# Técnicas de representación y razonamiento

| Tema 3: Representación del conocimiento e |
|-------------------------------------------|
| inferencia                                |
| ☐ 3.5: Representaciones estructuradas     |
| ☐ Marcos                                  |
| Dependencias conceptuales                 |
| ☐ Guiones                                 |

IAIC - Curso 2010-11

## Técnicas de representación

| Representaciones básicas                              |
|-------------------------------------------------------|
| Lógica de predicados. Representación en Prolog        |
| ☐ Redes semánticas                                    |
| ☐ Sistemas de producción                              |
| Representaciones estructuradas                        |
| Estructuras de ranura y relleno (slot & filler)       |
| Débiles: Marcos (frames)                              |
| Fuertes                                               |
| <ul><li>Dependencias Conceptuales (DCs)</li></ul>     |
| <ul><li>Guiones (scripts)</li></ul>                   |
| Estudio comparativo de las técnicas de representación |
| Lenguajes de representación del conocimiento          |

# Técnicas básicas versus estructuradas

| Representaciones estructuradas: evolución natural de las básicas                   |
|------------------------------------------------------------------------------------|
| Las estructuras de ranura y relleno (slot & filler) permiten definir               |
| Conceptos mediante pares atributo-valor (propiedades)                              |
| ☐ La ranura podría estar vacía para introducir el relleno posteriormente (o no).   |
| Pueden imponerse restricciones sobre los posibles rellenos                         |
| Estructuras de ranura y relleno débiles versus fuertes                             |
| Depende de la cantidad de conocimiento específico del dominio                      |
| ☐ Rango amplio entre Débil y Fuerte                                                |
| □ Débil: poco conocimiento, muy generalista → aplicable a muchos dominios          |
| Aunque, para aplicarlos, quedan algunas operaciones que programar                  |
| El diseñador decide qué tipos de objetos y qué relaciones utilizar                 |
| □ Fuerte: mucho conocimiento específico → aplicable sólo a ciertos dominios        |
| ☐ Fijan conocimiento específico sobre los tipos de objetos y relaciones permitidos |
| ☐ El diseñador se ha de ajustar a ellos                                            |
|                                                                                    |
|                                                                                    |

IAIC – Curso 2010-11 Tema 3.5 - 3

# Marcos (frames) [Minsky, 1975]

| Lógica de predicados                                                             |                                                       |
|----------------------------------------------------------------------------------|-------------------------------------------------------|
| Conocimiento factual (terminológico y                                            | asertivo)                                             |
| Orientado a relaciones                                                           |                                                       |
| ☐ Redes semánticas                                                               |                                                       |
| □ Conocimiento factual                                                           |                                                       |
| Orientado a conceptos                                                            | Asignar más estructura a los nodos y a las conexiones |
| ☐ Sistemas de producción                                                         | flodos y a las collexiones                            |
| ☐ Conocimiento procedimental                                                     |                                                       |
| ☐ Marcos                                                                         |                                                       |
| ☐ Conocimiento factual + cierto tipo de                                          | conocimiento procedimental                            |
| Orientado a conceptos                                                            |                                                       |
| Una entidad o concepto se describe a<br>atributo/valor (con posibles restriccion |                                                       |
| ■ Son estructuras de ranura/relleno dél                                          | oiles                                                 |

# **Marcos y Sistemas de Marcos**

|   | ☐ Un <i>marco</i> es una colección de atributos y valores                               |
|---|-----------------------------------------------------------------------------------------|
|   | Describe un determinado concepto o un conjunto de conceptos                             |
|   | <ul> <li>Las propiedades de los conceptos se representan con ranuras (slots)</li> </ul> |
|   | Los valores para estas propiedades son los rellenos (fillers)                           |
|   | ☐ Sistemas de marcos                                                                    |
|   | Las bases de conocimiento contienen una colección de marcos                             |
|   | Los marcos se conectan entre sí mediante el relleno de los slots                        |
|   | Se razona sobre clases de objetos                                                       |
|   | Usando representación del conocimiento prototípico                                      |
|   | □ Cierto en la mayoría de los casos                                                     |
|   | <ul> <li>Posibilidad de cambiarlo en las instancias</li> </ul>                          |
|   | □ Representar excepciones                                                               |
|   | <ul> <li>Representan particiones sobre el conjunto de hechos</li> </ul>                 |
|   | Un marco agrupa hechos sobre un mismo objeto ó situación                                |
|   | Permiten asociar conocimiento procedural relevante a un hecho                           |
|   | Idóneos para la organización de una gran cantidad de hechos                             |
| T | IAIC - Curso 2010-11                                                                    |

# Tipos de Marcos

| Tipos de Marcos                                                      |
|----------------------------------------------------------------------|
| ☐ Marcos clase                                                       |
| Representan conceptos, clases, estereotipos, situaciones genéricas   |
| ☐ Ejemplo: Herramientas, Persona, Coche                              |
| ■ Marcos instancia                                                   |
| ☐ Representan conceptos individuales, objetos, entidades, individuos |
| ☐ Fiemplo: Martillo-1 María M-6595-K                                 |

#### Tipos de Marcos: Marcos instancia

- Entidad individual
  - Marco de un individuo con 3 pares atributo/valor (estructuras de ranura/relleno)
  - El relleno de una ranura puede ser un enlace a otro marco
    - Persona es otro marco con sus propias características
    - ☐ 18 y 170 son valores

Juan
ejemplar: Persona
edad: 18

- Representación en forma de red semántica
  - No hay diferencia entre individuos y clases
    - la representación de Juan (individuo) y
    - ☐ la representación de *Persona* (clase de individuos)



estatura: 170

IAIC - Curso 2010-11

Tema 3.5 - 7

Persona

#### **Tipos de Marcos: Marcos clase**

- Completitud descriptiva en un Marco:
  - Hechos que describen un objeto o situación prototípica de una clase
  - Nos tenemos que asegurar de que siempre aparecen estos hechos en la descripción de un objeto de esa clase
  - Queremos que esa descripción se aplique a un conjunto de objetos

#### **Barco**

nombre:

número de identificación:

tipo de barco:

nacionalidad:

tonelaje:

lugar:

- Marco clase
  - ☐ Generaliza la información acerca de varios objetos, identificando las propiedades que comparten los elementos del conjunto
  - □ Pero no podemos rellenar siempre la información correspondiente a los hechos esenciales, puesto que diferirá para cada objeto concreto
  - Los marcos tienen ranuras que pueden rellenarse o no
  - □ Las ranuras rellenas representan hechos

### Sistemas de marcos: dos elementos

1. Representación de conocimiento (base de conocimiento)

Conjunto de marcos relacionados mediante rellenos de ranuras

Marcos clase y marcos instancia (ejemplares de las clases)

Se hace hincapié en la distinción entre individuos y conjuntos

Establecimiento de una jerarquía de conceptos con ejemplar/subclase

Propiedades y relaciones entre marcos (representadas mediante las estructuras de ranura/relleno)

2. Motor de inferencia

Herencia de propiedades, relaciones y procedimientos de cálculo a través de la estructura jerárquica

Clasificación de conceptos.

Equiparación con unos slots de entrada (obtener slots salida)

#### **Tipos de Relaciones entre Marcos**

| ☐ Relaciones estándar (forman jerarquías)                   |
|-------------------------------------------------------------|
| Subclase y su inversa Superclase                            |
| Ejemplar o Instancia y su inversa Contiene                  |
| Palabras reservadas (dependientes del sistema)              |
| Se suelen manejar inversas de forma automática              |
| □ Relaciones no estándar                                    |
| ☐ Fraternal (hermanos)                                      |
| Disjunto/No Disjunto                                        |
| "a medida" o "ad hoc" (relaciones dependientes del dominio) |
| ☐ Las inversas hay que añadirlas                            |

#### Ejemplo de Jerarquía de marcos



### **Ejemplo de Relaciones entre marcos**

- Las relaciones se definen entre marcos clase
  - ☐ Los marcos instancia son ejemplares de dichos marcos clase



□ Si el sistema hace comprobación de consistencia podría no aceptarse la conexión mediante la relación casado\_con

### Ejemplo de Clases e instancias

#### MC- ANIMAL

ejemplar: CLASE

(\*) seDesplaza: SÍ



#### MC- VERTEBRADO

eiemplar: CLASE subclase: ANIMAL (\*) tieneEsqueleto: SÍ



#### MC- AVE

ejemplar: CLASE

subclase: VERTEBRADO

(\*) vuela: SÍ

#### **MI- PIOLIN**

ejemplar: AVE seDesplaza : SÍ tieneEsqueleto: SI

vuela: SÍ

atributos heredados automáticamente

Aunque parece que la herencia sólo funciona a un nivel no es así porque la relación subclase es transitiva

 $x \in Ave \rightarrow x \in Vertebrado$  $\rightarrow$  x  $\in$  Animal

Cualquier individuo hereda de todas sus superclases (superconceptos)

(\*): propiedades heredables por los individuos pertenecientes a la clase CLASE: palabra reservada que indica que se representa a un conjunto

IAIC - Curso 2010-11 Tema 3.5 - 13

### Más sobre Propiedades (atributos, slots)

| Ш | Pro | pieda | des c | le c | lase |
|---|-----|-------|-------|------|------|
|---|-----|-------|-------|------|------|

- Son atributos de la clase (o concepto)
- ☐ Se definen y rellenan en el marco clase
- No son heredables por las instancias
  - Ejemplo: cardinalidad

#### Propiedades de instancia

☐ Son atributos específicos de cada instancia con mucho conocimiento

☐ Se *definen* en el marco clase

Formalismo especialmente adecuado para dominios

por defecto

- ☐ Si se rellenan en el marco clase, todas las instancias heredan su valor (herencia de valores)
  - Según las circunstancias, podría ser redefinido en cualquiera de ellas
- ☐ Si se rellenan en el marco instancia, lo único que se hereda del marco clase es la existencia de la ranura (herencia de ranuras)
- Precedidas del símbolo (\*)

Tema 3.5 - 14 IAIC - Curso 2010-11

### **Ejemplo de Propiedades**



#### **Meta-clases**

- Conjuntos de conjuntos
- Las instancias de una meta-clase son a su vez clases
- ☐ La manera de caracterizar a las meta-clases es
  - Son ejemplares de CLASE (como las clases regulares = conjuntos de individuos)
  - ❑ Son subclases de CLASE (esto hace que sus instancias sean también clases)



### Ejemplo de Meta-clases



#### Representación de atributos como marcos

| Representación del significado o propiedades de los atributos  Lo podemos hacer representando los propios atributos como marcos |
|---------------------------------------------------------------------------------------------------------------------------------|
| Cada atributo (ranura) puede ser descrito por una serie de ranuras que se suelen denominar facetas:                             |
| Dominio: concepto sobre el que trata ese atributo                                                                               |
| Rango: posibles valores que puede tener                                                                                         |
| Valor obligatorio (por definición): no puede estar vacío                                                                        |
| Valor por omisión: en caso de no asignar valor usa ese                                                                          |
| Reglas de herencia: indica cuándo y qué heredar                                                                                 |
| Reglas o procedimientos para calcular valores de relleno                                                                        |
| □ Relaciones Inversas                                                                                                           |
| Univaluado/multivaluado: un slot con uno/ lista de valores                                                                      |
| Así representamos meta-conocimiento                                                                                             |
| restricciones sobre el conocimiento a representar en los marcos                                                                 |
|                                                                                                                                 |

#### Jerarquías de atributos

- Un atributo (ranura o slot) es una relación entre los elementos del dominio (las clases para las que tiene sentido) y los elementos de su rango (posibles valores)
  - Un slot es el conjunto de pares ordenados que cumplen esa relación
  - $\square$  Atributos como conjuntos de pares:  $\{(x, y), (z, u), ...\}$
- Un slot S1 puede ser un subconjunto (subclase) de un slot S2
  - Por ejemplo, color de ojos ⊆ color
- ☐ La relación de inclusión nos permite crear jerarquías
- ☐ Al conjunto de todos los *slots* lo denominamos SLOT (es una meta-clase)
- ☐ Los sistemas que permiten la representación de *slots* mediante marcos suelen tener restricciones sobre las ranuras definibles (facetas)
- Las jerarquías de slots suelen ser bastante planas

IAIC - Curso 2010-11 Tema 3.5 - 19

### Jerarquías de atributos (slots)



ejemplar: PERSONA

color ojos: AZUL

(MARÍA, AZUL)

slot Color ojos

son ejemplares del

Tema 3.5 - 20

ejemplar: PERSONA

color ojos: NEGRO

IAIC - Curso 2010-11

(\*) para calcular:

(\*) inverso:

(\*) univaluado:

(\*) se puede derivar de:

#### Valores calculados

Mecanismo general: se representa en el marco del slot

#### **PRIMERO A**

ejemplar: CURSO ESO

tutor: JAIME aula: B17

#### **JUAN**

ejemplar: ALUMNØŚ ESO curso: PRIMERÓ A tiene\_tutor: / edad: 12 tiene\_tutor ejemplar: SLOT

dominio: ALUMNOS ESO rango: PROFESOR

para\_calcular: λx. (x.curso).tutor univaluado: VERDADERO

Para calcular el tutor de un alumno usamos  $\lambda$ -cálculo: x representa el marco en el que se usa el *slot* **tiene\_tutor**, es decir, ejemplares de ALUMNOS ESO Por ejemplo:

 $x \longrightarrow x.curso \longrightarrow (x.curso).tutor$ JUAN PRIMERO A JAIME

□ Las restricciones particulares de un slot para un ejemplar particular se representan en el marco del ejemplar

#### **JUAN**

ejemplar: ALUMNOS ESO curso: PRIMERO A

tiene\_tutor:

edad: 12,  $\lambda x$ . (x.edad > miguel.edad)

IAIC - Curso 2010-11

Tema 3.5 - 21

#### Representación de atributos sin marcos

☐ Hay sistemas que no permiten representar los slots como marcos. En ese caso, suelen permitir incorporar algunas restricciones en la definición de los atributos en las clases

# PERSONA ...... Color\_de\_ojos: TIENE\_QUE\_SER {AZUL, GRIS,...

□ TIENE\_QUE\_SER: palabra reservada que permite expresar el rango de valores permitidos

- Otras palabras reservadas
  - POR\_OMISIÓN
  - POR DEFINICIÓN
  - UNIVALUADO

#### **Conocimiento sobre atributos**

- □ La representación de meta-conocimiento sobre los slots permite a los sistemas
  - □ Realizar control de consistencias en el dominio y el rango de los atributos
  - Mantener la consistencia entre un atributo y su inverso cuando se cambia uno de ellos
  - □ Propagar los valores por definición y por omisión a través de la jerarquía de herencia (ejemplar y subclase)
  - □ Calcular el valor de un atributo cuando se necesita (para\_calcular, se\_puede\_derivar\_de)
  - Controlar los atributos univaluados

IAIC – Curso 2010-11 Tema 3.5 - 23

### Herencia múltiple

- ☐ Jerarquías: grafos dirigidos acíclicos, en lugar de árboles
- Distintos antepasados pueden tener distintos valores de los atributos



#### Distancia inferencial [Touretzky, 1986]

- Define un orden parcial:
  - □ Concepto1 está más cerca de Concepto2 que de Concepto3 si y sólo si Concepto1 tiene un camino de inferencia a través de Concepto2 hasta Concepto3 (es decir, Concepto2 está entre Concepto1 y Concepto3)

distancia(Concepto1, Concepto2) < distancia(Concepto1, Concepto3) ⇔ ∃ camino(Concepto1, Concepto2, Concepto3)

■ La distancia inferencial no siempre es aplicable → permitirá detectar contradicciones \_\_\_\_\_\_



#### Herencia de propiedades: algoritmo

- □ Para obtener el valor desconocido V de un atributo A en una instancia I
  - □ CANDIDATOS := Ø
  - Búsqueda 1º en profundidad en la jerarquía a partir de *I* de todos los superconceptos *SC* (en orden ascendente)
    - ☐ Si en SC se encuentra un valor para A se añade a CANDIDATOS y se finaliza con esa rama
    - ☐ Si en SC no se encuentra ningún valor, ascendemos otro nivel. Si no hay más niveles, terminamos con esa rama
  - ☐ Para cada elemento *C* de *CANDIDATOS*:
    - □ Si existe algún otro elemento de *CANDIDATOS* que ha sido obtenido de un concepto que esté a menor distancia inferencial de *I* que el concepto del que se ha obtenido *C*, entonces sacar *C* del conjunto de *CANDIDATOS*
  - Si el cardinal de CANDIDATOS es:
    - 0: no se ha obtenido ningún valor
    - □ 1: se devuelve el único elemento de CANDIDATOS como V
    - □ >1 y todos sus elementos son iguales: devolver el valor como V
    - □ >1 y elementos distintos: informar de que hay una contradicción

#### Ventajas de los marcos

- ☐ Facilitan el razonamiento basado en expectativas
  - ☐ Un *slot* es un lugar donde se espera un cierto tipo de valor dentro del contexto de un marco
  - □ Proporcionando un lugar para el conocimiento, se crea la posibilidad del conocimiento incompleto o inexistente, permitiendo el razonamiento basado en intentar confirmar expectativas
  - ☐ Se ha aplicado en sistemas de comprensión del lenguaje natural
- □ Posibilidad de asociar procedimientos de cálculo a los atributos
  - Mecanismo hacia atrás que permite rellenar atributos "cuando se necesita"
     (el procedimiento "enganchado" al slot se dispara al preguntar por su valor)
  - Mecanismo hacia delante para rellenar atributos "cuando se añade" (cuando se rellena un *slot*, todos los *slots* de otros marcos que dependan de él se rellenan automáticamente)
- □ Representación estructurada del conocimiento, incluso en el caso del conocimiento procedimental
  - ☐ La fase de equiparación o *matching* para determinar qué procedimiento o regla aplicar se realiza aquí mediante un proceso de clasificación

IAIC – Curso 2010-11 Tema 3.5 - 27

#### Ejemplo de Marco en Control de Tráfico



#### - Editor Protege-Frames: Ejemplo "newspaper"-



IAIC – Curso 2010-11 Tema 3.5 - 29



http://protege.stanford.edu/download/registered.html (versión 3 "basic" incluye "frames")

demo: http://protege.stanford.edu/overview/protege-frames.html

### Protege-Frames: jerarquía de clases







### **Protege-Frames: editor de Slots**



### Protege-Frames: Instancia "San Jose"



#### Protege-Frames: Instancias en Library



### **Protege-Frames: Slots y Facetas**



#### Protege-Frames: slot Issues (es-un Newspaper)



IAIC – Curso 2010-11 Tema 3.5 - 37

#### **Protege-Frames: Articulo (contents Newspaper)**

