

A word on Quantum Entanglement

This is NOT an issue. Do NOT keep a safe distance from your computer. Welcome to another Snowy April!

Please provide End of Semester Feedback!

Student Response Data: PHSCS 121 - Winter 2023

Tuesday, Ap	oril 4th,	2023	6:15	AM

Total Students Enrolled (All Sections)	480
Total Completed Ratings	38
Response Rate	7.92
Total Students Enrolled (100 and 200 Level Sections)	480
Total Completed Ratings	38
Response Rate	7.92
Composite 100-200	N/A

Tenure time – Please all leave official class reviews. This stuff matters a lot!

I will teach 121 for the next few years. Consider leaving pointers to future BYU students on ratemyprofessor.com

Review – Lecture 17

Momentum

Two kinds of collisions

ELASTIC

- · Objects collide and bounce
- Kinetic energy is conserved
- No permanent deformation of the objects

INELASTIC

- · Objects collide and stick
- Kinetic energy is NOT conserved
- Objects stick because they lock together, or are permanently bent, or chemical reaction, or...

"Impulse"

$$\Delta p = (F) \times (\Delta t) = p_{\text{final}} - p_{\text{initial}}$$

Review - Lecture 18

$$v_{1f} = 2v_{CM} - v_{\underline{1}}$$

Two kinds of collisions

ELASTIC

- · Objects collide and bounce
- · Kinetic energy is conserved
- No permanent deformation of the objects

INELASTIC

- Objects collide and Suck
- · Kinetic energy is NOT conserved
- Objects stick because they lock together, or are permanently bent, or chemical reaction, or...

Same momentum, but bullet has more kinetic Energy!

Review Lecture 20

$$\theta = \frac{s}{r}$$

counterclockwise rotations as being positive and clockwise rotations as negative.

Angular Position

Rotational

$$\theta_{\rm f} = \theta_0 + \overline{\omega}t$$

$$\omega_{\rm f} = \omega_0 + \alpha t$$

$$\theta_{\rm f} = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega_{\rm f}^2 = \omega_0^2 + 2\alpha(\Delta\theta)$$

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

Angular Velocity

$$\vec{v} = \vec{\omega} \times \vec{r}$$
.

Angular Velocity Vector

$$v_{\rm t} = r\omega$$

Tangential Velocity

Review - Lecture 22

Torque equals moment arm times force: $\, \tau = r F \sin \theta \,$

The direction of the torque is given by the right-hand rule: $\vec{\tau} = \vec{r} \times \vec{F}$

Unbalanced torques cause angular accelerations: au = I lpha

Q3a: If I pull on this string, what way will the spool move?

Q3b: What about now? Which way will the spool move?

A. Left

B. Right

Consider the Pivot Points!

Q3c: What about now? Which way will the

Difference to bike tire. Axis of rotation

What happens if you pull the front break?

Review - Lecture 23

Conservation of Angular Momentum

$$\frac{d\vec{\mathbf{L}}}{dt} = 0$$

$$\vec{\mathbf{L}} = \vec{\mathbf{l}}_1 + \vec{\mathbf{l}}_2 + \dots + \vec{\mathbf{l}}_N = \text{constant.}$$

Rotation of Wheel

Exit Poll

- Please provide a letter grade for todays lecture:
- A. A
- B. B
- C. C
- D. D
- E. Fail

