15.1

Part A

The series converges by the alternating series test since $\frac{1}{n} > \frac{1}{n+1}$ and $\lim \frac{1}{n} = 0$.

Part B

The series diverges by the ratio test since $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n+1}{2} \to \infty$.

15.2

Part B

Since $-1 < \sin(\frac{\pi n}{7}) < 1$ for all n, $|\sin(\frac{\pi n}{7})| < 1$. Since it is also periodic, it is possible to choose $1 > r > \max\{\sin(\frac{\pi n}{7}): n = 1, \ldots, 14\}$. Note then that $|\sin(\frac{\pi n}{7})|^n < r^n$. Since $0 \le r < 1$, by the comparison test it follows that the original series converges absolutely and hence converges.

15.3

Proof. Suppose that p > 1. Then

$$\int_{2}^{n} \frac{1}{x(\log x)^{p}} dx = \int_{\log 2}^{\log n} \frac{1}{u^{p}} du$$

$$= -\frac{1}{p-1} \left(\frac{1}{(\log p)^{p-1}} - \frac{1}{(\log 2)^{p-1}} \right)$$

$$= \frac{1}{p-1} \left(\frac{1}{(\log 2)^{p-1}} - \frac{1}{(\log p)^{p-1}} \right) \xrightarrow{n \to \infty} \frac{1}{p-1} \cdot \frac{1}{(\log 2)^{p-1}}$$

Therefore the interval converges and therefore by the integral test the series converges. If p = 1, then

$$\int_{2}^{n} \frac{1}{x \log x} = \int_{\log 2}^{\log n} \frac{1}{u} du = \log(\log n) - \log(\log 2) \xrightarrow{n \to \infty} \infty$$

Hence the series diverges by the integral test. Assume that 0 . Then by the first case of <math>p > 1,

$$\int_{2}^{n} \frac{1}{x(\log x)^{p}} dx = \frac{1}{p-1} \left(\frac{1}{(\log 2)^{p-1}} - \frac{1}{(\log p)^{p-1}} \right)$$
$$= \frac{1}{1-p} \left((\log n)^{1-p} - (\log 2)^{1-p} \right) \xrightarrow{n \to \infty} \infty$$

Therefore the series diverges by the integral test. If $p \le 0$, then the series terms do not converge to 0 and therefore the series does not converge.

15.5

It wouldn't be useful to use the comparison test as it would require using an exponent larger than *p* to compare with, which is a part of the result that is trying to be proven.

15.7

Part A

Proof. Let (a_n) be a sequence and assume that it is decreasing and that $\sum a_n$ converges. Note that this means $a_n > 0$ for all n and that $a_n \to 0$. Let $\epsilon > 0$. Since $\sum a_n$ converges, by the Cauchy criterion there exists $M \in \mathbb{N}$ such that for n > M

$$a_{M+1}+\ldots a_n<\frac{\epsilon}{2}.$$

Since (a_n) converges, there is some $P \in \mathbb{N}$ such that $n \geq P$ implies $a_n < \frac{\epsilon}{2M}$. Let $N = \max\{M, P\}$. Then for n > N

$$n \cdot a_n = \underbrace{a_n + \ldots + a_n}_{n \text{ times}}$$

$$\leq \underbrace{a_P + \ldots + a_P}_{m \text{ times}} + \underbrace{a_{M+1} + \ldots + a_n}_{n-m \text{ times}}$$

$$< Ma_P + \frac{\epsilon}{2}$$

$$< M \cdot \frac{\epsilon}{2M} + \frac{\epsilon}{2} = \epsilon$$

Therefore $\lim na_n = 0$.

17.1

Part A

$$\begin{aligned} \operatorname{dom}(f+g) &\Longrightarrow (-\infty,4] \\ \operatorname{dom}(fg) &\Longrightarrow (-\infty,4] \\ \operatorname{dom}(f\circ g) &\Longrightarrow [-2,2] \\ \operatorname{dom}(g\circ f) &= (-\infty,4] \end{aligned}$$

Part B

$$(f \circ g)(0) = 2$$
$$(g \circ f)(0) = 4$$
$$(f \circ g)(1) = \sqrt{3}$$
$$(g \circ f)(1) = 3$$
$$(f \circ g)(2) = 0$$
$$(g \circ f)(2) = 2$$

Part C

The functions are not equal.

Part D

Only $(g \circ f)(3)$ is meaningful as the *x* value is in its domain.

17.2

Part A

$$(f+g)(x) = \begin{cases} x^2 & x < 0 \\ 4+x^2 & x \ge 0 \end{cases}$$
$$(fg)(x) = \begin{cases} 0 & x < 0 \\ 4x^2 & x \ge 0 \end{cases}$$
$$(f \circ g)(x) = 4, \forall x \in \mathbb{R}$$
$$(g \circ f)(x) = \begin{cases} 0 & x < 0 \\ 16 & x \ge 0 \end{cases}$$

Part B

Only g, fg and $f \circ g$ are continuous.

17.5

Proof. Consider the real valued function $f(x) = x^m$ on all of \mathbb{R} where $m \in \mathbb{N}$. Let (x_n) be a sequence in \mathbb{R} that converges to $x_0 \in \mathbb{R}$. Note then that $\lim f(x_n) = \lim (x_n)^m = (\lim x_n)^m = x_0^m = f(x_0)$. Therefore f(x) is continuous at x_0 and hence on all of \mathbb{R} .

17.6

Proof. Let p(x) and q(x) be real polynomials and consider the domain $D = \{x \in \mathbb{R} : q(x) \neq 0\}$. Let (x_n) be a sequence in D that converges to $x_0 \in D$. Note that

$$\lim \frac{p(x_n)}{q(x_n)} \xrightarrow{q(x) \neq 0} \frac{\lim p(x_n)}{\lim q(x_n)} = \frac{p(x_0)}{q(x_0)}.$$

Therefore the rational function $\frac{p}{q}$ on the domain D is continuous.