

Attorney Docket No.: 030906

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Crafton, Corey M. et al. Applicants:

Examiner: Kaushal, Sumesh

Serial No.:

09/987,763

Art Unit: 1633

Filing Date: November 15, 2001

Entitled:

NUCLEOTIDE SEQUENCES FOR TRANSCRIPTIONAL REGULATION OF

CORYNEBACTERIUM GLUTAMICUM

DECLARATION PURSUANT TO 37 C.F.R. § 1.132

I, Corey M. Crafton, declare as follows:

- 1. I have personal knowledge of the information contained herein.
- 2. I have over 10 years of experience with Archer-Daniels-Midland Company, including 6 years as a molecular biologist. My technical focus is on bacteria. I am also a registered patent agent.
- I am a co-inventor of the subject matter claimed in U.S. Patent Application No. 3. 09/978,763 ("the '763 application"), and as such I am familiar with the subject matter presented therein. I am also familiar with the prosecution of the '763 application. I have read and am familiar with the contents of the book excerpts and journal articles cited in this Declaration.
- As one skilled in the art of molecular biology in general and bacterial engineering in particular, I recognize the utility of the invention described and claimed in the '763 application. I recognize that the invention as claimed has a specific and substantial utility, based at least on the factors discussed below.
- One of ordinary skill in the art knows that a promoter is a nucleotide sequence that 5. is recognized by RNA polymerase molecules which start RNA synthesis and that it is located immediately upstream of a gene. As explained in more detail in Devlin, T., Textbook of Biochemistry with Clinical Correlations, 689-696 (1997), a promoter consists of two highly conserved sequences: the -10 sequence (Pribnow box) and the -35 sequence. As stated in

Freifelder, D., *Molecular Biology: A Comprehensive Introduction to Prokaryotes and Eukaryotes*, 375-379 (1983), page 377, "All sequences found in Pribnow boxes are considered to be variants of the basic sequence TATAATG. The underscored T, at base 6 in the Pribnow box ... is present in all promoters sequenced to date." Figure 16.11 from Devlin, *supra*, page 690 shows these conserved sequences in many known E.Coli promoters.

When the Pribnow Box of SEQ ID NO 7 of the present invention is aligned into Figure 16.11 of Devlin, it is noted that only base 3 (C) is different from the most generally conserved sequence which has a T in the base 3 location. The most active promoters fit the consensus sequence most closely. The bases flanking the -10 and -35 sequences are only weakly conserved. Thus, the skilled person would ordinarily expect SEQ ID NO 7 to function as a promoter.

My project was to isolate several promoter regions from the Corynebacteria glutamicum lysine-producing strain. From research that had been done on promoters in E.Coli, a list of known E. Coli promoter sequences was assembled. The promoter upstream of the lactate dehydrogenase gene, ldh, was one these. From the professionally annotated complete genome sequence of Corynebacteria glutamicum, I located the genetic sequence that been annotated as the ldh gene. This annotation had been done by a professional organization that compared the Corynebacteria genome with publicly known and available genetic sequences from other organisms. The area of the Coryne genome that had the highest sequence identity to the known E. Coli ldh genetic sequence was therefore annotated as the Coryne ldh genetic sequence. At the time of this invention, the ldh promoter from Corynebacteria glutamicum had not been identified or annotated. I designed PCR primers to isolate a 500 bp fragment upstream of the annotated ldh gene since the ldh promoter should be upstream of the ldh coding region and should be between 20-200 bp long. As stated in Freifelder supra, page 375, "The first step in transcription is binding RNA polymerase to a DNA molecule. Binding occurs at particular sites called promoters, which are specific sequences of 20-200 bases at which several interactions occur." However, as one skilled in the art of molecular biology knows, 20-200 bp pieces of DNA are somewhat difficult to work with because of their small size. In order to make isolation and cloning steps easier, I designed the PCR primers to amplify a 500 bp piece. A 500 bp piece is large enough to ensure definite capture of the entire promoter region and an easy isolation from

an electrophoresis gel. As shown in the specification, a 500 bp PCR product was amplified for all potential promoter regions.

After isolation, the 500 bp piece was cloned into a screening vector to test for promoter activity.

- 6. Promoter utility is also shown by the β-galactosidase activity discussed in Example 9 of the '763 application: "Increased expression of beta-galactosidase under the transcriptional control of these transcriptional regulatory regions is shown in Table 9." (Paragraph [0202]). Based on my knowledge as one skilled in the art who has reviewed the data presented in Table 9 and throughout the specification, I would recognize that this increased activity is indicative of promoter activity because increased β-galactosidase activity is a conventionally used indicator of promoter activity in bacteria and fungi. Use of β-galactosidase activity as an indicator of promoter activity is discussed in, for example, Scanlan, D.J., *et al.*, "Construction of *lacZ* promoter probe vectors for use in *Synechococcus*: application to the identification of CO₂-regulated promoters," *Gene*, 90 (1990) 43-49; and Meyers, A.M., *et al.*, "Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of *lacZ* fusions," *Gene*, 45 (1986) 299-310.
- 7. Based on its sequence and on the functional data in Table 2, the regulator presented in SEQ ID NO: 7 includes the nucleotide sequence TACAATG in the -10 position (the "Pribnow Box") relative to the nucleotide sequence TTGCCAGGC in the -35 position. The Pribnow box in SEQ ID NO: 7 varies from the standard Pribnow box by only a single nucleotide (C instead of T at base 3), and includes the definitive T nucleotide at the base six position. When this element is positioned upstream of beta-galactosidase, the expression thereof is proof of promoter function and hence utility.
- 8. In fact, in a more recent sequence search using Genbank (http://www.ncbi.nlm.gov/blast), five highly conserved sequences were found. All five were Corynebacteria glutamicum sequences. One of these sequences (AB191244) is publicly annotated as the ldh promoter region. This sequence was submitted to Genbank on Mar 29, 2005. At the time of this invention, this sequence was not known or publicly available.

I hereby declare that all statements made herein of my knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like, so made, are punishable by fine or imprisonment, or both, under § 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of any patents issuing from the present application.

By Corey M. Crafton

Date: May 7, 2006

Page 4 of 4

Exhibit A

BLASTN 2.2.13 [Nov-27-2005] Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

RID: 1141056543-3021-6169699787.BLASTQ1

Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, environmental samples or phase 0, 1 or 2 HTGS sequences)
3,742,891 sequences; 16,670,205,594 total letters
Query=
Length=500

Sequences producing significant alignments:	Score (Bits)	E Value
gi 41326831 emb BX927156.1 Corynebacterium glutamicum ATCC 1 gi 42602314 dbj BA000036.3 Corynebacterium glutamicum ATCC 1303 gi 80973081 qb DQ248874.1 Corynebacterium glutamicum L-lacta	944 944 944	0.0 0.0 0.0
gi 80973081 gb DQ248874.1 Corynebacterium glutamicum L-lacta gi 62086196 dbj AB191244.1 Corynebacterium glutamicum ldhA gene gi 50428370 dbj AB115088.1 Corynebacterium glutamicum ldhA g	658 383	0.0 4e-103

ALIGNMENTS

>gi|41326831|emb|BX927156.1| Corynebacterium glutamicum ATCC 13032, IS fingerprint
type 4-5,
complete genome; segment 9/10
Length=349115

Features in this part of subject sequence: putative membrane protein

Score = 944 bits (476), Expect = 0.0
Identities = 494/500 (98%), Gaps = 0/500 (0%)
Strand=Plus/Minus

Query	1	AAAACAGCCAGGTTAGCGGCTGTAACCCACCACGGTTTCGGCAACAATGACGGCGAGAGA	60
Sbjct	293611	AAAACAGCCAGGTTAGCAGCCGTAACCCACCACGGTTTCGGCAACAATGACGGCGAGAGA	293552
Query	61	GCCCACCACATTGCGATTTCCGCTCCGATAAAGCCAGCGCCCATATTTGCAGGGAGGATT	120
Sbjct	293551	GCCCACCACTTGCGATTTCCGCTCCGATAAAGCCAGCGCCCATATTTGCAGGGAGGATT	293492
Query	121	CGCCTGCGGTTTGGCGACATTCGGATCCCCGGAACCAGCTCTGCAATGACCTGCGCGCCG	180
Sbjct	293491	CGCCTGCGGTTTGGCGACATTCGGATCCCCGGAACTAGCTCTGCAATGACCTGCGCGCCG	293432
Query	181	AGGGAAGCGAGGTGGCAGGTTTTAGTGCGGGTTTAAGCGTTGCCAGGCGAGTGGTG	240
Shict	293431	AGGGAGGCGAGGTGGCAGGTTTTAGTGCGGGTTTAAGCGTTGCCAGGCGAGTGGTG	293372

Query	241	AGCAAAGACGCTAGTCTGGGGAGCGAAACCATATTGAGTCATCTTGGCAGAGCATGCACA	300
Sbjct	293371	AGCAGAGACGCTAGTCTGGGGGAGCGAAACCATATTGAGTCATCTTGGCAGAGCATGCACA	293312
Query	301	ATTCTGCAGGGCATAGATTGGTTTTGCTCGATTTACAATGTGATTTTTTCAACAAAAATA	360
Sbjct	293311	ATTCTGCAGGGCATAGGTTGGTTTTGCTCGATTTACAATGTGATTTTTCAACAAAAATA	293252
Query	361	ACACTTGGTCTGACCACATTTTCGGACATAATCGGGCATAATTAAAGGTGTAACAAAGGA	420
Sbjct	293251	ACACTTGGTCTGACCACATTTTCGGACATAATCGGGCATAATTAAAGGTGTAACAAAGGA	293192
Query	421	ATCCGGGCACAAGCTCTTGCTGATTTTCTGAGCTGCTTTGTGGGTTGTCCGGTTAGGGAA	480
Sbjct	293191	ATCCGGGCACAAGCTCTTGCTGATTTTCTGAGCTGCTTTGTGGGTTGTCCGGTTAGGGAA	293132
Query	481	ATCAGGAAGTGGGATCGAAA 500	
Sbjct	293131	ATCAGGAAGTGGGATCGAAA 293112	

>gi|42602314|dbj|BA000036.3| Corynebacterium glutamicum ATCC 13032 DNA, complete genome Length=3309401

Features in this part of subject sequence: Hypothetical protein

Score = 944 bits (476), Expect = 0.0
Identities = 494/500 (98%), Gaps = 0/500 (0%)
Strand=Plus/Minus

Query	1	AAAACAGCCAGGTTAGCGGCTGTAACCCACCACGGTTTCGGCAACAATGACGGCGAGAGA	60
Sbjct	3113891	AAAACAGCCAGGTTAGCAGCCGTAACCCACCACGGTTTCGGCAACAATGACGGCGAGAGA	3113832
Query	61	GCCCACCACATTGCGATTTCCGCTCCGATAAAGCCAGCGCCCATATTTGCAGGGAGGATT	120
Sbjct	3113831	GCCCACCACATTGCGATTTCCGCTCCGATAAAGCCAGCGCCCATATTTGCAGGGAGGATT	3113772
Query	121	CGCCTGCGGTTTGGCGACATTCGGATCCCCGGAACCAGCTCTGCAATGACCTGCGCGCCG	180
Sbjct	3113771	CGCCTGCGGTTTGGCGACATTCGGATCCCCGGAACTAGCTCTGCAATGACCTGCGCGCCG	3113712
Query	181	AGGGAAGCGAGGTGGCAGGTTTTAGTGCGGGTTTAAGCGTTGCCAGGCGAGTGGTG	240
Sbjct	3113711	AGGGAGGCGAGGTGGCAGGTTTTAGTGCGGGTTTAAGCGTTGCCAGGCGAGTGGTG	3113652
Query	241	AGCAAAGACGCTAGTCTGGGGAGCGAAACCATATTGAGTCATCTTGGCAGAGCATGCACA	300
Sbjct	3113651		3113592
Query	301	ATTCTGCAGGGCATAGATTGGTTTTGCTCGATTTACAATGTGATTTTTCAACAAAAATA	360
Sbjct	3113591		3113532

```
ACACTTGGTCTGACCACATTTTCGGACATAATCGGGCATAATTAAAGGTGTAACAAAGGA
                                                           420
Query
     361
            ACACTTGGTCTGACCACATTTTCGGACATAATCGGGCATAATTAAAGGTGTAACAAAGGA
                                                           3113472
     3113531
Sbjct
            ATCCGGGCACAAGCTCTTGCTGATTTTCTGAGCTGCTTTGTGGGTTGTCCGGTTAGGGAA
                                                           480
     421
Query
            ATCCGGGCACAAGCTCTTGCTGATTTTCTGAGCTGCTTTGTGGGTTGTCCGGTTAGGGAA
                                                           3113412
     3113471
Sbjct
            ATCAGGAAGTGGGATCGAAA
                            500
Query
     481
            3113411
            ATCAGGAAGTGGGATCGAAA
                            3113392
Sbjct
>gi|80973081|gb|DQ248874.1| Corynebacterium glutamicum L-lactate dehydrogenase (ldh)
pyruvate kinase (pyk) genes, complete cds
Length=4183
       944 bits (476), Expect = 0.0
Identities = 494/500 (98%), Gaps = 0/500 (0%)
Strand=Plus/Plus
         AAAACAGCCAGGTTAGCGGCTGTAACCCACCACGGTTTCGGCAACAATGACGGCGAGAGA
Query
         AAAACAGCCAGGTTAGCAGCCGTAACCCACCACGGTTTCGGCAACAATGACGGCGAGAGA
                                                        162
     103
Sbjct
         GCCCACCACATTGCGATTTCCGCTCCGATAAAGCCAGCGCCCATATTTGCAGGGAGGATT
                                                        120
Query
     61
         GCCCACCACATTGCGATTTCCGCTCCGATAAAGCCAGCGCCCATATTTGCAGGGAGGATT
                                                        222
Sbjct
     163
         CGCCTGCGGTTTGGCGACATTCGGATCCCCGGAACCAGCTCTGCAATGACCTGCGCGCCG
                                                        180
Query
     121
         CGCCTGCGGTTTGGCGACATTCGGATCCCCGGAACTAGCTCTGCAATGACCTGCGCGCCG
                                                        282
     223
Sbjct
         {\tt AGGGAAGCGAGGTGGCAGGTTTTAGTGCGGGTTTAAGCGTTGCCAGGCGAGTGGTG}
                                                        240
     181
Query
         AGGGAGGCGAGGTGGCAGGTTTTAGTGCGGGTTTAAGCGTTGCCAGGCGAGTGGTG
                                                        342
Sbjct
     283
                                                        300
         AGCAAAGACGCTAGTCTGGGGAGCGAAACCATATTGAGTCATCTTGGCAGAGCATGCACA
     241
Query
         AGCAGAGACGCTAGTCTGGGGAGCGAAACCATATTGAGTCATCTTGGCAGAGCATGCACA
                                                        402
Sbjct
         ATTCTGCAGGGCATAGATTGGTTTTGCTCGATTTACAATGTGATTTTTCAACAAAAATA
                                                        360
Query
     301
         ATTCTGCAGGGCATAGATTGGTTTTGCTCGATTTACAATGTGATTTTTCAACAAAAATA
                                                        462
Sbjct
     403
         ACACTTGGTCTGACCACATTTTCGGACATAATCGGGCATAATTAAAGGTGTAACAAAGGA
                                                        420
Query
     361
         ACACATGGTCTGACCACATTTTCGGACATAATCGGGCATAATTAAAGGTGTAACAAAGGA
                                                        522
Sbjct
     463
         ATCCGGGCACAAGCTCTTGCTGATTTTCTGAGCTGCTTTGTGGGTTGTCCGGTTAGGGAA
                                                        480
Query
         ATCCGGGCACAAGCTCTTGCTGATTTTCTGAGCTGCTTTGTGGGTTGTCCGGTTAGGGAA
                                                        582
Sbjct
     523
                          500
         ATCAGGAAGTGGGATCGAAA
Query
     481
         602
         ATCAGGAAGTGGGATCGAAA
     583
```

Sbjct

>gi|62086196|dbj|AB191244.1| Corynebacterium glutamicum ldhA gene, promoter region Length=348 Score = 658 bits (332), Expect = 0.0Identities = 344/348 (98%), Gaps = 0/348 (0%) Strand=Plus/Plus 209 150 Query 60 Sbjct 1 TGCGGGTTTAAGCGTTGCCAGGCGAGTGGTGAGCAAAGACGCTAGTCTGGGGAGCGAAAC 269 210 Query TGCGGGTTTAAGCGTTGCCAGGCGAGTGGTGAGCAGAGACGCTAGTCTGGGGAGCGAAAC 120 Sbjct 61 CATATTGAGTCATCTTGGCAGAGCATGCACAATTCTGCAGGGCATAGATTGGTTTTGCTC 329 270 Query CATATTGAGTCATCTTGGCAGAGCATGCACAATTCTGCAGGGCATAGATTGGTTTTGCTC 180 Sbjct 121 GATTTACAATGTGATTTTTTCAACAAAAATAACACTTGGTCTGACCACATTTTCGGACAT 389 Query 330 GATTTACAATGTGATTTTTTCAACAAAAATAACACATGGTCTGACCACATTTTCGGACAT 240 181 Sbjct AATCGGGCATAATTAAAGGTGTAACAAAGGAATCCGGGCACAAGCTCTTGCTGATTTTCT 449 390 Query AATCGGGCATAATTAAAGGTGTAACAAAGGAATCCGGGCACAAGCTCTTGCTGATTTTCT 300 241 Sbjct GAGCTGCTTTGTGGGTTGTCCGGTTAGGGAAATCAGGAAGTGGGATCG 497 Query 450 GAGCTGCTTTGTGGGTTGTCCGGTTAGGGAAATCAGGAAGTGGGATCG Sbjct >gi|50428370|dbj|AB115088.1| Corynebacterium glutamicum ldhA gene for lactate dehydrogenase, complete cds Length=1456 Score = 383 bits (193), Expect = 4e-103 Identities = 196/197 (99%), Gaps = 0/197 (0%)Strand=Plus/Plus CTGCAGGGCATAGATTGGTTTTGCTCGATTTACAATGTGATTTTTTCAACAAAAATAACA 363 Query 304 CTGCAGGGCATAGATTGGTTTTGCTCGATTTACAATGTGATTTTTTCAACAAAAATAACA 60 Sbjct 1 CTTGGTCTGACCACATTTTCGGACATAATCGGGCATAATTAAAGGTGTAACAAAGGAATC 423 Query 364 CATGGTCTGACCACATTTTCGGACATAATCGGGCATAATTAAAGGTGTAACAAAGGAATC 120 Sbjct 61 CGGGCACAAGCTCTTGCTGATTTTCTGAGCTGCTTTGTGGGTTGTCCGGTTAGGGAAATC 483 Query 424 180 Sbjct 121

AGGAAGTGGGATCGAAA

484

Query

500

GENE 03575

Construction of lacZ promoter probe vectors for use in Synechococcus: application to the identification of CO_2 -regulated promoters

(Gene fusions; \(\beta\)-galactosidase; inorganic carbon uptake; recombinant DNA; promoter; plasmid)

David J. Scanlan, Stephen A. Bloye, Nicholas H. Mann, David A. Hodgson and Noel G. Carr

Department of Biological Sciences, University of Warwick, Coventry CV4 7AL (U.K.)

Received by K.F. Chater: 7 November 1989

Revised: 2 January 1990 Accepted: 4 January 1990

SUMMARY

It was shown that the *Escherichia coli lacZ* gene could be expressed in the cyanobacterium *Synechococcus* R2 PCC7942 both as a plasmid-borne form and also integrated into the chromosome. A promoterless form of the *lacZ* gene was constructed and used as a reporter gene to make transcriptional fusions with cyanobacterial promoters using a shuttle vector system and also via a process of integration by homologous recombination. *Synechococcus* R2 promoter-*lacZ* gene fusions were then used to identify CO_2 -regulated promoters, by quantitatively assessing β -galactosidase activity under high and low CO_2 conditions using a fluorescence assay. Several promoters induced under low CO_2 conditions were detected.

INTRODUCTION

Cyanobacteria are capable of oxygen-evolving photosynthesis and the utilization of CO₂ as a sole source of carbon. Unicellular cyanobacteria offer attractive systems for the study of photosynthesis, particularly so when gene transfer is possible by either natural or recombinant means. Synechococcus R2 PCC7942 is an organism which is most readily transformed, and efficient shuttle vectors have been in use for some time (Kuhlemeier et al., 1981).

Correspondence to: Dr. D.J. Scanlan, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL (U.K.) Tel. (0203)523544; Fax (0203)523701.

Abbreviations: aa, amino acid(s); Ap, ampicillin; β Gal, β -galactosidase; bp, base pair(s); C_1 , inorganic carbon; Cm, chloramphenicol; cpc, gene encoding phycocyanin; DMSO, dimethylsulfoxide; kb, kilobase(s) or 1000 bp; Km, kanamycin; K_m , Michaelis-Menten constant; MCS, multiple cloning site; MUG, 4-methyl umbelliferyl- β -D-galactopyranoside; nt, nucleotide(s); ONPG, o-nitrophenyl- β -D-galactopyranoside; Pollk, Klenow (large) fragment of E. coli DNA polymerase I; R , resistant/resistance; RuBisCO, D-ribulose 1,5-bisphosphate carboxylase/oxygenase; TE, 10 mM Tris/1 mM EDTA pH 8.0; XGal, 5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside; [], denotes plasmid-carrier state.

Cyanobacteria, together with some unicellular eukaryotic phototrophs and certain lower aquatic plants, are capable of concentrating exogenous bicarbonate (see Badger, 1987) thereby providing a high internal concentration of CO_2 for RuBisCO and overcoming the high K_m of this enzyme for its substrate. Recently, mutants have been isolated which require high CO_2 conditions to grow (see Marcus et al., 1986; Abe et al., 1988) and their use may yield information on the molecular nature of C_i uptake.

Various reporter genes, e.g., cat (Friedberg and Seijsfers, 1986) and lux (Schmetterer et al., 1986) have been used to assess the expression of specific genes in cyanobacteria. Expression of β Gal in the marine cyanobacterium Synechococcus sp. PCC7002, has been reported (Buzby et al., 1985) and applied to assessment of the effect of light intensity and nitrogen availability on cpc-lacZ gene fusions (Gasparich et al., 1987). Such studies show that lacZ gene fusions can be used to monitor gene expression in cyanobacteria. It was consequently decided to take the approach that cyanobacterial DNA-lacZ gene fusions could be used to identify presumptive CO₂-regulated promoters by the differential activity of β Gal under high and low CO₂ conditions.

RESULTS AND DISCUSSION

(a) Synthesis of βGal in Synechococcus R2-SPc PCC7942

Two strategies are applicable, in cyanobacteria, to the construction of recombinants in which the expression of a reporter gene is driven from a cyanobacterial promoter. Either the hybrid may be introduced into the chromosome by homologous recombination or be expressed from an independently replicating shuttle vector (Table I). Using the latter approach we have obtained gene fusions in which expression of the reporter gene was driven by promoters whose activity was controlled by CO₂ availability. It was decided to use *lacZ* as the reporter gene since it had been shown to be efficiently expressed in the unicellular cyanobacterium *Synechococcus* PCC7002 (Buzby et al., 1985).

To confirm that the *lacZ* gene could be expressed in *Synechococcus* R2-SPc it was introduced into the *E. coli/Synechococcus* shuttle vector pUC105 (Kuhlemeier et al., 1981), by ligating a 4.2-kb *EcoRI-SalI* fragment from pTEBG3 into *EcoRI+SalI*-digested pUC105. The resulting 14-kb plasmid pTUC1 was introduced into *Synechococcus* R2-SPc. Ap^R transformants were obtained

at a frequency of $10^2-10^3/\mu g$ DNA. The presence of the lacZ gene was confirmed by Southern blotting and by the fluorescence of transformants after spraying with MUG. (We found that XGal was a less suitable indicator because the endogenous pigmentation of Synechococcus colonies obscured the indicator colour.) In addition, MUG can only detect β Gal present in bacteria at the time the substrate is applied, in contrast with colour reactions produced by bacterial colonies grown on agar plates that include XGal, which reflect substrate hydrolysis throughout the development of the colony.

(b) Construction of generalised promoter-probe vectors

Fig. 1A describes the construction of this new *lacZ* fragment and of pDAH216 and pDAH274. The sequence around the 5' end of *lacZ* showing the fusion point with *trpA* and stop codons is illustrated in Fig. 1B.

(c) Construction of the lacZ promoter probes for use in Synechococcus

Fig. 2 describes construction of the new lacZ promoter probe plasmids, based on the shuttle vector pUC105

TABLE I
Bacterial strains and plasmids

Strain or plasmid ^a	Characteristics a	Source/reference
Escherichia coli		
DHI	F^- , recA1, endA1, gyrA96	Maniatis et al. (1982)
MC1061	araD 139, ∆(ara-leu)7697, ∆lacX74, galK -, hsdR -, hsdM +, strA	Casabadan and Cohen (1980)
Synechococcus		•
PCC7942	R2-SPc (small plasmid cured)	This laboratory
Plasmids		
E. coli		
pTEBG3	Ap ^R , pBR322::lacZ	S. Elledge
pREG422	Ap ^R	Shimkets et al. (1983)
pIC19H	Ap ^R	Marsh et al. (1984)
pDAH216	ApR, promoterless lacZ	This study
pDAH274	Ap ^R , Km ^R , promoterless lacZ, P1 inc	This study
Synechococcus		
pUC105	Ap ^R , Cm ^R	Kuhlemeier et al. (1981)
pUC303	Sm ^R , Cm ^R	Kuhlemeier et al. (1983)
pUC105XS	ApR, CmR, XhoI-SalI deletion	This study
pUC105H	Cm ^R , HindIII deletion of pUC105	This study
PTUCI	Cm ^R , Ap ^R lacZ	This study
pLACPB1	Ap ^R , Cm ^R , promoterless lacZ	This study
pLACPB2	ApR, CmR, transcription terminators, promoterless lacZ	This study

^a The cyanobacterium Synechococcus R2-SPc PCC7942 was grown at 34°C in Allen's medium (Allen, 1968) in an orbital shaker and illuminated at a light intensity of 30–40 μE/m²/s. Low CO₂ cultures were grown in an environment gassed with air and high CO₂ cultures in a gas phase of 5% (v/v) CO₂ in air with Allen's medium supplemented with 10 mM NaHCO₃. Solid medium contained 1.5% (w/v) Bacto agar with the agar and Allen's medium autoclaved separately. Antibiotic concentrations used for Synechococcus R2-SPc grown in liquid medium were 1 μg Ap/ml and 10 μg Cm/ml. E. coli was grown in nutrient broth or on nutrient agar at 37°C. Antibiotic concentrations in both liquid and solid medium were 50 μg Ap/ml and 30 μg Cm/ml. A, deletion; P1 inc, incompatability region for phage P1.

B

-35 -10 operator RBS Met Thr Met Ile Jecz 5' Region AG GCTTTACACTTT ATGCTTCCGGCTCG TATGTT GTGTG TGGAATTGTGAGCGGATAACAATT T CACAC AGGA AACAGCT ATG ACC ATG ATT

Ale ale thr are ser end

trpa/lecz
Fuelon And Ale ale thr are ser end

Comparison and the ale three are the accordance and the accordance are accordance and accordance and

Fig. 1. Construction of the generalised lacZ promoter probe plasmids pDAH216 and pDAH274. Plasmids are not drawn to scale. The promoterless lacZ gene of pMC871 (Casadaban et al., 1980) was modified to: (i) remove as much as possible of the unwanted trpA DNA upstream from the lacZ, whilst still retaining stop codons in all three reading frames, thus ensuring that protein fusions were not possible; (ii) remove the EcoRI restriction site in the C-terminal region of the gene without changing the aa sequence; and (iii) insert a MCS upstream from the lacZ gene for the insertion of potential promoter fragments. The MCS includes a, now unique, EcoRI restriction site. Plasmid pTEBG3 contains a modified lacZ gene in which the EcoRI site was destroyed by site-directed mutagenesis. However, the same as are still encoded in the region of the modification. (A) Construction of the modified lacZ fragment and of pDAH216 and pDAH274. A 2.6-kb BamHI-ClaI fragment of pTEBG3 containing the C-terminal half of lacZ was ligated to BgIII + ClaI-cut pIC19H, to produce pDAH210. Cla I-cut pDAH210 was then ligated to Taq I-digested pMC871. The resulting plasmid, pDAH216, contains a shortened lacZ fragment lacking the EcoRI site in the C-terminal end of the lacZ gene. There are many TaqI sites present in pMC871 but none within the TaqI fragment containing the N-terminal end of the lacZ gene indicated. The other TaqI sites have been omitted for clarity. HindIII cut pDAH216 (and ends filled-in) was then ligated to EcoRI + BamHI-cut (and ends filled-in) pDAH211 (derived from pMC871 and pREG422; see Shimkets et al., 1983) to produce pDAH274. Abbreviations: B, BamH1; B2, BglII; C, ClaI; D, DraI; H3, HindIII; K, KpnI; N, NcoI; P, PstI; R, EcoRI; (R), deleted EcoRI site; S, SaII; Sm, SmaI; Tq, TaqI; X, XhoI; T, transcription termination signal; , terminator from Bacillus subtilis a-amylase gene. Thin lines represent plasmid sequences, whilst thick lines represent drug resistance genes, lacZ, P1 inc (incompatibility region for phage P1) or transcription termination signals. (B) Sequence of the 5' end of lacZ and the 3' end of upA (Casadaban et al., 1980) showing the upA/lacZ fusion point of pDAH216 and pDAH274 (S. McGowan, personal communication). Italicized letters represent bp not present in the trpA/kacZ fusion of AW205. RBS, ribosome-binding site.

Fig. 2. Construction of Synechococcus lacZ promoter probes. The BamHI site in pUC105 was removed by filling-in cut ends using Polik, and the resulting vector (pUC105 Bam-) cut with XhoI + SaII. Deletion experiments with pUC105 showed that a XhoI-SaII deletion did not affect transformation frequency (Table II). This was in contrast to deletion of a 4-kb HindIII fragment from pUC105 which completely abolished replication of pUC105 in Synechococcus R2. This would agree with the proposal that the cyanobacterial replication origin of this plasmid is contained within a 4.65-kb BamHI-XhoI restriction fragment (Gendel, 1987). Insertion of a promoterless lacZ gene from pDAH216, or pDAH274 (containing transcription termination signals at either end of the lacZ gene), into the large XhoI-SaII fragment of pUC105 Bam- produced pLACPB1 and pLACPB2, respectively.

(Kuhlemeier et al., 1981) for use in Synechococcus R2 PCC7942. Both vectors contain a unique BamHI site for insertion of cyanobacterial chromosomal DNA. Synechococcus R2-SPc chromosomal DNA libraries were constructed with these vectors, cloning partial Sau3AI digested chromosomal DNA into this unique BamHI site. Transformation frequencies of up to 10⁶ transformants/μg DNA were obtained (Table II).

Although plasmid promoter probe vectors have been widely used for studying gene fusions, the background expression of an intact lacZ gene on a multicopy plasmid, even lacking a recognisable promoter, is apparently quite high (Casadaban et al., 1980). Thus, it may be difficult to distinguish strains carrying the desired fusion from those carrying the parent plasmid. pLACPB1 indeed exhibited some endogenous β Gal activity (Table III). However, using pLACPB2 which contained a transcription termination signal upstream from the site of insertion of chromosomal DNA, expression of β Gal was reduced twofold. This difference reflects a transcriptional effect since the plasmid origin of replication (and hence the plasmid copy number) is the same in each case.

(d) Use of pLACPB1 and pLACPB2 to identify CO₂-regulated promoters

Synechococcus R2-SPc chromosomal DNA libraries, constructed in pLACPB1 and pLACPB2 with approx. 4-kb

fragments generated by Sau3AI partial digestion, were used to transform Synechococcus R2-SPc under normal low CO₂ conditions. Transformants were restreaked onto Allen's medium containing 7.5 µg Cm/ml, and then replica-plated onto solid medium containing Cm + 10 mM NaHCO₃. Plates were placed inside sealed gas bags before gassing with 5% CO₂ in air. After five days, corresponding high and low CO₂ transformation plates were sprayed with MUG and photographed. This initial screening allowed a preliminary identification of transformants exhibiting CO₂regulated expression of β Gal (Fig. 3). Interesting transformants were then grown in liquid medium under high and low CO₂ conditions, and β Gal was assayed throughout the growth curve using the MUG assay. Generally, β Gal activity increased proportionately with growth, though a few transformants showed a slight decrease when reaching stationary phase. Differences in β Gal activity under high or low CO₂ conditions were observed in 8 of 600 pLACPB1 or 17 of 2500 pLACPB2 transformants screened - showing either greater or lesser β Gal activity under the different CO₂ concentrations. Table III shows some examples. CO2 concentration did not significantly affect \(\beta \) Gal activity in control cultures.

Recent observations suggest that light intensity may also have a controlling effect on *lacZ* expression of individual transformants (data not shown). This is in agreement with the idea that metabolic conditions within the cell might be

TABLE II

Transformation frequencies for Synechococcus R2-SPc shuttle vector, integrative vector and promoter-probe vectors

Plasmid/selection •		Transformants/ µg DNA ^b
pUC105	Cm ^R	10 ⁵
pUC105 XhoI-SalI deletion	Cm ^R	104
pUC105 HindIII deletion	Cm ^R	zero
pLACPB1	Cm ^R	106
pLACPB1 chromosomal DNA library	Cm ^R	10 ⁵ -10 ⁶
pLACPB2	Cm ^R	104
pLACPB2 chromosomal DNA library	Cm ^R	10 ² 10 ³
pTUC1	ApR	$10^2 - 10^3$
pDAH274	KmR	zero
pDAH274 chromosomal DNA library 4-kb DNA fragments	Km ^R	103-104

similar under low CO₂ levels and high light intensities, and follows the identification of a 42-kDa cytoplasmic membrane protein from *Synechococcus* R2 which has been shown to be regulated by CO₂ concentration and light intensity (Reddy et al., 1989). Using both MUG and ONPG assays it was shown that many of the CO₂-regulated promoters were functional in *E. coli* (data not shown).

We have recently constructed a Synechococcus R2 gene library directly into pDAH274, a vector incapable of inde-

* Small-scale plasmid isolation from cyanobacteria used the rapid boiling method of Holmes and Quigley (1981) as modified by Alley (1987). Cyanobacterial chromosomal DNA extraction was based on a method described by Lind et al. (1985) with modifications. A late-log phase culture (25 ml) was spun in a MSE multer centrifuge at 5000 rpm for 10 min, resuspended in 0.5 ml 0.25 M Tris pH 8.0/20% (w/v) sucrose/lysozyme 10 mg per ml, and the cells were incubated for 1 h at 37°C. Sarkosyl (16 μ l of 30% (v/v) solution) and 20 μ l of proteinase K (5 mg/ml) was then added, and the cells incubated at 65°C for 1 h. An equal volume of phenol: chloroform was added, and the mixture vortexed and spun for 4 min in an eppendorf centrifuge. The supernatant was dialysed overnight against TE buffer and stored at -20°C. Plasmid constructions and transformation of *E. coli* were performed by standard techniques described in Maniatis et al. (1982). Restriction enzymes (Amersham International) were used under conditions recommended by the manufacturers.

^b Transformation of Synechococcus R2-SPc PCC7942 was performed as described by Kuhlemeier et al. (1981). Where appropriate, transformants were replica plated onto solid medium containing 10 mM NaHCO₃ plus antibiotic (7.5 µg Cm/ml or 1 µg Ap/ml). These plates were placed inside sealed plastic bags containing an atmosphere of 5% (v/v) CO₂ in air and continuously illuminated.

pendent replication in cyanobacteria. Using this insert-directed integration system transformants were obtained at high frequency (Table II), were stable in the presence of Km, and showed differential lacZ expression pDAH274 without inserts failed to transform Synechococcus R2-SPc. The control of the lacZ gene from cyanobacterial promoters maintained solely on the chromosome simplifies problems of plasmid copy number.

TABLE III

Expression of lacZ in selected Synechococcus R2-SPc transformants grown under low and high CO₂ conditions

Transformant a	βGal activity (MUG	units ^b)	Ratio of β Gal activity (low CO ₂ /high CO ₂)
	Air level CO ₂	5% (v/v) CO ₂ in air	(1011 002/1101 002/
Synechococcus R2-SPc (untransformed)	0.6	0.6	1.0
pLACPB1 control	46.0	32.0	1.4
8	29.0	117.0	0.25
10	1560.0	450.0	3.5
14	82.0	29.0	2.8
19	2630.0	79.0	33.0
pLACPB2 control	24.0	17.0	1.4
A	925.0	232.0	4.0
5	1955.0	223.0	9.0
<u>,</u>	370.0	57.0	6.5
17	423.0	42.0	10.0

^a See Table I. Transformations were carried out as described in Table II, footnote b. Nos. 8, 10, 14 and 19 represent specific pLACPB1 chromosomal DNA library transformants. Nos. 4, 5, 9 and 17 are specific pLACPB2 chromosomal DNA library transformants.

^b βGal activity was assayed using either ONPG as described by Miller (1972) and data are expressed as the increase in A₄₂₀/min/ml/mg protein, or using MUG, a quantitative fluorimetric assay for βGal specific activity, carried out as described by Youngman (1987). MUG units represent pmol MUG hydrolysed/ml/min standardised for culture density.

Fig. 3. Differential *lacZ* activity by *Synechococcus* R2-SPc-[pLACPB2] transformants grown under high (A) and low (B) CO₂ conditions as assessed by spraying plates with MUG. MUG was applied after patched bacterial colonies had developed, by spraying the plate with a MUG solution (10 mg/ml in DMSO). Plates were held 30 cm away from the atomizer nozzle, and a fine spray of MUG was delivered over the surface of the plate. After 5-10 min, plates were visualised under long wavelength ultraviolet light and photographed using Polaroid 667 film at f11 for an 1/8 of a second using a Kodak No. 45 Wratten gelatin filter. Magnification, × 0.7. The arrow indicates a transformant showing greater βGal activity under low CO₂ conditions.

(e) Conclusions

This study describes the construction of *lacZ* promoter probe vectors and their modification and use in the unicellular cyanobacterium *Synechococcus* R2 PCC7942.

- (1) The lacZ gene was shown to be expressed in this organism from both an endogenously replicating plasmid and also integrated into the chromosome.
- (2) Plasmids pLACPB1 and pLACPB2 are lacZ promoter probes for use in Synechococcus R2 with a replication origin functional in this organism, and which transform Synechococcus R2 at high frequency. In addition to the various presumptive CO₂-regulated promoters described here we have also identified promoters regulated by iron and magnesium limitation (data not shown). These plasmids allow relatively easy isolation of the promoter fragment which can then be used to clone the whole gene which would enable various functional studies. This approach thus allows an alternative molecular approach to studying for example inorganic carbon uptake in this organism.

ACKNOWLEDGEMENTS

This work was supported in part by a SERC-CASE studentship in association with Celltech to D.J.S. and a SERC studentship to S.A.B. and by the AFRC. D.A.H. acknowledges the support of a 'Nuffield Foundation Award to Newly Appointed Lecturers in Science' for part of this work.

REFERENCES

Abe, T., Tsuzuki, M., Kadokami, Y. and Miyachi, S.: Isolation and characterisation of tempe rature-sensitive, high-CO₂ requiring mutant of *Anacystis nidulans* R2. Plant Cell Physiol. 29 (1988) 1353-1360.

Allen, M.M.: Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol. 4 (1968) 1-4.

Alley, M.R.K.: Molecular Biological Aspects of Nitrogen Starvation in Cyanobacteria. Ph.D. Thesis, University of Warwick, 1987.

Badger, M.R.: The CO₂ concentrating mechanism in aquatic prototrophs. In Hatch, M.D. and Broadman, N.K. (Eds.), The Biochemistry of Plants: A Comprehensive Treatise, Vol. 10, Photosynthesis. Academic Press, San Diego, 1987, pp. 219-274.

Buzby, J.S., Porter, R.D. and Stevens Jr., S.E.: Expression of the Escherichia coli lacZ gene on a plasmid vector in a cyanobacterium. Science 230 (1985) 805-807.

Casadaban, M.J. and Cohen, S.N.: Analysis of gene control signals by DNA fusion and cloning in *Escherichia coli*. J. Mol. Biol. 138 (1980) 179-207.

Casadaban, M.J., Chou, J. and Cohen, S.N.: In vitro gene fusions that join an enzymatically active β-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J. Bacteriol. 143 (1980) 971-980.

Friedberg, D.: Use of reporter genes in cyanobacteria. Methods Enzymol. 167 (1988) 736-747.

Friedberg, D. and Seijffers, J.: Controlled gene expression utilising lambda phage regulatory signals in a cyanobacterium host. Mol. Gen. Genet. 203 (1986) 505-510.

Gasparich, G., Buzby, J.S., Bryant, D.A., Porter, R.D. and Stevens Jr., S.E.: The effects of light intensity and nitrogen starvation on the phycocyanin promoter in the cyanobacterium Synechococcus PCC7002. In Biggins, J. (Ed.), Progress in Photosynthetic Research, Vol. 4. Nijhoff, Dordrecht, 1987, pp. 761-765.

- Gendel, S.M.: Instability of Tn5 inserts in cyanobacterial cloning vectors.
 J. Bacteriol. 169 (1987) 4426–4430.
- Holmes, D.S. and Quigley, M.: A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114 (1981) 193.
- Kuhlemeier, C.J., Borrias, W.E., Van den Hondel, C.A.M.J. and Van Arkel, G.A.: Construction and characterisation of two hybrid plasmids capable of transformation to *Anacystis nidulans* R2 and *Escherichia coli* K-12. Mol. Gen. Genet. 184 (1981) 249-254.
- Kuhlemeier, C.J., Thomas, A.A.M., Van der Ende, A., Van Leen, R.W., Borrias, W.E., Van den Hondel, C.A.M.J. and Van Arkel, G.A.: A host-vector system for gene cloning in the cyanobacterium Anacystis nidulans R2. Plasmid 10 (1983) 156-163.
- Lind, L.K., Kalla, S.R., Lonneborg, A., Oquist, G. and Gustafsson, P.: Cloning of the β-phycocyanin gene from Anacystis nidulans. FEBS Lett. 188 (1985) 27-32.
- Maniatis, T., Fritsch, E.F. and Sambrook, J.: Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982.
- Marcus, Y., Schwarz, R., Friedberg, D. and Kaplan, A.: High CO₂ requiring mutant of *Anacystis nidulans* R2. Plant Physiol. 82 (1986) 610-612.

- Marsh, J.L., Erfle, M. and Wykes, E.J.: The pIC plasmid and phage vectors with versatile cloning sites for recombinant selection by insertional inactivation. Gene 32 (1984) 481-485.
- Miller, J.H.: Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1972.
- Reddy, K.J., Masamoto, K., Sherman, D.M. and Sherman, L.A.: DNA sequence and regulation of the gene (cbpA) encoding the 42-kilodalton cytoplasmic membrane carotenoprotein of the cyanobacterium Synechococcus sp. strain PCC 7942. J. Bacteriol. 171 (1989) 3486-3493.
- Schmetterer, G., Wolk, C.P. and Elhai, J.: Expression of luciferases from Vibrio harveyi and Vibrio fischeri in filamentous cyanobacteria. J. Bacteriol. 167 (1986) 411-414.
- Shimkets, L.J., Gill, R.E. and Kaiser, D.: Developmental cell interactions in *Myxococcus xanthus* and the spoC locus. Proc. Natl. Acad. Sci. USA 80 (1983) 1406–1410.
- Youngman, P.: Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other Gram-positive bacteria. In Hardy, K.G. (Ed.), Plasmids. A Practical Approach. IRL Press, Oxford, 1987, pp. 93-103.

Gene, 45 (1986) 299-310 Elsevier

GENE 1716

Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions

(Recombinant DNA; plasmid; promoter; yeast; *Escherichia coli*; codon; reading frame; catabolite repression; β -galactosidase)

Alan M. Myersa, Alexander Tzagoloffa, Dennis M. Kinneya and Carol J. Lustyb

^a Department of Biological Sciences. Columbia University, New York, NY 10027, Tel. (212)280-2920, and ^b Public Health Research Institute of the City of New York, Inc., 455 First Ave., New York, NY 10016 (U.S.A.) Tel. (212)578-0827

(Received April 7th, 1986) (Accepted June 3rd, 1986)

SUMMARY

We report yeast/Escherichia coli shuttle vectors suitable for fusing yeast promoter and coding sequences to the lacZ gene of E. coli. The vectors contain a region of multiple unique restriction sites including EcoRI, KpnI, SmaI, BamHI, XbaI, SalI, PstI, SphI and HindIII. The region with the unique cloning sites has been introduced in both orientations with respect to lacZ and occurs proximal to the eighth codon of the gene. All the restriction sites have been phased to three different reading frames.

Two series of vectors have been constructed. The first series (YEp) has two origins of replication (ori), i.e., of the yeast 2μ circle and of the ColE1 plasmid of E. coli, and can therefore replicate autonomously in both organisms. These shuttle vectors also have the Ap^R gene of E. coli and either the yeast LEU2 or URA3 genes to allow for selection of both E. coli and yeast transformants. The second series of vectors (YIp) are identical in all respects to the YEp vectors except that they lack the 2μ ori. The YIp vectors can be used to integrate lacZ fusions into yeast chromosomal DNA. None of the vectors express β -galactosidase (β Gal) in yeast or E. coli in the absence of inserted yeast promoter sequences. The 5'-nontranslated sequences and parts of the coding sequences of various yeast genes have been cloned into representative lacZ fusion vectors. In-frame gene fusions can be detected by β Gal activity when either yeast or E. coli clones are plated on media containing XGal indicator. Quantitative determinations of promoter activity were made by colorimetric assay of β Gal activity in whole cells. Fusion of the yeast CYCl gene to lacZ in one of the vectors allowed detection of regulated expression of this gene when cells were grown under conditions of catabolite repression or derepression.

Abbreviations: Ap, ampicillin; β Gal, β -galactosidase; bp, base pair(s); kb, 1000 bp; MCR, multiple cloning region; LB, M63,

WO, YPD, see MATERIALS AND METHODS, section a; nt, nucleotide(s); ONPG, o-nitrophenyl-β-d-galactoside; ori, origin of DNA replication; PA, polyacrylamide; Pollk, Klenow (large) fragment of E. coli DNA polymerase I; XGal, 5-bromo-4-chloro-indolyl-β-D-galactoside; 2μ, yeast 2μ circular plasmid DNA.

^{*} To whom correspondence and requests for plasmids, sequences and reprints should be addressed.

INTRODUCTION

Fusion of DNA sequences to the lacZ gene of E. coli provides a convenient means of studying prokaryotic and eukaryotic promoters and regulatory elements (Bassford et al., 1978; Guarente, 1983; Rose and Botstein, 1983). The ability of Saccharomyces cerevisiae to synthesize active β Gal has been extensively exploited to identify and delineate regulatory sequences in the 5' non-coding regions of yeast genes (for example see Rose et al., 1981; Guarente and Ptashne, 1981; Guarente and Mason, 1983; Guarente et al., 1984; Struhl, 1982; Lucchini et al., 1984). The β Gal fusions employed in such studies involve ligation of the 5' upstream regions and part of the coding region of a yeast gene to the lacZ gene of E. coli lacking the promoter sequences, the translational signals and the first seven codons.

To simplify the construction of lacZ fusions in yeast we have developed a set of vectors capable of accepting DNA fragments compatible with all restriction enzyme recognition sites present in the multiple cloning region of the plasmid pUC18 (Yanisch-Perron et al., 1985). These yeast/E. coli shuttle vectors contain the lacZ gene starting from the eighth codon fused to the multiple cloning region of pUC18 with either the HindIII or the EcoRI site proximal to the E. coli gene. The restriction sites of the multiple cloning region occur in all three reading frames with respect to the lacZ coding sequence. Two types of vectors have been constructed. The first type, designated by the prefix YEp, contains sequences allowing autonomous replication in E. coli and in yeast. These vectors also contain the E. coli β -lactamase gene to confer Ap resistance, and either the yeast URA3 or LEU2 gene to permit prototrophic selection of transformants. The second set of vectors, designated by the prefix YIp, are identical to the YEp vectors except that the yeast 2μ circle sequence necessary for autonomous replication in yeast has been deleted. These vectors can be used to integrate lacZ fusions into yeast chromosomal DNA. The vectors have been shown to express β Gal in yeast in the presence but not absence of DNA inserts with appropriate transcriptional and translational signals.

(a) Media, strains and transformations

Non-selective medium for yeast (YPD) contained 1% yeast extract, 2% peptone and 2% glucose. Selective medium for yeast (WO) contained 0.67% yeast nitrogen base minus amino acids and 2% glucose supplemented as required with tryptophan, uracil, histidine, adenine and leucine at 25 μ g/ml. E. coli was grown in LB medium (Davis et al., 1980) supplemented with 40 μ g Ap/ml when required for selection of plasmids. E medium (Davis et al., 1980) supplemented as required was used for selection of specific markers in E. coli. Solid media contained 2% or 1.5% agar for growth of yeast and E. coli, respectively. S. cerevisiae strain W303-1B (a leu2-3,112 his3-11,15 ade2-1 ura3-1 trp1-1 can1-100 [cir+]) obtained from R. Rothstein, College of Physicians and Surgeons, Columbia University, New York, NY, was transformed with autonomously replicating plasmids by the method of Beggs (1978). Transformants were selected on minimal glucose media lacking either uracil or leucine but supplemented for the other auxotrophic requirements of W303-1B. E. coli strain RR1 (proA, leuB6, lacY, galK2, xyl-5, mtl-1, ara-14, rpsL20, supE44, hsdS, λ^-) was used for maintenance of plasmids and for selection of plasmids containing the yeast LEU2 gene. E. coli strain MC1066 (F-, \(\Delta\)lac X74, hsdR, rpsL, galU, galK, trpC9830, leuB6, pyrF::Tn5) was used for selection of plasmids containing the yeast URA3 gene. The β Gal-deficient E. coli strain MC1009 (araD139, ΔlacX74, Δara-leu7967, galU, galK, strA, recA 56, sr1:: Tn10, relA, spoT) was used to test expression of the plasmid copy of lacZ in E. coli by plating on LB medium supplemented with 50 μg XGal/ml. All bacterial transformations were by the CaCl₂ procedure (Cohen et al., 1972). βGal activity was tested in yeast by plating on M63 salts medium supplemented with 40 µg XGal/ml (Guarente, 1983).

(b) Miscellaneous procedures

Standard techniques were used for preparation of recombinant plasmids from E. coli, restriction enzyme digestions, agarose gel electrophoresis, isolation of restriction fragments from agarose gels, ligation of restriction fragments and screening of transforming DNAs (Maniatis et al., 1982). Fragments with protruding 5' ends were converted to blunt-ended fragments using the Pollk (Maniatis et al., 1982). Controlled exonucleolytic digestion of double-stranded DNA was accomplished by treatment of approx. $1 \mu g$ DNA with 50 units of S1 nuclease in 50 µl of 30 mM NaCl, 1 mM ZnCl₂, 35 mM sodium acetate, pH 4.75, for 5 min at 37°C. The reaction was stopped by adding $100 \mu l$ of 100 mM Tris · HCl, pH 7.5, 10 mM EDTA, followed by phenol extraction. This S1 nuclease treatment resulted in the loss of 7-14 nt from each end of the molecules. DNA sequences were determined by the method of Maxam and Gilbert (1977). Quantitative determination of β Gal activity in yeast cells was performed by measuring hydrolysis of ONPG as described (Guarente, 1983).

RESULTS AND DISCUSSION

(a) Construction of lacZ fusion vectors for expression of β Gal in yeast: YEp353, YEp354 and YEp355

The β Gal fusion vector pMC1403 (Casadaban et al., 1980) was modified by Minton (1984) to allow fusion to the lacZ structural gene in three reading frames. Three plasmids designated pNM480, pNM481, and pNM482, all contain the multiple cloning region of the plasmid pUC8 (Vieira and Messing, 1982) upstream from the lacZ gene, with a phase correction between the HindIII site and the eighth codon of lac Z (Minton, 1984). The availability of these plasmids suggested a simple means for introducing the three different pUC8/lacZ sequences into a yeast shuttle vector. For this purpose we chose the episomal plasmids YEp351 and YEp352 (Hill et al., 1986) both of which contain the entire pUC18 sequence, the yeast 2μ origin of replication, and the wild-type LEU2 or URA3 genes, respectively. Initially the 3.15-kb EcoRI-DraI fragment of each pNM vector was ligated separately to YEp351 or YEp352 from which 215 bp between the EcoRI and NarI sites had been removed (Fig. 1). The resultant plasmids YEp353A, YEp354A, YEp355A and YEp363A were capable of replicating in E. coli and

in yeast and of complementing the *leu2* or *ura3* mutations of an appropriately marked yeast strain. Some of the plasmids, however, expressed β Gal activity when yeast or *E. coli* transformants were plated in the presence of XGal. The synthesis of β Gal is probably due to the presence of the *lac* promoter and an ATG start codon upstream from the multiple cloning regions of YEp351 and YEp352.

The lac promoter region was removed from YEp352 as shown in Fig. 1. YEp352 was digested to completion with PvuII to eliminate the entire lacZ' region of pUC18 as well as the operator/promoter and part of the lacI gene. The digestion mixture was then briefly treated with S1 nuclease to remove an ATG codon located immediately 5' of the PvuII site within the lacI gene. The 8.0-kb vector band was purified and was ligated to a blunt-ended EcoRI the sequence of this linker was 5'-CCCGGATTCGGG-3'. Several different plasmids containing the EcoRI site were partially sequenced to determine the effects of digestion with S1 nuclease. The plasmid YEp352E was ascertained to have lost 6 nt, including the ATG sequence on the 5' side of the *lacI* coding sequence.

The pUC8/lacZ sequences from the previous set of vectors YEp353A, YEp354A and YEp355A were transferred into YEp352E (Fig. 1). The 3.9-kb EcoRI-NcoI fragments of YEp353A, YEp354A and YEp355A containing the multiple cloning region, the lacZ gene and part of URA3 was purified from each vector and ligated to the large EcoRI-NcoI fragment of YEp352E. Following transformation of E. coli RR1 with the ligation mixtures, Ap-resistant clones were screened for plasmids having the pUC8/lacZ sequences and the reconstituted URA3 gene. These plasmids designated YEp353, YEp354 and YEp355 did not express β Gal activity when transformed into either yeast or E. coli (see section e below). The disposition of the restriction sites in the pUC8 multiple cloning region with respect to the lacZ reading frame was verified by nt sequence analysis (Table I). The complete nt sequences of the YEp vectors containing URA3 were compiled from the known sequences of YEp352 and the pNM vectors (Table II). All restriction sites of the multiple cloning region occur once in these constructs, with the exception of SacI which is also present in the coding sequence of lacZ.

Fig. 1. Construction of YEp353 and YEp363. Single line, pUC8 or pUC18 sequence. Open box, lacZ or lacY sequence, solid box, URA3 or LEU2 sequence, cross-hatched box: 2μ circle sequence. The figure is drawn to scale for the URA3 containing vectors except for the 0.3-kb region spanning the PvuII sites which has been expanded for detail. The indicated vector sizes apply to scaled vectors only. The arrangement of genes in the corresponding LEU2 containing vectors YEp351, YEp363A and YEp363 (indicated by numbers in parentheses) is also represented by these figures although in this case scale is no longer maintained. Restriction sites are indicated for AatII (A), DraI (D), EcoRI (E), HindIII (H), NarI (N), NcoI (C), and PvuII (P). The NcoI site is present only in the vectors containing URA3. (D-N) indicates the ligated junction of free ends created by cleavage with NarI and DraI, where neither restriction site was recreated. Arrowheads indicate the lac promoter. YEp363 was formed by ligating the 2.7-kb AatII fragment of YEp353 to the 5.2-kb AatII fragment of YEp363A. YEp vectors with MCRs in the other two reading frames were constructed by repeating the manipulations diagrammed here using pNM481 and pNM482 as the source of the lacZ gene.

TABLEI

Structure of the multiple cloning regions (MCR) of the lacZ fusion vectors

Vector	Se	Sequence and reading frame of multiple cloning region ^a	me of multiple clonin	g region ^a							
YEp333, YEp363 YEp354, YEp364 YEp355, YEp365 YEp356, YEp366 YEp357, YEp366 YEp358, YEp368 YEp358, YEp368 YEp358, YEp368R YEp358, YEp368R YEp358R, YEp368R		5'-GA ATT CCC GGG GAT CCG TCG ACC TGC AGC CAA GCT TGC GAT CCC-3' 5'-GAA TTC CCG GGG ATC CGT CGA CCT GCA AGC CTT GCT CCC-3' 5'-GAAT TCC CGG GGA TCC GTC GAC CTG CAG CCA AGC TTC GAT CCC-3' 5'-GA ATT CGA GCT CGG TAC CCG GGG ATC CTC TAG AGT CGA CCT GCA GGC ATG CAA GCT TGC GAT CCC-3' 5'-GAA TTC GAG CTC GGT ACC CGG GGA TCC TCT AGA GTC GAC CTG CAG GCA TGC AAG CTT GCT CCC-3' 5'-G AAT TCG AGC TCG GTA CCC GGG GAT CCT TAG AGG TCG ACC TGC AGG CAT GCA AGC TTC GAT CCC-3' 5'-AAG CTT GCA TGC CTG CAG GTC GAC TCT AGA GGA TCC CCG GGT ACC GAG CTC GAA TTC CCA GCT TGC GAT CCC-3' 5'-AA GCT TGC ATG CCT GCA GGT CGA ATC TAG AGG ATC CCC GGG TAC CGA GCT CGA ATT CCC CAG CTT GCT CCC-3' 5'-AA GCT TGC ATG CCT GCA GGT CGA CTC TAG AGG ATC CCC GGG TAC CGA GCT CGA ATT CCC CAG CTT GAT CCC-3' 5'-AA GCT TGC ATG CCT GCA GGT CGA CTC TAG AGG ATC CCC GGG TAC CGA GCT CGA ATT CCC CAG CTT GAT CCC-3' CCCC-3' CCCC-3' CCCC-3' CCC-3' CCCC-3' CCCC-3' CCCC-3' CCCC-3' CCCC-3' CCCC-3' CCCC-3' C	666 ATC CGT 666 ATC CGT 66 GGA TCC G 6C TCG TAC CTC GGT ACC 6C TCG GTA C 7C CTG CAG 1T GCC TGC AG 1T GCC TGC AG	TCG ACC TGC CGA CCT GC TC GAC CTG CCG GGG ATC CCG GGG GAT CC GGG GAT GTC GAC TC GG TCG ACT GGT CGA CTC	AGC CAA GC CAG CC AGC CAG CC AGC CTC TAG AG C TCT AGA G CCT CTA AGA G CTT AGA G CTT AGA G CTT AGA G CTT AGA G T AGA GGA I TAGA AGG AT TAGA AGG AT	T 10C GAT CC TT GCT CCC-1 TC GA CCT GC TC GAC CTG C TC GAC CTG C TC ACC TGC CC CCG GGT A CCC CGG GTA	20-31 11 20-31	TG CAA GCT TGC TGC AAG CTT GCT T GCA AGC TTC G CTC GAA TTC CCA C TCG AAT TCC C CT CGA ATT CCC CT CGA ATT CCC	GC GAT CCC-3 GCT CCC-3 CC GAT CCC-3 CCA GCT TGC C CAG CTT GC	37. GAT CCC-37. 37 CCC-37.	
Restriction site	YEp363 YEp353	YEp364 YEp354	YEp365 YEp355	YEp366 YEp356	YEp367 YEp357	YEp368 YEp358		Restriction site	YEp366R YEp356R	YEp367R YEp357R	YEp368R YEp358R
S'-EcoRI Sac1 KpnI Smal Smal BamHII Xbal Sall PstI SphI	2 m m - N	- 3 2 1 -	w - 2 w	, , , , , , , , , , , , , , , , , , ,	1 2 2 1 1 1 2 2 1	w e e e e e e e		S'-HindIII SphI PxI SalI XbaI BamHII SmaI KpnI SacI	- 22224-	n n n n n	

* The sequences begin at the first nt of the MCR and end with the CCC codon specifying the eighth amino acid of etaGal. The sequences of all vectors with a given selectable marker are identical outside of the region shown.

b Sites where a given enzyme will cleave within a triplet, with '3' meaning between triplets. All restriction sites listed except for Sacl are unique in YEp353-YEp358R. All restriction sites listed except for EcoRI, KpnI and SacI are also unique in YEp363-YEp368R. The MCR of each integrative YIp vector is identical to the MCR of the episomal YEp vector with the corresponding numerical suffix. Cloning into any site marked with an asterisk will lead to a TAG stop codon within the downstream XbaI site of the MCR.

TABLE II

Restriction enzyme recognition sites in YEp356 a

Enzyme	No. of sites	Positio	on of sit	es											
AatII	2	672	5979												
AccI	3	34	3278	3783											
4cyl	5	672	2200	2372	5979	6361									
4/1111	6	1355	2135	2560	2812	3928	7790								
4halll	3	6322	7014	7033											
4 <i>lu</i> I	29	8	53	144	255	435	1990	2290	2701	3064	3258	4051	4101	4330	463
		4764	5048	5450	5545	5620	5634	5850	5869	6548	6611	6711	7232	7489	762
		7851													
4pa l	1	3733													
4su l	14	164	1594	2480	2742	2880	3733	3734	3955	4952	5922	6538	6760	6777	685
4sull	1	3843													
4va I	4	17	1391	2834	4855										
4va II	5	1594	3955	4952	6538	6760									
4valll	2	3284	4849												
BamHI	1	22													
Bc/I	i	1399													
Bg/I	3	199	2320	6778											
_	9	22	1462	1754	2795	6255	6576	7040	7138	7224					
Bin I Bse P I	1	1551	1402	1754	2,,,,	0233	33.0								
BstXI	2	2266	2883												
	15	17	18	1487	1577	1936	2113	2173	3120	3505	4512	5829	5864	6365	671
Caull	15	7412	10	1407	1311	1750	2115	21.5	5.20						
CCI	£	524	1522	3319	6509	7951									
CfrI	5		1322	3317	0303	7751									
ClaI	1	876	E E O	2217	3066	3378	3615	4211	4636	4761	4885	5740	5975	6401	694
Ddel	16	277	558	2217	3000	3316	3013	7211	4030	4701	1005	5. 10			•••
_ ~.	_	7107	7516												
Eco RI	1	1	222	627	1620	2188	2455	2489	3034	3730	4368	4462	7630	7643	776
EcoRII	14	96	223	527	1620	2100	2433	2407	3034	3730	4500	7702	,050	7013	
EcoRV	2	1164	3921	2210		7061									
GdiII	5	524	1522	3319	6509	7951	7314	2766	7777						
Hael	8	449	1427	2687	3126	3673	7314	7766	7777	3069	4427	4611	4674	4736	479
Haell	20	214	508	945	1434	1886	2009	2109	2184	3009	4427	4011	4074	4750	4//
		4861	5500	5519	5597	7546	7916	1500	2401	2402	2688	2743	2880	3127	332
Haelll	25	167	281	450	525	1257	1428	1523	2481	2492			2000	3127	332
		3674	3734	5923	6510	6777	6857	7315	7749	7767	7778	7952	5002	6361	711
Hgal	15	455	904	1446	1628	2201	2225	2238	2372	2861	3478	5490	5803	0301	/11
		7689								2424					
HgiAI	9	7	1989	2398	2513	4219	5733	6230	6315	7476					
HgiCI	6	13	233	245	849	1301	6949								
HgiEII	3	236	3223	7203											
HgiJII	5	7	1989	3038	3640	3733									
HincII	7	34	477	1101	2929	3467	3603	4561							
HindIII	1	52											4010	5014	
Hinfl	20	32	392	959	1091	1310	1422	3030	4259	4632	4694	4757	4819	5014	514
		5240	6903	7420	7816	7891	7956						- 400		
HinfIII	12	3	209	459	958	1092	1365	1649	1961	2867	3753	4258	5433		
Hpal	3	477	1101	4561											
Hpall	30	18	231	249	577	1341	1488	1578	1936	2103	2113	2173	2597	2609	267
		3073	3120	3505	4513	5463	5830	5864	6365	6607	6717	6784	6818	7222	741
		7438	7585									4			
<i>Hph</i> I	15	596	828	867	1388	1809	2037	2392	3367	5890	5899	6183	6198	6424	682
-		7047													
Kpnl	1	13													

(TABLE II, continued)

Enzyme	No. of sites	Positi	on of sit	es											
Mael	11	29	3679	4069	4425	5041	5292	5543	5547	6709	7044	7297			
MaeIII	30	82	102	322	348	406	520	616	670	793	807	906	1108	1359	1669
		1953	2223	3360	3528	3691	4337	5455	5854	6242	6430	6583	6641	6972	7255
		7371	7434												
Mbol	30	23	60	174	270	636	900	1326	1380	1400	1463	1476	1640	1755	1833
		2385	2796	3430	6220	6556	6273	6531	6577	6595	6936	7041	7053	7131	7139
		7150	7225												
MboII	30	159	272	633	1563	2830	2976	3327	3408	3540	3593	3697	3841	3846	4119
		4178	4235	4438	4691	4967	4995	5150	5180	5493	5692	6108	6217	6295	7050
		7141	7912												
MluI	3	1355	2135	2560											
MnlI	27	26	162	279	301	590	762	1041	1096	1122	2046	2216	3371	3406	3676
		3899	5316	5883	5925	6536	6742	6872	6953	7353	7620	7677	7903	7936	
MstI	4	193	5110	5623	6677										
Mstll	1	276													
Ncol	1	3902													
Nde I	2	3009	4190												
Nla III	27	47	717	1128	1139	1298	2161	2813	2986	3130	3283	3549	3649	3903	3929
		4038	4110	4172	5687	5874	5958	6063	6456	6492	6570	6580	7071	7791	
Nsp BII	14	143	845	1227	1635	2025	2376	2403	2700	2789	3063	5798	6264	7205	7450
NspCI	6	46	2812	3282	3928	5873	7790								
Pss I	2	3954	5921												
Pst I	1	40													
Pvu I	5	173	899	1379	1832	6530									
Pvull	3	143	2700	3063											
Rsal	13	14	756	1235	1547	2133	2825	3167	3610	3798	3861	3994	5744	6420	
Sacl	2	7	1989												
Sall	1	34													
Scal	2	3797	6419												
SduI	14	7	1989	2175	2398	2513	3038	3640	3733	3895	4219	5733	6230	6315	7476
Smal	1	17													
SnaI	3	2816	3278	3783											
Sna BI	1	5203													
SphI	1	46													
Ssp1	3	1281	5439	6095											
Stul	1	3673													
Taq I	16	5	35	877	925	1094	1474	1948	2287	2461	2998	3844	4106	5238	5320
		6248	7692												
TthIII	7	4023	4624	4749	5417	7177	7183	7216							
Xba I	1	28													
Xholl	9	22	2795	3429	6255	6272	7040	7052	7138	7149					
Xmn1	2	5172	6298												

[&]quot; The vector contains 7966 bp numbered on the coding strand of lacZ, with nt 1 defined as the first nt of the MCR. Differences between YEp356 and other YEp vectors containing *URA3* are shown in Table I. The MCR includes nt 1-62, the lacZ sequence includes nt 63-3175, the *URA3* sequence includes nt 3231-4333, the 2μ sequence includes nt 4334-5728, and the pUC sequence includes nt 5729-7966 and 3176-3230.

(b) Construction of YEp356, YEp357, YEp358, YEp356R, YEp357R and YEp358R

Additional unique restriction sites were introduced into the lac Z fusion vectors upstream from the β Gal gene by replacement of the multiple cloning region of pUC8 with that of pUC18. The multiple cloning region of pUC18 was isolated as a 56-bp EcoRI-HindIII fragment and ligated separately to YEp353, YEp354 and YEp355 digested with EcoRI and HindIII. The resultant recombinant plasmids YEp356, YEp357, and YEp358, contain unique SphI, KpnI, and XbaI recognition sites upstream from the lacZ gene in addition to those present in the pUC8 multiple cloning region (Table I). The three vectors also contain a SacI recognition site available for cloning in frame gene fusions, although this site is also present once in the lacZ sequence. The phasing of the reading frames of the unique cloning sites of YEp356-YEp358 relative to lacZ were verified by nt sequence analysis (Table I).

To facilitate cloning of yeast genomic fragments defined by different upstream restriction sites, the multiple cloning regions of YEp356, YEp357 and YEp358 were inverted with respect to lacZ. A blunt ended form of the pUC18 multiple cloning region was constructed from the 56 bp EcoRI-HindIII fragment used earlier. The fragment was first methylated using HpaII methylase to protect the internal 5'-CCCGGG-3' sequence from digestion with SmaI. The methylated fragment was ligated to two adaptor sequences, the EcoRI-SmaI adaptor 5'-GAATCCCGGG-3' and the HindIII-SmaI adaptor 5'-AAGCTTCCCGGGA-3'. These two adaptor sequences recreate the EcoRI and HindIII sites. The high M_r ligation products were digested with SmaI and the unit-length, blunt-ended fragment with the multiple cloning region was purified on a 6% PA gel. This fragment was ligated separately to YEp356, YEp357, and YEp358 which had been digested with EcoRI + HindIII and been made blunt-ended by treatment with Pollk. The ligation mixture was used to transform E. coli strain RR1, and individual clones were screened by restriction mapping for plasmids in which the orientation of the multiple cloning region was opposite that of the parent vectors. Three plasmids designated YEp356R, YEp357R, and YEp358R were confirmed by DNA sequence analysis to have the EcoRI site proximal to the *lacZ* gene with the unique cloning sites in each of the three reading frames (Table I).

(c) Construction of *lacZ* fusion vectors containing *LEU2* as a selectable marker

A second set of lacZ fusion vectors containing the yeast LEU2 gene as a selectable marker was constructed by transferring segments of each URA3 containing vector to YEp363A (Fig. 1). YEp353 through YEp358R were used to prepare a 2.7-kb AatII fragment containing most of the pUC18 sequence, the multiple cloning region, and the 5' region of lacZ. These fragments were ligated separately to the 5.8-kb AatII fragment of YEp363A containing the 3' region of lacZ, the yeast LEU2 gene, and the remainder of pUC18 (Fig. 1). The ligation mixture was used to transform E. coli RR1 and Ap-resistant colonies were scored for leucine prototrophy by complementation of the leuB mutation of E. coli. Plasmid DNA extracted from the Leu + clones was analyzed by restriction mapping to confirm reconstitution of the lacZ gene. The resultant plasmids YEp363-YEp368R contain MCRs with the same disposition of reading frames as the corresponding URA3 vectors YEp353-YEp358R (Table I). The complete nt sequences of these vectors compiled from the known sequences of YEp351 and the pNM vectors shows the EcoRI, SacI, and KpnI sites are present twice while the remainder of the sites in the MCR are unique (Table III).

(d) Construction of integrative lacZ fusion vectors

Each of the episomal lacZ fusion vectors described above were converted to integrative vectors by removal of yeast 2μ circle sequences required for autonomous replication in yeast (Fig. 2). In the case of the vectors with the URA3 gene, the 5.9-kb region from the AatII site of pUC18 to the NcoI site in URA3 was ligated to the 1.2-kb AatII-NcoI fragment of the integrative vector YIp352 (Hill et al., 1986). This fragment of YIp352 supplies the sequences necessary for reconstitution of pUC18 and URA3, but does not contain the 2μ sequence essential for autonomous replication in yeast. A similar approach was used to construct integrative forms of the LEU2 vectors. The region of YEp363-YEp368R from the KpnI site of the LEU2

TABLE III

Restriction enzyme recognition sites in YEp366 a

Enzyme	No. of sites	Position	on of sit	es					-						
AatII	2	672	6437												
Accl	2	34	3602												
Acyl	5	672	2200	2372	6437	6819									
Afl I I	1	4479													
AflIII	6	1355	2135	2560	2812	4057	8248								
Ahalll	3	6780	7472	7491											
Alu I	25	8	53	144	255	435	1990	2290	2701	3064	3553	4220	4712	5279	5404
		5688	6090	6308	6327	7006	7069	7169	7690	7947	8083	8309	•		
AsuI	15	164	1594	2480	2742	2880	4232	4264	4560	4904	5592	6380	6996	7218	7265
		7314													
AsuII	2	4673	5161												
Ava I	4	17	1391	2834	5495										
AvaII	7	1594	4232	4560	4904	5592	6996	7218							
AvaIII	1	5489													
Bam HI	1	22													
Bcll	1	1399													
Bg/I	3	199	22320												
Bin I	10	22	1462	1754	2795	4108	6713	7034	7498	7596	7682				
Bse PI	1	1551													
BstEII	1	4759													
BstXI	3	2266		4080											
Cauli	14	17	18	1487	1577		2113	2173	3120	3921	6287	6322	6823	7174	7870
Cfrl	5	524	1522	4276	6967	8409									
ClaI	2	876	4643												
Ddel	16	277	558	2217	3066	44784	5153	5186	5276	5401	5525	6198	6433	6859	7399
		7565	7974												
<i>Eco</i> RI	2	1	4157												
EcoRII	13	96	223	527	1620	2188	2455	2489	3034	4017	4764	8088	8101	8222	
<i>Eco</i> RV	2	1164	4046												
Gdill	5	524	1522		6967	8409									
Hael	10	449	1427	2687	3126	3826	3982	4207	7772	8224	8235				
HaeII	19	214	508	945	1434	1886	2009	2109	2184	3069	5106	5251	5314	5376	5439
		5501	6140	6159	8004	8374									
Haelll	29	164	281	450	525		1428	1523	2481	2492	2688	2743	2880	3127	3249
		3827	3983	4208	4265	4277	4993	6381	6968	7235	7315	7773	8207	8225	8236
	•	8410													
Hgal	8	7	1989	2398	2513	6191		6773	7934						
HgiCI	8	13	233	245	849	1301	3457	4547	7407						
HgiEII	4	236	3734		7661										
HgiJII	3	7		3038											
Hincll	7	34	477	1101	2929	3899	4921	5201							
HindIII	1	52													
Hin∏	26	32	392	959	1091	1310		3030	3413	3696	4122	4289	4455	5093	5159
~		5272	5334	5397	5459	5654	5787	5880	7361	7878	8274	8349	8414	54.60	
HinfIII	14	3	209	459	958	1092	1365	1649	1961	2867	3414	4159	5086	5160	6073
Hpa I	3	477	1101	5201	577	1241	1400	1570	1076	2102	2112	2172	2507	3600	2626
Hpall	33	18	231	249	577	1341		1578	1936	2103	2113	2173	2597	2609	2676
		3073	3120	3234	3921	4545	4986	4958	4991	6103	6288	6322	6823	7065	7175
11-1.7	22	7276	7680	7870	7896	8043	2027	2202	2207	2741	2777	4050	4047	4241	4761
Hphĭ	22	596 4000	828	867	1388	1809		2392	3286	3741	3777	4050	4067	4341	4761
V	2	4999		6357	6641	6656	0882	7278	7505						
Kpnl	2	13	4547	5/01	5030	(100	71/7	7500	775						
Mael	8	29	4105	1800	5932	6183	/10/	7502	7755						

(TABLE III, continued)

Enzyme	No. of sites	Positio	on of site	es											
MaeIII	28	82	102	322	348	406	520	616	670	793	807	906	1108	1359	1669
		1953	2223	4469	4760	6095	6312	6700	6888	7041	7099	7430	7713	7829	7892
Mbol	32	23	60	174	270	636	900	1326	1380	1400	1463	1476	1640	1755	1833
		2385	2796	3231	4109	4778	6678	6714	6731	6989	7035	7053	7394	7499	7511
		7589	7597	7608	7683										
MluI	3	1355	2135	2560											
Mst I	3	193	5750	7135											
MstII	1	276													
Ndel	1	3009													
Nla III	26	47	717	1128	1139	1298	2161	2813	2986	3130	3425	3939	4058	4112	4255
		4268	4473	4955	6332	6416	6521	6914	6950	7028	7038	7529	8249		
Nsp BII	14	143	845	1227	1635	2025	2376	2430	2700	2789	3063	6256	6722	7663	7908
Nsp CI	5	46	2812	4057	6331	8248									
Pss l	2	4903	6379												
Pst I	1	40													
Pvu I	5	173	899	1379	1832	6988									
PvuII	3	143	2700	3063											
Rsa I	16	14	756	1235	1547	2133	2825	3167	3237	3675	3756	3947	4410	4490	4548
		6202	6878												
SacI	2	7	1989												
SalI	1	34													
Scal	1	6877													
Sdul	11	7	1989	2175	2398	2513	3038	3458	6191	6688	6773	7934			
SmaI	1	17													
Snal	1	2816													
Sna BI	1	5843													
Sphl	1	46													
Sspl	5	1281	3475	4915	6079	6553									
Taq I	19	5	35	877	925	1094	1474	1948	2287	2461	2998	4644	4674	4680	5085
•		5162	5878	5960	6706	8150									
Tth III	9	4054	4792	4943	5264	5389	6057	7635	7641	7674					
Xba I	1	28													
XhoII	9	22	2795	3230	6713	6730	7498	7510	7596	7607					
Xmn1	4	3613	4157	5812	6756										

The vector contains 8424 bp numbered as described in Table II. Differences between YEp366 and other YEp vectors containing *LEU2* are shown in Table I. The MCR includes nt 1-62, the *lacZ* sequence includes nt 63-3175, the *LEU2* sequence includes nt 3231-5202, the 2μ sequence includes nt 5203-6186, and the pUC sequence includes nt 6187-8424 and 3176-3230.

gene to the ScaI site of the lacZ gene was replaced with the corresponding KpnI-ScaI region of the integrative vector YIp351 (Hill et al., 1986) to yield a set of vectors with a deletion in the yeast 2μ sequence. The integrative vectors containing URA3 as a selectable marker are designated YIp353-YIp358R and those containing LEU2 are designated YIp363-YIp368R (Table I).

(e) Properties of the lacZ fusion vectors

Each of the autonomously replicating plasmids constructed in this study were used to transform yeast strain W303-1B to leucine or uracil independence. All vectors transformed yeast at the high frequency seen for other episomal plasmids containing the 2μ circle origin of replication (Broach, 1983). Greater than 80% of the segregants tested from several different transformants retained the appropriate prototrophic marker after growth for

Fig. 2. Construction of the integrative vector YIp353. YIp352 was derived from YEp352 by removal of 2μ sequence necessary for autonomous replication in yeast (Hill et al., 1986). Symbols are as in Fig. 1. Additional restriction sites are indicated for HpaI (L) and SspI (S). (S-L) indicates the ligation junction of free ends created by cleavage with SspI and HpaI, where neither restriction site was recreated. Not all restriction sites shown in this drawing are unique in the vectors. Symbol ori indicates the position of the yeast 2μ origin of replication.

30-40 generations in non-selective medium, indicating that the episomal plasmids are retained at a high copy number.

The ability of the episomal plasmids to express β Gal activity was tested in the yeast transformants and in the $\Delta lacZ$ E. coli strain MC1009. In the absence of yeast promoter sequences ligated into the multiple cloning region none of the plasmids induced the characteristic blue color indicative of β Gal activity when yeast or E. coli transformants were grown on plates containing XGal. Various segments of yeast DNA have been cloned into the appropriate vectors to create in-frame gene fusions to lacZ. Among the yeast genes tested are MRP2 coding for a mitochondrial ribosomal protein (Myers and Tzagoloff, 1986), MSD coding for the mitochondrial aspartyl tRNA synthetase (A. Gampel and A. Tzagoloff, unpublished results), CPA2 coding for

the large subunit of carbamyl phosphate synthetase (Lusty et al., 1983) and CYC1 coding for apo-iso-1-cytochrome c (Montgomery et al., 1978). Fusion of the upstream regions and part of the coding sequence of these genes to the lacZ gene of different episomal plasmids described here allowed detection of β Gal activity when either E. coli or yeast transformants were plated in the presence of XGal. Quantitative determinations of β Gal activity were made by measuring hydrolysis of ONPG by yeast cells grown in liquid cultures. The β Gal activity expressed from the plasmids differed depending on the particular cloned yeast promoter. The β Gal activity present in a particular transformant also differed depending on growth conditions, indicating that promoter activity could be assayed in the YEp vectors by measurement of lacZ expression. For example, the β Gal activity derived from one episomal plasmid containing the 5'-nontranslated region and first two codons of CYC1 fused to lacZ was five times greater in cells grown under conditions of catabolite derepression (ethanol) than when the same transformant was grown under conditions of catabolite repression (glucose). These results were comparable to those obtained using an isogenic transformant containing pLGΔ312, a βGal fusion construct used previously for studies of regulation of CYC1 (Guarente and Mason, 1983; Guarente et al., 1984).

The upstream region of the CYC1 gene was also cloned into the integrative plasmid YIp356R. The recombinant plasmid was linearized within the URA3 gene by digestion with NcoI and used to transform yeast strain W303-1B to uracil independence. Transformants were isolated in which greater than 99% of the segregants retained both the URA3 gene and lacZ activity after growth for 30-40 generations in non-selective media indicating that the lacZ fusion had stably integrated into the yeast genome.

ACKNOWLEDGEMENTS

The authors wish to acknowledge Dr. Nigel Minton for supplying the plasmids pNM480, pNM481 and pNM482. We also thank Ms. Anna Akai for providing expert technical assistance in this study. This research was supported by NIH grants

HL22174 and GM25846, and by Research Service Award GM09109 (to A.M.M.) from the National Institutes of Health, United States Public Health Service.

REFERENCES

- Bassford, P.J., Beckwith, J., Berman, M., Brickman, E., Casadaban, M., Guarente, L., Saint-Girons, I., Sarthy, A. Schwartz, M., Shuman, H. and Silhavy, T.: Genetic fusions of the *lac* operon: a new approach to the study of biological processes. In Miller, J.H. and Reznikoff, W.S. (Eds.), The Operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1978, pp. 245-261.
- Beggs, J.D.: Transformation of yeast by a replicating hybrid plasmid. Nature 275 (1978) 104-109.
- Broach, J.R.: Construction of high copy yeast vectors using 2μm circle sequences. Methods Enzymol. 101 (1983) 307-325.
- Casadaban, M.J., Chou, J. and Cohen, S.N.: In vitro gene fusions that join an enzymatically active β-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J. Bacteriol. 143 (1980) 971-980.
- Cohen, S.N., Chang, A.C.Y. and Hsu, L.: Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 69 (1972) 2110-2114.
- Davis, R.W., Botstein, D. and Roth, J.R.: Advanced Bacterial Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1980.
- Guarente, L.: Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101 (1983) 181-191.
- Guarente, L. and Mason, T.: Heme regulates transcription of the *CYC1* gene of *S. cerevisiae* via an upstream activation site. Cell 32 (1983) 1279-1286.
- Guarente, L. and Ptashne, M.: Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78 (1981) 2199-2203.

- Guarente, L., Lalonde, B., Gifford, P. and Alani, E.: Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell 36 (1984) 503-511.
- Hill, J.E., Myers, A.M., Koerner, T.J. and Tzagoloff, A.: Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast (1986) in press.
- Lucchini, G., Hinnebusch, A., Chen. C. and Fink, G.R.: Positive regulatory interactions of the *HIS4* gene of *Saccharomyces* cerevisiae. Mol. Cell Biol. 4 (1984) 1326-1333.
- Lusty, C.J., Widgren, E.E., Broglie, K.E. and Nyunoya, H.: Yeast carbamyl phosphate synthetase. Structure of the yeast gene and homology to *Escherichia coli* carbamyl phosphate synthetase. J. Biol. Chem. 258 (1983) 14466-14472.
- Maniatis, T., Fritsch, E.F. and Sambrook, J.: Molecular Cloning.
 A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982.
- Maxam, A.M. and Gilbert, W.: A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74 (1977) 560-564.
- Minton, N.P.: Improved plasmid vectors for the isolation of translational *lac* gene fusions. Gene 31 (1984) 269-273.
- Montgomery, D.L., Hall, B.D., Gillam, S. and Smith, M.: Identification and isolation of the yeast cytochrome c gene. Cell 14 (1978) 673-680.
- Myers, A.M. and Tzagoloff, A.: MRP1 and MRP2, two yeast genes coding for mitochondrial ribosomal proteins. J. Biol. Chem. (1986) submitted.
- Rose, M. and Botstein, D.: Construction and use of gene fusions to lacZ (β-galactosidase) that are expressed in yeast. Methods Enzymol. 101 (1983) 167-180.
- Rose, M., Casadaban, M.J. and Botstein, D.: Yeast genes fused to β-galactosidase in *Escherichia coli* can be expressed normally in yeast. Proc. Natl. Acad. Sci. USA 78 (1981) 2460-2464.
- Struhl, K.: Regulatory sites for *HIS3* gene expression in yeast. Nature 300 (1982) 284-287.
- Vieira, J. and Messing, J.: The pUC plasmids, an M13mp7derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19 (1982) 259-268.
- Yanisch-Perron, C., Vieira, J. and Messing, J.: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp8 and pUC19 vectors. Gene 33 (1985) 103-119.

Communicated by G.R. Fink.

Molecular Biology

A Children Constitution of the Constitution of

DAVID KREIFELDER

Molecular Biology

A Comprehensive Introduction to Prokaryotes and Eukaryotes

DAVID FREIFELDER

University of California, San Diego University of Alabama Formerly of Brandeis University

Copyright © 1983 by Jones and Bartlett Publishers, Inc. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner.

Editorial offices: Jones and Bartlett Publishers, Inc., 30 Granada Court, Portola Valley, CA 94025.

Sales and customer service offices: Jones and Bartlett Publishers, Inc., 20 Park Plaza, Boston, MA 02116.

Library of Congress Cataloging in Publication Data

Freifelder, David Michael, 1935-Molecular biology.

Includes bibliographies and index.
1. Molecular biology I. Title.
QH506.F73 1983 574.8'8 82–17006
ISBN 0–86720–012–X

IZBN 0-86720-075-X

Publisher Arthur C. Bartlett

Book and Cover Design Hal Lockwood

Illustrator Donna Salmon, Assisted by Cyndie Clark-Huegel, Evanell Towne, John and Judy Waller, Dorothy Beebe, Kelly Solis-Navarro, and Brenda Booth

Manuscript Editor Kirk Sargent

Production Bookman Productions
Composition Typothetae

Printer and Binder Halliday Litho

Printed in the United States of America
Printing Number (last digit) 10 9 8 7 6 5

375

t does so used to $x_2\beta\beta'\sigma$ is se when

contact
e of the
ectively
n as the
; then a
legrades
ed DNA
contain
ation by
le steric
t cannot
ade. For
jion are
if a few
the nu-

be ideni sulfate eraction ine and bases if :le binds contact olecules nes and nethylaositions rotected istant to on. This limethyl contact ly only a such as · a bulky nd. The . sulfate

thesized

RNA-P is either present

or absent.

polymerase molecules; the number is greater when cells are growing rapidly.

Site Selection: I. The Promoter

The first step in transcription is binding RNA polymerase to a DNA molecule. Binding occurs at particular sites called **promoters**, which are specific sequences of 20–200 bases at which several interactions occur. (A promoter is also frequently defined as a region protected by RNA polymerase from digestion by endonucleases.) The existence of promoters was first demonstrated by the isolation of a particular class of Lac—mutations in E. coli. These mutations not only eliminate gene activity but also are noncomplementable (because they are cis-acting) and prevent synthesis of the RNA transcript of the lac gene. These mutations are called **promoter mutations**.

Several events must occur at a promoter. RNA polymerase must recognize a specific DNA sequence, attach in a proper configuration, open the DNA to gain access to the bases to be copied, and then initiate synthesis. These events are guided by the base sequence of the DNA, the polymerase σ subunit (without which the promoter is not recognized) and, for some promoters, by auxiliary proteins. The details of these events are not yet known, but the process can be broken down into three

Figure 11-6
Segments of the noncoding strand of protected regions from various genes showing the common sequence of seven bases (red) known as the Pribnow box. The start point for mRNA synthesis is shown. The "conserved" T is underlined.

Figure 11-7
A region of the noncoding strand of the promoter for the *lac* gene showing six mutations (red arrows) that affect promoter activity; Δ means a base deletion. The Pribnow box is shaded in red. Many base changes are known; all are either in or near the Pribnow box or are clustered around base -35 and thus define an important site (see page 377).

parts—(a) template binding at a polymerase recognition site, (b) movement to an initiation site, and (c) establishment of what is termed an open-promoter complex (shown schematically later in Figure 11-9). The approach to elucidating these steps for many genes has been to isolate the DNA segment (the promoter) that is protected by RNA polymerase from DNase digestion, determine the base sequence in the segment, and look for common features in the sequences (Figure 11-6). The specific sites of contact are also determined by the dimethyl sulfate protection method. This is important because one might expect that the specific contact sites would be in the regions common to all promoters.

The RNA molecules synthesized in vitro from each of these promoter regions must also be sequenced if one wishes to identify the initiation sequence, which is the sequence of the first few bases that are transcribed; this sequence is just the complement of the bases at the 5' terminus of the RNA molecule. Additional information is obtained by determining the sequence of bases in promoters having mutations that either eliminate initiation in vivo or change the requirements for initiation (Figure 11-7). The rationale is that if a base change affects promoter activity, that base must be contained in the promoter. This

377

technique has allowed researchers to identify the bases in the protected segment that are actually part of the promoter. So far, 46 promoters have been sequenced.

Site Selection: II. The Pribnow Box

Figure 11-6 shows portions of several promoter sequences in E. coli and E. coli phages (each promoter sequence is recognized by E. coli RNA polymerase) and their important features. In a region from five to ten bases to the left of the first base copied into mRNA is the right end of a sequence called the Pribnow box. All sequences found in Pribnow boxes are considered to be variants of a basic sequence TATAATG. The underscored T, at base 6 in the Pribnow box, from six to nine bases to the left of the first base transcribed (the distance depending on the distance from the Pribnow box to the transcription start point), is present in all promoters sequenced to date. It is called the "conserved T" and different sequences are usually compared by aligning conserved T's vertically, as shown in the figure. In 35 of 46 known Pribnow boxes in E. coli, the first two bases are TA; the variants, TG, CA, GA, and TC, retain one of the two TA bases. The Pribnow box is thought to be the sequence that orients RNA polymerase, so that synthesis proceeds from left to right (as the sequence is drawn), and the region at which the double helix opens to form the open-promoter complex (see below).

Before enough sequences were known that the conserved T was recognizable, the first base transcribed was chosen as a reference point and numbered zero. The direction of transcription was called "downstream"; all "upstream" bases, which are not transcribed, were given negative numbers starting from the zero reference. The Pribnow box is enclosed between -13 and -4, depending on the particular promoter. This numbering convention has become standard.

There are several mutations in the Pribnow box, two of which are shown in Figure 11-7, that prevent initiation of transcription. These mutations clearly indicate the importance of this sequence. Other bases outside of the Pribnow box are important too, as indicated by the other mutations shown in the figure.

Site Selection: III. The -35 Sequence

Examination of the complete sequence of the region protected by RNA polymerase indicates that for many (but not all) promoters, there is a second important region, to the left of the Pribnow box, whose sequences in different promoters have common features (Figure 11-8).

TTG

red.

oved an The plate rase and cific tion

cific

prothe t are ne 5' d by that for lects This

Figure 11-8
Base sequences in the noncoding strand of six different RNA polymerase-protected regions showing the similarity between the -35 sequences. In each case, mutations that eliminate promoter activity have been found in the

-35 sequence. The vertical lines indicate the Hindli cuts mentioned in the text. The Pribnow boxes rather than the mRNA start points are aligned.

This sequence, which is called the -35 sequence and typically contains nine bases, is thought to be the initial site of binding of the enzyme. Evidence for this notion comes from the following experiment. RNA polymerase is removed from the protected fragment and the fragment is purified. If fresh RNA polymerase is then added, binding will occur; indicating that the binding site is on the fragment. However, if the fragment is first treated with a restriction nuclease (Chapter 20) called HindII, which makes a double-strand break at the sites indicated in the figure by the lines, RNA polymerase can no longer bind; presumably, the binding site is destroyed by the nuclease. Thus, RNA polymerase is thought to bind first at the leftmost side of the protected region and then to the Pribnow box. How it moves from one site to the next is not known. A theory that the enzyme "slides" along the DNA was popular at one time; it has not been ruled out but is considered to be unlikely. Another possibility, which has some experimental support, is that the σ subunit binds first to a recognition site at the left in a highly specific interaction and then, owing to the great size of the enzyme, the appropriate region of the polymerase can come in contact with the Pribnow box region (Figure 11-9). Once bound to the Pribnow box, the polymerase then dissociates from the leftmost recognition site.

The open-promoter complex is a highly stable complex and is the active intermediate in chain initiation. In this complex a local unwinding ("melting") of the DNA helix occurs starting about ten base pairs from the left end of the Pribnow box and extending to the position of the first transcribed base. This melting is necessary for pairing of the incoming ribonucleotides. The base composition of the Pribnow box sequence (A+T-rich) renders the DNA strand susceptible to denaturation. Presumably RNA polymerase itself induces this conformational change.

The promoters discussed in this section are classified as high-level or strong promoters. There are also weak promoters in which recognition by RNA polymerase is poor. The number of RNA molecules

Si

Figure 11-9

A proposed scheme for

form an open-promoter

red. The shape of RNA polymerase is idealized

The enzyme covers the

+15, and the unpaired

cause the strands are

in the coding strand.

now box.

Hindll

ıtains zyme. **RNA** ent is ccur. if the called in the lably, ase is l then is not ılar at ikely. t the o ecific e, the h the x, the

is the windpairs of the of the w box aturational

ı-level cogniecules

synthesized per unit time from genes with weak promoters is much less than from a strong promoter with the result that fewer protein molecules are made per unit time by genes with weak promoters. Promoter strength is one factor which determines the number of copies of each protein molecule present in the cell. In most cases examined so far the difference between weak and strong promoters lies in the structure of the -35 region.

Site Selection: IV. The CAP Site

Some promoters totally lack the common -35 sequence—for example, the Apre, galP, and araBAD promoters. These are active only in the presence of positive effector molecules (see Chapters 14 and 16); for example, the λ pre promoter is active only when the λ cII protein is present. The mechanisms of action of these effectors are not well understood, though a study of the lac promoter suggests that they bind to a site in the -50 to -30 region and, by a mechanism that differs from that

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS	
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.