EPITA

Mathématiques

Examen S2-B3-APEF

Polynômes, équations différentielles, fonctions

durée : 2 heures

Mars 2024

Nom:
Prénom :
Classe:
NOTE:
Le barème est sur 40 points. La note sera ramenée à 20 par division par 2.
Consignes: — Lire le sujet en entier avant de commencer. Il y a en tout 6 exercices.
— La rigueur de votre rédaction sera prise en compte dans la note.

— Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.

— Documents et calculatrices interdits.

— Aucune réponse au crayon de papier ne sera corrigée.

Exercice 1: polynômes 1 (6,5) points)

		, monorer que e	st une raeme a ora	re de martipherte	exactement 1 de	Ρ.
Montrer que	−1 est une racine d	l'ordre de multipli	cité exactement 2	de P.		
			• • • • • • • • • • • • • • • • • • • •			
En vous serv	ant d'une division e					
En vous serv	ant d'une division e					
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e	uclidienne que vou	us poserez, écrire P	comme produits of	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	s poserez, écrire P	comme produits o	le polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e $\mathbb{C}[X]$.	uclidienne que vou	s poserez, écrire <i>P</i>	comme produits o	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	s poserez, écrire <i>P</i>	comme produits o	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	s poserez, écrire P	comme produits o	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	is poserez, écrire P	comme produits o	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	s poserez, écrire P	comme produits	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	s poserez, écrire P	comme produits	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	is poserez, écrire P	comme produits	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	s poserez, écrire P	comme produits	le polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	is poserez, écrire P	comme produits	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	is poserez, écrire P	comme produits	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	is poserez, écrire P	comme produits	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	is poserez, écrire P	comme produits	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e $\mathbb{C}[X]$.	uclidienne que vou	is poserez, écrire P	comme produits of	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	is poserez, écrire P	comme produits of	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e $\mathbb{C}[X]$.	uclidienne que vou	Is poserez, écrire P	comme produits	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	is poserez, écrire P	comme produits of	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	is poserez, écrire P	comme produits	de polynômes irré	ductib
En vous serv $\mathbb{R}[X]$ et dan	ant d'une division e s $\mathbb{C}[X]$.	uclidienne que vou	is poserez, écrire P	comme produits of	de polynômes irré	ductib

Exercice 2: polynômes 2 (2,5 points)

3. Résoudre, dans \mathbb{R} , (E) : $(e^x + 1)y' + e^x y = \cos(3x)$.	
Exercice 4 : étude locale de fonctions (9 points)	
es questions sont indépendantes.	
1. Soient $x_0 \in \mathbb{R} \cup \{+\infty, -\infty\}$ et f et g deux fonctions définies au voisinage de x_0 et ne s'y annulant pas. Dor définitions mathématiques de chacune des notations suivantes : $f = o(g)$ et $f \sim g$ au voisinage de x_0 .	mer deux
2. Donner un équivalent en 0 ET en $+\infty$ de $P(x)=2x^3-x^2+6x$. Justifiez vos réponses.	

3. (a)	Donner un équivalent en 0 de $f(x) = \sin(2x)$. Justifier brièvement.
(b)	Donner un équivalent en 0 de $g(x) = 1 - e^{-2x}$. Justifier brièvement.
(c)	Donner un équivalent en 0 de $h(x) = f(x) \times g(x)$.
(d)	Donner un équivalent en 0 de $k(x) = f(x) - g(x)$. Justifier.
4. So	it $\alpha \in \mathbb{R}$. Trouver une condition nécessaire et suffisante sur α pour avoir $\frac{\ln(x)}{x^2} = o\left(\frac{1}{x^{\alpha}}\right)$ en $+\infty$.
5. Do	onner le développement limité à l'ordre 3 en 0 d'une fonction f vérifiant $f(x) \sim -2x$ en 0 ET $f(x) + 2x = o(x^3)$ en 0.
Exerc	ice 5 : développements limités (7 points)
1. Do	onner le développement limité en 0 à l'ordre 4 de $f(x) = \cos(x) \times \sqrt{1-x^2}$.
• •	
• •	
••	

٠.	
٠.	
٠.	
٠.	
	ce 6 : calcul de limites (6 points)
	ce 6 : calcul de limites (6 points) culer $\lim_{x \to +\infty} \left(1 + \sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Са 	
Ca	culer $\lim_{x\to +\infty} \left(1+\sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x\to +\infty} \left(1+\sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x\to +\infty} \left(1+\sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x\to +\infty} \left(1+\sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x\to +\infty} \left(1+\sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x\to +\infty} \left(1+\sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x\to +\infty} \left(1+\sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x\to +\infty} \left(1+\sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x\to +\infty} \left(1+\sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x\to +\infty} \left(1+\sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x\to +\infty} \left(1+\sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x \to +\infty} \left(1 + \sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x \to +\infty} \left(1 + \sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.
Ca	culer $\lim_{x \to +\infty} \left(1 + \sin\left(\frac{1}{x}\right)\right)^x$. Vous prendrez soin de votre rédaction.

2	Soient	f	а	et.	h	trois	fonctions	telles	ດນ'ອນ	voisinage	de	0	
∠.	Solem	J,	\boldsymbol{y}	$e_{\rm t}$	$I \iota \iota$	01015	TOTICUOUS	tenes	qu au	voisinage	иe	U	٠

$$f(x) = 1 - 3x + \frac{x^3}{4} + o(x^3), \quad g(x) = -3 - x^2 + o(x^2) \quad \text{et} \quad h(x) = 1 + 3x + o(x)$$

Donner $\lim_{x\to 0} \frac{f(x) - xg(x) - 1}{h(x) - 1}$. Vous prendrez soin de votre rédaction.	