- Introduction
- Power series
 - Sequences of Functions
 - Uniform Convergence
 - Continuity and Uniform Convergence
 - Power Series
 - Taylor Series
 - Fourier Series
- 3 Differentiation in Higher Dimensions
- 4 Integration in Higher Dimensions
- 5 Further Topics in Calculus
- 6 Summary Outlook and Review

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

We know the concepts of

functions, sequences, and series.

We are interested in series representing a function f(x) at every x:

$$f(x) = \sum_{j=0}^{\infty} a_j (x - x_0)^j$$

For this purpose we need the concept of a sequence of functions at first.

Seginence of partial sums: $\{\sum_{j=0}^{\infty} \alpha_j (x-x_0)^j \}_{n \in \mathbb{N}_0}$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

S.-J. Kimmerle

A sequence of elements of \mathbb{R} (cf. Analysis 1):

$$g: \mathbb{N} \to \mathbb{R}, \ n \mapsto a_n =: g(n)$$

$$\{a_n \, \zeta_{n \in \mathbb{N}} = \{a_n \, \zeta_{n \geqslant \Lambda} = \{a_{\Lambda_1} \, a_{2 \mid 1 \mid 1 \mid 1} \, a_{k \mid 1 \mid 1 \mid 1} \}$$

Definition (Sequences of Functions)

Let D be a set. A mapping

$$g: D \times \mathbb{N} \to \mathbb{R}, (x, n) \mapsto f_n = f_n(x) =: g(x, n)$$

is called a **sequence** of functions $f_n : D \to \mathbb{R}$, $n \in \mathbb{N}$.

Other notations by writing the functions, e.g., are:

$$\{f_n\}_{n\in\mathbb{N}}=\{f_n\}_{n\geq 1}=\{f_1,f_2,f_3,\ldots,f_n,\ldots\}$$

The domain of definition D and the target area, here \mathbb{R} , have to be identical for all functions f_n .

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in **Higher Dimensions**

Integration in **Higher Dimensions**

Further Topics in Calculus

Summary -Outlook and Review

Consider $\{f_n\}_{n\in\mathbb{N}}, f_n: [0,2] \to \mathbb{R}$ with

Example (Pointwise Convergence)

This example exhibits that we may not swap the limit and the integral (another limit process) in general!

Definition (Pointwise Convergence)

Let *D* be a set. A sequence $\{f_n\}_{n\geq n_0}$ of functions

 $f_n: D \to \mathbb{R}$ is called **pointwise convergent** to a function

 $f:D\to\mathbb{R},$

if and only if

$$\lim_{n\to\infty} f_n(x) = f(x) \quad \text{for any } x \text{ in } D.$$

Equivalently,

For any $x \in D$ and $\varepsilon > 0$ there exists a $N = N(x, \varepsilon) \ge n_0$ s.t.:

 $|f_n(x) - f(x)| < \varepsilon$ for any x in D and all $n \ge N$.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Definition (Uniform Convergence)

Let *D* be a set. A sequence $\{f_n\}_{n \ge n_0}$ of functions

 $f_n: D \to \mathbb{R}$ is called **uniformly convergent** to a function

 $f:D\to\mathbb{R},$

if and only if

For any $x \in D$ and $\varepsilon > 0$ there exists a $N = N(\varepsilon) \ge n_0$ s.t.:

 $|f_n(x) - f(x)| < \varepsilon$ for any x in D and all $n \ge N$.

Notice that N may depend only on ε but not on the point x.

Uniform convergence always implies pointwise convergence, the opposite is not true (see last example).

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

S.-J. Kimmerle

Let $x \in D = [0, 1)$. The sequence

$$\left\{\frac{1}{2^{x+n}}\right\}_{n\in\mathbb{N}}$$

converges uniformly:

Assume
$$\varepsilon = \frac{1}{4}$$
:

$$f_n(x) = \frac{1}{2^{x+n}} = \frac{1}{2^n} \cdot \frac{1}{2^x} < \frac{1}{4}$$
 for all $n \ge 2$ for any $x \in D$

$$f_n \xrightarrow{n \to \infty} f_\infty \equiv 0$$

as $x \in D (x \neq 0!)$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Continuity and Uniform Convergence

Theorem (Uniform convergence preserves continuity)

Let $D \subseteq \mathbb{C}$ and $f_n : D \to \mathbb{C}$, $n \in \mathbb{N}$, a sequence of continuous functions, that uniformly converge to a function $f : D \to \mathbb{C}$,

then f is continuous.

The limit of a uniformly convergent sequence of continuous functions, is again continuous.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Example: Saw-tooth function

Let o: R -> R,

Analysis 2

S.-J. Kimmerle

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review

Vis discontinuous => this Fourier series is not

uniformly convergent

Definition (Uniform norm or sup norm)

Let *D* be a set and $f: D \to \mathbb{C}$.

We set

$$||f||_D := \sup_{x \in D} |f(x)|.$$

 $\|\cdot\|_D$ defines a norm on D.

A function f is bounded iff $||f|| < \infty$.

When misunderstandings are excluded, we just write ||f|| instead of $||f||_D$.

Introduction

Power series

Sequences of Functions

Uniform Convergence
Continuity and Uniform

Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review

By this notation we may reformulate the uniform convergence:

 $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly on D

$$\iff \lim_{n\to\infty} ||f_n - f||_D = 0$$

Theorem (Weierstrass Convergence Criterion)

Let $f_n: D \to \mathbb{C}, n \in \mathbb{N}$.

$$\sum_{n=0}^{\infty} \|f_n\|_D < \infty$$

then the series

$$\sum_{n=0}^{\infty} f_n - F$$

converges absolutely and uniformly on D to a function $F: D \to \mathbb{C}$.

For an example, see next slide

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

The series

$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2}$$

converges uniformly on \mathbb{R} .

The know
$$\sum_{N=1}^{\infty} \frac{1}{N^2} < \infty = \sum_{N=1}^{\infty} \frac{\cos(nx)}{n^2}$$

We know $\sum_{N=1}^{\infty} \frac{1}{N^2} < \infty = \sum_{N=1}^{\infty} \frac{\cos(nx)}{n^2}$
 $\sum_{N=1}^{\infty} \frac{\cos(nx)}{n^2}$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

