

Complejidad y optimización

Carlos Andrés Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

Complejidad y optimización Reducción 3SAT a VertexCover

Carlos Andrés Delgado S.

Facultad de Ingeniería. Universidad del Valle

Febrero 2017

Contenido

Complejidad y optimización

Carlos André Delgado S.

El problema del Vertex Cover

Demostración que Vertex Cover es NPO 1 El problema del Vertex Cover

2 Demostración que Vertex Cover es NPC

Vertex Cover (VC)

Complejidad y optimización

Carlos André Delgado S.

El problema del Vertex Cover

Demostración que Vertex Cover es NPO

Definición

Una instancia es un grafo G = (V, E) y un entero $k \leq V$

Pregunta

¿Existe un subconjunto de al menos k vértices, donde cada arista $e \in E$ tiene al menos uno de los vértices en el subconjunto?

Vertex Cover (VC)

Complejidad y optimización

El problema del Vertex Cover

Vertex Cover (VC)

Complejidad y optimización

Carlos André Delgado S.

El problema del Vertex Cover

Demostración que Vertex Cover es NPO

Demostración que es NP

Si tenemos una instancia G=(V,E) con un k dado, debemos encontrar todos los conjuntos de vértices de tamaño mayor o igual que k. Asumiendo k << |v| la complejidad de una solución de este problema es del orden $O(2^{|v|})$

Contenido

Complejidad y optimización

Carlos Andrés Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC 1 El problema del Vertex Cover

2 Demostración que Vertex Cover es NPC

Complejidad y optimización

Carlos Andrés Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

Demostración.

Postulado Vamos a demostrar que Vertex Cover (**VC**) es un problema NPC a partir de 3SAT que demostramos anteriormente es un NPC

Importante

$$3 - SAT \leq_p VC$$

Complejidad y optimización

Carlos Andrés Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

Procedimiento reducción

Tomando una instancia 3-SAT con n variables y c clausulas, vamos a construir un grafo con 2N + 3C vértices

Complejidad y optimización

Carlos Andrés Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

Procedimiento reducción

Paso 1: Para cada variable v_i se crea dos vértices conectados por una arista. Un vértice es v_i y el otro es $\neg v_i$.

Complejidad y optimización

Carlos Andrés Delgado S.

El problema del Vertex Cover

Demostración que Vertex Cover es NPC

Procedimiento reducción

Paso 2: Tomamos cada clausula $c_i = \{v_k, v_l.v_m\}$. Creamos 3 vértices y los conectamos entre sí.

Complejidad y optimización

Carlos André Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

Procedimiento reducción

Paso 3: Finalmente, conectamos los vértices que creamos en los pasos 1 y 2. Conectamos los vértices que sean iguales. (Clausula y variables)

Tomamos K = N + 2C.

Complejidad y optimización

Carlos Andrés Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

Demostración reducción

Para probar que la reducción es correcta se debe evaluar que una **respuesta positiva** en 3-SAT debe producir una **respuesta positiva** en VC y que una **respuesta negativa** en 3-SAT debe producir una **respuesta negativa** en VC.

Complejidad y optimización

Carlos André Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

Demostración reducción

- Si se satisface una clausula tomamos sus 3 vértices dentro de la cobertura
- Se toman los vértices cuyo valor sea verdadero dentro de la cobertura

Complejidad y optimización

Carlos Andrés Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

Demostración reducción

Para nuestro caso anterior, SAT se satisface si

$$v_k = V, v_l = F.v_m = F.$$

- Si se satisface una clausula tomamos sus 3 vértices dentro de la cobertura
- Se toman los vértices cuyo valor sea verdadero dentro de la cobertura

Complejidad y optimización

Carlos André Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

Demostración reducción vk ¬vk vm VΙ vk vm

Como se puede observar hemos realizado la cobertura de vértices del grafo con un conjunto de

$$K = N + 2C, K = 4 + 2 * 1 = 6$$
 vértices

Complejidad y optimización

Carlos Andrés Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

Demostración reducción

Observe que:

- Las variables en SAT, toman los valores de verdadero o falso, sin importar la elección todas las aristas creadas en el paso están cubiertas.
- 2 Si SAT se satisface, todas las clausulas debe ser satisfechas, por lo que en este caso tenemos cubiertas todas las aristas creadas en el paso 2.

Complejidad y optimización

Carlos Andrés Delgado S.

del Vertex Cover

Demostración que Vertex Cover es NPC

Ejemplo

Realicemos la reducción la instancia 3-SAT $V = \{v_1, v_2, v_3\}$ $C = \{\{v_1, \neg v_2, v_3\}\{\neg v_1, v_2, v_3\}\}$ a VC

- Una solución que satisface 3-SAT es $v_1 = V$, $v_2 = V$, $v_3 = F$
- Una solución que no satisface 3-SAT es $v_1 = F$, $v_2 = V$, $v_3 = F$

Complejidad y optimización

Carlos André Delgado S.

El problema del Vertex Cover

Demostración que Vertex Cover es NPC

Realizando la reducción

¿Si SAT se satisface hay VC? ¿Si SAT no se satisface no hay VC?

Complejidad y optimización

Carlos Andrés Delgado S.

El problema del Vertex Cover

Demostración que Vertex Cover es NPC

Instancias positivas de SAT

Una solución que satisface 3-SAT es $v_1 = V$, $v_2 = V$, $v_3 = F$

Complejidad y optimización

Carlos Andrés Delgado S.

El problema del Vertex Cover

Demostración que Vertex Cover es NPC

Instancias negativas de SAT

Una solución que no satisface 3-SAT es $v_1 = F$, $v_2 = V$, $v_3 = F$

Complejidad y optimización

Carlos Andrés Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

Instancias negativas de SAT

Realice la reducción de la siguiente instancia de 3-SAT a VC

$$V = \{v_1, v_2, v_3, v_4\}$$

$$C = \{\{v_1, v_2, v_3\}, \{v_1, v_3, \neg v_4\}, \{\neg v_1, v_2, v_4\}\}$$

Preguntas

Complejidad y optimización

Carlos Andrés Delgado S.

El problem del Vertex Cover

Demostración que Vertex Cover es NPC

