Лабораторная работа № 4 ДО

ВОЛЬТАМПЕРНЫЕ ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ БИПОЛЯРНОГО ТРАНЗИСТОРА

Методические указания по выполнению лабораторной работы в среде OrCad 9.2»

1. В операционной системе «Windows» под управлением программы «Schematics» собрать схему для снятия входных вольтамперных характеристик биполярного транзистора (рис. 1).

Рис. 1. Схема для снятия входной ВАХ транзистора

Для сборки схемы в библиотеке элементов выбрать:

- источник постоянного тока (модель IDC),
- источник постоянного напряжения (модель VDC),
- идеальный транзистор (модель QbreakN),
- узел нулевого потенциала (EGND).

<u>Внимание:</u> Для упрощения процесса сборки можно воспользоваться прилагаемым файлом $BAX_OE.sch$, поместить его в рабочую, а затем из программы Schematics просто его открыть.

– Для транзистора установить заданный в рабочем задании коэффициент усиления β. Для этого щелкнуть транзистор один раз (он окрасится). Войти в интерфейсный диалог *Edit - Model - Edit instance model (text)...* (рис.2). В окне параметров модели транзисторов ввести коэффициент Вf с заданным значением β (как например, на рис.2 β=35).

Рис. 2. Ввод коэффициента усиления транзистора β

- Схему необходимо сохранить в рабочей папке. *Имя папки и файла не должно содержать кириллицы*.

- 2. Снять входную характеристику биполярного транзистора $U_{69}(I_6)$ при фиксированном значении напряжения $U_{\kappa 9}$ =5В.
 - Для вывода напряжения U_{69} подключить маркер напряжения (Markers MarkVoltage Level) к базе транзистора (узел 1 на рис.1);
 - Установить режим расчета входной характеристики (*Analysis/Setup/DC Sweep*...) и параметры анализа как показано на рис.3. Параметр **End Value** (конечное значение тока источника i1) установить на уровне $(3...5)I_6$, где I_6 рассчитанное в подготовке к работе значение базового тока для схемы усилительного каскада ОЭ. A **Increment** (приращение) составляет (0,01...0,001)**End Value**.

Рис. 3. Задание параметров для расчета входной ВАХ транзистора

- После выхода из диалога *DC Sweep*... отключить режим расчета схемы по постоянному току *Bias Point Detail*.
- Произвести расчет (Analysis Simulate или F11) и получить (рис.4) входную характеристику $U_{69}(I_{\delta})$.

Рис. 4. Входная характеристика транзистора с линией нагрузки

- 3. По входной характеристике для U_{κ_9} =5В для схемы усилительного каскада ОЭ (см. рабочее задание) графически определить базовый ток транзистора I_{δ} и напряжение U_{δ_9} .
- Не выходя из программы Probe войти в интерфейсный диалог Trace-Add и нанести на график линию нагрузки $U_{\tilde{6}9}(I_{\tilde{6}})=E_{\tilde{6}}-I_{\tilde{6}}R_{\tilde{6}}-I_{_{9}}R_{_{9}},$ записав в окне $Trace\ Expression$ следующее выражение (см. рис.4):

$$E_{cM} - IB(VT) * R_6 - (IB(VT) + IC(VT)) * R_3$$

где
$$E_{\text{\tiny CM}} = E_{\text{\tiny II}} \frac{R_2}{R_{\text{\tiny I}} + R_2}$$
, $R_{\text{\tiny G}} = \frac{R_{\text{\tiny I}} R_2}{R_{\text{\tiny I}} + R_2}$ и $R_{\text{\tiny 9}}$ – конкретные числа.

- По координатам точки пересечения линии нагрузки и входной характеристики транзистора $U_{\delta_3}(I_{\delta})$ определить базовый ток I_{δ} и напряжение база-эмиттер U_{δ_3} . Для этого удобно воспользоваться средствами Tools-Cursor-Display. Это делает доступным два курсора соответственно для левой и правой кнопок мыши. В окошке $Probe\ Cursor$ первая колонка цифр для оси абсцисс (X), вторая колонка для оси ординат (Y). Для более точных измерений любой элемент графика можно увеличить с помощью окна, доступного после команд View-Area. Размеры окна регулируются при нажатой левой кнопке мыши.
- Для рабочей точки определить входное сопротивление транзистора для малого сигнала $h_{11_9} = \Delta U_{6_9}/\Delta I_{6}$. Для нахождения приращений воспользоваться двумя курсорами. Разность отображается в третьей строке окна *Probe Cursor* (см. рис.4).
- 4. Снять семейство выходных характеристик $I_{\kappa}(U_{\kappa_3})$. Для расчета семейства выходных характеристик биполярного транзистора $I_{\kappa}(U_{\kappa_3})$ необходимо задать режим расчета тока I_{κ} при изменении напряжения U_{κ_3} при фиксированных значениях тока базы I_{δ} . Для этого:
 - Установить маркер тока на коллектор транзистора VT для вывода тока I_{κ} . Маркер напряжения удалить.

– Установить режим расчета семейства выходных характеристик **DC Sweep**... (рис. 5).

Рис. 5. Параметры расчета семейства выходных характеристик

- Запустить систему на расчет и получить семейство выходных характеристик (рис. 6).
- 5. По снятым выходным характеристикам для усилительного каскада ОЭ (рис. 2) с параметрами, заданными в подготовке к работе, графически определить коллекторный ток транзистора $I_{\rm K}$ и напряжение $U_{\rm K9}$. Результат занести в табл. 2. Для рабочей точки определить коэффициент усиления транзистора для малого сигнала $h_{219} = \Delta I_{\rm K}/\Delta I_{\rm G}$.

— Нанести на график линию нагрузки $U_{\kappa_9}(I_{\kappa}) = E_{\pi} - I_{\kappa}R_{\kappa} - I_{9}R_{9}$, записав в командной строке окна *Trace Expression* следующее выражение: $(E_{\pi} - V(V1))/R_{\pi}$, где E_{π} и $R_{\pi} = R_{\kappa} + R_{9}$ — числа, определяемые из параметров элементов схемы.

Рис. 6. Выходные характеристики транзистора с линией нагрузки

- Определить координаты точек пересечения линии нагрузки и выходной характеристики для базового тока I_{6A} , найденного в п. 3.
- С помощью курсоров определить для двух соседних характеристик вблизи рабочей точки коллекторные токи при равных $U_{\rm кэ}$. По этим данным рассчитать коэффициент усиления транзистора для малого сигнала $h_{219} = \Delta I_{\rm k}/\Delta I_{\rm 6}$.
- 6. Собрать схему для расчета рабочего режима однокаскадного усилителя на биполярном транзисторе с общим эмиттером (рис. 7).

Рис. 7. Усилительный каскад с общим эмиттером C_1 =5мк Φ , C_2 =5мк Φ , C_1 =50мк Φ , C_1 =1н Φ , R_5 =2кОм.

Внимание: Для упрощения процесса сборки можно воспользоваться прилагаемым файлом Ampf_OE.sch, поместить его в рабочую папку, а затем из программы Schematics просто его открыть.

- 7. Определить режим схемы по постоянному току. Результат занести в табл. 2.
 - В исходной схеме (рис.7) установить параметры резисторов, конденсаторов и источника питания V2 в соответствии с вариантом.
 - Сохранить схему.
 - Установить режим расчета схемы по постоянному току (Analysis Setup Bias Point Detail).
 - Запустить программу расчета *PSpice* (*F11*).
 - Определить потенциалы на базе, коллекторе и эмиттере транзистора, нажав на пиктограмму V. Рассчитать напряжения U_{69} и U_{K9} .
 - Для определения токов нажать на пиктограмму 1.
 - Сравнить результаты с расчетом в подготовке к работе. Существенное отличие говорит о том, что или домашний расчет проведен неправильно, или возникли ошибки при моделировании схемы.
 - 8. Снять амплитудно-частотную характеристику усилителя, определить граничные частоты полосы пропускания и коэффициент усиления на средних частотах.
 - Отменить анализ по постоянному току и установить режим анализа по переменному току с параметрами, указанными на рис. 8.

Рис. 8. Параметры частотного анализа

- К выходу усилителя (узел 2 на рис. 7) подключить маркер для измерения напряжения в дБ (*Markers Mark Advanced Vdb*).
- Запустить схему на расчет (F11) и получить амплитудно-частотную характеристику (рис. 9).
- С помощью электронных курсоров определить в области средних частот логарифмический коэффициент усиления LK_{u0} в децибелах (затем надо определить значение K_{u0} в **линейном масштабе**). На уровне -3дБ от значения LK_{u0} на средней частоте определить граничные частоты ($f_{\rm H}$ и $f_{\rm B}$). Для получения всех необходимых значений на одном графике следует

воспользоваться пиктограммой *Mark Label* , позволяющей ввести на экран координаты точки, помеченной курсором.

Рис. 9. АЧХ усилителя

9. Отключить конденсатор в цепи эмиттера. Снять амплитудно-частотную характеристику усилителя, определить граничные частоты полосы пропускания и коэффициент усиления на средних частотах с ООС (см. п.8). Результаты занести в таблицу 3.