

## Tools for Tackling Probability

There are several graphical tools that can be used to better understand probabilities. These are:

## 1. Contingency Tables

A way of portraying data that can facilitate calculating probabilities.

### 2. Tree Diagrams

A special type of graph used to determine the outcomes of an experiment. It consists of "branches" that are labeled with either frequencies or probabilities. Trees are useful for conditional probabilities.

## 3. Venn Diagrams

A picture that represents the outcomes of an experiment. It generally consists of a box that represents the sample space with circles or ovals.



# Example (Contingency Tables)



Consider the contingency table below. It describes the distribution of a random sample of 100 individuals organized by gender and whether they are right- or left-handed.

M = the subject is male

F = the subject is female

R = the subject is right-handed

L = the subject is left-handed

|         | Right-Handed | Left-Handed | Total |
|---------|--------------|-------------|-------|
| Males   | 43           | 9           | 52    |
| Females | 44           | 4           | 48    |
| Total   | 87           | 13          | 100   |

Determine P(M).

P(M) is the probability of an individual being a male. This is done by taking the total number of males (left- and right-handed) and dividing by the number of individuals in the sample.

$$P(M) = \frac{52}{100} = 0.52$$

Determine P(L).

P(L) is the probability of an individual being left-handed. This is done by taking the total number of left-handed individuals and dividing by the number of individuals in the sample.

$$P(L) = \frac{13}{100} = 0.13$$

|         | Right-Handed | Left-Handed | i Total |
|---------|--------------|-------------|---------|
| Males   | 43           | 9           | 52      |
| Females | 44           | 4           | 48      |
| Total   | 87           | 13          | 100     |

## Example (cont.)



Determine  $P(F \cap L)$ .

Here, we need to find individuals that are both female AND left-handed.

$$P(F \cap L) = \frac{4}{100} = 0.04$$

Determine  $P(F \cup L)$ .

Here we must consider the union of all female individuals and left-handed individuals. This will be the 48 women (right- and left-handed) plus the 9 left-handed men.

$$P(F \cup L) = \frac{48 + 9}{100} = \frac{57}{100} = 0.57$$

|         | Right-Handed | Left-Handed | Total |
|---------|--------------|-------------|-------|
| Males   | 43           | 9           | 52    |
| Females | 44           | 4           | 48    |
| Total   | 87           | 13          | 100   |

## Example (Tree Diagram)



Consider a scenario where 10 cards were placed in a well-shuffled deck. 5 are red and 5 are blue. Two cards are drawn sequentially.

#### Scenario #1:

The first card is drawn and replaced before the second card is drawn. This is called sampling with replacement.

#### Scenario #2:

The first card is drawn. Then, the second card is drawn. This is called sampling without replacement.

How do the probabilities change in these scenarios?

## Scenario #1 Sampling with Replacement



There are two options for the first draw: Red or Blue.

$$P(R) = \frac{\text{Red Cards}}{\text{All Cards}} = \frac{5}{10} = 0.5 \text{ and } P(B) = \frac{\text{Blue Cards}}{\text{All Cards}} = \frac{5}{10} = 0.5$$

Remember, the first card is placed back into the deck so there are still 10 cards. There are four outcomes for the second draw: (Red, Red), (Red, Blue), (Blue, Red), (Blue, Blue).

Since we are replacing the first card, we are "resetting" the probabilities – these events are **independent**.

$$P(RR) = P(R_1)P(R_2) = \left(\frac{5}{10}\right)\left(\frac{5}{10}\right) = 0.25$$

$$P(RB) = P(R_1)P(B_2) = \left(\frac{5}{10}\right)\left(\frac{5}{10}\right) = 0.25$$

$$P(BR) = P(B_1)P(R_2) = \left(\frac{5}{10}\right)\left(\frac{5}{10}\right) = 0.25$$

$$P(BB) = P(B_1)P(B_2) = \left(\frac{5}{10}\right)\left(\frac{5}{10}\right) = 0.25$$

Notice that the probabilities add up to 1.

In this scenario, each outcome is equally likely.

# Scenario #1 Sampling with Replacement





Draw #1 - Two options, equal probability

Draw #2 - four options, equal probability

For each step in the tree, the probability is "updated"

$$P(RR \text{ or } BR) = P(RR) + P(BR) = 0.25 + 0.25 = 0.5$$

# Scenario #2 Sampling without Replacement 🕜

For the first draw, the initial probability is still the same:

$$P(R) = \frac{\text{Red Cards}}{\text{All Cards}} = \frac{5}{10} = 0.5 \text{ and } P(B) = \frac{\text{Blue Cards}}{\text{All Cards}} = \frac{5}{10} = 0.5$$

Now, the first card is NOT replaced, so there are 9 cards in the deck. There are four still outcomes for the second draw: (Red, Red), (Red, Blue), (Blue, Red), (Blue, Blue).

The outcomes are now conditional because the results of the first draw will affect the results of the second draw!

$$P(RR) = P(R_1)P(R_2) = \left(\frac{5}{10}\right)\left(\frac{4}{9}\right) \approx 0.22$$
 On the second draw: 
$$4 \text{ red cards remain with 9 cards in the deck}$$
 
$$P(RB) = P(R_1)P(B_2) = \left(\frac{5}{10}\right)\left(\frac{5}{9}\right) \approx 0.28$$
 5 blue cards remain with 9 cards in the deck 
$$P(BR) = P(B_1)P(R_2) = \left(\frac{5}{10}\right)\left(\frac{5}{9}\right) \approx 0.28$$
 5 red cards remain with 9 cards in the deck 
$$P(BB) = P(B_1)P(B_2) = \left(\frac{5}{10}\right)\left(\frac{4}{9}\right) \approx 0.22$$
 4 blue cards remain with 9 cards in the deck

# Scenario #2 Sampling with Replacement





Draw #1 - Two options, equal probability

For each step in the tree, the probability is "updated"

Draw #2 - four options, unequal probability

$$P(RR \text{ or } BB) = P(RR) + P(BB) = 0.22 + 0.22 = 0.44$$

## Example (Venn Diagram)



Consider the following sample space:

$$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$A = \{1, 2, 3, 4, 5\}$$
 and  $B = \{3, 4, 5, 6, 7\}$ 

These can be represented with a Venn Diagram



$$P(A) = \frac{\{1, 2, 3, 4, 5\}}{\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}} = \frac{5}{10} = 0.5$$
(Everything in circle "A")

$$P(B) = \frac{\{3, 4, 5, 6, 7\}}{\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}} = \frac{5}{10} = 0.5$$
(Everything in circle "B")

$$P(A \cap B) = \frac{\{3,4,5\}}{\{1,2,3,4,5,6,7,8,9,10\}} = \frac{3}{10} = 0.3$$
(Only the values in both circles)

$$P(A \cup B) = \frac{\{1, 2, 3, 4, 5, 6, 7\}}{\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}} = \frac{7}{10} = 0.7$$
(The values in both circles)