

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA

REDES NEURONALES

Ayudante Ignacio Ibáñez Aliaga ignacio.ibanez@usach.cl

Laboratorio 2

Fundamento Teórico

Dentro de las diferentes estructuras que existen en las redes neuronales, una de las primeras corresponde a la red neuronal multilayer perceptron que fue una estructura sencilla de red artificial. En esta red, la información se mueve en una única dirección hacia adelante y es utilizada la técnica de backpropagation para reajustar los pesos de la red.

Figura 1: Arquitectura básica de una red Multilayer perceptron con una capa oculta.

Presentación del entregable

Todas las actividades que fueron listadas en la sección anterior deben ser realizadas en jupyter notebook con python 3.*, en donde la presentación del archivo debe ser de la siguiente manera:

- 1. Marco teórico de la red Multilayer perceptron.
- 2. Marco teórico de las funciones de transferencia a usar.
- 3. Implementar 2 funciones de transferencia no lineal y 1 lineal (activation functions).
- 4. Implementar red Multilayer perceptron de 1 sola capa oculta, de forma genérica para las diferentes funciones de activación.
- 5. Probar la red neuronal con las compuertas lógicas AND, OR y XOR para tamaño de entrada 2 y 4.
- Mostrar resultado gráfico de error para las diferentes compuertas lógicas (iteraciones vs error).
- 7. Análisis de los resultados obtenidos y comparar con los resultados de perceptrón simple.
- 8. Descripción del dataset escogido (wine o breast cancer) de biblioteca sklearn.
- 9. Lectura del dataset escogido.
- 10. Normalización y preprocesamiento de los datos
- 11. Dividir el dataset en 70 % train y 30 % test.
- 12. Crear diferentes modelos para clasificar usando diferentes configuraciones de cantidad de neuronas en la capa oculta, funciones de activación y cantidad de iteraciones en el entrenamiento.
- 13. Marco teórico de métrica usada para seleccionar el mejor modelo (Accuracy, curva ROC, entre otras).
- 14. Presentación gráfica de número de iteraciones vs error en el conjunto de train en el mejor modelo.
- 15. Matriz de confusión del mejor modelo.
- 16. Análisis de los resultados obtenidos.
- 17. Conclusiones.

Fecha de entrega: 1 de Octubre del 2018 Se debe enviar el archivo ipynb