Лабораторная работа 3.2.2. Резонанс напряжений в последовательном контуре

Иван Сладков

18 февраля 2022 г.

1 Аннотация

В данной работе проводится исследование колебаний напряжения в последовательном колебательном контуре под воздействием синусоидальной внешней ЭДС. Проводится определение АЧХ и ФЧХ контура; на основании этих данных определяется добротность и другие параметры контура.

2 Теоретические сведения

Резонансная частота последовательного контура может быть определена из формулы

$$f_r = \frac{1}{2\pi\sqrt{LC}}. (1)$$

Добротность колебательного контура связана с его параметрами соотношениями:

$$Q = \frac{\rho}{R_{\Sigma}} = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}}.$$
 (2)

Для теоретического расчёта параметров контура используется метод комплексных амплитуд. Импеданс последовательного контура определяется по формуле:

$$Z = R_{\Sigma} + i(\omega L - \frac{1}{\omega C}),\tag{3}$$

где R_{Σ} — суммарное активное сопротивление компонентов. ω_0 — резонансная частота контура, при которой импеданс — действительный. При условии, что $|\Delta\omega|\ll\omega_0$, формулы резонансных значений тока и напряжения упрощаются до:

$$\overrightarrow{I} = \frac{E}{R_{\Sigma}} \frac{\exp i\varphi_I}{\sqrt{1 + (\tau \Delta \omega)^2}},\tag{4}$$

$$\overrightarrow{U_C} = EQ \frac{\omega_0}{\omega} \frac{\exp i\varphi_C}{\sqrt{1 + \tau \Delta \omega)^2}},\tag{5}$$

где

$$\varphi_I = -\arctan(\tau \Delta \omega),$$

$$\varphi_C = -\frac{\pi}{2} + \delta - \arctan(\tau \Delta \varphi).$$
(6)

Здесь $au=2Q/\omega_0$ — время затухания колебаний.

Схожесть поведения вблизи резонанса частотных характеристик тока и напряжений на реактивных элементах последовательного контура с добротностью $Q\gg 1$ упрощает эксперимент, позволяя проводить измерения именно напряжений.

Резонансное напряжение определяется формулой:

$$U_C(\omega_0) \cong QE$$

$$\varphi_C(\omega_0) = -\frac{\pi}{2} + \delta,$$
(7)

где δ — малая поправка.

Заметим, что с одной стороны, $Q \gg 1$, так как мы пренебрегаем относительными поправками порядка Q^{-2} , но с другой стороны, в контур встроен резистор для намеренного уменьшения Q, чтобы упростить постройку AЧX.

Рис. 1: Схема экспериментальной установки

2.1 Расчётные формулы

Зная резонансную частоту, по формуле (1) можно найти индуктивность катушки:

$$L = \frac{1}{4\pi^2 C f^2} \tag{8}$$

Из формулы (2) или из формулы $\rho = \sqrt{L/C}$ можно найти реактивное сопротивление контура. Зная суммарное активное сопротивление и $R_S = 10^{-3} \rho$, можно найти R_L – активное сопротивление катушки. Для определения добротности контура применяется формула (5). R_Σ найдём из формулы (2).

При исследовании АЧХ, будем использовать формулу

$$Q = \frac{\omega_0}{\delta_{(i)}},\tag{9}$$

где $\delta\omega$ — ширина резонансной кривой на уровне $U_C(\omega_0)/\sqrt{2}$.

При исследовании Φ ЧХ применим формулу (6): из неё, расстояние по оси ω между точками, в которых фаза φ_C меняется от $-\pi/4$ до $-3\pi/4$, равно $2/\tau$, где τ – время релаксации.

3 Оборудование и инструментальные погрешности

На рис. 1 изображена схема установки, используемой в опыте. Синусоидальный сигнал от генератора GFG8255A поступает на вход источника напряжения, собранного на операционном усилителе ОУ. Питание операционного усилителя осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 Вольт (цепь питания на схеме не показана). Источник напряжения обеспечивает с высокой точностью постоянство амплитуды сигнала на меняющейся по величине нагрузке — последовательном колебательном контуре, изображенном на рис. 1 в виде эквивалентной схемы. Источник напряжения с согласующей цепочкой, колебательный контур и блок питания заключены в отдельный корпус, отмеченный на рисунке штриховой линией.

Резистор R, изображённый на схеме, имеет сопротивление $3.45\,\Omega$

Генератор сигналов с частотомером: $\Delta = \pm 1~\mathrm{Hz}$

Последовательный колебательный контур со встроенным источником напряжения

Цифровые вольтметры: $\Delta = \pm 10^{-4} \ {
m V}$

Двухлучевой осциллограф

C_n , н Φ	f_{0n} , Гц	U_C , B	<i>E</i> , B	L , мк Γ н	Q	ρ , Om	R_{Σ} , Om	R_{Smax} , OM	R_L , Om	I, мА
25	31950	5.066	0.2014	993	25.2	199	7.92	0.199	4.27	25.4
33.2	27754	4.535	0.2012	990	22.5	173	7.66	0.173	4.04	26.3
47.5	23245	3.933	0.2011	987	19.6	144	7.37	0.144	3.78	27.3
57.2	21180	3.581	0.201	987	17.8	131	7.37	0.131	3.79	27.3
67.4	19526	3.39	0.2009	986	16.9	121	7.17	0.121	3.60	28.0
82.1	17695	3.123	0.2007	985	15.6	110	7.04	0.110	3.48	28.5
99.6	16076	2.87	0.2005	984	14.3	99.4	6.94	0.0994	3.39	28.9
99.6	16014	4.252	0.3011	992	14.1	99.8	7.07	0.0998	3.52	42.6
82.1	17620	4.614	0.3012	994	15.3	110	7.18	0.110	3.62	41.9
67.4	19491	5.001	0.3012	989	16.6	121	7.30	0.121	3.73	41.3
57.2	21111	5.369	0.3012	994	17.8	132	7.39	0.132	3.81	40.7
47.5	23166	5.783	0.3012	994	19.2	145	7.53	0.145	3.94	40.0
33.2	27669	6.634	0.3012	997	22.0	173	7.87	0.173	4.24	38.3
25	31884	7.369	0.3011	997	24.5	200	8.16	0.200	4.51	36.9
Среднее значение			991					3.84		
Стандартная ошибка среднего				1.1					0.08	
Коэффициент Стьюдента				2.4					2.4	
Случайная погрешность				0.28					0.1	

Таблица 1: Результаты измерений и обработки

4 Результаты измерений и обработка данных

4.1 Резонансные параметры контуров

В результате измерения резонансных частот и напряжений и последующей обработки, получены данные табл. 1. Измерения проводились для двух значений напряжения E: 200 mA и 300 mA.

Построим векторную диаграмму на рис. 2, отложив E по оси абсцисс с масштабом в 2 раза больше, чем по оси ординат. Так как по закону Кирхгофа,

$$E = U_R + U_C + U_L, \tag{10}$$

на графике это равенство должно быть представлено геометрическим равенством вектора ${\bf E}$ сумме остальных векторов.

4.2 Исследование АЧХ

Рассмотрим графики 3 и 4. Из графиков видно, что резонансная частота и добротность в контуре при $C=67\,\mathrm{nF}$ ниже. Найдём добротность как обратное к разности частот на уровне 0.7:

$$\frac{1}{Q_{C=47}} = 0.052 \pm 0.001 \tag{11}$$

$$\frac{1}{Q_{C=67}} = 0.060 \pm 0.001 \tag{12}$$

$$Q_{C=47} = 19.2 \pm 0.1,\tag{13}$$

$$Q_{C=67} = 16.6 \pm 0.1. \tag{14}$$

Можно заметить, что добротность определённая двумя разными способами, хорошо согласуется.

4.3 Исследование ФЧХ

По данным, полученным в ходе эксперимента, построим на рис. 5 графики фазово-частотных характеристик для контуров 3 и 5. Графики построены в координатах $\varphi/\pi(f/f_0)$. Определим добротность из расстояния по оси x между пересечением графиками прямых y=0.25 и y=0.75:

$$\frac{1}{Q_{C=47}} = 0.053 \pm 0.003$$

$$\frac{1}{Q_{C=67}} = 0.065 \pm 0.003$$

Рис. 2: Векторная диаграмма для контура 7 при ${\rm E}=0.2~{\rm B}$

Рис. 3: Резонансные кривые для контуров 3 и 5

Рис. 4: Резонансные кривые в безразмерных координатах

$$Q_{C=47} = 19 \pm 1$$

$$Q_{C=67} = 15 \pm 1$$

При расчёте ФЧХ становится видна ошибка в выборе контуров для исследования. Следовало выбирать контуры с наиболее различающимися характеристиками, так как иначе графики становятся менее удобными.

4.4 Оценка погрешностей

Так как точная регулировка генератора сигналов невозможна, и частота синусоиды меняется (убывает) со временем, погрешность генератора берём равной $3\,\mathrm{Hz}$. По тем же причинам, погрешность вольтметра U_C берём равной $1\,\mathrm{mV}$.

Погрешность формулы (8) определяется через:

$$\sigma_L = L\sqrt{\left(\frac{\sigma_C}{C}\right)^2 + 4\left(\frac{\sigma_f}{f}\right)^2} \tag{15}$$

Аналогично находится формула для погрешности Q.

Погрешность формулы $ho = \sqrt{\frac{L}{C}}$ равна

$$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_L}{2L}\right)^2 + \left(\frac{\sigma_C}{2C}\right)^2} \tag{16}$$

Все погрешности, рассчитанные в пункте 4.1, занесены в табл. 2.

При вычислении погрешностей АЧХ и ФЧХ, случайные погрешности косвенных измерений существенно меньше, чем погрешность метода (так как необходимо определить добротность по графику). В частности, для АЧХ $\sigma_Q = 0.01$ Поэтому взята погрешность равная половине цены деления обоих графиков.

5 Вывод

Проведено исследование колебаний напряжения в последовательном контуре. Несколькими методами была определена добротность контуров. Результаты неплохо согласуются.

Рис. 5: Фазово-частотная характеристика в безразмерных координатах $\frac{\varphi}{\pi}(f/f_0)$

Построен график $R_L(f_0)$ на рис. 6. Видно, что сопротивление меняется практически линейно. Можно предположить, что изменения связаны с потерями на перемагничивание сердечника катушки.

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 3 Электричество и магнетизм, 2004
- [2] Кириченко Н.А. Электричество и магнетизм., 2011

σ_{C_n} , н Φ	$\sigma_{f_{0n}}$, Гц	σ_{U_C} , B	σ_E , B	σ_L , мк Γ н	σ_Q	σ_{ρ} , Om	$\sigma_{R_{\Sigma}}$, Om	σ_{R_L} , Om	σ_I , MA
0.1	3	0.001	1E-4	4.0	0.013	0.56	0.02	0.02	0.07
0.1	3	0.001	1E-4	3.0	0.012	0.37	0.02	0.02	0.06
0.1	3	0.001	1E-4	2.1	0.011	0.22	0.01	0.02	0.05
0.1	3	0.001	1E-4	1.7	0.010	0.16	0.01	0.01	0.04
0.1	3	0.001	1E-4	1.5	0.0098	0.13	0.009	0.01	0.04
0.1	3	0.001	1E-4	1.2	0.0092	0.096	0.007	0.01	0.03
0.1	3	0.001	1E-4	1.1	0.0087	0.073	0.007	0.01	0.03
0.1	3	0.001	1E-4	1.1	0.0057	0.073	0.006	0.01	0.04
0.1	3	0.001	1E-4	1.3	0.0061	0.097	0.007	0.01	0.04
0.1	3	0.001	1E-4	1.5	0.0064	0.13	0.008	0.01	0.05
0.1	3	0.001	1E-4	1.8	0.0068	0.16	0.010	0.01	0.05
0.1	3	0.001	1E-4	2.1	0.0072	0.22	0.01	0.02	0.06
0.1	3	0.001	1E-4	3.0	0.0080	0.37	0.02	0.02	0.08
0.1	3	0.001	1E-4	4.0	0.0088	0.57	0.02	0.03	0.1

Таблица 2: Погрешности первого эксперимента

Рис. 6: График изменения активного сопротивления индуктивности