### Suitably impressive thesis title

1044935

St Cross College University of Oxford

Submitted in partial completion of the MSc in Computer Science

Trinity 2020

### Abstract

Your abstract text goes here. Check your departmental regulations, but generally this should be less than 300 words. See the beginning of Chapter 2 for more.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque sit amet nibh volutpat, scelerisque nibh a, vehicula neque. Integer placerat nulla massa, et vestibulum velit dignissim id. Ut eget nisi elementum, consectetur nibh in, condimentum velit. Quisque sodales dui ut tempus mattis. Duis malesuada arcu at ligula egestas egestas. Phasellus interdum odio at sapien fringilla scelerisque. Mauris sagittis eleifend sapien, sit amet laoreet felis mollis quis. Pellentesque dui ante, finibus eget blandit sit amet, tincidunt eu neque. Vivamus rutrum dapibus ligula, ut imperdiet lectus tincidunt ac. Pellentesque ac lorem sed diam egestas lobortis.

Suspendisse leo purus, efficitur mattis urna a, maximus molestie nisl. Aenean porta semper tortor a vestibulum. Suspendisse viverra facilisis lorem, non pretium erat lacinia a. Vestibulum tempus, quam vitae placerat porta, magna risus euismod purus, in viverra lorem dui at metus. Sed ac sollicitudin nunc. In maximus ipsum nunc, placerat maximus tortor gravida varius. Suspendisse pretium, lorem at porttitor rhoncus, nulla urna condimentum tortor, sed suscipit nisi metus ac risus

nisi metus ac risus.

Aenean sit amet enim quis lorem tristique commodo vitae ut lorem. Duis vel tincidunt lacus. Sed massa velit, lacinia sed posuere vitae, malesuada vel ante. Praesent a rhoncus leo. Etiam sed rutrum enim. Pellentesque lobortis elementum augue, at suscipit justo malesuada at. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent rhoncus convallis ex. Etiam commodo nunc ex, non consequat diam consectetur ut. Pellentesque vitae est nec enim interdum dapibus. Donec dapibus purus ipsum, eget tincidunt ex gravida eget. Donec luctus nisi eu fringilla mollis. Donec eget lobortis diam.

Suspendisse finibus placerat dolor. Etiam ornare elementum ex ut vehicula. Donec accumsan mattis erat. Quisque cursus fringilla diam, eget placerat neque bibendum eu. Ut faucibus dui vitae dolor porta, at elementum ipsum semper. Sed ultrices dui non arcu pellentesque placerat. Etiam posuere malesuada turpis, nec malesuada tellus malesuada.

# Suitably impressive thesis title



1044935 St Cross College University of Oxford

Submitted in partial completion of the  $MSc\ in\ Computer\ Science$  Trinity 2020

### Acknowledgements

### Personal

This is where you thank your advisor, colleagues, and family and friends.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum feugiat et est at accumsan. Praesent sed elit mattis, congue mi sed, porta ipsum. In non ullamcorper lacus. Quisque volutpat tempus ligula ac ultricies. Nam sed erat feugiat, elementum dolor sed, elementum neque. Aliquam eu iaculis est, a sollicitudin augue. Cras id lorem vel purus posuere tempor. Proin tincidunt, sapien non dictum aliquam, ex odio ornare mauris, ultrices viverra nisi magna in lacus. Fusce aliquet molestie massa, ut fringilla purus rutrum consectetur. Nam non nunc tincidunt, rutrum dui sit amet, ornare nunc. Donec cursus tortor vel odio molestie dignissim. Vivamus id mi erat. Duis porttitor diam tempor rutrum porttitor. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed condimentum venenatis consectetur. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Aenean sit amet lectus nec tellus viverra ultrices vitae commodo nunc. Mauris at maximus arcu. Aliquam varius congue orci et ultrices. In non ipsum vel est scelerisque efficitur in at augue. Nullam rhoncus orci velit. Duis ultricies accumsan feugiat. Etiam consectetur ornare velit et eleifend.

Suspendisse sed enim lacinia, pharetra neque ac, ultricies urna. Phasellus sit amet cursus purus. Quisque non odio libero. Etiam iaculis odio a ex volutpat, eget pulvinar augue mollis. Mauris nibh lorem, mollis quis semper quis, consequat nec metus. Etiam dolor mi, cursus a ipsum aliquam, eleifend venenatis ipsum. Maecenas tempus, nibh eget scelerisque feugiat, leo nibh lobortis diam, id laoreet purus dolor eu mauris. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nulla eget tortor eu arcu sagittis euismod fermentum id neque. In sit amet justo ligula. Donec rutrum ex a aliquet egestas.

### Institutional

If you want to separate out your thanks for funding and institutional support, I don't think there's any rule against it. Of course, you could also just remove the subsections and do one big traditional acknowledgement section.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut luctus tempor ex at pretium. Sed varius, mauris at dapibus lobortis, elit purus tempor neque,

facilisis sollicitudin felis nunc a urna. Morbi mattis ante non augue blandit pulvinar. Quisque nec euismod mauris. Nulla et tellus eu nibh auctor malesuada quis imperdiet quam. Sed eget tincidunt velit. Cras molestie sem ipsum, at faucibus quam mattis vel. Quisque vel placerat orci, id tempor urna. Vivamus mollis, neque in aliquam consequat, dui sem volutpat lorem, sit amet tempor ipsum felis eget ante. Integer lacinia nulla vitae felis vulputate, at tincidunt ligula maximus. Aenean venenatis dolor ante, euismod ultrices nibh mollis ac. Ut malesuada aliquam urna, ac interdum magna malesuada posuere.

### Abstract

Your abstract text goes here. Check your departmental regulations, but generally this should be less than 300 words. See the beginning of Chapter 2 for more.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque sit amet nibh volutpat, scelerisque nibh a, vehicula neque. Integer placerat nulla massa, et vestibulum velit dignissim id. Ut eget nisi elementum, consectetur nibh in, condimentum velit. Quisque sodales dui ut tempus mattis. Duis malesuada arcu at ligula egestas egestas. Phasellus interdum odio at sapien fringilla scelerisque. Mauris sagittis eleifend sapien, sit amet laoreet felis mollis quis. Pellentesque dui ante, finibus eget blandit sit amet, tincidunt eu neque. Vivamus rutrum dapibus ligula, ut imperdiet lectus tincidunt ac. Pellentesque ac lorem sed diam egestas lobortis.

Suspendisse leo purus, efficitur mattis urna a, maximus molestie nisl. Aenean porta semper tortor a vestibulum. Suspendisse viverra facilisis lorem, non pretium erat lacinia a. Vestibulum tempus, quam vitae placerat porta, magna risus euismod purus, in viverra lorem dui at metus. Sed ac sollicitudin nunc. In maximus ipsum nunc, placerat maximus tortor gravida varius. Suspendisse pretium, lorem at porttitor rhoncus, nulla urna condimentum tortor, sed suscipit nisi metus ac risus.

Aenean sit amet enim quis lorem tristique commodo vitae ut lorem. Duis vel tincidunt lacus. Sed massa velit, lacinia sed posuere vitae, malesuada vel ante. Praesent a rhoncus leo. Etiam sed rutrum enim. Pellentesque lobortis elementum augue, at suscipit justo malesuada at. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent rhoncus convallis ex. Etiam commodo nunc ex, non consequat diam consectetur ut. Pellentesque vitae est nec enim interdum dapibus. Donec dapibus purus ipsum, eget tincidunt ex gravida eget. Donec luctus nisi eu fringilla mollis. Donec eget lobortis diam.

Suspendisse finibus placerat dolor. Etiam ornare elementum ex ut vehicula. Donec accumsan mattis erat. Quisque cursus fringilla diam, eget placerat neque bibendum eu. Ut faucibus dui vitae dolor porta, at elementum ipsum semper. Sed ultrices dui non arcu pellentesque placerat. Etiam posuere malesuada turpis, nec malesuada tellus malesuada.

# Contents

| Li           | st of                 | Figures                                         | vi |  |  |  |  |  |  |  |
|--------------|-----------------------|-------------------------------------------------|----|--|--|--|--|--|--|--|
| Li           | List of Abbreviations |                                                 |    |  |  |  |  |  |  |  |
| 1            | Intr                  | oduction                                        | 1  |  |  |  |  |  |  |  |
|              | 1.1                   | Motivation                                      | 1  |  |  |  |  |  |  |  |
|              | 1.2                   | Contribution                                    | 3  |  |  |  |  |  |  |  |
| 2            | Bac                   | kground                                         | 6  |  |  |  |  |  |  |  |
| Aı           | ppen                  | dices                                           |    |  |  |  |  |  |  |  |
| $\mathbf{A}$ | Rev                   | iew of Cardiac Physiology and Electrophysiology | 14 |  |  |  |  |  |  |  |
|              | A.1                   | Anatomy                                         | 15 |  |  |  |  |  |  |  |
|              | A.2                   | Mechanical Cycle                                | 17 |  |  |  |  |  |  |  |
|              | A.3                   | Electrical Cycle                                | 18 |  |  |  |  |  |  |  |
|              | A.4                   | Cellular Electromechanical Coupling             | 20 |  |  |  |  |  |  |  |

# List of Figures

| 2.1 | test |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 6 |
|-----|------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|
| 2.2 | test |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 8 |

# List of Abbreviations

 ${f 1-D,\ 2-D}$  . . . One- or two-dimensional, referring in this thesis to spatial dimensions in an image.

Otter . . . . . One of the finest of water mammals.

**Hedgehog** . . . Quite a nice prickly friend.

Neque porro quisquam est qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit...

There is no one who loves pain itself, who seeks after it and wants to have it, simply because it is pain...

— Cicero's de Finibus Bonorum et Malorum

Introduction

### Contents

| 1.1 | Motivation   | <br>1 |
|-----|--------------|-------|
| 1.2 | Contribution | <br>3 |

### 1.1 Motivation

The rapid advance of minimally-invasive cardiac procedures promises improvements in patient safety, procedure efficacy, and access to treatment. While percutaneous coronary intervention (PCI) has become routine and highly effective [bravata\_systematic\_2007], catheter procedures in areas such as electrophysiology (EP) and valve replacement are still coming of age. This progress is driven by demographics and the improvement in general cardiac care, as patients surviving initial cardiac events go on to require treatment for sequelae [foot\_demographics\_2000]. The growing need for advanced treatment is being answered by developments in catheter technology and procedures. These tools are continually advancing to access and manipulate an ever-broader range of anatomy [sousa\_new\_2005].







### 1.2 Contribution

Sed in rhoncus lectus. Mauris vulputate purus non malesuada pulvinar. Curabitur ullamcorper hendrerit elit, id vulputate libero sagittis vel. Pellentesque ac faucibus est. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Integer venenatis, nisl eleifend pellentesque consequat, sem tortor malesuada ante, ut tincidunt elit tortor sit amet nunc.

Cras vehicula ipsum sit amet dui rutrum ultrices. Integer eu eleifend odio.



Version from August 23, 2020

Praesent tempor, libero id ullamcorper euismod, lectus diam lobortis mauris, id venenatis arcu sem vitae purus. Pellentesque luctus tristique metus quis mollis. Praesent ullamcorper neque velit, sed iaculis est convallis sit amet. Quisque nec massa ut magna lobortis imperdiet. Quisque rhoncus purus eget mollis aliquet. Donec vehicula viverra nisl, sed posuere turpis vulputate non. Donec malesuada, eros id interdum volutpat, ipsum orci luctus quam, non pulvinar urna ipsum eget purus. Nam hendrerit condimentum tristique.

Proin metus velit, tempor at fringilla non, dictum eu felis. Proin volutpat enim ut fermentum aliquam. Nam dictum nisi eu nisl viverra fermentum. Pellentesque tristique arcu non orci congue faucibus. Fusce sit amet nisl fringilla, feugiat turpis vitae, eleifend ante. Suspendisse elementum, lectus non pulvinar bibendum, lectus massa faucibus turpis, vitae porta risus sem quis metus. Maecenas id sapien et dui lobortis imperdiet nec eu mi. Quisque porttitor tincidunt nisi, eget sagittis orci. Nunc mattis erat malesuada facilisis viverra. Maecenas sodales iaculis nisi vel tincidunt. Morbi aliquet nibh ac facilisis consectetur. In ultrices libero quis massa porttitor cursus. Quisque suscipit ac tortor eget aliquet. Ut eget lacus vel orci viverra maximus at at purus.

Nam massa neque, varius nec suscipit id, cursus ac mi. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. In hac habitasse platea dictumst. Vivamus facilisis nunc quis dictum consectetur. Sed congue sed magna non auctor. Vestibulum accumsan sit amet erat non congue. Sed at condimentum mi, sed scelerisque urna. Etiam tristique pulvinar rutrum. Donec semper nulla vitae rutrum semper. Maecenas ultrices nibh at orci sodales tincidunt sit amet vitae arcu. Curabitur interdum tincidunt ipsum, nec tincidunt nunc dapibus in. Nunc sit amet elementum massa, ut ornare lacus. Vivamus convallis fringilla erat, non suscipit sapien convallis eu. Nunc viverra lectus sit amet turpis viverra, eget iaculis purus rhoncus.

Morbi eu lectus arcu. Sed fringilla dui ut magna commodo, a malesuada ante pellentesque. Donec ornare facilisis pellentesque. Nulla vitae fringilla velit. Nunc id tellus nisl. Maecenas pretium elit lectus, nec consectetur nunc vulputate et.

Sed facilisis magna nec gravida hendrerit. Sed a cursus nisl, in rhoncus massa. Curabitur ut nibh interdum, tempor risus vel, scelerisque nibh. Mauris quis ipsum sed risus tempor convallis ut a eros.

### Contents

Gene expression is the process whereby a sequence of nucleotides is used to direct the synthesis of a functional gene product (protein, functional RNA). Gene expression is fundamental to all life. It occurs in two steps: during transcription, the DNA is transcribed into messenger RNA (mRNA) and during translation, the mRNA is decoded into proteins.

In more detail, during transcription, an initially transcribed precursor mRNA



Figure 2.1: ffs

(pre-RNA) is translated into a mature RNA by a process called splicing. Splicing is based on DNA being made up of exons (predominantly coding regions), and, typically longer, introns (non-coding regions). Only exons are contained in the mature mRNA. Introns are still contained in the initially transcribed precursor mRNA (pre-mRNA). However, they are spliced out by the spliceosome to form the mature mRNA. The spliceosome is a complex molecular machine consisting of as many as 150 proteins. [Current perspectives] This is visualized in 2.1.

Exons which are always included in the mRNA are called constitutive exons. However, 95% of human genes with multiple exons are alternatively spliced, that is, they may only sometimes be included or may be included with different splice sites. The most common types of alternative splicing in higher eukaryotes are [commonsplicing1][commonsplicing2]:

- Cassete exons are exons who are sometimes included in the mature mRNA and sometimes skipped. This is the most common form of alternative splicing in higher eukaryotes (so also humans), accounting for roughly 40
- Exons with an alternative 3' or 5' splice-site. The 3' splice site or splice junction is the end of the exon towards the 3' end of the RNA strand (typically towards the right). The 5' splice site or splice junction is the end of the exon towards the 5' end of the RNA strand (typically towards the left). An alternative 3' or 5' splice-site may be located deeper inside the exon or outside the exon in a typically intronic region. Alternative 3' and 5' site splicing respectively constitute approximately 18
- intron retention, that is, when an intron between exons is not spliced out. It accounts for roughly 5

Different forms of alternative splicing are visualized in Figure 2.2. More complex forms of alternative splicing, such as mutually exclusive exons, also exist, but they are currently believed to be more uncommon. Alternative splicing occurs in nearly all organisms that carry out pre-mRNA splicing as such as plants or animals and its frequency varies across organisms. [https://www.sciencedirect.com/science/article/pii/B97801237498400]



**Figure 2.2:** Visualization of the most common forms of alternative splicing and the resulting different possible mature mRNAs. [https://hrjournal.net/article/view/2693]

### Why does alternative splicing occur?

Alternative splicing enables a single gene to encode multiple protein variants. This massively contributes to proteomic diversity. For instance, the roughly 20,000 humans genes are estimated to encoder over 100,000 different proteins.

https://biologydictionary.net/alternative-splicing/ Alternative splicing may also speed up the rate of evolutionary adaption. Due to alternative splicing, a gene may evolve to fulfil a different functionality without first needing to evolve a separate copy of the same gene. [bretschneiderphdthesis]

### How is alternative splicing regulated?

Alternative splicing was discovered 40 years ago [discoveryofsplicing], but the molecular mechanisms governing it are still poorly understood. It is known that the spliceosome recognizes exon-intron boundaries based on the 5' and 3' splice sites, the branch site located in roughly the middle of the exon, and the polypyrimidine tract located upstream of the 3' splice site. However, estimates suggest that these four factors only account for half of the information required to determine splicing behaviour. The rest is likely accounted for by intronic or exonic, cis-acting sequences of the pre-mRNA which bind to trans-acting factors. These cis-acting sequences are usually 4-18 nucleotide long and classified as exonic splicing enhancers or silencers

??. However, the dynamic interaction between cis-acting and trans-acting factors is highly complex, new factors are still being found and thus a lot more work needs to be done if we want to fully understand alternative splicing.

### What happens when splicing is misregulated?

Since alternative splicing is such a fundamental mechanism, its correct execution is crucial. Defects in splicing are typically caused by genomic sequence variations leading to misregulation of the splicing process. An estimated 9%-30% of Mendelian disorders may act through disruption of splicing [comparison] Splice variants have also been shown to be biomarkers for multiple types of cancers [cancer]. As a result, alternative splicing has also been suggested as a biomarker and potential target for drug discovery [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648177/].

### Importance of understanding splicing

Thus, there is great interest in better understanding the mechanisms underpinning alternative splicing. Due to rapid advances in RNA-sequencing technologies, it is now possible to sequence the genome of a patient within a day. However, the genomic variants (compared to a reference genome) observed in patients are often variants of unknown significance. [bretschneiderphdthesis] That is, it is unknown whether these variants are pathogenic or benign. An improved understanding of alternative splicing may improve the classification of genomic variants and help with the diagnosis of patients, especially those with rare genomic diseases.

Splicing codes are computational models that attempt to predict splicing behaviour based on putative regulatory features (such as sequence motifs). They were first introduced in the seminal paper by Barash et al 2010a, b. Their introduction was motivated by the recognition that splicing is highly conditionspecific and regulated by the complex interaction of many factors in such a way that it is only feasible to model this behaviour computationally. [Barash 2010] focus on cassette exons and attempt to predict the change in splicing behaviour for a given exon between different tissues. The quantitative measure PSI or  $\Psi$  they introduced to describe splicing behaviour is still commonly used today:  $\Psi$  is defined as the proportion of transcripts out of all transcripts that contain a given exon [**psi**]. Given a random transcript, PSI denotes the probability of a particular exon being included or excluded. Similarly,  $\Psi_5$  is defined as the number of transcripts containing a particular alternative 3' splice site for a fixed 5' splice site.  $\Psi_3$  is defined analogously as the number of transcripts containing a particular alternative 5' splice site for a fixed 3' splice site.  $\Psi_5$  and  $\Psi_3$  are particularly interesting to model the competition between different alternative splice sites. To quantify the change of splicing behaviour between conditions, these models predict the corresponding  $\Delta\Psi$ . They were able to find novel regulators of key genes associated with diseases and to predict how genetic variants will affect splicing. [take quotes from jha et al here] Input to the model are over 1000 known and unknown motifs and higher-level features (such as exon/intron lengths and phylogenetic conversation scores) selected partially from previous studies and partially from de novo searches. Improving upon these first models, the second 'generation' of splicing codes used several common and uncommon machine learning algorithms such as multinomial logistic regression, support vector machines (SVM) and Bayesian Neural Networks (BNN) to predict changes in alternative splicing behaviour. [add citations here, partially from jha et al] Among these, BNNs were able to outperform the other methods when evaluated on a microarray dataset based on mouse data. In contrast to models from the first generation, BNNs based models only took in sequence information and very high-level features like tissue type which meant that the model was automatically able to learn relevant motifs from the

data. However, BNNs often rely on expensive sampling methods like Markov Chain Monte Carlo (MCMC) to be able to sample models from a posterior distribution. It can be challenging to scale these methods to larger datasets and a large number of hidden variables. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058935/] As a result, the third 'generation' of splicing codes relies on deep learning models which can effectively make use of the large amount of data available with the advent of high-throughput RNA-sequencing technologies. First forays into using deep learning-based models were made by Leung 2014. Using a Deep Neural Network (DNN) with an autoencoder, they were able to improve upon the results achieved by a BNN model. Albeit Leung 2014 initially used a different dataset and a different task formulation than [BNN model], Jha 2017 were able to show that these improvements also lasted when directly comparing the models on the same dataset using the same task formulation. Furthermore, Jha 2017 developed a framework for integrating further experimental data, like data from CLIP-seq based measurements of in vivo splice factors bindings, into the model developed by Leung 2014. Adding these further features improved the explained variance in splicing behaviour between tissues, as measured by the  $R^2$  score, by roughly further 5Taking inspiration from advances in Natural Language Processing, [d2v paper] developed splicing codes based on the automated feature learning approach from word2vec and doc2vec. Developing two models, one based on doc2vec and a simple MLP, and one based on word2vec and the all-convolutional Inception architecture known from Computer Vision [quote], they were able to achieve an average  $R^2$  score of 69.2In contrast to these splicing codes which predict the (differential) inclusion frequency of an exon, a parallel strand of research focuses on splicing codes for distinguishing between constitutive and alternatively spliced exons. Concretely, for the first task the dataset the models are trained on only consists of alternatively spliced cassette exons and the models have to find features that are predictive of the exact inclusion rate of an exon. For the second task, the dataset consists of alternatively spliced as well as constitutive exons and the models have to find features predictive for distinguishing between constitutive and alternatively spliced exons. While there is

a large overlap between these features, there are also differences. For predicting the inclusion level of an exon, features from the cassette exon and the surrounding exons have shown to be relevant. [add quote from dsc] For predicting whether an exon is constitutive or not, features around the cassette exon itself have been reported to be the most critical. [add quotes from dsc here] [possibly talk more about features used by dsc and what constitutive exons could use Busch and Hertel used 262 features extracted from an exon and it's two flanking introns to train an SVM-based splicing code for distinguishing between constitutive exons, cassette exons and exons with an alternative 5' or 3' splice site. The dataset used to train the model was based on roughly 4 million ESTs and known isoforms, as well as the alternative events, track (Alt Events) of the UCSU Genome Browser. Their model achieved very impressive results with an AUC of roughly 0.94 when differentiating between rarely included and constitutive exons, but performance decreases to roughly 0.60 when distinguishing between frequently included and constitutive exons. [DSC] improved upon this work by using a deep learning model which was automatically able to learn relevant features from the raw sequence. Their model was based on a combination of convolutional blocks for feature extraction as well as an MLP for classification based on the extracted features. Training on a similar EST-based dataset, their model is significantly more robust when distinguishing between highly included cassette exons and constitutive exons with the AUC only dropping to 0.85. When distinguishing between rarely included cassette and constitutive exons, it was still able to achieve an impressive AUC of 0.92.

Appendices

Cor animalium, fundamentum eft vitæ, princeps omnium, Microcofmi Sol, a quo omnis vegetatio dependet, vigor omnis & robur emanat.

The heart of animals is the foundation of their life, the sovereign of everything within them, the sun of their microcosm, that upon which all growth depends, from which all power proceeds.

— William Harvey [harvey\_exercitatio\_1628]



# Review of Cardiac Physiology and Electrophysiology

### Contents

Appendices are just like chapters. Their sections and subsections get numbered and included in the table of contents; figures and equations and tables added up, etc. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed et dui sem. Aliquam dictum et ante ut semper. Donec sollicitudin sed quam at aliquet. Sed maximus diam elementum justo auctor, eget volutpat elit eleifend. Curabitur hendrerit ligula in erat feugiat, at rutrum risus suscipit. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Integer risus nulla, facilisis eget lacinia a, pretium mattis metus. Vestibulum aliquam varius ligula nec consectetur. Maecenas ac ipsum odio. Cras ac elit consequat, eleifend ipsum sodales, euismod nunc. Nam vitae tempor enim, sit amet eleifend nisi. Etiam at erat vel neque consequat.

### A.1 Anatomy

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec accumsan cursus neque. Pellentesque eget tempor turpis, quis malesuada dui. Proin egestas, sapien sit amet feugiat vulputate, nunc nibh mollis nunc, nec auctor turpis purus sed metus. Aenean consequat leo congue volutpat euismod. Vestibulum et vulputate nisl, at ultrices ligula. Cras pulvinar lacinia ipsum at bibendum. In ac augue ut ante mollis molestie in a arcu.

Etiam vitae quam sollicitudin, luctus tortor eu, efficitur nunc. Vestibulum maximus, ante quis consequat sagittis, augue velit luctus odio, in scelerisque arcu magna id diam. Proin et mauris congue magna auctor pretium id sit amet felis. Maecenas sit amet lorem ipsum. Proin a risus diam. Integer tempus eget est condimentum faucibus. Suspendisse sem metus, consequat vel ante eget, porttitor maximus dui. Nunc dapibus tincidunt enim, non aliquam diam vehicula sed. Proin vel felis ut quam porta tempor. Vestibulum elit mi, dictum eget augue non, volutpat imperdiet eros. Praesent ac egestas neque, et vehicula felis.

Pellentesque malesuada volutpat justo, id eleifend leo pharetra at. Pellentesque feugiat rutrum lobortis. Curabitur hendrerit erat porta massa tincidunt rutrum. Donec tincidunt facilisis luctus. Aliquam dapibus sodales consectetur. Suspendisse lacinia, ipsum sit amet elementum fermentum, nulla urna mattis erat, eu porta metus ipsum vel purus. Fusce eget sem nisl. Pellentesque dapibus, urna vitae tristique aliquam, purus leo gravida nunc, id faucibus ipsum magna aliquet ligula. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin sem lacus, rutrum eget efficitur sed, aliquam vel augue. Aliquam ut eros vitae sem cursus ultrices ut ornare urna. Nullam tempor porta enim, in pellentesque arcu commodo quis. Interdum et malesuada fames ac ante ipsum primis in faucibus. Curabitur maximus orci purus, ut molestie turpis pellentesque ut.

Donec lacinia tristique ultricies. Proin dignissim risus ut dolor pulvinar mollis. Proin ac turpis vitae nibh finibus ullamcorper viverra quis felis. Mauris pellentesque neque diam, id feugiat diam vestibulum vitae. In suscipit dui eu libero ultrices, et sagittis nunc blandit. Aliquam at aliquet ex. Nullam molestie pulvinar ex vitae

interdum. Praesent purus nunc, gravida id est consectetur, convallis elementum nulla. Praesent ex dolor, maximus eu facilisis at, viverra eget nulla. Donec ullamcorper ante nisi. Sed volutpat diam eros. Nullam egestas neque non tortor aliquet, sed pretium velit tincidunt. Aenean condimentum, est ac vestibulum mattis, quam augue congue augue, mattis ultrices nibh libero non ante. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Aenean volutpat eros tortor, non convallis sapien blandit et. Maecenas faucibus nulla a magna posuere commodo. Nullam laoreet ante a turpis laoreet malesuada. Phasellus in varius sem. Vestibulum sagittis nibh sed tincidunt blandit. Donec aliquam accumsan odio sit amet lacinia. Integer in tellus diam. Vivamus varius massa leo, vitae ullamcorper metus pulvinar sed. Maecenas nec lorem ornare, elementum est quis, gravida massa. Suspendisse volutpat odio ex, ac ultrices leo ultrices vel. Sed sed convallis ipsum. Pellentesque euismod a nulla sed rhoncus. Sed vehicula urna vitae mi aliquet, non sodales lacus ullamcorper. Duis mattis justo turpis, id tempus est tempus eu. Curabitur vitae hendrerit ligula.

Curabitur non pretium enim, in commodo ligula. Etiam commodo eget ligula a lacinia. Vestibulum laoreet ante tellus, vel congue sapien ornare in. Donec venenatis cursus velit vitae pulvinar. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Suspendisse in metus lectus. Pellentesque gravida dolor eget finibus imperdiet. Duis id molestie tortor. Mauris laoreet faucibus facilisis. Aliquam vitae dictum massa, sit amet dignissim lacus.

Fusce eleifend tellus id ex consequat maximus. Donec ultrices ex ut turpis ornare, non molestie mi placerat. Nulla sit amet auctor nunc, sit amet euismod elit. Phasellus risus tellus, condimentum a metus et, venenatis tristique urna. Cras mattis felis eget ipsum fermentum egestas. Ut augue odio, venenatis id convallis vel, congue quis augue. Maecenas sed maximus est, posuere aliquet tortor. Ut condimentum egestas nisi eu porttitor. Ut mi turpis, posuere id lorem vel, elementum tempor arcu.

Morbi nisl arcu, venenatis non metus ac, ullamcorper scelerisque justo. Nulla et accumsan lorem. Mauris aliquet dui sit amet libero aliquet, in ornare metus porttitor. Integer ultricies urna eu consequat ultrices. Maecenas a justo id purus

ultricies posuere sed et quam. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Sed eleifend risus quis aliquet gravida. Nullam ac erat porta est bibendum dictum in a dolor. Nam eget turpis viverra, vulputate lectus eget, mattis ligula. Nam at tellus eget dui lobortis sodales et ut augue. In vestibulum diam eget mi cursus, ut tincidunt nulla pellentesque.

Aliquam erat volutpat. Sed ultrices massa id ex mattis bibendum. Nunc augue magna, ornare at aliquet gravida, vehicula sed lorem. Quisque lobortis ipsum eu posuere eleifend. Duis bibendum cursus viverra. Nam venenatis elit leo, vitae feugiat quam aliquet sed. Cras velit est, tempus ac lorem sed, pharetra lobortis ipsum. Donec suscipit gravida interdum. Nunc non finibus est. Nullam turpis elit, tempus non ante.

### A.2 Mechanical Cycle

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean tellus est, suscipit sed facilisis quis, malesuada at ipsum. Nam tristique urna quis quam iaculis, et mattis orci pretium. Praesent euismod elit vel metus commodo ultrices. Vestibulum et tincidunt ex, in molestie ex. Donec ullamcorper sollicitudin accumsan. Etiam ac leo turpis. Duis a tortor felis. Nullam sollicitudin eu purus ac hendrerit. Nam hendrerit ligula libero, eget finibus orci bibendum a. Aenean ut ipsum magna.

Ut viverra, sapien sed accumsan blandit, nisi sem tempus tellus, at suscipit magna erat ornare nunc. Proin lacinia, nisi ut rutrum malesuada, nibh quam pellentesque nunc, sit amet consectetur purus felis ac tortor. Suspendisse lacinia ipsum eu sapien pellentesque mattis. Mauris ipsum nunc, placerat non diam vel, efficitur laoreet nunc. Sed lobortis, ipsum eget gravida facilisis, sem nulla viverra mi, in placerat eros sem viverra lacus. Aliquam porta aliquet diam vel commodo. Nulla facilisi. Duis erat libero, lobortis vel hendrerit vitae, sagittis id dui. Nulla pretium eros nec quam tincidunt, vel luctus mi aliquam. Integer imperdiet purus in est tristique venenatis. Ut pellentesque, nunc vitae iaculis ultricies, urna turpis dignissim risus, a laoreet felis magna nec erat.

Quisque sollicitudin faucibus ligula, et egestas nibh dictum sit amet. Proin eu mi a lectus congue pretium eu quis arcu. Suspendisse vehicula libero eu ipsum aliquam, vel elementum nibh mattis. Sed sed sapien vitae turpis tristique pulvinar a ut metus. Etiam semper gravida est, mollis gravida est porta ac. Proin eget tincidunt erat. Maecenas ultrices erat eget purus ultricies, ut lacinia arcu dictum. Nam et nisi sit amet ex congue mattis vel eget lorem. Aliquam erat volutpat. Pellentesque porttitor nibh vitae elementum consectetur. Aenean et est lobortis, congue sapien non, ullamcorper sapien. Ut facilisis sem non dapibus vehicula.

Mauris euismod odio dolor, sit amet gravida mauris placerat et. Curabitur nec dolor non nibh molestie lobortis dignissim non ante. Nullam rutrum lobortis ultrices. Aenean ex erat, elementum sed maximus id, posuere id quam. Proin rutrum ex elit, pretium aliquam risus finibus at. Aenean egestas orci velit, sed aliquet sapien condimentum a. Duis consequat, arcu eu viverra venenatis, dolor lorem gravida lectus, non aliquet nisi sem at augue. Donec laoreet blandit luctus. Aenean vehicula nisl vel faucibus luctus. Sed ut semper velit, vitae laoreet magna. Sed at interdum magna.

Sed iaculis faucibus odio, eu aliquam purus efficitur vel. Cras at nulla ac enim congue varius ut et nulla. Integer blandit mattis augue.

### A.3 Electrical Cycle

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In faucibus condimentum rhoncus. Ut dictum nisl id risus gravida lobortis. Sed vehicula mollis tellus ut varius. Fusce eget egestas dui, et commodo dui. Proin sollicitudin interdum tempus. Nullam in elit a enim fringilla bibendum. Vestibulum sodales pellentesque condimentum. Nulla facilisi. Nunc et dolor in nulla eleifend dictum at vel ligula. Aliquam ut velit non elit ullamcorper porta ac et ex. Fusce ornare magna non nunc vestibulum, eget molestie quam dictum. In interdum aliquam odio, in posuere tellus convallis quis. Curabitur non diam elit. Proin vulputate orci diam, a tincidunt ante luctus eu. Ut a viverra ligula. Curabitur pulvinar tempus tellus eget suscipit.

Aliquam posuere massa at ante dapibus congue. Curabitur ullamcorper tortor eget consectetur aliquet. Mauris tempor magna id mauris fringilla, a varius erat blandit. Nam eleifend ullamcorper placerat. Phasellus augue tortor, volutpat bibendum lorem nec, fringilla volutpat nisl. Mauris cursus urna metus, vel eleifend orci iaculis ut. Sed sit amet scelerisque massa, quis consequat dui. Donec semper sem dui, ac placerat velit egestas vel. Nulla facilisi. Quisque tellus eros, sagittis malesuada augue ut, faucibus dictum nulla. Vestibulum non dapibus erat, ut consequat libero. Ut turpis mi, dapibus commodo libero lobortis, maximus vestibulum lectus. Vestibulum sit amet sapien dapibus, tincidunt leo in, suscipit arcu. Sed in erat bibendum, laoreet eros eu, pellentesque justo. Nulla sodales purus neque, eget maximus ipsum consequat at. Maecenas a nisl sagittis, tempus ipsum sed, dictum mauris.

Suspendisse posuere odio lacus, at auctor tortor vehicula sed. Phasellus suscipit ornare enim vitae placerat. Sed viverra purus vel sapien tempor, quis iaculis erat laoreet. Aenean vel nunc vestibulum, ornare nunc ac, mollis urna. Aenean ultrices felis ipsum, ac semper est ullamcorper in. Donec in justo varius, egestas tortor ut, venenatis augue. Duis mattis, ligula quis lacinia fringilla, tellus neque accumsan ipsum, vitae tempor metus elit vel nibh. Curabitur porttitor urna nec sapien tempor, et porttitor velit malesuada.

Suspendisse aliquam nisl quis placerat vulputate. Proin dapibus ipsum ac ante sagittis, volutpat auctor sem dapibus. Nam in facilisis odio. Integer ante mauris, eleifend et pulvinar in, venenatis quis ligula. Phasellus posuere sollicitudin tortor eget euismod. Maecenas mollis tortor eget justo vulputate sagittis. Etiam hendrerit massa quis ex molestie sodales. Quisque facilisis erat lacus, id convallis sem suscipit bibendum. Integer dui urna, pharetra sed porta sed, bibendum ut odio. Donec placerat at lectus egestas consequat. Sed id rhoncus est, vitae vulputate sapien. Fusce tempus quam lorem, id ornare turpis sodales sed. Integer aliquet urna eget condimentum consequat. Vestibulum quis dui vel ligula posuere luctus id nec turpis.

Nam vitae placerat lacus. Mauris scelerisque interdum volutpat. Nunc aliquet tristique enim, sit amet molestie felis ullamcorper vitae. Nullam sollicitudin orci

orci, in condimentum tellus consectetur in. Nam id justo justo. Fusce eget finibus est. Proin id tortor nec quam cursus vehicula. Aliquam ultrices eros eros, a tincidunt elit eleifend auctor.

Nullam consectetur dapibus ligula sit amet efficitur. Nunc non posuere sapien. Vivamus dui nisl, aliquam id ipsum non, pulvinar ornare neque. Nunc rhoncus pretium congue. Fusce id laoreet enim. Cras sed massa in eros bibendum auctor in nec sem. Nam commodo, velit id porta consequat, mi arcu gravida lorem, ut aliquam elit ante quis dui. Quisque in massa sed nibh blandit dictum.

Vestibulum molestie consectetur porttitor. Donec tincidunt vel orci at pharetra. Nullam id felis sit amet nulla tempus lacinia. Integer egestas ullamcorper massa, ut ultricies diam congue sit amet. Cras sit amet velit at nibh vehicula finibus a et lorem. Cras odio metus, venenatis ut ultrices non, ornare ac orci. Morbi et nulla dui. Mauris dictum molestie nibh, eu efficitur lorem accumsan quis.

### A.4 Cellular Electromechanical Coupling

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam vitae consectetur metus, ac maximus ex. Quisque vitae ex eu lectus ultricies consequat vel non lorem. Etiam odio ipsum, tempus ut lobortis in, molestie ac leo. Vivamus mollis feugiat bibendum. Vestibulum eget venenatis quam. Aenean faucibus, massa sed ullamcorper porta, arcu nunc iaculis velit, quis consectetur purus neque placerat nibh. Vestibulum elit nunc, dignissim vulputate venenatis et, sodales non massa. Proin leo ligula, vehicula eu aliquam varius, posuere a dolor. Donec iaculis auctor neque, sit amet gravida libero porta vel. Vivamus consequat elementum lacus, at bibendum mauris egestas nec. Fusce fermentum diam eu dolor ornare, vitae vestibulum leo interdum. Morbi luctus libero quis dictum laoreet. Etiam semper porta ante, vel ullamcorper enim sodales quis.

Nullam eu nisi faucibus, fermentum ex auctor, tempor arcu. Phasellus condimentum erat mi, condimentum malesuada ligula congue venenatis. Nullam gravida imperdiet urna quis cursus. Ut tempus nec purus eget posuere. Cras non nulla sit amet justo aliquet pellentesque nec sed eros. Nam aliquam nisl urna, in placerat

magna gravida venenatis. Donec interdum vel magna ullamcorper molestie. Nunc felis neque, rhoncus fringilla faucibus sit amet, ultrices sed magna. Maecenas malesuada hendrerit diam in ultrices. Nam libero urna, volutpat ut auctor eget, interdum sed odio. Vestibulum suscipit mauris nec augue ornare, ut eleifend nulla gravida. Proin imperdiet, mauris quis consectetur porta, leo dui convallis leo, id lobortis massa diam eu libero. Aenean hendrerit vel ante aliquam venenatis. Pellentesque bibendum pretium odio, ut sagittis lectus feugiat a. Donec porttitor vulputate lacus.

Nunc volutpat efficitur lacus in aliquet. Nullam non iaculis diam, at ultrices diam. Proin vehicula vulputate cursus. Morbi tempus sapien id urna lobortis interdum. Maecenas elementum sagittis elementum. Donec at sodales velit, a posuere tortor. Nulla id hendrerit tortor. Sed semper velit in magna sagittis pulvinar. Nulla nec arcu molestie, ultricies sapien sit amet, sollicitudin nisi. Donec nisi massa, suscipit ut dignissim quis, lacinia id leo.

Suspendisse ut mi metus. Morbi tincidunt ligula in porttitor consectetur. Integer eu urna urna. Suspendisse potenti. Mauris sit amet felis eu diam auctor ullamcorper. Morbi in porta nisi. Nam ante tortor, venenatis vitae tempor sed, sagittis vitae velit. In semper orci sit amet nisi ullamcorper varius. Aenean dignissim ultrices imperdiet. Maecenas lacinia enim id neque porttitor iaculis. Curabitur laoreet ante ut urna dignissim, id sollicitudin metus consectetur. Aenean massa ipsum, auctor vel ante vel, blandit dignissim libero. Fusce interdum ac magna et interdum.