

CHEM-4PB3 (2022)

Chemistry + Computer Science

Goal

Do NOT be afraid of coding

Oscar Méndez Lucio @omendezlucio · 15 jun. 2018 #RSC_AlChem quotes:

"Artificial Intelligence will not replace chemists.

But chemists who don't use AI will be replace by those who do"

Willem Van Hoorn

Evaluation

1. Final project

- i. Oral presentation \rightarrow 20 to 30 min
- ii. Online tutorial \rightarrow code or data set for reproducibility
- iii. Two written reports:
 - a. Midterm report (maximum 2 pages, deadline: week after reading break)
 - b. Final report (maximum 6 pages)

2. Tutorials & coding exercises

-To help you develop the skills needed for your final project

Final project

Examples,

- 1. Reproduce some results of a published paper
- 2. Data analysis for a lab project
- 3. Theoretical study:
 - i. pontential energy urface for a reaction
 - ii. transition state search
 - iii. ...
- 4. Parameter fitting for model

Outline

- 1. Introduction to programming (**Python**)
- 2. Linear algebra and calculus (refresh)
- 3. Machine learning*
 - i. Regression models
 - ii. Classification models
 - iii. Optimization algorithms
- 4. Computational Chemistry*
 - i. Hartree-Fock
 - ii. Density Functional Theory
 - iii. Molecular Dynamics

Final report

- 1. Section 1: Introduction, literature review and problem statement (midterm report)
- 2. Section 2: Hypothesis (midterm report)
- 3. Section 3: Describe your data/model or chemical system (midterm report)
- 4. Section 4: Results
- 5. Section 5: Summary
- 6. Section 6: Future work
- 7. Section 8: References (not included in the page limit)

Final presentation

Time limit:

20 to 30 min included questions and a go-through the working demo.

Colab demo:

Colab demo that explains and displays the model/data used for the problem of interest. (example) https://github.com/RodrigoAVargasHdz/steady_state_jax

Software

1. Machine Learning

- i. Scikit learn
- ii. Jax ecosystem
- iii. PyTorch

2. Data science

- i. Numpy
- ii. Matplotlib (or Seaborn)
- iii. SciPy
- iv. Pandas

Software

- 3. Computational Chemistry
 - i. PySCF (or others)
 - ii. RDKit
 - iii. Molecular Dynamics: JaxMD, TorchMD, openMD
 - iv. Visualization

What do you want to learn?

• This course is for you!

In computational chemistry, some of the most relevant skills include:

- 1. Familiarity with quantum chemistry methods: These methods are used to model the electronic structure of molecules and predict their properties.
- 2. Experience with molecular modeling software: These programs are used to build and analyze chemical systems.
- 3. Programming skills: Many computational chemistry tasks involve automating tasks or analyzing large datasets, so being able to program can be very useful.
- 4. Knowledge of statistical analysis: This can be helpful for analyzing and interpreting the results of computational chemistry simulations.
- 5. Familiarity with drug design: Many computational chemists work on developing new drugs, so understanding the principles of drug design can be important.
- Good communication skills: Computational chemistry often involves collaborating with researchers from other disciplines, so being able to clearly communicate your work is important.

Here are some topics that might be covered in a modern computational chemistry course:

- 1. Quantum chemistry methods: This could include topics such as Hartree-Fock theory, density functional theory, and wavefunction-based methods.
- 2. Molecular mechanics: This includes classical methods for modeling the behavior of molecules, such as molecular dynamics and Monte Carlo simulations.
- 3. Molecular dynamics simulations: This involves using computational methods to model the movement of atoms and molecules over time.
- 4. Drug design: This could include topics such as virtual screening, docking, and pharmacophore modeling.
- 5. Materials modeling: This could include topics such as predicting the properties of solid materials or modeling the behavior of surfaces.
- 6. Statistical analysis: This could include topics such as hypothesis testing, regression analysis, and machine learning.
- 7. High-performance computing: This could include topics such as parallel computing and optimization for running simulations on supercomputers.
- 8. Data analysis: This could include topics such as visualizing and interpreting the results of computational simulations.