Данный раздел посвящён сравнению моделей LDA и ARTM. В экспериментах, сравнивающих BigARTM с Gensim и VW.LDA, мы показали, что алгоритм Online PLSA со сглаживающим регуляризатором и Online VB LDA работают схожим образом. Поэтому в этом эксперименте будут оцениваться характеристики PLSA со сглаживающим регуляризатором (который мы далее будем называть LDA) и ARTM (суть PLSA с набором регуляризаторов).

Текстовая коллекция Все наши эксперименты проводились на корпусе английской Википедии 1 , объём которой $|D| \approx 3.7 \times 10^6$ документов. Словарь имеет размер $|W| \approx 10^5$, общая длина коллекции в словах $n \approx 577 \times 10^6$.

Параметры эксперимента В этом эксперименте мы будем пользоваться следующими функционалами качества моделирования:

- Перплексия на контрольной выборке 2 .
- Разреженность матрицы Ф.
- ullet Разреженность матрицы Θ документов обучающей выборки.
- Характеристики ядер тем (размер, чистота, контрастность) ([?] ССЫЛ-КА НА НУЖНУЮ ПУБЛИКАЦИЮ КВ!!!).

Обе модели будут иметь следующий общий набор параметров, с которыми будет запускаться BigARTM: 1 проход по коллекции 3 , 10 проходов по каждому документу, 100 выделяемых тем. Матрица Θ , построенная на предыдущем проходе по документу, используется в качестве начального приближения на текущем. Параметры обновления матрицы Φ , κ и τ_0 , равны 0.5 и 64 соответственно 4 . Порог p(t|w) для ядровых функционалов — 0.25,. Размер батча равен 10000, обновления модели производится каждые батч.

Параметры LDA
$$\alpha = \beta = \frac{1}{|T|}$$
.

Регуляризатор для ARTM, представляющий собой смесь разреживания и декорреляции тем, описывается формулой

$$R(\Phi, \Theta) = -\beta \sum_{t \in T} \sum_{w \in W} \beta_w \ln \phi_{wt} - \alpha \sum_{d \in D} \sum_{t \in T} \alpha_t \ln \theta_{td}$$
$$-\gamma \sum_{t \in T} \sum_{s \in T \setminus t} \sum_{w \in W} \phi_{wt} \phi_{ws} \to \max. \tag{1}$$

 $^{^1{\}rm Ko}$ ллекция была получена с помощью gensim.make_wikicorpus.

 $^{^2}$ Объём контрольной выборки, на которой перплексия измерялась в ходе прохода по коллекции — 10 тыс. документов. Кроме того, была измерена результирующая перплексия на выборке из 100 тыс. документов.

 $^{^3 \}Pi$ одразумевается один полный проход по всей коллекции и повторный проход по первым 1.5×10^5 документам для уточнения их распределений.

⁴Как это было в экспериментах в ?? РАЗДЕЛ ПРО СРАВНЕНИЕ БИБЛИОТЕК!!!

Рис. 1: Comparison of LDA (thin) and ARTM (bold) models. X axis is a number of processed documents.

Таблица 1: Comparison of LDA and ARTM models. Quality functionals: \mathcal{P}_{10k} — hold-out perplexity on 10.000 and 100.000 documents sets, \mathcal{S}_{Φ} , \mathcal{S}_{Θ} — sparsity of Φ and Θ matrices (in %), \mathcal{K}_s , \mathcal{K}_p , \mathcal{K}_c — average topic kernel size, purity and contrast respectively.

${\bf Model/Functional}$	\mathcal{P}_{10k}	\mathcal{P}_{100k}	\mathcal{S}_{Φ}	\mathcal{S}_Θ	\mathcal{K}_s	\mathcal{K}_p	\mathcal{K}_c
LDA	3499	3827	0.0	0.0	931	0.535	0.516
ARTM	3592	3944	96.3	80.5	1135	0.810	0.732

Отсюда получаются формулы М-шага

$$\phi_{wt} \propto \left(n_{wt} - \beta \underbrace{\beta_w[t \in T]}_{\text{sparsing topic}} - \gamma \underbrace{[t \in T] \phi_{wt} \sum_{s \in T \setminus t} \phi_{ws}}_{} \right)_{+}; \tag{2}$$

$$\theta_{td} \propto \left(n_{td} - \alpha \underbrace{\alpha_t[t \in T]}_{\text{sparsing topic}} \right)_+.$$
 (3)

Коэффициенты β_w и α_t примем равными 1, $\forall w, t$. Коэффициенты регуляризации α, β и γ возьмём постоянными на протяжении всего прохода по коллекции. Их значения: $\alpha = 0.15, \beta = 0.009, \gamma = 7.8 \times 10^5$.

Результаты В таблице 1 приведены финальные значения функционалов качества после одного прохода по коллекции для моделей LDA и ARTM. Видно, что комбинация регуляризаторов разреживания и декорреляции улучшает качество результирующей модели с небольшими потерями перплексии.

Более подробно процесс обучения представлен на 1. На верхнем графике показано убывание перплексии и замеры разреженностей матриц Φ и Θ . На нижнем — усреднённые характеристики ядер тем. Видно, что LDA совершенно не способствует разреживанию и даёт менее чистые и контрастные ядра тем, чем ARTM.