Logic Gates

Sequential Logic Circuits

Course Outline

- 1. Introduction
- 2. Logic Gates & Related Devices
- 3. Combination Circuits I
- 4. Combination Circuits II
- 5. Combination Circuits III
- 6. Combination Circuits IV, Kmap
- 7. Combination Circuits IV, Kmap

- 8. Sequential Circuit I
- 9. Sequential Circuit II
- 10. Sequential Circuit III
- 11. Sequential Circuit IV
- 12. FPGA + Logic circuit project |
- 13. FPGA + Logic circuit project II
- 14. Lab Exam

Logic Circuit Laboratory#8

Sequential Circuit II

Flip Flop

- 1. LATCH Flip Flop
- 2. Clocked Flip Flop

- 1. RS Flip Flop
 - NAND
 - NOR
- 2. JK Flip Flop
- 3. D Flip Flop
- 4. T Flip Flop

SR Flip Flop NAND Latch

5

Sequential Circuit II

RS Flip Flop = NAND Flip Flop = NAND Latch

Active Low

เมื่อ Input SET/RESET เป็น Low ค่า Q จะออกตาม Input (SET 0, Q 1) และ (RESET 0, Q' 1)

Sequential Circuit II

Active Low

จาก (SET 0, Q 1) และ (RESET 0, Q' 1) ดังนั้น ถ้า SET และ RESET เป็น 0 ทั้งคู่ NAND Latch จะ Error (คุณสมบัติของ Flip-flop ค่า Q และ Q' มีค่าไม่เหมือนกัน)

ดังนั้น การคงสถานะเดิม (Memory) คือการ Input SET และ RESET <u>เป็น 1 ทั้งคู่</u>

การคงสถานะเดิม (Memory) คือการ Input SET และ RESET เป็น 1 ทั้งคู่

Sequential Circuit II

สรุป RS Flip Flop แบบ NAND Gates

- SET = 0, RESET = 1 \rightarrow Q = 1
- SET = 1, RESET = 0 \rightarrow Q' = 1
- SET = 1, RESET = 1 → Memory (คงสถานะเดิม)
- SET = 0, RESET = 0 \rightarrow Error

10

SR Flip Flop NOR Latch

Sequential Circuit II

RS Flip Flop = NOR Flip Flop = NOR Latch

Active High

เมื่อ Input SET/RESET เป็น HIGH ค่า Q จะออกตาม Input (SET 1, Q 1) และ (RESET 1, Q' 1)

Active High

จาก (SET 1, Q 1) และ (RESET 1, Q' 1) ดังนั้น ถ้า SET และ RESET เป็น 1 ทั้งคู่ NAND Latch จะ Error (คุณสมบัติของ Flip-flop ค่า Q และ Q' มีค่าไม่เหมือนกัน)

Set	Reset	Output
0	0	No change
1	0	Q = 1
0	1	Q = 0
1	1	Invalid*

*Produces $Q = \overline{Q} = 0$.

ดังนั้น การคงสถานะเดิม (Memory) คือการ Input SET และ RESET <u>เป็น 0 ทั้งคู่</u>

1

Sequential Circuit II

สรุป RS Flip Flop แบบ NOR Gates

• SET = 0, RESET = 1
$$\rightarrow$$
 Q' = 1

■ SET = 1, RESET = 0
$$\rightarrow$$
 Q = 1

■ SET = 1, RESET = 1
$$\rightarrow$$
 Error

14

Sequential Circuit II

SR Flip Flop จะต่อแบบ Latch แต่สามารถออกแบบให้ต่อกับ Clock ได้เช่นกัน ตัวอย่างการต่อใช้งาน Clocked Flip Flop แบบ SR Flip Flop

Switch position	X _A	X _B
A	Pulses	LOW
B	LOW	Pulses

11

SR Flip Flop แบบ Clock Flip Flop

SR Flip Flop จะต่อแบบ Latch แต่สามารถออกแบบให้ต่อกับ Clock ได้เช่นกัน ตัวอย่างการต่อใช้งาน Clocked Flip Flop แบบ SR Flip Flop

Sequential Circuit II

SR Flip Flop จะต่อแบบ Latch แต่สามารถออกแบบให้ต่อกับ Clock ได้เช่นกัน ตัวอย่างการต่อใช้งาน Clocked Flip Flop แบบ SR Flip Flop

CLK	S	R	Q	Q'
0	X	X	Memory (N	ot Change)
1	0	1	0	1
1	1	0	1	0
1	0	0	Memory (N	ot Change)
1	1	1	Erı	ror

18

Sequential Circuit II

- 1. RS Flip Flop
 - NAND
 - NOR
- 2. JK Flip Flop ←──
- 3. D Flip Flop
- 4. T Flip Flop

JK Flip Flop Clock Flip Flop

JK Flip Flop ปรับปรุงวงจร RS Flip Flop *ปรับในส่วนของ Error จะเปลี่ยน Error ให้ Output ออกตรงกันข้าม

RS FF ปกติ

0	0	Q_n	$ar{Q}_n$
1	0	1	
0	1		1
S	R	Q	Q'

JK FF

J	К	Q	Q'
0	1		1
1	0	1	
0	0	Q_n	\bar{Q}_n
1	1	\bar{Q}_n	Q_n

21

Sequential Circuit II

JK Flip Flop ปรับปรุงวงจร RS Flip Flop

22

Sequential Circuit II

*ปรับในส่วนของ Error จะเปลี่ยน Error ให้ Output ออกตรงกันข้าม

** เพิ่ม PRE และ CLR -> Active Low ทำงานแบบ Asynch ไม่ขึ้นกับ Clock

J	K	Clk	PRE	CLR	Q
0	0	+	1	1	Q (no change)
0	1	+	1	1	0 (Synch reset)
1	0	+	1	1	1 (Synch set)
1	1	+	1	1	Q (Synch toggle)
X	х	х	1	1	Q (no change)
Х	Х	х	1	0	0 (asynch clear)
х	х	х	0	1	1 (asynch preset)
Х	х	х	0	0	(Invalid)

Sequential Circuit II

การใช้งาน ถ้าต้องการใช้งานแบบ Synchronous (ขา PRE และ CLE ต้อง = 1 ทั้งคู่) * เมื่อเป็น Synchronous -> Check Clock

av 1	- made				A
J	K	Clk	PRE	CLR	Q
0	0	+	1	1	Q (no change)
0	1	+	1	1	0 (Synch reset)
1	0	+	1	1	1 (Synch set)
1	1	+	1	1	Q (Synch toggle)
X	Х	х	1	1	Q (no change)
X	Х	Х	1	0	0 (asynch clear)
X	Х	х	0	1	1 (asynch preset)
X	x	х	0	0	(Invalid)

สัญลักษณะ Not ก่อนถึง Clock หมายถึง Falling edge trigger ตรวจสอบ Input เมื่อพบขอบขาลง

การใช้งาน ถ้าต้องการใช้งานแบบ Synchronous (ขา PRE และ CLE ต้อง = 1 ทั้งคู่)

* เมื่อเป็น Synchronous -> Check Clock

ถ้าไม่มีสัญลักษณะ Not ก่อนถึง Clock หมายถึง Rising edge trigger ตรวจสอบ Input เมื่อพบขอบขาขึ้น

Sequential Circuit II

- 1. RS Flip Flop
 - NAND
 - NOR
- 2. JK Flip Flop
- 3. D Flip Flop ←
- 4. T Flip Flop

26

Sequential Circuit II

D Flip Flop สร้างจาก SR FF แบบ NAND Gate ใช้งานง่าย การออกแบบดังนี้

D Flip Flop Clock Flip Flop

D Flip Flop สร้างจาก NAND Gate ใช้งานง่าย การออกแบบดังนี้

Sequential Circuit II

D Flip Flop สามารถสร้างจาก JK FF ได้เช่นกัน

** JK Flip Flop ขา PRE และ CLR ให้ Input logic High (1 ทั้งคู่)

30

Sequential Circuit II

D Flip Flop นำเอาประยุกต์ในการออกแบบได้สะดวก ถ้าไม่ใช้ Function Asynch

Basic Memory

3 Bit

Combinational logic circuit

z

29

31

Sequential Circuit II

- 1. RS Flip Flop
 - NAND
 - NOR
- 2. JK Flip Flop
- 3. D Flip Flop
- 4. T Flip Flop ←

T Flip Flop Clock Flip Flop

Sequential Circuit II

T Flip Flop = Toggle Flip Flop T Flip Flop = JK ในสถานะ Toggle มาออกแบบ (J = 1, K = 1)

	Q	CLR	PRE	Clk	K	J
ge)	Q (no change	1	1	+	0	0
set)	0 (Synch rese	1	1	+	1	0
	1 (Synch set)	1	1	+	0	1
oggle)	Q (Synch togg	1	1	+	1	1
	Q (no change	1	1	Х	Х	Х
lear)	0 (asynch clea	0	1	х	х	X
	1 (asynch pre	1	0	х	х	х
Mark Comment	(Invalid)	0	0	х	х	x

ดังนั้น J = 0 , K = 0 จะเป็น No Change ดังนั้น J = 1 , K = 1 จะเป็น Toggle

34

Sequential Circuit II

T Flip Flop = Toggle Flip Flop T Flip Flop = JK ในสถานะ Toggle มาออกแบบ (J = 1, K = 1)

ต่อขา J และ K ของ JK Flip Flop เข้าด้วยกัน จะได้ T Flip Flop

START

LAB7 SequentialCircuits2

- D Flip Flop ← 74LS74 D Flip Flop
- JK Flip Flop T4LS73 JK Flip Flop
- T Flip Flop -