TD 4: Hachage

Exercice 1. Hachage sans collision

Une fonction de hachage $h: U \to \{0, ..., m-1\}$ est sans collision pour un ensemble $X \subset U$ si pour tout $x, y \in X$, $h(x) \neq h(y)$. Dans cet exercice, on suppose X fixé.

- 1. Donner une condition nécessaire et suffisante sur X pour qu'il existe une fonction de hachage sans collision pour X.
- **2.** Supposons qu'on ait choisi une fonction h aléatoirement et uniformément. Exprimer l'espérance du nombre de collisions pour X en fonction de m et n = |X|.
- 3. Quelle est la probabilité qu'une fonction aléatoire h soit sans collision pour X.
- **4.** Suposons qu'on cherche une fonction sans collision pour *X* en tirant des fonctions aléatoires tant qu'on en a pas trouvé une qui convienne. On note *T* la variable aléatoire correspondant au nombre d'essais nécessaire avant de trouver une fonction sans collision. Et on note *E* l'espérance de *T*.
 - a. En utilisant la formule de l'espérance totale conditionnée au fait de trouver une fonction sans collision au premier tirage ou non, montrez que $E = 1 + (1 m!/(m n)!m^n)E$.
 - **b.** En déduire que $E = (m-n)!m^n/m!$

Exercice 2. La case la plus remplie

Soit $h: U \to \{0, ..., n-1\}$ une fonction de hachage aléatoire uniforme. On insère n clefs dans une table T de taille n à l'aide de h, en utilisant une résolution par chaînage. On souhaite connaître l'espérance de la case de T la plus remplie.

- 1. Soient j un indice entre 0 et n-1 et X_i la variable aléatoire qui compte le nombre d'éléments en case $T_{[i]}$.
 - **a.** Quelle est l'espérance du nombre d'éléments en case j, c'est-à-dire, que vaut $\mathrm{E}[X_j]$?
 - **b.** Pourquoi on ne peut pas conclure directement?
- **2.** Afin de majorer $E[\max_i X_i]$, on commence par établir les relations suivantes.
 - **a.** Montrer que $\Pr[X_i \ge k] \le \binom{n}{k} \frac{1}{n^k}$.
 - **b.** Montrer que $\binom{n}{k} \le \frac{n^k}{k!}$.
 - **c.** En admettant que $(k!)^2 \ge k^k$ pour tout $k \ge 1$, déduire des questions précédentes que $\Pr[X_j \ge k] \le \frac{1}{k^{k/2}}$.
- 3. On pose $k = \frac{c \log n}{\log \log n}$, pour une certaine constante c.
 - **a.** Justifier que $\frac{c \log n}{\log \log n} \ge \sqrt{\log n}$ pour *n* suffisamment grand.
 - **b.** En déduire que pour *n* suffisamment grand, $\frac{1}{k^{k/2}} \le \frac{1}{n^{c/4}}$, puis que $\Pr[X_j \ge k] \le \frac{1}{n^{c/4}}$.
- **4.** Pour la fin de l'exercice, on note M le nombre d'élément dans la case la plus remplie, c'est-à-dire $M = \max_i X_i$.
 - **a.** Montrer que $\Pr[M \ge k] \le n.\Pr[X_i \ge k]$.
 - **b.** En déduire que la probabilité que la case la plus remplie possède plus de $c \log n / \log \log n$ éléments est $\leq 1/n^d$ pour une constante d à déterminer.
- **5.** On va pouvoir maintenant borner E[M].
 - **a.** Montrer que pour tout k, $E[M] \le k.\Pr[M \le k] + n.\Pr[M > k]$.
 - **b.** À l'aide de la question 4.b et en majorant $\Pr[M \le k]$ par 1, en déduire que $E[M] = O(\log n / \log \log n)$.

Exercice 3. Filtres de Bloom

On s'intéresse dans cet exercice à une structure de données qui permet de stocker de manière très compressée un ensemble statique (c'est-à-dire duquel on ne supprime jamais d'élément). La contrepartie est la présence de faux-positifs : la structure de données répond parfois que *x* appartient à l'ensemble alors que ça n'est pas le cas. Son utilisation en pratique vient en appui d'une *vraie* structure de donnée, pour fournir un pré-test d'appartenance très rapide ¹.

^{1.} Voir https://en.wikipedia.org/wiki/Bloom_filter#Examples pour de nombreux exemples d'utilisation de ces objets en pratique.

On se donne un ensemble X de taille n sous-ensemble d'un ensemble V. Un filtre de Bloom pour l'ensemble X est donné par un entier m (la taille de la représentation) et k fonctions de hachage h_1, \ldots, h_k indépendantes. L'ensemble X est représenté par un mot booléen w de taille m. L'ensemble vide est représenté par le mot $0\cdots 0$. Pour insérer un nouvel élément x de X, on passe à 1 les k bits de w d'indices $h_1(x), \ldots, h_k(x)$. Un bit peut être mis plusieurs fois à 1. Maintenant, pour tester si un élément y de V appartient à X, on vérifie si $w_{h_j(y)}$ vaut 1 pour $1 \le j \le k$: si c'est le cas, on répond « oui » et sinon on répond « non ». Dans la suite, on suppose qu'on a construit la représentation w de X. On se place dans le modèle aléatoire pour les fonctions de hachage.

- 1. Laquelle des deux réponses de l'algorithme de recherche est toujours exacte?
- **2.** Montrer que le *i*-ème bit w_i de w vaut 1 si et seulement s'il existe $x \in X$ et j tels que $h_i(x) = i$.
- 3. Quelle est la probabilité p que le i-ème bit de w soit égal à 0?
- **4.** On fait maintenant l'hypothèse qu'une fraction *p* des bits de *w* sont à 0. Pourquoi cette hypothèse ne découle pas de la question précédente?
- **5.** Soit $y \notin X$. Quelle est la probabilité d'obtenir un faux-positif, c'est-à-dire que l'algorithme de recherche réponde « oui » sur l'entrée y ?
- **6.** Montrer qu'en prenant $k = m \cdot \ln(2/n)$, la probabilité de faux positifs cette probabilité est au plus $(3/4)^{m \ln 2/n}$, c'est-à-dire, exponentiellement petite. *On pourra utiliser, entre autres, que* $1 x \ge e^{-2x}$ *pour* $x \le 1/2$.

Exercice 4. Adressage Ouvert

On suppose qu'on dispose d'une table de hachage T de taille m, contenant n éléments. Les conflits sont résolus par adressage ouvert : on dispose de m fonctions de hachages h_0, \ldots, h_{m-1} et un élément x est inséré en case $T[h_0(x)]$ si elle est libre, sinon en case $T[h_1(x)]$ si elle est libre, et ainsi de suite. On suppose l'hypothèse forte de hachage uniforme : pour tout x, $(h_0(x), h_1(x), \ldots, h_{m-1}(x))$ est une permutation aléatoire de $\{0, \ldots, m-1\}$, et si $x \neq y$, $h_i(x)$ est indépendant de $h_j(y)$ pour tout i et tout i.

On effectue une recherche *infructueuse* : on cherche un élément x dans la table mais il n'y est pas. On souhaite borner l'espérance $E_{m,n}$ du nombre de cases visitées lors de cette recherche.

- 1. Montrer que pour tout nouvel élément x, la probabilité que $T[h_0(x)]$ soit libre est 1-n/m.
- **2.** Montrer que $E_{m,n} = 1 + \frac{n}{m} E_{m-1,n-1}$.
- **3.** En déduire que $E_{m,n} \leq m/(m-n)$.
- **4.** On note X la variable aléatoire qui compte le nombre de cases visitées lors d'une recherche infructueuse. On vient de montrer que $E[X] = E_{m,n} \le m/(m-n)$. On souhaite maintenant borner $Pr[X \ge k]$ pour un k fixé. Pour cela, on définit pour tout j l'évènement E_j : « les j premières cases visitées sont occupées ».
 - **a.** Exprimer l'évènement « $X \ge k$ » en fonction de E_1, \ldots, E_{k-1} , pour $k \ge 2$.
 - **b.** En déduire que $\Pr[X \ge k] = \Pr[E_{k-1} | E_1 \land E_2 \land \dots \land E_{k-2}] \Pr[X \ge k-1]$, pour $k \ge 2$.
 - **c.** Montrer que pour tout j > 1, $\Pr[E_j | E_1 \land \cdots \land E_{j-1}] = \frac{n-j+1}{m-j+1}$.
 - **d.** En déduire que $\Pr[X \ge k] \le (n/m)^{k-1}$ pour $1 \le k \le m$.
- 5. On imagine maintenant qu'on part de la table vide (de taille m) et qu'on insère successivement n valeurs, avec $n \le m/2$. On rappelle qu'une insertion doit trouver la première case vide parmi les cases d'indices $h_0(x), \ldots, h_{m-1}(x)$: cette recherche est l'équivalent d'une recherche infructueuse. On note X_i le nombre de cases visitées lors de la $i^{\text{ème}}$ insertion, et $X = \max_{1 \le i \le n} X_i$.
 - **a.** Montrer que pour tout i, $Pr[X_i > k] < 1/2^k$.
 - **b.** En déduire que pour tout i, $Pr[X_i > 2 \log n] < 1/n^2$.
 - **c.** Montrer que $Pr[X > 2 \log n] < 1/n$.
 - **d.** En déduire que l'espérance de X est $O(\log n)$. Écrire $E[X] = \sum_{k \le 2\log n} k Pr[X = k] + \sum_{k > 2\log n} k Pr[X = k]$ et borner chacune des deux sommes.