离散数学(2023 秋)作业七 截止时间: 1月5日2.00

- 1. (10pt) 考虑 100 个顶点的完全图 K_{100} ,对它的边进行红蓝染色使得每个顶点有偶数条 (可能为零) 邻边为红色,证明其中有三个顶点,他们红色邻边的数量相同。
- 2. (10pt) 给出 K_8 的一种红蓝染色方案使得其中既没有红色 K_4 也没有蓝色 K_3 。
- 3. (20pt) 记 r(a,b) 为最小的正整数 n (如果这样的正整数存在的话) 使得对 K_n 进行红蓝染色则其中或者有红色 K_a 或者有蓝色 K_b 。 证明 $r(a,b) \le r(a-1,b) + r(a,b-1)$,证明 $r(a,b) \le \binom{a+b-2}{a-1}$ 。
- 4. (10pt) 证明任何简单无向图中总存在顶点度数相同的两个顶点。
- 5. (15pt) 考虑连通简单无向图 G = (V, E), 令 $\delta = \min_{x \in V} \deg(x)$ 为图 G 中最小的顶点度数,若 $|V| > 2\delta$,则 G 包含长至少为 2δ 的 path。
- 6. (15pt) 一个无向图 G = (V, E) 被称作二部图(bipartite graph)是指 V 可以分成两个不相交的子集 $V_1 \cup V_2$ 使得 E 中的每条边均有一个端 点属于 V_1 ,另一个端点属于 V_2 。
 - (a) 证明无向图 G 是二部图等价于 G 中不存在长度为奇数的 cycle.
 - (b) 若一个二部图 G 含有奇数个顶点,则 G 中不存在 Hamilton cycle。
- 7. (10pt) 证明无向图 G = (V, E) 有 Euler circuit 等价于 G 是连通的且 G 可以分解成若干个边不想交的 cycle 的并。
- 8. (10pt) 证明对于任意无向图 G,可以对其的边定向得到有向图 D,使得对于任意顶点 x,有 $|\deg_D^+(x) \deg_D^-(x)| \le 1$.

- 9. (20pt) 考虑连通有向图 D = (V, E).
 - (a) 证明若对于任意 $x\in V$,都有 $|\deg_D^+(x)-\deg_D^-(x)|\leq 1$,且任何 边 $a\in E$ 均包含在奇数个有向 cycle 中,则 D 是 Euler 图。
 - (b) 说明上述命题的逆命题不成立。