Capstone Project – Machine Learning Engineer

An analysis on Starbucks simulated customer data

Christoph Deserno

October 27th 2020

The project's domain background

I have chosen the Udacity Starbucks data project which holds simulated customer data for transaction and advertisement offers regarding the usage of a Starbucks mobile application. The data from this app is divided into three tables explained further below.

A problem statement

There are different type of advertisements – in this context they will be called offers – which affect different customers in different ways. Some may work well on one costumer while they work poor on another customer. Since the offers come with a cost for the company – meaning discounts they are offering in the advertisement – it would be best if the offers fit well to the customer to have a high conversion rate – meaning the offers are accepted and turned into company income. Here I will look at how to determine which offer type might fit best to which demographic group of the customers.

The datasets and inputs

The given dataset consists of three tables

- Portfolio

The portfolio holds information about what kind of offers are used for advertising. Three different offer types are present. A "buy one get one" (BOGO), a discount offer and just pure informational offers. The first two offers come with a reward measured in dollars while the informational offer is just not rewarded and pure advertisement. Each offer is described by a unique id, a duration for how long the offer is valid, a difficulty meaning the value a customer must spend to be able to receive the award of the offer, the offer type (BOGO, discount, informational), the channels how the offers are broadcasted (email, mobile, social, web) and a reward.

	reward	channels	difficulty	duration	offer_type	id
0	10	[email, mobile, social]	10	168	bogo	ae264e3637204a6fb9bb56bc8210ddfd
1	10	[web, email, mobile, social]	10	120	bogo	4d5c57ea9a6940dd891ad53e9dbe8da0
2	0	[web, email, mobile]	0	96	informational	3f207df678b143eea3cee63160fa8bed
3	5	[web, email, mobile]	5	168	bogo	9b98b8c7a33c4b65b9aebfe6a799e6d9
4	5	[web, email]	20	240	discount	0b1e1539f2cc45b7b9fa7c272da2e1d7
5	3	[web, email, mobile, social]	7	168	discount	2298d6c36e964ae4a3e7e9706d1fb8c2
6	2	[web, email, mobile, social]	10	240	discount	fafdcd668e3743c1bb461111dcafc2a4
7	0	[email, mobile, social]	0	72	informational	5a8bc65990b245e5a138643cd4eb9837
8	5	[web, email, mobile, social]	5	120	bogo	f19421c1d4aa40978ebb69ca19b0e20d
9	2	[web, email, mobile]	10	168	discount	2906b810c7d4411798c6938adc9daaa5

Profile

The profile table holds information about the customers. Mainly demographic data can be found as gender, age and income. Also an information about when a person became

customer of the app.

	gender	age	id	became_member_on	income
1	F	55	0610b486422d4921ae7d2bf64640c50b	20170715	112000.0
3	F	75	78afa995795e4d85b5d9ceeca43f5fef	20170509	100000.0
5	M	68	e2127556f4f64592b11af22de27a7932	20180426	70000.0
8	M	65	389bc3fa690240e798340f5a15918d5c	20180209	53000.0
12	M	58	2eeac8d8feae4a8cad5a6af0499a211d	20171111	51000.0
16995	F	45	6d5f3a774f3d4714ab0c092238f3a1d7	20180604	54000.0
16996	M	61	2cb4f97358b841b9a9773a7aa05a9d77	20180713	72000.0
16997	M	49	01d26f638c274aa0b965d24cefe3183f	20170126	73000.0
16998	F	83	9dc1421481194dcd9400aec7c9ae6366	20160307	50000.0
16999	F	62	e4052622e5ba45a8b96b59aba68cf068	20170722	82000.0

Transcript

The transcript table contains data about different types of events. These events can be transactions where it is listed, how much a customer spent at what time or they can hold information on offer status information. This information can either be whether an offer is received, whether it is viewed or completed.

	person	event	value	time
0	78afa995795e4d85b5d9ceeca43f5fef	offer received	{'offer id': '9b98b8c7a33c4b65b9aebfe6a799e6d9'}	0
1	a03223e636434f42ac4c3df47e8bac43	offer received	{'offer id': '0b1e1539f2cc45b7b9fa7c272da2e1d7'}	0
2	e2127556f4f64592b11af22de27a7932	offer received	{'offer id': '2906b810c7d4411798c6938adc9daaa5'}	0
3	8ec6ce2a7e7949b1bf142def7d0e0586	offer received	{'offer id': 'fafdcd668e3743c1bb461111dcafc2a4'}	0
4	68617ca6246f4fbc85e91a2a49552598	offer received	{'offer id': '4d5c57ea9a6940dd891ad53e9dbe8da0'}	0
	***		***	
306529	b3a1272bc9904337b331bf348c3e8c17	transaction	{'amount': 1.589999999999999}}	714
306530	68213b08d99a4ae1b0dcb72aebd9aa35	transaction	{'amount': 9.53}	714
306531	a00058cf10334a308c68e7631c529907	transaction	{'amount': 3.61}	714
306532	76ddbd6576844afe811f1a3c0fbb5bec	transaction	{'amount': 3.5300000000000002}	714
306533	c02b10e8752c4d8e9b73f918558531f7	transaction	{'amount': 4.05}	714

A solution statement

The described task is to combine transaction, demographic and offer data to determine which demographic groups respond best to which offer type.

For this task I plan to bring the tables into a structure that makes them easier to process. Given nested information as in the value column of the transcript data is difficult to take as is and must be pre processed. After cleansing the data must be combined and special situations must be taken care of for example that completion information on offers is available for offer types BOGO and discount but not for informational offers.

My approach for this will be a linear model that finds correlation between the different features of a person and the amount spent by a person. Depending on the influence of a demographic criteria I will try to find recommendation to play certain offers to certain demographic groups more or less often.

A benchmark model

Since the development of the model will help to explain the dependencies a benchmark does not exist so far. Having the wish to explain dependencies the model should be of a simple type. Increasing model complexity will usually lead to less ability to interpret what the model does.

A set of evaluation metrics

The linear model will result an r squared score for how the data correlates and determine coefficients of correlation. These correlations coefficients should be plausible

An outline of the project design

First I will take a look at the raw data, how should it be preprocessed. Matching informational offers to a completion date will be tricky. I will focus on modelling with customer data. I assume that features of customers will explain the variance of which offer fits best to which customer. Simple models can be computed on local machines but I will deploy the model to Amazon Sagemaker for later use.