

Simulation modelling crop diseases

Adam H. Sparks

Open Plant Pathology,

Department of Primary Industries and Regional Development Perth, Western Australia, AU, and University of Southern Queensland Centre for Crop Health, Toowoomba, Queensland, AU

Equations, code and more!

This is regular text

Equations, code and more!

- This is regular text
- Equations, e.g., dS/dt

Equations, code and more!

- This is regular text
- Equations, e.g., dS/dt
- Code, e.g., rhlim = 50

epicrop, EPIRICE, EPIWHEAT, Epiwhat???

Who's who?

EPIRICE is a model developed and published by (Savary *et al.* 2012) for rice disease modelling. The *cropsim* package was written for this work (and other future work).

Subset of Figure 2 from Savary et al. 2012

epicrop, EPIRICE, EPIWHEAT, Epiwhat???

Who's who?

EPIWHEAT is a model developed and published by (Savary *et al.* 2015) for wheat disease modelling.

epicrop, EPIRICE, EPIWHEAT, Epiwhat???

Who's who?

epicrop (Sparks 2021) is a fork of the cropsim R package (Hijmans et al. 2017) and was designed to make using the **EPIRICE** model (Savary et al. 2012) easier to use for rice disease modelling using freely available weather data from NASA and CHC UC Santa Barbara.

SEIR model

Susceptible-Exposed-Infectious-Removed

SEIR (Susceptible-> Exposed-> Infectious->Removed) model

- Van der Plank (1963)
- Zadoks (1971)
- Madden (2006)

SEIR model

Susceptible-Exposed-Infectious-Removed

SEIR state variables in **EPIRICE**

- \bullet Healthy (H)
- Latent (L)
- Infectious (I)
- ullet Post-infectious (P)

EPIRICE

Additional components to a SEIR model

Additional components in **EPIRICE**

- Spatial aggregation of disease, (a)
- Crop growth, (RRG)
- Crop senescence, (RRS)

Rate of Infection

$$dL/dt = RI = R_c IC^a$$

Crop development

$$dH/dt = RG = RRGH(1 - (TS/Sx))$$

Crop development

$$dS/dt = RS = RRSH$$

Crop development

$$dS/dt = RS = RP = RRSH$$

Canopy moisture effects

RcW, modifier for $R_{\rm c}$ (the basic infection rate corrected for removals) for moisture in canopy (values are bound 0 - 1)

Temperature effects

RcT, modifier for $R_{\rm c}$ (the basic infection rate corrected for removals) for air temperature (values are bound 0 - 1)

Age effects

 ${
m RcA}$, modifier for R_c (the basic infection rate corrected for removals) for crop age (values are bound 0 - 1)

 $R_{\mathfrak{o}}$

Basic infection rate corrected for removals

$$R_c = \text{RcOpt RcA RcT RcW}$$
 (See lines 268-269 SEIR.R)

Basic infection rate corrected for removals

$$r_{l} = \ln(x_{2}/x_{1})/(t_{2}-t_{1})$$

$$R_{c} = r_{l}/\{\exp(-r_{l}p) - \exp(-r_{l}[p+i])\}$$

Basic infection rate corrected for removals

$$r_{l} = \ln(x_{2}/x_{1})/(t_{2}-t_{1})$$

$$R_{c} = r_{l}/\{\exp(-r_{l}p) - \exp(-r_{l}[p+i])\}$$

Acronym	Variable type	Variable meaning	Dimension	
Н	State variable	Number of healthy sites	[NSites]	
L	State variable	Number of latent sites	[NSites]	
I	State variable	Number of infectious sites	[NSites]	
P	State variable	Number of post-infectious (removed) sites	[NSites]	
а	Parameter	Aggregation coefficient	[-]	
i	Parameter	Duration of infectious period	[day]	
p	Parameter	Duration of latent period	[day]	
RcOpt	Parameter	Potential basic infection rate	[NSites	
		corrected for removals	$NSites^{-1}day^{-1}$]	
RcA	Parameter	Modifier for R_c for crop age	[-]	
RcT	Parameter	Modifier for R_c for temperature	[-]	
RcW	Parameter	Modifier for R_c for wetness	[-]	
RRG	Parameter	Relative rate of growth	[NSites	
			NSites ⁻¹ day ⁻¹]	
RRS	Parameter	Relative rate of senescence	[NSites	
			$NSites^{-1}day^{-1}$]	
RP	Parameter	Rate of senescence	[NSites day^{-1}]	
		induced by disease		
Sx	Parameter	Maximum number of sites	[NSites]	
$R_{\rm c}$	Variable	Basic infection rate corrected	[NSites	
		for removals	NSites ⁻¹ day ⁻¹]	
TS	Variable	Total number of sites	[NSites]	

Table 1 from Savary et al. 2012

System's attribute	Parameter ^a	Disease					
		Leaf blast	Brown spot	Bacterial blight	Sheath blight	Tungro	
Sites	Site size Sx References ^b	45 mm ² of a leaf 30,000 (1)	10 mm ² of a leaf 100,000 (2)	1 leaf 3200 (3,4)	1 tiller 800 (3,4)	1 plant 100 (5)	
Crop growth	RRG RRS References ^b	0.1 0.01 (3,4,6)	0.1 0.01 (3,4,6)	0.1 0.01 (3,4,6)	0.2 0.005 (3,4)	0 0 (7)	
Epidemic onset	Date References ^b	15 DACE (8)	20 DACE (9)	20 DACE (10)	30 DACE (3)	25 DACE (7)	
Residence times	p i References ^b	5 20 (11,12)	6 19 (13,14)	5 30 (15)	3 120 (16)	6 120 (17)	
Infection rate	r _l R _c (calculated) References ^b	0.28 1.14 (8)	0.19 0.61 (18)	0.25 0.87 (19)	0.23 0.46 (20)	0.10 0.18 (21)	
Age effect	RcA References ^b	(Strong) decrease with plant age (22)	(Strong) increase with plant age (23)	Decrease with plant age (24)	(Slight) increase over age (25)	(Strong) decrease with plant age (26)	
Temperature effect	RcT References ^b	Optimum: 25 °C (27)	Optimum: 20 °C (13)	Optimum: 28 °C (28)	Optimum: 28 °C (29)	Optimum: 31 °C (30)	
Wetness effect	RcW References ^b	1 if canopy wet, 0 otherwise (31)	1 if canopy wet, 0 otherwise (31)	1 if canopy wet, 0 otherwise (32)	1 if canopy wet, 0 otherwise (33)	Unaffected	
Aggregation	a References ^b	1	1	1	2.8 (34)	1	

A note on Tungro epidemics

$$PRI_{t} = (PRI_{t-1} + R_{t})e^{-k}$$

Installing *epicrop*

It's all there!

https://github.com/adamhsparks/epicrop (code)
http://adamhsparks.github.io/epicrop/ (docs)

Installing epicrop

It's all here!

Using epicrop

It's all here!

library("epicrop")
vignette("epicrop")

https://adamhsparks.com/

adamhsparks@gmail.com

@adamhsparks

openplantpathology.slack.com

github.com/adamhsparks

an Plant Pathology