05 Elementary Number Theory

05 02 Prime Numbers

A positive integer p is <u>prime</u> if $p \ge 2$ and the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is <u>composite</u>.

Small prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23. Each prime number is a positive odd integer except for 2. 57 is composite since 57 = 3*19.

The Fundamental Theorem of Arithmetic. Every positive integer that is at least 2 can be written uniquely as a prime or as the product of a collection of primes, where the primes are arranged in order of nondecreasing size.

Theorem 1. There are infinitely many prime numbers. **[Proof]** We can prove Theorem 1 by a proof by contradiction. We assume this assertion is false. Then there are finitely many prime numbers. We use $p_1, p_2, ..., p_k$ to denote all the prime numbers. Construct an integer

$$n = p_1 * p_2 * ... * p_k + 1.$$

Since n is not equal to any of $p_1, p_2, ..., p_k$ and $p_1, p_2, ..., p_k$ represent all the prime numbers, n is not a prime number. By the Fundamental Theorem of Arithmetic, we have a prime number, say p_i , where $1 \le i \le k$, such that $n = s * p_i$, where s is an integer. Thus $s*p_i = p_1*p_2*...*p_k + 1$. Namely,

$$p_i (s - p_1 * p_2 * ... p_{i-1} * p_{i+1} * p_k) = 1.$$

Since p_i is an integer which is greater than ≥ 2 and $(s - p_1 * p_2 * \dots p_{i-1} * p_{i+1} * p_k) \text{ is an integer, The equality}$

$$p_i (s - p_1 * p_2 * ... p_{i-1} * p_{i+1} * p_k) = 1$$

cannot be true, a contradiction. Thus, we complete the proof of Theorem 1.

Theorem 2. If m is a composite, then m must have a prime a factor less than or equal to \sqrt{m} .

[**Proof].** Since m is a composite, there exists an integer s such that m = s*t, where 1 < s < m, t is an integer. Then either $s \le \sqrt{m}$ or $t \le \sqrt{m}$, otherwise m = s*t > m. Thus m has a factor is less than or equal to \sqrt{m} . If this factor is a prime, the proof is finished. Otherwise, the Fundamental Theorem of Arithmetic ensures that the factor has a prime factor which is less than itself. This in turn guarantees m has a prime factor less than \sqrt{m} . Therefore the proof is complete.

Example 1. Show that 97 is a prime.

[Solution] Notice that the prime numbers which are less than or equal to $\sqrt{97}$ are 2, 3, 5, and 7. None of 2, 3, 5, and 7 is a factor of 97. Thus Theorem 2 implies that 97 is a prime.

Exercise 1. Show that 107 is a prime.

In Number Theory, there are conjectures involving primes. Below are two examples.

<u>The Twin Prime Conjecture.</u> There are infinitely many pairs of primes such that their difference is 2.

https://en.wikipedia.org/wiki/Twin_prime

<u>Goldbach's Conjecture.</u> Every even integer greater than two is the sum of two primes.

https://en.wikipedia.org/wiki/Goldbach's conjecture