

Tổng quan

Giải thuật tiến hóa đa nhân tố (Multifactorial Evolutionary Algorithm - MFEA):

- Thuật toán tối ưu ngẫu nhiên dựa trên quần thể
- Thuộc lớp giải thuật tiến hóa
- Được giới thiệu bởi Yew-soon Ong vào năm 2016
- Giải quyết được nhiều bài toán tối ưu đồng thời
- Tận dụng được chuyển giao tri thức giữa các bài toán tối ưu

Động lực của thuật toán Hệ thống tính toán đám mây: Có rất nhiều yêu cầu của các người dùng gửi lên ở cùng một thời điểm. Mỗi yêu cầu cũng có thể hiểu là một bải toán tối ư và là một tác vụ cần thực hiện Liệu có cơ chế giải quyết đồng thời nhiều bài toán cùng một lúc ?

3

Một số định nghĩa

- K tác vụ (bài toán) cần giải quyết đồng thời
- Tác vụ thứ i có hàm mục tiêu $f_i \colon X_i \to R$ cần tối thiểu
- Mục tiêu của MFEA: tìm ra K lời giải cho K bài toán đồng thời dựa trên cơ chế song song tiềm ẩn của thuật toán tiến hóa
- $\{x_1, x_2, \dots, x_K\} = argmin\{f_1(x), f_2(x), \dots, f_K(x)\}\$
- Mỗi f_l được coi như là một nhân tố (factor) của quá trình tiến hóa

6

5

Một số định nghĩa

- Với mỗi cá thể p_i trong quần thể P, MFEA định nghĩa thêm các thuộc tính:
 - Factorial $\cos c_{ij}, 1 \leq j \leq K$: chi phí của cá thể p_i trong tác vụ thứ j
 - Factorial rank r_{ij} , $1 \le j \le K$: thứ hạng của cá thể p_i trong tác vụ thứ j
 - Skill-factor τ_i: Cho biết cá thể có thứ hạng tốt nhất ở tác vụ nào, τ_i = argmin_{1≤j≤K}(r_{ij})
 - Scalar-fitness $\varpi_i = \frac{1}{\min_{1 \le j \le K}(r_{ij})}$

Sơ đồ thuật toán MFEA $t \leftarrow 0;$ Xây dựng không gian tìm kiếm chung cho K tác vụ (Unified Seach Space- USS); $P(0) \leftarrow \text{Khổi tạo một quản thể ban dầu với N cá thể tren USS;}$ Dânh giá cá thể trong P(0) theo tất cá các tác vụ;

Cập nhật skill-factor và scalar-fitness cho mỗi cá thể trong P(0); while Diều kiện đứng chưa thỏa mãn do $O(t) \leftarrow \emptyset;$ while |O(t)| < N do $p_a, p_b \leftarrow \text{Chọn lọc hai cá thể cha mẹ ;}$ if p_a và p_b có cùng skill-factor hoặc rand(0,1) < rmp then o_a, o_b lấy ngẫu nhiền skill-factor của p_a hoặc p_b ;
else $o_a \leftarrow \text{Dợt biến } (p_a);$ $o_b \leftarrow \text{Dợt biến } (p_b);$ o_a, o_b có cùng skill-factor với cha p_a và p_b tương ứng; $O(t) \leftarrow O(t) \cup \{o_a, o_b\};$ Dánh giá các cá thể trong O(t) theo tác vụ tương ứng với skill-factor;

Cập nhật scalar-fitness cho $(P(t) \cup O(t));$ $P(t+1) \leftarrow \text{Chọn N cá thể có scalar-fitness cao nhất trong } (P(t) \cup O(t));$

1

Không gian tìm kiếm chung

- MFEA tạo môi trường chuyển giao tri thức giữa các bài toán tối ưu bằng cách xây dựng một không gian tìm kiếm chung
- Không gian tìm kiếm chung được xây dựng sao cho không gian của các bài toán chồng để lên nhau
- Số chiều trong không gian chung (D) của K bài toán có thể xây dựng như sau:

$$D = \max(D_1, D_2, \dots, D_K)$$

• Các toán tử tiến hóa (khởi tạo, lai ghép, đột biến) được thực hiện trên không gian tìm kiếm chung

10

Toán tử giải mã

MFEA đánh giá các cá thể trong mỗi tác vụ

- Để đánh giá trong tác vụ k => Cần tìm biểu diễn của cá thể đó
- Giải mã là quá trình xây dựng biểu diễn cá thể trong không gian của từng tác vụ tương ứng từ biểu diễn trong không gian chung

11 12

Toán tử lai ghép • Trong MFEA, các cá thể cũng có xu hướng lai ghép với các cá thể có cùng nhân tổ kĩ năng (skill-factor). • Lai ghép cá thể A và B có cùng skill-factor => lai ghép cùng tác vụ (Intra Crossover) • Lai ghép giữa cá thể A và B khác skill-factor => lai ghép liên tác vụ (Inter Crossover)

15 16

Chuyển giao tri thức trong MFEA

- Quá trình chuyển giao tri thức giữa các tác vụ thông qua việc lai ghép liên tác vụ
- Các tri thức nhân được từ một tác vụ khác có thể:
 - Có hại (chuyển giao âm negative tranfer)
 - Có lọi (chuyển giao dương positive tranfer) cho tác vụ đó

Chuyển giao tri thức trong MFEA

- Hiệu quả chuyển giao tri thức giữa các tác vụ đồng thời có thể hình dung qua các quan hệ sinh học trong tư nhiên:
 - Cộng sinh: Có lợi cho cả hai tác vụ
 - Kí sinh: Tác vụ 1 có lợi, tác vụ 2 có hại
 - Hội sinh: Tác vụ 1 có lợi, tác vụ 2 không có lợi cũng không có hại
 - · Hợp tác: không có lợi, không hại
 -

18

17

Chuyển giao tri thức trong MFEA

- Tỷ lệ chuyển giao tri thức giữa các tác vụ được điều chỉnh bằng tham số rmp
 - Rmp quá lớn => khả năng chuyển giao tri thức giữa các tác vụ cao
 - Hai tặc vụ có khác biệt, không liện quan => xảy ra hiện tương chuyển giao âm => có hại => Điểm yếu MFEA
 - Hai tác vụ tương đồng, có không gian tìm kiếm tương tự nhau ⇒ positive tranfer ⇒ có lợi
 - Rmp quá nhỏ => không tận dụng được tri thức khi giải quyết nhiều tác vụ đồng thời => Hiệu năng như giải quyết đơn tác vụ (đơn nhiệm)

Phương pháp hạn chế chuyển giao âm trong MFEA

- Tự điều chỉnh rmp : MFEA-II
- Cố định rmp, chỉ chọn lai ghép các tác vụ có mức độ tương đồng cao? : MaTO, SBOGA,
- Các độ đo tương đồng giữa các tác vụ?
 - Dựa trên phân phối giá trị thích nghi của các cá thể trong mỗi quần thể con
 - Dựa trên phân phối kiểu gene
 - Đựa trên xác xuất các cá thể thu được từ lai ghép liên tác vụ tốt hơn bố mẹ trong quá khứ
 - Kết hợp

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THỐNG

19 20

Quá trình lan truyền văn hóa theo chiều dọc

- · Quá trình truyền tải văn hóa theo chiều dọc thể
 - Các con sinh ra thường có xu hướng bắt chước bố mẹ, cùng nền tảng văn hóa
 - · Các cá thể con có kĩ năng giống bố hoặc mẹ

21

Quá trình lan truyền văn hóa theo chiều dọc

- Trong MFEA, quá trình lan truyền văn hóa theo chiều dọc thể hiện ở chỗ các cá thể con có cùng skill-factor với bố mẹ
 - Con sinh ra bởi lai ghép => Được gán skill-factor giống
 - Cọn sinh ra bởi đột biến => được gán skill-factor theo cá thể sinh ra nó

22

Chon loc

- Việc chọn lọc các cá thể trong MFEA dựa trên giá tri scalar-fitness
- Cá thể có scalar-fitness càng cao thì mức độ quan trọng của nó trong tác vụ càng lớn
- Cá thể có scalar-fitness thì cơ hội lựa chọn sinh tồn trong thể hệ sau càng lớn

Phân biệt MFO và MOO

- Giải quyết K bài toán đồng thời,
- Mỗi bài toán có không gian tìm kiếm và mục tiêu riêng
- Khai thác quá trình chuyển giao tri thức khi giải quyết nhiều bài toán tối ưu đồng thời => thu được lời giải tốt hơn

• MOO:

- Giải quyết một bài toán có K hàm mục tiêu
- Các mục tiêu của bài toán treat off lẫn nhau

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Ví dụ minh họa áp dụng MFEA giải bài TSP

²⁶ • Phát biểu bài toán TSP:

❖Đầu vào:

- Đồ thị đầy đủ G = (V, E), trong đó V là tập gồm n định tương ứng với n thành phô, E là tập cạnh các kết nổi giữa các thành phô.
- Ma trận chi phí $C_{n\times n}$, trong đó C_{ij} là chi phí đi từ thành phố i tới thành phố j ($i,j=1,\ldots,n$).
- ***Đầu ra**: Chu trình T có độ dài n+1, là đường đi qua tất cả n thành phố và quay lại đinh xuất phát
- Ràng buộc: Không có thành phố được đến thăm quá một lần trong một chu trình đường đi.
- ❖Mục tiêu: Tổng chi phí đi lại trên chu trình T là nhỏ nhất.

26

Ví dụ minh họa áp dụng MFEA giải bài TSP

- Để dễ hình dung, thuật toán MFEA được áp dụng để giải đồng thời 2 bài toán TSP với số thành phố là 5 và 9.
- Bài toán TSP 5 thành phố:
 - Đồ thị đầy đủ $G_1 = (V_1, E_1), V_1 = \{1, 2, 3, 4, 5\}$
 - Ma trận chi phí $C^1_{5\times 5}$ (coi chỉ số ma trận bắt đấu từ 1).
 - Tìm chu trinh T_1 đi qua tất cả các thành phố sao cho chi phí đi lại là nhỏ nhất.

	0	5	14	7	17
	١ ٠	0	14	l ′	''
$C^1 =$	13	0	24	26	25
$C_{5\times5}^1=$	19	21	0	7	21
	4	3	18	0	14
	25	12	4	3	0

SOICT VIỆN CÔNG NGHỆ THỐNG TIN VÀ TRUYỀN THỐNG .

Ví dụ minh họa áp dụng MFEA giải bài TSP

• Bài toán TSP 9 thành phố:

SOICT VIỆN CÔNG NGHỆ THỐNG TIN VÀ TRUYỀN THỐNG

- Đồ thị đầy đủ $G_2 = (V_2, E_2), V_2 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Ma trận chi phí $C_{9\times9}^2$ (coi chỉ số ma trận bắt đầu từ 1).
- Tìm chu trình T₂ đi qua tất cả các thành phố sao cho chi phí đi lại là nhỏ nhất.

	0	٦	10	23	U	10	21		24
	18	0	11	3	14	12	7	24	22
$C_{9\times 9}^{2} =$	9	19	0	8	27	13	24	17	18
C9×9-	10	13	15	0	24	11	9	23	16
	28	28	27	9	0	9	15	10	21
	13	9	7	7	18	0	14	29	30
	4	25	5	11	29	8	0	6	17
	18	11	9	29	16	15	23	0	19
	18	24	13	25	29	29	22	17	0

28

27

30

29

Các toán tử di truyền Lai ghép • Sử dụng phép lai ghép chu trình: 1 5 2 9 4 8 6 3 7 2 5 4 7 1 8 6 9 3 (a) (b) • Hình (a), có 4 chu trình được tìm ra từ 2 cá thể cha mẹ (màu đỏ, tím, xanh dương, xanh lá). • Hình (b), 2 cá thể con được tạo ra từ việc sao chép I nghịch đảo các chu trình từ cá thể cha mẹ.

Các toán tử di truyền

Chon loc

- Chọc lọc cha mẹ: sử dụng phương pháp chọn lọc
- Chọn lọc thế hệ: sử dụng phương pháp chọn lọc elitism.

Tham số cài đặt thuật toán MFEA

34

36

- Kích thước quần thể: pop_size =10
- Số thế hệ: generation = 100
- Tham số rmp = 0.5

Các bước của thuật toán MFEA

33

- Bước 1: Khởi tạo quần thể (t = 0):
 - Khởi tạo quần thể P_0 gồm 10 cá thể theo biểu diễn hoán vị:

```
[3, 7, 1, 2, 6, 5, 4, 9, 8]
[5, 7, 6, 1, 8, 9, 4, 2, 3]
[4, 1, 3, 2, 5, 9, 6, 8, 7]
[4, 6, 3, 5, 8, 7, 1, 2, 9]
[1, 7, 3, 9, 2, 5, 4, 6, 8]
[5, 7, 2, 3, 4, 9, 6, 1, 8]
[8, 4, 1, 3, 9, 2, 7, 6, 5]
[9, 6, 5, 8, 4, 3, 1, 7, 2]
[3, 7, 2, 5, 6, 8, 1, 9, 4]
[9, 2, 6, 8, 7, 1, 3, 5, 4]
Cá thể x_1:
Cá thể x_2:
Cá thể x_3:
Cá thể x_4:
  Cá thể x_5:
Cá thể x_6:
Cá thể x_7:
Cá thể x_8:
Cá thể x_9:
Cá thể x_10:
```


Các bước của thuật toán MFEA

• Bước 2: Đánh giá cá thể theo từng tác vụ

- Giải mã cá thệ x_i ra không gian riêng ứng với các tác vụ được x_i^k (với k là chỉ số của tác vụ):
- Ví dụ: $x_1 = [3,7,1,2,6,5,4,9,8]$ giải mã ra 2 cá thể $x_1^1 = [3,1,2,5,4]$ và $x_1^2 = [3,7,1,2,6,5,4,9,8]$.
 Với mỗi cá thể x_1^k , tính *factorial-cost* cho từng cá thể, theo công

 $f_k(x_i) = cost(x_i^k)$

Trong đó: $cost(x_i^k)$ là chi phi đi lại của chu trình khi khi giải mã x_i^k ứng với tác vụ k.

• Khi đó: với $x_i^1 = [3,1,2,5,4]$ giải mã thu được chu trình: $3 \rightarrow 1 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 3$.

- Chi phí $cost(x_1^1) = C_{31}^1 + C_{12}^1 + C_{25}^1 + C_{54}^1 + C_{43}^1 = 19 + 5 + 25 + 3 + 18 = 70$
- $f_1(x_1) = cost(x_1^1) = 70$. Tương tự có $f_2(x_1) = 112$.

35

Các bước của thuật toán MFEA

• Tương tự, các cá thể trong quần thể P_0 được đánh giá, và tính xếp hạng như sau:

Cá thể_| Genes
[3, 7, 1, 2, 6, 5, 4, 9, 8]
[5, 7, 6, 1, 8, 9, 4, 2, 3]
[4, 1, 3, 2, 5, 9, 6, 8, 7]
[1, 7, 3, 9, 2, 5, 4, 6, 8]
[5, 7, 2, 3, 4, 9, 6, 1, 8]
[8, 4, 1, 3, 9, 2, 7, 6, 5]
[9, 6, 5, 8, 4, 3, 1, 7, 2]
[3, 7, 2, 5, 6, 8, 1, 9, 4]
[9, 2, 6, 8, 7, 1, 3, 5, 4] 112.0 153.0 166.0 132.0 155.0 70.0 80.0 67.0 95.0 67.0 64.0 70.0 10 9 5 184.0 183.0 154.0

- · Cập nhật skill-factor và scalar fitness cho từng cá thể:
 - Skill-factor của cá thể x_i là $\tau_i = argmin_k(r_{ik})$, k là chỉ số của tác vụ, r_{ik} là hạng của cá thể x_i với tác vụ k.
 - Skill-fitness của cá thể x_i là $\varpi_i = \frac{1}{\min(r_{ik})}$

37

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THỐNG

Các bước của thuật toán MFEA

- Khi đó, với x₁
 - skill-factor $\tau_1 = argmin_{k=1,2}(r_{11}, r_{12}) = 2$ (do $r_{11} = 7 > r_{12} = 1$)
 - skill-fitness $\varpi_1=rac{1}{\min_{k=1,2}(r_{11},r_{12})}=rac{1}{\min(7,1)}$
- Tương tự, các cá thể trong quần thể P_0 được cập nhật như sau:

Cá thể_		Genes				skill-factor scalar-fitnes		
x_1	[3, 7,	1, 2,	6, 5	, 4,	9,	8]	2	1.0
x_2	[5, 7,	6, 1,	8, 9	, 4,	2,	3]	2	0.25
x_3	[4, 1,	3, 2,	5, 9	, 6,	8,	7]	1	0.33
x_4	[4, 6,	3, 5,	8, 7	, 1,	2,	9]	2	0.5
x_5	[1, 7,	3, 9,	2, 5	, 4,	6,	8]	1	0.25
x_6	[5, 7,	2, 3,	4, 9	, 6,	1,	8]	1	0.5
x_7	[8, 4,	1, 3,	9, 2	, 7,	6,	5]	2	0.33
x_8	[9, 6,	5, 8,	4, 3	, 1,	7,	2]	1	0.14
x_9	[3, 7,	2, 5,	6, 8	, 1,	9,	4]	2	0.11
× 10	[9, 2,	6, 8,	7, 1	, 3,	5,	4]	1	1.0

38

Các bước của thuật toán MFEA

- Bước 3: t = t+1, Sinh quần thể con C_t
 - Chọn cá thể cha mẹ từ P_t , theo hình thức giao đấu:
 - Chọn ngẫu nhiên 2 cặp cá thể ngẫu nhiên (x_3, x_5) và (x_7, x_{10}) .
 - So sánh giá trị scalar-fitness: $\varpi_3 > \varpi_5$, $\varpi_7 < \varpi_{10}$.
 - \rightarrow Chọn ra 2 cá thể cha mẹ để sinh sản là x_3 , x_{10} .
 - Sinh số ngẫu nhiên $r \sim U(0,1), r \in [0,1]$.
 - Lai ghép:
 - ullet Nếu 2 cá thể cha mẹ cùng $\mathit{skill} ext{-}\mathit{factor}$ hoặc r<rmp, $lai ghép(x_5, x_7)$ tạo ra con cái là c_1, c_2 .
 - Skill-factor của con cái c_1, c_2 được gán ngẫu nhiên từ cá thể

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Các bước của thuật toán MFEA

40

- Đôt biến:
 - Ngược lại, nếu cha mẹ khác skill-factor hoặc $r \ge rmp$, đột $bi\tilde{e}n(x_1)$, đột $bi\tilde{e}n(x_2)$, tạo ra con cái tương ứng là c_3, c_4 .
 - Skill-factor của c3, c4 lần lượt bằng skill-factor của x1, x2.
- Nạp các cá thể mới vào quần thể con :

$$C_t = C_t \cup \{c_1, c_2, c_3, c_4\}$$

• Lặp lại quá trình từ đầu bước 3 cho tới khi $|C_t| \ge N$ thì dừng, thủ được quần thể con C_t .

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

39 40

41 42

43 44

Nhận xét

• Từ hình vẽ xu hướng hội tụ, ta thấy:

- Xu hướng hội tụ của tác vụ TSP 5 thành phố hội tụ khá sớm, khoảng ngoài thế hệ thứ 10.
- Xu hướng hội tụ của tác vụ TSP 9 thành phố hội tụ khoảng gần thế hệ 40.
- Nguyên nhân là do tác vụ TSP 5 thành phố có không gian tìm kiểm nhỏ hơn nhiều so với không gian tìm kiểm của tác vụ TSP 9 thành phố. Mặt khác do quá trình giải đồng thời 2 tác vụ, việc chuyển giao tri thức từ tác vụ 9 thành phố sang tác vụ 5 thành phố giúp cho quá trình hội tụ của tác vụ 5 thành phố diễn ra nhanh hơn.

46