Задачи регрессии и метод наименьших квадратов

- X объекты (часто \mathbb{R}^n); Y ответы (часто \mathbb{R} , реже \mathbb{R}^m); $X^\ell = (x_i, y_i)_{i=1}^\ell$ обучающая выборка; $y_i = y(x_i), \ y \colon X \to Y$ неизвестная зависимость;
- $a(x) = f(x, \alpha)$ параметрическая модель зависимости, $\alpha \in \mathbb{R}^p$ вектор параметров модели.
- Метод наименьших квадратов (МНК):

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} w_i (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha},$$

где w_i — вес, степень важности i-го объекта.

• **Недостаток:** надо иметь хорошую параметрическую модель $f(x, \alpha)$

Непараметрическая регрессия. Формула Надарая-Ватсона

Приближение константой $f(x, \alpha) = \alpha$ в окрестности $x \in X$:

$$Q(\alpha; X^{\ell}) = \sum_{i=1}^{\ell} \frac{w_i(x)}{(\alpha - y_i)^2} \to \min_{\alpha \in \mathbb{R}};$$

где $w_i(x) = K\left(\frac{\rho(x,x_i)}{h}\right)$ — веса объектов x_i относительно x; K(r) — gдро, невозрастающее, ограниченное, гладкое; g — ширина окна сглаживания.

Формула ядерного сглаживания Надарая-Ватсона:

$$a_h(x; X^{\ell}) = \frac{\sum_{i=1}^{\ell} y_i w_i(x)}{\sum_{i=1}^{\ell} w_i(x)} = \frac{\sum_{i=1}^{\ell} y_i K\left(\frac{\rho(x, x_i)}{h}\right)}{\sum_{i=1}^{\ell} K\left(\frac{\rho(x, x_i)}{h}\right)}.$$

Часто используемые ядра K(r)

$$\Pi(r) = \left[|r| \leqslant 1 \right]$$
 — прямоугольное $T(r) = \left(1 - |r| \right) \left[|r| \leqslant 1 \right]$ — треугольное $E(r) = \left(1 - r^2 \right) \left[|r| \leqslant 1 \right]$ — квадратичное (Епанечникова) $Q(r) = (1 - r^2)^2 \left[|r| \leqslant 1 \right]$ — квартическое $G(r) = \exp(-2r^2)$ — гауссовское

$$h \in \{0.1, 1.0, 3.0\}$$
, гауссовское ядро $K(r) = \exp(-2r^2)$

Гауссовское ядро ⇒ гладкая аппроксимация Ширина окна существенно влияет на точность аппроксимации

Треугольное ядро \Rightarrow кусочно-линейная аппроксимация Аппроксимация не определена, если в окне нет точек выборки

$$h \in \{0.1, 1.0, 3.0\}$$
, прямоугольное ядро $K(r) = \left[|r| \leqslant 1\right]$

Прямоугольное ядро \Rightarrow кусочно-постоянная аппроксимация Выбор ядра слабо влияет на точность аппроксимации

- Ядро K(r)
 - существенно влияет на гладкость функции $a_h(x)$,
 - слабо влияет на качество аппроксимации.
- Ширина окна h
 - существенно влияет на качество аппроксимации.
- ullet Переменная ширина окна h(x) по k ближайшим соседям:

$$w_i(x) = K\left(\frac{\rho(x,x_i)}{h(x)}\right),$$

где $h(x) = \rho(x, x^{(k+1)})$, $x^{(k)} - k$ -й сосед объекта x.

• Оптимизация ширины окна по скользящему контролю:

$$\mathsf{LOO}(h, X^{\ell}) = \sum_{i=1}^{\ell} \left(a_h \big(x_i; X^{\ell} \setminus \{ x_i \} \big) - y_i \right)^2 \to \min_{h}.$$

Резюме

- Непараметрическая регрессия избегает использования параметрической модели зависимости $f(x, \alpha)$.
- Неявно моделью является функция расстояния $\rho(x, x_i)$ между объектами.
- Что можно обучать:
 - число ближайших соседей k или ширину окна h;
 - веса объектов (обнаруживать выбросы);
 - метрику (distance learning, similarity learning);
 - в частности, веса признаков в метрике.
- Непараметрическая регрессия часто используется как инструмент предварительной обработки данных для сглаживания шумов в данных.