X Although this does not necessarily solve the problem, we can show that MN = NM. \forall nm \in NM, nm = $(mm^{-1})(nm) = m(m^{-1}nm) \in$ MN, since $N \triangleleft G$. so $NM \subseteq MN$. \forall mn \in MN, $mn = mn(m^{-1}m) = (mnm^{-1})m \in$ NM, since $N \triangleleft G$. so $MN \subseteq NM$. MN = NM.

First, we show that NM is a subgroup. Obviously $e_G \in NM$.

Existence of Inverses: $(nm)^{-1} = m^{-1}n^{-1}$ => If you showed that MN=NM you're done, but I'll assume you haven't. = $m^{-1}n^{-1} (mm^{-1})$ = $(m^{-1}n^{-1}m)m^{-1} \in NM$ because $N \triangleleft G$

Closure $(n,m)(n_2m_2) = n_1m_1n_2(m_1^{-1}m_1)m_2$ = $(n_1(m_1n_2m_1^{-1}))(m_1m_2) \in NM$, again because $N \triangleleft G$.

: NM & G.

Notice that the above proof \longrightarrow of NM=MN $\leq G$ requires only N (or M) to be normal in G.

For NM & G , we need both to be normal . however .

Let $g \in G$; then $g(nm)g^{-1} = gn(g^{-1}g)mg^{-1}$ = $(gng^{-1})(gmg^{-1}) \in NM$, since both N and M are normal in G.

.. NM & G.