

Neural Networks for Sentiment Analysis

Outline

- Neural networks and forward propagation
- Structure for sentiment analysis

Neural Networks

Forward propagation

 $a^{[i]}$ Activations ith layer

$$a^{[0]} = X$$
 $z^{[i]} = W^{[i]}a^{[i-1]}$
 $a^{[i]} = g^{[i]}(z^{[i]})$

Neural Networks for sentiment analysis

Neural Networks for sentiment analysis

Initial Representation

Word	Number		
a	1		
able	2		
about	3		
•••	•••		
hand	615		
•••	•••		
happy	621		
•••	•••		
zebra	1000		

To match size of longest tweet

Summary

- Structure for sentiment analysis
- Classify complex tweets
- Initial representation

Dense and ReLU Layers

Outline

- Dense layer in detail
- ReLU function

Neural networks Hidden unit j

Dense Layer

$$z_j^{[i]} = w_j^{[i]} a^{[i-1]}$$

Dense layer

$$z^{[i]} = \overline{W^{[i]}} a^{[i-1]}$$
Trainable parameters

ReLU Layer

$$a_j^{[i]} = g^{[i]}(z_j^{[i]})$$

ReLU = Rectified linear unit

$$g(z^{[i]}) = \max(\underline{0}, \underline{z^{[i]}})$$

Summary

- Dense Layer $= z^{[i]} = W^{[i]}a^{[i-1]}$
- ReLU Layer $g(z^{[i]}) = \max(0, z^{[i]})$

Other Layers

Outline

- Embedding layer
- Mean layer

Embedding Layer

Vocabulary	Index			
1	1	0.020	0.006	_
am	2	-0.003	0.010	
happy	3	0.009	0.010	
because	4	-0.011	-0.018	Trainable
learning	5	-0.040	-0.047	weights
NLP	6	-0.009	0.050	
sad	7	-0.044	0.001	Vocabulary
not	8	0.011	-0.022	X
				Embedding

Mean Layer

Tweet: I am happy

No trainable parameters

Summary

- Embedding is trainable using an embedding layer
- Mean layer gives a vector representation

Traditional Language models

Traditional Language Models

N-grams

$$P(w_2|w_1) = \frac{\operatorname{count}(w_1, w_2)}{\operatorname{count}(w_1)} \longrightarrow \operatorname{Bigrams}$$

$$P(w_3|w_1, w_2) = \frac{\operatorname{count}(w_1, w_2, w_3)}{\operatorname{count}(w_1, w_2)} \longrightarrow \operatorname{Trigrams}$$

$$P(w_1, w_2, w_3) = P(w_1) \times P(w_2|w_1) \times P(w_3|w_2)$$

- Large N-grams needed to capture dependencies between distant words
- Need a lot of space and RAM

Summary

- N-grams consume a lot of memory
- Different types of RNNs are the preferred alternative

Recurrent Neural Networks

Advantages of RNNs

Nour was supposed to study with me. I called her but she did not <u>ahawer</u>

RNNs Basic Structure

Learnable parameters

Summary

- RNNs model relationships among distant words
- In RNNs a lot of computations share parameters

Applications of RNNs

Many to Many

Summary

- RNNs can be implemented for a variety of NLP tasks
- Applications include Machine translation and caption generation

Math in Simple RNNs

Outline

- How RNNs propagate information (Through time!)
- How RNNs make predictions

A Vanilla RNN

$$h^{< t>} = g(W_{hh}h^{< t-1>} + W_{hx}x^{< t>} + b_h)$$

A Vanilla RNN

- Hidden states propagate information through time
- ullet Basic recurrent units have two inputs at each time: $h^{< t-1>}$, $x^{< t>$

deeplearning.ai

Cost Function for RNNs

Cross Entropy Loss

K - classes or possibilities

$$J = -\sum_{j=1}^{K} y_j \log \hat{y}_j$$

Looking at a single example (x, y)

Cross Entropy Loss

$$h^{} = g(W_h[h^{}, x^{}] + b_h)$$
$$\hat{y}^{} = g(W_{yh}h^{} + b_y)$$

$$J = -\frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{K} y_j^{} \log \hat{y}_j^{}$$

Average with respect to time

For RNNs the loss function is just an average through time!

deeplearning.ai

Implementation Note

Outline

- scan() function in tensorflow
- Computation of forward propagation using abstractions

tf.scan() function

```
\hat{y}^{< t_1>} \quad \hat{y}^{< t_2>} \qquad \hat{y}^{< T>} \qquad \text{def scan(fn, elems, initializer=None, } \ldots): \\ \text{cur value = initializer} \\ \text{ys = []} \qquad \text{for x in elems:} \\ \text{y, cur_value = fn(x, cur_value)} \\ \text{ys.append(y)} \\ \text{xs.append(y)} \\ \text{return ys, cur_value}
```

Frameworks like Tensorflow need this type of abstraction Parallel computations and GPU usage

- Frameworks require abstractions
- tf.scan() mimics RNNs

deeplearning.ai

Gated Recurrent Units

Outline

- Gated recurrent unit (GRU) structure
- Comparison between GRUs and vanilla RNNs

Gated Recurrent Units

"Ants are really interesting. They are everywhere."

Plural

Relevance and update gates to remember important prior information

Gates to keep/update relevant information in the hidden state

$$\Gamma_r = \sigma(W_r[h^{< t_0>}, x^{< t_1>}] + b_r)$$

$$\Gamma_u = \sigma(W_u[h^{< t_0>}, x^{< t_1>}] + b_u)$$

$$h'^{\langle t_1 \rangle} = \tanh(W_h[\Gamma_r * h^{\langle t_0 \rangle}, x^{\langle t_1 \rangle}] + b_h)$$

Hidden state candidate

$$h^{\langle t_1 \rangle} = (1 - \Gamma_u) * h^{\langle t_0 \rangle} + \Gamma_u * h'^{\langle t_1 \rangle}$$
$$\hat{y}^{\langle t_1 \rangle} = g(W_y h^{\langle t_1 \rangle} + b_y)$$

Vanilla RNN vs GRUs

$$h^{} = g(W_h[h^{}, x^{}] + b_h)$$
$$\hat{y}^{} = g(W_{vh}h^{} + b_v)$$

- GRUs "decide" how to update the hidden state
- GRUs help preserve important information

deeplearning.ai

Deep and Bi-directional RNNs

Outline

- How bidirectional RNNs propagate information
- Forward propagation in deep RNNs

Bi-directional RNNs

I was trying really hard to get a hold of . **Louise**, finally answered when I was about to give up. her him them $f_{W} \stackrel{h^{< t_{1}>}}{\longrightarrow} f_{W} \stackrel{h^{< t_{2}>}}{\longrightarrow} f_{W}$

Bi-directional RNNs

Information flows from the past and from the future independently

$$\hat{y}^{\langle t \rangle} = g(W_y[\overrightarrow{h}^{\langle t \rangle}, \overleftarrow{h}^{\langle t \rangle}] + b_y)$$

Deep RNNs

- In bidirectional RNNs, the outputs take information from the past and the future
- Deep RNNs have more than one layer, which helps in complex tasks

