Applied differential equations

TW244 - Lecture 22

5.1: Spring-mass systems (cont.)

Prof Nick Hale - 2020

Spring-mass systems (cont.) Damped motion

Damped motion:

Suppose now that there is also a linear damping force in the direction opposite to motion (e.g., due to air resistance or friction):

$$m\frac{d^2x}{dt^2} = -kx - \beta \frac{dx}{dt}.^*$$

Therefore

$$x'' + 2\gamma x' + \omega^2 x = 0$$
 with $\omega^2 = \frac{k}{m}$, $2\gamma = \frac{\beta}{m}$.

This is a linear homogeneous DE!

Try $x = e^{pt}$ as a solution (we use p here as m is already used for the mass).

^{*} Convince yourself that the term in red is damping regardless of whether the spring moves up or down. 👃

Spring-mass systems (cont.) Damped motion (reminder)

Recall that we derived an equation for damped motion as

$$x'' + 2\gamma x' + \omega^2 x = 0,$$

where $2\gamma = \beta/m$ and $\omega^2 = k/m$.* Substituting $x = e^{pt}$ gives

$$p^2 + 2\gamma p + \omega^2 = 0,$$

and therefore

$$p = -\gamma \pm \sqrt{\gamma^2 - \omega^2}.$$

This leads to three cases:

- $\blacksquare \gamma^2 > \omega^2 \implies$ two real roots ("overdamped")
- $\blacksquare \gamma^2 < \omega^2 \implies$ no real roots ("underdamped")

^{*}Recall that β is the damping constant, k is the spring constant, and m is the mass.

Spring-mass systems (cont.) Damped motion (cont.)

Case 1:
$$\gamma^2 > \omega^2 \implies$$
 two real roots ("overdamped")

$$\gamma^2 > \omega^2 \implies \frac{\beta}{4m^2} > \frac{k}{m} \implies \beta^2 > 4km.$$

Then
$$p_1 = -\gamma + \sqrt{\gamma^2 - \omega^2} < 0$$
 and $p_2 = -\gamma - \sqrt{\gamma^2 - \omega^2} < 0$ and

$$x(t) = c_1 e^{p_1 t} + c_2 e^{p_2 t}$$

$$= e^{-\gamma t} \left(c_1 e^{+\sqrt{\gamma^2 - \omega^2} t} + c_2 e^{-\sqrt{\gamma^2 - \omega^2} t} \right)$$

$$= c_1 e^{p_2 t} \left(e^{2\sqrt{\gamma^2 - \omega^2} t} + \frac{c_2}{c_1} \right)$$

Note that $x \to 0$ as $t \to \infty$,

i.e., it returns to the equilibrium position. Notice there is at most one 'oscillation' (if c_1 and c_2 are of different signs).

TW244: Lecture 22 - 5.1: Spring-mass systems (cont.)

Choce both sue

Spring-mass systems (cont.) Damped motion (cont.)

Case 2:
$$\gamma^2 = \omega^2 \implies$$
 one real root ("critically damped") $\gamma^2 = \omega^2 \implies \beta^2 = 4km$ and $p = -\gamma$.

Then we have that (recall Lecture 15)

$$x(t) = c_1 e^{pt} + c_2 t e^{pt}$$
$$= c_2 e^{-\gamma t} \left(t + \frac{c_1}{c_2} \right)$$

and again note that $x \to 0$ as $t \to \infty$ and that there is at most one oscillation.

Spring-mass systems (cont.) Damped motion (cont.)

Case 3: $\gamma^2 < \omega^2 \implies$ no real roots ("underdamped")

$$\gamma^2 < \omega^2 \implies \frac{\beta}{4m^2} > \frac{k}{m} \implies \beta^2 < 4km.$$

Then $p_1=-\gamma+i\sqrt{\omega^2-\gamma^2}<0$ and $p_2=-\gamma-i\sqrt{\omega^2-\gamma^2}<0$ and

$$x(t) = c_1 e^{p_1 t} + c_2 e^{p_2 t}$$

$$= e^{-\gamma t} \left(d_1 \cos(\sqrt{\omega^2 - \gamma^2} t) + d_2 \sin(\sqrt{\omega^2 - \gamma^2} t) \right)$$

$$= A e^{-\gamma t} \sin(\sqrt{\omega^2 - \gamma^2} t + \phi)$$

Note that the "amplitude" decays exponentially.

We call this a "damped oscillator".

[†]Recall Lecture 15.

Example 1: Consider the spring-mass system described by

$$x'' + 4x' + 4x = 0$$
 with $x(0) = 1$ and $x'(0) = -2$.

(Note $\omega^2 = 4$ and $\gamma = 2$.) If we try $x = e^{pt}$ we have

$$p^2 + 4p + 4 = (p+2)^2 = 0 \implies p = -2,$$

i.e., one real root \implies critical damping and therefore

$$X = c_1 e^{-2t} + c_2 t e^{-2t}$$

 $X' = -2c_1 e^{-2t} + c_2(1-2t)e^{-2t}$.

Initial conditions $\begin{cases} x(0) = 1 \implies 1 = c_1 + 0 \implies c_1 = 1 \\ x'(0) = -2 \implies -2 = -2c_1 + c_2 \implies c_2 = 0 \end{cases}$ Hence,

$$x(t)=e^{-2t}.$$

Spring-mass systems (cont.) Example 2

Example 2: Consider the spring-mass system described by

$$x'' + 2x' + 4x = 0$$
 with $x(0) = 1$ and $x'(0) = -2$.

If we try $x = e^{pt}$ we have

$$p^2 + 2p + 4 = 0 \implies p = -\frac{1}{2}(-2 \pm \sqrt{4 - 16}) = -1 \pm i\sqrt{3}$$

i.e., no real roots \implies underdamped and therefore

$$X = c_1 e^{(-1+i\sqrt{3})t} + c_2 e^{(-1-i\sqrt{3})t}$$

$$= e^{-t} (c_1 e^{i\sqrt{3}t} + c_2 e^{-i\sqrt{3}t})$$

$$= e^{-t} (d_1 \cos(\sqrt{3}t) + d_2 \sin(\sqrt{3}t))$$

$$X' = -e^{-t} (d_1 \cos(\sqrt{3}t) + d_2 \sin(\sqrt{3}t))$$

$$+e^{-t} (-\sqrt{3}d_1 \sin(\sqrt{3}t) + \sqrt{3}d_2 \cos(\sqrt{3}t))$$

$$= e^{-t} ((-d_1 + \sqrt{3}d_2)\cos(\sqrt{3}t) + (-d_2 - \sqrt{3}d_1)\sin(\sqrt{3}t))$$

Spring-mass systems (cont.) Example 2 (cont.)

Initial conditions:

$$\begin{cases} x(0) = 1 \implies 1 = d_1 + 0 \implies d_1 = 1 \\ x'(0) = -2 \implies -2 = -d_1 + \sqrt{3}d_2 \implies d_2 = -1/\sqrt{3} \end{cases}$$

Hence,

$$x(t) = e^{-t} \left(\cos(\sqrt{3}t) - \frac{1}{\sqrt{3}} \sin(\sqrt{3}t) \right)$$
$$= e^{-t} \frac{2}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} \cos(\sqrt{3}t) - \frac{1}{2} \sin(\sqrt{3}t) \right).$$

Let
$$\sin\phi=\frac{\sqrt{3}}{2}$$
 and $\cos\phi=-\frac{1}{2}$ then $\phi=\pi-\frac{\pi}{3}=\frac{2\pi}{3}$ and

Task: Write
$$sc(t) = e^{t}(\cos 5)t - \frac{1}{5!}\sin 5)t$$
 in Amphibade-Phase form.

$$A = \int c_{1}^{2}\pi c_{2}^{2} = \int 1 + \frac{1}{1} = \frac{e}{5!}\sin 5)t$$

$$\Rightarrow sc(t) = \frac{2}{5!}e^{-t}(5)\frac{1}{2}\cos 5t - \frac{1}{2}\sin 5)t$$

$$sin6 = \frac{1}{5!}e^{-t}\cos 5$$

$$cos6 = \frac{1}{5!}e^{-t}\cos 5$$

$$= sc(t) = \frac{2}{5!}e^{-t}\sin (5)t + \frac{2\pi 1}{5!}$$

$$= sc(t) = \frac{2}{5!}e^{-t}\sin (5)t + \frac{2\pi 1}{5!}$$

= 2/51 et sn(53(+ 253))

=> \$ = - # 3 + #

Spring-mass systems (cont.) Example 2 (cont.)

