Job No.: CYB Construction Ltd Address: Lot 12 DP 352981 Havill Drive, Awatuna, Date: 15/04/2025

New Zealand

Latitude: -42.644243 **Longitude:** 171.065189 **Elevation:** 7.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	D
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.8 m
Wind Region	NZ2	Terrain Category	2.43	Design Wind Speed	38.54 m/s
Wind Pressure	0.89 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 3.60 m Cpe = -0.9 pe = -0.72 KPa pnet = -0.72 KPa

For roof CP,e from 3.6 m To 7.2 m Cpe = -0.5 pe = -0.4 KPa pnet = -0.4 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 7.5 m Cpe = 0.7 pe = 0.56 KPa pnet = 0.83 KPa

For side wall CP,e from 0 m To 3.60 m Cpe = pe = -0.52 KPa pnet = -0.52 KPa

Maximum Upward pressure used in roof member Design = 0.72 KPa

Maximum Downward pressure used in roof member Design = 0.42 KPa

Maximum Wall pressure used in Design = 0.83 KPa

Maximum Racking pressure used in Design = 1.06 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 900 mm Girt's Span = 4200 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

Second page

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.91 S1 Downward =9.63 S1 Upward =14.71

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.65 Kn-m Capacity 1.91 Kn-m Passing Percentage 115.76 % V_{0.9D-WnUp} 1.57 Kn Capacity 12.06 Kn Passing Percentage 768.15 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 32.12 mm Limit by Woolcock et al, 1999 Span/100 = 42.00 mm Sag during installation = 18.87 mm

Reactions

Maximum = 1.57 kn

Girt Design Sides

Girt's Spacing = 900 mm Girt's Span = 3750 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.69 S1 Downward = 9.63 S1 Upward = 19.66

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.31 Kn-m Capacity 1.44 Kn-m Passing Percentage 109.92 % V_{0.9D-WnUp} 1.40 Kn Capacity 12.06 Kn Passing Percentage 861.43 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 20.41 mm Limit by Woolcock et al. 1999 Span/100 = 37.50 mm Sag during installation = 11.99 mm

Reactions

Maximum = 1.40 kn

Middle Pole Design

Geometry

200 UNI H5	Dry Use	Height	3550 mm
Area	31400 mm2	As	23550 mm2
Ix	78500000 mm4	Zx	785000 mm3
Iy	78500000 mm4	Zx	785000 mm3
Lateral Restraint	3550 mm c/c		

Loads

Total Area over Pole = 15.75 m^2

Dead	3.94 Kn	Live	3.94 Kn
Wind Down	6.62 Kn	Snow	0.00 Kn
Moment wind	8.02 Kn-m		
Phi	0.8	K8	0.78
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Shaving	Steaming	Normal	Dry Use
fb =	34.325 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	20.75 MPa	E =	8793 MPa

Capacities

PhiNcx Wind	352.68 Kn	PhiMnx Wind	16.81 Kn-m	PhiVnx Wind	55.77 Kn
PhiNcx Dead	211.61 Kn	PhiMnx Dead	10.09 Kn-m	PhiVnx Dead	33.46 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.52 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.27 < 1 \text{ OK}$

Deflection at top under service lateral loads = 22.01 mm < 35.50 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30))}{(1+\sin(30))}$ $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1400 mm Pile embedment length

f1 = 2850 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

 $\begin{tabular}{lll} Moment Wind = & 8.02 Kn-m \\ Shear Wind = & 2.81 Kn \end{tabular}$

Pile Properties

Safety Factory 0.55

Hu = 5.75 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 9.75 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.82 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

175 UNI H5	Dry Use	Height	3550 mm
175 011115	Dry CSC	Tioigin	3330 Hilli

Area 24041 mm2 As 18030.46875 mm2

 Ix
 46015259 mm4
 Zx
 525889 mm3

 Iy
 46015259 mm4
 Zx
 525889 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 7.875 m^2

Dead	1.97 Kn	Live	1.97 Kn
Wind Down	3.31 Kn	Snow	0.00 Kn

Moment Wind 4.01 Kn-m

 Phi
 0.8
 K8
 0.66

 K1 snow
 0.8
 K1 Dead
 0.6

K1 wind 1

Material

Shaving	Steaming	Normal	Dry Use
fb =	34.325 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	$\mathbf{fp} =$	7.2 MPa
ft =	20.75 MPa	E =	8793 MPa

Capacities

PhiNex Wind	227.20 Kn	PhiMnx Wind	9.48 Kn-m	PhiVnx Wind	42.70 Kn
PhiNcx Dead	136.32 Kn	PhiMnx Dead	5.69 Kn-m	PhiVnx Dead	25.62 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.45 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.21 < 1 OK$

Deflection at top under service lateral loads = 20.05 mm < 37.90 mm

 $D_S = 0.6 \text{ mm}$ Pile Diameter

L = 1400 mm Pile embedment length

f1 = 2850 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 7.875 m^2

 $\label{eq:moment Wind = 4.01 Kn-m} \begin{tabular}{ll} A.01 Kn-m \\ Shear Wind = 1.41 Kn \\ \end{tabular}$

Pile Properties

Safety Factory 0.55

Hu = 5.75 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 9.75 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.41 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1400 mm Pile embedment length

f1 = 2850 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 4.01 Kn-m Shear Wind = 1.41 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.75 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 9.75 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.41 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1400) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1400)

Skin Friction = 15.83 Kn

Weight of Pile + Pile Skin Friction = 19.69 Kn

Uplift on one Pile = 7.80 Kn

Uplift is ok