

Pagina 1 din 5

Subject 1	Parțial	Punctaj
1. Barem subject 1		10
Lama produce o deplasare a razei emergente, față de direcția razei incidente și deplasează, în sus (de la C la B), pe distanța l punctul de emergență.	0,4p	
$\sin \beta = \frac{1}{n} \sin \alpha$	0,4p	
$CD = d \operatorname{tg} \alpha$	0,4p	
$BD = d \operatorname{tg} \beta$	0,4p	
$\ell = CD - BD = d(\operatorname{tg}\alpha - \operatorname{tg}\beta)$	0,4p	
F_{lpha} P_{lpha} $P_{$	0,4p	4,5р
Stabilirea, pe cale grafică, a planului focal, respectiv a focarului secundar F_{α} , al lentilei divergente în absența lamei	0,4p	
În prezența lamei, raza emergentă corespunzătoare (înclinată cu unghiul γ față de axul optic principal), prelungită spre stânga, se întâlnește în punctul F_{α} din planul focal cu același ax optic secundar ca în situația inițială (când lama lipsea)	0,4p	
Raza incidentă pe lentilă în absența lamei și raza incidentă pe lentilă după traversarea lamei sunt paralele	0,4p	
Prelungirile acestor raze, după traversarea lentilei, se intersectează în focarul secundar F_{α} .	0,4p	
$tg\gamma = l/f$	0,25p	
$\gamma = arctg\left\{\frac{d}{f}\left[tg\alpha - \frac{\sin\alpha}{\sqrt{n^2 - \sin^2\alpha}}\right]\right\} \approx 1{,}14^0$	0,25p	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporţional cu conţinutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 2 din 5

B. Un con de sticlă		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$tg\alpha = R/H = 1/\sqrt{3} \Rightarrow \alpha = 30^{\circ}$ Secțiunea principală a conului este un triunghi echilateral	0,4p	
$\ell = \arcsin(1/n) \cong 41.81^{\circ}$	0,4p	4,5p
ℓ < 60° \Rightarrow reflexie totală la interfața sticlă aer	0,4p	
Unghiul de incidență pe cealaltă interfață sticlă aer este zero	0,4p	
Zona iluminată este o coroană circulară cuprinsă între cercurile de raze r_1 și r_2	0,4p	
$r_1 = d/tg\alpha = \sqrt{3}$ cm	0,4p	
$CB = Rtg\alpha$		
AB = H - CB	1,2p	
BO = H - CB + d	1	
$r_2 = BO/tg\alpha = \left(2 + \sqrt{3}\right) \text{ cm}$	0,4p	
Aria petei luminoase este $\pi(r_2^2 - r_1^2) = 4\pi(1 + \sqrt{3}) \approx 34{,}33cm^2$	0,5p	
Oficiu		1p

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 3 din 5

Subject 2	Parțial	Punctaj
Barem subject 2		10p
A. Traversarea unui râu 2.A a		-
$\vec{v} = \vec{v}_0 + \vec{u}, \ v_t = v_0 cos\alpha$	0,5p	
$t = \frac{l}{v_t}$	0,25p	
$t \text{ minim} \Rightarrow v_t \text{ maxim} \Rightarrow \cos \alpha = 1 \Rightarrow \alpha = 0$	0,5p	
$t_{min} = \frac{l}{v_0}$	0,25p	
2.A b1		
		5p
$ \overrightarrow{v_0} = \overrightarrow{u} \Rightarrow$ În intervale de timp egale, distanța parcursă de barcă spre A este egală cu distanța parcursă de barcă în sensul curgerii râului.	0,5p	
La momentul $t_0 = 0$		
$BA = \sqrt{l^2 + (3l/4)^2} = 5l/4$	0,25p	
$BQ = BA = 5l/4 \Rightarrow AP = 2l$	0,5p	
La momentul t poziția bărcii este în punctul $I(x, y)$ $IA = IC \Rightarrow \sqrt{x^2 + y^2} = 2l - y$	1p	
$y(x) = l - x^2/4l$	0,25p	1
Reprezentare grafică (parabolă)	0,5p	
2.A b2 La mijlocul râului $x_m = l/2 \Rightarrow y_m = 15l/16$	0,25p	-
$d_m = \sqrt{x_m^2 + y_m^2} = 17l/16$	0,25p	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporţional cu conţinutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 4 din 5

2 B.Tren în tunel		
2 B.a		
$0 = v_0 - at$	0,5p	
$S = v_0 t - (a/2)t^2$	0,5p	
$t(S) = \sqrt{2S/a}$	0,5p	
2 B.b		
Considerând că $L > l$ pozițiile trenului față de tunel în cele patru momente de timp semnificative sunt reprezentate în figura alăturată		
P M TUNEL		
P M TUNEL I		
TUNEL P M		
TUNEL P M		4 p
$\overline{t_P = \sqrt{2L/a}}$	0,5p	
$t_{P} = \sqrt{2L/a}$ $t_{M} = \sqrt{\frac{2}{a}} \left(\sqrt{L+l} - \sqrt{l}\right)$	0,75p	
$N = \frac{t_P}{t_M} \Rightarrow \frac{l}{L} = \frac{(N^2 - 1)^2}{4N^2}$	0,75p	
$ \text{Dacă} \begin{cases} N = 1 + \sqrt{2} \implies l = L \\ N > 1 + \sqrt{2} \implies l > L \\ N < 1 + \sqrt{2} \implies l < L \end{cases} $	0,25p	
2 B.c		
Pentru $N_1: \frac{l}{L} = \frac{16}{9} \cong 1,78,$ Pentru $N_2: \frac{l}{L} = \frac{9}{16} \cong 0,56,$ Pentru $N_3: \frac{l}{L} = 1$	0,25p	
Oficiu		1p

L. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporţional cu conţinutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 5 din 5

	5 din 5 ectul 3	Parțial	Total
a)	Modelarea sistemului: \vec{N} \vec{r} $(1-f)m\vec{g}$ $fm\vec{g}$	1,00p	2,00p
	$f_{max}mg = \mu(1 - f_{max})mg, \qquad f_{max} = \frac{\mu}{1 + \mu}, \qquad \mu = 0,5$	1,00p	
b)	Modelarea sistemului:	0,50p	2,00p
	alunecare dintre covor și suprafața mesei: $F \ge \mu(m+M)g$	1,50p	
	Până când piticul ajunge la capătul B al covorului accelerația acestuia va fi: $a_1 = \frac{fmg + F - \mu[M + (1 - f)m]g}{m} = (1 + \mu)fg = 15f$	1,00p	
	După ce piticul coboară de pe covor, accelerația covorului va fi	1,00p	
	$a_2 = [(1+\mu)f - \mu]g = 15f - 5$ La momentul la care $f = f_0 = \frac{3}{4}$, $a_1 = 15\frac{3}{4} = 11,25 \text{ m/s}^2$	1,00p	
с)	0 0,25 0,5 0,75 1 7	1,00p	4,00p
d)	Semnificația ariei (de exemplu, reprezentarea grafică $a = f(x)$ din mișcarea uniform accelerată) $A = \frac{1}{2}(v^2 - v_0^2)$	0,50p	1,00p
	$\frac{1}{2}v^2 = A \Rightarrow v = 4.11 \text{ m/s}$	0,50p	1,000
Ofici	iu		1.00p
Tota			10p

L. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.