1 Produits, conjugués, modules

Déterminer la forme algébrique et le module de : 1

$$\frac{(2-i)(5+2i)}{3-4i}.$$

- 1) On note f la fonction $z \mapsto \frac{z+1}{z-2}$ sur $\mathbb{C} \setminus \{2\}$. Pour quels nombres $z \in \mathbb{C} \setminus \{\tilde{2}\}$ a-t-on :
 - |f(z)| = 1 ?
- $\mathbf{b}) \quad \operatorname{Re}(f(z)) = 0 ?$
- 2) On note g la fonction $z \mapsto \frac{2z-i}{z-2i} \operatorname{sur} \mathbb{C} \setminus \{2i\}.$ Pour quels nombres $z \in \mathbb{C} \setminus \{2i\}$ a-t-on:
- Montrer que pour tous $u, v \in \mathbb{C}$: 3

$$|u + v|^2 + |u - v|^2 = 2(|u|^2 + |v|^2),$$

puis interpréter géométriquement cette égalité.

Montrer que la fonction $z \mapsto |1 + iz|^2 + |z + i|^2$ est constante sur U.

- 5 1) P Étudier les variations sur \mathbb{R}_+ de la fonction
 - $x \mapsto \frac{x}{1+x}$. 2) $\bigcirc \bigcirc \bigcirc$ En déduire que pour tous $u, v \in \mathbb{C}$:

$$\frac{|u+v|}{1+|u+v|} \leq \frac{|u|}{1+|u|} + \frac{|v|}{1+|v|}.$$

- (P) (P) 6 1) Déterminer une factorisation de $a^2 + b^2$ dans \mathbb{C} pour tous $a, b \in \mathbb{C}$.
 - **2)** Soient $m, n \in \mathbb{N}$. Montrer que si m et n sont chacun la somme de deux carrés d'entiers, leur produit mn l'est aussi.
- Simplifier: $\operatorname{Re}\left(\frac{1}{1-z}\right)$ pour tout $z \in \mathbb{U} \setminus \{1\}$.
- $\bigcirc \bigcirc \bigcirc$ Simplifier: $\operatorname{Re}\left(\frac{1+r\mathrm{e}^{\mathrm{i}\theta}}{1-r\mathrm{e}^{\mathrm{i}\theta}}\right)$ pour tous $r \in$ [0, 1[et $\theta \in \mathbb{R}$.
- Résoudre l'équation : $\operatorname{Im}\left(\frac{1}{z^2+z+1}\right) = 0$ d'inconnue $z \in \mathbb{C} \setminus \{j, \overline{j}\}$

Montrer que pour tout $z \in \mathbb{C} \setminus \mathbb{R}_{-}$: 10

$$\left(\frac{z+|z|}{\sqrt{\operatorname{Re}(z)+|z|}}\right)^2 = 2z.$$

11 1) $\bigcirc \bigcirc \bigcirc$ Montrer que pour tous $z, z' \in \mathbb{U}$:

$$zz' \neq -1 \implies \frac{z+z'}{1+zz'} \in \mathbb{R}.$$

2) $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Montrer que pour tous $z_1, \ldots, z_n \in \mathbb{C}^*$ de même module :

$$\frac{(z_1+z_2)\dots(z_{n-1}+z_n)(z_n+z_1)}{z_1\dots z_n}\in\mathbb{R}.$$

12

$$\overline{z}(z-1) = z^2(\overline{z}-1).$$

ÉQUATIONS DU SECOND DEGRÉ

- Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$: 13
 - $4z^2 16z + 11 12i = 0.$ $z^2 5z + 4 + 10i = 0.$

 - $z^2 + (4 3i)z = 2 + 8i.$
 - $2z^2 + (8-5i)z + (4-13i) = 0.$

 - $6z^{2} + (21 14i)z + (5 37i) = 0.$ $z^{2} + 5z + 7 i = 0.$ $(z^{2} 2z)\cos^{2}\varphi + 1 = 0 \quad (\varphi \in \mathbb{R}).$
- Résoudre les systèmes suivants d'inconnue $(x, y) \in \mathbb{C}^2$: $\begin{cases} x+y=2\\ xy=2. \end{cases}$ 2) $\begin{cases} x+y=1+i\\ xy=13i. \end{cases}$ 4) $\begin{cases} x+y=3i-3\\ xy=-5i. \end{cases}$ 14

3 ARGUMENTS

- 15 1) Déterminer une forme trigonométrique des nombres a) $1 - \sqrt{2}$. b) suivants:
 - d) $(-3+i\sqrt{3})^{19}$.
 - 2) Déterminer la forme algébrique de $(1+i\sqrt{3})$
- - \bigcirc \bigcirc Déterminer tous les $n \in \mathbb{N}$ pour lesquels : 1) $(1+i)^n \in \mathbb{R}$. 2) $(\sqrt{3}+i)^n \in i\mathbb{R}$.

P Résoudre l'équation : $\operatorname{Re}\left(z^{3}\right) = \operatorname{Im}\left(z^{3}\right)$ d'in-

 $\bigcirc \bigcirc \bigcirc \bigcirc$ Soit $\theta \in \mathbb{R}$. On pose : $z = e^{i\theta}$. Déterminer

une forme trigonométrique de $1 + z + z^2$

D Soient $a, b, c \in \mathbb{U}$. Montrer qu'alors : 19

|a+b+c| = |ab+bc+ca|.

20 1) $\bigcirc \bigcirc \bigcirc$ Montrer que pour tout $\theta \in]-\pi, \pi[$, si on pose : $x = \tan \frac{\theta}{2}$, alors : $e^{i\theta} = \frac{1+ix}{1-ix}$ puis exprimer $\cos \theta$ et $\sin \theta$ en fonction de x.

- **2)** \bigcirc \bigcirc En déduire pour tout $t \in \mathbb{R}$ une simplification de : $\cos(2 \operatorname{Arctan} t)$ et $\sin(2 \operatorname{Arctan} t)$.

$$arg(z) \equiv 2 \operatorname{Arctan} \frac{\operatorname{Im}(z)}{\operatorname{Re}(z) + |z|} [2\pi].$$

000 21

- 1) Soient $u, v \in \mathbb{U}$. Montrer que si : u + v = -1, alors: $\{u, v\} = \{j, \overline{j}\}.$
- **2)** Soient $a, b, c \in \mathbb{U}$. Que peut-on dire du triangle de sommets a, b et c si : a+b+c=0 ?

TRIGONOMÉTRIE

- - 1) Linéariser les expressions suivantes :
 - - $\sin x \cos^2(2x)$. **b)** $\sin^3(2x)\cos(3x)$.
 - 2) Calculer les intégrales suivantes :

 - $\int_0^{2\pi} \cos^3 x \sin(3x) dx.$ $\int_0^{\frac{\pi}{2}} \sin^4 x \cos^2 x dx.$
- 23
 - 1) Pour tout $x \in \mathbb{R}$, exprimer $\cos(5x)$ en fonction de $\cos x$.
 - 2) En déduire une expression explicite de : a) $\cos^2 \frac{\pi}{10}$. b) $\cos \frac{\pi}{5}$. c) $\sin \frac{\pi}{5}$.

- \bigcirc \bigcirc On note \bigstar l'équation : $z^4 + z^3 + z^2 + z + 1 = 0$ d'inconnue $z \in \mathbb{C}$.
 - 1) Soit $z \in \mathbb{C}$ une solution d' \bigstar . Montrer que si on pose: $x = z + \frac{1}{z}$, alors: $x^2 + x - 1 = 0$.
 - 2) Montrer que $e^{\frac{2i\pi}{5}}$ est solution d'

- 3) En déduire une expression explicite de $\cos \frac{2\pi}{\epsilon}$.
- Simplifier pour tous $x, y \in \mathbb{R}$ et $n \in \mathbb{N}$: 25

 - 1) $\sum_{k=0}^{n} \cos(kx + y).$ 2) $\sum_{k=0}^{n} {n \choose k} \cos(kx).$
- 26 1) \bigcirc Montrer que pour tout $x \in \mathbb{R}$:

 $|\sin x| \geqslant \frac{1 - \cos(2x)}{2}.$

2) B En déduire que pour tout $n \in \mathbb{N}^*$:

 $\sum_{k=1}^{n} |\sin k| \geqslant \frac{n}{2} - \frac{1}{2\sin 1}.$

somme : $\sum_{k=0}^{\infty} x^k \sin(\omega k)$ pour tout $n \in \mathbb{N}$, puis mon-

trer l'égalité: $\lim_{n \to +\infty} \sum_{k=0}^{n} x^k \sin(\omega k) = \frac{x \sin \omega}{1 - 2x \cos \omega + x^2}$.

🖰 🖰 🖰 Résoudre l'équation :

 $\sin(x+y) = \sin x + \sin y$

d'inconnue $(x, y) \in \mathbb{R}^2$.

EXPONENTIELLE COMPLEXE

- Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$: 29
 - 1) \bigcirc a) $e^z = 1 + i$. b) $e^z = -5 12i$.
 - **2)** P **a)** $e^z + e^{-z} = 1$.

 - **b**) $e^z + e^{-z} = 2i$. **c**) $e^z + 2e^{-z} = i$.
- \bigcirc On souhaite montrer que la fonction $z \mapsto e^z$ possède des points fixes sur C.

- On note f la fonction $x \mapsto e^{\frac{x}{\tan x}} \frac{x}{\sin x} \sup \left] 0, \frac{\pi}{2} \right[$.

 1) Que valent : $\lim_{x \to 0} \frac{\sin x}{x}$ et $\lim_{x \to 0} \frac{\tan x}{x}$?

 Montrer que : $\exists b \in \left] 0, \frac{\pi}{2} \right[/ f(b) = 0.$
 - 2) On pose : $z = \frac{b}{\tan b} + ib$. Montrer qu'alors :

RACINES $n^{\text{èmes}}$

- (b) (c) Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$: 1) $z^8 - 3z^4 + 2 = 0$. 2) $z^6 - 2z^3 \cos \varphi + 1 = 0$ $(\varphi \in \mathbb{R})$.
- Résoudre les équations suivantes d'inconnue z où
 - 1) \bigcirc a) $(z+2)^3 = 3i$.

- b) $(z-1)^4 = 4 + 4i$. c) $z^n + 1 = 0$. 2) a $z^n = \overline{z}$. b) $\left(\frac{z+1}{z-1}\right)^n = 1$.
- 33
- 1) \bigcirc Soit $P = X^3 + aX^2 + bX + c$ un polynôme avec $a, b, c \in \mathbb{C}$. Pour quelle valeur de $t \in \mathbb{C}$ estil vrai que le polynôme P(X + t) est de la forme : $R = X^3 + 3pX + q$ avec $p, q \in \mathbb{C}$?
- **2)** P Soient $p \in \mathbb{C}^*$ et $q \in \mathbb{C}$. On s'intéresse à une méthode de calcul des racines du polynôme $R = X^3 + 3pX + q$, dite méthode de Cardan. On note α et β les deux racines éventuellement égales du polynôme $X^2 + qX - p^3$ et $\gamma_1, \gamma_2, \gamma_3$ les trois racines cubiques de α .
 - **a)** Que valent $\alpha + \beta$ et $\alpha\beta$?
 - **b)** Montrer que $\gamma_k \frac{p}{\gamma_k}$ est une racine de *R* pour
- 3) © © On pose : $P = X^3 + 3X^2 + 6X + 2$.
 - a) Appliquer à *P* le procédé de la question 1).
 - b) Déterminer les racines de R, puis celles de P, en exploitant la méthode de Cardan de la question 2).

- Pour tout $n \in \mathbb{N}^*$, simplifier: 1) p a) $\sum_{\omega \in \mathbb{U}_n} \omega$. b) $\prod_{\omega \in \mathbb{U}_n} \omega$. 2) p a) $\sum_{\omega \in \mathbb{U}_n} (1+\omega)^n$. b) $\sum_{\omega \in \mathbb{U}_n} |\omega-1|$.

 $\omega = \mathrm{e}^{rac{2\mathrm{i}\pi}{n}}$ et $S = \sum_{i=1}^{n-1} \omega^{k^2}$ (somme de Gauss).

- 1) Écrire $|S|^2$ comme une somme double, puis montrer que : $|S|^2 = \sum_{k=0}^{n-1} \sum_{p=-k}^{n-k-1} \omega^{2pk+p^2}$.
- 2) a) Montrer que la fonction $\left\{ \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathbb{C} \\ p & \longmapsto & \omega^{2pk+p^2} \end{array} \right.$ est n-périodique pour tout $k \in [0, n-1]$.
- **b)** En déduire pour tout $k \in [0, n-1]$ une écriture simplifiée de : $\sum_{p=-k}^{n-k-1} \omega^{2kp+p^2}.$ 3) Simplifier : $\sum_{k=0}^{n-1} \omega^{2pk} \quad \text{pour tout } p \in \mathbb{Z}.$
- 4) En déduire l'égalité : $|S| = \sqrt{n}$

INTERPRÉTATION GÉOMÉTRIQUE

- On note A, B et C les trois points d'affixes respectifs: a = 1 + i, b = -i et c = -1 + 2i. Que peut-on dire du triangle ABC?
- À quelle condition nécessaire et suffisante sur z : 37
 - 1) \bigcirc z et z^2 sont-ils les affixes de deux vecteurs :
 - a) colinéaires? **b)** orthogonaux?
 - 2) \bigcirc 1, z et z^2 sont-ils les affixes de trois points alignés?
 - 3) \bigcirc z et \overline{z} sont-ils les affixes de deux vecteurs orthogonaux?
 - 4) \bigcirc z, $\frac{1}{z}$ et z-1 sont-ils les affixes de points situés sur un même cercle de centre O?
 - 5) 🕑 🕑 🕑 z et ses deux racines carrées formentils un triangle rectangle en z?
- On note *A* le point d'affixe 1 et *B* le point d'affixe 5.
 - 1) \bigcirc Déterminer le lieu des points M pour lesquels:
 - MA = MB. a)
- b) $MB = MA\sqrt{2}$.
- 2) 🖰 🖰
 - a) Montrer, pour tout $\lambda \in \mathbb{R}_+^* \setminus \{1\}$, que le lieu des points M pour lesquels : $MB = \lambda MA$ est un cercle dont on précisera l'affixe du centre et le rayon.
 - b) Étudier l'allure des cercles trouvées en a) pour λ très grand (resp. proche de 0, resp. proche de 1 par valeurs inférieures, resp. proche de 1 par valeurs supérieures).
- 39
- 1) Caractériser géométriquement la similitude :

$$z \longmapsto 2(1+i)z-7-4i$$
.

- 2) Déterminer l'expression complexe de la rotation de centre 1 + i et d'angle de mesure $\frac{\pi}{4}$.
- 3) On note r la rotation de centre 1 et d'angle de mesure $\frac{\pi}{2}$ et s la symétrie centrale de centre 3+i. Caractériser géométriquement la fonction $s \circ r$.
- 4) On note r la rotation de centre 2 + i et d'angle de mesure $\frac{\pi}{3}$ et r' la rotation de centre 3-2iet d'angle de mesure $-\frac{\pi}{3}$. Caractériser géométriquement la fonction $r' \circ r$.
- $\begin{array}{c|c}
 \hline
 40 & \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
 \hline
 \text{Soit } \theta \in \left]0, \frac{\pi}{2} \right[\text{ fixé. Pour tout } \alpha \in \left]0, \pi\right[, \text{ on} \\
 \\
 \text{pose} : \quad z_{\alpha} = \frac{e^{i\alpha} \cos(2\theta)}{\sin(2\theta)} \quad \text{et on note } h \text{ la fonction} \\
 \\
 z \longmapsto \frac{z \cos \theta \sin \theta}{z \sin \theta + \cos \theta}.
 \end{array}$
 - 1) Décrire l'ensemble des z_{α} , α décrivant]0, π [.

2) Montrer que pour tout $\alpha \in [0, \pi[$:

$$h(z_{\alpha}) = i \frac{\tan \frac{\alpha}{2}}{\tan \theta}.$$

En déduire une description de l'ensemble des $h(z_{\alpha})$, α décrivant $]0,\pi[$.

U C C Soient *A*, *B* et *C* trois points d'affixes respectifs *a*, *b* et *c*. Par définition, le triangle *ABC* est équilatéral si les distances *AB*, *BC* et *CA* sont égales, mais on admettra qu'il l'est si et seulement si, par exemple, *C* est l'image de *B* par une certaine rotation de centre *A* et d'angle de mesure à préciser.

Montrer que les assertions suivantes sont équivalentes :

- (i) ABC est un triangle équilatéral.
- (ii) j ou \overline{j} est racine du polynôme $aX^2 + bX + c$.
- (iii) $a^2 + b^2 + c^2 = ab + bc + ca$.
- Pour tout $n \in \mathbb{N}$, on note A_n le point d'affixe $e^{\frac{in\pi}{4}}$. On définit alors une suite de points $(M_n)_{n \in \mathbb{N}}$ de la façon suivante : $M_0 = A_0$ et pour tout $n \in \mathbb{N}$, M_{n+1} est le projeté orthogonal de M_n sur la droite (OA_{n+1}) . Déterminer l'affixe z_n du point M_n pour tout $n \in \mathbb{N}$.