

E22-900M22S 产品规格书

SX1262 868/915MHz SPI 贴片型 LoRa 模块

成都亿佰特电子科技有限公司 Chengdu Ebyte Electronic Technology Co...Ltd.

第一章 概述

1.1 简介

E22-900M22S 是基于美国 Semtech 生产的全新一代 LoRa™射频芯片 SX1262 为核心自主研发的超小体积并适用于 868/915MHz 贴片式 LoRa™无线 模块,使用工业级高精度 32MHz 晶振。

由于采用原装进口的 SX1262 为模块核心,与上一代 LoRa™收发器相比, 抗干扰性能与通信距离得到了进一步提升。由于其采用全新的 LoRa™调制技 术,在抗干扰性能、通信距离都远超现在的 FSK、GFSK 调制方式的产品。该 模块主要针对智能家庭、无线抄表、科研和医疗以及中远距离无线通信设备。 由于射频性能与元器件选型均按照工业级标准,并且该产品已获得FCC、CE、 RoHS 等国际权威认证报告,用户无需担忧其性能。该产品可覆盖 850~ 930MHz 超宽适用频率范围并向下兼容 SX1278、SX1276。

由于该模块是纯射频收发模块,需要使用 MCU 驱动或使用专用的 SPI 调试工具。

1.2 特点功能

- 与 SX1278 模块相比, SX1262 模块具有功耗更低、速度更快、距离更远的显著优势;
- 超小体积,仅14x20mm;
- 理想条件下,通信距离可达 7km;
- 最大发射功率 160mW, 软件多级可调;
- 支持全球免许可 ISM 868/915MHz 频段;
- LoRa[™]模式下支持 0.018k~62.5kbps 的数据传输速率;
- FSK 模式下支持最高 300kbps 的数据传输速率;
- 向下兼容 SX1278/SX1276 系列射频收发器;
- FIFO 容量大,支持 256Byte 数据缓存;
- 为支持密集网络推出的全新 SF5 扩频因子;
- 工业级标准设计,支持-40~+85℃下长时间使用;
- 双天线可选(IPEX/邮票孔),便于用户二次开发,利于集成;

1.3 应用场景

- 家庭安防报警及远程无钥匙进入;
- 智能家居以及工业传感器等;
- 无线报警安全系统;
- 楼宇自动化解决方案;
- 无线工业级遥控器;
- 医疗保健产品;
- 高级抄表架构(AMI);
- 汽车行业应用。

第二章 规格参数

2.1 极限参数

主要参数	性	能	备注	
土安少数	最小值	最大值	黄注	
电源电压 (V)	0	3. 7	超过 3.7V 永久烧毁模块	
阻塞功率(dBm)	-	10	近距离使用烧毁概率较小	
工作温度(℃)	-40	+85	工业级	

2.2 工作参数

主要参数		性能			备注	
	工女少奴	最小值 典型值 最大值		最大值	用打	
	工作电压 (V)	1.8	3. 3	3. 7	≥3.3V 可保证输出功率	
	通信电平 (V)		3. 3		使用 5V TTL 有风险烧毁	
	工作温度(℃)	-40	-	+85	工业级设计	
	工作频段 (MHz)	850	868/915	930	支持 ISM 频段	
T-4-	发射电流 (mA)		119		瞬时功耗	
功耗	接收电流(mA)		6.8			
杜	休眠电流(uA)		2		软件关断	
	最大发射功率 (dBm)	21.4	21.5	22.3		
	接收灵敏度 (dBm)	-144	-146	-147	空中速率为 0.3kbps	
	空中速率(bps)	0.6k	-	300k	用户编程控制	
	工中基準(ops)	0.018k		62.5k	用户编程控制	

主要参数	描述	备注
参考距离	7000m	晴朗空旷,天线增益 5dBi, 天线高度 2.5 米,空中速率 0.3kbps
FIFO	256Byte	单次发送最大长度
晶振频率	32MHz	
调制方式	LoRa(推荐)	
封装方式	贴片式	
接口方式	1.27mm	邮票孔
通信接口	SPI	0~10Mbps
外形尺寸	20*14mm	
天线接口	邮票孔/IPEX	等效阻抗约 50 Ω

第三章 机械尺寸与引脚定义

引脚序号	引脚名称	引脚方向	引脚用途
1	GND		地线,连接到电源参考地
2	GND		地线,连接到电源参考地
3	GND		地线,连接到电源参考地
4	GND		地线,连接到电源参考地
5	GND		地线,连接到电源参考地
6	RXEN	输入	射频开关接收控制脚,连接外部单片机 10, 高电平有效
7	TXEN	输入	射频开关发射控制脚,连接外部单片机 I0 或 DI02,高电平有效
8	DI02	输入/输出	可配置的通用 IO 口 (详见 SX1262 手册)
9	VCC		供电电源,范围 1.8~3.7V (建议外部增加陶瓷滤波电容)
10	GND		地线,连接到电源参考地
11	GND		地线,连接到电源参考地
12	GND		地线,连接到电源参考地
13	DIO1	输入/输出	可配置的通用 I0 口 (详见 SX1262 手册)
14	BUSY	输出	用于状态指示(详见 SX1262 手册)
15	NRST	输入	芯片复位触发输入脚,低电平有效
16	MISO	输出	SPI 数据输出引脚
17	MOSI	输入	SPI 数据输入引脚
18	SCK	输入	SPI 时钟输入引脚
19	NSS	输入	模块片选引脚,用于开始一个 SPI 通信
20	GND		地线,连接到电源参考地
21	ANT		天线接口,邮票孔(50Ω特性阻抗)
22	GND		地线,连接到电源参考地

第四章 基本操作

硬件设计 4. 1

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在 Top Layer, 在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地), 必须靠近模块数字部分并走线在 Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的, 会在不同程度影响模块的杂散 以及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许 可以做适当的隔离与屏蔽;
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的 强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 通信线若使用 5V 电平, 必须串联 1k-5.1k 电阻 (不推荐, 仍有损坏风险);
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议,例如: USB3.0;
- 天线安装结构对模块性能有较大影响,务必保证天线外露,最好垂直向上。当模块安装于机壳内部时,可使用优质的 天线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。
- 建议在外部 MCU 的 RXD/TXD 增加 200R 的保护电阻。

4. 2 软件编写

- 此模块为 SX1262, 其驱动方式完全等同于 SX1262, 用户可以完全按照 SX1262 芯片册进行操作;
- DIO1、DIO2 是一般通用 IO 口,可以配置成多种功能; 其中 DIO2 可以与 TXEN 连接,不与 MCU 的 IO 口连接,用于控制射 频开关发射,详见 SX1262 手册,若不使用可以悬空;
- 内部使用 DIO3 为 32MHz TCXO 晶振供电。

第五章 基本应用

5.1 基本电路

第六章 常见问题

6.1 传输距离不理想

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力, 故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值, 电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

6.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动;
- 请确保安装使用过程防静电操作, 高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

6.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- SPI 上时钟波形不标准, 检查 SPI 线上是否有干扰, SPI 总线走线不宜过长;
- 电源不理想也可能造成乱码, 务必保证电源的可靠性;
- 延长线、馈线品质差或太长,也会造成误码率偏高。

第七章 焊接作业指导

7.1 回流焊温度

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	锡膏	Sn63/Pb37	Sn96.5/Ag3/Cu0.5
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃
Preheat temperature max (Tsmax)	最大预热温度	150℃	200℃
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3℃/second max	3℃/second max
Liquidous Temperature (TL)	液相温度	183℃	217℃
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec
Peak temperature (Tp)	峰值温度	220−235℃	230−250℃
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6℃/second max	6℃/second max
Time 25℃ to peak temperature	25℃到峰值温度的时间	6 minutes max	8 minutes max

7.2 回流焊曲线图

第八章 相关型号

产品型号	芯片方案	载波频率	发射功率	测试距离	封装形式	产品尺寸	通信接口	
,		Hz	dBm	km		mm		
E22-400M22S	SX1268	433/470M	22	7	贴片	14*20	SPI	
<u>E22-900M22S</u>	SX1262	868/915M	22	7	贴片	14*20	SPI	
<u>E22-400M30S</u>	SX1268	433/470M	30	12	贴片	24*38.5	SPI	
<u>E22-900M30S</u>	SX1262	868/915M	30	12	贴片	24*38.5	SPI	
<u>E22-230T22S</u>	SX1262	230M	22	5	贴片	16*26	TTL	
<u>E22-400T22S</u>	SX1268	433/470M	22	5	贴片	16*26	TTL	
<u>E22-900T22S</u>	SX1262	868/915M	22	5	贴片	16*26	TTL	
<u>E22-230T30S</u>	SX1262	230M	30	10	贴片	25*40.5	TTL	
<u>E22-400T30S</u>	SX1268	433/470M	30	10	贴片	25*40.5	TTL	
E22-900T30S	SX1262	868/915M	30	10	贴片	25*40.5	TTL	

第九章 天线指南

9.1 天线推荐

天线是通信过程中重要角色,往往劣质的天线会对通信系统造成极大的影响,故我司推荐部分天线作为配套我司无线模 块且性能较为优秀且价格合理的天线。

本口刑中	产品型号 类型	频段	接口	增益	高度	馈线	功能特点
)加至于	大 生	Hz	K K	dBi	mm	cm	为此行為
TX868-JZ-5	胶棒天线	868M	SMA-J	2.0	52	ı	超短直式,全向天线
TX868-JK-20	胶棒天线	868M	SMA-J	3.0	210	ı	可弯折胶棒,全向天线
TX868-XPL-100	吸盘天线	868M	SMA-J	3. 5	290	100	小型吸盘天线,高性价比
TX915-JZ-5	胶棒天线	915M	SMA-J	2.0	52	ı	超短直式,全向天线
TX915-JK-11	胶棒天线	915M	SMA-J	2.5	110	ı	可弯折胶棒,全向天线
TX915-JK-20	胶棒天线	915M	SMA-J	3.0	210	-	可弯折胶棒,全向天线
TX915-XPL-100	吸盘天线	915M	SMA-J	3. 5	290	100	小型吸盘天线, 高性价比

第十章 批量包装方式

修订历史

版本	修订日期	修订说明	维护人
1.0	2018-9-25	手册拆分	huaa
1.1	2019-2-17	错误修正	Ray

关于我们

销售热线:4000-330-990公司电话:028-61399028技术支持:support@cdebyte.com官方网站:www.ebyte.com公司地址:四川省成都市高新西区西芯大道 4 号创新中心 B333-D347

