Lab01

107061123 孫元駿

Proj02-02: Reducing the Number of Intensity Levels in an Image

Explanation:

第一步,我將所有的值除 2^8 ,因為原始影像是 8 bits grayscale。這個步驟可以把值線性的限制在 [0,1)。第二步,我將上一步的結果乘上 intensity level (k)。這一步可以線性放大所有值到 [0,k)。接著,對這個結果向下取整 (floor) ,這樣可以確保剩下的值會是

 $\{0,1,2,...,k\}$ 。第三步,我會將上一步的結果乘上 $\frac{255}{k-1}$ 。 $\frac{255}{k-1}$ 是每一個 step 的範圍,因此乘上它可以把原本 $0\sim(k-1)$ 的值對應到 $0\sim255$ 之間。接著對值取整 (round),確保每個值都是整數。結合上面所述,可以把公式合併成

 $resized Image = round(floor((double(\frac{original Image}{256})*k)*(255/(k-1))$

Proj02-03: Zooming and Shrinking Images by Pixel Replication

Explanation:

根據 Pixel Replication 的定義,在放大的時候會直接複製最接近點的值。 我將它分成兩個function,resizeImage_replication(originalImage,scalingFactor)和 filledImage_replication(a,b,c,d,newRows,newCols)。filledImage_replication只負責處 理 2×2 放大到 newRows×newCols 的處理。根據推導的結果,我們可以計算出每個 pixel 應該要填上哪一個值,再將整個矩陣回傳給 resizeImage_bilinear,並且在 resizeImage_bilinear 中,最後再將回傳的矩陣貼上大的空矩陣,用這樣的方式可以減少運 算的次數,也可以在未來利用平行運算的方式同時計算大量的資訊,有助於優化。

Conclusion:

根據觀察,因為示範的圖片顏色的對比度很高,銳利度也很高,因此用 Pixel Replication 的方式,並不會讓對比度改變很多,因此邊緣還是相對銳利的。但是可以明顯地發現縮小再法大的圖片在圓弧的部分會出現鋸齒,應該是因為縮小時太多資訊被刪除,加上用 Pixel Replication 會使影像出現一塊一塊相同顏色值的矩形。

Fig 1: Original Image.

Fig2: Zooming and Shrinking by Pixel Replication

Proj02-04: Zooming and Shrinking Images by Bilinear Interpolation

Explanation:

根據 Bilinear Interpolation 的定義,在放大的時候會利用最接近的四個點線性的計算值。 我將它分成兩個function,resizeImage_bilinear(originalImage,scalingFactor)和 filledImage_bilinear(a,b,c,d,newRows,newCols)。filledImage_bilinear只負責處理 2×2 放大到 newRows×newCols 的處理。

根據推導的結果,我們可以用 for loop 計算出每個 pixel 的值,再將整個矩陣回傳給 $resizeImage_bilinear$,並且在 $resizeImage_bilinear$ 中,將矩陣貼到正確的位置。因此, 在我的程式中,我會以 2×2 的 window 分段去放大,這樣的做法可以有效的減少重新推導 [C1 C2 C3 C4]'的次數。

Conclusion:

根據觀察,因為示範的圖片顏色的對比度很高,銳利度也很高,因此用 bilinear 的方式對這張圖片而言會過度的柔化邊緣,造成視覺上產生模糊的感覺。我們也可以從放大顯示每個 pixel 的方式,看出在很多地方都有漸層,但是原圖都是較為銳利的邊緣。

Fig 1: Original Image.

Fig 2: Zooming and Shrinking by Bilinear Interpolation.