Методом Монте-Карло оценить объем части тела $\{F(\bar{x}) \leq c\}$, заключённой в k-мерном кубе с ребром [0, 1]. Функция имеет вид $F(\bar{x}) = f(x_1) + f(x_2) + \dots + f(x_k)$. Для выбранной надежности $\gamma \geq 0.95$ указать асимптотическую точность оценивания и построить асимптотический доверительный интервал для истинного значения объёма.

Используя объем выборки $n=10^4$ и $n=10^6$ оценить скорость сходимости и показать, что доверительные интервалы пересекаются.

Аналогично построить оценку интегралов (представить интеграл как математическое ожидание функции, зависящей от случайной величины с известной плотностью) и для выбранной надежности $\gamma \geq 0.95$ указать асимптотическую точность оценивания и построить асимптотический доверительный интервал для истинного значения интеграла.

Для первого задания — «оценка объёма» - функции f(x) имеют вид

- 1. $f(x) = a^x$.
- 2. $f(x) = x^a$.
- $3. \quad f(x) = \exp(-ax).$
- 4. $f(x) = \ln(ax + 1)$.

Номер варианта	Hомер функ. $f(x)$	Размерность к	Параметр с	Параметр а
1	1	3	4.3	2
2	2	6	1.4	3
3	3	3	1.76	1
4	4	3	2.8	3
5	1	6	13.8	4
6	2	6	0.22	10
7	3	6	2.5	2
8	4	6	8.61	9
9	1	10	40.4	7
10	2	10	2.21	3
11	3	10	8.8	0.35
12	4	10	1.75	0.5
13	1	5	8.2	2.5
14	2	5	1.4	π
15	3	5	0.94	3
16	4	5	6.85	7
17	1	5	12.8	10
18	2	13	4.7	1.5
19	3	13	2.9	5.6
20	4	9	8.81	4.5
21	1	4	9.925	5
22	2	4	0.2	11
23	3	4	0.69	8.1
24	4	4	7.1	10
25	1	9	17.5	π

Интегралы.

Вариант 1. a)
$$\int_{-\infty}^{\infty} \sin(x) \exp(-(x+1)^2) dx$$
, b) $\int_{1}^{8} \frac{dx}{\sqrt{1+x^3}}$

Вариант 2.

a)
$$\int_{2}^{5} \ln(1+x^2) \, dx$$
,

a)
$$\int_{2}^{5} \ln(1+x^2) dx$$
, b) $\int_{-\infty}^{\infty} \cos(x) \exp\left(\frac{-(x+3)^2}{4}\right) dx$.

Вариант 3.

a)
$$\int_{2}^{7} \sqrt{1+x^2} dx$$
, b) $\int_{-\infty}^{\infty} |x|^{\frac{3}{2}} \exp\left(\frac{-(x+1)^2}{2}\right) dx$.

Вариант 4.

a)
$$\int_{1}^{4} 3^{-x^2} dx$$
, b) $\int_{0}^{\infty} x^{2/3} \exp(-2x) dx$.

Вариант 5.

a)
$$\int_0^\infty x^3 \exp(-2x) dx$$
, b) $\int_{-4}^5 \frac{dx}{\sqrt{1+x^4}}$.

b)
$$\int_{-4}^{5} \frac{dx}{\sqrt{1+x^4}}$$

Вариант 6.

a)
$$\int_0^\infty x^2 \exp(-x/2) dx$$
, b) $\int_{-\infty}^\infty x^4 \exp(-(x+2)^2) dx$.

Вариант 7.

a)
$$\int_{-3}^{2} \frac{\ln(4+x^2)}{x+5} dx$$
, b) $\int_{0}^{\infty} \sqrt{x} \exp(-3x) dx$.

Вариант 8.

a)
$$\int_{-\infty}^{\infty} (x-2)^3 \exp(-(x-1)^2/3) dx$$
, b) $\int_{-1}^{2} \sqrt{1+x} \cos(x) dx$.

Вариант 9.

a)
$$\int_0^\infty \frac{x+1}{x+2} \exp(-3x) \, dx$$
, b) $\int_{-3}^4 \frac{\cos(x)}{x+5} \, dx$.

b)
$$\int_{-3}^{4} \frac{\cos(x)}{x+5} dx$$

Вариант 10.

a)
$$\int_{-\infty}^{\infty} \sqrt{1+x^2} \exp(-(x+2)^2/4) dx$$
,

b)
$$\int_0^5 \frac{\sin(x)}{x^2+1} dx$$
.

Вариант 11.

a)
$$\int_0^\infty \sqrt{1+x^2} \exp(-3x) \, dx$$
, b) $\int_4^9 \frac{\ln(x)}{x+1} \, dx$.

b)
$$\int_4^9 \frac{\ln(x)}{x+1} dx.$$

Вариант 12.

a)
$$\int_3^7 \sqrt{1 + x^4} \ dx$$
,

b)
$$\int_0^\infty \sqrt{x} \exp(-5x) \, dx.$$

Вариант 13.

a)
$$\int_{1}^{3} \sqrt[3]{x + x^2} \ dx$$
,

b)
$$\int_0^\infty x^3 \exp(-x/3) \, dx.$$

Вариант 14.

a)
$$\int_{-\infty}^{\infty} |x| \exp(-(x-2)^2/3) dx$$
, b) $\int_{2}^{7} \sqrt[4]{2+x^2} dx$.

b)
$$\int_2^7 \sqrt[4]{2 + x^2} dx$$
.

Вариант 15.

a)
$$\int_{1}^{3} \frac{\ln{(4-x)}}{x+2} dx$$
,

b)
$$\int_{-\infty}^{\infty} \sqrt{|x|} \exp(-(x+1)^2/2) dx$$
.

Вариант 16.

a)
$$\int_0^\infty x^4 \exp(-x) \, dx$$

a)
$$\int_0^\infty x^4 \exp(-x) dx$$
, b) $\int_{-\infty}^\infty \sqrt{|x|} \exp(-(x+2)^2/4) dx$.

Вариант 17.

a)
$$\int_0^\infty x^3 \exp(-2x) dx$$
, b) $\int_4^9 \frac{x-1}{x^2+1} \sqrt{x} dx$.

b)
$$\int_{4}^{9} \frac{x-1}{x^2+1} \sqrt{x} dx$$
.

Вариант 18.

a)
$$\int_1^9 \frac{\cos(2x)}{x^2+4} dx$$
, b) $\int_0^\infty \sqrt{x} \exp(-3x) dx$.

b)
$$\int_0^\infty \sqrt{x} \exp(-3x) \, dx.$$

Вариант 19.

$$\int_{4}^{7} \frac{\ln(7+x^3)}{x+2} \ dx$$

$$\int_4^7 \frac{\ln(7+x^3)}{x+2} dx, \qquad b) \int_{-\infty}^\infty |x|^{5/2} \exp(-(x+4)^2/3) dx.$$

Вариант 20.

a)
$$\int_0^\infty \sqrt{1+x^4} \exp(-3x/2) dx$$
, b) $\int_{-3}^4 \frac{x}{\sqrt{2+x^6}} dx$.

b)
$$\int_{-3}^{4} \frac{x}{\sqrt{2+x^6}} dx$$
.

Вариант 21.

a)
$$\int_{-\infty}^{\infty} \sqrt{2 + |x|^3} \exp(-2(x-1)^2) dx$$
, b) $\int_{0}^{5} \frac{\cos(x)}{\sqrt{1+x^2}} dx$.

b)
$$\int_0^5 \frac{\cos(x)}{\sqrt{1+x^2}} dx$$

Вариант 22.

a)
$$\int_0^\infty (x+1)^2 \exp(-x/2) dx$$
, b) $\int_0^3 \frac{\sin(x)}{\sqrt{1+x}} dx$.

Вариант 23.

a)
$$\int_{-\infty}^{\infty} \sqrt{|x|} \exp(-(x+2)^2/2) dx$$
, b) $\int_{0}^{\infty} (1-x) \exp(-2x) dx$.

Вариант 24.

a)
$$\int_3^8 \frac{\ln(x-1)}{x+1} dx$$
, b) $\int_{-\infty}^\infty \sqrt{1+x^2} \exp(-(x+3)^2/8) dx$,