

planetmath.org

Math for the people, by the people.

eigenspace

Canonical name Eigenspace

Date of creation 2013-03-22 17:23:07 Last modified on 2013-03-22 17:23:07

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771) Entry type Definition Classification msc 15A18 Let V be a vector space over a field k. Fix a linear transformation T on V. Suppose λ is an eigenvalue of T. The set $\{v \in V \mid Tv = \lambda v\}$ is called the eigenspace (of T) corresponding to λ . Let us write this set W_{λ} .

Below are some basic properties of eigenspaces.

- 1. W_{λ} can be viewed as the kernel of the linear transformation $T \lambda I$. As a result, W_{λ} is a subspace of V.
- 2. The dimension of W_{λ} is called the geometric multiplicity of λ . Let us denote this by g_{λ} . It is easy to see that $1 \leq g_{\lambda}$, since the existence of an eigenvalue means the existence of a non-zero eigenvector corresponding to the eigenvalue.
- 3. W_{λ} is an invariant subspace under T (T-invariant).
- 4. $W_{\lambda_1} \cap W_{\lambda_2} = 0$ iff $\lambda_1 \neq \lambda_2$.
- 5. In fact, if W'_{λ} is the sum of eigenspaces corresponding to eigenvalues of T other than λ , then $W_{\lambda} \cap W'_{\lambda} = 0$.

From now on, we assume V finite-dimensional.

Let S_T be the set of all eigenvalues of T and let $W = \bigoplus_{\lambda \in S} W_{\lambda}$. We have the following properties:

- 1. If m_{λ} is the algebraic multiplicity of λ , then $g_{\lambda} \leq m_{\lambda}$.
- 2. Suppose the characteristic polynomial $p_T(x)$ of T can be factored into linear terms, then T is diagonalizable iff $m_{\lambda} = g_{\lambda}$ for every $\lambda \in S_T$.
- 3. In other words, if $p_T(x)$ splits over k, then T is diagonalizable iff V = W.

For example, let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by T(x,y) = (x,x+y). Using the standard basis, T is represented by the matrix

$$M_T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

From this matrix, it is easy to see that $p_T(x) = (x-1)^2$ is the characteristic polynomial of T and 1 is the only eigenvalue of T with $m_1 = 2$. Also, it is not hard to see that T(x, y) = (x, y) only when y = 0. So W_1 is a one-dimensional subspace of \mathbb{R}^2 generated by (1, 0). As a result, T is not diagonalizable.