颜色特征提取项目报告

姓名 罗远浩

学号 2014E8013261184

单位 计算技术研究所

一 程序说明

该程序实现了图像的几种颜色特征的提取,分别是灰度直方图(Gray histogram),颜色直方图(Color Histogram),HSV 直方图,颜色矩(Color Moment),颜色量化(Color Quantization),颜色相关向量(CCV: Color Coherence Vector),以及颜色相关图(Color Correlogram)。

程序实现平台为 Windows8.1 + VC 2012 + OpenCV2.4.4。

二 程序演示

1. 显示图像

2. 灰度直方图

3. 颜色直方图

4. HSV 直方图

5. 颜色矩

```
Mean of H:89
Mean of S:132
Mean of U:179

Variance of H:82
Variance of S:92
Variance of V:121

Skewness of H:-30
Skewness of U:-137
请按任意键继续. . .
```

6. 颜色量化

参考汪华章,何小海,宰文姣,王炜的论文《基于色彩量化及索引的图像检索》,将图像首先量化到32个颜色区间,具体实现将在下文中详述。计算结果如下图所示:

7. 颜色聚合向量 CCV

根据文献所述阈值通常置为:图像宽度*图像长度/100。

8. 颜色相关图

颜色相关图中的距离设为 10,即针对 32 种颜色计算它们 1-10 距离内的颜色自动相关图。计算结果如下图所示:

		E:\	StudyFile	es\Works	pace\VSF	Project\S	olutions\;	x64\Debu	ug\Open(CV.exe
bin 31: 0 distance	826 1	2	3	4	5	6	7	8	9	10
color										
0:	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
1:	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
2:	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
3:	0.30263	0.11053	0.05965	0.04803	0.03632	0.02588	0.02632	0.02533	0.02076	0.01632
4:	0.03192	0.01346	0.01154	0.00769	0.00077	0.00256	0.00714	0.00192	0.00513	0.00462
5:	0.66523	0.52192	0.44650	0.39680	0.36149	0.33494	0.31154	0.28958	0.27115	0.25525
6:	0.90929	0.86531	0.83822	0.81764	0.80009	0.78362	0.76764	0.75293	0.73919	0.72632
7:	0.93591	0.90524	0.88378	0.86599	0.85076	0.83690	0.82411	0.81259	0.80222	0.79246
8:	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
9:	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
10:	0.84754	0.77159	0.72415	0.69036	0.66410	0.64032	0.61784	0.59748	0.57641	0.55625
11:	0.46855	0.29691	0.21471	0.15907	0.12862	0.10613	0.08925	0.07842	0.07262	0.06494
12:	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
13:	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
14:	0.16667	0.02604	0.00694	0.01302	0.00625	0.00347	0.00298	0.00521	0.00231	0.00312
15:	0.18750	0.06250	0.02083	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
16:	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

16: 17: 18: 0.0000.0 0.00000.0 0.00000.0 0.00000.0 0.00000.0 0.00000.0 0.00000.0 0.00000.0 19: $0.00000 \ \ 0.00000 \ \ 0.000000 \ \ 0.000000 \ \ 0.000000 \ \ 0.000000 \ \ 0.000000 \ \ 0.000000$ 20: 21: 0.00000 0.00000.0 0.00000.0 0.00000.0 0.00000.0 0.00000.0 0.00000.0 0.00000.0 22: 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 23: 24: 25: $0.00000 \ 0.00000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000$ 26: 0.30108 0.07392 0.03405 0.03024 0.02258 0.01703 0.01575 0.01109 0.01135 0.00887 27: $0.00000\ 0.00000\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.000000$ 28: 0.21496 0.13923 0.12036 0.10600 0.10317 0.09623 0.09339 0.09309 0.09042 0.08804 29: 0.89393 0.82453 0.77456 0.73801 0.70967 0.68649 0.66616 0.64827 0.63218 0.61745 0.67328 0.51895 0.44649 0.41029 0.38654 0.36857 0.35341 0.33943 0.32911 0.32095 30: 31: 0.22406 0.10836 0.07736 0.06049 0.05451 0.05065 0.04666 0.03938 0.03407 0.03161

三 特征提取方法与代码说明

1. 颜色矩(Color Moment) 颜色矩即通过以下公式计算:

$$\mu_i = \frac{1}{N} \sum_{j=1}^N p_{ij} \qquad \qquad - \text{次矩 (mean)}$$

$$\sigma_i = (\frac{1}{N} \sum_{j=1}^N (p_{ij} - \mu_i)^2)^{\frac{1}{2}} \qquad \qquad \text{二阶矩 (variance)}$$

$$s_i = (\frac{1}{N} \sum_{j=1}^N (p_{ij} - \mu_i)^3)^{\frac{1}{3}} \qquad \qquad \text{三阶矩 (skewness)}$$

颜色矩实现过程中算法不复杂,主要精力花费在 C++的代码调试上,比如进行除法运算时 double 型与 int 的表示形式,以及对 IplImage 数据内容的操作等。比如下面代码:

该部分对算法要求不高,但通过颜色矩的编写,使编程能力有所提高,对 Ipl Image 的操作也更加熟悉。

2. 颜色聚合向量(CCV)

颜色聚合向量属于程序中最为复杂的一块。具体过程如下图所示:

图像量化参考了汪华章,何小海,宰文姣,王炜的论文《基于色彩量化及索引的图像 检索》,将图像首先量化到32个颜色区间,具体划分区间如下:

```
a. V<0.1
b. S<0.1 且 0.1<V<=0.4
S<0.1 且 0.4<V<=0.7
S<0.1 且 0.7<V<=1
```

С.

$$h' = \begin{cases} 0 & h \in (0,20] \cup (330,360) \\ 1 & h \in (20,45] \\ 2 & h \in (45,75] \\ 3 & h \in (75,155] \\ 4 & h \in (155,210] \\ 5 & h \in (210,270] \\ 6 & h \in (270,330] \end{cases}$$

$$s' = \begin{cases} 0 & s \in (0,1,0.5] \\ 1 & s \in (0.5,1.0] \end{cases} v' = \begin{cases} 0 & v \in (0,1,0.5] \\ 1 & v \in (0.5,1.0] \end{cases}$$

对于图像像素的遍历,起初采用的是深度优先遍历,因为相对用到的数据结构较少,流程比较清晰,但是深度优先遍历在图像的聚合像素较多的情况下,会出现栈溢出(产生负值,无穷大值等),原因是函数递归调用的层数太多,以至于函数调用的栈空间不够用。因此更改为广度优先遍历。具体代码比较复杂,可以参见 Image. cpp。

3. 颜色相关图(Color Correlogram) 颜色相关图的具体过程如下图所示:

颜色相关图计算过程中遇到的以后可借鉴的主要问题有两个:

首先,在 double 中零并不是绝对的零值,而是以一个绝对值非常接近零的数值表示,所以如果一种颜色的每个像素位置的自相关概率都始终是零,则最后的输出会输出非常小的负值,而非零,为了避免这种干扰,在最后的输出时进行了过滤,当结果小于零时,直接输出零。虽然这样逻辑上并无差异,但为了更好的鲁棒性仍值得后续的研究。

其次,在进行除法的时候,要记得判断除数是否为零,若除数为零,会出现绝对值为无穷大值的结果。具体代码如下图所示:

```
if (pixelNum[c]!=0)
    correlogram[c][d]=correlogram[c][d]/(double)pixelNum[c];
```

四 不足及进一步的工作

- 1 在计算 CCV 和颜色相关图时没有预先进行图像平滑。
- 2 在颜色聚合向量(CCV)的计算过程中,部分聚合向量结果的值中会出现很小的数值(小于阈值),这在逻辑上与实际算法也不相符,暂时没有找到原因,因此当此种问题出现时,将其看做零值。目前估计问题可能也是出现在 C++中数据类型存储形式的问题。
- 3 在颜色相关图计算过程中,double 类型数据零值表示的问题,尝试找到鲁棒性更好的 处理方法。
- 4 颜色聚合向量的计算时间因图像的不同而有较大差异,对于大部分图像计算很快,但对于部分聚合颜色块较大的图像计算时间较长。