The Maximum Subarray Problem A DP Approach

The Maximum Subarray Problem: A DP solution

Input: Profit history of a company. Money earned/lost each year.

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	3	2	1	-7	5	2	-1	3	-1

Problem: Find the span of years in which the company earned the most

Answer: Year 5-8, 9 M\$

Formal definition:

Input: An array of numbers A[1 ... n], both positive and negative

Output: Find the maximum V(k,i), where $V(i,j) = \sum_{j=k}^{i} A[j]$

Recall

Previously learnt 4 different algorithms for solving this problem

- \circ $\Theta(n^2)$ (Reuse of Information) Algorithm

Now

Design a $\Theta(n)$ Dynamic Programming Algorithm

A dynamic programming $(\Theta(n))$ algorithm

Define: V_i to be max value subarray ending at A[i]

$$V_i = \max_{1 \le k \le i} V(k, i)$$

The main observation is that if $V_i \neq A[i] = V(i, i)$ then

$$V_i = A[i] + \max_{1 \le k \le i} V(k, i - 1) = A[i] + V_{i-1}$$

This immediately implies DP Recurrence

$$V_i = \begin{cases} A[1] & \text{if } i = 1\\ \max\{A[i], A[i] + V_{i-1}\} & \text{if } i > 1 \end{cases}$$

4

The DP recurrence

We just saw

$$V_i = \begin{cases} A[1] & \text{if } i = 1\\ \max\{A[i], A[i] + V_{i-1}\} & \text{if } i > 1 \end{cases} \quad \text{where} \qquad V_i = \max_{1 \le k \le i} V(k, i)$$

Original problem then becomes finding i' such that

$$V_{i'} = \max_{1 \le i \le n} V_i$$

The DP recurrence permits constructing V_i in O(1) time from V_{i-1} .

- \Rightarrow We can construct $V_1, V_2, ..., V_n$ in order in O(n) total time while keeping track of the largest V_i found so far
- \Rightarrow This finds $V_{i'}$ in O(n) total time, solving the problem.

Note: This algorithm turns out to be very similar to the linear scan algorithm we developed in class, but found using DP reasoning

Implementation

Derived recurrence that

$$V_i = \begin{cases} A[1] & \text{if } i = 1 \\ \max\{A[i], A[i] + V_{i-1}\} & \text{if } i > 1 \end{cases} \quad \text{where} \qquad V_i = \max_{1 \le k \le i} V(k, i)$$

and need to find i' such that

$$V_{i'} = \max_{1 \le i \le n} V_i$$

This is very straightforward.

Next slides give actual code, and a worked example

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,...,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) Running time: \inf V_{max} < V[i] then V_{max} \leftarrow V[i] end if return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3	5	6	-1	5	7	6	9	8
V_{max}	3	5	6	6	6	7	7	9	9

Solution is V[8]

Simplified: We only need to remember the last V_i (call it V) and V_{max}

Base condition: $V \leftarrow A[1]$

Recurrence: $V \leftarrow \max(A[i], A[i] + V)$

```
\begin{split} V \leftarrow A[1] \\ V_{max} \leftarrow A[1] \\ \text{for } i \leftarrow 2 \text{ to } n \text{ do} \\ V \leftarrow \max(A[i], A[i] + V) \\ \text{if } V_{max} < V \\ \text{then } V_{max} \leftarrow V \\ \text{end if} \\ \text{return } V_{max} \end{split}
```

Running time: $\Theta(n)$

This gets same result as Version 1, but is simpler!

Next pages provide a detailed walk-through of how Version 1 fills in the DP table.

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,...,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) if V_{max} < V[i] then V_{max} \leftarrow V[i] end if return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3								
V_{max}	3								

$$V_{max} = V[1] = A[1] = 3$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,...,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) if V_{max} < V[i] then V_{max} \leftarrow V[i] end if return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3	5							
\overline{V}_{max}	3	5							

$$V_{max} = \max(A[2], A[2] + V[1]) = \max(2, 2 + 3) = 5$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,\ldots,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) if V_{max} < V[i] then V_{max} \leftarrow V[i] end if return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3	5	6						
\overline{V}_{max}	3	5	6						

$$V_{max} = \max(A[3], A[3] + V[2]) = \max(1, 1 + 5) = 6$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,\ldots,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) if V_{max} < V[i] then V_{max} \leftarrow V[i] end if return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3	5	6	-1					
V_{max}	3	5	6	6					

$$V_{max} = 6 > \max(A[4], A[4] + V[3]) = \max(-7, -7 + 6) = -1$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,\ldots,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) if V_{max} < V[i] then V_{max} \leftarrow V[i] end if return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3	5	6	-1	5				
V_{max}	3	5	6	6	6				

$$V_{max} = 6 > \max(A[5], A[5] + V[4]) = \max(5, 5 - 1) = 5$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,\ldots,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) if V_{max} < V[i] then V_{max} \leftarrow V[i] end if return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3	5	6	-1	5	7			
V_{max}	3	5	6	6	6	7			

$$V_{max} = \max(A[6], A[6] + V[5]) = \max(2, 2 + 5) = 7$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,...,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) if V_{max} < V[i] then V_{max} \leftarrow V[i] end if return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3	5	6	-1	5	7	6		
V_{max}	3	5	6	6	6	7	7		

$$V_{max} = 7 > \max(A[7], A[7] + V[6]) = \max(-1, -1 + 7) = 6$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,\ldots,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) if V_{max} < V[i] then V_{max} \leftarrow V[i] end if return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3	5	6	-1	5	7	6	9	
V_{max}	3	5	6	6	6	7	7	9	

$$V_{max} = \max(A[8], A[8] + V[7]) = \max(3, 3 + 6) = 9$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,\ldots,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) if V_{max} < V[i] then V_{max} \leftarrow V[i] end if return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3	5	6	-1	5	7	6	9	8
	3	5	6	6	6	7	7		

$$V_{max} = 9 > \max(A[9], A[9] + V[8]) = \max(-1, -1 + 9) = 8$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,\ldots,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) Running time: \inf V_{max} < V[i]  then V_{max} \leftarrow V[i] end \ \text{if} return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
$\overline{V[i]}$	3	5	6	-1	5	7	6	9	8
, [,]		3	U	- 1	5	/	O	9	0

Solution is V[8]

$$V_{max} = 9 > \max(A[9], A[9] + V[8]) = \max(-1, -1 + 9) = 8$$