第五章数组和广义表

5.1 数组的定义

- 5.2 数组的顺序表示和实现
 - 5.3 矩阵的压缩存储
 - 5.4 广义表的定义
 - 5.5 广义表的存储结构

5.1 数组的定义

 $\mathbf{D} = \{a_{j1,j2,...,jn} | n > 0$ 称为数组的维数, b_i 是数组第i维的长度, j_i 是数组元素第i维的下标, $a_{i1,i2,...,in}$ 属于ElemSet}

• $j_i = 0, ..., b_i - 1, i = 1, 2, ..., n$

1

二维数组: $b_1=m,b_2=n$

$$A_{m \times n} = \begin{bmatrix} a_{00} & a_{01} & a_{02} & \cdots & a_{0,n-1} \\ a_{10} & a_{11} & a_{12} & \cdots & a_{1,n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m-1,0} & a_{m-1,1} & a_{m-1,2} & a_{m-1,n-1} \end{bmatrix}$$

看成N个数据元素的线性表,每 个数据元素代表数组中的一列

$$A_{m \times n} = (R_0, R_1, ..., R_{n-1})$$

 $R_0 = (a_{00}, a_{10}, ..., a_{m-1,0})$
 $R_i = (a_{0,i}, a_{1,i}, ..., a_{m-1,i})$

看成m个数据元素的线性表,每个数据元素代表数组中的一行

$$A_{m \times n} = (S_0, S_1, ..., S_{m-1})$$

$$S_0 = (a_{00}, a_{01}, ..., a_{0,n-1})$$

$$S_i = (a_{i,0}, a_{i,1}, ..., a_{i,n-1})$$

基本操作

- •初始化一个数组
- •取数组元素的值
- •给数组元素赋值

特点:

- •数组一般不做插入、删除操作----顺序存储结构
- •数组是多维的结构,而存储空间是一个一维的结构。

5.2 数组的顺序表示和实现

- 二维数组有两种顺序映象的方式:
 - •以行序为主序
 - •以列序为主序

二维数组A中任一元素a_{i,j} 的存储位置

$$LOC(i,j) = LOC(0,0) + (b_2 \times i + j) \times L$$

称为基地址或基址

- •从数组的第一行开始依次存放每一行的数组元素;
- •存放第i行时,从第一列开始顺次存放

以"列序为主序"的存储映象

二维数组A中任一元素a_{i,i} 的存储位置

$$LOC(i,j) = LOC(0,0) + (b_1 \times j + i) \times L$$

称为基地址或基址

- •从数组的第一列开始依次存放每一列的数组元素;
- •存放第i列时,从第一行开始顺次存放

为值相同的元素只分配一个空间, 对零元不分配

- □研究二类矩阵的压缩存储:
- 特殊矩阵:非零元在矩阵中的分布有一定规则例如:上(下)三角矩阵、对称矩阵、对角矩阵
- •稀疏阵:零元多,分布无规律
- □设计的压缩存储方式要方面访问操作,最好仍能"随机访问"

1、上三角矩阵 $(a_{ij})_{n\times n}$, $1\leq i,j\leq n$

特点: i>j时, $a_{ij}=0$ 或常量

$\lceil a_{11} \rceil$	a_{12}	a_{13}	• • •	a_{1n}
0	a_{22}	a_{23}	•••	a_{2n}
0	0	a_{33}	• • •	a_{3n}
	•			•
	•			•
	•			•
$\lfloor 0$	0	0	• • •	a_{nn}

```
\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ c & a_{22} & a_{23} & \dots & a_{2n} \\ c & c & a_{33} & \dots & a_{3n} \\ & \cdot & & \cdot & \\ & \cdot & & \cdot & \\ c & c & c & \dots & a_{nn} \end{bmatrix}
```

1、上三角矩阵——列为主序压缩存储 -数组sa[M]

特点:
$$i>j$$
时, $a_{ij}=0$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ & \cdot & & \cdot & \\ & \cdot & & \cdot & \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

```
a_{12} a_{13} ... a_{1n} Loc(a_{ij})= Loc(a_{11})+((j-1)j/2+i-1)*L

a_{22} a_{23} ... a_{2n} i \le j

a_{33} ... a_{3n} Loc(a_{ij})= 0 +((j-1)j/2+i-1)*1
                                      k=(j-1)j/2+i-1, a_{ij}(i\leq j)存于下标为k的数组元素中
```

sa[0] sa[1]

 $|a_{11}|a_{12}|a_{22}|a_{13}|a_{23}|$ a_{1n} a_{nn}

M=n(n+1)/2

列为主序压缩存储:从第一列开始依次存放每一列的"非0元"

1、上三角矩阵——列为主序压缩存储 -数组sa[M]

特点: i>j时, a_{ii} = 常量C

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ c & a_{22} & a_{23} & \dots & a_{2n} \\ c & c & a_{33} & \dots & a_{3n} \\ & \cdot & & \cdot & \\ & \cdot & & \cdot & \\ c & c & c & \dots & a_{nn} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{22} & a_{13} & a_{23} & \dots & a_{1,n} & \dots & a_{n,n} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$$

列为主序压缩存储:从第一列开始依次存放每一列的"非C元"

sa[0] sa[1]

2、下三角矩阵 $(a_{ij})_{n\times n}$, $1\leq i,j\leq n$

特点:
$$i < j$$
时, $a_{ij} = 0$ 或常量

下三角矩阵
$$(a_{ij})_{n\times n}$$
, $1 \le i,j \le n$
特点: $i < j$ 时, $a_{ij} = 0$ 或常量
$$A_{nn} = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{nn} \end{bmatrix}$$

- ■压缩存储在n(n+1)/2的空间中
- ■若用数组sa[n(n+1)/2]存储,
- k = i(i-1)/2 + j-1 当 i >= j

$$A_{nn} = \begin{bmatrix} a_{11} & c & c & \cdots & c \\ a_{21} & a_{22} & c & \cdots & c \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{nn} \end{bmatrix}$$

$ a_{21} a_{21} a_{22} a_{31} a_{32}$	2	a_{n1}		a_{nn}
---------------------------------------	---	----------	--	----------

行为主序压缩存储:从第一行开始依次存放每一行的"非O(C)元"

3、对称矩阵

特点:
$$a_{ij} = a_{ji}$$

只存上三角阵或只存下三角阵都可以

4、对角矩阵 -- 2d+1对角阵: 主对角线和主对角线上面d条对角线、主对角线下面d条对角线上的数据基分布不规律,非0(C)

2d+1 对角阵特点:第一行和最后一行每行有d+1个数据元素,余下每行最多2d+1个数据元素

压缩存储方法:第一行和最后一行各存d+1个数据元素, 余下每行存2d+1个数据元素

压缩存储方法:第一行和最后一行各存d+1个数据元素,余下 每行存2d+1个数据元素

|--|

3-对角阵行为主序压缩存储

压缩存储方法:第一行和最后一行各存d+1个数据元素,余下 每行存2d+1个数据元素

a_{00}	a_{01}	a_{02}	a_{10}	<i>a</i> ₁₁	a_{12}	<i>a</i> ₁₃	a_{20}	<i>a</i> ₂₁	a ₂₂	a_{23}	a_{23}		

5-对角阵行为主序压缩存储

2d+1-对角阵行为主序压缩存储地址计算公式

- 矩阵元素下表从0开始的地址计算公式:
- \rightarrow Loc(a_{ij})=Loc(a_{00})+(2d+1)*i-d+j-i+d
- \rightarrow 0 \leq i, j \leq n-1, |i-j| \leq d
- 矩阵元素下表从1开始的地址计算公式:
- Loc(a_{ij})=Loc(a_{11})+(2d+1)*(i-1)-d+j-i+d = Loc(a_{11})+(2d+1)*(i-1)+j-I
- \rightarrow 1 \le i, j \le n, |i-j| \le d

4. 稀疏矩阵:非零元多, 在矩阵中随机出现

假设m行n列的矩阵含t个非零元素,则称

$$\delta = \frac{t}{m \times n}$$

为稀疏因子。

通常认为 $\delta \leq 0.05$ 的矩阵为稀疏矩阵。

常规存储方法缺点:

- 1) 零值元素占了很大空间;
- 2) 计算中进行了很多和零值的运算, 遇除法, 还需判别除数是否为零。

解决问题的原则:

- 1)尽可能少存或不存零值元素;
- 2)尽可能减少没有实际意义的运算;
 - 3) 操作方便。即:尽可能快地找到与下标值(i,j)对应的元素,尽可能快地找到同一行或同一列的非零值元。

稀疏矩阵的压缩存储方法:

- 一、三元组顺序表
- 二、行逻辑联接的顺序表
- 三、十字链表

一、三元组顺序表

- -
- •采用一维数组以行为主序存放每一非零元;
- •每一非零元只存行号、列号、非零元的值

```
#define MAXSIZE 12500
typedef struct {
 int i, j; //该非零元的行下标和列下标
  ElemType e; // 该非零元的值
} Triple; // 三元组类型
typedef struct {
  Triple data[MAXSIZE + 1];
  int mu, nu, tu;
} TSMatrix; // 稀疏矩阵类型
```

非零元以行为主序顺序存放 TSMatrix M;

0	14	0	0	-5
0	$ \begin{array}{c} 14 \\ -7 \\ 0 \end{array} $	0	0	0
36	0	0	28	0

1	5	-5
1	2	14
2	2	-7
3	1	36
3	4	28

1	2	14
1	V.	-5
3	1	36
2	2	- 7
3	4	28

1	2	14
1	5	-5
2	2	-7
3	1	36
3	4	28

M.data[0]

M.data[1]

M.data[2]

M.data[3]

M.data[4]

M.data[5]

如何求转置矩阵?

M 2 14 **-5** 1 5

> -7 2 2 3 1 **36** 3 **28** 4

e3 **36** 14

-7

36 28

>根据三元组顺序表的特点, **首先扫描一遍三元素,将扫** 描到的列号为1的非0元行列 交换存放于转置后的新阵, 生成新阵第一行的非0元; ▶再扫描一遍三元素,将扫描 到的列号为2的非0元行列交 换存放于转置后的新阵,生 成新阵第二行的非0元;

```
方法1:将矩阵M转置成矩阵T
Status TransposeSMatrix(TSMatrix M, TSMatrix &T){
T.mu = M.nu; T.nu = M.mu; T.tu = M.tu;
(T.tu) {
  q = 1;
  for (col=1; col<=M.nu; ++col)
   for (p=1; p \le M.tu; ++p)
     if(M.data[p].j == col) 
       T.data[q].i = M.data[p].i; T.data[q].i = M.data[p].i;
       T.data[q].e = M.data[p].e; q++;
              时间复杂度为: O(M.nu*M.tu)
 return OK; 缺点: 財间效率低
} // TransposeSMatrix
```

方法2:减少原阵的扫描次数,提高时间效率

Num[col]:存放矩阵T中每一行非零元的个数

Cpot[col]:存放矩阵T中每一行非零元的当前存放的位置

t<=M.tu 初始时为每一行第一个非零元存放的位置

所谓"位置",即在三元组中存放的数组

元素的下标

i	j	e
1	2	14
1	5	-5
2	2	-7
3	1	36
3	4	28

col	1	2	3	4	5
Num[col]	1	2	0	1	1
Cpot[col]	1	2	4	4	5

方法2:减少原阵的扫描次数,提高时间效率

```
Status FastTransposeSMatrix(TSMatrix M, TSMatrix &T){
 T.mu = M.nu; T.nu = M.mu; T.tu = M.tu;
if (T.tu) {
  for (col=1; col\leq=M.nu; ++col) num[col] = 0;
  for (t=1; t<=M.tu; ++t) ++num[M.data[t].i];
  cpot[1] = 1;
  for (col=2; col<=M.nu; ++col)
    cpot[col] = cpot[col-1] + num[col-1];
  for (p=1; p<=M.tu; ++p) { .....
 } // if
 return OK;
} // FastTransposeSMatrix
```

方法2:减少原阵的扫描次数,提高时间效率

Col = M.data[p].j;

q = cpot[col];

T.data[q].i = M.data[p].j;

T.data[q].j = M.data[p].i;

T.data[q].e = M.data[p].e;

++cpot[col]

分析算法FastTransposeSMatrix的时间杂度.

```
for (col=1; col<=M.nu; ++col) ....
for (t=1; t<=M.tu; ++t) ....
for (col=2; col<=M.nu; ++col) ....
for (p=1; p<=M.tu; ++p) ....</pre>
```

时间复杂度为: O(M.nu+M.tu)

二、行逻辑联接的顺序表

三元组顺序表又称有序的双下标法,它的特点

是, 非零元在表中按行序有序存储, 因此便于进行 依行顺序处理的矩阵运算。然而, 若需随机存取某

一行中的非零元,则需从头开始进行查找。

行逻辑联接的顺序表:随机存取某一行中的非零元,

```
#define MAXRC 500
typedef struct {
    Triple data[MAXSIZE + 1];
    int rpos[MAXRC + 1];
    int mu, nu, tu;
} RLSMatrix; // 行逻辑链接顺序表类型
```


	i	\dot{j}	e
	1	2	14
	1	5	-5
	2	2	-7
	3	1	36
	3	4	28
-			·

T.data[0] T.data[1] T.data[2] T.data[3] T.data[4] T.data[5]

rpos[];

3

例如:给定一组下标,求矩阵的元素值

```
ElemType value(RLSMatrix M, int r, int c)
  p = M.rpos[r];
  while (M.data[p].i==r &&M.data[p].i < c)
    p++;
  if (M.data[p].i==r & M.data[p].i==c)
    return M.data[p].e;
  else return 0;
} // value
```

三、十字链表

- 采用链表存放稀疏矩阵的非○元
- ▶ 将稀疏矩阵每行的非O元按照列升序的顺序放在一个单链表中
- ▶ 将稀疏矩阵每列的非0元按照行升序的顺序放在一个单链表中
- □稀疏矩阵的每个非O元即位于一个行单链表,也同时位于一个列单链表
- □ 用一维数组保存每行非0元的单链表的头指针
- □ 用一维数组保存每列非0元的单链表的头指针
- □ 每个结点非0元的结点结构:
- > row, col,val分别代表非0元的行号,列号和值
- > down为指针,指向该非0元同一列的下一个非0元
- > right为指针,指向该非0元同一行的下一个非0元

row	col		val
down		r	ight

三、十字链表

