HMM for Alignments

Laboratory of Bioinformatics I Module 2

March 27, 2018

Emidio Capriotti
http://biofold.org/

Department of Pharmacy and Biotechnology (FaBiT) University of Bologna

Alignment of globins

Different positions are not equivalent

Sequence logo

A more flexible alignment score is needed to align protein families

How to Align?

Each state represent a position in the alignment.

Each position has a peculiar composition

From Sequences to Model

Given a set of sequences we can train a model by estimating the emission probability

Τ

Scoring a Sequence

Given the model we can calculate the probability of the a new aligned sequence

$$P(s|M) = 1 \times 0.66 \times 1 \times 0.33 \times 1 \times 0.66$$

Alignments with Gaps

A strategy to introduce gaps is needed

Silent States

Different topology to model gaps

N(N-1)/2 transitions

To reduce the number of parameters we can use states that doesn't emit any character 4N-8 transitions

Profile HMM

Delete states

Insert states

Match states

$$\mathbf{A}$$
 \mathbf{M}_0

$$\mathbf{C}$$
 \mathbf{M}_1

$$\mathbf{G}$$
 \mathbf{M}_2

$$M_3$$

$$M_4$$

$$M_5$$

A

$$\begin{array}{ccccc} \textbf{A} & \textbf{C} & \textbf{G} & \textbf{C} \\ M_0 & I_0 & I_0 & M_1 \end{array}$$

$$\mathbf{A}$$
 \mathbf{M}_2

$$\mathbf{G}$$
 \mathbf{M}_3

$$M_5$$

$$M_0$$

$$\mathbf{D}_1$$

$$M_2$$

$$\mathbf{A}$$
 \mathbf{M}_3

$${f T}$$
 M_4

$$M_5$$

Example of Alignment

Sequence 1

A S T R A L

Viterbi path

 $\mathbf{M}_0 \quad \mathbf{M}_1 \quad \mathbf{M}_2 \quad \mathbf{M}_3 \quad \mathbf{M}_4 \quad \mathbf{M}_5$

ASTRAL

Sequence 2

A S T A I L $Viter bi \ path$ M₁ M₂ D₃ M₄ I₄ M₅

A S T A I L

Sequence 3

A R T I

Alignment Calculation

M ₀	M ₁	M ₂ T	M ₃	M ₄ A		M ₅ L	Sequence 1
M ₀	M ₁	M ₂ T	D ₃	M ₄]	I ₄	M ₅ L	Sequence 2
M ₀	M ₁	M ₂ T	D ₃	D_4		M ₅	Sequence 3

-Log P(s I M) Is an alignment score

Alignment of Globins

F GG GG
S----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL--RVDPV
STPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL--HVDPE

KSEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH--KIPIK KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG---VTHD TTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF--QVDPQ GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG---VADA

---AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGNKHIKAQ

GGGGGGGGGGGGG HHHHH

НННННННННННННННННННН

NFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR----NFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH----YLEFISEAIIHVLHSRHPADFGADAQGAMSKALELFRKDIAAKYKELGYQG
QLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM----YFKVLAAVIADTVAAG------DAGFEKLMSMICILLRSAY----HFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA--YFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLOS----

Globins HMM

HMM are calculate from a training set of 400 unaligned sequences. After the HMM is built, it is used to obtain a multiple alignment of all the training sequences. This is the alignment of the 7 globins as aligned with the trained model.

ασασασασασασασασ

BBBBBBBBBBBBBBBBCCCCCCCCCC

AAAAAAAAAAAAA E	BBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCC
	DDDD *******
VLSPADKTNVKAAWGKVGA	
VhLTPEEKSAVTALWGKVN	
VLSEGEWQLVLHVWAKVEA	
LSADQISTVQASFDKVk	
PivdtgsvapLSAAEKTKIRSAWAPVYS	
GaLTESQAALVKSSWEEFNAN	
GLSAAQRQVIAATWKDIAGadN	IGAGVGKDCLIKFLSAHPQMAAVFG-F
DDDDDDDEE EEEEEEEEEEEEEEE	FFFFFFFF FFFG
F	GGGG
*****	*****
SHGSAQVKGH-GKKVADALTNAVAHV	
STPDAVMGNPKVKA.HGKKVLGAFSDGLAHI	DNLKGTFATLSELHCDKLHVD
KTEA-EMKASEDLKKHGVTVLTALGAILKK	GHHEAELKPLAQSHATKHKIP
DLES-IKGTAPFET.HANRIVGFFSKIIGEI	JPNIEADVNTFVASHKPR-GVT
TTADQLKKSADVRW.HAERIINAVNDAVASN	MDDtekMSMKLRDLSGKHAKSFQVD
TSEVPQ-NNPELQA.HAGKVFKLVYEAAIQI	QVtgvvvTDATLKNLGSVHVSK-GVA
SGASDPGVAA.LGAKVLAQIGVAVSHI	.GDegkMVAQMKAVGVRHKgygNK-HIK
	ІНННННННННННННН
*******	*****
PVNFKLLSHCLLVTLAAHLPAEFTPAVHASI	DKFLASVSTVLTSKYR
PENFRLLGNVLVCVLAHHFGKEFTPPVQAAY	QKVVAGVANALAHKYH
IKYLEFISEAIIHVLHSRHPGDFGADAQGAN	MKALELFRKDIAAKYkelgygG
HDQLNNFRAGFVSYMKAHTDF-AGAEAAV	GATLDTFFGMIFSKM
PQYFKVLAAVIADTVAAGDAGE	'EKLMSMICILLRSAY
DAHFPVVKEAILKTIKEVVGAKWSEELNSAV	TIAYDELAIVIKKEMndaA
AQYFEPLGASLLSAMEHRIGGKMNAAAKDAV	NAAAYADISGALISGLqS

Globin Classification

The NLL-score is calculated to discriminate between Globin and non-Globin protein sequences

NLLscore = -log P(sIM)

Score distribution

$$Z\text{-score} = \frac{\text{NLL (s) - }}{\sigma \text{ (NLL)}}$$

With mean and standard deviation computed on sets of sequences with similar length

Confusion Matrix

A 2x2 matrix for calculating the performance of prediction methods

		Condition (as determined by "Gold standard")		
	Total population	Condition positive	Condition negative	
Test outcome	Test outcome positive	True positive	False positive (Type I error)	
	Test outcome negative	False negative (Type II error)	True negative	

Overall Accuracy

How many predictions are correct on the overall?

Accuracy (ACC):
$$ACC = \frac{(TP+TN)}{(TP+FN+TN+FP)}$$

Is it an informative enough score?

Dataset Unbalance

Accuracy can be strongly biased because of class unbalance. It is not very informative

	Class 1	Class -1
Prediction 1	90	10
Prediction -1	0	0

Acc = 0.9
ALL the examples are predicted in the class 1:
Very bad predictions

	Class 1	Class -1
Prediction 1	81	1
Prediction -1	9	9

Acc = 0.9 It seems a much more reasonable prediction

Class Specific Measures

Sensitivity (Sn) or True Positive Rate (TPR): $Sn = \frac{TP}{TP + FN}$

It answer to the question:

How many of the real positive examples are correctly predicted?

Precision or Positive Predictive Value (PPV):

$$PPV = \frac{TP}{TP + FP}$$

It answer to the question:

How many of the positive predictions are correct?

It is sometimes referred as Specificity

Matthews Correlation

Matthews Correlation Coefficient (MCC):

$$MCC = \frac{(TP \times TN) - (FP \times FN)}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}}$$

It answer to the question:

Is the prediction really correlated with the real classes?

It is 0 in case of random prediction
It is 1 only in case of perfect prediction
It is -1 only in case of completely wrong prediction

It is the Pearson's correlation coefficient for categorical classes

MCC and Unbalance

MCC is not affected by dataset unbalance

	Class 1	Class -1
Prediction 1	90	10
Prediction -1	0	0

Acc = 0.9All the examples are predicted in the class 1: MCC = 0.0

Very bad predictions

	Class 1	Class -1
Prediction 1	81	1
Prediction -1	9	9

Acc = 0.9 MCC = 0.62 Predictions are good

ROC Curve

The Receiver Operating Characteristics depends on a parameter, TPR and FPR can be plotted at varying values of the parameter

Distributions of the Observed signal strength

Area Under Curve

The Area Under the ROC Curve (AUC) is used to measure the perforce of a predictor

AUC=0.5 → Random prediction

AUC=1 → Perfect prediction