Санкт-Петербургский политехнический университет Высшая школа прикладной математики и вычислительной физики, ФизМех

Направление подготовки

«01.03.02 Прикладная математика и информатика»

Отчет по лабораторной работе № 1

тема "Метод конечных разностей для ОДУ второго порядка"

дисциплина "Конечно-разностные и сеточные методы"

Выполнил студент гр. 5030102/90101

М.К.Турченко

Преподаватель:

Б.С.Григорьев

Санкт-Петербург

2022

Оглавление

lостановка задачи	3
Разностные схемы	4
łисленная реализация	6
Результаты вычислительного эксперимента	
гезультаты вычислительного эксперимента	с
ЗЫВОЛ	12

Постановка задачи

Необходимо решить ОДУ второго порядка вида

$$-u'' + xu' + (x+1)u = x(x+1)\sin(\pi x) + x\sin(\pi x) + \pi x\cos(\pi x) - \pi(2\cos(\pi x) - \pi x\sin(\pi x)), x \in [0,1]$$

со следующими граничными условиями:

$$\begin{cases} u'(0) = 0 \\ u(1) = 0 \end{cases}$$

использовав два метода конечных разностей первого и второго порядка аппроксимации производных.

Точное решение: $u^*(x) = x sin(\pi x)$

Рис. 1 График точного решения

Для сравнения эффективности методов требуется построить графики зависимостей норм вектора ошибок от величины шага сетки в одних осях, а также привести таблицы значений норм вектора ошибок при разных шагах.

Разностные схемы

Введем следующие обозначения в задаче:

$$p(x) = x$$
,

$$q(x) = x + 1$$
,

$$f(x) = x(x+1)\sin(\pi x) + x\sin(\pi x) + \pi x\cos(\pi x) - \pi(2\cos(\pi x) - \pi x\sin(\pi x))$$

Тогда задача примет вид:

$$-u'' + p(x)u' + q(x)u = f(x), x \in [0, 1]$$

$$\begin{cases} u'(0) = 0 \\ u(1) = 0 \end{cases}$$

Далее введем на отрезке [0, 1] равномерную сетку с шагом h:

$$x_h = \{x_i | x_i = ih, i = 0, 1, ..., n, h = \frac{1}{n}\}$$

На этой сетке определим сеточные функции

$$p_i = p(x_i), \qquad q_i = q(x_i), \qquad f_i = f(x_i)$$

Считая u(x) точным решением данного ОДУ, положим $u_i pprox u(x_i)$

Фиксируя $x=x_i$, приходим к равенствам:

$$y''(x_i) + p_i y'(x_i) + q_i y(x_i) = f_i, i = 0, ..., n$$

В каждом внутреннем узле сетки, т.е. при i=1,...,n-1, значения производных будем аппроксимировать конечноразностными отношениями.

Для производной второго порядка есть формула второго порядка точности:

$$y'' = \frac{y(x_{i+1}) - 2y(x_i) + y(x_{i-1})}{h^2} + O(h^2);$$

А формулы для первой производной будут отличаться в двух конечноразностных схемах:

$$y' = \frac{y(x_{i+1}) - y(x_{i-1})}{2h} + O(h^2)$$

$$y' = \frac{y(x_{i+1}) - y(x_i)}{h} + O(h)$$

В схеме O(h) для аппроксимации первой производной возьмем правую разностную производную, поскольку граничное условие на правом конце интервала не содержит производную, и никаких проблем с определением граничных условий там не возникнет.

Тогда мы приходим к разностным уравнениям относительно приближенных значений решения:

$$-rac{y_{i+1}-2y_i+y_{i-1}}{h^2}+p_irac{y_{i+1}-y_{i-1}}{2h}+q_iy_i=f_i$$
 для схемы $O(h^2)$ $-rac{y_{i+1}-2y_i+y_{i-1}}{h^2}+p_irac{y_{i+1}-y_i}{h}+q_iy_i=f_i$ для схемы $O(h)$

После приведения подобных членов получаем разностные уравнения второго порядка:

$$y_{i+1}\left(-1+rac{p_ih}{2}
ight)+y_i(2+q_ih^2)+y_{i-1}\left(-1-rac{p_ih}{2}
ight)=\ f_ih^2$$
 для схемы $O(h^2)$ (1) $y_{i+1}(-1+p_ih)+y_i(2+q_ih^2-p_ih)+y_{i-1}(-1)=\ f_ih^2$ для схемы $O(h)$ i = 1,...,n-1

Получаем СЛАУ с трехдиагональной матрицей коэффициентов. Однако у нас n+1 неизвестная переменная y_0, \dots, y_n , а уравнений мы получили всего n-1. Еще два уравнения получим из граничных условий.

Условие на правой границе включает в себя только значение функции, а не значение производной, тогда в обеих схемах будет одинаковое условие на правом конце: $y_n=0$

Условие на левой границе зависит от производной, тогда его надо аппроксимировать согласно порядку точности схемы:

$$y'(0) = \frac{y_1 - y_0}{h} + O(h)$$

$$y'(0) = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2)$$

В схеме O(h) вместе с нашими граничными условиями получили СЛАУ размера (n+1)х(n+1) с трехдиагональной матрицей. Для решения такой СЛАУ подходит метод прогонки.

В схеме $O(h^2)$ трехдиагональность системы нарушена из-за граничного условия на левом конце: для трехдиагональности матрицы оно должно зависеть только от y_0 и y_1 . Для этого возьмем разностное уравнение в схеме второго порядка при i=1 (1), возьмем граничное условие и исключим в нем y_2 :

$$\begin{cases} y_2 \left(-1 + \frac{p_1 h}{2} \right) + y_1 (2 + q_1 h^2) + y_0 \left(-1 - \frac{p_1 h}{2} \right) = f_1 h^2 \\ 3y_0 + 4y_1 - y_2 = 0 \end{cases}$$

Тогда граничное условие на левом конце примет вид:

$$y_0\left(-3+\frac{2}{p_1h-2}\left(1-\frac{p_1h^2}{2}\right)\right)+y_1\left(4+\frac{2}{p_1h-2}(2+q_1h^2)\right)=\frac{2f_1h^2}{p_1h-2}$$

Таким образом, мы восстановили трехдиагональность матрицы системы в схеме второго порядка, к которой также нужно применить метод прогонки.

Численная реализация

Программа была реализована на языке программирования C++ в среде разработки Microsoft Visual Studio 2019.

class Equation — основной класс программы. Содержит все поля и методы, необходимые для построения схемы

Сигнатура метода	Описание метода	Входные параметры	Возвращаемое значение
Equation(int n)	Конструктор класса	Количество разбиений отрезка	-
~Equation()	Деструктор класса	-	-
double p(double x)	Возвращает значение коэффициента перед у'	Аргумент коэффициента	Значение коэффициента в точке
double q(double x)	Возвращает значение коэффициента перед у	Аргумент коэффициента	Значение коэффициента в точке
double f(double x)	Возвращает значение свободного коэффициента	Аргумент коэффициента	Значение коэффициента в точке
<pre>double exact(double x)</pre>	Возвращает значение точного решения в точке	Аргумент функции	Значение функции в точке
<pre>double SecondNormError()</pre>	Возвращает значение согласованной второй нормы вектора решения	-	Норма вектора
<pre>void FDlin(Equation* eq)</pre>	Решает ОДУ 2 порядка МКР первого порядка	Указатель на структуру типа Equation, содержащую все данные	Вектор решений по указателю eq
<pre>void FDquad(Equation* eq)</pre>	Решает ОДУ 2 порядка МКР второго порядка	Указатель на структуру типа Equation, содержащую все данные	Вектор решений по указателю eq
<pre>int main()</pre>	Основной метод программы, выполняющий численный расчет	-	0, если программа завершена успешно. Иначе код ошибки

Результаты вычислительного эксперимента

Для сходящейся схемы при малых h будем иметь $\|z_h\| \approx Ch^k$ для сходящейся схемы порядка k. Тогда $log\|z_h\| \approx C_1 + klog(h)$, то есть зависимость $log\|z_h\|$ от log(h) должна выходить на прямую с угловым коэффициентом k.

Для определения погрешности численного решения двух схем построим графики зависимостей второй нормы ошибки от величины шага в одних осях. По оси абсцисс отложим минус натуральный логарифм шага, а по оси ординат — минус натуральный логарифм нормы вектора ошибки.

Также построим в тех же осях графики прямых, проходящих с угловыми коэффициентами 1 и 2, чтобы показать, что схемы сходятся с соответствующими порядками.

Рис. 2 Зависимость нормы вектора ошибки от длины шага в логарифмических осях

Рис. З Зависимость нормы вектора ошибки от длины шага

Из графиков видно, что схемы первого и второго порядка аппроксимации действительно сходятся с порядком h и h^2 соответственно. Однако когда шаг стал очень мал, схемы начали расходиться.

Ошибка решения складывается из погрешности аппроксимации производных конечно-разностной схемой и погрешности представления вещественных чисел в памяти компьютера. Пока погрешность аппроксимации велика, погрешность представления чисел незаметна, и при уменьшении шага схема сходится к точному решению. Однако затем погрешность аппроксимации становится меньше погрешности представления чисел, которую мы убрать не можем. Поэтому начиная с какого-то маленького шага схемы начинают расходиться.

Схема второго порядка разошлась раньше (при величине шага ${
m e}^{-9} pprox 1,2*10^{-4}$), чем схема первого порядка (${
m e}^{-14} pprox 8,3*10^{-7}$)

Тем не менее схема второго порядка достигла большей точности ($e^{-18}\approx 1.5*10^{-8}$ норма вектора ошибки), чем схема первого порядка ($e^{-14}\approx 8.3*10^{-7}$)

Таблица зависимости $\|z_h\|$ от h:

Таблица 1. Зависимость нормы вектора ошибки от длины шага

Схема $O(h)$		Схема $O(h^2)$	
h	$ z_h $	h	$ z_h $
0.250000	0.501320	0.250000	0.0649468
0.125000	0.225714	0.125000	0.0080587
0.062500	0.106402	0.062500	0.00160122
0.031250	0.051576	0.031250	0.00038152
0.015625	0.025381	0.015625	9.46225e-05
0.007812	0.012589	0.007812	2.36428e-05
0.003906	0.006269	0.003906	5.90101e-06
0.001953	0.003128	0.001953	1.46023e-06
0.000977	0.001562	0.000977	3.49211e-07
0.000488	0.000781	0.000488	7.2437e-08
0.000244	0.000390	0.000244	1.47175e-08
0.000122	0.000195	0.000122	2.1653e-08
0.000061	0.000098	0.000061	2.50268e-08
0.000031	0.000049	0.000031	2.59468e-08
0.000015	0.000024	0.000015	2.61679e-08
0.000008	0.000012	0.000008	2.64257e-08
0.000004	0.000006	0.000004	2.77122e-08
0.000002	0.000003	0.000002	7.86665e-08
0.000001	0.000001	0.000001	1.30305e-07
0.000005	0.000001	0.0000005	1.54206e-07
0.00000025	0.000001	0.00000025	2.42077e-07
0.00000125	0.000021	0.00000125	7.73372e-07

Вывод

Методы конечных разностей первого и второго порядка успешно решают задачу нахождения решения ОДУ 2 порядка. МКР 1 порядка оказался более устойчивым к уменьшению шага сетки. Однако при одной и той же величине шага МКР 2 порядка сошелся к более точному решению, чем МКР 1 порядка.