Is there an alternative?

The Lagrangian has some structure

 $L \to L_t(\dot{q}_t) + L_r(q_r, \dot{q}_r)$

The constraints have some structure

 $\dot{q}_t + A_r(q_r)\dot{q}_r = 0$

• What if we eliminate \dot{q}_t ?

 $L = L_t(-A_r(q_r)\dot{q}_r) + L_r(q_r,\dot{q}_r)$

 $KE \rightarrow KE_t(\dot{q}_t) + KE_r(q_r, \dot{q}_r)$

 $q = (\widetilde{x, y, z}, \phi, \theta, \psi)$

 $PE \rightarrow PE(q_r)$

$F_{\text{non-conservative}} = 0$

Is there an alternative?

The Lagrangian has some structure

$$L \rightarrow L_t(\dot{q}_t) + L_r(q_r, \dot{q}_r)$$

The constraints have some structure

$$\dot{q}_t + A_r(q_r)\dot{q}_r = 0$$

• What if we eliminate \dot{q}_t ?

$$L = L_t(-A_r(q_r)\dot{q}_r) + L_r(q_r,\dot{q}_r)$$

$$KE \rightarrow KE_t(\dot{q}_t) + KE_r(q_r, \dot{q}_r)$$
 $PE \rightarrow PE(q_r)$
 $F_{\text{non-conservative}} = 0$

Do both approaches yield the same dynamics?