SQL

Langage algébrique

André Miralles

Plan

- » Présentation générale de SQL
- » Présentation des 6 opérateurs
- » Quelques sites utiles

Présentation générale de SQL

Structured Query Language

Présentation générale de SQL

» Langage SQL

- > Langage déclaratif
 - + Consiste à décrire les propriétés du point d'arrivée (le résultat) en fonction de celles du point de départ (les données de la base, dans notre cas)
 - Utilisation de formules logiques qui indiquent comment l'existence d'un fait f_1 au départ implique l'existence d'un fait f_2 à l'arrivée
- > Langage algébrique basé sur l'algèbre relationnel
 - + Consiste en un ensemble d'opérations qui permettent de manipuler des relations, considérées comme des ensembles de nuplets (attributs)

Présentation générale de SQL

» Algèbre relationnel est composé de 6 opérateurs

```
Projection (π)
Sélection (σ)
Renommage (ρ)
Produit cartésien (×)
Union (∪)
Différence (-)
```

» Ces opérateurs ont deux propriétés majeures

- > Clôture : un opérateur s'applique à des relations et le résultat est une relation
- > Composition : un opérateur peut prendre en entrée le résultat d'un autre opérateur pour définir des requêtes algébriques complexes

» Opérateurs additionnels

- > Opérateur Jointure (⋈)
 - + Composition d'opérateurs
- > Opérateur Égalité (≔)

Présentation générale de SQL

- » SQL : langage composé de plusieurs langages
 - > Data Definition Language (DDL)
 - + Langage création de bases de données, de tables, de contraintes, etc.
 - > Data Manipulation Language (DML)
 - + Langage de manipulation de données
 - > Data Control Language (DCL)
 - + Langage de gestion des droits
 - > Transaction Control Language (TCL)
 - + Langage de contrôle de l'exécution des transactions
 - > Procedural Language / Structured Query Language (PL/SQL)
 - + Langage de programmation du SGBD Oracle Database

Présentation des 6 opérateurs

Structured Query Language

Opérateur de Projection

- » Opérateur notée π
- » La relation $\pi_{A_1,\,A_2,\ldots,\,A_k}(R)$ conserve seulement les attributs $A_1,\,A_2,\ldots,A_k$ de la relation R
- » Exemple $\pi_{Fournisseur, Ville}(Fournisseurs)$
 - > Fournisseur et Ville de la relation Fournisseurs
 - > **SELECT** Fournisseur, Ville **FROM** Fournisseurs

ournisseur	Adresse fournisseur	Ville		Fournisseur
VIDEO SA	13 rue du cherche-midi	PARIS		VIDEO SA
HITEK LTD	25 Bond Street	LONDON		HITEK LTD

- > **SELECT * FROM Fournisseurs**
 - + Conserve tous les attributs

Opérateur de Sélection

- » Opérateur notée σ
- » La relation $\sigma_F(R)$ extrait les nuplets (tuples) de la relation R qui satisfont la condition F
- » Exemple $\sigma_{Ville="PARIS"}(Fournisseurs)$
 - > SELECT * FROM Fournisseurs WHERE Ville = 'PARIS'

Fournisseur	Adresse fournisseur	Ville
VIDEO SA	13 rue du cherche-midi	PARIS
HITEK LTD	25 Bond Street	LONDON

Fournisseur	Adresse fournisseur	Ville
VIDEO SA	13 rue du cherche-midi	PARIS

Opérateur de Renommage

- » Opérateur notée ho
- » L'opérateur $\rho_{A \to C, B \to D}(R)$ renomme les attributs A et B de la relation R en C et D respectivement
- » Exemple $\rho_{Ville \rightarrow Capitale}(Fournisseurs)$
 - > SELECT Ville AS Capitale FROM Fournisseurs

Fournisseur	Adresse fournisseur	Ville
VIDEO SA	13 rue du cherche-midi	PARIS
HITEK LTD	25 Bond Street	LONDON

Très utile lorsque le nom de l'attribut d'une relation est le même que celui d'une autre relation

Opérateur de Produit Cartésien

- » Opérateur notée ×
- » Le résultat du produit cartésien $R \times S$ est une relation associant à chaque nuplet de R un nuplet de S
- » Exemple Fournisseurs × Villes
 - > SELECT * FROM Fournisseurs CROSS JOIN Villes

Fournisseur	Ville
VIDEO SA	PARIS
VIDEO SA	LONDON
HITEK LTD	PARIS
HITEK LTD	LONDON

> Remarque : « Fournisseurs CROSS JOIN Villes » est une relation incluse dans la clause FROM

Opérateur d'Union

- » Opérateur notée ∪
- » Le résultat de l'union $R \cup S$ est une relation contenant l'union minimale(suppression doublons) des nuplets de R et de S
 - > Les schémas des 2 relations doivent être les mêmes
 - + Souvent nécessité de renommage
- » Exemple Villes ∪ Capitales
 - > SELECT * FROM Villes
 - + UNION
 - > SELECT Capitale AS Ville FROM Capitales

Ville
PARIS
LONDRES
BERLIN
LYON
BARCELONE

Opérateur de Différence

- » Opérateur notée —
- » Le résultat de la différence R-S est une relation contenant les nuplets de R et qui ne sont pas dans S
 - > Les schémas des 2 relations doivent être les mêmes
 - + Souvent nécessité de renommage

Attention opérateur non permutable

$$R-S \neq S-R$$

Opérateur de Différence

- » Exemple Villes Capitales
 - > SELECT * FROM Villes
 - + EXCEPT
 - > SELECT Capitale AS Ville FROM Capitales

Ville PARIS LONDRES LYON BARCELONE Capitale PARIS LONDRES BERLIN Ville LYON BARCELONE

- » Exemple Capitales Villes
 - > SELECT Capitale AS Ville FROM Capitales

BARCELONE

- + EXCEPT
- > SELECT * FROM Villes

Capitale	Ville	
	PARIS	Ville
PARIS	LONDRES	
LONDRES	LYON	BERLIN

Présentation des opérateurs additionnels

Structured Query Language

Opérateur de Jointure

- » Opérateur notée⋈
- » Le résultat de la jointure $R \bowtie_F S$ est le sous-ensemble du produit cartésien $R \times S$ qui satisfait la condition F

$$>R\bowtie_F S\equiv \sigma_F(R\times S)$$

- » Exemple Fournisseurs $\bowtie_{Ville="PARIS"} Villes$
 - > SELECT * FROM Fournisseurs, Villes WHERE Ville='PARIS'
 - > SELECT * FROM Fournisseurs JOIN Villes ON Ville='PARIS'

Opérateur de Jointure

» Exemple Fournisseurs $\bowtie_{Ville="PARIS"} Villes$

Fournisseur VIDEO SA HITEK LTD

Fournisseur	Ville
VIDEO SA	PARIS
VIDEO SA	LONDON
HITEK LTD	PARIS
HITEK LTD	LONDON

Fournisseur VIDEO SA HITEK LTD

Fournisseur	Ville
VIDEO SA	PARIS
HITEK LTD	PARIS

Opérateur d'Égalité

- » Opérateur notée ≔
- » Le résultat d'une expression algébrique est affecté à une nouvelle relation
- » Utilisation la plus courante
 - > Affectation d'une expression algébrique
 - > Corollaire > Simplification expression algébrique

+
$$P \coloneqq R \times S$$
 Exemple: $ProdCart \coloneqq Fournisseurs \times Villes$ + $\sigma_F(P)$ $\sigma_F(ProdCart)$

- » Autre utilisation importante
 - > Renommage des relations
 - + ... FROM Personne AS P1
 - » P1 := Personne P2 := Personne
 - » $ProduitCartésion := P1 \times P2$

Quelques sites utiles

Quelques sites utiles

- » SQL
 - > http://sql.bdpedia.fr/alg.html