Name :	•••••	
Roll No. :		
Invigilato	or's Signature :	
	CS/B.Tech/CSE	/NEW/SEM-6/CS-604A/2013
	20	013
I	NFORMATION TH	EORY AND CODING
Time Alla	otted : 3 Hours	Full Marks : 70
	The figures in the ma	rgin indicate full marks.
Candid		their answers in their own words as practicable
	GRO	UP – A
	(Multiple Choice	e Type Questions)
1. Cho	oose the correct alternat	tives for any ten of the following: $10 \times 1 = 10$
i)	The binary symbols probabilities $\frac{1}{4}$ and $\frac{3}{4}$	0 and 1 are transmitted with respectively. The corresponding
	self information are	
	a) 2 bits & 0.415 bi	ts b) 0 & 1 bits
	c) 1 & 0 bits	d) 0 & 0 bits.
ii)	A source $X = \{x_1, x_2\}$, x_3 emits symbols with
	$P = \left\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right\} $ Th	e total information of all the
	messages is	
	a) 2 bits	b) 3 bits
	c) 4 bits	d) 5 bits.
6402		[Turn over

- iii) A Gaussian channel has a 10 MHz bandwidth of S/N = 100. The channel capacity is
 - a) $66.59 \times 10^{6} \text{ bits/s}$
 - b) $77.60 \times 10^{6} \text{ bits/s}$
 - c) 55.48×10^{7} bits/s
 - d) 44.37×10^{6} bits/s.
- iv) Which of the following st tements is true regarding the Hamming weight of a code word?
 - a) It is the total number of elements in the code words.
 - b) It is the total number of zero elements in the code words.
 - c) It is the total number of non-zero elements in the code words.
 - d) None of these.

6402

- v) A Linear Block Code will always contain
 - a) a negative code word.
 - b) all zero code word.
 - c) all one code word.
 - d) variable length individual code words.
- vi) A monic polynomial means
 - a) its leading term coefficient is unity.
 - b) it is having all non-zero coefficients.
 - c) it is having degr e one.
 - d) at least one coefficient of it is zero.
- vii) Which of the following statements is true regarding the cyclic code 'C'?
 - a) 'C' always contains variable length codes.
 - b) C' is also a linear code.
 - c) 'C' will not contain all one code word.
 - d) 'C' will not contain all zero code word.

6402 3 [Turn over

viii) The minimum distance of a RS code is

- a) n + k + 1
- b) n k + 1
- c) n + k - 1
- d) n k 1.
- ix) A primitive polynomial is a/an
 - odd polynomial a)
- b) even polynomial
- prime polynomial c)
- none of these. d)
- The constraint length of a shift register encoder is X) defined as
 - a) the number of symbols input
 - b) the number of symbols it can store in its memory
 - the number of symbols output c)
 - d) none of these.
- A (n, k) convolutional code has the word length xi)
 - a)
- $k = (m-1) k_0$ b) $k = (1-m) k_0$
 - c) $k = (m + 1) k_0$ d) none of these.

6402

GROUP - B (Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Define the efficiency of a prefix code. Calculate the efficiency of a source X which generates four symbols with probabilities $P(x_1) = 0.5$, $P(x_2) = 0.2$, $P(x_3) = 0.2$ and $P(x_4) = 0.1$.
- 3. Discuss some of the properties for a linear block code. What do you mean by Hamming Distance?3 + 2
- 4. What are the properties for a cyclic ode? Explain with example. Write one polynomial representing binary cyclic codes.
- 5. Consider a convolutional encod r described by its Generator Polynomial Matrix, d fined over GF (2):

$$G(D) = \begin{bmatrix} D & O & 1 & D^2 & D+D^2 \\ D^2 & 0 & 0 & 1+D & 0 \\ 1 & 0 & D^2 & 0 & D^2 \end{bmatrix}$$

- i) Draw the circuit realization of this encoder using shift registers. What is the value of v? 2 + 1
- ii) Is this a Catastrophic Code? Why?
- 6. Find the generator polynomial g (x) for a double error correcting ternary BCH code of block length 8. What is the code rate of the code?

6402 5 Turn over

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Discuss the Matrix representation of a (3, 2) Linear Block Code using your own chosen Generator Matrix.

5

- b) Briefly discuss the idea of Parity Check Matrix for theLinear Block Code.5
- c) Explain the 'Nearest Neighbour Decoding' concept for the Linear Block Code.5
- 8. a) Write down the division a gorithm for the polynomials. Consider the two polynomials $f(x) = 1 + x^2$ and $g(x) = 1 + x + x^2$ over GF (2), now calculate f(x) + g(x).
 - b) Discuss a method for generating Cyclic Codes with suitable example.
 - c) Let f(x) is a polynomial in f[x]. Now discuss the reducibility or factorization concept of f(x). Give suitable example to justify your answer.

6402

9.	a)	State and prove the theorem on Kraft inequality.	5
	b)	Consider a DMS with source probabilities { 0.35 , 0.2 0.20 , 0.15 , 0.05 }.	5,
		i) Determine the Huffman code for this source.	5
		ii) Determine the average length R of the code word	s.
			3
		iii) What is the efficiency η of the code ?	2
10.	a)	Define channel capacity.	2
	b)	State and prove channel capacity theorem. 1 +	· 5
	c)	Explain the importance of Sh non limit.	3
	d)	A telephone channel has a bandwidth of 3000 Hz are the SNR = 20 dB. Determine the channel capacity. the SNR is increased to 25 dB, determine the increase capacity 2 +	If ed
11.		ign a (12, 3) systematic convolutional encoder with straint length v = 3 and d^* > = 8.	a
	i)	Construct the Trellis Diagram for this encoder.	7
	ii)	What is the d_{free} for this code ?	8

6402 7 [Turn over