合肥工业大学考试专用答卷纸 (A)

2021~2022 学年第_二_ 学期 课程代码034Y01 课程名称	数学(下) 命题教师 集体 系主任审批
教学班级	考试日期2022 年 6 月 18 日 8:00-10:00 成绩
考生注意事项: 1. 本试卷分试题与答卷两部分; 2. 所有试题的解答(包括选择、填空)必须写在专用答卷纸上,在试题上直接作答一律无效; 3. 考试结束后,必须将试题、答卷整理上交,不得将试题带离考场; 4. 考生务必认真填写班级、姓名、学号等信息。	3. (8 分)【解】 $ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \qquad$
	$ \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}y'/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} \qquad (2 \hat{\mathcal{H}}) $ $ = \frac{6t(2t+1) - (3t^2+1)2}{(2t+1)^3} = \frac{6t^2 + 6t - 2}{(2t+1)^3}. $ (2 $\hat{\mathcal{H}}$)
1. e , 2. $2x\cos(x^2 + 1) dx$, 3. $1/2$, 4. $y = x - 1 + 2 \ln 2$, 5. 1 , 6. 0 .	$(2t+1)^3$ $(2t+1)^3$ 4. (8分)【解】 由于 $f(x)$ 在 $x=0$ 处连续, 因此
二、选择题(每小题 3 分,共 18 分) 请将你所选择的字母 A , B , C , D 之一对应填在下列表格里:	$f(0) = f(0^+) \qquad \dots $
題号 1 2 3 4 5 6	$= b = \lim_{x \to 0^{-}} x \arctan \frac{1}{x} = 0 \times \left(-\frac{\pi}{2}\right) = 0.$ (1 $\frac{1}{2}$)
答案 A D B A C D	由于 $f(x)$ 在 $x=0$ 处可导, 因此
三、解答题(每小题 8 分, 共 64 分) 1. (8 分)【解】	$f'_{-}(0) = f'_{+}(0), \qquad (1 \ \%)$ $f'_{-}(0) = \lim_{x \to 0^{-}} \frac{x \arctan \frac{1}{x}}{x} = \lim_{x \to 0^{-}} \arctan \frac{1}{x} = -\frac{\pi}{2} \qquad (1 \ \%)$
$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + 3x + 2} = \lim_{x \to -1} \frac{(x - 1)(x + 1)}{(x + 2)(x + 1)} $ (3 \$\frac{\(\frac{\(tau}{2}\)}{1}\)	$f'_{+}(0) = (2x+a) _{x=0} = a,$
$= \lim_{x \to -1} \frac{x-1}{x+2} \tag{3 \%}$	因此 $a = -\frac{\pi}{2}$. 由于
$=\frac{-2}{1}=-2.$ (2 分) 2. (8 分)【解】	$\lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \left(x - \frac{\pi}{2} \right) = +\infty,$ $\lim_{x \to -\infty} \frac{y}{x} = \lim_{x \to -\infty} \arctan \frac{1}{x} = 0,$ (1%)
$\lim_{x \to 0} \frac{e^x - 1 - x}{\arcsin x^2} = \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} \tag{3 \%}$ $\stackrel{\text{Add}}{=} \lim_{x \to 0} \frac{e^x - 1}{2x} \tag{3 \%}$	$\lim_{x \to -\infty} y = \lim_{x \to -\infty} x \arctan \frac{1}{x} = \lim_{t \to 0^{-}} \frac{\arctan t}{t} = 1,$ 因此曲线 $y = f(x)$ 的渐近线只有 $y = 1$.
$=\lim_{x\to 0}\frac{x}{2x}=\frac{1}{2}.$ (2 $\%$)	

合肥工业大学考试专用答卷纸 (A)

2021~2022 学年第 二 学期 课程代码 034Y01 数学(下) 课程名称 集体 系主任审批 命题教师 考试日期 2022 年 6 月 18 日 8:00-10:00 教学班级 学生姓名 7. (8分)【证明】 5. (8分)【解】 设 $F(x) = x^{2022} f(x)$,(2 分) 由 则 F(x) 在 [0,1] 上连续, (0,1) 内可导,(1分) $f'(x) = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0$ $\perp F(0) = 0, F(1) = f(1) = 0.$(1分) 由罗尔中值定理, 存在 $\xi \in (0,1)$ 使得 $F'(\xi) = 0$(2 分) 可得驻点 $x = -\frac{1}{3}, 1.$ (2 分) 由于 $F'(x) = x^{2022}f'(x) + 2022x^{2021}f(x)$ 且 $\xi \neq 0$,(1 分) 由于(1分) 所以 $\xi f'(\xi) + 2022 f(\xi) = 1$. $f(-2) = -10, \quad f(2) = 2, \quad f\left(-\frac{1}{3}\right) = \frac{5}{27}, \quad f(1) = -1, \quad \dots \dots (2 \ \%)$ 8. (8分)【解】 (1)因此最大值为 2, 最小值为 -10. $f'(x) = \frac{1}{x} - \frac{4}{x^3} = \frac{x^2 - 4}{x^3} = \frac{(x+2)(x-2)}{x^3}.$(1 分) 6. (8分)【证明】 证法一: 设 $f(x) = \tan x - x$, 则 当 0 < x < 2 时, f'(x) < 0. 当 x > 2 时, f'(x) > 0.(1 分) $f'(x) = \frac{1}{\cos^2 x} - 1 = \tan^2 x \geqslant 0.$ (2 $\frac{1}{2}$) 因此 (0,2] 是 f(x) 的单减区间, $[2,+\infty)$ 是 f(x) 的单增区间.(1分) 所以 f(x) 只有唯一的极小值 $f(2) = \ln 2 + \frac{1}{2}$(1 分) $f''(x) = -\frac{1}{x^2} + \frac{12}{x^4} = -\frac{x^2 - 12}{x^4} = -\frac{(x - 2\sqrt{3})(x + 2\sqrt{3})}{x^4}.$ (1 分) $f(x_2) \ge f(x_1), \quad \tan x_2 - \tan x_1 \ge x_2 - x_1.$ (2 %) 证法二: 设 $f(x) = \tan x$, 则 f(x) 在 $[x_1, x_2]$ 上连续, (x_1, x_2) 内可导.(2 分) 由拉格朗日中值定理, 存在 $\xi \in (x_1, x_2)$ 使得 因此 $(0,2\sqrt{3}]$ 是曲线 y = f(x) 的凹区间, $[2\sqrt{3}, +\infty)$ 是曲线 y = f(x) 的凸区间, (1 分) 拐点为 $\left(2\sqrt{3}, \ln(2\sqrt{3}) + \frac{1}{6}\right)$(1 分) $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi),$(2 分) 即

 $\frac{\tan x_2 - \tan x_1}{x_2 - x_1} = \frac{1}{\cos^2 \xi} \geqslant 1.$

所以 $\tan x_2 - \tan x_1 \geqslant x_2 - x_1$.