

Instituto Superior Técnico

Matemática Computacional 3^{o} Quarter - 2021/2022

LICENCIATURA EM MATEMÁTICA APLICADA E COMPUTAÇÃO

Segundo Projeto Computacional

Abril 2022

Clara Pereira 99405 Marta Sereno 99432 Samuel Pearson 99441

Conteúdo

Exercício 1				•												•		•	2
Alínea a	J) .																		2
Alínea b) .																		3
Alínea c) .																		3
Alínea d	l) .																		4
Exercício 2																			5
Alínea a	J) .																		5
Alínea b) .																		6
Alínea c) .																		10
Alínea d	l) .																		12
Alínea e) .																		13

Exercício 1

1. a)

O objetivo desta alínea é provar as igualdades $J_F(x)^T F(x) = \nabla g$ e $H_g(x) = J_F(x)^T J_F(x) + S(x)$.

Comecemos por provar que $J_F(x)^T F(x) = \nabla g(x)$.

A matriz Jacobiana de F e a sua transposta são dadas por:

$$J_F(x) = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_M(x)}{\partial x_1} & \cdots & \frac{\partial f_M(x)}{\partial x_n} \end{bmatrix}, J_F(x)^T = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \cdots & \frac{\partial f_M(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_1(x)}{\partial x_n} & \cdots & \frac{\partial f_M(x)}{\partial x_n} \end{bmatrix}$$

Calculando o gradiente de g, obtemos:

$$\nabla g(x) = \left(\begin{array}{ccc} \frac{\partial}{\partial x_1} & \frac{1}{2} \sum_{j=1}^M f_j^2(x), & \cdots, & \frac{\partial}{\partial x_n} & \frac{1}{2} \sum_{j=1}^M f_j^2(x) \end{array} \right) =$$

$$= \left(\sum_{j=1}^M f_j(x) & \frac{\partial f_j(x)}{\partial x_1}, & \cdots, & \sum_{j=1}^M f_j(x) & \frac{\partial f_j(x)}{\partial x_n} \end{array} \right)$$

Assim,

$$J_F(x)^T F(x) = \left(\sum_{j=1}^M f_j(x) \, \frac{\partial f_j(x)}{\partial x_1}, \quad \cdots , \sum_{j=1}^M f_j(x) \, \frac{\partial f_j(x)}{\partial x_n} \, \right) = \nabla g(x)$$

Provando, desta forma, a primeira parte da alínea.

Queremos agora provar que $H_g(x) = J_F(x)^T J_F(x) + S(x)$. Temos então:

$$H_{f_j}(x) = \begin{bmatrix} \frac{\partial^2 f_j(x)}{\partial x_1^2} & \dots & \frac{\partial^2 f_j(x)}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f_j(x)}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f_j(x)}{\partial x_n^2} \end{bmatrix}$$

Logo,

$$S(x) = \sum_{j=1}^{M} f_j H_{f_j} = \begin{bmatrix} \sum_{j=1}^{M} f_j(x) & \frac{\partial^2 f_j(x)}{\partial x_1^2} & \cdots & \sum_{j=1}^{M} f_j(x) & \frac{\partial^2 f_j(x)}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^{M} f_j(x) & \frac{\partial^2 f_j(x)}{\partial x_n \partial x_1} & \cdots & \sum_{j=1}^{M} f_j(x) & \frac{\partial^2 f_j(x)}{\partial x_n^2} \end{bmatrix}$$

Temos ainda que

$$J_F^T(x)J_F(x) = \begin{bmatrix} \sum_{j=1}^M \left[\frac{\partial f_j(x)}{\partial x_1}\right]^2 & \cdots & \sum_{j=1}^M \frac{\partial f_j(x)}{\partial x_1} & \frac{\partial f_j(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^M \frac{\partial f_j(x)}{\partial x_n} & \frac{\partial f_j(x)}{\partial x_1} & \cdots & \sum_{j=1}^M \left[\frac{\partial f_j(x)}{\partial x_n}\right]^2 \end{bmatrix}$$

Finalmente,

$$H_g(x) = \begin{bmatrix} \sum_{j=1}^{M} \left[\left[\frac{\partial f_j(x)}{\partial x_1} \right]^2 + f_j(x) \frac{\partial^2 f_j(x)}{\partial x_1^2} \right] & \cdots & \sum_{j=1}^{M} \left[\frac{\partial f_j(x)}{\partial x_1} \frac{\partial f_j(x)}{\partial x_n} + f_j(x) \frac{\partial^2 f_j(x)}{\partial x_1 \partial x_n} \right] \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^{M} \left[\frac{\partial f_j(x)}{\partial x_n} \frac{\partial f_j(x)}{\partial x_1} + f_j(x) \frac{\partial^2 f_j(x)}{\partial x_n \partial x_1} \right] & \cdots & \sum_{j=1}^{M} \left[\left[\frac{\partial f_j(x)}{\partial x_n} \right]^2 + f_j(x) \frac{\partial^2 f_j(x)}{\partial x_n^2} \right] \end{bmatrix}$$

$$H_q(x) = J_F(x)^T J_F(x) + S(x)$$

1. b)

Sabemos que, sendo F duas vezes diferenciável, para que $z \in \mathbb{R}$ seja um mínimo de $\frac{1}{2} \|\tilde{F}(x, x^{(k)})\|_2^2$, é necessário que $\nabla \frac{1}{2} \|\tilde{F}(x, x^{(k)})\|_2^2 = 0$ em z.

Sabemos também, pela Alínea a), que $\nabla \frac{1}{2} \|\tilde{F}(x,x^{(k)})\|_2^2 = J_{\tilde{F}}(x,x^{(k)})\tilde{F}(x,x^{(k)})$.

Note-se que o Passo 1 do método de Gauss-Newton, que pretende encontrar pontos estacionários, corresponde a resolver o seguinte sistema linear:

$$J_F(x^{(k)})^T J_F(x) p^{(k)} = -J_F(x^{(k)})^T F(x^{(k)}) \Leftrightarrow J_F(x^{(k)})^T [F(x^{(k)}) + J_F(x^{(k)}) p^{(k)}] = 0$$

Sendo \tilde{F} a linearização de F em torno de $x^{(k)}$, temos que

$$J_F(x^{(k)}) = J_{\tilde{F}}(x, x^{(k)}), \forall x \in \mathbb{R}^N$$

Considerando $\tilde{z} = x^{(k+1)} = x^{(k)} + p^{(k)}$, temos $p^{(k)} = \tilde{z} - x^{(k)}$ e portanto no método de Gauss-Newton estamos a obter aproximações para a solução do sistema linear

$$J_{\tilde{F}}(\tilde{z}, x^{(k)})^T \tilde{F}(\tilde{z}, x^{(k)}) = 0$$

o que corresponde precisamente a aproximar pontos estacionários de $\frac{1}{2} \|\tilde{F}(x, x^{(k)})\|_2^2$.

1. c)

Para esta alínea, implementámos o método de Gauss-Newton e de Newton, com as funções $c1_GN$ e $c1_N$, respetivamente.

Notou-se também que a convergência depende de o x_0 escolhido estar suficientemente próximo da solução, pelo que se achou pertinente que, para além dos parâmetros pedidos no enunciado, ambos os códigos recebessem adicionalmente o parâmetro x_0 .

É importante salientar que os métodos não encontram mínimos, mas apenas pontos estacionários. Assim, depois de concluído o método, é ainda necessário testar se a solução z encontrada é, de facto, um mínimo. Para isto, calculamos a matriz Hessiana de g, $H_g(x)$, que queremos que seja Definida Positiva. Podemos utilizar um dos resultados obtidos na Alínea a), $H_g(x) = J_F(x)^T J_F(x) + S(x)$.

Uma vez que a função g é par em x_1 , para qualquer minimizante (z_1, z_2) encontramos também o minimizante $(-z_1, z_2)$.

Foram encontradas apenas duas soluções, (1.3788, 0.9942) e (-1.3788, 0.9942), para as quais o mínimo da função g é igual a 0.0219.

Obtiveram-se também vários pontos estacionários. No entanto não correspondiam a mínimos. Note-se que, ao longo da reta $x_1=0$ todos os pontos são estacionários, mas não são extremos, uma vez que a função é constante ao longo dessa reta:

$$g(0, x_2) = \frac{1}{2} \sum_{j=1}^{5} y_j^2(x).$$

Apresenta-se, em baixo, o gráfico da função aproximadora $y(t) = z_1^2 e^{tz_2}$, correspondente ao método de Newton (e Gauss-Newton).

Observação: a função aproximadora é igual para ambas as soluções e ambos os métodos, pelo que apresentamos apenas gráfico para uma delas, pelo método de Newton.

Figura 1: Função aproximadora e conjunto de pontos, pelo método de Newton

1. d)

Como pedido, realizaram-se ambos os métodos, desta vez num conjunto de seis pontos. Mais uma vez, encontraram-se duas soluções, com as primeiras componentes simétricas: (2.0071, 1.4500) e (-2.0071, 1.4500).

No entanto, ao contrário do que ocorreu na alínea c), o gráfico da função aproximadora dista bastante dos pontos (t_j, y_j) . Isto deve-se ao facto de o sexto ponto não concordar com os restantes: a função aproximadora é monótona independentemente da solução (z_1, z_2) , e temos $t_4 < t_6 < t_5$ mas $y_4 < y_5 <<< y_6$.

Figura 2: Função aproximadora e conjunto de pontos, pelo método de Newton

Exercício 2

2. a)

Nesta alínea, temos como objetivo definir uma matriz tridiagonal, com componentes

$$a_{ij} = 2, j = 1, \dots, N, \quad a_{i,j-1} = -1, j = 2, \dots, N, \quad a_{i+1,j} = -1, j = 1, \dots, N-1$$

e determinar, para $N=5,10,15,20,25,\ldots$ o número de condição de cada matriz. Para tal, foi criada a função matrixN que recebe a dimensão da matriz desejada, N, e os valores das componentes na diagonal principal, na diagonal diretamente em cima da principal, e na diagonal diretamente abaixo da principal, respetivamente diag, ovr, und. De seguida, foi criada a função cond que recebe uma matriz A e, através da determinação dos seus valores próprios e dos valores próprios da sua matriz inversa, A^{-1} , e determina o número de condição associado ao raio espetral de A, $cond(A) = r_{\sigma}(A) \cdot r_{\sigma}(A^{-1})$, onde $r_{\sigma}(A)$ é o raio espetral da matriz A.

N	Número de Condição
5	13.9282
10	48.3742
15	103.0869
20	178.0643
25	273.3061

Após a determinação dos valores, podemos observar que o condicionamento da matriz A depende de N - quanto maior N, maior é o seu número de condição.

2. b)

Em primeiro lugar, é-nos pedido que implementemos o método SOR no Matlab. Assim, criámos uma função SOR que recebe, tal como pedido, uma matriz A, um vetor b, um parâmetro ω , e o número máximo de iterações que o programa deverá realizar nmax.

Depois das verificações de aplicabilidade do input, começamos por dividir a matriz A em três novas matrizes, uma matriz diagonal D, uma matriz atómica triangular superior U e uma matriz atómica triangular inferior L. Definimos um valor inicial $x^{(0)} = (0,0,\ldots,0)$ com dimensão N. Recorrendo a um ciclo while, enquanto o número de iterações realizadas i não for superior ao número máximo de iterações a realizar, o programa calcula a próxima iteração, recorrendo à expressão do método. Assim que o ciclo acaba, o programa devolve a resposta final, a solução resultante da última iteração realizada.

Após a implementação do programa, é pedido que o utilizemos para aproximar as soluções \tilde{z} do sistema Ax=b, onde A é uma matrix tridiagonal definida na alínea anterior e b é um vetor coluna com $b_j=1$, $j=1,\ldots,N$. Consideramos N=5,10,15,20,nmax=20 e $\omega=0.5,0.75,1.25,1.5,1.75$ e apresentamos, para cada N, os resultados para os vários valores de ω numa tabela. Calculamos também o erro absoluto e relativo para cada ω , tendo para isso definido a função erros. Considerando para o valor exato z a solução dada pelo comando linsolve, temos:

$$erro_{abs} = ||z - \tilde{z}||$$

$$erro_{rel} = \frac{erro_{abs}}{\|z\|}$$

Para N = 5, 10, 15, 20:

	$\omega = 0.50$	$\omega = 0.75$	$\omega = 1.25$	$\omega = 1.50$	$\omega = 1.75$	linsolve
SOR	[2.0768] 3.2989 3.7257 3.3587 2.1460]	[2.3955] 3.8334 4.3228 3.8587 2.4248]	[2.49999] 3.9999 4.4999 4.0000 2.5000]	[2.5000] 4.0000 4.5000 4.0000 2.5000]	[2.4937] 3.9895 4.4910 4.0025 2.5020]	[2.5000] 4.0000 4.5000 4.0000 2.5000]
$erro_{abs}$	1.3442	0.3094	$1.2079 \cdot 10^{-4}$	$1.0014 \cdot 10^{-5}$	0.0155	_
$erro_{rel}$	0.1670	0.03845	$1.5011 \cdot 10^{-5}$	$1.2448 \cdot 10^{-6}$	0.0019	-

	$\omega = 0.50$	$\omega = 0.75$	$\omega = 1.25$	$\omega = 1.50$	$\omega = 1.75$	linsolve
SOR	[2.3117] 3.9023 4.9520 5.6025 5.9486 6.0314 5.8345 5.2830 4.2471 2.5533	[3.1577] 5.5440 7.2755 8.4380 9.0803 9.2113 8.7998 7.7786 6.0508 3.4999]	4.6279 8.3353 11.1352 13.0312 14.0187 14.0867 13.2188 11.3959 8.5977 4.8049	4.9759 8.9606 11.9531 13.9518 14.9553 14.9618 13.9701 11.9788 8.9871 4.9942	5.0033 9.0491 12.0531 14.0551 15.0543 15.0502 14.0426 12.0323 9.0203 5.0087	5.0000 9.0000 12.0000 14.0000 15.0000 14.0000 12.0000 9.0000 5.0000
$erro_{abs}$	21.3574	13.8909	2.2889	0.1080	0.1307	-
$erro_{rel}$	0.5830	0.3792	0.0625	0.0029	0.0036	-

	$\omega = 0.50$	$\omega = 0.75$	$\omega = 1.25$	$\omega = 1.50$	$\omega = 1.75$	linsolve
SOR	$\begin{array}{c c} \omega = 0.50 \\ \hline \\ 2.3131 \\ 3.9077 \\ 4.9695 \\ 5.6527 \\ 6.0776 \\ 6.3327 \\ 6.4784 \\ 6.5511 \\ 6.5652 \\ 6.5111 \\ 6.3507 \\ 6.0107 \\ 5.3773 \\ 4.2952 \\ 2.5738 \\ \hline \end{array}$	$\begin{bmatrix} 3.1848 \\ 5.6219 \\ 7.4536 \\ 8.8045 \\ 9.7793 \\ 10.4602 \\ 10.9053 \\ 11.1467 \\ 11.1877 \\ 11.0018 \\ 10.5312 \\ 9.6881 \\ 8.3572 \\ 6.4014 \\ 3.6686 \end{bmatrix}$	$\begin{array}{c c} \omega = 1.25 \\ \hline & 5.2694 \\ 9.7603 \\ 13.5357 \\ 16.6442 \\ 19.1193 \\ 20.9783 \\ 22.2229 \\ 22.8392 \\ 22.8000 \\ 22.0659 \\ 20.5881 \\ 18.3110 \\ 15.1745 \\ 11.1171 \\ 6.0780 \\ \end{array}$	$\begin{array}{c c} \omega = 1.50 \\ \hline \\ 6.5998 \\ 12.3432 \\ 17.2432 \\ 21.3049 \\ 24.5265 \\ 26.8998 \\ 28.4119 \\ 29.0457 \\ 28.7812 \\ 27.5970 \\ 25.4708 \\ 22.3808 \\ 18.3063 \\ 13.2285 \\ 7.1310 \\ \hline \end{array}$	$\begin{array}{c} \omega = 1.75 \\ \hline 7.5696 \\ 14.1206 \\ 19.6520 \\ 24.1640 \\ 27.6581 \\ 30.1368 \\ 31.6041 \\ 32.0652 \\ 31.5267 \\ 29.9965 \\ 27.4837 \\ 23.9986 \\ 19.4953 \\ 13.9947 \\ 7.4965 \\ \end{array}$	7.5000 14.0000 19.5000 24.0000 27.5000 30.0000 31.5000 32.0000 31.5000 27.5000 24.0000 19.5000 14.0000 7.5000
$erro_{abs}$	72.3297	59.0130	26.1164	8.6424	0.3595	_
$erro_{abs}$	0.7738	0.6313	0.2794	0.0925	0.0038	_

	$\omega = 0.25$	$\omega = 0.50$	$\omega = 0.75$	$\omega = 1.00$	$\omega = 1.25$	linsolve
SOR		$\omega = 0.50$ $\begin{bmatrix} 3.1848 \\ 5.6222 \\ 7.4548 \\ 8.8087 \\ 9.7919 \\ 10.4939 \\ 10.9868 \\ 11.3267 \\ 11.5558 \\ 11.7030 \\ 11.7847 \\ 11.8038 \\ 11.7474 \\ 11.5837 \\ 11.2593 \end{bmatrix}$	$\begin{array}{c c} \omega = 0.75 \\ \hline \\ 5.3080 \\ 9.8684 \\ 13.7658 \\ 17.0773 \\ 19.8711 \\ 22.2046 \\ 24.1232 \\ 25.6588 \\ 26.8287 \\ 27.6350 \\ 28.0646 \\ 28.0896 \\ 27.6680 \\ 26.7453 \\ 25.2564 \\ \end{array}$	$\omega = 1.00$ $\begin{bmatrix} 6.9394 \\ 13.1475 \\ 18.6717 \\ 23.5486 \\ 27.8041 \\ 31.4540 \\ 34.5036 \\ 36.9482 \\ 38.7745 \\ 39.9606 \\ 40.4780 \\ 40.2922 \\ 39.3642 \\ 37.6518 \\ 35.1106 \end{bmatrix}$		10.0000 19.0000 27.0000 34.0000 40.0000 45.0000 52.0000 54.0000 55.0000 54.0000 52.0000 49.0000 49.0000 49.0000
	6.6460 6.6150	11.7474 11.5837	27.6680 26.7453	39.3642 37.6518	51.5861 48.6849	52.0000 49.0000
	6.3635 6.0170 5.3803 4.2965 2.5744	10.6964 9.7923 8.4214 6.4388 3.6863	23.1276 20.2789 16.6265 12.0850 6.5700	31.6955 27.3614 22.0647 15.7640 8.4207	39.8393 33.8929 26.9321 18.9597 9.9804	40.0000 34.0000 27.0000 19.0000 10.0000
						[10.0000]
$erro_{abs}$	158.8784	141.1205	88.3498	48.8318	2.8557	-
$erro_{rel}$	0.8612	0.7650	0.4789	0.2647	0.0155	-

Com estes resultados, podemos concluir que quanto maior o valor de N, maior será o erro das aproximações (note-se que esta conclusão é coerente com a relação entre N e o condicionamento de A verificado na alínea anterior).

Com o conhecimento do parâmetro ω otimizado, determinado na Alínea c) deste exercício, podemos também concluir, como era de esperar, que quanto mais próximo o valor de ω se encontrar do valor ω_{opt} , menor será o erro da respetiva aproximação.

De seguida, queremos verificar experimentalmente que o método converge se e só se $\omega \in (0,2)$.

Teorema 1. O método iterativo $x^{(n+1)} = Cx^{(n)} + d$ converge para a solução do sistema linear Ax = b, qualquer que seja $x^{(0)} \in \mathbb{R}^N$, se e só se $r_{\sigma}(C) < 1$.

Recorrendo ao Teorema 1, e considerando $C(\omega) = (\omega L + D)^{-1}((1 - \omega)D - \omega U)$, foi criada a função converge que recebe uma matriz A quadrada e um parâmetro ω , calcula o raio espetral da matriz de iteração C e, caso $r_{\sigma}(C) < 1$, o programa devolve a mensagem "O modelo converge", ou "O modelo não converge" caso contrário.

Assim, podemos atribuir a A qualquer matriz da Alínea a), escolher qualquer parâmetro ω e verificar, experimentalmente, que converge se e só se $\omega \in (0,2)$. No ficheiro script ex2b.m podem ser encontrados exemplos do funcionamento desta função que comprovam o pedido.

Por fim, queremos analisar o que acontece para $\omega=0$ e $\omega=2$. Recorrendo novamente à função SOR, para cada N=5,10,15,20 são calculadas as aproximações para $\omega=0$ e $\omega=2$, com um número máximo de iterações arbitrário. Como $\omega=0$ e $\omega=2$ não pertencem ao intervalo (0,2), já sabemos que o método não irá convergir para uma solução do sistema. Para $\omega=0$, as soluções são obviamente vetores nulos, uma vez que substituindo $\omega=0$ na expressão $x^{(n+1)}=(\omega L+D)^{-1}((1-\omega)D-\omega U)x^{(n)}+\omega(\omega L+D)^{-1}b$ obtemos $x^{(n+1)}=x^n$, que é sempre o vetor nulo se $x^{(0)}=0$.

Para $\omega = 2$ obtemos:

Por exemplo:

```
SOR(A10, b10, 2, 100) = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

SOR(A20, b20, 2, 100) = [16; 32; 48; 64; 80; 75; 70; 65; 60; 55; 50; 45; 40; 35; 30; 25; 20; 15; 10; 5]
```

2. c)

Nesta alínea, é pedido para determinarmos o raio espetral da matriz de iteração $C(\omega) = (\omega L + D)^{-1}((1-\omega)D - \omega U)$, para vários valores de $N = 5, 10, 15, 20, \ldots$ e variando o valor de $\omega \in (0, 2)$.

Em primeiro lugar, criámos a função matrixit que recebe uma matriz A e um parâmetro ω e devolve a respetiva matriz de iteração.

De seguida, foi definida a função raioespetral que recebe uma matriz C e devolve o seu raio espetral, $r_{\sigma}(C) = \max_{i=1,\dots,N} |\lambda_i|$, onde λ_i são os valores próprios da matriz. Assim, para cada N, e fazendo variar $\omega \in (0,2)$, obtemos vários valores de raios espetrais das várias matrizes iteradoras.

$\omega \backslash N$	5	10	15	20	25
0.25	0.9624	0.9885	0.9945	0.9968	0.9979
0.50	0.9140	0.9733	0.9873	0.9926	0.9951
0.75	0.8482	0.9522	0.9771	0.9867	0.9913
1.00	0.7500	0.9206	0.9619	0.9778	0.9855
1.25	0.5603	0.8663	0.9363	0.9629	0.9757
1.50	0.5000	0.7280	0.8804	0.9317	0.9557
1.75	0.7500	0.7500	0.7500	0.7500	0.8756

Para N = 5, 10, 15, 20, 25 obtemos os seguintes resultados:

Nos exemplos acima, foram escolhidos previamente os valores de ω . No entanto, recorrendo ao comando rand(), podemos determinar o raio espetral de uma certa matriz para um valor $\omega \in (0,2)$ aleatório.

Por fim, queremos saber se existe, para N fixo, um valor ótimo de ω , que leve à convergência mais rápida e se este valor depende de N.

Demonstração. Consideremos o método SOR, $x^{(n+1)} = (\omega L + D)^{-1}((1 - \omega)D - \omega U)x^{(n)} + \omega(\omega L + D)^{-1}b$. Comecemos por determinar os valores próprios da matriz $C(\omega) = (\omega L + D)^{-1}((1 - \omega)D - \omega U)$.

$$det(C - \lambda I) = 0 \Leftrightarrow det[(D - \omega L)^{-1}((1 - \omega)D + \omega U) - \lambda I] = 0 \Leftrightarrow$$

$$\Leftrightarrow det(D - \omega L)^{-1}det[(1 - \omega)D + \omega U - \lambda(D - \omega L)] = 0 \Leftrightarrow$$

$$\Leftrightarrow det[(1 - \omega - \lambda)D + \omega U + \lambda \omega L] = 0 \Leftrightarrow$$

$$\Leftrightarrow det[(\frac{(1 - \omega \lambda)}{\omega \sqrt{\lambda}}D + \frac{1}{\sqrt{\lambda}}U + \sqrt{\lambda}L)\omega\sqrt{\lambda}] = 0 \Leftrightarrow$$

$$\Leftrightarrow det[\sqrt{\lambda}D^{-1}L + \frac{1}{\sqrt{\lambda}}D^{-1}U - \frac{(\lambda + \omega - 1)}{\omega\sqrt{\lambda}}I] = 0$$

Quando a matriz é consistentemente ordenada, ou seja, quando os valores próprios de $\alpha L + \frac{1}{\alpha}U$ são independentes de α , os valores próprios de $\sqrt{\lambda}D^{-1}L + \frac{1}{\sqrt{\lambda}}D^{-1}U$ são os mesmos de $D^{-1}(L+U) = C_J$, onde C_J representa a matriz de iteração do sistema linear Ax = b para o método de Jacobi.

Designemos os valores próprios de C_J por μ . Então, os valores próprios de C_{SOR} satisfazem

$$\mu = \frac{\lambda + \omega - 1}{\omega \sqrt{\lambda}} \Leftrightarrow \mu \omega \sqrt{\lambda} = \lambda + \omega - 1 \Leftrightarrow$$

$$\Leftrightarrow \mu^2 \omega^2 \lambda = (\lambda + \omega - 1)^2 \Leftrightarrow \mu^2 \omega^2 \lambda = \lambda^2 + 2\lambda(\omega - 1) + (\omega - 1)^2 \Leftrightarrow$$

$$\Leftrightarrow \lambda^2 + \lambda(2\omega - 2 - \mu^2 \omega^2) + (\omega - 1)^2 = 0 \Leftrightarrow$$

$$\Leftrightarrow \lambda = 1 - \omega + \frac{\mu^2 \omega^2}{2} \pm \mu \omega \sqrt{(1 - \omega) + \frac{\mu^2 \omega^2}{4}}$$

Para cada μ^2 existem 2 valores possíveis de λ , sendo $|\lambda| = \omega - 1$. Logo, $r_{\sigma}(C_{SOR}) = \omega - 1$.

O valor de ω_{opt} deve maximizar a convergência, ou seja, minimizar $r_{\sigma}(C_{SOR})$, o que significa que queremos $\mu = r_{\sigma}(C_J)$ máximo:

$$\frac{\mu^2 \omega^2}{4} - \omega + 1 = 0 \Leftrightarrow \omega = \frac{2}{1 \mp \sqrt{1 - \mu^2}}$$

Assim, podemos concluir que $\omega_{opt} = \frac{2}{1 \mp \sqrt{1 - r_{\sigma}(C_J)^2}}$

Como podemos analisar pela fórmula demonstrada, o valor ω_{opt} depende de N, já que depende da matriz C_J , a qual varia com N, no entanto, podemos também verificar este facto experimentalmente.

Para a determinação deste valor, que será necessário na Alínea e) deste exercício, criámos a função wopt que recebe uma matriz A e determina o valor otimizado de ω recorrendo ao raio espetral da respetiva matriz de iteração pelo método de Jacobi.

$\omega \backslash N$	5	10	15	20	25
ω_{opt}	1.3333	1.5604	1.6735	1.7406	1.7849

Logo, concluímos que ω_{opt} depende de N.

2. d)

Nesta alínea pretendemos verificar, numericamente, que $det(C(\omega)) = (1 - \omega)^N$. Temos então:

$$det(C(\omega)) = det((\omega L + D)^{-1}) \cdot \det((1-\omega)D - \omega U) = \frac{1}{2^N} \cdot (1-\omega)^N \cdot 2^N = (1-\omega)^N$$
 (Notando que $(\omega L + D)^{-1}$ e $((1-\omega)D - \omega U)$ são matrizes triangulares).

Para verificar isto experimentalmente, foi definida a função det matrix que recebe uma matriz A, um parâmetro ω e um número N, e apresenta uma lista onde a primeira componente é o determinante da matriz de iteração $C(\omega)$ e a segunda componente é o valor de $(1-\omega)^N$. Assim, podemos verificar que ambos os valores apresentados são sempre iguais.

Atentendo a este resultado, e sabendo que o determinante de uma matriz é dado pelo produto dos seus valores próprios, podemos fazer a seguinte observação:

Para $\omega \notin (0,2)$ temos que $det(C(\omega)) = (1-\omega)^N \ge 1$, pelo que existe algum valor próprio λ de $C(\omega)$ tal que $\lambda \ge 1$, isto é, $r_{\sigma}(C(\omega)) \ge 1$ e portanto, pelo Teorema 1 referido na alínea b), o método não converge.

2. e)

Nesta alínea, temos como objetivo aproximar as soluções do sistema Ax = b, pelos métodos SOR (com $\omega = \omega_{opt}$), Gauss-Seidel e Jacobi, para N = 5, 10, 15, 20, e calcular o erro absoluto em relação às soluções exatas obtidas a partir do comando linsolve. Sendo \tilde{z} a solução obtida pelo método e z a solução pelo linsolve, o erro absoluto será dado por:

$$erro_{abs} = ||z - \tilde{z}||$$

Como podemos observar pela expressão do método Gauss-Seidel, $x^{(n+1)} = -(D + L)^{-1}Ux^{(n)} + (D + L)^{-1}b$, este corresponde ao método SOR quando $\omega = 1$.

Para o método de Jacobi, $x^{(n+1)} = -D^{-1}(L+U)x^{(n)} + (D)^{-1}b$, foi criada a função Jacobi que funciona de forma idêntica à função SOR, não recebendo, apenas, o valor de ω .

Para N = 5, 10, 15, 20:

	linsolve	SOR	Gauss-Seidel	Jacobi
solução	[2.5000] 4.0000 4.5000 4.0000 2.5000]	[2.4984] 3.9984 4.4989 3.9994 2.4998]	[2.3102] 3.7153 4.2153 3.7865 2.3932]	[1.9463] 3.0508 3.3926 3.0508 1.9463]
$erro_{abs}$	_	0.0026	0.5051	1.9083

	linsolve	SOR	Gauss-Seidel	Jacobi
solução	5.0000 9.0000 12.0000 14.0000 15.0000 14.0000 12.0000 9.0000 5.0000	4.7729 8.5919 11.5205 13.5294 14.5904 14.6782 13.7721 11.8570 8.9239 4.9702	[2.7001] 4.7347 6.2341 7.2901 7.9466 8.1950 7.9755 7.1853 5.6914 3.3457]	[2.0840] 3.4131] 4.1914] 4.6143] 4.7891] 4.6143] 4.1914] 3.4131] 2.0840]
$erro_{abs}$	_	1.0099	16.4611	24.2093

	linsolve	SOR	Gauss-Seidel	Jacobi
solução	7.5000 14.0000 19.5000 24.0000 27.5000 30.0000 31.5000 32.0000 31.5000 30.0000 27.5000 24.0000 19.5000 14.0000 7.5000	5.4818 10.4093 14.8341 18.8035 22.3610 25.5466 27.4253 28.4055 28.4445 27.5051 25.5563 22.5729 18.5360 13.4323 7.2544	[2.7001] 4.7367 6.2497 7.3579 8.1586 8.7298 9.1304 9.3972 9.5383 9.5257 9.2908 8.7248 7.6849 6.0037 3.5018]	[2.0840] 3.4141 4.1953 4.6328 4.8438 4.9453 4.9805 4.9922 4.9805 4.9453 4.8438 4.6328 4.1953 3.4141 2.0840]
$erro_{abs}$	-	12.8138	63.9149	76.9383

	linsolve	SOR	Gauss-Seidel	Jacobi
solução	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	6.0121 11.5094 16.5332 21.1218 25.3107 29.1329 32.6186 35.7960 38.6909 41.3274 43.7273 44.0930 43.4802 41.8518 39.1761 35.4266 30.5823 24.6268 17.5486	[2.7001] 4.7367 6.2497 7.3579 8.1586 8.7298 9.1323 9.4128 9.6061 9.7380 9.8272 9.8849 9.9108 9.8846 9.7571 9.4441 8.8254 7.7496 6.0433	[2.0840] 3.4141 4.1953 4.6328 4.8438 4.9453 4.9961 4.9961 4.9990 5.0000 5.0000 4.9990 4.9961 4.9453 4.8438 4.6328 4.1953 3.4141
$erro_{abs}$	[10.0000]	46.8058	[3.5216]	[2.0840] 164.7817

Através da observação dos resultados acima, podemos concluir que o melhor método iterativo é o método SOR, já que, para todos os valores de N, apresenta um erro absoluto em relação ao valor exato obtido com o comando linsolve muito inferior aos erros dos outros dois métodos, que apresentam, de maneira geral, erros absolutos próximos, apesar do método Gauss-Seidel, uma particularidade do método SOR, ter tendência a ser um pouco melhor que o método Jacobi.

Por fim, podemos ainda concluir que o aumento do valor de N leva a um aumento do erro absoluto das aproximações.