Windows Azure Virtual Machines

Clint Edmonson
Architect Evangelist
Microsoft
@clinted

ABOUT

- ✓ Immersed in Azure since 2008
- ✓ Experts in Azure architecture, Dev & Operations
- ✓ Deep expertise in Product and Solution Engineering
- ✓ Cloud Lifecycle Services: Build | Operate | Manage

SERVICES

- ✓ IP Frameworks: Cloud Design Patterns, Capacity Planning
- ✓ Enabling Enterprise & ISVs to modernize and transform with Azure

RESULTS

Proven track record in the Central Region and across Microsoft DPE/ISV and Corporate Programs Migrated 150+ apps, 75+ customers

Windows Azure Platform Reference

Hello Dallas VM

Cloud Services

laaS Workloads in the Cloud

Line of Business Applications

Custom Applications, CRM, CMS, ERP, Business Intelligence

Application Infrastructure

File Servers, Databases, Identity, Source Control

Developer, Test and Staging Environmen

Quickly Provision and Un-provision Entire Environments

Hybrid Applications

Applications that span your data center and the cloud

LOBs in the Cloud

Getting Started with VMs

Cloud First Provisioning

Getting Started

Select Image and VM Size

New Disk Persisted in Storage

Blob Storage

Cloud

Images Available at Preview

SQL Server 2012 Evaluation in Windows Server 2008 R2

Windows Server 2008 R2 SP1

Windows Server 2012 Release Candidate

OpenLogic CentOS 6.2
SUSE Linux Enterprise Server
Ubuntu Server 12.04 LTS
openSUSE 12.1

Check the Oven!

Bring Your Own Server/VHD

Imaging VMs in the Cloud

Image Mobility

Virtual Machine Sizes and Storage

VM Size	CPU Cores	Memory	Bandwidth	# Data Disks
Extra Small	Shared	768 MB	5 (Mbps)	1
Small	1	1.75 GB	100 (Mbps)	2
Medium	2	3.5 GB	200 (Mbps)	4
Large	4	7 GB	400 (Mbps)	8
Extra Large	8	14 GB	800 (Mbps)	16

Each Persistent Data Disk Can be up to 1 TB

Images and Disks

OS Images

Microsoft Partner User

Base OS image for new Virtual Machines

Sys-Prepped/Generalized/Read Only

Created by uploading or by capture

Disks

OS Disks Data Disks

Writable Disks for Virtual Machines

Created during VM creation or during upload of existing VHDs.

Working With New VMs

Virtual Machine and Cloud Services

Cloud Services, Roles and Instances

Cloud Service is a service model boundary (management, configuration, security, and networking)

Virtual Machines Virtual Machines are roles with exactly one instance

Multiple Virtual Machines Supported Up to 25 Virtual Machines can be hosted within the same cloud service

Virtual Machine Networking

Virtual Machine Names and DNS

Full Control Over Machine Names

Windows Azure provided DNS

Resolves VMs by name within the same cloud service Machine names are modeled explicitly and registered in the DNS service

Bring Your Own DNS Server

Use your on-premises DNS servers
Deploy a DNS server in Windows Azure
Use public DNS services

Port Forwarding

Inbound Port Forwarding Single Public VIP Address Per Cloud Service

Port Forwarded Endpoints

Allow direct communication to Different VMs inside the same cloud service

Endpoints and Protocols

Endpoint

Name

Public Port

Local Port

Protocol (TCP/UDP)

UDP Traffic Supported

Load-balanced incoming traffic and allows outbound traffic

Support for All IP-Based Protocols (VM to VM)

Instance-to-instance communication TCP, UDP and ICMP, dynamic ports

Load Balancing

Load Balanced Sets

Endpoint

Name

Public Port

Local Port

Protocol (TCP/UDP)

Load Balancer Custom Probes

HTTP PROBE request

Set Name

Protocol (TCP)

Probe Port

Probe Path

(/healthcheck.aspx)

PORT 80

Looks for HTTP 200

Check the Oven!

Virtual Machine Availability

Fault and Update Domains

Fault Domains

Represent groups of resources anticipated to fail together i.e. Same rack, same server

Instances spread across Fault Domains

Fabric spreads instances across fault at least 2 fault domains

Virtual Machine Availability Sets

Availability Sets

How to Build a Highly Available

Solution Redundancy at every level

How Does this Relate to SLA?

To achieve 99.95 you must use availability sets!

Service Level Agreements

99.95% for multiple role instances

4.38 hours of downtime per year

99.9% for single role instances

8.75 hours of downtime per year

What's included

Compute Hardware failure (disk, cpu, memory)
Datacenter failures - network failure, power failure
Hardware upgrades, Software maintenance – Host OS Updates
Planned downtime – 6 day notice, 6 hour window, 25 minute downtime

What is not included

VM crashes caused by 3rd party software, Guest OS modifications

Windows Azure Virtual Networks

Cross-premise Connectivity

Direct network connectivity

Windows Azure Virtual Network

A protected private virtual network in the cloud

Enables customers to setup secure private IPv4 networks fully contained within Windows Azure IP address persistence

Direct inter-service communication

Your "virtual" branch office / datacenter in the cloud

Enables customers to extend their Enterprise Networks into Windows Azure

Networking on-ramp for migrating existing apps and services to Windows Azure

Enables "hybrid" apps that span cloud and their premises

Does Your App Need a Virtual Network?

Hybrid On-Premises Cloud Apps

Requirement for connectivity between your data center and the public cloud.

Persistent IP Address Requirements

Virtual Machines deployed into a virtual network have an infinite DHCP lease.

Connectivity between cloud services.

Deploying Active Directory in the Cloud or connecting a PaaS to IaaS Service.

Windows Azure Virtual Machines

Sign Up for Windows Azure

3 Month Free Trial

INCLUDES THESE SERVICES:

Compute Databases

Storage Caching

Transactions Access Control

Bandwidth Service Bus

http://clint.ms/TryAzureFree

MSDN Subscription Benefits

BENEFITS INCLUDE:

Free Windows Azure access for

Professional, Premium, and Ultimate subscribers

Designed to accelerate development

Requires credit card at sign-up for any overages beyond free allocation

http://clint.ms/AzureBenefits

Clint Edmonson

www.notsotrivial.net

clinted@microsoft.com

@clinted