THE E-BASE OF FINITE (SEMIDISTRIBUTIVE) LATTICES*

ANR SmartFCA - 8 juillet 2025

Simon Vilmin

Aix Marseille Université, CNRS, LIS, Marseille, France

Kira Adaricheva

Department of Mathematics, Hofstra University, New-York, USA

* arXiv 2502.04146, CONCEPTS 2025

Context: describe a closure system with implications $A \rightarrow x$ where A is a "minimal" generator of x

Different meanings of minimality lead to different implications

We are interested in the E-base

Question, results

Question: sometimes the E-base is valid, sometimes not ... so what are the classes of (closure) lattices where it is valid?

THM (Adaricheva, V., 25+): the E-base of a closure system with semidistributive lattice is valid and minimum

Other (upcoming) results:

- · valid: atomistic modular lattices, lattices of binary matroids
- · non-valid: geometric, modular and join-distributive lattices
- · hardness of computing E-relation from context or implications

Outline

PART 1: what is the E-base?

- · some notations
- · meanings of minimality
- · the E-base

PART 2: is the E-base valid?

- · related work and results
- · E-base against canonical base
- · E-generators and prime elements

PART 1: what is the E-base?

Closure systems

· closure system (S, &): ground set S, & $\leq 2^{S}$ contains S and is closed under intersection

· closure operator o

· closure lattice (B, E)

 $C = \phi(A)$: A spans C $X = \phi(A)$: A generates X

Implications

- · implicational base (IB) (S, Σ) : Σ set of implications $A \to B$ with $A, B \in S$
- · associated closure system $(S, \mathcal{C}_{\Sigma})$
- · each closure system admits 7,1 IB

(S, Z) is a valid IB of (S, B) if Bz = B

 $\Sigma = \{c \rightarrow b, b \rightarrow a, d \rightarrow a, bd \rightarrow c, ae \rightarrow bd\}$

Flavors of minimality

DEF:
$$A \subseteq S$$
 is a E -generator of x if

(1) $x \in \phi(A)$ but $x \notin \phi(a)$, $a \in A$

(2) for all $B \subseteq U \phi(a)$, $x \in \phi(B) \Rightarrow A \subseteq B$

(3) $\phi(A) \in \min_{C} \{ \phi(A') : A' \text{ satisfies (1) and (2)} \}$

order min.

DEF: the E-base of
$$(S, \mathcal{E})$$
 is (S, \mathcal{Z}_E) with $\mathcal{Z}_E = \{a \rightarrow b : b \in \phi(a)\}$

$$u \{A \rightarrow b : A \text{ is a E-generator of b}\}$$

Back to the example

Is the E-base valid?

$$\mathcal{E}_{E} = \{c \rightarrow b, c \rightarrow a, b \rightarrow a, d \rightarrow a\}$$
 $v \{ae \rightarrow b, ae \rightarrow d, bd \rightarrow c\}$

Valid implicational base

not correctly described

PART 2: is the E-base valid?

E-base origins and related works

Origins of the E-base

- · E-generators come from free lattices, Freeze et al. 1995
- · then turned into an IB, Adaricheva et al. 2013

Question: what are the classes of lattices where it is valid?

Known results (Adaricheva et al. 2013)

- · valid and minimum in lower bounded lattices,
- · non-valid in convex geometries in general

Deduced from earlier works (mostly Wild, 1994, Wild, 2000)

· valid in atomistic modular lattices and binary matroids

Classes of lattices with valid E-base

Towards structural insights

Question: how to study the validity of the E-base?

(in particular for semidistributive lattices)

Two ideas:

- (1) compare the E-base with the canonical base
- (2) find the meaning of E-generators in the lattice in terms of prime elements

Quasi-closed, pseudo-closed, essential sets

- · Q = 5 quasi-closed: for Y=Q, $\phi(Y) = \phi(Q)$ implies $\phi(Y) = Q$
- · P=S pseudo-closed: e-min quasi-closed spanning sets of φ(P)
- · C = S essential set: C = $\phi(P)$ for some pseudo-closed set P

Canonical base (see, e.g., <u>Duquenne</u>, Guigues, 1986)

DEF: the canonical base of
$$(5,8)$$
 is $(5,Z_C)$ where $Z_C = \{P \rightarrow \phi(P) \mid P : P \text{ pseudo-closed }\}$

$$\Sigma_C = c \rightarrow ab$$
,
 $d \rightarrow a$,
 $ae \rightarrow bcd$,
 $bda \rightarrow c$

THM: any valid IB of (5,8) contains an implication $A \rightarrow X$ with $A \subseteq P$ and $\phi(A) = \phi(P)$ for each pseudo-closed set P

E-base vs. canonical: missing essential sets

$$\Sigma_{c}$$
 Σ_{E}
 $ac \rightarrow b$
 $bd \rightarrow c$
 $ad \rightarrow bc$

PROB: essential set abod not the closure of any E-generator

E-base vs. canonical: missing pseudo-closed sets

- Each essential set is spanned
 by some E-generator
- essential set abode

 \[\Sigma_{E} \]
 \[\text{abce} \rightarrow d \]
 \[\text{ae} \rightarrow d \, \text{be} \rightarrow d \]
 \[\text{abcd} \rightarrow e \, \text{ad} \rightarrow e \, \text{bd} \rightarrow e \]
 \[\text{cde} \rightarrow ab \]

PROB: pseudo-closed set cde not subsumed by any E-generator spanning abode

E-base vs. canonical: not reaching enough elements

· Each pseudo-closed set is subsumed by a E-generator spanning the same essential set.

$$\Sigma_{C} = e \rightarrow ca, d \rightarrow ba, b \rightarrow a, c \rightarrow a,$$

$$abcd \rightarrow e, abce \rightarrow d, af \rightarrow bcde$$

$$\Sigma_{E} = e \rightarrow ca, d \rightarrow ba, b \rightarrow a, c \rightarrow a,$$

$$cd \rightarrow e, be \rightarrow d, af \rightarrow bc$$

$$af \rightarrow de \text{ is not true in } \Sigma_{E}$$

PROB: the E-base does not generate enough elements

Prime elements

DEF: $x \in S$ is prime in (S, \mathcal{C}) if it has no minimal generators of size 7, 2.

x is prime

⇒ x has no E - generators

 $\Leftrightarrow \phi(x)$ is join-prime in (8, 9)

E-generators and primality

LEM:
$$A = S$$
 E -gen of x iff:
(1) $x \in \phi(A)$, $x \notin \phi(a)$ for $a \in A$
(2) for $C \in \mathcal{C}$, $x \in C$ and $C \subset \phi(A)$
 $\Rightarrow x$ prime in (C, VC)
(3) A is an order-min span set of $\phi(A)$

The E-base reflects in the canonical base

IDEA: closures of E-gen of x delineate the part of the lattice where x is not prime. They are "essential" to the closure system and in fact essential strictly speaking.

THM (Adaricheva, V., 25+): for any $C \in \mathcal{B}$ that is the closure of some E-gen of x, there is $P \to C \setminus P$ in \mathcal{Z}_C and a E-gen A of x s.t. $A \subseteq P$ and $\varphi(A) = \varphi(P) = C$.

A word on semidistributivity

Question: what makes things work in semiclistributive lattices?

they are built around prime elements!

- · semidistributivity = join + meet semidistributivity (SD; + SDm)
- · SD; says : each $C \in \mathcal{C}$ has a unique order min. span. set that moreover consists in prime elements of VC
- · SDm adds: each pseudo-closed set P reduces to a joint E-gen of enough prime elements of predessors of $\phi(P)$

E-base
$$\subseteq$$
 D-base \subseteq Canonical direct base order + order min. subset min.

 \triangle : unlike the D-base and the canonical direct base, the E-base is not always valid

Playing with prime elements, quasi-closed, pseudo-closed and essential sets we can show that:

- · the E-base reflects in the canonical base
- " the E-base of SD lattices is valid and minimum

Freese, Nation, Ježek

Freese et al. 1995

Free lattices

American Mathematical Society, 1995

Adaricheva, Nation, Rand

Adaricheva et al. 2013

Ordered direct implicational basis of a finite closure system. Discrete Applied Mathematics, 2013

Wild

Wild, 1994

A theory of finite closure spaces based on implications Advances in Mathematics, 1994 Wild

Wild, 2000

Optimal implicational bases for finite modular lattices Quaestiones Mathematicae, 2000

Duquenne, Guignes

Duquenne, Guignes, 1986

Familles minimales d'implications informatives résultant d'un tableau

de données binaires

Mathématiques et Sciences Humaines, 1986