MIT OpenCourseWare http://ocw.mit.edu

18.701 Algebra I Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

The Alternating Group

A group G is *simple* if it has no proper normal subgroup and if it contains more than one element. The alternating group A_n is the group of even permutations. Our object is to prove

Theorem. If $n \geq 5$, the alternating group A_n is a simple group.

To complete the picture we note that A_2 is the trivial group. A_3 is cyclic of order 3, so it is also a simple group, but that A_4 is not simple. The set N that consists of the identity and the three products of transpositions (12)(34), (13)(24), (14)(23) is a normal subgroup of A_4 .

Lemma 1. If $n \geq 3$, the alternating group A_n is generated by 3-cycles.

This lemma was on the first homework assignment.

Lemma 2. (i) The 3-cycles form a single conjugacy class in the symmetric group S_n . (ii) If $n \geq 5$, the 3-cycles form a single conjugacy class in the alternating group A_n .

(The 3-cycles form two conjugacy classes in A_3 and in A_4 .)

Proof. (i) Let p denote the cycle (123), and let $q = (\mathbf{i}\mathbf{j}\mathbf{k})$, where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are arbitrary distinct indices. Let α be a permutation that "renames" indices by sending

$$i\mapsto 1$$
 , $j\mapsto 2$, $k\mapsto 3$

and is otherwise arbitrary. In tabular form, $\alpha = \begin{pmatrix} \mathbf{i} \ \mathbf{j} \mathbf{k} \cdot \mathbf{u} \cdot \mathbf{v} \\ \mathbf{1} \mathbf{2} \mathbf{3} \cdot \mathbf{v} \cdot \mathbf{v} \end{pmatrix}$, where $\mathbf{u} \mapsto \mathbf{v}$ stands for the arbitrary choices. Then $\alpha q \alpha^{-1}$ is the composition

"first unrename by α^{-1} , then permute by q, then rename by α ":

i.e., $\mathbf{1} \mapsto \mathbf{j} \mapsto \mathbf{2}$, etc... This permutation is best visualized using mixed notation, and we display the permutations in reverse order so that we can read from left to right:

(3)
$$\begin{pmatrix} \mathbf{1} \, \mathbf{2} \, \mathbf{3} \cdot \mathbf{v} \cdot \cdot \\ \mathbf{i} \, \mathbf{j} \, \mathbf{k} \cdot \mathbf{u} \cdot \cdot \end{pmatrix} (\mathbf{i} \, \mathbf{j} \, \mathbf{k}) \begin{pmatrix} \mathbf{i} \, \mathbf{j} \, \mathbf{k} \cdot \mathbf{u} \cdot \cdot \\ \mathbf{1} \, \mathbf{2} \, \mathbf{3} \cdot \mathbf{v} \cdot \cdot \end{pmatrix} = (\mathbf{123}).$$

$$\alpha^{-1} \qquad q \qquad \alpha$$

Therefore $q = (\mathbf{ijk})$ is conjugate to p = (123) in the symmetric group.

(ii) Suppose that $n \geq 5$, and let α be as above. If α is an even permutation, equation (3) shows that q and p are conjugate in the alternating group. Suppose that α is an odd permutation, and let τ denote the transposition (45). Then $\beta = \tau \alpha$ is even. Then

$$\beta q \beta^{-1} = \tau \alpha q \alpha^{-1} \tau^{-1} = \tau p \tau^{-1} = (54)(123)(45) = p.$$

So q is conjugate to p in A_n too.

We now proceed to the proof of the Theorem. Let N be a normal subgroup of A_n that does not consist of the identity alone. We must show that $N = A_n$. It suffices to show that N contains a 3-cycle. If so, then since N is normal, Lemma 2 will show that N contains every 3-cycle, and Lemma 1 will show that $N = A_n$.

We are given that N is a normal subgroup and that it contains a permutation x different from the identity. We are allowed to conjugate, invert, and multiply elements of N. For example, if g is any element of A_n , then gxg^{-1} and x^{-1} are in N too. So is their product, the commutator $gxg^{-1}x^{-1}$. These commutators give us many elements of the group because g can be arbitrary.

A first step is to replace x by a suitable power. Some power of x will have prime order, and we may replace x by this power. (For instance, if x has order 12, then x^6 has order 2.) Hence we may assume that x has prime order, say order ℓ . Then x will be made up of ℓ -cycles and 1-cycles.

We distinguish three cases $\ell \geq 5$, $\ell = 3$, and $\ell = 2$, and we compute a suitable commutator in each case, hoping to find a 3-cycle. Appropriate elements can be found by experiment. We'll use cycle notation, and we compute $qxq^{-1}x^{-1}$ as

"first do
$$x^{-1}$$
, then q^{-1} , then x , then q "

Case 1: x has order $\ell \geq 5$.

How the indices are numbered is irrelevant, so we may suppose that x contains the ℓ -cycle $(12345\cdots\ell)$, say $x = (12345\cdots\ell)m$, where m is a permutation of the remaining indices $\ell+1, ..., n$. Let g = (432). Then $gxg^{-1}x^{-1}$ is the permutation

$$[m^{-1}(\ell \cdots 54321)](234)[(12345 \cdots \ell)m](432) = (245).$$

Here and below, the terms m^{-1} and m cancel because they don't involve any of the indices that are involved in the cycles shown. The commutator is a 3-cycle, so this case is settled.

Case 2: x has order $\ell = 3$.

If x is a 3-cycle, there is nothing to prove. If not, then x contains at least two 3-cycles, say x = (123)(456)m, where m is a permutation of the remaining indices. Let g = (432). Then $gxg^{-1}x^{-1}$ is the permutation

$$[m^{-1}(654)(321)]$$
 (234) $[(123)(456)m](432) = (15243)$.

The commutator has order 5, and we go back to Case 1.

Case 3a: x has order $\ell = 2$ and it contains a 1-cycle.

Since it is an even permutation, x must contain at least two 2-cycles, say x = (12)(34)(5)m. Let g = (531). Then $gxg^{-1}x^{-1}$ is the permutation

$$[m^{-1}(5)(43)(21)](135)[(12)(34)(5)m](531) = (15243).$$

The commutator has order 5, and we go back to Case 1 again.

Case 3b: x has order $\ell = 2$, and contains no 1-cycles.

Since $n \ge 5$, x contains more than two 2-cycles. Say x = (12)(34)(56)m. Let g = (531). Then $gxg^{-1}x^{-1}$ is the permutation

$$[m^{-1}(\mathbf{65})(\mathbf{43})(\mathbf{21})](\mathbf{135})[(\mathbf{12})(\mathbf{34})(\mathbf{56})m](\mathbf{531}) = (\mathbf{153})(\mathbf{246}).$$

The commutator has order 3 and we go back to Case 2.

These are all the possibilities for an even permutation of prime order when $n \ge 5$, so the proof of the theorem is complete.