- 1.1 1) On a b = 1. En choisissant q = a, alors la condition $a = b \cdot q$ est satisfaite : $a = 1 \cdot a$.
 - 2) On a b = a. En choisissant q = 1, la condition $a = b \cdot q$ est remplie : $a = a \cdot 1$.
 - 3) On a a=0. Quel que soit b, en choisissant q=0, l'exigence $a=b\cdot q$ est satisfaite : $0=b\cdot 0$.
 - 4) On suppose $c \mid b$ et $b \mid a$. Il existe par hypothèse des entiers q et r tels que $\begin{cases} a = b \cdot q \\ b = c \cdot r \end{cases}$. Il en résulte $a = b \cdot q = (c \cdot r) \cdot q = c \cdot (r \cdot q)$ avec $r \cdot q \in \mathbb{Z}$. En d'autres termes, on a montré que $c \mid a$.
 - 5) On suppose $b \mid a$. Par hypothèse, il existe un entier q tel que $a = b \cdot q$. En multipliant cette équation par c, on obtient $a c = b \cdot q \cdot c = (b c) \cdot q$. On a établi de la sorte que $b c \mid a c$.
 - 6) On suppose $c \mid a$ et $c \mid b$. Il existe par hypothèse des entiers q et r tels que $\begin{cases} a = c \cdot q \\ b = c \cdot r \end{cases}$. Soient m et n des entiers quelconques. $m \, a + n \, b = m \, (c \cdot q) + n \, (c \cdot r) = c \, m \, q + c \, n \, r = c \cdot (m \, q + n \, r)$ Cette dernière égalité prouve que $c \mid (m \, a + n \, b)$.