

Name:	

Abschlussprüfung Digitale Signalverarbeitung SS2011

Studiengang: Elektrotechnik IK Bachelor

Prüfungstermin: 8.7.2011 (90 Minuten)

Prüfer: Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Stolle

Hilfsmittel: Taschenrechner

alle schriftlichen Unterlagen

Generelle Hinweise:

- Überprüfen Sie als Erstes die Vollständigkeit der Prüfungsangabe anhand der Seitennummerierung. Beschriften Sie die Prüfungsangabe und alle losen Blätter, die Sie abgeben, mit Ihrem Namen.
- Mobiltelefone ausschalten und wegpacken!
- Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.
- · Lösungen ohne erkennbaren Lösungsweg werden nicht gewertet.

Viel Erfolg!

1. Signale

a) (*) Ein analoges Signal $x(t) = \sin(2\pi \cdot 1 \ kHz \cdot t)$ lautet digitalisiert $x_k = \sin(0.7854 \cdot k)$. Wie groß

ist die Abtastfrequenz?
$$2\pi \cdot f \cdot k \cdot \Delta t = 2\pi \cdot \frac{f}{f_A} \cdot k = 0,7859 \cdot k \Rightarrow f = \frac{2\pi \cdot A k H_2}{0,7859} = \frac{8 k H_2}{0,7859}$$

b) (*) Das analoge Signal $x(t) = \cos(2\pi \cdot 3 \ kHz \cdot t)$ wird mit 10 kHz abgetastet; es werden einmal 5 Werte und einmal 10 Werte aufgenommen. Skizzieren Sie für beide Fälle die DFT (nicht nur Hüllkurve).

(*) Ein analoges Signal besitzt das unten gezeichnete Spektrum. Zeichnen Sie dazu das Spektrum der mit 1 kHz abgetasteten Funktion ein (-2 kHz ≤ f ≤ 2 kHz). Periodisierun mit 1 kHz :

d) (*) Berechnen Sie aus x_k und y_k die <u>nicht</u>periodische Korrelation R_k^{xy} für $k \in [-4...+2]$:

k_	Xm	0	0	0	-1	+2	-1	0	0	0	R_k^{xy}
4	yk+m	-3	2	4							0
3			- 3	2	1						-1
2				- 3	2	1					0
1					-3	2	1				6
0		0	0	0	0	-3	+2	+1	0	0	- 8
-1							- 3	Į.	1		3
-2								- 3	2	1	0

(Weg: 2.B. K=1: (-3)·(-1)+2·2+2·(-1)=6)

2. Systeme

Ein diskretes System ist gegeben durch $H(z) = \frac{z^2 - 1}{z^2 + \frac{1}{4}}$.

a) (*) Berechnen und zeichnen Sie die Pole und Nullstellen.

b) Ist das System stabil? (Kurze Begründung)

 c) Skizzieren Sie grob das Betragsspektrum für 0 ≤ f ≤ f_A.

d) (*) Handelt es sich um ein linearphasiges System? (Kurze Begründung)

(1

^

e) (*) Ist das System ein Hochpass, Tiefpass, Bandpass oder eine Bandsperre? (Kurze Begründung)

Hoch pass: | H(f=0) | = 0 , | H Heist an (in 0 & f = f2/4)

f) (*) Zeichnen Sie das System in der Transponierten Direktstruktur II.

rektstruktur II.

3

g) (*) Berechnen Sie die Impulsantwort hk des Systems für k = 0.1.

h) (*) Am Eingang des Systems wird das Signal $x_k = \{0, 4, 0, 1, 0, 0...\}$ angelegt. Berechnen Sie das

Ausgangssignal y_k für k = 0...5.

$$X(3) = \frac{4}{3} + \frac{1}{4^{3}} = \frac{43^{1}+1}{4^{3}}$$
; $Y(4) = \frac{2^{1}-1}{4^{1}+4} \cdot \frac{4 \cdot (3^{1}+4)}{2^{3}} = 4 \cdot \frac{2^{1}-1}{4^{3}}$

$$= \frac{3}{431+1}$$

$$= \frac{4}{2} - \frac{4}{2^3}$$

3. Algorithmen

a) (*) Berechnen Sie $\frac{3}{8} \cdot \frac{7}{8}$ in Binärdarstellung im Format SFRAC(1,3) mit Runden.

b) (*) Geben Sie die Binärdarstellungen der Zahl -2,5 im Format SFRAC(3,5) und SFRAC(4,4) an.

c) (*) Berechnen Sie die Konditionszahl des Gleichungssystems x-3y=-2 \wedge -x-y=3.

$$A = \begin{bmatrix} 1 & -3 \\ -1 & -1 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & -\frac{7}{4} \\ -\frac{7}{4} & -\frac{7}{4} \end{bmatrix}$$

$$|A| = \sqrt{1+9+1/4} = \sqrt{12}$$

$$|\bar{\Delta}^1| = \sqrt{\frac{1}{16} \cdot 3 + \frac{7}{16}} = \sqrt{\frac{12}{16}}$$

$$|\bar{\Delta}^1| = \sqrt{\frac{1}{16} \cdot 3 + \frac{7}{16}} = \sqrt{\frac{12}{16}}$$

$$|\Delta| = \sqrt{1+9+1/4} = \sqrt{12}$$

d) (*) Geben Sie ein Lagrange-Polynom an, das die Punkte (-1;0), (0;0) und (2;1) interpoliert.

$$P(x) = 0 + 0 + \frac{(x - (-1)) \cdot (x - 0)}{(2 - (-1)) \cdot (2 - 0)} \cdot 1 = \frac{(x + 1) \cdot x}{6}$$

e) (*) Wandeln Sie die Differentialgleichung y'''+y'=y in drei Differentialgleichungen 1. Ordnung um.

$$(y = x_1)$$

$$y' = \underbrace{x_2 = x_1'}_{x_1}$$

$$y'' = \underbrace{x_3 = x_2'}_{x_1}$$

$$y''' = y - y' = \underbrace{x_1 - x_2 = x_3'}_{x_1}$$

4. Systeme 2

[219]

Die Übertragungsfunktion eines Systems lautet $H(z) = \frac{(z-2)\cdot(z+2)}{(z-0.5)\cdot(z+0.5)}$.

a) (*) Wie nennt man dieses System, wozu dient es? (nur Stichworte!)

2

b) (*) Zeichnen Sie die Pole und Nullstellen sowie den Verlauf von |H(f)| in die Diagramme ein.

c) (*) Bestimmen Sie die Impulsantwort hk, z.B. durch Partialbruchzerlegung.

(3)

$$\beta(z) = \frac{1}{2 \cdot 2z} \Big|_{z=+0,r} = \frac{1}{2 \cdot 2z} \Big|_{z=+0,r} = \frac{1}{2 \cdot 2z} \Big|_{z=-0,r} = -\frac{1}{2 \cdot 2z} \Big|_{z=-0,r$$

- d)
- - e) (*) Zeichnen Sie das System als Reihenschaltung zweier Teilsysteme in der Transponierten Direktstruktur II. $H(z) = \left(\frac{z-z}{z-\rho_{c}}\right) \cdot \left(\frac{z+z}{z+\rho_{c}}\right)$

