MATH 311

Chapter 6

SECTION 6.4: FINITE DIMENSIONAL SPACES

Contents

Finite Dimension

2

Created by: Pierre-Olivier Parisé Spring 2024

FINITE DIMENSION

EXAMPLE 1.

- a) The vector space \mathbb{R}^m is a finite dimensional space because it is spanned by a finite set of vectors, that is $\{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_m}\}$.
- b) The vector space \mathbf{P}_n is a finite dimensional space because it is spanned by a finite set of vectors, that is $\{1, x, x^2, \dots, x^n\}$.

EXAMPLE 2. Is the vector space of all polynomials **P** a finite dimensional?

SOLUTION.

DEFINITION 1. A vector space V is called **finite dimensional** if it is spanned by a finite set of vectors. Otherwise, it is called **infinite dimensional**.