Carnegie Mellon University

School of Computer Science

Learning Executable Semantic Parsers for Natural Language Understanding

10-808: Language Grounding to Vision and Control Sarah Mallepalle
5 September 2017

Introduction: Some Definitions

Semantic Parsers

- A map from natural language to semantic representations.
- Input: An utterance
- Output: A logical form

Logical Form

 Think of it as a "program" that can be executed to yield an answer or behavior from an utterance.

Introduction: Some Definitions

Example

- Context: Simple mathematics
- Utterance: What is the largest prime less than 10?
- Logical Form: max(primes ∩ (-∞, 10))
- Action: 7

Introduction: Statistical Semantic Parsers

- Semantic parsers started off as very rule-based.
 - Can only handle narrow domains.
 - Hard to generalize.
- Modern semantic parsers tend more towards machine learning algorithms:
 - Supervised learning.
 - Need a labeled dataset of natural language utterances paired with annotated logical forms.

Introduction: Statistical Semantic Parsers

- Semantic parsers started off as very rule-based.
 - Can only handle narrow domains.
 - Hard to generalize.
- Modern semantic parsers tend more towards machine learning algorithms:
 - Supervised learning.
 - Need a labeled dataset of natural language utterances paired with annotated logical forms.

Ideas for Statistical Semantic Parsers

- Goal 1: Reduce the amount of supervision from annotated logical forms to answers.
 - We are not given the actual logical form we learn it!
- Before (Rules-Based):
 - Utterance -> Logical Form -> Action
- After (Machine Learning):
 - Utterance -> Action
- Benefit: Easier to obtain data through crowdsourcing.

Ideas for Statistical Semantic Parsers

- Goal 2: Scale semantic parsers to bigger domains
 - Working with larger amounts of data
 - Tackling a bigger set of applications
 - Question-Answer
 - Robot Navigation
 - Computer Vision

The Big Picture of Semantic Parsing

Linguistically:

Represent and construct semantics from natural language.

Statistical:

Learn semantic parsers from (weak) supervision and generalize it well to new data.

Computational:

How can we do this learning, and do it efficiently?

The Big Picture of Semantic Parsing

Purpose

- Given an utterance, x, in a context, c, output the desired action y.
- Learn the best intermediate logical form, z, that connects x and y.

Example

- c: Simple mathematics
- x: What is the largest prime less than 10?
- z: max(primes ∩ (-∞, 10))
- y: 7

Framework of a Statistical Semantic Parser

- 1. Executor
- 2. Grammar
- 3. Model
- 4. Parser
- 5. Learner

Example: What is the largest prime less than 10?

- Grammar connects an input utterance to a set of possible derivations of logical forms, D(x, c).
- Set of rules, a ⇒ b:
 - a: some span[i:j] of the utterance $(0 \le i, j \le len(x))$
 - b: syntactic category & logical form

Example: What is the largest prime less than 10?

(1)	prime	\Rightarrow	NP[primes]	[4]
(2)	10	\Rightarrow	NP[10]	[7]
(3)	less than NP[z]	\Rightarrow	$QP[(-\infty, z)]$	[5:7]
(4)	NP[z1] QP[z2]	\Rightarrow	$NP[z1 \cap z2]$	[4:7]
(5)	largest NP[z]	\Rightarrow	NP[max(z)]	[3]
(6)	largest NP[z]	\Rightarrow	NP[min(z)]	[3]
(7)	What is the NP[z]?	\Rightarrow	ROOT[z]	[0:7]

Example: What is the largest prime less than 10?

Rules:

(1)	prime	\Rightarrow	NP[primes]	[4]
(2)	10	\Rightarrow	NP[10]	[7]
(3)	less than NP[z]	\Rightarrow	$QP[(-\infty, z)]$	[5:7]
(4)	NP[z1] QP[z2]	\Rightarrow	$NP[z1 \cap z2]$	[4:7]
(5)	largest NP[z]	\Rightarrow	NP[max(z)]	[3]
(6)	largest NP[z]	\Rightarrow	NP[min(z)]	[3]
(7)	What is the NP[z]?	\Rightarrow	ROOT[z]	[0:7]

Example: What is the largest prime less than 10?

Rules:

(1)	prime	\Rightarrow	NP[primes]	[4]
(2)	10	\Rightarrow	NP[10]	[7]
(3)	less than NP[z]	\Rightarrow	$QP[(-\infty, z)]$	[5:7]
(4)	NP[z1] QP[z2]	\Rightarrow	$NP[z1 \cap z2]$	[4:7]
(5)	largest NP[z]	\Rightarrow	NP[max(z)]	[3]
(6)	largest NP[z]	\Rightarrow	NP[min(z)]	[3]
(7)	What is the NP[z]?	\Rightarrow	ROOT[z]	[0:7]

Example: What is the largest prime less than 10?

Possible Derivations: $D(x, c) = \{d1, d2\}$

Rule 1 NP[primes] Rule 2 NP[10]

Rule 3 QP[(-∞, 10)]

Rule 4 NP[primes \cap (- ∞ , 10)]

Rule 5 NP[max(primes \cap (- ∞ , 10))]

Rule 7 ROOT[max(primes \cap (- ∞ , 10))]

Rule 1 NP[primes] Rule 2 NP[10]

Rule 3 QP[(-∞, 10)]

Rule 4 NP[primes \cap (- ∞ , 10)]

Rule 6 NP[min(primes \cap (- ∞ , 10))]

Rule 7 ROOT[min(primes \cap (- ∞ , 10))]

- A model specifies a distribution, $p_{\theta}(d \mid x, c)$, that scores the each candidate derivation d in set D.
- Most common distribution for semantic parsers is a log-linear model.

Example: What is the largest prime less than 10?

Log-Linear Model: Define Feature Vector

$$\phi(x, c, d) \in \mathbb{R}^{\mathsf{F}}$$

- Let each feature be binary, corresponding to whether a grammar rule is used or not. F = 7.
- $\phi(x, c, d_1) = [1, 1, 1, 1, 1, 0, 1]$
- $\phi(x, c, d_2) = [1, 1, 1, 1, 0, 1, 1]$

Example: What is the largest prime less than 10?

Log-Linear Model: Define Parameter Vector that weights each feature.

- $\theta = [0, 0, 0, 0, +1, -1, 0]$
- Weighted combination: $score(x, c, d) = \phi^*\theta$

Example: What is the largest prime less than 10?

Log-Linear Model: Define distribution $p_{\theta}(d \mid x, c)$

$$p_{\theta}(d \mid x, c) = \frac{\exp(\operatorname{score}(x, c, d))}{\sum_{d' \in D(x, c)} \exp(\operatorname{score}(x, c, d'))}$$

Framework: Parser

The parser computes the highest probability derivation for the span of an utterance *x*. Final, most probable derivations are collected in the ROOT category (span[0:len(x)])

Chart Parser: Recursively builds derivations for each span[i:j] of the utterance.

Beam Search: Only keep the derivations with the highest probability under model $p\theta$.

Framework: Parser

Example: What is the largest prime less than 10?

(1)	prime	\Rightarrow	NP[primes]	[4]
(2)	10	\Rightarrow	NP[10]	[7]
(3)	less than NP[z]	\Rightarrow	$QP[(-\infty, z)]$	[5:7]
(4)	NP[z1] QP[z2]	\Rightarrow	$NP[z1 \cap z2]$	[4:7]
(5)	largest NP[z]	\Rightarrow	NP[max(z)]	[3]
(6)	largest NP[z]	\Rightarrow	NP[min(z)]	[3]
(7)	What is the NP[z]?	\Rightarrow	ROOT[z]	[0:7]

Framework: Learner

Learner: Estimates parameters theta given training examples {(x, c, y)}

Compute the likelihood of each action yi

Consider all derivations d whose logical form z results in action yi.

Optimizing an objective function, i.e. log-likelihood of observed action yi with respect to each d in D with SGD.

Framework: Learner

Example: What is the largest prime less than 10?

Answer, yi: 7

Possible interpretations of logical forms:

- 1. What is the largest prime less than 10?
- 2. How many days are there in a week?
- 3. What is Mickey Mantle's jersey number?

Framework: Executor

The executor computes the denotation (action) y given a logical form z and context c.

Defines our semantic representation.

Concerned purely with what we want to express, regardless of how it would be expressed in natural language - forget utterance, x.

Example

- Context, c: Simple mathematics
- Logical Form, z: max(primes ∩ (-∞, 10))
- Action, y: 7

Framework: Summary

- Executor: What we want to express as a result.
- Grammar: Describes how candidate logical forms are constructed from an input.
- Model: Defines features and makes predictions on which derivation is most accurate.
- Parser: Makes logical forms from sub-phrases of input.
- Learner: Decides what logical form corresponds most accurately to a given action.

Framework: Summary

Questions about Semantic Parsing

- Best way to represent the semantics of a language?
 - First order logic
 - Lambda functions
- What is the best type of supervision to use?