

### OUTLINE OF PRESENTATION

- Goals of Project
- About Fractional Brownian Motion
- Plots of a sampled Fractional Brownian Motions
- Plots of independent samples of Fractional Brownian Motion
- About Complexity of Cholesky Decomposition
- Plots of Time vs. Resolution
- About Fractional Levy Brownian Field
- Heatmap of Sampled Levy Brownian Field

### GOALS OF PROJECT

- Create a plots of a sampled Fractional Brownian Motion for following Hurst Index • H = 0.1, 0.3, 0.5, 0.7, 0.9
- Create plots of multivariate Fractional Brownian Motion to verify normal distribution along time domain

$$H = 0.1, 0.5, 0.9$$

- Empirical Test of Complexity of Cholesky Factorization
  - Plot  $Log(T_n)$  vs Log(n) graphs
  - Show  $t_n$  increases roughly with  $n^3$  with slope of the graphs around  $\sim 3$
- Create Heat Maps for a sampled Fractional Levy Brownian Field for:

$$H = 0.1, 0.3, 0.5, 0.7, 0.9$$

### ABOUT FRACTIONAL BROWNIAN MOTION

• A fractional Brownian motion with Hurst index  $H \in (0,1)$ , denoted by  $\{\mathbb{B}_t^H\}_{t\geq 0}$ , is a centered Gaussian process with covariance function

• 
$$Cov(\mathbb{B}_s^H, \mathbb{B}_t^H) = \frac{1}{2}(s^{2H} + t^{2H} - |t - s|^{2H}, s, t \ge 0$$

• A fractional Brownian motion with Hurst index H = 1/2 is a Brownian motion  $\mathbb{B} = \mathbb{B}^{\frac{1}{2}}$  (with  $Cov(\mathbb{B}_s, \mathbb{B}_t) = \min\{s, t\}$ )

- Method of Calculation
  - Assumed a Hurst Index (H)
  - Created a  $(n + 1) \times (n + 1)$  Covariance Matrix (cov) for n = 1000 using bsxfun() function that carries out element wise binary operations using Equation 1.
  - Created a  $((n + 1) \times 1)$  random vector (Z) with normal distribution, N(0,1/n), using normrnd() function
  - Determined Cholesky factor (M) using chol() function
  - Determined a sampled fractional vector as  $\mathbb{B} = MZ'$
  - Verified the above process with direct method of:  $\mathbb{B} = sqrt(n)$ . \cumsum(Z'), for H = 0.5
  - Determined a sampled fractional vector as  $\mathbb{B} = mvnrnd()$  with normal distribution N(0, cov)
  - Plotted  $\mathbb{B}$  vs. t graph for each  $Hurst\ Index\ (H)$







Confirming the method for Cholesky is Correct with Direct Method for H = 0.5



Confirming the method for Cholesky is Correct with comparing results with in-built mvnrnd() function





Shows that the Fractional Brownian Motion vector smoothens with increasing  $Hurst\ Index\ (H)$ 

# PLOTS OF MULTIVARIATE FRACTIONAL BROWNIAN MOTIONS

- Method of Calculation
  - Similar to previous method of single sampled Fractional Brownian Vector
  - But random sample vector (Z) has several random vector in each of its row
  - Thus, the resultant  $\mathbb B$  also has corresponding sampled Fractional Brownian Vector i.e. Fractional Brownian Motions all independent samples

# PLOTS OF INDEPENDENT SAMPLES OF FRACTIONAL BROWNIAN MOTION





Shows that at each time instant the sampled Fractional Brownian Motion vectors follow a normal Distribution, N(0,1/n)

### COMPLEXITY OF CHOLESKY DECOMPOSITION

- Method of Calculation
  - For different resolutions, n = [50,100,250,500,1000,1250,1500,1750,2000], the time of operating Cholesky factorization were estimated for few of the Hurst Indices
  - T vs. n graphs were plotted to see the trend
  - Slope was determined using the  $Log(T_n)$  vs Log(n) graph
  - Functions like polyfit() and slope() were used for curve fitting

### ABOUT COMPLEXITY OF CHOLESKY DECOMPOSITION





#### ABOUT COMPLEXITY OF CHOLESKY DECOMPOSITION





T vs n graph shows somewhat of  $n^3$  behavior. Early points of n estimating time seem like outliers and are omitted to calculate slope in  $Log(T_n)$  vs. Log(n) graph



#### Slope of Log(t<sub>n</sub>) Vs Log(n) for Different Hurst Index (H), Via Chol

| н     | 0.10 | 0.30 | 0.50 | 0.70 | 0.90 |
|-------|------|------|------|------|------|
| Slope | 2.52 | 2.38 | 2.40 | 2.36 | 2.32 |

Slope of the Line is determined to be around 2.4 which is roughly around 3 confirming the complexity of Cholesky Decomposition to be  $n^3$ .

#### Slope of Log(t<sub>n</sub>) Vs Log(n) for Different Hurst Index (H), Via mynrnd

| H     | 0.10 | 0.30 | 0.50 | 0.70 | 0.90 |  |  |
|-------|------|------|------|------|------|--|--|
| Slope | 2.42 | 2.41 | 2.36 | 2.40 | 2.40 |  |  |

### ABOUT FRACTIONAL LEVY BROWNIAN FIELD

- A random field is a collection of random variables  $\{X_t\}_{t\in\mathbb{R}^2}$  where each t represents a spatial location
- A fractional Levy Brownian Fields with Hurst index  $H \in (0,1)$ , denoted by  $\left\{\mathbb{G}_{t}^{H}\right\}_{t\in\mathbb{R}^{2}}$ , is a centered Gaussian process with covariance function

• 
$$Cov(\mathbb{B}_s^H, \mathbb{B}_t^H) = \frac{1}{2} (\|\mathbf{s}\|^{2H} + \|t\|^{2H} - \|\mathbf{s} - \mathbf{t}\|^{2H}, \ \ s, t \in \mathbb{R}^2$$

- Method of Calculation
  - Created a time field with  $((n+1)^2 \times 2)$  matrix with each row giving a location in a 2D time field
  - Created a vector with each row being ||t|| and a  $(n+1)^2 \times (n+1)^2$  matrix for ||s-t||
  - Assumed a Hurst Index (H)
  - Created a  $(n+1)^2 \times (n+1)^2$  Covariance Matrix (cov) for n=100 using bsxfun() function that carries out element wise binary operations using Equation 1.
  - Created a  $((n+1)^2 \times 1)$  random vector (Z) with normal distribution, N(0,1/n), using normrnd() function
  - Determined Cholesky factor (M) using chol() function
  - Determined a sampled fractional vector as  $\mathbb{G} = MZ'$  for the same Z to compare heatmaps
  - Reshaped  $\mathbb{G}$  to a  $(n+1) \times (n+1)$  matrix using reshape() function to get magnitude of  $\mathbb{G}_t^H$
  - Plotted heatmap for  $\mathbb{G}_{t}^{H}$  vs. t for each  $Hurst\ Index\ (H)$

## PLOTS OF SAMPLED FRACTIONAL LEVY BROWNIAN FIELDS





## PLOTS OF SAMPLED FRACTIONAL LEVY BROWNIAN FIELDS





## PLOTS OF SAMPLED FRACTIONAL LEVY BROWNIAN FIELDS



 We see that the Field is smoother as the Hurst Index increases

### CONCLUDING REMARKS

- Increment of Hurst Index in both the Fractional Brownian Motion and Levy Fields increase the smoothness of the magnitude of the vectors along the time vector/field
- There is more local oscillation in case of lower  $Hurst\ Index\ (H=0.1,0.3)$  than the Higher  $Hurst\ Index\ (H=0.7,0.9)$ .
- Time for the Cholesky Decomposition is a function of  $n^3$  showing the time of computation of the sampled vectors increases with the cube of the chosen resolution of time intervals

### THANK YOU!