Probabilidad y estadística Clase 2

Transformaciones de variables

Función de variable aleatoria

Método de la transformada inversa

El objetivo es poder generar una variable aleatoria con una cierta distribución deseada a partir de una que conozco.

Es decir, quiero construir una variable aleatoria cuya función de distribución sea una F dada.

Método de la transformada inversa

Sea $F: \mathbb{R} \to [0,1]$ una función de distribución, existe una variable aleatoria

$$X/\overline{F(x)}=\mathbb{P}(X\leq x)$$
 Definimos la inversa generalizada como:

$$\left\{ \begin{array}{l} F_X^{-1}(u) = \min\{x \in \mathbb{R} : \widehat{F_X(x)} \geq u\}, \ u \in (0,1) \right\} \stackrel{\text{\tiny Log}}{=} \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \stackrel{\text{\tiny Log}}{=} \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in \mathbb{R} \end{array} \right\} = \left\{ \begin{array}{l} X \in \mathbb{R} \\ X \in$$

Teorema: Si(F) es una función que cumple que $\lim_{x\to -\infty} F(x) = 0 \text{ y } \lim_{x\to \infty} F(x) = 1$ Es continua a derechave $\lim_{x\to -\infty} F(x) = 0 \text{ y } \lim_{x\to \infty} F(x) = 1$ Entonces, si defino $X = F^{-1}(U)$ con $U \sim \mathcal{U}(0,1)$ X es una v.a. con función de distribución F

Sea X el resultado de arrojar un dado equilibrado. A partir de 1000 realizaciones de una v.a. uniforme en el intervalo (0,1), simular 1000 realizaciones de X.

$$F_{X}(u) = \begin{cases} 1 & si & 0 \leq M < 1/6 \\ 2 & si & 1/6 \leq M < 2/6 \end{cases} \longrightarrow \times$$

$$6 & si & s/6 \leq M \leq 1$$

$$\begin{cases} x: \text{ trenge en tre Normales}' \\ f_{x}(x) = \frac{1}{5} e^{\frac{1}{5}x} \times \frac{1}{5} e^{\frac{1}{5}x} = \frac{1}{5} e^{\frac{1}{5}x}$$

El tiempo (en minutos) entre llamadas a un call center tiene una distribución exponencial de parámetro ½.

A partir de 1000 observaciones de una v.a. uniforme en el intervalo (0,1), simular 1000 valores de tiempos entre llamadas.

Función de variable aleatoria

Motivación

En este caso, lo que conocemos es la relación entre variables aleatorias (transformación), pero sólo conocemos la distribución de una ellas.

Usos: en ML, se suele usar la transformación de variables para mejorar los resultados de ajustes y predicciones.

Algunas transformaciones más comunes son

Log •

Inversa

Exp

Binning

Sqrt

Usos en ML y DS

- Ingeniería de features: binning, log, exp, etc.
- Normalización
- Aumentación de datos. Ej: en imágenes se aplican tx como rotaciones, traslaciones, etc.
- Interpretación del modelo. Por ej. en RL cuando incluimos X2, X3, etc. como regresores.

Definición

date ¿ Fy(y)?

Sea X una v.a. con función de distribución $F_X(x)$, y sea Y=g(X) una función de la variable aleatoria X. El objetivo es hallar la función de Y.

Esto puede hacerse considerando que $F_Y(y) = P(Y \le y) = P(g(X) \le y)$ y desarrollando la probabilidad en términos de la v.a. X.

A este camino se lo llama método de eventos equivalentes.

Ejercicio 3 Me hace magner L. $\frac{1}{1} = \int_{-\infty}^{\infty} \{x(x) dx - \int_{-\infty}^{\infty} \frac{1}{1} \} -1 \le x \le 1 \} dx = \frac{1}{2} \cdot 1 \} -1 \le x \le 1 \}$

Sea $X\sim U(-1,1)$, y sea $Y=X^2$ Hallar la función de densidad de Y

$$F_{Y(1)} = P(Y \le y) = P(X^{2} \le y) = P(|X| \le 0y) = P(-0y \le X \le 0y)$$

$$= \frac{1}{2} |X| = 0$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le y < 1 \Rightarrow |X| = 1$$

$$0 \le |$$

$$f_{y}(y) = \frac{1}{2y} f_{y}(y) = \frac{1}{2\sqrt{y}}$$

En un equipo de fútbol, Juan y Esteban son los encargados de patear penales. En un torneo Juan pateó 3 penales, mientras que Esteban pateó 5. Si ambos tienen una probabilidad de 0.4 de acertar cada penal, ¿qué distribución sigue el total de penales acertados?

En un equipo de fútbol, Juan y Esteban son los encargados de patear penales. En un torneo Juan pateó 3 penales, mientras que Esteban pateó 5. Si ambos tienen una probabilidad de 0.4 de acertar cada penal, ¿qué distribución sigue el total de penales acertados?

$$P_{W}(w) = P(w=w) , o \leq w \leq 8$$

$$= \sum_{i=0}^{w} P(x=i; Y=w-i)$$

$$= \sum_{i=1}^{w-1} (3i) \circ P(Y=w-i)$$

$$= \sum_{i=1}^$$

$$X = \frac{3}{2}B;$$
 $B: \frac{1}{2}Ber(0,1)$ e $Y = \frac{3}{2}B_{7}$ e $Ber(0,1)$
 $W = X + Y = \frac{3}{2}B;$ $+ \frac{5}{2}B_{7} = \frac{8}{2}B;$ \Rightarrow $W \sim Biu(8/94)$

La cantidad de kilómetros que dura una cámara de bicicleta sigue una distribución exponencial de media 1000.

Hallar la di<u>stri</u>bución de la cantidad de kilómetros que se puede usar una bicicleta antes de tener que realizar la primera reparación.

$$Y = Min(T_1, T_2)$$
 cm $T_1, T_2 \sim E(1900)$
 $F_{Y(y)} = P(Y \le y) = P(min(T_1, T_2) \le y) = 1 - P(min(T_1, T_2) > y)$
 $= 1 - P(T_1 > y) T_2 > y) = 000 indep$

Método de transformaciones

Continues

- Sea X una v.a.c. con función de densidad $f_X(x)$, \mathcal{S} Sea Y=g(X).
- g(x) es una función 1 a 1 (existe $g^{-1}(y)$)

$$f_{Y}(y) = f_{X}g^{-1}(y)\left| rac{dg^{-1}(y)}{dy}
ight|$$

$$F_{y}(y) = P(y \le y)$$
 $= P(x) \le y$
 $= P(x$

Método del Jacobiano

Sean X_1 y X_2 son v.a **continuas** con función de densidad conjunta $f_{X_1,X_2}(x_1,x_2)$. Sean también h_1 , h_2 dos func. tales que para todo (x_1,x_2) en el soporte de (X_1,X_2) , $y_1=h_1(x_1,x_2)$ y $y_2=h_2(x_1,x_2)$ son una transformación uno a uno con **inversa** $x_1=h_1^{-1}(y_1,y_2)$ y $x_2=h_2^{-1}(y_1,y_2)$. Si las inversas tienen **derivadas parciales continuas** respecto de y_1 e y_2 y jacobiano J, entonces la densidad conjunta de y_1 , y_2 será:

$$f_{Y_1,Y_2}^{(y_1,y_2)} = f_{X_1,X_2}(x_1,x_2)|_{h_1^{-1}(y_1,y_2),h_2^{-1}(y_1,y_2)}|J|^{-1}$$
 $J = \begin{pmatrix} \frac{dh_1}{dy_1} & \frac{dh_1}{dy_2} \\ \frac{dh_2}{dy_1} & \frac{dh_2}{dy_2} \end{pmatrix}$

$$\frac{\partial h_1}{\partial x_1} = \frac{\partial h_1}{\partial x_2}$$

$$\frac{\partial h_2}{\partial x_1} = \frac{\partial h_2}{\partial x_2}$$

$$f_{U_{1}V}(u_{1}I) = \frac{1}{2IT} e^{-\left(\frac{u_{1}}{V}\right)^{T}} \left(\frac{R^{-1}}{V}\right)^{T} I R^{-1} \left(\frac{u_{1}}{V}\right)$$

$$= \frac{1}{2IT} e^{-\left(\frac{u_{1}}{V}\right)^{T}} \left(\frac{u_{1}}{V}\right)$$

62 > G1

Sean $X_1,X_2\stackrel{i.i.d}{\sim}\mathcal{E}(\lambda)$ y sean $U=X_1+X_2$ y $V=\frac{X_1}{X_1+X_2}.$ Hallar $f_{U,V}(u,v)$ ¿Qué puede decir al respecto?

Sean $X_1, X_2 \stackrel{i.i.d}{\sim} \mathcal{E}(\lambda)$ y sean $U = X_1 + X_2$ y $V = \frac{X_1}{X_1 + X_2}$. Hallar $f_{U,V}(u,v)$ ¿Qué \longrightarrow $U \sim \Gamma(z,\lambda)$ \hookrightarrow $\vee \sim V \sim \mathcal{F}(z,\lambda)$ puede decir al respecto? y son indep. $h_1(x_1,x_2) = x_1 + x_2 = M$ => $x_2 = M - \mu N = \mu(1-N) = h_1^{-1}(\mu_1 N)$ $h_2(x_1,x_2) = \frac{x_1}{2} = N$ => $x_1 = \mu N = h_2^{-1}(\mu_1 N)$ Mesura de 2 U.Z. Porthoza. fun) = + x1x2 (x1,x1)