

出生日期 1997.11.24

籍贯 安徽省合肥市 手机号码 (+86) 18756054176

电子邮件 huowd@mail.dlut.edu.cn

通讯地址 辽宁省大连市甘井子区凌工路2号,大连理工大学,海宇楼509室

教育背景

博士 2019-现在

大连理工大学, 固体力学

论文题目:复杂曲面壳体结构的显式设计

本科 2015-2019

合肥工业大学,工程力学

论文题目:求解二维稳态热传导问题的等几何边界元方法

研究领域

• 结构优化: 尺寸/形状/拓扑优化, 数学规划

• 相场建模: 壳体结构断裂力学和计算制造力学

• 曲面结构:波动、屏蔽、超材料设计、均匀化分析、有限元、结构设计

荣誉奖项

- 特等奖(团队赛,104支队伍中排名第二),国际工程力学竞赛亚洲赛区,2019
- 特等奖,中国力学竞赛安徽赛区,2017
- 国家奖学金,中华人民共和国教育部,2018
- 金奖, 辽宁省"挑战杯"大学生创业计划竞赛, 2024
- 一等奖,第一届"EBSCO杯"文献信息获取大赛,2018
- 一等奖, 大连理工大学第二十届"攀登杯"创新创业竞赛, 2024
- 二等奖(个人赛),国际工程力学竞赛亚洲赛区,2019
- 二等奖,第一届开源软件集成大赛,2023
- 三等奖,周培源力学竞赛,2017

- 三等奖,中国力学竞赛安徽赛区,2018
- 三等奖, 安徽省实验力学竞赛, 2017
- 校级三好学生, 2018
- 校级一、二、三等奖学金, 2018, 2016, 2017

科研经历

- 进行中,复杂曲面壳体结构的形状与加筋联合优化,2024.05-至今
- 进行中,复杂壳体结构的断裂预测与分析,2023.01-至今
- 进行中, 曲面热流管道的显式设计, 2023.05-至今
- 进行中,复杂曲面结构的显式设计方法(博士课题),2019.09-至今
- 已完成(待发表),纹理导向的结构优化与设计,2020.10-2023.03
- 未完待续,考虑电磁屏蔽与电磁兼容的结构设计,2020.04-2020.09
- 已完成, 移动可变形组件法的新型列式, 2023.06-2024.06
- 已完成,复杂钣金结构的几何设计方法,2022.10-2024.03
- 已完成, 曲面格栅结构的显式化设计, 2022.06-2024.02
- 已完成,面向复杂薄壁结构设计的实体嵌入式组件,2022.03-2023.06
- 已完成,复杂加筋薄壁结构的显式布局优化, 2022.03-2022.10
- 已完成,复杂壳体结构的显式拓扑优化,2021.03-2022.01
- 已完成,基于模板法的多分辨率子结构拓扑优化,2021.01-2021.05
- 已完成(本科阶段科研的主体内容),等几何边界元底层算法的构建,2017.10-2019.06
- 已完成(国家级大学生创新创业项目),氧化锌压电性能的提升,2017.06-2019.03

工程项目

- 华为技术有限公司,考虑声压级和推拉顺性的音频单元设计,2021-2022
- 成都飞机工业(集团)有限责任公司,面向加筋薄壁结构优化设计的软件开发,2023-2023
- 中航科技第六研究院, 气瓶结构的分析与优化设计, 2022-2023
- 成都飞机工业(集团)有限责任公司,典型承载结构的拓扑优化,2022-2022
- 航天精工股份有限公司,螺栓连接系统的拓扑优化设计,2021-2021
- 西安电子科技大学,考虑精度控制的雷达天线位移预测与结构优化,2021-2021
- 中航科工第三研究院,基于显式拓扑优化的整流罩设计(科研工作的直接应用),2021-2021

- 中国空间技术研究院(五院) , 多种异型薄壁结构的加筋优化与设计(4个项目) , 2020-2023
- •中国运载火箭技术研究院(一院),实验加载装置与螺栓连接系统的结构优化(5个项目),2019-2023

软件开发

- 复杂钣金结构的显式几何化设计软件, 2023.07-至今
- 面向复杂薄壁结构的嵌入式组件法优化软件, 2023.05-至今
- 复杂薄壁加筋结构的显式布局优化软件(该软件已被成飞集团采购), 2023.02-至今
- 复杂壳体结构的显式拓扑优化软件(该软件已被成飞集团采购), 2022.06-2023.12

期刊论文

主要贡献 (*代表通讯作者,#代表共同一作)

- 6. W. D. Huo, C. Liu*, Y. L. Guo, Z. L. Du, W. S. Zhang, and X. Guo*, "Explicit Topography Design for Complex Shell Structures Based on Embedded Spline Components", **Submitted to Journal of the Mechanics of Physics and Mechanics**, 2024 (SSRN-4924034).
- 5. W. D. Huo, C. Liu*, Y. P. Liu, Z. L. Du, W. S. Zhang, and X. Guo*, "A novel explicit design method for complex thin-walled structures based on embedded solid moving morphable components", Computer Methods in Applied Mechanics and Engineering, 2023 (417).
- 4. X. D. Jiang, W. D. Huo*, C. Liu*, Z. L. Du, X. Y. Zhang, X. Li, and X. Guo*, "Explicit layout optimization of complex rib-reinforced thin-walled structures via computational conformal mapping (CCM)", Computer Methods in Applied Mechanics and Engineering, 2023 (404).
- 3. W. D. Huo, C. Liu*, Z. L. Du, X. D. Jiang, Z. Y. Liu, and X. Guo*, "Topology optimization on complex surfaces based on the moving morphable component method and computational conformal mapping", ASME Journal of Applied Mechanics, 2022 (89).
- 2. M. C. Huang[#], W. D. Huo[#], C. Liu*, D. S. Yang, J. Huang, Z. L. Du, and X. Guo*, "Substructuring multi-resolution topology optimization with template", **Advances in Mechanics**, 2021 (51).
- B. Yu*, G. Y. Cao, W. D. Huo, H. L. Zhou, and A. Elena, "Isogeometric dual reciprocity boundary element method for solving transient heat conduction problems with heat sources", Journal of Computational and Applied Mathematics, 2021 (385).

协助并挂名

2. Z. L. Du*, W. Y. Hao, X. D. Chen, X. Q, Hou, W. D. Huo, C. Liu, W. S. Zhang, T. C. Cui, and X. Guo, "Artificial intelligence-enhanced bioinspiration: Design of optimized mechanical lattices beyond deep-sea sponges", Extreme Mechanics Letters, 2023 (62).

1. X. D. Jiang, C. Liu*, Z. L. Du, W. D. Huo, X. Y. Zhang, F. Liu, and X. Guo*, "A unified framework for explicit layout/topology optimization of thin-walled structures based on Moving Morphable Components (MMC) method and adaptive ground structure approach", Computer Methods in Applied Mechanics and Engineering, 2022 (396).

研发技能

- CAD: SpaceClaim, Siemens NX (UG), AutoCAD
- CAE: Abagus, Ansys, Hyperworks, Fenics, Comsol
- CG: MeshLab, Blender, UE5
- 计算力学方法: Finite Element Method, Boundary Element Method, Isogeometric Analysis
- 编程语言: Python (rpy), Matlab, Fortran, C, C#, JavaScript, LATEX
- 研发工具包: trimesh, geomdl, pyvista, cg3lib, BFF, igl
- 其他: Arduino

学术报告与研讨会

- 第二十六届世界力学家大会, Daegu, Korea, 2024.08.29, title: explicit design of complex shell structures based on the computational conformal mapping technique and the moving morphable component approach
- 亚洲多学科与结构优化大会, Zhengzhou, China, 2024.05.22, title: explicit design framework of shell structures based on the moving morphable component method and the dimensionality reduction mapping technique
- 第一届航空航天结构动力学国际研讨会,中国西安, 2023.09.15, 题目:基于移动可变形组件法的复杂航天结构优化
- 第十五届世界多学科与结构优化大会, Cork, Ireland, 2023.06.06, title: topology optimization on complex surfaces based on the moving morphable component method and computational conformal mapping
- 第一届开源工业软件集成大赛, 线上, 2023.02.24, 题目:复杂薄壁结构的显式设计软件开发
- 第三届中国力学学会博士学术研讨会,线上,2023.01.07,题目:基于移动可变形组件法和计算 共形映射的复杂薄壁结构设计
- 亚洲多学科与结构优化大会, 线上, 2022.05.24, title: topology optimization on complex surfaces based on the moving morphable component method and computational conformal mapping

- 审稿: Engineering Structures (2), Thin-Walled Structures, Structural and Multidisciplinary Optimization (2)
- 学生资助大使,合肥工业大学团委,2019.01-2019.06
- 学习与发展中心,合肥工业大学学生会,2015.09-2016.06