Utkarsh Verma

Phone Number: 9452674383 E-Mail Address: utkarshverma@ieee.org

_					. •		
15	a	П	c	3	ti		n
13	u	ш	L	•	. 4	w.	

B.Tech. (E&C)	2015-2019	Delhi Technological University	7.78 CGPA
AISSCE (Class XII)	2014	Kendriya Vidyalaya, Allahabad	89.4%
AISSE (Class X)	2012	Sanskaar International School, Alld.	9.2 CGPA

Skills

Programming LanguagesC/C++, Python, MATLAB, SQL, Node.js (familiar)Python LibrariesTensorFlow, TFLearn, Keras, OpenCV, Scikit-LearnSoftware & ToolsJupyter Notebooks, Anaconda, Docker, Git, VSCode, Octave

Internship

CSIR-CEERI, Pilani, Rajasthan

Jun - July 2018

Position: Research Trainee

Guide(s): Prof Santanu Chaudhury, ex-Director, CSIR-CEERI and Dr S. A. Akbar, Chief Scientist, CSIR-CEERI

Implemented the state-of-the-art deep neural network architecture for Super-resolution and Enhancement of Images and trained it on a dataset of 800 high-resolution images.

Developed an end-to-end architecture for document image Super-resolution, denoising and artifacts removal for optimum performance and robustness.

Identified the shortcomings in conventional super-resolution techniques which improve the Peak Signal-to-Noise Ratio only and researched for metrics to state a perceptually super-resolved image.

Projects

Image super-resolution with Perceptual Quality Retention

Jun - July 2018

Built a Deep Neural Network with modified loss function and architecture in order to keep the perceptual quality of the image intact along with improving the peak signal to noise ratio (PSNR).

Human Activity Recognition in Videos

Jun - July 2018

Developed a deep neural net end-to-end pipeline to capture data in compressed form and trained the model to detect 101 labelled activities of UCF-101 dataset. The architecture used with compressive sensing pipeline was CNN-LSTM.

Vector - An Amazon Alexa Skill

Jun 2017

Developed a daily commute assistant skill for Amazon Alexa which answered FAQs related to DTC bus travel.

Computer Vision based Pick-Up Bot

Nov 2016 - Mar 2017

Built a Computer Vision based Automated Assembly on a Firebird-V bot which was programmed to pick objects that could be differentiated by colour and shape and deliver them to their corresponding destination signified by the same shape and colour.

Awards and Accolades

Awarus and Accolades	
13 th Position, ECCV-PIRM Challenge, ECCV 2018	Aug 2018
Perceptual Quality Aware Image Super-resolution using Deep Backpropagation Network	
1 st Runner Up, Smart India Hackathon 2018	Apr 2018
World's Largest Hackathon - 1L+ Participants	
2 nd Runner Up, Fintech Innovation Hackathon	Sep 2017
DCB Bank	
Finalist, E-Yantra Robotics Competition	Mar 2017
IIT Bombay	

Relevant MOOCs Taken:

Convolutional Neural Networks for Visual Recognition (CS231n) 5-course specialisation in Deep Learning Machine Learning Specialisation Advanced Python for Machine Learning (DSE200x)

Stanford University Deeplearning.ai University of Washington UCSanDiego