

CLAIMS

What is claimed is:

1 1. A braking apparatus, comprising:
2 a first rotating member having at least one rigid stop thereon;
3 a plurality of flexible stops which are selectively movable toward said first
4 rotating member to engage said at least one rigid stop; and
5 an actuator which is slidable to selectively engage said plurality of flexible stops
6 and cause said flexible stops to move toward said first rotating member to engage the
7 rigid stop on said first rotating member.

1 2. The braking apparatus according to claim 1, wherein said actuator is
2 arranged such that sliding movement thereof changes the number of said flexible
3 stops engaging said rigid stop to provide incremental braking.

1 3. The braking apparatus according to claim 1, wherein said actuator is slidable
2 along a circumferential path spaced from said first rotating member.

1 4. The braking apparatus according to claim 1, wherein said flexible stops are
2 arranged in a plurality of rows with each row comprising a plurality of the flexible
3 stops, and said actuator is slidable to selectively engage said flexible stops to move all
4 of the flexible stops in each row simultaneously toward said first rotating member.

1 5. The braking apparatus according to claim 4, wherein said first rotating
2 member has a plurality of rigid stops thereon, and said rigid stops are spaced

3 circumferentially around said first rotating member and disposed in a generally axial
4 direction on an outer cylindrical surface of said first rotating member.

1 6. The braking apparatus according to claim 5, wherein said rows of flexible
2 stops are arranged generally parallel to said rigid stops.

1 7. The braking apparatus according to claim 1, wherein a ratio of a length of
2 said flexible stops to a height of said rigid stops is about 12 to 1.

1 8. The braking apparatus according to claim 1, wherein said actuator comprises
2 a sliding member having at least one beveled surface for engaging the flexible stops
3 and moving the flexible stops toward the first rotating member.

1

1 9. The braking apparatus according to claim 1, wherein said actuator comprises
2 a sliding member for engaging the flexible stops, and an interface between said
3 sliding member and said flexible stops comprises a beveled surface for moving the
4 flexible stops toward the first rotating member.

1 10. The braking apparatus according to claim 1, wherein said flexible stops
2 have longitudinal axes and are movable along their respective longitudinal axes
3 toward and away from said first rotating member.

1 11. The braking apparatus according to claim 10, wherein said sliding member
2 is arranged to slide along a circumferential path that intersects said longitudinal axes
3 of said flexible stops.

1 12. A braking apparatus, comprising:
2 a first rotating member having a plurality of rigid stops thereon, said rigid stops
3 being spaced circumferentially around an outer cylindrical surface of said first
4 rotating member;
5 a plurality of flexible stops arranged in a plurality of rows, said flexible stops
6 being selectively movable toward said first rotating member from a disengaged
7 position into an engaged position in which the flexible stops engage said rigid stops as
8 the first rotating member rotates; and
9 an actuator which is operable to move a selected number of rows of said flexible
10 stops into their engaged positions to provide incremental braking of said first rotating
11 member.

1 13. The braking apparatus according to claim 12, wherein said rows of flexible
2 stops are staggered so that the flexible stops of adjacent rows are offset from one
3 another in both circumferential and axial directions of said first rotating member.

1 14. The braking apparatus according to claim 12, wherein said rows of flexible
2 stops each comprises a plurality of flexible stops arranged along a line which is
3 parallel to an axis of rotation of the first rotating member.

1 15. The braking apparatus according to claim 12, wherein said rows of flexible
2 stops are arranged in a matrix and held in position by a grid such that the flexible
3 stops of adjacent rows are not in circumferential alignment with each other.

1 16. The braking apparatus according to claim 12, wherein said rigid stops each
2 comprises a blunt leading face projecting radially outwardly from an outer surface of
3 said first rotating member for engaging said flexible stops.

1 17. The braking apparatus according to claim 16, wherein said rigid stops each
2 further comprises a tapered trailing face that tapers from an outer point of the blunt
3 leading face to the outer surface of the first rotating member.

1 18. The braking apparatus according to claim 12, wherein said flexible stops
2 each comprises a blunt leading face for engaging said rigid stops and a tapered trailing
3 face.

1 19. A method of braking, comprising the steps of:
2 providing a first rotating member having rigid stops spaced circumferentially
3 therearound, and a plurality of rows of flexible stops which are movable toward said
4 first rotating member to engage said rigid stops; and
5 moving a selected number of rows of said flexible stops toward said first
6 rotating member to engage the rigid stops and provide incremental braking of the first
7 rotating member.

1 20. The method of braking according to claim 19, wherein said step of moving
2 said flexible stops comprises sliding an actuator into engagement with said flexible
3 stops to move said flexible stops toward said first rotating member one entire row at a
4 time.

1 21. The method of braking according to claim 20, wherein said rows of flexible
2 stops are each arranged along a line extending generally parallel to an axis of rotation
3 of the first rotating member, and wherein said rows of flexible stops are staggered
4 such that the flexible stops of adjacent rows are not in circumferential alignment with
5 each other.