

JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD

1A LOW DROPOUT LINEAR REGULATOR

CJA1117B-XXX

FEATURES

- Low Dropout Voltage: 1.15V at 1A Output Current
- Trimmed Current Limit
- On-Chip Thermal Shutdown
- Three-Terminal Adjustable or Fixed 1.8V, 2.5V, 3.3V, 5V
- Operation Junction Temperature: -25 $^{\circ}$ C to 125 $^{\circ}$ C

GENERAL DESCRIPTION

The CJA1117B-XXX is a series of low dropout three-terminal regulators with a dropout of 1.15V at 1A output current.

The CJA1117B-XXX series provides current limiting and thermal shutdown. Its circuit includes a trimmed bandage. reference to assure output voltage accuracy to be within 1.5%. Current limit is trimmed to ensure specified. output current and controlled short-circuit current. On-chip thermal shutdown provides protection against any combination of overload and ambient temperature that would create excessive junction temperature.

The CJA1117B-XXX has an adjustable version, that can provide the output voltage from 1.25V to 5V with only 2 external resistors.

APPLICATIONS

- PC Motherboard
- LCD Monitor
- Graphic Card
- DVD-Video Player
- NIC/Switch
- Telecom Modem
- ADSL Modem
- Printer and other peripheral Equipment

Marking:

ORDERING INFORMATION

Package	Operating Junction Temperature Range	Part NO.
		CJA1117B-ADJ
	-25 to 125℃	CJA1117B-1.8
SOT-89-3L		CJA1117B-2.5
		CJA1117B-3.3
		CJA1117B-5.0

ABOSLUTE MAXIMUM RATINGS (T_a=25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Input Voltage	Vi	20	V
Maximum Junction Temperature	T_{j}	150	$^{\circ}$
Storage Temperature	T _{stg}	-55~+150	$^{\circ}$
Thermal Resistance from Junction to Ambient	$R_{\theta JA}$	250	°C/W
Lead Temperature (Soldering, 10sec.)	T∟	260	$^{\circ}$
ESD Voltage (Machine Model)	V _{ESD}	400	V

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Input Voltage	Vi	15	V
Operating Junction Temperature	Tj	-25~+125	℃

ELECTRICAL CHARACTERISTICS ($V_{IN} \leqslant 10V$, $T_J = 25 \,^{\circ}\mathbb{C}$ unless otherwise specified.)

Parameter	Symbol	Part NO.	Test conditions	Min	Тур	Max	Unit	
5.4 4.4		01444770 470	I _{OUT} =10mA, V _{IN} -V _{OUT} =3.23	1.231	1.250	1.269		
Reference Voltage	V_{IROC}	CJA1117B-ADJ	10mA≤I _{OUT} ≤1A, 2.75V≤V _{IN} -V _{OUT} ≤13.25V	1.225	1.250	1.275	V	
		CJA1117B-1.8	I _{OUT} =10mA, V _{IN} =3.8V	1.773	1.8	1.827	V	
			10mA≤I _{OUT} ≤1A, 3.3V≤V _{IN} ≤12V	1.764	1.8	1.836	v	
			I _{OUT} =10mA, V _{IN} =4.5V	2.463	2.5	2.538	V	
Output Valtage	V	CJA1117B-2.5	10mA≤I _{OUT} ≤1A, 4V≤V _{IN} ≤12V	2.450	2.5	2.550	V	
Output Voltage	Vo	CJA1117B-3.3	I _{OUT} =10mA, V _{IN} =5.3V	3.251	3.3	3.350	V	
		CJAIII/B-3.3	10mA≤I _{OUT} ≤1A, 4.8V≤V _{IN} ≤12V	3.234	3.3	3.366		
		CJA1117B-5.0	I _{OUT} =10mA, V _{IN} =7.0V	4.925	5.0	5.075	V	
		CJATTI/B-3.0	10mA≤I _{OUT} ≤1A, 6.5V≤V _{IN} ≤12V	4.9	5.0	5.1	V	
		CJA1117B-ADJ	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤12V		0.035	0.2	%	
Line Regulation		CJA1117B-1.8	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10.2V		1	7	mV	
	LNR	CJA1117B-2.5	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤9.5V		1	7		
		CJA1117B-3.3	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤8.7V		1	7		
		CJA1117B-5.0	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤7V		1	10		
	LDR	CJA1117B-ADJ			0.2	0.4	%	
		CJA1117B-1.8				7.2	- mV	
Load Regulation		CJA1117B-2.5	VI _N -V _{OUT} =1.5V, 10mA≤I _{OUT} ≤1A			10		
		CJA1117B-3.3				13.2		
		CJA1117B-5.0				20		
Dropout Voltage	V_D		ΔV _{REF} =1%, I _{OUT} =1.0A			1.3	V	
Current Limit	I _{limit}		V _{IN} -V _{OUT} =2V	1			Α	
Adjust Pin Current					60	120	μΑ	
Minimum Load Current	ΙL		1.5V≤V _{IN} -V _{OUT} ≤12V (ADJ only)		1.7	5	μΑ	
Quiescent Current	Iq		V _{IN} = V _{OUT} +1.25V(ADJ except)		5	10	mA	
Ripple Rejection	RR		f=120Hz,C _{OUT} =22µFTantalum, V _{IN} -V _{OUT} =3V, I _{OUT} =1A	60	75		dB	
Temperature Stability					0.5		%	
Long-Term Stability			T _A =125℃, 1000hrs		0.3		%	
RMS Output Noise (% of VOUT)			T _A =25℃, 10Hz≤f ≤10kHz		0.003		%	
Thermal Shutdown Hysteresis					25		$^{\circ}$	

^{*} With package soldering to copper area over backside ground plane or internal power plane $R_{\theta JA}$ can vary from 46 °C/W to >90°C/W depending on mounting technique and the size of the copper area

FUNCTIONAL BLOCK DIAGRAM

TYPICAL APPLICATION CIRCUIT

SOT-89-3L Package Outline Dimensions

Cumbal	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550	REF.	0.061 REF.		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP.		0.060 TYP.		
e1	3.000 TYP.		0.118	TYP.	
L	0.900	1.200	0.035	0.047	

SOT-89-3L Suggested Pad Layout

Note:

- 1. Controlling dimension:in millimeters.
- 2.General tolerance:±0.05mm.
- 3. The pad layout is for reference purposes only.

NOTICE

JCET reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. JCET does not assume any liability arising out of the application or use of any product described herein.

SOT-89-3L Embossed Carrier Tape

Packaging Description:

SOT-89-3L parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 1,000 units per 7" or 18.0 cm diameter reel. The reels are clear in color and is made of polystyrene plastic (anti-static coated).

	Dimensions are in millimeter									
Pkg type	Α	В	С	d	E	F	P0	Р	P1	W
SOT-89-3L	4.85	4.45	1.85	Ø1.50	1.75	5.50	4.00	8.00	2.00	12.00

SOT-89-3L Tape Leader and Trailer

Dimensions are in millimeter								
Reel Option	D	D1	D2	G	Н	I	W1	W2
7"Dia	Ø180.00	60.00	R32.00	R86.50	R30.00	Ø13.00	13.20	16.50

REEL	Reel Size	Box	Box Size(mm)	Carton	Carton Size(mm)	G.W.(kg)
1000 pcs	7 inch	10,000 pcs	203×203×195	40,000 pcs	438×438×220	