Logic and Propositional Calculus.

Def. Propositions are statements that are either true or false (but not both).

A proposition could also just be a property which an object either possesses or does not. Such a property is called a predicate, it is essentially a boolean valued function.

It assigns a value of True or False to each element of the domain of discourse.

A natural next step is to combine "simple" propositions to get more complex propositions.

This leads to the subject of propositional calculus.

- -> Argueby, the simplest operator is the negation which negates the truth value of a proposition.
 - eg. Bird (Frog) is true.
- -> The OR v (also called the disjunction). Prog is true if at least one of the propositions pig is true.

We can write the truth table of the vas:

- \rightarrow The AND \wedge (also known as the conjunction) propositions p,q are true
 - e.g. Bird (Penguin) ^ Flies (Pigeon) is true.

The IMPLIES \rightarrow , usually written using if and then. $(p \rightarrow q)$ is just equal to $(\neg p) \lor (p \land q) = \neg p \lor q$.

Light this is true, the proposition $(p \rightarrow q)$ is said to be vacuously true.

Relevan

There are several other binary operators we shall use as well; such as

$$\bigoplus_{XOR}$$
 \bigoplus_{FF}
 \bigoplus_{FF}
 \bigoplus_{F}
 \bigoplus_{F}

A single logical proposition can be expressed in several ways. All of the to howing are equivalent.

- 1. p implies q
- 2. if p then q
- 3. 9 if P
- 4. whenever pholds, q holds
- s. either not por (pand q)
- 6. p only if q
- 7. if not q then not p -> this form is known as the contrapositive of "if p then q".
- 8 not p if not q
- 9. q unless not p

Also note that $p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$

As $(p \vee q) \vee r = p \vee (q \vee r)$ and $(p \wedge q) \wedge r \cdot p \wedge (q \wedge r)$, we can unambiguously write these as propri and propri respectively.

In general, we give - the highest precedence when evaluating expressions and v and A equal precedence (bracket if both are present!).

Associativity

Ex. Prove that

(i)
$$p \rightarrow q = (\neg q) \rightarrow (\neg p) \rightarrow Contrepositive$$

(ii)
$$pV(qvr) = (pvq)vr$$

(iii)
$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

(iv)
$$\neg (p \lor q) \equiv (\neg p) \land (\neg q)$$

De Morgan's Laws

$$(v)$$
 $\neg(p \land q) = (\neg p) \lor (\neg q)$

Quantifiers

Suppose we want to say "Every species is a bird" (this is false), that is, "For every species x, Bird (x) holds." This can be written as

We now want to say "Some species is a bird", that is, "There exists some x such that Bird (x) holds". This can be written as

These quantifiers let us make statements about the entire domain.

Note that we can also write \forall as a series of Λ 's and \exists as a series of V's but this notation is significantly more compact.

We also have

$$\neg (\forall x p(x)) = \exists x \neg p(x).$$

$$\neg (\exists x \ p(x)) = \forall x \ \neg p(x).$$

These are just a consequence of De Morgan's Laws.

 $\neg (\exists x \ p(x))$ is Often denoted as $\not\exists x \ p(x)$.

If there exists a unique x such that p(x), we write $\exists ! x \ p(x)$

Consider the following predicate Likes on X2, where X={A,B,C}

> Likes(p.q) denotes if plikes q

Likes A B

ATT

BFTT

CFF

Then we have the following

These two ove

 $\forall x,y$ Likes (x,y) Everyone likes everyone $\forall x \exists y$ Likes (x,y) Everyone likes someone $\exists x \forall y$ Likes (x,y) Someone likes everyone NOT the same!

We have the following expressions that help in the manipulation of quantifiers.

1. $\forall x \forall y p(x,y) \equiv \forall y \forall x p(x,y)$

(kix)d xERE = (kix)d KE xE

Let R be a proposition not involving x

2. $\forall x (p(x) \lor R) = (\forall x p(x)) \lor R$

RA(x)q xE = (RA(x)q)xE

3. $\forall x (p(x) \land R) \equiv (\forall x p(x)) \land R$

 $\exists x (p(x) \lor R) \equiv (\exists x p(x)) \lor R$

4. $\forall x (R \rightarrow p(x)) \equiv R \rightarrow (\forall x p(x))$

 $\exists x (R \rightarrow p(x)) \equiv R \rightarrow (\exists x p(x))$

(Just a consequence of 2 and 3)

5. $\forall x (p(x) \rightarrow R) \equiv (\exists x p(x)) \rightarrow R$

 $\exists x (p(x) \rightarrow R) \equiv (\forall x p(x)) \rightarrow R$

6. $\forall x (p(x) \land q(x)) \equiv (\forall x p(x)) \land (\forall x q(x))$

 $\exists x (p(x) \lor q(x)) \equiv (\exists x p(x)) \lor (\exists x q(x))$

7. $(\forall x p(x)) \vee (\forall x q(x)) \equiv \forall x \forall y p(x) \vee q(y)$ $(\exists x p(x)) \wedge (\exists x q(x)) \equiv \exists x \exists y (p(x) \wedge q(y))$ Proof of 7.

 $(\forall x p(x)) \vee (\forall x q(x)) \equiv \forall x (p(x) \vee \forall y q(y))$ $\equiv \forall x \forall y p(x) vq(y)$