CENTRAAL EXAMEN NATUURKUNDE: HAVO

2016		2017		2018		2019		2021			2022		
tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 3	tijdvak 1	tijdvak 2	tijdvak
Radiumbad $^{226}{\rm Ra} \rightarrow {}^{222}{\rm Rn} + \alpha + \gamma.$	Sluis van Fankel	Elektrische stroomverwarmer	Panfluit	Scheepsradar $s = vt$:	Magische lamp	Walstroom $P = \frac{E}{t} : E_{\text{stookolie}} = r_V V$	Koper-67 $^{67}_{29}$ Cu $\rightarrow {}^{67}_{30}$ Zn + ${}^{0}_{-1}$ e + ${}^{0}_{0}$ γ	Lassen	Zweven op geluid	Lutetium-177 ${}^{177}_{71}\text{Lu} \rightarrow {}^{177}_{72}\text{Hf} + {}^{0}_{-1}\text{e} + \gamma$	Muziekdoos $v = \frac{2\pi r}{T}$	Straling tijdens vliegen $E_{ m f} = h f$	Superaarde? $T = \frac{k_{\rm w}}{\lambda_{\rm ma}}$
$A(t) = \frac{0,693}{t_{\frac{1}{2}}} N(t)$								$\rho = \frac{RA}{\ell} \qquad U = IR$	$f = \frac{1}{T}$			$^{241}_{95}\text{Am} \rightarrow ^{237}_{93}\text{Np} + ^{4}_{2}\text{He} (+ \gamma)$	$A = \pi$
			$v = f\lambda$	$c = f\lambda$	$P = UI$ $R = \frac{U}{I}$			$Q = cm\Delta T$ $E = Pt$ $P = UI$	$v = f\lambda$	$E = hf \qquad \lambda = \frac{c}{f}$	$f = \frac{1}{T}$	${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + {}^{1}_{0}\text{n}$	
$E_{\mathrm{totaal},\alpha} = N_{\alpha} \cdot E_{\alpha} \cdot t$	$v = \left(\frac{\Delta h}{\Delta t}\right)_{\text{raaklijn}}$		$f = \frac{1}{T}$			P = UI	$E_{\rm k} = \frac{1}{2} m_{\rm p} v^2$	I = GU.		$\left(\frac{1}{2}\right)^n$		$H = w_{\rm R}D$	$F_{\rm z} = F_{\rm g} \to mg = G \frac{mM}{r^2} \to g$
					Heftruck	$ \rho = \frac{RA}{\ell} $			Sirius	$I = \frac{\text{constante}}{r^2}$	$T = 2\pi \sqrt{\frac{m}{C}}$	Ruimtepuin $F_{\text{mpz}} = F_{\text{g}} \rightarrow \frac{mv^2}{r} = G \frac{mM}{r^2}$	
Fontein van Geneve $P = UI$	$P = \frac{E_{z}}{t} \qquad m = \rho V \eta = \frac{P_{el}}{P}$	$R = \rho \frac{\ell}{A}$ $U = IR$ $A = \pi r^2$	Stretchsensor							$\left(\frac{1}{2}\right)^{14}$	New Horizons	$\eta = rac{E_{ m nuttig}}{E}$ $E_{ m ch} = r_m m$	
$E_{\rm kin} = \frac{1}{2}mv^2$ $\eta = \frac{E_{\rm kin}}{E_{\rm pompen}}$		Molybdeen-99 ${}^{98}_{42}\text{Mo} + {}^{1}_{0}\text{n} \rightarrow {}^{99}_{42}\text{Mo}$	$E = \frac{\sigma}{\varepsilon}$	$\frac{\Delta t}{T}$ $\frac{\Delta f}{f}$		Wereldrecord blobspringen $v = \left(\frac{\Delta x}{\Delta x}\right)$	Buisisolatie $P = \frac{U^2}{R} P = UI U = IR.$	$\sigma = \frac{F}{A}$		Accuboormachine $P = UI \text{capaciteit}$	$F_{\rm g} = F_{\rm mpz} \to G \frac{mM}{r^2} = \frac{mv^2}{r}.$	$E_{ m in}$	Concertharp
$\frac{1}{2}mv^2 = mgh$	Wieg	42*************************************	$\sigma = \frac{F}{A}$	Operatiedeken $\rho = \frac{m}{V}$	$\sigma = \frac{F}{A}$	$\Delta t \Big)_{\text{raaklijn}}$ $s = vt$	$Q = cm\Delta T \qquad E = Pt$	De maan Europa $2\pi r$	$\rho = \frac{m}{V}. V = \frac{4}{3}\pi r^3.$			$\Delta E_{\rm k} = \frac{1}{2} m v_{\rm v}^2 - \frac{1}{2} m v_{\rm n}^2 W = P \cdot t$	$\ell = \frac{1}{2}\lambda$ $v = 0$
$v = \left(\frac{\Delta x}{\Delta t}\right)_{\text{raaklijn}}$	$F_{\text{veer}} = Cu$ $F_{\text{veer}} = F_{\text{z}}$	$E = hf$ $c = f\lambda$		$ \rho = \frac{RA}{\ell} \qquad A = \pi r^2 $	$P_{\text{nuttig}} = Fv$ $F = mg$ $\eta = \frac{E_{\text{nuttig}}}{E_{\text{in}}}$ $E_{\text{in}} = Pt$	$F_{\text{res}} = ma$ $F_{\text{z}} = mg$		$v = \frac{2\pi r}{T}$ $\lambda_{\text{max}} T = k_{\text{W}} \qquad c = f\lambda$	$\lambda_{\max} T = k_{\mathrm{W}}$	$v = \frac{2\pi r}{T}$	$^{238}_{94}$ Pu $\rightarrow ^{234}_{92}$ U + $^{4}_{2}$ He	Kreukelzone	
raaklijn	$T = 2\pi \sqrt{\frac{m}{C}}$	$A = -\left(\frac{\Delta N}{\Delta t}\right)_{\text{raaklijn}}$	$R_{\text{totaal}} = R_1 + R_2$	£	$P = UI$ $t = \frac{\text{accucapaciteit}}{I}$			$F_{\rm g} = G \frac{Mm}{2}$	Schommelsprong		$\Delta N = A \cdot \Delta t$	U = IR	
Trillingen in een vrachtwagen 1	hartslag = $\frac{60}{T}$	√Δι ∕raaklijn	$P = UI U = IR$ $t = \frac{\text{capaciteit}}{I} \qquad P = UI$	P = UI $U = IR$	$E_{\text{accu}} = UIt$ $\sin \alpha = \frac{F_{\text{motor}}}{F}$	$E_z = mgh$		5 r ²	$S = vt$ $F_{\text{mpz}} = \frac{mv^2}{r} \qquad F_z = mg$	$koppel = F \cdot d$	$P_{ ext{Pu-238}} = A \cdot E_{ ext{verval}} \ oldsymbol{\eta} = rac{P_{ ext{elektrisch}}}{P}$		
$f = \frac{1}{T}$					Rosetta		$P = \lambda A \frac{\Delta T}{I}$		$\sigma = \frac{F}{A} \qquad A = \pi r^2$		P _{Pu-238}	$F_z = mg$	$f = \frac{1}{2}$
	Bliksem $v_{\text{gelvid}} = \frac{\Delta x}{1}$	Road-train $s = vt$	Powerskips	SpaceShipOne		Kookstenen	d Hyperloop	Kitmarker	$W = \Delta E_{\rm k} = \frac{1}{2}mv_{\rm p}^2 - \frac{1}{2}mv_{\rm q}^2$	Solderen	Lithografie		Wielrennen met een
$T = 2\pi \sqrt{\frac{m}{C}} \qquad T = \frac{1}{f}$	$v_{\text{geluid}} = \frac{1}{\Delta t}$ $E = Pt \qquad P = UI$	c - vt	$F_{\rm n} = \frac{1}{2} mg$ $F_1 r_1 = F_2 r_2$	$a = \left(\frac{\Delta v}{\Delta t}\right)_{\text{raaklijn}}$	$v_{\text{gem}} = \frac{\Delta x}{\Delta t}$	$\lambda_{\max} T = k_{\mathrm{W}}$ $Q = cm\Delta T$		${}_{1}^{3}H \rightarrow {}_{2}^{3}He + {}_{-1}^{0}e$	77 — ДДБ _К — 2 1117 q	D 177		$(\Delta t)_{ m raaklijn}$	$E_{z} = mgh$ W
$f = 2\pi\sqrt{C}$	E-Pt 1-01	$w = mg\Delta n$ t	$a = \frac{\Delta v}{\Delta t}$ $F_{\text{res}} = ma$	$g = \frac{GM}{raaklijn}$	$V_{\text{gem}} = \frac{1}{\Delta t}$ $F_{\text{mpz}} = \frac{mv^2}{r} F_{\text{g}} = \frac{GmM}{r^2}$			$E_{ m f}=hf$	Elektrische eierkoker	P = UI	$\frac{E_{\text{totaal}}}{E} = n_{\text{pulsen}}$		E = Pt
Elektrische auto		$a = \frac{\Delta v}{\Delta t} E_{k} = Fs F = ma$ $E_{k} = \frac{1}{2}mv^{2}$		$g = \frac{1}{r^2}$			mv^2 F				$E_{ m puls}$	Ocarina	capaciteit = $m_{\text{accu}} \cdot \text{energ}$
	241 . 237	$\frac{a - \overline{\Delta t}}{\Delta t} E_{k} = \frac{1}{2}mv^{2}$		$v_{\rm max}^{2}$	$\lambda_{\text{max}} \cdot T = k_{\text{W}}$	$\lambda A \Lambda T$	$F_{\text{mpz}} = \frac{mv^2}{r} \qquad \sigma = \frac{F}{A}$			$Q = cm\Delta T$ $E = Pt$	$f = \frac{1}{h} - h$ Stunt in Dubai	$\frac{J-T}{T}$	$Q = cm\Delta T m = \rho$
	241 Am \rightarrow 237 Np + α + γ	Metaalmoeheid	$\frac{1}{2}Cu^2 = \frac{1}{2}mv^2 \qquad E_{\text{veer}} = E_z$	$h = \frac{v_{\text{max}}}{2g}$ Verontreinigd Technetium	$E_{\rm k} = \frac{1}{2}mv^2$ $\boxed{2GM}$	$P = \frac{\lambda A \Delta T}{d}$ Oude horloges	$F_{\rm v} = Cu$	$E_{ ext{totaal}} = E_{ ext{f}} \cdot A \cdot t$ $D = \frac{E}{C}$		Mondharp	$\eta = \frac{E_{\text{McD}}}{E_{\text{blok}}} \qquad E_{\text{k}} = \frac{1}{2}mv^{2}$ $E_{\text{z}} = mgh$	$T = 2\pi \sqrt{\frac{m}{C}} \qquad \rho = \frac{m}{V}$	E
	Aerogel <i>m</i>	$\sigma = \frac{F}{A}$.	$E_{\mathrm{veer}} = E_{\mathrm{z}} = mgh$ Dateren met Rb en Sr	$^{99}_{42}\text{Mo} \rightarrow ^{99}_{43}\text{Tc} + ^{0}_{-1}\text{e} \ (+^{0}_{0}\gamma)$	$v = \sqrt{\frac{20M}{R}}$ Renium-188	1	s = vt PWM	$D = \frac{D}{m}$ $H = w_R D$ Sprong van Luke Aikins		$f = \frac{1}{T}$	$a = \left(\frac{\Delta v}{\Delta v}\right)$	$f = \frac{1}{\lambda}$	$D = \frac{-}{m}$
$P = F_{\mathrm{w}} v$	$ \rho = \frac{1}{V} $	$E = \frac{\sigma}{\varepsilon}$				$f = \frac{1}{T}$	D	$s = v \cdot t \qquad \qquad \underbrace{\begin{bmatrix} F_{\mathbf{w}} \end{bmatrix}}_{\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} v^2 \end{bmatrix}}$	E = Pt	$m = \rho V$	$a = \left(\frac{1}{\Delta t}\right)_{\text{raaklijn}}$	$f = \frac{1}{T}$ Koffiepercolator	Marathon onder de t
P = UI	$P = \lambda A \frac{\Delta T}{d}$	$f = \frac{1}{T}$	$A = \frac{0,693 N}{t_{\frac{1}{2}}}$		$A = -\left(\frac{\Delta N}{\Delta t}\right)_{\text{raaklijn}}$		$ \eta = \frac{P_{\text{nuttig}}}{P_{\text{in}}} \qquad P_{\text{in}} = UI $		$E_{\rm ch} = r_{\!\!\!\!V} V \qquad \rho = \frac{m}{V}$ Stralingsdetectie	$ \left[f_{\mathbf{g}} \right] = \left[c \right] \frac{\left[v \right] \left[d \right]}{\left[\ell \right]^{2}}. $		P = UI	$v_{\text{gem}} = \frac{\Delta x}{\Delta t}$
\\\/iccolveguesiae					$^{188}_{75} \text{Re} \rightarrow ^{188}_{76} \text{Os} + ^{0}_{-1} \text{e} + ^{0}_{0} \gamma$	$^{147}_{61}\text{Pm} \rightarrow ^{147}_{62}\text{Sm} + ^{0}_{-1}\text{e}$	$f = \frac{1}{T}$		$^{60}_{27}\text{Co} \rightarrow {}^{60}_{28}\text{Ni} + {}^{0}_{-1}\text{e} + {}^{0}_{0}\gamma$		Evolodorondo draad	$Q = cm\Delta T$ $T = \frac{E_{ ext{nuttig}}}{E_{ ext{in}}}$	
Wisselverwarming $U = IR P = UI P = \frac{U^2}{R}$							E = Pt		$I = I_0(\frac{1}{2})^n \qquad n = \frac{d}{d_{\frac{1}{2}}}$		Exploderende draad $A_{ m draad} = rac{ ho \ell}{R}$		
	Airbus E-fan	Naaldjes rond de aarde $m = \rho V$	Meteoriet van Tsjeljabinsk $v = \frac{2\pi r}{T}$		$H = w_{\rm R}D$		Proxima b	$E_{\rm k} = \frac{1}{2}mv^2 \qquad E_{\rm z} = mgh$		$f = \frac{v}{\lambda}$	$P = UI \text{ en } U = IR P = \frac{U^2}{R}$		P = F
$\rho = \frac{RA}{\ell}$	P = UI	$c = f\lambda$		Auto uit het ijs	Elektrolarynx	$D = \frac{E}{m} \qquad H = w_{\rm R} D$				$f = \frac{v}{\lambda}$			s = vt
	E = Pt			$F_1 r_1 = F_2 r_2 \qquad r_2 = \frac{1}{2} d$	$f = \frac{1}{T} \qquad T = 2\pi \sqrt{\frac{m}{C}}.$	Elysium	$F_{\rm g} = G \frac{mM}{r^2} \qquad F_{\rm z} = mg$	$a = \left(\frac{\Delta v}{\Delta t}\right)_{\text{raaklijn}}$		Wereldrecord Usain Bolt $s = vt$	E = Pt	EIND EXAMEN	Theaterverlichting <i>F</i>
$Q = cm\Delta T \qquad E = Pt$		$v = \sqrt{G\frac{M}{r}} v = \frac{2\pi r}{T} r = h + r_{\text{aarde}}$	s = vt	$\sigma = \frac{F}{A} \qquad \varepsilon = \frac{\sigma}{E} \qquad \varepsilon = \frac{\Delta \ell}{\ell_0}$		$\frac{r^3}{T^2} = \frac{GM}{4\pi^2} r = R_A + h_{\text{geostationain}}$		Cicaden	$H = H_{\text{uur}} \cdot t_{\text{jaar}}$	$v = \frac{\Delta x}{\Delta t}$			
$E = 5200 \cdot Pt$	E = Pt:		$E = \frac{1}{2}mv^2$			$\tan \alpha = \frac{3,5 \cdot 10^6}{3,8 \cdot 10^8} \rightarrow \alpha = 0,53^\circ.$	$v_{\text{gem}} = \frac{\Delta x}{\Delta t}$ $t_{\text{ruimteschip}} = \frac{ct_{\text{licht}}}{v}$	$f = \frac{1}{T}$		$P = \frac{\Delta E_{\rm k}}{t} E_{\rm k} = \frac{1}{2}mv^2$	s = vt		
EIND EXAMEN	EIND EXAMEN	$A = 4\pi r^2$	$ \rho = \frac{m}{V} $				EIND EXAMEN		EIND EXAMEN	efficientie = $\frac{F_{\text{afzet, hor}}}{F_{\text{afzet}}}$	EIND EXAMEN		$E = \frac{\sigma}{\varepsilon}$
		EIND EXAMEN	EIND EXAMEN		EIND EXAMEN	$v = \frac{2\pi r}{T}$							EIND EXAN
				EIND EXAMEN		EIND EXAMEN		$f = \frac{v}{\lambda}$:		EIND EXAMEN			
								EIND EXAMEN					
Radiumbad Fontein van Geneve	Sluis van Fankel Wieg	Elektrische doorstroomverwa Molybdeen-99	rmer Panfluit Stretchsensor	Scheepsradar Operatiedeken	Magische lamp Heftruck	Walstroom Wereldrecord blobspring	Koper-67 en Buisisolatie	Lassen De maan Europa	Zweven op geluid Sirius	Lutetium-177 Accuboormachine	Muziekdoos New Horizons	Straling tijdens vliegen Ruimtepuin	Superaarde? Concertharp