EXPLORING DATA

Data Exploration

- A preliminary exploration of the data to better understand its characteristics.
- Helping to select the right tool for preprocessing or analysis
- In our discussion of data exploration, we focus on
 - Summary statistics
 - Visualization

Iris Sample Data Set

Many of the exploratory data techniques are illustrated with the Iris Plant data set.

Can be obtained from the UCI Machine Learning Repository

http://www.ics.uci.edu/~mlearn/MLRepository.html

- Three flower types (classes):
 - Setosa
 - Virginica
 - Versicolour
- ❖ Four (non-class) attributes
 - Sepal width and length
 - Petal width and length

Summary Statistics

Summary statistics are quantities, such as the mean and standard deviation, that capture various characteristics of a potentially large set of values with a single number or a small set of numbers.

Summarized properties include frequency, location and spread

Examples: location - mean

spread - standard deviation

Frequencies and the Mode

The frequency of an attribute value is the percentage of time the value occurs in the data set

For example, given the attribute 'gender' and a representative population of people, the gender 'female' occurs about 50% of the time.

The mode of a an attribute is the most frequent attribute value

✓ The notions of frequency and mode are typically used with nominal data

Percentiles

For continuous data, the notion of a percentile is more useful.

Given an ordinal or continuous attribute x and a number p between 0 and 100, the pth percentile is a value x_p of x such that p% of the observed values of x are less than x_p .

For instance, the 50th percentile is the value $x_{50\%}$ such that 50% of all values of x are less than $x_{50\%}$

$$\min(x) = x_{0\%}$$
 and $\max(x) = x_{100\%}$

Example

Percentile	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	2.0	1.0	0.1
10	4.8	2.5	1.4	0.2
20	5.0	2.7	1.5	0.2
30	5.2	2.8	1.7	0.4
40	5.6	3.0	3.9	1.2
50	5.8	3.0	4.4	1.3
60	6.1	3.1	4.6	1.5
70	6.3	3.2	5.0	1.8
80	6.6	3.4	5.4	1.9
90	6.9	3.6	5.8	2.2
100	7.9	4.4	6.9	2.5

Measures of Location: Mean and Median

Mean

mean is the most common measure of the location of a set of points.

$$\{x_1,\ldots,x_m\}^{\circ}$$
 •

attribute values of *x* for *m* objects.

$$\operatorname{mean}(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

mean is very sensitive to outliers

Median

$$\{x_{(1)},\ldots,x_{(m)}\}$$

$$\operatorname{median}(x) = \left\{ \begin{array}{ll} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r+1 \\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{array} \right.$$

trimmed mean

trimmed mean

- ✓ A percentage *p* between 0 and 100 is specified
- ✓ top and bottom (p/2)% of the data is thrown out
- ✓ mean is then calculated in the normal way.

Measure	Sepal Length	Sepal Width	Petal Length	Petal Width
mean	5.84	3.05	3.76	1.20
median	5.80	3.00	4.35	1.30
trimmed mean (20%)	5.79	3.02	3.72	1.12

Measures of Spread: Range and Variance

- ✓ Range is the difference between the max and min
- ✓ Variance or standard deviation is the most common measure of the spread of a set of points.

variance
$$(x) = s_x^2 = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - \overline{x})^2$$

sensitive to outliers

absolute average deviation (AAD)

$$AAD(x) = \frac{1}{m} \sum_{i=1}^{m} |x_i - \overline{x}|$$

median absolute deviation (MAD)

$$MAD(x) = median \left(\{ |x_1 - \overline{x}|, \dots, |x_m - \overline{x}| \} \right)$$

interquartile range(x) = $x_{75\%} - x_{25\%}$

Multivariate Summary Statistics

if x_i and x_j are the ith and jth attributes, then

$$s_{ij} = \text{covariance}(x_i, x_j)$$

covariance
$$(x_i, x_j) = \frac{1}{m-1} \sum_{k=1}^{m} (x_{ki} - \overline{x_i})(x_{kj} - \overline{x_j})$$

$$r_{ij} = \operatorname{correlation}(x_i, x_j) = \frac{\operatorname{covariance}(x_i, x_j)}{s_i s_j}$$

correlation matrix R

Visualization

Visualization

- √ Visualization is the conversion of data into a visual format so that the characteristics of the data and the relationships among data items or attributes can be analyzed or reported
- ✓ people can quickly absorb large amounts of visual information

Visualization Techniques: Histograms

Histogram

- Usually shows the distribution of values of a single variable
- Divide the values into bins and show a bar plot of the number of objects in each bin.
- The height of each bar indicates the number of objects
- Shape of histogram depends on the number of bins

Example: Petal Width (10 and 20 bins, respectively)

relative frequency histogram

Two-Dimensional Histograms

Show the joint distribution of the values of two attributes

Example: petal width and petal length

Visualization Techniques: Box Plots

Box Plots

Another way of displaying the distribution of data

Following figure shows the basic part of a box plot

Visualization Techniques: Box Plots

Box plots can be used to compare attributes

Visualization Techniques: Box Plots

Box plots can also be used to compare how attributes vary between different classes of objects

Visualization Techniques: Scatter Plots

Scatter plots

- ✓ Attributes values determine the position
- √ Two-dimensional scatter plots most common, but can have three-dimensional scatter plots
- ✓ Often additional attributes can be displayed by using the size, shape, and color of the markers that represent the objects
- ✓ It is useful to have arrays of scatter plots can compactly summarize the relationships of several pairs of attributes

Visualization Techniques: Scatter Plots

Visualization Techniques: Scatter Plots

Visualization Techniques: Contour Plots

Contour plots

- ✓ Useful when a continuous attribute is measured on a spatial grid
- ✓ They partition the plane into regions of similar values
- ✓ The contour lines that form the boundaries of these regions connect points with equal values
- √ The most common example is contour maps of elevation
- ✓ Can also display temperature, rainfall, air pressure, etc.

Visualization Techniques: Contour Plots

Visualization Techniques: Matrix Plots

Matrix plots

- ✓ Can plot the data matrix
- ✓ This can be useful when objects are sorted according to class
- ✓ Typically, the attributes are normalized to prevent one
 attribute from dominating the plot
- ✓ Plots of similarity or distance matrices can also be useful for visualizing the relationships between objects

Visualization Techniques: Matrix Plots

Visualization Techniques: Matrix Plots

