example-confidence

January 10, 2017

1 Methodology to assess causal confidence in a hypothesis

In our work we assume that a hypothesis is a directed graph, where nodes are factors, arcs are causal relationships. We focus on causality between two factors f_1 and f_2 .

1.1 Simplest case of a causal hypothesis

Let's start with a simplest causal hypothesis H_0 where we know that f_1 results in f_2 .

1.2 Proving a causal hypothesis

```
In [29]: from hypotest.stats import confidences
```

To prove our hypothesis that f_1 will eventually cause f_2 , with the current knowledge, we need to evidence every node which leads us from f_1 to f_2 . Let $\pi(f_1, f_2)$ be a set of all possible paths from f_1 to f_2 .

In this simplest example there is only one path from f_1 to f_2 , the path $\pi_1 = \{f_1, f_2\}$, thus all possible paths $\pi(f_1, f_2) = \{\pi_1\}$.

Thus to prove this hypothesis we need to evidence both f_1 and f_2 . In this simple example let us assume that each node if evidenced gives +1 contribution to the confidence in the causal hypothesis. If it is not evidenced then it contributes 0 to our confidence in the causal hypothesis.

$$contribution(f_i) = \begin{cases} 1 & \text{node } f_i \text{ is evidenced} \\ 0 & \text{node } f_i \text{ is not evidenced} \end{cases}$$

Our total confidence in the causal hypothesis from f_1 to f_2 is thus

$$Confidence(\pi_1) = contribution(f_1) + contribution(f_2),$$

For any path $\pi_i = \{f_1, f_2, \dots, f_n\}$, the confidence of this path is

$$Confidence(\pi_i) = \sum_{f_i \in \pi_i} contribution(f_i)$$

Finally, confidence in a hypothesis from factor f_i to factor f_j is the sum of contributions of factors in all paths from f_1 to f_2 :

$$Confidence(H_0, f_i, f_j) = \sum_{\pi_i \in \pi(f_i, f_j)} Confidence(\pi_i).$$

Now, suppose we had no evidences for neither of the two facts, what would be our confidence in this causal relation (i.e., $contribution(f_1) = contribution(f_2) = 0$)? 0. By extension, it should be 2 if we evidence all the nodes, which lead from f_1 to f_2 . If we had evidenced only one of the two, then our confidence would be 1, assuming that both f_1 and f_2 are equally important for the causal relation results in.

Thus the maximum confidence we can achieve is 2, i.e., we could use it to normalize our confidence function, such that its values stay in the [0,1] range, i.e.,

$$Confidence'(f_i, f_j) = \frac{Confidence(f_1, f_j)}{max(Confidence(f_i, f_j))}$$

From now on, we always consider the normalized confidence for other hypothesis graphs.

1.3 More background knowledge on causal shypothesis

Now, let us imagine that our knowledge of the causal hypothesis is expanded to H_n . Namely, we discover that there might be other factors which might have caused f_2 , and that are related to f_1 . Suppose, additional knowledge is synthesized in the following augmented hypothesis graph.

At this point, our causal hypothesis that f_1 causes f_2 has additional knowledge, namely, we have f_1 could have caused f_2 , by additional causal relations between factors f_3 , f_4 .

Since, we have to causality paths from f_1 to f_2 , to prove it, we need to evidence every factor which lies in one of the paths from f_1 to f_2 . Thus, we need to evidence 4 factors, instead of 2 previously.

1.3.1 Augmented hypothesis confidence computation

```
In [58]: augmented_confidences = confidences.confidence_spectrum(augmented_hypothgraph, source,
In [81]: augmented_fig = plt.figure('2')
    x = range(len(augmented_confidences))
    y = augmented_confidences
    plt.subplot('111')
    plt.xlim(min(x)-0.1, max(x)+0.1)
    plt.ylim(min(y)-0.1, max(y)+0.1)
    plt.stem(x, y, '--')
    plt.plot(x, y, '--')
    plt.xlabel('number of evidenced nodes')
    plt.ylabel('causal hypothesis confidence')
    plt.legend(loc='upper left')
    plt.title('Causal hypothesis confidence for augmented case')
```


1.3.2 Relative confidence

Let us say that H_0 is our knowledge about the causal hypothesis from f_1 to f_2 , and the $Confidence(H_0)$ is a function which measures our confidence in this hypothesis as we evidence more nodes. Imagine, there exists a universal hypothesis H_n , in which the hypothesis causality from f_1 to f_2 is augmented with the paths as depicted in Figure 2.

We do not know about the existence of those paths, we evidence nodes which need to be evidenced according to our knowledge H_0 , but we want to know how would our confidence function be scaled according to the universal hypothesis H_n .

```
In [103]: relative_simples_to_augmented_confidences = confidences.relative_confidence_spectrum(a
          relative_to_me = relative_simples_to_augmented_confidences['sub_confidence_normalized_
         relative_to_big = relative_simples_to_augmented_confidences['big_confidence_normalized
In [109]: relative_augmented_to_simplest_fig = plt.figure('3')
          x = range(len(relative_to_me))
          y1 = relative_to_me
         y2 = relative_to_big
         plt.subplot('111')
         plt.xlim(min(x)-0.1, max(x)+0.1)
         plt.ylim(min(y1)-0.1, max(y1)+0.1)
         plt.stem(x, y1, '--', label='confidence relative to $H_0$')
         plt.stem(x, y2, '--', label='confidence relative to $H_n$')
          plt.fill_between(x, y1, y2, label="difference in confidence")
         plt.xlabel('number of evidenced nodes')
         plt.ylabel('causal hypothesis confidence')
         plt.legend(loc='upper left')
         plt.title('Causal hypothesis confidence of $H_0$ relative to $H_1$')
```


1.3.3 Redundant knowledge to hypothesis

Suppose we receive more knowledge that there is a causality relation between f_4 and f_1 , how that would change our confidence in the causal hypothesis from f_1 to f_2 ?

