

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 June 2002 (27.06.2002)

PCT

(10) International Publication Number
WO 02/49648 A1

(51) International Patent Classification⁷: A61K 31/4523.
31/4535, 31/4545, 31/497, 31/501, 31/506, C07D 401/12,
403/12, 409/12, 417/12

(21) International Application Number: PCT/US01/49302

(22) International Filing Date:

17 December 2001 (17.12.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/257,308 21 December 2000 (21.12.2000) US

(71) Applicant: SCHERING CORPORATION (US/US);
Patent Department - K-6-1 1990, 2000 Galloping Hill
Road, Kenilworth, NJ 07033-0530 (US).

(72) Inventors: STAMFORD, Andrew, W.; 27 Overlook
Road, Chatham Township, NJ 07928 (US). DONG,
Youhao; 2512 Sunnyview Oval, Keasbey, NJ 08832 (US).
MC COMBIE, Stuart, W.; 28 Hanford Place, Caldwell,
NJ 07006 (US).

(74) Agent: KORSEN, Elliott; Schering-Plough Corporation,
Patent Department - K-6-1 1990, 2000 Galloping Hill
Road, Kenilworth, NJ 07033-0530 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ,
DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU,
ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV,
MA, MD, MG, MK, MN, MX, MZ, NO, NZ, PH, PL, PT,
RO, RU, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA,
UZ, VN, YU, ZA, ZM.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BR, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Declaration under Rule 4.17:

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

Published:

with international search report
before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

ELECTRONIC
AVAILABLE COPY

A1

WO 02/49648

(54) Title: HETEROARYL UREA NEUROPEPTIDE Y Y5 RECEPTOR ANTAGONISTS

(I)

(57) Abstract: The present invention relates to compounds represented by the structural Formula I or a pharmaceutically acceptable salt thereof, which are useful for the treatment of metabolic and eating disorders such as obesity and hyperphagia, and for the treatment of diabetes and associated disorders.

HETEROARYL UREA NEUROPEPTIDE Y Y5 RECEPTOR ANTAGONISTS

5 This invention relates to heteroaryl urea neuropeptide Y Y5 receptor antagonists useful in the treatment of eating disorders, pharmaceutical compositions containing the compounds, and methods of treatment using the compounds.

10 Neuropeptide Y (NPY) is a 36 amino acid neuropeptide that is widely distributed in the central and peripheral nervous systems. NPY is a member of the pancreatic polypeptide family that also includes peptide YY and pancreatic polypeptide (Wahlestedt, C., and Reis, D., Ann. Rev. Toxicol., 32, 309, 1993). NPY elicits its physiological effects by activation of at least six receptor subtypes designated Y1, Y2, Y3, Y4, Y5 and Y6 (Gehlert, D., Proc. Soc. Exp. Biol. Med., 218, 7, 1998; Michel, M. et al., Pharmacol. Rev., 50, 143, 1998). Central administration of 15 NPY to animals causes dramatically increased food intake and decreased energy expenditure (Stanley, B. and Leibowitz, S., Proc. Natl. Acad. Sci. USA 82: 3940, 1985; Billington et al., Am J. Physiol., 260, R321, 1991). These effects are believed to be mediated at least in part by activation of the NPY Y5 receptor subtype. The isolation and characterization of the NPY Y5 receptor subtype has been reported (Gerald, C. et 20 al., Nature, 1996, 382, 168; Gerald, C. et al. WO 96/16542). Additionally, it has been reported that activation of the NPY Y5 receptor by administration of the Y5 – selective agonist [D-Trp³²]NPY to rats stimulates feeding and decreases energy expenditure (Gerald, C. et al., Nature, 1996, 382, 168; Hwa, J. et al., Am. J. Physiol., 277 (46), R1428, 1999). Hence, compounds that block binding of NPY to the NPY Y5 receptor 25 subtype should have utility in the treatment of eating disorders such as obesity, bulimia nervosa, anorexia nervosa, and in the treatment of disorders associated with obesity such as type II diabetes, insulin resistance, hyperlipidemia, and hypertension.

Published PCT patent application WO 00/27845 describes a class of 30 compounds, characterized therein as spiro-indolines, said to be selective neuropeptide Y Y5 receptor antagonists and useful for the treatment of obesity and the complications associated therewith. Known urea derivatives indicated as possessing therapeutic activity are described in U.S. Patent Nos. 4,623,662 (antiatherosclerotic agents) and 4,405,644 (treatment of lipometabolism).

- 2 -

Provisional application, U.S. Serial No. 60/232,255 describes a class of substituted urea neuropeptide Y Y5 receptor antagonists.

SUMMARY OF THE INVENTION

5 This invention relates to compounds of Formula I:

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or
10 racemic mixture thereof,

wherein

=A-B= is =C(R⁴)-C(R⁵)= and -X=Y- is -C(R⁶)=N-, -N=C(R⁷)-, -N=N- or

-S-, or

=A-B= is =N-C(R⁵)= and -X=Y- is -N=C(R⁷)-, -C(R⁶)=N-, -S- or -O-, or

15 =A-B= is =C(R⁴)-N= and -X=Y- is -C(R⁶)=N-, -S- or -O-, or

=A-B= is =N-N= and -X=Y- is -S- or -O-, or

=A-B= is =C(R⁴)- and -X=Y- is -S-N=, -N(R¹⁰)-N=, or

=A-B= is -C(R⁴)= and -X=Y- is =N-S-, or =N-N(R¹⁰);

20 R¹ is H or -(C₁-C₆)alkyl;

R² is H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl or -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl;

R³ is

- 3 -

Q is $-\text{OR}^{13}$, or $-\text{NR}^{13}\text{R}^{14}$;

5 j is 1 or 2;

k is 0, 1 or 2;

l is 0, 1 or 2;

m is 0, 1 or 2;

R^4 , R^5 , R^6 and R^7 may be the same or different, and are independently selected

10 from the group consisting of H, -OH, halogen, polyhaloalkyl, $-(\text{C}_1-\text{C}_6)$ alkyl, $-(\text{C}_3-\text{C}_7)$ cycloalkyl, $-(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl, -CN, $\text{NR}^{10}\text{R}^{11}$, $\text{NR}^{13}\text{R}^{14}$, $-\text{O}(\text{C}_1-\text{C}_6)$ alkyl, $-\text{O}(\text{C}_3-\text{C}_7)$ cycloalkyl, $-\text{O}(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl, $-\text{S}(\text{C}_1-\text{C}_6)$ alkyl, $-\text{S}(\text{C}_3-\text{C}_7)$ cycloalkyl or $-\text{S}(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl;

15

R^8 is 1 to 3 substituents, which may be the same or different, and are independently selected from the group consisting of H, halogen, -OH, polyhaloalkyl, polyhaloalkoxy, -CN, $-\text{NO}_2$, $-(\text{C}_1-\text{C}_6)$ alkyl, $-(\text{C}_3-\text{C}_7)$ cycloalkyl, $-(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl, $\text{NR}^{10}\text{R}^{11}$, $\text{NR}^{13}\text{R}^{14}$, $-\text{O}(\text{C}_1-\text{C}_6)$ alkyl, $-\text{O}(\text{C}_3-\text{C}_7)$ cycloalkyl, $-\text{O}(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl or $-\text{CONR}^{13}\text{R}^{14}$;

20

R^9 is $-\text{SO}_2(\text{C}_1-\text{C}_6)$ alkyl, $-\text{SO}_2(\text{C}_3-\text{C}_7)$ cycloalkyl, $-\text{SO}_2(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl, $-\text{SO}_2(\text{C}_1-\text{C}_6)$ polyhaloalkyl, $-\text{SO}_2[\text{hydroxy}(\text{C}_2-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2[\text{amino}(\text{C}_2-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2[\text{alkoxy}(\text{C}_2-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2[\text{alkylamino}(\text{C}_2-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2[\text{dialkylamino}(\text{C}_2-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2(\text{aryl})$, $-\text{SO}_2(\text{heteroaryl})$, $-\text{SO}_2[\text{aryl}(\text{C}_1-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2\text{NR}^{13}\text{R}^{14}$, $-\text{CO}(\text{C}_1-\text{C}_6)$ alkyl,

25

- 4 -

5 -CO(C₃-C₇)cycloalkyl, -CO(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, CO(C₁-C₆)polyhaloalkyl, -C(O)aryl, -C(O)heteroaryl, -CONR¹³R¹⁴, -C(S)NR¹³R¹⁴, aryl, heteroaryl, -(CH₂)CONR¹³R¹⁴, -C(=NCN)alkylthio, -C(=NCN)NR¹³R¹⁴, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -(C₁-C₆)alkylaryl, -(C₁-C₆)alkylheteroaryl or -COOR¹²;

R¹⁰ is H or alkyl;

10 R¹¹ is H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, aryl, heteroaryl, -SO₂(C₁-C₆)alkyl, -SO₂(C₃-C₇)cycloalkyl, -SO₂(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -SO₂(C₁-C₆)polyhaloalkyl, -SO₂(aryl), -SO₂(heteroaryl), -CO(C₁-C₆)alkyl, -CO(C₃-C₇)cycloalkyl, -CO(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -C(O)aryl, -C(O)heteroaryl, -CONR¹³R¹⁴ or -COOR¹²;

15 R¹² is (C₁-C₆)alkyl, (C₃-C₇)cycloalkyl, (C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -(C₁-C₆)alkylaryl, -(C₁-C₆)alkylheteroaryl, aryl or heteroaryl;

R¹³ and R¹⁴ may be the same or different and are independently selected from H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -(C₁-C₆)alkylaryl, aryl or heteroaryl; and,

20 R¹⁵ is one or two substituents which may be the same or different and are independently selected from H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, aryl, heteroaryl, -CN, -CONR¹³R¹⁴, -COOR¹³, -OH, -O(C₁-C₆)alkyl, -O(C₃-C₇)cycloalkyl, -O(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -NR¹⁰R¹¹, -NR¹³R¹⁴, or a -(C₁-C₆)alkyl group substituted by an aryl, heteroaryl, hydroxy, alkoxy, -NR¹⁰R¹¹, -NR¹³R¹⁴, -CONR¹³R¹⁴, or -COOR¹³ group, provided that a chemically stable compound results from substitution by R¹⁵.

30 The invention also relates to pharmaceutical compositions containing the compounds of the invention, as well as methods of using the compounds alone or in combination with other therapeutic agents.

- 5 -

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to compounds of Formula I:

5

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein

10 =A-B= is =C(R⁴)-C(R⁵)= and -X=Y- is -C(R⁶)=N-, -N=C(R⁷)-, -N=N- or

-S-, or

=A-B= is =N-C(R⁵)= and -X=Y- is -N=C(R⁷)-, -C(R⁶)=N-, -S- or -O-, or

=A-B = is =C(R⁴)-N= and -X=Y- is -C(R⁶)=N-, -S- or -O-, or

=A-B= is =N-N= and -X=Y- is -S- or -O-, or

15 =A-B= is =C(R⁴)- and -X=Y- is -S-N=, -N(R¹⁰)-N=, or

=A-B= is -C(R⁴)= and -X=Y- is =N-S-, or =N-N(R¹⁰)-;

R¹ is H or -(C₁-C₆)alkyl;

R² is H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl or -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl;

20

R³ is

- 6 -

Q is -OR^{13} , or $\text{-NR}^{13}\text{R}^{14}$;

j is 1 or 2;

5 k is 0, 1 or 2;

l is 0, 1 or 2;

m is 0, 1 or 2;

R^4 , R^5 , R^6 and R^7 may be the same or different, and are independently selected from the group consisting of H, -OH, halogen, polyhaloalkyl, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -CN, NR¹⁰R¹¹,
10 NR¹³R¹⁴, -O(C₁-C₆)alkyl, -O(C₃-C₇)cycloalkyl, -O(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -S(C₁-C₆)alkyl, -S(C₃-C₇)cycloalkyl or -S(C₁-C₆)alkyl(C₃-C₇)cycloalkyl;

15 R⁸ is 1 to 3 substituents, which may be the same or different, and are independently selected from the group consisting of H, halogen, -OH, polyhaloalkyl, polyhaloalkoxy, -CN, -NO₂, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, NR¹⁰R¹¹, NR¹³R¹⁴, -O(C₁-C₆)alkyl, -O(C₃-C₇)cycloalkyl, -O(C₁-C₆)alkyl(C₃-C₇)cycloalkyl or -CONR¹³R¹⁴;
20

25 R⁹ is -SO₂(C₁-C₆)alkyl, -SO₂(C₃-C₇)cycloalkyl, -SO₂(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -SO₂(C₁-C₆)polyhaloalkyl, -SO₂[hydroxy(C₂-C₆)alkyl], -SO₂[amino(C₂-C₆)alkyl], -SO₂[alkoxy(C₂-C₆)alkyl], -SO₂[alkylamino(C₂-C₆)alkyl], -SO₂[dialkylamino(C₂-C₆)alkyl], -SO₂(aryl), -SO₂(heteroaryl), -SO₂[aryl(C₁-C₆)alkyl], -SO₂NR¹³R¹⁴, -CO(C₁-C₆)alkyl, -CO(C₃-C₇)cycloalkyl, -CO(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, CO(C₁-C₆)polyhaloalkyl, -C(O)aryl, -C(O)heteroaryl, -CONR¹³R¹⁴, -C(S)NR¹³R¹⁴, aryl, heteroaryl, -(CH₂)CONR¹³R¹⁴, -C(=NCN)alkylthio, -

- 7 -

C(=NCN)NR¹³R¹⁴, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -(C₁-C₆)alkylaryl, -(C₁-C₆)alkylheteroaryl or -COOR¹²;

R¹⁰ is H or alkyl;

R¹¹ is H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, aryl, heteroaryl, -SO₂(C₁-C₆)alkyl, -SO₂(C₃-C₇)cycloalkyl, -SO₂(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -SO₂(C₁-C₆)polyhaloalkyl, -SO₂(aryl), -SO₂(heteroaryl), -CO(C₁-C₆)alkyl, -CO(C₃-C₇)cycloalkyl, -CO(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -C(O)aryl, -C(O)heteroaryl, -CONR¹³R¹⁴ or -COOR¹²;

R¹² is -(C₁-C₆)alkyl, (C₃-C₇)cycloalkyl, (C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -(C₁-C₆)alkylaryl, -(C₁-C₆)alkylheteroaryl, aryl or heteroaryl;

R¹³ and R¹⁴ may be the same or different and are independently selected from H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -(C₁-C₆)alkylaryl, aryl or heteroaryl; and,

R¹⁵ is one or two substituents which may be the same or different and are independently selected from H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, aryl, heteroaryl, -CN, -CONR¹³R¹⁴, -COOR¹³, -OH, -O(C₁-C₆)alkyl, -O(C₃-C₇)cycloalkyl, -O(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -NR¹⁰R¹¹, -NR¹³R¹⁴, or a -(C₁-C₆)alkyl group substituted by an aryl, heteroaryl, hydroxy, alkoxy, -NR¹⁰R¹¹, -NR¹³R¹⁴, -CONR¹³R¹⁴, or -COOR¹³ group, provided that a chemically stable compound results from substitution by R¹⁵.

Except where stated otherwise, the following definitions apply throughout the present specification and claims. Additionally, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. These definitions apply regardless of whether a term is used by itself or in combination with other terms. Hence the definition of "alkyl" applies to "alkyl" as well as to the "alkyl" portions of "alkoxy", etc.

- 8 -

Alkyl represents a straight or branched saturated hydrocarbon chain having the designated number of carbon atoms. Where the number of carbon atoms is not specified, 1 to 6 carbons are intended.

Halo represents fluoro, chloro, bromo or iodo.

5 Aryl refers to a mono- or bicyclic ring system having one or two aromatic rings including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, and the like. The aryl group can be unsubstituted or substituted with one, two, or three substituents independently selected from lower alkyl, halo, cyano, nitro, haloalkyl, hydroxy, alkoxy, carboxy, carboxamide, mercapto, sulfhydryl, amino, alkylamino and dialkylamino.

10 Heteroaryl refers to 5- to 10-membered single or benzofused aromatic rings consisting of 1 to 3 heteroatoms independently selected from the group consisting of -O-, -S-, and -N=, provided that the rings do not possess adjacent oxygen and sulfur atoms. The heteroaryl group can be unsubstituted or substituted with one, two, or three substituents independently selected from lower alkyl, halo, cyano, nitro, 15 haloalkyl, hydroxy, alkoxy, carboxy, carboxamide, mercapto, sulfhydryl, amino, alkylamino, dialkylamino.

When a variable appears more than once in the structural formula, the identity of each variable appearing more than once may be independently selected from the definition for that variable.

20 N-oxides can form on a tertiary nitrogen present in an R substituent, or on =N- in a heteroaryl ring substituent and are included in the compounds of Formula I.

The expression "prodrug" refers to compounds that are drug precursors which following administration, release the drug *in vivo* via some chemical or physiological process (e.g., a prodrug on being brought to the physiological pH or through enzyme 25 action is converted to the desired drug form).

The term "chemically stable compound" is defined as a compound that can be isolated, characterized, and tested for biological activity.

For compounds of the invention having at least one asymmetrical carbon atom, all isomers, including diastereomers, enantiomers and rotational isomers are 30 contemplated as being part of this invention. The invention includes d and l isomers in both pure form and in admixture, including racemic mixtures. Isomers can be prepared using conventional techniques, either by reacting optically enriched or optically pure starting materials or by separating isomers of a compound of Formula I.

- 9 -

Compounds of Formula I can exist in unsolvated and solvated forms, including hydrated forms. In general, the solvated forms, with pharmaceutically acceptable solvents such as water, ethanol and the like, are equivalent to the unsolvated forms for purposes of this invention.

5 A compound of Formula I may form pharmaceutically acceptable salts with organic and inorganic acids. Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids well known to those skilled in the art. The salts are prepared by contacting the free
10 base forms with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution, such as dilute aqueous sodium hydroxide, potassium carbonate, ammonia or sodium bicarbonate. The free base forms differ from their respective salt forms somewhat in certain physical properties,
15 such as solubility in polar solvents, but the salts are otherwise equivalent to their respective free base forms for purposes of the invention.

In a preferred group of compounds of Formula I, the heterocyclic group attached to Z is

- 10 -

- 5 In particular, the preferred group includes the above compounds wherein R^1 is hydrogen, R^2 is hydrogen or $-(C_1-C_6)$ alkyl, R^4 , R^5 , R^6 and R^7 are independently hydrogen or halogen, R^8 is 1-3 substituents independently selected from the group consisting of H, halogen, $-O(C_1-C_6)$ alkyl, $-OH$, polyhaloalkyl and polyhaloalkoxy, R^9 is $-SO_2(C_1-C_6)$ alkyl, $-SO_2(C_3-C_7)$ cycloalkyl, $-SO_2(C_1-C_6)$ alkyl(C_3-C_7)cycloalkyl, $-SO_2$ aryl, $-SO_2$ heteroaryl, $-SO_2NR^{13}R^{14}$, $-CO(C_1-C_6)$ alkyl, $-CO(C_3-C_7)$ cycloalkyl, $-CO(C_1-C_6)$ alkyl(C_3-C_7)cycloalkyl, $-C(O)aryl$, $-C(O)heteroaryl$, aryl or heteroaryl, R^{10} is H or alkyl, R^{11} is $-SO_2(C_1-C_6)$ alkyl, Q is $-OR^{13}$ or $-NR^{13}R^{14}$, R^{13} and R^{14} are independently selected from H or $-(C_1-C_6)$ alkyl, the sum of j and k is 2 or 3 and the sum of l and m is 2 or 3.
- 10

15

Another aspect of this invention is a method of treating a patient having a disease or condition mediated by NPY by administering a therapeutically effective

- 11 -

amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug to the mammal. It is preferred that the receptor is the NPY-5 receptor.

Another aspect of this invention is directed to a method of treating obesity
5 comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound of Formula I or a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug.

Another aspect of this invention is directed to a method for treating eating and metabolic disorders such as bulimia and anorexia comprising administering to a
10 patient a therapeutically effective amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug.

Another aspect of this invention is directed to a method for treating hyperlipidemia comprising administering to a patient a therapeutically effective amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt
15 of said compound or of said prodrug.

Another aspect of this invention is directed to a method for treating cellulite and fat accumulation comprising administering to a patient a therapeutically effective amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug.

20 Another aspect of this invention is directed to a method for treating type II diabetes comprising administering to a patient a therapeutically effective amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug.

In addition to the "direct" effect of the compounds of this invention on the NPY5
25 subtype, there are diseases and conditions that will benefit from the weight loss such as insulin resistance, impaired glucose tolerance, Type II Diabetes, hypertension, hyperlipidemia, cardiovascular disease, gall stones, certain cancers, and sleep apnea.

The compounds of the invention may also have utility in the treatment of central nervous system disorders such as seizures, depression, anxiety, alcoholism, pain;
30 metabolic disorders such as hormone abnormalities; bone diseases such as osteoporosis, osteopenia, and Paget's disease; cardiovascular and renal disorders such hypertension, cardiac hypertrophy, vasospasm and nephropathy; sexual and

- 12 -

reproductive disorders; gastrointestinal disorders such as Crohn's disease; and respiratory diseases such as asthma.

This invention is also directed to pharmaceutical compositions which comprise
5 an amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier therefor.

This invention is also directed to pharmaceutical compositions for the treatment of obesity which comprise an obesity treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier therefor.
10

Compounds of Formula I may be produced by processes known to those skilled in the art and as shown in the following reaction schemes and in the
15 preparations and examples below.

- 13 -

Scheme 1

- 5 In Scheme 1, a nitro heteroaryl halide is coupled to an aryl boronic acid to give a nitro-substituted biaryl derivative. Reduction of the nitro group gives a biaryl amine derivative. Alternatively, an amino heteroaryl halide derivative is coupled to an aryl boronic acid derivative to directly give an amino biaryl derivative. Treatment of the biaryl amine with a reagent such as phenyl chloroformate, 4-nitrophenoxy
chloroformate, triphosgene, or N,N'-disuccinimidyl carbonate and an organic base,
followed by an amino substituted cyclic amine derivative with the ring nitrogen
protected, gives a urea derivative (path A). Cleavage of the protecting group provides
an amine that can be derivatized by treatment with, for example, acyl chlorides,
- .0

- 14 -

sulfonyl chlorides, and isocyanates. Alternatively, in the urea-forming step an amino substituted cyclic amine derivative wherein the ring nitrogen is derivatized with an R⁹ substituent can be used (path B). Path B is the preferred method when R⁹ is aryl or

heteroaryl. Compounds of Formula I where is

5 and

 can be prepared by the methods outlined in Scheme 1.

Scheme 2

10

In Scheme 2, a biaryl amine derivative is treated with triphosgene and a base followed by treatment with 4-(methylamino)cyclohexanone ethylene ketal to give a urea derivative. Deprotection of the ketal, for example, by treatment with a strong acid, gives a ketone derivative. The ketone can then be derivatized by treatment with 15 QNH₂.

- 15 -

Scheme 3

In Scheme 3, an acid chloride is condensed with thiosemicarbazide to give an
5 N-acyl thiosemicarbazide derivative. Treatment of the N-acyl thiosemicarbazide with
a strong acid results in the formation of an aminothiadiazole derivative. The
aminothiadiazole is converted to a substituted urea derivative as described earlier.

Scheme 4

In Scheme 4 an alpha bromo acetal is condensed with thiourea to form a 5-
substituted 2-aminothiazole derivative. The 2-aminothiazole derivative is converted to
a substituted urea derivative as described in earlier schemes.

Scheme 5

- 16 -

In Scheme 5, a 5-halo-2-nitrothiazole derivative is coupled to an arylzinc halide under palladium catalysis to give a 2-aryl-5-nitrothiazole derivative. The 5-nitrothiazole derivative is then converted to a substituted urea derivative as described in earlier Schemes.

The compounds of Formula I exhibit selective neuropeptide Y Y5 receptor antagonizing activity, which has been correlated with pharmaceutical activity for treating eating disorders, such as obesity and hyperphagia, and diabetes.

The compounds of Formula I display pharmacological activity in test procedures designed to demonstrate neuropeptide Y Y5 receptor antagonist activity. The compounds are non-toxic at pharmaceutically therapeutic doses. Following are descriptions of the test procedures.

cAMP Assay

HEK-293 cells expressing the Y5 receptor subtype were maintained in Dulbecco's modified Eagles' media (Gico-BRL) supplemented with 10% FCS (ICN), 1% penicillin-streptomycin and 200 µg/ml Geneticin®(GibcoBRL #11811-031) under a humidified 5% CO₂ atmosphere. Two days prior to assay, cells were released from T-175 tissue culture flasks using cell dissociation solution (1X; non-enzymatic [Sigma #C-5914]) and seeded into 96-well, flat-bottom tissue culture plates at a density of 15,000 to 20,000 cells per well. After approximately 48 hours, the cell monolayers were rinsed with Hank's balanced salt solution (HBSS) then preincubated with approximately 150 µl/well of assay buffer (HBSS supplemented with 4 mM MgCl₂, 10 mM HEPES, 0.2% BSA [HH]) containing 1 mM 3-isobutyl-1-methylxanthine ([IBMX]

- 17 -

Sigma #1-587) with or without the antagonist compound of interest at 37°C. After 20 minutes the 1 mM IBMX-HH assay buffer (\pm antagonist compound) was removed and replaced with assay buffer containing 1.5 μ M (CHO cells) or 5 μ M (HEK-293 cells) forskolin (Sigma #F-6886) and various concentrations of NPY in the presence or
5 absence of one concentration of the antagonist compound of interest. At the end of 10 minutes, the media were removed and the cell monolayers treated with 75 μ l ethanol. The tissue culture plates were agitated on a platform shaker for 15 minutes, after which the plates were transferred to a warm bath in order to evaporate the ethanol. Upon bringing all wells to dryness, the cell residues were resolubilized with
10 250 μ l FlashPlate® assay buffer. The amount of cAMP in each well was quantified using the [125 I]-cAMP FlashPlate® kit (NEN #SMP-001) and according to the protocol provided by the manufacturer. Data were expressed as either pmol cAMP/ml or as percent of control. All data points were determined in triplicate and EC₅₀'s (nM) were calculated using a nonlinear (sigmoidal) regression equation (GraphPad Prism™).
15 The K_B of the antagonist compound was estimated using the following formula:

$$K_B = [B] / (1 - \{[A'] / [A]\})$$

where [A] is the EC₅₀ of the agonist (NPY) in the absence of antagonist,

[A'] is the EC₅₀ of the agonist (NPY) in the presence of antagonist,

and [B] is the concentration of the antagonist.

20

NPY Receptor Binding Assay

Human NPY Y5 receptors were expressed in CHO cells. Binding assays were performed in 50 mM HEPES, pH 7.2, 2.5 mM CaCl₂, 1 mM MgCl₂ and 0.1% BSA containing 5-10 μ g of membrane protein and 0.1 nM 125 I-peptide YY in a total volume
25 of 200 μ l. Non-specific binding was determined in the presence of 1 μ M NPY. The reaction mixtures were incubated for 90 minutes at room temperature then filtered through Millipore MAFC glass fiber filter plates which had been pre-soaked in 0.5% polyethyleneimine. The filters were washed with phosphate-buffered saline, and radioactivity was measured in a Packard TopCount scintillation counter.

30

For the compounds of this invention, a range of neuropeptide Y5 receptor binding activity of from about 0.3nM to about 1000nM was observed. Compounds of this invention preferably have a binding activity in the range of from about 0.3nM to

- 18 -

about 500nM, more preferably from about 0.3nM to about 100nM, and most preferably from about 0.3nM to about 10nM.

Yet another aspect of this invention is combinations of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and other compounds as described below.

Accordingly, another aspect of this invention is a method for treating obesity comprising administering to a patient

a. an amount of a first compound, said first compound being a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug; and

b. an amount of a second compound, said second compound being a β_3 agonist, a thyromimetic agent, an eating behavior modifying agent, or an NPY antagonist wherein the amounts of the first and second compounds result in a therapeutic effect.

This invention is also directed to a pharmaceutical combination composition comprising: a therapeutically effective amount of a composition comprising a first compound, said first compound being a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug a second compound, said second compound being a β_3 agonist, a thyromimetic agent, an eating behavior modifying agent, or an NPY antagonist; and/or optionally a pharmaceutical carrier, vehicle or diluent.

Another aspect of this invention is a kit comprising:

a. an amount of a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier, vehicle or diluent in a first unit dosage form;

b. an amount of a β_3 agonist, a thyromimetic agent, an eating behavior modifying agent, or an NPY antagonist and a pharmaceutically acceptable carrier, vehicle or diluent in a second unit dosage form; and

c. means for containing said first and second dosage forms wherein the amounts of the first and second compounds result in a therapeutic effect.

- 19 -

Preferred antiobesity agents (taken singly or in any combination thereof) in the above combination methods, combination compositions and combination kits are described below.

The following are anorectic and/or antiobesity agents:

- 5 phenylpropanolamine, ephedrine, pseudoephedrine, phentermine, a cholecystokinin-A (hereinafter referred to as CCK-A) agonist, a monoamine reuptake inhibitor (such as sibutramine), a sympathomimetic agent, a serotonergic agent (such as dexfenfluramine or fenfluramine), a dopamine agonist (such as bromocriptine), a melanocyte-stimulating hormone receptor agonist or mimetic, a melanocyte-stimulating hormone analog, a cannabinoid receptor antagonist, a melanin
- 10 concentrating hormone antagonist, the OB protein (hereinafter referred to as "leptin"), a leptin analog, a leptin receptor agonist, a galanin antagonist or a GI lipase inhibitor or dereascer (such as orlistat). Other anorectic agents include bombesin agonists, dehydroepiandrosterone or analogs thereof, glucocorticoid receptor agonists and
- 15 antagonists, orexin receptor antagonists, urocortin binding protein antagonists, agonists of the glycagon-like peptide-1 receptor and ciliary neurotrophic factors such as Axokine.

Another aspect of this invention is a method treating diabetes comprising administering to a patient

- 20 a. an amount of a first compound, said first compound being a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug; and
- b. an amount of a second compound, said second compound being an aldose reductase inhibitor, a glycogen phosphorylase inhibitor, a sorbitol
- 25 dehydrogenase inhibitor, insulin, metformin, acarbose, a thiazolidinedione such as troglitazone or rezulin, a glitazone such as rosiglitazone or pioglitazone, a sulfonylurea, glicazide, glyburide, or chlorpropamide wherein the amounts of the first and second compounds result in a therapeutic effect.

- This invention is also directed to a pharmaceutical combination composition
- 30 comprising: a therapeutically effective amount of a composition comprising
 - a first compound, said first compound being a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug;
 - a second compound, said second compound being an aldose reductase

- 20 -

inhibitor, a glycogen phosphorylase inhibitor, a sorbitol dehydrogenase inhibitor, insulin, metformin, acarbose, a thiazolidinedione such as troglitazone, rezulin, a glitazone such as rosiglitazone or pioglitazone, a sulfonylurea, glipizide, glyburide, or chlorpropamide; and optionally

- 5 a pharmaceutical carrier, vehicle or diluent.

Another aspect of this invention is a kit comprising:

a. an amount of a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier, vehicle or diluent in a first unit dosage form;

10 b. an amount of an aldose reductase inhibitor, a glycogen phosphorylase inhibitor, a sorbitol dehydrogenase inhibitor, insulin, metformin, acarbose, a thiazolidinedione such as troglitazone, rezulin, a glitazone such as rosiglitazone or pioglitazone, a sulfonylurea, glipizide, glyburide, or chlorpropamide and a pharmaceutically acceptable carrier, vehicle or diluent in a second unit dosage form;

15 and

c. means for containing said first and second dosage forms wherein the amounts of the first and second compounds result in a therapeutic effect.

The pharmaceutical compositions containing the active ingredient may be in a
20 form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group
25 consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium
30 carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by

- 21 -

known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. They may also be coated by the technique described in the U.S. Pat. Nos. 4,256,108; 5 4,166,452; and 4,265,874 to form osmotic therapeutic tablets for controlled release.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredients is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or a soft gelatin capsules where in the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin 10 or olive oil.

Aqueous suspensions contain the active material in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethyl-cellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth 15 and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example, heptadecaethylene-oxycetanol, or condensation products of ethylene oxide with partial esters derived 20 from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example, polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example, ethyl or n-propyl, p-hydroxybenzoate, one or more coloring agents, one or more flavoring 25 agents, and one or more sweetening agents, such as sucrose, saccharin or aspartame.

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example, arachis oil, olive oil, sesame oil or coconut oil, or in mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for 30 example, beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

- 22 -

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, e.g., sweetening, flavoring and coloring agents, may also be present.

The pharmaceutical compositions of the invention may also be in the form of an oil-in-water emulsions. The oily phase may be a vegetable oil, e.g., olive oil or arachis oil, or a mineral oil, e.g., liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring phosphatides, e.g., soy beans, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example, sorbitan monoleate, and condensation products of the said partial esters with ethylene oxide, e.g., polyoxyethylene sorbitan monoleate. The emulsions may also contain sweetening and flavouring agents.

Syrups and elixirs may be formulated with sweetening agents, for example, glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.

The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, e.g., as a solution in 1,3-butane diol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

Compounds of the invention may also be administered in the form of suppositories for rectal administration of the drug. The compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols.

- 23 -

For topical use, creams, ointments, jellies, solutions or suspensions, etc., containing the compound of the invention are employed. (For purposes of this application, topical application shall include mouthwashes and gargles.)

The compounds for the present invention can be administered in the intranasal
5 form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in the art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen. Compounds of the present invention may also be delivered as a
10 suppository employing bases such as cocoa butter, glycerinated gelatin, hydrogenated vegetable oils, mixtures of polyethylene glycols of various molecular weights and fatty acid esters of polyethylene glycol.

The dosage regimen utilizing the compounds of the present invention is selected in accordance with a variety of factors including type, species, weight, sex
15 and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound thereof employed. A physician or veterinarian of ordinary skill can readily determine and prescribe the effective amount of the drug required to prevent, counter, arrest or reverse the progress of the condition. Optimal precision in achieving
20 concentration of drug within the range that yields efficacy without toxicity requires a regimen based on the kinetics of the drug's availability to target sites. This involves a consideration of the distribution, equilibrium, and elimination of a drug. Preferably, doses of the compound of structural The invention useful in the method of the present invention range from 0.01 to 1000 mg per adult human per day. Most preferably,
25 dosages range from 0.1 to 500 mg/day. For oral administration, the compositions are preferably provided in the form of tablets containing 0.01 to 1000 milligrams of the active ingredient, particularly 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100 and 500 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated. An effective amount of the drug is ordinarily
30 supplied at a dosage level of from about 0.0002 mg/kg to about 50 mg/kg of body weight per day. The range is more particularly from about 0.001 mg/kg to 1 mg/kg of body weight per day.

- 24 -

Advantageously, the active agent of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in dividend doses of two, three or four time daily.

The amount of active ingredient that may be combined with the carrier materials to produce single dosage form will vary depending upon the host treated and the particular mode of administration.

It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the age, body weight, general health, sex, diet, time of administration, route or administration, rate of excretion, drug combination and the severity of the particular disease undergoing therapy.

The invention disclosed herein is exemplified by the following preparations and examples which should not be construed to limit the scope of the disclosure.

Alternative mechanistic pathways and analogous structures may be apparent to those skilled in the art.

In the preparations and examples, the following abbreviations are used: room temperature (R.T.), phenyl (Ph), -t-butyloxycarbonyl (-Boc), methylamine (MeNH₂), sodium triacetoxyborohydride (NaBH(OAc)₃), ethyl acetate (EtOAc), methanol (MeOH), triethylamine (Et₃N), ether (Et₂O), tetrahydrofuran (THF), diisopropylethylamine (iPr₂NEt), 1,2 dimethoxyethane (DME), ethanol (EtOH), 1,1'-bis(diphenylphosphino)ferrocene (dppf) and preparative thin layer chromatography (PTLC), b (broad), bs (broad singlet).

Preparation 1

25

To a mixture of N-t-butoxycarbonyl-4-piperidone (10g, 50 mmol) and aqueous methylamine (40% w/w, 10 ml) in 1,2-dichloroethane (125 ml) was added NaBH(OAc)₃ (16.0 g, 75 mmol). The reaction mixture was stirred overnight, then 1M NaOH (250 ml) was added and the whole was extracted with ether (700 ml). The organic layer was washed with sat'd NaCl, dried (MgSO₄), filtered, and concentrated to give the product

- 25 -

(10.5 g, 97%) as an oil. ^1H NMR (CDCl_3 , 400 MHz) δ 4.09 (2H, m), 2.86 (2H, m), 2.55 (1H, m), 2.50 (3H, s), 1.90 (2H, m), 1.51 (9H, s), 1.30 (2H, m).

Preparation 2

5

To a stirred solution of Preparation 1 (21.0 g, 83.7 mmol) and Et_3N (35 ml, 252 mmol) in CH_2Cl_2 (300 ml) was added benzyl chloroformate (18 ml, 126 mmol) dropwise. After 5 hr, sat'd NH_4Cl (200 ml) was added, and the organic layer was washed with H_2O (150 ml) and sat'd NaCl (150 ml), dried (MgSO_4), filtered and concentrated. To the residue (32 g) was added 4N HCl in 1,4-dioxane (300 ml), and the mixture was stirred for 4 hr. The reaction mixture was concentrated, acetone was added, and the reaction mixture was again concentrated. The solid residue was dissolved in MeOH (40 ml) and Et_2O was added. The resultant precipitate was collected, washed with Et_2O , and dried to give the product as a solid (20.2 g, 85%).

10 MS m/e 249 ($\text{M}+\text{H}^+$, free base).

15 MS m/e 249 ($\text{M}+\text{H}^+$, free base).

Preparation 3

Step 1

20

An N_2 -purged mixture of Preparation 2 (1.03 g, 3.68 mmol), 2-bromo-3-trifluoromethylpyridine (1.60 g, 7.08 mmol), $\text{Pd}(\text{OAc})_2$ (48 mg, 0.21 mmol), 1,3-bis-(diphenylphosphino)propane (0.82 g, 0.20 mmol), and sodium-t-butoxide (1.42 g, 14.8 mmol) in toluene (10ml) was heated at 100 °C for 3 hr. The reaction mixture was allowed to cool and filtered through celite. The filter pad was washed with

25

- 26 -

CH_2Cl_2 /water, and the organic layer was washed with sat'd NaCl, dried (MgSO_4), filtered and concentrated. The residue was subjected to flash chromatography (gradient; CH_2Cl_2 to 1:99 MeOH/ CH_2Cl_2) to give the product (1.15 g, 80%). MS m/e 394 ($\text{M}+\text{H}$)⁺.

5 Step 2

A mixture of the product of Step 1 (1.08 g, 2.75 mmol) in EtOH was stirred with 10% Pd/C (0.13 g) under an H_2 atmosphere. After one day, the catalyst was removed by filtration through Celite and the volatiles were evaporated to give the product (0.67 g, 94%). MS m/e 260 ($\text{M}+\text{H}$)⁺.

10

The following compounds were made using essentially the same procedure and the appropriate starting materials:

Preparation 4

15

^1H NMR (CDCl_3 , 400 MHz) δ 8.24 (1H, m), 6.8 (1H, s), 6.7 (1H, d), 4.3 (2H, m), 3.0 (2H, m), 2.7 (1H, m), 2.5 (3H, s), 2.0 (2H, m), 1.6 (1H, b), 1.4 (2H, m).

Preparation 5

20

^1H NMR (CDCl_3 , 400 MHz) δ 8.16 (1H, m), 7.43 (1H, m), 6.64 (1H, d, J = 8.6 Hz), 6.56 (1H, m), 4.24 (2H, m), 2.90 (2H, m), 2.63 (1H, m), 2.47 (3H, s), 2.39 (1H, b), 2.00 (2H, m), 1.41 (1H, m). MS m/e 192 ($\text{M}+\text{H}$)⁺.

- 27 -

Preparation 6

MS m/e 221 (M+H)⁺.

Preparation 7

5

Step 1

An N₂-purged mixture of Preparation 2 (0.94 g, 11 mmol), 2-chloro-5-fluoropyridine (0.94 g, 7.2 mmol; Synthesis, 1989, 905 - 908), Pd(OAc)₂ (64 mg, 0.29 mmol), (di-t-butylphosphino)biphenyl (0.16 mmol 49 mg), sodium-t-butoxide (22.2 mmol, 2.13 g) and toluene (40 ml) was heated at 100 °C for 3 hr. The reaction mixture was allowed to cool then filtered through celite, and the filter pad was washed with EtOAc. The combined filtrate and washings were washed with sat'd NaHCO₃, water and sat'd NaCl, then dried (MgSO₄), filtered and concentrated. The residue was subjected to flash chromatography (gradient; CH₂Cl₂ to 0.5:99.5 MeOH/CH₂Cl₂) to give the product (0.69 g, 28%). MS m/e 344 (M+H)⁺.

Step 2

A mixture of the product of Step 1 (0.69 g, 2.0 mmol) and 10% Pd/C (80 mg) in EtOH (20 ml) was stirred under H₂ for 3 days. The reaction mixture was filtered through celite and the volatiles evaporated to yield the product (0.49 g, 100%) as a solid. ¹H NMR (CDCl₃, 400 MHz) δ 8.0 (1H, m), 7.2 (1H, m), 6.6 (1H, m), 4.2 (2H, m), 2.9 (2H, m), 2.6 (1H, m), 2.5 (3H, s), 2.0 (2H, m), 1.4 (2H, m).

- 28 -

The following compounds were prepared using the appropriate starting materials and essentially the same procedure.

Preparation 8

5 ¹H NMR (CDCl₃, 400 MHz) δ 8.2 (1H, m), 7.35 (1H, m), 7.15 (1H, m), 4.25 (2H, m), 2.85 (2H, m), 2.65 (3H, s), 2.6 (1H, m), 2.5 (3H, s), 2.0 (2H, m), 1.9 (1H, b), 1.4 (2H, m).

Preparation 9

10 ¹H NMR (CDCl₃, 400 MHz) δ 8.29 (1H, s), 8.07 (1H, b), 7.17 (2H, m), 4.2 (1H, b), 3.74 (2H, m), 2.82 (2H, m), 2.74 (3H, s), 1.70 (4H, m). MS m/e 192 (M+H)⁺.

Preparation 10

15

Step 1

A mixture of (3S)-(-)-3-acetamidopyrrolidine (3.04 g, 23.7 mmol), anhydrous CH₂Cl₂ (50 ml), di-*tert*-butyl dicarbonate (5.17 g, 23.7 mmol) and Et₃N (0.66 ml, 4.74 mmol) was stirred for 40 min., then partitioned between CH₂Cl₂ (200 ml) and H₂O. The organic layer was dried (Na₂SO₄), filtered and concentrated to give the product (5.17 g, 96%). ¹HNMR (CDCl₃) δ 6.10 - 5.90 (d, b, 1H), 4.41 (m, 1H), 3.57 (s, b, 1H), 3.38 (m, b., 2H), 3.18 (m, b., 1H), 2.10 (m, 1H), 1.96 (s, 3H), 1.92 (s, b., 1H), 1.44 (s, 9H).

- 29 -

Step 2

5 To a solution of the product of Step 1 (5.01 g, 21.9 mmol) in anhydrous THF (100 ml) was added NaH (95%, 0.665 g, 26.3 mmol) and CH₃I (4.1 ml, 66 mmol). The reaction mixture was stirred at R.T. for 16 hr. Additional NaH (60% in mineral oil, 0.263 g, 6.58 mmol) and CH₃I (4.1 ml, 65.8 mmol) were added. The reaction mixture was stirred for an additional 8 hr, quenched with CH₃OH (~5 ml) and poured into H₂O (100 ml). The whole was extracted with CH₂Cl₂ (3x200 ml) and the combined organic layers were dried (Na₂SO₄), filtered and evaporated. Subjection of the residue to flash chromatography (1:1 then 2:1 EtOAc/hexane, then 2:98 CH₃OH/CH₂Cl₂) gave the product (5.15 g, 97%). ¹H NMR (CDCl₃) (mixture of rotamers) δ 5.10 (s, b., C-3 H), 4.40 (s, b., C-3 H), 3.60-3.00 (m, b., 4H), 2.89 (s) & 2.83 (s) (CH₃CO, 3H), 2.14 (s) & 2.09 (s) (CH₃N, 3H), 2.10-2.80 (m, b., 2H), 1.42 (d, 9H). MS m/e 243 (M+H)⁺.

10

15

Step 3.

A mixture of the product of Step 2 (2.00 g, 8.26 mmol), CH₃OH (50 ml) and aq. 5N NaOH (6.7 ml) was refluxed for 2.5 days. The reaction mixture was allowed to cool 20 then poured into H₂O (50 ml). The whole was extracted with CH₂Cl₂ (5x50 ml), and the combined organic layers were dried (Na₂SO₄), filtered and evaporated to give the product (1.40 g, 85%). ¹H NMR (CDCl₃) δ 3.60 - 3.00 (m, 6H), 2.43 (s, 3H), 2.04 (m, 1H), 1.71 (m, 1H), 1.45 (d, 9H). MS m/e 201 (M+H)⁺.

25

Preparation 11

Step 1

- 30 -

To a stirred solution of 4-piperidone hydrate hydrochloride (40.00 g, 0.260 mol) in THF (320 ml) was added $\text{CH}_3\text{SO}_2\text{Cl}$ (31.0 ml, 0.402 mol) and 15% aq. NaOH (156 ml) such that the reaction temperature was maintained between 26-32 °C. After the addition was complete, the reaction was stirred at R.T. for 2 hr and transferred to a separatory funnel. The organic layer was collected and the aqueous layer was extracted with THF (2x250 ml). The combined organic layers were dried (Na_2SO_4). After filtration, the concentrated residue was washed with hexane to give the product (46.00 g, 100%) as a solid. ^1H NMR (CDCl_3) δ 3.59 (t, $J = 6.00$ Hz, 4H), 2.89 (s, 3H), 2.59 (t, $J = 5.6$ Hz, 4H).

10

Step 2

A mixture of the product of Step 1 (40.00 g, 0.226 mol), CH_3CN (240 ml), and 40% CH_3NH_2 (20.4 ml, 0.263 mol) was stirred at R.T. for 1 hr. The mixture was slowly added to a -10 °C solution of $\text{NaBH}(\text{OAC})_3$ (60.00 g, 0.283 mol) in CH_3CN (120 ml). After the addition was complete, the reaction was allowed to attain R.T.. After 16 hr the reaction mixture was evaporated to a small volume, and 1N aq. NaOH (282 ml) was added. The resulting solution was extracted with CH_2Cl_2 (3x500 ml), then with toluene. The combined organic layers were dried (Na_2SO_4), filtered and evaporated to give the product (29.00 g, 63%) as a solid. ^1H NMR (CDCl_3) δ 3.66 (m, 2H), 2.84 (m, 2H), 2.76 (s, 3H), 2.52 (m, 1H), 2.42 (s, 3H), 1.96 (m, 2H), 1.45 (m, 2H). MS m/e 193 ($\text{M}+\text{H}$)⁺

Preparation 12

25 Step 1

A mixture of 4-piperidone ethylene ketal (0.64 ml, 5.0 mmol) and sulfamide (0.53 g, 5.5 mmol) in DME (20 ml) was refluxed for 16 hr. The mixture was

- 31 -

concentrated to ca. 3 ml, dissolved in EtOAc (175 ml), washed with sat'd NH₄Cl (2x25 ml), water (2x25 ml), and brine (25 ml). The organic portion was dried, filtered, and evaporated to give the product (0.58 g, 52%). MS (ES) m/e 223 (M+H)⁺.

Step 2

5

A mixture of the product of Step 1 (560 mg, 2.52 mmol) and pyridinium 4-toluenesulfonate (190 mg, 0.756 mmol) in acetone (25 ml) and water (0.5 ml) was refluxed for 64 hr. The mixture was evaporated to dryness and the residue was partitioned between CH₂Cl₂ (75 ml) and aq. NaHCO₃ (2x20 ml). The aqueous layer 10 was extracted with CH₂Cl₂ and EtOAc sequentially. The EtOAc layer was evaporated to give the product (140 mg). ¹H NMR (CD₃OD, 400 MHz) δ 3.47 (1H, t, J = 6.4 Hz), 3.15 (3H, m), 2.54 (1H, t, J = 6.4 Hz), 1.81 (3H, m).

Step 3

A mixture of the product of Step 2 (135 mg, 0.757 mmol), 40% aqueous 15 methylamine (0.3 ml, 2.4 mmol), and NaBH(OAc)₃ (375 mg, 1.77 mmol) in 1,2-dichloroethane (5 ml) was stirred at R.T. for 19 hr. The mixture was partitioned between 3N NaOH (5 ml) and EtOAc (3x50 ml). The organic layer was concentrated to give the crude product (40 mg). The aqueous layer was evaporated to dryness and the residue was suspended in EtOAc. The suspension was filtered and the filtrate 20 concentrated to give another batch of the product (70 mg). MS (FAB) m/e 194 (M+H)⁺.

Preparation 13

To a stirred mixture of 1,4-cyclohexanedione monoethylene ketal (4.68 g, 25 30 mmol) and 40% aq. methylamine (6.0 ml) in 1,2-dichloroethane (75 ml), was added NaBH(OAc)₃ (9.6 g, 45 mmol) in portions. The reaction mixture was vigorously stirred for 16 hr, then 1N NaOH (75 ml) was added. The organic layer was washed with sat'd

- 32 -

NaCl, dried (MgSO_4), filtered, and evaporated to give an oil (4.60 g, 90%) that was used without further purification. ^1H NMR (CDCl_3 , 400 MHz) δ 3.97 (4H, s), 2.47 (1H, m), 2.46 (3H, s), 1.91 (2H, m), 1.80 (2H, m), 1.59 (2H, m), 1.45 (2H, m).

5

Example 1

1

Step 1

1-1

An N_2 -purged mixture of 3,5-difluorophenylboronic acid (7.76 g, 24 mmol), 2-bromo-5-nitropyridine (2.46 g, 12 mmol), $\text{Pd}(\text{dpff})\text{Cl}_2 \cdot \text{CH}_2\text{Cl}_2$ (0.40 g, 0.48 mmol), potassium phosphate (5.06 g, 23.9 mmol) and 1,2-dimethoxyethane (40 ml) was heated in a sealed tube at 80 °C for 5 hr. The reaction mixture was allowed to cool, filtered through celite, and the filtrate was concentrated. The residue was partitioned between sat'd Na_2CO_3 and EtOAc , and the organic layer was washed with water and sat'd NaCl , dried (MgSO_4), filtered and concentrated. Flash chromatography of the residue (1:99 $\text{EtOAc}/\text{hexane}$) to gave the product (2.16 g, 76%). MS m/e 237 ($\text{M}+\text{H})^+$.

Step 2

1-2

The product of Step 1 (240 mg, 1.0 mmol), 10% Pd/C (38 mg), and EtOH (25 ml) were stirred under an H_2 atmosphere for 3 days. The reaction mixture was filtered

- 33 -

through celite and the volatiles were evaporated to give the product (171 mg, 83%).
MS m/e 207 (M+H)⁺.

Step 3

A mixture of the product of Step 2 (145 mg, 0.70 mmol), triphosgene (70 mg, 5 0.24 mmol), and iPr₂NEt (0.61 ml, 3.5 mmol) in toluene (5 ml) was heated at 110 °C for 2 hr. The reaction mixture was allowed to cool and Preparation 5 (140 mg, 0.73 mmol) was added. After 16 hr, the reaction mixture was concentrated, and partitioned between CH₂Cl₂ (40 ml) and H₂O (20 ml). The organic layer was dried (MgSO₄), filtered and evaporated. The residue was subjected to PTLC (5:95 MeOH/CH₂Cl₂) to 10 give the product (148 mg, 50%). ¹H NMR (CDCl₃, 400 MHz) δ 8.51 (1H, d, J = 2.8 Hz), 8.18 (2H, m), 7.64 (1H, d, J = 8.8 Hz), 7.50 (3H, m), 6.80 (1H, m), 6.70 (1H, d, J = 8.8 Hz), 6.63 (1H, dd, J = 7.1, 4.9 Hz), 6.54 (1H, s), 4.54 (1H, m), 4.45 (2H, m), 2.94 (2H, m), 2.93 (3H, s), 1.80 – 1.73 (4H, m). MS (m/e) 424 (M+H)⁺.

15

Example 2

Step 1

20 Reaction of 5-chlorothiophene-2-boronic acid with 2-chloro-5-nitropyridine by essentially the procedure of Example 1, Step 1 gave the product. MS m/e 241 (M+H)⁺.

Step 2

25

- 34 -

To an ice-cold suspension of the product of Step 1 (400 mg, 1.66 mmol) and NiCl₂·6H₂O (790 mg, 3.3 mmol) in MeOH (20 ml) was added NaBH₄ (252 mg, 6.67 mmol) in portions. After 20 min., H₂O (10 ml) and CH₂Cl₂ (20 ml) were added, and the whole was filtered through celite. The organic layer was dried (Na₂SO₄), filtered and concentrated to give a solid (286 mg, 82%). ¹H NMR (CDCl₃, 400 MHz) δ 8.02 (1H, d, J = 2.9 Hz), 7.38 (1H, d, J = 8.4 Hz), 7.12 (1H, dd, J = 3.8, 0.4 Hz), 6.98 (1H, dd, J = 8.7, 2.7 Hz), 6.85 (1H, dd, J = 3.8, 0.4 Hz), 3.76 (2H, b).

Step 3

To an ice-cold solution of the product of Step 2 (50 mg, 0.24 mmol) and pyridine (0.06 ml, 0.7 mmol) in THF (5 ml) was added N,N'-disuccinimidyl carbonate (60 mg, 0.24 mmol) and the reaction mixture was allowed to warm to R.T. After 1 hr, Preparation 5 (52 mg, 0.26 mmol) was added and the reaction mixture was stirred for 2 hr. The reaction mixture was poured into H₂O (20 ml) and extracted with CH₂Cl₂. The organic layer was dried (MgSO₄), filtered and evaporated. The residue was subjected to PTLC (5:95 MeOH/CH₂Cl₂) to give the product (84 mg, 82%). ¹H NMR (CDCl₃, 400 MHz) δ 8.32 (1H, d, J = 2.6 Hz), 8.16 (1H, m), 8.03 (1H, dd, J = 8.6, 2.1 Hz), 7.46 (1H, d, J = 8.6 Hz), 7.19 (1H, dd, J = 4.0, 0.6 Hz), 6.91 (1H, s), 6.86 (1H, dd, J = 8.7, 2.7 Hz), 6.85 (1H, dd, J = 4.0, 0.6 Hz), 6.65 (1H, d, J = 8.1 Hz), 6.60 (1H, m), 4.45 (1H, m), 4.38 (2H, m), 2.87 (2H, m), 2.84 (3H, s), 1.74 – 1.66 (4H, m).

20

Example 3

Step 1

25

- 35 -

A mixture of the product from Example 1, Step 2 (1-2) (500 mg, 2.43 mmol), triphosgene (240 mg, 0.81 mmol) and iPr₂NEt (2.1 ml, 12 mmol) in toluene (15 ml) was heated at reflux for 2 hr. The reaction mixture was allowed to cool to R.T. and Preparation 1 (880 mg, 4.1 mmol) was added. The reaction mixture was stirred for 24 hr, diluted with CH₂Cl₂, and washed with sat'd NaHCO₃, H₂O, and sat'd NaCl. The organic layer was dried (Na₂SO₄), filtered and concentrated. Flash chromatography of the residue (gradient; CH₂Cl₂ to 1.5:98.5 MeOH/CH₂Cl₂) gave the product (650 mg, 60%). ¹H NMR (CDCl₃) δ 8.49 (d, J = 2.5 Hz, 1H), 8.12 (m, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.46 (m, 2H), 6.78 (m, 1H), 6.74 (s, 1H), 4.40 (m, 1H), 4.20 (m, 2H), 2.90 (s, 3H), 2.78 (m, 2H), 1.67 - 1.55 (m, 4H), 1.45 (s, 9H). MS m/e 447 (M+H)⁺.

Step 2

To a solution of the product of Step 1, 3-1, (510 mg, 1.14 mmol) in THF (15 ml) was added 2N HCl (10 ml). After 6 hr, the volatiles were evaporated and the residue was washed with ether (3x10 ml) to give the product (480 mg, 100%). ¹H NMR (CD₃OD) δ 9.28 (s, 1H), 8.69 (d, J = 8.8 Hz, 1H), 8.29 (d, J = 8.6 Hz, 1H), 7.60 (d, J = 5.8 Hz, 2H), 7.30 (t, 1H), 4.49 (m, 1H), 3.52 (d, 2H), 3.18 (t, 2H), 3.04 (s, 3H), 2.12 (m, 2H), 1.97 (m, 2H). MS m/e 347 (M+H)⁺.

Step 3

To the product from Step 2 (0.19 mmol, 80mg) in CH₂Cl₂ (2 ml) was added Et₃N (0.7 mmol, 0.1 ml) and methanesulfonyl chloride (0.44 mmol, 50 mg). The reaction was stirred at R.T. for 1 hr, concentrated, and the residue was subjected to PTLC (5:95 MeOH/CH₂Cl₂) to give the product (70 mg, 87%). ¹H NMR (CDCl₃, 400 MHz) δ 8.50 (1H, d), 8.15 (1H, m), 7.7 (1H, d), 7.5 (2H, m), 6.8 (1H, m), 6.65 (1H, b), 4.5 (1H, m), 3.95 (2H, m), 3.0 (3H, s), 2.8 (5H, m), 1.8 (4H, m). MS m/e 425 (M+H)⁺.

- 36 -

Example 4

4

To a solution of the amine 3-2 (51 mg, 0.12 mmol) in CH_2Cl_2 (2 ml) was added Et_3N (0.1 ml, 0.7 mmol) and cyclopropylcarbonyl chloride (0.02 ml, 0.2 mmol). The reaction mixture was stirred at R.T. for 40 min. then subjected directly to PTLC (5:95 MeOH/ CH_2Cl_2) to give the product (49 mg, 99%). ^1H NMR (CDCl_3 , 400 MHz) δ 8.50 (1H, m), 8.16 (1H, m), 7.65 (1H, m), 7.49 (2H, m), 6.82 (1H, m), 6.57 (1H, b), 4.75 (1H, m), 4.56 (1H, m), 4.32 (1H, b), 3.21 (1H, m), 2.93 (3H, s), 2.66 (1H, m), 1.80 (5H, m), 0.99 (2H, m), 0.77 (2H, m). MS m/e 415 ($\text{M}+\text{H}$)⁺.

Using the appropriate reagents and Preparations the following Examples were prepared by essentially the same procedures:

STRUCTURE	^1H NMR	MS ($\text{M}+\text{H}$) ⁺
 1A	(CDCl_3) δ 8.52 (d, J = 2.5 Hz, 1H), 8.43 (m, 1H), 8.17 (m, 1H), 7.94 (m, 2H), 7.86 (m, 1H), 7.69 (d, J = 8.6 Hz, 1H), 7.45 (t, 2H), 7.39 (t, 1H), 7.01 (m, 1H), 6.60 (s, 1H), 4.47 (m, 1H), 3.68 (d, b, 2H), 3.04 (t, 2H), 2.98 (s, 3H), 1.87 (m, 2H), 1.78 (m, 2H).	456
 1B	(CDCl_3) δ 8.57 (d, J = 2.5 Hz, 1H), 8.30 (m, 1H), 8.18 (m, 1H), 7.93 (d, 2H), 7.70 (d, 1H), 7.43 (t, 2H), 7.39 (m, 1H), 6.82 (s, 1H), 6.77 (m, 1H), 6.58 (s, 1H), 4.59 (m, 1H), 4.48 (m, 2H), 3.01 (m, 2H), 2.96 (s, 3H), 1.83 (m, 2H), 1.70 (m, 2H).	456
 1C	(CDCl_3) δ 8.50 (d, J = 2.6 Hz, 1H), 8.17 (s, 2H), 8.14 (m, 1H), 7.94 (m, 2H), 7.68 (d, J = 8.8 Hz, 1H), 7.44 (t, 2H), 7.38 (m, 1H), 6.59 (s, 1H), 4.86 (m, 2H), 4.54 (m, 1H), 2.93 (m, 2H), 2.89 (s, 3H), 2.45 (q, 2H), 1.76 (m, 2H), 1.64 (m, 2H), 1.19 (t, 3H).	417
 1D	(CDCl_3) δ 8.50 (d, J = 2.7 Hz, 1H), 8.10 (m, 1H), 7.91 (d, J = 7.3 Hz, 2H), 7.65 (d, J = 8.6 Hz, 1H), 7.43 (t, 2H), 7.37 (m, 1H), 6.63 (s, 1H), 4.24 (m, 1H), 2.94-2.90 (m,	325

- 37 -

- 38 -

	(CDCl ₃) δ 8.58 (s, 1H), 8.10 (m, 1H), 7.95 (m, 2H), 7.70 (m, 1H), 7.43 (t, 2H), 7.39 (m, 1H), 6.57 (s, b, 1H), 4.42 (m, 1H), 3.83 (m, 2H), 2.94 (s, 3H), 2.82 (m, 5H), 1.82 (m, 4H).	389
	(CDCl ₃) δ 8.60 (s, 1H), 8.15 (m, 1H), 7.93 (m, 2H), 7.70 (d, J = 8.8 Hz, 1H), 7.46 (t, 2H), 7.39 (m, 1H), 6.64 (s, b, 1H), 4.47 (m, 1H), 3.93 (m, 2H), 2.96 (m, 7H), 1.80 (m, 4H), 1.37 (t, 3H).	403
	(CDCl ₃) δ 8.52 (d, J = 2.6 Hz, 1H), 8.10 (m, 1H), 7.93 (m, 2H), 7.68 (d, J = 8.8 Hz, 1H), 7.49-7.35 (m, 3H), 6.58 (s, 1H), 4.46 (m, 1H), 3.95 (m, 2H), 3.18 (m, 1H), 3.03-2.85 (m, 5H), 1.76 (m, 4H), 1.33 (d, 6H).	417
	(CDCl ₃) δ 8.55 (d, J = 2.4 Hz, 1H), 8.10 (m, 1H), 7.93 (m, 2H), 7.68 (d, J = 8.8 Hz, 1H), 7.46-7.36 (m, 3H), 6.64 (s, 1H), 4.44 (m, 1H), 3.91 (m, 2H), 2.93-2.82 (m, 7H), 1.86-1.76 (m, 6H), 1.06 (t, 3H).	417
	(CD ₃ OD) δ 9.20 (d, J = 2.4 Hz, 1H), 8.53 (m, 1H), 8.25 (d, J = 9.2 Hz, 1H), 7.58 (m, 2H), 7.29 (m, 1H), 4.30 (m, 1H), 3.86 (m, 2H), 3.00 (m, 5H), 2.50 (m, 1H), 1.95-1.78 (m, 4H), 1.05 (m, 4H).	451
	(CDCl ₃) δ 8.52 (d, J = 2.4 Hz, 1H), 8.12 (m, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.49 (m, 2H), 6.80 (m, 1H), 6.59 (s, 1H), 4.45 (m, 1H), 3.93 (m, 2H), 2.93 (m, 7H), 1.79 (m, 4H), 1.36 (t, 3H).	439
	(CD ₃ OD) δ 9.21 (d, J = 2.4 Hz, 1H), 8.55 (m, 1H), 8.25 (d, J = 9.2 Hz, 1H), 7.59 (m, 2H), 7.28 (m, 1H), 4.30 (m, 1H), 3.85 (m, 2H), 2.95 (m, 7H), 1.81 (m, 6H), 1.07 (t, 3H).	453
	(CDCl ₃) δ 8.52 (d, J = 2.4 Hz, 1H), 8.13 (m, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.49 (m, 2H), 6.81 (m, 1H), 6.57 (s, 1H), 4.47 (m, 1H), 3.93 (m, 2H), 3.18 (m, 1H), 2.99 (m, 2H), 2.95 (s, 3H), 1.78 (m, 4H), 1.33 (d, 6H).	453

- 39 -

 3I	(CDCl_3) δ 8.59 (d, $J = 2.4$ Hz, 1H), 8.07 (m, 1H), 7.78 (m, 1H), 7.71 (m, 1H), 7.28 (m, 2H), 6.53 (s, 1H), 4.44 (m, 1H), 3.91 (m, 2H), 2.96 (s, 3H), 2.79 (m, 5H), 1.82 (m, 4H).	425
 3J	(CDCl_3) δ 8.59 (d, $J = 2.4$ Hz, 1H), 8.06 (m, 1H), 7.78 (m, 1H), 7.71 (m, 1H), 7.07 (m, 1H), 7.02 (m, 1H), 6.54 (s, 1H), 4.46 (m, 1H), 3.93 (d, $J = 11.2$ Hz, 2H), 2.94 (m, 7H), 1.80 (m, 4H), 1.37 (t, 3H).	439
 3K	(CDCl_3) δ 8.60 (s, 1H), 8.06 (m, 1H), 7.77 (d, $J = 7.2$ Hz, 1H), 7.68 (m, 1H), 7.07 (m, 1H), 7.01 (m, 1H), 6.66 (s, 1H), 4.43 (s, 1H), 3.90 (d, 2H), 2.91 (m, 5H), 2.60 (m, 1H), 1.78 (m, 4H), 1.15 (m, 2H), 1.00 (m, 2H).	451
 3L	(CDCl_3) δ 8.61 (s, 1H), 8.06 (m, 1H), 7.78 (d, $J = 6.8$ Hz, 1H), 7.71 (m, 1H), 7.07 (m, 1H), 7.01 (m, 1H), 6.64 (s, 1H), 4.44 (m, 1H), 3.91 (d, $J = 12.4$ Hz, 2H), 2.93 (s, 3H), 2.86 (m, 4H), 1.82 (m, 6H), 1.06 (t, 3H).	453
 3N	(CD_3OD) δ 9.20 (m, 1H), 8.55 (m, 1H), 8.25 (m, 1H), 7.71 (m, 3H), 7.41 (m, 1H), 4.29 (m, 1H), 3.85 (m, 2H), 3.01 (s, 3H), 2.87 (m, 5H), 1.94-1.76 (m, 4H).	407
 3O	(CDCl_3) δ 8.52 (d, $J = 2.5$ Hz, 1H), 8.12 (m, 1H), 7.71 (m, 3H), 7.38 (m, 1H), 7.07 (m, 1H), 6.47 (m, 1H), 4.43 (s, 1H), 3.92 (d, 2H), 2.96 (m, 5H), 2.28 (m, 1H), 1.81 (m, 4H), 1.17 (m, 2H), 1.00 (m, 2H).	433
 4A	(CDCl_3) δ 8.51 (d, $J = 2.6$ Hz, 1H), 8.13 (m, 1H), 7.93 (d, $J = 7.3$ Hz, 2H), 7.68 (d, $J = 8.6$ Hz, 1H), 7.45 (t, 2H), 7.38 (m, 1H), 6.61 (s, 1H), 4.42 (m, 1H), 4.20 (m, 2H), 2.91 (s, 3H), 2.79 (m, 2H), 1.76-1.55 (m, 4H), 1.45 (s, 9H).	411
 4B	(CDCl_3) δ 8.69 (d, $J = 5.3$ Hz, 2H), 8.55 (d, $J = 2.7$ Hz, 1H), 8.14 (m, 1H), 7.62 (d, $J = 8.6$ Hz, 1H), 7.47 (m, 2H), 7.28 (m, 2H), 6.95 (s, 1H), 6.79 (m, 1H), 4.82 (m, 1H), 4.56 (m, 1H), 3.68 (m, 1H), 3.17 (m, 1H), 2.94 (s, 3H), 2.85 (m, 1H), 1.90-1.45 (m, 4H).	452

- 40 -

	(CDCl ₃) δ 8.68 (m, 2H), 8.55 (m, 1H), 8.12 (m, 1H), 7.78 (m, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.47 (m, 2H), 7.37 (m, 1H), 6.82 (m, 1H), 6.65 (s, 1H), 4.86 (m, 1H), 4.59 (m, 1H), 3.82 (m, 1H), 3.22 (m, 1H), 2.96 (s, 3H), 2.85 (m, 1H), 1.90-1.45 (m, 4H).	452
	(CDCl ₃) δ 8.50 (d, J = 2.8 Hz, 1H), 8.12 (m, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.45 (m, 2H), 6.80 (m, 2H), 4.75 (m, 1H), 4.50 (m, 1H), 3.90 (m, 1H), 3.18 (m, 1H), 2.90 (s, 3H), 2.59 (m, 1H), 2.11 (s, 3H), 1.80-1.56 (m, 4H).	389
	(CDCl ₃) δ 8.50 (d, J = 2.0 Hz, 1H), 8.13 (m, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.46 (m, 2H), 6.78 (m, 2H), 4.76 (m, 1H), 4.51 (m, 1H), 3.92 (m, 1H), 3.11 (m, 1H), 2.90 (s, 3H), 2.59 (m, 1H), 2.35 (q, 2H), 1.76-1.54 (m, 4H), 1.15 (m, 3H).	403
	(CD ₃ OD) δ 9.26 (d, J = 2.4 Hz, 1H), 8.59 (m, 1H), 8.29 (d, J = 8.8 Hz, 1H), 7.60 (m, 2H), 7.32 (m, 1H), 4.70 (m, 1H), 4.39 (m, 1H), 4.10 (m, 1H), 3.21 (m, 1H), 2.98 (s, 3H), 2.71 (m, 1H), 2.42 (m, 2H), 1.79-1.62 (m, 6H), 0.99 (m, 3H).	417
	(CDCl ₃) δ 8.50 (d, J = 2.4 Hz, 1H), 8.15 (m, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.47 (m, 2H), 6.87 (s, 1H), 6.78 (m, 1H), 4.76 (m, 1H), 4.50 (m, 1H), 4.05 (m, 1H), 3.11 (m, 1H), 2.90 (s, 3H), 2.80 (m, 1H), 2.59 (m, 1H), 1.82-1.54 (m, 4H), 1.13 (m, 6H).	417
	(CDCl ₃) δ 8.50 (d, J = 2.4 Hz, 1H), 8.14 (m, 1H), 7.66 (d, J = 6.4 Hz, 1H), 7.49 (m, 2H), 6.81 (m, 1H), 6.49 (s, 1H), 4.76 (m, 2H), 4.12 (m, 1H), 3.25 (m, 1H), 2.95 (s, 3H), 2.86 (m, 1H), 1.89-1.60 (m, 4H).	443
	(CDCl ₃) δ 8.50 (d, J = 2.0 Hz, 1H), 8.13 (m, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.46 (m, 2H), 6.80 (m, 2H), 4.70 (m, 1H), 4.52 (m, 1H), 4.10 (q, 2H), 3.94 (m, 1H), 3.42 (s, 3H), 3.10 (m, 1H), 2.90 (s, 3H), 2.64 (m, 1H), 1.79-1.57 (m, 4H).	419
	(CDCl ₃) δ 8.50 (d, J = 2.4 Hz, 1H), 8.12 (m, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.47 (m, 2H), 6.80 (m, 1H), 6.67 (s, 1H), 4.79 (m, 1H), 4.56 (m, 1H), 3.86 (m, 1H), 3.24 (m, 3H), 2.96 (s, 3H), 2.67 (m, 1H), 1.85-1.59 (m, 4H).	457

- 41 -

	(CDCl ₃) δ 8.50 (d, J = 2.4 Hz, 1H), 8.15 (m, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.46 (m, 3H), 7.30 (d, 1H), 7.03 (m, 1H), 6.80 (m, 2H), 4.59 (m, 3H), 3.06 (m, 2H), 2.93 (s, 3H), 1.81-1.64 (m, 4H).	457
	(CDCl ₃) δ 8.49 (d, J = 2.0 Hz, 1H), 8.15 (m, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.47 (m, 2H), 6.80 (m, 1H), 6.69 (s, 1H), 4.42 (m, 1H), 3.77 (m, 2H), 2.92-2.83 (m, 11H), 1.68 (m, 4H).	418
	(CDCl ₃) δ 8.50 (d, J = 2.4 Hz, 1H), 8.14 (m, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.45 (m, 2H), 6.80 (m, 2H), 4.40 (m, 1H), 3.72 (m, 2H), 3.20 (m, 4H), 2.90 (s, 3H), 2.84 (m, 2H), 1.70 (m, 4H), 1.11 (m, 6H).	446
	(CDCl ₃) δ 8.50 (d, J = 2.4 Hz, 1H), 8.15 (m, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.45 (m, 2H), 6.79 (m, 2H), 4.76 (m, 1H), 4.50 (m, 1H), 3.78 (m, 1H), 3.26 (m, 1H), 3.04 (m, 1H), 2.90 (s, 3H), 2.60 (m, 1H), 2.35-2.13 (m, 4H), 1.99-1.42 (m, 6H).	429
	(CDCl ₃) δ 8.50 (d, J = 2.8 Hz, 1H), 8.15 (m, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.49 (m, 2H), 6.80 (m, 1H), 6.54 (s, 1H), 4.80 (m, 1H), 4.54 (m, 1H), 4.06 (m, 1H), 3.13 (m, 1H), 2.90 (m, 4H), 2.61 (m, 1H), 1.82-1.55 (m, 12H).	443
	(CDCl ₃) δ 8.50 (d, J = 2.8 Hz, 1H), 8.15 (m, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.46 (m, 2H), 6.79 (m, 2H), 4.74 (m, 1H), 4.52 (m, 1H), 4.00 (m, 1H), 3.11 (m, 1H), 2.91 (s, 3H), 2.52 (m, 2H), 1.79-1.24 (m, 14H).	457
	(CDCl ₃) δ 8.50 (m, 1H), 8.15 (m, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.49 (m, 3H), 7.33-7.19 (m, 2H), 6.80 (m, 1H), 6.50 (s, 1H), 4.91 (m, 1H), 4.58 (m, 1H), 3.50 (m, 1H), 3.21 (m, 1H), 2.94 (s, 3H), 2.86 (m, 1H), 1.87-1.67 (m, 4H).	519
	(CDCl ₃) δ 8.50 (m, 1H), 8.15 (m, 1H), 7.83 (m, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.50 (m, 2H), 7.41 (m, 1H), 7.24 (m, 1H), 7.10 (m, 1H), 6.80 (m, 1H), 6.48 (s, 1H), 4.92 (m, 1H), 4.60 (m, 1H), 3.50 (m, 1H), 3.21 (m, 1H), 2.96 (s, 3H), 2.85 (m, 1H), 1.98-1.50 (m, 4H).	577

- 42 -

	(CDCl ₃) δ 8.74 (d, J = 2.4 Hz, 1H), 8.58 (m, 1H), 8.50 (d, J = 2.0 Hz, 1H), 8.15 (m, 1H), 7.92 (m, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.50 (m, 2H), 6.80 (m, 1H), 6.50 (s, 1H), 4.86 (m, 1H), 4.62 (m, 1H), 3.80 (m, 1H), 3.21 (m, 1H), 2.97 (s, 3H), 2.88 (m, 1H), 1.94-1.70 (m, 4H).	530 532
	(CDCl ₃) δ 8.50 (d, J = 2.4 Hz, 1H), 8.14 (m, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.50 (m, 2H), 7.35 (d, 1H), 6.99 (d, 1H), 6.80 (m, 1H), 6.60 (s, 1H), 4.80 (m, 1H), 4.60 (m, 1H), 3.80 (m, 1H), 3.21 (m, 2H), 2.94 (s, 3H), 1.77 (m, 4H).	535 537
	(CDCl ₃) δ 8.51 (m, 1H), 8.10 (m, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.47 (m, 2H), 7.33 (m, 2H), 7.25 (m, 1H), 6.84 (s, 1H), 6.77 (m, 1H), 4.92 (m, 1H), 4.56 (m, 1H), 3.41 (m, 1H), 3.20 (m, 1H), 2.90 (s, 3H), 2.87 (m, 1H), 1.83-1.67 (m, 4H).	519
	(CDCl ₃) δ 8.50 (d, J = 2.4 Hz, 1H), 8.13 (m, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.46 (m, 2H), 6.83 (s, 1H), 6.78 (m, 1H), 4.64 (m, 2H), 4.52 (m, 1H), 2.89 (s, 3H), 2.84 (m, 2H), 2.04-1.54 (m, 19H).	509
	(CDCl ₃) δ 8.52 (m, 1H), 8.15 (m, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.48 (m, 2H), 6.80 (m, 1H), 6.69 (s, 1H), 6.63 (m, 2H), 4.82 (m, 1H), 4.56 (m, 1H), 3.86 (m, 10H), 3.15 (m, 1H), 2.94 (m, 4H), 1.76 (m, 4H).	541
	(CDCl ₃) δ 8.51 (m, 2H), 8.15 (m, 1H), 7.92 (m, 3H), 7.65 (m, 2H), 7.50 (m, 4H), 6.80 (m, 1H), 6.51 (s, 1H), 4.92 (m, 1H), 4.60 (m, 1H), 3.98 (m, 1H), 3.21 (m, 1H), 2.97 (m, 4H), 1.88-1.50 (m, 4H).	501
	(CDCl ₃) δ 8.57 (d, J = 2.8 Hz, 1H), 8.11 (m, 1H), 7.80 (m, 1H), 7.74 (m, 1H), 7.08 (m, 1H), 7.01 (m, 1H), 6.50 (s, 1H), 4.44 (m, 1H), 4.22 (m, 2H), 2.92 (s, 3H), 2.81 (m, 2H), 1.71-1.57 (m, 4H), 1.47 (s, 9H).	447
	(CD ₃ OD) δ 9.30 (d, J = 2.4 Hz, 1H), 9.09 (s, 1H), 8.97 (d, J = 5.6 Hz, 1H), 8.74 (d, J = 8.4 Hz, 1H), 8.65 (m, 1H), 8.19 (m, 2H), 7.62 (m, 1H), 7.45 (m, 2H), 4.80 (m, 1H), 4.50 (m, 1H), 3.76 (m, 1H), 4.46 (m, 1H), 3.38 (m, 1H), 3.04 (s, 4H), 2.00-1.65 (m, 4H).	452

- 43 -

	(CDCl ₃) δ 8.57 (m, 1H), 8.10 (m, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.71 (m, 1H), 7.08 (m, 1H), 7.01 (m, 1H), 6.52 (s, 1H), 4.75 (m, 1H), 4.56 (m, 1H), 4.33 (m, 1H), 3.21 (m, 1H), 2.91 (s, 3H), 2.66 (m, 1H), 1.82-1.62 (m, 5H), 0.99 (m, 2H), 0.78 (m, 2H).	415
	(CDCl ₃) δ 8.57 (d, J = 2.8 Hz, 1H), 8.09 (m, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.69 (m, 1H), 7.07 (m, 1H), 7.01 (m, 1H), 6.64 (s, 1H), 4.47 (m, 1H), 4.53 (m, 1H), 3.94 (m, 1H), 3.13 (t, 1H), 2.91 (s, 3H), 2.60 (t, 1H), 2.33 (t, 2H), 1.78-1.54 (m, 6H), 0.96 (t, 3H).	417
	(CD ₃ OD) δ 8.29 (d, J = 2.0 Hz, 1H), 8.60 (m, 1H), 8.19 (d, J = 9.2 Hz, 1H), 7.61 (m, 1H), 7.45 (m, 2H), 4.70 (m, 1H), 4.41 (m, 1H), 4.18 (m, 1H), 3.21 (m, 1H), 2.93 (s, 4H), 2.69 (m, 1H), 1.77 (m, 4H), 1.14-1.09 (m, 6H).	417
	(CDCl ₃) δ 8.57 (s, 1H), 8.08 (m, 1H), 7.76 (d, J = 6.8 Hz, 1H), 7.68 (m, 1H), 7.10 (m, 1H), 7.02 (m, 1H), 6.80 (s, 1H), 4.75 (d, 1H), 4.51 (m, 1H), 3.88 (d, 1H), 3.16 (t, 1H), 2.90 (s, 3H), 2.59 (t, 1H), 2.11 (s, 3H), 1.80-1.56 (m, 4H).	389
	(CDCl ₃) δ 8.56 (s, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 7.2 Hz, 1H), 7.68 (m, 1H), 7.08 (m, 1H), 7.01 (m, 1H), 6.72 (s, 1H), 4.77 (d, 1H), 4.51 (m, 1H), 3.94 (d, 1H), 3.11 (t, 1H), 2.90 (s, 3H), 2.60 (t, 1H), 2.34 (q, 2H), 1.80-1.54 (m, 4H), 1.15 (t, 3H).	403
	(CDCl ₃) δ 8.89 (s, 1H), 8.62 (s, 1H), 8.12 (m, 1H), 8.07 (s, 1H), 7.80 (d, J = 6.4 Hz, 1H), 7.70 (m, 1H), 7.11 (m, 1H), 7.01 (m, 1H), 6.64 (bs, 1H), 4.80-4.20 (m, 3H), 3.35-2.80 (m, 5H), 1.86-1.69 (m, 4H).	459

Example 5

- 44 -

Step 1

5 A solution of 2-hydroxy-5-nitropyridine (11.2 g, 79.9 mmol) in conc. HCl (57 ml) was warmed to 50 °C and KClO₃ (3.4 g, 27.7 mmol) in water (50 ml) was added dropwise at such a rate that the temperature was kept below 60 °C. During the addition the product began to separate. After TLC monitoring indicated complete consumption of starting material the mixture was cooled to 0 °C and the product was
10 isolated by vacuum filtration. The solid was washed with water and dried at 50 °C under vacuum to give the product (12.3g, 88%) as a solid. ¹HNMR (DMSO-d₆) δ 8.68 (d, J = 3.2 Hz, 1H), 8.40 (d, J = 3.2 Hz, 1H). MS m/e 175 (M+H)⁺.

Step 2

15 To phosphoryl chloride (10.5 g, 68.7 mmol) was added successively, with cooling at 5 °C, quinoline (4.4 g, 34.1 mmol) and the product of Step 1 (12.0 g, 68.7 mmol). The resultant mixture was heated for 2 hr at 120 °C under N₂. After the reaction was complete as indicated by TLC monitoring, the reaction mixture was
20 allowed to cool to 100 °C, and water (26 ml) was added. The solution was then cooled in an ice bath and the product was isolated by vacuum filtration. The solid was washed with water and dried at 40 °C under vacuum to give the product (12.5g, 94%).
¹HNMR (DMSO-d₆) δ 9.19 (d, J = 2.4 Hz, 1H), 8.97 (d, J = 2.4 Hz, 1H).

25 Step 3

- 45 -

5-3

A flask charged with 3-fluorophenylboronic acid (1.63 g, 11.65 mmol), the product of Step 2 (1.50g, 7.77mmol), ethylene glycol dimethyl ether (18 ml) and potassium phosphate (4.95 g, 23.3 mmol) was purged with N₂. PdCl₂(dppf)₂·CH₂Cl₂ (0.26 g, 0.32 mmol) was added. The reaction mixture was heated at 80°C under N₂ for 2 hr, allowed to cool, and filtered through celite. The filtrate was extracted with EtOAc (60 ml) was then washed with saturated sodium carbonate (40ml), water (40ml), brine (30 ml), dried (Na₂SO₄), filtered and concentrated. The residue was subjected to flash chromatography (1:5 CH₂Cl₂/hexane) to give the product (1.96g, 100%). ¹HNMR (CDCl₃) δ 9.39 (d, J = 2.4 Hz, 1H), 8.62 (d, J = 2.4 Hz, 1H), 7.62 (m, 1H), 7.54 (m, 2H), 7.22 (m, 1H). MS m/e 253 (M+H)⁺.

Step 4

5-4

To an ice-cold solution of the product of Step 3 (2.25 g, 8.9 mmol) and nickel chloride hexahydrate (4.23 g, 17.8 mmol) in MeOH (100 ml) was added sodium borohydride (1.11 g, 29.5 mmol) in portions. The resulting mixture was stirred at 0-5 °C for 30 min., water (5ml) was added and the whole was concentrated. The residue was treated with EtOAc (100ml) and filtered through celite. The filtrate was dried (MgSO₄), filtered and concentrated to give the product (2.3 g). ¹HNMR (CDCl₃) δ 7.53 (s, 1H), 6.97 (m, 1H), 6.84 (m, 2H), 6.63 (s, 1H), 6.53 (m, 1H), 3.90 (s, b, 2H).

Step 5

5-5

- 46 -

To a solution of the product of Step 4 (500 mg, 2.25 mmol) in anhydrous pyridine (6 ml) was added phenyl chloroformate (390 mg, 2.49 mmol) dropwise. The reaction mixture was stirred for 16 hr then evaporated *in vacuo*. The residue was taken up in chloroform (10 ml), and Et₃N (1 ml) and Preparation 1 (722 mg, 3.37 mmol) was added. The mixture was heated at 65 °C for 3 hr. The residue was allowed to cool, diluted with CH₂Cl₂ (50 ml) and washed with sat'd NaHCO₃ (30 ml), water (30 ml), and NaCl (30 ml). The organic layer was dried (MgSO₄), filtered and evaporated. The residue was subjected to flash chromatography (2:98 CH₃OH/CH₂Cl₂) to give the product (530 mg, 51%). ¹H NMR (CDCl₃) δ 8.41 (d, J = 2.4 Hz, 1H), 8.28 (d, J = 2.4 Hz, 1H), 7.50 (m, 1H), 7.42 (m, 2H), 7.10 (m, 1H), 6.61 (s, 1H), 4.41 (m, 1H), 4.22 (m, 2H), 2.92 (s, 3H), 2.80 (m, 2H), 1.70-1.57 (m, 4H), 1.45 (s, 9H).

15 Step 6

5-6

The product of Step 5 (90 mg, 0.194 mmol) was treated with 4N HCl/1,4-dioxane (4 ml) for 16 hr. The reaction mixture was concentrated and the residue was triturated with Et₂O and dried to give the product (85 mg) as a solid. ¹HNMR (CD₃OD) δ 8.92 (d, J = 2.4 Hz, 1H), 8.50 (d, J = 2.4 Hz, 1H), 7.58 (m, 1H), 7.51 (m, 2H), 7.30 (m, 1H), 4.45 (m, 1H), 3.50 (m, 2H), 3.16 (m, 2H), 3.02 (s, 3H), 2.10-1.90 (m, 4H).

Step 7

To a solution of the product of Step 6 (42 mg, 0.096 mmol) and Et₃N (0.2 ml) in CH₂Cl₂ (2 ml) was slowly added acetic anhydride (112 mg, 1.10 mmol). The reaction mixture was stirred at R.T. for 2 hr. The concentrated residue was separated by PTLC (1:20 CH₃OH/CH₂Cl₂) to give the product (31mg, 80%). ¹HNMR (CDCl₃) δ 8.44 (d, J = 2.4 Hz, 1H), 8.27 (d, J = 2.4 Hz, 1H), 7.50 (m, 1H), 7.42 (m, 2H), 7.10 (m, 1H), 6.92 (s,

- 47 -

1H), 4.75 (m, 1H), 4.50(m, 1H), 3.92 (m, 1H), 3.17 (t, 1H), 2.90 (s, 3H), 2.60 (m, 1H), 2.11 (s, 3H), 1.81-1.60 (m, 4H). MS m/e 405 (M+H)⁺.

Use of the appropriate reagents and procedures afforded the following
5 compounds:

STRUCTURE	¹ H NMR	MS (M+H) ⁺
	(CDCl ₃) δ 8.44 (d, J = 2.4 Hz, 1H), 8.24 (d, J = 2.4 Hz, 1H), 7.49 (m, 1H), 7.43 (m, 2H), 7.10 (m, 1H), 6.65 (s, 1H), 4.43 (m, 1H), 3.92 (m, 2H), 2.93 (s, 3H), 2.78 (m, 5H), 1.81 (m, 4H).	441
	(CDCl ₃) δ 8.44 (d, J = 2.4 Hz, 1H), 8.25 (d, J = 2.4 Hz, 1H), 7.50 (m, 1H), 7.41 (m, 2H), 7.10 (m, 1H), 6.61 (s, 1H), 4.44 (m, 1H), 3.93 (m, 2H), 2.93 (m, 7H), 1.81 (m, 4H), 1.36 (t, 3H).	455
	(CDCl ₃) δ 8.44 (d, J = 2.0 Hz, 1H), 8.24 (d, J = 2.4 Hz, 1H), 7.50 (m, 1H), 7.41 (m, 2H), 7.10 (m, 1H), 6.67 (s, 1H), 4.44 (m, 1H), 3.93 (m, 2H), 2.90 (m, 7H), 1.81 (m, 6H), 1.06 (t, 3H).	469
	(CDCl ₃) δ 8.43 (d, J = 2.4 Hz, 1H), 8.26 (d, J = 2.4 Hz, 1H), 7.51 (m, 1H), 7.43 (m, 2H), 7.10 (m, 1H), 6.60 (s, 1H), 4.46 (m, 1H), 3.96 (m, 2H), 3.19 (m, 1H), 3.01 (m, 2H), 2.93 (s, 3H), 1.79 (m, 4H), 1.34 (d, 6H).	469
	(CDCl ₃) δ 8.43 (d, J = 2.4 Hz, 1H), 8.26 (d, J = 2.4 Hz, 1H), 7.51 (m, 1H), 7.43 (m, 2H), 7.10 (m, 1H), 6.64 (s, 1H), 4.43 (m, 1H), 3.92 (m, 2H), 2.93 (m, 5H), 2.27 (m, 1H), 1.81 (m, 4H), 1.16 (m, 2H), 1.00 (m, 2H).	467
	(CDCl ₃) δ 8.44 (d, J = 2.0 Hz, 1H), 8.26 (d, J = 2.4 Hz, 1H), 7.48 (m, 1H), 7.40 (m, 2H), 7.10 (m, 1H), 6.92 (s, 1H), 4.76 (m, 1H), 4.50 (m, 1H), 3.94 (m, 1H), 3.12 (t, 1H), 2.90 (s, 3H), 2.60 (m, 1H), 2.36 (q, 2H), 1.80-1.55 (m, 4H), 1.15 (t, 3H).	419

- 48 -

 5G	$(\text{CDCl}_3) \delta$ 8.43 (d, $J = 2.4$ Hz, 1H), 8.26 (d, $J = 2.4$ Hz, 1H), 7.50 (m, 1H), 7.40 (m, 2H), 7.10 (m, 1H), 6.89 (s, 1H), 4.76 (m, 1H), 4.51 (m, 1H), 3.32 (m, 1H), 3.12 (m, 1H), 2.90 (s, 3H), 2.64 (m, 1H), 1.89-1.55 (m, 5H), 0.98 (m, 2H), 0.77 (m, 2H).	431
 5H	$(\text{CDCl}_3) \delta$ 8.43 (d, $J = 2.4$ Hz, 1H), 8.27 (d, $J = 2.4$ Hz, 1H), 7.50 (m, 1H), 7.40 (m, 2H), 7.10 (m, 1H), 6.78 (s, 1H), 4.79 (m, 1H), 4.50 (m, 1H), 3.96 (m, 1H), 3.13 (t, 1H), 2.91 (s, 3H), 2.60 (m, 1H), 2.33 (q, 2H), 1.81-1.55 (m, 6H), 0.97 (t, 3H).	433
 5I	$(\text{CDCl}_3) \delta$ 8.43 (d, $J = 2.4$ Hz, 1H), 8.25 (d, $J = 2.4$ Hz, 1H), 7.48 (m, 1H), 7.38 (m, 2H), 7.08 (m, 1H), 7.02 (s, 1H), 4.39 (m, 1H), 3.75 (m, 2H), 2.90-2.80 (m, 11H), 1.67 (m, 4H).	434
 5J	$(\text{CDCl}_3) \delta$ 8.43 (d, $J = 2.4$ Hz, 1H), 8.30 (d, $J = 2.4$ Hz, 1H), 7.50 (m, 1H), 7.43 (m, 2H), 7.08 (m, 1H), 6.69 (s, 1H), 4.41 (m, 1H), 3.75 (m, 2H), 3.20 (q, 4H), 2.90 (s, 3H), 2.85 (m, 2H), 1.69 (m, 4H), 1.27 (t, 6H).	462
 5K	$(\text{CDCl}_3) \delta$ 8.43 (d, $J = 2.0$ Hz, 1H), 8.27 (d, $J = 2.4$ Hz, 1H), 7.49 (m, 1H), 7.40 (m, 2H), 7.09 (m, 1H), 6.87 (s, 1H), 4.80 (m, 1H), 4.51 (m, 1H), 4.05 (m, 1H), 3.14 (m, 1H), 2.90 (s, 3H), 2.80 (m, 1H), 2.59 (m, 1H), 1.82-1.56 (m, 4H), 1.13 (m, 6H).	433
 5L	$(\text{CDCl}_3) \delta$ 8.40 (d, $J = 2.0$ Hz, 1H), 8.32 (d, $J = 2.4$ Hz, 1H), 7.29 (m, 2H), 6.85 (m, 1H), 6.49 (m, 1H), 4.42 (m, 1H), 4.23 (m, 2H), 2.93 (s, 3H), 2.81 (m, 2H), 1.70-1.57 (m, 4H), 1.45 (m, 9H).	481
 5M	$(\text{CDCl}_3) \delta$ 8.44 (d, $J = 2.0$ Hz, 1H), 8.24 (d, $J = 2.0$ Hz, 1H), 7.27 (m, 2H), 6.84 (m, 1H), 6.73 (s, 1H), 4.41 (m, 1H), 3.92 (m, 2H), 2.93 (s, 3H), 2.78 (m, 5H), 1.81 (m, 4H).	459

- 49 -

 5N	(CDCl_3) δ 8.43 (m, 1H), 8.28 (m, 1H), 7.28 (m, 2H), 6.84 (m, 1H), 6.54 (s, 1H), 4.45 (m, 1H), 3.94 (m, 2H), 2.95 (m, 7H), 1.81 (m, 4H), 1.36 (t, 3H).	473
 5O	(CDCl_3) δ 8.42 (d, $J = 2.0$ Hz, 1H), 8.28 (d, $J = 2.0$ Hz, 1H), 7.27 (m, 2H), 6.84 (m, 1H), 6.52 (s, 1H), 4.45 (m, 1H), 3.94 (m, 2H), 2.95 (s, 3H), 2.88 (m, 4H), 1.85 (m, 6H), 1.07 (t, 3H).	487
 5P	(CDCl_3) δ 8.43 (d, $J = 2.4$ Hz, 1H), 8.27 (d, $J = 2.4$ Hz, 1H), 7.27 (m, 2H), 6.84 (m, 1H), 6.58 (s, 1H), 4.45 (m, 1H), 3.94 (m, 2H), 3.19 (m, 1H), 3.00 (m, 2H), 2.95 (s, 3H), 1.75 (m, 4H), 1.35 (d, 6H).	487
 5Q	(CDCl_3) δ 8.44 (d, $J = 2.0$ Hz, 1H), 8.27 (d, $J = 2.4$ Hz, 1H), 7.27 (m, 2H), 6.84 (m, 1H), 6.60 (s, 1H), 4.41 (m, 1H), 3.92 (m, 2H), 2.95 (m, 5H), 2.28 (m, 1H), 1.81 (m, 4H), 1.17 (m, 2H), 1.00 (m, 2H).	485

Example 6

6

5 Step 1

6-1

A round bottom flask charged with 3,5-difluorophenylboronic acid (6.60 g, 41.8 mmol), 2-amino-5-bromo pyridine (6.00 g, 34.7 mmol), benzene (80 ml), and 2M aq. Na_2CO_3 (40 ml) was purged with N_2 for 5 min. $\text{Pd}(\text{PPh}_3)_4$ (1.20 g, 1.04 mmol) was added and the reaction mixture was heated to 100 °C for 16 hr. After cooling, the

- 50 -

reaction mixture was poured into cold water (100 ml). The whole was extracted with CH₂Cl₂ (3x150ml), dried (Na₂SO₄), and filtered. The concentrated residue was subjected to flash column chromatography (1:10 acetone/hexane) to give the product (4.90 g, 69%). ¹H NMR (CDCl₃) δ 8.28 (d, J = 2.4 Hz, 1H), 7.63 (dd, J = 8.8, 2.4 Hz, 1H), 7.01 (m, 2H), 6.76 (m, 1H), 6.58 (d, J = 8.4 Hz, 1H), 4.65 (s, b, 2H). MS m/e 207 (M+H)⁺.

Step 2

10

To a solution of the product of Step 1 (0.300 g, 1.45 mmol) in anhydrous pyridine (5 ml) was added phenyl chloroformate (0.20 ml, 1.60 mmol) dropwise under argon. The reaction mixture was stirred at R.T. for 16 hr and evaporated *in vacuo* to give crude the product (0.388 g). ¹H NMR (CDCl₃) δ 8.53 (m, 1H), 8.42 (t, 2H), 8.15 (d, 1H), 7.41 (t, 2H), 7.24 (m, 3H), 7.07 (m, 2H), 6.83 (m, 1H) MS m/e 327 (M+H)⁺.

Step 3

To a solution of the product of Step 2 (0.200 g, 0.613 mmol) in chloroform (10 ml) was added Preparation 1 (HCl salt) (0.230 g, 0.919 mmol) and Et₃N (0.43 ml, 3.06 mmol). The reaction mixture was refluxed for 16 hr, then allowed to cool and concentrated. Subjection of the residue to PTLC (1:2 EtOAc/hexane) gave the product (0.062 g, 23%) as a solid. ¹H NMR (CDCl₃) δ 8.40 (s, 1H), 8.16 (d, 1H), 7.85 (m, 1H), 7.27 (s, 1H), 7.07 (m, 2H), 6.69 (m, 1H), 4.42 (m, 1H), 4.25 (s, b, 2H), 2.92 (s, 3H), 2.82 (m, 2H), 1.67 (m, 4H), 1.47 (s, 9H). MS m/e 447 (M+H)⁺.

- 51 -

Step 4.

A mixture of the product of Step 3 (0.205 g, 0.460 mmol) and 4N HCl/1,4-dioxane (5 ml) was stirred at R.T. for 1 hr, then evaporated to give the product (0.137 g, 100%) as a solid. MS m/e 347 ($M+H$)⁺.

Step 5

To a solution of the product of Step 4 (0.042 g, 0.11 mmol) and *i*Pr₂NEt (0.057 ml, 0.33 mmol) in CH₂Cl₂ (2.0 ml) was slowly added acetyl chloride (7.0 μ l, 0.1 mmol).

The reaction mixture was stirred at R.T. for 16 hr, then concentrated. Subjection of the residue to PTLC (1:10 MeOH/CH₂Cl₂) gave the product (0.030 g, 78%) as a solid.

¹H NMR (CDCl₃) δ 8.39 (m, 1H), 8.15 (m, 1H), 7.83 (dd, J = 8.8, 2.4 Hz, 1H), 7.28 (s, 1H), 7.06 (m, 2H), 6.79 (m, 1H), 4.78 (m, 1H), 4.51 (m, 1H), 3.92 (m, 1H), 3.18 (m, 1H), 2.91 (s, 3H), 2.62 (m, 1H), 2.12 (s, 3H), 1.78 (m, 2H), 1.60 (m, 2H). MS m/e 389 ($M+H$)⁺.

STRUCTURE	¹ H NMR	MS ($M+H$) ⁺
 6A	¹ H NMR (DMSO-d6) δ 8.44 (1H, s), 8.11 (1H, m), 7.88 (1H, m), 7.55 (2H, m), 7.45 (2H, m), 7.35 (1H, m), 4.39 (1H, m), 3.20 (2H, m), 2.97 (3H, s), 2.49 (3H, s), 2.40 (2H, m), 2.13 (2H, m), 1.76 (2H, m).	325
 6B	(CDCl ₃) δ 8.40 (d, J = 2.0 Hz, 1H), 8.14 (d, J = 8.8 Hz, 1H), 7.84 (dd, J=8.8, 2.4 Hz, 1H), 7.29 (s, 1H), 7.07 (m, 2H), 6.80 (m, 1H), 4.44 (m, 1H), 3.93 (m, 2H), 2.96 (s, 3H), 2.81 (s, 3H), 2.80 (m, 2H), 1.84 (m, 4H)	425
 6C	(CDCl ₃) δ 8.39 (d, J = 2.4 Hz, 1H), 8.15 (d, J = 8.8 Hz, 1H), 7.83 (dd, J=8.8, 2.4 Hz, 1H), 7.30 (s, 1H), 7.06 (m, 2H), 6.79 (m, 1H), 4.79 (m, 1H), 4.51 (m, 1H),	403

- 52 -

6C	3.94 (d, b, 1H), 3.13 (m, 1H), 2.91 (s, 3H), 2.61 (m, 1H), 2.37 (q, J = 7.6 Hz, 2H), 1.78 (m, 2H), 1.60 (m, 2H), 1.16 (t, J = 7.6 Hz, 3H)	
6D	<p>(CDCl₃) δ 8.40 (d, J = 2.0 Hz, 1H), 8.15 (d, J = 8.8 Hz, 1H), 7.83 (dd, J=8.8, 2.4 Hz, 1H), 7.27 (s, 1H), 7.06 (m, 2H), 6.79 (m, 1H), 4.82 (m, 1H), 4.51 (m, 1H), 3.97 (d, b, 1H), 3.14 (m, 1H), 2.91 (s, 3H), 2.61 (m, 1H), 2.33 (t, J = 6.8 Hz, 2H), 1.90-1.50 (m, 6H), 0.98 (t, J = 7.6 Hz, 3H)</p>	417

Example 7

5

Step 1

To a solution of 2-amino-5-bromopyridine (5.00 g, 28.9 mmol) in anhydrous pyridine (50 ml) was added phenyl chloroformate (4.0 ml, 31.8 mmol) dropwise under 10 argon. The reaction mixture was stirred for 22 hr, then poured into EtOAc (200 ml). The resultant precipitate was collected, washed with EtOAc, and dried in vacuo.

To a solution of the crude product was added Preparation 1 (6.19 g, 28.9 mmol), Et₃N (12.0 ml, 86.7 mmol) and CHCl₃ (100 ml). The reaction mixture was refluxed for 24 hr, allowed to cool and poured into cold H₂O (~200 ml). The whole 15 residue was extracted with CH₂Cl₂ (3x200 ml), dried (Na₂SO₄), filtered and evaporated. The residue was subjected to flash chromatography (1:4 then 1:2 EtOAc/hexane) to give the product as a solid (7.20 g, 60%). ¹H NMR (CDCl₃) δ 8.17 (m, 1H), 7.94 (m, 1H), 7.68 (m, 1H), 7.22 (s, 1H), 4.32 (m, 1H), 4.18 (s, b, 2H), 2.83 (s, 3H), 2.74 (m, 2H), 1.58 (m, 4H), 1.41 (s, 9H). MS m/e 413 (M+H)⁺.

- 53 -

Step 2

5 A flask charged with 3-fluorophenyl boronic acid (0.537 g, 3.87 mmol), the product of Step 1 (7-1), (0.800 g, 1.94 mmol), Cs₂CO₃ (0.695 g, 2.13 mmol), toluene (30 ml) and H₂O (1 ml) was purged with N₂. PdCl₂(dpff)₂·CH₂Cl₂ (0.317 g, 0.387 mmol) was added, and the reaction mixture was refluxed for 1.5 hr, allowed to cool, then poured into cold water (100 ml). The whole was extracted with CH₂Cl₂ (3x100ml) and dried (Na₂SO₄). The concentrated residue was subjected to PTLC (1:2 acetone/hexane) to give the product (0.382 g, 46%) as a film. ¹H NMR (CDCl₃) δ 8.41 (d, 1H), 8.15 (d, 1H), 7.86 (dd, 1H), 7.42-7.20 (m, 4H), 7.05 (m, 1H), 4.42 (m, 1H), 4.33 (s, b, 2H), 2.92 (s, 3H), 2.82 (m, 2H), 1.78-1.50 (m, 4H), 1.46 (m, 9H). MS m/e 429 (M+H)⁺.

15

Step 3

Reaction of the product of Step 2 by the method of Example 6, Step 4 gave the
20 product. MS m/e 329 (M+H)⁺.

Step 4

Using essentially the same procedure as Example 4, reaction of the product of Step 3 with CH₃COCl and Et₃N gave the product. ¹H NMR (CDCl₃) δ 8.42 (d, 1H), 8.13 (m, 1H), 7.87 (m, 1H), 7.45 - 7.20 (m, 4H), 7.05 (m, 1H), 4.78 (m, 1H), 4.51 (m, 1H), 3.92 (m, 1H), 3.18 (m, 1H), 2.91 (s, 3H), 2.63 (m, 1H), 2.12 (s, 3H), 1.78 (m, 2H), 1.60 (m, 2H). MS m/e 371 (M+H)⁺.

- 54 -

Using appropriate procedures, the following Examples were prepared.

STRUCTURE	¹ H NMR	MS (M+H) ⁺
 7A	(CDCl ₃) δ 8.37 (s, 1H), 8.15 (d, 1H), 7.83 (m, 1H), 7.28 (s, 1H), 7.13 (m, 2H), 7.01 (m, 1H), 4.41 (m, 1H), 4.22 (s, b, 2H), 2.91 (s, 3H), 2.80 (m, 2H), 1.75-1.50 (m, 4H), 1.46 (s, 9H)	447
 7B	(CDCl ₃) δ 8.39 (s, 1H), 8.15 (d, 1H), 7.85 (d, 1H), 7.32 (s, b, 1H), 7.14 (m, 2H), 7.03 (m, 1H), 4.43 (m, 1H), 3.94 (d, b, 2H), 2.95 (s, 3H), 2.81 (s, 3H), 2.78 (m, 2H), 1.84 (m, 4H)	425
 7C	(CDCl ₃) δ 8.39 (s, 1H), 8.14 (d, 1H), 7.84 (d, 1H), 7.26 (s, 1H), 7.14 (m, 2H), 7.00 (m, 1H), 4.78 (d, b, 1H), 4.51 (m, 1H), 3.91 (d, b, 1H), 3.18 (m, 1H), 2.91 (s, 3H), 2.62 (m, 1H), 2.12 (s, 3H), 1.78 (m, 2H), 1.61 (m, 2H)	389
 7D	(CDCl ₃) δ 8.39 (s, 1H), 8.15 (d, 1H), 7.85 (m, 1H), 7.27 (s, 1H), 7.14 (m, 2H), 7.02 (m, 1H), 4.81 (d, b, 1H), 4.51 (m, 1H), 3.95 (d, b, 1H), 3.14 (m, 1H), 2.91 (s, 3H), 2.62 (m, 1H), 2.37 (q, 2H), 1.77 (m, 2H), 1.61 (m, 2H), 1.16 (t, 3H)	403
 7E	(CDCl ₃) δ 8.39 (s, 1H), 8.14 (dd, 1H), 7.85 (m, 1H), 7.26 (s, 1H), 7.12 (m, 2H), 7.02 (m, 1H), 4.81 (m, 1H), 4.51 (m, 1H), 3.97 (d, b, 1H), 3.14 (m, 1H), 2.91 (s, 3H), 2.61 (m, 1H), 2.33 (t, 2H), 1.90-1.50 (m, 6H), 0.98 (t, 3H)	417
 7F	(CDCl ₃) δ 8.42 (d, 1H), 8.13 (d, 1H), 7.87 (dd, 1H), 7.45-7.20 (m, 4H), 7.06 (m, 1H), 4.45 (m, 1H), 3.93 (m, 2H), 3.05 (s, 3H), 2.81 (s, 3H), 2.80 (m, 2H), 1.83 (m, 4H)	407
 7G	(CDCl ₃) δ 8.41 (d, 1H), 8.13 (d, 1H), 7.86 (dd, 1H), 7.45-7.20 (m, 4H), 7.05 (m, 1H), 4.81 (m, 1H), 4.52 (m, 1H), 3.95 (m, 1H), 3.13	385

- 55 -

7G	(m, 1H), 2.91 (s, 3H), 2.62 (m, 1H), 2.36 (q, 2H), 1.75 (m, 2H), 1.58 (m, 2H), 1.16 (t, 3H)	
----	---	--

Example 8

8

5

Step 1

8-1

Reaction of 6-2 with Preparation 10 using the procedure of Example 6, Step 3,
10 gave the product. ^1H NMR (CDCl_3) δ 8.38 (d, $J = 2.0$ Hz, 1H), 8.13 (d, $J = 8.8$ Hz, 1H),
7.82 (dd, $J=8.8, 2.4$ Hz, 1H), 7.36 (s, 1H), 7.06 (m, 2H), 6.78 (m, 1H), 5.04 (m, 1H),
3.70-3.10 (m, 4H), 2.98 (s, 3H), 2.10 (m, 1H), 1.97 (m, 1H), 1.45 (s, 9H). MS m/e 433
(M+H) $^+$.

15 Step 2

8-2

The product of Step 1 was treated with HCl by the procedure of Example 6,
Step 4, to give the product. ^1H NMR (CD_3OD) δ 8.63 (m, 2H), 7.85 (d, 1H), 7.42 (m,
2H), 7.13 (m, 1H), 4.82 (m, 1H), 4.80-4.40 (m, 4H), 3.22 (s, 3H), 2.43 (m, 1H), 2.32
20 (m, 1H). MS m/e 333 (M+H) $^+$.

- 56 -

Step 3

Using the procedure of Example 3, Step 3, the product was synthesized in 56% yield as a solid. ^1H NMR (CDCl_3) δ 8.38 (d, 1H), 8.22 (d, 1H), 7.90 (m, 1H), 7.26 (s, 1H), 7.06 (m, 2H), 6.83 (m, 1H), 5.15 (m, 1H), 3.67 (m, 1H), 3.52 (m, 1H), 3.35 (m, 1H), 3.25 (m, 1H), 3.07 (s, 3H), 2.90 (s, 3H), 2.25 (m, 1H), 2.08 (m, 1H). MS m/e 411 (M+H) $^+$.

Example 9

10

9

A mixture of Example 6B (0.030 g, 0.071 mmol), CH_2Cl_2 (5 ml) and *m*CPBA (57-80%, 0.032 g) was stirred at R.T. for 1.5 hr, then poured into H_2O (10 ml). The whole was extracted with CH_2Cl_2 (3x20 ml), dried (Na_2SO_4), filtered and concentrated. Subjection of the residue to PTLC (1:20 $\text{CH}_3\text{OH}/\text{CH}_2\text{Cl}_2$) gave the product (0.0194 mg, 62%) as a solid. ^1H NMR (CDCl_3) δ 9.81 (s, 1H), 8.46 (d, $J = 2.0$ Hz, 1H), 8.37 (d, $J = 9.2$ Hz, 1H), 7.49 (dd, $J=8.8, 2.0$ Hz, 1H), 7.04 (m, 2H), 6.86 (m, 1H), 4.39 (s, b, 1H), 3.95 (d, b, 2H), 3.02 (s, 3H), 2.83 (m, 5H), 1.88 (m, 4H). MS m/e 441 (M+H) $^+$.

20

Example 10

10

Step 1

10-1

- 57 -

A flask charged with 2-amino-5-bromopyrazine (4.00 g, 23.0 mmol), 3,5-difluorophenylboronic acid (5.44 g, 34.5 mmol), toluene (150 ml), water (5 ml) and cesium carbonate (8.24 g, 25.3 mmol) was purged with N₂. PdCl₂(dppf)·CH₂Cl₂ (0.93 g, 1.15 mmol) was added and the mixture was refluxed 2 hr, allowed to cool, then poured into cold water (100 ml). The whole was extracted with CH₂Cl₂ (3x200 ml), dried (Na₂SO₄), and filtered. The concentrated residue was subjected to flash column chromatography (1:4 then 1:2 acetone/hexane) to give the product (4.42 g, 93%).

¹HNMR (CDCl₃) δ 8.42 (d, J = 1.6 Hz, 1H), 8.05 (d, J = 1.2 Hz, 1H), 7.42 (m, 2H), 6.79 (m, 1H), 4.75 (s, 2H). MS m/e 208 (M+H)⁺.

10

Step 2

To a solution of the product of Step 1 (2.00 g, 9.65 mmol) in anhydrous pyridine (40 ml) was added phenyl chloroformate dropwise under argon. The reaction mixture was stirred for 16 hr, then concentrated. To the residue was added chloroform (50 ml), followed by Preparation 1 (3.10 g, 14.5 mmol) and Et₃N (4.0 ml, 28.9 mmol). The reaction mixture was refluxed for 4 hr, then allowed to cool and poured into water. The whole was extracted with CH₂Cl₂ (3x200 ml) and dried (Na₂SO₄), filtered and concentrated. Crystallization of the residue (acetone/hexane) gave the product (2.52 g, 58%). The mother liquor was concentrated and subjected to flash chromatography (1:5 acetone/hexane) to afford additional product (0.943 g, total 80%). ¹H NMR (CDCl₃) δ 9.45 (d, J = 1.6 Hz, 1H), 8.55 (d, J = 1.2 Hz, 1H), 7.51 (m, 2H), 7.17 (s, 1H), 6.85 (m, 1H), 4.43 (m, 1H), 4.24 (m, 2H), 2.95 (s, 3H), 2.82 (m, 2H), 1.63 (m, 4H), 1.47 (s, 9H). MS m/e 448 (M+H)⁺.

- 58 -

Step 3

The product of Step 2 (2.50 g, 5.59 mmol) was treated with 4M HCl/1,4-dioxane (30 ml) by the procedure of Example 6, Step 4 to afford the product. ¹H NMR (CD₃OD) δ 9.19 (s, b, 1H), 8.79 (s, b, 1H), 7.66 (m, 2H), 7.03 (m, 1H), 4.42 - 3.49 (m, 5H), 3.16 (m, 2H), 3.04 (s, 3H), 2.20-1.95 (m, 4H). MS m/e 348 (M+H)⁺.

Step 4

To a mixture of the product of Step 3 (2.15 g, 5.59 mmol), and Et₃N (3.9 ml, 28.0 mmol) in CH₂Cl₂ (50 ml) was added acetic anhydride (0.58 ml, 6.15 mmol). The reaction mixture was stirred for 16 hr, then poured into water (100 ml). The whole was extracted with CH₂Cl₂ (3x200 ml), dried (Na₂SO₄), filtered, and evaporated. The residue was subjected to flash chromatography (gradient 1:100 – 5:95 MeOH/CH₂Cl₂) to give the product (1.71 g, 78%). ¹H NMR (CDCl₃) δ 9.44 (d, J = 1.2 Hz, 1H), 8.55 (d, J = 1.6 Hz, 1H), 7.51 (m, 2H), 7.23 (s, 1H), 6.84 (m, 1H), 4.79 (m, 1H), 4.53 (m, 1H), 3.91 (m, 1H), 3.20 (m, 1H), 2.94 (s, 3H), 2.63 (m, 1H), 2.12 (s, 3H), 1.86-1.55 (m, 4H). MS m/e 390 (M+H)⁺.

Use of the appropriate procedures afforded the following compounds:

STRUCTURE	¹ H NMR	MS (M+H) ⁺
 10A	(CDCl ₃) δ 9.44 (bs, 1H), 8.55 (bs, 1H), 7.52 (m, 2H), 7.22 (s, 1H), 6.85 (m, 1H), 4.79 (m, 1H), 4.53 (m, 1H), 3.91 (m, 1H), 3.20 (m, 1H), 2.94 (s, 3H), 2.63 (m, 1H), 2.37 (m, 2H), 1.86-1.55 (m, 4H), 1.16 (m, 3H).	404
 10B	(CDCl ₃) δ 9.45 (bs, 1H), 8.56 (bs, 1H), 7.52 (m, 2H), 7.19 (s, 1H), 6.85 (m, 1H), 4.81 (m, 1H), 4.53 (m, 1H), 3.98 (m, 1H), 3.15 (m, 1H), 2.94 (s, 3H), 2.62 (m,	418

- 59 -

10B	1H), 2.33 (m, 2H), 1.83-1.56 (m, 6H), 0.98 (m, 3H).	
	(CDCl ₃) δ 9.45 (bs, 1H), 8.56 (bs, 1H), 7.52 (m, 2H), 7.26 (s, 1H), 6.85 (t, 1H), 4.82 (b, 1H), 4.53 (m, 1H), 4.10 (b, 1H), 3.15 (t, 1H), 2.93 (m, 4H), 2.62 (t, 1H), 1.90-1.50 (m, 12H).	444
	(CDCl ₃) δ 9.45 (d, J = 1.2 Hz, 1H), 8.56 (d, J = 1.2 Hz, 1H), 7.51 (m, 2H), 7.21 (s, 1H), 6.84 (m, 1H), 4.83 (m, 1H), 4.54 (m, 1H), 4.05 (m, 1H), 3.16 (m, 1H), 2.94 (s, 3H), 2.84 (m, 1H), 2.62 (m, 1H), 1.82 (m, 2H), 1.58 (m, 2H), 1.14 (m, 6H)	418
	(CDCl ₃) δ 9.45 (d, J = 1.2 Hz, 1H), 8.56 (d, J = 1.2 Hz, 1H), 7.51 (m, 2H), 7.22 (s, 1H), 6.84 (m, 1H), 4.77 (m, 1H), 4.56 (m, 1H), 4.38 (m, 1H), 3.22 (m, 1H), 2.94 (s, 3H), 2.67 (m, 1H), 1.90-1.55 (m, 5H), 1.00 (m, 2H), 0.78 (m, 2H)	416
	(CDCl ₃) δ 9.43 (d, J = 1.6 Hz, 1H), 8.55 (d, J = 1.6 Hz, 1H), 7.51 (m, 2H), 7.28 (s, 1H), 6.84 (m, 1H), 4.76 (m, 1H), 4.56 (m, 1H), 4.11 (q, 2H), 4.02 (m, 1H), 3.43 (s, 3H), 3.17 (m, 1H), 2.93 (s, 3H), 2.68 (m, 1H), 1.95-1.57 (m, 4H)	420
	(CDCl ₃) δ 9.45 (d, J = 1.6 Hz, 1H), 8.55 (d, J = 1.2 Hz, 1H), 7.51 (m, 2H), 7.24 (s, 1H), 6.84 (m, 1H), 4.82 (m, 1H), 4.53 (m, 1H), 4.03 (m, 1H), 3.15 (m, 1H), 2.93 (s, 3H), 2.61 (m, 1H), 2.49 (m, 1H), 1.95-1.20 (m, 14 H)	458
	(CDCl ₃) δ 9.44 (d, J = 1.6 Hz, 1H), 8.55 (d, J = 1.6 Hz, 1H), 7.51 (m, 2H), 7.23 (s, 1H), 6.84 (m, 1H), 4.82 (m, 1H), 4.53 (m, 1H), 4.00 (m, 1H), 3.15 (m, 1H), 2.93 (s, 3H), 2.61 (m, 1H), 2.23 (m, 2H), 2.14 (m, 1H), 1.90-1.50 (m, 4H), 0.98 (m, 6H)	432

- 60 -

	(CDCl ₃) δ 9.44 (s, 1H), 8.55 (s, 1H), 7.51 (m, 2H), 7.25 (s, 1H), 6.84 (m, 1H), 4.85 (m, 1H), 4.53 (m, 1H), 4.05 (m, 1H), 3.17 (m, 1H), 2.93 (s, 3H), 2.61 (m, 1H), 2.28 (q, 2H), 1.90-1.50 (m, 4H), 1.04 (m, 9H)	446
	(CDCl ₃) δ 9.42 (d, J = 1.6 Hz, 1H), 8.53 (d, J = 1.6 Hz, 1H), 7.49 (m, 2H), 7.32 (s, 1H), 6.83 (m, 1H), 4.82 (m, 1H), 4.57 (m, 1H), 3.97 (m, 1H), 3.18 (m, 1H), 2.93 (s, 3H), 2.62 (m, 1H), 2.30 (m, 2H), 1.85-1.50 (m, 4H), 1.03 (m, 1H), 0.57 (m, 2H), 0.17 (m, 2H)	430
	(CDCl ₃) δ 9.45 (s, 1H), 8.55 (s, 1H), 7.51 (m, 2H), 7.24 (s, 1H), 6.83 (m, 1H), 4.55 (m, 3H), 2.93 (m, 3H), 2.84 (m, 2H), 1.90-1.50 (m, 4H), 1.29 (s, 9H)	432
	(CDCl ₃) δ 9.44 (d, J = 1.6 Hz, 1H), 8.55 (d, J = 1.6 Hz, 1H), 7.49 (m, 2H), 7.45 (m, 1H), 7.31 (m, 1H), 7.28 (s, 1H), 7.05 (m, 1H), 6.84 (m, 1H), 4.62 (m, 3H), 3.08 (m, 2H), 2.97 (s, 3H), 1.90-1.60 (m, 4H)	458
	(CDCl ₃) δ 9.44 (d, J = 1.6 Hz, 1H), 8.55 (d, J = 1.6 Hz, 1H), 7.52 (m, 2H), 7.42 (m, 5H), 7.26 (s, 1H), 6.85 (m, 1H), 4.90 (bs, 1H), 4.78 (m, 1H), 3.90 (bs, 1H), 3.15 (m, b, 1H), 2.97 (s, 3H), 2.87 (bs, 1H), 2.90-1.50 (m, b, 4H)	452
	(CDCl ₃) δ 9.45 (d, J = 1.6 Hz, 1H), 8.55 (d, J = 1.2 Hz, 1H), 7.51 (m, 2H), 7.22 (s, 1H), 6.85 (m, 1H), 4.82 (b, 1H), 4.58 (m, 1H), 4.07 (b, 1H), 3.17 (m, 1H), 2.94 (s, 3H), 2.75 (m, 1H), 2.61 (m, 1H), 1.90-1.50 (m, 5H), 1.38 (m, 3H), 1.12 (m, 3H), 0.92 (m, 3H)	446

- 61 -

 10O	$(\text{CDCl}_3) \delta 9.44 (\text{d}, J = 1.2 \text{ Hz}, 1\text{H}), 8.55 (\text{s}, 1\text{H}), 7.51 (\text{m}, 2\text{H}), 7.22 (\text{s}, 1\text{H}), 6.85 (\text{m}, 1\text{H}), 4.78 (\text{m}, 1\text{H}), 4.52 (\text{m}, 1\text{H}), 3.81 (\text{m}, 1\text{H}), 3.27 (\text{m}, 1\text{H}), 3.08 (\text{m}, 1\text{H}), 2.92 (\text{s}, 3\text{H}), 2.65 (\text{m}, 1\text{H}), 2.34 (\text{m}, 2\text{H}), 2.16 (\text{m}, 2\text{H}), 2.10-1.40 (\text{m}, 6\text{H})$	430
 10P	$(\text{CDCl}_3) \delta 9.44 (\text{s}, 1\text{H}), 8.55 (\text{s}, 1\text{H}), 7.51 (\text{m}, 2\text{H}), 7.28 (\text{s}, 1\text{H}), 6.83 (\text{m}, 1\text{H}), 4.92 (\text{b}, 1\text{H}), 4.55 (\text{m}, 1\text{H}), 4.15 (\text{b}, 1\text{H}), 3.17 (\text{m}, 1\text{H}), 2.92 (\text{s}, 3\text{H}), 2.62 (\text{m}, 1\text{H}), 2.54 (\text{m}, 1\text{H}), 1.90-1.40 (\text{m}, 8\text{H}), 0.87 (\text{m}, 6\text{H})$	446
 10Q	$(\text{CDCl}_3) \delta 9.42 (\text{d}, J = 1.6 \text{ Hz}, 1\text{H}), 8.68 (\text{bs}, 2\text{H}), 8.55 (\text{d}, J = 1.6 \text{ Hz}, 1\text{H}), 7.76 (\text{m}, 1\text{H}), 7.51 (\text{m}, 2\text{H}), 7.38 (\text{m}, 1\text{H}), 7.28 (\text{s}, 1\text{H}), 6.83 (\text{m}, 1\text{H}), 4.90 (\text{bs}, 1\text{H}), 4.80 (\text{m}, 1\text{H}), 3.85 (\text{bs}, 1\text{H}), 3.25 (\text{bs}, 1\text{H}), 2.97 (\text{s}, 3\text{H}), 2.90 (\text{bs}, 1\text{H}), 2.00-1.50 (\text{m}, \text{b}, 4\text{H})$	453
 10R	$^1\text{HNMR} (\text{CDCl}_3) \delta 9.44 (\text{d}, 1\text{H}), 8.62 (\text{bs}, 1\text{H}), 8.55 (\text{d}, 1\text{H}), 7.51 (\text{m}, 2\text{H}), 6.84 (\text{m}, 1\text{H}), 5.06 (\text{m}, 1\text{H}), 3.70-3.10 (\text{m}, 4\text{H}), 3.01 (\text{s}, 3\text{H}), 2.12 (\text{m}, 1\text{H}), 1.98 (\text{m}, 1\text{H}), 1.47 (\text{s}, 9\text{H}).$	434
 10S	$(\text{CDCl}_3) \delta 9.42 (\text{s}, 1\text{H}), 8.58 (\text{s}, 1\text{H}), 7.52 (\text{m}, 2\text{H}), 7.24 (\text{s}, 1\text{H}), 6.85 (\text{m}, 1\text{H}), 5.16 (\text{m}, 1\text{H}), 3.67 (\text{m}, 1\text{H}), 3.51 (\text{m}, 1\text{H}), 3.37 (\text{m}, 1\text{H}), 3.25 (\text{m}, 1\text{H}), 3.09 (\text{s}, 3\text{H}), 2.89 (\text{s}, 3\text{H}), 2.26 (\text{m}, 1\text{H}), 2.10 (\text{m}, 1\text{H})$	412
 10T	$(\text{CDCl}_3) \delta 9.42 (\text{s}, 1\text{H}), 8.56 (\text{m}, 1\text{H}), 7.50 (\text{m}, 2\text{H}), 7.32 (\text{d}, 1\text{H}), 6.84 (\text{m}, 1\text{H}), 5.11 (\text{m}, 1\text{H}), 3.82-3.28 (\text{m}, 4\text{H}), 3.01 (\text{d}, 3\text{H}), 2.32-1.90 (\text{m}, 5\text{H})$	376
 10U	$(\text{CDCl}_3) \delta 9.42 (\text{s}, 1\text{H}), 8.56 (\text{m}, 1\text{H}), 7.50 (\text{m}, 2\text{H}), 7.27 (\text{d}, 1\text{H}), 6.84 (\text{m}, 1\text{H}), 5.11 (\text{m}, 1\text{H}), 4.87-3.25 (\text{m}, 4\text{H}), 3.02 (\text{d}, 3\text{H}), 2.40-1.90 (\text{m}, 4\text{H}), 1.15 (\text{m}, 3\text{H})$	390

- 62 -

	(CDCl ₃) δ 9.43 (s, 1H), 8.57 (bs, 1H), 7.51 (m, 2H), 2.27 (s, 1H), 6.83 (m, 1H), 5.09 (m, 1H), 3.90-3.30 (m, 4H), 3.03 (d, 3H), 2.65 (m, 1H), 2.30-1.90 (m, 2H), 1.14 (m, 6H)	404
	(CDCl ₃) δ 9.44 (s, 1H), 8.56 (s, 1H), 7.52 (m, 2H), 7.25 (s, 1H), 6.85 (m, 1H), 4.43 (m, 1H), 3.94 (b, 2H), 2.98 (s, 3H), 2.81 (m, 5H), 1.84 (m, 4H)	426
	(CDCl ₃) δ 9.42 (s, 1H), 8.58 (s, 1H), 7.71 (m, 2H), 7.42 (m, 1H), 7.19 (s, 1H), 7.10 (m, 1H), 4.42 (m, 1H), 3.92 (m, 2H), 2.97 (s, 3H), 2.80 (s, 5H), 1.83 (m, 4H).	408
	(CDCl ₃) δ 9.42 (d, J = 1.6 Hz, 1H), 8.57 (s, 1H), 7.72 (m, 2H), 7.42 (m, 1H), 7.24 (s, 1H), 7.08 (m, 1H), 4.79 (m, 1H), 4.53 (m, 1H), 3.91 (m, 1H), 3.19 (m, 1H), 2.93 (s, 3H), 2.62 (m, 1H), 2.12 (s, 3H), 1.90-1.50 (m, 4H)	372
	(CDCl ₃) δ 9.44 (d, J = 1.6 Hz, 1H), 8.57 (d, J = 1.6 Hz, 1H), 7.71 (m, 2H), 7.46 (m, 1H), 7.25 (s, 1H), 7.10 (m, 1H), 4.90 (b, 1H), 4.53 (m, 1H), 3.95 (b, 1H), 3.14 (m, 1H), 2.93 (s, 3H), 2.61 (m, 1H), 2.37 (q, 2H), 1.90-1.50 (m, 4H), 1.16 (t, 3H)	386
	(CDCl ₃) δ 9.44 (d, J = 1.6 Hz, 1H), 8.58 (d, J = 1.2 Hz, 1H), 7.71 (m, 2H), 7.43 (m, 1H), 7.19 (s, 1H), 7.11 (m, 1H), 4.93 (b, 1H), 4.58 (m, 1H), 4.08 (b, 1H), 3.18 (m, 1H), 2.94 (s, 3H), 2.82 (m, 1H), 2.63 (m, 1H), 1.90-1.50 (m, 4H), 1.14 (m, 6H)	400
	(CDCl ₃) δ 9.45 (s, 1H), 8.59 (s, 1H), 7.72 (m, 2H), 7.45 (m, 1H), 7.20 (s, 1H), 7.11 (m, 1H), 4.78 (m, 1H), 4.58 (m, 1H), 4.37 (b, 1H), 3.24 (m, 1H), 2.95 (s, 3H), 2.88 (m, 1H), 1.90-1.50 (m, 5H),	398

- 63 -

	0.99 (m, 2H), 0.78 (m, 2H)	
 10CC	(CDCl ₃) δ 9.48 (d, J = 1.6 Hz, 1H), 8.72 (d, J = 1.6 Hz, 1H), 7.79 (m, 1H), 7.21 (s, 1H), 7.15 (m, 1H), 7.07 (m, 1H), 4.81 (b, 1H), 4.57 (m, 1H), 3.93 (b, 1H), 3.21 (t, 1H), 2.94 (s, 3H), 2.63 (t, 1H), 2.12 (s, 3H), 1.90-1.50 (m, 4H)	390
 10DD	(CDCl ₃) δ 9.47 (d, J = 1.6 Hz, 1H), 8.71 (m, 1H), 7.78 (m, 1H), 7.27 (s, 1H), 7.15 (m, 1H), 7.07 (m, 1H), 4.81 (b, 1H), 4.57 (m, 1H), 3.95 (b, 1H), 3.15 (t, 1H), 2.93 (s, 3H), 2.63 (t, 1H), 2.37 (q, 2H), 1.90-1.50 (m, 4H), 1.16 (t, 3H)	404
 10EE	(CDCl ₃) δ 9.48 (d, J = 1.6 Hz, 1H), 8.72 (m, 1H), 7.78 (m, 1H), 7.23 (s, 1H), 7.15 (m, 1H), 7.07 (m, 1H), 4.82 (b, 1H), 4.55 (m, 1H), 4.04 (b, 1H), 3.17 (b, 1H), 2.94 (s, 3H), 2.82 (m, 1H), 2.62 (b, 1H), 1.90-1.50 (m, 4H), 1.15 (m, 6H)	418
 10FF	(CDCl ₃) δ 9.48 (d, J = 1.6 Hz, 1H), 8.71 (m, 1H), 7.78 (m, 1H), 7.31 (s, 1H), 7.15 (m, 1H), 7.07 (m, 1H), 4.78 (b, 1H), 4.55 (m, 1H), 4.35 (b, 1H), 3.15 (b, 1H), 2.94 (s, 3H), 2.65 (b, 1H), 1.90-1.50 (m, 5H), 0.98 (m, 2H), 0.77 (m, 2H)	416
 10GG	(CDCl ₃) δ 9.48 (d, J = 1.2 Hz, 1H), 8.70 (m, 1H), 7.78 (m, 1H), 7.31 (s, 1H), 7.15 (m, 1H), 7.07 (m, 1H), 4.81 (b, 1H), 4.55 (m, 1H), 4.09 (b, 1H), 3.15 (b, 1H), 2.93 (s, 3H), 2.87 (m, 1H), 2.63 (b, 1H), 1.90-1.50 (m, 12H)	444
 10HH	(CDCl ₃) δ 9.43 (d, J = 1.2 Hz, 1H), 8.57 (d, J = 1.2 Hz, 1H), 7.97 (d, J = 1.6 Hz, 1H), 7.83 (m, 1H), 7.40 (m, 2H), 7.22 (s, 1H), 4.78 (m, 1H), 4.53 (m, 1H), 3.90 (m, 1H), 3.19 (m, 1H), 2.93 (s, 3H), 2.62 (m, 1H), 2.12 (s, 3H), 1.79 (m, 2H), 1.59 (m, 2H)	388

- 64 -

 10II	$(\text{CDCl}_3) \delta$ 9.43 (d, $J = 1.6$ Hz, 1H), 8.57 (d, $J = 1.6$ Hz, 1H), 7.97 (m, 1H), 7.85 (m, 1H), 7.40 (m, 2H), 7.23 (s, 1H), 4.81 (m, 1H), 4.55 (m, 1H), 3.97 (b, 1H), 3.15 (b, 1H), 2.93 (s, 3H), 2.64 (b, 1H), 2.37 (q, 2H), 1.90-1.50 (m, 4H), 1.16 (t, 3H)	402
 10JJ	$(\text{CDCl}_3) \delta$ 9.42 (d, $J = 1.6$ Hz, 1H), 8.56 (d, $J = 2.0$ Hz, 1H), 7.95 (m, 1H), 7.81 (m, 1H), 7.39 (m, 2H), 7.21 (s, 1H), 4.81 (b, 1H), 4.55 (m, 1H), 4.05 (b, 1H), 3.17 (b, 1H), 2.92 (s, 3H), 2.81 (m, 1H), 2.61 (b, 1H), 1.78 (m, 2H), 1.59 (m, 2H), 1.12 (m, 6H)	416
 10KK	$(\text{CDCl}_3) \delta$ 9.44 (d, $J = 1.2$ Hz, 1H), 8.57 (d, $J = 1.2$ Hz, 1H), 7.97 (m, 1H), 7.82 (m, 1H), 7.39 (m, 2H), 7.22 (s, 1H), 4.78 (m, 1H), 4.55 (m, 1H), 4.35 (m, 1H), 3.23 (m, 1H), 2.94 (s, 3H), 2.86 (m, 1H), 1.90-1.50 (m, 5H), 0.99 (m, 2H), 0.78 (m, 2H)	414
 10LL	$(\text{CDCl}_3) \delta$ 9.46 (s, 1H), 8.64 (s, 1H), 8.24 (s, 1H), 8.14 (d, 1H), 7.63 (m, 2H), 7.20 (s, 1H), 4.48 (m, 1H), 3.97 (b, 2H), 2.98 (m, 7H), 1.81 (m, 4H), 1.37 (t, 3H)	458
 10MM	$(\text{CDCl}_3) \delta$ 9.46 (s, 1H), 8.64 (s, 1H), 8.24 (s, 1H), 8.14 (d, 1H), 7.61 (m, 2H), 7.21 (s, 1H), 4.45 (m, 1H), 3.93 (b, 2H), 2.98 (m, 5H), 2.28 (m, 1H), 1.82 (m, 4H), 1.19 (m, 2H), 0.99 (m, 2H)	484
 10NN	$(\text{CDCl}_3) \delta$ 9.48 (s, 1H), 8.63 (s, 1H), 8.24 (s, 1H), 8.17 (d, 1H), 7.63 (m, 2H), 7.24 (s, 1H), 4.79 (b, 1H), 4.57 (m, 1H), 3.92 (b, 1H), 3.12 (t, 1H), 2.95 (s, 3H), 2.63 (t, 1H), 2.13 (s, 3H), 1.90 (m, 2H), 1.82 (m, 2H)	422
 10OO	$(\text{CDCl}_3) \delta$ 9.47 (s, 1H), 8.63 (s, 1H), 8.24 (s, 1H), 8.17 (d, 1H), 7.63 (m, 2H), 7.21 (s, 1H), 4.83 (b, 1H), 4.55 (m, 1H), 3.98 (b, 1H), 3.18 (t, 1H), 2.94 (s, 3H), 2.63 (t, 1H), 2.38 (q, 2H), 1.90-	436

- 65 -

	1.50 (m, 4H), 1.16 (t, 3H)	
 10PP	(CDCl ₃) δ 9.47 (s, 1H), 8.63 (s, 1H), 8.24 (s, 1H), 8.15 (d, 1H), 7.62 (m, 2H), 7.22 (s, 1H), 4.83 (b, 1H), 4.58 (m, 1H), 4.05 (b, 1H), 3.19 (t, 1H), 2.94 (s, 3H), 2.82 (m, 1H), 2.63 (b, 1H), 1.90-1.50 (m, 4H), 1.14 (m, 6H)	450
 10QQ	(CDCl ₃) δ 9.48 (s, 1H), 8.63 (s, 1H), 8.24 (s, 1H), 8.15 (d, 1H), 7.62 (m, 2H), 7.22 (s, 1H), 4.79 (b, 1H), 4.58 (m, 1H), 4.37 (b, 1H), 3.22 (b, 1H), 2.95 (s, 3H), 2.67 (b, 1H), 2.90-1.50 (m, 5H), 0.99 (m, 2H), 0.78 (m, 2H)	448
 10RR	(CDCl ₃) δ 9.46 (d, J = 1.2 Hz, 1H), 8.71 (bs, 2H), 8.63 (d, J = 1.2 Hz, 1H), 8.24 (s, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.60 (t, J = 8.0 Hz, 1H), 7.39 (m, b, 1H), 7.29 (s, 1H), 4.90 (bs, 1H), 4.62 (m, 1H), 3.83 (bs, 1H), 3.23 (bs, 1H), 2.99 (s, 3H), 2.90 (bs, 1H), 1.90-1.50 (m, 4H)	485

Example 11

5

11

Step 1

Reaction of 2-amino-5-bromopyrazine and Preparation 11 by the procedure of Example 10, Step 2 gave the product. ¹H NMR (CDCl₃) δ 9.18 (d, J = 1.2 Hz, 1H), 8.26 (d, J = 1.2 Hz, 1H), 7.11 (s, 1H), 4.42 (m, 1H), 3.93 (m, 2H), 2.95 (s, 3H), 2.79 (m, 5H), 1.81 (m, 4H). MS m/e 394 (M+H)⁺.

- 66 -

Step 2.

- A flask charged with 11-1 (0.090 g, 0.23 mmol), 2,5-difluorophenylboronic acid (0.044 g, 0.28 mmol), toluene (10 ml), water (0.3 ml) and cesium carbonate (0.082 g, 0.25 mmol) was purged with N₂. PdCl₂(dpff)₂CH₂Cl₂ (0.015 g, 0.019 mmol) was added and the reaction mixture was refluxed for 3 hr, allowed to cool, and filtered. The concentrated filtrate was subjected to PTLC (1:1 acetone/hexane) to give the product (0.046 g, 47%). ¹H NMR (CDCl₃) δ 9.47 (d, J = 1.6 Hz, 1H), 8.72 (m, 1H), 7.78 (m, 1H), 7.22 (s, 1H), 7.15 (m, 1H), 7.06 (m, 1H), 4.48 (m, 1H), 3.95 (m, 2H), 2.98 (s, 3H), 2.83 (m, 5H), 1.86 (m, 4H). MS m/e 426 (M+H)⁺.

Use of the appropriate boronic acid and essentially the same procedure afforded the following compounds:

STRUCTURE	¹ H NMR	MS (M+H) ⁺
 11A	(CDCl ₃) δ 9.46 (s, 1H), 8.62 (s, 1H), 8.29 (s, 1H), 8.20 (m, 1H), 7.69 (m, 1H), 7.60 (m, 1H), 7.22 (m, 1H), 4.44 (m, 1H), 3.95 (m, 2H), 2.98 (s, 3H), 2.81 (m, 5H), 1.83 (m, 4H).	415
 11B	(CDCl ₃) δ 9.43 (s, 1H), 8.59 (s, 1H), 7.80 (s, 1H), 7.75 (d, 1H), 7.37 (t, 1H), 7.25 (d, 1H), 7.16 (s, 1H), 4.50 (m, 1H), 3.95 (b, 2H), 2.97 (s, 3H), 2.82 (m, 5H), 2.44 (s, 3H), 1.84 (m, 4H)	404
 11C	(CDCl ₃) δ 9.42 (d, J = 1.6 Hz, 1H), 8.59 (s, 1H), 7.52 (m, 2H), 7.39 (t, 1H), 7.16 (s, 1H), 6.97 (m, 1H), 4.48 (m, 1H), 3.94 (b, 2H), 3.89 (s, 3H), 2.97 (s, 3H), 2.81 (m, 5H), 1.84 (m, 4H)	420
 11D	(CDCl ₃) δ 9.47 (s, 1H), 8.64 (s, 1H), 8.24 (s, 1H), 8.14 (d, 1H), 7.63 (m, 2H), 7.26 (s, 1H), 4.49 (bs, 1H), 3.94 (b, 2H), 2.98 (s, 3H), 2.81 (bs, 5H), 1.85 (bs, 4H)	458

- 67 -

 11E	$(CDCl_3) \delta$ 9.42 (s, 1H), 8.60 (s, 1H), 7.98 (s, 1H), 7.84 (m, 1H), 7.40 (m, 2H), 7.19 (s, 1H), 4.42 (m, 1H), 3.90 (m, 2H), 2.97 (s, 3H), 2.81 (m, 5H), 1.84 (m, 4H).	424
---	---	-----

Example 12

Step 1

Reaction of 3-fluorophenylboronic acid with 2-bromo-5-nitrothiophene by
 10 essentially the procedure of Example 1, Step 1 gave the product. ^1H NMR (CDCl_3 , 400 MHz) δ 7.91 (1H, m), 7.42 (2H, m), 7.32 (1H, m), 7.25 (1H, m), 7.14 (1H, m).

Step 2

Reaction of the product of Step 1 with $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$ and NaBH_4 by essentially the procedure of Example 2, Step 2 gave the product. ^1H NMR (CDCl_3 , 400 MHz) δ 7.25 (2H, m), 7.14 (1H, m), 6.48 (1H, d, J = 2 Hz), 6.85 (1H, m), 6.15 (1H, d, J = 2 Hz), 3.87 (2H, b).

- 68 -

Step 3

- Reaction of the product of Step 2 with N,N'-disuccinimidyl carbonate and
 5 Preparation 1 by the procedure of Example 2, Step 3 gave the product. ^1H NMR
 $(\text{CDCl}_3, 400 \text{ MHz}) \delta 7.25 (3\text{H}, \text{m}), 7.06 (1\text{H}, \text{m}), 7.05 (1\text{H}, \text{d}, J = 4 \text{ Hz}), 6.89 (1\text{H}, \text{m}),$
 $6.50 (1\text{H}, \text{d}, J = 4 \text{ Hz}), 4.44 (1\text{H}, \text{m}), 4.22 (2\text{H}, \text{m}), 2.86 (3\text{H}, \text{s}), 2.79 (2\text{H}, \text{m}), 1.60$
 $(4\text{H}, \text{m}) 1.47 (9\text{H}, \text{s})$. MS m/e 434 ($\text{M}+\text{H}$)⁺.

Step 4

10

- Reaction of the product of Step 3 with HCl by essentially the procedure of
 Example 6, Step 4 gave the product. ^1H NMR ($\text{CD}_3\text{OD}, 400 \text{ MHz}$) $\delta 7.36 - 7.24 (4\text{H}, \text{m}), 6.90 (1\text{H}, \text{m}), 6.73 (1\text{H}, \text{m}), 4.37 (1\text{H}, \text{m}), 3.50 (2\text{H}, \text{m}), 3.13 (2\text{H}, \text{m}), 2.96 (3\text{H}, \text{s}),$
 15 $2.09 - 1.91 (4\text{H}, \text{m})$.

Step 5

- Reaction of the product of Step 4 with methanesulfonyl chloride by essentially
 the procedure of Example 3, Step 3 gave the product. ^1H NMR ($\text{CDCl}_3, 400 \text{ MHz}$) $\delta 7.45 (1\text{H}, \text{s}), 7.29 (3\text{H}, \text{m}), 7.05 (1\text{H}, \text{d}, J = 4 \text{ Hz}), 6.88 (1\text{H}, \text{m}), 6.54 (1\text{H}, \text{d}, J = 4 \text{ Hz}),$
 20 $4.40 (1\text{H}, \text{m}), 3.86 (2\text{H}, \text{m}), 2.87 (3\text{H}, \text{s}), 2.74 (3\text{H}, \text{s}), 2.68 (2\text{H}, \text{m}), 1.76 (4\text{H}, \text{m})$. MS
 $m/e 412 (\text{M}+\text{H})^+$.

Use of the appropriate reagents and procedures afforded the following
 compounds.

- 69 -

STRUCTURE	¹ H NMR	MS (M+H) ⁺
 12A		430
 12B		444
 12C		484
 12D	(CDCl ₃) δ 7.46 (1H, s), 7.28 (3H, m), 7.03 (1H, s), 6.86 (1H, m), 6.51 (1H, s), 4.74 (1H, m), 4.53 (1H, m), 3.85 (1H, m), 3.14 (1H, m), 2.86 (3H, s), 2.58 (1H, m), 2.10 (3H, s), 1.78 (2H, m), 1.58 (2H, m)	376
 12E	(CDCl ₃) δ 7.63 (1H, s), 7.29 (3H, m), 7.03 (1H, d, J = 4 Hz), 6.87 (1H, m), 6.49 (1H, d, J = 4 Hz), 4.70 (1H, m), 4.52 (1H, m), 4.30 (1H, m), 3.15 (1H, m), 2.85 (3H, s), 2.61 (1H, m), 1.72 (3H, m), 1.58 (2H, m), 0.95 (2H, m), 0.74 (2H, m).	402
 12F	(CDCl ₃) δ 8.66 (2H, m), 7.75 (1H, d, J = 7.6 Hz), 7.56 (1H, s), 7.38 (1H, m), 7.28 (3H, m), 7.07 (1H, d, J = 4 Hz), 6.87 (1H, m), 6.49 (1H, d, J = 4 Hz), 4.87 (1H, m), 4.57 (1H, m), 3.78 (1H, m), 3.17 (1H, m), 2.88 (3H, s), 2.84 (1H, m), 1.81 – 1.56 (4H, m).	439
 12G	(CDCl ₃) δ 7.68 (s, 1H), 7.03 (m, 3H), 6.61 (m, 1H), 6.50 (m, 1H), 4.75 (m, 1H), 4.50 (m, 1H), 3.89 (m, 1H), 3.15 (m, 1H), 2.87 (s, 3H), 2.59 (m, 1H), 2.10 (s, 3H),	394

- 70 -

12G	1.75 (m, 2H), 1.58 (m, 2H).	
	(CDCl ₃) δ 7.46 (s, 1H), 7.04 (m, 3H), 6.62 (m, 1H), 6.50 (m, 1H), 4.77 (m, 1H), 4.51 (m, 1H), 3.94 (m, 1H), 3.09 (m, 1H), 2.87 (s, 3H), 2.59 (m, 1H), 2.36 (q, J = 7.6 Hz, 2H), 1.75 (m, 2H), 1.57 (m, 2H), 1.15 (t, J = 7.6 Hz, 3H).	408
	(CDCl ₃) δ 7.33 (s, 1H), 7.03 (m, 3H), 6.63 (m, 1H), 6.50 (m, 1H), 4.78 (m, 1H), 4.52 (m, 1H), 3.95 (m, 1H), 3.11 (m, 1H), 2.87 (s, 3H), 2.58 (m, 1H), 2.33 (m, 2H), 1.4-1.8 (m, 6H), 0.97 (t, J = 7.6 Hz, 3H).	422
	(CDCl ₃) δ 7.27 (s, 1H), 7.04 (m, 3H), 6.63 (m, 1H), 6.50 (m, 1H), 4.79 (m, 1H), 4.54 (m, 1H), 4.02 (m, 1H), 3.13 (m, 1H), 2.88 (s, 3H), 2.82 (m, 1H), 2.58 (m, 1H), 1.75 (m, 2H), 1.56 (m, 2H), 1.14 (m, 6H).	422
	(CDCl ₃) δ 7.44 (b, 1H), 7.05 (m, 3H), 6.63 (m, 1H), 6.49 (m, 1H), 4.74 (m, 1H), 4.54 (m, 1H), 4.32 (m, 1H), 3.18 (m, 1H), 2.87 (s, 3H), 2.63 (m, 1H), 1.5-1.9 (m, 5H), 0.97 (m, 2H), 0.78 (m, 2H).	420
	(CDCl ₃) δ 7.26 (s, 1H), 7.04 (m, 3H), 6.63 (m, 1H), 6.50 (m, 1H), 4.73 (m, 1H), 4.54 (m, 1H), 4.11 (m, 2H), 3.97 (m, 1H), 3.43 (s, 3H), 3.10 (m, 1H), 2.88 (s, 3H), 2.64 (m, 1H), 1.77 (m, 2H), 1.60 (m, 2H).	424
	(CDCl ₃) δ 7.22 (m, 1H), 7.04 (m, 3H), 6.64 (m, 1H), 6.52 (m, 1H), 4.45 (m, 1H), 3.92 (m, 2H), 2.90 (s, 3H), 2.84 (m, 4H), 1.80 (m, 6H), 1.06 (t, J = 7.4 Hz, 3H).	458
	(CDCl ₃) δ 7.23 (m, 1H), 7.04 (m, 3H), 6.63 (m, 1H), 6.52 (m, 1H), 4.47 (m, 1H), 3.94 (m, 2H), 3.19 (m, 1H), 2.96 (m, 2H), 2.90 (s, 3H), 1.74 (m, 4H), 1.33 (d, J = 7.2 Hz, 6H).	458

- 71 -

Example 13

Step 1

5

To an ice-cold solution of 3-fluorobenzoyl chloride (2.0 g, 13 mmol) in pyridine (100 ml) was added thiosemicarbazide (0.96 g, 11 mmol) and the reaction mixture was allowed to warm to R.T. After stirring overnight, the pyridine was evaporated, the residue was taken up in water, and the precipitate was collected, washed with water, 0 and air-dried to give the product (0.85 g, 32%). MS m/e 214 ($M+H$)⁺.

Step 2

To a solution of the product of Step 1 (500 mg, 2.34 mmol,) in toluene (10 ml) 15 was added methanesulfonic acid (0.34 g, 3.5 mmol) dropwise. The reaction mixture was refluxed for 4 hr, cooled, and the precipitate was collected, washed with ether, and dried. The solid was then taken up in water, the solution was basified with ammonia to pH 8, and the precipitate was collected, washed with water, and dried to give the product (206 mg, 46%). MS m/e 196 ($M+H$)⁺.

20

Step 3

- 72 -

To a solution of the product of Step 2 (50 mg, 0.26 mmol) in CH₂Cl₂ (5 ml) was added Et₃N (0.1 ml, 0.8 mmol) followed by 4-nitrophenyl chloroformate (52 mg, 0.26 mmol). The reaction mixture was stirred for 1 hr, then Preparation 1 (55 mg, 0.26 mmol) was added, and the reaction mixture was stirred overnight. CH₂Cl₂ (10 ml) was
5 added and the mixture was washed with 1N NaOH (3x), sat'd NaCl, dried (Na₂SO₄), filtered and evaporated. The residue was subjected to PTLC (5:95 MeOH/CH₂Cl₂) to give the product (48 mg, 42%). ¹H NMR (CDCl₃, 400 MHz) δ 11.33 (1H, b), 7.63 (2H, m), 7.41 (1H, m), 7.16 (1H, m), 4.50 (1H, m), 4.23 (2H, b), 3.14 (3H, s), 2.79 (2H, b), 1.75 (4H, m), 1.46 (9H, s). MS m/e 436 (M+H)⁺.

10 Step 4

Reaction of the product of Step 3 with HCl by essentially the procedure of Example 3, Step 2 gave the product.

15

Step 5

Reaction of the product of Step 4 with methanesulfonyl chloride by essentially the procedure of Example 3, Step 3 gave the product. ¹H NMR (CDCl₃, 400 MHz) δ 7.64 (2H, m), 7.48 (1H, m), 7.17 (1H, m), 4.44 (1H, m), 3.95 (2H, m), 3.06 (3H, s),
20 2.81 (3H, s), 2.80 (2H, m), 1.90 (4H, m). MS m/e 414 (M+H)⁺.

Example 14

25

Reaction of the product of Example 13, Step 4 (13-4) with acetyl chloride by essentially the procedure of Example 4 gave the product. ¹H NMR (CDCl₃, 400 MHz) δ 11.00 (1H, b), 7.65 (2H, m), 7.50 (1H, m), 7.17 (1H, m), 4.80 (1H, m), 4.55 (1H, m),

- 73 -

3.94 (1H, m), 3.20 (1H, m), 3.09 (3H, s), 2.63 (1H, m), 2.13 (3H, s), 1.70 (4H, m). MS m/e 378 (M+H)⁺.

Example 15

5

To an ice-cold solution of the product of Example 13, Step 4 (13-4) (25 mg, 0.074 mmol) in DMF (5 ml) was added methyl isocyanate (1 drop). The reaction mixture was allowed to warm to R.T., stirred for 3 days, then diluted with CH₂Cl₂ and washed with water, 1N NaOH, and sat'd NaCl. The organic layer was dried (Na₂SO₄), filtered and evaporated. The residue was subjected to PTLC (10:90 MeOH/CH₂Cl₂) to give the product (9 mg, 31%). ¹H NMR (CDCl₃, 400 MHz) δ 10.80 (1H, b), 7.64 (2H, m), 7.45 (1H, m), 7.19 (1H, m), 4.48 (1H, m), 4.10 (2H, m), 3.10 (3H, s), 2.90 (3H, s), 2.85 (2H, m), 1.78 (4H, m). MS m/e 393 (M+H)⁺.

15

Example 16

Reaction of 12-4 with methyl isocyanate by essentially the same procedure gave the product. ¹H NMR (CDCl₃, 400 MHz) δ 7.48 (1H, s), 7.28 (3H, m), 7.03 (1H, d, J = 4 Hz), 6.87 (1H, m), 6.50 (1H, d, J = 4 Hz), 4.56 (1H, m), 4.44 (1H, m), 4.03 (2H, m), 2.87 (2H, m), 2.86 (3H, s), 2.80 (3H, s), 2.04 - 1.54 (4H, m). MS m/e 392 (M+H)⁺.

25

Example 17

17

- 74 -

Step 1

17-1

To a solution of the product of Example 1, Step 2 (1-2) (250 mg, 1.21 mmol) in
5 toluene (8 ml) was added iPr₂NEt (1.1 ml, 6.0 mmol) and triphosgene (145 mg, 0.49
mmol). The reaction mixture was heated to 110 °C for 4 hr, cooled, and Preparation
13 (250 mg, 1.47 mmol) was added. The reaction mixture was stirred for 16 hr, then
partitioned between CH₂Cl₂ (100 ml) and 1N NaOH (25 ml). The organic layer was
washed with sat. NH₄Cl (25 ml) and sat'd NaCl (25 ml), dried (MgSO₄), filtered and
10 concentrated. The residue was dissolved in THF (20 ml) to which 5N HCl (5 ml) was
added. After 3.5 hr, the reaction mixture was cooled in an ice bath, basified to pH 12
and partitioned between CH₂Cl₂ (100 ml) and water (25 ml). The organic layer was
dried (MgSO₄), filtered and concentrated. Subjection of the residue to PTLC (3:2
EtOAc/hexane) gave the product (130 mg, 30%). MS m/e 360 (M+H)⁺.

15 Step 2

To a solution of the product of Step 1 (60 mg, 0.17 mmol) in EtOH (2.5 ml) was
added NaOAc (0.27 g, 3.3 mmol) and hydroxylamine hydrochloride (0.23 g, 3.34
mmol). The reaction mixture was stirred for 16 hr, then partitioned between CH₂Cl₂
(75 ml) and water (50 ml). The organic layer was dried (MgSO₄), filtered and
20 concentrated. The residue was subjected to PTLC (3:97 MeOH/CH₂Cl₂) to give the
product (52 mg, 83%). ¹H NMR (CD₃OD, 400 MHz) δ 8.69 (1H, m), 8.00 (1H, m), 7.80
(1H, m), 7.55 (4H, m), 6.94 (1H, m), 4.40 (1H, m), 3.45 (1H, m), 2.91 (3H, s), 2.50
(1H, m), 2.30 (1H, m), 1.90 (3H, m), 1.70 (2H, m). MS m/e 375 (M+H)⁺.

- 75 -

Example 18

Reaction of the amine 1-2, N,N'-disuccinimidyl carbonate, and Preparation 12
 5 by essentially the procedure of Example 2, Step 3 gave the product. ^1H NMR (DMSO,
 400 MHz) δ 8.76 (1H, s), 8.66 (1H, s), 7.96 (2H, m), 7.73 (2H, d), 7.21 (1H, m), 6.77
 (2H, s), 4.09 (1H, m), 3.55 (2H, m), 2.85 (3H, s), 2.61 (2H, m), 1.76 (2H, m), 1.64 (2H,
 m). MS m/e 426 ($\text{M}+\text{H})^+$.

Example 19

10

Step 1

15 To a suspension of 2-amino-5-nitropyrimidine (2.70 g, 19.3 mmol) and LiCl (20 g) in 4M HCl (95 ml) at -10 °C was added NaNO₂ (2.70 g, 39.1 mmol) in portions. The suspension was stirred at ice-bath temperature for 1 hr, then allowed to warm to R.T. and stirred for 1.5 hr. The reaction mixture was cooled in an ice-bath, CH₂Cl₂ (50 ml) was added and aqueous layer was brought to pH 9 by addition of sat'd Na₂CO₃. The 20 whole was filtered and the filtrate was extracted with CH₂Cl₂. The organic layer was dried (MgSO₄), filtered and evaporated to give a solid (1.05 g, 34%). ^1H NMR (CDCl₃, 400 MHz) δ 9.39 (s).

- 76 -

Step 2

To an N₂-purged mixture of the product of Step 1 (230 mg, 1.44 mmol), 3,5-difluorophenylboronic acid (655 mg, 2.08 mmol), CsCO₃ (502 mg, 1.54 mmol), H₂O (0.05 ml), and toluene (3 ml) was added Pd(dppf)Cl₂•CH₂Cl₂ (82 mg, 0.10 mmol). The reaction mixture was heated at 110 °C for 1.5 hr, then allowed to cool. EtOAc (20 ml) and H₂O (20 ml) was added, and the organic layer was dried (MgSO₄), filtered and evaporated. Flash chromatography of the residue (1:99 EtOAc/hexanes) gave the product (110 mg, 32%). ¹H NMR (CDCl₃, 400 MHz) δ 9.54 (2H, s), 8.08 (2H, m), 7.03 (1H, m).

Step 3

To an ice-cold suspension of the product of Step 2 (110 mg, 0.46 mmol) and NiCl₂•6H₂O (240 mg, 1.01 mmol) in MeOH (4 ml) was added NaBH₄ (57 mg, 1.51 mmol). The reaction mixture was stirred for 10 min., then H₂O (2 ml) was added and the mixture was concentrated. To the residue were added H₂O (20 ml) and CH₂Cl₂ (30 ml), and the whole was filtered. The organic layer of the filtrate was dried (Na₂SO₄), filtered and evaporated to give a solid (72 mg, 75%). MS (m/e) 208 (M+H)⁺.

Step 4

Reaction of the product of Step 3 (70 mg, 0.34 mmol) with Preparation 11 (98 mg, 0.51 mmol) by the procedure of Example 2, Step 3 gave the product (90 mg, 62%). ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (2H, s), 7.90 (2H, m), 6.86 (1H, m), 6.64 (1H, s), 4.42 (1H, m), 3.91 (2H, m), 2.95 (3H, s), 2.80 (5H, m), 1.81 (4H, m). MS (m/e) 426 (M+H)⁺.

- 77 -

Use of the appropriate procedures afforded the following compounds:

STRUCTURE	¹ H NMR	MS (M+H) ⁺
	(CDCl ₃) δ 8.92 (s, 2H), 7.90 (m, 2H), 6.87 (m, 1H), 6.52 (s, 1H), 4.43 (m, 1H), 4.22 (m, 2H), 2.95 (s, 3H), 2.82 (m, 2H), 1.78-1.52 (m, 4H), 1.47 (s, 9H).	448
19A		
	(CDCl ₃) δ 8.92 (s, 2H), 7.90 (m, 2H), 6.86 (m, 1H), 6.52 (s, 1H), 4.46 (m, 1H), 3.93 (m, 2H), 2.95 (m, 7H), 1.81 (m, 4H), 1.36 (t, 3H).	440
19B		
	(CD ₃ OD) δ 8.99 (s, 2H), 7.91 (m, 2H), 7.04 (m, 1H), 4.28 (m, 1H), 3.86 (m, 2H), 2.95 (m, 7H), 1.84 (m, 6H), 1.07 (t, 3H).	454
19C		
	(CDCl ₃) δ 8.92 (s, 2H), 7.90 (m, 2H), 6.86 (m, 1H), 6.49 (s, 1H), 4.48 (m, 1H), 3.96 (m, 2H), 3.21 (m, 1H), 2.95 (m, 5H), 1.77 (m, 4H), 1.36 (m, 6H).	454
19D		
	(CDCl ₃) δ 8.92 (s, 2H), 7.91 (m, 2H), 6.87 (m, 1H), 6.63 (s, 1H), 4.44 (m, 1H), 3.90 (m, 2H), 2.95 (m, 5H), 2.28 (m, 1H), 1.82 (m, 4H), 1.15 (m, 2H), 1.00 (m, 2H).	452
19E		
	(CDCl ₃) δ 8.92 (s, 2H), 7.90 (m, 2H), 6.87 (m, 1H), 6.77 (s, 1H), 4.78 (m, 1H), 4.52 (m, 1H), 3.92 (m, 1H), 3.18 (m, 1H), 2.94 (s, 3H), 2.61 (m, 1H), 2.11 (s, 3H), 1.82-1.57 (m, 4H).	390
19F		
	(CDCl ₃) δ 8.92 (s, 2H), 7.90 (m, 2H), 6.87 (m, 1H), 6.74 (s, 1H), 4.78 (m, 1H), 4.52 (m, 1H), 3.95 (m, 1H), 3.12 (m, 1H), 2.93 (s, 3H), 2.61 (m, 1H), 2.38 (m, 2H), 1.82-1.55 (m, 4H), 1.35 (t, 3H).	404
19G		

- 78 -

	(CDCl ₃) δ 8.92 (s, 2H), 7.90 (m, 2H), 6.87 (m, 1H), 6.64 (s, 1H), 4.80 (m, 1H), 4.55 (m, 1H), 4.06 (m, 1H), 3.16 (m, 1H), 2.93 (s, 3H), 2.62 (m, 1H), 1.79-1.57 (m, 5H), 0.98 (m, 2H), 0.78 (m, 2H).	416
	(CDCl ₃) δ 8.92 (s, 2H), 7.90 (m, 2H), 6.87 (m, 1H), 6.64 (s, 1H), 4.81 (m, 1H), 4.53 (m, 1H), 4.06 (m, 1H), 3.16 (m, 1H), 2.94 (s, 3H), 2.80 (m, 1H), 2.59 (s, 1H), 1.79 (m, 2H), 1.57 (m, 2H), 1.14 (m, 6H).	418
	(CD ₃ OD) δ 9.04 (s, 2H), 7.90 (m, 2H), 7.08 (m, 1H), 4.69 (m, 1H), 4.40 (m, 1H), 4.11 (m, 1H), 3.22 (m, 1H), 2.95 (s, 3H), 2.72 (m, 1H), 2.42 (t, 2H), 1.78-1.62 (m, 6H), 1.00 (t, 3H).	418
	(CDCl ₃) δ 8.92 (s, 2H), 8.69 (s, 2H), 7.91 (d, J = 6.8 Hz, 2H), 7.79 (s, J = 7.6 Hz, 1H), 7.40 (m, 1H), 6.87 (m, 1H), 6.56 (s, 1H), 4.87 (m, 1H), 4.60 (m, 1H), 3.87 (m, 1H), 3.24 (m, 1H), 2.98 (m, 4H), 1.95-1.48 (m, 4H).	453
	(CDCl ₃) δ 8.92 (s, 2H), 8.59 (m, 1H), 7.90 (m, 2H), 7.80 (m, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.36 (m, 1H), 6.87 (m, 1H), 6.70 (s, 1H), 4.89 (m, 1H), 4.60 (m, 1H), 4.09 (m, 1H), 3.16 (m, 1H), 2.96 (s, 3H), 2.88 (m, 1H), 1.84-1.72 (m, 4H).	453
	(CDCl ₃) δ 8.94 (s, 2H), 8.90 (s, 1H), 8.07 (s, 1H), 7.90 (m, 2H), 6.87 (m, 1H), 6.59 (s, 1H), 4.80-4.20 (m, 3H), 3.30-2.80 (m, 5H), 1.86-1.69 (m, 4H).	459

Example 20

20

- 79 -

Step 1

To an ice-cold suspension of (methoxymethyl)triphenylphosphonium chloride
 5 (30.4 g, 89 mmol) in Et₂O (250 ml) was added 1.8 M phenyllithium (49.3 ml, 89 mmol)
 dropwise under N₂. After the addition was complete, the reaction mixture was stirred
 at 0 °C for 0.25 hr, then at R.T. for 0.5 hr. The reaction mixture was cooled to –10 °C
 and 3-fluorobenzaldehyde (10 g, 81 mmol) was added dropwise. The reaction mixture
 was stirred at R.T. overnight, then sat'd NH₄Cl was added. The aqueous layer was
 10 extracted with Et₂O (2x), and the combined organic layers were dried (Na₂SO₄),
 filtered, and concentrated. Flash chromatography (hexane) of the residue afforded
 the product (8.67 g, 70%) as a mixture of isomers. ¹H NMR (CDCl₃, 400 MHz, major
 isomer) δ 7.36 (1H, m), 7.32 (1H, m), 7.07 (1H, d, J = 17 Hz), 6.96 (1H, m), 6.93 (1H,
 m), 5.77 (1H, d, J = 17 Hz), 3.70 (3H, s).

15 Step 2

To an ice-cold solution of the product of Step 1 (8.67, 57 mmol) in MeOH (200
 ml) was added N-bromosuccinimide (10.14 g, 57 mmol), and the reaction mixture was
 20 stirred at R.T. for 16 hr. The reaction mixture was concentrated, taken up in EtOAc,
 washed with 1M HCl and sat'd NaCl, then dried (Na₂SO₄), filtered and concentrated.
 Subjection of the residue to flash chromatography (90:10 hexane/EtOAc) gave the
 product (11.8 g, 80%). ¹H NMR (CDCl₃, 400 MHz) δ 7.32 (1H, m), 7.16 (2H, m), 6.99
 (1H, m), 4.90 (1H, d, J = 9 Hz), 4.70 (1H, d, J = 9 Hz), 3.49 (3H, s), 3.31 (3H, s).

25

Step 3

- 80 -

A mixture of the product of Step 2 (11.5 g, 43.7 mmol), thiourea (6.0 g, 79 mmol) and 48% HBr (0.1 ml) was stirred at 100 °C for 3 hr. The reaction mixture was allowed to cool to R.T., acidified with 6N HCl, and washed with CH₂Cl₂. The aqueous layer was brought to pH 9 by addition of aqueous NH₄OH and the resultant precipitate 5 was collected. Subjection of the dried precipitate to flash chromatography (2:98 then 5:95 MeOH/CH₂Cl₂) gave the product (1.61 g, 19%). ¹H NMR (CDCl₃, 400 MHz) δ 7.30 (2H, m), 7.18 (1H, m), 7.11 (1H, m), 6.93 (1H, m), 5.07 (2H, b).

Step 4

10

To a stirred suspension of NaH (103 mg, 2.6 mmol, 60% dispersion) in THF (30 ml) under N₂ was added the product of Step 3 (500 mg, 2.6 mmol). After 1 hr, the reaction mixture was cooled in an ice bath, and phenyl chloroformate (0.32 ml, 2.6 mmol) in THF (20 ml) was added dropwise. The reaction mixture was stirred for 16 hr, 15 during which time it attained R.T. The reaction mixture was diluted with EtOAc, washed with sat'd NH₄Cl solution, dried (Na₂SO₄), filtered and concentrated. Subjection of the residue to flash chromatography (CH₂Cl₂) afforded the product (0.39 g, 48%). ¹H NMR (CDCl₃, 400 MHz) δ 7.65 (1H, s), 7.48 (2H, m), 7.38 – 7.20 (6H, m), 7.00 (1H, m), 2.9 (1H, b). MS (m/e) 315 (M+H)⁺.

20

Step 5

25

A mixture of the product of Step 4 (390 mg, 1.24 mmol), Preparation 1 (266 mg, 1.24 mmol) and Et₃N (0.5 ml, 3.6 mmol) in THF (25 ml) was refluxed for 3 hr. The reaction mixture was allowed to cool, diluted with EtOAc, washed with sat'd NH₄Cl solution, dried (Na₂SO₄), filtered and concentrated. Subjection of the residue to flash chromatography (2:98 MeOH/CH₂Cl₂) afforded the product (537 mg, 100%). ¹H NMR

- 81 -

(CDCl₃, 400 MHz) δ 9.54 (1H, b), 7.51 (1H, s), 7.29 (3H, m), 6.96 (1H, m), 4.39 (1H, m), 4.21 (2H, b), 2.88 (3H, s), 2.78 (2H, m), 1.63 (4H, m), 1.45 (9H, s). MS (m/e) 435 (M+H)⁺.

Step 6

5

20-6

- Reaction of the product of Step 5 with HCl by essentially the procedure of Example 6, Step 4 gave the product. ¹H NMR (CD₃OD, 400 MHz) δ 8.00 (1H, s), 7.58 – 7.41 (3H, m), 7.19 (1H, m), 4.42 (1H, m), 3.54 (2H, m), 3.20 (2H, m), 3.07 (3H, s), 10 2.15 (2H, m), 2.01 (2H, m). MS (m/e) 335 (M+H)⁺.

Step 7

Reaction of the product of Step 6 (20 mg, 0.05 mmol) with methyl isocyanate (1 drop) by essentially the procedure of Example 15 followed by PTLC (10:90 MeOH/CH₂Cl₂) gave the product (7 mg, 36%). MS m/e 392 (M+H)⁺.

15

Example 21

- Reaction of 20-6 with acetyl chloride essentially the procedure of Example 4 gave the product. MS m/e 377 (M+H)⁺.

20

Example 22

22

- 82 -

Reaction of 20-6 with methanesulfonyl chloride by the procedure of Example 3, Step 3 gave the product. ^1H NMR (CDCl_3 , 400 MHz) δ 7.52 (1H, s), 7.34 (1H, m), 7.22 (1H, m), 7.21 (1H, m), 6.97 (1H, m), 4.40 (1H, m), 3.92 (2H, m), 2.91 (3H, s), 2.79 (3H, s), 2.75 (2H, m), 1.83 (4H, m). MS m/e 413 ($\text{M}+\text{H})^+$.

5

Example 23

Step 1

10 To a solution of 2-bromo-5-nitrothiazole (0.784 g, 3.75 mmol) and 0.5 M 3,5-difluorophenylzinc bromide in THF (5.0 ml, 12.5 mmol) was added $\text{Pd}(\text{PPh}_3)_4$ (0.173 g, 0.15 mmol) under argon. The reaction mixture was stirred at R.T. for 30 min. then poured into water (25 ml). The whole was extracted with CH_2Cl_2 (3x50 ml) dried (Na_2SO_4), filtered, and evaporated. The residue was subjected to PTLC (1:10 EtOAc/hexane) to give the product (0.49 g, 81%). ^1H NMR (CDCl_3) δ 8.59 (s, 1H), 7.52 (m, 2H), 7.01 (m, 1H). MS m/e 243 ($\text{M}+\text{H})^+$.

15

Step 2

20

To a solution of the product of Step 1 (0.300 g, 1.24 mmol) in MeOH (20 ml) was added nickel chloride hexahydrate (0.589 g, 2.48 mmol) and sodium borohydride (0.187 g, 4.95 mmol) at 0 °C. The reaction mixture was stirred at R.T. for 10 min. and quenched with water (10 ml). The mixture was filtered via celite. The celite was washed with CH_2Cl_2 (100 ml). The filtrate was extracted with CH_2Cl_2 (3x50 ml), and the combined organic layers were dried (Na_2SO_4), filtered, and evaporated. The

25

- 83 -

residue was subjected to PTLC (1:2 EtOAc/hexane) to give the product (0.060 g, 23%). ^1H NMR (CDCl_3) δ 7.30 (m, 2H), 7.1 (s, 1H), 6.77 (m, 1H), 3.90 (bs, 2H). MS m/e 213 ($\text{M}+\text{H}$) $^+$.

5 Step 3

To a solution of the product of Step 2 (0.080 g, 0.377 mmol) in anhydrous pyridine (3.0 ml) was added phenyl chloroformate (0.071 ml, 0.566 mmol) slowly. The reaction mixture was stirred at R.T. overnight and evaporated. To a solution of the residue in chloroform (5 ml) and was added Preparation 1 (0.122 g, 0.567 mmol) and Et_3N (0.16 ml, 1.13 mmol). The reaction mixture was refluxed for 21 hr, allowed to cool and poured into water (25 ml). The whole was extracted with CH_2Cl_2 (3x50 ml), dried (Na_2SO_4), filtered and evaporated (1:20 MeOH/ CH_2Cl_2) to give the product (0.087g, 51%) as a solid. ^1H NMR (CDCl_3) δ 7.78 (s, 1H), 7.43 (s, 1H), 7.36 (m, 2H), 6.78 (m, 1H), 4.4 (bs, 1H), 4.2 (bs, 1H), 3.82 (bs, 1H), 2.89 (s, 3H), 2.78 (m, b, 2H), 1.8 - 1.5 (m, 4H), 1.45 (s, 9H). MS m/e 453 ($\text{M}+\text{H}$) $^+$.

Step 4

Subjection of the product of Step 3 to the procedures of Example 3, Steps 2 and 3 gave the product. ^1H NMR (CDCl_3) δ 8.04 (s, 1H), 7.54 (s, 1H), 7.38 (m, 2H), 6.78 (m, 1H), 4.78 (m, 1H), 4.51 (m, 1H), 3.95 (m, 1H), 3.20 (m, 1H), 2.92 (m, 3H), 2.61 (m, 1H), 2.11 (s, 3H), 1.75 (m, 2H), 1.59 (m, 2H). MS m/e 395 ($\text{M}+\text{H}$) $^+$.

Use of the appropriate reagents and procedures afforded the following compounds:

25

STRUCTURE	^1H NMR	MS ($\text{M}+\text{H}$) $^+$
 23A	(CDCl_3) δ 7.52 (s, 1H), 7.40 (m, 3H), 6.80 (m, 1H), 4.22 (m, 1H), 3.93 (m, 2H), 2.94 (s, 3H), 2.77 (m, 5H), 1.82 (m, 4H).	431

- 84 -

 23B	(CDCl_3) δ 7.51 (s, 1H), 7.41 (m, 3H), 6.80 (m, 1H), 4.80 (m, 1H), 4.50 (m, 1H), 3.95 (m, 1H), 3.15 (m, 1H), 2.91 (s, 3H), 2.60 (m, 1H), 2.32 (m, 2H), 1.80-1.50 (m, 6H), 0.98 (t, 3H).	423
 23C	(CDCl_3) δ 7.52 (s, 1H), 7.46 (s, 1H), 7.40 (m, 2H), 6.79 (m, 1H), 4.80 (m, 1H), 4.50 (m, 1H), 4.15 (m, 1H), 3.15 (m, 1H), 2.89 (s, 3H), 2.70 (m, 1H), 2.60 (m, 1H), 1.9-1.5 (m, 12H).	449
 23D	(CDCl_3) δ 7.62 (s, 1H), 7.47 (s, 1H), 7.40 (m, 2H), 6.80 (m, 1H), 4.78 (m, 1H), 4.50 (m, 1H), 4.32 (m, 1H), 3.20 (m, 1H), 2.91 (s, 3H), 2.62 (m, 1H), 1.80-1.60 (m, 5H), 0.99 (m, 2H), 0.80 (m, 2H).	421
 23E	(CDCl_3) δ 7.73 (s, 1H), 7.46 (s, 1H), 7.38 (m, 2H), 6.80 (m, 1H), 4.80 (m, 1H), 4.50 (m, 1H), 4.03 (m, 1H), 3.14 (m, 1H), 2.91 (s, 3H), 2.82 (m, 1H), 2.59 (m, 1H), 1.95-1.62 (m, 2H), 1.57 (m, 2H), 1.16 (m, 6H).	423
 23F	(CDCl_3) δ 7.49 (s, 1H), 7.45 (s, 1H), 7.40 (m, 2H), 6.79 (m, 1H), 4.80 (m, 1H), 4.50 (m, 1H), 3.95 (m, 1H), 3.18 (m, 1H), 2.91 (s, 3H), 2.60 (m, 1H), 2.37 (q, 2H), 1.80-1.50 (m, 4H), 1.16 (t, 3H).	409

Example 24

24

5

Step 1

- 85 -

A flask charged with 3,5-difluorophenylboronic acid (4.40 g, 27.9 mmol), 2-amino-5-bromopyrimidine (4.00 g, 23 mmol), toluene (40 ml), water (7 ml) and cesium carbonate (8.20 g, 25.2 mmol) was purged with N₂. PdCl₂(dpff)₂·CH₂Cl₂ (0.94 g, 1.15 mmol) was added and the reaction mixture was refluxed for 2.5 hr. The reaction mixture was allowed to cool then poured into water (100 ml). The whole was extracted with EtOAc (3x150 ml), dried (Na₂SO₄), filtered and concentrated. Subjection of the residue to flash chromatography (gradient 1:5 to 1:1 acetone/hexane) gave the product (2.30 g, 48%). ¹H NMR (CDCl₃) δ 8.29 (s, 2H), 6.84 (m, 2H), 6.62 (m, 1H), 4.18 (s, 2H). MS m/e 208 (M+H)⁺.

Step 2

To a solution of the product of Step 1 (0.500 g, 2.42 mmol) in anhydrous pyridine (6 ml) was added phenyl chloroformate (0.33 ml, 2.62 mmol) dropwise. The reaction mixture was stirred for 16 hr, then evaporated. The residue was subjected to PTLC (1:30 CH₃OH/CH₂Cl₂) to give the product (0.30 g, 38%). ¹H NMR (CDCl₃) δ 8.84 (m, 3H), 7.42 (m, 2H), 7.26 (m, 3H), 7.06 (m, 2H), 6.89 (m, 1H). MS m/e 328 (M+H)⁺.

20

Step 3

To a solution of the product of Step 2 (0.145 g, 0.44 mmol) in chloroform (5 ml) was added Preparation 1 (0.095 g, 0.44 mmol) and Et₃N (0.19 ml, 1.33 mmol). The

- 86 -

reaction mixture was refluxed for 3 hr, allowed to cool and poured into water (15 ml). The whole was extracted with EtOAc (3x), and the combined organic layers were dried (Na_2SO_4), filtered and evaporated. The residue was subjected to PTLC (1:30 $\text{CH}_3\text{OH}/\text{CH}_2\text{Cl}_2$) to give the product (0.205 g, 100%). ^1H NMR (CDCl_3) δ 8.71 (s, 2H), 7.70 (s, b, 1H), 7.01 (m, 2H), 6.83 (m, 1H), 4.36 (m, 1H), 4.21 (m, 2H), 2.92 (s, 3H), 2.78 (m, 2H), 1.74 (m, 2H), 1.63 (m, 2H), 1.45 (s, 9H). MS m/e 448 ($\text{M}+\text{H})^+$.

Step 4

Subjection of the product of Step 3 to the procedures of Example 10, Steps 3 and 4 gave the product. ^1H NMR (CDCl_3) δ 8.71 (s, 2H), 7.62 (s, b, 1H), 7.02 (m, 2H), 6.84 (m, 1H), 4.78 (m, 1H), 4.43 (m, 1H), 3.90 (m, 1H), 3.18 (m, 1H), 2.92 (s, 3H), 2.60 (m, 1H), 2.09 (s, 3H), 1.82 (m, 2H), 1.60 (m, 2H). MS m/e 390 ($\text{M}+\text{H})^+$.

Use of the appropriate reagents and procedures afforded the following compounds.

STRUCTURE	^1H NMR	MS ($\text{M}+\text{H})^+$
 24A	(CDCl_3) δ 8.74 (s, 2H), 7.42 (s, b, 1H), 7.04 (m, 2H), 6.83 (m, 1H), 4.43 (m, 1H), 3.95 (m, 2H), 2.97 (s, 3H), 2.80 (m, 5H), 1.88 (m, 4H).	426
 24B	(CDCl_3) δ 8.73 (s, b, 2H), 7.59 (s, b, 1H), 7.03 (m, 2H), 6.83 (m, 1H), 4.79 (m, 1H), 4.47 (m, 1H), 3.94 (m, 1H), 3.09 (m, 1H), 2.92 (s, 3H), 2.59 (m, 1H), 2.35 (m, 2H), 1.82 (m, 2H), 1.61 (m, 2H), 1.15 (m, 3H).	404

Example 25

25

20

Step 1

- 87 -

A mixture of 3,6-dichloropyridazine (7.5 g) and NH₃ (9 g) in EtOH (100 ml) was heated at 130 °C in stainless steel bomb for 16 hr. After the reaction mixture had
 5 cooled to R.T., it was concentrated, and the residue was subjected to Soxhlet extraction (EtOAc). The residue obtained from the EtOAc extract was recrystallized from EtOAc to give the product (3.81 g).

Step 2

A suspension of the product of Step 1 (200 mg, 1.54 mmol), 3-fluorophenylboronic acid (260 mg, 1.86 mmol), and 2M K₂CO₃ (1.6 ml, 3.2 mmol) in EtOH (3 ml) and toluene (10 ml) was purged with N₂. Pd(PPh₃)₄ (90 mg, 0.08 mmol)
 15 was added, and the mixture was heated at 110 °C for 24 hr. The cooled reaction mixture was concentrated and partitioned between water and EtOAc. The organic layer was washed with water, dried (Na₂SO₄), filtered and evaporated. Subjection of the residue to PTLC (7:93 MeOH/CH₂Cl₂) gave the product (168 mg, 58%).

20 Step 3

Reaction of the product of Step 2 by essentially the procedure of Example 20, Step 4 gave the product. ¹H NMR (CDCl₃, 400 MHz) δ 8.75 (1H, b), 8.43 (1H, m), 7.95
 25 (1H, m), 7.82 – 7.78 (2H, m), 7.52 – 7.18 (7H, m). MS m/e 310 (M+H)⁺.

Step 4

- 88 -

Reaction of the product of Step 3 with Preparation 1 by essentially the procedure of Example 20, Step 5 gave the product. ^1H NMR (CDCl_3 , 400 MHz) δ 8.6 (1H, b), 8.36 (1H, m), 7.80 (1H, m), 7.73 (2H, m), 7.44 (1H, m), 7.12 (1H, m), 4.41 (1H, m), 4.21 (2H, m), 2.99 (3H, s), 2.80 (2H, m), 1.79 – 1.60 (4H, m), 1.43 (9H, s). MS m/e 430 ($\text{M}+\text{H}$) $^+$.

Step 5

Subjection of the product of Step 4 by the procedure of Example 20, Steps 6 and 7 gave the product. ^1H NMR (CDCl_3 , 400 MHz) δ 8.40 (1H, m), 8.20 (1H, b), 7.82 (1H, m), 7.50 (2H, m), 7.42 (1H, m), 7.15 (1H, m), 4.54 (1H, m), 4.44 (1H, m), 4.09 (2H, m), 2.98 (3H, s), 2.90 (2H, m), 2.79 (3H, s), 1.75 – 1.64 (4H, m). MS m/e 387 ($\text{M}+\text{H}$) $^+$.

15

Use of the appropriate procedures afforded the following compounds:

Example 26

^1H NMR (CDCl_3 , 400 MHz) δ 8.6 (1H, b), 8.34 (1H, m), 7.80 (1H, m), 7.73 (2H, m), 7.44 (1H, m), 7.13 (1H, m), 4.76 (1H, m), 4.50 (1H, m), 3.89 (1H, m), 3.15 (1H, m), 2.99 (3H, s), 2.25 (1H, m), 2.09 (3H, s), 1.79 (2H, m), 1.63 (2H, m). MS m/e 372 ($\text{M}+\text{H}$) $^+$.

Example 27

25

- 89 -

¹H NMR (CDCl₃, 400 MHz) δ 8.47 (1H, m), 7.86 (1H, m), 7.77 (2H, m), 7.47 (1H, m), 7.17 (1H, m), 4.47 (1H, m), 3.97 (2H, m), 3.02 (3H, s), 2.83 (2H, m), 2.82 (3H, s), 1.93 – 1.50 (4H, m). MS m/e 408 (M+H)⁺.

- 90 -

WHAT IS CLAIMED:

1. A compound of Formula I:

5

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said
10 compound or of said prodrug, or where applicable, a geometric or optical isomer or
racemic mixture thereof,

wherein

=A-B= is =C(R⁴)-C(R⁵)= and -X=Y- is -C(R⁶)=N-, -N=C(R⁷)-, -N=N- or
-S-, or
15 =A-B= is =N-C(R⁵)= and -X=Y- is -N=C(R⁷)-, -C(R⁶)=N-, -S- or -O-, or
=A-B = is =C(R⁴)-N= and -X=Y- is -C(R⁶)=N-, -S- or -O-, or
=A-B= is =N-N= and -X=Y- is -S- or -O-, or
=A-B= is =C(R⁴)- and -X=Y- is -S-N=, -N(R¹⁰)-N=, or
=A-B= is -C(R⁴)= and -X=Y- is =N-S-, or =N-N(R¹⁰)-;

20 Z is or ;

R¹ is H or -(C₁-C₆)alkyl;

R² is H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl or -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl;

- 91 -

Q is $-\text{OR}^{13}$, or $-\text{NR}^{13}\text{R}^{14}$;

5 j is 1 or 2;

k is 0, 1 or 2;

l is 0, 1 or 2;

m is 0, 1 or 2;

R^4 , R^5 , R^6 and R^7 may be the same or different, and are independently selected

10 from the group consisting of H, -OH, halogen, polyhaloalkyl, $-(\text{C}_1-\text{C}_6)$ alkyl, $-(\text{C}_3-\text{C}_7)$ cycloalkyl, $-(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl, -CN, $\text{NR}^{10}\text{R}^{11}$, $\text{NR}^{13}\text{R}^{14}$, $-\text{O}(\text{C}_1-\text{C}_6)$ alkyl, $-\text{O}(\text{C}_3-\text{C}_7)$ cycloalkyl, $-\text{O}(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl, $-\text{S}(\text{C}_1-\text{C}_6)$ alkyl, $-\text{S}(\text{C}_3-\text{C}_7)$ cycloalkyl or $-\text{S}(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl;

15

R^8 is 1 to 3 substituents, which may be the same or different, and are independently selected from the group consisting of H, halogen, -OH, polyhaloalkyl, polyhaloalkoxy, -CN, $-\text{NO}_2$, $-(\text{C}_1-\text{C}_6)$ alkyl, $-(\text{C}_3-\text{C}_7)$ cycloalkyl, $-(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl, $\text{NR}^{10}\text{R}^{11}$, $\text{NR}^{13}\text{R}^{14}$, $-\text{O}(\text{C}_1-\text{C}_6)$ alkyl, $-\text{O}(\text{C}_3-\text{C}_7)$ cycloalkyl, $-\text{O}(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl or $\text{CONR}^{13}\text{R}^{14}$;

20

R^9 is $-\text{SO}_2(\text{C}_1-\text{C}_6)$ alkyl, $-\text{SO}_2(\text{C}_3-\text{C}_7)$ cycloalkyl, $-\text{SO}_2(\text{C}_1-\text{C}_6)$ alkyl(C_3-C_7)cycloalkyl, $-\text{SO}_2(\text{C}_1-\text{C}_6)$ polyhaloalkyl, $-\text{SO}_2[\text{hydroxy}(\text{C}_2-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2[\text{amino}(\text{C}_2-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2[\text{alkoxy}(\text{C}_2-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2[\text{alkylamino}(\text{C}_2-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2[\text{dialkylamino}(\text{C}_2-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2(\text{aryl})$, $-\text{SO}_2(\text{heteroaryl})$, $-\text{SO}_2[\text{aryl}(\text{C}_1-\text{C}_6)\text{alkyl}]$, $-\text{SO}_2\text{NR}^{13}\text{R}^{14}$, $-\text{CO}(\text{C}_1-\text{C}_6)$ alkyl,

25

- 92 -

-CO(C₃-C₇)cycloalkyl, -CO(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, CO(C₁-C₆)polyhaloalkyl, -C(O)aryl, -C(O)heteroaryl, -CONR¹³R¹⁴, -C(S)NR¹³R¹⁴, aryl, heteroaryl, -(CH₂)CONR¹³R¹⁴, -C(=NCN)alkylthio, -C(=NCN)NR¹³R¹⁴, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -(C₁-C₆)alkylaryl, -(C₁-C₆)alkylheteroaryl or -COOR¹²;

5

R¹⁰ is H or alkyl;

R¹¹ is H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, aryl, heteroaryl, -SO₂(C₁-C₆)alkyl, -SO₂(C₃-C₇)cycloalkyl, -SO₂(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -SO₂(C₁-C₆)polyhaloalkyl, -SO₂(aryl), -SO₂(heteroaryl), -CO(C₁-C₆)alkyl, -CO(C₃-C₇)cycloalkyl, -CO(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -C(O)aryl, -C(O)heteroaryl, -CONR¹³R¹⁴ or -COOR¹²;

10

R¹² is (C₁-C₆)alkyl, (C₃-C₇)cycloalkyl, (C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -(C₁-C₆)alkylaryl, -(C₁-C₆)alkylheteroaryl, aryl or heteroaryl;

15

R¹³ and R¹⁴ may be the same or different and are independently selected from H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -(C₁-C₆)alkylaryl, aryl or heteroaryl; and,

20

R¹⁵ is one or two substituents, which may be the same or different, and are independently selected from H, -(C₁-C₆)alkyl, -(C₃-C₇)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, aryl, heteroaryl, -CN, -CONR¹³R¹⁴, -COOR¹³, -OH, -O(C₁-C₆)alkyl, -O(C₃-C₇)cycloalkyl, -O(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -NR¹⁰R¹¹, -NR¹³R¹⁴, or a -(C₁-C₆)alkyl group substituted by an aryl, heteroaryl, hydroxy, alkoxy, -NR¹⁰R¹¹, -NR¹³R¹⁴, -CONR¹³R¹⁴, or -COOR¹³ group, provided that a chemically stable compound results from substitution by R¹⁵.

25

2. A compound as defined in Claim 1 wherein the heterocyclic group attached to Z is

30

- 93 -

- 5 3. A compound as defined in Claim 2 wherein
 R^1 is hydrogen,
 R^2 is hydrogen or $(\text{C}_1\text{-C}_6)$ alkyl,
 R^4 , R^5 , R^6 and R^7 are hydrogen or halogen,
 R^8 is 1 to 3 substituents, which may be the same or different, and are
10 independently selected from the group consisting of H, halogen, $-\text{O}(\text{C}_1\text{-C}_6)$ alkyl, $-\text{OH}$,
polyhaloalkyl and polyhaloalkoxy,
 R^9 is $-\text{SO}_2(\text{C}_1\text{-C}_6)$ alkyl, $-\text{SO}_2(\text{C}_3\text{-C}_7)$ cycloalkyl, $-\text{SO}_2(\text{C}_1\text{-C}_6)$ alkyl($\text{C}_3\text{-}$
 $\text{C}_7)$ cycloalkyl, $-\text{SO}_2$ aryl, $-\text{SO}_2$ heteroaryl, $-\text{SO}_2\text{NR}^{13}\text{R}^{14}$, $-\text{CO}(\text{C}_1\text{-C}_6)$ alkyl, $-\text{CO}(\text{C}_3\text{-}$
 $\text{C}_7)$ cycloalkyl, $-\text{CO}(\text{C}_1\text{-C}_6)$ alkyl($\text{C}_3\text{-C}_7)$ cycloalkyl, $-\text{C}(\text{O})$ aryl, $-\text{C}(\text{O})$ heteroaryl, aryl,
15 heteroaryl,
 R^{10} is H or $-(\text{C}_1\text{-C}_6)$ alkyl,
 R^{11} is $-\text{SO}_2(\text{C}_1\text{-C}_6)$ alkyl, Q is $-\text{OR}^{13}$ or $-\text{NR}^{13}\text{R}^{14}$;

- 94 -

R^{13} and R^{14} may be the same or different, and are independently selected from H or $-(C_1-C_6)alkyl$;

the sum of j and k is 2 or 3; and,

the sum of l and m is 2 or 3.

5

4. A compound as defined in Claim 3 wherein

R^9 is $-SO_2(C_1-C_6)alkyl$, $-SO_2(C_3-C_7)cycloalkyl$, $-SO_2aryl$, $-SO_2heteroaryl$, $-CO(C_1-C_6)alkyl$, $-CO(C_3-C_7)cycloalkyl$, $-CO(C_1-C_6)alkyl(C_3-C_7)cycloalkyl$, $-C(O)aryl$, $-C(O)heteroaryl$, aryl, or heteroaryl, and
10 the sum of j and k is 2 or 3.

5. The compound as defined in Claim 1 of the formula

15

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

20 wherein R^9 is as shown in the table below:

Example	R^9
1	
3	$-SO_2CH_3$

- 95 -

Example	R ⁹
4	
1G	
1H	
1I	
3E	
3F	
3G	
3H	
4B	

- 96 -

Example	R^9
4C	
4D	
4E	
4F	
4G	
4H	
4I	
4J	
4K	

- 97 -

Example	R^9
4L	
4M	
4N	
4O	
4P	

6. The compound as defined in Claim 1 of the formula

- 98 -

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein R⁹ is as shown in the table below:

Example	R ⁹
3I	-SO ₂ CH ₃
3J	
3K	
3L	
4Z	
4AA	
4BB	
4CC	

- 99 -

Example	R^9
4DD	
4EE	
4FF	

7. The compound as defined in Claim 1 of the formula

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

10 wherein R^9 is as shown in the table below:

Example	R^9
3N	$-SO_2CH_3$
3O	

- 100 -

8. The compound as defined in Claim 1 of the formula

- 5 a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein R⁹ is as shown in the table below:

Example	R ⁹
5	
5A	
5B	
5C	
5D	
5E	

- 101 -

Example	R^9
5F	
5G	
5H	
5I	
5J	
5K	

9. The compound as defined in Claim 3 of the formula

5

- 102 -

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein R⁹ is as shown in the table below:

Example	R ⁹
5M	-SO ₂ CH ₃
5N	
5O	
5P	
5Q	

5

10. The compound as defined in Claim 1 of the formula

- 103 -

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein R⁹ is as shown in the table below:

Example	R ⁹
6	
6B	
6C	
6D	

5

11. The compound as defined in Claim 1 of the formula

- 10 a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein Z and R⁹ are as shown in the table below:

Example	Z	R ⁹
7		

- 104 -

Example	Z	R ⁹
7B		-SO ₂ CH ₃
7C		
7D		
7E		
7F		-SO ₂ CH ₃
7G		

12. The compound as defined in Claim 1 of the formula

5

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

- 105 -

wherein R⁹ is as shown in the table below:

Example	R ⁹
10	
10A	
10B	
10C	
10D	
10E	
10F	
10G	
10H	

- 106 -

Example	R^9
10I	
10J	
10K	
10L	
10M	
10N	
10O	
10P	

- 107 -

Example	R ⁹
10Q	
10W	-SO ₂ CH ₃

13. The compound as defined in Claim 1 of the formula

5

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein R⁹ is as shown in the table below:

Example	R ⁹
10S	-SO ₂ CH ₃
10T	
10U	
10V	

- 108 -

14. The compound as defined in Claim 1 of the formula

5

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

10 wherein Z and R⁹ are as shown in the table below:

Example	Z	R ⁹
10X		-SO ₂ CH ₃
10Y		
10Z		
10AA		

- 109 -

Example	Z	R ⁹
10BB		
10CC		
10DD		
10EE		
10FF		
10GG		

- 110 -

Example	Z	R ⁹
10HH		
10II		
10JJ		
10KK		
10LL		
10MM		
10NN		

- 111 -

Example	Z	R ⁹
10OO		
10PP		
10QQ		
10RR		
11		-SO ₂ CH ₃
11A		-SO ₂ CH ₃
11B		-SO ₂ CH ₃

- 112 -

Example	Z	R ⁹
11C		-SO ₂ CH ₃
11D		-SO ₂ CH ₃
11E		-SO ₂ CH ₃

15. The compound as defined in Claim 1 of the formula

5

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein R⁹ is as shown in the table below:

Example	R ⁹
19	-SO ₂ CH ₃

- 113 -

Example	R^9
19A	
19B	
19C	
19D	
19E	
19F	
19G	
19H	
19I	
19J	

- 114 -

Example	R^9
19K	
19L	
19M	

16. The compound as defined in Claim 1 of the formula

5

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein R^9 is as shown in the table below:

Example	R^9
24	
24A	

- 115 -

Example	R^9
24B	

17. The compound as defined in Claim 1 of the formula

5

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein R^9 is as shown in the table below:

Example	R^9
25	
26	
27	$-SO_2CH_3$

10

18. The compound as defined in Claim 1 of the formula

- 116 -

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein Z and R⁹ are as shown in the table below:

Example	Z	R ⁹
12		-SO ₂ CH ₃
12A		-SO ₂ CH ₃
12B		
12C		
12D		
12E		
12F		

- 117 -

Example	Z	R ⁹
12G		
12H		
12I		
12J		
12K		
12L		
12M		

- 118 -

Example	Z	R ⁹
12N		
16		

19. The compound as defined in Claim 1 of the formula

5

a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

10 wherein Z and R⁹ are as shown in the table below:

Example	Z	R ⁹
20		
21		
22		

- 119 -

20. The compound as defined in Claim 1 of the formula

- 5 a prodrug thereof, or a pharmaceutically acceptable salt and/or hydrate of said compound or of said prodrug, or where applicable, a geometric or optical isomer or racemic mixture thereof,

wherein Z and R⁹ are as shown in the table below:

Example	Z	R ⁹
23		
23A		
23B		
23C		
23D		

- 120 -

Example	Z	R ⁹
23E		
23F		

21. A pharmaceutical composition which comprises an effective amount of a compound as defined in Claim 1 and a pharmaceutically acceptable carrier therefor.

5 22. A method of treating eating and metabolic disorders comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Claim 1 or a prodrug thereof or a pharmaceutically acceptable salt of said compound or of said prodrug.

10 23. The method of Claim 22 wherein said eating disorder is hyperphagia.

24. The method of Claim 22 wherein said metabolic disorder is obesity.

15 25. A method of treating disorders associated with obesity comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Claim 1 or a prodrug thereof or a pharmaceutically acceptable salt of said compound or of said prodrug.

20 26. The method of Claim 25 wherein said disorders associated with obesity are type II diabetes, insulin resistance, hyperlipidemia and hypertension.

- 121 -

27. A pharmaceutical composition which comprises a therapeutically effective amount of a composition comprising

a first compound, said first compound being a compound of claim 1, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug;

5 a second compound, said second compound being a β_3 agonist, a thryomimetic agent, an eating behavior modifying agent or an NPY antagonist; and

a pharmaceutically acceptable carrier therefor.

28. A method of treating an eating disorder which comprises administering
10 to a mammal in need of such treatment

an amount of a first compound, said first compound being a compound of claim 1, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug;

15 a second compound, said second compound being a β_3 agonist, a thryomimetic agent, an eating behavior modifying agent or an NPY antagonist;

wherein the amounts of the first and second compounds result in a therapeutic effect.

29. A pharmaceutical composition which comprises a therapeutically
20 effective amount of a composition comprising

a first compound, said first compound being a compound of claim 1, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug;

25 a second compound, said second compound being an aldose reductase inhibitor, a glycogen phosphorylase inhibitor, a sorbitol dehydrogenase inhibitor, insulin, metformin, acarbose, a thiazolidinedione such as troglitazone or rezulin; a

- 122 -

glitazone such as rosiglitazone or pioglitazone; a sulfonylurea, glipizide, glyburide, or chlorpropamide; and

a pharmaceutically acceptable carrier therefor.

5 30. A pharmaceutical composition made by combining the compound of
Claim 1 and a pharmaceutically acceptable carrier therefor.

31. A process for making a pharmaceutical composition comprising
combining a compound of Claim 1 and a pharmaceutically acceptable carrier.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/49302

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :Please See Extra Sheet.

US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 514/252, 255, 269, 272, 318, 326 ; 546/194, 209, 213 ; 544/238, 322, 336

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

STN, CAPLUS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 99/32111 A1 (BAYER CORPORATION) 01 July 1999 (01.07.99), see compounds of examples 1-303.	1-31
A	US 4,405,644 (KABBE et al.) 20 September 1983 (20.09.83), see compounds in table 1.	1-31

Further documents are listed in the continuation of Box C.

See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Z"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

08 APRIL 2002

Date of mailing of the international search report

20 MAY 2002

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231Authorized officer *Telicia D. Roberts for*
CHANA AULAKH

Facsimile No. (703) 305-3290

Telephone No. (703) 308-1235

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/49309

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/49302

A. CLASSIFICATION OF SUBJECT MATTER:

IPC (7):

A61K 31/4523, 31/4535, 31/4545, 31/497, 31/501, 31/506 ; C07D 401/12, 403/12, 409/12, 417/12

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

514/252, 255, 269, 272, 318, 326 ; 546/194, 209, 219 ; 544/238, 322, 336

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 18.1. The species are as follows:

I. Compounds of formula I where Heterocyclic ring attached to variable Z represents a pyridine ring, pharmaceutical compositions containing these compounds and a method of using these compounds.

II. Compounds of formula I where Heterocyclic ring attached to variable Z represents a pyridazine ring, pharmaceutical compositions containing these compounds and a method of using these compounds.

III. Compounds of formula I where Heterocyclic ring attached to variable Z represents a pyrimidine ring, pharmaceutical compositions containing these compounds and a method of using these compounds.

IV. Compounds of formula I where Heterocyclic ring attached to variable Z represents a pyrazine ring, pharmaceutical compositions containing these compounds and a method of using these compounds.

V. Compounds of formula I where Heterocyclic ring attached to variable Z represents a thiazole ring, pharmaceutical compositions containing these compounds and a method of using these compounds.

VI. Compounds of formula I where Heterocyclic ring attached to variable Z represents a thiophene ring, pharmaceutical compositions containing these compounds and a method of using these compounds.

VII. Compounds of formula I where Heterocyclic ring attached to variable Z represents a oxazole ring, pharmaceutical compositions containing these compounds and a method of using these compounds.

VIII. Compounds of formula I where Heterocyclic ring attached to variable Z represents a diazole ring, pharmaceutical compositions containing these compounds and a method of using these compounds.

IX. Compounds of formula I where Heterocyclic ring attached to variable Z represents a thiadiazole ring, pharmaceutical compositions containing these compounds and a method of using these compounds.

X. Compounds of formula I where Heterocyclic ring attached to variable Z represents an oxadiazole ring, pharmaceutical compositions containing these compounds and a method of using these compounds.

The claims are deemed to correspond to the species listed above in the following manner:

Species I : Claims 5-11

Species II : Claim 17

Species III : Claims 15 and 16

Species IV : Claims 12-14

Species VI : Claim 18

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US01/49809

Species IX : Claims 19 and 20

The following claims are generic: Claims 1-4 and 21-31

The species listed above do not relate to a single inventive concept under PCT Rule 19.1 because, under PCT Rule 19.2, the species lack the same or corresponding special technical features for the following reasons:

There is no common core which in the Markush Practice, is a significant structural element shared by all of the alternatives; see PCT Administrative Instructions Annex B Part I (f) (i) (B) (1).

THIS IS A VINTAGE EDITION (USPRO,

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS IS A
LIBRARY BOOK
MAY NOT BE LOANED