T.C.

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

2022-2023 YILI GÜZ DÖNEMİ INTRODUCTION THE PATTERN RECOGNITION DERSİ FİNAL ÖDEVİ RAPORU

SINIFLANDIRMA ALGORİTMALARI İLE MEME KANSERİ TESPİTİ

Hazırlayan

1030510211

Öznur Hasoğlu

Öğretim Üyesi

Dr. Öğr. Üyesi Özkan Ufuk Nalbantoğlu

ARALIK 2022

KAYSERİ

İÇİNDEKİLER

1.	\mathbf{OZ}	ET	.3
		Rİ SETİ YÜKLEME VE DÜZENLEME	
		GORİTMA DEĞERLENDİRMELERİ	
		KARMAŞIKLIK MATRİSLERİ	
		SINIFLANDIRMA RAPORLARI	
3	3.3.	SONUÇ TABLOSU	9
4.]	EKLI	ER	9
5 1	ZAV	NAKI AR	0

1. ÖZET

Bu proje Introduction the Pattern Recognition dersi final ödevi kapsamında hazırlanmıştır.

Proje, makine öğrenimi algoritmalarını kullanarak meme bölgesindeki tümör hücrelerinden alınan 32 öznitelikli 570 örnekten oluşan bir veri setiyle, hücreleri iyi huylu (kanserli olmayan) ve kötü huylu (kanserli) olarak sınıflandırma üzerine bir program yazmaktır. Program, Python programlama dili aracılığıyla Spyder geliştirme ortamında yazılmıştır.

Projeyi yaparken öncelikle veri setini düzenledim. Daha sonra verileri Logistic Regression(LGR), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), Desicion Tree Classifier (DTC), Random Forest Classifier (RFC) algoritmaları kullanarak eğittim ve sonuçları belirli metrikler üzerinden karşılaştırdım. Özetle sunduğum bu aşamaların detayları raporda ilgili başlıklarda verilmiştir. Çalışır program dosyasını GitHub hesabıma yükleyerek eklerde Github adresimi paylaşmış bulunmaktayım.

2. VERİ SETİ YÜKLEME VE DÜZENLEME

Proje için verilen 570 örnek ve 32 öznitelikten oluşan Şekil 1'de gördüğünüz 'csv' formatındaki veri setini kullandım.

Şekil 1. Veri Seti

Verideki 1. Öznitelik olan 'id' kolonunu kullanmayacağım için sildim. Daha sonra 2. Öznitelik olan 'diagnosis' kolonunu yani hücrenin maligant (kanserli) veya benign (kansersiz) olduğunu tahmin etmek için M ve B değerlerini sayısallaştırdım. Kalan 30 özniteliği kullanarak 'diagnosis' özniteliğini tahmin etmek üzere programlama yaptım. Bahsettiğim veri düzenleme işlemlerini gerçekleştirdiğim kodlar Şekil 2'de, verinin düzenlenmiş hali Şekil 3'te ve veriler üzerinde yapılmış bazı görselleştirmeler Şekil 4 ve Şekil 5'te verilmiştir.

```
"""VERİLER YÜKLEDİM, İNCELEDİM, GÖRSELLEŞTİRDİM..."""
veriler = pd.read_csv('veri.csv')
veriler.isna().sum()
veriler.describe()
veriler.info()
veriler.drop('id',inplace =True,axis = 1)
plt.figure(figsize=(4,4))
sns.countplot(data = veriler,x = 'diagnosis')
sns.pairplot(veriler, hue="diagnosis", vars=["radius_mean", "texture_mean", "perimeter_mean", "radius
plt.show()
#DIAGNOSIS KOLONUMU SAYISALLAŞTIRIYORUM M/B --> 1/0
diagnosis = veriler[["diagnosis"]]
diagnosis = preprocessing.LabelEncoder().fit_transform(diagnosis)
#DIAGNOSIS KOLONUNU TAHMİN ETTİRECEĞİM İÇİN KALAN VERİLERİ AYIRIYORUM
kalan = veriler.iloc[:,2:].values
#DIAGNOSIS KOLONUNU SAYILAŞTIRDIKTAN SONRA TEKRAR KALAN VERİLERLE BİRLEŞTİRİYORUM
bir= pd.DataFrame(data= diagnosis, index= range(569), columns= ["diagnosis"])
iki= pd.DataFrame(data= kalan, index= range(569))
veri=pd.concat([bir,iki], axis=1)
```

Şekil 2. Veri Yükleme ve Düzenleme

Şekil 3. Düzenleniş Veri

Şekil 5. Bazı Öznitelikler Arası Pairplot Grafiği

Eğitim ve test verilerini ayırdıktan sonra ölçekleme işlemi uyguladım. (Şekil 6)

```
"""EĞİTİM/TEST VERİLERİ AYRILIYOR..."""

40 x_train, x_test,y_train,y_test = train_test_split(kalan,diagnosis,test_size=0.33, random_state=0)

41

42 """ÖLÇEKLEME YAPIYORUM..."""

43 sc=StandardScaler()

44 x_train = sc.fit_transform(x_train)

45 x_test = sc.transform(x_test)
```

Şekil 6. Ölçekleme İşlemi

3. ALGORİTMA DEĞERLENDİRMELERİ

Seçtiğim algoritmaları ayrı ayrı denedim. Karmaşıklık matrisi, sınıflandırma raporu ve çapraz doğrulama kullanarak performanslarını karşılaştırdım. Kodları dosyaya ek olarak vereceğim için rapora eklemedim.

3.1. KARMAŞIKLIK MATRİSLERİ

3.2. SINIFLANDIRMA RAPORLARI

LGR	precision	recall	f1-score	support
0	0.98	0.98	0.98	121
1	0.97	0.96	0.96	67
accuracy			0.97	188
macro avg	0.97	0.97	0.97	188
weighted avg	0.97	0.97	0.97	188
Roc eğrisi altı	ndaki alan (A	UC): 0.96	93474774885	5902

Şekil 12. LGR Sınıflandırma Raporu

KNN	precision	recall	f1-score	support
0	0.94	0.94	0.94	121
U	0.54	0.54	0.54	121
1	0.90	0.90	0.90	67
accuracy			0.93	188
macro avg	0.92	0.92	0.92	188
weighted avg	0.93	0.93	0.93	188
Roc eğrisi altın	daki alan (A	UC): 0.91	88355741951	L4

Şekil 13. KNN Sınıflandırma Raporu

SVC	precision	recall	f1-score	support
0 1	0.98 0.97	0.98 0.96	0.98 0.96	121 67
accuracy	0.07	0.07	0.97	188
macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97	188 188
Roc eğrisi altınd	laki alan (A	UC): 0.96	93474774885	902

Şekil 14. SVC Sınıflandırma Raporu

GNB	precision	recall	f1-score	support
0	0.92	0.93	0.93	121
1	0.88	0.85	0.86	67
accuracy			0.90	188
macro avg	0.90	0.89	0.89	188
weighted avg	0.90	0.90	0.90	188
Roc eğrisi altınd	aki alan (A	UC): 0.89	23152830886	5888

Şekil 15. GNB Sınıflandırma Raporu

DTC	precision	recall	f1-score	support
	•			
0	0.96	0.92	0.94	121
U	0.90	0.52	0.54	121
1	0.86	0.93	0.89	67
_				
accuracy			0.92	188
macro avg	0.91	0.92	0.91	188
_				
weighted avg	0.92	0.92	0.92	188
_				
B * 1.	111 1 /4	110) 0 00	42642524441	-004
Roc eğrisi altı	ndaki alan (A	UC): 0.92	13642531149	5924

Şekil 16. DTC Sınıflandırma Raporu

RFC	precision	recall	f1-score	support
0	0.94	0.98	0.96	121
1	0.95	0.90	0.92	67
accuracy			0.95	188
macro avg	0.95	0.94	0.94	188
weighted avg	0.95	0.95	0.95	188
Roc eğrisi altınd	laki alan (A	UC): 0.93	53644998149	9746

Şekil 17. RFC Sınıflandırma Raporu

3.3. SONUÇ TABLOSU

	LGR	KNN	SVC	GNB	DTC	RFC
Accuracy	0.97	0.93	0.97	0.90	0.92	0.95
Cross Val.	0.98	0.96	0.97	0.94	0.91	0.96
Cross Val. S.S.	0.02	0.02	0.02	0.05	0.05	0.03
Sensitivity(ReCall)	0.97	0.92	0.97	0.89	0.92	0.94
Specifiticy	0.96	0.90	0.96	0.85	0.93	0.90
AUC	0.96	0.91	0.96	0.89	0.92	0.93

Tablo 1. Değerlendirme Sonuçları

Tabloyu incelediğimde en tutarlı ve uygun modelin küçük bir farkla Logistic Regression algoritması ile eğittiğim model olduğu görülmektedir. Sonuç olarak Logistic Regression algoritmasını seçerek %97 doğruluk oranında bir model eğitmiş oldum. Detaylı açıklamaları programımda yorum satırlarında görebilirsiniz.

4. EKLER

Hasoğlu, Öznur. "Introduction-to-Pattern-Recognition-Final-Project". *GitHub*. Yayın Tarihi: 20 Ocak 2022

https://github.com/oznurhasoglu/Introduction-to-Pattern-Recognition-Final-Project-

5. KAYNAKLAR

Yasser, M. "Breast Cancer Dataset". KAGGLE. Yayın Tarihi: 2022

https://www.kaggle.com/datasets/yasserh/breast-cancer-dataset