MATH1061/1021 Cheatsheet (Calculus)

Semester 1, 2024

Abyan Majid

<u>O Source</u>

1	Sets	s, numbers, functions	2	3	Differential Calculus	4
	1.1	Union, intersection, difference, comple-			3.1 Limit definition of derivatives	4
		$ment, subset \dots \dots \dots \dots \dots$	2		3.2 Common derivatives	5
	1.2	Common number sets	2		3.3 Differential rules	5
	1.3	Interval notation	2		3.4 Implicit differentiation	5
	1.4	Modulus	2		3.5 Useful algebra for logarithmic differentia-	
	1.5	Injective, surjective, bijective functions	2		tion	6
	1.6	Composite, inverse, hyperbolic functions .	3		3.6 L'Hopital's Rule	6
2	Lim	its	3		3.7 Extrema	6
	2.1	Definition of a limit	3		3.8 First-derivative test	6
	2.2	Limit laws	3		3.9 Critical points	7
	2.3	One-sided limits, existence of limit	3		3.10 Finding max & min on a closed interval $$.	7
	2.4	Infinite limits	4		3.11 Concavity	7
	2.5	Squeeze law	4		3.12 Second-derivative test	7
	2.6	Continuous functions	4		3.13 Sensible order to curve-sketching	8

1 Sets, numbers, functions

1.1 Union, intersection, difference, complement, subset

Operation	Notation	Description
Union	$A \cup B$	All elements that are in A or B or both
Intersection	$A \cap B$	All elements that are both in A and B
Difference $A \setminus B$		All elements that are in A but not in B
Complement \overline{A}		All elements in the universal set that are not in A
Subset	$A \subseteq B$	A is a subset of B ; every element in A is also in B
Proper subset	$A \subset B$	A is a subset of B and $A \neq B$

1.2 Common number sets

Name (Symbol)	Set
Natural numbers (\mathbb{N})	$\{0,1,2,3,4,\}$
Integers (\mathbb{Z})	$\{2,-1,0,1,2,\}$
Rational numbers (\mathbb{Q})	$\left\{\frac{1}{2}, -\frac{4}{3}, \frac{17}{12}, \dots\right\}$
Irrational numbers $(\mathbb{R} \setminus \mathbb{Q})$	$\{\sqrt{2},\pi,e,\sqrt{7},\ldots\}$
Real numbers (\mathbb{R})	All numbers

1.3 Interval notation

1.4 Modulus

Modulus
Distance on the number line
x-y

1.5 Injective, surjective, bijective functions

Function type	Definition	
Injective	A function $f: X \to Y$ where for all $x \in X$,	
	x maps to a different $y \in Y$, and $ X \leq Y $.	
Surjective	A function $f: X \to Y$ where for all $y \in Y$,	
	y is an image of some $x \in X$, and $ X \ge Y $.	
Bijective	A function that is both injective and surjective	
	where $ X = Y $.	

1.6 Composite, inverse, hyperbolic functions

Composite functions

A function in the form $f \circ g(x) = f(g(x))$ where some function f takes another function g as input.

Inverse functions		
Definition	How to invert a function	
There exists an inverse function f^{-1}	1) Rewrite $f(x)$ as y	
if and only if f is injective.	2) Swap x and y	
	3) Make y the subject	
If $f(x) = y$, then $f^{-1}(y) = x$, which implies	4) Rewrite y as $f^{-1}(x)$	
that if $f: A \to B$, then $f^{-1}: B \to A$.		

Hyperbolic functions				
Function	Derivative	Inverse		
$\cosh(x) = \frac{e^x + e^{-x}}{2}$	$\frac{\mathrm{d}}{\mathrm{dx}}\cosh(x) = \sinh(x)$	$ \cosh^{-1}(x) = \ln(x + \sqrt{x^2 - 1}) $		
$\sinh(x) = \frac{e^x - e^{-x}}{2}$		$\sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1})$		

2 Limits

2.1 Definition of a limit

Limit

 $\lim_{x \to a} \overline{f(x)} = L$

as x approaches a, but not reaching a, the output gets closer and closer to L.

2.2 Limit laws

if we have $\lim_{x\to c} f(x) = L$, $\lim_{x\to c} g(x) = M$				
No	Law			
1	$\lim_{x \to c} [f(x) + g(x)] = L + M$			
2	$\lim_{x \to c} [f(x) - g(x)] = L - M$			
3	$\lim_{x \to c} [f(x)g(x)] = LM$			
4	$\lim_{x \to c} \left[\frac{f(x)}{g(x)} \right] = \frac{L}{M}$			
5	$\lim_{x \to c} [f(x)]^n = L^n$			
6	$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L}$			

2.3 One-sided limits, existence of limit

One-sided limits
Limit from below (left) is denoted as $\lim_{x\to c^-} f(x)$
Limit from above (right) is denoted as $\lim_{x\to c^+} f(x)$

3

Existence of a limit

A limit exists only if
$$\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L$$
 in which case
$$\lim_{x\to c} f(x) = L$$

2.4 Infinite limits

Infinite limits

If we take x larger and larger, and f(x) gets closer to L, we say $\lim_{x\to\infty}f(x)=L$

You can algebraically solve infinite limits by dividing by the highest power of x in the denominator or to by using conjugates.

2.5 Squeeze law

Squeeze law

Suppose $g(x) \leq f(x) \leq h(x)$ for x near a if $\lim_{x \to a} h(x) = L$ and $\lim_{x \to a} g(x) = L$, then $\lim_{x \to a} f(x) = L$ we say "f(x) is squeezed between g(x) and h(x)"

2.6 Continuous functions

Continuous functions

A function is continuous at a point if the limit exists at the point, and is equal to the value at that point.

ie. f(x) is continuous at x=c if and only if:

1) f(c) is defined
2) $\lim_{x\to c} f(x)$ exists and is finite
3) $\lim_{x\to c} f(x) = f(c)$

3 Differential Calculus

3.1 Limit definition of derivatives

Limit definition of derivatives

The derivative of a function f at a point a is given by $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

4

3.2 Common derivatives

Common derivatives	
$\mathbf{f}(\mathbf{x})$	$\mathbf{f}'(\mathbf{x})$
x^n where $n \neq 0$	nx^{n-1}
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
e^x	e^x
ln(x)	$\frac{1}{x}$
tan(x)	$\sec^2(x)$
c^x	$c^x \ln(c)$
$\ln y$	$\frac{1}{y}\frac{dy}{dx}$

3.3 Differential rules

Differential rules			
No	Name	What to do	
1	Power rule	What to do $\frac{d}{dx}x^n = nx^{n-1}$	
2	Constant rule	$\frac{1}{dc}c = 0$, where $c \in \mathbb{R}$	
3	Sum rule	$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$	
4	Difference rule	$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$	
5	Product rule	$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$	
6	Quotient rule	$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$ $\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$ $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$ $\frac{d}{dx}[\frac{f(x)}{g(x)}] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$	
7	Chain rule	We are to find $\frac{d}{dx}[f \circ g(x)]$	
		Method 1: Let $u = g(x)$, $y = f(u)$, and so $y'(x)$	
		is given by $\frac{dy}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$	
		Method 2: If you can see f and g clearly, then	
		$\frac{d}{dx}[f \circ g(x)] = f'(g(x))g'(x)$	

3.4 Implicit differentiation

Implicit differentiation

Functions that can't (or aren't easy) to be written as y = f(x) can instead be written implicitly in the form F(x, y) = 0.

In which case, to get the derivative, find $\frac{d}{dx}[F(x,y)]$ applying chain rule for terms involving y, where $\frac{d}{dx}y \Longrightarrow \frac{dy}{dx}$ and finally, make $\frac{dy}{dx}$ the subject.

3.5 Useful algebra for logarithmic differentiation

No	Useful algebra
1	$a^x \Leftrightarrow e^{x \ln a}$
2	$\ln(e^{x\ln(a)}) = x\ln a$
3	$y \ln(a) = \ln(x) \Leftrightarrow y = \frac{\ln(x)}{\ln(a)}$
4	$\ln(\sqrt{x}) \Leftrightarrow \frac{1}{2}\ln(x)$
5	$\log_b(a) \Leftrightarrow \frac{\ln(a)}{\ln(b)}$

3.6 L'Hopital's Rule

L'Hopital's Rule If $\lim_{x\to c} \frac{f(x)}{g(x)}$ is an indeterminate form, i.e. can be written as $\frac{0}{0}$ or $\pm \frac{\infty}{\infty}$, then $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$ where c can be infinity.

NOTE: You can keep applying L'Hopital's Rule until you get a definite form.

3.7 Extrema

Extrema			
An "extremum" is a maximum or a minimum.			
Extremum	Definition		
Local max	A local max at $x = c$ means $f(c) \ge f(x)$ for any x near c		
Local min	A local min at $x = c$ means $f(c) \le f(x)$ for any x near c		
Global max	A global max on some domain A where $f:A\to\mathbb{R}$ means $f(c)\geq f(x)$ for all $x\in A$		
Global min	A global min on some domain A where $f:A\to\mathbb{R}$ means $f(c)\leq f(x)$ for all $x\in A$		

3.8 First-derivative test

First-derivative test				
If f is continuous and $f'(c) = 0$				
Case	Observation	Conclusion		
1	• $f'(x)$ is positive for $x < c$	Local max		
	• $f'(x)$ is negative for $x > c$			
2	• $f'(x)$ is negative for $x < c$	Local min		
	• $f'(x)$ is positive for $x > c$			
3	f'(x) doesn't change sign Not a local extre			
		(neither max or min)		

3.9 Critical points

No	Critical point type	
1	f'(c) does NOT exist	
2	f'(c) = 0	

NOTES:

- If f(x) is differentiable, then any local extrema must occur at points x=c where f'(c)=0
- f'(c) = 0 does NOT guarantee a local extremum! You must apply first-derivative test!

3.10 Finding max & min on a closed interval

Extreme value theorem

If f is a continuous function from a closed interval A to \mathbb{R} , then f attains a global max & global min value in A.

Finding max & min on a closed interval

To find max & min values on a closed interval, simply check:

- 1) Critical points
- 2) End points of the interval

3.11 Concavity

Concavity

- Concave up: f''(x) > 0
- Concave down: f''(x) < 0
- Point of inflection: if f''(x) changes sign at c then x = c is a point of inflection.

3.12 Second-derivative test

Second-derivative test					
If f, f' are differentiable and $f'(c) = 0$					
Case	Observation	Conclusion			
1	f''(c) > 0	Local minimum			
2	f''(c) < 0	Local maximum			
3	f''(c) = 0	No conclusion			
		(might be local min, max, or neither.)			
		What to do from here: Do first-derivative test			

3.13 Sensible order to curve-sketching

Sensible order to curve-sketching		
Step	To work out	
1	What is the domain?	
2	What is the y-intercept?	
3	What happens as $x \to \pm \infty$ (Limits)	
4	Is there anywhere that $f(x) \to \pm \infty$ (is denominator zero?)	
5	Where are the critical points?	
	$\bullet f'(x) = 0$	
	• $f'(x)$ does NOT exist	
6	Where is $f(x)$ increasing/decreasing?	
	• $f'(x) > 0$: increasing	
	• $f'(x) < 0$: decreasing	
7	Where is $f(x)$ concave up or down?	
	• $f''(x) > 0$: concave up (slope decreasing)	
	• $f''(x) < 0$: concave down (slope increasing)	