Simulazione dell'esame di Logica, Università degli Studi di Torino, Filosofia

Seed: 327260, v.1

Punti: / 30	Tempo:
-------------	--------

1 (3 pt)

Dato il seguente testo:

- 1. Esplicitare l'argomento, se esiste.
- 2. Formalizzare l'argomento, se formalizzabile secondo il linguaggio della logica enunciativa classica
- 3. Dimostrare perché l'argomento è valido secondo il linguaggio della logica enunciativa classica, se lo è.
- 4. Determinare se l'argomento è fondato.

Se Pino ha vinto la corsa campestre, allora Nino è arrivato secondo oppure Gino è arrivato terzo. Gino non è arrivato terzo. Quindi, se Nino non è arrivato secondo, allora Pino non ha vinto la corsa campestre.

2 (3 pt)

Per ogni coppia ordinata (x_n, x_{n+1}) : 1. formalizzare ogni enunciato 2. determinare se (x_n, x_{n+1}) siano contraddittori 3. determinare se formino un insieme coerente 3. determinare se il secondo enunciato sia conseguenza logica del primo tramite $(x_n
varphi x_{n-1})$ oppure $(x_n
varphi x_{n-1})$.

 a_1 . Non è vero che o il computer non è rotto oppure non funziona.

 $\boldsymbol{a_2}$. Il computer è rotto e funziona.

 b_1 . Le scrivo e mi risponde.

 b_2 . Le scrivo solo se non mi risponde.

 c_1 . Il frutto è colorato.

 $oldsymbol{c_2}.$ Il frutto è acerbo ma non verde.

3 (9 pt)

a.
$$p \supset (q \supset r) \vdash (p \land q) \supset r$$

b.
$$\sim p \supset \sim q \vdash (\sim p \supset q) \supset p$$

$$\mathbf{c.} \sim p \supset \sim q \vdash (\sim p \supset q) \supset p$$

4 (15 pt)

Teoria (1). Spiegare perché «Piove e non piove» implica «Nevica» (principio dello Pseudo-Scoto.

Teoria (2). È vero che «Se $\Gamma = \emptyset$, allora, per ogni formula $\alpha, \Gamma \not\models \alpha$?» Si spieghi perchè oppure si mostri un controesempio.

Teoria (3). Per ogni caso, costruisci un esempio di relazione:

- 1. riflessiva e antisimmetrica, ma non transitiva;
- 2. simmetrica e riflessiva, ma non transitiva né antisimmetrica;
- 3. antisimmetrica e transitiva, ma non riflessiva né simmetrica.

Teoria (4). Dato un insieme di formule $\Gamma = \{\varphi_1, \varphi_2, ..., \varphi_n\}$ calcolare il numero di interpretazioni tali che $\left[\varphi_n * \varphi_{n+1}\right]_v = 1$ dove * indica tutti gli operatori logici in **L**. Dimostrare il procedimento.

Teoria (5). Dimostrare che se $\Gamma \cup \{\alpha\} \vdash \beta$ e $\Gamma \cup \{\alpha\} \vdash \sim \beta$, allora $\Gamma \vdash \sim \alpha$.