Mathématiques pour le P.A.S.S 1

FILIÈRE : P.A.S.S. Année : L1.

Damien GOBIN

Mail: damien.gobin@univ-nantes.fr

Laboratoire de Mathématiques Jean Leray Université de Nantes

Exercice 0.0.1

Soit $p \ge 2$ un entier et $0 < a_1 < \cdots < a_p$ des nombres réels positifs.

1. Montrer que, pour tout $a > a_p$, l'équation

$$a_1^x + \dots + a_p^x = a^x$$

admet une unique racine x_a .

- 2. Étudier le sens de variation de $a \mapsto x_a$.
- 3. Déterminer l'existence et calculer

$$\lim_{a \to +\infty} x_a \quad \text{et} \quad \lim_{a \to +\infty} x_a \ln(a).$$

Solution 0.0.2

1. On introduit la fonction

$$f_a(x) = \left(\frac{a_1}{a}\right)^x + \dots + \left(\frac{a_1}{a}\right)^x = \sum_{k=1}^p e^{x \ln\left(\frac{a_k}{a}\right)}.$$

Puisque $\ln\left(\frac{a_k}{a}\right) < 0$, $x \mapsto x \ln\left(\frac{a_k}{a}\right)$ est strictement décroissante, et donc f_a est strictement décroissante. Or, $f_a(0) = p$ et

$$\lim_{x \to +\infty} f_a(x) = 0.$$

L'équation $f_a(x) = 1$ admet donc une unique racine $x_a > 0$.

- 2. Soit a < b. En reprenant la notation de la question précédente, pour tout x > 0, on a $f_a(x) \ge f_b(x)$. En particulier $f_b(x_b) = f_a(x_a) = 1 \ge f_b(x_a)$. Par décroissance de f_b , on en déduit que $x_a \ge x_b$ et donc $a \mapsto x_a$ est décroissante.
- 3. Puisque $a \mapsto x_a$ est décroissante et minorée par 0, elle admet une limite $\ell \geqslant 0$ en $+\infty$. Supposons $\ell > 0$. Alors, en passant à la limite dans

$$a_1^{x_a} + \dots + a_p^{x_a} = a^{x_a},$$

on trouve

$$a_1^{\ell} + \dots + a_n^{\ell} = +\infty,$$

une contradiction. Donc $\ell = 0$. Ainsi, il vient également

$$x_a \ln(a) = \ln\left(a_1^{x_a} + \dots + a_p^{x_a}\right),\,$$

ce qui prouve que $x_a \ln(a)$ tend vers $\ln(p)$.