

UM EECS 270 F22 Introduction to Logic Design

4. Boolean (Switching) Algebra

Boolean (Switching) Algebra

- Basic "language" for combinational and sequential switching circuits
- History:
 - Boole (1854) developed "the science of logic" to "give expression . . . to the fundamental laws of reasoning in the symbolic language of a Calculus."
 - Huntington (1904) formally introduced an axiomatic definition (one of several) of Boolean algebras. His axioms became known as the Huntington postulates.
 - Birkhoff (1940s) discussed Boolean algebras in the context of lattice theory
 - Shannon (1938) developed the 2-valued algebra of switching (relay) circuits and showed its relation to Boolean algebra

Claude Shannon

Huntington Postulates

A Boolean Algebra is a set *B* with two binary operators + and · And the equivalence relation = that satisfies the following properties:

- Closure
 - with respect to +
 - with respect to ·
- Identity elements
 - 0 with respect to +
 - 1 with respect to ·
- Commutative

$$-x \cdot y = y \cdot x$$

$$- x + y = y + x$$

- Distributive
 - · is distributive over +
 - + is distributive over ·
- Complements: $\forall x \in B, \exists x' \in B$ (called the complement of x) such that

$$- x + x' = 1$$
 and

$$-x \cdot x' = 0$$

• There are at least 2 distinct elements in B

Formal Definition of Switching Algebra

- Base set: $B_2 = \{0, 1\}$
- One unary operation: NOT or COMPLEMENT: $(x', \bar{x}, \neg x)$
- Two binary operations: AND (\cdot, Λ) , OR (+, V)
- Postulates (axioms):

Postulate	Defines	A	В
P1	Switching Variables	$x = 0 \text{ iff } x \neq 1$	$x = 1 \text{ iff } x \neq 0$
P2	NOT	0'=1	1'= 0
Р3		$0 \cdot 0 = 0$	1 + 1 = 1
P4	AND / OR	$1 \cdot 1 = 1$	0 + 0 = 0
P5		$0 \cdot 1 = 1 \cdot 0 = 0$	0+1=1+0=1

• Duality: $0 \leftrightarrow 1, \leftrightarrow +$

Properties (Theorems) of Switching Algebra

- From postulates, we can derive many theorems which can be used to manipulate switching expressions
- Recursive definition of switching expressions:
 - Any switching constant or variable is a switching expression
 - If E and F are switching expressions, then so are E', F', $E \cdot F$, and E + F
- A literal is a variable x or its complement x'
- Theorems can be proved by:
 - Perfect induction (enumerating all possible combinations of variables)
 - Finite induction
 - Algebraic manipulation (using postulates and already proved theorems)
 - Use of duality

(Some) Theorems

	Α	Name	В		
T1	$x \cdot 1 = x$	Identities	x + 0 = x		
T2	$x \cdot 0 = 0$	Null Elements	x + 1 = 1		
Т3	$x \cdot x = x$	Idempotency	x + x = x		
T4		Involution $(x')' = x$			
T5	$x \cdot x' = 0$	Complements	x + x' = 1		
T6	$x \cdot y = y \cdot x$	Commutativity	x + y = y + x		
T7	$x \cdot (x + y) = x$	Absorption	$x + (x \cdot y) = x$		
T8	$x \cdot (x' + y) = x \cdot y$	No Name	$x + (x' \cdot y) = x + y$		
Т9	$(x \cdot y) \cdot z = x \cdot (y \cdot z)$	Associativity	(x+y)+z=x+(y+z)		
T10	$x \cdot (y+z) = x \cdot y + x \cdot z$	Distributivity	$x + (y \cdot z) = (x + y) \cdot (x + z)$		
T11	$x \cdot y + x' \cdot z + y \cdot z = x \cdot y + x' \cdot z$	Consensus	$(x + y) \cdot (x'+z) \cdot (y + z)$ = $(x + y) \cdot (x'+z)$		
T12	De Morgan's $f(x_1,, x_n, 0, 1, \cdot, +)' = f(x_1',, x_n', 1, 0, +, \cdot)$				

Proof by Perfect Induction

$$x \cdot (y + z) = x \cdot y + x \cdot z$$

	A	В	
Р3	$0 \cdot 0 = 0$	1 + 1 = 1	
P4	$1 \cdot 1 = 1$	0 + 0 = 0	
P5	$0 \cdot 1 = 1 \cdot 0 = 0$	1 + 0 = 0 + 1 = 1	

x y z	$x \cdot y$	$x \cdot z$	y + z	$x \cdot (y+z)$	$x \cdot y + x \cdot z$	Using
000	0	0	0	\bigcirc	\bigcirc	P3A, P4B
001	0	0	1	0	0	P3A, P5A, P5B, P4B
010	0	0	1	0	0	P5A, P3A, P5B, P4B
011	0	0	1	0	0	P5A, P3B, P4B
100	0	0	0	0	0	P5A, P4B
101	0	1	1	1	1	P5A, P4A, P5B
110	1	0	1	1	1	P4A, P5A, P5B
111	1	1	1	UM AECS 270	Fall 2022 1	P4A, P3B

Proof by Finite Induction

Prove that
$$(x_1 + x_2 + ... + x_n)' = x_1' \cdot x_2' \cdot ... \cdot x_n'$$

• Basis: Establish truth for n = 2 by perfect induction:

$$(x_1 + x_2)' = x_1' \cdot x_2'$$

• Induction: Assume statement is true for $n = k, k \ge 2$ and prove its truth for n = k + 1

Induction Hypothesis: $(x_1 + x_2 + ... + x_k)' = x_1' \cdot x_2' \cdot ... \cdot x_k'$

$$(x_1 + x_2 + \dots + x_k) + x_{k+1})' = [(x_1 + x_k x_{k+1})' + x_k) + x_{k+1}]'$$

$$= (x_1 + x_2 + \dots + x_k) + x_{k+1}]'$$

$$= (x_1 + x_2 + \dots + x_k)' \cdot x'_{k+1}$$

$$= x'_1 \cdot x'_2 \cdot \dots \cdot x'_k \cdot x'_{k+1}$$

Proof by Algebraic Manipulation

Prove the consensus theorem (T11)

$$xy + x'z + yz = xy + x'z$$

$$xy + x'z + yz = xy + x'z + yz1$$
 (Identity)
= $xy + x'z + yz(x + x')$ (Complement)

$$= xy1 + x'z1 + xyz + x'yz$$
 (Id., Dist., Assoc.)

$$= xy(1+z) + x'z(1+y)$$
 (Assoc., Dist.)

$$= xy1 + x'z1$$

(Null Element)

$$= xy + x'z$$

(Identity)

Additional Comments about Theorems

- The following properties are peculiar to switching algebra and are not true for the algebra of real numbers:
 - Idempotency
 - All properties involving complements
 - Distributivity of sum over product
- Associativity allows the extension of the two binary operators AND and OR to three or more variables
- Simplification of switching expressions is facilitated by the absorption and consensus theorems
- The involution property and De Morgan's laws provide the rules for complementing switching expressions