Mathematics 554H/701I Homework

The topic we have started since the last test is the convergence of sequences.

Definition 1. Let E be a metric space and $\langle p_n \rangle_{n=1}^{\infty} = \langle p_1, p_2, p_3, \ldots \rangle$ a sequence in E. Then

$$\lim_{n \to \infty} p_n = p$$

if and only if for all $\varepsilon > 0$ there is a N > 0 such that

$$n > N \implies d(p_n, p) < \varepsilon.$$

In the case we say that the sequence $\langle p_n \rangle_{n=1}^{\infty}$ converges to p.

Problem 1. Let $\lim_{n\to\infty} p_n = p$ in the metric space E. Let $a_n = p_{2n}$. Show that $\lim_{n\to\infty} a_n = p$ also holds.

Problem 2. Write out the proof from the definition that if $\lim_{n\to\infty} x_n = x$ in \mathbb{R} , that $\lim_{n\to\infty} -5x_n = -5x$.

Problem 3. Write out the proof that if $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$ in \mathbb{R} that

$$\lim_{n \to \infty} (10x_n - 12y_n) = 10x - 12y.$$

We did a proof of the following in class.

Proposition 2. If $\langle x_n \rangle$ be a convergent sequence in \mathbb{R} . Then there is a constant M such that $|x_n| < M$ for all M.

Theorem 3. Let

$$\lim_{n \to \infty} x_n = x \quad and \quad \lim_{n \to \infty} y_n = y$$

in \mathbb{R} . Then

$$\lim_{n \to \infty} x_n y_n = xy.$$

Problem 4. Prove this. *Hint:* Start with

Scratch work that the no one else needs to see: Our goal is to make $|x_ny_n - xy|$ small. We compute

$$\begin{aligned} |x_n y_n - xy| &= |x_n y_n - x y_n + x y_n - xy| & \text{(Adding and subtracting trick.)} \\ &\leq |x_n y_n - x y_n| + |x y_n - xy| \\ &= |x_n - x||y_n| + |x||y_n - y| \end{aligned}$$

The factors $|x_n - x|$ and $|y_n - y|$ are both good in that we can make them small. The factor |x| is independent of n and thus is not a problem. The sequence $\langle y_n \rangle_{n=1}^{\infty}$ is convergent and thus bounded, so we bound the factor $|y_n|$. We now return to our regularly scheduled proof.

Let $\varepsilon > 0$. The sequence $\langle y_n \rangle_{n=1}^{\infty}$ is convergent thus it is bounded. Therefore there is an M so that

$$|y_n| \leq M$$
 for all n .

As $\lim_{n\to\infty} x_n = x$ there There is a $N_n > 0$ such that

$$n > N_2$$
 implies $|x_n - x| < \frac{\varepsilon}{2(M+1)}$

and as $\lim_{n\to\infty} y_n = y$ there is a $N_2 > 0$ such that

$$n > N_2$$
 implies $|y - y_n| < \frac{\varepsilon}{2(|x|+1)}$.

Now let $N = \max\{N_1, N_2\}$ and use the calculation from our scratch work to show

$$n > N$$
 implies $|x_n y_n - xy| < \varepsilon$

which completes the proof.

Proposition 4. Let $\langle p_n \rangle_{n=1}^{\infty}$ be a convergent sequence in the metric space E. Let $\langle p_{n_k} \rangle_{k=1}^{\infty}$ be a subsequence of this sequence. Then $\langle p_{n_k} \rangle_{k=1}^{\infty}$ is also convergent and has the same limit at the original sequence.

Problem 5. Prove this. *Hint:* For all k we have $n_k \geq k$.

Definition 5. Let $\langle x_n \rangle_{n=1}^{\infty}$ be a sequence of real numbers. Then this sequence is **monotone increasing** if and only if $x_n \leq x_{n+1}$ for all n. It is **monotone decreasing** if and only if $n_n \geq x_{n_1}$ for all n. It is **monotone** if it is either monotone increasing or monotone decreasing.

Theorem 6. A bounded monotone sequence in \mathbb{R} is convergent.

Proof. Let $\langle x_n \rangle_{n=1}^{\infty}$ be a bounded monotone sequence. We first assume that it is monotone increasing. Let

$$S = \{x_n : n = 1, 2, \ldots\}$$

be the set of values of the sequence. As the sequence is bounded, this set is bounded. Therefore, by Least Upper bound Axiom, this set has a least upper bound $b = \sup(S)$. We now show that the sequence converges to b.

Let $\varepsilon > 0$. Then $b - \varepsilon < b$ and b is the least upper bound of S, therefore $b - \varepsilon$ is not an upper bound for S. Therefore there is positive integer N such that $b - \varepsilon < x_N$. Then for any n > N we have

$$\begin{array}{ll} b-\varepsilon < x_N \\ & \leq x_n \qquad (x_N \leq x_n \text{ as the sequence is monotone increasing.}) \\ & \leq b \qquad \text{(as b is an upper bound for S and $x_n \in S$.)} \end{array}$$

Therefore we have $b - \varepsilon < x_n \le b$ for all n > N. Therefore n > N implies $|x_n - b| < \varepsilon$ and thus $\lim_{n \to \infty} x_n = b$.

Problem 6. Modify the last proof so show that if $\langle x_n \rangle_{n=1}^{\infty}$ is bounded and monotone decreasing that it converges to $\inf\{x_n : n=1,2,3,\ldots\}$.

The following is a very important idea.

Definition 7. Let $\langle p_n \rangle_{n=1}^{\infty}$ be a sequence in a metric space E. Then the sequence is a **Cauchy sequence** if and only if for all $\varepsilon > 0$, there is a N > 0 such that m, n > N implies $d(p_m, p_n) < \varepsilon$.

A brief version would be that $\langle p_n \rangle_{n=1}^{\infty}$ is Cauchy if and only if

$$\forall \varepsilon > 0 \; \exists N > 0 [m, n > n \implies d(p_m, p_n) < \varepsilon].$$

Proposition 8. Every convergent sequence is a Cauchy sequence.

Problem 7. Prove this. *Hint:* Let $\langle p_n \rangle_{n=1}^{\infty}$ be a convergent sequence in the metric space and let p be its limit. Let N be so that

$$n > N$$
 implies $d(p_n, p) < \frac{\varepsilon}{2}$.

Then show that

$$m, n > n$$
 implies $d(p_m, p_n) < \varepsilon$.

The converse is not true. There are Cauchy sequences that are not convergent.

Problem 8. Let E = (0,1) be the open unit interval with metric d(x,y) = |x-y|. Then show that the sequence $\langle 1/n \rangle_{n=1}^{\infty}$ is a Cauchy sequence that is not convergent to any point of E.

You may feel that the example of the last problem is a bit of a cheat as the sequence does converge in the larger space of all real numbers. And is some sense this is true, given a metric space, E, there is a natural way to expand it to a somewhat larger space that contains the limits of all Cauchy sequences from E.

Proposition 9. Let $\langle p_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence in the metric space E, such that some subsequence of $\langle p_n \rangle_{k=1}^{\infty}$ converges. Then the original sequence $\langle p_n \rangle_{n=1}^{\infty}$ converges.

Problem 9. Prove this. *Hint:* Let $\varepsilon > 0$. As the sequence is Cauchy, there is a N such that

$$m, n > N$$
 implies $d(p_m, p_n) < \frac{\varepsilon}{2}$.

Let n > N, then for any k we have by the triangle inequality that

$$d(p_n, p) \le d(p_n, p_{n_k}) + d(p_{n_k}, p).$$

Now show that it is possible to choose k such that both $d(p_n, p_{n_k})$ and $d(p_{n_k}, p)$ are less than $\varepsilon/2$.

Theorem 10. Every sequence of real numbers has a monotone subsequence.

Problem 10. Prove this. *Hint:* Let $\langle x_n \rangle_{n=1}^{\infty}$ be a sequence of real numbers. Call x_n a **peak point** if $x_n \geq x_m$ for all m > n. (That is x_n is greater than or equal to all the values that follow it.)

Case 1: There are infinitely many peak points. In this case there is an infinite subsequence of the sequence consisting of peak points. Show this subsequence is monotone decreasing.

Case 2: There are only finitely many peak points. Let N be the largest n such that x_n is a peak point. Thus if n > N the point x_n is not a peak point and therefore there is m > n with $x_n > x_n$. Let $n_1 = N_1$. Then $n_1 > N$ and so there is a $n_2 > n_1$ with $x_{n_2} > x_{n_1}$. But then $n_2 > N$ and thus there is $n_3 > n_2$ with $x_{n_3} > x_{n_2}$. Continue in this manner to show that there is an infinite increasing subsequence.

Proposition 11. Let E be a metric space. Then every Cauchy sequence in E is bounded. (That is the sequence is contained in some ball.)

Problem 11. Prove this. *Hint:* Let $\langle p_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence in E. Let $\varepsilon = 1$ (or any other positive number that you like). Then there is N > 0 such that

$$m, n > N$$
 implies $d(p_m, p_n) < \varepsilon = 1$.

Let a = N + 1 and set

$$r = 1 + \max\{1, d(a, x_1), d(a, x_2), \dots, d(a, x_N)\}.$$

Then show that $p_n \in B(a,r)$ for all n.

Theorem 12. Every Cauchy sequence in \mathbb{R} converges.

Problem 12. Prove this. *Hint:* Let $\langle x_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence in \mathbb{R} . Then by Proposition 11 this sequence is bounded. By Theorem 10 this sequence has a monotone subsequence. By Theorem 6 this monotone subsequence converges. Put these facts together with Proposition 9 to prove that the sequence $\langle x_n \rangle_{n=1}^{\infty}$ converges.

This property of a metric space, that Cauchy implies convergent, is important enough to give a name.

Definition 13. The metric space E is **complete** if and only if every Cauchy sequence in E converges.

So we can restate Theorem 12 as

Proposition 14. The real numbers, \mathbb{R} , with their usual metric is a complete metric space.

We can not get more examples by looking at closed subsets of complete metric spaces.

Proposition 15. Let E be a metric space and F a closed subset of E. Let $\langle x_n \rangle_{n=1}^{\infty}$ be a sequence of points of F that converges in E to some point p. Then $p \in F$. (A nice restatement of this is that a closed set contains all its limit points.)

Problem 13. Prove this. <i>Hint</i> : Towards a contradiction assume that $p \notin$	F
Then as F is closed, the compliment $C(F)$ is open. As $p \in CF$ by t	hε
definition an open set, there is a $r > 0$ such that $B(p,r) \subseteq C(F)$. B	ut
$\lim_{n\to\infty} p_n = p$ and therefore if we let $\varepsilon = r$ there is a $N>0$ such the	ıat
$n>0$ implies $d(p_n,p)<\varepsilon=r$. This this leads to a contradiction.	

Proposition 16. Let E be a complete metric space and F a closed subset of E. Then F, considered as a metric space in its own right, is complete.

Problem 14. Prove this. *Hint:* Let $\langle p_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence from F. As E is complete this sequence converges to some point, p, of E. To finish the proof it is enough to show that $p \in F$.