

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

A 759,444

Eng. Lib, • •

HANDBOOK OF MATHEMATICS FOR ENGINEERS

McGraw-Hill Book & Inc

PUBLISHERS OF BOOKS FOR

Coal Age • Electric Railway Journal
Electrical World • Engineering News-Record
American Machinist • The Contractor
Engineering & Mining Journal • Power
Metallurgical & Chemical Engineering
Electrical Merchandising

_

Handbook of Mathematics for Engineers

BY.

EDWARD V. HUNTINGTON, PH. D.

ASSOCIATE PROFESSOR OF MATHEMATICS, HARVARD UNIVERSITY

WITH TABLES OF WEIGHTS AND MEASURES BY

LOUIS A. FISCHER, B. S.

CHIEF OF DIVISION OF WEIGHTS AND MEASURES, U. S. BUREAU OF STANDARDS

REPRINT OF SECTIONS 1 AND 2 OF L. S. MARKS'S
"MECHANICAL ENGINEERS' HANDBOOK"

First Edition
Second Impression

McGRAW-HILL BOOK COMPANY, Inc. 239 WEST 39TH STREET. NEW YORK

LONDON: HILL PUBLISHING CO., LTD. 6 & 8 BOUVERIE ST., E.C. 1918

COPYRIGHT, 1918, BY THE McGraw Hill Book Company, Inc.

COPYRIGHT, 1916, BY EDWARD V. HUNTINGTON.

PREFACE

This Handbook of Mathematics is designed to contain, in compact form, accurate statements of those facts and formulas of pure mathematics which are most likely to be useful to the worker in applied mathematics.

It is not intended to take the place of the larger compendiums of pure mathematics on the one hand, or of the technical handbooks of engineering on the other hand; but in its own field it is thought to be more comprehensive than any other similar work in English.

Many topics of an elementary character are presented in a form which permits of immediate utilization even by readers who have had no previous acquaintance with the subject; for example, the practical use of logarithms and logarithmic cross-section paper, and the elementary parts of the modern method of nomography (alignment charts), can be learned from this book without the necessity of consulting separate treatises.

Other sections of the book to which special attention may be called are the chapter on the algebra of complex (or imaginary) quantities, the treatment of the catenary (with special tables), and the brief résumé of the theory of vector analysis.

The mathematical tables (including several which are not ordinarily found) are carried to four significant figures throughout, and no pains have been spared to make them as nearly self-explanatory as possible, even to the reader who makes only occasional use of such tables.

For the Tables of Weights and Measures, which add greatly to its usefulness, the book is indebted to Mr. Louis A. Fischer of the U. S. Bureau of Standards.

All the matter included in the present volume was originally prepared for the Mechanical Engineers' Handbook (Lionel S. Marks, Editor-in-Chief), and was first printed in 1916, as Sections 1 and 2 of that Handbook. The author desires to express his indebtedness to Professor Marks, not only for indispensable advice as to the choice of the topics which would be most useful to engineers, but also for great assistance in many details of the presentation.

All the misprints that have been detected have been corrected in the plates. Notification in regard to any further corrections, and any suggestions toward the improvement or possible enlargement of the book, will be cordially welcomed by the author or the publishers.

E. V. H.

Cambridge, Mass. April 29, 1918.

Harry Co. Co. Land Berlin, St. Co. Land Berlin, Land Street,

-

CONTENTS

·	reRe
Preface	v
SECTION 1. Mathematical Tables and Weights and Measures	1
(For detailed Table of Contents, see page 1.)	
Section 2. Mathematics:	
Arithmetic; Geometry and Mensuration; Algebra; Trigonometry Analytical Geometry; Differential and Integral Calculus; Graphica Representation of Functions; Vector Analysis	ĺ
(For detailed Table of Contents, see page 87.)	
Index	187

SECTION 1

MATHEMATICAL TABLES

AND

WEIGHTS AND MEASURES

BY

EDWARD V. HUNTINGTON, Ph. D., Associate Professor of Mathematics, Harvard University, Fellow Am. Acad. Arts and Sciences. LOUIS A. FISCHER, B. S., Chief of Division of Weights and Measures,

U. S. Bureau of Standards.

CONTENTS

MATHEMATICAL TABLES		WEIGHTS AND MEASURES	\$
BY E. V. HUNTINGTON	Page	BY LOUIS A. FISCHER	Page
Squares of Numbers	2	U. S. Customary Weights and	
Cubes of Numbers	8	Measures	70
Square Roots of Numbers	12	Metric Weights and Measures	71
Cube Roots of Numbers	16	Systems of Units	72
Three-halves Powers of Numbers	22	Conversion Tables:	
Reciprocals of Numbers	24	Lengths	74
Circles (Areas, Segments, etc.).	28	Areas	76
Spheres (Volumes, Segments, etc.)	36	Volumes and Capacities	76
Regular Polygons	39	Velocities	78
Binomial Coefficients	39	Masses (Weights)	78
Common Logarithms	40	Pressures	79
Degrees and Radians	44	Energy, Work, Heat	79
Trigonometric Functions	46	Power	81
Exponentials	57	Density	81
Typerbolic (Napierian) Logarithms.	58	Heat Transmission and Con-	
Hyperbolic Functions	60	duction	82
Multiples of 0.4343 and 2.3026	62	Values of Foreign Coins	82
Residuals and Probable Errors	63	Time	83
Compound Interest and Annuities.	64	Terrestrial Gravity	84
Decimal Equivalents	80	Specific Cravity and Density	84

SQUARES OF NUMBERS

N	0	1	2	8	4	5	6	7	8	9	Avg.
1.00	1.000	1.002	1.004	1.006	1.008	1.010	1.012	1.014	1.016	1.018	2
1	1.020	1.022	1.024	1.026	1.028	1.030	1.032	1.034	1.036	1.038	
2	1.040	1.042	1.044	1.047	1.049	1.051	1.053	1.055	1.057	1.059	
3	1.061	1.063	1.065	1.067	1.069	1.071	1.073	1.075	1.077	1.080	
4	1.082	1.084	1.086	1.068	1.090	1.092	1.094	1.096	1.098	1.100	
1.05	1.102	1.105	1.107	1.109	1.111	1.113	1.115	1.117	1.119	1.121	
6	1.124	1.126	1.128	1.130	1.132	1.134	1.136	1.138	1.141	1.143	
7	1.145	1.147	1.149	1.151	1.153	1.156	1.158	1.160	1.162	1.164	
8	1.166	1.169	1.171	1.173	1.175	1.177	1.179	1.182	1.184	1.186	
9	1.188	1.190	1.192	1.195	1.197	1.199	1.201	1.203	1.206	1.208	
1.10	1.210	1,212	1.214	1.217	1.219	1.221	1.223	1.225	1.228	1.230	
	1.232	1,234	1.237	1.239	1.241	1.243	1.245	1.248	1.250	1.252	
2	1.254	1,257	1.259	1.261	1.263	1.266	1.268	1.270	1.272	1.275	
3	1.277	1,279	1.281	1.284	1.286	1.288	1.209	1.293	1.295	1.297	
4	1.300	1,302	1.304	1.306	1.309	1.311	1.313	1.316	1.318	1.320	
1.15	1.322	1,325	1.327	1.329	1.332	1.334	1.336	1.339	1.341	1.343	
6	1.346	1,348	1.350	1.353	1.355	1.357	1.360	1.362	1.364	1.367	
7	1.369	1,371	1.374	1.376	1.378	1.381	1.383	1.385	1.388	1.390	
8	1.392	1,395	1.397	1.399	1.402	1.404	1.407	1.409	1.411	1.414	
9	1.416	1,418	1.421	1.423	1.426	1.428	1.430	1,433	1.435	1.438	
1.20	1.440	1.442	1.445	1.447	1.450	1.452	1.454	1.457	1.459	1.462	
	1.464	1.467	1.469	1.471	1.474	1.476	1.479	1.481	1.484	1.486	
2	1.488	1.491	1.493	1.496	1.498	1.501	1.503	1.506	1.508	1.510	
3	1.513	1.515	1.518	1.520	1.523	1.525	1.528	1.530	1.533	1.535	
4	1.538	1.540	1.543	1.545	1.548	1.550	1.553	1.555	1.558	1.560	
1.25	1.562	1,565	1.568	1.570	1.573	1.575	1.578	1.580	1.583	1.585	3
6	1.588	1,590	1.593	1.595	1.598	1.600	1.603	1.605	1.608	1.610	
7	1.613	1,615	1.618	1.621	1.623	1.626	1.628	1.631	1.633	1.636	
8	1.638	1,641	1.644	1.646	1.649	1.651	1.654	1.656	1.659	1.662	
9	1.664	1,667	1.669	1.672	1.674	1.677	1,680	1.682	1.685	1.687	
1.80	1.690	1.693	1.695	1.698	1.700	1.703	1.706	1.708	1.711	1.713	
1	1.716	1.719	1.721	1.724	1.727	1.729	1.732	1.734	1.737	1.740	
2	1.742	1.745	1.748	1.750	1.753	1.756	1.758	1.761	1.764	1.766	
3	1.769	1.772	1.774	1.777	1.780	1.782	1.785	1.788	1.790	1.793	
4	1.796	1.798	1.801	1.804	1.806	1.809	1.812	1.814	1.817	1.820	
1.35	1.822	1.825	1.828	1.831	1.833	1.836	1.839	1.841	1.844	1.847	
6.	1.850	1.852	1.855	1.858	1.860	1.863	1.866	1.869	1.871	1.874	
7	1.877	1.880	1.882	1.885	1.888	1.891	1.893	1.896	1.899	1.902	
8	1.904	1.907	1.910	1.913	1.915	1.918	1.921	1.924	1.927	1.929	
9	1.932	1.935	1.938	1.940	1.943	1.946	1.949	1.952	1.954	1.957	
1.40	1.960	1.963	1.966	1.968	1.971	1.974	1.977	1.980	1.982	1.985	
1	1.988	1.991	1.994	1.997	1.999	2.002 .	2.005	2.008	2.011	2.014	
2	2.016	2.019	2.022	2.025	2.028	2.031	2.033	2.036	2.039	2.042	
3	2.045	2.048	2.051	2.053	2.056	2.059	2.062	2.065	2.068	2.071	
4	2.074	2.076	2.079	2.082	2.085	2.088	2.091	2.094	2.097	2.100	
1.45	2.102	2.105	2.108	2.111	2.114	2.117	2.120	2.123	2.126	2.129	
6	2.132	2.135	2.137	2.140	2.143	2.146	2.149	2.152	2.155	2.158	
7	2.161	2.164	2.167	2.170	2.173	2.176	2.179	2.182	2.184	2.187	
8	2.190	2.193	2.196	2.199	2.202	2.205	2.208	2.211	2.214	2.217	
9	2.220	2.223	2.226	2.229	2.232	2.235	2.238	2.241	2.244	2.217	

Moving the decimal point ONE place in N requires moving it TWO places in body of table (see p. 6).

SQUARES (continued)

N	0	1	2	8	4	5	6	7	8	9	Avg.
L.50	2.250	2.253	2.256	2.259	2.262	2.265	2.268	2.271	2.274	2.277	3
1	2.280	2.283	2.286	2.289	2.292	2.295	2.298	2.301	2.304	2.307	ı
2 3	2.310 2.341	2.313 2.344	2.316 2.347	2.320 2.350	2.323 2.353	2.326 2.356	2.329 2.359	2.332 2.362	2.335 2.365	2.338 2.369	l
4	2.372	2.375	2.347 2.378	2.350 2.381	2.384 2.384	2.336 2.387	2.390	2.393	2.396	2.399	l
.55	2.402	2.406	2.409	2.412	2.415	2.418	2.421	2,424	2.427	2.430	l
6	2.434	2.437	2.440	2.443 2.474	2.446	2.449	2.452	2.455	2.459	2.462	İ
7 8	2.465 2.496	2.468	2.471 2.503	2.506	2.477 2.509	2.481 2.512	2.484 2.515	2.487 2.519	2.490 2.522	2.493	
9	2.528	2.500 2.531	2.534	2.538	2.541	2.544	2.547	2.550	2.554	2.525 2.557	
1.60	2.560 2.592	2.563 2.595	2.566	2.570	2.573	2.576	2.579	2.582	2.586	2.589	
ļ	2.592 2.624	2.595 2.628	2.599 2.631	2.602 2.634	2.605	2.608 2.641	2.611 2.644	2.615 2.647	2.618 2.650	2.621 2.654	
2	2.657	2.660	2.663	2.667	2.637 2.670	2.673	2.676	2.680	2.683	2.686	Ì
4	2.690	2.693	2.696	2.699	2.703	2.706	2.709	2.713	2.716	2.719	l
.65	2.722	2.726 2.759	2.729 2.762	2.732	2.736 2.769	2.739	2.742	2.746 2.779	2.749	2.752	l
7	2.756 2.789	2.759 2.792	2.762	2.766 2.799	2.769	2.772	2.776 2.809	2.779	2.782	2.786	İ
8	2.822	2.826	2.796 2.829	2.832	2.802 2.836	2.806 2.839	2.843	2.812 2.846	2.816 2.849	2.819 2.853	ı
9	2.856	2.859	2.863	2.866	2.870	2.873	2.876	2.880	2.883	2.887	l
.70	2.890	2.893	2.897	2.900	2.904	2.907	2.910	2.914	2.917	2.921	
ļ	2.924 2.958	2.928 2.962	2.931 2.965	2.934 2.969	2.938 2.972	2.941 2.976	2.945 2.979	2.948 2.983	2.952 2.986	2.955 2.989	1
2	2.993	2.996	3.000	3.003	3.007	3.010	3.014	3.017	3.021	3.024	ì
4	3.028	3.031	3.035	3.038	3.042	3.045	3.049	3.052	3.056	3.059	ı
.75	3.062	3.066	3.070	3.073	3.077	3.080	3.084	3.087	3.091	3.094	١.
6 7	3.098 3.133	3.101	3.105 3.140	3.108 3.144	3.112 3.147	3.115 3.151	3.119 3.154	3.122 3.158	3.126 3.161	3.129 3.165	l
á	3.168	3.136 3.172	3.176	3.179	3.183	3.186	3.190	3.193	3.197	3:201	ı
ğ	3.204	3.208	3.211	3.215	3.218	3.222	3.226	3.229	3.233	3.236	l
.80	3.240	3.244 3.280	3.247	3.251 3.287	3.254 3.291	3.258 3.294	3.262 3.298	3.265 3.301	3.269	3.272	l
ļ	3.276 3.312	3.280 3.316	3.283 3.320	3.287 3.323	3.291 3.327	3.294	3,298 3,334	3.301	3.305 3.342	3.309	
3	3,349	3.353	3.356	3.360	3.364	3.331 3.367	3,371	3.338 3.375	3.378	3.345 3.382	l
4	3.386	3.389	3.393	3.360 3.397	3.400	3.404	3,408	3.411	3.415	3.419	İ
.85	3.422	3.426	3.430.	3.434	3.437	3.441	3.445	3.448	3.452	3.456	İ
6 7	3.460 3.497	3.463 3.501	3.467 3.504	3.471 3.508	3.474 3.512	3.478 3.516	3.482 3.519	3.486 3.523	3.489 3.527	3.493 3.531	
8	3.534	3,538	3.542	3.546	3.549	3.553	3.557	3.561	3.565	3.568	ı
ğ	3.572	3.576	3.580	3.583	3.587	3.591	3.595	3.599	3.602	3.606	l
.90	3.610	3.614	3.618	3.621	3.625	3.629	3.633	3.637	3.640	3.644	l
2	3.648 3.686	3.652 3.690	3.656 3.694	3.660 3.698	3.663 3.702	3.667 3.706	3.671 3.709	3.675 3.713	3.679 3.717	3.683 3.721	l
3	3.725	3.729	3.733	3.736	3.740	3.744	3.748	3.752	3.756	3.760	1
4	3.764	3.729 3.767	3.771	3.736 3.775	3.740 3.779	3.744 3.783	3.748 3.787	3.752 3.791	3.795	3.799	١
.95	3.802	3.806	3.810	3.814	3.818	3.822	3.826	3.830	3.834	3.838	ı
6	3.842	3.846	3.849 3.889	3.853	3.857	3.861	3.865 3.905	3.869	3.873	3.877	ı
7	3.881 3.920	3.885 3.924	3.928	3.893 3.932	3.89 7 3.936	3.901 3.940	3.905 3.944	3.9 0 9 3.948	3.912 3.952	3.916 3.956	1
ő	3.960	3.964	3.968	3.972	3.976	3.980	3.984	3.988	3.992	3.996	I

 $\pi^2 = 9.86960$ $1/\pi^2 = 0.101321$ $\epsilon^2 = 7.38906$

SQUARES (continued)

N	0	1	2	8	4	5	6	7	8	•	A.F.
2.00	4.000	4.004	4.008	4.012	4.016	4.020	4.024	4.028	4.032	4.036	4
1	4.040	4.044	4.048	4.052	4.056 4.097	4.060	4.064	4.068	4.072	4.076	1
2	4.080	4.084	4.088	4.093	4.097	4.101	4.105	4.109	4.113	4.117	1
4	4.121	4.125 4.166	4.129 4.170	4.133	4.137 4.178	4.141 4.182	4.145 4.186	4.149 4.190	4.153 4.194	4.158 4.198	
•											l
2.05	4.202	4.207	4.211	4.215	4.219	4.223	4.227	4.231 4.272	4.235	4.239	l
6 7	4.244 4.285	4.248 4.289	4.252 4.293	4.256 4.297	4.260 4.301	4.264 4,306	4.268 4.310	4.2/2	4.277 4.318	4.281 4.322	
8	4.326	4.331	4.335	4.339	4.343	4.347	4.351	4.356	4.360	4.364	l
ğ	4.368	4.372	4.376	4.381	4.385	4.389	4.393	4.397	4.402	4.406	
2.10	4,410	4.414	4.418	4,423	4,427	4.431	4.435	4,439	4,444	4,448	
2.10	4.452	4.456	4.461	4.465	4.469	4.473	4.477	4.482	4 486	4.490	
2	4.494	4,499	4.503 4.545	4.507 4.550	4.511 4.554	4.516 4.558	4.520	4.524 4.567	4.528 4.571	4 533 4.575	
3	4.537	4.541	4.545	4.550	4.554	4.558	4.562	4.567	4.571	4.575	1
4	4.580	4.584	4.588	4.592	4.597	4.601	4.605	4.610	4.614	4.618	1
2.15	4.622	4.627	4.631	4.635	4.640	4.644	4.648	4.653	4.657	4.661	
6	4.666	4.670	4.674	4.679	4.683	4.687	4.692	4.696	4.700	4.705	l
7	4.709	4.713	4.718	4.722	4.726	4.731	4.735	4.739	4.744	4.748	l
8	4.752	4.757	4.761	4.765 4.809	4.770	4.774	4.779	4.783	4.787	4.792	i
y	4.796	4,800	4.805	4.009	4.814	4.818	4.822	4.827	4.831	4.836	١.
2.20	4.840	4.844	4.849	4.853	4.858	4.862	4.866	4.871	4.875	4.880	Į.
1	4.884	4.889	4.893	4.897	4.902	4.906	4.911	4.915	4.920	4.924	
2	4.928	4.933 4.977	4.937	4.942	4.946	4.951	4.955	4.960	4.964	4.968	
4	4.973 5.018	4.9// 5.022	4.982 5.027	4.986 5.031	4.991 5.036	4.995 5 .040	5.000 5.045	5.004 5.049	5.009 5.054	5.013 5.058	İ
•	5.010		3.027	3.031	5.050	J.040	J.04J			J. U J0	l
2.25	5.062	5.067	5.072	5.076	5.081	5.085	5.090	5.094	5.099	5.103	5
6	5.108	5.112	5.117 5.162	5.121	5.126	5.130	5.135 5.180	5.139	5.144	5.148	I
7 8	5.153 5.198	5.157 5.203	5.208	5.167 5.212	5.171 5.217	5.176 5.221	5.226	5.185	5.189 5.235	5.194 5.240	ı
ŝ	5.244	5.249	5.253	5.258	5.262	5.267	5.272	5.230 5.276	5.281	5.285	1
	l	r 207	£ 200	E 204	F 200	£ 212	E 210		£ 227		l
2.80	5.290 5.336	5.295 5.341	5.299 5.345	5.304 5.350	5.308 5.355	5.313 5.359	5.318 5.364	5.322 5.368	5.327 5.373	5.331 5.378	i
2	5.382	5.387	5.392	5.396	5.401	5.406	5.410	5.415	5.420	5.424	
3	5.429	5.434	5.438	5.443	5.448	5.452	5.457	5.462	5.466	5.471	
4	5.476	5.480	5.485	5.490	5.494	5.499	5.504	5.508	5.513	5.518	
2.35	5.522	5.527	5.532	5.537	5.541	5.546	5.551	5,555	5.560	5.565	
6	5.570	5.574	5.579	5.584	5.588	5.593	5.598	5.603	5.607	5.612	l
ž	5.617	5.622	5.626	5.631	5.636	5.641	5.645	5.650	5.655	5.660	l
8	5.664	5.669	5.674	5.679	5.683	5.688	5.693	5.698	5.655 5.703	5.707	1
9	5.712	5.717	5.722	5.726	5.731	5.736	5.741	5.746	5.750	5.755	ł
2.40	5.760	5.765	5.770	5.774	5.779	5.784	5.789	5.794	5.798	5.803	[
- 1	5.808	5.813	5.818	5.774 5.823	5.827	5.832	5.837	5.842	5.847	5.852	٠ ا
2	5.856	5.861	5.866	5.871	5.876	5.881	5.885	5.890	5.895	5.900	i
3	5.905	5.910	5.915	5.919	5.924	5.929	5.934	5.939	5.944	5.949	l
4	5.954	5.958	5.963	5.968	5.973	5.978	5.983	5.988	5.993	5.998	1
2.45	6.002	6.007	6.012	6.017	6.022	6.027	6.032	6.037	6.042	6.047	1
6	6.052	6.057 •		6.066	6.071	6.076	6.081	6.086	6.091	6.096	1
7	6.101	6.106	6.111	6.116	6.121	6.126 6.175	6.131	6.136	6.140	6.145	/
8	6.150	6.155	6.160	6.165	6.170	6.1/2	6.180	6.185	6.190	6.195	ı
ğ	6.200	6,205	6.210	6.215	6,220	6.225	6.230	6.235	6.240	6.245	ı.

Moving the decimal point ONE place in N requires moving it TWO places in body of table (see p. 6).

SQUARES (continued)

N	0	1	2	8	4,	5	6	. 4	8	9	Avg
.50	6.250	6.255	6.260	6.265	6.270	6.275	6.280	6.285	6.290	6.295	5
Ī	6.300	6.305 6.355	6.310	6.315	6.320	6.325 6.376	6.330	6.335	6.340	6.345	1
2	6.350	6.355	6.360	6.366	6.371	6.376	6.381	6.386	6.391	6.396	1
3	6.401 6.452	6.406 6.457	6.411 6.462	6.416 6.467	6.421 6.472	6.426 6.477	6.431 6.482	6.436 6.487	6.441 6.492	6.447 6.497	l
.55	6.502	6,508	6,513	6.518			6.533	6.538	6,543	6.548	
6	6.554	6.559	6.564	6.569	6.523 6.574	6.528 6.579	6.584	6.589	6.595	6.600	l.
7	6.605	6.610	6 615	6.620	6.625	6.631	6.636	6.641	6.646	6.651	ŀ
8	6.656	6.662	6.667	6.620 6.672	6.677	6.631 6.682	6.687	6.693	6.698	6.703	
9	6.708	6.713	6.718	6.724	6.729	6.734	6.739	6.744	6.750	6.755	ı
.60	6.760	6.765	6.770	6.776	6.781	6.786	6.791	6.796	6.802	6.807	ı
2	6.812 6.864	6.817 6.870	6.823 6.875	6.828 6.880	6.833 6.885	6.838 6.891	6,895	6.849 6.901	6.854 6 906	6.859	ł
3	6.917	6.922	6.927	6.933	6.938	6.943	6.843 6.896 6.948	6.954	6.959	6.964	ı
4	6.970	6.975	6.980	6.985	6.991	6,996	7.001	7.007	7.012	7.017	I
.65	7.022	7.028	7.033	7.038	7.044	7.049	7.054	7.060	7.065	7.070	1
6	7.076	7.081	7.086	7.092	7.097	7.102	7.108	7.113	7.118	7.124	ı
7	7.129	7.134	7.140 7.193	7.145	7.150	7.156 7.209	7.161	7.166	7.172	7.177	l
8	7.182 7.236	7.188 7.241	7.193 7.247	7.198 7.252	7.204 7.258	7.209 7.263	7.215 7.268	7.166 7.220 7.274	7.172 7.225 7.279	7.177 7.231 7.285	l
.70	7.290	7.295	7.301	7 306	7.312	7.317	7 322	7.328	7.333	7.339	ı
1	7.344	7.350	7.355	7.360	7.366	7.371	7.377	7.382	7.388	7.393	
2	7.398	7.350 7.404	7.355 7.409	7.415	7.420	7.371 7.426	7.431	7.382 7.437	7.442	7.447	ı
3	7.453	7.458	7.464	7.469 7.524	7.475	7.480	7.486	7.491	7.497	7.502	ı
4	7.508	7.513	7.519	7.524	7.530	7.535	7.541	7.546	7.552	7.557	ļ
.75	7.562	7.568	7.574	7.579	7.585	7.590	7.596	7.601	7.607	7.612	6
6 7	7.618 7.673	7.623 7.678	7.629 7.684	7.634 7.690	7.640 7.695	7.645	7.651 7.706	7.656 7.712	7.662	7.667 7.723	l
8	7.728	7.73 4	7.740	7.745	7.751	7.701 7.756	7.762	7.767	7.717 7.773	7.779	ı
ğ	7.784	7.790	7.795	7.801	7.806	7.812	7.818	7.823	7.829	7.834	l
.80	7.840	7.846	7.851 7.907	7.857	7.862	7.868	7.874	7.879	7.885	7.890	l
1	7.896 7.952	7.902 7.958	7.907	7.913 7.969	7.919 7.975	7.924 7.981	7.930 7.986	7.935 7.992	7.941 7.998	7.947	1
2	7.952	7.958	7.964	7.969	7.975	7.981	7.986	7.992	7.998	8.003	i
3	8.009 8.066	8.015 8.071	8.020 8.077	8.026 8.083	8.032 8.088	8.037 8.094	8.043 8.100	8.049 8.105	8.054 8.111	8.060 8.117	
	1										l
.85	8.122	8.128 8.185	8.134 8.191	8.140 8.197	8.145	8.151	8.157	8.162	8.168	8.174	ı
7	8.180 8.237	8.243	8.248	8 254	8.202 8.260	8.208 8.266	8.214	8.220 8.277	8.225 8.283	8.231 8.289	ı
8	8.294	8.300	8.306	8.254 8.312	8.31 7	8.323	8.271 8.329	8 335	8.341	8.346	ı
ğ	8.352	8.358	8.364	8.369	8.375	8.381	8.387	8.335 8.393	8.398	8.404	ı
.90	8.410	8.416	8.422	8.427	8.433	8.439	8.445	8.451	8.456	8.462	l
1	8.468 8.526	8.474 8.532	8.480	8.486	8.491	8.497	8.503 8.561	8.509	8.515	8.521	l
2	8.526	8.532	8.538	8.544	8.550	8.556	8.561	8.567	8.573	8.579	l
4	8.585 8.644	8.591 8.649	8.597 8.655	8.602 8.661	8.608 8.667	8.614 8.673	8.620 8.679	8.626 8.685	8.632 8.691	8.638 8.697	
95	8.702	8.708	8.714	8.720	8.726			8.744	8.750	8.756	
6	8.762	8.768	8.773	8.779	8.785	8.732 8.791	8.738 8.797	8.803	8.809	8.815	l
7	8.821	8.827	8.833	8.839	8.845	8.851	8.857	8.863	8,868	8.874	l
8	8.880	8.886	8.892	8.898	8.904	8.910	8.916	8.922	8.928	8.934	l
9	8.940	8.946	8.952	8.958	8.964	8.970	8.976	8.982	8.988	8.994	

 $[\]pi^2 = 9.86960$ $1/\pi^2 = 0.101321$ $e^2 = 7.38906$

SQUARES (continued)

N	0	1	2	8	4	. 5	6	7	8	9	Ayg.
3.00	9.000	9.006	9.012	9.018	9.024	9.030	9.036	9.042	9.048	9.054	6
1	9.060	9.066	9.072	9.078	9.084	9.090	9.036 9.096	9.102	9.108	9.114	•
2 3 4	9.120	9.126	9.132	9.139	9.145	9.151	9.157	9.163 9.223	9.169	9.175	1
3	9.181	9.187	9.193	9.199	9.205	9.211	9.217	9.223	9.229	9.236	1
4	9.242	9.248	9.254	9.260	9.266	9.272	9.278	9.284	9.290	9.296	1
3.05	9.302	9.309 9.370	9.315 9.376	9.321 9.382	9.327 9.388	9.333 9.394	9.339	9.345	9.351	9.357	l
6	9.364	9.370	9.376	9.382	9.388	9.394	9.400	9.406	9.413	9.419	1
7	9.425	9.431	9.437	9.443	9.449	9.456	9.462	9.468	9.474	9.480	1
8	9.486 9.548	9.493 9.554	9.499 9.560	9.505 9.567	9.511	9.517	9.523 9.585	9.530	9.536 9.598	9.542	ı
y	9.340	9.33 1	9.300	9.30/	9.573	9.579	9.565	9.591	9.590	9.604	
8.10	9.610	9.616	9.622	9.629	9.635	9.641	9.647	9.653 9.716	9.660	9.666	l
1	9.672	9.678	9.685 9.747	9.691 9.753	9.697	9.703 9.766	9.709 9.772	9.716	9.722	9.728	ı
2	9.734	9.741	9.747	9.753	9.759	9.766	9.772	9.778	9.784	9.791	l
2 3 4	9. 797 9. 860	9.803 9.866	9.809 9.872	9.816 9.878	9.822 9.885	9.828 9.891	9.834 9.897	9.841 9.904	9.847 9.910	9.853 9.916	l
7	9.000	7.000	9.072	9.070	9.003	7.071	7.077	9.904	9.910	9.910	1
8.15	9.922	9.929	9.935	9.941	9.948	9.954	9.960	9.967	9.973	9.979	1
6	9.986	9.992	9.998	10.005							8
8.1			10.25	10.40	10.50	10.54	9.99	10.05	10.11	10.18	(
2	10.24 10.89	10.30 10.96	10.37 11.02	10.43 11.09	10.50 11.16	10.56 11.22	10.63 11. 2 9	10.69 11.36	10.76	10.82 11.49	1 2
4	11.56	11.63	11.70	11.76	11.83	11.90	11.97	12.04	12.11	12.18	1 '
٦.	11.50	11.05		11.30			11.74			12.10	
3.5	12.25	12.32	12.39 13.10	12.46	12.53 13.25	12.60 13.32	12.67	12.74 13.47	12.82	12.89	
6	12.96	13.03	13.10	13.18	13.25	13.32	13.40	13.47	13.54	13.62	١.
Ž	13.69	13.76	13.84	13.91	13.99	14.06	14.14	14.21	14.29	14.36	1
8	14.44	14.52	14.59	14.67	14.75	14.82	14.90	14.98	15.05	15.13	
9	15.21	15.29	15.37	15.44	15.52	15.60	15.68	15.76	15.84	15.92	l
4.0	16.00	16.08	16.16	16.24	16.32	16.40	16.48 17.31 18.15	16.56 17.39	16.65	16.73	
1	16.81	16.89	16.97	17.06	17.14	17.22	17.31	17.39	17.47	17.56	ŀ
1 2 3	17.64	17.72	17.81	17.89 18.75	17.98 18.84	18.06	18.15	18.23 19.10	18.32	18.40	١.
4	18.49	18.58	18.66	18.75	18.84	18.92 19.80	19.01	19.10	19.18	19.27	9
•	19.36	19.45	19.54	19.62	19.71	19.80	19.89	19.98	20.07	20.16	
4.5	20.25	20.34	20.43	20.52	20.61 21.53	20.70	20.79 21.72	20.88 21.81	20.98	21.07 22.00	ĺ
6	21.16	21.25	21.34	21.44	21.53	21.62	21.72	21.81	21.90	22.00	١.
7	22.09	22.18	22.28	22.37	22.47	22.56	22.66	22.75	22.85	22.94	10
8	23.04	23.14	23.23	23.33	23.43	23.52 24.50	23.62	23.72	23.81	23.91	
9	24.01	24.11	24.21	24.30	24.40	24.50	24.60	24.70	24.80	24.90	
	'		9.8696	10 (-	/2)2 - 1	2.46740	1/-2 -	0 1012	21		
		7- =	0.0090	(T	/ 2) - 🛥 .	2.7U/7U	1/11-	0.10134	~1		

Explanation of Table of Squares (pp. 2-7).

This table gives the value of N^3 for values of N from 1 to 10, correct to four figures. (Interpolated values may be in error by 1 in the fourth figure).

To find the square of a number N outside the range from 1 to 10, note that

To find the square of a number N outside the range from 1 to 10, note that moving the decimal point one place in column N is equivalent to moving it two places in the body of the table. For example:

 $(3.217)^2 = 10.35$; $(0.03217)^2 = 0.001035$; $(3217)^2 = 10350000$ This table can also be used inversely, to give square roots.

SQUARES (continued)

T										Avg.
25.00	25.10	25.20	25.30	25.40	25.50	25.60	25.70	25.81	25.91	10
26.01	26.11	26.21 27.25	26.32 27.35	26.42	26.52	26.63	26.73 27.77	26.83	26.94	
27.04	27.14	27.25	27.35	27.46	27.56	27.67	27.77	27.88	27.98	١
	28.20	28.30	28.41	28.52			28.84	28.94		11
										ł
		30.47	30.58			30.91	31.02	31.14	31.25	1
	27.40	21.70	21./U			22.07	22.13	22.20 22.41	22.50 22.52	l
	33.76	33.87	33.99	34.11	34.22		34.46	34.57	34 69	12
34.81	34.93	35.05	35.16	35.28	35.40	35.52	35.64	35.76	35.88	"
36.00	36.12	36.24	36.36	36.48	36.60	36.72	36.84	36.97	37.09	l
	37.33	37.45	37.58	37.70	37.82	37.95	38.07	38.19	38.32	l
	38.56	38.69	38.81		39.06	39.19	39.31	39.44		۱.,
	39.82	39.94	40.07	40.20	40.32	40.45	40.58	40.70	40.83	13
40.96	41.09			41.4/						1
42.25	42.38	42.51	42.64	42.77	42.90	43.03	43.16	43.30	43.43	1
43.20			45.70	45.42	45.22	44.30 45.70	49.99 45.82	45.02	44.10	
46 24	46.38	46.51	46.65	46.70	46 92	47.06	47 20	47.77 47.33	47 47	14
47.61	47.75	47.89	48.02	48.16	48.30	48.44	48.58	48.72	48.86	· ·
49.00	49.14	49.28	49.42	49.56	49.70	49.84	49.98	50.13	50.27	
50.41	50.55	50.69	50.84	50.98	51.12	51.27	51.41	51.55	51.70	
	51.98	52.13	52.27	52.42	52.56	52.71	52.85	53.00	53.14	
53.29		53.58	53.73	53.88	54.02				54.61	15
54.76	54.91	55.06	55.20	55.35	55.50	55.65	55.80	55.95	56.10	
56.25	56.40	56.55	56.70	56.85	57.00	57.15	57.30	57.46	57.61	
57.76	57.91	58.06	58.22	58.37	58.52 40.04	28.68 40.22	28.83 40.27	28.98	59.14 40.48	
60.29	61.00	61 15	61 31			61.78	61 04		62.25	16
62.41	62.57	62.73	62.88	63.04	63.20	63.36	63.52	63.68	63.84	l '°
64.00	64.16	64.32	64.48	64.64	64.80	64.96	65.12	65.29	65.45	
65.61	65.77	65.93	66.10	66.26	66.42	66.59	66.75	66.91	67.08	
67.24	67.40	67.57	67./3	67.90	68.06	68.23	68.39	68.56	68.72	
68.89	69.06	69.22	69.39				70.06	70.22	70.39	17
	70.73		71.06	11.23	/1.40	/1.5/				
72.25	72.42	72.59	72.76	72.93	73.10	73.27	73.44	73.62	73.79	
73.96	74.13	74.30	74.48	74.65	74.82	75.00	75.17	75.34	75.52	
77.69		/0.0 1	70.21 77.07	70.39 78.15		78.50		77.09		18
79.21	79.39	79.5 7	79.74	79.92	80.10	80.28	80.46	80.64	80.82	١.,
81 00	81 18		81 54	81.72	81 90	82 NR	82 26	82 45	82 63	
82.81	82.99	83.17	83.36	83.54	83.72	83.91	84.09	84.27	84.46	
84.64	84.82	85.01	85.19	85.38	85.56	85.75	85.93	86.12	86.30	
86.49	86.68	86.86	87.05	87.24	87.42	87.61	87.80	87.98	88.17	19
88.36	88.55	88.74	88.92	89.11	89.30	89.49	89.68	89.87	90.06	
90.25	90.44	90.63	90.82	91.01	91.20	91.39	91.58	91.78	91.97	
92.16	92.35		92.74	92.93	93.12		93.51	93.70	93.90	l
			94.0/ 04.42		95.06 07.03	92.26 07.22	92. 1 2	93.05	92.84 07.81	20
98.01	96.24 98.21	98.41	98.60 98.60	98.80	97.02 99.00	97.22 99.20	97.42 99.40	99.60	99. 80	40
100.0	•									
	28.09 29.16 301.25 313.36 313.	28.09 28.20 29.27 29.27 29.27 30.25 30.36 31.47 32.49 32.60 33.64 33.76 34.81 34.93 36.00 36.12 37.21 37.33 38.44 38.44 38.45 40.96 41.09 42.25 42.38 47.61 47.75 49.00 49.14 50.41	28.09 28.20 28.30 29.16 29.27 29.38 29.16 29.27 29.38 30.25 30.36 30.47 31.36 31.47 31.58 32.49 32.60 32.72 33.64 33.76 33.87 34.81 34.93 35.05 36.00 36.12 36.24 37.21 37.33 37.45 38.44 38.56 38.69 39.69 39.82 39.94 40.96 41.09 41.22 42.25 42.38 42.51 43.56 43.69 43.82 44.89 45.02 45.16 47.61 47.75 47.89 49.00 49.14 49.28 46.24 46.38 46.51 47.61 47.75 47.89 49.00 49.14 50.55 50.41 50.55 50.41 50.55 50.41 50.55 50.41 50.56 50.41 50.56 50.41 60.61 60.64 61.00 61.15 60.24 60.84 61.00 61.15 62.27 62.73 64.00 64.16 64.32 64.00 64.16 64.32 65.61 65.77 65.93 67.24 67.40 67.57 68.89 69.06 69.22 72.95 73.96 74.13 74.30 74.26 75.69 75.86 76.04 77.69 77.86 76.04 77.60 77.37 70.90 72.25 72.42 72.59 73.96 74.13 74.30 77.97 79.21 79.39 79.57 81.00 81.18 81.36 82.81 82.99 83.17 84.64 84.82 85.01 86.49 86.68 86.87 90.25 90.44 90.63 92.16 92.35 92.54 90.09 94.28 94.48 96.04 96.24 96.04 96.24 96.04 96.24 96.04 96.24 96.43 98.01 98.21 98.41	28.09 28.20 28.30 28.41 29.16 29.27 29.38 29.48 29.16 30.36 30.47 30.58 31.36 31.47 31.58 31.70 32.49 32.60 32.72 32.83 33.64 33.76 33.87 33.97 34.81 34.93 35.05 35.16 36.00 36.12 36.24 36.36 37.21 37.33 37.45 37.58 38.44 38.56 38.69 38.81 39.69 39.82 39.94 40.07 40.96 41.09 41.22 41.34 42.25 42.38 42.51 42.64 43.56 43.69 43.82 43.96 44.89 45.02 45.16 45.29 44.89 45.02 45.16 45.29 46.24 46.38 46.51 46.65 47.61 47.75 47.89 48.02 49.00 49.14 49.28 49.42 50.41 50.55 50.69 50.84 50.41 50.55 50.69 50.84 51.84 51.98 52.13 52.27 53.29 53.44 53.58 53.73 54.76 57.91 58.06 55.20 56.25 56.40 56.55 56.70 57.76 57.91 58.06 55.20 57.76 57.91 58.06 55.20 58.29 59.44 59.60 59.75 46.00 64.16 64.32 64.48 65.61 65.77 65.93 66.10 67.24 67.40 67.57 67.73 68.89 69.06 69.22 69.39 67.24 67.40 67.57 67.73 68.89 69.06 69.22 69.39 77.56 77.73 77.90 71.06 72.25 72.42 72.59 72.76 73.96 74.13 74.30 74.48 75.69 77.56 77.79 77.97 79.21 79.39 79.57 79.74 81.00 81.18 81.38 81.54 82.81 82.99 83.17 83.36 82.61 82.99 83.17 83.36 82.61 82.99 33.17 83.36 83.64 84.82 85.01 85.19 86.49 86.68 86.86 87.05 88.36 88.35 88.74 88.92 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82 90.25 90.44 90.63 90.82	28.09 28.20 28.30 28.41 28.52 29.16 29.27 29.38 29.48 29.59 29.16 29.27 29.38 29.48 29.59 29.16 29.27 29.38 29.48 29.59 29.16 29.27 29.38 29.48 29.59 29.16 29.27 29.38 29.48 29.59 29.27 29.38 30.25 31.36 31.47 31.58 31.70 31.81 32.49 32.60 32.72 32.83 32.95 33.64 33.67 33.87 33.99 34.11 34.81 34.93 35.05 35.16 35.28 37.01 37.33 37.45 37.58 37.00 37.21 37.33 37.45 37.58 37.00 39.82 39.94 40.07 40.20 40.96 41.09 41.22 41.34 41.47 40.20 40.96 41.09 41.22 41.34 41.47 41.26 41.99 45.02 45.16 45.29 45.40 44.89 45.02 45.16 45.29 45.40 44.89 45.02 45.16 45.29 45.40 44.89 45.02 45.16 45.29 45.40 46.24 46.38 46.51 46.65 46.79 47.61 47.75 47.89 48.02 48.16 49.00 49.14 49.28 49.42 49.56 50.41 50.55 50.69 50.84 50.98 50.41 50.55 50.69 50.84 50.98 50.41 50.55 50.69 50.84 50.98 50.41 51.98 52.13 52.27 52.42 53.29 53.44 53.58 53.73 53.88 54.76 54.91 55.06 55.20 55.35 55.20 55.35 59.29 59.44 59.60 59.75 59.91 60.84 61.00 61.55 61.31 61.74 62.41 62.57 62.73 62.88 63.04 64.64 65.61 65.61 65.61 65.61 65.61 65.67 65.93 66.10 66.26 67.40 67.57 67.73 67.90 68.89 69.06 69.22 69.39 69.56 70.73 70.90 71.05 71.23 72.25 72.42 77.59 72.76 77.90 77.97 78.15 77.92 77.97 77.97 78.15 77.92 77.97 77.97 78.15 77.92 77.97 77.97 77.97 78.15 77.92 77.97 77.97 78.15 77.92 77.97 77.97 78.15 77.92 77.97 77.97 78.15 77.92 77.97 77.97 77.97 78.15 77.92 77.97	28.09 28.20 28.30 28.41 28.52 28.62 29.16 29.27 29.38 29.48 29.59 29.70 30.80 31.36 31.47 31.58 31.70 31.81 31.92 31.36 31.47 31.58 31.70 31.81 31.92 32.49 32.60 32.72 32.83 32.95 33.06 33.64 33.66 33.67 33.99 34.11 34.22 34.81 34.93 35.05 35.16 35.28 35.40 34.81 34.93 35.05 35.16 35.28 35.40 36.00 36.12 36.24 36.36 36.48 36.60 37.21 37.33 37.45 37.58 37.70 37.82 38.44 38.56 38.69 38.81 38.94 39.06 39.82 39.94 40.07 40.20 40.32 40.96 41.09 41.22 41.34 41.47 41.60 40.96 41.09 41.22 41.34 41.47 41.60 41.89 45.02 45.16 45.29 45.43 45.46 42.44 48.89 45.02 45.16 45.29 45.43 45.56 46.29 46.24 46.38 46.51 46.65 46.79 46.92 47.61 47.75 47.89 48.02 48.16 48.30 49.00 49.14 49.28 49.42 49.56 49.70 50.41 50.55 50.69 50.84 50.98 51.12 51.84 51.98 52.13 52.27 52.42 52.56 53.29 53.44 53.58 53.73 53.88 54.02 54.76 54.91 55.06 55.05 55.35 55.50 55.25 55.35 55.50 56.25 56.40 56.57 65.93 66.10 66.26 66.42 67.40 67.57 67.73 67.90 68.06 68.86 61.00 61.05	28.09 28.20 28.30 28.41 28.52 28.62 28.73 29.16 29.27 29.38 29.48 29.59 29.70 29.81 29.16 29.27 29.38 29.48 29.59 29.70 29.81 31.36 31.47 31.58 31.70 31.81 31.92 32.04 32.49 32.60 32.72 32.83 32.95 33.06 33.18 33.64 33.67 33.87 33.99 34.11 34.22 34.34 34.81 34.93 35.05 35.16 35.28 35.40 35.52 36.00 34.12 36.24 36.36 36.48 36.60 36.72 37.21 37.33 37.45 37.58 37.70 37.82 37.95 39.69 39.82 39.94 40.07 40.20 40.32 40.45 40.96 41.09 41.22 41.34 41.47 41.60 41.73 41.69 41.22 41.34 41.47 41.60 41.73 41.56 41.09 41.22 41.34 41.47 41.60 41.73 41.56 43.69 43.82 43.96 44.09 44.22 44.36 44.89 45.02 45.16 45.29 45.43 45.43 45.56 45.70 46.24 46.38 46.51 46.65 46.79 46.92 47.06 47.61 47.75 47.89 48.02 48.16 48.30 48.44 49.90 49.14 49.28 49.42 49.56 49.70 49.84 50.41 50.55 50.69 50.84 50.98 51.12 51.27 53.29 53.44 53.88 53.73 53.88 51.25 52.75 53.29 53.44 53.88 53.73 53.88 51.25 52.75 54.76 54.91 55.06 55.20 55.35 55.50 55.65 56.25 56.70 56.25 56.70 57.91 58.06 58.22 58.37 58.52 58.68 59.29 59.44 59.60 59.75 59.91 60.06 68.23 66.84 61.00 61.15 61.31 61.47 61.62 61.78 62.41 62.57 62.73 62.88 63.04 63.20 63.36 64.00 64.16 64.32 64.48 64.64 64.64 64.80 68.23 66.93 69.06 69.22 69.39 69.56 69.72 69.89 59.75 59.91 60.06 68.23 66.89 69.06 69.22 69.39 69.56 69.72 69.89 69.56 69.27 69.39 76.57 79.90 68.06 68.23 68.89 69.06 69.22 69.39 69.56 69.27 69.39 77.59 77.79 77.97	28.09	28.09 28.20 28.30 28.41 28.52 28.62 28.73 28.84 28.94 29.16 29.27 29.38 29.88 29.59 29.70 29.81 29.92 30.03 30.25 30.36 30.47 30.58 30.69 30.80 30.91 31.02 31.14 31.36 31.47 31.58 31.70 31.81 31.92 32.04 32.15 32.26 32.49 32.60 32.72 32.83 32.95 33.06 33.18 33.29 33.41 33.64 33.76 33.87 33.99 34.11 34.22 34.34 34.46 34.57 34.81 34.93 35.05 35.16 35.28 35.40 35.52 35.64 35.76 36.00 36.12 36.24 36.36 36.48 36.60 36.72 36.84 36.97 37.21 37.33 74.5 37.58 37.70 37.82 37.95 380.7 38.19 39.69 39.82 39.94 40.07 40.20 40.32 40.45 40.58 40.98 40.96 41.09 41.22 41.34 41.47 41.60 41.73 41.86 41.99 42.25 42.38 42.51 42.64 42.77 42.90 43.03 43.16 43.30 43.56 43.69 43.82 43.96 44.09 44.22 44.34 44.64 44.67 44.89 45.02 451.6 45.29 45.43 45.04 45.70 45.83 45.94 47.61 47.75 47.89 48.02 48.16 48.30 48.44 48.54 45.79 46.24 46.38 46.51 46.65 46.79 46.92 47.06 47.20 47.33 47.61 47.75 47.89 48.02 48.16 48.30 48.44 48.54 49.98 49.00 49.14 49.28 49.42 49.56 49.70 49.84 49.98 50.13 51.86 51.37 51.41 51.55 51.36 51.36 51.36 51.37 51.41 51.55 51.37 51.41 51.56 51.37 51.41 51.55 51.39 51.44 51.36 53.36 51.35 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.36 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.36 51.37 51.41 51.56 51.36 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.36 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.36 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 51.37 51.41 51.56 5	28.09 28.20 28.30 28.41 28.52 28.62 28.73 28.84 28.94 29.05 29.16 29.27 29.38 29.48 29.59 29.70 29.81 29.92 30.03 30.14 30.25 30.36 30.47 30.58 30.69 30.80 30.91 31.02 31.14 31.25 31.36 31.47 31.58 31.70 31.81 31.92 32.04 32.15 32.26 32.38 32.49 32.60 32.72 32.83 32.95 33.06 33.18 33.29 33.41 33.67 33.87 33.97 33.97 33.97 34.11 34.22 34.34 34.46 34.57 34.69 34.81 34.93 35.05 35.16 35.28 35.40 35.52 35.64 35.76 35.88 36.00 36.12 36.24 36.36 36.48 36.60 36.72 37.95 38.07 38.19 38.32 39.69 39.82 39.94 40.07 40.20 40.32 40.45 40.58 40.70 40.83 40.96 41.09 41.22 41.34 41.47 41.60 41.73 41.86 41.99 42.12 42.25 42.38 42.51 42.64 42.77 42.90 43.03 43.16 43.30 43.43 44.89 45.02 45.16 45.29 45.49 44.02 44.03 44.69 44.62 44.58 46.51 46.65 46.79 46.29 47.06 47.20 47.33 47.47 47.61 47.75 47.89 48.02 48.16 48.30 48.44 48.58 46.72 48.85 46.76 46.38 46.51 46.55 46.79 46.29 47.06 47.20 47.33 47.45 47.61 47.75 47.89 48.02 48.16 48.30 48.44 48.58 48.72 48.85 49.70 48.15 49.00 49.14 49.28 49.42 49.56 49.70 49.84 49.98 50.13 50.27 50.41 50.55 50.69 50.84 50.98 51.12 51.27 51.41 51.55 51.70 51.84 51.98 52.13 52.27 52.42 52.56 52.71 52.85 53.00 53.44 53.56 63.21 52.42 52.45 52.56 52.71 52.85 53.00 53.44 53.66 53.22 58.37 58.52 55.60 55.00 59.04 50.98 51.12 51.27 51.41 51.55 51.70 51.84 51.98 52.13 52.27 52.42 52.56 52.71 52.85 53.00 53.44 53.56 63.22 58.37 58.52 55.60 55.00 59.04 50.98 51.12 51.27 51.41 51.55 51.70 51.84 51.98 52.13 52.27 52.42 52.56 52.71 52.85 53.00 53.44 53.68 63.04 63.20 60.22 60.37 60.53 60.68 60.84 61.00 61.6 62.6 66.26 66.42 66.59 66.75 66.91 67.08 68.89 69.06 69.22 69.39 69.56 69.72 69.89 60.66 62.23 66.39 66.50 63.84 64.00 64.16 64.32 64.84 64.48 64.84 65.84 67.94 68.89 69.06 69.22 69.39 69.56 69.72 69.89 70.06 60.22 60.39 60.56 62.25 63.26 63.84 64.00 64.16 64.32 64.84 64.48 64.48 64.88 67.24 88.58 79.39 70.56 70.73 70.90 71.06 71.23 71.40 71.57 71.74 71.91 72.08 81.00 81.18 81.36 81.54 81.72 81.90 89.49 89.68 89.87 90.39 90.49 90.60 89.21 88.41 88.60 88.80 99.00 99.00 99.20 99.40 99.60 99.80

Moving the decimal point ONE place in N requires moving it TWO places in body of table (see p. 6).

CUBES OF NUMBERS

N	0	1	2	8	4	8	6	7	8	9	Avg.
1.00	1.000	1.003	1.006	1.009	1.012	1.015	1.018	1.021	1.024	1.027	3
1	1.030	1.033	1.036	1.040	1.043	1.046	1.049	1.052	1.055	1.058	
2	1.061	1.064	1.067	1.071	1.074	1.077	1.080	1.083	1.086	1.090	
3	1.093	1.096	1.099	1.102	1.106	1.109	1.112	1.115	1.118	1.122	
4	1.125	1.128	1.131	1.135	1.138	1.141	1.144	1.148	1.151	1.154	
1. 05	1.158	1.161	1.164	1.168	1.171	1.174	1.178	1.181	1.184	1.188	4
6	1.191	1.194	1.198	1.201	1.205	1.208	1.211	1.215	1.218	1.222	
7	1.225	1.228	1.232	1.235	1.239	1.242	1.246	1.249	1.253	1.256	
8	1.260	1.263	1.267	1.270	1.274	1.277	1.281	1.284	1.288	1.291	
9	1.295	1.299	1.302	1.306	1.309	1.313	1.317	1.320	1.324	1.327	
1.10	1.331	1.335	1.338	1.342	1.346	1.349	1,353	1.357	1.360	1.364	
1	1.368	1.371	1.375	1.379	1.382	1.386	1,390	1.394	1.397	1.401	
2	1.405	1.409	1.412	1.416	1.420	1.424	1,428	1.431	1.435	1.439	
3	1.443	1.447	1.451	1.454	1.458	1.462	1,466	1.470	1.474	1.478	
4	1.482	1.485	1.489	1.493	1.497	1.501	1,505	1.509	1.513	1.517	
1.15	1.521	1.525	1.529	1.533	1.537	1.541	1.545	1.549	1.553	1.557	
6	1.561	1.565	1.569	1.573	1.577	1.581	1.585	1.589	1.593	1.598	
7	1.602	1.606	1.610	1.614	1.618	1.622	1.626	1.631	1.635	1.639	
8	1.643	1.647	1.651	1.656	1.660	1.664	1.668	1.672	1.677	1.681	
9	1.685	1.689	1.694	1.698	1.702	1.706	1.711	1.715	1.719	1.724	
1.20	1.728	1.732	1.737	1.741	1.745	1.750	1.754	1.758	1.763	1.767	5
1	1.772	1.776	1.780	1.785	1.789	1.794	1.798	1.802	1.807	1.811	
2	1.816	1.820	1.825	1.829	1.834	1.838	1.843	1.847	1.852	1.856	
3	1.861	1.865	1.870	1.875	1.879	1.884	1.888	1.893	1.897	1.902	
4	1.907	1.911	1.916	1.920	1.925	1.930	1.934	1.939	1.944	1.948	
1.25	1.953	1.958	1.963	1.967	1.972	1.977	1.981	1.986	1.991	1.996	
6	2.000	2.005	2.010	2.015	2.019	2.024	2.029	2.034	2.039	2.044	
7	2.048	2.053	2.058	2.063	2.068	2.073	2.078	2.082	2.087	2.092	
8	2.097	2.102	2.107	2.112	2.117	2.122	2.127	2.132	2.137	2.142	
9	2.147	2.152	2.157	2.162	2.167	2.172	2.177	2.182	2.187	2.192	
1.80	2.197	2.202	2.207	2.212	2.217	2.222	2.228	2.233	2.238	2.243	
1	2.248	2.253	2.258	2.264	2.269	2.274	2.279	2.284	2.290	2.295	
2	2.300	2.305	2.310	2.316	2.321	2.326	2.331	2.337	2.342	2.347	
3	2.353	2.358	2.363	2.369	2:374	2.379	2.385	2.390	2.395	2.401	
4	2.406	2.411	2.417	2.422	2.428	2.433	2.439	2.444	2.449	2.455	
1.85	2.460	2.466	2.471	2.477	2.482	2.488	2.493	2.499	2.504	2.510	6
6	2.515	2.521	2.527	2.532	2.538	2.543	2.549	2.554	2.560	2.566	
7	2.571	2.577	2.583	2.588	2.594	2.600	2.605	2.611	2.617	2.622	
8	2.628	2.634	2.640	2.645	2.651	2.657	2.663	2.668	2.674	2.680	
9	2.686	2.691	2.697	2.703	2.709	2.715	2.721	2.726	2.732	2.738	
1.40	2.744	2.750	2.756	2.762	2.768	2.774	2.779	2.785	2.791	2.797	
1	2.803	2.809	2.815	2.821	2.827	2.833	2.839	2.845	2.851	2.857	
2	2.863	2.869	2.875	2.881	2.888	2.894	2.900	2.906	2.912	2.918	
3	2.924	2.930	2.936	2.943	2.949	2.955	2.961	2.967	2.974	2.980	
4	2.986	2.992	2.998	3.005	3.011	3.017	3.023	3.030	3.036	3.042	
1.45	3.049	3.055	3.061	3.068	3.074	3.080	3.087	3.093	3.099	3.106	7
6	3.112	3.119	3.125	3.131	3.138	3.144	3.151	3.157	3.164	3.170	
7	3.177	3.183	3.190	3.196	3.203	3.209	3.216	3.222	3.229	3.235	
8	3.242	3.248	3.255	3.262	3.268	3.275	3.281	3.288	3.295	3.301	
9	3.308	3.315	3.321	3.328	3.335	3.341	3.348	3.355	3.362	3.368	

Moving the decimal point ONE place in N requires moving it THREE places in body of table (see p. 10).

CUBES (continued)

N	0	1	2	8	4	5	6	7	8	9	Avg.
1.50	3.375	3,382	3.389	3.395	3,402	3,409	3,416	3.422	3,429	3.436	,
- 1	3.443	3.450	3.457	3.464	3.470	3.477	3,484	3.491	3.498	3.505	
2	3.512	3.519	3.526	3.533	3.540	3.547	3.554	3.561	3.568 3.638	3.575	1
3	3.582 3.652	3.589 3.659	3.596 3.667	3.603 3.674	3.610 3.681	3.617 3.688	3.624 3.695	3.631 3.702	3.638 3.709	3.645 3.717	ı
	3.032	5.057	5.00/	3.0/4	2.001		3.093				ł
1.55	3.724	3.731	3.738	3.746	3.753	3.760	3.767	3.775	3.782	3.789	1
6	3.796	3.804	3.811	3.818	3.826	3.833	3.840	3.848	3.855	3.863	1
7	3.870 3.944	3.877 3.952	3.885 3.959	3.892 3.967	3.900 3.974	3.907 3.982	3.914 3.989	3.922 3.997	3.929 4.005	3.937 4.012	8
ğ	4.020	4.027	4.035	4.042	4.050	4.058	4.065	4.073	4.081	4.088	ľ
1.60	4.096	4.104	4.111	4.119	4.127	4.135	4.142	4.150	4.158	4.166	
1.00	4.173	4.181	4.189	4.197	4.204	4.212	4.220	4.228	4.236	4.244	ı
2	4.252	4.259	4.267	4.275	4.283	4.291	4.299	4.307	4.315	4.323	ı
	4.331	4.339	4.347 4.427	4.355	4.363	4.371	4.379	4.387	4.395	4.403	ı
4	4.411	4.419	4.427	4.435	4.443	4.451	4.460	4.468	4.476	4.484	1
1.65	4.492	4.500	4.508	4.517	4.525	4.533	4.541	4.550	4.558	4.566	l
6	4.574	4.583	4.591 4.674	4.599	4.607	4.616	4.624	4.632	4.641	4.649	ı
7 8	4.657	4.666 4.750	4.674 4.759	4.683	4.691	4.699 4.784	4.708 4.793	4.716 4.801	4.725 4.810	4.733 4.818	
9	4.742 4.827	4.835	4.844	4.767 4.853	4.776 4.861	4.870	4.878	4.887	4.896	4.904	و ا
•											ľ
1.70	4.913	4.922	4.930	4.939	4.948	4.956	4.965	4.974	4.983	4.991	ı
ļ	5.000	5.009	5.018	5.027	5.035	5.044	5.053	5.062	5.071	5.080	ı
2 3	5.088 5.178	5.097 5.187	5.106 5.196	5.115 5.205	5.124 5.214	5.133 · 5.223	5.142 5.232	5.151 5.241	5.160 5.250	5.169 5.259	1
4	5.268	5.277	5.286	5.295	5.304	5.314	5.323	5.332	5.341	5.350	1
1.75	5.359	5.369	5.378	5.387	5.396	5.405	5,415	5.424	5.433	5.442	
- 6	5.452	5.461	5.470	5.480	5.489	5.498	5.508	5.517	5.526	5.536	1
7	5.545	5.555	5.564	5.573	5.583	5.592	5.602	5.611	5.621	5.630	10
8	5.640	5.649	5.659	5.668	5.678	5.687	5.697	5.707	5,716	5.726	1
9	5.735	5.745	5.7 55	5.764	5.774	5.784	5.7 93	5.803	5.813	5.822	ı
1.80	5.832	5.842	5.851	5.861	5.871	5.881	5.891	5.900	5.910	5.920	1
Ĭ	5.930	5.940	5.949	5.959 6.058	5.969 6.068	5.979 6.078	5.989 6.088	5.999 6.098	6.009	6.019	1
2	6.029 6.128	6.039 6.139	6.048 6.149	6.159	6.169	6.179	6.189	6.199	6.108 6.209	6.118 6.219	ı
4	6.230	6.240	6.250	6.260	6.270	6.280	6.291	6.301	6.311	6.321	1
1.85	6.332	6.342	6.352	6.362	6.373	6.383	6,393	6.404	6,414	6.424	1
1.80	6.435	6.445	6.456	6.466	6.476	6.487	6,497	6.508	6.518	6.529	1
ž	6.539	6.550	6.560	6.571	6.581	6.592	6.602	6.613	6.623	6.634	111
8	6.645	6.655	6.666	6.677	6.687	6.698	6.708	6.719	6.730	6.741	1
9	6.751	6.762	6.773	6.783	6.794	6.805	6.816	6.827	6.837	6.848	
1.90	6.859	6.870	6.881	6.892	6.902	6.913	6.924	6.935	6.946	6.957	l
1	6.968	6.979	6.990	7.001	7.012	7.023	7.034	7.045	7.056	7.067	ı
2	7.078	7.089	7.100	7.111	7.122 7.234	7.133	7.144	7.156	7.167	7.178	ı
3	7.189 7.301	7.200 7.313	7.211 7.324	7.223 7.335	7.234 7.347	7.245 7.358	7.256 7.369	7.268 7.381	7.279 7.392	7.290 7.403	I
•	Ì										١.,
1.95	7.415 7.530	7.426 7.541	7.438 7.553	7.449 7.564	7.461 7.576	7.472 7.587	7.484 7.599	7.495 7.610	7.507 7.622	7.518 7.634	12
7	7.645	7.657	7.669	7.680	7.692	7.704	7.715	7.727	7.739	7.05 4 7.751	
8	7.762	7.774	7.786	7.798	7.810	7.821	7.833	7.845	7.857	7.869	1
ğ	7.881	7.892	7.904	7.916	7.928	7.940	7.952	7.964	7.976	7.988	1

 $[\]pi^3 = 31.0063$ $1/\pi^3 = 0.0322515 +$

CUBES (continued)

N	U	1	2	8	4	5	6	7	8	9	Avg. diff.
2.00	8.000	8.012	8.024	8.036	8.048	8.060	8.072	8.084	8.096	8.108	12
1	8.121	8.133	8.145	8.157	8.169	8.181	8.194	8.206	8.218	8.230	ı
2	8.242 8.365	8.255 8.378	8.267 8.390	8.279 8.403	8.291 8.415	8.304 8.427	8.316 8.440	8.328 8.452	8.341 8.465	8.353 8.477	1
4	8.490	8.502	8.515	8.527	8.540	8.552	8.565	8.577	8.590	8.603	į
2.05	8.615	8.628	8.640	8.653	8.666	8.678	8.691	8.704	8.716	8.729 8.857	13
6	8.742 8.870	8.755 8.883	8.767 8.895	8.780 8.908	8.793 8.921	8.806 8.934	8.818 8.947	8.831 8.960	8.844 8.973	8.986	
8	8,999	9.012	9.025	9.038	9.051	9.064	9.077	9.090	9.103	9.116	i
ğ	9.129	9.142	9.156	9.169	9.182	9.195	9.208	9.221	9.235	9.248	l
2.10	9.261	9.274	9.287	9.301	9.314	9.327	9.341	9.354	9.367	9.381	İ
į	9.394 9.528	9.407 9.542	9.421 9.555	9.434 9.569	9.447 9.582	9.461 9.596	9.474 9.609	9.488 9.623	9.501 9.636	9.515 9.650	14
2	9.520	9.677	9.691	9.704	9.718	9.732	9.745	9.759	9.773	9.787	'7
4	9.800	9.814	9.828	9.842	9.855	9.869	9.883	9.897	9.911	9.925	1
2.15	9.938	9.952	9.966	9.980	9.994	10.008					14
2.1						9.94	10.08	10.22	10.36	10.50	14
2	10.65 12.17	10.79 12.33	10.94 12.49	11.09 12.65	11.24 12.81	11.39	11.54 13.14	11.70 13.31	11.85 13.48	12.01 13.65	15
2.1 2 3 4	13.82	14.00	14.17	14.35	14.53	12.98 14.71	14.89	15.07	15.25	15.44	18
2.5	15.62	15.81	16.00	16.19	16.39	16.58	16.78	16.97	17.17	17.37	20 21
6	17.58	17.78	17.98 20.12	18.19	18.40	18.61	18.82 21.02	19.03	19.25	19.47	21
7	19.68	19.90	20.12	20.35 22.67	20.57	20.80	21.02	21.25	21.48	21.72	23 24
6 7 8 9	21.95 24.39	22.19 24.64	22.43 24.90	25.15	22.91 25.41	23.15 25.67	23.39 25.93	23.64 26.20	23.89 26.46	24.14 26.73	26
3.0	27.00	27.27	27.54	27.82	28.09	28,37	28.65	28.93	29.22	29.50	28
1	29.79 32.77	30.08	30.37	30.66 33.70	30.96	31.26	31.55	31.86	32.16	32.46	30 32
2	32.77	33.08	33.39	33.70	34.01	34.33	34.65	34.97	35.29	35.61	32
2 3 4	35.94 39.30	36.26 39.65	36.59 40.00	36.93 40.35	37.26 40.71	37.60 41.06	37.93 41.42	38.27 41.78	38.61 42.14	38.96 42.51	34 36
3.5	42.88	43.24	43.61	43.99	44.36	44.74	45.12	45.50	45.88	46.27	39
- 6	46.66	43.24 47.05	47.44	47.83	48.23	4 8.63	49.03	49.43	49.84	50.24	40 42
6 7 8	50.65	51.06	51.48	51.90	52.31	52.73	53.16	53.58	54.01	54.44	42
8	54.87	55.31	55.74	56.18	56.62	57.07	57.51	57.96	58.41	58.86	44
9	59.32	59.78	60.24	60.70	61.16	61.63	62.10	62.57	63.04	63.52	47
4.0	64.00	64.48	64.96	65.45	65.94	66.43	66.92	67.42	67.92	68.42	49
1	68.92	69.43	69.93	70.44	70.96	71.47	71.99	72.51	73.03	73.56	52
2	74.09 79.51	74.62 80.06	75.15 80.62	75.69 81.18	76.23 81.75	76.77 82.31	77.31 82.88	77.85 83.45	78.40 84.03	78.95 84.60	54 58
3	85.18	85.77	86.35	86.94	87.53	88.12	88.72	89.31	89.92	90.52	59
4.5	91.12	91.73	92.35	92,96	93.58	94.20	94.82	95.44	96.07	96.70	62
6	97.34	97.97	98.61	99.25	99.90	100.54					64
6 7		104 5	105.0	105.0	10/ 5	100.5	101.2	101.8	102.5	103.2	7
8	103.8 110.6	104.5 111.3	105.2 112.0	105.8 112.7	106.5 113.4	107.2 114.1	107.9 114.8	108.5 115.5	109.2 116.2	109.9 116.9	7
ŝ	117.6	118.4	119.1	119.8	120.6	121.3	122.0	122.8	123.5	124.3	1 5
											Ľ

Explanation of Table of Cubes (pp. 8-11).

This table gives the value of N^3 for values of N from 1 to 10, correct to four figures. (Interpolated values may be in error by 1 in the fourth figure.)

To find the cube of a number N outside the range from 1 to 10, note that

moving the decimal point one place in column N is equivalent to moving it three places in the body of the table. For example: $(4.852)^2 = 114.2$; $(0.4852)^2 = 0.1142$; $(485.2)^2 = 114200000$ This table may also be used inversely, to give cube roots.

CUBES	(continued)

N	0	1	2	8	4	5	6	7	8	9	Avg.
5.0	125.0	125.8	126.5	127.3	128.0	128.8	129.6	130.3	131.1	131.9	8
1	132.7	133.4	134.2	135.0	135.8	136.6	137.4	138.2	139.0	139.8	1
2	140.6 148.9	141.4 149.7	142.2 150.6	143.1 151.4	143.9 152.3	144.7 153.1	145.5 154.0	146.4	147.2 155.7	148.0 156.6	۱,
4	157.5	158.3	150.6 159.2	160.1	161.0	161.9	162.8	154.9 163.7	164.6	165.5	1 '
5.5	166.4	167.3	168.2	169.1	170.0	171.0	171.9	172.8	173.7	174.7	١
6	175.6 185.2	176.6 186.2	177.5 187.1	178.5 188.1	179.4	180.4	181.3 191.1	182.3	183.3	184.2 194.1	10
7 8	195.1	196.1	197.1	198.2	189.1 199.2	190.1 200.2	201.2	192.1 202.3	193.1 203.3	204.3	
ğ	205.4	206.4	207.5	208.5	209.6	210.6	211.7	212.8	213.8	214.9	
6.0	216.0	217.1	218.2	219.3	220.3	221.4	222.5	223.6	224.8	225.9	11
1 2	227.0 238.3	228.1 239.5	229.2 240.6	230.3 241.8	231.5 243.0	232.6 244.1	233.7 245.3	234.9 246.5	236.0 247.7	237.2 248.9	12
3	250.0 250.0	251.2	252.4	253.6	254.8	256.0	257.3	240.5 258.5	259.7	260.9	'4
4	262.1	263.4	264.6	265.8	267.1	268.3	269.6	258.5 270.8	272.1	273.4	l
6.5	274.6	275.9 288.8	277.2 290.1	278.4	279.7	281.0	282.3	283.6 296.7	284.9	286.2	13
6	287.5 300.8	288.8 302.1	290.1	291.4	292.8	294.1	295.4	296.7	298.1	299.4	۱.,
7 8	314.4	315.8	303.5 317.2	304.8 318.6	306.2 320.0	307.5 321.4	308.9 322.8	310.3 324.2	311.7 325.7	313.0 327.1	14
ğ	328.5	329.9	331.4	332.8	334.3	335.7	337.2	338.6	340.1	341.5	ı
7.0	343.0	344.5	345.9	347.4	348.9	350.4	351.9	353.4	354.9	356.4	15
į	357.9	359.4	360.9	362.5 377.9	364.0	365.5	367.1 382.7	368.6	370.1 385.8	371.7	16
2	373.2 389.0	374.8 390.6	376.4 392.2	393.8	379.5 395.4	381.1 397.1	398.7	384.2 400.3	303.8 401.9	387.4 403.6	10
4	405.2	406.9	408.5	410.2	411.8	413.5	415.2	416.8	418.5	420.2	17
7.5	421.9	423.6	425.3	427.0	428.7	430.4	432.1	433.8	435.5	437.2	١
6	439.0	440.7 458.3	442.5 460.1	444.2	445.9 463.7	447.7 465.5	449.5 467.3	451.2 469.1	453.0 470.9	454.8 472.7	18
8	456.5 474.6	476.4	478.2	461.9 480.0	481.9	483.7	485.6	487.4	489.3	491.2	i
ğ	474.6 493.0	494.9	496.8	498.7	500.6	502.5	504.4	506.3	508.2	510.1	19
8.0	512.0	513.9	515.8	517.8	519.7	521.7	523.6	525.6	527.5	529.5	
1	531.4	533.4	535.4 555.4	537.4	539.4	541.3	543.3	545.3 565.6	547.3	549.4	20
2	551.4 571.8	553.4 573.9	-575.9	557.4 578.0	559.5 580.1	561.5 582.2	563.6 584.3	586.4	567.7 588.5	569.7 590.6	21
4	592.7	594.8	596.9	599.1	601.2	603.4	605.5	607.6	609.8	612.0	~'
8.5	614.1	616.3	618.5	620.7	622.8	625.0	627.2	629.4	631.6	633.8	22
6	636.1 658.5	638.3 660.8	640.5	642.7 665.3	645.0	647.2 669.9	649.5	651.7	654.0	656.2 679.2	
6 7 8	681.5	683.8	663.1 686.1	688.5	667.6 690.8	693.2	672.2 695.5	674.5 697.9	676.8 700.2	702.6	23 24
ğ	705.0	707.3	709.7	712.1	714.5	716.9	719.3	721.7	724.2	726.6	~
9.0	729.0	731.4	733.9	736.3	738.8	741.2	743.7	746.1	748.6	751.1	25
- 1	753.6	756.1	758.6 783.8	761.0	763.6	766.1	768.6	771.1	773.6	776.2	٠ ا
2	778.7 804.4	781.2 807.0	783.8 809.6	786.3 812.2	788.9 814.8	791.5 817.4	794.0 820.0	796.6 822.7	799.2 825.3	801.8 827.9	26
4	830.6	833.2	835.9	838.6	841.2	843.9	846.6	849.3	852. 0	854.7	27
9.5	857.4	860.1	862.8	865.5	868.3	871.0	873.7	876.5	879.2	882.0	l
6	884.7	887.5	890.3	893.1	895.8	898.6	901.4	904.2	907.0	909.9	28
7 8	912.7 941.2	915.5 944.1	918.3 947.0	921.2 949.9	924.0 952.8	926.9 955. 7	929.7	932.6	935.4	938.3	1
9	970.3	9 73 .1	976.2	9 7 9.9	982.1	985.1	958.6 988.0	961.5 991.0	964.4 994.0	967.4 99 7.0	29
10.0	1000.0										
- 1				31.006		$1/\pi^3 = 0.03$					

 $\tau^3 = 31.0063 \qquad 1/\tau^3 = 0.0322515 + \\ \hline \text{Moving the decimal point ONE place in N requires moving it THREE places in body of table (see p. 10).}$

SQUARE ROOTS OF NUMBERS

7	•	1	2	8	4	5 .	6	7	8	• `	
.0	1.000 1.049	1.005 1.054	1.010 1.058	1.015 1.063	1.020 1.068	1.025 1.072	1.030 1.077	1.034 1.082	1.039 1.086	1.044	Ī
3 4	1.095 1.140 1.183	1.100 1.145 1.187	1.105 1.149 1.192	1.109 1.153 1.196	1.114 1.158 1.200	1.118 1.162 1.204	1.122 1.166 1.208	1.127 1.170 1.212	1.131 1.175 1.217	1.136 1.179 1.221	l
.5 6 7	1.225 1.265	1.229 1.269	1.233 1.273	1.23 7 1.277	1.241 1.281	1.245 1.285	1.249 1.288	1.253 1.292	1.257 1.296	1.261 1.300	l
8 9	1.304 1.342 1.378	1.308 1.345 1.382	1.311 1.349 1.386	1.315 1.353 1.389	1.319 1.356 1.393	1.323 1.360 1.396	1.327 1.364 1.400	1.330 1.367 1.404	1.334 1.371 1.407	1,338 1,375 1,411	l
٥	1.414	1.418	1.421	1.425	1.428 1.463	1.432 1.466	1.435	1.439	1.442	1.446	l
2 3	1.483 1.517	1.487 1.520	1.490 1.523	1.493 1.526	1.497 1.530	1.500 1.533	1,503 1,536	1 507	1.510 1.543	1.513 1.546	l
4	1.549	1.552	1.556	1.559	1.562	1.565	1.568	1.539	1.575	1.578	l
5 6 7	1.581 1.612	1.584 1.616	1.587 1.619	1.591 1.622 1.652	1.594 1.625	1.597 1.628	1.600 1.631	(1.603) 1.634	1.6 0 6 1.63 7	1.609 1.640	l
8 I	1.643 1.673	1.646 1.676	1.649 1.679	1.682	1.655 1.685	1.658 1.688	1.661 1.691	1.664 1.694	1.667 1.697	1.670 1.700	l
9	1.703	1.706	1.709	1.712	1.715	1.718	1.720	1.723	1.726	1.729	l
0	1.732 1.761	1.735 1.764 1.792	1.738 1.766 1.794	1.741 1.769 1.797	1.744 1.772	1.746 1.775	1.749 1.778 1.806	1.752 1.780	1.755 1.783	1.758 1.786	١
234	1.789 1.817 1.844	1.819 1.847	1.822 1.849	1.825 1.852	1.800 1.828 1.855	1.803 1.830 1.857	1.833 1.860	1.780 1.808 1.836 1.863	1.811 1.838 1.865	1.814 1.841 1.868	l
5	1.871	1.873	1.876	1.879	1.881	1.884	1.887	1.889	1.892	1.895	l
	1.897	1.900 1.926 1.952	1.903 1.929	1.905 1.931	1.908 1.934	1.910 1.936	1.913	1.916 1.942	1.918	1.921	ı
6 7 8	1.949	1.952	1.954	1.957	1.960	1.962	1.965	1.967	1.970	1.947 1.972	l
9	1.975	1.977	1.980	1.982	1.985	1.987	1.990	1.992	1.995	1.997	l
<u>ا</u> ب	2.000 2.025	2.002 2.027	2.005 2.030	2.007 2.032	2.010 2.035	2.012 2.037	2.015 2.040	2.017 2.042	2.020 2.045	2.022 2.047	١
2 3 4	2.049	2.052	2.054	2.057	2.059	2.062	2.064	2.066	2.069	2.071	ı
3	2.074	2.076	2.078	2.081 2.105	2.083	2.086	2.088	2.090	2.093	2.095	l
1	2.098	2.100	2.102		2.107	2.110	2.112	2.114	2.117	2.119	l
5	2.121 2.145	2.124 2.147	2.126	2.128 2.152	2.131 2.154	2.133 2.156	2.135 2.159	2.138 2.161	2.140 2.163	2.142 2.166	ı
9	2144	2.170	2.149 2.173	2175	2.177	2.179	2.182	2.184	2.186	2.189	l
8	2191-	2.193	2.195	2.198 2.220	2.200	2.202	2.205	2.207	2.209	2.211	l
9	2.214	2.216	2.218	2.220	2.223	2.225	2.227	2.229	2.232	2.234	ı

Explanation of Table of Square Roots (pp. 12-15).

This table gives the values of \sqrt{N} for values of N from 1 to 100, correct to four figures. (Interpolated values may be in error by 1 in the fourth figure.)

To find the square root of a number N outside the range from 1 to 100, divide the digits of the number into blocks of two (beginning with the decimal point), and note that moving the decimal point two places in N is equivalent to moving it one place in the square root of N. For example:

$$\sqrt{2.718}$$
 = 1.648; $\sqrt{271.8}$ = 16.48; $\sqrt{0.0002718}$ = 0.01648; $\sqrt{27.18}$ = 5.213; $\sqrt{2718}$ = 52.13; $\sqrt{0.002718}$ = 0.05213.

MATHEMATICAL TABLES

SQUARE ROOTS (continued)

N	0	1	2	8	4	5	6	7	8	9	Avg.
5.0	2.236	2.238	2.241	2.243	2.245	2.247	2.249	2.252	2.254	2.256	2
1	2.258	2.261	2.263	2.265	2.267	2.269	2.272	2.274	2.276	2.278	
2	2.280	2.283	2.285	2.287	2.289	2.291	2.293	2.296	2.298	2.300	
3	2.302	2.304	2.307	2.309	2.311	2.313	2.315	2.317	2.319	2.322	
4	2.324	2.326	2.328	2.330	2.332	2.335	2.337	2.339	2.341	2.343	
5.5	2.345	2.347	2.349	2.352	2.354	2.356	2.358	2.360	2.362	2.364	
6	2.366	2.369	2.371	2.373	2.375	2.377	2.379	2.381	2.383	2.385	
7	2.387	2.390	2.392	2.394	2.396	2.398	2.400	2.402	2.404	2.406	
8	2.408	2.410	2.412	2.415	2.417	2.419	2.421	2.423	2.425	2.427	
9	2.429	2.431	2.433	2.435	2.437	2.439	2.441	2.443	2.445	2.447	
6.0	2.449	2.452	2.454	2.456	2.458	2.460	2.462	2.464	2.466	2.468	
1	2.470	2.472	2.474	2.476	2.478	2.480	2.482	2.484	2.486	2.488	
2	2.490	2.492	2.494	2.496	2.498	2.500	2.502	2.504	2.506	2.508	
3	2.510	2.512	2.514	2.516	2.518	2.520	2.522	2.524	2.526	2.528	
4	2.530	2.532	2.534	2.536	2.538	2.540	2.542	2.544	2.546	2.548	
6.5	2.550	2.551	2.553	2.555	2.557	2.559	2.561	2.563	2.565	2.567	
6	2.569	2.571	2.573	2.575	2.577	2.579	2.581	2.583	2.585	2.587	
7	2.588	2.590	2.592	2.594	2.596	2.598	2.600	2.602	2.604	2.606	
8	2.608	2.610	2.612	2.613	2.615	2.617	2.619	2.621	2.623	2.625	
9	2.627	2.629	2.631	2.632	2.634	2.636	2.638	2.640	2.642	2.644	
7.0	2.646	2.648	2.650	2.651	2.653	2.655	2.657	2.659	2.661	2.663	
1	2.665	2.666	2.668	2.670	2.672	2.674	2.676	2.678	2.680	2.681	
2	2.683	2.685	2.687	2.689	2.691	2.693	2.694	2.696	2.698	2.700	
3	2.702	2.704	2.706	2.707	2.709	2.711	2.713	2.715	2.717	2.718	
4	2.720	2.722	2.724	2.726	2.728	2.729	2.731	2.733	2.735	2.737	
7.5	2.739	2.740	2.742	2.744	2.746	2.748	2.750	2.751	2.753	2.755	
6	2.757	2.759	2.760	2.762	2.764	2.766	2.768	2.769	2.771	2.773	
7	2.775	2.777	2.778	2.780	2.782	2.784	2.786	2.787	2.789	2.791	
8	2.793	2.795	2.796	2.798	2.800	2.802	2.804	2.805	2.807	2.809	
9	2.811	2.812	2.814	2.816	2.818	2.820	2.821	2.823	2.825	2.827	
8.0	2.828	2.830	2.832	2.834	2.835	2.837	2.839	2.841	2.843	2.844	
1	2.846	2.848	2.850	2.851	2.853	2.855	2.857	2.858	2.860	2.862	
2	2.864	2.865	2.867	2.869	2.871	2.872	2.874	2.876	2.877	2.879	
3	2.881	2.883	2.884	2.886	2.888	2.890	2.891	2.893	2.895	2.897	
4	2.898	2.900	2.902	2.903	2.905	2.907	2.909	2.910	2.912	2.914	
8.5	2.915	2.917	2.919	2.921	2.922	2.924	2.926	2.927	2.929	2.931	
6	2.933	2.934	2.936	2.938	2.939	2.941	2.943	2.944	2.946	2.948	
7	2.950	2.951	2.953	2.955	2.956	2.958	2.960	2.961	2.963	2.965	
8	2.966	2.968	2.970	2.972	2.973	2.975	2.977	2.978	2.980	2.982	
9	2.983	2.985	2.987	2.988	2.990	2.992	2.993	2.995	2.997	2.998	
9.0	3.000	3.002	3.003	3.005	3.007	3.008	3.010	3.012	3.013	3.015	
1	3.017	3.018	3.020	3.022	3.023	3.025	3.027	3.028	3.030	3.032	
2	3.033	3.035	3.036	3.038	3.040	3.041	3.043	3.045	3.046	3.048	
3	3.050	3.051	3.053	3.055	3.056	3.058	3.059	3.061	3.063	3.064	
4	3.066	3.068	3.069	3.071	3.072	3.074	3.076	3.077	3.079	3.081	
9.5	3.082	3.084	3.085	3.087	3.089	3.090	3.092	3.094	3.095	3.097	
6	3.098	3.100	3.102	3.103	3.105	3.106	3.108	3.110	3.111	3.113	
7	3.114	3.116	3.118	3.119	3.121	3.122	3.124	3.126	3.127	3.129	
8	3.130	3.132	3.134	3.135	3.137	3.138	3.140	3.142	3.143	3.145	
9	3.146	3.148	3.150	3.151	3.153	3.154	3.156	3.158	3.159	3.161	

Moving the decimal point TWO places in N requires moving it ONE place in body of table (see p. 12).

SQUARE ROOTS (continued)

N	0	1	2	8	4	5	6	7	8	9	Avg
10.	3,162	3,178	3,194	3.209	3.225	3.240	3,256	3.271	3.286	3,302	16
	3.317	3.332	3.347	3.362	3.376	3.391	3.406	3.421	3,435	3.450	l iš
1. 2. 3. 4.	3.464	3,479	3.493	3.507	3.521	3.536	3.550	3,564	3.578	3.592	1 14
3.	3.606	3,619	3.633	3.647	3.661	3.674	3.688	3.701	3.715	3.728	
4.	3.742	3.755	3.768	3.782	3.795	3.808	3.821	3.834	3.847	3.860	13
15.	3.873	3.886	3.899	3.912	3.924	3.937	3.950	3.962	3.975	3.987	1
6.	4.000	4.012	4.025	4.037	4.050	4.062	4.074	4.087	4.099	4.111	12
6. 7.	4.123	4.135	4.147	4.159	4.171	4.183	4.195	4.207	4.219	4.231	
8. 9.	4.243	4.254	4.266	4.278	4.290	4.301	4.313	4.324	4.336	4.347	١
9.	4.359	4.370	4.382	4.393	4.405	4.416	4.427	4.438	4.450	4.461	11,
20.	4.472	4.483	4.494	4.506	4.517	4.528	4.539	4.550	4.561	4.572	ł
1.	4.583	4.593	4.604	4.615	4.626	4.637	4.648	4.658	4.669	4.680	1
2. 3.	4.690	4.701	4.712	4.722	4.733	4.743	4.754	4.764	4.775 4.879	4.785	١
3.	4.796	4.806	4.817	4.827	4.837	4.848	4.858	4.868	4.879	4.889	10
4.	4.899	4.909	4.919	4.930	4.940	4.950	4.960	4.970	4.980	4.990	١.
25.	5.000	5.010	5.020	5.030	5.040	5.050	5.060	5.070	5.079	5.089	l
6	5.099	5.1 0 9	5.119	5.128	5.138	5.148	5.158	5.167	5.177	5.187	•
7.	5.196	5.206	5.215	5.225	5.235	5.244	5.254	5.263	5.273	5.282	١.
8. 9.	5.292	5.301	5.310	5.320	5.329	5.339	5.348	5.357	5.367	5.376	9
9.	5.385	5.394	5.404	5.413	5.422	5.431	5.441	5.450	5.459	5.468	•
30.	5.477	5.486	5.495	5.505 5.595	5.514	5.523	5.532	5.541	5.550	5.559	ĺ
Į.	5.568	5.577	5.586	5.595	5.604	5.612	5.621	5.630	5.639	5.648	1
2. 3.	5.657	5.666	5.675	5.683	5.692	5.701	5.710	5.718	5.727	5.736	ı
3.	5.745	5.753	5.762	5.771	5.779	5.788	5.797	5.805	5.814	5.822	١.
4.	5.831	5.840	5.848	5.857	5.865	5.874	5.882	5.891	5.899	5.908	8
85.	5.916	5.925	5.933	5.941	5,950	5.958	5.967	5.975	5.983	5.992	l
6.	6.000	6.008	6.017	6.025	6.033	6.042	6.050	6.058	6.066	6.075	ı
7.	6.083	6.091	6.099	6.107	6.116	6.124	6.132	6.140	6.148	6.156	Į.
8. 9.	6.164	6.173	6.181	6.189	6.197	6.205	6.213	6.221	6.229	6.237	ı
9.	6.245	6.253	6.261	6.269	6.277	6.285	6.293	6.301	6.309	6.317	1
4 0.	6.325	6.332	6.340	6.348	6.356	6.364	6.372	6.380	6.387	6.395	ı
Į.	6.403	6.411	6.419	6.427	6.434	6.442	6.450	6.458	6.465	6.473	ı
2. 3.	6.481	6.488	6.496	6.504	6.512	6.519	6.527	6.535	6.542	6.550	l
3.	6.557	6.565	6.573	6.580	6.588	6.595	6.603	6.611	6.618	6.626	1
4.	6.633	6.641	6.648	6.656	6.663	6.671	6.678	6.686	6.693	6.701	l
45.	6.708	6.716	6.723	6.731	6.738	6.745	6.753	6.760	6.768	6.775	7
6.	6.782	6.790	6.797	6.804	6.812	6.819	6 .826	6.834	6.841	6.848	ľ
7.	6.856	6.863	6.870	6.877	6.885	6.892	6.899	6.907	6.914	6.921	ı
8. 9.	6.928	6.935	6.943	6.950	6.957	6.964	6.971	6.979	6.986	6.993	l
9.	7.000	7.007	7.014	7.021	7.029	7.036	7.043	7.050	7.057	7.064	

SQUARE ROOTS OF CERTAIN FRACTIONS

N	\sqrt{N}	N	\sqrt{N}	N	\sqrt{N}	N	Ä	N	\sqrt{N}	N	\sqrt{N}
14 14 14 14 14 14 16	0.7071 0.5774 0.8165 0.5000 0.8660 0.4472 0.6325	% % % % % % %	0.7746 0.8944 0.4082 0.9129 0.3780 0.5345 0.6547	\$4 \$4 \$4 \$6 \$6 \$6 \$6 \$6	0.7559 0.8452 0.9258 0.3536 0.6124 0.7906 0.9354	36 36 36 36 36 36 312	0.3333 0.4714 0.6667 0.7454 0.8819 0.9428 0.2887	5/12 7/12 1/12 1/16 5/16 7/16	0.6455 0.7638 0.9574 0.2500 0.4330 0.5590 0.6614	9/16 13/16 13/16 15/16 15/16 15/2 164 150	0.7500 0.8292 0.9014 0.9682 0.1768 0.1250 0.1414

SQUARE ROOTS (continued)

N	0	1	2	8	4	5	6	7	8	9	Avg.
50.	7.071	7.078	7.085	7.092	7.099	7.106	7.113	7.120	7.127	7.134	7
Ĭ.	7.141	7.148	7.155	7.162	7.169	7.176	7.183	7.190	7.197	7.204	1
ž	7.211	7.218	7.155 7.225	7.232	7.239	7.246	7.253	7.259	7.266	7.273	i
. 2.	7.280	7.287	7.294	7.301	7.308	7.314	7.321	7.259 7.328	7.335	7.342	ļ
4.	7.348	7.355	7.362	7.369	7.376	7.382	7.389	7.396	7.403	7.409	•
55.	7.416	7.423	7.430 7.497	7.436 7.503 7.570	7.443	7.450	7.457	7.463 7.530	7.470	7.477	
6.	7.483	7.490	7.497	7.503	7.510	7.517	7.523	7.530	7.537	7.543	ł
7.	7.550	7.556	7.563	7.570	7.576	7.583	7.589	7.596	7.603	7.609	1
8. 9.	7.616 7.681	7.622 7.688	7.629 7.694	7.635 7.701	7.642 7.70 7	7.649 7.714	7.655 7.720	7.662 7.727	7.668 7.733	7.675 7.740	6
60.	7.746	7.752	7.759	7.765	7.772	7.778	7.785	7.791	7.797	7.804	l
ου.	7.810	7.817	7.823	7.829	7.836	7.776 7.842	7.849	7.855	7.861	7.868	ı
1. 2. 3.	7.874	7.880	7.887	7.893	7.899	7.906	7.912	7.918	7.925	7.931	1
3	7.937	7.944	7.950	7.956	7.962	7.969	7.975	7.981	7.987	7.994	1
4.	8.000	8.006	8.012	8.019	8.025	8.031	8.037	8.044	8.050	8.056	ļ
65.	8.062	8.068	8.075	8.081	8.087	8.093	8.099	8.106	8.112	8.118	1
6.	8.124	8.130	8.136	8.142	8.149	8.155	8.161	8.167	8.173	8.179	
7. 8.	8.185	8.191	8.198	8.204	8.210 8.270	8 216	8.222 8.283	8.228 8.289	8.234 8.295	8.240	1
8.	8.246	8.252	8.258	8.264	8.270	8.276	8.283	8.289	8.295	8.301	ł
9.	8.307	8.313	8.319	8.325	8.331	8.337	8.343	8.349	8.355	8.361	1
70.	8.367	8.373	8.379	8.385	8.390	8.396	8.402	8.408	8.414	8.420	1
Į.	8.426	8.432	8.438	8.444	8.450	8.456	8.462	8.468 8.526	8.473	8.479 8.538	
1. 2. 3.	8.485 8.544	8.491 8.550	8.497 8.556	8.503 8.562	8.509 8.567	8.515 8.573	8.521 8.579	8.585	8.532 8.591	8.597	ı
4.	8.602	8.608	8.614	8.620	8.626	8.631	8.637	8.643	8.649	8.654	l
75.	8 660	8.666	8.672	8.678 8.735 8.792	8.683	8.689	8.695	8.701	8.706	8 712	l
6.	8.660 8.718	8.724	8.729	8.735	8.741	8.746	8.752	8.758	8.764	8.712 8.769	ı
7.	8.775	8.781	8.786	8.792	8.741 8.798	8.803	8.809	8.815	8.820	8.826	1
8.	8.832	8.837	8.843	8.849	8.854	8.860	8.866	8.871	8.877	8.883	•
9.	8.888	8.894	8.899	8.905	8.911	8.916	8.922	8.927	8.933	8.939	
80.	8.944	8.950 9.006	8.955	8.961	8.967	8.972	8.978	8.983	8.989	8.994	l
1.	9.000	9.006	9.011	9.017	9.022	9.028	9.033	9.039	9.044	9.050	l .
2. 3.	9.055	9.061	9.066	9.072	9. 077 9.13 2	9.083	9.088	9.094	9.099	9.105	5
3. 4.	9.110 9.165	9.116 9.171	9.121 9.176	9.127 9.182	9.132	9.138 9.192	9.143 9.198	9.149 9.203	9.154 9.209	9.160 9.214	l
85.	9.220	9.225	9.230	9.236	9.241	9.247	9.252	9.257	9.263	9.268	I
6	9.274	9.279	9.284	9.290	9.295	9.301	9.306	9.311	9.317	9.322	ı
7	9.327	9.333	9.338	9.343	9.349	0.254	9.359	9.365	9.370	9.375	l
6. 7. 8.	9.381	9.386	9.391	9.397	9.402	9.407	9.413	9.418	9.423	9.429	1
9.	9.434	9.439	9.445	9.450	9.455	9.460	9.466	9.471	9.476	9.482	Į
90.	9.487	9.492	9.497	9.503	9.508	9.513	9.518	9.524	9.529	9.534	ł
i.	9.487 9.539	9.545	9.550	9.555	9.560	9.566	9.571	9.576	9.581	9.586	1
2. 3.	9.592	9.597	9.602	9.607	9.612	9.618	9.623	9.628	9.633	9.638	ł
3.	9.644	9.649	9.654	9.659	9.664	9.670	9.675	9.680	9.685	9.690	ı
4.	9.695	9.701	9.706	9.711	9.716	9.721	9.726	9.731	9.737	9.742	1
95.	9.747	9.752	9.757	9.762	9.767	9.772	9.778	9.783	9.788	9.793	1
Ö-	9.798	9.803 9.854	9.808 9.859	9.813 9.864	9.818	9.823 9.874	9.829 9.879	9.834 9.884	9.839	9.844 9.894	1
6 .	9.849 9.899	9.004	9.910	9.915	9.869 9.920	9.074	9.679 9.930	9.935	9.889 9.940	9.945	
6. 7. 8. 9.	9.950	9.955	9.960	9.965	9.970 9.970	9.975	9.980	9.985	9.990	9.995	1
	<u> </u>	1.77245	 -	.,_		19 $\sqrt{\pi/2}$			$\sqrt{e} =$		<u> </u>

Moving the decimal point TWO places in N requires moving it ONE place in body of table (see p. 12).

CUBE ROOTS OF NUMBERS

N	0	1	2	8	. 4	5	6	7	8	9	Avg.
1.0	1.000	1.003	1.007	1.010	1.013	1.016	1.020	1.023	1.026	1.029	3
1	1.032	1.035	1.038	1.042	1.045	1.048	1.051	1.054	1.057	1.060	
2	1.063	1.066	1.069	1.071	1.074	1.077	1.080	1.083	1.086	1.089	
3	1.091	1.094	1.097	1.100	1.102	1.105	1.108	1.111	1.113	1.116	
4	1.119	1.121	1.124	1.127	1.129	1.132	1.134	1.137	1.140	1.142	
1.5	1.145	1.147	1.150	1.152	1.155	1.157	1.160	1.162	1.165	1.167	2
6	1.170	1.172	1.174	1.177	1.179	1.182	1.184	1.186	1.189	1.191	
7	1.193	1.196	1.198	1.200	1.203	1.205	1.207	1.210	1.212	1.214	
8	1.216	1.219	1.221	1.223	1.225	1.228	1.230	1.232	1.234	1.236	
9	1.239	1.241	1.243	1.245	1.247	1.249	1.251	1.254	1.256	1.258	
2.0	1.260	1.262	1.264	1.266	1.268	1.270	1.272	1.274	1.277	1.279	
1	1.281	1.283	1.285	1.287	1.289	1.291	1.293	1.295	1.297	1.299	
2	1.301	1.303	1.305	1.306	1.308	1.310	1.312	1.314	1.316	1.318	
3	1.320	1.322	1.324	1.326	1.328	1.330	1.331	1.333	1.335	1.337	
4	1.339	1.341	1.343	1.344	1.346	1.348	1.350	1.352	1.354	1.355	
2.5	1.357	1.359	1.361	1.363	1.364	1.366	1.368	1.370	1.372	1.373	
6	1.375	1.377	1.379	1.380	1.382	1.384	1.386	1.387	1.389	1.391	
7	1.392	1.394	1.396	1.398	1.399	1.401	1.403	1.404	1.406	1.408	
8	1.409	1.411	1.413	1.414	1.416	1.418	1.419	1.421	1.423	1.424	
9	1.426	1.428	1.429	1.431	1.433	1.434	1.436	1.437	1.439	1.441	
3.0	1.442	1.444	1.445	1.447	1.449	1.450	1.452	1.453	1.455	1.457	
1	1.458	1.460	1.461	1.463	1.464	1.466	1.467	1.469	1.471	1.472	
2	1.474	1.475	1.477	1.478	1.480	1.481	1.483	1.484	1.486	1.487	
3	1.489	1.490	1.492	1.493	1.495	1.496	1.498	1.499	1.501	1.502	
4	1.504	1.505	1.507	1.508	1.510	1.511	1.512	1.514	1.515	1.517	
8.5	1.518	1.520	1.521	1.523	1.524	1.525	1.527	1.528	1.530	1.531	1
6	1.533	1.534	1.535	1.537	1.538	1.540	1.541	1.542	1.544	1.545	
7	1.547	1.548	1.549	1.551	1.552	1.554	1.555	1.556	1.558	1.559	
8	1.560	1.562	1.563	1.565	1.566	1.567	1.569	1.570	1.571	1.573	
9	1.574	1.575	1.577	1.578	1.579	1.581	1.582	1.583	1.585	1.586	
4.0	1.587	1.589	1.590	1.591	1.593	1.594	1.595	1.597	1.598	1.599	
1	1.601	1.602	1.603	1.604	1.606	1.607	1.608	1.610	1.611	1.612	
2	1.613	1.615	1.616	1.617	1.619	1.620	1.621	1.622	1.624	1.625	
3	1.626	1.627	1.629	1.630	1.631	1.632	1.634	1.635	1.636	1.637	
4	1.639	1.640	1.641	1.642	1.644	1.645	1.646	1.647	1.649	1.650	
4.5	1.651	1.652	1.653	1.655	1.656	1.657	1.658	1.659	1.661	1.662	
6	1.663	1.664	1.666	1.667	1.668	1.669	1.670	1.671	1.673	1.674	
7	1.675	1.676	1.677	1.679	1.680	1.681	1.682	1.683	1.685	1.686	
8	1.687	1.688	1.689	1.690	1.692	1.693	1.694	1.695	1.696	1.697	
9	1.698	1.700	1.701	1.702	1.703	1.704	1.705	1.707	1.708	1.709	
	,		∛	$\sqrt{\pi} = 1$	46459	$1/\sqrt[3]{\pi} =$	0.68278	34			

Explanation of Table of Cube Roots (pp. 16-21).

This table gives the values of $\sqrt[3]{N}$ for all values of N from 1 to 1000, correct to four figures. (Interpolated values may be in error by 1 in the fourth figure.)

To find the cube root of a number N outside the range from 1 to 1000, divide the digits of the number into blocks of three (beginning with the decimal point), and note that moving the decimal point three places in column N is equivalent to moving it one place in the cube root of N. For example:

```
\sqrt[3]{2.718} = 1.396; \sqrt[3]{2718} = 13.96; \sqrt[3]{0.00002718} = 0.01396.
\sqrt[3]{27.18} = 3.007; \sqrt[3]{27180} = 30.07; \sqrt[3]{0.0002718} = 0.03007.
\sqrt[3]{271.8} = 6.477; \sqrt[3]{271800} = 64.77; \sqrt[3]{0.0002718} = 0.06477.
```

CUBE ROOTS (continued)

N	0	1	2	3	4	5	· 6	7	8	9	Avg.
5.0	1.710	1.711	1 712	1.713	1.715	1.716	1.717	1.718	1.719	1.720	-
1	1.721	1.722	1.724	1.725	1.726	1.727	1.728	1.729	1.730	1.731	
2	1.732	1.734	1.735	1.736	1.737	1.738	1.739	1.740	1.741	1.742	
3	1.744	1.745	1.746	1.747	1.748	1.749	1.750	1.751	1.752	1.753	
4	1.754	1.755	1.757	1.758	1.759	1.760	1.761	1.762	1.763	1.764	
5.5 6 7 8 9	1.765 1.776 1.786 1.797 1.807	1.766 1.777 1.787 1.798 1.808	1.767 1.778 1.788 1.799 1.809	1.768 1.779 1.789 1.800 1.810	1.769 1.780 1.790 1.801 1.811	1.771 1.781 1.792 1.802 1.812	1.772 1.782 1.793 1.803 1.813	1.773 1.783 1.794 1.804 1.814	1.774 1.784 1.795 1.805 1.815	1.775 1.785 1.796 1.806 1.816	
6.0	1.817	1.818	1.819	1.820	1.821	1.822	1.823	1.824	1.825	1.826	
1	1.827	1.828	1.829	1.830	1.831	1.832	1.833	1.834	1.835	1.836	
2	1.837	1.838	1.839	1.840	1.841	1.842	1.843	1.844	1.845	1.846	
3	1.847	1.848	1.849	1.850	1.851	1.852	1.853	1.854	1.855	1.856	
4	1.857	1.858	1.859	1.860	1.860	1.861	1.862	1.863	1.864	1.865	
6.5	1.866	1.867	1.868	1.869	1.870	1.871	1.872	1.873	1.874	1.875	
6	1.876	1.877	1.878	1.879	1.880	1.881	1.881	1.882	1.883	1.884	
7	1.885	1.886	1.887	• 1.888	1.889	1.890	1.891	1.892	1.893	1.894	
8	1.895	1.895	1.896	1.897	1.898	1.899	1.900	1.901	1.902	1.903	
9	1.904	1.905	1.906	1.907	1.907	1.908	1.909	1.910	1.911	1.912	
7.0	1.913	1.914	1.915	1.916	1.917	1.917	1.918	1.919	1.920	1.921	
1	1.922	1.923	1.924	1.925	1.926	1.926	1.927	1.928	1.929	1.930	
2	1.931	1.932	1.933	1.934	1.935	1.935	1.936	1.937	1.938	1.939	
3	1.940	1.941	1.942	1.943	1.943	1.944	1.945	1.946	1.947	1.948	
4	1.949	1.950	1.950	1.951	1.952	1.953	1.954	1.955	1.956	1.957	
7.5	1.957	1.958	1.959	1.960	1.961	1.962	1.963	1.964	1.964	1.965	
6	1.966	1.967	1.968	1.969	1.970	1.970	1.971	1.972	1.973	1.974	
7	1.975	1.976	1.976	1.977	1.978	1.979	1.980	1.981	1.981	1.982	
8	1.983	1.984	1.985	1.986	1.987	1.987	1.988	1.989	1.990	1.991	
9	1.992	1,992	1.993	1.994	1.995	1.996	1.997	1.997	1.998	1.999	
8.0	2.000	2.001	2.002	2.002	2.003	2.004	2.005	2.006	2.007	2.007	
1	2.008	2.009	2.010	2.011	2.012	2.012	2.013	2.014	2.015	2.016	
2	2.017	2.017	2.018	2.019	2.020	2.021	2.021	2.022	2.023	2.024	
3	2.025	2.026	2.026	2.027	2.028	2.029	2.030	2.030	2.031	2.032	
4	2.033	2.034	2.034	2.035	2.036	2.037	2.038	2.038	2.039	2.040	
8.5	2.041	2.042	2.042	2.043	2.044	2.045	2.046	2.046	2.047	2.048	
6	2.049	2.050	2.050	2.051	2.052	2.053	2.054	2.054	2.055	2.056	
7	2.057	2.057	2.058	2.059	2.060	2.061	2.061	2.062	2.063	2.064	
8	2.065	2.065	2.066	2.067	2.068	2.068	2.069	2.070	2.071	2.072	
9	2.072	2.073	2.074	2.075	2.075	2.076	2.077	2.078	2.079	2.079	
9.0	2.080	2.081	2.082	2.082	2.083	2.084	2.085	2.085	2.086	2.087	
1	2.088	2.089	2.089	2.090	2.091	2.092	2.092	2.093	2.094	2.095	
2	2.095	2.096	2.097	2.098	2.098	2.099	2.100	2.101	2.101	2.102	
3	2.103	2.104	2.104	2.105	2.106	2.107	2.107	2.108	2.109	2.110	
4	2.110	2.111	2.112	2.113	2.113	2.114	2.115	2.116	2.116	2.117	
9.5	2.118	2.119	2.119	2.120	2.121	2.122	2.122	2.123	2.124	2.125	
6	2.125	2.126	2.127	2.128	2.128	2.129	2.130	2.130	2.131	2.132	
7	2.133	2.133	2.134	2.135	2.136	2.136	2.137	2.138	2.139	2.139	
8	2.140	2.141	2.141	2.142	2.143	2.144	2.144	2.145	2.146	2.147	
9	2.147	2.148	2.149	2.149	2.150	2.151	2.152	2.152	2.153	2.154	

Moving the decimal point THREE places in N requires moving it ONE place in body of table (see p. 16).

CUBE ROOTS (continued)

N	0	1	2	. 8	4	5	6	7	8	9	Avg.
10.	2.154	2.162	2.169	2.176	2.183	2.190 2.257	2.197	2.204	2.210	2.217	7
1.	2.224	2.231	2.237	2.244	2.251	2.257	2.264	2.270	2.277	2.283	1 6
2. 3.	2.289	2.296	2.302	2.308	2.315	2.321	2.327	2.333	2.339	2.345	1 1
3.	2.351	2.357	2.363	2.369	2.375	2.381	2.387	2.393	2.399	2.404	1
4.	2.410	2.416	2.422	2.427	2.433	2.438	2.444	2.450	2.455	2.461	ı
15.	2.466	2.472	2.477	2.483 2.535	2.488	2.493	2.499	2.504 2.556	2.509	2.515	5
6.	2.520	2.525	2.530	2.535	2.541	2.546	2.551	2.556	2.561	2.566	ı
6. 7. 8.	2.571	2.576	2.581	2.586	2.591	2.596	2.601	2.606	2.611	2.616	1
8. 9.	2.621	2.626 2.673	2.630 2.678	2.635 2.682	2.640 2.687	2.645 2.692	2.650 2.696	2.654 2.701	2.659 2.705	2.664	•
у.	2.668	2.0/3		2.002	2.00/	2.092	2.090	2./01	2.705	2.710	ı
20.	2.714	2.719	2.723	2.728	2.732	2.737	2.741	2.746	2.750	2.755	4
Į.	2.759	2.763	2.768	2.772	2.776	2.781	2.785	2.789	2.794	2.798	ł
2. 3. 4.	2.802	2.806	2.811 2.852	2.815 2.856	2.819	2.823	2.827 2.868 2.908	2.831	2.836 2.876	2.840	ł
3.	2.844 2.884	2.848 2.888	2.892	2.896	2.860 2.900	2.864 2.904	2.000	2.872 2.912	2.916	2.880 2.920	l .
٦.	l	2.000							2.910	2.920	I
25.	2.924	2.928	2.932	2.936	2.940	2.943	2.947	2.951	2.955	2.959	ı
6.	2.962	2.966	2.970	2.974	2.978	2.981	2.985 3.022	2.989	2.993	2.996	1
6. 7. 8.	3.000	3.004	3.007	3.011	3.015	3.018	3.022	3.026	3.029	3.033	ı
ŏ.	3.037	3.040	3.044	3.047	3.051	3.055	3.058	3.062	3.065	3.069	
9.	3.072	3.076	3.079	3.083	3.086	3.090	3.093	3.097	3.100	3.104	1
30 .	3.107	3.111	3.114	3.118	3.121 3.155	3.124	.3.128	3.131	3.135	3.138	3
Į.	3.141	3.145	3.148	3.151	3.155	3.158	3.162	3.165	3.168	3.171	1
2.	3.175	3.178	3.181	3.185	3.188	3.191	3.195	3.198	3.201	3.204	ı
1. 2. 3. 4.	3.208	3.211	3.214	3.217	3.220	3.224 3.255	3.227	3.230	3.233	3.236	•
4.	3.240	3.243	3.246	3.249	3.252	3.233	3.259	3.262	3.265	3.268	ı
35 .	3.271	3.274	3.277	3.280 3.311	3.283	3.28 7 3.317	3.290 3.320 3.350	3.293 3.323 3.353 3.382 3.411	3.296	3.299 3.329 3.359	ı
6.	3.302	3.305 3.335	3.308 3.338	3.311	3.314	3.317	3.320	3.323	3.326 3.356	3.329	1
6. 7. 8.	3.332	3.335	3.338	3.341	3.344 3.374	3.347 3.377	3.350	3.353	3.356	3.359	ı
8.	3.362	3.365	3.368 3.397	3.371	3.374	3.377	3.380	3.382	3.385	3.388	1
9.	3.391	3.394	3.39/	3.400	3.403	3.406	3.409	3.411	3.414	3.417	
40.	3.420	3.423	3.426 3.454	3.428	3.431	3.434	3.437	3.440	3.443	3.445	l
1.	3.448	3.451	3.454	3.457	3.459	3.462 3.490	3.465	3.468	3.471	3.473	1
2. 3.	3.476	3.479	3.482	3.484 3.512	3.487	3.490	3.493	3.495 3.522	3.498	3.501	l
3.	3.503	3.506 3.533	3.509	3.512	3.514	3.517	3.493 3.520 3.546	3.522	3.525	3.528	l
4.	3.530	3.533	3.536	3.538	3.541	3.544	3.346	3.549	3.552	3.554	•
45.	3.557	3.560	3.562	3.565	3.567	3.570	3.573	3.575	3.578	3.580	1
6.	3.583	3.586	3.588	3.591	3.593	3.596	3.599 3.624	3.601	3.604	3.606	1
7. 8.	3.609	3.611	3.614	3.616	3.619	3.622	3.624	3.627	3.629	3.632	1
8.	3.634	3.637	3.639	3.642	3.644	3.647	3.649 3.674	3.652	3.654	3.657	2
9.	3.659	3.662	3.664	3.667	3.669	3.672	3.674	3.677	3.679	3.682	

CUBE ROOTS OF CERTAIN FRACTIONS

N	$\sqrt[3]{N}$	N	√ N	N	$\sqrt[3]{N}$	N	$\sqrt[3]{N}$	N	$\sqrt[3]{\bar{N}}$	N	$\sqrt[3]{N}$
1/2 1/6 3/4 1/4 9/4 1/6 3/6	.7937 .6934 .8736 .6300 .9086 .5848 .7368	35 45 16 56 17 37	.8434 .9283 .5503 .9410 .5228 .6586 .7539	34 54 54 18 38 58 58	.8298 .8939 .9499 .5000 .7211 .8550 .9565	16 36 36 36 36 36 36 112	.4807 .6057 .7631 .8221 .9196 .9615 .4368	512 712 112 112 116 316 516 716	.7469 .8355 .9714 .3969 .5724 .6786 .7591	%6 11/16 13/16 15/16 15/16 1/32 1/64	.8255 .8826 .9331 .9787 .3150 .2500 .2714

CUBE ROOTS (continued)

N	0	1	2	8	4	5	6	7	8	9,	AVE
	2.04	2 (9)	2.000	2 (01	2 (04	2 (0)	3,699	2 701	3.704	3.706	2
5 0.	3.684	3.686	3.689	3.691	3.694	3.696	3 723	3.701			1 4
1. 2.	3.708	3.711	3.713	3.716	3.718	3.721	2 723	3.725	3.728	3.730	ı
Z.	3.733 3.756	3.735 3.759	3.737	3.740	3.742	3.744	3.747	3.749	3.752	3.754	
3.	3.756	3./59	3.761	3.763	3.766	3.768	3.770	3.773	3.775	3.777	ı
4.	3.780	3.782	3.784	3.787	3.789	3.791	3.794	3.796	3.798	3.801	
5.	3.803	3.805	3.808	3.810	3.812	3.814	3.817	3.819	3.821	3.824	ļ.
6.	3.826	3.828	3.830	3.833	3.835	3.837	3.839	3.842	3.844	3.846	1
7.	3.849	3.851	3.853	3.855	3.857	3.860	3.862	3.864	3.866	3.869	
7. 8.	3.871	3.873	3.875	3.878	3.880	3.882	3.884	3.886	3.889	3.891	ł
9.	3.893	3.895	3.897	3.900	3.902	3.904	3.906	3.908	3.911	3.913	ı
0.	3.915	3.917	3.919	3.921	3.924	3,926	3,928	3,930	3.932	3.934	ı
ĭ.	3.936	3.939	3.941	3.943	3.945	3.947	3,949	3.951	3.954	3.956	ı
ż	3.958	3.960	3.962	3.964	3.966	3.968	3.971	3.973	3.975	3.977	1
2. 3.	3.958 3.979	3.981	3.983	3.985	3.987	3.990	3.992	3.994	3.996	3.998	ı
4.	4.000	4.002	4.004	4.006	4.008	4.010	4.012	4.015	4.017	4.019	ı
											ı
5.	4.021	4.023	4.025	4.027	4.029	4.031	4.033	4.035	4.037	4.039	ı
6.	4.041	4.043	4.045	4.047	4.049	4.051	4.053	4.055	4.058	4.060	1
7.	4.062	4.064	4.066	4.068	4.070	4.072	4.074	4.076	4.078	4.080	ı
8.	4.082	4.084	4.086	4.088	4.090	4.092	4.094	4.096	4.098	4.100	ı
9.	4.102	4.104	4.106	4.108	4.109	4.111	4.113	4.115	4.117	4.119	ı
0.	4.121	4.123	4.125	4.127	4.129	4.131	4.133	4.135	4.137	4.139	ı
1.	4.141	4.143	4.145	4.147	4.149	4.151	4.152	4.154	4.156	4.158	ı
2.	4.160	4.162	4.164	4.166	4.168	4.151 4.170	4.152 4.172	4.174	4.176	4.177	
2. 3.	4.179	4.181	4.183	4.185	4.187	4.189	4.191	4.193	4.195	4.196	ı
4.	4.198	4.200	4.202	4.204	4.206	4.208	4.210	4.212	4.213	4.215	ı
5.	4.217	4.219	4,221	4.223	4.225	4.227	4.228	4.230	4.232	4.234	ı
6.	4.236	4.238	4.240	4.241	4.243	4.245	4.247	4.249	4.251	4.252	
Ž.	4.254	4.256	4.258	4,260	4.262	4.264	4.265	4.267	4.269	4.271	ı
8.	4.273	4.256 4.274	4.258 4.276	4.278	4.280	4.282	4.284	4.285	4.287	4.289	
9.	4.291	4.293	4.294	4.296	4.298	4.300	4.302	4.303	4.305	4.307	ı
0.	4.309	4.311	4.312	4.314	4.316	4.318	4,320	4.321	4.323	4.325	
ĭ	4.327	4.329	4.330	4.332	4.334	4.336	4.337	4.339	4341	4.343	
1. 2. 3.	4.344	4.346	4.348	4.350	4.352	4.353	4.355	4.357	4.359	4.360	
₹.	4.362	4.364	4.366	4.367	4.369	4.371	4.373	4.374	4.376	4.378	ŀ
4.	4.380	4.381	4.383	4.385	4.386	4.388	4.390	4.392	4.393	4.395	ı
5.	4.397	4.399	4.400	4.402	4.404	4.405	4.407	4,409	4.411	4.412	ı
6.	4.414	4.416	4.417	4.419	4.421	4.423	4.424	4.426	4.428	4.429	ı
7.	4.431	4.433	4.434	4.436	4.438	4.440	4.441	4.443	4.445	4.446	i
ź. 8	4.448	4.450	4.451	4.453	4.455	4.456	4.458	4.460	4.461	4.463	ı
9. 9.	4.465	4.466	4.468	4.470	4.471	4.473	4.475	4.476	4.478	4.480	ı
	4.481	4.483	4.485	4.486	4.488	4.490	4.491	4.493	4,495	4.496	ı
Q.	4.498	4.500	4.501	4.503	4.505	4.506	4.508	4.509	4.511	4.513	ı
ţ.	4.514	4.516	4 518	4.519	4.521	4.523	4.524	4.526	4.527	4.529	ĺ
1. 2. 3.	4.531	4.532	4.518 4.534	4.536	4.537	4.539	4.540	4.542	4.544	4.545	
3. 4.	4.547	4.548	4.550	4.552	4.553	4.555	4.556	4.558	4.560	4.561	l
	1										
Ģ.	4.563	4.565 4.580	4.566 4.582	4.568 4.584	4.569 4.585	4.571 4.587	4.572 4.588	4.574 4.590	4.576 4.592	4.577 4.593	ı
6.	4.579		4.582 4.598								ı
7.	4.595	4.596 4.612	4.276	4.599 4.615	4.601 4.617	4.603 4.618	4.604 4.620	4.606 4.621	4.607 4.623	4.609	l
8. 9.	4.610		4.614							4.625	l
	4.626	4.628	4.629	4.631	4.632	4.634	4.635	4.637	4.638	4.640	

Moving the decimal point THREE places in N requires moving it ONE place in body of table (see p. 16).

CUBE ROOTS (continued)

N	0.	1.	2.	8.	4.	5.	6.	7.	8.	9.	AVR
10	4.642	4.657	4.672	4.688	4.703	4.718	4.733	4.747	4.762	4.777	15
1	4.791	4.806	4.820	4.835	4.849	4.863	4.877	4.891	4.905	4.919	14
2	4.932	4.946	4.960	4.973	4.987	5.000	5.013	5.027	5.040	5.053	13
3	5.066	5.079	5.092	5.104	5.117	5.130	5.143	5.155	5.168	5.180	١
4	5.192	5.205	5.217	5.229	5.241	5.254	5.266	5.278	5.290	5.301	12
1 5 6	5.313	5.325	5.337 5.451	5.348 5.463	5.360 5.474	5.372 5.485	5.383 5.496	5.395 5.507	5.406	5.418 5.529	ł
6	5.429	5.440	5.451	5.463	5.474	5.485	5.496	5.507	5.518	5.529	11
7. 8	5.540	5.550	5.561	5.572	5.583	5.593	5.604	5.615	5.625	5.636	١
ĕ	5.646	5.657	5.667 5.769	5.677 5.779	5.688	5.698 5.799	5.708	5.718	5.729	5.739	10
ğ	5.749	5.759	5.769	5.779	5.789	5.799	5.809	5.819	5.828	5.838	ľ
20	5.848	5.858	5.867 5.963 6.055	5.877 5.972	5.887	5.896	5.906	5.915	5.925	5.934	Į.
- 1	5.944	5.953	5.963	5.972	5.981	5.991	6.000	6.009	6.018	6.028	9
2	6.037	6.046	6.055	6.064	6.073	6.082	6.091	6.100	6.109	6.118	1
1 2 3	6.127	6.136	6.145 6.232	6.153 6.240	6.162	6.171	6.180	6.188	6.197 6.283	6.206	ľ
4	6.214	6.223	0.232	0.240	6.249	6.257	6.266	6.274	6.283	6.291	
25	6.300	6.308	6.316	6.325	6.333	6.341	6.350	6.358	6.366	6.374	8
6	6.383	6.391	6.399	6.407	6.415	6.423	6.431	6.439	6.447	6.455	1
7	6.463	6.471	6.479	6.487	6.495	6.503	6.511	6.519	6.527	6.534	ł
8	6.542	6.550	6.558	6.565	6.573	6.581	6.589	6.596	6.604	6.611	l
ğ	6.619	6.62 7	6.634	6.642	6.649	6.657	6.664	6.672	6.679	6.687	ı
30	6.694	6. 702 6. 77 5	6.709	6.71 7 6. 790	6.724 6.797	6.731	6.739	6.746	6.753	6.761	7
l	6.768	6.775	6.782	6.790	6.797	6.804 6.875	6.811	6.818	6.826	6.833	1
1 2 3	6.840	6.847	6.854	6.861	6.868	6.875	6.882	6.889	6.896	6.903	1
4	6.910 6.980	6.917 6.986	6.924	6.931	6.938	6.945 7.014	6.952 7.020	6.959 7.027	6.966	6.973	
•	0.900	0.900		7.000	7. 007	7.014	7.020	7.027	7.034	7.041	ı
35	7.047	7.054	7.061 7.127 7.192 7.256 7.319	7.067	7.074	7.081	7.087	7.094	7.101	7.107	
6	7.114	7.120	7.127	7.133 7.198	7.140 7.205	7.147	7.153 7.218	7.160 7.224	7.166	7.173 7.237	6
7	7.179 7.243	7.186	7.192	7.198	7.205	7.211 7.275	7.218	7.224	7.230	7.237	ı
9		7.250	7.256	7.262 7.325	7.268	7.2/5	7.281	7.287 7.350	7.294 7.356	7.300	ı
9	7.306	7.312	1319	1.525	7.331	7.337	7.343	7.550	1.336	7.362	
40	7.368	7.374	7.380	7.386	7.393	7.399	7.405	7.411	7.417	7.423	1
1	7.429	7.435	7.441	7.447	7.453	7.459	7.465	7.471	7.477	7.483	1
1 2 3 4	7.489	7.495 7.554	7.501	7.507	7.513 7.571	7.518 ·	7.524	7.530	7.536 7.594	7.542	1
3	7.548	7.554	7.560 7.617	7.565	7.571	7.577	7.583	7.589	7.594	7.600	ı
4	7.606	7.612	7.617	7.623	7.629	7.635	7.640	7.646	7.652	7.657	ı
45	7.663	7.669 7.725	7.674 7.731 7.786	7.680	7.686	7.691	7.697 7.753	7.703 7.758	7.708	7.714	1 5
6	7.719	7.725	7.731	7.736 7.791	7.742	7.747	7.753	7.758	7.764	7.769	ĺ
7	7.775	7.780	7.786	7.791	7.797	7.802	7.808	7.813	7.819	7.824	1
8	7.830	7.835	7.841	7.846	7.851	7.857 7.91 0	7.862	7.868	7.873	7.878	٠.
9	7.884	7.889	7.894	7.900	7.905	7.910	7.916	7.921	7.926	7.932	

AUXILIARY TABLE OF TWO-THIRDS POWERS AND THREE-HALVES POWERS (see pp. 22-23) (To assist in locating the decimal point)

.0001 .00154 .000001 for the control of the control	N	$N^{\frac{3}{3}}(=\sqrt[3]{N^2})$	$N^{\frac{3}{2}} \left(= \sqrt{N^3} \right)$	
	.001 .01 .1 1. 100. 1000,	.01 .0464 .2154 1. 4.64 21.54 100.	00003162 .001 .03162278 1.31.62278 1000. 31622.78	of threers, see That to versely comple

For complete table of three-halves powers, see pp. 22-23. That table, used inversely, provides a complete table of two-thirds powers.

CUBE ROOTS (continued)

N	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.	Avg.
50	7.937	7.942	7.948	7.953	7.958	7.963	7.969	7.974	7.979	7.984	5
1	7.990	7.995	8.000	8.005	8.010	8.016	8.021	8.026	8.031	8.036	
2	8.041	8.047	8.052	8.057	8.062	8.067	8.072	8.077	8.082	8.088	
3	8.093	8.098	.8.103	8.108	8.113	8.118	8.123	8.128	8.133	8.138	
4	8.143	8.148	8.153	8.158	8.163	8.168	8.173	8.178	8.183	8.188	
55	8.193	8.198	8.203	8.208	8.213	8.218	8.223	8.228	8.233	8.238	
6	8.243	8.247	8.252	8.257	8.262	8.267	8.272	8.277	8.282	8.286	
7	8.291	8.296	8.301	8.306	8.311	8.316	8.320	8.325	8.330	8.335	
8	8.340	8.344	8.349	8.354	8.359	8.363	8.368	8.373	8.378	8.382	
9	8.387	8.392	8.397	8.401	8.406	8.411	8.416	8.420	8.425	8.430	
60	8.434	8.439	8.444	8.448	8.453	8.458	8.462	8.467	8.472	8.476	4
1	8.481	8.486	8.490	8.495	8.499	8.504	8.509	8.513	8.518	8.522	
2	8.527	8.532	8.536	8.541	8.545	8.550	8.554	8.559	8.564	8.568	
3	8.573	8.577	8.582	8.586	8.591	8.595	8.600	8.604	8.609	8.613	
4	8.618	8.622	8.627	8.631	8.636	8.640	8.645	8.649	8.653	8.658	
65	8.662	8.667	8.671	8.676	8.680	8.685	8.689	8.693	8.698	8.702	
6	8.707	8.711	8.715	8.720	8.724	8.729	8.733	8.737	8.742	8.746	
7	8.750	8.755	8.759	8.763	8.768	8.772	8.776	8.781	8.785	8.789	
8	8.794	8.798	8.802	8.807	8.811	8.815	8.819	8.824	8.828	8.832	
9	8.837	8.841	8.845	8.849	8.854	8.858	8.862	8.866	8.871	8.875	
70	8.879 8.921 8.963 9.004 9.045	8.883 8.925 8.967 9.008 9.049	8.887 8.929 8.971 9.012 9.053	8.892 8.934 8.975 9.016 9.057	8.896 8.938 8.979 9.021 9.061	8.900 8.942 8.984 9.025 9.065	8.904 8.946 8.988 9.029 9.069	8.909 8.950 8.992 9.033 9.073	8.913 8.955 8.996 9.037 9.078	8.917 8.959 9.000 9.041 9.082	
75	9.086	9.090	9.094	9.098	9.102	9.106	9.110	9.114	9.118	9.122	
6	9.126	9.130	9.134	9.138	9.142	9.146	9.150	9.154	9.158	9.162	
7	9.166	9.170	9.174	9.178	9.182	9.185	9.189	9.193	9.197	9.201	
8	9.205	9.209	9.213	9.217	9.221	9.225	9.229	9.233	9.237	9.240	
9	9.244	9.248	9.252	9.256	9.260	9.264	9.268	9.272	9.275	9.279	
80	9.283	9.287	9.291	9.295	9.299	9.302	9.306	9.310	9.314	9.318	
1	9.322	9.326	9.329	9.333	9.337	9.341	9.345	9.348	9.352	9.356	
2	9.360	9.364	9.368	9.371	9.375	9.379	9.383	9.386	9.390	9.394	
3	9.398	9.402	9.405	9.409	9.413	9.417	9.420	9.424	9.428	9.432	
4	9.435	9.439	9.443	9.447	9.450	9.454	9.458	9.462	9.465	9.469	
85	9.473	9.476	9.480	9.484	9.488	9.491	9.495	9,499	9.502	9.506	
6	9.510	9.513	9.517	9.521	9.524	9.528	9.532	9,535	9.539	9.543	
7	9.546	9.550	9.554	9.557	9.561	9.565	9.568	9,572	9.576	9.579	
8	9.583	9.586	9.590	9.594	9.597	9.601	9.605	9,608	9.612	9.615	
9	9.619	9.623	9.626	9.630	9.633	9.637	9.641	9,644	9.648	9.651	
90	9.655	9.658	9.662	9.666	9.669	9.673	9.676	9.680	9.683	9.687	
1	9.691	9.694	9.698	9.701	9.705	9.708	9.712	9.715	9.719	9.722	
2	9.726	9.729	9.733	9.736	9.740	9.743	9.747	9.750	9.754	9.758	
3	9.761	9.764	9.768	9.771	9.775	9.778	9.782	9.785	9.789	9.792	
4	9.796	9.799	9.803	9.806	9.810	9.813	9.817	9.820	9.824	9.827	
95	9.830	9.834	9.837	9.841	9.844	9.848	9.851	9.855	9.858	9.861	
6	9.865	9.868	9.872	9.875	9.879	9.882	9.885	9.889	9.892	9.896	
7	9.899	9.902	9.906	9.909	9.913	9.916	9.919	9.923	9.926	9.930	
8	9.933	9.936	9.940	9.943	9.946	9.950	9.953	9.956	9.960	9.963	
9	9.967	9.970	9.973	9.977	9.980	9.983	9.987	9.990	9.993	9.997	
00	10.00										

Moving the decimal point THREE places in N requires moving it ONE place in body of table (see p. 16).

THREE-HALVES POWERS OF NUMBERS (see also p. 20)

N	0	1	2	8	4	5	6	7	8	9	Avg.
1. 2. 3. 4.	1.000 2.828 5.196 8.000	1.154 3.043 5.458 8.302	1.315 3.263 5.724 8.607	1.482 3.488 5.995 8.917	1.657 3.718 6.269 9.230	1.837 3.953 6.548 9.546	2.024 4.192 6.831 9.866	2.217 4.437 7.117 10.190 10.19	2.415 4.685 7.408	2.619 4.939 7.702	183 237 280 313
4. 5. 6. 7. 8. 9.	11.18 14.70 18.52 22.63 27.00	11.52 15.07 18.92 23.05 27.45	11.86 15.44 19.32 23.48 27.90	12.20 15.81 19.72 23.91 28.36	12.55 16.19 20.13 24.35 28.82	12.90 16.57 20.54 24.78 29.28	13.25 16.96 20.95 25.22 29.74	10.19 13.61 17.34 21.37 25.66 30.21	10.52 13.97 17.73 21.78 26.11 30.68	10.85 14.33 18.12 22.20 26.55 31.15	313 33 35 38 41 44 46
10. 1. 2. 3. 4.	31.62 36.48 41.57 46.87 52.38	32.10 36.98 42.09 47.41 52.95	32.58 37.48 42.61 47.96 53.51	33.06 37.99 43.14 48.50 54.08	33.54 38.49 43.66 49.05 54.64	34.02 39.00 44.19 49.60 55.21	34.51 39.51 44.73 50.15 55.79	35.00 40.02 45.26 50.71 56.36	35.49 40.53 45.79 51.26 56.94	35.99 41.05 46.33 51.82 57.51	49 51 53 55 57
15. 6. 7. 8. 9.	58.09 64.00 70.09 76.37 82.82	58.68 64.60 70.71 77.00 83.47	59.26 65.20 71.33 77.64 84.13	59.85 65.81 71.96 78.28 84.79	60.43 66.41 72.58 78.93 85.45	61.02 67.02 73.21 79.57 86.11	61.62 67.63 73.84 80.22 86.77	62.21 68.25 74.47 80.87 87.44	62.80 68.86 75.10 81.51 88.10	63.40 69.48 75.73 82.17 88.77	59 61 63 65 66
20.	89.44 96.23	90.11 96.92	90.79 97.61	91.46 98.30	92.14 99.00	92.82 99.69	93.50 100.38 100.4 107.4	101.1	94.86 101.8	95.55 102.5	68 69 7 7 7
1. 1. 2. 3. 4.	103.2 110.3 117.6	103.9 111.0 118.3	104.6 111.7 119.0	105.3 112.5 119.8	106.0 113.2 120.5	106.7 113.9 121.3	114.6 122.0	108.2 115.4 122.8	108.9 116.1 123.5	109.6 116.8 124.3	
25. 6. 7. 8. 9.	125.0 132.6 140.3 148.2 156.2	125.8 133.3 141.1 149.0 157.0	126.5 134.1 141.9 149.8 157.8	127.3 134.9 142.6 150.5 158.6	128.0 135.6 143.4 151.3 159.4	128.8 136.4 144.2 152.1 160.2	129.5 137.2 145.0 152.9 161.0	130.3 138.0 145.8 153.8 161.9	131.0 138.7 146.6 154.6 162.7	131.8 139.5 147.4 155.4 163.5	8 8 8 8
80. 1. 2. 3. 4.	164.3 172.6 181.0 189.6 198.3	165.1 173.4 181.9 190.4 199.1	166.0 174.3 182.7 191.3 200.0	166.8 175.1 183.6 192.2 200.9	167.6 176.0 184.4 193.0 201.8	168.4 176.8 185.3 193.9 202.6	169.3 177.6 186.1 194.8 203.5	170.1 178.5 187.0 195.6 204.4	170.9 179.3 187.8 196.5 205.3	171.8 180.2 188.7 197.4 206.2	8 8 9 9
85. 6. 7. 8. 9.	207.1 216.0 225.1 234.2 243.6	208.0 216.9 226.0 235.2 244.5	208.8 217.8 226.9 236.1 245.4	209.7 218.7 227.8 237.0 246.4	210.6 219.6 228.7 238.0 247.3	211.5 220.5 229.6 238.9 248.3	212.4 221.4 230.6 239.8 249.2	213.3 222.3 231.5 240.8 250.1	214.2 223.2 232.4 241.7 251.1	215.1 224.2 233.3 242.6 252.0	9 9 9 9
40. 1. 2. 3. 4.	253.0 262.5 272.2 282.0 291.9	253.9 263.5 273.2 283.0 292.9	254.9 264.5 274.1 283.9 293.9	255.8 265.4 275.1 284.9 294.9	256.8 266.4 276.1 285.9 295.9	257.7 267.3 277.1 286.9 296.9	258.7 268.3 278.0 287.9 297.9	259.7 269.3 279.0 288.9 298.9	260.6 270.2 280.0 289.9 299.9	261.6 271.2 281.0 290.9 300.9	10 10 10 10
45. 6. 7. 8. 9.	301.9 312.0 322.2 332.6 343.0	302.9 313.0 323.2 333.6 344.1	303.9 314.0 324.3 334.6 345.1	304.9 315.0 325.3 335.7 346.2	305.9 316.1 326.3 336.7 347.2	306.9 317.1 327.4 337.8 348.3	307.9 318.1 328.4 338.8 349.3	308.9 319.1 329.4 339.9 350.4	310.0 320.2 330.5 340.9 351.4	311.0 321.2 331.5 342.0 352.5	10 10 10 10

This table gives $N^{\frac{3}{2}}$ from N=1 to N=100. Moving the decimal point TWO places in N requires moving it THREE places in body of table. Thus: $(7.23)^{\frac{3}{2}} = 19.44; \qquad (723)^{\frac{3}{2}} = 19440; \qquad (0.0723)^{\frac{3}{2}} = 0.01944$ $(72.3)^{\frac{3}{2}} = 614.8; \qquad (7230)^{\frac{3}{2}} = 614800; \qquad (0.723)^{\frac{3}{2}} = 0.6148$ Used inversely, table gives $M^{\frac{3}{2}}$ from M=1 to M=1000. Thus: $(0.6148)^{\frac{3}{2}} = 0.7230$.

THREE-HALVES POWERS (continued) (See also p. 20)

N	0	1	2	8	4 .	5	6	7	8	9	Avg.
50.	353.6	354.6	355.7	356.7	357.8	358.9	359.9	361.0	362.1	363.1	11
1.	364.2	365.3	366.4	367.4 378.2	368.5	369.6 380.4	370.7	371.7	372.8	373.9	
2.	364.2 375.0 385.8	376.1 386.9	377.1 388.0	378.2 389.1	379.3 390.2	380.4 391.3	381.5 392.4	382.6 393.5	383.7 394.6	384.8 395.7	L
4.	396.8	397.9	399.0	400.1	401.2	402.3	403.4	404.6	405.7	406.8	
55. 6. 7. 8. 9.	407.9	409.0	410.1	411.2	412.3	413.5	414.6 425.8	415.7	416.8	417.9 429.2	
9.	419.1 430.3	420.2 431.5	421.3 432.6	422.4 433.7	423.6 434.9	424.7 436.0	425.8 437. 2	426.9 438.3	428.1 439.4	440.6	l ii
8 .	441.7	442.9	444.0	445.1	446.3	447.4	448.6	449.7	450.9	452.0	l ii
9.	453.2	454.3	455.5	456.6	457.8	459.0	460.1	461.3	462.4	463.6	12
60.	464.8	465.9 477.6	467.1	468.2 479.9	469.4	470.6 482.3	471.7	472.9 484.6	474.1 485.8	475.3	12 12 12 12 12
1. 2. 3. 4.	476.4 488.2	477.0 489.4	478.8 490.6	491.7	481.1 492.9	494.1	483.5 495.3	496.5	497.7	487.0 498.9	1 12
3.	500.0	501.2	490.6 502.4	503.6	504.8	506.0	507.2	508.4	509.6	510.8	l iã
4.	512.0	513.2	514.4	515.6	516.8	518.0	519.2	520.4	509.6 521.6	522.8	12
65.	524.0	525.3 537.4	526.5 538.6	527.7 539.8	528.9 541.1	530.1 542.3	531.3 543.5	532.5	533.8	535.0 547.2	12 12 12 12 13
6 [•] 7. 8. 9.	536.2 548.4	549.6	550.9	552.1	553.3	554.6	555.8	544.7 557.0	546.0 558.3	559.5	1 12
8.	560.7	562.0	563.2	564.5	565.7	566.9	568.2	569.4	570.7	571.9	l iã
9.	573.2	574.4	575.7	576.9	578.1	579.4	580.6	581.9	583.2	584.4	
70.	585.7	586.9	588.2	589.4	590.7	591.9	593.2 605.9	594.5 607.1	595.7 608.4	597.0 609.7	13 13 13
1.	598.3 610.9	599.5 612.2	600.8 613.5	602.1 614.8	603.3 616. 0	604.6 617.3	618.6	619.9	621.2	622.4	1 13
2. 3. 4.	623.7	625.0 637.9	626.3	627.6	628.8	630.1	631.4	632.7	634.0	635.3	I 13
	636.6	637.9	639.2	640.4	641.7	643.0	644.3	632.7 645.6	646.9	648.2	13
75. 6. 7. 8. 9.	649.5	650.8	652.1	653.4	654.7	656.0	657.3	658.6	659.9 673.0	661.2	13 13 13 13
9.	662.6 675.7	663.9 677.0	678 3	666.5 679.6	667.8 680.9	669.1 682.3	670.4 683.6	671.7	686.2	674.4 687.6	1 13
8.	688.9	690.2	665.2 678.3 691.5	679.6 692.9	694.2	682.3 695.5 70 8.8	696.8	684.9 698.2	686.2 699.5 712.9	700.8	l iš
9.	702.2	703.5	704.8	706.2	694.2 707.5	708.8	710.2	711.5	712.9	714.2	13
80.	715.5	716.9	718.2	719.6	720.9	722.3	723.6 737.1 750.7	725.0	726.3	727.7	13
j.	729.0 742.5	730.4 743.9	731.7	733.1 746.6	734.4 748.0	735.8 749.3	737.1	738.5	739.8	741.2 754.8	14
1. 2. 3. 4.	756.2	757.5	731.7 745.3 758.9	760.3	761.6	763.0	764.4	738.5 752.1 765.8	739.8 753.4 767.1	768.5] i4
4.	769.9	757.5 771.2	772.6	774.0	775.4	776.8	778.1	779.5	780.9	782.3	14
85.	783.7 797.5	785.0	786.4	787.8	789.2	790.6	792.0	793.4 807.3	794.8	796.1	14
9.	797.5 811.5	798.9 812.9	800.3 814.3	801.7 815.7	803.1 817.1	804.5 818.5	805.9 819.9	807.3 821.3	808.7 822.7	810.1 824.1	14
χ́.	825.5	826.9	828.3	829.7	831.1	832.6	834.0	835.4	836.8	838.2	i4
6. 7. 8. 9.	839.6	841.0	842.5	843.9	845.3	846.7	848.1	849.5	851.0	852.4	i4
90.	853.8	855.2	856.7	858.1	859.5	860.9	862.4	863.8	865.2	866.7	14
Į.	868.1 882.4	869.5	870.9	872.4	873.8	875.2	876.7	878.1	879.6 894.0	881.0	14
4.	896.9	883.9 898.3	885.3 899.8	886.8 901.2	888.2 902.7	889.6 904.1	891.1 905.6	892.5 907.0	908.5	895.4 909.9	1 13
90. 1. 2. 3. 4.	911.4	912.8	914.3	901.2 915.7	917.2	918.6	920.1	921.6	923.0	924.5	15 15
95.	925.9	927.4	928.9	930.3	931.8	933.3	934.7	936.2	937.7	939.1	15 15
6. 7.	940.6	942.1	943.5 958.3	945.0 959.8	946.5 961.3	948.0	949.4	950.9	952.4 967.2	953.9	1 15
' 7. 8.	955.3 970.2	956.8 971.6	958.3 973.1	959.8 974.6	961.3 976.1	962.7 977.6	964.2 979.1	965.7 980.6	967.2 982.1	968.7 983.5	15 15
9.	985.0	986.5	988.0	989.5	991.0	992.5	994.0	995.5	997.0	998.5	15
100.	1000.0										Ĺ

Moving the decimal point TWO places in N requires moving it THREE places in body of table (see also auxiliary table on p. 20).

RECIPROCALS OF NUMBERS

1.00					4	5		7	8		Avg.
1		.9990	.9980	.9970	.9960	.9950	.9940	.9930	.9921	.9911	-10
3	.9901	.9891	.9881	.9872	.9862	.9852	.9843	.9833	.9823	QR14	
	.9804	.9794	.9785 .9690	.9775	.9766	.9756	.9747	.9737	.9823 .9728	.9718	
3	.9709	.9699	.9690	.9681	.9766 .9671	.9662	.9653	.9643	.9634	.9625	-9
4	.9615	.9606	.9597	.9588	.9579	.9569	.9560	.9551	.9542	.9718 .9625 .9533	1 1
1.05	.9524	.9515	.9506	.9497	.9488	.9479	.9470	.9461	.9452	.9443	l
6	.9434	.9425 .9337 .9251	.9416 .9328 .9242	.9407 .9320 .9234	.9398	.9390	.9381 .9294 .9208	.9372	.9363 .9276 .9191	.9355	
7	.9346	.9337	.9328	.9320	.9311	.9302	.9294	.9285	.9276	.9268	
8	.9259	.9251	.9242	.9234	.9225	.9302 .9217	.9208	.9200	.9191	.9183	- 8
9	.9174	.9166	.9158	.9149	.9398 .9311 .9225 .9141	.9132	.9124	.9285 .9200 .9116	.9107	.9099	i
1.10	.9691	.9083	.9074	.9066	.9058	.9050	.9042	.9033 .8953	.9025	.9017	ı
1	.9009	.9001	.8993	.8985	.8977	.8969	.8961	.8953	.8945	8937	ı
2 3	.8929	.8921	.8913	.8905 .8826	.8897	.8889	.8881	.8873	.8865	.8857	l
3	.8850	.8842	.8834	.8826	.8818	.8811	.8803	.8795	.878 7	.8780	I
4	.8772	.8764	.8757	.8749	.8741	.8734	.8726	.8795 .8718	.8945 .8865 .8787 .8711	.8857 .8780 .8703	1
1.15	.8696	.8688	.8681	.8673	.8666	.8658	.8651	.8643	.8636	.8628	l
6	.8621	.8613	.8606	.8598	.8591	.8584	.8576	.8569	.8562	.8554	l –7
7	.8547	.8613 .8540	.8532	.8598 .8525	.8591 .8518	.8584 .8511	.8576 .8503	.8569 .8496	.8489	.8482	1
8	.8475	.8467	.8460	.8453	.8446	.8439	.8432	.8425	.8418	.8410	1
9	.8403	.8467 .8396	.8389	.8382	.8446 .8375	.8368	.8361	.8354	.8347	.8340	i
1.20	.8333	.8326 .8258	.8319 .8251	.8313	.8306	.8299 .8230	.8292 .8224	.8285	.8278 .8210	.8271	l
<u>-</u> i	.8264	.8258	.8251	.8244	.8237	.8230	.8224	.8217	.8210	.8203	1
2	.8197	.8190	.8183	.8177	.8170	.8163	.8157	.8150	.8143	.8137	
2 3	.8130	.8190 .8123	.8117	.8177 .8110	.8237 .8170 .8104	.8097	.8091	.8150 .8084	.8143 .8078	.8071	l –6
4	.8065	.8058	.8052	.8045	.8039	.8032	.8026	.8019	.8013	.8006	ľ
1.25	.8000	.7994 .7930	.7987 .7924	.7981	.7974 .7911	.7968 .7905	.7962 .7899	. 7 955 . 7 893	.7949 .7886	.7943 .7880	
	.7937	.7930	.7924	.7918	.7911	.7905	.7899	.7893	.7886	.7880	1
7	.7874	.7868	.7862	.7855	.7849	.7843	.7837	.7831	.7825	.7819	1
6 7 8	.7812	.7868 .7806	.7800	.7855 .7794	.7849 .7788	.7782	<i>.777</i> 6	<i>.777</i> 0	.7764	.7819 .7758	1
9	.7752	.7746	.7862 .7800 .7740	.7734	.7728	.7722	.7716	.7710	.7704	.7698	1
1.80	.7692	.7686	.7680	.7675	.7669	.7663	.7657	.7651 .7593 .7536 .7479	.7645	.7639 .7582 .7524	l
- i	7634	7628	7622	7616	.7610	.7605	.7599	.7593	.7587	.7582	i
2	.7576	.7570	.7564	.7559	.7553	.7547	.7541	.7536	.7530	.7524	ı
2	.7576 .7519	.7570 .7513	.7508	.7502	.7553 .7496	.7491	.74 85	.7479	.7474	.7468	ľ
4	.7463	.7457	.7564 .7508 .7452	.7559 .7502 .7446	.7440	.7491 .7435	.7599 .7541 .7485 .7429	.7424	.7587 .7530 .7474 .7418	.7413	1
1.85	.7407	.7402	.7396	.7391	.7386	.7380 .7326	. 7 375	.7369	.7364 .7310	.7358	_5
6	.7353	724R	.7342	.7337	7331	.7326	7371	.7315	.7310	.7305	`
6	.7353 .7299	.7294	.7342 .7289	.7283	.7278	.7273	.7267	.7262	.7257 .	.7252	1
8	.7246	.7241	.7236	.7231	.7225	.7273 .7220	.7215	.7210	.7257 .7205	.7199	1
9	.7194	.7294 .7241 .7189	.7236 .7184	.7337 .7283 .7231 .7179	.7278 .7225 .7174	.7168	.7267 .7215 .7163	.7369 .7315 .7262 .7210 .7158	.7153	.7148	1
1.40	.7143	.7138	.7133	.7128	.7123	.7117	.7112	.7107	.7102	.7097	i i
ĭ	.7092	.7087	.7082	.7077	.7072	.7067	.7062	.7057	.7052	.7047	l
Ž	.7042	7037	.7082 .7032	.7128 .7077 .7027	.7022	.7018	.7062 .7013	.7057 .7008	.7052 .7003	.7047 .6998	ŀ
3	.6993	.6988	.6983	.6978	.6974	.6969 .6920	.6964	.6959	.6954	.6949	
4	.6944	.6940	.6935	.6930	.6925	.6920	.6916	.6911	.6906	.6901	1
1.45	.6897	.6892	.6887	.6882 .6835 .6789 .6743	.6878	.6873	.6868	.6863	.6859	.6854	l
	.6849	.6845	6840	.6835	.6878 .6831	.6826	.6868 .6821	.6817	.6812	.6854 .6807	ı
6 7 8	.6803	.6798	.6887 .6840 .6793	.6789	.6784	.6873 .6826 .6780	.6775	.6770	.6766	.6761	l
١	.6757	.6798 .6752	.6748	.6743	.6739	.6734	.6775 .6729	.6770 .6725	.6766 .6720	.6761 .6716	l
ğ	.6711	.6707	.6702	.6698	.6693	.6689	.6684	.6680	.6676	.6671	•

 $1/\pi = 0.318310$ 1/e = 0.367879

Moving the decimal point in either direction in N requires moving it in the OPPO-SITE direction in body of table (see p. 26).

RECIPROCALS (continued)

N	0	1	2	8	4	. 5	6	7`	8	9	Avg.
1.50	.6667	.6662	.6658	.6653	.6649	.6645	.6640	.6636	.6631	.6627	-4
ĭ	.6623	.6618	.6614	.6609	.6605	.6601	.6596	.6592	.6588	.6583	l '
	.6579	.6575	.6570	.6566	.6562	.6557	.6553	.6549	.6545	.6540	1
2	.6536	.6532	.6527	.6523	.6519	.6515	.6510	.6506	.6502	.6498	1
4	.6494	.6489	.6485	.6481	.6477	.6472	.6468	.6464	.6460	.6456	l l
L.55	.6452	.6447	.6443	.6439	.6435	.6431	.6427	.6423	.6418	.6414	
6	.6410	.6406	.6402	.6398	.6394	.6390	.6386	.6382	.6378	.6373	
7	.6369	.6365	.6361	.6357	.6353	.6349	.6345	.6341	.6337	.6333	ı
8	.6329	.6325	.6321	.6317	.6313	.6309	.6305	.6301	.6297	.6293	1
9	.6289	.6285	.6281	.6277	.6274	.6270	.6266	.6262	.6258	.6254	1
L.60	.6250	.6246	.6242	.6238	.6234	.6231	.6227	.6223	.6219	.6215	ı
1	.6211	.6207	.6203	.6200	.6196	.6192	.6188	.6184	.6180	.6177	1
2	.6173	.6169	.6165	.6161	.6158	.6154	.6150	.6146	.6143	.6139	1
3	.6135	.6131	.6127	.6124	.61 20	.6116	.6150 .6112	.6109	.6105	.6101	
4	.6098	.6094	.6090	.6086	.6083	.6 07 9	.6075	.6072	.6068	.6064	l l
L.65	.6061	.6057	.6053	.6050	.6046	.6042	.6039	.6035	.6031	.6028	ì
6	.6024	.6020	.6017	.6013	.6010	.6006	.6002	5999	5995	.5992	1
7	.5988	.5984	.5981	.5977	.5974	.5970	.5967	.5963	.5959	.5956	l.
8	.5952	.5949	.5945	.5942	.5938	.5935	.5931	.5928	.5924	.5921	ľ
9	.5917	.5914	.5910	.5907	.5903	.5900	.5896	.5893	.5889	.5886	ł
.70	.5882	.5879	.5875	.5872	.5869	.5865	.5862	.5858	.5855	.5851	-3
ĭ	.5848	.5845	.5841	.5838	.5834	.5831	.5828	.5824	5821	.5817	
2	.5814	.5811	.5807	.5804	.5800	.5797	.5794	.5790	.5787	.5784	ŀ
2	.5780	· .5777	.5774	.5770	.5767	.5764	.5760	.5757	.5754	.5750	ı
4	.5747	.5744	.5741	.5737	.5734	.5731	.5727	.5724	.5721	.5718	1
L. 75	.5714	.5711	.5708	.5705	.5701	.5698	.5695	.5692	.5688	.5685	İ
6	.5682	.5679	.5675	.5672	.5669	.5666	.5663	.5659	5656	.5653	1
7	.5650	.5647	.5643	.5640	.5637	.5634	.5631	.5627	.5624	.5621	1
8	.5618	.5615	.5612	.5609	.5605	.5602	.5599	.5596	.5593	.5590	1
9	.5587	.5583	.5580	.5577	.5574	.5571	.5568	.5565	.5562	.5559	1
1.80	.5556	.5552	.5549	.5546	.5543	.5540	.5537	.5534	.5531	.5528	
ī	.5525	.5522	.5519	.5516	.5513	.5510	.5507	.5504	.5501	.5498	
Ž	.5495	.5491	.5488	.5485	.5482	.5479	.5476	.5473	.5470	5467	1
3	.5464	.5461	.5459	.5456	.5453	.5450	.5447	.5444	.5441	.5438	1
4	.5435	.5432	.5429	.5426	.5423	.5420	.5417	.5414	.5411	.5408	
1.85	.5405	.5402	.5400	.5397	.5394	.5391	5388	.5385	.5382	.5379	ł
- 6	5376	.5373	.5371	.5368	.5365	.5362	.5388 .5359	.5356	.5353	.5350	
Ž	5348	.5345	.5342	.5339	.5336	.5333	.5330	.5328	5325	.5322	1
8	.5319	,5316	.5313	.5311	.5308	.5305	.5302	.5299	.5297	.5294	
9	.5291	.5288	.5285	.5283	.5280	.5277	.5274	.5271	.5269	.5266	
1.90	.5263	.5260	.5258	5255	.525 2	.5249	.5247	.5244	.5241	.5238	ŀ
	5236	5233	5230	.5255 .5227	.5225	.5222	5219	.5216	.5214	.5211	1
ż	.5236 .5208	.5233 .5206	.5230 .5203	.5200	.5198	5195	.5192	.5189	.5187	5184	1
3	.5181	5179	5176	.5173	.5171	5168	.5165	.5163	.5160	5157	ı
4	.5155	3152	5149	.5147	3144	5141	5139	.5136	.5133	.5131	ı
1.95	.5128	.5126	.5123	.5120	5118	.5115	.5112	.5110	.5107	.5105	1
6	5102	.5099	.5097	.5094	5092	.5089	.5086	.5084	.5081	5079	ı
ž	.5076	.5074	.5071	.5068	.5066	.5063	.5061	.5058	.5056	.5053	l- 2
8	5051	.5048	.5045	.5043	.5040	.5038	.5035	.5033	.5030	.5028	1 -
	5025	5023	.5020	.5018	.5015	.5013	.5010	.5008	.5005	.5003	1
9											

Moving the decimal point in either direction in N requires moving it in the OPPO-SITE direction in body of table (see p. 26).

RECIPROCALS (continued)

N	0	, 1	2	8	4	. 5	6	7	8	9	Avg.
2.0	.5000	.4975	.4950	.4926	.4902	.4878	.4854	.4831	.4808	.4785	- 24
1	.4762	.4739	.4717	.4695	.4673	.4651	.4630	.4608	.4587	.4566	- 21
2	.4545	.4525	.4505	.4484	.4464	.4444	.4425	.4405	.4386	.4367	- 20
3	.4348	.4329	.4310	.4292	.4274	.4255	.4237	.4219	.4202	.4184	- 18
4	.4167	.4149	.4132	.4115	.4098	.4082	.4065	.4049	.4032	.4016	- 17
2.5	.4000	.3984	.3968	3953	.3937	3922	3906	.3891	.3876	.3861	- 15
6	.3846	.3831	.3817	3802	.3788	3774	3759	.3745	.3731	.3717	- 14
7	.3704	.3690	.3676	3663	.3650	3636	3623	.3610	.3597	.3584	- 13
8	.3571	.3559	.3546	3534	.3521	3509	3497	.3484	.3472	.3460	- 12
9	.3448	.3436	.3425	3413	.3401	3390	3378	.3367	.3356	.3344	- 12
3.0	.3333	.3322	.3311	.3300	.3289	.3279	.3268	.3257	.3247	.3236	11
1	.3226	.3215	.3205	.3195	.3185	.3175	.3165	.3155	.3145	.3135	10
2	.3125	.3115	.3106	.3096	.3086	.3077	.3067	.3058	.3049	.3040	10
3	.3030	.3021	.3012	.3003	.2994	.2985	.2976	.2967	.2959	.2950	9
4	.2941	.2933	.2924	.2915	.2907	.2899	.2890	.2882	.2874	.2865	8
8.5	.2857	.2849	.2841	.2833	.2825	.2817	.2809	.2801	.2793	.2786	- 8
6	.2778	.2770	.2762	.2755	.2747	.2740	.2732	.2725	.2717	.2710	- 8
7	.2703	.2695	.2688	.2681	.2674	.2667	.2660	.2653	.2646	.2639	- 7
8	.2632	.2625	.2618	.2611	.2604	.2597	.2591	.2584	.2577	.2571	- 7
9	.2564	.2558	.2551	.2545	.2538	.2532	.2525	.2519	.2513	.2506	- 6
4.0	.2500	.2494	.2488	.2481	.2475	.2469	.2463	.2457	.2451	.2445	- 6
1	.2439	.2433	.2427	.2421	.2415	.2410	.2404	.2398	.2392	.2387	- 6
2	.2381	.2375	.2370	.2364	.2358	.2353	.2347	.2342	.2336	.2331	- 6
3	.2326	.2320	.2315	.2309	.2304	.2299	.2294	.2288	.2283	.2278	- 5
4	.2273	.2268	.2262	.2257	.2252	.2247	.2242	.2237	.2232	.2227	- 5
4.5	.2222	.2217	.2212	.2208	.2203	.2198	.2193	.2188	.2183	.2179	- 5
6	.2174	.2169	.2165	.2160	.2155	.2151	.2146	.2141	.2137	.2132	- 5
7	.2128	.2123	.2119	.2114	.2110	.2105	.2101	.2096	.2092	.2088	- 4
8	.2083	.2079	.2075	.2070	.2066	.2062	.2058	.2053	.2049	.2045	- 4
9	.2041	.2037	.2033	.2028	.2024	.2020	.2016	.2012	.2008	.2004	- 4

 $1/\pi = 0.318310$ 1/e = 0.367879

Explanation of Table of Reciprocals (pp. 24-27).

This table gives the values of 1/N for values of N from 1 to 10, correct to four figures. (Interpolated values may be in error by 1 in the fourth figure.)

To find the reciprocal of a number N outside the range from 1 to 10, note that moving the decimal point any number of places in either direction in column N is equivalent to moving it the same number of places in the opposite direction in the body of the table. For example:

$$\frac{1}{3.217} = 0.3108$$
; $\frac{1}{3217} = 0.0003108$; $\frac{1}{0.003217} = 310.8$

RECIPROCALS (continued)

N	0	1	2 .	8	4	5	6	7	8	9	Avg.
5.0 .1 .2	.2000 .1961 .1923	.1996 .1957 .1919 .1883	.1992 .1953 .1916 .1880	.1988 .1949 .1912 .1876	.1984 .1946 .1908 .1873 .1838	.1980 .1942 .1905 .1869	.1976 .1938 .1901 .1866	.1972 .1934 .1898 .1862 .1828	.1969 .1931 .1894 .1859	.1965 .1927 .1890 .1855	-4
.1 .2 .3 .4	.1887 .1852	.1883 .1848	.1880 .1845	.1876 .1842		.1835	.1652	.1862 .1828	.1859 .1825	.1855 .1821	- 3
5.5 .6 .7 .8	.1818 .1786 .1754 .1724 .1695	.1815 .1783 .1751 .1721 •.1692	.1812 .1779 .1748 .1718 .1689	.1808 .1776 .1745 .1715 .1686	.1805 .1773 .1742 .1712 .1684	.1802 .1770 .1739 .1709 .1681	.1799 .1767 .1736 .1706 .1678	.1795 .1764 .1733 .1704 .1675	.1792 .1761 .1730 .1701 .1672	.1789 .1757 .1727 .1698 .1669	
6.0 .1 .2 .3	.1667 .1639 .1613 .1587	.1664 .1637 .1610 .1585 .1560	.1661 .1634 .1608 .1582 .1558	.1658 .1631 .1605 .1580	.1656 .1629 .1603 .1577 .1553	.1653 .1626 .1600 .1575	.1650 .1623 .1597 .1572 .1548	.1647 .1621 .1595 .1570	.1645 .1618 .1592 .1567 .1543	.1642 .1616 .1590 .1565 .1541	- 2
6.5 .6 .7 .8	.1538 .1515 .1493 .1471	.1536 .1513 .1490 .1468 .1447	.1534 .1511 .1488 .1466	.1531 .1508 .1486 .1464 .1443	.1529 .1506 .1484 .1462 .1441	.1527 .1504 .1481 .1460	.1524 .1502 .1479 .1458 .1437	.1522 .1499 .1477 .1456 .1435	.1520 .1497 .1475 .1453 .1433	.1517 .1495 .1473 .1451	
7.0	.1429 .1408 .1389 .1370 .1351	.1427 .1406 .1387 .1368 .1350	.1425 .1404 .1385 .1366 .1348	.1422 .1403 .1383 .1364 .1346	.1420 .1401 .1381 .1362 .1344	.1418 .1399 .1379 .1361 .1342	.1416 .1397 .1377 .1359 .1340	.1414 .1395 .1376 .1357 .1339	.1412 .1393 .1374 .1355 .1337	.1410 .1391 .1372 .1353 .1335	
7.5 .6 .7 .8 .9	.1333 .1316 .1299 .1282 .1266	.1332 .1314 .1297 .1280 .1264	.1330 .1312 .1295 .1279 .1263	.1328 .1311 .1294 .1277 .1261	.1326 .1309 .1292 .1276 .1259	.1325 .1307 .1290 .1274 .1258	.1323 .1305 .1289 .1272 .1256	.1321 .1304 .1287 .1271 .1255	.1319 .1302 .1285 .1269 .1253	.1318 .1300 .1284 .1267 .1252	
8.0 .1 .2 .3	.1250 .1235 .1220 .1205 .1190	.1248 .1233 .1218 .1203 .1189	.1247 .1232 .1217 .1202 .1188	.1245 .1230 .1215 .1200 .1186	.1244 .1229 .1214 .1199 .1185	.1242 .1227 .1212 .1198 .1183	.1241 .1225 .1211 .1196 .1182	.1239 .1224 .1209 .1195 .1181	.1238 .1222 .1208 .1193 .1179	.1236 .1221 .1206 .1192 .1178	-1
8.5 .6 .7 .8 .9	.1176 .1163 .1149 .1136 .1124	.1175 .1161 .1148 .1135 .1122	.1174 .1160 .1147 .1134 .1121	.1172 .1159 .1145 .1133 .1120	.1171 .1157 .1144 .1131 .1119	.1170 .1156 .1143 .1130 .1117	.1168 .1155 .1142 .1129 .1116	.1167 .1153 .1140 .1127 .1115	.1166 .1152 .1139 .1126 .1114	.1164 .1151 .1138 .1125 .1112	
9.0 .1 .2 .3	.1111 .1099 .1087 .1075 .1064	.1110 .1098 .1086 .1074 .1063	.1109 .1096 .1085 .1073 .1062	.1107 .1095 .1083 .1072 .1060	.1106 .1094 .1082 .1071 .1059	.1105 .1093 .1081 .1070 .1058	.1104 .1092 .1080 .1068 .1057	.1103 .1091 .1079 .1067 .1056	.1101 .1089 .1078 .1066 .1055	.1100 .1088 .1076 .1065 .1054	
9.8 .6 .7 .8	.1053 .1042 .1031 .1020	.1052 .1041 .1030 .1019 .1009	.1050 .1040 .1029 .1018 .1008	.1049 .1038 .1028 .1017 .1007	.1048 .1037 .1027 .1016 .1006	.1047 .1036 .1026 .1015 .1005	.1046 .1035 .1025 .1014 .1004	.1045 .1034 .1024 .1013 .1003	.1044 .1033 .1022 .1012 .1002	.1043 .1032 .1021 .1011 .1001	

Moving the decimal point in either direction in N requires moving it in the OPPOSITE direction in body of table (see p. 26).

CIRCUMFERENCES OF CIRCLES BY HUNDREDTHS

(For circumferences by eighths, see p. 32)

D	0	1	2	8	4	5	6	7	8	9	Avg. diff.
1.0	3.142	3.173	3.204	3.236	3.267	3.299	3.330	3.362	3.393 3.707	3.424	31
.1	3.456	3.487	3.519	3.550	3.581	3.613	3.644	3.676	3.707	3.738	ł
.2	3.770	3.801	3.833	3.864	3.896	3.927	3.958	3.990	4.021	4.053	1
.1 .2 .3 .4	4.064 4.398	4.115 4.430	4.147 4.461	4.178 4.492	4.210 4.524	4.241 4.555	4.273 4.587	4.304 4.618	4.335 4.650	4.367 4.681	l
1.5	4.712	4.744	4.775	4.807 5.121	4.838 5.152	4.869	4.901 5.215	4.932	4.964 5.278	4.995	l
.6	5.027	5.058	5.089	5.121	5.152	5.184	5.215	5.246	5.278	5.309	l
.7	5.341	5.372	5.404	5.435 5.749	5.466	5.498	5.529	5.561	5.592	5.623 5.938	ĺ
.6 .7 .8 .9	5.655 5.969	5.686 6.000	5.718 6. 0 32	6.063	5.781 6.095	5.812 6.126	5.843 6.158	5.875 6.189	5.906 6.220	5.938 6.252	1
.,	l					0.120		0.109	0.220	0.232	
2.0	6.283	6.315	6.346	6.377	6.409	6.440	6.472	6.503	6.535	6.566	
ij	6.597 6.912	6.629 6.943	6.660	6.692	6.723	6.75 4 7.069	6.786	6.817	6.849	6.880	1
.4	7.226	7.257	6.974 7.288	7.006 7.320	7.037 7.351	7.069 7.383	7.100 7.414	7.131	7.163 7.477	7.194 7.508	1
.1 .2 .3	7.540	7.571	7.603	7.634	7.665	7.697	7.728	7.446 7.760	7.791	7.823	l
											l
2.5	7.854	7.885	7.917 8.231 8.545 8.859 9.173	7.948	7.980	8.011	8.042	8.074	8.105	8.137	l
.6	8.168	8.200	8.231	8.262	8.294	8.325	8.357	8.388 8.702	8.419	8.451	l
.7	8.482	8.514	8.545	8.577	8.608 8.922	8.639 8.954	8.671	8.702	8.734	8.765	l
.6 .7 .8 .9	8.796 9.111	8.828	0.829	8.891 9.205	8.922 9.236	8.954	8.985	9.016	9.048	9.079	t
.9	9.111	9.142	9.173	9.205	9.230	9.268	9.299	9.331	9.362	9.393	1
8.0	9.425	9.456	9.488	9.519	9.550	9.582	9.613	9.645	9.676	9.708	1
-1	9.739	9.770	9.802	9.833	9.865	9.896	9.927	9.959	9.990	10.022	31 3
ż	10.05	10.08	10.12	10.15	10.18	10.21	10.24	10.27	10.30	10.02	l '
.2	10.37	10.40	10.43	10.46	10.49	10.52	10.56	10.59	10.62	10.65	1
.4	10.68	10.71	10.74	10.78	10.81	10.84	10.87	10.90	10.93	10.96	1
3.5	11.00	11.03	11.06	11.09	11.12	11.15	11.18	11 22	11 25	11.28	ł
	1131	11.34	11.37	11.40	11.44	11.47	11.50	11.53	11.25 11.56	11.59	ı
.6 .7	11.62	11.66	11.69	11.72	11.44 11.75	11.47 11.78	11.50 11.81	11.22 11.53 11.84	11.88	11.91	•
.8 .9	11.94	11.97	12.00	12.03	12.06	12.10	12.13	12.16	12.19	12.22	ľ
.9	12.25	12.28	12.32	12.35	12.38	12.41	12.44	12.47	12.50	12.53	1
4.0	12.57	12.60	12.63	12.66	12.69	12.72	12.75	12.79	12.82	12.85	1
	12.88	12.91 13.23	12.63 12.94 13.26	12.97 13.29	13.01	13.04 13.35	13.07	13.10	13.13	13.16	i
.2	13.19	13.23	13.26	13.29	13.32	13.35	13.38 13.70	13.41	13.45	13.48	•
.1 .2 .3 .4	13.51	13.54	13.57	13.60	13.63	13.6 7	13.70	13.73	13.76	13. 7 9	1
.4	13.82	13.85	13.89	13.92	13.95	13.98	14.01	14.04	14.07	14.11	1
4.5	14.14	14.17	14.20	14.23 14.55	14.26	14.29	14.33	14.36	14.39	14.42	I
.6	14.45	14.48	14.51 14.83	14.55	14.58	14.61	14.64	14.67	14.39 14.70	14.73	
.7	14.77	14.80	14.83	14.86	14.58 14.89 15.21	14.92	14.95	14.99	15.02 15.33	15.05	i
.6 .7 .8	15.08	15.11	15.14	15.17	15.21	15.24	15.27	15.30	15.33	15.36	1
.9	15.39	15.43	15.46	15.49	15.52	15.5 5	15.58	15.61	15.65	15.68	ı

Explanation of Table of Circumferences (pp. 28-29)

Circumference = $\pi \times \text{diam.} = 3.141593 \times \text{diam.}$

Conversely,

Diameter = $\frac{1}{\tau}$ × circumf. = 0.31831 × circumf.

This table gives the product of π times any number D from 1 to 10; that is, it is a table of multiples of π . (D = diameter.)

Moving the decimal point one place in column D is equivalent to moving it one place in the body of the table.

MATHEMATICAL TABLES

CIRCUMFERENCES BY HUNDREDTHS (continued)

D	0	1	2	8	4	5	6	7	8	9	Avg.
5,0 .1 .2 .3	15.71 16.02 16.34 16.65 16.96	15.74 16.05 16.37 16.68 17.00	15.77 16.08 16.40 16.71 17.03	15.80 16.12 16.43 16.74 17.06	15.83 16.15 16.46 16.78 17.09	15.87 16.18 16.49 16.81 17.12	15.90 16.21 16.52 16.84 17.15	15.93 16.24 16.56 16.87 17.18	15.96 16.27 16.59 16.90 17.22	15.99 16.30 16.62 16.93 17.25	:
5.5 .6 .7 .8 .9	17.28 17.59 17.91 18.22 18.54	17.31 17.62 17.94 18.25 18.57	17.34 17.66 17.97 18.28 18.60	17.37 17.69 18.00 18.32 18.63	17.40 17.72 18.03 18.35 18.66	17.44 17.75 18.06 18.38 18.69	17.47 17.78 18.10 18.41 18.72	17.50 17.81 18.13 18.44 18.76	17.53 17.84 18.16 18.47 18.79	17.56 17.88 18.19 18.50 18.82	
6.0 .1 .2 .3 .4	18.85 19.16 19.48 19.79 20.11	18.88 19.20 19.51 19.82 20.14	18.91 19.23 19.54 19.85 20.17	18.94 19.26 19.57 19.89 20.20	18.98 19.29 19.60 19.92 20.23	19.01 19.32 19.63 19.95 20.26	19.04 19.35 19.67 19.98 20.29	19.07 19.38 19.70 20.01 20.33	19.10 19.42 19.73 20.04 20.36	19.13 19.45 19.76 20.07 20.39	
6.5 .6 .7 .8	20.42 20.73 21.05 21.36 21.68	20.45 20.77 21.08 21.39 21.71	20.48 20.80 21.11 21.43 21.74	20.51 20.83 21.14 21.46 21.77	20.55 20.86 21.17 21.49 21.80	20.58 20.89 21.21 21.52 21.83	20.61 20.92 21.24 21.55 21.87	20.64 20.95 21.27 21.58 21.90	20.67 20.99 21.30 21.61 21.93	20.70 21.02 21.33 21.65 21.96	
7.0	21.99 22.31 22.62 22.93 23.25	22.02 22.34 22.65 22.97 23.28	22.05 22.37 22.68 23.00 23.31	22.09 22.40 22.71 23.03 23.34	22.12 22.43 22.75 23.06 23.37	22.15 22.46 22.78 23.09 23.40	22.18 22.49 22.81 23.12 23.44	22.21 22.53 22.84 23.15 23.47	22.24 22.56 22.87 23.18 23.50	22.27 22.59 22.90 23.22 23.53	
7.5 7.6 7.8 9.	23.56 23.88 24.19 24.50 24.82	23.59 23.91 24.22 24.54 24.85	23.62 23.94 24.25 24.57 24.88	23.66 23.97 24.28 24.60 24.91	23.69 24.00 24.32 24.63 24.94	23.72 24.03 24.35 24.66 24.98	23.75 24.06 24.38 24.69 25.01	23.78 24.10 24.41 24.72 25.04	23.81 24.13 24.44 24.76 25.07	23.84 24.16 24.47 24.79 25.10	
8.0 1.2 3.4	25.13 25.45 25.76 26.08 26.39	25.16 25.48 25.79 26.11 26.42	25.20 25.51 25.82 26.14 26.45	25.23 25.54 25.86 26.17 26.48	25.26 25.57 25.89 26.20 26.52	25.29 25.60 25.92 26.23 26.55	25.32 25.64 25.95 26.26 26.58	25.35 25.67 25.98 26.30 26.61	25.38 25.70 26.01 26.33 26.64	25.42 25.73 26.04 26.36 26.67	
5.5 6.7 8.9	26.70 27.02 27.33 27.65 27.96	26.73 27.05 27.36 27.68 27.99	26.77 27.08 27.39 27.71 28.02	26.80 27.11 27.43 27.74 28.05	26.83 27.14 27.46 27.77 28.09	26.86 27.17 27.49 27.80 28.12	26.89 27.21 27.52 27.83 28.15	26.92 27.24 27.55 27.87 28.18	26.95 27.27 27.58 27.90 28.21	26.99 27.30 27.61 27.93 28.24	
9.0	28.27 28.59 28.90 29.22 29.53	28.31 28.62 28.93 29.25 29.56	28.34 28.65 28.97 29.28 29.59	28.37 28.68 29.00 29.31 29.63	28.40 28.71 29.03 29.34 29.66	28.43 28.75 29.06 29.37 29.69	28.46 28.78 29.09 29.41 29.72	28.49 28.81 29.12 29.44 29.75	28.53 28.84 29.15 29.47 29.78	28.56 28.87 29.19 29.50 29.81	
9.5 6.7.8.9	29.85 30.16 30.47 30.79 31.10	29.88 30.19 30.50 30.82 31.13	29.91 30.22 30.54 30.85 31.16	29.94 30.25 30.57 30.88 31.20	29.97 30.28 30.60 30.91 31.23	30.00 30.32 30.63 30.94 31.26	30.03 30.35 30.66 30.98 31.29	30.07 30.38 30.69 31.01 31.32	30.10 30.41 30.72 31.04 31.35	30.13 30.44 30.76 31.07 31.38	
0.0	31.42										١

Moving the decimal point ONE place in D requires moving it ONE place in body of table (see p. 28).

AREAS OF CIRCLES BY HUNDREDTHS

(For areas by eighths, see p. 32)

D	0	1	2	8	4	5	6	7	8	9.	Avg.
1.0 .1 .2 .3 .4	0.785 0.950 1.131 1.327 1.539	0.801 0.968 1.150 1.348 1.561	0.817 0.985 1.169 1.368 1.584	0.833 1.003 1.188 1.389 1.606	0.849 1.021 1.208 1.410 1.629	0.866 1.039 1.227 1.431 1.651	0.882 1.057 1.247 1.453 1.674	0.899 1.075 1.267 1.474 1.697	0.916 1.094 1.287 1.496 1.720	0.933 1.112 1.307 1.517 1.744	16 18 20 21 23
1. 5 .6 .7 .8	1.767 2.011 2.270 2.545 2.835	1.791 2.036 2.297 2.573 2.865	1.815 2.061 2.324 2.602 2.895	1.839 2.087 2.351 2.630 2.926	1.863 2.112 2.378 2.659 2.956	1.887 2.138 2.405 2.688 2.986	1.911 2.164 2.433 2.717 3.017	1.936 2.190 2.461 2.746 3.048	1.961 2.217 2.488 2.776 3.079	1.986 2.243 2.516 2.806 3.110	24 26 27 29 31
2.0 .1 .2 .3 .4	3.142 3.464 3.801 4.155 4.524	3.173 3.497 3.836 4.191 4.562	3.205 3.530 3.871 4.227 4.600	3.237 3.563 3.906 4.264 4.638	3.269 3.597 3.941 4.301 4.676	3,301 3,631 3,976 4,337 4,714	3.333 3.664 4.011 4.874 4.753	3.365 3.698 4.047 4.412 4.792	3.398 3.733 4.083 4.449 4.831	3.431 3.767 4.119 4.486 4.870	32 34 35 37 38
2.5 .6 .7 .8	4.909 5.309 5.726 6.158 6.605	4.948 5.350 5.768 6.202 6.651	4.988 5.391 5.811 6.246 6.697	5.027 5.433 5.853 6.290 6.743	5.067 5.474 5.896 6.335 6.789	5.107 5.515 5.940 6.379 6.835	5.147 5.557 5.983 6.424 6.881	5.187 5.599 6.026 6.469 6.928	5.228 5.641 6.070 6.514 6.975	5.269 5.683 6.114 6.560 7.022	40 42 43 45 46
8.0 .1 .2 .3 .4	7.069 7.548 8.042 8.553 9.079	7.116 7.596 8.093 8.605 9.133	7.163 7.645 8.143 8.657 9.186	7.211 7.694 8.194 8.709 9.240	7.258 7.744 8.245 8.762 9.294	7.306 7.793 8.296 8.814 9.348	7.354 7.843 8.347 8.867 9.402	7.402 7.892 8.398 8.920 9.457	7.451 7.942 8.450 8.973 9.511	7.499 7.992 8.501 9.026 9.566	48 49 51 53 54
8.8 .5 .6 .7 .8	9.621 10.18 10.75 11.34 11.95	9.676 10.24 10.81 11.40 12.01	9.731 10.29 10.87 11.46 12.07	9.787 10.35 10.93 11.52 12.13	9.842 10.41 10.99 11.58 12.19	9.898 10.46 11.04 11.64 12.25	9.954 10.52 11.10 11.70 12.32	10.010 10.01 10.58 11.16 11.76 12.38	10.07 10.64 11.22 11.82 12.44	10.12 10.69 11.28 11.88 12.50	56 6 6
4.0 .1 .2 .3 .4	12.57 13.20 13.85 14.52 15.21	12.63 13.27 13.92 14.59 15.27	12.69 13.33 13.99 14.66 15.34	12.76 13.40 14.05 14.73 15.41	12.82 13.46 14.12 14.79 15.48	12.88 13.53 14.19 14.86 15.55	12.95 13.59 14.25 14.93 15.62	13.01 13.66 14.32 15.00 15.69	13.07 13.72 14.39 15.07 15.76	13.14 13.79 14.45 15.14 15.83	7
4.5 .6 .7 .8	15.90 16.62 17.35 18.10 18.86	15.98 16.69 17.42 18.17 18.93	16.05 16.76 17.50 18.25 19.01	16.12 16.84 17.57 18.32 19.09	16.19 16.91 17.65 18.40 19.17	16.26 16.98 17.72 18.47 19.24	16.33 17.06 17.80 18.55 19.32	16.40 17.13 17.87 18.63 19.40	16.47 17.20 17.95 18.70 19.48	16.55 17.28 18.02 18.78 19.56	8

Explanation of Table of Areas of Circles (pp. 30-31)

Moving the decimal point one place in column D is equivalent to moving it two places in the body of the table. (D = diameter.)

Area of circle = $\frac{\pi}{4}$ × (diam.2) = 0.785398 × (diam.2)

Conversely,

Diam. =
$$\sqrt{\frac{4}{\pi}} \times \sqrt{\text{area}} = 1.128379 \times \sqrt{\text{area}}$$

AS OF CIRCLES BY HUNDREDTHS (continued)

0	1	2	3	4	5	6	7	8	9	Avg. diff.
10.62	19.71	19.79	19.87	19.95	20.03	20.11	20.19	20.27	20,35	8
19.63 20.43	20.51	20.59	20.67	20.75	20.83	20.91	20.19	21.07	21.16	ı °
20.43 21.24	21.32	21.40	21.48	20.75 21.57	21.65	21.73	21.81	21.90	21.98	
22.06	22.15	22.23	22.31	22.40	22.48	22.56	22.65	22.73	22.82	
22.90	22.99	23.07	23.16	23.24	23.33	23.41	23.50	23.59	23.67	9
23.76	23.84	23.93	24.02	24.11	24.19	24.28	24.37	24.45	24.54	l
24.63	24.72	24.81	24.89	24.98	25.07	25.16	25.25	25.34	25,43	ı
25.52	25.61	25.70	25.79	25.88	25.97	26.06	26.15	26.24	26,33	1
26.42	26.51	26.60	26.69	26.79	26.88	26.97	27.06	27.15	27.25	l
27.34	27.43	27.53	27.62	27.71	27.81	27.90	27.99	28.09	28.18	1
28.27	28.37	28.46	28.56	28.65	28.75	28.84	28.94	29.03	29.13	10
29.22	29.32	29.42	29.51	29.61	29.71	29.80	29.90	30.00	30.09	l **
30.19	30,29	29.42 30.39	30.48	30.58	30.68	30.78	30.88	30.97	31.07	
31.17	31.27	31.37	31.47	31.57	31.67	31.77	31.87	31.97	32.07	1
32.17	32.27	32.37	32.47	32.57	32.67	32.78	32.88	32.98	33.08	ł
33.18	33.29	33.39	33.49	33.59	33.70	33.80	33.90	34.00	34.11	1
34.21	34.32	34.42	34.52	34.63	34.73	34.84	34.94	35.05	35.15	1
35.26	35.36	35.47	35.57	35.68 36. 75	35.78	35.89	36.00	36.10 37.18	36.21 37.28	11
36.32	36.42	36.53	36.64	36.75	36.85	36.96	37.07	37.18	37.28	ı
37.39	37.50	37.61	37.72	37.83	37.94	38.05	38.16	38.26	38.37	
38.48	38.59 39.70	38.70	38.82	38.93	39.04	39.15	39.26	39.37	39.48	Į
39.59	39.70	39.82	39.93	40.04	40.15	40.26	40.38	40.49	40.60	l
40.72	40.83	40.94	41.06	41.17	41.28	41.40	41.51	41.62	41.74	l
41.85	41.97	42.08	42.20	42.31	42.43	42.54	42.66	42.78	42.89	12
43.01	43.12	43.24	43.36	43.47	43.59	43.71	43.83	43.94	44.06	ł
44.18	44.30	44.41	44.53 45.72	44.65	44.77	44.89	45.01	45.13	45.25	1
45.36	45.48	45.60	45.72	45.84	45.96	46.08	46.20	46.32	46.45	1
46.57	46.69	46.81	46.93	47.05	47.17	47.29 48.52	47.42	47.54	47.66	1
47.78 49.02	47.91 49.14	48.03 49.27	48.15 49.39	48.27 49.51	48.40 49.64	40.34 49.76	48.65 49.89	48.77 50.01	48.89 50.14	1
47.02				47.31	47.04		47.07	JU.01		ı
50.27	50.39	50 .52	50.64	50.77	50.90	51.02	51.15	51.28	51.40	13
51.53 52.81	51.66	51.78	51.91	52.04	52.17	52.30	52.42 53.72	52.55	52.68	1
52.81	52.94	53.07	53.20	53.33	53.46	53.59	53.72	53.85	53.98	ŀ
54.11	54.24	54.37	54.50	54.63	54.76	54.89	55.02	55.15	55.29	1
55.42	55.55	55.68	55.81	55.95	56.08	56.21	56.35	56.48	56.61	
56.75	56.88	57.01	57.15	57.28	57.41	57.55	57.68	57.82	57.95	ł
58.09	58.22	58.36	58.49	58.63	58.77	58.90	59.04	59.17	59.31	14
59.45	59.58	59.72	59.86	59.99	60.13	60.27	60.41	60.55	60.68	ł
60.82	60.96	61.10	61.24	61.38	61.51	61.65	61.79	61.93	62.07	1
62.21	62.35	62.49	62.63	62.77	62.91	63.05	63.19	63.33	63.48	ı
63.62	63.76	63.90	64.04	64.18	64.33	64.47	64.61	64.75	64.90	ı
65.04	65.18	65.33	65.47	65.61	65.76	65.90	66.04	66.19	66.33	15
66.48	66.62	66.77	66.91	67.06	67.20	67.35	67.49	67.64	67.78 69.25	1
67.93	68.08	68.22	68.37	68.51	68.66	68.81	68.96	69.10	69.25	1
69.40	69.55	69.69	69.84	69.99	70.14	70.29	70.44	70.58	70.73	l
70.88	71.03	71.18	71.33	71.48	71.63	71.78 73.29	71.93	72.08	72.23 73.75	l
72.38	72.53	72.68	72.84	72.99	73.14	73.29	73.44	73.59	73.75	1
73.90	74.05 75.58	74.20 75.74	74.36	74.51 76.05	74.66	74.82	74.97	75.12	75.28	1
		75.74	75.89	76.05	76.20	76.36	76.51	76 67		
75.43 76.98	77.13	77.29	77.44	77.60	77.76	77.91	78.07	76.67 78.23	76.82 78.38	16

ing the decimal point ONE place in D requires moving it TWO places in body le (see p. 30).

CIRCUMFERENCES AND AREAS OF CIRCLES BY EIGHTHS, ETC.
(For tenths, see p. 28)

							, ,				
Diam.	Cireum.	Area	Diam.	Cireum.	Area	Diam.	Circum.	Area	Diam.	Circum.	Area
}64 }62 \$64	.04909 .09817 .1473	.00019 .00077 .00173	7/6 57/64 29/52 59/64	2.749 2.798 2.847 2.896	.6013 .6230 .6450 .6675	1/16 1/8 3/16	12.57 12.76 12.96 13.16	12.57 12.96 13.36 13.77	9 14 14 14	28.27 28.67 29.06 29.45	63.62 65.40 67.20 69.03
110	.1963	.00307	15/6	2.945	.6903	14	13.35	14.19	1/2	29.85	70.88
964	.2454	.00479	6)64	2.994	.7135	516	13.55	14.61	9/6	30.24	72.76
962	.2945	.00690	8)62	3.043	.7371	38	13.74	15.03	9/4	30.63	74.66
764	.3436	.00940	6364	3.093	.7610	716	13.94	15.47	7/6	31.02	76.59
}6	.3927	.01227	1	3.142	.7854	1/2	14.14	15.90	10	31.42	78.54
964	.4418	.01553	}/s	3.338	.8866	9/16	14.33	16.35	16	31.81	80.52
952	.4909	.01917	}/s	3.534	.9940	5/8	14.53	16.80	14	32.20	82.52
1}64	.5400	.02320	}/s	3.731	1.108	1/16	14.73	17.26	36	32.59	84.54
910	.5890	.02761	14	3.927	1.227	34	14.92	17.72	1/2		86.59
1964	.6381	.03241	516	4.123	1.353	13/16	15.12	18.19	5/6		88.66
762	.6872	.03758	36	4.320	1.485	76	15.32	18.67	5/4		90.76
1964	.7363	.04314	316	4.516	1.623	15/16	15.51	19.15	7/8		92.89
34 1364 982 1964	.7854 .8345 .8836 .9327	.04909 .05542 .06213 .06922	1/2 9/10 5/8 1/10	4.712 4.909 5.105 5.301	1.767 1.917 2.074 2.237	146 148 346	15.71 15.90 16.10 16.30	19.63 20.13 20.63 21.14	11 14 14 36	34.56 34.95 35.34 35.74	95.03 97.21 99.40 101.6
516	.9817	.07670	34	5.498	2.405	14	16.49	21.65	1/2	36.13	103.9
2364	1.031	.08456	13/16	5.694	2.580	516	16.69	22.17	5/4	36.52	106.1
1362	1.080	.09281	7/8	5.890	2.761	38	16.89	22.69	3/4	36.91	108.4
2364	1.129	.1014	15/16	6.087	2.948	716	17.08	23.22	3/8	37.31	110.8
36	1.178	.1104	16	6.283	3.142	3/2	17.28	23.76	12	37.70	113.1
2564	1.227	.1198	16	6.480	3.341	9/16	17.48	24.30	16	38.09	115.5
1362	1.276	.1296	316	6.676	3.547	5/8	17.67	24.85	14	38.48	117.9
2764	1.325	.1398	316	6.872	3.758	11/16	17.87	25.41	36	38.88	1 20 .3
7/6	1.374	.1503	14	7.069	3.976	34	18.06	25.97	1/2	39.27	122.7
9964	1.424	.1613	516	7.265	4.200	13/16	18.26	26.53	5/4	39.66	125.2
15/62	1.473	.1726	38	7.461	4.430	78	18.46	27.11	5/4	40.06	127.7
3/64	1.522	.1843	316	7.658	4.666	15/16	18.65	27.69	7/6	40.45	130.2
3/64 17/62 3/64	1.571 1.620 1.669 1.718	.1963 .2088 .2217 .2349	1/2 916 5/8 11/16	7.854 8.050 8.247 8.443	4.909 5.157 5.412 5.673	6 1/6 1/4 3/6	18.85 19.24 19.63 20.0 3	28.27 29.46 30.68 31.92	18 16 14 36	40.84 41.23 41.63 42.02	132. 7 135.3 137.9 140.5
916	1.767	.2485	34	8.639	5.940	14	20.42	33.18	1/2	42.41	143.1
8764	1.816	.2625	13/16	8.836	6.213	58	20.81	34.47	5/6	42.80	145.8
1962	1.865	.2769	7/8	9.032	6.492	34	21.21	35.78	3/4	43.20	148.5
8964	1.914	.2916	15/16	9.228	6.777	78	21.60	37.12	7/6	43.59	151.2
56 4364 2342 4364	1.963 2.013 2.062 2.111	.3068 .3223 .3382 .3545	3 146 346	9.425 9.621 9.817 10.01	7.069 7.366 7.670 7.980	7 }6 }4 }6	21.99 22.38 22.78 23.17	38.48 39.87 41.28 42.72	14 16 14 36	43.98 44.37 44.77 45.16	153.9 156.7 159.5 162.3
13/6	2.160	.3712	14	10.21	8.296	14	23.56	44.18	1/2	45.55	165.1
4564	2.209	.3883	516	10.41	8.618	58	23.95	45.66	5/6	45.95	168.0
2342	2.258	.4057	36	10.60	8.946	34	24.35	47.17	3/4	46.34	170.9
4364	2.307	.4236	716	10.80	9.281	78	24.74	48.71	7/6	46.73	173.8
94	2.356	.4418	14	11.00	9.621	8	25.13	50.27	15	47.12	176.7
4964	2.405	.4604	910	11.19	9.968	14	25.53	51.85	16	47.52	179.7
2562	2.454	.4794	58	11.39	10.32	34	25.92	53.46	14	47.91	182.7
2564	2.503	.4987	1110	11.58	10.68	36	26.31	55.09	36	48.30	185.7
13/6	2.553	.5185	34	11.78	11.04	1/4	26.70	56.75	1/4	48.69	188.7
53/64	2.602	.5386	13/16	11.98	11.42	5/6	27.10	58.43	4/6	49.09	191.7
23/62	2.651	.5591	7/8	12.17	11.79	3/4	27.49	60.13	3/6	49.48	194.8
55/64	2.700	.5800	15/16	12.37	12.18	3/6	27.88	61.86	3/6	49.87	197.9

CIRCHMPERENCES	AND	AREAS	RV	RIGHTHS	(continued)

Diam.	Circum.	Area	Бівш.	Circum.	Area	Diam.	Circum.	Area	Diam.	Ciroum.	Area
16	50.27	201.1	19 1/2	61.26	298.6	23	72.26	415.5	29	91.11	660.5
36	50.66	204.2	5/8	61.65	302.5	16	72.65	420.0	14	91.89	672.0
34	51.05	207.4	3/4	62.05	306.4	14	73.04	424.6	14	92.68	683.5
38	51.44	210.6	7/8	62.44	310.2	36	73.43	429.1	34	93.46	695.1
14	51.84	213.8	20	62.83	314.2	1/2	73.83	433.7	30	94.25	706.9
56	52.23	217.1	16	63.22	318.1	5/8	74.22	438.4	14	95.03	718.7
34	52.62	220.4	14	63.62	322.1	3/4	74.61	443.0	15	95.82	730.6
78	53.01	223.7	36	64.01	326.1	7/8	75.01	447.7	34	96.60	742.6
17	53.41	227.0	14	64.40	330.1	24	75.40	452.4	31	97.39	754.8
16	53.80	230.3	56	64.80	334.1	34	76.18	461.9	1/4	98.17	767.0
14	54.19	233.7	34	65.19	338.2	34	76.97	471.4	1/2	98.96	779.3
38	54.59	237.1	76	65.58	342.2	34	77.75	481.1	3/4	99.75	791.7
14	54.98	240.5	21	65.97	346.4	25	78.54	490.9	32	100.5	804.2
54	55.37	244.0	36	66.37	350.5	14	79.33	500.7	14	101.3	816.9
34	55.76	247.4	36	66.76	354.7	14	80.11	510.7	1/2	102.1	829.6
74	56.16	250.9	36	67.15	358.8	34	80.90	520.8	3/4	102.9	842.4
18	56.55	254.5	1/2	67.54	363.1	26	81.68	530.9	33	103. 7	855.3
14	56.94	258.0	5/8	67.94	367.3	14	82.47	541.2	14	104.5	868.3
14	57.33	261.6	3/4	68.33	371.5	15	83.25	551.5	15	105.2	881.4
34	57.73	265.2	7/8	68.72	375.8	34	84.04	562.0	34	106.0	894.6
14	58.12	268.8	22	69.12	380.1	27	84.82	572.6	34	106.8	907.9
56	58.51	272.4	16	69.51	384.5	34	85.61	583.2	34	107.6	921.3
34	58.90	276.1	14	69.90	388.8	34	86.39	594.0	34	108.4	934.8
78	59.30	279.8	36	70.29	393.2	34	87.18	604.8	34	109.2	948.4
19	59.69	283.5	12	70.69	397.6	28	87.96	615.8	35	110.0	962.1
14	60.08	287.3	58	71.08	402.0	34	88.75	626.8	34	110.7	975.9
14	60.48	291.0	34	71.47	406.5	34	89.54	637.9	34	• 111.5	989.8
36	60.87	294.8	78	71.86	411.0	34	90.32	649.2	34	112.3	1003.8

AREAS OF CIR	CLES. Diameter	s in Feet	and Inches.	Areas in	Square Feet

Feet						In	ches		-			
1.660	0	1	• 2	3	4	5	6	7	8	9	10	• 11
0	.0000	.0055	.0218	.0491	.0873	.1364	.1963	.2673	.3491	.4418	.5454	.6600
1	.7854	.9218	1.069	1.227	1.396	1.576	1.767	1.969	2.182	2.405	2.640	2.88
2	3.142	3.409	3.687	3.976	4.276	4.587	4.909	5.241	5.585	5.940	6,305	6.68
3	7.069	7.467	7.876	8.2%	8.727	9.168	9.621	10.08	10.56	11.04	11.54	12.0
4	12.57	13.10	13.64	14.19	14.75	15.32	15.90	16.50	17.10	17.72	18.35	18.9
5	19.63	20.29	20.97	21,65	22.34	23.04	23.76	24,48	25.22	25.97	26.73	27.4
6	28.27	29.07	29.87	30.68	31.50	32.34	33.18	34.04	34.91	35.78	36.67	37.5
7	38.48	39.41	40.34	41.28	42.24	43.20	44.18	45.17	46.16	47.17	48.19	49.2
8	50.27	51.32	52.38	53.46	54.54	55.64	56.75	57.86	58.99	60.13	61.28	62.4
9	63.62	64,80	66.00	67.20	68.42	69.64	70.88	72.13	73.39	74.66	75.94	77.2
10	78.54	79.85	81.18	82.52	83.86	85.22	86.59	87.97	89.36	90.76	92.18	93.6
11	95.03	96.48	97.93	99.40	100.9	102.4	103.9	105.4	106.9	108.4	110.0	111.
12	113.1	114.7	116.3	117.9	119.5	121.1	122.7	124.4	126.0	127.7	129.4	131.
13	132.7	134.4	136.2	137.9	139.6	141.4	143.1	144.9	146.7	148.5	150.3	152.
14	153.9	155.8	157.6	159.5	161.4	163.2	165.1	167.0	168.9	170.9	172.8	174.

If given diameter is not found in this table, reduce diameter to feet and decimals of a foot by aid of the following auxiliary table, and then find area from pp. 30-31.

Fro	m Inch	es and	l Frac	tions	of an	Inch t	o Dec	imals	of a F	oot	
Inches Feet	.0833	.1667	.2500	.3333	.4167	, 5000	. 5833	. 6667	.7500	. 8333	.9167
Inches Feet Example.	3/8 .0104 5 ft. 73					.0625 .0313		146 ft.			

SEGMENTS OF CIRCLES, GIVEN h/c

Given: h = height; c = chord. (For explanation of this table, see p. 38)

h c	Diam.	Diff.	Aro	Diff.	$\frac{\text{Area}}{h \times c}$	Diff.	Central angle, s	Diff.	Diam.	Diff.
.00 1 2 3 4	25.010 12.520 8,363 6.290	12490 *4157 *2073 *1240	1.000 1.000 1.001 1.002 1.004	0 1 1 2 3	.6667 .6667 .6669 .6671 .6675	0 2 2 4 5	0.00° 4.58 9.16 13.73 18.30	458 458 457 457 454	.0000 .0004 .0016 .0036 .0064	4 12 20 28 35
. 05 6 7 8 9	5.050 4.227 3.641 3.205 2.868	*823 *586 *436 *337 *268	1.007 1.010 1.013 1.017 1.021	3 4 4 5	.6680 .6686 .6693 .6701 .6710	6 7 8 9	22.84° 27.37 31.88 36.36 40.82	453 451 448 446 442	.0099 .0142 .0192 .0250 .0314	43 50 58 64 71
.10	2.600 2.383 2.203 2.053 1.926	*217 *180 *150 *127 *109	1.026 1.032 1.038 1.044 1.051	6 6 7 8	.6720 .6731 .6743 .6756 .6770	11 12 13 14 15	45.24° 49.63 53.98 58.30 62.57	439 435 432 427 423	.0385 .0462 .0545 .0633 .0727	77 83 88 94 99
.15 6 7 8 9	1.817 1.723 1.641 1.569 1.506	*94 *82 *72 *63 56	1.059 1.067 1.075 1.084 1.094	8 8 9 10 9	.6785 .6801 .6818 .6836 .6855	16 17 18 19 20	66.80° 70.98 75.11 79.20 83.23 87.21°	418 413 409 403 398	.0826 .0929 .1036 .1147 .1262	103 107 111 115 117
.20 1 2 3 4	1.400 1.356 1.317 1.282	50 44 39 35 32	1.114 1.124 1.136 1.147	11 10 12 11 12	.6896 .6918 .6941 .6965	21 22 23 24 24	91.13 95.00 98.81 102.56	392 387 381 375 370	.1579 .1499 .1622 .1746 .1873	120 123 124 127 127
.20 6 7 8 9	1.222 1.196 1.173 1.152	28 26 23 21 19	1.159 1.171 1.184 1.197 1.211	12 13 13 14 14	.7014 .7041 .7068 .7096	25 27 27 28 29	109.90 113.48 117.00 120.45	364 358 352 345 341	.2128 .2258 .2387 .2517	128 130 129 130 130
1 2 3 . 4	1.116 1.101 1.088 1.075	17 15 13 13	1.239 1.254 1.269 1.284 1.300	14 15 15 15 16	.7154 .7185 .7216 .7248	29 31 31 32 32	127.20° 130.48 133.70 136.86	334 328 322 316 311	.2647 .2777 .2906 .3034 .3162	130 129 128 128 127
6 7 8 9	1.054 1.046 1.038 1.031 1.025	10 8 8 7 6	1.316 1.332 1.349 1.366 1.383	16 16 17 17 17	.7314 .7348 .7383 .7419	34 34 35 36 36	143.02 146.01 148.94 151.82	305 299 293 288 282	3414 3538 3661 3783 3902	125 124 123 122 119
1 2 3 4	1.020 1.015 1.011 1.008	5 4 3 2	1.401 1.419 1.437 1.455	18 18 18 18 19	.7492 .7530 .7568 .7607	37 38 38 39 40	157.41 160.12 162.78 165.39	277 271 266 261 256	.4021 .4137 .4252 .4364	119 116 115 112 111
6 7 8 . 9	1.003 1.002 1.001 1.000	3 1 1 0	1.493 1.512 1.531 1.551 1.571	19 19 19 20 20	.7687 .7728 .7769 .7811	40 41 41 42 43	170.46 172.91 175.32 177.69 180.00°	251 245 241 237 231	.4584 .4691 .4796 .4899	109 107 105 103 101

^{*}Interpolation may be inaccurate at these points.

SEGMENTS OF CIRCLES, GIVEN h/D

Given: h = height; D = diameter of circle. (For explanation of this table, see p. 38)

$\frac{h}{D}$	Arc	Diff.	Area D ²	Di∰.	Central ti	Chord D	Diff.	Are Circum	T. Diff.	Area Circle	Diff.
.00 1 2 3	0.0000 .2003 .2838 .3482	2003 *835 *644 *545	.0000 .0013 .0037 .0069	13 24 32 36	0.00° 2296 22.96 *956 32.52 *738 39.90 *625	.0000 .1990 .2800 .3412	*1990 *810 *612 *507	.0000 .0638 .0903 .1108	*638 *265 *205 *174	.0000 .0017 .0048 .0087	17 31 39 47
.05 6 7 8	.4027 .4510 .4949 .5355 .5735	*483 *439 *406 *380 *359	.0105 .0147 .0192 .0242 .0294	36 42 45 50 52	51.68° •504 56.72 •465 61.37 •435 65.72 •435	.4359 .4750 .5103 .5426	*440 *391 *353 *323 *298	.1282 .1436 .1575 .1705 .1826	*154 *139 *130 121 114	.0134 .0187 .0245 .0308 .0375	53 58 63 67 71
9 .10 1 2 3	.6094 .6435 .6761 .7075 .7377	*341 *326 *314 *302 *293 *284	.0350 .0409 .0470 .0534 .0600	56 59 61 64 66 68	73.74° *374 77.48 *359 81.07 *349 84.54 *349	.5724 .6000 .6258 .6499 .6726	*276 *258 *241 *227 *214	.1940 .2048 .2152 .2252 .2348	108 104 100 96 93	.0446 .0520 .0599 .0680 .0764	74 79 81 84 87
.15 · 6 7 8	.7670 .7954 .8230 .8500 .8763	*284 276 270 263 258	.0668 .0739 .0811 .0885 .0961	71 72 74 76 78	91.15° 94.31 316 97.40 309	.6940 .7141 .7332 .7513 .7684	*201 *191 *181 *171 162	.2441 .2532 .2620 .2706 .2789	91 88 86 83 82	.0851 .0941 .1033 .1127 .1224	90 92 94 97 99
9 .20 1 2 3	.9021 0.9273 0.9521 0.9764 1.0004	252 248 243 240	.1039 .1118 .1199 .1281 .1365	79 81 82 84 84	100.42 295 103.37 289 106.26° 284 109.10 279 111.89 274 114.63 271	.7846 .8000 .8146 .8285 .8417	154 146 139 132	.2871 .2952 .3031 .3108 .3184	81 79 77 76 75	.1323 .1424 .1527 .1631 .1737	101 103 104 106 109 109
.25 6 7 8	1.0239 1.0472 1.0701 1.0928 1.1152	235 233 229 227 224 222	.1449 .1535 .1623 .1711 .1800	86 88 88 89	120.00° 122.63 263	.8542 .8660 .8773 .8879 .8980	125 118 113 106 101 95	3259 3333 3406 3478 3550	74 73 72 72 72 70	.1846 .1955 .2066 .2178 .2292	109 111 112 114 115
. 30	1.1374 1.1593 1.1810 1.2025 1.2239	219 217 215 214	.1890 .1982 .2074 .2167 .2260	92 92 93 93 95	130.33 254 132.84° 135.33 249 137.80 247 140.25 245	.9075 .9165 .9250 .9330 .9404	90 85 80 74	.3620 .3690 .3759 .3828 .3896	70 69 69 68	.2407 .2523 .2640 .2759 .2878	116 117 119 119
.35 6 7	1.2451 1.2661 1.2870 1.3078	212 210 209 208 206	.2355 .2450 .2546 .2642	95 95 96 96	142.67 242 145.08° 147.48 240 149.86 238	.9474 .9539 .9600 .9656 .9708	70 65 61 56 52	.4030 .4097 .4163	67 67 67 66 66	.2998 .3119 .3241 .3364 .3487	120 121 122 123 123
.40 1	1.3284 1.3490 1.3694 1.3898 1.4101	206 204 204 203 202	.2739 .2836 .2934 .3032 .3130	97 98 98 98 99	154.58 235 156.93° 159.26 233 161.59 233	.9755 .9798 .9837 .9871	47 43 39 34 31	.4229 .4294 .4359 .4424 .4489	65 65 65 64	.3611 .3735 .3860 .3986	124 124 125 126 126
.45 .45	1.4303 1.4505 1.4706 1.4907 1.5108	202 201 201 201 201 200	.3229 .3328 .3428 .3527 .3627	99 100 99 100	163.90 231 166.22 232 166.22 230 168.52° 230 170.82 230 173.12 230 175.42 230 177.77 229	.9902 .9928 .9950 .9968 .9982	26 22 18 14	.4553 .4617 .4681 .4745 .4809	64 64 64 64	.4112 .4238 .4364 .4491 .4618	126 126
. 50	1.5308 1.5508 1.5708	200 200 200	.3727 .3827 .3927	100 100 100	175.42 230 177.71 229 180.00°	.9992 .9998 1.0000	10 6 2	.4873 .4936 .5000	64 63 64	.4745 .4873 .5000	127 127 127 128 128

^{*} Interpolation may be inaccurate at these points.

VOLUMES OF SPHERES BY HUNDREDTHS

D	0	1	2	8	4	5	6	7	8	,	Avg. diff.
1.0 .1 .2	.5236 .6969 .9048	.5395 .7161 .9276	.5556 .7356 .9508	.5722 .7555 .9743	.589 0 .7757 .9983	.6061 .7963 1.0227	.6236 .8173	.6414 .8386	.6596 .8603	.6781 .8823	173 208 236
.1 2 2 3 .4	1.150 1.437	1.177 1.468	1.204 1.499	1.232 1.531	1.260 1.563	1.023 1.288 1.596	1.047 1.317 1.630	1.073 1.346 1.663	1.098 1.376 1.697	1.124 1.406 1.732	236 25 29 33
1.5 .6 .7 .9	1.767 2.145 2.572 3.054 3.591	1.803 2.185 2.618 3.105 3.648	1.839 2.226 2.664 3.157 3.706	1.875 2.268 2.711 3.209 3.764	1.912 2.310 2.758 3.262 3.823	1.950 2.352 2.806 3.315 3.882	1.988 2.395 2.855 3.369 3.942	2.026 2.439 2.903 3.424 4.003	2.065 2.483 2.953 3.479 4.064	2.105 2.527 3.003 3.535 4.126	38 43 48 54 60
2.0 .1 .2 .3	4.189 4.849 5.575 6.371 7.238	4.252 4.919 5.652 6.454 7.329	4.316 4.989 5.729 6.538 7.421	4.380 5.060 5.806 6.623 7.513	4.445 5.131 5.885 6.709 7.606	4.511 5.204 5.964 6.795 7.700	4.577 5.277 6.044 6.882 7.795	4.644 5.350 6.125 6.970 7.890	4.712 5.425 6.206 7.059 7.986	4.780 5.500 6.288 7.148 8.083	66 73 80 87 94
2.5 .6 .7 .8	8.181 9.203 10.31 11.49 12.77	8.280 9.309 10.42 11.62 12.90	8.379 9.417 10.54 11.74 13.04	8.479 9.525 10.65 11.87 13.17	8.580 9.634 10.77 11.99 13.31	8.682 9.744 10.89 12.12 13.44	8.785 9.855 11.01 12.25 13.58	8.888 9.966 11.13 12.38 13.72	8.992 10.079 10.08 11.25 12.51 13.86	9.097 10.19 11.37 12.64 14.00	102 110 11 12 13
3.0 .1 .2 .3	14.14 15.60 17.16 18.82 20.58	14.28 15.75 17.32 18.99 20.76	14.42 15.90 17.48 19.16 20.94	14.57 16.06 17.64 19.33 21.13	14.71 16.21 17.81 19.51 21.31	14.86 16.37 17.97 19.68 21.50	15.00 16.52 18.14 19.86 21.69	15.15 16.68 18.31 20.04 21.88	15.30 16.84 18.48 20.22 22.07	15.45 17.00 18.65 20.40 22.26	15 16 17 18 19
8.5 .6 .7 .8 .9	22.45 24.43 26.52 28.73 31.06	22.64 24.63 26.74 28.96 31.30	22.84 24.84 26.95 29.19 31.54	23.03 25.04 27.17 29.42 31.78	23.23 25.25 27.39 29.65 32.02	23.43 25.46 27.61 29.88 32.27	23.62 25.67 27.83 30.11 32.52	23.82 25.88 28.06 30.35 32.76	24.02 26.09 28.28 30.58 33.01	24.23 26.31 28.50 30.82 33.26	20 21 22 23 25
4.0 .1 .2 .3 .4	33.51 36.09 38.79 41.63 44.60	33.76 36.35 39.07 41.92 44.91	34.02 36.62 39.35 42.21 45.21	34.27 36.88 39.63 42.51 45.52	34.53 37.15 39.91 42.80 45.83	34.78 37.42 40.19 43.10 46.14	35.04 37.69 40.48 43.40 46.45	35.30 37.97 40.76 43.70 46.77	35.56 38.24 41.05 44.00 47.08	35.82 38.52 41.34 44.30 47.40	26 27 28 30 31
4.5 .6 .7 .8 .9	47.71 50.97 54.36 57.91 61.60	48.03 51.30 54.71 58.27 61.98	48.35 51.63 55.06 58.63 62.36	48.67 51.97 55.41 59.00 62.74	49.00 52.31 55.76 59.37 63.12	49.32 52.65 56.12 59.73 63.51	49.65 52.99 56.47 60.10 63.89	49.97 53.33 56.83 60.48 64.28	50.30 53.67 57.19 60.85 64.67	50.63 54.02 57.54 61.22 65.06	33 34 35 37 38

Explanation of Table of Volumes of Spheres (pp. 36-37)

Moving the decimal point one place in column D is equivalent to moving it three places in the body of the table. (D = diameter.)

Volume of sphere =
$$\frac{\pi}{6}$$
 × (diam.*) = 0.523599 × (diam.*)

Conversely,

Diam. =
$$\sqrt[8]{\frac{3}{\sqrt{2}}} \sim \sqrt[3]{\text{volume}} = 1.240701 \times \sqrt[3]{\text{volume}}$$

VOLUMES OF SPHERES (continued)

D	0	1	2	8	4	5	6	7	8	,9	Avg
5.0	65.45	65.84	66.24	66.64	67.03	67.43	67.83	68.24	68.64	69.05	40
.1	69.46	69.87	70.28	70.69	71.10	71.52 75.77	71.94	72.36	77 78	73.20	42
.1 .2 .3	73.62 77.95	74.05 78.39	74.47 78.84	74.90 79.28	75.33 79.73	75.77 80.18	76.20	76.64 81.08	77.07	77.51 81.99	1 12
.4	82.45	82.91	83.37	83.83	84.29	84.76	80.63 85.23	85.70	77.07 81.54 86.17	86.64	40 42 43 45 47
5.5	87.11	87.59	88.07	88.55	89.03	89.51	90.00	90.48	90.97	91.46	48
.0	91.95 96.97	92.45 • 97.48	92.94 97.99	93.44 98.51	93.94 99.02	94.44 99.54	94.94 100.06	95.44	95.95	96.46	1 20
.6 .7 .8 .9	70.77		71.77		77.02	77.54	100.1	100.6	101.1	101.6	50 52 5 5
.8	102.2	102.7	103.2	103.8	104.3	104.8	105.4 110.9	105.9 111.4	106.4	107.0	5
	107.5	108.1	108.6	109.2	109.7	110.3		111.4	112.0	112.5	6
6.0	113.1 118.8	113.7	114.2 120.0	114.8 120.6	115.4 121.2	115.9	116.5 122.4 128.4	117.1	117.7	118.3 124.2 130.3	6
.1	124.8	119.4 125.4	126.0	126.6	127.2	121.8 127.8	128.4	123.0 129.1	123.6 129.7	130.3	1
3	130.9	131.5	126.0 132.2	132.8	133.4	134.1	134.7	135.3	136.0	136.6	1
.4	137.3	137.9	138.5	139.2	139.8	140.5	141.2	141.8	142.5	143.1	7
6.5	143.8	144.5	145.1	145.8	146.5	147.1 154.0	147.8	148.5	149.2	149.8	1
.0	150.5 157.5	151.2	151.9 158.9	152.6 159.6	153.3 160.3	154.0 161.0	154.7 161.7	155.4 162.5	156.1	156.8 163.9	1
.8	164.6	165.4	166.1	166.8	167.6	168.3	169.0	169.8	163.2 170.5	171.3	1
.6 .7 .8 .9	164.6 172.0	158.2 165.4 172.8	166.1 173.5	174.3	167.6 175.0	175.8	176.5	177.3	178.1	178.8	8
7.0	179.6	180.4	181.1	181.9	182.7	183.5	184.3 192.2 200.4	185.0 193.0	185.8	186.6	1
.!	187.4	188.2	189.0	189.8 197.9	190.6	191.4 199.5	192.2	193.0 201.2	193.8	194.6 202.9	
4	195.4 203.7	196.2 204.5	189.0 197.1 205.4	206.2	190.6 198.7 207.1	207.9	200. 4 208.8	201.2	193.8 202.0 210.5	202.9	1
.1 .2 .3 .4	212.2	213.0	213.9	214.8	215.6	216.5	208.8 217.4	218.3	219.1	220.0	9
7.5	220.9	221.8	222.7 231.7	223.6	224.4	225.3	226.2	227.1 236.3	228.0	228.9	ĺ
.6	229.8	230.8	231.7	232.6 241.8	233.5	234.4	235.3	236.3	237.2	238.1	
-/	239.0 248.5	240.0 249.4	240.9 250.4	241.8 251.4	242.8	243.7	244.7 254.3	245.6 255.2	246.6	247.5	10
.6 .7 .8 .9	258.2	259.1	260.1	261.1	252.3 262.1	253.3 263.1	254.3 264.1	265.1	256.2 266.1	247.5 257.2 267.1	'"
8.0	268.1	269.1 279.3	270.1	271.1	272.1	273.1	274.2	275.2	276.2	277.2	l
.1	278.3	279.3	280.3	281.4	282.4	283.4	284.5	285.5	286.6	287.6	١
.Z	288.7 299.4	289.8 300.5	290.8 301.6	291.9 302.6	292.9 303.7	294.0 304.8	295.1 305.9	296.2 307.0	297.2 308.1	298.3 309.2	11
.1 2 3 .4	310.3	311.4	312.6	313.7	314.8	315.9	317.0	318.2	319.3	320.4	ĺ
8.5	321.6	322.7	323.8	325.0	326.1	327.3	328.4	329.6	330.7	331.9	١.
.6	333.0	334 2	335.4	336.5	337.7	338 Q	340.1	341.2	342.4 354.4	343.6	12
.7	344.8 356.8	346.0	347.2	348.4	349.6	350.8	352.0 364.2	341.2 353.2 365.4	354.4	355.6 367.9	
.6 .7 .8 .9	369.1	346.0 358.0 370.4	335.4 347.2 359.3 371.6	360.5 372.9	337.7 349.6 361.7 374.1	350.8 362.9 375.4	376.6	377.9	366.6 379.2	380.4	13
9.0	381.7		384.3	385.5	386.8	388.1	389.4	390.7	392.0	393.3	
.1	394.6	383.0 395.9	397.2	385.5 398.5	399.8	401.1	402.4 415.7	403.7	405.1	406.4	i
.2	394.6 407.7 421.2	409.1 422.5	410.4	411.7	413.1	414.4	415.7	417.1	418.4	419.8	۱.,
.1 .2 .3 .4	421.2 434.9	422.5 436.3	423.9 437.7	411.7 425.2 439.1	426.6 440.5	428.0 441.9	429.4 443.3	430.7 444.7	432.1 446.1	433.5 447.5	14
9.5	448.9	450.3	451.8	453.2	454.6	456 O	457.5	458.9	460.4	461.8	
.6	463.2	464.7 479.4	466.1 480.8	467.6	469.1	456.0 470.5	457.5 472.0 486.8	458.9 473.5 488.3	474.9	476.4	15
.7	477.9	479.4	480.8	467.6 482.3 497.3	469.1 483.8	485.3	486.8	488.3	474.9 489.8	491.3	
.6 .7 .8 9	492.8 508.0	494.3 509.6	495.8 511.1	497.3 512.7	498.9 514.2	500.4 515.8	501.9 517.3	503.4 518.9	505.0 520.5	506.5 522.0	16
0.0	523.6				· ·-						

Moving the decimal point ONE place in D requires moving it THREE places in body of table (see p. 36).

SEGMENTS OF SPHERES

(h = height of segment; D = diam, of sphere)

		_			
$\frac{h}{D}$	Vol. segm.	Diff.	Vol. segm.	Diff.	Projection of Table on this same
D	D-	н	Vol. sphere	н	Explanation of Table on this page
0.00	0.0000		0.0000		Given, $h = \text{height of segment}$,
0.00	0.0002	2	0.0003	3	D = diam. of sphere.
2		4	0.0012	9	To find the volume of the segment
2	0.0006 0.0014	8	0.0026	14	
2		10		21	form the ratio h/D and find from the
4	0.0024	14	0.0047	26	table the value of (vol./Ds); then, by
0.05	0.0038	16	0.0073	31	a simple multiplication,
6	0.0054	10	0.0104	36	vol. segment = $D^3 \times (\text{vol.}/D^3)$
8 9	0.0073	19 22 25 27	0.0140	42	The table gives also the ratio of th
8	0.0095	25	0.0182	44	
9	0.0120	25	0.0228	46 52	volume of the segment to the entir
200		21		34	volume of the sphere.
0.10	0.0147	20	0.0280		
1	. 0.0176	29 32	0.0336	56 61	Note. Area of zone = $\pi \times h \times D$.
2	0.0208	32	0.0397	61	(Use Table of Multiples of π, p. 28)
3	0.0242	34 37 39	0.0463	66	
4	0.0279	37	0.0533	70	Explanation of Table on p. 34
	0.0477	39	0.0333	74	
0.15	0.0318		0.0607		Given, $h = \text{height of segment}$,
		41		79	c = chord
6	0.0359	. 44	0.0686	83	To find the diam of the similar the
7	0.0403	45	0.0769	86	To find the diam. of the circle, th
8	0.0448	47	0.0855	91	length of arc, or the area of the seg
9	0.0495	47 50	0.0946	94	ment, form the ratio h/c, and fin
5	2/2000	20	F 7 11 19	,,	
0.20	0.0545	51	0.1040	98	from the table the value of (diam./c)
- 1	0.0596	51 53 55 56 58	0.1138	101	(arc/c), or (area/hc); then, by a simpl
2	0.0649	22	0.1239		
3	0.0704	22	0.1239 0.1344	105	multiplication,
4	0.0760	20	0.1452	108	diam. = $c \times (\text{diam.}/c)$,
	10000000	28		110	$arc = c \times (arc/c),$
0.25	0.0818	40.0	0.1562	2.00	
6	0.0878	60	0.1676	114	area = $h \times c \times (area/hc)$.
7	0.0939	61	0.1793	117	The table gives also the angle sub
8	0.1002	63	0.1913	120	
0		64		122	tended at the center, and the ratio o
9	0.1066	65	0.2035	125	h to D. See p. 106.
0 20	0 1121		0.21/0		
0.30	0.1131	67	0.2160	127	Explanation of Table on p. 35
	0.1198	67	0.2287	130	
2	0.1265	69	0.2417	131	Given, $h = \text{height of segment}$,
3	0.1334	70	0.2548	134	D = diam. of circle.
4	0.1404	70 71	0.2682	134	To find the chord, the length of are
100	100		F0.000000	100	
0.35	0.1475	72	0.2817	138	or the area of the segment, form th
6	0.1547	73	0.2955	139	ratio h/D , and find from the table th
7 8	0.1620	73 74 74 75	0.3094	141	
8	0.1694	19	0.3235		value of (chord/D), (arc/D), o
9	0.1768	/4	0.3377	142	(area/D2); then, by a simple multi
	0.1100	75	0.5511	143	
0.40	0.1843		0.3520	4.4	plication,
U.70	0.1919	76 76	0.3665	145	$chord = D \times (chord/D),$
	0.1995	76	0.3810	145	$arc = D \times (arc/D)$,
2	0.1993	77	0.3957	147	
2		77		147	area = $D^2 \times (area/D^2)$.
4	0.2149	78	0.4104	148	The table gives also the angle sub
20.					
0.45	0.2227	78	0.4252	149	tended at the center, the ratio of the
6	0,2305	78 78	0.4401	150	arc of the segment to the whole cir
7	0.2383	70	0.4551	149	
8	0.2461	78 78 79	0.4700	150	cumference, and the ratio of the are
9	0.2539	78	0.4850	150 150	of the segment to the area of th
		79	0.100	150	whole circle, See p. 106.
0.50	0.2618		0.5000		whole direie. See p. 100.

NOTE. Vol. segm. = $\frac{1}{2}6 \pi h^2 (3D-2h)$.

REGULAR POLYGONS

n = number of sides;

n = number of sides; $n = 360^{\circ}/n = angle subtended at the center by one side;$

$$a = \text{length of one side} = R\left(2 \sin \frac{v}{2}\right) = r\left(2 \tan \frac{v}{2}\right);$$

$$R = \text{radius of circumscribed circle} = a\left(\frac{1}{2}\csc\frac{v}{2}\right) = r\left(\sec\frac{v}{2}\right);$$

$$r = \text{radius of inscribed circle} = R\left(\cos\frac{v}{2}\right) = a\left(\frac{v}{2}\cot\frac{v}{2}\right);$$

Area =
$$a^2\left(\frac{1}{2}n\cot\frac{v}{2}\right) = R^2\left(\frac{1}{2}n\sin v\right) = r^2\left(n\tan\frac{v}{2}\right)$$
.

n	v	Area a ²	Area R ²	Area r2	$\frac{R}{a}$	$\frac{R}{r}$	a R	<u>a</u> r	$\frac{r}{R}$	$\frac{r}{a}$
3	120°	0.4330	1.299	5.196	0.5774	2.000	1.732	3.464	0.5000	0.2887
4	90°	1.000	2.000	4.000	0.7071	1.414	1.414	2.000	0.7071	0.5000
5	72°	1.721	2.378	3.633	0.8507	1.236	1.176	1.453	0.8090	0.6882
6	60°	2.598	2.598	3.464	1.0000	1.155	1.000	1.155	0.8660	0.8660
7	51°.43	3.634	2.736	3.371	1.152	1.110	0.8678	0.9631	0.9010	1.038
8	45°	4.828	2.828	3.314	1.307	1.082	0.7654	0.8284	0.9239	1.207
9	40°	6.182	2.893	3.276	1.462	1.064	0.6840	0.7279	0.9397	1.374
10	36°	7.694	2.939	3.249	1.618	1.052	0.6180	0.6498	0.9511	1.539
12	30°	11.20	3.000	3.215	1.932	1.035	0.5176	0.5359	0.9659	1.866
15	24°	17.64	3.051	3.188	2.405	1.022	0.4158	0.4251	0.9781	2.352
16	22°.50	20.11	3.062	3.183	2.563	1.020	0.3902	0.3978	0.9808	2.514
20	18°	31.57	3.090	3.168	3.196	1.013	0.3129	0.3168	0.9877	3.157
24	15°	45.58	3.106	3.160	3.831	1.009	0.2611	0.2633	0.9914	3.798
32	11°.25	81.23	3.121	3.152	5.101	1.005	0.1960	0.1970	0.9952	5.077
48	7°.50	183.1	3.133	3.146	7.645	1.002	0.1308	0.1311	0.9979	7.629
64	5°.625	325.7	3.137	3.144	10.19	1.001	0.0981	0.0983	0.9988	10.18

BINOMIAL COEFFICIENTS

(For table giving binomial coefficients for fractional values of n, see p. 116).

$$(n)_0 = 1; (n)_1 = n; (n)_2 = \frac{n(n-1)}{1 \times 2}; (n)_3 = \frac{n(n-1)(n-2)}{1 \times 2 \times 3}; \text{ etc.; in general,}$$

$$(n)_r = \frac{n(n-1)(n-2) \cdot \cdot \cdot (n-[r-1])}{1 \times 2 \times 3 \cdot \cdot \cdot \times r} \cdot \text{Another notation:} \binom{n}{r} = (n)_r.$$

n	(n)0	(n)1	(n)2	(n)a	(n)4	(n) 5	(n) 6	(n)7	(n) ₈	(n) 9	(n)10	(n) ₁₁	(11)12	(n)18
1	1	1												
2	. 1	2	1		*****									
3	. !	3	3	1				*****		*****	*****		,,,,,	
2	1	4	.6	.4	1	*****	****	*****		*****	******			
3	- 10	2	10	10	15	!			*****		******			
9		0	15	20	15 35	21	1					*****		*****
6		6	28	20 35 56	70	21 56	28	8						
0		8	21 28 36 45 55	84	126	126	28 84	36					5.55.55	600000
10	i	10	45	120	210	252	210	120	45	10			44,144	Ne apead
10 11 12	1	ii	55	165	330	462	462	330	165	55	11			A 100 C
12	1	12	66	220	495	792	924	792	495	220	66	12	1	
13	i	13	78	286	715	1287	1716	1716	1287	715	286	78	13	····i
14	1	14	91	364	1001	2002	3003	3432	3003	2002	1001	364	91	14
15	1	15	105	455	1365	3003	5005	6435	6435	5005	3003	1365	455	105

For n = 14, $(n)_{14} = 1$; for n = 15, $(n)_{14} = 15$, and $(n)_{15} = 1$.

COMMON LOGARITHMS (special table)

Num- ber	0	1	2	8	4	5	6	7	8	9	Avg.
1.00	0.0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	4
1.01 1.02 1.03	0043 0086	0048 0090	0052	0056	0060	0022 0065	0069	0073	0077	0082	1
1.02	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	1
1.03	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166	1
1.04	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	1
1.05	0212	0216	0220	0224	0228	0233	0237 0278 0318 0358 0398	0241	0245	0249	1
1.06 1.07	0253 0294	0257	0261	0265	0269	0273	0278	0282	0286	0290	1
1.07	0294	0298	0302	0306 0346	0310	0314	0318	0322	0326	0330	1
1.08	0334	0338	0342	0346	0350	0354	0358	0362	0366	0370	1
1.09	0374	0 378	0382	0386	0390	0394	0398	0402	0406	0290 0330 0370 0410	1
1.10	0.0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	1
7.77	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488	1
1.12	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	l l
1.12 1.13 1.14	0531	0535 0573	0538 0577	0542	0546	0550	0515 0554	0519 0558	0561	0565	1
1.14	0569	0573	0577	0580	0584	0588	0592	0596	0 599	0603	1
1.15 1.16 1.17	0607	0611	0615	0618	0622	0626	0630 0667	0633 0671	0637 0674	0641 0678 0715	1
1.16	0645	0648	0652 0689	0656	0660	0663	0667	0671	0674	0678	
1.17	0682	0686	0689	0693	0697 0734	0700	0704	0708	0711	0715	1
1.18 1.19	0719	0722	0726	0730	0734	073 7	0741	0745	0748	0752	
1.19	0755	0759	0763	0766	0770	0774	0777	0781	0785	0788	1
1.20	0.0792	0795	0799	0803	0806	0810	0813	0817	0821	0824	1
1.21	0828	0831	0835	0839	0842	0846	0849	0853	0856	0860	1
1.22	0864	0867	0871	0374	0878	0881	0885	0888	0892 0927	0896	1
1.23	0899	0903	0906	0910	0913	0917	0920	0924	0927	0931	
1.21 1.22 1.23 1.24	0934	0938	0941	0945	0948	0952	0955	0959	0962	0 966	1
1.25 1.26 1.27 1.28 1.29	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	3
1.26	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	1
1.27	1038 1072	1041	1045	1048	1052 1086	1055 1089	1059	1062	1065 1099	1069	1
1.28	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	1
	1106	1109	1113	1116	1119	1123	1126	1129	1133	1136	
1.80 1.31 1.32 1.33 1.34	0.1139	1143	1146	1149	1153	1156	1159	1163	1166	1169	1
1.31	1173	1176	1179	1183	1186	1189	1193 1225	1196	1199	1202	1
1.32	1206 1239	1209	1212	1216	1219	1222	1225	1229	1232	1202 1235 1268	1
1.33	1239	1242	1245	1248	1252	1255	1258 1290	1261	1265	1268	1
	1271	1274	1278	1281	1284	1287	1290	1294	1297	1300	1
1.35 1.36 1.37 1.38 1.39	1303	1307	1310	1313	1316	1319	1323 1355	1326	1329	1332 1364	
1.36	1335	1339 1370	1342	1345	1348	1351	1355	1358	1361	1364	
1.37	1367 1399	1370	1374	1377	1380	1383	1386	1358 1389	1392	1396 1427	
1.38	1399	1402	1405	1408	1411	1414	1418	1421 1452	1424	1427	
1.39	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	
1.40 1.41	0.1461	1464	1467	1471	1474	1477	1480	1483	1486	1489	1
1.41	1492	1495	1498	1501	1504	1508	1511	1514	1517	1520	1
1.42	1523	1526	1529	1532	1535	1538	1541	1544	1547	1550	1
1.43	1553	1556 1 587	1559	1562	1565	1569	1572	1575	1578	1581	1
1.44	1584	1587	1590	1593	1596	1599	1602	1605	1608	1611	1
1.45	1614	1617	1620	1623	1626	1629	1632	1635	1638	1641	1
1.46	1644	1647	1649	1652	1655	1658	1661	1664	1667	1670	ĺ
1.46 1.47	1673	1647 1676	1649 1679	1652 1682	1685	1688	1691	1694	1697	1670 17 00	1
1.48	1703	1706	1708	1711	1714	1717	1720	1694 1723 1752	1726	1729 1758	1
1.49	1732	1735	1738	1741	1744	1746	1749	1752	1755	1758	1
											1_

Moving the decimal point n places to the right [or left] in the number requires adding + n [or - n] in the body of the table (see p. 42).

MATHEMATICAL TABLES

COMMON LOGARITHMS (special table, continued)

Num ber	0	1	2	8	4	5	6	7	8	9	Avg.
1.50	0.1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	3
1.51	1790	1793	1796	1798	1801	1804	1807	1810	1913	1816	1 1
1.52	1790 1818	1821	1796 1824	1798 1827	1830	1833	1836	1838	1841	1844	1
1 53	1847	1850	1853	1855	1858	1861	1864	1838 1867	1870	1844 1872	1
1.54	1847 1875	1850 1878	1881	1855 1884	1858 1886	1889	1892	1895	1841 1870 1898	1901	1
1.55	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1
1.56	1931	1934	1937	1940	1942	1945	1948	1951	1053	1956	1
1.56 1.57	1959	1962	1965	1967	1970	1973	1976	1978	1081	1984	1
1.58	1987	1989	1992	1995	1998	2000	2003	2006	1953 1981 2009	2011	1
1.59	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	Į.
.60	0.2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	1
1.61	2068	2071	2074	2076	2079	2082	2084	2087	2063 2090	2092	
1.62	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119	1
1.63	2122	2125	2127	2120	2133	2135	2138	2140	2143	2146	1
1.64	2148	2151	2127 2154	2130 2156	2159	2162	2164	2167	2170	2146 2172	1
	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	1
1.65 1.66	2201	2204	2206	2209	2103		2217	2219	2222	2225	ı
1.00	2227	2230	2232	2209	2212	2214 2240	2243	2217	2240	2227	1
1.67	2253	2256	2258	2235 2261	2238 2263	2266	2269	2245 2271	2248 2274	2251 2276	i i
1.68 1.69	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	
					2209	2292					l
1. 70	0.2304 2330 2355	2307 2333	2310 2335	2312 2338	2315	2317	2320 2345 2370	2322 2348	2325 2350	2327 2353	1
1.71	2330	2333	2335	2338	2340	2343	2345	2348	2 350	2353	1
1.72	2355	2358	2360	2363	2365	2368	2370	2373	2375 2400	2378	1
1.73	2380	2383	2385	2388	2390	2393	2395	2398	2400	2403	1
1.72 1.73 1. 74	2405	2408	2410	2413	2415	2418	2395 2420	2423	2425	2428	2
1.75	2430	2433	2435	2438	2440	2443	2445	2448	2450 2475 2499	2453	ı
1.76 1.77	2455	2458	2460	2463	2465	2467	2470	2472	2475	2477	
1.77	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502	
1.78	2504	2507	2509	2512	2514	2516	2519	2521	2524	2526	•
1.79	2529	2531	2533	2536	2538	2541	2543	2545	2548	2550	ı
.80	0.2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	1
1.81	2577	2555 2579	2558 2582	2584	2586	2589	2567 2591	2570 2594	2572 2596	2598	i
1.82	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	
1.82 1.83	2625	2627	2629	2632	2634	2636	2615 2639	2641	2643	2646	1
1.84	2648	2651	2653	2632 2655	2658	2660	2662	2665	2643 2667	2669	ı
1.85	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	ı
1.86	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	
1.87	2718	2721	2723	2725	2728	2730	2732	2735	2737	2739	1
1.88	2742	2744	2746	2749	2751	2730 2753	2732 2755	2758	2760	2739 2762	
1.89	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	i
.90	0.2788	2790	2792	2794	2797	2799	2801	2804	2806	2808	ı
1.91	2810	2813	2815	2817	2819	2822	2824	2826	2828	2000	1
1.92	2833	2835	2838	2840				2849	2851	2831 2853	1
1.93	2856	2858	2860	2862	2842 2865	2844 2867	2847 2869	2871	2874	2876	1
1.94	2878	2880	2882	2885	2887	2889	2891	2894	2896	2898	ı
	2000	2002	2005	2002	2000	2011	2014	2017	2010		1
1.95 1.96 1.97	2900 2923	2903 2925	2905 2927	2907 2929	2909 2931	2911 2934	2914 2936	2916 2938	2918	2920 2942	1
1.70	2945 2945	2947	2949	2929 2951	2953	2954 2956	2958	2960	2940 2962	2964	1
.98	2967	2969	2971	2973	2975	2978	2936 2980	2982	2984	2986	1
.99	2989	2909 2991	2993	2995	2997	2976 2999	3002	3004	3006	3008	
		4771	7333	4773				JUUM	2000		

COMMON LOGARITHMS

Num- ber	0	1	3	8	4	5	6	7	8	9	Avg.
1.0	0.0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	П
1.0 1.1	0414	0453	0492	0531	0569	0212 0607 0969	0253 0645	0682	0334 0719	0755	ı
i 2	0792	0828	0864	0899	0569 0934	0969	1004	1038	1072	1106	Ι
1.2	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	I 🔻
1.4	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	Ţ
15	1761	1790	1818	1847	1875	1903	1031	1050	1087	2014	See pages
1.5 1.6	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	13
i.Ž	2304	2330	2355	2380	2405	1903 2175 2430	1931 2201 2455	1959 2227 2480	1987 2253 2504	2529	A
18	2553	2577	2601	2380 2625	2648	2672	2695	2718	2742	2765	28
1.8 1.9	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	ď
2.0	0.3010	3032	3054	3075	3096	3118	3130	3160	3181	3201	21
71	3222	3243	3263	3284	3304	3324	3139 3345	3365	3385	3404	1 %
2.5	3424	3444	3464	3483	3304 3502	3324 3522	3541	3560	3385 3579	3598	20 19
23	3617	3636	3655	3674	3602	3711	3729	3747	3766	3784	1 17
2.1 2.2 2.3 2.4	3802	3820	3655 3838	3856	3692 3874	3892	3909	3927	3945	3962	18 17
	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	17
26	4150	4166	4183	4200	4048 4216	4065 4232	4249	4265	4281	4298	16
2.7	4314	4330	4346	4362	4378	4303	4409	4425	4440	4456	16
2.8	4472	4487	4346 4502	4518	4533	454R	4564	4570	4504	4600	13
2.5 2.6 2.7 2.8 2.9	4624	4639	4654	4669	4378 4533 4683	4393 4548 4698	4564 4713	4425 4579 4728	4594 4742	4609 4757	13
• •	0.4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	۱.,
2.0	4914	4928	4942	4955	4969	4983	4007	5011	5024	5038	1 14
3.1	5051	5065	5079	5092	5105	5119	4997 5132	5145	5159	5172	14
3.2	5185	5198	5211	5224	5105 5237	5250	5263	5276	· 5289	5302	13
8.0 3.1 3.2 3.3 3.4	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1 13
		F 450	-4/-								
3.5	5441 5563	5453 5575	5465 5587	5478 5599	5490 5611	5502 5623	5514 5635	5527 5 64 7	5539 5658	5551 5670	12 12 12 11
3.0		22/2	220/	2277	2011	2043	2032	264/	2028	5670	12
2./	5682 5798	5694 5809	5705 5821	5717	5729	5740	5752	5763	5775	5786	12
3.5 3.6 3.7 3.8 3.9	5911	5922	5933	5832 5944	5843 5955	5855 5966	5866 5977	5877 5988	5888 5999	5899 6010	H
										0010	l '''
4.0	0.6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	11
4.1	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	10
4.2	6232	6243	6253 6355	6263	6274	6284	6294	6304	6314	6325	iò
4.2 4.3 4.4	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	10
4.4	6435	6444	6454	6464	6170 6274 6375 6474	6180 6284 6385 6484	6493	6503	6513	6522	10
4.5	6532	6542	6551	6561	6571	6580 6675 6767 6857	6590	6599	6609	6618	10
4.6	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	l iŏ
4.7	6721	6730	6739	6749	6758	6767	6684 6776	6693 6785	6794	6803	
4.8	6812	6821	6830	6839	6848	6857	6866 6955	6875	6884	6893	9
4.5 4.6 4.7 4.8 4.9	6902	6911	6920	6928	6665 6758 6848 6937	6946	6955	6964	6972	6981	9

 $\log \pi = 0.4971$ $\log s = 0.4343$ $\log \pi/2 = 0.1961$ $\log \pi^2 = 0.9943$ $\log (0.4343) = 0.6378 - 1$ $\log \sqrt{\pi} = 0.2486$

These two pages give the common logarithms of numbers between 1 and 10, correct to four places. Moving the decimal point n places to the right [or left] in the number is equivalent to adding n [or -n] to the logarithm. Thus, $\log 0.017453 = 0.2419 - 2$, which may also be written $\overline{2}.2419$ or 8.2419 - 10. See p. 91. Graphs, p. 174. $\log (a^N) = N \log a$

$$\log (ab) = \log a + \log b \qquad \log (a^N) = N \log a$$

$$\log \left(\frac{a}{b}\right) = \log a - \log b \qquad \log \left(\frac{N}{\sqrt{a}}\right) = \frac{1}{N} \log a$$

COMMON LOGARITHMS (continued)

E E	0	1	3	3	4		6	7	8	9	Avg.
Num	•										₹ë
5.0 5.1 5.2 5.3 5.4	0.6990	6998	7007 7093 7177 7259 7340	7016	7024 7110 7193 7275	7033	7042	7050	7059	7067 7152 7235 7316	9
5.1	0.6990 7076	6998 7084	7093	7101 7185 7267	7110	7118	7126	7135	7143	7152	8
5.2	7160	7168	7177	7185	7193	7202 7284	<u>7210</u>	7218	7226	7235	8
5.3	7160 7243 7324	7251 7332	7259	7267 7348	72/5 7356	7284 7364	7210 7292 7372	7135 7218 7300 7380	7143 7226 7308 7388	7316 7396	9 8 8 8
											l °
5.5	7404	7412	7419	7427	7435 7513 7589 7664	7443	7451	7459	7466 7543 7619	7474	8
5.6	7482	7490 ? 7566	7497	7505	7513	7520 .	7528	7536 7612	7543	7551	l š
. 54	7482 7559 7634	7642	7640	7202 7657	7664	7577 7672	7670	7686	7604	7551 7627 7701	1 9
5.5 5.6 5.7 5.8 5.9	7709	7716	7497 7574 7649 7723	7427 7505 7582 7657 7731	7738	7520 7597 7672 7745	7451 7528 7604 7679 7752	7686 7760	7694 7767	7774	8 8 8 7 7
6.0	0.7782 7853 7924 7993 8062	7789			7810	7818		7832 7903 7973 8041 8109	7839 7910 7980 8048 8116	7846	١,
6.1	7853	7789 • 7860	7796 7868	7803 7875 7945 8014	7882 7952 8021	7818 7889 7959 8028	7825 7896	7903	7910	7846 7917 7987 8055	77777
6.1 6.2 6.3 6.4	7924	7931 8000 8069	7938 8007 8075	7945	7952	7959	7966 8035	7973	7980	7987	7
6.3	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1 7
0.4	8062		80/5	8082	8089	8096	. 8102	8109	8110	8122	1
6.5	8129	8136 8202 8267	8142	8149 8215 8280	8156 8222	8162	8169	8176	8182	8189 8254 8319	7 7 6
6.6	8195	8202	8209	8215	8222 8287	8228	82 35 8299	8241	8248	8254	7
0./	8201 8325	020/ 8331	8338	8344	8351	0293 8357	8363	8241 8306 8370	8376	8382	1 2
6.5 6.6 6.7 6.8 6.9	8261 8325 8388	8331 839 5	8209 8274 8338 8401	8344 8407	8414	8228 8293 8357 8420	8426	8432	8248 8312 8376 8439	8445	6
7.0	0.8451	8457	8463 8525 8585 8645 8704	8470	8476	8482	8488 8549 8609 8669 8727	8494	8500	8506 8567 8627 8686 8745	6
7.0 7.1 7.2 7.3 7.4	8513	845 7 8519	8525	8470 8531	8476 8537	8482 8543	8549	8494 8555	8561	8567	6
7.2	8573	8579	8585	8591	8597 8657	8603	8609	8615	8621	8627	6
7.3	8633	8639 8698	8645	8591 8651 8710	8657	8663 8722	8669	8675 8733	8621 8681 8739	8686	6
7.4	8692				8716			8/33			6
7.5	8751	8756	8762	8768	8774	8779 8837 8893	8785	8791	8797	8802 8859 8915	6
7.6	8808	8814	8820 8876	8825	8831 8887	8837	8842 8899	8848 8904	8854 8910	8859	6
7.7	8865 8021	8871 8027	8032	8038	8042	8040	805 <i>4</i>	8960	8065	8971	1 2
7.5 7.6 7.7 7.8 7.9	8751 8808 8865 8921 8976	8927 8982	8932 8987	8882 8938 8993	8943 8998	8949 9004	8954 90 9 9	9015	8965 9020	9025	6 5
1		0026	`0042		0052	0058	0063	0060	0074	0070	١,
8.0 8.1 8.2 8.3 8.4	0.9031 9085 9138	9036 9090	9042	9047 9101	9053 9106	9058 9112	9063 9117	9069 9122 9175 9227 9279	9074 9128	9079 9133	5 5 5 5 5
8.2	9138	9143	9149 9201	9154 9206	915 9 9212	9165	9170 9222	9175	9180 9232	9186	1 5
83	9191	9196 9248	9201	9206	9212	9217	9222	9227	9232	9238	5
8.4	9243	9248	9253	9258	9263	- 9269	9274	9279	9284	9289	5
8.5	9294 9345 9395	9299 9350 9400	9304 9355 9405 9455	9309 9360	9315 9365	9320 9370	9325 9375	9330 9380 9430 9479	9335 9385	9340 9390 9440	5
8.6	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1 5
8.7	9395 9445	9400	9405	9410	9415 9465	9420 9469	9425 9474	9430	9435 9484	9440 9489	1 2
8.5 8.6 8.7 8.8 8.9	9494	9450 9499	9504	9460 9509	9513	9518	9523	9528	9533	9538	5 5 5 5 5
	0.0542	0547`	0552	0557	0562	9566	9571	9576	0581	0586	١,
9.0	0.9542 9590 9638	9547 9595 9643	9552 9600	9557 9605	9562 9609	9566 - 9614	9571 9619	9576 9624 9671	9581 9628 9675	9633	1 3
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	5
9.0 9.1 9.2 9.3 9.4	9685 9731	9689 9736	9694	9699	9703	9708	9713	9/1/	9/22	9586 9633 9680 9727	5 5 5 5 5 5
9.4	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	1
9.5	9777 9823	9782 9827	9786 9832	9791 9836 9881 9926	9795	9800	9805	9809	9814	9818	5 4
9.6	9823	9827	9832	9836	9841	9845	9850	9854	9859 9903	9863	1 1
9.7	9868 9912	9872 9917	9877 9921	988 I 9926	9886 9930	989 0 9934	9894 9939	9899 9943	9903 9948	9863 9908 9952	1 4
9.5 9.6 9.7 9.8 9.9	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	14
7.7	,,,,,	,,,,		,		,,,,					Ľ

DEGREES AND MINUTES EXPRESSED IN RADIANS (See also p. 69)

		De	grees				Hund	redths		Min	utes
10	.0175	61°	1.0647	121°	2.1118	0°.01	.0002	0°.51	.0089	1'	.000
2	.0349	2	1.0821	2	2.1293	2 3	.0003	2	.0091	3'	.000
3	.0524	3	1.0996	3 4	2.1468 2.1642	4	.0005	3 4	.0093	4	.000
50	.0873	650	1.1345	125°	2.1817	.05	.0009	.55	.0094	5'	001
6	.1047	6	1.1519	6	2.1991	.05	.0010	6	.0098	6'	.001
7	.1222	7	1.1694	7	2.2166	7	.0012	7	.0099	7' 8'	.002
8	.1396	8	1.1868	8	2.2340	8	.0014	8	.0101	8'	.002
9	.1571	9	1.2043	9	2.2515	9	.0016	9	.0103	9'	.002
10°	.1745	70°	1.2217	130°	2.2689 2.2864	0°.10	.0017	0°.60	.0105	10' 11'	.002
2	.2094	2	1.2566	2	2.3038	2	.0021	2	.0108	12'	.003
2 3	.2269	3	1.2741	3	2.3213	3	.0023	3	.0110	12'	.003
4	.2443	4	1.2915	4	2.3387	4	.0024	4	.0112	14'	.004
15°	.2618	75°	1.3090	135°	2.3562	.15	.0026	.65	.0113	15'	004
7	.2793	7	1.3265	6 7	2.3736	6 7	.0028	7	.0115	16'	.004
8	.3142	8	1.3614	8	2,4086	8	.0030	8	.0117	18'	.005
9	3316	9	1.3788	9	2.4260	9	.0033	9	.0120	19'	.005
20°	.3491	80°	1.3963	140°	2.4435	0°.20	.0035	0°.70	.0122	20'	.005
1	.3665	1	1.4137	1	2.4609	1	.0037	1	.0124	21'	.006
3	.3840	2 3	1.4312	2 3	2,4784	3	.0038	3	.0126	22'	.006
4	.4189	4	1.4661	4	2.5133	4	.0042	4	.0127	24'	.006
250	.4363	85°	1.4835	145°	2.5307	.25	.0044	.75	.0131	25'	007
6	.4538	6	1.5010	6	2.5482	6	.0045	6	.0133	26'	.007
7	.4712	7	1.5184	7	2.5656	7	.0047	7	.0134	27'	.007
8 9	.4887	8 9	1.5359	8	2.5831	8 9	.0049	8 9	.0136	28' 29'	.008
30°	.5061	900	1.5708	150°	2.6180	0°.30	.0052	0°.80	.0138	30'	008
30	.5411	90-	1.5882	100	2.6354	030	.0054	000	.0140	31'	.008
2 3	.5585	2	1.6057	2	2.6529	2	.0056	2	.0143	32'	.009
	.5760	3	1.6232	3	2.6704	3	.0058	3	.0145	33'	.009
4	.5934	4	1.6406	4	2.6878	4	.0059	4	.0147	34'	.009
35°	.6109 .6283	950	1.6581	155°	2.7053	35	.0061	.85	.0148	35'	.010
6 7	.6458	7	1.6930	7	2.7402	6 7	.0065	7	.0150	36' 37'	.010
8	.6632	8	1.7104	8	2.7576	8	.0066	8	.0154	38'	.011
9	.6807	9	1.7279	9	2.7751	9	.0068	9	.0155	39'	.011
40°	.6981	100°	1.7453	160°	2.7925	0°.40	.0070	0°.90	.0157	40'	.011
1	.7156 .7330	2	1.7628	2	2.8100 2.8274	1 2	.0072	1 2	.0159	41'	.011
3	.7505	3	1.7977	3	2.8449	3	.0075	3	.0161	42'	.012
4	.7679	4	1.8151	4	2.8623	4	.0077	4	.0164	44'	.012
45°	.7854	105°	1.8326	165°	2.8798	.45	.0079	.95	.0166	45'	.013
6	.8029	6	1.8500	6	2.8972	6	.0080	6	.0168	46'	.013
6 7 8	.8203 .8378	7 8	1.8675 1.8850	7 8	2.9147 2.9322	7 8	.0082	7	.0169	47'	.013
9	.8552	9	1.9024	9	2.9496	0	.0084	8 9	.0171	48'	.014
50°	.8727	110°	1.9199	170°	2.9671	0°.50	.0087	1º.00	.0175	50'	.014
1	.8901	1	1.9373	1	2.9845			2 .00	.0.,5	511	.014
2	.9076	2	1.9548	2	3.0020				1	52'	.015
3	.9250 .9425	3	1.9722	3	3.0194 3.0369					53'	.015
55°	.9599	1150	2.0071	175°	3.0543	1				54'	.015
6	.9774	6	2.0246	6	3.0718	ll I				55'	.016
7	.9948	7	2.0420	7	3.0892				1	57'	.016
8	1.0123	8	2.0595	8	3.1067					58'	.016
9	1.0297	9	2.0769	9	3.1241					59'	.017
60°	1.0472	120°	2.0944	180°	3.1416					60'	.017

Arc 1° = 0.0174533 Arc 1′ = 0.000290888 Arc 1″ = 0.00000484814 1 radian = $57^{\circ}.295780$ = $57^{\circ}.17'.7468$ = $57^{\circ}.17'.44''.806$

RADIANS EXPRESSED IN DEGREES

0.01	0°.57	.64	36°.67	1.27	72°.77	1.90	108°,86	2.53	144°.96	Interpol	ation
2	1°.15	.65	37°.24	8	73°.34	i i	109°.43	4	145°.53	.0002	0°.01
3	1°.72	6	37°.82	9	73°.91	2	110°.01	2.55	146°.10	. 04	.02
4]	2°.29	7	38°.39	1.30	74°.48	3	110°.58	6	146°.68	06	.03
.05	2°.86	8	38°.96	1	75°.06	4	1110.15	7	147°.25	08	.05
6	3°.44	_9	39°.53	2	75°.63	1.95	111°.73	8	147°.82	.0010	0°.06
7	4°.01	.70	40°.11	3	76°.20	6	112°.30	9	148°.40	12	.07
8	4°.58	1 2	40°.68 41°.25	1:	76°.78	7	112°.87	2.60	148°.97 149°.54	14	.08
.10	5°.16 5°.73	3	41°.83	1.35	77°.35 77°.92	8 9	113°.45 114°.02		150°.11	18	.10
.10	6°.30	4	42°.40	6	78°.50	2.00	114°.02	2 3	150°.11	.0020	o:ii
ž	6°.88	.75	42°.97	Ιá	79°.07	2.00	1150 16	1 4	151°.26	22	.13
3	7°.45	6	430.54	l š	79°.64	Ż	115°.16 115°.74	2.65	1510.83	24	1 .14
4	8°.02	Ž	44°.12	1.40	800.21	3	1160.31	2.06	1520.41	26	.15
.15	8°.59	8	44°.69	11	80°.79	1 4	116°.88	ĬŽ	1520.98	28	.16
6	9°.17	9	45°.26	Ż	810.36	2.05	117°.46	1 8	1530.55	.0030	0°.17
7	9°.74	.80	45°.84	3	81°.93	6	118°.03	l š	1540.13	32	.18
8	10°.31	1	46°.41	4	82°.51	7	118°.60	2.70	154°.70	34	.19
9	10°.89	2	46°.98	1.45	83°.08	8	119°.18	1	155°.27	36	.21
.20	11°.46] 3	47°.56	6	83°.65	9	119°.75	2	155°.84	38	.22
11	12°.03	4	48°.13	7	84°.22	2.10	120°.32] 3	156°.42	.0040	0°.23
2	120.61	.85	48°.70	8	84°.80	1 1	120°.89	1 _ 4	156°.99	42	.24
3	13°.18 13°.75	9	49°.27 49°.85	2.2	85°.37 85°.94	2	121°.47	2.75	157°.56	44 46	.25
.25	14°.32	8	50°.42	1.50	86°.52	3	122°.04 122°.61	6	158°.14 158°.71	48	.28
6	14°.90	6	50°.92	2	87°.09	2.15	123°.19	7 8	159°.28	.0050	0°.29
7	15°.47	.96	51°.57	3	87°.66	3.16	123°.76	1 8	159°.86	52	30
á l	16°.04	ا تا ا	52°.14	1 4	88°.24	7	124°.33	2.80	160°.43	54	31
ğ	160 62	Ż	52°.71	1.55	88°.81	l 8	1240.90		1610.00	56	32
. 3 0	17°.19	3	53°.29	1 6	89°.38	١ŏ	125°.48	ĺż	161°.57	58	33
~ i l	17°.76	4	53°.86	ĺž	89°.95	2.20	126°.05	1 3	162°.15	.0060	0°.34
2	18°.33	.95	54°.43	8	90°.53	1 1	126°.62	4	162 - 72	62	36
3	18°.91	6	55°.00	9	910.10	3	127°.20	2.85	163°.29	64	.37
4	19°.48	7	55°.58	1.60	91°.67		127°.77	6	163°.87	66	.38
.35	20°.05	8	56°.15	1 1	92°.25	4	128°.34	7	164°.44	68	.39
6	20°.63	9	56°.72	2	92°.82	2.25	128°.92	8	165°.01	.0070	0°.40
7 8	21°.20 21°.77	1.00	57°.30	3	93°.39	6	129°.49	1 9	165°.58	72 74	.41 .42
9	21°.77 22°.35	1 2	57°.87 58°.44	1 4	93°.97 94°.54	7 8	130°.06 130°.63	2.90	1000-10	76	:74
.40	22°.92	3	59°.01	1.65	95°.11	6	131°.21		166°.73 167°.30	78	:45
-20	23°.49	1 4	590.59	١۶	95°.68	2.30	1310.78	3	167°.88	.0080	00.46
2	24°.06	1.05	60°.16	l á	96°.26	2.00	132°.35	1 4	168°.45	82	.47
2	24°.64	6	60°.73	۱ŏ	96°.83	Ż	1320.93	2.95	169°.02	84	.48
- 4	25°.21	Įž	61°.31	1.7Ó	97°.40]	133°.50	- 6	1600 60	86	.49
.45	25°.78	8	61°.88	1	97°.98	4	1340 07	7	170°.17	88	.50
6	26°.36	9	62°.45	2	98°.55	2.35	134°.65	8	170°.74 I	.0090	0°.52
7	26°.93	1.10	63°.03	3	99°.12	6	1350 22	9	171°.31	92	.53
8	27°.50	l !	63°.60	4	99°.69	7	135°.79	8.00	171°.89	94	54
-9	28°.07	2	64°.17	1.75	100°.27	8	136°.36	1 1	172°.46	96	55
.50	28°.65	3	64°.74	6	100°.84	9	136°.94	2	173°.03	98	.56
1	29°.22 29°.79	12	65°.32 65°.89	7	101°.41 101°.99	2.40	137°.51	3	173°.61	Multiple	- 26 -
2	30°.37	1.15	66°.46	8	1017.99	1 2	138°.08 138°.66	1 4	174°.18 174°.75	Multiple	3 O1 #
4	30°.94	9	67°.04	1.80	102°.56 103°.13	3	139°.23	3.05 6	175°.33	11 3.1416	180°
.55	310:51	l á	67°.61	1.00	103°.71	4	139°.80	۱۶	175°.90	2 6.2832	360°
.06	32°.09	١١١	680.18	2	104°.28	2.45	140°.37	8	176°.47	3 9.4248	5480
7	32°.66	1.20	68°.75	1 3	104°.85	6	140°.95	J	1770.04	4 12.5664	720°
8	33°.23	j	69°.33	1 4	105°.42	Ĭ	141°.52	3.1ó	1770.62	5 15.7080	9000
ğ	33°.80	Ż	69°.90	1.85	106°.00	8	142°.09	J i	1780.19	6 18.8496	10800
.60	34°.38	3	70°.47	6	106°.57	ğ	142°.67	l 2	178°.76	7 21.9911	1260°
1 1	34°.95	4	71005	7	107°.14	2.50	143°.24	<u> </u>	179°.34	8 25.1327	1440°
2	35°.52	1.25	71°.62	8	107°.72	1	143°.81	4	179°.91	9 28.2743	1620°
3	36°.10	6	72°.19	9	108°.29	2	144°.39	3.15	180°.48	10 31.4159	1800°
3	36°.10	6	720.19	ğ	108°.29	ż	144°.39		180°.48	/ 20.27	

NATURAL SINES AND COSINES

N	atura	l Sines	at i	nterv	als of	0°.1,	or 6'.	(For	10' ir	terva	ls, see pr	. 52–5	6)
Deg.	°.0 =(0')	°.1 (6')	°. 2 (12')	°.8 (18′)	°.4 (24')	°.5 (30')	°.6 (36′)	°.7 (42')	°.8 (48′)	°.9 (54')			Avg.
0° 1 2 3 4	0.0000 0175 0349 0523 0698	0017 0192 0366 0541 0715	0035 0209 0384 0558 0732	0052 0227 0401 0576 0750	0070 0244 0419 0593 0767	0087 0262 0436 0610 0785	0105 0279 0454 0628 0802	0122 0297 0471 0645 0819	0140 0314 0488 0663 0837	0157 0332 0506 0680 0854	0.0000 0175 0349 0523 0698 0.0872	90° 89 88 87 86 85	17 17 17 17
5 6 7 8 9	0.0872 1045 1219 1392 1564	0889 1063 1236 1409 1582	0906 1080 1253 1426 1599	0924 1097 1271 1444 1616	0941 1115 1288 1461 1633	0958 1132 1305 1478 1650	0976 1149 1323 1495 1668	0993 1167 1340 1513 1685	1011 1184 1357 1530 1702	1028 1201 1374 1547 1719	1045 1219 1392 1564 0,1736	84 83 82 81 80°	17 17 17 17 17
10° 11 12 13 14	0.1736 1908 2079 2250 2419	1754 1925 2096 2267 2436	1771 1942 2113 2284 2453	1788 1959 2130 2300 2470	1805 1977 2147 2317 2487	1822 1994 2164 2334 2504	1840 2011 2181 2351 2521	1857 2028 2198 2368 2538	1874 2045 2215 2385 2554	1891 2062 2233 2402 2571	1908 2079 2250 2419 0.2588	79 78 77 76 75	17 17 17 17 17
15 16 17 18 19	0.2588 2756 2924 3090 3256	2605 2773 2940 3107 3272	2622 2790 2957 3123 3289	2639 2807 2974 3140 3305	2656 2823 2990 3156 3322	2672 2840 3007 3173 3338	2689 2857 3024 3190 3355	2706 2874 3040 3206 3371	2723 2890 3057 3223 3387	2740 2907 3074 3239 3404	2756 2924 3090 3256 0,3420	74 73 72 71 70°	17 17 17 17 16
20° 21 22 23 24	0,3420 3584 3746 3907 4067	3437 3600 3762 3923 4083	3453 3616 3778 3939 4099	3469 3633 3795 3955 4115	3486 3649 3811 3971 4131	3502 3665 3827 3987 4147	3518 3681 3843 4003 4163	3535 3697 3859 4019 4179	3551 3714 3875 4035 4195	3567 3730 3891 4051 4210	3584 3746 3907 4067 0.4226	69 68 67 66 65	16 16 16 16
25 26 27 28 29	0.4226 4384 4540 4695 4848	4242 4399 4555 4710 4863	4258 4415 4571 4726 4879	4274 4431 4586 4741 4894	4289 4446 4602 4756 4909	4305 4462 4617 4772 4924	4321 4478 4633 4787 4939	4337 4493 4648 4802 4955	4352 4509 4664 4818 4970	4368 4524 4679 4833 4985	4384 4540 4695 4848 0.5000	64 63 62 61 60°	16 16 16 15
80° 31 32 33 34	0.5000 5150 5299 5446 5592	5015 5165 5314 5461 5606	5030 5180 5329 5476 5621	5045 5195 5344 5490 5635	5060 5210 5358 5505 5650	5075 5225 5373 5519 5664	5090 5240 5388 5534 5678	5105 5255 5402 5548 5693	5120 5270 5417 5563 5707	5135 5284 5432 5577 5721	5150 5299 5446 5592 0.5736	59 58 57 56 55	15 15 15 15
35 36 37 38 39	0.5736 5878 6018 6157 6293	5750 5892 6032 6170 6307	5764 5906 6046 6184 6320	5779 5920 6060 6198 6334	5793 5934 6074 6211 6347	5807 5948 6088 6225 6361	5821 5962 6101 6239 6374	5835 5976 6115 6252 6388	5850 5990 6129 6266 6401	5864 6004 6143 6280 6414	5878 6018 6157 6293 0.6428	54 53 52 51 50°	14 14 14 14 13
40° 41 42 43 44	0.6428 6561 6691 6820 6947	6441 6574 6704 6833 6959	6455 6587 6717 6845 6972	6468 6600 6730 6858 6984	6481 6613 6743 6871 6997	6494 6626 6756 6884 7009	6508 6639 6769 6896 7022	6521 6652 6782 6909 7034	6534 6665 6794 6921 7046	6547 6678 6807 6934 7059	6561 6691 6820 6947 0.7071	49 48 47 46 45°	13 13 13 13
45°	0.7071												
		°.9 =(54')	°.8 (48′)	°.7 (42')	°.6 (36')	°.5 (30')	°.4 (24')	°. 3 (18′)	°.9 (12')	°.1 (6')	°.0 (0')	Deg.	

(For graphs, see p. 174.)

Natural Cosines

NATURAL SINES AND COSINES (continued)
Natural Sines at intervals of 0°.1, or 6'. (For 10' intervals, see pp. 52-56)

45° 46 47 48 49 50° 51 52 53 54 556 67 58 69 60° 61 62 63 64 65 66 67 68 69	0.7071 7193 7314 7431 7547 0.7660 7771 7880 7986 8090 0.8192 8290 8387	7083 7206 7325 7443 7559 7672 7782 7891 7997 8100	7096 7218 7337 7455 7570 7683 7793 7902	7108 7230 7349 7466 7581	7120 7242 7361 7478 7593	7133 7254 7373 7490 7604	7145 7266 7385 7501	9.7 (42') 7157 7278 7396	°.8 (48') 7169 7290 7408	°.9 (54') 7181 7302	0.7071 7193 7314	45° 44 43	12 12
46 47 48 49 50° 512 53 54 55 57 58 59 60 61 62 63 64 65 66 66 66 67 68	7193 7314 7431 7547 0.7660 7771 7880 7986 8090 0.8192 8290	7206 7325 7443 7559 7672 7782 7891 7997 8100	7218 7337 7455 7570 7683 7793 7902	7230 7349 7466 7581 7694	7242 7361 7478 7593	7254 7373 7490	7266 7385	7278	7290	7302	7193 7314	44 43	12
46 47 48 49 50° 512 53 54 55 57 58 59 60 61 62 63 64 65 66 66 66 67 68	7193 7314 7431 7547 0.7660 7771 7880 7986 8090 0.8192 8290	7206 7325 7443 7559 7672 7782 7891 7997 8100	7218 7337 7455 7570 7683 7793 7902	7230 7349 7466 7581 7694	7242 7361 7478 7593	7254 7373 7490	7266 7385	7278	7290	7302	7314	44 43	12
47 489 50° 511 522 533 54 556 575 559 60° 61 62 63 64 65 66 66 67 68	7314 7431 7547 0,7660 7771 7880 7986 8090 0,8192 8290	7325 7443 7559 7672 7782 7891 7997 8100	7337 7455 7570 7683 7793 7902	7349 7466 7581 7694	7361 7478 7593	7373 7490	7385					43	1 12
48 49 50° 51 52 53 54 55 56 57 58 59 61 62 63 64 65 66 67 68	7431 7547 0,7660 7771 7880 7986 8090 0,8192 8290	7443 7559 7672 7782 7891 7997 8100	7455 7570 7683 7793 7902	7466 7581 7694	7478 7593	7490	7202				7421	42	1 :5
50° 51 52 53 54 55 65 758 59 61 62 63 64 65 66 67 68	7547 0.7660 7771 7880 7986 8090 0.8192 8290	7559 7672 7782 7891 7997 8100	7570 7683 7793 7902	7581 7694	7593		/ 7011	7513	7524	7420 7536	7431 7547	42 41	12 12 12
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	7771 7880 7986 8090 0.8192 8290	7782 7891 7997 8 100	7793 7902			4007	7615	7627	7638	7649	0.7660	40°	iĩ
555 566 577 558 559 60° 61 662 63 64 65 666 667 668	7880 7986 8090 0.8192 8290	7891 7997 8 100	7902		7705	7 716	7727	7738	7749	776Q	777)	39	11
555 566 577 558 559 60° 61 662 63 64 65 666 667 668	7986 8090 0.8192 8290	7 997 8 100	7902	7804	7815	7826	7837	7848	7859	7869 7976	7880	38 37	!!
55 56 57 58 59 60° 61 62 63 64 65 66 67 68	8090 0.8192 8290	8100	8007	7912 8018	7923 8028	7934 8039	7944 8049	7955 8059	7965 8070	7976 8080	7986 8090	36	116
58 59 61 62 63 64 65 66 67 68	8290		8111	8121	8131	8141	8151	8161	8171	8181	0.8192	35	iŏ
58 59 61 62 63 64 65 66 67 68		8202	8211	8221	8231	8241	8251	8261	8271	8281	8290	34	10
58 59 61 62 63 64 65 66 67 68		8300	8310	8320	8329 8425	8339	8348	8358	8368	8377	8387	33 32	10
60° 61 62 63 64 65 66 67 68	8480	8396 8490	8406 8499	8415 8508	8517	8434 8526	8443 8536	8453 8545	8462 8554	8471 8563	8480 8572	31	3
61 62 63 64 65 66 67 68	8572	8581	8590	8599	8607	8616	8625	8634	8643	8652	0.8660	30°	9
62 63 64 65 66 67 68	0.8660	8669	8678	8686	8695	8704	8712	8721	8729	8738	8746	29	9
63 64 65 66 67 68	8746 8829	8755 8838	8763 8846	8771 8854	8780 8862	8788 8870	8796 8878	8805 8886	8813 8894	8821 8902	8829 8910	28 27	8
64 65 66 67 68	8910	8918	8926	8934	8942	8949	8957	8965	8973	8980	8988	26	8
66 67 68	8988	8996	9003	9011	9018	9026	9033	9041	9048	9056	0.9063	25	Ž
68	0.9063	9070	9078	9085	9092	9100	9107	9114	9121	9128	9135	24	7
68	9135	9143 9212	9150 9219	9157	9164	9171	9178	9184	9191	9198	9205	23 22	7
	9205 9272	9278	9285	9225 9291	9232 9298	9239 9304	9245 9311	9252 9317	9259 9323	9265 93 30	9272 9336	21	6
	9336	9342	9348	9354	9361	9367	9373	9379	9385	9391	0.9397	20°	ĕ
	0.9397	9403	9409	9415	9421	9426	9432	9438	9444	9449	9455	19	6
71	9455 9511	9461 9516	9466 9521	9472 9527	9478 9532	9483 9537	9489 9542	9494 9548	9500 9553	9505 9558	9511 9563	18 17	6
72 73 74	9563	9568	9573	9578	9583	9588	9593	9598	9603	9608	9613	16	5
74	9613	9617	9622	9627	9632	9636	9641	9646	9650	9655	0.9659	iš	5
75	0.9659	9664	9668	9673	9677	9681	9686	9690	9694	9699	9703	14	4
76	9703	9707	9711	9715	9720 9759	9724	9728	9732	9736	9740	9744	13	4
77 78	9744 9781	9748 9785	9751 9789	9755 9792	9796	9763 9799	9767 9 80 3	9770 9806	9774 9810	9778 9813	9781 9816	12	3
79	<i>9</i> 816	9820	9823	9826	9829	9833	9836	9839	9842	9845	0.9848.	ioº	3
80°	0.9848	9851	9854	9857	9860	9863	9866	9869	9871	9874	9877	9	3
81	9877	9880	9882	9885	9888	9890	9893	9895	9898	9900	9903	8	3
82 83	9903 9925	9905 9928	9907 9930	9910 9932	9912 9934	9914 9936	9917 9938	9919 9940	9921 9942	9923 9943	9925 9945	7 6	3 2 2 2
84	9945	9947	9949	9951	9952	9954	9956	9957	9959	9960	0.9962	š ·	Ž
85	0.9962	9963	9965	9966	9968	9969	9971	9972	9973	9974	9976	4	1
86 87	9976	9977	9978 9988	9979	9980 9990	9981	9982 9991	9983	9984 9993	9985 9993	9986	3 2	!!
6/ 88	9986 9994	9987 9995	9995	9989 9996	9996	9990 9997	9997 9997	9992 9997	9998	9998	9994 0.9998	1	
88 89	0.9998	9999	9999	9999	9999	0000	0000	0000	0000	0000	1.0000	o°	ŏ
90°	1,0000					•							
		۰ ۵	0 0	0 7	0 g	0 g	0 4			۰.	۰, ۱		1
		-(54')	°.8 (48′)	°.7 .(42')	°.6 (36′)	°.5 (30')	°.4 (24')	°.8 (18′)	°.9 (12')	°.1 (6')	°.0 (0')	Deg.	

Natural Cosines

NATURAL TANGENTS AND COTANGENTS
Natural Tangents at intervals of 0°.1, or 6'. (For 10' intervals, see pp. 52-56)

Deg.	-(0°)	°.1 (6')	°. 2 (12')	°. 3 (18′)	°.4 (24')	°.5 (30')	°. 6 (36′)	°.7 (42′)	°.8 (48′)	°.9 (54')			Avg.
											0.0000	90°	├
0°	0.000		0035	0052	9070	0087	0105	0122	0140	0157	0175	89	17
ļ	017		0209 0384	0227	0244	0262 0437	0279 0454	0297 0472	0314	0332	0349 0524	88	17 17
2	034 052		0559	0402	0419		0629		0489 0664	0507		87	! !?
4	069		0734	0577 0752	059 4 0769	0612 0787	0805	0647 0822	0840	0682 0857	0699 0.0875	86 85	18
7	U07	9 0/1/	0/34	0/52	0/09	U/0/	0000	0022	UOTU	003/	0.0075	0.0	18
5	0.087	5 0892	0910	0928	0945	0963	0981	0998	1016	1033	1051	84	18
6	105		1086	1104	1122	1139	1157	1175	1192	1210	1228	83	18
6	122		1263	1281	1299	1317	1334	1175 1352	1370	1388	1405	82	iš
8	140		1441	1459	1477	1495	1512	1530	1548	1566	1584	81	18
ğ	158		1620	1638	1655	1673	1691	1709	1727	1745	0.1763	800	l iš
						•							
10°	0.176		1799	1817	1835	1853	1871	1890	1908	1926	1944	79	18
11	194	1962	1980	1998	2016	2035	2053	2071	2089	2107	2126	78	18
12	212	5 2144	2162	2180	2199	2217	2235	2254	2272	2290	2309	77	18
13	230	2327	2345	2364	2382	2401	2419	2438	2456	2475	2493	76	18
14	2493	3 2512	2530	2549	2568	2586	2605	2623	2642	2661	0.2679	75	19
15	0.2679	2698	2717	2736	2754.	2773	2792	2811	2830	2849	2867	74	19
16	2867		2905	2924	2943	2962	2981	3000	3019	3038	3057	73	13
17	3057	7 3076	3096	3115	3134	3153	3172	3191	3211	3230	3249	72	13
i8	3249		3288	3307	3327	3346	3365	3385	3404	3424	3443	71	liś
iğ l	344		3482	3502	3522	3541	3561	3581	3600	3620	0.3640	70°	2ó
20°	0.3640	3659	3679	3699	3719	3739	3759	3779	3799	3819	3839	69	20
21	3839		3879	3899	3919	3939	3959	3979	4000	4020	4040	68	20
22	4040		4081	4101	4122	4142	4163	4183	4204	4224	4245	67	21
21 22 23 24	4245		4286	4307	4327	4348	4369	4390	4411	4431	4452	66	21
24	4452	2 4473	4494	4515	4536	4557	4578	4599	4621	4642	0.4663	65	21
25	0.4663	4684	4706	4727	4748	4770	4791	4813	4834	4856	4877	64	21
26	4877		4921	4942	4964	4986	5008	5029	5051	5073	5095	63	22
27	5095		3139	5161	5184	5206	5228	5250	5272	5295	5317	62	77
28	5317		5362	5384	5407	5430	5452	5475	5498	5520	5543	61	23
25 26 27 28 29	5543		5589	5612	5635	5658	5681	5704	5727	5750	0.5774	60°	22 23 23
-				30.2			•	_					
80°	0.5774		5820	5844	5867	5890	5914	5938	5961	5985	6009	59	24
31	6009		6056	6080	6104	6128	6152	6176	6200	6224	6249	58	24
31 32 33	6249		6297	6322	6346	6371	6395	6420	6445	6469	6494	58 57 56	24 25 25
33	6494		6544	6569	6594	6619	6644	6669	6694	6720	6745	56	25
34	6745	6771	6796	6822	6847	6873	6899	6924	6950	6976	0.7002	55,	26
25	0.7002	7028	7054	7080	7107	7133	7159	7186	7212	7239	7265	54	26
35 36 37	7265	7020	7319	7346	7373	7133 7400	7427	7454	7481	7508	7536	27	26 27 28
20	7536		7590	7618	7646	7673	7701	7729	7757	7785	7813	53 52	22
38	7813	7841	7869	7898	7926	7954	7983	8012	8040	8069	8098	51	28
39	8098		8156	8185	8214	8243	8273	8302	8332	8361	0.8391	50°	29
- 1													
40°	0.8391	8421	8451	8481	8511	8541	8571	8601	8632	8662	8693	49	30
41	8693	8724	8754	8785	8816	8847	8878	8910	8941	8972	9004	48	31
42	9004		9067	9099	9131	9163	9195	9228	9260	9293	9325	47	32
43	9325	93 58 9691	9391 9725	9424	9457	9490 9827	9523 9861	9556 9896	9590 9930	9623 9965	0.9657 1.0000	46 45°	33
44	0.9657	1606	9/25	9759	9793	9027	9001	7070	7730	7702	1.0000	45	34
15°	1.0000)									İ		
		°.9	°.8	°.7	°.6	°.5	°.4	°.8	•.8	°.1	°.0		
	- 1	=(54')	(48')	(42')	(36')	(30')	(24')	(18')	(12^7)	(6')	(0')	Deg.	l
								110/					

(For graphs, see p. 174.)

Natural Cotangents

NATURAL TANGENTS AND COTANGENTS (continued)
Natural Tangents at intervals of 0°.1, or 6'. (For 10' intervals, see pp. 52-56)

Deg.	=(0')	°.1 (6')	°.9 (12')	°. 3 (18′)	°.4 (24′)	°.5 (30')	°. 6 (36′)	°.7 (42')	°. 8 (48′)	°. 9 (54')			A vg diff
										1	.0000	45°	
45° 46 47 48 49	1.0000 0355 0724 1106 1504	0392 0761 1145	0428 0799 1184	0105 0464 0837 1224 1626	0141 0501 0875 1263 1667	0176 0538 0913 1303 1708	0212 0575 0951 1343 1750	0247 0612 0990 1383 1792	0283 0649 1028 1423 1833	0319 0686 1067 1463 1875 1	0355 0724 1106 1504 1.1918	44 43 42 41 40°	35 37 38 40 41
50° 51 52 53 54	1.1918 2349 2799 3270 3764	2393 2846 3319	2437 2892 3367	2045 2482 2938 3416 3916	2088 2527 2985 3465 3968	2131 2572 3032 3514 4019	2174 2617 3079 3564 4071	2218 2662 3127 3613 4124	2261 2708 3175 3663 4176	2305 2753 3222 3713 4229 1	2349 2799 3270 3764 .4281	39 38 37 36 35	43 45 47 49 52
55 56 57 58 59	1.4281 4826 5399 6003 1.6643	4882 5458 6066	5517	4442 4994 5577 6191 6842	4496 5051 5637 6255 6909	4550 5108 5697 6319 6977	4605 5166 5757 6383 7045	4659 5224 5818 6447 7113	4715 5282 5880 6512 7182	4770 5340 5941 6577 7251 1	4826 5399 6003 6643 .7321	34 33 32 31 80°	55 57 60 64 67
60° 61 62 63 64	1.732 1.804 1.881 1.963 2.050	1.811 1.889 1.971	1.746 1.819 1.897 1.980 2.069	1.753 1.827 1.905 1.988 2.078	1.760 1.834 1.913 1.997 2.087	1.767 1.842 1.921 2.006 2.097	1.775 1.849 1.929 2.014 2.106	1.857 1.937 2.023	1.946 2.032	1.873 1.954 2.041	1.804 1.881 1.963 2.050 2.145	29 28 27 26 25	7 8 8 9
65 66 67 68 69	2.145 2.246 2.356 2.475 2.605	2.257 2.367 2.488	2.267 2.379 2.500	2.174 2.278 2.391 2.513 2.646	2.184 2.289 2.402 2.526 2.660	2.194 2.300 2.414 2.539 2.675	2.204 2.311 2.426 2.552 2.689	2.322 2.438	2.333 2.450 2.578	2.344 2.463 2.592	2.246 2.356 2.475 2.605 2.747	24 23 22 21 20°	10 11 12 13 14
70° 71 72 73 74	2.747 2.904 3.078 3.271 3.487	2.921 3.096 3.291	2.937	2.793 2.954 3.133 3.333 3.558	2.808 2.971 3.152 3.354 3.582	2.824 2.989 3.172 3.376 3.606	2.840 3.006 3.191 3.398 3.630	3.024 3.211 3.420	3.230 3.442	3.060 3.251 3.465	2.904 3.078 3.271 3.487 3.732	19 18 17 16 15	16 17 19 22 24
75 76 77 78 79	3.732 4.011 4.331 4.705 5.145	4.041 4.366 4.745	4.402 4.787	4.102 4.437 4.829	3.839 4.134 4.474 4.872 5.343	3.867 4.165 4.511 4.915 5.396	3.895 4.198 4.548 4.959 5.449	4.230 4.586 5.005	3.952 4.264 4.625 5.050 5.558	4.297 4.665 5.097	4.011 4.331 4.705 5.145 5.671	14 13 12 11 10°	28 32 37 44 53
80° 81 82 83 84	5.671 6.314 7.115 8.144 9.514	6.386 7.207 8.264	6.460 7.300 8.386	5.850 6.535 7.396 8.513 10.02	5.912 6.612 7.495 8.643 10.20	5.976 6.691 7.596 8.777 10.39	6.041 6.772 7.700 8.915 10.58	6 855 7.806	6.940 7.916 9.205	8. 028 9.35 7	6.314 7.115 8.144 9.514 11.43	9 8 7 6 5	
85 86 87 88 89	11.43 14.30 19.08 28.64 57.29	14.67 19.74 30.14	15.06 20.45 31.82	33.69	12.43 15.89 22.02 35.80 95.49	12.71 16.35 22.90 38.19 114.6	13.00 16.83 23.86 40.92 143.2	17.34 24.90 44.07	13.62 17.89 26.03 47.74 286.5	18.46 27.27 52.08	14.30 19.08 28.64 57,29	4 3 2 1 0°	
90°	•												
		°.9 =(54')	°.8 (48′)	°.7 (42')	°.6 (36')	°. 5 (30')	°.4 (24')	°.3 (18')	°.2 (12')	°.1 (6')	°.0 (0')	Deg.	

Natural Cotangents

NATURAL SECANTS AND COSECANTS

Natural Secants at intervals of 0°.1, or 6'. (For 10' intervals, see pp. 52-56)

Deg.	_(o')	°.1. (6')	°.2 (12')	°. 3 (18′)	°.4 (24')	°.5 (30')	°.6 (36')	°.7 (42')	°.8 (48′)	°.9 (54')			Avg. diff.
											1.0000	90°	
0° 1 2 3 4	1,000 000 000 0014 0024	2 0002 5 0007 6 0015	0000 0002 0007 0016 0027	0000 0003 0008 0017 0028	0000 0003 0009 0018 0030	0000 0003 0010 0019 0031	0001 0004 0010 0020 0032	0001 0004 0011 0021 0034	0001 0005 0012 0022 0035	0001 0006 0013 0023 0037	0002 0006 0014 0024 1.0038	89 88 87 86 85	0 0 1 1
5 6 7 8 9	1.0036 0055 0075 0098 0125	0057 0077 0101	0041 0059 0079 0103 0130	0043 0061 0082 0106 0133	0045 0063 0084 0108 0136	0046 0065 0086 0111 0139	0048 0067 0089 0114 0142	0050 0069 0091 0116 0145	0051 0071 0093 0119 0148	0053 0073 0096 0122 0151	005 5 0075 0098 01 25 1.0154	84 83 82 81 80°	2 2 3 3
10° 2 3 4	1.0154 0182 0223 0263 0306	0191 0227 0267	0161 0194 0231 0271 0315	0164 0198 0235 0276 0320	0167 0201 0239 0280 0324	0170 0205 0243 0284 0329	0174 0209 0247 0288 0334	0177 0212 0251 0293 0338	0180 0216 0255 02 97 0343	0184 0220 0259 0302 0348	0187 0223 0263 0306 1.0353	79 78 77 76 75	3 4 4 5
15 16 17 18 19	1.0353 0403 0457 0515 0576	0408 0463 0521	0363 0413 0468 0527 0589	0367 0419 0474 0533 0595	0372 0424 0480 0539 0602	0377 0429 0485 0545 0608	0382 0435 0491 0551 0615	0388 0440 0497 0557 0622	0393 0446 0503 0564 0628	0398 0451 0509 0570 0635	0403 0457 0515 0576 1.0642	74 73 72 71 70°	5 5 6 6 7
20° 21 22 23 24	1.0642 0711 0785 0864 0946	0719 0793 0872	0655 0726 0801 0880 0963	0662 0733 0808 0888 0972	0669 0740 0816 0896 0981	0676 0748 0824 0904 0989	0683 0755 0832 0913 0998	0690 0763 0840 0921 1007	0697 0770 0848 0929 1016	0704 0778 0856 0938 1025	0711 0785 0864 0946 1.1034	69 68 67 66 65	7 7 8 8 9
25 26 27 28 29	1.1034 1126 1223 1326 1434	1136 1233 1336	1052 1145 1243 1347 1456	1061 1155 1253 1357 1467	1070 1164 1264 1368 1478	1079 1174 1274 1379 1490	1089 1184 1284 1390 1501	1098 1194 1294 1401 1512	1107 1203 1305 1412 1524	1117 1213 1315 1423 1535	1126 1223 1326 1434 1,1547	64 63 62 61 60°	9 10 10 11
30° 31 32 33 34	1.1547 1666 1792 1924 2062	1679 1805 1937	1570 1691 1818 1951 2091	1582 1703 1831 1964 2105	1594 1716 1844 1978 2120	1606 1728 1857 1992 2134	1618 1741 1870 2006 2149	1630 1753 1883 2020 2163	1642 1766 1897 2034 2178	1654 1779 1910 2048 2193	1666 1792 1924 2062 1.2208	59 58 57 56 55	12 13 13 14 15
35 36 37 38 39	1,2208 2361 2521 2690 2868	2376 2538 2708	2238 2392 2554 2725 2904	2253 2408 2571 2742 2923	2268 2424 2588 2760 2941	2283 2440 2605 2778 2960	2299 2456 2622 2796 2978	2314 2472 2639 2813 2997	2329 2489 2656 2831 3016	2345 2505 2673 2849 3035	2361 2521 2690 2868 1.3054	54 53 52 51 50°	15 16 17 18 19
40° 41 42 43 44	1.3054 3250 3456 3673 3902	3270 3478 3696	3093 3291 3499 3718 39 49	3112 3311 3520 3741 3972	3131 3331 3542 3763 3996	3151 3352 3563 3786 4020	3171 3373 3585 3809 4044	3190 3393 3607 3832 4069	3210 3414 3629 3855 4093	3230 3435 3651 3878 4118	3250 3456 3673 3902 1.4142	49 48 47 46 45°	20 21 22 23 24
45°	1.4142	:											
		°.9 =(54')	°.8 (48′)	°.7 (42')	°. 6 (36′)	°.5 (30')	°.4 (24')	° .3 (18′)	°. 2 . (12')	°1 (6')	°.0 (0')	Deg.	
		/For	b-		174				107.	+1190	1 Cose		

(For graphs, see p. 174.)

Natural Cosecants

NATURAL SECANTS AND COSECANTS (continued)
Natural Secants at intervals of 0°.1, or 6'. (For 10' intervals, see pp. 52–56)

Deg.	-(°')	°.1 (6')	°. <u>2</u> (12')	°.8 (18′)	°.4 (24')	°.5 (30′)	°. 6 (36′)	°.7 (42′)	°. 8 (48′)	°.9 (54')			Avg diff
											1,4142	45°	
46 47 48 49	1.4142 4396 4663 4945 5243	4422 4690 4974	4192 4448 4718 5003 5304	4217 4474 4746 5032 5335	4242 4501 4774 5062 5366	4267 4527 4802 5092 5398	4293 4554 4830 5121 5429	4318 4581 4859 5151 5461	4344 4608 4887 5182 5493	4370 4635 4916 5212 5525	4396 4663 4945 5243 1.5557	44 43 42 41 40°	25 27 28 30 31
50° 51 52 53 54	1.5557 5890 6243 6616 7013	5925 6279 6655	5622 5959 6316 6694 7095	5655 5994 6353 6733 7137	5688 6029 6390 6772 7179	5721 6064 6427 6812 7221	5755 6099 6464 6852 7263	5788 6135 6502 6892 7305	5822 6171 6540 6932 7348	5856 6207 6578 6972 7391	5890 6243 6616 7013 1.7434	39 38 37 36 35	33 35 37 40 42
55 56 57 58 59	1.7434 7883 8361 8871 1.9416	7929 8410 8924	7522 7976 8460 8977 9530	7566 8023 8510 9031 9587	7610 8070 8561 9084 9645	7655 8118 8612 9139 9703	7700 8166 8663 9194 9762	7745 8214 8714 9249 9821	7791 8263 8766 9304 9880	7837 8312 8818 9360 9940	7883 8361 8871 1.9416 2.0000	34 33 32 31 80°	45 48 51 54 58
61 62 63 64	2.000 2.063 2.130 2.203 2.281	2.069 2.137 2.210	2.012 2.076 2.144 2.218 2.298	2.018 2.082 2.151 2.226 2.306	2.025 2.089 2.158 2.233 2.314	2.031 2.096 2.166 2.241 2.323	2.037 2.103 2.173 2.249 2.331	2.043 2.109 2.180 2.257 2.340	2.050 2.116 2.188 2.265 2.349	2.056 2.123 2.195 2.273 2.357	2.063 2.130 2.203 2.281 2.366	29 28 27 26 25	6 7 7 8 8
65 66 67 68 69	2.366 2.459 2.559 2.669 2.790	2.468 2.570 2.681	2.581 2.693	2.393 2.488 2.591 2.705 2.829	2.402 2.498 2.602 2.716 2.842	2.411 2.508 2.613 2.729 2.855	2.421 2.518 2.624 2.741 2.869	2.430 2.528 2.635 2.753 2.882	2.439 2.538 2.647 2.765 2.896	2.449 2.549 2.658 2.778 2.910	2.459 2.559 2.669 2.790 2.924	24 23 22 21 20°	9 10 11 12 13
70° 71 72 73 74	2.924 3.072 3.236 3.420 3.628	3.087 3.254 3.440	3.460	2.967 3.119 3.289 3.480 3.695	2.981 3.135 3.307 3.500 3.719	2.996 3.152 3.326 3.521 3.742	3.011 3.168 3.344 3.542 3.766	3.026 3.185 3.363 3.563 3.790	3.041 3.202 3.382 3.584 3.814	3.056 3.219 3.401 3.606 3.839	3.072 3.236 3.420 3.628 3.864	19 18 17 16 15	15 16 18 21 24
75 76 77 78 79	3.864 4.134 4.445 4.810 5.241	4.163 4.479 4.850	4.514	3.941 4.222 4.549 4.931 5.386	3.967 4.253 4.584 4.973 5.436	3.994 4.284 4.620 5.016 5.487	4.021 4.315 4.657 5.059 5.540	4.049 4.347 4.694 5.103 5.593	4.379 4.732 5.148	4.105 4.412 4.771 5.194 5.702	4.134 4.445 4.810 5.241 5.759	14 13 12 11 10°	27 31 36 43 52
80° 81 82 83 84	5.759 6.392 7.185 8.206 9.567	6.464 7.276 8.324	7.368 8.446	6.611 7.463	5.996 6.687 7.561 8.700 10.25	6.059 6.765 7.661 8.834 10.43	6.123 6.845 7.764 8.971 10.63	6.188 6.927 7.870 9.113 10.83	7.011	6.323 7.097 8.091 9.411 11.25	6.392 7.185 8.206 9.567 11.47	9 8 7 6 5	
85 86 87 88 89	11.47 14.34 19.11 28.65 57.30	14.70 19.77 30.16		12.20 15.50 21.23 33.71 81.85	12.47 15.93 22.04 35.81 95.49	12.75 16.38 22.93 38.20 114.6	13.03 16.86 23.88 40.93 143.2	13.34 17.37 24.92 44.08 191.0	17.91 26.05	13.99 18.49 27.29 52.09 573.0	14.34 19.11 28.65 57.30	4 3 2 1 0°	
90°	_ ∞												
		°.9 —(54')	°.8 (48′)	•. 7 (42')	°. 6 (36')	°.5 (30′)	°.4 (24')	°. s (18′)	°. 2 (12')	°.1 (6')	°. 0 (0′)	Deg.	

Natural Cosecants

TRIGONOMETRIC FUNCTIONS (at intervals of 10')

(For 0.°1 intervals, see pp. 46-51) Annex -10 in columns marked De-Ra-Cotangents Sines Cosines Tangents grees dians Nat. Log. * Nat. Log. Log. * Nat. Log. * Nat. 1.5708 1.5679 1.5650 00 00 0.0000 .0000 1.0000 0.0000 .0000 90° 00 8 343.77 10 0.0029 .0029 7.4637 1.0000 .0000 .0029 7.4637 2,5363 50 20 0 0058 .0058 7648 1.0000 .0000 .0058 .7648 171.89 .2352 40 30 9408 114.59 .0591 1.5621 30 0 0087 .0087 1.0000 .0000 .0087 9409 40 50 8.0658 85.940 1.9342 1.5592 20 .0116 8,0658 0.0116 0116 0.9999 0000 1.5563 0.0145 .0145 .1627 .9999 .0000 .0145 .1627 68.750 .8373 10 10 1.5533 00 0.0175 .0175 8.2419 .9998 9.9999 .0175 8,2419 57.290 1.7581 89 00 10 3088 9998 49.104 50 .0204 .9999 .0204 3089 .6911 0.0204 1.5475 1.5446 1.5417 0.0233 0233 3668 9997 9999 0233 3669 42.964 .6331 40 20 30 40 50 30 0.0262 0262 .4179 .9997 9999 .0262 .4181 38.188 5819 20 0.0291 .0291 4637 9996 9998 .0291 4638 34,368 5362 .0320 .5050 .9995 .9998 .0320 5053 31.242 .4947 1.5388 10 0.0320 20 00 .0349 8,5428 ,5776 9994 9,9997 .0349 8,5431 28,636 1,4569 1.5359 88° 00 0.0349 5779 9993 .0378 4221 1.5330 50 10 9997 26,432 0.0378 .0378 9996 24.542 3899 1.5301 40 20 30 40 50 6097 0.0407 0407 6101 1.5272 30 20 0.0436 .0436 .6397 9990 .9996 .0437 .6401 22,904 3599 0.0465 0.0495 .0466 21,470 1:5243 .0465 .6677 .9989 9995 .6682 3318 .0494 .6940 .9988 .9995 .0495 .6945 20,206 .3055 1.5213 10 9986 9,9994 8.7194 19.081 1.2806 1.5184 87° 00 30 00 0.0524 .0523 8.7188 .0524 1.5155 50 40 .0552 .7423 .7645 .7857 9985 .0553 .7429 .7652 2571 2348 10 0.0553 .9993 18.075 9993 .9983 .0582 17.169 20 0.0582 .0581 1.5097 30 .0610 .9981 .9992 .0612 7865 16.350 .2135 30 0.0611 40 50 0.0640 .0640 .8059 .9980 9991 .0641 .8067 15.605 .1933 20 14.924 1.5039 10 .0669 .8251 .9978 .9990 .0670 .8261 .1739 0.066914,301 1.5010 86° 00 40 00 0.0698 .0698 8,8436 .9976 9,9989 .0699 8.8446 1.1554 13,727 1,4981 5Ö 0.0727 .0727 .8613 9974 9989 .0729 .8624 1376 10 40 1.4952 13.197 .1205 20 30 40 0.0756 .0756 .8783 .9971 .9988 .0758 .8795 .0785 .8946 .9969 .9987 .0787 .8960 12.706 .1040 1.4923 30 0.0785 20 .0814 9104 .9967 9986 .0816 9118 12,251 .0882 0.0814 9964 1.4864 10 .9985 .9272 11.826 .0728 50 .0843 .9256 .0846 0.0844 85° 8.9403 9962 9,9983 .0875 8,9420 11,430 1.0580 1.4835 00 .0872 50 00 0.0873 1.4806 50 0.0902 .0901 .9545 9959 9982 .0904 9563 11.059 .0437 10 .0929 .9682 .9957 .9981 0934 .9701 10.712 .0299 1.4777 20 30 0.0931 .9954 .9980 .0963 10.385 .0164 1.4748 30 .0958 .9816 .9836 0.0960 9945 1.4719 20 40 0.0989 .0987 .9951 9979 0992 .9966 10.078 .0034 10 .9977 9.0093 9.7882 0.9907 1,4690 .9948 .1022 .1016 9.0070 0.1018 1.4661 .9945 9.9976 9.0216 9.5144 0.9784 840 00 0.1047 .1045 9.0192 .1051 60 00 .1074 9942 .9975 .1080 .0336 9.2553 9664 1.4632 50 .0311 10 .0453 .0567 .1103 9939 .9973 .1110 9.0098 9547 1.4603 40 .0426 20 0.1105 .0539 .9936 9972 .1139 8,7769 9433 1.4574 30 30 40 0.1134 .1132 9971 1.4544 20 .1161 9932 .1169 .0678 8,5555 9322 .06481.4515 8.3450 .9214 10 50 0.1193 .1190 .0755 .9929 .9969 .1198 .0786 1,4486 00 .1219 9,9968 9.0891 8.1443 0.9109 83° 9.0859 .9925 .1228 70 00 0.1222 .1248 50 40 .0961 9922 .9966 .1257 .0995 7,9530 .9005 1.4457 0.1251 10 .1096 7.7704 8904 1.4428 20 30 .1276 .1060 9918 9964 .1287 0.1280 9963 .1194 7,5958 8806 1,4399 30 .9914 0.1309 .1305 .1157 .1317 7.4287 7.2687 20 .1252 .1291 .8709 1.4370 40 0.1338 .1334 9911 .9961 .1346 50 .1363 .9907 .9959 .1376 .1385 .8615 1.4341 10 0.1367 .1345 1.4312 .1392 820 00 9903 9,9958 .1405 9.1478 7.1154 0.8522 80 00 0.1396 9.1436 9956 .1435 .1569 9899 6.9682 .8431 1.4283 50 10 0.1425 .1421 .1525 1.4254 40 9954 .1658 6.8269 8342 20 0.1454 .1449 .1612 9894 .1465 30 30 9890 .9952 .1495 .1745 6.6912 .8255 0.1484 1478 .1697

1.4195

1.4166

1.4137

Ra-

dians

20

10

81º 60'

De-

grees

.1507

.1536

.1564

Nat.

.1781

.1863

9.1943

Log. *

Cosines

9886 .9950

.9881

Nat.

.9948

Log. *

.9877 9.9946

Sines

.1524

.1554

.1584

Nat. Log. *

Cotangents

.1831

.1915

9.1997

6.5606

6.4348

Nat.

6.3138 0.8003

Tangents

.8169

.8085

Log.

40

50

00

0.1513

0.1542

0.1571

TRIGONOMETRIC FUNCTIONS (continued)
Annex -10 in columns marked*. (For 0.°1 intervals, see pp. 48-51)

De- grees	Ra- dians	Sines	Cosines	Tangents	Cotangents	
9° 00′ 10 20 30 40 50 10° 00′ 10 20 30	0.1571 0.1600 0.1629 0.1658 0.1687 0.1716 0.1745 0.1744 0.1804 0.1833	Nat. Log. 1564 9.1943 1593 2022 1622 2190 1650 2176 1679 2251 1708 2324 1736 9.2397 1765 2468 1794 2538 1822 2574	.9877 9.9946 .9872 .9944 .9868 .9942 .9863 .9940 .9853 .9936 .9853 .9936 .9848 9.9934 .9843 .9931 .9838 .9929 .9838 .9929	Nat. Log.* 1584 9.1997 1614 2078 1644 2158 1673 2236 1703 2313 1733 2389 1763 92463 1793 2536 1823 2609	Nat. Log. 6.3138 0.8003 6.19707922 6.0844 .7842 5.9758 .7764 5.8708 .7687 5.6713 0.7537 5.5764 .7464 5.4845 .7391 5.3955 .7320 5.3093 .7250	1.4137 1.4108 1.4079 1.4050 1.4021 1.3992 1.3963 1.3963 1.3934 1.3904 40 1.3875 300
40 50 11° 00′ 10 20 30	0.1833 0.1862 0.1891 0.1920 0.1949 0.1978 0.2007	.1851 .2674 .1880 .2740 .1908 9.2806 .1937 .2870 .1965 .2934 .1994 .2997	.9827 .9924 .9822 .9922 .9816 9.9919 .9811 .9917 .9805 .9914 .9799 .9912	.1853	5.2257 .7181 5.1446 0.7113 5.0658 .7047 4.9894 .6980 4.9152 .6915	1.3875 1.3846 1.3817 1.3788 1.3759 1.3759 1.3730 1.3701 30
40 50 12° 00' 10 20 30 40	0.2036 0.2065 0.2094 0.2123 0.2153 0.2182 0.2211	.2022 .3058 :2051 .3119 .2079 9.3179 .2108 .3238 .2136 .3296 .2164 .3353 .2193 .3410	.9793 .9909 .9787 .9907 .9781 9.9904 .9775 .9901 .9769 .9899 .9763 .9896 .9757 .9893	.2065 .3149 .2095 .3212 .2126 .93275 .2156 .3336 .2186 .3397 .2217 .3458 .2247 .3517	4.8430 .6851 4.7729 .6788 4.7046 0.6725 4.6382 .6664 4.5736 .6603 4.5107 .6542 4.4494 .6483	1.3672 20 1.3643 10 1.3614 78° 00′ 1.3584 50 1.3526 30 1.3497 20
50 13° 00' 10 20 30 40 50	0.2240 0.2269 0.2298 0.2327 0.2356 0.2385 0.2414	.2221 3466 .2250 9.3521 .2278 3575 .2306 3629 .2334 3682 .2363 3734 .2391 3786	9750	.2278 3576 .2309 9,3634 .2339 3691 .2370 3748 .2401 3804 .2432 3859 .2462 3914	4.3897 .6424 4.3315 0.6366 4.2747 .6309 4.2193 .6252 4.1653 .6196 4.1126 .6141 4.0611 .6086	1.3468 10 1.3439 77° 00′ 1.3410 50 1.3381 40 1.3352 30 1.3323 20 1.3294 10
14° 00′ 10 20 30 40 50 15° 00′	0.2443 0.2473 0.2502 0.2531 0.2560 0.2589 0,2618	2419 9.3837 2447 3887 2476 3937 2504 3986 2532 4035 2560 4083 2588 9.4130	.9703 9.9869 .9696 .9866 .9689 .9863 .9681 .9859 .9674 .9856 .9667 .9853	.2493 9,3968 .2524 .4021 .2555 .4074 .2586 .4127 .2617 .4178 .2648 .4230 .2679 9,4281	4.0108 0.6032 3.9617 5979 3.9136 5926 3.8667 5873 3.8208 5822 3.7760 5770 3.7321 0.5719	1.3265 76° 00° 1.3235 50 1.3206 40 1.3178 20 1.3148 20 1.3119 10 1.3090 75° 00°
10 20 30 40 50	0.2647 0.2676 0.2705 0.2734 0.2763 0.2793	.2616 .4177 .2644 .4223 .2672 .4269 .2700 .4314 .2728 .4359 .2756 9.4403	.9659 9,9649 .9652 ,9846 .9644 ,9843 .9636 ,9839 .9628 ,9836 .9621 ,9832 .9613 9,9828	.2079 9.4261 .2711 .4331 .2742 .4381 .2773 .4430 .2805 .4479 .2836 .4527 .2867 9.4575	3.6891 .5669 3.6470 .5619 3.6059 .5570 3.5656 .5521 3.5261 .5473 3.4874 0.5425	1.3061 50 1.3032 40 1.3003 30 1.2974 20 1.2945 10 1.2915 74° 00°
10 20 30 40 50 17° 00'	0.2822 0.2851 0.2880 0.2909 0.2938 0.2967	.2784 .4447 .2812 .4491 .2840 .4533 .2868 .4576 .2896 .4618 .2924 9.4659	.9605 .9825 .9596 .9821 .9588 .9817 .9580 .9814 .9572 .9810 .9563 9.9806	.2899 .4622 .2931 .4669 .2962 .4716 .2994 .4762 .3026 .4808 .3057 9.4853	3.4495 5378 3.4124 5331 3.3759 5284 3.3402 5238 3.3052 5192 3.2709 0.5147	1.2886 50 1.2857 40 1.2828 30 1.2799 20 1.2770 10 1.2741 73° 00°
10 20 30 40 50 18° 00'	0.2996 0.3025 0.3054 0.3083 0.3113 0.3142	.2952 .4700 .2979 .4741 .3007 .4781 .3035 .4821 .3062 .4861 .3090 9.4900	.9555 .9802 .9546 .9798 .9537 .9794 .9528 .9790 .9520 .9786 .9511 9.9782	.3089 .4898 .3121 .4943 .3153 .4987 .3185 .5031 .3217 .5075 .3249 9.5118	3.2371 .5102 3.2041 .5057 3.1716 .5013 3.1397 .4969 3.1084 .4925 3.0777 0.4882	1.2712 50 1.2683 40 1.2654 30 1.2625 20 1.2595 10 1.2566 72° 00′
.——		Nat. Log.* Cosines	Nat. Log.*	Nat. Log.* Cotangents	Nat. Log. Tangents	Ra- dians grees

TRIGONOMETRIC FUNCTIONS

(continued)
(For 0.°1 intervals, see pp. 46-51) Annex -10 in columns marked*.

De- grees	Ra- dians	Sine	8	Cos	ines	Tan	gents	Cotar	gents		
18° 00′	0.3142	3000 0	.4900	Nat. .9511 .9502	Log. * 9.9782	Nat. .3249 .3281	Log. * 9.5118	Nat. 3.0777	Log. 0.4882	1.2566	72° 00′
10 20 30	0.3171 0.3200 0.3229	3118 3145 3173	.4939 .4977 .5015	.9502 .9492 .9483	.9778 .9774 .9770	.3261 .3314 .3346	.5161 .5203	3.0777 3.0475 3.0178 2.9887	.4839 .4797 .4755	1.2537 1.2508 1.2479	50 40 30
40 50	0.3258 0.3287	.3201 .3228	.5052 .5090	.9474 .9465	.9765 .9761	.3378 .3411	.5245 .5287 .5329	2.9600 2.9319	.4713 .4671	1.2450 1.2421	30 20 10
19° 00′	0.3316 0.3345	.3256 9 .3283	.5126 .5163 .5199	.9455 .9446 .9436	9.9757 .9752	.3443 .3476	9.5370 .5411	2.9042 2.8770	0.4630 .4589	1.2392 1.2363	71° 00′ 50
20 30 40	0.3374 0.3403 0.3432	.3311 .3338 .3365	.5199 .5235 .5270	.9436 .9426 .9417	.9748 .9743 .9739	3508 3541 3574	.5451 .5491 .5531	2.8502 2.8239 2.7980	.4549 .4509 .4469	1.2363 1.2334 1.2305 1.2275	50 40 30 20
50 20° 00′	0.3462	.3393	.5306 .5341	.9407 .9397	.9734 9.9730	.3607 .3640	3571 9.5611	2.7725 2.7475	.4429 0.4389	1 2246	10° 70° 10°
10 20	0.3520 0.3549	.3448 ⁻ 3475	.5375 .5409	.9387 .9377	.9725 .9721	.3673 .3706	.5650 .5689	2.7228 2.6985	.4350 .4311	1.2188 1.2159	50 40
30 40 50	0.3578 0.3607 0.3636	.3502	.5443 .5477 .5510	.9367 .9356 .9346	.9716 .9711 .97 0 6	.3739 .3772 .3805	.5727 .5766 .5804	2.6746 2.6511 2.6279	.4273 .4234 .4196	1.2130 1.2101 1.2072	30 20 10
21° 00′ 10	0 3665	3584 9 3611	.5543 .5576	.9336 .9325	9.9702	.3839	9.5842 .5879	2.6051 2.5826	0.4158 .4121	1.2043	69° 00′
20 30	0.3694 0.3723 0.3752	.3638 .3665	.5641	.9315 .9304	.9697 .9692 .9687	.3872 .3906 .3939	.591 7 .595 4	2.5386	.4083 .4046	1.1985	40 30 20
40 50	0.3782	.3719	.5673 .5704	.9293 .9283	.9682 .9677	.3973 .4006	.5991 .6028	2.5172 2.4960		1.1926 1.1897	10
22° 00′ 10 20	0.3840 0.3869 0.3898		.5736 .5767 .5798	.9272 .9261 .925 0	9.9672 .9667 .9661	.4040 .4074 .4108	9.6064 .6100	2.4751 2.4545 2.4342	0.3936 .3900 .3864	1.1868 1.1839 1.1810	68° 00′ 50 40
30 40	0.3927	.3827 .3854	.5828 .5859	.9239 .9228	.9656 .9651	.4142 .4176	.6136 .6172 .6208	2.4142 2.3945	.3828 .3792	1.1839 1.1810 1.1781 1.1752	50 40 30 20
23° 00′	0.3985	.3881 .3907 9	.5889	.9216	.9646 9.9640	.4210 .4245	.6243 9.6279	2.3750 2.3559	.3757 0.3721	1.1723	. 10 67° 00′
10 20 30	0.4043 0.4072 0.4102	.3934 .3961 .3987	.5948 .5978 .6007	.9194 .9182 .9171	.9635 .9629 .9624	.4279 .4314 .4348	.6314 .6348 .6383	2.3369 2.3183 2.2998	.3686 .3652 .3617	1.1665 1.1636	50 40 30
30 50	0.4131 0.416 0	.4014	.6036 .6065	.9159 .9147	.9618 .9613	.4383 .4417	.6417 .6452	2.2817 2.2637	.3583 .3548	1.1606 1.1577 1.1548	30 20 10
24° 00′ 10	0.4189 0.4218	.4094	.6093 .6121	.9135 .9124	9.9607 .9602	.4452 .4487 .4522	9.6486 .6520 .6553	2 2286	0.3514 .3480 .3447	1.1519 1.1490	66° 00′ 50 40
20 30 40	0.4247 0.4276 0.4305	.4147	.6149 .6177 .6205	.9112 .9100 .9088	.9596 .9590 .9584	.4522 .4557 .4592	.6587 .6620	2.2113 2.1943 2.1775	3447 3413 3380	1.1461 1.1432 1.1403	40 30 20
50 25° 00°	0.4334 0.4363	.4100 .4226 9	.6232 .6259	.9075 .9063	.9579 9.9573	.4628 .4663	.6654 9.6687	2.1609 2.1445	.3346 0.3313	1.1374	10 65° 00'
10 20	0.4392 0.4422	.4253 .4279	.6286 .6313	.9051 .9038	.9567 .9561	.4699 .4734	.6720 .6752 .6785	2.1283 2.1123	.3280 .3248	1.1316	50
30 40 50	0.4451 0.4480° 0.4509	.4305 .4331 .4358	.6340 .6366 .6392	.9026 .9013 .9001	.9555 .9549 .9543	.4770 .4806 .4841	.6817 .6850	2.0965 2.0809 2.0655	3215 3183 3150	1.1257 1.1228 1.1199	40 30 20 10
26° 00′ 10	0.4538 0.4567 0.4596	.4384 9	.6418 .6444	.8988 .8975	9.9537 .9530	.4877 .4913	9.6882 .6914		0:3118 .3086	1.1170	64° 00′
20	. 0.4625	.4436 .4462	.6470 .6495	.8962 .8949	.9524 .9518	.4950 .4986	.6946 .6977	2.0204 2.0057	3054 3023	1.1112 1.1063	40 30 20
40 50 27° 00′	0.4654 0.4683		.6521 .6546	.8936 .8923	.9512	.5022 .5059	.7009 .7040	1.9912 1.9768	.2991 .2960	1.1054	10
27" 00"	0.4712		.65 70 .og. •	.8910 Nat.	9.9499 Log. *	.5095 Nat.	9.7072 Log. *	1.9626 Nat.	0.2928 Log.	1.0996	63° 00′
		Cosin	768	Si	nes	Cotar	ngents	Tang	ents	Ra- dians	De- grees

TRIGONOMETRIC FUNCTIONS (continued)
Annex -10 in columns marked*. (For 0°.1 intervals, see pp. 46-51)

27° 00' 0.4712	De- grees	Ra- dians	s	ines	Co	sines	Tar	gents	Cotar	ngents]	
10												Π
28° 00' 0.4867		0.4712	.4540	9.6570	.8910		.5095	9.7072	1.9626			
28° 00' 0.4867	10	0.4741	.4500 4502	.6595 6630	.8894	.9492	5152	7103	1.9466		1.0966	1 50
28° 00' 0.4867	30	0.4800	.4617	.6644	.8870	.9479	.5206	7165	1.9210	.2835	1.0908	30
28° 00' 0.4867	40	0.4829	.4643	.6668	.8857	.9473	.5243	7196	1.9074	.2804	1.0879	20
28° 00' 0.4867		0.4858				.9466		.7226	1.8940			10
20 0.4945 4746 6.763 8802 9.446 5.392 7.314 1.8546 2.683 1.0763 40 40 0.5003 4797 6.810 8.774 9.432 5.467 7.378 1.8291 2.622 1.0734 50 0.5003 4797 6.810 8.774 9.432 5.560 7.348 1.8418 2.652 1.0676 10 0.5001 4.848 9.6856 8.746 9.9418 5.543 9.7438 1.8040 0.2562 1.0676 10 0.5001 4.874 6.878 8.732 9.411 5.581 7.467 1.7917 2.533 1.0617 50 0.5011 4.924 6.923 8.718 9.404 5.619 7.479 1.7796 2.503 1.9818 4.00 0.51120 4.899 6.901 8.718 9.404 5.619 7.479 1.7796 2.503 1.9818 4.00 0.5178 4.9924 6.623 8.704 9.393 5.686 7.256 1.7556 2.444 1.0530 0.500 0.500 9.6990 8.660 9.9375 5.774 9.7515 5.756 2.444 1.0530 0.500 0.500 9.6990 8.660 9.9375 5.774 9.7614 1.7215 2.3366 1.0472 0.000 0.5265 5.025 7.012 8.646 9.368 5.812 7.644 1.7205 2.356 1.04414 9.000 0.5265 5.025 7.012 8.646 9.368 5.812 7.644 1.7205 2.356 1.04414 9.000 0.5365 5.005 7.033 8.631 9.394 5.851 7.673 1.7090 2.327 1.0414 4.0000 4.000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.00		0.4887	.4695	9.6716	.8829	9.9459	.5317	9.7257	1.8807	0.2743	1.0821	62° 00′
29° 00' 0.5061 .4848 9.6856 .8746 9.9418 .5543 .7468 1.8165 .2592 1.0647 61° 00 10 0.5091 .4874 .6878 .8732 .9411 .5581 .7467 1.7917 .2533 1.0617 30 0.5149 .4924 .6923 .8704 .9397 5658 .7256 1.7576 .2474 1.0559 40 0.5178 .4950 .6946 .8689 .9393 .5666 .7256 1.7576 .2474 1.0559 50 0.5207 .4975 .6968 .8675 .9333 .5735 .7385 1.7437 .2415 1.0501 10 0.5207 .4975 .6968 .8675 .9333 .5735 .7385 1.7437 .2415 1.0501 10 0.5265 .5025 .7012 .8646 .9383 .5735 .7385 1.7437 .2415 1.0501 10 0.5265 .5025 .7012 .8646 .9386 .5812 .7644 1.7210 .23286 1.0443 20 0.5265 .5025 .7012 .8646 .9386 .5812 .7644 1.7226 .2328 1.0443 20 0.5265 .5025 .7012 .8646 .9386 .5812 .7644 1.7226 .2328 1.0443 20 0.5265 .5025 .7012 .8646 .9383 .5735 .7748 .97614 1.7321 0.2386 1.0473 20 0.5265 .5025 .7012 .8646 .9386 .5812 .7644 1.7226 .2328 1.0443 20 0.5324 .5050 .7033 .8631 .9341 .5851 .7673 1.7090 .2327 1.0414 40 0.5352 .5100 .7076 .8601 .9346 .5930 .7701 1.6977 .2299 1.0385 20 0.5284 .5050 .7085 .8616 .9353 .5890 .7739 1.6684 .2270 1.0356 20 0.5494 .5020 .7160 .8601 .9346 .5930 .7730 1.6864 .2270 1.0356 20 0.5496 .5020 .7160 .8624 .9315 .6008 .7816 1.6534 .2184 1.0228 20 0.5469 .5220 .7160 .8642 .9315 .6008 .7816 1.6534 .2184 1.0228 20 0.5469 .5220 .7160 .8642 .9315 .6008 .7816 1.6534 .2184 1.0268 20 0.5525 .5225 .7218 .8526 .9308 .6128 .7873 1.6319 .2127 1.0210 20 0.5469 .5220 .7160 .8542 .9315 .6008 .7816 1.6534 .2184 1.0268 20 0.5527 .5252 .7210 .8511 .9300 .6168 .7816 1.6534 .2184 1.0268 20 0.5527 .5252 .7210 .8511 .9300 .6168 .7816 1.6534 .2184 1.0268 20 0.5527 .5252 .7210 .8511 .8900 .6168 .7816 1.6534 .2184 1.0268 20 0.5527 .5252 .7210 .8381 .8926 .9388 .6089 .7990 1.6107 .2070 1.0115 20 0.5649 .5200 .7160 .8542 .9315 .6008 .7816 1.6503 .0204 1.0123 20 0.5526 .5275 .7222 .8486 .9926 .6371 .8042 1.5597 .1990 .1018 20 0.5527 .5250 .7201 .8811 .8926 .9486 .1286 .7873 1.6319 .2107 .0018 20 0.5526 .5275 .7221 .8480 .9928 .6288 .8125 .15390 .11875 .0994 20 0.5905 .5446 .7531 .8838 .9199 .8683 .8	10	0.4916	4720	.6740 6763	.8816	.9453	5354	.7287 7317	1.8676	2713		50
29° 00' 0.5061 .4848 9.6856 .8746 9.948 5.543 9.7438 1.8040 0.2562 1.0647 61° 00 0.5091 .4874 .6878 .8732 .9411 .5581 .7467 1.7917 .2533 1.0587 1.0587 30 0.5149 .4924 .6923 .8704 .9397 .5658 .7256 .7575 .2474 1.0559 30 40 0.5178 .4950 .6946 .8689 .9390 .5696 .7556 .7556 .7576 .2444 .1.0530 .20 50 0.5207 .4975 .6968 .8675 .9333 .5735 .7385 .7437 .2415 .1.0501 1.00 30° 00' 0.5265 .5025 .7012 .8646 .9383 .5735 .7385 .7437 .2415 .1.0501 1.00 10 0.5265 .5025 .7012 .8646 .9368 .8812 .7644 .1.2750 .2326 .1.0443 .20 20 0.5265 .5025 .7012 .8646 .9368 .8812 .7644 .1.2750 .2327 .1.0414 .40 .0.3162 .5005 .7033 .8611 .9361 .5881 .7673 .1.7090 .2327 .1.0414 .40 .0.3162 .5005 .7005 .8661 .9353 .5890 .7770 .1.6977 .2299 .1.0385 .0007 .0.5265 .5025 .7012 .8646 .9353 .5890 .7770 .1.6977 .2299 .1.0385 .0.043 .0.0536 .0.0536 .0.0536 .0.0536 .9363 .9346 .5930 .7770 .1.6977 .2299 .1.0385 .0.0536 .0.0536 .0.0536 .0.0536 .9363 .9361 .5861 .7673 .7.070 .2327 .1.0414 .40 .0.3552 .5010 .7076 .8661 .9353 .5890 .7770 .1.6977 .2299 .1.0385 .0.0536 .0.0536 .0.0536 .5020 .7.070 .8661 .9353 .5099 .7759 .1.6073 .2241 .1.0327 .0.056 .0.0564 .5020 .7.660 .8542 .9315 .6088 .7864 .1.6544 .0.2216 .0.0564 .0.0520 .7.660 .8542 .9315 .6088 .7864 .1.6544 .0.2216 .0.0564 .0.0564 .5324 .7.662 .8465 .9326 .6048 .7816 .1.6334 .2184 .1.0268 .0.0564 .0.0564 .0.0564 .5324 .7.662 .8465 .9326 .6048 .7930 .1.6107 .2070 .1.0152 .0.0564 .0.0564 .5324 .7.262 .8465 .9266 .6371 .8042 .1.5990 .1.6112 .2099 .1.0181 .0.0564 .0.0564 .5324 .7.262 .8465 .9266 .6371 .8042 .1.5990 .1.6107 .2070 .1.0182 .0	30	0.4974	4772	.6787	.8788	.9439	.5430	.7348	1.8418	.2652	1.0734	36
29° 00' 0.5061 .4848 9.6856 .8746 .9418 .5543 .97438 .18165 .2592 .1.0647 61° 00	40	0.5003	.4797	.6810	.8774	.9432	.5467	.7378	1.8291	.2622	1.0705	20
30° 00° 0.5226 5000 9.6990 8.660 9.9375 5774 9.7614 1.7321 0.2386 1.0472 60° 00° 0.5264 5050 7.012 8.646 9.368 5812 7.644 1.7321 0.2386 1.0472 60° 00° 0.5264 5050 7.013 8.631 9.361 5.851 7.673 1.7090 2.327 1.0414 40° 0.5332 50075 7.0055 8.616 9.333 3.890 7.701 1.6977 2.299 1.0385 30° 0.5381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.05381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.05381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.5440 5.175 7.139 8.8572 9.9331 6.009 9.7788 1.6643 0.2212 1.0297 59° 00° 0.5469 5.200 7.160 8.542 9.9315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5527 5.250 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5527 5.250 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5614 5.3324 7.262 8.865 9.926 6.239 7.986 1.5900 2.014 1.0094 50° 0.5545 5.334 7.262 8.865 9.926 6.330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.348 7.282 8.8463 9.928 6.6330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.342 7.362 8.8463 9.9286 6.330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.422 7.342 8.403 9.244 6.643 8.097 1.5497 1.903 0.99977 10° 0.5730 5.422 7.342 8.8403 9.244 6.643 8.097 1.5497 1.903 0.99977 10° 0.5818 5.447 7.380 8.371 9.928 6.536 8.153 1.5301 1.847 0.9998 50° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5992 5.6640 7.513 8.258 9.194 6.008 8.304 1.409 1.737 0.9803 10° 0.0007 5.00 0.5905 5.664 7.573 8.259 9.194 6.008 8.304 1.400 0.1007 1.0007 50° 0.0008 5.544 7.585 8.208 9.194 6.0008 8.305 1.4019 1.737 0.9803 10° 0.0008 5.544 7.575 8.808 9.194 0.0008 8.306 1.409 1.737 0.9803 10° 0.0008 5.544 7.575 8.808 9.194 0.0008 8.3				.6833					1.8165			
30° OU° 0.5226 5.000 9.6990 8.660 9.9375 5.774 9.7614 1.7321 0.2386 1.0472 60° OU° 0.5264 5.000 9.6990 8.660 9.9375 5.774 9.7614 1.7321 0.2386 1.0472 60° OU° 0.5264 5.000 9.7033 8.631 9.361 5.851 7.673 1.7090 2.327 1.0414 40 0.5332 5.0075 7.005 8.616 9.9333 5.880 7.701 1.6977 2.299 1.0385 30 0.5381 5.125 7.097 8.887 9.938 5.969 7.7759 1.6753 2.241 1.0327 10 0.5361 0.5361 5.125 7.097 8.887 9.938 5.969 7.7759 1.6753 2.241 1.0327 10 0.5404 0.5352 5.100 7.076 8.801 9.9346 5.930 7.730 1.8864 2.270 1.0336 2.00 0.5381 5.125 7.097 8.887 9.9338 5.969 7.7759 1.6753 2.241 1.0327 10 0.5409 0.5409 0.5175 7.139 8.8572 9.9331 6.009 9.7788 1.6643 0.2212 1.0297 5.90 0.00 0.5409 5.200 7.160 8.542 9.9315 6.088 7.4815 1.6426 2.155 1.0239 40 0.5527 5.2500 7.160 8.542 9.9315 6.088 7.4815 1.6426 2.155 1.0239 40 0.5527 5.250 7.201 8.511 9.9300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5527 5.250 7.201 8.511 9.9300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5526 5.225 7.222 8496 9.929 6.208 7.930 1.6107 2.070 1.0152 10 0.5614 5.324 7.262 8.465 9.926 6.633 0.8014 1.5798 1.966 1.0065 4.00 0.5672 5.373 7.302 8.434 9.9260 6.371 8.042 1.5697 1.938 1.0065 4.00 0.5730 5.442 9.7361 8.837 9.928 6.6494 9.8125 1.5990 2.014 1.0094 50 0.5730 5.442 9.7361 8.837 9.9236 6.6494 9.8125 1.5399 0.1875 0.9948 5.00 0.5730 5.442 9.7361 8.837 9.9236 6.6494 9.8125 1.5399 0.1875 0.9948 5.00 0.5847 5.519 7.419 8.8339 9.211 6.6619 8.208 1.5108 1.792 0.9861 3.00 0.5847 5.519 7.419 8.8339 9.211 6.6619 8.208 1.5108 1.792 0.9861 3.00 0.5847 5.519 7.419 8.8339 9.211 6.6619 8.208 1.5108 1.792 0.9861 3.00 0.5963 5.544 7.748 8.224 9.9176 6.830 8.834 1.4501 1.5400 0.9800 4.00 0.5905 5.564 7.751 8.820 9.9186 6.6745 9.8200 1.4826 0.1710 0.9774 5.00 0.000 5.730 5.422 7.740 8.839 9.9116 6.6745 9.8200 1.4826 0.1710 0.9774 5.00 0.000 5.751 5.544 7.748 8.820 9.9186 6.6745 9.8200 1.4826 0.1710 0.9774 5.00 0.000 5.751 5.544 7.748 8.820 9.9186 6.745 9.8200 1.4826 0.1710 0.9774 5.00 0.000 5.751 5.544 7.749 8.8390 9.9186 6.745 9.8200 1.4826 0.1710 0.9774 5.00 0.000 5.751 5.546 7.751 8.820 9	29° 00′	0.5061	.4848	9.6856	.8746	9.9418	.5543	9.7438	1.8040	0.2562	1.0647	61° 00′
30° 00° 0.5226 5000 9.6990 8.660 9.9375 5774 9.7614 1.7321 0.2386 1.0472 60° 00° 0.5264 5050 7.012 8.646 9.368 5812 7.644 1.7321 0.2386 1.0472 60° 00° 0.5264 5050 7.013 8.631 9.361 5.851 7.673 1.7090 2.327 1.0414 40° 0.5332 50075 7.0055 8.616 9.333 3.890 7.701 1.6977 2.299 1.0385 30° 0.5381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.05381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.05381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.5440 5.175 7.139 8.8572 9.9331 6.009 9.7788 1.6643 0.2212 1.0297 59° 00° 0.5469 5.200 7.160 8.542 9.9315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5527 5.250 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5527 5.250 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5614 5.3324 7.262 8.865 9.926 6.239 7.986 1.5900 2.014 1.0094 50° 0.5545 5.334 7.262 8.865 9.926 6.330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.348 7.282 8.8463 9.928 6.6330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.342 7.362 8.8463 9.9286 6.330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.422 7.342 8.403 9.244 6.643 8.097 1.5497 1.903 0.99977 10° 0.5730 5.422 7.342 8.8403 9.244 6.643 8.097 1.5497 1.903 0.99977 10° 0.5818 5.447 7.380 8.371 9.928 6.536 8.153 1.5301 1.847 0.9998 50° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5992 5.6640 7.513 8.258 9.194 6.008 8.304 1.409 1.737 0.9803 10° 0.0007 5.00 0.5905 5.664 7.573 8.259 9.194 6.008 8.304 1.400 0.1007 1.0007 50° 0.0008 5.544 7.585 8.208 9.194 6.0008 8.305 1.4019 1.737 0.9803 10° 0.0008 5.544 7.575 8.808 9.194 0.0008 8.306 1.409 1.737 0.9803 10° 0.0008 5.544 7.575 8.808 9.194 0.0008 8.3	1U	0.5091	4800	.08/8 1003	8718	9411	5610	7407	1.7917	2503 2503	1.001/	20
30° 00° 0.5226 5000 9.6990 8.660 9.9375 5774 9.7614 1.7321 0.2386 1.0472 60° 00° 0.5264 5050 7.012 8.646 9.368 5812 7.644 1.7321 0.2386 1.0472 60° 00° 0.5264 5050 7.013 8.631 9.361 5.851 7.673 1.7090 2.327 1.0414 40° 0.5332 50075 7.0055 8.616 9.333 3.890 7.701 1.6977 2.299 1.0385 30° 0.5381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.05381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.05381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.5440 5.175 7.139 8.8572 9.9331 6.009 9.7788 1.6643 0.2212 1.0297 59° 00° 0.5469 5.200 7.160 8.542 9.9315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5527 5.250 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5527 5.250 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5614 5.3324 7.262 8.865 9.926 6.239 7.986 1.5900 2.014 1.0094 50° 0.5545 5.334 7.262 8.865 9.926 6.330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.348 7.282 8.8463 9.928 6.6330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.342 7.362 8.8463 9.9286 6.330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.422 7.342 8.403 9.244 6.643 8.097 1.5497 1.903 0.99977 10° 0.5730 5.422 7.342 8.8403 9.244 6.643 8.097 1.5497 1.903 0.99977 10° 0.5818 5.447 7.380 8.371 9.928 6.536 8.153 1.5301 1.847 0.9998 50° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5992 5.6640 7.513 8.258 9.194 6.008 8.304 1.409 1.737 0.9803 10° 0.0007 5.00 0.5905 5.664 7.573 8.259 9.194 6.008 8.304 1.400 0.1007 1.0007 50° 0.0008 5.544 7.585 8.208 9.194 6.0008 8.305 1.4019 1.737 0.9803 10° 0.0008 5.544 7.575 8.808 9.194 0.0008 8.306 1.409 1.737 0.9803 10° 0.0008 5.544 7.575 8.808 9.194 0.0008 8.3	30	0.5149	4924	.6923	.8704	.9397	5658	7526	1.7675	2474	1.0559	30
30° 00° 0.5226 5000 9.6990 8.660 9.9375 5774 9.7614 1.7321 0.2386 1.0472 60° 00° 0.5264 5050 7.012 8.646 9.368 5812 7.644 1.7321 0.2386 1.0472 60° 00° 0.5264 5050 7.013 8.631 9.361 5.851 7.673 1.7090 2.327 1.0414 40° 0.5332 50075 7.0055 8.616 9.333 3.890 7.701 1.6977 2.299 1.0385 30° 0.5381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.05381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.05381 5.125 7.097 8.887 9.338 5.969 7.7759 1.6753 2.241 1.0327 10° 0.5440 5.175 7.139 8.8572 9.9331 6.009 9.7788 1.6643 0.2212 1.0297 59° 00° 0.5469 5.200 7.160 8.542 9.9315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.160 8.542 9.315 6.088 7.845 1.6426 2.155 1.0239 40° 0.5527 5.2500 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5527 5.250 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5527 5.250 7.201 8.511 9.300 6.168 7.902 1.6212 2.098 1.0181 2.00 0.5614 5.3324 7.262 8.865 9.926 6.239 7.986 1.5900 2.014 1.0094 50° 0.5545 5.334 7.262 8.865 9.926 6.330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.348 7.282 8.8463 9.928 6.6330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.342 7.362 8.8463 9.9286 6.330 8.014 1.5798 1.986 1.0065 40° 0.5730 5.422 7.342 8.403 9.244 6.643 8.097 1.5497 1.903 0.99977 10° 0.5730 5.422 7.342 8.8403 9.244 6.643 8.097 1.5497 1.903 0.99977 10° 0.5818 5.447 7.380 8.371 9.928 6.536 8.153 1.5301 1.847 0.9998 50° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5847 5.519 7.419 8.339 9.211 6.6619 8.208 1.5108 1.792 0.9861 30° 0.5992 5.6640 7.513 8.258 9.194 6.008 8.304 1.409 1.737 0.9803 10° 0.0007 5.00 0.5905 5.664 7.573 8.259 9.194 6.008 8.304 1.400 0.1007 1.0007 50° 0.0008 5.544 7.585 8.208 9.194 6.0008 8.305 1.4019 1.737 0.9803 10° 0.0008 5.544 7.575 8.808 9.194 0.0008 8.306 1.409 1.737 0.9803 10° 0.0008 5.544 7.575 8.808 9.194 0.0008 8.3	40	0.5178	.4950	.6946	.8689	.9390	.5696	.7556	1.7556	.2444	1.0530	20
31° 00′ 0.5410 5150 9.7118 8.872 9.9331 6.009 9.7788 1.6643 0.2212 1.0227 59° 00′ 0.5440 5175 7.139 8.557 9.9323 6.008 7.816 1.6634 2.124 1.0268 50 0.5469 5.200 7.160 8.542 9.915 6.088 7.845 1.6426 2.155 1.0239 4.0 0.5486 5.225 7.181 8.526 9.908 6.128 7.845 1.6426 2.155 1.0239 4.0 0.5527 5.250 7.201 8.511 9.900 6.168 7.902 1.6212 2.098 1.0181 2.0 0.5556 5.225 7.221 8.496 9.929 6.208 7.930 1.6107 2.070 1.0152 1.0 0.5556 5.225 7.222 8.496 9.929 6.208 7.930 1.6107 2.070 1.0152 1.0 0.501 0.5556 5.229 9.7242 8.480 9.9284 6.249 9.7958 1.6003 0.2042 1.0123 58° 00′ 0.5585 5.299 9.7242 8.480 9.9284 6.249 9.7958 1.6003 0.2042 1.0123 58° 00′ 0.5643 5.348 7.282 8.455 9.926 6.330 8.014 1.5798 1.966 1.0054 4.0 0.5701 5.398 7.322 8.448 9.9269 6.371 8.042 1.5597 1.936 1.0004 50 0.5701 5.398 7.322 8.448 9.9252 6.6412 8.070 1.5597 1.930 1.0007 50 0.5730 5.422 7.342 8.803 9.244 6.453 8.097 1.5497 1.903 0.9977 1.0 0.5789 5.447 7.380 8.371 9.9228 6.536 8.153 1.5301 1.847 0.9919 2.0 0.5818 5.495 5.7400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9890 4.0 0.5876 5.544 7.438 8.323 9.9216 6.6745 8.153 1.5301 1.847 0.9919 2.0 0.5818 5.495 5.7400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9860 4.0 0.5876 5.544 7.438 8.323 9.9236 6.604 8.235 1.5013 1.765 0.9852 2.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.263 1.5013 1.765 0.9852 2.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.263 1.4919 1.737 0.9803 1.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.341 1.4450 1.620 9.9661 30 0.6021 5.664 7.531 8.251 9.151 6.916 8.398 1.4460 1.602 0.9657 2.0 0.5905 5.568 7.550 8.252 9.151 6.916 8.398 1.4460 1.602 0.9657 2.0 0.6060 5.712 7.7568 8.208 9.142 6.999 8.825 1.4370 1.1575 0.9628 1.0 0.6060 5.608 5.760 7.640 8.179 9.134 5.909 8.306 1.4106 1.444 0.9454 1.0 0.9483 2.0 0.6060 5.608 5.760 7.640 8.179 9.134 5.		I 0.5207		.0905			.5/35	./282	1.7437		1.0501	
31° 00′ 0.5410 5150 9.7118 8.872 9.9331 6.009 9.7788 1.6643 0.2212 1.0227 59° 00′ 0.5440 5175 7.139 8.557 9.9323 6.008 7.816 1.6634 2.124 1.0268 50 0.5469 5.200 7.160 8.542 9.915 6.088 7.845 1.6426 2.155 1.0239 4.0 0.5486 5.225 7.181 8.526 9.908 6.128 7.845 1.6426 2.155 1.0239 4.0 0.5527 5.250 7.201 8.511 9.900 6.168 7.902 1.6212 2.098 1.0181 2.0 0.5556 5.225 7.221 8.496 9.929 6.208 7.930 1.6107 2.070 1.0152 1.0 0.5556 5.225 7.222 8.496 9.929 6.208 7.930 1.6107 2.070 1.0152 1.0 0.501 0.5556 5.229 9.7242 8.480 9.9284 6.249 9.7958 1.6003 0.2042 1.0123 58° 00′ 0.5585 5.299 9.7242 8.480 9.9284 6.249 9.7958 1.6003 0.2042 1.0123 58° 00′ 0.5643 5.348 7.282 8.455 9.926 6.330 8.014 1.5798 1.966 1.0054 4.0 0.5701 5.398 7.322 8.448 9.9269 6.371 8.042 1.5597 1.936 1.0004 50 0.5701 5.398 7.322 8.448 9.9252 6.6412 8.070 1.5597 1.930 1.0007 50 0.5730 5.422 7.342 8.803 9.244 6.453 8.097 1.5497 1.903 0.9977 1.0 0.5789 5.447 7.380 8.371 9.9228 6.536 8.153 1.5301 1.847 0.9919 2.0 0.5818 5.495 5.7400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9890 4.0 0.5876 5.544 7.438 8.323 9.9216 6.6745 8.153 1.5301 1.847 0.9919 2.0 0.5818 5.495 5.7400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9860 4.0 0.5876 5.544 7.438 8.323 9.9236 6.604 8.235 1.5013 1.765 0.9852 2.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.263 1.5013 1.765 0.9852 2.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.263 1.4919 1.737 0.9803 1.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.341 1.4450 1.620 9.9661 30 0.6021 5.664 7.531 8.251 9.151 6.916 8.398 1.4460 1.602 0.9657 2.0 0.5905 5.568 7.550 8.252 9.151 6.916 8.398 1.4460 1.602 0.9657 2.0 0.6060 5.712 7.7568 8.208 9.142 6.999 8.825 1.4370 1.1575 0.9628 1.0 0.6060 5.608 5.760 7.640 8.179 9.134 5.909 8.306 1.4106 1.444 0.9454 1.0 0.9483 2.0 0.6060 5.608 5.760 7.640 8.179 9.134 5.	30° 00′	0.5236	.5000	9.6990	.8660	9.9375	5774	9.7614	1.7321	0.2386	1.0472	60° 00′
31° 00′ 0.5410 5150 9.7118 8.872 9.9331 6.009 9.7788 1.6643 0.2212 1.0227 59° 00′ 0.5440 5175 7.139 8.557 9.9323 6.008 7.816 1.6634 2.124 1.0268 50 0.5469 5.200 7.160 8.542 9.915 6.088 7.845 1.6426 2.155 1.0239 4.0 0.5486 5.225 7.181 8.526 9.908 6.128 7.845 1.6426 2.155 1.0239 4.0 0.5527 5.250 7.201 8.511 9.900 6.168 7.902 1.6212 2.098 1.0181 2.0 0.5556 5.225 7.221 8.496 9.929 6.208 7.930 1.6107 2.070 1.0152 1.0 0.5556 5.225 7.222 8.496 9.929 6.208 7.930 1.6107 2.070 1.0152 1.0 0.501 0.5556 5.229 9.7242 8.480 9.9284 6.249 9.7958 1.6003 0.2042 1.0123 58° 00′ 0.5585 5.299 9.7242 8.480 9.9284 6.249 9.7958 1.6003 0.2042 1.0123 58° 00′ 0.5643 5.348 7.282 8.455 9.926 6.330 8.014 1.5798 1.966 1.0054 4.0 0.5701 5.398 7.322 8.448 9.9269 6.371 8.042 1.5597 1.936 1.0004 50 0.5701 5.398 7.322 8.448 9.9252 6.6412 8.070 1.5597 1.930 1.0007 50 0.5730 5.422 7.342 8.803 9.244 6.453 8.097 1.5497 1.903 0.9977 1.0 0.5789 5.447 7.380 8.371 9.9228 6.536 8.153 1.5301 1.847 0.9919 2.0 0.5818 5.495 5.7400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9890 4.0 0.5876 5.544 7.438 8.323 9.9216 6.6745 8.153 1.5301 1.847 0.9919 2.0 0.5818 5.495 5.7400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9860 4.0 0.5876 5.544 7.438 8.323 9.9236 6.604 8.235 1.5013 1.765 0.9852 2.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.263 1.5013 1.765 0.9852 2.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.263 1.4919 1.737 0.9803 1.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.341 1.4450 1.620 9.9661 30 0.6021 5.664 7.531 8.251 9.151 6.916 8.398 1.4460 1.602 0.9657 2.0 0.5905 5.568 7.550 8.252 9.151 6.916 8.398 1.4460 1.602 0.9657 2.0 0.6060 5.712 7.7568 8.208 9.142 6.999 8.825 1.4370 1.1575 0.9628 1.0 0.6060 5.608 5.760 7.640 8.179 9.134 5.909 8.306 1.4106 1.444 0.9454 1.0 0.9483 2.0 0.6060 5.608 5.760 7.640 8.179 9.134 5.	. 10	0.5205	2023	7012	.8640 8631	9368	5851	J/044 7673	1./205	2356	1.0443	20
31° 00′ 0.5410 5150 9.7118 8.872 9.9331 6.009 9.7788 1.6643 0.2212 1.0227 59° 00′ 0.5440 5175 7.139 8.557 9.9323 6.008 7.816 1.6634 2.124 1.0268 50 0.5469 5.200 7.160 8.542 9.915 6.088 7.845 1.6426 2.155 1.0239 4.0 0.5486 5.225 7.181 8.526 9.908 6.128 7.845 1.6426 2.155 1.0239 4.0 0.5527 5.250 7.201 8.511 9.900 6.168 7.902 1.6212 2.098 1.0181 2.0 0.5556 5.225 7.221 8.496 9.929 6.208 7.930 1.6107 2.070 1.0152 1.0 0.5556 5.225 7.222 8.496 9.929 6.208 7.930 1.6107 2.070 1.0152 1.0 0.501 0.5556 5.229 9.7242 8.480 9.9284 6.249 9.7958 1.6003 0.2042 1.0123 58° 00′ 0.5585 5.299 9.7242 8.480 9.9284 6.249 9.7958 1.6003 0.2042 1.0123 58° 00′ 0.5643 5.348 7.282 8.455 9.926 6.330 8.014 1.5798 1.966 1.0054 4.0 0.5701 5.398 7.322 8.448 9.9269 6.371 8.042 1.5597 1.936 1.0004 50 0.5701 5.398 7.322 8.448 9.9252 6.6412 8.070 1.5597 1.930 1.0007 50 0.5730 5.422 7.342 8.803 9.244 6.453 8.097 1.5497 1.903 0.9977 1.0 0.5789 5.447 7.380 8.371 9.9228 6.536 8.153 1.5301 1.847 0.9919 2.0 0.5818 5.495 5.7400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9890 4.0 0.5876 5.544 7.438 8.323 9.9216 6.6745 8.153 1.5301 1.847 0.9919 2.0 0.5818 5.495 5.7400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9860 4.0 0.5876 5.544 7.438 8.323 9.9236 6.604 8.235 1.5013 1.765 0.9852 2.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.263 1.5013 1.765 0.9852 2.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.263 1.4919 1.737 0.9803 1.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.341 1.4450 1.620 9.9661 30 0.6021 5.664 7.531 8.251 9.151 6.916 8.398 1.4460 1.602 0.9657 2.0 0.5905 5.568 7.550 8.252 9.151 6.916 8.398 1.4460 1.602 0.9657 2.0 0.6060 5.712 7.7568 8.208 9.142 6.999 8.825 1.4370 1.1575 0.9628 1.0 0.6060 5.608 5.760 7.640 8.179 9.134 5.909 8.306 1.4106 1.444 0.9454 1.0 0.9483 2.0 0.6060 5.608 5.760 7.640 8.179 9.134 5.	30	0.5323	5075	.7055	.8616	9353	.5890	.7701	1.6977	.2299	1.0385	36
31° 00′ 0.5410 5150 9.7118 8.872 9.9331 6.009 9.7788 1.6643 0.2212 1.0227 59° 00′ 0.5440 5175 7.139 8.557 9.9323 6.008 7.816 1.6634 2.124 1.0268 50 0.5469 5.200 7.160 8.542 9.915 6.088 7.845 1.6426 2.155 1.0239 4.0 0.5486 5.225 7.181 8.526 9.908 6.128 7.845 1.6426 2.155 1.0239 4.0 0.5527 5.250 7.201 8.511 9.900 6.168 7.902 1.6212 2.098 1.0181 2.0 0.5556 5.225 7.221 8.496 9.929 6.208 7.930 1.6107 2.070 1.0152 1.0 0.5556 5.225 7.222 8.496 9.929 6.208 7.930 1.6107 2.070 1.0152 1.0 0.501 0.5556 5.229 9.7242 8.480 9.9284 6.249 9.7958 1.6003 0.2042 1.0123 58° 00′ 0.5585 5.299 9.7242 8.480 9.9284 6.249 9.7958 1.6003 0.2042 1.0123 58° 00′ 0.5643 5.348 7.282 8.455 9.926 6.330 8.014 1.5798 1.966 1.0054 4.0 0.5701 5.398 7.322 8.448 9.9269 6.371 8.042 1.5597 1.936 1.0004 50 0.5701 5.398 7.322 8.448 9.9252 6.6412 8.070 1.5597 1.930 1.0007 50 0.5730 5.422 7.342 8.803 9.244 6.453 8.097 1.5497 1.903 0.9977 1.0 0.5789 5.447 7.380 8.371 9.9228 6.536 8.153 1.5301 1.847 0.9919 2.0 0.5818 5.495 5.7400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9890 4.0 0.5876 5.544 7.438 8.323 9.9216 6.6745 8.153 1.5301 1.847 0.9919 2.0 0.5818 5.495 5.7400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9860 4.0 0.5876 5.544 7.438 8.323 9.9236 6.604 8.235 1.5013 1.765 0.9852 2.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.263 1.5013 1.765 0.9852 2.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.263 1.4919 1.737 0.9803 1.0 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.344 1.4641 1.656 0.9745 50 0.5905 5.568 7.457 8.307 9.914 6.6703 8.341 1.4450 1.620 9.9661 30 0.6021 5.664 7.531 8.251 9.151 6.916 8.398 1.4460 1.602 0.9657 2.0 0.5905 5.568 7.550 8.252 9.151 6.916 8.398 1.4460 1.602 0.9657 2.0 0.6060 5.712 7.7568 8.208 9.142 6.999 8.825 1.4370 1.1575 0.9628 1.0 0.6060 5.608 5.760 7.640 8.179 9.134 5.909 8.306 1.4106 1.444 0.9454 1.0 0.9483 2.0 0.6060 5.608 5.760 7.640 8.179 9.134 5.	40	0.5352	3100	.7076	.8601	.9346	.5930	.7730	1.6864	.2270	1.0356	20
32° 00' 0.5585 5299 9.7242 8480 9.9284 6.249 9.7958 1.6003 0.2042 1.0152 58° 00' 0.5643 5.344 7.262 8465 9.276 6.289 7.986 1.5900 2.014 1.0094 50 0.5613 5.348 7.282 8450 9.268 6.330 8.014 1.5798 1.986 1.0065 4.00 0.5701 5.398 7.322 8434 9.260 6.371 8.042 1.5697 1.958 1.0065 30 0.5672 5.373 7.302 8434 9.250 6.371 8.042 1.5697 1.958 1.0056 30 0.5730 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5780 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5789 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5789 5.471 7.380 8.371 9.228 6.536 8.153 1.5301 1.847 0.9919 50 0.5818 5.495 7.400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9890 40 0.5780 5.545 7.419 8.339 9.211 6.619 8.208 1.5204 1.820 0.9800 40 0.5876 5.544 7.438 8.323 9.203 6.661 8.235 1.5013 1.765 0.9832 20 0.5945 5.568 7.457 8.307 9.194 6.6703 8.263 1.5013 1.765 0.9832 20 0.5905 5.568 7.457 8.307 9.194 6.6703 8.263 1.4919 1.737 0.9803 10 0.5903 5.568 7.457 8.320 9.9186 6.6745 9.8200 1.4826 0.1710 0.9774 56° 00 0.5903 5.568 7.457 8.327 9.177 6.7678 8.317 1.4733 1.683 0.9764 40 0.6050 5.664 7.531 8.241 9.160 6.6873 8.371 1.4550 1.662 0.9857 20 0.5902 5.660 7.513 8.258 9.169 6.830 8.344 1.4641 1.1656 0.9716 40 0.6050 5.668 7.550 8.225 9.151 6.916 8.398 1.4460 1.0602 0.9657 20 0.6080 5.712 7.568 8.208 9.142 6.6916 8.398 1.4460 1.0602 0.9657 20 0.6167 5.783 7.622 8.158 9.116 7.092 9.8452 1.4281 0.1548 0.9599 55° 00 0.6109 5.783 7.622 8.158 9.116 7.092 9.8452 1.4281 0.1548 0.9599 55° 00 0.6108 5.760 7.604 8.175 9.125 7.046 8.479 1.4193 1.521 0.9570 50 0.6108 5.760 7.504 8.119 1.9107 7.133 8.333 1.4019 1.467 0.9512 30 0.6167 5.783 7.622 8.158 9.116 7.098 8.506 1.4106 1.494 0.9454 10 0.6225 5.831 7.657 8.1107 9.098 7.721 8.586 1.3848 1.141 0.9454 10 0.9483 20 0.6167 5.837 7.622 8.158 9.116 7.098 8.506 1.4106 1.494 0.9454 10 0.6225 5.831 7.657 8.1107 9.098 7.721 8.586 1.3848 1.141 0.9454 10 0.9483 20 0.6166 5.887 9.7692 8.099 9.9080 7.725 8.5861 3.3848 1.141 0.9454 10 0.9483 20 0.6166 5.8878 9.7692 8.099 9.9080 7.725 8.5861 3.3848 1.14		0.5361	.5125	.7097		.9338		.7759			1.0327	10
32° 00' 0.5585 5299 9.7242 8480 9.9284 6.249 9.7958 1.6003 0.2042 1.0152 58° 00' 0.5643 5.344 7.262 8465 9.276 6.289 7.986 1.5900 2.014 1.0094 50 0.5613 5.348 7.282 8450 9.268 6.330 8.014 1.5798 1.986 1.0065 4.00 0.5701 5.398 7.322 8434 9.260 6.371 8.042 1.5697 1.958 1.0065 30 0.5672 5.373 7.302 8434 9.250 6.371 8.042 1.5697 1.958 1.0056 30 0.5730 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5780 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5789 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5789 5.471 7.380 8.371 9.228 6.536 8.153 1.5301 1.847 0.9919 50 0.5818 5.495 7.400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9890 40 0.5780 5.545 7.419 8.339 9.211 6.619 8.208 1.5204 1.820 0.9800 40 0.5876 5.544 7.438 8.323 9.203 6.661 8.235 1.5013 1.765 0.9832 20 0.5945 5.568 7.457 8.307 9.194 6.6703 8.263 1.5013 1.765 0.9832 20 0.5905 5.568 7.457 8.307 9.194 6.6703 8.263 1.4919 1.737 0.9803 10 0.5903 5.568 7.457 8.320 9.9186 6.6745 9.8200 1.4826 0.1710 0.9774 56° 00 0.5903 5.568 7.457 8.327 9.177 6.7678 8.317 1.4733 1.683 0.9764 40 0.6050 5.664 7.531 8.241 9.160 6.6873 8.371 1.4550 1.662 0.9857 20 0.5902 5.660 7.513 8.258 9.169 6.830 8.344 1.4641 1.1656 0.9716 40 0.6050 5.668 7.550 8.225 9.151 6.916 8.398 1.4460 1.0602 0.9657 20 0.6080 5.712 7.568 8.208 9.142 6.6916 8.398 1.4460 1.0602 0.9657 20 0.6167 5.783 7.622 8.158 9.116 7.092 9.8452 1.4281 0.1548 0.9599 55° 00 0.6109 5.783 7.622 8.158 9.116 7.092 9.8452 1.4281 0.1548 0.9599 55° 00 0.6108 5.760 7.604 8.175 9.125 7.046 8.479 1.4193 1.521 0.9570 50 0.6108 5.760 7.504 8.119 1.9107 7.133 8.333 1.4019 1.467 0.9512 30 0.6167 5.783 7.622 8.158 9.116 7.098 8.506 1.4106 1.494 0.9454 10 0.6225 5.831 7.657 8.1107 9.098 7.721 8.586 1.3848 1.141 0.9454 10 0.9483 20 0.6167 5.837 7.622 8.158 9.116 7.098 8.506 1.4106 1.494 0.9454 10 0.6225 5.831 7.657 8.1107 9.098 7.721 8.586 1.3848 1.141 0.9454 10 0.9483 20 0.6166 5.887 9.7692 8.099 9.9080 7.725 8.5861 3.3848 1.141 0.9454 10 0.9483 20 0.6166 5.8878 9.7692 8.099 9.9080 7.725 8.5861 3.3848 1.14	31° 00′	0.5411	.5150	9.7118	.8572	9.9331	.6009	9.7788	1.6643	0.2212	1.0297	250 00
32° 00' 0.5585 5299 9.7242 8480 9.9284 6.249 9.7958 1.6003 0.2042 1.0152 58° 00' 0.5643 5.344 7.262 8465 9.276 6.289 7.986 1.5900 2.014 1.0094 50 0.5613 5.348 7.282 8450 9.268 6.330 8.014 1.5798 1.986 1.0065 4.00 0.5701 5.398 7.322 8434 9.260 6.371 8.042 1.5697 1.958 1.0065 30 0.5672 5.373 7.302 8434 9.250 6.371 8.042 1.5697 1.958 1.0056 30 0.5730 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5780 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5789 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5789 5.471 7.380 8.371 9.228 6.536 8.153 1.5301 1.847 0.9919 50 0.5818 5.495 7.400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9890 40 0.5780 5.545 7.419 8.339 9.211 6.619 8.208 1.5204 1.820 0.9800 40 0.5876 5.544 7.438 8.323 9.203 6.661 8.235 1.5013 1.765 0.9832 20 0.5945 5.568 7.457 8.307 9.194 6.6703 8.263 1.5013 1.765 0.9832 20 0.5905 5.568 7.457 8.307 9.194 6.6703 8.263 1.4919 1.737 0.9803 10 0.5903 5.568 7.457 8.320 9.9186 6.6745 9.8200 1.4826 0.1710 0.9774 56° 00 0.5903 5.568 7.457 8.327 9.177 6.7678 8.317 1.4733 1.683 0.9764 40 0.6050 5.664 7.531 8.241 9.160 6.6873 8.371 1.4550 1.662 0.9857 20 0.5902 5.660 7.513 8.258 9.169 6.830 8.344 1.4641 1.1656 0.9716 40 0.6050 5.668 7.550 8.225 9.151 6.916 8.398 1.4460 1.0602 0.9657 20 0.6080 5.712 7.568 8.208 9.142 6.6916 8.398 1.4460 1.0602 0.9657 20 0.6167 5.783 7.622 8.158 9.116 7.092 9.8452 1.4281 0.1548 0.9599 55° 00 0.6109 5.783 7.622 8.158 9.116 7.092 9.8452 1.4281 0.1548 0.9599 55° 00 0.6108 5.760 7.604 8.175 9.125 7.046 8.479 1.4193 1.521 0.9570 50 0.6108 5.760 7.504 8.119 1.9107 7.133 8.333 1.4019 1.467 0.9512 30 0.6167 5.783 7.622 8.158 9.116 7.098 8.506 1.4106 1.494 0.9454 10 0.6225 5.831 7.657 8.1107 9.098 7.721 8.586 1.3848 1.141 0.9454 10 0.9483 20 0.6167 5.837 7.622 8.158 9.116 7.098 8.506 1.4106 1.494 0.9454 10 0.6225 5.831 7.657 8.1107 9.098 7.721 8.586 1.3848 1.141 0.9454 10 0.9483 20 0.6166 5.887 9.7692 8.099 9.9080 7.725 8.5861 3.3848 1.141 0.9454 10 0.9483 20 0.6166 5.8878 9.7692 8.099 9.9080 7.725 8.5861 3.3848 1.14	10	0.5440	5200	7150	.8527 8542	.9323	8903	.7816 7845	1.6534	2155	1.0208	20
32° 00' 0.5585 5299 9.7242 8480 9.9284 6.249 9.7958 1.6003 0.2042 1.0152 58° 00' 0.5643 5.344 7.262 8465 9.276 6.289 7.986 1.5900 2.014 1.0094 50 0.5613 5.348 7.282 8450 9.268 6.330 8.014 1.5798 1.986 1.0065 4.00 0.5701 5.398 7.322 8434 9.260 6.371 8.042 1.5697 1.958 1.0065 30 0.5672 5.373 7.302 8434 9.250 6.371 8.042 1.5697 1.958 1.0056 30 0.5730 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5780 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5789 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5789 5.471 7.380 8.371 9.228 6.536 8.153 1.5301 1.847 0.9919 50 0.5818 5.495 7.400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9890 40 0.5780 5.545 7.419 8.339 9.211 6.619 8.208 1.5204 1.820 0.9800 40 0.5876 5.544 7.438 8.323 9.203 6.661 8.235 1.5013 1.765 0.9832 20 0.5945 5.568 7.457 8.307 9.194 6.6703 8.263 1.5013 1.765 0.9832 20 0.5905 5.568 7.457 8.307 9.194 6.6703 8.263 1.4919 1.737 0.9803 10 0.5903 5.568 7.457 8.320 9.9186 6.6745 9.8200 1.4826 0.1710 0.9774 56° 00 0.5903 5.568 7.457 8.327 9.177 6.7678 8.317 1.4733 1.683 0.9764 40 0.6050 5.664 7.531 8.241 9.160 6.6873 8.371 1.4550 1.662 0.9857 20 0.5902 5.660 7.513 8.258 9.169 6.830 8.344 1.4641 1.1656 0.9716 40 0.6050 5.668 7.550 8.225 9.151 6.916 8.398 1.4460 1.0602 0.9657 20 0.6080 5.712 7.568 8.208 9.142 6.6916 8.398 1.4460 1.0602 0.9657 20 0.6167 5.783 7.622 8.158 9.116 7.092 9.8452 1.4281 0.1548 0.9599 55° 00 0.6109 5.783 7.622 8.158 9.116 7.092 9.8452 1.4281 0.1548 0.9599 55° 00 0.6108 5.760 7.604 8.175 9.125 7.046 8.479 1.4193 1.521 0.9570 50 0.6108 5.760 7.504 8.119 1.9107 7.133 8.333 1.4019 1.467 0.9512 30 0.6167 5.783 7.622 8.158 9.116 7.098 8.506 1.4106 1.494 0.9454 10 0.6225 5.831 7.657 8.1107 9.098 7.721 8.586 1.3848 1.141 0.9454 10 0.9483 20 0.6167 5.837 7.622 8.158 9.116 7.098 8.506 1.4106 1.494 0.9454 10 0.6225 5.831 7.657 8.1107 9.098 7.721 8.586 1.3848 1.141 0.9454 10 0.9483 20 0.6166 5.887 9.7692 8.099 9.9080 7.725 8.5861 3.3848 1.141 0.9454 10 0.9483 20 0.6166 5.8878 9.7692 8.099 9.9080 7.725 8.5861 3.3848 1.14	30	0.5498	5225	.7181	.8526	.9308	.6128	7873	1.6319	2127	1.0210	30
32° 00' 0.5585 5299 9.7242 8480 9.9284 6.249 9.7958 1.6003 0.2042 1.0152 58° 00' 0.5642 5324 7.262 8465 9.276 6.289 7.986 1.5900 2.014 1.0094 50 0.5613 5.348 7.282 8450 9.268 6.330 8.014 1.5798 1.986 1.0065 4.00 0.5701 5.398 7.322 8434 9.260 6.371 8.042 1.5697 1.958 1.0065 30 0.5672 5.373 7.302 8434 9.250 6.371 8.042 1.5697 1.958 1.0056 30 0.5730 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5780 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5789 5.422 7.342 8403 9.244 6.453 8.097 1.5497 1.903 0.9977 10 0.5789 5.471 7.380 8.371 9.228 6.536 8.153 1.5301 1.847 0.9919 50 0.5818 5.495 7.400 8.355 9.219 6.577 8.180 1.5204 1.820 0.9890 40 0.5780 5.545 7.419 8.339 9.211 6.619 8.208 1.5204 1.820 0.9800 40 0.5876 5.544 7.438 8.323 9.203 6.661 8.235 1.5013 1.765 0.9832 20 0.5945 5.568 7.457 8.307 9.194 6.6703 8.263 1.4919 1.737 0.9803 10 0.5943 5.568 7.457 8.307 9.194 6.6703 8.263 1.4919 1.737 0.9803 10 0.5903 5.568 7.457 8.3207 9.194 6.6703 8.263 1.4919 1.737 0.9803 10 0.5903 5.568 7.457 8.209 9.186 6.6745 9.8290 1.4826 0.1710 0.9774 56° 00 0.5903 5.568 7.457 8.307 9.194 6.6703 8.263 1.4919 1.737 0.9803 10 0.5903 5.568 7.457 8.307 9.194 6.6703 8.263 1.4919 1.737 0.9803 10 0.5903 5.568 7.457 8.307 9.194 6.6703 8.263 1.4919 1.737 0.9803 10 0.6021 5.564 7.513 8.258 9.169 6.830 8.344 1.4641 1.656 0.9716 40 0.6050 5.664 7.513 8.254 9.177 6.7678 8.317 1.4733 1.683 0.9764 40 0.6050 5.668 7.550 8.225 9.151 6.916 8.398 1.4460 1.602 0.9657 20 0.6167 5.783 7.622 8.1858 9.116 7.099 8.455 1.4370 1.554 0.9599 550 0.6080 5.712 7.568 8.208 9.142 6.999 8.425 1.4370 1.554 0.9599 550 0.6080 5.712 7.568 8.208 9.142 6.999 8.425 1.4370 1.548 0.9599 550 0.6080 5.712 7.568 8.192 9.9134 7.002 9.8452 1.4281 0.1548 0.9599 550 0.6060 5.712 7.568 8.192 9.9134 7.002 9.8452 1.4381 0.1548 0.9599 550 0.6060 5.712 7.568 8.192 9.9134 7.002 9.8452 1.4381 0.1548 0.9599 550 0.6060 5.712 7.568 8.107 9.008 7.721 8.586 1.3848 1.1410 0.9454 1.0943 1.00 0.6125 5.831 7.657 8.1107 9.008 7.721 8.586 1.3848 1.1410 0.9454 1.0945 1.00 0.612	40	0.5527	.5250	7201	.8511	.9300	.6168	.7902	1.6212	.2098	1.0181	20
33° 00' 0.5780		0.2220		.7222	.8496	.9292			1.6107			
33° 00' 0.5780		0.5585	.5299	9.7242		9.9284	.6249	9.7958	1.6003	0.2042	1.0123	28° 00'
33° 00' 0.5780	20	0.5643	5348	7282	.0400 8450		6330	9014	1.5708	1086	1.0094	JU 20
33° 00' 0.5780	30	0.5672	5373	7302	.8434	.9260	.6371	.8042	1.5697	.1958	1.0036	30
33° 00' 0.5780	40	0.5701	.5398	.7322	.8418	.9252	.6412	.8070	1.5597	.1930	1.0007	20
40 0.596 5.544 .7438 .8523 .9203 .6061 .8235 1.3013 .1765 0.9832 20 0.5905 .5568 .7457 .8307 .9194 .6703 .8263 1.4919 .1737 0.9803 10 34° 00′ 0.5934 .5592 9.7476 .8290 9.9186 .6745 9.8290 1.4826 0.1710 0.9774 .56° 00′ 0.5945 .5616 .7494 .8274 .9177 .6787 .8317 1.4733 .1683 0.9745 .56° 00′ 0.5992 .5640 .7513 .8258 .9169 .6830 .8344 .14641 .1656 0.9716 40 .06050 .5688 .7550 .8225 .9151 .6916 .8398 .3371 1.4550 .1629 0.9687 .30 0.6021 .5664 .7531 .8241 .9160 .6873 .8371 1.4550 .1629 0.9687 .30 0.6020 .5712 .7568 .8208 .9142 .6959 .8425 1.4370 .1575 0.9628 .10 .35° 00′ 0.6080 .5712 .7568 .8208 .9142 .6959 .8425 1.4370 .1575 0.9628 .10 .35° 00′ 0.6108 .5760 .7604 .8175 .9125 .7046 .8479 .14193 .1521 0.9570 .20 0.6167 .5783 .7622 .8188 .9116 .7089 .8506 1.4106 .1494 0.9599 .55° 00′ 0.6080 .5712 .5831 .7657 .8124 .9098 .7177 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .7657 .8124 .9098 .7127 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .7657 .8124 .9098 .7127 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7221 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .97692 .8090 .9000 .7265 .8386 1.3848 .1414 0.9485 .50 0.6225 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6228 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6228 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00		0.5730	.5422	.7342	.8403			.8097		.1903	0.9977	
40 0.596 5.544 .7438 .8523 .9203 .6061 .8235 1.3013 .1765 0.9832 20 0.5905 .5568 .7457 .8307 .9194 .6703 .8263 1.4919 .1737 0.9803 10 34° 00′ 0.5934 .5592 9.7476 .8290 9.9186 .6745 9.8290 1.4826 0.1710 0.9774 .56° 00′ 0.5945 .5616 .7494 .8274 .9177 .6787 .8317 1.4733 .1683 0.9745 .56° 00′ 0.5992 .5640 .7513 .8258 .9169 .6830 .8344 .14641 .1656 0.9716 40 .06050 .5688 .7550 .8225 .9151 .6916 .8398 .3371 1.4550 .1629 0.9687 .30 0.6021 .5664 .7531 .8241 .9160 .6873 .8371 1.4550 .1629 0.9687 .30 0.6020 .5712 .7568 .8208 .9142 .6959 .8425 1.4370 .1575 0.9628 .10 .35° 00′ 0.6080 .5712 .7568 .8208 .9142 .6959 .8425 1.4370 .1575 0.9628 .10 .35° 00′ 0.6108 .5760 .7604 .8175 .9125 .7046 .8479 .14193 .1521 0.9570 .20 0.6167 .5783 .7622 .8188 .9116 .7089 .8506 1.4106 .1494 0.9599 .55° 00′ 0.6080 .5712 .5831 .7657 .8124 .9098 .7177 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .7657 .8124 .9098 .7127 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .7657 .8124 .9098 .7127 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7221 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .97692 .8090 .9000 .7265 .8386 1.3848 .1414 0.9485 .50 0.6225 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6228 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6228 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00		0.5760	.5446	9.7361	.8387	9.9236	.6494	9.8125	1.5399		0.9948	57° 00′
40 0.596 5.544 .7438 .8523 .9203 .6061 .8235 1.3013 .1765 0.9832 20 0.5905 .5568 .7457 .8307 .9194 .6703 .8263 1.4919 .1737 0.9803 10 34° 00′ 0.5934 .5592 9.7476 .8290 9.9186 .6745 9.8290 1.4826 0.1710 0.9774 .56° 00′ 0.5945 .5616 .7494 .8274 .9177 .6787 .8317 1.4733 .1683 0.9745 .56° 00′ 0.5992 .5640 .7513 .8258 .9169 .6830 .8344 .14641 .1656 0.9716 40 .06050 .5688 .7550 .8225 .9151 .6916 .8398 .3371 1.4550 .1629 0.9687 .30 0.6021 .5664 .7531 .8241 .9160 .6873 .8371 1.4550 .1629 0.9687 .30 0.6020 .5712 .7568 .8208 .9142 .6959 .8425 1.4370 .1575 0.9628 .10 .35° 00′ 0.6080 .5712 .7568 .8208 .9142 .6959 .8425 1.4370 .1575 0.9628 .10 .35° 00′ 0.6108 .5760 .7604 .8175 .9125 .7046 .8479 .14193 .1521 0.9570 .20 0.6167 .5783 .7622 .8188 .9116 .7089 .8506 1.4106 .1494 0.9599 .55° 00′ 0.6080 .5712 .5831 .7657 .8124 .9098 .7177 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .7657 .8124 .9098 .7127 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .7657 .8124 .9098 .7127 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7221 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .97692 .8090 .9000 .7265 .8386 1.3848 .1414 0.9485 .50 0.6225 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6228 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6228 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00	10	0.5/69	1/4C.	7400	.03/1 8355	9228	.0230 6577	.0122 0180	1.5501	1820	0.9919	20
40 0.596 5.544 .7438 .8523 .9203 .6061 .8235 1.3013 .1765 0.9832 20 0.5905 .5568 .7457 .8307 .9194 .6703 .8263 1.4919 .1737 0.9803 10 34° 00′ 0.5934 .5592 9.7476 .8290 9.9186 .6745 9.8290 1.4826 0.1710 0.9774 .56° 00′ 0.5945 .5616 .7494 .8274 .9177 .6787 .8317 1.4733 .1683 0.9745 .56° 00′ 0.5992 .5640 .7513 .8258 .9169 .6830 .8344 .14641 .1656 0.9716 40 .06050 .5688 .7550 .8225 .9151 .6916 .8398 .3371 1.4550 .1629 0.9687 .30 0.6021 .5664 .7531 .8241 .9160 .6873 .8371 1.4550 .1629 0.9687 .30 0.6020 .5712 .7568 .8208 .9142 .6959 .8425 1.4370 .1575 0.9628 .10 .35° 00′ 0.6080 .5712 .7568 .8208 .9142 .6959 .8425 1.4370 .1575 0.9628 .10 .35° 00′ 0.6108 .5760 .7604 .8175 .9125 .7046 .8479 .14193 .1521 0.9570 .20 0.6167 .5783 .7622 .8188 .9116 .7089 .8506 1.4106 .1494 0.9599 .55° 00′ 0.6080 .5712 .5831 .7657 .8124 .9098 .7177 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .7657 .8124 .9098 .7127 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .7657 .8124 .9098 .7127 .8559 1.3934 .1441 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7221 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .8107 .9089 .7225 .8586 1.3848 .1414 0.9483 .20 0.6225 .5831 .5678 .97692 .8090 .9000 .7265 .8386 1.3848 .1414 0.9485 .50 0.6225 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6228 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6228 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 0.6283 .5878 .97692 .8090 .9000 .7265 .98613 .3764 0.1387 0.9425 .54° 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00	3ŏ l	0.5847	3510	7419	.8339	.9211	-6619	.8208	1.5108	.1792	0.9861	30
34° 00' 0.5934 5592 9.476 8290 9.9186 .6745 9.8290 1.4826 0.1710 0.9774 56° 00' 0.5934 5616 7.494 8274 9.9177 .6787 8317 1.4733 .1683 0.9745 50' 0.592 5640 7.513 8258 9.169 .6830 .8344 1.4641 1.656 0.9716 40 0.6050 5668 7.551 8225 9.151 .6916 8.398 1.4450 1.662 0.9687 30' 0.6080 5712 7.568 8208 9.9142 .6959 8425 1.4370 .1575 0.9628 10' 0.6080 5712 7.568 8208 9.9142 .6959 8425 1.4370 .1575 0.9628 10' 0.6108 5.760 7.564 8.879 9.9125 7.046 8.479 1.4193 1.521 0.9570 50' 0.6080 5.712 7.568 8208 9.9142 .6959 8425 1.4370 .1575 0.9628 10' 0.6108 5.760 7.604 8.175 9.125 7.046 8.479 1.4193 1.521 0.9570 50' 0.6080 5.712 7.604 8.175 9.125 7.046 8.479 1.4193 1.521 0.9570 50' 0.6108 5.760 7.604 8.145 9.9125 7.046 8.479 1.4193 1.521 0.9570 50' 0.6108 5.807 7.640 8.149 9.107 7.133 8.533 1.4019 1.467 0.9512 30' 0.6254 5.854 7.675 8.124 9.998 7.7271 8.559 1.3934 1.441 0.9454 10' 0.9512 50' 0.6254 5.854 7.675 8.124 9.998 7.721 8.556 1.3488 1.141 0.9454 10' 0.9433 20' 0.6283 5.878 9.7692 8.909 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5.878 9.7692 8.909 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5.878 9.7692 8.909 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5.878 9.7692 8.909 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00'	40	0.5876	.5544	.7438	.8323	.9203	.6661	.8235	1.5013	.1765	0.9832	20
10 0.5963 5616 7494 8274 9177 6787 8317 14733 1683 0.9745 50 0.5992 5640 7513 8258 .9169 .6830 .8344 1.4641 .1656 0.9716 40 0.6021 5664 7531 8241 .9160 .6873 .8371 1.4550 .1629 0.9687 30 0.6021 5664 7551 8241 .9160 .6873 .8371 1.4550 .1629 0.9687 30 0.6050 5688 .7550 8225 .9151 .6916 .8398 1.4460 .1602 0.9657 20 0.6080 .5712 .7568 .8208 .9142 .6959 .8425 1.4370 .1575 0.9628 10 35° 00′ 0.6109 .5736 .7568 .8192 .9.134 .7002 .8452 1.4281 0.1548 0.9599 .55° 00′ 0.6186 .5760 .7604 .8175 .9.125 .7046 .8479 1.4193 .1521 0.9570 50 0.6186 .5807 .7640 .8141 .9107 .7133 .8333 1.4019 .1467 0.9512 30 0.6196 .5807 .7640 .8141 .9107 .7133 .8333 1.4019 .1467 0.9512 30 0.6254 .5854 .7675 .8107 .9089 .7221 .8586 1.3848 .1441 0.9454 10 .9569 Nat. Log.* Nat. Dog.* Dog.* Dog.* Dog.* Dog.* Dog.* Dog.* Dog.* Dog.* Dog.* Dog.* Dog.* Nat. Log.* Nat. Log.* Nat. Log.* Nat. Dog.* Dog.* Nat. Dog.* D												10
35° 00' 0.6109 5.76 9.7586 8192 9.9134 7002 9.8452 1.4281 0.1548 0.9599 55° 00' 0.6109 5.756 9.7586 8192 9.9134 7002 9.8452 1.4281 0.1548 0.9599 55° 00' 20 0.6167 5.783 7.622 8158 9.916 7.099 8506 1.4106 1.494 0.9591 50 0.6166 5.807 7.640 8141 9.107 7.133 8533 1.4019 1.467 0.9512 30 0.6254 5.854 7.675 8124 9.998 7.717 8559 1.3934 1.441 0.9483 20 0.6225 5.831 7.657 8124 9.998 7.721 8556 1.3848 1.414 0.9483 20 0.6225 5.831 7.675 8107 9.089 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00'			.5592	9.7476	.8290	9.9186	.6745	9.8290		0.1710	0 9774	56° 00'
35° 00' 0.6109 5.76 9.7586 8192 9.9134 7002 9.8452 1.4281 0.1548 0.9599 55° 00' 0.6109 5.756 9.7586 8192 9.9134 7002 9.8452 1.4281 0.1548 0.9599 55° 00' 20 0.6167 5.783 7.622 8158 9.916 7.099 8506 1.4106 1.494 0.9591 50 0.6166 5.807 7.640 8141 9.107 7.133 8533 1.4019 1.467 0.9512 30 0.6254 5.854 7.675 8124 9.998 7.717 8559 1.3934 1.441 0.9483 20 0.6225 5.831 7.657 8124 9.998 7.721 8556 1.3848 1.414 0.9483 20 0.6225 5.831 7.675 8107 9.089 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00'	20	0.5902	-2010 5640	7512	.62/4 8258	9169	.0/0/ 6830	.031/ 8344	1.4/33	1656	0.9745	JU 20
35° 00' 0.6109 5.76 9.7586 8192 9.9134 7002 9.8452 1.4281 0.1548 0.9599 55° 00' 0.6109 5.756 9.7586 8192 9.9134 7002 9.8452 1.4281 0.1548 0.9599 55° 00' 20 0.6167 5.783 7.622 8158 9.916 7.099 8506 1.4106 1.494 0.9591 50 0.6166 5.807 7.640 8141 9.107 7.133 8533 1.4019 1.467 0.9512 30 0.6254 5.854 7.675 8124 9.998 7.717 8559 1.3934 1.441 0.9483 20 0.6225 5.831 7.657 8124 9.998 7.721 8556 1.3848 1.414 0.9483 20 0.6225 5.831 7.675 8107 9.089 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00'	30 l	0.6021	5664	7531	.8241	.9160	.6873	.8371	1.4550	1629	0.9687	30
35° 00' 0.6109 5.76 9.7586 8192 9.9134 7002 9.8452 1.4281 0.1548 0.9599 55° 00' 0.6109 5.756 9.7586 8192 9.9134 7002 9.8452 1.4281 0.1548 0.9599 55° 00' 20 0.6167 5.783 .7622 8158 9.916 7.099 8506 1.4106 1.494 0.9591 50 0.6166 5.807 7.640 8141 9.107 7.133 8533 1.4019 1.467 0.9512 30 0.6254 5.854 7.675 8124 9.998 7.717 8559 1.3934 1.441 0.9483 20 0.6225 5.831 7.657 8124 9.998 7.721 8556 1.3848 1.414 0.9483 20 0.6225 5.831 7.675 8107 9.089 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00' 0.6283 5878 9.7692 8090 9.9080 7.725 9.8613 1.3764 0.1387 0.9425 54° 00'	40	0.6050	.5688	. 7 550	.8225	.9151	.6916	.8398	1.4460	.1602	0.9657	20
30 9.6196 5807 .7640 .8141 .9107 .7133 .8533 .14019 .1467 .9512 .304 .908 .7177 .8559 .13934 .1441 .9483 .20 .6254 .5854 .7657 .8107 .9089 .7221 .8586 .1348 .1414 0.9454 .10 .9483 .909 .7265 .8107 .9089 .7265 .8107 .9089 .7265 .8107 .9089 .7265 .8107 .9089 .7265 .8107 .9089 .7265 .8107 .7081	50			./208	.8208	.9142			1.4370	.1575	0.9628	
30 9.6196 5807 .7640 .8141 .9107 .7133 .8533 1.4019 .1467 0.9512 30 40 0.6225 .5831 .7657 .8124 .9098 .7.177 .8559 1.3934 .1441 0.9483 20 50 0.6254 .5854 .7657 .8107 .9089 .7.221 .8586 1.3848 .1414 0.9454 10 36° 00′ 0.6283 .5878 9.7692 .8090 9.9080 .7.265 9.8613 1.3764 0.1387 0.9425 54° 00′ Nat. Log. Nat. Log. Nat. Log. Nat. Log. Ra- De-	350 00	0.6109	5736	9.7586	.8192	9.9134	.7002	9:8452	1.4281	0.1548	0.9599	550 00
30 9.6196 5807 .7640 .8141 .9107 .7133 .8533 .14019 .1467 .9512 .304 .908 .7177 .8559 .13934 .1441 .9483 .20 .6254 .5854 .7657 .8107 .9089 .7221 .8586 .1348 .1414 0.9454 .10 .9483 .909 .7265 .8107 .9089 .7265 .8107 .9089 .7265 .8107 .9089 .7265 .8107 .9089 .7265 .8107 .9089 .7265 .8107 .7081	20	0.0156	.576U 5783	7622	.61/5 8158	.9125	./U46 7080	.84/9 8504	1.4193	1361	0.95/0	2U 40
50 0.6254 5854 7675 8107 .9089 7221 .8586 1.3848 .1414 0.9954 10 36° 00' 0.6283 5878 9.7692 .8090 9.9080 7.265 9.8613 1.3764 0.1387 0.9425 54° 00' Nat. Log. Nat. Log. Nat. Log. Nat. Log. Ra- De-	30 l	9.6196	.5807	7640	.8141	.9107	.7133	.8533	1.4019	.1467	0.9512	30
50 0.6254 5854 7675 8107 .9089 7221 .8586 1.3848 .1414 0.9954 10 36° 00' 0.6283 5878 9.7692 .8090 9.9080 7.265 9.8613 1.3764 0.1387 0.9425 54° 00' Nat. Log. Nat. Log. Nat. Log. Nat. Log. Ra- De-	40	0.6225	.5831	.7657	.8124	.9098	.71 77	.8559	1.3934	.1441	0.9483	20
Nat. Log. * Nat. Log. * Nat. Log. * Nat. Log. Ra- De-	50		.5854		.8107			.8586				
Corines Siese Cotanognes Tanganta Ra- De-	36° 00′	V.6283									0.9425	54° 00'
			Nat.	Log. *	Nat.	Log. *	Nat.	Log.	Nat.	Log.		
dians grees			C	ines	gi.	nes	Cotes	genta	Tang	ents		
		•					- 5 001				dians	grees

TRIGONOMETRIC FUNCTIONS (continued)
Annex-10 n columns marked*. (For 0°,1 intervals, see pp. 46-51)

De- grees	Ra- dians	Sines	Cosines	Tangents	Cotangents		
36° 00′ 10 20 30 40 50	0.6283 0.6312 0.6341 0.6370 0.6400 0.6429	Nat. Log. 4 .5878 9.7692 .5901 .7710 .5925 .7727 .5948 .7744 .5972 .7761 .5995 .7778	Nat. Log.* .8090 9.9080 .8073 .9070 .8056 .9061 .8039 .9052 .8021 .9042 .8004 .9033	Nat. Log.* 7265 9.8613 7310 .8639 7355 .8666 .7400 .8692 .7445 .8718 .7490 .8745	Nat. Log. 13764 0.1387 13680 .1361 13597 .1334 13514 .1308 13432 .1282 13351 .1255	0.9425 0.9396 0.9367 0.9338 0.9308 0.9279	54° 00 50 40 30 20
37° 00′ 10 20 30 40 50	0.6458 0.6487 0.6516 0.6545 0.6574 0.6603	.6018 9.7795 .6041 .7811 .6065 .7828 .6088 .7844 .6111 .7861 .6134 .7877	.7986 9.9023 .7969 .9014 .7951 .9004 .7934 .8995 .7916 .8985 .7898 .8975	.7536 9.8771 .7581 .8797 .7627 .8824 .7673 .8850 .7720 .8876 .7766 .8902	1.3270 0.1229 1.3190 .1203 1.3111 .1176 1.3032 .1150 1.2954 .1124 1.2876 .1098	0.9250 0.9221 0.9192 0.9163 0.9134 0.9105	53° 0 54 32 1
38° 00′ 10 20 30 40 50	0.6632 0.6661 0.6690 0.6720 0.6749 0.6778	.6157 9.7893 .6180 7910 .6202 7926 .6225 7941 .6248 7957 .6271 7973	.7880 9.8965 .7862 .8955 .7844 .8945 .7826 .8935 .7808 .8925 .7790 .8915	7813 9.8928 .7860 .8954 .7907 .8980 .7954 .9006 .8002 .9032 .8050 .9058	1.2799 0.1072 1.2723 .1046 1.2647 .1020 1.2572 .0994 1.2497 .0968 1.2423 .0942	0.9076 0.9047 0.9018 0.8988 0.8959 0.8930	52° 0 5 4 3 2 1
39° 00′ 10 20 30 40 50	0.6807 0.6836 0.6865 0.6894 0.6923 0.6952	.6293 9.7989 .6316 .8004 .6338 .8020 .6361 .8035 .6383 .8050 .6406 .8066	.7771 9.8905 .7753 .8895 .7735 .8884 .7716 .8874 .7698 .8864 .7679 .8853	.8098 9.9084 .8146 .9110 .8195 .9135 .8243 .9161 .8292 .9187 .8342 .9212	1.2349 0.0916 1.2276 .0890 1.2203 .0865 1.2131 .0839 1.2059 .0813 1.1988 .0788	0.8901 0.8872 0.8843 0.8814 0.8785 0.8756	51° 0 5 4 3 2
40° 00′ 10 20 30 40 50	0.6981 0.7010 0.7039 0.7069 0.7098 0.7127	.6428 9,8081 .6450 .8096 .6472 .8111 .6494 .8125 .6517 .8140 .6539 .8155	.7660 9.8843 .7642 .8832 .7623 .8821 .7604 .8810 .7585 .8800 .7566 .8789	.8391 9.9238 .8441 .9264 .8491 .9289 .8541 .9315 .8591 .9341 .8642 .9366	1.1918 0.0762 1.1847 .0736 1.1778 .0711 1.1708 .0685 1.1640 .0659 1.1571 .0634	0.8727 0.8698 0.8668 0.8639 0.8610 0.8581	50° 0 50 40 30 20
41° 00′ 10 20 30 40 50	0.7156 0.7185 0.7214 0.7243 0.7272 0.7301	.6561 9.8169 .6583 .8184 .6604 .8198 .6626 .8213 .6648 .8227 .6670 .8241	.7547 9.8778 .7528 .8767 .7509 .8756 .7490 .8745 .7470 .8733 .7451 .8722	.8693 9.9392 .8744 .9417 .8796 .9443 .8847 .9468 .8899 .9494 .8952 .9519	1.1504 0.0608 1.1436 .0583 1.1369 .0557 1.1303 .0532 1.1237 .0506 1.1171 .0481	0.8552 0.8523 0.8494 0.8465 0.8436 0.8407	49° 0 54 44 31 21
42° 00′ 10 20 30 40 50	0.7330 0.7359 0.7389 0.7418 0.7447 0.7476	.6691 9.8255 .6713 .8269 .6734 .8283 .6756 .8297 .6777 .8311 .6799 .8324	.7431 9.8711 .7412 .8699 .7392 .8688 .7373 .8676 .7353 .8665 .7333 .8653	.9004 9.9544 .9057 .9570 .9110 .9595 .9163 .9621 .9217 .9646 .9271 .9671	1.1106 0 0456 1.1041 .0430 1.09770405 1.0913 .0379 1.0850 .0354 1.0786 .0329	0.8378 0.8348 0.8319 0.8290 0.8261 0.8232	.48° 00 - 51 - 41 - 31 - 21
43° 00′ 10 20 30 40 50	0.7505 0.7534 0.7563 0.7592 0.7621 0.7650	.6820 9.8338 .6841 .8351 .6862 .8365 .6884 .8378 .6905 .8391 .6926 .8405	.7314 9.8641 .7294 .8629 .7274 .8618 .7254 .8606 .7234 .8594 .7214 .8582	.9325 9.9697 .9380 .9722 .9435 .9747 .9490 .9772 .9545 .9798 .9601 .9823	1.0724 0.0303 1.0661 .0278 1.0599 .0253 1.0538 .0228 1.0477 .0202 1.0416 .0177	0.8203 0.8174 0.8145 0.8116 0.8087 0.8058	47° 00 50 40 31 20
44° 00′ 10 20 30 40 50 45° 00′	0.7679 0.7709 0.7738 0.7767 0.7796 0.7825 0.7854	.6947 9.8418 .6967 .8431 .6988 .8444 .7009 .8457 .7030 .8469 .7050 .8482	.7193 9.8569 .7173 .8557 .7153 .8545 .7133 .8532 .7112 .8520 .7092 .8507	.9657 9.9848 .9713 .9874 .9770 .9899 .9827 .9924 .9884 .9949 .9942 .9975	1.0355 0.0152 1.0295 .0126 1.0235 .0101 1.0176 .0076 1.0117 .0051 1.0058 .0025 1.0000 0.0000	0.8029 0.7999 0.7970 0.7941 0.7912 0.7883 0.7854	46° 00 50 40 30 20 10 45° 00
43.00	0.7034	.7071 9.8495 Nat. Log.	.7071 9.8495 Nat. Log. *	1.0000 0.0000 Nat. Log.*	Nat. Log.	0.7634	45" 00
		Cosines	Sines	Cotangents	Tangents	Ra- dians	De- gree

EXPONENTIALS $[e^n \text{ and } e^{-n}]$

n	en	Diff.	n	en	Diff.	n	en	n	e-n	Diff.	n	e-n	n	e-n
0.00 .01 .02 .03 .04	1.000 1.010 1.020 1.030 1.041	10 10 10 11	0.50 .51 .52 .53 .54	1.649 1.665 1.682 1.699 1.716	16 17 17 17	1.0 .1 .2 .3 .4	2.718* 3.004 3.320 3.669 4.055	0.00 .01 .02 .03 .04	1.000 0.990 .980 .970 .961	-10 -10 -10 - 9 - 10	0.50 51 .52 .53 .54	.607 .600 .595 .589 .583	1.0 .1 .2 .3 .4	.368* .333 .301 .273 .247
0.05 .06 .07 .08 .09	1.051 1.062 1.073 1.083 1.094	111 10 11	0.55 .56 .57 .58 .59	1.733 1.751 1.768 1.786 1.804	18 17 18 18 18	1.5 .6 .7 .8 .9	4.482 4.953 5.474 6.050 6.686	0.05 ,06 .07 .08 .09	.951 .942 .932 .923 .914	- 9 - 10 - 9 - 9	0.55 .56 .57 .58 .59	.577 .571 .566 .560 .554	1.5 .6 .7 .8 .9	.223 .202 .183 .165 .150
0.10 .11 .12 .13 .14	1.105 1.116 1.127 1.139 1.150	11 11 12 11 12	0.60 .61 .62 .63 .64	1.822 1.840 1.859 1.878 1.896	18 19 19 18 20	2.0 .1 .2 .3 .4	7.389 8.166 9.025 9.974 11.02	0.10 .11 .12 .13 .14	.905 .896 .887 .878 .869	- 9 - 9 - 9 9 8	0.60 .61 .62 .63 .64	.549 .543 .538 .533 .527	2.0 .1 .2 .3 .4	.135 .122 .111 .100 .0907
0.15 .16 .17 .18 .19	1.162 1.174 1.185 1.197 1.209	12 11 12 12 12	0.65 .66 .67 .68 .69	1.916 1.935 1.954 1.974 1.994	19 19 20 20 20	2.5 .6 .7 .8 .9	12.18 13.46 14.88 16.44 18.17	0.15 .16 .17 .18 .19	.861 .852 .844 .835 .827	- 9 - 8 - 8 - 8	0.65 .66 .67 .68 .69	.522 .517 .512 .507 .502	2.5 .6 .7 .8 .9	.0821 .0743 .0672 .0608 .0550
.21 .22 .23 .24	1.221 1.234 1.246 1.259 1.271	13 12 13 12 13	0.70 .71 .72 .73 .74	2.014 2.034 2.054 2.075 2.096	20 20 21 21 21	3.0 .1 .2 .3 .4	20.09 22.20 24.53 27.11 29.96	0.20 .21 .22 .23 .24	.819 .811 .803 .795 .787	- 8 - 8 - 8 - 8	0.70 .71 .72 .73 .74	.497 .492 .487 .482 .477	3.0 .1 .2 .3 .4	.0498 .0450 .0408 .0369 .0334
0.25 .26 .27 .28 .29	1.284 1.297 1.310 1.323 1.336	13 13 13 13	0.75 .76 .77 .78 .79	2.117 2.138 2.160 2.181 2.203	21 22 21 22 23	3.5 .6 .7 .8	33.12 36.60 40.45 44.70 49.40	0.25 .26 .27 .28 .29	.779 .771 .763 .756 .748	- 8 - 8 - 7 - 8 - 7	0.75 .76 .77 .78 .79	.472 .468 .463 .458 .454	3.5 .6 .7 .8 .9	.0302 .0273 .0247 .0224 .0202
31 .32 .33 .34	1.350 1.363 1.377 1.391 1.405	13 14 14 14 14	0.80 .81 .82 .83 .84	2.226 2.248 2.270 2.293 2.316	22 22 23 23 24	4.0 .1 .2 .3 .4	54.60 60.34 66.69 73.70 81.45	0.30 31 32 33 34	.741 .733 .726 .719 .712	- 8 - 7 - 7 - 7	0.80 .81 .82 .83 .84	.449 .445 .440 .436 .432	4.0 .1 .2 .3 .4	.0183 .0166 .0150 .0136 .0123
0.35 .36 .37 .38 .39	1.419 1.433 1.448 1.462 1.477	14 15 14 15 15	0.85 .86 .87 .88 .89	2,340 2,363 2,387 2,411 2,435	23 24 24 24 24 25	4.5 5.0 6.0 7.0	90.02 148.4 403.4 1097.	0.35 .36 .37 .38 .39	.705 .698 .691 .684 .677	- 7 - 7 - 7 - 7 - 7	0.85 .86 .87 .88 .89	.427 .423 .419 .415 .411	5.0 6.0 7.0	.0111 .00674 .00248 .000912
.41 .42 .43 .44	1.492 1.507 1.522 1.537 1.553	15 15 16 15	0.90 .91 .92 .93 .94	2.460 2.484 2.509 2.535 2.560	24 25 26 25 26 25 26	8.0 9.0 10.0 π/2 2π/2	2981. 8103. 22026. 4.810 23.14	0.40 .41 .42 .43 .44	.670 .664 .657 .651 .644	- 6 - 7 - 6 - 7 - 6	0.90 .91 .92 .93 .94	.407 .403 .399 .395 .391	8.0 9.0 10.0 π/2 2π/2	.000335 .000123 .000045 .208
0.45 .46 .47 .48 .49	1.568 1.584 1.600 1.616 1.632	16 16 16 16 17	0.95 .96 .97 .98 .99	2.586 2.612 2.638 2.664 2.691	26 26 26 27 27	$3\pi/2$ $4\pi/2$ $5\pi/2$ $6\pi/2$ $7\pi/2$	111.3 535.5 2576. 12392. 59610.	0.45 .46 .47 .48 .49	.638 .631 .625 .619 .613	- 7 - 6 - 6 - 6	0.95 .96 .97 .98 .99	.387 .383 .379 .375 .372	$3\pi/2$ $4\pi/2$ $5\pi/2$ $6\pi/2$ $7\pi/2$.00898 .00187 .000388 .000081
0.50	1.649		1.00	2.718	.,	$8\pi/2$	286751.	0.50	0.607		1.00	368	$8\pi/2$.000003

^{1/(0.4343) = 2.3026}

For table of multiples of 0.4343, see p. 62. Graphs, p. 174.

HYPERBOLIC LOGARITHMS

	n	n (2.3026)	n (0.6974-3)
These two pages give the natural (hyperbolic, or Napierian) logarithms (loga) of numbers between 1 and 10, correct to four places. Moving the decimal point n places to the right [or left] in the number is equivalent to adding n times 2.3026 [or n times 3.6974] to the logarithm. Base $e=2.71828+$	1 2 3 4 5 6 7 8 9	2.3026 4.6052 6.9078 9.2103 11.5129 13.8155 16.1181 18.4207 20.7233	0.6974-3 0.3948-5 0.0922-7 0.7897-10 0.4871-12 0.1845-14 0.8819-17 0.5793-19 0.2767-21

	г										
Num- ber.	0	1	2	8	4		6	7	8	•	Avg. diff.
1.0	0.0000	0100	0198	0296 1222	0392	0488	0583	0677	0770	0862	95 87
1.1	0953	1044	1133	1222 2070	1310	1398	1484 2311	1570	1655	1740	87
1.2 1.3	1823 2624	1906 2700	1989 2776	2070 2852	2151 2927	1398 2231 3001	3075	2390 3148	2469 3221	2546 3293	80 74
1.4	3365	3436	3507	3577	3646	3716	3784	3853	3920	3988	69
1.5	0.4055	4121	4187	4253 4886	4318	4383	4447	4511	4574	4637	65
1.6 1.7	4700 5306	4762 5365	4824 5423	4886 5481	494 7 5539	5008 5596	5068 5653	5128 5710	5188 5766	5247 5822	61 57
1.8	5878	5933	5988	6043	6098	6152	6206	6259	6313	6366	34
1.9	6419	6471	6523	6575	6627	6152 6678	6729	6259 6780	6831	6366 6881	δί
2.0 2.1 2.2 2.3 2.4	0.6931	6981	7031	7080	7129	7178	7227	7275	7324	7372 7839	49 47
2.1	7419 7885	7467 7930	7514 7975	7561 8020	7608 8065	7655 81 0 9	7701 8154	7747 8198	7793 8242	7839 8286	47
2.3	8329	8372	8416	8459	8502	8544	8587	8629	8671	8713	43
2.4	8755	8796	8838	8459 8879	8502 8920	8544 8961	9002	9042	8671 9083	9123	41
2.5	0.9163	9203	9243	9282 967 0	9322 9708	9361 9746	9400	9439	9478 9858	9517	39 38 36 35 34
2.6 2.7	9555 0.9933	9594 9969	9632 *0006	96/U *0043	*0080	9/46 •0116	9783 *0152	9821 *0188	9858 *0225	9895 *0260	38
2.8	1.0296	0332	0367	0403	0438	0473	0508	0543	0578	0613	35
2.8 2.9	0647	0682	0716	0750	0784	0818	0852	0886	0919	0953	34
8.0	1.0986	1019	1053	1086	1119	1151 1474 1787 2090	1184	1217	1249 1569 1878	1282 1600 1909	33
3.1 3.2	1314 1632	1346 1663	1378 1694	1410 1725	1442 1756	14/4 1787	1506 1817	1537 1848	1978	1000	32
3.3	1939	1969	2000	2030	2060	2090	2119	2149	2179	2208	33 32 31 30 29
3.4	2238	2267	2296	2326	2355	2384	2413	2442	2470	2499	29
3.5	1.2528	2556 2837	2585	2613	2641	2669	2698	2726	2754 3029 3297	2782	28
3.6	2809 3083	2837 3110	2865 3137	2892 3164	2920 3191	2947 3218	2975 3244	3002 3271	3029	3056 3324	28 27 27 26 25
3.8	3350	3376	3403	3429	3455	3481	3507	3533	3558	3584	1 %
3.6 3.7 3.8 3.9	3610	3635	3661	3429 3686	3712	3737	3762	3533 3788	35 58 3813	3584 3838	25
4.0	1.3863	3888	3913	3938 4183	3962 4207	3987	4012	4036 4279	4061 4303	4085 4327	25 24 23 23 22
4.1	4110 4351	4134 4375	4159 4398	4183 4422	4207	4231 4469	4255 4493	4279 4516	4303	4327	24
4.2 4.3	4586	4609	4633	4656	4446 4679	4702	4725	4748	4540 4770	4563 4793	1 23
4.4	4816	4839	4861	4884	4907	4702 4929	4725 4951	4974	4996	5019	22
4.5 4.6 4.7	1.5041	5063	5085	5107	5129	5151	5173	5195	5217	5 23 9 5454	22
4.6	5261 5476	5282 5497	5304 5518	5326 5539	5347 5560	5369 5581	5390 5602	5412 5623	5433 5644	5454 5665	Z]
4.8	5686	5707	5728	5748	5769	5790	5810	5831	5851	5872	22 21 21 20 20
4.8	5892	5913	5933	5953	5974	5994	6014	6034	6054	6074	20
	<u> </u>										L

 $\log_{\theta} x = (2.3026) \log_{10} x$ $\log_{10} x = (0.4343) \log_{\theta} x$ where 2.3026 = \log_{θ} and 0.4343 = \log_{θ} (see p. 62). For graphs, see p. 174.

HYPERBOLIC LOGARITHMS (continued)

8.0 1.6094 6114 6134 6154 6174 6194 6214 6233 6253 6273 22 5.1 6292 6312 6332 6332 63371 6390 6409 6429 6486 6467 151 5.2 6487 6596 6525 6544 6563 6582 6601 6620 6639 6658 15 5.3 66674 6696 6715 6734 6752 6771 6790 6808 6827 6845 15 5.4 6864 6882 6901 6919 6938 6956 6974 6993 7011 7029 16 5.5 7228 7246 7263 7281 72299 7317 7334 7352 7370 7387 185 5.6 7228 7246 7263 7281 72299 7317 7334 7352 7370 7387 185 5.7 7405 7422 7440 7457 7475 7492 7509 7527 7544 7551 17 5.8 7579 7596 7613 7630 7817 7834 7851 7867 7884 7901 17 5.9 7750 7766 7783 7800 7817 7834 7851 7867 7884 7901 17 6.0 1.7918 7934 7951 7967 7984 8001 8017 8034 8050 8066 16 6.1 8083 8099 8116 8132 8148 8165 8181 8197 8213 8229 16 6.2 8245 8262 8278 8294 8310 8326 8342 8358 8374 8390 16 6.3 8405 8421 8437 8453 8469 8485 8500 8316 8352 8367 8300 6.5 1.8718 8733 8749 8764 8779 8795 8810 8825 8840 8856 6.5 8871 8886 8901 8916 8931 8946 8961 8975 9973 9910 9125 9140 9155 7.1 9691 9473 9488 9502 9963 9995 9910 9125 9140 9155 15 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 7.0 1.9459 9473 9488 9502 9643 9657 9669 9674 9679 9773 9787 7.1 9669 9681 9699 9699 9699 9713 9725 9727 9266 9731 9731 7.2 0.1945 9069 9061 0698 0698 0699 0698 0698 0698 0698 0699 0782 1798 7.3 1.9679 9669 0681 0694 0707 0719 0773 0774 0799 0774 0799 0773 0774 0779	HY	PERBO	LIC L	OGA1	RITH	MS (c	ontinued)					
\$1. 1.6094 6114 6134 6154 6174 6194 6214 6223 6223 6223 6223 6223 6223 6223 622	Nem-	0	1	2	8	4	5	6	7	8	9	Avg.
5.1 6292 6312 6332 6351 6371 6390 6409 6429 6448 6467 19 52 6487 6506 6525 6544 6563 6582 6601 6602 6639 6658 19 53 6677 6696 6715 6734 6752 6771 6790 6808 6827 6845 18 5.4 6864 6882 6901 6919 6938 6956 6974 6993 7011 7029 18 5.5 1.7047 7066 7084 7102 7120 7138 7156 7174 7192 7210 18 5.6 7228 7246 7263 7281 7299 7317 7334 7352 7370 7387 18 5.7 7405 7422 7400 7457 7475 7475 7492 7599 7579 7594 7551 17 5.8 7579 7596 7613 7630 7647 7664 7681 7699 7716 7733 15.9 7750 7766 7783 7800 7817 7834 7851 7867 7884 7901 17 6.0 17 700 7785 7884 7901 17 7834 7851 7867 7884 7901 17 7834 7851 7867 7884 7901 17 7834 7851 7867 7884 7801 7867 7884	50	1.6094	6114	6134	6154	6174	6194	6214	6233	6253	6273	20
5.5 1.7047 7066 7084 7102 7120 7138 7156 7174 7192 7210 18 5.6 7228 7246 7263 7281 7299 7317 7334 7352 7370 7387 7355 5.7 7405 7442 7440 7457 7475 7495 7317 7334 7352 7370 7387 15 5.8 7579 7596 7613 7630 7647 7664 7681 7699 7716 7733 17 5.8 7579 7596 7613 7630 7647 7664 7681 7699 7716 7733 17 5.9 7750 7766 7783 7800 7817 7834 7851 7867 7884 7901 17 6.0 1.7918 7934 7951 7967 7984 8001 8017 8034 8050 8066 16 6.1 8083 8099 8116 8132 8148 8165 8181 8197 8213 8229 16 6.2 8245 8262 8278 8294 8310 8326 8342 8339 8374 8901 16 6.3 8405 8421 8437 8453 8469 8485 8500 8516 8532 8547 16 6.4 8563 8471 8886 8901 8916 8931 8946 8961 8976 8991 9006 15 6.5 1.8718 8733 8749 8764 8779 8795 8810 8825 8840 8856 16 6.8 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 15 6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 15 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1,9459 9473 9488 9502 9643 9657 9671 9685 9699 9713 9727 14 7.1 9601 9615 9629 99643 9657 9671 9685 9699 9713 9727 14 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 17 7.3 1,9879 9892 9906 9900 9920 9933 9947 9961 9974 9988 9851 9865 17 7.4 2,0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.5 2,0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.8 0541 0554 0367 0580 0592 0609 0082 0096 0109 0122 0136 13 7.7 0412 0425 0438 0451 0444 0477 0490 0503 0516 0528 13 7.8 0541 0554 0367 0580 0592 0609 0082 0096 0109 0122 0136 13 7.7 0412 0425 0438 0451 0444 0477 0490 0503 0516 0528 13 7.8 0541 0554 0666 0684 0707 0719 0732 0744 0757 0769 0782 12 8.0 12972 1883 1894 1995 1211 1223 1235 1247 1258 1270 1218 138 1390 134 138 1390 134 1353 1365 1377 1389 121 8.5 1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 122 8.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 123 123 1232 1232 1233 1247 1258 1270 1218 138 1390 1342 1335 13365 1377 1389 121 8.5 1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 122 1292 2203 2204 2205 2268 2296 111 1412 123 1232 2232 2343 2354 2364 2375 2386 2397 2380 2814 1998 1999 1990 1990 1990 1990 1990 1990	5.1	6292	6312	6332	6351	6371	6390	6409	6429	6448	6467	19
5.5 1.7047 7066 7084 7102 7120 7138 7156 7174 7192 7210 18 5.6 7228 7246 7263 7281 7299 7317 7334 7352 7370 7387 7355 5.7 7405 7442 7440 7457 7475 7495 7317 7334 7352 7370 7387 15 5.8 7579 7596 7613 7630 7647 7664 7681 7699 7716 7733 17 5.8 7579 7596 7613 7630 7647 7664 7681 7699 7716 7733 17 5.9 7750 7766 7783 7800 7817 7834 7851 7867 7884 7901 17 6.0 1.7918 7934 7951 7967 7984 8001 8017 8034 8050 8066 16 6.1 8083 8099 8116 8132 8148 8165 8181 8197 8213 8229 16 6.2 8245 8262 8278 8294 8310 8326 8342 8339 8374 8901 16 6.3 8405 8421 8437 8453 8469 8485 8500 8516 8532 8547 16 6.4 8563 8471 8886 8901 8916 8931 8946 8961 8976 8991 9006 15 6.5 1.8718 8733 8749 8764 8779 8795 8810 8825 8840 8856 16 6.8 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 15 6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 15 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1,9459 9473 9488 9502 9643 9657 9671 9685 9699 9713 9727 14 7.1 9601 9615 9629 99643 9657 9671 9685 9699 9713 9727 14 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 17 7.3 1,9879 9892 9906 9900 9920 9933 9947 9961 9974 9988 9851 9865 17 7.4 2,0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.5 2,0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.8 0541 0554 0367 0580 0592 0609 0082 0096 0109 0122 0136 13 7.7 0412 0425 0438 0451 0444 0477 0490 0503 0516 0528 13 7.8 0541 0554 0367 0580 0592 0609 0082 0096 0109 0122 0136 13 7.7 0412 0425 0438 0451 0444 0477 0490 0503 0516 0528 13 7.8 0541 0554 0666 0684 0707 0719 0732 0744 0757 0769 0782 12 8.0 12972 1883 1894 1995 1211 1223 1235 1247 1258 1270 1218 138 1390 134 138 1390 134 1353 1365 1377 1389 121 8.5 1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 122 8.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 123 123 1232 1232 1233 1247 1258 1270 1218 138 1390 1342 1335 13365 1377 1389 121 8.5 1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 122 1292 2203 2204 2205 2268 2296 111 1412 123 1232 2232 2343 2354 2364 2375 2386 2397 2380 2814 1998 1999 1990 1990 1990 1990 1990 1990	5.2	6487	6506	6525	6544	6563	6582	6601	6620	6639	6658	19
5.5 1.7047 7066 7084 7102 7120 7138 7156 7174 7192 7210 18 5.6 7228 7246 7263 7281 7299 7317 7334 7352 7370 7387 7355 5.7 7405 7442 7440 7457 7475 7495 7317 7334 7352 7370 7387 15 5.8 7579 7596 7613 7630 7647 7664 7681 7699 7716 7733 17 5.8 7579 7596 7613 7630 7647 7664 7681 7699 7716 7733 17 5.9 7750 7766 7783 7800 7817 7834 7851 7867 7884 7901 17 6.0 1.7918 7934 7951 7967 7984 8001 8017 8034 8050 8066 16 6.1 8083 8099 8116 8132 8148 8165 8181 8197 8213 8229 16 6.2 8245 8262 8278 8294 8310 8326 8342 8339 8374 8901 16 6.3 8405 8421 8437 8453 8469 8485 8500 8516 8532 8547 16 6.4 8563 8471 8886 8901 8916 8931 8946 8961 8976 8991 9006 15 6.5 1.8718 8733 8749 8764 8779 8795 8810 8825 8840 8856 16 6.8 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 15 6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 15 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1,9459 9473 9488 9502 9643 9657 9671 9685 9699 9713 9727 14 7.1 9601 9615 9629 99643 9657 9671 9685 9699 9713 9727 14 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 17 7.3 1,9879 9892 9906 9900 9920 9933 9947 9961 9974 9988 9851 9865 17 7.4 2,0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.5 2,0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.8 0541 0554 0367 0580 0592 0609 0082 0096 0109 0122 0136 13 7.7 0412 0425 0438 0451 0444 0477 0490 0503 0516 0528 13 7.8 0541 0554 0367 0580 0592 0609 0082 0096 0109 0122 0136 13 7.7 0412 0425 0438 0451 0444 0477 0490 0503 0516 0528 13 7.8 0541 0554 0666 0684 0707 0719 0732 0744 0757 0769 0782 12 8.0 12972 1883 1894 1995 1211 1223 1235 1247 1258 1270 1218 138 1390 134 138 1390 134 1353 1365 1377 1389 121 8.5 1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 122 8.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 123 123 1232 1232 1233 1247 1258 1270 1218 138 1390 1342 1335 13365 1377 1389 121 8.5 1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 122 1292 2203 2204 2205 2268 2296 111 1412 123 1232 2232 2343 2354 2364 2375 2386 2397 2380 2814 1998 1999 1990 1990 1990 1990 1990 1990	5.3		6696	6715	6734	6752	6771	6790	6808	6827	6845	18
5.6 7228 7246 7246 7263 7281 7299 7317 7337 7352 7370 7387 7370 7387 7387	5.4	6864	6882	6901	6919	6938	6956	6974	6993	7011	7029	18
8.0 1.7918 7934 7951 7967 7984 8001 8017 8034 8050 8066 16 6.1 8083 8099 8116 8132 8148 8165 8181 8197 8213 8229 16 6.2 8245 8262 8278 8294 8310 8336 8342 8358 8374 8390 16 6.2 8245 8262 8278 8294 8310 8336 8342 8358 8374 8390 16 6.3 8405 8421 8437 8453 8469 8485 8500 8516 8532 8547 16 6.4 8563 8579 8544 8610 8625 8641 8656 8672 8687 8703 15 6.5 1.8718 8733 8749 8764 8871 8896 8976 8991 9006 16 6.6 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 16 6.8 9169 9184 9199 9213 9228 9222 9257 9272 9286 9301 15 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9573 9587 14 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 14 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 17.4 2.0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.8 1.9879 9892 9906 9920 9933 9947 9961 9974 9988 *0001 13 7.5 1.9879 0069 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.5		7066			7120		7156	7174		7210	18
8.0 1.7918 7934 7951 7967 7984 8001 8017 8034 8050 8066 16 6.1 8083 8099 8116 8132 8148 8165 8181 8197 8213 8229 16 6.2 8245 8262 8278 8294 8310 8336 8342 8358 8374 8390 16 6.2 8245 8262 8278 8294 8310 8336 8342 8358 8374 8390 16 6.3 8405 8421 8437 8453 8469 8485 8500 8516 8532 8547 16 6.4 8563 8579 8544 8610 8625 8641 8656 8672 8687 8703 15 6.5 1.8718 8733 8749 8764 8871 8896 8976 8991 9006 16 6.6 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 16 6.8 9169 9184 9199 9213 9228 9222 9257 9272 9286 9301 15 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9573 9587 14 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 14 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 17.4 2.0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.8 1.9879 9892 9906 9920 9933 9947 9961 9974 9988 *0001 13 7.5 1.9879 0069 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.6	7228	7246	7263	7281	7299	7317	7334	7352	7370	7387	1 18
8.0 1.7918 7934 7951 7967 7984 8001 8017 8034 8050 8066 16 6.1 8083 8099 8116 8132 8148 8165 8181 8197 8213 8229 16 6.2 8245 8262 8278 8294 8310 8336 8342 8358 8374 8390 16 6.2 8245 8262 8278 8294 8310 8336 8342 8358 8374 8390 16 6.3 8405 8421 8437 8453 8469 8485 8500 8516 8532 8547 16 6.4 8563 8579 8544 8610 8625 8641 8656 8672 8687 8703 15 6.5 1.8718 8733 8749 8764 8871 8896 8976 8991 9006 16 6.6 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 16 6.8 9169 9184 9199 9213 9228 9222 9257 9272 9286 9301 15 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9573 9587 14 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 14 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 17.4 2.0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.8 1.9879 9892 9906 9920 9933 9947 9961 9974 9988 *0001 13 7.5 1.9879 0069 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.7	7405	7422	7440	742/			7509	7547	7544	7501	1 17
6.0 1.7918 7934 7951 7967 7984 8001 8017 8034 8050 8066 16 6.1 8083 8099 8116 8132 8148 8165 8181 8197 8213 8229 16.2 8245 8262 8278 8294 8310 8326 8342 8358 8374 8390 16 6.3 8465 8421 8437 8453 8469 8485 8500 8516 8532 8547 16.4 8563 8579 8594 8610 8625 8641 8566 8672 8687 8703 15 6.4 8563 8579 8594 8610 8625 8641 8566 8672 8687 8703 16 6.5 1.8718 8733 8749 8764 8779 8795 8810 8825 8840 8856 16 6.6 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 15 6.6 8911 9036 9051 9066 9081 9095 9110 9125 9140 9155 16 6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 15 6.8 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1945 9473 9488 9502 9516 9530 9544 9559 9573 9587 14 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 14 7.2 9741 9755 9769 9782 9796 9801 9824 9838 9851 9865 14 7.3 1.9879 9892 9006 9920 9933 9947 9961 1974 9988 *0001 12 0156 12 0156 12 0156 12 0295 0308 0321 0334 0347 0360 0373 0386 0399 17.7 0412 0425 0438 0451 0464 0477 0400 0503 0516 0528 13 080 0514 0567 0560 0581 0690 0682 0096 0109 0122 0136 13 080 0519 0931 0943 0956 0590 0592 0665 0618 0631 0643 0656 12 0295 0308 0321 0334 0347 0360 0373 0386 0399 17.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 0418 0554 0567 0580 0592 0665 0618 0631 0643 0656 13 0594 0594 0594 0594 1306 1318 1330 1342 1333 1365 1377 1389 12 1041 1054 1066 1078 1099 1021 1114 1126 1138 1150 128 14 128 129 1541 1552 1564 1576 1587 1599 1610 1622 12 188 1894 1905 1917 1928 1939 1950 1961 118 1872 1883 1894 1905 1917 1928 1939 1950 1961 118 1872 1883 1894 1905 1917 1928 1939 1950 1961 111 2083 2094 2407 2418 2428 2439 2450 2460 2471 2481 2492 2500 2116 2127 2138 21300 2311 2322 2332 2343 2354 2364 2375 2386 2396 2096 2006 2007 2701 2711 009 12 2013 2013 2004 2311 2322 2332 2343 2354 2366 2375 2386 2396 2006 2007 2701 2711 009 12 2013 2014 2407 2418 2428 2439 2450 2460 2471 2481 2492 2500 2110 1098 2225 2335 2346 2356 2366 2376 2386 2396 3006 3016 100 100 100 100 100 100 100 100 100	5.9	7750	7766	7783	7800	7817	7834	7851	7867	7884	7901	liź
6.1 8083 8099 8116 8132 8148 8165 8181 8197 8213 8229 62 8248 8294 8310 8326 8342 8358 8374 8390 16 6.3 8405 8421 8437 8453 8469 8485 8500 8516 8532 8547 16 6.4 8563 8579 8594 8610 8625 8641 8656 8672 8687 8703 15 6.6 8671 8886 8901 8916 8931 8946 8961 8976 8991 9006 15 6.6 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 15 6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 15 6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 15 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.2 9416 9416 9416 9416 9416 9416 9416 9416		1 7018	7034	7051	7967	7084	8001	8017	8034	8050	8066	16
6.2 8245 8262 8278 8294 8310 8326 8342 8358 8374 8390 16.3 8405 8421 8437 8453 8469 8485 8500 8516 8532 8547 16.6 8533 8579 8594 8610 8625 8641 8656 8672 8687 8703 15.5 8666 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 16.7 9021 9036 9051 9066 9081 9095 9110 9125 9140 9155 15.6 8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 16.6 9 3915 9330 9344 9359 9373 9387 9402 9416 9430 9445 14.5 86.9 16.9 9184 9199 9213 9228 9242 9257 9272 9286 9301 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.	61	8083	8000	8116	8132	8148	8165		8197	8213	8229	امّا ا
6.4 8563 8579 8594 8610 8625 8641 8656 8672 8687 8703 15 6.5 1.8718 8733 8749 8764 8779 8795 8810 8825 8840 8856 6.6 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 15 6.7 9021 9036 9051 9066 9081 9095 9110 9125 9140 9155 6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 15 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9733 9587 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9725 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 14 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 14 7. 2 2015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.5 2.0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528 13 7.8 0541 0554 0567 0580 0592 0605 0618 0631 0643 0656 13 7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 8.0 10919 0931 0943 0956 0968 0990 0992 1005 1017 1029 12 8.1 1094 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 8.2 1094 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 8.3 1163 1175 1187 1199 1211 1223 1235 1247 1258 1270 128 8.4 1282 1294 1306 1318 1330 1342 1355 1355 1377 1389 12 8.5 2.1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 12 8.6 158 1529 1541 1552 1564 1576 1587 1599 1610 1622 12 8.8 1746 1759 1770 1782 1793 1804 1815 1827 1838 1849 11 9.1 2083 2094 2105 2116 2117 2028 2039 2050 2051 2072 1181 119 9.2 2.1972 1983 1894 2006 2017 2028 2039 2050 2051 2072 181 11 9.2 2.1972 1983 1894 1905 1917 1928 1939 1950 1961 11 9.3 1306 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 1713 1725 1736 1199 1201 20083 2004 2305 2306 2306 2306 2301 2717 2718 2725 2726 2737 2738 2739 2803 2814 109 9.8 2.1972 1983 1894 24854 2865 2875 2885 2895 2905 2915 10 9.9 2925 2935 2946 2956 2866 2876 2876 2886 2597 2607 2095 2915 10 9.9 2925 2935 2946 2956 2866 2876 2886 2596 3006 3016 10	6.2				8294	8310	8326	8342		8374		l 16
6.4 8563 8579 8594 8610 8625 8641 8656 8672 8687 8703 15 6.5 1.8718 8733 8749 8764 8779 8795 8810 8825 8840 8856 6.6 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 6.7 9021 9036 9051 9066 9081 9095 9110 9125 9140 9155 15 6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9573 9587 14 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 14 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 14 7.3 1.9879 892 9906 9920 9933 9947 9961 9974 9988 9001 13 7.4 2.0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.5 2.0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.6 0281 0295 0308 0321 0334 0347 0360 0373 0386 0399 17 7.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528 13 7.8 0541 0554 0567 0580 0592 0605 0618 0631 0643 0656 13 7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 8.0 2.0794 0807 0819 0832 0844 0857 0869 0882 0894 0906 13 8.1 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12 8.2 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 128 8.3 1163 1175 1187 1199 1211 1223 1235 1247 1258 1270 128 8.4 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 8.5 2.1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 122 8.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 18 8.7 1633 1645 1656 1668 1679 1691 1702 171 188 1894 1995 1917 1928 1939 1950 1961 119 9.8 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 111 9.2 21992 2203 2214 2225 2235 2246 2257 2268 2279 2289 119 9.3 2300 2311 2322 2332 2343 2354 2364 2375 2386 2396 119 9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 111 9.5 22513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 199 9.7 2721 2732 2742 2752 2762 2773 2778 2798 2795 2905 2915 10 9.9 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016 10	6.3		8421	8437	8453		8485	8500	8516	8532	8547	l 16
6.6 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 6.7 9021 9036 9051 9066 9081 9095 9110 9125 9140 9155 15 6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 15 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9373 9587 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 14 7.2 9741 9755 9769 9782 9796 9810 9624 9838 9851 9865 14 7.3 1.9879 9892 9906 9920 9933 9947 9961 9974 9988 *0001 13 7.4 2.0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.5 2.0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.6 0281 0295 0308 0321 0334 0347 0360 0373 0386 0399 17 7.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528 13 7.8 0541 0554 0567 0580 0592 0605 0618 0631 0643 0656 13 7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 8.0 2.0794 0807 0819 0832 0844 0857 0869 0882 0894 0906 12 8.1 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12 8.2 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 8.3 1163 1175 1187 1199 1211 1223 1235 1247 1258 1270 128 8.4 1282 1294 1306 1318 1330 1342 1353 1355 1377 1389 12 8.5 2.1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 12 8.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 17 8.8 1633 1645 1656 1668 1679 1691 1702 1713 1725 1736 11 9.8 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 9.9 12972 1983 1994 2006 2017 2028 2039 2050 2070 2289 11 9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 11 9.2 2192 2203 2214 2225 2235 2246 2257 2268 2279 2289 11 9.3 2300 2311 2322 2332 2343 2354 2364 2375 2366 2396 11 9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 11 9.5 2.2513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2996 3006 3016 10	6.4							8656	8672	8687	8703	15
6.6 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 6.7 9021 9036 9051 9066 9081 9095 9110 9125 9140 9155 15 6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 15 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9373 9587 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 14 7.2 9741 9755 9769 9782 9796 9810 9624 9838 9851 9865 14 7.3 1.9879 9892 9906 9920 9933 9947 9961 9974 9988 *0001 13 7.4 2.0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.5 2.0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.6 0281 0295 0308 0321 0334 0347 0360 0373 0386 0399 17 7.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528 13 7.8 0541 0554 0567 0580 0592 0605 0618 0631 0643 0656 13 7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 8.0 2.0794 0807 0819 0832 0844 0857 0869 0882 0894 0906 12 8.1 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12 8.2 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 8.3 1163 1175 1187 1199 1211 1223 1235 1247 1258 1270 128 8.4 1282 1294 1306 1318 1330 1342 1353 1355 1377 1389 12 8.5 2.1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 12 8.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 17 8.8 1633 1645 1656 1668 1679 1691 1702 1713 1725 1736 11 9.8 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 9.9 12972 1983 1994 2006 2017 2028 2039 2050 2070 2289 11 9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 11 9.2 2192 2203 2214 2225 2235 2246 2257 2268 2279 2289 11 9.3 2300 2311 2322 2332 2343 2354 2364 2375 2366 2396 11 9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 11 9.5 2.2513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2996 3006 3016 10	6.5	1.8718	8733	8749	8764	8779	8795	8810	8825	8840	8856	15
6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9573 9587 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 7.3 1.9879 9892 9906 9920 9933 9947 9961 9974 9988 9001 136 7.5 2.0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 7.6 0281 0295 0308 0321 0334 0347 0360 0373 0386 0399 13 7.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528 13 7.8 0541 0554 0567 0580 0592 0605 0618 0631 0643 0656 13 7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 8.0 0919 0931 0943 0956 0968 0980 0990 1005 1017 1029 12 8.1 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 8.2 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 8.3 1163 1175 1187 1199 1211 1223 1235 1247 1258 1270 128 8.4 1282 1294 1306 1318 1330 1342 1353 1355 1377 1389 12 8.5 2.1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 12 8.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 12 8.7 1633 1645 1656 1668 1679 1691 1702 1713 1725 1736 119 9.8 1746 1759 1770 1782 1793 1804 1815 1827 1838 1849 11 9.8 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 9.8 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 9.9 2.1972 1983 1994 2006 2017 2028 2039 2050 2061 2072 11 9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 11 9.2 2.2751 2232 2234 2245 2345 2345 2354 2354 2354	6.6	8871	8886·	8901	8916	8931	8946	8961	8976		9006	15
6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9573 9587 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 7.3 1.9879 9892 9906 9920 9933 9947 9961 9974 9988 9001 136 7.5 2.0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 7.6 0281 0295 0308 0321 0334 0347 0360 0373 0386 0399 13 7.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528 13 7.8 0541 0554 0567 0580 0592 0605 0618 0631 0643 0656 13 7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 8.0 0919 0931 0943 0956 0968 0980 0990 1005 1017 1029 12 8.1 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 8.2 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 8.3 1163 1175 1187 1199 1211 1223 1235 1247 1258 1270 128 8.4 1282 1294 1306 1318 1330 1342 1353 1355 1377 1389 12 8.5 2.1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 12 8.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 12 8.7 1633 1645 1656 1668 1679 1691 1702 1713 1725 1736 119 9.8 1746 1759 1770 1782 1793 1804 1815 1827 1838 1849 11 9.8 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 9.8 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 9.9 2.1972 1983 1994 2006 2017 2028 2039 2050 2061 2072 11 9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 11 9.2 2.2751 2232 2234 2245 2345 2345 2354 2354 2354	6.7			9051	9066	9081						15
7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9573 9587 14 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 14 7.2 1741 9755 9769 9782 9796 9810 9824 9838 9851 9865 14 7.3 1,9879 9892 9906 9920 9933 9947 9988 90001 13 7.4 2,0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.5 2,0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.7 0412 0425 0308 0321 0334 0347 0360 0373 0386 0392 13 7.8 0541 0554 0567 0580	6.8				9213		9242	9257	9272	9286	9301	15
7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 14 7.3 1.9879 9892 9906 9920 9933 9947 9961 9974 9888 9001 13 7.4 2.0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.5 2.0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.6 0281 0295 0308 0321 0344 0347 0360 0373 0386 0399 13 7.8 060 0373 0386 0399 13 7.8 060 0373 0386 0399 13 7.8 0669 0681 0694 0681 0631	6.9	9315	9330	9344	9359	9373	9387	9402	9416	9430	9445	14
7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 14 7.3 1,9879 9892 9906 9920 9933 9947 9961 9974 9988 *0001 13 7.4 2,0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 7.5 2,0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.6 0281 0295 0308 0321 0334 0347 0360 0373 0366 0399 13 0364 0477 0490 0503 0516 0528 13 7.8 0541 0554 0567 0580 0592 0605 0618 0631 0643 0656 13 7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 </td <td></td> <td></td> <td></td> <td>9488</td> <td>9502</td> <td></td> <td>9530</td> <td>9544</td> <td>9559</td> <td>9573</td> <td>9587</td> <td>14</td>				9488	9502		9530	9544	9559	9573	9587	14
7.4 2.0015 9892 9906 9920 9933 9947 9961 9974 9988 *0001 13 7.4 2.0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 13 13 13 13 13 13	7.1			9629		9657		9685				1 ! !
7.5 2.0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.6 0281 0295 0308 0321 0334 0347 0360 0373 0386 0399 17.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528 13 7.8 0541 0554 0567 0580 0592 0605 0618 0631 0643 0656 13 7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 0794 0807 0819 0832 0844 0857 0869 0882 0894 0996 12 0794 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12 0794 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12 0941 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 0941 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 0941 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 0942 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 0941 1041 1054 1066 1678 1690 1690 1690 1690 1690 1690 1690 1690	7.2	1 0070	9/33	9/09	9/82	9/90			9030	9651	9000	1 13
7.5 2.0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 7.6 0281 0295 0308 0321 0334 0347 0360 0373 0386 0399 17.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528 13 7.8 0541 0554 0567 0580 0592 0605 0618 0631 0643 0656 13 7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 0794 0807 0819 0832 0844 0857 0869 0882 0894 0996 12 0794 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12 0794 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12 0941 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 0941 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 0941 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 0942 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 0941 1041 1054 1066 1678 1690 1690 1690 1690 1690 1690 1690 1690	7.4 7.4											13
7.6 0281 0295 0308 0321 0334 0347 0360 0373 0386 0399 17.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528 13.7 0569 0581 0554 0567 0580 0592 0605 0618 0631 0643 0656 13.7 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 12.8 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12.8 10919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12.8 1163 1175 1187 1199 1211 1223 1235 1247 1258 1270 128.8 1163 1175 1187 1199 1211 1223 1235 1247 1258 1270 128.8 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 128.8 1633 1645 1656 1668 1679 1691 1702 1713 1725 1736 1188 1870 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 1199.8 1291 1292 1292 2203 2214 2225 2235 2246 2257 2268 2279 2289 1193 2300 2311 2322 2332 2343 2354 2364 2375 2386 2396 11994 2407 2418 2428 2439 2450 2460 2471 2481 2492 2490 2311 2222 2332 2343 2354 2364 2375 2386 2396 11994 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 1193 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 1199, 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 1199, 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 1199, 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 2116 2772 2773 27783 2793 2803 2814 1099 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016 1008 2008 2009 2005		2 0149	. 0162	0176	0189	0202	0215	0229	0242	0255	0268	13
8.0 2.0794 0807 0819 0832 0844 0857 0869 0882 0894 0906 12 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 123 123 1247 1258 1270 12 18.3 1163 1175 1187 1199 1211 1223 1223 1247 1258 1270 12 18.4 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 12 12 12 12 12 12 12 12 12 12 12 12	76					0334	0347				0399	l iš
8.0 2.0794 0807 0819 0832 0844 0857 0869 0882 0894 0906 12 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 123 123 1247 1258 1270 12 18.3 1163 1175 1187 1199 1211 1223 1223 1247 1258 1270 12 18.4 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 12 12 12 12 12 12 12 12 12 12 12 12	7.7	0412	0425	0438	0451	0464	0477	0490	0503	0516	0528	l iš
8.0 2.0794 0807 0819 0832 0844 0857 0869 0882 0894 0906 12 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 123 123 1247 1258 1270 12 18.3 1163 1175 1187 1199 1211 1223 1223 1247 1258 1270 12 12 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 12 12 12 12 12 12 12 12 12 12 12 12	7.8		0554	0567	0580	0592	0605	0618	0631	0643	0656	13
8.2 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 1216 1238 1270 128 1270 128 1270 128 1270 128 1270 128 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 128 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 128 1282 1294 1366 1318 1330 1342 1353 1365 1377 1389 128 1368 1369	7.9	0669	0681	0694	0707	0 719	0732	0744	0757	0769	0782	12
8.2 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 1216 1238 1270 128 1270 128 1270 128 1270 128 1270 128 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 128 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 128 1282 1294 1366 1318 1330 1342 1353 1365 1377 1389 128 1368 1369	8.0	2.0794	0807	0819	0832	0844	0857	0869		0894	0906	12
8.5 2.1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 12 158.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 12 12 1633 1645 1666 1668 1679 1691 1702 1713 1725 1736 18.8 1748 1759 1770 1782 1793 1804 1815 1827 1838 1849 11 18.9 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 19.0 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 19.0 19.0 19.0 19.0 19.0 19.0 19.0	8.1	0919		0943	0956	0968	0980			1017	1029	12
8.5 2.1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 12 158.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 12 12 1633 1645 1666 1668 1679 1691 1702 1713 1725 1736 18.8 1748 1759 1770 1782 1793 1804 1815 1827 1838 1849 11 18.9 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 19.0 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 19.0 19.0 19.0 19.0 19.0 19.0 19.0	8.2	1041	1054	1066	1078	1090	1102	11114		1138	1150	12
8.5 2.1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 12 158.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 12 12 1633 1645 1666 1668 1679 1691 1702 1713 1725 1736 18.8 1748 1759 1770 1782 1793 1804 1815 1827 1838 1849 11 18.9 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 19.0 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 19.0 19.0 19.0 19.0 19.0 19.0 19.0								1235 1353		1258 1377		1 12
8.8 1748 1759 1770 1782 1793 1804 1815 1827 1838 1849 111 9.0 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 9.0 1. 1972 1983 1994 2006 2017 2028 2039 2050 2061 2072 11 9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 11 9.2 2192 2203 2214 2225 2235 2246 2257 2268 2279 2289 11 9.3 2300 2311 2322 2332 2334 2354 2364 2375 2386 2396 11 9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 11 9.5 2.2513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 2018 9.7 2721 2732 2742 2752 2762 2773 2783 2793 2803 2814 10 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 10 9.9 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016 10		1										
8.8 1748 1759 1770 1782 1793 1804 1815 1827 1838 1849 111 9.8 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 9.8 2.1972 1983 1994 2006 2017 2028 2039 2050 2061 2072 11 9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 11 9.2 2192 2203 2214 2225 2235 2246 2257 2268 2279 2289 11 9.3 2300 2311 2322 2332 2334 2354 2364 2375 2386 2396 11 9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 11 9.5 2.2513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 10 9.7 2721 2732 2742 2752 2762 2773 2783 2793 2803 2814 10 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 10 9.9 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016 10	82	2.1401	1412	1929	1430	1440	1409	1607		1414	1500	1 !4
8.8 1748 1759 1770 1782 1793 1804 1815 1827 1838 1849 111 9.8 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 11 9.8 2.1972 1983 1994 2006 2017 2028 2039 2050 2061 2072 11 9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 11 9.2 2192 2203 2214 2225 2235 2246 2257 2268 2279 2289 11 9.3 2300 2311 2322 2332 2334 2354 2364 2375 2386 2396 11 9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 11 9.5 2.2513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 10 9.7 2721 2732 2742 2752 2762 2773 2783 2793 2803 2814 10 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 10 9.9 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016 10	0.0			1454	1222	1209	12/0	1707		1010	1724	1 14
9.8 2.1972 1983 1994 2006 2017 2028 2039 2050 2061 2072 11 9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 11 9.2 2192 2203 2214 2225 2235 2246 2257 2268 2279 2289 11 9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 11 9.5 22513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 10 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 10 9.9 2925 2935	0.7		1750	1770	1782	1702	1804			1929	1940	I ::
9.8 2.1972 1983 1994 2006 2017 2028 2039 2050 2061 2072 11 9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 11 9.2 2192 2203 2214 2225 2235 2246 2257 2268 2279 2289 11 9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 11 9.5 22513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 10 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 10 9.9 2925 2935	8.9		1872	1883	1894	1905	1917	1928	1939	1950	1961	l ii
9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 11 9.2 2192 2203 2214 2225 2235 2246 2257 2268 2279 2289 11 9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 11 9.5 2.2513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 2712 2713 2783 2793 2803 2814 10 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 10 9.9 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016		2.1972	1983		2006	2017	2028	2030	2050	2061	2072	۱,,
9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 11 9.5 2.2513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 2712 2712 2713 2772 2773 2773 27783 2793 2803 2814 10 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 10 9.9 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016 10	9.1		2094	2105					2159			
9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 11 9.5 2.2513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 10 9.8 2824 2834 2844 2854 2865 273 273 2783 2793 2803 2814 10 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 10 9.9 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016 10	9.2	2192	2203	2214	2225	2235	2246	2257	2268	2279	2289	
9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 11 9.5 2.2513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 10 9.8 2824 2834 2844 2854 2865 273 273 2783 2793 2803 2814 10 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 10 9.9 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016 10	9.3	2300	2311	2322	2332	2343	2354	2364	2375	2386	2396	11
9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 110 9.7 2721 2732 2742 2752 2762 2773 2783 2793 2803 2814 10 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 10 9,9 2925 2935 2946 2966 2976 2986 2996 3006 3016 10	9.4	2407		2428	2439				2481	2492	2502	
9.7 2721 2732 2742 2752 2762 2773 2783 2793 2803 2814 10 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 10 9.9 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016 10	9.5		2523	2534	2544	2555	2565	2576	2586	2597	2607	10
	9.6			2638	2649	2659		2680		2701	2711	
	9.7	2721	2732	2742	2752	2762	2773 ·	2783	2793	2803	2814	10
	9.5			2844 2946						2905 3004		
16.9 2.5020			~//3	2/10	2/50	2/00	2//0	2700	2//0	,,,,,,	2010	l '"
	10.0	2.5026										L

Moving the decimal point n places to the right [or left] in the number requires adding n times 2.3026 [or n times (0.6974-3)] in the body of the table. See auxiliary table of multiples on top of the preceding page.

HYPERBOLIC SINES $[\sinh x = \frac{1}{2}(e^x - e^{-x})]$

x	0	1	2	3	4	5	6	7	8	9	Avg
0.0	.0000	.0100	.0200	.0300	.0400	.0500	.0600	.0701	.0801	.0901	100
ī	.1002	.1102	.1203	.1304	.1405	.1506	.1607	1708	1810	.1911	liŏĭ
2	.2013	.2115	.1203 .2218 .3255	.1304 .2320	.2423	.1506 .2526	.2629	.2733	.2837	.1911 .2941 .4000	liŏš
3	.3045	.3150	.3255	.3360	.3466	.3572	.3678	.3785	.3892	.4000	liŏ6
4	.4108	.4216	.4325	.4434	.4543	.4653	.4764	.4875	.4986	.5098	ļiiŏ
0.5	.5211	.5324	.5438	.5552	.5666	.5782	.5897	.6014 .7213	.6131 .7336	.6248	116
6	.6367	.6485	.6605	.6725	.6846	.6967	.7090	.7213	.7336	.7461	122
7	.7586	.7712	.7838	.7966 .9286	.8094 .9423	.8223 .9561	.8353	.8484	.8615	.8748	130
8	.8881 1.027	.9015 1.041	.9150 1.055	1.070	.9425 1.085	.9561 1. 099	.9 700 1.11 4	.9840 1.129	.9981 1.145	1.012 1.160	138 15
L.O	1.175	1.191	1.206	1.222	1.238	1.254	1.270	1.286	1.303	1.319	16
ī	1.336	1.352	1.369	1.386	1.403	1.421	1.438	1.456	1.303 1.474	1.491	liž
ż	1.509	1.528	1.546	1.564	1.583	1.602	1.621	1.640	1.659	1.679	l iś
2	1.698	1.718	1.738	1.758	1.779	1.799	1.820	1.841	1.862	1.883	Žĺ
4	1.904	1.926	1.948	1.970	1.992	2.014	2.037	2.060	2.083	2.106	22
1.5	2.129	2.153	2.177	2.201	2.225	2.250	2.274	2.299	2.324	2.350	25
6 7	2.376	2.401	2.428	2.454	2.481	2.507	2.535	2.562	2.590	2.617	27 30
7	2.646	2.674	2.703	2.732	2.761	2.790	2.820	2.850	2.881	2.911	30
8	2.942 3.268	2.973 3.303	3.005 3.337	3.037 3.372	3. 0 69 3.408	3.101 3.443	3.134 3.479	3.167 3.516	3.200 3.552	3.234 3.589	33 36
2.0	3.627	3.665	3.703	3.741	3.780	3.820	3.859	3.899	3.940	3.981	39
1	4.022	4.064	4.106	4.148	4.191	4.234	4.278	J.077	4.367	4.412	44
2	4.457	4.503	4.549	4.596	4.643	4.691	4.739	4.322 4.788	4.837	4.887	1 77
3	4.937	4.988	5.039	5.090	5.142	5.195	5.248	5.302	5.356	5.411	48 53
4	5.466	5.522	5.578	5.635	5.693	5.751	5.810	5.869	5.929	5.989	58
2.5	6.050	6.112	6.174	6.237	6.300	6.365	6.429	6.495	6.561 7.258 8.028	6.627	64
6	6.695	6.763	6.831	6.901	6.971	7.042	7.113	7.185	7.258	7.332	71
7	7.406	7.481	7.557	7.634	7.711 8.529	7.789	7.868	7.948	8.028	8.110	71 79
8	8.192	7.481 8.275	8.359	8.443	8.529	8.615	8.702	7.948 8.790	8.879	8.969	87
9	9.060	9.151	9.244	9.337	9.431	9.527	9.623	9.720	9.819	9.918	96
B.O	10.02	10.12	10.22	10.32	10.43	10.53	10.64	10.75	10.86	10.97	111
	11.08 12.25	11.19	11.30	11.42	11.53	11.65	11.76	11.88	12.00	12.12	12
2	13.54	12.37 13.67	12.49 13.81	12.62	12.75 14.09	12.88 14.23	13.01 14.38	13.14 14.52	13.27 14.67	13.40 14.82	13
4	14.97	15.12	15.27	15.42	15.58	15.73	15.89	16.05	16.21	16.38	14 16
B.5	16.54	16.71	16.88	17.05	17.22	17.39	17.57	17.74	17.92	18 10	17
6	18.29	18,47	18.66	18.84	19.03	19.22	19.42	19.61	19.81	18.10 20.01	l i9
7	20.21	20.41	20.62	20.83	21.04	21.25	21.46	21.68	21.90	22.12	Žĺ
8	22.34	22.56	22.79	23.02	23.25	23.49	23.72	23.96	24.20	24.45	24
ğ	24.69	24.94	25.19	25.44	23.25 25.70	25.96	26.22	26.48	26.75	27.02	26
6.0	27.29	27.56	27.84	28.12	28.40	28.69	28.98	29.27	29.56 32.68	29.86 33.00	29 32
1	30.16	30.47	30.77	31.08	31.39	31.71	32.03	32.35	32.68	33.00	32
2	33.34	33.67	34.01	34.35	34.70	35.05	35.40	35.75	36.11	36.48	35 39
3	36.84	37.21	37.59	37.97	38.35	38.73	39.12	39.52	39.91	40.31	39
4	40.72	41.13	41.54	41.96	42.38	42.8J	43.24	43.67	44.11	44.56	43
1.5	45.00	45.46	45.91	46.37	46.84	47.31	47.79	48.27	48.75	49.24	47 52 58
6 7	49.74	50 24 55.52	50.74	51.25	51.77	52.29	52.81	53.34	53.88 59.55	54.42	52
/	54.97	22.22	56.08	56.64	57.21	57. 7 9	58.37	58.96	29.22	60.15	1 26
8	60.75 67.14	61.36 67.82	61.98 68.50	62.60 69.19	63.23 69.88	63.87 70 .58	64.51 71.29	65.16 72.01	65.81 72.73	66.47 73.46	64 71
5.0	74.20										l

If x > 5, sinh $x = \frac{1}{2}(e^x)$ and $\log_{10} \sinh x = (0.4343)x + 0.6990 - 1$, correct to four significant figures. For table of multiples of 0.4343, see p. 62. Graphs, p. 174.

HYPERBOLIC COSINES $[\cosh x = \frac{1}{2}(e^x + e^{-x})]$

æ	0	1.	2	3	4	5	6.	7	8 '	9	Avg.
01234	1.000 1.005 1.020 1.045 1.081	1.000 1.006 1.022 1.048 1.085	1.000 1.007 1.024 1.052 1.090	1.000 1.008 1.027 1.055 1.094	1.001 1.010 1.029 1.058 1.098	1.001 1.011 1.031 1.062 1.103	1.002 1.013 1.034 1.066 1.108	1.002 1.014 1.037 1.069 1.112	1.003 1.016 1.039 1.073 1.117	1.004 1.018 1.042 1.077 1.122	
.5 67 89	1.128 1.185 1.255 1.337 1.433	1.133 1.192 1.263 1.346 1.443	1.138 1.198 1.271 1.355 1.454	1.144 1.205 1.278 1.365 1.465	1.149 1.212 1.287 1.374 1.475	1.155 1.219 1.295 1.384 1.486	1.161 1.226 1.303 1.393 1.497	1.167 1.233 1.311 1.403 1.509	1.173 1.240 1.320 1.413 1.520	1.179 1.248 1.329 1.423 1.531	1
01234	1.543 1.669 1.811 1.971 2.151	1.555 1.682 1.826 1.988 2.170	1.567 1.696 1.841 2.005 2.189	1.579 1.709 1.857 2.023 2.209	1.591 1.723 1.872 2.040 2.229	1.604 1.737 1.888 2.058 2.249	1.616 1.752 1.905 2.076 2.269	1.629 1.766 1.921 2.095 2.290	1.642 1.781 1.937 2.113 2.310	1.655 1.796 1.954 2.132 2.331	1 1 1 2
5 6789	2.352 2.577 2.828 3.107 3.418	2.374 2.601 2.855 3.137 3.451	2.395 2.625 2.882 3.167 3.484	2.417 2.650 2.909 3.197 3.517	2.439 2.675 2.936 3.228 3.551	2.462 2.700 2.964 3.259 3.585	2.484 2.725 2.992 3.290 3.620	2.507 2.750 3.021 3.321 3.655	2.530 2.776 3.049 3.353 3.690	2.554 2.802 3.078 3.385 3.726	2 2 2 3 3
01234	3.762 4.144 4.568 5.037 5.557	3.799 4.185 4.613 5.087 5.612	3.835 4.226 4.658 5.137 5.667	3.873 4.267 4.704 5.188 5.723	3.910 4.309 4.750 5.239 5.780	3.948 4.351 4.797 5.290 5.837	3.987 4.393 4.844 5.343 5.895	4.026 4.436 4.891 5.395 5.954	4.065 4.480 4.939 5.449 6.013	4.104 4.524 4.988 5.503 6.072	3 4 4 5 5
5 6789	6.132 6.769 7.473 8.253 9.115	6.193 6.836 7.548 8.335 9.206	6.255 6.904 7.623 8.418 9.298	6.317 6.973 7.699 8.502 9.391	6.379 7.042 7.776 8.587 9.484	6.443 7.112 7.853 8.673 9.579	6.507 7.183 7.932 8.759 9.675	6.571 7.255 8.011 8.847 9.772	6.636 7.327 8.091 8.935 9.869	6.702 7.400 8.171 9.024 9.968	67 7 8 9
0 1 2 3 4	10.07 11.12 12.29 13.57 15.00	10.17 11.23 12.41 13.71 15.15	10.27 11.35 12.53 13.85 15.30	10.37 11.46 12.66 13.99 15.45	10.48 11.57 12.79 14.13 15.61	10.58 11.69 12.91 14.27 15.77	10.69 11.81 13.04 14.41 15.92	10.79 11.92 13.17 14.56 16.08	10.90 12.04 13.31 14.70 16.25	11.01 12.16 13.44 14.85 16.41	1
5 6 7 8 9	16.57 18.31 20.24 22.36 24.71	16.74 18.50 20.44 22.59 24.96	16.91 18.68 20.64 22.81 25.21	17.08 18.87 20.85 23.04 25.46	17.25 19.06 21.06 23.27 25.72	17.42 19.25 21.27 23.51 25.98	17.60 19.44 21.49 23.74 26.24	17.77 19.64 21.70 23.98 26.50	17.95 19.84 21.92 24.22 26.77	18.13 20.03 22.14 24.47 27.04	1 2 2 2 2 2
0 1 2 3	27.31 30.18 33.35 36.86 40.73	27.58 30.48 33.69 37.23 41.14	27.86 30.79 34.02 37.60 41.55	28.14 31.10 34.37 37.98 41.97	28.42 31.41 34.71 38.36 42.39	28.71 31.72 35.06 38.75 42.82	29.00 32.04 35.41 39.13 43.25	29.29 32.37 35.77 39.53 43.68	29.58 32.69 36.13 39.93 44.12	29.88 33.02 36.49 40.33 44.57	33334
£ 6789	45.01 49.75 54.98 60.76 67.15	45.47 50.25 55.53 61.37 67.82	45.92 50.75 56.09 61.99 68.50	46.38 51.26 56.65 62.61 69.19	46.85 51.78 57.22 63.24 69.89	47.32 52.30 57.80 63.87 70.59	47.80 52.82 58.38 64.52 71.30	48.28 53.35 58.96 65.16 72.02	48.76 53.89 59.56 65.82 72.74	49.25 54.43 60.15 66.48 73.47	5 6 7
.0	74.21		•								

If x > 5, cosh $x = 12(e^x)$ and $\log_{10} \cosh x = (0.4343)x + 0.6990 - 1$, correct to four significant figures. For table of multiples of 0.4343, see p. 62. Graphs, p. 174.

HY	PERB	OLIC T	ANGE	NTS [tanh x	$=(e^x-e^{-x})$	*)/(e* -	+e ^{-s})	– sin	h <i>x/</i> 00	$\mathbf{sh}[x]$
x	0	1	2	3	4	5	6	7	8	9	Avg.
0.0	.0000	.0100	.0200	.0300	.0400	.050ò	.0599	.0699	.0798	.0898	100
1	.0997	.1096	.1194	.1293 .	1391 235 5	.1489	.1587	.1684	.1781	.1878	98
2	.1974	.2070	.2165	.2260 .	2355	.2449	.2543	.2636	.2729 .3627	2821	94
3	.2913 .3800	.3004 .3885			3275 41 36	.3364 .4219	.3452 .4301	.3540 .4382	.3627 .4462		94 89 82
D. 5	.4621	.4700	.4777		4930	.5005	.5080	.5154	.5227		72
ر.ر	.5370	.5441	3511	.5581 .	5649	5717	5784	.5850	<i>.</i> 5915	.5980	75 67
7	.6044	.6107	.6169	.6231 .	6291	.6352	.6411	.6469	.6527	.6584	60
8	.6640	.6696	.6751 .7259	.6805	6858	.6911 .7398	.6963	.7014	.7064		60 52 45
	.7163	.7211			7352		.7443	.7487	7531		45
1.0	.7616 .8005	.7658 .8041	.7699 .8076		.7779 .8144	.7818 .8178	.7857 .8210	.7895 .8243	.7932 .8275	.7969 .83 0 6	39 33 28 24 20
2	.8337	.8367	.8397		.8455	.8483 ·	.8511	.8538	.8565	.8591	28
3	.8617	.8643	.8668	.8693 .	.871 7	.8741	.8764	.878 7	.8810	.8832	24
4	.8854	.8875	.8896		.8937	.8957	.8977	.8996	.9015		
1.5	.9052	.9069	.9087	.9104	.9121	.9138	.9154	.9170	.9186		17
6 7	.9217 .9354	.9232 .936 7	.9246 .93 7 9		.9275 .9 40 2	.9289 .9414	.9302 .9425	.9316 .9436	.9329 .9447	.9342	
á	.9468	.9478	.9488		9508	.9518	.9527	.9536	.9545	.9458 .9554	'6
ğ	.9562	.9571	.9579	.9587	9595	.9603	.9611	.9619	.9626	.9633	8
2.0	.9640	.9647	.9654		9668	.9674	.9680	.9687	.9693		
1	.9705	.9710	.9716	.9722 .	9727	.9732	.9738	.9743	.9748		5
2	.975 7 .9801	.9762 .9805	.9767 .9809	.9771 . .9812 .	.9776 .9816	.9780 .9820	.9785 .9823	.9789 .9827	.9793 .9830	.9797 .9834	1 1
4	.9837	.9840	.9843		9849	.9852	.9855	.9858	.9861	.9863	6 5 4 4 3
2.5	.9866	.9869	.9871		9876	.9879	.9881	.9884	.9886		
6	.9890	.9892	.9895	.989 7 .	9899	.9901	.9903	.9905	.9906	.9908	Ιź
7	.9910	.9912	.9914		9917	.9919	.9920	.9922	.9923		2 2 2 1
8 2.9	.9926 .9940	.9928 .9941	.9929 .9942		9932 9944	.9933 .9945	.9935 .9946	.9936 .9947	.9937 .9949		11
3.	.9951	.9959			9978	.9982	.9985	.9988	.9990		1 4
4.	.9993	.9995	.9996	.9996	9997	.9998	.9998	.9998	.9999		17
5.	.9999	If x > 5, t	anh x =	1.0000 (o four d	ecimal plac	es. Gr	aphs,	p. 174		L
MU	LTIP		0.4343			$8 = \log_{10}$					
<i>x</i>	0	1	2	3	4	5		6	7	8	9
Ģ.	0.0000	0.0434	0.0869	0.1303	0.1737	0.2171	0.20	606 Q.	3040	0.3474	0.3909
1. 2.	0.4343 0.8686	0.4777 0.91 <i>2</i> 0	0.5212 0.9554	0.5646 0.9989	0.6080 1.0423	0.6514 1.0857	0.6 1.12	949 U. 192 I		0.7817 1.2160	0.8252
3.	1.3029	1.3463	1.3897	1.4332	1.4766	1.5200	13	35 i.			1.2595 1.6937
4.	1.7372	1.7806	1.8240	1.8675	1.9109	1.9543	1.99	78 2.			2.1280
5.	2.1715	2.2149	2.2583	2.3018	2.3452	2.3886	2.43		4755	2.5189	2.5623
6.	2.6058 3.0401	2.6492 3.0835	2.6926 3.1269	2.7361 3.1703	2.7795 3.2138	2.8229	2.80	63 2.	9098	2.9532	2.9966
7. 8.	3.4744	3.5178	3.5612	3.6046	3.6481	3.2572 3.6915	3.30 3.7	NO 3.	3441 7784	3.3875 3.8218	3.4309 3.8652
9.	3.9087	3.9521	3.9955	4.0389	4.0824	4.1258	4.10	592 4.	2127		1.2995
MU	LTIP	LES OF	2.3026	(2.3	025851	= 1/0.43	43)				
\overline{x}	0	1	2	3	4	5		,	7	8	9
0.	0.0000	0.2303	0.4605	0.6908	0.9210	1.1513	1.38			1.8421	2.0723
1. 2.	2.3026 4.6052	2.5328 4.8354	2.7631 5.0657	2.9934 5.2959	3.2236 5.5262	3.4539 5.7565	3.68 5.98		9144 <i>(</i> 2170 (4.1447 <i>4</i> 6.4472 (3749
3.	6.9078	7.1380	7.3683	7.5985	7.8288	8.0590	8.28		5196	0. 77 /2 (8.7498 8	5.6775 3.9801
4.	9.2103	9.4406	9.6709	9.9011	10.131	10.362	10.5			11.052	1.283
5.	11.513	11.743	11.973	12.204	12.434	12.664	12.8			13.355 1	3.585
6. 7.	13.816	14.046 16.348	14.276 16.579	14.506 16.809	14.73 7 17.039	14.967 17.269	15.1 17.5				5.888
8.	16.118 18.421	18.651	18.881	19,111	19.342	17.209	17.3		.730 .032	17.960 1 20.263 2	8.190 20.493
9.	20.723	20.954	21.184	21.414	21.644	21.875	22.1				2.7%

STANDARD DISTRIBUTION OF RESIDUALS (p. 121)

a = any positive quantity; y = the number of residuals which are numerically < a; r = the probable error of a single observation; n = number of observations.

$\frac{a}{r}$	$\frac{y}{n}$	Diff.
0.0 1 2 3 4	.000 .054 .107 .160 .213	54 53 53 53 53 51
0.5	.264	50
6	.314	49
7	.363	48
8	.411	45
9	.456	44
1.0	.500	42
1	.542	40
2	.582	37
3	.619	36
4	.655	33
1.5	.688	31
6	.719	29
7	.748	27
8	.775	25
9	.800	23
2.0	.823	20
1	.843	19
2	.862	17
3	.879	16
4	.895	13
2.5	.908	13
6	.921	10
7	.931	10
8	.941	9
9	.950	7
3.0 1 2 3 4	.957 .963 .969 .974 .978	6 5 4
3.5 6 7 8 9	.982 .985 .987 .990 .991	3 2 3 1
4.0 5.0	.993 .999	6

FACTORS FOR COMPUTING PROBABLE ERROR (p. 121)

	Bea	ssel	Pete	rs
n	0.6745	0.6745	0.8453	0.8453
	$\sqrt{(n-1)}$	$\sqrt{n(n-1)}$	$\sqrt{n(n-1)}$	$n\sqrt{n-1}$
2 3	.6745	.4769	.5978	.4227
	.4769	.2754	.3451	.1993
4	.3894	.1947	.2440	.1220
5 6 7 8	.3372 .3016	.1508 .1231	.1890 .1543	.0845 .0630
7 8	.2754	.1041	.1304	.0493
	.2549	.0901	.1130	.0399
9	.2385	.0795	.0996	.0332
10	.2248	.0711	.0891	.0282
	.2133	.0643	.0806	.0243
12	.2034	.0587	.0736	.0212
	.1947	.0540	.0677	.0188
14	.1871	.0500	.0627	.016 7
	.1803	.0465	.0583	.0151
16	.1742	.0435	.0546	.0136
	.1686	.0409	.0513	.0124
18	.1636	.0386	.0483	.0114
	.1590	.0365	.0457	.0105
20	1547	.0346	.0434	.0103
21 22 23	.1508 .1472	.0329 .0314	.0412 .0393	.0090 .0084
23	.1438	.0300	.0376	.0078
	.1406	.028 7	.0360	.0073
25	.1377	.0275	.0345 .0332	.0069
26	.1349	.0265	.0319	.0065
27	.1323	.0255		.0061
28	.1298	.0245	.0307	.0058
29	.1275	.023 7	.0297	.0055
30	.1252	.0229	.028 7	.0052
31	.1231	.0221	.0277	.0050
32	.1211	.0214	.0268	.0047
33	.1192	.0208	.0260	.0045
34	.1174	.0200	.0252	.0043
35	.1157	.0196	.0245	.0041
36	.1140	.019 0	.0238	.0040
37 38	.1124` .11 0 9	.0185 .0180	.0232	.0038
39	.1094	.0175	.0225 .0220	.0037 .0035
40	.1080	.0171	.0214	.0034
45	.1017	.0152	.0190	.0028
50	.0964	.0136	.0171	.0024
55	.0918	.0124	.0155	.0021
60	.0878	.0113	.0142	.0018
65	.0843	.0105	.0131	.0016
70	.0812	.0097	.0122	.0015
75	.0784	.0091	.0113	.0013
80	.0759	.0085	.0106	.0012
85	.0736	.0080	.0100	.0011
90	.0715	.0075	.0094	
95	.0696	.0071	.0089	.0009
100	.0678	.0068	.0085	.0008

COMPOUND INTEREST. AMOUNT OF A GIVEN PRINCIPAL

The amount A at the end of n years of a given principal P placed at compound interest to-day is $A = P \times x$ or $A = P \times y$ or $A = P \times z$, according as the interest (at the rate of r per cent. per annum) is compounded annually, semi-annually, or quarterly; the factor x or y or z being taken from the following tables.

Values of x. (Interest compounded annually; $A = P \times x$.) Years r = 2216 31/2 416 7 1.0200 1.0404 1.0612 1.0250 1.0506 1.0769 1.0300 1.0609 1.0350 1.0400 1.0450 1.0500 1.0600 1.0700 1.0816 3 1.0712 1.0920 1.1025 1.1236 1.1449 1.0927 1.1087 1.1412 1.1576 formula 4 1.0824 1.1038 1.1255 1.1925 1.1475 1.1699 1.2155 1.2625 1.3108 1.2462 1.2763 5 1.1041 1.1314 1.1593 1.1877 1.2167 1,3382 1.4026 67 1.1262 1.1597 1.1941 1.2653 1.3023 1.3401 1.4185 1.5007 1.2293 1.1487 1.1717 1.1951 1.1887 1.2723 1.3159 1.6058 the 1.2184 1.2489 1.4221 1.4775 1.5938 1.2668 89 1.3168 1.3686 1.7182 1.3048 1.5513 1.3629 1.4233 1.4861 1.6895 1.8385 1001 1001 1.2190 1.2434 1.2682 1.2936 1.3195 1.3439 1.3842 1.4258 1.5530 1.6239 10 1.2801 1.4106 1.4802 1.6289 1.7908 1.9672 1.3121 1.7103 1.5395 1.4600 1.8983 2.1049 computed 1 = [1 + (r/1)]1.6959 12 1.3449 1.5111 1.6010 1.7959 2.0122 2.2522 13 1.4685 .5640 1.7722 1.8856 2.1329 2.4098 2.5785 1.6651 14 1.6187 1.7317 1.9799 1.4130 2,2609 1.3459 1.3728 1 9353 2.3966 15 1.4483 1.5580 1.6753 1,8009 2.0789 2.7590 1.6047 1.6528 1.7024 1.7340 1.7947 1.8575 2.0224 2.1134 2.2085 2.5404 2.6928 2.8543 3.0256 16 17 18 19 1.4845 1.8730 2.1829 2.9522 2.1029 2.2920 2.4066 2.5270 1.9479 2.**0**258 1.4002 1.5216 1.5597 3.1588 . B & 1.4282 table i 3.3799 1.4568 1.5987 1.7535 1.9225 2.1068 2.3079 3.6165 1.6386 1.8539 1.8061 2.0938 2.411**7** 3.0054 2.6533 3.3864 3.2071 4.2919 5.7435 20 1.4859 1.9898 2.1911 3.8697 **This** 25 30 1.6406 2.3632 2.6658 5.4274 2.4273 1.8114 2.0976 2.8068 3.2434 3.7453 4.3219 7.6123 3.2620 4.3839 5.8916 7.0400 40 2.2080 2.6851 3.9593 5.5849 4.8010 5.8164 10.286 14.974 50 60 7.1067 10.520 18,420 32,988 2.6916 3.4371 9.0326 11.467 29.457 3.2810 4.3998 7.8781 14.027 18.679 57.946 Values of y. (Interest compounded semi-annually; A = P× y.) Years r = 221/2 3 31/2 416 5 6 7 1.0302 1.0614 1.0934 1.0404 1.0824 1.1262 1.0455 1.0931 1.0252 1.0509 1.0353 1.0719 1.0201 1.0506 1.0609 1.0712 1.0406 1.1038 1.1255 234 1.1475 1.1597 1.0774 1.0615 1.1097 1.1428 1.2293 1.1265 1.2184 1.2668 1.0829 1.1045 1.1489 1.1717 1.1948 1.3168 1.2492 1.3060 1.3655 1.3439 1.4258 1.5126 5 1.1323 1.1894 1 2801 1.1046 1.1605 1.2190 1.4106 1.1608 1.2682 1.3195 1.3449 1.1268 1.1956 1.2314 6 7 8 1.5111 1.1495 1.1900 1.2199 1.2318 (r/200) lin 1.6187 1.2690 1.4276 1.1726 1.3199 1.3728 1.4845 1.6047 1.7340 9 1.1961 1.2506 1.3073 1.3665 1.4282 1.5597 1.7024 1.4859 1.5460 10 1.2202 1.2820 1.3469 1.3876 1.4148 1.4647 1.5605 1.6386 1.8061 1.9898 11 1.2447 1.3143 1.6315 1.7216 1.9161 2.1315 + 1.5164 1.5700 1.6254 1.3474 1.4295 1.4727 1.6084 1.7058 1.7834 2.0328 2.1566 2.2833 12 1.2697 1.8087 13 14 1.9003 1.2953 2.4460 2.6202 Ξ 1.6734 1.3213 1.5172 1.7410 1.8645 1.9965 1.4160 2.2879 ı 15 1.3478 1.4516 1.5631 1.6828 1.8114 1.9494 2.0976 2.4273 2.5751 2.8068 a 1.3749 16 1.4881 1.5256 1.6103 2.0381 1.7422 1.8845 2.2038 3.0067 Formula: 2.7319 17 1.4026 1.6590 1.8037 1.9607 2.1308 2.3153 3.2209 18 1.4308 1.5639 1.7091 1.8674 2.0399 2.2278 2.4325 2.8983 3.4503 2.5557 19 1.4595 1.6033 1.7608 2.3292 1.9333 2.1223 3.0748 3.6960 20 25 30 1.4889 1.6436 2.0016 2.2080 2,4352 2.6851 3.2620 3.9593 1.8140 1.6446 1.8610 2.1052 2.3808 3.0420 3.8001 4.3839 5.5849 2.6916 3.4371 3.2810 1.8167 2.1072 2.4432 2.8318 4.3998 5.8916 7.8781 40 50 60 2.2167 2.7015 3.2907 4.0064 4.8754 5.9301 7.2096 10.641 19.219 15.6**76** 31.191 2.7048 3.3004 3.4634 4.4320 5.6682 7.2446 11.814 9.2540

34.711

62.064

4.4402

5.9693

8.0192

10.765

14.441

Values of z. (Interest compounded quarterly; $A = P \times s$; see opposite page)

Years	r = 2	21/2	3.	31/2	4	41/2	5	6	7	
1 2 3 4	1.0202 1.0407 1.0617 1.0831	1.0252 1.0511 1.0776 1.1048	1.0303 1.0616 1.0938 1.1270	1.0355 1.0722 1.1102 1.1496	1.0406 1.0829 1.1268 1.1726	1.0458 1.0936 1.1437 1.1960	1.0509 1.1045 1.1608 1.2199	1.0614 1.1265 1.1956 1.2690	1.0719 1.1489 1.2314 1.3199	
5	1.1049	1.1327	1.1612	1.1903	1.2202	1.2508	1.2820	1.3469	1.4148	(r/400)]4n.
6	1.1272	1.1613	1.1964	1.2326	1.2697	1.3080	1.3474	1.4295	1.5164	
7	1.1499	1.1906	1.2327	1.2763	1.3213	1.3679	1.4160	1.5172	1.6254	
8	1.1730	1.2206	1.2701	1.3215	1.3749	1.4305	1.4881	1.6103	1.7422	
9	1.1967	1,2514	1.3086	1.3684	1.4308	1.4959	1.5639	1.7091	1.8674	
10	1.2208	1.2830	1.3483	1.4169	1.4889	1.5644	1.6436	1.8140	2.0016	(1 + (2)
11	1.2454	1.3154	1.3893	1.4672	1.5493	1.6360	1.7274	1.9253	2.1454	
12	1.2705	1.3486	1.4314	1.5192	1.6122	1.7108	1.8154	2.0435	2.2996	
13	1.2961	1.3826	1.4748	1.5731	1.6777	1.7891	1.9078	2.1689	2.4648	
14	1.3222	1.4175	1.5196	1.6288	1.7458	1.8710	2.0050	2.3020	2.6420	
15	1.3489	1.4533	1.5657	1.6866	1.8167	1.9566	2.1072	2.4432	2.8318	Formula: s
16	1.3760	1.4900	1.6132	1.7464	1.8905	2.0462	2.2145	2.5931	3.0353	
17	1.4038	1.5276	1.6621	1.8083	1.9672	2.1398	2.3274	2.7523	3.2534	
18	1.4320	1.5661	1.7126	1.8725	2.0471	2.2378	2.4459	2.9212	3.4872	
19	1.4609	1.6056	1.7645	1.9389	2.1302	2.3402	2.5705	3.1004	3.7378	
20	1.4903	1.6462	1.8180	2.0076	2.2167	2.4473	2.7015	3.2907	4.0064	Ę
25	1.6467	1.8646	2.1111	2.3898	2.7048	3.0609	3.4634	4.4320	5.6682	
30	1.8194	2.1121	2.4514	2.8446	3.3004	3.8285	4.4402	5.9693	8.0192	
40	2.2211	2.7098	3.3053	4.0306	4.9138	5.9892	7.2980	10.828	16.051	
50	2.7115	3.4768	4.4567	5.7110	7.3160	9.3693	11.995	19.643	32.128	
60	3.3102	4.4608	6.0092	8.0919	10.893	14.657	19.715	35.633	64.307	

AMOUNT OF AN ANNUITY

The amount S accumulated at the end of n years by a given annual payment Y set aside at the end of each year is $S = Y \times v$, where the factor v is to be taken from the following table. (Interest at r per cent. per annum, compounded annually.)

Values of v r = 221/2 3 31/2 4 41/2 5 6 7 Years 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.0450 3.1370 2.0250 3.0756 2.0300 2.0350 2.0400 2.0500 3.1525 2 2.0200 2.0600 2.0700 3.0604 3.0909 3.1062 3.1216 3.1836 3.2149 (⁷/100) 4.1525 4 4.1836 4.2149 4.2782 4.3101 4.3746 4.4399 4.1216 4.2465 5 6 7 5.2040 5.2563 5.3091 5.3625 5.4163 5.4707 5.5256 5.6371 5.7507 6.3081 7.4343 8.5830 6.3877 7.5474 8.7361 9.9545 6.4684 7.6625 6.5502 7.7794 6.6330 6.7169 6.8019 6.9753 7.1533 + 7.8983 9.2142 8.1420 9.5491 8.3938 8.0192 8.6540 = 9.0517 9.3800 89 8.8923 9.8975 10.260 10.368 9.7546 10.159 10.583 10.802 11.027 11.491 11.978 ı 10 10.950 12.169 11.203 11.464 12.808 11.731 12.006 12.288 12,578 13.816 13.181 (r/100) (r/100)]* 14.207 15.917 17.713 12.483 13.796 15.140 13.841 15.464 14.972 13.142 13.486 15.784 12 13 13.412 14.192 15.026 14.602 16.870 17.888 14.680 15.974 15.618 17.086 16.113 16.627 17.160 18.882 20.141 + 18.932 14 16.519 17.677 18.292 19.599 21.015 17.932 19.296 20.784 21.579 17.293 18.599 20.024 23.276 25,129 15 + ١ 16 17 18 19,380 20.971 23.657 25.673 18.639 20.157 21.825 22,719 27.888 ⊒ કું 20.865 22.386 24.742 26.855 25.840 28.132 30.840 33.999 20.012 21.762 22.705 23.698 28.213 24.500 23.414 25.645 30.906 21.412 . 26.357 19 22.841 23.946 25.117 27.671 29.064 30.539 33.760 **37.379** 8 20 25 30 25.545 24.297 26.870 28,280 29.778 31.371 33.066 36.786 40.995 32.030 34.158 38.950 41.646 44.565 54.865 Formula 36.459 47.727 63.249 40.568 43.903 47.575 51.623 56.085 61.007 66,439 79.058 94.461 67.403 97.484 120.80 154.76 290.34 199.64 40 60.402 75.401 84.550 95.026 107.03 50 60 84.579 114.05 112.80 131.00 152.67 237.99 178.50 209.35 406.53 135.99 196.52 289.50 163.05 353.58 533.13 813.52

PRINCIPAL WHICH WILL AMOUNT TO A GIVEN SUM

The principal P, which, if placed at compound interest to-day, will amount to a given sum A at the end of n years is $P = A \times x'$ or $P = A \times y'$ or $P = A \times z'$, according as the interest (at the rate of r per cent. per annum) is compounded annually, semi-annually, or quarterly; the factor x' or y' or z' being taken from the following tables.

Values of x'. (Interest compounded annually; $P = A \times x'$)

Years	r = 2	234	3	31/2	4	41/2	5	6	7	
1 2 3 4	.98039 .96117 .94232 .92385	.97561 .95181 .92860 .90595	.97087 .94260 .91514 .88849	.96618 .93351 .90194 .87144	.96154 .92456 .88900 .85480	.95694 .91573 .87630 .83856	.95238 .90703 .86384 .82270	.94340 .89000 .83962 .79209	.93458 .87344 .81630 .76290	
5	.90573	.88385	.86261	.84197	.82193	.80245	.78353	.74726	.71299	0) }-a = 1/x.
6	.88797	.86230	.83748	.81350	.79031	.76790	.74622	.70496	.66634	
7	.87056	.84127	.81309	.78599	.75992	.73483	.71068	.66506	.62275	
8	.85349	.82075	.78941	.75941	.73069	.70319	.67684	.62741	.58201	
9	.83676	.80073	.76642	.73373	.70259	.67290	.64461	.59190	.54393	
10	.82035	.78120	.74409	.70892	.67556	.64393	.61391	.55839	.50835	[1 + (r/100)]-
11	.80426	.76214	.72242	.68495	.64958	.61620	.58468	.52679	.47509	
12	.78849	.74356	.70138	.66178	.62460	.58966	.55684	.49697	.44401	
13	.77303	.72542	.68095	.63940	.60057	.56427	.53032	.46884	.41496	
14	.75788	.70773	.66112	.61778	.57748	.53997	.50507	.44230	.38783	
15 16 17 18 19	.74301 .72845 .71416 .70016 .68643	.69047 .67362 .65720 .64117 .62553	.64186 .62317 .60502 .58739 .57029	.59689 .57671 .55720 .53836 .52016	.55526 .53391 .51337 .49363 .47464	.51672 .49447 .47318 .45280 .43330	.48102 .45811 .43630 .41552 .39573	.41727 .39365 .37136 .35034 .33051	.36245 .33873 .31657 .29586 .27651	l H
20	.67297	.61027	.55368	.50257	.45639	.41464	.37689	.31180	.25842	Formula:
25	.60953	.58939	.47761	.42315	.37512	.33273	.29530	.23300	.18425	
30	.55207	.47674	.41199	.35628	.30832	.26700	.23138	.17411	.13137	
40	.45289	.37243	.30656	.25257	.20829	.17193	.14205	.09722	.066 78	
50	.37153	.29094	.22811	.17905	.14071	.11071	.08720	.05429	.03395	
60	.30478	.22728	.16973	.12693	.09506	.07129	.05354	.03031	.01 72 6	

Values of y'. (Interest compounded semi-annually; $P = A \times y'$)

Years	r = 2	21/2	3	31/2	4	412	5	6	7	
1	.98030	.97546	.97066	.96590	.96117	.95647	.95181	.94260	.93351	
2	.96098	.95152	.94218	.93296	.92385	.91484	.90595	.88849	.87144	
3	.94205	.92817	.91454	.90114	.88797	.87502	.86230	.83748	.81350	
4	.92348	.90540	.88771	.87041	.85349	.83694	.82075	.78941	.75941	
5	.905 2 9	.88318	.86167	.84073	.82035	.80051	.78120	.74409	.70892]-in = 1/y.
6	.88745	.86151	.83639	.81206	.78849	.76567	.74356	.70138	.66178	
7	.86996	.84037	.81185	.78436	.75788	.73234	.70773	.66112	.61778	
8	.85282	.81975	.78803	.75762	.72845	.70047	.67362	.62317	.57671	
9	.83602	.79963	.76491	.73178	.70016	.66998	.64117	.58739	.53836	
10	.81954	.78001	.74247	.70682	.67297	.64082	.61027	.55368	.50257	+ (r/200)]-3
11	.80340	.76087	.72069	.68272	.64684	.61292	.58086	.52189	.46915	
12	.78757	.74220	.69954	.65944	.62172	.58625	.55288	.49193	.43796	
13	.77205	.72398	.67902	.63695	.59758	.56073	.52623	.46369	.40884	
14	.75684	.70622	.65910	.61523	.57437	.53632	.50088	.43708	.38165	
15	.74192	.68889	.63976	.59425	.55207	.51298	.47674	.41199	.35628	la: v' = [1
16	.72730	.67198	.62099	.57398	.53063	.49065	.45377	.38834	.33259	
17	.71297	.65549	.60277	.55441	.51003	.46930	.43191	.36604	.31048	
18	.69892	.63941	.58509	.53550	.49022	.44887	.41109	.34503	.28983	
19	.68515	.62372	.56792	.51724	.47119	.42933	.39128	.32523	.27056	
20	.67165	.60841	.55126	.49960	.45289	.41065	.37243	.30656	.25257	Formula:
25	.60804	.53734	.47500	.42003	.37153	.32873	.29094	.22811	.17905	
30	.55045	.47457	.40930	.35313	.30478	.26315	.22728	.16973	.12693	
40	.45112	.37017	.30389	.24960	.20511	.16863	.13870	.09398	.063 79	
50	.36971	.28873	.22563	.17642	.13803	.10806	.08465	.05203	.03 206	
60	.30299	.22521	.16752	.12470	.09289	.06925	.05166	.02881	.01611	

nes of z'	(Interest compounded	quarterly: P=	4 × 2': 800	opposite page)

r = 2	21/2	3	31/2	4	416	5	6	7
98025	.97539	.97055	.96575	.96098	.95624	.95152	.94218	.93296
96089	.95138	.94198	.93268	.92348	.91439	.90540	.88771	.87041
94191	.92796	.91424	.90074	.88745	.87437	.86151	.83639	.81206
92330	.90512	.88732	.86989	.85282	.83611	.81975	.78803	.75762
90506	.88284	.86119	.84010	.81954	.79952	.78001	.74247	.70682
88719	.86111	.83583	.81132	.78757	.76453	.74220	.69954	.65944
86966	.83991	.81122	.78354	.75684	.73107	.70622	.65910	.61523
85248	.81924	.78733	.75670	.72730	.69908	.67198	.62099	.57390
83564	.79908	.76415	.73079	.69892	.66849	.63941	.58509	.53550
81914	.77941	.74165	.70576	.67165	.63923	.60841	.55126	.49960
80296	.76022	.71981	.68159	.64545	.61126	.57892	.51939	.46611
78710	.74151	.69861	.65825	.62026	.58451	.55086	.48936	.43486
77155	.72326	.67804	.63570	.59606	.55893	.52415	.46107	.40570
75631	.70546	.65808	.61393	.57280	.53447	.49874	.43441	.37851
74137	.68809	.63870	.59291	.55045	.51108	.47457	.40930	.35313
72673	.67115	.61989	.57260	.52897	.48871	.45156	.38563	.32946
71237	.65464	.60164	.55299	.50833	.46733	.42967	.36334	.30737
69830	.63852	.58392	.53405	.48850	.44687	.40884	.34233	.28676
68451	.62281	.56673	.51576	.46944	.42732	.38903	.32254	.26754
67099	.60748	.55004	.49810	.45112	.40862	.37017	.30389	.24960
60729	.53630	.47369	.41845	.36971	.32670	.28873	.22563	.17642
54963	.47347	.40794	.35154	.30299	.26120	.22521	.16752	.12470
45023	.36903	.30255	.24810	.20351	.16697	.13702	.09235	.06230
36880	.28762	.22438	.17510	.13669	.10673	.08337	.05091	.03113
30210	.22417	.16641	.12358	.09181	.06823	.05072	.02806	.01555

TY WHICH WILL AMOUNT TO A GIVEN SUM (SINKING ND)

inual payment, Y, which, if set aside at the end of each year, will amount with sted interest to a given sum S at the end of n years is $Y = S \times r'$, where the is given below. (Interest at r per cent. per annum, compounded annually.) Values of r'

				varues c	1 0				
r = 2	21/2	3	31/2	4	41/2	5	6	7	
49505	.49383	.49261	.49140	.49020	.48900	.48780	.48544	.48309	1/2
32675	.32514	.32353	.32193	.32035	.31877	.31721	.31411	.31105	
24262	.24082	.23903	.23725	.23549	.23374	.23201	.22859	.22523	
19216	.19025	.18835	.18648	.18463	.18279	.18097	.17740	.17389	7
15853	.15655	.15460	.15267	.15076	.14888	.14702	.14336	.1398 0	
13451	.13250	.13051	.12854	.12661	.12470	.12282	.11914	.11555	
11651	.11447	.11246	.11048	.10853	.10661	.10472	.10104	.09747	
10252	.10046	.09843	.09645	.09449	.09257	.09069	.08702	.08349	
09133	.08926	.08723	.08524	.08329	.08138	.07950	.07587	.07238	I(1 + (+/100)]*
08218	.08011	.07808	.07609	.07415	.07225	.07039	.06679	.06336	
07456	.07249	.07046	.06848	.06655	.06467	.06283	.05928	.05590	
06812	.06605	.06403	.06206	.06014	.05828	.05646	.05296	.04965	
06260	.06054	.05853	.05657	.05467	.05282	.05102	.04758	.04434	
05783	.05577	.05377	.05183	.04994	.04811	.04634	.04296	.03979	(r/100) ÷
05365	.05160	.04961	.04768	.04582	.04402	.04227	.03895	.03586	
04997	.04793	.04595	.04404	.04220	.04042	.03870	.03544	.03243	
04670	.04467	.04271	.04082	.03899	.03724	.03555	.03236	.02941	
04378	.04176	.03981	.03794	.03614	.03441	.03275	.02962	.02675	
04116	.03915	.03722	.03536	.03358	.03188	.03024	.02718	.02439	Formula:
03122	.02928	.02743	.02567	.02401	.02244	.02095	.01823	.01581	
02465	.02278	.02102	.01937	.01783	.01639	.01505	.01265	.01059	
11656	.01484	.01326	.01183	.01052	.00934	.00828	.00646	.00467	For
11182	.01026	.00887	.00763	.00655	.00560	.00478	.00344	.00238	
10877	.00735	.00613	.00509	.00420	.00345	.00283	.00188	.00121	

PRESENT WORTH OF AN ANNUITY

The capital C, which, if placed at interest to-day, will provide for a given annual payment Y for a term of n years before it is exhausted is $C = Y \times w$, where the factor w is given below. (Interest at r per cent. per annual, compounded annually.) Values of w

Years	r = 2	21/2	3	31/2	4	41/2	5	6	7	
1	0.9804	0.9756	0.9709	0.9662	0.9615	0.9569	0.9524	0.9434	0.9346	
2	1.9416	1.9274	1.9135	1.8997	1.8861	1.8727	1.8594	1.8334	1.8080	, n
3	2.8839	2.8560	2.8286	2.8016	2.7751	2.7490	2.7232	2.6730	2.6243	•
4 1	3.8077	3.7620	3.7171	3.6731	3.6299	3.5875	3.5460	3.4651	3.3872	
5	4.7135	4.6458	4.5797	4.5151	4.4518	4.3900	4,3295	4.2124	4.1002	I
6	5.6014	5.5081	5.4172	5.3286	5.2421	5.1579	5.0757	4.9173	4.7665	8
7	6.4720	6.3494	6.2303	6.1145	6.0021	5.8927	5.7864	5.5824	5.3893	1/100]
8	7.3255	7.1701	7.0197	6.8740	6.7327	6.5959	6.4632	6.2098	5.9713	L .
ğ l	8.1622	7.9709	7.7861	7.6077	7.4353	7.2688	7.1078	6.8017	6.5152	I 7
10	8.9826	8.7521	8.5302	8.3166	8.1109	7.9127	7.7217	7.3601	7.0236	
iĭ	9.7868	9.5142	9.2526	9.0016	8.7605	8,5289	8.3064	7.8869	7.4987	1 F
12	10.575	10.258	9.9540	9.6633	9.3851	9.1186	8.8633	8.3838	7.9427	-
13	11.348	10.983	10.635	10.303	9.9856	9.6829	9.3936	8.8527	8.3577	Ŕ
i4	12.106	11.691	11.296	10.921	10.563	10.223	9.8986	9.2950	8.7455	=
15	12.849	12.381	11.938	11.517	11.118	10.740	10.380		9.1079	(r/100)]-n]
		13.055						9.7122		
16 17	13.578		12.561 13.166	12. 094 12.651	11.652 12.166	11.234	10.838	10.106 10.477	9.4466	. +
18	14.292 14.992	13.712 14.353	13.754	13.190	12,659	11.707 12.160	11.274 11.690	10.477	9.7632 10.059	! =
19	15.678	14.979	14.324	13.710	13.134	12.593	12.085	11.158		1 7
									10.336	'
20 25 30	16.351	15.589	14.877	14.212	13.590	13.008	12.462	11.470	10.594	_s
25	19.523	18.424	17.413	16.482	15.622	14.828	14.094	12.783	11.654	1 2 .
	22.396	20.930	19.6 00	18.392	17.292	16.289	15.372	13.76 5	12.409	E S
40	27.355	25.103	23.115	21.355	19.793	18.402	17.159	15.046	13.332	Formula w = [1
50	31.424	28.362	25.730	23.456	21.482	19.762	18.256	15.762	13.801	I ~
60	34.761	30.909	27.676	24.945	22.623	20 .638	18.929	16.161	14.039	ł

ANNUITY PROVIDED FOR BY A GIVEN CAPITAL

The annual payment Y provided for for a term of n years by a given capital C placed at interest to-day is $Y = C \times w'$. (Interest at r per cent. per annum, compounded annually; the fund supposed to be exhausted at the end of the term.)

Values of w'

					values	OI W				
Years	r = 2	2}2	3	31/2	4	41/2	5	6	7	
Years 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	r = 2 .51505 .34675 .26262 .21216 .17853 .15451 .13651 .12252 .11133 .10218 .09456 .088260 .07783 .07365 .06670	21/2 .51883 .35014 .26582 .21525 .18155 .15750 .13947 .12546 .10511 .09749 .09105 .08554 .08077 .07660 .07293 .06967	3 .52261 .35353 .26903 .21835 .18460 .16051 .14246 .12843 .10808 .10046 .09403 .08853 .08377 .07961 .07595	3½ .52640 .35693 .27225 .22148 .18767 .16354 .14548 .13145 .1109 .10348 .09706 .098683 .08268 .07964 .07562	.53020 .36035 .27549 .22463 .19076 .16661 .14853 .13449 .11415 .10654 .09467 .08994 .08582 .08229	4½ .53400 .36377 .27874 .22779 .19388 .16970 .15161 .13757 .10328 .11725 .10967 .09782 .09782 .08902 .08542 .08224	5 .53780 .36721 .28201 .17902 .17902 .17902 .15472 .14069 .12039 .11283 .10646 .10102 .09634 .09634 .09555	54544 .37411 .288159 .23740 .20336 .17914 .16104 .14702 .13587 .11296 .11928 .11296 .10758 .10296 .09895 .09544	7 .55309 .38105 .29523 .29523 .20980 .18555 .16747 .15349 .14238 .1333 .12590 .11965 .11434 .10979 .10586 .10243	$= [r/100] + [1 - [1 + (r/100)]^{-n}]$ $= 1/w = v' + (r/100).$
19 20 25 30 40 50	.06378 .06116 .05122 .04465 .03656 .03182 .02877	.06676 .06415 .05428 .04778 .03984 .03526 .03235	.06981 .06722 .05743 .05102 .04326 .03887 .03613	.07294 .07036 .06067 .05437 .04683 .04263 .04009	.07614 .07358 .06401 .05783 .05052 .04655 .04420	.07941 .07688 .06744 .06139 .05434 .05060 .04845	.08275 .08024 .07095 .06505 .05828 .05478 .05283	.08962 .08718 .07823 .07265 .06646 .06344 .06188	.09675 .09439 .08581 .08059 .07467 .07238 .07121	Formula: w'

36" 12" 48" 24"

36" 12" 48" 24"

36" 12" 48" 24"

36" 12" 48" 24"

36" 12" 48" 24"

36" 12" 48" 24"

36" 12" 48" 24"

36" 12" 48" 24"

36" 12" 48" 24"

36" 12" 48" 24"

MAL EQUIVALENTS

mir	utes and
	nto deci-
deg	ts of a
deg	ree
1307	10000

minds i l par deg	ts of	deci-	8.	degr	ee in Secon	mal pa nto mi nds (e nes)	rts c nute xact	8
0000 01607 0333 05 06667 0833 10 1167 1333 31 5 1667 2833 32 5 2667 2833 340 4167 3433 45 45 66667 6633 6.6 66667 6.6833 70 7.7833 80 7.7883 80 7.	0-1234567890-1234567890-1234567890-1234567890-123456789	0°.0000 .0003 .0006 .0008 .0011 .0014 .0017 .0019 .0022 .0028 .0031 .0033 .0036 .0039 .0042 .0047 .005 .0058 .0061 .0067 .0067 .0069 .0072 .0075 .0081 .0081 .0081 .0081 .0081 .0086 .0089 .0091 .0086 .0089 .0091 .0181 .0191 .0114 .0119 .0125 .0128 .0131 .0133 .0136 .0131 .0133 .0136 .0131	0°.00 1 2 3 4 0°.05 67 8 9 0°.10 1 2 3 4 1 1 2 5 6 7 8 9 0°.25 6 7 8 9 0°.40 1 2 3 4 4 0°.45 6 6 7 8 9 0°.40 1 2 3 4 4 0°.45 6 6 7 8 1 2 3 4 0°.45 6 6 7 8 1 2 3 4 0°.45 6 6 7 8 1 2 3 4 0°.45 6 6 7 8 1 2 3 4 4 0°.45 6 6 7 8 1 2 3 4 4 0°.45 6 6 7 8 1 2 3 4 4 0°.45 6 6 7 8 1 2 3 4 4 0°.45 6 7 8 1 2 3 4 4 0°.45 6 7 8 1 2 3 4 4 0°.45 6 7 8 1 2 3 4 4 0°.45 6 7 7 8 1 2 3 4 4 4 4 4 4 4 4 4	0 0 1 1 1 2 3 3 4 4 4 5 6 6 7 7 7 8 9 9 10 10 1 1 2 1 3 4 1 5 5 6 6 7 7 7 8 9 9 10 10 1 1 2 1 3 4 1 5 5 6 6 7 7 7 8 9 9 10 10 1 1 2 1 3 4 1 5 5 6 6 7 7 7 8 9 9 10 10 1 1 2 1 3 4 1 5 5 6 6 7 7 7 8 9 9 10 10 1 1 2 1 3 4 4 5 5 6 6 7 7 7 8 9 9 10 10 1 1 2 1 3 4 4 5 5 6 6 7 7 7 8 9 9 10 10 1 1 2 1 3 4 4 5 5 6 6 7 7 7 8 9 9 10 10 1 1 2 1 3 4 4 5 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 5 6 6 7 7 7 8 9 9 9 10 10 1 1 2 1 3 4 5 6 6 7 7 7 8 9 9 9 9 10 10 1 1 2 1 3 4 5 6 6 7 7 7 8 9 9 9 9 10 10 1 1 2 1 3 4 5 6 6 7 7 7 8 9 9 9 9 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1	3614844 36148444 3614844 3614844 3614844 36148444 3614844 36148444 36148444 36148444 3618444 3618444 3618444 3618444 3618444 3618444 3618444 3	0°.50 23 45 67 89 67 67 67 68 68 69 69 69 69 69 69	30'33'1'33'33'4'33'5'33'8'33'9'44'1'42'44'4'4'4'4'4'4'4'4'4'4'4'4'4'4'	31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42
.8167 .8333 .85	50″ 1	.0136 0°.0139	0°.50	29' 30'	24"	1°.00	60′	2
.8667 .8833 .90 .9167 .9333 .95 .9667 .9833	2 3 4 55" 6 7 8 9	.0142 .0144 .0147 .015 .0153 .0156 .0158 .0161 .0164 0°.0167		°.0°.0°.0°.0°.0°.0°.0°.0°.0°.0°.0°.0°.0°	1 2 3 4 05 6 7 8 9	0".0 3".6 7".2 10".8 14".4 18" 21".6 25".2 28".8 32".4		

\equiv	Com	mon fi	racti	ons
8 ths	16 ths	32 nds	64 ths	Exact decimal values
		1	1,	.01 5625 .03 125
	1	2	3	04 687
	1			.06 25 .07 8125
de la	3	3	678	10 9375
1	2	4	9 1	.12 5 .14 0625
		5	10	.15 625
	3	6	12	.18 75
		7	14	.21 875 .23 4375
2	4	8	16	.25
		9	18	.28 125
	5	10	19	.31 25
		11	21	14 1/2
3	6	12	23 24	.37 5
		13	25	40 625
	7	14	27	42 197
		15	28 29 30	.45 3129
4	8	16	31	.46 875 .48 4375 .50
1		17	33	.51 562 .53 125
	9	18	35 36	.54 6875 .56 25
		19	37 38	.57 812
			39	.OU 93/3
5	10	20	40	.62 5 .64 0625
		21	42	.65 625 .67 187
	11	22	44	.68 75 .70 312
		23	46 47	.71 875
6	12	24	48	.75 .76 562
		25	50 51	78 125
	13	26	52	.81 25
		27	53	.82 812 .84 375 .85 937
7	14	28	55	.87 5
		29	57 58	.89 0625 .90 625
	15	30	60	.92 1875 .93 75 .95 3125
		31	61	.95 3125 .96 875 .98 4375

WEIGHTS AND MEASURES

BY

LOUIS A. FISCHER

In the United States the measures of weight and length commonly employed are identical with the corresponding English units, but the capacity measures differ from those now in use in the British Empire, the U. S. gallon being defined as 231 cu. in. and the bushel as 2150.42 cu. in., whereas the corresponding British imperial units are, respectively, 277.418 cu. in., and 2219.344 cu. in. (1 imp. gal. = 1.2 U. S. gal., approx.; 1 imp. bu. = 1.03 U. S. bu., approx.).

The metric system of weights and measures was legalized and its use made permissive in the United States by an Act of Congress, passed in 1866. In 1872, by the concurrent action of the principal governments of the world, it was agreed to establish an International Bureau of Weights and Measures

near Paris.

Prior to 1891 the British imperial yard was regarded as the real standard of the United States. In 1891, the Office of Weights and Measures (now Bureau of Standards) fixed the value of the United States yard in terms of the international meter, according to the ratio: one yard = 3600/3937 meters. At the same time, the pound was fixed in terms of the international kilogram, according to the relation: one pound = 453.59243 grams.

U. S. Customary Weights and Measures

Measure	s of Length	Measures of Area					
12 inches 3 feet 5½ yards = 16½ i	=1 foot =1 yard =1 rod, pole or perch	144 square inches -1 square foot 9 square feet -1 square yard 30½ square yards -1 square rod, pole o perch 160 square rods					
40 poles = 220 yard 8 furlongs = 1760 = 5280 feet 3 miles 4 inches	ds = 1 furlong	= 10 square chains = 43,560 sq. ft. = 5645 sq. varas (Texas) 1 "section" of II S Government					
9 inches	= 1 span = 1 span cal Units	1 circular inch					
	= 1 nautical mile = 1 fathom = 1 cable length	= area of circle 1 inch					
Surveyor's or	Gunter's Measure	Measures of Volume					
7.92 inches 100 links = 66 ft. = 60 chains 33½ inches		1728 cubic inches = 1 cubic foot 27 cubic feet = 1 cubic yard 1 cord of wood = 128 cu. ft. 1 perch of masonry = 16½ to 25 cu. ft.					

U. S. Customary Weights and Measures—(continued)

Measures of Volume	Weights (The grain is the same in all systems)				
Liquid or Fluid Measure 4 gills1 pint 2 pints -1 quart 4 quarts -1 gallon 7.4805 gallons -1 cubic foot (There is no standard liquid "barrel.")	Avoirdupois Weight 16 drams = 437.5 grains = 1 ounce 16 ounces = 7000 grains = 1 pound 100 pounds = 1 cental 2000 pounds = 1 short ton 2240 pounds = 1 long ton				
Apothecaries' Liquid Measure 60 minims = 1 liquid dram or drachm 8 drams = 1 liquid ounce 16 ounces = 1 pint Water Measure	Also (in Great Britain): 14 pounds				
The Miner's Inch is the quantity of water that will pass through an orifice 1 sq. in. in cross-section under a head of from 4 to 6½ in., as fixed by statutes, and varies from ½0 cu. ft. to ½0 cu. ft. per sec. The units now most in use are 1 cu. ft. per sec. and 1 gal. per sec., the U. S. Reclamation Service employing the former. See p. 260. Dry Measure 2 pints = 1 quart 8 quarts = 1 peck 4 pecks = 1 bushel Shipping Measure 1 Register ton = 100 cu. ft. 1 U. S. shipping ton = 40 cu. ft.	_				
= { 32.14 U. S. bu. 31.14 imp. bu. 1 British shipping ton = 42 cu. ft. = { 32.70 imp. bu. 33.75 U. S. bu.	20 grains = 1 scruple 3 3 scruples = 60 grains = 1 dram 3 8 drams = 1 ounce 3 12 ounces = 5760 grains = 1 pound Weight for Precious Stones				
Board Measure { 144 cu. in. = volume of } board foot = { board 1 ft. sq. and 1 in. } thick.	1 carat = 200 milligrams (Adopted by practically all important nations.)				
No. of board feet in a $\log = [\frac{1}{2}((d-4))^2L]$, where $d=\dim$ of \log (usually taken inside the bark at small end), in., and $L=$ length of \log , it. The 4 in. deducted are an allowance for slab. This rule is variously known as the Doyle, Conn. River, St. Croix, Thurber, Moore and Beeman,	Gircular Measure 60 seconds = 1 minute 60 minutes = 1 degree 90 degrees = 1 quadrant 360 degrees = circumference 57.2957795 degrees = 1 radian (or angle (=57° 17'44.806") having arc of length				

METRIC SYSTEM

equal to radius)

and the Scribner rule.

The fundamental unit of the metric system is the **meter**—the unit of length, from which the units of volume (liter) and of mass (gram) are derived. All other units are the decimal subdivisions or multiples of these. These three units are simply related: one cubic decimeter equals one liter, and one liter of water weighs one kilogram. The metric tables are formed by combining the words "meter," "gram," and "liter" with numerical prefixes.

ŧ

All lengths, areas, and cubic measures in the following conversion tables are derived from the international meter. The customary weights are likewise derived from the kilogram. All capacities are based on the practical equivalent: 1 cubic decimeter equals 1 liter. (The liter is defined as the volume occupied by the mass of 1 kilogram of water under a pressure of 76 cm. of mercury and at the temperature of 4 deg. cent. According to the best information, 1 liter = 1.000027 cubic decimeters.)

The customary weights derived from the international kilogram are based on the value 1 avoirdupois lb. = 453.59243 grams. The value of the troy lb. is based on the same relation and also the equivalent 5760/7000 avoirdupois lb. equals 1 troy lb.

Metric Measures

	Len	gth		Area				
Unit	Sym bol	Value	in meters	Unit	Sym- bol Va		alue in sq. meters	
Millimeter mm. 0.0 Centimeter cm. 0.0 Decimeter dm. 0.1 Meter (unit) m. 1.0 Dekameter dkm. 10.0			0.01 Sq. centimeter 0.1 Sq. decimeter 1.0 Sq. meter (centiare) 10.0 Sq. meter (centiare) 10.0 Hectare 100.0 Sq. kilometer 100.0 Sq. kilometer		mm.s dm.s m.s a. ha.	1,00	0.000001 0.0001 0.01 1.0 1.0 0,000.0	
	Vol	ume		Cubi	c mea	sure		
Unit	Unit		Value in liters	Unit	S	ymbol	Value in cubic meters	
Milliliter Liter (unit) Kiloliter	l î	nl.or em. ³ . or dm. ³ l. or m. ³	0.001 1.0 1,000.0	Cubic kilometer Cubic hectometer Cubic dekameter	hm.*		10° 10° 10°	
Centiliter Deciliter Dekaliter	Also Centiliter cl. Deciliter dl. Dekaliter dkl. Hectoliter hl.		0.01 0.1 10.0 100.0	Cubic meter Cubic decimeter Cubic centimeter Cubic millimeter Cubic micron		m.s dm.s cm.s nm.s	1 10 ⁻³ 10 ⁻⁶ 10 ⁻⁹ 10 ⁻¹⁶	
			W	7eight				
Unit		Symbol	Value in grams	Unit	Symbol		Value in grams	
Microgram Milligram Centigram Decigram Gram (unit)		0.000001 mg. 0.001 cg. 0.01 dg. 0.1 g. 1.0		Dekagram	hg. kg. Mg.		10.0 100.0 1,000.0 10,000.0 100,000.0 1,000,000.0	

SYSTEMS OF UNITS

The principal units of interest to mechanical engineers can all be derived from the three fundamental units of force, length, and time. These three fundamental units may be chosen at pleasure; each such choice gives rise to a "system" of units. The following table gives the units of the four "systems" most often met with in the literature.

UNITS 73

The precise definitions of the fundamental units in these systems are as follows. (In these definitions the "standard pound body" and the "standard kilogram body" refer to two special lumps of metal, carefully preserved at London and Paris, respectively; the "standard locality" means sea level, 45 deg. latitude; or, more strictly, any locality in which the acceleration due to gravity has the value 980.665 cm. per sec.2 = 32.1740 ft. per sec.2, which may be called the standard acceleration.

The pound (force) is the force required to support the standard pound body against gravity, in vacuo, in the standard locality; or, it is the force which, if applied to the standard pound body, supposed free to move, would give that body the "standard acceleration." The word "pound" is used for the unit of both force and mass, and consequently is ambiguous. To avoid uncertainty it is desirable to call the units

pound force" and "pound mass," respectively.

The kilogram (force) is the force required to support the standard kilogram against gravity, in vacuo, in the standard locality; or, it is the force which, if applied to the standard kilogram body, supposed free to move, would give that body the "standard accelera-tion." The word "kilogram" is used for the unit of both force and mass and consequently is ambiguous. To avoid uncertainty it is desirable to call the units "kilogram force" and "kilogram mass," respectively.

The poundal is the force which, if applied to the standard pound body, would give that body an acceleration of 1 ft. per sec.2; that is, 1 poundal = 1/32.1740 of a pound

The dyne is the force which, if applied to the standard gram body, would give that body an acceleration of 1 cm. per sec.2; that is, 1 dyne = 1/980.665 of a gram force.

Systems of Units

		23 200 2	01 011100		
Name of unit	Dimensions of units in terms of F, L, T British "gravitational" system, or tem, or foot-pound-second" system		Metric "gravita- tional" sys- tem, or "kilogram- meter-sec- ond" system	Metric "absolute" system, or "C. G. S." system	British "absolute" system (little used)
Force Length Time	F L T	1 lb. 1 ft. 1 sec.	1 kg. 1 m. 1 sec.	1 dyne 1 cm. 1 sec.	1 poundal 1 ft. 1 sec.
Velocity Acceleration Pressure Impulse or	L/T L/T^2 F/L^2	1 ft. per sec. 1 ft. per sec. ² 1 lb. per ft. ²	1 m. per sec. 1 m. per sec. ² 1 kg. per m. ²	1 cm. per sec. 1 cm. per sec. ² 1 dyne per cm. ²	1 ft. per sec. 1 ft. per sec. ² 1 pdl. per ft. ²
momentum Work or	FT	1 lbsec.	1 kgsec.	1 dyne-sec.	1 pdlsec.
energy	FL	1 ftlb.	1 kgm.	1 dyne-cm. = 1 "erg."	1 ftpdl.
Power	FL/T	1 ftlb. per sec.	1 kgm. per	1 dyne-cm. per sec.	1 ftpdl. per sec.
Mass	$F/(L/T^2)$	1 lb. per (ft. per sec.²) = 1 "slug."	1 kg. per (m. per sec.²) = 1 "metric slug."	1 dyne per (cm. per sec.²) = 1 gram mass.	1 pdl. per (ft. per sec.²) = 1 pound mass.

NOTE. The "slug" (also called the "geepound," or the "engineer's unit of mass"), the "metric slug," and the "poundal" are never used in practice.

Other common units are as follows:

1 joule = 10^7 ergs = 10,000,000 dyne-cm. Work:

1 kilowatt-hour = 3,600,000 joules = 3600×10^{10} dyne-cm.

Power: 1 horse power = 550 ft.-lb. per sec.

1 poncelet = 100 kg.-m. per sec.

1 force de cheval = 75 kg.-m. per sec.

1 watt = 1 joule per sec. = 10,000,000 dyne-cm. per sec.

1 kilowatt = 1000 watts = 1010 dyne-cm. per sec.

A new horse power of 550.220 ft.-lb. per sec., or 746 watts, has been proposed, but has not been accepted by mechanical engineers.

The weight of a body (in a given locality) always means a force, namely, the force, re-

quired to support the body against gravity (in that locality). When no particular locality is specified, the standard locality may be assumed. Thus, the "standard weight" of the pound body is 1 lb.; the "standard weight" of the kilogram body is 1 kg.

Heat Units. The units of heat commonly used are (1) the quantity of heat required to raise the temperature of 1 gram of water 1 deg. cent. at a mean temperature of 15 deg. cent., or (2) the heat required to raise the temperature of 1 lb. of water 1 deg. fahr. The former quantity is called the gram-calorie (small calorie), while the latter is known as the British thermal unitor B.t.u.

Force Equivalents

Dynes X 10 ⁶	Kilograms	Pounds	Poundals
1	1.020	2,248	72.33
	0.00848	0.03518	1.85933
0.9807	1	2.205	70.93
1.99149		0.34334	1.85084
0.4448	0.4536	1	32.17
1.64819	1.65667		1.50750
0.01383	0.01410	0.03108	1
2.14067	2.14916	2.49249	

The **kilogram-calorie** (large calorie), which is equal to 1000 g.-cal., is largely used in engineering work in metric countries. • 1 therm = 1 g.-cal.

CONVERSION TABLES Length Equivalents

Centimeters	Inches	Feet	Yards	Meters	Chains	Kilometers	Miles
1	0.3937	0.03281	0.01094	0.01	0.0s4971	10 ⁻⁵	0.06214
	T.59517	2.51598	2.03886	2.00000	4.69644	5.00000	6.79335
2.540	1	0.0a8333	0.02778	0.0254	0.041263	0.04254	0.041578
0.40483		4.92082	2.44370	2.40483	5.10127	5.40483	5.19818
30.48	12	1	0.3333	0.3048	0.01515	0.023098	0.0a1645
1.48402	1.07918		T.52288	1.48402	2.18046	4.48402	4.21608
91.14	36	3	1	0.9144	0.04545	0.0:9144	0.0a5682
1.96114	1.55630	0.47712		1.96114	2.65758	4.96114	4.75449
100	39.37	3.281	1.0936	1	0.04971	0.001	0.0a6214
2.00000	1.59517	0.51598	0.03886		2.69644	3.00000	4.79335
2012	792	66	22	20.12	1	0.02012	0.0125
3.30356	2.89873	1.81954	1.34242	1.30356		2.30356	2.09691
100000	393 70	3281	1093.6	1000	49.71	1	0.6214
5.00000	4.59517	3.51598	3.03886	3.00000	1.69644		1.79335
160925	63360	5280	1760	1609	80	1.607	1
5.20665	4.80182	3.72263	3.24551	3.20665	1.90309	0.20665	

The equivalents are given in the heavier type. Logarithms of the equivalents are given immediately below.

Subscripts after any figure, 0s, 9s, etc., mean that that figure is to be repeated the indicated number of times.

Conversion of Lengths

						<u>- </u>		
	Inches	Milli-	Feet	Meters	Yards	Meters	Miles	Kilo-
	to milli-	meters	to	to	to	to	to kilo-	meters
	meters	to inches	meters	feet	meters	yards	meters	to miles
1	25.40	0.03937	0.3048	3.281	0.9144	1.094	1.609	0.6214
2	50.80	0.07874	0.6096	6.562	1.829	2.187	3.219	1.243
3	76.20	0.1181	0.9144	9.842	2.743	3.281	4.828	1.864
4	101.60	0.1575	1.219	13.12	3.658	4.374	6.437	2.485
5	127.00	0.1968	1.524	16.40	4.572	5.486	8.047	3.107
6	152.40	0.2362	1.829	19.68	5.486	6.562	9.656	3.728
7	177.80	0.2756	2.134	22.97	6.401	7.655	11.27	4.350
8	203.20	0.3150	2.438	26.25	7.315	8.749	12.87	4.971
9	228.60	0.3543	2.743	29.53	8.230	9.842	14.48	5.592

"See Marks' MECHANICAL ENGINEERS' HANDBOOK.

Mechanical Equivalent of Heat. See p. 311.* The value most commonly accepted among American engineers as the work equivalent of 1 mean B.t.u. is 777.5 ft.-lb., and the mean gram-calorie = 4.183 joules, which are the values used throughout this book. The U. S. Bureau of Standards does not recommend any special value; for its own purposes it takes the 59 deg. fahr. B.t.u. as 778.2 ft.-lb. and the 68 deg. B.t.u. as 777.5 ft.-lb. The 15 deg. calorie = 4.187 joules; 20 deg. calorie = 4.183 joules. There is an uncertainty of about 1 part in 1000 in these values.

Conversion of Lengths: Inches and Millimeters

		Conver	sion o	I Len	gtns:	Inch	es a	na	Milli	meter	rs	
			Commo		ions of rom 1/64			mill	imeter	8		
64ths	Milli- meters	64ths	Milli- meters	64ths	Milli- meters	64ths	Mi met		64ths	Milli- meters	64ths	Milli- meters
1 2 3 4	0.397 9.794 1.191 1.588	13 14 15 16	5.159 5.556 5.953 6.350	25 26 27 28	9.922 10.319 10.716 11.113	37 38 39 40	14.0 15.0 15.1	081 478	49 50 51 52	19.447 19.844 20.241 20.638	57 58 59 60	22.622 23.019 23.416 23.813
5 6 7 8	1.984 2.381 2.778 3.175	17 18 19 20	6.747 7.144 7.541 7.938	29 30 31 32	11.509 11.906 12.303 12.700	41 42 43 44	16.1 16.1 17.1	669 066	53 54 55 56	21.034 21.431 21.828 22.225	61 62 63 64	24.209 24.606 25.003 25.400
9 10 11 12	3.572 3.969 4.366 4.763	22 23	8.334 8.731 9.128 9.525	33 34 35 36	13.097 13.494 13.891 14.288	45 46 47 48	17. 18. 18. 19.	256 653				
Decimals of an inch to millimeters. (From 0.01 in. to 0.99 in.)												
	0	1	2	3	4	!	5	6	•	7	8	9
.0 .1 .2 .3	2.540 5.080 7.620 10.160	0.254 2.794 5.334 7.874 10.414	0.508 -3.048 5.588 8.128 10.668	0.76 3.30 5.84 8.38 10.92	2 3.5 2 6.0 2 8.6	56 3 66 6 86 8	.270 .810 .350 .890 .430	6.	524 064 604 144 684	1.778 4.318 6.858 9.398 11.938	2.032 4.572 7.112 9.652 12.192	2.286 4.826 7.366 9.906 12.446
.5 .6 .7 .8	12.700 15.240 17.780 20.320 22.860	12.954 15.494 18.034 20.574 23.114	13.208 15.748 18.288 20.828 23.368	13.46 16.00 18.54 21.08 23.62	2 16.2 2 18.7 2 21.3	56 16 96 19 36 21	.970 .510 .050 .590 .130	16 19 21	764 304 844	14.478 17.018 19.558 22.098 24.638	14.732 17.272 19.812 22.352 24.892	14.986 17.526 20.066 22.606 25,146
		Millim	eters to	decim	als of a	inch.	(F	'rom	1 to 8	9 mm.)		
	0.	1.	2.	3.	4.		5.	(5.	7.	8.	9.
0 1 2 3 4	0.3937 0.7874 1.1811 1.5748	0.0394 0.4331 0.8268 1.2205 1.6142	0.0787 0.4724 0.8661 1.2598 7.6535	0.118 0.511 0.905 1.299 1.692	8 0.55 5 0.94 2 1.33	12 0.5 19 0.5 36 1.3	1969 5906 9843 3780 7717	0.6 1.0	299 ()236 173	0.2756 0.6693 1.0630 1.4567 1.8504	0.3150 0.7087 1.1024 1.4961 1.8898	0.3543 0.7480 1.1417 1.5354 1.9291
5 6 7 8 9	1.9685 2.3622 2.7559 3.1496 3.5433	2.0079 2.4016 2.7953 3.1890 3.5827	2.0472 2.4409 2.8346 3.2283 3.6220	2.086 2.480 2.874 3.267 3.661	3 2.519 0 2.913 7 3.307	97 2.5 34 2.5 71 3.5	1654 5591 9528 3465 7402	2.5 2.5 3.5	984 2 921 3 858 3	2.2441 2.6378 3.0315 3.4252 3.8189	2.2835 2.6772 3.0709 3.4646 3.8583	2.3228 2.7165 3.1102 3.5039 3.8976
•	Soo Mai	ka' Mr	CHANIC	AL EN	SINEERS	HAN	DROG) F				

^{*}See Marks' MECHANICAL ENGINEERS' HANDBOOK.

Area Equivalents (For conversion table see p. 77)

Square meters	Square inches	Square feet	Square yards	Square rods	Square chains	Roods	Acres	Square miles or sections
1	1550	10.76	1.196	0.0395	0.002471	0.0 ₃ 9684	0.0 ₃ 2471	0.0e3861
	3.19033	1.03197	0.07773	2.59699	3.39288	3.99494	4.39288	7.58670
0.026452	1	0.006944	0.0011	0.042551	0.0 ₈ 1594	0.0 ₆ 6377	0.0 ₆ 1594	0.0,4910
4 80967		3.84164	3.88740	3.40667	8.20255	7.80461	7.20255	10.39637
0.09290	144	1	0.1111	0.003673	0.0 ₂ 2296	0.0₄9184	0.0 ₄ 2296	0.0 ₇ 3587
2.96803	2.15836		1.04576	3.56503	4.36091	3.96297	4.36091	8.55473
0.8361	1296	9	1	0.03306	0.002066	0.0.8264	0.0002066	0.0 ₄ 3228
1.92227	3.11260	0.95424		2.51927	3.31515	4.91721	4.31515	7.50898
25.29	39204	272.25	30.25	1	0.0625	0.02500	0.00625	0.0 ₆ 9766
1.40300	4.59333	2.43497	1.48072		2.79588	2.39794	3.79588	6.98970
404.7	627264	4356	484	16	1	0.4	0.1	0.0001562
2.60712	5.79745	3.63909	2.68484	1.20412		1.60206	1.00000	4.19382
1012	1568160	10890	1210	40	2.5	1	0.25	0.0a3906
3.00506	6.19539	4.03703	3.08278	1.60206	0.39794		1.39794	4.59176
4047	6272640	43560	4840	160	10	4	1	0.001562
3 .60712	6.79745	4.63909	3.68484	2.20412	1.00000	0.60206		3.19382
2589 ₃ 8 6.41330		27878400 7.44527	3097600 6.49102	102400 5.01030	6400 3.80618	2560 3.40824	640 2.80618	1

(1 hectare = 100 ares = 10,000 centiares or square meters)

Volume and Capacity Equivalents (For conversion table see p. 77)

	(For conversion table see p. 11)										
			U. S.		quarts	U. S.	gallons				
Cubic inches	Cubic feet	Cubic yards	Apothe- cary liquid ounces	Liquid	Dry	Liquid	Dry	Bushels U. S.	Liters (l)		
1	0.0 ₂ 5787 4.76246	0.042143 5.33109	0.5541 T.74360	$\frac{0.01732}{2.23845}$	$\frac{0.01488}{2.17263}$	0.0±4329 3.63639	0.0 ₂ 3720 3.57057	0.0.4650 4.66748	0.01639 2.21450		
1728	1	0.03704	957.5	29.92	25.71	7.481	6.429	0.8036	28.32		
3.23754		2.56864	2.98114	1.47599	1.41017	0.87393	0.80811	1.90502	1.45205		
46656	27	1	25853	807.9	694.3	202.0	173.6	21.70	764.6		
4.66891	1.43136		4.41251	2.90736	2.84153	2.30530	2.23948	1.33638	2.88341		
1.805 0.25640	0.001044 3.01886		1	$\frac{0.03125}{2.49485}$	2.42903	0.007813 3.89279	0.006714 3.82697	0.0,8392 4.92388	$\frac{0.02957}{2.47091}$		
57.75	0.03342	0.001238	32	1	0.8594	0.25	0.2148	0.02686	0.9464		
1.76155	2.52401	3.09264	1.50515		T.93418	1.39794	1.33212	2.42903	T.97606		
67.20	0.03889	0.001440	37.24	1.164	1	0.2909	_0.25	0.03125	1.101		
1.82737	2.58983	3.15847	1.57097	0.06582		1.46376	1.39794	2.49485	0.04188		
231	0.1337	0.004951	128	4	3.437	1	0.8594	0.1074	3.785		
2.36361	T.12607	3.69470	2.10721	0.60206	0.53624		T.93418	T.03109	0.57812		
268.8	0.1556	0.005761	148.9	4.655	4	1.164	1	0.125	4.405		
2.42943	1.19189	3.76053	2.17303	0.66788	0.60206	0.06582		T.09691	0.64394		
2150	1.244	0.04609	1192	37.24	32	9.309	8	1	35.24		
3.33252	0.09498	2.66362	3.07612	1.57097	1.50515	0.96891	0.90309		1.54703		
61. 02 1.78550	$\frac{0.03531}{2.54795}$	0.001308 3.11659	33.81 1.52909	1.057 0.02394	0.9081 1.95812	0.2642 1.42188	0.2270 1.35606	$\frac{0.02838}{2.45297}$	1		

The equivalents are given in the heavier type. Logarithms of the equivalents are given immediately below.

Subscripts after any figure, 0s, 9s, etc., mean that that figure is to be repeated the indicated number of times.

Conversion of Areas

	Sq. in. to sq. cm.	Sq. cm. to sq. in.	Sq. ft. to sq. m.	Sq. m. to sq. ft.	Sq. yd. to sq. m.	Sq. m. to sq. yd.	Acres to heo- tares	tares to	Sq. mi. to sq. km.	to		
1 2 3 4	6.452 12.90 19.35 25.81	0.1550 0.3100 0.4650 0.6200	0.0929 0.1858 0.2787 0.3716	10.76 21.53 32.29 43.06	0.8361 1.672 2.508 3.345	1.196 2.392 3.588 4.784	0.4047 0.8094 1.214 1.619	2.471 4.942 7.413 9.884	2.590 5.180 7.770 10.360	0.3861 0.7722 1.158 1.544		
5 6 7 8	32.26 38.71 45.16 51.61 58.06	0.7750 0.9300 1.085 1.240 1.395	0.4645 0.5574 0.6503 0.7432 0.8361	53.82 64.58 75.35 86.11 96.87	4.181 5.017 5.853 6.689 7.525	5.980 7.176 8.372 9.568 10.764	2.023 2.428 2.833 3.237 3.642	12.355 14.826 17.297 19.768 22.239	12.950 15.540 18.130 20.720 23.310	1.931 2.317 2.703 3.089 3.475		

Conversion of Volumes or Cubic Measure

	Cu. in.	Cu. cm.	Cu. ft.	Cu. m.	Cu. yd.	Cu. m.	Gallons	Cu. ft.
	to	to	to	to	to	to	to	to
	cu. cm.	cu. in.	cu. m.	cu. ft.	Cu. m.	cu. yd.	cu. ft.	gallons
1	16.39	0.06102	0.02832	35.31	0.7646	1.308	0.1337	7.481
2	32.77	0.1220	0.05663	70.63	1.529	2.616	0.2674	14.96
3	49.16	0.1831	0.08495	105.9	2.294	3.924	0.4011	22.44
4	65.55	0.2441	0.1133	141.3	3.058	5.232	0.5348	29.92
5	81.94	0.3051	0.1416	176.6	3.823	6.540	0.6685	37.41
6	98.32	0.3661	0.1699	211.9	4.587	7.848	0.8022	44.89
7	114.7	0.4272	0.1982	247.2	5.352	9.156	0.9359	52.36
8	131.1	0.4882	0.2265	282.5	6.116	10.46	1.070	59.85
9	147.5	0.5492	0.2549	317.8	6.881	11.77	1.203	67.33

Conversion of Volumes or Capacities

	Liquid ounces to cu. cm.	Cu. cm. to liquid ounces	Pints to liters	Liters to pints	Quarts to liters	Liters to quarts	Gallons to liters	Liters to gallons	Bushels to hecto- liters	Hecto- liters to bushels
1	29.57	0.03381	0.4732	2.113	0.9464	1.057	3.785	0.2642	0.3524	2.838
2	59.15	0.06763	0.9464	4.227	1.893	2.113	7.571	0.5283	0.7048	5.676
3	88.72	0.1014	1.420	6.340	2.839	3.170	11.36	0.7925	1.057	8.513
4	118.3	0.1353	1.893	8.453	3.785	4.227	15.14	1.057	1.410	11.35
5	147.9	0.1691	2.366	10.57	4.732	5.283	18.93	1.321	1.762	14.19
6	177.4	0.2029	2.839	12.68	5.678	6.340	22.71	1.585	2.114	17.03
7	207.0	0.2367	3.312	14.79	6.625	7.397	26.50	1.849	2.467	19.86
8	236.6	0.2705	3.785	16.91	7.571	8.453	30.28	2.113	2.819	22.70
9	266.2	0.3043	4.259	19.02	8.517	9.510	34.07	2.378	3.172	25.54

Conversion of Masses

	Grains to grams	Grams to grains	Ounces (avoir.) to grams	Grams to ounces (avoir.)	Pounds (avoir.) to kilo- grams	Kilo- grams to pounds (avoir.)	Short tons (2000 lb.) to metric tons	Metric tons (1000 kg.) to short tons	Long tons (2240 lb.) to metric tons	Metric tons to long tons
1	0.06480	15.43	28.35	0.03527	0.4536	2.205	0.907	1.102	1.016	0.984
2	0.1296	30.86	56.70	0.07055	0.9072	4.409	1.814	2.205	2.032	1.968
3	0.1944	46.30	85.05	0.1058	1.361	6.614	2.722	3.307	3.048	2.953
4	0.2592	61.73	113.40	0.1411	1.814	8.818	3.629	4.409	4.064	3.937
5	0.3240	77.16	141.75	0,1764	2.268	11.02	4.536	5.512	5.080	
6	0.3888	92.59	170.10	0,2116	2.722	13.23	5.443	6.614	6.096	
7	0.4536	108.03	198.45	0,2469	3.175	15.43	6.350	7.716	7.112	
8	0.5184	123.46	226.80	0,2822	3.629	17.64	7.257	8.818	8.128	
9	0.5832	138.89	255.15	0,3175	4.082	19.84	8.165	9.921	9.14	

Velocity Equivalents (For conversion table see p. 80)

Centimeters per sec.	Meters per sec.	Meters per min.	Kilo- meters per hour	Feet per sec.	Feet per min.	Miles per hour	Knots
1.	0.01	0.6 1.77815	0.036 2.55630	0.03281 2.51598	1.9685 0.29414	0.02237 2.34965	0.01942 2.28825
100	1	60	3.6	3.281	196.85	2.237	1.942
2.00000		1.77815	0.55630	0.51598	2.29414	0.34965	0.28825
1.667	0.01667	1	0.06	0.05468	3.281	0.03728	0.03237
0.22184	2.22184		2.77815	2.73783	0.51598	2.57150	2.51018
27.78	0.2778	16.67	1	0.9113	54.68	0.6214	0.53960
1.44370	T.44370	1.22184		T.95968	1.73783	T.79335	T.73207
30.48	0.3048	18.29	1.097	1	60	0.6818	0.59209
1.48402	T.48402	1.26217	0.04032		1.77815	1.83367	T.77238
0.5080	0.005080	0.3048	0.01829	0.01667	1	0.01136	0.00987
1.70586	3.70586	T.48402	2.26217	2.22185		2.05553	3.99423
44.70	0.4470	26.82	1.609	1.467	88	1	0.86839
1.65035	1.65035	1.42850	0.20670	0.16633	1.94448		T.93871
51.497	0.51497	30.898	1.8532	1.68894	101.337	1.15155	. 1
1.71178	T.71178	1.48993	0.26793	0.22761	2.00577	0.06128	

Mass Equivalents (For conversion table see p. 77)

		Our	ces	Pou	nds		Tons	
Kilograms	Grains	Troy and apoth.	Avoir- dupois	Troy and apoth.	Avoir- dupois	Short	Long	Metric
1	15432 4.18843	32.15 1.50719	35.27 1.54745	2.6792 0.42801	2,205 0.34333		0:0:9842 4.99309	0.001 3.00000
0.046480 5.81157	1	0.0 ₂ 2083 3.31876	0.022286 3.35902	0.01736 4.23958	0.0a1429 4.15490		0.076378 8.80465	
0.03110 2.49281	480 2.68124	1	1.09714 0.04026	0.08333 2.92082	0.06857 2.83614		0.043061 5.48590	
0.02835 2.45255	437.5 2.64098	0.9115 1.95974	1	0.07595 2.88056	0.0625 2.79588		0.042790 5.44563	
0.3732 1.57199	5760 3.76042	12 1.07918	13.17 1.11944	1	0.8229 1.91532	0.0±4114 4.61429	0.0 ₂ 3673 4.56508	
0.4536 1.65667	7000 3.84510	14.58 1.16386	16 1.20412	1.215 0.08468	1	0.0005 4.69897	0.0 ,4464 4.64975	0.0 ₂ 4536 4.65667
907.2 2.95770	140 ₆ 7.14613	29167 4.46489	320a 4.50515	2431 3.38571	2000 3.30103	1	0.8929 1.95078	0.9072 1,95770
1016 3.00691	15680 ₄ 7.19535	326a 4.51411	35840 4.55437	2722 3.43492	2240 3.35025	1.12 0.04922	1	1.016 0.00691
1000 3 00000	15432356 7.18843	32151 4.50719	35274 4.54745	2679 3.42801	2205 3.34333	1.102 0.04230	0.9842 1.99309	1

The equivalents are given in the heavier type. Logarithms of the equivalents are given immediately below.

Subscripts after any figure, 0s, 9s, etc., mean that that figure is to be repeated the indicated number of times.

Pressure Equivalents (For conversion table see p. 80)

	(For conversion cable see p. 30)										
Megabars or megadynes per	Kilo- grams per sq. cm. (Metric	Pounds Short tons per sq. in. sq. ft.		Atmos- pheres	Columns of mercury at temperature 0° C.		Columns of water at temperature 15° C.				
sq. cm.	atmos- pheres)				Meters	Inches	Meters	Inches	Feet		
1	1.0197 0.00848	14.50 1.16148	1.044 0.01882	0.9869 1.99427	0.7500 1.87508	29.53 1.47025	10.21 1.00886	401.8 2.60402	33.48 1.52484		
<u>0</u> .9807 1.99152	1	14.22 1.15300	1.024 0.01034	0.9678 1.98579	0.7355 1.86660	28.96 1.46177	10.01 1.00038	394.0 2.59555	32.84 1.51636		
0.06895 2.83852	0.07031 2.84700	1	0.072 2.85733	0.06804 2.83279	$\frac{0.05171}{2.71360}$	2.036 0.30876	0.7037 1.84738	27.70 1.44254	2.309 0.36336		
<u>0</u> .9576 1.98119	0.9765 T.98966	13.89 1.14267	1	0.9450 1.97545	0.7182 1.85627	28.28 1.45143	9.773 0.99004	384.8 2.58521	32.06 1.50608		
1.0133 0.00573	1.0333 0.01421	14.70 1.16722	1.058 0.02955	1	0.76 1.88081	29.92 1.47598	10.34 1.01459	407.2 2.60976	33.93 1.53058		
1.3333 0.12492	1.3596 0.13340	19.34 1.28640	1.392 0.14373	1.316 0.11919	1	39.37 1.59517	13.61 1.13378	535.7 2.72894	44.64 1.64978		
0.03386 2.52975	0.03453 2.53823	0.4912 T.69124	$\frac{0.03536}{2.54857}$	0.03342 2.52402	0.02540 2.40484	1	0.3456 1.53861	13.61 1.13378	1.134 0.05460		
0.09798 2.99114	0.09991 2.99962	1.421 0.15262	0.1023 1.00996	$\frac{0.09670}{2.98541}$	0.07349 2.86622	2.893 0.46139	1	39.37 1.59517	3.281 0.55198		
0.002489 3.39598	0_002538 3.40446		0.002599 3.41479	0.002456 3.39024	0.001867 3.27106	0.07349 2.86622	0.02540 2.40484	1	0.08333 2.92082		
0.02986 2.47516	0.03045 2.48364	.0.4332 1.63664	0.03119 2.49397	0.02947 2.46942	0.02240 2.35024	0.8819 1.94540	0.3048 T.48402	12 1.07918	1		

Energy or Work Equivalents

	(For conversion table see p. 80)											
Joules = 107 ergs	Kilogram- meters	Foot- pounds	Kilo- watt- hours	Cheval- vapeur- hours	Horse- power- hours	Liter- atmos- pheres	Kilo- gram- calories	British thermal units				
1	0.10197 1.00848	0.7376 1.86780	0.0 ₆ 2778 7.44370	0.0 ₆ 3777 7.57711	0.0 ₆ 3725 7.57113	0.009869 3.99427	0.02390 4.37848					
9.80665 0.9915207	. 1	7.233 0.85932	0.0 ₆ 2724 6.43522	0.0 ₆ 37037 6.56863	0.0 ₆ 3653 6.56265	0.09678 2.98579	0.002344 3.37000					
1.356	0.1383	1	0.0 ₄ 3766	0.0 ₆ 51206	0.0 ₆ 50505	0.01338	0.0 ₂ 3241	0.001286				
0.13220	1.14068		7.57590	7.70932	7.70333	2.12647	4.51068	3.10929				
3.6×10 ⁴	3.671×10 ⁵	2.655×10 ⁶	1	1.3596	1.341	35528	860.5	3415				
6.55630	5.56478	6.42410		0.13342	0.12743	4.55057	2.93478	3.53339				
2.648×10 ⁶	270000.	1.9529×10 ⁶	0.7355	1	0.9863	26131.	632.9	2512				
6.42288	5.43136	6.29068	1.86658		1.99401	4.41715	2.80135	3.39996				
2.6845×10°	2.7375×10 ⁵	1.98×10 ⁶	0.7457	1.0139	1	26494	641.7	2547				
6.42887	5.43735	6.29667	1.87257	0.00598		4.42314	2.80735	3.40595				
101.33	10.333	74.73	0.042815	0.043827	0.043774	1	0.02422	0.09612				
2.00573	1.01421	1.87353	5.44943	5.58284	5.57686		2.38425	2.98281				
4183	426.6	3086	0.001162	0.001580	0.001558	41.29	1	3.968				
8.62153	2.63000	3.48932	3.06522	3.19864	3.19265	1.61579		0.59861				
1054	107.5	777.52	0.0a2928	0.0 ₃ 3981	0.0 ₃ 3927	10.40	0.25200	1				
3.02291	2.03139	2.89071	4.46661	4.60003	4.59405	1.01719	1.40139					

The equivalents are given in the heavier type. Logarithms of the equivalents are given immediately below.

Subscripts after any figure, 0, 9, etc., mean that that figure is to be repeated indicated number of times.

Linear a	ınd	Angular	Velocity	Conversion	Pactors
----------	-----	---------	----------	------------	---------

	Cm. per sec. to feet per min.	Feet per min. to cm. per sec.	Cm. per sec. to miles per hour	Miles per hour to cm. per sec.	Feet per sec. to miles per hour	Miles per hour to feet per sec.	Radians per sec. to rev. per min.	Rev. per min. to radians per sec.
1	1.97	0.508	0.0224	44.7	0.682	1.47	9.55	0.1047
2	3.94	1.016	0.0447	89.4	1.364	2.93	19.10	0.2094
3	5.91	1.524	0.0671	134.1	2.046	4.40	28.65	0.3142
4	7.87	2.032	0.0895	178.8	2.727	5.87	38.20	0.4189
5	9.84	2.540	0.1118	223.5	3.409	7.33	47.75	0.5236
6	11.81	3.048	0.1342	268.2	4.091	8.80	57.30	0.6283
7	13.78	3.556	0.1566	312.9	4.773	10.27	66.85	0.7330
8	15.75	4.064	0.1789	357.6	5.455	11.73	76.39	0.8378
9	17.72	4.572	0.2013	402.3	6.136	13.20	85.94	0.9425

Conversion of Pressures

	Pounds per sq. in. to kilograms per sq. cm.	Kilograms per sq. cm. to pounds per sq. in.	Atmospheres to pounds per sq. in.	Pounds per sq. in. to atmospheres	Atmospheres to kilograms per sq. cm.	Kilograms per sq. cm. to atmos- pheres
1	0.0703	14.22	14.70	0.0680	1.033	0.9678
2	0.1406	28.45	29.39	0.1361	2.067	1.936
3	0.2109	42.67	44.09	0.2041	3.100	2.903
4	0.2812	56.89	58.79	0.2722	4.133	3.871
5	0.3515	71.12	73.48	0.3402	5.166	4.839
6	0.4218	85.34	88.18	0.4082	6.200	5.807
7	0.4922	99.56	102.9	0.4763	7.233	6.774
8	0.5624	113.8	117.6	0.5443	8.266	7.742
9	0.6328	128.0	132.3	0.6124	9.300	8.710

Conversion of Energy, Work, Heat

	Ftlb. to kilo- gram- meters	Kilo- gram- meters to ftlb.	Ftlb. to B.t.u.	B.t.u. to ftlb.	Kilo- gram- meters to large calories	Large calories to kilogram-meters	Joules to small calories	Small calories to joules								
1 2 3 4	0.1383 0.2765 0.4148 0.5530	7.233 14.47 21.70 28.93	0.001286 0.002572 0.003858 0.005144	777.5 1555.0 2333.0 3110.0	0.002344 0.004688 0.007033 0.009377	426.6 853.2 1280.0 1706.0	0.2390 0.4780 0.7170 0.9560	4.183 8.367 12.55 16.73								
5 6 7 8 9	0.6913 0.8295 0.9678 1.106 1.244	50.63 57.86	0.006431 0.007717 0.009003 0.01029 0.01157	3888.0 4665.0 5443.0 6220.0 6998.0	0.01172 0.01407 0.01641 0.01875 0.02110	2133.0 2560.0 2986.0 3413.0 3839.0	1.195 1.434 1.673 1.912 2.151	20.92 25.10 29.28 33.47 37.65								

Conversion of Power

	Horse powers to kilowatts	Kilowatts to horse powers		Kilowatts to metric horse powers	Horse powers to metric horse powers	Horse bowers					
1	0.7457	1.341	0.7354	1.360	1.014	0.9863					
2	1.491	2.682	1.471	2.719	2.028	1.973					
3	2.237	4.023	2.206	4.079	3.042	2.959					
4	2.983	5.364	2.942	5.439	4.056	3.945					
5	3.728	6.705	3.677	6.799	5.069	4.932					
6	4.474	8.046	4.413	8.158	6.083	5.918					
7	5.220	9.387	5.148	9.518	7.097	6.904					
8	5.965	10.73	5.884	10.88	8.111	7.890					
9	6.710	12.07	6.619	12.24	9.125	8.877					

Power Equivalents (For conversion table see p. 80)

Horse power 550 stand- ard ftlb. per sec.	Kilo- watts (1000 joules per sec.)	Cheval- vapeur (metric h.p.)	Ponce- lets	Mkg. per sec.	Ftlb. per sec.	Kg cal. per sec.	B.t.u per sec.
1	0.7457	1.014	0.7604	76.04	550	0.1783	0.7074
	1.87256	0.00599	1.88105	1.88105	2.74036	T.25104	1.84965
1.341 0.12743 0.9863 T.99402	0.7355 1.86659	1.360 0.13343 1	1.020 0.00848 0.75 	102.0 2.00848 75 1.87506	737.6 2.86780 542.3 2.73438	0.2390 1.37848 0.1758 1.24506	0.9486 1.97709 0.6977 1.84367
1.315	0.9807	1.333	1	100	723.3	0.2344	0.9303
0.11896	T.99152	0.12493		2.00000	2.85932	1.37000	1.96861
0.01315 2.11896	0.009807 3.99152	$\frac{0.01333}{2.12493}$	0.01 2.00000	1	7.233 0.85932	0.002344 3.37000	0.009303 2.96861
0.00182	0.001356	0.00184	0.00138	0.1383	1	0.0 ₂ 3241	0.001286
3.25946	3.13219	3.26562	3.14067	3.14067		4.51068	3.10929
5.610	4.183	5.688	4.266	426.6	3086	1	3.968
0.74896	0.62153	0.75494	0.63000	2.63000	3.48932		0.59861
1.414	1.054	1.433	1.075	107.5	777.5	0.2520	1
0.15035	0.02291	0.15632	0.03139	2.03139	2.89071	1.40138	

The equivalents are given in the heavier type. Logarithms of the equivalents are given immediately below.

Subscripts after any figure, 0s, 9s, etc., mean that that figure is to be repeated the indicated number of times.

Density Equivalents and Conversion Factors

	F	Equivaler	nts		Conversion factors					
Grams per cu. cm.	Lb. per cu. in.	Lb. per cu. ft.	Short tons (2000 lb.) per cu. yd.	Lb. per U. S. gal.		Grams per cu. cm. to lb. per cu. ft.	Lb. per cu. ft. to grams per cu. cm.	Grams per cu. cm. to short tons per cu. yd.	Short tons per cu. yd. to grams per cu. cm.	
1	0.03613 2.55787	62.43 1.79539	0.8428 1.92572	8.345 0.92143	1 2	62.43 124.90	0.01602 0.03204	0.8428 1.6860	1.186 2.373	
27.68 1.44217	1	1728 3.23754	23.33 1.36792	231 2.36361	3	187.30 249.70	0.04806 0.06407	2.5280 3.3710	3.600 4.746	
0.01602 2.20466	0.025787 4.76245	1	0.0135 2.13033	0.1337 1.12613	5 6	312.40 374.60	0.08009 0.09611	4.2140 5.0570	5.933 7.119	
1.186 0.07428	0.04286 2.63205	74.07 1.86964	1	9.902 0.99572	7 8	437.00 499.40	0.11210 0.12820	5.9000 6.7420	8.306 9.492	
0.1198 1.07855	0.004329 3.63639	7.481 0.87396	0.1010 1.00432	1	9 10	561.90 624.30	0.14420 0.16020	7.5850 8.4280	10.680 11.870	

Conversion of Heat Transmission and Conduction

	Small calories per sq. em. to B.t.u. per sq. ft.	B.t.u. per sq. ft. to small calories per sq. cm.	Small calories per sq. cm. per cm. to B.t.u. per sq. ft. per in.	B.t.u. per sq. ft. per in. to small calories per sq. cm. per cm.	Small calories per sec. per sq. cm. per 1 deg. cent. per cm. thick, to B.t.u. per hr. per sq. ft. per 1 deg. fahr. per in. thick	
1	3.687	0.2712	1.451	0.6892	2.903×10 ⁸	0.0 ₂ 3445
2	7.374	0.5424	2.902	1.378	5.806×10 ²	0.0 ₂ 6890
3	11.06	0.8136	4.353	2.068	8.709×10 ²	0.0 ₂ 1034
4	14.75	1.085	5.804	2.757	11.61×10 ⁸	0.0 ₂ 1378
5	18.44	1.356	7.255	3.446	14.52 × 10 ⁸	0.0 ₂ 1722
6	22.12	1.627	8.706	4.135	17.42 × 10 ³	0.0 ₂ 2067
7	25.81	1.898	10.16	4.824	20.32 × 10 ³	0.0 ₂ 2412
8	29.50	2.170	11.61	5.514	23.22 × 10 ³	0.0 ₂ 2756
9	33.18	2.441	13.06	6.203	26.13 × 10 ³	0.0 ₂ 3100

Nors. 1 gram-calorie per sq. cm. = 3.687 B.t.u. per sq. ft.
1 gram-calorie per sq. cm. per cm. = 1.451 B.t.u. per sq. ft. per in.
1 gram-calorie per sec. per sq. cm. for a temp. grad. of 1 deg. cent. per cm.
= 360 kilogram-calories per hour per sq. m. for a temp. grad. of 1 deg. cent. per m.
= 2.903 × 10³ B.t.u. per hour per sq. ft. for a temp. grad. of 1 deg. fahr. per in.

Values of Foreign Coins (Legal standards: (G) = gold; (S) = silver)

Country	Monetary unit	Value in terms of U.S. money	Country	Monetary unit	Value in terms of U.S. money
Argentina (G)	Peso	CO.9647	Great Britain (G)	Pound ster- ling.	\$4.8665
Austria-Hungary(G) Belgium (G and S). Bolivia (G) Brasil (G) British colonies in Australasia and	Franc Boliviano Milreis Pound ster-	0.2026 0.1929 0.3893 0.5463 4.8665	Greece (G and S) Haiti (G) India (British) (G) Italy (G and S) Japan (G) Liberia (G)	DrachmaGourdeRupeeLiraYenDollar	0.1929 0.9647 0.3244 0.1929 0.4984 1.0000
Africa (G). Canada (G) Central American States:	Dollar	1.0000	Mexico (G) Netherlands (G) Norway (G) Panama (G)	Peso Florin Crown Balbos	0.4984 0.4019 0.2679 1.0000
Costa Rica (G) British Honduras (G or S).	Colon Dollar	0.4653 1.0000	Persia (G and S) Peru (G) Philippine Islands (G)	Kran Libra Peso	Variable 4.8665 0.5000
Guatemala (S) Honduras (S)	Peso	0.4446	Portugal (G) Roumania (G)	Escudo Leu	1.0805 0.1929
Salvador(S) Nicaragua (S)	Peso Cordoba	1.0000	Russia (G) Santo Domingo (G)	Ruble Dollar	0.5145 1.0000
Chile (G) China (S) Colombia (G)	Peso Yuan Pound	0.3649 0.4777 4.8665	Servia (G)	Dinar Tical Peseta	0.1929 0.3708 0.1929
Denmark (G) Ecuador (G)	Crown	0.2680	Straits Settlement (G) Sweden (G)	Dollar Crown	0.5677 0.2679
Egypt (G) Finland (G)	Pound Markka	4.9429 0.1929	Switserland (C)	Franc Piaster	0.1929 0.0439
France $(G \text{ or } S) \dots$ German Empire (G)	Franc Mark	0.1929 0.2381	Uruguay (G) Venesuela (G)	Peso Bolivar	1.0340 0.1929

TIME 83

TIME

Three kinds of time are recognized by astronomers, viz., Kinds of Time. sidereal, apparent solar, and mean solar time. The sidereal day is the interval between two consecutive transits of some fixed celestial object across any given meridian, or it is the interval required by the earth to make one complete revolution on its axis. This interval is constant but it is inconvenient as a time unit because the noon of the sidereal day occurs at all hours of the day and night. The apparent solar day is the interval between two consecutive transits of the sun across any given meridian. On account of the variable distance between the sun and earth, the variable speed of the earth in its orbit, the effect of the moon, etc., this interval is not constant and consequently cannot be kept by any simple mechanism, such as clocks or watches. To overcome the objection noted above, the mean solar day was devised. The mean solar day is the length of the average apparent solar day. Like the sidereal day it is constant, and like the apparent solar day its noon always occurs at approximately the same time of day. The astronomical day begins at mean solar noon and the hours run from one to twenty-four, while the civil day (mean solar) begins 12 hours earlier, at midnight, and the hours run from one to twelve, and then repeat from noon to midnight.

The Year. There are three different kinds of year used, the sidereal, the tropical, and the anomalistic. The sidereal year is the time taken by the earth to complete one revolution around the sun from a given star to the same star again. Its length is 365 days, 6 hours, 9 minutes, and 9 seconds. The tropical year is the time included between two successive passages of the vernal equinox by the sun, and since the equinox moves westward 50."2 of arc a year, the tropical year is shorter by 20'23."5 in time than the sidereal year. As the seasons depend upon the earth's position with respect to the equinox, the tropical year is the year of civil reckoning. The anomalistic year is the interval between two successive passages of the perihelion, namely, the time of the earth's nearest approach to the sun. The anomalistic year is only used in special calculations in astronomy.

The Calendar. The month depended originally upon the changes of the moon. The Mohammedan nations still use a lunar calendar with years of twelve lunar months, which alternately contain 355 and 356 days. According to their method of reckoning the same month falls in different seasons, and their calendars gain 1 year on ours every 33 years. The Julian Calendar (established 45 B. C.) discards all consideration of the moon and adopts 365¼ days as the true length of the year. It is still used in Russia and generally by the Greek Church. Gregorian Calendar: The true length of the tropical year is 365 days, 5 hr., 48 min., 45.5 sec., a difference of 11 min., 14.5 sec. by which the Julian year is too long. This amounts to a little more than 3 days in 400 years. To correct for this, those century years are made leap years which are divisible by 400 without remainder.

Standard Time. Prior to 1883 each city of the U. S. had its own time, which was determined by the time of passage of the sun across the local meridian. A system of standard time is used at present, according to which the United States, which extends from 65 deg. to 125 deg. West longitude, is divided into four sections, each of 15 deg. of longitude. The first or eastern section includes all territory between the Atlantic coast and an irregular line drawn from Detroit, Mich., through Pittsburg to Charleston, S. C., its most southern point. The time of this section is that of the 75-deg. meridian, which is 5

hr. slower than Greenwich time. The second (central) section includes all territory between the line mentioned, and an irregular line drawn from Bismarck, N. D., to the mouth of the Rio Grande. The third (mountain) section includes all territory between the last-named line and a line which passes through the western part of Idaho, Utah and Arizona. The fourth (Pacific) section covers the rest of the country to the Pacific Ocean. Standard time is uniform in each of these sections, but the time in one section differs by exactly 1 hr. from the section next to it. In cities situated on the border line of two sections, as, say, Pittsburg and Atlanta, the standard times of both sections are used, and in such cities when the time is given, it should be specified as eastern, central, etc. The system of standard time has been adopted in almost all civilized countries. All continental Europe, except Russia, uses a time 1 hr. faster than that of Greenwich; in Japan and Australia the time is 9 hr. faster.

TERRESTRIAL GRAVITY

By standard gravity is meant any locality where $g_0 = 980.665$ cm. per sec. per sec., or 32.1740 ft. per sec. per sec. This value, g_0 , is assumed to be the value of g at sea level and latitude 45 deg.

Acceleration of Gravity

(U. S. Coast and Geodetic Survey, 1912)

Latitude,	9			Latitude.	"	2/2		
deg.	Cm./sec.2	Ft./sec.2	0/00	deg.	Cm./sec.2	Ft./sec.2	0/00	
0 10 20 30 40	978.0 978.2 978.6 979.3 980.2	32.088 32.093 32.08 32.130 32.158	0.9973 0.9975 0.9979 0.9986 0.9995	50 60 70 80 90	981.1 981.9 982.6 983.1 983.2	32.187 32.215 32.238 32.253 32.258	1.0004 1.0013 1.0020 1.0024 1.0026	

Correction for altitude above sea level: - 0.3 cm. per sec.² for each 1000 meters; - 0.003 ft. per sec.² for each 1000 feet.

SPECIFIC GRAVITY AND DENSITY

The specific gravity of a solid or liquid is the ratio of the mass of the body to the mass of an equal volume of water at some standard temperature. At the present time a temperature of 4 deg. cent. (39 deg. fahr.) is commonly used by physicists, but the engineer uses 60 deg. fahr. The specific gravity of gases is usually expressed in terms of hydrogen or air.

The density of a body is its mass per unit volume. If the gram is used as the unit of mass and the milliliter as the unit of volume, the figures representing the density are the same as the specific gravity of the body referred to water at 4 deg. cent. as unity. The customary unit is pounds per cu. ft.

The specific gravity of liquids is usually measured by means of an hydrometer (see p. 254).* Special arbitrary hydrometer scales are used in various trades and industries. The most common of these are the Baumé, Twaddell and Beck. Twaddell's hydrometer is used for liquids heavier than water. The number of degrees, N, which it indicates may be converted to specific gravities, G, by the formula G=(5N+1000)/1000. The formula for the Beck hydrometer is $G=170/(170\pm N)$; for the Brix hydrometer $G=400/(400\pm N)$. In both of these the + sign is to be used for liquids lighter than water, the - sign for heavier liquids. For the salinometer (salometer), see p. 1734.* The specific gravities corresponding to the indications of the Baumé hydrometer are given in the following tables.

*See Marks' MECHANICAL ENGINEERS' HANDBOOK.

Specific Gravities at $\frac{60^{\circ}}{60^{\circ}}$ Fahr. Corresponding to Degrees Baumé for Liquids Lighter than Water

for Liquids Lighter than Water

Calculated from the formula, specific gravity $\frac{60^{\circ}}{60^{\circ}}$ fabr. = $\frac{140}{130 + \text{Deg. B6.}}$

Degrees	Specific	Degrees	Specific	Degrees	Specific	Degrees	Specific	Degrees	Specific	Degrees	Specific
Baumé	gravity	Baumé	gravity	Baumé	gravity	Baumé	gravity	Baumé	gravity	Baumé	gravity
10	1.0000	25	0.9032	40	0.8235	55	0.7568	70	0.7000	85	0.6512
11	0.9929	26	0.8974	41	0.8187	56	0.7527	71	0.6965	86	0.6482
12	0.9859	27	0.8917	42	0.8140	57	0.7487	72	0.6931	87	0.6452
13	0.9790	28	0.8861	43	0.8092	58	0.7447	73	0.6897	88	0.6422
14	0.9722	29	0.8805	44	0.8046	59	0.7407	74	0.6863	89	0.6393
15	0.9655	30	0.8750	45	0.8000	60	0.7368	75	0.6829	90	0.6364
16	0.9589	31	0.8696	46	0.7955	61	0.7330	76	0.6796	91	0.6335
17	0.9524	32	0.8642	47	0.7910	62	0.7292	77	0.6763	92	0.6306
18	0.9459	33	0.8589	48	0.7865	63	0.7254	78	0.6731	93	0.6278
19	0.9396	34	0.8537	49	0.7821	64	0.7216	79	0.6699	94	0.6250
20 21 22 23 24	0.9333 0.9272 0.9211 0.9150 0.9091	35 36 37 38 39	0.8485 0.8434 0.8383 0.8333 0.8284	50 51 52 53 54	0.7778 0.7735 0.7692 0.7650 0.7609	65 66 67 68 69	0.7179 0.7143 0.7107 0.7071 0.7035	80 81 82 83 84	0.6667 0.6635 0.6604 0.6573 0.6542	95 96 97 98 99 100	0.6222 0.6195 0.6167 0.6140 0.6114 0.6087

Specific Gravities at $\frac{60^{\circ}}{60^{\circ}}$ Fahr. Corresponding to Degrees Baumé for Liquids Heavier than Water

Calculated from the formula, specific gravity $\frac{60^{\circ}}{60^{\circ}}$ fabr. = $\frac{145}{145 - \text{Deg. Baum}6}$

L-											_
Degrees	Specific	Degrees	Specific	Degrees	Specific	Degrees	Specific	Degrees	Specific	Degrees	Specific
Baumé	gravity	Baumé	gravity	Baumé	gravity	Baumé	gravity	Baumé	gravity	Baumé	gravity
0	1.0000	12	1.0902	24	1.1983	36	1.3303	48	1.4948	60	1.7059
1	1.0069	13	1.0985	25	1.2083	37	1.3426	49	1.5104	61	1.7262
2	1.0140	14	1.1069	26	1.2185	38	1.3551	50	1.5263	62	1.7470
3	1.0211	15	1.1154	27	1.2288	39	1.3679	51	1.5426	63	1.7683
4	1.0284	16	1.1240	28	1.2393	40	1.3810	52	1.5591	64	1.7901
5	1.0357	17	1.1328	29	1.2500	41	1.3942	53	1.5761	65	1.8125
6	1.0432	18	1.1417	30	1.2609	42	1.4078	54	1.5934	66	1.8354
7	1.0507	19	1.1508	31	1.2719	43	1.4216	55	1.6111	67	1.8590
8 9 10 11	1.0584 1.0662 1.0741 1.0821	20 21 22 23	1.1600 1.1694 1.1789 1.1885	32 33 34 35	1.2832 1.2946 1.3063 1.3182	44 45 46 47	1.4356 1.4500 1.4646 1.4796	56 57 58 59	1.6292 1.6477 1.6667 1.6860	68 69 70	1.8831 1.9079 1.9333

Mohs's Scale of Hardness

Talc. 2. Gypsum. 3. Calc spar. 4. Fluor spar. 5. Apatite.
 Feldspar. 7. Quartz. 8. Topaz. 9. Sapphire. 10. Diamond.

SECTION 2

MATHEMATICS

BY

EDWARD V. HUNTINGTON, Ph. D.

ASSOCIATE PROFESSOR OF MATHEMATICS, HARVARD UNIVERSITY, FELLOW AM. ACAD.

ARTS AND SCIENCES

CONTENTS

ARITHMETIC		1	PAGE
	PAGE	The Parabola	138
Numerical Computation	88	The Ellipse	140
Logarithms	91	The Hyperbola	144
The Slide Rule	94	The Catenary	147
Computing Machines	97	Other Useful Curves	151
Financial Arithmetic	98		
·		DIFFERENTIAL AND INTEGR.	AT.
GEOMETRY AND MENSURAT	ION	CALCULUS	
Geometrical Theorems	99		
Geometrical Constructions	101	Derivatives and Differentials	157
Lengths and Areas of Plane Figures.	105	Maxima and Minima	159
Surfaces and Volumes of Solids	107	Expansion in Series	160
ALGEBRA		Indeterminate Forms	163
	l	Curvature	163
Formal Algebra	112	Table of Indefinite Integrals	164
Solution of Equations in One Un-		Definite Integrals	169
known Quantity	116	Differential Equations	171
Solution of Simultaneous Equations	119		
Determinants	123	GRAPHICAL REPRESENTATION	i op
Imaginary or Complex Quantities	124	Functions	
TRIGONOMETRY	1	Equations Involving Two Variables	173
Formal Trigonometry	128	Equations for Empirical Curves.	174
Solution of Plane Triangles	132	Logarithmic Cross-section Paper.	176
Solution of Spherical Triangles	134	Semi-logarithmic Paper	177
Hyperbolic Functions	135	Equations Involving Three Variables	178
•••		Equations Involving Four Variables	182
ANALYTICAL GEOMETRY	ľ		
The Point and the Straight Line	136	VECTOR ANALYSIS	
The Circle	137	Vector Analysis	1 8 5

COPYRIGHT, 1916, BY EDWARD V. HUNTINGTON

MATHEMATICS

RY

EDWARD V. HUNTINGTON

ARITHMETIC

NUMERICAL COMPUTATION

Number of Significant Figures. In any engineering computation, the data are ordinarily the results of measurement, and are correct only to a limited number of significant figures. Each of the numbers 3.840 and 0.003840 is said to be given "correct to four figures;" the true value lies in the first case between 3.8395 and 3.8405; in the second case, between 0.0038395 and 0.0038405. The absolute error is less than 0.001 in the first case, and less than 0.000001 in the second; but the relative error is the same in both cases, namely, an error of less than "one part in 3840.".

If a number is written as 384000, the reader is left in doubt whether the number of correct significant figures is 3, 4, 5, or 6. This doubt can be removed by writing the number as 3.84×10^5 or 3.840×10^5 or 3.8400×10^5 or 3.84000×10^5 .

In any numerical computation, the possible or desirable degree of accuracy should be decided on and the computation should then be so arranged that the required number of significant figures, and no more, is secured. Carrying out the work to a larger number of places than is justified by the data, is to be avoided. (1) because the form of the results leads to an erroneous impression of their accuracy, and (2) because time and labor are wasted in superfluous computation. The labor of working with six-place tables is nearly three times as great as that with four-place tables. In computations involving several steps, it is desirable to retain one extra figure until just before the final result is reached, in order to protect the last figure against the possible cumulative effect of small tabular errors. In discarding superfluous figures, if the first discarded figure is 5 or more, increase the preceding figure by 1. Thus, 3.14159, written correct to four figures, is 3.142; correct to three figures, 3.14. Again, 6.1297, correct to four figures, is 6.130.

Addition. In adding numbers, note that a doubtful final	0.2056x
figure in any one number will render doubtful the whole col-	2.572xx
umn in which that figure lies; hence all figures to the right of	14.25xxx
that column are superfluous, and contribute nothing to the	576.1xxx
accuracy of the result.	

593.1 Subtraction. The "Austrian" or "shop" method is recommended. The mental process is as follows, the figures here printed in boldface type being the only ones written down:

[3 plus how many is 12?] 3 plus 9 is 12; 1 to carry.	14752
[7 plus how many is 15?] 7 plus 8 is 15; 1 to carry.	8463
5 plus 2 is 7. 8 plus 6 is 14.	6289

This method is especially useful when it is desired to subtract from a given number the sum of several other numbers.

7 plus 1 is 8; plus 5 is 13; plus 9 is 22; 2 to carry.	14752
5 plus 0 is 5; plus 2 is 7; plus 8 is 15; 1 to carry.	31257
3 plus 1 is 4; plus 1 is 5; plus 2 is 7.	101
5 plus 3 is 8; plus 6 is 14.	5237
	6289

The use of a wavy line to indicate subtraction is also recommended, as it will minimize the danger of adding when subtraction is intended.

Multiplication. In long examples in multiplication, the arrangement of work here illustrated is recommended, since it facilitates the abbreviation of the work by the omission, in practice, of all the figures on the right of the vertical line.

The **position of the decimal point** should be determined by reference to the first, or left-hand, figures of the numbers, rather than by "pointing off" so-and-so many places from

the right-hand end. For the right-hand figures of a number are the least important ones, and in many cases are entirely unknown (especially when the slide rule or a computing machine is used). The mental process for determining the decimal point is as follows:

(a) If the multiplier is a number like 3.1416, with only one figure preceding the decimal point, think of this number as "a little over 3;" then the product must be "a little over three times the number which is being multiplied;" and this gives the position of the decimal point at once, by inspection.

(b) If the multiplier is a number like 3141.6 [or 0.000 003 141 6], think of this number as "about 3, with the point moved three places to the right" [or "about 3, with the point moved six places to the left"]; then think what the answer would be if the multiplier were simply "about 3," and shift the decimal point accordingly.

Multiplication Tables. Crelle's large volume (Berlin, G. Reimer) gives the product of every three-figure number by every three-figure number; Peters's (Berlin, G. Reimer), of every four-figure number by every two-figure number. The smaller table of H. Zimmermann (Berlin, Wm. Ernst) gives the product of every three-figure number by every two-figure number.

Division. In long division, where the numbers are given only approximately, the work can be much abbreviated without loss of accuracy by "cutting off" one figure of the divisor at each step, instead of "bringing down" a doubtful zero in the dividend. Thus, 3.1416 + 2.3026 = 1.3644.

To determine the position of the decimal point in a problem of fractional division, shift the point (mentally) in both numerator and denominator (the same number of places in each) until the denominator is a number in the "standard form," that is, a number with only one figure preceding the decimal point. (This will not change the value

23026)31416(1 23026 2303) 8390(3 6909 230) 1481(6 1380 23) 101(4 92 2) 9(4

of the fraction.) Then estimate the approximate magnitude of the quotient by inspection. Thus:

$$\frac{0.2718}{3141.6} = \frac{0.000\ 2718}{3.1416} = \text{``about } 0.000\ 09\text{''} = 0.000\ 08652;$$

$$\frac{31.416}{0.002718} = \frac{31\ 416}{2.718} = \text{``about } 10\ 000\text{''} = 11\ 558.$$

Reciprocals. The reciprocal of N is 1/N. Instead of dividing by a long number N, it is often better to multiply by the reciprocal of N. The table of reciprocals on pp. 24-27 gives the reciprocal of any number, correct to four figures. Barlow's Table (Spon & Chamberlain, New York) gives the reciprocal of every four-figure number correct to seven figures (but without facilities for interpolation). The reciprocals of numbers having more than four figures are best found by the use of a large table of logarithms.

```
Reciprocals of 1 \pm x when x is Small.

1/(1+x) = 1 - x + [error < x^2, if x is between 0 and 1],
= 1 - x + x^2 - [error < x^3, if x is between 0 and 1].
1/(1-x) = 1 + x + [error < x^2 + 2x^3, if x is between 0 and 1],
= 1 + x + x^2 + [error < x^3 + 2x^4, if x is between 0 and 1].
```

Notation by Powers of 10. All questions concerning the position of the decimal point are readily answered if each number is expressed in the "standard form," that is, as the product of two factors, one of which is a number with only one figure preceding the decimal point, while the other is a positive or negative power of 10. Thus, 3.1416×10^3 means 3.1416 with the point moved three places to the right, that is, 3141.6. Again, 3.1416×10^{-6} means 3.1416 with the point moved six places to the left, that is, 0.0000031416. This notation by powers of 10 should always be used in dealing with very

large or very small numbers. Among electrical engineers its use is very

Square Root. (a) If four figures of the root are sufficient, take the answer directly from the table of square roots, pp. 12-15. (b) To obtain a root of six or seven figures from the table, use the formula: $\sqrt{N} = a + [(N-a^2)/2a]$ (approx.), where a is the nearest value of \sqrt{N} obtainable from the table, with three or four ciphers annexed. Here a^2 must be found exactly, by direct multiplication, so that at least three significant figures of the difference $N-a^2$ shall be known correctly; but this done, the division of $N-a^2$ by 2a should be carried to only three figures (logarithms or slide rule may be used).

NOTE. The simplest way to obtain any root of a seven-figure number correct to seven figures is to use a seven-place table of logarithms, if such a table is at hand.

Square Roots of $1 \pm x$ when x is Small.

NOTE. $1/(a \pm b) = (1/a)[1/(1 \pm x)]$, where x = b/a.

general, even for numbers of moderate size.

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - [\text{error less than } \frac{1}{2}x^2 \text{ if } 0 < x < 1]$$

$$= 1 + \frac{1}{2}x - \frac{1}{2}x^2 + [\text{error } < \frac{1}{2}x^2 \text{ if } 0 < x < 1]$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - [\text{error } < \frac{1}{2}x^2 + \frac{1}{2}x^3 \text{ if } 0 < x < \frac{1}{2}]$$

$$= 1 - \frac{1}{2}x - \frac{1}{2}x^2 - [\text{error } < \frac{1}{2}x^2 + \frac{1}{2}x^3 \text{ if } 0 < x < \frac{1}{2}]$$

$$\text{NOTE. } \sqrt{a+b} = \sqrt{a} (1+x)^{\frac{1}{2}}, \text{ where } x = b/a.$$

Cube Root. (a) If four figures of the root are sufficient, take the answer directly from the table of cube roots, pp. 16-21. (b) To obtain a root of six or seven figures from the table, use the formula: $\sqrt[3]{N} = a + [(N - a^3)/3a^3]$ (approx.), where a is the nearest value of $\sqrt[3]{N}$ obtainable from the table, with three or four ciphers annexed. Here a^3 must be found correct to seven or eight figures, by direct multiplication, so that at least three significant figures of the difference $N - a^3$ shall be known; but this done, the division of $N - a^3$ by $3a^2$ should be carried to only three or four figures (logarithms or the slide rule may be used).

NOTE. The simplest way to obtain any root of a seven-figure number correct to seven figures is to use a seven-place table of logarithms, if such a table is at hand.

Cube Roots of $1 \pm x$ when x is Small.

$$(1+x)^{\frac{1}{2}\delta} = 1 + \frac{1}{2}x - [\text{error} < \frac{1}{2}6x^2 \text{ if } 0 < x < 1],$$

$$= 1 + \frac{1}{2}x - \frac{1}{2}x^2 + [\text{error} < \frac{1}{2}6x^3 \text{ if } 0 < x < 1],$$

$$(1-x)^{\frac{1}{2}\delta} = 1 - \frac{1}{2}x - [\text{error} < \frac{1}{2}6x^2 + \frac{1}{2}6x^3 \text{ if } 0 < x < \frac{1}{2}],$$

$$= 1 - \frac{1}{2}x - \frac{1}{2}6x^2 - [\text{error} < \frac{1}{2}6x^3 + \frac{1}{2}6x^4 \text{ if } 0 < x < \frac{1}{2}].$$
Note. $\sqrt[3]{a+b} = \sqrt[3]{a(1+x)^{\frac{1}{2}\delta}}$, where $x = b/a$.

LOGARITHMS

Tables of Logarithms. The use of a table of logarithms greatly reduces the labor of multiplication, division, raising to powers, and extracting roots. The table on pp. 42-43 is carried out to four significant figures, and the following explanations should be sufficient to permit the use of the table readily, even by one without previous experience. For algebraic theory, see p. 113.

If more than four-figure accuracy is required, recourse must be had to a larger table. Five-place tables are available in great variety; the Macmillan Tables, 1913, are perhaps as convenient as any. If more than five figures are required, use Bremiker's six-place table, or proceed at once to a seven-place table: Schrön (Vieweg und Sohn, Braunsohweig); Bruhns; Vega-Bremiker. If extreme accuracy is required, use the eight-place table by Bauschinger and Peters (Engelmann, Leipzig). Logarithmic paper, see p. 176.

To Find the Logarithm of Any Given (Positive) Number.

(a) WHEN THE GIVEN NUMBER IS BETWEEN 1 AND 10.

An inspection of the table on pp. 42-43 shows that as the number increases from 1 to 9.99... the logarithm of that number increases continuously from 0 to 0.999... For example, log 2.97 = 0.4728; log 2.98 = 0.4742.

If the given number contains four significant figures, it is necessary to interpolate between the tabulated values, as follows:

To find log 2.973, notice that this number is $\frac{3}{10}$ of the way from 2.97 to 2.98; hence its logarithm will be (approximately) $\frac{3}{10}$ of the way from 0.4728 to 0.4742. The difference here is 14 units, and $\frac{3}{10}$ of this difference is 4 (to the nearest unit); hence, by adding this 4 to 4728, log 2.973 = 0.4732. This process of interpolating should be performed mentally; the step of finding the tabular difference will be facilitated by a glance at the last column on the right, which gives, for each line of the table, the average of the differences along that line.

Again, to find log 4.098: From table, $\log 4.09 = 0.6117$; adding $\frac{9}{10}$ of the difference (11), or about 9, gives: $\log 4.098 = 0.6126$. Or better, since $\frac{9}{10}$ of the way forward is equal to $\frac{9}{10}$ of the way back, find in table $\log 4.10 = 0.6128$, and subtract $\frac{9}{10}$ of 11, or 2, giving $\log 4.098 = 0.6126$. It should be noted that any interpolated value may be in error by 1 in the last place.

If the given number contains more than four significant figures, it should be cut down to four figures (see p. 88), since the later figures will not affect the result in four-place computations.

(b) When the Given Number is Less Than 1 or More Than 10, it is simply necessary to notice that every such number can be regarded as obtainable from some number between 1 and 10 by merely shifting the decimal point (see p. 90); and that according to the rule at the foot of the table, moving the decimal point n places to the right [or left] in the number-column is equivalent to adding n [or -n] to the logarithm in the body of the table.

For example, to find $\log 2973$. Here $2973 = 2.973 \times 10^3$ (i.e., 2.973 with the decimal point moved 3 places to the right). From the table, $\log 2.973 = 0.4732$. Hence, $\log 2973 = 0.4732 + 3$, which may be written as 3.4732.

Again, to find $\log 0.0002973$. Here $0.0002973 = 2.973 \times 10^{-4}$ (i.e., 2.973 with the decimal point moved 4 places to the left). From the table, $\log 2.973 = 0.4732$. Hence, $\log 0.0002973 = 0.4732 - 4$. (This may be written as 4.4732, if desired, and is equal of course, to -3.5268; this latter form, however, is not convenient in practice.)

It is thus evident that the logarithm of every positive number may be regarded as consisting of two parts: a decimal fraction, which is always positive (or zero); and a whole number, which may be positive, negative, or zero. The fractional part is called the **mantissa**, and is found from the table; the whole-number part is called the **characteristic**, and is determined by inspection.

To Find the Number Corresponding to a Given Logarithm.

(a) WHEN THE GIVEN LOGARITHM IS A POSITIVE DECIMAL FRACTION (CHARACTERISTIC ZERO), simply reverse the process for finding the logarithm of a number between 1 and 10.

For example, given $\log N = 0.4732$; to find N. In the body of the table it is seen that 0.4732 lies a little beyond 0.4728; hence N must lie a little beyond 2.97. By taking differences it is found that 4728 is in fact 9/4 of the way from 0.4728 to the next higher logarithm; therefore N must be 9/4 of the way from 2.97 to the next higher number. But 9/4 of 1 is 0.3 (to the nearest tenth), hence N = 2.973. Again, given $\log N = 0.6126$; to find N. Here, 0.6126 is 9/4 of the way from 0.6117

Again, given $\log N = 0.6126$; to find N. Here, 0.6126 is $\%_1$ of the way from 0.6117 to the next higher logarithm; therefore N must be $\%_1$ of the way from 4.09 to the next higher number. But $\%_1$ of 1 is 0.8 (to the nearest tenth), hence N = 4.098.

(b) When the given logarithm has any given value (characteristic not zero), proceed as follows: First, be sure the given logarithm is in the "standard form," that is, a positive decimal fraction (mantissa) plus a positive or negative whole number (characteristic). For example, if log N is originally given in the form $\log N = -3.5268$, this must first be reduced to the (equivalent) form $\log N = 0.4732 - 4$ (or 4.4732), before entering the table. Having the logarithm given in the standard form, suppose for the moment that the characteristic is zero, and find in the table the number corresponding to the given mantissa; then move the decimal point to the right or left according as the value of the characteristic is positive or negative.

For example, given $\log N = 0.4732 + 3$; to find N. From the table, the number corresponding to 0.4732 is 2.973. The characteristic (+3) directs that the decimal point be moved 3 places to the right; hence $N = 2.973 \times 10^3 = 2973$.

point be moved 3 places to the right; hence $N = 2.973 \times 10^3 = 2973$. Again, given $\log N = 0.4732 - 4$; to find N. From the table, the number corresponding to 0.4732 is 2.973. The characteristic (-4) indicates that the decimal point is to be moved 4 places to the left; hence $N = 2.973 \times 10^{-4} = 0.0002973$.

The number corresponding to a given logarithm is called its **antilogarithm**. Thus, if $\log 2973 = 0.4732 + 3$, then 2973 = antilog (0.4732 + 3).

NOTE 1. In most tables of logarithms the decimal point is omitted, the tables being in fact not tables of logarithms, but tables of mantissas. This omission is of no consequence to the experienced computer, but is often perplexing to one who makes only occasional use of such tables.

NOTE 2. Many computers prefer to write negative characteristics in the form of some positive number minus some multiple of 10; thus, 0.4732 - 4 = 6.4732 - 10; 0.4732 - 13 = 7.4732 - 20; etc.

Fundamental Properties of Logarithms. The usefulness of logarithms in computation depends on the following properties:

(1)
$$\log (ab) = \log a + \log b$$
; (3) $\log (a^n) = n \log a$;
(2) $\log (a/b) = \log a - \log b$; (4) $\log \sqrt[n]{a} = (1/n) \log a$;
(5) $\log 10^n = n$

It is to be noted also that $\log 1 = 0$, $\log 10 = 1$, and $\log (1/n) = -\log n$.

1

To Multiply by Logarithms. Find from the table the log. of each factor, and add; the result will be the log. of the product. Then find the product itself from the table.

```
EXAMPLE. To find \log 4.098 = 0.6126 x = (4.098)(0.0002973)(72.1). \log 0.0002973 = 0.4732 - 4 \log 72.1 = \frac{0.8579 + 1}{1.9437 - 3} = 0.9437 - 2.
```

To Divide by Logarithms. First Method: Find from the table the log. of the numerator and the log. of the denominator, and subtract the second from the first; the result will be the logarithm of the quotient. Then find the quotient itself from the table.

```
EXAMPLE. To find x = \frac{4.098}{0.0002973} log 4.098 = 0.6126 log 0.0002973 = 0.4732 - 4
Answer: x = 1.378 \times 10^4 = 13780 log x = 0.1394 + 4
```

In order to avoid negative mantissas in cases where a larger mantissa would have to be subtracted from a smaller, modify the upper logarithm by adding and subtracting 1.

EXAMPLE. To find
$$x = \frac{0.0291}{63.4}$$
. $\log 0.0291 = 0.4639 - 2 = 1.4639 - 3$ $\log 63.4 = 0.8021 + 1 = 0.8021 + 1$ $\log x = 0.0004590$.

To Divide by Logarithms. Second Method: Instead of subtracting the log. of a number, it is often convenient to add the cologarithm of that number; the colog. of N being defined by: $\operatorname{colog} N = \log(1/N) = -\log N$.

To find the colog. of a number, write the log. of the number in the standard form, and subtract it from 1.0000 - 1, as in the following examples:

This subtraction should be performed mentally. Thus, to subtract the mantissa, subtract each digit from 9 until the last non-zero digit is arrived at, and subtract this from 10; to subtract the characteristic, follow the regular rule of algebra ("reverse the sign and add"). Hence, if the logarithm itself is already written down, or can be read off from the table without interpolation, the cologarithm can be written down at once, by inspection. The use of cologarithms is not essential in logarithmic computation, but it often facilitates a compact arrangement of the work, especially in cases where the denominator of a fraction is itself the product of two or more factors.

To Find the nth Power of a Number by Logarithms. Find from the table the log. of the number, and multiply it by n; the result will be the logarithm of the nth power of that number. Then find the power itself from the tables.

EXAMPLE 1. Find
$$x = (0.0291)^3$$
 log $0.0291 = 0.4639 - 2$
Answer: $x = 2.464 \times 10^{-5}$
 $= 0.00002464$. log $x = 1.3917 - 6 = 0.3917 - 5$.

EXAMPLE 2. Find
$$x = (0.0291)^{1\cdot41}$$
 log $0.0291 = 0.4639 - 2 = -1.5361$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
 $= 0.006825$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
Answer: $x = 6.825 \times 10^{-3}$
An

To Find the nth Root of a Number by Logarithms. Find from the table the log. of the number, and divide it by n; the result will be the log. of the nth root of that number. Then find the root itself from the table.

EXAMPLE. Find
$$x = \sqrt[3]{4.098}$$
 log 4.098 = 0.6126
Answer: $x = 1.600$ log $x = 0.2042$

In order to avoid fractional characteristics, if the characteristic is not divisible by n, make it so divisible by adding and subtracting a suitable number before dividing.

EXAMPLE. Find
$$x = \sqrt[3]{0.0004590}$$
. log $0.0004590 = 0.6618 - 7$. Answer: $x = 7.714 \times 10^{-2}$ 3)2.6618 - 6 = 0.07714 log $x = 0.8873 - 2$

But if the characteristic is positive, it is simpler to write it in front of the mantissa, and then divide directly.

THE SLIDE RULE

The slide rule is an indispensable aid in all problems in multiplication, division, proportion, squares, square roots, etc., in which a limited degree of accuracy is sufficient. The ordinary 10-in. Mannheim rule (see below) costs \$3 to \$4.50 and gives three significant figures correctly; the 20-in. rule (\$12.50) gives from three to four figures; the Fuller spiral rule (\$30) or the Thacher cylindrical rule (\$35) gives from four to five figures. For many problems the slide rule gives results more rapidly than a table of logarithms; it requires, however, more care in placing the decimal point in the answer. In all work with the slide rule, the position of the decimal point should be determined by inspection (see p. 89), only the sequence of digits being obtained from the instrument itself. Rapidity in the use of the instrument depends mainly on the skill with which the eye can estimate the values of the various divisions on the scale; expertness in this respect comes only with practice. The following explanations should be sufficient to permit the use of the ordinary slide rule successfully without previous experience and without knowledge of logarithms.

Multiplication and Division with a (Theoretical) Complete Logarithmic Scale. Consider a complete logarithmic scale $(D, \operatorname{Fig. 1})$, assumed to extend indefinitely in both directions, only the main section, from 1 to 10, however, being usually available. Note that the divisions within the several sections are indentical, except that the numeral attached to each division of any one section is ten times the numeral attached to the corresponding division in the preceding section. [The distances laid off from 1 are proportional to the logarithms of the corresponding numbers, the distance from 1 to 10 being taken as unity.] Consider also a duplicate scale, C, numbered from 1 to 10, and arranged to slide along the fixed scale D as in the figures. By means of such a scale D, and slide C, any two numbers between 1 and 10 (and hence any two numbers whatever, with proper attention to the decimal point) can be multiplied or divided, as in the following examples.

To MULTIPLY 4 BY 6. In Fig. 1, starting with point 1 of the fixed scale, run the eye along from 1 to 4; then set the 1 of the slide opposite this point 4, and run the eye forward along the slide from 1 to 6; the point thus reached on the fixed scale is 24, which is equal to 4×6 . This process gives the distance from 1 to 6, and is, in fact, a mechanical method of adding the logarithms of these numbers; hence the result is the product of the numbers. Conversely,

To DIVIDE 4 BY 6. In Fig. 2, starting with the point 1 of the fixed scale, run the eye along from 1 to 4; then set the 6 of the slide opposite the point 4, and run the eye backward along the slide from 6 to 1; the point thus reached on the fixed scale is 0.667, which is equal to $4 \div 6$. This process gives the distance from 1 to 4 minus the distance from 1 to 6; and is, in fact, a mechanical method of subtracting the logarithms of these numbers; hence the result is their quotient.

Multiplication and Division, Using Only a Single Section of the Scale. If only the main section of scale D is available (as is usually the case in practice), the result of multiplication may fall beyond the scale, as it does in Fig. 1. In such cases divide the first factor by 10 before beginning to multiply; this will bring the result within the scale, without affecting the sequence of digits.

For example, to multiply 4 by 6. Having found that the setting shown in Fig. 1 is not successful, reset the slide as in Fig. 3, with 10 instead of 1 opposite 4; run the eye backward along the slide from 10 to 1, thus reaching the (unrecorded) point corresponding to 4 + 10; then, continuing from this point, run the eye forward along the slide from 1 to 6, as before; the point finally reached on the main scale is 2.4, which has the same sequence of digits as the required value 24. After a little practice, this preliminary step of dividing by 10 will be performed almost intuitively. Whether or not this step is necessary in any given case, can be determined only by trial.

The general rule for multiplication may be stated as follows, if preferred: To find the product of two factors, find one factor on the fixed scale; opposite this, set (tentatively) point 1 of the slide; on the slide find the second factor, and opposite this read the product on the main scale, if possible. If the product falls beyond the scale, begin over again, using point 10 of the slide instead of point 1.

In division also, the result may fall beyond the main section of the scale, as it does in Fig. 2. In such cases, it suffices merely to multiply the result by 10 in order to bring it within the scale; this will not affect the sequence of digits.

For example, to divide 4 by 6, set the slide as in Fig. 4, and follow out mentally the steps indicated by the arrows. It will be noticed that the supplementary step of multiplying by 10 is performed by simply running the eye along the slide from 1 to 10 without resetting the slide; for this reason, division on the slide rule is slightly easier than multiplication.

The Ordinary Mannheim Slide Rule has four scales, A, B, C, D, as shown in Fig. 5. Scales C and D are essentially the same as the C and D scales described above, and the principle just explained shows how they are used in multiplication and division. The fact that the D scale covers only the main section from 1 to 10 (all decimal points being omitted) is practically no restriction on the scope of the scale, as is seen in the preceding examples. A runner is provided, so that intermediate positions reached in the course of an extended computation may be indicated temporarily on the scale without the necessity of reading off their numerical values. The best runners are those which have no side frame to obscure the numerals.

In problems involving successive multiplications and divisions, arrange the work so that multiplication and division are performed alternately.

For example, to calculate $\frac{a \times b \times c}{d \times e}$, divide the product $a \times b$ by d; multiply this quotient by c; and divide this product by e. Each operation will require only one shifting either of the slide (for multiplication) or of the runner (for division).

To multiply a number of different quantities by a constant multiplier, x, set the point 1 of slide opposite x, and read, by aid of the runner, the products of x by all the quantities which do not fall beyond the scale; then reset the slide, setting 10 instead of 1 opposite x, and read the products of x by all the remaining quantities.

To divide a number of different quantities by a constant divisor, y, first find (by the slide rule) the quotient 1 + y, and then use this as a constant multiplier.

Scales A and B are exactly like scales C and D, except that they cover two sections of the complete logarithmic scale, the graduations being only half as fine. Either pair of scales may be used for multiplication and division; C and D give more accurate readings, but have the disadvantage that in the case of multiplication the slide must often be shifted to the other end in order to keep the result on the scale—an inconvenience which is not present when the less accurate scales A and B are employed.

By the use of both pairs of scales, problems in squares and square roots may be readily solved; for every number on A, except for the decimal point, is the square of the number directly below it on D (use the runner).

A scale of sines, tangents, and logarithms is often printed on the back of the slide. For further details concerning the use of the slide rule in various problems, see the instruction books furnished with each instrument: Wm. Cox, "Manual of the Mannheim Slide Rule;" F. A. Halsey, "Manual of the Slide Rule;" etc.

Other Types of Slide Rules. The duplex slide rule (\$5 to \$18 according to length) shows on one face the regular A, B, C, D scales, and on the other face the scales A, B', C', D (where B' and C' are the same as B and C, only numbered in the reverse order), with a runner encircling the whole scale. This arrangement makes possible the solution of more complicated problems with fewer settings of the slide, but if the rule is to be used only for simple problems, the multiplicity of scales is rather confusing. Less complicated is the polyphase rule, which is like a Mannheim rule with the addition of a single inverted scale, C', printed in the middle of the slide. The log log duplex slide rule (10 in., \$8) is especially adapted for handling complex problems involving fractional powers or roots, hyperbolic logarithms, etc. A number of circular slide rules are on the market, the best of which are operated by a milled thumbnut, like the stem wind of a watch. The advantage of the circular rule, aside from its comnact size (some models are scarcely larger than a watch), lies in the fact that the scale is endless, so that the slide never has to be reset in order to bring the result within the scale. A disadvantage is found in the necessity of reading the figures in oblique positions, or else continually turning the instrument as a whole in the hand. The Fuller and Thacher rules already mentioned are invaluable for problems requiring greater accuracy than can be obtained with the ordinary rules. There are also many special slide rules, adapted to various special types of computation, such as calculating discharge of water through pipes, horse power of engines, dimensions of lumber, stadia measurements, etc. One of the most recent devices of this kind is the Ross meridiograph (L. Ross, San Francisco, Cal.), which is a circular slide rule for solving certain cases of spherical triangles. The Eichhorn trigonometrical slide rule solves any plane triangle.

COMPUTING MACHINES

For certain purposes computing machines have ceased to be luxuries and have become almost necessities; but they are expensive, and should be selected with reference to the special work which is to be done. The machines may be classified roughly into three groups, as follows:

Adding Machines, Non-listing. Of the machines of this kind, the most convenient in the hands of a careful operator is the well-known Comptometer (Felt & Tarrant Co., Chicago, Ill.; \$250 to \$350 according to size), or the recent Burroughs non-listing adding machine (Detroit, Mich., \$175). To add a number, simply press a key in the proper column; the result appears on the dials in front of the keyboard. Multiplication as well as addition can be performed on this machine with great rapidity, and division also after a little practice. Weight, about 15 lb. Much less rapid, but less expensive and requiring somewhat less skill in operation, is the Barrett adding machine (Philadelphia, Pa.) with multiplying attachment. Other key-operated machines are the Mechanical Accountant (Providence, R. I.), and the Austin (Baltimore, Md.). The American adding machine (American Can Co., Chicago, III.; \$39.50) is operated by pulling up a finger-lever for each digit. Small machines, operated by the use of a stylus, are the Rapid computer (Benton Harbor, Mich., \$25); the Gem (Automatic Adding Machine Co., New York; \$10), the Arithstyle (New York, \$36) and the Triumph (Brooklyn, N. Y., \$35). These machines, while much less rapid than the key-operated machines, are useful in simple addition. The Underwood typewriter is now supplied with a complete electrically driven adding machine attached, and the Wahl adding attachment is supplied on the Remington and other typewriters. Ray Subtracto-Adder (Richmond, Va., \$25).

Adding and Listing Machines. The machines of this group not only add, but also print the items, totals and sub-totals. The Burroughs (Detroit, Mich.), the Wales (Adder Machine Co., Wilkes-Barre, Pa.), the Comptograph (Chicago, Ill.) and the White (New Haven, Conn.), resemble each other in having an 81-key keyboard; the Dalton (Cincianati, Ohio) and the Commercial (White Adding Machine Co., New Haven,

Conn.) have a 10-key and a 9-key keyboard respectively, admitting of operation by the touch method. On all these machines, in order to add a number, first depress the proper keys and then pull a handle (or, in the case of electrically driven machines, press a button) to record the item. Multiplication cannot be performed conveniently, except on the Dalton. Subtraction can be performed only by adding the complement, except on the Commercial and on one type of the Burroughs. The prices range from \$125 to \$600, according to size and style, new models being constantly devised for special commercial purposes. A new and more portable machine of the 81-key type is the Barrett adding and listing machine (Philadelphia, Pa., \$250). A cheaper machine, with a 10key keyboard, is the Standard (St. Louis, Mo.). The new American adding and listing machine (American Can Co., Chicago, Ill.), operated by pulling up a finger-lever for each digit, costs only \$88. The Ellis (Newark, N. J.) is an elaborate adding and listing machine having a complete typewriter incorporated with it. The Elliott-Fisher bookkeeping machine (Harrisburg, Pa.) and the Moon-Hopkins billing machine (St. Louis, Mo.) are intended primarily for commercial use; the latter is a complicated electric machine (\$750) which combines many of the features of an adding and listing machine with those of a calculating machine.

Calculating Machines (so-called). Machines of this third group are intended primarily for multiplication and division; the types which have a keyboard can be used effectively for addition and subtraction also. They are all non-listing. The earliest commercially successful types were the Thomas and the Brunsviga. In both these types the multiplicand is set up by moving pegs in slots, or (in the newest models) by depressing keys, and the multiplication is effected by turning a handle for each digit of the multiplier—twice for a digit 2, three times for a digit 3, etc.; the result then appears on the dials. In the Thomas type the handle always turns in the same direction, the change from multiplication to division being effected by a shift key. In the Brunsviga type the handle is turned forward for multiplication and backward for division. Among the best examples of the Thomas type now on the American market are the Tim, with a single row of dials, the Unitas, with a double row of dials (both sold by Oscar Müller Co., New York City; also with keyboard and electric drive), and the Reuter (Philadelphia, Pa.). Prices, \$300 upward. Another machine of this type, with keyboard, is the Record (U. S. Adding Machine Co., New York City). Brunsviga is represented by Carl H. Reuter, Philadelphia, Pa.; various models. Of somewhat similar type are the Triumphator (New York City; \$250), and Colt's calculator (Culmer Engineering Co., New York City). A new machine, on the same principle, but with keyboard, is the Monroe (made in Orange, N. J.; \$250). The Millionaire (W. A. Morschhauser, New York City; \$400), is from the mechanical point of view, the only true multiplying machine on the market (except the Moon-Hopkins). After the multiplicand is set up on the pegs, the digits of the multiplier are indicated successively by moving a pointer, the handle being turned only once for each digit. Further, the movement of the carriage is automatic. The newest models have keyboard and electric drive. The Ensign electric calculating machine (Boston, Mass.; \$400) is a new machine with an 81-key keyboard on which it adds like an adding machine, and a secondary 10-key keyboard by means of which it multiplies and divides quite as rapidly as any of the calculating machines, the proper key being pressed just once for each digit of the multiplier. The National calculator (New York), and the Lamb calculator (Calculator Mfg. Co., New York) are less expensive machines devised for figuring payrolls and labor costs. A still simpler device for the same purpose is the Calculacard (New York). The machine called the Calculagraph (New York) is a time clock which automatically computes labor costs. For graphical methods of computation, see pp. 106, 119, 170, 173-185.

FINANCIAL ARITHMETIC

For the facts which are commonly required in regard to compound interest, sinking funds, etc., see the headings of the tables on pp. 64-68.

ELEMENTARY GEOMETRY AND MENSURATION

GEOMETRICAL THEOREMS

(For geometrical constructions, see p. 101)

Right Triangles. $a^2 + b^2 = c^2$. (See Fig. 1). $\angle A + \angle B = 90^\circ$. $p^2 = mn$. $a^2 = mc$. $b^2 = nc$. See also p. 105 and p. 132.

Oblique Triangles. (See also pp. 105, 134.) Sum of angles = 180°. An exterior angle = sum of the two opposite interior angles. (Fig. 1.)

The medians, joining each vertex with the middle point of the opposite side, meet in the center of gravity G (Fig. 2), which trisects each median.

The altitudes meet in a point called the orthocenter, O.

The perpendiculars erected at the midpoints of the sides meet in a point C, the center of the circumscribed circle. [In any triangle G, O, and C lie in line, and G is two-thirds of the way from O to C.]

The bisectors of the angles meet in the center of the inscribed circle (Fig. 3).

The largest side of a triangle is opposite the largest angle; it is less than the sum of the other two sides, and greater than their difference.

Similar Figures. Any two similar figures, in a plane or in space, can be placed in "perspective," that is, so that straight lines joining corresponding points of the two figures will pass through a common point (Fig. 4). That is, of two similar figures, one is merely an enlargement of the other. Assume that each length in one figure is k times the corresponding length in the other; then each area in the first figure is k^2 times the corresponding area in the second, and each volume in the first figure is k^3 times the corresponding volume in the second. If two lines are cut by a set of parallel lines (or parallel planes), the corresponding segments are proportional.

The Circle. (See also pp. 106, 137.) An angle inscribed in a semicircle is a right angle (Fig. 5). An angle inscribed in a circle, or an angle between a chord and a tangent, is measured by half the intercepted arc (Fig. 6). An angle formed by any two lines which meet a circle is measured by half the sum or half the difference of the intercepted arcs, according as the point of intersection of the lines lies inside (Fig. 7) or outside the circle (Fig. 8).

A tangent is perpendicular to the radius drawn to the point of contact. If a variable line through A (Figs. 9 and 10) cuts a circle in P and Q, then

 $\overline{AP} \times \overline{AQ}$ is constant; in particular, if A is an external point, $\overline{AP} \times \overline{AQ} = \overline{AT}$, where \overline{AT} is the tangent from A.

The radical axis (Fig. 11) of two circles is a straight line such that the tangents drawn from any point of this line to the two circles are of equal length. If the two circles intersect, the radical axis passes through their points of intersection. In any case, the radical axis bisects the common tangents of the two circles. The three radical axes of a set of three circles meet in a common point. (For equations, see p. 137.)

Dihedral Angles. The dihedral angle between two planes is measured by a plane angle formed by two lines, one in each plane, perpendicular to the edge (Fig. 12). (For solid angles, see p. 110.)

In a tetrahedron, or triangular pyramid, the four medians, joining each vertex with the center of gravity of the opposite face, meet in a point, the center of gravity of the tetrahedron; this point is ¾ of the way from any vertex to the center of gravity of the opposite face. The four perpendiculars erected at the circumcenters of the four faces meet in a point, the center of the circumscribed sphere. The four altitudes meet in a point called the orthocenter of the tetrahedron. The planes bisecting the six dihedral angles meet in a point, the center of the inscribed sphere.

Regular Polyhedra (see also p. 110): Regular tetrahedron (Fig. 13), bounded by four equilateral triangles; cube (Fig. 14), bounded by six squares; octahedron (Fig. 15), bounded by eight equilateral triangles; dodecahedron (Fig. 16), bounded by twelve regular pentagons; icosahedron (Fig. 17), bounded by twenty equilateral triangles. Figs. 13-17 show how these solids can be made by cutting the surface out of paper and folding it together.

The Sphere. (See also p. 109.) If AB is a diameter, any plane perpendicular to AB cuts the sphere in a circle, of which A and B are called the poles. A great circle on the sphere is formed by a plane passing through the center. A spherical triangle is bounded by arcs of great circles (see p.

134). In two polar triangles, each angle in one is the supplement of the corresponding side in the other. In two symmetrical triangles, the sides and angles of one are equal to the corresponding sides and angles of the other, but arranged in the reverse order (like right-handed and left-handed gloves).

GEOMETRICAL CONSTRUCTIONS

To Bisect a Line AB (Fig. 18). (a) From A and B as centers, and with equal radii, describe arcs intersecting in P and Q, and draw PQ, which will bisect AB in M.

(b) Lay off AC = BD = approximately half of AB, and then bisect CD.

To Draw a Parallel to a Given Linel Through a Given Point A (Fig. 19). With point A as center draw an arc just touching the line l; with any point O of the line as center, draw an arc BC with the same radius. Then a line through A touching this arc will be the required parallel. Or, use a straight edge and triangle. Or, use a sheet of celluloid with a set of lines parallel to one edge and about $\frac{1}{4}$ in. apart ruled upon it.

To Draw a Perpendicular to a Given Line from a Given Point \mathbb{A} Outside the Line (Fig. 20). (a) With A as center, describe an arc cutting the line in R and S, and bisect RS in M. Then M is the foot of the perpendicular. (b) If A is nearly opposite one end of the line, take any point B of the line and bisect AB in O; then with O as center, and OA or OB as radius, draw an arc cutting the line in M. Or, (c) use a straight edge and triangle.

To Erect a Perpendicular to a Given Line at a Given Point P. (a) Lay off PR = PS (Fig. 21), and with R and S as centers draw arcs intersecting at A. Then PA is the required perpendicular. (b) If P is near the end of the line, take any convenient point O (Fig. 22) above the line as center, and with radius OP draw an arc cutting the line in Q. Produce QO to meet the arc in A; then PA is the required perpendicular. (c) Lay off PB = 4 units of any scale (Fig. 23); from P and B as centers lay off PA = 3 and BA = 5; then APB is a right angle.

To Divide a Line AB into n Equal Parts (Fig. 24). Through A draw a line AX at any angle, and lay off n equal steps along this line. Connect the last of these divisions with B, and draw parallels through the other divi-

sions. These parallels will divide the given line into n equal parts. A similar method may be used to divide a line into parts which shall be proportional to any given numbers.

To Construct a Mean Proportional (or Geometric Mean) Between Two Lengths, m and n (Fig. 25). Lay off AB = m and BC = n and construct a semicircle on AC as diameter. Let the perpendicular erected at B meet the circumference at P. Then $BP = \sqrt{mn}$. (See p. 115.)

To Divide a Line AB in Extreme and Mean Ratio (the "golden section"). At one end, B, of the given line (Fig. 26), erect a perpendicular, BO, equal to half AB, and join OA. Along OA lay off OP = OB, and along AB lay off AX = AP. Then X is the required point of division; that is, $\overline{AX^2} = AB \times BX$. Numerically, $AX = \frac{1}{2}(\sqrt{5} - 1)(AB) = 0.618(AB)$.

To Bisect an Angle AOB (Fig. 27). Lay off OA = OB. From A and B as centers, with any convenient radius, draw arcs meeting in M; then OM is the required bisector.

To draw the bisector of an angle when the vertex of the angle is not accessible (Fig. 28). Parallel to the given lines a, b, and equidistant from them, draw two lines a', b' which intersect; then bisect the angle between a' and b'.

To Draw a Line Through a Given Point A and in the Direction of the Point of Intersection of Two Given Lines, when this point of intersection is inaccessible (Fig. 29). Draw any two parallel lines PQ and P'Q' as in the figure; through P' draw a line parallel to PA, and through Q' draw a line parallel to QA; let these lines intersect in A', and draw the line AA'. This line AA' will (if produced) pass through the intersection of the two given lines.

To Construct, Approximately, the Length of a Circular Arc (Rankine). In Fig. 30 draw a tangent at A. Prolong the chord BA to C, making AC =

14 AB. With C as center, and radius CB, draw arc cutting the tangent in D. Then $AD = \operatorname{arc} AB$, approximately (error about 4 min. in an arc of 60 deg.). Conversely, to find an arc AB on a given circle to equal a given length AD, take E one-fourth of the way from A to D, and with E as center and radius ED draw an arc cutting the circumference in B. Then arc AB = AD, approximately.

Fig. 30.

To Inscribe a Hexagon in a Circle (Fig. 31). Step around the circumference with a chord equal to the radius. Or, use a 60-deg. triangle.

To Circumscribe a Hexagon About a Circle (Fig. 32). Draw a chord AB equal to the radius. Bisect the arc AB in T. Draw the tangent at T (parallel to AB), meeting OA and OB in P and Q. Then draw a circle with radius OP or OQ and inscribe in it a hexagon, one side being PQ.

Fig. 31. Fig. 32. Fig. 33.

To Inscribe an Octagon in a Square (Fig. 33). From the corners as centers, and with radius equal to half the diagonal, draw four arcs, cutting the sides in eight points. The points will be the vertices of the octagon.

To Inscribe an Octagon in a Circle. Draw two perpendicular diameters, and bisect each of the quadrant arcs.

To Circumscribe an Octagon About a Draw a square about the circle, and draw the tangents to the circle at the points where the circle is cut by the diagonals of the square.

To Construct a Polygon of n Sides, One Side AB being Given (Fig. 34). With A as center and AB as radius, draw a semicircle,

Fig. 34.

and divide it into n parts, of which n-2 parts (counting from B) are to be Draw rays from A through these points of division, and complete the construction as in the figure (in which n = 7). Note that the center of the polygon must lie in the perpen-

dicular bisector of each side.

To Draw a Tangent to a Circle from an external point A (Fig. 35). Bisect AC in M; with M as center and radius MC, draw are cutting circle in P; then P is the required point of tangency.

Fig. 35.

Fig. 36.

To Draw a Common Tangent to Two Given Circles (Fig. 36). Let C and c be the centers and R and r the radii (R > r). From C as center, draw

two concentric circles with radii R + rand R-r; draw tangents to these circles from c; then draw parallels to these lines at distance r. These parallels will be the required common tangents.

To Draw a Circle Through Three Given Points A. B. C. or to find the center of a given circular arc (Fig. 37). Draw the perpendicular bisectors of

Fig. 37. Fig. 38.

AB and BC; these will meet in the center, O.

To Draw a Circular Arc Through Three Given Points When the Center is not Available (Fig. 38). With A and B as centers, and chord AB as radius, draw arcs, cut by BC in R and by AC in S. Divide RA into n equal parts, 1, 2, 3, . . . Divide BS into the same number of equal parts, and continue these divisions at 1', 2', 3', . . . Connect A with 1', 2', 3', . . .

and B with 1, 2, 3, . . . Then the points of intersection of corresponding lines will be points of the required arc. (Construction valid only when CA = CB.)

To Draw a Circle Through Two Given Points, A, B, and Touching a Given Line, 1 (Fig. 39). Let AB meet line lin

C. Draw any circle through A and B, and let CT be tangent to this circle from C. Along l, lay off CP and CQ equal to CT. Then either P or Q is the required point of tangency. (Two solutions.) Note that the center of the required circle lies in the perpendicular bisector of AB.

To Draw a Circle Through One Given Point, A, and Touching Two Given Lines, 1 and m (Fig. 40). Draw the bisector of the angle between l and m, and let B be the reflection of A in this line. Then draw a circle through A and B and touching l (or m), as in preceding construction. (Two solutions.)

To Draw a Circle Touching Three Given Lines (Fig. 41). Draw the bisectors of the three angles; these will meet in the center O. (Four solutions.) The perpendiculars from O to the three lines give the points of tangency.

Fig. 41.

To Draw a Circle Through Two Given Points A, B, and Touching a Given Circle (Fig. 42). Draw any circle through A and B, cutting the given circle in C and D. Let AB and CD meet in E, and let ET be tangent

from E to the circle just drawn. With E as center, and radius ET, draw an arc cutting the given circle in P and Q. Either P or Q is the required point of contact. (Two solutions.)

To Draw a Circle Through One Given Point, A, and Touching Two Given Circles (Fig. 43). Let S be a center of

Fig. 42.

Fig. 43.

similitude for the two given circles, that is, the point of intersection of two external (or internal) common tangents. Through S draw any line cutting one circle in two points, the nearer of which shall be called P, and the other in two points, the more remote of which shall be called P. Through P, P, P

draw a circle cutting SA in B. Then draw a circle through A and B and touching one of the given circles (see preceding construction). This circle will touch the other given circle also. (Four solutions.)

To Draw an Annulus Which Shall Contain a Given Number of Equal

Contiguous Circles (Fig. 44). (An annulus is a ring-shaped area enclosed between two concentric circles.) Let R + r and R - r be the inner and outer radii of the annulus, r being the radius of each of the n circles. Then the required relation between these quantities is given by $r = R \sin(180^{\circ}/n)$, or $r = (R + r)[\sin(180^{\circ}/n)]/[1 + \sin(180^{\circ}/n)]$

For methods of constructing ellipses and other curves, see pp. 139-156.

LENGTHS AND AREAS OF PLANE FIGURES

Right Triangle (Fig. 45). $a^2 + b^2 = c^2$. Area = ½ $ab = ½a^2 \cot A = ½b^2 \tan A = ½c^2 \sin 2A$.

Equilateral Triangle (Fig. 46). Area = $\frac{1}{3}a^2\sqrt{3}$ = 0.43301 a^2 .

Any Triangle (Fig. 47). $s = \frac{1}{2}(a + b + c), t = \frac{1}{2}(m_1 + m_2 + m_3),$

 $r = \sqrt{(s-a)(s-b)(s-c)/s}$ = radius inscribed circle,

 $R = \frac{1}{2} a / \sin A = \frac{1}{2} b / \sin B = \frac{1}{2} c / \sin C = \text{radius circumscribed circle};$

Area = $\frac{1}{2}$ base \times altitude = $\frac{1}{2}ah$ = $\frac{1}{2}ab$ sin C = rs = abc/4R

 $= \sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2} \sqrt{t(t-m_1)(t-m_2)(t-m_3)}$ = $r^2 \cot \frac{1}{2} A \cot \frac{1}{2} B \cot \frac{1}{2} C = 2R^2 \sin A \sin B \sin C$

 $= \pm \frac{1}{2} \{ (x_1y_2 - x_2y_1) + (x_2y_2 - x_2y_2) + (x_2y_1 - x_1y_2) \}, \text{ where}$

 $(x_1, y_1), (x_2, y_2), (x_3, y_2)$ are co-ordinates of vertices. See also p. 134.

Rectangle (Fig. 48). Area = $ab = \frac{1}{2}D^2 \sin u$. [u = angle between diagonals D, D.]

Rhombus (Fig. 49). Area = $a^2 \sin C = \frac{1}{2}D_1D_2$. [C = angle between two adjacent sides; D_1 , D_2 = diagonals.]

Parallelogram (Fig. 50). Area = $bh = ab \sin C = \frac{1}{2}D_1D_2 \sin u$. $[u = angle between diagonals <math>D_1$ and D_2 ; $D_1^2 + D_2^2 = 2(a^2 + b^2)$].

Trapesoid (Fig. 51). Area = $\frac{1}{2}(a + b)h = \frac{1}{2}D_1D_2 \sin u$. [Bases a and b are parallel; u = angle between diagonals D_1 and D_2 .]

Quadrilateral Inscribed in a Circle (Fig. 52). Area = $\frac{1}{2}D_1D_2 \sin u =$ $\sqrt{(s-a)(s-b)(s-c)(s-d)} = \frac{1}{2}(ac+bd)\sin u; \quad s = \frac{1}{2}(a+b+c+d).$ Any Quadrilateral (Fig. 53). Area = $\frac{1}{2}D_1D_2$ sin u.

Note. $a^2 + b^2 + c^2 + d^2 = D_1^2 + D_2^2 + 4m^2$, where m = distance betweenmidpoints of D_1 and D_2 .

Polygons. See table, p. 39.

Fig. 52.

Fig. 53.

F1g. 55.

Circle. Area = $\pi r^2 = \frac{1}{2}Cr = \frac{1}{2}Cd = \frac{1}{2}\pi d^2 = 0.785398d^2$ (table, p. 30). Here r = radius, d = diam., $C = \text{circumference} = 2\pi r = \pi d$ (table, p. 28). **Annulus** (Fig. 54). Area = $\pi(R^2 - r^2) = \pi(D^2 - d^2)/4 = 2\pi R'b$, where

 $R' = \text{mean radius} = \frac{1}{2}(R + r)$, and b = R - r.

Sector (Fig. 55). Area = $\frac{1}{2}rs = \pi r^2(A/360^\circ) =$ $\frac{1}{2}r^2$ rad A, where rad A = radian measure of angle A, and s = length of arc = r rad A (table, p. 44).

Segment (Fig. 56). Area = $\frac{1}{2}r^2$ (rad $A - \sin A$) = $\frac{1}{2}[r(s-c)+ch]$, where rad A = radian measure of angle A (table, pp. 34-35, 44). For small arcs, $s = \frac{1}{2}(8c'-c)$, where c' = chord of half the arc.(Huygens's approximation.) Note. $c = 2\sqrt{h(d-h)}$;

 $c' = \sqrt{dh}$ or $d = c'^2/h$, where d = diameter of circle; $h = r (1 - \cos \frac{1}{2}A), s = 2r \operatorname{rad} \frac{1}{2}A.$

Ribbon bounded by two parallel curves (Fig. 57). If a straight line AB moves so that it is always per-

Fig. 56.

Fig. 57.

pendicular to the path traced by its middle point G. then the area of the ribbon or strip thus generated is equal to the length of AB times the length of the path traced by G. (It is assumed that the radius of curvature of G's path is never less than $\frac{1}{2}AB$, so that successive positions of the generating line will not intersect.)

Simpson's Rule (Fig. 58). Divide the given area into n panels (where n is some even number) by means of n + 1 parallel lines, called ordinates, drawn at constant distance h apart; and denote the lengths of these ordinates by y_0 , y_1 , y_2 , . . , y_n . (Note that y_0 or y_n may be zero.) Then Area = $\frac{1}{2}h[(y_0 + y_n) + 4(y_1 + y_3 + y_5...)]$

 $+2(y_2+y_4+y_6...)$], approx. The greater the number of divisions, the more accurate the result. Note: Taking y = f(x), where x varies from x = a to x = b, and h = (b - a)/n, then the $\frac{1}{80} \frac{(b-a)^5}{n^4} f''''(X)$, where f''''(X) is the value of the fourth derivative of f(x) for some (unknown) value, x = X, between a and b.

Ellipse (Fig. 59; see also p. 140). Area of ellipse = πab . Area of shaded segment = $xy + ab \sin^{-1}(x/a)$. Length of perimeter of ellipse = $\pi(a + b)K$, where $K = \begin{bmatrix} 1 + \frac{1}{2}m^2 + \frac{1}{2}64m^4 + \frac{1}{2}6sm^6 + \dots \end{bmatrix}$, m = (a - b)/(a + b). For $m = 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1.0 \quad K = 1.002 \quad 1.010 \quad 1.023 \quad 1.040 \quad 1.064 \quad 1.092 \quad 1.127 \quad 1.168 \quad 1.216 \quad 1.273$

Fig. 59.

Fig. 60.

Hyperbola (Fig. 60; see also p. 144). In any hyperbola, shaded area $A = ab \log_a \left(\frac{x}{a} + \frac{y}{b}\right)$. In an equilateral hyperbola (a = b), area $A = a^2 \sinh^{-1}(y/a) = a^2 \cosh^{-1}(x/a)$. For tables of hyperbolic functions, see p. 60. Here x and y are co-ordinates of point P.

Parabola (Fig. 61; see also p. 138). Shaded area $A = \frac{1}{2}ch$. In Fig. 62, length of arc $OP = s = \frac{1}{2}PT + \frac{1}{2}p \log_e \cot \frac{1}{2}u$. Here c = any chord; p = semi-latus rectum; PT = tangent at P. Note: OT = OM = x.

Fig. 61.

Fig. 62.

Other Curves. For lengths and areas, see pp. 147-156.

SURFACES AND VOLUMES OF SOLIDS

Regular Prism (Fig. 63). Volume = $\frac{1}{2}nrah = Bh$. Lateral area = nah = Ph. Here n = number of sides; B = area of base; P = perimeter of base. **Right Circular Cylinder** (Fig. 64). Volume = $\pi r^2h = Bh$. Lateral area = $2\pi rh = Ph$. Here B = area of base; P = perimeter of base.

Fra 6

Fig. 64.

Fig. 65.

Truncated Right Circular Cylinder (Fig. 65). Volume $= \pi r^2 h = Bh$. Lateral area $= 2\pi r h = Ph$. Here $h = \text{mean height} = \frac{1}{2}(h_1 + h_2)$; B = area of base; P = perimeter of base.

Any Prism or Cylinder (Fig. 66). Volume = Bh = Nl. Lateral area = Ql. Here l =length of an element or lateral edge; B =area of base; N =area of normal section; Q =perimeter of normal section.

Any Truncated Prism or Cylinder (Fig. 67). Volume = Nl. Lateral area = Qk. Here l = distance between centers of gravity of areas of the two bases; k = distance between centers of gravity of perimeters of the two bases; N = area of normal section; Q = perimeter of normal section. For a truncated triangular prism with lateral edges a,b,c, l=k+2l(a+b+c). Note: l and k will always be parallel to the elements.

Special Ungula of a right circular cylinder. (Fig. 68.). Volume = $\frac{2}{3}r^2H$. Lateral area = 2rH. r = radius. (Upper surface is a semi-ellipse.)

Any Ungula of a right circular cylinder. (Figs. 69 and 70.) Volume = $H(3/a^3 \pm cB)/(r \pm c) = H[a(r^2 - 1/a^2) \pm r^2 c \operatorname{rad} u]/(r \pm c)$. Lateral area = $H(2ra \pm cs)/(r \pm c) = 2rH(a \pm c \operatorname{rad} u)/(r \pm c)$. If base is greater (less) s = arc of base; u = half the angle subtended by arc s at center; rad u = radian measure of angle u (see table, p. 44).

Hollow Cylinder (right and circular). Volume = $\pi h(R^2 - r^2) = \pi hb(D - b)$ = $\pi hb(d + b) = \pi hbD' = \pi hb$ (R + r). Here $h = \pi hb$ (R + r). Here $h = \pi hb$ (attitude; $r_iR(d_iD) = \pi hb$ outer radii (diameters); $h = \pi hb$ (diameters); $h = \pi hb$ (diameters) = hb

Regular Pyramid (Fig. 71). Volume = ½ altitude

Fig. 71.

Fig. 72.

Fig. 73.

 \times area of base = $\frac{1}{2}hran$. Lateral area = $\frac{1}{2}$ slant height \times perimeter of base = $\frac{1}{2}san$. Here r = radius of inscribed circle; a = side (of regular polygon); n = number of sides; $s = \sqrt{r^2 + h^2}$. Vertex of pyramid directly above center of base.

Right Circular Cone. Volume = $\frac{1}{2}\pi r^2h$. Lateral area = πrs . Here r = radius of base; h = altitude; s = slant height = $\sqrt{r^2 + h^2}$.

Frustum of Regular Pyramid (Fig. 72).

Volume = $\frac{1}{2}hran[1 + (a'/a) + (a'/a)^2].$

Lateral area = slant height \times half sum of perimeters of bases = alant height \times perimeter of mid-section = $\frac{1}{2}sn(r+r')$. Here r,r' = radii

of inscribed circles; $s = \sqrt{(r - r')^2 + h^2}$; a,a' = sides of lower and upperbases; n = number of sides.

Frustum of Right Circular Cone (Fig. 73). Volume = $\frac{1}{2\pi r^2} h [1 + (r'/r) + (r'/r)^2] = \frac{1}{2\pi} h (r^2 + rr' + r'^2) = \frac{1}{2\pi} h [(r + r')^2 + \frac{1}{2\pi} (r - r')^2]$. Lateral area = $\pi s(r + r')$; $s = \sqrt{(r - r')^2 + h^2}$.

Any Pyramid or Cone. Volume = $\frac{1}{2}Bh$. B = area of base; h = perpendicular distance from vertex to plane in which base lies.

Any Pyramidal or Conical Frustum (Fig. 74). $\frac{1}{2}h(B + \sqrt{BB'} + B') = \frac{1}{2}hB[1 + (P'/P) + (P'/P)^2].$ Here B, B' = areas of lower and upper bases; P, P' = perimeters of lower and upper bases.

Fig. 74.

Fig. 75.

Fig. 76.

Obelisk (Frustum of a rectangular pyramid. Fig. 75). Volume = $\frac{1}{2}h[(2a+a_1)b+(2a_1+a)b_1] = \frac{1}{2}h[ab+(a+a_1)(b+b_1)+a_1b_1].$

Wedge (Rectangular base; a_1 parallel to a,a and at distance h above base. Fig. 76). Volume = $\frac{1}{2}hb(2a+a_1)$.

Sphere. Volume = $V = \frac{1}{2}\pi r^3 = 4.188790r^3 = \frac{1}{2}\pi d^3 = 0.523599d^3$ (table, p. 36) = 36 volume of circumscribed cylinder. Area = $A = 4\pi r^2$ = four great circles (table, p. 30) = $\pi d^2 = 3.14159d^2 =$ lateral area of circumscribed cylinder. Here r = radius; $d = 2r = \text{diameter} = \sqrt[3]{6V/\pi} = 1.24070 \sqrt[3]{V} = \sqrt{A/\pi} = 1.24070 \sqrt[3]{V} = \sqrt{A/\pi}$ $0.56419\sqrt{A}$

Hollow Sphere, or spherical shell. Volume = $\frac{4}{3}\pi(R^3-r^3)=\frac{1}{3}\pi(D^3-d^3)=4\pi R_1^2t+\frac{1}{3}\pi t^3.$ R,r = outer and inner radii; D,d = outer and inner diameters; t = thickness = R - r; $R_1 = \text{mean radius} =$ $\frac{1}{2}(R+r)$.

Spherical Segment of One Base. Zone (spherical "cap" of Fig. 78). Volume = $\frac{1}{4\pi}h(3a^2 + h^2) = \frac{1}{4\pi}h^2(3r - h)$ (table, p. 38). Lateral area (of zone) = $2\pi rh = \pi(a^2 + h^2)$. Note: $a^2 = h(2r - h)$, where r = radius of sphere.

Any Spherical Segment. Zone (Fig. 77). Volume = $\frac{1}{24\pi}h(3a^2 + 3a_1^2 + h^2)$. Lateral area (zone) = $2\pi\tau h$. Here τ = radius of sphere. If the inscribed frustum of a cone be removed from the spherical segment, the volume remaining is $\frac{1}{2}6\pi hc^2$, where c = slantheight of frustum = $\sqrt{h^2 + (a - a_1)^2}$.

Fig. 77.

Fig. 78.

Spherical Sector (Fig. 78). Volume = $1/3r \times \text{area}$ of cap = $3/3\pi r^2 h$. Total area = area of cap + area of cone = $2\pi rh + \pi ra$. Note: a^2 = h(2r-h).

Spherical Wedge bounded by two plane semicircles and a lune. (Fig. 79.) Volume of wedge \div volume of sphere = $u/360^{\circ}$. Area of lune \div area of sphere = $u/360^{\circ}$. u = dihedral angle of the wedge.

Spherical Triangle bounded by arcs of three great circles. (Fig. 80.) Area of triangle = $\pi r^2 E/180^\circ$ = area of octant $\times E/90^\circ$. E = spherical excess = 180° – (A + B + C), where A, B, and C are angles of the triangle. See also p. 134.

Solid Angles. Any portion of a spherical surface subtends what is called a solid angle at the center of the sphere. If the area of the given

portion of spherical surface is equal to the square of the radius, the subtended solid angle is called a **steradian**, and this is commonly taken as the unit. The entire solid angle about the center is called a **steregon**, so that 4π steradians = 1 steregon. A so-called "solid right angle" is the solid angle subtended by a quadrantal (or trirectangular) spherical triangle, and a "spherical degree" (now little used) is a solid angle equal to $\frac{1}{100}$ of a solid right angle. Hence 720 spherical degrees = 1 steregon, or π steradians = 180 spherical degrees. If u = the angle

Fig. 79. Fig. 80.

which an element of a cone makes with its axis, then the solid angle of the cone contains $2\pi(1 - \cos u)$ steradians.

Regular Polyhedra. A = area of surface; V = volume; a = edge.

Name of solid (see p. 100)	Bounded by	A/a^2	V/a^s
Tetrahedron	4 triangles	1.7321	0.1179
Cube	6 squares	6.0000	1.0000
Octahedron	8 triangles	3.4641	0.4714
Dodecahedron	12 pentagons	20.6457	7.6631
Icosahedron	20 triangles	8.6603	2.1817

Ellipsoid (Fig. 81). Volume = $\frac{1}{2}\pi abc$, where a, b, c = semi-axes.

Spheroid (or ellipsoid of revolution). The volume of any segment made by two planes perpendicular to the axis of revolution may be found accurately by the prismoidal formula (p. 111).

Fig. 81.

Fig. 82.

Fig. 83.

Fig. 84.

Paraboloid of Revolution (Fig. 82). Volume = $\frac{1}{2}\pi r^2h = \frac{1}{2}$ volume of circumscribed cylinder.

Segment of Paraboloid of Revolution (Bases perpendicular to axis, Fig. 83). Volume of segment = $\frac{1}{2}\pi(R^2 + r^2)h$.

Barrels or Casks (Fig. 84). Volume = $\Re_2\pi h(2D^2+d^2)$ approx. for circular staves. Volume = $\Re_5\pi h(2D^2+Dd+3d^2)$ exactly for parabolic staves.

For a standing cask, partially full, compute contents by the prismoidal formula, p. 111. Roughly, the number of gallons, G, in a cask is given by $G = 0.0034n^2h$, where n = number of inches in the mean diameter, or 1/2(D+d), and h= number of inches in the height.

Volume = Torus, or Anchor Ring (Fig. 85). $2\pi^2 cr^2$. Area = $4\pi^2 cr$ (Proof by theorems of Pappus).

Fig. 85.

Theorems of Pappus. 1. Assume that a plane figure, area A, revolves about an axis in its plane but not cutting it; and let s = length of circular arc traced by its center of gravity. Then volume of the solid generated by A is V = As. For a complete revolution, $V = 2\pi rA$, where r = distancefrom axis to center of gravity of A.

2. Assume that a plane curve, length l, revolves about an axis in its plane but not cutting it; and let s = length of circular arc traced by its center of gravity. Then area of the surface generated by l is S = ls. For a complete revolution, $S = 2\pi r l$, where r = distance from axis to center of gravity of l.

NOTE. If V_1 or S_1 about any axis is known, then V_2 or S_2 about any parallel axis can be readily computed when the distance between the axes is known.

Generalized Theorems of Pappus. Consider any curved path of length s. If (1) a plane figure, area A [or (2) a plane curve, length l moves so that its center of gravity slides along this curved path (Fig. 86), while the plane of A [or l] remains always perpendicular to the path, then (1) the volume generated by A is V = Asand (2) the area generated by l is S = ls. The

path is assumed to curve so gradually that successive positions of A [or l] will not intersect.

The Prismoidal Formula (Fig. 87). Volume = $\frac{1}{2}h(A + B + 4M)$, where h =altitude, A and B =areas of bases and M =area of a plane section

midway between the bases. This formula is exactly true for any solid lying between two parallel planes and such that the area of a section at distance x from one of these planes is

expressible as a polynomial of tot higher than the third degree in x. approximately true for many other solids.

Simpson's Rule may be applied to finding volumes, if the ordinates y_1, y_2 , be interpreted as the areas of plane sections, at constant distance h apart (p. 106).

Cavalieri's Theorem. Assume two solids to have their bases in the same plane. If the plane section of one solid at every distance x above the base is equal in area to the plane section of the other solid at the same distance x above the base, then the volumes of the two solids will be equal. See Fig. 88.

ALGEBRA

FORMAL ALGEBRA

Notation. The main points of separation in a simple algebraic expression are the + and - signs. Thus, $a + b \times c - d + x + y$ is to be interpreted as $a + (b \times c) - (d \div x) + y$. In other words, the range of operation of the symbols \times and + extends only so far as the next + or - sign. As between the signs \times and \div themselves, $a \div b \times c$ means, properly speaking, $a \div (b \times c)$; that is, the \div sign is the stronger separative; but this rule is not always strictly followed, and in order to avoid ambiguity it is better to use the parentheses.

The range of influence of exponents and radical signs extends only over the next adjacent quantity. Thus, $2ax^3$ means $2a(x^3)$, and $\sqrt{2ax}$ means $(\sqrt{2})$ (ax). Instead of $\sqrt{2}ax$, it is safer, however, to write $\sqrt{2}ax$, or, better, $ax\sqrt{2}$.

Any expression within parentheses is to be treated as a single quantity. A horizontal bar serves the same purpose as parentheses.

The notation $a \cdot b$, or simply ab, means $a \times b$; and a : b, or a/b, means a + b. The symbol |a| means the "absolute value of a," regardless of sign; thus, |-2| = |+2| = 2.

The symbol n! (where n is a whole number) is read: "n factorial," and means the product of the natural numbers from 1 to n, inclusive. 1! = 1; $2! = 1 \times 2$; $3! = 1 \times 2 \times 3$; $4! = 1 \times 2 \times 3 \times 4$; etc.

The symbol ≠ or + means "not equal to"; ± means "plus or minus." The symbol ≈ is sometimes used for "approximately equal to."

Addition and Subtraction.
$$a + b = b + a$$
.

$$(a + b) + c = a + (b + c)$$
. $a - (-b) = a + b$. $a - a = 0$.

a + (x - y + z) = a + x - y + z, a - (x - y + z) = a - x + y - s. A minus sign preceding a parenthesis operates to reverse the sign of every term within, when the parentheses are removed.

Multiplication and Simple Factoring. ab = ba. (ab)c = a(bc). a(b+c) = ab + ac. a(b-c) = ab - ac. Also, $a \times (-b) = -ab$, and $(-a) \times (-b) = ab$; "unlike signs give minus; like signs give plus."

$$(a + b)(a - b) = a^2 - b^2$$
.

$$(a+b)^2 = a^2 + 2ab + b^2$$
, $(a-b)^3 = a^3 - 2ab + b^3$.
 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$, $(a-b)^3 = a^3 - 3a^2b + 3ab^3 - b^3$; etc.
(See table of binomial coefficients, p. 39; also p. 114.)

$$a^2 - b^2 = (a - b)(a + b),$$
 $a^3 - b^3 = (a - b)(a^2 + ab + b^3).$ $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + ... + ab^{n-2} + b^{n-1}).$

$$a^n + b^n$$
 is factorable by $a + b$ only when n is odd; thus,

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2),$$

$$a^5 + b^5 = (a + b)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)$$
; etc.

The following transformation is sometimes useful:

$$ax^{2}+bx+c=a\left[\left(x+\frac{b}{2a}\right)^{2}-\left(\frac{\sqrt{b^{2}-4ac}}{2a}\right)^{2}\right].$$

Fractions. If m is not zero, $\frac{ma + mb + mc}{mx + my} = \frac{a + b + c}{x + y}$; that is, both numerator and denominator of a fraction may be multiplied or divided by any quantity different from zero, without altering the value of the fraction.

To add two fractions, reduce each to a common denominator, and add the numerators: $\frac{a}{b} + \frac{x}{y} = \frac{ay}{by} + \frac{bx}{by} = \frac{ay + bx}{by}$.

To multiply two fractions:
$$\frac{a}{b} \times \frac{x}{y} = \frac{ax}{by}$$
; $\frac{a}{b} \times x = \frac{a}{b} \times \frac{x}{1} = \frac{ax}{b}$.

To divide one fraction by another, invert the divisor and multiply:

$$\frac{a}{b} \div \frac{x}{y} = \frac{a}{b} \times \frac{y}{x} = \frac{ay}{bx}; \quad \frac{a}{b} \div x = \frac{a}{b} \times \frac{1}{x} = \frac{a}{bx}.$$

Eatio and Proportion. The notation a:b::c:d, which is now passing out of use, is read: "a is to b as c is to d," and means simply (a/b) = (c/d), or ad = bc. a and d are called the "extremes," b and c the "means," and d the "fourth proportional" to a, b, and c. The "mean proportional" between two numbers is the square root of their product; also called the "geometric mean" of the numbers (p. 115). If a/b = c/d, then (a + b)/b = (c + d)/d, and (a - b)/b = (c - d)/d; whence also, (a + b)/(a - b) = (c + d)/(c - d). If a/x = b/y = c/z = ... = r, then

$$(a+b+c+...)/(x+y+z+...) = r.$$

Variation. The notation $x \propto y$ is read: "x varies directly as y," or "x is directly proportional to y," and means x = ky, where k is some constant. To determine the constant k, it is sufficient to know any pair of values, as x_1 and y_1 , which belong together; then $x_1 = ky_1$, and hence $x/x_1 = y/y_1$, or $x = (x_1/y_1)y$. The expression "x varies inversely as y," or "x is inversely proportional to y," means that x is proportional to 1/y, or x = k/y.

Exponents. $a^{m+n} = a^m a^n$. $a^{m-n} = a^m/a^n$. $a^0 = 1$ (if $a \neq 0$). $a^{-m} = 1/a^m$. $(a^m)^n = a^{mn}$. $a^{1/n} = \sqrt[n]{a}$. Thus: $a^{\frac{1}{2}} = \sqrt[n]{a}$, and $a^{\frac{1}{2}} = \sqrt[n]{a}$. $a^{m/n} = \sqrt[n]{a^m}$. Thus: $a^{\frac{2}{3}} = \sqrt[n]{a}$ and $a^{\frac{3}{2}} = \sqrt[n]{a}$. $(\sqrt[n]{a})^n = a$. $(ab)^n = a^n b^n$. $(a/b)^n = a^n/b^n$. $(-a)^n = a^n$ if n is even. $(-a)^n = -a^n$ if n is positive and increases indefinitely, a^n becomes infinite if a > 1, and approaches 0 if a < 1 (a being always positive). Graphs, p. 174; series, p. 160.

Eadicals. Except in the simple cases of square root and cube root, radical signs should always be replaced by fractional exponents: $\sqrt[n]{a} = a^{1/n}$. $(\sqrt{a})^n = (a^{1/n})^n = a$. If n is odd, $\sqrt[n]{-a} = -\sqrt[n]{a}$; but if n is even, $\sqrt[n]{-a}$ is imaginary. Every positive number a has two square roots, one positive and the other negative; but the notation \sqrt{a} always means the positive root; thus, $\sqrt{9} = 3$; $-\sqrt{9} = -3$. If the denominator of a fraction is of the form $\sqrt{a} \pm \sqrt{b}$, it is possible to "rationalize the denominator" by multiplying both numerator and denominator by $\sqrt{a} \mp \sqrt{b}$. Thus:

$$\frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}} = \frac{(\sqrt{a} + \sqrt{b})(\sqrt{a} + \sqrt{b})}{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})} = \frac{a + b + 2\sqrt{ab}}{a - b}$$

Logarithms. (For the use of logarithms in numerical computation, see p. 91.) The logarithm of a (positive) number N is the exponent of that power to which the base (10 or e) must be raised to produce N. Thus, $x = \log_{10} N$ means that $10^x = N$, and $x = \log_{10} N$ means that $e^x = N$. Logarithms to base 10 are called **common**, denary, or Briggsian logarithms. For table of 4-place common logarithms see pp. 40-43.

114 ALGEBRA

Logarithms to base e are called **hyperbolic**, **natural**, or **Napierian** logarithms. Here $e = 1 + 1 + 1/2! + 1/3! + 1/4! + \dots = 2.718281828459...$ For table of 4-place hyperbolic logarithms see pp. 58, 59.

If the subscript 10 or e is omitted, the base must be inferred from the context, the base 10 being used in numerical computation, and the base e in theoretical work. In either system,

$$\begin{array}{lll} \log \ (ab) &= \log a + \log b & \log \ (a^n) &= n \log a & \log \ 0 &= -\infty \\ \log \ (a/b) &= \log a - \log b & \log \ (\sqrt[n]{a}) &= (1/n) \log a & \log \ 1 &= 0 \\ \log \ (1/n) &= -\log n & \log \ (\text{base}) &= 1 & \log \infty &= \infty \end{array}$$

The two systems are related as follows:

 $\log_{10}e = M = 0.4342944819 \dots$; $\log_{1}0 = 1/M = 2.3025850930 \dots$ $\log_{10}x = 0.4343 \log_{0}x$; $\log_{0}x = 2.3026 \log_{10}x$.

For tables of multiples of M and 1/M, see p. 62. For graphs of the logarithmic and exponential functions, see p. 174; series, p. 160.

The Binomial Theorem. (For table of binomial coefficients, see p. 39 and p. 116.)

Let
$$(n)_1 = n$$
, $(n)_2 = \frac{n(n-1)}{1 \times 2}$, $(n)_3 = \frac{n(n-1)(n-2)}{1 \times 2 \times 3}$,
 $(n)_4 = \frac{n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4}$, . . .

Then, for any value of n, provided |x| < 1,

$$(1+x)^n = 1 + (n)_1x + (n)_2x^2 + (n)_3x^3 + (n)_4x^4 + \dots$$

(If n is a positive integer, the series breaks off with the term in x^n , and is valid without restrictions on x, see p. 112.)

The most useful special cases are the following:

$$\sqrt{1+x} = (1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3} - \frac{5}{128}x^{4} + \dots (|x| < 1)$$

$$\sqrt[3]{1+x} = (1+x)^{\frac{1}{3}} = 1 + \frac{1}{3}x - \frac{1}{9}x^{2} + \frac{5}{81}x^{3} - \frac{10}{243}x^{4} + \dots (|x| < 1)$$

$$\frac{1}{1+x} = (1+x)^{-1} = 1 - x + x^{2} - x^{3} + x^{4} - \dots (|x| < 1)$$

$$\frac{1}{\sqrt{1+x}} = (1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \dots (|x| < 1)$$

$$\frac{1}{\sqrt[3]{1+x}} = (1+x)^{-\frac{1}{3}} = 1 - \frac{1}{3}x + \frac{2}{9}x^2 - \frac{14}{81}x^3 + \frac{35}{243}x^4 - \dots (|x| < 1)$$

$$\sqrt{(1+x)^3} = (1+x)^{\frac{3}{2}} = 1 + \frac{3}{2}x + \frac{3}{8}x^2 - \frac{1}{16}x^3 + \frac{3}{128}x^4 - \dots (|x| < 1)$$

$$\frac{1}{\sqrt{(1+x)^3}} = (1+x)^{-\frac{3}{2}} = 1 - \frac{3}{2}x + \frac{15}{8}x^2 - \frac{35}{16}x^3 + \frac{315}{128}x^4 - \dots (|x| < 1)$$

with corresponding formulæ for $\sqrt{1-x}$, etc., obtained by reversing the signs of the odd powers of x. Also, provided |b| < |a|:

$$(a+b)^n = a^n \left(1 + \frac{b}{a}\right)^n = a^n + (n)_1 a^{n-1}b + (n)_2 a^{n-2}b^2 + (n)_3 a^{n-3}b^3 + \dots$$

where $(n)_1$, $(n)_2$, etc., have the values given above.

Arithmetical Progression. In an arithmetical progression, a; a + d; a + 2d; a + 3d; . . ., each term is obtained from the preceding term by adding a constant, called the constant difference, d. If n is the number of terms, the last term is l = a + (n - 1)d; the "average" term is $\mathcal{H}(a + b)$;

and the sum of the *n* terms is *n* times the average term, or $S = \frac{1}{2}n(a+l)$. The arithmetical mean between *a* and *b* is (a+b)/2.

Geometrical Progression. In a geometrical progression, a; ar; ar^3 ; ar^3 ; . . ., each term is obtained from the preceding term by multiplying by a constant, called the constant ratio, r. The nth term is ar^{n-1} . The sum of the first n terms is $S = a(r^n - 1)/(r - 1) = a(1 - r^n)/(1 - r)$. If r is a positive or negative fraction, that is, if -1 < r < +1, then r^n will approach zero as n increases, and the sum of n terms will approach a/(1 - r) as a limit. The **geometric mean** between a and b is \sqrt{ab} ; also called the **mean proportional** between a and b (p. 113; construction, p. 102).

The harmonic mean between a and b is 2ab/(a+b).

Summation of Certain Series by Second and Third Differences.

Let $a_1, a_2, a_3, \ldots a_n$ be any series of n numbers, as in the first column of the adjoining scheme. By subtracting each number from the next following, form the column of "first differences," and by repeating this process, form the columns of second, third, etc., differences. If the kth differences are all equal, so that subsequent differences are all zero, the original series is called an arithmetical series of the kth order. In this special case the -8 7 -12 6 series can be summed as follows: Denote the numbers -1 1 -6 6 which stand at the head of the successive columns of differences by D', D'', D''', . . . Then the nth term of the series is a_n , and the sum of the first n terms is S_n , where

$$a_{n} = a_{1} + (n-1)D' + \frac{(n-1)(n-2)}{1 \times 2}D'' + \frac{(n-1)(n-2)(n-3)}{1 \times 2 \times 3}D''' + \cdots$$

$$S_{n} = na_{1} + \frac{n(n-1)}{1 \times 2}D' + \frac{n(n-1)(n-2)}{1 \times 2 \times 3}D'' + \frac{n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4}D''' + \cdots$$

If the series is, for example, of the third order, each of these formulæ will stop with the term involving D'''; and only a few terms of the series are required for the computation of the D's. (Differentials, p. 159.)

Sum of the Squares or Cubes of the First n Natural Numbers.

$$\begin{array}{l} 1+2+3+\ldots +(n-1)+n=\frac{1}{2}n(n+1).\\ 1^2+2^3+3^2+\ldots +(n-1)^2+n^2=\frac{1}{2}n(n+1)(2n+1).\\ 1^3+2^3+3^3+\ldots +(n-1)^3+n^3=[\frac{1}{2}n(n+1)]^2. \end{array}$$

Formula for Interpolation by Second Differences. In any ordinary table giving a quantity y as a function of a variable x, let it be required to find the value of y corresponding to a value of x which is not given directly in the table, but which lies between two tabulated values, as x_1 and x_2 . If $x = x_1 + md$, where $d = x_2 - x_1 =$ the constant interval between two successive x's, and m is some proper fraction, then the corresponding value of y will be given by the formula

$$y = y_1 + mD' + \frac{m(m-1)}{1 \times 2}D'' + \frac{m(m-1)(m-2)}{1 \times 2 \times 3}D''' + \dots$$

where D', D'', D''', . . . are the first, second, third, . . . differences in the

116 ALGEBRA

series of y's which begins with y_1 (see above), provided the function is of such a nature that the differences of higher orders become negligibly small. The coefficients of D', D'', D''', . . . in the formula are the binomial coefficients for fractional values of m (see following table). The several terms of the formula (with careful attention to sign) are the successive corrections which must be added to y_1 ; the sum of these corrections should be rounded out to the nearest unit of the last significant place before adding. If D' < 4, the term involving D'', and later terms, can be neglected; the formula then reduces to $y = y_1 + mD'$, which is the familiar formula for ordinary, or "linear," interpolation. If D''' < 8 (or D''''' < 12, or D''''' < 16), the term involving D''' (or D''''', or D'''''') can be neglected.

Binomial Coefficients for Fractional Values of m

m	(m) ₂	(m) ₃	(m) ₄	(m)g
0.0	- 0,0000	0.0000	- 0,0000	0.0000
0.1	- 0.0450	0.0285	- 0.0207 l	0.0161
0.2	0.0800	0.0480	- 0.0336	0.0255
0.3	- 0.1050	0.0595	- 0.0402	0.0297
0.4	- 0.1200	0.0640	- 0.0416	0.0300
0.5	- 0.1250	0.0625	- 0.0391	0.0273
0.6	- 0.1200	0.0560	- 0.0336	0.0228
0.7	- 0.1050	0.0455	- 0.0262	0.0173
0.8	- 0.0800	0.0320	- 0.0176	0.0113
0.9	- 0.0450	0.0165	- 0.0087	0.0054

Here
$$(m)_2 = \frac{m(m-1)}{1 \times 2}$$
, $(m)_3 = \frac{m(m-1)(m-2)}{1 \times 2 \times 3}$, $(m)_4 = \frac{m(m-1)(m-2)(m-3)}{1 \times 2 \times 3 \times 4}$, etc.

Compare p. 39.

Permutations. The number of possible permutations or arrangements of n different elements is $1 \times 2 \times 3 \times \ldots \times n = n!$ (read: "n factorial"). If among the n elements there are p equal ones of one sort, q equal ones of another sort, r equal ones of a third sort, etc., then the number of possible permutations is $(n!)/(p! \times q! \times r! \times \ldots)$, where $p+q+r+\ldots=n$.

Combinations. The number of possible combinations or groups of n elements taken r at a time (without repetition of any element within any one group), is $[n(n-1)(n-2)(n-3) \dots (n-r+1)]/(r!) = (n)_r$. (See table of binomial coefficients, p. 39.) If repetitions are allowed, so that a group, for example, may contain as many as r equal elements, then the number of combinations of n elements taken r at a time is $(m)_r$, where m = n + r - 1. Note: $(n)_1 + (n)_2 + \dots + (n)_n = 2^n - 1$.

SOLUTION OF EQUATIONS IN ONE UNKNOWN QUANTITY

Roots of an Equation. An equation containing a single variable x will in general be true for some values of x and false for other values. Any value of x for which the equation is true is called a **root** of the equation. To "solve" an equation means to find all its roots. Any root of an equation, when substituted therein for x, will "satisfy" the equation. An equation which is true for all values of x, like $(x+1)^2 = x^2 + 2x + 1$, is called an **identity** [often written $(x+1)^2 \equiv x^2 + 2x + 1$].

Types of Equations.

(a) Algebraic Equations:

of the first degree (linear), e.g., 2x + 6 = 0 (root: x = -3);

of the second degree (quadratic), e.g., $x^2 - 2x - 3 = 0$ (roots: -1, 3); of the third degree (cubic), e.g., $x^2 - 6x^2 + 5x + 12 = 0$ (roots: -1, 3, 4).

(b) Transcendental Equations:

exponential equations, e.g., $2^x = 32$ (root: x = 5); $2^x = -32$ (no root); trigonometric equations, e.g., $10 \sin x - \sin 3x = 4$ (roots: 30°, 150°).

Legitimate Operations on Equations. An equation which is true for a particular value of x will remain true for that value of x after any one of the following operations is performed:

Adding any quantity to both sides; subtracting any quantity from both sides; transposing any term from one side to the other, provided its sign be changed; multiplying or dividing both sides by any quantity which is not zero; changing the signs of all the terms; raising both sides to any positive integral power; extracting any odd root of both sides; extracting any even root of both sides, provided the ± sign is used; taking the logarithms of both sides (both sides being positive); taking the sin, cos, tan, etc., of both

Notice, however, that the new equation obtained by some of these operations may possess "additional roots" which did not belong to the original equation. This occurs especially when both sides are squared; thus, x = -2 has only one root, namely, -2; but $x^2 = 4$, obtained by squaring, has not only the root -2 but also another root, +2.

Equations of the First Degree (Linear Equations). Solution: Collect all the terms involving x on one side of the equation, thus: ax = b, where **a** and b are known numbers. Then divide through by the coefficient of x, obtaining x = b/a as the root.

Equations of the Second Degree (Quadratic Equations). Solution: Throw the equation into the standard form $ax^2 + bx + c = 0$. Then the two roots are:

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

The roots are real-and-distinct, coincident, or imaginary, according as $b^2 - 4ac$ is positive, zero, or negative. The sum of the roots is $x_1 + x_2$ = -b/a; the product of the roots is $x_1x_2 = c/a$.

GRAPHICAL SOLUTION. Write the equation in the form $x^2 = px + q$, and plot the parabola $y_1 = x^2$, and the straight line $y_2 = px + q$. The abscisse of the points of intersection will be the roots of the equation. If the line does not cut the parabola, the roots are imaginary.

Equations of the Third Degree with Term in x2 Absent. Solution: After dividing through by the coefficient of x^3 , any equation of this type can be written $x^2 = Ax + B$. Let p = A/3 and q = B/2. The general solution is as follows:

Case 1.
$$q^2 - p^2$$
 positive. One root is real, namely $x_1 = \sqrt[3]{q + \sqrt{q^2 - p^2}} + \sqrt[3]{q - \sqrt{q^2 - p^2}}$; the other two roots are imaginary.

Case 2. $q^2 - p^3 = zero$. Three roots real, but two of them equal.

$$x_1 = 2 \sqrt[3]{q}, \ x_2 = -\sqrt[3]{q}, \ x_3 = -\sqrt[3]{q}.$$

 $x_1=2\sqrt[3]{q},\ x_2=-\sqrt[3]{q},\ x_3=-\sqrt[3]{q}.$ Case 3. q^2-p^3 negative. All three roots real and distinct. Determine an angle u between 0 and 180°, such that $\cos u = q/(p\sqrt{p})$. Then $x_1 = 2\sqrt{p}\cos(u/3), x_2 = 2\sqrt{p}\cos(u/3 + 120^\circ), x_3 = 2\sqrt{p}\cos(u/3 + 240^\circ).$

GRAPHICAL SOLUTION. Plot the curve $y_1 = x^2$, and the straight line $y_2 = Ax + B$. The abscisse of the points of intersection will be the roots of the equation.

Equations of the Third Degree (General Case). Solution: The general cubic equation, after dividing through by the coefficient of the highest 118 ALGEBRA

power, may be written $x^3 + ax^2 + bx + c = 0$. To get rid of the term in x^2 , let $x = x_1 - a/3$. The equation then becomes $x_1^2 = Ax_1 + B$, where $A = 3(a/3)^2 - b$, and $B = -2(a/3)^3 + b(a/3) - c$. Solve this equation for x_1 , by the method above, and then find x itself from $x = x_1 - (a/3)$.

Graphical Solution. Without getting rid of the term in x^2 , write the equation in the form $x^2 = -a[x + (b/2a)]^2 + [a(b/2a)^2 - c]$, and solve by the graphical method.

General Properties of Algebraic Equations. An algebraic equation of the nth degree in x is an equation of the type

$$a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_{n-1}x + a_n = 0$$

where the a's are any given numbers (a_0 not zero), the expression on the left being called a **polynomial** of the nth degree in x. Such an equation will, in general, have n roots; but some of these n roots may be equal, and some may be imaginary. **Imaginary roots** always occur in pairs.

If the equation is written in the form: (a polynomial in x) = 0, then (1) if a is a root of the equation, x - a is a factor of the polynomial; (2) if the polynomial can be factored in the form (x - p)(x - q)(x - r). . . = 0, each of the quantities p, q, r, . . . is a root of the equation; (3) if x is very large (either positive or negative), the higher powers of x are the most important; (4) if x is very small, the higher powers may be neglected.

Short Method of Substitution in a Polynomial. To find the value of $4x^4 - 14x^3 + 23x - 26$ when x = 3, for example, first arrange the terms in order of descending powers of x, and write the detached coefficients, with their signs, in a row, taking care to supply

a zero coefficient for any missing term, in-4 -14 0 23 -26 (3 cluding the constant term. Then, beginning at the left, bring down the first coefficient; $-\frac{12}{6}$ $-\frac{18}{5}$ 15 multiply this by 3, and add to the second 4 -2 -6 5 -11 coefficient; multiply this result by 3 again,

and add to the third coefficient; and so on. The final result, -11, is the value of the polynomial when x=3.

Short Method of Dividing a Polynomial by x - a. The device just explained gives not only the value of the polynomial when x = 3, but also the result of dividing the polynomial by x - 3. Thus, in the case illustrated, the quotient is $4x^3 - 2x^2 - 6x + 5$ and the remainder is -11. That is, $4x^4 - 14x^5 + 0x^2 + 23x - 26 = (x - 3)(4x^3 - 2x^2 - 6x + 5) - 11$.

Exponential Equations. To solve an equation of the form $a^x = b$, take the logarithms of both sides: $x \log a = \log b$, whence $x = (\log b)/(\log a)$. For example, if $3^x = 0.4$, $x = \log 0.4/\log 3 = (0.6021 - 1)/0.4771 = -0.3979/0.4771 = -0.8340$. Notice that the complete logarithm must be taken, not merely the mantissa.

Trigonometric Equations. (1) To solve $a \cos x + b \sin x = c$, where a and b are positive: Find the acute angle u for which $\tan u = b/a$, and the angle v (between 0 and 180°) for which $\cos v = c/\sqrt{a^2 + b^2}$. Then $x_1 = u + v$ and $x_2 = u - v$ are roots of the equation.

(2) To solve $a \cos x - b \sin x = c$, where a and b are positive: Find u and v as above. Then $x_1 = -(u + v)$ and $x_2 = -(u - v)$ are roots of the equation.

General Method of Solution by Trial and Error. This method is applicable to a numerical equation of any form, and can be carried out to any desired degree of approximation. It is especially useful when a first approximation to a root is already known. Write the equation in the form

f(x) = 0, where f(x) means any function of x, and plot the curve y = f(x) for a sufficient number of values of x to obtain a general idea of the shape of the curve. Then pick out the regions in which the curve appears to cross the axis of x, and plot the curve more accurately in each of these regions. Thus, by successive approximations, plotting the important parts of the curve on a larger and larger scale, determine as accurately as necessary the points where the curve crosses the axis—that is, the values of x which make f(x) equal to zero.

Thus, suppose that f(x) = 3.0 when x = 2.6 and -5.0 when x = 2.7 (see Fig. 1). Then the curve must cross the axis somewhere between x = 2.6 and x = 2.7; and since it will not vary greatly from a straight line between those points, it is seen that it must

cross near 2.64. Suppose the value of f(x) when computed for x = 2.64, is -0.2, and when computed for x = 2.63 is +0.7; then the root lies between x = 2.63 and 2.64. Plotting this section on the larger scale, it is seen that the next guess should be about 2.638; and so on.

Instead of writing the original equation with all the terms on the left-hand side, it is often better to divide the expression into two parts, say $f_1(x)$ and $f_2(x)$, writing the equation in the form $f_1(x) = f_2(x)$. If then the two curves $y_1 = f_1(x)$ and $y_2 = f_2(x)$ be plotted separately, on the same diagram, the value of x corresponding to their point of intersection will be the desired root.

SOLUTION OF SIMULTANEOUS EQUATIONS

The Meaning of a System of Simultaneous Equations. To solve a system of n simultaneous equations in n unknowns, means to find all the sets of values of the unknowns (if any) which, when substituted in the given equations, will satisfy all the equations at the same time. If a system of equations has no solution, the equations are "inconsistent;" if it has an infinite number of solutions, the equations are "not all independent."

Simultaneous Equations of the First Degree in Two Unknowns.

Factors

Here (1) is multiplied by b_2 , (2) by $-b_1$, and the products added so as to eliminate y; again, (1) is multiplied by $-a_2$, (2) by a_1 , and the products added so as to eliminate x. (The process is most conveniently performed as follows: Write the multipliers, as b_2 and $-b_1$, at the right of the equations; multiply the first term of each equation by its proper multiplier and add; then multiply the second term of each equation by its proper multiplier, and add; and so on. This is simpler than the common practice of multiplying out each equation separately before adding.) If $a_1b_2 - a_2b_1 = 0$, the equations have no solution when $c_1 \neq c_2$, and an infinite number of solutions when

120 ALGEBRA

 $c_1 = c_2$. The following special solution is possible when the sum and difference of the two unknowns are given:

Let
$$x + y = m$$
 (1)
and $x - y = n$ (2)
(1) + (2): $2x = m + n$ $\therefore x = \frac{1}{2}(m + n)$
(1) - (2): $2y = m - n$ $\therefore y = \frac{1}{2}(m - n)$

Simultaneous Equations of the Second Degree in Two Unknowns.

(a) When the product of the unknowns, and their sum or difference, are given:

(b) When the product and the sum of the squares are given:

$$xy = 5 (1) \sqrt{(4)} : x + y = 6 \text{ or } 6 \text{ or } -6 \text{ or } -6$$

$$x^{2} + y^{2} = 26 (2) \sqrt{(5)} : x - y = 4 \text{ or } -4 \text{ or } -4$$
From (1),
$$2xy = 10 (3) \qquad \therefore x = 5 \text{ or } 1 \text{ or } -1 \text{ or } -5$$

$$(2) + (3) : x^{2} + 2xy + y^{2} = 36 (4) \qquad \therefore y = 1 \text{ or } -5 \text{ or } -1$$

$$(2) - (3) : x^{2} - 2xy + y^{2} = 16 (5)$$

(c) When the sum or difference, and the sum of the squares, are given:

Then proceed as in case (a), above. Then proceed as in case (a), above.

(d) When one equation is of the first degree and the other of the second, as ax + by = c, and $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$: Solve the first equation for y in terms of x, and substitute in the second. This will give a quadratic equation in x. Solve this quadratic for the two values of x, and for each of these values of x find the corresponding value of y by substituting in the equation of the first degree.

Simultaneous Equations of the First Degree in n Unknowns. For example:

(j)
$$595x = 595;$$
 $\therefore x = 1;$ $5y = 65 - 55x = 65 - 55 = 10;$ $\therefore y = 2;$ $19z = 12 + 19x + 13y = 12 + 19 + 26 = 57;$ $\therefore z = 3;$ $2w = 3 - 4x - 3y + 5z = 3 - 4 - 6 + 15 = 8;$ $\therefore w = 4.$

Here w is eliminated from (a) and (b), obtaining (e); from (a) and (c), obtaining (f); and from (a) and (d), obtaining (g). Then z is eliminated from (e) and (f), obtaining (h), and from (e) and (g), obtaining (f). Then g is eliminated from (h) and (f), obtaining (f), which contains only the single variable x. Hence x = 1. Now substituting this value of x in either (h) or (f), g is found; substituting these values of x and g in either (e), (f), or (g), g is found; and so on. (Solution by determinants, see p. 123.)

Approximate Solution of a Set of Simultaneous Equations of the First Degree When the Number of Equations is Greater Than the Number of Unknowns. (Method of Least Squares.)

Case 1. Single Unknown Quantity. Given n equations in one unknown x; for example, n equally careful, independent measurements of some physical quantity:

$$x = x_1, x = x_2, \ldots x = x_n.$$

As the "best" value of x, take the arithmetic mean, x_0 , of the several determinations, namely, $x_0 = (x_1 + x_2 + \ldots + x_n)/n$. The quantities $v_1 = x_0 - x_1$, $v_2 = x_0 - x_2$, ... $v_n = x_0 - x_n$ are called the **residuals** of the observed values with respect to x_0 , and their absolute values (that is, their numerical values without regard to sign) are denoted by $|v_1|$, $|v_2|$, ... $|v_n|$. [It can be shown that the sum of the squares of the residuals with respect to x_0 is smaller than the sum of the squares of the residuals with respect to any other value x'_0 ; hence the name of the method: "least squares."]

The quantities r and r_0 , defined exactly by Bessel's formulæ:

$$r = \frac{0.6745}{\sqrt{n-1}} \sqrt{v_{1}^{2} + v_{2}^{2} + \dots + v_{n}^{2}},$$

$$r_{0} = \frac{0.6745}{\sqrt{n(n-1)}} \sqrt{v_{1}^{2} + v_{2}^{2} + \dots + v_{n}^{2}},$$

or given approximately by the simpler formulæ of Peters:

$$r = \frac{0.8453}{\sqrt{n(n-1)}} (|v_1| + |v_2| + \dots + |v_n|),$$

$$r_0 = \frac{0.8453}{n\sqrt{n-1}} (|v_1| + |v_2| + \dots + |v_n|),$$

are called the probable error of a single observation (r), and the probable error of the mean (r_0) , for the given series of observations. Note that $r_0 = r/\sqrt{n}$. For tables of the coefficients, see p. 63. This quantity r (or r_0) is best regarded as merely a conventional means of recording the relative precision of different sets of observations. If r is small, it may be inferred that most errors of the "accidental" class have been eliminated; but it should be especially noted that the smallness of r gives no information in regard to "constant" or "systematic" errors.

A statement like "x is equal to 2.36 with a probable error of 0.02," is written: $x = 2.36 \pm 0.02$, and is usually understood to mean that the true value of x, as far as can be told, is just as likely to lie inside as outside the interval from 2.34 to 2.38.

122 ALGEBRA

To test the **distribution of residuals**, arrange the residuals in order of magnitude, without regard to sign, and count the number, p, of residuals which are numerically less than some assigned value a; divide p by p, the total number of observations, and divide p by p, the probable error of a single observation. Do this for various values of p, and compare the results with the table on p. 63, which gives the standard distribution of residuals, as found from experience from a large number of different series of observations. In particular, the number of residuals numerically less than p should be about equal to the number numerically greater than p (if p is large). If any large discrepancy appears, the series of observations should be regarded as unsatisfactory.

Note. The "mean square error" sometimes met with is equal to the probable error divided by 0.6745.

Case 2. Several Unknown Quantities. Assume that there have been obtained by measurement or observation n different equations of the first

Given Equations $a_1x + b_1y + c_1z = p_1$ $a_2x + b_2y + c_2z = p_2$ $a_nx + b_ny + c_nz = p_n$

degree involving, say, three unknown quantities, x, y, z. There are then n simultaneous equations in three unknowns, and if n > 3 there will be, in general, no set of values of x, y, z which will satisfy all these n equations exactly. In such a case, the "best" set of values, x_0, y_0, z_0 , may be found by the method of least squares as follows. (The

process usually involves a large amount of labor; the use of a computing machine is advisable.)

First, arrange the n given equations in the form indicated, being careful not to modify any of them by multiplication or division. (Any of the coefficients may of course be zero.)

Next, form the three "normal equations" as follows: (1) Multiply each of the given equations by the coefficient of x in that equation, and add; the result will be the first normal equation.

Normal Equations $[aa]x_0 + [ab]y_0 + [ac]z_0 = [ap]$ $[ba]x_0 + [bb]y_0 + [bc]z_0 = [bp]$ $[ca]x_0 + [cb]y_0 + [cc]z_0 = [cp]$

(2) Multiply each of the given equations by the coefficient of y in that equation, and add; the result will be the second normal equation. (3) Similarly for the third. { Notation: $[aa] = a_1^2 + a_2^2 + \dots + a_n^2$;

 $[ab] = a_1b_1 + a_2b_2 + \dots + a_nb_n;$ $[ap] = a_1p_1 + a_2p_2 + \dots + a_np_n;$ etc. Finally, solve the three normal equations for the three unknowns in the usual way.

The quantities $v_1 = a_1x_0 + b_1y_0 + c_1z_0 - p_1$, etc., are called the **residuals** with respect to x_0, y_0, z_0 . [It can be shown that the sum of the squares of the residuals with respect to x_0, y_0, z_0 is smaller than the corresponding quantity with respect to any other set of values, x'_0, y'_0, z'_0 ; this relation is taken as the criterion for the "best" set of values of x, y, z.]

The probable error of a single observation is

$$r = \frac{0.6745}{\sqrt{n-m}} \sqrt{v_{1}^{2} + v_{2}^{2} + \dots + v_{n}^{2}}, \text{ or approximately,}$$

$$r = \frac{0.8453}{\sqrt{n(n-m)}} (|v_{1}| + |v_{2}| + \dots + |v_{n}|),$$

where m = the number of unknown quantities (here m = 3).

DETERMINANTS

Determinants are used chiefly in formulating theoretical results; they are seldom of use in numerical computation.

Evaluation of Determinants:

Of the second order:

$$\begin{vmatrix} a_1b_1 \\ a_2b_2 \end{vmatrix} = a_1b_2 - a_2b_1$$

Of the third order:

$$\begin{vmatrix} a_1b_1c_1 \\ a_2b_2c_2 \\ (a_3b_3c_3) \end{vmatrix} = a_1\begin{vmatrix} b_2c_2 \\ b_3c_3 \end{vmatrix} - a_2\begin{vmatrix} b_1c_1 \\ b_3c_3 \end{vmatrix} + a_3\begin{vmatrix} b_1c_1 \\ b_2c_2 \end{vmatrix}$$

$$= a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1)$$

Of the fourth order:

$$\begin{vmatrix} a_1b_1c_1d_1 \\ a_2b_2c_2d_2 \\ a_3b_2c_3d_3 \\ a_4b_4c_3d_4 \end{vmatrix} = a_1\begin{vmatrix} b_2c_2d_2 \\ b_2c_3d_3 \\ b_4c_4d_4 \end{vmatrix} - a_2\begin{vmatrix} b_1c_1d_1 \\ b_2c_3d_2 \\ b_4c_3d_4 \end{vmatrix} + a_3\begin{vmatrix} b_1c_1d_1 \\ b_2c_3d_2 \\ b_4c_3d_4 \end{vmatrix} - a_4\begin{vmatrix} b_1c_1d_1 \\ b_2c_3d_2 \\ b_4c_3d_4 \end{vmatrix}$$

etc. In general, to evaluate a determinant of the nth order, take the elements of the first column with signs alternately plus and minus, and form the sum of the products obtained by multiplying each of these elements by its corresponding **minor**. The minor corresponding to any element a_1 is the determinant (of next lower order) obtained by striking out from the given determinant the row and column containing a_1 .

Properties of Determinants.

1. The columns may be changed to rows and the rows to columns:

$$\begin{vmatrix} a_1b_1c_1 \\ a_2b_2c_2 \\ a_2b_3c_3 \end{vmatrix} = \begin{vmatrix} a_1a_2a_3 \\ b_1b_2b_3 \\ c_1c_2c_3 \end{vmatrix}$$

- 2. Interchanging two columns changes the sign of the result.
- 3. If two columns are equal, the determinant is zero.
- 4. If the elements of one column are m times the elements of another column, the determinant is zero.
- 5. To multiply a determinant by any number m, multiply all the elements of any one column by m.

6.
$$\begin{vmatrix} a_1 + p_1 + q_1, & b_1 & c_1 \\ a_2 + p_2 + q_2, & b_2 & c_2 \\ a_3 + p_3 + q_3, & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1b_1c_1 \\ a_2b_2c_2 \\ a_3b_3c_3 \end{vmatrix} + \begin{vmatrix} p_1b_1c_1 \\ p_2b_2c_2 \\ p_3b_3c_3 \end{vmatrix} + \begin{vmatrix} q_1b_1c_1 \\ q_2b_2c_2 \\ q_3b_3c_3 \end{vmatrix}$$

7.
$$\begin{vmatrix} a_1b_1c_1 \\ a_2b_2c_2 \\ a_3b_3c_3 \end{vmatrix} = \begin{vmatrix} a_1 + mb_1, b_1 & c_1 \\ a_2 + mb_2, b_2 & c_2 \\ a_3 + mb_3, b_3 & c_3 \end{vmatrix}$$

Solution of Simultaneous Equations by Determinants.

If
$$a_1x + b_1y + c_1z = \mathbf{p}_1$$
 $a_2x + b_2y + c_2z = \mathbf{p}_2$ where $D = \begin{vmatrix} a_1b_1c_1 \\ a_2b_2c_2 \\ a_3b_2c_3 \end{vmatrix} \neq 0$,

then $x = D_1/D$,
 $y = D_2/D$, where $D_1 = \begin{vmatrix} \mathbf{p}_1b_1c_1 \\ \mathbf{p}_2b_2c_2 \\ \mathbf{z} = D_3/D$,
 $D_2 = \begin{vmatrix} a_1\mathbf{p}_1c_1 \\ a_2\mathbf{p}_2c_2 \\ a_3b_3c_3 \end{vmatrix} = \begin{vmatrix} a_1\mathbf{p}_1c_1 \\ a_2\mathbf{p}_2c_2 \\ a_3\mathbf{p}_3c_3 \end{vmatrix}$

Similarly for a larger (or smaller) number of equations.

THE ALGEBRA OF IMAGINARY OR COMPLEX QUANTITIES

In the algebra of imaginary or complex quantities, the objects on which the operations of the algebra are performed are not numbers in any ordinary sense of the word, but are best thought of as **points** in a plane (or as **vectors** drawn from a fixed origin to these points). The "**complex plane**" is determined by three fundamental points, O, U, i, arranged as in Fig. 2 and called the **zero point**, the **unit point**, and the **imaginary unit point**, respectively. All points on the line through O and U are called **real points**—positive if

on the right of O, negative if on the left. All theremaining points in the plane are called **imaginary points**—those on the line through O and i being called the **pure imaginary points**.

The position of any point A in the plane may be determined by the distance from the origin O, measured in terms of OU as the unit length, and the angle φ which OA makes with the positive direction of the axis of reals. The distance r is sometimes called the modulus or absolute value of the point; the angle φ is sometimes called

Fig. 2.

the amplitude or argument of the point. The notation $A = (3, \angle 120^{\circ})$ means the point whose distance, r, is 3 times OU, and whose angle, φ , is 120°. The development of the algebra depends wholly on the definitions of three fundamental operations denoted by A + B, $A \times B$, and e^A , as follows.

Addition and Subtraction. The sum, A+B, of two points A and B is defined as the point reached by starting from A and performing a journey equal in length and direction to the journey from O to B. That is, the vector

from O to A + B is the vector sum of the vectors OA and OB. In case A and B are not in line with O, the point A + B is the fourth vertex of a parallelogram of which OA and OB are the sides (Fig. 3). Conversely, if any two points A and B are given, there is a definite point X such that A = B + X; this point X is called the **remainder**, A minus B, and is denoted by A - B. The point O - B is denoted for brevity

by -B. With these definitions of A + B and A - B, all the ordinary laws of addition and subtraction that hold in the algebra of real numbers hold also in the algebra of complex quantities. In particular, the zero point O has all the formal properties of the number zero, and is denoted by O.

[Note: If A and B are "real" points, A + B and A - B will also be real.

Repeated Addition. Multiples and Submultiples. The point $A + A + A + \dots + A$ to n terms is called the **nth multiple of A** and is denoted by nA. The points U, 2U, 3U, ... are denoted, for brevity, by 1, 2, 3, ... Conversely, if any point A, and any positive integer n are given, there is a definite point X such that nX = A; this point X is called the **nth submultiple of A**, and is denoted by

point X is called the **nth submultiple of A**, and is denoted by A/n. The points U/2, U/3, . . . are denoted, for brevity, by 1/2, 1/2, . . .

Multiplication and Division. The product, $A \times B$, or $A \cdot B$, or $A \cdot B$, or $A \cdot B$, of two points A and B is defined as the point whose angle is the sum of the angles of the given points, and whose distance is the product of the distances. (See Fig. 4.) Thus, if $A = (5, <120^{\circ})$ and $B = (2, <270^{\circ})$, then $AB = (10, <30^{\circ})$. Conversely, if any two points A and B are given, provided B is not zero, there is a definite point X such that

Fig. 4.

A = BX. This point X is called the quotient, A divided by B, and is denoted by A/B (where $B \neq 0$). Thus, the point A/B is a point whose angle is the angle of A minus the angle of B, and whose distance is the distance of A divided by the distance of B. The point U/B $(B \neq 0)$ is called the **reciprocal** of the point B, and is denoted by 1/B. (See Fig. 5.) With these definitions of AB and A/B the elementary laws of multiplication and division that hold in the algebra of real numbers hold also in the algebra of complex quantities. In particular, the point U has all the formal properties of the number unity, and is denoted by 1.

[Note: If A and B are real, AB and A/B will also be real.] Repeated Multiplication. Powers and Roots. point $A \times A \times A \times \dots \times A$ to n factors is called the nth power of A and is denoted by A^n (Fig. 6). Conversely,

if any point A (not 0) and any positive integer n are given, there will be n distinct points X such that $X^n = A$; each of these points is called an nth root of A, some one of them, usually the one with the smallest positive angle, being de-

[Note: If A is real and positive, $\sqrt[n]{A}$ will be real and positive; if A is real and negative, $\sqrt[n]{A}$ will be real if n. is odd and imaginary if n is even.

Properties of i. The point i is the point whose distance is 1 and whose angle is 90 deg. It follows from the definition above that **multiplying any point** \triangle by i has the effect of rotating the point through an angle of + 90° without changing its distance from O. In particular,

$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, etc.; $i = \sqrt{-1}$, $-i = -\sqrt{-1}$; where "1" denotes not the number one, but the point U .

Similarly, multiplying any point A by -1 has the effect of rotating the point through 180 deg.

First Standard Form for a Complex Quantity (Fig. 8). Any point A can be expressed in the form x + iy, where x and y are real points. For example, the three cube roots of 1 are 1, $-\frac{1}{2} + \frac{1}{2}i\sqrt{3}$, and $-\frac{1}{2} - \frac{1}{2}i\sqrt{3}$.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

126 ALGEBRA

In general,
$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2);$$

 $(x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_2y_1 + x_1y_2);$

$$\frac{x_1 + iy_1}{x_2 + iy_2} = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i \frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}.$$

If two complex quantities are equal, their real parts must be equal, and the coefficients of their pure imaginary parts must also be equal. That is, if $x_1 + iy_1 = x_2 + iy_2$, then $x_1 = x_2$ and $y_1 = y_2$. Thus a single equation between complex quantities is equivalent to two equations between real quantities.

Conjugate Imaginaries. Two points A = x + iy and B = x - iy are called conjugate imaginaries. Two such points are symmetrically situated with regard to the axis of reals. The sum and product of two conjugate imaginaries will be real.

Second Standard Form for a Complex Quantity. Since $x = r \cos \varphi$ and $y = r \sin \varphi$, any point A = x + iy can be expressed $A = r (\cos \varphi + i \sin \varphi)$, where r is real and positive (namely, the distance of A), and φ is real (namely the angle of A). For example, the three cube roots of 1 are 1, $\cos 120^{\circ} + i \sin 120^{\circ}$, and $\cos 240^{\circ} + i \sin 240^{\circ}$. In general, $[r_1 (\cos \varphi_1 + i \sin \varphi_1)] [r_2 (\cos \varphi_2 + i \sin \varphi_2)] = r_1 r_2 [(\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2)]; [r(\cos \varphi + i \sin \varphi)]^n = r^n [\cos(n\varphi) + i \sin (n\varphi)]$ (De Moivre's Theorem).

The Exponential Function, e^A , or $\exp A$, of any point A = x + iy is defined as the point whose distance is e^x and whose angle (measured in radians) is y. That is, $e^{x+iy} = e^x(\cos y + i \sin y)$. Here e^x means the ordinary exponential function of the real quantity x, where $e^x = 2.718$.

From this definition, the usual formal laws of exponents can be deduced: $e^A e^B = e^{A+B}$, $(e^A)^n = e^{nA}$, $e^{-A} = 1/e^A$; $e^1 = e$, $e^0 = 1$.

The function e^A is a periodic function with a pure imaginary period $2\pi i$; that is, $e^A \pm k^2 \pi^i = e^A$, where k is any positive integer.

If A is made to move along a line parallel to the axis of reals [or axis of pure imaginaries], the corresponding point e^A will move along a straight line through O [or along a circle about O as center].

Properties of e^{i\varphi}. The point $e^{i\varphi}$ is a point whose distance is 1 and whose angle is φ . It follows from the definitions above that multiplying any point A by $e^{i\varphi}$ has the effect of rotating the point through an angle φ , without changing its distance from O. In particular, $e^{i\pi} = -1$, $e^{-i\pi} = -1$: $e^{i\pi/2} = i$; $e^{-i\pi/2} = -i$; $e^{2\pi i} = 1$.

Third Standard Form for a Complex Quantity. Any point A can be expressed in the form $A = re^{i\varphi}$, where r is the distance and φ the angle of the point. For example, the three cube roots of 1 are 1, $e^{\frac{i\pi r}{2}}$, $e^{\frac{i\pi r}{2}}$. In general,

$$(r_1e^{i\varphi_1})(r_2e^{i\varphi_2}) = (r_1r_2)e^{i(\varphi_1+\varphi_2)}; \quad (re^{i\varphi})^n = (r^n)e^{in\varphi}.$$
 If $x + iy = re^{i\varphi}$, then $r = \sqrt{x^2 + y^2}$, $\sin \varphi = \frac{y}{x}$, $\cos \varphi = \frac{x}{x}$, $\tan \varphi = \frac{y}{x}$.

If two complex quantities are equal, their distances will be equal, and their angles will differ at most by some multiple of 2π . Thus, if $r_1e^{i\varphi_1} = r_2e^{i\varphi_1}$ then $r_1 = r_2$ and $\varphi_1 = \varphi_2$ or $\varphi_2 \pm k2\pi$. Here again a single equation between complex quantities is equivalent to two equations between real quantities.

Definition of A^B. Let $A = re^{i\varphi}$; then $A^B = \exp[(\log_e r + i\varphi)B]$.

For example, $i^i = e^{-\pi/2}$ where $i = \sqrt{-1}$.

If a is a positive real, $a^{x+iy} = a^x [\cos(y \log_{\theta} a) + i \sin(y \log_{\theta} a)].$

Trigonometric and Hyperbolic Functions of a Complex Variable. If A is any point, then, by definition,

$$\sin A = \frac{e^{iA} - e^{-iA}}{2i}, \quad \cos A = \frac{e^{iA} + e^{-iA}}{2}, \quad \tan A = \frac{\sin A}{\cos A} \quad (\cos A \neq 0);$$

$$\sinh A = \frac{e^{A} - e^{-A}}{2}, \quad \cosh A = \frac{e^{A} + e^{-A}}{2}, \quad \tanh A = \frac{\sinh A}{\cosh A}.$$

Hence the formulæ that hold for these functions in the real case (p. 131; p. 135; p. 161) hold also for the complex case. Further:

$$\sin (x + iy) = \sin x \cosh y + i \cos x \sinh y,$$
 $\sin iy = i \sinh y;$
 $\cos (x + iy) = \cos x \cosh y - i \sin x \sinh y,$ $\cos iy = \cosh y;$
 $\sinh (x + iy) = \sinh x \cos y + i \cosh x \sin y,$ $\sinh iy = i \sin y;$
 $\cosh (x + iy) = \cosh x \cos y + i \sinh x \sin y,$ $\cosh iy = \cos y;$

where $\sin x$, $\sinh x$, etc., are the ordinary trigonometric and hyperbolic functions of the real variables x and y. The functions $\sin A$ and $\cos A$ are periodic with a real period 2π . The functions $\sinh A$ and $\cosh A$ are periodic with a pure imaginary period $2\pi i$.

Logarithmic and Other Inverse Functions of a Complex Variable. If any point A is given, there will be an infinite number of points X such that $e^X = A$; any one of these points may be called a logarithm of A, and be denoted by $\log A$. All the values of the logarithm of A may be obtained from any one value by adding multiples of $2\pi i$.

If $x + iy = re^{i\varphi}$, then $\log_e(x + iy) = \log_e r + i\varphi \pm k \cdot 2\pi i$.

If any point A is given, there will be an infinite number of points X such that $\sin X = A$; any one of these may be denoted by $\sin^{-1} A$. The functions $\cos^{-1} A$, $\sinh^{-1} A$, etc., are defined in a similar way.

The elementary laws of operation which hold for these functions in the algebra of reals hold also, in a general way, in the algebra of complex quantities; but caution must be used, on account of the ambiguity in the symbols $\log A$, $\sin^{-1}A$, etc., which denote many-valued functions.

Differentiation of Functions of a Complex Variable. If w = f(z), the derivative of w with respect to z is defined as

 $dw/dz = \lim \{ [f(z + \Delta z) - f(z)]/\Delta z \}$ when Δz approaches 0.

It can be shown that $\lim \{[\exp \Delta z - 1]/\Delta z\} = 1$; hence $d(e^z) = e^z dz$, $d(\sin z) = \cos z dz$, etc., so that the formulæ for differentiation here are the same as in the case of a real variable (p. 157).

NOTE. For the algebra of vector analysis, which differs in important respects from the algebra of complex quantities, see p. 185.

TRIGONOMETRY

FORMAL TRIGONOMETRY

Angles, or Rotations. An angle is generated by the rotation of a ray, as Ox, about a fixed point O in the plane. Every angle has an **initial line** (OA) from which the rotation started (Fig. 1), and a **terminal line** (OB) where it stopped; and the counterclockwise direction of rotation is taken as

positive. Since the rotating ray may revolve as often as desired, angles of any magnitude, positive or negative, may be obtained. Two angles are congruent if they may be superposed so that their initial lines coincide and their terminal lines coincide. That is, two congruent angles are either equal or differ by some multiple of 360 deg. Two angles are complementary if their sum is 90 deg.; supplementary if their sum is 180 deg. (The acute angles of a right-angled triangle are complementary.) If the initial line is placed so that it runs horizontally to the right, as in Fig. 2, then the angle is said to be an angle in the 1st, 2nd, 3rd, or 4th quadrant according as the terminal line lies across the region marked I, II, III, or IV. The angles 0 deg., 90 deg., 180 deg., 270 deg. are called the quadrantal angles.

Units of Angular Measurement.

(1) SEXAGESIMAL MEASURE. (360 degrees = 1 revolution.) 1 degree = 1° = 160 of a right angle. The degree is usually divided into 60 equal parts called minutes ('), and each minute into 60 equal parts called seconds ("); while the second is subdivided decimally. But for many purposes it is more convenient to divide the degree itself into decimal parts, thus avoiding the use of minutes and seconds. (See tables, pp. 46-51.)

(2) CENTESIMAL MEASURE, used chiefly in France. (400 grades = 1 revolution.) 1 grade = 1/100 of a right angle. The grade is always divided decimally, the following terms being sometimes used: 1 "centesimal minute" = 1/100 of a grade; 1 "centesimal second" = 1/100 of a centesimal minute. In reading Continental books it is important to notice carefully which system is employed.

(3) Radian, or Circular, Measure. (π radians = 180 degrees.) 1 radian = the angle subtended by an arc whose length is equal to the length of the radius. The radian is constantly used in higher mathematics and in mechanics, and is always divided decimally. Table, pp. 44-45.

1 radian = $57^{\circ}.30 - = 57^{\circ}.2957795131 = 57^{\circ} 17' 44''.806247 = 180^{\circ}/\pi$.

 $1^{\circ} = 0.01745$. . . radian = 0.0174532925 radian.

 $1' = 0.00029\,08882\,\text{radian}$. $1'' = 0.00000\,48481\,\text{radian}$. (For 10-place conversion tables, see the Smithsonian Tables of Hyperbolic Functions, Washington, **D. C.**)

Definitions of the Trigonometric Functions. Let x be any angle whose initial line is OA and terminal line OP (see Fig. 3). Drop a perpendicular from P on OA or OA produced. In the right triangle OMP, the three sides

Fig. 3.

are MP = "side opposite" O (positive if running upward); OM = "side adjacent" to O (positive if running to the right); OP = "hypothenuse" or "radius" (may always be taken as positive); and the six ratios between these sides are the principal trigonometric functions of the angle x; thus:

```
sine of x = \sin x = \text{opp/hyp} = MP/OP;

cosine of x = \cos x = \text{adj/hyp} = OM/OP;

tangent of \dot{x} = \tan x = \text{opp/adj} = MP/OM;

cotangent of x = \cot x = \text{adj/opp} = OM/MP;

secant of x = \sec x = \text{hyp/adj} = OP/OM;

cosecant of x = \cos x = \text{hyp/opp} = OP/MP.
```

The last three are best remembered as the reciprocals of the first three: $\cot x = 1/\tan x$; sec $x = 1/\cos x$; csc $x = 1/\sin x$.

Other functions in use are the versed sine, the coversed sine, and the exterior secant:

vers $x = 1 - \cos x$; covers $x = 1 - \sin x$; exsec $x = \sec x - 1$. For graphs, see p. 174; series, p. 161.

Signs of the Trigonometric Functions

If x is in quadrant	I	II	III	IV
sin x and csc x are	l +	+ -	- - +	+

vers x and covers x are always positive.

Variations in the Functions as x Varies from 0 deg. to 360 deg. are shown in the accompanying table. The variations in the sine and cosine are

Fig. 4.

best remembered by noting the changes in the lines MP and OM (Fig. 4) in the "unit circle" (that is, a circle with radius = OP = 1), as P moves around the circumference.

	00000	000 4 - 1000	1000 0000	270° to 360°	Values at		
æ	0° to 90°	90° to 180°	180° to 270°		30°	45°	60°
sin x	+0 to +1 + ∞ to +1	+1 to +0 +1 to +∞	-0 to -1 -∞ to -1	-1 to -0 -1 to -∞	1,2		}½√3 ¾√8
cos X sec x	+1 to +0 +1 to +∞	-0 to -1 -∞ to -1	-1 to -0 -1 to -∞	+0 to +1 + ∞ to +1	1/2√3 3/2√3	$\sqrt[32]{\frac{\sqrt{2}}{\sqrt{2}}}$	
tan x	+0 to + ∞ + ∞ to +0	- \infty to -0 -0 to - \infty	+0 to + ∞ + ∞ to +0	- ∞ to -0. -0 to - ∞	14√3 √3	1	√ <u>3</u> ⅓√8
vers x	+0 to +1 +1 to +0	+1 to +2 +0 to +1	+2 to +1 +1 to +2	+1 to +0 +2 to +1			

$$\sqrt{2}$$
 = 1.4142; $\frac{1}{2}\sqrt{2}$ = 0.7071; $\sqrt{3}$ = 1.7321; $\frac{1}{2}\sqrt{3}$ = 0.8660; $\frac{1}{2}\sqrt{3}$ = 0.5774; $\frac{3}{2}\sqrt{3}$ = 1.1547

Trigonometrical Tables. The tables on pp. 46-56 give the values of the principal trigonometric functions and of their logarithms, correct to four places of decimals, the angle advancing either by tenths of a degree (p. 46) or by 10 min. (p. 52). These tables will be found adequate for most

computations in which an accuracy of 1 part in 1000 is sufficient. If much computing is to be done, it is advisable to use a separate volume of tables, containing more facilities for interpolation, and printed in larger type, such as the four-place tables of E. V. Huntington (Harvard Coöperative Society, Cambridge, Mass.), with convenient marginal tabs; the five-place tables published by Macmillan or many others; the six-place tables of Bremiker; the standard seven-place tables of Schrön, Vega, or Bruhns (angles advancing by 10 sec.); or the great eight-place of Bauschinger and Peters (angles advancing at intervals of 1 sec. from 0 deg. to 90 deg.). The larger tables give only the logarithms of the functions, not the natural values.

To Find Any Function of a Given Angle. (Reduction to the first quadrant.) It is often required to find the functions of any angle x from a table that includes only angles between 0 deg. and 90 deg. If x is not already between 0 deg. and 360 deg., first "reduce to the first revolution" by simply adding or subtracting the proper multiple of 360 deg.; [for any function of (x) = the same function of $(x \pm n \times 360^{\circ})$]. Next reduce to the first quadrant as follows:

If x is between Subtract		90° and 180°	180° and 270°	270° and 360° 270° from x	
		90° from x	180° from <i>x</i>		
Then	sin x	= $+\sec (x-90^{\circ})$ = $-\sin (x-90^{\circ})$ = $-\csc (x-90^{\circ})$	$ \begin{array}{l} -\sin (x-180^{\circ}) \\ -\cos (x-180^{\circ}) \\ -\cos (x-180^{\circ}) \\ -\cos (x-180^{\circ}) \\ -\sec (x-180^{\circ}) \\ +\tan (x-180^{\circ}) \\ -\cot (x-180^{\circ}) \end{array} $	$ \begin{array}{l}\cos (x-270^{\circ}) \\\sec (x-270^{\circ}) \\ -+\sin (x-270^{\circ}) \\ -+\cos (x-270^{\circ}) \\\cot (x-270^{\circ}) \\\tan (x-270^{\circ}) \end{array} $	
	vers x	$= 1 + \sin (x - 90^{\circ})$ = 1 - \cos (x - 90^{\circ})	$=1+\cos (x-180^{\circ})$ = $1+\sin (x-180^{\circ})$	$=1-\sin (x-270\%)$ =1+\cos (x-270\cdot)	

The "reduced angle" $(x - 90^{\circ}, \text{ or } x - 180^{\circ}, \text{ or } x - 270^{\circ})$ will in each case be an angle between 0° and 90°, whose functions can then be found in the table.

[Note. The formulæ for sine and cosine are best remembered by aid of the unit circle.]

To Find the Angle When One of Its Functions is Given. In general, there will be two angles between 0 deg. and 360 deg. corresponding to any given function. The following tabulated rules show how to find these angles.

Given	First find from the tables an acute angle ze such that	Then the required angles x and x: will be
$\sin x = +a$	$\sin x_0 = a$	xe and 180°-xe
$\cos x = +a$	$\cos x_0 = a$	x_0 and $[360^\circ - x_0]$
$\tan x = +a$	$\tan x_0 = a$	x_0 and $\begin{bmatrix} 180^\circ + x_0 \end{bmatrix}$ x_0 and $\begin{bmatrix} 180^\circ + x_0 \end{bmatrix}$
$\cot x = +a$	$\cot x_0 = a$	x_0 and $[180^\circ + x_0]$
$\sin x = -a$	$\sin x_0 = a$	[180°+x ₀]and [360°-x ₀] 180°-x ₀ and [180°+x ₀]
$\cos x = -a$	$\cos x_0 = a$	$180^{\circ} - x_0$ and $(180^{\circ} + x_0)$
$\tan x = -a$	$\tan x_0 = a$	180° — za and [360° — za]
$\cot x = -a$	$\cot x_0 = a$	180°-ze and [360°-ze]

The angles enclosed in brackets lie outside the range from 0 deg. to 180 deg., and hence cannot occur as angles in a triangle.

For solution of trigonometric equations, see p. 118.

Relations Between the Functions of a Single Angle. (See Fig. 5.)

$$\sin^{2} x + \cos^{2} x = 1; \tan x = \frac{\sin x}{\cos x}; \cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x};$$

$$1 + \tan^{2} x = \sec^{2} x = \frac{1}{\cos^{2} x}; 1 + \cot^{2} x = \csc^{2} x = \frac{1}{\sin^{2} x};$$

$$\sin x = \sqrt{1 - \cos^{2} x} = \frac{\tan x}{\sqrt{1 + \tan^{2} x}} = \frac{1}{\sqrt{1 + \cot^{2} x}};$$

$$\cos x = \sqrt{1 - \sin^{2} x} = \frac{1}{\sqrt{1 + \tan^{2} x}} = \frac{\cot x}{\sqrt{1 + \cot^{2} x}};$$
Functions of Negative Angles. $\sin (-x) = -\sin x;$

$$\cos x = \sqrt{1 - \sin^{2} x} = \frac{1}{\sqrt{1 + \cot^{2} x}};$$

 $\cos(-x) = \cos x$; $\tan(-x) = -\tan x$.

Functions of the Sum and Difference of Two Angles.

F1g. 5.

```
\sin (x + y) = \sin x \cos y + \cos x \sin y;
\cos(x+y) = \cos x \cos y - \sin x \sin y;
\tan(x+y) = [\tan x + \tan y]/[1 - \tan x \tan y];
\cot (x+y) = [\cot x \cot y - 1]/[\cot x + \cot y];
\sin (x - y) = \sin x \cos y - \cos x \sin y;
\cos(x-y)=\cos x\cos y+\sin x\sin y;
\tan(x-y) = [\tan x - \tan y]/[1 + \tan x \tan y];
\cot (x - y) = [\cot x \cot y + 1]/[\cot y - \cot x];
\sin x + \sin y = 2 \sin \frac{1}{2}(x + y) \cos \frac{1}{2}(x - y);
\sin x - \sin y = 2 \cos \frac{1}{2}(x + y) \sin \frac{1}{2}(x - y);
\cos x + \cos y = 2 \cos \frac{1}{2}(x + y) \cos \frac{1}{2}(x - y);
\cos x - \cos y = -2 \sin \frac{1}{2}(x+y) \sin \frac{1}{2}(x-y);
\tan x + \tan y = \frac{\sin (x + y)}{\cos x \cos y}; \cot x + \cot y = \frac{\sin (x + y)}{\sin x \sin y};
\tan x - \tan y = \frac{\sin (x - y)}{\cos x \cos y}; \cot x - \cot y = \frac{\sin (y - x)}{\sin x \sin y};
\sin^2 x - \sin^2 y = \cos^2 y - \cos^2 x = \sin (x + y) \sin (x - y);
\cos^2 x - \sin^2 y = \cos^2 y - \sin^2 x = \cos (x + y) \cos (x - y);
\sin (45^{\circ} + x) = \cos (45^{\circ} - x); \tan (45^{\circ} + x) = \cot (45^{\circ} - x);
\sin (45^{\circ} - x) = \cos (45^{\circ} + x): \tan (45^{\circ} - x) = \cot (45^{\circ} + x).
```

In the following transformations, a and b are supposed to be positive, $c = \sqrt{a^2 + b^2}$, A = the positive acute angle for which tan A = a/b, and B = the positive acute angle for which tan B = b/a: $a\cos x + b\sin x = c\sin(A + x) = c\cos(B - x);$ $a\cos x - b\sin x = c\sin (A - x) = c\cos (B + x).$

Functions of Multiple Angles and Half Angles.

$$\sin (nx) = n \sin x \cos^{n-1} x - (n)_3 \sin^2 x \cos^{n-3} x + (n)_5 \sin^5 x \cos^{n-5} x - \dots + (n)_5 \sin^{n-5} x - \dots + (n)_5 \sin^{n-5} x - \dots + (n)_5 \sin^{n-5} x -$$

Here the + or - sign is to be used according to the sign of the left-hand side of the equation.

Relations Between Three Angles Whose Sum is 180°. $\sin A + \sin B + \sin C = 4 \cos \frac{1}{2}A \cos \frac{1}{2}B \cos \frac{1}{2}C$; $\cos A + \cos B + \cos C = 4 \sin \frac{1}{2}A \sin \frac{1}{2}B \sin \frac{1}{2}C + 1$; $\sin A + \sin B - \sin C = 4 \cos \frac{1}{2}A \cos \frac{1}{2}B \sin \frac{1}{2}C - 1$; $\sin^2 A + \sin^2 B + \sin^2 C = 2 \cos A \cos B \cos C + 2$; $\sin^2 A + \sin^2 B - \sin^2 C = 2 \sin A \sin B \cos C$; $\tan A + \tan B + \tan C = \tan A \tan B \tan C$; $\cot \frac{1}{2}A + \cot \frac{1}{2}B + \cot \frac{1}{2}C = \cot \frac{1}{2}A \cot \frac{1}{2}B \cot \frac{1}{2}C$; $\cot A \cot B + \cot A \cot C + \cot B \cot C = 1$; $\sin 2A + \sin 2B + \sin 2C = 4 \cos A \cos B \sin C$; $\sin 2A + \sin 2B - \sin 2C = 4 \cos A \cos B \sin C$.

Inverse Trigonometric Functions. The notation $\sin^{-1}x$ (read: antisine of x, or inverse sine of x; sometimes written are $\sin x$) means the principal angle whose sine is x. Similarly for $\cos^{-1}x$, $\tan^{-1}x$, etc. (The principal angle means an angle between -90° and $+90^{\circ}$ in case of \sin^{-1} and \tan^{-1} , and between 0° and 180° in the case of \cos^{-1} .) For graphs, see p. 174.

SOLUTION OF PLANE TRIANGLES

The "parts" of a plane triangle are its three sides, a, b, c, and its three angles A, B, C (A being opposite a, B opposite b, C opposite c, and $A+B+C=180^{\circ}$). A triangle is, in general, determined by any three parts (not all angles). To "solve" a triangle means to find the unknown parts from the known. The fundamental formulæ are:

Law of sines:
$$\frac{a}{b} = \frac{\sin A}{\sin B}$$
. Law of cosines: $c^2 = a^2 + b^2 - 2ab \cos C$.

Right Triangles. Use the definitions of the trigonometric functions, selecting for each unknown part a relation which connects that unknown with known quantities: then solve the resulting equations. Thus, in Fig. 6, if $C=90^{\circ}$, then $A + B = 90^{\circ}$, $c^{\circ} = a^{\circ} + b^{\circ}$.

If A is very small use tax had = \ \((e - \) \(e - \).

Oblique Triangles. There are four cases. It is highly desirable in all these cases to draw a sketch of the triangle approximately to scale before commencing the computation so that any large numerical error may be readily detected.

Case 1. Great Two Ayes as (provided their sum is < 180 dec.), and the

Side (say a, Fig. 7). The third angle is known, since $A + B + C = 180^{\circ}$.

 $\frac{a \sin B}{\sin A}, c = \frac{a \sin C}{\sin A}.$ To find the remaining sides, use b =

Or, drop a perpendicular from either B or C on the opposite side, and solve by right triangles.

Check: $c \cos B + b \cos C = a$.

Case 2. Given Two Sides (say a and b), and the Included Angla (C); and suppose a > b. Fig. 8.

First Method: Find c from $c^2 = a^2 + b^2 - 2ab \cos C$ [or $c^2 = (a - b)^2 + b^2 + b^2 + b^2 = ab \cos C$ 2ab vers C]; then find the smaller angle, B, from $\sin B = (b/c) \sin C$; and finally, find A from $A = 180^{\circ} - (B + C)$. Check: $a \cos B + b \cos A = c$. Second Method: Find $\frac{1}{2}(A - B)$ from the law of tangents:

$$\tan \frac{1}{2}(A - B) = [(a - b)/(a + b)] \cot \frac{1}{2}C$$

and $\frac{1}{2}(A + B)$ from $\frac{1}{2}(A + B) = 90^{\circ} - C/2$; hence A = $\frac{1}{2}(A+B) + \frac{1}{2}(A-B)$ and $B = \frac{1}{2}(A+B) - \frac{1}{2}(A-B)$. Then find c from $c = a \sin C/\sin A$ or $c = b \sin C/\sin B$. Check: $a \cos B + b \cos A = c$.

Third Method: Drop a perpendicular from A to the opposite side, and solve by right triangles.

Case 3. GIVEN THE THREE SIDES (provided the largest is less than the sum of the other two), Fig. 9.

First Method: Find the largest angle A (which may be acute or obtuse) from $\cos A = (b^2 + c^2 - a^2)/2bc$ {or vers $A = [a^2 - (b - c)^2]/2bc$ } and then find B and C (which will always be acute) from $\sin B = b \sin A/a$ and $\sin C = c \sin A/a$. Check: $A + B + C = 180^{\circ}$.

Second Method: Find A, B, and C from $\tan \frac{1}{2}A = r/(s-a)$,

 $\tan \frac{1}{2}B = r/(s-b)$, $\tan \frac{1}{2}C = r/(s-c)$, where $s = \frac{1}{2}(a+b+c)$, and $r = \sqrt{(s-a)(s-b)(s-c)/s}$. Check: $A+B+C=180^{\circ}$. Third Method: If only one angle, say A, is required, use

$$\sin \frac{1}{2}A = \frac{\sqrt{(s-b)(s-c)/bc}}{\cos \frac{1}{2}A} = \frac{\sqrt{s(s-a)/bc}}{\sqrt{s(s-a)/bc}},$$

according as $\frac{1}{2}A$ is nearer 0° or nearer 90° .

Case 4. Given Two Sides (say b and c) and the Angle OPPOSITE ONE OF THEM (B). This is the "ambiguous

case" in which there may be two solutions, or one, or none (see Fig. 10).

First, try to find C from $\sin C = c \sin B/b$. If $\sin C > 1$, there is no solution. If sin C = 1, $C = 90^{\circ}$ and the triangle is a right triangle. If sin C < 1, this determines two angles C, namely, an acute angle C_1 , and an obtuse angle $C_2 = 180^{\circ} - C_1$. Then C_1 will yield a solution when and only when

 $C_1 + B < 180^{\circ}$ (see Case 1); and similarly C_2 will yield a solution when and only when $C_2 + B < 180^{\circ}$ (see Case 1).

Other Properties of Triangles. (See also p. 99 and p. 105.)

Area =
$$\frac{1}{2}ab \sin C = \sqrt{s(s-a)(s-b)(s-c)} = rs$$
, where $s = \frac{1}{2}(a+b+c)$,

and $r = \text{radius of inscribed circle} = \sqrt{(s - a)(s - b)(s - c)/s}$.

Radius of circumscribed circle = R, where

$$2R = a/\sin A = b/\sin B = c/\sin C$$
; $r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} = \frac{abc}{4Rs}$.

The length of the bisector of the angle C is

$$z = \frac{2\sqrt{abs(s-c)}}{a+b} = \frac{\sqrt{ab[(a+b)^2-c^2]}}{a+b}.$$

The median from C to the middle point of c is $m = \frac{1}{2}\sqrt{2(a^2 + b^2) - c^2}$.

SOLUTION OF SPHERICAL TRIANGLES

For the occasional solution of a spherical triangle the following formulæ will be sufficient. For a detailed discussion, see any text-book on spherical trigonometry.

Let a, b, c be the sides of the spherical triangle, that is, portions of arcs of great circles of the sphere; and let A, B, C be the angles of the triangle, that is, the angles made by tangents drawn to the sides at their points of intersection on the sphere. The sum of the angles will always be greater than two right angles, and may be nearly six right angles. The angle $E = A + B + C - 180^{\circ}$ is called the **spherical excess** of the triangle. (See also p. 100.)

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B}; \qquad \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}; \qquad \frac{\sin c}{\sin C} = \frac{\sin a}{\sin A}.$$

 $\cos a = \cos b \cos c + \sin b \sin c \cos A$,

with similar formulæ for cos b and cos c.

$$\cos A = -\cos B \cos C + \sin B \sin C \cos a$$

with similar formulæ for $\cos B$ and $\cos C$.

In the special case of a right spherical triangle, in which $C = 90^{\circ}$,

$$\cos c = \cos a \cos b = \cot A \cot B$$
; $\cos a = \frac{\cos A}{\sin B}$; $\cos b = \frac{\cos B}{\sin A}$;

$$\sin A = \frac{\sin a}{\sin c}$$
; $\cos A = \frac{\tan b}{\tan c}$; $\tan A = \frac{\tan a}{\sin b}$.

$$\frac{\text{The area of a spherical triangle}}{\text{area of a great circle}} = \frac{\text{spherical excess}}{180^{\circ}}.$$

HYPERBOLIC FUNCTIONS

The hyperbolic sine, hyperbolic cosine, etc., of any number x, are functions of x which are closely related to the exponential e^x , and which have formal properties very similar to those of the trigonometric functions, sine, cosine, etc. Their definitions and fundamental properties are as follows (see also p. 127; graphs, p. 175; table, p. 60; series, p. 161):

```
\sinh x = \frac{1}{2}(e^x - e^{-x}); \cosh x = \frac{1}{2}(e^x + e^{-x}); \tanh x = \sinh x/\cosh x; \operatorname{csch} x = 1/\sinh x; \operatorname{sech} x = 1/\cosh x; \coth x = 1/\tanh x; \operatorname{cosh}^2 x - \sinh^2 x = 1; 1 - \tanh^2 x = \operatorname{sech}^2 x; 1 - \coth^2 x = -\operatorname{csch}^2 x; \sinh (-x) = -\sinh x; \cosh (-x) = \cosh x; \tanh (-x) = -\tanh x; \sinh (x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y; \cosh (x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y; \tanh (x \pm y) = (\tanh x \pm \tanh y)/(1 \pm \tanh x \tanh y); \sinh 2x = 2 \sinh x \cosh x; \cosh 2x = \cosh^2 x + \sinh^2 x; \tanh 2x = (2 \tanh x)/(1 + \tanh^2 x); \sinh \frac{1}{2}x = \sqrt{\frac{1}{2}(\cosh x - 1)}; \cosh \frac{1}{2}x = \sqrt{\frac{1}{2}(\cosh x + 1)}; \tanh \frac{1}{2}x = (\cosh x - 1)/(\sinh x) = (\sinh x)/(\cosh x + 1).
```

The inverse hyperbolic sine of y, denoted by $\sinh^{-1}y$, is the number whose hyperbolic sine is y; that is, the notation $x = \sinh^{-1}y$ means $\sinh x = y$. Similarly for $\cosh^{-1}y$, $\tanh^{-1}y$, etc. These functions are closely related to the logarithmic function, and are especially valuable in the integral calculus. For graphs, see p. 175.

$$\begin{array}{ll} \sinh^{-1}(y/a) &= \log_{e}(y + \sqrt{y^{2} + a^{2}}) - \log_{e} a; \\ \cosh^{-1}(y/a) &= \log_{e}(y + \sqrt{y^{2} - a^{2}}) - \log_{e} a; \\ \tanh^{-1}\frac{y}{a} &= \frac{1}{2}\log_{e}\frac{a + y}{a - y}; \quad \coth^{-1}\frac{y}{a} &= \frac{1}{2}\log_{e}\frac{y + a}{y - a}. \end{array}$$

The **anti-gudermannian** of an angle u, denoted by $gd^{-1}u$, is a number defined by $gd^{-1}u = \log_e \tan (\frac{1}{4}\pi + \frac{1}{2}u) = \int \sec u \ du$. When u is small, $gd^{-1}u = u + \frac{1}{2}u^3 + \frac{1}{2}u^5 + \frac{6}{2}\omega_{040}u^7 + \dots$.

ANALYTICAL GEOMETRY

THE POINT AND THE STRAIGHT LINE

Rectangular Co-ordinates (Fig. 1). Let $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$. Then, distance $P_1P_2 = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$; slope of $P_1P_2 = m = \tan u = (y_1 - y_1)/(x_1 - x_1)$; co-ordinates of mid-point are $x = \frac{y_1}{x_1}(x_1 + x_2)$, $y = \frac{y_1}{y_1}(y_1 + y_2)$; co-ordinates of point (1/n)th of the way from P_1 to P_2 are $x = x_1 + (1/n)(x_2 - x_1)$, $y = y_1 + (1/n)(y_2 - y_1)$.

Let m_1 , m_2 be the slopes of two lines; then, if the lines are parallel, $m_1 = m_2$; if the lines are perpendicular to each other, $m_1 = -1/m_2$.

Equations of a Straight Line.

- 1. Intercept Form (Fig. 2): $\frac{x}{a} + \frac{y}{b} = 1$. (a, b = intercepts of the line on the axes.)
- 2. Slope Form (Fig. 3): y = mx + b. ($m = \tan u = \text{slope}$; b = intercept on the y-axis; see also Fig. 2, p. 174.)
- 3. Normal Form (Fig. 4): $x \cos v + y \sin v = p$. (p = perpendicular from origin to line; v = angle p makes with the x-axis.)
- 4. Parallel-intercept Form (Fig. 5): $\frac{y-b}{c-b} = \frac{x}{k}$. (b, c = intercepts on two parallels at distance k apart.)

- 5. General Form: Ax + By + C = 0. [Here a = -CA, b = -CB, m = -AB, $\cos x = AB$, $\sin x = BB$, p = -CB, where $B = \pm \sqrt{A^2 + B^2}$ (sign to be so obosen that p is positive).]
 - 6. Line Through (x_i, y_i) with Slope $m: y y_i = m(x x_i)$.
 - 7. Line Through (x_1, y_1) and (x_2, y_2) : $y y_1 = \frac{y_2 y_1}{x_2 x_2}(x x_2)$.
 - 8. Line Parallel to x-axis: x = a; to y-axis: y = b. Angles and Distances.

If w = angle between two lines whose slopes are mi. ms. then

$$\tan u = \frac{m_0 - m_1}{1 + m_0 m_1}$$
 If parallel, $m_1 = m_2$.

If perpendicular, $m_1 = -1$.

If u = angle between the lines Ax + By + C = 0 and A'x + B'y + C' = 0.

$$AA' + BB' \qquad \text{If parallel, } AA' = BB'.$$

$$\frac{\pm \sqrt{(A^2 + B^2) \cdot (A^2 + B^2)}}{4 + \sqrt{(A^2 + B^2)}} \qquad \text{If perpendicular, } AA' + BB' = 0.$$

The equations of the bisectors of the angles between the two lines just mentioned are

$$\frac{Ax + By + C}{\sqrt{A^2 + B^2}} = \frac{A^2x + B^2y + C^2}{\sqrt{A^2 + B^2}} = 0.$$

The equation of a line through (x_1, y_1) and meeting a given line y = mx + bat an angle u, is

$$y - y_1 = \frac{m + \tan u}{1 - m \tan u} (x - x_1).$$

The distance from (x_0, y_0) to the line Ax + By + C = 0 is

$$D = \left| \frac{Ax_0 + By_0 + C}{\sqrt{A^2 + B^2}} \right|$$

where the vertical bars mean "the absolute value of."

The distance from (x_0, y_0) to a line which passes through (x_1, y_1) and makes an angle u with the x-axis, is

$$D = (x_0 - x_1) \sin u - (y_0 - y_1) \cos u.$$

Polar Co-ordinates (Fig. 6). Let (x, y) be the rectangular and (r, θ) the polar co-ordinates of a given point P. Then $x = r \cos \theta$; $y = r \sin \theta$; $x^2 + y^2 = r^2$.

Transformation of Co-ordinates. If origin is moved to point (x_0, y_0) , the new axes being parallel to the old, $x = x_0 + x', y = y_0 + y'.$

If axes are turned through the angle u, without change of origin,

$$x = x' \cos u - y' \sin u$$
, $y = x' \sin u + y' \cos u$.

THE CIRCLE

(See also pp. 99, 103-105, 106)

Equation of Circle with center (a,b) and radiu r:

$$(x-a)^2 + (y-b)^2 = r^2$$
.

If center is at the origin, the equation becomes $x^2 + y^2 = r^2$. If circle goes through the origin and center is on the x-axis at point (r, 0), equation becomes $x^2 + y^2 = 2rx$. The general equation of a circle is

$$x^2 + y^2 + Dx + Ey + F = 0$$
; it has center at $(-D/2, -E/2)$, and radius $= \sqrt{(D/2)^2 + (E/2)^2 - F}$ (which may be real, null, or imaginary).

The equation of the radical axis of two circles, $x^2 + y^2 + Dx + Ey +$ F = 0 and $x^2 + y^2 + D'x + E'y + F' = 0$, is (D - D')x + (E - E')y +(F - F') = 0. The tangents drawn to two circles from any point of their radical axis are of equal length. If the circles intersect, the radical axis passes through their points of intersection (see p. 100).

The equation of the tangent to $x^2 + y^2 = r^2$ at (x_1, y_1) is $x_1x + y_1y = r^2$. The tangent to $x^2 + y^2 + Dx + Ey + F = 0$ at (x_1, y_1) is $x_1x + y_1y + \frac{1}{2}D(x + x_1) + \frac{1}{2}E(y + y_1) + F = 0$. The line y = mx + bwill be tangent to the circle $x^2 + y^2 = r^2$ if $b = 1/1 + m^2$.

Equations of Circle in Parametric Form. It is sometimes convenient to express the co-ordinates x and y of the moving point P(Fig. 7) in terms of an auxiliary variable, called a parameter. Thus, if the parameter be taken as the angle u which the radius OP makes with the x-axis, then the equations of the

circle in parametric form will be $x = a \cos u$; $y = a \sin u$. For every value of the parameter u, there corresponds a point (x, y) on the circle. The ordinary equation $x^2 + y^2 = a^2$ can be obtained from the parametric equations by eliminating u.

Fig. 7.

THE PARABOLA

The parabola (see also p. 107) is the locus of a point which moves that its distance from a fixed line (called the directrix) is always equal to its distance from a fixed point F (called the focus). See Fig. 8. The point half-way from iocus to directrix is the vertex, O, The line through the focus, perpendicular to the directrix, is the principal axis. The breadth of the curve at the focus is called the latus rectum, or parameter, = 2p, where p is the distance from focus to directrix. (Compare also Fig. 3, p. 174.)

Any section of a right circular cone made by a plane parallel to a tangent plane of the cone will be a parabola.

Equation of Parabola, origin at vertex (Fig. 8): $y^2 = 2px$.

Polar Equation of Parabola, referred to F as origin and Fx as axis (Fig. 9): $r = p/(1 - \cos \theta)$.

Equation Referred to the Tangents at the ends of the latus rectum as axes (Fig. 10): $x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}}$, where $a = p\sqrt{2}$.

Equation of Tangent to $y^2 = 2px$ at (x_1,y_1) : $y_1y = p(x + x_1)$. The line y = mx + b will be tangent to $y^2 = 2px$ if b = p/(2m).

The tangent PT at any point P bisects the angle between PF and PH (Fig. 8). A ray of light from F, reflected at P, will move off parallel to the principal axis. The subtangent, TM, is bisected at O. The subnormal, MN, is constant, and equal to p. The locus of the foot of the perpendicular from the focus on a moving tangent is the tangent at the vertex (Fig. 11). The locus of the point of intersection of perpendicular tangents is the directrix (Fig. 12). The locus of the mid-points of a set of parallel chords whose alope is m is a straight line parallel to the principal axis at a distance p/m.

and is called a **diameter** (Fig. 13). If M is the mid-point of a chord PQ, and if T is the point of intersection of the tangents at P and Q, then TM is parallel to the principal axis, and is bisected by the curve (Fig. 13).

To Construct a Tangent to a Given Parabola. (1) At a given point of contact, P (Fig. 14): Find T so that OT = OM, or FT = FP. Then TP is the tangent at P. Or, make MN = p = 2(OF); then PN is the normal at P.

(2) From a given external point, Q (Fig. 15): With Q as center and radius QF draw circle cutting the directrix in H; draw HP parallel to principal axis; then P is required point of contact. As check, note that QP is the perpendicular bisector of FH.

To Construct a Parabola. 1. Given Any Two Points, P and Q the Tangent PT at One of Them, and the Direction of the Principal Alis OX. In Fig. 16, let K be a variable point on a line through Q parallel to OX. Draw KR parallel to PT (meeting PQ in R), and draw RS parallel to OX (meeting PK in S); then S is a point of the curve. Note. A line through P parallel to the principal axis bisects all chords parallel to the tangent PT.

2. GIVEN THE VERTEX O AND FOCUS F. (a) In Fig. 17 draw O_F perpendicular to O_F , and slide the vertex of a right angle along O_F so that one side always passes through F; then the other side will always be a tangent to the parabola.

- (b) Take a piece of paper (Fig. 18) with a straight edge, d, and mark a point F near the edge. Let K be a variable point of the edge, and fold the paper so that K coincides with F. The crease will be a tangent to the parabola which has focus F and directrix d.
- (c) In Fig. 19, let M be a variable point of the principal axis, and lay off MN = 2(OF) = p. With F as center and radius FN draw a circle, cutting the perpendicular at M in P. Then P is a point of the curve, and PT and PN are the tangent and normal at P.
- 3. GIVEN TWO TANGENTS AND THEIR POINTS OF CONTACT, P AND Q (Fig. 20). Divide TP and QT into any number of equal parts (here 4). Then the lines 11, 22, 33, . . . will be tangents to the parabola. This method is especially advantageous in drawing rather flat arcs.

The Radius of Curvature of $y^2 = 2px$ at a point P = (x,y) is $R = (p + 2x)^{3/2}/\sqrt{p}$, or $R = p/\sin^3 v$, where v = the angle which the tangent at P makes with PF (Fig. 21). At the vertex, R = p. To construct the radius of curvature at any point P, lay off PR = 2(PF) parallel to the principal axis, and draw RC perpendicular to the axis, meeting the normal, PN, in C. Then C is the center of curvature for the point P, and a circle about C with radius CP will coincide closely with the parabola in the neighborhood of P.

THE ELLIPSE

The ellipse (see also p. 107) has two foci, F and F' (Fig. 22), and two directrices, DH and D'H'. If P is any point of the curve, PF + PF' is constant, $-2e_T$ and PF/PH (or PF'/PH') is also constant, $-e_t$, where e is the eccentricity (e < 1). Either of these properties may be taken as the definition of the curve. The relations between e and the semi-axes a and b are as shown in Fig. 23. Thus, $b^2 = a^2(1 - e^2)$, $ae = \sqrt{a^2 - b^2}$, $e^2 = 1 - (b/a)^2$. The semi-latus rectum $= p = a(1 - e^2) = b^2/a$. Note that b is always less than a, except in the special case of the circle, in which b = a and e = 0.

Any section of a right circular cone made by a plane which cuts all the elements of one nappe of the cone will be an ellipse; if the plane is perpendicular to the axis of the cone, the ellipse becomes a circle.

Equation of Ellipse, center as origin:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, or $y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$.

If P = (x, y) is any point of the curve, PF = a + ex, PF' = a - ex.

Equations of the Ellipse in Parametric Form: $x = a \cos u$, $y = b \sin u$, where u is the eccentric angle of the point P = (x,y). See Fig. 28.

Polar Equation, focus as origin, axes as in Fig. 24: $r = p/(1 - \epsilon \cos \theta)$. **Equation of the Tangent** at (x_1, y_1) : $b^2x_1x + a^2y_1y = a^2b^2$.

The line y = mx + k will be a tangent if $k = \pm \sqrt{a^2m^2 + b^2}$. The normal at any point P bisects the angle between PF and PF' (Fig. 25). The locus of the foot of the perpendicular from the focus on a moving tangent is the circle on the major axis as diameter (Fig. 26). The locus of the point of intersection of perpendicular tangents is a circle with radius $\sqrt{a^2 + b^2}$ (Fig. 27).

Ellipse as a Flattened Circle. Eccentric Angle. If the ordinates in a circle are diminished in a constant ratio, the resulting points will lie on an ellipse (Fig. 28). If Q traces the circle with uniform velocity, the corresponding point P will trace the ellipse, with varying velocity. The angle u in the figure is called the eccentric angle of the point P.

Conjugate Diameters are lines through the center, each of which bisects all the chords parallel to the other (Fig. 29). If m_1 and m_2 are the slopes, then $m_1m_2 = -b^2/a^2$. One pair of conjugate diameters are the diagonals of the rectangle circumscribing the ellipse. The eccentric angles of the ends of two conjugate diameters differ by 90 deg. Thus (Fig. 30), if CQ and CQ' are perpendicular radii in the circle, CP and CP' will be conjugate semi-diameters in the ellipse. A parallelogram formed by tangents drawn parallel to a pair of conjugate diameters has a constant area, = 4ab (Fig. 31). Also, if a',b' are conjugate semi-diameters, and w the angle between them, then $a'^2 + b'^2 = a^2 + b^2$ and $a'b' = ab/\sin w$.

To Construct a Tangent to a Given Ellipse. (1) At a Given Point of Contact, P. Bisect the angle between the focal radii PF and PF' (Fig. 25). (2) From a Given External Point, R. (a) Through R draw any two lines cutting the ellipse, one in A and B, the other in C and D (Fig. 32). Through the point of intersection of AD and BG and the point of intersection of AC and BD, draw a line cutting the ellipse in P and Q. Then P and Q are the required points of contact. (b) With R as a center and radius RF, draw an arc; with F' as center and radius 2a draw an arc, intersecting the first in S; and let SF' meet the curve in T. Then T is the point of contact (Fig. 33).

To Construct an Ellipse, Given a and b. (1) In Fig. 34, with O as center, draw circles with radii a and b (and also a third circle with radius a + b). Let a variable ray through O cut these circles in J, K (and S); through J and K draw parallels to the axes, meeting in P. Then P is a point of the ellipse (and SP is the normal at P).

(2) In Fig. 35, let P divide a line AB so that PA = a and PB = b. Then if A and B slide on the axes, P will describe an ellipse.

(3) In Fig. 36, let PBA be a straight line such that PA = a and PB = b. Then if A and B slide on the axes, P will trace an ellipse. (Use a strip of paper, with the points P, B, and A marked on it.)

(4) Find the foci, F and F', by striking an arc of radius a with center at B (Fig. 37). Drive pins at F, F', and B, and adjust a loop of thread around them. Then remove the pin at B, and replace it by a pencil point; by moving the pencil so as to keep the string taut, the complete ellipse can be drawn at one sweep. Or, use a mechanical ellipsograph.

(5) and (6). Apply methods (1) and (2) of the following paragraph to the special case in which OP and OQ are perpendicular semi-axes.

To Construct an Ellipse, Given a Pair of Conjugate Semi-diameters, OP and OQ. (1) Complete the parallelogram, as in Fig. 38. Divide QD and QO into n equal parts, 1, 2, 3, . . . and 1', 2', 3', . . . Connect P with 1, 2, 3, . . . and P' with 1', 2', 3' The points of intersection of corresponding lines will be points of the ellipse.

(2) Take any point K on PQ (Fig. 39). Draw EKU, and draw KV parallel to OP. Then UV will be a tangent. By varying K along PQ as many tangents may be drawn as desired, thus "enveloping" the ellipse.

(3) Through P (Fig. 40), draw a perpendicular PT to OQ, and lay off PR = PS = OQ. Then if the line RPT is made to slide with one end on OR and the other on OQ, P will trace the ellipse. Further, the bisectors of the angle ROS show the directions of the principal axes, and OR + OS = 2a and

OR - OS = 2b. Also, if a line through P perpendicular to RS (and therefore tangent to the ellipse at P) meets the minor axis in M, a circle with M as center and MR or MS as radius will cut the major axis in the two foci.

To Construct an Ellipse Approximately by Circular Arcs. [Methods (1) and (2) employ two radii, (3) and (4) employ three radii.] (1) In Fig. 41, lay off OL = OA and BS = BL = a - b. Bisect SA in T, and draw THK perpendicular to BA. Then H is one center, with radius HA, and K is the other center, with radius KB. The junction point Q of the two arcs will fall a little outside the true ellipse.

(2) In Fig. 42, lay off OU = OV = OB = b. Draw UG perpendicular to the axis and DG at 45°. With G as center draw an auxiliary arc with radius

= AV = a - b, and through D draw DMN just touching this arc. Then M is one center (with radius MA) and N is the other center (with radius NB). The junction point P of the two arcs will be a true point of the ellipse. [E. V. Huntington.]

(3) Through D (Fig. 43) draw DC_1C_2 perpendicular to AB. Call $C_1A = r_1$ and $C_2B = r_2$. Lay off BE = BO (=b), and on ED as diameter draw a semicircle cutting the minor axis in W; then $BW = \sqrt{ab} = r_2$. Lay off $AZ = r_3$.

BW. From C_1 with radius $C_1Z(=r_2-r_1)$, and from C_3 with radius C_3W $(=r_3-r_2)$, draw arcs intersecting in C_2 . Draw C_3C_2 extended and C_2C_1 extended. Then draw in the three arcs, with centers at C_1 , C_2 , C_3 and radii r_1 , r_2 , r_3 . Note. Since r_1 and r_3 are the radii of curvature of the ellipse at A and B, this construction gives a curve which is a little too sharp at A and a little too flat at B. A more accurate construction is the following:

(4) In Fig. 44, lay off BE = BH = BO = b. Through the mid-point X of BE draw XG perpendicular to the axis, and through D draw DG at an angle of 45 deg. From G as center draw an auxiliary are with radius = DH (= a - b), and through D draw DC_1C_2 just touching this are. Take C_1A as r_1 and C_2B as r_2 . On DE as diameter draw a semi-circle cutting the minor axis in W, and take $BW (= \sqrt{ab})$ as r_2 . Lay off AZ = BW. From C_1

with radius $C_1Z(=r_2-r_1)$, and from C_3 with radius $C_3W(=r_3-r_2)$, draw arcs intersecting in C_2 . Then C_1 , C_3 , C_3 are the required centers. [E.

V. Huntington.]

Radius of Curvature of Ellipse at Any Point P = (x, y) is $R = a^2b^2(x^2/a^4 + y^2/b^4)^{3/2} = p/\sin^3 v$, where v is the angle which the tangent at P makes with PF or PF'. At end of major axis, $R = b^2/a = MA$; at end of minor axis, $R = a^2/b = NB$ (see Fig. 45). To construct the radius of curvature at any other point P

Fig. 45. Fig. 46.

(Fig. 46), draw the normal at P (by bisecting the angle between PF and PF') and let it meet the major axis in N. At N draw a perpendicular to PN meeting PF in H. At H draw a perpendicular to PH meeting PN in C. Then C is the center of curvature for the point P, and a circle about C with radius CP will coincide closely with the ellipse in the neighborhood of P. [Note. If the circle of curvature meets the ellipse in Q, then the tangent at P and the line PQ are equally inclined to the axis.]

THE HYPERBOLA

The hyperbola (see also p. 107) has two foci, F and F', at distances $\pm ae$ from the center, and two directrices, DH and D'H', at distances $\pm a/e$ from

Fig. 47.

Fig. 48.

the center (Fig. 47). If P is any point of the curve, |PF - PF'| is constant, -2a; and PF/PH (or PF'/PH') is also constant, -e (called the **eccentricity**), where e > 1. Either of these properties may be taken as the definition of the

curve. The curve has two branches which approach more and more nearly two straight lines called the **asymptotes**. Each asymptote makes with the principal axis an angle whose tangent is b/a. The relations between e, a, and b are shown in Fig. 48: $b^2 = a^2(e^2 - 1)$, $ae = \sqrt{a^2 + b^2}$, $e^2 = 1 + (b/a)^2$. The semi-latus rectum, or ordinate at the focus, is $p = a(e^2 - 1) = b^2/a$.

Any section of a right circular cone made by a plane which cuts both nappes of the cone will be a hyperbola. (Compare also Fig. 3, p. 174.)

Equation of the Hyperbola, center as origin:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, or $y = \pm \frac{b}{a} \sqrt{x^2 - a^2}$.

If P = (x,y) is on the right-hand branch, PF = ex - a, PF' = ex + a. If P is on the left-hand branch, PF = -ex + a, PF' = -ex - a.

Equations of Hyperbola in Parametric Form. (1) $x = a \cosh u$, $y = b \sinh u$. (For tables of hyperbolic functions, see pp. 60 and 61.) Here u may be interpreted as A/a^2 , where A is the area shaded in Fig. 49.

Fig. 49. Fig. 50.

(2) $x = a \sec v$, $y = b \tan v$, where v is an auxiliary angle of no special geometric interest.

Polar Equation, referred to focus as origin, axes as in Fig. 50:

$$r = p/(1 - e \cos \theta).$$

Equation of the Tangent at (x_1,y_1) : $b^2x_1x-a^2y_1y=a^2b^2$.

The line y = mx + k will be a tangent if $k = \pm \sqrt{a^2m^2 - b^2}$. The tan-

gent at any point P (Fig. 51), bisects the angle between PF and PF'. The locus of the foot of the perpendicular from the focus on a moving tangent is the circle on the principal axis as diameter (Fig. 52). The locus of the point of intersection of perpendicular tangents is a circle with radius $\sqrt{a^2 - b^2}$, which will be imaginary if b > a (Fig. 53).

Properties of the Asymptotes. (Fig. 54.) If P is any point of the curve, the product of the perpendicular distances from P to the two asymptotes is constant, = $a^2b^2/(a^2 + b^2)$. Also, the product of the oblique distances (the distance to each asymptote being measured parallel to the other) is constant, and equal to $\mathcal{H}(a^2 + b^2)$. If a line cuts the hyperbola and its asymptotes, the parts of the line intercepted between the curve and the asymptotes are equal. The part of a tangent intercepted between the asymptotes is bisected by the point of contact. The triangle bounded by the asymptotes and a variable tangent is of constant area, = ab. If a line through Q perpendicular to the principal axis meets the asymptotes in R and S (see Fig. 54), then $\overline{QR} \times \overline{QS} = b^2$. If a line through Q parallel to the principal axis meets the asymptotes in Q and Q, then Q are Q and Q are Q.

Conjugate Hyperbolas are two hyperbolas having the same asymptotes with semi-axes interchanged (Fig. 55). The equation of the hyperbola conju-

gate to
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$.

Conjugate Diameters are lines through the center, each of which bisects all the chords parallel to the other—a chord which does not meet the given hyperbola being understood to be terminated by the conjugate hyperbola (Fig. 55). If m_1 and m_2 are the slopes, then $m_1m_2 = b^3/a^2$. Each asymptote, regarded as a diameter, is its own conjugate. If a parallelogram is formed by tangents drawn parallel to a pair of conjugate diameters, its vertices will lie on the asymptotes, and its area will be constant = 4ab. If a', b' are conjugate semi-diameters, and w the angle between them, then $a'^2 - b'^2 = a^2 - b^2$, and $a'b' = ab/\sin w$.

Equilateral Hyperbola (a = b). Equation referred to principal axes (Fig. 56): $x^2 - y^2 = a^2$. Note. p = a. Equation referred to asymptotes as axes (Fig. 57): $xy = a^2/2$. (See also Fig. 3, p. 174.)

Asymptotes are perpendicular. Eccentricity = $\sqrt{2}$. Any diameter is equal in length to its conjugate diameter.

Fig. 57.

To Construct a Tangent at any given point P of a hyperbola. In Fig. 58, draw PA and PB parallel to the asymptotes, and take OS = 2(OA) and OT = 2(OB). Then ST is the tangent at P.

Fig. 58.

To Construct a Hyperbola, given the asymptotes and any point P. (1) In Fig. 59 let TPT' be a variable line through P, and lay off T'P' = TP; then P' is a point of the curve.

(2) In Fig. 60, draw PA and PB parallel to the asymptotes. Lay off OA' = n(OA) and OB' = (1/n)(OB), where n is any number; and through A' and B' draw parallels to the axes; these will meet in a point P' of the curve.

(3) (Fig. 61.) Take any point K in the ordinate PM, and draw OK meeting the line through P parallel to the x-axis in R. Draw a parallel to the x-axis through K and a parallel to the y-axis through R, meeting in Q. Then Q is a point of the curve.

THE CATENARY

The catenary is the curve in which aflexible chain or cord of uniform density will hang when supported by the two ends. Let $w = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$

weight of the chain per unit length; T = the tension at any point P; and T_h, T_v = the horizontal and vertical components of T. The horizontal component T_h is the same at all points of the curve.

The length $a = T_h/w$ is called the **parameter** of the catenary, or the distance from the lowest point O to the **directrix** DQ (Fig. 62). When a is very large, the curve is very flat. For methods of finding a in any given case, see problems 1-6 below.

The rectangular **equation**, referred to the lowest point as origin, is y = a [cosh (x/a) - 1]. (For table of hyperbolic functions, see p. 60.) In case of

very flat arcs (a large), $y = \frac{x^2}{2a} + \dots$; $s = x + \frac{x^3}{a^2} + \dots$, approximately,

so that in such a case the catenary closely resembles a parabola.

If the perpendicular from O to the tangent at P meets the directrix in Q, then $DQ = \operatorname{arc} OP = s$ and OQ = y + a. The radius of curvature at P is $R = (y + a)^2/a$, which is equal in length to the portion of the normal intercepted between P and the directrix.

Problems on the Catenary (Fig. 62). When any two of the four quantities x, y, s, T/w are known, the remaining two, and also the parameter a, can be found, as follows:

(1) Given x and y. Compute y/x, and find from Table 1 the value of the auxiliary variable z. Then compute a = x/z, s = a sinh z, and $T = wa \cosh z$. Or, having z, find s/x and wx/T by using Tables 3 and 2 inversely, and hence (since x is known) compute s and T/w without the use of a.

TABLE 1.	GIVING z	WHEN	y/x 18	Known.	THEN a	-	x/	z
----------	----------	------	--------	--------	--------	---	----	---

	•	-	,	4	5	6	7	8	9
0.1 0.1993 0.2 0.3948 0.3 0.5833 0.4 0.7623 0.5 0.9308 0.6 1.0883	0.0200 0.2191 0.4140 0.6016 0.7797 0.9471 1.1034	0.0400 0.2389 0.4332 0.6199 0.7969 0.9632 1.1184 cosh z —	0.0600 0.2586 0.4522 0.6381 0.8140 0.9792 1.1334	0.0800 0.2782 0.4712 0.6561 0.8311 0.9951 1.1482	0.0999 0.2978 0.4901 0.6741 0.8480 1.0109 1.1629	0.1199 0.3173 0.5089 0.6919 0.8647 1.0266 1.1775	0.1398 0.3368 0.5276 0.7097 0.8814 1.0422 1.1920	0.1597 0.3562 0.5463 0.7274 0.8980 1.0576 1.2064	0.1795 0.3756 0.5648 0.7449 0.9145 1.0730 1.2207

(2) GIVEN x AND T/w. Compute wx/T, and find from Table 2 the value of the auxiliary variable z. Then compute a = x/z, y = a (cosh z - 1) and $s = a \sinh z$. Or, having z, find y/x and s/x by using Tables 1 and 3 inversely, and hence (since x is known) compute y and s without the use of a.

Table 2. Giving z when wx/T is Known. Then a = x/z

wx/T	0	1	2	3	4	5	6	7	8	9
0.1 0.2 0.3	0.0000 0.1005 0.2042 0.3150 0.4392	0.0100 0.1107 0.2149 0.3267 0.4528	0.0200 0.1209 0.2256 0.3385 0.4666	0.0300 0.1311 0.2365 0.3505 0.4806	0.0400 0.1414 0.2474 0.3626 0.4950	0.0501 0.1517 0.2584 0.3749 0.5097	0.0601 0.1621 0.2695 0.3874 0.5248	0.0702 0.1725 0.2807 0.4000 0.5403	0.0803 0.1830 0.2920 0.4129 0.5562	0.0904 0.1936 0.3035 0.4259 0.5726
0.5	0.5894 0.8053	0.4526 0.6068 0.8357	0.6249 0.8695	0.4606 0.6436 0.9082	0.4930 0.6632 0.9541	0.6836 1.0132	0.7051 1.1110	0.7277	0.7517	0.7775

NOTE. $wx/T = z/\cosh z$. For every value of wx/T there are two values of z, one less than 1.200 and one greater than 1.200. Only the smaller of these values is tabulated.

⁽³⁾ Given x and s. Compute s/x, and find from Table 3 the value of the auxiliary variable z. Then compute a = x/z, y = a (cosh z - 1), and T = wa cosh z. Or, having z, find y/x and wx/T by using Tables 1 and 2 inversely, and hence (since x is known) compute y and T/w without the use of a.

8/z	. 0	ı	2	3	4	5	6	7	8	9 .
1.000		0.0245	0.0346	0.0424	0.0490	0.0548	0.0600	0.0648	0.0693	0.0735
ı	0.0774	0.0812	0.0848	0.0883	0.0916	0.0948	0.0980	0.1019	0.1039	0.1067
2	0.1095	0.1122	0.1149	0.1174	0.1200	0.1224	0.1249	0.1272	0.1296	0.1319
3	0.1341	0.1363	0.1385	0.1407	0.1428	0.1448	0.1469	0.1489	0.1509	0.1529
4	0.1548	0.1567	0.1586	0.1605	0.1623	0.1642	0.1660	0.1678	0.1696	0.1713
1.005	0.1731	0.1748	0.1765	0.1782	0.1799	0.1815	0.1831	0.1848	0.1864	0.1880
6	0.1896	0.1911	0.1927	0.1942	0.1958	0.1973	0.1988	0.2003	0.2018	0.2033
7	0.2047	0.2062	0.2076	0.2091	0.2105	0.2119	0.2133	0.2147	0.2161	0.2175
8	0.2188	0.2202	0.2215	0.2229	0.2242	0.2255	0.2269	0.2282	0.2295	0.2308
9	0.2321	0.2334	0.2346	0.2359	0.2372	0.2384	0.2397	0.2409	0.2421	0.2434
1.01	0.2446	0.2565	0.2678	0.2787	0.2892	0.2993	0.3091	0.3186	0.3278	0.3367
2	0.3454	0.3539	0.3621	0.3702	0.3781	0.3859	0.3934	0.4009	0.4082	0.4153
3	0.4224	0.4293	0.4361	0.4428	0.4494	0.4559	0.4623	0.4686	0.4748	0.4809
4	0.4870	0.4930	0.4989	0.5047	0.5105	0.5162	0.5218	0.5274	0.5329	0.5383

TABLE 3. GIVING z WHEN s/x is Known. Then a = x/z

(4) GIVEN
$$y$$
 AND s . Then $\frac{T}{w} = \frac{s^2}{2y} + \frac{y}{2}$, $x = \left(\frac{s^2}{y} - y\right) \tanh^{-1}\left(\frac{y}{s}\right)$, $a = \frac{s^2}{2y} - \frac{y}{2}$. Or, if y/s is small, $x = s \left[1 - \frac{2}{3}\left(\frac{y}{s}\right)^2 - \frac{2}{15}\left(\frac{y}{s}\right)^4 - \dots\right]$.

(5) GIVEN y AND T/w . Then $a = \frac{T}{w} - y$, $x = \left(\frac{T}{w} - y\right) \cosh^{-1}\frac{T/w}{(T/w) - y}$, $s = \sqrt{2y(T/w) - y^2}$. Or, if $y/(T/w)$ is small, $x = \sqrt{\frac{2yT}{s}} \left[1 - \frac{7}{12}\frac{wy}{T} - \dots\right]$, $\frac{s - x}{s} = \frac{1}{3}\frac{wy}{T}$, approximately,

$$x = \sqrt{\frac{w}{w}} \left[1 - \frac{1}{12} \frac{wy}{T} - \cdots \right], \quad \frac{s}{s} = \frac{1}{3} \frac{s}{T}, \text{ approximate}$$

$$s = \sqrt{\frac{2yT}{w}} \left[1 - \frac{1}{4} \frac{wy}{T} - \frac{1}{32} \left(\frac{wy}{T} \right)^2 - \frac{1}{128} \left(\frac{wy}{T} \right)^3 - \cdots \right].$$

1.10

0.7634

(6) GIVEN s AND
$$T/w$$
. Then $x = \frac{T}{w} \sqrt{1 - \left(\frac{ws}{T}\right)^2} \tanh^{-1}\left(\frac{ws}{T}\right)$,

$$y = \frac{T}{w} - \frac{T}{w} \sqrt{1 - \left(\frac{ws}{T}\right)^2}, \quad a = \frac{T}{w} \sqrt{1 - \left(\frac{ws}{T}\right)^2}. \quad \text{Or, if } ws/T \text{ is small,}$$

$$x = s \left[1 - \frac{1}{6} \left(\frac{ws}{T}\right)^2 - \frac{11}{120} \left(\frac{ws}{T}\right)^4 - \cdots \right], \quad y = s \left[\frac{1}{2} \left(\frac{ws}{T}\right) + \frac{1}{8} \left(\frac{ws}{T}\right)^3 + \cdots \right]$$

$$a = \frac{T}{w} \left[1 - \frac{1}{2} \left(\frac{ws}{T}\right)^2 - \frac{1}{8} \left(\frac{ws}{T}\right)^4 - \cdots \right].$$

Given the Length 2L of a Chain Supported at Two Points A and B not in the Same Level, to find a. (See Fig. 63; b and c are supposed known.) Let $(\sqrt{L^2-b^2})/c = s/x$; enter Table 3 with this value of s/x, and find the corresponding value of the auxiliary variable z. Then a = c/z.

Note. The co-ordinates of the mid-point M of AB (see Fig. 63) are $x_0 = a \tanh^{-1}(b/L)$, $y_0 = (L/\tanh z) - a$, so that the position of the lowest point is determined.

Correction for Sag in Chaining Uphill (Fig. 64). Let l = length of tape (corrected for stretch and temperature), w = weight per unit length of tape, A = angle between the chord AB and the horizontal.

If the tension P at the upper end is known, compute wl/P and find k from Table 4. If the tension Q at the lower end is known, compute wl/Q and find k from Table 5. In either case, chord AB = l - kl.

		ГАВ	LE ·	4.	Giv	ING	k				Т.	ABL	E 5	. (GIV.	ING	k		
wl P	A = 0°	10°	20°	30°	40°	50°	60°	70°	80°	wl Q	A = 0°	10°	20°	30°	40°	50°	60°	70°	80°
.01 .02 .03 .04	.00000 002 004 007 011	000 002 004 006 010	001 003 006	090 001 003 005 008	001 002 004	001 002 003	000 090 001 002 003	000 000 090 001 001	000 000 000 000	.01 .02 .03 .04 .05	004 007	002 004 006	001 003 006	001 003 005	000 001 002 004 006	001 001 003	000 000 001 002 002	000 000 000 001 001	000
.06 .07 .08 .09	027 034	020 026 033	018 024 031	016 021 026	012 016	009 012 015	005 007 009	002 003 003 004 005	000 001 001 001 001	.06 .07 .08 .09	027 034	020 026 032	018 023 029	015 019 024	011 015 019	008 011 013	004 005 006 008 010	002 002 003 004 004	001 001
.11 .12 .13 .14	.00051 060 070 082 094	060 070 081	055 065 076	048 057 066	038 045 053	027 032 038	017	007 008 009 011 013	002 002 002 003 003	.11 .12 .13 .14	070 082	057 067 078	051 060 069	043 050 057	033 038 044	023 026 030	014	005 006 007 008 010	002 002 002
·16 .17 .18 .19	136 151	107 121 136 152 168	113 128 143	099 112 125	079 090 101	057 065 073	035 040 045	015 017 019 021 024	004 005 006	.16 .17 .18 .19 .20	151	114 128 142	101 113 125	084 092 103	064 071 079	044 049 054	026	012 013 015	003 003 004

NOTE. $k = 1 - \{[1 - \sqrt{1 - 2m \sin u + m^2}]/[m \sin A]\}$, where m = wl/P and u is given by

 $^{[1-\}sqrt{1-2m\sin u+m^2}]\sec u=[\sinh^{-1}(\tan u)-\sinh^{-1}(\tan u-m\sec u)]\tan A$. Also, Q=P-wl $(1-k)\sin A$, where k is the value in Table 4 corresponding to the given values of P and A.

Correction for Stretch in Chaining Uphill. Let L = unstretched length of tape at working temperature, w = weight per unit length of tape, A = angle

between chord AB and the horizontal, F = area of cross-section, E = Young's modulus of elasticity (for steel, E = 29,000,000 lb. per sq. in.), l = stretched length (along curve).

If the tension P at the upper end is known, compute wL/P and find m from Table 6. Then l = L + (LP/FE)(1-m).

If the tension Q at the lower end is known, compute wL/Q and find n from Table 7. Then l = L + (LQ/FE)(1+n).

TABLE 6. GIVING m	TABLE 7. GIVING n
$\frac{wL}{P} \begin{vmatrix} A = 10^{\circ} & 20^{\circ} & 30^{\circ} & 40^{\circ} & 50^{\circ} & 60^{\circ} & 70^{\circ} & 80^{\circ} & 90^{\circ} \end{vmatrix}$	$\left \frac{wL}{Q} \right A = 10^{\circ} \ 20^{\circ} \ 30^{\circ} \ 40^{\circ} \ 50^{\circ} \ 60^{\circ} \ 70^{\circ} \ 80^{\circ} \ 90^{\circ}$
.00 .000 .000 .000 .000 .000 .000 .000	.008.049.049.032.038.043.047.049.050

OTHER USEFUL CURVES

The Cycloid is traced by a point on the circumference of a circle which rolls without slipping along a straight line. **Equations** of cycloid, in parametric form (axes as in Fig. 65): x = a (rad $u - \sin u$), $y = a(1 - \cos u)$, where a is

Fig. 66.

the radius of the rolling circle, and rad u is the radian measure of the angle u through which it has rolled. The tangent and normal at any point pass through the highest and lowest points of the corresponding position of the generating circle. The radius of curvature at any point P is $PC = 4a \sin(u/2) = 2\sqrt{2ay}$ = twice the length of the normal, PN. The evolute, or locus of centers of curvature, is an equal cycloid. To construct a cycloid (Fig. 66), divide the semi-circumference of the gen-

eycloid. To construct a cycloid (Fig. 66), divide the semi-circumference of the generating circle into n equal parts (here 4) and lay off these arcs along the base (from O to 4'). Describe arcs with centers at 1', 2', . . . and radii equal to the chords O1, O2, . . ., and sketch the cycloid as a curve tangent to all of these arcs. Or, on horizontal lines through $1, 2, \ldots$ lay off distances equal to O1', O2', etc.; the points

Fig. 67.

tances equal to O1', O2', etc.; the points thus reached will lie on the cycloid.

The area of one arch = $3\pi a^2$, length of arc of one arch = 8a. Area bounded by the ordinate of the point P corresponding to any value of u is a^2 (½ rad $u-2\sin u+$ ½ sin 2u) = $\frac{34}{2}ax-\frac{14}{2}y\sqrt{(2a-y)y}$. Length of arc OP=4a $(1-\cos \frac{14}{2}u)=4a-2\sqrt{2a(2a-y)}$.

The Trochoid is a more general curve, traced by any point on a radius of the rolling circle, at distance b from the center (Fig. 67). It is a prolate trochoid if b < a, and a curtate or looped trochoid if b > a. The equations in either case are x = a rad u - b sin u, y = a - b cos u.

The Epicycloid (or Hypocycloid) is a curve generated by a point on the circumference of a circle of radius a which rolls without slipping on the outside (or inside) of a fixed circle of radius c. For the equations, put b = a in the equations of the epi- (or hypo-) trochoid, below. The normal at any point P passes through the point of contact N of the corresponding position of the rolling circle. To construct the curve (Figs. 68 and 69),

Epicycloid. Fig. 68.

Hypocycloid. Fig. 69.

divide the semi-circumference of the rolling circle into n equal parts, by points 1, 2, 3 . . ., and lay off these arcs (A1, A2, A3) along the circumference of the base circle, as $A1', A2', A3', \ldots$. Describe circles with centers at $1', 2', 3', \ldots$ and radii equal to the chords $A1, A2, A3, \ldots$; then the required curve will be tangent to all these circles. Or, with O as center, draw arcs through 1, 2, 3, . . ., meeting the radius OA in 1^0 , 2^0 , 3^0 , . . ., and the radii $O1', O2', O3', \ldots$ in $1'', 2'', 3'', \ldots$; then from $1'', 2'', 3'', \ldots$ is an off arcs equal to 1^01 , 2^02 , 3^03 , . . . respectively; the points thus reached will be points of the curve.

The area $OAP = \frac{a(c \pm a)(c \pm 2a)}{2c}$ (rad $u - \sin u$), where the upper sign applies to the epicycloid, the lower to the hypocycloid, and rad u = the radian measure of the angle u shown in Figs. 68 and 69. Arc $AP = (4 \ a/c)(c \pm a)(1 - \cos \frac{1}{2} u)$; arc $AD = (4a/c)(c \pm a)$. [In Fig. 69, $D = 4^{n}$.]

Radius of curvature at any point P is $R = \frac{4a(c \pm a)}{c \pm 2a} \sin \frac{1}{2}u$; at A, R = 0;

at D,
$$R = \frac{4a(c \pm a)}{c \pm 2a}$$
.

Special Cases. If $a = \frac{1}{2}c$, the hypocycloid becomes a straight line, diameter of the fixed circle (Fig. 70). In this case the hypotrochoid traced by any

point rigidly connected with the rolling circle (not necessarily on the circumference) will be an ellipse. If $a = \frac{1}{2}c$, the curve generated will be the four-cusped hypocycloid, or **astroid**, (Fig. 71), whose equation is $x^{\frac{3}{4}} + y^{\frac{3}{4}} = c^{\frac{3}{4}}$. If a = c, the epicycloid is the **cardioid**, whose equation in polar coordinates (axes as in Fig. 72) is $r = 2c(1 + \cos \theta)$. Length of cardioid = 16c.

The Epitrochoid (or Hypotrochoid) is a curve traced by any point rigidly attached to a circle of radius a, at distance b from the center, when this circle rolls without slipping on the outside (or inside) of a fixed circle of radius c.

The equations are
$$x = (c \pm a) \cos \left(\frac{a}{c}u\right) \mp b \cos \left[\left(1 \pm \frac{a}{c}\right)u\right]$$
,

$$y = (c \pm a) \sin\left(\frac{a}{c}u\right) - b \sin\left[\left(1 \pm \frac{a}{c}\right)u\right]$$
, where $u =$ the angle which the

moving radius makes with the line of centers; take the upper sign for the epiand the lower for the hypo-trochoid. The curve is called prolate or curtate according as b < a or b > a. When b = a, the special case of the epi- or hypocycloid arises.

The Involute of a Circle is the curve traced by the end of a taut string which is unwound from the circumference of a fixed circle, of radius c. If QP

is the free portion of the string at any instant (Fig. 73), QP will be tangent to the circle at Q, and the length of QP = length of arc QA; hence the construc-

tion of the curve. The equations of the curve in parametric form (axes as in figure) are $x = c(\cos u + \operatorname{rad} u \sin u)$, $y = c(\sin u - \operatorname{rad} u \cos u)$, where rad u is the radian measure of the angle u which OQ makes with the x-axis. Length of arc $AP = \frac{1}{2}c(\operatorname{rad} u)^2$; radius of curvature at P is QP.

The Spiral of Archimedes (Fig. 74) is traced by a point P which, starting from O, moves with uniform velocity along a ray OP, while the ray itself revolves with uniform angular velocity about O. Polar equation: r = k rad θ , or r = a ($\theta/360^{\circ}$). Here $a = 2\pi k =$ the distance, measured along a radius, from each coil to the next.

In order to construct the curve, draw radii O1, O2, O3, . . . making angles $\frac{1}{n}(360^{\circ})$, $\frac{2}{n}(360^{\circ})$, $\frac{3}{n}(360^{\circ})$, . . . with Ox, and along these radii lay off distances equal to $\frac{1}{n}a$, $\frac{2}{n}a$, $\frac{3}{n}a$, . . .; the points thus reached will lie on the spiral. The figure shows one-half of the curve, corresponding to

positive values of θ .

Construction for tangent and normal: Let PT and PN be the tangent and normal at any point P, the line TON being perpendicular to OP. Then $OT = r^2/k$, and ON = k, where $k = a/(2\pi)$. Hence the construction.

The radius of curvature at P is $R = (k^2 + r^2)^{\frac{3}{2}}/(2k^2 + r^2)$. To construct the center of curvature, C, draw NQ perpendicular to PN and PQ perpendicular to OP; then OQ will meet PN in C. Length of arc $OP = \frac{1}{2}k$ [rad $\theta \sqrt{1 + (\text{rad }\theta)^2 + \sinh^{-1}(\text{rad }\theta)}$]. After many windings, are $OP = \frac{1}{2}r^2/k$, approximately.

Hyperbolic Spiral. Fig. 75.

Logarithmic Spiral. Fig. 76.

The Hyperbolic Spiral is the curve whose polar equation is $r=a/\text{rad }\theta$. To construct the curve, take a series of points along Ox (Fig. 75); through each of these points, with center at O, draw an arc extending into the upper half of the plane; and along each of these arcs lay off a length =a. The points thus reached will lie on the curve. A line parallel to the x-axis, at distance a, is an asymptote of the curve. The curve winds around and around the point O without ever reaching it (asymptotic point). The figure shows one-half of the curve, corresponding to positive values of θ . If PT and PN are the tangent and normal at any point P, the line TON being perpendicular to OP.

when OT = a, and $ON = r^2/a$. Hence a construction for the tangent and normal. Radius of curvature at P is $R = r/\sin^2 v$, where v = angle between OP and the tangent at P. Construction: At N draw a perpendicular to PN, meeting PO in Q; at Q draw a perpendicular to PQ, meeting PN in C; then C is the center of curvature for the point P.

The Logarithmic Spiral (Fig. 76), is a curve which cuts the radii from O at a constant angle v, whose cotangent is m. Polar equation: $r = ae^{m \operatorname{rad} \theta}$. Here a is the value of r when $\theta = 0$. For large negative values of θ , the curve winds around O as an asymptotic point. If PT and PN are the tangent and normal at P, the line TON being perpendicular to OP (not shown in fig.), then ON = rm, and $PN = r\sqrt{1 + m^2} = r/\sin v$. Radius of curvature at

P is PN. The evolute of the spiral is an equal spiral whose axis makes an angle $\frac{1}{2}\pi - (\log_{\theta} m)/m$ with the axis of the given spiral. Area swept out by the radius r from r = 0 (where $\theta = -\infty$) to r = r, is $A = r^2/(4m) = \text{half}$ the triangle OPT. Length of arc from O to $P = s = r/\cos v = PT$.

Tractrix.
Fig. 77.

The Tractrix, or Schiele's Anti-friction Curve (Fig. 77), is a curve such that the portion PT of the tangent between the point of contact and the x-axis is

constant = a. Its equation is $x = \pm a \left[\cosh^{-1} \frac{a}{y} - \sqrt{1 - \left(\frac{y}{a}\right)^2} \right]$, or, in

parametric form, $x = \pm a [t - \tanh t]$, $y = a/\cosh t$. (For tables of hyperbolic functions, see p. 60.) The x-axis is an asymptote of the curve. Length of arc $BP = a \log_a (a/y)$. The evolute (locus of centers of curvature) is the catenary whose lowest point is at B, and whose directrix is Ox.

The Cissoid (Fig. 78) is the locus of a point P such that OP, laid off on a variable ray from O, is equal to BD, the portion of the ray lying between a fixed circle through O and a fixed tangent at the point A opposite O. If a is the radius of the circle, the polar equation is $r = 2a \sin^2 \theta / \cos \theta$. Rectangular equation, $y^2(2a - x) = x^2$.

Fig. 78.

Fig. 79.

The Lemniscate (Fig. 79) is the locus of a point P the product of whose distances from two fixed points F, F' is constant, equal to $\frac{1}{2}a^2$. The distance $FF' = a\sqrt{2}$. Polar equation is $r = a\sqrt{\cos 2\theta}$. Angle between OP and the ramal at P is 2θ . The two branches of the curve cross at right angles at O.

Maximum y occurs when $\theta = 30^{\circ}$ and $r = a/\sqrt{2}$, and is equal to 14 th Area of one loop $= a^{2}/2$.

The Heliz (Fig. 80) is the curve of a screw thread on a cylinder of radius r.

The curve crosses the elements of the cylinder at a constant angle, v. The pitch, h, is the distance between two coils of the helix, measured along an element of the cylinder; hence $h=2\pi r$ tan v. Length of one coil = $\sqrt{(2\pi r)^2 + h^2}$ = $2\pi r/\cos v$. To construct the projection of a helix on a plane containing the axis of the cylinder, draw a rectangle, breadth 2r and height h, to represent the plane, with a semicircle below it, as in the figure, to represent the base of the cylinder. Divide h into equal parts (here 8), numbered from 1 to 8; think of the circumterence as also divided into 8 equal parts, represented on the semicircle by numbers from 1' to 4' and back again from 4' to 8'. Then the point of intersection of a horizontal line through $1, 2, \ldots$ with a vertical line through $1', 2', \ldots$ will be a point of the required projection. If the cylinder is

Heliz. Fig. 80.

rolled out on a plane, the development of the helix will be a straight line, with alope equal to tan v.

DIFFERENTIAL AND INTEGRAL CALCULUS

DERIVATIVES AND DIFFERENTIALS

Derivatives and Differentials. A function of a single variable x may be denoted by f(x), F(x), etc. The value of the function when x has the value x_0 is then denoted by $f(x_0)$, $F(x_0)$, etc. The derivative of a function y = f(x)may be denoted by f'(x), or by dy/dx. The value of the derivative at a given point $x = x_0$ is the rate of change of the function at that point; or, if the function is represented by a curve in the usual way (Fig. 1), the value of the derivative at any point shows the slope of the curve (that is, the slope of the tangent to the curve) at that point

(positive if the tangent points upward, and negative

if it points downward, moving to the right).

The increment, Δy (read: "delta y"), in y is the change produced in y by increasing x from x_0 to x_0 + Δx ; that is, $\Delta y = f(x_0 + \Delta x) - f(x_0)$. The differ**ential**, dy, of y is the value which Δy would have if the curve coincided with its tangent. (The differential, dx, of x is the same as Δx when x is the independent variable.) Note that the derivative depends only on the value of x_0 , while Δy and dy depend not only on x_0 but also on the value of Δx . The ratio

y = f(x)Fig. 1.

 $\Delta y/\Delta x$ represents the slope of the secant, and dy/dx the slope of the tangent (see Fig. 1). If Δx is made to approach zero, the secant approaches the tangent as a limiting position, so that the derivative = f'(x) =

$$\frac{dy}{dx} = \lim_{\Delta x = 0} \left[\frac{\Delta y}{\Delta x} \right] = \lim_{\Delta x = 0} \left[\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \right]. \text{ Also, } dy = f'(x) dx.$$

The symbol "lim" in connection with $\Delta x \doteq 0$ means "the limit, as Δx approaches 0, of ..." [A constant c is said to be the **limit** of a variable u if, whenever any quantity m has been assigned, there is a stage in the variationprocess beyond which |c-u| is always less than m; or, briefly, c is the limit of u if the difference between c and u can be made to become and remain as small as we please.]

To find the derivative of a given function at a given point: (1) If the function is given only by a curve, measure graphically the slope of the tangent at the point in question; (2) if the function is given by a mathematical expression, use the following rules for differentiation. These rules give, directly, the differential, dy, in terms of dx; to find the derivative, dy/dx, divide through by dx.

Rules for Differentiation. (Here u, v, w, ... represent any functions of a variable x, or may themselves be independent variables. a is a constant which does not change in value in the same discussion; e = 2.71828.)

1.
$$d(a + u) = du$$
. 2. $d(au) = adu$.

3.
$$d(u + v + w + ...) = du + dv + dw + ...$$

 $4. \ d(uv) = udv + vdu.$

5.
$$d(uvv...) = (uvv...) \left(\frac{du}{u} + \frac{dv}{v} + \frac{dw}{w} + ... \right)$$

$$6. \ d\frac{u}{v} = \frac{vdu - udv}{v^2}$$

7.
$$d(u^m) = mu^{m-1}du$$
 when m is not = -1.

Thus, $d(u^2) = 2udu$; $d(u^3) = 3u^2du$; etc.

8.
$$d\sqrt{u} = \frac{du}{2\sqrt{u}}$$

$$10. \ d(e^u) = e^u du.$$

12.
$$d \log_{\bullet} u = \frac{du}{u}$$

14.
$$d \sin u = \cos u du$$
.

$$16. \ d\cos u = -\sin u \, du.$$

18.
$$d \tan u = \sec^2 u du$$
.

$$20. \ d \sin^{-1} u = \frac{du}{\sqrt{1 - u^2}}.$$

22.
$$d \cos^{-1} u = -\frac{du}{\sqrt{1-u^2}}$$

24.
$$d \tan^{-1} u = \frac{du}{1 + u^2}$$

26.
$$d \log_a \sin u = \cot u du$$
.

30.
$$d \sinh u = \cosh u \, du$$
.

32.
$$d \cosh u = \sinh u du$$
.
34. $d \tanh u = \operatorname{sech}^2 u du$.

36.
$$d \sinh^{-1} u = \frac{du}{\sqrt{u^2 + 1}}$$

38.
$$d \cosh^{-1} u = \frac{du}{\sqrt{u^2 - 1}}$$

40.
$$d \tanh^{-1} u = \frac{du}{1 - u^2}$$

$$9. \ d\left(\frac{1}{u}\right) = -\frac{du}{u^2}.$$

11.
$$d(a^u) = (\log_a a)a^u du.$$

13.
$$d \log_{10} u = (\log_{10} e) \frac{du}{u} = (0.4343...) \frac{du}{u}$$

15.
$$d \csc u = -\cot u \csc u du$$
.

17.
$$d \sec u = \tan u \sec u du$$
.

19.
$$d \cot u = -\csc^2 u du$$
.

21.
$$d \csc^{-1} u = -\frac{du}{u\sqrt{u^2 - 1}}$$

23.
$$d \sec^{-1} u = \frac{du}{u\sqrt{u^2 - 1}}$$

25.
$$d \cot^{-1} u = -\frac{du}{1+u^2}$$

27.
$$d \log_a \tan u = \frac{2du}{\sin 2u}$$

28.
$$d \log_s \cos u = -\tan u \, du$$
. 29. $d \log_s \cot u = -\frac{2du}{\sin 2u}$

31.
$$d \operatorname{csch} u = - \operatorname{csch} u \operatorname{coth} u du$$
.

33.
$$d \operatorname{sech} u = - \operatorname{sech} u \tanh u du$$
.

35.
$$d \coth u = - \operatorname{qsch}^2 u \, du$$
.

$$37. d \operatorname{csch}^{-1} u = -\frac{du}{u\sqrt{u^2 + 1}}$$

37.
$$d \operatorname{csch}^{-1} u = -\frac{du}{u\sqrt{u^2 + 1}}$$

39. $d \operatorname{sech}^{-1} u = -\frac{du}{u\sqrt{1 - u^2}}$

41.
$$d \coth^{-1} u = \frac{du}{1 - u^2}$$

$$1 - u^{2}$$

$$42. \ d(u^{v}) = (u^{v-1})(u \log_{\bullet} u \ dv + v \ du).$$

Derivatives of Higher Orders. The derivative of the derivative is called the second derivative; the derivative of this, the third derivative; and so on. Notation: if y = f(x),

$$f'(x) = D_x y = \frac{dy}{dx}; \quad f''(x) = D_x^2 y = \frac{d^2 y}{dx^2}; \quad f'''(x) = D_x^2 y = \frac{d^2 y}{dx^2}; \quad \text{etc.}$$

NOTE. If the notation d^2y/dx^2 is used, this must not be treated as a fraction, like dy/ds but as an inseperable symbol, made up of a symbol of operation, d^2/dx^2 , and an operand y

The geometric meaning of the second derivative is this: if the original function y = f(x) is represented by a curve in the usual way, then at any point where f''(x) is positive, the curve is concave upward, and at any point where f''(x) is negative, the curve is concave downward (Fig. 2). When f''(x) = 0, the curve usually has a **point of** inflection.

Fig. 2.

Differentials of Higher Orders. The differential of the differential is called the second differential; the differential of this, the third differential; etc. These quantities are of little importance except in the case where dx = a constant. In this case

$$dy = f'(x)dx;$$
 $d^2y = f''(x)\cdot(dx)^2;$ $d^3y = f'''(x)\cdot(dx)^3;$. . .

The first, second, third, etc., differentials are close approximations to the first, second, third, etc., differences (p. 115), and are therefore sometimes useful in constructing tables. Thus, denoting the first, second, third, etc., differences by D', D'', D''', etc., and, assuming always that dx = a constant,

Functions of Two or More Variables may be denoted by $f(x, y, \dots)$, $F(x, y, \ldots)$, etc. The derivative of such a function $u = f(x, y, \ldots)$ formed on the assumption that x is the only variable (y, \ldots, y) . . being regarded for the moment as constants) is called the partial derivative of u with respect to **x**, and is denoted by $f_x(x,y)$, or $D_x u$, or $\frac{d_x u}{dx}$, or $\frac{\partial u}{\partial x}$. Similarly, the partial

derivative of
$$u$$
 with respect to y is $f_y(x,y)$, or D_yu , or $\frac{d_yu}{dy}$, or $\frac{\partial u}{\partial y}$.

NOTE. In the third notation, d_xu denotes the differential of u formed on the assumption that x is the only variable. If the fourth notation, $\partial u/\partial x$, is used, this must not be treated as a fraction like du/dx; the $\partial/\partial x$ is a symbol of operation, operating on u, and the " ∂x " must not be separated.

Partial derivatives of the second of the second $D_x(D_yu)$, D_y^2u , or by $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial x \partial y}$, $\frac{\partial^2 u}{\partial y^2}$, the last symbols being "inseparable." Partial derivatives of the second order are denoted by f_{xx} , f_{xy} , f_{yy} , or by D_x^2u , Similarly for higher derivatives. Note that $f_{xy} = f_{yx}$.

If increments Δx , Δy , (or dx, dy) are assigned to the independent variables x, y, the increment, Δu , produced in u = f(x,y) is

$$\Delta u = f(x + \Delta x, y + \Delta y) - f(x,y);$$

while the differential, du, that is, the value which Δu would have if the partial derivatives of u with respect to x and y were constant, is given by

$$du = (f_x) \cdot dx + (f_y) \cdot dy.$$

Here the coefficients of dx and dy are the values of the partial derivatives of uat the point in question.

If x and y are functions of a third variable t, then the equation

$$\frac{du}{dt} = (f_x) \frac{dx}{dt} + (f_y) \frac{dy}{dt}$$

expresses the rate of change of u with respect to t, in terms of the separate rates of change of x and y with respect to t.

For the graphical representation of u = f(x,y), see p. 178.

Implicit Functions. If f(x,y) = 0, either of the variables x and y is said to be an implicit function of the other. To find dy/dx, either (1) solve for y in terms of x, and then find dy/dx directly; or (2) differentiate the equation through as it stands, remembering that both x and y are variables, and then divide by dx; or (3) use the formula $dy/dx = -(f_x/f_y)$, where f_x and f_y are the partial derivatives of f(x,y) at the point in question.

MAXIMA AND MINIMA

A Function of One Variable, as y = f(x), is said to have a **maximum** at a point $x = x_0$, if at that point the slope of the curve is zero and the concavity downward (see Fig. 3); a sufficient condition for a maximum is $f'(x_0) = 0$ and $f''(x_0)$ negative. Similarly, f(x) has a minimum if the slope is zero and the concavity upward; a sufficient condition for a minimum is $f'(x_0) = 0$ and

 $f''(x_0)$ positive. If $f'(x_0) = 0$ and $f''(x_0) = 0$ and $f'''(x_0) \neq 0$, the point x_0 will be a point of inflection. If $f'(x_0) = 0$ and $f''(x_0) = 0$, the point x_0 will be a maximum if $f'''(x_0) < 0$, and a minimum if $f''''(x_0) > 0$. It is usually sufficient, however, in any practical case, to find the values of x which make f'(x) = 0, and then decide, from a general knowledge of the curve, which of these values (if any) give

maxima or minima, without investigating the higher derivatives.

A Function of Two Variables, as u = f(x,y), will have a **maximum** at a point (x_0,y_0) if at that point $f_x = 0$, $f_y = 0$, and $f_{xx} < 0$, $f_{yy} < 0$; and a **minimum** if at that point $f_x = 0$, $f_y = 0$, and $f_{xx} > 0$, $f_{yy} < 0$; provided, in each case, $(f_{xx})(f_{yy}) - (f_{xy})^2$ is positive. If $f_x = 0$ and $f_y = 0$, and f_{xx} and f_{yy} have opposite signs, the point (x_0,y_0) will be a "saddle point" of the surface representing the function (p. 178).

EXPANSION IN SERIES

The range of values of x for which each of the series is convergent is stated at the right of the series.

Arithmetical and Geometrical Series, and the Binomial Theorem. See p. 114.

Exponential and Logarithmic Series.

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots; \qquad -\infty < x < +\infty,$$

$$a^{x} = e^{mx} = 1 + \frac{m}{1!} x + \frac{m^{2}}{2!} x^{2} + \frac{m^{3}}{3!} x^{3} + \dots; \quad a > 0, \quad -\infty < x < +\infty,$$

$$\text{where } m = \log_{x}^{3} a = (2.3026)(\log_{10} a).$$

$$\log_{x} (1 + x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} - \dots; \qquad -1 < x < +1.$$

$$\log_{x} (1 - x) = -x - \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} - \frac{x^{5}}{5} - \dots; \qquad -1 < x < +1.$$

$$\log_{x} \left(\frac{1 + x}{1 - x}\right) = 2\left(x + \frac{x^{3}}{3} + \frac{x^{5}}{5} + \frac{x^{7}}{7} + \dots\right); \qquad -1 < x < +1.$$

$$\log_{x} \left(\frac{x + 1}{x - 1}\right) = 2\left(\frac{1}{x} + \frac{1}{3x^{3}} + \frac{1}{5x^{5}} + \frac{1}{7x^{7}} + \dots\right); \qquad x < -1 \text{ or } +1 < x.$$

$$\log_{x} x = 2\left[\frac{x - 1}{x + 1} + \frac{1}{3}\left(\frac{x - 1}{x + 1}\right)^{3} + \frac{1}{5}\left(\frac{x - 1}{x + 1}\right)^{5} + \dots\right]; \qquad 0 < x < \infty.$$

$$\log_{x} (a + x) = \log_{x} a + 2\left[\frac{x}{2a + x} + \frac{1}{3}\left(\frac{x}{2a + x}\right)^{3} + \frac{1}{5}\left(\frac{x}{2a + x}\right)^{5} + \dots\right];$$

$$\begin{cases} 0 < a < + \infty \\ -a < x < + \infty \end{cases}$$

Series for the Trigonometric Functions. In the following formulæ, all angles must be expressed in radians. If D = the number of degrees in the angle, and x = its radian measure, then x = 0.017453 D.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots; \qquad -\infty < x < +\infty.$$

$$\cos x = 1 - \frac{x^3}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots; \qquad -\infty < x < +\infty.$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \dots; \qquad -\pi/2 < x < +\pi/2.$$

$$\cot x = \frac{1}{x} - \frac{x}{3} - \frac{x^8}{45} - \frac{2x^5}{045} - \frac{x^7}{4725} - \dots; \qquad -\pi < x < +\pi.$$

$$\sin^{-1} y = y + \frac{y^3}{6} + \frac{3y^5}{40} + \frac{5y^7}{112} + \dots;$$
 $-1 \le y \le +1.$

$$\tan^{-1} y = y - \frac{y^3}{3} + \frac{y^5}{5} - \frac{y^7}{7} + \dots;$$
 $-1 \le y \le +1.$

 $\cos^{-1} y = \frac{1}{2}\pi - \sin^{-1} y;$ $\cot^{-1} y = \frac{1}{2}\pi - \tan^{-1} y.$

Series for the Hyperbolic Functions (x a pure number).

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^6}{5!} + \frac{x^7}{7!} + \dots; \qquad -\infty < x < \infty.$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots; \qquad -\infty < x < \infty.$$

$$\sinh^{-1} y = y - \frac{y^3}{6} + \frac{3y^5}{40} - \frac{5y^7}{112} + \dots; \qquad -1 < y < +1.$$

$$\tanh^{-1} y = y + \frac{y^3}{2} + \frac{y^5}{5!} + \frac{y^7}{7!} + \dots; \qquad -1 < y < +1.$$

General Formulæ of Maclaurin and Taylor. If f(x) and all its derivatives are continuous in the neighborhood of the point x = 0 (or x = a), then, for any value of x in this neighborhood, the function f(x) may be expressed as a power series arranged according to ascending powers of x (or of x = a), as follows:

(1)
$$f(x) = f(0) + \frac{f''(0)}{1!}x + \frac{f'''(0)}{2!}x^2 + \frac{f''''(0)}{3!}x^3 + \dots$$

 $+ \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + (P_n)x^n.$ (Maclaurin.)
(2) $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f'''(a)}{2!}(x-a)^2 + \frac{f''''(a)}{3!}(x-a)^3 + \dots$
 $+ \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1} + (Q_n)(x-a)^n.$ (Taylor.)

Here $(P_n)x^n$, or $(Q_n)(x-a)^n$, is called the **remainder term**; the values of the coefficients P_n and Q_n may be expressed as follows: $P_n = \{f^{(n)}(sx)\}/n! = \{(1-t)^{n-1} f^{(n)}(tx)\}/(n-1)!$ $Q_n = \{f^{(n)}[a+s(x-a)]\}/n! = \{(1-t)^{n-1} f^{(n)}[a+t(x-a)]\}/(n-1)!$

 $Q_n = \{f^{(n)}[a + s(x - a)]\}/n! = \{(1 - t)^{n-1}f^{(n)}[a + t(x - a)]\}/(n - 1)!$ where s and t are certain unknown numbers between 0 and 1; the s-form is due to Lagrange, the t-form to Cauchy.

The error due to neglecting the remainder term is less than $(\overline{P}_n)x^n$, or 11

 $(\overline{Q}_n)(x-a)^n$, where \overline{P}_n , or \overline{Q}_n , is the largest value taken on by P_n , or Q_n , when s or t ranges from 0 to 1. If this error, which depends on both n and x, approaches 0 as n increases (for any given value of x), then the general-expression-with-remainder becomes (for that value of x) a convergent infinite series.

The sum of the first few terms of Maclaurin's series gives a good approximation to f(x) for values of x near x = 0; Taylor's series gives a similar approximation for values near x = a.

Fourier's Series. Let f(x) be a function which is finite in the interval from x = -c to x = +c and has only a finite number of discontinuities in that interval (see note below), and only a finite number of maxima and minima. Then, for any value of x between -c and c,

$$f(x) = \frac{1}{2} a_0 + a_1 \cos \frac{\pi x}{c} + a_2 \cos \frac{2\pi x}{c} + a_3 \cos \frac{3\pi x}{c} + \dots$$

$$+ b_1 \sin \frac{\pi x}{c} + b_2 \sin \frac{2\pi x}{c} + b_3 \sin \frac{3\pi x}{c} + \dots$$

where the constant coefficients are determined as follows:

$$a_n = \frac{1}{c} \int_{-c}^{c} f(t) \cos \frac{n\pi t}{c} dt, \quad b_n = \frac{1}{c} \int_{-c}^{c} f(t) \sin \frac{n\pi t}{c} dt.$$

In case the curve y = f(x) is symmetrical with respect to the origin, the a's are all zero, and the series is a sine series. In case the curve is symmetrical with respect to the y-axis, the b's are all zero, and a cosine series results. (In this case, the series will be valid not only for values of x between -c and c, but also for x = -c and x = c.) A Fourier's series can be integrated term by term; but the result of differentiating term by term will in general not be a convergent series.

NOTE. If $x = x_0$ is a point of discontinuity, $f(x_0)$ is to be defined as $\frac{1}{2}[f_1(x_0) + f_2(x_0)]$, where $f_1(x_0)$ is the limit of f(x) when x approaches x_0 from below, and $f_2(x_0)$ is the limit of f(x) when x approaches x_0 from above.

Examples of Fourier's Series.

1. If y = f(x) is the curve in Fig. 4,

$$y = \frac{h}{2} - \frac{4h}{\pi^2} \left(\cos \frac{\pi x}{c} + \frac{1}{9} \cos \frac{3\pi x}{c} + \frac{1}{25} \cos \frac{5\pi x}{c} + \dots \right)$$

2. If y = f(x) is the curve in Fig. 5,

$$y = \frac{4h}{\pi} \left(\sin \frac{\pi x}{c} + \frac{1}{3} \sin \frac{3\pi x}{c} + \frac{1}{5} \sin \frac{5\pi x}{c} + \dots \right)$$

3. If y = f(x) is the curve in Fig. 6,

$$y = \frac{2h}{\pi} \left(\sin \frac{\pi x}{c} - \frac{1}{2} \sin \frac{2\pi x}{c} + \frac{1}{3} \sin \frac{3\pi x}{c} - \dots \right)$$

INDETERMINATE FORMS

In the following paragraphs, f(x), g(x) denote functions which approach 0; F(x), G(x) functions which increase indefinitely; and U(x) a function which approaches 1; when x approaches a definite quantity a. The problem in each case is to find the limit approached by certain combinations of these functions when x approaches a. The symbol \doteq is to be read "approaches."

Case 1. " $\frac{0}{0}$ " To find the limit of f(x)/g(x) when f(x) = 0 and g(x) = 0, use the theorem that $\lim_{x \to 0} \frac{f'(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$, where f'(x) and g'(x) are the derivatives of f(x) and g(x). This second limit may be easier to find than the first. If f'(x) = 0 and g'(x) = 0, apply the same theorem a second time: $\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{f''(x)}{g''(x)}$; and so on.

Case 2. " $\frac{\infty}{\infty}$ " If $F(x) \doteq \infty$ and $G(x) \doteq \infty$, then $\lim_{x \to \infty} \frac{F'(x)}{G'(x)} = \lim_{x \to \infty} \frac{F'(x)}{G'(x)}$, precisely as in Case 1.

Case 3. " $0 \cdot \infty$." To find the limit of $f(x) \cdot F(x)$ when $f(x) \doteq 0$ and $F(x) \doteq \infty$, write $\lim_{x \to \infty} [f(x) \cdot F(x)] = \lim_{x \to \infty} \frac{f(x)}{1/F(x)}$, or $\lim_{x \to \infty} \frac{F(x)}{1/f(x)}$; then proceed as in Case 1 or Case 2.

Case 4. "00"." If $f(x) \doteq 0$ and $g(x) \doteq 0$, find $\lim_{x \to 0} [f(x)]^{g(x)}$ as follows: let $y = [f(x)]^{g(x)}$, and take the logarithm of both sides thus:

$$\log_{\bullet} y = g(x) \log_{\bullet} f(x);$$

next, find $\lim [g(x) \log_e f(x)]_{,} = m$, by Case 3; then $\lim y = e^m$.

Case 5. "1°." If $U(x) \doteq 1$ and $F(x) \doteq \infty$, find $\lim_{x \to \infty} [U(x)]^{F(x)}$ as follows: let $y = [U(x)]^{F(x)}$, and take the logarithm of both sides, as in Case 4.

Case 6. " ∞ 6." If $F(x) \doteq \infty$ and $f(x) \doteq 0$, find $\lim_{x \to \infty} [F(x)]^{f(x)}$ as follows: let $y = [F(x)]^{f(x)}$, and take the logarithm of both sides, as in Case 4. Case 7. " $\infty - \infty$." If $F(x) \doteq \infty$ and $G(x) \doteq \infty$, write $\lim_{x \to \infty} [F(x) - G(x)]$

 $= \lim \frac{\frac{1}{G(x)} - \frac{1}{F(x)}}{\frac{1}{G(x)}}; \text{ then proceed as in Case 1.} \quad \text{Sometimes it is shorter to ex-}$

 $F(x) \cdot G(x)$ pand the functions in series. It should be carefully noticed that expressions like 0/0, ∞/∞ , etc., do not represent mathematical quantities.

CURVATURE

The radius of curvature R of a plane curve at any point P (Fig. 7) is the distance, measured along the normal, on the concave side of the curve, to the center of curvature, C, this point being the limiting position of the point of intersection of the normals at P and a neighboring point Q, as Q is made to approach P along the curve. If the equation of the curve is y = f(x),

$$R = \frac{ds}{du} = \frac{[1 + (y')^2]^{\frac{3}{2}}}{y''}$$

Fig. 7.

where $ds = \sqrt{dx^2 + dy^2}$ = the differential of arc, $u = \tan^{-1} [f'(x)]$ = the angle which the tangent at P makes with the x-axis, and y' = f'(x) and y'' = f''(x) are the first and second derivatives of f(x) at the point P. Note that $dx = ds \cos u$ and $dy = ds \sin u$. The curvature, K, at the point P, is K = 1/R = du/ds; that is, the curvature is the rate at which the angle u is changing with respect to the length of arc s. If the slope of the curve is small, $K \approx f''(x)$.

If the equation of the curve in polar co-ordinates is $r = f(\theta)$, where r = radim vector and $\theta = \text{polar}$ angle, then

$$R = \frac{[r^2 + (r')^2]^{\frac{3}{2}}}{r^2 - rr'' + 2(r')^2},$$

where $r' = f'(\theta)$ and $r'' = f''(\theta)$.

The evolute of a curve is the locus of its centers of curvature. If one curve is the evolute of another, the second is called the involute of the first.

INDEFINITE INTEGRALS

An integral of f(x)dx is any function whose differential is f(x)dx, and is denoted by f'(x)dx. All the integrals of f(x)dx are included in the expression f'(x)dx + C, where f'(x)dx is any particular integral, and C is arbitrary constant. The process of finding (when possible) an integral of a given function consists in recognising by inspection a function which, when differentiated, will produce the given function; or in transforming the given function into a form in which such recognition is easy. The most common integrable forms are collected in the following brief table; for a more extended list, see B. O. Peirce's "Table of Integrals" (Ginn & Co.).

GENERAL FORMULÆ

1.
$$\int adu = a \int du = au + C \qquad 2. \int (u + v)dx = \int udx + \int vdx$$

3.
$$\int u dv = uv - \int v du$$
 4.
$$\int f(x) dx = \int f[F(y)]F'(y) dy, x = F(y)$$

5.
$$\int dy \int f(x,y) dx = \int dx \int f(x,y) dy.$$

FUNDAMENTAL INTEGRALS

6.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
; when $n \neq -1$

7.
$$\int \frac{dx}{x} = \log_e x + C = \log_e cx$$
 8.
$$\int e^x dx = e^x + C$$

9.
$$\int \sin x dx = -\cos x + C$$
 10.
$$\int \cos x dx = \sin x + C$$

11.
$$\int \frac{dx}{\sin^2 x} = -\cot x + C$$
 12.
$$\int \frac{dx}{\cos^2 x} = \tan x + C$$

13.
$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + C = -\cos^{-1}x + c$$

14.
$$\int \frac{dx}{1+x^2} = \tan^{-1}x + C = -\cot^{-1}x + c$$

RATIONAL FUNCTIONS

15.
$$\int (a + bx)^n dx = \frac{(a + bx)^{n+1}}{(n+1)b} + C$$

16.
$$\int \frac{dx}{a + bx} = \frac{1}{b} \log_{e} (a + bx) + C = \frac{1}{b} \log_{e} c(a + bx)$$
17.
$$\int \frac{1}{x^{3}} dx = -\frac{1}{x} + C$$
18.
$$\int \frac{dx}{(a + bx)^{2}} = -\frac{1}{b(a + bx)} + C$$
19.
$$\int \frac{dx}{1 - x^{2}} = \frac{1}{24} \log_{e} \frac{1 + x}{1 - x} + C = \tanh^{-1} x + C, \qquad \text{when } x < 1$$
20.
$$\int \frac{dx}{x^{3} - 1} = \frac{1}{24} \log_{e} \frac{x - 1}{x + 1} + C = -\coth^{-1} x + C, \qquad \text{when } x > 1$$
21.
$$\int \frac{dx}{a + bx^{2}} = \frac{1}{2\sqrt{ab}} \log_{e} \frac{\sqrt{ab} + bx}{\sqrt{ab} - bx} + C$$
22.
$$\int \frac{dx}{a - bx^{2}} = \frac{1}{2\sqrt{ab}} \log_{e} \frac{\sqrt{ab} + bx}{\sqrt{ab} - bx} + C$$

$$= \frac{1}{2\sqrt{b^{3} - ac}} \tan^{-1} \left(\sqrt{\frac{b}{a}} x \right) + C$$
23.
$$\int \frac{dx}{a + 2bx + cx^{2}} = \frac{1}{\sqrt{ac - b^{2}}} \tan^{-1} \frac{b + cx}{\sqrt{b^{3} - ac} + b + cx} + C$$

$$= -\frac{1}{2\sqrt{b^{3} - ac}} \log_{e} \frac{\sqrt{b^{3} - ac} - b - cx}{\sqrt{b^{3} - ac} + b + cx} + C$$

$$= -\frac{1}{\sqrt{b^{3} - ac}} \tan^{-1} \frac{b + cx}{\sqrt{b^{3} - ac}} + C,$$
24.
$$\int \frac{dx}{a + 2bx + cx^{2}} = -\frac{1}{b + cx} + C, \text{ when } b^{2} = ac$$
25.
$$\int \frac{(m + nx)dx}{a + 2bx + cx^{2}} = \frac{n}{2c} \log_{e} (a + 2bx + cx^{2}) + \frac{mc - nb}{c} \int \frac{dx}{a + 2bx + cx^{2}}$$
26. In
$$\int \frac{f(x)dx}{a + 2bx + cx^{2}}, \text{ if } f(x) \text{ is a polynominal of higher than the first degree, divide by the denominator before integrating.}$$
27.
$$\int \frac{dx}{(a + 2bx + cx^{2})^{p}} = \frac{1}{2(ac - b^{3})(p - 1)} \times \frac{b + cx}{(a + 2bx + cx^{3})^{p-1}} + \frac{(2p - 3)c}{(a + 2bx + cx^{3})^{p-1}} \int \frac{dx}{(a + 2bx + cx^{3})^{p-1}} + \frac{mc - nb}{c} \int \frac{dx}{(a + 2bx + cx^{3})^{p-1}} + \frac{mc - nb}{c} \int \frac{dx}{(a + 2bx + cx^{3})^{p-1}} + \frac{mc - nb}{c} \int \frac{dx}{(a + 2bx + cx^{3})^{p-1}} dx$$
29.
$$\int x^{m-1}(a + bx)^{n} dx = \frac{x^{m-1}(a + bx)^{n+1}}{(m + n)b} - \frac{(m - 1)a}{(m + n)b} \int x^{m-2}(a + bx)^{n} dx$$

 $= \frac{x^{m}(a + bx)^{n}}{m + n} + \frac{na}{m + n} \int x^{m-1}(a + bx)^{n-1} dx$

æ

IRRATIONAL FUNCTIONS

$$\sqrt{a + bx} \, dx = \frac{2}{3b} (\sqrt{a + bx})^3 + C$$

$$\int \frac{dx}{\sqrt{a + bx}} = \frac{2}{b} \sqrt{a + bx} + C$$

$$32. \int \frac{(m+nx)dx}{\sqrt{a+bx}} = \frac{2}{3b^2} (3mb - 2an + nbx)\sqrt{a+bx} + C$$

33.
$$\int \frac{dx}{(m+nx)\sqrt{a+bx}}$$
; substitute $y=\sqrt{a+bx}$, and use 21 and 22

34.
$$\int \frac{f(x, \sqrt[n]{a + bx})}{F(x, \sqrt[n]{a + bx})} dx; \text{ substitute } \sqrt[n]{a + bx} = y$$

35.
$$\int \frac{dx}{\sqrt{a^2-x^2}} = \sin^{-1}\frac{x}{a} + C = -\cos^{-1}\frac{x}{a} + C$$

36.
$$\int_{-\sqrt{a^2+x^2}}^{\infty} = \log_a \left[x + \sqrt{a^2+x^2} \right] + C = \sinh^{-1} \frac{x}{a} + c$$

37.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log_a \left[x + \sqrt{x^2 - a^2} \right] + C = \cosh^{-1} \frac{x}{a} + c$$

38.
$$\int \frac{dx}{\sqrt{a+2bx+cx^2}} = \frac{1}{\sqrt{c}} \log_a \left[b + cx + \sqrt{c} \sqrt{a+2bx+cx^2} \right] + C,$$

$$= \frac{1}{\sqrt{c}} \sinh^{-1} \frac{b + cx}{\sqrt{ac - b^2}} + C, \quad \text{when } ac - b^2 > 0;$$

$$1 \quad b + cx \quad c$$

$$=\frac{1}{\sqrt{c}}\cosh^{-1}\frac{b+cx}{\sqrt{b^2-ac}}+C, \quad \text{when } b^2-ac>0;$$

$$\sqrt{c} \qquad \sqrt{b^2 - ac}$$

$$= \frac{-1}{\sqrt{-c}} \sin^{-1} \frac{b + cx}{\sqrt{b^2 - ac}} + C, \qquad \text{when } c < 0$$

39.
$$\int \frac{(m+nx)dx}{\sqrt{a+2bx+cx^2}} = \frac{n}{c}\sqrt{a+2bx+cx^2}$$

$$+\frac{mc-nb}{c}\int \frac{dx}{\sqrt{a+2bx+cx^2}}$$

40.
$$\int \frac{x^m dx}{\sqrt{a + 2bx + cx^2}} = \frac{x^{m-1} X}{mc} - \frac{(m-1)a}{mc} \int \frac{x^{m-2} dx}{X}$$

$$(2m-1)b c x^{m-1} dx$$

$$-\frac{(2m-1)b}{mc}\int \frac{x^{m-1}\,dx}{X}, \text{ where } X = \sqrt{a+2bx+cx^2}$$

41.
$$\int \sqrt[a]{a^2 + x^2} \, dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \log_e \left(x + \sqrt{a^2 + x^2} \right) + C$$
$$= \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \sinh^{-1} \frac{x}{a} + c$$

42.
$$\int \sqrt{a^2-x^2} \, dx = \frac{x}{2} \sqrt{a^2-x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$

43.
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log_s \left(x + \sqrt{x^2 - a^2} \right) + C$$

$$= \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \cosh^{-1} \frac{x}{a} + c$$

$$44. \int \sqrt{a + 2bx + cx^2} \, dx = \frac{b + cx}{2c} \sqrt{a + 2bx + cx^2}$$

$$+ \frac{ac - b^2}{2c} \int \frac{dx}{\sqrt{a + 2bx + cx^2}} + C$$

TRANSCENDENTAL FUNCTIONS

45.
$$\int a^{x}dx = \frac{a^{x}}{\log_{\theta} a} + C$$
46.
$$\int x^{n} e^{ax} dx = \frac{x^{n}}{a} \frac{e^{ax}}{a} \left[1 - \frac{n}{ax} + \frac{n(n-1)}{a^{3}x^{3}} - \dots \pm \frac{n!}{a^{n}x^{n}} \right] + C$$
47.
$$\int \log_{\theta} x dx = x \log_{\theta} x - x + C$$
48.
$$\int \frac{\log_{\theta} x}{x^{2}} dx = -\frac{\log_{\theta} x}{x} - \frac{1}{x} + C$$
49.
$$\int \frac{(\log_{\theta} x)^{n}}{x} dx = \frac{1}{n+1} (\log_{\theta} x)^{n+1} + C$$
50.
$$\int \sin^{2} x dx = -\frac{1}{4} \sin 2x + \frac{1}{2}x + C = \frac{1}{2} \sin x \cos x + \frac{1}{2}x + C$$
51.
$$\int \cos^{2} x dx = \frac{1}{2} \sin 2x + \frac{1}{2}x + C = \frac{1}{2} \sin x \cos x + \frac{1}{2}x + C$$
52.
$$\int \sin mx dx = -\frac{\cos mx}{m} + C$$
53.
$$\int \cos mx dx = \frac{\sin mx}{m} + C$$
54.
$$\int \sin mx \cos nx dx = -\frac{\cos (m+n)x}{2(m+n)} - \frac{\cos (m-n)x}{2(m+n)} + C$$
55.
$$\int \sin mx \sin nx dx = \frac{\sin(m-n)x}{2(m-n)} - \frac{\sin(m+n)x}{2(m+n)} + C$$
56.
$$\int \cos mx \cos nx dx = \frac{\sin(m-n)x}{2(m-n)} + \frac{\sin(m+n)x}{2(m+n)} + C$$
57.
$$\int \tan x dx = -\log_{\theta} \cos x + C$$
58.
$$\int \cot x dx = \log_{\theta} \sin x + C$$
59.
$$\int \frac{dx}{\sin x} = \log_{\theta} \tan \frac{x}{2} + C$$
60.
$$\int \frac{dx}{\cos x} = \log_{\theta} \tan \left(\frac{\pi}{4} + \frac{x}{2}\right) + C$$
61.
$$\int \frac{dx}{1 + \cos x} = \tan \frac{x}{2} + C$$
62.
$$\int \frac{dx}{1 - \cos x} = -\cot \frac{x}{2} + C$$
63.
$$\int \sin x \cos x dx = \frac{1}{2} \sin^{2} x + C$$
64.
$$\int \frac{dx}{\sin x \cos x} = \log_{\theta} \tan x + C$$
65.
$$\int \cos^{n} x dx = -\frac{\cos x \sin^{n-1}x}{n} + \frac{n-1}{n} \int \sin^{n-2} x dx$$
66.
$$\int \cos^{n} x dx = \frac{\sin x \cos^{n-1}x}{n} + \frac{n-1}{n} \int \sin^{n-2} x dx$$

[•] If n is an odd number, substitute $\cos x = z$ or $\sin x = s$.

67.
$$\int \tan^{n} x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx$$
68.
$$\int \cot^{n} x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx$$
69.
$$\int \frac{dx}{\sin^{n} x} = -\frac{\cos x}{(n-1)\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} x}$$
70.
$$\int \frac{dx}{\cos^{n} x} = \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}$$
71.
$$\int \sin^{p} x \cos^{q} x \, dx = \frac{\sin^{p+1} x \cos^{q+1} x}{p+q} + \frac{q-1}{p+q} \int \sin^{p} x \cos^{q-2} x \, dx$$

$$= -\frac{\sin^{p+1} x \cos^{q+1} x}{p+q} + \frac{p-1}{p+q} \int \sin^{p} x \cos^{q} x \, dx$$
72.
$$\int \sin^{p} x \cos^{q} x \, dx = -\frac{\sin^{p+1} x \cos^{q+1} x}{p-1} + \frac{q-p-2}{p-1} \int \sin^{p+2} x \cos^{q} x \, dx$$
73.
$$\int \sin^{p} x \cos^{-q} x \, dx = \frac{\sin^{p+1} x \cos^{q+1} x}{q-1} + \frac{q-p-2}{q-1} \int \sin^{p} x \cos^{-q+2} x \, dx$$

$$= \frac{1}{\sqrt{b^{2}-a^{2}}} \log_{b} \frac{b+a \cos x+\sin x \sqrt{b^{2}-a^{2}}}{a+b \cos x} + C, \text{ when } a^{2} > \frac{1}{\sqrt{b^{2}-a^{2}}} \log_{b} \frac{b+a \cos x}{a+b \cos x} + C$$
75.
$$\int \frac{\cos x \, dx}{a+b \cos x} = \frac{x}{b} - \frac{a}{b} \int \frac{dx}{a+b \cos x} + C$$
76.
$$\int \frac{\sin x \, dx}{a+b \cos x} = -\frac{1}{b} \log_{e} (a+b \cos x) + C$$
77.
$$\int \frac{A+B \cos x+C \sin x}{a+b \cos x} \, dx = A \int \frac{dy}{a+p \cos y} + (B \cos u+C \sin u) \int \frac{\cos y \, dy}{a+p \cos y} - (B \sin u-C \cos u) \int \frac{\sin y \, d}{a+p \cos y} + (B \cos u+C \sin u) \int \frac{\cos y \, dy}{a+p \cos y} - (B \sin u-C \cos u) \int \frac{\sin y \, d}{a+p \cos y} + (B \cos u+C \sin u) \int \frac{\cos y \, dy}{a+p \cos y} - (B \sin u-C \cos u) \int \frac{\sin y \, d}{a+p \cos x} + C$$
79.
$$\int e^{ax} \cos bx \, dx = \frac{a \sin bx-b \cos bx}{a^{2}+b^{3}} e^{ax} + C$$
80.
$$\int \sin^{-1} x \, dx = x \sin^{-1} x + \sqrt{1-x^{2}} + C$$
81.
$$\int \cos^{-1} x \, dx = x \cos^{-1} x - \sqrt{1-x^{2}} + C$$
81.
$$\int \cos^{-1} x \, dx = x \cos^{-1} x - \sqrt{1-x^{2}} + C$$

82. $\int \tan^{-1} x \, dx = x \tan^{-1} x - \frac{1}{2} \log_{a} (1 + x^{2}) + C$ 83. $\int \cot^{-1} x \, dx = x \cot^{-1} x + \frac{1}{2} \log_{a} (1 + x^{2}) + C$

[•] If p or q is an odd number, substitute $\cos x = s$ or $\sin x = s$.

84.
$$\int \sinh x \, dx = \cosh x + C$$
85.
$$\int \tanh x \, dx = \log_{\circ} \cosh x + C$$
86.
$$\int \cosh x \, dx = \sinh x + C$$
87.
$$\int \coth x \, dx = \log_{\circ} \sinh x + C$$
88.
$$\int \operatorname{sech} x \, dx = 2 \tan^{-1} (e^{x}) + C$$
89.
$$\int \operatorname{csch} x \, dx = \log_{\circ} \tanh (x/2) + C$$
90.
$$\int \sinh^{2} x \, dx = \frac{1}{2} \sinh x \cosh x - \frac{1}{2}x + C$$
91.
$$\int \cosh^{2} x \, dx = \frac{1}{2} \sinh x \cosh x + \frac{1}{2}x + C$$
92.
$$\int \operatorname{sech}^{2} x \, dx = \tanh x + C$$
93.
$$\int \operatorname{csch}^{2} x \, dx = -\coth x + C$$

DEFINITE INTEGRALS

The definite integral of f(x)dx from x = a to x = b, denoted by $\int_a^b f(x)dx$, is the limit (as n increases indefinitely) of a sum of n terms:

$$\int_a^b f(x)dx = \lim_{n = \infty} [f(x_1)\Delta x + f(x_2)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x],$$

built up as follows: Divide the interval from a to b into n equal parts, and call each part $\Delta x_1 = (b - a)/n$; in each of these intervals take a value of x (say x_1, x_2, \ldots, x_n), find the value of the function f(x) at each of these points, and multiply it by Δx , the width of the interval; then take the limit of the sum of the terms thus formed, when the number of terms increases indefinitely, while each individual term approaches zero.

Geometrically, $\int_a^b f(x)dx$ is the area bounded by the curve y = f(x), the x-axis, and the ordinates x = a and x = b (Fig. 8); that is, briefly, the "area under the curve, from a to b." The fundamental theorem for the evaluation of a definite integral is the following:

integral is the following:
$$\int_a^b f(x)dx = \left[\int f(x)dx\right]_{z=b} - \left[\int f(x)dx\right]_{z=a};$$
that is, the definite integral is equal to the difference be-

tween two values of any one of the indefinite integrals of the function in question. In other words, the limit of a sum can be found whenever the function can be integrated.

Properties of Definite Integrals.

$$\int_a^b = -\int_b^a; \ \int_a^c + \int_a^b = \int_a^b.$$

THE MEAN-VALUE THEOREM FOR INTEGRALS.

$$\int_a^b F(x) f(x) dx = F(X) \int_a^b f(x) dx,$$

provided f(x) does not change sign from x = a to x = b; here X is some (unknown) value of x intermediate between a and b.

THEOREM ON CHANGE OF VARIABLE. In evaluating $\int_{x=a}^{x=b} f(x) dx$, f(x) dx may be replaced by its value in terms of a new variable t and dt, and x=a and x=b by the corresponding values of t, provided that throughout the interval the relation between x and t is a one-to-one correspondence (that is, to each value of x there corresponds one and only one value of t, and to each value of t there corresponds one and only one value of x).

DIFFERENTIATION WITH RESPECT TO THE UPPER LIMIT. If, b is variable, then $\int_a^b f(x)dx$ is a function of b, whose derivative is

$$\frac{d}{db}\int_a^b f(x)dx = f(b).$$

DIFFERENTIATION WITH RESPECT TO A PARAMETER.

$$\frac{\partial}{\partial c} \int_a^b f(x,c)dx = \int_a^b \frac{\partial f(x,c)}{\partial c}dx.$$

Functions Defined by Definite Integrals. The following definite integrals have received special names, and their values have been tabulated; see, for example, B. O. Peirce's "Table of Integrals."

- 1. Elliptic integral of the first kind = $F(u, k) = \int_0^{u} \frac{dx}{\sqrt{1 k^2 \sin^2 x}} (k^2 < 1)$
- 2. Elliptic integral of the second kind = $E(u, k) = \int_{a}^{u} \sqrt{1 k^2 \sin^2 x} dx$ $(k^2 < 1)$
- 3, 4. Complete elliptic integrals of the first and second kinds; put $u = \pi/2$ in (1) and (2).
 - 5. The Probability integral = $\frac{2}{\sqrt{\pi}} \int_0^x e^{-x^2} dx$
 - 6. The Gamma function = $\Gamma(n) = \int_{a}^{\infty} x^{n-1}e^{-x}dx$

Approximate Methods of Integration. Mechanical Quadrature.

- (1) Use Simpson's rule. See p. 106.
- (2) Expand the function in a power series, and integrate term by term.
- (3) Plot the area under the curve y = f(x) from x = a to x = b on squared paper and measure this area roughly by "counting squares," or more accurately, by the use of a planimeter (\$14 to \$35; instruction for use with each instrument).
- (4) Coradi's Mechanical Integraph (\$240) provides a means of drawing on paper the curve $y = \int f(x)dx$, when the curve y = f(x) is given, and can be used to facilitate the solution of certain differential equations. Full instructions for use with each instrument.

Double Integrals. The notation $\int \int f(x, y) dy dx$ means $\int \left\{ \int f(x, y) dy \right\} dx$, the limits of integration in the inner, or first, integral being functions of x (or constants).

Example. To find the weight of a plane area whose density, w, is variable, say w = f(x, y). The weight of a typical element, dx dy, is f(x, y)dx dy. Keeping x and dx constant, and summing these elements from, say, y = $F_1(x)$ to $y = F_2(x)$, as determined by the shape of the

Fig. 9.

boundary, the weight of a typical strip perpendicular to the x-axis is

 $dx \int_{y=F_1(x)}^{y=F_2(x)} y = F_1(x)$ $dx \int_{y=F_1(x)}^{y=F_2(x)} y = F_1(x)$ weight of a typical strip perpendicular to the x-axis is $\int_{y=F_1(x)}^{y=F_2(x)} y = F_1(x)$

weight of the whole area is $\int_{x=a}^{x=b} \begin{cases} y = F_2(x) \\ f(x, y) dy \end{cases}$, or, briefly, $\int \int f(x, y) dy dx$.

DIFFERENTIAL EQUATIONS

An ordinary differential equation is one which contains a single independent variable, or argument, and a single dependent variable, or function, with its derivatives of various orders. A partial differential equation is one which contains a function of several independent variables, and its partial derivatives of various orders. The order of a differential equation is the order of the highest derivative which occurs in it. A solution of a differential equation is any relation between the variables, which, when substituted in the given equation, will satisfy it. The general solution of an ordinary differential equation of the nth order will contain n arbitrary constants. A differential equation is usually said to be solved when the problem is reduced to a simple quadrature, that is, an integration of the form $y = \int f(x) dx$.

Methods of Solving Ordinary Differential Equations

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

- (1) If possible, separate the variables; that is, collect all the x's and dx on one side, and all the y's and dy on the other side; then integrate both sides, and add the constant of integration.
- (2) If the equation is homogeneous in x and y, the value of dy/dx in terms of x and y will be of the form $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$. Substituting y = xt will enable

the variables to be separated. Solution: $\log_{\epsilon} x = \int \frac{dt}{f(t) - t} + C$.

(3) The expression f(x,y)dx + F(x,y)dy is an exact differential if $\frac{\partial f(x,y)}{\partial y} = \frac{\partial F(x,y)}{\partial x} (= P, \text{ say})$. In this case the solution of f(x,y)dx + F(x,y)dy = 0 is

or
$$\int f(x,y)dy + \int [F(x,y) - \int Pdx]dy = C$$
$$\int F(x,y)dy + \int [f(x,y) - \int Pdy]dx = C$$

(4) Linear differential equation of the first order: $\frac{dy}{dx} + f(x) \cdot y = F(x)$.

Solution: $y = e^{-P} \left\{ \int e^{P} F(x) dx + C \right\}$, where $P = \int f(x) dx$.

- (5) Bernoulli's equation: $\frac{dy}{dx} + f(x) \cdot y = F(x) \cdot y^n$. Substituting $y^{1-n} = v$ gives $\frac{dv}{dx} + (1-n)f(x) \cdot v = (1-n)F(x)$, which is linear in v and x.
- (6) Clairaut's equation: y = xp + f(p), where p = dy/dx. The solution consists of the family of lines given by y = Cx + f(C), where C is any constant, together with the curve obtained by eliminating p between the equations y = xp + f(p) and x + f'(p) = 0, where f'(p) is the derivative of f(p).

DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

(7)
$$\frac{d^2y}{dx^2} = -n^2y. \quad \text{Solution: } y = C_1 \sin(nx + C_2)$$
or $y = C_3 \sin nx + C_4 \cos nx$

(8)
$$\frac{d^2y}{dx^2} = +n^2y$$
. Solution: $y = C_1 \sinh{(nx + C_2)}$
or $y = C_2 e^{nx} + C_4 e^{-nx}$

(9)
$$\frac{d^3y}{dx^3} = f(y)$$
. Solution: $x = \int \frac{dy}{\sqrt{C_1 + 2P}} + C_2$, where $P = ff(y) dy$.

(10)
$$\frac{d^2y}{dx^2} = f(x). \text{ Solution: } y = \int Pdx + C_1x + C_2, \text{ where } P = \int f(x)dx$$
 or $y = xP - \int xf(x)dx + C_1x + C_2$

(11)
$$\frac{d^2y}{dx^2} = f\left(\frac{dy}{dx}\right)$$
. Putting $\frac{dy}{dx} = z$, $\frac{d^2y}{dx^2} = \frac{dz}{dx}$, $x = \int \frac{dz}{f(z)} + C_1$ and $y = \int \frac{sdz}{f(z)} + C_2$; then eliminate z from these two equations.

(12) The equation for damped vibration:
$$\frac{d^3y}{dx^2} + 2b\frac{dy}{dx} + e^2y = 0.$$

Case I. If
$$a^2 - b^2 > 0$$
, let $m = \sqrt{a^2 - b^2}$. Solution:

$$y = C_1 e^{-bx} \sin(mx + C_2)$$
 or $y = e^{-bx} [C_3 \sin(mx) + C_4 \cos(mx)]$
Case II. If $a^2 - b^2 = 0$, solution is $y = e^{-bx} [C_1 + C_2x]$.

Case III. If $a^2 - b^2 < 0$, let $n = \sqrt{b^2 - a^2}$. Solution:

$$y = C_1 e^{-bx} \sinh (nx + C_2)$$
 or $y = C_2 e^{-(b+n)x} + C_4 e^{-(b-n)x}$

(13) $\frac{d^2y}{dx^2} + 2b\frac{dy}{dx} + a^2y = c$. Solution: $y = \frac{c}{a^2} + y_1$, where $y_1 =$ the solution of the corresponding equation with second member zero [see (12) above].

(14)
$$\frac{d^2y}{dx^3} + 2b\frac{dy}{dx} + a^2y = c\sin(kx)$$
. Solution:

$$y = R \sin(kx - S) + y_1$$
, where $R = c_1 \sqrt{(a^2 - k^2)^2 + 4b^2k^2}$,

 $\tan S = \frac{2bk}{a^2 - k^2}$, and $y_1 =$ the solution of the corresponding equation with second member zero [see (12) above].

(15)
$$\frac{d^3y}{dx^2} + 2b\frac{dy}{dx} + a^2y = f(x)$$
. Solution: $y = y_0 + y_1$, where $y_0 =$ any particular solution of the given equation, and $y_1 =$ the general solution of the

corresponding equation with second member zero [see (12) above].

If
$$b^2 > a^2$$
, $y_0 = \frac{1}{2\sqrt{b^2 - a^2}} \left\{ e^{m_1 x} \int e^{-m_1 x} f(x) dx - e^{m_2 x} \int e^{-m_2 x} f(x) dx \right\}$, where $m_1 = -b + \sqrt{b^2 - a^2}$ and $m_2 = -b - \sqrt{b^2 - a^2}$. If $b^2 < a^2$, let $m = \sqrt{a^2 - b^2}$; then $y_0 = \frac{1}{m} e^{-bx} \left\{ \sin(mx) \int e^{bx} \cos(mx) \cdot f(x) dx - \cos(mx) \int e^{bx} \sin(mx) \cdot f(x) dx \right\}$. If $b^2 = a^2$, $y_0 = e^{-bx} \left\{ x \int e^{bx} f(x) dx - \int x e^{bx} f(x) dx \right\}$.

GRAPHICAL REPRESENTATION OF FUNCTIONS

For graphical methods in statistics, etc., see W. C. Brinton's "Graphical Methods for Presenting Facts"

EQUATIONS INVOLVING TWO VARIABLES

The Curve y = f(x). To represent graphically any function, y, of a single variable, x, lay off the values of x as abscissae along a uni-

formly graduated horizontal axis, whose positive direction (as usually chosen) runs to the right, and at each point on this x-axis erect a perpendicular (called an ordinate) whose length represents the value of y at that point. The unit of measurement for the y-scale, whose positive direction (as usually chosen) runs upward, need not be the same as the unit for the x-scale. Draw a

Fig. 1.

1

smooth curve through the extremities of the ordinates; this is the graph of the given function in rectangular co-ordinates, or the curve of the function.

To measure graphically the rate of change of the function at any point P(Fig. 1), draw the tangent at P; then rate of change at P = RT/PR, where RT and PR are measured in units of the y-axis and x-axis, respectively. This ratio, which is positive if RT runs upward, negative if RT runs downward, is equal to the derivative of the function at the point P (see p. 157),

Graphs of Important Functions. Figs. 2-9 show the graphs (in rectangular co-ordinates) of the most important elementary functions, namely: The linear function, y = mx + b (Fig. 2).

The power functions, $y = x^n$ [n positive (parabolic type); n negative (hyperbolic type)] (Fig. 3).

The exponential function, $y = 10^x$ or $y = e^x$, and the logarithmic function, $y = \log_{10} x$ or $y = \log_{0} x$ (Fig. 4).

The trigonometric functions (Fig. 5), and the inverse trigonometric functions (Fig. 6).

The hyperbolic functions (Figs. 7 and 8) and the inverse hyperbolic functions (Fig. 9).

Various special functions (Figs. 10-12).

By a slight modification, each of these diagrams may be made to represent a somewhat more general function than that for which it is primarily intended. For, if x is replaced by x - a in the equation, this merely requires re-numbering the x-axis so that each number is moved a units to the left; and similarly, if y is replaced by y - b in the equation, this merely requires re-numbering the y-axis so that each number is moved b units downward. (Such a change is called a translation of the curve to the right, or upward.) Further, if x is replaced by x/c [or y by y/c] in the equation, it is merely necessary to multiply each of the numbers written along the x-axis [or y-axis] by c, in order to adapt the graph to the new equation. (Such a change is called a "stretching" of the curve along one of the axes.)

Empirical Curves. Any set of values of two variables x and y can be represented by plotting the points (x,y) on rectangular co-ordinate paper, and drawing a smooth curve through these points. The points which correspond to actual data should be clearly indicated by small circles or crosses, intermediate points being spoken of as interpolated points. While this process of graphically interpolating a continuous series of points between given values is usually fairly safe, the process of extrapolation—that is, extending the curve beyond the range of the given values, is dangerous.

To Find a Mathematical Equation to Fit a Given Empirical Curve. This problem is one which in general requires much patience and ingenuity. Only the simplest cases can be mentioned here.

Fig. 5.

Case 1. If the given empirical curve is a straight line, then the law connecting the given values of x and y is y = mx + b, where m = the slope of the line, and b = the value of y at the point where the line crosses the y-axis. If

the points lie only approximately on a straight line, the best position for this line can usually be found by stretching a black thread among the points; or, assume a law of the form y = mx + b, and, by substituting in this formula n pairs of values of x and y, obtain n equations connecting the coefficients m and b; various pairs of these equations may then be solved for m and b, and the average of the results taken. Or, if great accuracy is required, all n of the equations may be solved for m and b by the method of least squares (p. 121).

If any law of the form f(x,y) = mF(x,y) + b is suspected, where f(x,y) and F(x,y) are any expressions involving either x or y or both x and y, such a law f(x,y) are any expressions involving either x or y or both x and y, such a law as be tested by plotting F(x,y) instead of x, and f(x,y) instead of y, on rectangular cross-section paper, and seeing whether or not the points lie on a straight line. If they do, the form of the law is verified, and the values of m and b can be read from the figure as before. For example, if $y^2 = mxy + b$, a straight line will be obtained by plotting y^2 against xy. Again, if xy = bx + my, a straight line will be obtained by plotting y against y/x, since the equation may be written y = b + m(y/x).

Case 2. If a law of the form $y = cx^n$ is suspected, plot the points (x,y) on logarithmic paper (see below).

Case 3. If a law of the form $y = c \cdot 10^{mx}$ [or $y = c \cdot e^{mx}$] is suspected, plot the points (x,y) on semi-logarithmic paper (see below).

CASE 4. If the given curve resembles the logarithmic curve, $y = \log x$, interchange x and y and proceed as in Case 3.

CASE 5. If the given curve is a wavy line, resembling a sine or cosine curve, try an equation of the form $y = a \sin bx$ or $y = a \cos bx$. If the heights of the waves diminish as x increases, try an equation of the form $y = ae^{-nx} \sin bx$. [Note. Any periodic function (satisfying certain simple conditions) can be expressed by a Fourier's series (p. 162)].

Case 6. A great variety of functions can be represented approximately by a polynomial of the form $y = a + bx + cx^2 + dx^3 + ex^4 + \dots$, the first three or four terms being usually sufficient. To determine the coefficients a, b, c, \dots , most accurately, substitute in the formula all the given pairs of values of x and y, and solve the resulting equations for a, b, c, \dots by the method of least squares (p. 121).

CASE 7. Many simple curves can be represented approximately by an equation of the hyperbolic form, xy = c + bx + ay, where a, b, and c are determined by substituting the co-ordinates of three conspicuous points of the curve. The lines x = a and y = b are the asymptotes of the hyperbola. The equation may also be written (x - a)(y - b) = k, where k = ab + c.

Logarithmic Cross-section Paper. In this form of cross-section paper (Fig. 13), the distance from the origin to any point on the x- or y-axis is equal to the logarithm of the number written against that point. Thus, in Fig. 13 the distances (shown for clearness on two auxiliary scales X and Y) are the logarithms of the numbers written along x and y.

Accurately made logarithmic paper can be obtained from the principal dealers in draftmen's supplies. Logarithmic paper can be easily constructed, in case of need, by copying the logarithmic scale from any ordinary slide rule. The actual figures along the x- and y-axes are usually left for the user to insert; in so doing, notice that the numbers . . ., 0.01, 0.1, 1, 10, 100, . . ., or such of them as may be needed to cover any given range of values, must be placed at the points of division which separate the main squares. It is often convenient, however, to omit the decimal point, num-

bering each square independently from 1 to 10. The length of the side of one square is called the *unit* or base of the logarithmic paper; the larger the unit, the finer the possible subdivisions of the scale.

To plot a point (x,y) on logarithmic paper, for example, the point (3,5), means to find the point of intersection of the vertical line marked x=3 and the horizontal line marked y=5. In interpolating between two lines, account should be taken of the fact that the divisions are not of uniform length.

Any equation of the form $y = cx^n$ when plotted on logarithmic paper will be represented by a straight line whose slope is n. For, if $y_1 = cx_1^n$ and $y_2 = cx_2^n$, then $y_1/y_2 = (x_1/x_2)^n$, or $(\log y_1 - \log y_2)/(\log x_1 - \log x_2) = n$. The slope must be measured by aid of an auxiliary uniform scale.

EXAMPLE. Let $y = x^{3/2}$. When x = 1, y = 1; plot this point A on the logarithmic paper, and draw the straight line AE with a slope equal to $\frac{1}{2}$ (Fig. 13). By the aid of this line, the value of y for any value of x between 1 and 100 can be read off directly; for example, if x = 2.50, y = 3.95, as shown by dotted lines, so that $(2.50)^{3/2} = 3.95$. To find the value of y for any value of x outside this range, note that moving the decimal point 2 places in x is equivalent to moving it 3 places in y. The line shown in Fig. 13 is thus equivalent to a complete table of three-halves powers.

It will be noticed that this line crosses four squares of the logarithmic paper. By superposing these four squares the whole diagram may be condensed into a single square (Fig. 14), in which, however, the scales for x and y now give only the sequence of digits in the answer, the position of the decimal point having to be determined by inspection.

To determine whether a given set of values, x and y, satisfies a law of the form $y = cx^n$, plot the values on logarithmic paper, and see whether they lie on a straight line; if they do, then the given values satisfy a law of this form; moreover, the slope of the line gives the value of n, and the value of y when x = 1 gives the value of \dot{c} .

If the plotted points fail to lie exactly in line, but form a curve slightly concave upward, try subtracting some constant b from all the y's, that is, move each point downward a distance equal to b units of the y-scale at that point. If it proves possible to choose b so that the resulting points lie in line, then the original values obey a law of the form $y-b=cx^n$, where n is again the slope of the line, and c is the value of y-b when x=1. (Conversely, if the curve is concave downward, try adding b to all the y's; that is, move each point upward; if the new points lie in line, the original values obey a law of the form $y+b=cx^n$.) Another method of "straightening" the curve consists of adding some constant, $\pm a$, to all the values of x, which has the effect of shifting all the points to the right or left (by varying amounts); if this method succeeds, the original values obey a law of the form $y=c(x+a)^n$.

Semi-logarithmic Cross-section Paper*. This form of paper (Fig. 15) has a logarithmic scale along y and a uniform scale along x. The "scale value," k, of the paper is the number which stands, on the x-axis, at a distance from the origin equal to the width of one of the main horizontal strips. Thus, in Fig. 15, each number shown along the auxiliary scale Y is the logarithm of the corresponding number along y, and each number shown along the auxiliary scale X is 1/kth of the corresponding number along x (here k = 5). The number k, which may be chosen at pleasure, should be taken equal to some simple integer, as 1, 2, or 5, or some integral power of 10.

In preparing the paper for use it is important to notice that the numbers ..., $0.01, 0.1, 1, 10, 100, \ldots$ (or such of them as may be needed in any given case) must be placed along the y-axis at the points which mark the main lines of division between the horizontal strips; while the numbers ..., $-2k, -k, 0, +k, +2k, \ldots$ (or such of them as may be needed) must be placed along the x-axis at uniform intervals, each interval (from 0 to k, from k to 2k, etc.) being equal to the width of one of the main horizontal strips. The width of one of these strips is called the unit or base of the semi-

[•] Made by the Educational Exhibition Co.. 26 Custom House St., Providence, B. L.

logarithmic paper; the larger the unit, the finer the possible subdivisions of the scale.

To plot a point (x,y), as x=3, y=5, on semi-logarithmic paper means to find the point of intersection of the vertical line marked x=3 with the horizontal line marked y=5.

Any equation of the form $y = c \cdot 10^{mz}$ [or $y = c \cdot e^{mx}$] when plotted on semi-logarithmic paper with scale value k, will be represented by a straight line whose slope is km [or $0.4343 \ km$.]. By a suitable choice of the scale value k, any given range of values of x can be brought within the size of the paper. Note that $e = 10^{0.4343}$

EXAMPLE. Given $y = 4 \cdot 10^{-6 \cdot 1x}$ [or $y = 4 \cdot x^{-0 \cdot 1x}$]. In Fig. 15, when x = 0, y = 4. By plotting this point (A) on the semi-logarithmic paper, with scale value 5, and drawing through it a straight line with

slope equal to -0.5 [or -0.217] a graphical representation is obtained from which, for any value of x, the corresponding value of y can be read off. If it is desired to condense the figure, several horizontal strips may be superposed on a single strip; this of course renders the decimal point in the y-scale undetermined (unless a separate y-scale is provided for each section of the graph).

In order to determine whether a given set of values of x and y satisfy a law of the form $y = c \cdot 10^{mz}$ [or $y = c \cdot e^{mz}$], plot the values of x and y on semi-logarithmic paper, with a suitable scale value k, and see whether they lie on a straight line; if they do so, the law is satisfied, and the values of m and c may be found as follows: m = the slope of the line divided by k [or the slope of the line divided by 0.4343k], and c = the value of y when x = 0.

If the plotted points fail to lie exactly in line, but form a curve slightly concave upward, try subtracting some constant b from all the y's, and plot the values thus modified;

if b can be so chosen that the revised points lie in line, then the original values obey a law of the form $y-b=c\cdot 10^{mx}$ [or $y-b=c\cdot e^{mz}$], where m and c are to be found as before. If the curve is concave downward, add b, instead of subtracting; and replace y-b by y+b in the law.

Curves in Polar Co-ordinates. Any function, τ , of a single variable, θ , can be represented by a curve in polar co-ordinates (p. 137). Lay off the given values of θ as angles, the initial line Ox running toward the right, and the counterclockwise direction about the origin being taken as positive. Along the terminal side of each angle θ ,

lay off the corresponding value of r, forward if r is positive, backward if r is negative; and pass a smooth curve through the points thus determined.

The rate of change of r with respect to θ at a given point P is represented graphically as follows (Fig. 16): On the tangent at P drop a perpendicular OM from the origin; then r(MP/OM) represents the rate of change, $dr/d\theta$, provided θ is measured in radians. Specially ruled polar co-ordinate paper is supplied by dealers in drafting supplies.

EQUATIONS INVOLVING THREE VARIABLES

The Surface z = f(x, y). Any function, z, of two variables, x and y, may be represented by a surface, as follows: Plot the given pairs of values of x and y as points in a horizontal x, y plane, called the base plane; at each of these points erect an ordinate, parallel to a vertical axis z, and representing

by its length the value of z at that point. Then conceive a smooth surface passed through the extremities of these ordinates: this surface is said to represent the function. In practice, the ordinates may be made by implanting stiff vertical rods in a horizontal board of soft wood which serves as the base plane; the surface may then be constructed by filling in the spaces with plaster of Paris. Or, more simply, pieces of cardboard may be cut out to represent parallel plane sections of the surface, and then stood on edge in slots cut in the board to receive them. The units employed along x, y, and z need not be equal to each other.

Contour-line Charts. All the points of a surface z = f(x, y) which are at any given height above the base plane form a curve on the surface, called a contour line of the surface. If each of these contour lines be projected on the base plane, and each labeled with the value of z to which it corresponds, a complete representation of the function z = f(x, y) is obtained, all in one plane. A topographical map, with contour lines showing elevations above the sea, and a weather map, with contour lines showing barometric pressure, are familiar examples. If there are several values of z corresponding to any given point (x, y), there will be several contour lines whose projections pass through that point.

Contour-line Charts for Simultaneous Equations [of the form z = f(x,y), w = F(x,y)]. In Fig. 17, plot the function z = f(x,y) by contour

lines on an x,y plane, and plot the function w = F(x,y) by contour lines on the same x,y plane. Then every point on the diagram (either directly or by interpolation) is the intersection of four curves—an x-curve, a y-curve, a z-curve, and a w-curve. Here, by "curve" is meant any line, straight or curved. By the aid of such a diagram, when the values of any two of these four variables are given, the values of the other two can be found. The method of use consists simply in entering the diagram along the two given curves (or lines), tracing them to their point of intersection, and then coming out again along the

Fig. 17.

two curves (or lines) whose values are required. The best manner of numbering the curves is indicated in the figure.

Alignment Charts for Three Variables, t, u, v. Any relation between three variables, t, u, v, which can be thrown into one of the forms listed in later paragraphs, can be represented graphically by a very convenient form of diagram called an alignment chart. In the simplest form of an alignment chart for three variables there are three scales (straight or curved), along which the values of the three variables, t, u, v, are marked in such a way that any three values of t, u, v which satisfy the given equation are represented by three points which lie in line. Hence, if the values of any two of the variables are given, the corresponding value of the third can be found by simply drawing a straight line through the two given points and reading the value of the point where it crosses the third scale.

The most important methods of constructing alignment charts for three variables are described below. Where several methods are applicable in a given case, the best one must be determined largely by trial. For further information see M. d'Ocagne, "Traité de Nomographie" (Gauthier-Villars, Paris); Carl Runge, "Graphical Methods" (Columbia University Press); J. B. Peddle, "Construction of Graphical Charts" (McGraw-Hill); see also page 185.

Notation. In each of the equations which follow, U stands for any function of u alone, V for any function of v alone, and $F_1(t)$, $F_2(t)$ for any functions of t alone. Any of these functions may reduce to a constant. The axes of x, y, and y' which are mentioned are of merely temporary use in constructing the diagram, and the letters x, y, y' should not be written on the chart. It is not necessary that the axes be at right angles, provided the x of a point is always measured parallel to the x-axis, and its y parallel to the y-axis.

Method 1. Given, an equation which can be thrown into the form $U \cdot F_1(t) + V \cdot F_2(t) = 1$.

where, for the given range of values of u and v, the largest variations in U and V are less than a certain number m.

Draw a pair of (temporary) x,y axes (Fig. 18), and through the point x = 1 draw a third axis, which may be called the axis of y', parallel to the axis of y. In ordinary cases, the unit of measurement along x should be nearly equal to the full width of the paper. Now choose a unit for y and y' such that m times this unit will about equal the height of the paper, and plot, in the usual way, the points (x,y) given by

F1g. 18.

$$x = \frac{F_2(t)}{F_1(t) + F_2(t)}, \quad y = \frac{1}{F_1(t) + F_2(t)}$$

labeling each point with the value of t to which it corresponds. Connect these points by a smooth curve, which gives the t-scale of the diagram. [If $F_1(t)/F_2(t) = a$ constant, the t-scale will prove to be a straight line parallel to the y-axis.]

Then, using the same units as above, plot along y the points given by y = U, labeling each point with the corresponding value of u; and plot along y' the points given by y' = V, labeling each of these points with the corresponding value of r. This gives the u- and r-scales of the diagram. The three scales being thus constructed, the x-axis may now be erased, and the diagram is ready for use. Any three points t, u, v which lie in line correspond to three values of t, u, r, which satisfy the given equation. The numbering on each scale should be shown at sufficiently frequent intervals to permit of easy interpolation.

Fig. 19.

EXAMPLE 1 (Fig. 19). Let $uv^{1-\alpha} = t$. By taking the logarithm of both sides, and dividing through by $\log t$, reduce the equation to the form $(\log u) (1/\log t) + (\log v) \times (1.41 \log t) = 1$. Here $V = \log u$, $V = \log v$, $F_1(t) = 1/\log t$, $F_2(t) = 1.41/\log t$, and u = 1.41/2.41 = 0.585, $u = (1.2.41)\log t$.

EXAMPLE 2 (Fig. 20). Let $v = ut + 16t^2$, which reduces to the form $(-u/16)(1/t) + (v/16)(1/t^2) = 1$. Here U = -u/16, V = v/16, $F_1(t) = 1/t$, $F_2(t) = 1/t^2$ and x = 1/(1+t), $y = t^2/(1+t)$.

NOTE. If $m=\infty$, values of u and v which give large values of U and V cannot be shown within the limits of the paper. In such cases, the chart may be supplemented by a second chart, made according to Method 2, below.

Method 2. Given, an equation which can be thrown into the form

$$\frac{F_{1}(t)}{U} + \frac{F_{2}(t)}{V} = 1,$$

where, for the given range of values of u and v, the largest variation in U is less than a certain number m, and the largest variation in V is less than a certain number n.

Draw a pair of temporary x,y axes, and having chosen a unit for the x-axis equal to about (1/m)th of the width of the paper, and a unit for the y-axis equal to about (1/n)th of the height, plot the points (x,y) given by

$$x = F_1(t), y = F_2(t),$$

labeling each point of this curve with the value of t to which it corresponds. Connect these points by a smooth curve, which gives the t-scale of the diagram. [If $F_1(t)/F_2(t) = a$ constant, the t-scale will be a straight line through the origin.]

Then, using the same units as above, plot along x the values of U, labeling each point with the corresponding value of u; and plot along y the values of V, labeling each point with the corresponding value of v. This gives the u- and v-scales of the diagram. On the chart as thus completed, any three points t, u, v which lie in line correspond to three values of t, u, v which satisfy the given equation.

Fig. 21.

EXAMPLE (Fig. 21). Let t = (uv)/(u+v), which may be written in the form t/u + t/v = 1. Here U = u, V = v, $F_1(t) = t$, $F_2(t) = t$.

NOTE. If $m=\infty$ and $n=\infty$, values of u and v which give large values of U and V cannot be shown within the limits of the paper. In such cases the chart may be supplemented by a second chart, made according to Method 1, above.

Method 3. Given, an equation which can conveniently be thrown into the form

$$F_2(t) = V \cdot F_1(t) + U,$$

where, for the given range of values of t, the largest variation in $F_1(t)$ is less than a certain number m, and the largest variation in $F_2(t)$ is less than a certain number n.

Draw a pair of temporary x,y axes, and, having chosen a unit for x equal to about (1/m)th of the width of the paper and a unit for y equal to about (1/n)th of the height, plot the points (x,y) given by

$$x = F_1(t), y = F_2(t),$$

labeling each point of the curve with the value of t to which it corresponds. Connect these points by a smooth curve, which forms the t-scale. Next, using the same unit for y as above, plot along the y-axis the values of U, labeling each point with the corresponding value of u. This gives the u-scale Finally, with the origin as center, and any convenient radius, draw a circle cutting the x-axis in A. Along this circular arc, starting from A in the counterclockwise direction, lay off the angles whose slopes are equal to V, labeling each point of the arc with the value of v to which it corresponds.

form

This gives the v-scale, which in this case, however, plays a peculiar rôle, since, in using this form of chart, two straight lines are required instead of one. Thus:

In order to determine whether three values, t, u, v, satisfy the given equation, lay one straight line through the points t and u, and another straight line through the point v and the origin; if these lines are parallel, the three values of t, u, v satisfy the equation. will be noticed that the function of the v-scale here is to measure, in a certain sense, the slope of the line ioining t and u. A chart of this type may be called an alignment chart with a sliding scale for one of the variables."

sinu-sin 60°sin t-cos 60°cost cosv Fig. 22.

Example (Fig. 22). Let $\sin u = \sin 60^{\circ} \sin t - \cos 60^{\circ} \cos t$ cos v, which may be put in the form

 $(\sin 60^{\circ} \sin t) = \cos v (\cos 60^{\circ} \cos t) + \sin u.$

Here $F_1(t) = \cos 60^{\circ} \cos t$, $F_2(t) = \sin 60^{\circ} \sin t$, $U = \sin u$, $V = \cos v$. Method 4. Given, an equation which can be reduced to the

Fig. 23.

 $U \cdot F(t) + V = 0,$

where, for the given range of values of u and v, the largest variations in U and V are less than a certain number m.

In Fig. 23, draw temporary axes x, y, and y', and

choose the units as in Method 1. To construct the t-scale, which will now coincide with the x-axis, plot along x the points for which

Fig. 24.

$$x = \frac{1}{1 + F(t)},$$

labeling each point with the value of t to which it corresponds. The u-scale, along the axis of y, and vscale, along the axis of y', are constructed exactly as in Method 1, and the finished chart is used in the same way.

Example (Fig. 24). Let $v = 0.196 t^2 u$, where u is to range from 0 to 15,000 and v from 0 to 150,000. The equation may be written in the form (-10 u) $(0.0196t^3) + v$ = 0. Here U = -10 u, V = v, $F(t) = 0.0196t^3$.

Note. If $m = \infty$, values of u and v which give large values of U and V cannot be shown within the limits of the paper.

EQUATIONS INVOLVING FOUR VARIABLES

[For simultaneous equations of the form z = f(x,y), w = F(x,y), see p. 179.]

Alignment Charts for Four Variables. The extension of the methods of the alignment chart to the case of four variables, say r, s, u, v, consists essentially in replacing the t-scale of the earlier diagram by a network of two scales, one for r and one for s. The point where a curve $r = r_1$ and a curve $s = s_1$ intersect may be spoken of as the point (r_1, s_1) . In the following equations, U denotes as before any function of u alone, V any function of v alone: while $F_1(r,s)$ and $F_2(r,s)$ represent any functions of r and s.

Method 1a. Given, an equation of the form

$$U \cdot F_1(r,s) + V \cdot F_2(r,s) = 1.$$

Draw axes x, y, and y' as in Method 1, and plot the network of curves given by the equations

$$x = \frac{F_2(r,s)}{F_1(r,s) + F_2(r,s)}, \qquad y = \frac{1}{F_1(r,s) + F_2(r,s)}$$

[To do this (Fig. 25), find the point (x,y) that corresponds to each given pair of values of r and s, by direct substitution in the equations for x and y. Connect all the points for which r=1 by a curve, and label it r=1; connect all the points for which r = 2 by another curve, and label it r = 2; etc. gives the family of r-curves. Similarly, through all the points for which s=1 draw a curve labeled s=1; through all the points for which s=2draw a curve labeled s = 2; etc. This gives the family of s-curves, intersecting the family of r-curves. Note, however, that if it is possible to eliminate s (or r) from the equations that give x and y, the resulting equation in x, y, and r (or x, y, and s) can often be plotted directly for each given value of r(or of s).]

Next, construct the u- and v-scales along the axes of y and y' as in Method 1. [The letters x, y, and y', and the units used in plotting along these axes, should be omitted from the finished diagram, as should also the axis of x.

In the chart, as thus completed, any three points, (r,s), u, and v which lie in a straight line, correspond to values of r, s, u, v which satisfy the given equation. Hence, when any three of these four values are given, the fourth can be found from the chart.

Fig. 25.

Method 2a. Given, an equation of the form

$$\frac{F_1(r,s)}{U} + \frac{F_2(r,s)}{V} = 1.$$

Draw axes of x and y as in Method 2, and plot the network of curves given by $x = F_1(r,s), y = F_2(r,s).$

To do this, follow the plan outlined for a similar case under Method 1a. labeling each curve of the r-family (Fig. 26) with the corresponding value of r. and each curve of the s-family with the corresponding value of s. Next, construct the u- and v-scales along the x- and y-axes, precisely as in Method 2. Then any three points, (r,s), u, and v, which lie in a straight line correspond to values of r, s, u, v which satisfy the given equation.

Method 3a. Given, an equation of the form

$$F_2(r,s) = V \cdot F_1(r,s) + U$$
.

Draw axes of x and y, as in Method 3, and plot the network of curves given by $x = F_1(r,s)$, $y = F_2(r,s)$, following the plan outlined for a similar case under Method 1a, and labeling each curve of the r-family (or s-family) with the value of r (or s) to which it corresponds. Next, construct the u-scale along the y-axis, and the v-scale along a circular arc, precisely as in Method 3. Then any three points, (r,s) u, and v, which are so related that the line through (r,s) and u is parallel to the line joining v with the origin, will correspond to values of r, s, u, v which satisfy the given equation.

Example for Method 3a (Fig. 27). Let oot $v = \cot r \cos s + \csc r \sin s \cot u$, which may be written (cos r cot s) = $\cot v$ (sin r cos s) — $\cot u$. Here $U = -\cot u$, $V = \cot v$, $F_1(r,s) = \sin r \cos s$, $F_2(r,s) = \cos r \cot s$, whence $\frac{x^2}{\cos^2 s} + \frac{y^2}{\cot^2 s} = 1$, $\frac{x^2}{\sin^2 r} - \frac{y^2}{\cos^2 r} = 1$, so that the s-curves are ellipses and the r-curves hyperbolas.

Parallel Charts, or Proportional Charts, for Four Variables. In the following methods of representation there are four scales, one for each of the

four variables, and the method of using the diagram consists in connecting two pairs of points by parallel lines.

Method \triangle . Given, an equation of the form

$$R - S = U - V$$

where R, S, U, V are any functions of the variables r, s, u, v, respectively. [It will be noted that any proportion R/S = U/V can at once be thrown into this form by taking the logarithm of both sides.]

In Fig. 28, draw four vertical axes, y_1 , y_2 , y'_1 ,

 y'_2 , such that the distance between y_1 and y'_1 (which may be zero) is equal to the distance between y_2 and y'_2 , and so that the four zero points lie in line. Along these axes, using the same unit for all, plot the points given by $y_1 = R$, $y'_1 = S$, $y_2 = U$, $y'_2 = V$, and label each point with the value of r, s, u, or v to which it corresponds. (The letters y_1 , y_2 , y'_1 , y'_2 are temporary, and should not appear on the diagram.) Then if the line joining two points r and u is parallel to the line joining two points s and r, the four values of r, s, u, v will satisfy the given equation. In this and the following methods, a parallel ruler, or a pair of draftman's triangles, will be useful in reading the chart. A "key"

COT v = cot r cos s + csc r sin s cot uKey: Connect $\binom{(r,s)}{r}$ and u by Parallel Lines

Fig. 27.

will be useful in reading the chart. A "key" stating which points are to be joined with which, should be clearly given on the diagram.

EXAMPLE (Fig. 28). Let $32.2 \text{ } r = us^2$, or $\log r - 2 \log s = \log u - \log (32.2 \text{ } s)$. Here $R = \log r$, $S = 2 \log s$, $U = \log u$, $V = \log (32.2 \text{ } r)$.

Method B. Given, an equation of the form

$$\frac{R}{S} = \frac{U}{V}$$

Method C. Given, an equation of the form

$$R - S = \frac{V}{U}$$

In Fig. 30, take a pair of axes, x,y, and through the point x = 1 draw a third axis, y', parallel to y. Also, take a second pair of axes, x_2, y_2 , parallel to (or coinciding with) the axes of x and y. Having chosen a suitable unit for x and x_2 , and a suitable unit for y, y', and y_2 , lay off the values of R and

S along y and y', respectively, labeling each point with the value of r or s to which it corresponds; and lay off the values of U and V along x_2 and y_2 , labeling each point with the value of u or v to which it corresponds. Then if the line joining two points r and s is parallel to the line joining two points u and v, the four values r, s, u, v will satisfy the given equation. This form of chart is sometimes called a "Z-chart."

For further examples, see R. C. Strachan, "Nomographic Solutions for Formulas of Various Types," Trans. Am. Soc. Civil Engineers, vol. 78, 1915.

VECTOR ANALYSIS

Many problems involving directed magnitudes can be advantageously treated by the methods of vector analysis. The following is a brief summary of the principal definitions and formulæ.

A set of arrows, each arrow having a given *length* and pointing in a given *direction*, is called a set of **vectors**, provided they combine by addition according to the parallelogram law (see below). Notation: a or \bar{a} for a vector; a or |a| for its length. Two "free" vectors are equal if they have the same length and point in the same direction; two "sliding" vectors are equal if they have the same length and direction, and also lie in the same line.

A scalar is any real number, positive, negative, or zero.

Addition of vectors.—If an arrow **a** is immediately followed, tip to tail, by **a second** arrow **b**, then the arrow which runs from the beginning of **a** to the end of **b** is called the **sum** of **a** and **b**, denoted by **a** + **b**. Conversely, if **a** + **x** = **b**, then **x** = **b** - **a**. The laws of operation for + and - are the same as in ordinary algebra (pp. 112, 124). If m is a scalar, then m**a** means a vector having the same direction as **a**, and m times its length.

Multiplication of vectors is of two kinds, as follows:

The scalar product, or dot product, of two vectors \mathbf{a} and \mathbf{b} , denoted by $\mathbf{a} \cdot \mathbf{b}$ —or sometimes by Sab, or by (ab) in round parentheses—is defined as the scalar quantity $ab \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} .

EXAMPLE. If \mathbf{F} is a force whose point of application moves along a vector distance \mathbf{x} , then $\mathbf{F} \cdot \mathbf{x} = work$ done by \mathbf{F} during this displacement.

Peculiarities of scalar products: (1) Since $a \cdot b$ is not a vector, expressions like $(a \cdot b) \cdot c$ will not occur; (2) from $a \cdot x = a \cdot y$ we cannot infer that x = y, hence, quotients will not occur; (3) from $a \cdot b = 0$, it follows that a is perpendicular to b (unless a or b is zero).

On the other hand, scalar products are like ordinary products in the following respects: $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$, and $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{c} + \mathbf{d}) = \mathbf{a} \cdot \mathbf{c} + \mathbf{a} \cdot \mathbf{d} + \mathbf{b} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{d}$; also, $m(\mathbf{a} \cdot \mathbf{b}) = (m\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (m\mathbf{b})$, where m is any scalar.

The vector product, or cross product, of two vectors \mathbf{a} and \mathbf{b} , denoted by $\mathbf{a} \times \mathbf{b}$ —or sometimes by $\mathbf{V} \mathbf{a} \mathbf{b}$, or by $[\mathbf{a} \mathbf{b}]$ in square brackets—is defined as the vector whose length is ab sin θ , where θ is the angle between \mathbf{a} and \mathbf{b} , and whose direction is perpendicular to the plane of \mathbf{a} and \mathbf{b} (in such a sense that a right-handed screw advancing along $\mathbf{a} \times \mathbf{b}$ would turn \mathbf{a} toward \mathbf{b}).

EXAMPLE. If F is a force acting on a particle whose radius vector is r, then rxF = the torque of F about the origin.

Peculiarities of vector products: (1) $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$, so that the order of the factors is always important; (2) $\mathbf{a} \times \mathbf{a} = 0$; (3) it is not true that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$; (4) from $\mathbf{a} \times \mathbf{x} = \mathbf{a} \times \mathbf{y}$ it does not follow that $\mathbf{x} = \mathbf{y}$; hence, quotients will not occur; (5) from $\mathbf{a} \times \mathbf{b} = 0$, it follows that \mathbf{a} and \mathbf{b} are parallel (unless \mathbf{a} or \mathbf{b} is zero).

On the other hand, as in ordinary algebra

$$(\mathbf{a} + \mathbf{b}) \times (\mathbf{c} + \mathbf{d}) = \mathbf{a} \times \mathbf{c} + \mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c} + \mathbf{b} \times \mathbf{d},$$

provided the order of factors in each product is preserved; also,

 $m(\mathbf{a} \times \mathbf{b}) = (m\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (m\mathbf{b})$, where m is any scalar. Further laws are:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}); \text{ and } \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}.$$

Vector Differentiation. If $\mathbf{r} = \mathbf{f}(t)$ gives a vector \mathbf{r} as a function of a scalar t, then $d\mathbf{r}/dt = \lim \{ [\mathbf{f}(t + \Delta t) - \mathbf{f}(t)]/\Delta t \}$ as Δt approaches zero.

$$d(\mathbf{a} + \mathbf{b}) = d\mathbf{a} + d\mathbf{b}, \quad d(m\mathbf{a}) = m(d\mathbf{a}) + (dm)\mathbf{a},$$

$$d(\mathbf{a} \cdot \mathbf{b}) = (d\mathbf{a}) \cdot \mathbf{b} + \mathbf{a} \cdot (d\mathbf{b}), \quad d(\mathbf{a} \times \mathbf{b}) = (d\mathbf{a}) \times \mathbf{b} + \mathbf{a} \times (d\mathbf{b}).$$

EXAMPLE. If $\mathbf{r} = \mathbf{f}(t)$ gives the position-vector of a moving particle as a function of the time t, then $d\mathbf{r}/dt = its$ vector velocity, \mathbf{v} , and $d\mathbf{v}/dt = its$ vector acceleration, a. If \mathbf{m} and \mathbf{n} are unit vectors in the direction of the tangent and normal to the path at the time t, then $\mathbf{v} = v\mathbf{m}$, where v = ds/dt = the (scalar) path-velocity, and $d\mathbf{m} = [(ds/R)]\mathbf{n}$, where R = the (scalar) radius of curvature of the path. Then

$$\mathbf{a} = \frac{d(v\mathbf{m})}{dt} = \frac{dv}{dt}\mathbf{m} + v\frac{d\mathbf{m}}{dt} = \frac{dv}{dt}\mathbf{m} + \frac{v^2}{R}\mathbf{n}.$$

Here dv/dt and v^2/R are the familiar expressions for the components of acceleration along the tangent and normal.

INDEX

Absolute value, 112 Acceleration of gravity, 73, 84 Adding machines, 97 Addition, algebraic, 112 arithmetical, 88 of complex quantities, 124 of vectors, 185 of vectors, 185
Algebra, elementary, 112–123
of complex quantities, 124–127
of vectors, 185
Alignment charts, 179, 182
Amortization (sinking fund), 67
Analytical geometry, 136–156
Archas give 118 Analytical geometry, 130-150
Anchor ring, 111
Angles, bisection of, 102
complementary, 128
degrees and radians, table, 44
dihedral and solid, 110
in a circle, 99 in analytical geometry, 136 in trigonometry, 128-132 minutes and seconds, table, 69 supplementary, 128 units of, 128
Annuity tables, 65, 67, 68
Annulus, area of, 106 contiguous circles in, 105 Anti-friction curve, 155 Anti-friction curve, 155
Anti-gudermannian, 135
Anti-hyperbolic functions, 135
graphs, 175; series, 161
Anti-logarithms, 92
Anti-sines, etc., 132
graphs, 174; series, 161
Apothecaries' weight, 71
Arc, length of circular, 102, 106
Archimedian spiral 154 Archimedian spiral, 154
Archimedian spiral, 154
Arcsin, etc., see Anti-sines, etc.
Area, units of, 70, 76, 77
Areas, approximate methods, 106, 170
of similar figures, 99 of various figures, 105 Arithmetic, 88–98 Arithmetical mean, 115 progression, 114 Astroid, 153 Asymptote, of hyperbola, 145, 146 of hyperbolic spiral, 154 of tractrix, 155 Ball-bearing (annulus), 105 Barrels, volume of, 110 Baumé scale, 85 Bessel's formula, 121 Binomial coefficients, tables of, 39, 116

series, 114 theorem, 114
Bisection, of a line, 101
of an angle, 102
Bisectors (in triangle), 99, 134 Board measure, 71

Briggsian logarithms, 113 B.t.u., 74, 75, 82 Bushel, 70

Calculating machines, 98 Calculus, 157-172 rules for differentiation, 157 table of integrals, 164 table of integrals, 102 Calendar, 83 Cardioid, 153 Casks, volume of, 110 Catenary, 147 Cavalieri's theorem, 111 Centesimal measure of angles, 128 Chaining up hill, 150 Characteristic of logarithm, 92 fractional, 94 Charts, alignment, 179, 182 construction of, 173 contour line, 179 parallel and proportional, 184 Circle, constructions for, 102-105 equation of, 137 involute of, 153 tables of areas, 30, 32 of circumferences, 28, 32 of ordinare releas, 25, 32 of segments, 34, 35 theorems on the, 99, 106 Circles, circumscribed, 99, 105, 134 great, on a sphere, 100 inscribed, 99, 105, 134 radical axis of, 100, 137 Circular measure of angles, 128 table, 44 mil, 70 Cissoid, 155 Coins, value of foreign, 82 Cologarithms, 93 Combinations, 116 Complex quantities, 124-127 Compound interest tables, 64, 66 Computation, graphical methods in, 174-185 machines for, 97 numerical, 88 Cones, area and volume of, 108, 109 Conic sections, 138-147 Contour line charts, 179 Conversion tables, 74–82 Conversion tables, 74–82
Coördinates, polar, 137, 178
rectangular, 136, 173
Cosecant, 129; tables, 51
graph, 174
Cosine, 129; tables, 46, 52
graph, 174; series, 161
Cotangent, 129; tables, 47, 52
graph, 174; series, 161
Coversed sine, 129
Coversed sine, 129 Cross-section paper, 173, 178 logarithmic, 176 semi-logarithmic, 177 Cube 'in geometry', 100, 110

HYPERBOLIC LOGARITHMS

with the roots, 90
of 1 ± x, 91
table of, 16
Cubes, summation of, 115
table of, 8
Cubic equation, 117
Curvature, 163
Curves, empirical, 173
of various functions, 174
in analytical geometry, 151
Cycloid, 151
Cylinder, area and volume, 107, 108

Decimal equivalents, tables, 33, 69 point, position of, 89, 90 Definite integrals, 169 Degrees, and minutes, table, 69 and radians, tables, 44, 45 De Moivre's theorem, 126 Denary logarithms, 113 Density, 81, 84 Derivatives, 157, 158 of complex quantities, 127 of definite integrals, 170 of vectors, 186 partial, 159 Determinants, 123 Diameters, conjugate, 141, 146 Differences, 115, 159 Differential calculus, 157-164 equations, 171 Dihedral angles, 100 Directrix, of catenary, 147 of ellipse, 140 of hyperbola, 144 of parabola, 138 Division, algebraic, 112 arithmetical, 89 by logarithms, 93 by slide rule, 95 of a line, 101, 102 of complex quantities, 124 Distance formula, 136 Dodecahedron, 100, 110 Dyne, 73

Eccentric angle, 141
Eccentricity, of ellipse, 140
of hyperbola, 144
Ellipse, area and perimeter of, 107
constructions for, 142
properties of, 140
Ellipsoid, volume of, 110
Elliptic integrals, 170
Empirical curves, 173
Energy, units of, 79, 80
Epicylcid, 152
Epitrochoid, 153
Equations, algebraic, 116
differential, 171
empirical, 174
exponential, 118
normal, 122
simultaneous, 119, 121, 179
solution of, by trial, 118
trigonometric, 118
types of, 116
Errors, absolute and relative, 88
mean square, 122
probable, 121; table, 63

Evolutes, 164
Evolution, in algebra, 90
Expansion in series, 114, 160
Exponential equations, 118
function, 178
graph, 174; series, 160
in complex algebra, 126, 127
table, 57
Exponents, in algebra, 113
in complex algebra, 126, 127
Execant, 129
Extreme and mean ratio, 102

Factorials, 112
Factoring, in algebra, 112
Feet and inches, table, 33
Figures, significant, 88
similar, 99
Financial arithmetic, 98
Focus, of ellipse, 140
of hyperbola, 144
of parabola, 138
Force, unit of, 72, 74
Fourier's series, 162
Fractions, in algebra, 112
Frustum of cone, 108, 109
Functions, defined by integrals, 170
graphs of, 174
implicit, 159
of a complex variable, 127
of two variables, 159, 160, 178

Gallon, 70
Gamma function, 170
Geometrical mean, 113, 115
construction for, 102
progression, 115
Geometry, analytical, 136–156
elementary, 99–111
Golden section, 102
Gram, 71
-calorie, 74, 75, 82
Graphs, empirical, 174
in computation, 174–185
of functions, 173
Gravity, acceleration of, 73, 84
specific, 84
Gudermannian, 135

Hardness, scale of, 85
Harmonic mean, 115
Heat units, 74, 75, 79, 80
Helix, 156
Hexagon, 103
Horse-power, 73
Huyghen's approximation, 106
Hyperbola, area of, 107
as type of power function, 174
conjugate, 146
constructions for, 147
equilateral, 146
properties of, 144
Hyperbolic logarithms, 114
table, 58
sines, etc., 135
graphs, 175
series, 161
tables, 60-62
of a complex variable, 127

Hyperbolic (continued) apiral, 154 Hypocycloid, 152 Hypotrochoid, 153

i = √ − 1, 125

Losahedron, 100, 110

Identity, 116

Imaginary quantities, 124-127
roots of equations, 118

Implicit functions, 159

Inches, and feet, table, 33
and millimeters, table, 75
miner's, 71

Increment, 157

Indeterminate forms, 163

Inflection-point, 160

Integral calculus, 164-170

Integrals, approximate methods for, 170
definite, 169
double, 170
elliptic, 170
probability, 170
table of, 164

Integraph, 170

Interest, tables, 64, 66

Interpolation, 115
in logarithm tables, 91, 92

Intersection of lines, 102

Inverse sine, etc., 132
graphs, 174; series, 161
sinh, etc., 135
graphs, 175; series, 161

Involute, 164

Joule, 73

Kilogram, 73 Kilowatt, 73

of a circle, 153

Latus rectum, of ellipse, 140
of hyperbola, 145
of parabola, 138
Least squares, 121
Lemniscate, 155
Length, units of, 70, 74, 75
Line, equation of, 136
geometrical, 101
Linear, differential equation, 171
equation, 117
function, graph of, 174
Liter, 71
Logarithmic cross-section paper, 176
function, 173
graph, 174; series, 160
spiral, 155
Logarithms, tables (base e), 58
tables (common), 40
theory of, 113
use in computation, 91
Lune, 110

Maclaurin's theorem, 161 Mannheim slide rule, 96 Mantissa of a logarithm, 92 negative, 93 Mass, units of, 77, 78
Mathematics (contents), 87
tables (contents), 1
Maxima and minima, 159, 160
Mean, arithmetical, 115
geometrical, 102, 113, 115
harmonic, 115
proportional, 113, 115
construction for, 102
value theorem, 169
Measures, weights and, 70-85
Medians of a triangle, 99, 134
Mensuration, 105
Metric system, 72
Minima and maxima, 160
Minutes and seconds, table, 69
Moba's scale, 85
Money, foreign, 82
Multiples, of **, table, 28
of 0.4343 and 2.3028, table, 62
Multiplication, algebraic, 112
arithmetical, 89
by logarithms, 93
by slide rule, 95
of complex quantities, 124
of vectors, 186
tables (list of), 89

Napierian logarithms, 114 table, 58 Natural functions, tables, 46, 52 logarithms, 113; table, 58 Nomography, 179 Normal equations, 122 Notation, algebraic, 112 by powers of ten, 90 Numerical computation, 88

Obelisk, volume of, 109 Octagon, 103 Octahedron, 100, 110 Ordinate, 173 Orthocenter of a triangle, 99

Pappus, theorems of, 111
Parabola, area of, 107
constructions for, 139
properties of, 136
as type of power function, 174
Paraboloid, volume of, 110
Parallel charts, 184
lines, 101, 136
Parallel ogram, area of, 105
Parameter, 137, 170
Partial derivatives, 159
Permutations, 116
Perpendicular lines, 101, 136
Peters's formula, 121
Planimeter, 170
Polar coördinates, 137, 178
triangles on a sphere, 101
Polynomial, 118
Pound and poundal, 70, 73
Power function, 177
graph, 174
units of, 73, 80, 81

Powers, algebraic, 113
arithmetical, 90
by logarithms, 93, 94
by slide rule, 94
in complex algebra, 125, 126, 127
of ten, notation by, 90
Pressure, units of, 79, 80
Prism, area and volume, 107, 108
Prismoidal formula, 111
Probability integral, 170
Probable error, 121, 122
table, 63
Progression, arithmetical, 114
geometrical, 115
Proportion, in algebra, 113
Proportional charts, 184
Pyramids, area and volume, 108, 109

Quadrant, 128, 130 Quadratic equations, 117 Quadrature, 170 Quadrilateral, area of, 106

Radian measure of angles, 128 tables, 44, 45
Radical axis, 100, 137
Radicals and exponents, 113
Ratio, in algebra, 113
extreme and mean, 102
Reciprocals, 90
in complex algebra, 125
of 1 ± x, 90
table of, 24
Rectangle, area of, 105
Residuals, 121
table, 63
Rhombus, area of, 105
Ribbon, area of, 106
Roots, see Powers.
of an equation, 116

Sag, in the catenary, 150
Scalars, 185
Schiele's curve, 155
Scheiele's curve, 155
Scenat of an angle, 129
tables, 50, 52; graph, 174
Sector, circular, 106
spherical, 109
Segments, circular, 106
tables, 34, 35
of paraboloid, 110
spherical, 109; table, 38
Semi-logarithmic paper, 177
Series, expansion in, 114, 160
Fourier's, 162
Maclaurin's and Taylor's, 161
summation of, 115
Sexagesimal measure, 128
Significant figures, 88
Similar figures, 99
Simpson's rule, 106, 111
Simultaneous equations, 119
by determinants, 123
by least squares, 121
contour line charts for, 179
Sine, 129; tables, 46, 52
graph, 174; series, 161
Sinking fund table, 67

Slide rule, use of, 94 types of, 97 Slope, 157 Solid angle, 110 Solids, areas and volumes, 107 Specific gravity, 84 Sphere, area and volume, 109 table of segments, 38 of volumes, 36 theorems on the, 100, 109 theorems on the, 100, 1
Spherical segments, 109
table, 38
sector, 109; wedge, 110
triangles, 134
area of, 110, 134
excess of, 134
Spherid volume, 110 Spheroid, volume, 110 Spiral, hyperbolic, 154 involute, 153 logarithmic, 155 of Archimedes, 154 Square roots, 90 of $1 \pm x$, 90 table of, 12 Squares, summation of, 115 table of, 2 Steradian, steregon, 110 Submultiples, 124 Subnormal, subtangent, 138 Subtraction, algebraic, 112 arithmetical, 88 of complex quantities, 124 of logarithms, 93 of logarithms, 93 of vectors, 185 Summation of series, 115 Surface for $f(x, y_s)$ 178 Surfaces, areas of, 107 Symbols, algebraic, 112 Symmetrical triangles, 101

Tables, list of, 1
Tangent of an angle, 129
graph, 174: series, 161
tables, 48, 52
to circle, 99
construction of, 103
Tape, sag of, 150
Taylor's theorem, 161
Tens, notation by, 90
Tetrahedron, 100, 110
Therm, 74
Three-halves powers, 20, 22
Time, 83
Torus, area and volume, 111
Tractrix, 155
Trapezoid, area of, 105
Trial and error method, 118
Triangles, plane, 99, 105, 134
solution of, 132
polar, 101
spherical, 110, 134
solution of, 134
Trigonometric equations, 118
functions, 128
graphs, 174: series, 161
of a complex variable, 127
tables, 44, 46, 52
Trigonometry, 128-135
Trochoid, 152
Troy weight, 71
Truncated prism, 107, 108

Ungula, 108 Units, 72

Variable, change of, 169 Vector analysis, 185 Velocity, units of, 78, 80 Versed sine, 129; graph, 174 Volume, units of, 70, 71, 76, 77 Volumes, of solids, 107 of similar figures, 99 Watt, 73 Wedge, 109 spherical, 119 Weight, units of, 71, 77, 78 Weights and measures, 70–85 Work, units of, 73, 79, 80

Yard, 70 Year, 83

Zone of a sphere, 109

SFP 3 2 1921

• .