

Review of Definitions

- a parameter is a number that describes a "true" distribution
 - μ mean. σ standard deviation
 - α , β , γ , etc. in continuous distributions
 - p probability of a Bernoulli or Binomial
- · a statistic is any numerical summary of data
 - \bullet \overline{X} sample mean
 - s_x sample standard deviation
 - Xmin, Xmax

Review of Definitions

Data

Statistics

sample mean: $\overline{x} = 112.5$ sample variance: $s_x^2 = 29.8$ sample s. d.: $s_x = 5.46$

Model

Parameters

theoretical mean: $\mu=112.5$ theoretical variance: $\sigma^2=29.8$ theoretical s.d.: $\sigma=5.46$

Inference ...

is when you try to say something about a **population** when all you have data on is a **sample**.

- We have a population of interest
- ullet The population has some true structure e.g. a true distribution with a true parameters (e.g. mean μ , standard deviation σ , p etc.).
- We collect a random sample from the population (X₁, X₂, X₃...X_n) because we can't measure the entire population and calculate a
 statistic,
- We determine how good the statistic is at estimating the parameter
 - · How accurate is it? i.e. how biased
 - How precise is it? i.e. how big is the margin of error or confidence interval.

The most common parameter of interest is ...

 μ

The best **estimator** of the parameter is ...

$$\overline{X} \approx \mu$$

The big question is ...

How good is \overline{X} at estimating μ ?

The reasoning

- The values $X_1, X_2, X_3 \dots X_n$ are all random, independent observations from some distribution $X \sim f(x)$ with some mean value μ . (note that X can be any distribution).
- Recall that:

$$\overline{X} = \frac{1}{n} \sum X_i$$

• So: \overline{X} is also a random variable.

Expectation of \overline{X}

· Recall the rules of summing and multiplying expectations:

$$E(X + Y) = E(X) + E(Y)$$

$$E(aX) = aE(X)$$

$$E(a + bX) = a + bE(X)$$

So:

$$E(\overline{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n} X_{i}\right)$$

$$= \frac{1}{n}E\left(\sum_{i=1}^{n} X_{i}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}E(X_{i})$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mu = \frac{1}{n}n\mu = \mu$$

Expectation of \overline{X}

So (using expectation artithmetic):

$$E(\overline{X}) = \mu$$

Therefore, we say that: \overline{X} is an **unbiased estimator** of μ , because its *expectation* is exactly the parameter that we are estimating.

Variance of \overline{X}

· Here are the complete rules of variance arithmetic:

$$\begin{array}{rcl} {\rm Var}\,(X+Y) &=& {\rm Var}\,(X) + {\rm Var}\,(Y) + 2{\rm Cov}\,(XY) \\ {\rm Var}\,(X-Y) &=& {\rm Var}\,(X) + {\rm Var}\,(Y) - 2{\rm Cov}\,(XY) \\ {\rm Var}\,(a+X) &=& {\rm Var}\,(X) \\ {\rm Var}\,(b\,X) &=& b^2{\rm Var}\,(X) \\ {\rm Var}\,(a\,X+b\,Y) &=& a^2{\rm Var}\,(X) + b^2{\rm Var}\,(Y) + 2ab{\rm Cov}\,(X,Y) \end{array}$$

Brief aside on Cov(X, Y)

The ${\bf covariance}$ of two random variables ${\it X}$ and ${\it Y}$ is given by:

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))]$$

= $E(XY) - E(X)E(Y)$

For now, we will not worry about covariances at all, because we will assume that the observations we make are independent.

Rules of expectations and variances (under independence)

· Rules of expectation arithmetic:

$$X + Y = E(X) + E(Y)$$

 $E(aX) = aE(X)$
 $E(a + bX) = a + bE(X)$

Rules of variance arithmetic:

$$\begin{array}{rcl} \operatorname{Var}(X+Y) &=& \operatorname{Var}(X) + \operatorname{Var}(Y) \\ \operatorname{Var}(X-Y) &=& \operatorname{Var}(X) + \operatorname{Var}(Y) \\ \operatorname{Var}(a+X) &=& \operatorname{Var}(X) \\ \operatorname{Var}(b\,X) &=& b^2 \operatorname{Var}(X) \\ \operatorname{Var}(a\,X+b\,Y) &=& a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) \end{array}$$

Back to the variance of \overline{X}

· Recall relevant rules of variance arithmetic:

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(XY)$$

 $Var(bX) = b^2Var(X)$

So:

$$\operatorname{Var}(\overline{X}) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n^{2}}\operatorname{Var}\left(\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i})$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2} = \frac{1}{n^{2}}n\sigma^{2} = \frac{\sigma^{2}}{n}$$

Expectation and variance of \overline{X}

If X is a population with true mean μ and variance σ^2 , and X_1 , X_2 , X_3 ... X_n are observations of that population, and the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ then:

- $E(\overline{X}) = \mu$
- Var $(\overline{X}) = \frac{\sigma^2}{n}$

Note that we derived these from the "arithmetic" rules of expectation and variance.

The standard deviation of the sample mean $\sigma_{\overline{x}}$

 \bullet The precision of our estimate \overline{X} is determined by the size of our sample:

$$\sigma_{\overline{X}} = \frac{\sigma_X}{\sqrt{n}}$$

- The larger the sample n, the smaller σ_X.
- \bullet So, because E $\left(\overline{X}\right)=\mu$ it is an accurate (unbiased) estimator
- The **precision** of $\mathsf{E}\left(\overline{X}\right)$ depends (as the inverse square root) on n.

Recall the central limit theorem:

Central Limit Theorem (CLT)

If X_1 , X_2 , X_3 ... X_n are any, independent, identically distributed (iid) random variables with mean μ_X and standard deviation σ_X , and

$$Y = \sum_{i=1}^{n} X_i$$

then, as n becomes large

$$Y \sim \mathcal{N}(n\mu_x, n\sigma_x^2)$$

In words: The sum of random variables approximates a normal distribution no matter what the variable is.

A stronger statement about \overline{X}

The asymptotic distribution of \overline{X}

The distribution of \overline{X} is approximately normal with:

$$\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

This is a direct consequence of the central limit theorem.

In summary

- Arithmetic rules and central limit theorem let us say anything about the **sampling distribution** of \overline{X} .
- So we can solve any probability problem related to \overline{X} .

Example with melatonin

Melatonin

From Wikipedia, the free encyclopedia

Not to be confused with Melanin or Melanotan,

Melatonin et/melatoninnin, also known chemically as Nacetyl-5-methoxytryptamine. This a naturally occurring compound found in animals, plants and microbes ^[29] in animals, circulating levels of the hormone melatonin vary in a daily cycle, thereby allowing the entrainment of the circadian rhythms of several biological functions. ^[4]

Example with melatonin

Example with melatonin

- ullet Time to fall asleep for all humans: $\mu=15,\,\sigma=10$
- . If melatonin has no effect on time to sleep, then

$$\textit{X}_{1},\textit{X}_{2},...,\textit{X}_{40}\sim \mathsf{Some\ Distribution}(\mu=15,\sigma=10)$$

But, by CLT

$$\overline{X} \sim \mathcal{N}\left(\mu = 15, \sigma = \frac{10}{\sqrt{40}}\right)$$

$$\mathcal{N}(\mu = 15, \sigma = 1.58)$$

So:

$$P(\overline{X} \le 5.9)$$
 = pnorm(5.9, mean=15, sd=1.58)
= 4.218331e-09 \approx 0

Another common parameter of interest is ...

 σ^2

How good is the **estimator** ...

$$S^2 \approx \sigma^2$$

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Recall:

$$\begin{split} \sigma^2 &= \mathbb{E}\left((X - \mu)^2 \right) : \frac{\sigma^2}{n} = \mathbb{E}\left((\overline{X} - \mathbb{E}\left(\overline{X} \right))^2 \right) = \mathbb{E}\left((\overline{X} - \mu)^2 \right) \\ \mathbb{E}\left(s^2 \right) &= \mathbb{E}\left(\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 \right) = \frac{1}{n-1} \sum_{i=1}^n \mathbb{E}\left((X_i - \overline{X})^2 \right) \\ &= \frac{1}{n-1} \sum_{i=1}^n \mathbb{E}\left((X_i - \mu)^2 - (\mu - \overline{X})^2 \right) \\ &= \frac{1}{n-1} \left(\sum_{i=1}^n \mathbb{E}\left((X_i - \mu)^2 \right) - \sum_{i=1}^n \mathbb{E}\left((\overline{X} - \mu)^2 \right) \right) \\ &= \frac{1}{n-1} \left(\sum_{i=1}^n \sigma^2 - \sum_{i=1}^n \frac{1}{n} \sigma^2 \right) \\ &= \frac{1}{n-1} (n\sigma^2 - \sigma^2) = \frac{n-1}{n-1} \sigma^2 = \sigma^2 \end{split}$$

What about s²

So:

$$E(s^2) = \sigma^2$$

This means: s^2 is an unbiased estimator of σ^2 .

The n-1 in the denominator in $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ is called: **the degrees of freedom**.

(more about this tricky concept later).

Take home message on Sampling Distributions

- Certain sample statistics estimate population parameters.
 - for example: \overline{X} estimates μ .
- Those statistics are random variables, because every time you sample you get a different outcome!
- Probability theory tells us the distribution of these random variables.
 - for example: $\overline{X} \sim \mathcal{N}\left(\mu_x, \frac{\sigma^2}{n}\right)$
- This allows us to infer something sophisticated about the population!

Inference example: Shaq

Do we *know* that Shaq's probability of getting a free throw is 37.4%?

No! We estimate it based on him making 46 shots out of 123 tries.

$$\hat{p} = 46/123 = 0.374$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_i$$

But is it possible that he gets 46/123 shots with a true p = 0.5 (for example)?

Possible probability mass functions of 123 baskets

Is it possible that he gets 46/123 shots with a true p = 0.5?

Yes! (Almost) anything is possible.

Question

• How good is $\hat{p} = \overline{X}$ as an **estimator** of the true p?

A more "formal" statement

• What is the sampling distribution of $\hat{p} = \overline{X}$

Expectation of \hat{p}

Assumption: $X \sim \text{Bernoulli}(p)$ and X are i.i.d. (independent and identically distributed).

$$E(\hat{\rho}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}E\left(\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}E(X_{i})$$

$$= \frac{1}{n}\sum_{i=1}^{n}\rho$$

$$= \frac{1}{n}n\rho = \rho$$

Variance of \hat{p}

Assumption: $X \sim \mathsf{Bernoulli}(p)$ and X are i.i.d. (independent and identically distributed).

$$\begin{aligned}
\mathsf{Var}(\widehat{\rho}) &= \mathsf{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) \\
&= \frac{1}{n^{2}}\mathsf{Var}\left(\sum_{i=1}^{n}X_{i}\right) \\
&= \frac{n}{n^{2}}\mathsf{Var}(X_{i}) \\
&= \frac{p(1-p)}{n}
\end{aligned}$$

Let's consider some examples:

Shaq shoots two free throws, and makes 1 of 2.

$$\hat{p} = (0+1)/2$$

 $Var(\hat{p}) = (1/2)(1/2)(1/2) = 0.125$
 $s.d.(\hat{p}) = \sqrt{0.125} = 0.3535$

So the estimate of $\widehat{p}=0.5\pm0.707$ is not very precise.

Important note

20

- People often report estimates as $\hat{\mu} \pm 2\hat{\sigma}$
- The range: $(\widehat{\mu} 1.96 \, \widehat{\sigma}, \widehat{\mu} + 1.96 \, \widehat{\sigma})$ is referred to as: the **95% Confidence Interval**

Let's consider some examples:

$$\widehat{p} = 0.5 \pm 0.707$$
, C.I. = (-0.21,

Made 4 of 10 free throws.

Inference question

Given that Shaq shot 46/123 free throws, could he have been a 50% free throw shooter?

- Parameter estimation: $\hat{p} = 0.374 \pm 0.087$, C.I. = (0.29, 0.46).
- 50% is outside of the **Confidence Interval** of our estimate ... so very, very unlikely (< 5% chance).