ELETROMAGNETISMO - GEELAR 1501 - 1^a Equação de Maxwell - P1

Lei de Gauss - LISTA 03

- 1. Utilize uma superfície Gaussiana especial para deduzir a expressão para a densidade de fluxo elétrico devido a uma linha uniforme de cargas de densidade ρ_l C/m.
- 2. Um acelerador de cargas cuja forma é aproximadamente a do conjunto $D=(x,y,z)\in \sqrt{x^2+y^2}\le z\le 3$ está imerso numa corrente cujo campo de velocidade é $D(x,y,z)=yz\cos y^2,xz\cos x^2,1$ dado pela fórmula . Mostre, utilizando o teorema da divergência, que a corrente é constante no interior do acelerador.
- 3. Calcular os dois lados do teorema da divergência, para uma densidade de fluxo elétrico: $D = xy^2a_x + yx^2a_y$ em um cubo de arestas igual a duas unidades, considerando o cubo todo no primeiro quadrante.
- 4. Calcular os dois lados do teorema da divergência, para uma densidade de fluxo elétrico: $D = 10x^2a_x + xy^3a_y$ em um cubo de arestas igual a duas unidades, considerando o cubo todo no primeiro quadrante.
- 5. Dentro da região cilíndrica , a densidade de fluxo elétrico é dada como sendo $\rho \leq 4m$, a $D = 53 \rho^3 a_{\rho} \text{ C/m}^2$.
 - (a) Qual a densidade volumétrica de carga em $\rho = 3$ m.
 - (b) Qual a densidade de fluxo elétrico em $\rho = 3$ m.
 - (c) Quanto de fluxo elétrico atravessa o cilindro, $\rho = 3$ m, $|z| \le 2, 5$ m.
 - (d) Quanto de carga existe dentro do cilindro, $\rho = 3$ m, $|z| \le 2,5$ m.
- 6. Dado o campo $D = \frac{20}{\rho^2}(-\sin^2\varphi a_\rho + \sin 2\varphi a_\varphi)$ C/m², encontrar a carga total que se encontra dentro da região $1 < \rho < 2, 0 < \varphi < \pi/2, 0 < z < 1.$
- 7. Ao longo do eixo z existe uma distribuição linear uniforme de carga com $\rho_l = 4\pi$ C/m, e no plano z=1 m existe uma distribuição superficial uniforme de carga com $\rho_s = 20$ C/m². Determinar o fluxo total saindo da superfície esférica de raio 2m, centrada na origem.
- 8. Se uma carga Q está na origem de um sistema de coordenadas esféricas, calcule o fluxo elétrico ψ que cruza parte de uma superfície esférica, centrada na origem e descrita por $\alpha < \varphi < \beta$.
- 9. Uma carga pontual de 6μ C está localizada na origem do sistema de coordenadas, uma densidade linear uniforme de cargas de 180nC/m está distribuída ao longo do eixo x, e uma densidade superficial uniforme de carga de 25nC/m² está distribuída sobre o plano z=0.
 - (a) Determinar D em A (0,0,4);
 - (b) Determinar D em B(1,2,4);
 - (c) Determinar o fluxo elétrico total deixado a superfície da esfera de 4m de raio centralizada na origem.

- 10. Dado $D = 30e^{-r}a_r 2za_z$, em coordenadas cilíndricas, calcular ambos os lados do teorema da divergência para o volume limitado por r=2, z=0 e z=5m.
- 11. Calcule ambos os lados do teorema da divergência para $D=3x^2+2z+x^2z$, para um cubo de arestas iguais a 4m.
 - (a) centrado na origem
 - (b) colocado sobre a origem, com todo seu volume no primeiro quadrante.
- 12. Dois condutores cilíndricos coaxiais, para efeitos práticos são considerados como sendo de comprimento infinito. O cilindro interno é maciço, de raio a. O cilindro externo, oco, possui raio interno b e externo c. Uma carga de densidade superficial ρ_s C/m² é colocada na superfície do condutor interno. Avaliar o campo elétrico em todo o espaço, a partir do centro dos cilindro(r=0) até o exterior onde r < c. O meio entre os condutores é ε_0 .
 - (a) r < a
 - (b) b < r < a
 - (c) c < r < b
 - (d) r > c