Sampling Paths from a GP

XC

03/07/2021

```
#tinytex::install_tinytex()
```

General set-up

- a zero-centered GP(m(.), K(.,.))
- f is a function drawn from this GP
- a vector $(x1, \ldots xn)$, the function values $(f(x1), \ldots f(xn))$ or (Y)
- must have a multivariate GP with
 - mean: $(m(x1), \ldots, m(xn))$
 - covariance matrix Sigma with Sigma_ $\{ij\}$ = K(xi, xj)
- so we could make use of this property (with 2 moments determin the whole distribution), draw this function from GP:
 - 1. select a fine grid of x-coords
 - 2. use myrnorm() from MASS to draw function values at these points
 - 3. then connect them with straight lines

Generate Covariance matrix

Generate Covariance matrix from a known kernel function at points **x**

```
cov_matrix <- function(x, kernel_fn, ...) {
  outer(x, x, function(a, b) kernel_fn(a, b, ...))
}</pre>
```

Sample

Given x coords, take N draws from the GP with K evaluated using kernel_fn at x

```
draw_samples <- function(x, N, kernel_fn, ...) {
    set.seed(03-07-2021)

Y <- matrix(NA, nrow = length(x), ncol = N)
    for(n in 1:N) {
        K <- cov_matrix(x, kernel_fn, ...)
        Y[, n] <- mvrnorm(1, mu = rep(0, length(x)), Sigma = K)
    }
    Y
}</pre>
```

Parameters

Use the following parameters for the rest code

```
x <- seq(0, 2, length.out = 201)  # x-coords
N <- 3  # no. of draws
col_list <- list("red", "blue", "black")  # col for lines of different draws</pre>
```

Squared exponential(SE) kernel

SE also known as radial basis furntion (RBF) kernel or the Gaussian kernel has the form: $K(x, x') = \sigma^2 exp(-\frac{||x-x'||^2}{2l^2}),$

where $\sigma^2 > 0$ and l > 0 are hyperparameters. $\sigma^2 > 0$ tells how variable the function is overall, and set to 1 for simplicity.

It's the most commonly used kernel as its computational tractability.

Now generates 3 draws from the SE kernel with l = 0.2

```
se_kernel <- function(x, y, Sigma = 1, Length = 1) {
    Sigma^2 * exp(- (x - y)^2 / (2 * Length^2))
}

Y <- draw_samples(x, N, kernel_fn = se_kernel, Length = 0.2)

plot(range(x), range(Y), xlab = "x", ylab = "y", type = 'n',
    main = "se_kernel, Length 1 = 0.2")

for(n in 1:N) {
    lines(x, Y[, n], col = col_list[[n]], lwd = 1.5)
}</pre>
```

se_kernel, Length I = 0.2

Show how changing "length-scale" parmaeter l affects the function drawn.

The smaller the l, the more wiggly the function drawn


```
for(1 in c(0.2, 0.7, 1.5)) {
    Y <- draw_samples(x, N, kernel_fn = se_kernel, Length = 1) # draw samples
    str(Y)
}</pre>
```

```
## num [1:201, 1:3] 0.701 0.732 0.768 0.806 0.848 ...

## num [1:201, 1:3] -0.186 -0.21 -0.233 -0.256 -0.28 ...

## num [1:201, 1:3] 0.278 0.265 0.252 0.239 0.227 ...
```

Rational quadratic (RQ) kernel

The rational quadratic (RQ) kernel has the form $K(x, x') = \sigma^2 (1 + \frac{||x - x'||^2}{2\alpha l^2})^{-\alpha}$, where $\sigma > 0$ and $\alpha > 0$ are hyperparameters.

Below we create the RQ kernel function and see how length l affects the function drawn:

```
rq_kernel <- function(x, y, Sigma = 1, alpha = 1, Length = 1) {
   Sigma^2 * (1 + (x - y)^2 / (2 * alpha * Length^2))^(-alpha)
}

par(mfrow = c(1, 3))

for (a in c(0.01, 0.5, 50)) {
   Y <- draw_samples(x, N, kernel_fn = rq_kernel, alpha = a)</pre>
```

```
plot(range(x), range(Y), xlab = "x", ylab = "y", type = "n",
       main = paste("RQ kernel, alpha =", a))
  for(n in 1:N) {
    lines(x, Y[, n], col = col_list[[n]], lwd = 1.5)
}
```


Matérn covariance function

The Matérn covariance function has the form

$$K(x,x') = \sigma^2 \frac{1}{2^{v-1}\Gamma(\nu)} (\frac{\sqrt{(2\nu)||x-x'||}}{l})^{\nu} K_{\nu} (\frac{\sqrt{(2\nu)||x-x'||}}{l}),$$
 where

- $\frac{\sqrt(2\nu)}{l} > 0$: spatial scale paramter, while its inverse is sometimes referred to as a correlation length $\nu > 0$: smooth parameter defines the Hausdorff dimension and the differentiability of the sample paths
- - if $\nu=n+1/2$, the Matérn function reduces to the product of an exponential function and a polynomial $M(\mathbf{h}|n+1/2,a)=\exp(-a||\mathbf{h}||)\Sigma_{k=0}^n\frac{(n+k)!}{(2n)!}\binom{n}{k}(2a||\mathbf{h}||)^{n-k}$, $n=0,1,\ldots$
 - the larger the ν , the smoother the process
 - in practice, $\nu = 1/2$, $\nu = 3/2$ and $\nu = 5/2$ are used more often