1 Kinematika

Enakomerno pospešeno gibanje $(a := \frac{dv}{dt} = \text{const}).$

•
$$dv = a dt \implies \int_{v_0}^v dv = a \int_0^t dt \implies v - v_0 = at \implies v = v_0 + at$$

•
$$v := \frac{ds}{dt} \implies ds = (v_0 + at) dt \implies \int_0^s ds = \int_0^t (v_0 + at) dt \implies s = v_0 t + \frac{1}{2} a t^2$$

•
$$v = \frac{ds}{dt}$$
, $a = \frac{dv}{dt} \implies v \, dt = ds$, $a \, dt = dv \implies \frac{v}{a} = \frac{ds}{dv} \implies v \, dv = a \, ds \implies \int_{v_0}^{v} v \, dv = \int_{0}^{s} a \, ds$

 $\Rightarrow \frac{v^2}{2} - \frac{v_0^2}{2} = as \Rightarrow \boxed{v^2 - v_0^2 = 2as}$ (če imamo delo z pojemkom, spremenimo predznak) **Enakomerno gibanje:** Vzemimo a = 0

Prosti pad $(v_0 = 0, g = 9.8 \text{ m/s}^2).$

•
$$v = gt, t = \sqrt{\frac{2h}{g}}, h = \frac{1}{2}gt^2$$

Relativna hitrost: $\vec{v}_r = \vec{v}_1 - \vec{v}_2, \ v_r = |\vec{v}_1 - \vec{v}_2|$

Vodoravni met

- $x(t) = v_0 t$, $y(t) = \frac{1}{2}gt^2$ $v_x = v_0 = \text{const}$, $v_y(t) = gt$

Poševni met

- $x(t) = v_0 t \cos \phi$, $y(t) = v_0 t \sin \phi \frac{1}{2}gt^2$ $v_x = v_0 \cos \phi$, $v_y(t) = v_0 \sin \phi gt$
- $t_{\text{max}} = \frac{v_0 \sin \phi}{g}, \ D = \frac{v_0^2 \sin 2\phi}{g}, \ H = \frac{v_0^2 \sin^2 \phi}{2g}$
- Gibanje lahko razdelimo na dva dela: do $H_{\rm max}$ (poševni met) in po H_{max} (vodoravni met)
- Vodoravni met je posebni primer poševnega meta pri $\phi = 0$

Kroženje

- $\vec{r}(t) = r(\cos\phi, \sin\phi)$, $\vec{v}(t) = r\omega(-\sin\phi, \cos\phi)$, kjer $\omega = \dot{\phi}$ kotna hitrost $-s = r\phi$, če merimo ϕ v radianih
- $a(t) = r\alpha(-\sin\phi, \cos\phi) + r\omega^2(-\cos\phi, -\sin\phi)$, kjer $\alpha = \ddot{\phi}$ kotni pospešek $-\vec{a}_t = r\alpha(-\sin\phi,\cos\phi)$ je tangentni pospešek (spreminjanje velikosti \vec{v}) $-\vec{a}_r = r\omega^2(-\cos\phi, -\sin\phi)$ je radialni pospešek (spreminjanje smeri $\vec{v})$
- $v = r\omega, \ a_t = r\alpha, \ a_r = r\omega^2 = \frac{v^2}{r}, \ a = \sqrt{a_r^2 + a_t^2}$
- $\omega = 2\pi\nu$, $\nu = \frac{1}{t_0}$, kjer t_0 je čas enega obrata, ν je **frekvenca**
- Enakomerno pospešeno kroženje ima iste enačbe kot enakomerno pospešeno gibanje

Vektorski opis kroženja

• Definiramo $\vec{\phi} = (0, 0, \phi)$ (smer $\vec{\phi}$ lahko dobimo po pravilu desnega vijaka), potem

$$- \vec{v} = \vec{\omega} \times \vec{r}$$

$$- \vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$$

Splošno gibanje

• $R = \frac{v^2}{a_r}$, $\omega = \frac{a_r}{v}$, $\alpha = \frac{a_t a_r}{v^2}$ (vsako gibanje je trenutno kroženje), a_t, a_r sta komponenti g

Splošni nasveti

• Lahko obrnemo čas (začetek = konec)!

$\mathbf{2}$ Dinamika

Newtonovi zakoni

- 1. $\sum \vec{F} = 0 \implies \vec{v} = \text{const}$ 2. $\sum \vec{F} = m\vec{a}$ 3. $\vec{F}_{12} = -\vec{F}_{21}$

Sila trenja

• $F_{\rm tr} \leq k_{\rm tr} \cdot F_N$, kjer je F_N normalna sila

Sila vzmeti

• $F_{vz} = kx$, kjer je k koeficient vzmeti in je x raztezek

Težišče

- Težišče je $\vec{r}_T = \frac{1}{M} \sum m_j \vec{r}_j$, kjer je $M = \sum m_j$ skupna masa
- II. Newtonov zakon za težišče: $\sum \vec{F}_{\text{zun}} = M \vec{a}_T$

Splošni nasveti

- Zapišemo vse sile, ki delujejo v našem sistemu. Sistem lahko izberimo poljubno
- Ponavadi \vec{F}_q razbijemo na statično in dinamično komponento
- Sile vrvi na škripec delujejo vzdolž vrvi:

Neinercialni sistemi

Naj bo K_1 ne pospešen (inercialni) sistem. Zapišemo II. Newtonov zakon v različnih neinercialnih (pospešenih) sistemih.

- Linearno pospešen sistem K_2 z pospeškom $\vec{a_0}$
 - II. Newtonov zakon: $|\vec{F}_1 + \vec{F}_{\text{sist}} = m\vec{a}_2|$, kjer $\vec{F}_{\text{sist}} = -m\vec{a}_0$
 - $*\vec{F}_1$ je rezultanta vseh sil na telo v sistemu K_1
 - $* \ \vec{a}_2 = \vec{a}_1 \vec{a_0}$ je pospešek telesa v sistemu K_2
- Sistem K_2 se vrsti okoli fiksne osi s kotno hitrostjo $\omega = \omega(t)$
 - II. Newtonov zakon: $\left| \vec{F}_1 m\vec{\alpha} \times \vec{r} 2m\vec{\omega} \times \vec{v}_2 m\vec{\omega} \times (\vec{\omega} \times \vec{r}) = m\vec{a}_2 \right|$
 - * $-m\vec{\alpha} \times \vec{r}$ je tangentna sila (pospešuje vrtenje)
 - * $-2m\vec{\omega} \times \vec{v}_2$ je Coriolisova sila
 - * $-m\vec{\omega} \times (\vec{\omega} \times \vec{r})$ je **centrifugalna sila** (lahko jo ne upoštevamo pri delu z gravitacijo)
 - * $\vec{v_2}$ je hitrost telesa v sistemu K_2 , $\vec{a_2}$ je pospešek telesa v sistemu K_2

3 Energija

Ko čas gre iz igre (nas ne zanima kdaj se nekaj zgodilo) se lahko ukvarjamo z energijo.

Konetična energija točkastega delca

$$\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} / d\vec{s} \implies \int_{1}^{2} \vec{F} \cdot d\vec{s} = \Delta(W_{k}), \ (*)$$

kjer $W_{\mathbf{k}} = \frac{mv^2}{2}$ kinetična energija točkastega delca, $[W_{\mathbf{k}}] = \mathbf{J} = \mathbf{Nm}$.

- $\int_1^2 \vec{F} \cdot d\vec{s} = A$ je **delo** sile \vec{F} , kjer $d\vec{s}$ je premik **prijemališča** sile
- (*) je izrek o mehanske (kinetične energije)

Sistem točkastih teles: $\int_1^2 \vec{F}_{\text{zun}} \cdot d\vec{s}_T = \Delta(W_{\text{k, T}}), \text{ kjer } W_{\text{k, T}} = \frac{1}{2} m v_T^2 \text{ kinetična energija težišča}$

•
$$\widetilde{A}_{\text{zun}} = \int_{1}^{2} \vec{F}_{\text{zun}} \cdot d\vec{s}_{T}$$
 je **psevdodelo** rezultante zunanjih sil

Potencialna in prožnostna energija

Eksplicitno izračunamo delo silo teže in delo sile vzmeti, dobimo:

$$A_{\mathrm{F}_g} = -mgh$$
 in $A_{\mathrm{vz}} = \frac{1}{2}ks^2$

Potem lahko zapišemo izrek o mehanske energije v oblike

$$\widetilde{A}_{\mathrm{zun}} = \Delta(W) = W_{\mathrm{konec}} - W_{\mathrm{za\check{c}etek}}, \ W = W_{\mathrm{k}} + W_{\mathrm{p}} + W_{\mathrm{pr}}$$

kjer je $W_p = mgh$ potencialna energija in $W_{pr} = \frac{1}{2}ks^2$ prožnostna energija ter \widetilde{A}_{zun} psevdodelo vseh zunanjih sil razen sile teže in sil vzmeti. V posebnem primeru, ko ni zunanjih sil: $\widetilde{A}_{zun} = 0$, tj. energija se ohranja.

Moč

Včasih je pomembno, kako hitro opravimo neko delo.

• Moč P je
$$P = \frac{dA}{dt}$$
, $[P] = \frac{J}{s} = Watt$

4 Gibalna količina

Točkasto telo

$$\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} / d\vec{t} \implies \int \vec{F} \cdot d\vec{t} = m(v_{\text{konec}} - v_{\text{začetek}}) \implies \int_{1}^{2} \vec{F} dt = \Delta \vec{G},$$
 (*)

- (*) je izrek o gibalne količine
- $\vec{G} = m\vec{v}$ je **gibalna količina** za točkasto telo
- $\int_{1}^{2} \vec{F} dt$ je sunek sile

Sistem točkastih teles: $\int_1^2 \vec{F_z} dt = \Delta \vec{G}_T$

• Če
$$\int_1^2 \vec{F} dt = 0$$
 ali $\int_1^2 \vec{F}_z dt = 0$, potem gibalna količina se ohranja

Trki

- 1. Neelastični (neprožni) trk: telesa se zlepijo in po trku gibljejo skupaj
 - Gibalna količina se ohranja
 - W_k se NE ohranja \leadsto stvari se segrejejo
- 2. Elastični trk: telesa se odbijejo
 - Gibalna količina se ohranja
 - W_k se ohranja

•
$$v_1 = -\frac{1-\mu}{1+\mu}v$$
, $v_2 = \frac{2\mu}{1+\mu}v$, kjer $\mu = \frac{m}{M}$

Sila curka

- $\vec{F}_{c} = \phi_{m} \Delta v$, kjer je $\phi_{m} = \frac{\Delta m}{\Delta t}$ masni tok $\phi_{m} = \frac{dm}{dt} = \phi_{V} \rho$, kjer je $\phi_{V} = \frac{dV}{dt} = \frac{Svdt}{dt} = Sv$ prostorninski tok
 - Zapišemo izrek o gibalne količine (sunek sile je enak spremembe gibalne količine)

Raketa

- Za sistem si izberimo raketo + majhni drobec goriva. Gibalna količina se ohranja. Dobimo enačbo:
 - $-udm_q = mdv$, kjer u hitrost izpušnih plinov glede na raketo in m trenutna masa rakete in goriva
 - * Definiramo: $dm = m (m + dm_g) \implies dm = -dm_g$, dobimo: $dm = -dm_g$

Splošni nasveti

- Izberimo si sistem, za kateri znamo zapisati želene količine
- Poglejmo tik do in po trku
- Lahko zapišemo gibalno količina za celoten sistem ali za vsako telo posebej

Splošno

- Kosinusni izrek. $c^2=a^2+b^2-2ab\cos\alpha$, kjer je α kot med stranicama a in b• Vektorski produkt. $\begin{bmatrix} a_1\\a_2\\a_3 \end{bmatrix} \times \begin{bmatrix} b_1\\b_2\\b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3-a_3b_2\\a_3b_1-a_1b_3\\a_1b_2-a_2b_1 \end{bmatrix}, \ |\vec{a}\times\vec{b}| = ab\sin\alpha, \ \vec{a}\times(\vec{b}\times\vec{c}) = (\vec{a}\cdot\vec{c})\vec{b}-(\vec{a}\cdot\vec{b})\vec{c}$ Radiani Stopinji. $1 \text{ rd} = 1 \text{ deg} \cdot \frac{\pi}{180^\circ}$

Osnovne konstante

Velikost	Oznaka	Vrednost
Hitrost svetlobe v vakuumu	c	$2,998 \times 10^8 \text{ m/s}$
Hitrost zvoka v zraku (pri 20°C)	$v_{ m zvok}$	343 m/s
Gostota vode (pri 4°C)	$ ho_{ m voda}$	1000 kg/m^3
Gostota zraka (pri 20°C in 1 atm)	$ ho_{ m zrak}$	$1,204 \text{ kg/m}^3$
Gravitacijski pospešek	g	9.81 m/s^2
Planckova konstanta	h	$6,626 \times 10^{-34} \text{ J} \cdot \text{s}$
Masa elektrona	m_e	$9,109 \times 10^{-31} \text{ kg}$
Masa protona	m_p	$1,673 \times 10^{-27} \text{ kg}$
Elementarni naboj	e	$1,602 \times 10^{-19} \text{ C}$
Boltzmannova konstanta	k_B	$1,381 \times 10^{-23} \text{ J/K}$

Tabela 1: Osnovne fizikalne konstante v mehaniki in sorodnih področjih

Splošni nasveti

• Če se da, izognemo se kvadratnih enačb