The Theoretical Minimum

Classical Mechanics - Solutions

L06E01

M. Bivert

September 15, 2022

Exercise 1. Show that Eq. (4) is just another form of Newton's equation of motion F = ma.

Where Eq. (4) are the freshly derived Euler-Lagrange equations of motions:

$$\frac{d}{dt}\frac{\partial}{\partial \dot{x}}L - \frac{\partial}{\partial x}L = 0 \tag{1}$$

In the context of a single particle moving in one dimension, with kinetic and potential energy given by:

$$T = \frac{1}{2}m\dot{x}^2$$
$$V = V(x)$$

From which results the Lagrangian:

$$L = T - V$$

$$= \frac{1}{2}m\dot{x}^2 - V(x)$$
(2)

Let us recall that we also have the *potential energy principle*, stated in one-dimension as Eq. (1) of the previous chapter, *Lecture 5: Energy*:

$$F(x) = -\frac{d}{dx}V(x) \tag{3}$$

Which is also stated more generally in that same chapter, for an abstract configuration space $\{x\} = \{x_i\}$, as Eq. (5):

$$F_i(\lbrace x \rbrace) = -\frac{\partial}{\partial x_i} V(\lbrace x \rbrace)$$

Thus, deriving each part of (1) with our Lagrangian (2), and considering the definition of a potential energy V(x) (3) yields:

$$\begin{split} \frac{d}{dt}\frac{\partial}{\partial \dot{x}}L &= \frac{d}{dt}m\dot{x} \\ &= m\ddot{x} \end{split} \qquad \qquad \frac{\partial}{\partial x}L = \frac{\partial}{\partial x}V(x) \\ &= -F \end{split}$$

Then indeed, Euler-Lagrange equations become equivalent to Newton's law of motion:

$$\frac{d}{dt}\frac{\partial}{\partial \dot{x}}L - \frac{\partial}{\partial x}L = 0$$
$$\Leftrightarrow m\ddot{x} - (-F) = 0$$
$$\Leftrightarrow F = m\ddot{x} = ma \qquad \Box$$