STAT 22000 Lecture Slides Hypothesis Testing About Population Means

Yibi Huang
Department of Statistics
University of Chicago

Outline

- Hypothesis Testing About Population Means (Section 4.3)
- Relationships Between Confidence Intervals and Hypothesis Tests (Section 4.3.2)

-

Hypothesis Tests about Population

Means

Example: Number of College Applications

To know how many colleges students applied to, the dean of a certain university took a random sample of size 106 from their newly admitted students. This sample yielded an average of 9.7 college applications with a standard deviation of 7. College Board website states that counselors recommend students apply to roughly 8 colleges. Do these data provide convincing evidence that the average number of colleges all freshmen in this university apply to is higher than recommended??

- Population: all freshmen in this university
- The parameter of interest μ is the average number of schools applied to by <u>all</u> freshmen in this university

- Population: all freshmen in this university
- The parameter of interest μ is the average number of schools applied to by <u>all</u> freshmen in this university
- Two possible explanations of why the sample mean is higher than the recommended 8 schools.
 - The true population mean is higher than 8.
 - The true population mean is 8, and the difference between the true population mean and the sample mean is simply due to natural sampling variability.

- Population: all freshmen in this university
- The parameter of interest μ is the average number of schools applied to by <u>all</u> freshmen in this university
- Two possible explanations of why the sample mean is higher than the recommended 8 schools.
 - The true population mean is higher than 8.
 - The true population mean is 8, and the difference between the true population mean and the sample mean is simply due to natural sampling variability.
- H₀: μ = 8 (Freshmen in this university have applied 8 schools on average, as recommended)

- Population: all freshmen in this university
- The parameter of interest μ is the average number of schools applied to by <u>all</u> freshmen in this university
- Two possible explanations of why the sample mean is higher than the recommended 8 schools.
 - The true population mean is higher than 8.
 - The true population mean is 8, and the difference between the true population mean and the sample mean is simply due to natural sampling variability.
- H₀: μ = 8 (Freshmen in this university have applied 8 schools on average, as recommended)
- H_A: μ > 8 (Freshmen in this university have applied *over 8* schools on average)

Wrong Ways to State H_0 and H_A

 H_0 and H_A are **ALWAYS** stated in terms of population parameters, not sample statistics

Neither

$$H_0: \bar{x} = 8, \quad H_A: \bar{x} > 8$$

nor

 H_0 : Freshmen in the sample have applied 8 schools on average H_A : freshmen in the sample have applied 9.7 schools on average

is correct. The correct statements should be

$$H_0: \mu = 8, \quad H_A: \mu > 8$$

Also please clearly specify what is μ .

e.g., μ is the average number of colleges freshmen in this university have applied to.

Number of College Applications — Test Statistic

By CLT, under H_0 : $\mu=8$, the sampling distribution of the sample mean is

$$\bar{x} \sim N \left(\mu = 8, SE = \frac{7}{\sqrt{106}} = 0.68 \right)$$

To gauge how unusual the observed sample mean $\bar{x} = 9.7$ is relative to its the hypothesized sampling distribution above, the *test statistic* we used is the *z*-statistic, which is the *z*-score of the sample mean relative to the distribution above

z-statistic =
$$\frac{\bar{x} - \mu_0}{SE} = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{9.7 - 8}{7 / \sqrt{106}} \approx 2.5$$

 $\sim N(0, 1)$ under $H_0: \mu = \mu_0 = 8$

To test H_0 : $\mu = \mu_0$ against H_a : $\mu > \mu_0$, only a sample mean \bar{x} far above μ_0 is evidence for H_a and only in such cases should H_0 be rejected.

6

To test H₀: $\mu = \mu_0$ against H_a: $\mu > \mu_0$, only a sample mean \bar{x} far above μ_0 is evidence for H_a and only in such cases should H₀ be rejected. Not Reject H₀: $\mu = \mu_0$ Reject H₀: $\mu = \mu_0$

To test H₀: $\mu = \mu_0$ against H_a: $\mu > \mu_0$, only a sample mean \bar{x} far above μ_0 is evidence for H_a and only in such cases should H₀ be rejected. Not Reject H₀: $\mu = \mu_0$ Reject H₀: $\mu = \mu_0$

To test H_0 : $\mu = \mu_0$ against H_a : $\mu > \mu_0$, only a sample mean \bar{x} far above μ_0 is evidence for H_a and only in such cases should H_0 be rejected. Not Reject H_0 : $\mu = \mu_0$ Reject H_0 : $\mu = \mu_0$

To test H₀: $\mu = \mu_0$ against H_a: $\mu > \mu_0$, only a sample mean \bar{x} far above μ_0 is evidence for H_a and only in such cases should H₀ be rejected. Not Reject H_a: $\mu = \mu_0$ Reject H_a: $\mu = \mu_0$

To test H_0 : $\mu = \mu_0$ against H_a : $\mu > \mu_0$, only a sample mean \bar{x} far above μ_0 is evidence for H_a and only in such cases should H_0 be rejected. Not Reject H_a : $\mu = \mu_0$ Reject H_a : $\mu = \mu_0$

To control Type 1 error rate = $P(\text{rejecting } H_0|H_0 \text{ is true})$ at the significance level α , we should reject H_0 only when

the z-statistic =
$$\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha} = \text{qnorm}(1 - \alpha)$$
.

P-value

To test H₀: $\mu = \mu_0$ against H_a: $\mu > \mu_0$, the *P*-value is $P(\bar{x} > \text{observed value of } \bar{x} \mid \mu = \mu_0)$ or the blue shaded region below.

P-value

To test H₀: $\mu = \mu_0$ against H_a: $\mu > \mu_0$, the *P*-value is $P(\bar{x} > \text{observed value of } \bar{x} \mid \mu = \mu_0)$ or the blue shaded region below.

P-value

To test H₀: $\mu = \mu_0$ against H_a: $\mu > \mu_0$, the *P*-value is $P(\bar{x} > \text{observed value of } \bar{x} \mid \mu = \mu_0)$ or the blue shaded region below.

For the College Applications example, the *P*-value for testing H_0 : $\mu=8$ against H_a : $\mu>8$ is

$$\begin{aligned} & P\text{-value} = P(\bar{x} > 9.7 \mid \mu = 8) \\ & = P\left(Z > \frac{9.7 - 8}{7/\sqrt{106}} \approx 2.500\right) \\ & = 1 - \texttt{pnorm(2.500)} \\ & \approx 0.0062 \end{aligned}$$

Observed that

if z-statistic $< z_{\alpha}$ then P-value $> \alpha$

Observed that

if z-statistic $< z_{\alpha}$ then P-value $> \alpha$

Observed that

if z-statistic $< z_{\alpha}$ then P-value $> \alpha$ if z-statistic $> z_{\alpha}$ then P-value $< \alpha$

Observed that

if z-statistic $< z_{\alpha}$ then P-value $> \alpha$ if z-statistic $> z_{\alpha}$ then P-value $< \alpha$

Observed that

if z-statistic
$$< z_{\alpha}$$
 then P -value $> \alpha$ if z-statistic $> z_{\alpha}$ then P -value $< \alpha$

There are two equivalent approaches to test H_0 : $\mu = \mu_0$ v.s. H_a : $\mu > \mu_0$ and control the Type 1 error rate at the significance level α .

- Critical value approach: one can compute the z-statistic = $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}$ and the critical value $z_{\alpha} = \text{qnorm}(1-\alpha)$, and reject H_0 if the z-statistic $> z_{\alpha}$.
- *P-value approach*: one can compute the *P-*value from the *z-*statistic and reject H_0 when the *P-*value $< \alpha$

If the dean wanted to know whether the data provide convincing evidence that the average number of colleges applied is *different* than the recommended 8 schools, the alternative hypothesis would be different.

$$H_a: \mu \neq 8$$

In this case, a sample mean \bar{x} far below 8 would also be evidence in favor of H_a .

To test H_0 : $\mu = \mu_0$ against the **two-sided alternative** H_a : $\mu \neq \mu_0$, both \bar{x} far above or below μ_0 are evidence for H_a and hence H_0 should be rejected when $|\bar{x} - \mu_0|$ is large.

To control Type 1 error rate at the significance level α , we should reject H₀ only when the |z-statistic| = $\frac{\bar{x}-\mu_0}{\alpha/\sqrt{n}} > z_{\alpha/2} = \text{qnorm}(1-\alpha/2)$.

P-values for Two-Sided Hypothesis Tests

To test H_0 : $\mu = \mu_0$ against **two-sided alternative** H_a : $\mu \neq \mu_0$, the P-value is the two tail probability (the blue shaded region) below.

P-values for Two-Sided Hypothesis Tests

To test H_0 : $\mu = \mu_0$ against **two-sided alternative** H_a : $\mu \neq \mu_0$, the P-value is the two tail probability (the blue shaded region) below.

P-values for Two-Sided Hypothesis Tests

To test H_0 : $\mu = \mu_0$ against **two-sided alternative** H_a : $\mu \neq \mu_0$, the P-value is the two tail probability (the blue shaded region) below.

For the College Applications example, the *P*-value for testing H_0 : $\mu = 8$ against H_a : $\mu \neq 8$ is

$$\bar{x} = 6.3 \ \mu = 8 \ \bar{x} = 9.7 \ z = -2.5 \ 0 \ z = 2.5$$

$$p$$
-value = 0.0062×2 = 0.0124

P-value and Critical Value Approaches for Two-Sided Tests

P-value and Critical Value Approaches for Two-Sided Tests

P-value and Critical Value Approaches for Two-Sided Tests

Observed

if |z-statistic $| < z_{\alpha/2}|$

if |z-statistic $| > z_{\alpha/2}|$ then 2-sided *P*-value $< \alpha$

P-value and Critical Value Approaches for Two-Sided Tests

Observed

if |z-statistic $| < z_{\alpha/2}|$ then 2-sided *P*-value > α

if |z-statistic $| > z_{\alpha/2}|$ then 2-sided *P*-value $< \alpha$

P-value and Critical Value Approaches for Two-Sided Tests

Observed

if
$$|z$$
-statistic| $< z_{\alpha/2}$ then 2-sided P -value $> \alpha$ if $|z$ -statistic| $> z_{\alpha/2}$ then 2-sided P -value $< \alpha$

There are also two equivalent approaches to test H_0 : $\mu = \mu_0$ v.s. H_a : $\mu \neq \mu_0$ and control the Type 1 error rate at the significance level α .

- Critical value approach: reject H₀ if the absolute value of the z-statistic = $\left|\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right| > z_{\alpha/2} = \text{qnorm}(1-\alpha/2)$
- *P-value approach*: one can compute the 2-sided *P-*value from the z-statistic and reject H_0 when the P-value $< \alpha$

Lower One-Sided Hypothesis Test

If the dean wanted to know whether the data provide convincing evidence that the average number of colleges applied is *lower* than the recommended 8 schools, the alternative hypothesis would be

$$H_a: \mu < 8$$

Three types of alternative hypotheses:

- Upper one-sided: H_a : $\mu > 8$
- Lower one-sided: H_a : μ < 8
- Two-sided: H_a : $\mu \neq 8$

To test H_0 : $\mu = \mu_0$ against the **lower one-sided** alternative H_a : $\mu < \mu_0$, only a sample mean \bar{x} far below μ_0 is evidence for H_a and H_0 should be rejected only in such cases.

To control Type 1 error rate at the significance level α , we should reject H_0 only when the *z*-statistic = $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} < -z_{\alpha} = \operatorname{qnorm}(\alpha)$.

P-values for Lower One-Sided Hypothesis Tests

To test H_0 : $\mu = \mu_0$ v.s. **lower one-sided alternative** H_a : $\mu < \mu_0$, the P-value is the lower tail probability (blue shaded region) below.

P-values for Lower One-Sided Hypothesis Tests

To test H_0 : $\mu = \mu_0$ v.s. **lower one-sided alternative** H_a : $\mu < \mu_0$, the P-value is the lower tail probability (blue shaded region) below.

P-values for Lower One-Sided Hypothesis Tests

To test H_0 : $\mu = \mu_0$ v.s. **lower one-sided alternative** H_a : $\mu < \mu_0$, the P-value is the lower tail probability (blue shaded region) below.

For the College Applications example, the *P*-value for testing H₀: $\mu = 8$ against H_a: $\mu < 8$ is the lower tail area $1 - 0.0062 = \boxed{0.9938}$,

which makes sense since $\bar{x}=9.7>8$. Hence H_a : $\mu<8$ is less plausible than H_0 : $\mu=8$. no reason to reject H_0 .

Observed that

if z-statistic
$$> -z_{\alpha}$$
 then P -value $> \alpha$ if z-statistic $< -z_{\alpha}$ then P -value $< \alpha$

if z-statistic $< -z_{\alpha}$ then P-value $< \alpha$

16

Observed that

if z-statistic
$$> -z_{\alpha}$$
 then P-value $> \alpha$ if z-statistic $< -z_{\alpha}$ then P-value $< \alpha$

There are also two equivalent approaches to test H_0 : $\mu = \mu_0$ v.s. H_a : $\mu < \mu_0$ and control the Type 1 error rate at the significance level α .

- *Critical value approach*: reject H₀ if the *z*-statistic = $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} < z_{\alpha} =$ $gnorm(\alpha)$
- *P-value approach*: one can compute the lower one-sided *P-*value from the z-statistic and reject H_0 when the P-value $< \alpha$

P-value Approach or Critical Approach?

We have introduced both the critical value approach and the *P*-value approach for hypothesis testing. They are equivalent but we generally *recommend the P-value approach*, for two reasons.

- \bullet The rejection rule is simpler, just compare the P-value with the significance level α
- More importantly, we can simply report the P-value and let people choose their own significance level α (the Type 1 error rate) and decide whether to reject or not to reject the H₀

From now on, we will just stick with the *P*-value approach.

Recap: How to Compute One-Sided & Two Sided P-values

The *z*-statistic for testing H_0 : $\mu = \mu_0$ is $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$.

The p-value depends on H_a .

1			
	Two-sided test	One-sided test	
H_a	$\mu \neq \mu_0$	$\mu < \mu_0$	$\mu > \mu_0$
P-value	- z z	Z	Z
R	2*pnorm(z ,lower.tail=F)	pnorm(z)	<pre>pnorm(z,lower.tail=F)</pre>

Then we reject H_0 when P-value $< \alpha$.

The bell curve above is the standard normal curve.

Back to the College Applications Example

For H_a : $\mu > 8$ and H_a : $\mu \neq 8$, we *reject* H_0 since p-value is *low* (under 5%)

- The data provide convincing evidence that freshmen in this university have applied to more than (different from) 8 schools on average.
- The diff. betw. the null value of 8 schools and observed sample mean of 9.7 schools is beyond sampling variability.

For the H_a: μ < 8, there is no reason to reject H₀: μ = 8 since the observed sample mean 9.7 > μ = 8. The alternative H_a: μ < 8 is even less plausible than H₀: μ = 8.

Conclusion when the P-value is Low

When the *P*-value is lower than the significance level, we say

- The H₀ is rejected
- There is strong evidence that freshmen in this university had applied to over 8 schools on average (H_a is true)
- The mean number of schools freshmen in this university had applied is significantly over 8

We don't say

- The H_a is accepted
- We fail to reject H_a

Conclusion when the *P*-value is Not Low

When the *P*-value exceeds the significance level, we say

- We fail to reject H₀
- No strong evidence that freshmen in this university had applied to over 8 schools on average (H_a is true)
- The mean number of schools freshmen in this university had applied is not significantly over 8

We don't say

- the H₀ is accepted
- we fail to accept H_a
- there is strong evidence that H₀ is true because we might have made a Type 2 error, and the chance of making a Type 2 error is not controlled, which can be quite big

More Incorrect Statements of Hypotheses

Please note that the terms: *significant(ly)* and *reject*, are only used to state the <u>conclusions</u> of the hypotheses tests. Do NOT use them in the hypotheses. It's incorrect to state the hypotheses as

- H₀: The mean number of schools students have applied is not significantly over 8
- H_a: The mean number of schools students have applied is significantly over 8

or

- H₀: We don't reject that the mean number of schools students have applied is 8
- H_a: We reject that the mean number of schools students applied is 8

Interpretation of *P*-Values — Upper One-Sided Tests

Interpretation of *P*-Values — Upper One-Sided Tests

Interpretation of *P*-Values — Lower One-Sided Tests

Interpretation of *P*-Values — Lower One-Sided Tests

Interpretation of *P*-Values — Two-Sided Tests

Interpretation of *P*-Values — Two-Sided Tests

Example: Number of College Applications – Conditions

As CLT is used in the hypothesis test above, we need to check the same conditions as we construct confidence intervals for the population mean.

- Observations must be independent
 - Use your knowledge to judge if the data might be dependent
- The population distribution of the number of colleges students apply to should not be extremely skewed.
- In the *z*-statistic = $\frac{\bar{x} \mu_0}{\sigma / \sqrt{n}}$, if the unknown population SD σ is replaced with the sample SD s, we need to further check that
 - sample size cannot be too small (at least 30)
 - no outliers & not too skewed ⇒ Check the histogram of data!

Recap: Hypothesis Testing for a Population Mean

- 1. Set the hypotheses
 - $H_0: \mu = \mu_0$
 - $H_A: \mu < \text{or} > \text{or} \neq \mu_0$
- 2. Check assumptions and conditions
 - Independence
 - Normality: nearly normal population or n ≥ 30, no extreme skew – or use the t distribution (Section 5.1)
- 3. Calculate a *test statistic* and a *p-value* (draw a picture!)

$$Z = \frac{\bar{x} - \mu_0}{SE}$$
, where $SE = \frac{\sigma}{\sqrt{n}}$

- 4. (Optional) Make a decision
 - If p-value $< \alpha$, reject H_0
 - If p-value > α , do not reject H_0

Relationship Between Confidence

Intervals and Two-Sided

Hypothesis Tests

Confidence Intervals and Two-Sided Hypothesis Tests

For a two-sided test:

$$H_0: \mu = \mu_0$$
 versus $H_A: \mu \neq \mu_0$

the following are equivalent:

- p-value > α (and hence $H_0: \mu = \mu_0$ is not rejected at level α)
- |z-statistic $| = |(\bar{x} \mu_0)/SE| < z^*$, where z^* is a value such that

• μ_0 is in the $100(1-\alpha)\%$ confidence interval for μ

$$\bar{x} - z^* SE < \mu_0 < \bar{x} + z^* SE$$

Example

Suppose in a study,

- 90% CI for μ is (4.81, 11.39);
- 95% CI for μ : (4.18, 12.02);
- 99% CI for μ : (2.95, 13.25).

Then

- H₀: μ = 4 is rejected at 5% level but not at 1% level (2-sided *p*-value is between 1% and 5%)
 because 4 is in the 99% CI but not in the 95% CI
- H_0 : $\mu = 4.5$ is rejected at 10% level but not at 5% level because 4.5 is in the 95% CI but not in the 90% CI