

Analog Electronics Exercises

session 2

Contact: Alican Caglar, M.Sc. acaglar@etrovub.be

Exercise 1

Figure 1: $g_m/g_{ds} \times V_{DS}$ curve taken from the class notes (Fig.1.32) showing the intrinsic gain as a function of V_{DS} for different V_{GS} values for a minimum-length transistor of a 90nm process with $V_{SB} = 0V$. Note that V_{th} is around 320mV.

Assume that we utilize 90nm CMOS technology whose $g_m/g_{ds} \times V_{DS}$ curve for the minimum-length transistor is given above. Suppose that the size of the transistor is fixed.

- a) What is the highest gain we can achieve with a single stage using this transistor technology?
- b) What is the highest gain for the highest speed that we can attain with the 90nm process?
- c) How can we increase the gain further beyond the technology limits?

Exercise 2

The following circuit is given. Assume that all transistors are in saturation mode, and neglect the g_{ds} of transistors. You can also neglect the extrinsic and intrinsic capacitors of transistors which are not given in the question. ($R_S = 500\Omega$, $R_1 = 5k\Omega$, $R_L = 500\Omega$, $g_{m1} = 2mA/V$, $g_{m2} = 20mA/V$, $C_L = 1.1pF$, $C_{gs1} = 20fF$, $C_{gd1} = 10fF$, $C_{gs2} = 30fF$, $C_{gd2} = 15fF$)

Figure 2: Two cascaded common source stages.

- a) Calculate the DC gain of the circuit.
- b) Find the values of existent poles in rad/s. You can neglect zeros since they are far away from w_T .
- c) Calculate the phase margin.

Exercise 3

Add the capacitor C_c between the gate and drain of Q_2 to improve the phase margin of the circuit in Exercise 2 by Miller compensation.

Figure 3: Two cascaded common source stages with Miller compensation.

- a) Calculate the value of C_c which makes the amplifier to have a uniform -20dB/decade gain rolloff with a unity gain frequency w_T of 2Grad/s. It means that there will be only one pole whose frequency lower than w_T .
- b) Calculate the resultant phase margin. Do not forget to take into account the right half-plane zero occurs in the second stage since it will get closer to w_T due to the Miller compensation.

Exercise 4

Add a resistance R in series with C_c to improve the phase margin we obtained in Exercise 3.

Figure 4: Two cascaded common source stages with added R in series with C_C .

- a) What value of R is needed to remove the first non-dominant pole by shifting the zero to the same frequency as the pole?
- b) Calculate the new phase margin obtained after adding R.

log(w)[rad/s]

