General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

SUMMARY REPORT

for

NAS10 - 8375

entitled

NETWORK MODEL AND SHORT CIRCUIT PROGRAM

FOR THE

KENNEDY SPACE CENTER ELECTRIC POWER DISTRIBUTION SYSTEM

(NASA-CR-153051) NETWORK MODEL AND SHORT
CIRCUIT PROGRAM FOR THE KENNEDY SPACE CENTER
ELECTRIC POWER DISTRIBUTION SYSTEM Summary
Report (Georgia Inst. of Tech.) 143 p HC Unclas
A07/MF A01 CSCL 14B G3/14 29300

Prepared by:

Electric Power Laboratory School of Electrical Engineering Georgia Institute of Technology Dr. R. P. Webb, Program Manager

Ong 405:0.

TABLE OF CONTENTS

			Pag
I.		INTRODUCTION	1
II.		NEIWORK MODEL	2
	1. 1.A. 1.B. 1.C.	Introduction Model Per Unit Base Motor Contribution Transformers	3 3 3 11
	2. 2.A. 2.B.	Positive-Negative Sequence Impedances of 30 Cables Impedance Formulas - General Impedances of Cables in Fiber Ducts or Directly Buried in Earth	16 16 19
	2.C. 2.D.	Impedances of Aerial Cables Cables in Steel Conduit	24 29
	3. 3.A. 3.B.	Positive-Negative and Zero Sequence Impedances of Overhead Lines Positive-Negative Sequence Impedances Zero Sequence Impedances	35 35 37
	<u> </u> 4.A.	Zero Sequence Impedances of 30 Power Cables General	<u>144</u> 144
	4.B.	Case a:: 3 Conductor Sheathed Cable in Fiber Duct With Earth Return	45
;	4.C.	Case a: 3 Conductor Sheathed Cable in Steel Conduit With Earth Return	48
1	4.D.	Case b: 3 Conductor Non-Sheathed Cable in Steel Conduit With Earth Return	57
1	4.E.	Case b: 3 Conductor Non-Sheathed Cable in Fiber Duct With Earth Return	57
	4.F.	Case c: 3 Conductor Sheathed Cable Installed Aerially Suspended From a Messenger With One Ground Wire At Top With Earth Return	58
4	4.G.	Case c': 3 Conductor Sheathed Cable Installed Aerially Suspended From a Messenger With Earth Return	62
1	4.Н.	Case d: 3 Single Conductor Non-Sheathed Cables in Steel Conduit With Earth Return	63
_	4.I.	Case d': 3 Single Conductor Non-Sheathed Cables in Fiber Duct With Earth Return	63
_	4.J.	Case e: 3 Single Conductor Non-Sheathed Cables Aerially Suspended From a Messenger With One Ground Wire At Top With Earth Return	64
1	4.K.	Case e': 3 Single Conductor Non-Sheathed Cables Aerially Suspended From a Messenger With Earth Return	67

TABLE OF CONTENTS (CONT.)

		Page
4.L.	Case f: 3 Single Conductor + One Grounded Neutral Conductor in Steel Conduit With Earth Return	67
4.M.	Case f': 3 Single Conductor + One Grounded Neutral Conductor in Fiber Duct With Earth Return	69
5.	Summary of Network Configuration and Bus Designations	71
5.A. 5.B.	Bus Code Designations and Voltage Levels Launching Complex - Industrial Area Interconnections	7 <u>1</u> 106
III.	SHORT CIRCUIT PROGRAM	110
l.	Introduction	110
2. 2.A. 2.B.	Short Circuit Program Description General Description Network Z _{Bus} Assembly	110 110 111
2.C. 2.D.	Short Circuit Calculations Computational Flow Chart	114 116
3.	Input Data Preparation	118
4. 4.B. 4.B. 4.D. 4.E. 4.E. 4.E. 4.E. 4.E. 4.E. 4.E	Program Utilization Title Set Parameters Network Data Network Changes Creating a Tape Using a Tape Requesting Output Matrix Changes Program Control Output Description Sample Deck	115 120 121 121 121 122 123 124 126 129 130
APPENI	DIX I COMPUTER PROGRAMS FOR PARAMETER COMPUTATIONS	132
I.A. I.B. I.C. I.D.	PIAC XLPA	132 133 134 136

TABLE OF CONTENTS (CONT.)

ATTACHMENTS

- I. Work Sheets of Per Unit Impedance of Coded Buses
- II. Sequence Impedance Parameter Tables
- III. Coded Single Line Diagrams
- IV. Computer Output of Network Parameter Values
- V. Base Case Short Circuit Program Output

I. INTRODUCTION

This report summerizes two major sub-tasks of contract NAS10-8375, "Computer Model Development for Electrical Power Systems." These subtasks are:

- 1. System Model Development
- 2. Short Circuit Program Development

These tasks have been pursued over the preceding ten month interval and have resulted in a complete representation of the power network to the 480 volt level, and a short program tailored to the KSC network implemented on the KSC digital computer system. The explicit summary of these developments is included in the attachments to this report, which are:

- 1. System one-line diagram coded with model bus designations.
- 2. Computer print-out of network data base.
- 3. Computer listing of the short circuit program including short circuit values for the existing network.

This report is intended as a user's guide to the network model and the short circuit program. Emphasis is placed on requirements for updating the model and the program to incorporate modification and additions to the existing KSC network.

Section II of the report describes in detail the assumptions made and the techniques used in determining network model parameter values. Necessary formulae together with sample calculations for determining impedance values for each of the many line and cable configurations utilized at KSC are included. These formulae will provide the necessary data required to update the network for future changes.

Section III describes the short circuit program. Included is a description of the basic computational techniques employed, a flow diagram of the program and a detailed description of operational procedures. A definitive description of program change procedures to incorporate network changes is included.

II. Network Model

Introduction

The objective of this section is to illustrate the methods and formulas used in modeling the system. We have considered it useful to outline the assumptions made where no exact data was available to enable the user to update this model if such data is obtained in the future. We also emphasize that ground faults in electrical cables will, in general, define a band of current levels which is time dependent; the level of fault current increasing with time. In this report, we have chosen the upper boundary of the band because it will certainly define the maximum settings that ground relays should have.

This section is divided into 3 main items, each one subdivided accordingly to its context:

- 1. Model per unit base
- 2. Positive-Negative sequence impedances of 3 p power cables
- 3. Positive-Negative and Zero sequence impedances of overhead lines
- 4. Zero sequence impedance of 3 p power cables
- 5. Summary of network configuration and bus designations

Appendix I - Computer programs for zero sequence impedance calculations of 3 p power cables

The model data is an integral part of the short circuit program and may be printed on demand. A print-out of existing parameters is provided as an attachment. Work sheets of impedance calculations are also attached.

A set of single coded line diagrams is attached to provide the interface between the assigned bus codes and the actual network designations. Section V also provides a list of bus codes correlated with network location.

The Indian River Draw Bridge system is an independent system from the Launching Complex or the Industrial Area systems and it must be considered as a separate computer program. Data has been computed in per unit impedances and a set of cards is furnished for this system.

1. Network Model

A. Model Per-Unit Base

a) The following base has been chosen for both the Launch Complex and the Industrial Area

Voltage Base: 13.8 KV Power Base: 10 MVA

Current Base: 418.86571 AMPS Impedance Base: 19.044 Ohms.

According to this base the following voltage sources are defined:

Launch Complex = 1.0 Industrial Area = $(.9565217)^2$ = $(13.2/13.8)^2$ = .9149338

b) Transfer factors for cables impedances at different voltage levels are obtained by the formula =

 $Z_{(p.u.)} = Z_{(ohms)} \times F/_{19.044}$

where F, the transfer factor, is given as:

 $F = \prod_{i=1}^{n} F_i$

and

 $\mathbf{F_i} = \mathbf{square}$ of turns ratio of a transformer in the circuit

n= number of transformers between the two different voltage levels.

Typical Transfer Factors are as follows

13.8 KV to 4.16 KV F= 11.00453

13.8 KV to 2.4 KV F= 33.0625

13.2 KV to 2.4 KV F= 30.250

13.8 KV to 480v F= 826.5625

B. Motor Contribution Modeling

In modeling motors two different criteria has been followed:

Criteria #1: Motors above 600volt.

Criteria #2: Motors at 480volts with code letters

a) Motors above 600 volts

Reactances and resistances values for these motors have been requested from the manufacturers and in only one case

have we been sucessful in obtaining that data at the present time. This information concerns the four 2500 HP synchronous, 1200 SRPM, 4160v-3% motors installed in the Launching Complex Utility Annex manufactured by Electric Machinery Co. Sequence impedances are as follows:

Positive Sequence: 0 + j .7253885 per unit Negative Sequence: 0 + j .777201 "
Zero Sequence: 0 + j .5181345 "
Voltage source: 1.0 + j .0 "

Due to the ground connection shown for all motors in Motor Control Centers A & B, we have assummed a Y grounded connection for these motors and therefore an entry exists for the zero sequence impedances for all motors in the Utility Annex, - If any of the referenced motors have either a Delta or WYE non-grounded connection the zero sequence entry shall be replaced by "Infinite", (See value assigned to "infinite" in the computer program).

All other motors not installed in the Utility Annex have been considered as being Delta connected consequently having an "Infinite" zero sequence impedance. Due to the lack of accurate information, the present model for the induction motors has been implemented accordingly to the locked rotor code or locked rotor current if known.

Example #1

Industrial Area CIF chillers #1, #2, & #3, 688 BHP- 2300v-149 FLA-730LRA - 3600RPM- Trane Locked Rotor Reactance = 1.8212 ohms = $\underline{2300}v$

730√3

Transformer: $13200 \triangle 2400 \triangle F = 30.250$

Motor Impedance per unit: 1.8212 x 30.250 = 2.89284

19.044

Motor Impedance:

Positive and Negative Seq: 0 + j 2.89284

Zero sequence: Infinite Voltage source: .9149338

Example #2

Launching complex substation # 924: 2500HP .4160v - 297 FLA-locked rotor code G Assummed connection: non-grounded WYE

locked rotor code: G 5.6 to 6.29 KVA/HP

Assummed KVA/HP = 6.0

KVA locked rotor = 15000

locked rotor current = 2084 amps

locked rotor reactance = 1.1538 ohms

transformer: 13800 △ 4160 Y

factor: 11.00453

per unit reactance: $1.1538 \times 11.00453 = .66672$

19.044

Motor Impedance:

Positive and Negative sequence: 66672 i + 0

Zero sequence:

Infinite

Voltage source:

1.0

Example #3

Launching Complex Utility Annex motor control centers A

450HP - 4160v - 63.5 FLA-locked rotor code: C

Assummed connection: grounded WYE

locked rotor code C: 3.55 to 3.99 KVA/HF

Assummed KVA/HP = 3.75

KVA locked rotor = 1687.5

locked rotor current = 234,47 Amps

locked rotor reactance = 10.2556 ohms

transformer: 13800 4160 Y

factor: 11.00453

per unit reactance: $10.2556 \times 11.00453 = 5.9262$

19.044

Motor Impedance:

Positive sequence: 0 + j 5.9262Negative sequence: 0 + j 6.3495

Zero sequence: 0 + j 4.2330

Voltage source: 1.0

Example # 4

Launching Complex Utility Annex Motor Control Centers A 350HP. 4160v- synchronous-39 FLA- 327 RPM-200 KVA Assummed per unit impedances base on unit KVA rating

Positive sequence: .01 + j .26Negative sequence: .015 + j .2785

Zero sequence: .01 + j .18

Impedances referred to our base: 10MVA

Transfer factor: 10/.28 = 35.714285Positive sequence: .35714285 + j 9.285714 Negative sequence: .5357142 + j 9.9464297 Zero sequence: .35714285 + 16.428571Voltage source: 1.0 or in ohmic values Z positive = $(.01 + j.26) (4.16)^2 / .28$ ohms Z negative = (.015 + j.2785) (4.16) ²/.28 $Z zero = (.01 + j.18) (4.16)^{2}/.28$ ohms Transfering impedances to 13.8 system Z positive = $(.01^{+}j.26)$ (13.8)²/.28 Z negative = (.015 + j.2785) $(13.8)^2/.28$ Z zero = (.01 + j.18) $(13.8)^2/.28$ ohms ohms Expressing in per unit values Z base = $(13.8)^2 / 10$ Z positive = (.01 + j.26) (10/.28) Z negative = (.015 + j.2785) (10/.28) Z zero = (.01 + j.18) (10/.28)Motor Impedance Positive sequence: .35714285 + j 9.285714 Negative sequence: .5357142 + j 9.9464297 Zero sequence: .35714285 + j 6.428571 Voltage source: 1.0 Example #5 Launching Complex Utility Annex Motor Control Center B 550HP - 4160v-74 FLA- locked rotor code: B Assummed connection: grounded WYE locked rotor code B: 3.15 to 3.54 KVA/HP Assummed KVA/HP = 3.34KVA locked rotor: 1837 locked rotor current = 255.25 Amps locked rotor reactance = 9.4206 ohms transformer: 13.8 A 4.16 Y KV factor: 11.00453 per unit reactance = 9.4206 x 11.00453 = 5.44365 19.044 Motor Impedance Positive sequence: 0 + j 5.44365Negative sequence: 0 + j 5.832480 **4** j 3,88832 Zero sequence: 1.0 Voltage source:

Example #6

Launching Complex Substation #924 and #1021 200 HP-4160v - 24.1 FLA locked rotor code: H Assummed connection: non-grounded WYE

locked rotor code H: 6.3 to 7.09 KVA/HP

Assummed KVA/HP = 6.69KVA locked rotor: 1338

locked rotor current = 185.92 Amps locked rotor reactance = 12,9336 ohms

transformer: 13.8 A 4.16 Y KV

factor: 11.00453

per unit reactance: $12.9336 \times 11.00453 = 7.47388$

19.044

Motor Impedance

Positive and negative sequence: 0 + j 7.47388Zero sequence: Infinite

Voltage source 1.0

Example #7

Launching Complex Substation #924 300HP-4160v - 36.5 FLA-locked rotor code: G Assummed connection: non-grounded WYE locked rotor code G: 5.6 - 6.29 KVA/HP Assummed KVA/HP = 5.94KVA locked rotor = 1782 locked rotor current = 247.61 Amos locked rotor reactance = 9.7113 ohms transformer: 13.8 ∆ 4.16 Y KV Factor: 11.00453 per unit reactance: 5.611651

Motor Impedance

Positive and negative sequence: 0 + j 5.611651 Zero sequence: Infinite 1.0

Voltage source:

Example #8

Launching Complex Substation #927 1000 HP - 4160v -120 FLA-locked rotor code: D (4.0 to 4.49 KVA/HP) Assummed connection: non-grounded WYE Assummed KVA/HP = 4.25

KVA locked rotor = 4250

locked rotor current = 590.54 Amps locked rotor reactance = 4.0719 ohms

transformer: 13.8 ∆ 4.16 Y KV

factor: 11.00453

per unit reactance = 2.36165

Motor Impedance

Positive and negative sequence: 0 + j 2.36165

Zero sequence: Infinite

Voltage source: 1.0

Example #9

Launching Complex Substation #927

500 HP-4160 v -61 FLA-locked rotor code D (4.0 to 4.49

KVA/ RP)

Assummed connection: non grounded WYE

Assummed KVA/HP - 4.25

KVA locked rotor - 2125

locked rotor current = 295.27 Amps

locked rotor reactance = 8.1438 ohms

transformer: 13.8 ∆ 4.16Y KV

factor: 11.00453

per unit reactance: 4.7233

Motor Impedance

Positive and negative sequence: 0 + j 4.7233

Zero sequence: Infinite

Voltage source: 1.0

Example #10

Launching Complex Substation #1020

1000HP-4160v-120 FLA-locked rotor code: E (4.5 to 4.99

KVA/HP)

Assummed connection: non grounded WYE

Assummed KVA/HP: 4.75

KVA locked rotor: 4750

locked rotor current = 660.016 Amps

factor: 11.00453 transformer: 13.8 Δ 4.16 Y KV

locked rotor reactance: 3.6432

per unit reactance: 2.105214

Motor Impedance

Positive and negative sequence: 0 + j 2.105214

Zero sequence: Infinite

Voltage source: 1.0

Example #11

Launching Complex Substation # 1020
400Hp - 4160v - 49.2 FLA-locked rotor code: F (5.0 to
5.59 KVA/HP)
Assummed connection: non-grounded WYE
Assummed KVA/HP = 5.29
locked rotor KVA = 2116
locked rotor current = 294.02 Amps
locked rotor reactance = 8.1784 ohms
factor: 11.00453 transformer: 13.8 Δ 4.16 Y KV
per unit reactance: 4.725868

Motor Impedance

Positive and negative sequence: 0 + j 4.725868
Zero sequence: Infinite
Voltage source: 1.0

Example # 12

Industrial Area Substation OA. Building M7-355 700Hp-230@v - 207 FLA-locked rotor current = 785 Amps — locked rotor reactance: 1.6936 ohms per unit reactance = 2.69015 = 1.6936 $\times \left(\frac{13.2}{2.4}\right)^2 \times \frac{1}{19.044}$

Motor Impedance

Positive and negative sequence = 0 + j 2.69015 Zero sequence: Infinite Voltage source: .914338

Example # 13

Industrial Area Substation B and C, building M7-355 700Hp-2300v - 171 FLA - locked rotor current= 785 Amps locked rotor reactance: 1.6936 ohms Factor = 30.250 per unit reactance = $2.69015 = 1.6936 \times \frac{30.250}{19.044}$

Motor Impedance

Pro-

Positive and negative sequence = 0 + j 2.69015

Zero sequence:

Voltage source:

10 + j 2.69015

Infinite

9149338

This concludes the sequence impedance determination for all motors above 600 volts. We have included our assumptions so that if conditions change adjustments can be made. If we finally receive more accurate information concerning these motors it will be sent to your attention.

Concerning the synchronous motors we have always chosen subtransient reactances so that motor contribution during short-circuit conditions will be maximum possible, although in less than 8 Hertz the motors contribution will be based on the transient reactance due to the exponential decay. If the total armature current during the first cycle is desired, the sequence impedances must be divided by $\sqrt{3}$ as by the following formula:

$$i_{rms} (max) = \begin{bmatrix} i_{dc^2} + i_{ac^2} \end{bmatrix}^{\frac{1}{2}}$$

$$= \begin{bmatrix} \left(\frac{v \sqrt{2}}{x^{11}} \right)^2 \end{bmatrix} + \left(\frac{v}{x^{11}} \right)^2 \end{bmatrix}^{\frac{1}{2}}$$

$$= \sqrt{3} \frac{v}{x^{11}}$$

where

V = rated line to neutral voltage

x " = subtransient reactance

Due to the fast decay of this total armature 1st cycle current, its use is limited to interrupting capacities of circuit breakers.

b) Motors below 600 volts

All of these motors have been considered Delta connected and consequently it has an infinite entry for the zero sequence impedance.

Calculations have been based on the maximum range of the locked rotor code of the machine, as for example a motor having a code letter G that ranges from 5.6 to 6.29 KVA/HP was considered as having a factor of 6.29 for calculation its locked motor current and reactance. As these motors are usually several feet away from the switchgear, their effect over the short-circuit current of the main busses are less critical than with the high voltage motors where its effect can be as high as 70% of the available feeder capacity.

C. Transformers

Transformers are connected Delta-Wye solidly grounded except in a few cases (listed below) where either Delta-Delta or Wye-Wye (solidly grounded both sides) connections have been considered. In the Utility Annex Substation #829, the 4160 Wye connection is grounded thru a resistor of 1.62 ohms.

Transformers in the Launching Complex have primary nominal voltages of 13.8 Kv, consequently they have been considered set in the 13.8 Kv (100%) tap.

Transformers in the Industrial Area have primary nominal voltages of 13.2 Kv (100% tap), 13.2Y7.62 Kv, 13.8 Kv and 24.94Y14.4 Kv. In these cases where the operational voltage of 13.2 Kv differs from the transformer nominal voltage, transformers have been considered to be set in the nearest available tap to the 13.2 Kv level.

Transformers connected to VAB Feeder #609 (operational voltage 13.8 Kv), or to Feeder #211 (operational voltage 13.2 Kv) through 3 x 167 KVA 13.2/13.8 Kv voltage regulators have been considered set at the tap nearest to the 13.8 Kv level.

General:

Per unit sequence impedances have been computed accordingly to the following formula.

$$z_{pu} = z\% \times 10^{-2} \times \frac{MVA \text{ base}}{MVA \text{ unit}} \times (\frac{Kv \text{ unit}}{Kv \text{ base}})^2$$

Then

A. Delta-Wye solidly grounded connection; positive-negative sequence: $0+Z_{pu}$ Zero sequence: infinite at primary, 0+j Z_{pu} at secondary

This has been computed as follows:

Consider that the primary terminal of a transformer is coded as bus 151 and the secondary terminal as bus 152, then two entries exist

Bus Code	Positive-Negative Sequence	Zero Sequence
151-152	0 + j Z	Infinite
Ground 152	Infinite	0 + j Z _{pu}

B. Wye-Wye connection (solidly grounded both sides)

Positive-Negative & Zero Sequence: $0 + j z_{pu}$

C. Delta-Delta connection

Positive-Negative Sequence: 0 + j Z

Zero Sequence: Infinite

Exceptions

Launching Complex Substation #829 Bus Code: 98-100, 99-304 7500 KVA Transformer - 13.3 \triangle 4.16Y Kv 5.7% impedance grounded thru a resistor of 1.62 ohms

$$z_{pu} = 5.7\% \times \frac{10 \text{ MVA}}{7.5 \text{ MVA}} \times (\frac{13.8}{13.8})^2 \times 10^{-2}$$

= .076

Grounding Connection: 3 zero sequence secondary currents flowing thru the resistor

Z equivalent = 3×1.62 ohms = 4.86 ohms at the 4.16 KV side

Impedance referred to the primary side

$$Z_p = 4.86 \text{ ohms } \times (\frac{13.8}{4.16})^2$$

= 53.482 ohms

In per unit base

$$Z_{pu} = \frac{53.482}{19.044} = 2.80834$$

Then

Positive-Negative Sequence = 0 + j. 076 Zero Sequence = 2.80834 + j.076

Industrial Area

Orsino Substation - 13.2 Kv output voltage Main power transformers Bus Codes: 4-8, 4-9, 4-11 10 MVA - 115 Kv 13.2 Kv solidly grounded - 8.0%

$$Z_{pu} = 8 \times 10^{-2} \times \frac{10}{10} \times (\frac{13.2}{13.8})^{2}$$

 $Z_{pu} = .0731947$

As this is the system source, it follows that:

Positive-Negative-Zero Sequence = 0 + j.0731947

2.5 MVA - 115 Kv △ 13.2YKv solidly grounded - 7.83%

$$z_{pu} = 7.83 \times 10^{-2} \times \frac{10}{2.5} \times (\frac{13.2}{13.8})^2$$

$$z_{pu} = j.2865573$$

Positive-Negative-Zero Sequence = 0 + j.2865573

Consequently the impedance contribution by Florida Power Co. will be entered as:

Positive-Negative Sequence: .001189413 + j.0057457842 Zero Sequence: Infinite

Delta-Delta Connection:

Haulover canal (E4-2414) - 3 x 25KVA - 10 - 24.94Y14.4/480-240 considered tap 95% - or new nominal voltage of 1368Kv, %Z = 2.0 Bus code 127-128

Turns ratio: $\frac{1368v}{480v} = 28.5$

Also, in this case a Y-Y connection is also possible giving a 480Y277v output for 1368v primary feeder voltage

$$Z_{pu} = 2.0 \times 10^{-2} \times \frac{10}{075} \times (\frac{13.68}{13.8})^2$$

= 2.6204

Positive-Negative Sequence = 0 + j2.6204 Delta-Delta Zero Sequence = Infinite Wye-Wye Zero Sequence = 0 + j2.6204

Delta-Delta Connection:

Universal Camera Pad #11 (G5-1011) Bus Code 121-122 3 - 15KVA - 10 - 13800/480v - 1.7%Z

$$z_{pu} = 1.7 \times 10^{-2} \times \frac{10}{.045}$$

= 3.77778

Positive-Negative Sequence: 0 + j3.77778 Zero Sequence: Infinite

Delta-Delta Connection:

54WTI (L7-988) Bus Gode 220-221 3 - 37 1/2 KVA - 10 - 13200/480v - 1.6%Z

$$z_{pu} = 1.6 \times 10^{-2} \times \frac{10}{1125} \times (\frac{13.2}{13.8})^2$$

= 1.3012391

Positive-Negative Sequence: 0 + j1.2012391 Zero Sequence: Infinite Wye-Wye Connection:

NASA TWA Tours Maintenance Building Code: 91-90 3-25 KVA - 10 - 7620/13200Y 120/240v - 2.3%

$$z_{pu} = 2.3 \times 10^{-2} \times \frac{10}{.075} \times (\frac{13.2}{13.8})^2$$

= 2.8057969

Positive-Negative-Zero Sequence: 0 + j2.8057969

Wye-Wye Connection:

Indian River Draw Bridge (M3-3) Bus code: 86-87 3-37 1/2 KVA - 10 - 7620/13200Y277/480Y - 1.5%

$$Z_{pu} = 1.5 \times 10^{-2} \times \frac{10}{.1125} \times (\frac{13.2}{13.8})^2$$

= 1.219911

Single Phase Transformers

Single phase transformers have been represented as having a positive sequence impedance given by the general formula:

$$Z_{pu} = Z\% \times 10^{-2} \times \frac{MVA \text{ base}}{MVA \text{ unit}} \times (\frac{Kv \text{ unit}}{Kv \text{ base}})^2$$

The short circuit current at a single phase transformer is represented by a line-ground fault through the transformer positive sequence impedance. Although the 3 Ø symmetrical short circuit program will have a value of short circuit current for every bus, results given by this program shall be disregarded concerning faults of single phase transformers and their corresponding secondary circuits. The short circuit current value for a single phase transformer and its associated secondary circuits is given by the single line to ground short circuit program only.

Example:

1-25 KVA - 10 Transformer 13.2 Kv - 2.5%Z

$$Z_{pu} = 2.5 \times 10^{-2} \times \frac{10}{.025} \times (\frac{13.2}{13.8})^2$$

= 19.149

Example:

1-50 KVA - 10 Transformer 13.2 Kv

1.4% Z connected to VAB Feeder #609

(13.8 Kv operational voltage) phase C to phase A

Consider transformer connected to tap 13.08Y7.9 Kv

$$Z_{pu} = 1.4 \times 10^{-2} \times \frac{10}{.05} \times (\frac{13.68}{13.8})^2$$

= $j2.7514$

2. Positive-Negative Sequence Impedances of 30 Power Cables

In calculating the positive-negative and zero sequence impedances of 5p power cables, we have distinguished 3 different types of installations as follows:

- A. Cables in fiber ducts or directly buried on earth.
- B. Aerial cables.
- C. Cables in steel conduits.

For each particular installation we will also distinguish cable construction as follows:

- a. Copper or aluminum conductors.
- b. Oil-impregnated paper, rubber or cross-linked polyethylene insulation (133% considered on all cables above 1KV).
- c. Shielded, belted, or non-shielded (shielded cables considered for all cables above 5KV on PICNJ cables and above 1KV for all BRNJ and XLP cables).
- d. Lead or aluminum sheath, or non-sheathed cables.
- e. 1 or 3 conductor cables.
- f. Single, double armored or non-armored cables.
- g. Utilizátion voltages.

A. Impedance Formulas - General

a) Resistance:

In general resistance calculations can be defined from the following formula:

$$R_{ac} = R_{dc} \times K_{t} [1 + K_{1} (K_{s} + K_{p} - 1) + K_{2}K_{\ell} + K_{c} + K_{a}]$$

where

 R_{ac} = ac resistance of conductor in ohms/mile

 $R_{dc} = dc$ resistance of conductor in ohms/mile

 K_{t} = temperature correction factor

 $= 1 + h \Delta t$

and

h = .00393 for 100% copper at 20° C $(68^{\circ}$ F)

= .00403 for 61% aluminum at 20°C

$$K_1$$
 and K_2 = spacing correction factors
 $K_1 = K_2 = 1.0$ for 3 conductor cables

 $K_1 = K_2 = 2.0$ for close-triangle 1 conductor cables

 $K_1 = 1.7$, $K_2 = 2.0$ for wide-triangle | 1 conductor cables

 $K_s = skin$ effect ratio as tabulated

s
$$K_{p} = \text{proximity effect}$$

$$= \underline{u \text{ (ma)}}$$

$$1 - \underline{a}_{2}^{2} \propto (\text{ma}) + \underline{a}_{b} \cdot (\underline{\text{ma}}) / \underline{s}^{4}$$

$$1 - \underline{a}_{2}^{2}$$

$$\underline{s}$$

where

a = radius of conductor

s = spacing of conductors

$$ma = .0636 (f/R_{dc})^{1/2}$$

for f = frequency in hertz

$$R_{dc} = dc$$
 resistance in ohms/mile
 $u (ma) = 1 + \frac{c}{4} - \frac{5c^2}{24} - \frac{3c}{8}$
for $c = \frac{a^2}{s^2} \sim (ma)$

 \propto (ma) = bessel function of 1st kind b (ma) = bessel function of 1st kind

Ky= sheath effect ratio ·

$$= \frac{3.06 \times 10^{-6}}{R_{dc}} (f n)^{2}$$

where

n = radius of a circle through the center of conductors

m = mean radius of sheath

R_{dc} = dc resistance of conductor in ohms/mile

 R_{ρ} = sheath resistance in ohms/mile

 $K_{a} = armor$ effect ratio

= K_l (approximate for 3 conductor cables-not used with 1 conductor cable due to magnetic induction effects

$$K_c = pipe effect ratio$$

$$= (.89D - .115p) \times 5.28 \times 10^{-3}$$
 R_{dc}

where

D = core diameter of cable in inches

p = pipe mean diameter

R_{dc} = dc resistance of conductor in ohms/mile

b) Reactance

The inductive reactance of cables is a function of cable arrangement, existance of sheath and type of material, and whether or not they are installed in a magnetic duct. As there is not a general expression that could include all variations possible, we will delay reactance considerations to be analized under each particular configuration and type of installation.

The shunt capacitive reactance of cables can be divided into two main categories:

- A. Shielded cables
- B. Belted sheathed cables

Shielded cables:

For shielded cables, the shunt capacitive reactance can be expressed by the formula:

$$X_1 = X_0 = -j \frac{4.12237}{f \cdot e} \log v \text{ megohms - mile}$$

where

f = frequency in hertz

e = dielectric constant

= 3.7 for PTLC cables (varies from 3.3 to 4.2)

= 5.5 for BRNJ cables (varies from 2.5 to 6.0)

= 2.3 for XLP cables

v = mean radius of shield

a = radius of conductor

X₁ = positive sequence shunt capacitive reactance

X = zero sequence shunt capacitive reactance

Belted cables:

$$X_1 = -j \cdot \underbrace{597}_{f} G_1$$
 megohms - mile

$$X_0 = -j \frac{1.79}{f \cdot e} G_0$$
 megohms - mile

where

G, = geometric factor for positive sequence

G = geometric factor for zero sequence

G and G are given by curves as a function of the ratio

$$\frac{T+t}{2a}$$

where

T = thickness of conductor insulation

t = thickness of belt insulation

a = radius of conductor

Curves for geometric factors can be found on page 69 of "Transmission and Distribution Reference Book" and incorporate changes thought to represent today's lielectric constants of BRNJ and XLP cables.

B. Impedances of Cables in Fiber Ducts or Directly Buried in Farth

a) Resistance:

$$R_{ac} = R_{dc} \cdot K_{t} [1 + K_{1} (K_{s} + K_{p} - 1) + K_{2}K_{\ell} + K_{a}]$$

a.1. 3 conductor cables

$$R_{ac} = R_{dc} \cdot K_t (K_s + K_p + K_t + K_a)$$

PILCNJ Cables: Resistance for these cables have been taken from tabulated values of "Transmission and Distribution Reference Book" appendix tables #5 and #6.

BRNJ Cables: Resistance for these cables have also been taken from tabulated values of "Transmission and Distribution Reference Book" appendix #9.

<u>XLP Cables:</u> Resistance for these cables have also been taken from tabulated values of "Transmission and Distribution Reference Book" appendix #9.

PILCA Double Armor: Resistance values for this cable have been computed as follows:

Cable: 3c - # 2/o - Cu - 15KV - FILC - Double Armor - Shielded conductor diameter = .323" a = .1615;

Conductor insulation = 215 mils = .215"

Outside diameter of cable = 2.0225"

 $GMR_{1c} \neq 2/o = .151"$

 $GMR_{3c} # 2/o = .386$ "

Resistance for this cable will be equal to that corresponding to one #2/o - 5c - Cu - PILCNJ directly buried plus the losses in the double exmor.

Resistance of 3c - # 2/o PILCNJ - 15Kv - DB = .51 ohms/mile Sheath resistance = .981 ohms/mile = R Sneath thickness = 110 mils = .110"

Calculating sheath effect ratio:

 $R_{dc} \# 2/o = .4282$ ohms/mile at 25°C

$$R_{de} \cdot K = \frac{3.06 \times 10^{-6}}{R} \times 3.6 \times 10^{3} (\frac{n}{m})^{2}$$

Where we assumed n approx = $GMR_{3c} = .386^{\circ}$

 $m = GMR_{3c} + insulation thickness + radius of conductor + thickness of sheath /2.$

$$m = .386" + .1615" + .215" + .055 = .8175"$$

$$R_{de}$$
 . $K_2 = \frac{3.06 \times 3.6 \times 10^{-3}}{.981}$ $(\frac{.386}{.8175})^2$ ohms/mile = .002503 ohms/mile

We have originally assumed that armor losses are approximately equivalent to sheath losses.

Then for double armor R_{dc} . $K_{a} = 2R_{dc}K_{f}$

$$R_{dc} K_a = .005006$$
 ohms / mile

And the resistance of one 3c . \neq 2/o - Cu - PILC - double armor 15Kv cable directly buried will be:

$$R_{\rm ac} = .515006$$
 ohms/mile

a.2. Single Conductor Cables:

$$R_{ac} = R_{dc} \times K_{t} [1 + 2(K_{s} + K_{p} - 1)]$$

Considering close-triangle arrangement, non-sheathed cables.

BRNJ Cables: Resistance for these cables have been taken from tabulated values of "Transmission and Distribution Reference Book" appendix table #9.

XLP Cables: Same as BRNJ.

RHW-USE: Resistance for these cables have been computed based on the National Electric Code 1971 Ed, appendix tables 8 and 9.

Example:

Cable: 3 single copper conductors ≠ 4 - BRNJ - shielded 5Kv installed in 4" fiber duct.

Outside diameter of cable = .67" Conductor radius = a = .116" GMR_{lc} = .08404"

Insulation = 10/64" = 156 mils = .156" R_{dc} = .259 ohms/1000' = 1.36752 ohms/mils

 $K_{t} = 1.154 \text{ for } 65^{\circ}\text{ C}$

 $K_{\rm S} = 1.00013$

 $K_p = 6 \left(\frac{GMR}{GMD} \right)^2 \left(K_s - 1 \right)$

From page 2-5 of "Underground System Reference Handbook".

Where:

GMD = geometric mean distance GMD = $(S_1 \cdot S_2 \cdot S_3)^{1/3}$

Where:

 \mathbf{S}_1 , \mathbf{S}_2 , \mathbf{S}_3 are the respective spacing of the 3 conductors centers from each other.

Generally $S_1 = S_2 = \text{outside diameter.}$

 $\rm S_{\overline{3}}$ depends on the ratio between the duct and conductor diameter, in this case we have graphically found $\rm S_{\overline{3}}$ = 1.61 $\rm S_{\overline{1}}.$

$$GMD = .67" (1.61)^{1/3}$$
$$= .78591"$$

$$K_p = 6 \times 0.00013 \left(\frac{.08404}{.78591} \right)^2 = .000010062$$

 $R_{ac} = 1.36752 \times 1.154 [1 + 2(1.00013 + .000010062)]$

 $R_{ac} = 1.57948$ ohms/mile at 65° C

b) Reactance

Reactance of 3 conductor or single conductor, non-sheathed cables in non-magnetic conduit or directly buried is given by the formula:

$$X_1 = .279^{h} \text{ K log } \frac{\text{GMD}}{\text{GMR}}_{\text{lc}}$$

Where K is the random spacing factor:

K = 1.0 for 3 conductor cables K = 1.2 for 1 conductor cables

For sheathed cables, a reduction in reactance is produced by the induced currents in the shield and sheath structures.

For sheathed cables, this decrement in reactance can be approximated by the formula:

$$X_{ac} = K_a X_1$$

and

$$K_{d} = 1 - \frac{X_{s}}{X_{1}} \cdot \frac{X_{s}^{2}}{R_{\ell}^{2} + X_{s}^{2}}$$

Where

X = apparent reactance

8.C

$$X_{\rm g} = .2794 \log \frac{\rm d}{\rm g}$$

Where

d = (ore diameter + sheath thickness)/2

g = core diameter - insulation thickness - radius of conductor

Due to the resistance of lead sheaths, the decrement of reactance due to the induced sheath currents is very small approximately of the order of 1 to 5%.

b.1.3 Conductor Cables:

PILCNJ Cables: Reactance values for these cables were taken from tabulated values of "Transmission and Distribution Reference Book" appendix tables \neq 5 and \neq 6.

XLP and BRNJ Cables: Reactance values for these cables were computed accordingly to the above given formula.

Example:

3c - CR - Cu - # 1/o - BRNJ 15 Kv shielded in non-magnetic duct on directly buried in earth

PTLCA - double armor: Reactance values for this cable have been computed as follows:

Cable: $5c - \#2/o - Cu - CS - 15Kv - PILC - double armor - shielded GMR_lc = .151" Conductor radius = <math>a = .1615$ " Insulation = 215 mils = .215"

Reactance without armor = .188 ohms/mile
Reactance with armor = 1.2 x .188
= .2256 ohms/mile

Where 1.2 is a correction factor for magnetic binders on 3 conductor cables by IPCEA Standard, August 4, 1933.

b.2.Single Conductor Cables

$$X_1 = .2794 \times 1.2 \log \frac{GMD}{GMR}$$

XLP and BRNJ: Reactances for these cables have been computed using the above given formula and graphically determination of conductor spacing inside duct.

RHW-USE: Reactances for these cables have been computed using the above given formula and graphically determination of conductor spacing inside duct.

Example:

Cable: 3 single copper conductors #4 - CR - BRNJ - shilded - SKV - installed in 4" fiber duct.

Outside diameter of cable = $.67^{"}$ Insulation = 10/64" = .156"GMR_{le} = .08404"

GMD = .78591" (see resistance - single conductor cables in fiber ducts or directly buried in earth)

$$X_1 = .2794 \times 1.2 \log \frac{.78591}{.08404}$$

= .3257 ohms/mile

Example:

Cable: 3 single copper conductors 350 MCM - CR - XLP - 15 Ky - shielded - installed in $4^{\rm u}$ fiber duct.

Outside diameter = 1.45"
Diameter of conductor = .681" a = .3405"
Insulation = .215" (133%)
Jacket = .08"

GMR_{1c} = .26145"

GMD = (S. S. (S + .615)) $^{1/3}$ = S (1.61) $^{1/3}$ = 1.1735

Where S = outside diameter

GMD = 1.725"

$$X_1 = .2794 \times 1.2 \log \frac{1.725}{.26145}$$

 $X_1 = .275 \text{ ohms/mile}$

C. Aerial Cables:

a. Resistance

Resistance calculations have been based on the general resistance formula

$$R_{ac} = R_{dc} \cdot K_t [1 + K_1 (K_s + K_p - 1) + K_2 K_L + K_c + K_a]$$

Where K has been deleted for cables suspended on a messenger.

a 1.3 Conductor Cables:

$$R_{ac} = R_{dc} \cdot K_t (K_s + K_p + K_l)$$
 For non-armored cables

PIAC Cables: Resistance values have been computed using the above formula as follows:

Example:

Cable: 3 conductor copper # 4/o - CS - 15Kv PIAC (aluminum sheath) shielded - suspended on messenger

Core diameter = 1.917"

Conductor diameter = .41"

Conductor insulation = .215"

Conductor insulation = .215" (133%) (13

We have assumed (no exact data available) that lead sheath thickness will be equivalent to aluminum sheath thickness.

Resistance of the lead sheath of one 3c - Cu- # 4/o - CS - PILCNJ - 15Kv = R_g = .855 ohms/mile

Resistance of an equivalent thickness aluminum sheath = $R_{a\ell}$ = .855 x .12067272

$$R_{de}K_{e} = \frac{3.06 \times 3.6 \times 10^{-3}}{.12067272 \times .855} (\frac{.146}{.923})^{2}$$
 ohms/mile = .025 ohms/mile

$$R_{ac} = R_{dc} (K_s + K_p) + R_{dc} K_k$$
 ohms/mile
= .31 (1.00446) + .025 ohms/mile
= .3353 ohms/mile

There

Resistance at 65° C of 3 conductor - copper - CS - # 4/o PIAC - ISKV - shielded in 4° fiber duct or directly buried in earth = .3353 ohms/mile

a.2. Single Conductor Cables:

$$R_{ac} = R_{dc}$$
 . $K_t [1 + 2(K_s + K_p - 1) + 2K_{sh}]$

XLP Cables: Resistance values for these cables have been computed as follows:

Example:

Cable: 3 single conductors - copper - 350 MCM - XLP 15 Kv - shielded - suspended on messenger.

a.3. Shield Resistance Tactor

Resistance losses due to induced currents in the shielding assembly can be expressed similarly as sheath losses by the formula

$$R_{dc}$$
 . $K_{sh} = 555/R_{s}$ microhms/ft

Where K_{sh} = resistance increment factor due to shield currents R_s = shield resistance in microhms/ft

We have considered shielding to be composed of helically wound copper wires for which the resistance can be expressed as

$$R_s = 963D + 45$$
 microhms per ft. at 25°C

Where D = Core diameter

There

$$R_s = 1150.79 + 45 \text{ microhms/ft at } 25^{\circ}\text{ C}$$

= 1380 microhms/ft at 65° C

$$R_{ac} = .187668 [1 + 2 (1.009 + .00124 - 1)] + .004246 ohms/mile = .195765 ohms/mile$$

Resistance of 3 single copper conductors 350 MCM - XLP 15Kv - shielded - suspended on a messenger = .196 ohms/mile at 65°C.

b. Reactance

b.1.3 conductor PIAC cables: Reactance values for these cables have been computed according to the formula

$$X_{ac} = .2794 K_{d} log \frac{GMD}{GMR_{k}}$$
 ohms/mile

Where

$$K_{d} = 1 - \frac{X_{s}}{X_{1}} \cdot \frac{X_{s}^{2}}{R_{g} + X_{s}^{2}}$$

$$X_s = .2794 \log \frac{d}{g}$$
 ohms/mile

d = (core diameter + sheath thickness) /2 g = (core diameter) /2 - insulation thickness - radius of conductor

Example:

Cable: 3 conductor copper #4/o - CS - PIAC 15KV (aluminum sheath) shielded - suspended on messenger

Core diameter = 1.917"

Conductor diameter = .417"

Insulation = .215" (133%)

GMR_{1c} = .191"

Aluminum sheath = .115"

Resistance of aluminum sheath = .1032 ohms/mile

GMD = conductor diameter + 2(insulation) + shielding + spacing factor = .417" + 2(.215") + .006" + .03025"

GMD = .9"

$$d = (1.917" + .115") / 2$$
= 1.016"

 $g = \frac{1.917"}{2} - .215" - .205"$
= .538"

 $X_s = .2794 \log \frac{1.016}{.538} \text{ ohms/mile}$
= .07711 ohms/mile

But for compact sector (CS) conductors, reactance has a decrement fact.; by IPCEA Standard, August 1933, of .975 for 250 MCM and smaller cables.

$$X_s = .975 \times .07711$$
 ohms/mile
= .0751 ohms/mile

And

$$X_1 = .2794 \log \frac{GMD}{GMR}_{1c}$$
 ohms/mile
= .2794 $\log \frac{.9}{.191}$ ohms/mile
= .1881 ohms/mile

$$K_d = 1 - \frac{(.0751)^3}{.1881} \cdot \frac{1}{(.1032)^2 + (.0751)^2}$$
 $K_d = .862$
 $X_{ac} = .862 \times .1881$
 $= .162 \text{ ohms/mile}$

Reactance of one 3 conductor copper - CS - $\# \frac{1}{4}$ /o - PIAC 15Kv - shielded cable suspended on messenger = .162 ohms/mile

The behavior of induced currents in the lead sheath of one 3c # 1 - PILCNJ 15Kv has been computed using the above method and results are as follows:

$$R_{\tilde{L}}$$
= .900 ohms/mile
 $K_{\tilde{d}}$ = .9964
 $X_{\tilde{l}}$ = .2288 ohms/mile
 X_{ac} = .228 ohms/mile

b. 2. XLP Single Conductor Cables: Reactance values for these cables have been computed using the general formula

$$X_1 = .2794 \log \frac{GMD}{GMR}$$
 ohms/mile

Where GMD = $(1.05)^{1/3}$ x outside diameter Considering that the spacing of the helically twisted conductors is not exactly symmetrical.

Calculations done for XLP - 15Kv - shielded cables have resulted in values very close to published data in "Distribution Systems" appendix table 8 by Westinghouse Electric Company, consequently the positive sequence impedance for these cables have been taken from such publication.

Example:

Cable: 3 single conductors copper #4/o, XLP 15Kv - shielded - suspended on messenger.

Outside diameter = 1.32"

GMR_{lc} = .19989"

GMD = 1.02 x 1.32"

GMD = 1.02 x 1.32" = 1.3464"

 $X_1 = .2794 \log \frac{1.3464}{.19989}$ ohms/mile = .2313823 ohms/mile

Reactance of 3 - lc - $\frac{1}{4}$ 4/o - XLP 15Kv suspended in messenger = .2313823 chms/mile

p) Cables in Steel Conduit:

a. Resistance:

$$R_{ac} = R_{dc} \cdot K_{t} [1 + K_{l} (K_{s} + K_{p} - 1) + K_{2}K_{l} + K_{a} + K_{c}]$$

Where

 $K_1 = K_2 = 1.0$ for 3 conductor cables $K_1 = K_2 = 2.0$ for 1 conductor cables in close triangular configuration

a.1.3 Conductor Cables

PIAC and PILCNJ Cables: Resistance values for these cables have been computed adding the steel conduit contribution to the tabulated resistance for cables in fiber ducts or directly buried in earth.

Example:

Cable: 3 conductor copper - CS - #4/o - PILCNJ 15Kv - shielded in 4° steel conduit.

Core dismeter = 1.953" = D

$$R_{dc}$$
 . K_{c} = (.89 D - .115p) x 5.28 x 10⁻³ ohms/mile

= (.89 x 1.953 - .115 x 4.0) x 5.28 x 10⁻³ ohms/mile

= .00675 ohms/mile

Resistance of cable in fiber duct = .326 ohms/mile Resistance of cable in steel conduit = .332 ohms/mile

The following formula will also give approximate values of the steel pipe resistance contribution.

$$R_{dc}$$
 . $K_c = (.36r + .185p) \times 10^{-2}$ ohms/mile

Where r = outside radius of sheath

Example:

Cable: 3 conductor copper 500 MCM - CS - PILCNJ 15Kv - shielded in $4^{\rm n}$ steel conduit.

Core diameter = 2.426
Sheath thickness = .130"
Insulation thickness = .215"

$$r = \frac{1}{2} (2.426") + .130"$$

= 1.343"
 R_{de} . $K_{c} = (.36 \times 1.343 + .185 \times 4) \times 10^{-2}$ ohms/mile
= .01223 ohms/mile

Using the first formula

$$R_{dc}$$
 . $K_e = (.89 \times 2.426 - .115 \times 4) \times 5.28 \times 10^{-3}$ ohms/mile = .00897 ohms/mile

Resistance of cable in fiber duct = .145 ohms/mile Resistance of cable in steel pipe = .155 ohms/mile

a.2. Single Conductor Cables:

BRNJ and XLP Cables: Resistance values for these cables have been computed adding the steel conduit contribution to the tabulated resistance for cables in fiber duct or directly buried in earth.

Example:

Cable: 3 single conductor copper 500 MCM - BRNJ 5 Kv - shielded.

Core diameter = 1.244"

Insulation thickness = .172" $r = \frac{1}{2} (1.244") + .026"$ (shield) r = .648" $R_{dc} \cdot K_{c} = (.36x .648" + .185 x 4") x 10^{-2}$ ohms/mile

= .010 ohms/mile

Resistance of cables in fiber duct = .1413 ohms/mile Resistance of cables in steel pipe = .1513 ohms/mile

This result is comparable to the IPCEA V-C specifications that list AC/DC resistance ratios for cables in metallic conduit. Differences between results is of the order of .00267 ohms/mile or 1.76% difference without taking into consideration the shielding resistance contribution.

RHW-USE Cables: Resistance values for these cables have been computed using the ratio between AC/DC resistance factors as published by the National Electrical Code 1971 Ed. Table 9 and calculated skin and proximity effect factors.

Example:

Cable: 3 single conductors copper 350M - RHW-USE 600V in 4" conduit.

Outside diameter = 1.05"
Insulation thickness = .094" GMR_{lc} = .26145" R_{DC} = .0308 ohms/1000 ft. GMD = 1.183×1.05 " = 1.245 ma = .0636 ($\frac{60}{.0308 \times 5.28}$)
= 1.22

$$K_s = 1.01$$
 $K_p = 6 \left(\frac{\text{GMR}_{1c}}{\text{GMD}} \right)^{1/2} (K_s - 1)$
 $= .00277$
 $K_s + K_p = 1.01277$
 $R_{AC} = R_{DC} (1 + 2 \times .01277)$
 $R_{AC} = .0308 \times 5.28 \times 1.153 \text{ ohms/mile}$
 $= .19225 \text{ ohms/mile at } 65^{\circ}\text{ C}$

Resistance of cable in fiber duct at 65°C = .19225 ohms/mile

From NEC Table 9: $\frac{R_{AC}}{R_{DC}} = 1.08$ for cables in magnetic duct

Considered 1.08 = 1.027 + K_c K_c = .0528

Pipe contribution = $.0528 \times 5.28 \times .0308 \times 1.153$ ohms/mile = .0098 ohms/mile

Resistance of cable in steel conduit = .20205 ohms/mile

b) Reactance

b.1.3 Conductor Cables: Reactance values for these cables have been computed using the pipe cables formula given in "Underground Systems Reference Book" Edison Electrical Institute.

$$X = .053f \log \frac{D_1}{D_s}$$
 ohms/mile

Where

f = frequency in hertz

$$D_1 = 1.3 \text{ GMD}$$

$$D_s = F_s$$
 . 2a

a = radius of conductor

 F_s = decrement factor of conducting area due to apparent skin effect. F_s is obtained graphically as a function of the combined AC/DC resistance ratio.

$$F_s = f(W_s)$$

Where

$$W_s = (\frac{R_{s-1}}{R_s})^{1/2}$$
 $R_s = AC/DC$ resistance ratio

PIAC and PILCNJ Cables: Reactance values for these cables in steel conduit have been computed accordingly to the above formulas.

Example:

Cable: 3 conductor copper 350 MCM - CS - PTLCNJ 15 Kv - shielded in $4^{\rm H}$ steel conduit.

Conductor diameter = .539" a = .2695" Core diameter = 2.208" Insulation = .215" AC/DC resistance ratio = $R_s = 1.08$ GMD = .539" + 2(.215") + .006" + .03125" = 1.00625" GMR_{1c} = .2 $\frac{1}{2}$ 7"

$$W_s = (\frac{1.08 - 1}{1.08})^{1/2} = .272$$

$$F_s = .4$$

 $X = .053 \times 60 \log \frac{1.3 \times 1.00625}{.4 \times .559}$ ohms/mile = .2191 ohms/mile

Considering sheath effect reactance decrement:

Reactance of cable in fiber duct = .162 ohms/mile

Sheath effect = .2794 log $\frac{1.00625}{.247}$ - .162 ohms/mile = .00844 ohms/mile

 $X_{AC} = .2191 - .00844$ ohms/mile = .21066 ohms/mile

Reactance of cable in steel conduit = .21066 ohms/mile

XLP and BRNJ Cables: Reactance values for these cables have been computed according to the above formula.

Example:

Cable: 3 conductor copper # 1/o - BRNJ 15 Kv - shielded in 4" steel conduit.

Conductor diameter = .373" a = .187"
Insulation thickness = .297"

GMR_{lc} = .14117"

$$GMD = .373" + 2(.297") + .006" + .03125"$$

= 1.004"

AC/DC resistance ratio = $R_s = 1.02$

$$W_{s} = (\frac{1.02 - 1}{1.02})^{1/2}$$

= .14

$$F_{\rm s} = .394$$

$$X = .053 \times 60 \log \frac{1.3 \times 1.004}{.594 \times .373}$$
 ohms/mile = .265 Ohms/mile

Reactance of cable in steel conduit = .265

b.2. Single Conductor Cables: Reactance values for these cables have been computed based on the formula:

$$X = .2794 \text{ K log } \frac{\text{GMD}}{\text{GMR}}$$

Where K = 1.5Factor that includes the random spacing of cables in the duct and the magnetic effect of the steel.

Example:

Cable: 3 single conductors 500 MCM - BRNJ 5 Ky - shielded in 4" steel conduit.

Conductor diameter = .855"

a = .4275"

Insulation thickness = .172"

 $GMR_{1c} = .31249"$

Core diameter = 1.244"

Outside diameter = 1.47"

GMD =
$$(1.2)^{1/3}$$
 x 1.47"
= 1.5729"

$$X_1 = .2794 \times 1.2 \log \frac{1.5729}{.31249}$$
 ohms/mile = .2358 ohms/mile

Reactance of cable in fiber duct = .236 ohms/mile

$$X = .2794 \times 1.5 \log \frac{1.5729}{.31249}$$
 ohms/mile = .295 ohms/mile

Reactance of cable in steel conduit = .295 ohms/mile

J. Positive-Negative and Zero Sequence Impedances of Over Head Lines.

Configurations: There are two different configurations; A (horizontal line spacing) and B (vertical line spacing).

Configuration A: Lines a, b, and c in same horizontal 10' cross arm, 5'6" from ground wire at top of pole, 30 ft. above ground. Spacing between lines as follows:

Spacing lines a and b = 2.0 ft. = D_{ab} Spacing lines b and c = 5.75 ft. = D_{bc} Spacing lines a and c = 7.75 ft. = D_{ac} Spacing lines a and g = 6.8 ft. = $(4^2 + 5.5^2)^{1/2} = D_{ag}$ Spacing lines b and g = 5.85 ft. = $(2^2 + 5.5^2)^{1/2} = D_{bg}$ Spacing lines c and g = 6.74 ft. = $(3.9^2 + 5.5^2)^{1/2} = D_{cg}$ Spacing lines c and g = 6.74 ft. = $(3.9^2 + 5.5^2)^{1/2} = D_{cg}$ GMD abc = 4.465 ft. = $(2 \times 5.75 \times 7.75)^{1/3}$

Configuration B: Lines a, b, and c on different horizontal planes, all 16" from pole. Ground wire at top of pole 5'6" from line a (highest line horizontal plane). Vertical spacing between lines a, b, and c approximately 2.2325 ft. Average spacing from ground approximately 30 ft.

Spacing lines a and b = 3.5 ft. = D_{ab} Spacing lines b and c = 3.5 ft. = D_{bc} Spacing lines a and c = 4.68 ft. = D_{ac} Spacing lines a and g = 5.59 ft. = $(1.3^2 + 5.5^2)^{1/2} = D_{ag}$ Spacing lines b and g = 7.84 ft. = $(1.69^2 + 7.7325^2)^{1/2} = D_{bg}$ Spacing lines c and g = 10.25 ft. = $(1.69^2 + 10.18^2)^{1/2} = D_{cg}$ GMD_{abc} = 3.855 ft. = $(3.5 \times 3.5 \times 4.68)^{1/3}$

A. Positive-Negative Sequence Impedances

a) Resistance

$$R_{AC} = R_{DC} \times K_{t} \times K_{s}$$

Where R_{AC} , R_{DC} , K_{t} , and K_{s} are as defined before in the section for cables.

$$K_s = f(ma)$$

 $ma = .0636 (f/R_{DC})^{1/2}$

 $K_{\rm S}$ is tabulated as a function of ma in Table 5 of "Transmission and Distribution Reference Book" by Westinghouse and in "Underground Systems Reference Book" by EEI.

Values for R_{AC} are available directly in any table of electrical conductor characteristics as in Tables # 1 through # 4, Chapter # 3, "Transmission and Distribution Reference Book" and have been used in this study.

b) Reactance

b.1. Inductive

$$X_1 = X_2 = .2794 \log \frac{GMD}{GMR_{1c}}$$
 ohms/mile
$$= .2794 \log \frac{1}{GMR_{1c}} + .2794 \log \frac{GMD}{1}$$

$$= X_2 + X_d \text{ ohms/mile}$$

Where
$$X_a = .2794 \log \frac{1}{GMR}_{lc}$$
 ohms/mile $X_a = .2794 \log \frac{GMD}{1}$ ohms/mile

and X_a , X_d are tabulated in Tables #1 to #4 and Tables #6, Chapter #3 "Transmission and Distribution Reference Book" and have been used for this computation.

The above derivation is based on symmetrically transposed lines, symmetrical or unsymmetrical spaced conductors. If lines are not transposed and the conductors are unsymmetrically spaced, results are only approximate, but accurate enough for any computation.

b.2. Shunt Capacitive Reactance

$$X_1' = X_2' = .06831 \log \frac{1}{a} + .06831 \log \frac{GMD}{1}$$
 megohms.mile

Where $a = radius$ of conductor in ft.

 $= X_a' + X_d'$ megohms.mile

 x_a and x_d are tabulated in Tables #1 to #4 and Table #8, Chapter #3 "Transmission and Distribution Reference Book" and have been used for this computation.

Example:

Line: 3 conductors #2/o HD bare copper, A configuration.

Radius of conductor = .207"

RAC = .481 ohms/mile at 50°C

Xa = .532 ohms/mile

Xa = .1205 megohms.mile

GMD = 4.465 ft.

Xd = .1802 ohms/mile

Xd = .04433 megohms.mile

Xa + Xd = .7132 ohms/mile

Xa + Xd = .164933 megohms.mile

Xa + Xd = .164933 megohms.mile

Line Impedance to positive-negative sequence of 3 conductors # 2/o HD bare copper, A configuration = .481 + j.7132 ohms/mile, - j.164933 megohms.mile.

B. Zero Sequence Impedance

Zero sequence impedance calculations are based on Carson's Fundamental Formulas concerning the nature of earth return currents, which are shown below.

$$Z_g = r_c + .00159f + j.004657f log_{10} \frac{2160}{GMR_{1c}} (\frac{P}{f})^{1/2}$$
 ohms/mile $Z_{gm} = .00159f + j.004657f log_{10} \frac{2160}{D_{ab}} (\frac{P}{f})^{1/2}$ ohms/mile

Where

 $Z_{\rm g}=$ self-impedance of one conductor with earth return in ohms/mile $Z_{\rm gm}=$ mutual impedance between two conductors spaced a distance $D_{\rm ab}$ ft. with common earth return in ohms/mile

 $D_{ab} = distance$ in feet between conductors a and b (with common earth return)

f = frequency in hertz

p = earth resistivity in ohms per cubic meter

GMR = geometric mean radius of conductor in feet

The quantity 2160 $(p/f)^{1/2}$ is defined as D_e or the equivalent depth of the earth return current in feet.

or

$$Z_{g} = r_{c} + .0954 + j.27942 \log \frac{D_{e}}{GMR} \text{ ohms/mile}$$

$$Z_{gm} = .0954 + j.27942 \log \frac{D_{e}}{D_{gh}} \text{ ohms/mile}$$

a) 3 6 Circuit Considerations:

For a 3 ϕ circuit with common earth return, a convenient procedure to analyze the system is to replace the 3 line conductors by an equivalent conductor with resistance equal to the 3 line conductors in parallel. Through this equivalent conductor will flow 3 units of current per each unit of current flowing through the line conductors.

These Carson's Formulas applied to a 3 / circuit are

$$Z_{Ol} = r_{c} + .2862 + j.8382 \log \frac{D_{e}}{GMR} \text{ ohms/mile}$$

$$Z_{om} = .2862 + j.8382 \log \frac{D_{e}}{GMD_{p}} \text{ ohms/mile}$$

Where

 $\rm Z_{Ol}$ = zero sequence self impedance of one 3 p circuit with earth return in ohms/mile

Z = mutual zero sequence impedance between two 3 ϕ circuits in ohms/mile

 r_c = resistance of one line conductor of the 3 $\not p$ phase system (if all line conductors are equal) in ohms/mile

D_e = equivalent depth of the earth return current in feet, varies accordingly to the nature of the soil

$$GMR = (GMR_{lc} \cdot GMD^2)^{1/3}$$
 in feet

GMD = equivalent spacing between the 3 conductors of one 3 ϕ system in feet

 $\text{GMD}_2 = \text{equivalent spacing between the 6 conductors of two}$ 5 \$\phi\$ phase systems in feet

r_e = .2862 = resistance of earth return path in ohms/mile, constant value independently of the nature of the soil

b) Effect of Ground Wires:

The presence of ground wires will provide an additional return path to zero sequence currents in the line and thus will affect the formulation of the zero sequence impedance of the 3 \not phase circuit.

If we consider an equivalent conductor to replace the 3 \not line, the ground wires will, besides having its own self impedance, have a mutual impedance Z_{cm} with the equivalent 3 \not phase line conductor; its magnitude given by the Z_{cm} formula where GMD will be the equivalent spacing of the 3 line conductor and the ground wires.

If only one ground wire is present, the following formulation will define self and mutual impedances.

$$Z_{og} = 3rg + .2862 + j.8382 log \frac{D_e}{GMR_{lc}}$$
 ohms/mile

Where rg = resistance of ground wire in ohms/mile GMR_{1c} = geometric mean radius of ground wire $Z_{\text{om}} = .2862 + j.8382 \log \frac{D_{\text{e}}}{\text{GMD}_2}$ ohms/mile $\text{GMD}_2 = (D_{\text{ag}}, D_{\text{bg}}, D_{\text{cg}})^{1/3}$ in feet

The zero sequence impedance of the 3 $\not\! p$ circuit with one ground wire will be defined as

$$Z_0 = Z_{OL} - \left(\frac{Z_{om}}{Z_{og}}\right)^2$$

Where $z_{\rm Ol}$, $z_{\rm og}$, $z_{\rm om}$ are the self impedance of the 3 ϕ circuit, the ground wire and the mutual impedance of the line and the ground wire respectively.

 $Z_{o} = zero$ sequence impedance of one 3 $\not\! p$ circuit with one ground wire Example:

Line: 3 conductors # 4 HD bare copper, A configuration with one ground wire considered to be equal to the phase conductors (no data was furnished for ground wires)

Radius of Conductor =
$$.102^{11}$$

 $r_c = 1.503$ ohms/mile at 50° C
GMD = 4.465 ft.
 $X_a = .609$ ohms/mile
GMR_{1c} = $.00663$ ft.
 $Z_{O1} = r_c + r_e + j(X_e + X_a - 2X_d)$

Where

$$r_e$$
 = .2862 ohms/mile X_e = .8382 log $\frac{D_e}{1}$ ohms/mile

Where $D_e = 880$ ft. for 10 ohms per cubic meter earth resistivity corresponding to sea water.

$$\begin{array}{l} {\rm X_e = 2.469 \ \ ohms/mile} \\ {\rm X_a = .2794 \ \, log \ \, \frac{1}{\rm GMR}_{1c}} \quad {\rm ohms/mile} \\ {\rm X_d = .2794 \ \, log \ \, GMD} \\ {\rm Z_{Ol} = 1.503 + .2862 + j[2.469 + .609 - 2(.1802)] \quad ohms/mile} \\ {\rm = 1.789 + j \ \, 2.7176 \quad ohms/mile} \\ {\rm Z_{og} = 3r_c + r_e + j(X_e + 3X_a)} \\ {\rm = 3(1.505) + .2862 + j(2.469 + 3 \times .609) \quad ohms/mile} \\ {\rm = 4.795 + j \ \, 4.296 \quad ohms/mile} \\ {\rm Z_{om} = r_e + j(X_e - X_{ag} - X_{bg} - X_{cg})} \end{array}$$

Where

$$X_{ag} = .2794 \log D_{ag}$$
 ohms/mile $X_{bg} = .2794 \log D_{bg}$ ohms/mile $X_{cg} = .2794 \log D_{cg}$ ohms/mile

and D $_{\rm ag}$, D $_{\rm cg}$ are the respective distances between the ground wire and conductors a, b, and c in feet.

$$Z_{com} = .2862 + j(2.469 - .2317 - .2140 - .2317)$$
 ohms/mile = .2862 + j 1.7917 ohms/mile

There

$$Z_{o} = Z_{O1} - \frac{(Z_{om})^{2}}{Z_{og}}$$

$$= 1.789 + j 2.7176 - \frac{(.2862 + j 1.7916)^{2}}{4.795 + j 4.296} \text{ ohms/mile}$$
 $Z_{o} = 2.0446888 + j 2.274953 \text{ ohms/mile}$

Zero sequence impedance formed of 3 conductors # 4 HD base copper with one ground wire of same characteristics, A configuration is:

Zero Sequence Shunt Capacitive Reactance:

Calculations of zero sequence shunt capacitive reactance of 3 \not circuits with earth return will be influenced by the presence of ground wires in a manner similar to the inductive reactance calculations as will be indicated by the following formulas:

Zero sequence shunt capacitive reactance (X_{OL}^{i}) of one 3 $\not\! p$ line with earth return (no ground wires)

$$X_{O1}' = X_a' + X_e' - 2X_D'$$
 megohms.mile

Where

$$X_a^i = .0683 \log \frac{1}{a}$$
 a = radius of conductor in feet
 $X_e^i = .205 \log 2h$ h = mean height of line conductors above
ground in feet
 $X_d^i = .0683 \log GMD$

Zero sequence shunt capacitive reactance (X_{og}^{i}) of one ground wire with earth return

$$X_{og}^{i} = 3X_{g}^{i} + X_{eg}^{i}$$
 megohms.mile

Where

$$X'_g = .0683 \log \frac{1}{a}$$
, $a' = radius of ground wire in feet $X'_{eg} = .205 \log 2h'$ $h' = height of ground wire above ground in feet$$

Zero sequence mutual capacitive reactance (\dot{X}_{om}) between one 3 ϕ line and one ground wire with earth return

$$X'_{om} = X'_{e} - X'_{dag} - X'_{dbg} - X'_{dcg}$$
 megohms.mile

Where

Zero sequence shunt capacitive reactance (X_0^t) of one 3 ϕ circuit with one ground wire and earth return

$$X'_{o} = X'_{O1} - \frac{(X'_{om})^2}{X'_{og}}$$
 megohms.mile

Zero sequence shunt capacitive reactance (X_G^1) of one 3 p circuit with one ground wire and earth return

$$X_{o}^{t} = X_{O1}^{t} - \frac{(X_{om}^{t})^{2}}{X_{og}^{t}}$$
 megohms.mile

Example:

Line: 3 conductors $\# \ ^{l_1}$ HD bare copper with one ground wire equal to line conductor with earth return, A configuration.

Zero sequence shunt capacitive reactance of 3 conductors #4 HD bare copper with equal ground wire with earth return, A configuration = -j.3667631 megohms.mile.

4. Zero Sequence Impedance of 3 & Power Cables

A. General

Zero sequence impedance calculations of 3 ϕ power cables are based on Carson's Fundamental Formulas introduced in the Aerial Lines Section which applied to a 3 ϕ system yields the following equations.

$$Z_{Ol} = r_c + r_e + j.8382 \log \frac{D_e}{GMR}$$
 ohms/mile
 $Z_{om} = r_e + j.8382 \log \frac{D_e}{GMD_p}$ ohms/mile

Where

 Z_{O1} = zero sequence self impedance of one 3 $\not\!\! h$ circuit with earth return

 $r_{\rm c}$ = resistance of one line conductor of the 3 $\not p$ system in ohms/mile (if all conductors are equal)

 $GMR = (GMR_{lc} \cdot GMD^2)^{1/3}$ in feet

GMD = equivalent spacing in feet between the 3 line conductor of one $3 \not p$ system

GMR = geometric mean radius of one line conductor in feet

 D_e = equivalent depth of earth return current in feet. In this study, D_e = 880 ft. corresponding to an earth resistivity of 10 ohms.meter cube (sea water)

 Z_{om} = mutual zero sequence impedance between two 3 \not circuits

 GMD_2 = spacing between the equivalent conductors of two 3 ϕ systems or the equivalent spacing between the 6 conductors of two 3 ϕ systems

Several formulations are required to model the behavior of different types of cables under different installation conditions. The following cases are considered for grounded 3 $\not\! p$ systems:

- a) 3 conductor sheathed cable in steel conduit with earth return
- a') 3 conductor sheathed cable in fiber duct with earth return
- b) 3 conductor non-sheathed cable in steel conduit with earth return
- b') 3 conductor non-sheathed cable in fiber duct with earth return
- c) 3 conductor sheathed cable installed aerially suspended from a messenger with one ground wire at top with earth return
- c') 3 conductor sheathed cable installed aerially suspended from a messenger with earth return
- d) 3 single conductor non-sheathed cables in steel conduit with earth return

- d') 3 single conductor non-sheathed cables in fiber duct with earth return
- e) 3 single conductor non-sheathed cables aerially suspended from a messenger with one ground wire at top with earth return
- e') 3 single conductor non-sheathed cables aerially suspended from a messenger with earth return
- f) 3 single conductors + one grounded neutral conductor in steel pipe with earth return
- f') 3 single conductos + one grounded neutral conductor in fiber duct with earth return
- B. <u>Case a'</u>: 3 conductor sheathed cable in fiber duct with earth return (typical for PILCNJ cables in fiber duct or directly buried in earth)

In this case, there are 2 possible different return paths for zero sequence currents: sheath and earth with interrelated mutual coupling which, due to the definition of Carson's Formulas, cannot be successfully decoupled as independent terms, but must be considered as acting jointly together. The figure shown below depicts current flow in these paths together with the voltage drop expressions (the figure is not an impedance diagram).

If we replace the 3 conductors of 3 β cable by one equivalent conductor with a resistance equal to the resistance of one conductor and with an equivalent geometric mean radius GMR = $(GMR_{lc} \cdot GMD^2)^{1/3}$, the self impedance of the cable conductors can be formulated as

$$Z_e = r_c + r_e + j.8382$$
 log $\frac{D_e \times 12}{GMR}$

Similarly, we can define the self-impedance of the sheath as:

$$Z_s = 3r_s + r_e + j.8382 \frac{D_e \times 12}{a_{sH}}$$

Where

 r_s = resistance of sheath in ohms/mile a_{sH} = radius of sheath in inches $GMR = (GMR_{le} * GMD^2)^{1/3}$ in inches

And the mutual coupling between sheath and the equivalent conductor as:

$$Z_{cs} = r_e + j.8382 \log \frac{D_e * 12}{D_{cs}}$$

Where

 $D_{cs}^{}=$ equivalent spacing between conductors and sheath in inches = $a_{sH}^{}$ (approximate) inches

Applying Kirchoff's Equations:

$$I_{o} = I_{s} + I_{G}$$

$$V_{o} = I_{o}^{Z} - I_{s}^{Z} + I_{s}^{Z} - I_{o}^{Z}$$

$$= I_{o} (Z_{c} - Z_{cs}) + I_{s} (Z_{s} - Z_{cs})$$

But
$$I_o = I_s + I_G$$
 Or

2) 0 =
$$I_s (Z_s - Z_{cs}) - I_{G}Z_{cs}$$

 $0 = I_{ss}^{Z} - I_{ocs}^{Z}$

and the equations 1) and 2) defines the model.

Solving fo I_s and substituting in 1)

$$I_{s} = I_{o} \frac{Z_{cs}}{Z_{s}}$$

$$V_{o} = I_{o} (Z_{c} - Z_{cs}) + I_{o} (Z_{s} - Z_{cs}) \frac{Z_{cs}}{Z_{s}}$$

$$V_{o} = \frac{I_{o}}{Z_{s}} [Z_{c}Z_{s} - Z_{s}Z_{cs} + Z_{s}Z_{cs} - Z_{cs}] Z_{cs}$$

$$V_{o} = I_{o} [Z_{c} - \frac{(Z_{cs})^{2}}{Z_{s}}]$$

$$V_{o} = I_{o} [Z_{c} - \frac{(Z_{cs})^{2}}{Z_{s}}]$$
And
$$Z_{o} = \frac{V_{o}}{I_{o}} = Z_{c} - \frac{(Z_{cs})^{2}}{Z_{c}}$$

And the zero sequence impedance of one conductor sheathed cable in fiber duct with earth return is given by

$$Z_{o} = Z_{c} - \frac{(Z_{cs})^{2}}{Z_{s}}$$

This is a theoretical formulation that takes into consideration the existence of two possible return paths for the fault current. Several fault and grounding conditions will affect the impedance of the return path:

1) The resistance of the sheath to ground connection is not low enough that could be disregarded or the sheath is open to ground.

Under this condition, the return path impedance will increase its value approaching a ground return only given by:

$$Z_o = Z_c = r_c + r_e + j.8382$$
 log $\frac{D_e * 12}{GMR}$ ohms/mile

2) The initial fault current returns through the sheath and either is cleared before it can develop to the earth or is prevented by the cable jacket.

Under this condition, the only return path available is through the sheath and its value is given by the equation:

$$Z_{o} = Z_{c} + Z_{s} - 2Z_{cs}$$

$$= r_{c} + 3r_{s} + j.8382 \quad log \quad \frac{a_{sH}}{GMR} \quad ohms/mile$$

3) The initial fault current returns through the sheath and after few cycles develops to the earth with an impedance given by:

$$Z_{o} = Z_{c} - \frac{(Z_{cs})^{2}}{Z_{s}}$$

Several tests conducted by an utility company indicate that this is the most likely condition to occur and it has been considered as such for our calculations.

Comparison values for a 3 conductor 500 MCM - CS - PILCNJ 15 Kv - shielded in 4" fiber duct are as follows:

$$Z_0 = 3.60$$
 ohms/mile for earth return only = .435 + j3.5586 ohms/mile

$$Z_0 = 1.81$$
 ohms/mile for sheath + earth return = 1.515592 + j.99027 ohms/mile

C. Case a) 3 conductor sheathed cable in steel conduit with earth return (typical for PILCNJ Cables in steel conduit)

In this case, there are 3 possible return paths for zero sequence currents: sheath, conduit, and earth. The behavior of the conduit impedance is a random function of the magnitude of current through the pipe and the pipe diameter.

If Z is defined as the pipe self-impedance and Z is the mutual impedance between the cable conductors and the pipe, a derivation by J' H' Neher, published in IEE Transactions on Power Apparatus and Systems - August 1964, pg. 797 to 804 provide a view of the nature of the problem. An excerpt of it follows:

Evaluation of
$$Z_p - Z_{cp} = 3(R_p + jX_p)$$

(From a paper by J' H' Neher published in IEEE August 1964.)

If J_x is the current density in the pipe at a radius $r_p + x$ (x = fraction of pipe thickness), then the net current flowing in the pipe inside a circle of radius $r_p + x$ is:

$$\begin{split} & \mathbb{I}_{x} = \int_{s}^{x} 2\pi (r_{p} + x) J_{x} dx + (\mathbb{I}_{s} + \mathbb{I}_{G} - \mathbb{I}_{o}) \\ & \mathbb{I}_{x} \approx 2\pi r_{p} \int_{s}^{x} J_{x} dx + (\mathbb{I}_{s} + \mathbb{I}_{G} - \mathbb{I}_{o}) \text{ for } x \ll r_{p} \\ & \mathbb{I}_{x} = \pi D_{p} \int_{s}^{x} J_{x} dx + (\mathbb{I}_{s} + \mathbb{I}_{G} - \mathbb{I}_{o}) \end{split}$$

D = pipe diameter

Then

$$H_{x} = \frac{I_{x}}{(D_{p} + 2x)} \approx \pi \frac{I_{x}}{D_{p}}$$

$$H_{x} = \int_{X} J_{x} dx + \frac{I_{s} + I_{c} - I_{o}}{D_{p}}$$

Then

$$J_{x} = \frac{d_{x}}{dH_{x}}$$

The induced emf is $\frac{dp}{dt} = \frac{dx}{dt} \times 10^{-8}$ volts/inch which must equal the voltage drop:

$$u = \frac{dH_x}{dx} \times 10^{-8} = \frac{dJ_x}{dx} = 10^{-6} \text{ volts/inch}$$

$$\frac{dJ_{x}}{dt} = \frac{d^{2}H_{x}}{dxdt} \quad \text{and} \quad \frac{dH_{x}}{dt} = \left(\frac{dJ_{x}}{dx}\right) \times 10^{2} \cdot \frac{dJ_{x}}{dx}$$

0r

$$\frac{d^2 H_x}{dx dt} = 10^2 \left(\int_{u}^{h} \right) \frac{d^2 J_x}{dx^2}$$

Assuming a sinusoidal variation $J_x = J_{xm} e^{jwb}$

$$\frac{dJ_{x}}{dx} = jwJ_{x} \longrightarrow \frac{d^{2}J_{x}}{dx^{2}} = jw \frac{\mu'}{\rho}J_{x} \times 10^{-2}$$

0r

$$J_x = J_0 e^{-cx} e^{-jcx}$$

Then the total current in the pipe is:

$$I_{p} = \pi D_{p} \int_{o}^{tp} J_{x} dx = \frac{J_{o}(1-j)}{2c} [1 - e^{-ctp(1+j)}] \pi D_{p}$$

$$V_{p} = -\int_{o}^{tp} \int_{e}^{dJ_{x}} dx = 12 \int_{e}^{t} J_{o} [1 - e^{-ctp(1+j)}]$$

$$Z_{p} = \frac{V_{p}}{I_{p}} = \frac{\rho c}{\pi D_{p}} \int_{e}^{(1+j)} dx = \frac{9.4 (1+j)}{D_{p}} \int_{e}^{\mu} dx$$
micro-ohms/foot

Then

$$\mathbb{Z}_{p}\mathbb{D}_{p} = \mathbb{K}\sqrt{\mathcal{U}}$$

The values of μ and K are random and depend of the value of I p. From average data for 500 A \leq I \leq 7400 A

$$R_{\rm p} = 29.9 \sqrt{\mu/D_{\rm p}}$$
 micro-ohms/foot $D_{\rm p}$ in inches $X_{\rm p} = 18.1 \sqrt{\mu/D_{\rm p}}$ micro-ohms/foot $\sqrt{\mu} = 15.36$

For this case the zero sequence system can be represented by the current flow diagram:

Applying Kirchoff's Equations:

1)
$$I_o = I_s + I_p + I_G$$

2)
$$V_0 = I_0 (Z_e - Z_{ep}) + I_s (Z_{sp} - Z_{es}) + I_p (Z_p - Z_{ep})$$

3)
$$V_0 = I_0 (Z_e - Z_{es}) + I_s (Z_s - Z_{es}) + I_p (Z_{sp} - Z_{ep})$$

4)
$$0 = I_o Z_{cs} + Z_s I_s + Z_{sp} I_p$$

$$= I_s (Z_s - Z_{cs}) + I_p (Z_{sp} - Z_{cs}) - I_G Z_{cs}$$

And the redundant equations

$$0 = I_{o} (Z_{es} - Z_{ep}) + I_{s} (Z_{sp} - Z_{s}) + I_{p} (Z_{p} - Z_{sp})$$

$$0 = I_{s} (Z_{sp} - Z_{ep}) + I_{p} (Z_{p} - Z_{ep}) - I_{G}Z_{ep}$$

Or in Matrix Form

$$\begin{vmatrix} v_{o} \\ v_{o} \\ 0 \end{vmatrix} = \begin{vmatrix} Z_{c} - Z_{cp} & Z_{sp} - Z_{cs} & Z_{p} - Z_{cp} & 0 \\ Z_{c} - Z_{cs} & Z_{s} - Z_{cs} & Z_{sp} - Z_{cp} & 0 \\ 0 & -Z_{cs} & Z_{s} & Z_{sp} & 0 \\ 0 & -1 & 1 & 1 & 1 & T_{C} \end{vmatrix}$$

Solving for I_0 by Cramer's Rule and using minors

đet	v _o v _o o	Z _{sp} - Z _{cs} Z _s - Z _{cs} Z _s	Z _p - Z _p Z _{sp} - Z _{cp} Z _{sp}
I _O =	<u></u>		
det	Z _c - Z _{cp} Z _c - Z _{cs} -Z _{cs}	Z _{sp} - Z _{cs} Z _s - Z _{cs} Z _s	Z - Z p cp Z - Z sp cp Z

$$I_{o} = V_{o} [Z_{s} (Z_{p} - Z_{sp}) + Z_{sp} (Z_{s} - Z_{sp})]$$

$$Z_{s} [(Z_{c} - Z_{cs})(Z_{p} - Z_{cp}) + (Z_{c} - Z_{cp})(Z_{cp} - Z_{sp})]$$

$$+ Z_{sp} [(Z_{c} - Z_{cp})(Z_{s} - Z_{cs}) + (Z_{c} - Z_{cs}) (Z_{cs} - Z_{sp})]$$

$$+ Z_{cs} [(Z_{p} - Z_{cp}) (Z_{s} - Z_{cs}) + (Z_{cs} - Z_{sp}) (Z_{sp} - Z_{cp})]$$

And

$$\frac{v_{o}}{I_{o}} = z_{o} \frac{z_{s} [(z_{e} - z_{cs})(z_{p} - z_{cp}) + (z_{e} - z_{cp})(z_{cp} - z_{sp})]}{z_{s} (z_{p} - z_{sp}) + z_{sp} (z_{s} - z_{sp})}$$

$$+ \frac{Z_{sp} [(Z_{c} - Z_{cp})(Z_{s} - Z_{cs}) + (Z_{c} - Z_{cs})(Z_{cs} - Z_{sp})]}{Z_{s} (Z_{p} - Z_{sp}) + Z_{sp} (Z_{s} - Z_{sp})}$$

$$+ \frac{Z_{cs} [(Z_{p} - Z_{cp})(Z_{s} - Z_{cs}) + (Z_{cs} - Z_{sp})(Z_{sp} - Z_{cp})}{Z_{s} (Z_{p} - Z_{sp}) + Z_{sp} (Z_{s} - Z_{sp})}$$

Where:

 Z_c , Z_s , Z_p are the self impedances corresponding to the cable conductors, the sheath, and the pipe. Z_{cp} , Z_{cs} , and Z_{sp} are the mutual impedances between conductors and pipe, conductors and sheath, and sheath and pipe.

Parameters definition:

$$Z_c = r_c + r_e + j.8382 \log \frac{D_e * 12}{GMR}$$
 ohms/mile

$$GMR = (GMR_{lc} * GMD^2)^{1/3}$$
 inches

$$Z_s = 3r_s + r_e + j.8382 \log \frac{D_e * 12}{a_{sH}}$$
 ohms/mile

 $a_{sH} = radius$ of sheath in inches

$$Z_p - Z_{cp} = 3R_p + j 3X_p$$

$$R_p = 15.36 * 29.9 * 5.28/(D_p * 1000)$$
 obms/mile

 $D_{p} = pipe diameter in inches$

$$X_p = 15.36 * 18.1 * 5.28/(D_p * 1000)$$
 ohms/mile

$$Z_{cp} = r_e + j.8382 \log \frac{D_e * 12}{a_p}$$

a = radius of pipe in inches

$$Z_p = 3R_p + r_e + j(3X_p + .8382 log (D_e * 12/a_p) ohms/mile$$

$$Z_{cs} = r_e + j.8382 \log \frac{D_e * 12}{a_{sH}}$$
 ohms/mile

$$Z_{sp} = r_e + j.8382 \log \frac{D_e * 12}{a_p - a_{sH}}$$
 ohms/mile

$$Z_c - Z_{cp} = r_c + j.8382 \log \frac{a_p}{GMR}$$
 ohms/mile

$$Z_c - Z_{cs} = r_c + j.8382 \log \frac{a_{sH}}{GMR}$$
 ohms/mile

$$Z_{s} - Z_{cs} = 3r_{s} + j0.$$

$$Z_{cs}$$
 approx. = Z_{sp} approx. = Z_{cp}

Under this approximation a model was developed with a solution given by:

$$Z_{o} = Z_{c} - Z_{cp} - (Z_{cs} - Z_{sp}) + \frac{Z_{1}}{Z_{2}}$$

Where

$$Z_{1} = [Z_{s} (Z_{cp} - Z_{sp}) + Z_{cs} (Z_{s} - Z_{cs})][Z_{p} (Z_{cs} - Z_{sp}) + Z_{cp} (Z_{p} - Z_{cp})]$$

$$Z_{2} = Z_{s} Z_{p} (Z_{cs} + Z_{cp} - 2Z_{sp}) + Z_{p} Z_{cs} (Z_{c} - Z_{cs}) + Z_{p} Z_{cp} (Z_{p} - Z_{cp})$$

The approximated model diagram is as follows:

Results using the two equations of Z for sheathed 3 conductor 500 MCM - PILCNJ - 15 Ky cable are as lollows:

Using mathematical solution
$$Z_0 = .90097 + j.88789$$
 ohms/mile $= 1.27$ ohms/mile Using approximated model $Z_0 = .7393 + j.99824$ ohms/mile

= 1.25 ohms/mile

% Difference = 1.6% in magnitude

The approximated model will evolve into the following cases:

#1. Sheathed Cable in metallic conduit without earth return:

System Equations:

1)
$$V_o = I_o (Z_c - Z_{cp}) + I_s (Z_{sp} - Z_{cs}) + I_p (Z_p - Z_{cp})$$

2)
$$0 = I_0 (Z_{cs} - Z_{cp}) + I_s (Z_{sp} - Z_s) + I_p (Z_p - Z_{sp})$$

3)
$$0 = I_0 - I_s - I_p$$

With Solution:

$$Z_{o} = (Z_{c} - Z_{cp}) + (Z_{p} - Z_{cp}) - \frac{(Z_{p} - Z_{cp} + Z_{cs} - Z_{sp})^{2}}{Z_{s} - Z_{sp} + Z_{p} - Z_{sp}}$$

And the model is:

Which fulfils the system equations by substituting $I_s = I_o - I_p$ in 1) and substituting $I_o = I_p + I_s$ in 2) and moving thru points a, o, c, n, and thru points cnbo.

This model evolves from the original opening the I_{G_1} and I_{G_2} branches for the earth return path.

#2. Sheathed Cable in fiber duct with earth return:

System Equations:

$$V_{o} = I_{o} (Z_{c} - Z_{cs}) + I_{s} (Z_{s} - Z_{cs})$$

$$0 = I_{s} (Z_{s} - Z_{cs}) - I_{G_{1}} Z_{cs}$$

$$I_{o} = I_{s} + I_{G_{1}}$$

With Solution:

$$z_{o} = z_{c} - \frac{(z_{cs})^{2}}{z_{s}}$$

And the model:

3. Non-sheathed Cable in metallic pipe with earth return:

System Equations:

$$V_o = I_o (Z_c - Z_{cp}) + I_p (Z_p - Z_{cp})$$

$$O = I_p (Z_p - Z_{cp}) - I_{G_2} Z_{cp}$$

$$I_o = I_p + I_{G_2}$$

With Solution:

$$z_{o} = z_{c} - \frac{(z_{ep})^{2}}{z_{p}}$$

And the model is:

D. Case b: 3 conductor non-sheathed cable in steel conduit with earth return.

This is the case of the BRNJ 15 Kv and 5 Kv and XLP 15 Kv and 23 Kv cables installed in conduit and has been formulated in $\frac{1}{2}$ 3 above.

$$Z_{o} = Z_{c} - \frac{(Z_{cp})^{2}}{Z_{p}}$$
 ohms/mile

Where

$$\begin{split} & Z_{c} = r_{c} + r_{e} + j.8382 \ \log \frac{D_{e} * 12}{GMR} \ \text{ohms/mile} \\ & Z_{p} - Z_{cp} = 3R_{p} + j3X_{p} \ \text{ohms/mile} \\ & R_{p} = 15.36 * 29.9 * 5.28/(D_{p} * 1000) \ \text{ohms/mile} \\ & X_{p} = 15.36 * 18.1 * 5.28/(D_{p} * 1000) \ \text{ohrs/mile} \\ & D_{p} = \text{pipe diameter in inches} = 2a_{p} \\ & Z_{cp} = r_{e} + j.8382 \ \log \frac{D_{e} * 12}{a_{p}} \ \text{ohms/mile} \\ & Z_{p} = 3R_{p} + r_{e} + j(3X_{p} + .8382 \log \frac{D_{e} * 12}{a_{p}}) \ \text{ohms/mile} \end{split}$$

E. <u>Case b'</u>: 3 conductor non-sheathed cable in fiber duct with earth return(typical case for BRNJ and XLP 5 Kv, 15 Kv, and 23 Kv installed in fiber duct or directly buried in earth).

For this case, as the earth is the only return path for zero sequence currents:

$$Z_o = r_c + r_e + j.8382 \log \frac{D_e * 12}{GMR}$$
 ohms/mile

F. Case c: 3 conductor sheathed cable installed aerially suspended from a messenger with one ground wire at top with earth return (typical for PIAC aerial cables).

In this case, there are 4 possible return paths for zero sequence currents: sheath, messenger, ground wire, and earth. These 4 possible return paths can be reduced to only 3 because the messenger and grand wire can be considered as an equivalent ground system and apply the equations for n ground wires in aerial lines.

The circuit for this case can be represented by the current flow diagram:

Applying Kirchoff's Equations:

1)
$$I_o = I_s + I_w + I_G$$

2)
$$V_0 = I_0 (Z_c - Z_{cw}) + I_s (Z_{sw} - Z_{cs}) + I_w (Z_w - Z_{cw})$$

3)
$$V_0 = I_0 (Z_c - Z_{cs}) + I_s (Z_s - Z_{cs}) + I_w (Z_{sw} - Z_{cw})$$

4)
$$0 = -I_{ocs}^{Z} + Z_{ss}^{I} + Z_{sww}^{I}$$

Which are the same equations that define "Case a" substituting the pipe (p) by the ground wire (w). Thus, the solution is:

$$Z_{o} = Z_{s} \frac{\left[(Z_{c} - Z_{cs})(Z_{w} - Z_{cw}) + (Z_{c} - Z_{cw})(Z_{cw} - Z_{sw}) \right]}{Z_{s} (Z_{w} - Z_{sw}) + Z_{sw} (Z_{s} - Z_{sw})} +$$

$$+ Z_{sw} = \frac{\left[(Z_{c} - Z_{cw})(Z_{s} - Z_{cs}) + (Z_{c} - Z_{cs})(Z_{cs} - Z_{sw}) \right]}{Z_{s} (Z_{w} - Z_{sw}) + Z_{sw} (Z_{s} - Z_{sw})}$$

$$+ Z_{cs} = \frac{\left[(Z_{w} - Z_{cw})(Z_{s} - Z_{cs}) + (Z_{cs} - Z_{sw})(Z_{sw} - Z_{cw}) \right]}{Z_{s} (Z_{w} - Z_{sw}) + Z_{sw} (Z_{s} - Z_{sw})}$$

Parameters Definition:

$$Z_c = r_c + r_e + j.8382 \log \frac{D_e * 12}{GMR}$$
 ohms/mile

$$GMR = (GMR_{lc} * GMD^2)^{1/3}$$
 in inches

$$Z_s = 3r_s + r_e + j.8382 \log \frac{D_e * 12}{a_{sH}}$$
 ohms/mile

 $a_{eH} = radius$ of sheath in inches

$$Z_{w} = 3r_{weg} + r_{e} + j.8382 \log \frac{D_{e} * 12}{GMR_{w}}$$

r = equivalent resistance in ohms/mile of the parallel combination of messenger and ground wires

$$Z_{cs} = r_e + j.8382 \log \frac{D_e * 12}{a_{sH}}$$
 ohms/mile

$$Z_{cW} = r_e + j.8382 \log \frac{D_e * 12}{D_{cW}}$$
 ohms/mile

$$Z_{sw} = r_e + j.8382 \log \frac{D_e * 12}{D_{sw}}$$
 ohms/mile

Where

$$GMR_{W} = (.779 * a_{W} * .779 * a_{M} * H^{2})^{1/4}$$
 inches

 $a_m = radius$ of messenger wire in inches

 $a_{_{W}}$ = radius of ground wire in inches

H = spacing between messenger and ground wire in inches

 $\frac{D}{cw} = \frac{equivalent}{equivalent}$ spacing between the cable conductors and the messenger-ground wires assembly

$$D_{cw} = (d_{c_m} * d_{c_w})^{1/2}$$
 inches

Where

 $d_{cm} = \frac{1}{2}$ geometrical mean distance from the aerial cable conductors to the messenger wire

d = geometrical mean distance from the aerial cable conductors to the ground wire in inches

$$D_{sw} = (d_{sm} * d_{sw})^{1/2}$$
 inches

Where

d = geometrical mean distance from the aerial cable sheath to the messenger wire

 $d_{SW}^{}$ = geometrical mean distance from the aerial cable to the ground wire

Evaluation of d and d cw

$$d_{cm} = (d_{cm_1} * d_{cm_2} * d_{cm_3})^{1/3}$$

But, in general

$$d_{cm}^2 = d_{cm}^3$$

$$d_{cm} = [d_{cm_1} * (d_{cm_2})^2]^{1/3}$$

$$d_{cm_1} = \frac{OD}{2} + h - \frac{\sqrt{3}}{3} s$$

$$d_{cm_2} = [(h + \frac{OD}{2} + \frac{\sqrt{3}}{6}s)^2 + \frac{s^2}{4}]^{1/2}$$

OD = cable outside diameter

For h approx. equal to $\frac{OD}{2}$

$$d_{cm_1} = OD - s\sqrt{\frac{3}{3}}$$

$$d_{cw_2} = [(OD + s\frac{\sqrt{3}}{6})^2 + \frac{s^2}{4}]^{1/2}$$

$$d_{cm} = \left\{ (OD - s\frac{\sqrt{3}}{3}) \left[\frac{s^2}{4} + (OD + s\frac{\sqrt{3}}{6})^2 \right] \right\}^{-1/3}$$
 inches

If H = spacing between messenger and ground wires in inches

$$d_{cw} = \left\{ (H + OD - s\sqrt{\frac{3}{5}}) \left[\frac{s^2}{4} + (H + OD + s\sqrt{\frac{3}{5}})^2 \right] \right\}^{1/3}$$
 inches

In our installation H = 5'6'' = 66''

Thus

$$d_{cW} = (66 + OD - s\frac{\sqrt{3}}{3}) \left[\frac{s^2}{4} + (66 + OD + s\frac{\sqrt{3}}{6})^2 \right]^{-1/3}$$
 inches

Evaluation of D

$$D_{cw} = (d_{cm} * d_{cw})^{1/2}$$

$$= \left\{ (OD - s\sqrt{\frac{3}{3}}) \left[\frac{s^2}{4} + (OD + s\sqrt{\frac{3}{6}})^2 \right] (66 + OD - s\sqrt{\frac{3}{3}}) \right.$$

$$\left. \left[\frac{s^2}{4} + (66 + OD + s\sqrt{\frac{3}{6}})^2 \right] \right\}^{1/6} \text{ inches}$$

Evaluation of d and d sw

$$d^{2} = x^{2} + y^{2} = d_{sm}$$

$$x = r \sin \Theta$$

$$y = h + r (1 - \cos \Theta)$$

$$d^{2} = (r \sin \Theta)^{2} + [h + r (1 - \cos \Theta)]^{2}$$

$$d^{2}_{avg} = \frac{1}{2\pi} \int_{\bullet}^{2\pi} [2r^{2} + h^{2} + 2hr - 2(r^{2} + hr)\cos\Theta]d\Theta$$

$$d^{2}_{avg} = 2r^{2} + h^{2} + 2hr$$

$$= r^{2} + (r + h)^{2}$$

$$d_{cm} = [r^{2} + (r + h)^{2}]^{1/2}$$

For
$$h = \frac{OD}{2}$$
 $r = a_{sH}$

$$d_{sm} = [a_{sH}^2 + (a_{sH} + \frac{OD}{2})^2]^{1/2}$$
 inches

If H = spacing between messenger and ground wires in inches

$$d_{sw} = [a_{sH}^2 + (a_{sH} + H + \frac{OD}{2})^2]^{1/2}$$
 inches

In our installation $H = 5^{\circ}6^{\circ} = 66^{\circ}$

Thus

$$d_{sw} = [a_{sH}^2 + (a_{sH} + 66 + \frac{OD}{2})^2]^{1/2}$$
 inches

Evaluation of D_{sw}

$$D_{sw} = (d_{sm} * d_{sw})^{1/2} \text{ inches}$$

$$= [a_{sH}^2 + (a_{sH} + \frac{OD}{2})^2][a_{sH}^2 + (a_{sH} + 66 + \frac{OD}{2})^2]^{1/4} \text{ inches}$$

This system can also be represented by 3 branches in parallel plus a short circuit to ground, but the solution equation for $\mathbf{Z}_{_{\mathbf{O}}}$ may prove cumbersome to handle and computer time consuming without attaining much more accuracy.

G. <u>Case c'</u>: 3 conductor sheathed cable installed aerially suspended from a messenger with earth return (typical of PTAC aerial cables)

In this case, there are 3 possible return paths for zero sequence currents: sheath, messenger, and earth. Thus, it is the same as case c with a change in the definition of the parameters as follows:

$$Z_w = 3r_m + r_e + j.8382 \log \frac{D_e * 12}{GMR_m}$$
 ohms/mile

 $r_{\rm m}$ = resistance of messenger wire

$$GMR_{m} = .779 * a_{m}$$

 $a_{m} = radius$ of messenger wire

$$Z_{cw} = r_e + j.8382 \log \frac{D_e * 12}{d_{cm}}$$
 ohms/mile

$$Z_{sw} = r_e + j.8382 \log \frac{D_e * 12}{d_{sm}}$$
 ohms/mile

$$d_{cm} = \left\{ (OD - s \frac{\sqrt{3}}{3}) \left[\frac{s^2}{4} + (OD + s \frac{\sqrt{3}}{6})^2 \right]^{1/3} \right\}$$
 inches

$$d_{sm} = [a_{sH}^2 + (a_{sH} + \frac{OD}{2})^2]^{1/2}$$
 inches

s = GMD of the cable conductors in inches

a_{sH} = radius of the sheath in inches

H. Case d: 3 single conductor non-sheathed cables in steel conduit with earth return (typical for XLP 5 Kv and 15 Kv cables and RHW-USE cables in steel conduit).

In this case, there are two possible return paths for zero sequence currents: pipe and earth. Thus, the case is similar to "case a" substituting the sheath by the pipe and adjusting the definition of the parameters.

$$Z_{o} = Z_{c} - \frac{\left(Z_{cp}\right)^{2}}{Z_{p}}$$

Where

$$Z_c = r_c + r_e + j.8382 \log \frac{D_e *12}{GMR}$$
 ohms/mile

$$GMR = (GMR * GMD^2)^{1/3}$$
 inches

GMD = geometric mean distance of conductors

$$Z_c - Z_{cp} = 3R_p + j 3X_p$$
 ohms/mile

$$R_p = 15.36 * 29.9 * 5.28/D_p * 1000)$$
 ohms/mile

$$X_p = 15.36 * 18.1 * 5.28/(D_p * 1000)$$
 ohms/mile

$$D_p = pipe diameter in inches = 2a_p$$

$$Z_{cp} = r_e + j.8582 \log \frac{D_e * 12}{a_p}$$
 ohms/mile

$$Z_{p} = 3R_{p} + r_{e} + j(3X_{p} + .8382 log \frac{D_{e} * 12}{a_{p}}) ohms/mile$$

I. <u>Case d':</u> 3 single conductor non-sheathed cables in fiber duct with earth return (typical for XIP and RHW-USE in fiber duct).

In this case, there is one possible return path for zero sequence currents: earth return.

Thus

$$Z_o = Z_c = r_c + r_e + j.8382$$
 log $\frac{D_e * 12}{GMR}$ ohms/mile

J. <u>Case e:</u> 3 single conductor non-sheathed cables aerially suspended from a messenger with one ground wire at top with earth return (typical for XLP aerial cables).

In this case, there are 3 possible return paths for zero sequence currents: messenger, ground wire, and earth.

The circuit for this system can be represented by the current flow diagram:

System Equations:

$$I_{o} = I_{m} + I_{w} + I_{G}$$

$$V_{o} = I_{o} (Z_{c} - Z_{cv}) + I_{m} (Z_{mw} - Z_{cm}) + I_{w} (Z_{w} - Z_{cw})$$

$$V_{o} = I_{o} (Z_{c} - Z_{cm}) + I_{m} (Z_{m} - Z_{cm}) + I_{w} (Z_{mw} - Z_{cw})$$

$$0 = -I_{o} Z_{cm} + I_{m} Z_{m} + I_{w} Z_{mw}$$

Which are the same equations that define "case c" substituting the sheath (s) by the messenger (m). Thus the solution is

$$Z_{o} = Z_{m} \frac{\left[(Z_{c} - Z_{cm})(Z_{w} - Z_{cw}) + (Z_{c} - Z_{cw})(Z_{cw} - Z_{mw}) \right]}{Z_{m} (Z_{w} - Z_{mw}) + Z_{mw} (Z_{m} - Z_{mw})} +$$

$$+ Z_{mW} = \frac{[(Z_{c} - Z_{cW})(Z_{m} - Z_{cm}) + (Z_{c} - Z_{cm})(Z_{cm} - Z_{mW})]}{Z_{m} (Z_{w} - Z_{mW}) + Z_{mW} (Z_{m} - Z_{mW})}$$

$$+ Z_{cm} = \frac{[(Z_{c} - Z_{cW})(Z_{m} - Z_{mW}) + (Z_{cm} - Z_{mW})(Z_{m} - Z_{cW})]}{Z_{m} (Z_{w} - Z_{mW}) + Z_{mW} (Z_{m} - Z_{mW})}$$

Parameters Definition:

$$Z_c = r_c + r_e + j.8382 \log \frac{D_e * 12}{GMR}$$
 ohns/mile

$$GMR = (GMR_{lc} * GMD^2)^{1/3}$$
 inches

$$Z_{\rm m} = 5r_{\rm m} + r_{\rm e} + j \log \frac{D_{\rm e} * 12}{.779 a_{\rm m}}$$
 ohms/mile

 $r_{\rm m}$ = resistance of messenger wire in ohms/mile

 a_{m} = radius of messenger wire in inches

$$Z_w = 3r_w + r_e + j \log \frac{D_e *12}{.779 a_w}$$
 ohms/mile

 $r_w = resistance$ of ground wire in ohms/mile

 $a_{\overline{w}}$ = radius of ground wire in inches

$$Z_{cm} = r_e + j.8382 \log \frac{D_e * 12}{d_{cm}} \text{ ohms/mile}$$

$$d_{cm} = \left\{ (h + \frac{OD}{2} - s\sqrt{\frac{3}{3}}) \left[(h + \frac{OD}{2} + s\sqrt{\frac{13}{6}})^2 + \frac{s^2}{4} \right] \right\}^{1/3}$$
 inches

For $h = \frac{OD}{2}$ = height of messenger above conductors in inches

$$d_{cm} = \left\{ (OD - s\frac{\sqrt{3}}{3}) \left[(OD + s\frac{\sqrt{3}}{6})^2 + \frac{s^2}{4} \right] \right\}^{1/3}$$
 inches

Where OD = outside diameter of one cable in inches s = spacing of conductors in inches

For common installations

$$d_{cm} \approx 1.28 * OD$$
 inches

$$Z_{cW} = r_e \div j.8382 \log \frac{D_e * 12}{d_{cW}}$$
 ohrus/mile

$$a_{cw} = \left\{ (H + OD - s\sqrt{\frac{3}{3}}) \left[\frac{s^2}{4} + (H + OD + s\sqrt{\frac{3}{6}})^2 \right] \right\}^{1/3}$$
 inches

For our installation H = 5'6'' = 66'' = spacing from messenger to ground wire

Then

$$d_{cw} = \left\{ (66 + 0D - s\sqrt{3}) \left[\frac{s^2}{4} + (66 + 0D + s\sqrt{3})^2 \right] \right\}^{1/3} \text{ inches}$$

$$Z_{mw} = r_e + j.8382 \log \frac{D_e * 12}{H} \text{ ohms/mile}$$

$$= r_e + j.8382 \log \frac{D_e * 12}{66} \text{ ohms/mile}$$

In this case, we could have also reduced the system to 2 return paths considering the messenger and ground wire as one equivalent ground wire. The system will then have a solution given by

$$Z_{o} = Z_{c} - \frac{Z_{cw}}{Z_{r}}$$
 ohms/mile

Where

$$Z_{c} = r_{c} + r_{e} + j.8382 \quad log \quad \frac{D_{e} * 12}{GMR} \quad ohms/mile$$

$$Z_{w} = 3r_{weQ} + r_{e} + j.8382 \quad log \quad \frac{D_{e} * 12}{GMR_{w}} \quad ohms/mile$$

Where

$$GMR_{W} = (.779 a_{m} * .779 a_{W} * H^{2})^{1/4}$$
 inches

 $a_m = radius$ of messenger wire in inches

a = radius of ground wire in inches

H = spacing between messenger and ground wires in inches

$$\bar{z}_{cw} = r_e + j.8382 \log \frac{D_e * 12}{D_{cw}}$$
 ohms/mile

Where

$$D_{cw} = (d_{cm} * d_{cw})^{1/2}$$
 inches

$$D_{cw} = \left\{ (OD - s\sqrt{\frac{3}{5}}) \left[\frac{s^2}{4} + (OD + s\sqrt{\frac{3}{5}})^2 \right] (H + OD - s\sqrt{\frac{3}{5}}) \left[\frac{s^2}{4} + (H + OD + s\sqrt{\frac{3}{5}})^2 \right] \right\}^{1/6}$$
inches

K. <u>Case e':</u> 3 single conductor non-sheathed cables aerially suspended from a messenger with earth return (typical for XLP aerial cables).

In this case, there are two possible return paths for zero sequence currents: messenger and earth. The solution is:

$$Z_{o} = Z_{c} - \frac{Z_{cm}}{Z_{m}}$$
 ohms/mile

Where

$$Z_c = r_c + r_e + j.8382 \log \frac{D_e * 12}{GMR}$$
 ohms/mile
 $GMR = (GMR_{1c} * GMD^2)^{1/3}$ inches

$$Z_{m} = 3r_{m} + r_{e} + j.8382 \log \frac{D_{e} * 12}{.779 a_{m}}$$
 ohms/mile

 r_m = resistance of messenger wire in ohms/mile

 $a_{m} = radius$ of messenger wire in inches

$$Z_{cm} = r_e + j.8382$$
 $log = \frac{D_e * 12}{d_{cm}}$ ohms/mile

$$d_{cm} = 1.28 * OD inches$$

L. <u>Case f:</u> 3 single conductors + one grounded neutral conductor in steel conduit with earth return (typical of RHW-USE cables in steel conduit).

In this case, there are 3 possible return paths for zero sequence currents: the grounded neutral conductor, the pipe, and the earth.

The circuit can be represented by the current flow diagram:

System Equations:

$$I_{o} = I_{n} + I_{p} + I_{G}$$

$$V_{o} = I_{o} (Z_{c} - Z_{ep}) + I_{n} (Z_{np} - Z_{en}) + I_{p} (Z_{p} - Z_{ep})$$

$$V_{o} = I_{o} (Z_{c} - Z_{en}) + I_{n} (Z_{n} - Z_{en}) + I_{p} (Z_{np} - Z_{ep})$$

$$0 = -I_{o} Z_{en} + I_{n} Z_{n} + I_{p} Z_{np}$$

Which are the same equations that describe "case a" substituting the sheath (s) by the neutral conductor (n). Thus, the solution is given by:

$$Z_{o} = Z_{n} \frac{\left[(Z_{c} - Z_{cn})(Z_{p} - Z_{cp}) + (Z_{c} - Z_{cp})(Z_{cp} - Z_{np}) \right]}{Z_{n} (Z_{p} - Z_{np}) + Z_{np} (Z_{n} - Z_{np})}$$

$$+ Z_{np} \frac{\left[(Z_{c} - Z_{cp})(Z_{n} - Z_{cn}) + (Z_{c} - Z_{cn})(Z_{cn} - Z_{np}) \right]}{Z_{n} (Z_{p} - Z_{np}) + Z_{np} (Z_{n} - Z_{np})}$$

$$+ Z_{cn} \frac{\left[(Z_{p} - Z_{cp})(Z_{n} - Z_{cn}) + (Z_{cn} - Z_{np})(Z_{np} - Z_{cp}) \right]}{Z_{n} (Z_{p} - Z_{np}) + Z_{np} (Z_{n} - Z_{np})}$$

Parameter Definition

$$Z_c = r_c + r_e + j.8382$$
 log $\frac{D_e * 12}{GMR}$ ohms/mile
 $GMR = (GMR_{lc} * GMD^2)^{1/3}$ inches

$$Z_n = 3r_n + r_e + j.8382 \log \frac{D_e * 12}{GMR_n}$$
 ohns/mile

 $r_n = resistance$ of neutral conductor in ohms/mile

 GMR_n = geometric mean radius of neutral conductor in inches

$$Z_p - Z_{ep} = 3R_p + j3X_p$$
 ohms/mile

$$R_p = 15.36 * 29.9 * 5.28/(D_p * 1000)$$
 ohms/mile

$$X_{p} = 15.36 * 18.1 * 5.28/(D_{p} * 1000)$$
 ohrus/mile

 $D_p = 2a_p = diameter of pipe in inches$

$$Z_{cp} = r_e + j.8382 \log \frac{D_e * 12}{a_p}$$
 ohms/mile

$$Z_{cn} = r_e + j.8382 \log \frac{D_e * 12}{e}$$
 ohms/mile

$$Z_{np} = Z_{cp}$$
 ohms/mile

M. Case f': 3 single conductors + one grounded neutral conductor in fiber duct with earth return (typical for RHW-USE cable in fiber duct).

In this case, there are two possible return paths for zero sequence currents: the grounded neutral and the earth. The solution is given by:

$$Z_o = Z_c - \frac{Z_{cn}}{Z_n}$$
 ohms/mile

Where

$$Z_c = r_c + r_e + j.8382 \log \frac{D_e * 12}{GMR}$$
 prims/mile

$$GMR = (GMR_{lc} * GMD^2)^{1/3}$$
 inches

$$Z_n = 3r_n + r_e + j.8382 \log \frac{D_e * 12}{GMR_n} \text{ ohms/mile}$$

 r_n = resistance of neutral conductor in ohms/mile

$$Z_{cn} = r_e + j.8382 \log \frac{D_e * 12}{GMD}$$
 ohms/mile

- 5. Summary of Network Configuration and Bus Designations
 - A. Bus Code Designations and Voltage Levels

The following bus on the network one line diagram:

Launching Complex 8 - 905

Industrial Area 2008 - 2915

All bus codes are indexed with a voltage designation as follows:

Bus Voltage	First Symbol in Bus Code
13,800	A
4,160	В
480	C
208	D
115,000	E
13,680	\mathbf{F}
13,320	G
13,200	Н
2,400	J
120/240	К

Voltage levels at specific buses are as follows:

13.8 Kv Buses (A)

8 thru 12, 14 thru 16, 18 thru 33, 35, 30, 39, 43 thru 49, 51 thru 54, 56 thru 91, 98, 99, 116 thru 122, 124 thru 132, 137 thru 142, 146 thru 155, 158 thru 169, 174, 175, 178, 179, 181, 188, 192, 193, 198, 199, 201, 203, 205 thru 206, 208, 211, 214, 216, 218, 220, 222 thru 226, 228, 229, 231, 233, 235, 236, 238 thru 240, 242, 244, 245, 247, 249 thru 252, 255, 257, 261 thru 265, 267, 268, 271, 272, 274, 275, 278 thru 280, 283 thru 285, 288, 289, 290, 299 thru 303, 325, 326, 340 thru 342, 353, 901 thru 905

4.16 Ky Buses (B)

100 thru 115, 183, 197, 246, 248, 286, 287, 297, 298, 304, 328, 334, 335, 337, 338, 343, 344, 347 thru 352

480 V Buses (C)

13, 17, 34, 36, 37, 40 thru 42, 50, 55, 92 thru 97, 123, 133 thru 136, 143 thru 145, 156, 157, 170 thru 173, 176, 182, 184 thru 187, 189 thru 191, 194 thru 196, 200, 202, 204, 207, 209, 210, 213, 215, 217, 219, 221, 227, 230, 232, 234, 237, 241, 243, 253, 254, 258 thru 260, 266, 269, 270, 273, 276, 277, 281, 282, 291 thru 296, 305 thru 324, 327, 329 thru 333, 336, 339, 345, 346, 354 thru 374, 376 thru 385, 392 thru 418, 420 thru 422, 424 thru 458, 460 thru 468, 470 thru 482, 484 thru 505, 507 thru 509, 511 thru 515, 517 thru 524, 526 thru 545, 548 thru 550, 650 thru 657, 659 thru 663, 665, 666, 668 thru 671, 673 thru 678, 680, 682, 683, 685, 686, 688 thru 691, 693 thru 704, 706, 707, 709 thru 711, 713, 718 thru 722, 730, 731, 552 thru 583, 585 thru 628, 631 thru 640

208 V Buses (D)

177, 180, 212, 256, 386 thru 391, 419, 423, 459, 469, 483, 506, 510, 516, 525, 547, 551, 641 thru 649, 658, 664, 667, 672, 679, 692, 708, 712, 714, 715, 584

115 Ky Bus (E)

Kennedy Space Center Industrial Area Voltage Levels of Coded Buses

Note: All buses shall be coded starting with 2008

115 Kv (E)

4

13.8 Kv (A) (This network section normally connected to VABR 609)

2026, 2098, 2102, 2104, 2106, 2108, 2110, 2112, 2115, 2117, 2119, 2121, 2123, 2125, 2129, 2131, 2135, 2135, 2145, 2139, 2141, 2143, 2147, 2149, 2151, 2153 thru 2169, 2172, 2197, 2199, 2201, 2204, 2210, 2211, 2915, 2917

13.68 Kv (F) (This network section normally connected to VABR 609)

21.13, 21.27, 21.37

13.32 Kv (G)

2208

13.2 Kv (H)

2003, 2009, 2011 thru 2025, 2027 thru 2086, 2088, 2091, 2093, 2094, 2096, 2097, 2100, 2170, 2174, 2176, 2178, 2180, 2182, 2184, 2186, 2188, 2191, 2193, 2195, 2214 thru 2218, 2220, 2222, 2224, 2228, 2230, 2233, 2236, 2257, 2241, 2243 thru 2249, 2267, 2272, 2278, 2279, 2280, 2281, 2283, 2285, 2287, 2288, 2293 thru 2296, 2299, 2301, 2303, 2305, 2307, 2309, 2311, 2513, 2315, 2317, 2319, 2321, 2523, 2325, 2327, 2329, 2331, 2333, 2335 thru 2349, 2353, 2355, 2357, 2359, 2361, 2363, 2365, 2367, 2369, 2371, 2373, 2375, 2377, 2379, 2381, 2383, 2385, 2387, 2389, 2391 thru 2431, 2433, 2437, 2439, 2441, 2443, 2445, 2447, 2456 thru 2463, 2465, 2467, 2469, 2471, 2473, 2475, 2478, 2481, 2483 thru 2494, 2501 thru 2504, 2506, 2508, 2510, 2514, 2516, 2517 thru 2524, 2526, 2528, 2530, 2532, 2534, 2536 thru 2541, 2852, 2901 thru 2914,

2.4 Kv (J)

2271, 2273, 2274, 2289, 2290, 2291, 2297, 2298, 2350 thru 2352, 2472, 2474, 2496, 2497, 2499, 2500

480V (C)

2087, 2092, 2095, 2122, 2128, 2187, 2189, 2190, 2192, 2209, 2221, 2231, 2232, 2235, 2238, 2240, 2242, 2250 thru 2259, 2261, 2263, 2264, 2268, 2269, 2270, 2275, 2292, 2302, 2308, 2316, 2318, 2320, 2328, 2356, 2370, 2378, 2388, 2432, 2436, 2444, 2450 thru 2452, 2454, 2466, 2468, 2470, 2476, 2477, 2479, 2480, 2482, 2512, 2531, 2533, 2542 thru 2679, 2681 thru 2850, 2853

Kennedy Space Center Industrial Area Voltage Levels of Coded Buses

208V (D)

2089, 2090, 2105, 2114, 2132, 2134, 2136, 2138, 2148, 2150, 2152, 2171, 2173, 2175, 2177, 2179, 2194, 2196, 2198, 2200, 2202, 2203, 2205, 2219, 2226, 2227, 2229, 2234, 2239, 2260, 2262, 2265, 2266, 2276, 2277, 2282, 2284, 2286, 2300, 2304, 2306, 2310, 2312, 2314, 2322, 2324, 2326, 2350, 2332, 2334, 2354, 2358, 2360, 2362, 2364, 2366, 2368, 2372, 2374, 2376, 2380, 2382, 2384, 2386, 2390, 2434, 2438, 2440, 2442, 2446, 2448, 2453, 2464, 2505, 2507, 2509, 2511, 2513, 2515, 2525, 2527, 2529, 2535, 2851

120/240V - 1¢ (K)

2099, 2101, 2103, 2107, 2109, 2111, 2116, 2118, 2120, 2124, 2126, 2130, 2140, 2142, 2144, 2146, 2181, 2183, 2185, 2223, 2225, 2449, 2455

Bus Code	Voltage Level	Network Location
5 8	115 Kv 13.8 Kv	115 Ky FPLCO Line at C-5 Substation Instrumentation Bus at C-5 Substation
9	13.8 Kv	Industrial Bus at C-5 Substation
10	13.8 Kv	VAB Recloser Bus
11.	13.8 Kv	LBS # 301 Industrial Bus
12	13.8 Kv	VABR Substation # 833-300 KVA Transformer "B"
13	480 V	VABR Substation # 833 Transformer "B"
14	13.8 Kv	VABR Substation #833-300 KVA Transformer "A"
15	13.8 Kv	LBS # 718 Industrial Bus
16	13.8 Kv	Substation # 832-500 KVA
		Transformer Maintenance Shop
17	р 30 A	Substation #832 Transformer
		Maintenance Shop
18	13.8 Kv	Switchgear # 700 Industrial Bus
19	13.8 Kv	LBS # 724 Industrial Bus
20	13.8 Kv	LBS # 771 Industrial Bus
21	13.8 Kv	LBS # 723 Industrial Bus
22	13.8 Kv	Substation # 800-1000 KVA Transformer "A"
23	13.8 Kv	Substation #802-1500 KVA Transformer "A"
24	13.8 Kv	Substation #804-750 KVA Transformer "A"
25	13.8 Kv	Substation #818-1000 KVA Transformer "A"
26	13.8 Kv	Substation # 804-1000 KVA Transformer "B"
27	13.8 Kv	Substation # 800-1000 KVA
28	13.8 Kv	Transformer"B" Substation # 802-1500 KVA
00	37 O 17	Transformer "B"
29	13.8 Kv	Substation # 818-1000 KVA Transformer "B"
30	13.8 Kv	LBS # 750-ML Interface
31.	13.8 Kv	LBS # 752-ML Interface
32	13.8 Kv	LBS # 742 Industrial bus
33	13.8 Kv	Substation # 801-750 KVA Transformer "A"
34	480 V	Substation # 800 Transformer "A"
35	13.8 Kv	Substation # 800 Transformer "A" Substation # 801-750 KVA
		Transformer "B"
36	480 V	Substation # 801 Transformer "A"
<i>3</i> 7	480 V	Substation # 802 Transformer "A"
38	13.8 Kv	Substation # 803-1000 KVA
_	_	Transformer "A"
3 9	13.8 Kv	Substation # 803-1000 KVA Transformer "B"

Bus Code	Voltage Level	Network Location
Dus Octo	VOI OURC HOVEE	•
4O	480 V	Substation # 803 Transformer "A"
41	480 V	Substation # 804 Transformer "A"
42	480 V	Substation # 818 Transformer "A"
43	13.8 Kv	LBS 🛊 725 Industrial Bus
44	13.8 Kv	Substation # 830-750 KVA
	-	Transformer "B"
45	13.8 Kv	WYE on Feeder # 610 at LBS # 727
46	13.8 Kv	LBS # 727 Industrial Bus
47	13.8 Kv	LBS # 728 Industrial Bus
48	13.8 Kv	LBS # 740 Industrial Bus
49	13.8 K	LBS # 743 Industrial Bus
50	480_V	Substation # 830 Transformer "B"
51	13.8 Kv	Substation # 830-750 KVA Transformer "A"
52	13.8 Kv	Switchgear # 703 Industrial Bus
	-	and LBS # 721
53	13.8 Kv	Substation # 820 (LCC)-1500 KVA
		Transformer "A"
54	13.8 Kv	Substation # 820 (LCC)-1500 KVA
		Transformer "B"
55	480 V	Substation # 820 (LCC) Transformer "A"
56	13.8 Kv	Switching Sta. #707 Feeder #605 Industrial Bus
57	13.8 Kv	Normal Switch at Emergency Power
58	13.8 Kv	Cubicle # 706 LBS # 762 Industrial Bus
5 9	13.8 Kv	WYE on Feeder # 607 between
79	1).0 KV	LBS # 762 and # 729
60	13.8 Kv	Substation # 888-75 KVA Transformer
61	13.8 Kv	Substation # 887-225 KVA Transformer
62	13.8 Kv	LBS # 729 Industrial Bus
63	13.8 Kv	WYE on Feeder # 607 between LBS # 729
0)	17.0 114	and SS # 879
64	13.8 Kv	Substation # 882 (LCC)-112.5 KVA
•		Transformer
65	13.8 Kv	WYE on Feeder # 607 at Substation # 876
<u>6</u> 6	13.8 Kv	Substation # 876-45 KVA Transformer
67	13.8 Kv	Substation # 877-45 KVA Transformer
68	13.8 Kv	WYE on Feeder # 6C7 at Substation # 879
69	13.8 Kv	WYE on Feeder # 607 at Substation # 870
70	13.8 Kv	WYE on Feeder # 607 at Substation # 870
71	13.8 Kv	Substation # 870-300 KVA Transformer
72	13.8 Kv	Substation # 871-45 KVA Transformer
73	13.8 Kv	Substation # 873-225 KVA Transformer
74	13.8 Kv	Substation # 883-45 KVA Transformer
75	13.8 Kv	Substation # 872-300 KVA Transformer
76	13.8 Kv	WYE on Feeder # 607 at Substation # 872
77	13.8 Kv	WYE on Feeder # 607 at Substation # 872
78	13.8 Kv	WYE on Feeder # 607 at Substation # 874
79	13.8 Kv	Substation # 875-45 KVA Transformer
86	13.8 Kv	Substation # 874-45 KVA Transformer

Bus Code	Voltage Level	Network Location
0-	3 7 0 V	Substation # 880-300 KVA Transformer
81	13.8 Kv	WYE on Feeder # 607 at Substation # 884
82	13.8 Kv	WYE on Feeder # 607 at Substation # 878
83	13.8 Kv	
8) ₁ i	13.8 Kv	Substation # 879-45 KVA Transformer
85	13.8 Kv	Substation # 881-225 KVA Transformer
86	13.8 Kv	LBS # 773 Feeder # 604 Industrial
87	13.8 Kv	LBS # 773 Feeder # 520 Instrumentation
88	13.8 Kv	Substation # 821 (LCC)-1000 KVA
	_	Transformer "A"
89	13.8 Kv	LBS # 774 Feeder # 520 Instrumentation
90	13.8 Kv	LBS # 7 4 Feeder # 607 Industrial
91	13.8 Kv	Substation # 821 (LCC)-1000 KVA
•		Transformer "B"
92	480 V	Substation # 821 Transformer "A"
93	480 V	Substation # 882 Transformer
94	480 V	Substation # 876 Transformer
95	480 V	Substation # 877-45 KVA Transformer
96	480 V	Substation # 870-300 KVA Transformer
97	480 V	Substation # 871-45 KVA Transformer
98	13.8 Kv	Substation # 829-7500 KVA Transformer "A"
99	13.8 Ky	Substation # 829-7500 KVA Transformer "B"
100	4.16 Kv	Substation # 829 Transformer "A"
101	4.16 Kv	Utility Annex Motor Control Center "A" Bus
102	4.16 Kv	350 HP Synchronous Air Compressor Motor # 2
102	4.10 m	at Utility Annex MCC-A
103	4.16 Kv	350 HP Synchronous Air Compressor Motor
•		# 1 at Utility Annex MCC-A
104	4.16 Kv	2500 HP Synchronous Refrigerator # 3 at Utility Annex MCC-A
7.05), 16 Km	2500 HP Synchronous Refrigerator # 4
105	4.16 Kv	at Utility Annex MCC-A
106	4.16 Kv	450 HP Induction Condensate Water Pump
100	4.10 114	# 4 at Utility Annex MCC
107	4.16 Kv	Utility Annex Motor Control Center "B" Bus
108	4.16 Kv	550 HP Induction Condensate Water Pump
700	4.10 MV	# 3 at Utility Annex MCC-B
100	4.16 Kv	450 HP Induction Condensate Water Pump
109	4.10 10	#2 at Utility Annex MCC-B
770	4.16 Kv	450 HP Induction Condensate Water Pump
110	4.10 KV	#1 at Utility Annex MCC-B
~ ~ *	l. 7 C 75-	
111	4.16 Kv	2500 Hp Synchronous Refrigerator # 2 at Utility Annex MCC-B
112	4.16 Kv	2500 HP Synchronous Refrigerator # 1
المراجعة الم	Printer any	at Utility Annex MCC-B
113	4.16 Kv	450 HP Induction Chilled Water Pump # 3
-		at Utility Annex MCC-B
114	4.16 Kv	450 HP Induction Chilled Water Pump # 2
		at Utility Annex MCC-B

Bus Code	Voltage Level	Network Location
115	4.16 Kv	450 HP Induction Chilled Water Pump # 1
116 117 118 119 120 121 122 123 124 125	13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv	at Utility Annex MCC-B WYE on Feeder # 607 at LBS # 744 LBS # 745 Industrial Bus LBS # 745 Instrumentation Bus Substation # 814-500 KVA Transformer "B" LBS # 744 Industrial Bus LBS # 744 Instrumentation Bus Substation # 814-500 KVA Transformer "A" Substation # 814 Transformer "A" LBS # 741 Industrial Bus Substation # 806-1000 KVA Transformer "B" Substation # 808-1500 KVA Transformer "B"
127 128 129 130 131 132	13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv	Substation # 810-750 KVA Transformer "B" Substation # 817-1000 KVA Transformer "A" Substation # 806-1000 KVA Transformer "A" Substation # 808-1500 KVA Transformer "A" Substation # 810-750 KVA Transformer "A" Substation # 817-1000 KVA Transformer "B" Substation # 806 Transformer "A"
134 135 136 137 138 139 140 141 142	480 V 480 V 480 V 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv	Substation # 808 Transformer "A" Substation # 810 Transformer "A" Substation # 817 Transformer "B" Substation # 807-1000 KVA Transformer "A" Substation # 807-1000 KVA Transformer "B" Substation # 809-1000 KVA Transformer "A" Substation # 809-1000 KVA Transformer "B" Substation # 811-1000 KVA Transformer "A" Substation # 811-1000 KVA Transformer "B" Substation # 807 Transformer "B"
144 145 146 147 148 149 150	480 V 480 V 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv	Substation # 809 Transformer "B" Substation # 811 Transformer "A" LBS # 717 Industrial Bus LBS # 719 Industrial Bus LBS # 756 M. L. Interface Industrial Bus LBS # 754 M. L. Interface Industrial Bus LBS # 727 Instrumentation Bus Substation # 812-500 KVA Transformer "A"
152 153 154 155 156 157 158 159	13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 480 V 480 V 13.8 Kv 13.8 Kv	Substation # 812-500 KVA Transformer "B" Substation # 816-1500 KVA Transformer "A" Substation # 816-1500 KVA Transformer "B" LBS # 728 Instrumentation Bus Substation # 812 Transformer "A" Substation # 816 Transformer "A" LBS # 743 Instrumentation Bus LBS # 755 M. L. Interface Instrumentation Bus
160	13.8 Kv	LBS # 757 M. L. Interface Instrumentation Bus

Bus Code	Voltage Level	Network Location
161 162 163 164 165 166 167 168 169 170 171	13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 13.8 Kv 1480 V 480 V	LBS # 726 Industrial Bus LBS # 726 Instrumentation Bus LBS # 751 M. L. Interface Instrumentation LBS # 753 M. L. Interface Instrumentation LBS # 760 Industrial Bus LBS # 770 Industrial Bus LBS # 775 Industrial Bus Substation # 825-150 KVA Transformer Substation # 824-225 KVA Transformer Substation # 823 Transformer Substation # 824 Transformer Substation # 825 Transformer Substation # 822 Transformer Substation # 826-1000 KVA Transformer Substation # 827-300 KVA Transformer Substation # 827-300 KVA Transformer Substation # 827-300 KVA Transformer
173 174	480 V 13.8 Kv	Substation # 822 Transformer Substation # 826-1000 KVA Transformer
175 176	13.8 Kv 480 V	Substation # 827-300 KVA Transformer Substation # 826 Transformer
177 178	208 V 13.8 Kv 13.8 Kv	Substation # 827 Transformer Instrumentation Switchgear # 704 LBS # 761 Instrumentation
179 180 181	208 V 13.8 Kv 480 V	Substation # 828 Transformer
182 183 184 186	4.16 Kv 480 V 480 V	Substation # 888 Transformer Substation # 924-2 Transformer Substation # 926 Transformer Substation # 950 Transformer Substation # 1054 Transformer Substation # 872 Transformer Substation # 1054-225 KVA Transformer Substation # 883 Transformer Substation # 883 Transformer Substation # 922 Transformer Substation # 923 Transformer Substation # 873 Transformer Switching Station # 1002 Transformer
186 187 188 189	480 V 480 V 13.8 Kv 480 V	Substation # 1054 Transformer Substation # 872 Transformer Substation # 1054-225 KVA Transformer Substation # 883 Transformer
190 191 192	480 V 480 V 13.8 K√	PATOCETED DOUBTON A TOOL THE OF STREET
193	13.8 Kv	Bus Switching Station # 1002 Instrumentation Bus
194 195 196 197	480 V 480 V 480 V 4.16 Kv	Substation # 874 Transformer Substation # 925 Transformer "B" Substation # 875 Transformer Tie between Substation # 924-1 and Substation # 927
198 199 200	13.8 Kv 13.8 Kv 480 V	LBS # 1024 Industrial Substation # 878-300 KVA Transformer Substation # 878 Transformer
201 202 203	13.8 Kv 480 V 13.8 Kv	Switching Station # 902 Industrial Bus # 1 Substation # 879 Transformer Switching Station # 900 Industrial Bus # 2
204	480 V	Substation #881 Transformer

Bus Code	Voltage Level	Network Location
205	13.8 Kv	Switching Station # 900 Instrumentation Bus
206	13.8 Kv	Switching Station # 902 Instrumentation Bus
207	480 V	Substation # 880 Transformer
208	15.8 Kv	Substation # 884-45 KVA Transformer
209	480 V	Substation # 884 Transformer
210	480 V	Substation # 887 Transformer
211	13.8 Kv	Substation # 884-45 KVA Transformer Substation # 884 Transformer Substation # 887 Transformer Substation # 831-750 KVA Transformer
212	208 V	LBS # 719-225 KVA Thensformer
213	480 V	Substation # 831 Transformer Substation # 835-2000 KVA Transformer
214	13.8 Kv	Substation # 835-2000 KVA Transformer
215	480 V	Substation # 835 Transformer Substation # 836-2000 KVA Transformer Substation # 836 Transformer
216	13.8 Kv	Substation # 836-2000 KVA Transformer
217	1480 V	Substation # 836 Transformer
2 <u>1</u> .8	13.8 Kv	Substation # 05/-2000 KVA Transformer
219	480 V	Substation # 837 Transformer
220	13.8 Kv	Substation # 838-1500 KVA Transformer
221	480 V	Substation # 838 Transformer
222	13.8 Kv	Switching Station # 900
		industrial Bus # 1
223	13.8 Kv	Substation # 922-750 KVA Transformer "B"
22 ¹ 4	13.8 Kv	Substation # 922-750 KVA Transformer "B" Substation # 922-750 KVA Transformer "A"
225	13.8 Kv	Switching Station # 1002
		Industrial Bus # 2
226	13.8 Kv	Switching Station # 902
		Industrial Bus # 2
227	7+80 A	Substation # 332 Transformer "B"
228	13.8 Kv	MSS Power Interface Pad A
000		Industrial Bus # 1
229	13.8 Kv	Substation # 839-300 KVA Transformer Substation # 839 Transformer
230	1430 V	Substation # 952-2, 2500/3125 KVA
231	13.8 K _V	Transformer
232	480 V	Substation 1 052 2 Transformer
233	13.8 Kv	Substation # 952-2 Transformer Substation # 952-1, 2000 KVA
-))	17.0 11	Transformer
23 4	480 V	Substantion # 995 Transformer
235	15.8 Kv	Substation # 953-300 KVA Transformer
236	13.8 Kv	Substitution # 2 1-2000 KVA Transformer
237	480 V	Substation # 951 Transformer
238	13.8 Kv	Substation # 950-2000 KVA Transforcer
239	13.8 Kv	Substation # 953-300 KVA Transformer Substation # 91-2000 KVA Transformer Substation # 951 Transformer Substation # 950-2000 KVA Transformer Substation # 926-750 KVA
	•	Transformer "A"
240	23.8 Kv	Substation # 926-750 KVA
		Transformer "B"
241	480 V	Substation # 926 Transformer "A"
242	13.8 Kv	Substation # 525-1000 KVA
		Transformer "B"

Bus Code	Voltage Level	Network Location
243 244	480 V 13.8 Kv	Substation # 925 Transformer "A" Substation # 925-1000 KVA Transformer "A"
245	13.8 Kv	Substation # 924-1, 2500 KVA Transformer "A"
246	4.16 Kv	Substation # 924-1 Transformer
247	13.8 Kv	Substation $\#$ 924-2, 2500 KVA Transformer "B"
248	13.8 Kv	Substation # 927-1500 KVA Transformer
249	4.16 Kr	Substation # 927 Transformer
250	13.8 Kv	Substation # 921-750 KVA Transformer "B"
251	13.8 Kv	Substation # 920-500 KVA Transformer "B"
252	13.8 Kv	Substation # 921-750 KVA
	1.0	Transformer" A"
253	480 V	Substation # 920 Transformer "A"
25 <u>1</u> 4	48c_v	Substation # 921 Transformer "A"
255	13.8 Kv	Substation # 954-300 KVA Transformer
256	203 V	Substation 🛊 954 Transformer
257	13.8 Kv	LBS # 929 Instrumentation
258	480 V	Substation # 928 Mobile Launcher
	10	Industrial Transformer
259	480 V	Substation # 929 Mobile Launcher
060	1.0.17	Instrumentation Transformer
260	V GC-4	Substation # 923 Mobile Service
061	17 0 tc.	Structure Transformer "A"
261	13.8 Kv	Substation # 923 Mobile Service Structure 2000 KVA Transformer "B"
262	13.8 Kv	Switching Station # 1001 Instrumentation
202		Bus
263	13.8 Kv	Switching Station # 1001 Industrial Bus # 1
264	13.8 Kv	Switching Station # 1001 Industrial Bus # 2
265	15.8 Kv	Substation # 1050-2000 KVA Transformer "B"
266	480 V	Substation # 1050 Transformer
267	13.8 Kv	Substation # 1050-2000 KVA Transformer "A"
268	13.8 Kv	Substation # 1030-750 KVA Transformer
269	480 V	Substation # 1030 Transformer
270	480 V	Substation # 1029 Transformer
271	13.8 Kv	Substation # 1029-750 KVA Transformer
272	13.8 Kv	Substation # 1023-500 KVA Transformer 2
273	480 V	Substation # 1023 Transformer 2
274	13.8 Kv	Substation # 1023-500 KVA Transformer 1
275	13.8 Kv	Substation # 1053-300 KVA Transformer
276	480 V	Substation # 1053 Transformer
277	480 V	Substation # 1052 Transformer 2

278 15.8 Kv			
Transformer 2 Substation # 1053-2500 KVA Transformer 1051-1500 KVA Transformer 281	Bus Code	Voltage Level	Network Location
279 13.8 Kv	278	13.8 Kv	
Transformer 1 280 13.8 Kv Substation # 1031-1500 KVA Transformer 281 282 283 284 285 285 286 286 287 2884 13.8 Kv Substation # 1032 Transformer 2884 13.8 Kv Tie Feeders # 606 and # 612 For Mobile Launcher Power Interface 286 287 2886 287 2886 2886 2886 2887 2886 2887 2886 2888 2888	070	3 7 O 77	
280	279	13.8 KV	
281	280	13.8 Kv	
282			Substation # 1031 Transformer
15.8 Kv			Substation # 1032 Transformer
Launcher Power Interface 286			Substation # 1032-1500 KVA Transformer
285	284	13.8 Kv	
286	005	17 0 K.	
1020 and Substation # 1021			Substation # 1020-2500 AVA transformer
1020 and Substation # 1021			Substation # 1020 Tie Between Substation
288	201	4.TO 114	≠ 1020 and Substation # 1021
289	288	13.8 Kv	Substation # 1021-2500 KVA Transformer 1
291	289	13.8 Kv	Substation # 1021-2500 KVA Transformer 2
292			Substation # 920-500 KVA Transformer "A"
Structure Transformer			Substation # 920 Transformer "B"
Structure Transformer			Substation # 921 Transformer B
294	290	400 V	Structure Transformer
299 13.8 Kv Industrial Switchgear # 701 300 13.8 Kv Industrial Switchgear # 702 301 13.8 Kv Industrial Switchgear # 702 302 15.8 Kv Industrial Switchgear # 705 305 13.8 Kv Instrumentation Switchgear # 705 306 14.16 Kv Instrumentation Switchgear # 705 307 15.8 Kv Instrumentation Switchgear # 705 308 1480 V Substation # 829 Utility Annex 306 1480 V Substation # 800 Transformer "B" 308 1480 V Substation # 800 Transformer "B" 309 1480 V Substation # 802 Transformer "B" 309 1480 V Substation # 804 Transformer "B" 310 1480 V Substation # 804 Transformer "B" 311 1480 V Substation # 806 Transformer "B" 312 1480 V Substation # 808 Transformer "B" 314 1480 V Substation # 808 Transformer "B" 315 1480 V Substation # 808 Transformer "B" 316 1480 V Substation # 807 Transformer "B" 317 1480 V Substation # 801 Transformer "B" 318 1480 V Substation # 801 Transformer "B" 319 1480 V Substation # 801 Transformer "B" 320 1480 V Substation # 801 Transformer "B" 321 1480 V Substation # 801 Transformer "B" 322 1480 V Substation # 801 Transformer "B" 3231 1480 V Substation # 801 Transformer "B" 3480 V Substation # 801 Transformer "B" 3480 V Substation # 801 Transformer "B" 3490 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B"	SOF	1480 V	Substation # 1050 Transformer "A"
299 13.8 Kv Industrial Switchgear # 701 300 13.8 Kv Industrial Switchgear # 702 301 13.8 Kv Industrial Switchgear # 702 302 15.8 Kv Industrial Switchgear # 705 305 13.8 Kv Instrumentation Switchgear # 705 306 14.16 Kv Instrumentation Switchgear # 705 307 15.8 Kv Instrumentation Switchgear # 705 308 1480 V Substation # 829 Utility Annex 306 1480 V Substation # 800 Transformer "B" 308 1480 V Substation # 800 Transformer "B" 309 1480 V Substation # 802 Transformer "B" 309 1480 V Substation # 804 Transformer "B" 310 1480 V Substation # 804 Transformer "B" 311 1480 V Substation # 806 Transformer "B" 312 1480 V Substation # 808 Transformer "B" 314 1480 V Substation # 808 Transformer "B" 315 1480 V Substation # 808 Transformer "B" 316 1480 V Substation # 807 Transformer "B" 317 1480 V Substation # 801 Transformer "B" 318 1480 V Substation # 801 Transformer "B" 319 1480 V Substation # 801 Transformer "B" 320 1480 V Substation # 801 Transformer "B" 321 1480 V Substation # 801 Transformer "B" 322 1480 V Substation # 801 Transformer "B" 3231 1480 V Substation # 801 Transformer "B" 3480 V Substation # 801 Transformer "B" 3480 V Substation # 801 Transformer "B" 3490 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B"			Substation # 1023 Transformer 1
299 13.8 Kv Industrial Switchgear # 701 300 13.8 Kv Industrial Switchgear # 702 301 13.8 Kv Industrial Switchgear # 702 302 15.8 Kv Industrial Switchgear # 705 305 13.8 Kv Instrumentation Switchgear # 705 306 14.16 Kv Instrumentation Switchgear # 705 307 15.8 Kv Instrumentation Switchgear # 705 308 1480 V Substation # 829 Utility Annex 306 1480 V Substation # 800 Transformer "B" 308 1480 V Substation # 800 Transformer "B" 309 1480 V Substation # 802 Transformer "B" 309 1480 V Substation # 804 Transformer "B" 310 1480 V Substation # 804 Transformer "B" 311 1480 V Substation # 806 Transformer "B" 312 1480 V Substation # 808 Transformer "B" 314 1480 V Substation # 808 Transformer "B" 315 1480 V Substation # 808 Transformer "B" 316 1480 V Substation # 807 Transformer "B" 317 1480 V Substation # 801 Transformer "B" 318 1480 V Substation # 801 Transformer "B" 319 1480 V Substation # 801 Transformer "B" 320 1480 V Substation # 801 Transformer "B" 321 1480 V Substation # 801 Transformer "B" 322 1480 V Substation # 801 Transformer "B" 3231 1480 V Substation # 801 Transformer "B" 3480 V Substation # 801 Transformer "B" 3480 V Substation # 801 Transformer "B" 3490 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B"			Substation # 1052 Transformer 1
299 13.8 Kv Industrial Switchgear # 701 300 13.8 Kv Industrial Switchgear # 702 301 13.8 Kv Industrial Switchgear # 702 302 15.8 Kv Industrial Switchgear # 705 305 13.8 Kv Instrumentation Switchgear # 705 306 14.16 Kv Instrumentation Switchgear # 705 307 15.8 Kv Instrumentation Switchgear # 705 308 1480 V Substation # 829 Utility Annex 306 1480 V Substation # 800 Transformer "B" 308 1480 V Substation # 800 Transformer "B" 309 1480 V Substation # 802 Transformer "B" 309 1480 V Substation # 804 Transformer "B" 310 1480 V Substation # 804 Transformer "B" 311 1480 V Substation # 806 Transformer "B" 312 1480 V Substation # 808 Transformer "B" 314 1480 V Substation # 808 Transformer "B" 315 1480 V Substation # 808 Transformer "B" 316 1480 V Substation # 807 Transformer "B" 317 1480 V Substation # 801 Transformer "B" 318 1480 V Substation # 801 Transformer "B" 319 1480 V Substation # 801 Transformer "B" 320 1480 V Substation # 801 Transformer "B" 321 1480 V Substation # 801 Transformer "B" 322 1480 V Substation # 801 Transformer "B" 3231 1480 V Substation # 801 Transformer "B" 3480 V Substation # 801 Transformer "B" 3480 V Substation # 801 Transformer "B" 3490 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B" 3400 V Substation # 801 Transformer "B"			Substation # 1021 Transformer 1
13.8 Kv Switching Station # 707 Feeder # 611			Substation # 1021 Transformer 2
Industrial Bus Substation			
13.8 Kv	500	15.0 KV	
15.8 Kv	301	13.8 Kv	
13.8 Kv			
304 4.16 Kv Substation # 829 Utility Annex Transformer "B" 305 480 V Substation # 830 VABR Transformer "B" 306 480 V Substation # 830 Transformer "B" 307 480 V Substation # 800 Transformer "B" 308 480 V Substation # 802 Transformer "B" 309 480 V Substation # 804 Transformer "B" 310 480 V Substation # 818 Transformer "B" 311 480 V Substation # 820 LCC Transformer "B" 312 480 V Substation # 806 Transformer "B" 315 480 V Substation # 808 Transformer "B" 315 480 V Substation # 808 Transformer "B" 316 480 V Substation # 801 Transformer "B" 316 480 V Substation # 801 Transformer "B" 317 480 V Substation # 801 Transformer "B" 318 480 V Substation # 801 Transformer "B" 319 480 V Substation # 801 Transformer "B" 320 480 V Substation # 801 Transformer "B" 320 480 V Substation # 801 Transformer "B" 321 480 V Substation # 801 Transformer "B" 322 480 V Substation # 801 Transformer "B" 321 480 V Substation # 801 Transformer "B" 322 480 V Substation # 801 Transformer "B" 321 322 480 V Substation # 801 Transformer "B" 321 322 323 324 325 32			IBS # 772 Industrial
305 480 V Substation # 835 VABR Transformer "B" 306 480 V Substation # 830 Transformer "B" 307 480 V Substation # 800 Transformer "B" 308 480 V Substation # 802 Transformer "B" 309 480 V Substation # 804 Transformer "B" 310 480 V Substation # 820 LCC Transformer "B" 311 480 V Substation # 806 Transformer "B" 312 480 V Substation # 808 Transformer "B" 313 480 V Substation # 801 Transformer "B" 314 480 V Substation # 801 Transformer "B" 315 480 V Substation # 803 Transformer "B" 316 480 V Substation # 803 Transformer "B" 318 480 V Substation # 801 Transformer "B" 319 480 V Substation # 807 Transformer "B" 320 480 V Substation # 809 Transformer "A" 321 480 V Substation # 809 Transformer "B" 322 480 V Substation # 811 Transformer "B"		4.16 Kv	Substation #829 Utility Annex
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"		10	Transformer "B"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substation # 833 VABR Transformer "B"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substation # 800 Transformer "R"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substation # 802 Transformer "B"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substation # 804 Transformer "B"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substation # 818 Transformer "B"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substation # 820 LCC Transformer "B"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substation # 806 Transformer "B"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substation # 808 Transformer "B"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substation # 817 Transformer "A"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substation # 801 Transformer "B"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substacion # 803 Transformer "B"
319 480 V Substation # 814 Transformer "B" 320 480 V Substation # 807 Transformer "B" 321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"		480 V	Substation # 821 LCC Transformer "B"
321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"	3 19		Substation # 814 Transformer "B"
321 480 V Substation # 809 Transformer "A" 322 480 V Substation # 811 Transformer "B"			Substation # 807 Transformer "B"
See 400 A Ships of Toll # Off Transformer B			Substation # 809 Transformer "A" Sweets ion # 811 Transformer "B"
323 480 V Substation #812 Transformer "B"			Substation # 812 Transformer "B"
324 480 V Substantian # 816 Transformer "B"			Substation # 816 Transformer "B"

Bus Code	Voltage Level	Network Location
325 326	13.8 Kv 13.8 Kv	LBS # 928-2 MSS Interface Pad A Industrial Bus # 2
327	480 V	Substation # 950 Tie Between Substation # 950 and Substation # 951
328	4.16 Kv	Substation # 924-1 Tie Between Substation # 924-1 and Substation # 927
329	480 V	Substation # 952 Transformer
330	480 V	Substation # 952 Tie Between
331	480 V	Substation # 952 and Substation # 953 Substation # 1030 Tie Between Substation # 1030 and Substation # 1029
332	480 V	Substation # 1032 Tie Between Substation # 1032 and Substation # 1031
333	480 V	Substation # 1053 Tie Between
		Substation # 1053 and Substation # 1052
33 4	4.16 Kv	2500 HP Induction Lox Pump at
**************************************	h a C re.	Substation # 1021-1
335	4.16 Kv	200 Hp Induction Lo. Pump at Substation # 1021-1
336	480 V	75 KVA Clutch Transformer at Substation # 1021-1
337	4.16 Kv	2500 HP Induction Lox Pump at
338	4.16 Kv	Substation # 1021-2 200 HP Induction Loc Pump at Substation # 1021-2
339	480 V	75 KVA Clutch Transformer at Substation # 1021-2
340	13.8 Kv	Substation # 828-225 KVA Transformer
341	13.8 Kv	Substation # 828-225 KVA Transformer Substation # 822-112.5 KVA Transformer
342	13.8 Kv	Substation # 823-225 KVA Transformer
343	4.16 Kv	1000 HP Induction ML Water Pump at
3 44	4.16 Kv	Substation # 927 500 HP Induction Firex Pump at
3 ¹ 45	480 V	Substation # 927 75 KVA Clutch Transformer at Substation
<i>></i> +>	400 1	# 924-1
346	480 V	75 KVA Clutch Transformer at Substation # 924-2
347	4.16 Kv	2500 HP Induction Lox Pump # 1 at Substation # 924-1
348	4.16 Kv	200 HP Induction Lox Pump # 2 at Substation # 924-1
349	4.16 Kv	2500 HF Induction Lox Pump # 2 at Substation # 924-2
350	4.16 Kv	300 HP Induction Lox Pump # 1 at Substation # 924-2
351	4.16 Kv	1000 HF Induction ML Water Pump at Substation # 1020
352	4.16 Kv	400 HP Induction Mirex Pump at Substation # 1020
353	13.8 Kv	Substation # 929 ML Instrumentation 1000 KV Transformer

Bus Code	Voltage Level	Network Location
354 thru 369	480 V	Substation # 952 Low Voltage Network
370	480 V	Substation # 953 Low Voltage Network
371 thru 373	480 V	Substation # 952 Low Voltage Network
374	480 V	Substation # 926 Low Voltage Network
375		Not Used
376	480 ₹	Substation # 926 Low Voltage Network
377 thru 379	480 V	Substation # 922 Low Voltage Network
380	480 V	Substation # 925 Low Voltage Network
381	480 V	Substation # 920 Low Voltage Network
382	480 V	Substation # 921 Low Voltage Network
383	480 V	Substation # 950 Low Voltage Network
384	480 V	Substation # 951 Low Voltage Network
385	480 V	Substation # 954, 150 KVA Transformer
386 thru 391	208 V	Substation # 954 Low Voltage Network
392 thru 409	480 V	Substation # 800 Low Voltage Network
410	480 V	Substation # 800-100HP Chiller
411 thru 417	480 V	Substation # 801 Low Voltage Network
418	480 V	Substation # 871 Low Voltage Network
419	208 V	Substation # 871 Low Voltage Network
420 thru 422	480 V	Substation # 870 Low Voltage Network
423	208 V	Substation # 870 Low Voltage Network
424 thru 436	480 V	Substation # 802 Low Voltage Network
437 thru 451	480 V	Substation # 803 Low Voltage Network
452 thru 457	480 V	Substation # 812 Low Voltage Network
458	480 V	Substation # 883 Low Voltage Network
459	208 V	Substation # 883 Low Voltage Network
460 thru 465	480 ¥	Substation # 873 Low Voltage Network
466 thru 468	480 V	Substation # 872 Low Voltage Network
469	203 V	Substation # 872 Low Voltage Network
470 thru 477	480 V	Substation # 804 Low Voltage Natwork
478 thru 481	480 V	Substation # 874 Low Voltage Network
482	480 V	Substation # 875 Low Voltage Network
483	208 V	Substation # 875 Low Voltage Network
484 thru 496	480 V	Substation # 806 Low Voltage Network
487 thru 504	480 V	Substation # 807 Low Voltage Network
505	480 V	Substation # 877 Low Voltage Network
506	208 V	Substation # 877 Low Voltage Network
507 thru 509	480 V	Substation # 876 Low Voltage Network
510	208 V	Substation # 876 Low Voltage Network
511 thru 515	480 V	Substation : 808 Low Voltage Network
51.6	208 V	Substation # 808 Low Voltage Network
517 thru 524	480 V	Substation # 808 Low .oltage Network
525	208 V	Substation # 808 Low Voltage Network
526	480 V	Substation # 808-100 HP Chiller
527 thru 539	480 V	Substation # 809 Low Voltage Network
540 thru 545	480 V	Substation # 814 Low Voltage Network
546	480 V	Not Used
547	208 V	Substation #879 Low Voltage Network

Bus Code	Voltage Level	Network Location
548 thru 550	480 V	Substation # 878 Low Voltage Network
551	208 V	Substation # 878 Low Voltage Network
552 thru 557	480 V	Substation # 881 Low Voltage Network
558 thru 570	480 V	Substation # 810 Low Voltage Network
571 thru 579	480 V	Substation # 811 Low Voltage Network
580 thru 583	480 V	Substation $\#$ 880 Low Voltage Network
584	208 V	Substation # 884 Low Voltage Network
5 <u>85</u>	480 V	Substation # 884 Low Voltage Network
586 thru 595	480 V	Substation # 818 Low Voltage Network
596 thru 601	480 V	Substation # 816 Low Voltage Network
602 thru 609	480 V	Substation # 817 Low Voltage Network
610 thru 611	480 V	Substation # 887 Low Voltage Network
612 thru 614	480 V	Substation # 887 and Substation # 818
(35 than 630	485 V	Low Voltage Network
615 thru 619	480 V	Substation # 830 Low Voltage Network Substation # 830-125 HP WC Fan # 5
620 621	480 V	Substation # 830-125 HP WC Fan # 6
622	480 V	Substation # 830-75 HP WC Fan # 1
623	480 V	Substation # 830 Low Voltage Network
624	480 V	Substation # 830-75 HP WC Fan # 2
625	480 V	Substation # 830-75 HP WC Fan # 3
626	480 V	Substation # 830-75 HP WC Fan # 4
627	480 V	Substation # 833 Low Voltage Network
628		Not Used
629		Not Used
630		Not Used
631	480 V	Substation # 833 Low Voltage Network
632	480 V	Substation # 822 Low Voltage Network
633 thru 637	480 V	Substation # 823 Low Voltage Network
638	480 V	Substation # 825 Low Voltage Network
639 thru 640	480 V	Substation # 839 Low Voltage Network
641 thru 643	208 V	Substation # 827 Low Voltage Network
644	208 V	Substation #828 Low Voltage Network
645 thru 649	208 V	Substation #831 Low Voltage Network
650 thru 651	480 V 480 V	Substation # 831 Low Voltage Network Substation # 832 Low Voltage Network
652 653 thru 654		Substation # 819 Lor Voltage Network
655 thru 657	1180 V	Substation # 838 Low Voltage Network
658	208 V	Substation # 826 Lo Voltage Network
659	480 V	Substation # 826 Lo Voltage Network
660	480 V	Substation # 1054 I Voltage Network
661 thru 663		Substation # 820 LCC Low Voltage Network
664	208 V	Substation # 820 LCC Low Voltage Network
665 thru 666	480 V	Substation # 820 LCC Low Voltage Network
667	208 V	Substation # 820 LCC Low Voltage Network
	480 V	Substation # 820 LCC Low Voltage Network
672	208 V	Substation # 820 LCC Low Voltage Network
673 thru 678	480 V	Substation # 821 LCC Low Voltage Network
679	208 V	Substation # 821 LCC Low Voltage Network
630	1480 A	Substation # 881 Low Voltage Network

Bus Code	Voltage Level	Network Location
681 682	480 V	Not Used Substition # 835
683 684	480 V	Substation # 836 Low Voltage Network Not Used
685	480 V	Substation # 836 Low Voltage Network
686 687	480 V	Substation # 836 Low Voltage Network Not Used
688	480 V	Substation # 836 Low Voltage Network Substation # 1052 Low Voltage Network Substation # 1052 Low Voltage Network
689 thru 691	480 V	Substation # 1052 Low Voltage Network
692	208 V	Substation # 1052 Low Voltage Network
693 thru 696	480 V	Substation # 1052 Low Voltage Network
697	480 V	Substation # 1052 Low Voltage Network
	480 V	Substation # 1052 Low Voltage Network
702 thru 704 705	480 V	Substation # 1032 Low Voltage Network Not Used
706 thru 707	480 V	Substation # 1031 Low Voltage Network
708	208 V	Substation # 1031 Low Voltage Network
709	480 V	Substation # 1029 Low Voltage Network
710 thru 711	480 V	Substation # 1030 Low Voltage Network
712	208 V	Substation # 1030 Low Voltage Network
713	480 V	Substation # 1030 Low Voltage Network
714 thru 715 716 thru 717	208 V	Not Used
	480 V	Substation # 1050 Low Voltage Network
720 thru 722 723 thru 729	480 V	Substation # 1052 Low Voltage Network Not Used
730	480 V	Substation # 952 Low Voltage Network
731	480 V	Substation # 922 Low Voltage Network
732 thru 900		Not Used
901	13.8 Kv	LBS # 742 No Tie with LBS # 725
902	13.8 Kv	LBS # 928 ML Interface
903	13.8 Kv	LBS # 322 MSS Interface
904	13.8 Kv	Switching Station # 1002 - No-CB to ML Ind. Interface from Ind. Bus # 2
905	13.8 Kv	ML Power Interface Feeder from Switching Station # 1002 Instrumentation Bus

Bus Code	Voltage Level	Network Location
2026	13.8 Kv	Univ. Camera Pad # 12, 75 KVA Transiormer
2098	13.8 Kv	Signal System Traffic, 15 KVA 10 Transformer
2099 2101	120/240 V 120/240 V	Signal System Traffic Transformer Consv. Stor H5-1571, 25 KVA
2102	13.8 Kv	lø Transformer Consv. HQ H5-1721, 50 KVA
2103 2104	120/240 V 13.8 Kv	lØ Transformer Consv. HQ H5-1721 Transformer Univ. Camera Pad # 13, 3 x 15 KVA
2104	208 V	Transformers Univ. Camera Pad # 13, 3 x 15 KVA
	13.8 Kv	Transformers 54WT9-H4-1723, 10 KVA 10 Transformer
2106 2107	120/240 V	54WT9-H4-1723, 10 KVA 10 Transformer
2108	13.8 Kv	Temp Guard Shack, 5 KVA 10 Transformer
21,09	120/240 V	Temp Guard Shack, 5 KVA 10
5170	13.8 Kv	Railroad Crossing, 10 KVA 10
2111	120/240 V	Railroad Crossing, 10 KVA 10
2112	13.8 Kv	Consv. Stor. H5-1571, 25 KVA
2113	13.68 Kv	Mosquito Control Pump, 3 x 37.5 KVA Transformers
2114	208 V	Mosquito Control Pump, 3 x 37.5 KVA Transformers
2115	13.8 Kv	Railroad Signal, 10 KVA 10 Transformer
2116	120/240 V	Railroad Signal, 10 KVA 10 Transformer
21.17	13.8 Kv	Consv. Bldg. H5-1444, 15 KVA 10
5118	120/240 V	Trusformer Conav. Bldg. H5-1444, 15 KVA 10
0110		Transformer
2119		Not Used
2120	3.7.0.16	Not Used
2121	13.8 Kv	H559, 3 x 15 KVA Transformers
2122	480 V	H559, 3 x 15 KVA Transformers
2123	13.8 Kv	H583, 25 KVA 10 Transformer
2124	120/240 V	H583, 25 KVA 10 Transformer
2125	13.8 Kv	Rec Area, 15 KVA 10 Transformer
2126	120/240 V	Rec Area, 15 KVA 10 Transformer
2127	13.68 Kv	Halouver Canal E4-2414, 3 x 25 KVA Transformers
2128	480 V	Halouver Canal E4-2414, 3 x 25 KVA Transformers
2129	13.8 Kv	54WTl0, 10 KVA 1∮ Transformer
2130	120/240 V	54WT10, 10 KVA 10 Transformer

Bus Code	Voltage Level	Network Location
		770 // 707 - 7 W - Gay Pad / k
2131	13.8 Kv	LBS # 307 and Univ. Cam Pad # 4, 75 KVA Transformer
2132	208 V	Univ. Cam Pad # 4 Transformer
2133	13.8 Kv	LBS # 308 and Univ. Cam Pad # 7,
L.,,,	2010	75 KVA Transformer
2134	208 V	Univ. Cam Pad # 7 Transformer
21.35	13.8 Kv	LBS # 310
2136	208 V	Univ. Cam Pad # 12 Transformer
2137	13.8 Kv	W80, 3 x 15 KVÄ Transformers
2138	208 V	W80, 3 x 15 KVA Transformers
2139	13.8 Kv	Astro Beach House, 15 KVA 10
	-	Transformer
2140	120/240 V	Astro Beach House, 15 KVA 1Ø
	·	Transformer
2141	13.8 Kv	W91-10 KVA 10 Transformer
2142	120/240 V	W91-10 KVA 10 Transformer
2143	13.8 Kv	Temp Gate 🗲 6, 10 KVA 1Ø
		Transformer
2144	120/240 V	Temp Gate # 6, 10 KVA 10
		Transformer
2145	13.8 Kv	N226, 10 KVA 10 Transformer
2146	120/240 V	N226, 10 KVA 10 Transformer
2147	13.8 Kv	Univ. Cam Pad # 5, 45 KVA Transformer
2148	208 ั₩	Univ Cam Pad # 5, 45 KVA Transformer
2149	13.8 Kv	500WII, 3 x 25 KVA Transformers
2150	208 V	500WII, 3 x 25 KVA Transformers
2151	13.8 Kv	LBS # 304 and Univ Cam Pad # 16,
		45 KVA Transformer
2152	208_V	Univ Cam Pad # 16 Transformer
2153	13.8 Kv	GGO-100, NO Switch to FPLCO
2154		Not Used
2155	13.8 Kv	G892-NC Fused Switch
2156	13.8 Kv	G883-NC Fused Switch
2157	13.8 Kv	G612
2158	13.8 Ky	G811-NC Fused Switch
2159	13.8 Kv	G802
2160	13.8 Kv	H501
2161	13.8 Kv	Wilson Recloser
2162	13.8 Kv	High Resolution Tracker #1, 45 KVA
2163	13.8 Kv	LBS ≠ 305
2164	13.8 Kv	N260
2165	13.8 Kv	Playlinda Sectionalizer
2166	13.8 Ky	LBS # 309
21.67	13.8 Kv	W79
2168	13.8 Ky	W73IF-No-Fused Switch to CKAFS
2169	13.8 Ky	H504
2170 thru 2171		Industrial Area System
2172	13.8 Kv	54WT8, J6-1869, 15 KVA 10 Transformer

Bus Code	Voltage Level	Network Location
2173 2174 thru 2196	120/240 V	54WT8, J6-1869, 15 KVA 10 Transformer Industrial Area System
2197	13.8 Kv	FCA Mobile Site, 25 KVA 10 Transformer
2198	150/5 7 0 A	FCA Mobile Site, 25 KVA 10 Transformer
2199	13.8 Kv	Universal Cam Pad # 14, 45 KVA Transformer
2200	208 V	Universal Cam Pad # 14, 45 KVA Transformer
22C1 22C2	13.8 Kv 208 V	Van Area, 112 1/2 KVA Transformer Van Area, 112 1/2 KVA Transformer
2203	208 V	High Resolution Tracker # 1 Transformer
2204	13.8 Kv	Weather Substation "B", 75 KVA Transformer
2205	208 A	Weather Substation "B", 75 KVA Transformer
2206 thru 2209	208 V	Industrial Area System
2210	13.8 Kv	LBS # 303
2211	13.8 Kv	LBS # 302
2212 thru 2914	•	Industrial Area System
2915	13.8 Kv	LBS # 301-No Switch to 3 x 167 KVA
007.6	77 C 15	Voltage Regulators
2916	13.8 Kv	Fuse Switch on Tie between G 802 and H 501
2917	13.8 Kv	Tie between G 802 and H 501
		Normally open

Bus Code	Voltage Level	Network Location
<u>ļ</u>	115 Kv	Orsino Substation - FPLCO Primary Loop
2008	13.2 Kv	Orsino Substation - Main Industrial
	-	Bus # 1
2009	15.2 Kv	Orsino Substation - Main Industrial
		Bus # 2
2010		Not Used
2011	13.2 Kv	Orsino Substation - Main Instrumentation
		Bus
2012	13.2 Kv	LBS # 54
2013	13.2 Kv	LBS # 9 LBS # 45
2014	13.2 Kv	LBS #, 45
2015	13.2 Kv	LBS # 22 LBS # 1
2016	13.2 Kv	LBS # 1
2017	13.2 Kv	WYE on FD # 202 at MH 37
2018	13.2 Kv	WYE on FD # 203 at MH 37
2019	13.2 Kv	LBS # 56
2020	13.2 Kv	WYE on FD # 209 at MH 19
2021	13.2 Ky	LBS # 15
2022	13.2 Kv	WYE on FD # 205 at MH 38 WYE on FD # 204 at MH 38
2023 2024	13.2 Ky	LBS # 44
2025	13.2 Kv 13.2 Kv	LBS # 38
2026	13.2 Kv	Launching Complex System
2027	13.2 Kv	Substation CRB - NC Fuse Switch
2028	13.2 Kv	CKAFS Power Interface Switching Cubicle
2029	13.2 Kv	LBS # 55
2030	13.2 Kv	Visitors Information Center
20,0	17.2 114	750 KVA Transformer
2031	13.2 Kv	OCR Recloser
-	13.2 Kv	
2033	13.2 Kv	LBS # 52 LBS # 53
2034	13.2 Kv	LBS # 60, ClF M6-342 Primary Bus
2035	13.2 Kv	LBS # 4
2036	13.2 Kv	ClF Antenna Site Primary Bus
2037	13.2 Kv	LBS # 24
2038	13.2 Kv	RF Systems Test FAC, 750 KVA Transformer
2039	13.2 Kv	LBS # 25
2040	13.2 Kv	ECS # 1, 500 KVA Transformer
2041	13.2 Kv	ECS # 1, 500 KVA Transformer
50/15	13.2 Kv	LBS # 26
2043	13.2 Kv	Fluid Test Support, 225 KVA Transformer
50/1/1	13.2 Kv	Fluid Test Support, 500 KVA Transformer
2045	13.2 Kv	LBS ≠ 27
2046	13.2 Kv	Hypergolic Test #2, 750 KVA Transformer
2047	13.2 Kv	Hypergclic Test # 1, 500 KVA Transformer
2048	13.2 Kv	LBS # 28
2049	13.2 Kv	Cryogenic Test # 1, M7-1412, 150 KVA LBS # 34
2050	13.2 Kv	# J+

Bus Code	Voltage Level	Network Location
2051	13.2 Kv	LBS # 51.
2052	13.2 Kv	Cryogenic Test # 2, M7-1410, 300 KVA
عرب2	1).2 NV	Transformer
2053	13.2 Kv	OCR # 13-14 Recloser
2054	13.2 Kv	Ordnance Lab, M7-1417, 225 KVA
2054	1).2 MV	Transformer
0055	13.2 Kv	LBS # 35
2055	13.2 Kv	Pyrotechnic Inst. M7-1469, 1000 KVA
2056	19.2 AV	Transformer
2057	13.2 Kv	LBS # 57
2057	_	Ordnance Stor. Bldg. M7-1472, 150 KVA
2058	13.2 Kv	Transformer
0000	17 O V	
2059	13.2 Kv	Reclosure By-Pass and East Repeater
00/0	77 O V	#1,3 x 25 KVA Transformers
2060	13.2 Kv	IBS # 2
2061	13.2 Kv	Central Supply Complex M6-698,
		150 KVA Transformer
2062	13.2 Kv	Service Station, 15 KVA 10 Transformer
2063	13.2 Kv	LBS # 11
2064	13.2 Kv	Fire Station, 112 1/2 KVA Transformer
2065	13.2 Kv	LBS # 12
2066	13.2 K₩	Central Supply FAC M6-744, 300 KVA
_		Transformer
2067	13.2 Kv	Central Supply Annex, 300 KVA
		Transformer
2068	13.2 Kv	Heat Plant M6-595, 300 KVA Transformer
2069	13.2 Kv	Sewage Plant Off, M6-895, 112 1/2 KVA
		Transformer
2070	13.2 Kv	LBS #, 49
2071	13.2 Kv	LBS # 3
2072	13.2 Kv	Paint and Oil Stor. M6-894, 45 KVA
		Transformer
2073	13.2 Kv	Supply Whouse, M6-794, 300 KVA
		Transformer
2074	13.2 Kv	Comm. Main and Stor, M6-791, 300 KVA
		Transformer
2075	13.2 Kv	LBS # 46
2076	13.2 Kv	Auto Vehicle M6-688, 300 KVA Transformer
2077	13.2 Kv	Security Patrol, M6-589, 112 1/2 KVA
		Transformer
2078	13.2 Kv	LBS # 7
2079	13.2 Kv	LBS # 15
2080	13.2 Kv	LBS # 19
2081	13.2 Kv	WYE on FD # 202/203 at MH # 79
2082	13.2 Kv	WYE on FD # 202/203 at MH # 80
2083	13.2 Kv	LBS # 15-No Switch on FD # 212
2084	13.2 Kv	KSC Headquarters USS # 2D, 1500 KVA
		Transformer
2085	13.2 Kv	KSC Headquarters USS # 1B, 1500 KVA
•	-	Transformer

Bus Code	Voltage Level	Network Location
2086 thru 2091 2092 2093 2094 2095 2096	13.2 Kv 480 V 13.2 Kv 13.2 Kv 480 V	Indian River System Unified S Band M5-1544, Utility Box Unified S Band, 500 KVA Transformer Unified S Band, 750 KVA Transformer Visitors Information Center Transformer Indian River System
2097 2100 2098 thru 2169	13.2 Kv 13.2 Kv	Primary Bus of Unified S Band Transformer Orsino Critical Bus Launching Complex System
2170	13.2 Kv	LBS # 48 and 54WT6-15 KVA 10 Transformer
2171 2172 thru 2173 2174	120/240 V 13.2 Kv	54WT6, L6-75 Transformer Launching Complex System LBS # 36 and 54WT5-N6-2274, 15 KVA
2175 2176	120/240 V 13.2 Kv	1¢ Transformer 54WT5 Transformer LBS # 73 and Guard House 15 KVA
2177 2178	120/240 V 13.2 Kv	<pre>1¢ Transformer Guard House Transformer LBS # 10 and South Repeat St</pre>
2179	208 V	112 1/2 KVA Transformer Sewage Treatment Plant 45 KVA Transformer
2180	13.2 Kv	Cathodic Protection 15 KVA 10
2181	120/240 V	Cathodic Protection 15 KVA 1¢
2182 2183 2184	13.2 Kv 120/240 V 13.2 Kv	Reclaration Off, 15 KVA 10 Transformer Reclaration Off, 15 KVA 10 Transformer Reclamation Bldg. M6-1671, 37 1/2 KVA 10 Transformer
2185	120/240 A	Reclaration Bldg. M6-1671, 37 1/2 KVA 10 Transformer
2186	13.2 Kv	LBS # 50 and Universal Camera Pad # 18, 75 KVA Transformer
2187 2188	208 V 13.2 Kv	Universal Camera Pad # 18 Transformer Frequency Control L5-683, 500 KVA Transformer
2189	480 V	Frequency Control 5-683, 500 KVA Transformer
21 <i>9</i> 0 2191	480 V 13.2 Kv	Traffic Control 75 KVA Transformer WYE or FD # 211 at MH 165 and Water Pump Station
2192	480 V	Water Pump Station 112 1/2 KVA Transformer
2193	13.2 Kv	Pass and I.D. Blag. NC-1009 75 KVA Transformer
2134	208 V	Pass and I.D. Bldg. NC-1009 75 KVA Transformer

Bus Code	Voltage Level	Network Location
2195 2196	13.2 Kv 208 V	OCR-11-12 Recloser South Repeat Station 112 1/2 KVA Transformer
2197 thru 2205 2206 thru 2207 2208		Launching Complex System Not Used Sand Blasting FAC 3 x 50 KVA Transformers
2209 2210 thru 2211		Sand Blasting FAC MG-1622 Transformer Launching Complex System Not Used
2212 thru 2213 2214	13.2/13.8 Kv	3 x 167 KVA Voltage Regulators Industrial Area-Launching Complex Interface
2215 2216	13.2 Kv 13.2 Kv	LBS # 47 P8 Fused Switch
2217 2218	13.2 Kv	Sewage Treatment Plant 45 KVA Transformer LBS # 43 and Univ Cam Pad # 15,
2219	13.2 Kv 208 V	75 KVA Transformer Univ Cam Pad # 15 Transformer
2220	13.2 Kv	54WIL, L7-988, 3 x 37 1/2 KVA Transformers
2221	480 V	54 WT1, L7-988, 3 x 37 1/2 KVA Transformers
2222	13.2 Kv	FCA Mobile Site 1, L7-2242, 25 KVA
2223	120/240 V	FCA Mobile Sitel, L7-2242, 25 KVA
555#	13.2 Kv	LBS # 40
2225 2226	120/240 V 208 V	54WI2, M7-335, 15 KVA 10 Transformer Universal Cam Pad #2, 75 KVA Transformer
2227	208 V	East Repeater # 1, 3 x 25 KVA Transformers
2228	13.2 Kv	News Center 500 KVA Transformer
2229	208 V	News Center Transformer
2230	13.2 Kv	WYE on FD # 208 and Primary Bus Supply and GSE Service
2231	480 V	Supply and GSE Service Transformer # 2A
2232	480 V	Supply and GSE Service Transformer # 1A
2233	13.2 Kv	WYE on FD # 206 and Primary Bus Supply Shipping West
2234	208 V	Supply, Shipping West Transformer # 2
2235 2236	480 V 13.2 Kv	Supply, Shipping West Transformer # 1 Flight Crew Training 1000 KVA Transformer SS-B
2237	13.2 Kv	Flight Crew Training SS-C and A Transformers

Bus Code	Voltage Level	Network Location
2238	480 V	Flight Crew Training SS-A Transformer (1500 KVA)
2239	208 V	Flight Crew Training Transformer SS-B (1000 KVA)
2240	480 V	Flight Crew Training SS-C Transformer (750 KVA)
2241	13.2 Kv	WYE on FD # 208 and Orsino Bridge (East) 112 1/2 KVA Transformer
2242	480 V	Orsino Bridge (East) M7-1150 Transformer
2243	13.2 Kv	LBS # 23
55/h	13.2 Kv	IBS # 20
2245	13.2 Kv	LBS # 17
22 ¹ 46	13.2 Kv	LBS # 21
2247	13.2 Kv	LBS # 39
55#8	13.2 Kv	LBS # 41
2249	13.2 Kv	LBS # 42
2250	480 V	Fluid Test Support Transformer #2 (500 KVA)
2251	480 V	Fluid Test Support Transformer # 1 (225 KVA)
2252	480 V	ECS #1 Transformer #1 (500 KVA)
2253	480 V	ECS #1 Transformer #2 (500 KVA)
2254	480 V	RF Systems Test FAC Transformer
2255	480 V	Hypergolic Test # 2 Transformer
		Temperation Most 1 I Thomason
2256	480 V	Hypergolic Test # 1 Transformer
2257	480 V	Cryogenic Test # 2 Transformer
2258	480 V	Ordnance Lab Transformer
2259	480 V	Pyrotechnic Instal Transformer
2260	208 V	Ordnance Storage Transformer
2261	480 V	Sewage Plant Off Transformer
2262	208 V	Paint and Oil Storage Transformer
2263	480 V	Supply Warehouse Transformer
2264	480 V	Comm Maint and Stor Transformer
2265	208 V	Auto Vehicle Maint.
	208 V	Security Patrol
2266		
2267	13.2 Kv	LBS # 70
2268	480 V	Generator #1 300 KVA Transformer
2269	480 V	Generator Substation 750 KVA
		Transformer
2270	480 V	CiF M6-342, 500 KVA Transformer
2271	2.4 Kv	Chillers # 1 and # 2 at CIF
2272	13.2 Kv	ClF 1500 KVA Transformer # 8
2273	2.4 Kv	C1F 1500 KVA Transformer # 8
		CLF 1500 KVA Transformer # 7
2274	2.4 Kv	
2275	480 V	ClF 2000 KVA Transformer # 6
2276	208 V	ClF 1000 KVA Transformer # 5
2277	208 V	ClF 1000 KVA Transformer # 4
•		

(,)

Bus Code	Voltage Level	Network Location
2278	13.2 Kv	LBS # 69 and Primary Bus FD # 102 at ClF
2279	13.2 Kv	LBS # 69 and Primary Bus FD # 103 at ClF
2280	13.2 Kv	LBS # 71 N.C. Switch
2281	13.2 Kv	ClF 1000 KVA Transformer # 3
2282	208 V	ClF 1000 KVA Transformer 🗲 3
2283	13.2 Kv	ClF 1000 KVA Transformer # 2
2284	208 V	ClF 1000 KVA Transformer # 2
2285	13.2 Kv	ClF 1000 KVA Transformer # 1
2286	208 V	C1F 1000 KVA Transformer # 1
2287	13.2 Kv	LBS # 5
2288	13.2 Kv	LBS # 72
2289	2.4 Kv	Chiller # 3 at ClF
2290	2.4 Kv	Chillers # 1 and # 2 Starters
2291	2.4 Kv	Substation "OA" Bus
2292	480 V	Substation "OB" 1000 KVA Transformer
2293	13.2 Kv	FD # 202 Primery Bus at Substation "OA"

2294 13.2 Ky	Bus Code	Voltage Level	Network Location
15.2 Kv	വവി	12 0 Ktr	Primary Bus FD # 204 at Substation "OA"
West Substation "OA" 2000 KVA Transformer East		_	Substation "OA" 2000 KVA Transformer
2296 13.2 Kv	4697	T) 15 150	
2.4 Kv	2296	13.2 Kv	Substation "OA" 2000 KVA Transformer
Bast 2.98 2.4 Kv Substation "OA" Transformer West 2899 13.2 Kv Substation "WJ" 500 KVA Transformer 2301 13.2 Kv Substation "WI" 750 KVA Transformer 2302 480 V Substation "WI" 750 KVA Transformer 2305 13.2 Kv Substation "WI" 750 KVA Transformer 2304 208 V Substation "WK" 500 KVA Transformer 2305 13.2 Kv Substation "WK" 500 KVA Transformer 2306 208 V Substation "WH" 225 KVA Transformer 2307 13.2 Kv Substation "WH" 225 KVA Transformer 2308 480 V Substation "WG" 500 KVA Transformer 2309 13.2 Kv Substation "WG" 500 KVA Transformer 2310 208 V Substation "EB" 150 KVA Transformer 2311 13.2 Kv Substation "EB" 150 KVA Transformer 2312 208 V Substation "EB" 150 KVA Transformer 2314 208 V Substation "EB" 150 KVA Transformer 2314 208 V Substation "EB" 150 KVA Transformer 2314 208 V Substation "EB" 150 KVA Transformer 2315 13.2 Kv Substation "EB" 150 KVA Transformer 2316 480 V Substation "ED" 150 KVA Transformer 2317 13.2 Kv Substation "ED" 150 KVA Transformer 2316 480 V Substation "ED" 150 KVA Transformer 2317 13.2 Kv Substation "ED" 150 KVA Transformer 2319 13.2 Kv Substation "ED" 150 KVA Transformer 2320 480 V Substation "ED" 150 KVA Transformer 2321 13.2 Kv Substation "ED" 150 KVA Transformer 2322 268 V Substation "ED" 200 KVA Transformer 2323 13.2 Kv Substation "ED" 200 KVA Transformer 2324 208 V Substation "ED" 200 KVA Transformer 2325 13.2 Kv Substation "ED" 200 KVA Transformer 2326 208 V Substation "WA" 300 KVA Transformer 2326 208 V Substation "WB" 300 KVA Transformer 2326 208 V			
299	2297	2.4 Kv	
2299 13.2 Ky	2298	2.4 Kv	
2300			
2501 13.2 Kv Substation WK 750 KVA Transformer 2302 1480 V Substation WK 750 KVA Transformer 2304 208 V Substation WK 500 KVA Transformer 2305 13.2 Kv Substation WK 500 KVA Transformer 2306 208 V Substation WH 225 KVA Transformer 2307 13.2 Kv Substation WH 225 KVA Transformer 2308 480 V Substation WG 500 KVA Transformer 2309 13.2 Kv Substation WG 500 KVA Transformer 2310 208 V Substation WG 500 KVA Transformer 2311 13.2 Kv Substation WE 150 KVA Transformer 2312 208 V Substation WE 150 KVA Transformer 2313 13.2 Kv Substation WE 150 KVA Transformer 2314 208 V Substation WE 150 KVA Transformer 2315 13.2 Kv Substation WE 150 KVA Transformer 2316 480 V Substation WE 200 KVA Transformer 2317 13.2 Kv Substation WE 200 KVA Transformer 2319 13.2 Kv Substation WE 200 KVA Transformer 2319 13.2 Kv Substation WE 200 KVA Transformer 2321 13.2 Kv Substation WE 200 KVA Transformer 2322 208 V Substation WE 200 KVA Transformer 2323 13.2 Kv Substation WE 200 KVA Transformer 2324 208 V Substation WE 200 KVA Transformer 2324 208 V Substation WE 200 KVA Transformer 2326 208 V Substation WE 200 KVA Transformer 2327 13.2 Kv Substation WE 200 KVA Transformer 2328 480 V Substation WE 200 KVA Transformer 2329 13.2 Kv Substation WE 200 KVA Transformer 2320 208 V Substation WE 200 KVA Transformer 2320 208 V Substation WE 200 KVA Transformer 2331 13.2 Kv Substation WE 200 KVA Transformer 2334 208 V Substation WE 200 KVA Transformer 2335 13.2 Kv Substation WE 200 KVA Transformer 2336 23.2 Kv Substa			
2302			Substation "WL" 750 KVA Transformer
2303 13.2 Kv Substation WK 500 KVA Transformer 2304 208 V Substation WK 225 KVA Transformer 2306 208 V Substation WH 225 KVA Transformer 2307 13.2 Kv Substation WG 500 KVA Transformer 2308 480 V Substation WG 500 KVA Transformer 2309 13.2 Kv Substation WG 500 KVA Transformer 2310 208 V Substation WG 500 KVA Transformer 2311 13.2 Kv Substation WG 150 KVA Transformer 2312 208 V Substation WG 150 KVA Transformer 2313 13.2 Kv Substation WG 150 KVA Transformer 2314 208 V Substation WG 150 KVA Transformer 2315 13.2 Kv Substation WG 150 KVA Transformer 2316 480 V Substation WG 150 KVA Transformer 2317 13.2 Kv Substation WG 150 KVA Transformer 2317 13.2 Kv Substation WG 150 KVA Transformer 2318 480 V Substation WG 150 KVA Transformer 2319 13.2 Kv Substation WG 150 KVA Transformer 2320 480 V Substation WG 150 KVA Transformer 2321 13.2 Kv Substation WG 150 KVA Transformer 2322 208 V Substation WG 150 KVA Transformer 2323 13.2 Kv Substation WG 150 KVA Transformer 150 KVA Tr			
2504 208 V Substation "KK" 500 KVA Transformer 2505 15.2 Kv Substation "WH" 225 KVA Transformer 2506 208 V Substation "WH" 225 KVA Transformer 2507 13.2 Kv Substation "WG" 500 KVA Transformer 2508 480 V Substation "EA" 150 KVA Transformer 2510 208 V Substation "EA" 150 KVA Transformer 2511 13.2 Kv Substation "EB" 150 KVA Transformer 2512 208 V Substation "EB" 150 KVA Transformer 2514 208 V Substation "ED" 150 KVA Transformer 2514 208 V Substation "ED" 150 KVA Transformer 2515 15.2 Kv Substation "ED" 150 KVA Transformer 2516 480 V Substation "EC" 300 KVA Transformer 2516 480 V Substation "EC" 300 KVA Transformer 2517 15.2 Kv Substation "EC" 300 KVA Transformer 2518 480 V Substation "OV" 750 KVA Transformer 2519 13.2 Kv Substation "OV" 750 KVA Transformer 2520 480 V Substation "OV" 750 KVA Transformer 2521 13.2 Kv Substation "OV" 500 KVA Transformer 2522 208 V Substation "OV" 500 KVA Transformer 2524 208 V Substation "OV" 500 KVA Transformer 2524 208 V Substation "OV" 500 KVA Transformer 2525 13.2 Kv Substation "WA" 300 KVA Transformer 2526 208 V Substation "WA" 300 KVA Transformer 2527 13.2 Kv Substation "WB" 300 KVA Transformer 2528 480 V Substation "WB" 300 KVA Transformer 2529 13.2 Kv Substation "WB" 300 KVA Transformer 2526 208 V Substation "WB" 300 KVA Transformer 2526 208 V Substation "WB" 300 KVA Transformer 2527 13.2 Kv Substation "WB" 300 KVA Transformer 2526 208 V Substation "WB" 300 KVA Transformer 2526 208 V Substation "WB"			
2505			Substation "WK" 500 KVA Transformer
2506 208 V Substation "WH" 225 KVA Transformer 2507 13.2 Kv Substation "WG" 500 KVA Transformer 2509 13.2 Kv Substation "EA" 150 KVA Transformer 2510 208 V Substation "EA" 150 KVA Transformer 2511 13.2 Kv Substation "EB" 150 KVA Transformer 2512 208 V Substation "EB" 150 KVA Transformer 2514 208 V Substation "EB" 150 KVA Transformer 2515 13.2 Kv Substation "ED" 150 KVA Transformer 2516 480 V Substation "EC" 300 KVA Transformer 2516 480 V Substation "CC" 300 KVA Transformer 2519 13.2 Kv Substation "CS" 500 KVA Transformer 2519 13.2 Kv Substation "EB" 500 KVA Transformer 2520 480 V Substation "CS" 500 KVA Transformer 2521 13.2 Kv Substation "CS" 500 KVA Transformer 2522 208 V Substation "CS" 500 KVA Transformer 2524 208 V Substation "CS" 500 KVA Transformer 2525 13.2 Kv Substation "WA" 300 KVA Transformer 2526 208 V Substation "WA" 300 KVA Transformer 2527 13.2 Kv Substation "WB" 300 KVA Transformer 2528 480 V Substation "WB" 300 KVA Transformer 2529 13.2 Kv Substation "WB" 300 KVA Transformer 2526 208 V Substation "WB" 300 KVA Transformer 2527 13.2 Kv Substation "WB" 300 KVA Transformer 2528 480 V Substation "WB" 300 KVA Transformer 2529 13.2 Kv Substation "WB" 300 KVA Transformer 2530 208 V Substation "WB" 300 KVA Transformer 2531 13.2 Kv Substation "WB" 500 KVA Transformer 2532 208 V Substation "WB" 500 KVA Transformer 2533 13.2 Kv Substation "WB" 500 KVA Transformer 2535 13.2 Kv Substation "WB" 500 KVA Transformer 2536 13.2 Kv Substation "WB" 500 KVA Transformer 2535 13			
2307 13.2 Kv Substation "WG" 500 KVA Transformer 2308 480 V Substation "EA" 150 KVA Transformer 2310 208 V Substation "EB" 150 KVA Transformer 2311 13.2 Kv Substation "EB" 150 KVA Transformer 2312 208 V Substation "EB" 150 KVA Transformer 2313 13.2 Kv Substation "EB" 150 KVA Transformer 2314 208 V Substation "EB" 150 KVA Transformer 2315 13.2 Kv Substation "EB" 150 KVA Transformer 2316 480 V Substation "EC" 300 KVA Transformer 2317 13.2 Kv Substation "EC" 300 KVA Transformer 2318 480 V Substation "EB" 500 KVA Transformer 2319 13.2 Kv Substation "EB" 500 KVA Transformer 2320 480 V Substation "EB" 500 KVA Transformer 2321 13.2 Kv Substation "EB" 500 KVA Transformer 2321 13.2 Kv Substation "CZ" 500 KVA Transformer 2322 208 V Substation "CZ" 500 KVA Transformer 2324 208 V Substation "WA" 300 KVA Transformer 2325 13.2 Kv Substation "WA" 300 KVA Transformer 2326 208 V Substation "WB" 300 KVA Transformer 2328 480 V Substation "WC" 300 KVA Transformer 2329 13.2 Kv Substation "WC" 300 KVA Transformer 2331 13.2 Kv Substation "WF" 500 KVA Transformer 2331 13.2 Kv Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2336 13.2 Kv Substation "WF" 500 KVA Transformer 2336 2356 236 Kv Substation "WF" 500 KVA Transformer 2336 236 Kv Substation "WF" 500 KVA Transformer 2336 236 Kv Substation "WF" 500 KVA Transformer 2336 Kv Substation "WF" 500 KVA Transformer 2336 Kv			
2508 480 V Substation "WG" 500 KVA Transformer 2509 13.2 Kv Substation "EA" 150 KVA Transformer 2511 13.2 Kv Substation "EB" 150 KVA Transformer 2512 208 V Substation "EB" 150 KVA Transformer 2513 13.2 Kv Substation "ED" 150 KVA Transformer 2514 208 V Substation "ED" 150 KVA Transformer 2515 13.2 Kv Substation "EC" 300 KVA Transformer 2516 480 V Substation "EC" 300 KVA Transformer 2517 13.2 Kv Substation "EC" 300 KVA Transformer 2518 480 V Substation "OV" 750 KVA Transformer 2519 13.2 Kv Substation "EE" 500 KVA Transformer 2520 480 V Substation "EE" 500 KVA Transformer 2521 13.2 Kv Substation "OZ" 500 KVA Transformer 2522 208 V Substation "OZ" 500 KVA Transformer 2524 208 V Substation "WA" 300 KVA Transformer 2524 208 V Substation "WA" 300 KVA Transformer 2525 13.2 Kv Substation "WB" 300 KVA Transformer 2526 208 V Substation "WB" 300 KVA Transformer 2526 208 V Substation "WB" 300 KVA Transformer 2527 13.2 Kv Substation "WB" 300 KVA Transformer 2529 13.2 Kv Substation "WB" 300 KVA Transformer 2529 13.2 Kv Substation "WB" 300 KVA Transformer 2531 13.2 Kv Substation "WD" 300 KVA Transformer 2531 13.2 Kv Substation "WD" 300 KVA Transformer 2531 13.2 Kv Substation "WB" 300 KVA Transformer 2531 13.2 Kv Substation "WB" 500 KVA Transformer 2531 208 V Substation "WB" 500 KVA Transformer 2531 208 V Substation "WB" 500 KVA Transformer 2532 208 V Substation "WB" 500 KVA Transformer 2533 13.2 Kv Substation "WB" 500 KVA Transformer 2534 208 V Substation "WB" 500 KVA Transformer 2535 13.2 Kv Substation "WB" 500 KVA Transformer 2536 13.2 Kv Substation "WB" 500 KVA Transformer 2536 208 V Substation "WB" 500 KVA Transformer 2536 208 V Substation "WB" 500 KVA Transformer 2536 208 V			
2509 15.2 Kv Substation "EA" 150 KVA Transformer 2510 208 V Substation "EB" 150 KVA Transformer 2511 15.2 Kv Substation "EB" 150 KVA Transformer 2513 15.2 Kv Substation "EB" 150 KVA Transformer 2514 208 V Substation "ED" 150 KVA Transformer 2515 15.2 Kv Substation "ED" 150 KVA Transformer 2515 13.2 Kv Substation "ED" 150 KVA Transformer 2516 480 V Substation "EC" 300 KVA Transformer 2517 13.2 Kv Substation "OV" 750 KVA Transformer 2518 480 V Substation "OV" 750 KVA Transformer 2519 13.2 Kv Substation "EE" 500 KVA Transformer 2520 480 V Substation "OZ" 500 KVA Transformer 2521 13.2 Kv Substation "OZ" 500 KVA Transformer 2522 208 V Substation "OZ" 500 KVA Transformer 2524 208 V Substation "WA" 300 KVA Transformer 2525 13.2 Kv Substation "WA" 300 KVA Transformer 2526 208 V Substation "WB" 300 KVA Transformer 2527 13.2 Kv Substation "WB" 300 KVA Transformer 2528 480 V Substation "WB" 300 KVA Transformer 2529 13.2 Kv Substation "WC" 300 KVA Transformer 2529 13.2 Kv Substation "WC" 300 KVA Transformer 2529 13.2 Kv Substation "WC" 300 KVA Transformer 2531 13.2 Kv Substation "WB" 500 KVA Transformer 2531 13.2 Kv Substation "WB" 500 KVA Transformer 2531 13.2 Kv Substation "WB" 500 KVA Transformer 2532 208 V Substation "WB" 500 KVA Transformer 2533 13.2 Kv Substation "WB" 500 KVA Transformer 2535 13.2 Kv Substation "WB" 500 KVA Transformer 2536 208 V		_ _	Substation "WG" 500 KVA Transformer
2310 208 V Substation "EA" 150 KVA Transformer 2311 13.2 Kv Substation "EB" 150 KVA Transformer 2312 208 V Substation "EB" 150 KVA Transformer 2314 208 V Substation "ED" 150 KVA Transformer 2315 13.2 Kv Substation "EC" 300 KVA Transformer 2316 480 V Substation "EC" 300 KVA Transformer 2317 13.2 Kv Substation "OV" 750 KVA Transformer 2318 480 V Substation "OV" 750 KVA Transformer 2319 13.2 Kv Substation "EE" 500 KVA Transformer 2320 480 V Substation "EE" 500 KVA Transformer 2321 13.2 Kv Substation "EC" 500 KVA Transformer 2322 208 V Substation "OZ" 500 KVA Transformer 2323 13.2 Kv Substation "WA" 300 KVA Transformer 2324 208 V Substation "WA" 300 KVA Transformer 2325 13.2 Kv Substation "WA" 300 KVA Transformer 2326 208 V Substation "WB" 300 KVA Transformer 2327 13.2 Kv Substation "WB" 300 KVA Transformer 2328 480 V Substation "WB" 300 KVA Transformer 2329 13.2 Kv Substation "WB" 300 KVA Transformer 2329 13.2 Kv Substation "WB" 300 KVA Transformer 2330 208 V Substation "WB" 300 KVA Transformer 2331 13.2 Kv Substation "WB" 500 KVA Transformer 2332 208 V Substation "WB" 500 KVA Transformer 2332 208 V Substation "WB" 500 KVA Transformer 2334 208 V Substation "WB" 500 KVA Transformer 2335 13.2 Kv Substation "WB" 500 KVA Transformer 2336 208 V Substation	_		Substation "EA" 150 KVA Transformer
2311 13.2 Kv Substation "EB" 150 KVA Transformer 2312 208 V Substation "EB" 150 KVA Transformer 2313 15.2 Kv Substation "ED" 150 KVA Transformer 2314 208 V Substation "ED" 150 KVA Transformer 2315 13.2 Kv Substation "EC" 300 KVA Transformer 2316 480 V Substation "OY" 750 KVA Transformer 2317 13.2 Kv Substation "OY" 750 KVA Transformer 2318 480 V Substation "OY" 750 KVA Transformer 2319 13.2 Kv Substation "EE" 500 KVA Transformer 2320 480 V Substation "EE" 500 KVA Transformer 2321 13.2 Kv Substation "OZ" 500 KVA Transformer 2322 208 V Substation "OZ" 500 KVA Transformer 2323 13.2 Kv Substation "WA" 300 KVA Transformer 2324 208 V Substation "WA" 300 KVA Transformer 2325 13.2 Kv Substation "WB" 300 KVA Transformer 2326 208 V Substation "WB" 300 KVA Transformer 2327 13.2 Kv Substation "WB" 300 KVA Transformer 2328 480 V Substation "WB" 300 KVA Transformer 2329 13.2 Kv Substation "WC" 300 KVA Transformer 2329 13.2 Kv Substation "WD" 300 KVA Transformer 2330 208 V Substation "WD" 300 KVA Transformer 2331 13.2 Kv Substation "WE" 500 KVA Transformer 2332 208 V Substation "WE" 500 KVA Transformer 2334 208 V Substation "WE" 500 KVA Transformer 2335 13.2 Kv Substation "WF" 500 KVA Transformer 2336 236 V Substation "WF" 500 KVA Transformer 2336 V			Substation "EA" 150 KVA Transformer
2512 208 V Substation "EB" 150 KVA Transformer 25113 15.2 Kv Substation "ED" 150 KVA Transformer 25114 208 V Substation "ED" 150 KVA Transformer 25115 13.2 Kv Substation "EC" 300 KVA Transformer 25116 480 V Substation "EC" 300 KVA Transformer 25117 13.2 Kv Substation "OV" 750 KVA Transformer 2518 480 V Substation "OV" 750 KVA Transformer 2519 13.2 Kv Substation "EE" 500 KVA Transformer 2520 480 V Substation "EE" 500 KVA Transformer 2521 13.2 Kv Substation "OZ" 500 KVA Transformer 2522 208 V Substation "OZ" 500 KVA Transformer 2523 13.2 Kv Substation "WA" 300 KVA Transformer 2524 208 V Substation "WA" 300 KVA Transformer 2524 208 V Substation "WA" 300 KVA Transformer 2525 13.2 Kv Substation "WB" 300 KVA Transformer 2526 208 V Substation "WB" 300 KVA Transformer 2527 13.2 Kv Substation "WB" 300 KVA Transformer 2528 480 V Substation "WC" 300 KVA Transformer 2529 13.2 Kv Substation "WC" 300 KVA Transformer 2529 13.2 Kv Substation "WC" 300 KVA Transformer 2530 208 V Substation "WC" 300 KVA Transformer 2531 13.2 Kv Substation "WC" 500 KVA Transformer 2531 208 V Substation "WC" 500 KVA Transformer 2531 208 V Substation "WC" 500 KVA Transformer 2532 208 V Substation "WC" 500 KVA Transformer 2533 13.2 Kv Substation "WC" 500 KVA Transformer 2535 13.2 Kv Substation "WC" 500 KVA Transformer 2535 13.2 Kv Substation "WF" 500 KVA Transformer 2535 13.2 Kv Substation "WF" 500 KVA Transformer 2535 13.2 Kv Substation "WF" 500 KVA Transformer 2536 208 V Substation "WF" 50			
2313 15.2 Kv Substation ED 150 KVA Transformer 2314 208 V Substation ED 150 KVA Transformer 2315 13.2 Kv Substation EC 300 KVA Transformer 2316 480 V Substation OY 750 KVA Transformer 2317 15.2 Kv Substation OY 750 KVA Transformer 2318 480 V Substation OY 750 KVA Transformer 2319 13.2 Kv Substation EE 500 KVA Transformer 2320 480 V Substation OZ 500 KVA Transformer 2321 13.2 Kv Substation OZ 500 KVA Transformer 2322 208 V Substation OZ 500 KVA Transformer 2323 13.2 Kv Substation OZ 500 KVA Transformer 2324 208 V Substation WA 300 KVA Transformer 2325 13.2 Kv Substation WB 300 KVA Transformer 2326 208 V Substation WB 300 KVA Transformer 2327 13.2 Kv Substation WB 300 KVA Transformer 2328 480 V Substation WC 300 KVA Transformer 2329 13.2 Kv Substation WC 300 KVA Transformer 2329 13.2 Kv Substation WC 300 KVA Transformer 2331 13.2 Kv Substation WD 300 KVA Transformer 2331 13.2 Kv Substation WE 500 KVA Transformer 2331 23.2 Kv Substation WE 500 KVA Transformer 2332 208 V Substation WE 500 KVA Transformer 2334 208 V Substation WF 500 KVA Transformer 2334 208 V Substation WF 500 KVA Transformer 2334 208 V Substation WF 500 KVA Transformer 2335 13.2 Kv Substation WF 500 KVA Transformer 2336 232 Kv Substation WF 500 KVA Transformer 2336 Kv Substation WF 500 KVA Transformer 2336 Kv Substation WF 500			
2314 208 V Substation "ED" 150 KVA Transformer 2315 13.2 Kv Substation "EC" 300 KVA Transformer 2316 480 V Substation "OY" 750 KVA Transformer 2318 480 V Substation "EE" 500 KVA Transformer 2319 13.2 Kv Substation "EE" 500 KVA Transformer 2320 480 V Substation "EE" 500 KVA Transformer 2321 13.2 Kv Substation "OZ" 500 KVA Transformer 2322 208 V Substation "OZ" 500 KVA Transformer 2323 13.2 Kv Substation "WA" 300 KVA Transformer 2324 208 V Substation "WA" 300 KVA Transformer 2325 13.2 Kv Substation "WA" 300 KVA Transformer 2326 208 V Substation "WB" 300 KVA Transformer 2326 208 V Substation "WC" 300 KVA Transformer 2327 13.2 Kv Substation "WC" 300 KVA Transformer 2328 480 V Substation "WC" 300 KVA Transformer 2329 13.2 Kv Substation "WC" 300 KVA Transformer 2330 208 V Substation "WD" 300 KVA Transformer 2331 13.2 Kv Substation "WD" 300 KVA Transformer 2331 13.2 Kv Substation "WE" 500 KVA Transformer 2332 208 V Substation "WE" 500 KVA Transformer 2334 208 V Substation "WE" 500 KVA Transformer 2335 13.2 Kv Substation "WF" 500 KVA Transformer 2336 208 V Substation "	-		
2315 13.2 Kv Substation "EC" 300 KVA Transformer 2316 480 V Substation "OY" 750 KVA Transformer 2318 480 V Substation "OY" 750 KVA Transformer 2319 13.2 Kv Substation "EE" 500 KVA Transformer 2320 480 V Substation "EE" 500 KVA Transformer 2321 13.2 Kv Substation "OZ" 500 KVA Transformer 2322 208 V Substation "OZ" 500 KVA Transformer 2322 208 V Substation "WA" 300 KVA Transformer 2324 208 V Substation "WA" 300 KVA Transformer 2325 13.2 Kv Substation "WB" 300 KVA Transformer 2326 208 V Substation "WB" 300 KVA Transformer 2327 13.2 Kv Substation "WB" 300 KVA Transformer 2328 480 V Substation "WC" 300 KVA Transformer 2329 13.2 Kv Substation "WC" 300 KVA Transformer 2329 13.2 Kv Substation "WD" 300 KVA Transformer 2331 13.2 Kv Substation "WD" 300 KVA Transformer 2331 13.2 Kv Substation "WE" 500 KVA Transformer 2331 208 V Substation "WE" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Substation "WF" 500 KVA Transformer 2336 208 V Substation "WF" 500 KVA Transformer 2336 208 V Substation "WF" 500 KVA Transformer 2337 23.2 Kv Substation "WF" 500 KVA Transformer 2336 23.2 Kv Substation "WF" 500 KVA Transformer 233			Characton "ED" LO KWA Transformer
2316			Substation "FA" ZOO FTA Thomason
2317		. -	Cubetotion "Ed" 300 VIII Themsformer
2318	_		Substantian "OV" TEO VIA Thursdomen
2519		. =	Charles 1001 750 VVA Transformer
2320	•		Substation of 700 MA Transformer
2321 15.2 Kv Substation "OZ" 500 KVA Transformer 2322 208 V Substation "OZ" 500 KVA Transformer 2323 13.2 Kv Substation "WA" 300 KVA Transformer 2324 208 V Substation "WB" 300 KVA Transformer 2325 13.2 Kv Substation "WB" 300 KVA Transformer 2326 208 V Substation "WB" 300 KVA Transformer 2327 13.2 Kv Substation "WC" 300 KVA Transformer 2328 480 V Substation "WC" 300 KVA Transformer 2329 13.2 Kv Substation "WD" 300 KVA Transformer 2330 208 V Substation "WD" 300 KVA Transformer 2331 13.2 Kv Substation "WD" 300 KVA Transformer 2332 208 V Substation "WE" 500 KVA Transformer 2333 13.2 Kv Substation "WE" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Substation "WF" 500 KVA Transformer 2336 13.2 Kv Primary Bus FD # 202-8 at Substation "W"		. ~	Substation The 500 NVA Transformer
2322 208 V Substation "OZ" 500 KVA Transformer 2323 13.2 Kv Substation "WA" 300 KVA Transformer 2324 208 V Substation "WB" 300 KVA Transformer 2325 13.2 Kv Substation "WB" 300 KVA Transformer 2326 208 V Substation "WB" 300 KVA Transformer 2327 13.2 Kv Substation "WC" 300 KVA Transformer 2328 480 V Substation "WC" 300 KVA Transformer 2329 13.2 Kv Substation "WD" 300 KVA Transformer 2330 208 V Substation "WD" 300 KVA Transformer 2331 13.2 Kv Substation "WD" 300 KVA Transformer 2331 208 V Substation "WE" 500 KVA Transformer 2332 208 V Substation "WE" 500 KVA Transformer 2333 13.2 Kv Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Primary Bus FD # 202-8 at Substation "W" 2336 13.2 Kv Primary Bus FD # 204-6 at Substation			Substation "AE" 500 KVA Transformer
2323			Substation "UZ" 500 KVA Transformer
2324 208 V Substation "WA" 300 KVA Transformer 2325 13.2 Kv Substation "WB" 300 KVA Transformer 2326 208 V Substation "WB" 300 KVA Transformer 2327 13.2 Kv Substation "WC" 300 KVA Transformer 2328 480 V Substation "WC" 300 KVA Transformer 2329 13.2 Kv Substation "WD" 300 KVA Transformer 2330 208 V Substation "WD" 300 KVA Transformer 2331 13.2 Kv Substation "WE" 500 KVA Transformer 2332 208 V Substation "WE" 500 KVA Transformer 2333 13.2 Kv Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Substation "WF" 500 KVA Transformer 2336 13.2 Kv Primary Bus FD # 202-8 at Substation "W" 2336 13.2 Kv Primary Bus FD # 204-6 at Substation	-		Substation "UZ" 500 KVA Transformer
2325			Substation "WA" 300 KVA Transformer
2326 208 V Substation "WB" 300 KVA Transformer 2327 13.2 Kv Substation "WC" 300 KVA Transformer 2328 480 V Substation "WD" 300 KVA Transformer 2329 13.2 Kv Substation "WD" 300 KVA Transformer 2330 208 V Substation "WD" 300 KVA Transformer 2331 13.2 Kv Substation "WE" 500 KVA Transformer 2332 208 V Substation "WE" 500 KVA Transformer 2333 13.2 Kv Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Substation "WF" 500 KVA Transformer 2336 13.2 Kv Primary Bus FD # 202-8 at Substation "W" 2336 13.2 Kv Primary Bus FD # 204-6 at Substation			Substation "WA" 300 KVA Transformer
2327	2525		Substation "WB" 300 KVA Transformer
2328 480 V Substation "WC" 300 KVA Transformer 2329 13.2 Kv Substation "WD" 300 KVA Transformer 2330 208 V Substation "WD" 300 KVA Transformer 2331 13.2 Kv Substation "WE" 500 KVA Transformer 2332 208 V Substation "WE" 500 KVA Transformer 2333 13.2 Kv Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Primary Bus FD # 202-8 at Substation "W" 2336 13.2 Kv Primary Bus FD # 204-6 at Substation			
2329 13.2 Kv Substation "WD" 300 KVA Transformer 2330 208 V Substation "WE" 300 KVA Transformer 2331 13.2 Kv Substation "WE" 500 KVA Transformer 2332 208 V Substation "WE" 500 KVA Transformer 2333 13.2 Kv Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Primary Bus FD # 202-8 at Substation "W" 2336 13.2 Kv Primary Bus FD # 204-6 at Substation			Substation "WC" 300 KVA Transformer
2330 208 V Substation "WD" 300 KVA Transformer 2331 13.2 Kv Substation "WE" 500 KVA Transformer 2332 208 V Substation "WE" 500 KVA Transformer 2333 13.2 Kv Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Primary Bus FD # 202-8 at Substation "W" 2336 13.2 Kv Primary Bus FD # 204-6 at Substation			Substation "WC" 300 KVA Transformer
2331 13.2 Kv Substation "WE" 500 KVA Transformer 2332 208 V Substation "WE" 500 KVA Transformer 2333 13.2 Kv Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Primary Bus FD # 202-8 at Substation "W" 2336 13.2 Kv Primary Bus FD # 204-6 at Substation		· -	
2332 208 V Substation "WE" 500 KVA Transformer 2333 13.2 Kv Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Primary Bus FD # 202-8 at Substation "W" 2336 13.2 Kv Primary Bus FD # 204-6 at Substation			
2333 13.2 Kv Substation "WF" 500 KVA Transformer 2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Primary Bus FD # 202-8 at Substation "W" 2336 13.2 Kv Primary Bus FD # 204-6 at Substation			
2334 208 V Substation "WF" 500 KVA Transformer 2335 13.2 Kv Primary Bus FD # 202-8 at Substation "W" 2336 13.2 Kv Primary Bus FD # 204-6 at Substation			Substation "WE" 500 KVA Transformer
2335 13.2 Kv Primary Bus FD # 202-8 at Substation "W" 2336 13.2 Kv Primary Bus FD # 204-6 at Substation			
"W" 2336			
2336 13.2 Kv Primary Bus FD # 204-6 at Substation	2335	13.2 Kv	
	2336	13.2 Kv	Primary Bus FD # 204-6 at Substation

Bus Code	Voltage Level	Network Location
2337	13.2 Kv	Primary Bus FD # 202-8 at Substation
2338	13.2 Kv	Primary Bus FD # 202-8 at Substation
2339	13.2 Kv	Primary Bus FD # 204-6 at Substation
2340	13.2 Ky	WYE on FD # 204-6 at MH 83
2341	13.2 Kv	WYE on FD # 202-8 at MH 83
2342	13.2 Kv	Substation "EE" FD # 204-6 N.C.
2343	13.2 Kv	Substation "EE" FD # 202-8 N.O.
2344	13.2 Kv	iьs # 58
2345	13.2 Kv	LBS # 57
2346	13.2 Kv	Primary Bus FD # 202-8 "E"
2347	13.2 Kv	Primary Bus FD # 204-6
2348	13.2 Kv	Primary Bus FD # 204-6 at CB Station Substation "OA" Primary Bus FD # 202-8
2349	13.2 Kv	and # 202-7
2350	2.4 Kv	Chiller # 102 at Substation "OA"
2351	2.4 Kv	Chiller # 103 at Substation "OA"
2352	2.4 Kv	Chiller # 101 at Substation "OA"
2353	13.2 Kv	Substation "Z" 300 KVA Transformer
2354	208 V	Substation "Z" 300 KVA Transformer
2355	13.2 Kv	Substation "Y" 300 KVA Transformer
2356	480 V	Substation "Y" 300 KVA Transformer
2357	13.2 Kv	Substation "V" 300 KVA Transformer
2358	208 V	Substation "V" 300 KVA Transformer
2359	13.2 Kv	Substation "X" 300 KVA Transformer
2360	208 V	Substation "X" 300 KVA Transformer Substation "W" 300 KVA Transformer
2361 2362	13.2 Kv 208 V	Substation "W" 300 KVA Transformer
2363	13.2 Kv	Substation "U" 300 KVA Transformer
2364	208 V	Substation "U" 300 KVA Transformer
2365	13.2 Kv	Substation "T" 300 KVA Transformer
2366	208 V	Substation "T" 300 KVA Transformer
2367	13.2 Kv	Substation "S" 300 KVA Transformer
2368	208 V	Substation "S" 300 KVA Transformer
2369	13.2 Kv	Substation "R" 500 KVA Transformer
2370	480 V	Substation "R" 500 KVA Transformer
2371	13.2 Kv	Substation "Q" 300 KVA Transformer
2372	208 V	Substation "Q" 300 KVA Transformer
2373	13.2 Kv	Substation "AA" 300 KVA Transformer
2374	208 V	Substation "AA" 300 KVA Transformer
2375	13.2 Kv	Substation "P" 300 KVA Transformer
2376	208 V	Substation "P" 300 KVA Transformer
2377	13.2 Kv	Substation "N" 300 KVA Transformer
2378	480 V	Substation "N" 300 KVA Transformer
2379	13.2 Kv	Substation "M" 300 KVA Transformer
2380	208 V	Substation "M" 300 KVA Transformer
2381	13.2 Kv	Substation "L" 300 KVA Transformer

Bus Code	Voltage Level	Network Location
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392	208 V 13.2 Kv 208 V 13.2 Kv 208 V 13.2 Kv 480 V 13.2 Kv 208 V 13.2 Kv	Substation "L" 300 KVA Transformer Substation "K" 300 KVA Transformer Substation "K" 300 KVA Transformer Substation "J" 300 KVA Transformer Substation "J" 300 KVA Transformer Substation "H" 500 KVA Transformer Substation "H" 500 KVA Transformer Substation "G" 300 KVA Transformer WYE on FD # 203 at LBS # 30
2393	13.2 Kv	Primary Bus FD # 203-3 at Substation "G" and "Z"
2394	13.2 Kv	Primary Bus FD $\#$ 203-1 at Substation "F"
2395 2396 2397	13.2 Kv 13.2 Kv 13.2 Kv	LBS # 18 WYE on FD # 204 at MH 64 Primary Bus FD # 205-4 at Substation "G" and "Z"
2398	13.2 Kv	Primary Bus FD # 205-4 at Substation "H" and "J"
2399	13.2 Kv	Primary Bus FD # 203-3 at Substation "H" and "J"
2400 2401 2402	13.2 Kv 13.2 Kv 13.2 Kv	LBS # 67 LBS # 68 Primary Bus FD # 205-4 at Substation "AA"
2403	13.2 Kv	Primary Bus FD # 205-4 at Substation
2404	13.2 Kv	Primary Bus FD # 205-4 at Substation
2405	13.2 Kv	Primary Bus FD # 203-3 at Substation
2406	13.2 Kv	Primary Bus FD # 203-3 at Substation "M"
2407	13.2 Kv	Primary Bus FD # 205-4 at Substation "K"
2408	13.2 Kv	Primary Bus FD # 203-3 at Substation
2409	13.2 Kv	Primary Bus FD # 205-4 at Substation
2410	13.2 Kv	Primary Bus FD # 203-3 at Substation
2411	13.2 Kv	Primary Bus FD # 205-4 at Substation
2412	13.2 Kv	Primary Bus FD # 203-3 at Substation

Bus Code	Voltage Level	Network Location
2413	13.2 K _V	Primary Bus FD # 205-4 at Substation
2414	13.2 Kv	Primary Bus FD # 203-3 at Substation
2415	13.2 Kv	Primary Bus FD # 205-4 at Substation
2416	13.2 Kv	Primary Bus FD # 203-3 at Substation
2417	13.2 Kv	Primary Bus FD # 203-3 at Substation
5418	13.2 Kv	Primary Bus FD # 205-4 at Substation
2419	13.2 Kv	Primary Bus FD # 203-3 at Substation
2420	13.2 Kv	Primary Bus FD # 205-4 at Substation
2421	13,2 Kv	Primary Bus FD # 205-4 at Substation "Q"
2422	13.2 K _V	Primary Bus FD # 203-3 at Substation "Q"
2423	13.2 Kv	Primary Bus FD # 203-3 at Substation
24:24	13.2 Kv	Primary Bus FD # 205-4 at Substation
2425	13.2 Kv	Primary Bus FD # 203-3 at Substation
2426	13.2 Kv	Primary Bus FD # 205-4 at Substation
2427	13.2 Kv	Primary Bus FD # 203-3 at Substation
24:28	13.2 Kv	Primary Bus FD # 205-4 at Substation
2429	13.2 Kv	Primary Bus FD # 203-3 at Substation
2430	13.2 Kv	Primary Bus FD # 205-4 at Substation
2431 2432	13.2 Kv 480 V	Base OPS 300 KVA Transformer Base OPS 300 KVA Transformer
2433	13.2 Kv	Base Support 225 KVA Transformer
2474	208 V	Base Support 225 KVA Transformer
2433 2434 2435 2436	13.2 Ky	Base Support 500 KVA Transformer
2436 2437	480 V 13.2 Kv	Base Support 500 KVA Transformer Electro Mag Lab 150 KVA Transformer
2438 2438	208 V	Electro Mag Lab 150 KVA Transformer
2439	13.2 Kv	So. Bell Exchange 500 KVA Transformer
2440	208 V	So. Bell Exchange 500 KVA Transformer
5441	13.2 Kv	Central Tel Off 500 KVA Transformer
5 /1/1 5	208 V	Central Tel Off 500 KVA Transformer

Bus Code	Voltage Level	Network Location
5/1/1/1 5/1/1/2	13.2 Kv 480 V	Central Tel Off 750 KVA Transformer Central Tel Off 750 KVA Transformer
2445	13.2 Kv	Cafeteria 500 KVA Transformer
2446	208 V	Cafeteria 500 KVA Transformer
2447	13.2 Kv	Dispensary 112 1/2 KVA Transformer
2448	208 V	Dispensary 112 1/2 KVA Transformer Dispensary X Ray 15 KVA 10 Transformer
5/1/19	120/240 V 480 V	Heat Plant 300 KVA Transformer
2450	480 V	Central Supply Annex 300 KVA Transformer
2451 2452	480 V	Central Supply FAC 300 KVA Transformer
2453	208 V	Fire Station 112 1/2 KVA Transformer
2454	480 V	Central Supply Complex 150 KVA
<u>←</u> ∓)∓		Transformer
2455	120/240 V	Service Station 15 KVA 10 Transformer
2456	13.2 Kv	LBS # 6
2457	13.2 Kv	WYE on FD # 208-5 in MH 36
2458	13.2 Kv	WYE on FD # 208-6-7 in MH 30
2459	13.2 Kv	NO Switch for FD $\#$ 208-5 at LBS $\#$ 8
2460	13.2 Kv	LBS # 8
2461	13.2 Kv	NC Switch for FD # 209-4-8 at LBS # 8
2462	13.2 Kv	WYE on FD # 209 at MH 22
2463	13.2 Kv	Auditorium 225 KVA Transformer
2464	208 V	Auditorium 225 KVA Transformer
2465	13.2 Kv	Substation "F" 500 KVA Transformer
2466	480 V	Substation "F" 500 KVA Transformer
2467	13.2 Kv	Substation "E" 1000 KVA Transformer
2468	480 V	Substation "E" 1000 KVA Transformer
2469	13.2 Kv	Substation "D" 500 KVA Transformer Substation "D" 500 KVA Transformer
2470	480 V	Substation "C" 1500 KVA Transformer
2471	13.2 Kv	Substation "C" 1500 KVA Transformer
2472	2.4 Kv 13.2 Kv	Substation "B" 1500 KVA Transformer
2473 2474	2.4 Kv	Substation "B" 1500 KVA Transformer
2414 2475	13.2 Ky	Substation "A" 500 KVA Transformer
2476	480 V	Substation "A" 500 KVA Transformer
2477	480 V	KSC Headquarters USS # 1B, 2500 KVA
C-4 ([-	Transformer
2478	13.2 Kv	KSC Headquarters USS # 2C, 1500 KVA
47,0		Transformer
2479	480 V	KSC Headquarters USS # 2C, 1500 KVA
-717	,	Transformer
2480	480 V	KSC Headquarters USS # 2D, 1500 KVA
2481	13.2 Kv	KSC Headquarters USS # 1A, 2500 KVA
- - 	-	Transformer
2482	480 V	KSC Headquarters USS # 1A, 2500 KVA
		Transformer
2483	13.2 Kv	WYE on FD # 205 at MH 82
2482	13.2 Kv	WYE on FD # 205 at MH 80

Bus Code	Voltage Level	Network Location
2485 2486 2487 2488 2489 2490	13.2 Kv 13.2 Kv 13.2 Kv 13.2 Kv 13.2 Kv 13.2 Kv 13.2 Kv	LBS # 14 WYE on FD # 204 at MH 39 WYE on FD # 205 at MH 39 LBS # 16 LBS # 64 LBS # 65 and # 60
2491	•	NC Switch on FD # 10 at Substation "B" and "C" NC Switch FD # 12 at Substation "A"
2492 2493	13.2 Kv 13.2 Kv	NO Switch on FD # 9 at Substation "B" and "C"
2494	13.2 Kv	NC Switch on FD # 11 at Substation "A"
2495 2496 2497 2498	2.4 Kv 2.4 Kv	Not Used Chiller # 1 at Substation "B" Chiller # 2 at Substation "B" Not Used Chiller # 3 at Substation "C"
2501 2502	2.4 Kv 2.4 Kv 13.2 Kv 13.2 Kv	Chiller # 3 at Substation "C" Chiller # 4 at Substation "C" IBS # 33 FDR # 2 FD # 2 at Substation "D" FD # 1 at Substation "D"
2503 2504 2505 2506 2507	13.2 Kv 13.2 Kv 208 V 13.2 Kv 208 V	Substation "CRC" 300 KVA Transformer Substation "CRC" 300 KVA Transformer Substation "CRB" 300 KVA Transformer Substation "CRB" 300 KVA Transformer Substation "CRA" 300 KVA Transformer Substation "CRA" 300 KVA Transformer Substation "CRA" 300 KVA Transformer Substation "CRD" 500 KVA Transformer Substation "CRD" 500 KVA Transformer
2508 2509 2510 2511 2512	13.2 Kv 208 V 13.2 Kv 208 V 480 V	Substation "CRA" 300 KVA Transformer Substation "CRD" 500 KVA Transformer Substation "CRD" 500 KVA Transformer CLF Antenna Site 3 - 750 KVA Transformer
2513	208 V	ClF Antenna Site 1 - 500 KVA Transformer
2514 2515	13.2 Kv 208 V	LBS # 62 ClF Antenna Site 2 - 225 KVA Transformer
2516 2517	13.2 Kv 13.2 Kv	FD # 103 at C1F Antenna Site # 1 C1F Antenna Site 1 - 300 KVA Transformer
2518 2519 2520 2521 2522 2523 2524	13.2 Kv 13.2 Kv 13.2 Kv 13.2 Kv 13.2 Kv 13.2 Kv 13.2 Kv	WYE on FD # 102-4 at MH 65 FD # 102 N.O. at Substation "CRB" FD # 102 N.O. at Substation "CRD" FD # 101 NC at Substation "CRA" FD # 101 NC at Substation "CRD" FD # 102 NO at Substation "CRA" Tel 4, N6-229E, 225 KVA Transformer

Bus Code	Voltage Level	Network Location
2525 2526 2527 2528 2529 2530 2531 2532 2534	13.2 Kv 208 V 13.2 Kv 480 V	Tel 4, N6-229E, 225 KVA Transformer Central Telemetry 750 KVA Transformer TPQ-18, Q6-82, 300 KVA Transformer Universal Camera Pad # 1, 75 KVA
2535	208 V	Transformer Universal Camera Pad # 1, 75 KVA
2536 2537 2538 2539 2540 2541 2542 thru 2544 2545 2546 2547 2548	13.2 Kv 13.2 Kv 13.2 Kv 13.2 Kv 13.2 Kv 13.2 Kv 480 V 480 V	Universal Camera Pad # 1, 75 KVA Transformer IBS # 37 WYE on FD # 211 at MH 235 LBS # 38 FD # 211 Central Telemetry 1000 KVA Transformer IBS # 38 N.C. Switch IBS # 38 N.C. Switch Substation "A" Low Voltage Network O and C Cooling Tower Pump # 1 - 100 HP O and C Cooling Tower Pump # 2 - 100 HP Not Used Substation "A" Low Voltage Network Chilled Water Pump # 3 - 75 HP Chilled Water Pump # 2 - 75 HP Substation "D" Low Voltage Network Substation "E" Low Voltage Network Substation "F" Low Voltage Network Substation "H" Low Voltage Network Substation "R" Low Voltage Network Substation "Y" Low Voltage Network Substation "EC" Low Voltage Network
2610 thru 2613 2614 thru 2622 2623 thru 2626 2627 thru 2633 2634 thru 2638	480 V 480 V 480 V 480 V 480 V	Substation "EE" Low Voltage Network Substation "OB" Low Voltage Network Substation "OY" Low Voltage Network Substation "WC" Low Voltage Network Substation "WG" Low Voltage Network
2639 thru 2649 2650 thru 2658 2659 thru 2664 2665 thru 2676 2677 thru 2683 2684 thru 2685	480 V 480 V 480 V	Substation "WL" Low Voltage Network Flight Crew Training Substation "A" Flight Crew Training Substation "C" CLF Power Center # 6 CLF Antenna Substation # 3 Spacecraft Spaces Bldg. M7-505
2686 thru 2687		Substation "A" Spacecraft Spares Bldg. M7-505 Substation "B"

Bus Code	Voltage Level	Network Location
2688 thru 2689	480 V	Spacecraft Spares Bldg. M7-505 Substation "D"
2690	480 V	Central Supply WHouse Bldg. M7-698
2691 thru 2694	480 V	Central Supply WHouse Bldg. M6-744
2695	480 V	Central Supply WHouse Bldg. M6-791
2696	480 V	Central Supply WHouse Bldg. M6-794
2697 thru 2710	480 V	KSC Headquarters Substation # 1
2711 thru 2729	480 V	KSC Headquarters Substation # 2
2730 thru 2733		KSC Headquarters Substation # 1
2734	480 V	KSC Headquarters Substation # 2
2735	480 V	Sewage Treatment Plant
2736 thru 2739		Base Support M6-486
2740 thru 2741		Heat Plant
2742 thru 2748		TPQ-18 (Q6-82)
2749	480 V	So. Bell Exchange
2750 thru 2765		Central Tel Bldg. N6-2296
2766 thru 2771		Bldg. M6-138 C.D. and S.C.
2772	480 V	Unified S Band Technical Bus
2773 thru 2785		Unified S Band Bldg. M5-1444
2786 thru 2790		Visitors Information Center
2791	480 V	Frequency Control Analysis
2792 thru 2798		ECS Bldg.
2799 thru 2804		Fluid Test Support
2805 thru 2809 2810	480 V	RF System Test FAC Cryogenic Test # 1
2811 thru 2815		Cryogenic Test # 2
2816 thru 2823		Hypergolic Test # 1
2824 thru 2836		SAEF # 2 Bldg. M7-1210
2837	480 V	Ordnance Lab
2838 thru 2850	• -	SAEF # 1 Bldg. M7-1469
2851	480 V	Ordnance Stor. Bldg. M7-1472
	TOO Y	orationice noon a mind and and

INDUSTRIAL AREA

Bus Code	Voltage Level	Network Location
2850 2851		
2852	13.2 Kv	Pump Station, M7-1098, 112 1/2 KVA Transformer
2853	480 V	Pump Station, M7-1098, 112 1/2 KVA Transformer
2854 thru 2900		Not Used
2901	13.2 Kv	LBS # 6 NO Switch FD # 208
2902	13.2 Kv	LBS # 2 NO Switch FD # 209
2903	13.2 Kv	LBS # 45 NO Switch FD # 207
2904	13.2 Kv	LBS # 62 NO Switch FD # 103
2905	13.2 Kv	FD # 103 NC Switch to Substation "CRC"
2906	13.2 Kv	LBS # 18 NO Switch FD # 205
2907	13.2 Kv	LBS # 18 NO Switch FD # 202
2908	13.2 Kv	LBS # 19 NO Switch FD # 203
2909	13.2 Kv	LBS # 58 NO Switch FD # 202-8
2910	13.2 Kv	LBS # 13 NO Switch FD # 202
2911	13.2 Kv	LBS # 15 NO Switch FD # 202/203
2912	13.2 Kv	LBS # 14 NO Switch FD # 204
	13.2 Kv	LBS # 16 NO Switch FD # 204
2914	13.2 Kv	LBS # 47 NC Switch to Volt Regulators
2915		Launching Complex System
2916		Launching Complex System
2917		Launching Complex System

INDIAN RIVER BRIDGE SYSTEM

Bus Code	Voltage Level	Network Location
2086 2087 2088	13.2 Kv 480 V 13.2 Kv	F30, 5 x 37 1/2 KVA Transformers F30, 3 x 37 1/2 KVA Transformers Pass I.D. Gate # 3, 3 x 25 KVA Transformers
2089	208 V	Pass I.D. Gate $\#$ 3, 3 x 25 KVA
2090	208 V	Transformers NASA TWA Tours 3 x 25 KVA Transformers
2091	13.2 Kv	NASA TWA Tours 3 x 25 KVA
2096	13.2 Kv	Transformers Reclosure and By-Pass

B. Launching Complex - Industrial Area Systems Interconnection:

a) Network Section connected to Launching Complex VAB Feeder # 609 (operational voltage 13.8 Ky) or to Industrial Area Feeder # 211 (operational voltage 13.2 Ky) through 3 x 167 KVA voltage regulators 13.2/13.8 Ky.

This network section has been coded 2000, belonging to the Industrial Area Network, but has been considered connected to the Launching Complex System in the short circuit program.

A single line diagram of the existing interconnection between the Launching Complex and the Industrial Area Systems with the code numbers included follows:

Section considered normally connected to Launch Complex

Section considered normally connected to Industrial Area

Line	Code F	status
VAB Recloser VAB Recloser to LBS 501 LBS 301 to voltage regulators LBS 301 to substation # 833 VAB Recloser to LBS 302 LBS 302 to LBS 303 LBS 302 to FCA Mobile site LBS 302 to 54WT8	10 10-11 2915 11-12 10-2211 2211-2210 2211-2197 2211-2172	Closed Closed Open Closed Closed Closed Closed Closed

The network section of the Industrial Area that has been considered normally connected to the Launch Complex Feeder VAB 609 has the following primary bus codes:

13.8 Ky:

2026, 2098, 2102, 2104, 2106, 2108, 2110, 2115, 2117, 2119, 2121, 2123, 2125, 2129, 2131, 2133, 2137, 2139, 2141, 2143, 2147, 2149, 2151, 2153 thru 2169, 2172, 2197, 2199, 2210, 2211, 2915, 2135, 2201, 2204

13.68 Kv:

2113, 2127, 2145

The following lines will appear in the Launching Complex short circuit program:

Bus Code	Positive-Negative Sequence	Zero Sequence
Source-5	.00139 + j.00753	Infinite
5-9 5-9 5-9 5-9 9-10 10-11 11-12 10-2211 2211-2210	.0 + j.081 .0 + j.081 .0 + j.081 .0 + j.081 .001041 + j.0005617 .0005835 + j.000315 .001183 + j.000639 .034675 + j.017164 .011762 + j.0057188	.0 + j.081 .0 + j.081 .0 + j.081 .0 + j.081 .0061526 + j.00459 .00345 + j.002574 .006996 + j.005219 .0767351 + j.048637

Plus all the primary lines and associated secondary lines where bus code numbers are listed above in the 13.8 Kv or 13.68 Kv sections.

Line 11-2915 will not appear in either the Launching Complex or Industrial Area short circuit programs because it is a normally open condition.

b) If user wants to incorporate the above network section into the Industrial Area short circuit program, the following steps shall be taken:

- 1. Incorporate all lines coded at the 2000 level formerly in the Launching Complex short circuit program.
 - 2. Incorporate also lines 10-11, 11-12, and 10-2211.
 - 3. Add the following new lines:

Bus Code	Positive-Negative Sequence	Zero Sequence
2915-11 Source-11	Infinite $R_1 + jX_1$	Infinite R _o + jX _o

Where

 $R_1 + jX_1 = resistance$ and reactance to positive sequence of bus code 2915 as given by 3 p symmetrical short-circuit program of the Industrial Area

R + jX = resistance and reactance to zero sequence of bus code 2915 obtained from the line to ground fault short circuit program as follows:

Consider R + jX is the equivalent resistance and reactance component of the impedance corresponding to bus code 2915 given by the line to ground fault short circuit program for the Industrial Area

$$R + jX = (R_1 + R_2 + R_0) + j (X_1 + X_2 + X_0)$$

Where $R_2 + jX_2$ is the impedance of bus 2915 to negative sequence

But in the average $R_1 \approx R_2$, $X_1 \approx X_2$

Then

$$R_0 = R - 2R_1$$

$$X_0 = X - 2X_1$$

In this step, line source-11 = impedance of bus code 2915 establishes a Thevenin equivalent impedance at bus 11 (LBS 301) looking from 2915 towards the Industrial Area network, and is equal to by-pass the whole Industrial Area network from Industrial bus (code # 8) to LBS 301 (bus code # 2915). Line 2915-11 will open LBS 301 (2915) from the Industrial Area network.

The above step is valid whatever the configuration of the Industrial Area network is up to bus code 2915.

4. Multiply impedances to all sequences of all lines considered in steps 1, 2, and 3 above by the factor:

$$(\frac{13.2}{13.8})^2 = .9149338$$

5. Source voltage to be $(\frac{13.2}{13.8})^2 = .9149338$, or the same source voltage as the Industrial Area.

Steps 4 and 5 will incorporate the network section into the Industrial Area network. Step 3 takes into account the voltage regulators input from Feeder #211 from the Industrial Area at 13.2 Kv level and the voltage regulators output of 13.8 Kv to the network section. This is accomplished multiplying the impedance of the network section by the .9149338 factor which is equal to increase the voltage to 1.0 = 13.8 Kv; this way we can use the same voltage source as the rest of the Industrial Area.

- c) If user wants to feed part of the normal Industrial Area network from the Launching Complex Feeder VAB # 609 through the 3 x 167 KVA voltage regulators 13.8/13.2 Kv, the following steps will be required:
- 1. Open the Industrial Area network at the desired switching station with a line card of infinite impedance. If a new bus code is required, it is suggested to use code numbers at the 2900 level.
- 2. Multiply all sequence impedances of all lines in the Industrial Area to be connected to the Launching Complex VAB Feeder $\frac{1}{6}$ 609 by the factor $(\frac{13.8}{13.2})^2 = 1.0454545$.

This will take into consideration the 13.8/13.2 Kv voltage regulators' effect and maintain a source of 1.0 = 13.8 Kv for the whole network.

3. Introduce a new line:

Bus Code	Positive-Negative Sequence	Zero Sequence
11-2915	.0 + j.0	.0 + j.0

The desired network section is connected to the Launching Complex network.

III. Short Circuit Program

1. Introduction

The KSC short circuit program is described in detail in the following paragraphs. The approach taken is to describe first the basic computational procedures and then the details of program structure. Emphasis is placed on program utilization and procedures to update the program in accordance with subsequent network changes and additions.

The short circuit program is configured to compute both three phase and single phase fault conditions. Line open computation options also are provided. The computational procedures utilized are based on essentially standard techniques employed in power industry short circuit programs. Network impedance matrix formation algorithms and short circuit algorithms are based upon those given in the book "Computer Methods in Power System Analysis" by Stagg and El-Abiad. Specific algorithms used are given in subsequent paragraphs. The program is specifically tailored to the KSC network and utilizes the radial structure of the network to reduce computational requirements.

2. Short Circuit Program Description

A. General Description

The short circuit program employs the Z_{Bus} network formulation thereby enabling a Thevenin equivalent network to be computed at a faulted bus. Fault currents and corresponding node voltages are then determined using the Thevenin equivalent circuit. The basic assumption employed in this procedure is that load currents are negligible with respect to short circuit currents. With this assumption, if the network is described by

$$\underline{\underline{F}}_{Bus} = \underline{\underline{Z}}_{Bus} \underline{\underline{\underline{F}}}_{Bus}$$
 2.1

then the voltage change due to the fault is

$$\underline{\underline{\underline{F}}}_{Bus} PF - \underline{\underline{\underline{F}}}_{Bus} F = \underline{\underline{\underline{I}}}_{Bus} \underline{\underline{\underline{F}}}_{Bus} F$$
 2.2

In the above:

 $E_{Bis\ PF} = Pre-fault$ bus voltages

E Bus F = Post-fault bus voltages

I_Bus F = Fault currents

Z = Bus impedance matrix Bus

thus, the network is represented as the composite Thevenin equivalent network shown in Figure 2.1.

Figure 2.1 Thevenin Equivalent Network for Short Circuit Calculations

In Figure 2.1, it is assumed that bus j has been faulted (either three phase or single phase fault) resulting in fault current I_{jF} and $E_{jF}=0$. Apply the fault condition at bus j to equations allows the fault current to be determined as

$$I_{jF} = \frac{E_{jPF}}{Z_{jj}}$$
 2.3

Where $Z_{\rm jj}$ is the j-j element of $Z_{\rm Bus}$, or the Thevenin equivalent impedance of the network as seen from bus j. Using equation 2.3 and equation 2.2, the post fault bus voltages and current flows between buses are obtained. The short circuit calculations is thus comprised of two computational procedures; one for determining the $Z_{\rm gus}$ matrix for a given network configuration and the other for computing conditions resulting from a short circuit. Since the network $Z_{\rm Bus}$ is part of the overall computational algorithm, it is possible to alter the network after fault occurrence and compute conditions in the modified network. Thus, to aid in protection analysis, an optional computation is provided which sequentially disconnects one at a time all lines connected to the faulted bus and determines bus voltages and line flows under those conditions.

In the following, a more detailed description of these operations is given together with a functional diagram defining information flow in the program.

B. Network Z_{Bus} Assembiy

A substantial portion of the short circuit calculation is concerned with developing the appropriate impedance matrices in a computationally efficient manner. In a substantially radial network such as that at KSC,

the $Z_{\rm Bus}$ matrix is very sparce, i.e. contains a large number of zero elements. That is, buses in a given radial are connected to buses in another radial only at the reference or supply bus. Furthermore, $Z_{\rm Bus}$ is symmetric since the impedance between connected buses is bilateral. Therefore, only elements of $Z_{\rm Bus}$ which are on and above the main diagonal and which directly affect the desired output need to be stored. The first task accomplished by the program then is to sort the input network data to define those elements and store them for use in assembly of $Z_{\rm Bus}$. A retained bus list is compiled which lists the set of network buses together with all buses connected to each. Thus, when a particular bus is faulted, only those elements of $Z_{\rm Bus}$ which are required to compute line flows to connecting buses are employed.

The Z matrix is assembled sequentially by adding (or subtracting) impedances associated with network lines, one line at a time. Let Z bus P represent the partial network bus impedance matrix and Z bus M represent the modified matrix after the addition (or deletion) of a line. The modified matrix is obtained from the partial matrix by addition (or deletion) of a row and column. Two cases occur; when the additional line is a radial line whose terminal bus is not included in the partial network, and addition of a line whose terminal bus is included in the partial network. The latter case amounts to closing a loop in the network (providing dual feed to a load). Two different algorithms are employed.

For the addition of a radial line, assume that the partial network has n buses so that

Then

$$Z_{mm} = Z_{nm}$$

And

	Z ₁₁	Z 12	 Z _{ln}	0
	Z ₁₂	Z ₂₂	Z _{2n}	0
Z. Bus m =				
	Z ln	Z _{2n}	 Z nn	0
	0	0	0	Z _{mm}

Thus, the modified matrix is simply one higher in dimension with one additional diagonal element.

For addition of a line which closes a loop, the initial and terminal buses of the line are both in the partial network. Thus, the modified matrix and the partial matrix have the same dimension. The modification thus requires changes in partial matrix elements. Assume the line is to be added between buses p and q. The changes are accomplished according to

$$Z_{ijm} = Z_{ijp} - \frac{Z_{i1}Z_{1j}}{Z_{11}}$$
 2.4
i, j = 1, 2....n

The change elements Z_{il}, Z_{li}, Z_{ll} are defined by

$$Z_{il} = Z_{li} = Z_{pi} - Z_{qi}$$
 2.5
 $i = 1, 2...n$ $i \neq 1$
 $Z_{ll} = Z_{pl} - Z_{ql} + Z_{pq}$ 2.6

Where

 Z_{pq} = impedance of added branch Z_{pi} = partial matrix element in location p, i Z_{qi} = partial matrix element in location q, i

Thus, the system bus impedance matrix may be computed sequentially by adding elements in accordance with the network structure. Lines are removed by using the above algorithms to add a line with impedance equal to the negative of the impedance of the line to be removed.

Since both single phase and three phase fault conditions are computed, symmetric components are employed. Thus two Z matrices, the positive sequence matrix and the zero sequence matrix, must be compiled. Essentially the same computational procedure is used for Interconnection between buses is different for zero sequence from that of the positive sequence due to the existence of Delta connected transformers. Thus, either the retained bus list must be modified for zero sequence, or the input data must be arranged to reflect the different connection constraints. In order to minimize computational complexity, the latter approach is employed in the short circuit program. If buses p and q are connected for positive sequence currents but not for zero sequence, then the positive sequence line impedance is Z and for zero sequence is given in the input data as

$$Z_{pq_0} = \infty$$

C. Short Circuit Calculations

The short circuit calculations follow from equations 2.2 and 2.3. If bus q is to be considered, then both single phase and three phase fault constraints are imposed and resulting currents and voltages are computed. Table 1 below summarizes computations for each case

Type Fault	Single Phase Fault	Three Phase Fault
Fault Constraint	E = 0	$E_{\text{aq}} = E_{\text{bq}} = E_{\text{eg}} = 0$
Sequence Fault Current	$I_{qF_1} = \frac{\frac{E_{qPF}}{Z_{qQ}}}{\frac{Z_{qQ}}{Z_{qQ}} + 2Z_{qQ_1}}$ $I_{qF_0} = I_{qF_1}$	$ T_{qF_{1}} = \frac{E_{qPF}}{Z_{qq}} $ $ T_{qF_{0}} = 0 $
Total Fault Current	I _{aF} = 3I _{qF} 1	I _{aF} = I _{qF} 1
Bus Voltage During Fault	E _{jF₀} = Z _{jq} I _{qF₀} E _{jF₁} = E _{qPF} -Z _{jq1} I _{qF1}	$E_{jF} = E_{jPF} \left(\frac{1 - Z_{qj}}{Z_{qq}} \right)$
Flow Between Bus i and Bus j	$I_{ij_{o}} = \frac{E_{jF_{o}}^{-E_{iF_{o}}}}{Z_{oj_{o}}}$ $I_{ij_{1}} = E_{jF_{1}}^{-E_{iF_{1}}}$ $I_{ij_{a}} = 2I_{ij_{1}}^{-E_{ij_{1}}}$	$I_{i,j} = \frac{E_{j,F} - E_{i,F}}{z_{o,j_1}}$
	ija ijı ijo	

Table 2.1 Short Circuit Computation Algorithms

In the above table, the notation is used that subscript PF indicates pre-fault condition; subscript F indicates condition during fault; subscript o indicates zero sequence; subscript l indicates positive sequence; subscript a indicates phase a; upper case $\mathbf{Z}_{i,j}$ indicates elements of \mathbf{Z}_{Bus} ; lower case $\mathbf{z}_{i,j}$ indicates line impedance between bus i and j.

In the event that more than one line is connected to a raulted bus, the option exists to sequentially open the connected lines one at a time and compute the resulting network conditions. The algorithms for those computations are the same as in Table 2.1 except the bus impedance elements are replaced by modified elements in accordance with the deleted line.

The option exists in the program of either computing fault conditions at a single bus or sequentially computing fault conditions for each bus for all network buses.

3. Input Data Preparation

A system network diagram should be available which includes all buses and impedance values. If the single phase to-ground option is used, a zero sequence network diagram is also needed.

All buses must be named with a unique name or number. The first letter of the bus name signifies the bus voltage as follows:

Bus Voltage	First Letter of Name
13,800	A
4,160	В
480	C
208	D
115,000	E
13,680	F
13,320	G
13,200	H
2,400	J
120/240	K

The bus names may contain up to six characters. The output will be generated in alphanumeric sequence. The reference bus must be named "SOURCE". The word "SOURCE" has been reserved for ground. Once the name has been established, it must always be referred to by that name---column for column, including blanks.

Special consideration must be given to the equivalent representation of transformers, since the positive and zero sequence network diagrams may be different. If this is the case, both network diagrams must be made to correspond to each other. If a node exists in only one network, the corresponding network can be made equivalent by inserting a corresponding node and inserting an impedance element large enough to eliminate any flow in the line that is missing. That is, an infinite impedance (9999.) should be given the missing line.

Impedance data base conversion is available to the user. For the Industrial Area, the impedances are calculated on a 13.8 Kv base, but the base voltage is actually 13.2 Kv. Therefore, the impedances for the Industrial Area must be multiplied by a factor 1.0454545. This is accomplished by inserting a card punched "*MISCRILANEOUS" followed by a card with 1.0454545 punched in holes 11-20. This causes the computer to multiply each impedance by 1.0454545 as the cards are read into the computer. Location and use of this card is explained in paragraph 4.

It is recommended that a degree of caution be exercised in preparing data for the program. The range of actual impedance data should not

exceed 500 to 1. The definition of actual impedance data is any line in which a flow is expected to occur. If a line flow is expected to be eliminated with the use of a large impedance value, as in some transformer applications, this impedance value should be at least 500 times the largest actual impedance value. The above ratios are only guidelines and should be used as such.

Each line must also be assigned a circuit number (0-15). This number is used along with the two bus names to identify the line. Therefore, parallel lines can be distinguished. Since the circuit number may not be greater than 15, if more than 16 lines connect two buses, an artificial bus must be created with zero impedance to one of the existing buses. If no circuit number is assigned, the computer automatically assigns the number zero.

The above data is placed on data cards in the following format:

Card Column	Description
1-6	Bus name (sending bus)
13-18	Bus name (receiving bus)
25-32	Positive sequence resistance in per unit
33-40	Positive sequence reactance in per unit
41-48	Zero sequence resistance in per unit
49-56	Zero sequence reactance in per unit
61-62	Circuit number

4. Program Utilization

The data is read into the computer in logical blocks. Each block of data is preceded by a program control card to inform the computer what information is contained on the following cards. The blocks of information should be organized in the following order:

Each of these blocks will now be described.

A. Title

This block will contain only two cards. The first card will be "*TITLE". This card tells the computer that the following card contains the title of the network about to be presented. The next card contains the title of the network in the first 72 columns of the card.

B. Set Parameters

This block is broken into two parts. Each part may or may not occur. If a block does not appear, a default value will be assigned to the parameters.

The first group of parameters that can be set contains the values of the MVA base and the input impedance constant. The first card in this part is "*MISCELLANEOUS". This card is followed by a card containing the MVA base in columns 1-10 and the input impedance constant in columns 11-20. The MVA base is set to 10 if this section does not appear. The input impedance constant is the value by which all input impedance values are multiplied as they are read. This number is set to one if this section does not appear. For the Industrial Area, the input impedance constant must be 1.0454545.

The second part of this block sets the following limits:

- 1) Maximum size of the retained bus list
- 2) 'aximum size of the auxiliary list
- 3) Maximum number of buses
- 4) Maximum number of lines
- 5) Maximum dimension of the impedance array

These limits are set as follows:

First card----"*SET LIMITS"

Second card----

Column	Description	Default Value
1-10	Max. size bus list	40
11-20	Max size aux. bus list	200
21-30	Max. number of buses	1,000
31-40	Max. number of lines	1,000
41-50	Max. dimension impedance array	1.00

The default values represent the largest value these limits may be without program modifications. These numbers represent the size of various arrays in the program and have proven adequate for the existing network. If network expansion should require modification, these limits may be expanded by increasing the size of the following arrays in the program:

<u>Array</u>	Dimension
LSTRET	Max. size of ret. bus list
LSTAUZ	Max. size of aux. bus list
BNAME	Max. number of buses (not to exceed 2000)
LINE,X1,XO	Max. number of lines
LSTBUS	Max. dimension impedance array
Z1,Z0	(N+1)(N+2)/2, where N is the max. dimension of the impedance array

C. Network Data

This block contains the line data. The first card in this block is "*LINE DATA". The following cards contain the line data in the format presented in the previous section. The last card of this block must be "*END" to signify the end of the line data cards.

D. Network Changes

Either or both of the following changes may be made to the network:

- a) Add lines---The first card in this section will be "*LINE ADDITIONS".

 This card will be followed by line data cards prepared as before.

 The last card will be "*END" to signify the end of the line additions.
- b) Remove lines---The first card of this section will be "*LINE REMOVALS". This card will be followed by line data cards for the lines to be removed. The last card of this section will be "*ETD" to signify the end of the line removals.

E. Creating a Tape

At any point in the execution of a program, the network existing in the program may be saved on a history tape for future reference. This is done by inserting immediately after any of the blocks outlined previously a card with "*WRTTE RECORD" in the first 13 columns of the card with the following additional information:

Card Column	<u>Field</u>	<u>Definition</u>
31-40	IC4	FORTRAN I/O device number on which the history tape reel for this study is mounted
41-50	IC5	Reel number of the tape mounted on the device IC4
51-60	IC6	Punch with any non-zero integer if this is to be the first record on the tape. This destroys anything that may have been on the tape previously. For saving records subsequent to the first case, this field is to be left blank. The program will count records and add the current record to the existing records and print a message indicating the number of the new record.

After the record has been saved by the program, a message is written on the output stating: "Data from previous case has been saved on tape____, reel number____, as record number____." The tape_____ indicates the logical device number of the output tape device.

A tape of the existing power system of the Kennedy Space Center has been produced. This tape is labeled "PWRSYS" and contains data for the Industrial Area as record one, and data for the Launch Complex as record two.

F. Using a Tape

Whenever it is desired to load the data from a case previously saved on a history tape (ex: loading the existing KSC network data) a "*RECALL RECORD" card is placed in the deck. This will cause the computer to read data previously stored on tape. This one card may accomplish the task of reading the title, setting the parameters, and entering the line data. However, if a different title or parameter set is desired, these blocks may be included after the "*RECALL RECORD" card.

This card is formatted as follows:

Card Colimn	Field	<u>Definition</u>
1-14	CNIER	"*RECALL RECORD"
31-40	IC)+	FORTRAN I/O device number on which the history tape reel is mounted.
41-50	IC5	Reel number of the tape mounted on the device IC4.
5160	IC6	Record rumber which is to be loaded.

G. Requesting Output

a) Basic Requests

The program has three different output modes for two types of fault conditions. The three modes are "SELECTED", "STANDARD", and "MODIFIED". When requesting output, one mode is combined with either "THREE PHASE" or "SINGLE PHASE" on an output request card to generate output for a three-phase-to-ground fault or a single-phase-to-ground fault respectively.

"SELECTED" output - This output mode enables the user to select the buses which are faulted. This will be the most common type of output since the user can request exactly the output desired. When requesting "SELECTED" output, the following cards are used "*SELECTED THREE PHASE" or "*SELECTED SINGLE PHASE". This card will be followed by cards specifying the buses to be faulted. The name of each bus to be faulted will be punched in columns 1-6, one bus per card. These cards will be followed by a "*END" card to signify that all faulted buses have now been specified. Any number of buses may be specified at one time. The program will fault the buses sequentially one at a time.

"STANDARD" output - This output mode sequentially faults all buses in the network in alphanumeric order. Only one card is required to request this output, i.e., "*STANDARD THREE PHASE" or "*STANDARD SINGLE PHASE" will create three-phase-to-ground or single-phase-to-ground faults for each bus in the network.

"MODIFIED" output - The "MCOIFIED" output mode, like the "STANDARD" output mode, sequentially steps through the network in alphanumeric order faulting the buses one at a time. However, rather than beginning with the first bus alphanumerically, the "MODIFIED" mode begins at the bus specified on the card following the card calling for "MODIFIED" output. (Example: card 1 - "*MODIFIED SINGLE PHASE", card 2 - "C209" — these two cards together call for the program to first fault bus C209 with a single-phase-to-ground fault, then fault sequentially all buses following bus C209 in alphanumeric order).

b) Output Options

The output modes described above may take any one of many forms depending on control variables that may be specified on an output request card. These control variables appear in columns 40, 50, 60, and 70. These control variables are described below:

IC4 - This variable is punched in column 40 of the output request cards. If IC4 is set to 1, the impedance matrix is printed each time it is computed. If IC4 is blank or zero, the matrix is not printed.

IC5 - This variable is punched in column 50 of the output request cards. The line flows will be output for this number of buses away from the faulted bus. For "SELECTED" output this number is specified for

each bus to be faulted in column 51 of the cards specifying the buses to be faulted. If this column is blank or zero, it is interpreted as 1.

IC6 - This variable is punched in column 60 of the output request cards. If IC6 is non-zero, the reordered line list (TREE STRUCTURE) will be printed each time the matrix is computed. A blank is interpreted as zero and no line list is printed.

IC7 - This variable is punched in column 70 of the output request cards. If this variable is zero or blank, the output will contain cutput for each faulted bus with each of the lines tied to that bus open. Any non-zero number supresses this feature.

H. Matrix Changes

An option exists in the program which allows the user to request changes to the positive and zero sequence matrices and ask for output. The matrix may be computed or called from a saved record. Remember, when using this option that the matrix must contain at least a small retained area that was computed previously. With this option, the user may remove lines, add lines, remove buses from the retained list, or ask for printing. Change cards may be in any order but must follow one of the following program control cards and terminate with a program control card punched "*END" in columns 1-4.

- a) "*MATRIX CHANGES THREE" This program control card makes changes to the positive sequence matrix only, and gives output in the three phase output format.
- b) "*MATRIX CHANGES SINGLE" This control card makes changes to both the positive and zero sequence matrices. The output is in single-phase-to-ground format.

If the user desires, he may first form a small matrix and then, by using the options explained here, he may build the matrix in the same way in which the program does in a normal run. The user may first add a line and then, if the bus is never used again, the bus may be eliminated from the matrix and another line added. This process can be repeated until all the lines are included for the system. It is not suggested that the user use this approach for large systems.

The input card format for matrix changes follows:

Card Column	Field Name	Description
1-6 13-18	NP NP	Bus name (sending bus) Bus name (receiving bus)
25-56	X ₁ , X _o	Positive and zero sequence as on line data cards
60	ns	This is a code 1-5 which defines the action desired.
		 If a l is punched in column 60, this indicates the removal from the matrix of the line

described on the card. Both
the sending and receiving buses
must be in the retained bus list.
Only the bus names and the circuit number are required in addition to the option code.
2. If a 2 is punched in column
60, this indicates that a line
is being added to the existing
matrix. One bus must be in the
retained bus list in order to
add a line and this must appear
as the sending bus on the input
card; all data is required for

5. If a 3 is punched in column 60, this indicates to the program the elimination of a bus from the retained bus list. This means to the user that this is no longer available for further study. This bus name must appear as the sending bus. Only the bus name and option code are necessary on this card.

this card.

4. If a 4 is punched in column 60, this indicates that the user is asking for output. The bus which appears as the sending bus is faulted and output is given for as many buses as appear in the circuit number field. For example, if a 1 is punched in the circuit number field when using this option, the output will include the faulted bus and all lines connected to it. All lines will be opened around the bus and output given for this condition.

5. If a 5 is punched in column 60, this indicates that the user is asking for output as in 4 above. If this option is used, no lines are opened. Otherwise, 5 is identical to 4.

This is used as the circuit number for types 1 and 2. On a type 4 change, NC is interpreted as N-back.

61-62 NC

Note: It should be understood that a matrix change cannot be made immediately after reading in the line data because a matrix has not yet been

generated. The user must first call for output which would cause the matrix to be built. Once a change is requested, it does not actually become effective until output is again requested which causes the matrix to be recomputed. Output should be requested by using option 4.

I. Program Control Cards

This section contains a complete description of all program control cards required to implement the various phases of the Short Circuit Program. Most of these cards have been covered previously. For these cards, this section will summarize the information covered earlier. addition to those cards previously mentioned, a number of less commonly used cards are also mentioned here. Those cards require no additional explanation other than that presented in this section. A command to execute a particular phase of the program is recognized by an "*" punched in card column one followed by one or more command words punched in card columns 2-24. Each command word must be separated by a blank and left justified in the field, starting in card column two. In addition to the command field, four other fields are provided. These fields are called control fields and are designated internally as IC4, IC5, IC6, and IC7. All control fields are ten columns wide and end in card columns 40, 50, 60, and 70 respectively. Data punched in these fields should be right justified.

- 1. *STANDARD THREE PHASE This is a single control card which computes a three phase fault study. It gives output for all lines and buses connected directly to the faulted bus. If IC4 is set to 1 in column 40, the impedance matrix is printed each time it is computed. If a number is punched in IC5, column 50 of the program control card, the line flows will be output for that number of buses away from the faulted bus. If IC5 is zero or blank, it is assumed to be 1 and only the flows for the lines connected directly to the faulted bus will be printed. If IC6 is non-zero, the reordered line list (TREE STRUCTURE) will be printed each time the matrix is computed. If IC7, column 70, is non-zero the line-open feature is disabled.
- 2. *STANDARD SINGLE PHASE This program control card is the same as in (1) except the output is computed for a single-phase-to-ground fault.
- 3. *MODIFIED THREE PHASE This program control card is the same as in (1) except the output is not computed for all the buses. This card should be followed by a card containing a bus name in columns 1-6. This bus will be faulted and then all cards following in alphanumeric order.
- 4. *MODIFIED SINGLE PHASE This program control card is the same as in (3) except the output is computed for single-phase-to-ground fault.
- 5. *SELECTED THREE PHASE This control card should be followed by one or more data cards which must be terminated with the control card "*END". The data cards should contain, in columns 1-6, the name of the bus to be faulted. If the line flows for more than 1 bus away are desired, the number-back should be placed in column 51 of the same data card that names

the bus to be faulted. The program will compute the impedance matrix based upon the input cards. Only three phase output will be computed.

- 6. *SELECTED SINGLE PHASE This control card is the same as (5) except only single-phase-to-ground option is computed and output. Note: For SELECTED THREE PHASE or SELECTED SINGLE PHASE options, any punches in cc 50 (IC5) are ignored. The number-back must be specified in cc 51 of each data card specifying buses to be faulted.
- 7. *DUMP LINE DATA This is a single control which dumps out the line data that is in core at the time the control card is read and executed. If IC4 has a 1 punched in column 40, the ordered line list is printed rather than the sorted list. This will only be true if the matrix has been computed before this requested print.
- 8. *PRINT Z1 MATRIX This is a single control which prints the positive sequence matrix at the time of request.
- 9. *PRINT ZO MATRIX This control card prints the zero sequence matrix elements in the machine at the time of the request.
- 10. *LINE ADDITIONS This control card should be followed by one or more data cards which must be terminated with a "*END". This control makes line additions to the line table already in the machine.
- 11. *LINE REMOVALS This control expects other input data to follow and a card with "*END" punched in column 1-4 to terminate the action of this control. This control removes lines from the line data already in the machine.
- 12. *MATRIX CHANGES THREE This control expects other input data to follow and must terminate with a card "*END" to terminate the action of the control. All data input under this card will only force change to the positive sequence matrix.
- 13. *MATRIX CHANGES SINGLE This control card expects other input data to follow and must terminate with a card "*END" to terminate the action of the control. All data input under this control card will force change to the positive and zero sequence matrix. No mutuals will be involved using this option.
- 14. *LIST BUS This control card prints the list of bus names in alphanumeric order and the bus numbers associated internally with each bus.
- 15. *LINE DATA This control card expects the line data to follow and must be terminated with a card punched "**END" beginning in column 1.
- 16. *SET LIMITS This control card expects only one card to follow. The next card will contain the following parameters: MAXRET (maximum size of retained bus list columns 1-10), MAXAUX (maximum size of

- auxiliary bus list columns 11-20), MAXBUS (maximum number of buses columns 21-30), MAXLI (maximum number of lines columns 31-40), and MAXCOL (maximum number of buses in impedance matrix columns 41-50). A blank or zero in any of these fields will be interpreted as "no change". These values are originally set to their maximum values of 70, 200, 1000, 1000, 1000 respectively.
- 17. *MISCELLANEOUS This control card expects only one card to follow. The next card will contain the following information: MVA base in columns 1-10, and the input impedance constant in columns 11-20.
- 18. *WRITE RECORD This is a single control card and additional information must appear on the card. The logical I/O device number must be punched in the IC1 field, right justified. The reel number punched in the IC5 field, right justified. If the IC6 field is punched with a non-zero number, this will be the first record on the tape, but if left blank, the record will be added to the reel. If this is the first time to use the tape, IC6 must be non-zero.
- 19. *RECALL RECORD This is a single control card with the necessary information to recall a Base Case. The logical I/O device number punched in the IC4 field, right justified. The reel number is punched in the IC5 field, right justified. The desired record number is punched in the IC6 field, right justified. If the IC6 field is left blank, an error message will be flagged.
- 20. *TITLE Title card follows and prints as heading title. As many cards may be input as the user likes, but only the last card is retained in the machine for further use.
- 21. *REMARKS Remarks card follows. Lists on output tape, single spaced. As many cards may be input as necessary, but one must be input with every remarks card. Only one card is read per control card.
- 22. *END This control card is punched in columns 1-4 and must be used with some of the other control cards to terminate the action of that control card with which it is being used.
- 23. */ This control is used to signify the beginning of an independent case and is a "do nothing" if read at any other time during input.

 Note: The start of a set of data cards for a case that is independent of the results of other cases should be marked by preceding the set of independent data with "*/" punched in column 1 and 2. The reason for this is that when the program detects an error, it searches for the next independent case by looking for a card with "*/" in column 1 and 2. It is not necessary to place this card in front of the first case. Several independent studies can be set up at a time with the use of history tapes. Each time a study is called from a history tape, this can be considered an independent study.

To obtain a clean ending for this program, control cards 22 and 23 are used together. Place the "*/" card followed by an "*END" card after all the data and program control cards. This signifies the end of the run.

J. Output Description

On the output the number of lines included in the system are printed along with the number of buses. The reference generator is also printed. This is the bus used to start building the matrix. It may be noted that when running a large study, this may change in the middle of the output. This means that the matrix has been computed more than one time and a different generator has been selected to start building the matrix.

On the output, the faulted bus will appear under the heading faulted bus. The total fault under FAULT and the driving point impedance under IMPEDANCE. Circuit number will appear just before the name of the other end bus. Under heading fault to bus will appear another bus name. This bus is the other end of the line leading away from the faulted bus. Under the heading voltage and flow will be the flow in the line and voltage at the bus appearing under the heading fault to bus. When a bus appears to the left of the bus under the heading fault to bus, this is the name of the opposite end of a line which is not connected directly to the faulted bus. Note: Voltage always applies to the bus under the heading fault to bus.

When asking for output two buses away from the faulted bus, output will include all lines two buses away from the faulted bus. If two buses are tied together with a line which are two buses away from the faulted bus, that line will appear in the output list. This is also true when asking for only one bus away from the faulted bus.

a) Three Phase Output

Three types of output may be requested for three phase. Standard output faults every bus and gives the flow in all lines a specified number of buses away from the faulted bus. Each line connected to the faulted bus is opened and the flows computed for the same number of buses away from the faulted bus. Selected output is the same as standard output except that only the requested number of buses are faulted. Output may be requested through the matrix changes and here the number of buses away from the faulted bus will include only those buses which are included in the retained area. Modified output is the same as standard output except the pass through the buses starts at the specified bus.

b) Single Phase Output

The output format for single-phase-to-ground is the same as three phase output except the calculations are different and more has been added. Under the heading IMPEDANCE, the equation is $2Z_{nn}(1) + Z_{nn}(0)$ and EZ is the zero sequence voltage at the faulted bus. Phase flow and $3I_{0}$ are printed for all lines when the bus is faulted. $3I_{0}$ is the three phase fault current. The voltage at the opposite end of all lines connected to the faulted bus is also printed.

K. Sample Decks

Presented here are two sample card decks. These decks represent two independent studies and are presented for illustration only.

a. The following sample card deck will read in the line information for a network with five lines and four buses. All buses are 480 volt base. The MVA base is 5. The network is titled "SAMPLE NELWORK." The output is standard three phase plus an additional output for a single phase fault on bus C3.

*PTITE

SAMPLE NEIWORK

*MISCELLANEOUS

5.

*LINE DATA

	¢c-13	¹ c-25	[©] e-33	τ_{c-41}	1c-49	4 c-62
C3	C4	.102	.231	.033	.1572	0
C2	C3	.01	.05	.Ol	.07	0
Cl	C3	.008	.151	.015	.091	0
Cl	C2	.007	.13	.01	.lol	0
SOURCE	Cl	.001	.18	.003	.02	0

*END

*STANDARD THREE PHASE

*/

*SELECTED SINGLE PHASE

C3

*END

*/

*END

a. The following sample card deck will read in line data from a tape mounted on the tape drive with logical device number 2. The first record on the tape will read. Two lines are then added and three phase output requested for buses B120 and B121.

*RECALL R	ECORD		2 c-40	1 c-50	1 c-60	1
*LINE ADD	TTIONS					
B119	B120	.002	.013	.007	.025	0
B120	B121 4c-13	.011 ² c-25	.025 ¢c-33	.018 4c-41	.033 ¢c-49	0 ≄c-62

*END

*SELECTED THREE PHASE

B1.20

B121

*END

*/

*END

Appendix I COMPUTER PROGRAMS FOR ZERO SEQUENCE PARAMETER CALCULATIONS

Computer programs to calculate zero sequence impedances of 3 p electrical cables with earth return using Fortran Language.

The following cards are common to all programs.

CONTROL CARDS

```
COMPLEX ZO, Z1, ZC
DIMENSION LABEL (2)
DATA DE, RE/10560., .286/
DATA CONI/.8382/
WRITE (6, 100)
ZC = COMPLX (RC + RE, CONI*ALOGLO(DE/GMR))
GO TO 10
FORMAT (1H1, 20X, "IMPEDANCE PROGRAM" //3X,
1 "LINE", 17X, "Z", 25X, "RC", 8X,
999
STOP
END
```

₹XOT

The value DE = 10560. = 880. * 12. represents the equivalent depth of the earth return path; RE = .2862 is the resistance in chms/mile of earth return path and is independent of the depth of the return.

We will reproduce several basic programs and list the differences with similar programs.

A. PILC:

```
CONTROL CARDS
    FOR, IS PILC
       PROGRAM COMPUTES ZERO SEQUENCE IMPEDANCES OF
C
       3 CONDUCTOR SHEATHED CABLES INSTALLED IN STEEL
C
C
       CONDUCES (ZO) OR IN FIRER DUCTS (Z1) WITH EARTH
C
       RETURN
C
       COMPLEX ZO, Z1, ZC
       COMPLEX ZS, ZP, ZCS, ZCP, ZSP, ZFMCP, ZCMCS
       COMPLEX ZCMCP, ZCPMSP, ZSMCS, ZCSMSP
       DIMENSION LABEL (2)
       DATA DE, RE/10560., .286/
       DATA CONI/.8382/
       DATA T, CR, CX/15.36, 29.9, 18.1/
       WRITE (6, 100)
       READ (5, 101, END = 999) LABYL, RC, GMR, RS, ASH,
10
       DP = AP \times 2.
       RP = T*CR*5.28/(DP*1000)
```

XP = T*CX*5.28/(DP*1000)

U = AP - ASH

```
ZC = CMPLX (RC + RE, CONI*ALOGLO(DE/GMR))
         ZS = CMPLX (3.*RS + RE, CONI*ALOGLO(DE/ASH))
         ZPMCP = CMPLX (3.*RP, 3.*XP)
         ZCP = CMPLX (RE, CONI*ALOGIO(DE/AP))
         ZCS = CMPLX (RE, CONI*ALOGIO(DE/ASH))
         ZSP = CMPLX (RE, CONI*ALOGIO(DE/U))
         ZP = ZCP + ZPMCP
         ZCMCP = ZC - ZCP
         ZCMCS = ZC - ZCS
         ZSMCS = ZS - ZCS
         ZCSMSP = ZCS - ZSP
         ZCPMSP = ZCP - ZSP
         ZO = ZS*(ZCMCS*ZPMCP + ZCMCP*ZCPMSP +
        1 ZSP*(ZCMCP*ZSMCS + ZCMCS*ZCSMSP) +
        2 ZCS*(ZFMCP*ZSMCS - ZCSMSP*ZCPMSP)
         ZO = ZO/(ZS*(ZP-ZSP) + ZSP*(ZS-ZSP))
         ZL = ZC - (ZCS*ZCS/ZS)
         WRITE (6, 102) LABEL, ZO, RC, GMR, RS, ASH, RP, XP, AP
        WRITE (6, 103) Z1
         GO TO 10
        STOP
 999
 100
        FORMAT (1H1, 20X, "IMPEDANCE PROGRAM"//3X,
                 "LINE", 17X, "Z", 25X, "RC", 8X,
"GMR", 7X, "RS", 8X, "ASH", 7X, "RP", 8X,
"XP", 8X, "AP"/
       2
                     , "REAL", 9X, "IMAGINARY"//)
                16X,
101
        FORMAT (A4, A6, 5F10.5)
        FORMAT (1X, A4, A6, 2E15.5, 10X, 7F10.5)
102
103
        FORMAT (11X, 2915.5//)
        END
    \geq x_{QT}
PILC
        500
                  .149
                            .6
                                     .61
                                               1.26
                                                             2.
     B. BRNJ
     CONTROL CARDS
     FOR, IS BRNJ
C
        PROGRAM COMPUTES ZERO IMPEDANCE OF 3 CONDUC
C
        TOR OR 3 SINGLE CONDUCTOR NON-SHEATHED CABLES INSTALLED IN
C
        STEEL CONDUITS (ZO) OR IN FIBER DUCTS (ZL) WITH
C
       EARTH RETURN
C
       COMPLEX ZO, Z1, ZC
       COMPLEX ZP, ZCP, ZFMCP
       DIMENSION LABEL (2)
       DATA DE, RE/10560., .286/
       DATA CONI/.8382/
       DATA T, CR, CX/15.36, 29.9, 18.1/
       WRITE (6, 100)
10
       READ (5, 101, END = 999) LABEL, RC, GMRIC, GMD, AP
       DP = AP*2.
       RP = T*CR*5.28/(DP*1000)
       XP = T*CX*5.28/(DP*1000)
```

```
GMR = (GMRIC*GMD*GMD)**(1./3.)
        ZC = CMPLX (RC + RE, CONT*ALOGLO(DE/GMR))
        ZPMCP = CMPLX (3.*RP, 3.*XP)
        ZCP = CMPLX (RE, CONT*ALOGIO(DE/AP))
        ZP = ZCP + ZPMCP
        ZO = ZC - (ZCP*ZCP/ZP)
        Z1 = ZC
        WRITE (6, 102) LABEL, ZO, RC, CMRIC, RP, XP, AP
        WRITE (6, 103) ZL
        GO TO LO
999
        STOP
        FORMAT (151, 20X, "IMPEDANCE PROGRAM"//3X,
T00
                "LINE", 17X, "Z", 25X, "RC", 8X, "GMRIC", 5X, "RP", 8X, "XP", 8X, 16X, "REAL", 9X, "IMAGINARY"//)
                                                   "AP"/
       2
        FORMAT (A5, A4, 4F10.5)
LOL
102
        FORMAT (1X, A5, A4, 2EL5.5, 10X, 5F10.5)
        FORMAT (11X, 2E15.5//)
103
        END
     Z XQT
          PIAC
     CONTROL CARDS
     FOR, IS PIAC
C
       PROGRAM COMPUTES ZERO SEQUENCE IMPEDANCES OF
C
        ONE 3C PIAC CABLE SUSPENDED FROM A MESSENGER
C
       WITHOUT GROUND WIRES (ZO) OR WITH ONE GROUND
Ç
       WIRE AT TOP OF POLE SPACED 66 INCHES FROM
C
       MESSENGER (Z1) OR ONE 3C PIAC CABLE
C
       INSTALLED UNDERGROUND IN FIRER DUCT (Z2)
C
       PROGRAM ASSUMES THICKNESS OF ALUMINUM
C
       SHEATH TO BE EQUAL TO THICKNESS OF THE LEAD
C
       SHEATH OF ONE PIAC CABLE OF SAME VOLTAGE
C
       RATING AND CONDUCTOR SIZE
C
       PROGRAM ASSUMES MESSENGER AND GROUND
C
       WIRES TO BE OF SAME SIZE AND MATERIAL
       COMPLEX ZO, Z1, ZC
       COMPLEX ZS, ZM, ZW, ZCS, ZCM, ZCW, ZSM, ZSW
       COMPLEX Z2, ZCMCS, ZCMCM, ZCMCW, ZSMCS
       COMPLEX ZCMMSM, ZCWMSW, ZCSMSM, ZCSMSW
       COMPLEX ZWMCW, ZMMCM
       DIMENSION LABEL (2)
       DATA DE, RE/10560., .286/
       DATA CONI/.8382/
       WRITE (6, 100)
       READ (5, 101, END = 999) LABEL, RC, GMR, AW,
10
             OD, S, RW, RS, ASH
       GMRM = .779*AW
       GMRW = (.779*AW*66.)**(1./2.)
       DCM = ((OD - S * SQRT_{(3.)/3.})*(S*S/4. + (OD +
                S*SQRT(3.)/6.)**2.))**(1./3.)
```

```
DSM = (ASH*ASH + (ASH + OD/2.)**2.)**(1./2.)
 DCW = ((66. + OD - S*SQRT(3.)/3.)*(S*S/4. +
         (66. + OD + S*SQRT(3.)/6.)**2.)*
         (OD - S*SQRT(3.)/3.)*(S*S/4. +
3
         (OD + S*SQRT(3.)/6.)**2.))**(1./6.)
DSW = ((ASH*ASH + (ASH + 66. + OD)**2.)*
         (ASH*ASH + (ASH + OD)**2.))**(1./4.)
RSA = .12067*RS
 2C = CMPLX (RC + PE, CONT*ALOGLO(DE/GMR))
 ZS = CMPLX (3.*RSA + RE, CONT*ALOGIO(DE/ASH))
ZW = CMPLX (3.*RW + RE, CONI*ALOGIO(DE/GMRW))
ZM = CMPLX (3.*RW + RE, CONI*ALOGIO(DE/GMRM))
 ZCS = CMPLX (RE, CONI*ALOGIO(DE/ASH))
ZCM = CMPLX (RE, CONT*ALOGLO(DE/DCM))
ZCW = CMPLX (RE, CONT*ALOGLO(DE/DCW))
ZSM = CMPLX (RE, CONI*ALOGIO(DE/DSM))
ZSW = CMPLX (RE, CONI*ALOG10(DE/DSW))
ZSMCS = ZS - ZCS
ZCMCS = ZC - ZCS
ZCMCM = ZC - ZCM
ZCMCW = ZC - ZCW
ZCSMSM = ZCS - ZSM
ZCSMSW = ZCS - ZSW
ZCMMSM = ZCM - ZSM
ZCWMSW = ZCW - ZSW
ZWMCW = ZW - ZCW
ZMMCM = ZM - ZCM
Zl = ZS*(ZCMCS*ZWMCW + ZCMCW*ZCWMSW)
      + ZSW*(ZCMCW*ZSMCS + ZCMCS*ZCSMSW)
      + ZCS*(ZWMCW*ZSMCS - ZCSMSW*ZCWMSW)
Z1 = Z1/(ZS*(ZW - ZSW) + ZSW*(ZS - ZSW))
ZO = ZS*(ZCMCS*ZMMCM + ZCMCM*ZCMMSM)
      + ZSM*(ZCMCM*ZSMCS + ZCMCS*ZCSMSM)
      + ZCS*(ZMMCM*ZSMCS - ZCSMSM*ZCMMSM)
ZO = ZO/(ZS*(ZM - ZSM) + ZSM*(ZS - ZSM))
Z2 = ZC - (ZCS*ZCS/ZS)
WRITE (6, 102) LAFZL, ZO, RC, GMR, RS, RSA, RW, AW
WRITE (6, 103) ZI.
WRITE (6, 103) Z2
WRITE (6, 104)
GO TO 10
STOP
FORMAT (1H1, 20X, "IMPEDANCE PROGRAM"//3X,

"I.INE", 17X, "Z", 25X, "RC", 8X,

"GMR", 7X, "RS", 8X, "RSA", 7X, "RW",

8X, "AW"//16X, "REAL", 9X, "IMAGINARY"//)
```

999

100

```
FORMAT (2A5, 8F8.4)
 101
 102
        FORMAT (1X, 2A5, 2E15.5, 6F8.4)
        FORMAT (11X, 2E15.5)
 103
        FORMAT (7/)
 104
         END
      ≥ xqT
      D. XLPA:
     ≥ CONTROL CARDS
     FOR, IS XLPA
 C
        PROGRAM COMPUTES ZERO SEQUENCE IMPEDANCES OF
 C
        3 SINGLE CONDUCTOR CABLES SUSPENDED FROM A
 C
        MESSENGER WITH (ZO) OR WITHOUT (ZL) ONE GROUND WIRE
C
        SPACED 66 INCHES FROM MESSENGER
C
        PROCRAM ASSUMES CROUND AND MESSENGER
C
        WIRES TO BE EQUAL SIZE AND MATERIAL
C
        COMPLEX ZO, Z1, ZC
        COMPLEX ZM, ZW, ZCM, ZCW
        DIMENSION LABEL (2)
        DATA DE, RE/10560 , .286/
        DATA CONI/.8382/
        WRITE (6, 100)
10
        READ (5, 101, END = 999) LABEL, RC, GMRIC, S, RW,
               AW, OD
        GMR = (GMRIC*S*S)**(1./3.)
        GMRW = (.779*AW*66.)**(1./2.)
        DCM = 1.28*OD
        DCW = ((66. + OD - S*SQRT(3.)/3.)*(S*S/4. +
            (66. + OD + S*SQRT(3.)/6.)**2.))**(1./3.)
        DCW = (DCW*DCM)**(1./2.)
        ZC = CMPLX (RC + RE, CONI*ALOGLO(DE/GMR))
        ZM = CMPLX (3.*RW + RE, CONT*ALOG10(DE/(779*AW)))
        ZW = CMPLX (3.*RW + RE, CONT*ALOGLO(DE/CMRW))
ZCM = CMPLX (RE, CONT*ALOGLO(DE/DCM))
        ZCW = CMPLX (RE, CONT*ALOGIO(DE/DCW))
        ZO = ZC - (ZCW*ZCW/ZW)
        Zl = ZC - (ZCM*ZCM/ZM)
       WRITE (6, 102) LABEL, ZO, RC, GMRIC, S, OD, RW, AW
       WRITE (6, 103) ZL
       GO TO 10
       STOP
999
100
       FORMAT (1H1, 20X, "IMPEDANCE PROGRAM"//3X,
                "LINE", 17X, "Z", 25X, "RC", 8X,
"GMRIC", 5X, "S", 9X, "OD", 8X, "RW", 8X,
"AW"/16X, "REAL", 9X, "IMAGINARY"//)
      2
      3
```

```
FORMAT (2A5, 6F10.6)
101
       FORMAT (1X, 2A5, 2E15.5, 10X, 6F10.6)
102
       FORMAT (11X, 2E15.5//)
103
       END
    ≥ xor
     E. RHWA:
     CONTROL CARDS
     二 FOR, IS RHWA
       PROGRAM COMPUTES ZERO SEQUENCE IMPEDANCES OF
C
C
       3-1C-CABLES + 1-1C-NUMBERAL IN STEEL CONDUCT
C
       (ZO) OR IN FIBER DUCT (ZL)
       COMPLEX ZO, Z1, ZC
       COMPLEX ZN, ZP, ZCP, ZCN, ZNP, ZCMCP, ZCMCN
       COMPLEX ZPMCP, ZCPMNP, ZNMCN, ZCNMNP
       DIMENSION LABEL (2)
       DATA DE, RE/10560., .286/
       DATA CONI/.8382/
       DATA T, CR, CX/15.36, 29.9, 18.1/
       WRITE (6, 100)
10
       READ (5, 101, END = 999) LABEL, RC, RN, GMRIC,
             GMRN, S, AP
       DP = AP*2.
       RP = T*CR*5.28/(DP*1000)
       XP = T*CX*5.28/(DP*1000)
       GMR = (GMRIC*S*S)**(1./3.)
       ZC = CMPLX (RC + RE, CONI/*ALOGIC(DE/GWR))
       ZN = CMPLX (3.*RN + RE, CONI*ALOGIO(DE/CMRN))
       ZCN = CMPLX (RE, CONT*ALOGIO(DE/S;)
       ZCP = CMPLX (RE, CONI*ALOGIO(DE/AP))
       ZINIP = ZCP
       ZPMCP = (3.*RP, 3.*XP)
       ZP = ZCP + ZPMCP
       ZNMCN = ZN - ZCN
       ZCPMNP = ZCP - ZNP
      ZCNMNP = ZCN - ZNP
       ZCMCP = ZC - ZCP
      ZCMCN = ZC - ZCN
      ZO = ZN*(ZCMCN*ZPMCP + ZCMCP*ZCPMNP)
            + ZNP*(ZCMCP*ZNMCN + ZCMCN*ZCNMVP)
            + ZCN*(ZPMCP*ZNMCN - ZCNMNP*ZCPMNP)
      ZO = ZO/(ZN*(ZP - ZNP) + ZNP*(ZN - ZNP))
      Z1 = ZC - (ZCN*ZCN/ZN)
```

```
WRITE (6, 102) LABEL, ZO, RC, RN, GMRIC,

1 GMRN, S, AP

WRITE (6, 103) Zl

GO TO 10

999 STOP
100 FORMAT (1H1, 20X, "IMPEDANCE PROGRAM"//3X,

1 "LINE", 17X, "Z", 25X, "RC", 8X,

2 "RN", 8X, "GMRIC", 5X, "GMRN", 6X,

3 "S", 9X, "AP"/16X, "REAL", 9X, "IMAGINARY"//)

101 FORMAT (A4, A5, 6F10.5)
102 FORMAT (1X, A4, A5, 2E15.5, 6F10.5)
103 FORMAT (11X, 2E15.5//)
END

2 XQT
```

PARAMETER	COMPUTER PROGRAM	DETERMINATION
RC	PILC PIAC, BRNJ, XLPA, RHWA	Table of Cable Characteristics Resistance Formulas for Positive Sequence
R N	RHWA	Resistance Formulas for Positive Sequence
RS	PILC, PIAC	Table of Cable Characteristics
ASH AW GMR	PILC, PIAC PIAC, XLPA PILC, PIAC	Table of Cable Characteristics Table of Conductor Characteristics Table of Cable Characteristics
CMRIC CMRN OD	BRNJ, XLPA, RHWA RHWA PIAC, XLPA	Table of Conductor Characteristics Table of Conductor Characteristics Table of Cable Characteristics
CEMED	BRNJ	Reactance Parameters for Positive Sequence
s	PIAC, XLPA, RHWA	Equivalent to CMD as above
RW	PIAC, XLPA	Table of Conductor Characteristics and Resistance Formulas for Positive Sequence
References:	"Transmission and Distrib	ution Reference Book" by Westinghouse

Electric Company

"Underground Systems Reference Book" by Edison Electrical

Institute

"Electric Power Transmission" by Zaborsky and Rittenhouse "Calculation Data For Wire and Cable" by Anaconda Wire and Cable Company

"Wire and Cable Selection and Technical Data" by General

Electric Company
"Wire and Cable Data" by Rome Cable Company