Vaja 22 Viskoznost

Jure Kos

14.10.2021

Uvod

V realnih tekočinah se zaradi viskoznosti hitrejše plasti v tekočini vlečejo počasnejše in zadržujejo še hitrejše. Tako nastane v pravokotni smeri gradient hitrosti (strižna hitrost). Med sosednjima plastema deluje strižna sila, ki je sorazmerna velikosti stične ploskve in strižni hitrosti (sprememba hitrosti plasti po spremembi višine). To lahko opišemo z enačbo

$$F = \eta \frac{\Delta v}{\Delta y} S$$

kjer sorazmernostni koeficient η poimenujemo koeficient viskoznosti (enota Pa·s).

Potek vaje

Uporabili smo koaksialni viskozimeter, ki smo ga za meritev viskoznosti potopili v viskozno tekočino do dveh globin. Na škripec smo obesili uteži s tremi različnimi masami (10g, 20g, 30g) in s fotovrati merili hitrost vrtenja viskozimetra.

Za določitev vztrajnostnega momenta viskozimetra smo viskozimeter zavrteli z utežjo brez da bi ga potopili v tekočino. Za meritev navora trenja pa smo viskozimeter zavrteli z začetno hitrostjo in s pomočjo pojemka kotne hitrosti in vztrajnostnega momenta določili navor trenja.

Naloga

- 1. Izmeriti koeficient viskoznosti dane tekočine.
- 2. Določiti navor trenja v ležajih koaksialnega viskozimetra.

Potrebščine

- 1. Koaksialni viskozimeter,
- 2. neznana tekočina,
- 3. uteži,
- 4. štoparica,
- 5. vrvica,
- 6. merilnik časovnih intervalov,
- 7. računalnik z merilnim vmesnikom.

Meritve

Moment in navor trenja

Izmerjene vrednosti vztrajnostnega momenta:

$J[kgm^2]$	$\Delta J[kgm^2]$
0.00067	0.00007
0.00068	0.00007
0.00067	0.00007

$$\overline{J} = (0.00067 \pm 0.00007) kgm^2$$

Izmerjene vrednosti navora trenja:

$M_{trenja}[Nm]$	$\Delta M[Nm]$
-0.00124	0.00014
-0.00101	0.00012
-0.00085	0.00011

 $\overline{M_{trenja}} = (-0.00103 \pm 0.00011) Nm$

Računi

$\eta[Pas]$	$\Delta\eta[Pas]$
2.4461	0.4725
2.1880	0.4136
2.2203	0.4174
2.0057	0.3464
2.3861	0.4608
2.2143	0.4186
2.2620	0.4253
2.4037	0.4307
2.0206	0.3514
2.0428	0.3528
2.2408	0.4236
2.2554	0.4241
2.2003	0.3936
2.0139	0.3503
2.0726	0.3580

Za izračun viskoznosti za posamezen poskus smo uporabili le časovni interval, kjer je bila kotna hitrost v povprečju konstantna. Takrat velja:

$$\eta = \frac{mgr_g - M_{trenja}}{k\omega(\infty)}$$

 ${\bf Z}$ upoštevanjem vseh poskusov in navora trenja tako dobimo vrednost viskoznosti tekočine.

$$\overline{\eta} = 2.2 Pas \pm 0.4 Pas$$

Glede na podatke na internetu izračunana vrednost tekočino uvršča nekam med viskoznost glicerola (1.5) in sirupa za palačinke (2.5), ker se zdi smiselno.

Grafi

Graf kotne hitrosti ob srednji obremenitvi:

Graf kotne hitrosti ob največji obremenitvi:

