Team Members: Caleb Kao, Katia Garcia

PREPARING DATA

1. Education

```
#Create continuous for EDUCD
acs_data = pd.merge(acs_data, crosswalk, left_on='EDUCD', right_on='educd')
acs_data
     YEAR SAMPLE SERIAL
                            CBSERIAL HHWT
                                                CLUSTER STRATA GQ PERNUM PERWT NCHILD NCHLT5 SEX AGE MARST RACE
0 2019 201901 2611 2019000016124 19504.8 2019000026111 80001 1 1 19659.6
  1 2019
           201901
                   6016 2019000247422 1702.8 2019000060161 230001
                                                                         1 1702.8
  2 2019 201901
                   6790 2019000301008 8668.8 2019000067901 190001
                                                                         3 20278.8
  3 2019
           201901
                    9577 2019000497180 42105.6 2019000095771
                                                         10001
                                                                         1 42105.6
 4 2019 201901 9731 2019000507929 7430.4 2019000097311 270201 1
9049 2019 201901 1220732 2019000282619 26006.4 2019012207321 230548 1
                                                                        1 25851.6
9050 2019
           201901 1222589 2019000308283 33746.4 2019012225891 680448
                                                                         2 39628.8
9051 2019 201901 1237295 2019000512472 20433.6 2019012372951 670248
          201901 1302776 2019001404140 27554.4 2019013027761 461548
                                                                         1 27554.4
9053 2019 201901 1308039 2019000485767 13312.8 2019013080391 5700249
                                                                         1 13312.8
RACED HISPAN HISPAND EDUC EDUCD EMPSTAT EMPSTATD INCWAGE VETSTAT VETSTATD educd
    100
                                                                 10
                                                                         59000
                                                                                                          81
                                                                                                                  14.0
    100
               0
                          0
                                  8
                                                                 10
                                                                         50000
                                                                                        2
                                                                                                   20
                                                                                                           81
                                                                                                                  14.0
                                         81
                                                      1
    100
                          0
                                 8
                                                                 10
                                                                         10000
                                                                                                   11
                                                                                                          81
                                                                                                                  14.0
    100
                          0
                                                      1
                                                                 10
                                                                           800
                                                                                                   11
                                                                                                                  14.0
    200
               0
                          0
                                  8
                                          81
                                                                 10
                                                                         45000
                                                                                                    11
                                                                                                           81
                                                                                                                  14.0
    100
                        100
                                          22
                                                                 10
                                                                         25000
                                                                                                           22
                                                                                                                   5.0
                        100
                                 2
                                         22
                                                      1
                                                                 10
                                                                         21600
                                                                                        1
                                                                                                   11
                                                                                                           22
                                                                                                                   5.0
    100
    100
                        100
                                 2
                                          22
                                                                 10
                                                                         18000
                                                                                                           22
                                                                                                                   5.0
    700
               4
                        416
                                 2
                                          22
                                                      1
                                                                 10
                                                                         17000
                                                                                        1
                                                                                                   11
                                                                                                           22
                                                                                                                   5.0
                                                                         38000
                                                                                                                   1.0
```

2. Dummy Variables

```
#Get Dummies
acs_data['hsdip'] = np.where(acs_data['EDUCD'] == 63, 1, 0)
acs_data['coldip'] = np.where(acs_data['EDUCD'] == 101, 1, 0)
acs_data['white'] = np.where(acs_data['RACE'] == 1, 1, 0)
acs_data['black'] = np.where(acs_data['RACE'] == 2, 1, 0)
acs_data['hispanic'] = np.where(acs_data['RACE'] != 0, 1, 0)
acs_data['married'] = np.where(acs_data['MARST'] == 1, 1, 0)
acs_data['female'] = np.where(acs_data['SEX'] == 2, 1, 0)
acs_data['vet'] = np.where(acs_data['VETSTAT'] == 2, 1, 0)
acs_data[head()
```

educd	educdc	hsdip	coldip	white	black	hispanic	married	female	vet
81	14.0	0	0	1	0	1	1	0	0
81	14.0	0	0	1	0	1	1	0	1
81	14.0	0	0	1	0	1	0	0	0
81	14.0	0	0	1	0	1	0	0	0
81	14.0	0	0	0	1	1	0	0	0

3. Interaction Terms

```
#Interaction
acs_data['EDUC:educdc'] = acs_data['EDUC'].mul(acs_data['educdc'])
acs_data.head()
```

EDUC:educdo

112.0

112.0

112.0

112.0

112.0

4. Created Variables

```
#Age Squared
acs_data['AGE^2'] = np.power(acs_data['AGE'],2)
acs_data.head()|
```

AGE^2

841

1681

441

400

1089

```
#Log of Wage
acs_data = acs_data[acs_data['INCWAGE'] != 0] #Only one row had a 0 so needed to remove it
acs_data['LNINCWAGE'] = np.log(acs_data['INCWAGE'])
acs_data.head()
```

LNINCWAGE

10.985293

10.819778

9.210340

6.684612

10.714418

DATA ANALYSIS

1.

	YEAR	INCWAGE	LNINCWAGE	educdo	female	AGE	AGE^2	white	black	hispanic	married
count	8606.0	8606.000000	8606.000000	8606.000000	8606.000000	8606.000000	8606.000000	8606.000000	8606.000000	8606.0	8606.000000
mean	2019.0	58420.063212	10.496826	14.187427	0.486521	41.849059	1931.513479	0.773298	0.090286	1.0	0.525912
std	0.0	68115.268196	1.097734	2.857626	0.499847	13.423513	1126.920775	0.418723	0.286607	0.0	0.499357
min	2019.0	4.000000	1.386294	0.000000	0.000000	18.000000	324.000000	0.000000	0.000000	1.0	0.000000
25%	2019.0	22725.000000	10.031219	12.000000	0.000000	30.000000	900.000000	1.000000	0.000000	1.0	0.000000
50%	2019.0	41300.000000	10.628615	14.000000	0.000000	42.000000	1764.000000	1.000000	0.000000	1.0	1.000000
75%	2019.0	70750.000000	11.166889	16.000000	1.000000	54.000000	2916.000000	1.000000	0.000000	1.0	1.000000
max	2019.0	717000.000000	13.482831	22.000000	1.000000	65.000000	4225.000000	1.000000	1.000000	1.0	1.000000

NCHILD	vet	hsdip	coldip	EDUC:educdc
8606.000000	8606.000000	8606.000000	8606.000000	8606.000000
0.784801	0.049733	0.210783	0.236812	117.493028
1.100708	0.217405	0.407888	0.425150	51.649895
0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	72.000000
0.000000	0.000000	0.000000	0.000000	98.000000
1.000000	0.000000	0.000000	0.000000	160.000000
9.000000	1.000000	1.000000	1.000000	242.000000

2.

OLS Regression Results								
Dep. Variable	e:	LNING	CWAGE		uared:		0.309	
Model:			OLS		R-squared:		0.308	
Method:		Least Sq					426.4	
Date:					(F-statistic):		0.00	
Time:		19:	24:58		Likelihood:		-11425.	
No. Observat:				AIC:			2.287e+04	
Df Residuals: Df Model:			8596 9	BIC:			2.294e+04	
Covariance T			_					
Covariance i	ype:	nonre	obust					
	coef	std err		 t	P> t	[0.025	0.975]	
	coei	Stu en			FZICI	[0.023	0.9/3]	
educdc	0.1112	0.004	31	.564	0.000	0.104	0.118	
female	-0.4338				0.000			
AGE	0.1567				0.000	0.146		
AGE^2	-0.0016					-0.002		
white	-0.0297	0.029	-1	.024		-0.087		
black	-0.1875	0.043	-4	.410	0.000	-0.271	-0.104	
hispanic	5.6555	0.114	49.	.594	0.000	5.432	5.879	
married	0.1955	0.023	8.	.450	0.000	0.150	0.241	
NCHILD	-0.0063	0.010	-0.	.616	0.538	-0.026	0.014	
vet	-0.0396	0.046	-0.	.856	0.392	-0.130	0.051	
Omnibus:		243	7.163	Durb	in-Watson:		1.867	
Prob(Omnibus):	(0.000	Jarque-Bera (JB):			10300.166	
Skew:		-:	1.335	Prob	(JB):		0.00	
Kurtosis:			7.647	Cond	I. No.		2.60e+04	

- a) The fraction of variation is the R^2 which from our results is 0.309 which indicates that around 30.9% of the log wage as the dependent variable can be explained by the predictor
- b) The F-statistics: 426.4 and Prob(F-statistic): 0 indicates that we reject the null hypothesis that ln(wage) is not affected by any of the predictors
- c) An additional year of education increased the log wage by $(e^{(0.112)-1)*100} = 11.85129 \sim 11.985\%$ and is statistically significant because we have a p-value of 0 which is less than 0.05.
- d) According to the model, the In(wage) will achieve the highest wage at Age 50.

0 10.923088 0.08992 10.788029 11.060148 8.99937 12.846808

```
d = {'AGE': [50]}
df = pd.DataFrame(data=d)
predictions = result.get_prediction(df)
predictions.summary_frame(alpha=0.05)
mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
```

Intercept	8.5613	0.088	96.999	0.000	8.388	8.734
C(AGE)[T.19]	0.1403	0.118	1.192	0.233	-0.090	0.371
C(AGE)[T.20]	0.5995	0.119	5.020	0.000	0.365	0.834
C(AGE)[T.21]	0.8163	0.120	6.803	0.000	0.581	1.052
C(AGE)[T.22]	0.8900	0.113	7.889	0.000	0.669	1.111
C(AGE)[T.23]	1.2769	0.117	10.936	0.000	1.048	1.506
C(AGE)[T.24]	1.5024	0.116	12.901	0.000	1.274	1.731
C(AGE)[T.25]	1.5190	0.115	13.157	0.000	1.293	1.745
C(AGE)[T.26]	1.7094	0.115	14.859	0.000	1.484	1.935
C(AGE)[T.27]	1.8766	0.118	15.876	0.000	1.645	2.108
C(AGE)[T.28]	1.8940	0.114	16.649	0.000	1.671	2.117
C(AGE)[T.29]	1.7146	0.113	15.213	0.000	1.494	1.936
C(AGE)[T.30]	2.0496	0.111	18.489	0.000	1.832	2.267
C(AGE)[T.31]	1.9967	0.114	17.552	0.000	1.774	2,220
C(AGE)[T.32]	2.0790	0.115	18.134	0.000	1.854	2.304
C(AGE)[T.33]	1.9255	0.116	16.658	0.000	1.699	2.152
C(AGE)[T.34]	2.1251	0.112	18.928	0.000	1.905	2.345
C(AGE)[T.35]	1.9479	0.115	16.892	0.000	1.722	2.174
C(AGE)[T.36]	2.0875	0.112	18.593	0.000	1.867	2.308
C(AGE)[T.37]	2.2044	0.117	18.855	0.000	1.975	2.434
C(AGE)[T.38]	2.1583	0.114	18.868	0.000	1.934	2.382
C(AGE)[T.39]	2.3228	0.112	20.689	0.000	2.103	2.543
C(AGE)[T.40]	2.1019	0.112	18.313	0.000	1.877	2.327
C(AGE)[T.41]	2.1998	0.113	19.295	0.000	1.976	2.423
C(AGE)[T.41]	2.1307	0.114	18.770	0.000	1.908	2.353
C(AGE)[T.43]	2.1793	0.114	18.988	0.000	1.954	2.404
C(AGE)[T.44]	2.0735	0.115	17.960	0.000	1.847	2.300
C(AGE)[T.45]	2.2876	0.115	19.931	0.000	2.063	2.513
C(AGE)[T.46]	2.2064	0.115	19.134	0.000	1.980	2.432
C(AGE)[T.47]	2.1709	0.115	18.870	0.000	1.945	2.396
C(AGE)[T.48]	2.2629	0.115	19.738	0.000	2.038	2.488
C(AGE)[T.49]	2.3234	0.115	20.196	0.000	2.098	2.549
C(AGE)[T.50]	2.3618	0.113	20.975	0.000	2.141	2.583
C(AGE)[T.51]	2.2763	0.112	20.389	0.000	2.057	2.495
C(AGE)[T.52]	2.2442	0.112	19.989	0.000	2.024	2.464
C(AGE)[T.53]	2.1435	0.112	19.217	0.000	1.925	2.362
C(AGE)[T.54]	2.2303	0.111	20.085	0.000	2.013	2.448
C(AGE)[T.55]	2.1614	0.114	19.040	0.000	1.939	2.384
C(AGE)[T.56]	2.1321	0.108	19.776	0.000	1.921	2.343
C(AGE)[T.57]	2.3128	0.114	20.373	0.000	2.090	2.535
C(AGE)[T.58]	2.1994	0.111	19.736	0.000	1.981	2.418
C(AGE)[T.59]	2.1471	0.114	18.792	0.000	1.923	2.371
C(AGE)[T.60]	2.1243	0.116	18.355	0.000	1.897	2.351
C(AGE)[T.61]	2.0855	0.113	18.448	0.000	1.864	2.307
C(AGE)[T.62]	2.1106	0.116	18.192	0.000	1.883	2.338
C(AGE)[T.63]	1.9634	0.120	16.336	0.000	1.728	2.199
C(AGE)[T.64]	1.9695	0.120	16.439	0.000	1.735	2.204
C(AGE)[T.65]	2.0175	0.126	16.063	0.000	1.771	2.264
>						

e) The model predicts that men will have a slightly higher wage than females and according to our results the coefficient for females is -0.4338. We might investigate this pattern to see when males start to have a higher wage gap than females at a certain age, married status, or birth to a child

```
d = {'SEX': [1]}
df = pd.DataFrame(data=d)
predictions = result.get_prediction(df)
predictions.summary_frame(alpha=0.05)

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
0 10.80204 0.016234 10.801118 10.724762 8.577313 12.808567

d = {'SEX': [2]}
df = pd.DataFrame(data=d)
predictions = result.get_prediction(df)
predictions = result.get_prediction(df)
predictions.summary_frame(alpha=0.05)

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
0 10.280845 0.016677 10.257153 10.322536 8.174204 12.405485
```

f) Interpreting the coefficients White: -0.0297, Black:-0.1875, Hispanic: 5.655 indicates that Hispanics have the highest percentage increase in wages controlling for all variables, whites had a small decrease, but is NOT statistically significant, and blacks have the highest decrease in wages in 2019.

g) Null Hypothesis: H_0 : $B_{race} = 0$

Alternative Hypothesis: $H_A: B_{race} \neq 0$

OLS Regression Results										
Dep. Variable:		LNINCWAGE		R-squ	uared:		0.001			
Model:			OLS	Adj.	R-squared:		0.001			
Method:		Least Sq	uares	F-sta	tistic:	12.56				
Date:					(F-statistic):		0.000397			
Time:					ikelihood:		-13007.			
No. Observation	ons:		8606	ATC:		2.602e+04				
Df Residuals:	0113.			BIC:		2.603e+0				
Df Model:			1	DIC.			2.0036104			
		nonn	_							
Covariance Type: nonrobust			DDUSL							
					n, l±l		0.0751			
	coet	std err		t	P> t	[0.025	0.975]			
Intercept	10.5374	0.016	639	.840	0.000	10.505	10.570			
RACE	-0.0225		-3	.543	0.000	-0.035	-0.010			
Omnibus:		190	2.558	Durbi	in-Watson:		1.627			
Prob(Omnibus):		(0.000	Jarque-Bera (JB):			6042.310			
Skew:		-	1.122				0.00			
Kurtosis:			6.437	Cond.			3.89			

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Running an OLS of LNWAGE on RACE. We reject the null hypothesis that race has nothing to do with wages because it is not statistically significant , but the variation is very small of R^2 at 0.001.

4. All three of the scatter plots in the graph below tend to overall each other. Also, College is shown to increase, while High School Diploma and No degree show a decrease.

5. LNINCWAGE = $B_0 + B_1$ (educdc = [61 (No High School)] + B_2 (coldip) + B_4 (hsdip) + B_3 (female) + B_4 (AGE) + B_5 (AGE²) + B_6 (white) + B_7 (black) + B_8 (Hispanic) + B_9 (married) + B_{10} (NCHILD)

Probability = e^(LNINCWAGE Regression)/(1+e^(LNINCWAGE Regression))

I believe this is the best model because we can control for all variables and include these three categorical variables because we are trying to find correlations between the education levels and INCWAGE not the causation. Also, the parameters B_0 , B_1 etc. best explain the observed data and with this probability model we can explain more than 2 categorical variables

6.

OLS Regression Results											
Dep. Variable:	LNIN	CWAGE		quared:		0.205					
Model:		OLS		. R-squared:		0.204					
Method:	Least Sq					202.0					
Date:	Mon, 01 Feb				ic):	0.00					
Time:	19:	08:06	Log-	Likelihood:		-12024.					
No. Observations:		8606	AIC:	:		2.407e+04					
Df Residuals:		8594	BIC:	:		2.416e+04					
Df Model:		11									
Covariance Type:	nonn	obust									
	coef	std e	err	t	P> t	[0.025	0.975]				
Intercept	4.8096	0.0	123	210.864	0.000	4.765	4.854				
EDUCD == 61[T.True]				-6.339	0.000	-0.755	-0.398				
female				-19.289		-0.458	-0.373				
AGE				2.882		0.005	0.026				
AGE ^ 2	0.0052			0.990			0.016				
white	0.0090		931	0.288	0.773	-0.052	0.070				
black				-2.925	0.003	-0.223	-0.044				
hispanic				210.864		4.765	4.854				
married	0.2953			11.983		0.247	0.344				
NCHILD	0.0600	0.6	110	5.824	0.000	0.040	0.080				
vet				-0.388	0.698	-0.117	0.078				
hsdip				-11.038			-0.247				
coldin	0.3486	0.0		13.318	0.000	0.297	0.400				
=======================================											
Omnibus:	237	5.306	Durb	oin-Watson:		1.724					
Prob(Omnibus):		0.000	Jaro	que-Bera (JB)):	10218.708					
Skew:	-	1.293	Prob	(JB):		0.00					
Kurtosis:		7.670	Cond	d. No.		2.88e+17					

a) The wages which predict from our model which we get is a mean of 4.5414

0 4.541411 0.034663 4.473464 4.609358 2.620911 6.461911

b) Yes, the individuals do receive a higher wage, and according to our model for females it is an increase by 0.65, and for males also around 0.65

Female:

Male:

```
In [163]: #Question 7
          import statsmodels.formula.api as smf
          d = {'EDUCD':0,'female':0,'AGE':22,'AGE^2':22, 'white':0, 'black':0,'hispanic':0, 'married':0,'NCHILD':0,'vet':0,
                hsdip':1,'coldip':0}
          df = pd.DataFrame([d])
          predictions = result.get_prediction(df)
          predictions.summary_frame(alpha=0.05)
Out[1631:
                mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
          0 4.956786 0.030338 4.897315 5.016256 3.036567 6.877004
In [113]: #Question 7
          d = {'EDUCD':0,'female':0,'AGE':22,'AGE^2':22, 'white':0, 'black':0,'hispanic':0, 'married':0,'NCHILD':0,'vet':0,
                hsdip':0,'coldip':1
          df = pd.DataFrame([d])
          predictions = result.get_prediction(df)
          predictions.summary_frame(alpha=0.05)
Out[113]:
                mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
          0 5.606358 0.030472 5.546626 5.666091 3.686132 7.526585
```

- c) From my point of view, it is crucial to expand college education to increase wages for male and female workers. However, allowing subsidies will increase the cost of attending college which can cause the students to fall into debt knowing college administrators can raise the prices because banks are providing easy money loans without any application.
- 7. To improve this model, I would probably include more interaction between education and variables such as Age, Married, and NCHILD to see where the increase or drop off is in wages. The reason why is when women give birth to a child wages tends to slip as they focus on more part-time jobs.