EXERCICIOS M3 - ALGORITMOS E PROGRAMAÇÃO - 1PER CCOMP - 16/2

Resolver os problemas abaixo em pseudocódigo e em C++, individual ou em dupla. Entrega em 05/12/2016 (2af) — entregar impresso na hora da prova e postar também os códigos no Material Didático até as 19h.

Matrizes

1. Um quadrado mágico de ordem n (sendo n um número ímpar) é um arranjo de números de 1 a n² em uma matriz quadrada, de tal modo que a soma de cada linha, coluna e diagonal é a mesma. A figura seguinte ilustra um quadrado mágico de ordem 5. A regra para gerá-lo é a seguinte: comece com o valor 1 no meio da primeira linha, então siga para cima e para a direita diagonalmente. Quando sair do quadrado, suponha que o lado superior e inferior estão unidos ou que os lados da direita e da esquerda estão unidos, conforme o caso. Em cada célula que passar coloque o valor da célula anterior mais 1. Quando visitar uma célula já ocupada, desça uma célula e continue seguindo a diagonal até ter preenchido todas as células.

					_
17	24	1 /	8	15	
23	▼ 5	→7	14	16	
4	6 ♦ ∕	13	20	22	
10	12	19	21	→ 3 —	
11	18	25	7 2	9	

Desenvolva uma solução para gerar um quadrado mágico de ordem n (n <= 10) e para mostrar o quadrado mágico gerado. Observe a passagem de parâmetros – nada deve ser lido dentro da subrotina.

Procedimentos

2. Escreva um procedimento que receba um número inteiro e o imprima na forma extensa. Por exemplo, para 1 a saída desejada é "Um". A função deve ser capaz de gerar o extenso dos números de 0 até 10, inclusive. Caso um número não compatível seja recebido o procedimento deve mostrar uma mensagem de erro. Crie também um algoritmo que leia um valor inteiro e chame o procedimento criado acima para a impressão do número extenso.

Matrizes e procedimentos

3. Um sistema de equações lineares tipo Ax = B pode ser representado computacionalmente por uma matriz Amxn de elementos, um vetor X com n elementos e outro vetor B de m elementos, todos do tipo real. Elabore uma algoritmo modularizado para inicializar a matriz A e os vetores B e X, verificar se o vetor X é realmente solução do sistema dado e apresentar ao final uma resposta ao usuário relativa a esta verificação ("X é a solução").

Exemplo de sistema de equações lineares tipo Ax = B:

$$\begin{cases} 5x_1 + 5x_2 &= 15 \\ 2x_1 + 4x_2 + x_3 &= 10 \\ 4x_1 + 4x_2 &= 11 \end{cases}$$

Funções que verificam uma situação (retorno verdadeiro, falso) ou que calculam um valor

4. Um número é dito ser regular caso sua decomposição em fatores primos apresenta apenas potências de 2, 3 e 5. Faça uma função que verifique se um número é (retorne 1) ou não (retorne 0) regular. Crie também um algoritmo para testar tal função.

Funções com parâmetros por referência

5. Construa uma função que receba dois valores inteiros **a** e **b**, retorne (passagem por referência) o quociente, **div**, e o resto divisão, **mod**, de **a** por **b**. Faça um algoritmo para utilizar tal função.

SUCESSO!!