

Dynamic Programming

Dynamic Programming - The IDEA

A technique for solving problems with overlapping sub
problems.

These sub – problems arise from a recurrence relating a solution to a given problem with solutions to its smaller sub – problems of the same type.

Ex: Fibonacci Number Sequence

Dynamic Programming - The IDEA

- Dynamic Programming suggests:
 - Solve each of these sub problems only once
 - Store the results in a table
 - Use these results to obtain solutions to the original problem.

Dynamic Programming – An EXAMPLE

FIBONACCI NUMBERS

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

Recurrence Relation:

$$F(n) = F(n-1) + F(n-2)$$
 for $n \ge 2$
 $F(0) = 0$, $F(1) = 1$

†/

Dynamic Programming – An EXAMPLE

- If the recurrence is directly used to compute the nth Fibonacci number, we would have to recompute the same values again and again.
- Ex: F(6) = F(5) + F(4) F(5) = F(4) + F(3) $F(4) = F(3) + F(2) \dots$

Dynamic Programming – An EXAMPLE

Instead, we can simply fill elements of a one – dimensional array with the n + 1 consecutive values of F(n) by starting with the initial elements and using the equation to produce all other elements. 1

Computing a Binomial Co - Efficient

What is Binomial Co – Efficient?

- **Binomial Co efficient**, denoted C(n, k) is the number of combinations (subsets) of k elements from an n-element set $(0 \le k \le n)$.
- The name comes from the participation of these numbers in the binomial formula:

$$(a+b)^n = C(n, O)a^n + ... + C(n, k)a^{n-k}b^k + ... + C(n, n)b^n.$$

Binomial Co – Efficient

Properties:

- C(n, k) = C(n-1, k-1) + C(n-1, k) for n > k > 0
- C(n, 0) = C(n, n) = 1

The nature of the recurrence is such that it can be solved by Dynamic Programming.

Binomial Co – Efficient

To do this, we record the values of the binomial coefficients in a table of n + 1 rows and k + 1 columns, numbered from 0 to n and from 0 to k, respectively

	0	1	2		k - 1	k
0	1					
1	1	1				
2	1	2	1			
:						
k	1					1
:						
n-1	1		С	(n –	1, k - 1)	C(n-1, k)
n	1					C(n-1, k)
	l					

Binomial Co – Efficient – The ALGORITHM

```
ALGORITHM Binomial(n, k)
    //Computes C(n, k) by the dynamic programming algorithm
    //Input: A pair of nonnegative integers n \ge k \ge 0
    //Output: The value of C(n, k)
    for i \leftarrow 0 to n do
         for j \leftarrow 0 to \min(i, k) do
             if j = 0 or j = i
                  C[i, j] \leftarrow 1
             else C[i, j] \leftarrow C[i-1, j-1] + C[i-1, j]
    return C[n, k]
```


Binomial Co - Efficient - The EFFICIENCY

$$A(n, k) = \sum_{i=1}^{k} \sum_{j=1}^{i-1} 1 + \sum_{i=k+1}^{n} \sum_{j=1}^{k} 1 = \sum_{i=1}^{k} (i-1) + \sum_{i=k+1}^{n} k$$
$$= \frac{(k-1)k}{2} + k(n-k) \in \Theta(nk).$$

2

Warshall's Algorithm

What is Transitive Closure?

The transitive closure of a directed graph with n vertices can be defined as the n-by-n boolean matrix $T = \{t_{i,j}\}$, in which the element in the ith row (1 <= i<= n) and the jth column (1 <= j <= n) is 1 if there exists a nontrivial directed path (i.e., a directed path of a positive length) from the ith vertex to the jth vertex; otherwise, t_{ij} is 0.

What is Transitive Closure?

- a) Directed Graph
- b) Adjacency Matrix
- c) Transitive Closure

Warshall's Algorithm - The IDEA

- Warshall's Algorithm constructs the transitive closure of a digraph with n vertices through a series of n – by – n Boolean matrices.
- \bullet $R^{(0)}, R^{(1)}, \ldots, R^{(k-1)}, R^{(k)}, \ldots, R^{(n)}$
- The element $r_{ij}^{(k)}$ in the ith row and jth column of matrix $R^{(k)}$ (k = 0, 1, ..., n) is equal to 1 if and only if there exists a directed path (of a positive length) from the i^{th} vertex to the jth vertex with each intermediate vertex, if any, numbered not higher than k.

Warshall's Algorithm - The IDEA

- Rules for generating elements of matrix $R^{(k)}$ from $R^{(k-1)}$:
 - If an element r_{ii} is 1 in $R^{(k)}$, it remains so in $R^{(k-1)}$.
 - If an element r_{ij} is 0 in $R^{(k-1)}$, it can be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in row k and column j are both 1's in $R^{(k-1)}$.

Warshall's Algorithm - The IDEA

Warshall's Algorithm

```
ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure

//Input: The adjacency matrix A of a digraph with n vertices

//Output: The transitive closure of the digraph

R^{(0)} \leftarrow A

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] or (R^{(k-1)}[i, k] and R^{(k-1)}[k, j])

return R^{(n)}
```


Warshall's Algorithm – An EXAMPLE

Ones reflect the existence of paths with no intermediate vertices $(R^{(0)})$ is just the adjacency matrix); boxed row and column are used for getting $R^{(1)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 1, i.e., just vertex a (note a new path from d to b); boxed row and column are used for getting R(2).

Warshall's Algorithm – An EXAMPLE

$$R^{(2)} = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 1 \\ b & 0 & 0 & 0 & 1 \\ c & 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 1 \end{bmatrix}$$

Ones reflect the existence of paths with intermediate vertices numbered not higher than 2, i.e., a and b (note two new paths); boxed row and column are used for getting R⁽³⁾.

$$R^{(3)} = \begin{pmatrix} a & b & c & d \\ 0 & 1 & 0 & 1 \\ b & 0 & 0 & 0 & 1 \\ c & 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 1 \end{pmatrix}$$

Ones reflect the existence of paths with intermediate vertices numbered not higher than 3, i.e., a, b, and c (no new paths); boxed row and column are used for getting R⁽⁴⁾.

$$R^{(4)} = \begin{bmatrix} a & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ c & 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Ones reflect the existence of paths with intermediate vertices numbered not higher than 4, i.e., a, b, c, and d (note five new paths).

Efficiency: Θ (n³)

3

Floyd's Algorithm for All Pairs Shortest Path

All Pairs Shortest Path

- The all-pairs shortest paths problem asks to find the distances (the lengths of the shortest paths) from each vertex to all other vertices.
- It is convenient to record the lengths of shortest paths in an n-by-n matrix D called the *distance matrix*: the element d_{ij} in the ith row and the jth column of this matrix indicates the length of the shortest path from the ith vertex to the jth vertex (1 <= i, j <= n).

All pairs shortest path

FIGURE 8.5 (a) Digraph. (b) Its weight matrix. (c) Its distance matrix.

Floyd's Algorithm - The IDEA

- Floyd's Algorithm computes the distance matrix of a weighted graph with n vertices through a series of n – by – n matrices:
- $D(0), D(1), \ldots, D(k-1), D(k), \ldots, D(n)$
- The element $d_{ij}^{(k)}$ in the ith row and jth column of matrix $D^{(k)}$ is equal to the length of the shortest path among all paths from the ith vertex to the jth vertex with each intermediate vertex, if any, numbered not higher than k.

Floyd's Algorithm - The IDEA

- $d_{ij}^{(k)}$ is equal to the length of the shortest path among all paths from ith vertex v_i to jth vertex v_j with their intermediate vertices not numbered higher than k.
- All such paths can be partitioned into two disjoint subsets: ones which do not use vk as the intermediate vertex and which do.

Floyd's Algorithm - The IDEA

Taking into account both these subsets lead to the following recurrence:

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, \ d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} \quad \text{for } k \ge 1, \quad d_{ij}^{(0)} = w_{ij}.$$

Floyd's Algorithm

```
ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem

//Input: The weight matrix W of a graph with no negative-length cycle

//Output: The distance matrix of the shortest paths' lengths

D ← W //is not necessary if W can be overwritten

for k ← 1 to n do

for i ← 1 to n do

for j ← 1 to n do

D[i, j] ← min{D[i, j], D[i, k] + D[k, j]}

return D
```


Floyd's Algorithm - An EXAMPLE

Lengths of the shortest paths with no intermediate vertices $(D^{(0)})$ is simply the weight matrix).

Lengths of the shortest paths with intermediate vertices numbered not higher than 1, i.e. just a (note two new shortest paths from b to c and from d to c).

†

Floyd's Algorithm – An EXAMPLE

		_ a	b	C	d _
	a	0	00	3	600
D(2) =	b	_2	0	5	90
	c	9	7	0	1
	d	6	90	9	0
		-			

Lengths of the shortest paths with intermediate vertices numbered not higher than 2, i.e. a and b (note a new shortest path from c to a).

$$D^{(3)} = \begin{pmatrix} a & b & c & d \\ 0 & \mathbf{10} & 3 & \mathbf{4} \\ 2 & 0 & 5 & \mathbf{6} \\ c & 9 & 7 & 0 & 1 \\ d & \mathbf{6} & \mathbf{16} & 9 & 0 \end{pmatrix}$$

Lengths of the shortest paths with intermediate vertices numbered not higher than 3, i.e. a, b, and c (note four new shortest paths from a to b, from a to d, from b to d, and from d to b).

$$D^{(4)} = \begin{pmatrix} a & b & c & d \\ b & 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ 7 & 7 & 0 & 1 \\ 6 & 16 & 9 & 0 \end{pmatrix}$$

Lengths of the shortest paths with intermediate vertices numbered not higher than 4, i.e. a, b, c, and d (note a new shortest path from c to a).

Efficiency: Θ (n³)

4

Knapsack Problem and Memory Functions

Knapsack Problem

- Given 'n' items of known weights $w_1, w_2, w_3, \ldots, w_n$, and values $v_1, v_2, v_3, \ldots, v_n$ and a knapsack of capacity W, find the most valuable subset of items that fit into the knapsack.
- We have already solved this problem using Exhaustive Search.
- Now, we shall see how to solve the same problem using Dynamic Programming.

Knapsack Problem

- Let us consider an instance defined by the first I items 1 <= i <= n, with weights $w_1, w_2, w_3, \ldots, w_i$, and values $v_1, v_2, v_3, \ldots, v_i$ and a knapsack of capacity j, 1 <= j <= W.
- Let V[i, j] be the value of an optimal solution to this instance.
- We can divide all the subsets of the first i items that fit into knapsack of capacity j into two categories: those that do not include the ith item and those that do.

Knapsack Problem

- Among the subsets that do not include the i^{th} item, the value of an optimal subset is, by definition, V[i-1,j].
- Among the subsets that do include the i^{th} item (hence, $j w_i >= 0$), an optimal subset is made up of this item and an optimal subset of the first i 1 items that fit into the knapsack of capacity $j w_i$. The value of such an optimal subset is $v_i + V[i 1, j w_i]$.

Knapsack Problem – Recurrence and Initial Condition

$$V[i, j] = \begin{cases} \max\{V[i-1, j], \ v_i + V[i-1, j-w_i]\} & \text{if } j - w_i \ge 0 \\ V[i-1, j] & \text{if } j - w_i < 0. \end{cases}$$

$$V[0, j] = 0$$
 for $j \ge 0$ and $V[i, 0] = 0$ for $i \ge 0$.

Our goal is to find V[n, W]

Table For Solving Knapsack Problem

Table For Solving Knapsack Problem

- For i, j > 0, to compute the entry in the ith row and the jth column, V[i, j], we compute the maximum of the entry in the previous row and the same column and the sum of v_i and the entry in the previous row and w_i columns to the left.
- The table can be filled either row by row or column by column.

Knapsack Problem - Example

item	weight	value	
1	2	\$12	
2	1	\$10	
3	3	\$20	
4	2	\$15	

capacity W = 5

		capacity j					
	<u>i</u>	0	_1_	2	3	4	5
	0	0	0	0	0.	0	0.
$w_1 = 2$, $v_1 = 12$	1	0	0:	12	12	12	12
$w_2 = 1$, $v_2 = 10$	2		10	12	22	22	22
$v_3 = 3$, $v_3 = 20$	3	. 0		12	22	30	32
$W_4 = 2$, $V_4 = 15$	4	0	10	15	25	30	37

Knapsack Problem - Efficiency

- The time efficiency and space efficiency are both Θ (nW).
- The time needed to find the composition of an optimal solution is O(n + W).

Memory Functions

- Dynamic Programming deals with problems which satisfy a recurrence relation with overlapping sub problems.
- The top down approach to solve such a recurrence leads to an algorithm that solves common sub problems more than once.
- The dynamic programming approach (bottom up) solves these sub problems only once.
- But the disadvantage is that sometimes it solves sub problems which are not necessary for solving the problem for the given instance.
- The goal is to build a method which solves only those sub problems which are necessary.

Memory Functions

- This method solves a problem in the top down manner but maintains a table similar to the one maintained by the bottom up approach.
- Initially, all the table's entries are initialized with a special "null" symbol to indicate that they have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the method checks the corresponding entry in the table first:
 - if this entry is not "null," it is simply retrieved from the table;
 - otherwise, it is computed by the recursive call whose result is then recorded in the table.

Memory Functions – The ALGORITHM

```
ALGORITHM
                MFKnapsack(i, j)
    //Implements the memory function method for the knapsack problem
    //Input: A nonnegative integer i indicating the number of the first
            items being considered and a nonnegative integer j indicating
            the knapsack's capacity
    //Output: The value of an optimal feasible subset of the first i items
    //Note: Uses as global variables input arrays Weights[1.n], Values[1.n],
    //and table V[0..n, 0..W] whose entries are initialized with -1's except for
    //row 0 and column 0 initialized with 0's
    if V[i, j] < 0
        if j < Weights[i]
            value \leftarrow MFKnapsack(i-1, i)
        else
            value \leftarrow \max(MFKnapsack(i-1, j),
                           Values[i] + MFKnapsack(i - 1, j - Weights[i]))
        V[i, j] \leftarrow value
    return V[i, j]
```


Memory Functions - EXAMPLE

item	weight	value	
1	2	\$12	
2	1	\$10	
3	3	\$20	
4	2	\$15	

capacity W = 5

		capacity j					
	j	0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_1 = 2, v_1 = 12$ $w_2 = 1, v_2 = 10$	1	0	0	12	12	12	12
$w_2 = 1$, $v_2 = 10$	2	0		12	22		22
$W_3 = 3$, $V_3 = 20$	3	0	_	-	22	_	32
$W_4 \approx 2$, $V_4 = 15$	4	0	-	_	_	_	37

Knapsack Problem with Memory Functions - Efficiency

 Same as the efficiency of Bottom – Up algorithm except for a constant factor gain.