DNF Criteria

Computer Science

Isaac Griffith

CS 4422 and CS 5599 Department of Computer Science Idaho State University

Outcomes

At the end of Today's Lecture you will be able to:

- Understand what Karnaugh maps are, but will need additional practice.
- Understand the basic concepts surrounding Disjunctive Normal Form and its use.
- Understand DNF based coverage criteria.

Inspiration

"I don't care if it works on your machine! We are not shipping your machine!" - Vidiu Platon

Disjunctive Normal Form

- Common Representation for Boolean Functions
 - Slightly Different Notation for Operators
 - Slightly Different Terminology
- Basics:
 - A **literal** is a clause or the negation (overstrike) of a clause
 - Examples: a, \overline{a}
 - A **term** is a set of literals connected by logical "and"
 - "and" is denoted by adjacency instead of \wedge
 - Examples: ab, $a\overline{b}$, \overline{ab} for $a \wedge b$, $a \wedge \neg b$, $\neg a \wedge \neg b$
 - A (disjunctive normal form) predicate is a set of terms connected by "or"
 - "or" is denoted by + instead of \vee
 - Examples: $abc + \overline{a}b + a\overline{c}$
 - Terms are also called "implicants" if a term is true, that implies the
 predicate is true

Implicant Coverage

- Obvious coverage idea: Make each implicant evaluate to "true"
 - Problem: Only tests "true" cases for the predicates
 - Solution: Include DNF representations for negation

|Implicant Coverage (IC)

Given DNF representations of a predicate f and its negation \overline{f} , for each implicant in f and \overline{f} , TR contains the requirement that the implicant evaluate to true.

- Example: $f = ab + b\overline{c}$ $\overline{f} = \overline{b} + \overline{a}c$
 - Implicants: $\{ab, b\overline{c}, \overline{b}, \overline{a}c\}$
 - Possible test set: {TTF, FFT}
- Observation: IC is relatively weak

Improving on Implicant Coverage Computer Compute

Additional Definitions:

- A proper subterm is a term with one or more clauses removed
 - Example: abc has 6 proper subterms: a, b, c, ab, ac, bc
- A **prime implicant** is an implicant such that no proper subterm is also an implicant
 - Example: $f = ab + a\overline{b}c$
 - Impliant ab is a prime implicant
 - Implicant $a ar{b} c$ is not a prime implicant (due to proper subterm ac)
- A redundant implicant is an implicant that can be removed without changing the value of the predicate
 - Example: $f = ab + ac + b\overline{c}$
 - ab is redundant
 - Predicate can be written: $ac + b\overline{c}$

Unique True Points

- A minimal DNF representation is one with only prime, non-redundant implicants
- A **unique true point** with respect to a given implicant is an assignment of truth values so that
 - The given implicant is true, and
 - All other implicants are false
- A unique true point test focuses on just one implicant
- A minimal representation guarantees the existence of at least one unique true point for each implicant

Multiple Unique true Point Coverage (MUTP):

Given minimal DNF representation of a predicate f, for each implicant i, choose unique true points (UTPs) such that clauses not in i take on values T and F.

Unique True Point Example

- Consider again: $f = ab + b\overline{c}$
 - Implicants: $\{ab, b\overline{c}\}$
 - Each implicant is prime
 - No implicant is redundant
- Unique true points:
 - ab: {TTT}
 - *b*c: **{FTF}**
 - MUTP requires both of these
- But MUTP is still infeasible for both implicants
 - Not enough UTPs for clauses to take on all truth values
 - Later, we will have an example where MUTP is feasible

Near False Points

- A **near false point** with respect to a clause c in implicant i is an assignment of truth values such that f is false, but if c is negated (and all other clauses left as is), i (and hence f) evaluates to true
- ullet Relation to **determination**: at a near false point: c determines f
 - Hence we should expect relationship to ACC criteria

Unique True Point and Near False Point Pair Coverage (CUTPNFP):

Given a minimal DNF representation of a predicate f, for each clause c in each implicant i, TR contains a unique true point for i and a near false point for c such that the points differ only in the truth value of c.

- Note that definition only mentions f, and not \overline{f}
- Clearly, CUTPNFP subsumes RACC

CUTPNFP Example

- Consider f = ab + cd
 - Implicant ab has 3 unique true points: {TTFF, TTFT, TTTF}
 - For clause a, we can pair unique true point <u>T</u>TFF with near false point <u>F</u>TFF
 - For clause b, we can pair unique true point $T\underline{T}FF$ with near false point $T\underline{F}FF$
 - Implicant cd has 3 unique true points: {FFTT, FTTT, TFTT}
 - For clause c, we can pair unique true point FF $\underline{T}T$ with near false point FF $\underline{F}T$
 - For clasue d, we can pair unique true point FFT \underline{T} with near false point FFT \underline{F}
- CUTPNFP set: {TTFF, FFTT, TFFF, FTFF, FFTF, FFFT}
 - First two tests are unique true points; others are near false points
- Rough number of tests required: # implicants * # literals

The MNFP Criterion

The next two criteria provide enough scaffolding to make guarantees about fault detection

Multiple Near False Point Coverage (MNFP):

Given a minimal DNF representation of a predicate f, for each literal c in each implicant i, TR choose near false points (NFPs) such that clauses not in i take on values T and F.

MNFP Example

- Consider again: $f = ab + b\overline{c}$
 - Implicants: $\{ab, b\overline{c}\}$
- Unique true points:
 - ab:
 - NFP for where c = T : FTT
 - Infeasible NFP for a where c = F
 - NFPs for b where c = T, F : TFT, TFF
 - bc:
 - NFPs for b where a = T, F : TFF, FFF
 - NFP for \overline{c} where a = F : FTT
 - Infeasible NFP for \overline{c} where a=T
- Resulting MNFP set = {FTT, TFT, TFF, FFF}

The MUMCUT Criterion

Together, these three criteria provide enough scaffolding to make guarantees about fault detection

MUMCUT:

Given a minimal DNF representation of a predicate f, apply MUTP, CUTPNFP, and MNFP.

DNF Fault Classes

- ENF: Expression Negation Fault f = ab + c $f' = \overline{ab + c}$
- TNF: Term Negation Fault f = ab + c $f' = \overline{ab} + c$
- TOF: Term Omission Fault f = ab + c f' = ab
- LNF: Literal Negation Fault f = ab + c $f' = a\bar{b} + c$
- LRF: Literal Reference Fault f = ab + bcd f' = ad + bcd
- LOF: Literal Omission Fault f = ab + c f' = a + c
- LIF: Literal Insertion Fault f = ab + c f' = ab + bc
- ORF+: Operator Reference Fault f = ab + c f' = abc
- ORF*: Operator Reference Fault f = ab + c f' = a + b + c
- Key idea is that fault classes are related with respect to testing:
 - Test sets guaranteed to detect certain faults are also guaranteed to detect additional faults

Fault Detection Relationships

Karnaugh Maps

- Fair Warning
 - We use, rather than teach, Karnaugh Maps
 - Newcomers to K-Maps probably need a tutorial
 - Suggestion: Google "Karnaugh Map Tutorial"
- Our goal: Apply Karnaugh Maps to concepts used to test logic expressions
 - Identify when a clause determines a predicate
 - Identify the negation of a predicate
 - Identify prime implicants and redundant implicants
 - Identify unique true points
 - Identify unique true point / near false point pairs
- No new material here on testing
 - Just fast shortcuts for concepts already presented

A Clause Determines a Predicate

Consider the predicate:

$$f = b + \overline{ac} + ac$$

- Suppose we want to identify when b determines f
- The dashed line highlights where b changes value
 - If two cells joined by the dashed line have different values for f, then b determines f for those two cells
 - b determines $f : \overline{ac} + a\overline{c}$ (but NOT at ac or \overline{ac})

Negation of a predicate

- Consider the predicate: f = ab + bc
- Draw the Karnaugh Map for the negation
 - Identify groups
 - Write down negation: $\overline{f} = \overline{b} + \overline{ac}$

Prime and Redundant Implicants

• Consider the prediate:

$$f = abc + ab\overline{d} + \overline{a}bcd + \overline{a}bc\overline{d} + a\overline{c}\overline{d}$$

- Draw the Karnaugh Map
- Implicants that are not prime: $ab\overline{d}$, $\overline{a}bcd$, $\overline{a}bc\overline{d}$, $a\overline{c}\overline{d}$
- redundant implicant: $ab\overline{d}$
- Prime implicants:
 - Three: $a\overline{d}$, bcd, abc
 - The last is redundant
 - Minimal DNF representation
 - $f = a\overline{d} + bcd$

Unique True Points

- Consider the predicate f = ab + cd
- ullet Three unique true points for ab
 - TTFF, TTFT, TTTF
 - TTTT is a true point, but not a unique true point
- ullet Three unique true points for cd
 - FFTT, FTTT, TFTT
- Unique true points for \overline{f}

$$\overline{f} = a\overline{c} + \overline{bc} + \overline{ad} + \overline{bd}$$

- FTFT, TFFT, FTTF, TFTF

MUTP

- For each implicant find unique true points (UTPs) so that
 - Literals no in implicant take on values T and F
- Consider the DNF predicate

$$- f = ab = cd$$

- For implicant ab
 - Choose TTFT, TTTF
- For implicant cd
 - Choose FTTT, TFTT
- MUTP test set
 - {TTFT, TTTF, FTTT, TFTT}

CUTPNFP

- Consider the DNF predicate: f = ab + cd
- For implicant *ab*
 - For a, choose UTP, NFP apir
 - TTFF, FTFF
 - For b, choose UTP, NFP pair
 - TTFT, TFFT
- For implicant cd
 - For c, choose UTP, NFP pair
 - FFTT, FFFT
 - For d, choose UTP, NFP pair
 - FFTT, FFTF
- Possible CUTPNFP test set
- {TTFF, TTFT, FFTT // UTPS FTFF, TFFT, FFFT, FFTF //

MNFP

 Find NFP tests for each literal such that all literals not in the term attain F and T

- Consider the DNF predicate:
 - f = ab + cd
- For implicant ab
 - Choose FTFT, FTTF for \boldsymbol{a}
 - Choose TFFT, TFTF for b
- For implicant cd
 - Choose FTFT, TFFT for c
 - Choose FTTF, TFTF for d
- MNFP test set
 - {TFTF, TFFT, FTTF, TFTF}

• Example is small, but generally MNFP is large

Minimal-MUMCUT Criterion

Kaminski et al (ICST 2009)

- Minimal-MUMCUT uses low level criterion feasibility analysis
 - Adds CUTPNFP and MNFP only when necessary
- Minimsl-MUMCUT guarantees detecting LIF, LRF, LOF
 - And thus all 0 faults in the hierarchy

Are there any questions?

