## Лабораторная работа №1

Архитектура операционных систем

Касымова Эллина

# Содержание

| 1  | Цель работы                    | 5  |
|----|--------------------------------|----|
| 2  | Теоретическое введение         | 6  |
| 3  | Выполнение лабораторной работы | 7  |
| 4  | Контрольные вопросы.           | 20 |
| 5  | Выводы                         | 21 |
| Сп | Список литературы              |    |

# Список иллюстраций

| 3.1  | становка                           | 7 |
|------|------------------------------------|---|
| 3.2  | irtualBox                          | 8 |
| 3.3  | астройка машины                    | 8 |
| 3.4  | астройка                           | 9 |
| 3.5  | УД                                 | 9 |
| 3.6  | тог 10                             | J |
| 3.7  | апуск                              | 1 |
| 3.8  | edora                              | 1 |
| 3.9  | edora                              | 2 |
| 3.10 | апуск                              | 2 |
| 3.11 | апуск                              | 3 |
| 3.12 | апуск                              | _ |
| 3.13 | ерминал                            | 5 |
| 3.14 | оследовательность загрузки системы | 6 |
| 3.15 | оиск                               | 7 |
| 3.16 | оиск                               | • |
| 3.17 | оиск                               | _ |
| 3.18 | оиск                               | 3 |
| 3.19 | оиск                               | 3 |
| 3.20 | оиск                               | 9 |

## Список таблиц

2.1 Описание некоторых каталогов файловой системы GNU Linux . . . 6

#### 1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Цель данного шаблона — максимально упростить подготовку отчётов по лабораторным работам. Модифицируя данный шаблон, студенты смогут без труда подготовить отчёт по лабораторным работам, а также познакомиться с основными возможностями разметки Markdown.

#### 2 Теоретическое введение

Здесь описываются теоретические аспекты, связанные с выполнением работы. Например, в табл. 2.1 приведено краткое описание стандартных каталогов Unix.

Таблица 2.1: Описание некоторых каталогов файловой системы GNU Linux

| Имя ка- |                                                                |  |  |  |
|---------|----------------------------------------------------------------|--|--|--|
| талога  | Описание каталога                                              |  |  |  |
| /       | Корневая директория, содержащая всю файловую                   |  |  |  |
| /bin    | Основные системные утилиты, необходимые как в                  |  |  |  |
|         | однопользовательском режиме, так и при обычной работе всем     |  |  |  |
|         | пользователям                                                  |  |  |  |
| /etc    | Общесистемные конфигурационные файлы и файлы конфигурации      |  |  |  |
|         | установленных программ                                         |  |  |  |
| /home   | Содержит домашние директории пользователей, которые, в свою    |  |  |  |
|         | очередь, содержат персональные настройки и данные пользователя |  |  |  |
| /media  | Точки монтирования для сменных носителей                       |  |  |  |
| /root   | Домашняя директория пользователя root                          |  |  |  |
| /tmp    | Временные файлы                                                |  |  |  |
| /usr    | Вторичная иерархия для данных пользователя                     |  |  |  |

Более подробно об Unix см. в [1–6].

## 3 Выполнение лабораторной работы

1) Загружаем Fedora на компьютер.



Рис. 3.1: Установка

2)Запускаем виртуальную машину через терминал, с помощью команды VirtualBox.



Рис. 3.2: VirtualBox

3)Настраиваем ее: вводим имя пользователя, папку /var/tmp/ekasihmova, выбираем Linux и Fedora(64-bit).



Рис. 3.3: Настройка машины

4)Увеличиваем размер ОЗУ и количество вртуальных процессоров.



Рис. 3.4: Настройка

5)Мы создаем виртуальный жесткий диск и задаем ему размернорсть емкостью 60гб.



Рис. 3.5: Ж/Д

6) Выодится итог настройки.



Рис. 3.6: Итог

7) Затем запускаем эту вирт. машину.



Рис. 3.7: Запуск

8)Вводим в DVD папку скачанной федоры.



Рис. 3.8: Fedora



Рис. 3.9: Fedora

#### 9)Запускаем ее.



Рис. 3.10: Запуск



Рис. 3.11: Запуск



Рис. 3.12: Запуск

10)Нажав клавиши Alt+Enter мы открываем терминал.



Рис. 3.13: Терминал

11)В окне терминала проанализирую последовательность загрузки системы, выполнив команду dmesg.



Рис. 3.14: Последовательность загрузки системы

12)Далее использую поиск Версии ядра Linux и Частоты процессора.



Рис. 3.15: Поиск

13)Далее использую поиск Модели процессора.

```
ve pci [liveuser@localhost-live ~]$ dmesg | grep -i "CPU0"
  ~ 0000 [ 1.056717] smpboot: CPU0: Intel(R) Core(TM) i5-8400T CPU @ 1.7
]$ :00: 0GHz (family: 0x6, model: 0x9e, stepping: 0xa)
```

Рис. 3.16: Поиск

13)Далее использую поиск Объёмф доступной оперативной памяти.

```
0.496354] PM: hibernation: Registered nosave memo Интеграция мыши ...
       ffc0000-0xffffffff]
                                                                    Автозахват клавиатуры ...
8452
             0.882746] Memory: 4976664K/5258808K available (16
       code, 3227K rwdata, 12820K rodata, 3024K init, 4680K k
1] o
       reserved, 0K cma-reserved)
hci-
             0.954273] Freeing SMP alternatives memory: 44K
pci:
             1.066683] x86/mm: Memory block size: 128MB
 OHC
I PC
            5.849225] Freeing initrd memory: 65712K
I pl
            5.865421] Non-volatile memory driver v1.3
            6.321033] Freeing unused decrypted memory: 2036K
atfo
             6.322158] Freeing unused kernel image (initmem)
rm d
             6.331766] Freeing unused kernel image (text/rodat
rive
           2036K
             6.332446] Freeing unused kernel image (rodata/dat
 5.8
           1516K
8516
            51.372861] systemd[1]: Listening on systemd-oomd.s
       space Out-Of-<mark>Memory</mark> (OOM) Killer Socket.
[ 53.013862] vmwgfx 0000:00:02.0: [drm] Legacy <mark>memor</mark>
1] o
hci-
        AM = 16384 kB, FIFO = 2048 kB, surface = 507904 kB
pci
            53.013871] vmwgfx 0000:00:02.0: [drm] Maximum disp
0000
       ize is 16384 kiB
 00:
        [liveuser@localhost-live ~]$
```

Рис. 3.17: Поиск

14)Далее использую поиск Типа обнаруженного гипервизора.

```
liveuser@localhost-live ~]$ dmesg | grep -: "Hypervisor"

0.000000] Hypervisor detected: KVM

0.929913] SRBDS: Unknown: Dependent on hypervisor status

liveuser@localhost-live ~]$ dmesg | grep -: "filesystem"
```

Рис. 3.18: Поиск

15)Далее использую поиск Типа файловой системы корневого раздела.

```
[liveuser@localhost-live ~]$ dmesg | grep -: "filesystem"
[ 46.164491] EXT4-fs (dm-0): mounted filesystem with ordered dat a mode. Quota mode: none.
[liveuser@localhost-live ~]$
```

Рис. 3.19: Поиск

16)Далее использую поиск Последовательности монтирования файловых систем.

```
[liveuser@localhost-live ~]$ dmesg | grep
    0.929517] Mount-cache hash table entries
1072 bytes, linear)
    0.929527] Mountpoint-cache hash table entri
, 131072 bytes, linear) 👔
   46.107743] audit: type=1130 audit(1676558345.625
d=0 auid=4294967295 ses=4294967295 subj=ker
--mount comm="systemd" exe="/usr/lib/systemd
ddr=? terminal=? res=success'
   46.164491] EXT4-fs (dm-0): mounted filesystem with
 mode. Quota mode: none.
   51.366654] systemd[1]: Set up automount
.automount - Arbitrary Executable File Form
nt Point.
   51.388214] systemd[1]: Mounting dev-huge
es File System...
   51.390986] systemd[1]: Mounting dev-mque
ge Queue File System...
```

Рис. 3.20: Поиск

#### 4 Контрольные вопросы.

1)Какую информацию содержит учётная запись пользователя? Имя и пароль.

2)Укажите команды терминала и приведите примеры.

info mv ls du Mkdir Chmod History

3)Что такое файловая система? Приведите примеры с краткой характеристикой. Файловая система- это часть операционной системы, суть которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совместное использование файлов несколькими пользователями и процессами. информация о разрешенном доступе, пароль для доступа к файлу, владелец файла, создатель файла, признак "только для чтения", признак "скрытый файл", признак "системный файл", признак "архивный файл", признак "двоичный/символьный", признак "временный" (удалить после завершения процесса), признак блокировки, длина записи, указатель на ключевое поле в записи, длина ключа, времена создания, последнего доступа и последнего изменения, текущий размер файла, максимальный размер файла.

4) Как посмотреть, какие файловые системы подмонтированы в ОС?

Делается это при помощи команды mount 5)Как удалить зависший процесс?

Команда kill

## 5 Выводы

Проделав данную лабораторную работу мы преобрели практическиу навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

#### Список литературы

- 1. GNU Bash Manual [Электронный ресурс]. Free Software Foundation, 2016. URL: https://www.gnu.org/software/bash/manual/.
- 2. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005. 354 c.
- 3. Zarrelli G. Mastering Bash. Packt Publishing, 2017. 502 c.
- 4. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 c.
- 5. Таненбаум Э. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. 874 с.
- 6. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120 с.