KET/CHH 9. přednáška Ing. Martin Sýkora, Ph.D

Opakování z minulé přednášky...

Akustická pole

- · Jejich rozdělení podle toku energie
- Rozdělení podle vzdálenosti zákonitosti šíření
- Důležité souvislosti pro měření
- · Souvislost tlaku, intenzity a výkonu

Technika pro měření hluku/zvuku

- · Zvukoměr/hlukoměr vs. multifunkční analyzátor
- · Blokové schéma, části zvukoměru
- Měřicí mikrofon princip, provedení, vlastnosti

KET/CHH 9.přednáška

Měřicí mikrofon - citlivost

Citlivost mikrofonu – důležitá vlastnost pro měření

• "Převodní konstanta" s jakou mikrofon mění akustický tlak na napětí

Dva druhy citlivosti

Tzv. citlivost otevřeného obvodu

- · Bez zatížení mikrofonu dalším obvodem
- Řádově desítky mV/Pa

KET/CHH 9.přednáška

Měřicí mikrofon - citlivost

Citlivost zatíženého mikrofonu

- Praktická jednotka
- · Respektuje zatěžovací impedanci měřicího obvodu
- Předpokládá se citlivost připojeného mikrofonu 50 mV/Pa
- Citlivost 50mV/Pa znamená jinak -26db re 1V/1Pa
- V případě jiné citlivosti je třeba započíst korekci K₀ která je součástí dokumentace k mikrofonu (kalibrační list)

KET/CHH 9.přednáška

Měřicí mikrofon – frekvenční charakteristika

Závislost citlivosti mikrofonu na frekvenci změn akustického tlaku

- Vzhledem ke konečně malým rozměrům mikrofonu je frekvenční charakteristika závislá na typu akustického pole
- Různá odezva mikrofonu v různém typu pole speciální mikrofony pro různá typy měření, korekce vlastností
- · Typy mikrofonů podle použití v různých akustických polích
 - · Mikrofon pro volné pole
 - · Mikrofon pro difúzní pole
 - · Tlakový mikrofon

KET/CHH 9.přednáška

Měřicí mikrofon – typy mikrofonů

Pro volné pole

- · Předpokládá čelní dopad vlny na membránu mikrofonu
- Kompenzace přímo provedením membrány
- · Použití ve volném prostoru, měření v bezodrazové komoře

Pro difuzní pole

- · Předpokládá dopad vlny na membránu pod různými úhly
- · Použití v dozvukové komoře

Tlakové mikrofony

- · Bez kompenzace
- Použití ve speciálních případech (mikrofon zapuštěn v ploše, uzavřené komory)

KET/CHH 9.přednáška

Vlastnosti a vlivy působící na mikrofony

Vibrace, otřesy

- Jako snímač akustických vln tj. určité formy pohybu je mikrofon citlivý i na vibrace
- · Třeba mít v patrnosti při umístění

Časová stálost

- · Obvykle nevýznamná změna citlivosti za desítky let...
- · Může být problémem u elektretových mikrofonů

Vlastní šum

- · Závisí na provedení mikrofonu a předzesilovače
- Řádově ekvivalentní hladina šumu kolem 10 dB
- · Problém při "tichých" měření

KET/CHH 9.přednáška

Vlastnosti a vlivy působící na mikrofony

Teplota

- Malý vliv teplotní koeficient kolem -0,005 dB/°C
- Pro běžné rozsahy (-10 až 50 °C) nevýznamné

Atmosférický tlak

- Omezení na spodní straně frekvenčního pásma
- Mikrofon má vyrovnávací kanálek pro vyrovnání změn atmosférického tlaku – závisí na jeho provedení

VIhkost

- · Relativní vlhkost jako taková není zásadní problém
- Podstatná je kondenzace vlhkosti na elektrodách hrozí až výboj a zkrat mezi elektrodami

KET/CHH 9.přednáška

Váhovací filtry

Váhovací filtry - neboli frekvenční váhování

- Přizpůsobení výsledné měřené hodnoty fyziologii lidského sluchu
- Lidský sluch má různou citlivost na různé frekvence viz přednáška o fyziologii sluchu, křivky stejné hlasitosti
- Průběh filtrů je standardizován norma ČSN EN 61672-1
- Filtry se značí velkým písmenem
 - A inverzní vůči křivkám stejné hlasitosti při 40 dB
 - B zrušen
 - C inverzní vůči křivkám stejné hlasitosti při 120 dB
 - D pro hluk letecké dopravy

KET/CHH 9.přednáška

Váhovací filtry - vlastnosti

Důležité poznatky o váhovacích filtrech

- Nejčastěji používaný filtr "A" (hygienická měření)
- Filtr "C" při měření vyšších hladin zvuku (např. koncerty)
- · Z principu útlum na obou koncích slyšitelného pásma

Přenos je udáván jako relativní v dB

- Na frekvenci 1 kHz přenos 0 dB žádné ovlivnění
- Naopak může být velký rozdíl mezi váženou a neváženou hladinou na nízkých frekvencích
- Filtr "A" na 20 Hz útlum 50 dB, na 100 Hz útlum 20 dB!
- Filtr "A" má nejen útlum, ale v určitém pásmu i zisk!

KET/CHH 9.přednáška

Váhovací filtry - vlastnosti

Pozor při kalibraci zvukoměru!

- Kalibrace známým zdrojem ak, tlaku kalibrátor, pistonfon
- · Kalibrace při různých frekvencích a hladinách
- Kalibrace při 1 kHz filtr "A" nemá vliv (přenos 0 dB)
- Kalibrace při 250 Hz filtr "A" útlum cca. 9 dB!

KET/CHH 9.přednáška

Časové váhování

Zhodnocení časového průběhu zvuku

- Zvuk časově proměnný signál
- Kromě spektrálních vlastností závisí i na časových vlastnostech

Vyhodnocení časových průběhů

- · Hodnocení efektivních hodnot integrace
- Různá doba integrace
 - Konvenční zvukoměr pevné časové konstanty
 - Integrující/průměrující zvukoměr celá doba měření

KET/CHH 9.přednáška

Časové váhování – konvenční zvukoměr

- Průběh měřeného ak. tlaku v čase může obsahovat velmi rychlé změny – nemá smysl měřit okamžitou hodnotu
- · Měření efektivní hodnoty převedeného napětí
- Časové vážení exponenciální průběh s časovou konstantou
 - Fast časová konstanta 0,125 s
 - Slow časová konstanta 1 s
 - · Impulse
- Volba časové konstanty podle charakteru zvuku
- · Tzv. konvenční zvukoměr

KET/CHH 9.přednáška

Ekvivalentní hladina hluku

Stanovení dlouhodobějšího ukazatele hladiny zvuku v čase

- Vyjádření jako integrál hladiny tlaku za definovanou dobu
- · Integrace plochy pod křivkou časového průběhu

$$L_{A \text{ eq } T} = 10 \log \frac{1}{T} \int_{0}^{T} \left(\frac{p_{A}(t)}{p_{o}} \right)^{2}. dt$$

... kde T...doba měření
p_A...akustický tlak vážený filtrem A
p₀... vztažný prahový tlak

KET/CHH 9.přednáška

Ekvivalentní hladina zvuku vztažená na čas jedné sekundy

SEL =
$$10 \log \frac{1}{t_0} \int_{t_1}^{t_2} (\frac{p_A(t)}{p_0})^2 dt$$

kde $p_A(t)$... tlak vážený filt. A p_0 ... vztažný tlak (20 uPa) t_0 ... vztažný čas = 1 sekunda t_2 - t_1 ... časový interval, který má respektovat charakter hluku.

KET/CHH 9.přednáška

Frekvenční analýza zvuku - FFT

Základem je tzv. Fourierova transformace

- Integrální transformace umožňující přechod z časové oblasti do frekvenční oblasti
- Rozklad obecného signálu na jednotlivé harmonické složky

```
f(t) = A_0 + A_1 \sin(\omega t + \varphi_1) + A_2 \sin(2\omega t + \varphi_2) + A_3 \sin(3\omega t + \varphi_3) + \dots + A_n \sin(n\omega t + \varphi_n)
```

KET/CHH 9.přednáška

Frekvenční analýza zvuku - FFT

Výpočetní algoritmus FFT - Fast Fourier Transform

- · Nejprve digitalizace signálu a následně výpočet spektra
- · Algoritmus optimalizovaný pro výpočet
- Počet vzorků transformace n (mocnina 2)
- Konstantní vzdálenost spektrálních čar vypočteného spektra
- Vzdálenost frekvenčních čar $f = \frac{f_{max}}{n}$
- Rozlišení závisí na frekvenčním rozsahu a počtu bodů
- Návaznost na měření v akustice a elektroakustice pomocí bílého šumu

KET/CHH 9.přednáška

Frekvenční analýza zvuku – pásmové filtry

Rozdělení celého fr. rozsahu do užších pásem - filtrace Tzv. oktávové a zlomkooktávové filtry dle ČSN EN 61260

- 1/1 oct., 1/3 oct., 1/6 oct., 1/12 oct.
- Střední frekvence filtrů vyvolené kmitočty
- Šířka pásma právě daný zlomek oktávy
- Oktáva interval, dvojnásobná vzdálenost frekvencí relativní vztah
- · Důsledek: Různá absolutní šířka jednotlivých pásem

KET/CHH 9.přednáška

Frekvenční analýza zvuku – pásmové filtry

Návaznost na měření pomocí růžového šumu v akustice a elektroakustice

Důležité při přepočtu spekter z FFT na pásmové filtry

· Každé pásmo různý počet čar!

Pásmové filtry lze realizovat jak výpočetně, tak analogově, jako elektronické obvody

KET/CHH 9.přednáška

fc	f _d	fh	f _c	f _d	f _h	
25	22	28	800	707	891	
31,5	28	35	1000	891	1122	
40	35	44	1250	1122	1412	
50	44	56	1600	1412	1778	
63	56	70	2000	1778	2238	
80	70	89	2500	2238	2818	
100	89	112	3150	2818	3548	
125	112	141	4000	3548	4466	
160	141	177	5000	4466	5623	
200	177	223	6300	5623	7079	
250	223	281	8000	7079	8912	
315	281	354	10000	8912	11220	
400	354	446	12500	11220	14125	
500	446	562	16000	14125	17782	
630	562	707	20000	17782	22387	

Souvislost FFT a pásmových filtrů

Lze přepočíst spektrum získané pomocí FFT na pásmové filtry

- Výkonové sčítání jednotlivých čar FFT spektra spadajících do daného pásma
- Šířka pásma filtru s rostoucí frekvencí roste, zatímco FFT spektrum má konstantní vzdálenost čar → roste počet čar padajících do pásma
- Tj. při stejné velikosti FFT čar (ploché spektrum, bílý šum) bude CPB spektrum

KET/CHH 9.přednáška

Význam frekvenční analýzy

Pásmové filtry

 Nejčastěji v hygienických měřeních, stavební a prostorová akustika

FFT analýza

- Umožňuje poměrně velké rozlišení (menší než 1 Hz)
- · Především v hlukové a vibrační diagnostice
- Přesná analýza významných frekvenčních složek

KET/CHH 9.přednáška

