2}{3} & 0 & \frac{2}{3} & \Lambda_2' \end{pmatrix} = \sqrt{3},$$

可以解出

$$\left\langle \begin{array}{c|cccc} (1 & 1) & (0 & 1) & (1 & 0) \\ -1 & \frac{1}{2} & -\frac{2}{3} & 0 & -\frac{1}{3} & \frac{1}{2} \end{array} \right\rangle = 1.$$

由于(λ μ) = (0 0) 是 su(3)的一维表示, 故

$$\begin{pmatrix} (0 & 0) & & & \\ & & & \\ 0 & 0 & & & \\ & & -1 & \frac{1}{2} \end{pmatrix} = 0.$$

用式(8.96)可得

$$0 = (-)^{\frac{3}{2} + \frac{1}{2}} \sqrt{2(2 \times \frac{1}{2} + 1)} \begin{Bmatrix} 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 \end{Bmatrix}$$

$$\times \begin{bmatrix} (0 & 1) & T_1 & (0 & 1) \\ \frac{1}{3} & \frac{1}{2} & T_1 & -\frac{2}{3} & 0 \end{bmatrix}$$

$$\times \begin{bmatrix} (0 & 0) & (0 & 1) & (1 & 0) \\ 0 & 0 & \frac{1}{3} & \frac{1}{2} & -\frac{1}{3} & \frac{1}{2} \end{bmatrix}$$

$$+ (-)^{\frac{1}{2}} & \frac{1}{2} \sqrt{2 \times \frac{1}{2} + 1} \begin{Bmatrix} \frac{1}{2} & 1/2 & 0 \\ 0 & 0 & 1/2 \end{Bmatrix}$$

$$\times \begin{bmatrix} (1 & 0) & T_2 & (1 & 0) \\ \frac{2}{3} & 0 & T_2 & -\frac{1}{3} & \frac{1}{2} \end{bmatrix}$$

$$\times \begin{bmatrix} (0 & 0) & (0 & 1) & (1 & 0) \\ 0 & 0 & -\frac{2}{3} & 0 & \frac{2}{3} & 0 \end{bmatrix}$$

$$= -\begin{bmatrix} (0 & 0) & (0 & 1) & (1 & 0) \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{3} & \frac{1}{2} \end{bmatrix}$$

$$+\sqrt{2}$$
 $\begin{pmatrix} (0 & 0) & (0 & 1) & (1 & 0) \\ 0 & 0 & -\frac{2}{3} & 0 & \frac{2}{3} & 0 \end{pmatrix}$

再利用式(8.94),可以解出

$$\begin{pmatrix} (0 & 0) & (0 & 1) & (1 & 0) \\ 0 & 0 & \frac{1}{3} \cdot \frac{1}{2} & -\frac{1}{3} \cdot \frac{1}{2} \end{pmatrix} = \sqrt{\frac{2}{3}},$$

$$\begin{pmatrix} (0 & 0) & (0 & 1) & (1 & 0) \\ 0 & 0 & -\frac{2}{3} & 0 & \frac{2}{3} & 0 \end{pmatrix} = \sqrt{\frac{1}{3}}.$$

这样就解出了(0 1) \otimes (1 0)=(1 1) \oplus (1 0)的 全 部 CG 系数. 关于 su(3)约化标量因子的表请见参考文献[22].

从以上讨论可知,应用张量基方法,可以求出:单李代数和半单李代数的表示,紧致李代数和非紧致李代数的表示,有限维不可约和无限维表示及厄米和非厄米表示。张量基方法,对求经典李超代数的表示也颇有效。到目前为止,用这种方法,已求出全部 su(n)和 o(n)的有限维不可约表示,部分约化系数和重耦合系数的解析表达式,还求出了李超代数 su(n/1), su(m/n)和部分 osp(m/2n)的有限维不可约表示。

各章习题

第 - 章

- 1.1 证明: 只有一个三阶群。
- 1.2 证明: 有两个 4 阶群, 幷且都是阿贝尔群。
- 1.3 找出三阶对称群 S_3 的所有子群。并指出那个子群是不变的,那个子群是含元素(123)的循环群。
 - 1.4 求6阶循环群的所有不变子群,以及其对应的商群。
 - 1.5 求 D₃ 群的自同构群,它是内自同构群吗?
- 1.6 设群G只有一个阶为 2 的元素 h,证明:对任意 $g \in G$, 有 gh = hg.
 - 1.7 设 $G = G_1 \otimes G_2$, 证明. 商群 G/G_1 同构于 G_2 .
 - 1.8 设 $G = H \bigotimes_a K$, 证明。商群G/H 同构于K。
- 1.9 在 D_4 群中,取子群 $G_1 = \{e, r, r^2, r^3\}$, $G_2 = \{e, a\}$, 证明, $D_4 = G_1 \bigotimes_a G_2$ 。

第二章

- 2.1 设 $A(g_a)$ 是群 $G = \{g_a\}$ 的一个表示,证明,复共轭矩阵 $A^*(g_a)$ 也是 G 的一个表示。当 $A(g_a)$ 是 不可约的或幺正的,则 $A^*(g_a)$ 也是不可约的或幺正的。 $A^*(g_a)$ 称为 $A(g_a)$ 的复共轭表示。当 $A^*(g_a) = A(g_a)$ 时,称 $A(g_a)$ 为实表示。
- 2.2 设 $A(g_a)$ 是 $G = \{g_a\}$ 的一个表示,证明: 转 置逆矩阵 $[A^+(g_a)]^{-1}$, 厄米共轭逆矩阵 $[A^+(g_a)]^{-1}$ 也是 G 的表示。 并 且 当 $A(g_a)$ 是不可约的或幺正的,则它们分别也是不可约的或幺正的,试问 $A^+(g_a)$ 和 $A^+(g_a)$ 是 G 的表示吗?

2.3 设 $A(g_a)$ 是有限群 $G = \{g_a\}$ 的一个不可约表 示, C 是 G 中一个共轭类, λ 是常数, E 为单位矩阵,证明。

$$\sum_{g_{\alpha} \in C} A(g_{\alpha}) = \lambda E_{\bullet}$$

- 2.4 求3阶群的所有不等价不可约表示。
- 2.5 设 $A(g_a)$ 是有限群 $G = \{g_a\}$ 的 -个不可约表示, $B(g_a)$ 是 G的一个一维非恒等表示,证明, $A(g_a) \otimes B(g_a)$ 也 是 G的一个不可约表示。

Ì	$oldsymbol{e}$	а	b	c
e	\overline{e}	a	b	c
	a b	e	c	b
b	ь	c	e	а
C	c	b	a	c

- 2.6 设 $V = \{e \ a \ b \ c\}$ 是满足左边乘法表的 4 阶群,求V 的明有不等价不可约表示。
- 2,7 写出 4 阶循环群 Z, 的左正则表示和右正则表示。
- 2.8 设 $A'(g_a)$ 和 $A'(g_a)$ 是群 $G = \{g_a\}$ 的两个不等价不可约表示,

证明. 直积表示 $A''(g_a)\otimes A''^*(g_a)$ 不包含恒等表示,而 $A''(g_a)\otimes A'^*(g_a)$ 包含恒等表示一次且仅一次。

第三章

3.1 设O是三维实正交群O(3,R) 的一个元素, $C_k(\psi)$ 和 $S_k(\psi)$ 分别为空间转动和转动反射, $\varepsilon = \det O$,证明:

$$OC_{k}(\psi)O^{-1} = C_{*Ok}(\psi),$$

 $OS_{k}(\psi)O^{-1} = S_{*Ok}(\psi).$

- 3.2 设 $g = \{T_a, O\}$ 是三维欧几里得群 E(3) 的一个元素,求 g 的逆元素 g^{-1} 。
- 3.3 设一点群有 4 阶轴 C_4 ,和过 C_4 的反射面 σ_v , 证明: 必存在 4 个过 C_4 的反射面.
- 3.4 设点群有奇数阶转动反射轴 S_{2n+1} , 证明: 必存在独立的转动轴 G_{2n+1} 和水平反射面 σ_{h} .

- 3.5 证明 4n 阶转动反射轴 S_{4n} 不含反演元素 I.
- 3.6 求出二维实空间中所有点群。
- 3.7 试问:
- (1) 在 C_0 群中,增加空间反演元素,构成什么群?
- (2) 在 C_{sv} 群中、增加水平反射面 σ_{k} ,构成什么群?
- (3) 在 C_{sh} 群中,增加转动反射轴 S_{s} ,构成什么群?
- (4) 在 D_{3d} 群中,减去转动反射轴 S_8 ,构成什么群?
- 3.8 求出 D_6 群的全部不等价不可约表示,并给出 其 特 征标表。
- 3.9 求 C_{4h} 群的全部不等价不可约表示,并给出其 特 征标表。
- 3.10 求 D_{cd} 群的全部不等价不可约表示,并给出其特征标表。

第四章

- 4.1 证明, 三维实空间中的特殊正交变换是一个转动 $C_{\bullet}(\psi)$.
 - 4.2 利用李代数 0(3)的下列实现,

$$J_0 = \frac{1}{2} \left(x_1 \frac{\partial}{\partial x_1} - x_2 \frac{\partial}{\partial x_2} \right),$$

$$J_{+1} = -\frac{1}{\sqrt{2}}x_1\frac{\partial}{\partial x_2}, \qquad J_{-1} = \frac{1}{\sqrt{2}}x_2\frac{\partial}{\partial x_1}.$$

证明:

$$\eta_m = \frac{x_1^{j+m} x_2^{j-m}}{\sqrt{(j+m)!(j-m)!}}$$

是 J^2 和 J_2 的共同本征矢, J^2 , J_3 的 本征值分别为 j(j+1) 和 m.

- 4.3 求出二维转动群的所有不等价不可约表示和双值表示,
- 4.4 椎导 $D_{k,m}(\alpha \beta \gamma)$ 满足的微分方程式(4.43)。

4.5 设(2j+1)个向量|j|m>, m=j, j-1, …, -j, 在空间转动下按 D^j 变换,即

$$R(\alpha \beta \gamma)|j m\rangle = \sum_{m'} D^{j}_{m'm}(\alpha \beta \gamma)|j m'\rangle,$$

证明: $\{i,m\}$ 必为 J^2 和 J_2 的共同本征矢, J^2,J_2 的本征值分别为j(j+1)和m。

4.6 利用耦合系统角动量表象变换,证明 CG 系 数 满足下面的递推公式:

 $\langle j_1 \ m_1 \ j_2 \ m_2 | j_1 \ j_2 \ j \ m+1 \rangle$

$$= \sqrt{\frac{(j_1 + m_1)(j_1 - m_1 + 1)}{(j - m)(j + m + 1)}} \langle j_1 \ m_1 - 1 \ j_2 \ m_2 | j_1 \ j_2 \ j \ m \rangle$$

$$+ \sqrt{\frac{(j_2 + m_2)(j_2 - m_2 + 1)}{(j - m)(j + m + 1)}} \langle j_1 \ m_1 \ j_2 \ m_2 - 1 | j_1 \ j_2 \ j \ m \rangle.$$

4.7 设 J^2 . J_2 和 B 是一组力学量完全集, $\{j \mid m \mid b\}$ 是它们的共同本征矢,

$$J^{2}|j m b\rangle = j(j+1)|j m b\rangle,$$

 $J_z|j \mid m \mid b>=m|j \mid m \mid b>, \quad B|j \mid m \mid b>=b|j \mid m \mid b>.$ 证明: 算符

$$\sum_{m_1, m_2} (-)^{j_2 - m_2} \langle j_1 m_1 j_2 - m_2 | j_1 j_2 j m \rangle$$

 $\times [j_1 \ m_1 \ b_1 > \langle j_2 \ m_2 \ b_2]$

是 SO(3)群的 / 秩不可约张量。

4.8 仿照 SO(3)群双值表示的定义, 点群也有双值表示。

利用式(4.6)求出 C_2 群的两个双值表示。

4.9 设 $\binom{1}{0}$ 角 $\binom{0}{1}$ 是自旋为 1/2 的粒子, S_z 为 1/2 和 -1/2 的本征矢, Y_{Im} 是轨道角动量本征态。写出总角动量为 i ,投影为 m ,轨道角动量 l=i+1/2 的态 $\Psi_{j+1/2}^{m}$ 。试问: 当 \mathbf{z} 间绕 \mathbf{x} 轴转 \mathbf{x} 时, $\Psi_{j-j+1/2}^{m}$ 如何改变?

4.10 证明 D_{m,m,}(α β γ)满足以下关系:

(1)
$$D_{m'_{1}m_{1}}^{j_{1}} (\alpha \beta \gamma) D_{m'_{2}m_{2}}^{j_{2}} (\alpha \beta \gamma)$$

$$= \sum_{j,m,m'} \langle j_{1} m'_{1} j_{2} m'_{2} | j_{1} j_{2} j m' \rangle$$

$$\times D_{m',m}^{j} (\alpha \beta \gamma) \langle j_{1} j_{2} j m | j_{1} m_{1} j_{2} m_{2} \rangle,$$
(2)
$$\sum_{m'_{1}m'_{2}m'_{2}} D_{m'_{1}m_{1}}^{j_{1}} (\alpha \beta \gamma) D_{m'_{2}m_{2}}^{j_{2}} (\alpha \beta \gamma) D_{m'_{3}m_{3}}^{j_{3}} (\alpha \beta \gamma)$$

$$\times \begin{pmatrix} \hat{f}_{1} & \hat{f}_{2} & \hat{f}_{3} \\ m'_{1} & m'_{2} & m'_{2} \end{pmatrix} = \begin{pmatrix} \hat{f}_{1} & \hat{f}_{2} & \hat{f}_{3} \\ m_{1} & m_{2} & m_{3} \end{pmatrix}.$$

4.11 设 $R(a \beta \gamma) = R(a_2 \beta_2 \gamma_2) R(a_1 \beta_1 \gamma_1)$, 证明:

$$D^{j}_{mrm}(a \beta \gamma) = \sum_{m'} D^{j}_{m'm'}(a_{2} \beta_{2} \gamma_{2}) D^{j}_{m'm}(a_{1} \beta_{1} \gamma_{1}).$$

并利用此式证明球函数的相加定理,即

$$P_{l}(\cos\omega) = \frac{4\pi}{2l+1} \sum_{m} Y_{lm}^{*}(\theta\varphi) Y_{lm}(\theta'\varphi'),$$

其中 $\cos \omega = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\varphi - \varphi')$.

第五章

- 5.1 求 5 阶对称群 S_5 的类,并指出 S_5 的那些杨图 是 自轭的,那些杨图是互为共轭的。
- 5.2 找出 4 阶对称群 S_4 的所有不变子群。指出哪个不变子群的商群和 S_3 同构。

- 5.3 设 A_n 是 n 阶对称群 S_n 的偶置換子 群,证 明 A_n 是 S_n 的不变子群,纤求出其商群 S_n/A_n .
- 5.4 5 阶对称群 S₅ 有多少个不等价不可约表示? 每个维数 是多少?
 - 5.5 求 4 阶对称群 S₄的不可约表示[λ] = [2 2].
- 5.6 SU(3) 群 有几个不等价不可约的 2 级(张量)表示? 它们各是几维的? 设在 SU(3) 群定义中,元素Q的矩阵为

$$Q = \begin{pmatrix} -\frac{1}{3} & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & \frac{2}{3} \end{pmatrix},$$

求在这些2级不可约表示中Q的表示矩阵。

- 5,7 SU(5)群共有几个不等价不可约的2级和3级(张量)表示? 它们的维数各是多少?
 - 5.8 求 SU(5)群不可约表示直积的约化,

 $[1]\otimes[1^4]$, $[2\ 1^3]\otimes[1]$, $[2\ 1^3]\otimes[2\ 1^3]$,

它们和它们包含的不可约表示各是多少维的?

第六章

- 6.1 讨论欧氏空间中下列子集的连通性和紧致性:
- (1) R^1 中的[0,1]; [0,1); [a,∞); [0,1] \bigcup [2,4].
- (2) $R^2 \Leftrightarrow R^1 = \{(x,0) \mid x \in R\};$ $\{(x,y) \mid x^2 + y^2 \le 1\}; \quad \{(x,y) \mid x^2 - y^2 \le 1\};$ $\{(x,y) \mid 1 \le x^2 + y^2 \le 9\}; \quad \{(x,y) \mid (x,y) \ne (0,0)\};$ $\{(x,y) \mid 1 \le x \le 2,5 \le x \le 6\}.$
- 6.2 利用极射赤面投影方法, 在

$$S^2 = \{(x, y, z) | x^2 + y^2 + z^2 = a^2, a > 0\}$$

上建立一个二维 C^{∞} 流形。

6.3 证明,实二维--般线性群GL(2,R)中,元素

$$\begin{pmatrix} a & 0 \\ 0 & -a^{-1} \end{pmatrix}$$
, $a > 0$, $a \ne 1$

不可能通过李代数 gl(2,R)的元素经指数映射而得到。 这是为什么?

- 6.4 写出李代数 sp(2,R)和 sp(2) 的无穷小生成元, 幷证明, sp(2,R)和 o(2,1)同构, sp(2)与 o(3)同构。
 - 6.5 设平面中每·点用向量

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

表示,则平面中欧几里得变换为

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & a \\ \sin \theta & \cos \theta & b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix},$$

称全体欧几里得变换构成的群为 E(2) 群。

- (1) 证明, E(2)群是李群,
- (2). 求出 E(2) 群对应的李代数。
- (3) 讨论 E(2)群的连通性和紧致性。

第 七 章

- 7.1 写出李代数 O(4)和 O(3,1)的
- (1) 生成元和对易关系;
- (2) 基林型, 幷讨论其紧致性。
- 7.2 写出李代数 B₂和 G₂的
- (1) 嘉当矩阵,
- (2) 嘉当-韦耳基下生成元和对易关系,
- (3) 舍瓦累基下生成元和对易关系。

- 7.3 证明: 李代数 A₃ 与 D₃ 同构。李代数 o(6) 与 su(4) 同构唱?
- 7.4 设 b_{i}^{*} , b_{i} , i=1,2,...,N, 是玻色子的产生 和消失 算符, 它们满足对易关系

$$[b_i, b_j] = [b_i, b_j] = 0$$
, $[b_i, b_j] = \delta_{ij}$.

证明:

- (1) 算符 $b_i b_i + 1/2, b_i b_j (i \neq i), b_i b_j, b_i b_j, i, i = 1, 2, \cdots, N$, 构成本代数 sp(2N,R)。这 Sp(2N,R) 是 N 种玻色子的巨希耳伯特空间的动力学对称群。
- (2) 算符 $b_i b_j$, $i,j=1,2,\cdots,N$, 构成李代数 u(N),U(N) 群是N种级色子在粒子数守恒时的动力学对称群。
- 7.5 设 a_{i}^{*} , a_{i} , $i=1,2,\cdots,M$, 是费米子的产生和消失算符, 满足反对易关系

$$\{a_i^+,a_j^+\}=\{a_i^-,a_j^+\}=0$$
, $\{a_i^-,a_j^+\}=\delta_{ij_*}$

证明:

- (1) 算符 $a_i^{\dagger}a_i 1/2$, $a_i^{\dagger}a_j$, $a_i^{\dagger}a_j^{\dagger}$, $i \neq j$, i, $j = 1, 2, \cdots$, M, 构成李代数 O(2M). O(2M) 群是M种费米子巨希耳伯特空间的动力学对称群。
- (2) 算符 $a_i^{\dagger}a_j$, $i,j=1,2,\cdots,M$, 构成李代数 u(M), U(M) 群是M种费米子在粒子数守恒时的动力学对称群。

第八章

- 8.1 证明, SU(3)群的两个三维不可约表示(0 1)和(1 0) 是互为共轭的。
- 8.2 写出李代数su(5)的生成元和对易关系.选择基便su(5) `□su(3)⊕su(2)⊕u(1), 这就是使 相 应 群 为 SU(5)□SU(3)⊗ SU(2)⊗U(1),证明. 其它算符构成SU(3)⊗SU(2)⊗U(1)的两 组不可约张量。
 - 8.3 李超代数 B(0,1)有 5 个生成元,它们满足下面的对易

和反对易关系:

$$\begin{split} & \begin{bmatrix} L_0 \, , L_{\pm 1} \end{bmatrix} = \pm L_{\pm 1}, \qquad \begin{bmatrix} L_{\pm 1} \, , L_{\pm 1} \end{bmatrix} = -L_0, \\ & \begin{bmatrix} L_0 \, , V_{\pm 1/2} \end{bmatrix} = \pm \frac{1}{2} V_{\pm 1/2}, \qquad \begin{bmatrix} L_{\pm 1} \, , V_{\pm 1/2} \end{bmatrix} = 0, \\ & \begin{bmatrix} L_{\pm 1} \, , V_{\pm 1/2} \end{bmatrix} = \mp \frac{1}{\sqrt{2}} V_{\pm 1/2}, \\ & \{ V_{\pm 1/2} \, , V_{\pm 1/2} \} = -2 \sqrt{2} L_{\pm 1}, \\ & \{ V_{\pm 1/2} \, , V_{\pm 1/2} \} = -2 L_0, \end{split}$$

求 B(0,1) 的不可约表示。 从中可看出哪些与李代数不可约表示的不同之处?

8.4 求 o(4)的 CG 系数:

$$\left\langle egin{array}{c|c|c|c} m_1 & m_2 & 1 & 0 & m_1 \pm 1 & m_2 \\ l & 0 & l & l \\ m & 0 & m & m \end{array} \right\rangle$$
 At $\left\langle egin{array}{c|c|c} m_1 & m_2 & 1 & 0 & m_1 & m_2 \pm 1 \\ l & 0 & l & l \\ m & 0 & m & m \end{array} \right\rangle$.

参考文献

- [17] Bacry, H., Lectures on Group Theory and Particle Theory, Goldon and Breach Science Publishers, London, 1977.
- E 2 3 Boerner, H., Representations of Groups, North-Holland Publishing Company, Amsterdam, 1963.
- [3] 陈金全、群表示论的新途径、上海科学技术出版社、1984。
- [4] 陈省身,陈继桓,微分几何排义,北京大学出版社,1983。
- [5] Cohn, P.M., Lie Groups, Cambridge University Press, 1957. (中 译本,李群,黄正中, 胡和生泽, 上海科学技术出版社, 1963.)
 - Cotton, F.A., Chemical Applications of Group Theory, Wiley, New York, 1971。(中译本, 群论在化学中的应用, 刘万春等译, 科学出版社, 1975。)
- [7] Dewitt, C., Dewitt, B., Relativity, Groups and Topology, Blackie and Son Limited, London and Glasgow, 1964.
- [8] Edmonds, A.R., Angular Momentum in Quantum Mechanics, Princeton University Press, New Jersey, 1957.
- [9] 岩堀长庆, Lie群论, 岩波书店, 1957。(中译本, 李群论, 孙泽濂译, 上海科学技术出版社, 1962。)
- [10] Gel'fand, I.M., Minlos, R.A., and Shapiro, Z.Ya., Representations of the Rotation and Lorentz Groups and Their Applications, Pergamon Press, New York, 1963.
- [11] Gilmore, R., Lie Groups, Lie Algebras and Some of Their Applications, John Wiley & Sons, New York, 1974.
- [12] Hamermesh, Group Theory and Its Application to Physical Problems, Addison-Wesley Publishing Company, U.S.A., 1962.
- [13] Han Qi-zhi, Nuo Cim. 64A, 391(1981).

 Han Qi-zhi, Sun Hong-zhou, Commun. in Theor. Phys. 2, 1137
 (1983).

 Han Qi-zhi, Liu Fu-sui, Sun Hong-zhou, Commun. in Theor. Phys.
 3, 529(1984).

- Han Qi-zhi, Sun Hong-zhou, Zhang Mei, Da Hsuan Feng, J. Mark.

 Phys. 26, 1822(1985).
- 韩其智、宋行长、李根道、孙洪州、高能物理与植物理、5,546(1981)。
- [14" Hoffman, K., Kunze, R., Linear Alegebra, Prentice-Hall, New Jersey, 1971.
- 「15」 江泽湖,拓扑学引论,上海科学数术出版社,1964。
- [16] Miller, W., Symmetry Groups and Their Applications, Academic Press, New York, 1972. (中译本, 对称性群及其应用, 杂德怀等译, 科学出版社, 1981.)
- [17] ИОНТРЯГИН, Л.С., HEUPEPЫВНЫЕ ГРУППЫ, Государственное издательство техникотеоретитеской литературы, посква, 1954. (中译本, 连续群, 曹锡华泽, 科学出版社, 1958.)
- [18] Racah, G., Group Theory and Spectroscopy, Notes from Princeton, 1951.
- [19] 徐森林,流形和 Stokes 定理,人民教育出版社,1981。
- [20] Singer, I.M., Thorpe, J.A., Lecture Notes on Elementary Topology and Geometry, Springer-Verlag, New York, 1967.
- [21] Смирнов, В.И., Курс высщей математики, Государственное издательства техникотсоретической литературы, москва, 1951。(中译本,高等数学教程3卷一分册,北京大学数学力学系代数教研室译,高等教育出版社,1954。)
- [223 孙洪洲, 韩其智, 物理学报, 21, 56(1965)。 孙洪洲, 高能物理与核物理, 4, 73, (1980); 4, 137(1980); 4, 265 (1980)。
 - 孙洪洲, 韩其智, 中国科学, 24, 914(1981)。
- [23] Varadarajan, V., Lie Groups, Lie Algebras, and the Representations, Prentice-Hall, New Jersey, 1974.
- [24] 万哲先,李代数,科学出版社,1964。
- [25] Weyl, H., The Classical Groups, Princeton University Press, New Jersey, 1946.
- [26] Winger, E.P., Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, 1959.
- [27] Wybourne, B.G., Classical Groups for Physicists, John Wiley, New York, 1974. (中译本, 典型群及其在物理学上的应用, 冯承天等泽, 科学出版社, 1982.)

索 引

	5
В	单连通 simply(singly) conneted 19
_	单斜系 monoclinic 89,92
八面体群 octahedral group 0 80	导来链 derived series 230
半单(纯) 李代 数 semisimple Lie	道路连通(弧连通) arcwise con-
algebra 228	nected 192
半单(纯)李群 semisimple Lie	等价表示 equvalent representation 37
group 229	邓金图 Dynkin diagram 244
伴随表示 adjoint representation 229	連推关系 recursion relation 291,303,
半正则母单位 semi-normal units 169	307
半直积 semidirect product 23,25	点臂 point group 70.77
本原幂等元 primitive idempotent	典型 (終典) 李代数 classical Lie
element 151	algebra 222
渊包 closure 189	典型(经典)李群 classical Lie group
別集 close set 186	206,222
表示 representation 28	对称操作(对称 性 箅 符) symmetry
变换群 transformation group 18,205	operator 75
不变子群 invariant subgroup 10	对称元素 symmetry element 75
不可约表示 irreducible represen-	对称群 symmetry group 19,141
tation 40	对换 transposition 143
不可约张量 irreducible tensor 136	对偶空间 dual space 233
c	E
参数空间 parameter space 120	厄米矩阵 Hermitian matrix 103
重复度(重数) multiplicity 40.286	二面体群 dihedral group D _n 79
重耦合系数 (归一化拉卡系数) re-	
coupling coefficient(normalized	(1)
Racah coefficient) 315	F
D	反射 reflection 75
单(纯)李代数 simple Lie algebra 228	反演 inversion 1.72
单(纯)李群 simple Lie group 229	分割 partition 145

分离不变子群 discrete invariant	t	嘉当-基林度規张量 Cartan-Killing
subgroup	220	metric 229
分离公理 separability axiom	190	嘉当矩阵 Cartan matrix 250
复扩充 complex extension	268	惠当-韦耳基 Cartan-Weyl basis 237
复连通 multiply connected	195	嘉当子代数 Cartan subalgebra 232
G		降中心链 ascending central series 230
9		阶 order 4
很(矢量) root(vector)	233	结构常数 structure constant 216
根空间 root space	233	结合代数 associative algebra 44
很图 root diagram	240	紧致 compact 189
共轭杨图 conjugate Young diag-		紧致实形 compact real form 270
ram	146	晶类 crystal class 88
共轭子群 conjugate subgroup	10	晶体点群 crystallographic point
尚长(曲距) hook length	164	group 87
固有子群 proper subgroup	6	晶系 crystal system 88,89
光滑流形 smooth manifold	196	久期方程 secular equation 231
轨道(变换群的轨道) trajectory	20	局部同村 locally isomorphism 210
国际符号 international notation	90	局部同态 locally homomorphism 211
, H		局部坐标 local coordinate 197
••		K
豪斯道夫空间 Hausdorff space	190	
合成函数(积性函数) multiplicativ	е	卡塞米尔算符 Casimir operator 229
function	203	开覆盖 open-covering 189
J		开集 open set 185
•		可解李代数 solvable Lie algebra 230
基 basis	29	可约表示 reducible representation 38
基本群 fundamental group	195	克莱布许-高登级数 Clebsch-
基林型 Killing form	229	Gordon series 125
极射赤面投影 stereographic pro-		克莱布许-高登素数(CG系数) 125
jection	91	Clebsch-Gordon coefficient 314
极射赤面投影图 stcreogram 90,92	,.93	空间群 space group 94
极限点(聚点) limit point	189	L
嘉当分解(正则形式) Cartan deco-	-	_
mposition	231	类(共轭类) class(conjugate class) 8

离散序列 discrete series 29	5,296	内自同构 inner automorphism	17
离散群 discrete group	74	0	
李超代数 Lie superalgebra	322	-	
李代教 Lie algebra	115	欧勒角 Euler's angles	101
李群 Lie group 11	5,203	歐氏空间 Euclidean space	187
理想 ideal	225	耦合体系 coupled system	124
李子群 Lie subgroup	203	耦合张量 coupled tensor	306
立方系 cubic .	89,93		
例外李代数 exceptional Lie al	gē-	P	
bra .	243		
连续辅助系列 continuous sup e	-	泡利矩阵 Pauli matrix	103
mentary series	297	陪集 coset	6,7
连续映射 continuous mapping	190	平庸子群 trivial subgroup	8
连续主系列 continuous princip	aį		
series	297	Q	
连通的 connected	188		
连通性 connectivity 18	8,192	权(矢量) weight (vector)	274
列紧 sequential compact	189	最高~ highest~	277
邻域 neighborhood	186	群 group	1
琴空间 null space	147	~代数 ~algebra	44.45
六角系 hexagonal	89,93		
轮换 cycle	142	· \$	
М			
141		三角素 trigonal	89,93
迷向子群 isotropy subgroup	22,205	三斜系 triclinic	92
幂等的 idempotent	150	商群 factor group	15
幂等元 idempotent element	150	上界 upper bound	291
幂零的 nilpotent	230	含瓦黑基 Chevalley's basis	265
幂零李代数 nilpotent Lie alge	bra230	实形 real form	268
L I		舒尔引理 Schur's lemmas	48,49
N		数学归纳法 mathematical ind	uc-
内导子(内部求导) inner deriva	ation	tion	310
	2 8	双值表示 double valued repre	esen-
内积空间 inner product space	41	tation	113

四角系 tetragonal	89,92	w
四面体群 tetrahedral group	79	韦耳盘 Weyl tableau 179
紊根 simple root	244	微分流形 differentiable
т .		manifold 195
		维格纳-爱卡尔脱定理 Wigner-Ec-
特殊线性李代数 special linear		kart theorem 137
gebra	222	维数 dimension 203
, , , ,	222	无穷小生成元 infinitesimal gene-
实~ sl(π,R)	222	rator 116
特殊线性群 special linear gro		V
复~ SL(*,C)	206	X
实∼ SL(n,R)	206	希耳伯特空间 Hilbert space 41
特殊西群 special unitary grow		下界 lower bound 292
SU(#)	206	线性变换 linear transformation 29
特殊正交群 special orthogon		线性表示 linear representation 30
group	207	线性化 linearization 217,220
复~ \$0(π,C)	207 • 207	线性空间 linear space 30
实~ 50(#,R)		辛代數 symplectic algebra 222,264
特征标 character	56 	复~ sp(2n, C) 222+264
通用覆盖群 universal covering		实~ sp(2π, R) 222
group 同构 isomorphism	220 12,226	酉~ sp(2n) 222,270
同伦 homotopy	12,220	辛群 symplectic group 207
同胚 (映射) homeomorphism		复~ SP(2n, C) 207
同态 homomorphism	12+227	实~ SP(2π, R) 207
同态核 kernel of homomorph		西~ SP(2n) 207
同余类 congruence class	227	熊夫利符号 Schoenflies notation 85
投影(射影)算符 projection o		旋量表示 spinor representation 281
tor	147	循环群 cyclic group 6,7
退化 degenerate	229	Υ
拓扑 topology	185	
拓扑空间 topological space	185	雅可比恒等式 Jacobi identity 216
拓扑群 topological group	202	雅可比矩阵 Jacobian 200
		杨盘 Young tableau 153

杨算符 Young operator 154	正交系 orthorhombic 89,92
杨臣 Young diagram 146	正则表示 regular representation 45
幺正交换 unitary transformation 41	正则毋单位 orthogonal units
一般线性李代数 general linear Lie	(Young-Yamanouchi basis) 171
algebra 262	正则形式(标准型) canonical form231
复~ gI(n,C) 222	正则子流形 regular submanifold 201
实~ gl(n,R) 222	整体 global 211
一般线性群 general linear group 30	直和 direct sum 39
复~ GL(n, €) 30	直积 direct product 23
实~ GL(n, R) 206	指数映射 exponential mapping 119
酉表示 unitary representation 42	秩 rank 232
西空间 unitary space 41	置换 permutation 2,141
西群 unitary group U(n) 207	置换群 permutation group S _n 2
约化 reduce 125	忠实表示 faithful representation 32
约化标量因子 reduced isoscalar	ψ ψ center 220
factor 314	转动 rotation 75
约化矩阵元 reduced matrix ele-	转动反射 rotatory-reflection 76
ment 138	转动反演 rotatory-inversion 75
Z	转动群 rotation group
2	SO(3)(SO(3,R)) 4.72
张量基 tensor basis 288,299,305	转动轴 rotation axis 73
正根 positive root 244	子代数 subalgebra 225
正交补空间 orthogonal complemen-	子覆盖 sub-covering 189
tary space 42	子集 subset 6
正交代数 orthogonal algebra 222,263	子流形 submanifold 201
复~ ロ(m,С) 263,264	子群 subgroup 6
实~ e(π,R) 222,270	子群诱导出的表示 representation
正交定理 orthogonality theorem 52	induced by subgroup ~66
正交群 orthogonal group 72	自轭杨图 self-conjugate Young
复~ 0(*,6) 207	diagram 146
实~ O(n,R) 72,207	自同构 automorphism 17

杨算符 Young operator 154	正交系 orthorhombic 89,92
杨臣 Young diagram 146	正则表示 regular representation 45
幺正交换 unitary transformation 41	正则毋单位 orthogonal units
一般线性李代数 general linear Lie	(Young-Yamanouchi basis) 171
algebra 262	正则形式(标准型) canonical form231
复~ gI(n,C) 222	正则子流形 regular submanifold 201
实~ gl(n,R) 222	整体 global 211
一般线性群 general linear group 30	直和 direct sum 39
复~ GL(n, €) 30	直积 direct product 23
实~ GL(n, R) 206	指数映射 exponential mapping 119
酉表示 unitary representation 42	秩 rank 232
西空间 unitary space 41	置换 permutation 2,141
西群 unitary group U(n) 207	置换群 permutation group S _n 2
约化 reduce 125	忠实表示 faithful representation 32
约化标量因子 reduced isoscalar	ψ ψ center 220
factor 314	转动 rotation 75
约化矩阵元 reduced matrix ele-	转动反射 rotatory-reflection 76
ment 138	转动反演 rotatory-inversion 75
Z	转动群 rotation group
2	SO(3)(SO(3,R)) 4.72
张量基 tensor basis 288,299,305	转动轴 rotation axis 73
正根 positive root 244	子代数 subalgebra 225
正交补空间 orthogonal complemen-	子覆盖 sub-covering 189
tary space 42	子集 subset 6
正交代数 orthogonal algebra 222,263	子流形 submanifold 201
复~ ロ(m,С) 263,264	子群 subgroup 6
实~ e(π,R) 222,270	子群诱导出的表示 representation
正交定理 orthogonality theorem 52	induced by subgroup ~66
正交群 orthogonal group 72	自轭杨图 self-conjugate Young
复~ 0(*,6) 207	diagram 146
实~ O(n,R) 72,207	自同构 automorphism 17