

Enseignes et afficheurs à LED

Dr. Yves Tiecoura

- Symboles binaires
- Numération binaire
- Arithmétique modulaire
- Nombres signés
- Types en C
- Hexadécimal
- Codage des caractères

LED éteinte ou allumée

- LED éteinte ou allumée
- Faux ou Vrai

- LED éteinte ou allumée
- Faux ou Vrai
- 0 ou 1

- LED éteinte ou allumée
- Faux ou Vrai
- 0 ou 1
- 0 V ou + 5 V

- LED éteinte ou allumée
- Faux ou Vrai
- 0 ou 1
- 0 V ou + 5 V

Ex:10010010

Codage binaire

	В	ina	aiı	ce	Décimal
				0	0
				1	1
			1	0	2
			1	1	3
		1	0	0	4
		1	0	1	5
		1	1	0	6
		1	1	1	7
	1	0	0	0	8
	1	0	0	1	9
	1	0	1	0	10
	1	0	1	1	11
	1	1	0	0	12
	1	1	0	1	13
	1	1	1	0	14
	1	1	1	1	15
1	0	0	0	0	16

Codage binaire

	В	ina	aiı	ce	Décimal
				0	0
				1	1
			1	0	2
			1	1	3
		1	0	0	4
		1	0	1	5
		1	1	0	6
		1	1	1	7
	1	0	0	0	8
	1	0	0	1	9
	1	0	1	0	10
	1	0	1	1	11
	1	1	0	0	12
	1	1	0	1	13
	1	1	1	0	14
	1	1	1	1	15
1	0	0	0	0	16

Poids des bits

Ra	ing	Va	ale	ur	D	éc	ima	al_
0				1		1	=	2°
1				10		2	=	2 ¹
2			1	00		4	=	2 ²
3			10	00		8	=	2 ³
4		1	00	00		16	=	24
5		10	00	00		32	=	2 ⁵
6		100	00	00	(54	=	2 ⁶
7		1000	00	00	12	28	=	2 ⁷
8	10	0000	00	00	25	56	=	2 ⁸
9	100	0000	00	00	5.	12	=	2 ⁹
10	1000	0000	00	00	102	24	=	2 ¹⁰

Codage binaire

	В	Lna	aiı	сe	Décimal
				0	0
				1	1
			1	0	2
			1	1	3
		1	0	0	4
		1	0	1	5
		1	1	0	6
		1	1	1	7
	1	0	0	0	8
	1	0	0	1	9
	1	0	1	0	10
	1	0	1	1	11
	1	1	0	0	12
	1	1	0	1	13
	1	1	1	0	14
	1	1	1	1	15
1	0	0	0	0	16

Poids des bits

Ra	ing	Valeur	Déc	im	al_
0		1	1	=	2°
1		10			2^1
2		100	4	=	2 ²
3		1000	8	=	2 ³
4		10000	16	=	2^4
5		100000	32		
6		1000000	64	=	2 ⁶
7	1	000000	128	=	2 ⁷
8	10	0000000	256		2 ⁸
9		0000000	512		2 ⁹
10	1000	0000000	1024	=	2^{10}

10011010010b=1234

• Les mathématiciens travaillent avec des nombre arbitrairement grands.

- Les mathématiciens travaillent avec des nombre arbitrairement grands.
- Les circuits électroniques ont toujours une taille limitée!

- Les mathématiciens travaillent avec des nombre arbitrairement grands.
- Les circuits électroniques ont toujours une taille limitée!
- Quelle sont les contraintes liées à cette limite de taille ?

Codage binaire

	В	ina	aiı	Décimal	
				0	0
				1	1
			1	0	2
			1	1	3
		1	0	0	4
		1	0	1	5
		1	1	0	6
		1	1	1	7
	1	0	0	0	8
	1	0	0	1	9
	1	0	1	0	10
	1	0	1	1	11
	1	1	0	0	12
	1	1	0	1	13
	1	1	1	0	14
	1	1	1	1	15
1	0	0	0	0	16

Codage binaire

	В	ina	aiı	сe	Décimal
				0	0
				1	1
			1	0	2
			1	1	3
		1	0	0	4
		1	0	1	5
		1	1	0	6
		1	1	1	7
	1	0	0	0	8
	1	0	0	1	9
	1	0	1	0	10
	1	0	1	1	11
	1	1	0	0	12
	1	1	0	1	13
	1	1	1	0	14
	1	1	1	1	15
1	0	0	0	0	16

Table de l'addition : 0 + 0 = 0, retenue 0 0 + 1 = 1, retenue 0 1 + 0 = 1, retenue 0 1 + 1 = 0, retenue 1

Codage binaire

	В	ina	aiı	Décimal	
				0	0
				1	1
			1	0	2
			1	1	3
		1	0	0	4
		1	0	1	5
		1	1	0	6
		1	1	1	7
	1	0	0	0	8
	1	0	0	1	9
	1	0	1	0	10
	1	0	1	1	11
	1	1	0	0	12
	1	1	0	1	13
	1	1	1	0	14
	1	1	1	1	15
1	0	0	0	0	16

Table de l'addition : 0 + 0 = 0, retenue 0 0 + 1 = 1, retenue 0 1 + 0 = 1, retenue 0 1 + 1 = 0, retenue 1

1			
0	1	1	_ 3
0	1	0	2
1	0	1	= 5

Codage binaire

	В	ina	aiı	сe	Décimal
				0	0
				1	1
			1	0	2
			1	1	3
		1	0	0	4
		1	0	1	5
		1	1	0	6
		1	1	1	7
	1	0	0	0	8
	1	0	0	1	9
	1	0	1	0	10
	1	0	1	1	11
	1	1	0	0	12
	1	1	0	1	13
	1	1	1	0	14
	1	1	1	1	15
1	0	0	0	0	16

Table de l'addition : 0 + 0 = 0, retenue 0 0 + 1 = 1, retenue 0 1 + 0 = 1, retenue 0 1 + 1 = 0, retenue 1

Codage binaire

_	В:	ina	aiı	Décimal	
				0	0
				1	1
			1	0	2
			1	1	3
		1	0	0	4
		1	0	1	5
		1	1	0	6
		1	1	1	7
	1	0	0	0	8
	1	0	0	1	9
	1	0	1	0	10
	1	0	1	1	11
	1	1	0	0	12
	1	1	0	1	13
	1	1	1	0	14
	1	1	1	1	15
1	0	0	0	0	16

Table de l'addition : 0 + 0 = 0, retenue 0 0 + 1 = 1, retenue 0 1 + 0 = 1, retenue 0 1 + 1 = 0, retenue 1

Dépassement de capacité

• Peut-on représenter des nombres négatifs ?

Nombres signés (complément à deux) :

Types en C

Type:

char : nombre de 8 bits (signé ou non, selon les réglages du compilateur)

signed char : nombre de 8 bits signé

unsigned char: nombre de 8 bits positif

int : nombre généralement de 16 bits (signé ou non)

signed int : nombre de 16 bits signé

unsigned int: nombre de 16 bits positif

long int : nombre généralement de 32 bits (signé ou non)

signed long int : nombre de 32 bits signé

unsigned long int: nombre de 32 bits positif

Types en C, version C99

Type:

uint8 t: nombre de 8 bits positifs

int8_t: nombre de 8 bits signé

uint16_t: nombre de 16 bits positif

int16_t: nombre de 16 bits signé

uint32_t: nombre de 32 bits positif

int32_t: nombre de 32 bits signé

Magnitude :

0 ... 255

-128 ... +127

0 ... 65'635

-32'768 ... +32'767

0 ... 4'294'967'295

-2'147'483'648 ... +2'147'483'647

Hexadécimal

• Le binaire est parfait pour les machines

Hexadécimal

- Le binaire est parfait pour les machines
- ...mais malcommode pour les humains!

Hexadécimal

- Le binaire est parfait pour les machines
- ...mais malcommode pour les humains!
- L'hexadécimal est plus pratique.

	0

- 1	I	1 1	^	1	1 1	^	1 1	-	1	l n	-	_	1 ^	_	_	_
- 1	UI	l 1	0	1 1	1 1	1 0	1 1	1 1	1 1	1 0	1 1	U	l U	1 0 1	1 0	1 0
- 1		_	·	_	_		_	_	_	·	_	·	Ť		·	Ĭ

0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Le nombre décimal 23456 :

Notation du langage C : 0x5BA0

0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Codage des caractères

Table de codage ASCII

	00 _h	01 _h	02 _h	03 _h	04 _h	05 _h	06 _h	07 _h	08 _h	09 _h	0A _h	$0B_h$	0C _h	0E _h	0E _h	0F _h
	0.	1.	2.	3.	4.	5.	6.	7.	8	9.	10.	11.	12.	13.	14.	15.
00 _h 0.	NUL	SOH	STX	ETX	EOT	ENQ	ENQ	BEL	BS	НТ	LF	VT	FF	CR	SO	SI
10 _h 16.	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
20 _h 32.		-:	"	#	\$	%	&	-	()	*	+	,	ı		/
30 _h 48.	0	1	2	3	4	5	6	7	8	9		;	٧	II	۸	?
40 _h 64.	@	Α	В	С	D	Е	F	G	Ι	_	J	K	Ш	Μ	Z	0
50 _h 80.	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	[\]	<	
60 _h 96.	`	а	b	С	d	е	f	g	h	i	j	k		m	n	0
60 _h 112.	р	q	r	S	t	u	V	W	Х	у	Z	{		}	~	DEL

Pour trouver le code d'un caractère, ajouter la valeur de la ligne et celle de la colonne en décimal ou en hexadécimal

- Symboles binaires
- Numération binaire
- Arithmétique modulaire
- Nombres signés
- Types en C
- Hexadécimal
- Codage des caractères