Carlingford High School

Year 10 (5.3) Mathematics

Term 3 Examination 2018

Time allowed: 50 minutes

Student Name:		Class: 10MA3		
Circle vour teacher:	Ms Lobeiko	Ms Lego	Ms Aung	

Instructions:

- Use black pen. Pencil may be used for graphs and diagrams.
- Board approved calculators may be used.
- Write all answers in spaces provided.
- Show all necessary working.
- Extension questions are marked with an asterisk (*).

Section	1. Trigonometry	2. Solving Inequalities and Regions	3. Coordinate Geometry	Total
Mark	/22	/13	/17	/52

Section 1: Trigonometry

Note: Diagrams are NOT to scale, unless otherwise stated.

Question 1 (1 Mark)	Question 5 (1 Mark)
If $\sin A = 0.35$ and $\cos A = 0.21$, find $\tan A$.	Which of the following is the graph of $y = \sin x$? (A)
	-180 -120 -60 0 60 120 180 240 300 360
Question 2 (1 Mark) Find the value of α if $\sin 27^{\circ}21' = \cos \alpha$.	(B)
	-180 -120 -60 0 60 120 180 240 300 360 -1
Question 3 (1 Mark)	(C)
Solve the equation $\tan \theta = -0.3$ correct to the nearest degree if θ is between 0° and 180° .	
	-180 -120 -60 0 60 120 180 240 300 360 -1
Question 4 (2 Marks) Find the exact value of cos 150°, showing all working.	(D)
	-186 -120 -60 60 120 180 240 300 360

Question 6 Consider the following $\triangle ABC$.	Question 8 (3 Marks) In ΔSTU , $ST=35cm$, $SU=45cm$ and $\angle T=70^\circ$. Find all possible values for $\angle U$, correct to the nearest degree. Show all working.
(a) Find the length of side BC, correct to two decimal places (2 Marks)	
(b) Find the area of $\triangle ABC$, correct to two decimal places. (2 Marks)	
	*Question 9 (2 Marks) For the triangle below, show that $x^2 - 7x = 120$.
Question 7 Find the size of angle C, to the nearest minute. A 12cm 18cm	x cm 13 cm 60° 7 cm

Question 10

A flagpole (F) stands 50m tall. From the flagpole, point A is on a bearing of 140° and is 60m away. Point B is on a bearing of 50° from the same flagpole. The angle of elevation from point B to the top of the flagpole is 20° . An angle of 40° has been marked on the diagram.

(a) How far, to the nearest metre, is point the flagpole?	B from (1 Mark)	(c) What is the bearing of point A from point B, to the nearest degree? (2 Mar	
(b) Find the size of $\angle AFB$. Hence, find the between A and B , to the nearest metre.			

Section 2: Solving Inequalities and Regions

Question 1

(1 Mark)

Write the following statement as an inequality, using the pronumeral given.

Only people aged (A) 18 to 70 years can donate blood.

Question 2 continued

$$(c)$$
 6 \leq $-2(x+4) < 10$

(2 Marks)

Question 2

Solve the following inequalities and graph the solution on a number line.

(a)
$$16 > 4(2 + x)$$
 (2 Marks)

Question 3

(2 Marks)

 $\frac{5+3k}{4} < \frac{k}{2}$ Solve:

(b) $11 - 3x \le 20$

(2 Marks)

Question 4 (1 Mark)

Which pair of inequalities could represent the shaded region?

(A)
$$y \le \frac{1}{3}x$$
, $y \le 3x$

(B)
$$y \le \frac{1}{3}x$$
, $y \ge 3x$

(c)
$$y \ge \frac{1}{3}x$$
, $y \le 3x$

(D)
$$y \ge \frac{1}{3}x$$
, $y \ge 3x$

Question 5 (3 Marks)

Graph the following linear inequalities on the number plane provided, and shade the region that satisfies both the inequalities. Use the lines provided for any working.

y > -x + 3	$2x - 3y \le 6$

Section 3: Coordinate Geometry

Question 1	Question 2 continued
Line ℓ has the equation $y = \frac{7-4x}{2}$.	(b) Find the midpoint of interval AB . (1 Mark)
(a) Find the gradient and y -intercept of line ℓ . (2 Marks)	
(b) Find the equation, in gradient-intercept form, of the line that is parallel to line ℓ and passes through $(-7,3)$. (2 Marks)	(c) The y -intercept of the line that passes through A and B is -5 . Find the equation, in general form, of the line that passes through A and B . (2 Marks)
Question 2 Let A and B be the points $(-4,7)$ and $(-2,1)$ respectively.	(d) The point \mathcal{C} has coordinates $(20, -50)$. Are the points A, B and \mathcal{C} collinear? Justify your answer with working. (2 Marks)
(a) Find the length of interval AB , in simplest surd form. (2 Marks)	

*Question 3 Which quadrilateral is formed by joining the points $O(0,0)$, $Q(1,2)$, $R(5,0)$ and $S(4,-2)$? working.	(3 marks) Show all
- U	
	
*Overtion 4	
	is at the origin. (2 marks)
*Question 4 (a) Prove that the points $(-1,2\sqrt{2})$ and $(\sqrt{3},\sqrt{6})$ both lie on the same circle whose centre	
(a) Prove that the points $(-1,2\sqrt{2})$ and $(\sqrt{3},\sqrt{6})$ both lie on the same circle whose centre	(2 marks)