

## NATIONAL OPEN UNIVERSITY OF NIGERIA 14/16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY JUNE/JULY EXAMINATION

**COURSE CODE: MTH301** 

**COURSE TITLE: METRIC SPACES (3 units)** 

TIME ALLOWED:3 HOURS

INSTRUCTION: COMPLETE ANSWERS TO ANY FIVE(5)
QUESTIONS BEAR FULL MARKS

- 1(a) What is a metric space? Give one example of a metric space.
  -4marks
- 1(b) What is a topological space? Give an example of a topological space.

-4marks

- 1(c) Define the length or norm of a vector  $x \in R^3$ -6marks
- 2(a) Let  $X \in R^n$ . Show that the set  $B(X, \epsilon)$  is open.-6marks
- 2(b) Let X be a complete metric space and  $\{O_n\}$  is countable collection of dense open subset of X. Show that  ${}^{\dot\iota}$   $O_n$  is not empty. -8marks
- 3 Let f and g be real-valued functions with Domain  $f = Range(g) = D \subset R^n$ .

Let  $x_0$  be a point of accumulation on D. If the  $\lim_{n \to \chi} (x) = \ell$ 

$$\underset{x \to x_0}{Limg}(x) = n.$$

i) If for  $\alpha$ ,  $\beta \in \mathbf{R}$ , show that  $(\alpha f + \beta g)(x) = \alpha \ell + \beta m$ -4marks

ii) Show also that 
$$\lim_{x \to_{0x}} f(g)(x) = \ell n$$
-4marks

iii) If 
$$g(x) \pm 0$$
; for  $X \in D$  and  $m \pm 0$ .

Show that 
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} g(x)$$

-4marks

- Let (X,d) and (Y,d) be metric spaces and f a mapping of X into Y. Let  $\tau_1$  and  $\tau_2$  be the topologies determined by d and d1 respectively. Then  $f(X,\tau) \to (y,\tau)$  is continuous if and only if  $X_n \to X \to f(Xn,\tau) \to f(x)$ ; that is if  $x_1$ ,  $x_2$ , . . . ,  $x_n$ , . . . , is a sequence of points in (X,d) converging to x, show that the sequence of points  $f(x_1)$ ,  $f(x_2)$ , . . . ,  $f(x_n)$ , . . . in (Y,d) converges to x.
- 5(a) Prove that for any y, z  $\epsilon$   $\Re$  , max(y,z) = ½[y+z+ |y-z|], min(y,z) = ½[y+z- |y-z|].
- 5(b) Let f,g:  $^{\Re}$   $\to$   $^{\Re}$  be continuous at as  $^{\Re}$  . Show that h,k:  $^{\Re}$   $\to$   $^{\Re}$  defined through

-8marks

- 6 Let  $M = \{A, d\}$  be a metric space. Given any four points  $x, y, z, t \in A$ . Prove that  $d(x, z) + d(y, t) \ge |d(x, y) d(z, t)|$  14marks
- Show that the mapping  $f \mathbf{R} \to \mathbf{R}^+$  defined by  $f(x) = e^x$  is a homeomorphism from  $\mathbf{R}_{\text{onto}} R^+$  (A homeomorphism from one

## topological space to another is a bijective function) -14marks